# PLANE AND SPHERICAL

TRIGONOMETRY



THE MACMILLAN COMPANY
NEW YORK - BOSTON - CHICAGO - DALLAS
ATLANTA - SAN FRANCISCO

MACMILLAN AND CO., LIMITED LONDON · BOMBAY · CALCUTTA · MADRAS MELBOURNE

THE MACMILLAN COMPANY
OF CANADA, LIMITED
TORONTO

## PLANE AND SPHERICAL TRIGONOMETRY

WITH TABLES

BY PAUL R. RIDER, Ph.D.
PROFESSOR OF MATHEMATICS
WASHINGTON UNIVERSITY

THE MACMILLAN COMPANY
NEW YORK

### Preface

The primary purpose of this book is to present in a sound pedagogical manner the usual course in trigonometry as offered in colleges and technical schools. Only those methods are employed which have withstood the test of many years of actual classroom use. The arrangement of topics is such as has been found desirable as a result of long experience. Even logical order has at times been sacrificed to make the material more teachable. For example, the special definitions of the trigonometric functions for acute angles are given before the more general definitions. Applications are introduced early, as it has been found that the student's interest in a subject is considerably stimulated if he can see the utility of it. Moreover, the first problems have been made simple from a numerical standpoint in order to enable him to grasp principles and to learn methods without becoming lost in a maze of computations. Formulas are developed as needed, so that there is a certain amount of purposeful alternation between theoretical and practical aspects. On the other hand, the discussion of the more difficult of the theoretical topics is postponed to the latter part of the book. Many students find it easier to solve triangles than to handle some of the analytic phases of trigonometry such as proving identities and solving equations. By solving triangles they acquire confidence, as well as a certain amount of familiarity with the relations among the functions, so that they have a greater chance of success when they tackle the more difficult portions of the subject. Too much analytic work in

### Preface

The primary purpose of this book is to present in a sound pedagogical manner the usual course in trigonometry as offered in colleges and technical schools. Only those methods are employed which have withstood the test of many years of actual classroom use. The arrangement of topics is such as has been found desirable as a result of long experience. Even logical order has at times been sacrificed to make the material more teachable. For example, the special definitions of the trigonometric functions for acute angles are given before the more general definitions. Applications are introduced early, as it has been found that the student's interest in a subject is considerably stimulated if he can see the utility of it. Moreover, the first problems have been made simple from a numerical standpoint in order to enable him to grasp principles and to learn methods without becoming lost in a maze of computations. Formulas are developed as needed, so that there is a certain amount of purposeful alternation between theoretical and practical aspects. On the other hand, the discussion of the more difficult of the theoretical topics is postponed to the latter part of the book. Many students find it easier to solve triangles than to handle some of the analytic phases of trigonometry such as proving identities and solving equations. By solving triangles they acquire confidence, as well as a certain amount of familiarity with the relations among the functions, so that they have a greater chance of success when they tackle the more difficult portions of the subject. Too much analytic work in

### COPYRIGHT, 1942, BY THE MACMILLAN COMPANY

ALL RIGHTS RESERVED—NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER, EXCEPT BY A REVIEWER WHO WISHES TO QUOTE BRIEF PASSAGES IN CONNECTION WITH A REVIEW WRITTEN FOR INCLUSION IN MAGAZINE OR NEWSPAPER

### PRINTED IN THE UNITED STATES OF AMERICA

Published February, 1942. Reprinted April, 1942; February, June (twice), November, 1943; December, 1943; February, August, 1946.

rendered during its preparation. The manuscript was critically read by five different advisers, and the suggestions of these advisers were given thoughtful consideration during the process of revision. The revised manuscript was then read in great detail by one of these advisers, who even worked all of the exercises. It is hoped that because of its careful preparation the book will be found both clear and teachable, as well as mathematically sound.

P. R. R.

Washington University St. Louis, Missouri January, 1942 the early part of the course has been found to discourage many students and to kill their interest.

A few other features of the book seem worthy of note. An effort has been made to introduce simplifications into the treatment of certain topics, notably logarithms. The use of approximate numbers in computation and the question of significant figures have been stressed. Emphasis has been placed on the orderly arrangement of computations. Sets of carefully chosen and carefully graded exercises are to be found throughout the book. Answers to the odd-numbered exercises are printed at the back, answers to the even-numbered exercises are available in pamphlet form.

The book contains a complete course in plane and spherical trigonometry as these subjects are ordinarily taught. The part on spherical trigonometry has been made rather comprehensive in view of the present interest in subjects requiring a knowledge of this branch of mathematics. The student who has mastered this part will be well equipped to pursue courses in navigation and avigation, astronomy, and other applications. If a shorter course in plane trigonometry is desired, those topics marked with a \* may be omitted. A thorough course in computational trigonometry is provided by the first seven chapters. Although, as stated above, the arrangement of material is that which seemed most desirable, the separate chapters are to a large extent independent, so that the instructor who prefers a different order of presentation should have no difficulty in outlining a course to his taste

Advice concerning some of the figures and assistance with them were kindly given by my colleagues, Professors W. H. Roever and R. W. Bockhorst, to whom I am very grateful.

My thanks are due to The Macmillan Company for making every effort to give the book a pleasing format, and for the very valuable editorial assistance which they

### Contents

### PLANE TRIGONOMETRY

| Chapter I.   | TRIGONOMETRIC FUNCTIONS OF ACUTE                |            |
|--------------|-------------------------------------------------|------------|
| ANGL         |                                                 | 3          |
| 1.           | Trigonometry                                    | 3          |
|              | Trigonometric functions of an acute angle       | 3          |
| 3.           | Functions of complementary angles               | 6          |
| 4.           | Finding the other functions of an acute angle   |            |
|              | when one function is given                      | 7          |
| 5.           | Functions of 45°, 60°, and 30°                  | 9          |
| 6.           | Tables of functions                             | 11         |
| Chapter II.  | SOLUTION OF TRIANGLES                           | 16         |
| 7.           | Solution of right triangles                     | 16         |
| 8.           | Interpolation                                   | 21         |
| <b>*</b> 9.  | Components                                      | 25         |
| <b>*</b> 10. | Isosceles triangles and regular polygons        | 29         |
| <b>*11</b> . | Solution of oblique triangles by means of right |            |
|              | triangles                                       | 32         |
| Chapter III  | . APPROXIMATE NUMBERS AND                       |            |
| COMP         | UTATION                                         | 36         |
| 12.          | Approximate numbers                             | 36         |
| 13.          | Rounding off numbers                            | 36         |
| <b>*14</b> . | Error                                           | 37         |
| 15.          | Significant figures                             | 37         |
|              | Scientific notation                             | 38         |
| <b>*</b> 17. | Addition and subtraction of approximate num-    |            |
|              | bers                                            | 39         |
|              | Multiplication of approximate numbers           | 40         |
|              | Division of approximate numbers                 | 41         |
|              | Square root                                     | 42         |
| <b>*</b> 21. | Use of calculating machines                     | <b>4</b> 3 |
|              | *These topics may be omitted.                   |            |

### CONTENTS

| Chapter VII. SOLUTION OF OBLIQUE TRIANGLES          | 80   |
|-----------------------------------------------------|------|
| 50. The four cases                                  | 80   |
| 51. Law of sines                                    | 80   |
| 52. Solution of Case I                              | 83   |
| 53. Solution of Case II                             | 84   |
| 54. Law of cosines                                  | 88   |
| 55. Solution of Case III                            | 89   |
| 56. Solution of Case IV                             | 91   |
| *57. Application of law of cosines to Case II       | 92   |
| 58. Logarithmic solution of Case I                  | 93   |
| 59. Logarithmic solution of Case II                 | 94   |
| 60. Law of tangents                                 | 96   |
| *61. Mollweide's equations                          | 97   |
| 62. Logarithmic solution of Case III                | 98   |
| *63. Heron's formula                                | 100  |
| 64. Half-angle formulas                             | 101  |
| 65. Logarithmic solution of Case IV                 | 102  |
| 66. Summary of methods                              | 104  |
| *67. Vectors                                        | 109  |
| Chapter VIII. TRIGONOMETRIC FORMULAS AND            |      |
| IDENTITIES                                          | 114  |
| 68. Fundamental relations among the functions       | 114  |
| 69. Finding the other functions of an angle when    | 1.14 |
| one function is given                               | 115  |
| 70. Identities                                      | 118  |
| 71. Directed line segments                          | 122  |
| 72. Functions of the sum and the difference of two  | 144  |
| angles                                              | 123  |
| 73. Functions of twice an angle                     | 127  |
| 74. Functions of half an angle                      | 128  |
| 75. Sums and differences of functions               | 131  |
| *76. Reduction of $a \cos \theta \pm b \sin \theta$ | 137  |
|                                                     |      |
| Chapter IX. RADIAN MEASURE                          | 139  |
| 77. Radian                                          | 139  |
| 78. Relation between radian and degree              | 139  |
| 79. Relation between arc and angle                  | 142  |
|                                                     |      |

### CONTENTS

| Chapter IV. LOGARITHMS                                     | 45              |
|------------------------------------------------------------|-----------------|
| 22. Logarithms                                             | 45              |
| 23. Mantissa                                               | 46              |
| 24. Characteristic                                         | 47              |
| 25. Finding the mantissa                                   | 49              |
| 26. Finding the antilogarithm                              | 50              |
| 27. Laws of logarithms                                     | 51              |
| 28. Logarithmic computation of products and quo-<br>tients | 52              |
| 29. Cologarithm                                            | 54              |
| 30. Logarithmic computation of powers and roots            | 55              |
| 31. Logarithms of the trigonometric functions              | 57              |
|                                                            | 37              |
| Chapter V. LOGARITHMIC SOLUTION OF RIGHT                   |                 |
| TRIANGLES                                                  | 61              |
| 32. Logarithmic solution of right triangles                | 61              |
| Chapter VI. TRIGONOMETRIC FUNCTIONS OF ANY ANGLE           | 64              |
| 33. Generation of an angle                                 |                 |
| 34. Positive and negative angles                           | 64              |
| 35. Rectangular coordinates                                | 64              |
| 36. Quadrants                                              | 65              |
| 37. Trigonometric functions of any angle                   | 66              |
| 38. Functions of 0°, 90°, 180°, 270°                       | 67              |
| 39. Functions of $-\theta$                                 | $\frac{68}{71}$ |
| 40. Functions of $180^{\circ} - \theta$                    | $\frac{71}{72}$ |
| 41. Functions of $180^{\circ} + \theta$                    | 73              |
| 42. Functions of $360^{\circ} - \theta$                    | $\frac{73}{73}$ |
| 43. Functions of $360^{\circ} + \theta$                    | 73              |
| 44. Functions of $90^{\circ} - \theta$                     | 74              |
| 45. Functions of $90^{\circ} + \theta$                     | 75              |
| 46. Functions of $270^{\circ} - \theta$                    | 7.5             |
| 47. Functions of $270^{\circ} + \theta$                    | 76              |
| 48. Summary                                                | 76<br>76        |
| 49. Reduction of functions of any angle to functions       | 10              |
| of an acute angle                                          | 77              |

### SPHERICAL TRIGONOMETRY

| Chapter XIV. INTRODUCTION TO SPHERICAL                |             |
|-------------------------------------------------------|-------------|
| TRIGONOMETRY                                          | 197         |
| 103. Definitions and propositions from solid geometry | 197         |
| 104. Spherical triangles                              | 197         |
| 105. Spherical polygons                               | 199         |
| 106. Polar triangles                                  | 199         |
| 107. Areas                                            | 200         |
| Chapter XV. SOLUTION OF RIGHT SPHERICAL               |             |
| TRIANGLES                                             | 201         |
| 108. Formulas for solving right spherical triangles   | 201         |
| 109. Napier's rules                                   | 203         |
| 110. Solution of right spherical triangles            | 204         |
| 111. Quadrantal triangles                             | 207         |
| 112. Isosceles spherical triangles                    | 208         |
| Chapter XVI. SOLUTION OF OBLIQUE SPHERICAL            |             |
| TRIANGLES                                             | 211         |
| 113. Oblique spherical triangles                      | 211         |
| 114. Law of sines                                     | 211         |
| 115. Law of cosines for sides                         | 212         |
| 116. Law of cosines for angles                        | 213         |
| 117. Law of tangents                                  | 214         |
| 118. Half-angle formulas                              | 215         |
| 119. Half-side formulas                               | 216         |
| 120. Napier's analogies                               | 217         |
| 121. The six cases                                    | 218         |
| 122. Clearing up certain ambiguities                  | 219         |
| 123. Delambre's or Gauss's formulas                   | 221         |
| 124. Solution of Case I                               | 221         |
| 125. Solution of Case II                              | 223         |
| 126. Solution of Case III                             | 223         |
| 127. Solution of Case IV                              | 225         |
| 128. Solution of Case V                               | <b>22</b> 8 |
| 129. Solution of Case VI                              | 230         |
| 130. Summary of methods                               | 233         |

### CONTENTS

### SPHERICAL TRIGONOMETRY

| Chapter XIV. INTRODUCTION TO SPHERICAL                |     |
|-------------------------------------------------------|-----|
| TRIGONOMETRY                                          | 197 |
| 103. Definitions and propositions from solid geometry | 197 |
| 104. Spherical triangles                              | 197 |
| 105. Spherical polygons                               | 199 |
| 106. Polar triangles                                  | 199 |
| 107. Areas                                            | 200 |
| Chapter XV. SOLUTION OF RIGHT SPHERICAL               |     |
| TRIANGLES                                             | 201 |
| 108. Formulas for solving right spherical triangles   | 201 |
| 109. Napier's rules                                   | 203 |
| 110. Solution of right spherical triangles            | 204 |
| 111. Quadrantal triangles                             | 207 |
| 112. Isosceles spherical triangles                    | 208 |
| Chapter XVI. SOLUTION OF OBLIQUE SPHERICAL            |     |
| TRIANGLES                                             | 211 |
| 113. Oblique spherical triangles                      | 211 |
| 114. Law of sines                                     | 211 |
| 115. Law of cosines for sides                         | 212 |
| 116. Law of cosines for angles                        | 213 |
| 117. Law of tangents                                  | 214 |
| 118. Half-angle formulas                              | 215 |
| 119. Half-side formulas                               | 216 |
| 120. Napier's analogies                               | 217 |
| 121. The six cases                                    | 218 |
| 122. Clearing up certain ambiguities                  | 219 |
| 123. Delambre's or Gauss's formulas                   | 221 |
| 124. Solution of Case I                               | 221 |
| 125. Solution of Case II                              | 223 |
| 126. Solution of Case III                             | 223 |
| 127. Solution of Case IV                              | 225 |
| 128. Solution of Case V                               | 228 |
| 129. Solution of Case VI                              | 230 |
| 130. Summary of methods                               | 233 |

| *80. Angular velocity *81. Area of sector and of segment *82. Angles near 0° or 90° *83. Mil                                                                                                                                                 |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Chapter X. GRAPHIC REPRESENTATIONS OF THE TRIGONOMETRIC FUNCTIONS                                                                                                                                                                            |                 |
| *84. Line representations of the trigonometric func-<br>tions  85. Graph of the sine  86. Graph of the cosine  87. Graphs of the tangent and the cotangent  88. Graphs of the secant and the co-ceant  89. Use of radian measure in graphing | -<br>154<br>156 |
| *90. Geometric construction of the line and cosine graphs                                                                                                                                                                                    |                 |
| *Chapter XI. INVERSE TRIGONOMETRIC FUNCTIONS 91. Inverse trigonometric function 92. Principal values                                                                                                                                         |                 |
| 93. Graphs of the inverse trigonometric functions                                                                                                                                                                                            | 167             |
| Chapter XII. TRIGONOMETRIC EQUATIONS                                                                                                                                                                                                         | 177             |
| 94. Trigonometric equations                                                                                                                                                                                                                  | 177             |
| Chapter XIII. COMPLEX NUMBERS                                                                                                                                                                                                                | 185             |
| 95. Imaginary and complex number                                                                                                                                                                                                             | 185             |
| 96. Operations with complex number                                                                                                                                                                                                           | 185             |
| 97. Geometric representation of complex numbers 98. Geometric addition and subtraction of complex numbers                                                                                                                                    | 186             |
| 99. Trigonometric form of complex manufact                                                                                                                                                                                                   | 187             |
| 100. Multiplication and division of complex numbers in trigonometric form                                                                                                                                                                    |                 |
| <ul><li>101. Powers of complex number</li><li>102. Roots of complex number</li></ul>                                                                                                                                                         |                 |
|                                                                                                                                                                                                                                              |                 |

\*These topics may be omitted.

### PLANE TRIGONOMETRY

| CO | N | T | FI | N | TS |
|----|---|---|----|---|----|
|    |   |   |    |   |    |

| Chapter XVII. APPLICATIONS OF SPHERICAL TRIGONOMETRY | 00* |
|------------------------------------------------------|-----|
|                                                      | 235 |
| 131. Terrestrial sphere                              | 235 |
| 132. Terrestrial triangles                           | 236 |
| 133. Celestial sphere                                | 239 |
| 134. Astronomical triangle                           | 241 |
| IMPORTANT FORMULAS                                   | 249 |
| INDEX                                                | 253 |
| ANSWERS TO ODD-NUMBERED EXERCISES                    | 259 |

### CHAPTER

### Trigonometric Functions of Acute Angles

### 1. Trigonometry.

The word trigonometry is derived from the Greek and means "measurement of triangles." The subject is principally concerned with the measurement of triangles (i.e., their sides and angles), or, more specifically, with the indirect measurement of line segments and angles. example, it is possible, by trigonometry, to measure the width of a river without crossing it, or the height of a pole or cliff without climbing to the top.

The uses of trigonometry are many. The sciences of physics, mechanics, and astronomy could hardly have developed without it; practical arts, such as engineering, find it indispensable. It is a valuable aid in the study of periodic phenomena such as the tides, or even economic data which seem to be cyclic in their nature. Various specific uses will be illustrated throughout the book, particularly in the examples and exercises.

### 2. Trigonometric functions of an acute angle.

Let us consider the right triangle ABC, with the right angle at C (Fig. 1). The sides opposite the angles A, B, C will be denoted by the corresponding small letters, a, b, c, respectively. Then, by taking ratios of the sides of the triangle, we define three trigonometric functions of the acute angle A as follows:



### **EXERCISES**

cotangent of A (abbreviated cot A)

$$= \frac{\text{side adjacent to } A}{\text{side opposite } A} = \frac{b}{a}$$
 (6)

It will be noted that these three functions are the reciprocals \* of the other three, and we may write

$$csc A = \frac{1}{\sin A}, \qquad sin A = \frac{1}{\csc A}$$

$$sec A = \frac{1}{\cos A}, \qquad cos A = \frac{1}{\sec A} \qquad (7)$$

$$cot A = \frac{1}{\tan A}, \qquad tan A = \frac{1}{\cot A}$$

Note. Three other functions are:

versed sine of A (abbreviated vers A) =  $1 - \cos A$ , coversed sine of A (abbreviated covers A) = 1 -  $\sin A$ , haversine of A (abbreviated hav A) =  $\frac{1}{2}(1 - \cos A)$ .

They will not be used in this book.

### EXERCISES I. A

Draw the right triangles whose sides have the following values, and find the six trigonometric functions of the angle A:

1. 
$$a = 4, b = 3, c = 5.$$

**2.** 
$$a = 5$$
,  $b = 12$ ,  $c = 13$ .

3. 
$$a = 2$$
,  $b = 3$ ,  $c = \sqrt{13}$ .

**4.** 
$$a = 1, b = 1, c = \sqrt{2}$$
.

5. 
$$a = 2, b = \sqrt{5}, c = 3.$$

**6.** 
$$a = \sqrt{2}, b = \sqrt{3}, c = \sqrt{5}$$

7. 
$$a = 8, b = 15$$
.

8. 
$$b = 21, c = 29.$$

9. 
$$a = 7$$
,  $c = 25$ .  
11.  $a = 1$ ,  $b = \sqrt{3}$ .

**10.** 
$$a = 5$$
,  $b = 3$ .  
**12.**  $a = 1$ ,  $b = 3$ .

14 
$$a = 1, b = 1$$

13. 
$$a = 1, b = \frac{1}{3}$$
.

**14.** 
$$a = \frac{1}{2}$$
,  $b = \frac{1}{3}$ .

15. A guy wire 15 feet long is fastened to a point 13 feet above the foot of a vertical pole, which stands on level ground. Find the sine of the angle that the wire makes with the horizontal.

<sup>\*</sup>The reciprocal of a number is 1 divided by the number.

sine of A (abbreviated  $\sin A$ )

$$= \frac{\text{side opposite } A}{\text{hypotenuse}} = \frac{a}{c}, \tag{1}$$

cosine of A (abbreviated cos A)

$$= \frac{\text{side adjacent to } A}{\text{hypotenuse}} = \frac{b}{c}, \quad (2)$$

tangent of A (abbreviated tan A)

$$= \frac{\text{side opposite } A}{\text{side adjacent to } A} = \frac{a}{b}.$$
 (3)

Thus, for example, in a right triangle in which a=3, b=4, c=5 (see Fig. 2), we have

$$\sin A = \cos A = \frac{4}{5}, \quad \tan A = \frac{3}{5}$$

The values of these functions are completely determined

A D=4 C

by the angle A. Thus, if we had another right triangle with the same acute angle A, it would be similar to the above triangle and its sides would be in the same proportion. For example, they might all be twice as long, namely, a = 6, b = 8, c = 10. Then we should

have  $\sin A = 6/10 = 3/5$ , as before, and similarly for the other functions. On the other hand, if the size of angle A were changed, the values of these functions would be changed.

Three, and only three, other ratios may also be formed from the sides of the triangle ABC. They are

cosecant of A (abbreviated csc A)

$$= \frac{\text{hypotenuse}}{\text{side opposite } A} = \frac{c}{a}$$
 (4)

secant of A (abbreviated sec A)

$$= \frac{\text{hypotenuse}}{\text{side adjacent to A}} = \frac{c}{b} \quad (5)$$

It is convenient to arrange the functions in pairs as follows: sine and cosine, tangent and cotangent, secant and cosecant. In any pair, either function may be called the cofunction of the other. Relations (2) may then be expressed by the single statement: Any function of the complement of an angle is equal to the cofunction of the angle.

### EXERCISES I. B

Find the functions of angle B in exercises I. A, 1–14.

### 4. Finding the other functions of an acute angle when one function is given.

The following examples will illustrate how the remaining functions of an acute angle can be found if the value of one function is given.

### Example 1.

Given  $\sin A = \frac{5}{13}$ , A acute; find the other functions of A.

Solution. Since  $\sin A = \frac{a}{c}$ , we have  $\frac{a}{c} = \frac{5}{13}$ . Construct a right triangle with a = 5 and c = 13 (Fig. 3). (Note that it is not necessary to take a = 5 and c = 13; we could take a = 10 and c = 26, for example, or any other numbers in the ratio of 5 to 13.)

Making use of the theorem of Pythagoras, that the square of the hypotenuse is equal to the sum of the squares of the sides, we have

$$b^2 = c^2 - a^2 = 169 - 25 = 144, \quad b = 12.$$

The remaining functions of A can be read from the figure. Thus,

$$\cos A = \frac{12}{13}$$
,  $\tan A = \frac{5}{12}$ ,  $\csc A = \frac{13}{5}$ ,  $\sec A = \frac{13}{12}$ ,  $\cot A = \frac{12}{5}$ 

- 16. A yardstick, held vertically on a level surface, casts a shadow 1 foot 8 inches long. Find the tangent of the angle that the rays of the sun make with the horizontal.
- 17. A roadway rises 55 feet in a horizontal distance of ½ mile. Find the tangent of the angle that it makes with the horizontal.
- 18. An airplane is descending 225 feet per 1000 feet of horizontal distance covered. What is the cosine of the angle that its path of descent makes with the horizontal?
- 19. One end of a foot ruler is placed against a vertical wall; the other end of the ruler reaches a point on the floor 9 inches from the base of the wall. Find the sine, cosine, and tangent of the angle that the ruler makes (a) with the wall, (b) with the floor.
- \*20. A box is 3 inches by 4 inches by 1 foot. Find the sine of the angle that a diagonal of the box makes with its longest edge.

### 3. Functions of complementary angles.

By referring to the definitions of the trigonometric functions (section 2) and to Fig. 1, we see that, for the acute angle B,

$$\sin B = \frac{b}{c}$$
  $\csc B = \frac{c}{c}$ ,  $\sec B = \frac{c}{a}$ , (1)  
 $\tan B = \frac{b}{a}$ ,  $\cot B = \frac{a}{b}$ .

Comparing these formulas with formulas (1)–(6) of section 2, and making use of the fact that A and B are complementary angles (i.e.,  $A + B = 90^{\circ}$ ), we have

$$\sin B = \sin(90^{\circ} - A) = \cos A,$$
  
 $\cos B = \cos(90^{\circ} - A) = \sin A,$   
 $\tan B = \tan(90^{\circ} - A) = \cot A,$   
 $\csc B = \csc(90^{\circ} - A) = \sec A,$   
 $\sec B = \sec(90^{\circ} - A) = \csc A,$   
 $\cot B = \cot(90^{\circ} - A) = \tan A.$ 
(2)

### Example 2.

If  $\tan A = 3$ , what are the other functions of A, it being understood that A is acute?

Solution. 
$$\tan A = 3 = \frac{u}{1}$$

Take a = 3, b = 1, and construct a right triangle (Fig. 4). Then,

$$c^2 = a^2 + b^2 = 9 + 1 = 10,$$
  $c = \sqrt{10}.$ 

$$\sin A = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10} = 0.9487,$$

$$\cos A = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10} = 0.3162,$$

$$\csc A = \frac{\sqrt{10}}{3} = 1.054,$$

$$\sec A = \frac{\sqrt{10}}{10} = 0.3162,$$

$$\cot A = \frac{1}{3} = 0.3333.$$

### EXERCISES I. C

Find the other five functions of the acute angle A, given that

1. 
$$\cos A = \frac{4}{5}$$
. 2.  $\tan A = \frac{2}{3}$ . 3.  $\cot A = \frac{1}{5}$ . 4.  $\sin A = \frac{2}{5}$ . 5.  $\sec A = \sqrt{2}$ . 6.  $\csc A = \frac{4}{9}$ . 7.  $\sin A = \frac{1}{2}$ . 8.  $\cos A = \frac{2}{3}$ . 9.  $\tan A = \frac{2}{5}$ . 10.  $\csc A = \frac{4}{3}$ . 11.  $\cot A = \frac{5}{2}$ . 12.  $\sec A = \frac{5}{4}$ . 15.  $\tan A = 0.5$ . 16.  $\sin A = 0.8$ . 17.  $\sin A = \frac{\sqrt{3}}{2}$ . 18.  $\cos A = \frac{\sqrt{2}}{2}$ . 19.  $\tan A = \frac{\sqrt{3}}{3}$ . 20.  $\csc A = \sqrt{2}$ . 21.  $\sin A = \frac{2}{7}$ .

22.  $\tan A = \frac{u}{v}$  23.  $\sin A = \frac{2mn}{m^2 + n^2}$ 

¶ 5]

24. Show that if A is an acute angle,

$$\sin^2 A + \cos^2 A = 1.$$

(The notation  $\sin^2 A$  means the square of the sine of A. For example, if  $\sin A = \frac{2}{3}$ , then  $\sin^2 A = (\frac{2}{3})^2 = \frac{4}{9}$ .)

Solution. 
$$\sin^2 A + \cos^2 A = \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2$$
  
=  $\frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1$ ,

since (see Fig. 5), by the Pythagorean theorem,  $a^2 + b^2 = c^2$ .

Show that if A is an acute angle, then

25. 
$$\sec^2 A = 1 + \tan^2 A$$
.

26. 
$$\csc^2 A = 1 + \cot^2 A$$
.

27. 
$$\cos A \tan A = \sin A$$
.

• 28. 
$$\cot A \cos A = \csc A - \sin A$$
.

**29.** 
$$\frac{1+\sin A}{\cos A}$$
  $\frac{\cos A}{1-\sin A}$  **30.**  $\frac{\cos^2 A}{1-\sin A} = 1+\sin A$ .

<sup>1</sup> 31. 
$$\frac{\sin A + \tan A}{\cot A + \csc A} = \sin A \tan A.$$

**32.** 
$$\frac{1-2\cos^2 A}{\sin A\cos A}$$
 = tan A − cot A.

### 5. Functions of 45°, 60°, and 30°.



To find the functions of 45° we construct an isosceles right triangle (Fig. 6). It is convenient to make each leg equal to 1, that is, a = 1, b = 1. Then,

b

Fig. 5

$$c^2 = a^2 + b^2 = 1 + 1 = 2,$$
  $= \sqrt{2}.$ 

From the figure we read

$$\sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = 0.7071, \quad \csc 45^\circ = \sqrt{2} = 1.414,$$

$$\frac{1}{\cos 45^{\circ}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = 0.7071,$$
 sec  $45^{\circ} = \sqrt{2} = 1.414,$  tan  $45^{\circ} = 1,$  cot  $45^{\circ} = 1.$ 

The decimal values are, of course, merely approximate.

In order to find the functions of 60° we take an equilateral



triangle and draw the bisector of one of the angles. (See Fig. 7.) This bisector divides the equilateral triangle into two congruent right triangles whose angles are  $60^{\circ}$  and  $30^{\circ}$ . Let us consider one of these, namely ABC. If each side of the original equilateral triangle is 2 units in length, it follows that in ABC, c=2 and

b=1, since AC is half the base of the equilateral triangle. Then

$$a^2 = c^2 - b^2 = 4 - 1 = 3, \qquad a = \sqrt{3}.$$

From Fig. 7 we read

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} = 0.8660, \quad \csc 60^{\circ} = \frac{2\sqrt{3}}{\sqrt{3}} = 1.155,$$
 $\cos 60^{\circ} = \frac{1}{2} = 0.5, \quad \sec 60^{\circ} = 2,$ 
 $\tan 60^{\circ} = \sqrt{3} = 1.732, \quad \cot 60^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = 0.5774.$ 

From the same figure, or from the relations between the functions of complementary angles, we find

$$\sin 30^{\circ} = \frac{1}{2} = 0.5,$$
  
 $\cos 30^{\circ} = \frac{\sqrt{3}}{2} = 0.8660,$ 

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} = 0.5774,$$

$$\csc 30^{\circ} = 2.$$

$$\sec 30^{\circ} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} = 1.155,$$

$$\cot 30^{\circ} = \sqrt{3} = 1.732.$$

### 6. Tables of functions.

There are very few angles whose functions can be found by the foregoing methods of elementary geometry. It is possible, however, by other means to calculate the functions of any angle. Values of the functions have been calculated and tabulated, as for example in the table on pages 12–14, which gives the values of the sine, cosine, tangent, and cotangent of all angles from 0° to 90° for intervals of ten minutes.

To find a function of an angle less than 45° we locate the angle at the left-hand side of the table and the name of the function at the top of the column. Angles greater than 45° are located at the right-hand side of the table, and the names of their functions are located at the bottom. Opposite the angle, in the appropriate column, is found the value of the function.

For example, we find the sine of  $32^{\circ}$  40' to be 0.5398. Note that this is also the cosine of  $57^{\circ}$  20', the complement of  $32^{\circ}$  40'. Because of the relations between the functions of an angle and the functions of its complement, the table does double duty.

### EXERCISES I. D

Find, in the table on pages 12–14, the values of the following:

- 1. cos 28° 20′.
- 2. sin 67° 30′.
- 3. tan 15° 40'.

- 4. cot 79° 10′.
- 5. sin 45° 20′.
- 6. sin 0° 10′

- 7. tan 0° 10′.
- 8. sin 89°.
- 9. tan 89° 50′.

### TRIGONOMETRIC FUNCTIONS

```
angle | sin | tan
                                                                       cot
                                                                               cos
rle sin tan cot
                          COS
                                              9° 00′ .1564| .1584| 6.3138 .9877| 81° 00
                  __ 1.0000 90° 00°
   (0.000, 0.000)
                                                 10 .1593 1614 6.1970 9872
20 .1622 .1644 6.0844
                                      50
   gs 29 342.77 1.0000
                                                                                         50
                                      40
   40
                                                 30 .1650 .1673 5.9758
                                      30
                                                                               9863
                                                                                         30
  .0110.0119.55.940 .9909
                                      20
                                                 40 .1679 .1703 5.8708 9858
                                                                                         20
                                                     .1708 .1733 5.7694 9853
 0140 .0145 08.750
                         9999
                                      10
                                                                                         10
                                            10° 00′ 1736 1763 5.6713 9848 80° 00
   .0175 .0175 57.290
                         .9998 89° 00'
                          .9998
                                                 10
                                                     1765 1793 5.5764 9843
                                      50
   1/1204 .0204 49.104
                                                     .1794 1823 5.4845 9838
                                                 20
   .9997
                                      40
                                      30
                                                 30
                                                      1822 .1853 5.3955
                                                                              9833
    .0262 .0262 38.188
                          .9997
                                                      1851 1883 5.3093 9827
   .0291 .0291:34.368
.0320 .0320 31.242
                          .9996
                                      20
                                                 40
                                                     1880 1914 5.2257 9822
                                                 50
                                      10
                          .9995
                         .9994 88° 00
                                            11° 00′ .1908 .1944 5.1446 9816 79° 00′
 . .0349 .0349 28.636
                                                     1937 1974 5.0658 9811
1965 2004 4.9894 9805
1994 2035 4.9152 9799
2022 2065 4.8430 9793
2051 2095 4.7729 9787
 .0378 .0378 26.432
.0407 .0407 24.542
.0436 .0437 22.904
                                                 10
                          .9993
                          .9992
                                                 20
                                                 30
                          .9990
   0405 .0466 21.470
                          .9989
                                                 40
                                                 50
    0494 .0495 20.206
                          .9988
                          .9986 87° 00°
                                            12° 00′ 2079 2126 4.7046 9781 78° 00
   .0523 .0524 19.081
                                                 10 2108 2156 4.6382 9775
20 2136 2186 4.5736 9769
30 2164 2217 4.5107 9763
40 2193 2247 4.4494 9757
 .0552 .0553 18.075
.05$1 .05$2 17.169
                          .9985
                                      50
                                                                                         50
                          .9983
                                      40
 ) .0610 .0612 16.350
) .0640 .0641 15.605
) .0669 .0670 14.924
                          .9981
                                      30
                                                                                         30
                          .9980
                                      20
                                                                                         20
                                                     2221 2278 4 3897 9750
                          .9978
                                      10
                                                 50
                                                                                         10
 .0628 .0699 14.301
                          .9976 86° 00
                                            13° 00' 2250 2309 4.3315 9744 77° 00
                                                     .2278 .2339 4.2747 9737
   .0727 .0729 13.727
.0756 .0758 13.197
                           .9974
                                                 10
                                                 20
                                                     2306 2370 4.2193
                           .9971
                                                                              9730
                                                     2334 2401
   .0755 .0787 12.706
                          .9969
                                                 30
                                                                       1653 9724
                                                 40 2363 2432 4.1126 9717
50 2391 2462 4.0611 .9710
   .0814 .0816 12.251
                          .9967
                          .9964
    .0843 .0846 11.826
                          .9962 85° 00
    .0872 .0875 11.430
                                            14° 00′ .2419 | 2493 | 4.0108 | 9703 | 76° 00
    .0901 .0904 11.059
                          .9959
                                      50
                                                 10 .2447
                                                                     3.9617
                                                 10 .24476 2555 3.9136 9689
30 .2504 2586 3.8667 9681
40 .2532 2617 3.8208 9674
  .0929 .0934 10.712
.0958 .0963 10.385
.0957 .0992 10.078
.1016 .1022 9.7882
                          .9957
                                      40
                          .9954
                                      30
                                      20
                           .9951
                                                 50 .2560 .2648 3.7760 .9667
                          .9948
                                      10
   .1045 .1051 9.5144
                           .9945 84°
                                      00
                                            15° 00′ .2588 .2679 3.7321 .9659 75° 00
                                                 10 .2616 2711 3.6891 9652
20 .2644 2742 3.6470 9644
                           .9942
   .1074 .1080 9.2553
                                      50
   .1103 .1110 9.0098
                           .9939
                                      40
    .1132 .1139 8.7769
                           .9936
                                      30
                                                 30 .2672 .2773 3.6059 9636
                                                 40 .2700 .2805 3.5656 9620
50 .2728 .2836 3.5261 9621
   .1161 .1169 8.5555
                           .993
                                      20
                           .9929
                                      10
    .1190 .1198 8.3450
   .1219 .1228 8.1443
                           .9925 83°
                                      00
                                            16° 00′ .2756 .2867 3.4874 .9613 74° 00′
  .1248 .1257 7.9530
.1276 .1287 7.7704
.1305 .1317 7.5958
.1334 .1346 7.4287
                           .992
                                      50
                                                 10 .2784 .2899 3.4495 9605
                           .9918
                                      40
                                                 20 .2812 .2931 3.4124 9596
                                                 30 .2840 .2962 3.3759 9588
40 .2868 .2994 3.3402 9580
50 .2896 .3026 3.3052 9572
                           .9914
                                      30
                           .9911
                                       20
   .1363:.1376 7.2687
                           .9907
                                       10
  .1392 1405 7.1154
                           .9903|82° 00
                                             17° 00′ .2924 .3057 3.2709 9563 73° 00
   .1421 1435 6.9682
                           .9899
                                      50
                                                 10 .2952 .3089 3.2371 9555
   .1449 1465 6.8269
                                                 20 .2979 .3121 3.2041 9546
30 .3007 .3153 3.1716 9537
                           .9894
                                      40
   .1478 1495 6.6912
                           .9890
                                      30
   .1507 1524 6.5606
                           .9886
                                       20
                                                 40
                                                     .3035 .3185 3.1397
                                                                              9528
   .1536 1554 6.4348
                           .9881
                                                 50 .3062 .3217 3.1084 9520
                                       10
   1564 .1584 6.3138
                          .987' 810 00'
                                            18° 00′ .3090|.3249 3.0777 9511 72° 00′
                           sin | angle
    cos | cot | tan
                                                      cos | cot | tan | sin
```

### TRIGONOMETRIC FUNCTIONS

```
angle sin tan
                            cot
                                    cos
                                                       angle sin tan
                                                                               cot cos
                  .3249 3.9777 .9511 72° 0:
                                                     27° 90' .4540 .5095 1.9626 .8910 63° 00
 18
                  .3281 3.0475 .9502
                                                51
                                                           10 .4566 .5132 1.9486 .8897
                                                                                                     50
      29
                  .5314 3.0178 .9492
                                                40
                                                            20 .4592 .5169 1.9847 .8884
                                                                                                     40
                  .8346 2.9887 .9483
                                                St
                                                           30 .4617 .5206 1.9210 .8870;
                                                                                                     30
                  .3378 2.9690 .9474
                                                           40 .4643 .5243 1.9074 .8857
      $33
                                                                                                     20
                                                           50 .4669 .5280 1.8940 .8843
      56 .5228 .3411 2.9319 .0465
                                                11
                                                                                                     10
                                                     28° 00° 4695 .5317 1.8807 .8829 62° 00
19° 65' .0256 .3443 2.9042 .9455 71° 00
           .3288 .3476 2.8776 .9446
                                                           10 '.4720 .5354 1.8676 .8816
                                               56
                                                                                                     50
                                                           20 (474) (53)2 (1854) (880)
30 (4772 (543) (1841) (878)
40 (4797 (54)7 (1820) (8774
           .3311 .3595 2.8562 .9436
                                               40
                                                                                                     40
          .8385 .8541 2.8289 .9426
.8365 .8574 2.7980 .9417
.8398 .8667 2.7725 .9407
                                                                                                     30
                                               30
                                                                                                     20
                                               20
                                                           50 | 4823 .5505 1.8165 .8760
                                               10
                                                                                                     10
                                                               4848 .5543 1.8040 .8746 61° 00
                                                      29° 00'
(20° (a) .3420 .3640 2.7475 .9397 70° 00
       10 .3448 .3673 2.7228 .9387
                                               50
                                                           10 .4874 .5581 1.7917 .8732
      20 .3475 .3706 2.6985 .9377
                                               40
                                                           20 .4899 .5619 1.7796 .8718
     50 .3562 .3739 2.6746 .9367
40 .8529 .3772 2.6511 .9356
50 .3557 .3805 2.6279 .9346
                                                           30 (4924:.5658 1.7675 .5704)
40 .4956 .5766 1.7556 .8689
50 .4975 .5785 1.7487 .8675
                                               30
                                               20
                                               10
21° 00' .3584 .3839 2.6051 .9336 69° 00
                                                      30° 00 .5000 .5774 1.7321 .8660 60° 00
      10 .3611 .3872 2.5826 .9325
20 .3638 .3906 2.5665 .9315
                                               50
                                                           10 1.5025 .5812 1.7205 .8646
                                                                                                     50
                                               41)
                                                           20 .5050 .5851 1.7090 .8631
                                                                                                     40
     30 .3665 .3939 2.5386 .9304
40 .3692 .3973 2.5172 .9293
                                                           30 .5075 .5890 1.6977 .8616
40 .5100 .5930 1.6864 .8601
                                                                                                     30
                                               30
                                                                                                     20
                                               20
      50 .3719 .4006 2.4960 .9283
                                                           50 .5125 .5969 1.6753 .8587
                                               10
                                                                                                     10
22° 00′ .3746 .4040 2.4751 .9272 68° 00
                                                      31° 00′ .5150 .6009 1.6643 .8572 59° 00
     10 .3773 .4074 2.4545 .9261
20 .3800 .4108 2.4342 .9250
30 .3827 .4142 2.4142 .9239
40 .3854 .4176 2.3945 .928
50 .3881 .4210 2.3750 .9216
                                               \overline{50}
                                                           10 .5175 .6048 1.6534 8557
                                                                                                    50
                                                           10 .5200 .608$11.6346 .8542;

20 .5200 .608$11.6346 .8542;

30 .5225 .612$1.6319 .5526;

40 .5250 .616$1.6212 .8511

50 .5275 .620$1.6107 .8496
                                               40
                                                                                                    40
                                               30
                                                                                                    30
                                               20
                                                                                                    20
                                               10
                                                                                                    10
23° 00′ .3907 .4245 2.3559 .9205 67° 00
                                                      32° 00′ 5299′ 6249 1 6003′ 8480 58° 00
      10 .3934 .4279 2.3369 .9194
                                               50
                                                           10 | 5324 | 6289 1 5900 8465
20 | 5348 | 6330 1 5798 8450
     20 .3961 .4314 2.3183 .9182
30 .3987 .4348 2.2998 .9171
                                               40
                                                          30 5373 6371 1 5697 8434
40 6412 1 5597 8418
                                               30
     40 .4014 .4383 2.2817 .9159
                                                           40 6412 1.5597 8418
50 .5422 6453 1.5497 8403
                                               20
      50 .4041 .4417 2.2037 .9147
                                               10
24° 00' .4067' .4452 2.2460' .9135 66° 00'
                                                         ° 00′ .5446 6494 1.5399 8387 57° 00
                                                          10 | 5471 | 6536 | 1.5301 | 8371 | 20 | .5495 | 6577 | 1.5204 | 8355 | 30 | .5519 | 6619 | 1.5108 | 8339 | 40 | 5544 | 6661 | 1.5013 | 8323
     10 .4094 .4487 2.2286 .9124
                                               50
                                                                                                    50
     20 .4120 .4522 2.2113 .9112
30 .4147 .4557 2.1943 .9100
                                               40
                                                                                                    40
                                               30
                                                                                                    30
     40 .4173 .4592 2.1775 .9088
                                               20
                                                                                                    20
     50 4200 4628 2.1609 9075
                                               10
                                                          50 5568 6703 1.4919 .8307
25° 00' .4226' .4663 2.1445' .9063 65° 00'
                                                         * 00' .5592 .6745 1.4826 8290 56° 00'
                                                          10 5616 6787 1.4733 8274
     10 .4253 .4699 2.1283 .9051
                                               50
                                                                                                    50
     20 .4279 .4734 2.1123 9038
                                               40
                                                          20 | 5640 | 6830 | 1.4641 | 8258
                                                                                                    40
     30 .4305 .4770 2.0965 9026
40 .4331 .4806 2.0809 9013
                                               30
                                                          30 | 5664 | 6873 | 1.4550 | 8241
                                                                                                    30
                                               20
                                                              5688 .6916 1.4460 .8225
                                                                                                    20
                                                          40
     50 .4358 .4841 2.0655 9001
                                               10
                                                          50 5712 6959 1.4370 8208
                                                                                                    10
26° 00′ .4384 .4877 2.0503 .8988 64° 00
                                                      5° 00′ 5736 .7002 1.4281 .8192 55° 00
     10 .4410 4913 2.0353 .8975
                                                          10 5760 7046 1.4193 8175
                                                                                                    50
     20 .4436 4950 2.0204 .8962
                                                          20
                                                              5783 .7089 1.4106 .8158
                                                                                                    40
     30 .4462 4986 2.0057 8949
                                                          30 5807 7133 1.4019 8141
                                                                                                    30
     40 .4488 5022 1.9912 .8936
50 .4514 .5059 1.9768 8923
                                                              5831 .7177 1.3934 .8124 .5854 .7221 1.3848 .8107
                                                          40
                                                                                                    20
                                                          50
                                                                                                    10
27° 00′ .4540 .5095 1.9626 8910 63° 00
                                                    6° 00' .5878 .7265 1.3764 .8090 54° 00'
          cos cot tan sin angle
                                                             cos cot tan sin angle
```

### TRIGONOMETRIC FUNCTIONS

```
sin
                        tan
                                   cot
                                             cos
    angle
                        .7265 1.3764 .8090 54° 00
  36°00'.5878
                       7310 1.3680 .8073
.7355 1.3597 .8056
.7400 1.3514 .8039
.7445 1.3432 .8021
.7490 1.3351 .8004
         10
             .5901
                                                          50
             .5925
        20
80
                                                          40
                                                          ãŏ
             .5948
            .5972
                                                          20
        40
                                                          īŏ
        50
                                                    53° 00'
 137° 00' .601S
                       .7536 1.3270
                       .7581 \cdot 1.3190
        10 .6041
                                                          50
        Ξŏ
                       .7627:1.3111
            .6005
                                                          40
                       .7073 1.3032
.7720 1.2954
        30
             .coss:
                                                          30
            .6111
        -10
                                                          20
       50 .0134
                       .7766 1.2876
                                                          10
 38° 00° .0157
                       .7813 1.2799 .788
                                                   52° 00'
                       7860 1.2733 .786
7907 1.2647 .7844
.7954 1.2572 .78:
.8002 1.2497 .78
.8050 1.2423 .779
            .6180
                                                          50
       IU
       20
            .6202i
                                                          40
       30 .6225
                                                          30
           .6248
.6271
       40
                                                          20
       50
                                                          10
   9° 00′ .6293
                                                    51° 00'
                       .8098 1.2349:.777
                      .$146 1.2276 .775
.$195 1.2203 .773
.$243 1 2131 .771
.$292 1 2059 .769
       10 .6316
                                                         50
       20 .6338
                                                         40
       30 .6361
40 .6383
                                                         30
                                                         20
                      .8342 1 1988 .76
                                                         īŏ
       50 ..6406
40° 00' .6428
                                                    10° 00'
                      .8391 1.1918 .766
                      .$441 1.1847 764:
.$491 1.1778 76:
.$541 1.1708 760
.$591 1.1640 758
.$642 1.1571 . 56
       10 .6450
20 .6472
                                                         50
                                                         40
      30 .6494
                                                         30
      40
           .6517
                                                        20
      50 .6539
                                                         10
    ° 00':.6561
                      .8693 1.1504 .754
                                                    :9° 00'
      10 .6583
                      .8744 1.143
                                         .752
                                                        50
      20 .6604
                     .8796 1.136 .750
.8847 1.1303 .7490
.8899 1.1237 .7470
.8952 1.1171 .745
                                                        40
      30 .6626
                                                        30
      40 .6648
50 .6670
                                                        20
                                                        10
 42° 00' .6691
                      .9004 \, | \, 1.1106 \, .743
                                                  48° 00'
      10 .6713
20 .6734
30 .6756
                     .9057 1.1041 .7412
.9110 1.0977 .7392
.9163 1.0913 .7373
                                                        50
                                                        40
                                                        30
      40 .6777
50 .67
                     .9217 | 1.0850 | 7353 

.9271 | 1.0786 | 7333 
                                                        20
                                                        10
  3° 00' .6820
                     .9325 1.0724 731
                                                   .7° 00'
      10 .6841
20 |
                     .9380 1.0661 .7294
                                                        50
                     .9435 1.0599
                                           274
                                                       40
      \begin{array}{c} 30 & .6884 \\ 40 & .6905 \end{array}
                     .9490 1.0538
                                          7254
                                                       30
                     .954.
                                         7234 | 7214
                              1.0477
                                                       20
                     .9601 1.0416
      50 .6926
                                                       10
44° 00' .6947
                     .9657 1.0355
                                                    ° 00
                                         7193
      10 | .6967
                     .9713 1.0295 .717;
                                                       50
      20
                     .9770
                                        7153
7133
7112
                              1.0235
                                                       40
     30
           .7009
                     .9827 1.0176
                                                       30
                     .9884 1.0117
     40
          .7030
                                                       20
     50
           .7050
                     9942 1.0058 7092
                                                       10
          .7071 1.0000 1.0000 7071
                                                       00'
            cos |
                     cot
                               tan
                                                 angle
```

In I the value of the acute angle A, given that

- 10. sh. A = 0.0727. 11.  $\cos A = 0.8021$ . 12.  $\tan A = 2.3183$ .
- 13. of A = 3.2709. 14.  $\sin A = 0.6202$ . 15.  $\cos A = 0.3665$ .
- 16.  $\tan A = 0.9601$ . 17.  $\cot A = 6.8269$ . 18.  $\sin 2A = 0.1994$ .
- 19.  $2 \ln A = 1.0560$ . 20.  $\sin(A + 30^\circ) = 0.6180$ .
- **21.** tat.  $2.4 30^\circ = 0.3249$ . **22.**  $2\cos(\frac{1}{2}A + 10^\circ) = 0.6786$ .
- 23. Find the value of  $\sin 20^{\circ} + \sin 30^{\circ}$ . Is this equal to  $\sin 50^{\circ}$ ?

### CHAPTER II

### Solution of Triangles

### 7. Solution of right triangles.

The use of tables of the trigonometric functions will be illustrated by some examples.

### Example 1.



A vertical pole 8 feet tall casts a shadow 5 feet long on level ground. Find the angle which the rays of the sun make with the horizontal.

Solution. In Fig. 8, a represents the height of the pole, b represents the length of the shadow, A is the angle to be found. We have

$$\tan A = \frac{a}{b} = \frac{8}{5} = 1.6.$$

From the table on pages 12-14 we find  $A = 58^{\circ}$  (to the nearest 10').

### Example 2.

A surveyor wishes to measure the distance across a stream. He sets up his transit at a point C on the bank of the stream, and sights on a point B on the other bank directly opposite him. Then he turns the transit through a right angle, and measures off a distance of 100 feet to a point A. He moves the transit to A, and measures the angle CAB, which he finds to be 50°. How wide is the stream?

Solution. The conditions of the problem are illustrated in Fig. 9. To find a, the distance across the stream, we proceed as follows:

$$\frac{a}{b}$$
 tan A,  $a = b \tan A = 100 \tan 50^\circ$ .

From the table on pages 12–14 we find  $\tan 50^\circ = 1.1918$ . Thus,

$$a = 100 \times 1.1918 = 119.2 \text{ ft.}$$

A triangle is composed of six parts, the three sides and

the three angles. To solve a triangle is to find the unknown parts from the parts that are given. In the case of a right triangle this can always be done if we have given (besides the right angle) two parts, at least one of which is a side.



In problems involving a right triangle ABC, it will ordinarily be understood that the

dinarily be understood that the right angle is at C.

In solving right triangles we make use of four of the

In solving right triangles we make use of four of the definitions, namely,

$$\sin A = \frac{a}{c}$$
,  $\cos A = \frac{a}{c}$ ,  $\tan A = \frac{a}{c}$ ,  $\cot A = \frac{a}{c}$ 

and of the Pythagorean relation,

$$a^2 + b^2 = c^2$$

(We seldom use the secant or cosecant, since tables of these functions are not so generally available.) Of course we sometimes find it convenient to use the relation

$$A + B = 90^{\circ},$$

and the fact that the functions of B are equal respectively to the corresponding cofunctions of A.

From the foregoing relations we select one which contains the two given, or known, parts and the part which we wish to find.

### Example 3.

Solve the right triangle ABC in which c = 25,  $A = 32^{\circ} 10'$ .

Solution. To find a we use the definition  $a/c = \sin A$ , which entains the known parts c and A. We get



$$a = c \sin A = 25 \sin 32^{\circ} 10'$$
  
= 25 × 0.5324 = 13.3.

To find b we use  $b/c = \cos A$ , from which we get

$$b = c \cos A = 25 \cos 32^{\circ} 10'$$
  
= 25 × 0.8465 = 21.2.

$$90^{\circ} = 89^{\circ} 60'$$
  
 $\frac{1}{B} = \frac{32^{\circ} 10'}{57^{\circ} 50'}$ 

### Example 4.

Given a = 27.2, b = 10.6; find A, B, c.

SOLUTION.

$$\tan A = \frac{q}{b} = \frac{27.2}{10.6} = 2.5660, \quad A = 68^{\circ} 40'.$$

The value 2.5660 is not to be found in the table on pages 12-14. The value closest to this is 2.5605, which is the tangent of 68° 40′. Consequently, as an approximation, we take

$$A = 68^{\circ} 40'.$$

In a later section we shall learn how to find a more accurate value for an angle when the given function is between two consecutive values in the table.

$$B = 90^{\circ} - A = 21^{\circ} 20'.$$

$$\frac{a}{c} = \sin A. \qquad c \sin A = a,$$

$$c = \frac{27.2}{\sin A} - \frac{27.2}{\sin 68^{\circ} 40'} = \frac{27.2}{0.9315} = 29.2.$$



We could also find c by using the relation  $c^2 = a^2 + b^2$ , obtaining values from a table of squares, such as is to be found in Table VI of the Macmillan Logarithmic and Trigonometric Tables. Thus,

$$e^2 = (27.2)^2 \div (10.6)^2 = 739.84 + 112.36 = 852.20.$$

From Table VI, just referred to, we find

$$c = 29.2.$$

It is recommended that all answers be checked by obtaining the solutions in two different ways.

It is also recommended that a drawing be made to scale. From such a drawing it is possible to make at least a rough check of the results.

#### EXERCISES II. A

In solving the following exercises, use the nearest values that are to be found in the tables.

Solve the following triangles, in which  $C = 90^{\circ}$ .

1. 
$$A = 35^{\circ}, c = 5$$
.

**2.** 
$$a = 6, c = 14.$$

3. 
$$.1 = 37^{\circ}, b = 53.$$

**4.** 
$$B = 56^{\circ}, c = 84.$$

**5.** 
$$a = 23, b = 17.$$
  
**7.**  $B = 17^{\circ} 30', b = 92.4.$ 

**6.** 
$$a = 18.5, c = 37.2.$$

9. 
$$a = 0.257$$
,  $b = 0.856$ .

**8.** 
$$A = 57^{\circ} 20', c = 0.0286.$$
  
**10.**  $b = 189, A = 13^{\circ} 50'.$ 

- 11. A wire is stretched from the top of a vertical pole standing on level ground. The wire reaches to a point on the ground 10 feet from the foot of the pole, and makes an angle of 75° with the horizontal. Find the height of the pole and the length of the wire.
- 12. A flagpole broken over by the wind forms a right triangle with the ground. If the angle which the broken part makes with the ground is 50°, and the distance from the tip of the pole to the foot is 55 feet, how tall was the pole?
- 13. A ladder 36 feet long rests against a wall, its foot being at a horizontal distance of 25 feet from the base of the wall. What angle does the ladder make with the ground?
- 14. If a ladder 40 feet long is placed so as to reach a window

30 feet high, what angle does it make with the level ground, and how far is its foot from the base of the building?

15. A ladder 42 feet long is placed so that it will reach a window 30 feet high on one side of a street; if it is turned over, its foot



being held in position, it will reach a window 25 feet high on the other side of the street. How wide is the street from building to building?

16. A person on a ship sailing due south at the rate of 15 miles an hour observes a lighthouse due west at 3

p.m. At 5 p.m. the lighthouse is 52° west of north. How far from the lighthouse was the ship at (a) 3 p.m.? (b) 5 p.m.? (c) 4 p.m.?

The angle of elevation of an object which is above the eye of an observer is the angle which the line of sight to the object makes with the horizontal. If the object is below the eye of the observer, the angle which the line of sight makes

with the horizontal is ralled the angle of depression of the object.

17. From the top of a cliff 250 feet high the angle of depression of a boat is 10°. How far out is the boat from the foot of the cliff?



- 18. From a window 30 feet Fig. 13 above the level ground, a building 100 feet high, and at a distance of 200 feet, is observed. Find the angle of elevation of the top of the building and the angle of depression of its base.
- 19. At a point 160 feet from a building, and in a horizontal line with its base, the angle of elevation of the top of the building is 37°. How high is the building?

# 8. Interpolation.

When an angle such as 18° 47′ cannot be found in the margin of the table on pages 12–14, we can approximate more closely the values of its functions by a process known as interpolation by proportional parts. This will be illustrated by means of examples.

#### Example 1.

Find sin 18° 47'

Solution. The angle 18° 47′ is between 18° 40′ and 18° 50′. Its sine is between the sines of these two angles. We write the problem in the following form, in which the differences in the angles are shown at the left, and the differences in the values of the function are shown at the right.

$$\sin 18^{\circ} 50' = .3228$$

$$10' \cdot \sin 18^{\circ} 47' = ?$$

$$\sin 18^{\circ} 40' = .3201 \right)^{x}$$
.0027

Although it is only approximately true, we assume that changes in the function are proportional to changes in the angle. With this assumption, we have

$$\frac{x}{0.0027} = \frac{7}{10} = 0.7, \quad x = 0.7 \times 0.0027 = 0.00189.$$

We cut this down to four places, since we are dealing with a fourplace table, and write x = 0.0019. Then,

$$\sin 18^{\circ} 47' = 0.3201 + 0.0019 = 0.3220.$$

This value is correct to four places, as may be verified by consulting more extensive tables.

# Example 2.

Find cos 18° 47'.

Solution. The same form of arrangement is used as in example 1. However, it will be noted that the smaller angle has the larger cosine, and to facilitate the subtraction of the functions we

write it above. The quantity x is used, as in example 1, to represent the unknown difference between the function of the smaller angle (not the smaller function) and the function to be found.

$$10' \left\{ \begin{array}{ll} -, & \cos 18^{\circ} 40' = .9474 \\ \cos 18^{\circ} 47' = .? \\ \cos 18^{\circ} 50' = .9465 \end{array} \right\}^{x} \left\{ .0009 \right.$$

$$\frac{z}{0.0000} = \frac{1}{10} = 0.7$$
,  $x = 0.7 \times 0.0009 = 0.00063$ .

Noting that the function decreases as the angle increases, we have

$$\cos 15^{\circ} 47' = 0.9474 - 0.0006 = 0.9468.$$

If more extensive tables are used, it will be found that the value correct to four places is actually 0.9467.

Likewise, when a function cannot be found exactly in the table, we use inverse interpolation to find the corresponding angle more accurately.

## Example 3.

Given  $\tan A = 1.1948$ ; find A.

Solution. The function lies between 1.1918 (corresponding to 50° 00') and 1.1988 (corresponding to 50° 10').

$$\tan 50^{\circ} 10' = 1.1988$$

$$\tan A = 1.1948$$

$$\tan 50^{\circ} 00' = 1.1918$$

$$\frac{x}{10'} = \frac{0.0030}{0.0070} = 0.4, \quad x = 4'.$$

$$A = 50^{\circ} 4'.$$

# Example 4.

Given  $\cos A = 0.7034$ ; find A.

SOLUTION. The function lies between 0.7030 (corresponding to 45° 20′) and 0.7050 (corresponding to 45° 10′). We write the functions with the largest at the top to facilitate the subtraction.

The quantity x is used to represent the difference between the smaller of the two angles taken from the table and the angle to be found; x will then be the amount to be added to the smaller angle.

$$10' \cdot \frac{x}{\cos 45^{7}} \frac{10' = .7050}{\cos A} = .7034$$

$$\cos 45^{2} \frac{20'}{\cos 30} = .7030$$

$$\frac{x}{10'} = \frac{0.0016}{0.0020} = 0.8, \qquad x = 8'.$$

$$A = 45^{2} 18'.$$

The process of interpolation can be used on any table provided the values are sufficiently close together. For example, it can be used on a table of squares or a table of square roots.

#### EXERCISES II. B

Find, by interpolation in the table on pages 12-14, the following functions:

| 1. sin 31° 14′.            | 2. tan 18° 6'.   | 3. cos 27° 18′.  |
|----------------------------|------------------|------------------|
| <b>4.</b> eos 39° 42′.     | 5. sin 55° 5'.   | 6. cot 43° 18′.  |
| 7. $\tan 19^{\circ} 26'$ . | 8. sin 27° 24′.  | 9. cos 45° 34′.  |
| 10. $\sin 0^{\circ} 3'$ .  | 11. cot 89° 51′. | 12. sin 88° 22′. |
| 13. tan 88° 51'.           | 14. cos 74° 32′. | 15. cot 65° 17′. |

Find angle A by interpolation in the table on pages 12-14, given that

16. 
$$\sin A = 0.4827$$
.17.  $\tan A = 0.3899$ .18.  $\cos A = 0.8643$ .19.  $\cot A = 2.5626$ .20.  $\tan A = 1.3900$ .21.  $\sin A = 0.3290$ .22.  $\sin A = 0.8026$ .23.  $\cos A = 0.3785$ .24.  $\cot A = 0.3785$ .25.  $\sin A = 0.0130$ .26.  $\tan A = 0.0130$ .27.  $\sin A = 0.1060$ .28.  $\tan A = 0.1060$ .29.  $\cos A = 0.9800$ .30.  $\cot A = 2.0000$ .

Solve the following triangles, in which  $C = 90^{\circ}$ :

31. 
$$a = 6.84$$
,  $c = 20$ .  
32.  $a = 23$ ,  $b = 17$ .  
33.  $A = 57^{\circ} 12'$ ,  $c = 0.0286$ .  
34.  $B = 17^{\circ} 26'$ ,  $b = 92.37$ .  
35.  $a = 18.5$ ,  $c = 37.2$ .  
36.  $A = 32^{\circ} 24'$ ,  $b = 9.46$ .  
37.  $A = 19^{\circ} 44'$ ,  $a = 22.8$ .  
38.  $b = 15.4$ ,  $c = 20.2$ .

39.  $A = 45^{\circ} 2', b = 8.22.$ 

**41.** a = 0.236, c = 1.84.

**43.**  $A = 11^{\circ} 1', c = 101.6.$ 

**45.** a = 12.34, c = 100.3.

**40.**  $B = 15^{\circ} 53', a = 189.$ 

**42.** a = 17.6, b = 16.7.

**44.**  $A = 78^{\circ} 15', b = 32.22.$ 

**46.** a = 12.34, b = 100.3.

- 47. A rectangle is 87 feet by 136 feet. Find the length of the diagonal and the angles that it makes with the sides.
- 48. A surveyor wishes to find the width of a stream without crossing it. He measures a line CB along the bank, C being directly opposite a point A on the farther bank (i.e., angle  $ACB = 90^{\circ}$ ). The line CB is measured to be 98.25 feet, and the angle ABC to be 55° 56′. How wide is the stream?
- 49. Find the height of a vertical pole which casts a shadow 67 feet long on the level ground when the altitude of the sun is 50° 22′ (i.e., the rays of the sun make an angle of 50° 22′ with the horizontal).
- 50. Find the inclination, or angle of ascent, of a road having a  $2\frac{1}{2}$  per cent grade (i.e., there is a vertical rise of  $2\frac{1}{2}$  feet in a horizontal distance of 100 feet).
- 51. To measure the height of a building, a surveyor sets up his transit at a distance of 112.2 feet from the building. He finds the angle of elevation of the top of the building to be 48° 17′. If the telescope of the transit is 5 feet above the base of the building, how high is the building?
- 52. From the top of a tower 63.2 feet high, the angles of depression of two objects situated in the same horizontal line with the



base of the tower, and on the same side of the tower, are 31° 16′ and 46° 28′ respectively. Find the distance between the two objects.

53. A wheel, 3 feet in diameter, rolls up an incline of 15°. When the point of contact of the wheel with

the incline is 4 feet from the base of the incline, what is the height of the center of the wheel above the base of the incline?

54. A roof 20 by 30 feet, the latter being the horizontal dimension,

is inclined at an angle of 30° to the horizontal. Find the angle that a diagonal of the roof makes with the horizontal.

- 55. A wail extending east and west is 6 feet high. The sun has an altitude of 49° 32′ see exercise 49) and is 47° 20′ east of south. Find the width of the shadow of the wall on level ground.
  - 56. A 30-foot flagstaff is fixed in the center of a circular tower 40 feet in diameter. From a point in the same horizontal plane as the foot of the tower the angles of elevation of the top of

the flagstaff and the top of the tower are found to be 36° and 30° respectively. Find the height of the tower.

- 57. If, in the preceding exercise, the flagstaff is fixed on the edge of the tower, what is the height of the tower?
- 58. It is required to measure the height of a tower, CB (Fig. 15), which is inaccessible. From a point A, in the same



- horizontal plane with the base C, a right angle CAD is turned, and a horizontal line AD, 150 feet in length, is measured. At A the angle of elevation of the top of the tower is  $32^{\circ}$ , at D the angle of elevation is  $28^{\circ}$ . Find the height of the tower.
- \*59. A football player stands at a distance c behind the middle of the goal. He sees the angle of elevation of the nearer crossbar to be u and that of the farther one to be r. Show that the distance between the goals is  $c(\tan u \cot v 1)$ .
  - 60. Two points in line with a tower, and in the same horizontal plane with its base, are 160 feet apart. From the point nearer the tower the angle of elevation of the top of the tower is A, from the other point the angle of elevation is B. If  $\sin A = 3/5$  and  $\cos B = 12/13$ , what is the height of the tower?

# \*9. Components.

The trigonometric functions have direct application in physics and mechanics. A displacement (change of posi-

<sup>\*</sup>Topics marked with this symbol may be omitted in a short course.

tion), velocity, force, or any other quantity having both magnitude and direction, can be represented by a line



having a certain length and a certain direction.

For example, suppose that an automobile is traveling at the rate of 40 miles an hour along a straight road which makes an angle of 27° to the north of east. Its velocity can be represented

by a line OP, 40 units long, extending in the direction shown in Fig. 16. Let M be the projection of P upon an eastwest line (that is, the foot of the perpendicular from P to such a line), and let N be its projection on a north-south line. Then,

$$OM = OP \cos 27^{\circ} = 40 \times 0.8910 = 35.64,$$
  
 $ON = OP \sin 27^{\circ} = 40 \times 0.4540 = 18.16.$ 

At the end of an hour the automobile will be 35.64 miles east, and 18.16 miles north, of its position at the beginning of the hour. Thus, we may think of its velocity as being composed of an easterly velocity of 35.64 miles an hour and a northerly velocity of 18.16 miles an hour. The projections OM and ON represent the components of the velocity represented by OP. We say that OP is resolved into its components OM and ON. Conversely, we say that OP is the resultant of OM and ON.

# Example 1.

A boat, which can travel at the rate of 4 miles an hour in still water, is pointed directly across a stream having a current of 3 miles an hour. What will be the actual speed of the boat, and in what direction will the boat go?

SOLUTION. In still water the boat would go out at right angles to the bank at the rate of 4 miles an hour. But the current carries

it downstream 3 units for every 4 units that it goes across. In Fig. 17, OM represents the velocity of the current, and ON represents the velocity that the bont would have if there were no current. The actual velocity of the boat will be represented by OP. The magnitude of OP is  $\sqrt{3^2 + 4^2} = 5$ . If A is the angle that OP makes with the bank, then we have  $\tan A = \frac{1}{2} = 1.3333$ , and  $A = 53^{\circ}$  approximately. That is, the boat will travel at a speed



of 5 miles an hour in a direction making an angle of about 53° with the bank.

## Example 2.

How must the boat of the preceding example be pointed in order to go straight across the stream?



Solution. The boat must be pointed so that its velocity of 4 miles an hour will have a component parallel to the bank which will exactly offset the effect of the current. That is, it must have an upstream component of 3 miles an hour. From Fig. 18 we see that  $\cos A = 3$ = 0.75, and  $A = 41.5^{\circ}$  approximately. Thus, to go straight across the stream, the boat should be pointed at an angle of 41.5° with the upstream direction.

# Example 3.

Two forces of 100 pounds and 80 pounds respectively act on a weight as shown in Fig. 19. 80 35. What will be their horizontal

effect, and what will be their vertical or lifting effect?

Solution. The horizontal component of the 100-lb. force



is  $100 \cos 25^{\circ} = 90.63$  lb. to the right. The horizontal component of the 80-lb, force is  $80 \cos 50^{\circ} = 51.42 \text{ lb}$ , to the left. Thus, the total horizontal force tending to move the weight to the right is The total lifting force is

$$100 \sin 25^{\circ} + 80 \sin 50^{\circ} = 42.26 + 61.28 = 103.54 \text{ lb.}$$

#### Example 4.

Find the magnitude and the direction of the resultant force (the single force that is equivalent to the two given forces) in example 3.

Solution. The components of the resultant are 39.21 lb. to the right, and 103.54 lb. upward. The resultant force is

$$\sqrt{(39.21)^2 + (103.54)^2} = 110.7 \text{ lb.}$$

 $\overline{39.2115}$  If A is the angle that the resultant makes with the Fig. 20 horizontal,

$$\tan A = \frac{103.54}{39.21} = 2.641, \quad A = 69^{\circ} 15' \text{ (to nearest 5')}.$$

That is, a single force of 110.7 lb., acting at an angle of 69° 15' with the horizontal and toward the right, will have the same effect as the two given forces.

#### EXERCISES II. C

- 1. The westward and southward components of the velocity of a ship are 6.7 knots and 12.5 knots respectively. (See exercise 7.) Find the speed of the ship and the direction in which it is sailing.
- 2. A force of 150 pounds is acting at an angle of 55° with the horizontal. Find its horizontal and vertical components.
- 3. A balloon is rising at the rate of 10 feet a second and is being carried horizontally by a wind which has a velocity of 15 miles an hour. Find its actual velocity and the angle that its path makes with the vertical.
- 4. A boat is being rowed north at the rate of 5 miles an hour, and the tide carries it west at the rate of 3 miles an hour. Find the actual speed of the boat and the direction of its path.
- 5. A river flows at the rate of 1.5 miles an hour. (a) In what direction must a man swim in order to go straight across, if his

rate of swimming in still water is 2.5 miles an hour? (b) How long will it take him to cross if the river is 1 mile wide?

- 6. A barge is being towed north at the rate of 15 miles an hour. A man walks across the deck, from west to east, at the rate of 6 feet a second. Find the direction and the magnitude of his actual velocity.
- 7. A ship is traveling at a speed of 20 knots. (A knot is a nautical mile per hour, a nautical mile being approximately 1.1516 statute miles of 5280 feet each.) When directly opposite a target it fires a gun whose projectile has a velocity of 2000 feet a second. At what angle with the direction of motion of the ship must the gun be pointed in order to hit the target?
- 8. An airplane which has a speed of 120 miles an hour in calm air is headed southeast. A wind having a velocity of 15 miles an hour is blowing from the southwest. (a) Find the magnitude and the direction of the velocity of the airplane with reference to the ground. (b) How must the airplane be pointed in order to fly southeast, and what will be its actual speed?
- 9. A weight of 150 pounds is placed on a smooth plane surface which makes an angle of 35° with the horizontal, as shown in Fig. 21. The weight is held in place by a string parallel to the surface and fastened at the top of the plane. Find the pull on the string.

Suggestion. The pull will be equal to the component of the 150-pound weight parallel to the plane.

10. A block is held in position on a Frg. 21 smooth inclined plane by means of a string as in Fig. 21. If the pull on the string is 27.3 pounds, and the inclination of the plane is 24° 50′, what is the weight of the block?

# \*10. Isosceles triangles and regular polygons.

Since the perpendicular from the vertex of an isosceles triangle divides it into two congruent right triangles, we can solve the isosceles triangle by solving one of these right triangles.

To solve a problem involving a regular polygon of n sides, we may first divide it into n congruent isosceles triangles.

# Example 1.



A garage has a gable roof whose rafters make an angle of 35° with the horizontal. What is the length of a rafter if the width of the garage is 10 feet?

Solution. In Fig. 22, AD represents the width of the garage and AB the length of the rafter.

$$\cos 35^{\circ} = \frac{3}{c}$$
,  $c = \cos 35^{\circ} - 0.8192 = 6.1 \text{ ft.}$ 

#### Example 2.

Find the length of the side of a regular pentagon inscribed in a circle of radius 6 inches.

Solution. Each side of the pentagon subtends a central angle of  $\frac{1}{2} \times 360^{\circ} = 72^{\circ}$ . In Fig. 23, angle  $ABC = \frac{1}{2} \times 72^{\circ} = 36^{\circ}$ , and angle  $BAC = 90^{\circ} - 36^{\circ} = 54^{\circ}$ . In triangle ABC.



$$\frac{b}{6} = \cos 54^{\circ}$$
.  $b = 6 \cos 54^{\circ} = 6 \times 0.5878 = 3.527$ 

$$AD = 2b = 7.054$$
 in.

#### EXERCISES II. D

- 1. Each of the equal angles of an isosceles triangle is 40° 15′, the base is 15 inches. Find the remaining parts and the area.
- Each of the equal sides of an isosceles triangle is 11.52 inches, the vertex angle is 32° 15′. Find the base.
- 3. The equal sides of a wedge are 4.2 inches, the base is 1.6 inches. Find the angles.

- Find the radius of a circle in which a 50-foot chord subtends an angle of 12° at the center.
- 5. The radius of a circle is 40 inches, the length of a chord is 70 inches. Find the central angle subtended by the chord.
- Find the radius of a circle in which a chord of 7.1 inches subtends an angle of 142° 36′ at here
- 7. Find the chord of a 35° are in a circle of radius 14 inches.
- Find the length of a belt passing around two pulleys whose radii are 14 inches and 5 inches respectively, and whose distance apart, between centers, is 10 feet.
- 9. A barn has a gable roof whose rafters are 20 feet long. The width of the barn is 30 feet. Find the angle that the rafters make with the horizontal. Find the area of one of the gable ends (i.e., the triangle in Fig. 24).



Fig. 24

- 10. A barn is 30 feet wide by 60 feet long; the rafters make an angle of 40° with the horizontal. Find the area of each of the two gable ends and the area of the roof.
- 11. Find the radius, the apothem (perpendicular distance from the center to a side), and the area of the following regular polygons: (a) a decagon whose side is 10 inches; (b) a 9-sided polygon whose side is 15 inches; (c) a 20-sided polygon whose side is 6.758 inches.
- 12. The radius of a circle is 100 feet. Find the perimeter and the area of (a) a regular inscribed pentagon; (b) a regular inscribed decagon; (c) a regular circumscribed pentagon; (d) a regular circumscribed decagon.
- 13. The area of a regular pentagon is 560 square feet. Find the radii of the circumscribed and inscribed circles.
- 14. A metal nut  $\frac{3}{4}$  inch thick is in the shape of a regular hexagon, the distance between the parallel sides being  $1\frac{3}{4}$  inches. The circular hole through the center is  $\frac{3}{4}$  inch in diameter. Find the amount of metal in the nut.
- **15.** Show that the area of a regular polygon of *n* sides circumscribed about a circle of radius *r* is

$$nr^2 \tan \frac{180^{\circ}}{n}$$
.

16. Show that the perimeter of a regular polygon of n sides inscribed in a circle of radius r is

$$2nr \sin 180^{\circ}$$

# \*11. Solution of oblique triangles by means of right triangles.

Oblique triangles can always be solved by breaking them up into right triangles. The following examples illustrate the methods used in the four typical cases which arise. Usually, however, it will be found more convenient to employ other methods and formulas for solving oblique triangles. These will be developed in a later chapter.

Case I. Two angles and a side given.

## Example 1.



In the triangle ABC,  $A = 40^{\circ}$ ,  $B = 60^{\circ}$ , c = 50. Find the remaining parts.

SOLUTION.  $C = 180^{\circ} - (A + B)$ =  $180^{\circ} - (40^{\circ} + 60^{\circ}) = 80^{\circ}$ . Draw the altitude from one end of the known side. Suppose that this altitude is AD = h (Fig. 25).

Then, in the right triangle ABD,  $h = 50 \sin 60^{\circ} = 43.30$ . Now, in the right triangle ADC,

$$b = \frac{h}{\sin C} = \frac{43.30}{\sin 80^{\circ}} = 44.0.$$

Side a may be found in a similar manner by drawing the altitude from B, or by computing the segments BD and DC and adding them.

Case II. Two sides and the angle opposite one of them given. (See discussion, section 53, pages 84-86.)

#### Example 2.

Given  $A = 75^{\circ}$ , a = 20, b = 10; find B, C, c.

Sources Draw the altitude CD = F (Fig. 26). (The altitude must not be drawn from the vertex of the known angle. In the right triangle ADC.

$$h = b \sin A = 10 \sin 75^{\circ} = 9.659.$$

In the right triangle BDC,

$$\sin B = \frac{h}{a} = \frac{9.659}{20} = 0.48295, \qquad B = 28^{\circ} 53'.$$

$$C = 180^{\circ} - (A + B) = 180^{\circ} - 103^{\circ} 53' = 76^{\circ} 7'.$$

Side c may be similarly found by drawing the altitude from B, or by computing the segments AD and DB and adding.

Case III. Two sides and the included angle given.

## Example 3.

Given a = 25, b = 30,  $C = 50^{\circ}$ ; find the other parts.

Solution. Draw an altitude to one of the known sides, prefer-



ably the larger. Suppose that this altitude is BD = h, and that it divides the side BC into the segments CD = m and DA = n (Fig. 27). Then,

$$h = a \sin C = 25 \sin 50^{\circ} = 19.15,$$
  
 $m = a \cos C = 25 \cos 50^{\circ} = 16.07,$   
 $n = b - m = 30 - 16.07 = 13.93.$ 

$$c^2 = h^2 + n^2 = (19.15)^2 + (13.93)^2 = 560.8.$$
  $c = 23.7.$ 

Angles A and B can now be found quite easily.

Case IV. Three sides given.

# Example 4.

The three sides of a triangle are a = 5, b = 6, c = 9. Find the angles.

SOLUTION. Draw an altitude to one of the sides, preferable the largest. Suppose that this altitude h divides the side Ak



into segments AD = m and DB = n (Fig. 28). Then,  $h^2 = 36 - m^2 = 25 - n^2$  $m^2 - n^2 = 36 - 25 = 11$ (m+n)(m-n) 11. But. m + n = 9

and consequently,  $m-n=\frac{11}{\Omega}$ 

Solving these simultaneous equations, we get

$$m = \frac{46}{9}, \qquad n = \frac{35}{9}.$$

$$\cos A = \frac{m}{b} = \frac{23}{27} = 0.8519, \qquad A = 31.6^{\circ};$$

$$\cos B = \frac{n}{a} = \frac{7}{9} = 0.777. \qquad B = 39.0^{\circ};$$

$$C = 180^{\circ} - (A + B) = 180^{\circ} - 70.6^{\circ} = 109.4^{\circ}.$$

#### EXERCISES II. E

Solve the following triangles:

**1.** 
$$A = 30^{\circ}$$
,  $B = 80^{\circ}$ ,  $a = 15$ . **2.**  $A = 35^{\circ}$ ,  $b = 17$ ,  $c = 32$ .

3. 
$$A = 70^{\circ}, a = 8, c = 5$$
.

$$A = 70^{\circ}, a = 8, c = 5.$$
 4. B  $100^{\circ}, C = 30^{\circ}, b = 75.$ 

5. 
$$a = 2.3, b = 1.5, c = 1.6$$
. 6.  $a = 26, c = 40, B = 62^\circ$ . 7.  $C = 100^\circ, a = 82, c = 105$ . 8.  $a = 95, b = 102, c = 150$ .



Suggestion. In Fig. 29 BE is drawn perpendicular to AD. Find BE, then BD, finally CD.

- 10. At a certain horizontal distance from the foot of a vertical eliff, the angle of elevation of the top of a flagpole 50 feet tall standing on the edge of the chiff is 40°. From the same position, the angle of elevation of the foot of the pole is 35°. How high is the cliff?
- 11. At a certain point, the angle of elevation of the top of a flagpole, which stands on level ground, is 35°. Seventy-five feet nearer the pole, the angle of elevation is 50°. How high is the pole?
- 12. Solve the preceding exercise if the angles of elevation are 30° and 45° respectively.
- 13. From a window 30 feet above the street, the angle of depression of the curb on the near side of the street is 50°, that of the curb on the far side is 13°. How wide is the street from curb to curb?
- 14. At a point in the same horizontal plane with the foot of a vertical cliff 150 feet high, the angles of elevation of the top and the bottem of a flagpole standing on top of the cliff are 20° and 16° respectively. Find the height of the pole.
- 15. Points A and B are on opposite sides of a lake. At a point C, which is 456 feet from A and 580 feet from B, the angle subtended by the line AB is 44° 35′. Find the distance from A to B.
- 16. The sides of a triangle are 20, 25, and 30. Find the length of the altitude to the longest side.

# CHAPTER III

# Approximate Numbers and Computation

# 12. Approximate numbers.

An approximate number is one which differs slightly from the exact number for which it stands. In trigonometry we deal almost entirely with approximate numbers. With certain exceptions (e.g.,  $\sin 30^{\circ} = \frac{1}{2} = 0.5$ ), all of the tabulated values of the trigonometric functions are approximations. Thus, when we write

$$\sin 45^\circ = \frac{\sqrt{2}}{2} = 0.7071,$$

we do not mean that  $\sin 45^{\circ}$  is exactly equal to 0.7071, but that 0.7071 is the four-place number which is closest to the value of  $\sin 45^{\circ}$ .

All measurements are approximate numbers. When we measure a line to the nearest tenth of an inch and say that its length is 18.3 inches, we mean that the length is between 18.25 inches and 18.35 inches.

# 13. Rounding off numbers.

It is often desirable to reduce an approximate number to one of less accuracy. This process is called rounding off the number. In rounding off a number we choose the nearest number having the desired number of places. Thus, if we round off 4.2537 to thousandths, we get 4.254. If we round it off to hundredths, we get 4.25.\* To tenths, the number is 4.3.

<sup>\*</sup> Here it would be pest to write 4.25+. Similarly, in rounding off the

In rounding off a number ending in 5, to a number having one less digit, it is customary to make the resulting number and in an even digit. Thus, 17.25 becomes 17.2, while 17.75 becomes 17.8.

# \*14. Error.

The difference between an approximate value of a quantity and its exact or true value is the absolute error of the approximate value. In the approximate number 18.3, the maximum absolute error is 0.05, since 18.3 cannot be less than 18.25 or greater than 18.35. The relative error is the quotient of the absolute error divided by the true value. Ordinarily the true value is not ascertainable, and we are forced to use the approximate value for the divisor. This does not make an appreciable difference in the quotient.) The maximum relative error in the example just given is 0.05 18.3 = 0.003, or 0.3 per cent.

Relative error is independent of the position of the decimal point. Thus, a measurement of 1.83 inches, although accurate to hundredths, is relatively no more accurate than a measurement of 18.3 inches. For the maximum relative error of the approximate number 1.83 is  $0.005 \ 1.83 = 0.003$ , and this is exactly the same as the maximum relative error of 18.3.

# 15. Significant figures.

The illustration of the preceding section indicates that relative accuracy does not depend upon the number of decimal places or upon the position of the decimal point, but upon the number of significant figures that the number contains. A significant figure is any one of the digits from 1 to 9 inclusive, and 0 except when it is used to fix the decimal point or to fill the places of unknown or discarded digits.

number 6.347, it would be best to write 6.35 -. This is helpful if the number is to be rounded off still further.

The 0's in 0.75 and 0.0024 are not significant figures.

The 0 in 6.80 is a significant figure. In this connection note that 6.80 means a number between 6.795 and 6.805 whereas 6.8 means a number between 6.75 and 6.85. The number 6.80 has three significant figures, and is more accurate than 6.8, which has only two.

The significance of 0's at the right of a whole number is doubtful. For example, if it is stated that a man's income for a certain calendar year is \$5000, it is impossible to say, without further information, which, if any, of the 0's are significant figures. If his income tax return were available and showed his income to be \$5043.75, the first 0 in the \$5000 would be significant but the other two would not. If the return showed his income to be \$5122.80, none of the 0's in the \$5000 would be significant.

## 16. Scientific notation.

The leading digit of a number is the first non-zero digit from the left (i.e., the first significant figure). A number is said to be expressed in scientific notation when it is written as the product of a number having the decimal point just after the leading digit, and a power of 10. (When the decimal point is just after the leading digit it may be said to be in standard position.)

The method of changing from the usual to the scientific notation is illustrated by the following examples:

$$237.65 = 2.3765 \times 100 = 2.3765 \times 10^{2},$$
  
 $0.0054 = 5.4 \div 1000 = 5.4 \times 10^{-3}$ 

It is possible to indicate, by writing a number in scientific notation, whether the 0's at the right of a number are significant. Thus, if in the number 1.300,000 the first two 0's are significant but the last three are not, we could write the number in the form  $1.300 \times 10^6$ .

#### EXERCISES III. A

- Round off the following numbers to one less decimal place: 12.34, 29.87, 4.06, 1.396, 0.251, 0.215, 68.2, 63.25, 1.9999, 1.9995, 2.355, 2.345, 2.354, 2.350.
- Round off the following numbers (a) to three decimal places,
   to three significant figures; 1.2464, 0.5864, 12.9065, 12.9055,
   2.3505, 16.0031, 0.003664.
- Find the maximum relative error in each of the following approximate numbers: 24.2, 105.16, 38.985, 0.002, 0.00025.
- How many significant figures are there in each of the following numbers? 39.46, 1.004, 1.400, 0.0014, 100.03, 0.00005, 123892, 200.0.
- Underline the significant 0's in the following numbers, and put a question mark under each doubtful 0: 10.02, 10.20, 0.20, 0.02, 0.020, 25000, 2506, 0.00300, 0.20500, 20500.
- Express the following numbers in scientific notation: 256835, 0.000232, 0.000,000,006, 3876.5, 984.876, 1.462.817.
- 7. Write each of the following numbers in ordinary notation:  $1.8 \times 10^5$ ,  $2.35 \times 10^{-7}$ ,  $8.482 \times 10^5$ ,  $3.7 \times 10^{-9}$ .

# \*17. Addition and subtraction of approximate numbers.

When two or more approximate numbers are added, the sum cannot be more accurate than the least accurate of the numbers. (This is in the sense of absolute accuracy, not relative accuracy.) For example, consider the sum of the numbers 2.3683, 81.02, 0.0457. The sum cannot be accurate beyond hundredths, so some of the numbers can be rounded off. We carry them, whenever possible, to one more place than the least accurate number, on the theory that the errors in these numbers tend to compensate for each other (that is, that positive and negative errors occur in nearly equal proportions). Thus, we write

 $2.368 \\ 81.02 \\ \underline{0.046} \\ 83.434$ 

The sum should be rounded off to hundredths, giving 83.43. The above remarks apply also to subtraction.

# \*18. Multiplication of approximate numbers.

Suppose that the sides of a rectangle are measured as 5.73 and 6.42 inches respectively. The area would be found by multiplying these numbers together; thus,

area = 
$$5.73 \times 6.42 = 36.7866$$
.

However, this result is not accurate to as many significant figures as are given. For the approximate number 5.73 means some value between 5.725 and 5.735; similarly, 6.42 means a value between 6.415 and 6.425. Therefore we can merely say that the area is between

$$5.725 \times 6.415 = 36.725875$$
, and  $5.735 \times 6.425 = 36.847375$ .

Therefore, in the product 36.7866 we retain only three significant figures, namely 36.8; even then the last digit is not absolutely certain.

In general, we are not justified in retaining more significant figures in a product calculated from approximate numbers than the least accurate of the factors which go to make up the product. Thus, we round off all the factors to the number of such figures in the least accurate factor. The multiplication can then be performed in contracted form, in which the partial products are carried just one place beyond the last place which is to be retained. The following illustration of the multiplication of 6.42 by 5.73 exhibits the method:

$$6.42 \\ \underline{5.73} \\ 32.10 \\ \underline{4.49} \\ \underline{.19} \\ \underline{36.78}$$

The first partial product is obtained by multiplying the multiplicand, 6.42, by the leading digit, 5, of the multiplier; thus,  $5 \times 6.42 = 32.10$ .

Multiplying by the next digit of the multiplier, we have  $7 \times 2 = 14$ , and we should write the 4 one place to the right of the 0 in 32.10, and on the next line below, carrying the 1. However, we do not write down the 4, as it does not contribute to the accuracy of our final product, but merely earry the 1. In this way, we find 4.49 as our second partial product.

Before finding our third partial product, we strike out the 2 in the multiplicand. Then we find that  $3 \times 4 = 12$ , and carry the 1 to add to  $3 \times 6$ . Thus, the third partial product is .19.

The sum of the partial products is rounded off to three significant figures, giving 36.8 as the final product.

# \*19. Division of approximate numbers.

As in multiplication, so in division, we can show that in general it is useless to retain more figures in the quotient than the number of significant figures in the less accurate of the two numbers, dividend and divisor. Consequently, we note which of these contains the fewer significant figures, and round the other off to the same number of such figures. If, after this has been done, the dividend, without regard to the decimal point, is less than the divisor, we restore one digit to the dividend. (See example below.) The quotient is carried to the same number of significant figures as are contained in the divisor. A contracted form of the division process as applied to the example  $36.78 \div 6.42$  is shown on page 42.

Here, if the dividend were rounded off to 368 (decimal point omitted), it would be less than the divisor, 642. Hence, we retain four, rather than three, figures in the dividend.

$$5.73
6.42)36.78

 32 10
 4 68
 4 49
 19
 19$$

After the first partial product  $(5 \times 642 = 3210)$  has been subtracted, we do not bring down a 0 from the dividend, but strike out the final digit, 2, in the divisor.

The next digit in the quotient will obviously be 7. We note that  $7 \times 2 = 14$ , but do not write down the 4; we merely carry the 1. The partial product is 449.

The process is continued as far as possible, cutting down the divisor by one digit at each stage. The final quotient is 5.73

# \*20. Square root.

It will be assumed that the student is familiar with the method of extracting square root learned in arithmetic. How a table of squares, such as is to be found in Table VI of the Macmillan Logarithmic and Trigonometric Tables, can be used to expedite the process will be illustrated by extracting the square root of 1350 (considered as an exact, not an approximate, number).

$$\begin{array}{c} 1350.00 & (36.7) \\ (367)^2 = 1346.89 \\ 2 \times 367 = 734 \overline{)311} \end{array}$$

After separating the number into groups of two digits each, starting at the decimal point and going both to left and to right, we note that the largest square contained in the group at the left, namely 13, is the square of 3. Turning to the 200's of Table VI, we find that the largest square just below 135000 is 134689, which is the square of 367.

Subtracting the square of 367, we have a remainder of 311. This is the process previously learned, except that we have subtracted the square of a three-digit number instead of that of a one-digit number.

The process may now be continued as usual. It may be noted, however, that if we have obtained k significant figures in the square root, then k-1 more may be obtained by division. Thus, in the present example, we may divide 311 by 734 and obtain two more significant figures in the square root.

# \*21. Use of calculating machines.

If a calculating machine is available, the contracted forms of multiplication and division are of course not used. All that has been said about significant digits, however, holds. For example, it would be absurd to carry the quotient of  $36.78 \div 6.42$  out to eight or ten figures, even though the division could easily be performed on a machine.

While it is possible to extract square root on a calculating machine, an effective method is to use a table of squares, such as Table VI,\* in conjunction with a machine, employing the machine to perform the final division.

#### EXERCISES III. B

Perform the following operations, retaining the proper number of significant figures:

- 1.  $35.8 \times 41.6$ .
- 3.  $14.26 \times 3.860$ .
- 5.  $5028 \times 46.09$ .
- 7.  $43.8 \times 13.1 \times 32.8$ .
- 9.  $13845 \times 89.763$ .
- 11.  $63.1 \div 21.5$ .
- 13.  $52.96 \div 1.895$ .
- **15.** 2500 ÷ 16.98.
- 17.  $(436.5)^2$ .
  - \* Or Barlow's Tables.

- 2.  $5.25 \times 48.4$ .
- **4.**  $529.6 \times 29.64$ .
- 6.  $0.1283 \times 127400$ .
- 8.  $0.532 \times 0.00567 \times 12.3$ .
- 10.  $7.283 \times 283.4 \times 5.437$ .
- 12.  $0.5929 \div 3.801$ .
- 14.  $2.451 \div 1903$ .
- **16.**  $32.17 \div 712.3$ .
- 18. (71.48)<sup>2</sup>.

# 44 APPROXIMATE NUMBERS AND COMPUTATION [Ch. ]

 $35.8 \times 9.$  20.  $\frac{12.34 \times 1.986}{286.4}$ 

Extract the square roots of the following quantities, carrying the results to four significant figures:

 21. 1683.
 22. 25648.
 23. 17.986.

 24. 0.01534.
 25. 0.6843.
 26. 1.0076.

## CHAPTER IV

# Logarithms

## 22. Logarithms.

The logarithm of a number to a given base is the exponent of the power to which the base must be raised to yield the number. It is assumed that the base is positive and different from 1, and that the number is positive.

Thus, since  $2^3 = 8$ , 3 is the logarithm of 8 to the base 2. This may be written in the form  $\log_2 8 = 3$ . More generally, we write

$$\log_b N = x, \tag{1}$$

where 
$$b^x = N$$
  $(b > 0, \neq 1; N > 0).$  (2)

Forms (1) and (2) are equivalent.

The base in most common use is 10. Since, for example,  $10^2 = 100$ , we have  $\log_{10} 100 = 2$ . As we shall deal almost exclusively with logarithms to the base 10 (that is, common logarithms), we shall omit the subscript indicating the base, and write simply  $\log 100 = 2$ . Thus,

$$10^3 = 1000$$
, or  $\log 1000 = 3$ ;  $10^2 = 100$ , or  $\log 100 = 2$ ;  $10^1 = 10$ , or  $\log 10 = 1$ ;  $10^0 = 1$ , or  $\log 1 = 0$ ;  $10^{-1} = 0.1$ , or  $\log 0.1 = -1$ ;  $10^{-2} = 0.01$ , or  $\log 0.01 = -2$ ;  $10^{-3} = 0.001$ , or  $\log 0.001 = -3$ .

The logarithms of integral powers of 10, such as the foregoing, can, because of the very meaning of logarithm, be expressed exactly. Although the logarithm of a number such as 3, for example, cannot be expressed exactly in the decimal notation, we assume that a number x exists for which  $10^x = 3$ , and that an approximation to this number can be found. Actually, such an approximation, to five decimal places, is 0.47712, and we write  $\log 3 = 0.47712$ . Similarly,  $\log 3.262 = 0.51348$ . (How these values are obtained from tables will be explained later.)

#### 23. Mantissa.

Assuming that

$$\log 3.262 = 0.51348$$
,

let us write

or

$$10^{0.51348} = 3.262. (1)$$

Multiplying both sides by 10, we get

$$10^{1.51348} = 32.62,$$

which, in logarithmic notation, is

$$\log 32.62 = 1.51348.$$

By dividing both sides of (1) by 10, we get

$$10^{0.51045-1} = 0.3262,$$

$$\log 0.3262 = 0.51348 - 1.$$

This could also be written  $\log 0.3262 = -0.48652$ ,\* but it is usually more convenient to keep the decimal part of a logarithm positive. This positive decimal part of a logarithm is called the mantissa of the logarithm.

The two examples given above illustrate the fundamental principle: For numbers having the same sequence of digits, such as 3.262, 32620, 0.003262, the mantissa of the logarithm is the same.†

<sup>\*</sup> Found by subtracting 0.51348 from 1 and prefixing a negative sign. † Provided that the base is 10.

#### 24. Characteristic.

The integral, or whole-number, part of a logarithm is called the **characteristic**. Thus, since  $\log 32.62 = 1.51348$ , the characteristic of the logarithm of 32.62 is 1.

Since  $\log 1 = 0$ , and  $\log 10 = 1$ , the logarithm of a number between 1 and 10, for example 3.262, is between 0 and 1 in value, and consequently has the characteristic 0.\* We shall say that such a number has the decimal point in standard position, namely after the first non-zero digit. (See section 16.)

Each time we multiply a number by 10 we move the decimal point one place to the right, and each time we divide by 10 we move the point one place to the left. But each time we multiply a number by 10 we increase the logarithm of the number by 1, and each time we divide a number by 10 we decrease its logarithm by 1, as was seen in the illustration above. Thus, we may state the following rule for finding the characteristic:

If a number has its decimal point in standard position (i.e., after the first non-zero digit), the characteristic of the logarithm of the number is zero; if the decimal point is not in standard position, the characteristic of the logarithm of the number is equal to the number of places the point has been moved from standard position, and is positive if the point has been moved to the right, negative if it has been moved to the left.†

For example, in the number 78460, the decimal point has been moved from standard position (after the 7) 4 places to the right (after the 0), and the characteristic of the logarithm of the number is therefore 4.

In the number 0.03262, the point has been moved from standard position 2 places to the left. The characteristic of the logarithm of the number is therefore -2. In fact,

<sup>\*</sup> A characteristic should always be written, even though it is 0.

<sup>†</sup> Note that the characteristic is also equal to the exponent of 10 when the number is written in scientific notation. (See section 16.)

since we saw above that  $\log 3.262 = 0.51348$ , we may write

$$\log 0.03262 = 0.51348 - 2.$$

It is frequently convenient to write this in the form

$$\log 0.03262 = 8.51348 - 10.$$

The rule given for determining the characteristic also tells us how to point off a number corresponding to a given logarithm. (The number corresponding to a logarithm is called the antilogarithm. More precisely, if  $\log N = x$ , then N is the antilogarithm of x.)

Thus, if we have given

$$\log N = 2.51348,$$

we know from the illustration above that the number N is composed of the sequence of digits 3262. Since the characteristic is 2, the decimal point has been moved 2 places to the right from standard position. Therefore,

$$N = 326.2.$$

#### EXERCISES IV. A

Determine the characteristic of the logarithm of:

| <b>1.</b> 436.     | <b>2</b> . 25.          | <b>3.</b> 3280.        |
|--------------------|-------------------------|------------------------|
| <b>4.</b> 4.       | <b>5.</b> 0.136.        | <b>6.</b> 0.2.         |
| 7. 0.42.           | 8. 0.04.                | <b>9.</b> 0.0075.      |
| <b>10.</b> 1.0075. | <b>11.</b> 0.1075.      | <b>12.</b> 52.684.     |
| <b>13.</b> 21.64.  | <b>14.</b> 384.6.       | <b>15.</b> 2500.       |
| <b>16.</b> 0.384.  | <b>17.</b> 8.124.       | <b>18.</b> 0.2960.     |
| <b>19.</b> 380000. | 20. 0.006934.           | <b>21.</b> 0.02796.    |
| 22. 7.952.         | <b>23.</b> 98.          | <b>24</b> . 98.5.      |
| <b>25.</b> 98.52.  | <b>26.</b> 985.         | <b>27.</b> 9852.       |
| <b>28.</b> 0.9852. | <b>29.</b> 0.985.       | <b>30.</b> 0.98.       |
| <b>31.</b> 0.098.  | <b>32.</b> 0.000,001,2. | <b>33.</b> 60,000,000. |
| <b>34.</b> 6.      | <b>35.</b> 0.6.         | <b>36.</b> 0.600.      |

# 25. Finding the mantissa.

In a standard five-place table of logarithms, such as Table I of the Maemillan Logarithmic and Trigonometric Tables, the first three digits of a number are found at the left of the page, the fourth digit at the top or bottom, the corresponding mantissa decimal point omitted) being in the same row as the first three digits of the number and in the same column as the fourth digit. The student should verify that the mantissa of the logarithm of 3262 is .51348.

To find the logarithm of a number composed of five digits we must use interpolation. See section 8.)

#### Example.

Find log 32.627.

SOLUTION. Find the mantissas for the numbers next above and next below 32.62:

| Number                                                                                             | Mantissa                                                             |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                                                                                                    | (decimal point omitted)                                              |  |
| = 32.630                                                                                           | 51362                                                                |  |
| $.010 \begin{bmatrix} 32.630 \\ .007 \begin{bmatrix} 32.627 \\ 32.620 \end{bmatrix} \end{bmatrix}$ | $\begin{bmatrix} 51362 \\ \vdots \\ 51348 \end{bmatrix} x \bigg] 14$ |  |
| L.001L32.620                                                                                       | ل <sub>"</sub> لـ 51348                                              |  |

Assuming that the change in the mantissa is proportional to the change in the number,\* we have

$$14 - \frac{0.007}{0.010} = 0.7.$$

$$x = 0.7 \times 14 = 9.8.$$
Mantissa = 51348 + 10 = 51358.  
 $\log 32.627 = 1.51358.$ 

Once the principle of proportionality or proportional parts is understood, the work can be arranged more com-

<sup>\*</sup> This is only approximately true.

pactly in some such way as the following, or may  $\ensuremath{\natural}$  performed mentally.

$$32.63 \sim 51362$$

$$32.62 \sim \frac{51348}{14}$$
difference =  $\frac{14}{2}$ 

$$\frac{0.7}{9.8}$$

$$\frac{51348}{1.51358}$$

(The symbol ~ may here be read "corresponds to.")

#### EXERCISES IV. B

Find the logarithm of each of the following numbers:

| 1.           | 68.     | 2.  | 68.3.    | 3.  | 359.          |
|--------------|---------|-----|----------|-----|---------------|
| 4.           | 381.    | 5.  | 2.       | 6.  | 2.87.         |
| 7.           | 5000.   | 8.  | 751.5.   | 9.  | 8428.         |
| 10.          | 0.4313. | 11. | 0.02156. | 12. | 56980.        |
| 13.          | 250000. | 14. | 0.00036. | 15. | 7.851.        |
| 16.          | 1.003.  | 17. | 15.95.   | 18. | 0.003097.     |
| 19.          | 2.9645. | 20. | 23572.   | 21. | 6784.8.       |
| 22.          | 67.843. | 23. | 54326.   | 24. | 38.794.       |
| 25.          | 6.3129. | 26. | 0.34732. | 27. | 0.000,876,95. |
| 28.          | 1.0006. | 29. | 9.9982.  | 30. | 99.992.       |
| 31.          | 99998.  | 32. | 0.10101. | 33. | 0.000.100.01. |
| 3 <b>4</b> . | 2509.9. | 35. | 829.99   | 36. | 91.119.       |

# 26. Finding the antilogarithm.

The process of finding the number corresponding to a given logarithm is illustrated by the following examples:

## Example 1.

Find the number whose logarithm is 7.91121 - 10.

Solution. The mantissa is found exactly in the table. At the left we find 815; at the top we find 1. Thus, the number is composed of the sequence of digits 8151. The characteristic is 7-10 = -3. Consequently, the decimal point must be moved from

standard position rafter the 8, 3 places to the left. Therefore the number is 0,008151.

## Example 2.

Given  $\log N = 1.91123$ ; find N.

SOLUTION. Here we use inverse interpolation.

| Mantissa                                                  |                                    | Number                                         |
|-----------------------------------------------------------|------------------------------------|------------------------------------------------|
| $5 \begin{bmatrix} 91126 \\ 91123 \\ 91121 \end{bmatrix}$ |                                    | $\begin{bmatrix} 8152 \\ 3151 \end{bmatrix} x$ |
|                                                           | $\frac{4}{1} = \frac{2}{5} = 0.4.$ |                                                |
|                                                           | N = 81.514.                        |                                                |

#### EXERCISES IV. C

Find the number corresponding to each of the following logarithms:

| 1. 0.69897.              | 2. 1.76042.                | <b>3.</b> 2.93601.  |
|--------------------------|----------------------------|---------------------|
| 4. 4.26174.              | 5. $0.81278 - 1$ .         | 6. $9.96741 - 10$   |
| 7. $3.76253 - 10$ .      | <b>8.</b> 3.63337.         | 9. $8.84442 - 10$   |
| <b>10.</b> 0.63994.      | 11. $0.69085 - 2$ .        | <b>12.</b> 1.51416. |
| 13. $7.19767 - 10$ .     | <b>14.</b> 1.48762.        | 15. $8.82326 - 10$  |
| <b>16.</b> 5.18752.      | <b>17.</b> 6.15465.        | 18. $9.79029 - 10$  |
| <b>19.</b> 0.83445.      | <b>20.</b> $6.36021 - 10.$ | <b>21</b> 1.94548.  |
| <b>22.</b> 9.00000 - 10. | <b>23.</b> 1.00009.        | <b>24.</b> 0.99998. |

# 27. Laws of logarithms.

Since logarithms are exponents, they obey the laws of exponents, it being assumed that these laws hold for irrational as well as rational exponents.\*

I. The logarithm of a product is equal to the sum of the logarithms of its factors.

<sup>\*</sup> See the author's College Algebra.

Let 
$$\log_b M = x$$
,  $\log_b N = y$ .  
Then,  $M = b^x$ ,  $N = b^y$ ,  $MN = b^x b^y = b^{x+y}$ ,  $\log_b MN = x + y$ , or  $\log_b MN = \log_b M + \log_b N$ .

The proof can easily be extended to cover the case of any finite number of factors.

II. The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor.

Using the same notation as above, we have

$$\frac{M}{N} = \frac{b^{x}}{b^{y}} = b^{x-y},$$

$$\log_{b} \frac{M}{N} = x - y,$$

$$\log_{b} \frac{M}{N} = \log_{b} M - \log_{b} N.$$

or

III. The logarithm of the mth power of a number is equal to m times the logarithm of the number.

If 
$$\log_b N = x$$
, then  $N = b^x$ , and

$$N^m = (b^x)^m = b^{mx},$$

$$\log_b N^m = mx,$$

or

$$\log_b N^m = m \log_b N.$$

IV. The logarithm of the mth real positive root of a number is equal to one mth of the logarithm of the number.

This is really the same as III, since  $\sqrt[m]{N} = N^{1/m}$ . Thus,

$$\log_b \sqrt[m]{N} = \frac{1}{m} \log_b N.$$

# 28. Logarithmic computation of products and quotients.

The advantage of logarithms in performing multiplication and division is that these operations can be replaced by the simpler operations of addition and subtraction respectively.

It must be realized that results are only approximate.

## Example 1.

Find the value of  $32.62 \times 8.673$ .

Solution. Denoting the product by x, we have

$$\log x = \log 32.62 + \log 8.673.$$

We arrange the work as follows:

# Example 2.

Find the value of  $8.673 \div 32.62$ .

Solution. Let the quotient be denoted by x. Then

$$\log x = \log 8.673 - \log 32.62.$$
$$\log 8.673 - 0.93817$$
$$\log 32.62 - 1.51348$$

Here we are subtracting the larger quantity from the smaller. In order to keep the mantissa positive, we add 10 to, and subtract 10 from, the logarithm of 8.673, getting

# Example 3.

Find the value of

$$\frac{3262 \times 1.786}{532.1 \times 0.8673}$$

SOLUTION. We note that

 $\log iraction = \log numerator - \log denominator,$ 

and arrange the work as follows:

| $\log 3262$     | 3.51348 | $\log 532.1$    | 2.72599       |
|-----------------|---------|-----------------|---------------|
| log 1.786       | 0.25188 | $\log 0.8673$   | 9.93817 - 10  |
| log numerator   | 3.76536 | log denominator | 12.66416 - 10 |
| log denominator |         |                 |               |
| log fraction    |         |                 |               |
| fraction        | 12.62   |                 |               |

Note that we do not interpolate to find a fifth figure in the antilogarithm because of the rules for computation with approximate numbers.

# 29. Cologarithm.

When one number is to be divided by another we may change the problem to one of multiplication by using the reciprocal of the divisor. For example,  $3 \div 2 = 3 \times \frac{1}{2}$ .

The logarithm of the reciprocal of a number is called the cologarithm of the number and is abbreviated colog. That is.

$$\operatorname{colog} N = \log \frac{1}{N} = \log 1 - \log N = -\log N.$$

Thus, the cologarithm of a number is the negative of the legarithm of the number. Consequently, in solving a problem in division by means of logarithms, we may either subtract the logarithm of the divisor or add its cologarithm. There is no advantage, but rather a disadvantage, in using the cologarithm when only two numbers are involved in a division problem. There is, however, some advantage, particularly in the arrangement of the solution, when more than one number occurs in the denominator of an expression.

The cologarithm of a number is obtained by subtracting

the logarithm of the number from  $\log 1$ , that is, from 0. The 0 is usually written in the form 10-10, and the subtraction can be performed mentally, after some practice, by the following method: Begin at the left, and subtract from 9 each digit of the logarithm except the last non-zero digit, which must be subtracted from 10.

## Examples.

$$\log 32.62 = 1.51348,$$
  $\log 0.01508 = 8.17840 - 10,$   $\operatorname{colog} 32.62 = 8.48652 - 10,$   $\operatorname{colog} 0.01508 = 1.82160.$ 

Following is a solution of example 3 above which employs cologarithms:

# 30. Logarithmic computation of powers and roots.

The operations of raising to powers and of extracting roots are greatly facilitated by the use of logarithms, because it replaces these operations by the simpler ones of multiplication and division.

## Example 1.

Evaluate  $(3.262)^4$ . Solution. Let  $x = (3.262)^4$ ; then  $\log x = 4 \log 3.262$ .

$$\begin{array}{ccc} \log 3.262 & 0.51348 \\ & \times 4 \\ \log x & 2.0539 \\ & 113.2 \end{array}$$

<sup>\*</sup>Only five significant figures are retained here because of the rules for computation with approximate numbers.

# Example 2.

Find the cube root of 3.262.

SOLUTION. If x is the desired cube root, then

$$\log x = \frac{1}{3} \log 3.262.$$

$$\begin{array}{c|c}
\log 3.262 & 0.51348 \ (\div 3) \\
\log x & 0.17116 \\
& 1.4831
\end{array}$$

## Example 3.

Find the cube root of 0.3262.

Solution. If x is the desired cube root, then

$$\log x = \frac{1}{3}\log 0.3262 = \frac{1}{3}(9.51348 - 10).$$

In order to make the negative part of the characteristic exactly divisible by 3, add 20 and subtract 20:

### EXERCISES IV. D

Find the value of each of the following expressions by means of logarithms:

- 1.  $41.6 \times 35.8$ .
- 3.  $41.6 \div 35.8$ .
- 5.  $529.6 \times 29.64$ .
- 7.  $123.4 \times 9.866$ .
- 9.  $5.832 \div 25.96$ .
- 11.  $\sqrt{26.18}$ .
- 13.  $\sqrt{0.9146}$ .
- 15.  $24284 \times 3789.5$ .
- 17.  $1.3336 \div 2.1248$ .
- 19.  $0.41831 \div 0.057864$ .

- 2.  $4.84 \times 5.25$ .
- 4.  $4.84 \div 5.25$ .
- 6.  $127400 \times 0.1283$ .
- 8.  $(3.482)^3$ .
- 10.  $7.283 \times 283.4 \times 5.437$ .
- 12.  $\sqrt[3]{1.546}$ .
- **14**. √√3.
- 16.  $0.82371 \times 0.001,985,7$ .
- 18.  $1.7321 \div 0.73205$ .
- **20.**  $48.252 \times 9.6384 \times 0.96384$ .

**21.** 
$$53201 \times 56784 \times 12619$$
.

$$27. \ \frac{9.812 \times 18.76}{405.1} \cdot$$

29. 
$$\frac{54.321 \times 2.7183}{3.1416}$$
.

33. 
$$\sqrt{5.2683 \times 0.84216}$$
.

35. 
$$\frac{538.21 \times 1.7864}{0.40752 \times 863.76}$$

37. 
$$\sqrt[3]{\frac{25.321}{\sqrt{1.0048}}}$$

39. 
$$\frac{0.15630(-3.6251)^3}{-36.714\sqrt[5]{-91850}}$$

**22.** 
$$472.48 \times 45.990 \times 0.87723$$
.

**24.** 
$$\sqrt[3]{4.6123}$$
.

**26.** 
$$\sqrt[3]{0.092468}$$
.

28. 
$$\frac{32.64}{19.23 \times 0.7191}$$

30. 
$$\frac{1776.4}{24.683 \times 1.0054}$$

**34.** 
$$(1.0025)^{-1/2}$$
.

$$_{36}$$
,  $97.304 \times 71.486$ 

Note. Although negative numbers have no real logarithms, we can treat this problem as if all the numbers involved were positive, and then prefix the proper sign to the result. Here we have, symbolically,

$$\frac{(+)(-)^3}{(-)^5-} \quad \frac{(+)(-)}{(-)(-)} - \frac{-}{+}$$

Thus, a negative sign should precede the final result.

**40.** 
$$(-1.2381)^2 \div (-7.9564)^3$$
. **41.**  $\sqrt[3]{-9999.4}$ .

**42.** 
$$\frac{6.8213 \times (-3.4868)}{12.863}$$
 **43.**  $\frac{(-25.868)^2\sqrt[3]{-0.88255}}{-32.759}$ 

# 31. Logarithms of the trigonometric functions.

Tables giving the values of the trigonometric functions of angles are called tables of "natural functions" to distinguish them from tables which give the logarithms of these functions. We might in all cases find the natural function, and then the logarithm of that function from a table of logarithms of numbers. However, we have tables

which omit one step in this process by giving the logarithm of the function directly, when the value of the angle is known (e.g., Table III of the Macmillan Logarithmic and Trigonometric Tables).

The process of finding the value of the logarithm of a trigonometric function is quite like that of finding the value of the natural function, even when interpolation is required. Similarly, the process of finding the angle, when the logarithm of the function is given, is in no respect different from that of finding the angle when the natural function is given.

# Example 1.

Find log cos 17° 25.8'.

Solution. The interpolation can be carried out as in section S, or it can be arranged as follows (cf. section 25):

$$\log \cos 17^{\circ} 25' = 9.97962 - 10$$

$$\log \cos 17^{\circ} 26' = 9.97658 - 10$$

$$\text{difference} = \frac{4}{\times 0.8}$$

$$3.2$$

$$\begin{array}{c} \log \cos 17^{\circ} \ 25' = 9.97962 \ -10 \\ \text{negative correction} = 3 \\ \log \cos 17^{\circ} \ 25.8' = \overline{9.97959} \ -10 \end{array}$$

# Example 2.

Given log tan A = 0.10860; find the acute angle A. Solution.

$$\begin{cases} \log \tan 52^{\circ} 6' = 0.10875 \\ \log \tan A = 0.10860 \\ \log \tan 52^{\circ} 5' = 0.10849 \end{cases} 11$$

$$\frac{x}{1'} = \frac{11}{26}, \qquad x = \frac{11}{26} \times 1' = 0.4'.$$

$$A = 52^{\circ} 54'$$

### EXERCISES IV. E

Find the following by using tables of logarithms of the trigonometrie functions:

- 1. log sin 29°.
- 3. log sin 78° 10'.
- 5. log cot 17° 17'.
- 7. log tan 12° 25'.
- 9. log cos 49° 12'.
- log sin 7° 46′.
- 13. log cot 30° 26'.
- 15. log tan 35° 15.3',
- 17. log cos 58° 37.8'.
- 19. log sin 9° 41.4'.
- 21. log sin 57° 17.7'.
- 23. log cot 10° 59.9'.

- 2. log cos 31°.
- 4. log tan 74° 20'.
- 6. log cot S0° 22'.
- 8. log sin 31° 52′.
- 10. log sin 6° 31'.
- 12. log cos 53° 21'.
- 14. log sin 26° 45′.
- 16. log sin 12° 13.2′.
- 18. log cot 81° 25.1'.
- 20. log tan 54° 22.2'. 22. log cos 45° 2.3′.
- 24. log tan SS° 59.8'.

Find the acute angle A, given that

- **25.**  $\log \sin A = 9.53888 10$ .
- **27.**  $\log \tan A = 0.30575$ .
- **29.**  $\log \tan A = 0.18762$ .
- 31.  $\log \tan A = 9.28875 10$ .
- 33.  $\log \cos A = 9.72868 10$ .
- **35.**  $\log \cos A = 9.89530 10$ .
- 37.  $\log \sin A = 9.80070 10$ .
- 39.  $\log \cot A = 9.18854 10$ .
- **41.**  $\log \tan A = 0.06735$ . **43.**  $\log \tan A = 1.55553$ .
- **45.**  $\log \sin A = 9.99950 10$ .
- 47.  $\log \cos A = 0.17182$ .

- **26.**  $\log \cos A = 9.99484 10$ .
- **28.**  $\log \cot A = 1.54493$ .
- **30.**  $\log \sin A = 9.71708 10$ .
- **32.**  $\log \cos A = 9.53871 10$ .
- **34.**  $\log \cos A = 9.88150 16$ . **36.**  $\log \sin A = 8.90150 - 10$ .
- **38.**  $\log \sin A = 9.99483 10$ .
- 40.  $\log \cot A = 0.18750$ .
- **42.**  $\log \tan A = 0.10235$ .
- **44.**  $\log \cot A = 8.99983 10.$
- **46.**  $\log \tan A = 1.00000$ . **48.**  $\log \sin A = 0.11111$ .

Find, by using logarithms, the value of each of the following expressions:

- 49. 12.38 sin 13° 20′.
- 51. 204.65 sin 28° 18.2′.
- **53.** 0.18622 cos 14° \$.3′.
- **55.** 152.98 sin 74°22.9′.
- 57, 1.2346 cos 45° 45.4′.
- **50.** 485.6 cos 22° 28′.
- 52. 98.128 tan 33° 35.6′.
- **54.** 57663 cot 40° 40.8′.
- 56. 3004.2 tan 66° 33.4′.
- **58.** 19.897 sin 38° 59.6′.

## LOGARITHMS

59. 
$$\frac{543.21 \sin 72^{\circ} 14.3'}{\sin 22^{\circ} 18.9'}$$
 60.  $\frac{2381.4 \tan 44^{\circ} 18.3'}{4561.8}$ 

Find the value of the acute angle A, given that

**61.** 
$$\sin A = \frac{548.26 \sin 75^{\circ} 43.3'}{865.27}$$
.

62. 
$$\sin A = \frac{9753.6 \sin 18^{\circ} 36.6'}{8910.4}$$
.

## CHAPTER V

# Logarithmic Solution of Right Triangles

# 32. Logarithmic solution of right triangles.

The general instructions of section 7 apply to the logarithmic solution of right triangles. It should be noted that the theorem of Pythagoras is not adapted to the use of logarithms if it is written in the form  $c^2 = a^2 + b^2$ . However, if the hypotenuse, c, is one of the known parts, we can write

$$a^2 = c^2 - b^2 = (c + b)(c - b)$$
, or  $b^2 = (c + a)(c - a)$ ,

and to these forms logarithms can be applied.

An outline, like that in the model solution shown on page 62, should first be made out. Begin with the known parts and conclude with the check. The outline should be complete before any numerical values are written in.

The following general rules will be of use in determining the degree of accuracy to be expected when dealing with approximate numbers, not only in connection with right triangles, but for all trigonometric work:

Lengths expressed to two significant figures call for angles to be expressed to the nearest 30', and vice versa.

Lengths expressed to three significant figures call for angles to be expressed to the nearest 5', and vice versa.

Lengths expressed to four significant figures call for angles to be expressed to the nearest minute, and vice versa.

Lengths expressed to five significant figures call for angles to be expressed to the nearest tenth of a minute, and vice versa.

It is thus convenient, in dealing with lengths expressed

to three significant figures and angles expressed to the nearest 5', to use a four-place table of natural functions, such as the table on pages 12–14, without interpolation, or with very rough interpolation. For lengths expressed to four significant figures and angles to the nearest minute, four-place tables of the natural functions or four-place logarithmic tables may be used; in either case interpolation should be employed. Also, for this degree of accuracy, five-place logarithmic tables may be used without interpolation. For lengths expressed to five significant figures and angles to the nearest tenth of a minute, five-place logarithmic tables should be used with interpolation.

## Example.

Solve the right triangle in which a = 16.84, c = 20.36.

SOLUTION.

The work is checked, since the values of  $\log b$ , obtained by two different methods, agree except in the last place.

## EXERCISES V. A

Find the remaining parts, and also the areas of the following right triangles  $C = 90^{\circ}$ ; by logarithms:

1. 
$$a = 793.6, b = 965.5.$$

2. 
$$A = 52^{\circ} 41' \ a = 55.71$$
.

3. 
$$a = 0.2042$$
,  $c = 0.2753$ .

**4.** 
$$A = 10^{\circ} 51' \ b = 7.123.$$

**5.** 
$$b = 5012, c = 8117.$$

**6.** 
$$A = 30^{\circ} 18', c = 0.02040.$$

7. 
$$B = 58^{\circ} 15'$$
,  $a = 48.04$ .  
9.  $B = 23^{\circ} 9'$ ,  $b = 754.8$ .

**8.** 
$$B = 6^{\circ} 31'$$
,  $b = 0.3691$ .

$$0.0 - 20.0, 0 - 101.5$$

10. 
$$A = 43^{\circ} 49.2', b = 22.568.$$

11. 
$$a = 2841.6, c = 6394.7.$$

**12.** 
$$A = 45^{\circ} 11.6', b = 61.496.$$

**13.** 
$$b = 862.35, c = 1036.0.$$

**13.** 
$$b = 862.35$$
,  $c = 1036.0$ . **14.**  $A = 14^{\circ} 21.1'$ ,  $c = 9.4726$ . **15.**  $B = 26^{\circ} 17.2'$ ,  $a = 335.88$ . **16.**  $a = 0.18709$ ,  $b = 0.22115$ .

17. 
$$B = 52^{\circ} 9.8'$$
,  $c = 73.211$ .

18. 
$$B = 34^{\circ} 14.6'$$
,  $b = 1202.2$ .

- 19. (a) Find the base of an isosceles triangle whose vertex angle is 38° 27.2', and each of whose legs is 153.42. (b) Find the area of the triangle.
- 20. Find the side of a regular pentagon inscribed in a circle whose radius is 10.354 inches.
- 21. Find the radius of a circle in which a chord of 23.546 centimeters subtends an angle of 141° 18.4′ at the center.
- 22. Find the area of a regular 5-pointed star inscribed in a circle of radius 12.517 inches.

Additional material for practice in the logarithmic solution of right triangles may be obtained from the exercises of Chapter II.

# CHAPTER VI

# Trigonometric Functions of Any Angle

# 33. Generation of an angle.



The angle at O in Fig. 30 may be thought of as generated by the rotation of the line OP, from coincidence with OX to its present position. The line OX is called the initial side of the angle, OP is its terminal side.

# 34. Positive and negative angles.

It is evident that there is a choice of directions for rotating the generating line from the position OX to the position OP. One of these is that of the motion of the hands of a

clock, and is called clockwise, the other is called counterclockwise. If the rotation of the generating line is counterclockwise, the angle is positive (+); if the rotation is clockwise, the



angle is negative (-).\* A small curved arrow, starting from the initial side and ending with its tip on the terminal side, is often used to indicate the direction of motion. (See Fig. 31.)

It is evident that an angle may be of any magnitude

<sup>\*</sup> There is no intrinsic reason why a counterclockwise rotation should give a positive angle and a clockwise rotation a negative angle. This designation, however, is the customary one.

either positive or negative) whatever, for the generating line may rotate any number of times in either direction.

Any given position of OP represents an unlimited number of positive and negative angles.\* On the other hand, to each angle, whether positive, negative, or zero, there corresponds one and only one position of OP.

Angles are equal if they are generated by the same amount of rotation in the same direction.

# 35. Rectangular coordinates.

Let us take two straight lines, OX and OY, intersecting at right angles at the point O. (See Fig. 32.) On each line we mark off a scale (same scale on each); positive numbers are to the right on the horizontal line OX, above on the vertical line OY; negative numbers are to the left on OX. below on OY. Line OX is called the x-axis, line OY the

y-axis, point O the origin.

Now take any point P. The distance of the point from the y-axis is called the abscissa of the point and is denoted by x. its distance from the x-axis is called its ordinate and is denoted by y. The abscissa and ordinate together are called the coordinates (more specifically, rectangular coordinates)



of the point. The point P in Fig. 32 has the abscissa -3and the ordinate 4. For such a point it is customary to write P(-3, 4), the abscissa being written first.

Locating and marking the position of a point whose coordinates are given is called plotting the point.

<sup>\*</sup> These angles may be called coterminal, since they have the same terminal side.

Besides the coordinates of the point, we find it convenient to consider its distance from the origin, which may be termed its radius vector, or simply its radius, and which we shall denote by r. Unless otherwise stated, r will for the present always be regarded as positive. (But see section 72.) Obviously we have  $r^2 = x^2 + y^2$ , and for the point P in the figure,  $r = \sqrt{9+16} = 5$ . Thus, for this particular point, we have x = -3, y = 4, r = 5.

### 36. Quadrants.

It will be noted that the coordinate axes divide the plane into four parts, called quadrants, numbered as shown in Fig. 33. The order of numbering is in accordance with counterclockwise rotation. That is, a line starting from



coincidence with the positive end of the x-axis, and rotating about the origin O so as to generate a positive angle, turns first through quadrant II, then through quadrant II, and so on. Angles between 0° and 90° are in quadrant II, angles between 90° and 180° are in quadrant III, those between 180° and 270° are in quadrant III,

those between 270° and 360° are in quadrant IV. Angles between 360° and 450° are in the first quadrant, and so on.

The signs of x and y in each of the various quadrants are shown in Fig. 33 (the sign of x is written first) and in the following table:

| Quadrant     | I | n | III  | īv |
|--------------|---|---|------|----|
| x (abscissa) | + |   | **** | 14 |
| y (ordinate) | + |   |      | +  |
|              |   | T |      |    |

As already stated, the radius r will for the present be considered as always positive.

# 37. Trigonometric functions of any angle.

The definitions of the trigonometric functions given in section 2 suffice for acute angles only. In order to deal with the solution of oblique triangles and with other phases of

trigonometry, it is necessary to generalize these definitions so that they will apply to any angle.

To this end, let us consider the angle  $\theta$  (Fig. 34), which has been generated by a line rotating about the



origin, starting from coincidence with OX. Take any point P on its terminal side. With this point are associated three values: the abscissa x, the ordinate y, and the radius r. We define

$$\sin \theta = \frac{\text{ordinate}}{\text{radius}} = \frac{y}{r},$$
 $\csc \theta = \frac{\text{radius}}{\text{ordinate}}$ 
 $\cos \theta = \frac{\text{abscissa}}{\text{radius}} = \frac{x}{r},$ 
 $\sec \theta = \frac{\text{radius}}{\text{abscissa}} = \frac{r}{x},$ 
 $\cot \theta = \frac{\text{ordinate}}{\text{ordinate}} = \frac{y}{y}$ 
 $\cot \theta = \frac{\text{abscissa}}{\text{ordinate}} = \frac{x}{y}.$ 



These new definitions agree with those previously given (section 2) if the angle  $\theta$  is in the first quadrant. As an illustration of their meanings for other angles, let us find the functions of 120°.

On the terminal side of an angle of 120°, whose initial side is the x-axis,

take the point P so that r=2. (See Fig. 35.) Then, and  $MOP=60^{\circ}$ , and x=-1, from which we find, by

using the theorem of Pythagoras, that  $y = \sqrt{3}$ . The functions may now be read from the figure as follows:

$$\sin 120^{\circ} = \frac{y}{r} = \frac{\sqrt{3}}{2},$$

$$\cos 120^{\circ} = \frac{x}{r} = \frac{-1}{2} = -\frac{1}{2},$$

$$\tan 120^{\circ} = \frac{y}{x} = \frac{\sqrt{3}}{-1} = -\sqrt{3},$$

$$\csc 120^{\circ} = \frac{r}{y} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3},$$

$$\sec 120^{\circ} = \frac{r}{x} = \frac{2}{-1} = -2,$$

$$\cot 120^{\circ} = \frac{x}{y} = \frac{-1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}.$$

## **EXERCISE**

Show that the signs of the functions in the various quadrants are as shown in the following table.

| quadrant | sin          | cos      | tan | csc | T   | T   |
|----------|--------------|----------|-----|-----|-----|-----|
| I        | <del>-</del> | <u>.</u> |     | 050 | Sec | cot |
| II .     |              |          |     | +   | +   | +   |
|          |              |          |     | +   |     | _   |
| III      |              |          | +   |     | _   | +   |
| IV       |              | +        | _   |     | +   |     |

# 38. Functions of 0°, 90°, 180°, 270°.

Y

 $\begin{array}{c|c}
1 & P \\
\hline
G & f X \\
(z=1, y=0, r=1) \\
\text{Fig. 36}
\end{array}$ 

We may consider that we have an angle of  $0^{\circ}$  if there has been no rotation of the generating line. Take a point P on the terminal side of the angle, which of course coincides with the initial side, with any convenient abscissa, say 1. (See Fig. 36.) Then x = 1, y = 0, r = 1 and we have

$$\sin 0^{\circ} = \frac{y}{r} = \frac{0}{1} = 0,$$
 $\cos 0^{\circ} = \frac{x}{r} = \frac{1}{1} = 1,$ 
 $\tan 0^{\circ} = \frac{y}{x} = \frac{0}{1} = 0,$ 
 $\csc 0^{\circ} = \frac{r}{y} = \frac{1}{0}, \text{ und}$ 
 $\sec 0^{\circ} = \frac{r}{x} = \frac{1}{1} = 1,$ 
 $\cot 0^{\circ} = \frac{x}{y} = \frac{1}{0}, \text{ undefined.}$ 

Note that csc 0° and cot 0° do not exist, since the ratios which would represent them have zero for denominator, and division by zero is impossible. However, as the angle  $\theta$  shrinks to zero, cot  $\theta$ \* becomes numerically larger and larger without bound (e.g., cot 1' = 3437.7, cot 1'' = 206265). It is customary to express this fact by writing

$$\cot \theta \to \infty \text{ as } \theta \to 0, \tag{1}$$

where the symbol  $\rightarrow$  is read "approaches" and the symbol  $\infty$  is called **infinity**. The fact may also be written in the form

$$\lim_{\theta \to 0} \cot \theta = \alpha, \tag{2}$$

which is read "the limit, as  $\theta$  approaches zero, of cot  $\theta$  is infinity." Either (1) or (2) is merely a shorthand notation for indicating that as the angle gets closer and closer to the value zero, the cotangent increases numerically without bound. It must be insisted that infinity ( $\infty$ ) is not a number.

<sup>\*</sup>We select  $\cot \theta$  merely for purposes of illustration. A similar discussion

Similarly, from Fig. 37, in which each of the points  $P_1$ ,  $P_2$ ,  $P_3$  is at a numerical distance of 1 from the origin, we



 $p_3(x=0, y=-1, r=1)$ 

Fig. 37

can read off the functions of 90°, 180°, 270°. The values of these functions, as well as the functions of 0°, are tabulated below. The student should check them as an exercise. It is clear that the functions of 360° are the same as the functions of 0°. In the table the symbol ∞ is used to indicate that as the angle approaches the speci-

fied value, the corresponding function increases in numerical value without bound.

| angle | sin | cos | tan | csc | sec | cot |
|-------|-----|-----|-----|-----|-----|-----|
| 0°    | 0   | 1   | 0   | 8   | 1   | 8   |
| 90°   | 1   | 0   | ∞   | 1   | 8   | 0   |
| 180°  | 0   | -1  | 0   | ∞   | -1  | 8   |
| 270°  | -1  | . 0 | -   | -1  | ∞   | 0   |

### EXERCISES VI. A

Find the six functions of

- 1. 135°.
- **2.** 150°.
- 3. 210°.
- **4.** 240°

- 5. 225°.
- **6.** 300°.
- 7. 330°.
- 8. 315°

Find the values of the following expressions:

- 9.  $\sin 150^{\circ} + \tan 225^{\circ} + \cos 330^{\circ}$ .
- 10.  $\cos 150^{\circ} 3 \tan 300^{\circ} + 2 \sin 90^{\circ}$ .
- 11.  $3 \tan 240^{\circ} \sin^2 135^{\circ} + 2 \cot 210^{\circ}$ .
- 12.  $3 \sin 135^\circ + 2 \cos 225^\circ \tan 315^\circ$

13. ! cos = 5 sm co ; ....
14. :cos 225°; (an 45°)(sin 135° + cos 0°).

15.  $\tan 240^{\circ} - \cos 300^{\circ} (2 \sin 300^{\circ} + 3 \cot 225^{\circ})$ .

16.  $\sin^2 315^\circ + \cos^2 270^\circ + \tan^2 225^\circ$ .

17.  $(\sin 315^{\circ} + \cos 270^{\circ} + \tan 225^{\circ})^{2}$ 

18.  $2 \cot 300^{\circ} + 3 \cos 180^{\circ} + \sin 270^{\circ} \tan 150^{\circ}$ .

19. esc  $150^{\circ} \pm 2$  sec  $330^{\circ} \pm 5 \sin 180^{\circ}$ .

20.  $3 \sec 135^{\circ} - 2 \csc 225^{\circ} + 4 \sin 315^{\circ}$ .

21.  $\sec 150^{\circ} \tan 300^{\circ} + \tan 225^{\circ} \csc^2 315^{\circ}$ .

**22.**  $(5\cos 270^{\circ} + \sec 180^{\circ} - \frac{1}{3}\sin 360^{\circ})^{3}$ .

23.  $(\frac{1}{2} \sec 240^{\circ} + \csc^{2} 315^{\circ} - \cot 135^{\circ})^{2}$ .

24.  $\sqrt{2} \tan 135^{\circ} + \sqrt{3} \sin 240^{\circ} + \sqrt{5} \csc 270^{\circ}$ .

25.  $\frac{\cos 300^{\circ} + \cos 360^{\circ}}{\sin 150^{\circ} + \sec 300^{\circ}}$ 

26.  $\frac{3 \tan 135^{\circ} + 2 \cos 225^{\circ}}{\sin 240^{\circ} + \tan 300^{\circ}}$ 

27.  $\frac{\cot 225^{\circ} + \sin 270^{\circ}}{\sec 225^{\circ} - \tan 300^{\circ}}$ .

# 39. Functions of $-\theta$ .

Let us consider the functions of  $-\theta$ , where  $\theta$  is any angle

whatever. In Fig. 38 the angle  $\theta$  is, for definiteness, shown in the first quadrant. but in the following considerations  $\theta$  is not restricted to the first, or to any other quadrant. It is readily seen that in the congruent right triangles OMP' and OMP, x' = x, y' = -y (since MP'and MP extend in opposite directions), and r' = r (since



the radius is to be regarded as positive). Consequently,

$$\sin(-\theta) = \frac{y'}{r'} = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta,$$

$$\cos(-\theta) = \frac{x'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\tan(-\theta) = \frac{y'}{x'} = \frac{-y}{x} = -\tan \theta,$$

$$\csc(-\theta) = \frac{r'}{y'} = \frac{r}{-y} = -\frac{r}{y} = -\csc \theta,$$

$$\sec(-\theta) = \frac{r'}{r'} = \frac{r}{x} = \sec \theta,$$

$$\cot(-\theta) = \frac{x}{y'} = \frac{x}{-y} = -\frac{x}{y} = -\cot \theta.$$

#### **EXERCISE**

Prove the formulas of section 39 by means of a figure in which  $\theta$  is an angle in (a) quadrant III, (b) quadrant III, (c)

quadrant IV.



# 40. Functions of $180^{\circ} - \theta$ .

Let us now consider the functions of  $180^{\circ} - \theta$ , where again  $\theta$  may be any angle whatever. Reference to Fig. 39, in which OM'P' and OMP are congruent right triangles, shows that

$$\sin(180^{\circ} - \theta) = \frac{y'}{r'} = \frac{y}{r} = \sin \theta,$$

$$\cos(180^{\circ} - \theta) = \frac{x'}{r'} = \frac{-x}{r} = -\frac{x}{r} = -\cos \theta,$$

$$\tan(180^{\circ} - \theta) = \frac{y'}{x'} = \frac{y}{-x} = -\frac{y}{x} = -\tan \theta,$$

$$\csc(180^{\circ} - \theta) = \frac{r'}{y'} = \frac{r}{y} = \csc \theta,$$

$$\sec(180^{\circ} - \theta) = \frac{r'}{x'} = \frac{r}{-x} = -\frac{r}{x} = -\sec \theta,$$

$$\cot(180^{\circ} - \theta) = \frac{x'}{y'} = \frac{-x}{y} = -\cot \theta.$$

#### **EXERCISE**

Prove the formulas of section 40 by means of a figure in which  $\theta$  is an angle in (a) quadrant II, (b) quadrant III, (c) quadrant IV.

# 41. Functions of $180^{\circ} + \theta$ .

By the same method of proof, it can be shown from Fig. 40, that

$$\sin(180^{\circ} + \theta) = -\sin \theta,$$

$$\csc(180^{\circ} + \theta) = -\csc \theta,$$

$$\cos(180^{\circ} + \theta) = -\cos \theta,$$

$$\sec(180^{\circ} + \theta) = -\sec \theta,$$

$$\tan(180^{\circ} + \theta) = \tan \theta,$$

$$\cot(180^{\circ} + \theta) = \cot \theta.$$

This is left as an exercise for the student.



# 42. Functions of $360^{\circ} - \theta$ .

From Fig. 38, it is evident that the functions of  $360^{\circ} - \theta$  are the same as the functions of  $-\theta$ . Thus,

$$\sin(360^{\circ} - \theta) = -\sin \theta,$$
  $\csc(360^{\circ} - \theta) = -\csc \theta,$   $\cos(360^{\circ} - \theta) = \cos \theta,$   $\sec(360^{\circ} - \theta) = \sec \theta,$   $\tan(360^{\circ} - \theta) = -\cot \theta.$ 

# 43. Functions of $360^{\circ} + \theta$ .

It should be quite clear that the functions of  $360^{\circ} + \theta$  are the same as the corresponding functions of  $\theta$ , since these two angles are coterminal. (See footnote, page 65.)

# 44. Functions of $90^{\circ} - \theta$ .



It was shown in section 3 that, for any acute angle A,  $\sin(90^{\circ} - A) = \cos A$ , etc. That is, any function of an acute angle is equal to the cofunction of the complementary angle. That formulas (2) of section 3 are true for any angle may be shown by Fig. 41 as follows:

Right triangles OM'P' and OMP are congruent, and con-

sequently x' = y, y' = x, r' = r. Therefore,

$$\sin(90^{\circ} \quad \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\cos(90^{\circ} - \theta) = \frac{x'}{x'} = \frac{y}{x} = \sin \theta,$$

$$\tan(90^{\circ} - \theta) = \frac{y'}{x'} = \frac{x}{y} = \cot \theta,$$

$$\csc(90^{\circ} - \theta) = \frac{r'}{y'} = \frac{r}{x} = \sec \theta,$$

$$\sec(90^{\circ} - \theta) = \frac{r}{x'} = \frac{r}{y} = \csc \theta,$$

$$\cot(90^{\circ} - \theta) = \frac{x'}{y'} = \frac{y}{x} = \tan \theta.$$

## **EXERCISE**

Prove the formulas of section 44 by means of a figure in which  $\theta$  is an angle in (a) quadrant II, (b) quadrant III, (c) quadrant IV.

# 45. Functions of $90^{\circ} + \theta$ .

It is seen that in Fig. 42, x' and y are numerically equal but have opposite signs; that is, x' = -y. Similarly, y' and x are numerically equal and have the same sign; that is, y' = x. Also, r' = r. It follows that



$$\sin(90^{\circ} + \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\cos(90^{\circ} + \theta) = \frac{x'}{r'} = \frac{-y}{r} = -\frac{y}{r} = -\sin \theta,$$

$$\tan(90^{\circ} + \theta) = \frac{y'}{x'} = \frac{x}{-y} = -\frac{x}{y} = -\cot \theta,$$

$$\csc(90^{\circ} + \theta) = \frac{r'}{y'} = \frac{r}{x} = \sec \theta,$$

$$\sec(90^{\circ} + \theta) = \frac{r'}{x'} = \frac{r}{-y} = -\frac{r}{y} = -\csc \theta,$$

$$\cot(90^{\circ} + \theta) = \frac{x'}{y'} = \frac{-y}{r} = -\tan \theta.$$

#### **EXERCISE**

Prove the formulas of section 45 by means of a figure in which  $\theta$  is an angle in (a) quadrant II, (b) quadrant III, (c) quadrant IV.

# 46. Functions of $270^{\circ} - \theta$ .

In Fig. 43, x' = -y, y' = -x, r' = r, and it can readily be proved that

$$\sin(270^{\circ} - \theta) = -\cos\theta, \qquad \csc(270^{\circ} - \theta) = -\sec\theta,$$

$$\cos(270^{\circ} - \theta) = -\sin \theta,$$
  $\sec(270^{\circ} - \theta) = -\csc \theta,$   $\tan(270^{\circ} - \theta) = \cot \theta,$   $\cot(270^{\circ} - \theta) = \tan \theta.$ 

Proofs are left as exercises for the student.



# 47. Functions of $270^{\circ} + \theta$ .

In Fig. 44, x' = y, y' = -x, r' = r, and it follows that

$$\sin(270^{\circ} + \theta) = -\cos \theta,$$
  $\csc(270^{\circ} + \theta) = -\sec \theta,$   $\cos(270^{\circ} + \theta) = \sin \theta,$   $\sec(270^{\circ} + \theta) = -\cot \theta,$   $\cot(270^{\circ} + \theta) = -\tan \theta.$ 

Proofs are left as exercises.

# 48. Summary.

The formulas of sections 39-47 may be summarized as in the accompanying table. The upper sign preceding a function corresponds to the upper sign in the angle at the left of the same row, and similarly for the lower sign.

| angle                                                                                                                                           | sin                                                                                                                  | cos                                                                                                               | tan                                                                                                                       | csc                                                                                                                | sec                                                                                              | cot                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} -\theta \\ 90^{\circ} \pm \theta \\ 180^{\circ} \pm \theta \\ 270^{\circ} \pm \theta \\ 360^{\circ} \pm \theta \end{array} $ | $ \begin{array}{c c} -\sin \theta \\ \cos \theta \\ \mp \sin \theta \\ -\cos \theta \\ \pm \sin \theta \end{array} $ | $ \begin{array}{c} \cos \theta \\ \mp \sin \theta \\ -\cos \theta \\ \pm \sin \theta \\ \cos \theta \end{array} $ | $ \begin{array}{c} -\tan \theta \\ \mp \cot \theta \\ \pm \tan \theta \\ \mp \cot \theta \\ \pm \tan \theta \end{array} $ | $ \begin{array}{c} -\csc \theta \\ \sec \theta \\ \mp \csc \theta \\ -\sec \theta \\ \pm \csc \theta \end{array} $ | $\begin{array}{c} \sec \theta \\ \mp \csc \theta \\ -\sec \theta \\ \pm \csc \theta \end{array}$ | $ \begin{array}{c} -\cot \theta \\ \mp \tan \theta \\ \pm \cot \theta \\ \mp \tan \theta \\ \pm \cot \theta \end{array} $ |

Note that in any column we have the same function as that at the head of the column, except for the rows having  $90^{\circ} \pm \theta$  and  $270^{\circ} \pm \theta$  at the left; in these rows we find the cofunctions.

The student should make no attempt to memorize this table, but he should be able to work out any of the results listed in it by the methods of the preceding sections; that is, by drawing a figure for each separate problem as needed.

For the important special case in which  $\theta$  is an acute angle the following statements may prove helpful: If an angle is written in the form  $-\theta$ ,  $180^{\circ} \pm \theta$ , or  $360^{\circ} \pm \theta$  we may say that it is referred to the x-axis; if it is written in the form  $90^{\circ} \pm \theta$  or  $270^{\circ} \pm \theta$ , we may say that it is referred to the y-axis; in either case we shall call  $\theta$  the reference angle. The function of any angle referred to the x-axis is numerically equal to the same function of the reference angle; the function of any angle referred to the y-axis is numerically equal to the cofunction of the reference angle. The sign to be prefixed to the resulting function of  $\theta$  is that of the original function, as determined by the quadrant in which the original angle is situated.

# 49. Reduction of functions of any angle to functions of an acute angle.

We are now in a position to find the functions of any angle whatever.

# Example 1.

Find sine, cosine, and tangent of 110°.

Solution. Since  $110^{\circ} = 180^{\circ} - 70^{\circ}$ , we have

$$\sin 110^{\circ} = \sin(180^{\circ} - 70^{\circ}) = \sin 70^{\circ} = 0.9397,$$
  
 $\cos 110^{\circ} = \cos(180^{\circ} - 70^{\circ}) = -\cos 70^{\circ} = -0.3420,$   
 $\tan 110^{\circ} = \tan(180^{\circ} - 70^{\circ}) = -\tan 70^{\circ} = -2.7475.$ 

Or, since 
$$110^{\circ} = 90^{\circ} + 20^{\circ}$$
,  
 $\sin 110^{\circ} = \sin(90^{\circ} + 20^{\circ}) = \cos 20^{\circ} = 0.9397$ ,  
 $\cos 110^{\circ} = \cos(90^{\circ} + 20^{\circ}) = -\sin 20^{\circ} = -0.3420$ ,  
 $\tan 110^{\circ} = \tan(90^{\circ} + 20^{\circ}) = -\cot 20^{\circ} = -2.7475$ .

## Example 2.

Find sine, cosine, and tangent of 615°.

Solution. Since  $615^{\circ} = 360^{\circ} + 255^{\circ}$ , the functions of  $615^{\circ}$  are exactly the same as those of  $255^{\circ}$ . But  $255^{\circ} = 180^{\circ} + 75^{\circ}$ . Thus,

$$\sin 615^{\circ} = \sin 255^{\circ} = \sin(180^{\circ} + 75^{\circ}) = -\sin 75^{\circ} = -0.9659,$$
  
 $\cos 615^{\circ} = \cos 255^{\circ} = \cos(180^{\circ} + 75^{\circ}) = -\cos 75^{\circ} = -0.2588,$   
 $\tan 615^{\circ} = \tan 255^{\circ} = \tan(180^{\circ} + 75^{\circ}) = \tan 75^{\circ} = 3.7321.$ 

Or, we could express  $255^{\circ}$  as  $270^{\circ} - 15^{\circ}$ .

#### EXERCISES VI. B

- 1. Express each of the following as a function of a positive acute angle:
- (a) sin 160°.
- (b) cos 145°,
- (c) tan 100°,

- (d) esc 130°. (g) sin 137°.
- (e) sec 172°,(h) cos 95° 10′,
- (f) cot 98°,(i) tan 162° 4′.

- (j) cot 125° 18',
- (k) sin 114° 21′.
- (l) cos 92° 12.8′.
- Reduce each of the following to a function of a positive angle less than 45°:
- (a) sin 175°.
- (b)  $\cos(-167^{\circ})$ ,
- (c) tan 520°,

- (d cot 125° 26′, (g) sin 215° 5′.
- (e) sec 267° 28',
- (f) csc 325° 41.8′,(i) tan 197° 35′.

- (j) cot 312° 54′,
- (h) cos 281° 22′, (k) sin 356° 56′.
- (l) cos 95° 6.5′.

- 3. Find the numerical value of
- (a sin 145°,
- (b) cos 246°,
- (c) tan 285°,

- (d out 572° 38'. (g) cot 121° 13.6'.
- (e) cos 321°, (h) sin 462° 31.1′,
- (f) sin 642° 50.5′,

- (j)  $\cos(-72^{\circ} 15')$ .
- (k)  $\tan(-200^{\circ})$ ,
- (i)  $\sin(-162^{\circ} 45')$ , (l)  $\cot(-275^{\circ} 18')$ .

Find the value of

- 4.  $\cos 240^{\circ} \cos 120^{\circ} \sin 120^{\circ} \cos 150^{\circ}$ .
- 5. tan 315° sec 900° + cot 495° csc 450°.
- **6.**  $\sin(90^{\circ} + \theta) \sin(180^{\circ} + \theta) + \cos(90^{\circ} + \theta) \cos(180^{\circ} \theta)$ .
- 7. Given that  $\theta$  is the angle of a triangle, find  $\theta$  if
  - (a)  $\sin \theta = 0.3090$ , (b)  $\cos \theta = 0.4975$ , (c)  $\tan \theta = 2.8770$ ,
  - (d)  $\cot \theta = 1.7090$ , (e)  $\sin \theta = 0.6713$ , (f)  $\cos \theta = -0.7716$ .
- 8. Express as functions of  $\theta$ :
  - (a)  $\sin(810^{\circ} \theta)$ , (b)  $\tan(990^{\circ} \theta)$ . (c)  $\cot(\theta 360^{\circ})$ ,
  - (d)  $\sec(\theta 90^{\circ})$ , (e)  $\cos(-180^{\circ} \theta)$ , (f)  $\csc(630^{\circ} + \theta)$ .

# CHAPTER VII

# Solution of Oblique Triangles

## 50. The four cases.

We shall now take up the solution of oblique triangles by methods that do not require breaking them up into right triangles, as was done in section 11. Problems in the solution of oblique triangles may be classified into the following four cases, already mentioned in that section:

Case I. Two angles and a side given.

Case II. Two sides and the angle opposite one of them given.

Case III. Two sides and the included angle given.

Case IV. Three sides given.

Certain formulas are necessary for handling the various cases, and these will be developed as needed.

# 51. Law of sines.

Fig. 45(a) represents an acute triangle, Fig. 45(b) an ob-



tuse triangle, B being the obtuse angle. In each figure we draw the altitude CD and designate its length by h. Then, in Fig. 45(a),

$$\sin B = \frac{h}{a}, \quad \text{or} \quad h = a \sin B,$$
 (1)

and the same relation holds in Fig. 45(b), since

$$\sin(180^\circ - B) = \sin B.$$

In either figure,

$$\sin A = \frac{h}{h}, \quad \text{or} \quad h = b \sin A. \tag{2}$$

Equating the values of h in (1) and (2), we have

$$a\sin B = b\sin A,\tag{3}$$

and dividing both sides of (3) by  $\sin A \sin B$ , we get

$$\frac{a}{\sin A} = \frac{b}{\sin B}.$$
 (4)

Similarly, by drawing the altitude from A, we can prove that

$$\sin B = \sin C \tag{5}$$

Combining (4) and (5), we obtain the law of sines,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C},\tag{6}$$

which may be stated in words as follows: The sides of a triangle are proportional to the sines of the opposite angles.

#### **EXERCISE**

Prove that if  $C = 90^{\circ}$ , formula (6) reduces to the definitions of sin A and sin B.

A formula for the area of a triangle is easily derivable from formula (2) for the altitude. Since the area is equal to half the product of the base and the altitude, we have

$$area = \frac{1}{2} bc \sin A. \tag{7}$$

The area is also of course equal to  $\frac{1}{2}$  ac sin B and  $\frac{1}{2}$  ab sin C. In words, the area of a triangle is equal to one-half the product



of any two sides and the sine of the included angle.

The following proof of the law of sines gives a geometric meaning to the equal ratios in (6):

Draw the perpendicular bisectors of the sides of the triangle ABC (Fig. 46). They will meet in a point O, which is the center of the circumscribed circle. Draw this circle, and connect its center

with the vertices of the triangle. Let  $\overset{.}{R}$  be the radius of the circle, and, as usual, let A, B, C represent the angles of the triangle.

Then, angle BOC := 2A. (Why?)

Hence, angle BOL = A.

Consequently,

$$\sin A = \sin BOL = \frac{BL}{R} = \frac{\frac{1}{2}a}{R} = \frac{a}{2R}.$$

Similarly,

$$\sin B = \frac{\sigma}{2R}, \quad \sin C = \frac{c}{2R},$$

and it follows that

$$\frac{\sin A}{\sin A} - \frac{\sin B}{\sin C} = 2R = D, \tag{8}$$

where D is the diameter of the circumscribed circle.

If one of the angles of the triangle is obtuse, the proof requires a slight modification.

# 52. Solution of Case I.

This case, in which there are two angles and a side given. can be solved by the law of sines.

# Example.

Solve the triangle  $A = 40^{\circ}$ ,  $B = 60^{\circ}$ , c = 50.

Solution.  $C = 180^{\circ} - (A + B) = 80^{\circ}$ .

From the law of sines,

$$a = \frac{c \sin A}{\sin C} = \frac{50 \sin 40^{\circ}}{\sin 80^{\circ}} = \frac{50 \times 0.6428}{0.9848} = 32.6,$$

$$b = \frac{c \sin B}{\sin C} = \frac{50 \sin 60^{\circ}}{\sin 80^{\circ}} = \frac{50 \times 0.8660}{0.9848} = 44.0.$$

These results may be checked by using the relation  $a/\sin A = b/\sin B$ , or by means of Mollweide's equation,

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(A-B)}{\sin\frac{1}{2}C},\tag{1}$$

which is proved in section 61. (If B > A, interchange A and B, a and b, respectively, in the formula.)

They may also be checked by using one of the following relations, proofs of which are left as exercises:

$$a = b \cos C + c \cos B,$$
  $b = a \cos C + c \cos A,$   
 $c = a \cos B + b \cos A.$  (2)

## EXERCISES VII. A

Solve the following triangles:

1. 
$$A = 70^{\circ}$$
,  $B = 80^{\circ}$ ,  $a = 12$ .

2. 
$$A = 70^{\circ}$$
,  $B = 80^{\circ}$ ,  $c = 12$ .

3. 
$$A = 58^{\circ} 10'$$
,  $C = 84^{\circ} 40'$ ,  $b = 2.5$ 

1. 
$$A = 70^{\circ}$$
,  $B = 80^{\circ}$ ,  $c = 12$ .  
2.  $A = 70^{\circ}$ ,  $B = 80^{\circ}$ ,  $c = 12$ .  
3.  $A = 58^{\circ} 10'$ ,  $C = 84^{\circ} 40'$ ,  $b = 2.5$ .  
4.  $B = 132^{\circ} 10'$ ,  $C = 18^{\circ} 20'$ ,  $c = 10.2$ .  
5.  $B = 10^{\circ} 50'$ ,  $C = 75^{\circ} 30'$ ,  $b = 61$ .

**6.** 
$$A = 95^{\circ} 40'$$
,  $C = 45^{\circ} 20'$ ,  $a = 8.2$ .

- 7. The bases of a trapezoid are 22 and 12 respectively. The angles at the extremities of one base are 65° and 40° respectively. Find the two legs.
- 8. Two observers, who are 2 miles apart on a horizontal plane observe a balloon in the same vertical plane with themselves. The angles of elevation are 50° and 65° respectively. Find the height of the balloon, (a) if it is between the observers: (b) if it is on the same side of both of them.
- 9. One diagonal of a parallelogram is 16.5. It makes angles of  $36^\circ$  10' and 14° 30' respectively with the sides. Find the sides.
- 10. A line AB, 125 feet long, is measured along the straight bank of a river. A point C is on the opposite bank. Angles ABC and BAC are found to be 65° 40′ and 54° 30′ respectively. How wide is the river?
- 11. From a certain point the angle of elevation of the top of a building is 38°. From a point 75 feet nearer the building the angle of elevation is 65°. Find the height of the building.
- 12. From a given position an observer notes that the angle of elevation of a rock is 47°. After walking 1000 feet towards the rock, up a slope of 32°, he finds the angle of elevation to be 75°. Find the vertical distance of the rock above each point of observation.
- 13. A flagpole 25 feet tall stands on top of a building. From a point in the same horizontal plane with the base of the building the angles of elevation of the top and the bottom of the flagpole are 61° 30′ and 56° 20′ respectively. How high is the building?
- 14. Find the radius of the circle circumscribed about the triangle for which  $A = 50^{\circ}$ ,  $B = 20^{\circ}$ , a = 35.

# 53. Solution of Case II.

This case, in which we have two sides and the angle apposite one of them given, presents difficulties that are not found in the other cases. This is because we sometimes find two solutions for the problem; that is, we find two triangles having the given parts. Sometimes we find only one triangle, and sometimes, indeed, we do not find any; that

is, the problem is impossible. A carefully constructed figure will usually show how many solutions there are, but the following discussion explains how this can be determined accurately:

Let us suppose that the given parts are a, b, A.

We consider first the case in which A is acute. Construct

this angle, and mark off the point C on one of its sides so that AC = b. Extend the other side indefinitely. (See Fig. 47.)

The perpendicular distance from C to this extended side is  $b \sin A$ , and it is evident that various



cases may occur, depending upon the length of a as compared with b and with  $b \sin A$ .

Let us take a pair of compasses, and with C as center and a as radius, test these various cases by constructing arcs.

If a is less than b sin A, the arc will be like MN, and there will be no triangle.

If  $a = b \sin A$ , the arc will be tangent to the base line (that is, the extended side) at the point B, and there will be but one triangle, the right triangle ABC.

If a is greater than b sin A but less than b, the arc will cut the base line in two points, such as  $B_1$  and  $B_2$ . Consequently, we get two triangles,  $AB_1C$  and  $AB_2C$ . Under these conditions, Case II is said to be **ambiguous**, that is, there is not a unique solution. Since either of the triangles satisfies the requirements of the problem, we must solve both.

If a = b, the arc passes through A, and we get but one solution, the isosceles triangle  $AB_3C$ .

If a is greater than b, there is but one triangle, such as  $AB_4C$ .

There are no other possible conditions when A is acute.

If A is a right angle, as shown in Fig. 48, it is evident that we cannot have a triangle unless a is greater than b,



under which condition we have only one construction.

If A is obtuse, as in Fig. 49, the arc having a as radius cannot

cut the base line on the proper side of the point A unless a is greater than b. Thus, we have no triangle unless a is greater than b, and then we have only one.

Our conclusions may be summarized as follows:

$$A < 90^{\circ}$$
 $a < b \sin A$  no solution
 $a = b \sin A$  one solution (right triangle)
 $b \sin A < a < b$  two solutions
 $a = b$  one solution (isosceles triangle)
 $a > b$  one solution
$$A \ge 90^{\circ}$$
 $a \le b$  no solution
 $a > b$  one solution

If the given parts are other than a, b, A, the foregoing summary must, of course, be modified accordingly.

Case II is solved by the application of the law of sines.

# Example.

Solve the triangle a = 20, b = 10,  $A = 75^{\circ}$ .

SOLUTION. It is apparent here that there is only one solution. From the law of sines, we have

$$\sin B = \frac{b \sin A}{a} = \frac{10 \sin 75^{\circ}}{20} = \frac{10 \times 0.9659}{20} = 0.4830,$$

$$B = 28^{\circ} 50',$$

$$C = 180^{\circ} - (A + B) = 180^{\circ} - 103^{\circ} 50' = 76^{\circ} 10',$$

$$c = \frac{a \sin C}{\sin A} = \frac{20 \sin 76^{\circ} 10'}{\sin 75^{\circ}} = \frac{20 \times 0.9710}{0.9659} = 20.1.$$

The results may be checked by computing c from the relation  $c=b\sin C/\sin B$ , or by using Mollweide's equation (1) of the preceding section.

Note that from the value  $\sin B = 0.4830$  we could also have  $B = 180^{\circ} - 28^{\circ} 50' = 151^{\circ} 10'$ . However, if we should attempt to find C by adding A and B and subtracting their sum from 180°, we should find  $A + B = 75^{\circ} + 151^{\circ} 10' = 226^{\circ} 10'$ , which is impossible. This method will always show whether there is a second solution.

#### EXERCISES VII. B

ring triangles:

1. 
$$A = 40^{\circ}$$
,  $a = 8$ ,  $b = 5$ .  
2.  $A = 30^{\circ}$ ,  $a = 5$ ,  $b = 8$ .  
3.  $B = 36^{\circ} 10'$ ,  $a = 21.2$ ,  $b = 31.0$ .  
4.  $C = 108^{\circ} 20'$ ,  $b = 12.2$ ,  $c = 25.1$ .  
5.  $A = 73^{\circ} 20'$ ,  $a = 2.5$ ,  $b = 1.8$ .  
6.  $B = 30^{\circ}$ ,  $b = 99$ ,  $a = 198$ .  
7.  $C = 15^{\circ} 40'$ ,  $a = 35$ ,  $c = 9.5$ .  
8.  $B = 65^{\circ} 30'$ ,  $a = 17.6$ ,  $b = 15.9$ .

- 9. A side and a diagonal of a parallelogram are 12 inches and 19 inches respectively. The angle between the diagonals, opposite the given side, is 124°. Find the length of the other diagonal.
- 10. A lighthouse is 10 miles northeast of a dock. A ship leaves the dock at noon, and sails east at a speed of 12 miles an hour. At what time will it be 8 miles from the lighthouse?
- 11. A vertical pole 35 feet high, standing on sloping ground, is braced by a wire which extends from the top of the pole to a point on the ground 25 feet from the foot of the pole. If the pole subtends an angle of 30° at the point where the wire reaches the ground, how long is the wire?
- 12. A tower 125 feet high stands on the side of a hill. At a point 240 feet from the foot of the tower, measured straight down the hill, the tower subtends an angle of 25°. What angle does the side of the hill make with the horizontal?

## 54. Law of cosines.

In Fig. 50(a), angle A is acute; in Fig. 50(b), angle A is obtuse. In each figure let us draw the altitude CD, whose numerical value we set equal to h. Further, let AD = m. Then, in Fig. 50(a),

$$a^2 = h^2 + (c - m)^2 = h^2 + c^2 - 2 cm + m^2,$$
 (1)

while in Fig. 50(b),

$$a^2 = h^2 + (c + m)^2 = h^2 + c^2 + 2 cm + m^2$$
. (2)



Since, in either figure,  $h^2 + m^2 = b^2$ , (1) and (2) reduce respectively to

 $a^2 = b^2 + c^2 - 2cm$ , (3) and

 $a^2 = b^2 + c^2 + 2cm$ . (4)

But in Fig. 50(a),

$$m = b \cos A$$
,

and in Fig. 50(b),

$$m = b \cos(180^\circ - A) = -b \cos A.$$

Substituting these values of m in (3) and (4) respectively, we obtain

$$a^2 = b^2 + c^2 - 2bc \cos A. \tag{5}$$

Similarly, 
$$b^2 = c^2 + a^2 - 2ca \cos B, \tag{6}$$

and 
$$c^2 = a^2 + b^2 - 2ab \cos C$$
. (7)

These three formulas constitute the law of cosines, which states that the square of any side of a triangle is equal to the sum of the squares of the other two sides minus twice the product of these two sides times the cosine of the angle between them.

NOTE. The law of cosines combines into one statement the following three theorems of plane geometry:

I. The square of the hypotenuse of a right triangle is equal to the sum of the squares of the two sides.

II. In any triangle, the square of the side opposite an acute angle is equal to the sum of the squares of the other two sides diminished by twice the product of either of those sides by the projection of the other upon it.

III. In any obtuse triangle, the square of the side opposite the obtuse angle is equal to the sum of the squares of the other two sides increased by twice the product of one of those sides by the projection of the other upon it.

Formulas (6) and (7) may be obtained from (5) by what is termed a cyclic change of letters. This may be effected in the following way:



Arrange the letters around the circumference of a circle, as in Fig. 51. Then replace each letter in the given formula by the next in order. Thus, a new formula is obtained if

a is replaced by b,b is replaced by c,c is replaced by a,

and similarly for the capital letters.

In this manner (5) is changed into (6), which in turn may be changed into (7).

Note that if C is a right angle, (7) becomes the Pythagorean relation,  $c^2 = a^2 + b^2$ , since  $\cos 90^\circ = 0$ .

#### **EXERCISE**

• Show that if  $C = 90^{\circ}$ , (5) and (6) reduce to the definitions of  $\cos A$  and  $\cos B$  respectively.

# 55. Solution of Case III.

The law of cosines is useful in solving Case III, in which we have two sides and the included angle given.

## Example.

Solve the triangle a = 25, b = 30,  $C = 50^{\circ}$ . SOLUTION.  $c^2 = a^2 + b^2 - 2ab \cos C$  $= (25)^2 + (30)^2 - 2 \times 25 \times 30 \times \cos 50^\circ$  $= 625 + 900 - 1500 \times 0.6428 = 560.8$ c = 23.7.

Angles A and B may be found by the law of sines.

The smaller of these angles should be found first, for if the larger is obtuse some confusion may arise.

A check is afforded by Mollweide's equation (1) of section 52.

### EXERCISES VII. C

Solve the following triangles:

- $B = 60^{\circ}$ . 1. a = 5. c = 6,
- $C = 130^{\circ}$ . b = 3. 2. a = 2.
- c = 2.2,  $A = 17^{\circ} 20'$ . 3. b = 1.7
- 4. a = 0.35, b = 0.24 $C = 75^{\circ} 40'$ .
- $b = 150, C = 95^{\circ}.$ 5. a = 230,
- $c = 106, A = 165^{\circ} 50'.$ 6. b = 80.1.
- 7. Two ships leave a dock at the same time. One sails northeast at the rate of 8.5 miles an hour, the other sails north at the rate of 10 miles an hour. How far apart are they at the end of 2 hours?
- 8. If the slower ship in the preceding exercise leaves at noon, and the other at 1 p.m., how far apart are they at 2 p.m.?
- 9. The diagonals of a parallelogram are 7 inches and 9 inches respectively; they intersect at an angle of 52°. Find the sides of the parallelogram.
- 10. A military observer notes two enemy batteries which subtend, at his observation post, an angle of 40°. The interval between the flash and the report of a gun is 5 seconds for one battery, and 4 seconds for the other. If the velocity of sound is 1140 feet a second, how far apart are the batteries?
- 11. Points A and B are separated by an obstacle. In order to find the distance between them, a third point C is selected which is 120 yards from A and 150 yards from B. The angle

- ACB is measured to be 80° 10′. Find the distance from A to B.
- 12. Two circles, whose radii are 12 inches and 16 inches respectively, intersect. The angle between the tangents at either of the points of intersection is 29° 30′. Find the distance between the centers of the circles.

# 56. Solution of Case IV.

Case IV, three sides given, can also be solved by the law of cosines.

## Example.

Solve the triangle a = 5, b = 6, c = 9.

Solution. Solving the law of cosines  $a^2 = b^2 + c^2 - 2bc \cos A$  for  $\cos A$ , we get

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{36 + 81 - 25}{2 \times 6 \times 9} = \frac{92}{108} = 0.8519,$$

$$A = 31^{\circ} 35'.$$

Similarly,

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{81 + 25 - 36}{2 \times 9 \times 5} = \frac{70}{90} = 0.7778,$$

$$B = 38^{\circ} 57';$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{25 + 36 - 81}{2 \times 5 \times 6} = -\frac{20}{60} = -0.3333,$$

$$C = 180^{\circ} - 70^{\circ} 32' = 109^{\circ} 28'.$$

CHECK.  $A + B + C = 180^{\circ}$ .

## EXERCISES VII. D

Find the angles of the following triangles:

1. 
$$a = 2$$
, $b = 3$ . $c = 4$ .2.  $a = 0.013$ , $b = 0.014$ , $c = 0.015$ .3.  $a = 8.4$ , $b = 7.2$ , $c = 6.5$ .4.  $a = 45$ , $b = 32$ , $c = 71$ .5.  $a = 1.4$ , $b = 4.8$ , $c = 5.0$ .6.  $a = 24$ , $b = 7$ , $c = 25$ .7.  $a = 13.2$ , $b = 11.8$ , $c = 20.1$ .8.  $a = 20.1$ , $b = 21.0$ , $c = 15.5$ .

- 9. Three towns, A, B, and C, are situated so that AB = 300 miles, AC = 194 miles, and BC = 160 miles, B being due north of C. Find the direction from B to A.
- 10. A ladder 20 feet long is set with one end at a horizontal distance of 7 feet from a sloping wall. The other end of the ladder reaches 15 feet up the face of the wall. What angle does the wall make with the horizontal?
- 11. The sides of a parallelogram are 11.7 inches and 15.0 inches respectively; one diagonal is 13.1 inches. Find the angles. Also find the other diagonal.
- 12. If the sides of a triangle are 16, 20, and 27 respectively, what is the length of the bisector of the largest angle?
- Find the length of the median to the longest side in the preceding exercise.
- 14. Three circles of radii 3, 4, and 5 inches respectively are tangent to each other externally. Find the angles of the triangle formed by joining the centers.

## \*57. Application of law of cosines to Case II.

It may be noted that Case II can be handled by the law of cosines.

#### Example.

Solve the triangle a = 20, b = 10,  $A = 75^{\circ}$ .

Solution. Substitute the given values in the equation

$$a^2 = b^2 + c^2 - 2bc \cos A$$
.

This gives 
$$400 = 100 + c^2 - 2 \times 10 \times c \times \cos 75^\circ$$
  
=  $100 + c^2 - 20c \times 0.2588$ ,

which reduces to the quadratic equation

$$c^2 - 5.176c - 300 = 0.$$

$$c = \frac{5.176 \pm \sqrt{(5.176)^2 + 1200}}{2} = \frac{5.176 \pm 35.026}{2} = 20.1.$$

There is also a negative root of the equation, but it is discarded. If there are two positive roots, it means that there are two solutions.

The method is particularly useful if it is not required to find the remaining two angles. However, if they are required, they may be found either by the law of sines or by the law of cosines.

#### **EXERCISE**

Solve, by using the law of cosines, exercise VII. B, 10; also such other exercises of VII. B as the instructor may assign.

## 58. Logarithmic solution of Case I.

The solution of this case by logarithms follows the same steps as the solution in section 52. The only difference is that logarithms are employed in performing the computations.

#### Example.

Solve the triangle 
$$A = 79^{\circ}$$
 59.3′,  $B = 46^{\circ}$  36.4′,  $a = 804.32$ .

Solution.
$$C = 180^{\circ} - (A + B).$$

$$A = 79^{\circ}$$
 59.3′
$$C = 180^{\circ} - (A + B).$$

$$B = 46^{\circ}$$
 36.4′
$$A + B = 126^{\circ}$$
 35.7′
$$C = 53^{\circ}$$
 24.3′
$$A = 804.32$$

$$A = 804.3$$

It should be noted that, in checking, we do not need to find the quantities (a + b) c and  $\cos \frac{1}{2}(A - B)/\sin \frac{1}{2}C$ ; it is sufficient if the logarithms of these quantities agree. Slight discrepancies in the last place are to be expected.

#### EXERCISES VII. E

Find the remaining parts, and also the areas, of the following triangles:

```
C = 81^{\circ} 24.6'
 1. B = 65^{\circ} 25.5'.
                                                    b = 724.32.
 2. B = 38^{\circ} 37.4'.
                           C = 75^{\circ} 32.8'.
                                                    c = 129.63.
 3. A = 48^{\circ} 29.2', C = 115^{\circ} 33.8',
                                                   a = 14.829.
 4. A = 68^{\circ} 41.5'.
                           C = 110^{\circ} 16.5'.
                                                    c = 9.4326.
 5. A = 11^{\circ} 11.3', C = 57^{\circ} 37.4',
                                                    c = 444.79
 6. B = 20^{\circ} 20.2',
                           C = 12^{\circ} 28.5'
                                                   a = 673.75.
 7. A = 28^{\circ} 14.7'.
                       C = 109^{\circ} 32.5'
                                                   b = 730.80.
 8. B = 102^{\circ} 38.3', C = 20^{\circ} 3.2',
9. B = 30^{\circ} 36.8', C = 107^{\circ} 15.5',
                                                    b = 479.36.
                                                    b = 0.14379.
10. A = 36^{\circ} 14.2', B = 14^{\circ} 26.7', c = 16.583.
```

- 11. One diagonal of a parallelogram is 21.871 inches. It makes angles of 43° 20.5′ and 56° 14.2′ respectively with the sides. Find the sides of the parallelogram.
- 12. At a certain point in the same horizontal plane as the base of a radio tower, the angle of elevation of the top of the tower is 13° 25.4′. At a point which is 156.25 feet nearer the tower the angle of elevation is 18° 10.5′. Find the height of the tower.

## 59. Logarithmic solution of Case II.

Case II can also be solved logarithmically by using the law of sines. The solution may be checked by formula (1) of section 52 (page 83) or by the law of tangents. (See section 60.)

#### Example.

#### **EXERCISES**

#### EXERCISES VII. F

Solve all possible triangles in the following set, and find their areas:

1. 
$$a = 62.518$$
,
  $b = 72.932$ ,
  $B = 98^{\circ} 23.5'$ .

 2.  $a = 429.15$ ,
  $c = 328.12$ ,
  $A = 130^{\circ} 33.7'$ .

 3.  $b = 3912.7$ ,
  $c = 3526.5$ ,
  $C = 35^{\circ} 25.8'$ .

 4.  $b = 12968$ ,
  $c = 1529.6$ ,
  $B = 38^{\circ} 28.6'$ .

 5.  $a = 86.425$ ,
  $c = 73.463$ ,
  $C = 49^{\circ} 18.9'$ .

 6.  $b = 223.46$ ,
  $c = 327.92$ .
  $C = 116^{\circ} 19.6'$ .

7. 
$$b = 0.32492$$
,  $c = 0.52392$ ,  $B = 27^{\circ} 49.3'$ .  
8.  $a = 5660.1$ ,  $c = 8442.0$ ,  $A = 42^{\circ} 6.2'$ .  
9.  $b = 45.872$ ,  $c = 56.321$ ,  $B = 20^{\circ} 14.5'$ .  
10.  $a = 57.147$ ,  $b = 46.703$ ,  $B = 19^{\circ} 17.8'$ .  
11.  $a = 515.55$ .  $c = 524.31$ ,  $A = 80^{\circ} 52.2'$ .

- 12. Two lighthouses are 3.276 miles apart, and a certain rock is 4.835 miles from one of them. The angle subtended by the two lighthouses at the rock is 15° 22′. How far is the rock from the other lighthouse? (Two solutions.)
- 13. The diagonals of a parallelogram intersect at an angle of 52° 10.2′. One diagonal is 3325 feet and one side is 2995 feet. Find the other diagonal. (Two solutions.)

## 60. Law of tangents.

Case III was solved by the law of cosines, but the method is not adapted to the use of logarithms. In the present sec-



tion we shall develop a formula which enables us to use logarithms in solving this case.

In triangle ABC, suppose that a is greater than b (Fig. 52). With C as center and b as radius, draw a circle cutting BC in D, and BC extended in E. Then,

$$BD = a - b, \quad BE = a +$$

At B draw a perpendicular to BE. Draw EA and extend to meet this perpendicular in F. On DF as diameter construct a circle. This circle will pass through A; for FAD is a right angle, since it is supplementary to EAD, which is inscribed in a semicircle. The circle will also pass through B, since DBF is a right angle by construction.

It follows that  $BEA = \frac{1}{2}C$ , and that  $BFE = \frac{1}{2}(A + B)$ , since BFE is the complement of  $\frac{1}{2}C$ . Also, DFA and B are equal, since they are inscribed angles intercepting the same arc, AD. By subtraction we find  $BFD = \frac{1}{2}(A - B)$ .

Now in right triangles BDF and BEF we have respectively,

$$\frac{a-b}{BF} = \tan \frac{1}{2}(A-B), \qquad \frac{a+b}{BF} = \tan \frac{1}{2}(A+B). \tag{2}$$

Dividing the first of the foregoing equations by the second, we obtain

$$\frac{a-b}{a+b} \quad \frac{\tan \frac{1}{2}(A-B)}{\tan \frac{1}{2}(A+B)}.$$
 (3)

This formula is one form of the law of tangents. Other forms may be obtained by a cyclic change of letters. If b were greater than a, we could interchange a and b, A and B, in (3). If a and b were equal the formula would still hold, but would be trivial, since both sides of the equation would be zero.

## \*61. Mollweide's equations.

From Fig. 52 we can obtain two formulas which are very serviceable in checking solutions of triangles.

Applying the law of sines to triangle ABD, we get

$$\frac{a-b}{c} = \frac{\sin DAB}{\sin BDA} \tag{1}$$

But  $DAB = \frac{1}{2}(A - B)$ , since DAB and DFB are intercepting the same arc. BD; and BDA

=  $90^{\circ} + \frac{1}{2}C$ , since BDA is an exterior angle of the triangle ADE. Since  $\sin(90^{\circ} + \frac{1}{2}C) = \cos \frac{1}{2}C$ , (1) reduces to

$$\frac{a-b}{c} = \frac{\sin\frac{1}{2}(A-B)}{\cos\frac{1}{2}C}.$$
 (2)

Applying the law of sines to triangle ABE, we get

$$\frac{a+b}{c} = \frac{\sin BAE}{\sin \frac{1}{2}C}$$
 (3)

But  $BAE = A + \frac{1}{2}C = \frac{1}{2}(A + B + C) + \frac{1}{2}(A - B)$ =  $90^{\circ} + \frac{1}{2}(A - B)$ . Thus,  $\sin BAE = \cos \frac{1}{2}(A - B)$ , and (3) becomes

$$\frac{a+b}{c} = \frac{\cos\frac{1}{2}(A-B)}{\sin\frac{1}{2}C}.$$
 (4)

Formulas (2) and (4) are sometimes called Mollweide's equations.\* Their advantage as checking formulas is that each contains all six parts of a triangle, and hence an error will be detected by a lack of agreement between the two members of one of these equations.

## 62. Logarithmic solution of Case III.

We are now ready to solve Case III by means of logarithms. The two angles are found by the law of tangents; the third side is then found by the law of sines. A check may be made by the law of sines or by one of Mollweide's equations.

#### Example.

Solve the triangle a = 55.138, b = 33.094,  $C = 30^{\circ} 24.6^{\circ}$ . Solution.

$$A + B = 180^{\circ} - C.$$
  
 $\tan \frac{1}{2}(A - B) = \frac{a - b}{a + b} \tan \frac{1}{2}(A + B),$ 

<sup>\*</sup>The law of tangents can be obtained from Mollweide's equations by division

$$\log \tan \frac{1}{2}(A-B) = \log(a-b) + \operatorname{colog}(a+b) \\ + \log \tan \frac{1}{2}(A+B).$$

$$\begin{array}{c} a \mid 55.138 \\ b \mid 33.094 \\ \underline{C} \quad 30^{\circ} 24.6' \\ a-\overline{b} \quad 22.044 \\ a+b \quad 88.232 \\ \underline{A}+B \quad 149^{\circ} 35.4' \\ \frac{1}{2}(A+B) \\ \log(a-\overline{b}) \quad 1.34329 \\ \operatorname{colog}(a+b) \quad 8.05437 - 10 \\ \log \tan \frac{1}{2}(A+B) \quad 9.96343 - 10 \\ \frac{1}{2}(A+B) \quad 9.96343 - 10 \\ \frac{1}{2}(A+B) \quad 74^{\circ} 47.7' \\ \underline{A} \quad 117' \quad 23.1' \\ B \quad 32' \quad 12.3' \\ \end{array}$$

$$c = \frac{b \sin C}{\sin B},$$

$$\log c = \log b + \log \sin C + \operatorname{colog} \sin B.$$

$$\log b \mid 1.51975 \\ \log \sin C \mid 9.70431 - 10 \\ \operatorname{colog} \sin \frac{B}{b} \quad 0.27331 \\ \log \frac{C}{b} \quad 1.49737 \\ c \quad 31.432 \\ \end{array}$$
Check.
$$c = \frac{a \sin C}{\sin A},$$

$$\log c = \log a + \log \sin C + \operatorname{colog} \sin A.$$

$$\log a \quad 1.74145 \\ \log \sin C \quad 9.70431 - 10 \\ \end{array}$$

#### EXERCISES VII. G

 $\begin{array}{ccc}
\operatorname{colog} \sin \underline{A} & 0.05162 \\
\log c & 1.49738
\end{array}$ 

Solve the following triangles, and find their areas:

1. 
$$a = 284.3$$
,  $b = 286.5$ ,  $C = 63^{\circ} 38'$ .  
2.  $a = 49.366$ .  $b = 26.437$ ,  $C = 47^{\circ} 16.6'$ .

| 3. $a = 36.508$ ,        | b = 8.9156,  | $C = 132^{\circ} 18.3'$ . |
|--------------------------|--------------|---------------------------|
| <b>4.</b> $b = 247.81$ , | c = 513.58,  | $A = 147^{\circ} 8.8'$ .  |
| 5. $a = 67.375$ ,        | c = 36.858,  | $B = 12^{\circ} 28.5'$ .  |
| 6. $b = 284.12$ ,        | c = 362.12,  | $A = 126^{\circ} 32.2'$ . |
| 7. $a = 482.33$ ,        | c = 395.71,  | $B = 137^{\circ} 31.2'$ . |
| 8. $a = 0.06350$ ,       | c = 0.10391, | $B = 83^{\circ} 29.4'$ .  |
| 9. $b = 17976$ ,         | c = 24824,   | $A = 43^{\circ} 36.2'$ .  |
| 10. $a = 4216.4$         | b = 3125.2,  | $C = 88^{\circ} 10.1'$ .  |

- 11. Two points, A and B, are at opposite ends of a lake. To find the distance between them, a point C is selected so that it is possible to measure a straight line from A to C and also from B to C. The distances AC and BC are measured and found to be 3472 feet and 2956 feet respectively. The angle ACB is measured by means of a transit, and is found to be 46° 25′. What is the distance from A to B?
- 12. Two sides of a triangular plot of ground are 256.8 feet and 198.2 feet respectively, the included angle being 65° 22′. Find (a) the length of fence required to enclose the plot, (b) the area of the plot.

### \*63. Heron's formula.

In this section and the following we shall derive formulas for the logarithmic solution of Case IV.

From formula (7) of section 51 we have

$$(area)^2 = \frac{1}{4}b^2c^2\sin^2 A,$$
 (1)

and, since by exercise I. C, 24,\*

$$\sin^2 A = 1 - \cos^2 A = (1 + \cos A)(1 - \cos A),$$

we have

$$(area)^2 = \frac{1}{4}b^2c^2(1 + \cos A)(1 - \cos A).$$
 (2)

By the law of cosines,

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc},\tag{3}$$

<sup>\*</sup> This exercise covers only the case in which A is acute. The case in which A is obtuse is covered by (4) of section 68

and consequently,

$$1 + \cos A = \frac{2bc + b^2 + c^2 - a^2}{2bc} = \frac{(b+c)^2 - a^2}{2bc}$$
$$= \frac{(b+c+a)(b+c-a)}{2bc}, \quad (4)$$

$$1 - \cos A = \frac{2bc - b^2 - c^2 + a^2}{2bc} = \frac{a^2 - (b - c)^2}{2bc}$$
$$= \frac{(a + b - c)(a - b + c)}{2bc}.$$
 (5)

If we let

$$s = \frac{1}{2}(a+b+c), \tag{6}$$

then it can easily be shown that

$$b+c-a = 2(s-a), a+c-b = 2(s-b),$$
  
 $a+b-c = 2(s-c).$  (7)

Making use of (6) and (7) in (4) and (5), we find that

$$1 + \cos A = \frac{2s(s-a)}{bc},$$

$$1 - \cos A = \frac{2(s-b)(s-c)}{bc}$$
(8)

Substituting these values in (2) and extracting the square root, we obtain **Heron's formula** for the area of a triangle:

$$area = \sqrt{s(s-a)(s-b)(s-c)}, \qquad (9)$$

in which s is defined by (6), that is, it is the semiperimeter of the triangle.

## 64. Half-angle formulas.

In Fig. 53 the radius of the circle inscribed in triangle ABC is r. Then r is



Fig. 53

the altitude of each of the triangles AOB, BOC, COA, which have as a common vertex the center, O, of the circle. It

is readily seen that the area of the triangle ABC is given by the formula

area = 
$$\frac{1}{2}r(a+b+c) = rs$$
, (1)

where, as before  $s = \frac{1}{2}(a + b + c)$ .

But, by Heron's formula,

$$area = \sqrt{s(s-a)(s-b)(s-c)}.$$
 (2)

Equating the two expressions for the area, we find that

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$
 (3)

Now let the equal tangents from A be denoted by x, those from B by y, and those from C by z. Adding all of these tangents, we get the perimeter of the triangle, or

$$2x + 2y + 2z = a + b + c = 2s. (4)$$

From this it follows that x + y + z = s, and

$$x = s - y - z = s - a,$$
  $y = s - b,$   $z = s - c.$ 

Consequently,

$$\tan \frac{1}{2}A = \frac{r}{s-a}$$
,  $\tan \frac{1}{2}B = \frac{r}{s-b}$ ,  $\tan \frac{1}{2}C = \frac{r}{s-c}$ , (5)

in which r is given by (3), and

$$s = \frac{1}{2}(a+b+c).$$
(6)

Formulas (5) may be termed the half-angle formulas.

## 65. Logarithmic solution of Case IV.

The half-angle formulas enable us to use logarithms in solving Case IV.

#### Example.

Solve the triangle a = 51.286, b = 65.353, c = 20.001.

Solution. 
$$s = \frac{1}{2}(a+b+c).$$

$$s = \frac{1}{2}(a+b+c).$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{2s}}$$

$$r = \frac{1}{2}[\log(s-a) + \log(s-b)]$$

$$+ \log(s-c) + \cosh s].$$

$$\frac{s-c}{2}$$

$$\frac{136.640}{68.320}$$

$$\frac{s-a}{2}$$

$$\frac{17.034}{17.034}$$

$$\frac{s-b}{2.967}$$

$$\frac{48.319}{68.320}$$

$$\frac{68.320}{10g(s-a)}$$

$$\frac{1.23131}{10g(s-b)}$$

$$\frac{1.23131}{10g(s-b)}$$

$$\frac{1.23131}{10g(s-b)}$$

$$\frac{1.68412}{1.55320}$$

$$\frac{1.77660}{1.77660}$$

$$\frac{1.77660}{1.9720.4}$$

$$\frac$$

It is an easy and valuable check to add the values of s-a, s-b, and s-c, as soon as these have been found. Since this gives 3s-a-b-c=3s-2s=s, the sum should be equal to s. This simple check often prevents working the entire problem with an incorrect value for one of the expressions s-a, s-b, s-c.

For convenience in computing  $\log \tan \frac{1}{2}A$ , etc.,  $\log r$  may be written at the bottom of a slip of paper, and placed in turn above  $\log(s-a)$ ,  $\log(s-b)$ ,  $\log(s-c)$ .

#### EXERCISES VII. H

Solve the following triangles, and find their areas:

1. 
$$a = 125.36$$
,  $b = 176.43$ ,  $c = 101.23$ .

```
c = 10.047.
                   b = 25.743.
2. a = 23.586.
                   b = 19.436.
                                    c = 15.067.
3. a = 10.057.
                   b = 2467.2.
                                    c = 3152.6.
4. a = 2249.S.
                   b = 70023.
                                    c = 90054
5. a = 50014.
                   b = 9.8210.
                                    c = 113.94.
6. a = 121.62.
                   b = 23.168,
                                    c = 51.833.
7. a = 42.391.
                   b = 0.67514.
                                    c = 0.81106.
8. a = 0.98452.
                   n = 2.2465.
                                    c = 3.5488.
 9. a = 1.8943.
                   b = 0.05264.
                                    c = 0.17842
10. a = 0.11056.
```

- 11. The sides of a triangular lot are 156.8 feet, 132.4 feet, and 148.3 feet respectively. Find the radius of the largest upright cylindrical tank that can be constructed on the lot.
- 12. In a triangle ABC, a=25.864, b=26.232, and the median from A is 20.866. Find the angles of the triangle, also side c.

## 66. Summary of methods.

The methods of solving oblique triangles are recapitulated below.

Case I. Two angles and a side given.

Use law of sines. Check by Mollweide's equation.

Case II. Two sides and the angle opposite one of them given. Use law of sines. (Law of cosines may be used.) Note number of solutions. Check by Mollweide's equation.

Case III. Two sides and the included angle given. If the sides are given to a small number of significant figures, or if only the third side is desired, law of cosines may be used. Find angles by law of sines.

For logarithmic solution, use law of tangents to find angles. Find third side by law of sines.

Check by Mollweide's equation.

Case IV. Three sides given.

If the sides are given to a small number of significant figures, or if only one angle is desired, law of cosines may be used.

For logarithmic solution, use half-angle formulas.

Check by  $A + B + C = 180^{\circ}$ .

Note that an alternative check to Mollweide's equations is provided by the law of tangents.

To find the area of a triangle we can always resort to the fundamental formula of half the product of the base and the altitude. However, the formula

$$area = \frac{1}{2}bc \sin A$$

and the others obtained from it by a cyclic change of letters) and Heron's formula are sometimes useful. (See also exercise VII. I, 47.)

#### MISCELLANEOUS EXERCISES VII. I

Solve the following triangles, and find their areas:

```
B = 72^{\circ} 20.9'.
 1. A = 55^{\circ} 23.2'
                                               a = 537.14
 2. A = 87^{\circ} 58.4'
                         a = 119.51.
                                                 b = 72.486.
                        C = 94^{\circ} 39.8'.
 3. B = 19^{\circ} 58.4'
                                             a = 4.3612.
 4. A = 34^{\circ} 39.6'.
                        b = 61.519.
                                                c = 47.612
 5. a = 0.74261.
                         b = 0.10398.
                                             c = 0.67517.
                                              c = 9.4670.
                        b = 14.433,

a = 273.18,
 6. C = 11^{\circ} 14.3'.
 7. C = 26^{\circ} 36.6'
                                               b = 479.63.
 8. a = 1960.4,
9. B = 127^{\circ} 9.3',
                        b = 1093.3,

a = 67517,
                                             c = 2601.3.
c = 10398.
                       a = 480.01
                                                b = 312.39.
10. B = 32^{\circ} 18.0'
                       C = 45^{\circ} 40.0',
C = 970^{\circ} 10.0',
11. A = 53^{\circ} 7.8'.
                                               b = 374.85.
12. B = 73^{\circ} 44.4'.
                          C = 87^{\circ} 20.1'
                                               c = 712.25.
13. B = 104^{\circ} 15.0'
                        a = 7.3515,
                                               c = 4.9764.
14. B = 75^{\circ} 45.0',
                         a = 735.15,
                                                b = 983.97.
15. a = 31.628,
                         b = 68.235
                                                c = 52.063.
                          b = 285.77
16. a = 592.45.
                                                c = 585.48.
                        B = 102^{\circ} 40.8'
17. A = 43^{\circ} 36.2'
                                              c = 392.37.
                         b = 74.591,
18. C = 43^{\circ} 35.6',
                                               c = 34.191.
19. C = 51^{\circ} 59.9'.
                         a = 228.15,
                                               b = 109.84.
20. a = 0.45562.
                          b = 0.32897.
                                                 c = 0.43129.
```

- 21. Two sides of a parallelogram are 694.50 feet and 418.32 feet respectively; one diagonal is 602.94 feet. Find the length of the other diagonal.
- 22. The bases of a trapezoid are 397.62 and 254.15 respectively;

the angles that the sides make with the longer base are 68° 39.2′ and 72° 6.0′. Find the sides and the diagonals.

- 23. The sides of a triangular field are AB = 193.8 feet, BC= 139.8 feet, and CA = 218.3 feet. If the bearing of AB is N 20° E.\* find the bearings of BC and CA, it being given that C is west of AB.
- 24. Let A. B. C represent three consecutive mileposts on a straight road. From each of these a distant spire is observed. At A it is northeast, at B it is east, and at C it is E  $30^{\circ}$  S. Find the distance of the spire from B, and the shortest distance from the road to the spire.
- 25. Along one bank of a river with parallel banks, a surveyor lays off a base line, AB, 600.0 feet long. From each end of the line an object C on the opposite bank is sighted. The angles which the lines of sight make with the base line are 62° 5.3' and \$1° 34.7' respectively. Find the width of the river.
- 26. Points A and B are on opposite sides of a body of water, and soundings are to be taken in the line AB at points onequarter, one-half, and three-quarters of the distance from A to B. On the shore, a base line AC is laid off, and it is found that angle  $BAC = 63^{\circ}19'$ , angle  $ACB = 78^{\circ}43'$ . What angles must be turned from CA at C in order to line up the boat from which the soundings are made at the proper points on the line AB?
- 27. In order to measure the distance between two inaccessible



Fig. 54

points, A and B, a base line, CD, 1168.2 feet in length was laid off. The following angles were then measured: ACD =  $132^{\circ} 29'$ ,  $ACB = 82^{\circ} 20'$ ,  $ADC = 45^{\circ} 59'$ ,  $BDC = 124^{\circ}$ 48'. Find the distance AB.

28. It is required to find the horizontal distance and the verti-

cal distance from a point A to an inaccessible point D, when it is not convenient to measure a base line in the same vertical plane with D. (See Fig. 54.) Draw AB, of length c, in any

<sup>\*</sup> This means that the line drawn from A to B makes an angle of 20° with Borth, measured toward east

convenient direction, in a horizontal plane. Let C be the foot of the perpendicular from D to this plane. Let A' and B' be the angles of elevation of D from A and B respectively. Show that

$$AC = \frac{c \sin B}{\sin C}, \qquad BC = \frac{c \sin A}{\sin C},$$

$$CD = \frac{c \sin A \tan B'}{\sin C} = \frac{c \sin B \tan A'}{\sin C}.$$

where A, B, C are the angles of the triangle ABC. The height CD can be found from both formulas in order to check.

- 29. In the preceding exercise let AB = 1255 feet,  $ABC = 46^{\circ} 27'$ ,  $BAC = 54^{\circ} 40'$ ,  $A' = 38^{\circ} 42'$ . Find AC, CD, B'.
- 30. Two boundary lines of a piece of property intersect at an angle of 85°. It is desired to cut off a triangular portion of the property which will be one acre (43560 square feet) in area by means of a straight fence. If the fence begins at a point on one boundary 250 feet from the corner of the property, and runs in a straight line to the other boundary, what angles does it make with the boundary lines, and how long is it?
- 31. To measure across a pond from A to B, a point C is selected so that AC = 489 feet, BC = 674 feet, and angle  $ACB = 78^{\circ} 45'$ . Find the distance AB.
- 32. The diagonals of a parallelogram are 56.5 yards and 78.4 yards respectively. They intersect at an angle of 51° 35′. Find the area of the parallelogram.
- 33. A chimney projects 6 feet above a roof. At a point 10 feet 8 inches down the roof from the base of the chimney, the chimney subtends an angle of 17° 40′. Find the angle at which the roof is inclined to the horizontal.
- 34. The sides of a triangle are 14.832, 16.987, 18.645 respectively. Find the length of the perpendicular from the vertex of the largest angle to the side opposite.
- 35. The sides of a triangular grass plot are 47.5, 64.5, and 85 feet respectively. Find the minimum radius of action of an automatic lawn sprinkler which will water all parts of the plot simultaneously.

- 36. Find the radius of the largest circular flower bed which car be constructed on the plot of the preceding exercise.
- 37. The sum of the sides of a triangle is 100 inches. The angles are in the continued proportion 1:2:4. Find the sides.
- 38. Find the number of square yards of canvas in a conical tent, if the angle between the axis of the cone and an element is 30°, and the center pole is 14 feet high.
- 39. The sides of a triangular field which contains 15 acres are in the continued proportion 3:5:7. Find the sides. (1 acre = 160 sq. rd.)
- **40.** Prove that the area of a quadrilateral is equal to half the product of its diagonals multiplied by the sine of their included angle.
- 41. A point A is in the same horizontal plane as the base of a radio tower. From this point a horizontal line AB, of length d, is drawn directly toward the tower. If the angle of elevation of the top of the tower from the point A is denoted by A, and the angle of elevation from the point B is denoted by B, show that the height of the tower is

$$\frac{d\sin A\sin B}{\sin(B-A)}.$$

**42.** A flagpole of height k stands on top of a building. From a certain point of observation in the same horizontal plane as the base of the building, the angle of elevation of the top of the pole is A, the angle of elevation of the bottom of the pole is B. Show that the distance d to the building from the point of observation, and the height h of the building are

$$d = \frac{k \cos A \cos B}{\sin(A - B)}, \qquad h = \frac{k \cos A \sin B}{\sin(A - B)}.$$

**43.** In a triangle ABC, D is the intersection of the median from A and the bisector of angle C. Prove that

$$a \times \text{area } ABC = (a + 2b) \times \text{area } BCD.$$

44. On the sides of a triangle ABC are constructed isosceles triangles with their vertices on the circumference of the circumscribed circle of the given triangle. Show that their areas are in the ratio

$$\frac{a^2}{-a} - \frac{b^2}{s-b} - \frac{c^2}{s-c}$$

where  $s = \frac{1}{2}(a+b+c)$ .

45 Prove the formulas:

$$\sin \frac{1}{2}A = \sqrt{\frac{(s-b)(s-c)}{bc}}, \quad \cos \frac{1}{2}A = \sqrt{\frac{s(s-b)(s-c)}{bc}}$$

46. Prove that the area of a triangle is given by the formula

$$\frac{c^2 \sin A \sin B}{2 \sin(A+B)}$$

- 47. Prove that the area of a triangle is given by the formula abc/4R, where R is the radius of the circumscribed circle.
- 48. Find the angle between the diagonal of a cube and the diagonal of a face of the cube, both diagonals drawn from the same vertex.
- 49. From one corner of a cube lines are drawn in two of its faces. making angles of 30° and 40° respectively with the common edge of these faces. Find the angle between the two lines.
- 50. A rectangular solid is 5 inches long, 4 inches wide, and 3 inches high. From one vertex a diagonal is drawn in each of the three faces having this vertex in common. Find the angles between these diagonals.

#### \*67. Vectors.

If an object is at the point A in Fig. 55, and is displaced (i.e. moved) to the point B, the displacement may be repre-

sented by the directed line segment AB. (The arrow indicates the direction.) It will be noted that this line segment represents both the amount and the direction of the displacement. Now let BC represent another displacement. If an object originally at A is given both of these displacements it will arrive at the point C. The order in which these



Fig. 55

displacements occur is immaterial; that is, the object may be moved from A to B and then from B to C, or it may be moved from A to D (the displacement AD is equal and parallel to BC) and then from D to C. The displacement AC is called the resultant of the displacements AB and AD. (Cf. section 9.) Obviously, the resultant is a diagonal of the parallelogram of which AB and AD are sides. The displacements AB and AD are called **components** of AC.

It can be proved experimentally that two forces acting at the same point also combine into a resultant according to this so-called parallelogram law. Thus, if in Fig. 55, AB and AD represent, in magnitude and direction, two forces acting on an object at A, then the diagonal AC will represent, in magnitude and direction, the resultant of the two given forces. That is, the single force represented by AC will have the same effect on the object as the two forces represented by AB and AD.

Velocities and many other directed quantities (those which have direction as well as magnitude) also combine according to the parallelogram law. Such a quantity is called a vector quantity. The directed line segment representing the vector quantity is called a vector.

The resultant of any two vectors may of course be found graphically or geometrically by completing the parallelogram of which they form the adjacent sides, and drawing the diagonal. This is called the "addition" of the vectors. They may also be "added" by placing the initial point of one on the terminal point of the other, preserving the proper direction of each, and then drawing a third vector from the initial point of the first to the terminal point of the second. This can be seen by reference to Fig. 55.

A knowledge of trigonometry is essential in dealing with vectors. Its application may be illustrated by the following examples.

#### Example 1.

Three forces of 20, 30, and 40 pounds, respectively, are in equilibrium. Find the angles that they make with each other.

Solution. Since the forces are in equilibrium, any one of them must be equal in magnitude and opposite in direction to the

resultant of the other two. That is, we have a parallelogram in which the diagonal is, for example, 40, and in which the two sides are 20 and 30. (See Fig. 56.) Our problem is thus reduced to that of finding the angles of a triangle whose sides are 20, 30, and 40. This



Fig. 56

may be done by employing the law of cosines or the law of tangents. Since the numbers are simple, we shall use the former. Referring to the figure, we see that

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{(40)^2 + (30)^2 - (20)^2}{2 \cdot 40 \cdot 30} = 0.8750,$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{(30)^2 + (20)^2 - (40)^2}{2 \cdot 30 \cdot 20} = -0.2500,$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(20)^2 + (40)^2 - (30)^2}{2 \cdot 20 \cdot 40} = 0.6875;$$

$$A = 28^{\circ} 57', \quad B = 104^{\circ} 29', \quad C = 46^{\circ} 34'.$$

CHECK.

$$A + B + C = 180^{\circ} 00'$$
.

Therefore,

angle between 40-lb, and 30-lb, forces =  $180^{\circ} - A = 151^{\circ} 3'$ , angle between 30-lb, and 20-lb, forces =  $180^{\circ} - B = 75^{\circ} 31'$ , angle between 20-lb, and 40-lb, forces =  $180^{\circ} - C = 133^{\circ} 26'$ . Check,  $360^{\circ} 00'$ .

It may be noted that since the forces are represented by the sides of the triangle ABC, the forces are proportional to the sines of the opposite angles.

#### Example 2.

An airplane having a speed of 120 miles an hour in calm air is pointed in a direction 30° east of north. A wind having a velocity



Fig. 57

of 15 miles an hour is blowing from the northwest. Find the speed and direction of the airplane relative to the ground.

Solution. Referring to Fig. 57, we see that the vector AB represents the velocity of the airplane due to its own power, and that the vector AD represents the velocity of the wind. We draw BC parallel and equal to AD, and connect A and C. Then AC represents the velocity of the airplane relative to the ground and is the vector required.

It is readily seen, if we draw a north-south line through B,

that angle  $B = 30^{\circ} + 45^{\circ} = 75^{\circ}$ . Thus, in the triangle ABC, we have a = 15, c = 120,  $B = 75^{\circ}$ . The numbers are simple, and we use the law of cosines, finding

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$
=  $(15)^{2} + (120)^{2} - 2 \cdot 15 \cdot 120 \cdot \cos 75^{\circ}$ 
=  $13693.25$ ,
 $b = 117.0$ .

Further,

$$\sin A = \frac{a \sin B}{117.0} = \frac{15 \sin 75^{\circ}}{117.0} = 0.1238,$$

$$A (= BAC) = 7^{\circ}7', \qquad NAC = 30^{\circ} + 7^{\circ}7' = 37^{\circ}7'.$$

Thus, the airplane actually travels in a direction 37° 7′ east of north at a speed of 117 miles per hour relative to the ground

#### EXERCISES VII. 1

- 1. Two forces of 8 and 11 pounds respectively act at an angle of 75° with each other. Find the magnitude of their resultant, and the angle that it makes with the 8-pound force.
- 2. Three forces of 7, 9, and 13 pounds respectively are in equilibrium. Find the angles that they make with each other.

- 3. A train is traveling at the rate of 30 miles an hour, and rain is falling with a velocity of 22 feet a second, at an angle of 30° with the vertical and in the same direction as the motion of the train. Find the direction of the splashes made on the windows of the coaches by the raindrops.
- 4. A motorboat which has a speed of 15 miles an hour in still water sets out to cross a stream which has a current of 5 miles an hour. The boat points upstream at an angle of 30° with the bank. Find its actual speed and the actual direction that it takes.
- 5. If a force of 100 pounds is resolved into components of 60 pounds and 50 pounds respectively, what angle do these components make with each other?
- 6. An airplane has a speed of 150 miles an hour in still air. The pilot wishes to fly in a direction 65° east of north. A 15-mile wind is blowing from the southeast. In what direction must the airplane be pointed?
- 7. The actual velocity of a motorboat is 25 miles an hour due north. The wind is blowing from the direction N 50° W at the rate of 15 miles an hour. What is the apparent velocity of the wind, and from what direction does it seem to strike the boat?
- 8. Two forces of 475 and 530 pounds respectively, making an angle of 36° 35′ with each other, act at the same point. Find the magnitude of their resultant, and the angle that it makes with the smaller force.
- 9. Three forces of 255, 320, and 195 pounds respectively are in equilibrium. What angles do they make with each other?
- 10. An airplane has a speed of 120 miles an hour in still air. A 20-mile wind is blowing from the northwest. A pilot wishes to fly 200 miles west and return to his original position. In what direction must be point the airplane (a) on the outward trip? (b) on the return trip?

#### CHAPTER VIII

# Trigonometric Formulas and Identities

#### 68. Fundamental relations among the functions.

It is readily seen, from the generalized definitions of section 37, that the functions of any angle satisfy the same reciprocal relations as the functions of an acute angle, namely,

$$csc \theta = \frac{1}{\sin \theta}, \qquad \sin \theta = \frac{1}{\csc \theta}, \\
sec \theta = \frac{1}{\cos \theta}, \qquad \cos \theta = \frac{1}{\sec \theta}, \\
\cot \theta = \frac{1}{\tan \theta}, \qquad \tan \theta = \frac{1}{\cot \theta}.$$
(1)

The following relations can also be readily proved:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}, \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}.$$
 (2)

The first can be proved by making use of the definitions of the functions. For,

$$\frac{\sin \theta}{\cos \theta} = \frac{y}{\frac{x}{x}} = \frac{y}{x} = \tan \theta.$$

The second follows from the fact that  $\cot \theta = 1/\tan \theta$ , or it can be proved independently.

Starting from the equation

$$x^2 + y^2 = r^2, (3)$$

which may be obtained from Fig. 34 (page 67) by applying the theorem of Pythagoras, we can derive three more fundamental relations.

Dividing (3) by  $r^2$ , we get

$$\frac{x^2}{r^2} + \frac{y^2}{r^2} = 1,$$

which, since  $x r = \cos \theta$  and  $y r = \sin \theta$ , can be written

$$\cos^2\theta + \sin^2\theta = 1. \tag{4}$$

Dividing (3) by  $x^2$ , we get

$$1 + \frac{y^2}{x^2} = \frac{r^2}{x^2},$$

which becomes

$$1 + \tan^2 \theta = \sec^2 \theta. \tag{5}$$

Finally, dividing (3) by  $y^2$ , we get

$$\frac{x^2}{y^2} + 1 = \frac{r^2}{y^2},$$

or  $\cot^2 \theta + 1 = \csc^2 \theta$ . (6)

Relations (4), (5), (6) may be termed the **Pythagorean** relations. They may be written in different forms if desirable; for example, (4) may be transformed as follows:

$$\cos^2\theta = 1 - \sin^2\theta$$
, or  $\cos\theta = \pm\sqrt{1 - \sin^2\theta}$ .

## 69. Finding the other functions of an angle when one function is given.

The foregoing formulas may be used to find the values of the functions of an angle when the value of one function is given. However, the method used in section 4 for functions of acute angles is preferable.

#### 116

#### Example 1.

Given  $\sin \theta = \frac{3}{5}$ ; find the other functions of  $\theta$ .

Solution. Since  $\sin \theta = y/r$ , we may take r = 5, from which



it follows that y = 3. Draw a circle with its center at the origin and having a radius of 5 units (Fig. 58). Take a point on the y-axis at a distance of 3 units above the x-axis. A line through this point parallel to the x-axis will cut the circle in two points, and consequently there will be two positions for the angle  $\theta$ :  $\theta_1$  in quadrant I, and  $\theta_2$  in quadrant II, as shown in the figure.

Now,

$$x^2 = 5^2 - 3^2 = 16, \quad x = \pm 4.$$

Thus, corresponding to the angle in quadrant I we have an abscissa 4, and corresponding to the angle in quadrant II we have an abscissa -4. We can now read all of the functions of both angles directly from the figure.

| Quadrant I                                      | Quadrant II                     |
|-------------------------------------------------|---------------------------------|
| $\sin \theta_1 = \frac{3}{5}$                   | $\sin \theta_2 = \frac{3}{5},$  |
| $\cos \theta_1 = \frac{4}{5},$                  | $\cos\theta_2=-\tfrac{4}{5},$   |
| $\tan\theta_1=\tfrac{3}{4},$                    | $\tan \theta_2 = -\frac{3}{4},$ |
| $\operatorname{cse} \ \theta_1 = \tfrac{5}{3},$ | $\csc \theta_2 = \frac{5}{3},$  |
| $\sec \ \theta_1 = \frac{5}{4},$                | $\sec \theta_2 = -\frac{5}{4}$  |
| $\cot \theta_1 = \frac{4}{3}$                   | $\cot \theta_2 = -\frac{4}{3}$  |
|                                                 |                                 |

#### Example 2.

Given tan  $\theta = 2$ ; find the other functions.

Solution. Since  $\tan \theta = y/x$ , we may take y = 2 and x = 1,



or y = -2 and x = -1 (Fig. 59). There are two angles, one in quadrant I, the other in quadrant III. In either case,

$$r^2 = 1^2 + 2^2 = 5$$
,  $r = \sqrt{5}$ .

(We take only the positive square root as the value of r, according to the agreement of section 35.) From the figure we read

Quadrant I Quadrant III
$$\sin \theta_1 = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}, \qquad \sin \theta_2 = \frac{-2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5},$$

$$\cos \theta_1 = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}, \qquad \cos \theta_2 = \frac{-1}{\sqrt{5}} = -\frac{\sqrt{5}}{5},$$

$$\tan \theta_1 = 2. \qquad \tan \theta_2 = \frac{-2}{-1} = 2,$$

$$\csc \theta_1 = \frac{\sqrt{5}}{2}, \qquad \csc \theta_2 = \frac{\sqrt{5}}{-2} = -\frac{\sqrt{5}}{2},$$

$$\sec \theta_1 = \sqrt{5}, \qquad \sec \theta_2 = \frac{\sqrt{5}}{-1} = -\sqrt{5},$$

$$\cot \theta_1 = \frac{1}{2}. \qquad \cot \theta_2 = \frac{-1}{-2} = \frac{1}{2}.$$

#### EXERCISES VIII. A

Find the other functions of  $\theta$ , given that

- 1.  $\sin \theta = \frac{12}{13}$   $\theta$  in quadrant I.
- 2.  $\cos \theta = -\frac{4}{5}$ ,  $\theta$  in quadrant III.
- 3.  $\tan \theta = -\frac{2}{3} \cdot \theta$  in quadrant IV.
- **4.** cot  $\theta = \frac{1}{5}$ ,  $\theta$  in quadrant III.
- 5.  $\cos \theta = -\frac{2}{5} \cdot \theta$  in quadrant II.
- 6. esc  $\theta = -\frac{41}{9}$   $\theta$  in quadrant IV.
- 7. sec  $\theta = \sqrt{2}$ ,  $\theta$  in quadrant IV.
- 8.  $\sin \theta = \frac{5}{6}$   $\theta$  in quadrant II.
- 9.  $\tan \theta = \frac{7}{24}$   $\theta$  in quadrant III.
- 10. csc  $\theta = \frac{17}{15}$   $\theta$  in quadrant II.

#### Find the other functions of $\theta$ if

- $11. \sin \theta = \frac{1}{2}.$
- 13.  $\tan \theta = -\frac{2}{5}$
- **15.** cot  $\theta = \frac{5}{2}$
- 17. sec  $\theta = -2$ .
- 19.  $\tan \theta = 0.5$ .
- 21. esc  $\theta = 3$ .

- **12.**  $\cos \theta = \frac{2}{3}$
- **14.**  $\csc \theta = \frac{4}{3}$
- **16.** sec  $\theta = \frac{5}{4}$
- **18.**  $\cos \theta = -\frac{1}{4}$
- **20.**  $\sin \theta = -0.8$ .
- **22.**  $\cos \theta = 0.2$ .

**23.** 
$$\tan \theta = -\sqrt{3}$$
.

**25.** 
$$\cos \theta = -\frac{1}{2}$$

27. cot 
$$\theta = 0.1$$
.

**29.** 
$$\tan \theta = \sqrt{2}$$
.

31. If 
$$\sin \theta = \frac{7}{25}$$
 and  $\cos \phi = \frac{15}{17}$ , find all possible values of

(a) 
$$\tan \theta + \tan \phi$$
,

(a) 
$$5 \sin \theta = 9 \sin \phi$$

(c) 
$$5\sin\theta - 2\sin\phi$$
,

(e) 
$$\frac{1+\cot\theta}{\sin\phi}$$
,

(b) 
$$\cos \theta + \sin \phi$$
,

(d) 
$$\sec \theta \tan \phi$$
,

**24.** csc  $\theta = -\frac{5}{3}$ **26.**  $\tan \theta = -5$ .

28.  $\sin \theta = -\frac{5}{8}$ 

**30.** cot  $\theta = 1$ .

(f) 
$$\frac{1-\cos\theta}{1+\tan\phi},$$

(g) 
$$(2 + \cos \theta)(3 - 2\sin \phi)$$
, (h)  $(m + n \tan \theta)(m + n \cot \phi)$ .

32. If 
$$\tan \theta = \frac{21}{20}$$
 and  $\cot \phi = -\frac{9}{40}$ , find all possible values of

(a) 
$$\sin \theta + \sin \phi$$
,

(c) 
$$\frac{1}{3}\sin\theta + \frac{1}{5}\sin\phi$$
,

(e) 
$$\csc \theta \sec \phi$$
,

(g) 
$$\frac{\sec \phi}{1 + \frac{1}{2}\cos \theta},$$

(b) 
$$\cos \theta + \tan \phi$$
,

(d) 
$$\sec \theta (2 - 3 \cos \phi)$$
,

(f) 
$$\sin \theta \cos \phi + \cos \theta \sin \phi$$
,

(h) 
$$\frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}$$

#### 70. Identities.

Formulas (1), (2), (4), (5), (6) of section 68 are identities, in the sense that they are satisfied by all possible values of  $\theta$  for which their left-hand and right-hand members are defined. By means of them it is possible to prove other identities, and consequently to change an expression involving trigonometric functions into a different but equivalent form which is more suitable for the purpose at hand.

#### Example 1.

Prove:

$$\tan \theta + \cot \theta = \sec \theta \csc \theta.$$

Solution. To reduce the expression on the left to that on the right we first make use of (2) of section 68:

$$\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}.$$

But by (6) of section 68, the last numerator is equal to 1, and the above expression reduces to

$$\frac{1}{\cos\theta\sin\theta}$$
,

which, because of the reciprocal relations, is equal to sec  $\theta$  esc  $\theta$ . Thus, we have reduced the left-hand side to the right-hand side and have consequently proved the identity.

#### Example 2.

Prove: 
$$\frac{1 + \tan^2 \theta}{\csc \theta} = \sec \theta \tan \theta.$$

SOLUTION. Applying the Pythagorean relation (5) of section 68 to the numerator on the left, we reduce the fraction to

$$\frac{\sec^2 \theta}{\csc \theta} = \frac{\sec \theta \frac{1}{\cos \theta}}{\frac{1}{\sin \theta}} = \sec \theta \frac{\sin \theta}{\cos \theta}.$$

This, by the first of equations (2) of section 68, reduces to  $\sec \theta \tan \theta$ , and the identity is established.

Ordinarily, in proving an identity, one must transform one side into the other. No general method of proof can be given. However, a thorough familiarity with the fundamental identities is essential. These should be kept constantly in mind, and careful consideration should be given to the question of which one of them is appropriate to the situation. There should also be kept in mind the expression toward which one is working. It is usually better to work with the more complicated side of the identity, endeavoring to reduce it to the form of the simpler side.

Frequently, if all functions are expressed in terms of sines and cosines, a clue will be obtained as to the next step to take.

If one side of the identity involves but one function, it may be best to express everything on the other side in terms of that function.

It is usually best to avoid radical expressions when possible.

#### EXERCISES VIII. B

Prove the following identities:

1. 
$$\cos \theta \tan \theta = \sin \theta$$
.

2. 
$$\cot \theta \cos \theta = \csc \theta - \sin \theta$$
.

3. 
$$\frac{1+\sin\,\theta}{\cos\,\theta} = \frac{\cos\,\theta}{1-\sin\,\theta}.$$

4. 
$$(\tan \theta - \sin \theta)^2 + (1 - \cos \theta)^2 = (1 - \sec \theta)^2$$
.

$$5. \frac{\cos^2 \theta}{1-\sin} = 1 + \sin \theta$$

6. 
$$\cot \theta + \tan \theta = \frac{\csc^2 \theta + \sec^2 \theta}{\csc \theta \sec \theta}$$

7. 
$$\frac{\sin \theta + \tan \theta}{\cot \theta + \csc \theta} = \sin \theta \tan \theta.$$

8. 
$$\frac{1-2\cos^2\theta}{\sin\theta\cos\theta} \quad \tan\theta - \cot\theta.$$

9. 
$$(\sin \theta + \cos \theta)^2 + (\sin \theta - \cos \theta)^2 = 2$$
.

10. 
$$\sin^4 \theta - \cos^4 \theta = \sin^2 \theta - \cos^2 \theta$$
.

11. 
$$\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$$
.

12. 
$$\sin^{\epsilon} \theta + \cos^{\epsilon} \theta = 1 - 3 \sin^{2} \theta \cos^{2} \theta$$
.

13. 
$$\frac{\csc \theta}{\csc \theta - 1} + \frac{\csc \theta}{\csc \theta + 1} = 2 \sec^2 \theta.$$

14. 
$$\frac{1}{1} \frac{-\tan \theta}{+\tan \theta} = \frac{\cot \theta - 1}{\cot \theta + 1}$$

15. 
$$\frac{\tan^2\theta}{\sec^2\theta} + \frac{\cot^2\theta}{\csc^2\theta} = 1.$$

16. 
$$\frac{\sin \theta + \cos \phi}{\sin \theta - \cos \phi} = \frac{\sec \phi + \csc \theta}{\sec \phi - \csc \theta}$$

17. 
$$(\tan \theta + \cot \phi)(\cot \theta - \tan \phi) = \cot \theta \cot \phi - \tan \theta \tan \phi$$
.

18. 
$$(\tan \theta - \sec \phi)(\cot \theta + \cos \phi) = \tan \theta \cos \phi - \cot \theta \sec \phi$$
.

19. 
$$\sin^2 \theta (1 + \cot^2 \theta) = 1$$
.

20. 
$$\cos \theta (1 + \tan^2 \theta) = \sec \theta$$
.

21. 
$$\sin \theta (1 + \cot^2 \theta) = \csc \theta$$
.

22. 
$$\frac{1+\sec\theta}{1-\sec\theta}=\frac{\cos\theta+1}{\cos\theta-1}.$$

23. 
$$\sec \theta - \sin \theta \tan \theta = \cos \theta$$
.

**24.** 
$$\frac{1 - \tan^2 \theta}{1 - \cot^2} = 1$$
  $\sec^2 \theta$ .

25. 
$$\tan \theta + \tan(90^{\circ} - \theta) = \sec \theta \csc \theta$$
.

26. 
$$\frac{\tan \theta + \sin \theta}{\tan \theta - \sin} - \frac{\sec \theta + 1}{\sec \theta - 1}$$

27. 
$$\frac{\sin \theta}{1 + \cos \theta} = \csc \theta - \cot \theta.$$

**28.** 
$$\sec^4 \theta - \tan^4 \theta = 1 + 2 \tan^2 \theta$$
.

29. 
$$\frac{1-\tan^2\theta}{1+\tan^2\theta}=\cos^2\theta-\sin^2\theta.$$

30. 
$$\frac{\tan \theta - \tan \phi}{\cot \theta - \cot \phi} = -\tan \theta \tan \phi.$$

31. 
$$\frac{\cos \theta}{\cos \theta - \sin \theta} = \frac{1}{1 - \tan \theta}$$

32. 
$$\frac{\tan \theta}{\sin^2 \theta} = \pm \sqrt{\frac{1 + \tan^2 \theta}{1 - \cos^2 \theta}}$$

33. 
$$\frac{\tan \theta + \tan \phi}{\cot \theta + \cot \phi} = \tan \theta \tan \phi.$$

**34.** 
$$(1 - \cos^2 \theta)(1 + \cot^2 \theta) = 1$$
.

35. 
$$\frac{1}{\sec \theta + \tan \theta} = \sec \theta - \tan \theta$$
.

36. 
$$\frac{\sin \theta + \tan \theta}{1 + \sec \theta} = \sin \theta.$$

37. 
$$\frac{\cos \theta}{\sec \theta} - \frac{\sin \theta}{\cot \theta} = \frac{\cos \theta \cot \theta - \tan \theta}{\csc \theta}.$$

38. 
$$1 - \sin \cot \theta - \cos \theta$$

39. 
$$\frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot} = \sin \theta + \cos \theta$$
.

**40.** Express  $\sin \theta$  in terms of  $\tan \theta$ .

SOLUTION.

$$\sin \theta = \tan \theta,$$

$$\cos \theta = \tan \theta,$$

$$\frac{\sin \theta}{+\sqrt{1-\sin^2 \theta}} = \tan \theta,$$

$$\frac{\sin^2 \theta}{1 - \sin^2 \theta} = \tan^2 \theta,$$

$$\sin^2 \theta = \tan^2 \theta - \tan^2 \theta \sin^2 \theta,$$

$$(1 + \tan^2 \theta) \sin^2 \theta = \tan^2 \theta,$$

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta}.$$

$$\sin \theta = \pm \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}}$$

The exercise can also be solved as follows: Draw a right triangle having an acute angle  $\theta$ . Mark the opposite side  $\tan \theta$ , the adjacent side 1. Then the hypotenuse will be  $\sqrt{1 + \tan^2 \theta}$ . The value of  $\sin \theta$  can now be read from the figure. (Cf. section 69.) The double sign should be used with the radical.

41. Construct a table giving each of the functions in terms of the other functions.

## 71. Directed line segments.

In defining rectangular coordinates, we introduced the idea of a positive and a negative direction on a line. Thus, the positive direction on the x-axis is to the right, the positive direction on the y-axis is upward. Any line, such as one of these axes, on which the positive direction has

been specified, is a directed line. A portion of a directed line, such as AB in Fig. 60, is called a directed line segment. The point A may be called the initial point and the point B the terminal point of the line segment AB.

Two line segments may be added by placing the initial point of the second on the terminal point of the first; the sum is the segment from the initial point of the first segment to the terminal point of the second. (It is immaterial which segment is considered the first and which the second.) The proper direction must, of course, be preserved for each segment.

Thus, if A, B, C are points arranged in any order on a directed line, we may write

$$AB + BC = AC$$

which merely states that if we go from A to B and then from B to C, we reach the same position that we reach by going directly from A to C.

Subtraction of two directed line segments is accomplished by changing the direction of the segment to be subtracted, and then proceeding as in addition.

Several segments can be added by carrying out successively the process described for two segments.

## 72. Functions of the sum and the difference of two angles.

To derive a formula for  $\cos(\theta + \phi)$ , place the angles  $\theta$  and  $\phi$  with reference to the coordinate axes as shown in Fig. 62. Take a point P on the terminal side of the angle  $\theta + \phi$ , and drop a perpendicular PQ to the terminal side of  $\theta$ . Draw PM and QN perpendicular to the x-axis.



Now, if we take into consideration the signs of the line segments involved, we have

$$OM = ON + NM. (1)$$

But 
$$OM = OP \cos(\theta + \phi), \quad ON = OQ \cos \theta,$$
  
 $NM = QP \cos(90^{\circ} + \theta) = -QP \sin \theta.$  (2)

Substituting these values in (1), we get

$$OP \cos(\theta + \phi) = OQ \cos \theta - QP \sin \theta.$$

Division by OP gives

$$\cos(\theta + \phi) = \frac{OQ}{OP}\cos\theta - \frac{QP}{OP}\sin\theta.$$

But

$$\frac{OQ}{OP} = \cos \phi, \qquad \frac{QP}{OP} = \sin \phi,$$

and consequently,

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi. \tag{3}$$



The foregoing proof will hold for all values of  $\theta$  and  $\phi$  if we are careful to take r into consideration the proper sign of each function and of each line segment involved. It will be necessary, however, to consider as negative a segment measured

backward along the terminal side of an angle, such as segment OP in Fig. 63. In this figure r would be considered negative.

If in (3) we replace  $\phi$  by  $-\phi$ , we get

$$\cos(\theta - \phi) = \cos\theta \cos(-\phi) - \sin\theta \sin(-\phi),$$
or 
$$\cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi.$$
 (4)

To develop a formula for  $\sin(\theta + \phi)$ , we use (3), replacing  $\theta$  by  $90^{\circ} - \theta$ , and  $\phi$  by  $-\phi$ . We get

$$\cos(90^{\circ} - \theta - \phi) = \cos[(90^{\circ} - \theta) + (-\phi)] = \cos(90^{\circ} - \theta)\cos(-\phi) - \sin(90^{\circ} - \theta)\sin(-\phi),$$

which becomes

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi. \tag{5}$$

The foregoing formula can also be derived by dropping

perpendiculars from the points P and Q in Fig. 62 to the y-axis, and proceeding somewhat as in the proof of (3).

If in (5) we replace  $\phi$  by  $-\phi$ , we get

$$\sin(\theta - \phi) = \sin \theta \cos(-\phi) + \cos \theta \sin(-\phi),$$
or 
$$\sin(\theta - \phi) = \sin \theta \cos \phi - \cos \theta \sin \phi.$$
 (6)

Formulas (3) and (5) are sometimes called the addition formulas for the cosine and sine respectively. Similarly, (4) and (6) may be called their subtraction formulas.

To find the tangent of  $\theta + \phi$  and of  $\theta - \phi$ , we proceed as follows:

$$\tan(\theta + \phi) = \frac{\sin(\theta + \phi)}{\cos(\theta + \phi)} = \frac{\sin\theta\cos\phi + \cos\theta\sin\phi}{\cos\theta\cos\phi - \sin\theta\sin\phi}$$

If it is desired to express  $\tan(\theta + \phi)$  in terms of  $\tan \theta$  and  $\tan \phi$ , we divide numerator and denominator of the last fraction by  $\cos \theta \cos \phi$ , obtaining

$$\tan(\theta + \phi) = \frac{\frac{\sin \theta \cos \phi}{\cos \theta \cos \phi} + \frac{\cos \theta \sin \phi}{\cos \theta \cos \phi}}{\frac{\cos \theta \cos \phi}{\cos \theta \cos \phi} - \frac{\sin \theta \sin \phi}{\cos \theta \cos \phi}},$$

which reduces to

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}.$$
 (7)

In like manner, or by replacing  $\phi$  by  $-\phi$  in (7), we find that

$$\tan(\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}.$$
 (8)

For the cotangent we obtain the following formulas:

$$\cot(\theta + \phi) = \frac{\cot \theta \cot \phi - 1}{\cot \phi + \cot \theta}, \tag{9}$$

$$\cot(\theta - \phi) = \frac{\cot \theta \cot \phi + 1}{\cot \phi - \cot \theta}.$$
 (10)

Proofs of (9) and (10) are left as exercises.

#### EXERCISES VIII. C

1. Find sin 75° by setting  $\theta = 45^{\circ}$ ,  $\phi = 30^{\circ}$  in (5) of section 72.

Solution. 
$$\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ})$$
  
=  $\sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$   
=  $\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{1}{4}(\sqrt{6} + \sqrt{2}).$ 

- 2. Find cos 75°, tan 75°, cot 75°.
- 3. Find sin 15°, cos 15°, tan 15°, cot 15°.
- 4. Verify the values of  $\sin 90^{\circ}$ ,  $\cos 90^{\circ}$ ,  $\cot 90^{\circ}$  by setting  $\theta = 60^{\circ}$ ,  $\phi = 30^{\circ}$  in (5), (3), (7), respectively, of section 72.
- 5. Verify the values of  $\sin 30^\circ$ ,  $\cos 30^\circ$ ,  $\tan 30^\circ$ ,  $\cot 30^\circ$  by setting  $\theta = 60^\circ$ ,  $\phi = 30^\circ$  in (6), (4), (8), (10), respectively, of section 72.
- 6. Find sin 105°, cos 105°, tan 105°, cot 105°.
- 7. Prove the formulas for  $\sin(90^{\circ} + \theta)$ ,  $\cos(90^{\circ} + \theta)$ ,  $\tan(90^{\circ} + \theta)$ ,  $\cot(90^{\circ} + \theta)$  by means of the addition formulas.
- 8. Prove the formulas for  $\sin(180^{\circ} \theta)$ ,  $\cos(180^{\circ} \theta)$ ,  $\tan(180^{\circ} \theta)$ ,  $\cot(180^{\circ} \theta)$  by means of the subtraction formulas.

Simplify the following expressions:

- 9.  $\sin(\theta + 30^{\circ}) + \cos(\theta + 60^{\circ})$ .
- 10.  $\sin(\theta + 60^{\circ}) \cos(\theta + 30^{\circ})$ .
- 11.  $\tan(\theta + 45^{\circ}) + \cot(\theta 45^{\circ})$ .
- 12.  $\cos(30^{\circ} \theta) \cos(30^{\circ} + \theta)$ .

Prove the following identities:

13. 
$$\sin(\theta + \phi) \sin(\theta - \phi) = \sin^2 \theta - \sin^2 \phi$$
.

14. 
$$\cos(\theta + \phi) \cos(\theta - \phi) = \cos^2 \theta - \sin^2 \phi$$
.

**15.** 
$$\tan(45^{\circ} + \theta) = \frac{1 + \tan \theta}{1 - \tan \theta}$$
.

**16.** 
$$\sin(45^{\circ} + \theta) \cos(45^{\circ} + \theta) = \frac{1}{2}(\cos^2 \theta - \sin^2 \theta).$$

17. 
$$\sin(\theta + 30^\circ) \cos(\theta + 60^\circ) = \frac{1}{4}(\cos^2\theta - 3\sin^2\theta)$$
.

- 18. Given  $\sin \theta = \frac{3}{5}$ ,  $\sin \phi = \frac{5}{13}$ ,  $\theta$  and  $\phi$  both acute. Find (a)  $\sin(\theta + \phi)$ , (b)  $\cos(\theta + \phi)$ , (c)  $\tan(\theta + \phi)$ .
  - (d)  $\cot(\theta + \phi)$ , (e)  $\sin(\theta \phi)$ , (f)  $\cos(\theta \phi)$ , (g)  $\tan(\theta \phi)$ , (h)  $\cot(\theta \phi)$ , (i)  $\sin(\phi \theta)$ ,

  - (j)  $\cos(\phi \theta)$ , (k)  $\tan(\phi \theta)$ , (1)  $\cot(\phi - \theta)$ .
- 19. Given  $\sin \theta = \frac{8}{17}$ ,  $\tan \phi = \frac{9}{40}$ ,  $\theta$  in quadrant II,  $\phi$  in quadrant III. Find
  - (a)  $\sin(\theta + \phi)$ , (b)  $\cos(\theta + \phi)$ , (c)  $\tan(\theta + \phi)$ ,
  - (i)  $\cos(\theta \phi)$ . (d)  $\cot(\theta + \phi)$ . (e)  $\sin(\theta - \phi)$ .
  - (h)  $\cot(\theta \phi)$ . (g)  $\tan(\theta - \phi)$ ,
- 20. Given  $\cos \theta = -\frac{4}{87} \sin \phi = \frac{7}{25} \theta$  in quadrant II. Find all possible values of the following:
  - (b)  $\cos(\theta + \phi)$ , (c)  $\tan(\theta + \phi)$ ,
  - (a)  $\cot(\theta + \phi)$ , (b)  $\sin(\theta \phi)$ , (c)  $\tan(\theta + \phi)$ , (d)  $\tan(\theta \phi)$ , (e)  $\sin(\theta \phi)$ , (f)  $\cos(\theta \phi)$ , (g)  $\tan(\theta \phi)$ , (h)  $\cot(\theta \phi)$
- 21. Given  $\tan \theta = \frac{8}{15}$ ,  $\cot \phi = \frac{12}{5}$ . Find all possible values of (a)  $\sin(\theta + \phi)$ ,
  - (b)  $\cos(\theta + \phi)$ , (c)  $\tan(\theta + \phi)$ , (e)  $\sin(\theta \phi)$ , (f)  $\cos(\theta \phi)$ , (d)  $\cot(\theta + \phi)$ ,
  - (g)  $tan(\theta \phi)$ , (h)  $cot(\theta \phi)$ .

Prove:

- 22.  $\sin(\theta + \phi + \psi) = \sin\theta\cos\phi\cos\psi + \cos\theta\sin\phi\cos\psi$  $+\cos\theta\cos\phi\sin\psi - \sin\theta\sin\phi\sin\psi$ .
- 23.  $\cos(\theta + \phi + \psi) = \cos\theta\cos\phi\cos\psi \cos\theta\sin\phi\sin\psi$  $-\sin\theta\cos\phi\sin\psi-\sin\theta\sin\phi\cos\psi$ .
- **24.**  $tan(\theta + \phi + \psi)$

$$= \frac{\tan\theta + \tan\phi + \tan\psi - \tan\theta\tan\phi\tan\psi}{1 - \tan\phi\tan\psi - \tan\psi\tan\theta - \tan\theta\tan\phi}$$

**25.**  $\cot(\theta + \phi + \psi)$ 

$$\frac{\cot\theta\cot\phi\cot\psi-\cot\psi-\cot\phi-\cot\psi}{\cot\phi\cot\psi+\cot\psi\cot\psi+\cot\theta\cot\phi-1}$$

#### 73. Functions of twice an angle.

If, in formulas (5), (3), (7), (9) of section 72, we substitute  $\theta$  for  $\phi$ , we obtain the following results:

$$\sin(\theta + \theta) = \sin \theta \cos \theta + \cos \theta \sin \theta$$
,

or 
$$\sin 2\theta = 2 \sin \theta \cos \theta$$
; (1)

$$\cos(\theta + \theta) = \cos\theta\cos\theta - \sin\theta\sin\theta$$
,

or 
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta;$$
 (2)

$$\tan(\theta + \theta) = \frac{\tan \theta + \tan \theta}{1 - \tan \theta \tan \theta}$$

or

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}; \tag{3}$$

$$\cot(\theta + \theta) = \frac{\cot\theta\cot\theta - 1}{\cot\theta + \cot\theta}$$

or

$$\cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta} \, . \tag{4}$$

Two other useful formulas for  $\cos 2\theta$  may be derived as follows: Remembering that

$$\sin^2\theta = 1 - \cos^2\theta, \quad \cos^2\theta = 1 - \sin^2\theta,$$

and substituting these separately in (2), we get

$$\cos 2\theta = 2\cos^2\theta - 1,\tag{5}$$

and

$$\cos 2\theta = 1 - 2\sin^2\theta. \tag{6}$$

## 74. Functions of half an angle.

From the relation connecting sine and cosine, and the formula for the cosine of twice an angle, we have

$$\cos^2 \phi + \sin^2 \phi = 1, \tag{1}$$

$$\cos^2 \phi - \sin^2 \phi = \cos 2\phi. \tag{2}$$

Adding these two equations, we get

$$2\cos^2\phi = 1 + \cos 2\phi.$$

From this we get

$$\cos^2\phi = \frac{1 + \cos 2\phi}{2} \,,$$

or

$$\cos\phi = \pm \sqrt{\frac{1 + \cos 2\phi}{2}}$$

If  $\phi$  is replaced by  $\frac{1}{2}\theta$ , this becomes

$$\cos \frac{1}{2}\theta = \pm \sqrt{\frac{1+\cos\theta}{2}}.$$
 (3)

By subtracting (2) from (1) and proceeding as before, we obtain the formula

$$\sin \phi = \pm \sqrt{\frac{1 - \cos 2\phi}{2}},$$

which is equivalent to

$$\sin \frac{1}{2}\theta = \pm \sqrt{\frac{1-\cos \theta}{2}}.$$
 (4)

The sign to be used in the foregoing formulas depends upon the quadrant in which  $\frac{1}{2}\theta$  lies.

Dividing (4) by (3), we get

$$\tan \frac{1}{2}\theta = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}.$$
 (5)

Multiplying numerator and denominator of the right-hand side of this last equation by  $\sqrt{1-\cos\theta}$ , we get

$$\tan \frac{1}{2}\theta = \frac{1 - \cos \theta}{\pm \sqrt{1 - \cos^2 \theta}}$$

or

$$\tan \frac{1}{2}\theta = \frac{1-\cos \theta}{\sin \theta}.$$
 (6)

Here the ambiguous sign  $(\pm)$  is not needed. For the numerator of the fraction in (6) is always positive (or zero),

and it is therefore only necessary to prove that  $\tan \frac{1}{2}\theta$  has the same sign as  $\sin \theta$ . To do this we note that

$$\tan \frac{1}{2}\theta = \frac{\sin \frac{1}{2}\theta}{\cos \frac{1}{2}\theta}, \qquad \sin \theta = 2 \sin \frac{1}{2}\theta \cos \frac{1}{2}\theta.$$

Multiplying these equations together we see that the product of  $\tan \frac{1}{2}\theta$  and  $\sin \theta$  is equal to  $2 \sin^2 \frac{1}{2}\theta$ , which is always positive (or zero). This means that  $\tan \frac{1}{2}\theta$  and  $\sin \theta$  always have the same sign, and there is no ambiguity.

If we multiply both numerator and denominator of the fraction in (5) by  $\sqrt{1 + \cos \theta}$ , and reduce, we get

$$\tan \frac{1}{2}\theta = \frac{\sin \theta}{1 + \cos \theta} \tag{7}$$

where again there is no ambiguity.
Similarly, we obtain the formulas

$$\cot \frac{1}{2}\theta = \pm \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} \tag{8}$$

$$\cot \frac{1}{2}\theta = \frac{\sin \theta}{1 - \cos \theta},\tag{9}$$

$$\cot \frac{1}{2}\theta = \frac{1 + \cos \theta}{\sin \theta}.$$
 (10)

#### EXERCISES VIII. D

- 1. Verify the formulas for  $\sin 2\theta$ ,  $\cos 2\theta$ ,  $\tan 2\theta$ ,  $\cot 2\theta$  by setting  $\theta = 30^{\circ}$ .
- 2. Verify the formulas for  $\sin 2\theta$ ,  $\cos 2\theta$ ,  $\cot 2\theta$  by setting  $\theta = 45^{\circ}$ .
- Find sin 120°, cos 120°, tan 120°, cot 120° by using the functions of 60°.
- **4.** Verify the formulas for  $\sin \frac{1}{2}\theta$ ,  $\cos \frac{1}{2}\theta$ ,  $\tan \frac{1}{2}\theta$ ,  $\cot \frac{1}{2}\theta$  by setting  $\theta = 60^{\circ}$ .
- 5. Find sin 15°, cos 15°, tan 15°, cot 15° by setting  $\theta = 30^{\circ}$  in the formulas for the functions of  $\frac{1}{2}\theta$ .

- 6. Given  $\cos \theta = \frac{24}{23} \cdot \theta$  an acute angle. Find
  - (a)  $\sin 2\theta$ , (b)  $\cos 2\theta$ , (c)  $\tan 2\theta$ , (d)  $\cot 2\theta$ ,
  - (e)  $\sin \frac{1}{2}\theta$ , (f)  $\cos \frac{1}{2}\theta$ , (g)  $\tan \frac{1}{2}\theta$ , (h)  $\cot \frac{1}{2}\theta$ .
- 7. Given  $\sin \theta = \frac{40}{41}$ . Find
  - (a)  $\sin 2\theta$ , (b)  $\cos 2\theta$ , (c)  $\tan 2\theta$ , (d)  $\cot 2\theta$ ,
  - (e)  $\sin \frac{1}{2}\theta$ , (f)  $\cos \frac{1}{2}\theta$ , (g)  $\tan \frac{1}{2}\theta$ , (h)  $\cot \frac{1}{2}\theta$ .
- 8. Given  $\tan \theta = -2$ . Find
  - (a)  $\sin 2\theta$ , (b)  $\cos 2\theta$ , (c)  $\tan 2\theta$ , (d)  $\cot 2\theta$ .
  - (e)  $\sin \frac{1}{2}\theta$ , (f)  $\cos \frac{1}{2}\theta$ , (g)  $\tan \frac{1}{2}\theta$ , (h)  $\cot \frac{1}{2}\theta$ .

Prove the following identities:

9. 
$$\tan(45^\circ + \frac{1}{2}\theta) = \frac{1 + \cos\theta + \sin\theta}{1 + \cos\theta - \sin\theta}$$

10. 
$$\sin \theta = \frac{2 \tan \frac{1}{2} \theta}{1 + \tan^2 \frac{1}{2} \theta}$$

- 11.  $\tan \frac{1}{2}\theta + \cot \frac{1}{2}\theta = 2 \csc \theta$ .
- 12. A picture of height 5 feet hangs on the wall, with its lower edge 4 feet from the floor. At a certain point on the floor, directly in front of the picture, the angle subtended by the picture (that is, by its vertical dimension of 5 feet) is equal to the angle of elevation of the lower edge of the picture. How far is this point from the wall?

Prove:

- 13.  $\sin \theta + \cos \theta = \pm \sqrt{1 + \sin \theta}$ .
- 14.  $\sin \frac{1}{2}\theta \cos \frac{1}{2}\theta = \pm \sqrt{1 \sin \theta}$ .

## 75. Sums and differences of functions.

By the addition and subtraction formulas for the sine and cosine, we have

$$\sin(x+y) = \sin x \cos y + \cos x \sin y, \tag{1}$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y, \tag{2}$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y, \tag{3}$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y. \tag{4}$$

132

Addition of (1) and (2) gives

$$\sin(x+y) + \sin(x-y) = 2\sin x \cos y.$$
 (5)

If we let

$$x + y = \theta, \qquad x - y = \phi, \tag{6}$$

and selve for x and y we find that

$$x = \frac{1}{2}(\theta + \phi), \qquad y = \frac{1}{2}(\theta - \phi).$$
 (7)

Thus, (5) becomes

$$\sin \theta + \sin \phi = 2 \sin \frac{1}{2}(\theta + \phi) \cos \frac{1}{2}(\theta - \phi). \tag{8}$$

Subtracting (2) from (1) gives

$$\sin(x+y) - \sin(x-y) = 2\cos x \sin y,$$

which, by the substitutions (6) and (7), becomes

$$\sin \theta - \sin \phi = 2 \cos \frac{1}{2}(\theta + \phi) \sin \frac{1}{2}(\theta - \phi). \quad (9)$$

From (3) and (4) we obtain, in a similar manner,

$$\cos\theta \div \cos\phi = 2\cos\frac{1}{2}(\theta + \phi)\cos\frac{1}{2}(\theta - \phi), \quad (10)$$

$$\cos \theta - \cos \phi = -2 \sin \frac{1}{2} (\theta + \phi) \sin \frac{1}{2} (\theta - \phi).$$
 (11)

#### EXERCISES VIII. E

Represent as a product:

- 1.  $\sin 40^{\circ} + \sin 20^{\circ}$ .
- 2.  $\cos 80^{\circ} \cos 20^{\circ}$ .
- 3.  $\cos 60^{\circ} + \cos 40^{\circ}$ .
- 4.  $\sin 30^{\circ} \sin 80^{\circ}$ .
- 5.  $\cos 38^{\circ} + \cos 42^{\circ}$ .
- 6.  $\sin 35^{\circ} + \sin 25^{\circ}$ . 8.  $\cos 17^{\circ} - \cos 36^{\circ}$ .
- 7.  $\sin 40^{\circ} + \sin 25^{\circ}$ . 9.  $\sin 32^{\circ} + \cos 22^{\circ}$ .

Suggestion.  $\cos 22^{\circ} = \sin(9)^{\circ} - 22^{\circ}$ .

- 10.  $\cos 10^{\circ} + \sin 17^{\circ}$ . 12.  $\sin 4\theta - \sin 2\theta$ .
- 11.  $\sin 44^{\circ} + \cos 40^{\circ}$ .
- 13.  $\sin 3\theta + \sin \theta$ .
- 14.  $\cos 5\theta + \cos 9\theta$ .
- 15.  $\sin \theta + \sin \theta$ .
- 16.  $\cos 7\theta \cos 3\theta$ .
- 17.  $\cos 4\theta + \cos 3\theta$

Prove:

18. 
$$\sin \theta + \cos \theta = \sqrt{2} \cos(\theta - 45^{\circ}).$$
  
Suggestion.  $\cos \theta = \sin(90^{\circ} - \theta).$ 

19. 
$$\frac{\sin \theta + \sin \phi}{\cos \theta - \cos \phi} = \cot \frac{1}{2}(\phi - \theta).$$

20. 
$$\frac{\sin \theta - \sin \phi}{\sin \theta + \sin \phi} = \frac{\tan \frac{1}{2}(\theta - \phi)}{\tan \frac{1}{2}(\theta + \phi)}$$

21. 
$$\frac{\sin 3\theta + \sin 5\theta}{\cos 3\theta - \cos 5\theta} = \cot \theta$$
.

22. 
$$\frac{\sqrt{3}}{\cos 75^{\circ} + \cos 15^{\circ}} = \frac{\sqrt{3}}{3}$$
.

23. 
$$\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$$
.

24. 
$$\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta = 4 \cos \theta \cos 2\theta \sin 4\theta$$
.

25. 
$$\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 4 \cos \theta \cos 2\theta \cos 4\theta$$
.

#### MISCELLANEOUS EXERCISES VIII. F

Prove:

1. 
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$$
.

2. 
$$\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$$
.

3. 
$$\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$

4. 
$$\cot 3\theta = \frac{\cot^3 \theta - 3 \cot \theta}{3 \cot^2 \theta - 1}$$

5. 
$$\sin 4\theta = 4 \sin \theta \cos \theta (1 - 2 \sin^2 \theta)$$

6. 
$$\cos 4\theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$$
.

7. 
$$\tan 4\theta = \frac{4 \tan \theta (1 - \tan^2 \theta)}{1 - 6 \tan^2 \theta + \tan^4 \theta}$$

8. 
$$\cot 4\theta = \frac{\cot^4 \theta - 6 \cot^2 \theta + 1}{4 \cot \theta (\cot^2 \theta - 1)}$$

9. 
$$\tan \theta + \tan \phi = \frac{\sin(\theta + \phi)}{\cos \theta \cos \phi}$$

$$\tan \theta - \tan \phi = \frac{\sin(\theta - \phi)}{\cos \theta \cos \phi}$$

11. 
$$\cot \theta + \cot \phi = \frac{\sin(\theta + \phi)}{\sin \theta \sin \phi}$$

#### TRIGONOMETRIC FORMULAS AND IDENTITIES [Ch. VIII 134

12. 
$$\cot \theta - \cot \phi = \frac{\sin(\phi - \theta)}{\sin \theta \sin \phi}$$

13. 
$$\frac{\sin \theta + \sin \phi}{\cos \theta + \cos \phi} = \tan \frac{1}{2}(\theta + \phi).$$

14. 
$$\cos \theta - \cos \phi = -\tan \frac{1}{2}(\theta + \phi) \tan \frac{1}{2}(\theta - \phi).$$

15. 
$$\frac{\cos(n-2)\theta - \cos n\theta}{\sin(n-2)\theta + \sin n\theta} = \tan \theta.$$

16. 
$$\sin^2 \theta - \sin^2 \phi = \sin(\theta + \phi) \sin(\theta - \phi)$$
.

17. 
$$\cos^2 \theta - \cos^2 \phi = -\sin(\theta + \phi)\sin(\theta - \phi)$$
.

18. 
$$\frac{\sin(\theta + \phi)}{\sin(\theta - \phi)} = \frac{\tan \theta + \tan \phi}{\tan \theta - \tan \phi} = \frac{\cot \phi + \cot \theta}{\cot \phi - \cot \theta}.$$

19. 
$$\frac{\cos(\theta + \phi)}{\sin(\theta - \phi)} = \frac{1 - \tan\theta \tan\phi}{\tan\theta - \tan\phi} - \frac{1 - \cot\theta \cot\phi}{\cot\theta - \cot\phi}$$

20. 
$$\frac{3 \sin \theta - \sin 3\theta}{3 \cos \theta + \cos 3\theta} = \tan^3 \theta.$$

21. 
$$\sin \theta + \sin 3\theta + \sin 5\theta = \frac{\sin^2 3\theta}{\sin \theta}$$

- 22. Given  $\sin \theta = \frac{4}{3}$ ,  $\cos \phi = \frac{12}{3}$ , both angles acute. Find
  - (a)  $\sin(\theta+\phi)$ , (b)  $\cos(\theta+\phi)$ , (c)  $\tan(\theta+\phi)$ , (d)  $\cot(\theta+\phi)$ ,
  - (e)  $\sin(\theta-\phi)$ , (f)  $\cos(\theta-\phi)$ , (g)  $\tan(\theta-\phi)$ , (h)  $\cot(\theta-\phi)$ ,
  - (i)  $\sin 2\theta$ , (j)  $\cos 2\theta$ , (k)  $\tan 2\theta$ , (l)  $\cot 2\theta$ , (m)  $\sin \frac{1}{2}\theta$ , (n)  $\cos \frac{1}{2}\theta$ , (o)  $\tan \frac{1}{2}\theta$ , (p)  $\cot \frac{1}{2}\theta$ ,
  - (q)  $\sin \frac{1}{2}\phi$ , (r)  $\cos \frac{1}{2}\phi$ , (s)  $\tan \frac{1}{2}\phi$ , (t)  $\cot \frac{1}{2}\phi$ ,

  - (u)  $\sin \theta + \sin \phi$ , (v)  $\sin \theta$  (v)  $\sin \theta + \cos \phi$ , (x)  $\cos \theta \cos \phi$ .
- 23. Given  $\tan \theta = \frac{7}{24}$ ,  $\cos \phi = -\frac{40}{41}$ . Find all possible values for the expressions (a)-(x) in the preceding exercise.
- **24.** Find  $\sin 22\frac{1}{2}^{\circ}$ ,  $\cos 22\frac{1}{2}^{\circ}$ ,  $\tan 22\frac{1}{2}^{\circ}$ ,  $\cot 22\frac{1}{2}^{\circ}$  by using the known functions of 45°.
- 25. Find sin 18°.

Solution. Let 
$$\theta = 18^{\circ}$$
; then  $3\theta = 54^{\circ} = 90^{\circ} - 2\theta$ .  
 $\cos 3\theta = \cos(90^{\circ} - 2\theta) = \sin 2\theta$ .

Using exercise 2 above, we get

$$4\cos^2\theta - 3\cos\theta = 2\sin\theta\cos\theta,$$

$$\cos \theta (4 \cos^2 \theta - 2 \sin \theta - 3) = 0.$$

Setting the first factor equal to zero, we get

$$\cos \theta = 0$$
,  $\theta = 90^{\circ} \text{ (not 1S}^{\circ})$ ,

and this value must be discarded. From the second factor we get, after a slight reduction,

$$4\sin^2\theta+2\sin\theta-1=0.$$

This quadratic equation yields

$$\sin\,\theta = \frac{-1 \pm \sqrt{5}}{4} \,.$$

Since  $\sin \theta$  must here be positive, we retain the upper sign only, and write

$$\sin 18^{\circ} = \frac{-1 + \sqrt{5}}{4}$$
.

- 26. Find cos 18°, tan 18°, cot 18°.
- 27. Find sin 36°, cos 36°, tan 36°, cot 36°.
- 28. Find sin 9°, cos 9°.
- 29. Find sin 3°, cos 3°.
- 30. Find sin 6°. cos 6°.
- 31. A flagpole 34 feet high stands on top of a tower 30 feet high. From a certain point in the same horizontal plane with the base of the tower, the angle subtended by the pole is equal to the angle of elevation of the top of the tower. Find the distance from this point to the base of the tower.
- 32. A tree stands on the edge of a small lake. A man stands on the opposite side of the lake, his eye being at a height h above the foot of the tree. He finds that the angle of elevation of the top of the tree is E and the angle of depression of its reflection in the water is D. Show that the height of the tree is

$$\frac{h\sin(D+E)}{\sin(D-E)}.$$

Fig. 64

33. The radius of the circle in Fig. 64 is 1. Consequently MP

=  $\sin \theta$ ,  $OM = \cos \theta$ . Prove that  $AQP = \frac{1}{2}\theta$ , and show how to obtain the functions of  $4\theta$  from the figure.

34. Draw a similar figure for the case in which  $\theta$  is obtuse, and show that the same method applies.

Prove that if A, B, C are the angles of a triangle, then

- 35.  $\sin A + \sin B + \sin C = 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \cos \frac{1}{2}C$ .
- **36.**  $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C$ .
- 37.  $\tan A + \tan B + \tan C = \tan A \tan B \tan C$
- 38.  $\sin A + \sin B \sin C = 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \cos \frac{1}{2}C$ .
- 39.  $\cos A + \cos B \cos C = -1 + 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \sin \frac{1}{2}C$ .
- 40.  $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$ .
- 41.  $\cos 2A + \cos 2B + \cos 2C = -1 4 \cos A \cos B \cos C$ .
- 42.  $\sin 2A + \sin 2B \sin 2C = 4 \cos A \cos B \sin C$ .
- 43.  $\cos 2A + \cos 2B \cos 2C = 1 4 \sin A \sin B \cos C$ .
- **44.**  $\sin^2 A + \sin^2 B + \sin^2 C = 2(1 + \cos A \cos B \cos C)$ .
- **45.**  $\cos^2 A + \cos^2 B + \cos^2 C = 1 2 \cos A \cos B \cos C$ .
- **46.**  $\sin^2 A + \sin^2 B \sin^2 C = 2 \sin A \sin B \cos C$ .
- 47.  $\cos^2 A + \cos^2 B \cos^2 C = 1 2 \sin A \sin B \cos C$ .
- 48.  $\sin^2 \frac{1}{2}A + \sin^2 \frac{1}{2}B + \sin^2 \frac{1}{2}C = 1 2\sin \frac{1}{2}A\sin \frac{1}{2}B\sin \frac{1}{2}C$ .
- **49.**  $\sin^2 \frac{1}{2}A + \sin^2 \frac{1}{2}B \sin^2 \frac{1}{2}C = 1 2\cos \frac{1}{2}A\cos \frac{1}{2}B\sin \frac{1}{2}C$ .
- **50.**  $\cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C = \cot \frac{1}{2}A \cot \frac{1}{2}B \cot \frac{1}{2}C$ .
- 51.  $\tan \frac{1}{2}A \tan \frac{1}{2}B + \tan \frac{1}{2}B \tan \frac{1}{2}C + \tan \frac{1}{2}C \tan \frac{1}{2}A = 1$ .
- 52.  $\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$ .
- 53.  $\sin(B + C A) + \sin(C + A B) + \sin(A + B C)$ =  $4 \sin A \sin B \sin C$ .
- 54.  $\sin(B+2C) + \sin(C+2A) + \sin(A+2B)$ =  $4 \sin \frac{1}{2}(B-C) \sin \frac{1}{2}(C-A) \sin \frac{1}{2}(A-B)$ .
- 55.  $\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C.$
- 56. Prove the law of tangents by using the law of sines and (8) and (9) of section 75.

Suggestion. From the law of sines we get

$$\frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B}.$$

## \*76. Reduction of a cos $\theta \pm b \sin \theta$ .

It is frequently desirable to reduce an expression of the form  $a \cos \theta \pm b \sin \theta$  to the form

$$r \sin(\theta \pm \phi)$$
 or  $r \cos(\theta \pm \phi)$ .

These transformations adapt the expressions to logarithmic computations, and are often of ad-



vantage in solving trigonometric equations. They may be made in the following manner:

 $a\cos\theta + b\sin\theta$ 

$$= \sqrt{a^2 + b^2} \left( \frac{a}{\sqrt{a^2 + b^2}} \cos \theta + \frac{b}{\sqrt{a^2 + b^2}} \sin \theta \right).$$

Let us introduce an angle  $\phi$  such that (see Fig. 65)

$$\cos \phi = \frac{a}{\sqrt{a^2 + b^2}} \qquad \sin \phi = \frac{b}{\sqrt{a^2 + b^2}}$$

Then,

$$a \cos \theta + b \sin \theta = \sqrt{a^2 + b^2} (\cos \theta \cos \phi + \sin \theta \sin \phi)$$
  
=  $\sqrt{a^2 + b^2} \cos(\theta - \phi)$ .

## Example.



Reduce  $3 \cos \theta - 4 \sin \theta$  to the form  $r \cos(\theta + \phi)$ . Solution. Multiply and divide by  $\sqrt{3^2 + 4^2} = 5$ :  $3 \cos \theta - 4 \sin \theta = 5(\frac{3}{5} \cos \theta - \frac{4}{5} \sin \theta)$ . If  $\phi$  is an angle such that (see Fig. 66).

$$\cos \phi = \frac{1}{5}, \quad \sin \phi = \frac{1}{5},$$

then

$$3 \cos \theta - 4 \cos \theta = 5(\cos \theta \cos \phi - \sin \theta \sin \phi)$$
$$= 5 \cos(\theta + \phi).$$

From tables we find  $\phi = 53^{\circ}$  approximately. Therefore,  $3\cos\theta - 4\sin\theta = 5\cos(\theta + 53^{\circ})$ .

#### EXERCISES VIII. G

- 1. Reduce  $\sin \theta \cos \theta$  to the form  $r \sin(\theta \phi)$ , and find the angle  $\phi$ .
- 2. Reduce  $\sin \theta + 2 \cos \theta$  to the form  $r \sin(\theta + \phi)$ , and find  $\phi$ .

Reduce each of the following expressions to one of the forms  $r\cos(\theta \pm \phi)$ ,  $r\sin(\theta \pm \phi)$ , and find the value of  $\phi$ .

3.  $12\cos\theta - 5\sin\theta$ .

4.  $3 \sin \theta - 2 \cos \theta$ .

**5.**  $\cos \theta + \sqrt{3} \sin \theta$ .

6.  $\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta$ .

7.  $\cos \theta + \sin \theta$ .

8.  $0.4 \cos \theta + 1.5 \sin \theta$ .

9.  $0.3642 \cos \theta - 1.2476 \sin \theta$ .

Suggestion. Use logarithms.

10. Given  $3 \sin \theta - 4 \cos \theta = 2$ . Reduce to the form  $r \sin(\theta - \phi) = 2$ . in which r and  $\phi$  are known. Find  $\sin(\theta - \phi)$ , and, from tables,  $\theta - \phi$ . Finally, find a value of  $\theta$  which satisfies the original equation.

## CHAPTER IX

# Radian Measure

## 77. Radian

One radian is the measure of an angle which, if its vertex

is placed at the center of a circle, intercepts on the circumference an arc equal in length to the radius. It may be abbreviated 1 rad. or 1<sup>(r)</sup>. This unit of measurement of angle is important in deriving and in simplifying certain formulas in calculus and higher mathematics. Radian measure is sometimes called circular measure of angles.



110.01

## 78. Relation between radian and degree.

The relation between the radian and the degree may be found as follows: The circumference of a circle is  $2\pi$  times the radius. Therefore, the number of radians in  $360^{\circ}$  is  $2\pi$ . That is,  $360^{\circ} = 2\pi^{(r)}$ . If we divide this equation by 2 we get

$$180^{\circ} = \pi^{(r)} = 3.1416^{(r)}. \tag{1}$$

This is a convenient relation to remember when reducing degrees to radians or radians to degrees.

Frequently used are the following angles:

$$90^{\circ} = \frac{r^{(r)}}{5}$$
  $60^{\circ} = \frac{\pi^{(r)}}{5}$   $45^{\circ} = \frac{\pi^{(r)}}{4}$   $30^{\circ}$ 

From (1) we get

$$1^{z} = \frac{\pi^{r}}{180} = 0.017453^{(r)},$$

also

$$1^{\circ} = \frac{180^{\circ}}{1} = 57.29578^{\circ} = 57^{\circ} 17' 44.8''.$$

#### Example 1.

Convert 37° 43′ 26" to radians.

Solution. 
$$37^{\circ} 43' 26'' = 37.7239^{\circ}$$
  
=  $37.7239 \times 0.017453^{(\circ)} = 0.6584^{(\circ)}$ .

#### Example 2.

Convert 2.25 radians to degrees, minutes, and seconds.

Solution. 
$$2.25^{(r)} = 2.25 \times 57.29578^{\circ}$$
  
=  $128.9155^{\circ} = 128^{\circ} 54' 56''$ .

If tables for converting degrees to radians (e.g., Table IV of the Macmillan Logarithmic and Trigonometric Tables) and radians to degrees (e.g., Table Va of the Macmillan Tables) are available, problems such as the foregoing are considerably simplified.

#### EXERCISES IX. A

- 1. Reduce the following angles to radians, giving the results in terms of  $\pi$ :

- (a) 10°, (b) 35°, (c) 48°, (d) 70°, (e) 150°, (f) 280°, (g) 18°, (h) 400°, (i) 10° 30′, (j) 24° 45′, (k) 480° 45′, (l) 17° 20′.
- 2. Reduce the following angles to radians, giving the results in decimal form: (a) 15°, (b) 10° 17', (c) 10° 17' 22", (d) 18° 24' 16", (e) 370° 15' 8", (f) 142° 25' 30", (g) 67° 43' 52", (h) 21° 21' 21", (i) 2° 3' 49".

- 3. Express the following angles in degrees. (When it is quite clear that radian measure is to be used, the symbol for radians

is commonly omitted. Thus, the angle  $\pi$  radians may be written simply  $\pi$ .)

(a) 
$$\frac{\pi}{10}$$
, (b)

(b) 
$$\frac{\pi}{12}$$
.

(e) 
$$\frac{\pi}{13}$$
.

(d) 
$$\frac{\pi}{18}$$
,

(e) 
$$\frac{2\pi}{3}$$
,

(f) 
$$\frac{3\pi}{4}$$
.

$$(\mathbf{g}) \frac{3\pi}{2}$$
.

(h) 
$$\frac{5\pi}{6}$$
,

(i) 
$$\frac{\pi}{5}$$
,

(j) 
$$\frac{2\pi}{5}$$
,

(k) 
$$\frac{3\pi}{5}$$
.

(l) 
$$\frac{4\pi}{5}$$
,

(m) 
$$\frac{3\pi}{10}$$
 ·

(n) 
$$\frac{7\pi}{15}$$
,

(o) 
$$\frac{5\pi}{12}$$
.

(p) 
$$\frac{7\pi}{9}$$
.

4. Express the following angles in degrees, minutes, and seconds:

(a) 
$$\frac{\pi}{8}$$
.

(b) 
$$\frac{\pi}{50}$$
.

(e) 
$$\frac{\pi}{150}$$
.

(d) 
$$\frac{\pi}{7}$$
,

(e) 
$$\frac{2\pi}{11}$$
,

(f) 
$$\frac{\pi}{40}$$
,

(g) 
$$\frac{5\pi}{24}$$
.

(h) 
$$\frac{\pi}{16}$$
,

(i) 
$$\frac{\pi}{25}$$
,

(j) 
$$\frac{11\pi}{50}$$
,

(k) 
$$\frac{3\pi}{29}$$
.

(l) 
$$\frac{\pi}{18}$$
.

5. Reduce to degrees, minutes, and seconds:

(a) 
$$\frac{1}{2}^{(r)}$$
,

(b) 
$$\frac{2}{3}$$
(r),

$$(e) = \frac{2}{7}$$
,

(h) 0.1233\pi'().

6. One angle of a triangle is 25°, another angle is 1.3 radians. Find the third angle in degrees, and also in radians.

7. Find, in radians, the angle between the hands of a clock at (a) 2 o'clock, (b) 5 o'clock, (c) 7:30, (d) 5:15.

8. Through how many radians does the hour hand of a watch turn in (a) 5 hours? (b) 4 hour? (c) 10 minutes? (d) 3 days? (e) between 8:00 a.m. and 5:30 p.m.?

9. Through how many radians does the earth turn in (a) 1 hour? (b) 1 minute? (c) 3 hours and 20 minutes? (d) 3 days? (e) between 8:00 a.m. and 5:30 p.m.?

19. An automobile wheel is 2 feet in diameter. Through how many radians does it turn while the automobile travels 1 mile?

11. Find the value of each of the following functions, using tables if necessary:

(a) 
$$\sin \frac{\pi}{3}$$
,

(b) 
$$\cos \frac{2\pi}{2}$$
:

(c) 
$$\tan^{5\pi}$$

(d) 
$$\cot\left(-\frac{\pi}{6}\right)$$
,

(e) 
$$\sec \frac{3\pi}{4}$$
,

(f) 
$$\operatorname{esc} \frac{5\pi}{6}$$
,

| $\langle g \rangle \sin rac{3\pi}{2}$   | $\langle \mathrm{h} \rangle \cos rac{2\pi}{9}$ . | (i) $\tan \frac{21\pi}{20}$ , |
|------------------------------------------|---------------------------------------------------|-------------------------------|
| $ij = e\alpha \frac{6\pi}{7}$ .          | $(k) \sin \frac{12\pi}{11}.$                      | (l) $\cos \frac{\pi}{13}$ ,   |
| (m) sin 1'r.                             | (n) $\cos 2.3^{(r)}$ ,                            | (o) $\tan(-5.2)^{(r)}$ ,      |
| $\langle p \rangle = \cot 0.435^{(c)}$ . | (q) $\sin 0.01^{(r)}$ ,                           | (r) cos 100 <sup>(r)</sup> .  |

## 79. Relation between arc and angle.

Suppose that the arc CD in Fig. 68 subtends a central angle of  $\theta$  radians, and that the arc AB subtends a central angle of 1 radian. Since central angles have the same ratio as their intercepted arcs,  $\theta/1 = s/r$ , or

$$\theta = \frac{s}{r}, \qquad s = r\theta. \tag{1}$$

That is,

 $arc = radius \times angle$  (in radians).



Example.

It is readily seen that for a unit circle (that is, a circle whose radius is 1), a central angle expressed in radians is numerically equal to the intercepted arc expressed in linear units. For example, in a circle having a radius of 1 inch, a central angle of 2.3 radians will intercept an arc of 2.3 inches.

What is the length of the arc intercepted by a central angle of 95° in a circle whose radius is 12 feet?

Solution. First reduce the angle to radians:

$$\theta = 95 \times \frac{\pi}{180} = 1.66.$$

From (1), 
$$s = r\theta = 12 \times 1.66 = 19.9 \text{ ft.}$$

## \*80. Angular velocity.

If a wheel turns completely round thirty times in a second, we say that it is rotating at the rate of thirty revo-

lutions per second, abbreviated r.p.s. (Similarly, the expression "revolutions per minute" is abbreviated r.p.m.) A spoke of this wheel will turn through  $360^{\circ}$  in each rotation, or through  $30 \times 360^{\circ} = 10800^{\circ}$  per second. Since the spoke turns through  $2\pi$  radians in each rotation, in each second it turns through  $30 \times 2\pi$  radians, or  $60\pi$  radians. The wheel is said to have an angular velocity of 30 r.p.s., or  $10800^{\circ}$  per second, or  $60\pi$  radians per second.

Suppose now that the wheel has a radius of 2 feet. When the wheel has turned through an angle of 1 radian, a point on the circumference will have moved through 2 feet. For any number of radians through which the spoke turns, a point on the circumference travels twice that number of feet. But the wheel turns through  $60\pi$  radians per second. Hence, a point on the circumference moves through  $60\pi$  × 2 feet per second, or it has a linear velocity of  $120\pi$  feet per second.

In general, let us suppose that a line OP, of length r, is rotating about the point O with a constant angular velocity. If it turns through an angle  $\theta$  in t units of time, the angular velocity  $\omega$  is given by the formula

$$\omega = \frac{\theta}{t}$$
,

from which we get

$$\theta = \omega t. \tag{1}$$

Since the length of OP is r, we find from (1) of the preceding section that the arc through which P moves while OP turns through  $\theta$  radians is

$$s = r\theta = r\omega t. \tag{2}$$

But if v is the velocity of P in linear units per unit of time, we have s = vt, that is,

$$vt = r\omega t$$
.

Dividing by t, we obtain the formula

$$v = \gamma \omega.$$
 (3)

## Example.

A rotating wheel has a radius of 2 feet 6 inches. A point on the rim of the wheel moves 10 yards in 3 seconds. Find the angular velocity of the wheel.

SOLUTION. The linear velocity of the point on the rim is

$$\frac{10}{3}$$
 yd. per sec. =  $\frac{30}{3}$  ft. per sec. = 10 ft. per sec.

(It should be noted that like quantities must be reduced to the same unit.) Substituting v = 10, r = 2.5 in (3), we get

$$10 = 2.5\omega$$
,  $\omega = \frac{10}{2.5} = 4^{(r)}$  per sec.

#### EXERCISES IX. B

- A central angle in a circle of radius 10 inches intercepts an arc of 14 inches. How many radians are there in the angle?
- A circle has a radius of 15 inches. Find, in radians, a central angle subtended by an arc of (a) 25 inches, (b) 1 inch, (c) 2 feet 6 inches.
- An arc of 4 feet 3 inches subtends a central angle of 1.2 radians. Find the radius of the circle.
- 4. Find the length of the arc intercepted by an inscribed angle of 0.35 radian in a circle whose radius is 3 inches.
- 5. The angle between a tangent and a chord is \(\frac{1}{4}\) radian. If the length of the arc subtended by the chord is 5 inches, what is the radius of the circle?
- 6. Find, in radians, the angle between the tangents to a circle at two points whose distance apart, measured on the circumference of the circle, is 350 feet, the radius of the circle being \$00 feet.
- 7. Each of two tangents from an external point to a circle is 3 inches long. The smaller arc which they intercept is 2 radians. Find the radius of the circle.

- A flywheel 1.5 feet in diameter has an angular velocity of 8 radians per second. Find the linear velocity of a point on the rim.
- 9. The wheel of an automobile is 2 feet in diameter. The automobile is traveling at the rate of 30 miles an hour. Find the angular velocity of the wheel in radians per minute.
- 10. A belt travels around two pulleys whose diameters are 10 inches and 4 feet respectively. The larger pulley makes 100 revolutions per minute. Find the angular velocity of the smaller pulley in radians per second.
- 11. An airplane propeller measures 8 feet from tip to tip. It rotates at the rate of 1800 r.p.m. (a) Find its angular velocity in radians per second. (b) Find the linear speed of a point on the tip of one of the blades, assuming that the airplane itself is not in motion.

## \*81. Area of sector and of segment.

A sector of a circle is a portion of the circle bounded by

two radii and their intercepted arc. In plane geometry it is shown that the area of a sector is equal to one-half its arc times the radius of the circle. Thus, the area of the sector OAB in Fig. 69 is given by the formula  $\frac{1}{2}rs$ , s being the length of the arc AB. If the angle  $\theta$  in this figure is expressed in radians, we



have  $s = r\theta$ , and, substituting this in the expression  $\frac{1}{2}rs$ , we have

area of sector = 
$$\frac{1}{2}r^2\theta$$
 ( $\theta$  in radians). (1)

A segment of a circle is a portion of the circle bounded by an arc and its chord. The area of the sector bounded by arc AB and chord AB in Fig. 69 is obviously equal to the area of the sector AOB minus the area of the triangle AOB. But the area of the triangle is equal to  $\frac{1}{2}r^2 \sin \theta$ . (See section 51.) Thus,

area of segment = 
$$\frac{1}{2}r^2(\theta - \sin \theta)$$
 ( $\theta$  in radians). (2)

#### EXERCISES IX. C

- Find the area of a sector having an angle of 0.75 radian in a circle whose radius is 6 inches. Find the area of the corresponding segment.
- 2. The perimeter of a circular sector, whose angle is 1.5 radians, is 14 inches. Find the radius of the circle.
- The area of a sector of a circle, whose radius is 15 inches, is 135 square inches. Find the angle of the sector.
- 4. The area of a sector of a circle is 705.6 square centimeters. If the angle of the sector is 0.45 radian, what is the radius of the circle?
- 5. The central angle subtended by the arc of a segment of a circle is 1.3 radians. The area of the segment is 17 square inches. Find the radius of the circle.
- **6.** A chord of 0.75 foot subtends an arc of 0.75 radian. Find the area of the segment bounded by the chord and the arc.
- A segment of height 3 inches (distance from center of chord to center of arc) has an arc of <sup>1</sup>/<sub>3</sub> radian. Find the area of the segment.
- 8. The perimeter of a segment of a circle is 22 inches. The arc is 2 radians. What is the area of the segment?
- 9. A right circular cone is made by cutting out a sector, whose angle is 1.2 radians, from a circular piece of paper of radius 5 inches, and then placing the cut edges of the remaining portion together. Find (a) the lateral area and (b) the volume of the cone. (Lat. area = ½ circumf. of base × slant ht., Vol. = ½ area of base × alt.)
- 10. Find the area of a 35° sector in a circle whose diameter is 7 inches. Find the area of the corresponding segment.
- 11. A horizontal cylindrical tank has a diameter of 4 feet and a length of 10 feet. It is filled with liquid to a depth of 8 inches. How many gallons of liquid does it contain? (1 gal. = 231 cu. in.)

## \*82. Angles near 0° or 90°.

For angles near 0° or 90° (say between 0° and 3° or between 87° and 90°) interpolation by proportional parts may yield results which are considerably in error.

This difficulty may be remedied, to considerable extent,

by using special tables for such angles (e.g., Table IIIa of the Macmillan Logarithmic and Trigonometric Tables). However, the difficulty may be met in another way, which is also useful for still further refinements even if such special tables are available.



In Fig. 70, AT is tangent to the unit circle with center at O, AP is a chord, angle  $\theta$  is measured in radians. It is evident that, in area,

triangle 
$$AOP < \text{sector } AOP < \text{triangle } AOT.$$
 (1)

But by formula (7) of section 51,

area triangle 
$$AOP = \frac{1}{2} \sin \theta$$
. (2)

By formula (1) of the preceding section,

area sector 
$$AOP = \frac{1}{2}\theta$$
. (3)

Since  $AT = \tan \theta$ ,

area triangle 
$$OAT = \frac{1}{2} \tan \theta$$
. (4)

Substituting (2), (3), (4) in (1), and dividing through by  $\frac{1}{2}$ , we get

$$\sin \theta < \theta < \tan \theta. \tag{5}$$

That is, if a positive acute angle is measured in radians, it will always be greater than its sine and less than its tangent. If we divide (5) by  $\sin \theta$ , we find that

$$1 < \frac{\theta}{\sin \theta} < \sec \theta. \tag{6}$$

Now, as the angle  $\theta$  shrinks in size to 0, sec  $\theta$  approaches the value 1. It is evident, therefore, that as  $\theta$  approaches 0, the

ratio  $\theta \sin \theta$  must also approach 1 as its value. This may be written

$$\lim_{\theta \to 0} \frac{\theta}{\sin \theta} = 1. \tag{7}$$

Similarly, we may divide (5) by  $\tan \theta$ , getting

$$\cos \theta < \frac{\theta}{\tan \theta} < 1. \tag{8}$$

Since  $\cos 0 = 1$ , it follows that

$$\lim_{\theta \to 0} \frac{\sigma}{\tan \theta} = 1. \tag{9}$$

It may be noted that (7) and (9) are equivalent, respectively, to

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1, \qquad \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1. \tag{10}$$

These equations mean that

$$\sin \theta \approx \theta$$
,  $\tan \theta \approx \theta$  ( $\theta$  small), (11)

where the symbol  $\approx$  denotes " is approximately equal to." This may be verified by reference to tables. To illustrate,  $\sin 2^{\circ} = 0.03490$ ,  $\tan 2^{\circ} = 0.03492$ ,  $2^{\circ} = 0.03491^{(r)}$ .

If  $\theta$  is near  $90^{\circ}$  (i.e.,  $\frac{\pi^{(r)}}{2}$ ), we may write  $\theta = \frac{\pi}{2} - \phi$ , and  $\phi$  will be a small angle. Consequently,

$$\cos \theta = \cos \left(\frac{\pi}{2} - \phi\right) = \sin \phi \approx \phi = \frac{\pi}{2} - \theta.$$
 (12)

Similarly, 
$$\cot \theta \approx \frac{\pi}{2} - \theta.$$
 (13)

We may summarize as follows:

If  $\theta$  is near 0,

$$\sin \theta \approx \tan \theta \approx \theta^{r},$$
 $\cot \theta \approx \csc \theta \approx \frac{1}{\theta^{r}},$ 
(14)

 $\cos \theta$  and  $\sec \theta$  may be found from tables, as usual.

If  $\theta$  is near  $90^{\circ}$  (i.e.,  $\frac{\pi^{(x)}}{5}$ ),

$$\cos \theta \approx \cot \theta \approx \frac{\pi}{2} - \theta^{r},$$

$$\tan \theta \approx \sec \theta \approx \frac{1}{\frac{\pi}{2} - \theta^{r}},$$
(15)

 $\sin \theta$  and  $\csc \theta$  may be found from tables, as usual.

## Example 1.

Find log tan 2' 54".

Solution.  $2'54'' = 0.048333^{\circ} = (0.048333 \times 0.017453)^{(r)}$ .

$$\begin{array}{l} \log 0.048333 = 8.68425 - 10 \\ \log 0.017453 = 8.24187 - 10 \\ \log \tan 2' 54'' = \overline{6.92612 - 10} \end{array}$$

This agrees exactly with the value found in tables giving values for every second.

## Example 2.

Find the angle subtended of 1 mile.



Solution. Strictly speak-

ing, the yardstick would be the base of an isosceles triangle whose altitude is 1 mile, or 1760 yards. We could thus find (see Fig. 71)

$$\tan \tfrac{1}{2}\theta = \frac{0.5}{1760},$$

from which, since  $\tan \frac{1}{2}\theta$  may be replaced by  $\frac{1}{2}\theta$ ,  $\theta$  is readily

obtainable. However, it makes no essential difference if we regard the yardstick as one side of a right triangle of which the other side is 1 mile. Indeed, probably the best way to regard the problem is to think of the yardstick as the arc, rather than the chord, of a circle of radius 1 mile. Any of these methods leads to the approximate equation

$$v - \frac{1}{1760} = 0.0005682^{(r)} = 1'57.2''.$$

A slowly changing function does not determine the angle very definitely. For example, if it is given that  $\log \cos \theta = 9.99990 - 10$ , reference to a five-place table giving the values of the logarithmic functions for every minute, shows that  $\theta$  may have any value from 1° 12′ to 1° 15′ inclusive. Hence we should, if possible, avoid using  $\cos \theta$  if  $\theta$  is near 0, or  $\sin \theta$  if  $\theta$  is near 90°.

#### EXERCISES IX. D

Find the values of the following functions:

- 1. (a) sin 1° 13′ 17″,
  - (b) tan 1° 13′ 17″,
  - (e) cot 1° 13′ 17″.
- 3. (a) log sin 54′ 22″,
  - (b) log tan 54' 22",
  - (c) log cot 54' 22".

- 2. (a) cos 89° 2′ 20″,
  - (b) cot 89° 2′ 20″,
  - (c) tan 89° 2′ 20″.
- 4. (a) log cos 89° 20′ 54″,
  - (b) log cot 89° 20′ 54″,
  - (c) log tan 89° 20′ 54″.
- 5. A railroad is inclined at an angle of 50' with the horizontal. How many feet does it rise in a horizontal distance of 2 miles?
- 6. A highway rises 70 feet in a horizontal distance of 1 mile. What is its angle of inclination?
- 7. If the moon is at a distance of 238860 miles from the earth, and its diameter subtends an angle of 31' 5" at the earth, what is its diameter?
- 8. If the sun is 92,897,000 miles from the earth, and subtends an angle of 31'59" at the earth, what is its diameter?
- 9. At Alpha Centauri, the nearest star to our sun, the distance from the earth to the sun (see preceding exercise) subtends an angle of 0.76". Find the distance from the sun to the star.

- 10. The mean radius of the earth is approximately 3957 miles. It subtends an angle of 8.8" at the sun. Find the distance from the earth to the sun.
- 11. If the mean radius of the earth (see preceding exercise) subtends an angle of 57' 2.6" at the moon, what is the distance from the earth to the moon?

Solve the following triangles:

## \*83. Mil.

A unit of angular measurement used in military science is the mil, which is  $\frac{1}{1000}$  of a right angle, or  $3'\ 22\frac{1}{2}''$ . One degree is  $17\frac{1}{9}$  mils. A mil is approximately equal to one thousandth of a radian (more accurately, 0.000982 radian). Practically, it is the angle subtended by a line of unit length at a distance of 1000 units.

If a line L units in length at a distance, or range, of R units, subtends an angle M (see Fig. 72), then the number of mils in M is given by the approximate formula

$$M = \frac{1000 L}{R} \tag{1}$$

From this we get

$$L \approx 0.001 RM, \qquad R \approx \frac{1000 L}{M}$$
 (2)

The errors resulting from the use of formulas (1) and (2) will be less than 2 per cent provided the angle is not greater than 680 mils (about 38°).

In Fig. 72, L is the base of an isosceles triangle whose vertex angle is M. If, as in Fig. 73, the lengths L and R

are the sides of a right triangle having the acute angle M opposite side L, formulas (1) and (2) still hold. In this



case the error caused by using them will be less than 2 per cent if the angle is not greater than 340 mils (about 19°).

## Example.

Find the angle subtended by an object 8 yards long at a distance of 2000 yards.

Solution. Here L=8, R=2000, and from (1) we find

$$M = \frac{1000 \times 8}{20000} = 4 \text{ mils.}$$

#### EXERCISES IX. E

- An object 20 feet long is 500 feet away. How many mils does it subtend if it is at right angles to the line of sight?
- 2. A tree 250 yards distant subtends an angle of 30 mils. How tall is it?
- 3. A boxcar which is known to be 42 feet long subtends an angle of 20 mils. If it is perpendicular to the line of vision, how far away is it?
- 4. A hill at a distance of 1560 meters subtends an angle of 40 mils. How high is it?
- 5. What angle does a pole 25 feet high subtend at a distance of 100 yards?
- 6. A balloon known to be 150 feet long is directly overhead and subtends an angle of 125 mils. How high is it?
- 7. A hill 50 meters high is 1500 meters away. At what angle with the horizontal must a gun be pointed in order for the projectile just to clear the top of the hill, if an allowance of 10 mils must be made for the fall of the projectile?
- 8. A tree 75 feet high is at a distance of 500 feet from a given point on the ground; 1500 feet farther away is a hill 350 feet

- high. If a line is drawn from the point on the ground through the top of the tree, how far from the top of the hill will it strike?
- 9. A gun is 2500 yards from its target. A shot is fired and the projectile is observed to strike even with the target but 8 mils to the right. By how many yards did it miss the target?
- 10. Change into mils: 10°, 15°, 10′, 10″.
- Change into degrees, minutes, and seconds: 10 mils, 50 mils, 100 mils.

## CHAPTER X

# Graphic Representations of the Trigonometric Functions

## \*84. Line representations of the trigonometric functions.

We shall now show how to represent the trigonometric functions by means of line segments. In so representing



the functions we shall make use of a unit circle, that is, a circle whose radius is 1.

The circles in Fig. 74 are unit circles. In this figure the

initial side of the angle  $\theta$  is, as usual, in coincidence with the positive end of the x-axis; its terminal side is OP, P being the point in which the terminal side intersects the unit circle. Four different values of  $\theta$  are shown, one in each of the four quadrants. In each case MP is drawn perpendicular to the x-axis, and the lines at A and B are tangent to the circle. (Points A and B are the intersections of the circle with the positive ends of the x- and y-axes respectively.)

Referring to the figure, we see that for  $\theta$  in any quadrant,

$$\sin \theta = \frac{MP}{OP} = \frac{MP}{1} = MP,$$
$$\cos \theta = \frac{OM}{OP} = \frac{OM}{1} = OM.$$

The signs of these functions are determined by the directions of the segments MP and OP. The segment MP will be regarded as positive if the direction from M to P is upward, as negative if this direction is downward. The segment OM will be regarded as positive if the direction from O to M is to the right, as negative if this direction is to the left.

In order to complete this scheme of representing the functions, we must write the remaining functions as ratios in which the denominator is 1. This is accomplished by the selection of similar right triangles. Moreover, we wish to select the line segments which represent the functions so that they will have the proper signs.

To represent the tangent we note that

$$\tan \theta = \frac{MP}{OM} = \frac{AT}{OA} = \frac{AT}{A} = AT.$$

It is readily proved that the right triangles MOP and BOC are similar, and it follows that

$$\cot \theta = \frac{OM}{MP} = \frac{BC}{OB} = \frac{BC}{DB} = BC.$$

The conventions regarding signs, as stated above, will apply to the segments AT and BC.

The secant and the cosecant are measured along the terminal side of the angle. We shall specify that when they are measured in the same direction as the terminal line, that is, from the origin out, they are positive, and when measured in the reverse direction they are negative. (Cf. section 72.) Then, from similar triangles, we have

$$\sec \theta = \frac{OP}{OM} = \frac{OT}{OA} = \frac{OT}{1} = OT,$$

$$\csc \theta = \frac{OP}{MP} = \frac{OC}{OR} = \frac{OC}{1} = OC.$$

It should be noted that the functions are not lines. They are ratios, and therefore abstract numbers. The values of the functions are given by the measures of the lengths of the lines (i.e., line segments) in terms of the radius as a unit. The use of the circle explains why the trigonometric functions are sometimes called circular functions. It also explains the origin of the terms "tangent" and "secant."

Certain relations connecting the functions can be proved very readily from Fig. 74. For example,

$$\sin^2 \theta + \cos^2 \theta = 1$$
,  $1 + \tan^2 \theta = \sec^2 \theta$ ,  $1 + \cot^2 \theta = \csc^2 \theta$ .

## 85. Graph of the sine.

A study of Fig. 74 shows that for an angle of  $0^{\circ}$  the line MP, representing the sine, disappears; that is,  $\sin 0^{\circ} = 0$ . As the angle increases from  $0^{\circ}$ , the sine increases, until at  $90^{\circ}$  it reaches its maximum value of 1; as the angle increases further, the value of the sine decreases to 0 at  $180^{\circ}$ , and to -1 at  $270^{\circ}$ . It has now reached its minimum value, and as the angle increases beyond  $270^{\circ}$  the sine increases from -1 to 0, which value it reaches when the angle reaches  $360^{\circ}$ .

This variation in value of the sine is shown in Fig. 75,

which is the graph of  $y = \sin x$ . The values 1 and -1 are marked on the y-axis, and any convenient unit is chosen on the x-axis. The information of the preceding paragraph is supplemented by using tables to obtain values of y for a number of values of x, so that the points can be plotted



Frg. 75

accurately. If a sufficient number of points are taken, a smooth curve can be drawn through them.

If tables are not conveniently at hand, the values of the sine for the angles 0°, 30°, 45°, 60°, 90°, 120°, and so on, can readily be calculated without tables. These values are listed in the accompanying table. From them the sine curve can often be plotted with sufficient accuracy.

These same angles are useful in constructing graphs of the other functions. (See following sections.)

If the angle increases beyond 360°, the sine runs through the same values again. Thus, the part of the graph between 0° and 360° is a complete pattern of the entire curve, which extends indefinitely both to the right and to the left. For this reason, 360° is called the period of the sine.

## 86. Graph of the cosine.

The cosine starts with its maximum value of 1 when the angle is  $0^{\circ}$ , decreases to 0 at  $90^{\circ}$ , to -1 at  $180^{\circ}$ , and then increases from this minimum value through 0 at  $270^{\circ}$  to 1



at 360°. The period of the cosine is also 360°. The graph of  $y = \cos x$  is shown in Fig. 76.

## 87. Graphs of the tangent and the cotangent.

In Fig. 74 the value of the tangent is given by the length and the direction of the tangent line AT. Since this length is determined by the point of intersection of the tangent line at A with the terminal side of the angle, at  $0^{\circ}$  the tangent is 0. The tangent increases as the angle increases, until at  $90^{\circ}$  the terminal side is parallel to the tangent line, and there can be no point of intersection. That is, there is no value of the tangent for an angle of  $90^{\circ}$ . However, since the value of the tangent for an angle just less than  $90^{\circ}$  is

very great, and since the tangent is increasing as the angle increases, it is customary to say that the tangent approaches infinity  $(\infty)$  as the angle approaches 90°. (See section 38.

In the second quadrant the terminal line must be prolonged backward to intersect the tangent line. This means that AT extends downward, and that the tangent is negative. As the angle increases beyond  $90^\circ$ , the tangent, which



has just extended indefinitely far in a positive direction, now begins at an indefinitely great distance in the negative direction.\*

Thus, the tangent does not have a continuous change in value; there is a break at 90°. It increases from very large negative values, for values of the angle just greater than

<sup>\*</sup>When  $\theta$  approaches 90° from below (i.e., in the first quadrant), the limit of  $\tan \theta$  is  $+\infty$ ; when  $\theta$  approaches 90° from above (i.e., in the second quadrant), the limit of  $\tan \theta$  is  $-\infty$ .

90°, to 0 at 180°. As the angle increases through the third quadrant, the terminal line must be prolonged backward, and the values are the same as in the first quadrant. As the angle increases from 270° to 360°, the tangent repeats



its values of the second quadrant. The tangent thus passes through a complete cycle of values twice in one complete rotation of the line generating the angle. Its period is consequently 180°.

For a graph of  $y = \tan x$  see Fig. 77.

In like manner, since the length and the direction of the cotangent line are determined by the intersection of the tangent line at B with the terminal side of the angle, the cotangent starts with very large values for very small positive values of the angle, and decreases to 0 at 90°. It continues to decrease through negative values in the second quadrant, these negative values becoming numerically greater and greater as the angle approaches 190°.

angle passes through 180°, the cotangent swings back to very large positive values, and decreases through 0 at 270° to very large negative values as the angle approaches 360°. See Fig. 78. Hence the cotangent also passes through a complete cycle of values twice in one complete rotation of the terminal line, and its period is 180°.

## 88. Graphs of the secant and the cosecant.

The secant starts with the value 1 at  $0^{\circ}$ , increases without bound as the angle approaches  $90^{\circ}$ , and jumps to very



large negative values as the angle passes through  $90^{\circ}$ ; it then increases to -1 at  $180^{\circ}$ , but decreases back through large negative values as the angle approaches  $270^{\circ}$ . As the angle passes through  $270^{\circ}$ , the secant changes sign and comes back to the value 1 at  $360^{\circ}$ . (See Fig. 79.) Its period is  $360^{\circ}$ .

The accept storts with very large values for small

values of the angle, decreases to 1 at 90°, and increases without bound as the angle approaches 180°. It then changes sign and rises from very large negative values to -1 as the angle increases to 270°, but recedes indefinitely



as the angle continues to 360° (See Fig. 80.) Its period is  $360^{\circ}$ .

## 89. Use of radian measure in graphing.

It is sometimes desirable to use radian measure in constructing the graphs of the functions. In such cases the point on the x-axis which previously was marked 360° would be marked  $2\pi$  radians, the point corresponding to  $180^{\circ}$  would be marked  $\pi$ , and so on. Here it is usual to take the same unit on each axis; thus, the point  $\pi$  would be 3.14+ units from the origin.

If the radian is used as the unit of measure of angle, the

period of sine, cosine, secant, and cosecant is  $2\pi$ ; the period of tangent and cotangent is  $\pi$ .

## \*90. Geometric construction of the sine and cosine graphs.

By using a unit circle, we can construct the sine curve as indicated in Fig. 81. In this figure a unit circle is drawn



at the left, and a horizontal line, to be used as the x-axis, is drawn through its center. On this line is marked an origin O, through which is drawn the y-axis. The segment from O to the point marked  $\pi$  is 3.1416 units long; that is, it is equal in length to the semicircumference. The distance from O to the point marked  $\pi$  6 is equal to the arc of the circle from the point of its intersection with the x-axis to the point marked  $\pi$ , 6, and so on. The method by which we obtain the ordinate corresponding to a given abscissa is evident from the figure.

The corresponding method of constructing the graph of the cosine curve is left as an exercise for the student.

#### EXERCISES X. A

Plot the following curves:

| 1. $y = 2$        | $2 \sin x$ .        | 2.  | $y=2\cos x$ .               | 3.  | y = | $\frac{1}{2}\sin x$ .     |
|-------------------|---------------------|-----|-----------------------------|-----|-----|---------------------------|
| <b>4.</b> $y = s$ | $\sin 2x$ .         | 5.  | $y=\sin\tfrac{1}{2}x.$      | 6.  | y = | $\cos \frac{1}{2}x$ .     |
| 7. $y = e^{-x}$   | ot $\frac{1}{2}x$ . | 8.  | $y = \sin 3x$ .             | 9.  | y = | $\tan 2x$ .               |
| 10. $y = s$       | in $\pi x$ .        | 11. | $y = \cos \frac{\pi x}{2}.$ | 12. | y = | $\sin \frac{2\pi x}{3}$ . |

13. Plot  $y = \sin x \cos x$ .

Suggestion.  $\sin x \cos x = \frac{1}{3} \sin 2x$ .

- 14. In what points will a line one unit above the x-axis intersect the curve  $y = \tan x$ ?
- 15. If the graphs of  $y = \sin x$  and  $y = \cos x$  are plotted on the same set of axes, for what values of x will they intersect?
- 16. Plot  $y = \sin\left(x + \frac{\pi}{2}\right)$  and compare with  $y = \cos x$ .
- 17. Plot  $y = \cos\left(\frac{\pi}{2} x\right)$  and compare with  $y = \sin x$ .
- 18. Draw the graph of  $y = \cos\left(x \frac{\pi}{4}\right)$ .
- 19. Draw the graph of  $y = \sin(x \frac{1}{2})$ . Here radian measure is understood.
- **20.** Given the equation  $y = \sin x + \cos x$ .
  - (a) Plot the curve by plotting the sine curve and the cosine curve separately and adding their ordinates geometrically (for example, by using dividers).
  - (b) Plot the curve by first reducing  $\sin x + \cos x$  to the form  $r \sin(x + \phi)$ .
- 21. Draw the graph of  $y = \sin x \cos x$ .
- 22. Plot  $y = x + \sin x$ , using radian measure.
- 23. Find the periods of the curves in exercises 1–12.

#### CHAPTER XI

# Inverse Trigonometric Functions

## 91. Inverse trigonometric functions.

If  $x = y^2$ , then y is the positive or negative square root of x; in symbols,  $y = \pm \sqrt{x}$ . Similarly, if  $x = \sin y$ , then y is an angle whose sine is x; in abbreviated form we write

$$\arcsin x.$$
 (1)

The right-hand member of this equation may be read "arc sine x" or "an angle whose sine is x," it being recalled that if a central angle of a unit circle is measured in radians, the intercepted arc is equal to the angle. The notation

$$y = \sin^{-1} x \tag{2}$$

is also used. The symbol  $\sin^{-1} x$  may be read "inverse sine of x" or "antisine of x" or, to emphasize its meaning, "an angle whose sine is x." It should be carefully noted that the -1 is not an exponent. If we wish to have -1 as the exponent of a trigonometric function such as  $\sin x$ , we must write  $(\sin x)^{-1}$ , which means  $1 \sin x$ .

The function  $\arcsin x$ , or  $\sin^{-1} x$ , is called the inverse sine function of x. The other inverse trigonometric functions are

| arccos x | or            | $\cos^{-1} x$        |
|----------|---------------|----------------------|
| arctan x | $\mathbf{or}$ | $tan^{-1} x$         |
| arccot x | or            | cot <sup>-1</sup> x, |
| arcsec x | or            | sec-1 x,             |
| arcese x | or            | csc-1 x.             |

### 92. Principal values.

An inverse trigonometric function, such as  $\arcsin x$ , has infinitely many values corresponding to each value of x. Consider, for example,  $\arcsin \frac{1}{2}$ . There are two angles less than 360° whose sine is  $\frac{1}{2}$ , namely 30° and 150°. Any angle obtained from either of these by adding or subtracting a multiple of 360° also has its sine equal to  $\frac{1}{2}$ . Therefore we may write

$$\arcsin \frac{1}{2} = 30^{\circ} + n \cdot 360^{\circ}$$
 or  $150^{\circ} + n \cdot 360^{\circ}$ ;  $n = 0, \pm 1, \pm 2, \cdot \cdot \cdot$ , (1)

or, if we use radian measure, which is usually more desirable in dealing with the inverse functions,

$$\arcsin \frac{1}{2} = \frac{\pi}{6} + 2n\pi$$
 or  $\frac{5\pi}{6} + 2n\pi$ ;  $n = 0, \pm 1, \pm 2, \cdots$  (2)

The principal value of  $\arcsin x$ , which will be denoted by Arcsin x or  $\sin^{-1}x$ , is that value between  $-\pi/2$  and  $\pi/2$  inclusive. Thus, the principal value of  $\arcsin \frac{1}{2}$  is  $\pi/6$ . If the principal value of  $\arcsin x$  is  $\theta$ , then all possible values are contained in the two sets

$$\theta + 2n\pi$$
,  $\pi - \theta + 2n\pi$ ;  $n = 0, \pm 1, \pm 2, \cdots$  (3)

These two sets may be grouped together by the formula

$$n\pi + (-1)^n\theta;$$
  $n = 0, \pm 1, \pm 2, \cdot \cdot \cdot$  (4)

The notation for the principal values of the other inverse trigonometric functions is like that for the inverse sine, namely, Arccos x or  $Cos^{-1}x$ , Arctan x or  $Tan^{-1}x$ , etc.

The principal values of the inverse functions are defined as follows. That is, the principal value is that value in the interval specified.

$$-1 \le x \le 1, \qquad -\frac{\pi}{2} \le \operatorname{Aresin} x \le \frac{\pi}{2},$$

$$-x < x < x, \qquad -\frac{\pi}{2} < \operatorname{Aresin} x < \frac{\pi}{2},$$

$$-1 \le x \le 1, \qquad 0 \le \operatorname{Arecot} x \le \pi,$$

$$-x < x < x, \qquad 0 < \operatorname{Arecot} x < \pi,$$

$$x \ge 1, \qquad 0 \le \operatorname{Aresec} x < \frac{\pi}{2},$$

$$x \le -1, \qquad -\pi \le \operatorname{Aresec} x < \frac{\pi}{2},$$

$$x \le 1, \qquad 0 < \operatorname{Aresec} x < \frac{\pi}{2},$$

$$x \le 1, \qquad 0 < \operatorname{Aresec} x < \frac{\pi}{2},$$

$$x \le 1, \qquad 0 < \operatorname{Aresec} x < \frac{\pi}{2},$$

Note. Other definitions of the principal values of the inverse trigonometric functions for negative values of x are sometimes given. However, the foregoing definitions are the most convenient from the standpoint of calculus.

If the principal value of an inverse trigonometric function is  $\theta$ , then all values of the inverse sine or of the inverse cosecant are given by (3) or (4). All values of the inverse cosine or of the inverse secant are given by

$$2n\pi \pm \theta; \qquad n = 0, \pm 1, \pm 2, \cdots. \tag{5}$$

All values of the inverse tangent or of the inverse cotangent are given by

$$\theta + n\pi; \qquad n = 0, \pm 1, \pm 2, \cdot \cdot \cdot. \tag{6}$$

## 93. Graphs of the inverse trigonometric functions.

The graph of the equation

$$y = \arcsin x, \tag{7}$$

in which y is expressed in radians, is given in Fig. 82. The principal values of the function are indicated by the heavier

part of the curve, which constitutes the principal branch of the curve. It is clear that this curve is also the graph



of the equation  $x = \sin y$ , which is merely the other form of writing (7).

The graphs of the other inverse functions are shown in

Figs. 83-87. The principal branch in each case is indicated by the heavier part of the curve.



Fig. 84



Fig. 85



Fig. 86



Fig. 87

#### EXERCISES XI. A

1. Find aresin √3

Solution. Let 
$$\theta = \arcsin \frac{\sqrt{3}}{2}$$
. Then  $\sin \theta = \frac{\sqrt{3}}{2}$  and the principal value of  $\theta$  is  $60^\circ$  or  $\pi/3$ . Therefore, by  $\langle 4 \rangle$ ,

$$\theta = n\pi + (-1)^n \frac{\pi}{3} \cdot$$

Find the principal values, and also the general values. of the following:

- 2. arcsin 1.
- **3.**  $\operatorname{arccos}\left(-\frac{\sqrt{2}}{2}\right)$ . **4.**  $\operatorname{arcsin} 0$ .
- 5. arccos 0.
- 6. arccot  $\frac{\sqrt{3}}{3}$  7. arctan 1.

- 8. arceses \(\sigma\).
- 9.  $\arctan(-\sqrt{3})$ . 10.  $\arcsin(-\frac{\sqrt{3}}{2})$ .

Find, by using tables, the principal values, and also the general values of

- 11. arcsin 0.23770.
- 12. arccos 0.93590.
- 13. arctan 1.4910.
- **14.**  $\arcsin(-0.95510)$ .
- 15.  $\arccos(-0.01020)$ .
- 16.  $\arctan(-12.350)$ .
- 17. arcsin 3.
- 18. arccos 1.
- 19. arctan 2.
- 20. Find cos(arctan 3).

SOLUTION. Let  $\theta = arc$ tan §. Then (see Fig. 88),



$$\tan \theta = \frac{3}{3}, \qquad \cos \theta = \pm \frac{3\sqrt{34}}{34} = \pm \frac{3\sqrt{34}}{34}.$$

Find

| 21. | tan(Arcsin 3).                                 | 22.         | $\sin(\operatorname{Arccos} \frac{7}{25}).$    |
|-----|------------------------------------------------|-------------|------------------------------------------------|
| 23. | $\cos(\arccos\frac{9}{13}).$                   | 24.         | $\sin[\operatorname{Arccos}(-\frac{15}{17})]$  |
| 25. | $\tan[\operatorname{Arccos}(-\frac{15}{17})].$ | 26.         | $\cot[\operatorname{Arcsin}(-\tfrac{12}{13})]$ |
| 27. | $\sin(\arctan\frac{2n}{21}).$                  | 28.         | $\cos(\arcsin\frac{24}{25})$ .                 |
| 29. | $tan[arccos(-\frac{4}{3})].$                   | 30.         | sec(arctan 1.05).                              |
| 31. | $\cot[\arctan(-3)].$                           | 32.         | sec(arccot 2).                                 |
| 33. | $\sin(\arcsin x)$ .                            | 34.         | $\cos(\arcsin x)$ .                            |
| 35. | tan(aresin x).                                 | 36.         | $\sin(\arccos x)$ .                            |
| 37. | $\cot(\arccos x)$ .                            | 38.         | $\tan(\arccos x)$ .                            |
| 39. | $\sin(\arctan x)$ .                            | <b>40.</b>  | $\cos(\arctan x)$ .                            |
| 41. | sec(arctan x).                                 | <b>42</b> . | tan(arcsec x).                                 |

43. Find the value of  $\sin(\arccos \frac{3}{5} + \arctan \frac{12}{5})$ .

Solution. Let 
$$\theta = \arccos \frac{3}{5}$$
,  $\phi = \arctan \frac{12}{5}$ . Then,  $\sin(\arccos \frac{3}{5} + \arctan \frac{12}{5}) = \sin(\theta + \phi)$   
=  $\sin \theta \cos \phi + \cos \theta \sin \phi = (\pm \frac{1}{5})(\pm \frac{1}{5}) + \frac{3}{5}(\pm \frac{12}{5})$ .

Using all possible combinations of signs, we find the following four distinct values for the above expression:

$$\begin{array}{lll} \frac{4}{13} + \frac{3}{6} \frac{5}{6} = \frac{5}{6} \frac{5}{6}, & \frac{4}{13} - & = -\frac{16}{65}, \\ \frac{4}{13} + \frac{3}{6} \frac{5}{6} = \frac{16}{65}, & -\frac{4}{13} - & \end{array}$$

They may be expressed in the more compact form:  $\pm \frac{56}{65}$ ,  $\pm \frac{16}{65}$ . Find the values of

- 44.  $\sin(\arcsin\frac{7}{25} + \arccos\frac{4}{20})$ . 45.  $\cos(\arcsin\frac{1}{27} + \operatorname{Arccot}\frac{9}{20})$ . 46.  $\tan(\arctan\frac{3}{4} + \arctan\frac{8}{15})$ . 47.  $\sin(\arcsin\frac{1}{2} + \arccos\frac{1}{20})$ .
- 48.  $\cos[\arcsin{\frac{8}{17}} + \arcsin(-\frac{3}{5})].$
- **49.**  $\cos\left(2\arcsin\frac{\sqrt{5}}{3}\right)$
- **50.**  $\sin(\frac{1}{2}\arccos\frac{7}{9})$ .
- 51.  $\tan(\arcsin \frac{5}{13} + 2 \arctan \frac{4}{5})$ .
- 52.  $tan[arctan \frac{3}{5} + arcsin(-\frac{3}{5})].$
- 53.  $\sin(\arctan \frac{9}{40} \operatorname{arccot} \frac{21}{20})$ .
- 54.  $\cos[\arccos\frac{25}{7} \arctan(-\frac{15}{8})]$ .

**55.** 
$$\sin 2 \arcsin \frac{3}{2} + \frac{1}{2} \arccos \frac{1}{45}$$
.

**56.** 
$$\cos\left(\frac{1}{2}\arcsin\frac{\sqrt{15}}{8} - 2\arctan\frac{15}{8}\right)$$

**58.** Show that Arctan 
$$\frac{1}{2} + A \operatorname{retan} \frac{1}{3} = \frac{\pi}{4}$$
.

Solution. Let  $\theta = \operatorname{Arctan} \psi, \phi = \operatorname{Arc}$  Then we wish to prove that  $\theta + \phi = \pi/4$ .

$$\tan(\theta + \varphi) = \frac{\tan \theta + \tan \varphi}{1 - \tan \theta \tan \varphi} = 1.$$

From this we might have

$$\theta + \phi = \frac{n}{4} + n\pi; \quad n = 0, \pm 1, \pm 2,$$

However, since we are dealing with principal values,  $\theta$  and  $\phi$  are in the interval from 0 to  $\pi$  2. Therefore  $\theta \pm \phi$  is in the interval from 0 to  $\pi$ , and we must have  $\theta \pm \phi = \pi$  4.

Prove that

59. Arcsin 
$$\frac{3}{5}$$
 - Arctan  $\frac{3}{5}$  = Arctan  $\frac{3}{25}$ .

60. Arctan 
$$\frac{1}{3}$$
 - Arctan  $\frac{1}{4}$  = Arctan  $\frac{1}{12}$ .

61. Arcsin 
$$\frac{3}{3}$$
 + Arcsin  $\frac{5}{17}$  = Arcsin  $\frac{57}{57}$ .

62. Arccos 
$$\frac{4}{5}$$
 + Arccos  $\frac{12}{13}$  = Arccos  $\frac{33}{55}$ .

63. Arccos 
$$\frac{4}{5}$$
 + Arctan  $\frac{3}{5}$  = Arctan  $\frac{27}{11}$ .

**64.** 2 Arctan 
$$\frac{1}{3}$$
 + Arctan  $\frac{1}{7} = \frac{\pi}{4}$ .

**65.** Arccos 
$$\frac{63}{65} + 2$$
 Arctan  $\frac{1}{5} = Arcsin \frac{3}{5}$ .

66. Arctan 
$$\frac{1}{4}$$
 + Arctan  $\frac{2}{3}$  =  $\frac{1}{2}$  Arccos  $\frac{3}{5}$ .

67. Arctan 
$$\frac{1}{2}$$
 + Arctan  $\frac{1}{5}$  + Arctan  $\frac{1}{8}$  =  $\frac{\pi}{4}$ .

**68.** Prove that Arctan  $x + \arctan y = \arctan \frac{x + y}{1 - xy}$  provided the value of the left-hand side is between  $-\pi/2$  and  $\pi/2$ .

Note. In general,

$$\arctan x + \arctan y = \arctan \frac{x+y}{1-xy}$$

if it is understood that the particular values assigned to two of the inverse functions are arbitrary; the particular value of the third is determined when the values of the others are assigned.

Prove that

**69.** Arcsin 
$$x + \operatorname{Arccos} x = \frac{\pi}{2}$$
 for  $-1 \le x \le 1$ .

**70.** Arctan 
$$x + \operatorname{Arccot} x = \frac{\pi}{2}$$
 for all values of  $x$ .

71. 2 Arcsin 
$$x = Arccos(1 - 2x^2)$$
 for  $0 \le x \le 1$ .

72. Arcsin 
$$x = \pm \operatorname{Arccos} \sqrt{1 - x^2}$$
, according as  $x \gtrsim 0$ .

73. Arctan 
$$x = Arcsin \cdot \sqrt{1 + x^2}$$
 for all values of  $x$ .

**74.** Arctan 
$$\frac{2x}{1-x^2}$$
 = Arcsin  $\frac{2x}{1+x^2}$  for  $-1 < x < 1$ .

**75.** Arctan 
$$x + \operatorname{Arccot}(x+1) = \operatorname{Arctan}(x^2 + x + 1)$$
 for all values of  $x$ .

**76.** Find all possible values of  $\arcsin(\cos \theta)$ .

Solution. Let  $\phi = \arcsin(\cos \theta)$ . Then,

$$\sin \phi = \cos \theta = \sin \left(\frac{\pi}{2} - \theta\right).$$

Therefore,

$$\varphi = \begin{cases} \frac{n}{2} - \theta + n \cdot 2\pi, \\ \pi - \left(\frac{\pi}{2} - \theta\right) + n \cdot 2\pi. \end{cases}$$

These two sets of solutions may be expressed in the form

$$\phi = \frac{\pi}{2} \pm \theta + 2n\pi.$$

Find all possible values of the following expressions:

77.  $\arcsin(\sin \theta)$ .

78.  $\arccos(\cos \theta)$ .

79.  $\arctan(\tan \theta)$ .

80.  $\arccos(\sin \theta)$ .

#### CHAPTER XII

# Trigonometric Equations

#### 94. Trigonometric equations.

An equation which is satisfied by certain values only of the unknown quantity or quantities that it contains is called a **conditional equation.** Examples of conditional equations are 2x - 1 = 0, which is satisfied by  $x = \frac{1}{2}$  only:  $x^2 + y^2 = 25$ , which is satisfied by an infinite number of pairs of values of x and y, but certainly not by all pairs of values;  $\sin \theta = \frac{1}{2}$ , which is satisfied by  $\theta = 30^\circ$ ,  $150^\circ$ ,  $390^\circ$ ,  $510^\circ$ , etc., but not by all values of  $\theta$ .

An identical equation, or identity, is an equation which is satisfied by all values (with perhaps some exceptions \*) of the unknown quantity or quantities which it contains. Examples of identities are

$$(x+1)^2 = x^2 + 2x + 1,$$
  

$$\sin^2 \theta + \cos^2 \theta = 1,$$
  

$$\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi.$$

The equations † which we shall consider in this chapter are conditional equations, identities having already been considered in various places throughout the book.

Trigonometric equations require, for a complete solution, general expressions such as (1) or (2) in section 92 of the preceding chapter. However, the equation is sometimes

<sup>\*</sup> For example, the identity  $\tan\theta=\sin\theta\cos\theta$  is not defined for values of  $\theta$ , such as  $\pi$  2, which make the denominator of the right-hand side equal to zero.

<sup>†</sup> It is customary to omit the qualifying adjective, and to refer to a conditional equation merely as an "equation."

considered sufficiently solved if all positive values of the unknown quantity less than 360° are obtained, or if the principal value of an inverse function is obtained.

There is no general method of solving trigonometric equations. If the equation contains a single function of an angle, solve for this function by appropriate algebraic methods, and then find the corresponding values of the angle. If more than one function appears in the equation, the equation should ordinarily be transformed so that it contains only one function, or into a factored form so that each factor contains only one function.

When the equation involves functions of different angles, such as  $\theta$ ,  $2\theta$ ,  $\frac{1}{2}\theta$ ,  $\theta + 45^{\circ}$ , it can sometimes be reduced to an equivalent equation which contains but a single function of a single angle, or to an equivalent equation which can be separated into factors each of which contains a single function of a single angle.

As in algebra, the test for each solution of an equation is to substitute it in the original equation to determine whether it satisfies the equation.

Some of the methods of solving trigonometric equations will be illustrated by examples.

#### Example 1.

Solve the equation  $\sin \theta = \cos \theta$ .

Solution. Divide both sides by  $\cos \theta$ :\*

$$\tan \theta = 1$$
.

The principal value of  $\theta$  is 45°. The two positive values of  $\theta$  less than 360° are 45° and 225°. The complete solution is

$$\theta = 45^{\circ} + n \cdot 180^{\circ}$$
, or  $\theta = \frac{\pi}{4} + n\pi$ ;  $n = 0, \pm 1, \pm 2, \cdots$ 

<sup>\*</sup>When both sides of an equation are divided by a quantity containing the unknown, this quantity should be set equal to zero to obtain possible solutions. If we set  $\cos \theta = 0$ , we get  $\theta = 90^{\circ}$ ,  $270^{\circ}$ ,  $\cdots$ . However, these values are not solutions of the equation  $\sin \theta = \cos \theta$ .

This equation can also be solved by replacing  $\cos \theta$  by  $\pm \sqrt{1 + \sin^2 \theta}$  and squaring both sides:

$$\sin^2 \theta = 1 - \sin^2 \theta,$$
  
 $2 \sin^2 \theta = 1,$   
 $\sin \theta = \pm \frac{1}{\sqrt{2}},$   
 $\theta = 45^\circ, 135^\circ, 225^\circ, 315^\circ, \dots,$ 

If this method is used, all the values obtained must be tested. It will be found that 135° and 315° do not satisfy the original equation. They are extraneous solutions introduced by squaring, and must be discarded.

#### Example 2.

Solve:

$$\cos^2\theta + 2\sin\theta + 1 = 0.$$

Solution. Replacing  $\cos^2 \theta$  by  $1 - \sin^2 \theta$ , we get, after a slight simplification,

$$\sin^2\theta - 2\sin\theta - 2 = 0.$$

This is a quadratic equation in  $\sin \theta$ ; solving it by the quadratic formula, we find

$$= 1 \pm 1.73205 = 2.73205$$
 or  $-0.73205$ .

The first value must be discarded, since the sine cannot be greater than 1; from the second we get two values of  $\theta$  between  $0^{\circ}$  and  $360^{\circ}$ , viz.,

$$\theta = 180^{\circ} + 47^{\circ} 3.5' = 227^{\circ} 3.5',$$
  
 $\theta = 360^{\circ} - 47^{\circ} 3.5' = 312^{\circ} 56.5',$ 

The general solution is given by

$$\theta = \begin{cases} 227^{\circ} & 3.5' + n \cdot 360^{\circ}, \\ 312^{\circ} & 56.5' + n \cdot 360^{\circ}; \end{cases} \quad n = 0, \pm 1, \pm 2,$$

Example 3.

Solve:

$$2\sin^2\theta-\cos 2\theta=0$$

Solution. Replace  $\cos 2\theta$  by  $1-2\sin^2\theta$ , and combine like terms:

$$4 \sin^2 \theta - 1 = 0,$$
  
 $\sin \theta = \pm \frac{1}{2},$   
 $\theta = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}, \cdot \cdot \cdot \cdot$ 

The general solution may be written in the form

$$\theta = n \cdot 180^{\circ} \pm 30^{\circ} = n\pi \pm \frac{\pi}{6}.$$

Equations of the form  $a\cos\theta \pm b\sin\theta = c$  can be solved by reducing the left side to one of the forms  $r\sin(\theta \pm \phi)$ ,  $r\cos(\theta \pm \phi)$ . (See section 76.)

#### Example 4.

Solve:

$$3 \sin \theta - 4 \cos \theta = 1$$
.

Solution. Divide both sides by  $\sqrt{3^2 + (-4)^2} = 5$ :



or

$$\frac{3}{5}\sin\theta - \frac{4}{5}\cos\theta = \frac{1}{5} = 0.2.$$
 (1)

If  $\phi$  is an angle such that (see Fig. 89)

$$\cos \phi = \frac{3}{5}, \qquad \sin \phi = \frac{4}{5}, \tag{2}$$

then (3) takes the form

$$\sin \theta \cos \phi - \cos \theta \sin \phi = 0.2,$$
  
$$\sin(\theta - \phi) = 0.2.$$

But from (2), using tables, we find  $\phi = 53^{\circ} 8'$ . Therefore

$$\sin(\theta - 53^{\circ} 8') = 0.2,$$
  
 $\theta - 53^{\circ} 8' = 11^{\circ} 32', 168^{\circ} 28', \cdots,$   
 $\theta = 64^{\circ} 40', 221^{\circ} 36', \cdots.$ 

This method of solution is particularly valuable if the umbers involved are not simple, since it is adapted to the use of logarithms.

The equation could be solved by making the substitution  $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$  and following the method used for solving radical equations in algebra. (Cf. example I, second method.) This, however, introduces extraneous solutions.

#### EXERCISES XII. A

Solve the following equations:

1. 
$$2\cos^2\theta - \sin^2\theta = 2$$
.

1. 
$$2 \cos^2 \theta - \sin^2 \theta = 2$$
.  
3.  $\tan \theta + \cot \theta = 2$ .

5. 
$$\sec \theta = 4 \csc \theta$$
.

7. 
$$\sin 2\theta + \cos \theta = 0$$
.

9. 
$$\sin^2 \theta = 1 - \sin 2\theta$$
.

11. 
$$\sin 2\theta + 2 \cos 2\theta = 1$$
.

11. 
$$\sin 2\theta + 2 \cos 2\theta = 1$$
  
13.  $\sin 2\theta = \cos 3\theta$ .

2. 
$$2\cos^2\theta + 3\sin\theta = 0$$
.

4. 
$$\sin \theta = 2 \cos \theta$$
.

6. 
$$\cos 2\theta + \sin \theta = 0$$
.

8. 
$$\sin 2\theta = 3 \sin^2 \theta - \cos^2 \theta$$
.  
10.  $\tan^2 \theta = \sin 2\theta$ .

12. 
$$4 \sec^2 2\theta + \tan 2\theta = 7$$
.

Solution  $\sin 2\theta = \cos 3\theta = \sin(90^\circ - 3\theta)$ .

Now if  $\sin \theta = \sin \phi$ , it follows that either

$$\theta = \phi + n \cdot 360^{\circ}$$
 or  $\theta = 180^{\circ} \cdot \phi + n \cdot 360^{\circ}$ .

In the present case, therefore,

$$2\theta = 90^{\circ} - 3\theta + n \cdot 360^{\circ}$$
 or  $2\theta = 180^{\circ} - (90^{\circ} - 3\theta) + n \cdot 360^{\circ}$ .

The first equation yields

$$5\theta = 90^{\circ} + n \cdot 360^{\circ}$$
,  $\theta = 15^{\circ} + n \cdot 72^{\circ}$ .

The second can be reduced to  $\theta = 270^{\circ} \div n \cdot 360^{\circ}$ .

14. 
$$\sin \theta = \cos(\theta + 15^{\circ})$$
.

15. 
$$\sin(\theta + 10^{\circ}) = \cos(\theta - 40^{\circ})$$
.

16. 
$$\sin(15^{\circ} - 2\theta) = \cos(7\theta + 10^{\circ}).$$

17. 
$$\tan 5\theta = \cot 3\theta$$
.

18. 
$$\tan(\theta + 25^\circ) = \cot 2\theta.$$

19. 
$$\tan(2\theta - 1S^{\circ}) = \cot(3\theta + 4S^{\circ}).$$

20. 
$$\cos \theta + \cos 2\theta + \cos 3\theta = 0$$
.

21. 
$$\csc 2\theta + \cot 2\theta = 2$$
.

- 22.  $\sin 2\theta \cos 2\theta = -2 \sin \theta$ .
- **23.**  $\sin \theta + \cos \theta = 1$ .
- **24.**  $5 \cos \theta + 12 \sin \theta = 4$ .
- **25.**  $3264 \sin \theta 5728 \cos \theta = 6018$ .
- **26.**  $0.1723 \cos \theta + 1.3284 \sin \theta = 0.8492$ .
- 27.  $\sqrt{3}\cos\theta \sin\theta = \sqrt{2}$ .
- **28.**  $\csc \theta = \cot \theta + \sqrt{3}$ .
- 29.  $2 \sin^2 \theta + \sin^2 2\theta = 2$ .
- **30.**  $\tan^2 \theta + \cot^2 \theta = \frac{10}{2}$ .
- **31.**  $\cos 3\theta 2 \cos 2\theta + \cos \theta = 0$ .
- 32.  $\sin(\theta + 12^{\circ}) + \sin(\theta 8^{\circ}) = \sin 20^{\circ}$ .
- 33.  $\sin^4 \theta \cos^4 \theta = \frac{7}{3.6}$ .
- **34.**  $\sin^4 \theta + \cos^4 \theta = 1$ .
- **35.**  $\sin 3\theta = \cos 2\theta 1$ .
- 36.  $3 4 \cos^2 \theta = \cos 3\theta$ .
- 37.  $\sin(60^{\circ} \theta) \sin(60^{\circ} + \theta) = \frac{\sqrt{3}}{2}$
- 38.  $tan(\theta + 15^{\circ}) = 3 tan(\theta 15^{\circ}).$
- 39. Solve the following simultaneous equations for r and  $\theta$  in terms of x and y:

$$x = r \cos \theta,$$
  
$$y = r \sin \theta.$$

40. Solve the following simultaneous equations for r,  $\theta$ ,  $\phi$  in terms of x, y, z, restricting r to positive values:

$$x = r \sin \theta \cos \phi,$$
  

$$y = r \sin \theta \sin \phi,$$
  

$$z = r \cos \theta.$$

Solve for  $\theta$  and  $\phi$ :

- **41.**  $\sin \theta \sin \phi = 0.7038$ ,  $\cos \theta \cos \phi = -0.7245$ .
- **42.**  $\cos \theta + \cos \phi + \frac{1}{2} = 0$ ,  $\cos \frac{1}{2}\theta + \frac{1}{2}\cos \phi \frac{1}{4} = 0$ .
- 43.  $\sin \theta = \tan \phi$ ,  $\cos \theta \cos \phi = \frac{1}{3}$ .
- 44.  $\sin \theta + \sin \phi = a$ ,  $\cos \theta + \cos \phi = b$ .
- **45.** Solve the equation  $\cos x = x$  (x in radians).

Solution. Draw the graphs of  $y = \cos x$  and y = x. (See Fig. 90.) The value of x for which the curve and the line inter-

sect is the solution of the equation. According to the graph, this value is approximately x = 0.74, about  $42^{\circ}$  24'.

A more accurate value may be obtained by writing the equation in the form  $\cos x - x = 0$ , and employing interpolation. Tabulating for several val-



ues of x, we get the results shown below.

|         | x      | cos x  | $\cos x - x$ |
|---------|--------|--------|--------------|
| 42° 20′ | .73886 | .73924 | .00038       |
| 42° 21′ | .73915 | .73904 | 00011        |
| 42° 22′ | .73944 | .73885 | 00059        |
| 42° 23′ | .73973 | .73865 | 00108        |
| 42° 24′ | .74002 | .73846 | 00156        |

Since we want the value of  $\cos x - x$  to be zero, the required value of x is between 0.73886 and 0.73915. Using the ordinary methods of interpolation, we have

$$\frac{x - 0.73886}{0.73915 - 0.73886} = \frac{0 - 0.00038}{-0.00011 - 0.00038},$$

$$\frac{x - 0.73886}{0.00029} = \frac{38}{49}$$

from which we get

or

$$x = 0.73886 + \frac{35}{49} \times 0.00029$$
$$= 0.73886 + 0.00022 = 0.73908.$$

By means of more extensive tables, the value correct to five decimal places is found to be 0.73909.

Solve the following equations, in which x is to be expressed in radians:

**46.** 
$$\cos x = 2x$$
.

47. 
$$\sin x = x - 1$$
.

48. 
$$\sin x = \frac{1}{x}$$

49. 
$$\tan x = 1 - x$$
.

**50.** 
$$\sin x = \log_{10} x$$
.

51. 
$$\cos x = x^2$$
.

52. 
$$\log_{10} x + x = 0$$
.

53. 
$$x = 2 + \pi \sin x$$
.

**54.** 
$$x = 1 + \frac{\pi}{6} \sin x$$
.

**55.** 
$$x = \sin 2x$$
.

**56.** 
$$3^x = 2 \cos x$$
.

57. 
$$\sin x = 10^x$$
.

58. A horizontal cylindrical tank is 10 feet long and 4 feet in diameter. It contains 10 gallons of liquid. How deep is the liquid? (1 gal. = 231 cu. in.)

Some of the following equations are conditional, some are identical. Solve the former, prove the latter.

$$59. \ \frac{\sin^2 \theta}{1 + \cos \theta} = 1 - \cos \theta.$$

$$60. \frac{\sin^2 \theta}{1 + \sin \theta} = 1 - \sin \theta.$$

61. 
$$\cos 2\theta + \sin 2\theta = (\cos \theta + \sin \theta)^2 + 2\sin^2 \theta$$
.

62. 
$$\cos 2\theta + \sin 2\theta = (\cos \theta + \sin \theta)^2 - 2\sin^2 \theta$$
.

**63.** 
$$\cot \frac{1}{2}\theta = \cot \theta (1 + \sec \theta)$$
.

**64.** 
$$\csc 2\theta + 2 \tan \theta = 3$$
.

65. 
$$2 \csc 2\theta - \tan \theta = \cot \theta$$
.

#### CHAPTER XIII

# \* Complex Numbers

#### 95. Imaginary and complex numbers.

The imaginary unit, denoted by i, is a number having the property  $i^2 = -1$ . We postulate that it obeys all the laws of addition and multiplication assumed for real numbers.

Since  $i^3 = i^2 \cdot i = -i$ ,  $i^4 = i^2 \cdot i = 1$ ,  $i^5 = i^4 \cdot i = i$ ,  $\cdots$ , it is seen that the successive integral powers of i run through the cycle i, -1, -i, 1.

A number of the form a + bi, in which a and b are real numbers, is called a **complex number**. The number a is called the real part, and bi is called the **imaginary part** of the complex number, b being the coefficient of the imaginary part. If  $b \neq 0$ , the complex number is called an imaginary number. If  $b \neq 0$  and a = 0, the complex number reduces to the form bi, which is called a pure imaginary number. If both a and b are different from zero, the number is sometimes called a **mixed** imaginary number. If b = 0, the complex number reduces to the real number a.

Two complex numbers such as a + bi and a - bi, which differ only in the signs of their imaginary parts, are called **conjugate** complex numbers. Either is said to be the conjugate of the other.

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. In particular, a + bi = 0 if and only if a = 0 and b = 0.

#### 96. Operations with complex numbers.

By definition, addition or subtraction of complex numbers is effected by adding or subtracting their real parts to

obtain the real part of their sum or difference, and by adding or subtracting their imaginary parts to obtain the imaginary part of their sum or difference. Thus,

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$
 (1)

$$(a+bi) - (c+di) = (a-c) + (b-d)i.$$
 (2)

We multiply complex numbers according to the laws of real numbers, simplifying results by making use of the relation  $i^2 = -1$ . Thus,

$$(a+bi)(c+di) = ac + adi + bci + bdi2$$
  
=  $(ac - bd) + (ad + bc)i$ . (3)

Division of complex numbers can be accomplished by writing the quotient in fractional form and multiplying both numerator and denominator by the conjugate of the denominator. Thus, to divide a + bi by c + di (c and d not both zero) we write

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} - \frac{ac-adi+bci-bdi^2}{c^2-d^2i^2}$$

$$= \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$
 (4)

## 97. Geometric representation of complex numbers.



The complex number x + yi may be represented by the point whose abscissa is x and whose ordinate is y. (See Fig. 91.) When complex numbers are so represented, the horizontal axis is called the axis of real numbers, and the vertical axis is called the axis of imaginary numbers.

# 98. Geometric addition and subtraction of complex numbers.

Let the complex numbers a + bl and c + dl be represented by the points M and N respectively, and their sum, (a + c) + b + dl, by the point P. See Fig. 92. Draw OM, ON, MP, NP. Drop NQ, MR, PS perpendicular to OX. Draw MT parallel to OX. Then



$$MT = RS = OS - OR = (a + c) - a = c = OQ,$$
  
 $TP = SP - ST = (b + d) - b = d = QN.$ 

Also, angle TPM is equal to angle QNO, and MP is parallel to ON. Quadrilateral OMPN is a parallel grain, since two of its sides are both equal and parallel.

Thus, to add two complex numbers geometrically, complete the parallelogram which has as adjacent sides the lines drawn from the origin to the points representing the two numbers. The fourth vertex of the parallelogram will be the point representing the sum of the two numbers.

If we think of the complex numbers a + bi and c + di as represented by the vectors OM and ON in Fig. 92, the sum of the numbers will be the vector OP. See section 67.)

To subtract c + di from a + bi geometrically, we may add a + bi and -c - di.

#### EXERCISES XIII. A

Perform the indicated operations geometrically:

1. 
$$(2+5i)+(6+i)$$
.

2. 
$$(3+4i)+(5-2i)$$
.

**3.** 
$$(5+3i)-(3-2i)$$
. **5.**  $(3i)+(6+2i)$ .

**4.** 
$$(-4+2i)+(3+5i)$$
.  
**6.**  $(5i)+(6)$ .

7. 
$$(5) - (3 - 7i)$$
.  
8.  $(1 + 2i) + (3 + 6i)$ .  
9.  $(-6 + i) + (7 + 2i)$ .  
10.  $(3 + 6i) - (1 + 2i)$ .  
11.  $(7 + 5i) + (7 - 5i)$ .  
12.  $(7 + 5i) - (7 - 5i)$ .  
13.  $(-5 - 5i) + (10 + 3i)$ .  
14.  $(8 + 6i) - (4 + 6i)$ .  
15.  $(-3 + 2i) + (3 - 7i)$ .  
16.  $(5 + 7i) + (5 + 7i)$ .

17. (10 + 2i) + (-2 + 5i) + (3 - 4i).

Suggestion. Combine the first two numbers graphically, and then combine their sum with the third.

18. 
$$(5+6i)+(6-2i)-(4-7i)$$
.

19. Given the complex numbers 10 - 4i, 5 + 5i, 1 - 6i. Show that the same result is obtained by geometrically (a) adding the first and second and then adding their sum to the third, (b) adding the first and third and then adding their sum to the second, (c) adding the second and third and then adding their sum to the first.

## 99. Trigonometric form of complex numbers.

Let the complex number x + yi be represented by the point P in Fig. 93. As usual, let OP = r (a non-negative number), and denote the angle XOP by  $\theta$ . Then,

$$x = r \cos \theta, \qquad y = r \sin \theta.$$
 (1)

and the complex number may be written

$$r(\cos\theta + i\sin\theta),$$
 (2)

which is called the trigonometric or polar form of the complex number, the form x + yi being called the rectangular form. The expression  $\cos \theta + i \sin \theta$  is sometimes abbreviated  $\cos \theta$ .

In the trigonometric form (2), r is called the modulus or the

absolute value of the complex number,  $\theta$  is called the amplitude or the argument. We have

$$r = \tan \theta = \frac{y}{x}$$
 (3)

#### Example 1.

$$y = \sqrt{x^2 + 4y} = 5$$
,  
 $(x^2 + y) = 1.3333$ ,  $y = 53.17$ ,  
 $3 + 4y = 5 \cos 53.17 + 6 \sin 53.17$ .



#### Example 2.

Reduce  $-1 + \sqrt{3}$  to trigonometric form



#### Sourres

$$i = \sqrt{1+3} = 2,$$
  
 $\tan \theta = \frac{\sqrt{3}}{-1} = -\sqrt{3}, \quad \theta = 120^{\circ},$   
 $1 + i\sqrt{3} = 2 \cos 120^{\circ} + i \sin 120^{\circ}).$ 

#### EXERCISES XIII. B

Reduce to trizonometric form:

3. 
$$\sqrt{3} + i$$
.

6. 
$$5 \div 5i\sqrt{3}$$
.

13. 
$$5 - i$$
.  
16.  $6 - 6i$ .

9. 
$$-\$ - 15i$$
. 12.  $12 \pm 5i$ .

16. 
$$6 - 6i$$
.

15. 
$$-7 - 7i$$
.

19. 
$$-7 \pm 2i$$
.

18. 
$$-2\sqrt{3} + 2i$$
.  
21.  $\frac{1}{2} + \frac{1}{2}i$ .

Reduce to rectangular form:

**22.** 
$$2(\cos 60^{\circ} + i \sin 60^{\circ})$$
.

24. 
$$7 \cos 30^{\circ} + i \sin 30^{\circ}$$
.

**26.** 
$$4(\cos 330^{\circ} + i \sin 330^{\circ})$$
.

**23.** 
$$5(\cos 180^{\circ} + i \sin 180^{\circ}).$$

**30.** 
$$\$(\cos 150^{\circ} + i \sin 150^{\circ}).$$

32. 
$$\sqrt{3}(\cos 210^{\circ} + i \sin 210^{\circ})$$
.

**34.** 
$$S(\cos 100^{\circ} + i \sin 100^{\circ})$$
.

**36.** 
$$2(\cos 300^{\circ} + i \sin 300^{\circ})$$
.

**23.** 
$$5(\cos 45^{\circ} + i \sin 45^{\circ})$$
.

**25.** 
$$3(\cos 225^{\circ} + i \sin 225^{\circ})$$
.

**27.** 
$$10(\cos 90^{\circ} + i \sin 90^{\circ})$$
.

**29.** 
$$4(\cos 270^{\circ} + i \sin 270^{\circ})$$
.

31. 
$$\sqrt{2}(\cos 315^{\circ} + i \sin 315^{\circ}).$$

33. 
$$10[\cos(-35^{\circ}) + i\sin(-35^{\circ})]$$
.

35. 
$$5(\cos 200^{\circ} + i \sin 200^{\circ})$$
.

37. 
$$10(\cos 400^{\circ} + i \sin 400^{\circ})$$
.

# 100. Multiplication and division of complex numbers in trigonometric form.

A very interesting result is obtained if two complex numbers expressed in trigonometric form are multiplied together. Thus,

$$r_1(\cos\theta_1 + i\sin\theta_1) \times r_2(\cos\theta_2 + i\sin\theta_2)$$

$$= r_1r_2[(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2)$$

$$+ i(\sin\theta_1\cos\theta_2 + \cos\theta_1\sin\theta_2)]$$

$$= r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]. \tag{1}$$

Therefore, the product of two complex numbers is a complex number whose modulus is the product of the moduli of the numbers, and whose amplitude is the sum of their amplitudes.

It can readily be seen that this holds for the product of any finite number of complex numbers.

If one complex number is divided by another,\* we have

$$\frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} = \frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} \cdot \frac{\cos\theta_2 - i\sin\theta_2}{\cos\theta_2 - i\sin\theta_2}$$

$$= \frac{r_1(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2) + i(\sin\theta_1\cos\theta_2 - \cos\theta_1\sin\theta_2)}{r_2(\cos^2\theta_2 + \sin^2\theta_2)}$$

$$= \frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)].$$
(2)

In words, the quotient of two complex numbers is a complex number whose modulus is the modulus of the dividend divided by the modulus of the divisor, and whose amplitude is the amplitude of the dividend minus the amplitude of the

divisor.

#### EXERCISES XIII. C

Perform the indicated operations, first reducing the numbers to trigonometric form (if necessary):

- 1.  $3(\cos 40^{\circ} + i \sin 40^{\circ}) \cdot 5(\cos 70^{\circ} + i \sin 70^{\circ})$ .
- 2.  $2(\cos 200^{\circ} + i \sin 200^{\circ}) \cdot 6(\cos 300^{\circ} + i \sin 300^{\circ})$ .

<sup>\*</sup> The divisor cannot be zero.

3. 
$$\left(\frac{1}{2} \pm \frac{i\sqrt{3}}{2}\right) 2 \pm 2$$
 4.  $(-3 \pm 3i)/3 = i\sqrt{3}$ 

- 5.  $6(\cos 70^\circ + i \sin 70^\circ) \cdot 2(\cos 40^\circ + i \sin 40^\circ)$ .
- **6.**  $10(\cos 20^{\circ} + i \sin 20^{\circ}) \cdot 5 \cos 70^{\circ} + i \sin 70^{\circ}$ .
- 7.  $(3 + 3i\sqrt{3}) \div (\sqrt{3} i)$  8.  $(-5 + 5i\sqrt{3}) \div (3 + 3i)$ .
- **9.**  $(6-6i) \div (-2 \div 2i\sqrt{3})$ . **10.**  $(1+i) \div (1+(\sqrt{3}))$ .

### 101. Powers of complex numbers.

Raising to a power is a special case of multiplication, and it follows, by a repeated application of Ar of section 400, that

$$[r(\cos\theta+i\sin\theta)]^n=r^n\cos n\theta+i\sin n\theta),$$

where n is a positive integer. The foregoing relation is known as De Moivre's theorem.\*

#### Example.

Find the value of  $(1+i)^5$ .

Solution. Plot the complex number 1+i (Fig. 96). The absolute value is  $\sqrt{2}$  and the amplitude is  $45^{\circ}$ .



$$(1+i)^5 = [\sqrt{2}(\cos 45^\circ + i \sin 45^\circ)]^5$$
  
=  $4\sqrt{2}(\cos 5 \cdot 45^\circ + i \sin 5 \cdot 45^\circ)$   
=  $4\sqrt{2}(\cos 225^\circ + i \sin 225^\circ) = -4(1+i)$ .

#### 102. Roots of complex numbers.

To prove De Moivre's theorem for the case in which the exponent is the reciprocal of a positive integer, take the expression

$$[r(\cos\theta + i\sin\theta)]^{1/n} = r^{1/n}(\cos\theta + i\sin\theta)^{1/n}.$$
 (1)

\*A formal proof of the theorem can be effected by the process of mathematical induction. For an explanation of this process, see the author's College Algebra, Chapter X.

Let  $\theta = n\phi$ . Then the right side of (1) reduces to

$$r^{1/n}(\cos n\phi + i \sin n\phi)^{1/n} = r^{1/n}[(\cos \phi + i \sin \phi)^n]^{1/n}$$
  
=  $r^{1/n}(\cos \phi + i \sin \phi)$ ,

or

$$[r(\cos\theta + i\sin\theta)]^{1/n} = r^{1/n} \left(\cos\frac{\theta}{n} + i\sin\frac{\theta}{n}\right).$$
 (2)

Since for any whole number k,

$$\cos(\theta + k \cdot 360^{\circ}) = \cos \theta, \qquad \sin(\theta + k \cdot 360^{\circ}) = \sin \theta,$$
 we have

$$[r(\cos\theta+i\sin\theta)]^{1/n}$$

$$= [r^{i}\cos(\theta + k \cdot 360^{\circ}) + i\sin(\theta + k \cdot 360^{\circ})]^{1/n}$$

$$= r^{1/n} \left( \cos \frac{\theta + k \cdot 360^{\circ}}{n} + i \sin \frac{\theta + k \cdot 360^{\circ}}{n} \right). \tag{3}$$



By giving values to k from 0 to n-1 inclusive, we obtain n distinct roots of the number  $r(\cos \theta + i \sin \theta)$ .

#### Example.

Find the fourth roots of  $-1 - i\sqrt{3}$ .

Solution. Plot the number  $-1 - i\sqrt{3}$  (Fig. 97) and note that

$$-1 - i\sqrt{3} = 2(\cos 240^{\circ} + i \sin 240^{\circ}),$$

$$(-1 - i\sqrt{3})^{\frac{1}{4}} = 2^{\frac{1}{4}} \left(\cos\frac{240^{\circ} + k \cdot 360^{\circ}}{4} + i\sin\frac{240^{\circ} + k \cdot 360^{\circ}}{4}\right)$$
$$= \sqrt[4]{2}\cos(60^{\circ} + k \cdot 90^{\circ}) + i\sin(60^{\circ} + k \cdot 90^{\circ}).$$

Giving k successively the values 0, 1, 2, 3, we find for the four distinct fourth roots of  $-1 - i\sqrt{3}$ :

$$\sqrt[4]{2}(\cos 60^{\circ} + i \sin 60^{\circ})$$

$$= \sqrt[4]{2} \left( -\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) = -\frac{1}{2}\sqrt[4]{2} + \frac{i}{2}\sqrt[4]{18},$$

$$\sqrt{2} \approx -150^{\circ} + i \sin 150^{\circ})$$

$$= \sqrt[4]{2} \left( -\frac{\sqrt{3}}{2} + \frac{i}{2} \right) = -\frac{1}{2} \sqrt[4]{18} + \frac{i}{2} \sqrt[4]{2}.$$

$$2.\cos 240^{\circ} + i \sin 240^{\circ}$$

$$=\sqrt[4]{2}\left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)=-\frac{1}{2}\sqrt[4]{2}-\frac{i}{2}\sqrt[4]{18}.$$

 $\sqrt{2} \cos 330^{\circ} \pm i \sin 330^{\circ}$ 

$$= \sqrt{2} \left( \frac{\sqrt{3}}{2} - \frac{i}{2} \right) = \frac{1}{2} \sqrt{18} - \frac{i}{2} \sqrt{2}.$$

In Fig. 98, P represents the complex number 2(cos 240°

 $+ i \sin 240^{\circ}$ );  $P_1$ ,  $P_2$ ,  $P_3$ ,  $P_4$  represent the four roots whose amplitudes are  $60^{\circ}$ ,  $150^{\circ}$ ,  $240^{\circ}$ ,  $330^{\circ}$ , respectively.

Note that the roots can be found geometrically as follows: Draw a circle with center at the origin and with radius equal to the numerical fourth root of the absolute value of the number whose fourth roots are to be found, that is, a radius equal to  $\sqrt[4]{2}$ . Take one-fourth of the amplitude of the original num-



ber  $(\frac{1}{4} \times 240^{\circ} = 60^{\circ})$ . This locates the point  $P_1$  on the circle. The four roots all lie on the circle and are spaced at equal intervals of 90°. Thus we can find  $P_2$ ,  $P_3$ ,  $P_4$ .

In general, the *n*th roots of the complex number  $r(\cos \theta + i \sin \theta)$  can be found as follows: Draw a circle whose center is the origin and whose radius is the numerical *n*th root of r; divide the angle  $\theta$  by n, the index of the root. Now divide the circumference of the circle, from  $\theta$  n to  $\theta$   $n+360^\circ$ , into n equal parts. The n points of division will be the required roots.

#### EXERCISES XIII. D

Use De Moivre's theorem to raise to the indicated powers:

1. 
$$[7(\cos 18^{\circ} + i \sin 18^{\circ})]^{3}$$
.

2. 
$$[\sqrt{3}(\cos 20^{\circ} + i \sin 20^{\circ})]^{\$}$$
.

3. 
$$(1 + i)^{10}$$
.

4. 
$$(\sqrt{3} + i)^7$$
.

5. 
$$(5-5i)^4$$
.

6. 
$$[\sqrt{2}(\cos 100^{\circ} + i \sin 100^{\circ})]^{10}$$

7. 
$$(\cos 22^{\circ} + i \sin 22^{\circ})^{8}$$
.

8. 
$$\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^7$$
.

**9.** 
$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3$$
.

10. 
$$[2(\cos 10^{\circ} + i \sin 10^{\circ})]^{-3}$$

11. 
$$[10(\cos 70^\circ + i \sin 70^\circ)]^{-6}$$
. 12.  $(1+i)^{-10}$ .

Find all of the

- 13. Square roots of  $9(\cos 80^{\circ} + i \sin 80^{\circ})$ .
- 14. Square roots of  $4(\cos 100^{\circ} + i \sin 100^{\circ})$ .
- **15.** Cube roots of  $27(\cos 27^{\circ} + i \sin 27^{\circ})$ .
- 16. Square roots of  $1 + i\sqrt{3}$ .
- 17. Cube roots of  $1 + i\sqrt{3}$ .
- 18. Cube roots of  $-\sqrt{3} + i$ .
- 19. Cube roots of 1.

Suggestion.  $1 = \cos 0^{\circ} + i \sin 0^{\circ}$ .

- 20. Fifth roots of -1.
- **21.** Sixth roots of -8i.
- **22.** Cube roots of -2 + 3i.
- 23. Fifth roots of -4 4i.
- **24.** Seventh roots of  $\sqrt{2}(1-i)$ .

Obtain all of the roots of the following equations:

25. 
$$x^5 - 1 = 0$$
.

26. 
$$x^3 + 1 = 0$$
.

27. 
$$x^4 + 1 = 0$$
.

28. 
$$x^5 + 32 = 0$$
. 29.  $x^4 - 16i = 0$ . 30.  $x^7 - 1 = 0$ .

$$29. \ x^4 - 16i = 0.$$

30. 
$$x^7 - 1 = 0$$

31. 
$$x^4 + x^3 + x^2 + x + 1 = 0$$
.

Suggestion. Multiply by x-1, solve the resulting equation, and discard the extraneous root x = 1.

32. 
$$x^4 - x^3 + x^2 - x + 1 = 0$$
.

# SPHERICAL TRIGONOMETRY

#### CHAPTER XIV

# Introduction to Spherical Trigonometry

### 103. Definitions and propositions from solid geometry.

The intersection of a plane with a sphere is a circle. If the plane passes through the center of the sphere, the intersection is a great circle; otherwise the intersection is a small circle. Obviously the radius of a great circle is equal to the radius of the sphere, while the radius of a small circle is less than the radius of the sphere.

A line through the center of the sphere perpendicular to the plane of a circle is called the **axis** of the circle. This axis pierces the sphere in two points, which are called the poles of the circle.

The shortest distance in space between two points on a sphere is the straight line joining them, but this line does not lie on the surface of the sphere. The shortest path on the sphere between the two points is the arc (not greater than a semicircle) of a great circle joining the points. The distance (on the sphere) between the two points is defined to be the length of this arc. This distance is usually expressed in angular units, and is equal to the angle which the arc subtends at the center of the sphere. However, it can be converted into linear units if the radius of the sphere is known.

## 104. Spherical triangles.

A spherical triangle is that part of the surface of a sphere bounded by three arcs of great circles.\* Like a plane tri-

<sup>\*</sup>That part of the surface of a sphere bounded by the arcs of two great circles is called a lune.

angle, it is composed of six parts—three sides and three angles. We shall ordinarily designate the angles by A, B, C, and the opposite sides by a, b, c, respectively.

To each spherical triangle there corresponds a trihedral



angle whose vertex is at the center of the sphere. A spherical triangle, with the corresponding trihedral angle, is illustrated in Fig. 99. In this figure, O is the center of the sphere. The sides of the spherical triangle are measured by the corresponding face angles

of the trihedral angle. Thus, a is measured by BOC, b is measured by AOC, c is measured by AOB.

The angles of the spherical triangle are measured by the corresponding dihedral angles of the trihedral angle. For example, angle A is measured by the dihedral angle whose edge is OA, namely B–OA–C.

This follows if the angle A of the spherical triangle is defined as the angle between the tangents at A to the arcs AB and AC, since the angle between these tangents is the plane angle of the dihedral angle.

It is possible to have spherical triangles with one or more sides or angles greater than 180°. However, we shall consider only triangles for which each side and each angle is less than 180°.\* For such triangles, the sum of the sides is less than 360°, and the sum of the angles is between 180° and 540°; that is,

$$a + b + c < 360^{\circ}, \tag{1}$$

$$180^{\circ} < A + B + C < 540^{\circ}.$$
 (2)

<sup>\*</sup> Note that even with this restriction it is possible to have a spherical triangle with two, or even three, right angles. A spherical triangle having a right angle is called a right spherical triangle, one with two right angles is said to be birectangular, while one with three right angles is called trirectangular.

The amount by which the sum of the angles of a spherical triangle exceeds  $180^{\circ}$  is called the **spherical excess** of the triangle. That is, if E denotes the spherical excess, then

$$E = A + B + C - 180^{\circ}. (3)$$

The sum of any two sides is greater than the third side, and their difference is less than the third side.

If two sides are equal, the angles opposite are equal.

If two angles are equal, the sides opposite are equal.

If two sides are received, the angles opposite are unequal, and the greater angle is opposite the greater side.

If two angles are unequal, the sides opposite are unequal, and the greater side is opposite the greater angle.

## 105. Spherical polygons.

A spherical polygon is that part of the surface of a sphere bounded by three or more arcs of great circles. To every spherical polygon there corresponds a polyhedral angle whose vertex is at the center of the sphere. The sides of the polygon are measured by the corresponding face angles of the polyhedral angle, and the angles of the polygon are measured by the corresponding dihedral angles of the polyhedral angle.

A spherical polygon of n sides can be divided into n-2 triangles by drawing diagonals from one vertex. The sum of the excesses of these triangles is equal to the sum of the angles of the polygon less  $(n-2)\cdot 180^{\circ}$ . This difference may be called the **spherical excess** of the polygon.

## 106. Polar triangles.

With the vertices of a spherical triangle ABC as poles, construct three great circles. The great circles whose poles are B and C will intersect in two diametrically opposite



points. Denote by A' that point of intersection which is on the same side of BC as is A. Determine B' and C' similarly. Then A'B'C' is the polar triangle of ABC. (See Fig. 100.) Conversely, ABC is the polar triangle of A'B'C'.

Each angle of a spherical triangle is the supplement of the corresponding side in the polar triangle. That is,

$$A + a' = 180^{\circ}$$
,  $B + b' = 180^{\circ}$ ,  $C + c' = 180^{\circ}$ ,  $A' + a = 180^{\circ}$ ,  $B' + b = 180^{\circ}$ ,  $C' + c = 180^{\circ}$ 

### 107. Areas.

The area of the surface of a sphere of radius R is  $4\pi R^2$ .

The area of a spherical triangle on a given sphere is proportional to its spherical excess. Since the area of a trirectangular triangle (whose excess is  $270^{\circ} - 180^{\circ} = 90^{\circ}$ ) is one-eighth of the surface of the sphere, that is,  $\frac{1}{8} \cdot 4\pi R^2 = \frac{1}{2}\pi R^2$ , we have for the area of a triangle ABC,

$$\frac{\text{area}}{\frac{1}{2}\pi R^2} - \frac{E}{90}$$
or,
$$\text{area} = \frac{\pi R^2 E}{180} \cdot \tag{1}$$

This formula applies to any spherical polygon provided the excess of the polygon is defined as in section 105.

A spherical degree is a unit of surface measurement on a sphere equal to half a lune whose angle is 1°. (For definition of lune see footnote, page 197.) The area, in spherical degrees, of a spherical triangle, or of any spherical polygon, is equal to its spherical excess.\*

\* When the three sides of a spherical triangle are known, the excess can be determined by L'Huilier's formula, given here without derivation:

$$\tan \frac{1}{4}E = \sqrt{\tan \frac{1}{2}s \tan \frac{1}{2}(s-a) \tan \frac{1}{2}(s-b) \tan \frac{1}{2}(s-c)},$$
 in which  $s = \frac{1}{2}(a+b+c).$ 

## CHAPTER XV

# Solution of Right Spherical Triangles

# 108. Formulas for solving right spherical triangles.

In Fig. 101 is represented a right spherical triangle, ABC, with the right angle at C; this will be the usual notation) and with sides a and b each less than  $90^{\circ}$ . Also shown is the



trihedral angle O-ABC associated with the triangle, O being the center of the sphere.

Through any point E on the edge OB, pass a plane DEF perpendicular to the edge OA and intersecting this edge in D. Then DE and DF will be perpendicular to OA.

From the various constructions it follows that the plane triangles *ODF*, *ODE*, *OFE*, *DFE* are right triangles, the vertex of the right angle being named as the middle letter.

In triangle *DFE*, angle *D* is equal to angle *A* of the spherical triangle, and each of the other plane right triangles has an angle equal to one of the sides of the spherical triangle.

Making use of these facts, we have

$$\sin a = \sin FOE = \frac{FE}{OE}, \quad \sin c = \sin DOE = \frac{DE}{OE},$$

$$\frac{\sin a}{\sin c} = \frac{FE}{DE} = \sin A. \quad (1)$$

Also,

$$\tan b = \tan DOF = \frac{DF}{OD}, \quad \tan c = \tan DOE = \frac{DE}{OD}.$$

$$\frac{\tan b}{\tan c} = \frac{DF}{DE} = \cos A. \quad (2)$$

Similarly,

$$\tan a = \tan FOE = \frac{FE}{OF}, \quad \sin b = \sin DOF = \frac{DF}{OF},$$

$$\frac{\tan a}{\sin b} = \frac{FE}{DF} = \tan A. \tag{3}$$

Finally,

$$\cos a = \cos FOE = \frac{OF}{OE}, \qquad \cos b = \cos DOF = \frac{OD}{OF},$$

$$\cos a \cos b = \frac{OD}{OE} = \cos c. \tag{4}$$

If the plane DEF had been constructed perpendicular to OB instead of to OA, we should have been led to results similar to (1), (2), (3), which can be obtained from these formulas by interchanging A and B, a and b. They are

$$\frac{\sin b}{\sin c} = \sin B, \qquad \frac{\tan a}{\tan c} = \cos B, \qquad \frac{\tan b}{\sin a} = \tan B. \quad (5)$$

Note that when this interchange is applied to (4) the formula reverts into itself.

From the foregoing formulas it can further be proved that

$$\cos a \sin B = \cos A$$
,  $\cos b \sin A = \cos B$ , (6)

$$\cot A \cot B = \cos a \cos b = \cos c. \tag{7}$$

Collecting these numbered results, and clearing of frac-

tions when necessary, we have the following ten formulas for the solution of right spherical triangles:

```
\sin a = \sin c \sin A,
                                   \sin b = \sin c \sin B.
                          8
                                                             9
\tan a = \sin b \tan A, \quad 10
                                   \tan b = \sin a \tan B,
                                                            11.
\tan a = \tan c \cos B,
                       121
                                   tan b = tan c cos A,
                                                            13
\cos c = \cos a \cos b, 14:
                                   \cos c = \cot A \cot B
                                                             15
\cos A = \cos a \sin B, \quad (16)
                                   \cos B = \cos b \sin A.
                                                            17
```

They have been derived for the case in which each part of the spherical triangle ABC (except the right angle C) is less than 90°. However, it can be proved that they hold for parts equal to or greater than 90°.

# 109. Napier's rules.

The foregoing ten formulas may, by a clever device due to Napier, be put into a form which is easily remembered.



In the schematic triangle of Fig. 102 we have replaced A by the symbol co-A, meaning "complement of A," and similarly for B and c.\* Note that angle C is omitted. The five parts may also be arranged in a circle, as in Fig. 103, and are consequently often referred to as circular parts.

If in either of these diagrams any part is called the middle part, the two parts next to it are called the adjacent parts, and the other two are called the opposite parts. For example, if a is the middle part, then b and co-B are the adjacent parts, co-c and co-A are the opposite parts. Napier's rules are:

<sup>\*</sup> It should be understood that Fig. 102 does not represent a triangle.

- I. The sine of any middle part is equal to the product of the tangents of the adjacent parts.
- II. The sine of any middle part is equal to the product of the cosines of the opposite parts.

As an illustration, let us take the part a. Rule I gives

$$\sin a = \tan b \tan \cot B = \tan b \cot B$$
,

which is formula (11). Rule II gives

$$\sin a = \cos \cos \cos \cos A = \sin c \sin A$$
,

which is (8).

By applying Napier's rules to each of the five parts of the diagram of Fig. 102 or that of Fig. 103, we obtain all ten of the formulas (8) to (17).

As a further mnemonic scheme we observe that the vowel i occurs in "sine" and "middle," the vowel a predominates in "tangents" and "adjacent" of Rule I, while the vowel o predominates in "cosines" and "opposite" of Rule II.

# 110. Solution of right spherical triangles.

If any two parts of a right spherical triangle (in addition to the right angle C) are given, the remaining parts can be found. However, it should be noted that sometimes no solution exists. (See example 2 later in this section.)

The quadrant in which any required part terminates may be determined by noting the signs of the functions involved. However, if the unknown part is determined from its sine, there are two possibilities for this part, the tabular value and its supplement, and consequently there are two solutions, subject however to the restrictions of the following theorems:

THEOREM I. In a right spherical triangle, any side and the opposite angle terminate in the same quadrant.

From equation (16), namely

$$\cos A = \cos a \sin B$$
,

it is seen, since  $\sin B$  is positive, that  $\cos a$  and  $\cos A$  must

have the same sign. That is, a and A terminate in the same chadrant. The same result can be proved for b and B.

THEOREM II. If any two of the time parts in b, v, ternelizate in the same quadrant, the third terminates in the first quadrant: if any two terminate in different quadrants, the third terminates in the second quadrant.

The proof follows directly from equation [14].

$$\cos c = \cos a \cos b$$
.

For if any two of the functions  $\cos a$ ,  $\cos b$ ,  $\cos c$  have like signs, the third is positive; if any two have unlike signs, the third is negative.

The solution of a right spherical triangle can always be checked by the formula involving the three computed parts.

### Example 1.

In a right spherical triangle  $(C = 90^{\circ})$ ,  $A = 69^{\circ}$  50.8′,  $c = 72^{\circ}$  15.4′; find B, a, b.

| Solution.                                                                 | .4                                                                                                                           | 69° 50.8′                                                                          |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                                                           | e                                                                                                                            | 72° 15.4′                                                                          |
| $\sin a = \sin c \sin A,$                                                 | log sin c                                                                                                                    | 0.0.554 - 10                                                                       |
| $\log \sin a = \log \sin c + \log \sin A.$                                | log sin A                                                                                                                    | 9.97256 - 10                                                                       |
|                                                                           | log sin a                                                                                                                    | 9.95140 - 10                                                                       |
|                                                                           | $\alpha$                                                                                                                     | 63° 23.8′ *                                                                        |
| $\cos A = \tan b \cot c,$                                                 | log cos A                                                                                                                    | 9.53723 - 10                                                                       |
| $\log \tan b = \log \cos A - \log \cot c.$                                | $\log \cot c$                                                                                                                | 9.50511 - 10                                                                       |
|                                                                           | $\log \overline{\tan b}$                                                                                                     | 0.03212                                                                            |
|                                                                           |                                                                                                                              |                                                                                    |
|                                                                           | b                                                                                                                            | 47° 7.0′                                                                           |
| $\cos c = \cot A \cot B$ ,                                                |                                                                                                                              | $\frac{47^{\circ} 7.0'}{9.48395 - 10}$                                             |
| $\cos c = \cot A \cot B$ ,<br>$\log \cot B = \log \cos c - \log \cot A$ . | $\log \overline{\cos c}$                                                                                                     |                                                                                    |
| •                                                                         | $\frac{\log \cos c}{\log \cot A}$                                                                                            | 9.48395 - 10                                                                       |
| •                                                                         | $ \begin{array}{c cccc} \log \cos c & c \\ \log \cot A & c \\ \log \cot B & C \end{array} $                                  | $\begin{array}{r} 9.48395 - 10 \\ 9.56467 - 10 \end{array}$                        |
| •                                                                         |                                                                                                                              | $\begin{array}{r} 9.48395 - 10 \\ 9.56467 - 10 \\ \hline 9.91928 - 10 \end{array}$ |
| $\log \cot B = \log \cos c - \log \cot A.$                                | $ \begin{array}{c cccc} \log & \cos & c \\ \log & \cot & A \\ \log & \cot & B \\ \hline & B \\ \log & \tan & b \end{array} $ | 9.48395 - 10<br>9.56467 - 10<br>9.91928 - 10<br>50° 17.7′                          |

<sup>\*</sup> The supplementary value is not admissible, since, by Theorem I, a and A must terminate in the same quadrant.

<sup>\*</sup> This check verifies the consistency of the logarithms, but does not prove that the angular quantities are correct.

#### Example 2.

Solve the spherical triangle 
$$C=90^\circ$$
,  $A=120^\circ$ ,  $a=100^\circ$ .

Solution.

$$120^\circ$$

$$100^\circ$$

$$\sin b = \tan a \cot A, \qquad \log \tan a = 0.75368 \qquad (\text{neg})^\circ$$

$$\log \sin b = \log \tan a + \log \cot A. \qquad \log \cot A = \frac{9.76144}{0.51512} - 10 \text{ (neg)}^\circ$$
No solution.

#### Example 3.

Given  $C = 90^{\circ}$ ,  $B = 36^{\circ} 42.2'$ ,  $b = 30^{\circ} 17.5'$ ; find the remaining parts.

By Theorems I and II, the obtained values are grouped into the following two solutions:

$$A = 68^{\circ} 12.2',$$
  $a = 51^{\circ} 35.6',$   $c = 57^{\circ} 33.6';$   $A' = 111^{\circ} 47.8',$   $a' = 128^{\circ} 24.4',$   $c' = 122^{\circ} 26.4',$ 

<sup>\*</sup> The notation (neg) indicates that the function is negative.

#### EXERCISES XV. A

Find the remaining parts of the following triangles, in each of which  $C=90^\circ$ :

- 1.  $A = 80^{\circ} 10.5', c = 110^{\circ} 46.3'$
- **2.**  $B = 130^{\circ} 30.0', a = 114^{\circ} 23.8'.$
- 3.  $B = 36^{\circ} 42.5', c = 112^{\circ} 25.0'.$
- **4.**  $A = 136^{\circ} 5.2'$ ,  $a = 110^{\circ} 18.6'$ .
- **5.**  $A = 75^{\circ} 15.0', B = 133^{\circ} 5.0'.$
- **6.**  $a = 66^{\circ} 59.5', b = 156^{\circ} 34.3'.$
- 7.  $B = 154^{\circ} 44.3', b = 156^{\circ} 3.0'.$
- 8.  $A = 116^{\circ} 32.4'$ ,  $b = 50^{\circ} 25.6'$ .
- 9.  $B = 112^{\circ} 19.7', a = 77^{\circ} 35.3'.$
- 10.  $a = 39^{\circ} 46.3', b = 62^{\circ} 30.6'.$
- **11.**  $a = 130^{\circ} 12.9'$ ,  $c = 73^{\circ} 58.0'$ .
- **12.**  $A = 19^{\circ} 15.3', B = 85^{\circ} 33.0'.$
- 13.  $b = 26^{\circ} 28.7', c = 61^{\circ} 25.1'.$
- **14.**  $A = 132^{\circ} 15.6', B = 47^{\circ} 44.4'.$
- **15.**  $a = 98^{\circ} 8.1', c = 77^{\circ} 41.9'.$
- **16.**  $B = 124^{\circ} 14.8', b = 147^{\circ} 15.2'.$
- 17.  $A = 25^{\circ} 16.6'$ ,  $\alpha = 18^{\circ} 54.3'$ .
- 18.  $A = 69^{\circ} 2.4'$ ,  $a = 62^{\circ} 12.8'$ .
- 19.  $A = 75^{\circ} 21.9', b = 14^{\circ} 59.6'.$
- **20.**  $B = 83^{\circ} 56.7', b = 77^{\circ} 21.8'.$
- Three concurrent edges of a cube are OP, OQ, OR. Find the dihedral angle between the plane PQR and one of the faces of the cube.
- 22. Show that if  $B = C = 90^{\circ}$ , then  $b = c = 90^{\circ}$ , and that A and a are indeterminate, but A = a.
- 23. Show that if  $c = C = 90^{\circ}$ , then either  $A = a = 90^{\circ}$ , and B and b are indeterminate, but B = b; or else  $B = b = 90^{\circ}$ , and A and a are indeterminate, but A = a.
- **24.** Show that if C is a right angle and if b = c (and consequently each is a right angle), then  $B = 90^{\circ}$ , and that A and a are indeterminate, but A = a.

### 111. Quadrantal triangles.

A quadrantal triangle is a spherical triangle having a side equal to 90°. The polar triangle of a quadrantal triangle is

a right triangle, which can be solved by the methods explained in the preceding section. The parts of the quadrantal triangle can then be obtained.

For example, suppose we have given  $c = 90^{\circ}$ ,  $b = 50^{\circ}$ ,  $A = 70^{\circ}$ . We know that

$$C' = 180^{\circ} - c = 90^{\circ}, \quad B' = 180^{\circ} - b = 130^{\circ},$$
  
 $a' = 180^{\circ} - A = 110^{\circ}.$ 

We then find A', b', c', from which the values of a, B, C are readily obtained.

#### EXERCISES XV. B

Solve the following quadrantal triangles ( $c = 90^{\circ}$ ):

- 1.  $a = 70^{\circ} 7.8', b = 52^{\circ} 36.7'.$
- **2.**  $C = 135^{\circ} 33.7'$ ,  $a = 31^{\circ} 30.7'$ .
- 3.  $A = 118^{\circ} 46.4'$ .  $C = 100^{\circ} 7.8'$ .
- **4.**  $B = 55^{\circ} 47.1', C = 105^{\circ} 9.5'.$
- **5.**  $A = 102^{\circ} 38.3', a = 96^{\circ} 3.3'.$
- **6.**  $A = 73^{\circ} 45.4'$ ,  $b = 123^{\circ} 36.1'$ .
- 7.  $a = 106^{\circ} 38.6', b = 36^{\circ} 49.7'.$
- 8.  $A = 122^{\circ} 39.7'$ ,  $a = 116^{\circ} 52.5'$ .
- 9.  $B = 63^{\circ} 4.6'$ ,  $b = 69^{\circ} 29.7'$ .
- 10.  $\alpha = 60^{\circ} 39.8', b = 65^{\circ} 52.4'.$

# 112. Isosceles spherical triangles.

The great circle drawn from the vertex of an isosceles



spherical triangle to the midpoint of the opposite side divides the triangle into two symmetric right triangles. The solution of an isosceles spherical triangle can thus be reduced to the solution of a right spherical triangle.

### Example.

Find the remaining parts of an isosceles spherical triangle in which the equal angles are  $D=E=80^{\circ}$  27' and the side included by these equal angles is  $f=76^{\circ}$  42'. (See Fig. 104.)

Solution. Draw a perpendicular, FG, from the vertex F to the lase DE. This divides the triangle into two symmetric right spherical triangles DFG and GFE. For clarity, the first of these has been redrawn at the right in Fig. 104, and has been relettered, so that A, B, C replace D, F, G, respectively. Then, in the triangle ABC, we have  $C = 90^\circ$ ,  $b = \frac{1}{2}f$ . The logarithmic work follows.

$$\cos B = \cos b \sin A,$$

$$\log \cos B = \log \cos b + \log \sin A.$$

$$\log \cos B = \log \cos b + \log \sin A.$$

$$\log \cos \frac{b}{b} = \frac{9.89445}{9.89394} - 10$$

$$\log \cos \frac{A}{B} = \frac{9.88839}{9.88839} - 10$$

$$\log \cos A = \tan b \cot c.$$

$$\log \cot c = \log \cos A - \log \tan b.$$

$$\log \cot \frac{b}{c} = \frac{9.89827}{9.32160} - 10$$

$$\log \cot \frac{c}{c} = \frac{9.32160}{78° 9′}$$

Returning to the isosceles triangle, we have

$$F = 2B = 2 \times 39^{\circ} 20.5' = 78^{\circ} 41',$$
  
 $d = c = c = 78^{\circ} 9'.$ 

#### EXERCISES XV. C

Solve the following triangles:

1. 
$$A = C = 69^{\circ} 2.3'$$
,  $b = 93^{\circ} 16.4'$ .

2. 
$$B = C = 52^{\circ} 36.7', b = 73^{\circ} 58.0'.$$

3. 
$$B = 112^{\circ} 47.8'$$
.  $a = c = 99^{\circ} 9.6'$ .

**4.** 
$$a = c = 77^{\circ} 7.7', b = 37^{\circ} 30.4'.$$

5. 
$$A = 153^{\circ} 48.2'$$
,  $a = 145^{\circ} 3.8'$ ,  $B = C$ .

**6.** 
$$A = C = 77^{\circ} 40.5', b = 52^{\circ} 1.8'.$$

7. 
$$A = B = 95^{\circ} 5.1', C = 100^{\circ} 10.8'.$$

8. 
$$A = 58^{\circ} 58.8', b = c = 63^{\circ} 47.8'.$$

9. 
$$A = 62^{\circ} 1.5'$$
,  $a = c = 71^{\circ} 59.3'$ .

10. 
$$B = 72^{\circ} 48.8'$$
,  $b = 64^{\circ} 50.6'$ ,  $a = c$ .

**11.** 
$$a = b = c = 10^{\circ}$$
. **12.**  $a = b = c = 80^{\circ}$ .

**13.** 
$$a = b = c = 100^{\circ}$$
. **14.**  $A = B = C = 80^{\circ}$ .

**15.** 
$$A = B = C = 100^{\circ}$$
. **16.**  $A = B = C = 170^{\circ}$ .

- 17. Show that if each side of a spherical triangle is  $60^{\circ}$  each angle is  $\arccos \frac{1}{3}$ .
- 18. Show that if each angle of a spherical triangle is  $120^{\circ}$  each side is  $\arccos(-\frac{1}{3})$ .
- 19. Show that if each side of a spherical triangle is  $30^{\circ}$  each angle is  $(2\sqrt{3} 3)$ .
- 20. Prove that in an equilateral spherical triangle

$$\cos A = \frac{\cos a}{1 + \cos a}$$

21. Prove that in an equiangular spherical triangle

$$\cos a = \frac{\cos A}{1 - \cos A}$$

22. In an isosceles spherical triangle the base is 63° 8.8′ and the equal sides are 40° 4.4′. Find the perpendicular from the vertex to the base, also the perpendicular from one end of the base to the opposite side.

## CHAPTER XVI

# Solution of Oblique Spherical Triangles

# 113. Oblique spherical triangles.

If no angle of a spherical triangle is a right angle the triangle is **oblique**. For the solution of oblique spherical triangles, certain formulas, analogous to those of Chapter VII are needed, and we shall proceed to develop them.

# 114. Law of sines.

Let ABC be any spherical triangle. Through the vertex C draw the arc of a great circle perpendicular to the



side c (produced if necessary) at the point D. (See Fig. 105.) Designate the length of this perpendicular CD by k.

The foregoing construction yields two right spherical triangles, ADC and BDC. By Napier's rules we find

$$\sin h = \sin a \sin B$$
,  $\sin h = \sin b \sin A$ . (1)

Equating the two values of  $\sin h$ , and dividing by  $\sin A \sin B$ , we get

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B}.$$
 (2)

# 212 SOLUTION OF OBLIQUE SPHERICAL TRIANGLES [Ch. XVI

Similarly, by drawing an arc through the vertex B perpendicular to the side b, we can prove the relation

$$\frac{\sin a}{\sin A} - \frac{\sin c}{\sin C} \tag{3}$$

Combining (2) and (3), we obtain the law of sines for spherical triangles,

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}.$$
 (4)

That is, the sines of the sides of a spherical triangle and the sines of the corresponding opposite angles are in proportion.

### 115. Law of cosines for sides.

In Fig. 106, in which the construction is the same as that in Fig. 105, denote are AD by m. Applying Napier's rules



to the right triangle BDC, we find, from either part of the figure, since  $\cos(m-c) = \cos(c-m)$ ,

$$\cos a = \cos h \cos(c - m)$$

$$= \cos h(\cos c \cos m + \sin c \sin m). \tag{1}$$

From the right triangle ADC, we find

$$\cos b = \cos h \cos m$$
, or  $\cos m = \frac{\cos b}{\cos h}$ ; (2)

and 
$$\sin m = \tan h \cot A$$
, (3)

$$\sin h = \sin b \sin A. \tag{4}$$

Substituting 2 and 3 in (1), we get

$$\cos a = \cos i \cos c \frac{\cos b}{\cos h} + \sin c \tan h \cot A$$

$$= \cos c \cos b + \sin c \sin h \cot A,$$

or, substituting the value of  $\sin h$  from (4),

$$\cos a = \cos c \cos b + \sin c \sin b \cos A$$
.

Rearranging this formula, and writing the two others obtainable from it by a cyclic change of letters,\* we have

$$\cos a = \cos b \cos c + \sin b \sin c \cos A, \qquad (5)$$

$$\cos b = \cos c \cos a + \sin c \sin a \cos B, \qquad (6)$$

$$\cos c = \cos a \cos b + \sin a \sin b \cos C. \tag{7}$$

These formulas are known as the law of cosines for sides.

# 116. Law of cosines for angles.

Applying formula (5) to A'B'C', the polar triangle of ABC, we get

$$\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos A'. \tag{1}$$

If we now make use of the relations between the parts of a triangle and the parts of its polar triangle,  $a' = 180^{\circ} - A$ , etc. (see section 106), and of the formulas

$$cos(180^{\circ} - \theta) = -cos \theta, \quad sin(180^{\circ} - \theta) = sin \theta,$$

(1) reduces to

$$\cos A = -\cos B \cos C + \sin B \sin C \cos a. \qquad (2)$$

Similarly,

$$\cos B = -\cos C \cos A + \sin C \sin A \cos b, \qquad (3)$$

$$\cos C = -\cos A \cos B + \sin A \sin B \cos c. \tag{4}$$

<sup>\*</sup> See section 54.

The three foregoing formulas constitute the law of cosines for angles.

The law of cosines, either for sides or for angles, together with the relations between the parts of a triangle and the parts of its polar triangle, is sufficient for solving any spherical triangle if three parts are given, since it is always possible to find a form of the law which involves the three given parts and a single unknown part. For example, if the given parts are A, B, a, we could use (2) to find C, then (3) and (4) to find b and c respectively. However, the law of cosines is not adapted to the use of logarithms, and as problems of spherical trigonometry ordinarily require accurate results, it is desirable to derive other formulas with which logarithms can be used.

# 117. Law of tangents.

The law of sines for spherical triangles may be written in the form

$$\frac{\sin A}{\sin B} - \frac{\sin a}{\sin b} \tag{1}$$

By composition and division,\*

$$\frac{\sin A - \sin B}{\sin A + \sin B} = \frac{\sin a - \sin b}{\sin a + \sin b} \tag{2}$$

Applying formulas (9) and (8) of section 75 (page 132) to the numerator and denominator of the fraction on the left, we reduce it to the form

$$\frac{2\cos\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)}{2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)} = \frac{\tan\frac{1}{2}(A-B)}{\tan\frac{1}{2}(A+B)} \cdot (3)$$

The right side of (2) may be similarly reduced, and we get the law of tangents for spherical triangles,

$$\frac{\tan\frac{1}{2}(A-B)}{\tan\frac{1}{2}(A+B)} = \frac{\tan\frac{1}{2}(a-b)}{\tan\frac{1}{2}(a+b)}.$$
 (4)

<sup>\*</sup>See the author's College Algebra, p. 128.

# 118. Half-angle formulas.

We shall now develop the half-angle formulas for spherical trigonometry.

From formula 5: of section 74 page 129, we have \*

$$\tan \frac{1}{2}A = \sqrt{\frac{1 - \cos A}{1 - \cos A}}$$

Solving equation (5) of the law of cosines section 115 for cos A, we find

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$

Subtracting each side from 1, we get

$$1 - \cos A = 1 - \frac{\cos a - \cos b \cos c}{\sin b \sin c}$$

$$= \frac{\sin b \sin c - \cos a + \cos b \cos c}{\sin b \sin c}$$

$$- \frac{\cos(b - c) - \cos a}{\sin b \sin c}$$
(2)

Similarly, we find

$$1 + \cos A = \frac{\cos a - \cos(b + c)}{\sin b \sin c}.$$
 (3)

Substituting (2) and (3) in [1], we get

$$\tan \frac{1}{2}A = \sqrt{\frac{\cos(b-c) - \cos a}{\cos a - \cos(b+c)}}.$$
 (4)

By formula (11) of section 75 (page 132),

$$\cos(b-c) - \cos a = -2\sin\frac{1}{2}(b-c+a)\sin\frac{1}{2}(b-c-a), \quad (5)$$

$$\cos a - \cos(b+c)$$

$$= -2\sin \frac{1}{2}(a+b+c)\sin \frac{1}{2}(a-b-c).$$
 (6)

<sup>\*</sup>Only the positive sign is used with the radical, since, by the restriction imposed in section 104,  $A < 180^\circ$ , and consequently  $\frac{1}{2}A < 90^\circ$ .

If we let \*

$$s = \frac{1}{2}(a+b+c),$$
 (7)

then it can easily be shown that

$$b + c - a = 2(s - a),$$
  
 $a + c - b = 2(s - b),$   
 $a + b - c = 2(s - c).$ 
(8)

By means of (5), (6), (7), we can reduce (4) to the form

$$\tan \frac{1}{2}A = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin s\sin(s-a)}}, \qquad (9)$$

and, if †

$$\tan r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}}, \quad (10)$$

(10) reduces to the simpler form

$$\tan \frac{1}{2}A = \frac{\tan r}{\sin(s-a)}.$$
 (11)

Similarly,

$$\tan \frac{1}{2}B = \frac{\tan r}{\sin(s-b)}, \qquad (12)$$

$$\tan \frac{1}{2}C = \frac{\tan r}{\sin(s-c)}.$$
 (13)

These may be termed the half-angle formulas.

# 119. Half-side formulas.

If we solve formula (2) of section 116 for cos a and proceed somewhat as above, we can derive the half-side formulas:

$$\tan \frac{1}{2}a = \tan R \cos(S - A), \tag{1}$$

$$\tan \frac{1}{2}b = \tan R \cos(S - B), \tag{2}$$

$$\tan \frac{1}{2}c = \tan R \cos(S - C), \tag{3}$$

in which ‡

<sup>\*</sup> Cf. section 64.

 $<sup>\</sup>dagger$  It can be shown that r is the radius of the small circle inscribed in the spherical triangle ABC.

<sup>‡</sup> It can be shown that R is the radius of the small circle circumscribed about the spherical triangle ABC.

3371.1

$$\tan R = \int \frac{-\cos S}{\cos S - A \cdot \cos(S - B \cdot \cos S - C)}$$

$$S = \int A + B + C.$$
(5)

This is left as an exercise.

### 120. Napier's analogies.

Dividing (11) of section 118 by (12) of the same section, we get

$$\frac{\tan\frac{3}{2}A}{\tan\frac{3}{2}B} = \frac{\sin(s-b)}{\sin(s-a)}.$$
 (1)

and by composition and division,

$$\frac{\tan \frac{1}{2}A - \tan \frac{1}{2}B}{\tan \frac{1}{2}A + \tan \frac{1}{2}B} = \frac{\sin(s - b) - \sin(s - a)}{\sin(s - b) + \sin(s - a)},$$

which reduces as follows:

$$\frac{\sin \frac{1}{2}A}{\frac{1}{\cos \frac{1}{2}A}} - \frac{\sin \frac{1}{2}B}{\cos \frac{1}{2}B} = \frac{2 \cos \frac{1}{2}(2s - a - b) \sin \frac{1}{2}(a - b)}{2 \sin \frac{1}{2}(2s - a - b) \cos \frac{1}{2}(a - b)},$$

$$\frac{\sin\frac{1}{2}A\,\cos\frac{1}{2}B-\cos\frac{1}{2}A\,\sin\frac{1}{2}B}{\sin\frac{1}{2}A\,\cos\frac{1}{2}B+\cos\frac{1}{2}A\,\sin\frac{1}{2}B}=\frac{\tan\frac{1}{2}(a-b)}{\tan\frac{1}{2}c}\,,$$

$$\frac{\sin\frac{1}{2}(A-B)}{\sin\frac{1}{2}(A+B)} = \frac{\tan\frac{1}{2}(a-b)}{\tan\frac{1}{2}c}.$$
 (2)

Multiplying (9) of section 118 by the corresponding formula for  $\tan \frac{1}{2}B$  gives

$$\tan \frac{1}{2}A \tan \frac{1}{2}B = \frac{\sin(s-c)}{\sin s} \,. \tag{3}$$

Writing the left side in the form  $\tan \frac{1}{2}A \cot \frac{1}{2}B$  and taking steps quite similar to those taken in proving formula (2) of

the present section, we can reduce (3) to the form \*

$$\frac{\cos\frac{1}{2}(A-B)}{\cos\frac{1}{2}(A+B)} = \frac{\tan\frac{1}{2}(a+b)}{\tan\frac{1}{2}c}.$$
 (4)

This is left as an exercise.

It is also left as an exercise to prove, from (2) and (4), by the use of polar triangles, the following formulas:

$$\frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} = \frac{\tan \frac{1}{2}(A-B)}{\cot \frac{1}{2}C}.$$
 (5)

$$\frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} = \frac{\tan \frac{1}{2}(A+B)}{\cot \frac{1}{2}C}.$$
 (6)

By applying cyclic changes to the letters in formulas (2), (4), (5), (6) we obtain eight more formulas, or a total of twelve. These twelve formulas are called Napier's analogies.†

### 121. The six cases.

Problems in the solution of oblique spherical triangles may be classified into the following six cases:

Case I. Three sides given.

Case II. Three angles given.

Case III. Two sides and the included angle given.

Case IV. Two angles and the included side given.

Case V. Two sides and the angle opposite one of them given.

Case VI. Two angles and the side opposite one of them given.

Cases I and II, III and IV, V and VI, are essentially equivalent (in pairs) because of the relations between the parts of a triangle and the parts of its polar triangle. For example, if the three sides of a triangle are given, the three angles of the polar triangle can be found at once, so that

<sup>\*</sup> Formula (4) can also be derived by using the law of tangents and (2).
† The word "analogy" is used in the now obsolete sense of "proportion."

Case I for the given triangle is Case II for the polar triangle.

The six cases can be solved by the application of the half-angle and half-side formulas. Napier's analogies, and the law of sines, as will be illustrated in subsequent sections.

# 122. Clearing up certain ambiguities.

When Napier's analogies are used, the quadrant in which any part terminates can always be determined by noting the signs of the functions involved. However, when the law of sines is used, two values are found for the required part. Whether one or both of these values are admissible may be determined by the principle established in solid geometry that the three sides and the three angles are in the same order of magnitude (e.g., if A > B > C, then a > b > c) or by the following theorems:

Theorem I. Half the sum of any two sides is in the same quadrant as half the sum of the opposite angles.

This theorem is easily proved by using Napier's analogy (4), namely,

$$\frac{\cos\frac{1}{2}(A-B)}{\cos\frac{1}{2}(A+B)} = \frac{\tan\frac{1}{2}(a+b)}{\tan\frac{1}{2}c}.$$

Since each part of a triangle is less than  $180^\circ$ , each of the quantities  $\frac{1}{2}(A-B)$  and  $\frac{1}{2}c$  is less than  $90^\circ$ . Consequently,  $\cos \frac{1}{2}(A-B)$  and  $\tan \frac{1}{2}(a-b)$  are both positive. Therefore,  $\cos \frac{1}{2}(A+B)$  and  $\tan \frac{1}{2}(a+b)$  are of the same sign, and  $\frac{1}{2}(A+B)$  and  $\frac{1}{2}(a+b)$  are either both in the first quadrant or both in the second quadrant.

COROLLARY. If two sides are supplementary the angles opposite are supplementary, and conversely.

THEOREM II. A side which differs from 90° more than another side does, terminates in the same quadrant as its opposite angle.

Suppose, for example, that a differs from  $90^{\circ}$  more than b does.

From the law of cosines for sides (formula (5) of section 115), we have

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$

From the hypothesis regarding a and b it follows that  $\cos a$  is numerically greater than  $\cos b$ . Moreover, since  $\cos c$  is numerically not greater than 1,  $\cos a$  is also greater than  $\cos b \cos c$ . Hence the numerator of the above fraction has the same sign as  $\cos a$ . The denominator is positive, and consequently  $\cos a$  and  $\cos A$  have the same sign. Therefore a terminates in the same quadrant as A.

THEOREM III. An angle which differs from 90° more than another angle does, terminates in the same quadrant as its opposite side.

This theorem can be proved by using the law of cosines for angles. The proof is left as an exercise.

#### EXERCISES XVI. A

In the following sets of exercises, A, B, C, are the angles and a, b, c, the sides of spherical triangles.

- 1. Given  $a = 100^{\circ}$ ,  $b = 95^{\circ}$ ,  $c = 75^{\circ}$ . State whether the following angles are acute or obtuse: (a)  $\frac{1}{2}(A + B)$ , (b)  $\frac{1}{2}(A + C)$ , (c)  $\frac{1}{2}(B + C)$ .
- 2. Given  $A = 60^{\circ}$ ,  $B = 100^{\circ}$ ,  $C = 120^{\circ}$ . State whether the following quantities are acute or obtuse: (a)  $\frac{1}{2}(a+b)$ , (b)  $\frac{1}{2}(a+c)$ , (c)  $\frac{1}{2}(b+c)$ .
- 3. If  $a = 100^{\circ}$  and  $b = 95^{\circ}$ , is A acute or obtuse?
- **4.** Given  $a = 100^{\circ}$ ,  $b = 75^{\circ}$ . Is B acute or obtuse?
- 5. Given  $A=132^{\circ}$ ,  $B=62^{\circ}$ ,  $C=42^{\circ}$ . State whether the following sides are acute or obtuse: a, c.
- 6. Given  $A = 76^{\circ}$ ,  $B = 102^{\circ}$ ,  $c = 75^{\circ}$ . Which of the following quantities are acute and which obtuse?  $\frac{1}{2}(a + b)$ , a,  $\frac{1}{2}(A + C)$ .
- 7. Given  $a=82^{\circ}$ ,  $b=98^{\circ}$ ,  $c=99^{\circ}$ . Which of the following angles are acute and which obtuse?  $\frac{1}{2}(A+B)$ ,  $\frac{1}{2}(A+C)$ ,  $\frac{1}{2}(B+C)$ , A, B, C.

# 193. Delambre's or Gauss's formulas.

Methods of checking solutions will be given in the model solutions. However, one of the following formulas, known as Delambre's or Gauss's formulas, always affords a good check, since each formula involves all six parts of the triangle. The formulas are given without proof.

$$\frac{\sin\frac{1}{2}(a-b)}{\sin\frac{1}{2}c} = \frac{\sin\frac{1}{2}(A-B)}{\cos\frac{1}{2}C},$$
 (1)

$$\frac{\sin\frac{1}{2}(a+b)}{\sin\frac{1}{2}c} = \frac{\cos\frac{1}{2}(A-B)}{\sin\frac{1}{2}C}$$
 (2)

$$\frac{\cos\frac{1}{2}(a-b)}{\cos\frac{1}{2}c} = \frac{\sin\frac{1}{2}(A+B)}{\cos\frac{1}{2}C},$$
 (3)

$$\frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}c} = \frac{\cos \frac{1}{2}(A+B)}{\sin \frac{1}{2}C}.$$
 (4)

#### **EXERCISE**

Deduce Napier's analogies from the foregoing formulas.

# 124. Solution of Case I.

When we have the three sides given, the solution can be effected by the half-angle formulas and checked by the law of sines.

### Example.

Solve the triangle  $a = 56^{\circ} 17.2'$ ,  $b = 110^{\circ} 4.7'$ ,  $c = 71^{\circ} 29.3'$ .

SOLUTION. 
$$s = \frac{1}{2}(a+b+c).$$

$$a \mid 56^{\circ} 17.2'$$

$$b \mid 110^{\circ} 4.7'$$

$$-71^{\circ} 29.3'$$

$$2s \mid 237^{\circ} 51.2'$$

$$s \mid 118^{\circ} 55.6'$$

$$s-a \mid 62^{\circ} 38.4'$$

$$s-b \mid 8^{\circ} 50.9'$$

$$s-c \mid 47^{\circ} 26.3'$$

CHECK.

$$\tan r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}},$$

$$\log \tan r = \frac{1}{2}[\log \sin(s-a) + \log \sin(s-b) + \log \sin(s-c) + \cosh \sin s].$$

$$\tan \frac{1}{2}A = \frac{\tan r}{\sin(s-a)},$$

$$\log \tan \frac{1}{2}A = \log \tan r - \log \sin(s-a),$$

$$\cot c = \log \sin(s-a) = 9.94848 = 10$$

$$\log \sin(s-b) = 9.18701 = 10$$

$$\log \sin(s-c) = 9.86720 = 10$$

$$\cosh s = 0.05787$$

$$\log \tan^{2} r = 9.06056 = 10$$

$$\log \tan^{2} r = 9.06056 = 10$$

$$\log \tan^{2} A = 9.58180 = 10$$

$$\log \tan^{2} A = 9.58180 = 10$$

$$\log \tan^{2} A = 9.66308 = 10$$

$$\frac{1}{2}A = 20^{\circ} 53.7'$$

$$\frac{1}{2}B = 65^{\circ} 35.9'$$

$$\frac{1}{2}C = 24^{\circ} 43.1'$$

$$A = 41^{\circ} 47.4'$$

$$B = 131^{\circ} 11.8'$$

$$C = 49^{\circ} 26.2'$$

$$Check. \qquad \frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c} = x.$$

$$\log x = \log \sin A - \log \sin a, \text{ etc.}$$

$$\log \sin A = 9.82374 = 10 \qquad \log \sin B = 9.87648 = 10$$

$$\log \sin A = 9.92004 = 10 \qquad \log \sin B = 9.97648 = 10$$

$$\log \sin A = 9.92004 = 10 \qquad \log \sin B = 9.97648 = 10$$

$$\log \sin A = 9.92004 = 10 \qquad \log \sin B = 9.97648 = 10$$

$$\log \sin A = 9.92004 = 10 \qquad \log \sin B = 9.97648 = 10$$

$$\log \sin A = 9.92004 = 10 \qquad \log \sin A = 9.97692 = 10$$

$$\log \sin C = 9.88063 = 10$$

$$\log \sin C = 9.88063 = 10$$

$$\log \sin C = 9.98063 = 10$$

# 125. Solution of Case II.

When we have the flow angles given the solution can be effected by the half-side formulas and checked by the law of sines.

The compariational setup is the same as for Case I.

#### EXERCISES XVI. B

Solve the following triangles:

```
1. a = 125^{\circ} 49.2^{\circ}.
                                   b = 53^{\circ} 56.2^{\circ}.
                                                                v = 98^{\circ} 51.3'.
                                   b = 74^{\circ} 45.2'.
 2. a = 63^{\circ} 24.4'.
                                                                e = 136^{\circ} 42.8'
                                   b = 115^{\circ} 39.5'
                                                                c = 130^{\circ} 38.3'
 3. a = 53^{\circ} 42.0'.
 4. a = 158^{\circ} 33.7'.
                                  b = 123^{\circ} 13.5'.
                                                              \epsilon = 64^{\circ} 36.9'.
                                  b = 65^{\circ} 34.4^{\circ}.
 5. a = 84^{\circ} 35.2'.
                                                                r = 103^{\circ} 24.2'
                                                               C = 88^{\circ} 51.1'.
 6. A = 105^{\circ} 14.1'
                                  B = 55^{\circ} 31.4'.
 7. A = 43^{\circ} 40.4'
                                  B = 136^{\circ} 41.5'.
                                                               C = 65^{\circ} 16.7'
                                                               C = 136^{\circ} 42.8'
 8. .1 = 63^{\circ} 24.4'
                                  B = 74^{\circ} 45.2^{\circ}.
 9. A = 128^{\circ} 17.1'.
                                 B = 50^{\circ} \ 2.5'.
                                                               C = 114^{\circ} 40.6'
10. A = 81^{\circ} 52.5'.
                                  B = 97^{\circ} 31.1'.
                                                              C = 111^{\circ} 3.7'.
11. a = 51^{\circ} 43.3'
                                  b = 38^{\circ} 2.4'.
                                                              c = 75^{\circ} 11.5'.
12. a = 146^{\circ} 48.7'.
                                  b = 71^{\circ} 28.1'.
                                                              c = 129^{\circ} 16.3'
13. A = S3^{\circ} 54.0'
                                                               C = 93^{\circ} 2.0'.
                                  B = 102^{\circ} 6.4'.
14. A = 143^{\circ} 35.0'
                                  E = 104^{\circ} 16.2'.
                                                               C = 112^{\circ} 15.2'
15. a = 170^{\circ} 30.8'.
                                                                c = 108^{\circ} 5.3'.
                                  b = 85^{\circ} 50.4'.
16. a = 69^{\circ} 8.7'
                                  b = 131^{\circ} 3.9'
                                                              c = 141^{\circ} 33.2'
17. A = 128^{\circ} 15.6'
                                  B = 120^{\circ} 28.2'
                                                               C = 103^{\circ} 39.8'
18. A = 59^{\circ} 4.4^{\circ}
                                  B = 94^{\circ} 23.2'
                                                               C = 120^{\circ} 4.8'.
19. A = 45^{\circ} 24.6'
                                  B = 71^{\circ} 46.4'
                                                               C = 100^{\circ} 3.0'.
                                  b = 83^{\circ} 14.7'
                                                              c = 96^{\circ} 53.2'.
20. a = 105^{\circ} 27.3'.
```

### 126. Solution of Case III.

In this case we have two sides and the included angle given. Suppose, for example, that these are a, b, C. We find  $\frac{1}{2}(A+B)$  and  $\frac{1}{2}(A-B)$  from Napier's analogies (6) and (5) respectively (section 120). Angles A and B are then readily found. Side c may then be found by either of Napier's analogies (2) or (4). The solution may be checked

by the law of sines. It is desirable to check angles A and B as soon as they have been found, since they are used in finding c.

#### Example.

Solve the triangle  $b=113^{\circ}\ 17.3',\ c=95^{\circ}\ 2.5',\ A=72^{\circ}\ 51.6'.$  Solution.

$$\tan \frac{1}{2}(B+C) = \frac{\cos \frac{1}{2}(b-c)}{\cos \frac{1}{2}(b+c)} \cot \frac{1}{2}A,$$

$$\tan \frac{1}{2}(B-C) = \frac{\sin \frac{1}{2}(b-c)}{\sin \frac{1}{2}(b+c)} \cot \frac{1}{2}A,$$

$$\log \tan \frac{1}{2}(B+C) = \log \cos \frac{1}{2}(b-c)$$

$$+ \operatorname{colog} \cos \frac{1}{2}(b+c) + \log \cot \frac{1}{2}A,$$

$$\log \tan \frac{1}{2}(B-C) = \log \sin \frac{1}{2}(b-c)$$

$$+ \operatorname{colog} \sin \frac{1}{2}(b+c) + \log \cot \frac{1}{2}A.$$

$$\begin{vmatrix} b & 113^{\circ} & 17.3' & \\ 95^{\circ} & 2.5' & \\ 72^{\circ} & 51.6' & \\ b+c & 208^{\circ} & 19.8' & \\ b-c & 18^{\circ} & 14.8' & \\ \frac{1}{2}(b+c) & 104^{\circ} & 9.9' & \\ \frac{1}{2}(b-c) & 9^{\circ} & 7.4' & \\ \frac{1}{2}A & 36^{\circ} & 25.8' & \\ \log \cos \frac{1}{2}(b-c) & 9.99447 - 10 & \\ \log \cot \frac{1}{2}A & 0.13190 & \\ \log \cot \frac{1}{2}A & 0.13190 & \\ \log \sin \frac{1}{2}(b-c) & 0.01341 & \\ \log \tan \frac{1}{2}(B+C) & 0.73771 & (\text{neg}) * \\ \log \tan \frac{1}{2}(B-C) & \frac{1}{2}(B+C) & 12^{\circ} & 29.6' & \\ \frac{1}{2}(B-C) & 12^{\circ} & 29.6' & \\ & 112^{\circ} & 51.6' & \\ & 87^{\circ} & 52.4' & \\ \end{vmatrix}$$

<sup>\*</sup> The notation (neg) indicates that the corresponding function is negative. Thus, in finding  $\frac{1}{2}(B+C)$ , we must deduct the value found in the tables

$$\tan \frac{1}{2}a = \frac{\sin \frac{1}{2} \frac{B-t}{B-t}}{\sin \frac{1}{2} \frac{B-t}{B-t}} \tan \frac{1}{2} \frac{b-c}{b-t},$$

$$\log \tan \frac{1}{2}a = \log \sin \frac{1}{2} \frac{B-t}{B-t} + \log \tan \frac{1}{2} \frac{b-c}{b-t},$$

$$\log \sin \frac{1}{2} \frac{B-t}{B-t} + \log \tan \frac{1}{2} \frac{b-c}{b-t},$$

$$\log \sin \frac{1}{2} \frac{B-t}{B-t} + \log \tan \frac{1}{2} \frac{b-c}{b-t},$$

$$\log \tan \frac{1}{2} \frac{A-t}{B-t} + \log \tan \frac{1}{2} \frac{b-c}{b-t},$$

$$\log \tan \frac{1}{2} \frac{a-t}{B-t} + \log \frac{1}{2} \frac{b-c}{b-t},$$

$$\log \sin \frac{A-t}{B-t} + \log \frac{1}{2} \frac{b-c}{b-t},$$

$$\log \cos \frac{$$

### 127. Solution of Case IV.

The solution of this case, in which we have two angles and the included side given, is very similar to the solution of Case III. Using the appropriate analogies of Napier, we find half the sum and half the difference of the required sides. The sides themselves can then be found immediately. The unknown angle is found by using another of Napier's analogies, and the results may be checked by the law of sines, the two sides being checked as soon as they are found.

from 180°, since 
$$\tan \frac{1}{2}(B+C)$$
 is negative. That is,  $\frac{1}{2}(B+C) = 180^{\circ} - 79^{\circ} 38.0' = 100^{\circ} 22.0'$ .

This could also be determined by Theorem I of section 122.

#### Example.

Solve the triangle  $A = 93^{\circ} 14.8'$ ,  $C = 71^{\circ} 23.2'$ ,  $b = 112^{\circ} 19.8'$ . Solution.

$$\tan \frac{1}{2}(a+c) = \frac{\cos \frac{1}{2}(A-C)}{\cos \frac{1}{2}(A+C)} \tan \frac{1}{2}b,$$

$$\tan \frac{1}{2}(a-c) = \frac{\sin \frac{1}{2}(A-C)}{\sin \frac{1}{2}(A+C)} \tan \frac{1}{2}b,$$

$$\log \tan \frac{1}{2}(a+c) = \log \cos \frac{1}{2}(A-C) + \log \tan \frac{1}{2}b,$$

$$\log \tan \frac{1}{2}(a-c) = \log \sin \frac{1}{2}(A-C) + \log \tan \frac{1}{2}b,$$

$$\log \tan \frac{1}{2}(a-c) = \log \sin \frac{1}{2}(A-C) + \log \tan \frac{1}{2}b.$$

$$A = 93^{\circ} 14.8'$$

$$C = 71^{\circ} 23.2'$$

$$b = 112^{\circ} 19.8'$$

$$A + C = 164^{\circ} 38.0'$$

$$A - C = 21^{\circ} 51.6'$$

$$\frac{1}{2}(A+C) = 82^{\circ} 19.0'$$

$$\frac{1}{2}(A-C) = 10^{\circ} 55.8'$$

$$\frac{1}{2}b = 56^{\circ} 9.9'$$

$$\log \cos \frac{1}{2}(A-C) = 9.99205 - 10$$

$$\operatorname{colog} \cos \frac{1}{2}(A+C) = 9.27786 - 10$$

$$\operatorname{colog} \sin \frac{1}{2}(A-C) = 9.27786 - 10$$

$$\operatorname{colog} \sin \frac{1}{2}(A+C) = 0.00392$$

$$\log \tan \frac{1}{2}(a+c) = 1.03964$$

$$\log \tan \frac{1}{2}(a+c) = 9.45549 - 10$$

$$\frac{1}{2}(a+c) = 84^{\circ} 47.1'$$

$$\frac{1}{2}(a-c) = 15^{\circ} 55.8'$$

$$100^{\circ} 42.9'$$

$$68^{\circ} 51.3'$$

$$\cot \frac{1}{2}B = \frac{\sin \frac{1}{2}(a+c)}{\sin \frac{1}{2}(a-c)} \tan \frac{1}{2}(A-C),$$

 $\log \cot \frac{1}{2}B = \log \sin \frac{1}{2}(a+c)$ 

+ colog  $\sin \frac{1}{2}(a-c)$  + log  $\tan \frac{1}{2}(A-C)$ .

$$\begin{array}{c} \log \sin \frac{1}{2} a + c & 949820 - 10 \\ \operatorname{colog} \sin \frac{1}{2} a + c & 956152 \\ \log \tan \frac{1}{2} A + C & 928581 - 10 \\ \log \cot \frac{1}{2} B & 984553 + 10 \\ \frac{1}{2} B & 54°58.9' \\ B & 109°57.8' \end{array}$$

Check. 
$$\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c} = x,$$

 $\log x = \log \sin A - \log \sin a$ , etc.

$$\frac{\log \sin C}{\log \frac{\sin c}{2}} = \frac{9.97667 - 10}{9.96972 - 10}$$

#### EXERCISES XVI. C

Solve the following triangles:

1. 
$$a = 56^{\circ} 19.7'$$
,  $b = 20^{\circ} 16.7'$ ,  $C = 114^{\circ} 20.3'$ .  
2.  $b = 47^{\circ} 29.3'$ ,  $c = 50^{\circ} 6.3'$ ,  $A = 129^{\circ} 58.5'$ .  
3.  $a = 145^{\circ} 58.2'$ ,  $b = 62^{\circ} 50.6'$ ,  $C = 134^{\circ} 52.0'$ .  
4.  $b = 120^{\circ} 30.5'$ .  $c = 70^{\circ} 20.3'$ ,  $A = 50^{\circ} 10.2'$ .  
5.  $a = 95^{\circ} 12.9'$ ,  $b = 53^{\circ} 10.1'$ .  $C = 49^{\circ} 11.3'$ .  
6.  $A = 128^{\circ} 36.8'$ ,  $B = 106^{\circ} 45.2'$ ,  $c = 87^{\circ} 40.3'$ .  
7.  $A = 77^{\circ} 59.6'$ ,  $B = 40^{\circ} 59.8'$ ,  $c = 108^{\circ} 0.5'$ .  
8.  $B = 108^{\circ} 28.9'$ ,  $C = 38^{\circ} 11.5'$ ,  $a = 52^{\circ} 29.0'$ .  
9.  $A = 127^{\circ} 19.6'$ ,  $C = 108^{\circ} 41.5'$ ,  $b = 125^{\circ} 22.5'$ .  
10.  $A = 142^{\circ} 30.8'$ ,  $B = 68^{\circ} 47.7'$ ,  $c = 135^{\circ} 34.7'$ .  
11.  $b = 99^{\circ} 40.8'$ ,  $c = 100^{\circ} 49.5'$ ,  $A = 65^{\circ} 33.2'$ .  
12.  $a = 41^{\circ} 5.1'$ ,  $b = 44^{\circ} 25.4'$ ,  $C = 37^{\circ} 29.2'$ .  
13.  $A = 176^{\circ} 16.6'$ ,  $C = 3^{\circ} 18.2'$ ,  $b = 27^{\circ} 1.1'$ .  
14.  $B = 64^{\circ} 48.9'$ ,  $C = 40^{\circ} 23.3'$ ,  $a = 108^{\circ} 39.2'$ .  
15.  $a = 88^{\circ} 37.7'$ ,  $b = 125^{\circ} 18.3'$ ,  $C = 102^{\circ} 16.6'$ .  
16.  $a = 67^{\circ} 12.6'$ ,  $c = 135^{\circ} 0.9'$ ,  $B = 74^{\circ} 45.2'$ .  
17.  $A = 34^{\circ} 29.5'$ ,  $B = 36^{\circ} 6.8'$ ,  $c = 85^{\circ} 59.0'$ .

| 18. $A = 78^{\circ} 30.8'$          | $B = 91^{\circ} 28.2',$ | $c = 51^{\circ} 22.4'$   |
|-------------------------------------|-------------------------|--------------------------|
| 19. $a = 132^{\circ} 46.7'$         | $b = 59^{\circ} 50.1',$ | $C = 56^{\circ} 28.4'$ . |
| <b>20.</b> $b = 28^{\circ} 20.3'$ , | $c = 112^{\circ} 1.9',$ | $A = 79^{\circ} 28.6'$ . |

# 128. Solution of Case V.

Case V, in which we have two sides and the angle opposite one of them given, presents the same peculiarities as the corresponding case in plane trigonometry. Suppose that the given parts are a, b, A. Angle B can be determined by the law of sines,

$$\sin B = \frac{\sin b \sin A}{\sin a} \,. \tag{1}$$

If the ratio on the right of this equation is greater than 1 (in other words, if  $\log \sin B > 0$ ), no solution exists.



If this ratio is equal to 1, B is 90° and the resulting right triangle is a unique solution.

If the ratio is less than 1, we find two values for B, the tabular value and its supplement. In this event there may be two solutions (see

Fig. 107). The number of solutions may be determined by the principles of section 122.

The remaining angle, and likewise the required side, can be found by using appropriate forms of Napier's analogies.

Checking is perhaps best done by means of one of Delambre's formulas. Suppose, for example, that we rewrite (1) of section 123 in the form

$$\frac{\sin\frac{1}{2}(a-b)\cos\frac{1}{2}C}{\sin\frac{1}{2}(A-B)\sin\frac{1}{2}c} - 1.$$
 (2)

Then, the logarithm of the left side should be equal to zero (since  $\log 1 = 0$ ) if the work is correct.

### Example.

Solve the triangle 
$$a=100^{\circ}48.2'$$
.  $(-70^{\circ}11.4', B=71^{\circ}9.6')$ .

Solution.  $a=100^{\circ}48.2'$ .  $(-70^{\circ}11.4', B=71^{\circ}9.6')$ .

 $\sin A = \frac{\sin a \sin B}{\sin b}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin a \sin B}{\sin b}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin a \sin B}{\sin b}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4)$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4')$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4')$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4')$ .

 $\tan \beta = \frac{\sin \alpha \sin B}{\sin \beta}$ .  $(-70^{\circ}11.4')$ .

 $\tan \beta = \frac{\sin \beta \sin \alpha}{\sin \beta}$ .  $(-70^{\circ}11.4')$ .

 $\tan \beta = \frac{\sin \beta \sin \alpha}{\sin \beta}$ .  $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

 $(-70^{\circ}11.4')$ .

$$\log \tan \frac{1}{2}c = \log \sin \frac{1}{2}(A + B) + \operatorname{colog} \sin \frac{1}{2}(A - B) + \log \tan \frac{1}{2}(A - B)$$

$$- \log \sin \frac{1}{2}(A + B) - 9.98720 + 10$$

$$- \operatorname{colog} \sin \frac{1}{2}(A - B) - 1.06014$$

$$- \log \tan \frac{1}{2}(A - B) - 9.43727 + 10$$

$$- \log \sin \frac{1}{2}(A' + B) - 9.99835 + 10$$

$$- \operatorname{colog} \sin \frac{1}{2}(A' + B) - 0.62106$$

$$- \log \tan \frac{1}{2}c - 0.48461$$

$$- \log \tan \frac{1}{2}c' + 0.05668$$

$$- \frac{1}{2}c - 143^{\circ} 43.7'$$

$$- c - 143^{\circ} 43.2'$$

$$- c' - 97^{\circ} 27.4'$$

CHECK. 1st solution.

$$\frac{\sin \frac{1}{2}(a-b) \cos \frac{1}{2}C}{\sin \frac{1}{2}(A-B) \sin \frac{1}{2}c} = 1,$$

$$\log \sin \frac{1}{2}(a - b) + \log \cos \frac{1}{2}C + \operatorname{colog} \sin \frac{1}{2}(A - B) + \operatorname{colog} \sin \frac{1}{2}c = 0.$$

$$\begin{array}{ccc} \log \sin \frac{1}{2}(a-b) & 9.42158 - 10 \\ \log \cos \frac{1}{2}C & 9.49615 - 10 \\ \operatorname{colog} \sin \frac{1}{2}(A-B) & 1.06014 \\ \operatorname{colog} \sin \frac{1}{2}c & 0.02214 \\ \hline & 0.00001 \end{array}$$

### 129. Solution of Case VI.

Case VI, two angles and the side opposite one of them given, is so similar to Case V that we shall not give a detailed discussion. A model solution, however, will be given.

### Example.

Solve the triangle  $A = 121^{\circ} 17.7'$ ,  $B = 29^{\circ} 7.7'$ ,  $a = 136^{\circ} 12.0'$ .

Solution. 
$$\sin b = \frac{\sin a \sin B}{\sin A}$$

 $\log \sin b = \log \sin a + \log \sin B + \operatorname{colog} \sin A.$ 

```
2 146 120
lag-in a 384020 - 10
                            bershi B 3068732 - 10
                        color dia di Conis 20
                           log sin 5 9,56581 - 10
                                      b = 23^{\circ} 13.3', b' = 156^{\circ} 46.7' *
                     \tan \frac{1}{2}e = \frac{\sin \frac{1}{2}(A + B)}{\sin \frac{1}{2}(A + B)} \cdot \sin \frac{1}{2}(A + B)
\log \tan \beta c = \log \sin \beta A + B + \operatorname{edog sin} \beta A + B
                                                                    +\log \tan i \cdot a - b.
                              A \rightarrow B - 150^{\circ} 25.4^{\circ}
                              A = B - 92^{\circ} 10.0^{\circ}
                               a + b = 159^{\circ} 25.3'
                               a = b - 112^{\circ} 58.7^{\circ}
              colog \sin \frac{1}{2}(A - B) = 0.14246
                 \log \tan \frac{1}{2}(a - b) = 0.17905
                          log tan 3c 0.30688
                                     $e 63° 44.5′
                                      r 127° 29.0'
                     \cot \frac{1}{2}C = \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}(a-b)} \tan \frac{1}{2} (A-B),
\log \cot M = \log \sin \frac{1}{2}(a+b) + \cosh \sin \frac{1}{2}(a+b)
                                                                  + \log \tan \frac{1}{2}(A - B).
                 \log \sin \frac{1}{2}(a + b) 9.99296 - 10
              colog \sin \frac{1}{2}(a-b) = 0.07894
               \frac{\log \tan \frac{1}{2}(1-B)}{\log \cot \frac{1}{2}C} = \frac{0.01643}{0.08833}
                                     ₹C 39° 12.5′
                                       C 78° 25.6'
```

<sup>\*</sup> Not admissible; for A > B, and therefore a must be greater than b

# 232 SOLUTION OF OBLIQUE SPHERICAL TRIANGLES [Ch. XVI

CHECK. 
$$\frac{\sin \frac{1}{2}(a-b) \cos \frac{1}{2}C}{\sin \frac{1}{2}(A-B) \sin \frac{1}{2}c} = 1,$$

$$\log \sin \frac{1}{2}(a-b) + \log \cos \frac{1}{2}C + \operatorname{colog} \sin \frac{1}{2}(A-B) + \operatorname{colog} \sin \frac{1}{2}c = 0.$$

$$\log \sin \frac{1}{2}(a-b) \mid 9.92106 - 10$$

$$\log \cos \frac{1}{2}C \mid 9.88919 - 10$$

$$\operatorname{colog} \sin \frac{1}{2}(A-B) \mid 0.14246$$

$$\operatorname{colog} \sin \frac{1}{2}c \mid 0.04730$$

$$0.00001$$

#### EXERCISES XVI. D

Solve the following triangles:

```
1. a = 44^{\circ} 48.3', b = 17^{\circ} 36.7', A = 63^{\circ} 24.8'.

2. a = 56^{\circ} 30.0', b = 31^{\circ} 20.0', A = 105^{\circ} 11.2'.

3. a = 52^{\circ} 45.3', b = 71^{\circ} 12.7', A = 46^{\circ} 22.2'.

4. b = 68^{\circ} 52.8', c = 56^{\circ} 49.8', C = 45^{\circ} 15.2'.

5. a = 30^{\circ} 38.1', c = 31^{\circ} 29.8', A = 87^{\circ} 53.3'.

6. A = 109^{\circ} 20.2', B = 134^{\circ} 16.4', a = 148^{\circ} 48.7'.

7. A = 143^{\circ} 17.4', B = 70^{\circ} 18.4', a = 160^{\circ} 40.6'.

8. A = 61^{\circ} 37.9', B = 139^{\circ} 54.6', b = 150^{\circ} 17.4'.

9. A = 70^{\circ} 15.2', B = 119^{\circ} 43.8', b = 80^{\circ} 24.4'.

10. B = 24^{\circ} 30.5', C = 61^{\circ} 29.5', C = 34^{\circ} 0.5'.

11. a = 80^{\circ} 5.3', b = 82^{\circ} 4.0', A = 83^{\circ} 34.2'.

12. a = 134^{\circ} 15.9', b = 150^{\circ} 57.1', B = 144^{\circ} 22.7'.

13. A = 79^{\circ} 37.3', C = 145^{\circ} 52.2', C = 150^{\circ} 42.7'.

14. A = 60^{\circ} 20.2', B = 17^{\circ} 12.9', b = 43^{\circ} 50.5'.

15. a = 148^{\circ} 34.4', b = 142^{\circ} 11.6', A = 153^{\circ} 17.6'.

16. a = 40^{\circ} 20.4', b = 20^{\circ} 18.2', A = 60^{\circ} 44.4'.

17. A = 117^{\circ} 54.4', B = 45^{\circ} 8.6', a = 76^{\circ} 37.5'.

18. b = 119^{\circ} 19.9', c = 160^{\circ} 2.3', C = 139^{\circ} 9.1'.

19. A = 104^{\circ} 40.0', B = 80^{\circ} 13.6', a = 126^{\circ} 50.4'.

20. a = 40^{\circ} 5.4', b = 118^{\circ} 22.1', A = 29^{\circ} 42.6'.
```

# 130. Summary of methods.

The methods of solving oblique spherical triangles are enitomized below.

Case I. Three sides viven.

Use half-angle formulas. Check by law of sines.

Case II. Three angles given.

Use half-side formulas. Check by law of -mes.

Case III. Two sides and the included angle given.

Find half the sum and half the difference of the required angles by using appropriate forms of Napier's analogies. The required angles are then readily found. Find required side by another of Napier's analogies. Check by law of sines.

and the included side given.

Case IV. Two angles: Find half the sum and half the difference of the required sides by using appropriate forms of Napier's analogies. The required sides are then readily found. Find required angle by another of Napier's analogies.

Check by law of sines.

Case V. Two sides and the angle opposite one of them given.

Use law of sines to find an angle. Find remaining angle and required side by appropriate forms of Napier's analogies. Note number of solutions. Check by one of Delambre's formulas.

Case VI. Two angles and the side opposite one of them given.

Use law of sines to find a side. remaining side and required angle by appropriate forms of Napier's analogies. Note number of solutions. Check by one of Delambre's formulas.

#### MISCELLANEOUS EXERCISES XVI. E

Solve the following triangles:

 $C = 52^{\circ} 51.8'$ 30° 37.1′, 1.  $a = 18^{\circ} 29.3'$ .  $136^{\circ} 19.6', \quad c = 43^{\circ} 18.5'.$ 2.  $a = 114^{\circ} 43.3'$ 

```
3. A = 33^{\circ} 15.1'.
                               B = 31^{\circ} 34.6'
                                                         C = 161^{\circ} 25.3'
 4. A = 80^{\circ} 2.3'.
                               a = 118^{\circ} 20.3'
                                                          b = 69^{\circ} 56.3'
                                                           a = 60^{\circ} 43.6'.
 5. B = 140^{\circ} 43.2'.
                                C = 100^{\circ} 4.6'
                                                           c = 36^{\circ} 8.7'
 6. a = 76^{\circ} 40.4'
                               b = 54^{\circ} 21.3'
 7. a = 14S^{\circ} 34.4'
                               b = 142^{\circ} 11.6'
                                                           A = 153^{\circ} 17.6'
                               a = 60^{\circ} 44.4'
 8. A = 40^{\circ} 20.4'.
                                                           b = 20^{\circ} 18.2'
 9. a = 103^{\circ} 44.7'
                               b = 64^{\circ} 12.3'
                                                           C = 98^{\circ} 33.8'
10. A = 30^{\circ} 51.2'
                                B = 71^{\circ} 36.0'
                                                           C = 90^{\circ}.
                                                           C = 74^{\circ} 3.3'
11. A = 100^{\circ} 51.3'
                                B = 80^{\circ} 47.6'.
12. A = 150^{\circ} 47.0'.
                                C = 98^{\circ} 22.7'
                                                           c = 90^{\circ}.
13. A = 64^{\circ} 34.3'
                               B = 119^{\circ} 54.6'
                                                           C = 63^{\circ} 20.2'
14. A = 104^{\circ} 30.7'
                               B = 62^{\circ} 52.1'
                                                           c = 56^{\circ} 6.4'
15. A = 117^{\circ} 54.4'
                                                           a = 76^{\circ} 37.5'.
                               B = 45^{\circ} 8.6'
16. C = 50^{\circ} 10.2'.
                               b = 69^{\circ} 34.9'
                                                            c = 120^{\circ} 30.5'.
17. C = 50^{\circ} 10.2'.
                               b = 120^{\circ} 30.5'
                                                           c = 69^{\circ} 34.9'
                               B = 73^{\circ} 1.3'
18. A = 92^{\circ} 47.4'
                                                           c = 26^{\circ} 6.9'
19. a = 80^{\circ} 39.1'
                               b = 75^{\circ} 12.3'
                                                           c = 141^{\circ} 5.6'.
20. A = 61^{\circ} 37.9'.
                                C = 139^{\circ} 54.6'
                                                           c = 150^{\circ} 17.4'
21. A = 53^{\circ} 15.5'.
                             C = 68^{\circ} 58.5'
                                                            b = 67^{\circ} 12.6'.
                              B = 67^{\circ} 46.7',

b = 112^{\circ} 36.2',
22. A = 99^{\circ} 34.1'
                                                          C = 91^{\circ} 56.8'.
23. a = 41^{\circ} 19.3'.
                                                          c = 78^{\circ} 9.6'
24. a = 58^{\circ} 49.6'.
                               b = 75^{\circ} 12.1', \qquad C = 102^{\circ} 58.0'.
25. A = 104^{\circ} 30.7',
                               B = 62^{\circ} 52.1'
                                                           c = 56^{\circ} 6.4'.
26. A = 32^{\circ} 40.2'.
                               B = 122^{\circ} 11.1'
                                                         C = 42^{\circ} 36.2'.
                              B = 80^{\circ} 13.6',

b = 99^{\circ} 40.8',
27. A = 104^{\circ} 40.0',
                                                           a = 126^{\circ} 50.4'
28. A = 65^{\circ} 33.2',
                                                          c = 100^{\circ} 49.5'.
                            B = 125^{\circ} 31.6'.
                                                         a = 66^{\circ} 44.7'.
29. A = 113^{\circ} 30.0',
30. B = 10^{\circ} 10.2',
                             C = 90^{\circ}
                                                            b = 10^{\circ} 10.2'.
```

- 31. Find the perimeter and the area of the spherical triangle in which  $A=65^{\circ}$  50',  $b=63^{\circ}$  17',  $c=107^{\circ}$  23', the radius of the sphere being 5 inches.
- 32. A triangle whose sides are 100°, 50°, and 60° lies on a sphere of radius 10 inches. Find the difference between the area of this triangle and that of an equilateral triangle having the same perimeter.
- 33. A triangle whose angles are 100°, 50°, and 60° lies on a sphere of radius 10 inches. Find the difference between the perimeter of this triangle and that of an equiangular triangle having the same area.

## CHAPTER XVII

# Applications of Spherical Trigonometry

# 131. Terrestrial sphere.

In long distance measurements on the surface of the earth, and in navigation, the earth is treated as a sphere

having a radius of 3959 miles. This is called the terrestrial sphere.

It rotates about a diameter, called its axis, which pierces the sphere in the north pole P and the south pole P'. (See Fig. 108.)

The **equator** is the great circle whose plane is perpendicular to the axis.



A meridian is a great circle passing through the poles, for example, *PMO*.

The latitude of a point M is the angular distance of the point from the equator, and will be considered positive if the point is north of the equator, negative if the point is south of the equator. It is measured by the arc QM of the meridian through the point. The colatitude is  $90^{\circ}$  minus the latitude.\* It is the angular distance from the north pole and is measured by the arc MP.

The meridian through Greenwich is called the **prime** meridian. The longitude of a point is the angle between the prime meridian and the meridian through the point. It is measured by the number of degrees in the arc intercepted

<sup>\*</sup> If the point is south of the equator, say  $30^{\circ}$  south, its latitude is  $-30^{\circ}$  and its colatitude is  $90^{\circ} - (-30^{\circ}) = 120^{\circ}$ .

at the equator by these two meridians.\* If for example, in Fig. 109. PGG' is the prime meridian and PAA' is the meridian through the point A, these meridians cutting the equator in G' and A' respectively, then the longitude



of A is measured by the number of degrees in the arc G'A'. Longitude will be considered positive if the point is west of the prime meridian and negative if the point is east.

The distance between two points A and B is the length of the arc AB (not greater than a semicircumference) of a great circle passing through A and B. This distance

may be expressed in angular measure or in linear measure. To convert from angular units to linear units, we note that a nautical mile is the length of one minute of arc of a great circle on the terrestrial sphere. This is about 1.1516 statute miles of 5280 feet each, or 6080 feet. †

The bearing of point B from point A is the angle which the arc AB makes with the meridian through A (angle *PAB* in Fig. 109).‡

# 132. Terrestrial triangle.

To find the distance between A and B, and their bearings from each other, we consider the terrestrial triangle ABP, whose vertices are the two points and the north pole. If the latitude and longitude of the points are given, we can find arcs AP and BP, also angle APB, immedi-

<sup>\*</sup>It is also frequently expressed in hours, minutes, and seconds of time (cf. section 133), 1 hour being equivalent to 1/24 of 360°, or 15° of arc, 1 minute of time consequently being equivalent to 15 minutes of arc, and 1 second of time to 15 seconds of arc.

<sup>†</sup> The United States nautical mile is 6080.27 feet, the British nautical mile is 6080 feet.

<sup>‡</sup> In the United States Navy bearings are measured from 0° to 360°, from north through east. According to this convention, the bearing of B from A in Fig. 109 would be found by subtracting angle PAB from 360°.

ately, so that we have a problem under Case III, namely, two sides and the included angle given.

 $b = AP = \text{colatitude } A = 90^{\circ} - 40^{\circ} 43' = 49^{\circ} 17'$ 

#### Example.

Find the distance between New York (40° 43′ N, 74° 0′ W<sub>-</sub> and Liverpool (53° 24′ N, 3° 4′ W) and the bearing of each of these places from the other.



Solution. Represent New York by A and Liverpool by B (Fig. 110). Then,

$$a = BP = \text{colatitude } B = 90^{\circ} - 53^{\circ} 24' = 36^{\circ} 36',$$

$$P = \text{difference in longitude} = 74^{\circ} 0' - 3^{\circ} 4' = 70^{\circ} 56'.$$

$$\tan \frac{1}{2}(B + A) = \frac{\cos \frac{1}{2}(b - a)}{\cos \frac{1}{2}(b + a)} \cot \frac{1}{2}P,$$

$$\tan \frac{1}{2}(B - A) = \frac{\sin \frac{1}{2}(b - a)}{\sin \frac{1}{2}(b + a)} \cot \frac{1}{2}P,$$

$$\log \tan \frac{1}{2}(B + A) = \log \cos \frac{1}{2}(b - a)$$

$$+ \operatorname{colog} \cos \frac{1}{2}(b + a) + \log \cot \frac{1}{2}P,$$

$$\log \tan \frac{1}{2}(B - A) = \log \sin \frac{1}{2}(b - a)$$

$$+ \operatorname{colog} \sin \frac{1}{2}(b + a) = \log \cot \frac{1}{2}P.$$

$$b + a \mid 85^{\circ} 53'$$

$$b - a \mid 12^{\circ} 41'$$

$$\frac{1}{2}(b + a) \mid 42^{\circ} 56.5'$$

$$\frac{1}{2}(b - a) \mid 6^{\circ} 20.5'$$

$$\frac{1}{2}P \quad 35^{\circ} 28'$$

$$\log \cos \frac{1}{2}(b - a) \quad 9.99734 - 10$$

$$\operatorname{colog} \cos \frac{1}{2}(b + a) \quad 0.13546$$

$$\left[\begin{array}{c} \log \cot \frac{1}{2}P \quad 0.14727 \\ \log \sin \frac{1}{2}(b - a) \quad 9.04319 - 10 \\ \operatorname{colog} \sin \frac{1}{2}(b - a) \quad 9.04319 - 10 \\ \operatorname{colog} \sin \frac{1}{2}(b + a) \quad 0.16669 \\ \log \tan \frac{1}{2}(B + A) \quad 0.28007 \\ \log \tan \frac{1}{2}(B - A) \quad 9.35715 - 10 \\ \frac{1}{2}(B + A) \quad 62^{\circ} 19'$$

$$\frac{1}{2}(B - A) \quad 12^{\circ} 49'$$

$$B \mid 75^{\circ} 8'$$

A 49° 30′

$$\tan \frac{1}{2}p = \frac{\sin \frac{1}{2}(B+A)}{\sin \frac{1}{2}(B-A)} \tan \frac{1}{2}(b-a).$$

$$\log \tan \frac{1}{2}p = \log \sin \frac{1}{2}(B+A)$$

$$+ \operatorname{colog} \sin \frac{1}{2}(B-A) + \log \tan \frac{1}{2}(b-a).$$

$$\log \sin \frac{1}{2}(B+A) \quad 9.94720 - 10$$

$$\operatorname{colog} \sin \frac{1}{2}(B+A) \quad 0.65398$$

$$\log \tan \frac{1}{2}(b-a) \quad 9.04586 - 10$$

$$\log \tan \frac{1}{2}p \mid 9.64704 - 10$$

$$\frac{1}{2}p$$

$$p \quad 47^{\circ} 50' = 2870'$$

Distance = 2870 nautical miles.

Bearing of Liverpool from New York =  $A = N 49^{\circ} 30'$  E.

Bearing of New York from Liverpool =  $B = N75^{\circ} 8' W$ .

The solution should be checked by the law of sines.

#### EXERCISES XVII. A

Find the distances between the following places, also the bearing of each from the other. Latitudes and longitudes are given at the end of the set of exercises.

- 1. New York and San Francisco.
- 2. New York and Paris.
- 3. New York and Cape of Good Hope.
- 4. San Francisco and Sydney.
- 5. San Francisco and Rio de Janeiro.
- 6. New York and Rio de Janeiro.
- 7. Rio de Janeiro and Sydney.
- 8. Moscow and San Francisco.
- 9. How close to the north pole does the great circle path of the preceding exercise pass?
- 10. A ship sailed due east from New York to a point on the meridian of 10° W near Portugal. Find the distance it would have saved if it had sailed along the arc of a great circle.
- 11. A ship sails from New York to Cape of Good Hope along the arc of a great circle. Find its course (i.e., direction) (a) when it crosses the equator, (b) when it crosses the meridian of 10° W. (Use results of exercise 3.)
- 12. Find the area of the triangle whose vertices are New York,

- San Francisco, and Rio de Janeiro. Use results of exercises 1, 5, 6.2
- 13. An airplane flies from New York to Unleage in 3 hours and 45 minutes. What is its average rate of specialin statute miles per hour?
- 14. An airplane flew from Chicago to San Francisco at an average speed of 180 statute miles per hear. How long did the flight take?

|                   | Latitude  | Longitude  |
|-------------------|-----------|------------|
| Cape of Good Hope | 34° 21' S | 18° 30' II |
| Chicago           | 41° 50′ N | 87° 37′ W  |
| Moscow            | 55° 45′ N | 57° 34′ E  |
| New York          | 40° 43′ N | 74° 0′ W   |
| Paris             | 48° 50° N | 2° 20' E   |
| Rio de Janeiro    | 22° 54′ S | 43° 10′ W  |
| San Francisco     | 37° 47′ N | 122° 26′ W |
| Sydney            | 33° 52′ S | 151° 12′ H |

# 133. Celestial sphere.

A sphere, concentric with the earth, and having a radius of indefinite length, is called the celestial sphere. (See



Fig. 111, in which the earth is located at the point O.) With any point on this sphere is associated a direction, and thus

the angular distance (although not a linear distance) between any two points on it may be considered.

The points where the axis of the earth intersects the celestial sphere are the north and south celestial poles, P and P', respectively.

The plane of the equator of the earth cuts the celestial sphere in the celestial equator, EQW.

Great circles, such as PMP', passing through the celestial poles are called hour circles. The hour circle of the observer, the great circle NPZQS in the figure, is called the observer's celestial meridian.

The point Z on the celestial sphere vertically above the observer is called the **zenith** of the observer. The diametrically opposite point, Z', is called the **nadir**.

The horizon of the observer is the great circle NESW having the zenith and nadir as poles. On the horizon the cardinal points (north, south, east, west) are marked by the respective initial letters.

The declination of a star or other heavenly body, whose projection on the celestial sphere is represented by M in the figure, is its angular distance north or south of the celestial equator. It is regarded as positive if the body is north of the equator, negative if the body is south. The declination of the body M in Fig. 111 is measured by the arc KM of the hour circle of the body. Declination corresponds to latitude on the earth.

The hour angle of the body M is the angle at the pole between the celestial meridian (i.e., the hour circle of the observer) and the hour circle through the body. It is the angle ZPM in the figure, and may be measured by the arc QK of the celestial equator. It is usually measured from the celestial meridian, toward the west, from 0° to 360° or from 0 to 24 hours. Since the celestial sphere apparently rotates through 360° in 24 hours, 1 hour corresponds to  $\frac{1}{24} \times 360^\circ = 15^\circ$ , and we have the following relations between measures of time and angular measure:

The altitude of the body M is its distance above the horizon, and is no sample by the are HM.\* The altitude is

taken as positive if the body is above the horizon, negative if it is below.

The azimuth of the body is the angle at the zenith between the celestial meridian PZQS and the great circle ZMHZ' through the



zenith and the body. It may be mea used from north or from south. If, for example, it is measured from the south, the azimuth of M in Fig. 111 is the angle SZM.

A heavenly body may be located by its declination and its hour angle, or by its altitude and azimuth.

# 134. Astronomical triangle.

The spherical triangle *PZM* whose vertices are the celestial pole, the zenith, and the projection of a heavenly body on the celestial sphere, is called the astronomical triangle.

A study of Fig. 111 shows that

$$ZM = coaltitude.$$
 (1)

$$MP =$$
codeclination, 2

$$PZ = \text{colatitude},$$

where the prefix "co" obviously denotes "complement of." Moreover.

$$P = \text{hour angle},$$
 4.

$$Z = 180^{\circ} - azimuth.$$
 (5)

The angle M is of no special interest.

<sup>\*</sup> It can easily be shown that the altitude of the north celestial pole, at any place of observation, is the latitude of the place.

The north pole if the observer is in the northern hemisphere, the south pole if he is in the southern hemisphere.

If any three of the other five parts are known, the remaining two can be found. Thus, if an observer knows his latitude, and measures the altitude and azimuth of the sun, he can find PZ, ZM, and Z. From these he can compute the hour angle P. This would give the local apparent time (shown on a sundial).

From the American Nautical Almanac or the American Air Almanac (these are published by the United States Naval Observatory) can be obtained the declination of each of many heavenly bodies (sun, moon, planets, and several hundred stars) for any hour of the day. If an observer knows the time and measures the altitude of the sun, he has, after finding the declination of the heavenly body M from the Almanac, the values of ZM, MP, and P, from which he can compute PZ and hence his latitude.

#### Example 1.

An observation taken in St. Louis (latitude 38° 38′ N) showed the altitude of the sun to be 30° 30′. Its declination was found to be 10° 20′ N. What was the time of day?

Solution. In the astronomical triangle we have

$$m = \text{colat.} = 90^{\circ} - 38^{\circ} 38' = 51^{\circ} 22',$$
  
 $p = \text{coalt.} = 90^{\circ} - 30^{\circ} 30' = 59^{\circ} 30',$   
 $z = \text{codec.} = 90^{\circ} - 10^{\circ} 20' = 79^{\circ} 40'.$ 

This is Case I. Since only one angle is required, we use formula (9) of section 118 (page 216).

$$s = \frac{1}{2}(m+p+z).$$
 
$$\tan \frac{1}{2}P = \sqrt{\frac{\sin(s-m)\sin(s-z)}{\sin s\sin(s-p)}},$$

 $\log \tan \frac{1}{2}P$   $= \frac{1}{2}[\log \sin(s-m) + \log \sin(s-z) + \operatorname{colog} \sin s + \operatorname{colog} \sin(s-p)].$ 

Reducing the hour angle P to units of time [see section 133], we get  $P = 59^{\circ} 1' \div 15 = 3^{\circ} 56^{\circ}$ . If the observation was taken in the afternoon, the time was 3:56 p.m. If the observation was taken in the morning, the time was  $12^{\circ} - 3^{\circ} 56^{\circ} = 8^{\circ} 4^{\circ}$ , or 8:04 a.m. In either case the time is local apparent time.

# Example 2.

The declination of a star is 7° 54′ N, its hour angle is 48° 51′. Find its azimuth, it being given that the observer is in latitude 67° 49′ N.

Solution. In the astronomical triangle we have

$$z = \text{codec.} = 90^{\circ} - 7^{\circ} 54' = 82^{\circ} 6',$$
  
 $P = \text{hr. } \angle = 48^{\circ} 51',$   
 $m = \text{colat.} = 90^{\circ} - 67^{\circ} 49' = 22^{\circ} 11'.$ 

This is Case III.

$$\tan \frac{1}{2}(Z + M) = \frac{\cos \frac{1}{2}(z - m)}{\cos \frac{1}{2}(z + m)} \cot \frac{1}{2}P,$$

$$\tan \frac{1}{2}(Z - M) = \frac{\sin \frac{1}{2}(z - m)}{\sin \frac{1}{2}(z + m)} \cot \frac{1}{2}P,$$

$$\log \tan \frac{1}{2}(Z + M) = \log \cos \frac{1}{2}(z - m) + \log \cot \frac{1}{2}P,$$

$$\log \tan \frac{1}{2}(Z - M) = \log \sin \frac{1}{2}(z - m) + \log \cot \frac{1}{2}P.$$

$$\begin{array}{c|cccc} z + m & 104^{\circ} & 17' \\ z - m & 59^{\circ} & 55' \\ \frac{1}{2}(z + m) & 29^{\circ} & 57.5' \\ \frac{1}{2}P & 24^{\circ} & 25.5' \\ \log \cos \frac{1}{2}(z - m) & 9.93772 - 10 \\ \log \cos \frac{1}{2}(z + m) & 0.21204 \\ \log \sin \frac{1}{2}(z - m) & 9.69842 - 10 \\ \log \sin \frac{1}{2}(z + m) & 0.10263 \\ \log \tan \frac{1}{2}(Z + M) & 0.49256 \\ \log \tan \frac{1}{2}(Z - M) & 0.49256 \\ \log \tan \frac{1}{2}(Z - M) & 0.14385 \\ \frac{1}{2}(Z - M) & 54^{\circ} & 19.2' \\ \hline Z & 126^{\circ} & 29.2' \\ M & 17^{\circ} & 50.8' \\ \end{array}$$

$$Azimuth = 180^{\circ} - Z = 53^{\circ} & 31'.$$

$$\sin Z & \sin M \\ \sin z & \sin M = x,$$

$$\log x = \log \sin Z - \log \sin z \\ = \log \sin M - \log \sin m.$$

$$\log \sin Z & 9.90525 - 10 \\ \log \sin Z & 9.90525 - 10 \\ \log \sin M & 9.48639 - 10 \\ \log \sin M & 9.48639 - 10 \\ \log \sin M & 9.57700 - 10 \\ \log x & 9.90939 - 10 \\ \end{array}$$

# Example 3.

CHECK.

An observer in the northern hemisphere finds the altitude of the sun to be 35° 23′ at 9:15 a.m., local apparent time. If the declination of the sun is 10° 48′ S, what is the latitude of the place of observation?

Sont rioy. In the astronomical triangle we have

$$z = MP = codee$$
,  $= 90^{\circ} + 10^{\circ} 48' = 100^{\circ} 48'$ ,  $p = ZM = coalt$ ,  $= 60^{\circ} - 35^{\circ} 23' = -\epsilon$   
 $P = hr$ ,  $Z = 12^{h} + 9^{\circ} 15^{m} = 2^{\circ} 45^{m} - 41^{\circ} 15'$ .

This is Case V.

$$\sin Z = \frac{\sin z \sin P}{\sin p},$$

$$\log \sin Z = \log \sin z + \log \sin P + \operatorname{colog} \sin p,$$

$$\log \sin z + 9.99224 - 10$$

$$\log \sin P + 9.81911 - 10$$

$$\operatorname{colog} \frac{\sin p}{\sin Z} + \frac{0.08868}{9.90003} - 10$$

$$Z + 52° 36′ * \text{ or } 127° 24′$$

$$\tan \frac{1}{2}m = \frac{\sin \frac{1}{2}(Z+P)}{\sin \frac{1}{2}(Z-P)} \tan \frac{1}{2}(z-p),$$

$$\log \tan \frac{1}{2}m = \log \sin \frac{1}{2}(Z+P) + \operatorname{colog} \sin \frac{1}{2}(Z-P) + \log \tan \frac{1}{2}(z-p).$$

$$Z+P \mid 168^{\circ} 39'$$

Since m = colat., lat. =  $90^{\circ} - 63^{\circ} 42' = 26^{\circ} 18' \text{ N.}$ 

#### EXERCISES XVII. B

 An observation taken in New York (40° 43′ N) showed the altitude of the sun to be 52° 25′. Its declination was found

<sup>\*</sup> Discarded, since Z and s must terminate in the same quadrant.

- to be 12° 15′. What was the local apparent time of the observation if it was taken in the morning?
- 2. An afternoon observation at Montreal (45° 30′ N) determined the altitude of the sun to be 26° 30′. Given that the declination of the sun was 8° 0′ S, find the local apparent time of the observation.
- 3. Find the altitude and the azimuth of the sun at 3 p.m. in latitude 47° 38′ N, its declination being 7° 18′.
- 4. The declination of a star is 22° 1′, its hour angle is 15° 8′. The latitude of the place of observation is 51° 19′ N. Find the altitude and the azimuth of the star.
- 5. The declination of a star is  $-26^{\circ}$  19', its altitude is 31° 5', and its azimuth is S 18° 9' W. Find the latitude of the observer.
- 6. The altitude of the sun is 50° 32′, its declination is 12° 38′, its azimuth S 12° 6′ W. Find the latitude and the local apparent time.
- 7. Find the local apparent time of sunset in Chicago (41° 50′ N) on a day when the declination of the sun is -7° 30′.

Suggestion. At sunset the altitude of the sun is 0°.

Note. In practice a correction must be made in problems of this type for the refraction of the rays of the sun by the atmosphere of the earth. Another correction must be made for the angular radius of the sun.

- 8. Find the length of the day (sunrise to sunset) in New Orleans (29° 57′ N) when the declination of the sun is -20°.
- 9. On the longest day of the year the declination of the sun is 23° 27′. Find the length of the longest day in latitude (a) 25°, (b) 45°, (c) 65°.
- 10. On the shortest day of the year the declination of the sun is -23° 27′. Find the length of the shortest day in latitude (a) 25°, (b) 45°, (c) 65°.

# IMPORTANT FORMULAS INDEX ANSWERS

# Index

#### Numbers refer to pages,

Abscissa, tion Absolute error, 37. Absolute value of constant number. Accuracy, degree of, 61. Addition, of approximate numbers, 39; of complex numbers, 185, geometric, 187; of vectors, 110. Addition formula, for ec-ine, 124, 125; for cotangent, 125; for sine. 124, 125; for tangent, 125. Adjacent parts, 203. Air Almanac, 242. Almanac, Air, 242; Nautical, 242. Altitude, 241; of sun, 24. Ambiguous case, \$5. American Air Almanac, 242. American Nautical Almanac, 242. Amplitude of complex number, 188. Analogies, Napier's, 217, 218. Analogy, 218 footnote. Angle, 64; clockwise, 64; counterclockwise, 64; of depression, 20; of elevation, 20; generation of, 64; hour, 240, 241; initial side of, 61; negative, 64; positive, 64; reference, 77; terminal side of, 64. Angle and arc, relation between, 142. Angles near 0° or 90°, 146. Angular velocity, 142, 143. Antilogarithm, 4S; finding the, 50. Antisine, 165. Apparent time, local, 242. "Approaches," symbol for, 69. Approximate numbers, 36; addition of, 39; division of, 41; multiplication of, 40; subtraction of, 39. Arc and angle, relation between, 142. Arc sine, etc., 165, 166; graphs of, 168-172.

Area, of soctor, 145; of segment, 145; of spherical polygon, 250; of spherical polygon, 250; of triangle, 250; of triangle, 82. Heron's formula for, 100, 101.
Argument of complex number, 188.

Astronomical triangle, 241.

Axis, 65; of circle, 197; of imaginary numbers. 186; of real numbers, 186; of terre trial sphere, 235.

Azimuth, 241.

Base of logarithms, 45.
Bearing, 106, 236, 236 footnote.
Birectangular spherical triangle, 198 footnote.
British nautical mile, 236 footnote.

Calculating machines, 43.
Celestial equator, 240.
Celestial meridian, 240.
Celestial poles, 240.
Celestial sphere, 239.
Characteristic of logarithm, 47.

Characteristic of togaritim, 47.

Circle, axis of, 197; circumseribed, diameter of, 82; circumseribed, epherical triangle), radius of, 216 footnote; great, 197; hour, 245; inscribed, radius of, 101, 102; inscribed (spherical triangle), radius of, 216 footnote; poles of, 197; small, 197; unit, 154.

Circular functions, 156. Circular measure, 139.

Circular parts, 203.
Circumscribed circle, diameter of, 82; radius of (spherical triangle), 216 footnote.

cis, 188. Clockwise rotation, 64.

Coaltitude, 241. Codeclination, 241. Cofunction, 7. Colatitude, 235, 241. Cologarithm, 54. Common logarithms, 45. Complementary angles, functions of,

Complex numbers, 185; absolute value of, 188; addition and subtraction of, 185, 186, geometric, 187; amplitude of, 188; argument of, 188; conjugate, 185; division of, 186, in trigonometric form, 190; geometric representation of, 186; modulus of, 188; multiplication of, 186, in trigonometric form, 190; polar form of, 188; powers of, 191; rectangular form of, 188; roots of, 191; trigonometric form of, 188.

Components, 25, 26, 110. Computation, logarithmic, of powers

and roots, 55; of products and quotients, 52.

Conditional equation, 177.

Conjugate complex numbers, 185. Coordinates, 65.

Cosecant, 67; of acute angle, 4; graph of, 161, 162; inverse, 165; line representation of, 154, 156; period of, 162, 163.

Cosine, 67; of acute angle, 4; addition and subtraction formulas for, 124, 125; graph of, 158, geometric construction, 163; inverse, 165; line representation of, 154, 155; period of, 158, 163.

Cosines, law of, 88; for angles, 213, 214; for sides, 212, 213.

Cotangent, 67; of acute angle, 5; addition and subtraction formulas for, 125; graph of, 158, 160; inverse, 165; line representation of, 154, 155; period of, 161, 163.

Coterminal angles, 65 footnote. Counterclockwise rotation, 64. Coversed sine, 5.

Cyclic change, 89.

Decimal point, standard position of, 38, 47. Declination, 240.

Degree and hour, relation between: 236 footnute, 240–241. Degree, spherical, 200.

Delambre's formules, 221.

De Moivre's theorem, 191.

Depression, angle of, 20,

Diameter of circumscribed circle, \$2. Difference of angles, functions of, 123. Differences of functions, 131.

Digit, leading, 38. Directed line, 122.

Distance, on sphere, 197; on terrestrial sphere, 236.

Division, of approximate numbers. 41; of complex numbers, 186, in trigonometric form, 190; logarithmic, 52.

Elevation, angle of, 20.

Equation, conditional, 177; identical, 177; Mollweide's, 83, 97, 98.

Equator, 235; celestial, 240.

Error, 37; absolute, 37; relative, 37. Excess, spherical, of polygon, 199: of triangle, 199, L'Huilier's formula for, 200 footnote.

Extraneous solutions, 179.

Figure, significant, 37. Functions, circular, 156.

Functions, inverse trigonometric. 165. (See also Inverse trigonometric functions.)

Functions, trigonometric, 67; of acute angle, 3; of complementary angles, 6; differences of, 131; graphs of, 156-163; of half an angle, 128; line representations of, 154; logarithms of, 57; natural, 56; of sum and difference of angles, 123; sums of, 131; tables of, 11, 12-14; of twice an angle, 127; of 0°, 90°, 180°, 270°, 68; of 30°, 45°, 60°, 9; of  $-\theta$ , 71; of  $90^{\circ} - \theta$ , 74; of  $90^{\circ} + \theta$ , 75; of  $180^{\circ} - \theta$ , 72; of  $180^{\circ} + \theta$ , 73; of  $270^{\circ} - \theta$ , 75; of  $270^{\circ} + \theta$ , 76; of  $360^{\circ} - \theta$ , 73; of  $360^{\circ} + \theta$ , 73. (See also Sine, Cosine, etc.)

Gauss's formulas, 221. Geometric construction of sine and cosine graphs, 163.

254 Coaltitude, 241. Codeclination, 241. Cofunction, 7. Colatitude, 235, 241. Cologarithm, 54. Common logarithms, 45. Complementary angles, functions of, Complex numbers, 185; absolute value of, 188; addition and subtraction of, 185, 186, geometric, 187; amplitude of, 188; argument of, 188; conjugate, 185; division of, 186, in trigonometric form, 190; geometric representation of, 186; modulus of, 188; multiplication of, 186, in trigonometric form, 190; polar form of, 188; powers of, 191; rectangular form of, 188; roots of, 191; trigonometric form of, 188. Components, 25, 26, 110. Computation, logarithmic, of powers and roots, 55; of products and quotients, 52. Conditional equation, 177. Conjugate complex numbers, 185. Coordinates, 65. Cosecant, 67; of acute angle, 4; graph of, 161, 162; inverse, 165; line representation of, 154, 156; period of, 162, 163. Cosine, 67; of acute angle, 4; addition and subtraction formulas for, 124, 125; graph of, 158, geometric construction, 163; inverse, 165; line representation of, 154, 155;

period of, 158, 163. Cosines, law of, 8S; for angles, 213, 214; for sides, 212, 213.

Cotangent, 67; of acute angle, 5; addition and subtraction formulas for, 125; graph of, 158, 160; inverse, 165; line representation of, 154, 155; period of, 161, 163.

Coterminal angles, 65 footnote. Counterclockwise rotation, 64. Coversed sine, 5.

Cyclic change, 89.

Decimal point, standard position of. 38, 47. Declination, 240.

Degree and hour, relation between: 236 footnote, 240–241.

Degree, spherical, 200,

Delambre's formulas, 221. De Moivre's theorem, 191.

Depression, angle of, 20.

Diameter of circumscribed circle, 82. Difference of angles, functions of, 123

Differences of function:, 131. Digit, leading, 38.

Directed line, 122.

Distance, on sphere, 197; on terrestrial sphere, 236.

Division, of approximate numbers. 41; of complex numbers, 186, in trigonometric form, 190; logarithmic, 52.

Elevation, angle of, 20.

Equation, conditional, 177; identical. 177; Mollweide's, 83, 97, 98.

Equator, 235; celestial, 240.

Error, 37; absolute, 37; relative, 37. Excess, spherical, of polygon, 199; of triangle, 199, L'Huilier's formula for, 200 footnote.

Extraneous solutions, 179.

Figure, significant, 37. Functions, circular, 156.

Functions, inverse trigonometric. (See also Inverse trigonometric functions.)

Functions, trigonometric, 67; of acute angle, 3; of complementary angles, 6; differences of, 131; graphs of, 156-163; of half an angle, 128; line representations of, 154; logarithms of, 57; natural, 56; of sum and difference of angles, 123; sums of, 131; tables of, 11, 12-14; of twice an angle, 127; of 0°, 90°, 180°, 270°, 68; of 30°, 45°, 60°, 9; of  $-\theta$ , 71; of  $90^{\circ} - \theta$ , 74; of  $90^{\circ} + \theta$ , 75; of  $180^{\circ} - \theta$ , 72; of  $180^{\circ} + \theta$ , 73; of  $270^{\circ} - \theta$ , 75; of  $270^{\circ} + \theta$ , 76; of  $360^{\circ} - \theta$ . 73: of  $360^{\circ} + \theta$ . 73. (See also Sine, Cosine, etc.)

Gauss's formulas, 221. Geometric construction of sine and cosine graphs, 163

Geometric representation of complex numbers, 186.

Graphs, all inverse triggrammetric unictions, 167-172; of trigonametrie functions, 156-163

Great circle, 197.

Half an angle, functions of, 128. Half-angle formulas, 101, 102; for spherical triangles, 215, 216. Half-side formulas, 216.

Haversine, 5.

Heron's formula for area of triangle. 100, 101.

Horizon, 240.

Hour and degree, relation between, 236 footnote, 240-241.

Hour angle, 240, 241.

Hour circle, 240.

i, imaginary unit, 185. Identical equation, 177. Identity, 118, 177.

Imaginary numbers, 185; axis of,

I.naginary part of complex number, 185.

Imaginary unit, i, 185.

Infinity, 69.

Initial point of directed line segment, 122.

Initial side of angle, 64.

Inscribed circle, radius of, 101, 102. (spherical triangle), 216 footnote. Interpolation, 21, 49, 58; inverse, 22, 51, 58.

Inverse interpolation, 22, 51, 58.

Inverse sine function, etc. (Sec Inverse trigonometric functions.) Inverse trigonometric functions, 165; graphs of, 167-172; principal values of, 166.

Isosceles triangles, 29; spherical, 208.

Knot, 29.

Latitude, 235.

Law of cosines, 88; for angles, 213, 214; for sides, 212, 213.

Law of sines, 80-82; for spherical triangles 211 212

Law of tangents, 144, 37; her ste trangie., 211.

Laws of logarithms, 51 32

Leading digit, 35.

L'Huilier's formula for spiese, 2001 finitedter

Line, directed, 122.

Line representations of the functions, 154.

Linear velocity, 143.

Local apparent time, 212.

Logarithm, 45; characteristic of, 47; common, 45; mantissa of, 46; of power, 52; if product, 51; of quoteent, 52; of root, 52.

Logarithmic computation, of powers and roots, 55; of products and quotients, 52.

Logarithms, laws of, 51-52; of trigonometric functions, 57.

Longitude, 235.

Lune, 197 footnote.

Mantissa, 45; finding the, 49.

Measure, circular, 139; radian, 139; of time and are, 236 footnote, 240-241.

Meridian, 235; celestial, 240; prime, 235.

Middle part, 203.

Mil, 151.

Mile, nautical, 29, 236, 236 footnote; statute, 29, 236, 236 footnote.

Minute of arc and of time, 236 footnote, 241.

Mixed imaginary number, 185.

Modulus of complex number, 188,

Mollweide's equations, 83, 97, 98.

Multiplication, of approximate numbers, 40; of complex numbers, 186, in trigonometric form, 190; logarithmic, 52.

Nadir, 240.

Napier's analogies, 217, 218.

Napier's rules, 203.

Natural functions, 57.

Nautical Almanac, 242.

Nautical mile, 29, 236, 236 footnote.

Negative angle, 64.

North celestial pole, 240.

North pole, 235.

Number, approximate, 35, rounding off, 36; complex, 185; imaginary, 185; mixed imaginary, 185; pure imaginary, 185; real, 185.

Oblique spherical triangles, 211; summary of methods of solution of, 233. Oblique triangles, solution of, by means of right triangles, 32; summary of methods of solution of, 104.

Observer's celestial meridian, 240. Opposite parts, 203.

Ordinate, 65.

Origin, 65.

Part, imaginary, of complex number, 185; real, of complex number, 185. Parts, adjacent, 203; circular, 203; middle, 203; opposite, 203; of spherical triangle, 198; of triangle, 17.

Period of cosecant, 162, 163; cosine, 158, 163; cotangent, 161, 163; secant, 161, 163; sine, 158, 163; tangent, 160, 163.

Plotting, 65.

Polar form of complex number, 188. Polar triangle, 199, 200.

Poles, of circle, 197; north and south, 235, celestial, 240.

Polygon, regular, 29; spherical, 199, area of, 200, excess of, 199.

Position, standard, of decimal point, 38, 47.

Positive angle, 64.

Powers, of complex numbers, 191; logarithmic computation of, 55.

Prime meridian, 235. Principal branch, 168.

Principal values of inverse trigonometric functions, 166.

Product, of complex numbers, 186, in trigonometrie form, 190; logarithm of, 51; logarithmic computation of, 52.

Projection, 26.

Proportional parts, interpolation by, 21,

Pure imaginary number, 185. Pythagoras, theorem of, 7. Pythagorean relations, 115.

Ouadrantal triangle, 207.

Quadrants, 66; signs of functions in various, 68.

Quotient, of complex numbers, 186. in trigonometric form, 190; logarithm of, 52; logarithmic computation of, 52.

Radian, 139.

Radian measure in graphing, 162.

Radius, 66; of circumscribed circle of spherical triangle, 216 footnote: of inscribed circle, 101, 102, of spherical triangle, 216 footnote: vector, 66.

Real numbers, axis of, 186.

Real part of complex number, 185.

Reciprocal, 5 footnote.

Reciprocal relations, 5, 114. Rectangular coordinates, 65.

Rectangular form of complex number. 188.

Reduction of  $a \cos \theta \pm b \sin \theta$ , 137. Reduction of functions of any angle

to functions of an acute angle, 77. Reference angle, 77.

Regular polygons, 29.

Relations among the functions, Pythagorean, 115; reciprocal, 5. 114.

Relative error, 37.

Resolving into components, 26.

Resultant, 26, 110.

Right triangle, solution of, 16, logarithmic, 61, spherical, 198 footnote, solution of, 204.

Root, of complex number, 191; logarithm of, 52; logarithmic computation of, 55; square, 42.

Rounding off numbers, 36.

Scientific notation, number expressed in, 38.

Secant, 67; of acute angle, 4; graph of, 161; inverse, 165; line representation of, 154, 156; period of. 161, 163.

Second of arc and of time, 236 footnote, 241.

Sector, 145; area of, 145.

Segment, 145; area of, 145; directed

Significant figure, 37.

Signs of functions in various qualnents, 68.

Sine, 67; of neute angle, 4; addith a translation, 124, 125; a versel, 5; graph of, 156, 157, ge metroconstruction, 163; anverse 165; one representation of, 174, 175; period of, 158, 163; sustraction formula for, 125; versed, 5.

Sines, law of, 80-82; for spherical triangles, 211, 212.

Small circle, 197.

South pole, 235; celestial, 240.

Sphere, area of, 200; celestral, 239; terrestrial, 235.

Spherical degree, 200.

Spherical excess, of polygon, 190; of triangle, 199, L'Huilier's formula for, 200 footnote.

Spherical polygon, 199; area of, 200; excess of, 199.

Spherical triangle, 197; area of, 200; birectangular, 198 footnote; excess of, 199, L'Huilier's formula for, 200 footnote; isosceles, 208; oblique, 211, summary of methods of solution of, 233; right, 198 footnote; trirectangular, 198 footnote.

Square root, 42.

Standard position of decimal point, 38, 47.

Statute mile, 29, 236, 236 footnote.

Subtraction, of approximate numbers, 39; of complex numbers, 185, geometric, 187.

Subtraction formula, for cosine, 124, 125; for cotangent, 125; for sine, 125; for tangent, 125.

Sum of angles, functions of, 123.

Sum of complex numbers, 186, 187.

Summary, of formulas for functions of  $90^{\circ} \pm \theta$ , etc., 76; of methods of solution of oblique triangles, 104, spherical, 233.

Sums of functions, 131. Sundial, 242. Tables, all functions, 11, 12 data of bigarithms, 49; of logarithms of table time, 58

Tangent, 67: of a life non-elliptic distribution of sections of the results of the rate of 125; graph of 125; here of 155; here of 155; here of 155; here of 155; here of 156.

Tangents, law of, 9%, 57% for spite and J. tringgles, 2.4.

Terminal point of anyested line segment, 122.

Terminal side of angle, 64.

Terrestrial sphere, 235.

Terrestrial triangle, 23%

Time, local apparent, 242.

Triangle, astronomical, 241; isosecles, 29, spherical, 208; oblique (see Oblique triangles); oblique spherical (see Oblique spherica, triangles); polar, 190, 200; quadnantal, 207; right (see Right triangle); spherical (see Spherical triangle); terrestrial, 236.

Trigonometric equations, 177.

Trigonometric form of complex number, 488.

Trigonometric functions see Functions, trigonometric).

Trigonometry, 3; uses of, 3.

Trihedral angle, 198.

Trirectangular spherical triangle, 198 footnote.

Twice an angle, functions of, 127.

Unit circle, 154.

Unit, imaginary, i, 185.

United States nautical mile, 236 footnote.

Value, absolute, of complex number, 188; principal, of inverse trigonometric functions, 166.

Vector, 109, 110; complex number as, 187; radius, 66.

Velocity, angular, 142, 143; linear, 143.

Versed sine, 5.

Zenith, 240.

# Answers to Odd-Numbered Exercises

Exercises 1. A and B, page 5

|          | sin A cos B                          | $\cos A \\ \sin B$       | tan A cot B                 | csc A                                           | sec A                                   | cot A tan B         |
|----------|--------------------------------------|--------------------------|-----------------------------|-------------------------------------------------|-----------------------------------------|---------------------|
| 1.       |                                      | 3                        |                             |                                                 | <del>5</del> <del>3</del>               |                     |
| 3.       | 13                                   | $\frac{3\sqrt{13}}{13}$  |                             | $\frac{\sqrt{13}}{2}$                           | $\frac{\sqrt{13}}{3}$                   | $\frac{3}{2}$       |
| 5.       | $\frac{2}{3}$                        | $\frac{\sqrt{5}}{3}$     | $\frac{2\sqrt{5}}{5}$       | $\frac{3}{2}$                                   | $\frac{3\sqrt{5}}{5}$                   | 15<br>2<br>15<br>24 |
| 7.<br>9. | 1 <sup>8</sup> 7<br>2 <sup>7</sup> 3 | 15<br>25                 | 13                          | 1.7<br>2.5                                      | $\frac{17}{15}$                         | 1,5                 |
| 9.       | 273                                  | $\frac{2}{2}\frac{4}{5}$ | 274                         | 2,5                                             | $\frac{2}{2}\frac{5}{4}$                | 24                  |
| 11.      | $\frac{1}{2}$                        | $\frac{\sqrt{3}}{2}$     | $\frac{15}{274}$ $\sqrt{3}$ |                                                 | $\frac{2\sqrt{3}}{3}$                   | $\sqrt{3}$          |
| 13.      | $\frac{3\sqrt{10}}{10}$              | $\frac{\sqrt{10}}{10}$   |                             | $\frac{\sqrt{10}}{3}$                           | $\sqrt{10}$                             | $\frac{1}{3}$       |
| 15.      | <del>13</del> ·                      | 17. ½ ·                  | 19. (a) $\frac{6}{4}$       | $\cdot \frac{\sqrt{7}}{4}, \frac{3\sqrt{7}}{7}$ | $; (b) \frac{\sqrt{7}}{4}, \frac{3}{4}$ | 3 √7 <sub>.</sub>   |

# Exercises I. C, page 8

|    | sin A                   | cos A                   | tan A                | csc A                 | sec A                 | cot A         |
|----|-------------------------|-------------------------|----------------------|-----------------------|-----------------------|---------------|
| 1. | <u>3</u>                |                         | 3                    | 5 3                   | <del>5</del>          | 4/3           |
| 3. | $\frac{5\sqrt{26}}{26}$ | $rac{\sqrt{26}}{26}$   | 5                    | $\frac{\sqrt{26}}{5}$ | $\sqrt{26}$           |               |
| 5. | $rac{\sqrt{2}}{2}$     | $rac{\sqrt{2}}{2}$     | 1                    | $\sqrt{2}$            |                       | 1             |
| 7. |                         | $\frac{\sqrt{3}}{2}$    | $\frac{\sqrt{3}}{3}$ | 2                     | $\frac{2\sqrt{3}}{3}$ | $\sqrt{3}$    |
| 9. | $\frac{2\sqrt{29}}{20}$ | $\frac{5\sqrt{29}}{29}$ |                      | $\frac{\sqrt{29}}{2}$ | $\frac{\sqrt{29}}{5}$ | $\frac{5}{2}$ |

| 11. | $\sin A$ $2\sqrt{29}$   | $\cos A = 5\sqrt{29}$      | tan A                           | $\frac{\csc A}{\sqrt{29}}$ | $\frac{\sec A}{\sqrt{29}}$   | cot A                           |
|-----|-------------------------|----------------------------|---------------------------------|----------------------------|------------------------------|---------------------------------|
| 11. | $\frac{2\sqrt{29}}{29}$ | 29                         | $\frac{2}{5}$                   |                            | 5                            |                                 |
| 13. | $\frac{\sqrt{3}}{2}$    | $rac{1}{2}$               | $\sqrt{3}$                      | $\frac{2\sqrt{3}}{3}$      |                              | $\frac{\sqrt{3}}{3}$            |
| 15. | $\frac{\sqrt{5}}{5}$    | $\frac{2\sqrt{5}}{5}$      |                                 | $\sqrt{5}$                 | $\frac{\sqrt{\tilde{5}}}{2}$ | 2                               |
| 17. |                         | $rac{1}{2}$               | $\sqrt{3}$                      | $\frac{2\sqrt{3}}{3}$      | 2                            | $\frac{\sqrt{3}}{3}$ $\sqrt{3}$ |
| 19. | $rac{1}{2}$            | $\frac{\sqrt{3}}{2}$       |                                 | 2                          | $\frac{2\sqrt{3}}{3}$        | $\sqrt{3}$                      |
| 21. |                         | $3\sqrt{5}$                | $\frac{2\sqrt{5}}{15}$          | $rac{7}{2}$               | $\frac{7\sqrt{5}}{15}$       | $\frac{3\sqrt{5}}{2}$           |
| 23. | $\cos A =$              | $\frac{m^2-n^2}{m^2+n^2},$ | tan A =                         | $\frac{2mn}{m^2-n^2},$     | csc A =                      | $\frac{m^2+n^2}{2mn}$           |
|     |                         | sec A = m                  | $\frac{n^2 + n^2}{n^2 - n^2}$ . | $\cot A = \frac{n}{2}$     | $\frac{n^2-n^2}{2mn}.$       |                                 |

# Exercises I. D, page 11

**1.** 0.8802. **3.** 0.2805. **5.** 0.7112. **7.** 0.0029. **9.** 343.77.

**11.** 36° 40′. **13.** 17° 0′. **15.** 68° 30′. **17.** 8° 20′. **19.** 77° 10′.

21. 24° 0′. 23. 0.8420. No.

# Exercises II. A, page 19

1.  $B = 55^{\circ}$ , a = 2.87, b = 4.10.

**3.**  $B = 53^{\circ}$ , a = 39.94, c = 66.37.

**5.**  $A = 53^{\circ} 30', B = 36^{\circ} 30', c = 28.60.$ 

7.  $A = 72^{\circ} 30'$ , a = 293.1, c = 307.3.

**9.**  $A = 16^{\circ} 40'$ ,  $B = 73^{\circ} 20'$ , c = 0.8937. **11.** 37.3 ft., 38.6 ft.

**13.** 46°. **15.** 63.1 ft. **17.** 1418 ft. **19.** 120.6 ft.

# Exercises II. B, page 23

**1.** 0.5185. **3.** 0.8887. **5.** 0.8200. **7.** 0.3528. **9.** 0.7001.

**11.** 0.0026. **13.** 49.923. **15.** 0.4603. **17.** 21° 18′. **19.** 21° 19′.

**21.** 19° 12′. **23.** 67° 46′. **25.** 0° 45′. **27.** 6° 5′. **29.** 11° 28′.

**31.**  $A = 20^{\circ}, B = 70^{\circ}, b = 18.79.$ 

**33.**  $B = 32^{\circ} 48', a = 0.0240, b = 0.0155.$ 

**35.**  $A = 29^{\circ} 49', B = 60^{\circ} 11', b = 32.27.$ 

**37.**  $B = 70^{\circ} \, 16', b = 63.56, c = 67.54.$ 

**39.**  $B = 44^{\circ} 58'$ , a = 8.230, c = 11.63.

**41.**  $A = 7^{\circ} 22', B = 82^{\circ} 38', b = 1.825.$ 

- **43.**  $B = 78^{\circ} 50^{\circ}, n = 10.42, h = 99.73.$
- **45.** A = 7 + 4, B = 82 56, b = 90.54.
- 47, 161.4 ft., 32° 36', 57° 24'. 49. 80.87 ft. 51. 130,9 ft.
- 53. 2.48 ft.
- 55, 3.47 ft. 57. 116 1 ft.

# Exercises II. C, page 28

- 1. 14.2 knots, S 28-12 W 3. 24.2 ft. sec., 65, 341.
- 5. a 53° S' with upstream direction; (b) 15 mm.
- 7. 90° 58′. 9. 86.04 lb

# Exercises II. D, page 30

- **1.** 99° 30′, 9.83 in., 47.6 sq. in. **3.** 21° 58′, 79° 1′, 79° 1′.
- 5. 122° 6'. 7. S.42 in. 9. 41° 25′, 198.4 sq. ft.
- 11. (a) 16.18 in., 15.39 in., 769.4 sq. in.; ,b) 21.93 in., 20.61 in., 1391 sq. in.; (e) 21.60 in., 21.33 in., 1442 sq. in.
- 13. 15.35 ft., 12.42 ft.

# Exercises II. E, page 34

- **1.**  $C = 70^{\circ}$ , b = 29.5, c = 28.2. **3.**  $B = 74^{\circ} 2'$ ,  $C = 35^{\circ} 58'$ , b = 8.2.
- 5.  $A = 95^{\circ} 44'$ ,  $B = 40^{\circ} 27'$ ,  $C = 43^{\circ} 48'$ .
- 7.  $A = 50^{\circ} 16'$ ,  $B = 29^{\circ} 44'$ , b = 52.9.
- 9. 0.13 mi. = 686 ft. 11. 127 ft. 13. 105 ft. 15. 409 ft.

# Exercises III. A, page 39

- 1. 12.3, 29.9, 4.1, 1.40, 0.25, 0.22, 68, 63.2, 2.000, 2.000, 2.36, 2.34, 2.35, 2.35.
- **3.** 0.002, 0.00005, 0.00001, 0.25, 0.02.
- **5.** 10.02, 10.20, 0.20, 0.02, 0.020, 25000 2506, 0.00300, 0.20500, 20500.
- **7.** 18,000,000, 0.000,023.5, 848,200,000, 0.000,000,003,7.

# Exercises III. B, page 43

- 9. 1,242,800. 1. 1490. **3.** 55.04. 231700. **7.** 18800.
- 11. 2.93. **13.** 27.95. 15, 147.2. **17.** 190500. **19.** 2.60,
- **21.** 41.02. **23.** 4.241. **25.** 0.8272.

# Exercises IV. A, page 48

- 1. 2. **3.** 3. **5.** -1. 7. -1. **9.** -3. 11. -1.
- 13. 1. **21.** -2. **15.** 3. **17.** 0. 19, 5, 23. 1.
- 25. 1. **27.** 3. **29.** -1. **31.** -2. **33.** 7. 35. -1.

# Exercises IV. B. page 50

| <b>1.</b> 1.83251.  | <b>3.</b> 2.55509.          | <b>5.</b> 0.30103.  | <b>7.</b> 3.69897.  |
|---------------------|-----------------------------|---------------------|---------------------|
| 9. 3.92572.         | 11. $8.33365 - 10$ .        | <b>13.</b> 5.39794. | <b>15.</b> 0.89492. |
| <b>17.</b> 1.20276. | <b>19.</b> 0.47195.         | <b>21.</b> 3.83154. | 23. 4.73501.        |
| <b>25.</b> 0.80023. | <b>27.</b> $6.94298 - 10$ . | <b>29.</b> 0.99992. | 31. 4.99999.        |
| 33 6 000004 -       | 10 35 291908                |                     |                     |

# Exercises IV. C, page 51

| <b>1.</b> 5.0000.   | <b>3.</b> 863.00.  | <b>5.</b> 0.64980.      | 7. 0.000,000,578,80. |
|---------------------|--------------------|-------------------------|----------------------|
| <b>9.</b> 0.069890. | 11. 0.049074.      | <b>13.</b> 0.001,576,4. | <b>15.</b> 0.066567. |
| 17. 1.427.700.      | <b>19.</b> 6.8305. | <b>21.</b> 88.202.      | <b>23.</b> 10.002.   |

# Exercises IV. D, page 56

| <b>1.</b> 1489.    | <b>3.</b> 1.16.    | <b>5</b> . 15700.            | <b>7</b> . 1217.       | 9. 0.2247.         |
|--------------------|--------------------|------------------------------|------------------------|--------------------|
| <b>11.</b> 5.117.  | <b>13.</b> 0.9564. | <b>15.</b> 92,024,000.       | <b>17.</b> 0.62764.    | <b>19.</b> 7.2292. |
| 21. 38,122,        | .000,000,000       | <b>23</b> . 299.83.          | <b>25.</b> 0.97422.    | <b>27.</b> 0.4544. |
| 29. 47.002.        |                    | 31. $1.146 \times 10^{14}$ . | <b>33.</b> 2.1064.     | <b>35.</b> 2.7314. |
| <b>37.</b> 2.9295. |                    | <b>39.</b> $-0.020629$ .     | <b>41.</b> $-21.544$ . | <b>43.</b> 19.594. |

# Exercises IV. E, page 59

In exercises 1-23, -10 is to be appended.

|             |            |     | ,                  |     |               |       |                              |             |            |
|-------------|------------|-----|--------------------|-----|---------------|-------|------------------------------|-------------|------------|
| 1.          | 9.68557.   |     | <b>3.</b> 9.9906   | 7.  | <b>5.</b> 10  | 0.507 | 704.                         | 7.          | 9.34276.   |
| 9.          | 9.81519.   |     | <b>11.</b> 9.1307  | 8.  | <b>13.</b> 10 | 0.231 | 101.                         | 15.         | 9.84933.   |
|             |            |     | <b>19.</b> 9.22613 |     |               |       |                              |             |            |
| 25.         | 20° 14′.   | 27. | 63° 41′.           | 29. | 57° 0.5′.     | 31.   | 11° 0.1′.                    | 33.         | 57° 37.8′. |
| 35.         | 38° 12.4′. | 37. | 39° 11.8′.         | 39. | 81° 13.5′.    | 41.   | $49^{\circ}\ 25.5^{\prime}.$ | <b>4</b> 3. | 88° 24.4′. |
| <b>4</b> 5. | 87° 15.0′. | 47. | Impossible.        | 49. | 2.855.        | 51.   | 97.035.                      | 53.         | 0.18058.   |
| 55.         | 147.33.    | 57. | 0.86142.           | 59. | 1362.4.       | 61.   | 37° 52.9′.                   |             |            |

21. 12.478 cm.

# Exercises V. A, page 63

```
1. A = 39^{\circ} 25', B = 50^{\circ} 35', c = 1250; 383100.
 3. A = 47^{\circ} 53', B = 42^{\circ} 7', b = 0.1846; 0.01885.
 5. A = 51^{\circ} 52', B = 38^{\circ} 8', a = 6385; 16,000,000.
 7. A = 31^{\circ} 45', b = 77.63, c = 91.29; 1865.
 9. A = 66^{\circ} 51', a = 1765, c = 1920; 666200.
11. A = 26^{\circ} 23.0', B = 63^{\circ} 37.0', b = 5728.8; 8,139,400.
13. A = 33^{\circ} 39.4', B = 56^{\circ} 20.6', a = 574.16; 247560.
15. A = 63^{\circ} 42.8', b = 165.90, c = 374.61; 27861.
17. A = 37^{\circ} 50.2', a = 44.909, b = 57.820; 1298.3.
19. (a) 101.05; (b) 7319.2.
```

# Exercises VI. A, page 70

sin cos tan csc sec cot  
1. 
$$\frac{\sqrt{2}}{2}$$
  $-\frac{\sqrt{2}}{2}$  -1  $\sqrt{2}$  - $\sqrt{2}$  -1

3. 
$$-\frac{1}{2}$$
  $-\frac{\sqrt{3}}{2}$   $\frac{\sqrt{3}}{3}$   $-2$   $-\frac{2\sqrt{3}}{3}$   $\sqrt{3}$ 

**5.** 
$$-\frac{\sqrt{2}}{2}$$
  $-\frac{\sqrt{2}}{2}$  1  $-\sqrt{2}$  -  $\sqrt{2}$  1

7. 
$$-\frac{1}{2}$$
  $\frac{\sqrt{3}}{2}$   $-\frac{\sqrt{3}}{3}$   $-2$   $\frac{2\sqrt{3}}{3}$   $-\sqrt{3}$ 

**9.** 
$$\frac{3}{2} + \frac{\sqrt{3}}{2}$$
 **11.**  $-\frac{1}{2} + 5\sqrt{3}$  **13.**  $-3 - \frac{2\sqrt{3}}{3}$  **15.**  $-\frac{13}{4} + \sqrt{3}$ 

17. 
$$\frac{3}{2} = \sqrt{2}$$
. 19.  $2 + \frac{4\sqrt{3}}{2}$ . 21. 4. 23. 4. 25.  $\frac{3}{8}$ . 27. 0.

# Exercises VI. B, page 78

- (a) sin 20° or cos 70°; (b) -cos 35° or -sin 55°; (c) -tan 80° or -cot 10°; (d) ese 50° or sec 40°; 1. (a)  $\sin 20^{\circ}$  or  $\cos 70^{\circ}$ ;

  - (e) -sec 8° or -csc 82°:
  - (f) -cot 82° or -tan 8°; (h) -cos 84° 50′ or -sin 5° 10′; (g) sin 43° or cos 47°;
  - (i) -tan 17° 56' or -cot 72° 4'; (j. -cot 54° 42' or -tan 35° 18';
  - (k)  $\sin 65^{\circ} 39'$  or  $\cos 24^{\circ} 21'$ ; (1)  $-\cos 87^{\circ} 47.2'$  or  $-\sin 2^{\circ} 12.8'$ .
- 3. (a) 0.57358; (b) -0.40674; (c) -3.7321; (d) 1.5617; (e) 0.77715; (f) -0.97499; (g) -0.60626; (h) 0.97622;
  - (i) -0.29654; (j) 0.30486; (k) -0.36397; (l) 0.09277.
- 5, 0,
- 7. (a)  $18^{\circ}$  or  $162^{\circ}$ ; (b)  $60^{\circ}$  10'; (c)  $70^{\circ}$  50'; (d)  $30^{\circ}$  20'; (e) 42° 10′ or 137° 50′; (f) 140° 30′.

# Exercises VII. A, page 83

- **1.**  $C = 30^{\circ}$ , b = 12.6, c = 6.4. **3.**  $B = 37^{\circ}$  10', a = 3.5, c = 4.1. **5.**  $A = 93^{\circ}$  40', a = 324, c = 314. **7.** 9.4, 6.7. **9.** 12.6, 5.34. 3.  $B = 37^{\circ} 10'$ , a = 3.5, c = 4.1.
- 11. 92.2 ft. 13. 110 ft.

# Exercises VII. B, page 87

- 1.  $B = 23^{\circ} 41'$ ,  $C = 116^{\circ} 19'$ , c = 11.2.
- 3.  $A = 23^{\circ} 48'$ ,  $C = 120^{\circ} 2'$ , c = 45.5.
- **5.**  $B = 43^{\circ} 37'$ ,  $C = 63^{\circ} 3'$ , c = 2.3.
- 7.  $A = 84^{\circ} 12'$ ,  $B = 80^{\circ} 8'$ , b = 34.7;  $A' = 95^{\circ} 48', B' = 68^{\circ} 32', b' = 32.7.$
- 9. 7.48 in. 11. 54.3 ft.

# Exercises VII. C, page 90

- **1.**  $A = 51^{\circ}$ ,  $C = 69^{\circ}$ , b = 5.6. **3.**  $B = 41^{\circ}$ ,  $C = 121^{\circ}$ , a = 0.77.
- 5.  $A = 53^{\circ} 25'$ ,  $B = 31^{\circ} 35'$ , c = 285. 7. 14.4 mi. 9. 3.62 in., 7.20 in.
- 11. 175 yd.

# Exercises VII. D, page 91

- 1.  $A = 28^{\circ} 57'$ ,  $B = 46^{\circ} 34'$ ,  $C = 104^{\circ} 29'$ .
- 3.  $A = 75^{\circ} 26', B = 56^{\circ} 4', C = 48^{\circ} 30'.$
- **5.**  $A = 16^{\circ} 16'$ ,  $B = 73^{\circ} 44'$ ,  $C = 90^{\circ} 0'$ .
- 7.  $A = 38^{\circ} 56'$ ,  $B = 34^{\circ} 11'$ ,  $C = 106^{\circ} 54'$ .
- 9. 35° 42′ E or W of S. 11. 57° 10′, 122° 50′, 23.5 in. 13. 12.07.

# Exercises VII. E, page 94

- **1.**  $A = 33^{\circ} 9.9', a = 435.71, c = 787.53; 156030.$
- **3.**  $B = 15^{\circ} 57.0', b = 5.4420, c = 17.865; 36.400.$
- **5.**  $B = 111^{\circ} 11.3'$ , a = 102.19, b = 491.06; 21190.
- 7.  $B = 42^{\circ} 12.8'$ , a = 514.73, c = 1025.0; 177250.
- **9.**  $A = 42^{\circ} 7.7'$ , a = 0.18940, c = 0.26964; 0.013004.
- 11. 15.223 in., 18.439 in.

# Exercises VII. F, page 95

- **1.**  $A = 57^{\circ} 59.9'$ ,  $C = 23^{\circ} 36.6'$ , c = 29.526; 913.08.
- **3.**  $A = 104^{\circ} 32.3'$ ,  $B = 40^{\circ} 1.9'$ , a = 5888.4; 6,678,200;  $A' = 4^{\circ} 36.1'$ ,  $B' = 139^{\circ} 58.1'$ , a' = 488.04; 553500.
- **5.**  $A = 63^{\circ} 8.3'$ ,  $B = 67^{\circ} 32.8'$ , b = 89.534; 2933.9;  $A' = 116^{\circ} 51.7'$ ,  $B' = 13^{\circ} 49.4'$ , b' = 23.147; 758.48.
- 7.  $A = 103^{\circ} 21.9'$ ,  $C = 48^{\circ} 48.8'$ , a = 0.67733; 0.082812;  $A' = 20^{\circ} 59.5'$ ,  $C' = 131^{\circ} 11.2'$ , a' = 0.24939; 0.030491.
- 9.  $A = 134^{\circ} 37.3'$ ,  $C = 25^{\circ} 8.2'$ , a = 94.370; 919.44;  $A' = 4^{\circ} 53.7'$ ,  $C' = 154^{\circ} 51.8'$ , a' = 11.314; 110.23.
- **11.** No solution. **13.** 7423 ft. or 3344 ft.

# Exercises VII. G, page 99

The answer for the third side may differ slightly from that given; it depends on the formula used.

- **1.**  $A = 57^{\circ} 50', B = 58^{\circ} 32', c = 300.9; 36490.$
- **3.**  $A = 38^{\circ} 52.7'$ ,  $B = 8^{\circ} 49.0'$ , c = 43.017; 120.36.
- **5.**  $A = 153^{\circ} 17.5'$ ,  $C = 14^{\circ} 14.0'$ , b = 32.381; 268.22.
- 7.  $A = 23^{\circ} 26.2'$ ,  $C = 19^{\circ} 2.6'$ , b = 819.00; 64450.
- **9.**  $B = 46^{\circ} 23.8'$ ,  $C = 90^{\circ}$ , a = 17120; 153,880,000.
- 11. 2577 ft,

# Exercises VII. H, page 103

- 1.  $A \approx 44^{\circ} 4.8', B = 101' 44.4', t \approx 34' 10.8', 6212.4'$
- 3.  $A = 30^{\circ} 41.8^{\circ}, B = 90^{\circ} 25.2^{\circ}, \ell = 49^{\circ} 53.2^{\circ}, 74.745^{\circ}$
- **5.**  $A = 33/32.0^{\circ}, B = 50^{\circ}40.8^{\circ}, C = 95/46.6^{\circ}/1.742.299.000.$
- 7.  $A = 53^{\circ} 34.0$ ,  $B = 26^{\circ} 5.0$ ,  $U = 100^{\circ} 21.0^{\circ} 485.07$
- **9.**  $A = 28^{\circ} 11.8^{\circ}$ ,  $B = 34^{\circ} 4.8^{\circ}$ ,  $C = 117^{\circ} 43.2^{\circ}$ , 1.8856.
- 11. 41.51 ft.

# Exercises VII. I, page 105

- **1.**  $C = 52^{\circ} 15.9'$ , b = 621.94, c = 516.16; 132100.
- **3.**  $A = 65^{\circ} 21.8'$ , h = 1.6389, c = 4.7821; 3.5621,
- **5.**  $A = 127^{\circ} 9.4'$ ,  $B = 6^{\circ} 24.4'$ ,  $C = 46^{\circ} 26.2'$ ; 0.027977.
- 7.  $A = 27^{\circ} 28.0'$ ,  $B = 125^{\circ} 55.4'$ , c = 265.29; 29345.
- **9.**  $A = 46^{\circ} 26.3'$ ,  $B = 6^{\circ} 24.4'$ , h = 74260; 279.762.000.
- **11.**  $B = 81^{\circ} 12.2', a = 303.45, c = 271.32; 40682.$
- **13.**  $A = 46^{\circ} 23.8'$ ,  $C = 29^{\circ} 21.2'$ , b = 9.8396; 17.730.
- **15.**  $A = 26^{\circ} 21.6'$ ,  $B = 106^{\circ} 40.6'$ ,  $C = 40^{\circ} 57.8'$ ; 788.70.
- **17.**  $C = 33^{\circ} 43.0'$ , a = 487.51, b = 689.63; 93310.
- **19.**  $A = 99^{\circ} 40.1'$ ,  $B = 28^{\circ} 20.0'$ , c = 182.37; 9873.5.
- **21.** 975.25 ft. **23.** N 80° 2′ W, S 10° 6′ E. **25.** 885.2 ft.
- **27.** 31830 ft. **29.** 927.0 ft., 742.6 ft., 35° 26.5′. **31.** 751.5 ft. **33.** 39° 41′. **35.** 42.9 ft. **37.** 19.806, 35.690, 44.504.
- **39.** 57.67 rd., 96.11 rd., 134.56 rd. **49.** 48° 26′.

# Exercises VII. J, page 112

- 1. 15.18 lb., 44° 24'.
- 3. 60° with vertical and from front to back of windows.
- 5. 49° 28'.

- 7. 36.5 mi. hr., N 18° 21′ W.
- 9. 127° 10′, 90° 22′, 142° 27′.

# Exercises VIII. A, page 117

|    | $\sin \theta$            | cos ∂                   | $\tan \theta$          | csc θ                   | $\sec \theta$         | cot θ                   |
|----|--------------------------|-------------------------|------------------------|-------------------------|-----------------------|-------------------------|
|    |                          | $\frac{5}{13}$          | 12<br>5                | $\frac{13}{12}$         | $\frac{1.3}{5}$       | 1 <sup>3</sup> 2        |
| 3. | $-\frac{2\sqrt{13}}{13}$ | $\frac{3\sqrt{13}}{13}$ |                        | $-\frac{\sqrt{13}}{2}$  | $\frac{\sqrt{13}}{3}$ | $-rac{3}{2}$           |
| 5. | $\frac{\sqrt{21}}{5}$    |                         | $-\frac{\sqrt{21}}{2}$ | $\frac{5\sqrt{21}}{21}$ | $-\frac{5}{2}$        | $-rac{2\sqrt{21}}{21}$ |
| 7. | $-\frac{\sqrt{2}}{2}$    | $\frac{\sqrt{2}}{2}$    | -1                     | $-\sqrt{2}$             |                       | -1                      |
| 9. | $-\frac{7}{25}$          | $-\frac{24}{25}$        |                        | $-\frac{2}{7}$          | $-\frac{9}{2}$        | 2,4                     |

11. 
$$\pm \frac{\sqrt{3}}{2} \pm \frac{\sqrt{3}}{3} = 2 \pm \frac{2\sqrt{3}}{3} \pm \sqrt{3}$$
13. 
$$\pm \frac{2\sqrt{29}}{29} \pm \frac{5\sqrt{29}}{29} = \pm \frac{\sqrt{29}}{2} \pm \frac{\sqrt{29}}{5} = -\frac{5}{2}$$
15. 
$$\pm \frac{2\sqrt{29}}{29} \pm \frac{5\sqrt{29}}{29} = \frac{2}{5} \pm \frac{\sqrt{29}}{2} \pm \frac{\sqrt{29}}{5} = 1$$
17. 
$$\pm \frac{\sqrt{3}}{2} = -\frac{1}{2} = \mp\sqrt{3} \pm \frac{2\sqrt{3}}{3} = \pm \frac{\sqrt{5}}{3} = 1$$
19. 
$$\pm \frac{\sqrt{5}}{5} = \pm \frac{2\sqrt{5}}{5} = \pm \sqrt{5} = \pm \frac{\sqrt{5}}{2} = 2$$
21. 
$$\frac{1}{3} = \pm \frac{2\sqrt{2}}{3} = \pm \frac{\sqrt{2}}{4} = \pm \frac{3\sqrt{2}}{4} = \pm 2\sqrt{2}$$
23. 
$$\pm \frac{\sqrt{3}}{2} = \mp \frac{1}{2} = \pm \frac{2\sqrt{3}}{3} = \mp 2 = -\frac{\sqrt{3}}{3} = 1$$
25. 
$$\pm \frac{2\sqrt{2}}{3} = \pm 2\sqrt{2} = \pm \frac{3\sqrt{2}}{4} = -3 = \pm \frac{\sqrt{2}}{4} = 1$$
27. 
$$\pm \frac{10\sqrt{101}}{101} = \pm \frac{\sqrt{101}}{101} = 10 = \pm \frac{\sqrt{101}}{10} = \pm \sqrt{101} = 1$$
29. 
$$\pm \frac{\sqrt{6}}{3} = \pm \frac{\sqrt{3}}{3} = \pm \frac{\sqrt{3}}{2} = \pm \sqrt{3} = \frac{\sqrt{2}}{2} = \pm \sqrt{3} = \frac{\sqrt{2}}{2} = \pm \sqrt{3} = \frac{\sqrt{2}}{2} = \pm \sqrt{3} = \pm$$

- 31. (a)  $\pm \frac{33}{40}$ ,  $\pm \frac{29}{120}$ ; (b)  $\pm \frac{608}{125}$ ,  $\pm \frac{208}{425}$ ; (c)  $\frac{199}{85}$ ,  $\frac{38}{85}$ ; (d)  $\pm \frac{5}{9}$ ;
  - (e)  $\pm \frac{527}{56}$ ,  $\pm \frac{289}{56}$ ; (f)  $\frac{147}{115}$ ,  $\frac{3}{115}$ ,  $\frac{21}{5}$ ,  $\frac{3}{35}$ ;
  - (g)  $\frac{4958}{425}$ ,  $\frac{518}{65}$ ,  $\frac{1742}{425}$ ,  $\frac{182}{85}$ ;
  - (h)  $(192m^2 \pm 416mn + 105n^2)/192$ ,  $(192m^2 \pm 304mn 105n^2)/192$ .

Exercises VIII. B, page 120

41.

| $\frac{1}{\sqrt{1+\cot^2\theta}}$                                                 | $\frac{1}{\sqrt{1+\cot^2\theta}}$                                                               | n tro                                          | 1 1 1 cm 2 H                                              | EAL Foot B                                                                        | 100                                        |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|
| $\frac{1}{4}\frac{\sqrt{\sin^2\theta+1}}{\sin\theta} \frac{4}{\sqrt{1+\alpha}}$   | l                                                                                               | 4 Vsett H                                      | 1 det 1                                                   | 8.17                                                                              | $\frac{1}{\sqrt{\sin^2\theta}-1}$          |
| 1<br>(**(** 0                                                                     | $\frac{1}{\sqrt{1+\tan^2\theta}} = \frac{1}{4\pi^2} \frac{\sqrt{\cos^2\theta} - 1}{\cos\theta}$ | $\pm \frac{1}{\sqrt{\csc^2\theta} - 1}$        | 11-26-11                                                  | $\frac{\mathrm{esc}\theta}{\sqrt{\mathrm{esc}^2\theta}-1}$                        | EVesta 0 1                                 |
| $\pm \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}}$                                | $\frac{1}{\sqrt{1+\tan^2\theta}}$                                                               | $tan \theta$                                   | $\frac{1}{\sqrt{1-\cos^2\theta}} \pm \sqrt{1+\tan\theta}$ | $\pm \sqrt{1 + \tan^2 \theta}$ $\pm \frac{\csc \theta}{\sqrt{\csc^2 \theta} + 1}$ | 1 (m)                                      |
| $\pm \sqrt{1 - \cos^2 \theta} = \pm \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}}$ |                                                                                                 | $\pm \sqrt{1-\cos^2\theta}$ $\cos\theta$       | $\pm \frac{1}{\sqrt{1-\cos^2\theta}}$                     | 1<br>cos θ                                                                        | $\frac{\cos\theta}{\sqrt{1-\cos^2\theta}}$ |
| sin 0                                                                             | $\pm \sqrt{1-\sin^2\theta}$                                                                     | $\pm \frac{\sin\theta}{\sqrt{1-\sin^2\theta}}$ | 1<br>Sin θ                                                | $\pm \frac{1}{\sqrt{1-\sin^2\theta}}$                                             | $\pm \sqrt{1-\sin^2\theta}$ $\sin\theta$   |
| $\sin \theta =$                                                                   | GON 0 =                                                                                         | $\tan \theta =$                                | rsc 0                                                     | SOR O ==                                                                          | eot $\theta =$                             |

# Exercises VIII. C, page 126

- **3.**  $\frac{1}{4}(\sqrt{6}-\sqrt{2}), \frac{1}{4}(\sqrt{6}+\sqrt{2}), 2-\sqrt{3}, 2+\sqrt{3}.$  **9.**  $\cos \theta$ . **11.** 0.
- **19.** (a)  $-\frac{1}{6}\frac{6}{9}\frac{7}{7}$ ; (b)  $\frac{6}{9}\frac{7}{7}$ ; (c)  $-\frac{1}{6}\frac{5}{7}\frac{5}{2}$ ; (d)  $-\frac{6}{1}\frac{5}{8}\frac{5}{6}$ ; (e)  $-\frac{4}{6}\frac{5}{9}\frac{5}{7}$ ; (f)  $\frac{5}{9}\frac{6}{9}\frac{5}{7}$ ; (g) -433; (h) -335.
- **21.** (a)  $\pm \frac{171}{221}$ ; (b)  $\pm \frac{140}{221}$ ; (c)  $\frac{171}{140}$ ; (d)  $\frac{140}{171}$ ; (e)  $\pm \frac{21}{221}$ ; (f)  $\pm \frac{220}{221}$ ; (g)  $\frac{21}{520}$ ; (h)  $\frac{220}{520}$

# Exercises VIII. D, page 130

3. 
$$\frac{\sqrt{3}}{2}$$
,  $-\frac{1}{2}$ ,  $-\sqrt{3}$ ,  $-\frac{\sqrt{3}}{3}$ .

- **5.**  $\frac{1}{4}(\sqrt{6}-\sqrt{2}), \frac{1}{4}(\sqrt{6}+\sqrt{2}), 2-\sqrt{3}, 2+\sqrt{3}.$
- 7. (a)  $\pm \frac{720}{1681}$ ; (b)  $-\frac{1519}{1681}$ ; (c)  $\pm \frac{720}{1519}$ ; (d)  $\pm \frac{1519}{720}$ ;

(e) 
$$\pm \frac{5\sqrt{41}}{41}$$
  $\pm \frac{4\sqrt{41}}{41}$ ; (f)  $\pm \frac{4\sqrt{41}}{41}$   $\pm \frac{5\sqrt{41}}{41}$ ; (g)  $\frac{5}{4}$ ,  $\frac{4}{5}$ ; (h)  $\frac{4}{5}$ ,  $\frac{5}{4}$ .

# Exercises VIII. E, page 132

- 1.  $2 \sin 30^{\circ} \cos 10^{\circ} = \cos 10^{\circ}$ . 3.  $2 \cos 50^{\circ} \cos 10^{\circ}$ . 5.  $2 \cos 40^{\circ} \cos 2^{\circ}$ .
- 7.  $2 \sin 32\frac{1}{2}^{\circ} \cos 7\frac{1}{2}^{\circ}$ . 9.  $2 \sin 50^{\circ} \cos 18^{\circ} = 2 \cos 40^{\circ} \sin 72^{\circ}$ .
- 11.  $2 \sin 47^{\circ} \cos 3^{\circ} = 2 \cos 43^{\circ} \sin 87^{\circ}$ . 13.  $2 \sin 2\theta \cos \theta$ .
- **15.**  $2 \sin \frac{3}{4}\theta \cos \frac{1}{4}\theta$ . 17.  $2\cos 3\theta \cos 3\theta$ .

# Exercises VIII. F, page 133

- **23.** (a)  $\pm \frac{84}{1025}$ ,  $\pm \frac{498}{1025}$ ; (b)  $\pm \frac{1023}{1025}$ ,  $\pm \frac{897}{1025}$ ; (c)  $\frac{84}{1023}$ ,  $\frac{496}{897}$ ;
  - (d)  $\frac{1023}{61}$ ,  $\frac{897}{496}$ ; (e)  $\pm \frac{496}{1025}$ ,  $\pm \frac{64}{1025}$ ; (f)  $\pm \frac{897}{1025}$ ,  $\pm \frac{1023}{1025}$ ;
  - $(g) \, \tfrac{436}{887}, \, \tfrac{64}{1023} \, ; \, (h) \, \tfrac{897}{496}, \, \tfrac{1023}{64} \, ; \, (i) \, \tfrac{338}{625} \, ; \, (j) \, \tfrac{527}{625} \, ; \, (k) \, \tfrac{336}{327} \, ;$

(l) 
$$\frac{527}{336}$$
; (m)  $\pm \frac{\sqrt{2}}{10}$   $-\frac{7\sqrt{2}}{10}$ ; (n)  $\pm \frac{7\sqrt{2}}{10}$ ; (o)  $\frac{1}{7}$ ,  $-7$ ;

(p) 7, 
$$-\frac{1}{7}$$
; (q)  $\pm \frac{9\sqrt{82}}{82}$ ; (r)  $\pm \frac{\sqrt{82}}{82}$ ; (s)  $\pm 9$ ; (t)  $\pm \frac{1}{9}$ ;

- (u)  $\pm \frac{512}{1025}$ ,  $\pm \frac{62}{1025}$ ; (v)  $\pm \frac{512}{1025}$ ,  $\pm \frac{62}{1025}$ ; (w)  $-\frac{16}{1025}$ ,  $-\frac{1984}{1025}$ ;
- (x)  $\frac{1984}{1025}$ ,  $\frac{16}{1025}$

27. 
$$\frac{1}{4}\sqrt{10-2\sqrt{5}}$$
,  $\frac{1}{4}(1+\sqrt{5})$ ,  $\sqrt{5-2\sqrt{5}}$ ,  $\frac{1}{5}\sqrt{25+10\sqrt{5}}$ .

**29.** 
$$\frac{1}{16}(\sqrt{6} + \sqrt{2})(\sqrt{5} - 1) - \frac{1}{8}(\sqrt{3} - 1)\sqrt{5} + \sqrt{5},$$
  
 $\frac{1}{8}(\sqrt{3} + 1)\sqrt{5} + \sqrt{5} + \frac{1}{16}(\sqrt{6} - \sqrt{2})(\sqrt{5} - 1).$   
**31.** 120 ft

31. 120 ft.

# Exercises VIII. G, page 138

- 1.  $\sqrt{2}\sin(\theta 45^{\circ})$ . 3.  $13\cos(\theta + \phi)$ ,  $\phi = \operatorname{arccot} \frac{19}{5} = 22^{\circ} 37'$ .
- **5.**  $2\cos(\theta-60^\circ)$ . **7.**  $\sqrt{2}\cos(\theta-45^\circ)$ . **9.** 1.2997  $\cos(\theta+73^\circ)$  44').

# Exercises IX. A, page 140

1. a 
$$\frac{\pi}{18}$$
: b  $\frac{6\pi}{36}$ ,  $\frac{4\pi}{15}$ ; d  $\frac{1}{18}$ ; e  $\frac{5\pi}{6}$ , e  $\frac{14\pi}{9}$ ; g  $\frac{\pi}{10}$ ;

$$1. \ \frac{20\pi}{9} : 1 \cdot \frac{7\pi}{120} : 1 \cdot \frac{11\pi}{80} : k \cdot \frac{641\pi}{240} : 1 \cdot \frac{13\pi}{135}$$

7. 
$$(a) \frac{\pi}{3}$$
; (b)  $\frac{5\pi}{6}$ ; (e)  $\frac{\pi}{4}$ ; (d)  $\frac{3\pi}{5}$ .

**9.** (a) 
$$\frac{\pi}{12}$$
; (b)  $\frac{\pi}{720}$ ; (c)  $\frac{5\pi}{18}$ ; (d)  $6\pi$ ; (e)  $\frac{19\pi}{24}$ .

11. (a) 
$$\frac{\sqrt{3}}{2}$$
; (b)  $-\frac{1}{2}$ ; (c) 1; (d)  $-\sqrt{3}$ ; (e)  $-\sqrt{2}$ ; (f) 2; (g)  $-1$ ;

(h) 
$$0.76604$$
; (i)  $0.15838$ ; (j)  $-2.0765$ ; (k)  $-0.28173$ ;

(q) 0.01000; (r) 0.86232.

# Exercises IX. B, page 144

**1.** 1.4. **3.** 3 ft.  $6\frac{1}{2}$  in. **5.** 10 in. **7.** 1.9263 in. **9.** 2640.

11. (a)  $60\pi^{(r)}$  sec.; (b)  $240\pi$  ft. sec.

# Exercises IX. C, page 146

**1.** 13.5 sq. in., 1.2305 sq. in. **3.**  $1\frac{1}{3}$ (r). **5.** 10.05 in.

7. 144 sq. in. 9. (a) 15 sq. in.; (b) 4.687 cu. in. 11. 103.0.

# Exercises IX. D, page 150

Table IIIa of the Macmillan Logarithmic and Trigonometric Tables was used in obtaining some of these answers.

1. (a) 0.02132; (b) 0.02132; (c) 46.903.

3. (a) 8.19904 - 10; (b) 8.19910 - 10; (c) 1.80090.

**5.** 153.6. **7.** 2160 mi. **9.**  $2.5 \times 10^{13}$  mi. **11.** 238500 mi.

13.  $A = 0^{\circ} 45.2'$ ,  $B = 89^{\circ} 14.8'$ , c = 57.958.

**15.**  $A = 174^{\circ} 15.4', B = 3^{\circ} 3.5', C = 2^{\circ} 41.1'.$ 

17.  $A = 59^{\circ} 25.0', b = 0.13531, c = 0.072393.$ 

# Exercises IX. E, page 152

3. 2100 ft. 5. S3 mils. 7. 43 mils. 9. 20. 11. 0° 33′ 45″, 2° 48′ 45″, 5° 37′ 30″,

# Exercises X. A, page 163

15. 
$$\frac{\pi}{4} + n\pi$$
.

**23**(1),  $2\pi$ , **23**(3),  $2\pi$ , **23**(5),  $4\pi$ , **23**(7),  $2\pi$ , **23**(9),  $\frac{\pi}{5}$ . 23:11: 4.

# Exercises XI. A, page 173

3. 
$$\frac{3\pi}{4}$$
,  $2n\pi \pm \frac{3\pi}{4}$ . 5.  $\frac{\pi}{2}$ ,  $2n\pi \pm \frac{\pi}{2}$ . 7.  $\frac{\pi}{4}$ ,  $\frac{\pi}{4} + n\pi$ .

9. 
$$-\frac{\pi}{3} \cdot -\frac{\pi}{3} + n\pi$$
.

**11.** 0.240, 
$$n\pi + (-1)^n$$
 0.240. **13.** 0.980, 0.980 +  $n\pi$ .

13. 
$$0.980, 0.980 + n\pi$$

15. 1.581, 
$$2n\pi \pm 1.581$$
.

17. 
$$0.7297$$
,  $n\pi + (-1)^n 0.7297$ .

19. 1.1071, 1.1071 + 
$$n\pi$$
. 21.  $\frac{3}{4}$ . 23.  $\frac{9}{13}$ . 25.  $-\frac{8}{15}$ . 27.  $\pm \frac{20}{29}$ . 29.  $\pm \frac{3}{4}$ .

31. 
$$-\frac{1}{3}$$
 33. x. 35.  $\pm \frac{x}{\sqrt{1-x^2}}$  37.  $\pm \frac{x}{\sqrt{1-x^2}}$  39.  $\pm \frac{x}{\sqrt{1+x^2}}$ 

**41.** 
$$\pm\sqrt{1+x^2}$$
. **45.**  $-\frac{528}{697}$ . **47.** 1,  $-\frac{7}{9}$ . **49.**  $-\frac{1}{9}$ . **51.**  $\frac{435}{308}$ ,  $-\frac{525}{92}$ 

41. 
$$\pm\sqrt{1+x^2}$$
. 45.  $-\frac{528}{697}$ . 47.  $1, -\frac{7}{9}$ . 49.  $-\frac{1}{9}$ . 51.  $\frac{435}{308}$ .  $-\frac{528}{92}$ . 53.  $\pm\frac{611}{1189}$ . 55.  $\pm\frac{24}{25}$   $\pm\frac{2\sqrt{6}}{25}$  57.  $\pm\frac{943}{1105}$ ,  $\pm\frac{47}{1105}$   $\pm\frac{1073}{1105}$ ,  $\pm\frac{817}{1105}$ 

77.  $n\pi + (-1)^n\theta$ . 79.  $\theta + n\pi$ .

# Exercises XII. A. page 181

**1.** 
$$n \cdot 180^{\circ}$$
. **3.**  $45^{\circ} + n \cdot 180^{\circ}$ . **5.**  $75^{\circ} 58' + n \cdot 180^{\circ}$ .

7. 
$$90^{\circ} + n \cdot 180^{\circ}$$
,  $210^{\circ} + n \cdot 360^{\circ}$ ,  $330^{\circ} + n \cdot 360^{\circ}$ .

9. 
$$90^{\circ} + n \cdot 180^{\circ}$$
,  $26^{\circ} 34' + n \cdot 180^{\circ}$ .

11. 
$$45^{\circ} + n \cdot 180^{\circ}$$
,  $161^{\circ} 34' + n \cdot 180^{\circ}$ .

15. 
$$60^{\circ} + n \cdot 180^{\circ}$$
. 17.  $11\frac{1}{4}^{\circ} + n \cdot 22\frac{1}{2}^{\circ}$ .

19. 
$$12^{\circ} + n \cdot 36^{\circ}$$
. 21.  $26^{\circ} 34' + n \cdot 180^{\circ}$ .

**23.** 
$$n \cdot 360^{\circ}$$
,  $90^{\circ} + n \cdot 360^{\circ}$ . **25.**  $126^{\circ} 13' + n \cdot 360^{\circ}$ ,  $174^{\circ} 25' + n \cdot 360^{\circ}$ .

27. 
$$15^{\circ} + n \cdot 360^{\circ}$$
,  $285^{\circ} + n \cdot 360^{\circ}$ . 29.  $n \cdot 180^{\circ} \pm 45^{\circ}$ ,  $90^{\circ} + n \cdot 180^{\circ}$ .

31. 
$$n \cdot 360^{\circ}$$
,  $45^{\circ} + n \cdot 90^{\circ}$ . 33.  $n \cdot 360^{\circ} \pm 50^{\circ} 36'$ ,  $n \cdot 360^{\circ} \pm 129^{\circ} 24'$ .

**35.** 
$$n \cdot 180^{\circ}$$
,  $220^{\circ} 39' + n \cdot 360^{\circ}$ ,  $319^{\circ} 21' + n \cdot 360^{\circ}$ .

37. 
$$240^{\circ} + n \cdot 360^{\circ}$$
,  $300^{\circ} + n \cdot 360^{\circ}$ .

**39.** 
$$x > 0$$
,  $r = \sqrt{x^2 + y^2}$ ,  $\theta = \arctan \frac{y}{x} + 2n\pi$ ,

$$r = -\sqrt{x^2 + y^2}, \, \theta = \pi + \operatorname{Arctan} \frac{y}{x} + 2n\pi;$$

$$z < 0, r = \sqrt{x^2 + j}, \theta = \pi + \operatorname{Arctan} \frac{\theta}{x} + 2n\pi,$$

$$r = -\sqrt{x^2 - \frac{\pi}{2}}, \theta = \operatorname{Arctan} \frac{\theta}{x}$$

$$x = 0, y > 0, r = \pm n, \theta = \pm \frac{\pi}{3}$$

$$y < 0, r = \pm y, \theta = \mp \frac{\pi}{2} + 2n\pi,$$

$$y = 0, r = 0, \theta \text{ meaningless.}$$

**41.**  $\theta = 45^{\circ} 50^{\circ} + (-1)^{m} \cdot 30^{\circ} 20^{\circ} + (m + 2k) \cdot 180^{\circ}$ 

 $\phi = 45^{\circ} 50' + (-1)^{\circ} \cdot 30^{\circ} 20' + (-1)^{\circ} + 2l \cdot (180)$ 

where k, l, m are any integers.

**43.**  $\theta = 50^{\circ} 46' + m \cdot 360^{\circ}$ ,  $\phi = 37^{\circ} 46' + n \cdot 360^{\circ}$ ;

 $\theta = 129^{\circ} 14' + m \cdot 360^{\circ}, \phi = 217^{\circ} 46' + n \cdot 360^{\circ}$ 

 $\theta = 230^{\circ} \cdot 46' + m \cdot 360^{\circ}, \ \phi = 142^{\circ} \cdot 14' + n \cdot 360^{\circ}$ 

 $\theta = 309^{\circ} 14' + m \cdot 360^{\circ}, \phi = 322^{\circ} 14' + n \cdot 360^{\circ}.$ 

**49.** 0.4797.\* **51.**  $\pm 0.8241.$  **53.** 2.8632.**47.** 1.9346.

**55.** 0,  $\pm 0.9477$ . **57.** -3.1423.\* **59.** Identity. **61.**  $n \cdot 180^{\circ}$ .

63. Identity. 65. Identity.

# Exercises XIII. A, page 187

**1.** 8 + 6i. **3.** 2 + 5i. **5.** 6 + 5i. **7.** -1 + 7i. **9.** 1 + 3i. **11.** 14.

**13.** 5-2i. **15.** -5i. **17.** 11+3i.

# Exercises XIII. B, page 189

**1.**  $5\sqrt{2}$  cis  $135^{\circ}$ . **3.** 2 cis  $30^{\circ}$ . **5.** 5 cis  $306^{\circ}$  52'. **7.** 6 cis  $90^{\circ}$ .

**11.**  $\sqrt{13}$  cis  $56^{\circ}$  19'. **13.**  $\sqrt{26}$  cis  $348^{\circ}$  41'. 9. 17 cis 241° 56'.

**17.** 10 cis  $306^{\circ}$  52'. **19.**  $\sqrt{53}$  cis  $164^{\circ}$  3'. 15.  $7\sqrt{2}$  eis  $225^{\circ}$ .

**21.**  $\frac{\sqrt{13}}{6}$  eis 33° 41′. **23.**  $\frac{5\sqrt{2}}{2} - \frac{5i\sqrt{2}}{2}$ . **25.**  $-\frac{3\sqrt{2}}{2} - \frac{3i\sqrt{2}}{2}$ .

**29.** -4i. **31.** 1-i. **33.** 8.1915-5.7358i.

**37.** 7.6604 + 6.4279i. **35.** -4.6984 - 1.7101i.

# Exercises XIII. C, page 190

**1.** 15 cis 110°. **3.**  $2\sqrt{2}$  cis 105°. **5.** 12 cis 110°. **7.** 3 cis 90° = 3i.

9.  $\frac{3\sqrt{2}}{2}$  cis 195°.

# Exercises XIII. D, page 193

**1.** 343 cis 54°. **3.** 32 cis 90° = 32*i*. **5.** 2500 cis  $180^\circ = -2500$ .

7. cis 176°. 9. cis  $180^\circ = -1$ .

<sup>\*</sup> Other solutions exist.

- **11.**  $10^{-6}$  cis  $300^{\circ} = 0.000,000,5(1 i\sqrt{3})$ . **13.** 3 cis  $40^{\circ}$ , 3 cis  $220^{\circ}$ .
- **15.** 3 cis 9°, 3 cis 129°, 3 cis 249°.
- 17.  $\sqrt[3]{2}$  cis 20° = 1.1839 + 0.43092*i*,  $\sqrt[3]{2}$  cis 140° = -0.96514 + 0.80986*i*,  $\sqrt[3]{2}$  cis 260° = -0.21878 1.2408*i*.
- **19.** cis  $0^{\circ} = 1$ , cis  $120^{\circ} = -\frac{1}{2} + \frac{i\sqrt{3}}{2}$ , cis  $240^{\circ} = -\frac{1}{2} \frac{i\sqrt{3}}{2}$ .
- **21.**  $\sqrt{2}$  cis  $45^{\circ} = 1 + i$ ,  $\sqrt{2}$  cis  $105^{\circ} = -0.36603 + 1.3660i$ ,  $\sqrt{2}$  cis  $165^{\circ} = -1.3660 + 0.36603i$ ,  $\sqrt{2}$  cis  $225^{\circ} = -1 i$ ,  $\sqrt{2}$  cis  $285^{\circ} = 0.36603 1.3660i$ ,  $\sqrt{2}$  cis  $345^{\circ} = 1.3660 0.36603i$
- **23.**  $\sqrt{2}$  cis  $45^{\circ} = 1 + i$ ,  $\sqrt{2}$  cis  $117^{\circ} = -0.64204 + 1.2601i$ ,  $\sqrt{2}$  cis  $189^{\circ} = -1.3968 0.22123i$ ,  $\sqrt{2}$  cis  $261^{\circ} = -0.22123 1.3968i$ ,  $\sqrt{2}$  cis  $333^{\circ} = 1.2601 0.64204i$ .
- **25.** 1, 0.30902  $\pm$  0.95106i,  $-0.80902 \pm 0.58779<math>i$ . **27.**  $\pm \frac{\sqrt{2}}{2}(1 \pm i)$ .
- **29.**  $\pm (1.8478 + 0.76536i)$ ,  $\pm (0.76536 1.8478i)$ .
- 31. Same as Ex. 25, discarding x = 1.

# Exercises XV. A, page 207

- **1.**  $B = 153^{\circ} 58.3'$ ,  $a = 67^{\circ} 7.0'$ ,  $b = 155^{\circ} 46.7'$ .
- 3.  $A = 105^{\circ} 52.3'$ ,  $a = 117^{\circ} 13.7'$ ,  $b = 33^{\circ} 32.7'$ .
- 5.  $a = 69^{\circ} 34.9'$ ,  $b = 134^{\circ} 59.4'$ ,  $c = 104^{\circ} 16.8'$ .
- 7.  $A = 81^{\circ} 43.0'$ ,  $a = 70^{\circ} 16.2'$ ,  $c = 107^{\circ} 58.2'$ ;  $A' = 98^{\circ} 17.0'$ ,  $a' = 109^{\circ} 43.8'$ ,  $c' = 72^{\circ} 1.8'$ .
- 9.  $A = 78^{\circ} 31.9', b = 112^{\circ} 48.5', c = 94^{\circ} 46.8'.$
- **11.**  $A = 127^{\circ} 23.3', B = 109^{\circ} 52.2', b = 115^{\circ} 19.6'.$
- **13.**  $A = 74^{\circ} 15.2'$ ,  $B = 30^{\circ} 30.8'$ ,  $a = 57^{\circ} 41.5'$ .
- 15. No solution.
- 17.  $B = 72^{\circ} 54.2'$ ,  $b = 46^{\circ} 29.5'$ ,  $c = 49^{\circ} 21.5'$ ;  $B' = 107^{\circ} 5.8'$ ,  $b' = 133^{\circ} 30.5'$ ,  $c' = 130^{\circ} 38.5'$ .
- **19.**  $B = 20^{\circ} 49.8'$ ,  $a = 44^{\circ} 44.0'$ ,  $c = 46^{\circ} 40.1'$ .
- **21.**  $\arctan \sqrt{2} = 54^{\circ} 44'$ .

# Exercises XV. B, page 208

- 1.  $A = 64^{\circ} 40.4'$ ,  $B = 49^{\circ} 47.1'$ ,  $C = 106^{\circ} 2.0'$ .
- 3.  $B = 111^{\circ} 25.9'$ ,  $a = 117^{\circ} 4.3'$ ,  $b = 108^{\circ} 59.2'$ .
- **5.**  $B = 28^{\circ} 14.0'$ ,  $C = 78^{\circ} 53.3'$ ,  $b = 28^{\circ} 49.4'$ ;  $B' = 151^{\circ} 46.0'$ ,  $C' = 101^{\circ} 6.7'$ ,  $b' = 151^{\circ} 10.6'$ .
- 7.  $A = 118^{\circ} 32.6', B = 33^{\circ} 20.4', C = 66^{\circ} 28.3'.$
- **9.**  $A = 47^{\circ} 25.6'$ ,  $C = 107^{\circ} 50.2'$ ,  $a = 50^{\circ} 40.8'$ ;  $A' = 132^{\circ} 34.4'$ ,  $C' = 72^{\circ} 9.8'$ ,  $a' = 129^{\circ} 19.2'$ .

# Exercises XV. C, page 209

- 1.  $B = 100^{\circ} 14.4'$ ,  $a = c = 71^{\circ} 19.9'$ .
- 3.  $A = C = 103^{\circ} 28.4^{\circ}, h = 110^{\circ} 37.6^{\circ}.$
- **5.**  $B = C = 49^{\circ} 1.3', h = c = 78^{\circ} 20.3'$ :  $B' = C' = 130^{\circ} 58.7', b' = c' = 101^{\circ} 39.7',$
- 7.  $a = b = 94^{\circ} 16.1'$ ,  $c = 99^{\circ} 48.2'$ .
- **9.**  $B = 119^{\circ} 35.4'$ ,  $C = 62^{\circ} 1.5'$ ,  $b = 110^{\circ} 32.6'$ ,
- **11.**  $A = B = C = 60^{\circ} 15.2^{\circ}$ . 13.  $A = B = C = 102^{\circ} 7.8'$ .
- 15.  $a = b = c = 98^{\circ} 30.5'$ .

#### Exercises XVI. A, page 220

- 1. (a) Obtuse; (b) acute; (c) acute. 3. Obtuse. 5. a obtuse, c acute.
- 7. Acute: A; obtuse:  $\frac{1}{2}(A + C)$ ,  $\frac{1}{2}(B + C)$ , B, C;  $90^{\circ}$ :  $\frac{1}{2}(A + B)$ .

#### Exercises XVI. B, page 223

- 1.  $A = 128^{\circ} 4.2'$ ,  $B = 51^{\circ} 34.2'$ ,  $C = 73^{\circ} 14.6'$ ,
- 3.  $A = 65^{\circ} 10.0'$ ,  $B = 98^{\circ} 50.6'$ ,  $C = 125^{\circ} 17.8'$ .
- 5.  $A = 77^{\circ} 36.0', B = 63^{\circ} 17.0', C = 107^{\circ} 23.2'$
- 7.  $a = 47^{\circ} 44.8'$ ,  $b = 132^{\circ} 40.6'$ ,  $c = 103^{\circ} 11.6'$ .
- 9. No solution.
- 11.  $A = 45^{\circ} 25.0'$ ,  $B = 33^{\circ} 59.4'$ ,  $C = 118^{\circ} 42.0'$
- 13.  $a = 83^{\circ} 5.8', b = 102^{\circ} 31.6', c = 94^{\circ} 26.2'.$
- 15. No solution.
- 17.  $a = 126^{\circ} 36.6'$ ,  $b = 118^{\circ} 13.4'$ ,  $c = 83^{\circ} 24.0'$ ,
- **19.**  $a = 46^{\circ} 11.4'$ ,  $b = 74^{\circ} 15.4'$ ,  $c = 86^{\circ} 10.8'$ .

# Exercises XVI. C, page 227

- 1.  $A = 55^{\circ} 52.4'$ ,  $B = 20^{\circ} 10.0'$ ,  $c = 66^{\circ} 20.8'$ .
- 3.  $A = 144^{\circ} 33.3'$ ,  $B = 112^{\circ} 46.5'$ ,  $c = 136^{\circ} 50.8'$ .
- **5.**  $A = 121^{\circ} 33.5', B = 43^{\circ} 13.5', c = 62^{\circ} 11.6'.$
- 7.  $a = 95^{\circ} 38.0'$ ,  $b = 41^{\circ} 52.2'$ ,  $C = 110^{\circ} 48.8'$ .
- 9.  $a = 123^{\circ} 21.4'$ ,  $c = 84^{\circ} 15.4'$ ,  $B = 129^{\circ} 4.6'$ . 11.  $B = 95^{\circ} 38.1'$ ,  $C = 97^{\circ} 26.5'$ ,  $a = 64^{\circ} 23.2'$ .
- 13.  $\alpha = 89^{\circ} 30.3', c = 62^{\circ} 32.1', B = 1^{\circ} 41.4'.$ 15.  $A = 96^{\circ} 2.3'$ ,  $B = 125^{\circ} 43.7'$ ,  $c = 100^{\circ} 48.0'$ .
- 17.  $a = 47^{\circ} 29.3'$ ,  $b = 50^{\circ} 6.3'$ ,  $C = 129^{\circ} 58.6'$ .
- 19.  $A = 142^{\circ} 16.3'$ ,  $B = 46^{\circ} 7.1'$ ,  $c = 89^{\circ} 28.2'$ .

# Exercises XVI. D, page 232

- 1.  $B = 22^{\circ} 34.8'$ ,  $C = 101^{\circ} 16.0'$ ,  $c = 50^{\circ} 36.6'$ .
- 3.  $B = 59^{\circ} 24.4'$ ,  $C = 115^{\circ} 39.8'$ ,  $c = 97^{\circ} 33.2'$ ;

$$B' = 120^{\circ} 35.6', C' = 27^{\circ} 0.2', c' = 29^{\circ} 57.4'.$$

- 5. No solution.
- 7.  $C = 101^{\circ} 42.0'$ ,  $b = 31^{\circ} 24.7'$ ,  $c = 147^{\circ} 10.6'$ ;  $C' = 36^{\circ} 45.4'$ ,  $b' = 148^{\circ} 35.3'$ ,  $c' = 19^{\circ} 20.8'$ .
- 9. No solution.
- 11.  $B = 87^{\circ} 34.5'$ ,  $C = 53^{\circ} 6.6'$ ,  $c = 52^{\circ} 27.2'$ ;  $B' = 92^{\circ} 25.5'$ ,  $C' = 25^{\circ} 26.2'$ ,  $c' = 25^{\circ} 12.0'$ .
- 13.  $B = 97^{\circ} 21.4'$ ,  $a = 59^{\circ} 3.2'$ ,  $b = 120^{\circ} 9.4'$ ;  $B' = 58^{\circ} 55.4'$ ,  $a' = 120^{\circ} 56.8'$ ,  $b' = 48^{\circ} 19.2'$ .
- **15.**  $B = 148^{\circ} 6.3'$ ,  $C = 130^{\circ} 21.4'$ ,  $c = 62^{\circ} 9.0'$ ;  $B' = 31^{\circ} 53.7'$ ,  $C' = 6^{\circ} 17.6'$ ,  $c' = 7^{\circ} 18.4'$ .
- 17.  $C = 36^{\circ} 38.8'$ ,  $b = 51^{\circ} 17.9'$ ,  $c = 41^{\circ} 4.6'$ .
- **19.**  $C = 8^{\circ} 17.6'$ ,  $b = 125^{\circ} 23.2'$ ,  $c = 6^{\circ} 51.2'$ ;  $C' = 139^{\circ} 39.0'$ ,  $b' = 54^{\circ} 36.8'$ .  $c' = 147^{\circ} 36.8'$ .

# Exercises XVI. E, page 233

- 1.  $A = 38^{\circ} 27.5'$ ,  $B = 92^{\circ} 38.3'$ ,  $c = 23^{\circ} 59.0'$ .
- 3.  $a = 80^{\circ} 5.2'$ ,  $b = 70^{\circ} 10.4'$ ,  $c = 145^{\circ} 5.0'$ .
- 5.  $A = 80^{\circ} 14.8'$ ,  $b = 145^{\circ} 55.2'$ ,  $c = 119^{\circ} 22.6'$ .
- 7.  $B = 31^{\circ} 53.7'$ ,  $C = 6^{\circ} 17.6'$ ,  $c = 7^{\circ} 18.4'$ ;  $B' = 148^{\circ} 6.3'$ ,  $C' = 130^{\circ} 21.4'$ ,  $c' = 62^{\circ} 9.0'$ .
- 9.  $A = 98^{\circ} 56.0'$ ,  $B = 66^{\circ} 18.0'$ ,  $c = 103^{\circ} 30.6'$ .
- **11.**  $a = 98^{\circ} 44.8'$ ,  $b = 83^{\circ} 25.0'$ ,  $c = 75^{\circ} 23.2'$ .
- **13.**  $a = 74^{\circ} 36.4'$ ,  $b = 112^{\circ} 16.6'$ ,  $c = 72^{\circ} 33.4'$ .
- **15.**  $C = 36^{\circ} 38.8', b = 51^{\circ} 17.9', c = 41^{\circ} 4.6'.$
- 17.  $A = 50^{\circ} 30.2', B = 135^{\circ} 5.5', a = 70^{\circ} 20.4'.$
- **19.**  $A = 53^{\circ} 30.4'$ ,  $B = 51^{\circ} 58.4'$ ,  $C = 149^{\circ} 13.4'$ .
- **21.**  $B = 85^{\circ} 41.2'$ ,  $a = 47^{\circ} 48.4'$ ,  $c = 59^{\circ} 39.2'$ .
- **23.**  $A = 23^{\circ} 17.8'$ ,  $B = 146^{\circ} 25.6'$ ,  $C = 35^{\circ} 53.4'$ .
- **25.**  $C = 53^{\circ} 30.4'$ ,  $\alpha = 88^{\circ} 20.8'$ ,  $b = 66^{\circ} 46.0'$ .
- **27.**  $C = 139^{\circ} 39.0'$ ,  $b = 54^{\circ} 36.8'$ ,  $c = 147^{\circ} 36.8'$ ;  $C' = 8^{\circ} 17.6'$ ,  $b' = 125^{\circ} 23.2'$ ,  $c' = 6^{\circ} 51.2'$ .
- **29.**  $C = 155^{\circ} 51.0', b = 125^{\circ} 22.7', c = 155^{\circ} 48.0'.$
- **31.** 21.67 in., 25.89 sq. in. **33.** 1.645 in.

# Exercises XVII. A, page 238

Distances are given in nautical miles. To convert to statute miles, multiply by 1.1516. In Exercises 1–7 the first direction is the bearing of the second point from the first, the second direction is the bearing of the first point from the second.

1. 2229, N 78° 19′ W, N 69° 54′ E. 3. 6797, S 63° 54′ E, N 55° 32′ W.

- 5, 5754, S 65, 26 E, N 51, 16 W, 7, 7267, S 14° 0′ W, S 15° 34′ E
- 9. 527 mi. 11. a S 42 54 L. b S 44 0 E. 13. 190.

# Exercises XVII. B, page 245

- 1. 10 08 a.m. 3. 34° 30°, 8 58 20° W. 5. 30 43 N. 7. 5.33 p. h
- 9. a 13° 33°°; h 15° 26°; e 21° 8°.

# LOGARITHMIC AND TRIGONOMETRIC TABLES



THE MACMILLAN COMPANY
NEW YORK - BOSTON - CHICAGO - DALLAS
ATLANTA - SAN FRANCISCO

MACMILLAN AND CO., Limited London · Bombay · Calcutta · Madras Melbourne

THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO

# LOGARITHMIC AND TRIGONOMETRIC TABLES

### REVISED EDITION

PREPARED UNDER THE DIRECTION OF EARLE RAYMOND HEDRICK

ENTIRELY RE-SET IN A NEW TYPE FACE

NEW YORK
THE MACMILLAN COMPANY

#### COPYRIGHT, 1913 AND 1920, By THE MACMILLAN COMPANY.

All rights reserved—no part of this book may be reproduced in any form without permission in writing from the publisher, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in magazine or newspaper.

Set up and electrotyped. Revised edition published August, 1920. Reprinted April, 1924; May, September, December, 1925; April, June, 1926; January, July, 1927; March, December, 1928; November, 1929; October, November, 1930; April, October, 1931; February, 1932; April, 1933; May, 1933; November, 1933; Mujy, 1935; May, 1936; December, 1937; May, June, 1938; December, 1937; May, June, 1938; December, 1940; May, 1942; February, May, 1943; June, September, November, December, 1943; May, 1944; August, 1946.

#### PREFACE

The present offition of this book contains all of the tables in the on vious editions. All have been reset in a new and very readable type. Great care has been exercised to preserve and to increase the great degree of reliability that existed in the previous edition. For careful reading of the proofs, either in the first proofs made from type or in the proofs made from cast plates. I am indebte I to my daughter Elisabeth and her husband, Mr. Richard L. Miller, to several of my own students, and to the following friends in other institutions, sometimes with the aid of their students: Professor C. H. Currier, Brown University; Professor H. T. Davis, University of Indiana; Professor H. B. Dwight, Massachusetts Institute of Technology: Professor W. B. Ford, University of Michigan; Professor A. M. Harding, University of Arkansas; Professor C. G. Jaeger, Pomona College; Professor L. S. Johnston, University of Detroit; Professors A. J. Kempner and C. A. Hutchinson, University of Colorado: Professor G. W. Mullins, Barnard College (Columbia University): Professor L. M. Passano, Massachusetts Institute of Technology; Professors H. L. Rietz. Roscoe Woods, and J. F. Reilly, University of Iowa; Professor E. E. Watson, Iowa State Teachers College at Cedar Falls; Dr. E. W. Wilson, Cambridge, Mass.; and Professor Kathryn Wyant, Athens College, Athens, Alabama. Each of these persons or groups has read the complete proof. With deep feeling, I may record also that the late Professor Louis Ingold of the University of Missouri read the proofs up to page 54, and had sent me the last of these pages within a week of his sudden death on January 25, 1935.

These careful readings render the possibility of printers' errors extremely remote. While the calculation of the probability that an undiscovered error exists is not simple, a strict account has been kept of each error found and of the total number not found by any one group of readers, so that a basis for a statistical calculation is known: the resulting probability that even one undiscovered printers' error exists is not

more than one in many thousands.

I desire to express here my thanks to all those, particularly those mentioned above, who have assisted in the effort to make these tables so free from errors and therefore so reliable. I know of no comparable

method for securing this quality in a set of tables.

I repeat also my acknowledgment made in the original edition to many previously existing tables, particularly those of Vega and those of Hoüel. During the proof-reading, those who have assisted have compared these tables with a great variety of existing tables, including several high-place tables, and the values have been recalculated and checked whenever a disagreement has been discovered.

Finally, I wish to mention the excellent cooperation of the editorial staff of the Macmillan Company under the able direction of Mr. F. T.

Sutphen.

# CONTENTS

| EXPLANATION OF THE TABLES                                   |     | Pages<br>Vii–xvi |
|-------------------------------------------------------------|-----|------------------|
| TABLES PRINCIPALLY TO FIVE PLACES                           |     |                  |
| TABLE I. COMMON LOGARITHMS OF NUMBERS                       |     | 1-19             |
| Table Ia. Condensed Logarithms and Antilogarithms.          |     | 20               |
| TABLE II. ACTUAL VALUES OF THE TRIGONOMETRIC FUNCTION       | īs. | 21-44            |
| Table IIIa. Values of $S$ and $T$ for Interpolation         |     | 45               |
| TABLE III. COMMON LOGARITHMS OF THE TRIGONOMETRIC FTS TIONS |     | 45-90            |
| TABLE IV. REDUCTION OF DEGREES TO RADIANS                   |     | 91               |
| TABLE V. TRIGONOMETRIC FUNCTIONS OF ANGLES IN RADIAN        | s.  | 92-93            |
| Table Va. Reduction of Radians to Degrees                   |     | 93               |
| TABLE VI. POWERS-ROOTS-RECIPROCALS                          |     | 94-111           |
| TABLE VII. NAPIERIAN OR NATURAL LOGARITHMS                  |     | 112-114          |
| Table VIII. Multiples of $M$ and of $1/M$                   |     | 115              |
| TABLE IX. VALUES AND LOGARITHMS OF HYPERBOLIC FUNCTION      | ns  | 116-122          |
| TABLE X. VALUES AND LOGARITHMS OF HAVERSINES                |     | 123-125          |
| TABLE XI. FACTOR TABLE—LOGARITHMS OF PRIMES                 |     | 126-127          |
| TABLE XIIa. COMPOUND INTEREST                               |     | 128              |
| TABLE XIIb. COMPOUND DISCOUNT                               |     | 129              |
| TABLE XIIc. AMOUNT OF AN ANNUITY                            |     | 130              |
| Table XIId. Present Value of an Annuity                     |     | 131              |
| TABLE XIIe. LOGARITHMS FOR INTEREST COMPUTATIONS            |     | 132              |
| TABLE XIIf. AMERICAN EXPERIENCE MORTALITY TABLE             |     | 132              |
| TABLE XIII. IMPORTANT CONSTANTS                             |     | 133              |
| BRIEF TABLES-PRINCIPALLY TO FOUR PLACE                      | ŒS  | \$               |
| TABLE XIVa. COMMON LOGARITHMS                               |     | 134-135          |
| TABLE XIVb. ANTILOGARITHMS                                  |     | 136-137          |
| TABLE XIVe. VALUES AND LOGARITHMS OF TRIGONOMETRIC FUN      |     |                  |
| TIONS                                                       |     | 138-142          |

### EXPLANATION OF THE TABLES

#### TABLE I. FIVE-PLACE COMMON LOGARITHMS OF NUMBERS FROM 1 TO 10000

- 1. Common Logarithms. The power to which 10 must be raised to produce any number n is called the common logarithm \* of n. Thus  $\log 10 = 1$ ,  $\log 100 = 2$ ,  $\log 1000 = 3$ , etc.;  $\log 1 = 0$ ,  $\log 0.1 = -1$ ;  $\log 0.01 = -2$ ,  $\log 0.001 = -3$ , etc. In general, if  $10^2 = n$ , l is called the **common logarithm** of n, and is denoted by  $\log n$ .
- 2. Fundamental Principles. Logarithms constitute a great labor-saving device in arithmetical computations. The principles of their application are stated as follows:
- I. The logarithm of a product is equal to the sum of the logarithms of the factors:  $\log ab = \log a + \log b$ . This follows from the fact that if  $10^{2} = a$  and  $10^{L} = b$ ,  $10^{1+L} = a \cdot b$ . In brief: to multiply, add logarithms.
- II. The logarithm of a fraction is equal to the difference obtained by subtracting the logarithm of the denominator from the logarithm of the numerator:  $\log (a_i b) = \log a \log b$ . For, if  $10^i = a$  and  $10^L = b$ , then  $10^{i-L} = a + b$ . In brief: to divide, subtract logarithms.

III. The logarithm of a power is equal to the logarithm of the base multiplied by the exponent of the power:  $\log a^b = b \log a$ . This follows from the fact that if  $10^1 = a$ , then  $10^{1b} = a^b$ .

IV. The logarithm of a root of a number is found by dividing the logarithm of the number by the index of the root:  $\log \sqrt[b]{a} = (\log a)/b$ . This follows from the fact that if  $10^{l} = a$ , then  $10^{l,b} = a^{l,b} = \sqrt[b]{a}$ .

Corollary of II. The logarithm of the reciprocal of a number is the negative of the logarithm of the number:  $\log (1/a) = -\log a$ , since  $\log 1 = 0$ .

3. Characteristic and Mantissa. Every real positive number has a real common logarithm. If a and b are any two real positive numbers such that a < b, then  $\log a < \log b$ . Neither zero nor any negative number has a real logarithm.

|                 | а     | 1 | 10 | 100 | 1000 | 10/800 | 199000 | Liduud | 100kaddin |
|-----------------|-------|---|----|-----|------|--------|--------|--------|-----------|
| Action 25 could | log a | 0 | 1  | 2   | 3    | 4      | 5      | Ü      | -         |

Inspection of the preceding table shows that

the logarithm of every number between 1 and 10 is a proper fraction, the logarithm of every number between 10 and 100 is 1 + a fraction,

the logarithm of every number between 100 and 1000 is 2 + a fraction;

<sup>\*</sup> Common legarithms are exponents of the base 10; other systems of logarithms have bases different from 10; Napierian logarithms (see Table VII, p. 112) have a base denoted by  $\epsilon$ , an irrational number whose value is approximately 2.71828. When it is necessary to call attention to the base, the expression  $\log_{10} n$  will mean common logarithm of n;  $\log_{\epsilon} n$  will mean the Napierian logarithm, etc.; but in this book  $\log_{10} n$  denotes  $\log_{10} n$  unless otherwise explicitly stated.

and so on. It is evident that the logarithm of every number (not an exact power of 10) consists of a whole number + a fraction (usually written as a decimal). The whole number is called the characteristic; the decimal is called the mantissa. The characteristic of the logarithm of any number greater than 1 may be determined as follows:

RULE I. The characteristic of any number greater than 1 is one less than the number of digits before the decimal point.

The following table shows that

| 1     |          |         |        |       |      |     |    |   |
|-------|----------|---------|--------|-------|------|-----|----|---|
| a     | .0000001 | .000001 | .00001 | .0001 | .001 | .01 | .1 | 1 |
| log a | -7       | -6      | -5     | -4    | -3   | -2  | -1 | Ü |

the logarithm of every number between 0.1 and 1 is -1 + a fraction, the logarithm of every number between 0.01 and 0.1 is -2 + a fraction, the logarithm of every number between 0.001 and 0.01 is -3 + a fraction; and so on.

Thus the characteristic of every number between 0 and 1 is a negative whole number; there is a great practical advantage, however, in computing, to write these characteristics as follows: -1 = 9 - 10, -2 = 8 - 10, -3 = 7 - 10, etc. Thus, the logarithm of 0.562 is -1 + 0.74974, but this should be written 9.74974 -10; and similarly for all numbers less than 1.

Rule II. The characteristic of a number less than 1 is found by subtracting from 9 the number of ciphers between the decimal point and the first significant digit, and writing -10 after the result.

Thus, the characteristic of log 645 is 2 by Rule I; the characteristic of log 64.5 is 1 by (I); of log 6.45 is 0 by (I); of log 0.645 is 9-10 by (II); of log 0.0645 is 8-10 by (II).

To move the decimal point in a given number one place to the right is equivalent to adding one unit to its logarithm, because this is equivalent to multiplying the given number by 10. Likewise, to move the decimal point one place to the left is equivalent to subtracting one unit from the logarithm. Hence, moving the decimal point any number of places to the right or left does not change the mantissa but only the characteristic.\*

Thus, 5345, 5.345, 534.5, 0.05345, 534500 all have the same mantissa.

4. Use of the Table. To use logarithms in computation we need a table arranged so as to enable us to find, with as little effort and time as possible, the logarithms of given numbers and, vice versa, to find numbers when their logarithms are known. Since the characteristics may be found by means of Rules I and II, p. viii, only mantissas are given. This is done in Table I. Most of the numbers in this table are irrational, and must be represented in the decimal system by approximations. A five-place table is one which gives the values correct to five places of decimals.

<sup>\*</sup>Another rule for finding the characteristic, based on this property, is often useful: if the decimal point were just after the first significant figure, the characteristic would be zero; start at this point and count the digits passed over to the left or right to the actual decimal point; the number obtained is the characteristic, except for sign; the sign is negative if the movement was to the left, positive if the movement.

PROBLEM 1. To find the logarithm of a given monter. First, determine the characteristic, then look in the table for the mantissa.

To fin I the mantissa in the table when the given number (neglecting the decimal point) consists of fieur, or less, digits exclusive of ciphers at the reginning or en I. I whim the column marked N for the first three digits and select the column headed by the fourth digit; the mantissa will be found at the intersection of this row and this column. Thus to find the logarithm of 72000, observe first. Rule I that the characteristic is 4. To find the mantissa, fix attention on the digits 7205; find 720 in column N, and opposite it in column 5 is the desired mantissa, 0.85763; hence  $\log 72050 = 4.85763$ . The mantissa of 0.07826 is found opposite 782 in column 6 and is 0.89354; hence  $\log 0.07826 = 8.89354 = 10$ .

5. Interpolation. If there are more than four significant figures in the given number, its mantissa is not printed in the table; but it can be found approximately by assuming that the mantissa varies as the number varies in the small interval not tabulated; while this assumption is not strictly correct, it is sufficiently accurate for use with this table.

Thus, to find the logarithm of 72054 we observe that  $\log 72050 = 4.85763$  and that  $\log 72060 = 4.85769$ . Hence a change of 10 in the number causes a change of 0.00006 in the mantissa; we assume therefore that a change of 4 in the number will cause, approximately, a change of  $0.4 \times 0.00006 = 0.00002$  (dropping the sixth place) in the mantissa; and we write  $\log 72054 = 4.85763 + 0.00002 = 4.85765$ .

The difference between two successive values printed in the table is called a tabular difference (0.00006, above). The proportional part of this difference to be added to one of the tabular values is called the correction (0.00002, above), and is found by multiplying the tabular difference by the appropriate fraction (0.4, above). These proportional parts are usually written unthout the zeros, and are printed at the right-hand side of each page, to be used when mental multiplications seem uncertain.

Example 1. Find the logarithm of 0.0012647. Opposite 126 in column 4 find 0.10175; the tabular difference is 34 (zeros dropped.;  $0.7 \times 34$  is given in the margin as 24; this correction added gives 0.10199 as the mantissa of 0.0012647; hence  $\log 0.0012647 = 7.10199 = 10$ .

Example 2. Find the logarithm of 1.85643. Opposite 185 in selamn 6 find 0.26858; tabular difference 23;  $0.43 \times 23$  is given in the margin as 10; this correction added gives 0.26868 as the mantises of 1.85643; hence log 1.85643 = 0.26868.

6. Reverse Reading of the Table. PROBLEM 2. To find the number when its logarithm is known.\* First, fixing attention on the mantissa only, find from the table the number having this mantissa, then place the decimal point by means of the two following rules: †

RULE III. If the characteristic of the logarithm is positive (in which case the mantissa is not followed by -10), begin at the left, count digits one more than the characteristic, and place the decimal point to the right of the last digit counted.

<sup>\*</sup> The number whose logarithm is k is often called the antilogarithm of k.

<sup>†</sup> Another convenient form of these rules is as follows: if the characteristic were zero, the decimal point would fall just after the first significant figure; move the decimal point one place to the right for each positive unit in the characteristic, one place to the left for each negative

RULE IV. If the characteristic is negative (in which case the mantissa will be preceded by a number n and followed by -10), prefix  $\theta - n$  ciphers, and place the decimal point to the left of these ciphers.

Example 1. Given  $\log x = 1.22737$ , to find x.

Since the mantissa is 22737, we look for 22 in the first column and to the right and below for 737, which we find in column 8 opposite 168. The number is therefore 1688. Since the characteristic is  $\div 1$ , we begin at the left, count 2 places, and place the point; hence x=16.8.

Example 2. Given log x = 2.24912, to find x.

This mantissa is not found in the table; in such cases we interpolate as follows: select the mantissa, in the table next less than the given mantissa, and write down the corresponding number; here, 1774; the tabular difference is 25; the actual difference (found ysubtracting the mantissa of 1774 from the given mantissa) is 17; hence the proportionality factor is 17.25 = 0.08 or 0.7 (to the nearest tenth). Since moving the decimal point does not affect the mantissa, it follows that the digits in the required number are 17747 (to five places). The characteristic 2 directs to count 3 places from the left; hence x = 177.47.

RULE. In general, when the given mantissa is not found in the table, write down four digits of the number corresponding to the mantissa in the table next less than the given mantissa, determine a fifth figure by dividing the actual difference by the tabular difference, and locate the decimal point by means of the characteristic.

7. Cologarithms. We might add the logarithms of the factors in the numerator and from this sum subtract the logarithm of the denominator; but we can shorten the operation by adding the negative of the logarithm of the denominator instead of subtracting the logarithm itself. The negative of the logarithm of a number (when written in convenient form for computation) is called the cologarithm of the number. We may find the negative of any number by subtracting it from zero, and it is convenient in logarithmic computation to write zero in the form 10.00000-10. Thus the negative of 2.17 is 7.83-10; the negative of 1.1432-10 is 1.1432-10

To find the cologarithm of a number begin at the left of its logarithm (including the characteristic) and subtract each digit from 9, except the last,\* which subtract from 10; if the logarithm has not -10 after the mantissa, write -10 after the result; if the logarithm has -10 after the mantissa, do not write -10 after the result.

By this rule the cologarithm of a number can be read directly out of the table without taking the trouble to write down the logarithm. Attention must be given not to forget the characteristic. The use of the cologarithm is governed by the principle:

Adding the cologarithm is equivalent to subtracting the logarithm.

#### Ia. CONDENSED LOGARITHMS AND ANTILOGARITHMS

8. Method of Computing Logarithms. This table is a rearrangement of the condensed table given by Hoüel.† From it, the logarithm of any number whatever may be obtained to within 5 in the fifteenth place; or to any desired degree of accuracy less than this.

To illustrate the process, we shall compute  $\log \pi$  to nine places. Taking  $\pi = 3.14159\ 26535\ 8979$ , we divide it by 3, the first significant digit, obtaining

<sup>\*</sup> If the logarithm ends in one or more ciphers, the last significant digit is to be understood here.

<sup>†</sup> Hours, Recueil de Formules et de Tables numériques, 3d ed., Paris, Gauthier-Villaro 1001

 $\pm 3 = 1.04719755 \cdots$ . We then divide this quotient by 1.04, etc., obtaining finally

 $\pi = 3.1.04 \cdot 1.000 \cdot 1.0000 \cdot 1.00001.52172.23).$ 

We can obtain the logarithm of each of the first four factors from this table. The logarithm of the last factor can be obtained by multiplying its decimal part by  $M=0.45429\,44819$ ; for the error made in writing

$$\log A + x = Mx$$

is less than  $Mx^2/2$ . We find Mx either by using the fact that the last column in this table gives multiples of M, or (preferably) by Table VIII, page 115. A bling the five logarithms just mentioned, we find

$$\log \pi = 0.49714 98727 4.$$

which is surely correct to within 1 in the tenth place. The correct value is  $0.49714~98726~9 \cdot \cdot \cdot$ .

The process may be applied to any other number in an analogous manner. Such high-place logarithms are occasionally needed in statistical work and in the preparation of tables.

9. Method of Computing Antilogarithms. The condensed table of antilogarithms gives eleven significant figures (ten decimal places). From it, the antilogarithm of any number can be computed to within 5 in the tenth significant digit.

Thus, to compute the antilogarithm of .4342944S19 to 8 significant figures, we may write

$$10^{0.43429} \ ^{44519} = (10^{0.4})(10^{0.03}, 10^{0.004})(10^{0.0002}, 10^{0.0000}, 10^{0.00000}).$$

The first five factors may be obtained directly from the table. The last factor may be calculated from the formula  $10^x = 1 + (1/M)x$ . The error in this formula is less than 3 in the (2k)th decimal place if x is less than  $(0.1)^k$ , where k > 1.

However, a much more rapid process depends on the use of Tables I and XI with this table. Thus, by Table I,  $10^{0.03429} = 2.718$ , nearly. By Table XI,  $\log 2.718 = 0.4342494524 \cdots$ . Hence  $10^{0.04429} \cdot 4419 = (2.718)(10^{0.00004})(10^{0.00004} \cdot 42295)$ . Obtaining the second factor from this table, and the last factor from the formula  $10^x = 1 + (1/M)x$ , by Table VIII, we find  $10^{0.04429} \cdot 4619 = 2.7182818281$ ; the correct value is  $2.718281828459 \cdots$ . This process requires only two long multiplications.

#### II. FIVE-PLACE TABLE OF THE ACTUAL VALUES OF THE TRIGONOMETRIC FUNCTIONS OF ANGLES

10. Direct Readings. This table gives the sines, cosines, tangents, and cotangents of the angles from 0° to 45°; and by a simple device, indicated by the printing, the values of these functions for angles from 45° to 90° may be read directly from the same table. For angles less than 45° read down the page, the degrees being found at the top and the minutes on the left; for angles greater than 45° read up the page, the degrees being found at the bottom and the minutes on the right.

To find a function of an angle (such as 15° 27'.6, for example) which does

polation. To illustrate, let us find tan  $15^{\circ}27'.6$ . In the table we find tan  $15^{\circ}27' = 0.27638$  and tan  $15^{\circ}28' = 0.27670$ ; we know that tan  $15^{\circ}27'.6$  lies between these two numbers. The process of interpolation depends on the assumption that between  $15^{\circ}27'$  and  $15^{\circ}28'$  the tangent of the angle varies directly as the angle; while this assumption is not strictly true, it gives an approximation sufficiently accurate for a five-place table. Thus we should assume that tan  $15^{\circ}27'.5$  is halfway between 0.27638 and 0.27670. We may state the problem as follows: An increase of 1' in the angle increases the tangent 0.0032; assuming that the tangent varies as the angle, an increase of 0'.6 in the angle will increase the tangent by  $0.6 \times 0.00032 = 0.00019$  (retaining only five places); hence

```
\tan 15^{\circ} 27'.6 = 0.27638 + 0.00019 = 0.27657.
```

The difference between two successive values in the table is called, as in Table I, the tabular difference (0.00032 above). The proportional part of the tabular difference which is used is called the correction (0.00019 above), and is found by multiplying the tabular difference by the appropriate fraction of the smallest unit given in the table.

```
Example 1. Find \sin 63^\circ 52'.8.

We find \sin 63^\circ 52' = 0.89777;

\tan 30^\circ 52' = 0.89777;

\tan 30^\circ 52' = 0.89787.

Hence \sin 63^\circ 52'.8 = 0.89787.

Example 2. Find \cos 65^\circ 24'.8.

\cos 65^\circ 24' = 0.41628;

\tan 30^\circ 52'.8 = 0.89787.

(to be subtracted because the cosine decreases as the angle increases).

Hence \cos 65^\circ 24' = 0.41627.
```

RULE. To find a trigonometric function of an angle by interpolation: select the angle in the table which is next smaller than the given angle, and read its sine (cosine or tangent or cotangent as the case may be) and the tabular difference. Compute the correction as the proper proportional part of the tabular difference. In case of sines or tangents add the correction; in case of cosines or cotangents, subtract it.

11. Reverse Readings. Interpolation is also used in finding the angle when one of its functions is given.

```
Example 1. Given \sin x = 0.32845, to find x.
```

Looking in the table we find the sine which is next less than the given sine to be .32832, and this belongs to  $10^{\circ}$  10°. Subtract the value of the sine selected from the given sine to obtain the actual difference = 0.00013; note that the tabular difference = 0.00027. The actual difference divided by the tabular difference gives the correction = 13/27 = 0.5 as the decimal of a minute (to be added). Hence  $x = 19^{\circ}$  10°.5.

```
Example 2. Given \cos x = 0.28432, to find x.
```

The cosine in the table next less than this is 0.23429 and belongs to  $73^{\circ}$  29'; the tabular difference is 23; the actual difference is 3; correction = 3/28 = 0.1 (to be subtracted). Hence  $x = 73^{\circ}$  28', 9.

Rule. To find an angle when one of its trigonometric functions is given: select from the table the same named function which is next less than the given function, noting the corresponding angle and the tabular difference; compute the actual difference (between the selected value of the function and the given value) and divide

32 by the tabular difference; this gives the correction which is to be added if the given function as sine or tangent, and to be subtracted if the given function is rooms or as ingent.

#### III. FIVE-PLACE COMMON LOGARITHMS OF THE TRISONOMETRIC FUNCTIONS

12. Use of the Table. If it is required to find the numerical value of  $z = 27.85 \times \sin 51^{\circ} 27$ , we may apply logarithms as follows:

$$\log 27.85 = 1.44483.$$

$$\log \sin 51^{2} 27' = 9.89024 - 10 \text{ add} 1$$

$$\log x = \overline{1.33837} \quad x = 21.78$$

The only new idea here is the method of finding  $\log \sin 51^{\circ} 27'$ , which means the logarithm of the sine of  $51^{\circ} 27'$ . The most obvious way is to find in Table II,  $\sin 51^{\circ} 27' = 0.78206$ , and then to find in Table I,  $\log 0.78206 = 9.80024 - 10$ , but this involves consulting two tables. To avoid the necessity of doing this, Table III gives the logarithms of the sines, cosines, tangents, and cotangents. The arrangement and the principles of interpolation are similar to those given on p. vii for Table I. The sines and cosines of all acute angles, the tangents of all acute angles less than  $45^{\circ}$  and the cotangents of all acute angles greater than  $45^{\circ}$  are proper fractions, and their logarithms end with -10, which is not printed in the table, but which should be written down whenever such a logarithm is used.

In the printed table, values are stated so that 10 should be subtracted in every case.

Example 1. Find log sin 68° 25'.4.

On the page having 68° at the bottom, and in the row having 25′ on the right find  $\log \sin 68^\circ$  25′ = 9.96843 – 10; the tabular difference is 5; 0.4 × 5 is given in the margin as 2; this is the correction to be added, giving log  $\sin 68^\circ$  25′.4 = 9.96845 – 10.

(In case of sine and tangent add the correction. In case of cosine and cottangent, subtract the correction.)

Example 2. Given  $\log \cos x = 9.72581 - 10$ , to find x.

The logarithmic cosine next less than the given one is 9.72582 - 10 and belongs to  $57^{\circ}$   $53^{\circ}$ ; the actual difference is 19; the tabular difference is 20; hence the correction is 19.20 = 1.0 (to the nearest tenth); (subtract); hence  $x = 57^{\circ}$   $52^{\circ}$ .0.

In finding log ctn  $\alpha$  for any angle  $\alpha$ , note that log ctn  $\alpha = -\log \tan \alpha$ , since ctn  $\alpha = 1/\tan \alpha$ . Hence the tabular differences for log ctn are precisely the same as those for log tan throughout the table, but taken in reversed order. Likewise, log sec  $\alpha = -\log \cos \alpha$ , log csc  $\alpha = -\log \sin \alpha$ ; hence the values of log sec  $\alpha$  and log csc  $\alpha$  are omitted.

For angles near 0° or near 90°, the interpolations are not very accurate if the differences are large. For the calculation of sine or tangent near  $0^{\circ}$ , Table IIIa, page 45, gives the values of

$$S = \log \sin A - \log A'$$
 and  $T = \log \tan A - \log A'$ ,

where A is the given angle and A' is the number of minutes in A, for values of A between  $0^{\circ}$  and  $3^{\circ}$ . Then

 $\log \sin A = \log A' + S$  and  $\log \tan A = \log A' + T$ , for small angles. Moreover, since we have  $\cos A = \sin (100^\circ - A)$  and  $\cot A = \tan (200^\circ - A)$ 

 $\log \cos A = \log (90^{\circ} - A)' + S$  and  $\log \cot A = \log (90^{\circ} - A)' + T$ , when A is near 90°.

Another method practically equivalent to the preceding is to use the approximate relations

$$\log \sin A - \log \sin B = \log A' - \log B'$$

and

$$\log \tan A - \log \tan B = \log A' - \log B',$$

where A is the given angle and B is the nearest angle to A that is given in the table. If  $A < 3^{\circ}$  and |A - B| < 1', these formulas give log sin A and log tan A to five decimal places.

#### IV-V. RADIAN MEASURE

13. Computations in Radian Measure. The reduction of degrees to radians is facilitated by Table IV—Conversion of Degrees to Radians. Since  $\pi$  radians = 180°, this table may be regarded as a table of multiples of  $\pi/180$ .

The values of  $\sin x$ ,  $\cos x$ ,  $\tan x$ , are stated for every angle x from 0.00 to 1.60 radians at intervals of 0.01 radian in Table V—Trigonometric Functions in Radian Measure. The values of any of these functions for larger values of x may be computed by first converting the value of the angle in radian measure to degree measure, by Table Va, and then finding the value of the function from Table II.

The reduction of radians to degrees can be performed directly by Table V; or, for greater accuracy, by the supplementary Table Va.

#### VI. POWERS-ROOTS-RECIPROCALS

14. Arrangement. This table is arranged so that the square, cube, square root, cube root, or reciprocal can be read directly to five decimal places for any number n of three significant figures. To attain this, not only  $n^2$ ,  $n^2$ ,  $\sqrt{n}$ ,  $\sqrt[3]{n}$ ,  $\sqrt[3]{10}$ ,  $\sqrt[3]{10}$  are printed on every page. All values have been carefully recomputed and checked.

Thus to find  $\sqrt{1.17}$ , read in  $\sqrt{n}$  column the result: 1.08167. To find  $\sqrt{11.7}$ , read in the same line, in  $\sqrt{10 n}$  column the result: 3.42053. To find  $\sqrt{117}$ , read 10 times the entry in  $\sqrt{n}$  column, since  $\sqrt{117} = 10\sqrt{1.17}$ .

Similarly,  $\sqrt[4]{1.17} = 1.05373$  from  $\sqrt[4]{n}$  column;  $\sqrt[4]{110} = 2.27019$  from the same line in  $\sqrt[4]{100}$  n column.

The effect of a change in the decimal point in  $n^2$ ,  $n^3$ , and 1/n is only to shift the decimal point in the result, without altering the digits printed.

#### VII. NAPIERIAN OR NATURAL LOGARITHMS

15. The Base e.—Natural Logarithms. The number  $e=2.7182818\cdots$  is called the natural base of logarithms. The logarithms of numbers to this base are given in Table VII at intervals of 0.01 from 0.01 to 10.09, and at unit intervals from 10 to 409. The fundamental relation  $\log_a n = \log_a 10 \times \log_{10} n$  enables us to transfer from the base 10 to the base e, or conversely; where  $\log_a 10 = 2.30258509\cdots$ 

#### VIII. MULTIPLES OF M AND OF 1 M

16. Multiples of M and 1 M. This table is convenient whenever a number is to be notifiplied by M or by 1/M. This occurs whenever it is desired to hange from common logarithms to natural logarithms, or conversely, since  $M = \log_{10} \epsilon$  and since we have

 $\log_{10} x = (\log_{10} x)(\log_{10} \epsilon) = M \log_{10} x$  and  $\log_{10} x = (1/M) \log_{10} x$ . Other formulas that require these multiples are

 $\log_{\mathbb{R}^2} e^x = x \log_{\mathbb{R}^2} e = x \cdot M$  and  $\log_{\mathbb{R}^2} (10^n \cdot x) = \log_{\mathbb{R}} x + n(1/M^n)$  and the approximate formulas (see §§ 8, 9, pp. x, xi)

$$\log_{10}(1 \pm x) = \pm x \cdot M$$
 and  $10^{2x} = 1 \pm \cdot 1 \cdot M \cdot x$ .

#### IX. VALUES AND LOGARITHMS OF HYPERBOLIC PUNCTIONS

17. Hyperbolic Functions. This table gives the values of  $e^x$ ,  $e^{-x}$ , such x,  $\cosh x$ ,  $\tanh x$ ; and the logarithms of  $e^x$ ,  $\sinh x$ ,  $\cosh x$ , at varying intervals from x=0 to x=10. It is to be noted that  $\log e^{-x}=-\log e^x$  and  $\log \tanh x=\log \sinh x-\log \cosh x$ . The table may be extended indefinitely by means of Table VIII, since  $\log_{10} e^x=x\cdot M$  for this reason Table VIII may be regarded as a table of values of  $\log_{10} e^x$ .

#### X. VALUES AND LOGARITHMS OF HAVERSINES

18. Haversines. This table gives the values and the logarithms of the haversines of angles from 0° to 180° at intervals of 10′. The haversine, which means half of the versed sine, is

hav 
$$A = (\frac{1}{2})$$
 vers  $A = (\frac{1}{2})(1 - \cos A)$ ;

hence its values to five places may be computed from the table of cosines. It is used extensively in navigation, and it may be used to advantage in the solution of ordinary oblique triangles.

#### XI. FACTOR TABLE-LOGARITHMS OF PRIMES

19. Factors of Composite Numbers. Logarithms of Primes. The uses of this table are evident in questions involving factoring, and for finding high-place logarithms of numbers whose prime factors are less than 2018.

We shall illustrate the finding of logarithms of other numbers by finding  $\log \pi$ . Taking  $\pi = 3.14159\ 26536$ , divide by 3 (the first digit), obtaining 1.04719 75512 · · · . Divide this quotient by 1.047 (in general, by the nearest first four digits), obtaining 1.00018 8683 · · · . By Table VIII, the approximate formula  $\log (1 \pm x) = \pm x \cdot M$  gives

while the true value of  $\log \pi$  is 0.49714 98726 9, so that the error is less than 1 in the eighth place. In general, this process will give the logarithm of any number to within 6 in the eighth decimal place, and the probable error is less than 1.5 in the eighth place. For still greater accuracy, see Table 1a and § 10.

#### XII. INTEREST TABLES

20. Interest Tables. Tables XII a, b, c, d give compound interest and annuity data for various per cents up to fifty years. Aside from the obvious uses, formulas involving these data will be found in works on statistics, accounting, and the mathematics of business.

Table XIIc gives the logarithms of (1+r) to fifteen places, for all ordinary values of r from 12% to 10%. For other values of r, log (1+r) may be computed from Table Ia (see § S). The final result in interest calculations may be obtained to nine significant figures by the antilogarithms of Table Ia (see § 9).

Table XIIf is the American Experience Mortality Table.

#### XIV. FOUR-PLACE TABLES

- 21. Four-place Tables. These are duplicates of the preceding five-place tables, reduced to four-places, and with larger intervals between the tabulations. The value of such four-place tables consists in the greater speed with which they can be used, in case the degree of accuracy they afford is sufficient for the purpose in hand.
- XIVa. Logarithms of Numbers. The only special feature of this table is that the proportional parts are printed for every tenth in every row; hence the logarithm of any number of four significant figures can be read directly.
- XIVb. Antilogarithms. This table will be found to facilitate approximate calculations to a marked degree. The proportional parts are stated in the right-hand margin for each row separately. This arrangement, with the corresponding one in Table XIVa, makes the tables effectively four-place each way.
- XIVc. Values and Logarithms of Trigonometric Functions. In this table, the values of  $\sin \alpha$ ,  $\cos \alpha$ ,  $\tan \alpha$ ,  $\cot \alpha$ , and their common logarithms, are stated for each 10-minute interval in  $\alpha$ . The characteristics of the logarithms are omitted, since they can be supplied readily from the value.

#### Greek Alphabet

| LET          | TER        | 8 Names | Let          | TERS | NAMES  | Lei | TERS | Names                   | Let        | TERS   | NAMES . |
|--------------|------------|---------|--------------|------|--------|-----|------|-------------------------|------------|--------|---------|
| A            | α          | Alpha   | H            | η    | Eta    | N   | v    | Nu                      | T          | $\tau$ | Tau     |
| В            | β          | Beta    | θ            | θ    | Theta  | Ξ   | ξ    | Xi                      | $\Upsilon$ | υ      | Upsilon |
| $\Gamma$     | γ          | Gamma   | 1            | L    | Iota   | 0   | o    | Omicron                 | Φ          | φ      | Phi     |
| Δ            | δ          | Delta   | K            | κ    | Kappa  | п   | π    | Pi                      | X          | χ      | Chi     |
| E            | $\epsilon$ | Epsilon | Δ            | λ    | Lambda | P   | ρ    | $\mathbf{R}\mathbf{ho}$ | $\Psi$     | ψ      | Psi     |
| $\mathbf{z}$ | ζ          | Zeta    | $\mathbf{M}$ | μ    | Mu     | Σ   | σς   | Sigma                   | Ω          | ú      |         |
|              |            |         |              |      |        |     |      |                         |            |        |         |

# LOGARITHMIC AND TRIGONOMETRIC TABLES

# TABLE I COMMON LOGARITHMS OF NUMBERS

FROM

1 TO 10 000

TO

## FIVE DECIMAL PLACES

### 1 - 100

| N              | Log                              | N              | Log                              | N              | Log                              | N                 | Log                              | N              | Log                                |
|----------------|----------------------------------|----------------|----------------------------------|----------------|----------------------------------|-------------------|----------------------------------|----------------|------------------------------------|
| 0              |                                  | 20             | 1.30 103                         | 40             | 1,661 2,56                       | 60                | 1.77 815                         | 80             | 1,500 3604                         |
| 1 2 3          | 0.30 103<br>0.47 712             | 21<br>22<br>23 | 1.32 222<br>1.34 242<br>1.36 173 | 41<br>42<br>43 | 1.61 275<br>1.62 325<br>1.63 347 | 323               | 1.78 533<br>1.79 239<br>1.79 934 | 722            | 1.90 S47<br>1.91 381<br>1.91 908   |
| 4<br>5<br>6    | 0.60 206<br>0.69 597<br>0.77 815 | 24<br>25<br>26 | 1.38 021<br>1.39 794<br>1.41 497 | 44<br>45<br>46 | 1.64 345<br>1.65 321<br>1.66 276 | 64<br>5<br>5<br>6 | 1.80 618<br>1.81 201<br>1.81 954 | <b>Z73</b>     | 1.92 428<br>1.92 942<br>1.93 450   |
| 7<br>8<br>9    | 0.84 510<br>0.90 309<br>0.95 424 | 27<br>28<br>29 | 1.43 136<br>1.44 716<br>1.46 240 | 47<br>48<br>49 | 1.67 210<br>1 68 124<br>1.69 020 | 67<br>65<br>69    | 1.82 607<br>1.83 251<br>1.83 885 | 22.22          | 1.93 952<br>1.94 448<br>1.94 939   |
| 10             | 1.00 000                         | 30             | 1.47712                          | 50             | 1.69 897                         | 70                | 1.84 510                         | 90             | 1.95 424                           |
| 11<br>12<br>13 | 1.04 139<br>1.07 918<br>1.11 394 | 51<br>32<br>33 | 1.49 136<br>1.50 515<br>1.51 851 | 51<br>52<br>53 | 1.70 757<br>1.71 600<br>1.72 428 | 71<br>72<br>73    | 1.85 126<br>1.85 733<br>1.86 332 | 91<br>92<br>93 | 1.95 ts. 4<br>1.96 379<br>1.96 848 |
| 14<br>15<br>16 | 1.14 613<br>1.17 609<br>1.20 412 | 34<br>35<br>36 | 1.53 148<br>1.54 407<br>1.55 630 | 54<br>55<br>56 | 1.73 239<br>1.74 036<br>1.74 819 | 14126             | 1.86 923<br>1.87 506<br>1.88 081 | 94<br>95<br>96 | 1.97 313<br>1.97 772<br>1.98 227   |
| 17<br>18<br>19 | 1.23 045<br>1.25 527<br>1.27 875 | 37<br>38<br>39 | 1.56 820<br>1.57 978<br>1.59 106 | 57<br>58<br>59 | 1.75 587<br>1.76 343<br>1.77 085 | 778<br>79         | 1.88 649<br>1.89 209<br>1.89 763 | 97<br>98<br>99 | 1.95 677<br>1.99 123<br>1.99 564   |
| N              | Log                              | N              | Log                              | N              | Log                              | N                 | Log                              | N              | Log                                |

| N.                | 0                       | 1                  | 2                  | 3                  | 4                        | 5                  | 6                  | 7                   | 8                   | 9                   | Prop. Pts.                                                                                       |
|-------------------|-------------------------|--------------------|--------------------|--------------------|--------------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------|
| 100               | 00 000                  | 043                | 057                | 130                | 173                      | 217                | 260                | 303                 | 340                 | 389                 |                                                                                                  |
| 101<br>102<br>103 | 432<br>860<br>01 284    | 475<br>903<br>326  | 515<br>945<br>365  | 561<br>955<br>410  | 604<br>*030<br>452       | 047<br>*072<br>494 | 659<br>*115<br>536 | 732<br>*157<br>578  | 775<br>*199<br>620  | 517<br>*242<br>662  | 1 4.4 4.3 4.2<br>2 8.5 8.6 8.4                                                                   |
| 104<br>105<br>106 | 703<br>02 119<br>531    | 745<br>160<br>572  | 787<br>202<br>612  | 828<br>243<br>653  | \$70<br>284<br>694       | 912<br>325<br>735  | 953<br>366<br>776  | 995<br>407<br>816   | *036<br>449<br>857  | *078<br>490<br>898  | 3 13.2 12.9 12.6<br>4 17.6 17.2 16.8<br>5 22.0 21.5 21.0<br>6 26.4 25.8 25.2                     |
| 107<br>108<br>109 | 938<br>03 342<br>743    | 979<br>383<br>782  | *019<br>423<br>822 | *060<br>463<br>862 | *100<br>503<br>902       | *141<br>543<br>941 | *181<br>583<br>981 | *222<br>623<br>*021 | *262<br>663<br>*060 | *302<br>703<br>*100 | 7 30.8 30.1 29.4<br>8 35.2 34.4 33.6<br>9 39.6 38.7 37.8                                         |
| 110               | $04\ 139$               | 179                | 218                | 258                | 297                      | 336                | 376                | 415                 | 454                 | 493                 |                                                                                                  |
| 111<br>112<br>113 | 532<br>922<br>05 308    | 571<br>961<br>346  | 610<br>999<br>355  | 650<br>*038<br>423 | 689<br>*077<br>461       | 727<br>*115<br>500 | 766<br>*154<br>538 | \$05<br>*192<br>576 | 844<br>*231<br>614  | 883<br>*269<br>652  | 41 40 39<br>1 4.1 4.0 3.9<br>2 8.2 8.0 7.5                                                       |
| 114<br>115<br>116 | 690<br>06 070<br>446    | 729<br>108<br>483  | 767<br>145<br>521  | 805<br>183<br>558  | 843<br>221<br>595        | 881<br>258<br>633  | 918<br>296<br>670  | 956<br>333<br>707   | 994<br>371<br>744   | *032<br>408<br>781  | 3 12.3 12.0 11.7<br>4 16.4 16.0 15.6<br>5 20.5 20.0 19.5<br>6 24.6 24.0 23.4                     |
| 117<br>118<br>119 | 819<br>07 188<br>555    | 856<br>225<br>591  | 893<br>262<br>628  | 930<br>298<br>664  | 967<br>335<br>700        | *004<br>372<br>737 | *041<br>408<br>773 | *078<br>445<br>809  | *115<br>482<br>846  | *151<br>518<br>882  | 5 20.5 20.0 19.5<br>6 24.6 24.0 23.4<br>7 28.7 28.0 27.3<br>8 32.8 32.0 31.2<br>9 36.9 36.0 35.1 |
| 120               | 918                     | 954                | 990                | *027               | *063                     | *099               | *135               | *171                | *207                | *243                |                                                                                                  |
| 121<br>122<br>123 | 05 279<br>636<br>991    | 314<br>672<br>*026 | 350<br>707<br>*001 | 356<br>743<br>*096 | 422<br>778<br>*132       | 458<br>814<br>*167 | 493<br>849<br>*202 | 529<br>\$84<br>*237 | 565<br>920<br>*272  | 600<br>955<br>*307  | 38 37 36<br>1 3.8 3.7 3.6<br>2 7.6 7.4 7.2                                                       |
| 124<br>125<br>126 | 09 342<br>691<br>10 037 | 377<br>726<br>072  | 412<br>769<br>106  | 447<br>795<br>140  | 482<br>830<br>175        | 517<br>864<br>209  | 552<br>809<br>243  | 587<br>934<br>278   | 621<br>968<br>312   | 656<br>*003<br>346  | 3 11.4 11.1 10.8<br>4 15.2 14.8 14.4<br>5 19.0 18.5 18.0                                         |
| 127<br>128<br>129 | 380<br>721<br>11 059    | 415<br>755<br>093  | 449<br>789<br>126  | 483<br>823<br>160  | 517<br>857<br>193        | 551<br>890<br>227  | 585<br>924<br>261  | 619<br>958<br>294   | 653<br>992<br>327   | 687<br>*025<br>361  | 6 22.8 22.2 21.6<br>7 26.6 25.9 25.2<br>8 30.4 29.6 28.8<br>9 34.2 33.3 32.4                     |
| 130               | 394                     | 428                | 461                | 494                | 528                      | 561                | 594                | 628                 | 661                 | 694                 |                                                                                                  |
| 131<br>132<br>133 | 727<br>12 057<br>385    | 760<br>090<br>418  | 793<br>123<br>450  | 826<br>156<br>483  | 800<br>189<br><b>516</b> | 893<br>222<br>548  | 926<br>254<br>581  | 959<br>287<br>613   | 992<br>320<br>646   | *024<br>352<br>678  | 35 34 33<br>1 3.5 3.4 3.3<br>2 7.0 6.8 6.6                                                       |
| 134<br>135<br>136 | 710<br>13 033<br>354    | 743<br>066<br>386  | 775<br>098<br>418  | 808<br>130<br>450  | 840<br>162<br>481        | 872<br>194<br>513  | 905<br>226<br>545  | 937<br>258<br>577   | 969<br>290<br>609   | *001<br>322<br>640  | 3 10.5 10.2 9.9<br>4 14.0 13.6 13.2<br>5 17.5 17.0 16.5<br>6 21.0 20.4 19.8                      |
| 137<br>138<br>139 | 672<br>988<br>14 301    | 704<br>*019<br>333 | 735<br>*051<br>364 | 767<br>*082<br>395 | 799<br>*114<br>426       | 830<br>*145<br>457 | 862<br>*176<br>489 | 893<br>*208<br>520  | 925<br>*239<br>551  | 956<br>*270<br>582  | 7 24.5 23.8 23.1<br>S 28.0 27.2 26.4<br>9 31.5 30.6 29.7                                         |
| 140               | 613                     | 611                | 675                | 706                | 737                      | 768                | 799                | 829                 | 860                 | 891                 |                                                                                                  |
| 141<br>142<br>143 | 922<br>15 229<br>534    | 953<br>259<br>564  | 983<br>290<br>594  | *014<br>320<br>625 | *045<br>351<br>655       | *076<br>381<br>685 | *106<br>412<br>715 | *137<br>442<br>746  | *168<br>473<br>776  | *198<br>503<br>806  | 32 31 30<br>1 3.2 3.1 3.0<br>2 6.4 6.2 6.0<br>3 9.6 9.3 9.0                                      |
| 144<br>145<br>146 | 836<br>16 137<br>435    | 866<br>167<br>465  | 897<br>197<br>495  | 927<br>227<br>524  | 957<br>256<br>554        | 987<br>286<br>584  | *017<br>316<br>613 | *047<br>346<br>643  | *077<br>376<br>673  | *107<br>406<br>702  | 3 9.6 9.3 9.0<br>4 12.8 12.4 12.0<br>5 16.0 15.5 15.0<br>6 19.2 18.6 18.0                        |
| 147<br>148<br>149 | 732<br>17 026<br>319    | 761<br>056<br>348  | 791<br>085<br>377  | 820<br>114<br>406  | 850<br>143<br>435        | 879<br>173<br>464  | 909<br>202<br>493  | 938<br>231<br>522   | 967<br>260<br>551   | 997<br>289<br>580   | 7 22.4 21.7 21.0<br>8 25.6 24.8 24.0<br>9 28.8 27.9 27.0                                         |
| 150               | 609                     | 638                | 667                | 696                | 725                      | 754                | 782                | 811                 | 840                 | 869                 |                                                                                                  |
| N.                | 0                       | 1                  | 2                  | 3                  | 4                        | 5                  | 6                  | 7                   | 8                   | 9                   | Prop. Pts.                                                                                       |

| N.                   | 0                    | 1                 | 2                                                            | 3                  | 4                  | 5                  | 6                  | 7                  | 8                   | 9                   | Prop. Pts.                                             |
|----------------------|----------------------|-------------------|--------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|--------------------------------------------------------|
| 150                  | 17 669               | 638               | titi7                                                        | 696                | 725                | 754                | 277                | 511                | -111                | 71.14               |                                                        |
| 132<br>133<br>133    | 898<br>18 154<br>469 | 926<br>213<br>495 | 955<br>241<br>526                                            | 9×4<br>270<br>554  | *113<br>295<br>583 | *011<br>327<br>611 | *10<br>833<br>839  | *146<br>354<br>667 | *127<br>412<br>696  | *104<br>441<br>724  | 29 28<br>1 2.9 2.8<br>2 5.5 5.6                        |
| 154<br>155<br>156    | 752<br>19 033<br>312 | 780<br>061<br>340 | 808<br>089<br>368                                            | 837<br>117<br>396  | 865<br>145<br>424  | 893<br>173<br>451  | 921<br>201<br>479  | 949<br>229<br>507  | 977<br>257<br>535   | *065<br>255<br>562  | 3 8.7 8.4<br>4 11.6 11.2<br>5 14.5 14.0<br>6 17.4 16.8 |
| 157<br>158<br>159    | 590<br>866<br>20 140 | 618<br>593<br>167 | 645<br>921<br>194                                            | 673<br>948<br>222  | 700<br>976<br>249  | 728<br>*003<br>276 | 756<br>*030<br>303 | 783<br>*058<br>330 | \$11<br>*055<br>355 | \$35<br>*112<br>355 | 7 20.3 19.6<br>5 23.2 22.4<br>9 26.1 25.2              |
| 160                  | 412                  | 439               | 466                                                          | 493                | 520                | 548                | 575                | 64일                | ₹ <u>619</u> 43     | 656                 |                                                        |
| .61<br>162<br>163    | 683<br>952<br>21 219 | 710<br>975<br>245 | 1505<br>1305<br>1305<br>1305<br>1305<br>1305<br>1305<br>1305 | 763<br>*032<br>299 | 700<br>*059<br>325 | 517<br>*055<br>352 | 544<br>*112<br>375 | 571<br>*139<br>405 | *165<br>431         | \$25<br>\$15<br>\$  | 27 26<br>1 2.7 2.6<br>2 5.4 5.2<br>3 8.1 7.8           |
| 164<br>165<br>166    | 484<br>748<br>22 011 | 511<br>775<br>037 | 537<br>801<br>063                                            | 564<br>827<br>089  | 590<br>854<br>115  | 617<br>880<br>141  | 643<br>906<br>167  | 669<br>932<br>194  | 696<br>958<br>220   | 722<br>985<br>246   | 3 8.1 7.8<br>4 10.8 10.4<br>5 13.5 13.0<br>6 16.2 15.6 |
| 167<br>168<br>169    | 272<br>531<br>789    | 298<br>557<br>814 | 324<br>583<br>840                                            | 350<br>608<br>866  | 376<br>634<br>891  | 401<br>660<br>917  | 427<br>686<br>943  | 453<br>712<br>968  | 479<br>737<br>994   | 505<br>763<br>*019  | 7 18.9 18.2<br>8 21.6 20.8<br>9 24.3 23.4              |
| 170                  | $23\ 045$            | 070               | 096                                                          | 121                | 147                | 172                | 198                | 223                | 249                 | 274                 |                                                        |
| 171<br>172<br>173    | 300<br>553<br>805    | 325<br>578<br>830 | 350<br>603<br>855                                            | 376<br>629<br>880  | 401<br>654<br>905  | 426<br>679<br>930  | 452<br>704<br>955  | 477<br>729<br>980  | 502<br>754<br>*005  | 525<br>779<br>*030  | 25 24<br>1 2.5 2.4<br>2 5.0 4.8<br>3 7.5 7.2           |
| 174<br>175<br>176    | 24 055<br>304<br>551 | 080<br>329<br>576 | 105<br>353<br>601                                            | 130<br>378<br>625  | 155<br>403<br>650  | 180<br>428<br>674  | 204<br>452<br>699  | 229<br>477<br>724  | 254<br>502<br>748   | 279<br>527<br>773   | 3 7.5 7.2<br>4 10.0 9.6<br>5 12.5 12.0<br>6 15.0 14.4  |
| 177<br>178<br>179    | 797<br>25 042<br>285 | 822<br>066<br>310 | 846<br>091<br>334                                            | 871<br>115<br>358  | 895<br>139<br>382  | 920<br>164<br>406  | 944<br>188<br>431  | 969<br>212<br>455  | 993<br>237<br>479   | *018<br>261<br>503  | 7 17.5 16.8<br>\$ 20.0 19.2<br>9 22.5 21.6             |
| 180                  | 527                  | 551               | 575                                                          | 600                | 624                | 648                | 672                | 696                | 720                 | 744                 |                                                        |
| 1\$1<br>1\$2<br>1\$3 | 765<br>26 007<br>245 | 792<br>031<br>269 | 816<br>055<br>293                                            | \$40<br>079<br>316 | \$64<br>102<br>340 | 888<br>126<br>364  | 912<br>150<br>387  | 935<br>174<br>411  | 959<br>195<br>435   | 983<br>221<br>458   | 23 22<br>1 2.3 2.2<br>2 4.6 4.4<br>3 6.9 6.6           |
| 184<br>185<br>186    | 482<br>717<br>951    | 505<br>741<br>975 | 529<br>764<br>998                                            | 553<br>788<br>*021 | 576<br>811<br>*045 | 600<br>834<br>*068 | 623<br>858<br>*091 | 647<br>881<br>*114 | 670<br>905<br>*138  | 694<br>928<br>*161  | 3 6.9 6.6<br>4 9.2 8.8<br>5 11.5 11.0<br>6 13.8 13.2   |
| 187<br>188<br>189    | 27 184<br>416<br>646 | 207<br>439<br>669 | 231<br>462<br>692                                            | 254<br>485<br>715  | 277<br>508<br>738  | 300<br>531<br>761  | 323<br>554<br>784  | 346<br>577<br>807  | 370<br>600<br>830   | 393<br>623<br>852   | 7 16.1 15.4<br>S 18.4 17.6<br>9 20.7 19.8              |
| 190                  | 875                  | 898               | 921                                                          | 944                | 967                | 989                | *012               | *035               | *058                | *081                |                                                        |
| 191<br>192<br>193    | 28 103<br>330<br>556 | 126<br>353<br>578 | 149<br>375<br>601                                            | 171<br>398<br>623  | 194<br>421<br>646  | 217<br>443<br>668  | 240<br>466<br>691  | 262<br>488<br>713  | 285<br>511<br>735   | 307<br>533<br>758   | 21<br>1 2.1<br>2 4.2                                   |
| 194<br>195<br>196    | 780<br>29 003<br>226 | 803<br>026<br>248 | 825<br>048<br>270                                            | 847<br>070<br>292  | 870<br>092<br>314  | 892<br>115<br>336  | 914<br>137<br>358  | 937<br>159<br>380  | 959<br>181<br>403   | 981<br>203<br>425   | 3 6.3<br>4 8.4<br>5 10.5<br>6 12.6                     |
| 197<br>198<br>199    | 447<br>667<br>885    | 469<br>688<br>907 | 491<br>710<br>929                                            | 513<br>732<br>951  | 535<br>754<br>973  | 557<br>776<br>994  | 579<br>798<br>*016 | 601<br>820<br>*038 | 623<br>842<br>*060  | 645<br>863<br>*081  | 7 14.7<br>8 16.8<br>9 18.9                             |
| 200                  | 30 103               | 125               | 146                                                          | 168                | 190                | 211                | 233                | 255                | 276                 | 298                 |                                                        |
| N.                   | 0                    | 1                 | 2                                                            | 3                  | 4                  | 5                  | 6                  | 7                  | 8                   | 9                   | Prop. Pts.                                             |

| N.                                  | 0                    | 1                  | 2                  | 3                  | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | F                | rop.                         | Pts.                         |
|-------------------------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|------------------|------------------------------|------------------------------|
| 200                                 | 30 103               | 125                | 146                | 168                | 190                | 211                | 233                | 255                | 276                | 298                |                  |                              |                              |
| 201<br>202<br>203                   | 320<br>535<br>750    | 341<br>557<br>771  | 363<br>578<br>792  | 354<br>600<br>814  | 406<br>621<br>835  | 428<br>643<br>856  | 449<br>664<br>878  | 471<br>685<br>899  | 492<br>707<br>920  | 514<br>728<br>942  | i                | log 2<br>30102               | 99957                        |
| 204<br>205<br>206                   | 963<br>31 175<br>387 | 984<br>197<br>408  | *006<br>218<br>429 | *027<br>239<br>450 | *048<br>260<br>471 | *069<br>281<br>492 | *091<br>302<br>513 | *112<br>323<br>534 | *133<br>345<br>555 | *154<br>366<br>576 |                  | 1 22 1                       | 21                           |
| 207<br>208<br>209                   | 597<br>806<br>32 015 | 618<br>827<br>035  | 639<br>848<br>056  | 660<br>869<br>077  | 681<br>890<br>098  | 702<br>911<br>118  | 723<br>931<br>139  | 744<br>952<br>160  | 765<br>973<br>181  | 785<br>994<br>201  | 1<br>2<br>3      | 2.2<br>4.4<br>6.6            | 2.1<br>4.2<br>6.3            |
| 210                                 | 222                  | 243                | 263                | 284                | 305                | 325                | 346                | 366                | 387                | 408                | 4 5              | 8.8                          | 8.4                          |
| $\frac{211}{212}$ $\frac{213}{213}$ | 428<br>634<br>838    | 449<br>654<br>858  | 469<br>675<br>879  | 490<br>695<br>899  | 510<br>715<br>919  | 531<br>736<br>940  | 552<br>756<br>960  | 572<br>777<br>980  | 593<br>797<br>*001 | 613<br>818<br>*021 | 6<br>7<br>8      | 11.0<br>13.2<br>15.4<br>17.6 | 10.5<br>12.6<br>14.7<br>16.8 |
| $214 \\ 215 \\ 216$                 | 33 041<br>244<br>445 | 062<br>264<br>465  | 082<br>284<br>486  | 102<br>304<br>506  | 122<br>325<br>526  | 143<br>345<br>546  | 163<br>365<br>566  | 183<br>385<br>586  | 203<br>405<br>606  | 224<br>425<br>626  | 9                | 19.8                         |                              |
| 217<br>218<br>219                   | 646<br>846<br>34 044 | 666<br>866<br>064  | 686<br>885<br>084  | 706<br>905<br>104  | 726<br>925<br>124  | 746<br>945<br>143  | 766<br>965<br>163  | 786<br>985<br>183  | 806<br>*005<br>203 | 826<br>*025<br>223 |                  |                              |                              |
| 220                                 | 242                  | 262                | 282                | 301                | 321                | 341                | 361                | 380                | 400                | 420                |                  |                              |                              |
| 221<br>222<br>223                   | 439<br>635<br>830    | 459<br>655<br>850  | 479<br>674<br>869  | 498<br>694<br>889  | 518<br>713<br>908  | 537<br>733<br>928  | 557<br>753<br>947  | 577<br>772<br>967  | 596<br>792<br>986  | 616<br>811<br>*005 | 1                | 20<br>2.0                    | 1.9                          |
| 224<br>225<br>226                   | 35 025<br>218<br>411 | 044<br>238<br>430  | 064<br>257<br>449  | 083<br>276<br>468  | 102<br>295<br>488  | 122<br>315<br>507  | 141<br>334<br>526  | 160<br>353<br>545  | 180<br>372<br>564  | 199<br>392<br>583  | 2<br>3<br>4<br>5 | 4.0<br>6.0<br>8.0<br>10.0    | 3.8<br>5.7<br>7.6<br>9.5     |
| 227<br>228<br>229                   | 603<br>793<br>984    | 622<br>813<br>*003 | 641<br>832<br>*021 | 660<br>851<br>*040 | 679<br>870<br>*059 | 698<br>889<br>*078 | 717<br>908<br>*097 | 736<br>927<br>*116 | 755<br>946<br>*135 | 774<br>965<br>*154 | 6<br>7<br>8      | 12.0<br>14.0<br>16.0         | 11.4<br>13.3<br>15.2         |
| 230                                 | 36 173               | 192                | 211                | 229                | 248                | 267                | 286                | 305                | 324                | 342                | 9                | 18.0                         | 111.1                        |
| 231<br>232<br>233                   | 361<br>549<br>736    | 380<br>568<br>754  | 399<br>586<br>773  | 418<br>605<br>791  | 436<br>624<br>810  | 455<br>642<br>829  | 474<br>661<br>847  | 493<br>680<br>866  | 511<br>698<br>884  | 530<br>717<br>903  |                  |                              |                              |
| 234<br>235<br>236                   | 922<br>37 107<br>291 | 940<br>125<br>310  | 959<br>144<br>328  | 977<br>162<br>346  | 996<br>181<br>365  | *014<br>199<br>383 | *033<br>218<br>401 | *051<br>236<br>420 | *070<br>254<br>438 | *088<br>273<br>457 |                  | 1 40                         | . 477                        |
| 237<br>238<br>239                   | 475<br>658<br>840    | 493<br>676<br>858  | 511<br>694<br>876  | 530<br>712<br>894  | 548<br>731<br>912  | 566<br>749<br>931  | 585<br>767<br>949  | 603<br>785<br>967  | 621<br>803<br>985  | 639<br>822<br>*003 | 1 2              | 1.8<br>3.6                   | 1.7<br>1.7<br>3.4            |
| 240                                 | 38 021               | 039                | 057                | 075                | 093                | 112                | 130                | 148                | 166                | 184                | 3 4              | 5.4<br>7.2                   | 5.1<br>6.8                   |
| 241<br>242<br>243                   | 202<br>382<br>561    | 220<br>399<br>578  | 238<br>417<br>596  | 256<br>435<br>614  | 274<br>453<br>632  | 292<br>471<br>650  | 310<br>489<br>668  | 328<br>507<br>686  | 346<br>525<br>703  | 364<br>543<br>721  | 5<br>6<br>7      | 9.0<br>10.8<br>12.6<br>14.4  | 8.5<br>10.2<br>11.9          |
| 244<br>245<br>246                   | 739<br>917<br>39 094 | 757<br>934<br>111  | 775<br>952<br>129  | 792<br>970<br>146  | 810<br>987<br>164  | 828<br>*005<br>182 | 846<br>*023<br>199 | 863<br>*041<br>217 | 881<br>*058<br>235 | 899<br>*076<br>252 | 8<br>9           | 16.2                         | 13.6<br>15.3                 |
| 247<br>248<br>249                   | 270<br>445<br>620    | 287<br>463<br>637  | 305<br>480<br>655  | 322<br>498<br>672  | 340<br>515<br>690  | 358<br>533<br>707  | 375<br>550<br>724  | 393<br>568<br>742  | 410<br>585<br>759  | 428<br>602<br>777  |                  |                              |                              |
| 250                                 | 794                  | 811                | 829                | 846                | 863                | 881                | 898                | 915                | 933                | 950                | L                |                              |                              |
| Ŋ.                                  | 0                    | 1                  | 2                  | 3                  | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | ]                | Prop.                        | Pts.                         |

| N.                | 0                    | 1                  | 2                   | 3                   | 4                   | , 5                | ; 6                | 7                  | 8                      | , 9                   | Prop. Pts.                                                |
|-------------------|----------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|------------------------|-----------------------|-----------------------------------------------------------|
| 250               | 33.4 T.6.4           | <u>~11</u>         | , <u> </u>          | 127                 | News                | ->:                | 1                  | 915                | 10.5                   | 1650                  |                                                           |
| 131<br>123<br>123 | 107<br>11217<br>312  | 157<br>329         | 175<br>346          | *619<br>192<br>364  | *5.7<br>2.9<br>3.1  | 225                | 215<br>215<br>415  | * 5%<br>254<br>422 | 11.55<br>21.55<br>4.87 | *1.33<br>2.65<br>4.60 |                                                           |
| 254<br>255<br>256 | 483<br>654<br>824    | 500<br>671<br>541  | 518<br>658<br>558   | 535<br>705<br>875   | 552<br>722<br>892   | 569<br>739<br>999  | 556<br>756<br>926  | 603<br>773<br>943  | 620<br>759)<br>960     | 677<br>676            | 18 17<br>1 1.5 1.7<br>2 3.6 3.4                           |
| 257<br>257<br>263 | 993<br>41 162<br>330 | *010<br>179<br>347 | *027<br>196<br>363  | *044<br>212<br>380  | *061<br>229<br>3 47 | *078<br>246<br>414 | *095<br>263<br>456 | *111<br>250<br>447 | *128<br>256<br>454     | *145<br>313<br>451    | 3 5.4 5.1<br>4 7.2 6.5<br>5 9.0 8.5                       |
| 260               | 407                  | 514                | 531                 | 547                 | 564                 | 551                | 3.67               | 614                |                        | 647                   | 6 10.8 10.2<br>7 12.6 11.9                                |
| 262<br>263<br>263 | 664<br>830<br>996    | 651<br>847<br>*012 | 6:47<br>863<br>*029 | 714<br>\$50<br>*045 | 731<br>896<br>*062  | 747<br>913<br>*078 | 764<br>929<br>*095 | 750<br>946<br>*111 | 7:37<br>963<br>*127    | 514<br>57.9<br>*144   | 8 14.4 13.6<br>9 16.2 15.3                                |
| 264<br>265<br>266 | 42 160<br>325<br>488 | 177<br>341<br>504  | 193<br>357<br>521   | 210<br>374<br>537   | 226<br>390<br>553   | 243<br>406<br>570  | 259<br>423<br>586  | 275<br>439<br>602  | 292<br>455<br>619      | 305<br>472<br>635     |                                                           |
| 267<br>268<br>269 | 651<br>813<br>975    | 667<br>830<br>991  | 684<br>846<br>*008  | 700<br>862<br>*024  | 716<br>\$78<br>*040 | 732<br>894<br>*056 | 749<br>911<br>*072 | 765<br>927<br>*058 | 781<br>943<br>*104     | 797<br>959<br>*120    | M<br>=log <sub>10</sub> ε<br>=log <sub>11</sub> 2.715···· |
| 270               | 43 136               | 152                | 169                 | 155                 | 201                 | 217                | 233                | 249                | 2/15                   | 251                   | =.43429 44819                                             |
| 11213             | 297<br>457<br>616    | 313<br>473<br>632  | 329<br>489<br>648   | 345<br>505<br>664   | 361<br>521<br>680   | 377<br>537<br>696  | 393<br>553<br>712  | 469<br>569<br>727  | 425<br>584<br>743      | 441<br>600<br>759     |                                                           |
| 274<br>275<br>276 | 775<br>933<br>44 091 | 791<br>949<br>107  | 807<br>965<br>122   | 823<br>981<br>138   | 838<br>996<br>154   | 854<br>*012<br>170 | 870<br>*028<br>185 | 886<br>*044<br>201 | 902<br>*059<br>217     | 917<br>*075<br>232    | 16 15<br>1 1.6 1.5                                        |
| 277<br>278<br>279 | 248<br>404<br>560    | 264<br>420<br>576  | 279<br>436<br>592   | 295<br>451<br>607   | 311<br>467<br>623   | 326<br>483<br>638  | 342<br>498<br>654  | 338<br>514<br>669  | 373<br>529<br>685      | 389<br>545<br>700     | 2 3.2 3.0<br>3 4.8 4.5<br>4 6.1 6.0                       |
| 280               | 716                  | 731                | 747                 | 762                 | 778                 | 793                | 809                | 824                | 840                    | 835                   | 6 9.6 9.0                                                 |
| 252<br>283<br>283 | 871<br>45 025<br>179 | 886<br>040<br>194  | 902<br>056<br>209   | 917<br>071<br>225   | 932<br>986<br>240   | 948<br>102<br>255  | 963<br>117<br>271  | 979<br>133<br>286  | 994<br>149<br>301      | *640<br>163<br>317    | 7   11.2   10.5<br>8   12.8   12.0<br>9   14.4   13.5     |
| 284<br>285<br>286 | 332<br>484<br>637    | 347<br>500<br>652  | 362<br>515<br>667   | 378<br>530<br>682   | 393<br>545<br>697   | 408<br>561<br>712  | 423<br>576<br>725  | 439<br>591<br>743  | 454<br>606<br>758      | 469<br>621<br>773     |                                                           |
| 287<br>288<br>289 | 788<br>939<br>46 090 | 803<br>954<br>105  | 818<br>969<br>120   | 834<br>984<br>135   | 849<br>*000<br>150  | 864<br>*015<br>165 | 879<br>*030<br>180 | 894<br>*045<br>195 | 909<br>*060<br>210     | 924<br>*075<br>225    | 14<br>1 1,4                                               |
| 290               | 240                  | 255                | 270                 | 285                 | 300                 | 315                | 330                | 345                | 359                    | 374                   | 2 2.8                                                     |
| 291<br>292<br>293 | 389<br>538<br>687    | 404<br>553<br>702  | 419<br>568<br>716   | 434<br>583<br>731   | 449<br>598<br>746   | 464<br>613<br>761  | 470<br>627<br>776  | 494<br>642<br>790  | 509<br>657<br>805      | 523<br>672<br>820     | 4 5.6<br>5 7.0<br>6 8.4                                   |
| 294<br>295<br>296 | 835<br>982<br>47 129 | 850<br>997<br>144  | 864<br>*012<br>159  | 879<br>*026<br>173  | 894<br>*041<br>188  | 909<br>*056<br>202 | 923<br>*070<br>217 | 938<br>*085<br>232 | 953<br>*100<br>246     | 967<br>*114<br>261    | 7 9.5<br>5 11.2<br>9 12.6                                 |
| 297<br>298<br>299 | 276<br>422<br>567    | 290<br>436<br>582  | 305<br>451<br>596   | 319<br>465<br>611   | 334<br>480<br>625   | 349<br>494<br>640  | 363<br>509<br>654  | 378<br>524<br>669  | 392<br>538<br>683      | 407<br>553<br>698     |                                                           |
| 300               | 712                  | 727                | 741                 | 756                 | 770                 | 784                | 799                | 813                | 828                    | 842                   |                                                           |
| N.                | 0                    | 1                  | 2                   | 3                   | 4                   | 5                  | 6                  | 7                  | 8                      | 9                     | Prop. Pts.                                                |

| N.                | 0                    | 1                 | 2                  | 3                  | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                          |
|-------------------|----------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------------------------------|
| 300               | 47 712               | 727               | 741                | 756                | 770                | 784                | 799                | 813                | 828                | 842                |                                                     |
| 301               | 857                  | 871               | 885                | 900                | 914                | 929                | 943                | 958                | 972                | 986                |                                                     |
| 302               | 48 001               | 015               | 029                | 044                | 058                | 073                | 087                | 101                | 116                | 130                |                                                     |
| 303               | 144                  | 159               | 173                | 187                | 202                | 216                | 230                | 244                | 259                | 273                |                                                     |
| 304               | 287                  | 302               | 316                | 330                | 344                | 359                | 373                | 387                | 401                | 416                | log 3                                               |
| 305               | 430                  | 444               | 458                | 473                | 487                | 501                | 515                | 530                | 544                | 558                | =.47712 12547                                       |
| 306               | 572                  | 586               | 601                | 615                | 629                | 643                | 657                | 671                | 686                | 700                | log π                                               |
| 307               | 714                  | 728               | 742                | 756                | 770                | 785                | 799                | 813                | 827                | 841                | =.49714 98727                                       |
| 308               | 855                  | 869               | 883                | 897                | 911                | 926                | 940                | 954                | 968                | 982                |                                                     |
| 309               | 996                  | *010              | *024               | *038               | *052               | *066               | *080               | *094               | *108               | *122               |                                                     |
| 310               | 49 136               | 150               | 164                | 178                | 192                | 206                | 220                | 234                | 248                | 262                |                                                     |
| 311               | 276                  | 290               | 304                | 318                | 332                | 346                | 360                | 374                | 388                | 402                | 15 14                                               |
| 312               | 415                  | 429               | 443                | 457                | 471                | 485                | 499                | 513                | 527                | 541                | 1 1.5 1.4                                           |
| 313               | 554                  | 568               | 582                | 596                | 610                | 624                | 638                | 651                | 665                | 679                | 2 3.0 2.8                                           |
| 314               | 693                  | 707               | 721                | 734                | 748                | 762                | 776                | 790                | 803                | 817                | 3 4.5 4.2                                           |
| 315               | 831                  | 845               | 859                | 872                | 886                | 900                | 914                | 927                | 941                | 955                | 4 6.0 5.6                                           |
| 316               | 969                  | 982               | 996                | *010               | *024               | *037               | *051               | *065               | *079               | *092               | 5 7.5 7.0                                           |
| 317               | 50 106               | 120               | 133                | 147                | 161                | 174                | 188                | 202                | 215                | 229                | 6 9.0 8.4                                           |
| 318               | 243                  | 256               | 270                | 284                | 297                | 311                | 325                | 338                | 352                | 365                | 7 10.5 9.8                                          |
| 319               | 379                  | 393               | 406                | 420                | 433                | 447                | 461                | 474                | 488                | 501                | 8 12.0 11.2                                         |
| 320               | 515                  | 529               | 542                | 556                | 569                | 583                | 596                | 610                | 623                | 637                | 9   13.5   12.6                                     |
| 321               | 651                  | 664               | 678                | 691                | 705                | 718                | 732                | 745                | 759                | 772                |                                                     |
| 322               | 786                  | 799               | 813                | 826                | 840                | 853                | 866                | 880                | 893                | 907                |                                                     |
| 323               | 920                  | 934               | 947                | 961                | 974                | 987                | *001               | *014               | *028               | *041               |                                                     |
| 324               | 51 055               | 068               | 081                | 095                | 108                | 121                | 135                | 148                | 162                | 175                |                                                     |
| 325               | 188                  | 202               | 215                | 228                | 242                | 255                | 268                | 282                | 295                | 308                |                                                     |
| 326               | 322                  | 335               | 348                | 362                | 375                | 388                | 402                | 415                | 428                | 441                |                                                     |
| 327               | 455                  | 468               | 481                | 495                | 508                | 521                | 534                | 548                | 561                | 574                |                                                     |
| 328               | 587                  | 601               | 614                | 627                | 640                | 654                | 667                | 680                | 693                | 706                |                                                     |
| 329               | 720                  | 733               | 746                | 759                | 772                | 786                | 799                | 812                | 825                | 838                |                                                     |
| 330               | 851                  | 865               | 878                | 891                | 904                | 917                | 930                | 943                | 957                | 970                |                                                     |
| 331<br>332<br>333 | 983<br>52 114<br>244 | 996<br>127<br>257 | *009<br>140<br>270 | *022<br>153<br>284 | *035<br>166<br>297 | *048<br>179<br>310 | *061<br>192<br>323 | *075<br>205<br>336 | *088<br>218<br>349 | *101<br>231<br>362 | 13 12<br>1 1.3 1.2                                  |
| 334<br>335<br>336 | 375<br>504<br>634    | 388<br>517<br>647 | 401<br>530<br>660  | 414<br>543<br>673  | 427<br>556<br>686  | 440<br>569<br>699  | 453<br>582<br>711  | 466<br>595<br>724  | 479<br>608<br>737  | 492<br>621<br>750  | 2 2.6 2.4<br>3 3.9 3.6<br>4 5.2 4.8<br>5 6.5 6.0    |
| 337<br>338<br>339 | 763<br>892<br>53 020 | 776<br>905<br>033 | 789<br>917<br>046  | 802<br>930<br>058  | 815<br>943<br>071  | 827<br>956<br>084  | 840<br>969<br>097  | 853<br>982<br>110  | 866<br>994<br>122  | 879<br>*007<br>135 | 6 7.8 7.2<br>7 9.1 8.4<br>8 10.4 9.6<br>9 11.7 10.8 |
| 340               | 148                  | 161               | 173                | 186                | 199                | 212                | 224                | 237                | 250                | 263                | 8 11.7 10.0                                         |
| 341               | 275                  | 288               | 301                | 314                | 326                | 339                | 352                | 364                | 377                | 390                |                                                     |
| 342               | 403                  | 415               | 428                | 441                | 453                | 466                | 479                | 491                | 504                | 517                |                                                     |
| 343               | 529                  | 542               | 555                | 567                | 580                | 593                | 605                | 618                | 631                | 643                |                                                     |
| 344               | 656                  | 668               | 681                | 694                | 706                | 719                | 732                | 744                | 757                | 769                |                                                     |
| 345               | 782                  | 794               | 807                | 820                | 832                | 845                | 857                | 870                | 882                | 895                |                                                     |
| 346               | 908                  | 920               | 933                | 945                | 958                | 970                | 983                | 995                | *008               | *020               |                                                     |
| 347               | 54 033               | 045               | 058                | 070                | 083                | 095                | 108                | 120                | 133                | 145                |                                                     |
| 348               | 158                  | 170               | 183                | 195                | 208                | 220                | 233                | 245                | 258                | 270                |                                                     |
| 349               | 283                  | 295               | 307                | 320                | 332                | 345                | 357                | 370                | 382                | 394                |                                                     |
| 350               | 407                  | 419               | 432                | 444                | 456                | 469                | 481                | 494                | 506                | 518                |                                                     |
| N.                | 0                    | 1                 | 2                  | 3                  | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                          |

| S.                | 0                                 | 1                  | 2                  | 3                                 | 4                       | 5                   | 6                   | 7                         | 8                   | 9                   | Prop. Pts.                                                    |
|-------------------|-----------------------------------|--------------------|--------------------|-----------------------------------|-------------------------|---------------------|---------------------|---------------------------|---------------------|---------------------|---------------------------------------------------------------|
| 350               | 51.87                             | 415                | 432                | 411                               | 450                     |                     | 451                 | 11/1                      | ∴ tr                | .: ·                |                                                               |
| 153<br>153        | 5.11<br>854<br>777                | 511<br>667<br>790  | 555<br>679<br>802  | 563<br>691<br>814                 | 55.55<br>55.55<br>55.55 | 535<br>715<br>839   | 151                 | 741<br>741<br>864         | 27:12               | 12.5                |                                                               |
| 354<br>355<br>356 | 900<br>55 (23<br>145              | 913<br>035<br>157  | 925<br>047<br>169  | $\frac{937}{060}$ $152$           | 949<br>672<br>194       | 9934<br>1936<br>206 | 974<br>696<br>215   | 9 5 5<br>9 5 30<br>9 1 30 | 998<br>121<br>242   | *011<br>133<br>255  |                                                               |
| 357<br>357<br>37  | 267<br>358<br>569                 | 279<br>400<br>522  | 291<br>413<br>534  | $\frac{303}{425}$ $\frac{546}{6}$ | 315<br>437<br>558       | 328<br>449<br>570   | 340<br>461<br>582   | 352<br>473<br>594         | 364<br>455<br>609   | 376<br>497<br>615   |                                                               |
| 360               | ย์ลีย                             | 642                | 654                | ษษ                                | 678                     | 691                 | ₹6.a                | 713                       | 727                 | 7.61°               |                                                               |
| 12.33<br>12.33    | 751<br>871<br>991                 | 763<br>5≿3<br>*663 | 775<br>895<br>*015 | 787<br>567<br>8627                | 799<br>919<br>*035      | 511<br>931<br>*050  | 533<br>543<br>*002  | %55<br>555<br>*574        | 547<br>1917<br>*050 | \$55<br>979<br>*098 | 13 12<br>1 1.3 1.2<br>2 2.6 2.4                               |
| 364<br>365<br>366 | 56 110<br>229<br>348              | 122<br>241<br>360  | 134<br>253<br>372  | 146<br>265<br>384                 | 158<br>277<br>396       | 170<br>259<br>407   | 182<br>301<br>419   | 194<br>312<br>431         | 205<br>324<br>443   | 217<br>336<br>455   | 3 3.9 3.6<br>5.2 4.7<br>5.5 6.4<br>5 7.7                      |
| 367<br>368<br>369 | 467<br>585<br>703                 | 478<br>597<br>714  | 490<br>605<br>726  | 502<br>620<br>738                 | 514<br>632<br>750       | 526<br>644<br>761   | 538<br>656<br>773   | 549<br>667<br>785         | 561<br>679<br>797   | 573<br>601<br>805   | 6 7.8 7.2<br>7 9.1 8.4<br>8 10.4 9.6<br>9 11.7 19.8           |
| 370               | 820                               | 832                | 844                | 855                               | 867                     | 579                 | 891                 | 502                       | 914                 | 926                 |                                                               |
| 372<br>373<br>273 | 937<br>57 054<br>171              | 949<br>066<br>153  | 961<br>078<br>194  | 972<br>089<br>206                 | 954<br>101<br>217       | 996<br>113<br>229   | *005<br>124<br>241  | *01:4<br>136<br>252       | *031<br>145<br>264  | *043<br>150<br>276  |                                                               |
| 374<br>375<br>376 | 287<br>403<br>519                 | 299<br>415<br>530  | 310<br>426<br>542  | 322<br>438<br>553                 | 334<br>449<br>565       | 345<br>461<br>576   | 357<br>473<br>588   | 368<br>484<br>600         | 380<br>496<br>611   | 392<br>507<br>623   |                                                               |
| 377<br>378<br>379 | 634<br>749<br>864                 | 646<br>761<br>875  | 657<br>772<br>887  | 669<br>784<br>898                 | 680<br>795<br>910       | 692<br>807<br>921   | 703<br>518<br>933   | 715<br>830<br>944         | 726<br>841<br>955   | 738<br>852<br>967   |                                                               |
| 380               | 978                               | 990                | *001               | *013                              | *024                    | *035                | *047                | *058                      | *()7/)              | *051                |                                                               |
| 381<br>382<br>383 | 58 092<br>206<br>320              | 104<br>218<br>331  | 115<br>229<br>343  | 127<br>240<br>354                 | 135<br>252<br>365       | 149<br>263<br>377   | 161<br>274<br>388   | 172<br>256<br>399         | 154<br>267<br>410   | 195<br>369<br>422   | 11 10<br>1 1.1 1.0<br>2 2.2 2.0                               |
| 384<br>385<br>386 | <b>4</b> 33<br>546<br><b>6</b> 59 | 444<br>557<br>670  | 456<br>569<br>681  | 467<br>580<br>692                 | 478<br>591<br>704       | $\frac{490}{602}$   | $501 \\ 614 \\ 726$ | 512<br>625<br>737         | 524<br>636<br>749   | 535<br>647<br>760   | 2 2.2 2.0<br>3 3.3 3.0<br>4 4.4 4.0<br>5 5.5 5.0<br>6 6.6 6.0 |
| 387<br>388<br>389 | 771<br>883<br>995                 | 782<br>894<br>*006 | 794<br>906<br>*017 | \$05<br>917<br>*028               | \$16<br>928<br>*040     | \$27<br>939<br>*051 | 838<br>950<br>*062  | 850<br>961<br>*073        | \$61<br>973<br>*084 | 872<br>984<br>*095  | 5 0.0 0.0<br>7 7.7 7.0<br>8 8.8 8.0<br>9 9.9 9.0              |
| 390               | 59 106                            | 118                | 129                | 140                               | 151                     | 162                 | 173                 | 184                       | 195                 | 207                 |                                                               |
| 391<br>392<br>393 | 218<br>329<br>439                 | 229<br>340<br>450  | 240<br>351<br>461  | 251<br>362<br>472                 | 262<br>373<br>483       | 273<br>384<br>494   | 284<br>395<br>506   | 295<br>406<br>517         | 306<br>417<br>528   | 315<br>428<br>539   |                                                               |
| 394<br>395<br>396 | 550<br>660<br>770                 | 561<br>671<br>780  | 572<br>682<br>791  | 583<br>693<br>802                 | 594<br>704<br>813       | 605<br>715<br>824   | 616<br>726<br>835   | 627<br>737<br>S46         | 638<br>748<br>857   | 649<br>759<br>868   |                                                               |
| 397<br>398<br>399 | 879<br>988<br>60 097              | 890<br>999<br>108  | 901<br>*010<br>119 | 912<br>*021<br>130                | 923<br>*032<br>141      | 934<br>*043<br>152  | 945<br>*054<br>163  | 956<br>*065<br>173        | 966<br>*076<br>184  | 977<br>*086<br>195  |                                                               |
| 400               | 206                               | 217                | 228                | 239                               | 249                     | 260                 | 271                 | 282                       | 293                 | 304                 |                                                               |
| N.                | 0                                 | 1                  | 2                  | 3                                 | 4                       | 5                   | 6                   | 7                         | 8                   | 9                   | Prop. Pts.                                                    |

| N.                | 0                    | 1                   | 2                   | 3                   | 4                 | 5                 | 6                  | 7                   | 8                   | 9                  | Prop. Pts.                                                                                |
|-------------------|----------------------|---------------------|---------------------|---------------------|-------------------|-------------------|--------------------|---------------------|---------------------|--------------------|-------------------------------------------------------------------------------------------|
| 400               | 60 20 <b>6</b>       | 217                 | 228                 | 239                 | 249               | 260               | 271                | 252                 | 293                 | 304                |                                                                                           |
| 401               | 314                  | 325                 | 336                 | 347                 | 358               | 369               | 379                | 390                 | 401                 | 412                |                                                                                           |
| 402               | 423                  | 433                 | 444                 | 455                 | 466               | 477               | 487                | 498                 | 509                 | 520                |                                                                                           |
| 453               | 531                  | 541                 | 552                 | 563                 | 574               | 554               | 595                | 606                 | 617                 | 627                |                                                                                           |
| 404               | 638                  | 649                 | 660                 | 670                 | 681               | 692               | 703                | 713                 | 724                 | 735                |                                                                                           |
| 405               | 746                  | 756                 | 767                 | 778                 | 788               | 799               | 810                | 821                 | 831                 | 842                |                                                                                           |
| 406               | 853                  | 863                 | 874                 | 885                 | 895               | 906               | 917                | 927                 | 938                 | 949                |                                                                                           |
| 407               | 959                  | 970                 | 981                 | 991                 | *002              | *013              | *023               | *034                | *045                | *055               | 144 140                                                                                   |
| 405               | 61 066               | 077                 | 087                 | 098                 | 109               | 119               | 130                | 140                 | 151                 | 162                |                                                                                           |
| 409               | 172                  | 183                 | 194                 | 204                 | 215               | 225               | 236                | 247                 | 257                 | 268                |                                                                                           |
| 410               | 278                  | 289                 | 300                 | 310                 | 321               | 331               | 342                | 352                 | 363                 | 374                | 1 1.1 1.0                                                                                 |
| 411               | 354                  | 395                 | 405                 | 416                 | 426               | 437               | 448                | 458                 | 469                 | 479                | 2 2.2 2.0                                                                                 |
| 412               | 490                  | 500                 | 511                 | 521                 | 532               | 542               | 553                | 563                 | 574                 | 584                | 3 3.3 3.0                                                                                 |
| 413               | 595                  | 606                 | 616                 | 627                 | 637               | 648               | 658                | 669                 | 679                 | 690                | 4 4.4 4.0                                                                                 |
| 414               | 700                  | 711                 | 721                 | 731                 | 742               | 752               | 763                | 773                 | 784                 | 794                | 5 5.5 5.0                                                                                 |
| 415               | 805                  | 815                 | 826                 | 836                 | 847               | 857               | 868                | 878                 | 888                 | 899                | 6 6.6 6.0                                                                                 |
| 416               | 909                  | 920                 | 930                 | 941                 | 951               | 962               | 972                | 982                 | 993                 | *003               | 7 7.7 7.0                                                                                 |
| 417<br>418<br>419 | 62 014<br>118<br>221 | 024<br>128<br>232   | 034<br>138<br>242   | $045 \\ 149 \\ 252$ | 055<br>159<br>263 | 066<br>170<br>273 | 076<br>180<br>284  | 086<br>190<br>294   | $097 \\ 201 \\ 304$ | 107<br>211<br>315  | 8   8.8   8.0<br>9   9.9   9.0                                                            |
| 420               | 325                  | 335                 | 346                 | 356                 | 366               | 377               | 357                | 397                 | 408                 | 418                |                                                                                           |
| 421               | 428                  | 439                 | 449                 | 459                 | 469               | 480               | 490                | 500                 | 511                 | 521                | _====                                                                                     |
| 422               | 531                  | 542                 | 552                 | 562                 | 572               | 583               | 593                | 603                 | 613                 | 624                |                                                                                           |
| 423               | 634                  | 644                 | 655                 | 665                 | 675               | 685               | 696                | 706                 | 716                 | 726                |                                                                                           |
| 424               | 737                  | 747                 | 757                 | 767                 | 778               | 788               | 798                | 808                 | 818                 | 829                | $ \begin{array}{l} \log M \\ = \log [\log \epsilon] \\ = 9.63778431 \\ - 10 \end{array} $ |
| 425               | 839                  | 849                 | 859                 | 870                 | 880               | 890               | 900                | 910                 | 921                 | 931                |                                                                                           |
| 426               | 941                  | 951                 | 961                 | 972                 | 982               | 992               | *002               | *012                | *022                | *033               |                                                                                           |
| 427               | 63 043               | 053                 | 063                 | 073                 | 083               | 094               | 104                | 114                 | 124                 | 134                | 10                                                                                        |
| 428               | 144                  | 155                 | 165                 | 175                 | 185               | 195               | 205                | 215                 | 225                 | 236                |                                                                                           |
| 429               | 246                  | 256                 | 266                 | 276                 | 286               | 296               | 306                | 317                 | 327                 | 337                |                                                                                           |
| 430               | 347                  | 357                 | 367                 | 377                 | 387               | 397               | 407                | 417                 | 428                 | 438                |                                                                                           |
| 431               | 448                  | 458                 | 468                 | 478                 | 488               | 498               | 508                | 518                 | 528                 | 538                | 9                                                                                         |
| 432               | 548                  | 558                 | 568                 | 579                 | 589               | 599               | 609                | 619                 | 629                 | 639                |                                                                                           |
| 433               | 649                  | 659                 | 669                 | 679                 | 689               | 699               | 709                | 719                 | 729                 | 739                |                                                                                           |
| 434<br>435<br>436 | 749<br>849<br>949    | 759<br>859<br>959   | 769<br>869<br>969   | 779<br>879<br>979   | 789<br>889<br>988 | 799<br>899<br>998 | 809<br>909<br>*008 | \$19<br>919<br>*018 | 829<br>929<br>*028  | 839<br>939<br>*038 | 1 0.9<br>2 1.8<br>3 2.7<br>4 3.6                                                          |
| 437               | 64 048               | 058                 | $068 \\ 167 \\ 266$ | 078                 | 088               | 098               | 108                | 118                 | 128                 | 137                | 5 4.5                                                                                     |
| 438               | 147                  | 157                 |                     | 177                 | 187               | 197               | 207                | 217                 | 227                 | 237                | 6 5.4                                                                                     |
| 439               | 246                  | 256                 |                     | 276                 | 286               | 296               | 306                | 316                 | 326                 | 335                | 7 6.3                                                                                     |
| 440               | 345                  | 355                 | 365                 | 375                 | 385               | 395               | 404                | 414                 | 424                 | 434                | 8 7.2<br>9 8.1                                                                            |
| 441               | 444                  | 454                 | 464                 | 473                 | 483               | 493               | 503                | 513                 | 523                 | 532                | , 5.2                                                                                     |
| 442               | 542                  | 552                 | 562                 | 572                 | 582               | 591               | 601                | 611                 | 621                 | 631                |                                                                                           |
| 443               | 640                  | 650                 | 660                 | 670                 | 680               | 689               | 699                | 709                 | 719                 | 729                |                                                                                           |
| 411               | 738                  | 748                 | 758                 | 768                 | 777               | 787               | 797                | 807                 | 816                 | 826                |                                                                                           |
| 445               | 836                  | 846                 | 856                 | 865                 | 875               | 885               | 895                | 904                 | 914                 | 924                |                                                                                           |
| 446               | 933                  | 943                 | 953                 | 963                 | 972               | 982               | 992                | *002                | *011                | *021               |                                                                                           |
| 447<br>448<br>449 | 65 031<br>128<br>225 | $040 \\ 137 \\ 234$ | 050<br>147<br>244   | 060<br>157<br>254   | 070<br>167<br>263 | 079<br>176<br>273 | 089<br>186<br>283  | 099<br>196<br>292   | 108<br>205<br>302   | 118<br>215<br>312  |                                                                                           |
| 450               | 321                  | 331                 | 341                 | 350                 | 360               | 369               | 379                | 389                 | 398                 | 408                |                                                                                           |
| N.                | 0                    | 1                   | 2                   | 3                   | 4                 | 5                 | 6                  | 7                   | 8                   | 9                  | Prop. Pts.                                                                                |

| N.                | 0                         | 1                  | . 2                | 3                          | 4                  | - 5                | 6                  | 7                  | 8                  | , 9                | Prop. Pts.                                       |
|-------------------|---------------------------|--------------------|--------------------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------------------------------|
| 450               | 31                        | 1.51               | 311                |                            | Selec              | Jest               | 374                | 3-4                | 311                | 408                |                                                  |
| 474<br>474<br>453 | 415<br>514<br>610         | 427<br>523<br>619  | 437<br>533<br>629  | 447<br>543<br>639          | 456<br>552<br>645  | 465<br>562<br>655  | 475<br>571<br>667  | 455<br>551<br>677  | 495<br>591<br>656  | 504<br>600<br>696  |                                                  |
| 474<br>475<br>476 | 706<br>\$01<br>896        | 715<br>511<br>906  | 725<br>820<br>916  | 734<br>830<br>925          | 744<br>\$39<br>935 | 753<br>549<br>944  | 763<br>858<br>954  | 772<br>868<br>963  | 782<br>877<br>973  | 792<br>887<br>982  |                                                  |
| 437<br>435<br>439 | 992<br>66 057<br>181      | *001<br>096<br>191 | *011<br>106<br>200 | *020<br>11 <b>5</b><br>210 | *030<br>124<br>219 | *039<br>134<br>229 | *049<br>143<br>238 | *055<br>153<br>247 | *068<br>162<br>257 | *077<br>172<br>266 |                                                  |
| 460               | 276                       | 255                | 255                | 301                        | 314                | 323                | 332                | 342                | 851                | 361                |                                                  |
| 461<br>462<br>463 | 370<br>464<br>558         | 350<br>474<br>567  | 359<br>483<br>577  | 305<br>492<br>586          | 408<br>502<br>596  | 417<br>511<br>605  | 427<br>521<br>614  | 436<br>530<br>624  | 445<br>539<br>633  | 455<br>549<br>642  | 10 9<br>1 1.0 0.9<br>2 2.0 1.8                   |
| 464<br>465<br>466 | 652<br>745<br>839         | 661<br>755<br>848  | 671<br>764<br>857  | 650<br>773<br>867          | 689<br>783<br>876  | 699<br>792<br>885  | 708<br>801<br>894  | 717<br>811<br>904  | 727<br>820<br>913  | 736<br>829<br>922  | 3 3.0 2.7<br>4 4.0 3.6<br>5 5.0 4.5<br>6 6.0 5.4 |
| 467<br>468<br>469 | 932<br>67 025<br>117      | 941<br>034<br>127  | 950<br>043<br>136  | 960<br>052<br>145          | 969<br>062<br>154  | 978<br>071<br>164  | 987<br>680<br>173  | 997<br>089<br>182  | *006<br>099<br>191 | *015<br>108<br>201 | 7 7.0 6.3<br>8 8.0 7.2<br>9 9.0 8.1              |
| 470               | 210                       | 219                | 225                | 237                        | 247                | 256                | 265                | 274                | 284                | 293                |                                                  |
| 477<br>473<br>473 | 304<br>394<br>486         | 311<br>403<br>495  | 321<br>413<br>504  | 330<br>422<br>514          | 23.7<br>431<br>523 | 348<br>440<br>532  | 257<br>449<br>541  | 367<br>45.4<br>550 | 376<br>468<br>560  | 355<br>477<br>569  |                                                  |
| 474<br>475<br>476 | 578<br>669<br>761         | 587<br>679<br>770  | 596<br>655<br>779  | 605<br>697<br>788          | 614<br>706<br>797  | 624<br>715<br>806  | 633<br>724<br>S15  | 642<br>733<br>825  | 651<br>742<br>834  | 660<br>752<br>S43  |                                                  |
| 477<br>478<br>479 | 852<br>943<br>68 034      | 861<br>932<br>043  | 870<br>961<br>052  | \$79<br>970<br>061         | 888<br>979<br>070  | 897<br>988<br>079  | 906<br>997<br>088  | 916<br>*006<br>097 | 925<br>*015<br>106 | 934<br>*024<br>115 |                                                  |
| 430               | 124                       | 133                | 142                | 151                        | 160                | 169                | 178                | 187                | 196                | 205                |                                                  |
| 722<br>422        | 215<br>305<br>395         | 314<br>404         | 233<br>323<br>413  | 242<br>332<br>422          | 251<br>341<br>431  | 260<br>350<br>440  | 269<br>\$59<br>449 | 278<br>368<br>458  | 257<br>377<br>467  | 336<br>386<br>476  | 1 0.8<br>2 1.6                                   |
| 454<br>455<br>456 | 485<br>574<br>664         | 494<br>583<br>673  | 502<br>592<br>681  | 511<br>601<br>690          | 520<br>610<br>699  | 529<br>619<br>708  | 538<br>628<br>717  | 547<br>637<br>726  | 556<br>646<br>735  | 565<br>655<br>744  | 3 2.4<br>4 3.2<br>5 4.0<br>6 4.8                 |
| 457<br>459<br>459 | 753<br>842<br>931         | 762<br>851<br>940  | 771<br>860<br>949  | 780<br>869<br>958          | 789<br>878<br>966  | 797<br>886<br>975  | 806<br>895<br>984  | S15<br>904<br>993  | 824<br>913<br>*002 | 833<br>922<br>*011 | 6 4.8<br>7 5.6<br>8 6.4<br>9 7.2                 |
| 490               | 69 020                    | 028                | 037                | 046                        | 055                | 064                | 073                | 082                | 090                | 099                |                                                  |
| 491<br>492<br>493 | 108<br>197<br>285         | 117<br>205<br>294  | 126<br>214<br>302  | 135<br>223<br>311          | 144<br>232<br>320  | 152<br>241<br>329  | 161<br>249<br>338  | 170<br>255<br>346  | 179<br>267<br>355  | 155<br>276<br>364  |                                                  |
| 494<br>495<br>496 | 373<br>461<br><b>5</b> 48 | 381<br>469<br>557  | 390<br>478<br>566  | 399<br>487<br>574          | 408<br>496<br>583  | 417<br>504<br>592  | 425<br>513<br>601  | 434<br>522<br>609  | 443<br>531<br>618  | 452<br>539<br>627  |                                                  |
| 497<br>498<br>499 | 636<br>723<br>810         | 644<br>732<br>S19  | 653<br>740<br>827  | 662<br>749<br>836          | 671<br>758<br>845  | 679<br>767<br>854  | 688<br>775<br>862  | 697<br>784<br>871  | 705<br>793<br>880  | 714<br>801<br>888  |                                                  |
| 500               | 897                       | 906                | 914                | 923                        | 932                | 940                | 949                | 958                | 966                | 975                |                                                  |
| Ň.                | 0                         | 1                  | 2                  | 3                          | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                       |



| N.                | 0                       | 1                         | 2                  | 3                  | 4                  | 5                  | 6                  | 7                              | 8                  | 9                  | Prop. Pts.                                       |
|-------------------|-------------------------|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------------|--------------------|--------------------|--------------------------------------------------|
| 500               | 69 897                  | 906                       | 914                | 923                | 932                | 940                | 949                | 958                            | 966                | 975                |                                                  |
| 501<br>502<br>503 | 70 984<br>70 070<br>157 | 992<br>079<br><b>16</b> 5 | *001<br>088<br>174 | *010<br>096<br>183 | *018<br>105<br>191 | *027<br>114<br>200 | *036<br>122<br>209 | *0 <del>44</del><br>131<br>217 | *053<br>140<br>226 | *062<br>148<br>234 | (4                                               |
| 504<br>505<br>506 | 243<br>329<br>415       | 252<br>338<br>424         | 260<br>346<br>432  | 269<br>355<br>441  | 278<br>364<br>449  | 286<br>372<br>458  | 295<br>381<br>467  | 303<br>389<br>475              | 312<br>398<br>484  | 321<br>406<br>492  | log 5<br>=.69897 00043                           |
| 507<br>508<br>509 | 501<br>586<br>672       | 509<br>595<br>680         | 518<br>603<br>689  | 526<br>612<br>697  | 535<br>621<br>706  | 544<br>629<br>714  | 552<br>638<br>723  | 561<br>646<br>731              | 569<br>655<br>740  | 578<br>663<br>749  |                                                  |
| 510               | 757                     | 766                       | 774                | 783                | 791                | 800                | 808                | 817                            | 825                | 834                |                                                  |
| 511<br>512<br>513 | 842<br>927<br>71 012    | 851<br>935<br>020         | 859<br>944<br>029  | 868<br>952<br>037  | 876<br>961<br>046  | 885<br>969<br>054  | 893<br>978<br>063  | 902<br>986<br>071              | 910<br>995<br>079  | 919<br>*003<br>088 | 9 8<br>1 0.9 0.8<br>2 1.8 1.6<br>3 2.7 2.4       |
| 514<br>515<br>516 | 096<br>181<br>265       | 105<br>189<br>273         | 113<br>198<br>282  | 122<br>206<br>290  | 130<br>214<br>299  | 139<br>223<br>307  | 147<br>231<br>315  | 155<br>240<br>324              | 164<br>248<br>332  | 172<br>257<br>341  | 4 3.6 3.2 5 4.5 4.0                              |
| 517<br>518<br>519 | 349<br>433<br>517       | 357<br>441<br>525         | 366<br>450<br>533  | 374<br>458<br>542  | 383<br>466<br>550  | 391<br>475<br>559  | 399<br>483<br>567  | 408<br>492<br>575              | 416<br>500<br>584  | 425<br>508<br>592  | 6 5.4 4.8<br>7 6.3 5.6<br>8 7.2 6.4<br>9 8.1 7.2 |
| 520               | 600                     | 609                       | 617                | 625                | 634                | 642                | 650                | 659                            | 667                | 675                |                                                  |
| 521<br>522<br>523 | 684<br>767<br>850       | 692<br>775<br>858         | 700<br>784<br>867  | 709<br>792<br>875  | 717<br>800<br>883  | 725<br>809<br>892  | 731<br>817<br>900  | 742<br>825<br>908              | 750<br>834<br>917  | 759<br>842<br>925  | 4                                                |
| 524<br>525<br>526 | 933<br>72 016<br>099    | 941<br>024<br>107         | 950<br>032<br>115  | 958<br>041<br>123  | 966<br>049<br>132  | 975<br>057<br>140  | 983<br>066<br>148  | 991<br>074<br>156              | 999<br>082<br>165  | *008<br>090<br>173 | 1                                                |
| 527<br>528<br>529 | 181<br>263<br>346       | 189<br>272<br>354         | 198<br>280<br>362  | 206<br>288<br>370  | 214<br>296<br>378  | 222<br>304<br>387  | 230<br>313<br>395  | 239<br>321<br>403              | 247<br>329<br>411  | 255<br>337<br>419  |                                                  |
| 530               | 428                     | 436                       | 411                | 452                | 460                | 469                | 477                | 485                            | 493                | 501                |                                                  |
| 531<br>532<br>533 | 509<br>591<br>673       | 518<br>599<br>681         | 526<br>607<br>689  | 534<br>616<br>697  | 542<br>624<br>705  | 550<br>632<br>713  | 558<br>640<br>722  | 567<br>648<br>730              | 575<br>656<br>738  | 583<br>665<br>746  | 1 0.7<br>2 1.4                                   |
| 534<br>535<br>536 | 754<br>835<br>916       | 762<br>843<br>925         | 770<br>852<br>933  | 779<br>860<br>941  | 787<br>868<br>949  | 795<br>876<br>957  | 803<br>884<br>965  | 811<br>892<br>973              | 819<br>900<br>981  | 827<br>908<br>989  | 3 2.1<br>4 2.8<br>5 3.5                          |
| 537<br>538<br>539 | 997<br>73 078<br>159    | *006<br>086<br>167        | *014<br>094<br>175 | *022<br>102<br>183 | *030<br>111<br>191 | *038<br>119<br>199 | *046<br>127<br>207 | *054<br>135<br>215             | *062<br>143<br>223 | *070<br>151<br>231 | 6 4.2<br>7 4.9<br>8 5.6<br>9 6.3                 |
| 540               | 239                     | 247                       | 255                | 263                | 272                | 280                | 288                | 296                            | 304                | 312                | ·                                                |
| 541<br>542<br>543 | 320<br>400<br>480       | 328<br>408<br>488         | 336<br>416<br>496  | 344<br>424<br>504  | 352<br>432<br>512  | 360<br>440<br>520  | 368<br>448<br>528  | 376<br>456<br>536              | 384<br>464<br>544  | 392<br>472<br>552  |                                                  |
| 544<br>545<br>546 | 560<br>640<br>719       | 568<br>648<br>727         | 576<br>656<br>735  | 584<br>664<br>743  | 592<br>672<br>751  | 600<br>679<br>759  | 608<br>687<br>767  | 616<br>695<br>775              | 624<br>703<br>783  | 632<br>711<br>791  |                                                  |
| 547<br>548<br>549 | 799<br>878<br>957       | 807<br>886<br>965         | 815<br>894<br>973  | 823<br>902<br>981  | 830<br>910<br>989  | 838<br>918<br>997  | 846<br>926<br>*005 | 854<br>933<br>*013             | 862<br>941<br>*020 | 870<br>949<br>*028 |                                                  |
| 550               | 74 036                  | 044                       | 052                | 060                | 068                | 076                | 084                | 092                            | 099                | 107                |                                                  |
| N.                | 0                       | 1                         | 2                  | 3                  | 4                  | 5                  | 6                  | 7                              | 8                  | 9                  | Prop. Pts.                                       |

| N.                | 0                    | 1                 | 2                 | 3                 | 4                         | 5                  | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                       |
|-------------------|----------------------|-------------------|-------------------|-------------------|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------------------------------|
| 550               | 74 039               | +:44              | C52               | (कर्म)            | ruis.                     | 11.16              | 11                 | 142                |                    | 1.7                |                                                  |
| 551<br>552<br>553 | 115<br>194<br>273    | 123<br>202<br>280 | 131<br>210<br>288 | 139<br>215<br>296 | 147<br>225<br>304         | 155<br>253<br>312  | 1+ 2<br>241<br>320 | 176<br>249<br>327  | :: \<br>335        | 186<br>265<br>343  |                                                  |
| 354<br>355<br>330 | 351<br>429<br>507    | 359<br>437<br>515 | 367<br>445<br>523 | 374<br>453<br>531 | 382<br>461<br>539         | 390<br>468<br>547  | 398<br>476<br>554  | 406<br>454<br>562  | 414<br>492<br>570  | 421<br>500<br>578  |                                                  |
| 357<br>538<br>339 | 586<br>663<br>741    | 593<br>671<br>749 | 601<br>679<br>757 | 609<br>687<br>764 | 617<br>695<br>772         | 624<br>762<br>780  | 632<br>740<br>788  | 640<br>715<br>796  | 648<br>726<br>803  | 656<br>733<br>811  |                                                  |
| 560               | 519                  | 527               | 534               | \$42              | 550                       | 858                | 865                | 573                | 851                | 559                |                                                  |
| 561<br>562<br>563 | 596<br>974<br>75 051 | 951<br>951<br>059 | 912<br>959<br>066 | 920<br>997<br>074 | 927<br>*665<br>082        | 935<br>*012<br>089 | 943<br>920<br>997  | 950<br>1925<br>105 | 0.5<br>000<br>113  | 120<br>120<br>120  |                                                  |
| 564<br>565<br>566 | 128<br>205<br>282    | 136<br>213<br>289 | 143<br>220<br>297 | 151<br>228<br>305 | 159<br>236<br>312         | 166<br>243<br>320  | 174<br>251<br>328  | 152<br>259<br>335  | 189<br>266<br>343  | 197<br>274<br>351  |                                                  |
| 567<br>568<br>569 | 358<br>435<br>511    | 366<br>442<br>519 | 374<br>450<br>526 | 381<br>458<br>534 | 389<br>465<br>542         | 397<br>473<br>549  | 404<br>481<br>557  | 412<br>488<br>565  | 420<br>496<br>572  | 427<br>504<br>580  |                                                  |
| 570               | 587                  | 595               | 603               | 610               | 618                       | 626                | 633                | 641                | 645                |                    |                                                  |
| 571<br>572<br>573 | 664<br>740<br>815    | 671<br>747<br>523 | 679<br>755<br>831 | 686<br>762<br>838 | 694<br>770<br>846         | 702<br>533<br>533  | 709<br>785<br>861  | 717<br>793<br>868  | 724<br>540<br>576  | 112.5              | 8 7<br>1 0.8 0.7<br>2 1.6 1.4<br>3 2.4 2.1       |
| 574<br>575<br>576 | 891<br>967<br>76 042 | 899<br>974<br>050 | 906<br>982<br>057 | 914<br>989<br>065 | 921<br>997<br>072         | 929<br>*005<br>080 | 937<br>*012<br>087 | 944<br>*020<br>095 | 952<br>*027<br>103 | 959<br>*035<br>110 | 4 3.2 2.8<br>5 4.0 3.5                           |
| 577<br>578<br>579 | 118<br>193<br>268    | 125<br>200<br>275 | 133<br>208<br>283 | 140<br>215<br>290 | 148<br>223<br>298         | 155<br>230<br>305  | 163<br>238<br>313  | 170<br>245<br>320  | 178<br>253<br>328  | 185<br>260<br>335  | 6 4.5 4.2<br>7 5.6 4.9<br>8 6.4 5.6<br>9 7.2 6.3 |
| 580               | 343                  | 350               | 358               | 365               | 373                       | 3~0                | 358                | 395                | 403                | 410                |                                                  |
| 581<br>582<br>583 | 418<br>492<br>567    | 425<br>500<br>574 | 433<br>507<br>582 | 440<br>515<br>589 | 448<br>522<br>597         | 455<br>530<br>604  | 462<br>537<br>612  | 470<br>545<br>619  | 477<br>552<br>626  | 485<br>559<br>634  |                                                  |
| 584<br>585<br>586 | 641<br>716<br>790    | 649<br>723<br>797 | 656<br>730<br>805 | 664<br>738<br>812 | 671<br>745<br>819         | 678<br>753<br>827  | 686<br>760<br>834  | 693<br>768<br>842  | 701<br>775<br>S49  | 708<br>782<br>856  |                                                  |
| 587<br>588<br>589 | 864<br>938<br>77 012 | 871<br>945<br>019 | 879<br>953<br>026 | 886<br>960<br>034 | 893<br>967<br>041         | 901<br>975<br>048  | 908<br>982<br>056  | 916<br>989<br>063  | 923<br>997<br>070  | 930<br>*004<br>078 |                                                  |
| 590               | 085                  | 093               | 100               | 107               | 115                       | 122                | 129                | 137                | 144                | 151                |                                                  |
| 591<br>592<br>593 | 159<br>232<br>305    | 166<br>240<br>313 | 173<br>247<br>320 | 181<br>254<br>327 | 188<br>262<br>335         | 195<br>269<br>342  | 203<br>276<br>349  | 210<br>283<br>357  | 217<br>291<br>364  | 225<br>298<br>371  |                                                  |
| 594<br>595<br>596 | 379<br>452<br>525    | 386<br>459<br>532 | 393<br>466<br>539 | 401<br>474<br>546 | 408<br>481<br>554         | 415<br>488<br>561  | 422<br>495<br>568  | 430<br>503<br>576  | 437<br>510<br>583  | 444<br>517<br>590  |                                                  |
| 597<br>598<br>599 | 597<br>670<br>743    | 605<br>677<br>750 | 612<br>685<br>757 | 619<br>692<br>764 | 62 <b>7</b><br>699<br>772 | 634<br>706<br>779  | 641<br>714<br>786  | 648<br>721<br>793  | 656<br>728<br>S01  | 663<br>735<br>SOS  |                                                  |
| 600               | 815                  | 822               | 830               | 837               | 844                       | 851                | 859                | 866                | 873                | 880                |                                                  |
| N.                | 0                    | 1                 | 2                 | 3                 | 4                         | 5                  | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                       |

| N.                | 0                    | 1                 | 2                  | 3                         | 4                 | 5                 | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                       |
|-------------------|----------------------|-------------------|--------------------|---------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------------------------------------|
| 600               | 77 815               | 822               | 830                | 837                       | 844               | 851               | 859                | 866                | 873                | 880                |                                                  |
| 601<br>602<br>603 | 887<br>960<br>78 032 | 895<br>967<br>039 | 902<br>974<br>046  | 909<br>981<br>053         | 916<br>988<br>061 | 924<br>996<br>068 | 931<br>*003<br>075 | 938<br>*010<br>082 | 945<br>*017<br>089 | 952<br>*025<br>097 |                                                  |
| 604<br>605<br>606 | 104<br>176<br>247    | 111<br>183<br>254 | 118<br>190<br>262  | 125<br>197<br>269         | 132<br>204<br>276 | 140<br>211<br>283 | 147<br>219<br>290  | 154<br>226<br>297  | 161<br>233<br>305  | 168<br>240<br>312  |                                                  |
| 607<br>608<br>609 | 319<br>390<br>462    | 326<br>398<br>469 | 333<br>405<br>476  | 340<br>412<br>483         | 347<br>419<br>490 | 355<br>426<br>497 | 362<br>433<br>504  | 369<br>440<br>512  | 376<br>447<br>519  | 383<br>455<br>526  |                                                  |
| 610               | 533                  | 540               | 547                | 554                       | 561               | 569               | 576                | 583                | 590                | 597                |                                                  |
| 611<br>612<br>613 | 604<br>675<br>746    | 611<br>682<br>753 | 618<br>689<br>760  | 625<br>696<br>767         | 633<br>704<br>774 | 640<br>711<br>781 | 647<br>718<br>789  | 654<br>725<br>796  | 661<br>732<br>803  | 668<br>739<br>810  | 8 7<br>1 0.8 0.7<br>2 1.6 1.4<br>3 2.4 2.1       |
| 614<br>615<br>616 | 817<br>888<br>958    | 824<br>895<br>965 | 831<br>902<br>972  | 838<br>909<br>9 <b>79</b> | 845<br>916<br>986 | 852<br>923<br>993 | 859<br>930<br>*000 | 866<br>937<br>*007 | 873<br>944<br>*014 | 880<br>951<br>*021 | 4 3.2 2.8<br>5 4.0 3.5                           |
| 617<br>618<br>619 | 79 029<br>099<br>169 | 036<br>106<br>176 | 043<br>113<br>183  | 050<br>120<br>190         | 057<br>127<br>197 | 064<br>134<br>204 | 071<br>141<br>211  | 078<br>148<br>218  | 085<br>155<br>225  | 092<br>162<br>232  | 6 4.8 4.2<br>7 5.6 4.9<br>8 6.4 5.6<br>9 7.2 6.3 |
| 620               | 239                  | 246               | 253                | 260                       | 267               | 274               | 281                | 288                | 295                | 302                |                                                  |
| 621<br>622<br>623 | 309<br>379<br>449    | 316<br>386<br>456 | 323<br>393<br>463  | 330<br>400<br>470         | 337<br>407<br>477 | 344<br>414<br>484 | 351<br>421<br>491  | 358<br>428<br>498  | 365<br>435<br>505  | 372<br>442<br>511  |                                                  |
| 624<br>625<br>626 | 518<br>588<br>657    | 525<br>595<br>664 | 532<br>602<br>671  | 539<br>609<br>678         | 546<br>616<br>685 | 553<br>623<br>692 | 560<br>630<br>699  | 567<br>637<br>706  | 574<br>644<br>713  | 581<br>650<br>720  |                                                  |
| 627<br>628<br>629 | 727<br>796<br>865    | 734<br>803<br>872 | 741<br>810<br>879  | 748<br>817<br>886         | 754<br>824<br>893 | 761<br>831<br>900 | 768<br>837<br>906  | 775<br>844<br>913  | 782<br>851<br>920  | 789<br>858<br>927  |                                                  |
| 630               | 934                  | 941               | 948                | 955                       | 962               | 969               | 975                | 982                | 989                | 996                |                                                  |
| 631<br>632<br>633 | 80 003<br>072<br>140 | 010<br>079<br>147 | 017<br>085*<br>154 | 024<br>092<br>161         | 030<br>099<br>168 | 037<br>106<br>175 | 044<br>113<br>182  | 051<br>120<br>188  | 058<br>127<br>195  | 065<br>134<br>202  | 6<br>1 0.6<br>2 1.2<br>3 1.8                     |
| 634<br>635<br>636 | 209<br>277<br>346    | 216<br>284<br>353 | 223<br>291<br>359  | 229<br>298<br>366         | 236<br>305<br>373 | 243<br>312<br>380 | 250<br>318<br>387  | 257<br>325<br>393  | 264<br>332<br>400  | 271<br>339<br>407  | 3 1.8<br>4 2.4<br>5 3.0<br>6 3.6                 |
| 637<br>638<br>639 | 414<br>482<br>550    | 421<br>489<br>557 | 428<br>496<br>564  | 434<br>502<br>570         | 441<br>509<br>577 | 448<br>516<br>584 | 455<br>523<br>591  | 462<br>530<br>598  | 468<br>536<br>604  | 475<br>543<br>611  | 7 4.2<br>8 4.8<br>9 5.4                          |
| 640               | 618                  | 625               | 632                | 638                       | 645               | 652               | 659                | 665                | 672                | 679                |                                                  |
| 641<br>642<br>643 | 686<br>754<br>821    | 693<br>760<br>828 | 699<br>767<br>835  | 706<br>774<br>841         | 713<br>781<br>848 | 720<br>787<br>855 | 726<br>794<br>862  | 733<br>801<br>868  | 740<br>808<br>875  | 747<br>814<br>882  | 4.                                               |
| 644<br>645<br>646 | 889<br>956<br>81 023 | 895<br>963<br>030 | 902<br>969<br>037  | 909<br>976<br>043         | 916<br>983<br>050 | 922<br>990<br>057 | 929<br>996<br>064  | 936<br>*003<br>070 | 943<br>*010<br>077 | 949<br>*017<br>084 |                                                  |
| 647<br>648<br>649 | 090<br>158<br>224    | 097<br>164<br>231 | 104<br>171<br>238  | 111<br>178<br>245         | 117<br>184<br>251 | 124<br>191<br>258 | 131<br>198<br>265  | 137<br>204<br>271  | 144<br>211<br>278  | 151<br>218<br>285  |                                                  |
| 650               | 291                  | 298               | 305                | 311                       | 318               | 325               | 331                | 338                | 345                | 351                |                                                  |
| N.                | 0                    | 1                 | 2                  | 3                         | 4                 | 5                 | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                       |

| N.                | 0                     | 1                  | 2                  | : 3                | 4                  | - 5                | . 6                         | 7                  | 8                  | 9                  | Prop. Pts.                                       |
|-------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------|--------------------|--------------------|--------------------|--------------------------------------------------|
| 630               | 51 25-1               | 23.5               | 3 5                | 1311               | 1115               | 127                | 3:                          | 30.5               | 345                | 551                |                                                  |
|                   | 355<br>425<br>491     | 1455<br>431<br>495 | 503                | 57.5<br>445<br>511 | 355<br>451<br>518  | 525                | 555<br>465<br>531           | 465<br>471<br>538  | 411<br>475<br>544  | 415<br>455<br>551  |                                                  |
| 655<br>656        | 558<br>624<br>690     | 564<br>631<br>697  | 571<br>607<br>764  | 578<br>644<br>710  | 584<br>651<br>717  | 591<br>1637<br>723 | 595<br>664<br>730           | 604<br>671<br>737  | 611<br>677<br>743  | 617<br>684<br>750  |                                                  |
| 657<br>658<br>659 | 737<br>823<br>889     | 763<br>829<br>895  | 770<br>\$36<br>962 | 776<br>842<br>908  | 783<br>549<br>915  | 790<br>856<br>921  | 796<br>862<br>928           | 503<br>869<br>935  | 809<br>875<br>941  | 816<br>882<br>948  |                                                  |
| 660               | 954                   | 901                | tir n              | 1.74               | 981                | 1057               | 994                         | *(15.71)           | 967                | *014               |                                                  |
| 662<br>663        | 82 (00)<br>086<br>151 | 092<br>092<br>158  | 083<br>099<br>164  | 105<br>171         | 046<br>112<br>178  | 119<br>184         | 060<br>125<br>191           | 066<br>132<br>197  | 13S<br>204         | 079<br>145<br>210  |                                                  |
| 664<br>665<br>666 | 217<br>252<br>347     | 223<br>289<br>354  | 230<br>295<br>360  | 236<br>302<br>367  | 243<br>308<br>373  | 249<br>315<br>380  | 256<br>321<br>387           | 263<br>325<br>393  | 269<br>334<br>400  | 276<br>341<br>406  |                                                  |
| 667<br>668<br>669 | 413<br>478<br>543     | 419<br>484<br>549  | 426<br>491<br>556  | 432<br>497<br>562  | 439<br>504<br>569  | 445<br>510<br>575  | 452<br>517<br>582           | 458<br>523<br>588  | 465<br>530<br>595  | 471<br>536<br>601  |                                                  |
| 670               | 607                   | 614                | 620                | 627                | 633                | 640                | 646                         | 653                | 659                | 666                | 1716                                             |
| 671<br>672<br>673 | 672<br>737<br>802     | 679<br>743<br>808  | 685<br>750<br>814  | 692<br>756<br>821  | 698<br>763<br>827  | 705<br>769<br>834  | 711<br>776<br>840           | 718<br>782<br>847  | 724<br>789<br>853  | 730<br>795<br>860  | 1 0.7 0.6<br>2 1.4 1.2                           |
| 674<br>675<br>676 | 866<br>930<br>995     | S72<br>937<br>*001 | 879<br>943<br>*008 | 885<br>950<br>*014 | 892<br>956<br>*020 | 898<br>963<br>*027 | 905<br>969<br>*0 <b>3</b> 3 | 911<br>975<br>*040 | 918<br>952<br>*046 | 924<br>955<br>*052 | 3 2.1 1.8<br>4 2.8 2.4<br>5 3.5 3.0<br>6 4.2 3.6 |
| 677<br>678<br>679 | 83 059<br>123<br>187  | 065<br>129<br>193  | 072<br>136<br>200  | 078<br>142<br>206  | 0\$5<br>149<br>213 | 091<br>155<br>219  | 097<br>161<br>225           | 104<br>168<br>232  | 110<br>174<br>238  | 117<br>181<br>245  | 7 4.9 4.2<br>8 5.6 4.8<br>9 6.3 5.4              |
| 680               | 251                   | 257                | 264                | 270                | 276                | 283                | 289                         | 296                | 302                | 308                |                                                  |
| 681<br>682<br>683 | 315<br>378<br>442     | 321<br>385<br>448  | 327<br>391<br>455  | 334<br>398<br>461  | 340<br>404<br>467  | 347<br>410<br>474  | 353<br>417<br>480           | 359<br>423<br>487  | 366<br>429<br>493  | 372<br>436<br>499  |                                                  |
| 684<br>685<br>686 | 506<br>569<br>632     | 512<br>575<br>639  | 518<br>582<br>645  | 525<br>588<br>651  | 531<br>594<br>658  | 537<br>601<br>664  | 544<br>607<br>670           | 550<br>613<br>677  | 556<br>620<br>683  | 563<br>626<br>689  |                                                  |
| 687<br>688<br>689 | 696<br>759<br>822     | 702<br>765<br>828  | 708<br>771<br>835  | 715<br>778<br>841  | 721<br>784<br>847  | 727<br>790<br>853  | 734<br>797<br>860           | 740<br>803<br>866  | 746<br>809<br>872  | 753<br>816<br>879  |                                                  |
| 690               | 885                   | 891                | 897                | 904                | 910                | 916                | 923                         | 929                | 935                | 942                |                                                  |
| 691<br>692<br>693 | 948<br>84 011<br>073  | 954<br>017<br>080  | 960<br>023<br>086  | 967<br>029<br>092  | 973<br>036<br>095  | 979<br>042<br>105  | 955<br>048<br>111           | 992<br>055<br>117  | 998<br>061<br>123  | *004<br>067<br>130 |                                                  |
| 694<br>695<br>696 | 136<br>198<br>261     | 142<br>205<br>267  | 148<br>211<br>273  | 155<br>217<br>280  | 161<br>223<br>286  | 167<br>230<br>292  | 173<br>236<br>298           | 180<br>242<br>305  | 186<br>248<br>311  | 192<br>255<br>317  |                                                  |
| 697<br>698<br>699 | 323<br>386<br>448     | 330<br>392<br>454  | 336<br>398<br>460  | 342<br>404<br>466  | 348<br>410<br>473  | 354<br>417<br>479  | 361<br>423<br>485           | 367<br>429<br>491  | 373<br>435<br>497  | 379<br>442<br>504  |                                                  |
| 700               | 510                   | 516                | 522                | 528                | 535                | 541                | 547                         | 553                | 559                | 566                |                                                  |
| N.                | 0                     | 1                  | 2                  | 3                  | 4                  | 5                  | 6                           | 7                  | 8                  | 9                  | Prop. Pts.                                       |

| N.                | 0                    | 1                 | 2                 | 3                   | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                                    |
|-------------------|----------------------|-------------------|-------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------------------------------------|
| 700               | 84 510               | 516               | 522               | 528                 | 535                | 541                | 547                | 553                | 559                | 566                |                                                               |
| 701<br>702<br>703 | 572<br>634<br>696    | 578<br>640<br>702 | 584<br>646<br>708 | 590<br>652<br>714   | 597<br>658<br>720  | 603<br>665<br>726  | 609<br>671<br>733  | 615<br>677<br>739  | 621<br>683<br>745  | 628<br>689<br>751  |                                                               |
| 704<br>705<br>706 | 757<br>819<br>880    | 763<br>825<br>887 | 770<br>831<br>893 | 776<br>837<br>899   | 782<br>844<br>905  | 788<br>850<br>911  | 794<br>856<br>917  | 800<br>862<br>924  | 807<br>868<br>930  | 813<br>874<br>936  | log 7<br>=.81509 80400                                        |
| 707<br>708<br>709 | 942<br>85 003<br>065 | 948<br>009<br>071 | 954<br>016<br>077 | $960 \\ 022 \\ 083$ | 967<br>028<br>089  | 973<br>034<br>095  | 979<br>040<br>101  | 985<br>046<br>107  | 991<br>052<br>114  | 997<br>058<br>120  |                                                               |
| 710               | 126                  | 132               | 138               | 144                 | 150                | 156                | 163                | 169                | 175                | 181                |                                                               |
| 711<br>712<br>713 | 187<br>248<br>309    | 193<br>254<br>315 | 199<br>260<br>321 | 205<br>266<br>327   | 211<br>272<br>333  | 217<br>278<br>339  | 224<br>285<br>345  | 230<br>291<br>352  | 236<br>297<br>358  | 242<br>303<br>364  | 7 6<br>1 0.7 0.6<br>2 1.4 1.2                                 |
| 714<br>715<br>716 | 370<br>431<br>491    | 376<br>437<br>497 | 382<br>443<br>503 | 388<br>449<br>509   | 394<br>455<br>516  | 400<br>461<br>522  | 406<br>467<br>528  | 412<br>473<br>534  | 418<br>479<br>540  | 425<br>485<br>546  | 3 2.1 1.8<br>4 2.8 2.4<br>5 3.5 3.0<br>6 4.2 3.6<br>7 4.9 4.2 |
| 717<br>718<br>719 | 552<br>612<br>673    | 558<br>618<br>679 | 564<br>625<br>685 | 570<br>631<br>691   | 576<br>637<br>697  | 582<br>643<br>703  | 588<br>649<br>709  | 594<br>655<br>715  | 600<br>661<br>721  | 606<br>667<br>727  | 7 4.9 4.2<br>8 5.6 4.8<br>9 6.3 5.4                           |
| 720               | 733                  | 739               | 745               | 751                 | 757                | 763                | 769                | 775                | 781                | 788                |                                                               |
| 721<br>722<br>723 | 794<br>854<br>914    | 800<br>860<br>920 | 806<br>866<br>926 | 812<br>872<br>932   | 818<br>878<br>938  | 824<br>884<br>944  | 830<br>890<br>950  | 836<br>896<br>956  | 842<br>902<br>962  | 848<br>908<br>968  |                                                               |
| 724<br>725<br>726 | 974<br>86 034<br>094 | 980<br>040<br>100 | 986<br>046<br>106 | 992<br>052<br>112   | 998<br>058<br>118  | *004<br>064<br>124 | *010<br>070<br>130 | *016<br>076<br>136 | *022<br>082<br>141 | *028<br>088<br>147 |                                                               |
| 727<br>728<br>729 | 153<br>213<br>273    | 159<br>219<br>279 | 165<br>225<br>285 | 171<br>231<br>291   | 177<br>237<br>297  | 183<br>243<br>303  | 189<br>249<br>308  | 195<br>255<br>314  | 201<br>261<br>320  | 207<br>267<br>326  |                                                               |
| 730               | 332                  | 338               | 344               | 350                 | 356                | 362                | 368                | 374                | 380                | 386                |                                                               |
| 731<br>732<br>733 | 392<br>451<br>510    | 398<br>457<br>516 | 404<br>463<br>522 | 410<br>469<br>528   | 415<br>475<br>534  | 421<br>481<br>540  | 427<br>487<br>546  | 433<br>493<br>552  | 439<br>499<br>558  | 445<br>504<br>564  | 1 0.5<br>2 1.0<br>3 1.5                                       |
| 734<br>735<br>736 | 570<br>629<br>688    | 576<br>635<br>694 | 581<br>641<br>700 | 587<br>646<br>705   | 593<br>652<br>711  | 599<br>658<br>717  | 605<br>664<br>723  | 611<br>670<br>729  | 617<br>676<br>735  | 623<br>682<br>741  | 3   1.5<br>4   2.0<br>5   2.5<br>6   3.0                      |
| 737<br>738<br>739 | 747<br>806<br>864    | 753<br>812<br>870 | 759<br>817<br>876 | 764<br>823<br>882   | 770<br>829<br>888  | 776<br>835<br>894  | 782<br>841<br>900  | 788<br>847<br>906  | 794<br>853<br>911  | 800<br>859<br>917  | 7 3.5<br>8 4.0<br>9 4.5                                       |
| 740               | 923                  | 929               | 935               | 941                 | 947                | 953                | 958                | 964                | 970                | 976                | 1                                                             |
| 741<br>742<br>743 | 982<br>87 040<br>099 | 988<br>046<br>105 | 994<br>052<br>111 | 999<br>058<br>116   | *005<br>064<br>122 | *011<br>070<br>128 | *017<br>075<br>134 | *023<br>081<br>140 | *029<br>087<br>146 | *035<br>093<br>151 |                                                               |
| 744<br>745<br>746 | 157<br>216<br>274    | 163<br>221<br>280 | 169<br>227<br>286 | 175<br>233<br>291   | 181<br>239<br>297  | 186<br>245<br>303  | 192<br>251<br>309  | 198<br>256<br>315  | 204<br>262<br>320  | 210<br>268<br>326  |                                                               |
| 747<br>748<br>749 | 332<br>390<br>448    | 338<br>396<br>454 | 344<br>402<br>460 | 349<br>408<br>466   | 355<br>413<br>471  | 361<br>419<br>477  | 367<br>425<br>483  | 373<br>431<br>489  | 379<br>437<br>495  | 384<br>442<br>500  |                                                               |
| 750               | 506                  | 512               | 518               | 523                 | 529                | 535                | 541                | 547                | 552                | 558                | 1                                                             |
| N.                | 0                    | 1                 | 2                 | 3                   | 4                  | 5                  | 6                  | 7                  | 8                  | 9                  | Prop. Pts.                                                    |

| N.                | 0             | 1          | 2                 | 3                 | 4                 | 5           | 6           | 7           | 8           | 9           | Prop. Pts.                                                                        |
|-------------------|---------------|------------|-------------------|-------------------|-------------------|-------------|-------------|-------------|-------------|-------------|-----------------------------------------------------------------------------------|
| 750               | 57 336        | 512        | 515               | 523               | 529               | 3::5        | 541         | 547         | 77.0        | 7,7%        |                                                                                   |
| 751               | 564           | 570        | 576<br>633        | 551<br>639        | 587               | 593<br>651  | 599<br>656  | 10)4        | 1,111       | 616         |                                                                                   |
| 752<br>753        | 622<br>679    | 628<br>655 | 691               | 697               | 645<br>703        | 708         | 714         | 662<br>729  | 726         | 674<br>731  |                                                                                   |
| 754               | 737           | 743        | 749               | 754               | 760               | 766         | 772         | 777         | 753         | 759         |                                                                                   |
| 754<br>755<br>756 | 795<br>852    | 500<br>558 | 806               | 812<br>869        | 815<br>875        | 823<br>881  | 529<br>557  | 535<br>592  | 541         |             |                                                                                   |
|                   | 910           | 915        | 921               | 927               | 933               | 935         | 914         | 950         | 955         | 961         |                                                                                   |
| 757<br>755<br>759 | 967<br>88 024 | 973<br>030 | 978<br>036        | 954<br>041        | 990<br>047        | 996<br>053  | 001         | *007<br>064 | 1013        | 076         |                                                                                   |
| 760               | USI           | 087        | 093               | 098               | 104               | 110         | 116         | 121         | 127         | -           |                                                                                   |
| 761               | 135           | 144        | 150               | 156               | 161               | 167         | 17.3        | 178         | 154         | 190         |                                                                                   |
| 762<br>763        | 195<br>252    | 201<br>258 | $\frac{207}{264}$ | 213<br>270        | 218<br>275        | 224<br>281  | 230<br>257  | 235<br>292  | 241         | 247<br>304  |                                                                                   |
| 764               | 309           | 315        | 321               | 326               | 332               | 335         | 343         | 349         | 355         | 360         |                                                                                   |
| 765<br>766        | 366<br>423    | 372<br>429 | 377<br>434        | 3\$3<br>440       | 359<br>446        | 395<br>451  | 400         | 406<br>463  | 412<br>465  | 417         |                                                                                   |
| 767               | 480           | 485        | 491               | 497               | 502               | 508         | 513         | 519         | 525         | 530         |                                                                                   |
| 765<br>769        | 536<br>593    | 542<br>598 | 547<br>604        | 553<br>610        | 559<br>615        | 564<br>621  | 570<br>627  | 576<br>632  | 551<br>635  | 587<br>643  |                                                                                   |
| 770               | 649           | 655        | 660               | 666               | 672               | 677         | 653         | 659         | 694         |             |                                                                                   |
| 771               | 705           | 711        | 717               | `                 | 728               | 734         | 739         | 745         | 7.50        | 750         | 6 5                                                                               |
| 772               | 762<br>818    | 767<br>524 | 773<br>829        | 722<br>779<br>835 | 784<br>840        | 790<br>546  | 795<br>852  | 501<br>557  | 533         | 512         | 1 0.6 0.5                                                                         |
| 773<br>774        | 874           | 880        | 885               | 891               | 897               | 902         | 908         | 913         | 919         | 925         | $egin{array}{c cccc} 2 & 1.2 & 1.0 \\ \hline 3 & 1.8 & 1.5 \\ \hline \end{array}$ |
| 775<br>776        | 930<br>980    | 936<br>992 | 941<br>997        | 947<br>*003       | 953<br>*009       | 95S<br>*014 | 964<br>*020 | 969<br>*025 | 975<br>*031 | 951<br>*037 | 4 2.4 2.0<br>5 3.0 2.5                                                            |
|                   | 89 042        | 048        | 053               | 059               | 064               | 070         | 076         | 023         | 057         | 092         | 6 3.6 3.0<br>7 4.2 3.5                                                            |
| 777<br>778<br>779 | 098           | 104        | 109               | 115               | 120               | 126         | 131         | 137         | 143         | 145         | 5 4.6 4.0                                                                         |
| 780               | 209           | 159<br>215 | 165<br>221        | 170<br>226        | $\frac{176}{232}$ | 237         | 243         | 193<br>248  | 198<br>254  | 260         | 9   5.4   4.5                                                                     |
|                   | 205           | 271        | 276               | 282               | 257               | 293         | 295         | 304         | 310         | 315         |                                                                                   |
| 781<br>782<br>783 | 321<br>376    | 326<br>382 | 332<br>387        | 337<br>393        | 343<br>395        | 348         | 354<br>400  | 360<br>415  | 3/35<br>421 | 371<br>426  |                                                                                   |
| 784               | 432           | 437        | 443               | 448               | 454               | 404<br>459  | 465         | 470         | 476         | 481         |                                                                                   |
| 785               | 487           | 492        | 498               | 504               | 509               | 515         | 520         | 526         | 531         | 537         |                                                                                   |
| 786               | 542<br>597    | 548<br>603 | 553<br>609        | 559<br>614        | 564<br>620        | 570<br>625  | 575<br>631  | 581<br>636  | 556<br>642  | 592<br>647  |                                                                                   |
| 787<br>788        | 653           | 658        | 664               | 669               | 675               | 650         | 656         | 691         | 697         | 702         |                                                                                   |
| 789               | 708           | 713        | 719               | 724               | 730               | 735         | 741         | 746         | 752         | 757         |                                                                                   |
| <b>790</b> 791    | 763<br>815    | 768<br>823 | 529               | 779<br>534        | 785<br>840        | 790<br>845  | 796<br>\$51 | 801<br>850  | 807         | 812         |                                                                                   |
| 792               | 873           | 878        | 883               | 889               | 894               | 900         | 905         | 911         | 910         | 922         |                                                                                   |
| 793               | 927           | 933        | 938               | 944               | 949               | 955<br>*009 | 960<br>*015 | 900         | 971<br>*026 | 977<br>*031 |                                                                                   |
| 794<br>795        | 982<br>90 037 | 988<br>042 | 993<br>048        | 998<br>053        | *004<br>059       | 064         | 069         | 075         | 080         | 086         |                                                                                   |
| 796               | 091           | 097        | 102               | 108               | 113               | 119         | 124         | 129         | 135         | 140         |                                                                                   |
| 797<br>798        | 146<br>200    | 151<br>206 | 157<br>211        | 162<br>217        | 168<br>222        | 173<br>227  | 179<br>233  | 184<br>238  | 189<br>244  | 195<br>249  |                                                                                   |
| 799               | 255           | 260        | 266               | 271               | 276               | 282         | 287         | 293         | 298         | 304         |                                                                                   |
| 800               | 309           | 314        | 320               | 325               | 331               | 336         | 342         | 347         | 352         | 358         |                                                                                   |
| N.                | 0             | 1          | 2                 | 3                 | 4                 | 5           | 6           | 7           | 8           | . 9         | Prop. Pts.                                                                        |

| N.                | 0                    | 1                   | 2                 | 3                   | 4                 | 5                   | 6                 | 7                         | 8                  | 9                   | Prop. Pts.                                                       |
|-------------------|----------------------|---------------------|-------------------|---------------------|-------------------|---------------------|-------------------|---------------------------|--------------------|---------------------|------------------------------------------------------------------|
| 800               | 90 309               | 314                 | 320               | 325                 | 331               | 336                 | 342               | 347                       | 352                | 358                 |                                                                  |
| 801<br>802<br>803 | 363<br>417<br>472    | 369<br>423<br>477   | 374<br>425<br>482 | 350<br>434<br>488   | 385<br>439<br>493 | 390<br>445<br>499   | 396<br>450<br>504 | 401<br>455<br>509         | 407<br>401<br>515  | 412<br>466<br>520   |                                                                  |
| 804<br>805<br>806 | 526<br>580<br>634    | 531<br>585<br>639   | 536<br>590<br>644 | 542<br>596<br>650   | 547<br>601<br>655 | 553<br>607<br>660   | 558<br>612<br>666 | 563<br>617<br>671         | 569<br>623<br>677  | 574<br>628<br>682   |                                                                  |
| 807<br>808<br>809 | 687<br>741<br>795    | 693<br>747<br>800   | 69S<br>752<br>806 | 703<br>757<br>811   | 709<br>763<br>816 | 714<br>768<br>822   | 720<br>773<br>827 | 725<br>779<br>832         | 730<br>784<br>838  | 736<br>789<br>843   |                                                                  |
| 810               | 849                  | 854                 | \$59              | 865                 | 870               | 875                 | 881               | 886                       | 891                | 897                 |                                                                  |
| 811<br>812<br>813 | 902<br>956<br>91 009 | 907<br>961<br>014   | 913<br>966<br>020 | 918<br>972<br>025   | 924<br>977<br>030 | 929<br>982<br>036   | 934<br>958<br>041 | 940<br>993<br><b>0</b> 46 | 945<br>998<br>052  | 950<br>*004<br>057  |                                                                  |
| 814<br>815<br>816 | 062<br>116<br>169    | 068<br>121<br>174   | 073<br>126<br>180 | 078<br>132<br>185   | 084<br>137<br>190 | 089<br>142<br>196   | 094<br>148<br>201 | 100<br>153<br>206         | 105<br>158<br>212  | 110<br>164<br>217   |                                                                  |
| 817<br>818<br>819 | 222<br>275<br>328    | 228<br>281<br>334   | 233<br>286<br>339 | 238<br>291<br>344   | 243<br>297<br>350 | 249<br>302<br>355   | 254<br>307<br>360 | 259<br>312<br>365         | 265<br>318<br>371  | 270<br>323<br>376   |                                                                  |
| 820               | 381                  | 387                 | 392               | 397                 | 403               | 408                 | 413               | 418                       | 424                | 429                 |                                                                  |
| 821<br>822<br>823 | 434<br>487<br>540    | 440<br>492<br>545   | 445<br>498<br>551 | 450<br>503<br>556   | 455<br>508<br>561 | 461<br>514<br>566   | 466<br>519<br>572 | 471<br>524<br>577         | 477<br>529<br>582  | 482<br>535<br>587   | 6 5<br>1 0.6 0.5<br>2 1.2 1.0<br>3 1.8 1.5                       |
| 824<br>825<br>826 | 593<br>645<br>698    | 598<br>651<br>703   | 603<br>656<br>709 | 609<br>661<br>714   | 614<br>666<br>719 | $619 \\ 672 \\ 724$ | 624<br>677<br>730 | 630<br>682<br>735         | 635<br>687<br>740  | 640<br>693<br>745   | 4 2.4 2.0<br>5 3.0 2.5                                           |
| 827<br>828<br>829 | 751<br>803<br>855    | 756<br>S08<br>861   | 761<br>814<br>806 | 766<br>819<br>871   | 772<br>824<br>876 | 777<br>829<br>882   | 782<br>834<br>887 | 787<br>840<br>892         | 793<br>845<br>897  | 798<br>850<br>903   | 6   3.6   3.0<br>7   4.2   3.5<br>8   4.8   4.0<br>9   5.4   4.5 |
| 830               | 908                  | 913                 | 918               | 924                 | 929               | 934                 | 939               | 944                       | 950                | 955                 | ,                                                                |
| 831<br>832<br>833 | 960<br>92 012<br>065 | 965<br>018<br>070   | 971<br>023<br>075 | 976<br>028<br>080   | 981<br>033<br>085 | 986<br>038<br>091   | 991<br>044<br>096 | 997<br>049<br>101         | *002<br>054<br>106 | *007<br>059<br>111  |                                                                  |
| 834<br>835<br>836 | 117<br>169<br>221    | $122 \\ 174 \\ 226$ | 127<br>179<br>231 | 132<br>184<br>236   | 137<br>189<br>241 | 143<br>195<br>247   | 148<br>200<br>252 | 153<br>205<br>257         | 158<br>210<br>262  | $163 \\ 215 \\ 267$ |                                                                  |
| 837<br>838<br>839 | 273<br>324<br>376    | 278<br>330<br>381   | 283<br>335<br>387 | 288<br>340<br>392   | 293<br>345<br>397 | 298<br>350<br>402   | 304<br>355<br>407 | 309<br>361<br>412         | 314<br>366<br>418  | 319<br>371<br>423   |                                                                  |
| 840               | 428                  | 433                 | 438               | 443                 | 449               | 454                 | 459               | 464                       | 469                | 474                 | 4                                                                |
| 841<br>842<br>843 | 480<br>531<br>583    | 485<br>536<br>588   | 490<br>542<br>593 | 495<br>547<br>598   | 500<br>552<br>603 | 505<br>557<br>609   | 511<br>562<br>614 | 516<br>567<br>619         | 521<br>572<br>624  | 526<br>578<br>629   |                                                                  |
| 844<br>845<br>846 | 634<br>686<br>737    | 639<br>691<br>742   | 645<br>696<br>747 | $650 \\ 701 \\ 752$ | 655<br>706<br>758 | 660<br>711<br>763   | 665<br>716<br>768 | 670<br>722<br>773         | 675<br>727<br>778  | 681<br>732<br>783   |                                                                  |
| 847<br>848<br>849 | 788<br>840<br>891    | 793<br>845<br>896   | 799<br>850<br>901 | 804<br>855<br>906   | 809<br>860<br>911 | 814<br>865<br>916   | 819<br>870<br>921 | 824<br>875<br>927         | 829<br>881<br>932  | 834<br>886<br>937   | ,                                                                |
| 850               | 942                  | 947                 | 952               | 957                 | 962               | 967                 | 973               | 978                       | 983                | 988                 |                                                                  |
| N.                | 0                    | 1                   | 2                 | 3                   | 4                 | 5                   | 6                 | 7                         | 8                  | 9                   | Prop. Pts.                                                       |

| N.                 | 0                  | 1          | 2            | 3           | 4                 | 5           | 6                 | 7           | 8          | 9              | Prop. Pts.                                            |
|--------------------|--------------------|------------|--------------|-------------|-------------------|-------------|-------------------|-------------|------------|----------------|-------------------------------------------------------|
| 650                | 12.42              |            | 952          | •• 1.7      | ***-              |             | : 173             |             | 4000       | 1000           |                                                       |
|                    | 95 Ö14             | 0.45 l     | *.<br>U.34   | *,,<br>059  | *: 13<br>149 k    | *1 : 5      | 9.5               | 4150        | 1:55       | 12.43<br>12.43 |                                                       |
| 573                | (95                | 100        | 105          | 110         | 115               | 120         | 125               | 1331        | 136        | 141            |                                                       |
| 995<br>5           | 146<br>197         | 151<br>202 | 156          | 161<br>212  | 166<br>217        | 171         | 176<br>275        | 181<br>282  | 156        | 192<br>212     |                                                       |
|                    | 247                | 252        | 255          | 263         | 268               | 273         |                   | 253         | 255        | 293            |                                                       |
| 55<br>55           | 295<br>349         | 303<br>354 | 308<br>359   | 313<br>364  | 31S<br>363        | 323<br>374  | 325<br>379        | 334<br>354  | 339<br>559 | 344<br>394     |                                                       |
| 200                | 3.09               | 404        | 409          | 414         | 420               | 425         | 430               | 435         | 410        | 445            |                                                       |
| 860                | 450                | 455<br>505 | 460<br>510   | 465<br>515  | 470<br>520        | 475         | 450<br>531        | 485         | 490        | 495            | 16   5                                                |
| 727<br>727         | 3 47<br>351<br>351 | J. 16      | 561          | زاءان       | 571               | 526<br>516  | 551               | 25.00       | 7.1        | 546<br>556     | 1 0.6 0.5                                             |
| 763<br>564         | 651                | 656        | 611<br>661   | 666         | 621<br>671        | 626<br>676  | 651<br>682        | 635<br>687  | 641<br>692 | 646<br>697     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
| 8/15               | 782<br>752         | 707<br>757 | 712<br>762   | 717<br>767  | 1212              |             | 732               | 737         | 742<br>792 | 747            | 4 2.4 2.0<br>5 3.0 2.5                                |
| 566<br>567         |                    | 807        | 812          | 817         |                   |             | 782<br>832        | 787<br>837  | 842        | 797<br>847     | 6 3.6 3.0<br>7 4.2 3.5                                |
| 565<br>569         | 802<br>852<br>902  | 857<br>907 | 862<br>912   | 867<br>917  | 822<br>872<br>922 | 827.55      | 552<br>932        | 557<br>937  | 852<br>942 | 947            | 5 4.5 4.0<br>9 5.4 4.5                                |
| 870                | 932                | 957        | 962          | 907         | 972               | 477         | 45-2              | 957         | 992        | 95.7           | 5   0.1   4.0                                         |
|                    | 94 002             | 007        | 012          | 017         | 022               | 027<br>077  | 032               | 1.37        | (1)        | ++47           |                                                       |
| 571<br>572<br>573  | 052<br>101         | 057<br>106 | 062<br>111   | 116         | 072<br>121        | 077<br>126  | 052<br>131        | 136         | GH1<br>141 | 146            |                                                       |
| 874                | 151                | 156        | 161          | 166         | 171               | 176         | 151               | 186         | 191        | 196            |                                                       |
| \$75<br>\$76       | 201<br>250         | 206<br>255 | 211<br>260   | 216<br>265  | 221<br>270        | 226<br>275  | 231<br>280        | 236<br>285  | 240<br>290 | 245<br>295     |                                                       |
| \$77<br>\$77       | 300<br>349         | 305        | 310<br>359   | 315         | 320<br>369        | 325<br>374  | 330<br>379        | 335         | 340        | 345<br>394     |                                                       |
| 578<br>579         | 399                | 354<br>404 | 409          | 364<br>414  | 419               | 424         | 429               | 354<br>433  | 389<br>438 | 443            |                                                       |
| 880                | 448                | 453        | 458          | 463         | 468               | 473         | 478               | 453         | 488        | 493            | 14                                                    |
| 551<br>552         | 495<br>547         | 503<br>552 | 507<br>557   | 512<br>562  | 517<br>567        | 522<br>571  | 275<br>275        | 532<br>581  | 507<br>556 |                | 1 0.4                                                 |
| 553                | 596                | 601        | 606          | 611         | 616               | 621         | 626               | 630         | 655        | 540            | 2 0.8<br>3 1.2                                        |
| \$84<br>\$85       | 645<br>694         | 650<br>699 | 655<br>704   | 660<br>709  | 665<br>714        | 670<br>719  | 675<br>724<br>773 | 659<br>7213 | 685<br>704 | 689<br>735     | 4 1.0                                                 |
| 886                | 743                | 748        | 753          | 758         | 763               | 768         |                   |             | 753        | 787            | 5,2.4                                                 |
| 887<br>888         | 792<br>841         | 797<br>846 | \$02<br>\$51 | 807<br>856  | 812<br>861        | 817<br>866  | S22<br>S71        | S27<br>S76  | 832<br>880 | 836<br>885     | 6 14 522<br>5 23 5<br>8 23 5                          |
| 889                | 890                | \$95       | 900          | 905         | 910               | 915         | 919               | 924         | 920        | 934            | 913.6                                                 |
| 890<br>891         | 939<br>988         | 944        | 949          | 954<br>*∂⊎2 | 959<br>*067       | 963<br>*012 | 965<br>*017       | 973<br>*022 | 975        | 953            |                                                       |
| 591<br>592<br>593  | 95 036<br>085      | 041<br>090 | 046<br>095   | 051<br>100  | 056<br>105        | 061<br>109  | 006<br>114        | Č71<br>119  | 675<br>124 | 133            | -                                                     |
| 894                | 134<br>152         | 139<br>187 | 143<br>192   | 148<br>197  | $\frac{153}{202}$ | 158<br>207  | 163<br>211        | 168<br>216  | 173<br>221 | 177<br>226     |                                                       |
| S95<br>896         | 231                | 236        | 240          | 245         | 250               | 255         | 260               | 265         | 270        | 274            |                                                       |
| 89 <b>7</b><br>898 | 279<br>328         | 284<br>332 | 289<br>337   | 294<br>342  | 299<br>347        | 303<br>352  | 308<br>357        | 313<br>361  | 318<br>366 | 323<br>371     |                                                       |
| 899                | 376                | 381        | 386          | 390         | 395               | 400         | 405               | 410         | 415        | 419            |                                                       |
| 900                | 424                | 429        | 434          | 439         | 444               | 448         | 453               | 458         | 463        | 468            |                                                       |
| N.                 | 0                  | 1          | 2            | 3           | 4                 | 5           | 6                 | 7           | 8          | 9              | Prop. Pts.                                            |

| N.                | 0                 | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 | 7                 | 8                   | 9                 | Prop. Pts.                                                                 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|----------------------------------------------------------------------------|
| 900               | 95 424            | 429               | 434               | 439               | 444               | 448               | 453               | 458               | 463                 | 468               |                                                                            |
| 901               | 472               | 477               | 482               | 487               | 492               | 497               | 501               | 506               | 511                 | 516               |                                                                            |
| 902               | 521               | 525               | 530               | 535               | 540               | 545               | 550               | 554               | 559                 | 564               |                                                                            |
| 903               | 569               | 574               | 578               | 583               | 558               | 593               | 598               | 602               | 607                 | 612               |                                                                            |
| 904               | 617               | 622               | 626               | 631               | 636               | 641               | 646               | 650               | 655                 | 660               |                                                                            |
| 905               | 665               | 670               | 674               | 679               | 684               | 689               | 694               | 698               | 703                 | 708               |                                                                            |
| 906               | 713               | 718               | 722               | 727               | 732               | 737               | 742               | 746               | 751                 | 756               |                                                                            |
| 907               | 761               | 766               | 770               | 775               | 780               | 785               | 789               | 794               | 799                 | 804               |                                                                            |
| 908               | 809               | 813               | 818               | 823               | 828               | 832               | 837               | 842               | 847                 | 852               |                                                                            |
| 909               | 856               | 861               | 866               | 871               | 875               | 880               | 885               | 890               | 895                 | 899               |                                                                            |
| 910               | 904               | 909               | 914               | 918               | 923               | 928               | 933               | 938               | 942                 | 947               |                                                                            |
| 911               | 952               | 957               | 961               | 966               | 971               | 976               | 980               | 985               | 990                 | 995               |                                                                            |
| 912               | 999               | *004              | *009              | *014              | *019              | *023              | *028              | *033              | *038                | *042              |                                                                            |
| 913               | 96 047            | 052               | 057               | 061               | 066               | 071               | 076               | 080               | 085                 | 090               |                                                                            |
| 914               | 095               | 099               | 104               | 109               | 114               | 118               | 123               | 128               | 133                 | 137               |                                                                            |
| 915               | 142               | 147               | 152               | 156               | 161               | 166               | 171               | 175               | 180                 | 185               |                                                                            |
| 916               | 190               | 194               | 199               | 204               | 209               | 213               | 218               | 223               | 227                 | 232               |                                                                            |
| 917               | 237               | 242               | 246               | 251               | 256               | 261               | 265               | 270               | 275                 | 280               |                                                                            |
| 918               | 284               | 289               | 294               | 298               | 303               | 308               | 313               | 317               | 322                 | 327               |                                                                            |
| 919               | 332               | 336               | 341               | 346               | 350               | 355               | 360               | 365               | 369                 | 374               |                                                                            |
| 920               | 379               | 384               | 388               | 393               | 398               | 402               | 407               | 412               | 417                 | 421               |                                                                            |
| 921               | 426               | 431               | 435               | 440               | 445               | 450               | 454               | 459               | 464                 | 468               | 5 4                                                                        |
| 922               | 473               | 478               | 483               | 487               | 492               | 497               | 501               | 506               | 511                 | 515               | 1 0.5 0.4                                                                  |
| 923               | 520               | 525               | 530               | 534               | 539               | 544               | 548               | 553               | 558                 | 562               | 2 1.0 0.8                                                                  |
| 924<br>925<br>926 | 567<br>614<br>661 | 572<br>619<br>666 | 577<br>624<br>670 | 581<br>628<br>675 | 586<br>633<br>680 | 591<br>638<br>685 | 595<br>642<br>689 | 600<br>647<br>694 | 605<br>652<br>699   | 609<br>656<br>703 | 2 1.0 0.8<br>3 1.5 1.2<br>4 2.0 1.6<br>5 2.5 2.0<br>6 3.0 2.4<br>7 3.5 2.8 |
| 927               | 708               | 713               | 717               | 722               | 727               | 731               | 736               | 741               | 745                 | 750               | 7 3.5 2.8                                                                  |
| 928               | 755               | 759               | 764               | 769               | 774               | 778               | 783               | 788               | 792                 | 797               | 8 4.0 3.2                                                                  |
| 929               | 802               | 806               | 811               | 816               | 820               | 825               | 830               | 834               | 839                 | 844               | 9 4.5 3.6                                                                  |
| 930               | 848               | 853               | 858               | \$62              | 867               | 872               | 876               | 881               | 886                 | 890               |                                                                            |
| 931               | 895               | 900               | 904               | 909               | 914               | 918               | 923               | 928               | 932                 | 937               |                                                                            |
| 932               | 942               | 946               | 951               | 956               | 960               | 965               | 970               | 974               | 979                 | 984               |                                                                            |
| 933               | 988               | 993               | 997               | *002              | *007              | *011              | *016              | *021              | *025                | *030              |                                                                            |
| 934               | 97 035            | 039               | 044               | 049               | 053               | 058               | 063               | 067               | 072                 | 077               |                                                                            |
| 935               | 081               | 086               | 090               | 095               | 100               | 104               | 109               | 114               | 118                 | 123               |                                                                            |
| 936               | 128               | 132               | 137               | 142               | 146               | 151               | 155               | 160               | 165                 | 169               |                                                                            |
| 937<br>938<br>939 | 174<br>220<br>267 | 179<br>225<br>271 | 183<br>230<br>276 | 188<br>234<br>280 | 192<br>239<br>285 | 197<br>243<br>290 | 202<br>248<br>294 | 206<br>253<br>299 | $211 \\ 257 \\ 304$ | 216<br>262<br>308 |                                                                            |
| 940               | 313               | 317               | 322               | 327               | 331               | 336               | 340               | 345               | 350                 | 354               |                                                                            |
| 941               | 359               | 364               | 368               | 373               | 377               | 382               | 387               | 391               | 396                 | 400               |                                                                            |
| 942               | 405               | 410               | 414               | 419               | 424               | 428               | 433               | 437               | 442                 | 447               |                                                                            |
| 943               | 451               | 456               | 460               | 465               | 470               | 474               | 479               | 483               | 488                 | 493               |                                                                            |
| 944               | 497               | 502               | 506               | 511               | 516               | 520               | 525               | 529               | 534                 | 539               |                                                                            |
| 945               | 543               | 548               | 552               | 557               | 562               | 566               | 571               | 575               | 580                 | 585               |                                                                            |
| 946               | 589               | 594               | 598               | 603               | 607               | 612               | 617               | 621               | 626                 | 630               |                                                                            |
| 947<br>948<br>949 | 635<br>681<br>727 | 640<br>685<br>731 | 644<br>690<br>736 | 649<br>695<br>740 | 653<br>699<br>745 | 658<br>704<br>749 | 663<br>708<br>754 | 667<br>713<br>759 | $672 \\ 717 \\ 763$ | 676<br>722<br>768 | -                                                                          |
| 950               | 772               | 777               | 782               | 786               | 791               | 795               | 800               | 804               | 809                 | 813               |                                                                            |
| N.                | 0                 | 1                 | 2                 | 3                 | 4                 | 5                 | 6                 | 7                 | 8                   | 9                 | Prop. Pts.                                                                 |

| N.                | 0                    | 1                 | 2                  | 3                  | 4                  | 5                  | 6                  | 7                        | 8                  | 9                        | Prop. Pts.                                       |
|-------------------|----------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------------------------------------|
| 950               | 97 772               | 777               | 782                | 756                | 791                | 795                | SIN                | 804                      | 809                | 813                      |                                                  |
| 953<br>953        | 515<br>864<br>969    | 525<br>505<br>914 | 5.17<br>873<br>918 | 832<br>877<br>923  | 5.66<br>852<br>925 | 511<br>586<br>932  | 845<br>891<br>937  | 550<br>596<br>941        | 533<br>900<br>946  | 839<br>905<br>930        |                                                  |
| 554<br>955<br>956 | 955<br>95 600<br>646 | 959<br>095<br>050 | 964<br>009<br>055  | 968<br>014<br>079  | 973<br>019<br>064  | 975<br>023<br>068  | 952<br>025<br>073  | 957<br>032<br>078        | 991<br>037<br>082  | 996<br>041<br>087        |                                                  |
| 957<br>959<br>959 | 091<br>137<br>152    | 096<br>141<br>186 | 100<br>146<br>191  | 105<br>150<br>195  | 109<br>135<br>200  | 114<br>159<br>204  | 118<br>164<br>2(c) | 123<br>168<br>214        | 127<br>173<br>215  | 132<br>177<br>223        |                                                  |
| 960               | 227                  | 232               | 236                | 241                | 245                | 250                | 254                | 259                      | 263                | 268                      |                                                  |
| 962<br>963        | 272<br>318<br>363    | 277<br>322<br>367 | 281<br>327<br>372  | 256<br>331<br>376  | 290<br>336<br>381  | 265<br>340<br>385  | 25.9<br>345<br>390 | 304<br>349<br><b>394</b> | 30%<br>354<br>399  | 313<br>358<br>403        |                                                  |
| 964<br>965<br>966 | 408<br>453<br>498    | 412<br>457<br>502 | 417<br>462<br>507  | 421<br>466<br>511  | 426<br>471<br>516  | 430<br>475<br>520  | 435<br>450<br>525  | 439<br>484<br>529        | 444<br>459<br>534  | 448<br>493<br>538        |                                                  |
| 967<br>968<br>969 | 543<br>588<br>632    | 547<br>592<br>637 | 552<br>597<br>641  | 556<br>601<br>646  | 561<br>605<br>650  | 565<br>610<br>655  | 570<br>614<br>659  | 574<br>619<br>664        | 579<br>623<br>668  | 583<br>628<br>673        |                                                  |
| 970               | 677                  | 652               | 686                | 691                | 695                | 7.00               | 704                | 709                      | 713                | 717                      |                                                  |
| 971<br>972<br>973 | 722<br>707<br>811    | 726<br>771<br>816 | 731<br>776<br>520  | 735<br>780<br>825  | 740<br>7529        | 744<br>789<br>834  | 749<br>793<br>838  | 753<br>795<br>843        | 758<br>802<br>847  | 763<br>763<br>755<br>755 | 1 0.5 0.4<br>2 1.0 0.8                           |
| 974<br>975<br>976 | \$56<br>900<br>945   | 860<br>905<br>949 | 865<br>909<br>954  | S69<br>914<br>958  | 874<br>918<br>963  | 878<br>923<br>967  | 883<br>927<br>972  | 887<br>932<br>976        | 892<br>936<br>981  | 896<br>941<br>985        | 3 1.5 1.2<br>4 2.0 1.6<br>5 2.5 2.0<br>6 3.0 2.4 |
| 977<br>978<br>979 | 989<br>99 034<br>078 | 994<br>038<br>083 | 998<br>043<br>087  | *003<br>047<br>092 | *007<br>052<br>096 | *012<br>056<br>100 | *016<br>061<br>105 | *021<br>065<br>109       | *025<br>069<br>114 | *029<br>074<br>118       | 7 3.5 2.8<br>8 4.0 3.2<br>9 4.5 3.6              |
| 980               | 123                  | 127               | 131                | 136                | 140                | 145                | 149                | 154                      | 158                | 162                      |                                                  |
| 981<br>982<br>983 | 167<br>211<br>255    | 171<br>216<br>260 | 176<br>220<br>264  | 180<br>224<br>269  | 185<br>229<br>273  | 189<br>233<br>277  | 193<br>238<br>282  | 198<br>242<br>286        | 202<br>247<br>291  | 207<br>251<br>295        |                                                  |
| 984<br>985<br>986 | 300<br>344<br>388    | 304<br>348<br>392 | 308<br>352<br>396  | 313<br>357<br>401  | 317<br>361<br>405  | 322<br>366<br>410  | 326<br>370<br>414  | 330<br>374<br>419        | 335<br>379<br>423  | 339<br>383<br>427        |                                                  |
| 987<br>988<br>989 | 432<br>476<br>520    | 436<br>480<br>524 | 441<br>484<br>528  | 445<br>489<br>533  | 449<br>493<br>537  | 454<br>498<br>542  | 458<br>502<br>546  | 463<br>506<br>550        | 467<br>511<br>555  | 471<br>515<br>559        |                                                  |
| 990               | 564                  | 56S               | 572                | 577                | 581                | 585                | 590                | 594                      | 599                | 603                      |                                                  |
| 991<br>992<br>993 | 607<br>651<br>695    | 612<br>656<br>699 | 616<br>660<br>704  | 621<br>664<br>70S  | 625<br>669<br>712  | 629<br>673<br>717  | 634<br>677<br>721  | 635<br>682<br>726        | 642<br>686<br>730  | 647<br>691<br>734        | *                                                |
| 994<br>995<br>996 | 739<br>782<br>826    | 743<br>787<br>830 | 747<br>791<br>835  | 752<br>795<br>839  | 756<br>800<br>843  | 760<br>804<br>848  | 765<br>808<br>852  | 769<br>813<br>856        | 774<br>817<br>861  | 778<br>822<br>865        |                                                  |
| 997<br>998<br>999 | 870<br>913<br>957    | 874<br>917<br>961 | 878<br>922<br>965  | 883<br>926<br>970  | 887<br>930<br>974  | 891<br>935<br>978  | 896<br>939<br>983  | 900<br>944<br>987        | 904<br>948<br>991  | 909<br>952<br>996        |                                                  |
| 1000              | 00 000               | 004               | 009                | 013                | 017                | 022                | 026                | 030                      | 035                | 039                      |                                                  |
| N.                | 0                    | 1                 | 2                  | 3                  | 4                  | 5                  | 6                  | 7                        | 8                  | 9                        | Prop. Pts.                                       |

#### CONDENSED LOGARITHMS TO FIFTEEN DECIMAL PLACES

[The first digits of n are given in the first row at the top; the last digit of n in the left-hand column. The first column of logarithms are those of 1, 2, 3, ..., 9. The remaining columns give  $\log (1 + x)$ , where  $x = (0.1)^k$  times 1, 2, ..., 9.]

| Last<br>Digit                             | First Digit of n>                                                                                                                                                                         | 1.                                                                                                                                                                                        | 1.0                                                                                                                                                                              | 1.00                                                                                                                                                                    |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| čit<br>}                                  | Log n                                                                                                                                                                                     | First Digits of log n>                                                                                                                                                                    | .0                                                                                                                                                                               | .00                                                                                                                                                                     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 00000 00000 00000<br>30102 99956 63981<br>47712 12547 19662<br>69205 99913 27662<br>69897 00043 36019<br>77815 12503 83044<br>84508 80400 14257<br>90308 90869 91944<br>95424 25094 39325 | 04139 26851 58225<br>07918 12460 47625<br>11394 33523 06837<br>14612 80356 78238<br>17609 12590 55681<br>20411 99826 55925<br>23044 89213 78274<br>25527 25051 03306<br>27875 36009 52829 | 0432 13737 82643<br>0860 01717 61918<br>1283 72247 05172<br>1703 33392 98780<br>2118 92990 69938<br>2530 58652 64770<br>2938 37776 85210<br>3342 37554 86950<br>3742 64979 40624 | 043 40774 79319<br>086 77215 31227<br>130 09330 20418<br>173 37128 09001<br>216 60617 56508<br>259 79807 19909<br>302 94705 53618<br>346 05321 09506<br>389 11662 36911 |

#### (continuation)

| 1.000                                                                                                                                                          | 1.0000                                                                                                              | 1.00000                                                                                               | 1.000000                                                                                       | 1.0000000                                                                               | 1.00000000                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| .000                                                                                                                                                           | .0000                                                                                                               | .00000                                                                                                | .000000                                                                                        | .0000000                                                                                | .00000000                                                            |
| 04 34272 76863<br>08 66502 11649<br>13 02688 05227<br>17 36830 58465<br>21 70929 72230<br>26 04985 47390<br>30 38997 84812<br>34 72966 85364<br>39 06892 49910 | 0 86858 02780<br>1 30286 39028<br>1 73714 31850<br>2 17141 81245<br>2 60568 87215<br>3 03995 49761<br>3 47421 68884 | 08685 88095<br>13028 81491<br>17371 74453<br>21714 66981<br>26057 59074<br>30400 50733<br>34743 41958 | 0868 58888<br>1302 88325<br>1737 17758<br>2171 47187<br>2605 76611<br>3040 06031<br>3474 35447 | 086 85890<br>130 28834<br>173 71779<br>217 14724<br>260 57668<br>304 00613<br>347 43557 | 13 02883<br>17 37178<br>21 71472<br>26 05767<br>30 40061<br>34 74356 |

[For x < .00000001, log  $(1 + x) = x \cdot M$ , to within 3 in the 17th place, where  $M = 0.43429448 \cdot \cdot \cdot$ . Hence the last column gives multiples of M except for the decimal place. All the columns that would follow have the same significant digits displaced each time one place.]

#### CONDENSED ANTILOGARITHMS TO TEN DECIMAL PLACES

[The first digits of n are given in the first row at the top;  $n=(0.1)^k x$ ;  $x=1,2,3,\cdots,9$  are given in the left-hand column. The first digits in  $10^n$  are given in the second row at the top.]

| x           | n = 0.1x                                                                                                                                              | 0.01x                                                                                                 | 0.001x                                                                                         | 0.0001x                                                                                 | $(0.1)^5x$                                                                       | $(0.1)^{5}x$                                                              | $(0.1)^7x$                                                  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|
|             | 10*                                                                                                                                                   | 1.                                                                                                    | 1.0                                                                                            | 1.00                                                                                    | 1.000                                                                            | 1.0000                                                                    | 1.00000                                                     |
| 6<br>7<br>8 | 1.25892 54118<br>1.58489 31925<br>1.99526 23150<br>2.51188 64315<br>3.16227 76602<br>3.98107 17055<br>5.01187 23363<br>6.30957 34448<br>7.94328 23472 | 04712 85481<br>07151 93052<br>09647 81961<br>12201 84543<br>14815 36215<br>17489 75549<br>20226 44346 | 0461 57903<br>0693 16689<br>0925 28861<br>1157 94543<br>1391 13857<br>1624 86929<br>1859 13881 | 046 06231<br>069 10142<br>092 14583<br>115 19555<br>138 25058<br>161 31092<br>184 37657 | 04 60528<br>06 90799<br>09 21076<br>11 51359<br>13 81646<br>16 11939<br>18 42238 | 0 46052<br>0 69078<br>0 92104<br>1 15130<br>1 38156<br>1 61182<br>1 84209 | 04605<br>06908<br>09210<br>11513<br>13816<br>16118<br>18421 |

[For n < 0.000001,  $10^n = 1 + n \cdot (1/M)$  to within 3 in the 12th decimal place, where  $(1/M) = 2.302585 \cdots$ . Hence the last column gives multiples of (1/M) except for the decimal place. All the columns that would follow contain the same significant digits displaced one place for each new column !

## TABLE II

# ACTUAL VALUES

OF THE

# TRIGONOMETRIC FUNCTIONS

FROM

#### 0° TO 90° AT INTERVALS OF ONE MINUTE

OT

#### FIVE DECIMAL PLACES



| 7        | Sin           | Tan        | Ctn              | Cos        |          | l | 7        | Sin        | Tan              | Ctn              | Cos           | [II          |
|----------|---------------|------------|------------------|------------|----------|---|----------|------------|------------------|------------------|---------------|--------------|
| 0        | .00000        | .00000     |                  | 1.0000     | 60       | I | 0        | .01745     | .01746           | 57.290           | .99985        | $\exists$    |
| 1        | 029           | 029        | 3437.7           | 000        | 59       | Н | 1        | 774        | 775              | 56.351           | 984           | <b>60</b> 59 |
| 2        | 058           | 058        | 1718.9           | 000        | 58       | Н | 2        | 803        | 804              | 55.442           | 984           | 58           |
| 3<br>4   | 087           | 087<br>116 | 1145.9<br>859.44 | 000<br>000 | 57<br>56 | Н | 3        | 832<br>862 | 833<br>862       | 54.561<br>53.709 | 983           | 58<br>57     |
| 5        | .00145        | .00145     | 687.55           | 1.0000     | 55       | П | 5        | .01891     | .01891           | 52.882           | 983           | 56           |
| 6        | 175           | 175        | 572.96           | 000        | 54       | П | 6        | 920        | 920              | 52.081           | -99982<br>982 | <b>55</b>    |
| 7        | 204           | 204        | 491.11           | 000        | 53       | П | 7        | 949        | 949              | 51.303           | 981           | 53           |
| 8        | 233           | 233<br>262 | 429.72           | 000        | 52<br>51 | П | 8        | .01978     | .01978           | 50.549<br>49.816 | 980           | 52           |
| 10       | .00291        | .00291     | 381.97<br>343.77 | 1.0000     | 50       | П | 10       | .02036     | .02036           | 49.104           | 980           | 51           |
| 11       | 320           | 320        | 312.52           | .99999     | 49       | П | ii       | 065        | 066              | 48.412           | .99979<br>979 | 50<br>49     |
| 12       | 349           | . 349      | 286.48           | 999        | 48       | Н | 12       | 094        | 095              | 47.740           | 978           | 48           |
| 13       | 378           | 378<br>407 | 264.44<br>245.55 | 999<br>999 | 47<br>46 | П | 13<br>14 | 123<br>152 | 124<br>153       | 47.085<br>46.449 | 977           | 47           |
| 14<br>15 | 407<br>.00436 | .00436     | 229.18           | .99999     | 45       | Н | 15       | .02181     | .02182           | 45.829           | 977<br>99976. | 46           |
| 16       | 465           | 465        | 214.86           | 999        | 44       | П | 16       | 211        | 211              | 45.226           | 976           | 45<br>44     |
| 17       | 495           | 495        | 202.22           | 999        | 43       | Н | 17       | 240        | 240              | 44.639           | 975           | 43           |
| 18<br>19 | 524<br>553    | 524<br>553 | 190.98<br>180.93 | 999<br>998 | 42<br>41 | П | 18<br>19 | 269<br>298 | 269<br>298       | 44.066           | 974           | 42           |
| 20       | .00582        | .00582     | 171.89           | .99998     | 40       | П | 20       | .02327     | .02328           | 42.964           | 974<br>.99973 | 41           |
| 21       | 611           | 611        | 163.70           | 998        | 39       | П | 21       | 356        | 357              | 42.433           | 972           | 40<br>39     |
| 22       | 640           | 640        | 156.26           | 998        | 38       | П | 22       | 385        | 386              | 41.916           | 972           | 38           |
| 23<br>24 | 669<br>698    | 669<br>698 | 149.47<br>143.24 | 998<br>998 | 37<br>36 | П | 23<br>24 | 414<br>443 | 415<br>444       | 41.411<br>40.917 | 971           | 37           |
| 25       | .00727        | .00727     | 137.51           | .99997     | 35       | П | 25       | .02472     | .02473           | 40.436           | 970<br>.99969 | 36<br>35     |
| 26       | 756           | 756        | 132.22           | 997        | 34       | П | 26       | 501        | 502              | 39.965           | 969           | 34           |
| 27       | 785           | 785        | 127.32           | 997        | 33       | П | 27       | 530        | 531              | 39.506           | 968           | 33           |
| 28<br>29 | 814<br>844    | 815<br>844 | 122.77<br>118.54 | 997<br>996 | 32<br>31 | П | 28<br>29 | 560<br>589 | 560<br>589       | 39.057<br>38.618 | 967<br>966    | 32           |
| 30       | .00873        | .00873     | 114.59           | .99996     | 30       | П | 30       | .02618     | .02619           | 38.188           | .99966        | 31<br>30     |
| 31       | 902           | 902        | 110.89           | 996        | 29       | П | 31       | 647        | 648              | 37.769           | 965           | 29           |
| 32       | 931           | 931        | 107.43           | 996        | 28       | Н | 32       | 676        | 677              | 37.358           | 964           | 28           |
| 33<br>34 | .00989        | .00989     | 104.17<br>101.11 | 995<br>995 | 27<br>26 | Н | 33<br>34 | 705<br>734 | 706<br>735       | 36.956<br>36.563 | 963<br>963    | 27<br>26     |
| 35       | .01018        | .01018     | 98.218           | .99995     | 25       | П | 35       | .02763     | .02764           | 36.178           | .99962        | 25           |
| 36       | 047           | 047        | 95.489           | 995        | 24       | П | 36       | 792        | 793              | 35.801           | 961           | 24           |
| 37       | 076           | 076        | 92.908           | 994        | 23       | П | 37       | 821        | 822              | 35.431           | 960           | 23           |
| 38<br>39 | 105<br>134    | 105<br>135 | 90.463<br>88.144 | 994<br>994 | 22<br>21 | П | 38<br>39 | 850<br>879 | 851<br>881       | 35.070<br>34.715 | 959<br>959    | 22<br>21     |
| 40       | .01164        | .01164     | 85,940           | .99993     | 20       | П | 40       | .02908     | .02910           | 34.368           | ,99958        | 20           |
| 41       | 193           | 193        | 83.844           | 993        | 19       | П | 41       | 938        | 939              | 34.027           | 957           | 19           |
| 42<br>43 | 222           | 222<br>251 | 81.847           | 993        | 18       | Н | 42       | 967        | 968              | 33.694           | 956           | 18           |
| 44       | 251<br>280    | 280        | 79.943<br>78.126 | 992<br>992 | 17<br>16 | П | 43<br>44 | .02996     | .02997<br>.03026 | 33.366<br>33.045 | 955<br>954    | 17<br>16     |
| 45       | .01309        | .01309     | 76.390           | .99991     | 15       | ı | 45       | .03054     | .03055           | 32.730           | .99953        | 15           |
| 46       | 338           | 338        | 74.729           | 991        | 14       | ı | 46       | 083        | 084              | 32,421           | 952           | 14           |
| 47<br>48 | 367<br>396    | 367<br>396 | 73.139<br>71.615 | 991<br>990 | 13<br>12 | ı | 47<br>48 | 112<br>141 | 114<br>143       | 32.118<br>31.821 | 952<br>951    | 13<br>12     |
| 49       | 425           | 425        | 70.153           | 990        | 11       | ı | 49       | 170        | 172              | 31.528           | 950           | 11           |
| 50       | .01454        | .01455     | 68.750           | .99989     | 10       | П | 50       | .03199     | .03201           | 31.242           | .99949        | 10           |
| 51       | 483           | 484        | 67.402           | 989        | 9        | H | 51       | 228        | 230              | 30.960           | 948           | 9            |
| 52<br>53 | 513<br>542    | 513<br>542 | 66.105<br>64.858 | 989<br>988 | 8        | ı | 52<br>53 | 257<br>286 | 259<br>288       | 30.683<br>30.412 | 947<br>946    | 8 7          |
| 54       | 571           | 571        | 63.657           | 988        | 6        | П | 54       | 316        | 317              | 30.145           | 945           | 6            |
| 55       | .01600        | .01600     | 62.499           | .99987     | 5        | ı | 55       | .03345     | .03346           | 29.882           | .99944        | 5            |
| 56<br>57 | 629           | 629        | 61.383           | 987        | 4        | H | 56       | 374        | 376              | 29.624           | 943           | 4            |
| 58       | 658<br>687    | 658<br>687 | 60.306<br>59.266 | 986<br>986 | 3 2      | П | 57<br>58 | 403<br>432 | 405<br>434       | 29.371 $29.122$  | 942<br>941    | 3 2          |
| 59       | 716           | 716        | 58.261           | 985        | ĩ        | П | 59       | 461        | 463              | 28.877           | 940           | 1            |
| 60       | .01745        | .01746     | 57.290           | .99985     | 0        | П | 60       | .03490     | .03492           | 28.636           | .99939        | 0            |
|          | Cos           | Ctn        | Tan              | Sin        | 1        | H |          | Cos        | Ctn              | Tan              | Sin           | 1            |

| 11         |                    |            | arues           | OI ITI       | 5011         |   | mei             | ric ru        | THE CHOT      | s — 3`         |            | 23       |
|------------|--------------------|------------|-----------------|--------------|--------------|---|-----------------|---------------|---------------|----------------|------------|----------|
| •          | Sin                | Tan        | Ctn 1           | Cos          |              | 1 | ′               | Sin           | Tan           | Ctn            | Cos        |          |
| 0          |                    | .03492     | 25.636          | .555         | 60           | 1 | 0               | .05234        | .05241        | 19.051         | .99863     | 8        |
|            | 519                | 521<br>550 | .860<br>28, 166 | 5.17<br>5.17 | 54           |   | $\frac{1}{2}$   | 263<br>292    | 270<br>299    | 18.976         | 861        | 59       |
| 3          | 545<br>577         | 579        | 27.047          | 936          | 57           |   | 3               | 321           | 32S           | .871<br>.765   | 860<br>858 | 55<br>57 |
| 4          | 606                | 6.53       | .712            | 935          | 56           | ı | 4               | 350           | 357           | .666           | 857        | 56       |
| 5          | .03635             | .03638     | 27.490          | .99934       | 55           |   | 5               | .05379        | .05387        | 18.564         | .99855     | 56       |
| 6          | 604                | 696        | 271 $27.057$    | 933<br>932   | 51           | ۱ | 6 7             | 405           | 416           | .464           | 854        | 54       |
| Š          | 693<br>723         | 725        | 26.845          | 931          | 53<br>52     | П | Š               | 437           | 445<br>474    | .366<br>.265   | 852<br>851 | 53<br>52 |
| 9          | 752                | 754        | .637            | 930          | 51           |   | 9               | 495           | 503           | .171           | 849        | 51       |
| 10         | .03781             | .03753     | 26.432          | .99929       | 50           | П | 10              | .05524        | .05533        | 18.075         | .99847     | 50       |
| 11         | 810<br>839         | 812<br>842 | 230 $26.031$    | 927<br>926   | 49<br>48     | П | 11<br>12        | 553<br>552    | 562           | 17.950         | 846        | 49       |
| 12<br>13   | 868                | 871        | 25.S35          | 925          | 47           | П | 13              | 611           | 591<br>620    | .886<br>.793   | 844<br>842 | 45       |
| 14         | 897                | 900        | .642            | 924          | 46           | П | 14              | 649           | 649           | .702           | 841        | 46       |
| 15         | .03026             | .03929     | 25.452          | .99923       | 45           | Н | 15              | .05669        | .05678        | 17.611         | .99839     | 45       |
| 17         | 955                | 958        | .264<br>25.050  | 922<br>921   | 41           | П | 16              | 695           | 708           | .521           | 8.35       | 44       |
| 1          | .7.4954<br>.84018] | .03947     | 24.80           | 919          | 43<br>42     |   | 17<br>18        | 727<br>756    | 737<br>766    | .431           | 836<br>834 | 43<br>42 |
| 19         | 032                | 040        | .719            | 918          | 41           | ı | 19              | 785           | 795           | .256           | 833        | 41       |
| 20         | .04071             | .04075     | 24.542          | .99917       | 40           | П | 20              | .05814        | .05824        | 17.169         | .99831     | 40       |
| 21         | 100                | 104        | .368            | 916          | 39           | П | 21<br>22        | 844<br>873    | 854           | 17.084         | 829        | 39       |
| 22<br>23   | 129<br>159         | 133<br>162 | .196<br>24.026  | 915<br>913   | 35<br>37     | П | $\frac{22}{23}$ | 813<br>902    | 883<br>912    | 16.999<br>.915 | 827<br>826 | 38<br>37 |
| 24         | 188                | 191        | 23.859          | 912          | 36           | П | 24              | 931           | 941           | .832           | 824        | 36       |
| 25         | .04217             | .04220     | 23.695          | .99911       | 35           | П | 25              | .05960        | .03970        | 16.750         | .99822     | 35       |
| 26         | 246                | 250        | .532            | 910          | 34           | Н | 26              | .05989        | .05999        | .668           | 821        | 34       |
| 27<br>28   | 27.5<br>304        | 279<br>305 | .372<br>.214    | 909<br>907   | 33<br>32     |   | 27<br>28        | .06015<br>047 | .06029<br>058 | .587<br>.507   | 819<br>817 | 33<br>32 |
| 29         | 333                | 337        | 23.058          | 906          | 31           | П | 29              | 076           | 087           | .428           | 815        | 31       |
| 30         | .04362             | .04366     | 22.904          | .99905       | 30           |   | 30              | .06105        | .06116        | 16.350         | .99813     | 30       |
| 31         | 391                | 395        | .752            | 904          | 29           |   | 31              | 134           | 145           | .272<br>.195   | 812        | 29       |
| 32<br>33   | 420<br>449         | 424<br>454 | .602<br>.454    | 902<br>901   | 28<br>27     | П | 32<br>33        | 163<br>192    | 175<br>204    | .195           | 810<br>805 | 28<br>27 |
| 34         | 475                | 483        | .308            | 900          | $\tilde{2}6$ |   | 34              | 221           | 233           | 16.043         | 806        | 26       |
| 35         | .04507             | .04512     | 22.164          | .99898       | 25           | П | 35              | .06250        | .06262        | 15.969         | .99804     | 25       |
| 36         | 536                | 541        | 22.022          | 897          | 24           | П | 36              | 279           | 291<br>321    | 895            | 803        | 24       |
| 37<br>38   | 565<br>594         | 570<br>599 | 21.881<br>.743  | 896<br>894   | 23<br>22     | П | 37<br>38        | 308<br>337    | 321<br>350    | .821<br>.748   | 801<br>799 | 23<br>22 |
| 39         | 623                | 628        | .606            | 893          | 21           | Н | 39              | 366           | 379           | .676           | 797        | 21       |
| 40         | .04653             | .04658     | 21.470          | .99892       | 20           | П | 40              | .06395        | .06408        | 15.605         | .99795     | 20       |
| 41         | 682                | 687        | .337            | 890          | 19           | Н | 41              | 424<br>453    | 435           | .534           | 793        | 19       |
| 42<br>43   | 711<br>740         | 716<br>745 | .205<br>21.075  | 889<br>888   | 18<br>17     | П | 42              | 482           | 467<br>496    | .464<br>.394   | 792<br>790 | 18<br>17 |
| 44         | 760                | 774        | 20.946          | 8S6          | 16           | Н | 44              | 511           | 525           | .325           | 788        | îo       |
| 45         | .04798             | .04803     | 20.819          | .99885       | 15           | H | 45              | .06540        | .06554        | 15.257         | .99786     | 15       |
| 46         | 827<br>826         | 833<br>862 | .693            | 883<br>882   | 14<br>13     | Ш | 46              | 569<br>598    | 584<br>613    | .189<br>.122   | 784<br>782 | 14<br>13 |
| 47<br>48   | 856<br>885         | 862<br>891 | .569<br>.446    | 882<br>881   | 13           | Н | 45              | 595<br>627    | 642           | 15.056         | 780        | 12       |
| 49         | 914                | 920        | .325            | 879          | ĨĨ           | П | 49              | 656           | 671           | 14.990         | 778        | 11       |
| 50         | .04943             | .04949     | 20.206          | .99878       | 10           | П | 50              | .06685        | .06700        | 14.924         | .99776     | 10       |
| 51         | .04972             | .04978     | 20.087          | 876<br>873   | 9            | П | 51              | 714<br>743    | 730<br>759    | .860<br>.795   | 774<br>772 | 9        |
| 52<br>53   | .05001             | .05007     | 19.970<br>.855  | 873<br>873   | 8<br>7       | H | 52<br>53        | 773           | 759<br>788    | .732           | 770        | 8        |
| 54         | 059                | 066        | .740            | 872          | 6            | П | 54              | 802           | 817           | .669           | 768        | 6        |
| 55         | .05088             | .05095     | 19.627          | .99870       | 5            | ı | 55              | .06831        | .06847        | 14.606         | .99768     | 5        |
| 56<br>57   | 117                | 124<br>153 | -516            | 869<br>867   | 3            | П | 56<br>57        | 860<br>889    | 876<br>905    | .544<br>.482   | 764<br>762 | 3        |
| 5§         | 146<br>175         | 182        | .405<br>.296    | 866          | 2            | П | 58              | 918           | 934           | 421            | 760        | 2        |
| <b>5</b> 9 | 205                | 212        | .188            | 864          | 1            |   | 59              | 947           | 963           | .361           | 758        | 1        |
| 60         | .05234             | .05241     | 19.081          | .99863       | 0            | H | 60              | .06976        | .06993        | 14.301         | .99756     | 0        |
|            | Cos                | Ctn        | Tan             | Sin          | ′            |   |                 | Cos           | Ctn           | Tan            | Sin        | ′        |

87° 86°

| 24              | ·             | 1'            | alues          |               | gon             | 1 |                 |               | inction           |                  |               |                  |
|-----------------|---------------|---------------|----------------|---------------|-----------------|---|-----------------|---------------|-------------------|------------------|---------------|------------------|
| Ľ               | Sin           | Tan           | Ctn            | Cos           | -               | I | Ľ               | Sin           | Tan               | Ctn              | Cos           |                  |
| Ó               | .06976        | .06993        | 14.301         | .99756<br>754 | <b>60</b><br>59 | I | 0               | .08716<br>745 | .08749<br>778     | 11.430<br>.392   | .99619        |                  |
| 1 2             | .07005        | .07022<br>051 | .241<br>.182   | 752           | 55              | ı | 9               | 774           | 807               | .354             | 617<br>614    |                  |
| 3               | 063           | 080           | .124           | 750           | 5S<br>57        | ı | 3               | 803           | 837               | .316             | 612           |                  |
| 4               | 092           | 110           | .065           | 745           | 56              | l | 4               | 831           | 866               | .279             | 609           |                  |
| 5               | .07121        | .07139        | 14.005         | .99746        | 55              | ı | 5               | .08860        | .08895            | 11.242           | .99607        | i                |
| 6<br>7          | 150<br>179    | 168<br>197    | 13.951<br>.894 | 744<br>742    | 54<br>53        | ı | 5<br>7          | 889<br>918    | 925<br>954        | .205             | 604<br>602    | 1                |
| lś              | 208           | 227           | .835           | 740           | 52              | ۱ | 8               | 947           | .08983            | .132             | 599           |                  |
| ğ               | 237           | 256           | .782           | 738           | 51              | ı | 9               | .08976        | .09013            | .095             | 596           | l                |
| 10              | .07266        | .07285        | 13.727<br>.672 | .99736        | 50              | ı | 10              | .09005        | .09042            | 11.059           | .99594        |                  |
| 11              | 295           | 314           | .672           | 734<br>731    | 49<br>48        |   | 11<br>12        | 034<br>063    | 071<br>101        | 11.024<br>10.988 | 591           | 1                |
| 12<br>13        | 324<br>353    | 344<br>373    | .617<br>.563   | 729           | 47              |   | 13              | 092           | 130               | .953             | 588<br>586    |                  |
| 14              | 382           | 402           | .510           | 727           | 46              |   | 14              | 121           | 159               | .918             | 583           | l                |
| 15              | .07411        | ,07431        | 13.457         | .99725        | 45              |   | 15              | .09150        | .09189            | 10.883           | .99580        | ١.               |
| 16              | 440           | 461           | .404           | 723           | 44              | ı | 16              | 179           | 218               | .848             | 578           | ,                |
| 17<br>18        | 469           | 490<br>519    | .352<br>.300   | 721<br>719    | 43<br>42        |   | 17<br>18        | 208<br>237    | $\frac{247}{277}$ | .814<br>.780     | 575           | 4                |
| 19              | 495<br>527    | 548           | .248           | 716           | 41              |   | 19              | 266           | 306               | .746             | 572<br>570    | î                |
| 20              | .07556        | .07578        | 13.197         | .99714        | 40              |   | 20              | .09295        | .09335            | 10.712           | .99567        | 4                |
| 21<br>22<br>23  | 585           | 607           | .146           | 712           | 39              | ı | 21              | 324           | 365               | .678             | 564           | 3                |
| 122             | 614           | 636<br>665    | .096<br>13.046 | 710<br>708    | 38<br>37        | П | 22<br>23        | 353<br>382    | 394<br>423        | .645             | 562           | 3                |
| 24              | 643<br>672    | 695           | 12.996         | 705           | 36              | H | $\frac{20}{24}$ | 411           | 453               | .612<br>.579     | 559<br>556    | 3                |
| 25              | .07701        | .07724        | 12.947         | .99703        | 35              | H | 25              | .09440        | .09482            | 10.546           | .99553        | 3                |
| 26              | 730           | 753           | .898           | 701           | 34              | П | 26              | 469           | 511               | .514             | 551           | 3                |
| 27              | 759           | 782           | .850           | 699           | 33              | П | 27              | 498           | 541               | .514<br>.481     | 548           | 31               |
| 28<br>29        | 788<br>817    | 812<br>841    | .801<br>.754   | 696<br>694    | 32<br>31        | П | 28<br>29        | 527<br>556    | 570<br>600        | .449<br>.417     | 545           | 31               |
| 30              | .07846        | .07870        | 12.706         | .99692        | 30              | П | 30              | .09585        | .09629            | 10.385           | 542<br>.99540 | 31<br>30         |
| 31              | 875           | 899           | .659           | 689           | 29              | П | 31              | 614           | 658               | .354             | 537           | 29               |
| 39              | 904           | 929           | .612           | 687           | 28              | П | 32              | 642           | 688               | .322             | 534           | 28<br>27         |
| 33<br>34        | 933           | 958<br>.07987 | .566           | 685<br>683    | 27<br>26        | П | 33<br>34        | 671           | 717               | .291<br>.260     | 531           | 27               |
| 35              | .07991        | .08017        | .520<br>12.474 | .99680        | 25              | П | 35              | 700<br>.09729 | 746<br>.09776     | 10.229           | 528<br>.99526 | 26<br>25         |
| 36              | .08020        | 046           | .429           | 678           | 24              | ı | 36              | 758           | 805               | .199             | 523           | 24               |
| 37              | 049           | 075           | .384           | 676           | 23              |   | 37              | 787           | 834               | .168             | 520           | 23<br>22         |
| 38              | 078           | 104           | .339           | 673           | 22<br>21        | ı | 38              | 816           | 864               | .138             | 517           | 22               |
| 39<br><b>40</b> | 107<br>.08136 | 134<br>.08163 | .295<br>12.251 | 671<br>.99668 | 20              | ı | 39<br>40        | .09874        | 893<br>.09923     | .108             | 514           | 21<br>20         |
| 41              | 165           | 192           | .207           | 666           | 19              | ١ | 41              | 903           | .09923<br>952     | .048             | .99511<br>508 | 19               |
| 42<br>43        | 194           | 221<br>251    | .163           | 664           | 18              | ١ | 42              | 932           | .09981            | 10.019           | 506           | 18               |
| 43              | 223<br>252    | 251           | .120<br>.077   | 661           | 17              | ١ | 43              | 961           | .10011            | 9.9893           | 503           | 17               |
| 44<br>45        | .08281        | 280<br>.08309 | 12.035         | 659<br>.99657 | 16<br>15        | ı | 44<br>45        | .09990        | .10069            | .9601            | 500<br>.99497 | 16<br>15         |
| 46              | 310           | 339           | 11.992         | .99657<br>654 | 15<br>14        | ١ | 46              | 048           | .10069            | 9.9310           | .99497<br>494 | 14               |
| 47              | 339           | 368           | .950           | 652           | 13              | ı | 47              | 077           | 128               | .8734            | 491           | 13               |
| 48              | 368           | 397           | .909           | 649           | 12              | 1 | 48              | 106           | 158               | .8448            | 488           | 12               |
| 49              | 397           | 427           | .867           | 647           | 11<br>10        | ١ | 49              | 135           | 187               | .8164            | 485           | 11               |
| <b>50</b><br>51 | .08426<br>455 | .08456<br>485 | 11.826<br>.785 | .99644<br>642 | 9               | ١ | 50<br>51        | .10164<br>192 | .10216<br>246     | 9.7882<br>.7601  | .99482<br>479 | 10               |
| 52              | 484           | 514           | .745           | 639           | 8               | ١ | 52              | 221           | 275               | .7322            | 476           | 8                |
| 53              | 513           | 544           | .705           | 637           | 7               | 1 | 53              | 250           | 305               | .7044            | 473           | 8<br>7<br>6      |
| 54              | 542           | 573           | .664           | 635           | 6               | ١ | 54              | 279           | 334               | .6768            | 470           |                  |
| <b>55</b>       | .08571<br>600 | .08602        | 11.625         | .99632<br>630 | 5               | ١ | <b>55</b>       | .10308<br>337 | .10363            | 9.6493<br>.6220  | .99467<br>464 | 5                |
| 57              | 629           | 661           | .546           | 627           | 3               | ١ | 57              | 366           | 422               | .5949            | 464<br>461    | 3                |
| 58              | 658           | 690           | .507           | 625           | 2               | ١ | 58              | 395           | 452               | .5679            | 458           | 4<br>3<br>2<br>1 |
| 59              | 687           | 720           | .468           | 622           | 1               | ١ | 59              | 424           | 481               | .5411            | 455           |                  |
| 60              | .08716        | .08749        | 11:430         | .99619        | 의               | Į | 60              | .10453        | .10510            | 9.5144           | .99452        | 0                |
|                 | Cos           | Ctn           | Tan            | Sin           |                 | ı |                 | Cos           | Ctn               | Tan              | Sin           | <u>'</u>         |

85° 94°

| 11       | Sin           | Tan           | Ctn             | Cos           |                 |          | Sin             | Tan           | Cin             | Cos           | 1                                      |
|----------|---------------|---------------|-----------------|---------------|-----------------|----------|-----------------|---------------|-----------------|---------------|----------------------------------------|
| 0        | 19473         | .lt 51%       |                 | 39402         | 60              | 0        | 32187           | .12275        | 5.1443          | .99255        | 60                                     |
| 1 1      | 11            | 36.3          | .4575           | 44,           |                 | 1        | 216             | 30%           | .1.48           | 251           | 50                                     |
| -        | 211           | 5:17          | 4:11            | 4 4           |                 | 2        | 245             |               | .1054           | 245           | ". ".                                  |
| 1 4      | 540<br>56.0   | 599<br>625    | .4352<br>.4095  | 41.6          | .37<br>.39      | 3 4      | 27.1<br>A. 2    | 31.7          | .0560<br>.5667  | 244<br>240    | 3.7<br>(3.7)                           |
| 5        | .10597        | .10037        | 9.5831          | .99437        | 55              | 5        | .12331          | .12426        | 5.0476          | .99237        | 55                                     |
| 8        | 6263          |               | .3772           | 434           | 5.1             | 1        | 360             | 4 11          | 1125            | 233           | 54                                     |
| 1 7      | 655           | 716           | .3315           | 431           | 531             | 7        | 370             | 4.5           | 10.05           | 2230          | 53                                     |
| 1 8      | 654           | 746           | .3000           | 425           | · /             | 5        | 415             | 5:3           | 1400            | 42.           | 53 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |
| 9        | 713           | 775           | .2500           | 424           | 51<br>50        | 9        | 447             | 511           | 471             | 2-2           | J:                                     |
| 10       | .10742        | .10505<br>534 | 9.2553<br>.2352 | .99421<br>415 | 49              | 10<br>11 | .12476<br>504   | .12574<br>6e3 | 7.9530<br>.9344 | .99212        | 50                                     |
| 112      | انازىج        | 503           | .2052           | 415           | 4 -             | 12       | 333             | tias          | .9155           | 215<br>211    | 4.5                                    |
| 13       | 829           | 893           | .1503           | 412           | 47              | 13       | 562             | 60.2          | .5973           | 25.8          | 4.                                     |
| 14       | 855           | 922           | .1555           | 409           | 46              | 14       | 591             | 692           | .5750           | 204           | 46                                     |
| 15       | .107          | .10952        | 9.1369          | .99406        | 45              | 15       | .12620          | .127.22       | 7.8606          | .99.3m        | 45                                     |
| 16<br>17 | 945           | .11011        | .1045<br>.0821  | 402<br>399    | 44              | 16<br>17 | 649<br>675      | 751<br>781    | .5424<br>.5243  | 197<br>193    | 4.1                                    |
| lis      | .10973        | 049           | .0579           | 396           | 42              | 18       | 706             | 816           | *616            | 15.           | 4.                                     |
| 19       | .11002        | <b>07</b> 0   | .0335           | 393           | 41              | 19       | 735             | 840           | .7552           | 150           | 41                                     |
| 20       | .11031        | .11099        | 9.0098          | .99390        | 40              | 20       | .12764          | .12869        | 7.7704          | .991-2        | 40                                     |
| 21       | 060           | 128           | 8.9560          | 355           | 39              | 21<br>22 | 793             | 80            | .7025           | 125           | 39                                     |
| 22<br>23 | 089<br>118    | 158<br>187    | .9623<br>.9387  | 353<br>350    | 35<br>37        | 23       | 822<br>851      | 929<br>958    | .7345<br>.7171  | 17.1          | 37                                     |
| 24       | 147           | 217           | .9152           | 377           | 36              | 24       | 880             | .12555        | 6996            | 167           | 36                                     |
| 25       | .11176        | .11246        | 8.8919          | .99374        | 35              | 25       | .12908          | .13017        | 7.6521          | .99163        | 35                                     |
| 26       | 205           | 276           | .8656           | 370           | 34              | 26       | 937             | 047           | .664T           | 160           | 34                                     |
| 27       | 234           | 305           | .8455<br>.8225  | 367           | 33<br>32        | 27<br>28 | 966             | 076           | .6473           | 156           | 33                                     |
| 25 29    | 263<br>291    | 335<br>361    | .7996           | 364<br>360    | 31              | 29       | .12995 $.13024$ | 106<br>136    | .6351<br>.6129  | 152<br>145    | 32<br>31                               |
| 30       | .11320        | .11394        | 8.7769          | .99357        | 30              | 30       | .13053          | .13165        | 7.5958          | .99144        | 30                                     |
| 31       | 349           | 423           | .7542           | 354           | 29              | 31       | 051             | 195           | .5757           | 141           | 99                                     |
| 32       | 375<br>407    | 452           | .7317           | 351           | 2S<br>27        | 32       | 110             | 224           | .5615           | 1.37          | 25                                     |
| 33       |               | 482<br>511    | .7093           | 347<br>344    | $\frac{27}{26}$ | 33<br>34 | 139             | 254<br>284    | .5449           | 133           | 533                                    |
| 34<br>35 | 436           |               | .6570<br>8.6648 | .99341        | 25              | 35       | 168<br>.13197   | .13313        | .5251           | 129           | 25                                     |
| 30       | .11465 $494$  | .11541<br>570 | .6427           | 357           | 24              | 36       | 226             | 343           | 7.5113          | .99125<br>122 | 24                                     |
| 37       | 523<br>552    | 600           | .6208           | 331           | 23              | 37       | 254             | 372           | .4751           | 118           | 23                                     |
| 38       | 552           | 629           | .5989           | 331           | 22              | 38       | 283             | 402           | .4615           | 114           | 22                                     |
| 39       | 580           | 659           | .5772           | 327           | 21              | 39       | 312             | 432           | .4451           | 11,.          | 21                                     |
| 40<br>41 | .11609<br>635 | .11688        | 8.5555<br>.5340 | .99324<br>320 | 20<br>19        | 40<br>41 | .13341<br>370   | .13461<br>491 | 7.4287<br>.4124 | 90106         | 20                                     |
| 42       | 667           | 747           | .5126           | 317           | 18              | 42       | 399             | 521           | 3962            | 0.5           | -                                      |
| 43       | 696           | 777           | .4913           | 314           | 17              | 43       | 427             | 550           | 3500            | 094           | 17                                     |
| 14       | 725           | 806           | .4701           | 310           | 16              | 44       | 456             | 550           | .3639           | 091           | 16                                     |
| 45       | .11754        | .11836        | 8.4490          | .99307        | 15<br>14        | 45<br>40 | .13485          | .13609        | 7.3479          | .99087        | 15<br>14                               |
| 46<br>47 | 783<br>812    | 865<br>895    | .4280<br>.4071  | 303<br>300    | 13              | 47       | 514<br>543      | 639<br>669    | .3319<br>.3160  | 083<br>679    | 13                                     |
| 48       | 840           | 924           | .3863           | 297           | 12              | 48       | 572             | 698           | .3002           | 075           | 12<br>11                               |
| 49       | 869           | 954           | .3656           | 293           | 11              | 49       | 600             | 728           | .2844           | 071           |                                        |
| 50       | .11898        | .11983        | 8.3450          | .99290        | 10              | 50       | .13629          | .13758        | 7.2687          | .99067        | 10                                     |
| 51<br>52 | 927<br>956    | .12013        | .3245<br>.3041  | 286<br>283    | 9               | 51<br>52 | 658<br>687      | 787<br>817    | .2531           | 063<br>059    | 9                                      |
| 53       | .11985        | 072           | .2838           | 279           | 87              | 53       | 716             | 846           | .2375<br>.2220  | 055           | 8                                      |
| 54       | .12014        | 101           | .2636           | 276           | 6               | 54       | 744             | 876           | .2066           | 051           | 6                                      |
| 55       | .12043        | .12131        | 8.2434          | .99272        | 5               | 55       | .13773          | .13906        | 7.1912          | .99047        | 5                                      |
| 56       | 071           | 160           | .2234           | 269           | 4               | 56       | 802             | 935           | .1759           | 043           | 4                                      |
| 57<br>58 | 100<br>129    | 190<br>219    | .2035           | 265<br>262    | 3 2             | 57<br>58 | 831<br>860      | 965<br>.13995 | .1607           | 039<br>035    | 3 2                                    |
| 59       | 158           | 249           | .1640           | 258           | ī               | 59       | 889             | .14624        | .1304           | 031           | î                                      |
| 60       | .12187        | .12278        | 8.1443          | .99255        | 0               | 60       | .13917          | .14054        | 7.1154          | .99027        | 0                                      |
|          | Cos           | Ctn           | Tan             | Sin           | ,               |          | Cos             | Ctn           | Tan             | Sin           | 1                                      |

83° 82°

| 26       | 2               | ) <del>- 1</del> | aiues            | OI III        | ,011         |    | HCC.            |               |               |                             |                |                 |
|----------|-----------------|------------------|------------------|---------------|--------------|----|-----------------|---------------|---------------|-----------------------------|----------------|-----------------|
| 7        | Sin             | Tan              | Ctn              | Cos           |              |    | '               | Sin           | Tan           | Ctn                         | Cos            |                 |
| 0        | .13917          | .14054           | 7.1154           | .99027        | 60           | ı  | 0               | .15643        | .15838        | 6.3138                      | .98769         |                 |
| 1 1      | 946             | 084              | .1004            | 023           | 59           | ı  | 1 2             | 672<br>701    | 868<br>895    | .3019                       | 764 .<br>760 . |                 |
| 2 3      | .13975 $.14004$ | 113<br>143       | .0855            | 019<br>015    | 58<br>57     | ı  | 3               | 730           | 928           | .2783                       | 755            | i               |
| 4        | 033             | 173              | .0558            | 011           | 56           | ۱  | 4               | 758           | 958           | .2666                       | 751            | į               |
| 5        | .14061          | .14202           | 7.0410           | .99006        | 55           | П  | 5               | .15787        | .15988        | 6.2549                      | .98746         | ŧ.              |
| 6        | 090             | 232              | .0264            | .99002        | 54<br>53     | П  | 6               | 816<br>845    | .16017<br>047 | .2432                       | 741<br>737     | į               |
| 7        | 119             | 262<br>291       | 7.0117<br>6.9972 | .98998<br>994 | 52           | П  | 8               | 873           | 077           | .2200                       | 732            | <b>3</b><br>5   |
| 8        | 148<br>177      | 321              | .9827            | 990           | 51           | П  | 9               | 902           | 107           | .2085                       | 728            | 5               |
| 10       | .14205          | .14351           | 6.9682           | .98986        | 50           | П  | 10              | .15931        | .16137        | 6.1970                      |                | ā               |
| 11       | 234             | 351              | .9535            | 952           | 45           | Н  | 11<br>12        | 959<br>.15988 | 167<br>196    | .1856                       | 718<br>714     | 4               |
| 12<br>13 | 263<br>292      | 410<br>440       | .9395<br>.9252   | 978<br>973    | 47           | Н  | 13              | 16017         | 226           | .1628                       | 709            | 4               |
| 14       | 320             | 470              | .9110            | 969           | 46           | Н  | 14              | 046           | 256           | .1515                       | 704            | 4               |
| 15       | .14349          | .14499           | 6.8969           | .98965        | 45           | ı  | 15              | .16074        | .16286        | 6.1402                      | .98700         | 4               |
| 16       | 378             | 529              | .8687            | 961<br>957    | 44           | П  | 16<br>17        | 103<br>132    | 316<br>346    | .1290<br>.1178              | 695<br>690     | 4               |
| 17<br>18 | 407<br>436      | 559<br>588       | .8548            | 953           | 42           | ı  | 18              | 160           | 376           | .1066                       | 686            | 4               |
| 19       | 464             | 618              | .8408            | 948           | 41           |    | 19              | 189           | 405           | .0955                       | 681            | 4:              |
| 20       | .14493          | .14648           | 6.8269           | .98944        | 40           | ı  | 20              | .16218<br>246 | .16435<br>465 | 6.08 <del>41</del><br>.0734 | .98676<br>671  | <b>44</b><br>31 |
| 21       | 522             | 678<br>707       | .8131            | 940<br>936    | 39<br>38     | ۱  | $\frac{21}{22}$ | 240<br>275    | 495           | .0624                       | 667            | 34              |
| 22<br>23 | 551<br>580      | 737              | .7856            | 931           | 37           | ۱  | 23              | 304           | 525           | .0514                       | 662            | 37              |
| 24       | 608             | 767              | .7720            | 927           | 36           | l  | 24              | 333           | 555           | .0405                       | 657            | 36              |
| 25       | .14637          | .14796           | 6.7584           | .98923        | 35<br>34     | l  | 25<br>26        | .16361<br>390 | .16585<br>615 | 6.0296                      | .98652<br>645  | 35<br>34        |
| 26<br>27 | 666             |                  | .7448<br>.7313   | 919<br>914    | 33           | ı  | 27              | 419           | 645           | 6.0080                      | 643            | 33              |
| 28       | 723             | 886              | .7179            | 910           | 32           | l  | 28              | 447           | 674           | 5.9972                      | 638            | 32              |
| 29       | 752             |                  | .7045            | 906           | 31           | ı  | 29              | 476           | 704           | .9865                       | 633            | 31              |
| 30       | .14781          |                  | 6.6912           | .98902<br>897 | 30<br>29     | ı  | 30<br>31        | .16505<br>533 | .16734<br>764 | 5.9758                      | .98629<br>624  | 30              |
| 31<br>32 | 810<br>838      |                  | .6779            | 893           | 28           | ı  | 32              | 562           | 794           | .9545                       | 619            | 29<br>28<br>27  |
| 33       | 807             | 034              | .6514            | 889           | 27           | ı  | 33              | 591           | 824           | .9439                       | 614            | 27<br>26        |
| 34       |                 |                  | .6383            | 884           | 26           | ١  | 34<br>35        | 620           | 1             | .9333<br>5.9228             | .98604         | 25              |
| 35       |                 |                  | 6.6252           | .98880<br>876 | 25<br>24     | ١  | 36              | .16648<br>677 | 914           |                             | 600            | 24              |
| 36<br>37 | 954<br>.14982   | 153              | .5992            | 871           | 23           | 1  | 37              | 706           | 944           | .9019                       | 595            | 23              |
| 38       | .15011          | 183              | .5863            | 867           | 22<br>21     |    | 38<br>39        | 734<br>763    |               |                             | 590<br>585     | 22<br>21        |
| 39       |                 | 1                | .5734            | 1             |              | ı  | 40              | .16792        |               | 1                           | .98580         | 20              |
| 40<br>41 |                 |                  |                  |               |              | ı  | 41              | 820           |               |                             | 575            | 19              |
| 42       |                 |                  | .5350            | 849           | 18           | 1  | 42              | 849           | 093           | .8502                       | 570            | 18              |
| 43       | 15              |                  | .5223            | 845           |              |    | 43<br>44        | 878<br>906    |               |                             | 565<br>561     | 17<br>16        |
| 44       |                 | 1                |                  |               |              |    | 45              | .16935        |               |                             | .98556         | 15              |
| 45       |                 |                  |                  | 832           | 14           | ı  | 16              | 964           | 213           | .8095                       | 551            | 14              |
| 47       | 270             | 451              | .4721            | 827           | 13           |    | 47              | .16992        |               |                             | 546<br>541     | 13<br>12        |
| 48       |                 |                  |                  | 823<br>818    |              |    | 48<br>49        | .17021        |               |                             |                |                 |
| 49<br>50 |                 | 1                |                  | 1             |              |    | 50              | .17078        | .17333        | 5.7694                      | .98531         | 10              |
| 5        | 38              | 5 570            | .4225            | 809           | 1 9          | 1  | 51              | 107           | 7 363         | .7594                       | 526            | 9               |
| 5<br>5   | 41              | 4 600            | .4103            | 803           | 5   8        | į  | 52<br>53        | 136<br>16-    |               |                             | 521<br>516     | 8 7             |
| 5.<br>5. | 3 44:<br>4 47   |                  |                  |               |              | ,  | 54              |               |               |                             | 511            | 6               |
| 5        |                 |                  | 1                |               |              | 5  | 55              | .1722         | 2 .17483      | 5.7199                      |                | 5               |
| 5        | 6 52            | 91 719           | .3617            | 78            | 7   4        | ٤l | 56              |               | 513           | .7101                       |                |                 |
| 5        | 7 55            |                  |                  |               | <b>4</b>   3 | 3  | 57<br>58        |               |               |                             |                | 2               |
| 5<br>5   | 8 58<br>9 61    |                  |                  |               |              | í  | 59              |               |               |                             |                | 1               |
| Ğ        |                 |                  |                  |               |              | 0  | 60              |               | 5 .1763       | 3 5.6713                    | .98481         |                 |
| F        | Coe             | _                | Tan              | Sin           | 1            |    |                 | Cos           | Ctn           | Tan                         | Sin            | <u>L</u>        |
| -        |                 |                  |                  |               | -            | -  | _               |               |               | 200                         |                |                 |

81° 80°

| 111      | Sin           | Tan :         | Ctn             | Cos           |                 | I | , 1             | Sin :         | Tan           | Ctn             | Cos            |                 |
|----------|---------------|---------------|-----------------|---------------|-----------------|---|-----------------|---------------|---------------|-----------------|----------------|-----------------|
| 1        | 173.5         | .17633        | 5.0713          | .95151        | 60              | ł | 0               | .1:0.~1:      | .19435        | 5.1446          | 3/5163         | 60              |
| 1 1      | 39+44         | 663           | .0017           | 476           | 39              | ı | 1               | 173           | 465           | .1366           | 157            | 59              |
| 1 2      | 400<br>451    | 693<br>723    | .6521<br>.6425  | 471<br>466    | 55<br>57        | ı | 2               | 135           | 49- )<br>529  | -1256           | 152            | 22              |
| 3        | 479           | 753           | .6329           | 461           | 56              | ١ | 4               | 195           | 559           | .1207           | 146<br>140     | 57<br>56        |
| 5        | .17508        | .17783        | 5,6234          | .98455        | 55              | ı | 5               | .19224        | .19589        | 5.1049          | .98135         | 55              |
| 1 61     | 537           | 813           | .6140           | 450           | 54              |   | 6               | 252           | 619           | .03470          | 129            | 54              |
| 13       | 565           | 843<br>873    | .6045<br>.5951  | 445<br>440    | 53<br>52        |   | 3               | 251           | 649           | .0892           | 124            | 1345            |
| 1 9      | 594<br>623    | 903           | .5557           | 435           | 51              | ı | - 3             | 335           | 710           | .0814           | 115            | 52<br>51        |
| 10       | .17651        | .17933        | 5.5764          | .98430        | 50              | ١ | 10              | .19366        | .19740        | 5.0658          | .98107         | 50              |
| 11       | 650           | 963           | .5671           | 425           | 49              | ١ | 11              | 395           | 770           | .0551           | 101            | 49              |
| 12<br>13 | 705<br>737    | .17993        | .5485           | 420<br>414    | 48              | ı | 12              | 423<br>452    | 801<br>831    | .0504           | (196)<br>(196) | 45<br>47        |
| lial     | 766           | 053           | .5393           | 409           | 46              | ١ | 14              | 451           | 861           | .0427<br>.0350  | 054            | 16              |
| 15       | .17794        | .18083        | 5.5301          | .98404        | 45              | ١ | 15              | .19509        | .19891        | 5.0273          | .98079         | 45              |
| 16       | 823           | 113           | .5209           | 399           | 44              | ı | 16              | 535           | 921<br>952    | .0197           | 073            | 44              |
| 17       | 852<br>880    | 143<br>173    | .5118<br>.5026  | 394<br>389    | 43<br>42        |   | 17<br>18        | 566<br>595    | .19952        | 0121 $5.0045$   | 067<br>061     | 43<br>42        |
| 19       | 909           | 203           | .4936           | 383           | 41              |   | 19              | 623           | .20012        | 4.9969          | 056            | 41              |
| 20       | ,17937        | .18233        | 5.4845          | .98378        | 40              |   | 20              | .19652        | .20042        | 4.9894          | .98050         | 40              |
| 21       | 966<br>17995  | 263<br>293    | .4755<br>.4665  | 373<br>368    | 39<br>38        | П | $\frac{21}{22}$ | 680<br>709    | 073<br>103    | .9519<br>.9744  | 044<br>039     | 39              |
| 22<br>23 | .18023        | 323           | .4575           | 362           | 37              | П | 23              | 737           | 133           | .9669           | 033            | 38<br>37        |
| 24       | 052           | 353           | .4486           | 357           | 36              | П | 24              | 766           | 164           | .9594           | 027            | 36              |
| 25       | .18081        | .18384        | 5.4397          | .98352        | 35              |   | 25              | .19794        | .20194        | 4.9520          | .98021         | 35              |
| 26<br>27 | 109<br>138    | 414<br>444    | .4308<br>.4219  | 347<br>341    | 34<br>33        | П | $\frac{26}{27}$ | 823<br>851    | 224<br>254    | .9446<br>.9372  | 016<br>010     | 34<br>33        |
| 28       | 166           | 474           | .4131           | 336           | 32              | П | 28              | 880           | 285           | .9298           | .98004         | 32              |
| 29       | 195           | 504           | .4043           | 331           | 31              |   | 29              | 908           | 315           | .9225           | .97998         | 31              |
| 30       | .18224        | .18534<br>564 | 5.3955<br>.3868 | .98325 $320$  | 30<br>29        | П | 30<br>31        | .19937<br>965 | .20345        | 4.9152<br>.9078 | .97992<br>987  | 30              |
| 31<br>32 | 252<br>281    | 594           | .3781           | 315           | 28              | П | 32              | .19994        | 376<br>406    | .9006           | 981            | 29<br>28        |
| 33       | 309           | 624           | .3694           | 310           | 27              |   | 33              | .20022        | 436           | .8933           | 975            | $\frac{28}{27}$ |
| 34       | 338           | 654           | .3607           | 304           | 26              |   | 34              | 051           | 466           | .8860           | 969            | 26              |
| 35<br>36 | .18367<br>395 | .18684        | 5.3521<br>.3435 | .98299<br>294 | 25<br>24        | П | <b>35</b><br>36 | .20079<br>108 | .20497<br>527 | 4.8788<br>.8716 | .97963<br>958  | 25<br>24        |
| 37       | 424           | 745           | .3349           | 288           | 23              |   | 37              | 136           | 557           | .8644           | 952            | 23              |
| 38       | 452           | 775           | .3263           | 283           | 22              |   | 38              | 165           | 588           | .8573           | 946            | 22              |
| 39       | 481           | 805           | .3178           | 277           | 21<br><b>20</b> |   | 39<br>40        | .20222        | .20648        | .8501<br>4.8430 | 940            | 21<br>20        |
| 40<br>41 | .18509<br>538 | .18835<br>865 | 5.3093<br>.3008 | .98272<br>267 | 19              |   | 41              | 250           | 679           | .8359           | .97934<br>928  | 19              |
| 42       | 567           | 895           | .2924           | 261           | 18              |   | 42              | 279           | 709           | .8288           | 922            | 18<br>17        |
| 43       | 595           | 925<br>955    | .2839           | 256<br>250    | 17<br>16        |   | 43<br>44        | 307<br>336    | 739<br>770    | .8218<br>.8147  | 916<br>910     | 17<br>16        |
| 44       | 624<br>.18652 | .18986        | 5.2672          | .98245        | 15              | ı | 45              | .20364        | .20800        | 4.8077          | .97905         | 15              |
| 46       | 681           | .19016        | .2588           | 240           | 14              |   | 46              | 393           | 830           | .8007           | 899            | 14              |
| 47       | 710           | 046           | .2505           | 234           | 13              |   | 47              | 421           | 861           | .7937           | 893            | 13              |
| 48<br>49 | 738<br>767    | 076<br>106    | .2422           | 229<br>223    | 12<br>11        | ı | 48<br>49        | 450<br>478    | 891<br>921    | .7867<br>.7798  | 887<br>881     | 12<br>11        |
| 50       | .18795        | .19136        | 5.2257          | .98218        | 10              | l | 50              | .20507        | .20952        | 4.7729          | .97875         | 10              |
| 51       | 824           | 166           | .2174           | 212           | 9               | l | 51              | 535           | .20982        | .7659           | 869            | 9               |
| 52<br>53 | 852<br>881    | 197<br>227    | .2092           | 207<br>201    | 8 7             | I | 52<br>53        | 563<br>592    | .21013        | .7591<br>.7522  | 863<br>857     | 8 7             |
| 53<br>54 | 910           | 257           | .1929           | 196           | 6               | I | 54              | 620           | 073           | .7453           | 851            | 6               |
| 55       | .18938        | .19287        | 5.1848          | .98190        | 5               | I | 55              | .20649        | .21104        | 4.7385          | .97845         | 5               |
| 56       | 967           | 317           | .1767           | 185           | 1 4             | ۱ | 56              | 677           | 134           | .7317           | 839<br>833     | 3               |
| 57<br>58 | .18995        | 347<br>378    | .1686           | 179<br>174    | 3 2             | ı | 57<br>58        | 706<br>734    | 164<br>195    | .7181           | 827            | 2               |
| 59       | 052           | 408           | .1526           | 168           | Ĩ               | ١ | 59              | 763           | 225           | .7114           | 821            | 1               |
| 60       | .19081        | .19438        | 5.1446          | .98163        | 0               | 1 | 60              | .20791        | .21256        | 4.7046          | .97815         | 0               |
|          | Cos           | Ctn           | Tan             | Sin           | 1               | ı |                 | Cos           | Ctn           | Tan             | Sin            | ′               |

| 1        | Sin             | Tan           | Ctn            | Cos        | 1        | ır | ,               | Sin             | Tan        | Ctn            | Cos        | _        |
|----------|-----------------|---------------|----------------|------------|----------|----|-----------------|-----------------|------------|----------------|------------|----------|
| 0        | .20791          | .21256        | 4.7046         | .97815     | 60       | ۱t | 0               | .22495          | .23057     | 4.3315         | .97437     | 60       |
| 1        | 820             | 23.56         | .6979          | 869        | 59       | H  | 1               | 523<br>552      | 117        | .3257          | 430        | 59       |
| 2<br>3   | 545             | 316<br>347    | .6912<br>.6845 | 803<br>797 | 55<br>57 | П  | 3               | 552<br>550      | 148<br>179 | .3200          | 424        | 58       |
| 4        | 577<br>905      | 377           | .6779          | 791        | 56       | Н  | 1               | 698             | 209        | 3086           | 417<br>411 | 57<br>56 |
| Ď        | .20933          | .21408        | 4.6712         | .97784     | 55       | П  | 5               | .22637          | .23240     | 4.3029         | .97404     | 55       |
| 6        | 962             | 435           | .6646          | 778        | 51       | П  | 6               | 665             | 271        | .2972          | 398        | 54       |
| 7        | .20990          | 469           | .6550          | 772        | 53       | П  | 1-5             | 693             | 301        | .2916          | 391        | 53       |
| 8        | $.21019 \\ 047$ | 499<br>529    | .6514<br>.6448 | 766<br>760 | 52<br>51 | П  | 9               | 722<br>750      | 332<br>363 | .2859<br>.2803 | 384<br>378 | 52<br>51 |
| 10       | .21076          | .21560        | 4.6382         | .97754     | 50       | П  | 10              | .22778          | .23393     | 4.2747         | .97371     | 50       |
| 11       | 104             | 590           | .6317          | 748        | 49       | П  | 11              | 807             | 424        | .2691          | 365        | 49       |
| 12       | 132             | 621<br>651    | .6252<br>.6187 | 742<br>735 | 48<br>47 | П  | 12<br>13        | 835             | 455        | .2635          | 358        | 48       |
| 13<br>14 | 161<br>189      | 682           | .6122          | 729        | 46       |    | 14              | 863<br>892      | 485<br>516 | .2580<br>.2524 | 351<br>345 | 47       |
| 15       | .21218          | .21712        | 4.6057         | .97723     | 45       |    | 15              | .22920          | .23547     | 4.2468         | .97338     | 45       |
| 16       | 246             | 743           | 5993           | 717        | 44       | П  | 16              | 948             | 578        | .2413          | 331        | 44       |
| 17       | 275             | 773           | .5928          | 711        | 43<br>42 |    | 17              | .22977 $.23005$ | 608        | .2358          | 325        | 43       |
| 18<br>19 | 303<br>331      | 804<br>834    | .5864<br>.5800 | 705<br>698 | 41       |    | 18<br>19        | 033             | 639<br>670 | .2303<br>.2248 | 318        | 42<br>41 |
| 20       | .21360          | .21864        | 4.5736         | .97692     | 40       |    | 20              | .23062          | .23700     | 4.2193         | .97304     | 40       |
| 21       | 388             | 895           | .5673          | 686        | 39       | П  | 21              | 090             | 731        | .2139<br>.2084 | 298        | 39       |
| 22       | 417             | 925           | .5609          | 680<br>673 | 38<br>37 |    | 22<br>23        | 118<br>146      | 762<br>793 | .2084          | 291        | 38       |
| 23<br>24 | 445<br>474      | 956<br>.21986 | .5546<br>.5483 | 667        | 36       |    | $\frac{23}{24}$ | 175             | 823        | .1976          | 284<br>278 | 37<br>36 |
| 25       | .21502          | .22017        | 4.5420         | .97661     | 35       |    | 25              | .23203          | .23854     | 4.1922         | .97271     | 35       |
| 26       | 530             | 047           | .5357          | 655        | 34       | П  | 26              | 231             | 885        | .1868          | 264        | 34       |
| 27       | 559             | 078           | .5294<br>.5232 | 648        | 33<br>32 | П  | 27<br>28        | 260             | 916        | .1814          | 257        | 33       |
| 28<br>29 | 587<br>616      | 108<br>139    | .5232          | 642<br>636 | 31       | П  | 28              | 288<br>316      | .23977     | .1760<br>.1706 | 251<br>244 | 32       |
| 30       | .21644          | .22169        | 4.5107         | .97630     | 30       |    | 30              | .23345          | .24008     | 4.1653         | .97237     | 30       |
| 31       | 672             | 200           | .5045          | 623        | 29       | П  | 31              | 373             | 039        | .1600          | 230        | 29       |
| 32       | 701             | 231<br>261    | .4983          | 617        | 28<br>27 | П  | 32<br>33        | 401<br>429      | 069        | .1547          | 223        | 28       |
| 33<br>34 | 729<br>758      | 201<br>292    | .4922<br>.4860 | 611<br>604 | 26       |    | 34              | 458             | 100<br>131 | .1493          | 217<br>210 | 27<br>26 |
| 35       | .21786          | .22322        | 4.4799         | .97598     | 25       |    | 35              | .23486          | .24162     | 4.1388         | .97203     | 25       |
| 36       | 814             | 353           | .4737          | 592        | 24       | и  | 36              | 514             | 193        | .1335          | 196        | 24       |
| 37<br>38 | 843<br>871      | 383<br>414    | .4676<br>.4615 | 585<br>579 | 23<br>22 | П  | 37<br>38        | 542<br>571      | 223<br>254 | .1282          | 189<br>182 | 23<br>22 |
| 39       | 899             | 444           | .4555          | 573        | 21       |    | 39              | 599             | 285        | .1178          | 176        | 21       |
| 40       | .21928          | .22475        | 4.4494         | .97566     | 20       |    | 40              | .23627          | .24316     | 4.1126         | .97169     | 20       |
| 41       | 956             | 505           | .4434          | 560        | 19       |    | 41              | 656             | 347        | .1074          | 162        | 19       |
| 42<br>43 | .21985          | 536<br>567    | .4373<br>.4313 | 553<br>547 | 18<br>17 | П  | 42<br>43        | 684<br>712      | 377<br>408 | .1022          | 155<br>148 | 18<br>17 |
| 44       | 041             | 597           | .4253          | 541        | 16       |    | 44              | 740             | 439        | .0918          | 141        | 16       |
| 45       | .22070          | .22628        | 4.4194         | .97534     | 15       |    | 45              | .23769          | .24470     | 4.0867         | .97134     | 15       |
| 46       | 098             | 658           | .4134          | 528        | 14       |    | 46              | 797             | 501        | .0815          | 127        | 14       |
| 47<br>48 | 126<br>155      | 689<br>719    | .4075<br>.4015 | 521<br>515 | 13<br>12 |    | 47<br>48        | 825<br>853      | 532<br>562 | .0764          | 120<br>113 | 13<br>12 |
| 49       | 183             | 750           | .3956          | 508        | 11       |    | 49              | 882             | 593        | .0662          | 106        | 11       |
| 50       | .22212          | .22781        | 4.3897         | .97502     | 10       |    | 50              | .23910          | .24624     | 4.0611         | .97100     | 10       |
| 51       | 240             | 811<br>842    | .3838          | 496<br>489 | 9        |    | $\frac{51}{52}$ | 938             | 655        | .0560          | 093        | 9        |
| 52<br>53 | 268<br>297      | 872           | .3779<br>.3721 | 489<br>483 | 8        |    | 52<br>53        | 966<br>.23995   | 686<br>717 | .0509          | 086<br>079 | 8<br>7   |
| 54       | 325             | 903           | .3662          | 476        | 6        |    | 54              | .24023          | 747        | .0408          | 072        | 6        |
| 55       | .22353          | .22934        | 4.3604         | .97470     | 5        |    | 55              | .24051          | .24778     | 4.0358         | .97065     | 5        |
| 56<br>57 | 382<br>410      | 964<br>.22995 | .3546<br>.3488 | 463<br>457 | 4<br>3   |    | 56<br>57        | 079             | 809        | .0308          | 058        | 4        |
| 58       | 438             | .23026        | .3438          | 457        | 2        |    | 58              | 108<br>136      | 840<br>871 | .0257          | 051<br>044 | 3<br>2   |
| 59       | 467             | 056           | .3372          | 444        | 1        |    | 59              | 164             | 902        | .0158          | 037        | ĩ        |
| 60       | .22495          | .23087        | 4.3315         | .97437     | 0        | Ŀ  | 60              | .24192          | .24933     | 4.0108         | .97030     | 0        |
|          | Cos             | Ctn           | Tan            | Sin        | ′        | ١ſ |                 | Cos             | Ctn        | Tan            | Sin        | 1        |

| Sin   Tan   Ctn   Ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [[] | 14     | -      |        |      | Som | omei | aic ru  | nction | s-1    | <b>)</b> | - 2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|------|-----|------|---------|--------|--------|----------|-----|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        | Tan    | Ctn    |      |     | -    | Sin     | Tan    | Ctn    | Cos      |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   | 1      |        |        |      |     |      |         |        |        |          |     |
| 5         277         250 (25)         3,930 (96)         57         3         96%         85         71 (1)         56         57         57         56         24333         25587         3,9861         9904         55         6         2622         26341         4,711         597         54           6         24333         25587         3,9861         36         7         079         27041         4,711         591         34         7         170         241         567         549         34         7         170         141         267         549         34         171         993         52         59         135         66         566         273         390         46         11         191         191         3,981         390         46         14         12         221         150         3,981         590         345         14         12         221         150         3,981         390         46         14         12         221         150         3,981         3,992         45         14         14         150         3,981         3,993         46         14         25         3,932         3,644         45 <t< td=""><td>3</td><td>5.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td>237</td><td></td><td>222</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3   | 5.50   |        |        |      |     |      |         | 237    |        | 222      |     |
| 6         2.63.6         0.506         9.93.0         .57.0         36         4         2.62.4         9.92.1         .71.1         5.2.2         5.3         5.3         2.63.1         3.98.1         9.99.4         5.5         3.62.2         1.7         1.00.1         5.41.5         9.97.1         9.97.3         9.95.0         5.3         7         0.70.7         1.00.1         5.41.7         5.41.7         1.00.1         5.41.7         5.41.7         1.00.1         5.41.7         5.41.7         1.00.1         5.41.7         5.41.7         1.00.1         5.41.7         5.41.7         1.00.1         5.41.7         5.41.7         1.00.1         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         5.41.7         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | 277    | .25026 | 3.9959 | 0.15 | 57  | - 3  | 960     | 340.44 |        | 33.11    | 37  |
| Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | adoş   |        |        |      |     |      | .255-4  |        | -7115  | 10.2     | 36  |
| 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |        |        |      |     |      | .274 -2 | . 10   |        |          |     |
| 1416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |        |        | 950  |     | -    |         |        |        |          |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        | 150    |        | 973  | 52  | 1    | 197     |        |        |          | 5.1 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |      |     |      |         | 1      |        |          |     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |      |     |      |         |        |        |          |     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 531    |        |        |      |     | 12   |         |        |        |          |     |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 559    |        |        |      |     | 13   | 247     | 201    |        | 494      |     |
| The color of the |     | . 1    | 1      |        |      |     |      | 1       |        | 1      |          |     |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |      |     |      |         | .27263 |        |          |     |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |      |     |      |         | 326    |        |          |     |
| 20         .24756         .25552         3.9136         .96887         40         20         .26443         .27419         3.6470         .96440         40           21         754         583         .9089         880         39         21         471         451         451         4629         483         39           22         813         614         .9042         873         88         25         500         482         4635         425         38           23         841         645         .8995         866         37         23         525         513         .6346         417         37           24         809         676         .8997         885         36         24         550         545         .605         410         36           25         .24982         800         .8760         829         33         27         840         685         .0151         386         33           25         .24982         800         .8760         829         31         29         696         701         .6149         379         33           25         .24982         806         .8621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 700    |        |        |      |     | 18   | 357     | 357    | .6554  | 456      | 4.2 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        |        |        |      |     |      |         |        |        |          |     |
| 523         841         645         8995         866         37         23         525         513         6346         417         37           24         809         676         8947         858         36         24         550         545         6346         417         37           25         .94897         .25707         3.8900         .96851         35         25         .26584         .27576         3.6364         .96402         35           25         .94897         .25707         3.8900         .96851         35         25         .26584         .27576         3.6364         .96402         35           25         .9485         .760         .8507         837         33         27         640         698         .6151         368         33           25         .24982         800         .8760         829         32         28         668         670         .0151         363         33           30         .25038         .25562         .38667         .98515         30         30         .26724         .27722         .3633         32           31         1066         893         .8621         .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        |        |        |      |     |      |         |        |        |          |     |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00  |        |        |        |      |     | 55   |         |        | .6357  |          |     |
| 25         .24897         .25707         3.8900         .96851         35         25         .25684         .27576         3.6264         .96402         35           20         925         738         8.854         34         34         26         612         607         .6221         3.44         34           27         954         769         .8507         837         33         27         640         638         .611         3.94         34         34           25         .24982         800         .8760         829         32         28         668         670         .6140         379         32           30         .25038         .25862         3.8667         .96515         30         30         .26724         .27722         .615         .96333         30         .26724         .27722         .615         .96333         30         .26724         .27722         .615         .96333         30         .26724         .27732         .615         .96333         30         .26724         .27722         .615         .96333         30         .26724         .27820         .2615         .96324         .25         .26864         .27889         .5565<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23  | 841    | 645    | .8995  | 866  | 37  | 23   |         | 513    |        | 417      | 37  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |      |     |      |         |        | 1      |          |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        |        |        |      |     |      | .20054  |        |        |          |     |
| 25   249   25   800   8.760   829   32   28   668   670   6.149   371   31   32   25   32   25   668   670   6.149   371   31   32   32   25   33   25   688   670   6.149   371   31   32   32   25   33   25   25   35   25   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52  |        |        |        |      |     | 27   | 640     |        |        |          |     |
| \$\begin{array}{c c c c c c c c c c c c c c c c c c c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25  | .24952 | 800    | .8760  | 829  |     | 28   |         |        |        | 379      |     |
| \$1         066         893         8.8621         807         29         31         752         7.41         .6c.1s         .35.5         24           32         094         924         8.875         880         28         32         780         795         .5c.7s         347         28           34         151         .25986         .8482         786         26         34         836         855         .597         342         27           35         .25179         .26017         .85391         771         24         36         892         921         .5866         .96278         25           36         207         048         .8391         771         24         36         892         952         .5876         306         23           37         235         079         .8345         764         23         37         920         952         .5776         306         23           38         263         110         .8399         756         22         38         948         .27983         .5776         306         23           40         .23320         .26172         3.8163         734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |        | 4 1    | ř.   |     |      |         |        | 1      | 1        |     |
| 33         122         955         552S         793         27         33         808         825         .56-7         340         27           34         151         .25986         .8482         786         26         34         836         855         .5897         332         26           36         .25179         .26017         3.8486         .96778         25         35         .26804         .27889         3.5856         .96324         25           37         235         .079         .8345         .764         23         37         920         952         .5776         306         24           38         263         110         .8299         756         22         38         948         .27982         .5776         306         22           39         .291         141         .8254         .749         21         39         .26976         .28015         .5696         293         21           40         .25320         .26172         .82808         .96742         20         40         .27004         .28046         3.5656         .96.285         20         11         42         376         235         .8118 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.26724</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |        |        |      |     |      | .26724  |        |        |          |     |
| 33         122         955         552S         793         27         33         808         825         .56-7         340         27           34         151         .25986         .8482         786         26         34         836         855         .5897         332         26           36         .25179         .26017         3.8486         .96778         25         35         .26804         .27889         3.5856         .96324         25           37         235         .079         .8345         .764         23         37         920         952         .5776         306         24           38         263         110         .8299         756         22         38         948         .27982         .5776         306         22           39         .291         141         .8254         .749         21         39         .26976         .28015         .5696         293         21           40         .25320         .26172         .82808         .96742         20         40         .27004         .28046         3.5656         .96.285         20         11         42         376         235         .8118 </td <td></td> <td></td> <td>924</td> <td></td> <td></td> <td>28</td> <td>32</td> <td>780</td> <td>795</td> <td></td> <td></td> <td>28</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 924    |        |      | 28  | 32   | 780     | 795    |        |          | 28  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33  | 122    | 955    |        |      | 27  |      | 808     | 820    |        |          | 27  |
| 36         207         048         S391         771         24         36         892         921         .5816         316         24           37         235         079         8345         764         23         37         920         952         .5776         308         22           38         263         110         8299         756         22         38         948         .27983         .5736         301         22           40         .25320         .26172         38208         .96742         20         40         .27004         .28046         3.5656         .96.285         20           41         348         203         .8163         734         19         41         032         077         .5616         .269         18           42         376         235         .8118         727         18         42         060         109         .5776         260         18           43         404         266         8.073         719         17         43         088         140         .5736         261         17           44         432         297         .8028         7712 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |        |        |      |     |      |         |        |        |          |     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |      |     |      |         |        |        |          |     |
| 39         291         141         .8254         749         21         39         .26976         .29315         .5696         293         21           40         .25320         .26172         .8293         .8163         .734         19         41         .032         .077         .5616         .96285         200           41         .348         .203         .8163         .734         19         41         .032         .077         .5516         .2576         .260         18           42         .376         .235         .8118         .727         18         42         .060         .109         .5576         .260         18           43         .404         .266         .8073         .719         .17         .43         .088         .140         .5336         .261         17         .18           44         .432         .297         .8028         .712         .16         .44         .110         .172         .2347         .2597         .2533         .661         .18           45         .25460         .26328         .37983         .6905         .15         .45         .27144         .28203         .35457         .96246<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 235    |        | .8345  | 764  | 23  | 37   | 920     | 952    | .5776  | 308      | 23  |
| 40         .25320         .26172         3.8208         .96742         20         40         .27004         .28046         3.5656         .96.85         20           41         348         203         8.3163         734         19         41         032         077         5510         277         19           42         376         235         8118         727         18         42         060         109         .5576         260         19         25776         260         19         .5776         260         11         19         44         432         297         8028         719         17         43         088         140         .536         261         17         44         432         297         .546         .26828         3.7983         .96705         15         45         .27144         .28203         3.5457         .96246         15         46         4172         .234         .5415         238         14         47         516         390         .7893         690         13         47         200         266         .5379         .96246         15         47         49         573         452         .7804         675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 263    |        |        |      |     |      |         |        |        |          |     |
| 41         34S         203         .8163         734         19         41         032         077         .5511.         277         19           42         376         235         .8118         727         18         42         060         109         .5576         269         18           43         404         266         8073         719         17         43         08S         140         .5336         261         17           44         432         297         .8028         712         16         44         116         172         .5497         253         16           45         .25460         .26328         3.7983         .69705         15         45         .27144         .28203         3.5457         .96246         15           46         488         359         .7893         690         13         47         200         266         .5379         230         13           45         545         421         .7848         682         12         48         228         297         .5339         222         12           49         573         452         .7804         675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        |        |        | ı    |     |      |         | ,      |        |          |     |
| 42         376         235         S118         727         18         42         060         109         .5576         260         18           43         404         266         8.073         719         17         43         088         140         .5536         261         17           44         432         297         8028         712         16         44         110         172         .547         253         16           45         .25460         .26328         3.7983         .96705         15         45         .27144         .28203         3.5457         .96246         15           46         488         359         .7938         690         13         47         200         266         .5379         230         13           48         545         421         .7848         682         12         48         228         297         .5339         222         12           49         573         452         .7804         675         11         49         256         329         .5300         221         11           50         .25601         .26483         3.7760         .96667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |        |      |     |      |         |        |        | 277      |     |
| 44         432         297         .8028         712         16         44         116         172         .5497         253         16           45         .25460         .26328         3.7983         .96705         15         45         .27144         .28203         3.5457         .96246         15           46         488         359         .7893         690         13         47         200         2266         .5379         230         13           45         545         421         .7848         682         12         48         228         297         .5339         222         12           49         573         452         .7804         675         11         49         256         329         .5300         222         12           50         .25601         .26483         3.7760         .96667         10         50         .27284         .28360         3.5261         .96206         10           51         629         515         .7715         660         9         51         312         391         .5222         198         9           52         657         546         .7671         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42  | 376    | 235    | .8118  | 727  | 18  | 42   | 060     | 109    | .5570  | 269      | 18  |
| 45         .25460         .26328         3.7983         .96705         15         45         .27144         .28203         3.5457         .96246         15           46         488         359         .7893         690         13         47         200         266         .5379         230         13           47         516         390         .7893         690         13         47         200         266         .5379         230         13           48         545         421         .7848         682         12         48         225         297         .5339         222         12           49         573         452         .7804         675         11         49         256         329         .5300         214         11           50         .25601         .26483         3.7760         .96867         10         50         .27284         .28360         .35201         .96206         10           51         629         515         .7715         660         9         51         312         .380         .35201         .96206         10           52         657         546         .7671         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        | 266    |        |      |     |      |         |        |        | 261      |     |
| 46         488         359         .7938         697         14         46         172         234         .5418         238         14           47         516         390         .7893         690         13         47         2000         266         .5379         230         13           48         545         421         .7894         682         12         48         228         229         2539         222         12           49         573         452         .7804         675         11         49         236         329         .5309         2212         12           50         .25601         .26483         .7760         .9667         10         50         .27284         .28360         .35261         .96206         10           51         629         515         .7715         660         9         51         312         331         .5221         190         8           52         657         546         .7671         653         8         52         340         423         .5183         190         8         5         346         454         .5144         182         7         53 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |        |        |        |      |     |      |         |        | 1      |          |     |
| 47         516         390         .7893         690         13         47         200         266         .5379         230         13           45         545         421         .7848         682         12         48         228         297         .5339         222         12           49         573         452         .7804         675         11         49         226         329         .5339         222         12           50         .25601         .26483         3.7760         .96667         10         50         .27284         .28360         3.5261         .96206         10           51         629         515         .7715         660         9         51         312         391         .5222         198         9           52         657         546         .7671         653         8         52         340         423         .5153         190         8           53         685         577         .7627         645         7         33         368         454         .5143         182         7           54         713         608         7583         638         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |        |        |      |     | 46   |         | 234    |        | 238      | 14  |
| 49         573         452         .7804         675         11         49         256         329         .5300         214         11           50         .25601         .26483         3.7760         .96667         10         50         .27284         .28360         3.5261         .96206         10           51         629         515         .7715         600         9         51         312         391         .5229         .5889         198         9           52         657         546         .7671         653         8         52         340         423         .5183         190         8           53         685         577         .7627         645         7         53         368         44         .5144         182         7           54         713         608         .7583         638         6         54         396         486         .5105         174         6           55         .25741         .26639         3.7539         .96630         5         55         .27424         .28517         .5067         .96186         5           56         769         670         .7495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47  | 516    | 390    | .7893  | 690  | 13  | 47   | 200     | 266    | .5379  | 230      |     |
| 50         25601         .26483         3.7760         .96667         10         50         .27284         .28360         3.5261         .96206         10           51         629         515         .7715         660         9         51         312         391         .5222         198         9           52         657         546         .7671         653         8         52         340         423         .5153         199         9           53         685         577         .7627         643         7         53         368         454         .5144         182         7           54         713         608         .7583         638         6         54         396         486         .5105         174         182           55         .25741         .26639         .7589         .96630         5         55         .27424         .28517         3.5067         .96166         5           56         769         670         .7495         623         4         56         452         2517         3.5067         .96166         5           58         826         733         .7408         608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 421    |        | 652  |     |      |         |        |        |          |     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |        | 1      |      |     |      |         |        | ,      |          |     |
| 52         657         546         .7671         653         8         52         340         423         .5183         199         8           53         685         577         .7627         645         7         53         368         454         .5144         182         7           54         713         608         .7583         638         6         54         396         486         .5195         174         6           55         .25741         .26639         3.7539         .96630         5         55         .27424         .28517         3.5067         .96166         5           56         769         670         .7495         623         4         56         452         549         .5028         158         4           57         798         701         .7451         615         3         57         480         580         .4989         150         3           58         826         733         .7408         608         2         58         508         612         .4951         142         2           59         854         764         .7364         600         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        | 660  | 9   | 51   | 312     | 391    | .5222  | 195      | y   |
| 54         713         608         .7583         638         6         54         396         488         .5105         174         6           55         .23741         .26639         3.7539         .96630         5         55         .27424         .28517         3.5067         .96166         5           56         769         670         .7495         623         4         56         452         549         .5025         158         4           57         798         701         .7451         615         3         57         480         580         4989         150         3           58         826         733         .7408         600         2         58         508         612         .4951         142         2           59         854         764         .7384         600         1         59         536         643         .4912         134         1           60         .25882         .26795         3.7321         .96593         0         60         .27564         .28675         3.4874         .96126         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52  | 657    | 546    | .7671  |      | 8   | 52   |         |        |        |          | 8   |
| 55         2.5741         2.6639         3.7539         .96630         5         55         .27424         .28517         3.5067         .96166         5           56         769         670         .7495         623         4         56         452         549         .5025         158         4           57         798         701         .7451         615         3         57         480         580         .4959         150         3           58         826         733         .7408         608         2         58         508         612         .4951         142         2           59         854         764         .7364         600         1         59         536         643         .4912         134         1           60         .25882         .26795         3.7321         .96593         0         60         .27564         .28675         3.4874         .96126         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 685    |        |        | 645  |     | 51   |         |        |        | 174      | 6   |
| 56         769         670         .7495         623         4         56         452         549         .5028         158         157         798         701         .7451         615         3         57         480         580         .4951         150         3           58         826         733         .7408         608         2         58         508         612         .4951         142         2           59         854         764         .7364         600         1         59         536         643         .4912         134         1           60         .25882         .26795         3.7321         .96593         0         60         .27564         .28675         3.4874         .96126         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |        |        |        |      |     |      |         |        | 3.5067 |          |     |
| 58         826         733         .7408         608         2         58         508         612         .4951         142         2           59         854         764         .7364         600         1         59         536         643         .4912         134         1           60         .25882         .26795         3.7321         .96593         0         60         .27564         .28675         3.4874         .96126         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |        | .7495  | 623  | 4   | 56   | 452     | 549    | .5028  | 158      | 4   |
| 60 .25882 .26795 3.7321 .96593 0 60 .27564 .28675 3.4874 .96126 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57  | 798    | 701    | .7451  |      |     |      |         |        | .4989  |          |     |
| 60 .25882 .26795 3.7321 .96593 0 60 .27564 .28675 3.4874 .96126 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 826    |        |        |      |     |      |         |        |        |          | ī   |
| 00 123002 1201 NO 511021 130010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |        | I      |      |     | 1 1  |         |        | 1      |          | 0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٣   | Cos    | Ctn    | Tan    | Sin  | 7   |      |         |        | Tan    | Sin      | 1   |

74° 75°

| 71       | Sin              | Tan           | Ctn             | Cos           |                 |   | ,        | Sin               | Tan           | Ctn             | Cos           | F11             |
|----------|------------------|---------------|-----------------|---------------|-----------------|---|----------|-------------------|---------------|-----------------|---------------|-----------------|
| $\vdash$ |                  |               |                 |               | 60              | П | 0        | .29237            | .30573        |                 |               |                 |
| 0        | .27564<br>592    | .28675 $706$  | 3.4874<br>.4836 | .96126<br>118 | 59              | П | 1        | 265               | 605           | 3.2709<br>.2675 | .95630<br>622 | <b>60</b><br>59 |
| 2        | 620              | 738           | 4795            | 110           | 58              | П | 23       | 293               | 637           | .2641           | 613           | 58              |
| 3        | 648              | 769           | .4760           | 102           | 57              | Н | 3        | 321               | 669           | .2607           | 605           | 57              |
| 4        | 676              | 801           | .4722           | 094           | 56              | П | 4        | 348               | 700           | .2573           | 596           | 56              |
| 5        | .27704           | .28832<br>864 | 3.4684<br>.4646 | .96086<br>078 | 55<br>54        | Н | 5<br>6   | .29376<br>404     | .30732 $.764$ | 3.2539<br>.2506 | .95588        | 55              |
| 6<br>7   | 731<br>759       | 895           | .4608           | 070           | 53              | П | 7        | 432               | 796           | .2472           | 579<br>571    | 54<br>53        |
| 8        | 787              | 927           | .4570           | 062           | 52              | Н | 8        | 460               | 828           | .2438           | 562           | 52              |
| 9        | 815              | 958           | .4533           | 054           | 51              | Н | 9        | 487               | 860           | .2405           | 554           | 51              |
| 10       | .27843           | .28990        | 3.4495          | .96046        | <b>50</b>       | Н | 10       | .29515<br>543     | .30891<br>923 | 3.2371          | .95545        | 50              |
| 11<br>12 | 871<br>899       | .29021<br>053 | .4455<br>.4420  | 037<br>029    | 48              | Н | 12       | 571               | 923<br>955    | .2338<br>.2305  | 536<br>528    | 49              |
| 13       | 927              | 054           | 4383            | 021           | 47              | Н | 13       | 599               | .30987        | .2272           | 519           | 43<br>47        |
| 14       | 955              | 116           | .4346           | 013           | 46              | Н | 14       | 626               | .31019        | .2238           | 511           | 16              |
| 15       | .27983           | .29147        | 3.4308          | .96005        | 45              | П | 15       | .29654            | .31051        | 3.2205          | .95502        | 45              |
| 16       | .28011           | 179           | .4271           | .95997<br>989 | 44<br>43        | П | 16<br>17 | 682<br>710        | 083<br>115    | .2172           | 493           | 44              |
| 17<br>18 | 039<br>067       | 210<br>242    | .4234<br>.4197  | 981           | 42              | Н | 18       | 737               | 147           | .2139<br>.2106  | 485<br>476    | 43              |
| 19       | 095              | 274           | .4160           | 972           | 41              | П | 19       | 765               | 178           | .2073           | 467           | 42<br>41        |
| 20       | .28123           | .29305        | 3.4124          | .95964        | 40              | Н | 20       | .29793            | .31210        | 3.2041          | .95459        | 40              |
| 21       | 150              | 337           | .4087           | 956           | 39              | П | 21       | 821               | 242           | .2008           | 450           | 39              |
| 22<br>23 | 178<br>206       | 368<br>400    | .4050<br>.4014  | 948<br>940    | 38<br>37        | Н | 22<br>23 | 849<br>876        | 274<br>306    | .1975           | 441<br>433    | 38              |
| 24       | 234              | 432           | .3977           | 931           | 36              | П | 24       | 904               | 338           | .1910           | 424           | 37<br>36        |
| 25       | .28262           | .29463        | 3.3941          | .95923        | 35              | П | 25       | .29932            | .31370        | 3.1878          | .95415        | 35              |
| 26       | 290              | 495           | .3904           | 915           | 34              | П | 26       | 960               | 402           | .1845           | 407           | 34              |
| 27       | 318              | 526           | .3868           | 907           | 33              | П | 27<br>28 | .29987            | 434           | .1813           | 398           | 33              |
| 28<br>29 | 346<br>374       | 558<br>590    | .3832<br>.3796  | 898<br>890    | 32<br>31        | Н | 28       | .30015<br>043     | 466<br>498    | .1780<br>.1748  | 389<br>380    | 32<br>31        |
| 30       | .28402           | .29621        | 3.3759          | .95882        | 30              | Н | 30       | .30071            | .31530        | 3.1716          | .95372        | 30              |
| 31       | 429              | 653           | .3723           | 874           | 29              | П | 31       | 098               | 562           | .1684           | 363           | 29              |
| 32       | 457              | 685           | .3687           | 865           | 28              | П | 32       | 126               | 594           | .1652           | 354           | 29<br>28        |
| 33       | 485              | 716           | .3652<br>.3616  | 857<br>849    | 27<br>26        | П | 33<br>34 | $\frac{154}{182}$ | 626           | .1620           | 345           | 27              |
| 34<br>35 | 513<br>.28541    | .29780        | 3.3580          | .95841        | 25              | Н | 35       | .30209            | .31690        | .1588<br>3.1556 | .95328        | 26<br>25        |
| 36       | 569              | 811           | .3544           | 832           | 24              | Н | 36       | 237               | 722           | .1524           | 319           | 24              |
| 37       | 597              | 843           | .3509           | 824           | 23              | Н | 37       | 265               | 754           | .1492           | 310           | 23<br>22        |
| 38       | 625              | 875           | .3473           | 816           | 22              | П | 38       | 292               | 786           | .1460           | 301           | 22              |
| 39       | 652              | 906           | .3438           | 807           | 21              | П | 39<br>40 | 320               | 818           | .1429           | 293           | 21              |
| 40       | .28680<br>708    | .29938        | 3.3402<br>.3367 | .95799<br>791 | <b>20</b><br>19 | П | 41       | .30348<br>376     | .31850<br>882 | 3.1397<br>.1366 | .95284<br>275 | 20<br>19        |
| 42       | 736              | .30001        | .3332           | 782           | 18              | П | 42       | 403               | 914           | .1334           | 266           | 18              |
| 43       | 764              | 033           | .3297           | 774           | 17              | ı | 43       | 431               | 946           | .1303           | 257           | 17              |
| 44       | 792              | 065           | .3261           | 766           | 16              | ı | 44       | 459               | .31978        | .1271           | 248           | 16              |
| 45<br>46 | .28820<br>847    | .30097<br>128 | 3.3226<br>.3191 | .95757<br>749 | 15<br>14        | ı | 45<br>46 | .30486<br>514     | .32010<br>042 | 3.1240          | .95240<br>231 | 15<br>14        |
| 47       | 875              | 160           | .3156           | 740           | 13              | ı | 47       | 542               | 074           | .1178           | 231           | 13              |
| 48       | 903              | 192           | .3122           | 732           | 12              | ı | 48       | 570               | 106           | .1146           | 213           | 12              |
| 49       | 931              | 224           | .3087           | 724           | 11              | ı | 49       | 597               | 139           | .1115           | 204           | 11              |
| 50<br>51 | .28959<br>.28987 | .30255<br>287 | 3.3052<br>.3017 | .95715<br>707 | <b>10</b>       | ۱ | 50       | .30625<br>653     | .32171<br>203 | 3.1084          | .95195        | 10              |
| 52       | .29015           | 319           | .2983           | 698           | 8               | ı | 51<br>52 | 680               | 203<br>235    | .1053           | 186<br>177    | 9               |
| 53       | 042              | 351           | .2948           | 690           | 8<br>7          | ı | 53       | 708               | 267           | .0991           | 168           | 8<br>7          |
| 54       | 070              | 382           | .2914           | 681           | 6               | ı | 54       | 736               | 299           | .0961           | 159           | 6               |
| 55       | .29098           | .30414        | 3.2879          | .95673        | 5               | ı | 55       | .30763            | .32331        | 3.0930          | .95150        | 5               |
| 56<br>57 | 126<br>154       | 446<br>478    | .2845<br>.2811  | 664<br>656    | 4 3             | ۱ | 56<br>57 | 791<br>819        | 363<br>396    | .0899           | 142<br>133    | 4 3             |
| 58       | 182              | 509           | .2777           | 647           | 2               | ı | 58       | 846               | 428           | .0838           | 124           | 2               |
| 59       | 209              | 541           | .2743           | 639           | 1               | П | 59       | 874               | 460           | .0807           | 115           | 1               |
| 60       | .29237           | .30573        | 3.2709          | .95630        | 0               | ı | 60       | .30902            | .32492        | 3.0777          | .95106        | 0               |
|          | Cos              | Ctn           | Tan             | Sin           | ′               | П |          | Cos               | Ctn           | Tan             | Sin           | ′               |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [1] | 10     |        | aiues  |     | gon. |   | III.C |        | ncuon  | 8 — 13 | ,          | -51      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|-----|------|---|-------|--------|--------|--------|------------|----------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Sin    | Tan    | Cin    | Cos |      |   | `     | Sin    | Tan    | Ctn    | Cos        |          |
| 2   9.77   556   .0716   0.88   5.8   2   612   448   8.977   5.8   5.9   5.26   5.7   5.8   5.9   5.26   5.7   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.26   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.2   5.8   5.9   5.9   5.9   5.8   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5.9   5   |     |        | .32492 |        |     |      | П |       |        |        |        |            | 60       |
| 4 31012 0.0513 0.0625 9.0616 155 6 3.3694 3.1596 2.5805 9.4504 5 6 0.05 6 0.5 0.0515 0.0515 0.0516 0.051 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0. |     | 929    | 556    |        |     |      | П |       |        |        |        | 6-1-       | 57       |
| 4 31012 0.0513 0.0625 9.0616 155 6 3.3694 3.1596 2.5805 9.4504 5 6 0.05 6 0.5 0.0515 0.0515 0.0516 0.051 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0.0516 0. |     |        | 585    | .0656  | 079 | 57   |   |       |        | 533    | Dist.  | 5          | 3.7      |
| Column   C   | 4   | .31012 |        |        |     |      | 1 |       | tie.   | 5      |        | 514        | 101      |
| The color of the   |     |        |        |        |     |      | П |       |        |        |        |            | 55       |
| 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |        |        |        |     |      |   | 5     | 744    | 661    |        |            | 3        |
| 10   31178   32814   3.0475   9.5015   50   10   32832   34758   2.8770   0.4437   50   11   2.63   S575   0.0445   9.9497   48   12   887   8.24   8.710   4.74   47   47   47   47   47   47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 123    | 749    | .0535  | 633 | 52   |   | - 8   | 777    | 693    | .5524  | 476        | 52       |
| 11         2.53         S55         0.415         .94997         48         11         857         851         .576         451         441         451         451         251         281         .5716         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         452         451         451         452         451         452         451         452         451         452         451         452         451         452         451         452         451         452         451         452         451         452         451         452         451         452         451         452         451         452         452         452         452         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |        |        |     |      | П |       |        |        |        |            | 51       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        |        |        |     |      | ı |       |        |        | 2 3770 |            | 50       |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12  | 253    | \$75   |        |     |      | П |       | 857    | 824    | 87     |            | 4.       |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13  | 261    | 911    |        | 988 |      | П |       | 914    | 856    | ~ ~    |            | 1.7      |
| 16         344         33007         02.66         991         44         16         32907         954         8869         309         4           17         372         040         0267         952         43         17         33924         3487         8582         380         41           19         427         104         0205         933         41         19         C79         652         8552         380         42           20         31454         33136         3.0178         94924         40         20         33166         33055         2.8509         94361         42           21         482         169         0.049         915         39         21         134         115         8473         321         321         321         321         321         321         321         321         321         321         321         321         321         321         321         321         321         321         321         321         322         323         332         332         332         332         332         332         332         332         333         333         332         333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |        |        |     |      |   |       |        |        |        |            | 46       |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        |        |        |     |      | П |       |        | 34922  |        |            |          |
| 18       339       072       .0237       943       42       18       C51       .8520       .8550       380       44         20       .31454       .33136       .30178       .94924       40       20       .33160       .35055       2.8509       .94361       41         21       .482       1109       .0140       915       39       21       134       11       .8473       301       31       31       32         22       .510       201       .0120       906       38       22       164       11       .8473       301       31       32       32       32       32       30       30000       807       37       23       164       15       .8437       322       32       32       32       32       33       30       30       3003       809       34       26       271       28       314       .831       237       28       334       834       .829       34       26       271       28       314       .831       293       33       33       30       33       30       33       33       33       30       33       33       33       33       34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |        | 040    | .0267  | 952 | 43   |   | 17    | 33004  | 34987  |        |            | 43       |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        |        |        |     |      |   |       | (51    | .3.×12 |        |            | 42       |
| 21         482         189         .0140         915         39         21         134         115         .8475         351         35         22         510         201         .0120         986         38         22         161         175         .8475         342         39         323         537         233         .0000         837         37         23         150         175         .8475         342         39         322         36         26         260         .0001         888         36         24         216         216         .2837         .94313         32         36         29974         860         33         27         298         314         .831         .933         379         .823         29         334         .86         271         221         .8434         .831         .933         3379         .8265         223         33         .303         .94878         851         32         28         .324         .3544         .8824         29         334         .841         .832         29         33         .33331         .3542         .2839         .9442         .942         .942         .942         .942         .942 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |        |     |      |   |       |        |        | 1      |            |          |
| 23         537         233         .0000         857         37         23         1 ks         1 ks         1 ks         322         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         34         83         32         34         83         32         34         83         32         34         83         32         34         83         32         33         33         37         825         32         33         33         33         33         33         33         33         33         34         42         33         34         44         34         44         34         44         34         44         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21  |        |        |        | 915 |      | ı | 21    |        | .50050 |        |            | 39       |
| 24         505         206         .0001         SSS         36         24         216         210         .8307         322         34           25         31593         3.0032         .94878         35         25         .33244         .35248         2.8370         .94313         34           27         648         363         2.9974         860         33         27         298         314         .831         293         32           29         703         427         .9916         842         31         29         353         377         .8265         274         31           30         .31730         .33460         2.9887         .94823         30         30         .33381         .35412         2.8239         .94264         32           31         758         402         .9858         814         28         32         436         447         .8147         284         22         22         33         463         510         .8141         259         .94782         344         466         447         .8147         2849         22         33         463         510         .8147         2849         2844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22  | 510    | 201    |        |     |      |   | 22    | 161    |        | . 140  | 342        | 38       |
| 25         3.1593         .33298         3.0032         .94878         35         25         .33244         .35248         2.8370         .94313         34           26         620         330         3.0003         899         34         26         271         281         .8344         303         3           27         648         365         2.9945         851         32         28         326         344         .8201         284         32           28         675         395         .9945         851         32         28         326         344         .8201         284         32           39         3170         .33480         2.9858         823         29         31         408         447         .8213         24786         447         .8213         24786         447         .8213         24786         447         .8213         24786         447         .8213         29         333         331         .35460         .9858         823         29         31         408         447         .8213         2478         245         22         33         460         4774         .9749         795         26         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23  |        |        |        |     |      |   |       |        |        |        | 332        | 37       |
| 26         620         330         3.0003         869         34         26         271         281         8441         303         3-27           27         648         363         2.9974         860         33         22         298         314         831         293         33           28         675         395         .9945         851         32         28         326         3346         .8291         214         28         326         3346         .8291         214         28         329         3353         377         8265         274         33           30         .31730         .33460         2.9887         .94832         30         30         .33381         .35412         2.8239         .94264         30           31         756         524         .9829         814         28         32         436         477         .5187         245         22           33         813         557         .9829         814         28         32         436         477         .5187         245         23           35         .31868         .33621         .9774         777         24         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |        |        |     |      | ı |       |        |        |        |            | 35       |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |        | 330    | 3.0003 |     | 34   |   | 26    | 271    |        |        |            | 34       |
| 29         703         427         .9916         842         31         29         353         371         .8265         274         3           30         .31730         .33460         .9887         .94823         30         .33381         .35412         .28239         .94264         3           31         758         402         .9858         823         29         31         405         447         .8187         243         2245         223           33         813         557         .9800         805         27         33         463         510         .8161         2245         22           35         .31868         .33621         .29743         .94786         25         35         .33518         .35576         2.8109         .94215         22           36         896         654         .9714         777         24         36         545         608         .8031         186         22         23         666         648         .8031         186         22         36         600         674         8032         186         22         37         23         600         674         8032         186 <th< td=""><td>27</td><td></td><td></td><td></td><td></td><td></td><td></td><td>27</td><td>298</td><td></td><td></td><td>293</td><td>33</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27  |        |        |        |     |      |   | 27    | 298    |        |        | 293        | 33       |
| 30         .31730         .33460         2.9887         .94832         30         .30         .33381         .35412         2.8239         .94264         32           31         758         492         .9858         823         29         31         405         447         .5213         244         22           32         756         524         .9829         814         28         32         436         477         .517         245         23           34         841         559         .9772         795         26         34         490         543         .5135         2255         225         22           35         .3868         .3621         .9714         777         24         36         545         668         .803         29         749         21         36         545         668         .668         768         23         37         573         641         .8037         196         24         36         .545         668         .8031         196         7707         .8046         176         .8031         196         22         36         600         674         .8032         196         27         707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        | 427    |        |     |      |   |       |        |        |        | 274        |          |
| 31         758         492         .9858         823         29         31         408         447         .8213         241         28         23         29         31         408         447         .8213         241         28         23         23         436         477         .8187         245         24         23         23         34         841         589         .9772         795         26         34         480         543         .8185         .8186         .821         29743         .94786         25         35         .33518         .35576         .28109         .94215         23         27         37         .923         686         .9686         768         28         32         37         573         641         .8077         196         29         29         749         21         39         .627         707         .8096         176         .203         186         .9572         730         941         .803         .9477         .8096         196         22         38         600         6674         .8032         186         .9572         730         941         .803         .9477         .8096         176         .8097 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>30</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |        |        |     |      |   |       |        | 1      |        |            | 30       |
| 33         813         557         .9800         805         27         33         463         510         .5161         235         27           34         841         589         .9772         795         26         34         490         543         .5161         235         225         225         35         35         .31868         .33621         2.9743         .94786         25         35         .33518         .35576         2.8109         .94215         22           37         923         686         .9686         765         23         37         573         641         .8032         186         .2959         775         755         22         38         600         674         .8032         186         29         .39         .31079         751         .9629         749         21         39         .32006         .33783         2.9600         .94740         20         40         .33655         .35740         2.7950         .94167         32           41         034         816         .9572         730         19         41         682         .5774         .7675         157         157         147         682         .7725<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31  | 758    | 492    | .9858  |     |      |   |       |        | 445    |        | 254        | 29       |
| 34         841         589         .9772         795         26         34         490         543         .5125         225         26           35         .31865         .33621         .9743         .94786         25         35         .33515         .35576         2.5109         .94215         22           36         896         654         .9666         765         23         37         5573         641         .8457         196         22         38         600         674         .8032         186         22         38         600         674         .8032         186         22         38         600         674         .8032         186         22         38         600         674         .8032         186         22         40         .32006         .33783         2.9600         .94740         20         40         .33655         .35740         2.7960         .94167         24           42         061         848         .9544         721         18         42         710         87         .7921         147         18         42         710         87         .7921         147         18         42         710         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |        |        |     | 28   | П |       |        | 510    | 212    | 245<br>235 | 28       |
| 36         806         654         .9714         777         24         36         545         608         .8083         206         2           37         923         686         .9686         768         23         37         573         641         .8057         196         22           38         951         718         .9657         758         22         35         600         674         .8032         186         22           39         .31979         751         .9629         749         21         39         627         707         .89%         176         21           40         .32006         .33783         .9600         .94740         20         40         .33655         .35740         .27980         .94167         21           41         034         816         .9574         721         18         42         710         857         .7621         147         43         737         837         .7733         147         14         116         913         .9457         702         16         44         764         87         .7573         127         147         18         45         .33792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |        | .9772  |     |      | П |       |        |        |        | 225        | 26       |
| 37         923         686         .9686         768         23         37         573         641         .8037         11%         22           38         951         718         .9657         758         22         38         600         674         .8032         186         22           39         .31079         751         .9629         749         21         39         627         770         .8946         176         22           40         .32006         .33783         2.9600         .94740         20         40         .33655         .35740         2.7980         .94167         21           42         061         848         .9544         721         18         42         712         .7655         157         11         17         18         42         710         87         .7621         147         18         42         710         87         .7621         147         18         43         737         84         .7622         147         147         149         140         148         734         74         147         147         148         33945         2.9459         .94693         15         45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |        |        |        |     |      |   |       |        |        |        | .94215     | 25       |
| 38         951         718         .9657         755         22         38         600         674         .8032         186         22           40         .32006         .33783         2.9600         .94740         20         40         .33655         .35740         2.799C         .94167         20           41         .034         816         .9572         730         19         41         .682         .772         .7957         .157         117         13         .961         .848         .9544         .721         18         42         .710         .873         .7952         .147         117         13         .737         .848         .7943         .137         117         14         .737         .848         .7943         .137         17         14         .737         .848         .7943         .137         17         14         .737         .848         .7943         .137         17         14         .737         .848         .7943         .137         17         .74         .737         .846         .743         .747         .448         .8346         .7573         .147         .14         .767         .848         .7943         .137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 896    |        |        |     |      | ı |       | 545    |        | .8053  | 206        |          |
| 39   31979   751   9629   749   21   39   627   767   88%   176   21   40   32006   33783   2.9600   94740   20   40   33655   33740   2.7980   94167   34   10   34   816   9572   730   19   41   682   772   7.792   157   157   143   3089   881   9515   712   17   43   737   839   7.792   147   18   42   710   875   7.792   147   18   43   737   839   7.792   147   17   18   45   33144   33945   2.9459   94693   15   45   33792   35904   2.7852   94118   46   171   33978   9431   684   14   46   819   937   7.827   108   14   47   199   34010   9403   674   13   47   846   35969   7801   098   14   45   227   043   9375   665   12   48   874   36002   7.776   088   14   9254   075   9347   656   11   49   901   035   7.751   078   15   15   15   15   15   15   15   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 951    |        |        |     |      | ı | 38    |        |        |        |            | 22       |
| 41         031         816         .9572         730         19         41         682         772         .7655         157         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15         14         15         373         25         25         15         15         15         15         15         15         15         15         15         15         15         15         15         15         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | .31979 | 751    |        | 749 |      |   |       |        |        |        | 176        | 21       |
| 43         059         881         .9515         712         17         43         737         89         .763         137         11         144         116         913         .9457         702         16         44         764         871         .7872         127         145         .32144         .33945         .29459         .94693         15         45         .33792         .3504         2.7852         .94118         14         14         199         .34010         .9403         684         14         46         819         937         .7827         108         14         18         94         .937         .7827         108         14         18         840         .35969         .7860         .095         11         18         14         18         840         .35969         .7860         .095         11         18         14         18         874         .36002         .7776         .088         12         48         874         .36002         .7776         .088         12         89         .901         .035         .7751         .078         17         50         .32282         .34108         2.9319         .94646         10         50         .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |        |        |     |      |   |       |        | .35740 | 2.79%  |            | 20       |
| 43         059         881         .9515         712         17         43         737         89         .763         137         11         144         116         913         .9457         702         16         44         764         871         .7872         127         145         .32144         .33945         .29459         .94693         15         45         .33792         .3504         2.7852         .94118         14         14         199         .34010         .9403         684         14         46         819         937         .7827         108         14         18         94         .937         .7827         108         14         18         840         .35969         .7860         .095         11         108         14         18         840         .35969         .7860         .095         11         108         14         18         874         .36002         .7776         .088         12         48         874         .36002         .7776         .088         12         48         874         .36002         .7776         .088         12         .389         140         .9291         637         9         51         .93929         .3606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |        |        |     |      |   |       |        | 85     | 7920   | 147        | 18       |
| 45         .32144         .33945         2.9459         .94693         15         45         .33792         .35004         2.7852         .94118         14           46         171         .33978         .9431         654         14         46         819         937         .7827         108         16           47         199         .34010         .9433         667         12         48         819         937         .7827         108         16         11         846         819         937         .7827         083         19         140         .927         48         874         .36002         .7776         088         12         48         874         .36002         .7776         088         12         .7776         07         18         19         .7776         07         19         .7776         07         19         .7776         07         17         17         .9263         627         8         52         .33929         .36068         2.7725         .94068         11         .7700         058         1         .7700         058         1         .7700         058         1         .7700         058         1         .7725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43  | 089    | 881    | .9515  | 712 | 17   |   | 43    | 737    | 53.5   | .79-13 | 137        | 17       |
| 46         171         .33978         .9431         684         14         46         819         937         .7827         108         14         47         199         .34010         .9403         674         13         47         846         .35969         .7801         .095         12         48         827         .9337         665         12         48         874         .36002         .7776         088         12         49         901         033         .7751         078         12         50         .32822         .34108         2.9319         .94646         10         50         .33929         .36068         2.7752         .94068         14         .961         10         .50         .33929         .36068         2.7752         .94068         14         .961         10         .7700         058         12         .9459         14         .961         10         .7700         058         12         .9459         .95         .33929         .36068         2.7750         .94068         14         .961         10         .7700         .958         13         .911         .7700         .958         12         .93893         .34011         167         .7655         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |        |        |        |     |      |   |       |        | 3      |        |            | 16       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        |        |        |     |      |   |       |        |        | 2.7852 |            | 15<br>14 |
| 48         227         043         .9375         665         12         48         S74         .36002         .7776         088         1/           49         254         075         .9347         656         11         49         901         035         .7751         078         1           50         32282         .34108         2.9319         .94646         10         50         .33929         .36068         2.7725         .9468         1           51         300         140         .9291         637         9         51         .958         101         .7700         058         1           52         337         173         .9263         627         8         52         .33983         134         .7675         049         .55         53         .33983         134         .7675         049         .56         .54         035         199         .7625         029         .60         .54         035         199         .7625         029         .60         .54         035         199         .7625         029         .60         .54         .34065         .38232         2.7600         .9419         .94         .56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |        | .9403  |     |      |   |       |        | .35969 | .7801  | 095        | 13       |
| 50         .32282         .34108         2.9319         .94646         10         50         .33929         .36068         2.7725         .94068         11           51         309         140         .9291         637         9         51         .956         101         .7700         058         52           52         337         173         .9263         627         8         52         .33983         134         .7675         049           53         364         205         .9235         618         7         53         .34011         167         .7650         039         .7625         029         6         54         038         199         .7625         029         6         55         .34065         .38232         2.7600         .94019         5         56         .34065         .36232         2.7600         .94019         5         56         .34065         .36232         2.7600         .94019         5         57         .34065         .36232         2.7600         .94019         5         56         .34065         .36232         2.7600         .94019         5         57         120         .298         .7550         .9999         5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        | 043    | .9375  |     |      |   |       |        |        |        | 055        | 12       |
| 51         300         140         .9291         637         9         51         .956         101         .7700         058         52         .33383         134         .7675         049         .7655         .049         .7655         049         .7655         039         .7655         039         .7655         039         .7655         039         .7655         039         .7655         039         .7655         039         .7655         039         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .7655         .9409         .94019         .94555         .7655         .34065         .38232         .77575         .94009         .94555         .77575         .94009         .95775         .94099         .7556         .93999         .7556         .95775         .94099         .7556         .95999         .9599         .9599         .9599 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |        |        |        |     |      |   |       |        |        |        |            |          |
| 52         337         173         .9263         627         8         52         .33983         134         .7675         049         53         34011         167         .7650         039         54         392         238         .9208         609         6         54         035         199         .7625         029         655         .32419         .34270         2.9180         .94599         5         55         .34065         .36232         2.7600         .94019         .9409         .94019         .9409         .94019         .9409         .9409         .9409         .9409         .9409         .9409         .9409         .9409         .9409         .9409         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309         .9309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |        |        |        |     |      | 1 |       |        |        | .7700  |            | 9        |
| 54     392     238     .9208     609     6     54     038     199     .7625     029       55     .32419     .34270     2.9180     .94599     5     55     .34065     .38232     2.7600     .94019     4       56     .447     333     .9152     590     4     56     .993     265     .7575     .94009       57     .474     335     .9125     580     3     57     120     298     .7550     .93999       58     502     368     .9097     571     2     58     147     331     .7525     989       59     529     400     .9070     561     1     59     175     364     .7500     979       60     .32557     .34433     2.9042     .94552     0     60     .34202     .36397     2.7475     .93969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52  | 337    | 173    | .9263  | 627 | S    | 1 | 52    | .33983 | 134    | .7675  | 049        | 8        |
| 55         .32419         .34270         2.9180         .94599         5         55         .34065         .38232         2.7600         .94019         5           56         447         303         .9152         590         4         56         093         265         .7575         .94009         -94019         94019         -94019         -94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94009         94019         94009         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94019         94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |        |        |        |     |      | 1 | 53    |        |        |        |            | 6        |
| 56     447     303     .9152     590     4     56     093     265     .7575     .94009       57     474     335     .9125     580     3     57     120     298     .7550     .93999       58     502     388     .9097     571     2     58     147     331     .7550     .9899       59     529     400     .9070     561     1     59     175     364     .7500     979       60     .32557     .34433     2.9042     .94552     0     60     .34202     .36397     2.7475     .93969     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |        |        |     | - 1  | 1 |       |        |        | •      |            | 5        |
| 58     502     368     .9097     571     2     58     147     331     .7525     989       59     529     400     .9070     561     1     59     175     364     .7500     979       60     .32557     .34433     2.9042     .94552     0     60     .34202     .36397     2.7475     .93969     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56  | 447    | 303    | .9152  | 590 | 4    | ı | 56    | 093    | 265    | .7575  | .94009     | 4        |
| 59 529 400 .9070 561 1 59 175 364 .7500 979 60 .32557 .34433 2.9042 .94552 0 60 .34202 .36397 2.7475 .93969 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |        |        |        |     |      | 1 |       |        | 298    | .7550  |            | 3 2      |
| 60 .32557 .34433 2.9042 .94552 0 60 .34202 .36397 2.7475 .93969 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |        |        |        |     |      | 1 |       |        |        | 7500   |            | ī        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |        |        |     |      | ۱ |       |        | 1      |        | .93969     | 0        |
| I I COG I CAM I LAM I DIM I FI I COG I CAM I AM I CAM I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Cos    | Ctn    | Tan    | Sin | 7    | ١ |       | Cos    | Ctm    | Tan    | Sin        | 1        |

| 11       | Sin                | Tan                | Ctn             | Cos           | Ť            | 1 | 7              | Sin              | Tan              | Ctn             | Cos           | [1]      |
|----------|--------------------|--------------------|-----------------|---------------|--------------|---|----------------|------------------|------------------|-----------------|---------------|----------|
| F        |                    |                    |                 |               | 60           | l | 0              | ·                |                  |                 |               |          |
| 0        | .34202<br>229      | .36397<br>430      | 2.7475<br>.7450 | .93969<br>959 | 59           |   | li             | .35837<br>864    | .38386<br>420    | 2.6051<br>.6028 | .93358<br>348 | 60       |
| 2        | 257                | 463                | 7425            | 949           | 58           | ı | 2 3            | 891              | 453              | .6006           | 337           | 59<br>58 |
| 3        | 284                | 496                | .7400           | 939           | 57           |   |                | 918              | 487              | .5983           | 327           | 57       |
| 4        | 311                | 529                | .7376           | 929           | 56           |   | 4              | 945              | 520              | .5961           | 316           | 56       |
| 5        | .34339             | .36562             | 2.7351          | .93919        | 55           |   | 5              | .35973           | .38553           | 2.5938          | .93306        | 55       |
| 6<br>7   | 366<br><b>3</b> 93 | 595<br>628         | .7326<br>.7302  | 909<br>899    | 54<br>53     |   | 67             | .36000<br>027    | 587<br>620       | .5916           | 295           | 54       |
| ś        | 421                | 661                | 7277            | 889           | 52           | ı | ś              | 054              | 654              | .5871           | 285<br>274    | 53<br>52 |
| 9        | 448                | 694                | .7253           | 879           | 51           | Н | 9              | 081              | 687              | .5848           | 264           | 51       |
| 10       | .34475             | .36727             | 2.7228          | .93869        | 50           |   | 10             | .36108           | .38721           | 2.5826          | .93253        | 50       |
| 11       | 503                | 760                | .7204<br>.7179  | 859           | 49           |   | 11             | 135              | 754              | .5804           | 243           | 49       |
| 12<br>13 | 530<br>557         | 793<br><b>8</b> 26 | .7155           | 849<br>839    | 48           |   | 12<br>13       | 162<br>190       | 787<br>821       | .5782<br>.5759  | 232<br>222    | 48       |
| 14       | 554                | 859                | .7130           | 829           | 46           | П | 14             | 217              | 854              | .5737           | 211           | 47<br>46 |
| 15       | .34612             | .36892             | 2.7106          | .93819        | 45           | П | 15             | .36244           | .38888           | 2.5715          | .93201        | 45       |
| 16       | 639                | 925                | .7082           | 809           | 44           | П | 16             | 271              | 921              | .5693           | 190           | 44       |
| 17       | 666                | 958                | .7058           | 799           | 43           | П | 17             | 298              | 955              | .5671           | 180           | 43       |
| 18<br>19 | 694<br>721         | .36991 $.37024$    | .7034<br>.7009  | 789<br>779    | 42           | П | 18<br>19       | 325<br>352       | .38988<br>.39022 | .5649<br>.5627  | 169           | 42       |
| 20       | .34748             | .37057             | 2.6985          | .93769        | 40           | П | 20             | .36379           | .39055           | 2.5605          | .93148        | 41<br>40 |
| 21       | 775                | 090                | .6961           | 759           | 39           |   | 21             | 406              | 089              | .5583           | 137           | 39       |
| 22       | 803                | 123                | .6937           | 748           | 38           | П | 22             | 434              | 122              | .5561           | 127           | 38       |
| 23       | 830                | 157                | .6913           | 738           | 37           | П | 23             | 461              | 156              | .5539           | 116           | 37       |
| 24       | 857                | 190                | .6889           | 728           | 36           | П | 24             | 488              | 190              | .5517           | 106           | 36       |
| 25<br>26 | .34884<br>912      | .37223<br>256      | 2.6865<br>.6841 | .93718<br>708 | 35<br>34     | П | 25<br>26       | .36515<br>542    | .39223<br>257    | 2.5495<br>.5473 | .93095<br>084 | 35       |
| 27       | 939                | 289                | .6818           | 698           | 33           | Н | 27             | 569              | 290              | .5452           | 074           | 34<br>33 |
| 28       | 966                | 322                | .6794           | 688           | 32           | Н | 28             | 596              | 324              | .5430           | 063           | 32       |
| 29       | .34993             | 355                | .6770           | 677           | 31           | П | 29             | 623              | 357              | .5408           | 052           | 31       |
| 30       | .35021             | .37388             | 2.6746          | .93667        | 30           | П | 30             | .36650           | .39391           | 2.5386          | .93042        | 30       |
| 31<br>32 | 048<br>075         | 422<br>455         | .6723<br>.6699  | 657<br>647    | 29<br>28     | Н | 31<br>32       | 677<br>704       | 425<br>458       | .5365<br>.5343  | 031<br>020    | 29<br>28 |
| 33       | 102                | 488                | .6675           | 637           | $\tilde{27}$ | П | 33             | 731              | 492              | .5322           | .93010        | 27       |
| 34       | 130                | 521                | .6652           | 626           | 26           | П | 34             | 758              | 526              | .5300           | .92999        | 26       |
| 35       | .35157             | .37554             | 2.6628          | .93616        | 25           | П | 35             | .36785           | .39559           | 2.5279          | .92988        | 25       |
| 36<br>37 | 184<br>211         | 588<br>621         | .6605<br>.6581  | 606<br>596    | 24<br>23     | П | 36<br>37       | 812<br>839       | 593<br>626       | .5257<br>.5236  | 978<br>967    | 24<br>23 |
| 38       | 239                | 654                | .655S           | 585           | 23           | П | 38             | 867              | 660              | .5214           | 956           | 22       |
| 39       | 266                | 687                | .6534           | 575           | 21           |   | 39             | 894              | 694              | .5193           | 945           | 21       |
| 40       | .35293             | .37720             | 2.6511          | .93565        | 20           |   | 40             | .36921           | .39727           | 2.5172          | .92935        | 20       |
| 41       | 320                | 754                | .6488           | 555           | 19           |   | 41             | 948              | 761              | .5150           | 924           | 19       |
| 42<br>43 | 347<br>375         | 787<br>820         | .6464<br>.6441  | 544<br>534    | 18<br>17     |   | 42<br>43       | .36975<br>.37002 | 795<br>829       | .5129<br>.5108  | 913<br>902    | 18<br>17 |
| 44       | 402                | 853                | .6418           | 524           | 16           | ı | 44             | 029              | 862              | .5086           | 892           | 16       |
| 45       | .35429             | .37887             | 2.6395          | .93514        | 15           |   | 45             | .37056           | .39896           | 2.5065          | .92881        | 15       |
| 46       | 456                | 920                | .6371           | 503           | 14           | ۱ | 46             | 083              | 930              | .5044           | 870           | 14       |
| 47<br>48 | 484<br>511         | 953<br>.37986      | .6348<br>.6325  | 493<br>483    | 13<br>12     | ۱ | 47<br>48       | 110              | 963<br>.39997    | .5023           | 859<br>849    | 13<br>12 |
| 48       | 538                | .38020             | .6302           | 483<br>472    | 11           | ı | 49             | 137<br>164       | .40031           | .4981           | 838           | 11       |
| 50       | .35565             | .38053             | 2.6279          | .93462        | 10           | ١ | 50             | .37191           | .40065           | 2.4960          | .92827        | 10       |
| 51       | 592                | 086                | .6256           | 452           | 9            | 1 | 51             | 218              | 098              | .4939           | 816           | 9        |
| 52       | 619                | 120                | .6233           | 441           | 8            | ١ | 52             | 245              | 132              | .4918           | 805           | 8        |
| 53<br>54 | 647<br>674         | 153<br>186         | .6210<br>.6187  | 431<br>420    | 7<br>6       | ١ | 53<br>54       | 272<br>299       | 166<br>200       | .4897<br>.4876  | 794<br>784    | 7<br>6   |
| 55       | .35701             | .38220             | 2.6165          | .93410        | 5            |   | 5 <del>5</del> | .37326           | .40234           | 2.4855          | .92773        | 5        |
| 56       | 728                | 253                | .6142           | 400           | 4            | ١ | 56             | 353              | 267              | .4834           | 762           | 4        |
| 57       | 755                | 286                | .6119           | 389           | 3            | ١ | 57             | 380              | 301              | .4813           | 751           | 3        |
| 58       | 782                | 320                | .6096           | 379           | 2            |   | 58             | 407              | 335              | .4792           | 740           | 2        |
| 59       | 810                | 353                | .6074           | 368           | 1            | ۱ | 59             | 434              | 369              | .4772           | 729           | 1        |
| 60       | .35837             | .38386             | 2.6051          | .93358        | 0            | ١ | 60             | .37461           | .40403           | 2.4751          | .92718        | 9        |
|          | Cos                | Ctn                | Tan             | Sin           | '            | 1 |                | Cos              | Ctn              | Tan             | Sin           | '        |

| 11]             |               |               |                 |               | 3011            |    |                 |                   | acuon         |                | <del>,</del>  | 30       |
|-----------------|---------------|---------------|-----------------|---------------|-----------------|----|-----------------|-------------------|---------------|----------------|---------------|----------|
|                 | Sin           | Tan           | Cin             | Cos           |                 | L  |                 | Sin               | Tan           | Ctn            | Cos           |          |
| 0               | .37461        | .40403        | 2.4751          | 3/2715        | <u>ē</u> 0      | 1  | 0               | 43.43             | 12447         | 2.3559         | .92050        | 60       |
| 1 3 1           | 455<br>515    | 436<br>470    | .4730           | 7:67<br>63:7  | 3.              | ١  | 2               | 1:4:<br>127       | 452<br>516    | .3539<br>.3520 | 039<br>028    | 59       |
| 3               | 542           | 504           | .4659           | 6,49          | 57              | 1  | 3               | 153               | 551           | .3501          | 016           | 58<br>57 |
| 4               | 569           | 535           | .4665           | 675           | 56              |    | 4               | 180               | 585           | .3453          | .92005        | 56       |
| 5               | .37595        | .40572        | 2.4648          | .92661        | 55              |    | 5               | .39207            | .42619        | 2.3464         | .91994        | 56       |
| 6               | 622           | 640           | .4627           | 653           | 54              |    | 6               | 234               | 654           | .3445          | 95.2          | 54       |
| 8               | 649           | 674           | .4600           | 642<br>631    | $\frac{53}{52}$ |    | 3               | 260<br>287        | 685           | .3426<br>.3407 | 971<br>959    | 53<br>52 |
| 9               | 703           | 707           | 4566            | 629           | 51              |    | 9               | 314               | 722<br>757    | 3358           | 948           | 51       |
| 10              | .37730        | .40741        | 2.4545          | .92609        | 50              |    | 10              | .39341            | .42791        | 2.3369         | .91936        | 50       |
| 11              | 757           | 775           | .4525           | 598           | 49              | П  | 11              | 367               | \$26          | .3351          | 925           | 49       |
| 12              | 784           | 809<br>843    | .4504           | 587           | 45              |    | 12              | 394               | Seiti         | .3332          | 914           | 48       |
| 13<br>14        | 811<br>838    | 877           | .4464           | 576<br>565    | 47<br>46        |    | 13<br>14        | 421<br>448        | 894<br>929    | .3313          | 902<br>891    | 47<br>46 |
| 15              | .37865        | .40911        | 2,4443          | .92554        | 45              |    | 15              | .39474            | .42963        | 2.3276         | .91879        | 45       |
| 16              | 892           | 945           | .4423           | 543           | 44              |    | 10              | 501               | 12395         | .3257          | 868           | 44       |
| 17              | 919           | .40979        | .4403           | 532           | 43              |    | 17              | 525<br>555        | .43032        | .3238          | 856           | 43       |
| 18              | 946<br>973    | .41013        | .4383<br>.4362  | 521<br>510    | 42<br>41        | П  | 18              | 555               | 067           | .3220          | 845           | 42       |
| 19<br><b>20</b> | .37999        | .41081        | 2.4342          | .92499        | 40              | П  | 20              | 551<br>20000      | 101           | .3201          | 833           | 41<br>40 |
| 21              | .38026        | 115           | .4322           | 485           | 39              | П  | 21              | .3960S<br>635     | .43136<br>170 | 2.3183 $.3164$ | .91822<br>810 | 39       |
| 20              | 053           | 149           | .4302           | 477           | 38<br>37        | П  | 20              | 661               | 205           | .3146          | 799           | 38       |
| 23              | 080           | 183           | .4282           | 466           | 37              | П  | 23              | 688               | 239           | .3127          | 787           | 37       |
| 24              | 107           | 217           | .4262           | 455           | 36              | l  | 24              | 715               | 274           | .3109          | 775           | 36       |
| 25              | .38134        | .41251<br>285 | 2,4242<br>,4222 | .92444<br>432 | 35<br>34        | H  | 25<br>26        | .39741            | .43305        | 2.3090         | .91764        | 35       |
| 26<br>27        | 161<br>188    | 319           | .4202           | 421           | 33              | П  | 27              | 768<br>795        | 343<br>378    | .3072<br>.3053 | 752<br>741    | 34<br>33 |
| 28              | 215           | 353           | .4182           | 410           | 32              | П  | 28              | 822               | 412           | .3035          | 72.4          | 32       |
| 29              | 241           | 387           | .4162           | 399           | 31              | П  | 29              | 848               | 447           | .3017          | 715           | 31       |
| 30              | .38268        | .41421        | 2.4142          | .92388        | 30              | П  | 30              | .39\$75           | .43481        | 2.2998         | .91706        | 30       |
| 31<br>32        | 295<br>322    | 455<br>490    | .4122<br>.4102  | 377<br>366    | 29              | Н  | 31<br>32        | 902<br>928        | 516<br>530    | .2980<br>.2962 | 6:44<br>653   | 29<br>28 |
| 33              | 349           | 524           | 4083            | 355           | 28<br>27        | H  | 33              | 955               | 583           | .2944          | 671           | 27       |
| 34              | 376           | 558           | .4063           | 343           | 26              | H  | 34              | .39952            | 620           | .2925          | 6640          | 26       |
| 35              | .38103        | .41592        | 2.4043          | .92332        | 25              | H  | 35              | .40008            | .43654        | 2.2907         | .91648        | 25       |
| 36              | 430           | 626           | .4023           | 321           | 24<br>23        | H  | 36              | 035               | 689           | .2889          | 6.34          | 24       |
| 37<br>38        | 456<br>483    | 660<br>694    | .4004           | 310<br>299    | 23<br>22        | П  | 37<br>38        | 062<br>088        | 724<br>758    | .2871<br>.2853 | 625<br>613    | 23       |
| 39              | 510           | 728           | .3964           | 287           | 21              | Н  | 39              | 115               | 793           | .2835          | 601           | 21       |
| 40              | .38537        | .41763        | 2.3945          | .92276        | 20              | H  | 40              | .40141            | .43828        | 2.2817         | .91590        | 20       |
| 41              | 564           | 797           | .3925           | 265           | 19              | H  | 41              | 168               | 862           | .2799<br>.2781 | 578           | 19       |
| 42<br>43        | 591<br>617    | 831<br>865    | .3906<br>.3886  | 254<br>243    | 18<br>17        | l  | 42<br>43        | $\frac{195}{221}$ | 897<br>932    | .2781          | 566<br>555    | 18<br>17 |
| 44              | 614           | 899           | .3867           | 231           | 16              | l  | 44              | 248               | .43966        | .2745          | 543           | 16       |
| 45              | .38671        | .41933        | 2.3847          | .92220        | 15              | ı  | 45              | .40275            | .44001        | 2.2727         | .91531        | 15       |
| 46              | 698           | .41968        | .3828           | 209           | 14              | ı  | 46              | 301               | 036           | .2709          | 519           | 14       |
| 47              | 725           | .42002        | .3808           | 198           | 13              | ı  | 47              | 328               | 071           | .2691          | 508<br>496    | 13<br>12 |
| 48<br>49        | 752<br>778    | 036<br>070    | .3789<br>.3770  | 186<br>175    | 12<br>11        | ı  | 48<br>49        | 355<br>351        | 105<br>140    | .2673<br>.2655 | 484           | 11       |
| 50              | .38805        | .42105        | 2.3750          | .92164        | 10              | l  | 50              | 40408             | .44175        | 2.2637         | .91472        | 10       |
| 51              | 832           | 139           | .3731           | 152           | 9               | l  | 51              | 434               | 210           | .2620          | 461           | 9        |
| 52              | 859           | 173           | .3712           | 141           | 8               | ıI | 52              | 461               | 244           | .2602          | 449           | 8        |
| 53<br>54        | 886<br>912    | 207<br>242    | .3693           | 130<br>119    | 6               | H  | 53<br>54        | 488<br>514        | 279<br>314    | .2584<br>.2566 | 437<br>425    | 6        |
| 55              | .38939        | .42276        | 2.3654          | .92107        | 5               | ı  | 55              | .40541            | .44349        | 2.2549         | .91414        | 5        |
| 56              | .38939<br>966 | 310           | .3635           | 096           | 4               | ı  | 56              | 567               | 384           | .2531          | 402           | 4        |
| 57              | .38993        | 345           | .3616           | 085           | 3               | IJ | 57              | 594               | 418           | .2513          | 390           | 3        |
| 58              | .39020        | 379           | .3597           | 073           | 2               | l  | 58              | 621               | 453           | .2496          | 378<br>366    | 2        |
| 59              | 046           | 413           | .3578           | 062           | 1               | l  | 59<br><b>60</b> | 647               | 488           | .2478          |               | ó        |
| 60              | .39073        | .42447        | 2.3559          | .92050        | 0               | H  | 80              | .40674            | .44523        | 2.2460         | .91355        | 1 %      |
| L               | Cos           | Ctn           | Tan             | Sin           | 1'              | H  |                 | Cos               | Ctn           | : Tan          | Sin           | Ľ        |

67° 66°

| 7.1      | Sin           | Tan               | Ctn             | Cos           | Ť        |   | ,        | Sin           | Tan           | Ctn            | Cos           | <u> </u>        |
|----------|---------------|-------------------|-----------------|---------------|----------|---|----------|---------------|---------------|----------------|---------------|-----------------|
|          |               |                   |                 |               | 60       |   | 0        | .42262        | .46631        | 2.1445         |               | $\vdash$        |
| 0        | .40674<br>700 | .44523<br>558     | 2.2460<br>.2443 | .91355<br>343 | 59       |   | ĭ        | 285           | 666           | .1429          | .90631<br>615 | <b>60</b><br>59 |
|          | 727           | 593               | .2425           | 331           | 55       |   | 2        | 315           | 702           | .1413          | 606           | 55              |
| 2<br>3   | 727<br>753    | 627               | .2405           | 319           | 57       |   | 3        | 341           | 737           | .1396          | 594           | 57              |
| 4        | 780           | 662               | .2350           | 307           | 56       |   | 4        | 367           | 772           | .1380          | 582           | 56              |
| 5        | .40806        | .44697            | 2.2373          | .91295<br>283 | 55       | П | 5        | .42394<br>420 | .46808<br>843 | 2.1364         | .90569        | 55              |
| 6<br>7   | 833<br>860    | 732<br>767        | .2355<br>.2335  | 272           | 54<br>53 | П | 6        | 446           | 879           | .1348          | 557<br>545    | 54<br>53        |
| l s      | 886           | 802               | .2320           | 260           | 52       | П | 8        | 473           | 914           | .1315          | 532           | 52              |
| 9        | 913           | 837               | .2303           | 248           | 51       | П | 9        | 499           | 950           | .1299          | 520           | 51              |
| 10       | .40939        | .44872            | 2.2286          | .91236        | 50       |   | 10       | .42525        | .46985        | 2.1283         | .90507        | 50              |
| 11<br>12 | 966<br>.40992 | 907<br>942        | .2268<br>.2251  | 224<br>212    | 49<br>48 |   | 11<br>12 | 552<br>578    | .47021<br>056 | .1267<br>.1251 | 495<br>483    | 49<br>48        |
| 13       | .41019        | .44977            | .2234           | 200           | 47       |   | 13       | 604           | 092           | .1235          | 470           | 47              |
| 14       | 045           | .45012            | .2216           | 188           | 46       |   | 14       | 631           | 128           | .1219          | 458           | 46              |
| 15       | .41072        | .45047            | 2.2199          | .91176        | 45       |   | 15       | .42657        | .47163        | 2.1203         | .90446        | 45              |
| 16<br>17 | 098<br>125    | $\frac{082}{117}$ | .2182<br>.2165  | 164<br>152    | 44<br>43 |   | 16<br>17 | 683<br>709    | 199<br>234    | .1187          | 433<br>421    | 44              |
| 18       | 151           | 152               | .2148           | 140           | 42       | П | 18       | 736           | 270           | .1155          | 40S           | 43<br>42        |
| 19       | 178           | 187               | .2130           | 128           | 41       |   | 19       | 762           | 305           | .1139          | 396           | 41              |
| 20       | .41204        | .45222            | 2.2113          | .91116        | 40       |   | 20       | .42788        | .47341        | 2.1123         | .90383        | 40              |
| 21       | 231           | 257               | .2096           | 104           | 39<br>38 |   | 21<br>22 | 815           | 377<br>412    | .1107          | 371           | 39              |
| 22<br>23 | 257<br>284    | 292<br>327        | .2079           | 092<br>080    | 37       |   | 23       | 841<br>867    | 448           | .1092<br>.1∪76 | 358<br>346    | 38<br>37        |
| 24       | 310           | 362               | .2045           | 068           | 36       |   | 24       | 894           | 483           | .1060          | 334           | 36              |
| 25       | .41337        | .45397            | 2.2028          | .91056        | 35       |   | 25       | .42920        | .47519        | 2.1044         | .90321        | 35              |
| 26       | 363           | 432               | .2011           | 044           | 34       |   | 26<br>27 | 946           | 555           | .1028          | 309           | 34              |
| 27<br>28 | 390<br>416    | 467<br>502        | .1994           | 032<br>020    | 33<br>32 | П | 28       | 972<br>.42999 | 590<br>626    | .1013          | 296<br>284    | 33<br>32        |
| 29       | 443           | 538               | .1960           | .91008        | 31       |   | 29       | .43025        | 662           | .0981          | 271           | 31              |
| 30       | .41469        | .45573            | 2.1943          | .90996        | 30       |   | 30       | .43051        | .47698        | 2.0965         | .90259        | 30              |
| 31       | 496           | 608               | .1926           | 984           | 29       | П | 31       | 077           | 733           | .0950          | 246           | 29              |
| 32<br>33 | 522<br>549    | 643<br>678        | .1909<br>.1892  | 972<br>960    | 28<br>27 |   | 32<br>33 | 104<br>130    | 769<br>805    | .0934          | 233<br>221    | 28<br>27        |
| 34       | 575           | 713               | .1876           | 948           | 26       | Н | 34       | 156           | 840           | .0903          | 208           | 26              |
| 35       | .41602        | .45748            | 2.1859          | .90936        | 25       |   | 35       | .43182        | .47876        | 2.0887         | .90196        | 25              |
| 36       | 628           | 784               | .1842           | 924           | 24       |   | 36       | 209           | 912           | .0872          | 183           | 24              |
| 37<br>38 | 655<br>6S1    | 819<br>854        | .1825<br>.1808  | 911<br>899    | 23<br>22 |   | 37<br>38 | 235<br>261    | 948<br>.47984 | .0856          | 171<br>158    | 23<br>22        |
| 39       | 707           | 889               | .1792           | 887           | 21       |   | 39       | 287           | .48019        | .0825          | 146           | 21              |
| 40       | .41734        | .45924            | 2.1775          | .90875        | 20       |   | 40       | .43313        | .48055        | 2.0809         | .90133        | 20              |
| 41       | 760           | 960               | .1758           | 863           | 19       |   | 41       | 340           | 091           | .0794          | 120           | 19              |
| 42<br>43 | 787<br>813    | .45995<br>.46030  | .1742<br>.1725  | 851<br>839    | 18<br>17 |   | 42<br>43 | 366<br>392    | 127<br>163    | .0778<br>.0763 | 108<br>095    | 18<br>17        |
| 44       | 840           | 065               | .1708           | 826           | 16       |   | 44       | 418           | 198           | .0748          | 082           | 16              |
| 45       | .41866        | .46101            | 2.1692          | .90814        | 15       |   | 45       | .43445        | .48234        | 2.0732         | .90070        | 15              |
| 46       | 892           | 136               | .1675           | 802           | 14       |   | 46       | 471           | 270           | .0717          | 057           | 14              |
| 47<br>48 | 919<br>945    | 171<br>206        | .1659<br>.1642  | 790<br>778    | 13<br>12 |   | 47<br>48 | 497<br>523    | 306<br>342    | .0701          | 045<br>032    | 13<br>12        |
| 49       | 972           | 242               | .1625           | 766           | 11       |   | 49       | 549           | 378           | .0686          | 019           | 11              |
| 50       | .41998        | .46277            | 2.1609          | .90753        | 10       |   | 50       | .43575        | .48414        | 2.0655         | .90007        | 10              |
| 51       | .42024        | 312               | .1592           | 741           | 9        |   | 51       | 602           | 450           | .0640          | .89994        | 9               |
| 52<br>53 | 051<br>077    | 348<br>383        | .1576<br>.1560  | 729<br>717    | 8        | П | 52<br>53 | 628<br>654    | 486<br>521    | .0625          | 981           | 8<br>7          |
| 54       | 104           | 418               | .1543           | 704           | 6        | П | 54       | 680           | 521<br>557    | .0609          | 968<br>956    | 6               |
| 55       | .42130        | .46454            | 2.1527          | .90692        | 5        | П | 55       | .43706        | .48593        | 2.0579         | .89943        | 5               |
| 56       | 156           | 489               | .1510           | 680           | 4        | П | 56       | 733           | 629           | .0564          | 930           | 4               |
| 57<br>58 | 183<br>209    | 525<br>560        | .1494           | 668<br>655    | 3 2      | П | 57<br>58 | 759           | 665           | .0549          | 918           | 3 2             |
| 59       | 235           | 595               | .1461           | 643           | 1        | П | 59       | 785<br>811    | 701<br>737    | .0533          | 905<br>892    | 1               |
| 60       | .42262        | .46631            | 2.1445          | .90631        | ō        | П | 60       | .43837        | .48773        | 2.0503         | .89879        | ō               |
| П        | Cos           | Ctn               | Tan             | Sin           | 7        | П |          | Cos           | Ctn           | Tan            | Sin           | 7               |
|          |               | ~                 |                 | . ~           |          | ı |          |               | , Cui         | IGR            | DUL           | L               |

| <b>X</b> 5        |                 |   | ,               | Sin              | Tan               | Cta                     | Cos           |                 | l |
|-------------------|-----------------|---|-----------------|------------------|-------------------|-------------------------|---------------|-----------------|---|
| 79                | 60              | ı | 0               | 45.596           | 201953            | 1.544,285               | .59101        | 80              | I |
| ,<br>,4           | 54              |   | 1               | 425<br>451       | 349944            | 441                     | 657           | 39              | ı |
| 41                | 5-<br>5-        | П | 3               | 477              | .51026<br>063     | .95%                    | 674<br>(61    | 55<br>57        | l |
| 25                | 50              | П | 4               | 503              | 099               | 10.0                    | 045           | 56              | I |
| 16                | 55              |   | 5               | .45529           | .51136            | 1.9556                  | .>9035        | 55              | ı |
| vU:3              | 54              |   | 67              | 554<br>550       | 173               | .9512                   | 621           | 34              | l |
| 90                | 53<br>52        | П | 8               |                  | 209               | .9525<br>.9314          | .590/m        | 3.5             | ŀ |
| 90                | 31              |   | 9               | 606              | 246<br>283        | 9500                    | .55995<br>164 | 52<br>51        | l |
| 52                | 50              |   | 10              | 45058            | .51319            | 1.9456                  |               | 50              | l |
| 39                | 49              | П | 11              | 65.5             | 350               | .9472                   | 86498<br>575  | 49              | ŀ |
| 26                | 48<br>47        | П | 12<br>13        | 710              | 393               | -3405                   | 94            | 45              | l |
| 13<br>00          | 46              | П | 14              | 736<br>762       | 430<br>467        | .9444                   | 925<br>915    | 47              | l |
| 87                | 45              | П | 15              | .457×7           | .51503            | 1.9416                  | .58902        | 45              | ı |
| 187<br>174<br>162 | 44<br>43        | ı | 16              | 813              | 540               | .946.2                  | 855           | 44              | l |
| 62                | 43              |   | 17              | 839              | 577               | .9355                   | 575           | 43              | l |
| 349<br>336        | 42<br>41        | П | 18<br>19        | 865<br>891       | 614<br>651        | .9375<br>.9361          | 562<br>845    | 42<br>41        | ۱ |
| 323               | 40              |   | 20              | .45917           | .51688            | 1.9347                  | .88835        | 40              | l |
|                   | 39              | ı | 21              | 942              | 721               | 9333                    | 822           | 39              | ۱ |
| 510<br>597        | 38              | ı | 22              | 965              | 761               | .9319                   | 808           | 38              | l |
| 554<br>571        | 37<br>36        |   | 23<br>24        | .45994<br>.46020 | 798               | .9306<br>.9292          | 795           | 37              | ١ |
| 558               | 35              |   | 25              | .46046           | 835               | 1.9278                  | 752<br>.S8765 | 36<br>35        |   |
| 545               | 34              |   | 26              | .40040           | .51872<br>909     | 92.5                    | 733           | 34              |   |
| 532               | 33              |   | 27              | 072<br>097       | 946               | .9251                   | 741           | 33              |   |
| 519               | 32              |   | 28              | 123              | .51983            | .9237                   | 725<br>715    | 3.2             |   |
| 506<br>193        | 31<br>30        |   | 29<br><b>30</b> | 149<br>.46175    | .52021)<br>.52057 | .9223<br><b>1.92</b> 10 | .88701        | 31              |   |
| 180               | 29              | ı | 31              | 201              | 094               | .9196                   | 655           | 29              | ı |
| 167               | 28              |   | 32              | 996              | 131               | .9153                   | 674           | 25              |   |
| 154               | 27              | ı | 33<br>34        | 252              | 165               | .9169                   | 661           | 27              | ١ |
| 141<br>128        | 26<br><b>25</b> |   | 35              | 275<br>.46304    | 205<br>.52242     | .9155<br>1.9142         | 647<br>.88634 | 26<br>25        |   |
| 115               | 24              |   | 36              | 330              | 279               | .9125                   | 620           | 24              | l |
| 102               | 23              | ۱ | 37              | 355              | 316               | .9115                   | 607           | 23              | ı |
| 389               | 22              | ı | 38              | 381              | 353               | .9101                   | 593           | $\frac{22}{21}$ |   |
| 376               | 21<br>20        |   | 39<br>40        | 407<br>.46433    | 390<br>-52427     | .9055<br>1.9074         | 580<br>.88566 | 20              |   |
| 303<br>350        | 19              |   | 41              | 455              | 464               | .9061                   | 553           | 19              | l |
| 363<br>350<br>337 | 18<br>17        | ١ | 42              | 484              | 501               | .9047                   | 539           | 18              | l |
| 324               | 17              | l | 43              | 510              | 538               | .9034                   | 526<br>512    | 17              | ۱ |
| 311               | 16<br>15        | ۱ | 44<br>45        | 536              | 575               | .9020                   | .88499        | 16<br><b>15</b> | ۱ |
| 298<br>285        | 14              | ١ | 46              | .46561<br>587    | .52613<br>650     | 1.9007<br>.8993         | 485           | 15<br>14        | ۱ |
| 272               | 13<br>12        | ۱ | 47              | 613              | 687               | .8950                   | 472           | 13              | l |
| 259<br>245        | 12<br>11        | ı | 48<br>49        | 639<br>664       | 724<br>761        | .8967                   | 458<br>445    | 12<br>11        | ۱ |
| 245<br>232        | 10              | 1 | 50              |                  | .52798            | .8953<br>1.8940         | .88431        | 10              | l |
| 232<br>219        | 170             | I | 51              | .46690<br>716    | -836              | .8927                   | 417           |                 | ۱ |
| 206               | 8 7             | ı | 52<br>53        | 742              | 873               | .8913                   | 404           | 8               | ı |
| 193               |                 |   | 53              | 767<br>793       | 910<br>947        | .8900<br>.8887          | 390<br>377    | 7               | ۱ |
| 180               | 6<br>5          | ı | 54<br>55        | .46819           | .52985            | 1.8873                  | .88363        | 5               | l |
| 167<br>153        |                 | l | 56              | 844              | .53022            | .8860                   | 349           | 4               | ı |
| 140               | 3<br>2          | ١ | 57              | 870              | 059               | .8847                   | 336           | 3 2             | ı |
| 127               | 2               | ı | 58              | 896              | 096               | .8834<br>.8820          | 322<br>308    | 2<br>1          | į |
| 114               | 0               | ١ | 59              | 921              | 134<br>.53171     | 1                       | .88295        | ő               |   |
| 101               | ۲               | ı | 60              | .46947           | Ctn               | 1.8807                  | Sin           | ۲,              | ١ |
| n                 |                 | ı | <u> </u>        | Cos              | _                 | Tan                     | SIE           |                 | ı |
|                   |                 |   |                 |                  | 6.                | 2°                      |               |                 |   |

| <b>F</b>        | Sin           | Tan           | Ctn             | Cos           | Т               | 1 | 7               | Sin           | Tan           | Ctn             | Cos           | L        |
|-----------------|---------------|---------------|-----------------|---------------|-----------------|---|-----------------|---------------|---------------|-----------------|---------------|----------|
| 10              | .46947        | .53171        | 1.8807          | .88295        | 60              | 1 | 0               | .48451        | .55431        | 1.8040          | .87462        | 60       |
| Ĭĭ              | 973           | 208           | .8794           | 281           | 59              | ı | 1               | 506           | 469           | .8025           | 445           | 59       |
| 2               | .46999        | 246           | .8781           | 267           | 58              | ı | 2               | 532           | 507           | .8016           | 434           | 58       |
| 3               | .47024        | 283<br>320    | 8768            | 254<br>240    | 57<br>56        | ı | 3 4             | 557<br>553    | 545<br>583    | -8003           | 420           | 57       |
| 5               | 050           | .53358        | .8755<br>1.8741 | .88226        | 55              | ı | 5               | .48608        | .55621        | .7991<br>1.7979 | 406           | 56       |
| 6               | .47076<br>101 | 395           | .8728           | 213           | 54              | ı | 6               | 634           | 659           | .7966           | .87391<br>377 | 55       |
| 7               | 127           | 432           | .8715           | 199           | 53              | ı | ١ř              | 659           | 697           | .7954           | 363           | 54<br>53 |
| 8               | 153           | 470           | .8702           | 185           | 52              | ı | 8               | 684           | 736           | .7942           | 349           | 52       |
| 9               | 178           | 507           | .8689           | 172           | 51              | ı | 9               | 710           | 774           | .7930           | 335           | 51       |
| 10              | .47204        | .53545        | 1.8676          | .88158        | 50              | ı | 10              | .48735        | .55812        | 1.7917          | .87321        | 50       |
| 11<br>12        | 229<br>255    | 582<br>620    | .5663<br>.8650  | 144<br>130    | 49<br>48        | ١ | $\frac{11}{12}$ | 761<br>786    | 850<br>888    | .7905<br>.7893  | 306<br>292    | 49       |
| 113             | 251           | 657           | .8637           | 117           | 47              | I | 13              | 811           | 926           | .7881           | 278           | 48<br>47 |
| 14              | 306           | 694           | .8624           | 103           | 46              | ı | 14              | 837           | .55964        | .7868           | 264           | 46       |
| 15              | .47332        | .53732        | 1.8611          | .88089        | 45              | ı | 15              | .48862        | .56003        | 1.7856          | .87250        | 45       |
| 16              | 358           | 769           | .8598           | 075           | 44              | ı | 16              | 888           | 041           | .7844           | 235           | 44       |
| 17              | 383<br>409    | 807<br>844    | .8585<br>.8572  | 062<br>048    | 43<br>42        | ı | 17<br>18        | 913<br>938    | 079<br>117    | .7832<br>.7820  | 221           | 43       |
| 18<br>19        | 434           | 882           | .8559           | 034           | 41              | 1 | 19              | 964           | 156           | 7808            | 207<br>193    | 42<br>41 |
| 20              | .47460        | .53920        | 1.8546          | .88020        | 40              | ı | 20              | .48989        | .56194        | 1.7796          | .87178        | 40       |
| 21              | 486           | 957           | .8533           | .88006        | 39              | 1 | 21              | .49014        | 232           | .7783           | 164           | 39       |
| 22<br>23        | 511           | .53995        | .8520           | .87993        | 38              | l | 22              | 040           | 270           | .7771           | 150           | 38       |
| 23<br>24        | 537<br>562    | .54032        | .8507           | 979           | 37<br>36        | ı | $\frac{23}{24}$ | 065<br>090    | 309           | .7759           | 136           | 37       |
| 25              | 47588         | .54107        | .8495           | 965           | 35              | ı | 25              |               | 347<br>.56385 | .7747           | 121           | 36       |
| 26              | 614           | 145           | 1.8482<br>.8469 | .87951<br>937 | 34              | ı | 26<br>26        | .49116<br>141 | 424           | 1.7735<br>.7723 | .87107<br>093 | 35<br>34 |
| 27              | 639           | 183           | .8456           | 923           | 33              |   | 27              | 166           | 462           | .7711           | 079           | 33       |
| 28              | 665           | 220           | .8443           | 909           | 32              |   | 28              | 192           | 501           | .7699           | 064           | 32       |
| 29              | 690           | 258           | .8430           | 896           | 31              |   | 29              | 217           | 539           | .7687           | 050           | 31       |
| 30              | .47716        | .54296        | 1.8418          | .87882        | 30              |   | 30              | .49242        | .56577        | 1.7675          | .87036        | 30       |
| 31<br>32        | 741<br>767    | 333<br>371    | .8405<br>.8392  | 868<br>854    | 29<br>28        | П | 31<br>32        | 268<br>293    | 616<br>654    | .7663<br>.7651  | .87007        | 29<br>28 |
| 33              | 793           | 409           | .8379           | 840           | 27              | П | 33              | 318           | 693           | 7639            | .86993        | 27       |
| 34              | 818           | 446           | .8367           | 826           | 26              | H | 34              | 344           | 731           | .7627           | 978           | 26       |
| 35              | .47844        | .54484        | 1.8354          | .87812        | 25              | П | 35              | .49369        | .56769        | 1.7615          | .86964        | 25       |
| 36              | 869           | 522           | .8341           | 798           | 24              | П | 36<br>37        | 394           | 808           | .7603           | 949           | 24       |
| 37<br>38        | 895<br>920    | 560<br>597    | .8329<br>.8316  | 784<br>770    | $\frac{23}{22}$ | П | 38              | 419<br>445    | 846<br>885    | .7591<br>.7579  | 935<br>921    | 23<br>22 |
| 39              | 946           | 635           | .8303           | 756           | 21              | П | 39              | 470           | 923           | .7567           | 906           | 21       |
| 40              | .47971        | .54673        | 1.8291          | .87743        | 20              | П | 40              | .49495        | .56962        | 1.7556          | .86892        | 20       |
| 41              | .47997        | 711           | .8278           | 729           | 19              | П | 41              | 521           | .57000        | .7544           | 878           | 19       |
| 42              | .48022        | 748           | .8265           | 715           | 18              | П | 42              | 546           | 039           | .7532           | 863           | 18       |
| 43<br>44        | 048<br>073    | 786<br>824    | .8253<br>.8240  | 701<br>687    | 17<br>16        | П | 43<br>44        | 571<br>596    | 078<br>116    | .7520<br>.7508  | 849<br>834    | 17<br>16 |
| 45              | .48099        | .54862        | 1.8228          | .87673        | 15              | ı | 45              | 49622         | .57155        | 1.7496          | .86820        | 15       |
| 46              | 124           | 900           | .8215           | 659           | 14              | Н | 46              | 647           | 193           | .7485           | 805           | 14       |
| 47              | 150           | 938           | .8202           | 645           | 13              | ı | 47              | 672           | 232           | .7473           | 791           | 13       |
| 48              | 175           | .54975        | .8190           | 631           | 12              | ı | 48              | 697           | 271           | .7461           | 777           | 12       |
| 49<br><b>50</b> | 201<br>.48226 | .55013        | .8177<br>1.8165 | 617           | 11<br>10        | ı | 49<br>50        | 723           | 309           | .7449           | 762           | 11       |
| 51              | 252           | 089           | .8152           | .87603<br>589 | 10              | ı | 50<br>51        | .49748<br>773 | .57348<br>386 | 1.7437<br>.7426 | .86748<br>733 | 109      |
| 52              | 277           | 127           | .8140           | 575           | 8               | ı | 52              | 798           | 425           | .7414           | 719           | 8        |
| 53              | 303           | 165           | .8127           | 561           | 7               | 1 | 53              | 824           | 464           | .7402           | 704           | 8<br>7   |
| 54              | 328           | 203           | .8115           | 546           | 6               | ۱ | 54              | 849           | 503           | .7391           | 690           | 6        |
| <b>55</b><br>56 | .48354<br>379 | .55241<br>279 | 1.8103          | .87532        | 5               | ۱ | 55              | .49874        | .57541        | 1.7379          | .86675        | 5        |
| 57              | 405           | 317           | .8090<br>.8078  | 518<br>504    | 4               | ۱ | 56<br>57        | 899<br>924    | 580<br>619    | .7367<br>.7355  | 661<br>646    | 4        |
| 58              | 430           | 355           | .8065           | 490           | 2               | ı | 58              | 950           | 657           | .7344           | 632           | 2        |
| 59              | 456           | 393           | .8053           | 476           | 1               | ı | 59              | .49975        | 696           | .7332           | 617           | 1        |
| 60              | .48481        | .55431        | 1.8040          | .87462        | 0               | 1 | 60              | .50000        | .57735        | 1.7321          | .86603        | 0        |
|                 | .Cos          | Ctn           | Tan             | Sin           | 1               |   |                 | Cos           | Ctn           | Tan             | Sin           | ′        |

| II]           | 3(                     | , ,              | aiues           | O1 111        | gon             | ٠. | ще        | uic ru               | nction           | s-3             | L                                      | 37              |
|---------------|------------------------|------------------|-----------------|---------------|-----------------|----|-----------|----------------------|------------------|-----------------|----------------------------------------|-----------------|
| "             | Sin                    | Tan              | Ctn             | Cos           |                 |    |           | Sin                  | Tan              | Ctn             | Cos                                    |                 |
| 0             | .50000                 | .57735           | 1.7.521         | 1855 B        | 60              | ۱  | 0         | .51594               | A State          | 1.6643          | .53717                                 | 60              |
| 1 3           | (25)<br>050            | 774<br>813       |                 | 5.55          |                 | 1  | 1         | 524<br>554<br>579    | 126              | 196.32          | 763<br>763<br>763<br>763<br>763<br>763 | 59              |
| $\frac{2}{3}$ | 076                    | 851              | 7256            | 513<br>503    | 55<br>57        | ١  | 3         | 373                  | 200              | 2016            | 67.2                                   | 55<br>57        |
| 4             | 101                    | 890              | 7274<br>7274    | <b>-</b> √4-i | -117            | ١  | -1        | 1/3/4                | 245              | 19.31           | 657                                    | 56              |
| 5             | .50126                 | .57929           | 1.7262          | .56530        | 55              | ١  | 5         | .51625               | .60284           | 1.6588          | .85642                                 | 55              |
| 6 7           | 151<br>176             | .57968<br>.58007 | .7251)<br>7397  | 515<br>501    | 313             |    | <u>ပ်</u> | 653<br>678           | 324<br>364       | .6577           | 627<br>612                             | 54<br>53        |
| 8             | 201                    | 046              | .7239<br>.7228  | 43.4          | 52              |    | -81       | 703                  | 403              | .6555           | 597                                    | 52              |
| 9             | 227                    | 085              | .7216           | 471           | 3:              |    | 9         | 728                  | 443              | .6545           | 582                                    | 51              |
| 10            | .50252                 | .5S124<br>162    | 1.7205<br>.7193 | .86457<br>442 | 50<br>49        |    | 10        | .51753               | .604.3           | 1.6534          | .85567                                 | 50              |
| 11<br>12      | 277<br>302             | 201              | .7182           | 427           | 48              |    | 12        | 775<br>863           | 5.12<br>562      | .6523<br>.6512  | 551<br>538                             | 49<br>48        |
| 13            | 327                    | 240              | .7170           | 413           | 47              | ı  | 13        | 825<br>852           | 602              | .6501           | 521                                    | 47              |
| 14            | 352                    | 279              | .7159           | 398           | 46              | ۱  | 14        |                      | 642              | .6490           | 506                                    | 46              |
| 15<br>16      | .50377<br>403          | .58318<br>357    | 1.7147<br>.7136 | .86384<br>369 | 45<br>44        |    | 15<br>16  | .51877               | .60651           | 1.6479<br>.6469 | .85491<br>476                          | 45              |
| 17            | 428                    | 396              | .7124           | 354           | 43              |    | 17        | 927<br>927<br>952    | 721<br>761       | .6458           | 461                                    | 43              |
| 18            | 453                    | 435              | .7113           | 340           | 42              | ı  | 18        | 952                  | 56.1             | .6447           | 446                                    | 42              |
| 19            | 478                    | 474              | .7102           | 325           | 41              | ۱  | 19        | .51977               | 841              | .6436           | 431                                    | 41              |
| 20<br>21      | .50503<br>528          | .58513<br>552    | 1.7090<br>.7079 | .86310<br>295 | <b>40</b><br>39 | ۱  | 20<br>21  | .52002               | .60551<br>921    | 1.6426<br>.6415 | .83416<br>401                          | 40<br>39        |
| 22            | 553                    | 591              | .7067<br>.7056  | 281           | 38              | ı  | 99        | 6.26<br>6.5 <b>1</b> | deline.          | 6404            | 355                                    |                 |
| 23            | 578                    | 631              |                 | 266           | 37              | ı  | 23        | 676                  | 61.85            | .6393           | 370                                    | 38<br>37        |
| 24<br>25      | 603<br>- <b>5062</b> 8 | .58709           | .7045<br>1.7033 | 251<br>.86237 | 36<br><b>35</b> | ı  | 24<br>25  | 101<br>.52126        | (4:-             | .6383           | 355                                    | 36<br>35        |
| 26            | 654                    | 748              | .7022           | 222           | 34              | П  | 26        | 151                  | .61080<br>120    | 1.6372<br>.6361 | .85340<br>325                          | 30<br>34        |
| 27            | 679                    | 787              | .7011           | 207           | 33              | ı  | 27        | 175                  | 160              | .6351           | 310                                    | 33              |
| 28<br>29      | 704                    | 826<br>865       | .6999           | 192<br>178    | 32<br>31        | H  | 28<br>29  | 200                  | 200<br>240       | .6340           | 294<br>279                             | 32              |
| 30            | .50754                 | .58905           | .698S<br>1.6977 | .86163        | 30              | П  | 30        | 225<br>.52250        | .61280           | 1.6329          | .83264                                 | 31<br><b>30</b> |
| 31            | 779                    | 944              | .6965           | 148           | 29              | П  | 31        | 275                  | 320              | .6305           | 249                                    | 29              |
| 32            | 804                    | .58983           | .6954           | 133           | 28              | П  | 32        | 299                  | 360              | .6297           | 234                                    | 25              |
| 33<br>34      | 829<br>854             | .59022<br>061    | .6943<br>.6932  | 119<br>104    | 27<br>26        | П  | 33<br>34  | 324<br>349           | 400<br>440       | .6287<br>.6276  | 218                                    | 27<br>26        |
| 35            | .50879                 | .59101           | 1.6920          | .86089        | 25              | П  | 35        | .52374               | .61480           | 1.6265          |                                        | 25              |
| 36            | 904                    | 140              | .6909           | 074           | 24              | П  | 36        | 399                  | 520              | .6255           | .85188<br>173                          | 24              |
| 37<br>38      | 929<br>954             | 179<br>218       | .6898<br>.6887  | 059<br>045    | 23<br>22        | П  | 37<br>38  | 423                  | 561<br>601       | .6244<br>.6234  | 157<br>142                             | 23<br>22        |
| 39            | .50979                 | 258              | .6875           | 030           | 21              | П  | 39        | 448<br>473           | 641              | .6223           | 127                                    | 21              |
| 40            | .51004                 | -59297           | 1.6864          | .86015        | 20              | П  | 40        | .52498               | .61681           | 1.6212          | .85112                                 | 20              |
| 41            | 029                    | 336              | .6853           | .86000        | 19              | H  | 41        | 522<br>547           | 721<br>761       | .6202           | 096                                    | 19              |
| 42<br>43      | 054<br>079             | 376<br>415       | .6842<br>.6831  | .85985<br>970 | 18<br>17        | ı  | 42<br>43  | 547<br>572           | 761<br>801       | .6191<br>.6181  | 081<br>066                             | 18<br>17        |
| 44            | 104                    | 454              | .6820           | 956           | 16              | ı  | 44        | 597                  | 842              | .6179           | 051                                    | 16              |
| 45            | .51129                 | .59494           | 1.6808          | .85941        | 15              | ı  | 45        | .52621               | .61882           | 1.6160          | .85035                                 | 15              |
| 46            | 154                    | 533              | .6797           | 926           | 14              | ۱۱ | 46<br>47  | 646                  | 922              | .6149           | 020                                    | 14              |
| 47<br>48      | 179<br>204             | 573<br>612       | .6786<br>.6775  | 911<br>896    | 13<br>12        | ı  | 48        | 671<br>696           | .61962<br>.62003 | .6139           | .85005<br>.84989                       | 13<br>12        |
| 49            | 229                    | 651              | .6764           | 881           | 11              | ı  | 49        | 720                  | 043              | .6115           | 974                                    | 11              |
| 50            | .51254                 | .59691           | 1.6753          | .85866        | 10              |    | 50        | .52745               | .62083           | 1.6107          | .84959                                 | 10              |
| 51<br>52      | 279<br>304             | 730<br>770       | .6742<br>.6731  | 851<br>836    | 9               | ı  | 51<br>52  | 770<br>794           | 124<br>164       | .6097<br>.6087  | 943<br>928                             | 9               |
| 53            | 329                    | 809              | .6720           | 821           | 8<br>7          | ı  | 53        | 819                  | 204              | .6076           | 913                                    | 8               |
| 54            | 354                    | 849              | .6709           | 806           | 6               | ı  | 54        | 844                  | 245              | .6066           | 897                                    | 6               |
| 55            | .51379                 | .59888           | 1.6698          | .85792        | 5               | ı  | 55        | .52869               | .62265           | 1.6055          | .84882                                 | 5               |
| 56<br>57      | 404<br>429             | 928<br>59967     | .6687<br>.6676  | 777<br>762    | 4<br>3          | ı  | 56<br>57  | 893<br>918           | 325<br>366       | .6045<br>.6034  | 866<br>851                             | 4 3             |
| 58            | 454                    | .60007           | .6665           | 747           | 2               | ı  | 58        | 943                  | 406              | .6024           | 836                                    | 3<br>2          |
| 59            | 479                    | 046              | .6654           | 732           | 1               | П  | 59        | 967                  | 446              | .6014           | 820                                    | 1               |
| 60            | .51504                 | .60086           | 1.6643          | .85717        | 0               | ı  | 60        | .52992               | .62487           | 1.6003          | .84805                                 | 0               |
|               | Cos                    | Ctn              | Tan             | Sin           | ′               | ı  |           | Cos                  | Ctn              | Tan             | Sin                                    | '               |

59° 58°

| 38              | 34                     |               | aiues           | VI 111        | 502      |   |          |               | шсиоп            |                 | _          | [II             |
|-----------------|------------------------|---------------|-----------------|---------------|----------|---|----------|---------------|------------------|-----------------|------------|-----------------|
| $\perp$         | Sin                    | Tan           | Ctn             | Cos           |          | П | Ľ        | Sin           | Tan              | Ctn             | Cos        |                 |
| 0               | .52992                 | .62487        | 1.6003          | .84505        | 60       | ı | Ó        | .54464        | .64941           | 1.5399          | .83867     | 60              |
| $\frac{1}{2}$   | .53017                 | 527<br>568    | .5993<br>.5983  | 789<br>774    | 59<br>58 |   | 1 2      | 455<br>513    | .64952<br>.65024 | .5389<br>.5379  | 851<br>835 | 59              |
| 3               | 041<br>066             | 605           | .5972           | 759           | 57       | П | 3        | 537           | 065              | .5369           | 819        | 58<br>57        |
| 1 4             | 091                    | 649           | .5962           | 743           | 56       | П | 4        | 561           | 106              | .5359           | 804        | 56              |
| 5               | .53115                 | .62689        | 1.5952          | .84728        | 55       | Н | 5        | .54586        | .65148           | 1.5350          | .83788     | 55              |
| 6               | 140                    | 730           | .5941           | 712           | 54       | Н | 6        | 610           | 189              | .5340           | 772        | 54              |
| 7               | 164                    | 770           | .5931           | 697           | 53       | П | 7        | 635           | 231              | .5330           | 756        | 53              |
| 8<br>9          | 189<br>214             | 811<br>852    | .5921<br>.5911  | 681<br>666    | 52<br>51 | Н | 8        | 659<br>683    | 272<br>314       | .5320<br>.5311  | 740<br>724 | 52<br>51        |
| 10              | .53238                 | .62892        | 1.5900          | .84650        | 50       | П | 10       | .54708        | .65355           | 1.5301          | .83708     | 50              |
| ii              | 263                    | 933           | .5590           | 635           | 49       | П | īĭ       | 732           | 397              | .5291           | 692        | 49              |
| 12              | 288                    | .62973        | .5850           | 619           | 48       | П | 12       | 756           | 438              | .5282           | 676        | 48              |
| 13              | 312                    | .63014        | .5869           | 604           | 47       | Н | 13       | 781           | 480              | .5272           | 660        | 47              |
| 14              | 337                    | 055           | .5859           | 588           | 46       | П | 14       | 805           | 521              | .5262           | 645        | 46              |
| 15<br>16        | .53361                 | .63095        | 1.5849<br>.5839 | .84573<br>557 | 45<br>44 | П | 15<br>16 | .54829<br>854 | .65563<br>604    | 1.5253<br>.5243 | .83629     | 45              |
| 17              | 386<br>411             | 136<br>177    | .5829           | 542           | 43       | П | 17       | 878           | 646              | .5233           | 613<br>597 | 44<br>43        |
| 18              | 435                    | 217           | .5818           | 526           | 42       | П | 18       | 902           | 688              | .5224           | 581        | 42              |
| 19              | 460                    | 258           | .5808           | 511           | 41       | П | 19       | 927           | 729              | .5214           | 565        | 41              |
| 20              | .53484                 | .63299        | 1.5798          | .84495        | 40       | П | 20       | .54951        | .65771           | 1.5204          | .83549     | 40              |
| 21              | 509<br>534             | 340           | .5788           | 480           | 39       | П | 21       | 975<br>.54999 | 813              | .5195           | 533        | 39              |
| 22<br>23        | 558                    | 380<br>421    | .5778<br>.5768  | 464<br>448    | 38<br>37 | П | 22<br>23 | .55024        | 854<br>896       | .5185           | 517<br>501 | 38<br>37        |
| 24              | 583                    | 462           | .5757           | 433           | 36       | П | 24       | 048           | 938              | .5166           | 485        | 36              |
| 25              | .53607                 | .63503        | 1.5747          | .84417        | 35       | П | 25       | .55072        | .65980           | 1.5156          | .83469     | 35              |
| 26              | 632                    | 544           | .5737           | 402           | 34       | П | 26       | 097           | .66021           | .5147           | 453        | 34              |
| 27              | 656                    | 584           | .5727           | 386           | 33       | П | 27       | 121           | 063              | .5137           | 437        | 33<br>32        |
| 28<br>29        | 681                    | 625           | .5717<br>.5707  | 370<br>355    | 32<br>31 | П | 28<br>29 | 145<br>169    | 105<br>147       | .5127           | 421<br>405 | 32              |
| 30              | 705<br>.53730          | 666           | 1.5697          | .84339        | 30       | П | 30       | .55194        | .66189           | .5118<br>1.5108 | .83389     | 31<br><b>30</b> |
| 31              | 754                    | .63707<br>748 | .5687           | 324           | 29       | П | 31       | 218           | 230              | .5099           | 373        | 30              |
| 32              | 779                    | 789           | .5677           | 308           | 28       | Н | 32       | 242           | 272              | .5089           | 356        | 29<br>28<br>27  |
| 33              | 804                    | 830           | .5667           | 292           | 27       | Н | 33       | 266           | 314              | .5080           | 340        | 27              |
| 34              | 828                    | 871           | .5657           | 277           | 26       | Н | 34       | 291           | 356              | .5070           | 324        | 26              |
| 35              | .53853<br>877          | .63912        | 1.5647          | .84261        | 25<br>24 | П | 35       | .55315        | .66398           | 1.5061          | .83308     | 25              |
| 36<br>37        | 902                    | 953<br>.63994 | .5637<br>.5627  | 245<br>230    | 23       | П | 36<br>37 | 339<br>363    | 440<br>482       | .5051           | 292<br>276 | 24              |
| 38              | 926                    | .64035        | .5617           | 214           | 22       | П | 38       | 388           | 524              | .5032           | 260        | 23<br>22        |
| 39              | 951                    | 076           | .5607           | 198           | 21       | П | 39       | 412           | 566              | .5023           | 244        | 21              |
| 40              | .53975                 | .64117        | 1.5597          | .84182        | 20       | П | 40       | .55436        | .66608           | 1.5013          | .83228     | 20              |
| 41              | .54000                 | 158           | .5587           | 167           | 19       | П | 41       | 460           | 650              | .5004           | 212        | 19              |
| 42<br>43        | 02 <del>4</del><br>049 | 199<br>240    | .5577<br>-5567  | 151<br>135    | 18<br>17 | П | 42<br>43 | 484<br>509    | 692<br>734       | .4994<br>.4985  | 195<br>179 | 18<br>17        |
| 44              | 073                    | 281           | .5557           | 120           | 16       | П | 44       | 533           | 776              | .4975           | 163        | 16              |
| 45              | .54097                 | .64322        | 1.5547          | .84104        | 15       | Н | 45       | .55557        | .66818           | 1.4966          | .83147     | 15              |
| 46              | 122                    | 363           | .5537           | 088           | 14       | Н | 46       | 581           | 860              | .4957           | 131        | 14              |
| 47              | 146                    | 404           | .5527           | 072           | 13       | Н | 47       | 605           | 902              | .4947           | 115        | 13              |
| 48<br>49        | 171<br>195             | 446<br>487    | .5517<br>.5507  | 057<br>041    | 12<br>11 | Н | 48<br>49 | 630<br>654    | 944<br>.66986    | .4938<br>.4928  | 098<br>082 | 12<br>11        |
| 50              | .54220                 | .64528        | 1.5497          | .84025        | 10       | ı | 50       | .55678        | .67028           | 1.4919          | .83066     | 10              |
| 51              | 244                    | 569           | .5487           | .84025        | 9        | П | 51       | 702           | 071              | .4910           | 050        | 10              |
| 52              | 269                    | 610           | .5477           | .83994        | 8        | Н | 52       | 726           | 113              | .4900           | 034        | 87              |
| 53              | 293                    | 652           | .5468           | 978           | 7        | H | 53       | 750           | 155              | .4891           | 017        | 7               |
| 54              | 317                    | 693           | .5458           | 962           | 6        | ı | 54       | 775           | 197              | .4882           | .83001     | 6               |
| <b>55</b><br>56 | .54342<br>366          | .64734        | 1.5448          | 83946         | 5        | П | 55       | .55799        | .67239           | 1.4872          | .82985     | 5               |
| 57              | 391                    | 775<br>817    | .5438<br>.5428  | 930<br>915    | 3        | П | 56<br>57 | 823<br>847    | 282<br>324       | .4863           | 969<br>953 | 3               |
| 58              | 415                    | 858           | .5418           | 899           | 2        | П | 58       | 871           | 366              | .4844           | 936        | 2               |
| 59              | 440                    | 899           | .5408           | 883           | 1        | П | 59       | 895           | 409              | .4835           | 920        | ī               |
| 60              | .54464                 | .64941        | 1.5399          | .83867        | 0        | П | 60       | .55919        | .67451           | 1.4826          | .82904     | 0               |
|                 | Cos                    | Ctn           | Tan             | Sin           | ′        | ۱ |          | Cos           | Ctn              | Tan             | Sin        | 1               |

57° 56°

| 111             |               |                  |                 |                   | SUL             | •  |          |                  | псиоп            | s — 32          | _             | 28              |
|-----------------|---------------|------------------|-----------------|-------------------|-----------------|----|----------|------------------|------------------|-----------------|---------------|-----------------|
| Ľ               | Sin :         | Tan              | Ctn             | Cos               | _               | 1  | 4        | Sin              | Tan              | Ctm             | Cos           |                 |
| 0               | 25010         | .67451<br>493    | 4516            | .S.2904           | 60              | 1  | 0        | .5735×           | .7th:/1          | 1.4251          | .81915        | 60              |
| 1 2             |               | 536              | 4807            | 877<br>871        | 50<br>55        | 1  | 1 2      | 371              | (#+4 )<br>10-7   | .4273           | 200           | 59              |
| 3               | .559 -2 }     | 575              | 47.25           | 5.30              | 57              | ١  | 3        | 429              | 151              | .4255           | 882<br>865    | 5%<br>57        |
| 4               | .560164       | 620              | .4755           | 839               | 57.             | 1  | 4        | 453              | 194              | .4246           | 84%           | 56              |
| 5               | .50040        | .67663<br>705    | 1.4779<br>.4770 | .82822<br>806     | 55<br>54        | 1  | 5        | .57477           | .70235           | 1.4237          | .51532        | 55              |
| 0<br>7          | 054           | 745              | .4761           | 799               | 53              | 1  | 9        | 501<br>524       | 281<br>325       | 4229            | 815<br>795    | 54<br>53        |
| 8               | 112           | 790              | .4751           | 773               | 52              | 1  | 5        | 545              | 365              | .4220<br>.4211  | 782           | 52              |
| 9               | 136           | 832              | .4742           | 757               | 51              | 1  | 2        | 572              | 412              | .4202           | 765           | 51              |
| 10              | .56160        | .67875<br>917    | 1.4733          | .82741<br>724     | 50<br>49        | ı  | 10       | .57596<br>619    | .70455<br>499    | 1.4193          | .51745<br>731 | 50<br>49        |
| 11<br>12        | 205           | .67960           | .4715           | 705               | 45              | ı  | 12       | 643              | 54.2             | 4176            | 714           | 45              |
| 13              | 232           | .68002           | .4705           | 692               | 47              | ١  | 13       | 667              | 580              | .4167           | 695           | 4.              |
| 14              | 256           | 045              | .4696           | 675               | 46<br>45        | ı  | 14<br>15 | 691              | 629              | .4155           | 651           | 40              |
| 15<br>16        | .56280<br>305 | .68088<br>130    | 1.4687          | .82659<br>643     | 44              | ١  | 16       | .57715<br>7351   | .70673<br>717    | 1.415U          | .81664<br>647 | 45              |
| 17              | 329           | 173              | .4669           | 626               | 43              | ۱  | 17       | 762              | 760              | .4132           | 631           | 43              |
| 18              | 353           | 215<br>258       | .4650<br>.4650  | 610<br>593        | 42<br>41        | ı  | 18<br>19 | 756              | 504<br>545       | .4124           | 614           | 42<br>41        |
| 19<br><b>20</b> | 377<br>.56401 | .68301           | 1.4641          | .82577            | 40              | ı  | 20       | 510<br>-57533    | .70891           | .4115<br>1.4106 | 597<br>.81550 | 40              |
| 21              | 425           | 343              | 4632            | 561               | 39              | 1  | 21       | 857              | 935              | .4097           | 51            | 35              |
| $\frac{21}{22}$ | 449           | 386              | .4623           | 544               | 38              | 1  | 22       | 881              | .70979           | .4059           | 540           | 35              |
| $\frac{23}{24}$ | 473<br>497    | 429<br>471       | .4614           | 528<br>511        | 37<br>36        |    | 23<br>24 | 904<br>925       | .71023<br>066    | .4050           | 53<br>513     | 37<br>35        |
| 25              | .56521        | .68514           | 1.4596          | .82495            | 35              |    | 25       | .57952           | .71110           | 1.4063          | .81496        | 35              |
| 26              | 545           | 557              | .4586           | 478               | 34              | ۱  | 26       | 976              | 154              | 4054            | 479           | 34              |
| 27              | 569<br>593    | 600<br>642       | .4577<br>.456\$ | 462<br>446        | 33<br>32        | П  | 27<br>28 | .57999<br>.58023 | 195<br>242       | .4045           | 462<br>445    | 33<br>32        |
| 28<br>29        | 617           | 685              | .4559           | 429               | 31              | П  | 29       | .03023           | 285              | 4025            | 428           | 31              |
| 30              | .56641        | .68728           | 1.4550          | .82413            | 30              | П  | 30       | .58070           | .71329           | 1.4019          | .81412        | 30              |
| 31              | 665           | 771              | .4541           | 396               | 29              | H  | 31       | 094              | 373              | .4011           | 395           | 29              |
| 32<br>33        | 689<br>713    | 814<br>857       | .4532<br>.4523  | 380<br>363        | 28<br>27        | ı  | 32<br>33 | 115<br>141       | 417<br>461       | .4002           | 375<br>361    | $\frac{28}{27}$ |
| 34              | 736           | 900              | .4514           | 347               | 26              | П  | 34       | 165              | 505              | .3985           | 344           | 26              |
| 35              | .56760        | .68942           | 1.4505          | .82330            | 25              | П  | 35       | .58189           | .71549           | 1.3976          | .81327        | 25              |
| 36              | 784<br>808    | .68985<br>.69028 | .4496<br>.4487  | $\frac{314}{297}$ | $\frac{24}{23}$ | П  | 36<br>37 | 212<br>236       | 593<br>637       | .3968           | 310<br>293    | 24<br>23        |
| 37<br>38        | 832           | 071              | .4478           | 281               | 22              | Н  | 38       | 260              | 681              | .3951           | 276           | 22              |
| 39              | 856           | 114              | .4469           | 264               | 21              | П  | 39       | 283              | 725              | .3942           | 259           | 21              |
| 40              | .56880<br>904 | .69157<br>200    | 1.4460<br>.4451 | .82248<br>231     | 20<br>19        | П  | 40<br>41 | .58307<br>330    | .71769<br>813    | 1.3934          | .81242<br>225 | <b>20</b>       |
| 42              | 928           | 243              | .4442           | 214               | 18              | П  | 42       | 354              | 857              | .3925<br>.3916  | 205           | îs              |
| 43              | 952           | 286              | .4433           | 198               | 17              | Н  | 43       | 378              | 901              | .3908           | 191           | 17              |
| 44              | .56976        | 329              | .4424           | 181               | 16<br>15        | ll | 44<br>45 | 401<br>.58425    | 946              | .3899<br>1.3891 | .81157        | 16<br>15        |
| 45<br>46        | .57000<br>024 | .69372<br>416    | 1.4415<br>.4406 | .82165<br>148     | 14              | ı  | 46       | .58425<br>449    | .71990<br>.72034 | .3882           | 140           | 14              |
| 47              | 047           | 459              | .4397           | 132               | 13              | ı  | 47       | 472              | 075              | .3874           | 123           | 13              |
| 48<br>49        | 071<br>095    | 502<br>545       | .4388<br>.4379  | 115<br>098        | 12<br>11        | ı  | 48<br>49 | 496<br>519       | 122<br>167       | 3865            | 106<br>089    | 12<br>11        |
| 50              | .57119        | .69588           | 1.4370          | .82082            | 10              | ı  | 50       | .58543           | .72211           | 1.3548          | .81072        | 10              |
| 51              | 143           | 631              | .4361           | 065               | 9               | ı  | 51       | 567              | 255              | .3840           | 055           | ÿ               |
| 52<br>53        | 167           | 675              | .4352<br>.4344  | 048<br>032        | 8 7             | H  | 52<br>53 | 590<br>614       | 299<br>344       | .3831           | 038<br>021    | 87-             |
| 54<br>54        | 191<br>215    | 718<br>761       | .4344           | .82015            | 6               |    | 54       | 637              | 385              | .3814           | .81004        | 6               |
| 55              | .57238        | .69804           | 1.4326          | .81999            | 5               |    | 55       | .58661           | .72432           | 1.3806          | .80987        | 5               |
| 56<br>57        | 262           | 847              | .4317           | 982               | 3               |    | 56<br>57 | 684<br>708       | 477<br>521       | .3798<br>.3789  | 970<br>953    | 3               |
| 58<br>58        | 286<br>310    | 891<br>934       | .4308           | 965<br>949        | 2               |    | 58       | 731              | 565              | .3781           | 936           | 2               |
| 59              | 334           | .69977           | .4290           | 932               | 1               | ı  | 59       | 755              | 610              | .3772           | 919           | 1               |
| 60              | .57358        | .70021           | 1.4281          | .81915            | 0               | ı  | 60       | .58779           | .72654           | 1.3764          | .80902        | 0               |
|                 | Cos           | Ctn              | Tan             | Sin               | '               | 1  |          | Cos              | Ctn              | Tan             | Sin           | '               |

54° 55°

|                 | C:-              | Te-              | Ctn             | Cos              | <u> </u>        | 1  | 7               | Sin           | Tan              | Ctn             | Con           | LIL             |
|-----------------|------------------|------------------|-----------------|------------------|-----------------|----|-----------------|---------------|------------------|-----------------|---------------|-----------------|
|                 | Sin              | Tan              |                 |                  | 00              | ı  | 0               |               |                  |                 | Cos           |                 |
| 0               | .58779<br>802    | .72654<br>699    | 1.3764<br>.3755 | .80902<br>885    | 60<br>59        | П  | 1               | .60182<br>205 | .75355<br>401    | 1.3270<br>.3262 | .79864<br>846 | <b>60</b><br>59 |
| 2               | 826              | 743              | .3747           | 867              | 55              | ı  | 2               | 228           | 447              | .3254           | 829           | 58              |
| 3               | 849              | 785              | .3739           | 850              | 57              | П  | 3               | 251<br>274    | 492              | .3246           | 811           | 57              |
| 4<br>5          | .58896           | 832<br>.72877    | .3730<br>1.3722 | .80816           | 56<br>55        | Н  | 5               | .60298        | .75584           | .3238<br>1.3230 | 793           | 56              |
| 6               | .58896<br>920    | 921              | .3713           | .80516<br>799    | 54              | П  | 6               | 321           | 629              | .3222           | .79776<br>758 | <b>55</b>       |
| 7               | 943              | .72966           | .3705           | 782              | 53              | ı  | 7               | 344           | 675              | .3214           | 741           | 53              |
| 8               | 967              | .73010           | .3697           | 765              | 52              | П  | 8               | 367<br>390    | 721<br>767       | .3206           | 723           | 52              |
| 9<br>10         | .58990           | 055              | .3688           | 748<br>.80730    | 51<br><b>50</b> | Н  | 10              | .60414        | .75812           | .3198<br>1.3190 | 706           | 51              |
| 11              | .59014<br>037    | .73100<br>144    | 1.3680<br>.3672 | 713              | 49              | Н  | 11              | 437           | 858              | .3182           | .79688<br>671 | 50<br>49        |
| 12              | 061              | 189              | .3663           | 696              | 48              | П  | 12              | 460           | 904              | .3175           | 653           | 48              |
| 13              | 084              | 234              | .3655           | 679              | 47              | П  | 13<br>14        | 483<br>506    | 950<br>.75996    | .3167           | 635           | 47              |
| 14<br>15        | 108              | 278<br>.73323    | .3647<br>1.3638 | .80644           | 46<br>45        | П  | 15              | .60529        | .76042           | .3159<br>1.3151 | 618           | 46              |
| 16              | .59131<br>154    | 368              | .3630           | 627              | 44              | Н  | 16              | 553           | 088              | .3143           | .79600<br>583 | 45<br>44        |
| 17              | 178              | 413              | .3622           | 610              | 43              | П  | 17              | 576           | 134              | .3135           | 565           | 43              |
| 18              | 201              | 457              | .3613           | 593              | 42<br>41        | П  | 18<br>19        | 599<br>622    | 180<br>226       | .3127           | 547           | 42              |
| 19<br><b>20</b> | 225<br>.59248    | 502<br>.73547    | .3605<br>1.3597 | 576<br>.80558    | 40              | П  | 20              | .60645        | .76272           | .3119           | 530           | 41              |
| 21              | 272              | 592              | .3588           | 541              | 39              | Н  | 21              | 668           | 318              | .3103           | .79512<br>494 | 40<br>39        |
| 22              | 295              | 637              | .3580           | 524              | 38              | П  | 22              | 691           | 364              | .3095           | 477           | 38              |
| 23<br>24        | 318<br>342       | 681<br>726       | .3572<br>.3564  | 507<br>489       | 37<br>36        | Н  | $\frac{23}{24}$ | 714<br>738    | 410<br>456       | .3087           | 459           | 37              |
| 25              | .59365           | .73771           | 1.3555          | .80472           | 35              | П  | 25              | .60761        | .76502           | 1.3072          | 441           | 36              |
| 26              | 389              | 816              | .3547           | 455              | 34              | П  | 26              | 784           | 548              | .3064           | .79424<br>406 | 35<br>34        |
| 27              | 412              | 861              | .3539           | 438              | 33              | Н  | 26<br>27<br>28  | 807           | 594              | .3056           | 388           | 33<br>32        |
| 28<br>29        | 436<br>459       | 906<br>951       | .3531<br>.3522  | 420<br>403       | 32<br>31        | П  | 28<br>29        | 830<br>853    | 640<br>686       | .3048           | 371           | 32              |
| 30              | .59482           | .73996           | 1.3514          | .80386           | 30              | П  | 30              | .60876        | .76733           | 1.3032          | 353<br>.79335 | 31<br><b>30</b> |
| 31              | 506              | .74041           | .3506           | 368              | 29              | П  | 31              | 899           | 779              | .3024           | 318           | 29              |
| 32              | 529              | 086              | .3498           | 351              | 28              | П  | 32              | 922           | 825              | .3017           | 300           | 89<br>88<br>87  |
| 33<br>34        | 552<br>576       | 131<br>176       | .3490<br>.3481  | 384<br>316       | 27<br>26        | П  | 33<br>34        | 945<br>968    | 871<br>918       | .3009           | 282<br>264    | 27<br>26        |
| 35              | .59599           | .74221           | 1.3473          |                  | 25              | Н  | 35              | .60991        | .76964           | 1.2993          | .79247        | 25              |
| 36              | 623              | 267              | .3465           | .80299<br>282    | 24              | Н  | 36              | .61015        | .77010           | .2985           | 229           | 24              |
| 37              | 646              | 312              | .3457           | 264              | 23<br>22        | П  | 37              | 038<br>061    | 057              | .2977           | 211           | 23              |
| 38<br>39        | 669<br>693       | 357<br>402       | .3449<br>.3440  | 247<br>230       | 21              | Н  | 38<br>39        | 084           | 103<br>149       | .2970           | 193<br>176    | $\frac{22}{21}$ |
| 40              | .59716           | .74447           | 1.3432          | .80212           | 20              | П  | 40              | .61107        | .77196           | 1.2954          | .79158        | 20              |
| 41              | 739              | 492              | .3424           | 195              | 19              | ı  | 41              | 130           | 242              | .2946           | 140           | 19              |
| 42<br>43        | 763<br>786       | 538<br>583       | .3416<br>.3408  | 178<br>160       | 18<br>17        | ۱۱ | 42<br>43        | 153<br>176    | 289<br>335       | .2938<br>.2931  | 122<br>105    | 18<br>17        |
| 44              | 809              | 628              | .3400           | 143              | 16              | ı  | 44              | 199           | 382              | .2923           | 087           | 16              |
| 45              | .59832           | .74674           | 1.3392          | .80125           | 15              | H  | 45              | .61222        | .77428           | 1.2915          | .79069        | 15              |
| 46              | 856              | 719              | .3384           | 108              | 14              | ı  | 46              | 245           | 475              | .2907           | 051           | 14              |
| 47<br>48        | 879<br>902       | 764<br>810       | .3375<br>.3367  | 091<br>073       | 13<br>12        | ۱۱ | 47<br>48        | 268<br>291    | 521<br>568       | .2900<br>.2892  | .79016        | 13<br>12        |
| 49              | 926              | 855              | .3359           | 056              | iĩ              | ı  | 49              | 314           | 615              | .2884           | .78998        | 11              |
| 50              | .59949           | .74900           | 1.3351          | .80038           | 10              | ı  | 50              | .61337        | .77661           | 1.2876          | .78980        | 10              |
| 51              | 972              | 946              | .3343           | 021              | 9               | ı  | 51              | 360           | 708              | .2869           | 962           | 9               |
| 52<br>53        | .59995<br>.60019 | .74991<br>.75037 | .3335           | .80003<br>.79986 | 8               | ı  | 52<br>53        | 383<br>406    | 754<br>801       | .2861<br>.2853  | 944<br>926    | 8<br>7          |
| 54              | 042              | 082              | .3319           | 968              | 6               | ı  | 54              | 429           | 848              | .2846           | 908           | 6               |
| 55              | .60065           | .75128           | 1.3311          | .79951           | 5               | ı  | 55              | .61451        | .77895           | 1.2838          | .78891        | 5               |
| 56<br>57        | 089<br>112       | 173<br>219       | .3303<br>.3295  | 934<br>916       | 4<br>3          | П  | 56<br>57        | 474<br>497    | 941              | .2830           | 873           | 4               |
| 58              | 135              | 264              | .3295           | 899              | 2               | ı  | 58              | 520           | .77988<br>.78035 | .2822           | 855<br>837    | 3 2             |
| 59              | 158              | 310              | .3278           | 881              | 1               | ı  | 59              | 543           | 082              | .2807           | 819           | ĩ               |
| 60              | .60182           | .75355           | 1.3270          | .79864           | 0               | ı  | 60              | .61566        | .78129           | 1.2799          | .78801        | 0               |
|                 | Cos              | Ctn              | Tan             | Sin              | ′               | ١  |                 | Cos           | Ctn              | Tan             | Sin           | 1               |

53° 52°

| 11111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                      | 6.2025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6.0025<br>6. | 7. 173<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>273<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (1.27 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7, 22, 555, 25, 555, 25, 555, 25, 55, 55,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 14 5 4 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4                                | 0 - 1 1 1 1 5 5 5 6 7 10 11 11 11 11 11 11 11 12 20 11 11 11 11 25 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.5<br>605<br>655<br>51700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.214.<br>23.42.<br>23.42.<br>1.25.12.<br>23.42.<br>23.42.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>23.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.<br>24.43.                                                                                                                                                    | Ces   11   15   15   15   15   15   15   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6000000 5540000 5004440 4444444 400000 354               |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 184 5 5 1 1 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                             | 6125<br>6167<br>6167<br>617<br>617<br>617<br>617<br>617<br>617<br>617<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 756<br>416<br>416<br>416<br>416<br>416<br>416<br>416<br>416<br>416<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.61<br>27.76<br>1.27.61<br>27.74<br>27.74<br>27.74<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.73<br>27.7 | 7-57-7-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 154 <b>5</b> 75511 <b>5</b> 4444 <b>4</b> 4444 <b>4</b> 888 <b>5</b> 48 | 11 5 4 5 5 1 6 2 10 11 11 11 15 11 14 20 11 11 11 12 15 11 11 11 12 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17: 20: 21: 31: 31: 31: 31: 31: 31: 31: 31: 31: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12512<br>12512<br>12512<br>1252<br>1253<br>1253<br>1253<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6541<br>6441<br>7644<br>7644<br>7644<br>7646<br>7746<br>7746<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55 55 55 55 55 55 55 55 55 55 55 55 55                   |
| 4 5 5 5 7 7 9 9 11 11 11 14 15 15 15 19 20 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                  | 655<br>6657<br>7046<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7047<br>7                                                                                                                                                                                                   | 75593<br>410<br>410<br>4504<br>5504<br>7559<br>7559<br>7559<br>7559<br>7559<br>7559<br>759070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070<br>779070 | 277<br>1.2761<br>1.27761<br>2.2776<br>2.2776<br>2.2776<br>2.2776<br>2.2776<br>2.2676<br>2.2676<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.2677<br>2.26777<br>2.26777<br>2.26777<br>2.26777<br>2.26777<br>2.26777<br>2.26777<br>2.26777<br>2.2                                                                                                                                                    | 747<br>747<br>757<br>757<br>757<br>757<br>757<br>757<br>757<br>757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 <b>5</b> 555325 <b>5</b> 4444 <b>4</b> 4444 <b>4</b> 888 <b>5</b> 588 | ** 5 \$1-62 9:1113#15\$1543 8:138# 558b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17: 20: 21: 31: 31: 31: 31: 31: 31: 31: 31: 31: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 644 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55 55 55 55 5 5 5 5 5 5 5 5 5 5 5 5 5                    |
| 5 6 1 7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .61681<br>1744<br>1744<br>1744<br>.61795<br>.61795<br>.01864<br>.62024<br>.62024<br>.62024<br>.62024<br>.62138<br>.62138<br>.62138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .78363<br>410<br>430<br>430<br>504<br>504<br>7859<br>645<br>78534<br>8871<br>78975<br>78975<br>78975<br>79070<br>1174<br>1212<br>2259<br>79306<br>354<br>440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2761<br>.27746<br>.2773<br>.2773<br>.2773<br>.2773<br>.2773<br>.2773<br>.2673<br>.2673<br>.2674<br>.2657<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.2644<br>.264 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55555555544444444444444 <b>6</b> 8888555                                | 5 29- 62 10:11114 15214 42 20:1118 2526 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.5<br>3.14.1<br>11.3<br>3.14.1<br>3.15.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3 | 12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512<br>12512 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                   |
| ****                                                                                                                        | 046<br>712<br>61795<br>61795<br>61795<br>61795<br>61795<br>61795<br>61795<br>62061<br>62061<br>62138<br>62138<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 410<br>437<br>504<br>555<br>555<br>645<br>645<br>645<br>756<br>756<br>758<br>758<br>758<br>759070<br>7117<br>117<br>117<br>122<br>223<br>759070<br>354<br>440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2753<br>2743<br>2773<br>2773<br>1.2723<br>2705<br>2705<br>2603<br>1.2685<br>2670<br>2682<br>2653<br>1.2647<br>2632<br>2631<br>1.2649<br>2631<br>1.2602<br>2632<br>2631<br>2631<br>2632<br>2633<br>2631<br>2631<br>263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3585 <b>3</b> 4444 <b>4</b> 4444 <b>4</b> 883 <b>3</b> 53               | 10:11:14 15:11 / 1: 20:11:12 25:01:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.5<br>3.14.1<br>11.3<br>3.14.1<br>3.15.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3<br>3.17.3 | 12176<br>12176<br>12176<br>12176<br>12176<br>12176<br>12176<br>12176<br>12176<br>12176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 10 10 10 10 10 10 10 10 10 10 10 10 10                 |
| 1-7 * 9:1111114 15:1114 19                                                                                                  | 726<br>749<br>749<br>.61705<br>.61705<br>.61806<br>.6206<br>.6206<br>.6206<br>.6208<br>.62135<br>.62135<br>.62135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 437<br>504<br>551<br>78598<br>643<br>643<br>78598<br>7859<br>881<br>625<br>78070<br>79070<br>117<br>164<br>2159<br>79306<br>354<br>440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2746<br>2731<br>12723<br>2776<br>2776<br>2776<br>2652<br>2677<br>2662<br>2677<br>2662<br>2677<br>2662<br>2677<br>2649<br>2632<br>2632<br>2632<br>2632<br>2632<br>2632<br>2632<br>263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 677<br>617<br>787 22 658<br>556 558<br>5514 406<br>400<br>4401<br>784424<br>400<br>78351<br>3333<br>3157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 525 <b>5</b> 444 <b>4</b> 444 <b>4</b> 888 <b>8</b> 88                  | 16.7 10::11:14 15::14.2 20::13:4 25::11:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0315<br>.03271<br>.63271<br>.63271<br>.63373<br>.63373<br>.63476<br>.63476<br>.63476<br>.63476<br>.63476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 314 314 31 314 31 314 31 31 31 31 31 31 31 31 31 31 31 31 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.276<br>-227<br>-227<br>-227<br>-227<br>-227<br>-227<br>-227<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5515 <b>5</b> 2444 <b>44</b> 444 <b>4</b> 365 <b>3</b> 5 |
| *** 10 11 11 11 11 14 14 14 19 20 11 11 11 11 14 14 15 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16                      | 743<br>743<br>.61795<br>.61896<br>.61876<br>.62024<br>.62024<br>.62138<br>.62138<br>.62138<br>.62138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 551<br>75598<br>043<br>652<br>756<br>78834<br>881<br>881<br>78975<br>79022<br>79070<br>117<br>164<br>212<br>223<br>79306<br>440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27.11<br>1.27.23<br>1.27.15<br>2.27.16<br>2.27.16<br>2.26.20<br>1.26.55<br>2.67.7<br>2.67.0<br>2.64.7<br>2.64.7<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63.2<br>2.63                                                                                                                                                    | 7, 22, 555, 25, 555, 25, 555, 25, 555, 25, 555, 25, 555, 25, 555, 25, 555, 25, 555, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 25 | 5 <b>5</b> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                            | 10:11:14 15:11 15:20 15:13:14 25:61:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .63271<br>.63271<br>.63271<br>.63273<br>.63373<br>.63373<br>.63476<br>.63476<br>.63476<br>.63476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .6-1<br>113<br>.8140.1<br>.8170.6<br>.8170.6<br>.8170.6<br>.81946<br>.81946<br>.82044<br>.82196<br>.82196<br>.82196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.276<br>-227<br>-227<br>-227<br>-227<br>-227<br>-227<br>-227<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.531<br>77531<br>513<br>444<br>454<br>454<br>462<br>366<br>77489<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>3194<br>31                                                                                                                                                                                                                                                                                                                                                   | 35 50 44 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5                 |
| 90111111111111111111111111111111111111                                                                                      | .61795<br>\$158<br>\$41<br>\$64<br>\$67<br>.61976<br>.61976<br>.62024<br>.62024<br>.62135<br>.62135<br>.62135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .78598<br>643<br>643<br>756<br>756<br>78834<br>881<br>78975<br>78975<br>799010<br>117<br>164<br>219<br>259<br>79306<br>440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2723<br>.2713<br>.2730<br>.2730<br>.2633<br>1.2653<br>1.2657<br>.2657<br>.2657<br>.2640<br>.2632<br>.2624<br>.2614<br>1.2602<br>.2632<br>.2634<br>.2614<br>.2632<br>.2634<br>.2634<br>.2634<br>.2634<br>.2634<br>.2634<br>.2634<br>.2634<br>.2634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .78/22/<br>5/6/<br>5/6/<br>5/6/<br>5/6/<br>5/6/<br>5/6/<br>5/6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 504444444444 <b>4</b> 8888 <b>5</b> 48                                  | 10::11::14 15::17:19 20::13::18::12:19::18::18::18::18::18::18::18::18::18:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .63271<br>.63271<br>.63271<br>.63271<br>.63371<br>.6336<br>.6336<br>.6336<br>.6336<br>.6336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .81401<br>.655<br>.655<br>.81705<br>.840<br>.840<br>.840<br>.840<br>.8100<br>.81006<br>.82044<br>.82100<br>.82100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.276<br>-227<br>-227<br>-227<br>-227<br>-227<br>-227<br>-227<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77531<br>444<br>475<br>456<br>77439<br>17439<br>17347<br>375<br>273<br>273<br>273<br>273<br>273<br>273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 444 4444 40 55 55 55 55                               |
| 11111111111111111111111111111111111111                                                                                      | \$15<br>\$44<br>\$57<br>.01000<br>.01000<br>.01075<br>.62024<br>.62024<br>.62135<br>.62135<br>.62135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 043<br>662<br>736<br>736<br>78834<br>881<br>78975<br>79022<br>79022<br>79070<br>117<br>164<br>219<br>259<br>79306<br>4401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .2715<br>.2708<br>.2708<br>.2609<br>1.2685<br>.2677<br>.2662<br>.2062<br>.2063<br>1.2640<br>.2612<br>.2614<br>.2617<br>1.2609<br>.2602<br>.2524<br>.2517<br>1.2609<br>.2524<br>.2517<br>.2524<br>.2517<br>.2524<br>.2517<br>.2524<br>.2517<br>.2524<br>.2517<br>.2524<br>.2517<br>.2524<br>.2517<br>.2524<br>.2517<br>.2524<br>.2524<br>.2524<br>.2524<br>.2524<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2525<br>.2 | 550<br>550<br>75532<br>514<br>400<br>477<br>407<br>442<br>442<br>405<br>387<br>383<br>333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41444444444 <b>0</b> 88888 <b>35</b> 88                                 | 11 14 15 14 15 20 11 13 14 25 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .63271<br>.63271<br>.63271<br>.63271<br>.63371<br>.6336<br>.6336<br>.6336<br>.6336<br>.6336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51765<br>657<br>51765<br>51765<br>529<br>51946<br>529<br>642<br>52196<br>22196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 225<br>2247<br>12480<br>2248<br>2248<br>2248<br>2248<br>2154<br>2154<br>2154<br>2154<br>2154<br>2154<br>2154<br>2154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 513 44<br>475 439<br>475 439<br>77 489<br>77 489<br>77 33 54<br>77 33 52<br>77 34 52<br>77                                                                                                                                                                                                                                                                                                                                                 | 章 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                  |
| 1113 14 15 15 15 19 20 15 15 15 15 15 15 15 15 15 15 15 15 15                                                               | \$11<br>\$64<br>\$64<br>\$62<br>\$15<br>\$15<br>\$15<br>\$15<br>\$62024<br>\$62024<br>\$69<br>\$62138<br>\$160<br>\$183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 756<br>756<br>756<br>78834<br>8915<br>78977<br>78970<br>117<br>117<br>119<br>259<br>79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 276<br>276<br>2665<br>1.2685<br>2677<br>2677<br>2670<br>2649<br>2649<br>2632<br>2624<br>2617<br>1.2609<br>2602<br>2504<br>2555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5532<br>5532<br>5532<br>514<br>406<br>475<br>405<br>405<br>405<br>405<br>405<br>405<br>405<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44 44 44 44 44 44 44 44 44 44 44 44 44                                  | 12.14<br>15.14<br>15.14<br>15.14<br>15.14<br>20.14<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24<br>21.24 | 1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014<br>1014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 513<br>693<br>695<br>51705<br>51705<br>519<br>51946<br>51995<br>52044<br>092<br>141<br>52190<br>233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # 15 6 9 10 17 6 14 9 10 10 15 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 444 4444 44 4 4 3 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5  |
| 14 15 11 16 19 20 11 11 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15                                                        | 857<br>.01979<br>.61975<br>.62001<br>.62024<br>.62024<br>.62024<br>.62135<br>.62135<br>.62135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.56<br>.7.8534<br>.851<br>.7.8022<br>.7.9022<br>.7.9070<br>.117<br>.164<br>.259<br>.79306<br>.354<br>.401<br>.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .2699<br>1.2685<br>-2677<br>-2672<br>-2653<br>1.2647<br>-2632<br>-2632<br>-2632<br>-2632<br>-2694<br>-2594<br>-2594<br>-2594<br>-2594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78582<br>78582<br>496<br>496<br>497<br>497<br>497<br>497<br>369<br>78351<br>383<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ <b>45</b> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$   | 14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>20<br>15<br>15<br>21<br>21<br>22<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .63496<br>.63496<br>.6327<br>.6337<br>.63496<br>.63496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .51705<br>.51705<br>.520<br>.549<br>.51946<br>.51995<br>.52044<br>.692<br>.644<br>.52196<br>.52196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,239<br>1,239<br>1,234<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244<br>1,244 | 45.944.07.64.49.40.14.55.49.40.14.55.49.40.14.55.49.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.14.55.40.15.40.14.55.40.14.55.40.14.55.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40.15.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ <b>45 4 4 4 4 4 4 4 4 4 4</b>                         |
| 15 11 14 19 20 11 11 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                  | .01979<br>555<br>.01975<br>.02061<br>.02024<br>046<br>069<br>115<br>.62138<br>160<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .78834<br>881<br>928<br>78973<br>79070<br>117<br>164<br>212<br>259<br>.79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.26\5<br>.26\77<br>.26\70<br>.26\2<br>.26\2<br>.26\32<br>.26\32<br>.26\32<br>.26\32<br>.26\32<br>.26\32<br>.26\32<br>.26\32<br>.26\32<br>.25\34<br>.25\37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78532<br>514<br>496<br>474<br>407<br>78442<br>405<br>387<br>369<br>78351<br>333<br>3297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45 444 44 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                | 15 15 15 15 20 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .63271<br>203<br>316<br>337<br>405<br>425<br>425<br>473<br>473<br>463496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .51705<br>520<br>540<br>575<br>.51946<br>.51995<br>.52044<br>.52199<br>235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.239<br>1255<br>1255<br>1256<br>1256<br>1256<br>1256<br>1256<br>1256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17437842222<br>17437842222<br>1743842222<br>17384222<br>17384222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 444444 <b>4</b> 8888888                                  |
| 11.49 <b>2</b> 01884 <b>5</b> 55549 <b>3</b> 58884 <b>5</b> 5                                                               | .61978<br>.61978<br>.62001<br>.62024<br>.62024<br>.646<br>.669<br>.62138<br>.62138<br>.62138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 881<br>928<br>78973<br>79022<br>79070<br>117<br>164<br>212<br>259<br>79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .2677<br>.2670<br>.2662<br>.2655<br>1.2647<br>.2649<br>.2632<br>.2624<br>.2617<br>1.2609<br>.2594<br>.2594<br>.2597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 514<br>496<br>477<br>467<br>78442<br>405<br>387<br>363<br>78351<br>333<br>3297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44444 <b>40</b> 88888 <b>35</b> 488                                     | 15 15 20 15 13 24 25 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2316 / 17 / 2316 / 2316 / 2316 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 / 2416 | 500<br>549<br>549<br>549<br>51946<br>51995<br>52044<br>692<br>141<br>52196<br>235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 407849200<br>408849200<br>1,008841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44 44 44 40 3 5 5 7 5 6 35                               |
| . 169 <b>2</b> 018884 <b>25</b> 85689 <b>3</b> 088834 <b>35</b> 8                                                           | .61975<br>.62061<br>.62024<br>.62024<br>.069<br>.092<br>.115<br>.62138<br>.62138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .79070<br>117<br>164<br>212<br>259<br>.79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2662<br>.2655<br>1.2647<br>.2649<br>.2632<br>.2624<br>.2617<br>1.2609<br>.2609<br>.2594<br>.2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47×<br>460<br>78442<br>424<br>405<br>387<br>369<br>78351<br>333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41 40 35 35 35 35 33                                                    | 15 <b>20</b> 11 13 12 <b>25</b> 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 316<br>327<br>328<br>403<br>403<br>403<br>473<br>473<br>473<br>63496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$1946<br>\$1955<br>\$1946<br>\$1995<br>\$2044<br>092<br>141<br>\$2196<br>238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7849237<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>13888<br>1388 | 44 <b>40</b> 35 35 35 <b>35</b>                          |
| 19<br>20<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                      | .62061<br>.62024<br>.646<br>.669<br>.602<br>.115<br>.62138<br>.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .79070<br>117<br>164<br>212<br>259<br>.79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2655<br>1.2647<br>.2649<br>.2632<br>.2624<br>.2617<br>1.2609<br>.2602<br>.2594<br>.2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 460<br>.78442<br>424<br>405<br>387<br>369<br>.78351<br>333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41 <b>40</b> 33 8 37 8 <b>35</b> 33 33 33                               | 19<br>20<br>21<br>21<br>21<br>25<br>21<br>25<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8#1<br>.633%3<br>406<br>42%<br>451<br>473<br>.63496<br>51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 575<br>.81946<br>.81965<br>.82044<br>.942<br>.141<br>.82190<br>.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2266<br>1,2266<br>2166<br>2166<br>2174<br>2174<br>1,2167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366<br>17347<br>17349<br>3192<br>3193<br>1715<br>1715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 35 55 5 55<br>35                                      |
| 2018884 2585559 30 1888 35 35                                                                                               | .62024<br>046<br>069<br>092<br>115<br>.62138<br>160<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .79070<br>117<br>164<br>212<br>259<br>.79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2647<br>.2649<br>.2632<br>.2624<br>.2617<br>1.2609<br>.2502<br>.2594<br>.2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .78442<br>424<br>405<br>387<br>369<br>.78351<br>333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3                                | 20<br>121311<br>25<br>12131<br>25<br>12131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .633%3<br>40.0<br>42%<br>451<br>473<br>.63496<br>51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .81946<br>.81265<br>.82044<br>.962<br>.141<br>.82196<br>.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,256<br>,2166<br>,2161<br>,2174<br>1,2167<br>,2167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .77347<br>329<br>310<br>292<br>273<br>.77255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                 |
| 21324 <b>25</b> 61-629 <b>30</b> 32333 <b>35</b> 6                                                                          | 069<br>002<br>115<br>.62138<br>160<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 164<br>212<br>259<br>.79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .2632<br>.2624<br>.2617<br>1.2609<br>.2602<br>.2594<br>.2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 405<br>387<br>369<br>.78351<br>333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35<br>35<br>35<br>33<br>33<br>33                                        | 213<br>21<br>25<br>26<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 425<br>451<br>473<br>.63496<br>515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .52041<br>092<br>141<br>.52190<br>235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2154<br>2154<br>2174<br>1.2167<br>.2160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 329<br>320<br>320<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35<br>37<br>36<br><b>35</b>                              |
| 224<br>250<br>261<br>299<br>30<br>31<br>323<br>33<br>35<br>36                                                               | 092<br>115<br>.62138<br>160<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 212<br>259<br>.79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2624<br>.2617<br>1.2609<br>.2602<br>.2594<br>.2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 387<br>369<br>78351<br>333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37<br>36<br><b>35</b><br>34<br>33                                       | 25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 473<br>.63496<br>515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 09-2<br>141<br>.82190<br>238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2151<br>2174<br>1.2167<br>2160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 292<br>273<br>-7725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37<br>36<br><b>35</b>                                    |
| 24<br>25<br>26<br>26<br>27<br>28<br>28<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30        | .62138<br>.62138<br>160<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 259<br>.79306<br>354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .2617<br>1.2609<br>.2602<br>.2594<br>.2587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 369<br>.78351<br>333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36<br><b>35</b><br>34<br>33                                             | 21<br>25<br>26<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 473<br>.63496<br>515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .82196<br>.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2174<br>1.2167<br>.2160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 273<br>.77251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36<br><b>35</b>                                          |
| 201559<br>30<br>33333<br>35<br>36                                                                                           | 160<br>183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 354<br>401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2602<br>.2594<br>.2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 333<br>315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34<br>33                                                                | 26<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5i S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |
| 25<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                                                                          | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 401<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .2594<br>.2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 315<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)                                                      |
| 25<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                                                                          | 206<br>229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39                                                       |
| 30<br>31<br>32<br>33<br>34<br>35<br>36                                                                                      | 229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                       |
| 31<br>32<br>33<br>34<br><b>35</b><br>36                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                       |
| 32<br>33<br>34<br><b>35</b><br>36                                                                                           | .62251<br>274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .79544<br>591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2572<br>.2564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .78261<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>30</b>                                                               | 30<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .6360s<br>639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .82434<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .77162<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>29                                                 |
| 34<br>35<br>36                                                                                                              | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.                                                       |
| <b>35</b><br>36                                                                                                             | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | និងន                                                     |
| 36                                                                                                                          | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26<br><b>25</b>                                                         | 34<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 698<br>.63720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 629<br>.82678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .77070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                                                       |
|                                                                                                                             | .62365<br>3SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .79781<br>829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2534<br>.2527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .78170<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                      | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24                                                       |
| 24                                                                                                                          | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                      | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                                                       |
| 38<br>39                                                                                                                    | 433<br>450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $924 \\ .79972$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .2512<br>.2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116<br>098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{22}{21}$                                                         | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 787<br>810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 825<br>874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2074 $.2066$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .77014<br>.76996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20<br>21                                                 |
| 40                                                                                                                          | .62479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .80020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .78079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .63832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .\$2923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .76977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                       |
| 41                                                                                                                          | 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19                                                                      | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C-107-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .2052<br>.2045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                       |
| 42<br>43                                                                                                                    | 524<br>547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .24S2<br>.2475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 043<br>025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18<br>17                                                                | 42<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 877<br>899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .\$3022<br>071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .2045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 940<br>921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>17                                                 |
| 44                                                                                                                          | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .78007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                      | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                       |
| 45                                                                                                                          | .62592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .80258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .77988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .63944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .83169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .79554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                       |
| 46<br>47                                                                                                                    | 615<br>638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 306<br>354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .2452<br>.2445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 970<br>952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14<br>13                                                                | 46<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .63'+59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 215<br>268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14<br>13                                                 |
| 48                                                                                                                          | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .64011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                       |
| 49                                                                                                                          | 683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                      | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .17/-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                       |
| 50                                                                                                                          | .62706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .80498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2423<br>.2415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .77897<br>879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>9                                                                 | 50<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .54056<br>075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .83415<br>465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .76791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                       |
| 51<br>52                                                                                                                    | 728<br>751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 546<br>594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .2408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                       | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 772<br>754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.87                                                     |
| 53                                                                                                                          | 774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                       | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                        |
| 54<br>55                                                                                                                    | 796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>5                                                                  | 54<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 145<br>.64167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 613<br>.83662                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1960<br>1.1953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 717<br>.76698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                        |
| 56                                                                                                                          | .62819<br>842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .80738<br>786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2386<br>.2378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .77806<br>788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                       | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                        |
| 57                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .2371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .1939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                        |
| 58<br>59                                                                                                                    | 864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 882<br>930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .2364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 751<br>733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>1                                                                  | 58<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{234}{256}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 811<br>860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .1932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 642<br>623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3<br>2<br>1                                              |
| 60                                                                                                                          | 887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .77715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ō                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .64279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .83910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .76604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ô                                                        |
| ~                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .80978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>اٽ</del> ا                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ctn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                        |

50° 51°

| 1         | Sin               | Tan              | Ctn             | Cos           |                      |   | 1               | Sin           | Tan           | Ctn             | Cos           |                 |
|-----------|-------------------|------------------|-----------------|---------------|----------------------|---|-----------------|---------------|---------------|-----------------|---------------|-----------------|
| 0         | .64279            | .83910           | 1.1918          | .76604        | 60                   | П | 0               | .65606        | .86929        | 1.1504          | .75471        | 60              |
| lil       | 301               | .83960           | .1910           | 586           | 59                   | П | 1               | 628           | .86980        | .1497           | 452           | 59              |
| 2         | 323               | .84009           | .1903           | 567           | 55<br>57             | Н | 2               | 650           | .87031        | .1490           | 433           | 58              |
| 3         | 346               | 059              | .1896           | 548           | 57                   | П | 3               | 672<br>694    | 082<br>133    | .1483           | 414           | 57              |
| 4         | 368               | 108              | .1889           | 530           | 56                   | П | 4<br>5          |               |               | .1477           | 395           | 56              |
| 5         | .64290            | .84158           | 1.1882          | .76511<br>492 | 55<br>54             | П | 6               | .65716<br>738 | .87184<br>236 | 1.1470<br>.1463 | .75375        | 55              |
| 6 7       | 412<br>435        | 208<br>258       | .1875<br>.1868  | 473           | 53                   | Н | 7               | 759           | 287           | .1456           | 356<br>337    | 54              |
| 8         | 457               | 307              | .1861           | 455           | 52                   | Н | 8               | 781           | 338           | .1450           | 318           | 53<br>52        |
| ğ         | 479               | 357              | .1854           | 436           | 51                   | П | 9               | 803           | 389           | .1443           | 299           | 51              |
| 10        | .64501            | .84407           | 1.1847          | .76417        | 50                   | Н | 10              | .65825        | .87441        | 1.1436          | .75280        | 50              |
| 11        | 524               | 457              | .1840           | 398           | 49                   | П | 11              | 847           | 492           | .1430           | 261           | 49              |
| 12        | 546               | 507              | .1833           | 380           | 48<br>47             | Н | 12<br>13        | 869           | 543           | .1423           | 241           | 48              |
| 13<br>14  | 568<br>590        | 556<br>606       | .1826           | 361<br>342    | 46                   | П | 14              | 891<br>913    | 595<br>646    | .1416           | 222<br>203    | 47              |
| 15        | .64612            | .84656           | 1.1812          | .76323        | 45                   | П | 15              | .65935        | .87698        | 1.1403          | .75184        | 46              |
| 16        | 635               | 706              | .1806           | 304           | 44                   | П | 16              | 956           | 749           | .1396           | 165           | 45<br>44        |
| 17        | 657               | 756              | .1799           | 286           | 43                   | П | 17              | .65978        | 801           | .1389           | 146           | 43              |
| 18        | 679               | 806              | .1792           | 267           | 42                   | П | 18              | .66000        | 852           | .1383           | 126           | 42              |
| 19        | 701               | 856              | .1785           | 248           | 41                   | П | 19              | 022           | 904           | .1376           | 107           | 41              |
| 20        | .64723            | .84906           | 1.1778          | .76229        | 40                   | Н | 20              | .66044        | .87955        | 1.1369          | .75088        | 40              |
| 21        | 746<br>768        | .84956<br>.85006 | .1771           | 210<br>192    | 39<br>38             | П | 21<br>22        | 066<br>088    | .88007<br>059 | .1363           | 069<br>050    | 39              |
| 22<br>23  | 790               | 057              | .1757           | 173           | 37                   | П | 23              | 109           | 110           | .1349           | 030           | 38<br>37        |
| 24        | 812               | 107              | .1750           | 154           | 36                   | П | 24              | 131           | 162           | .1343           | .75011        | 38              |
| 25        | .64834            | .85157           | 1.1743          | .76135        | 35                   | П | 25              | .66153        | .88214        | 1.1336          | .74992        | 35              |
| 26        | 856<br>878        | 207              | .1736           | 116           | 34                   | П | 26              | 175           | 265           | .1329           | 973           | 34              |
| 27<br>28  |                   | 257              | .1729           | 097           | 33<br>32             | П | 27<br>28        | 197           | 317           | .1323           | 953           | 33              |
| 28<br>29  | 901<br>923        | 308<br>358       | .1722<br>.1715  | 078<br>059    | 32<br>31             | Н | 28<br>29        | 218<br>240    | 369<br>421    | .1316           | 934<br>915    | 32              |
| 30        | .64945            | .85408           | 1.1708          | .76041        | 30                   | Н | 30              | .66262        | .88473        | 1.1303          | .74896        | 31<br><b>30</b> |
| 31        | 967               | 458              | .1702           | 022           | 29                   | П | 31              | 284           | 524           | .1296           | 876           | 29              |
| 32        | .64989            | 509              | .1695           | .76003        | 28                   | П | 32              | 306           | 576           | .1290           | 857           | 28<br>27        |
| 33        | .65011            | 559              | .1688           | .75984        | 27                   | П | 33              | 327           | 628           | .1283           | 838           | 27              |
| 34        | 033               | 609              | .1681           | 965           | 26                   | П | 34              | 349           | 680           | .1276           | 818           | 26              |
| 35<br>36  | .65055<br>077     | .85660<br>710    | 1.1674<br>.1667 | .75946<br>927 | 25<br>24             | Н | <b>35</b><br>36 | .66371<br>393 | .88732<br>784 | 1.1270<br>.1263 | .74799<br>780 | 25<br>24        |
| 37        | 100               | 761              | .1660           | 908           | 23                   | Н | 37              | 414           | 836           | .1257           | 760           | 23              |
| 38        | 122               | 811              | .1653           | 889           | $\tilde{2}\tilde{2}$ | П | 38              | 436           | 888           | .1250           | 741           | 23<br>22        |
| 39        | 144               | 862              | .1647           | 870           | 21                   | Н | 39              | 458           | 940           | .1243           | 722           | 21              |
| 40        | .65166            | .85912           | 1.1640          | .75851        | 20                   | П | 40              | .66480        | .88992        | 1.1237          | .74703        | 20              |
| 41        | 188               | .85963           | .1633           | 832           | 19                   | П | 41              | 501           | .89045        | .1230           | 683           | 19              |
| 42<br>43  | $\frac{210}{232}$ | .86014<br>064    | .1626<br>.1619  | 813<br>794    | 18<br>17             | П | 42<br>43        | 523<br>545    | 097<br>149    | .1224           | 664           | 18<br>17        |
| 44        | 254               | 115              | .1612           | 775           | 16                   | Н | 44              | 566           | 201           | .1211           | 625           | 16              |
| 45        | .65276            | .86166           | 1.1606          | .75756        | 15                   | П | 45              | .66588        | .89253        | 1.1204          | .74606        | 15              |
| 46        | 298               | 216              | .1599           | 738           | 14                   | Н | 46              | 610           | 306           | .1197           | 586           | 14              |
| 47        | 320               | 267              | .1592           | 719           | 13                   | ı | 47              | 632           | 358           | .1191           | 567           | 13              |
| 48<br>49  | 342<br>364        | 318<br>368       | .1585           | 700<br>680    | 12<br>11             | ı | 48<br>49        | 653<br>675    | 410<br>463    | .1184           | 548<br>528    | 12<br>11        |
| 50        | .65386            | .86419           | 1.1571          | .75661        | 10                   | ı | 50              | .66697        | .89515        | 1.1171          | .74509        | 10              |
| 51        | 408               | 470              | .1565           | 642           | 9                    | П | 51              | 718           | 567           | .1165           | 489           | 70              |
| 52        | 430               | 521              | .1558           | 623           | 8                    | ı | 52              | 740           | 620           | .1158           | 470           | 8               |
| 53        | 452               | 572              | .1551           | 604           |                      | ı | 53              | 762           | 672           | .1152           | 451           | 7               |
| 54        | 474               | 623              | .1544           | 585           | 6                    | H | 54              | 783           | 725           | .1145           | 431           | 6               |
| <b>55</b> | .65496<br>518     | .86674<br>725    | 1.1538          | .75566        | 5<br>4               | П | 55              | .66805        | .89777        | 1.1139          | .74412        | 5               |
| 57        | 540               | 776              | .1531<br>.1524  | 547<br>528    | 3                    | Н | 56<br>57        | 827<br>848    | 830<br>883    | .1132           | 392<br>373    | 4<br>3          |
| 58        | 562               | 827              | .1517           | 509           | 2                    | ı | 58              | 870           | 935           | .1119           | 353           | 2               |
| 59        | 584               | 878              | .1510           | 490           | 1                    | ı | 59              | 891           | .89988        | .1113           | 334           | 1               |
| 60        | .65606            | .86929           | 1.1504          | .75471        | 0                    |   | 60              | .66913        | .90040        | 1.1106          | .74314        | 0               |
|           | Cos               | Ctn              | Tan             | Sin           | '                    | П |                 | Cos           | Ctn           | Tan             | Sin           | 1               |

|                 |                   | 70               | Can             | (-              | _        |          | 417           | . 245            |                |                          |           |
|-----------------|-------------------|------------------|-----------------|-----------------|----------|----------|---------------|------------------|----------------|--------------------------|-----------|
|                 | Sin               | Tan              | Ctn             | Cos             |          |          | Sin           | Tan              | ('tn           | Cas                      | _         |
| 0               | 195913 (<br>1935) |                  | 11111           | .74 514<br>.256 | 60       | 0        | .68200<br>221 | 306              | 1.0724         | .731.43<br>116           | <b>60</b> |
|                 | 956               | 146              | .1053           | 276             | 3.       |          | 210           | 31.43            | 1711           | (2.46)                   | 33        |
| $\frac{2}{3}$   | 975               | 199              | .1087           | 256             | 55<br>55 | 3        | 26.1          | 415              | 10000          | 1,170                    | 37        |
| 4               | .66999            | 251              | .1050           | 237             | 34       | 1 1      | 285           | 410              | . \$ 70 , 9" 5 | 14.05                    | , 813     |
| 5               | .67021<br>043     | 0.90304 $357$    | 1.1074          | .74217<br>195   | 55<br>54 | 5        | F. 31.85      | .935_4           | 1.992          | .7.3/230                 | 55        |
| 2               | 064               | 410              | .1061           | 178             | 53       | 6        | 327<br>349    | 57.5<br>633      | 10 -01         | 73010                    | H         |
| 8               | Üsü               | 463              | .1054           | 159             | 5.1      | 1 5      | 370           | 85.5             | 38.74          | 979                      |           |
| 9               | 167               | 516              | .1048           | 139             | 51       | Э        | 391           | 712              | 11111          | 1                        | 7.        |
| 10              | .67129            | .90569           | 1.1041          | .74120          | 50       | 10       | .68412        | .93797           | LOUNT          | .72937                   | 50        |
| $\frac{11}{12}$ | 151<br>172        | 621<br>674       | .1035           | 100<br>050      | 47       | 111      | 434           | 552<br>906       | 30055          | 917<br>897               | 49        |
| 13              | 194               | 727              | .1022           | 001             | 47       | 13       | 455<br>476    | .93961           | .(10.43        | 877                      | 47        |
| 14              | 215               | 781              | .1016           | 041             | 46       | 14       | 497           | 341016           |                | 857                      | 40        |
| 15              | .67237            | .90534           | 1.1009          | .74022          | 45       | 15       | .08518        | .94971           | 1.09639        | 32537                    | 45        |
| 16              | 258               | 887              | .1003           | .74002          | 44       | 16       | وازرن         | 1.5              | 4.40           | 217                      | 44        |
| 17<br>18        | 280<br>301        | 940<br>.90993    | .0996           | .73983<br>963   | 43<br>42 | 17       | 561<br>582    | 150<br>235       | 39315          | 7117                     | 43<br>42  |
| 19              | 323               | .91046           | .0983           | 944             | 41       | 19       | 6u3           | 290              | l ie ie ie i   | 517<br>797<br>777<br>757 | 41        |
| 20              | .67344            | .91099           | 1.0977          | .73924          | 40       | 20       | .68624        | .94345           | 1.65599        | .72737                   | 40        |
| 21              | 366               | 153              | .0971           | 904             | 39       | 21       | 645           | 411)             | 355.3          | 717<br>697               | 35:4      |
| 22              | 387               | 206              | .0964           | 885             | 38       | 22       | Gob           | 455              | 45.557         | 697                      | 35        |
| 23<br>24        | 409<br>430        | 259<br>313       | .0958           | 865<br>846      | 37<br>36 | 23<br>24 | 685<br>709    | 510<br>563       | 30551          | 677<br>647               | 37        |
| 25              | .67452            | .91366           | 1.0945          | .73826          | 35       | 25       | .68730        | .94620           | 1.0569         | .72537                   | 35        |
| 26              | 473               | 419              | .0939           | 806             | 34       | 26       | 751           | 676              | ,0562          |                          | 33        |
| 27              | 495               | 473              | .0932           | 787             | 33       | 27       | 772           | 731              | .0550          |                          | 3.3       |
| 28              | 516               | 526              | .0926           | 767             | 32       | 28       | 793           | 756              | (1550)         | 377                      | 52        |
| 29              | 538               | 580              | .0919           | 747             | 31       | 29       | 814           | 841              | .0544          |                          | 1         |
| 30<br>31        | .67559<br>580     | .91633<br>687    | 1.0913          | .73728<br>708   | 30<br>29 | 30       | .68835<br>857 | .94896<br>.94952 | 1.0538         | .72537<br>317            | 30<br>25  |
| 32              | 602               | 740              | .0900           | 688             | 28       | 32       | 878           | .95007           | .0526          | 497                      | 281       |
| 33              | 623               | 794              | .0894           | 669             | 27       | 33       | 899           | 062              | .0519          | 477<br>457               | 27        |
| 34              | 645               | 847              | .0888           | 649             | 26       | 34       | 920           | 115              | .0513          |                          | 26        |
| <b>35</b><br>36 | .67666<br>688     | .91901<br>.91955 | 1.0881<br>.0875 | .73629<br>610   | 25<br>24 | 35<br>36 | .68941<br>962 | .95173           | 1.0507         | .72437<br>417            | 25        |
| 37              | 709               | .92008           | .0869           | 590             | 23       | 37       | .68953        | 254              | .0495          | 397                      | 23        |
| 38              | 730               | 062              | .0862           | 570             | 22       | 38       | .69004        | 340              | 0459           | 377                      | 22.1      |
| 39              | 752               | 116              | .0856           | 551             | 21       | 39       | 025           | 395              | .04.53         | 357                      | 21        |
| 40              | .67773            | .92170           | 1.0850          | .73531          | 20       | 40       | .69046        | .95451           | 1.0477         | .72337                   | 20        |
| 41<br>42        | 795<br>816        | 224<br>277       | .0843           | 511<br>491      | 19<br>18 | 41<br>42 | 067<br>088    | 506<br>562       | .0470          | 317<br>297               | 19<br>15  |
| 43              | 837               | 331              | .0831           | 472             | 17       | 43       | 109           | 618              | .0455          | 277                      | 17        |
| 44              | 859               | 385              | .0824           | 452             | 16       | 44       | 130           | 673              | .0452          | 277<br>257               | 16        |
| 45              | .67880            | .92439           | 1.0818          | .73432          | 15       | 45       | .69151        | .95729           | 1.0446         | .72236                   | 15        |
| 46              | 901               | 493              | .0812           | 413             | 14       | 46       | 172           | 785              | .0140          | 216                      | 14        |
| 47<br>48        | 923<br>944        | 547<br>601       | .0805           | 393<br>373      | 13<br>12 | 47<br>48 | 193<br>214    | 841<br>897       | .0434          | 196<br>176               | 13<br>12  |
| 49              | 965               | 655              | .0793           | 353             | iī       | 49       | 235           | .95952           | .0422          | 156                      | îī        |
| 50              | .67987            | .92709           | 1.0786          | .73333          | 10       | 50       | .69256        | .96008           | 1.0416         | .72136                   | 10        |
| 51              | .68008            | 763              | .0780           | 314             | 9        | 51       | 277           | 064              | .0410          | 116                      | 9         |
| 52<br>53        | 029<br>051        | 817<br>872       | .0774           | 294<br>274      | 8        | 52<br>53 | 298<br>319    | 120<br>176       | .0404          | 095<br>075               | 2         |
| 54              | 072               | 926              | .0761           | 254             | 6        | 54       | 340           | 232              | .0392          | 053                      | 6         |
| 55              | .68093            | .92980           | 1.0755          | .73234          | 5        | 55       | .69361        | .96288           | 1.0385         | .72035                   | 5         |
| 56              | 115               | .93034           | .0749           | 215             | 4        | 56       | 382           | 344              | .0379          | .72015                   | 4         |
| 57              | 136               | 088              | .0742           | 195             | 3        | 57       | 403           | 400              | .0373          | .71995<br>974            | 3 2       |
| 58<br>59        | 157<br>179        | 143<br>197       | .0736<br>.0730  | 175<br>155      | 2        | 58<br>59 | 424<br>445    | 457<br>513       | .0367          | 954                      | 1         |
| <b>60</b>       | .68200            | .93252           | 1.0724          | .73135          | ō        | 60       | .69466        | .96569           | 1.0355         | .71934                   | ô         |
| ۳               | Cos               | Ctn              | Tan             | Sin             | 7        | ٣        | Cos           | Ctn              | Tan            | Sin                      | 7         |

479

| 1                           | Sin           | Tan               | Ctn             | Cos              |                 |
|-----------------------------|---------------|-------------------|-----------------|------------------|-----------------|
| 0                           | .65 kin       | 450005            | 1.0355          | .71934           | 60              |
| 1 2                         | 457           | 625<br>681        | .0349           | 914<br>594       | 59<br>58        |
| - 3                         | 529           | 738               | .0337           | 873              | 57              |
| 4                           | 549           | 794               | 0331 $1.0325$   | S53<br>.71833    | 56<br><b>55</b> |
| <b>5</b>                    | .69570<br>591 | .96S50<br>907     | .0319           | \$13             | 54              |
|                             | 612           | .96963            | .0313           | 792              | 53              |
| 7-80g,                      | $633 \\ 654$  | .97020<br>076     | .0307           | 772<br>752       | 52<br>51        |
| 10                          | .69675        | .97133            | 1.0295          | .71732           | 50              |
| 117                         | 696           | 189               | .0289<br>.0283  | 711              | 49              |
| 12<br>13                    | 717<br>737    | $\frac{246}{302}$ | .0253           | 691<br>671       | 48<br>47        |
| 14                          | 758           | 359               | .0271           | 650              | 46              |
| 15                          | .69779        | .97416            | 1.0265          | .71630           | 45              |
| 16<br>17                    | 800<br>821    | 472<br>529        | .0259<br>.0253  | 610<br>590       | 44<br>43        |
| 18                          | 842           | 586               | .0247           | 569              | 42              |
| 19<br><b>20</b>             | 862           | .97700            | .0241<br>1.0235 | 549              | 41<br>40        |
| 21                          | .69S83<br>904 | .97700<br>756     | 0230            | .71529<br>508    | 39              |
| 22                          | 925           | 813               | .0224<br>.0218  | 488<br>468       | 38<br>37        |
| 23<br>24                    | 946<br>966    | 870<br>927        | .0218           | 468<br>447       | 37<br>36        |
| 25                          | .69987        | .97984            | 1.0206          | .71427           | 35              |
| 26                          | .70008        | .98041            | .0200           | 407<br>386       | 34              |
| 27<br>28                    | 029<br>049    | 098<br>155        | .0194<br>.0188  | 366              | 33<br>32        |
| 29                          | 070           | 213               | .0182           | 345              | 31              |
| 30                          | .70091        | .98270            | 1.0176          | .71325           | 30              |
| 31<br>32                    | 112<br>132    | 327<br>384        | .0170           | 305<br>284       | 29<br>28        |
| 33                          | 153           | 441               | .0158           | 264              | 27              |
| 34<br>35                    | 174<br>.70195 | .98556            | .0152           | 243<br>.71223    | 26<br><b>25</b> |
| 36                          | 215           | 613               | 1.0147<br>.0141 | 203              | 24              |
| 37                          | 236           | 671<br>728        | .0135<br>.0129  | 182              | 23<br>22        |
| 38<br>39                    | 257<br>277    | 728               | .0129           | $162 \\ 141$     | 22<br>21        |
| 40                          | .70298        | .98843            | 1.0117          | .71121           | 20              |
| 41                          | 319           | 901               | .0111           | 100              | 19              |
| 42<br>43                    | 339<br>360    | .98958<br>.99016  | .0105<br>.0099  | 080<br>059       | 18<br>17        |
| 44                          | 381           | 073               | .0094           | 039              | 16              |
| <b>45</b><br>46             | .70401<br>422 | .99131<br>189     | 1.0088<br>.0082 | .71019<br>.70998 | 15<br>14        |
| 47                          | 443           | 247               | .0076           | 978              | 13              |
| 48<br>49                    | 463<br>484    | 304<br>362        | .0070           | 957<br>937       | 12              |
| <del>4</del> 9<br><b>50</b> | .70505        | .99420            | .0064<br>1.0058 | .70916           | 11<br>10        |
| 51                          | 525           | 478               | .0052           | 896              | 9               |
| 52<br>53                    | 546<br>567    | 536<br>594        | .0047<br>.0041  | 875              | 8               |
| 54                          | 587           | 652               | .0035           | 855<br>834       | 6               |
| 55                          | .70608        | .99710            | 1.0029          | .70813           | 5               |
| 56<br>57                    | 628<br>649    | 768<br>826        | .0023           | 793<br>772       | 4               |
| 58                          | 670           | 884               | .0012           | 752              | 3<br>2<br>1     |
| 59                          | 690           | .99942            | .0006           | 731              |                 |
| 60                          | .70711        | 1.0000            | 1.0000          | .70711           | 0               |
| لـــا                       | Cos           | Ctn               | Tan             | Sin              |                 |

#### TABLE

#### COMMON LOGARITHMS

OF THE

## TRIGONOMETRIC FUNCTIONS

FROM

### 0° TO 90° AT INTERVALS OF ONE MINUTE

TO

#### FIVE DECIMAL PLACES

From each logarithm given, subtract 10

#### Table IIIa-Auxiliary Table of S and T for A in Minutes

 $S = \log \sin A - \log A'$  and  $T = \log \tan A - \log A'$ 

| A'                                                                                                                                                                                                             | S+10                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0' - 13'<br>14' - 42'<br>43' - 55'<br>59' - 71'<br>72' - 81'<br>52' - 91'<br>92' - 99'<br>100' - 107'<br>108' - 115'<br>118' - 121'<br>122' - 134'<br>133' - 140'<br>141' - 151'<br>155' - 157'<br>155' - 162' | 6.46373<br>72<br>71<br>6.46370<br>69<br>6.46367<br>6.46364<br>63<br>62<br>6.46364<br>60<br>6.59<br>6.46358<br>6.46358 |
| 163' - 167'<br>168' - 171'<br>172' - 176'<br>177' - 181'                                                                                                                                                       | 56<br>6.46355<br>54<br>53                                                                                             |

| A'          | <i>T</i> ÷10 |
|-------------|--------------|
| 0' - 26'    | 0.40373      |
| 27' - 39'   | 74           |
| 40' - 45'   | 75           |
| 49' - 56'   | 6.46376      |
| 57' - 63'   | 77           |
| 64' - 69'   | 78           |
| 70' - 74'   | 6.46379      |
| 75' - 80'   | SU           |
| 81' - 85'   | S1           |
| 86' - 89'   | 6.46382      |
| 90' - 94'   | 83           |
| 95' - 98'   | 84           |
| 99' - 102'  | 6.463\$5     |
| 103' - 106' | \$6          |
| 107' - 110' | 87           |
| 111' - 113' | 6.46388      |
| 114' - 117' | 89           |
| 118' - 120' | 90           |
| 121' - 124' | 6.46391      |
| 125' - 127' | 92           |
| 128' - 130' | 93           |

| A'          | T+10    |
|-------------|---------|
| 151' - 138' | 6.46394 |
| 134' - 136' | 95      |
| 137' - 139' | 96      |
| 140' - 142' | 6.46397 |
| 143' - 145' | 95      |
| 146' - 145' | 99      |
| 149' - 150' | 6.46400 |
| 151' - 153' | 01      |
| 154' - 156' | 02      |
| 157' - 158' | 6.46403 |
| 159' - 161' | 04      |
| 162' - 163' | 05      |
| 164' - 166' | 6.46406 |
| 167' - 168' | 07      |
| 169' - 171' | 08      |
| 172' - 173' | 6.46409 |
| 174' - 175' | 10      |
| 176' - 178' | 11      |
| 179' - 180' | 6.46412 |
| 181' - 182' | 13      |
| 153' - 154' | 14      |
|             |         |

For small angles:  $\log \sin A = \log A' + S$  and  $\log \tan A = \log A' + T$ . For angles near 90°:  $\log \cos A = \log (90^\circ - A)' + S$ .  $\log \cot A = \log (90^\circ - A)' + T$  where A' = number of minutes in A, and  $(90^\circ - A)' =$  number of minutes in  $90^\circ - A$ .

|          | L Sin                | d            | L Tan                | c d          | L Ctu                  | L Cos                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------------|--------------|----------------------|--------------|------------------------|----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        |                      |              |                      |              |                        | 10.00 000            | 60       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | 6.46 373             | 30103        | 6.46 373             | 30103        | 13.53 627              | 10.00 000            | 59       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2        | 6.76 476             | 17609        | 6.76 476             | 17609        | 13.23 524              | 10.00 000            | 58       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3        | 6.94~085             | 12494        | 6.94085              | 12494        | 13.05 915              | 10.00 000            | 57       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4        | 7.06 579             | 9691         | 7.06 579             | 9691         | 12.93 421              | 10.00 000            | 56       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5        | 7.16 270             | 7918         | 7.16 270             | 7918         | 12.83 730              | 10.00 000            | 55       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6        | 7.24 188<br>7.30 882 | 6694         | 7.24 188             | 6694         | 12.75 812              | 10.00 000            | 54       | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7        | 7.30 882             | 5800         | 7.30 882             | 5800         | 12.69 118              | 10.00 000            | 53<br>52 | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8        | 7.36 682             | 5115         | 7.36 682             | 5115         | 12.63 318<br>12.58 203 | 10.00 000            | 52<br>51 | it is of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | 7.41 797             | 4576         | 7.41 797             | 4576         |                        |                      | 50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10       | 7.46 373             | 4139         | 7.46 373<br>7.50 512 | 4139         | 12.53 627              | 10.00 000            | 49       | 3° (or logarithms le IIIa, p. 45. sually better. Tuffeient when greaterpolation is use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11<br>12 | 7.50 512<br>7.54 291 | 3779         | 7.50 512             | 3779         | 12.49 488<br>12.45 709 | 10.00 000            | 48       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13       | 7.54 291<br>7.57 767 | 3476         | 7.54 291<br>7.57 767 | 3476         | 12.42 233              | 10.00 000            | 47       | rith<br>or. or.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14       | 7.60 985             | 3218         | 7.60 956             | 3219         | 12.39 014              | 10.00 000            | 46       | 84348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15       | 7.63 982             | 2997         | 7.63 982             | 2996         | 12.36 018              | 10.00 000            | 45       | logarit<br>p. 45.<br>better<br>t wher<br>tion is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16       | 7.66 784             | 2802         | 7.66 785             | 2803         | 12.33 215              | 10.00 000            | 44       | ° (or l<br>IIIa,<br>ually l<br>fficient<br>crpola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17       | 7.69 417             | 2633         | 7.69 418             | 2633         | 12.30 582              | 9.99 999             | 43       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18       | 7.71 900             | 2483         | 7.71 900             | 2482         | 12.28 100              | 9.99 999             | 42       | ~ H # 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19       | 7.74 248             | 2348<br>2227 | 7.74 248             | 2348<br>2228 | 12.25 752              | 9.99 999             | 41       | n 3° (or logarith<br>ble IIIa, p. 45.<br>usually better.<br>sufficient when<br>interpolation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20       | 7.76 475             | 1            | 7.76 476             |              | 12.23 524              | 9.99 999             | 40       | angles less than 3° (or logarith<br>in 87°), see Table IIIa, p. 45.<br>that method is usually better.<br>this table are sufficient when<br>ary method of interpolation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 21       | 7.78 594             | 2119         | 7.78 595             | 2119         | 12.21 405              | 9.99 999             | 39       | al List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22       | 7.80 615             | 2021<br>1930 | 7.80 615             | 2020<br>1931 | 12.19 385              | 9.99 999             | 38       | da dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23<br>24 | 7.82 545<br>7.84 393 | 1848         | 7.82 546<br>7.84 394 | 1848         | 12.17 454              | 9.99 999             | 37       | 88 55 45 50 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                      | 1773         |                      | 1773         | 12.15 606              | 9.99 999             | 36       | angles less than an 87°), see Tal that method is this table are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25       | 7.86 166             | 1704         | 7.86 167             | 1704         | 12.13 833              | 9.99 999             | 35       | 8 C H + 2 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26<br>27 | 7.87 870<br>7.89 509 | 1639         | 7.87 871<br>7.89 510 | 1639         | 12.12 129<br>12.10 490 | 9.99 999             | 34       | 1 is \$ 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 28       | 7.91 088             | 1579         | 7.89 510             | 1579         | 12.10 490              | 9.99 999<br>9.99 999 | 33<br>32 | 4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29       | 7.92 612             | 1524         | 7.92 613             | 1524         | 12.07 387              | 9.99 998             | 31       | of a<br>thar<br>thar<br>se, t<br>in<br>lina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 30       | 1                    | 1472         |                      | 1473         | 12.05 914              |                      | 30       | ngents of ang<br>reater than 8<br>are large, tha<br>and 2° in thi<br>the ordinary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31       | 7.94 084             | 1424         | 7.94 086             | 1424         | 12.03 914              | 9.99 998<br>9.99 998 | 29       | sines or tangents of angles greater the differences are largited for 1° and 2° ed, even if the ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 32       | 7.95 508<br>7.96 887 | 1379         | 7.95 510<br>7.96 889 | 1379         | 12.03 111              | 9.99 998             | 28       | 9 4 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33       | 7.98 223             | 1336         | 7.98 225             | 1336         | 12.01 775              | 9.99 998             | 27       | ngen<br>reat<br>are l<br>and<br>the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 34       | 7.99 520             | 1297         | 7.99 522             | 1297         | 12.00 478              | 9.99 998             | 26       | fan<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr<br>gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 35       | 8.00 779             | 1259         | 8.00 781             | 1259         | 11.99 219              | 9.99 998             | 25       | sines or tar<br>of angles g<br>differences<br>ted for 1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 36       | 8.02 002             | 1223         | 8.02 004             | 1223         | 11.97 996              | 9.99 998             | 24       | s or ingles<br>rence<br>for j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 37       | 8.03 192             | 1190         | 8.03 194             | 1190         | 11.96 806              | 9.99 997             | 23       | s s<br>ng<br>ng<br>tc<br>fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38       | 8.04 350             | 1158<br>1128 | S.04 353             | 1159<br>1128 | 11.95 647              | 9.99 997             | 22       | og egg y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39       | 8.05 478             | 1100         | 8.05 481             | 1100         | 11.94 519              | 9.99 997             | 21       | si.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 40       | 8.06 578             | 1072         | 8.06 581             | 1072         | 11.93 419              | 9,99 997             | 20       | it the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 41       | 8.07 650             | 1046         | 8.07 653             | 1047         | 11.92 347              | 9.99 997             | 19       | o trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 42<br>43 | 8.08 696<br>8.09 718 | 1022         | 8.08 700<br>8.09 722 | 1022         | 11.91 300<br>11.90 278 | 9.99 997<br>9.99 997 | 18<br>17 | ms of singents of a bular differs stated required,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44       | 8.10 717             | 999          | 8.10 720             | 998          | 11.89 280              | 9.99 996             | 16       | ta ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45       | 8.11 693             | 976          | 8.11 696             | 976          | 11.88 304              | 9.99 996             | 15       | For logarithms of sines or tangents of angles less than 3° cosines or cotangents of angles greater than 87°), see Table When the tabular differences are large, that method is use proportional parts stated for 1° and 2° in this table are suffaceuracy is not required, even if the ordinary method of inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 46       | 8.12 647             | 954          | 8.12.651             | 955          | 11.87 349              | 9.99 996             | 14       | gan<br>cc<br>th<br>th<br>nal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 47       | 8.12 647<br>8.13 581 | 934          | 8.12 651<br>8.13 585 | 934          | 11.86 415              | 9.99 996             | 13       | 2 X II II I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 48       | 8.14 495             | 914          | 8.14 500             | 915          | 11.85 500              | 9.99 996             | 12       | For le<br>cosines or<br>When<br>proportio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 49       | 8.15 391             | 896<br>877   | 8.15 395             | 895          | 11.84 605              | 9.99 996             | 11       | S S Y S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 50       | 8.16 268             |              | 8.16 273             | 878          | 11.83 727              | 9.99 995             | 10       | I ris V Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 51       | 8.17 128<br>8.17 971 | 860          | 8.17 133             | 860          | 11.82 867              | 9.99 995             | Q i      | 10 July 10 Jul |
| 52       | 8.17 971             | 843<br>827   | 8.17 976             | 843<br>828   | 11.82 024              | 9.99 995             | 8        | J 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 53       | 8.18 798             | 812          | 8.18 804             | 812          | 11.81 196              | 9.99 995             | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54       | 8.19 610             | 797          | 8.19 616             | 797          | 11.80 384              | 9.99 995             | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55       | 8.20 407             | 782          | 8.20 413             | 782          | 11.79 587              | 9.99 994             | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56<br>57 | 8.21 189             | 769          | 8.21 195<br>8.21 964 | 769          | 11.78 805<br>11.78 036 | 9.99 994             | 4<br>3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58       | 8.21 958<br>8.22 713 | 755          | 8.22 720             | 756          | 11.77 280              | 9.99 994<br>9.99 994 | 3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 59       | 8.23 456             | 743          | 8.23 462             | 742          | 11.76 538              | 9.99 994             | 2<br>1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60       | 8.24 186             | 730          | 8.24 192             | 730          | 11.75 808              | 9.99 993             | ō        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H-       | L Cos                | d            | L Ctn                | c d          | L Tan                  | L Sin                | H        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 1 11 008             | l u          | LLOIL                | Çu           | nrin                   | Pom                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 11 | 1 — Logaritains of Trigonometric Functions |                        |            |                      |            |                                     |                        |                 |             | 41                                     |                                 |                          |                          |
|----|--------------------------------------------|------------------------|------------|----------------------|------------|-------------------------------------|------------------------|-----------------|-------------|----------------------------------------|---------------------------------|--------------------------|--------------------------|
| I  |                                            | L Sin                  | d          | L Tan                | c d        |                                     | L Cos                  |                 |             | Prop. Pts                              |                                 |                          |                          |
| Γ  | 0                                          | 5.41%                  | 717        | 5.24 192             | 718        | 11.25 505                           | 54.18 × 5854.3         | 60              |             |                                        |                                 |                          |                          |
| ı  | 1                                          | 5.24 903               | 706        | 8.24 910             | 706        | 11.75 dilet                         | 16369 (643)            |                 | ۰,          | 710                                    | 690                             | 1.14                     | 650                      |
| ı  |                                            | 5.25 609<br>5.26 304   | 695        | S.25 616<br>S.26 312 | 696        | 11.74 354                           | 9.99 953               | 52              | 3           | 142                                    | 134                             |                          | 13                       |
| ١  | 3                                          | 5.26 988               | 654        | 8.26 996             | 684        | 11.73 655                           | 9,99 te.;<br>9,99 te.; | 57<br>56        | 5           | 333                                    | 345                             | 201<br>208<br>333        | 250                      |
| ı  | - 1                                        | 8.27 661               | 673        | 8.27 669             | 673        | 11.72 331                           | 9.99 992               | 55              | 100         | 4 .6                                   | 414                             | 402                      | 3.                       |
| ı  | 5                                          | 5.28 324               | 663        | 5.25 332             | 663        | 11.71 668                           | 9.99 952               | 34              | - X         | 300                                    | 453                             | 46.9                     | 455                      |
| ı  | 71                                         | 5.28 977               | 653        | 8.28 986             | 654        | 11.71 014                           | 9.99 992               | 53              | 9           | 673                                    | 621                             | 603                      | 272                      |
| ı  | 8                                          | 5.29 621               | 644        | 5.29 629             | 643        | 11.70 371                           | 9.99 992               | 52              |             | 630                                    | 620                             | 610                      | 600                      |
| ı  | 9                                          | S.30 255               | 634<br>624 | 5.30 263             | 634<br>625 | 11.69 737                           | 9.99 991               | 51              | 2           |                                        | 124                             | 122                      | 14.                      |
| 11 | ωl                                         | 8.30 879               | 616        | S.30 888             | 617        | 11.69 112                           | 9.99 991               | 50              | 3           | 1 49                                   | 1.70                            | 175                      | 1907                     |
|    | 11                                         | 5.31 495               | 608        | 8.31 505             | 607        | 11.65 495                           | 9.99 951               | 49              | 4           | 113                                    | 310                             | 288                      | 360                      |
| 1  | 12                                         | 8.32 103<br>8.32 702   | 599        | S.32 112<br>S.32 711 | 599        | 11.67 858<br>11.67 259              | 9.09 990               | 45              | 77.         | 441                                    | 415                             | 4.4                      | 3000                     |
|    | 13                                         | 8.33 292               | 590        | 8.33 302             | 591        | 11.66 698                           | 9.99 990<br>9.99 990   | 47<br>40        | 5           | 365                                    | 1.M.                            | 444                      | 425<br>437<br>543        |
|    | 5                                          | 8.33 875               | 583        | 8.33 886             | 584        | 11.66 114                           | 9.99 950               | 45              | 3 1         | 30.                                    | 300                             | 149                      | 39.3                     |
|    | 6                                          | 8.34 450               | 575        | 8.34 461             | 575        | 11.65 539                           | 9.99 950               | 44              |             | 590                                    | 580                             | 578                      | 560                      |
|    | 7                                          | 8.35 018               | 568        | 8.35 029             | 568        | 11.64 971                           | 9.99 989               | 4.1             | 2           | 118                                    | 116                             | 114                      | 112                      |
|    | S                                          | 8.35 578               | 560<br>553 | S.35 590             | 561<br>553 | 11.64 410                           | 9.99 950               | 42              | 345         | 236<br>295                             | 116<br>174<br>232               | 171<br>253               | 158<br>224<br>280        |
|    | 9                                          | 8.36 131               | 547        | 8.36 143             | 546        | 11.63 857                           | 9.99 989               | 41              | 5           | 295                                    | 315                             | 312                      | 250                      |
|    | 20                                         | 8.36 678               | 539        | 8.36 689             | 540        | 11.63 311                           | 9.99988                | 40              | 7           | 354<br>413<br>472                      | 4116                            | 3/3/4                    | 392                      |
|    | 21                                         | 8.37 217               | 533        | 8.37 229<br>8.37 762 | 533        | 11.62 771                           | 9.99 988               | 39              | 9           | 331                                    | 464                             | 435<br>513               | 448<br>304               |
|    | 22                                         | 8.37 750<br>8.38 276   | 526        | S.38 289             | 527        | 11.62 238<br>11.61 711              | 9.99 988<br>9.99 987   | 35<br>37        |             |                                        |                                 |                          |                          |
|    | 4                                          | 5.35 796               | 520        | S.38 809             | 520        | 11.61 191                           | 9.99 957               | 36              | ١.          | 350                                    | 340                             | 530                      | 820                      |
|    | 25                                         | 8.39 310               | 514        | 8.39 323             | 514        | 11.60 677                           | 9.99 987               | 35              | 3           | 113                                    | 198                             | 106                      | 104<br>136<br>208        |
|    | 26                                         | 8.39 818               | 508        | 8.39 832             | 509        | 11.60 168                           | 9.99 956               | 34              | 4 5         | 330                                    | 216<br>210<br>324<br>335<br>432 | 212                      | 208                      |
| 1: | 27                                         | 8.40 320               | 502        | 8.40 334             | 502        | 11.59 666                           | 9.99986                | 33              | 5           | 330                                    | 324                             | 315                      | 260<br>312               |
|    | 28                                         | 8.40 816               | 496<br>491 | 8.40 830             | 496<br>491 | 11.59 170                           | 9.99 956               | 32              | 789         | 385                                    | 432                             | 424                      | 364                      |
|    | 29                                         | 8.41 307               | 485        | 8.41 321             | 456        | 11.58 679                           | 9.99 955               | 31              | ÿ           | 493                                    | 456                             | 477                      | 468                      |
|    | 30                                         | 8.41 792               | 480        | 8.41 807             | 480        | 11.58 193                           | 9.99 955               | 30              | l           | 510                                    | 500                             | 490                      | 480                      |
|    | 31                                         | 8.42 272<br>8.42 746   | 474        | 8.42 287<br>8.42 762 | 475        | 11.57 713<br>11.57 238<br>11.56 768 | 9.99 985<br>9.99 984   | 23.25           | 2 1         | 102                                    | 100<br>130                      | 14.                      | 96                       |
|    | 33                                         | 8.43 216               | 470        | 8.43 232             | 470        | 11.56 768                           | 9.99 984               | 27              | 3           | 153                                    | 130<br>200                      | 13365                    | 144                      |
|    | 34                                         | 8.43 680               | 464        | 8.43 696             | 464        | 11.56 304                           | 9.99 984               | 26              | 4.5         | 204<br>255                             | 200                             | 243                      | 192<br>240<br>255        |
|    | 35                                         | 8.44 139               | 459        | 8.44 156             | 460        | 11.55 844                           | 9.99 983               | 25              | 61.5        | 306<br>357                             | 300<br>350                      | 343<br>392               | 336                      |
|    | 36                                         | 8.44 594               | 455<br>450 | 8.44 611             | 455<br>450 | 11.55 389                           | 9.99 983               | 24              | 9           | 408                                    | 450                             | 392                      | 3.14                     |
|    | 37                                         | 8,45 044               | 445        | 8.45 061             | 446        | 11.54 939                           | 9.99 983               | 23              | ۱           |                                        |                                 |                          |                          |
| 1  | 38                                         | 8.45 489               | 441        | 8.45 507<br>8.45 948 | 441        | 11.54 493<br>11.54 052              | 9.99 982<br>9.99 982   | $\frac{22}{21}$ |             | 470                                    | 460                             | 450                      | 440                      |
|    | 39                                         | 8.45 930               | 436        |                      | 437        |                                     | 9.99 952               | 20              | 345         | 94                                     | 92                              | 90<br>135                | 132                      |
|    | 10                                         | \$.46 366<br>\$.46 799 | 433        | 8.46 385<br>8.46 817 | 432        | 11.53 615<br>11.53 183              | 9.99 981               | 19              | ž.          | 158                                    | 144                             | 150                      | 178                      |
|    | 12                                         | 8.47 226               | 427        | 8.47 245             | 428        | 11.52 755                           | 9.99 981               | 15              | 561-        | 158<br>233<br>232<br>329<br>323<br>343 | 230<br>276<br>322               | 150<br>225<br>270        | 132<br>178<br>220<br>264 |
|    | 13                                         | 8.47 226<br>8.47 650   | 424        | 8.47 245<br>8.47 669 | 424        | 11.52 331                           | 9.99 981               | 17              | 3           | 329                                    | 305                             | 315                      | 352                      |
|    | 14                                         | 8.48 069               | 419        | 8,48 089             | 420<br>416 | 11.51 911                           | 9.99 980               | 16              | 8           | 423                                    | 365                             | 3%)<br>405               | 396                      |
|    | 45                                         | 8.48 485               | 1          | 8.48 505             | 412        | 11.51 495                           | 9.99 980               | 15              |             | 430                                    | 420                             | 410                      | 400                      |
|    | 46                                         | 8.48 896               | 411        | 8.48 917             | 408        | 11.51 083                           | 9.99 979               | 14              | 2           |                                        |                                 | 82                       |                          |
|    | 47                                         | 8.49 304               | 404        | 8.49 325             | 404        | 11.50 675<br>11.50 271              | 9.99 979<br>9.99 979   | $\frac{13}{12}$ | 3           | 129<br>172<br>215<br>258<br>301        | S4<br>126                       | 123<br>164               | 80<br>120<br>160         |
|    | 48<br>49                                   | 8.49 708<br>8.50 108   | 400        | 8.49 729<br>8.50 130 | 401        | 11.49 870                           | 9.99 978               | liī             | 3<br>4<br>5 | 213                                    | 168<br>210                      | 205<br>246               | 200<br>240               |
| •  | 50                                         | 8.50 504               | 396        | 8.50 527             | 397        | 11.49 473                           | 9.99 978               | 10              | ő           | 301                                    | 294                             | 246                      | 280                      |
|    | 51                                         | 8.50 897               | 393        | 8.50 920             | 393        | 11.49 080                           | 9.99 977               | 9               | ś           | 314                                    | 3.10                            | 287<br>329<br>369        | 350<br>360               |
| 1  | 52                                         | 8.51 287               | 390        | 8.51 310             | 390        | 11.48 690                           | 9.99 977               | 8               | ľ           | 1 354                                  | 375                             | 908                      | avu i                    |
| 1  | 53                                         | 8.51 673               | 386<br>382 | 8.51 696             | 386<br>383 | 11.48 304                           | 9.99 977               | 7               |             | 390                                    | 380                             | 370                      | 360                      |
|    | 54                                         | 8.52 055               | 379        | 8.52 079             | 380        | 11.47 921                           | 9.99 976               | 6               | 2           | 117                                    | 76<br>114<br>152<br>190<br>228  | 111                      | 72                       |
| 1  | 55                                         | 8.52 434               | 376        | 8.52 459             | 376        | 11.47 541                           | 9.99 976               | 5               | 34.561-2    | 156                                    | 152                             | 148                      | 165                      |
| 1  | 56<br>57                                   | 8.52 810               | 373        | 8.52 835             | 373        | 11.47 165                           | 9.99 975               | 3               | 5           | 156<br>195<br>234                      | 190                             | 148<br>185<br>222<br>259 | 216                      |
| 1  | 27                                         | 8.53 183               | 369        | 8.53 208             | 370        | 11.46 792<br>11.46 422              | 9.99 975<br>9.99 974   | 2               | 17          | 273                                    | 200                             | 259                      | 252                      |
| 1  | 58<br>59                                   | 8.53 552<br>8.53 919   | 367        | 8.53 578<br>8.53 945 | 367        | 11.46 055                           | 9.99 974               | ĺ               | 8           | 234<br>273<br>312<br>351               | 304                             | 333                      | 324                      |
|    | 60                                         | 8.54 282               | 363        | 8.54 308             | 363        | 11.45 692                           | 9.99 974               | ١ō              | 1           |                                        |                                 |                          |                          |
| F  | ~                                          | L Cos                  | d          | L Ctn                | cd         |                                     | L Sin                  | ゖ               | 1           | P                                      | rop.                            | Pts.                     |                          |
|    |                                            | , ~~~                  | , ••       |                      | ,          |                                     |                        | -               | T           |                                        |                                 |                          |                          |

| 1               | L Sin                | d          | L Tan                   | c d        | L Ctn                  | L Cos                |                 |          | Prop. Pts.                                                 |                                                             |                          |
|-----------------|----------------------|------------|-------------------------|------------|------------------------|----------------------|-----------------|----------|------------------------------------------------------------|-------------------------------------------------------------|--------------------------|
| 0               | 8.54 282             | 200        | 5.54 308                | 201        | 11.45 692              | 9.99 974             | 60              |          |                                                            |                                                             |                          |
| 1               | 8.54 642             | 360<br>357 | 8.54 609                | 361<br>358 | 11.45 331              | 9.99 973             | 59              |          | 360<br>1 72                                                | 355                                                         | 250                      |
| 2               | 8.54 999             | 355        | 8.55 027                | 355        | 11.44 973              | 9.99 973             | 58              | 3        | 108                                                        | 71.0<br>106.5                                               | 70<br>105                |
| 3               | 8.55 354             | 351        | 8.55 382                | 352        | 11.44 618              | 9.99 972<br>9.99 972 | 57              | 456      | 144                                                        | 142.0                                                       | 140<br>175               |
| 4               | 8.55 705             | 349        | 8.55 734                | 349        | 11.44 266              |                      | 56              | 6        | 216                                                        | 213.0                                                       |                          |
| 5               | 8.56 054             | 346        | S.56 0S3                | 346        | 11.43 917<br>11.43 571 | 9.99971 $9.99971$    | 55<br>54        | 89       | 150<br>216<br>252<br>288                                   | 106.5<br>142.0<br>177.5<br>213.0<br>248.5<br>254.0<br>319.5 | 245<br>280<br>315        |
| 6               | 8.56 400<br>8.56 743 | 343        | S.56 429<br>S.56 773    | 344        | 11.43 227              | 9.99 970             | 53              | 9        | 324                                                        | 319.5                                                       | 315                      |
| 8               | 8.57 084             | 341        | S.57 114                | 341        | 11.42 \$86             | 9.99 970             | 52              |          | 345                                                        |                                                             | - 1                      |
| ğ               | 8.57 421             | 337        | 8.57 452                | 338        | 11.42 548              | 9.99 969             | 51              | 2        | 69.0                                                       | 340<br>68                                                   | 335                      |
| 10              | 8.57 757             | 336        | 8.57 788                | 336        | 11.42 212              | 9.99 969             | 50              | 3        | 102 5                                                      | 100                                                         | 67.0<br>100.5            |
| 11              | 8.58 099             | 332        | 8.5\$ 121<br>\$.5\$ 451 | 333        | 11.41 879              | 9.99 968             | 49              | 34561-89 | 138.0<br>172.5<br>207.0<br>241.5<br>276.0                  | 136<br>170<br>204<br>238<br>272<br>306                      | 134.0<br>167.5           |
| 12              | S.5S 419             | 330<br>328 | \$.58 451               | 330<br>32S | 11.41 549              | 9.99 968             | 48              | 6        | 207.0                                                      | 204                                                         | 2010                     |
| 13              | 8.58 747             | 325        | 8.58 779                | 326        | 11.41 221              | 9.99 967             | 47              | 8        | 276.0                                                      | 272                                                         | 234.5<br>268.0           |
| 14              | 8.59 072             | 323        | 8.59 105                | 323        | 11.40 895              | 9.99 967             | 46<br><b>45</b> | 9        | 310.5                                                      | 306                                                         | 301.5                    |
| 15              | 8.59 395<br>8.59 715 | 320        | S.59 428<br>S.59 749    | 321        | 11.40572 $11.40251$    | 9.99 967<br>9.99 966 | 45              |          | 330                                                        | 325                                                         | 220                      |
| 16<br>17        | 8.60 033             | 318        | S.60 06S                | 319        | 11.39 932              | 9.99 966             | 43              | 2        | 66                                                         | 65.0                                                        | 64                       |
| 18              | 8.60 349             | 316        | 8.60 384                | 316        | 11.39 616              | 9.99 965             | 42              | 3        | 99<br>132                                                  | 97.5                                                        | 96<br>128                |
| 19              | 8.60 662             | 313        | 8.60 698                | 314        | 11.39 302              | 9.99 964             | 41              | 5        | 185                                                        | 162.5                                                       | 160                      |
| 20              | 8.60 973             | 311        | 8.61 009                | 311        | 11.38 991              | 9.99 964             | 40              | 3456789  | 198<br>231                                                 | 65.0<br>97.5<br>130.0<br>162.5<br>195.0<br>227.5<br>260.0   | 160<br>192<br>224<br>256 |
| 21              | 8.61 282             | 309<br>307 | 8.61 319                | 310<br>307 | 11.38 681              | 9.99 963             | 39              | 8        | 264<br>297                                                 | 260.0<br>292.5                                              | 256<br>288               |
| 22              | 8.61 589<br>8.61 894 | 305        | 8.61 626                | 305        | 11.38 374              | 9.99 963             | 38              | ľ        |                                                            | 202.0                                                       | 200                      |
| $\frac{23}{24}$ | 8.61 894             | 302        | 8.61 931<br>8.62 234    | 303        | 11.38 069<br>11.37 766 | 9.99 962<br>9.99 962 | 37<br>36        |          | 315                                                        | 310                                                         | 305                      |
| 25              | 8.62 196             | 301        |                         | 301        | 11.37 465              | 9.99 961             | 35              | 2        | 63.0                                                       | 62<br>93                                                    | 61.0                     |
| 25<br>26        | 8.62 497<br>8.62 795 | 298        | 8.62 535<br>8.62 834    | 299        | 11.37 166              | 9.99 961             | 34              | 23450789 | 126.0                                                      | 124                                                         | 91.5<br>122.0<br>152.5   |
| 27              | 8.63 091             | 298        | 8.63 131                | 297        | 11.36 869              | 9.99 960             | 33              | 6        | 157.5                                                      | 155<br>186                                                  | 152.5<br>183.0           |
| 28              | 8.63 385             | 294        | 8.63 426                | 295        | 11.36 574              | 9.99 960             | 32              | 7        | 220.5                                                      | 186<br>217                                                  | 213.5                    |
| 29              | 8.63 678             | 293<br>290 | S.63 718                | 292<br>291 | 11.36 282              | 9.99 959             | 31              | 9        | 94.5<br>126.0<br>157.5<br>189.0<br>220.5<br>252.0<br>283.5 | 248<br>279                                                  | 244.0<br>274.5           |
| 30              | 8.63 968             |            | 8.64 009                |            | 11.35 991              | 9.99 959             | 30              |          |                                                            |                                                             |                          |
| 31              | 8.64 256             | 288<br>287 | 8.64 298                | 289<br>287 | 11.35 702              | 9.99 958             | 29              | 2        | 300<br>  60                                                | 295                                                         | 290                      |
| 32              | 8.64 543             | 284        | S.64 585                | 285        | 11.35 415              | 9.99 958             | 28              | 3        |                                                            | 59.0<br>88.5                                                | 58<br>87                 |
| 33<br>34        | 8.64 827<br>8.65 110 | 283        | 8.64 870<br>8.65 154    | 284        | 11.35 130<br>11.34 846 | 9.99 957<br>9.99 956 | 27<br>26        | 5        | 120                                                        | 1180                                                        | 116 1                    |
| 35              | 8.65 391             | 281        | S.65 435                | 281        | 11.34 565              | 9.99 956             | 25              | 3456789  | 120<br>150<br>180<br>210<br>240<br>270                     | 147.5<br>177.0<br>206.5<br>236.0<br>265.5                   | 145<br>174<br>203<br>232 |
| 36              | S.65 670             | 279        | 8.65 715                | 280        | 11 34 985              | 9.99 955             | 24              | ś        | 240                                                        | 236.0                                                       | 232                      |
| 37              | 8.65 947             | 277        | 8.65 993                | 278        | 11.34 007              | 9.99 955             | 23              | 9        | 270                                                        | 265.5                                                       | 261                      |
| 38              | 8.66 223             | 276<br>274 | 8.66 269                | 276<br>274 | 11.33 731              | 9.99 954             | 22              |          | 285                                                        | 280                                                         | 275                      |
| 39              | 8.66 497             | 272        | 8.66 543                | 273        | 11.33 457              | 9.99 954             | 21              | 2        | 57.0<br>85.5                                               | 56                                                          | 55.0<br>82.5             |
| 40              | 8.66 769             | 270        | 8.66 816                | 271        | 11.33 184              | 9.99 953             | 20              | 34       | 85.5                                                       | 84<br>112<br>140                                            | 82.5<br>110.0            |
| 41              | 8.67 039             | 269        | 8.67 087                | 269        | 11.32 913              | 9.99 952             | 19              | 5        | 142.5                                                      | 140                                                         | 137.5                    |
| 42<br>43        | 8.67 308<br>8.67 575 | 267        | 8.67 356<br>8.67 624    | 268        | 11.32644 $11.32376$    | 9.99 952<br>9.99 951 | 18<br>17        | 7        | 109.5                                                      | 168<br>196<br>224                                           | 165.0<br>192.5<br>220.0  |
| 44              | 8.67 841             | 266        | 8.67 890                | 266        | 11.32 110              | 9.99 951             | 16              | 56789    | 114.0<br>142.5<br>171.0<br>199.5<br>228.0<br>256.5         | $\frac{224}{252}$                                           | 220.0<br>247.5           |
| 45              | 8.68 104             | 263        | 8.68 154                | 264        | 11.31 846              | 9.99 950             | 15              | ľ        |                                                            |                                                             |                          |
| 46              | 8.68 367             | 263        | 8.68 417                | 263        | 11.31 583              | 9.99 949             | 14              |          | 270                                                        | 265                                                         | 250                      |
| 47              | 8.68 627             | 260<br>259 | 8.68 678                | 261<br>260 | 11.31 322              | 9.99 949             | 13              | 3        | 54<br>81                                                   | 53.0<br>79.5                                                | 52<br>78<br>104          |
| 48              | 8.68 886             | 258        | 8.68 938                | 258        | 11.31 062              | 9.99 948             | 12              | 3456789  | 108                                                        | 79.5<br>106.0<br>132.5<br>159.0<br>185.5<br>212.0           | 104                      |
| 49              | 8.69 144             | 256        | 8.69 196                | 257        | 11.30 804              | 9.99 948             | 11              | 6        | 135<br>162<br>189<br>216<br>243                            | 159.0                                                       | 130<br>156<br>182        |
| 50<br>51        | 8.69 400             | 254        | 8.69 453<br>8.69 708    | 255        | 11.30 547              | 9.99 947             | 10              | 8        | 189<br>216                                                 | 185.5<br>212.0                                              | 208                      |
| 52              | 8.69 654<br>8.69 907 | 253        | 8.69 962                | 254        | 11.30 292<br>11.30 038 | 9.99 946<br>9.99 946 | 8               | ğ        | 243                                                        | 238.5                                                       | 234                      |
| 53              | 8.70 159             | 252        | 8.70 214                | 252        | 11.29 786              | 9.99 945             | 7               | ŀ        | 255                                                        | 250                                                         | 245                      |
| 54              | 8.70 409             | 250        | 8.70 465                | 251        | 11.29 535              | 9.99 944             | 6               | 2        | 510                                                        |                                                             | 49.0                     |
| 55              | 8.70 658             | 249        | 8.70 714                | 249        | 11.29 286              | 9.99 944             | 5               | 3        | 76.5<br>102.0<br>127.5<br>153.0<br>178.5<br>204.0<br>229.5 | 50<br>75                                                    | 73.5<br>98.0<br>122.5    |
| 56              | 8.70 905             | 247<br>246 | 8.70 962                | 248<br>246 | 11.29 038              | 9.99 943             | 4               | 5        | 127.5                                                      | 100<br>125                                                  | 122.5                    |
| 57              | 8.71 151             | 244        | 8.71 208                | 245        | 11.28 792              | 9.99 942             | 3               | 6        | 153.0                                                      | 150<br>175                                                  | 147.0                    |
| 58<br>59        | 8.71 395<br>8.71 638 | 243        | 8.71 453<br>8.71 697    | 244        | 11.28 547<br>11.28 303 | 9.99 942<br>9.99 941 | 2<br>1          | 56789    | 204.0                                                      | 200<br>225                                                  | 171.5<br>196.0           |
| 60              | 8.71 880             | 242        | 8.71 940                | 243        | 11.28 060              |                      | 0               | 9        | 229.5                                                      | 220                                                         | 220.5                    |
| 00              |                      |            |                         |            |                        | 9.99 940             | 1               |          |                                                            |                                                             |                          |
|                 | L Cos                | d          | L Ctn                   | c d        | L Tan                  | L Sin                | i '             |          | Pro                                                        | p. Pts                                                      | L                        |

87° — Logarithms of Trigonometric Functions

| 111                                                                             |                                                                      |                                        | Logario                                                              |                                        |                                                                            | nomeu                                                    | _                                |                  |                                                                   |                                                                   | 4                                                                |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|
| L                                                                               | L Sin                                                                | <u>d</u>                               |                                                                      | cd                                     |                                                                            | L Cos                                                    | 1_                               | _                | Pr                                                                | op. Pt                                                            | s.                                                               |
| 0                                                                               | 5,71.850<br>5,72.120<br>5,72.359                                     | 240<br>239<br>238                      | 5.71 940<br>5.72 151<br>5.72 420                                     | 241<br>239<br>239                      | 11.25 060<br>11.27 819<br>11.27 580                                        | 9,99 940<br>9,99 946<br>9,99 935                         | 60<br>59<br>55                   | 2 3              | 240<br>  48<br>  72                                               | 235<br>47.0<br>70.5                                               | 230<br>46<br>69                                                  |
| 5                                                                               | \$.75 834<br>\$.73 669                                               | 237<br>235<br>234                      | 8.72 659<br>8.72 896<br>8.73 132<br>8.73 366                         | 237<br>236<br>234                      | 11.27 341<br>11.27 104<br>11.26 868<br>11.26 634                           | 9,99 905<br>9,99 935<br>9,99 937                         | 56<br>55                         | 45673            | 95<br>120<br>144<br>163<br>192<br>216                             | 91 0<br>117.5<br>111.0<br>161.5                                   | 92<br>115<br>138<br>151                                          |
| 01-69                                                                           | 5.73 303<br>5.73 535<br>5.73 767<br>5.73 997                         | 232<br>232<br>230                      | 5.73 600<br>5.73 600<br>5.73 532<br>5.74 063                         | 234<br>232<br>231                      | 11.26 400<br>11.26 168<br>11.25 987                                        | 9,99 936<br>9,99 935<br>9,99 935<br>9,99 934             | 54<br>53<br>52<br>51             | 9                | 225                                                               | 211.5<br>220                                                      | 1) 4<br>20) 7                                                    |
| 10                                                                              | \$.74 226<br>\$.74 454<br>\$.74 650                                  | 229<br>228<br>226<br>226               | \$.74 292<br>\$.74 521<br>\$.74 748                                  | 229<br>229<br>227<br>226               | 11.25 708<br>11.25 479<br>11.25 252                                        | 9.99 934<br>9.99 933<br>9.99 932                         | 50<br>49<br>45                   | 104001-2         | 45.0<br>67.5<br>90.0<br>112.5<br>135.0                            | 44.0<br>66.0<br>85.0<br>114.0<br>132.0                            | 43 0<br>64.5<br>86 0<br>197.5<br>129.0                           |
| 13<br>14<br>15<br>16                                                            | 5.74 906<br>5.75 130<br>5.75 353<br>5.75 575                         | 224<br>223<br>222                      | 8.74 974<br>8.75 199<br>8.75 423<br>8.75 645                         | 225<br>224<br>222                      | 11.25 026<br>11.24 801<br>11.24 577<br>11.24 355                           | 9.99 932<br>9.99 931<br>9.99 930                         | 47<br>40<br>45<br>44             | 173              | 157.5<br>180.0<br>202.5                                           | 132 0<br>154 0<br>176 0<br>198 0                                  | 129.0<br>1501.5<br>172.0<br>193.5                                |
| 11/19                                                                           | 5.75 795<br>5.76 015<br>5.76 234                                     | 220<br>220<br>219<br>217               | S.75 867<br>S.76 087<br>S.76 306                                     | 222<br>220<br>219<br>219               | 11.24 133<br>11.23 913<br>11.23 694                                        | 9.99 929<br>9.99 925<br>9.99 927<br>9.99 927             | 43<br>42<br>41                   | 51345CF5         | 42,6<br>63.9<br>85.2<br>199.5                                     | 42.2<br>63.3<br>84.4<br>105.5                                     | 41.6<br>62.4<br>83.2<br>104.0<br>124.8<br>145.6<br>166.4         |
| 11<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>1 | \$.76 451<br>>.76 667<br>5.76 8\$3<br>5.77 097                       | 216<br>216<br>214<br>213               | 8.76 525<br>8.76 742<br>8.76 958<br>8.77 173                         | 217<br>216<br>215<br>214               | 11.23 475<br>11.23 258<br>11.23 042<br>11.22 827                           | 9.99 926<br>9.99 926<br>9.99 925<br>9.99 924             | <b>49</b> 3 3 3 3                | 7.79             | 149.1<br>170.4<br>191.7                                           | 126.6<br>147.7<br>165.9<br>189.9                                  | 201                                                              |
| 24 <b>25</b> 25 25 25 25                                                        | 5.77 310<br>5.77 522<br>5.77 733<br>5.77 943<br>5.78 152<br>5.75 360 | 212<br>211<br>210<br>209<br>208        | 8.77 860<br>8.77 600<br>8.77 811<br>8.78 022<br>8.78 232<br>8.78 441 | 213<br>211<br>211<br>210<br>209        | 11.22 613<br>11.22 400<br>11.22 189<br>11.21 978<br>11.21 708<br>11.21 559 | 9.99 923<br>9.99 923<br>9.99 921<br>9.99 921<br>9.99 920 | 36<br>35<br>34<br>33<br>31<br>31 | 2134561-53       | 41.2<br>61.5<br>82.4<br>103.0<br>123.6<br>144.2<br>164.5<br>155.4 | 40 6<br>60.9<br>81.2<br>101.5<br>121.8<br>142.1<br>162.4<br>152.7 | 40.2<br>613<br>80.4<br>100.5<br>120.6<br>140.7<br>150.8<br>150.9 |
| 30<br>31<br>32<br>33<br>34<br>35                                                | 5.78 568<br>5.78 774<br>5.75 979<br>5.79 183<br>5.79 380             | 208<br>206<br>205<br>204<br>203<br>202 | \$.7\$ 649<br>\$.7\$ \$55<br>\$.79 061<br>\$.79 266<br>\$.79 470     | 208<br>206<br>206<br>205<br>204<br>203 | 11.21 351<br>11.21 145<br>11.20 939<br>11.20 734<br>11.20 530              | 9.99 919<br>9.99 918<br>9.99 917<br>9.99 917<br>9.99 916 | 30 9 50 1 6                      | 2345             | 199<br>39 S<br>59.7<br>79.6                                       | 197<br>39.4<br>38.1<br>78.8                                       | 195<br>39 0<br>38 5<br>78 0<br>97 5                              |
| 30<br>37<br>38                                                                  | 8.79 588<br>8.79 789<br>8.79 990<br>8.80 189                         | 201<br>201<br>199<br>199               | 8.79 673<br>8.79 875<br>8.80 076<br>8.80 277                         | 202<br>201<br>201<br>199               | 11.20 327<br>11.20 125<br>11.19 924<br>11.19 723                           | 9.99 915<br>9.99 914<br>9.99 913<br>9.99 913             | 25<br>24<br>23<br>21<br>21       | 61-73            | 119.4<br>133 3<br>159.1<br>179.1                                  | 137.9<br>157.6<br>177.3                                           | 175.5                                                            |
| 39<br>40<br>41<br>42<br>43                                                      | 8.80 388<br>8.80 585<br>8.80 782<br>8.80 978<br>8.81 173             | 197<br>197<br>196<br>195               | S.S0 476<br>8.S0 674<br>8.S0 572<br>8.S1 068<br>8.S1 204             | 198<br>198<br>196<br>196               | 11.19 524<br>11.19 326<br>11.19 128<br>11.18 932<br>11.18 736              | 9,99 912<br>9,99 911<br>9,99 910<br>9,99 909<br>9,99 909 | 21<br>20<br>19<br>18<br>17       | Set Districtions | 38.5<br>57.9<br>96.5<br>115.5<br>135.1<br>154.4<br>173.7          | 38.4<br>37.6<br>76.8<br>96.9<br>115.2<br>134.4                    | 38 0<br>57.0<br>76 0<br>95 0<br>114.0<br>133 0                   |
| 44<br>45<br>46                                                                  | 5.S1 367<br>S.S1 560<br>8.S1 752<br>S.S1 944                         | 194<br>193<br>192<br>192               | 8.S1 459<br>8.S1 653<br>8.S1 846                                     | 195<br>194<br>193<br>192               | 11.18 541<br>11.18 347<br>11.18 154                                        | 9.99 905<br>9.99 907<br>9.99 906<br>9.99 905             | 16<br>15<br>14<br>13             | 2 1              | 188                                                               | 134.4<br>153.6<br>172.8<br>186<br>37.2<br>35.8                    | 133 0<br>152 0<br>171.0<br>184<br>38 8                           |
| 43<br>43<br>50                                                                  | \$.\$2 134<br>\$.\$2 324<br>\$.\$2 513                               | 190<br>190<br>189<br>188               | \$.82 038<br>\$.82 230<br>\$.82 420<br>\$.82 610                     | 192<br>190<br>190<br>189               | 11.17 962<br>11.17 770<br>11.17 580<br>11.17 390                           | 9.99 904<br>9.99 904<br>9.99 903                         | 12<br>11<br>10                   | 34561-6          | 37.6<br>56.4<br>75.2<br>94.0<br>112.8<br>131.6                    | 74.4<br>93.0<br>111.6<br>130.2                                    | 55 2<br>73 6<br>92 0<br>110 4<br>124 5<br>147 2                  |
| 51<br>52<br>53<br>54                                                            | 8.82 701<br>8.82 888<br>8.83 075<br>8.83 261                         | 187<br>187<br>186                      | 8.82 799<br>8.82 987<br>8.83 175<br>8.83 361                         | 188<br>188<br>186                      | 11.17 201<br>11.17 013<br>11.16 825<br>11.16 639                           | 9,99 902<br>9,99 901<br>9,99 900<br>9,99 899             | 9.81.6                           | 91               | 131.6<br>150.4<br>169.2<br>183<br>36.6                            | 148.5<br>167.4<br>182<br>36.4                                     | 181<br>36.2                                                      |
| 55<br>56<br>57<br>58                                                            | 8.83 446<br>5.83 630<br>8.83 813<br>8.83 996                         | 185<br>184<br>183<br>183<br>181        | 8.83 547<br>8.83 732<br>8.83 916<br>8.84 100                         | 186<br>185<br>184<br>184<br>182        | 11.16 453<br>11.16 268<br>11.16 084<br>11.15 900                           | 9.99 898<br>9.99 898<br>9.99 897<br>9.99 896             | 5<br>4<br>3<br>2<br>1            | 34561-8          | 54.9<br>73.2<br>91.5<br>109.5<br>128.1<br>145.4<br>164.7          | 54.6<br>72.8<br>91.0<br>109.2<br>127.4<br>145.6<br>163.8          | 36.2<br>34.3<br>72.4<br>90.5<br>108.5<br>125.7<br>144.8<br>162.9 |
| 59<br><b>60</b>                                                                 | 8.84 177<br>8.84 358                                                 | 181                                    | 8.84 282<br>8.84 464                                                 | 182                                    | 11.15 718<br>11.15 536                                                     | 9,99 895<br>9,99 894                                     | 0                                | 9 .              | 164.7                                                             | 153.5                                                             | 162 9                                                            |
|                                                                                 | L Cos                                                                | d                                      | L Ctn                                                                | cd                                     | L Tan                                                                      | L Sin                                                    | 7                                |                  | Pro                                                               | p. Pts.                                                           |                                                                  |

86° — Logarithms of Trigonometric Functions

|                                                     | L Sin                                                                                        | đ                                                    | L Tan                                                                                        | c d                                                  | L Ctn                                                                                                | L Cos                                                                                        |           | Pro                                                                             | p. Pts                                                                 |                                                                         |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7                | 8.84 358<br>8.84 539<br>8.84 718<br>8.84 897<br>8.85 075<br>8.85 252<br>8.85 429<br>8.85 605 | 6                                                    | 8.84 464<br>8.84 646<br>8.84 826<br>8.85 006<br>8.85 185<br>8.85 363<br>8.85 540<br>8.85 717 | 182<br>180<br>180<br>179<br>178<br>177<br>177        | 11.15 536<br>11.15 354<br>11.15 174<br>11.14 994<br>11.14 815<br>11.14 637<br>11.14 460<br>11.14 283 | 9.99 894<br>9.99 893<br>9.99 891<br>9.99 891<br>9.99 890<br>9.99 889<br>9.99 888             | 213456789 | 181,<br>36.2,<br>54.3,<br>72.4,<br>90.5,<br>108.6,<br>126.7,<br>144.8,<br>162.9 | 36.0<br>54.0<br>72.0<br>90.0<br>108.0<br>126.0<br>144.0<br>162.0       | 35.8<br>53.7<br>71.6<br>89.5<br>107.4<br>125.3<br>143.2<br>161.1        |
| 9<br>10<br>11<br>12<br>13<br>14                     | 8.85 750<br>8.85 955<br>8.86 128<br>8.86 301<br>8.86 474<br>8.86 645<br>8.86 816             | 75<br>75<br>3<br>173<br>173<br>171<br>171            | S.S5 893<br>S.S6 069<br>S.S6 243<br>S.S6 417<br>S.S6 591<br>S.S6 763<br>S.S6 935             | 176<br>174<br>174<br>174<br>174<br>172<br>172        | 11.14 107<br>11.13 931<br>11.13 757<br>11.13 583<br>11.13 409<br>11.13 237<br>11.13 065              | 9.99 \$87<br>9.99 \$56<br>9.99 \$85<br>9.99 \$84<br>9.99 \$83<br>9.99 \$82<br>9.99 \$81      | 213456789 | 35.4<br>53.1<br>70.8<br>83.5<br>106.9<br>141.6<br>159.3                         | 35.0<br>52.5<br>70.0<br>87.5<br>105.0<br>122.5<br>140.0<br>157.5       | 173<br>34.6<br>51.9<br>69.2<br>86.5<br>103.8<br>121.1<br>138.4<br>155.7 |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22        | 8.56 957<br>S.57 156<br>S.57 325<br>S.57 494<br>S.57 661<br>S.57 829<br>S.57 995<br>S.58 161 | 169<br>169<br>169<br>167<br>168<br>166<br>166        | S.S7 106<br>S.S7 277<br>S.S7 447<br>S.S7 616<br>S.S7 785<br>S.S7 953<br>S.S8 120<br>S.S8 287 | 171<br>170<br>169<br>169<br>168<br>167               | 11.12 894<br>11.12 723<br>11.12 553<br>11.12 384<br>11.12 215<br>11.12 047<br>11.11 880<br>11.11 713 | 9.99 SS0<br>9.99 879<br>9.99 878<br>9.99 877<br>9.99 876<br>9.99 875<br>9.99 874             | 23456789  | 34.2<br>51.3<br>68.4<br>85.5<br>102.6<br>119.7<br>136.8<br>153.9                | 34.0<br>51.0<br>68.0<br>85.0<br>102.0<br>119.0<br>136.0                | 169<br>33.8<br>50.7<br>67.6<br>84.5<br>101.4<br>118.3<br>135.2<br>152.1 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30        | 8.88 326<br>8.88 490<br>8.88 654<br>8.88 817<br>8.88 980<br>8.89 142<br>8.89 304<br>8.89 464 | 163<br>164<br>163<br>163<br>162<br>162<br>160        | 5.88 453<br>5.88 618<br>5.88 783<br>5.89 948<br>5.89 111<br>5.89 274<br>5.89 437<br>5.89 598 | 166<br>165<br>165<br>163<br>163<br>163<br>163        | 11.11 547<br>11.11 382<br>11.11 217<br>11.11 052<br>11.10 889<br>11.10 726<br>11.10 563<br>11.10 402 | 9.99 873<br>9.99 872<br>9.99 871<br>9.99 870<br>9.99 869<br>9.99 868<br>9.99 867<br>9.99 866 | 23456789  | 167<br>33.4<br>50.1<br>66.8<br>83.5<br>100.2<br>116.9<br>133.6<br>150.3         | 165<br>33.0<br>49.5<br>66.0<br>82.5<br>99.0<br>115.5<br>132.0<br>148.5 | 163<br>32.6<br>48.9<br>65.2<br>81.5<br>97.8<br>114.1<br>130.4<br>146.7  |
| 31<br>32<br>33<br>34<br>35<br>36<br>37              | 8.89 625<br>8.89 784<br>8.89 943<br>8.90 102<br>8.90 260<br>8.90 417<br>8.90 574             | 161<br>159<br>159<br>159<br>158<br>157<br>157<br>157 | 8.89 760<br>8.89 920<br>8.90 080<br>8.90 240<br>8.90 399<br>8.90 557<br>8.90 715             | 162<br>160<br>160<br>159<br>158<br>158<br>158        | 11.10 240<br>11.10 080<br>11.09 920<br>11.09 760<br>11.09 601<br>11.09 443<br>11.09 285              | 9.99 865<br>9.99 864<br>9.99 863<br>9.99 862<br>9.99 861<br>9.99 860<br>9.99 859             | 23456789  | 161<br>32.2<br>48.3<br>64.4<br>80.5<br>912.7<br>128.8<br>144.9                  | 160<br>32.0<br>48.0<br>64.0<br>80.0<br>96.0<br>112.0<br>125.0<br>144.0 | 159<br>31.8<br>47.7<br>63.6<br>79.5<br>95.4<br>111.3<br>127.2<br>143.1  |
| 35<br>39<br>40<br>41<br>42<br>43<br>44<br>45        | S.90 730<br>S.90 885<br>8.91 040<br>S.91 195<br>8.91 349<br>8.91 502<br>8.91 655<br>8.91 807 | 155<br>155<br>155<br>154<br>153<br>153<br>152        | S.90 872<br>S.91 029<br>S.91 185<br>S.91 340<br>S.91 495<br>S.91 650<br>S.91 803<br>S.91 957 | 157<br>156<br>155<br>155<br>155<br>153<br>154        | 11.09 128<br>11.08 971<br>11.08 815<br>11.08 660<br>11.08 505<br>11.08 350<br>11.08 197<br>11.08 043 | 9.99 858<br>9.99 857<br>9.99 856<br>9.99 855<br>9.99 854<br>9.99 853<br>9.99 852<br>9.99 851 | 23456789  | 157<br>31.4<br>47.1<br>62.8<br>78.5<br>94.2<br>109.9<br>125.6<br>141.3          | 155<br>31.0<br>46.5<br>62.0<br>77.5<br>93.0<br>108.5<br>124.0<br>139.5 | 153<br>30.6<br>45.9<br>61.2<br>76.5<br>91.8<br>107.1<br>122.4<br>137.7  |
| 46<br>47<br>48<br>49<br><b>50</b><br>51<br>52<br>53 | 8.91 959<br>8.92 110<br>8.92 261<br>8.92 411<br>8.92 561<br>8.92 710<br>8.92 859             | 152<br>151<br>150<br>150<br>149<br>149<br>148        | 8.92 110<br>8.92 262<br>8.92 414<br>8.92 565<br>8.92 716<br>8.92 866<br>8.93 016             | 153<br>152<br>152<br>151<br>151<br>150<br>150<br>149 | 11.07 890<br>11.07 738<br>11.07 586<br>11.07 435<br>11.07 284<br>11.07 134<br>11.06 984              | 9.99 850<br>9.99 848<br>9.99 847<br>9.99 846<br>9.99 845<br>9.99 841<br>9.99 843             | 23456789  | 151<br>30.2<br>45.3<br>60.4<br>75.5<br>90.6<br>105.7<br>120.8<br>135.9          | 30.0<br>45.0<br>60.0<br>75.0<br>90.0<br>105.0<br>120.0<br>135.0        | 149<br>29.8<br>44.7<br>59.6<br>74.5<br>89.4<br>104.3<br>119.2<br>134.1  |
| 55<br>56<br>57<br>58<br>59<br>60                    | 8.93 007<br>8.93 154<br>8.93 301<br>8.93 448<br>8.93 594<br>8.93 740<br>8.93 885<br>8.94 030 | 147<br>147<br>147<br>146<br>146<br>145<br>145        | 8.93 165<br>8.93 313<br>8.93 462<br>8.93 609<br>8.93 756<br>8.93 903<br>8.94 049<br>8.94 195 | 148<br>149<br>147<br>147<br>147<br>146<br>146        | 11.06 835<br>11.06 687<br>11.06 538<br>11.06 391<br>11.06 244<br>11.06 097<br>11.05 951<br>11.05 805 | 9.99 842<br>9.99 841<br>9.99 839<br>9.99 838<br>9.99 837<br>9.99 836<br>9.99 834             | 213456789 | 147<br>29.4<br>44.1<br>58.8<br>73.5<br>88.2<br>102.9<br>117.6<br>132.3          | 29.0<br>43.5<br>58.0<br>72.5<br>87.0<br>101.5<br>116.0<br>130.5        | 28.8<br>43.2<br>57.6<br>72.0<br>86.4<br>100.8<br>115.2<br>129.6         |
|                                                     | L Cos                                                                                        |                                                      | L Ctn                                                                                        | $\overline{cd}$                                      | L Tan                                                                                                | L Sin                                                                                        |           | Pro                                                                             | p. Pts                                                                 | L                                                                       |

| II]                        | 5° -                                                                                                                 | – Logarith                                                                                                           | ms of                                              | Trigon                                                                                                     | ometric                                                                                |                                                                                                     |                                                                                                                  | 31                                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                            | L Sin                                                                                                                | Tan                                                                                                                  | cd :                                               | L Cin                                                                                                      | L Cos                                                                                  |                                                                                                     | op. Pts.                                                                                                         | _                                                                     |
|                            | 8.94 030<br>8.94 174<br>8.94 317<br>14<br>8.94 461<br>8.94 603<br>8.94 746<br>8.94 887<br>15                         | 13 .94 485<br>14 .94 630<br>12 .94 773<br>13 .94 917<br>11 .95 060                                                   | 145<br>145<br>145<br>143<br>144<br>143             | 1.05 805 1<br>1.05 660 1<br>1.05 515 1<br>1.05 370 1<br>1.05 227 1<br>1.05 083 1<br>1.04 940 1<br>1.04 798 | 9,99 834<br>9,99 833<br>9,99 832<br>9,99 831<br>9,99 830<br>9,99 829<br>9,99 828       | 143<br>29.6<br>42.5<br>57.7<br>71.3<br>95.3<br>100.<br>114.128.                                     | 143<br>5 28.4<br>9 42.5<br>2 56.8<br>7 1.0<br>8 5.2<br>1 99.4<br>4 113.6<br>7 127.8                              | 141<br>28,2<br>42,3<br>56,4<br>70,5<br>84,6<br>98,7<br>112,8<br>126,9 |
|                            | 8.95 029<br>8.95 170<br>8.95 310<br>8.95 450<br>8.95 589<br>8.95 728<br>8.95 867                                     | 12                                                                                                                   | 142<br>142<br>141<br>140<br>141<br>139<br>140      | 1.04 656<br>1.04 514<br>1.04 373<br>1.04 233<br>1.04 092<br>1.03 953<br>1.03 813                           | 9.99 825<br>9.99 824<br>9.99 823<br>9.99 822<br>9.99 821<br>9.99 820<br>9.99 819       | 140<br>28,<br>42,<br>56,<br>70,<br>84,<br>98,<br>112,<br>126,                                       | 139<br>0 27.8<br>0 41.7<br>0 55.5<br>0 69.5<br>0 83.4<br>0 97.3<br>0 111.2<br>0 125.1                            | 27,6<br>41.4<br>55.2<br>69.0<br>82.8<br>96.5<br>110.4<br>124.2        |
| 17<br>18<br>19<br>20<br>21 | 8.96 143<br>8.96 280<br>1 8.96 417<br>1 8.96 553<br>8.96 689<br>1 8.96 825<br>1 8.96 960                             | 37 3.96 464<br>37 3.96 602<br>36 8.96 739<br>36 8.96 877<br>36 97 013<br>35 8.97 150                                 | 139 1<br>138 1<br>137 1<br>138 1<br>136 1<br>137 1 | 1.03 675<br>1.03 536<br>1.03 398                                                                           | 9.99 817<br>9.99 816<br>9.99 815<br>9.99 814<br>9.99 813<br>9.99 812                   | 137<br>27.<br>41.<br>54.                                                                            | 136<br>4 27.2<br>1 40.8<br>3 54.4<br>5 68.0<br>2 81.6<br>9 95.2                                                  | 135<br>27.0<br>40.5<br>54.0<br>67.5<br>81.0<br>94.5<br>108.0<br>121.5 |
| ରିଟିଟି <b>ଅ</b> ଶିବାରଣ     | 8 8.97 229<br>1 8.97 363<br>5 8.97 496<br>6 8.97 629<br>7 8.97 629<br>8 8.97 894                                     | 134 S.97 421<br>134 S.97 556<br>133 S.97 691<br>133 S.97 695<br>133 S.97 959<br>132 S.98 092<br>132 S.98 295         | 136 1<br>135 1<br>135 1<br>134 1<br>134 1          | 1.02 579<br>11.02 579<br>11.02 444<br>11.02 309<br>11.02 175<br>11.02 041<br>11.01 908<br>11.01 775        | 9.99 808<br>9.99 807<br>9.99 806<br>9.99 804<br>9.99 803<br>9.99 802<br>9.99 801       | 37 13-<br>36 26<br>35 53<br>34 67<br>33 80<br>32 107<br>31 120                                      | .8 26.6<br>.2 39.9<br>.6 53.2                                                                                    | 26.4<br>39.6<br>52.8<br>66.0<br>79.2<br>92.4<br>105.6<br>118.8        |
| 333333333                  | 0 8.98 157<br>1 8.98 288<br>2 8.98 419<br>3 8.98 549<br>4 8.98 679<br>5 8.98 808<br>6 8.98 937                       | 13                                                                                                                   | 13:<br>132<br>13<br>13<br>13:<br>13:               | 11.01 642<br>11.01 510<br>11.01 378<br>11.01 24<br>11.01 116<br>11.00 985<br>11.00 853                     | 9.99 800<br>9.99 798<br>9.99 796<br>9.99 795<br>9.99 793<br>9.99 792<br>9.99 791       | 30<br>29<br>28<br>27<br>26<br>53<br>27<br>26<br>53<br>27<br>26<br>53<br>27<br>26<br>104<br>21<br>22 | 2 26.0<br>3 39.0<br>4 52.0<br>5 65.0                                                                             | 25.8<br>38.7<br>51.6<br>64.5<br>77.4<br>90.3<br>103.2<br>116.1        |
| 33 44 45 45 45             | 7 8.99 066<br>8 8.99 194<br>9 8.99 322<br>0 8.99 450<br>11 8.99 577<br>11 8.99 704<br>13 8.99 830<br>14 8.99 956     | 12:                                                                                                                  | 1:<br>12:<br>128<br>129<br>128                     | 11.00 72<br>11.00 595<br>11.00 466<br>11.00 338<br>11.00 209<br>11.00 081<br>10.99 954<br>10.99 826        | 9.99 790<br>9.99 788<br>9.99 787<br>9.99 786<br>9.99 785<br>9.99 783<br>9.99 782       | 12<br>2:<br>3:<br>5-<br>6-<br>77<br>8<br>10                                                         | 5.6 25.4<br>8.4 38.1<br>1.2 50.8<br>4.0 63.5<br>6.8 76.2<br>9.6 88.9<br>2.4 101.6<br>5.2 114.3                   | 25.2<br>37.8<br>50.4<br>63.0<br>75.6<br>88.2<br>100.8                 |
|                            | 45 9.00 082<br>46 9.00 207<br>47 9.00 332<br>48 9.00 456<br>49 9.00 581<br>50 9.00 704<br>51 9.00 828                | 125 9.00 301<br>125 9.00 421<br>125 9.00 553<br>124 9.00 679<br>123 9.00 801<br>123 9.00 931<br>124 9.01 05          | 1 126<br>1 126<br>1 126<br>1 126<br>1 125          | 10.99 699<br>10.99 573<br>10.99 447<br>10.99 321<br>10.99 195<br>10.98 945                                 | 9.99 781<br>9.99 780<br>9.99 778<br>9.99 77<br>9.99 77<br>9.99 775<br>9.99 773         | 1                                                                                                   | 25 124<br>5.0 24.8<br>7.5 37.2<br>0.0 49.6<br>0.5 62.0                                                           | 123<br>24.6<br>36.9<br>49.2<br>61.5<br>73.8<br>86.1<br>98.4<br>110.7  |
| 1                          | 52 9.00 951<br>53 9.01 074<br>54 9.01 196<br>55 9.01 318<br>56 9.01 440<br>57 9.01 565<br>58 9.01 682<br>59 9.01 803 | 123 9.01 17<br>123 9.01 30<br>122 9.01 42<br>122 9.01 55<br>122 9.01 67<br>121 9.01 79<br>121 9.01 91<br>121 9.02 04 | 9 124<br>3 124<br>123<br>0 123<br>6 123<br>8 123   | 10.98 821<br>10.98 697<br>10.98 573<br>10.98 450<br>10.98 327<br>10.98 20-<br>10.98 083<br>10.97 960       | 7 9.9977<br>3 9.99768<br>9 9.99768<br>7 9.99765<br>4 9.99765<br>2 9.99764<br>0 9.99765 | 1<br>3<br>5<br>4<br>3                                                                               | 122 121<br>24.4 24.2<br>36.6 36.3<br>48.8 48.4<br>48.8 60.5<br>73.2 72.6<br>85.4 84.7<br>97.6 96.8<br>09.8 108.8 | 120<br>24.0<br>36.0<br>48.0<br>60.0<br>72.0<br>84.0<br>96.0           |
| ł                          | 60 9.01 923                                                                                                          | 9.02 16                                                                                                              | 2                                                  | 10.97 83                                                                                                   | 9.9976                                                                                 | · _                                                                                                 |                                                                                                                  | ts.                                                                   |
|                            | L Cos                                                                                                                | _ L Ctr                                                                                                              | ı icd                                              | L Tan                                                                                                      | Lom                                                                                    |                                                                                                     |                                                                                                                  |                                                                       |

| 52                                      | 6                                                                    | · —                                    | Logarit                                                              | hms                                    | or trigo                                                                   | nometri                                                              | C F                                     | un                  | ction                                                               | 3                                                                                   |
|-----------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|---------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                         | L Sin                                                                | d                                      | L Tan                                                                | cd                                     | L Ctn                                                                      | L Cos                                                                |                                         |                     | Pro                                                                 | p. Pts.                                                                             |
| 0<br>1<br>2<br>3<br>4                   | 9.01 923<br>9.02 043<br>9.02 163<br>9.02 283<br>9.02 402             | 120<br>120<br>120<br>119               | 9.02 162<br>9.02 283<br>9.02 404<br>9.02 525<br>9.02 645             | 121<br>121<br>121<br>120               | 10.97 838<br>10.97 717<br>10.97 596<br>10.97 475<br>10.97 355              | 9.99 761<br>9.99 760<br>9.99 759<br>9.99 757<br>9.99 756             | 59<br>58<br>57<br>56                    | 91345               | 121<br>24.2<br>36.3                                                 | 120<br>24.0<br>36.0<br>48.0                                                         |
| 5<br>6<br>7<br>8                        | 9.02 520<br>9.02 639<br>9.02 757<br>9.02 874                         | 118<br>119<br>118<br>117               | 9.02 766<br>9.02 885<br>9.03 005<br>9.03 124                         | 121<br>119<br>120<br>119               | 10.97 234<br>10.97 115<br>10.96 995<br>10.96 876                           | 9.99 755<br>9.99 753<br>9.99 752<br>9.99 751                         | 55<br>54<br>53<br>52                    | 3456789             | 60.5<br>72.6<br>84.7<br>96.8<br>108.9                               | 60.0<br>72.0<br>84.0<br>96.0<br>108.0                                               |
| 9:<br>10<br>11<br>12<br>13              | 9.02 992<br>9.03 109<br>9.03 226<br>9.03 342<br>9.03 458             | 118<br>117<br>117<br>116<br>116        | 9.03 242<br>9.03 361<br>9.03 479<br>9.03 597<br>9.03 714             | 118<br>119<br>118<br>118<br>117        | 10.96 758<br>10.96 639<br>10.96 521<br>10.96 403<br>10.96 286              | 9.99 749<br>9.99 748<br>9.99 747<br>9.99 745<br>9.99 744             | 51<br>50<br>49<br>48<br>47              | 2345<br>678         | 23.6<br>35.4<br>47.2<br>59.0<br>70.8<br>82.6                        | 117<br>23.4<br>35.1<br>46.8<br>58.5<br>70.2<br>81.9                                 |
| 14<br>15<br>16<br>17                    | 9.03 574<br>9.03 690<br>9.03 805<br>9.03 920                         | 116<br>116<br>115<br>115<br>114        | 9.03 832<br>9.03 948<br>9.04 065<br>9.04 181                         | 118<br>116<br>117<br>116<br>116        | 10.96 168<br>10.96 052<br>10.95 935<br>10.95 819                           | 9.99 742<br>9.99 741<br>9.99 740<br>9.99 738                         | 46<br>45<br>44<br>43                    | 9                   | 106.2<br>115                                                        | 93.6<br>105.3 1<br>114<br>22.8<br>34.2                                              |
| 18<br>19<br><b>20</b><br>21<br>22       | 9.04 034<br>9.04 149<br>9.04 262<br>9.04 376<br>9.04 490             | 115<br>113<br>114<br>114               | 9.04 297<br>9.04 413<br>9.04 528<br>9.04 643<br>9.04 758             | 116<br>115<br>115<br>115               | 10.95 703<br>10.95 587<br>10.95 472<br>10.95 357<br>10.95 242              | 9.99 737<br>9.99 736<br>9.99 734<br>9.99 733<br>9.99 731             | 42<br>41<br>40<br>39<br>38              | 34<br>56<br>78<br>9 | 23.0<br>34.5<br>46.0<br>57.5<br>69.0<br>80.5<br>92.0<br>103.5       | 45.6<br>57.0<br>68.4<br>79.8<br>91.2<br>102.6                                       |
| 23<br>24<br><b>25</b><br>26<br>27       | 9.04 603<br>9.04 715<br>9.04 828<br>9.04 940<br>9.05 052             | 113<br>112<br>113<br>112<br>112        | 9.04 873<br>9.04 987<br>9.05 101<br>9.05 214<br>9.05 328             | 115<br>114<br>114<br>113<br>113        | 10.95 127<br>10.95 013<br>10.94 899<br>10.94 786<br>10.94 672              | 9.99 730<br>9.99 728<br>9.99 727<br>9.99 726<br>9.99 724             | 37<br>36<br><b>35</b><br>34<br>33       | 218456789           | 22.4<br>33.6<br>44.8<br>56.0<br>67.2<br>78.4<br>89.6<br>100.8       | 111 1<br>22.2 2<br>33.3 1<br>44.4 1<br>55.5 1                                       |
| 28<br>29<br><b>30</b><br>31<br>32       | 9.05 164<br>9.05 275<br>9.05 386<br>9.05 497<br>9.05 607             | 112<br>111<br>111<br>111<br>111<br>110 | 9.05 441<br>9.05 553<br>9.05 666<br>9.05 778<br>9.05 890             | 113<br>112<br>113<br>112<br>112        | 10.94 559<br>10.94 447<br>10.94 334<br>10.94 222<br>10.94 110              | 9.99 723<br>9.99 721<br>9.99 720<br>9.99 718<br>9.99 717             | 32<br>31<br>30<br>29<br>28              |                     | 109                                                                 | 55.5 8<br>66.6 6<br>77.7 7<br>88.8 8<br>99.9 9                                      |
| 33<br>34<br>35<br>36<br>37              | 9.05 717<br>9.05 827<br>9.05 937<br>9.06 046<br>9.06 155             | 110<br>110<br>110<br>109<br>109<br>109 | 9.06 002<br>9.06 113<br>9.06 224<br>9.06 335<br>9.06 445             | 112<br>111<br>111<br>111<br>110<br>111 | 10.93 998<br>10.93 887<br>10.93 776<br>10.93 665<br>10.93 555              | 9.99 716<br>9.99 714<br>9.99 713<br>9.99 711<br>9.99 710             | 27<br>26<br><b>25</b><br>24<br>23       | 23456789            | 21.8<br>32.7<br>43.6<br>54.5<br>65.4<br>76.3<br>87.2<br>98.1        | 21.6 2<br>32.4 3<br>43.2 4<br>54.0 5<br>64.8 6<br>75.6 7<br>86.4 8<br>97.2 9        |
| 38<br>39<br><b>40</b><br>41<br>42<br>43 | 9.06 264<br>9.06 372<br>9.06 481<br>9.06 589<br>9.06 696<br>9.06 804 | 108<br>109<br>108<br>107<br>108        | 9.06 556<br>9.06 666<br>9.06 775<br>9.06 885<br>9.06 994<br>9.07 103 | 110<br>109<br>110<br>109<br>109        | 10.93 444<br>10.93 334<br>10.93 225<br>10.93 115<br>10.93 006<br>10.92 897 | 9.99 708<br>9.99 707<br>9.99 705<br>9.99 704<br>9.99 702<br>9.99 701 | 22<br>21<br><b>20</b><br>19<br>18<br>17 | 2345678             | 106<br>21.2<br>31.8<br>42.4<br>53.0<br>63.6<br>74.2<br>84.8<br>95.4 | 105 1:<br>21.0 2:<br>31.5 3:<br>42.0 4:<br>52.5 5:<br>63.0 6:<br>73.5 7:<br>84.0 89 |
| 44<br>45<br>46<br>47<br>48              | 9.06 911<br>9.07 018<br>9.07 124<br>9.07 231<br>9.07 337             | 107<br>107<br>106<br>107<br>106<br>105 | 9.07 211<br>9.07 320<br>9.07 428<br>9.07 536<br>9.07 643             | 108<br>109<br>108<br>108<br>107        | 10.92 789<br>10.92 680<br>10.92 572<br>10.92 464<br>10.92 357              | 9.99 699<br>9.99 698<br>9.99 696<br>9.99 695<br>9.99 693             | 16<br>15<br>14<br>13<br>12              | 9                   | rom th                                                              |                                                                                     |
| 49<br><b>50</b><br>51<br>52<br>53       | 9.07 442<br>9.07 548<br>9.07 653<br>9.07 758<br>9.07 863             | 106<br>105<br>105<br>105               | 9.07 751<br>9.07 858<br>9.07 964<br>9.08 071<br>9.08 177             | 108<br>107<br>106<br>107<br>106        | 10.92 249<br>10.92 142<br>10.92 036<br>10.91 929<br>10.91 823              | 9.99 692<br>9.99 690<br>9.99 689<br>9.99 687<br>9.99 686             | 11<br>10<br>9<br>8<br>7                 | 96°                 | d as p                                                              | orinted;<br>276°+, re                                                               |
| 54<br>55<br>56<br>57<br>58              | 9.07 968<br>9.08 072<br>9.08 176<br>9.08 280<br>9.08 383             | 105<br>104<br>104<br>104<br>103        | 9.08 283<br>9.08 389<br>9.08 495<br>9.08 600<br>9.08 705             | 106<br>106<br>106<br>105<br>105        | 10.91 717<br>10.91 611<br>10.91 505<br>10.91 400<br>10.91 295              | 9.99 684<br>9.99 683<br>9.99 681<br>9.99 680<br>9.99 678             | 6<br>5<br>4<br>3<br>2                   | I<br>rea            | for 83°                                                             | e bottom:<br>'+ or <b>263</b><br>orinted;<br><b>353</b> °+, re                      |
| 59<br><b>60</b>                         | 9.08 486<br>9.08 589<br>L Cos                                        | 103<br>103<br><b>d</b>                 | 9.08 810<br>9.08 914<br>L Ctn                                        | 105<br>104<br>c d                      | 10.91 190<br>10.91 086<br><b>L Tan</b>                                     | 9.99 677<br>9.99 675<br><b>L Sin</b>                                 | 0                                       |                     | functio                                                             |                                                                                     |
| <u></u>                                 | 003                                                                  |                                        | -1 OM 1                                                              | <u> </u>                               | M Tall                                                                     | TOTAL 1                                                              |                                         |                     | 110                                                                 | 70 I h70                                                                            |

83° - Logarithms of Trigonometric Functions

| lik.           |                                                     |          |                           |          |                         |                                      |          |                                                                                              | Prop. Pts.                                           |                                                              |  |  |
|----------------|-----------------------------------------------------|----------|---------------------------|----------|-------------------------|--------------------------------------|----------|----------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--|--|
|                | L Sin                                               | d        | L Tan                     | c d      | L Cin                   | L Cos                                |          | Pro                                                                                          | op. Pu                                               | 3-                                                           |  |  |
| 0              | 1.5                                                 | 133      | 9. (89.11)                | 105      | Journ or S              | 9,744 675<br>9,944 674               | 60       |                                                                                              |                                                      |                                                              |  |  |
| 1              | 1. 1.02<br>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 1.3      | 64, 646, 144<br>6486) 123 |          |                         | 14.1941-24                           | 34       | 105                                                                                          | 104                                                  | 103                                                          |  |  |
| -              |                                                     | 1 2      | 3, a 25.1                 |          | 10 m 277<br>20 m 277    | तेत्रपत्त विद्याः<br>विद्यासम्बद्धाः | 33:      |                                                                                              | 20.8                                                 | 20.6                                                         |  |  |
| 1              | 10.00                                               | 112      | 3.79 33 6                 |          | 19 27 14                | 34.74.4 Sec. 4                       | 56       | 3 31.5                                                                                       | 20.8<br>31.2<br>41.6<br>52.0                         | 20.5<br>30.9<br>41.2<br>51.5                                 |  |  |
| 5              | 9,09 101                                            | 102      | 9.93 434                  | 1.4      | 20120 366               | 9,99 067                             | 55       | 3 31.5<br>4 42.0<br>5 52.5<br>6 63.0<br>7 73.5<br>8 84.0                                     | 52.0                                                 | 51.5                                                         |  |  |
|                | 34, 31 202                                          | 101      | 3.09 5.67                 | 191      | 150 453                 | 1. 12 1. 1. 1.                       | 54       | 6 63.0<br>7 73.5                                                                             | 62.4<br>72.8<br>83.2<br>93.6                         | 61.8<br>72.1<br>82.4<br>92.7                                 |  |  |
| 37.            | 1301 + 304                                          | 131      | 3.33 64.1                 |          | 152-9300                | 1.39 30 1                            |          | S S1.0<br>9 94.5                                                                             | 83.2<br>93.6                                         | 82.4<br>92.7                                                 |  |  |
| 1              | 9,09 305<br>9,09 306                                | 191      | 9.09 545                  | 33       | 13390 238<br>19390 133  | 19,249 6,00                          | 57<br>51 | 0 , 72.0                                                                                     |                                                      | 52                                                           |  |  |
| 10             | 9,00 600                                            | 100      | 9.99 947                  | 1.3      | 10.90 053               | 3.80 Mg.                             | 50       |                                                                                              |                                                      |                                                              |  |  |
| 11             | 9,63,737                                            | 101      | 5.10 049                  | 195      | 19.59 951               | 9,199,657<br>35,3355                 | 30       | 102                                                                                          | 101                                                  | 99                                                           |  |  |
| 1              | 9,09,507 (                                          | 190      | 9.10 159                  | 101      | 10.59 550               | 1,59 6.76                            | 45       | 2   20.4<br>3   30.6                                                                         | 20.2<br>30.3                                         | 19.8<br>29.7                                                 |  |  |
| 13             | 9.49 957                                            | 100      | 9.10 252                  | 102      | 29.59.745               | 1.14 655                             | 47       | 4 40.8                                                                                       | 40.4<br>50.5                                         |                                                              |  |  |
| 14             | 9.10 006                                            | 100      | 9.10 353                  | 10:      | 10.59617                | 9,49 653                             | 46       | 2   20.4<br>30.6<br>4   40.8<br>51.0<br>6   61.2<br>7   71.4<br>9   91.8                     | 50.6<br>70.7<br>80.8<br>90.9                         | 49.5<br>59.4<br>69.3<br>79.2<br>89.1                         |  |  |
| 15             | 9.10 106                                            | 99       | 9.10 454<br>9.10 555      | 101      | 10.59 546               | 9.99 651                             | 45       | 81.6                                                                                         | 80.8                                                 | 79.2                                                         |  |  |
| 16             | 9.10 295<br>9.10 304                                | 99       | 9.10 656                  | 151      | 10.59 445<br>10.59 344  | 9,09.65                              | 44       | 9   91.8                                                                                     | 90.9                                                 | 89.1                                                         |  |  |
| is             | 9.10 402                                            | 98       | 9.10756                   | 100      | 10.59 244               | 10. er tr\$7                         | 1        |                                                                                              |                                                      |                                                              |  |  |
| 19             | 9.10 501                                            | 99<br>98 | 9.10 856                  | 100      | 10.59 144               | 9.99 645                             | 41       | 98                                                                                           | 97                                                   | 96                                                           |  |  |
| 20             | 9.10 599                                            | 98       | 9.10 956                  | 100      | 10.89 044               | 9.99 643                             | 40       | 2   19.6                                                                                     | 19.4                                                 | 19.2<br>28.8<br>38.4                                         |  |  |
| 21             | 9.10 697                                            | 98       | 9.11 056                  | 99       | 10.58 944               | 9.99 642                             | 39       | 3 29.4<br>4 39.2                                                                             | 38.8                                                 | 38.4                                                         |  |  |
| 22             | 9.10 795<br>9.10 893                                | 98       | 9.11 254                  | 99       | 10.88 \$45<br>10.88 746 | 9,99 640<br>9,99 635                 | 35       | 6 58.8                                                                                       | 58.2                                                 | 57.6                                                         |  |  |
| 24             | 9.10 990                                            | 97       | 9.11 353                  | 99       | 10.58 647               | 9.99 637                             | 36       | 2   19.6<br>3   29.4<br>4   39.2<br>5   49.0<br>6   58.6<br>7   68.6<br>8   78.4<br>9   85.2 | 67.9<br>77.6                                         | 48.0<br>57.6<br>67.2<br>76.8<br>86.4                         |  |  |
| 25             | 9.11 057                                            | 97       | 9.11 452                  | 99       | 10.58 545               | 9.99 635                             | 35       | 9   88.2                                                                                     | 29.1<br>38.8<br>48.5<br>58.2<br>67.9<br>77.6<br>87.3 | 86.4                                                         |  |  |
| 26             | 9.11 154                                            | 97<br>97 | 9.11 551                  | 99<br>98 | 10.55 449               | 9.99 633                             | 34       |                                                                                              |                                                      |                                                              |  |  |
| 27<br>25<br>29 | 9.11 251                                            | 96       | 9.11 649                  | 98       | 10.88 351               | 9,09 6 <u>72</u><br>9,09 6           | 33       | 95                                                                                           | 94                                                   | 93                                                           |  |  |
| 25             | 9.11 377<br>9.11 474                                | 97       | 9.11 747<br>9.11 S45      | 95       | 10.88 253<br>10.88 155  | 9.12.                                | 197      | 0 . 100                                                                                      | **                                                   | 18.6                                                         |  |  |
| 30             | 9.11 570                                            | 96       | 9.11 943                  | 98       | 10.88 057               | 9.59 9.29<br>9.59 9.27               | 30       | 2 19.5<br>4 28.5<br>47.5<br>5 47.5<br>7 65.5<br>9 85.5                                       | 29.2<br>37.6<br>47.0<br>56.4<br>65.8<br>75.2<br>84.6 | 18.6<br>27.9<br>37.2<br>46.5<br>55.8<br>63.1                 |  |  |
| 31             | 9.11 666                                            | 96       | 9.12 040                  | 97       | 10.57 960               | 9.99 625                             | 29       | 4 38.0<br>5 47.5<br>6 57.0<br>7 66.5<br>8 76.0<br>9 85.5                                     | 47.0                                                 | 46.5                                                         |  |  |
| 32             | 9.11 761                                            | 95       | 9.12 138                  | 95       | 10.57 862               | 9.99 624                             | र्दित    | 7 65 5                                                                                       | 65.8                                                 | 63.1                                                         |  |  |
| 33             | 9.11 857                                            | 96<br>95 | 9.12 235<br>9.12 332      | 97       | 10.87 765<br>10.87 668  | 9.99 622                             | 27       | 9 85.5                                                                                       | 84.6                                                 | 74.4<br>83.7                                                 |  |  |
| 34             | 9.11 952                                            | 95       |                           | 96       |                         | 9.99 620                             | 26       |                                                                                              |                                                      |                                                              |  |  |
| 35             | 9.12 047                                            | 95       | 9.12 428<br>9.12 525      | 97       | 10.87 572<br>10.87 475  | 9.99 615                             | 25<br>24 |                                                                                              |                                                      |                                                              |  |  |
| 36<br>37       | 9.12 142<br>9.12 236                                | 94       | 9.12 621                  | 96       | 10.87 379               | 9.99 617<br>9.99 615                 | 23       | 2 1 15 4                                                                                     | 19.0                                                 | 18.0                                                         |  |  |
| 38             | 9.12 331                                            | 95       | 9.12 717                  | 90       | 10.57 253               | 9.99 613                             | 22       | 2   18.4<br>3   27.6<br>4   36.9<br>5   46.0                                                 | 13.2<br>27.3                                         | 18.0<br>27.0<br>36.0<br>45.0<br>54.0<br>63.0<br>72.0<br>51.0 |  |  |
| 39             | 9.12 425                                            | 94<br>94 | 9.12 813                  | 96<br>96 | 10.87 187               | 9.99 612                             | 21       | 3 1 46 0                                                                                     | 36.4<br>45.5                                         | 45.0                                                         |  |  |
| 40             | 9.12 519                                            | 93       | 9.12 909                  | 95       | 10.87 091               | 9.99 610                             | 20       | 6 55.2                                                                                       | 54.6<br>63.7<br>72.8<br>81.9                         | 54.0<br>63.0                                                 |  |  |
| 41             | 9.12 612                                            | 94       | 9.13 004                  | 95       | 10.56 996               | 9.99 608                             | 19<br>15 | 5 73.5                                                                                       | 72.8                                                 | 72.0<br>51.0                                                 |  |  |
| 42<br>43       | 9.12 706<br>9.12 799                                | 93       | 9.13 099<br>9.13 194      | 95       | 10.86 901<br>10.86 806  | 9.99 605                             | 17       | 3,000                                                                                        | 02.0                                                 |                                                              |  |  |
| 144            | 9.12 892                                            | 93       | 9.13 289                  | 95       | 10.86 711               | 9.99 603                             | 16       |                                                                                              |                                                      |                                                              |  |  |
| 45             | 9.12 985                                            | 93       | 9.13 384                  | 95       | 10.86 616               | 9.99 601                             | 15       | From                                                                                         | he top:                                              | ٠ ا                                                          |  |  |
| 46             | 9.13 078                                            | 93       | 9.13 478                  | 94<br>95 | 10.86 522               | 9.99 600                             | 14       | For 7                                                                                        | or i                                                 | 187°+,                                                       |  |  |
| 47             | 9.13 171                                            | 92       | 9.13 573                  | 94       | 10.86 427               | 9.99 598                             | 13<br>12 | read as                                                                                      | printe                                               | d; for                                                       |  |  |
| 48<br>49       | 9.13 263<br>9.13 355                                | 92       | 9.13 667<br>9.13 761      | 94       | 10.86 333<br>10.86 239  | 9.99 596<br>9.99 <b>5</b> 95         | 11       | 97°+ or                                                                                      |                                                      |                                                              |  |  |
| 50             | 9.13 333                                            | 92       | 9.13 854                  | 93       | 10.86 146               | 9.99 593                             | 10       | co-functi                                                                                    |                                                      |                                                              |  |  |
| 51             | 9.13 539                                            | 92       | 9.13 948                  | 94       | 10.86 052               | 9.99 591                             | 8        |                                                                                              |                                                      | 1                                                            |  |  |
| 52             | 9.13 630                                            | 91<br>92 | 9.14 041                  | 93<br>93 | 10.85 959               | 9.99 589                             | 8        |                                                                                              |                                                      | - 1                                                          |  |  |
| 53             | 9.13 722                                            | 91       | 9.14 134                  | 93       | 10.85 866               | 9.99 588                             | 1 6      | From                                                                                         | the bott                                             | om:                                                          |  |  |
| 54             | 9.13 813                                            | 91       | 9.14 227                  | 93       | 10.85 773               | 9.99 586<br>9.99 584                 | 5        | For 82                                                                                       | o+ or                                                | 262°+,                                                       |  |  |
| 55<br>56       | 9.13 904<br>9.13 994                                | 90       | 9.14 320<br>9.14 412      | 92       | 10.85 680<br>10.85 588  | 9.99 584                             | 1 4      | read as                                                                                      | printe                                               | d; for                                                       |  |  |
| 57             | 9.14 085                                            | 91       | 9.14 504                  | 92       | 10.85 496               | 9.99 551                             | 3        | 172°- or                                                                                     |                                                      |                                                              |  |  |
| 58             | 9.14 175                                            | 90       | 9.14 597                  | 93<br>91 | 10.85 403               | 9.99 579                             | 2        | co-functi                                                                                    | on.                                                  |                                                              |  |  |
| 59             | 9.14 266                                            | 91       | 9.14 688                  | 91       | 10.85 312               | 9.99 577                             | 1        | 1                                                                                            |                                                      |                                                              |  |  |
| 60             | 9.14 356                                            |          | 9.14 780                  |          | 10.85 220               | 9.99 575                             | 0        |                                                                                              |                                                      |                                                              |  |  |
|                | L Cos                                               | d        | L Ctn                     | ed       | L Tan                   | L Sin                                | 1'       | i Pr                                                                                         | op. Pts                                              | <b>L</b>                                                     |  |  |

82° - Logarithms of Trigonometric Functions

| 0.7         |                                  |          |                                  |          | 7 6                                 |                                  |                       | -      |                |                | []           |
|-------------|----------------------------------|----------|----------------------------------|----------|-------------------------------------|----------------------------------|-----------------------|--------|----------------|----------------|--------------|
| Ľ           | L Sin                            | <u>d</u> | L Tan                            | cd       | L Ctn                               | L Cos                            |                       |        | Pro            | p. Pts         |              |
| 0<br>1<br>2 | 9.14 356<br>9.14 445<br>9.14 535 | 89<br>90 | 9.14 780<br>9.14 872<br>9.14 963 | 92<br>91 | 10.85 220<br>10.85 128<br>10.85 037 | 9.99 575<br>9.99 574<br>9.99 572 | <b>60</b><br>59<br>58 |        |                | . 01 .         |              |
| 3           | 9.14 624                         | 89       | 9.15 054                         | 91       | 10.84 946                           | 9.99 570                         | 57                    | 2      | 92             | 91             | 90           |
| 4           | 9.14 714                         | 90<br>89 | 9.15 145                         | 91<br>91 | 10.84 855                           | 9.99 568                         | 56                    | 3      | 18.4<br>27.6   | 18.2<br>27.3   | 18.0<br>27.0 |
| 5           | 9.14 803                         | 88       | 9.15 236                         | 91       | 10.84 764                           | 9.99 566                         | 55                    | 4      | 36.8           | 36.4           | 36.0         |
| 6           | 9.14 891                         | 89       | 9.15 327                         | 90       | 10.84 673                           | 9.99 565                         | 54                    | 5      | 46.0           | 45.5           | 45.0         |
| 8           | 9.14 980<br>9.15 069             | 89       | 9.15 417<br>9.15 508             | 91       | 10.84 583<br>10.84 492              | 9.99 563<br>9.99 561             | 53<br>52              | 6<br>7 | 55.2           | 54.6           | 54.0         |
| 9           | 9.15 157                         | 88       | 9.15 598                         | 90       | 10.84 402                           | 9.99 559                         | 51                    | 8      | 64.4<br>73.6   | $63.7 \\ 72.8$ | 63.0<br>72.0 |
| 10          | 9.15 245                         | SS       | 9.15 688                         | 90       | 10.84 312                           | 9.99 557                         | 50                    | 9      | 82.8           | 81.9           | 81.0         |
| 11          | 9.15 333                         | 88       | 9.15 777                         | 89<br>90 | 10.84 223                           | 9.99 556                         | 49                    |        |                |                |              |
| 12          | 9.15 421                         | 88<br>87 | 9.15 867                         | 89       | 10.84 133                           | 9.99 554                         | 48                    |        | 89             | 88 1           | 87           |
| 13<br>14    | 9.15 508<br>9.15 596             | 88       | 9.15 956<br>9.16 046             | 90       | 10.84 044<br>10.83 954              | 9.99 552<br>9.99 550             | 47<br>46              | 2      | 17.8           | 17.6           | 17.4         |
| 15          | 9.15 683                         | 87       | 9.16 135                         | 89       | 10.83 865                           | 9.99 548                         | 45                    | 3      | 26.7           | 26.4           | 26.1         |
| 16          | 9.15 770                         | 87       | 9.16 224                         | 89       | 10.83 776                           | 9.99 546                         | 44                    | 4      | 35.6           | 35.2           | 34.8         |
| 17          | 9.15 857                         | 87<br>87 | 9.16 312                         | 88<br>89 | 10.83 688                           | 9.99 545                         | 43                    | 5      | 44.5<br>53.4   | 44.0           | 43.5         |
| 18<br>19    | 9.15 944<br>9.16 030             | 86       | 9.16 401<br>9.16 489             | 88       | 10.83 599<br>10.83 511              | 9.99 543<br>9.99 541             | 42<br>41              | 7      | 62.3           | 52.8<br>61.6   | 52.2<br>60.9 |
| 20          | 9.16 116                         | 86       | 9.16 577                         | 88       | 10.83 423                           | 9.99 539                         | 40                    | 8      | 71.2           | 70.4           | 69.6         |
| 21          | 9.16 203                         | 87       | 9.16 665                         | 88       | 10.83 335                           | 9.99 537                         | 39                    | 9      | 80.1           | 79.2           | 78.3         |
| 22          | 9.16 289                         | 86<br>85 | 9.16 753                         | 88<br>88 | 10.83 247                           | 9.99 535                         | 38                    |        |                |                |              |
| 23<br>24    | 9.16 374                         | 86       | 9.16 841                         | 87       | 10.83 159                           | 9.99 533                         | 37<br>36              |        | 86             | 85             | 84           |
| 25          | 9.16 460<br>9.16 545             | 85       | 9.16 928<br>9.17 016             | 88       | 10.83 072<br>10.82 984              | 9.99 532<br>9.99 530             | 35                    | 2      | 17.2           | 17.0           | 16.8         |
| 26          | 9.16 631                         | 86       | 9.17 103                         | 87       | 10.82 984                           | 9.99 528                         | 34                    | 3 4    | $25.8 \\ 34.4$ | 25.5<br>34.0   | 25.2         |
| 27          | 9.16 716                         | 85<br>85 | 9.17 190                         | 87<br>87 | 10.82 810                           | 9.99 526                         | 33                    | 5      | 43.0           | 42.5           | 33.6<br>42.0 |
| 28<br>29    | 9.16 801                         | 85       | 9.17 277                         | 86       | 10.82 723                           | 9.99 524                         | 32                    | 6      | 51.6           | 51.0           | 50.4         |
| 30          | 9.16 886                         | 84       | 9.17 363                         | 87       | 10.82 637                           | 9.99 522                         | 31<br><b>30</b>       | 7<br>8 | 60.2           | 59.5           | 58.8         |
| 31          | 9.16 970<br>9.17 055             | 85       | 9.17 450<br>9.17 536             | 86       | 10.82 550<br>10.82 464              | 9.99 520<br>9.99 518             | 29                    | 9      | 68.8<br>77.4   | 68.0<br>76.5   | 67.2<br>75.6 |
| 32          | 9.17 139                         | 84       | 9.17 622                         | 86       | 10.82 378                           | 9.99 517                         | 28                    | •      |                | ,              | 1 . 0.0      |
| 33          | 9.17 223<br>9.17 307             | 84<br>84 | 9.17 708<br>9.17 794             | 86<br>86 | 10.82 292                           | 9.99 515                         | 27                    |        | 83             | 82             | 181          |
| 34<br>35    |                                  | 84       |                                  | 86       | 10.82 206                           | 9.99 513                         | 26<br><b>25</b>       | 2      | 16.6           | 16.4           | 16.2         |
| 36          | 9.17 391<br>9.17 474             | 83       | 9.17 880<br>9.17 965             | 85       | 10.82 120<br>10.82 035              | 9.99 511<br>9.99 509             | 24                    | 3      | 24.9           | 24.6           | 24.3         |
| 37          | 9.17 558<br>9.17 641             | 84       | 9.18 051                         | 86       | 10.81 949                           | 9.99 507                         | 23                    | 4      | 33.2           | 32.8           | 32.4         |
| 38          | 9.17 641                         | 83<br>83 | 9.18 136                         | 85<br>85 | 10.81 864                           | 9.99 505                         | 22                    | 5      | 41.5<br>49.8   | 41.0<br>49.2   | 40.5<br>48.6 |
| 39<br>40    | 9.17 724                         | 83       | 9.18 221                         | 85       | 10.81 779                           | 9.99 503                         | 21<br>20              | 7      | 58.1           | 57.4           | 56.7         |
| 41          | 9.17 807<br>9.17 890             | 83       | 9.18 306<br>9.18 391             | 85       | 10.81 694<br>10.81 609              | 9.99 501<br>9.99 499             | 19                    | 8      | 66.4           | 65.6           | 64.8         |
| 42          | 9.17 973                         | 83<br>82 | 9.18 475                         | 84       | 10.81 525                           | 9.99 497                         | 18                    | 9      | 74.7           | 73.8           | 72.9         |
| 43<br>44    | 9.18 055                         | 82       | 9.18 560                         | 85<br>84 | 10.81 440                           | 9.99 495                         | 17                    |        |                |                | 1            |
| 45          | 9.18 137<br>9.18 220             | 83       | 9.18 644                         | 84       | 10.81 356                           | 9.99 494                         | 16<br><b>15</b>       | F      | rom t          | he top:        |              |
| 46          | 9.18 302                         | 82       | 9.18 728<br>9.18 812             | 84       | 10.81 272<br>10.81 188              | 9.99 492<br>9.99 490             | 14                    | 76     | or 8°          | )+ or          | 1880+.       |
| 47          | 9.18 383                         | 81<br>82 | 9.18 896                         | 84<br>83 | 10.81 104                           | 9.99 488                         | 13                    |        |                |                | ed; for      |
| 48<br>49    | 9.18 465<br>9.18 547             | 82       | 9.18 979                         | 84       | 10.81 021                           | 9.99 486                         | 12                    | 98°    |                |                | read         |
| 50          | 9.18 628                         | 81       | 9.19 063                         | 83       | 10.80 937                           | 9.99 484                         | 11                    | co-i   | unctio         |                | ,            |
| 51          | 9.18 709                         | 81       | 9.19 146<br>9.19 229             | 83       | 10.80 854<br>10.80 771              | 9.99 482<br>9.99 480             | 10<br>9               | -      |                | -              |              |
| 52          | 9.18 790                         | 81       | 9.19 312                         | 83<br>83 | 10.80 688                           | 9.99 478                         | 8                     |        |                | 1 - 1          |              |
| 53<br>54    | 9.18 871<br>9.18 952             | 81       | 9.19 395                         | 83       | 10.80 605                           | 9.99 476                         |                       |        | rom t          |                |              |
| 55          | 9.18 982                         | 81       | 9.19 478<br>9.19 561             | 83       | 10.80 522                           | 9.99 474                         | 6                     |        |                |                | 261°+,       |
| 56          | 9.19 113                         | 80       | 9.19 643                         | 82       | 10.80 439<br>10.80 357              | 9.99 472<br>9.99 470             | 5 4                   |        |                |                | ed; for      |
| 56<br>57    | 9.19 193                         | 80       | 9.19 725                         | 82<br>82 | 10.80 275                           | 9.99 468                         | 3                     |        |                |                | , read       |
| 58<br>59    | 9.19 273<br>9.19 353             | 80       | 9.19 807<br>9.19 889             | 82       | 10.80 193                           | 9.99 466                         | 2                     | CO-1   | unctio         | n.             |              |
| 60          |                                  | 80       | 9.19 889                         | 82       | 10.80 111                           | 9.99 464<br>9.99 462             | 0                     | 1      |                |                |              |
| ٣           | L Cos                            | d        | L Ctn                            | cd       |                                     | 1 L Sin                          | ╁                     | -      | Pro            | p. Pt          | q.           |
| -           | 000                              | _ u      | 1 DOM                            | , cu     | . wran                              | i nom                            | 4                     |        | 410            |                |              |

81° — Logarithms of Trigonometric Functions

|          | L Sin                | d        | L Tan                   | c d         | L Cin                  | L Cos                |           | Prop. Pis.                                               |
|----------|----------------------|----------|-------------------------|-------------|------------------------|----------------------|-----------|----------------------------------------------------------|
| 0        | 0.13455              | 80       | 9.19 971                | S2          | 1975-1974              | 2004 \$12            | 60        |                                                          |
| 1 2      | 9.19.513             | 79       | 9.20953 $9.20134$       | 51          | 10.79 947              | 9,99,454             | 54        | 182   81   80                                            |
| 3        | 3,19 672             | S0<br>79 | 9.20 216                | S2<br>S1    | 10.79 751              | M.99 Pm              | 37        | 2 16.4 16.2 16.0                                         |
| 4        | 9.19 751             | 79       | 9.20 297                | 81          | 10.79 703              | 9269 454             | 56        |                                                          |
| 5        | 9.19 830<br>9.19 909 | 79       | 9.20 375<br>9.20 459    | S1          | 10.79 622<br>10.79 541 | 9.99 452<br>9.99 450 | 55        | 4 32.5 32.4 32.0                                         |
| 1 2      | 9.19 958             | 79       | 9.20 540                | 81          | 19.79 400              | 2.99 448             | 27.5      | 5 41.0 40.5 40.0<br>6 44.2 48.6 48.0                     |
| 1 5      | 9.20 097             | 79<br>78 | 9.20 621                | 81<br>S0    | 19.79 379              | 9.99 446             | 5.2       | 7 57.4 56.7 56.0                                         |
| 1.3      | 9.20 145             | 78       | 9.20 701                | 81          | 10.79 299              | 9.99 444             | 51<br>50  | 8 65.6 64.8 64.0<br>9 73.8 72.9 72.0                     |
| 10       | 9.20 223<br>9.20 302 | 79       | 9.20 782<br>9.20 862    | SO          | 10.79 215<br>10.79 138 | 9.99 442             | 49        | 9   73.8   72.9   72.0                                   |
| 12       | 9.20 359             | 78<br>78 | 9.20 942                | S0          | 10.79 05%              | 9.99 435             | 48        |                                                          |
| 13       | 9.20 455             | 77       | $9.21\ 022 \ 9.21\ 102$ | 50          | 10.78 978              | 9.99 436             | 47        | 79 78 77                                                 |
| 14<br>15 | 9.20 535<br>9.20 613 | 78       | 9.21 102                | so          | 10.78 805<br>10.78 815 | 9.99 434<br>9.99 432 | 46<br>45  | 2 15.8 15.6 15.4<br>3 23.7 23.4 23.1                     |
| 16       | 9.20 691             | 78       | 9,21 261                | 79          | 10.75 739              | 9.99 429             | 44        | 4 (1.6) (31.2) (30.8)                                    |
| 17       | 9.20768              | 77       | 9.21 341                | 80<br>79    | 10.78659               | 9.99 427             | 43        | 5 34.5 39.0 38.5<br>6 47.4 46.8 46.2                     |
| 18<br>19 | 9.20 845 9.20 922    | 77       | 9,21 420<br>9,21 499    | 79          | 10.78 550<br>10.78 501 | 9.99 425<br>9.99 423 | 42        | 7 55.3 54.6 53.9                                         |
| 20       | 9.20 999             | 77       | 9.21 578                | 79          | 10.75 422              | 9.99 421             | 40        | 8 63.2 62.4 61.6                                         |
| 21       | 9.21 076             | 77       | $9.21\ 657$             | 79<br>79    | 10.78 343              | 9.99 419             | 39        | 9   71.1   70.2   69.3                                   |
| 22       | 9.21 153             | 77       | 9.21 736<br>9.21 814    | 78          | 10.75 264              | 9.99 417             | 38        |                                                          |
| 23<br>24 | 9.21 229<br>9.21 306 | 77       | 9.21 893                | 79          | 10.78 186<br>10.78 107 | 9.99 415<br>9.99 413 | 36        | 76 75 74                                                 |
| 25       | 9.21 352             | 76       | 9.21 971                | 78          | 10.78 029              | 9.99 411             | 35        | 2 15.2 15.0 14.5<br>3 22.8 22.5 22.2<br>4 30.4 37.7 29.6 |
| 26       | 9.21458              | 76<br>76 | 9.22 049                | 78<br>78    | 10.77 951              | 9,99 409             | 34        |                                                          |
| 27<br>28 | 9.21 534<br>9.21 610 | 76       | $9.22\ 127\ 9.22\ 205$  | 78          | 10.77 873              | 9.99 407<br>9.99 404 | 33<br>32  | 3 35.0 17.0 37.0                                         |
| 29       | 9.21 685             | 75       | 9.22 283                | 78          | 10.77 795<br>10.77 717 | 9.99 402             | 31        | 6 43.6 45 6 44.4<br>7 53.2 52 5 51.8                     |
| 30       | 9.21 761             | 76       | 9.22 361                | 78<br>77    | 10.77 639              | 9.99 400             | 30        | 8 64.5 (60.0) 59.2                                       |
| 31       | 9.21 836             | 75<br>76 | 9.22 438<br>9.22 516    | 78          | 10.77 562              | 9.99 398<br>9.99 396 | 29<br>28  | 9 65.4 57.5 66.6                                         |
| 32<br>33 | 9.21 912<br>9.21 987 | 75       | 9.22 593                | 77          | 10.77 484<br>10.77 407 | 9.99 394             | 27        |                                                          |
| 34       | 9.22 062             | 75<br>75 | 9.22 670                | 77          | 10.77 330              | 9.99 392             | 26        | 73 72 71                                                 |
| 35       | 9.22 137             | 74       | 9.22 747                | 77          | 10.77 253              | 9.99 390             | 25<br>24  | 2 14.6 14.4 14.2<br>3 21.9 21.6 21.3                     |
| 36<br>37 | 9.22 211<br>9.22 286 | 75       | 9.22 824<br>9.22 901    | 77          | 10.77 176<br>10.77 099 | 9.99 388<br>9.99 385 | 23        | 4 29.2 25.8 25.4                                         |
| 38       | 9.22 361             | 75<br>74 | 9.22 977                | 76          | 10.77 023              | 9.99 383             | 22        | 5 36.5 36.0 35.5                                         |
| 39       | 9.22 435             | 74       | 9.23 054                | 76          | 10.76 946              | 9.99 381             | 21        | 6 43.8 43.2 42.6<br>7 51.1 50.4 49.7                     |
| 40<br>41 | 9.22 509<br>9.22 583 | 74       | 9.23 130<br>9.23 206    | 76          | 10.76 870<br>10.76 794 | 9.99 379<br>9.99 377 | <b>20</b> | 8 58.4 57.6 56.8                                         |
| 42       | 9.22 657             | 74       | 9.23 253                | 77          | 10.76 717              | 9.99 375             | 18        | 9 65.7 64.8 63.9                                         |
| 43       | 9.22731              | 74<br>74 | 9.23 359                | 76<br>76    | 10.76 641              | 9.99 372<br>9.99 370 | 17<br>16  |                                                          |
| 44<br>45 | 9.22 805<br>9.22 878 | 73       | 9.23 435<br>9.23 510    | 75          | 10.76 565              | 9.99 368             | 15        | From the top:                                            |
| 46       | 9.22 952             | 74       | 9.23 586                | 76          | 10.76 414              | 9.99 366             | 14        | For 9°+, or 189°-,                                       |
| 47       | 9.23 025             | 73<br>73 | 9.23 661                | 75<br>76    | 10.76 339              | 9.99 364             | 13        | read as printed; for                                     |
| 48<br>49 | 9.23098 $9.23171$    | 73       | 9.23 737<br>9.23 812    | 75          | 10.76 263<br>10.76 188 | 9.99 362<br>9.99 359 | 12<br>11  | 99°+ or 279°+, read                                      |
| 50       | 9.23 244             | 73       | 9.23 887                | 75          | 10.76 113              | 9.99 357             | 10        | co-function.                                             |
| 51       | 9.23 317             | 73<br>73 | 9.23 962                | 75<br>75    | 10.76 035              | 9.99 355             | 9         |                                                          |
| 52<br>53 | 9.23 390<br>9.23 462 | 72       | 9.24 037<br>9.24 112    | 75          | 10.75 963<br>10.75 888 | 9.99 353<br>9.99 351 | 8         | From the bottom:                                         |
| 54       | 9.23 535             | 73       | 9.24 186                | 74          | 10.75 814              | 9.99 348             | 6         | For 80°+ or 260°+.                                       |
| 55       | 9.23 607             | 72       | 9.24 261                | 75<br>74    | 10.75 739              | 9.99 346             | 5         | read as printed; for                                     |
| 56       | 9.23 679             | 72 73    | 9.24 335                | 75          | 10.75 665<br>10.75 590 | 9.99 344 9.99 342    | 3         | 170°+ or 350°+, read                                     |
| 57<br>58 | 9.23 752<br>9.23 823 | 71       | 9.24 410<br>9.24 484    | 74          | 10.75 516              | 9.99 340             | 2         | co-function.                                             |
| 59       | 9.23 895             | 72<br>72 | 9.24 558                | 74<br>74    | 10.75 442              | 9.99 337             | 1         |                                                          |
| 60       | 9.23 967             | 1-2      | 9.24 632                | <u>  ''</u> | 10.75 368              | 9.99 335             | 0         |                                                          |
|          | L Cos                | d        | L Ctn                   | cd          | L Tan                  | L Sin                | ′         | Prop. Pts.                                               |

80° — Logarithms of Trigonometric Functions

| 1               | L Sin                | d        | L Tan                | c d      | L Ctn                  | L Cos                | d   |                 |        | Pro                 | p. Pts                                     | FIII          |
|-----------------|----------------------|----------|----------------------|----------|------------------------|----------------------|-----|-----------------|--------|---------------------|--------------------------------------------|---------------|
| 0               | 9.23 967             |          | 9.24 632             |          | 10.75 368              | 9.99 335             | _   | 60              |        |                     |                                            | $\overline{}$ |
| 1               | 9.24 039             | 72       | 9.24706              | 74<br>73 | 10.75 294              | 9.99 333             | 2   | 59              |        |                     |                                            |               |
| 2<br>3          | 9.24 110             | 71<br>71 | 9.24 779             | 74       | 10.75 221              | 9.99 331             | 3   | 58              | 1      | 74                  | 73                                         | 72            |
| 4               | 9.24 181<br>9.24 253 | 72       | 9.24 853<br>9.24 926 | 73       | 10.75 147<br>10.75 074 | 9.99 328<br>9.99 326 | 2   | 57<br>56        | 2      | 14.8                | 14.6                                       | 14.4          |
| 5               | 9.24 233             | 71       | 9.25 000             | 74       | 10.75 000              | 9.99 324             | 2   | 55              | 3      | 22.2                | 21.9                                       | 21.6          |
|                 | 9.24 324             | 71       | 9.25 073             | 73       | 10.74 927              | 9.99 322             | 2   | 54              | 5      | $\frac{29.6}{37.0}$ | 29.2<br>36.5                               | 28.6          |
| 6               | 9.24 466             | 71       | 9.25 146             | 73       | 10.74 854              | 9.99319              | 3   | 53              | 6      | 44.4                | 43.8                                       | 36.0<br>43.2  |
| 8               | 9.24536              | 70<br>71 | 9.25 219             | 73<br>73 | 10.74 781              | 9.99317              | 2   | 52              | 7      | 51.8                | 51.1                                       | 50.4          |
| 9               | 9.24 607             | 70       | 9.25 292             | 73       | 10.74 708              | 9.99 315             | 2   | 51              | 8      | 59.3                | 58.4                                       | 57.6          |
| 10              | 9.24 677             | 71       | 9.25 365             | 72       | 10.74 635              | 9.99 313             | 3   | 50              | 91     | 66.6                | 65.7                                       | 64.8          |
| 11<br>12        | 9.24 748<br>9.24 818 | 70       | 9.25 437<br>9.25 510 | 73       | 10.74 563<br>10.74 490 | 9.99310              | 2   | 49<br>48        | 1      |                     |                                            |               |
| 13              | 9.24 888             | 70       | 9.25 582             | 72       | 10.74 418              | 9.99 306             | 2   | 47              |        | 71                  | 70                                         | 69            |
| 14              | 9.24 958             | 70<br>70 | 9.25 655             | 73<br>72 | 10.74 345              | 9.99304              | 3   | 46              | 2      | 14.2                | 14.0                                       | 13.8          |
| 15              | 9.25 028             | 70       | 9.25 727             | 72       | 10.74 273              | 9.99 301             | 2   | 45              | 3      | 21.3                | 21.0                                       | 20.7          |
| 16              | 9.25 098             | 70       | 9.25 799             | 72       | 10.74 201              | 9.99 299             | 2   | 44              | 4<br>5 | $\frac{28.4}{35.5}$ | 28.0<br>35.0                               | 27.6<br>34.5  |
| 17<br>18        | 9.25 168<br>9.25 237 | 69       | 9.25 871<br>9.25 943 | 72       | 10.74 129<br>10.74 057 | 9.99 297<br>9.99 294 | 3   | $\frac{43}{42}$ | 6      | 42.6                | 42.0                                       | 41.4          |
| 19              | 9.25 307             | 70       | 9.26 015             | 72       | 10.73 985              | 9.99 292             | 2   | 41              | 7      | 49.7                | 49.0                                       | 48.3          |
| 20              | 9.25 376             | 69       | 9.26 086             | 71       | 10.73 914              | 9.99 290             | 2   | 40              | 8      | 56.8                | 36.0                                       | 55.2          |
| 21              | 9.25 445             | 69       | 9.26 158             | 72<br>71 | 10.73 842              | 9.99 288             | 2   | 39              | 91     | 63.9                | 63.0                                       | 62.1          |
| 22              | 9.25 514             | 69<br>69 | 9.26 229             | 72       | 10.73 771              | 9.99 285             | 2   | 38              | l      |                     |                                            |               |
| $\frac{23}{24}$ | 9.25 583<br>9.25 652 | 69       | 9.26 301<br>9.26 372 | 71       | 10.73 699<br>10.73 628 | 9.99 283<br>9.99 281 | 2   | 37<br>36        | 1      | 68                  | 67                                         | 66            |
| 25              | 9.25 721             | 69       | 9.26 443             | 71       | 10.73 557              | 9.99 278             | 3   | 35              | 2      | 13.6                | 13.4                                       | 13.2          |
| 26              | 9.25 790             | 69       | 9.26 514             | 71       | 10.73 486              | 9.99 276             | 2   | 34              | 3<br>4 | 20.4                | 20.1                                       | 19.8          |
| 27              | 9.25 858             | 68       | 9.26 585             | 71       | 10.73 415              | 9.99 274             | 2   | 33              | 5      | $\frac{27.2}{34.0}$ | 26.8<br>33.5                               | 26.4<br>33.0  |
| 28              | 9.25 927             | 69<br>68 | 9.26 655             | 70<br>71 | 10.73 345              | 9.99 271             | 3 2 | 32              | 6      | 40.8                | 40.2                                       | 39.6          |
| 29              | 9.25 995             | 68       | 9.26 726             | 71       | 10.73 274              | 9.99 269             | 2   | 31              | 7      | 47.6                | 46.9                                       | 46.2          |
| 30<br>31        | 9.26 063<br>9.26 131 | 68       | 9.26 797<br>9.26 867 | 70       | 10.73 203<br>10.73 133 | 9.99 267<br>9.99 264 | 3   | 30<br>29        | 8      | 54.4<br>61.2        | 53.6                                       | 52.8          |
| 32              | 9.26 199             | 68       | 9.26 937             | 70       | 10.73 063              | 9.99 262             | 2   | 28              | 91     | 01.2                | 60.3                                       | 59.4          |
| 33              | 9.26 267             | 68       | 9.27 008             | 71       | 10.72 992              | 9.99 260             | 2   | 27              |        |                     |                                            |               |
| 34              | 9.26 335             | 68<br>68 | 9.27 078             | 70       | 10.72 922              | 9.99 257             | 3 2 | 26              |        | 65                  | 3                                          | 2             |
| 35              | 9.26 403             | 67       | 9.27 148             | 70       | 10.72 852              | 9.99 255             | 3   | 25              | 2      |                     |                                            | 0.4           |
| 36<br>37        | 9.26 470<br>9.26 538 | 68       | 9.27 218<br>9.27 288 | 70       | 10.72782<br>10.72712   | 9.99 252<br>9.99 250 | 2   | 24<br>23        | 3 4    |                     |                                            | 0.6           |
| 38              | 9.26 605             | 67       | 9.27 357             | 69       | 10.72 643              | 9.99 248             | 2   | $\frac{23}{22}$ | 5      |                     |                                            | 1.0           |
| 39              | 9.26 672             | 67<br>67 | 9.27427              | 70<br>69 | 10.72 573              | 9.99 245             | 3   | 21              | 6      | 39.0                | 1.8                                        | 1.2           |
| 40              | 9.26 739             | 67       | 9.27 496             | 70       | 10.72 504              | 9.99 243             | 2 2 | 20              | 7<br>8 | 45.                 | 2.1                                        | 1.4           |
| 41              | 9.26 806             | 67       | 9.27 566             | 69       | 10.72 434              | 9.99 241             | 3   | 19              | 9      |                     | $\begin{vmatrix} 2.4 \\ 2.7 \end{vmatrix}$ | 1.6           |
| 42<br>43        | 9.26 873<br>9.26 940 | 67       | 9.27 635<br>9.27 704 | 69       | 10.72 365<br>10.72 296 | 9.99 238<br>9.99 236 | 2   | 18<br>17        | ľ      | , 50.0              | ,                                          | 1 1.0         |
| 44              | 9.27 007             | 67       | 9.27 773             | 69       | 10.72 227              | 9.99 233             | 3   | 16              |        |                     | _                                          |               |
| 45              | 9.27 073             | 66       | 9.27 842             | 69       | 10.72 158              | 9.99 231             | 2   | 15              | l l    | rom i               | the top                                    | ):            |
| 46              | 9.27 140             | 67<br>66 | 9.27 911             | 69<br>69 | 10.72 089              | 9.99229              | 3   | 14              | 3      | or 10               | °+or.                                      | L90°+,        |
| 47<br>48        | 9.27 206<br>9.27 273 | 67       | 9.27 980<br>9.28 049 | 69       | 10.72 020              | 9.99 226             | 2   | 13              | rea    | d as                | printe                                     | d; for        |
| 49              | 9.27 339             | 66       | 9.28 049             | 68       | 10.71 951<br>10.71 883 | 9.99224 $9.99221$    | 3   | 12<br>11        | 100    | )°+or               | 280°÷                                      | , read        |
| 50              | 9.27 405             | 66       | 9.28 186             | 69       | 10.71 814              | 9.99 219             | 2   | 10              | co-    | funct               | ion.                                       |               |
| 51              | 9.27 471             | 66       | 9.28254              | 68       | 10.71 746              | 9.99 217             | 2   | 9               | l      |                     |                                            | •             |
| $\frac{52}{50}$ | 9.27 537             | 66<br>65 | 9.28 323             | 69<br>68 | 10.71 677              | 9.99214              | 3 2 | 8               | ١,     |                     |                                            | 4             |
| 53<br>54        | 9.27 602<br>9.27 668 | 66       | 9.28391 $9.28459$    | 68       | 10.71 609              | 9.99 212             | 3   |                 |        |                     | he bot                                     |               |
| 55              | 9.27 734             | 66       | 9.28 459             | 68       | 10.71 541              | 9.99 209             | 2   | 6               |        |                     | o+ or                                      |               |
| 56              | 9.27 799             | 65       | 9.28 527             | 68       | 10.71 473<br>10.71 405 | 9.99 207<br>9.99 204 | 3   | 5<br>4          |        |                     | orinte                                     |               |
| 57              | 9.27 864             | 65       | 9.28 662             | 67       | 10.71 338              | 9.99 202             | 2   | 3               | 169    | 9°÷or               | 349°÷                                      | , read        |
| 58              | 9.27 930             | 66<br>65 | 9.28 730             | 68<br>68 | 10.71 270              | 9.99 200             | 2   | 2               | co-    | funct               | ion.                                       |               |
| 59              | 9.27 995             | 65       | 9.28 798             | 67       | 10.71 202              | 9.99 197             | 2   | 1               |        |                     |                                            |               |
| 60              | 9.28 060             |          | 9.28 865             |          | 10.71 135              | 9.99 195             | _   | 0               |        |                     |                                            |               |
|                 | L Cos                | d        | L Ctn                | cď       | L Tan                  | L Sin                | d   | '               |        | Pro                 | p. Pt                                      | 3.            |

79° — Logarithms of Trigonometric Functions

| III]     | 11                                                     |                      |          |                              |          | or ring                |                     |                 | -             |          |        | -            |                                                       |                     |
|----------|--------------------------------------------------------|----------------------|----------|------------------------------|----------|------------------------|---------------------|-----------------|---------------|----------|--------|--------------|-------------------------------------------------------|---------------------|
|          | L Sin                                                  | d                    | L        | , Tan                        | cd       | L Ctn                  | L Co                |                 |               | _        |        | Prop         | . Pts.                                                |                     |
| 0        | 9.25000                                                | 65                   | 9.:      | 28 865                       | 68       | 10.71 135<br>10.71 057 | (4.564-2<br>4.564-1 |                 |               | 60       |        |              |                                                       |                     |
| 1        | 9.28 125<br>9.28 190                                   | 65                   |          | 28 933  <br>29 000           | ti7      | 10.71 000              | 9.991               | 1 .             | -1            | 35       | 1 (    | 68 :         | 67 .                                                  | 66                  |
| 3        | 9.25254                                                | 64                   | 9.       | 29 067                       | 67<br>67 | 10.70 933              | 9.991               | 24              | 1             | 57       | 2   1  | 3.6          | 13.4                                                  | 13.2                |
| 1        | 9.25319                                                | 65<br>65             |          | 29 134                       | 67       | 10.70 866              | 9.991               | J. 1            | 2             | 221      | 3 4    | 14.0         | 25.17                                                 | * (' " )            |
| 5        | 9.28 384                                               | 64                   |          | 29 201                       | 67       | 10.70 799<br>10.70 732 | 9.991 $9.901$       |                 |               |          | 1 -    | 7.3          | 333                                                   | 26.1                |
| 6        | 9.25 448                                               | 64                   |          | 29 268<br>29 335             | 67       | 10.70 665              | 9.99                | 77 1            | 3             | 54<br>53 | 5 4    |              | 40.2                                                  | 3.0                 |
| 13       | 9.28 512<br>9.28 577                                   | 65                   |          | 29 402                       | 67       | 10.70598               | 9,991               | 75              | 3             | 52       | 7 4    | 7.11         | 40,34                                                 | 46.2                |
| 8        | 9.28 641                                               | 64                   |          | .29 468                      | 67       | 10.70532               | 9.99                |                 | 2             | 51       |        | 1.4          | 33.5                                                  | 32.3                |
| 10       | 9.28 705                                               | 64                   |          | 29 535                       | 66       | 10.70 465              | 9.99                | 170             | 3             | 50<br>49 | 211    | 11 1         | tion)                                                 | J. 17.4             |
| 11       | 9.25 769                                               | 64                   |          | .29 601<br>.29 668           | 67       | 10.70 399<br>10.70 332 | 9.99<br>9.99        | ic-             | 2             | 13       |        |              | ~4                                                    |                     |
| 12       | 9.28 833<br>9.28 896                                   | 63                   | 9.       | 29 734                       | 66       | 10.70266               | 9.99                | 162             | 3 2           | 47       | ,      | 65           | 64                                                    | 63                  |
| 13<br>14 | 9.28 960                                               | 64                   |          | .29 800                      | 66<br>66 | 10.70 200              | 9.99                | 100             | 3             | 40       |        | (3.0)        | 12.8<br>14,2                                          | 12.6<br>15.9        |
| 15       | 9.29 024                                               | 64                   |          | .29 866                      | 66       | 10.70 134              | 9.99                |                 | 2             | 45       |        | 20,0         | 25,5                                                  | 25.5                |
| 16       | 9.29 087                                               | 63                   |          | .29 932<br>.29 998           | 66       | 10.70 068<br>10.70 002 | 9.99                |                 | 3             | 44       | 51:    | 32.5         | 32.0                                                  | esland              |
| 15       | 9.29 150<br>9.29 214                                   | 64                   |          | .30 064                      | 66       | 10.69 936              |                     |                 | $\frac{2}{3}$ | 42       |        | 9.0<br>15.5  | 35.4                                                  | 37.5<br>44.1        |
| 18<br>19 | 9.29 277                                               | 63                   |          | .30 130                      | 66<br>65 | 10.69 870              | 1                   |                 | 2             | 41       | S      | 52.6         | 51.2                                                  | 50.4                |
| 20       | 9.29 340                                               | 63                   |          | .30 195                      | 66       | 10.69 805              |                     |                 | 3             | 40       | 91.    | 55.5         | 57.0                                                  | 56.7                |
| 21       | 9.29 403                                               | 63                   |          | .30 261<br>.30 326           | 65       | 10.69739 $10.69674$    |                     |                 | 2             | 35       |        |              |                                                       | 1                   |
| 22<br>23 | 9.29 466<br>9.29 529                                   | 1 00                 | l ş      | .30 391                      | 65       | 10.69 609              |                     |                 | 3 2           | 37       | 1      | 62           | 61                                                    | 60                  |
| 24       |                                                        | 62                   | 9        | 0.30457                      | 65       | 10.69 543              |                     |                 | 3             | 36       | 2      | 12.4         | 12.2                                                  | 12.0                |
| 25       |                                                        | 62                   |          | 0.30522                      | 65       | 10.69 478              |                     |                 | 2             | 35       |        | 15.5         | 15.3                                                  | 15.0                |
| 26       | 9.29 710                                               | 1 00                 | 10       | ) 30 587<br>) 30 652         | 65       | 10.69 413              |                     |                 | 3             | 33       |        | 21.5<br>31.0 | 24.4<br>30.5                                          | $\frac{24.0}{30.0}$ |
| 27       | 9.29 779                                               | 62                   | Ğ        | 9.30 717                     | 65       | 10.69 283              | 9.99                | 124             | 3             | 32       | Ü      | 37.2         | 36.6                                                  | 35.0                |
| 28<br>29 |                                                        | 62                   | 10       | 30 782                       | 65       | 10.69 218              | 9.99                | 122             | 3             | 31       | 3      | 43.4         | 42.7                                                  | 42.0                |
| 30       | 9.29 966                                               | 3 03                 | . 19     | 3.30 846                     | 0.5      | 10.69 154              |                     |                 | 2             | 30       |        | 49.6         | 45.5<br>54.9                                          | 45.0<br>54.0        |
| 31       | 9.30 028                                               | ) l cc               |          | 9.30 911<br>9.30 97 <i>5</i> | 100      | 10.69 053              |                     |                 | 3             | 29<br>28 | 31     | 00.0         | 1 01.5                                                | 10110               |
| 32       |                                                        | 61                   | 1        | 9.31 040                     | 1 00     | 10.68900               |                     |                 | 3             | 27       | l      | . 50         | 1 3                                                   | 12                  |
| 34       |                                                        |                      | 1 9      | 9.31 104                     | 64       | 10.68 890              |                     |                 | 3             | 26       | 2      | 59<br>11.    |                                                       | 1                   |
| 35       | 9.30 27                                                | 51.                  | . 1:     | 9.31 168                     | 3   0-   | 10.68 83               |                     | 106             | 12            | 25<br>24 | 3      | 17.          | 7 6.5                                                 |                     |
| 36       |                                                        | 2 6                  |          | 9.31 233<br>9.31 297         |          | 10.6876<br>10.6870     |                     |                 | 13            | 23       | 4      | 123.         | 611.2                                                 | 0.8                 |
| 33       |                                                        | a 1 6.               |          | 9.31 361                     | 10-      | 10.68 63               | 9.99                | 099             |               | 22       | 5      |              | $ \begin{array}{c c} 5 & 1.5 \\ 4 & 1.5 \end{array} $ |                     |
| 39       |                                                        |                      |          | 9.31423                      | 64       | 10.68 57               | 1                   | 096             | 13            | 1-1      | 1 7    | 41.          | 3 2.1                                                 | 1.4                 |
| 44       |                                                        | 2   _                | . 1'     | 9.31 489                     | 1 62     | 10.68 51               |                     | $093 \\ 091$    |               | 20<br>19 | S      | 147.         | 2   2.4                                               | 1.6                 |
| 4        |                                                        | ع ا د                | . 1      | 9.31 55:<br>9.31 610         | 64       | 10.6838                |                     | 035             | 13            | 18       | 9      | 33.          | 1 2.7                                                 | 11.8                |
| 4        |                                                        | 5 I O                | 1        | 9.31 67                      | 9 63     | 10.68 32               | 1   9.99            | 086             | 12            | 17       | 1      |              |                                                       |                     |
| 4        | 9.30 82                                                | $6 \mid \frac{6}{6}$ | 1 I      | 9.31 74                      |          | 10.00.20               |                     | 083             | 3             |          |        | From         | the to                                                | pr                  |
| 4        |                                                        | 7   2                | - 1      | 9.31 80                      | 6   6,   | 1 10.68 19             |                     | 9 080<br>9 07 5 | . 1 -         | 1.4      |        | For 1        | 1°÷ or                                                | 191°-               |
| 14       |                                                        | 1 0                  | ĭ        | 9.31 87<br>9.31 93           | 3   00   | 10.6806                | 7 9.9               | 9075            |               | 13       | Tre    |              |                                                       | ed; for             |
| 4        |                                                        | 810                  | 0        | 9.31 99                      | 6 6      | 10.68 00               | 4 9.99              | 9072            |               |          | 1 10   |              |                                                       | -, read             |
| 4        | 9 9.31 12                                              | 9 6                  | 0        | 9.32 05                      | 9   63   | 10.01 33               |                     | 9 070<br>9 067  | <u>'</u> ]:   | أأذ      | ١      |              | tion.                                                 |                     |
|          | 0 9.31 18                                              | 9                    | 1        | 9.32 12                      | 2   69   | 1 111 157 84           |                     | 9 004<br>9 004  | LÌ            | 3 0      | ' 1    |              |                                                       |                     |
|          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | in e                 | 50 l     | $9.32\ 18$ $9.32\ 24$        | 8 00     | 10.67 73               | 2 9.9               | 9 062           | 3   3         | 2   8    | ,      | Frem         | the bo                                                | itom:               |
|          | 3 9.31 3                                               | יו חז                | 50       | $9.32\ 31$                   | 1 6      | 10.67 68               | 9.9                 | 9 059           | 71.           | 3 7      |        |              |                                                       | 2580-               |
| 5        | 4 9.31 4                                               | in I                 | 50<br>50 | 9.32 37                      | 3 6      | 1 10.01 02             |                     | 9 056           | '!            |          |        |              |                                                       |                     |
|          | 5 9.31 49                                              | 90 [,                | 59       | 9.32 43                      | 6 6      | 110.67.50              |                     | 9 054<br>9 051  | 1   1         | 3 4      | 1      | ac a         | · SVO                                                 | ed; for<br>, read   |
|          | 6 9.31 5<br>7 9.31 6                                   | 20 6                 | 30       | 9.32 49                      | 1 1 0    | 10.67 43               | 9.9                 | 9 048           | 31:           | 3 3      | 3   16 |              | _                                                     | , ruac              |
|          | 8 9.31 6                                               | RO I'                | 60       | 9.32 62                      | 3 6      | 10.67 37               | 7   9.9             | 9 046           | 0 [           | 3 5      |        | -iun         | ction.                                                |                     |
| - 1      | 9.31 7                                                 | 28                   | 59<br>60 | 9.32 68                      | 55   6   | 9 1 10.01 0            |                     | 9 043<br>9 040  |               | 3 6      | - 1    |              |                                                       |                     |
| 1        | 0 9.31 7                                               | SS L                 |          | 9.32 7                       | _        | 10.67 2                | _                   | _               | -             |          |        | P            | rop. I                                                | ts.                 |
| - 1      | L Co                                                   | ام                   | d        | LCt                          | 1 1 0    | d L Tai                | 1   L               | Sin             | . ; '         | u i      | 1      |              | . ~ } .                                               |                     |

1 L Cos d L Ctn cd L Tan L Sin d Propretations

78° — Logarithms of Trigonometric Functions

| 58               | S 12 — Logarithms of Trigonometric Functions |          |                                  |          |                                     |                                  |     |                 |        |                     |                      | [111]        |
|------------------|----------------------------------------------|----------|----------------------------------|----------|-------------------------------------|----------------------------------|-----|-----------------|--------|---------------------|----------------------|--------------|
| Ľ                | L Sin                                        | d        | L Tan                            | cd       | L Cin                               | L Cos                            | d   |                 |        | Pro                 | p. Pts               |              |
| 1 2              | 9.31 788<br>9.31 847<br>9.31 907             | 59<br>60 | 9.32 747<br>9.32 810<br>9.32 872 | 63<br>62 | 10.67 253<br>10.67 190<br>10.67 128 | 9,99 040<br>9,99 035<br>9,99 035 | 2 3 | <b>60</b><br>59 |        | ca                  |                      |              |
| 3                | 9.31 966                                     | 59       | 9.32 933                         | 61       | 10.67 067                           | 9.99 032                         | 3 2 | 58<br>57        | 2      | 63                  | 12.4                 | 61           |
| 4                | 9.32 025                                     | 59<br>59 | 9.32 995                         | 62       | 10.67 005                           | 9.99 030                         | 3   | 56              | 3      | 12.6<br>18.9        | 15.6                 | 12.2<br>18.3 |
| 6                | 9.32 084<br>9.32 143                         | 59       | 9.33 057<br>9.33 119             | 62       | 10.66 943<br>10.66 SS1              | 9.99 027<br>9.99 024             | 3   | 55<br>54        | 4 5    | $\frac{25.2}{31.5}$ | 24.8                 | 24.4         |
| 7                | 9.32 202                                     | 59<br>59 | 9.33 180                         | 61<br>62 | 10.66 820                           | 9.99022                          | 2 3 | 53              | 6      | 37.8                | 31.0<br>37.2         | 30.5<br>36.6 |
| 8                | 9.32 261 9.32 319                            | 58       | 9.33 242<br>9.33 303             | 61       | 10.66 758                           | 9.99 019<br>9.99 016             | 3   | 52<br>51        | 8      | $\frac{44.1}{50.4}$ | 43.4                 | 42.7         |
| 10               | 9.32 378                                     | 59       | 9.33 365                         | 62       | 10.66 635                           | 9.99 013                         | 2   | 50              | 9      | 56.7                | 49.6<br>55.8         | 48.5<br>54.9 |
| 11               | 9.32 437                                     | 59<br>58 | 9.33 426<br>9.33 487             | 61<br>61 | 10.66 574                           | 9.99 011<br>9.99 008             | 3   | 49<br>48        |        |                     |                      |              |
| 13               |                                              | 58       | 9.33 545                         | 61       | 10.66 452                           | 9.99 005                         | 3   | 47              | 1      | 60                  | 59                   | 58           |
| 14               |                                              | 59<br>5S | 9.33 609                         | 61<br>61 | 10.66 391                           | 9.99 002                         | 3   | 46              | 2 3    | 12.0<br>18.0        | 11.8                 | 11.6         |
| 15<br>16         | 9.32 670                                     | 58       | 9.33 670<br>9.33 731             | 61       | 10.66 330<br>10.66 269              | 9.99 000<br>9.98 997             | 3   | 45<br>44        | 4      | 24.0                | 17.7<br>23.6         | 17.4<br>23.2 |
| 17               | 9.32 786                                     | 58<br>58 | 9.33 792                         | 61<br>61 | 10.66 208                           | 9.98 994                         | 3   | 43              | 5      | 30.0<br>36.0        | 29.5                 | 29.0         |
| 18<br>19         |                                              | 58       | 9.33 853<br>9.33 913             | 60       | 10.66 147<br>10.66 087              | 9.98 991<br>9.98 989             | 2   | 42<br>41        | 7      | 42.0                | 35.4<br>41.3         | 34.8<br>40.6 |
| 20               |                                              | 58<br>58 | 9.33 974                         | 61<br>60 | 10.66 026                           | 9.98 986                         | 3   | 40              | 8      | 48.0                | 41.3<br>47.2<br>53.1 | 46.4         |
| 21<br>22         | 9.33 018                                     | 57       | 9.34 034<br>9.34 095             | 61       | 10.65 966<br>10.65 905              | 9.98 983<br>9.98 980             | 3   | 39<br>38        | ١ ،    | 04.0                | 1 33.1               | 1 52.2       |
| 23               | 9.33 133                                     | 58<br>57 | 9.34 155                         | 60<br>60 | 10.65 845                           | 9.98978                          | 3   | 37              |        | 1.5                 | 715                  | 6            |
| 24               |                                              | 58       | 9.34 215                         | 61       | 10.65 785                           | 9.98 975                         | 3   | 36              |        | 2 11                | .4 1                 | 1.2          |
| 25<br>26         | 9.33 305                                     | 57       | 9.34 276<br>9.34 336             | 60       | 10.65 724<br>10.65 664              | 9.98 972<br>9.98 969             | 3   | 35<br>34        |        | 3 17                |                      | 3.8<br>2.4   |
| 1 27             | 9.33 362                                     | 57<br>58 | 9.34 396                         | 60<br>60 | 10.65 604                           | 9.98 967                         | 3   | 33              |        | 5 28                | 3.5 2                | 3.0          |
| 29               | 9.33 420 9.33 477                            | 57       | 9.34 456<br>9.34 516             | 60       | 10.65 544<br>10.65 484              | 9.98 964<br>9.98 961             | 3   | 32<br>31        |        | 6 34                | .2   3               | 3.6<br>9.2   |
| 30               | 9.33 534                                     | 57<br>57 | 9.34 576                         | 60<br>59 | 10.65 424                           | 9.98 958                         | 3   | 30              |        | 8 45                | 6.6 4                | 1.8          |
| 31               |                                              | 56       | 9.34 635<br>9.34 695             | 60       | 10.65 365<br>10.65 305              | 9.98 955<br>9.98 953             | 2   | 29<br>28        |        | 9   51              | .3   50              | ).4          |
| 33               | 9.33 704                                     | 57<br>57 | 9.34 755                         | 60<br>59 | 10.65 245                           | 9.98 950                         | 3   | 27              | l      |                     |                      |              |
| 34               |                                              | 57       | 9.34 814<br>9.34 874             | 60       | 10.65 186<br>10.65 126              | 9.98 947<br>9.98 944             | 3   | 26<br>25        | 2      | 11.0                | 0.6                  | 0.4          |
| 36               | 9.33 874                                     | 56<br>57 | 9.34 933                         | 59<br>59 | 10.65 067                           | 9.98 941                         | 3   | 24              | 3      | 16.5                | 0.9                  | 0.6          |
| 37               |                                              | 56       | 9.34 992<br>9.35 051             | 59       | 10.65 008<br>10.64 949              | 9.98 938<br>9.98 936             | 2   | 23<br>22        | 4<br>5 | 22.0<br>27.5        |                      | 1.0          |
| 39               | 9.34 043                                     | 56<br>57 | 9.35 111                         | 60<br>59 | 10.64 889                           | 9.98 933                         | 3   | 21              | 6      | 33.0                | 1.8                  | 1.2          |
| 40               |                                              | 56       | 9.35 170<br>9.35 229             | 59       | 10.64 830<br>10.64 771              | 9.98 930<br>9.98 927             | 3   | 20              | 8      | 38.5                |                      | 1.4          |
| 42               | 9.34 212                                     | 56       | 9.35 288                         | 59       | 10.64712                            | 9.98 924                         | 3   | 19<br>18        | 9      |                     |                      | 1.8          |
| 43               |                                              | 56<br>56 | 9.35 347<br>9.35 405             | 59<br>58 | 10.64 653<br>10.64 595              | 9.98 921 9.98 919                | 3 2 | 17<br>16        | l      |                     |                      |              |
| 45               |                                              | 56       | 9.35 464                         | 59       | 10.64 536                           | 9.98 916                         | 3   | 15              | 1      | From                | the top              | o:           |
| 46               | 9.34 436                                     | 56<br>55 | 9.35 523                         | 59<br>58 | 10.64 477                           | 9.98 913                         | 3   | 14              | 3      | For 12              | o+ or                | 192°+,       |
| 47               |                                              | 56       | 9.35 581<br>9.35 640             | 59       | 10.64 419                           | 9.98 910<br>9.98 907             | 3   | 13<br>12        |        |                     | printe               |              |
| 49               | 9.34 602                                     | 55<br>56 | 9.35 698                         | 58<br>59 | 10.64 302                           | 9.98 904                         | 3   | 11              |        | 2°+ or<br>-funct    | 282°+                | , read       |
| 50<br>51         |                                              | 55       | 9.35 757<br>9.35 815             | 58       | 10.64 243<br>10.64 185              | 9.98 901<br>9.98 898             | 3   | 10<br>9         | 00.    | -ranct              | 1011.                |              |
| 5:               | 9.34769                                      | 56<br>55 | 9.35 873                         | 58<br>58 | 10.64 127                           | 9.98 896                         | 3   | 8               | ١,     | Dan                 | LLL                  | ·            |
| 53<br>54         |                                              | 55       | 9.35 931<br>9.35 989             | 58       | 10.64 069<br>10.64 011              | 9.98 893<br>9.98 890             | 3   | 7<br>6          | ı      |                     | he bot               |              |
| 58               | 9.34 934                                     | 55<br>55 | 9.36 047                         | 58<br>58 | 10.63 953                           | 9.98 887                         | 3   | 5               |        |                     | o+ or :<br>printe    |              |
| 56<br>57         |                                              | 55       | 9.36 105<br>9.36 163             | 58       | 10.63 895<br>10.63 837              | 9.98 884<br>9.98 881             | 3   | 4<br>3          |        |                     | 347°+                |              |
| 58               | 9.35 099                                     | 55<br>55 | 9.36 221                         | 58<br>58 | 10.63779                            | 9.98878                          | 3   | 2               |        | -funct              |                      | ,            |
| 59<br><b>6</b> 0 |                                              | 55       | 9.36 279                         | 57       | 10.63 721                           | 9.98 875                         | 3   | 1               | 1      |                     |                      |              |
| ۲                | 9.35 209<br>L Cos                            | d        | 9.36 336                         | - 2      | 10.63 664<br>L Tan                  | 9.98 872                         | -   | Ļ               | _      | D                   | - D4                 |              |
| L                | 1 77 008                                     | ı u      | L Ctn                            | cd       | Drau                                | L Sin                            | d   | 1               | l .    | rro                 | p. Pt                | 5.           |

77° - Logarithms of Trigonometric Functions

| 111                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                                                          | runctions as                                                                                                                                                                                                                                                 |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1                                                                                               | LSin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>d</u>                                                                                                             | L Tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c d                                                                                                      | L C'tn                                                                                                                                                                                                                    | L Cos                                                                                                                                                                                                                                                                                                                                                                 | 4                                 |                                                                                          | Prop. Pts.                                                                                                                                                                                                                                                   |  |  |
| 00 11 22 34 4 5 5 6 6 6 7 7 8 9 9 11 12 12 12 12 12 12 12 12 12 12 12 12                        | L Sin  2.55 ± 9  2.55 ± 9  2.55 ± 9  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± 19  2.55 ± | d 355554 554 554 554 554 553 553 553 553                                                                             | L Tan 9.36 336 9.36 394 9.36 452 9.36 566 9.36 566 9.36 566 9.36 575 9.36 795 9.36 795 9.36 900 9.37 137 9.37 137 9.37 250 9.37 363 9.37 419 9.37 363 9.37 419 9.37 585 9.37 585 9.37 584 9.37 585 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 584 9.37 9.37 9.37 9.37 9.37 9.37 9.37 9.37 | 53<br>53<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57                   | L Ctn 10.63 644 10.63 644 10.63 644 10.63 444 10.63 444 10.63 376 10.63 319 10.63 202 10.63 203 10.63 203 10.62 207 10.62 203 10.62 807 10.62 634 10.62 634 10.62 634 10.62 524 10.62 468 10.62 412 10.62 418             | L Cos   112   12   12   12   12   12   12                                                                                                                                                                                                                                                                                                                             |                                   | 60 5587 6 65 553 25 5 5 9 4 4 7 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                        |                                                                                                                                                                                                                                                              |  |  |
| 252 202 202 202 202 202 202 202 202 202                                                         | 9.36 555<br>9.36 606<br>9.36 660<br>9.36 713<br>9.36 736<br>9.36 871<br>9.36 871<br>9.36 924<br>9.37 028<br>9.37 028<br>9.37 185<br>9.37 287<br>9.37 287<br>9.37 341<br>9.37 341<br>9.37 343<br>9.37 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53<br>53<br>53<br>53<br>53<br>53<br>53<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52 | 9.37 700<br>9.37 756<br>9.37 812<br>9.37 808<br>9.37 924<br>9.37 980<br>9.38 091<br>9.38 147<br>9.38 202<br>9.38 257<br>9.38 365<br>9.38 423<br>9.38 549<br>9.38 549<br>9.38 569<br>9.38 644<br>9.38 699<br>9.38 675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56<br>56<br>56<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>5                          | 10.62 360<br>10.62 244<br>10.62 188<br>10.62 076<br>10.62 020<br>10.61 965<br>10.61 965<br>10.61 798<br>10.61 743<br>10.61 637<br>10.61 637<br>10.61 577<br>10.61 521<br>10.61 465<br>10.61 356<br>10.61 301<br>10.61 301 | 9.95 %1<br>9.98 798<br>9.98 798<br>9.98 792<br>9.98 792<br>9.98 783<br>9.98 773<br>9.98 7714<br>9.98 7714<br>9.98 776<br>9.98 775<br>9.98 775 | 3 53355 333553 335553 345         | 35 35 33 35 35 35 35 35 35 35 35 35 35 3                                                 | 2 10.4 10.2<br>3 15.6 15.3<br>4 20.8 20.4<br>5 26.0 25.5<br>6 31.2 35.6<br>7 36.4 35.7<br>8 41.6 40.8<br>9 46.8 45.9<br>4 0.8 0.6 0.4<br>3 1.2 0.9 0.6<br>4 1.6 1.2 0.8<br>5 2.0 1.5 1.0<br>6 2.4 1.8 1.2<br>7 2.8 2.1 1.4<br>8 3.2 2.4 1.6<br>9 3.6 2.7 1.8 |  |  |
| 444<br>444<br>445<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.37 549<br>9.37 650<br>9.37 652<br>9.37 753<br>9.37 753<br>9.37 858<br>9.37 858<br>0 9.37 858<br>1 9.37 960<br>3 9.38 061<br>4 9.38 062<br>9.38 164<br>7 9.38 164<br>7 9.38 215<br>9 9.38 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52<br>51<br>52<br>51<br>52<br>51<br>51<br>51<br>51<br>51<br>51<br>51                                                 | 9.38 808<br>9.38 863<br>9.38 918<br>9.38 972<br>9.39 087<br>9.39 136<br>9.39 190<br>9.39 245<br>9.39 299<br>9.39 353<br>9.39 407<br>9.39 569<br>9.39 569<br>9.39 623<br>9.39 677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54<br>55<br>55<br>54<br>55<br>54<br>55<br>54<br>55<br>54<br>55<br>54<br>55<br>54<br>55<br>54<br>55<br>55 | 10.61 192<br>10.61 137<br>10.61 082<br>10.60 978<br>10.60 978<br>10.60 918<br>10.60 864<br>10.60 810<br>10.60 755<br>10.60 701<br>10.60 593<br>10.60 485<br>10.60 431<br>10.60 377<br>10.60 377                           | 9.98740<br>9.98731<br>9.98731<br>9.98725<br>9.98725<br>9.98722<br>9.98715<br>9.98715<br>9.98703<br>9.98703<br>9.98703<br>9.98697<br>9.98697                                                                                                                                                                                                                           | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 | 16<br>15<br>14<br>13<br>12<br>11<br>10<br>9<br>8<br>7<br>6<br>5<br>4<br>3<br>2<br>1<br>0 | From the top: For 13°+ or 193°+, read as printed; for 103°+ or 283°+, read co-function.  From the bottom: For 76°+ or 256°+, read as printed; for 166°+ or 346°+, read co-function.                                                                          |  |  |
| 1                                                                                               | L Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d                                                                                                                    | L Ctn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cd                                                                                                       | L Tan                                                                                                                                                                                                                     | L Sin                                                                                                                                                                                                                                                                                                                                                                 | d                                 | '                                                                                        | Prop. Pts.                                                                                                                                                                                                                                                   |  |  |

76° — Logarithms of Trigonometric Functions

| 00            | 00 14 — Logarithms of Trigonometric Functions |          |                      |          |                        |                                         |   |             |     |                     |                                              |              |
|---------------|-----------------------------------------------|----------|----------------------|----------|------------------------|-----------------------------------------|---|-------------|-----|---------------------|----------------------------------------------|--------------|
| Ľ             | L Sin                                         | d        | L Tan                | cd       | L Ctn                  | L Cos                                   | d |             |     | Pre                 | op. P                                        | s.           |
| 0             | 9.35368                                       | 50       | 9.39 677             | 54       | 10.60 323              | 9.95 690                                | 3 | 60          |     |                     |                                              |              |
| 1             | 9.35418                                       | 51       | 9.39 731             | 54       | 10.60 269              | 9.98 687                                | 3 | 59          | ١.  |                     |                                              | ı            |
| $\frac{2}{3}$ | 9.38 469<br>9.35 519                          | 50       | 9,39 785<br>9,39 838 | 53       | 10.60 215              | 9.98 684<br>9.98 681                    | 3 | 58<br>57    | l   | 54                  | 53                                           | 52           |
| 4             | 9.38 570                                      | 51       | 9.39 892             | 54       | 10.60 102              | 9.98 678                                | 3 | 56          | 2   | 10.8                |                                              |              |
| 5             | 9.35 620                                      | 50       | 9.39 945             | 53       | 10.60 055              | 9.98 675                                | 3 | 55          | 3   | 16.2                | 15.9                                         |              |
| 6             | 9.35 670                                      | 50       | 9.39 999             | 54       | 10.60 001              | 9.98 671                                | 4 | 54          | 4 5 | $\frac{21.6}{27.0}$ | 21.2                                         |              |
| 7             | 9.38 721                                      | 51       | 9.40 052             | 53       | 10.59 948              | 9.98 668                                | 3 | 53          | 6   | 32.4                | $\begin{vmatrix} 26.5 \\ 31.8 \end{vmatrix}$ | 26.0<br>31.2 |
| 8             | 9.38 111                                      | 50<br>50 | $9.40\ 106$          | 54<br>53 | 10.59 894              | 9.98 665                                | 3 | 52          | 7   | 37.8                | 37 1                                         | 26 4         |
| 9             | 9.38 821                                      | 50       | $9.40\ 159$          | 53       | 10.59 841              | 9.98 662                                | 3 | 51          | 8   | 43.2                | 42.4                                         | 41.6         |
| 10            | 9.38 S71                                      | 50       | 9.40 212             | 54       | 10.59 788              | 9.98 659                                | 3 | 50          | 91  | 48.6                | 47.7                                         | 46.8         |
| 11<br>12      | $9.38921 \\ 9.38971$                          | 50       | 9.40266 $9.40319$    | 53       | 10.59 734<br>10.59 681 | 9.98 656<br>9.98 652                    | 4 | 49<br>48    | l   |                     |                                              | - 1          |
| 13            | 9.39 021                                      | 50       | 9.40 372             | 53       | 10.59 628              | 9.98 649                                | 3 | 47          | 1   | 51                  | 50                                           | 1 49         |
| 14            | 9.39 071                                      | 50       | 9.40 425             | 53       | 10.59 575              | 9.98 646                                | 3 | 46          | 2   | 10.2                | 10.0                                         | 9.8          |
| 15            | 9.39 121                                      | 50       | 9.40 478             | 53       | 10.59 522              | 9.98 643                                | 3 | 45          | 3   | 15.3                | 15.0                                         | 14.7         |
| 16            | 9.39 170                                      | 49<br>50 | 9.40531              | 53<br>53 | 10.59 469              | 9.98 640                                | 3 | 44          |     | 20.4                | 20.0                                         | 19.6         |
| 17            | 9.39 220                                      | 50       | 9.40 584             | 52       | 10.59416               | 9.98 636                                | 3 | 43          |     | $25.5 \\ 30.6$      | 25.0                                         | 24.5         |
| 18<br>19      | 9.39 270<br>9.39 319                          | 49       | 9.40 636<br>9.40 689 | 53       | 10.59 364<br>10.59 311 | 9.98 633<br>9.98 630                    | 3 | 42<br>41    |     | 35.7                | 30.0<br>35.0                                 | 29.4<br>34.3 |
| 20            | 9.39 369                                      | 50       |                      | 53       | 10.59 258              | 9.98 627                                | 3 | 40          | 8   | 40.8                | 140.0                                        | 39.2         |
| 21            | 9.39 418                                      | 49       | 9.40 742<br>9.40 795 | 53       | 10.59 205              | 9.98 623                                | 4 | 39          | 9   | 45.9                | 45.0                                         | 44.1         |
| 22            | 9.39 467                                      | 49       | 9.40 847             | 52       | 10.59 153              | 9.98 620                                | 3 | 38          |     |                     |                                              |              |
| 23            | 9.39 517                                      | 50       | 9.40 900             | 53<br>52 | 10.59 100              | 9.98 617                                | 3 | 37          |     | 1 4                 | 18 1                                         | 47           |
| 24            | 9.39 566                                      | 49<br>49 | 9.40 952             | 53       | 10.59 048              | 9.98 614                                | 4 | 36          |     |                     |                                              | 9.4          |
| 25            | 9.39 615                                      | 49       | 9.41 005             | 52       | 10.58 995              | 9.98 610                                | 3 | 35          |     |                     |                                              | 4.1          |
| 26<br>27      | 9.39 664<br>9.39 713                          | 49       | 9.41 057<br>9.41 109 | 52       | 10.58 943              | 9.98 607<br>9.98 604                    | 3 | 34<br>33    |     | 4 1                 | 9.2   1                                      | 8.8          |
| 28            | 9.39 762                                      | 49       | 9.41 161             | 52       | 10.58 839              | 9.98 601                                | 3 | 32          |     | 5 2                 |                                              | 3.5          |
| 29            | 9.39 811                                      | 49       | 9.41 214             | 53       | 10.58 786              | 9.98 597                                | 4 | 31          |     | 6 2 3               |                                              | 8.2<br>2.9   |
| 30            | 9.39 860                                      | 49       | 9.41 266             | 52       | 10.58 734              | 9.98 594                                | 3 | 30          |     | 8 3                 |                                              | 7.6          |
| 31            | 9.39 909                                      | 49<br>49 | 9.41 318             | 52<br>52 | 10.58 682              | 9.98 591                                | 3 | 29          |     | 9 4                 |                                              | 2.3          |
| 32<br>33      | 9.39 958<br>9.40 006                          | 48       | 9.41 370<br>9.41 422 | 52       | 10.58 630<br>10.58 578 | 9.98 588<br>9.98 584                    | 4 | 28<br>27    |     |                     |                                              |              |
| 34            | 9.40 055                                      | 49       | 9.41 474             | 52       | 10.58 526              | 9.98 581                                | 3 | 26          |     | 1                   | 4 1                                          | 3            |
| 35            | 9.40 103                                      | 48       | 9.41 526             | 52       | 10.58 474              | 9.98 578                                | 3 | 25          |     | 2                   | 1                                            | .6           |
| 36            | 9.40 152                                      | 49       | 9.41 578             | 52       | 10.58 422              | 9.98 574                                | 4 | 24          |     | 3                   |                                              | .9           |
| 37            | 9.40 200                                      | 4S<br>49 | 9.41 629             | 51<br>52 | 10.58371               | 9.98571                                 | 3 | 23          |     | 4                   |                                              | .2           |
| 38<br>39      | 9.40 249<br>9.40 297                          | 48       | 9.41 681<br>9.41 733 | 52       | 10.58319<br>10.58267   | 9.98 568                                | 3 | 22<br>21    |     | 5                   |                                              | .5           |
| 40            | 9.40 346                                      | 49       | 9.41 784             | 51       | 10.58 216              | 9.98 <i>5</i> 65<br>9.98 <i>5</i> 61    | 4 | 20          |     |                     |                                              | .1           |
| 41            | 9.40 394                                      | 48       | 9.41 836             | 52       | 10.58 164              | 9.98 558                                | 3 | 19          |     | 8 :                 | $3.2 \mid 2$                                 | .4           |
| 42            | 9.40 442                                      | 48       | 9.41 887             | 51       | 10.58 113              | 9.98 555                                | 3 | 18          |     | 9 ] :               | 3.6 2                                        | .7           |
| 43            | 9.40 490                                      | 48<br>48 | 9.41 939             | 52<br>51 | 10.58 061              | 9.98 551                                | 4 | 17          |     |                     |                                              |              |
| 44            | 9.40 538                                      | 48       | 9.41 990             | 51       | 10.58 010              | 9.98 548                                | 3 | 16          | 74  | rom                 | the to                                       | <b>n•</b>    |
| 45<br>46      | 9.40 586<br>9.40 634                          | 48       | $9.42041 \\ 9.42093$ | 52       | 10.57 959<br>10.57 907 | 9.98 545<br>9.98 541                    | 4 | 15          |     |                     |                                              | _            |
| 47            | 9.40 682                                      | 48       | 9.42 144             | 51       | 10.57 856              | 9.98 538                                | 3 | 14<br>13    |     |                     |                                              | 194°+,       |
| 48            | 9.40 730                                      | 48       | 9.42 195             | 51       | 10.57 805              | 9.98 535                                | 3 | 12          |     |                     |                                              | ed; for      |
| 49            | 9.40 778                                      | 48<br>47 | 9.42 246             | 51<br>51 | 10.57 754              | 9.98 531                                | 3 | 11          |     |                     |                                              | +, read      |
| 50            | 9.40 825                                      | 48       | 9.42297              | 51       | 10.57 703              | 9.98528                                 | 3 | 10          | co- | func                | tion.                                        |              |
| 51<br>52      | 9.40 873<br>9.40 921                          | 48       | 9.42 348             | 51       | 10.57 652              | 9.98 525                                | 4 | 9           |     |                     |                                              |              |
| 53            | 9.40 921                                      | 47       | 9.42 399<br>9.42 450 | 51       | 10.57 601<br>10.57 550 | 9.98 521<br>9.98 518                    | 3 | 8           | F   | rom                 | the bo                                       | ttom:        |
| 54            | 9.41 016                                      | 48       | 9.42 501             | 51       | 10.57 499              | 9.98 515                                | 3 | 6           |     |                     |                                              | 255°+.       |
| 55            | 9.41 063                                      | 47       | 9.42 552             | 51       | 10.57 448              | 9.98 511                                | 4 | 5           |     |                     |                                              | ed; for      |
| 56            | 9.41 111                                      | 48<br>47 | 9.42 603             | 51<br>50 | 10.57 397              | 9.98 508                                | 3 |             |     |                     |                                              | ÷, read      |
| 57<br>58      | 9.41 158<br>9.41 205                          | 47       | 9.42 653<br>9.42 704 | 51       | 10.57 347              | 9.98 505                                | 4 | 4<br>3<br>2 |     |                     |                                              | , read       |
| 59            | 9.41 203                                      | 47       | 9.42 704             | 51       | 10.57 296<br>10.57 245 | 9.98 501<br>9.98 498                    | 3 | 1           | CO- | func                | MOII.                                        |              |
| 60            | 9.41 300                                      | 48       | 9.42 805             | 50       | 10.57 195              | 9.98 494                                | 4 | ō           |     |                     |                                              |              |
|               | L Cos                                         | d        | L Ctn                | cd       | L Tan                  | L Sin                                   | ď | ÷           |     | Pr                  | p. P                                         | fs.          |
| 1             | 000                                           |          |                      | , ou     | i mrant                | 1 1111111111111111111111111111111111111 | u |             |     |                     |                                              | •••          |

75° - Logarithms of Trigonometric Functions

| 0 9.41 350 47 9.42 850 51 10.57 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111      |            |     | I I Tan ad I Cin |           |            | ¥ /1        | _        | II ( v. v. |                                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-----|------------------|-----------|------------|-------------|----------|------------|--------------------------------|--|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | LSin       | d   | L Tan            | <u>cd</u> | L Ctn      | L Cos       | <u>d</u> | -          | Prop. Pts.                     |  |
| 1 9.41 934 47 9.42 905 51 10.05 044 9.94 955 47 9.41 49.41 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 49.81 4   | 0        | 9.41 300 ; | 47  |                  | 51        |            |             | : 3      |            |                                |  |
| 2 9.41 944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | 9.41 347   |     |                  |           | 10.57 144  | 9.95491     | 10       |            | . 11 : 50 40                   |  |
| 4 0.41 488 47 9.43 007 62 10.56 949 9.9.471 3 5 6 4 12.44 12.45 14.7   6 9.41 552 47 9.43 108 51 10.55 802 9.9.471 3 5 6 4 12.44 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.   |          |            |     |                  |           | 10.01 024  | 0.05455     | 4        |            |                                |  |
| 6 9.41 552 47 9.43 105 50 10.55 943 9.99.477 1 5 56 9.41 612 54 9.43 105 50 10.55 89 9.99.474 1 9.43 205 50 10.55 89 9.99.474 1 9.43 205 50 10.55 6742 9.99.464 3 51 9.41 613 1 9.41 815 40 9.43 305 50 10.55 6742 9.99.464 3 51 9.41 613 1 9.41 815 40 9.43 305 50 10.55 6742 9.99.464 3 51 9.41 613 1 9.41 815 40 9.43 305 50 10.55 6742 9.99.464 3 51 9.41 613 1 9.41 815 40 9.43 305 50 10.55 6742 9.99.464 3 51 9.41 613 1 9.41 815 40 9.43 305 50 10.55 6742 9.99.464 3 51 9.41 613 1 9.41 9.43 305 50 10.55 6742 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.457 3 40 10.55 674 9.99.350 4 4 4 4 10.55 674 9.99.350 4 4 4 10.55 674 9.99.350 4 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.99.350 4 4 10.55 674 9.   |          |            | 47  |                  | _ 1       | 10.56 993  | 9.95451     | 13       |            | 12 102 1 10 53                 |  |
| 6 9.41 552 49 9.43 105 50 10.56 892 9.95 474 5 51 5 25.5 26.9 24.5 8 9.41 675 47 9.43 265 50 10.56 742 9.95 467 4 5 7 7 3.7. 65.0 64.5 8 9.41 675 47 9.43 265 50 10.56 742 9.95 467 4 5 7 7 3.7. 65.0 64.5 8 9.41 775 47 9.43 305 50 10.56 692 9.95 467 4 5 7 7 3.7. 65.0 64.5 8 9.41 775 4 9.43 305 50 10.56 692 9.95 467 4 5 7 7 3.7. 65.0 64.5 8 9.95 467 4 10.56 692 9.95 467 4 5 7 7 3.7. 65.0 64.5 8 9.95 467 4 10.56 692 9.95 467 4 5 7 7 3.7. 65.0 64.5 8 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692 9.95 467 4 10.56 692    | 4 " 1    |            | - 1 |                  |           |            |             | 1        |            | A CAR CONTRACT                 |  |
| 7 9.41 053 47 9.43 205 50 10.50 742 9.95 407 4 50 10.50 742 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407 4 50 10.50 742 9.95 407   |          |            |     |                  |           |            | 9.95 474    | Ι.       |            |                                |  |
| \$ 9.41 675 4 9.43 205 55 10.56792 9.95467 5 57 7.557 50.645 40.9 9.41 705 10.941 705 47 9.43 205 55 10.56692 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.693 9.95467 5 57 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953 7.557 50.953   |          | 9.41 628   |     | 9.43 155         |           | 10.56 842  | 9.95471     |          | 53         | [ 0 , 0 1,0 ; 0 1,0 ] [20, 1 ] |  |
| 9 9.41 762 40 9.43 265 50 10.56 742 9.95 464 50 51 420 432 11 9.41 815 46 9.43 305 50 10.56 642 9.95 467 3 47 11 9.41 905 47 9.43 305 50 10.56 642 9.95 457 3 47 11 9.41 905 47 9.43 405 50 10.56 642 9.95 457 3 47 11 9.41 905 47 9.43 505 50 10.56 492 9.95 457 3 47 11 9.41 905 47 9.43 505 50 10.56 492 9.95 457 3 47 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 9.41 0.0   |     | 9.43 205         |           |            |             | 12       | 52         |                                |  |
| 10 9.41 768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |            |     |                  |           |            |             | 1        | 31         | [ > ] 4 k.> [ 4cuth 3942 ]     |  |
| 11 9.41 850 1 40 9.43 408 50 10.36 67 9.98 413 3 45 14 9.43 416 19.43 416 9.43 508 50 10.36 642 9.98 413 3 45 16 9.43 508 50 10.36 642 9.98 413 3 45 16 9.42 041 46 9.43 607 50 10.36 343 9.98 410 4 10.36 244 9.98 417 3 46 16.2 1.5 18.4 18.1 14.1 1.6 18.2 19.3 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |     |                  |           |            | 9.95409     | •        |            | # [4 htt   15 co. 41.1]        |  |
| 12 9.41 905 47 9.43 458 30 10.50 452 9.85 450 8 47 46 14 9.41 9.41 9.51 46 9.43 607 40 10.50 452 9.95 443 4 45 16.2 15.5 18.4 17 9.42 09.3 41 9.43 707 40 10.50 624 9.95 420 1 4 10.2 14.0 41 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 624 9.95 420 1 10.50 620 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 9.95 410 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95 810 1 10.50 9.95   |          |            |     |                  |           |            | 9.95457     |          |            |                                |  |
| 14 9.41 9.54 46 9.43 508 90 10.56 442 9.98 447 34 45 11.1 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |            |     |                  |           |            |             | 3        |            | 48 47 46                       |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |     |                  |           |            |             |          |            | 2 9,6 9,4 9,3                  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |     |                  |           |            |             |          |            | 5 14.1 14.1 Las                |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |     |                  |           |            |             | 3        |            | 4 15.2 15.5 18.4               |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 9.42 093   |     | 9.43 657         |           | 10.56 345  | 9,98436     | 4        | 43         | 9 340 255 230                  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18       | 9.42 140   |     |                  |           |            |             |          |            | 2 536 536 533                  |  |
| 20 9.42 232 40 9.43 856 49 10.56 194 9.98 425 40 10.56 194 9.98 425 40 10.56 195 9.98 419 40 10.55 990 9.89 419 41 41 41 41 41 41 41 41 41 41 41 41 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |     |                  |           |            |             |          |            | \$ 38.4 37.6 36 7              |  |
| 21 9.42 324 46 9.43 905 49 10.50 600 9.98 419 4 3 3 8 8 9 9.42 814 64 9.44 053 49 10.55 990 9.98 415 3 3 6 2 9.0 5.8 9 9.42 507 40 9.44 151 49 10.55 990 9.98 409 4 3 3 6 27.0 26.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            |     |                  |           |            |             | 1        |            | 9 43.2 42.3 41.4               |  |
| 23 9.42 370 46 9.43 954 49 10.55 995 99.5 91.5 12.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.   |          |            |     |                  |           |            |             |          |            |                                |  |
| 24 9.42 416 45 9.44 004 49 10.55 996 9.9.8 412 3 36 2 9.0 8.8 26 9.42 561 46 9.44 151 49 10.55 995 9.9.8 409 4 9.44 151 49 10.55 750 9.9.8 409 4 9.44 251 49 10.55 750 9.9.8 309 4 9.42 501 49 10.55 750 9.9.8 301 3 3 3 6 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26   |          |            | 46  |                  |           |            |             |          |            | 145 144                        |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |     |                  |           |            |             |          |            |                                |  |
| 29 9.42 507 46 9.44 102 49 10.55 595 9.83 405 4 33 5 12.5 22.0 29 9.42 593 46 9.44 201 49 10.55 799 9.98 305 3 31 5 12.5 22.0 29 9.42 604 45 9.44 201 91 0.55 799 9.98 305 3 31 7 31.5 30.5 30 9.42 607 45 9.44 348 49 10.55 652 9.98 307 40 9.40.5 39.6 35.2 9.42 781 45 9.44 446 49 10.55 652 9.98 307 31 9.42 781 45 9.44 446 49 10.55 652 9.98 307 31 9.42 781 45 9.44 446 49 10.55 652 9.98 307 31 9.42 781 45 9.44 446 49 10.55 652 9.98 307 31 9.42 781 45 9.44 446 49 10.55 652 9.98 307 31 9.42 781 45 9.44 446 49 10.55 652 9.98 307 31 9.42 781 45 9.44 544 49 10.55 652 9.98 307 32 24 35 9.44 544 49 10.55 305 9.98 307 32 24 35 9.44 584 49 10.55 305 9.98 307 32 24 37 9.44 594 49 10.55 305 9.98 307 32 24 31 1.2 0.9 30 30 9.43 0.98 45 9.44 690 49 10.55 310 9.98 307 4 20 31 1.2 0.9 30 30 9.43 0.98 45 9.44 690 49 10.55 310 9.98 307 4 20 3 4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |     |                  |           |            |             | 1        |            |                                |  |
| 27 9.42 553 46 9.44 201 50 10.55 799 9.98 395 4 33 6 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.0 26.4 27.   |          |            |     |                  |           |            | 9.98405     |          | 34         |                                |  |
| 28 9.42 599 40 90 41 90.35 750 9.85 350 3 31 6 6 27.0 26.4   30 9.42 690 46 9.44 299 49 10.55 750 9.85 350 3 29 91 40.5 39.6   31 9.42 735 45 9.44 345 49 10.55 652 9.95 351 40 91 40.5 39.6   32 9.42 751 46 9.44 495 49 10.55 652 9.95 351 40 91 40.5 39.6   33 9.42 \$26 45 9.44 495 49 10.55 652 9.95 351 40 91 40.5 39.6   34 9.42 \$27 45 9.44 954 91 10.55 456 9.95 373   35 9.42 917 45 9.44 544 91 10.55 456 9.95 373   36 9.42 962 45 9.44 549 49 10.55 359 9.95 370   37 9.43 083 45 9.44 691 49 10.55 359 9.95 370   38 9.43 083 45 9.44 691 49 10.55 359 9.95 370   39 9.43 083 45 9.44 691 49 10.55 359 9.95 370   40 9.43 188 45 9.44 836 49 10.55 113 9.95 353   41 9.43 188 45 9.44 836 49 10.55 113 9.95 353   42 9.43 233 45 9.44 836 49 10.55 114 9.95 331   43 9.43 278 45 9.44 836 49 10.55 115 9.95 331   44 9.43 323 45 9.44 836 49 10.55 116 9.95 341   45 9.43 383 45 9.44 831 45 10.55 115 9.95 331   46 9.43 383 45 9.45 9.45 114 10.54 879 9.95 321   47 9.43 457 45 9.45 078 49 10.55 077 9.95 342   48 9.43 502 45 9.45 579 49 10.54 879 9.95 321   49 9.43 586 45 9.45 579 49 10.54 879 9.95 321   49 9.43 580 45 9.45 174 48 10.54 683 9.95 331   49 9.43 680 45 9.45 174 48 10.54 683 9.95 331   49 9.43 769 44 9.45 519 48 10.54 683 9.95 331   49 9.43 769 44 9.45 413 48 10.54 683 9.95 331   49 9.43 769 44 9.45 413 48 10.54 683 9.95 331   40 9.43 769 44 9.45 413 48 10.54 683 9.95 331   41 10.55 07 9.95 321   42 9.45 774 47 9.45 519 48 10.54 683 9.95 331   43 10.54 681 9.95 331   44 9.45 702 48 10.54 683 9.95 331   45 9.43 769 44 9.45 519 48 10.54 683 9.95 331   46 9.43 769 44 9.45 613 48 10.54 683 9.95 321   47 9.43 769 44 9.45 519 48 10.54 683 9.95 331   48 9.43 769 44 9.45 616 48 10.54 685 9.95 302   49 9.43 789 44 9.45 616 48 10.54 683 9.95 301   49 9.43 789 44 9.45 616 48 10.54 683 9.95 302   40 9.43 789 44 9.45 702 48 10.54 683 9.95 302   40 9.43 789 44 9.45 702 48 10.54 683 9.95 302   40 9.43 789 44 9.45 789 48 10.54 683 9.95 302   41 10.55 10.54 689 9.95 302   42 10.55 10.54 689 9.95 302   43 10.55 10.54 689 9.95 302   44 10.55 10.54 6 | 27       | 9.42 553   |     | 9.44 151         |           | 10.55 \$49 | 9.98402     | ٥        | 33         | E 40 5 50 4 4 1                |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28       |            |     | 9.44 201         |           |            |             |          |            | 6 27.0 26.4                    |  |
| 30 9.42 690 4 9.44 397 49 10.55 652 9.98 381 3 29 9.40 781 40 9.44 397 49 10.55 652 9.98 381 3 25 9.40 781 45 9.44 496 49 10.55 505 9.98 381 3 25 9.40 781 45 9.44 496 49 10.55 505 9.98 381 3 25 9.40 781 45 9.44 496 49 10.55 505 9.98 381 3 25 9.40 781 45 9.44 641 49 10.55 359 9.98 381 3 25 9.40 781 45 9.44 641 49 10.55 359 9.98 380 3 2 9.43 083 45 9.44 641 49 10.55 359 9.98 380 3 9 9.43 083 45 9.44 641 49 10.55 359 9.98 380 3 9 9.43 083 45 9.44 641 49 10.55 369 9.98 380 3 9 9.43 083 45 9.44 641 49 10.55 369 9.98 380 45 9.44 641 49 10.55 369 9.98 380 45 9.44 641 49 10.55 369 9.98 380 45 9.44 641 49 10.55 369 9.98 380 45 9.44 641 49 10.55 369 9.98 380 45 9.44 787 49 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55    |          |            |     |                  |           |            |             |          |            |                                |  |
| 31 9.42 758 4 6 9.44 346 49 10.55 663 9.38 384 3 7 7 8 8 9 8 9 9 9 8 37 8 9 9 9 8 37 8 9 9 9 8 3 8 9 9 9 9 9 9 9 9 9 9 9 8 3 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |     |                  |           |            | 9.95 391    | 3        | 30         |                                |  |
| 34 9.42 962 45 9.44 495 49 10.55 505 9.9.8 377 4 22 4 8 3 1.2 0.9 9.8 373 9.43 508 46 9.44 641 49 10.55 359 9.9.8 373 3 21 41 1.5 1.5 10.5 10.5 10.5 10.5 10.5 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 9.42 735   | 46  |                  | 49        | 10.55 663  | 4 3 4 7 4 2 | 4        | 35         | 2   40/9   63/0                |  |
| 34 9.42 962 45 9.44 495 49 10.55 505 9.9.8 377 4 22 4 8 3 1.2 0.9 9.8 373 9.43 508 46 9.44 641 49 10.55 359 9.9.8 373 3 22 3 1.2 0.9 9.43 508 45 9.44 680 48 10.55 359 9.9.8 366 3 3 9.9.43 058 45 9.44 680 48 10.55 310 9.9.8 366 3 3 9.9.43 058 45 9.44 680 48 10.55 310 9.9.8 366 4 9.43 14 9.44 581 9.44 788 49 10.55 106 9.9.8 357 41 9.43 188 45 9.44 884 48 10.55 164 9.9.8 359 44 9.44 884 48 10.55 164 9.9.8 359 44 9.44 884 49 10.55 106 9.9.8 345 41 9.43 275 45 9.44 981 45 10.55 106 9.9.8 345 41 9.43 275 45 9.44 981 45 10.55 106 9.9.8 345 41 9.43 323 45 9.44 981 45 10.55 106 9.9.8 345 41 9.43 323 45 9.44 981 45 10.55 106 9.9.8 345 41 9.43 323 45 9.44 981 45 10.55 106 9.9.8 345 41 9.43 323 45 9.45 029 45 10.54 079 9.9.8 345 41 9.43 367 45 9.45 029 45 10.54 079 9.9.8 335 45 9.45 029 45 10.54 679 9.9.8 337 47 9.43 516 45 9.45 126 48 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 681 9.9.8 317 45 9.45 218 10.54 481 9.9.8 317 45 9.45 218 10.54 481 9.9.8 317 45 9.45 218 10.54 481 9.9.8 317 45 9.45 218 10.54 481 9.9.8 317 45 9.45 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 218 10.54 21   |          | 9.42 \$28  |     |                  |           |            | 3.95351     | 3        | 27         |                                |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |     |                  |           |            | 9.95 377    |          | 26         | 4 3                            |  |
| 36 9.42 962 44 9.44 691 49 10.55 359 9.98 363 4 11.6 1.2 3 12.0.9 9.43 083 45 9.44 690 49 10.55 359 9.98 363 4 22 3 5 2.0 1.5 3 9.94 308 45 9.44 680 49 10.55 310 9.98 363 4 22 9.44 1.6 1.2 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.5 1.2 1.5 1.5 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |     |                  |           |            |             |          | 25         | 2 0.5 0.6                      |  |
| 27 9.43 008 40 9.44 641 49 10.55 359 9.98 368 3 3 9.43 089 45 9.44 680 45 10.55 262 9.98 359 4 21 61.5 1.5 42.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36       | 9.42 962   |     | 9.44 592         |           | 10.55405   |             |          | 24         | 3   1.2 . 0.9                  |  |
| 38 9.43 053 45 9.44 787 49 10.55 262 9.98 330 3 47 12 1 6 2.4 1.5 49 10.55 262 9.98 330 3 47 12 1 6 2.4 1.5 49 10.55 263 9.98 330 3 47 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37       |            |     |                  |           | 10.55 359  |             | 2        |            |                                |  |
| 40 9.43 143 45 9.44 787 49 10.55 213 9.95 356 14 19 43 188 45 9.44 884 48 10.55 116 9.95 332 41 19 43 275 45 9.44 983 45 10.55 116 9.95 335 41 19 9.25 2.77 45 9.45 213 9.95 356 15 9.95 335 15 9.45 213 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 116 9.95 335 15 10.55 1   | 38       |            |     |                  |           |            |             |          |            | 6124115                        |  |
| 12 9.43 233 45 9.44 884 48 10.55 116 9.98 349 44 116 43 349 10.55 017 9.98 345 44 9.43 323 45 9.44 983 48 10.55 017 9.98 345 44 9.45 323 45 9.45 029 49 10.54 921 9.98 335 45 116 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126   |          |            |     |                  |           |            |             | 3        |            | 7 28 21                        |  |
| 12 9.43 233 45 9.44 884 48 10.55 116 9.98 349 44 116 43 349 10.55 017 9.98 345 44 9.43 323 45 9.44 983 48 10.55 017 9.98 345 44 9.45 323 45 9.45 029 49 10.54 921 9.98 335 45 116 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126 45 9.45 126   |          |            | 45  |                  | 49        |            |             |          |            | \$18.2 2.4                     |  |
| 43 9.43 375 45 9.44 983 49 10.55 067 9.98 345 45 45 9.43 387 45 9.45 579 9.85 327 46 9.43 412 45 9.45 579 48 10.54 671 9.98 332 47 9.43 457 45 9.45 174 45 10.54 787 9.98 332 47 9.43 457 45 9.45 174 45 10.54 787 9.98 332 47 9.43 516 47 9.45 212 49 10.54 778 9.98 327 49 9.43 546 47 9.45 212 49 10.54 778 9.98 327 47 9.45 213 11 10.54 681 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 10.54 683 9.98 317 48 11 10.55 68 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |            | 45  |                  |           |            |             |          | 15         | 9   3.5   2.7                  |  |
| 44 9.43 323 44 9.45 029 49 10.54 971 9.98 342 4 1 1 4 9.45 029 49 10.54 971 9.98 332 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 9.43 278   |     | 9.44 933         |           | 10.55 067  | 9.98345     |          |            |                                |  |
| 45 9.43 367 4 9.45 078 49 10.54 971 9.95 338 4 14 9.45 078 49 9.45 078 49 10.54 871 9.95 331 49 9.45 078 49 9.45 272 45 10.54 875 9.95 321 49 9.45 363 44 9.45 272 49 10.54 872 9.95 321 12 10.54 873 9.95 322 12 10.54 873 9.95 322 12 10.54 873 9.95 322 12 10.54 873 9.95 322 12 12 12 12 12 12 12 12 12 12 12 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |     |                  |           |            |             |          |            | From the ton-                  |  |
| 47 9.43 427 45 9.45 126 48 10.54 826 9.98 327 49 9.43 802 44 9.45 221 49 10.54 826 9.98 327 3 11 10.54 836 80 49 9.45 221 49 10.54 729 9.98 320 10.54 729 9.98 320 10.54 729 9.98 320 10.54 738 9.98 320 10.54 83 9.45 319 48 10.54 681 9.98 317 48 10.54 681 9.98 317 10 105 or 285, read co-function.  48 9.43 801 44 9.45 367 48 10.54 681 9.98 317 10 105 or 285, read co-function.  49 9.43 801 49 9.45 367 48 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98 320 10.54 681 9.98                | 45       |            |     |                  |           |            |             |          |            |                                |  |
| 48 9.43 507 45 9.45 174 45 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 47 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826 9.98 327 10.54 826   |          |            |     |                  |           |            |             |          |            |                                |  |
| 48 9.43 846 44 9.45 222 49 10.54 775 9.95 324 3 11 105° cr 285° r, read co-function.  50 9.43 591 44 9.45 271 48 10.54 775 9.95 320 3 11 10 9.95 320 49 9.45 367 48 10.54 633 9.95 313 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |            |     |                  |           |            |             | 4        |            |                                |  |
| 50 9.43 591 44 9.45 271 49 10.54 729 9.98 320 15 19.43 635 44 9.45 319 48 10.54 651 9.98 317 15 29 9.43 680 45 9.45 361 48 10.54 653 9.98 317 15 15 29 9.43 680 45 9.45 361 48 10.54 563 9.98 300 45 9.45 661 48 10.54 585 9.98 300 45 9.45 613 48 10.54 587 9.98 300 45 9.45 515 9.85 9.43 813 49.45 515 9.85 9.98 300 45 9.98 203 45 10.54 3441 9.98 299 10.54 341 9.98 299 10.54 341 9.98 299 10.54 341 10.54 390 164 59 9.45 654 48 10.54 346 9.98 291 164 59 9.45 654 48 10.54 346 9.98 291 164 59 9.45 654 48 10.54 346 9.98 291 164 59 9.45 654 48 10.54 346 9.98 291 164 59 9.45 654 48 10.54 346 9.98 291 164 59 9.45 654 48 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 298 9.98 285 10.54 2   |          |            | 44  |                  | 45        |            | 9.98 324    |          |            |                                |  |
| 51 9.43 635 44 9.45 319 48 10.54 651 9.98 317 3 9 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            | 45  |                  |           |            |             | : 1      | 10         | co-function.                   |  |
| 52 9.43 650 45 9.45 671 48 10.54 633 9.95 313 4 5 5 9.43 769 44 9.45 415 48 10.54 637 9.95 306 4 5 10.54 637 9.95 306 4 5 10.54 637 9.95 306 4 5 10.54 637 9.95 306 4 5 10.54 637 9.95 306 4 5 10.54 637 9.95 306 4 5 10.54 637 9.95 306 4 5 10.54 637 9.95 306 4 5 10.54 637 9.95 209 4 10.54 637 9.95 209 1 10.54 637 9.95 205 1 10.54 637 9.95 205 1 10.54 637 9.95 205 1 10.54 637 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1 10.54 69 9.95 205 1    |          |            |     |                  |           |            | 9.98317     |          | 9          |                                |  |
| 53 9.43 724 44 9.45 415 48 10.54 555 9.95 309 3 6 7 74 74 70 254 7. 75 79.43 813 48 10.54 459 9.95 302 3 4 6 75 79.43 813 49.45 559 48 10.54 441 9.95 209 3 4 75 75 9.43 801 49.45 559 47 10.54 349 9.95 205 3 4 75 75 9.43 801 45 9.45 656 47 10.54 349 9.95 205 3 9.43 800 44 9.45 702 48 10.54 346 9.95 201 3 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 255 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205 4 10.54 295 9.95 205    |          |            |     |                  |           | 10.54 633  | 9.98 313    |          | 8          | From the hottom:               |  |
| 54 9.43 769 4 9.45 63 4 9.45 513 48 10.54 548 9.95 302 3 57 68 9.43 813 44 9.45 559 48 10.54 349 9.95 299 10.54 349 9.95 299 10.54 349 9.95 299 10.54 349 9.95 295 10.54 346 9.95 291 10.54 346 9.95 291 10.54 346 9.95 291 10.54 346 9.95 291 10.54 346 9.95 291 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10.54 295 9.95 295 10   | 53       | 9.43 724   |     |                  |           |            |             |          | 7          |                                |  |
| 55 9.43 813 4 9.45 511 48 10.54 489 9.95 302 3 4 7 66 9.43 857 44 9.45 569 443 41 9.95 299 4 7 10.54 394 9.95 205 4 7 10.54 394 9.95 205 4 7 10.54 394 9.95 205 4 7 10.54 394 9.95 205 4 7 10.54 394 9.95 205 4 7 10.54 395 9.43 996 4 9.45 702 48 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295 9.95 285 4 7 10.54 295   |          |            |     |                  |           | 1          |             |          |            |                                |  |
| 56 9.43 857 4 9.45 656 48 10.54 394 9.95 295 4 7 164° or 344° read 659 9.43 990 44 9.45 702 48 10.54 295 9.95 285 4 60 9.44 034 4 9.45 750 48 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 284 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95 285 0 10.54 250 9.95   |          | 9.43 813   |     |                  |           |            | 9.95 302    | 3.       |            |                                |  |
| 57 9.43 946 45 9.45 654 48 10.54 295 9.98 291 4 2 70-function.  59 9.43 990 44 9.45 702 48 10.54 295 9.98 281 1 1 10.54 295 9.98 284 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 9.43 857   |     |                  |           |            | 9.95 295    | 4        |            | 164° - or 344° +, read         |  |
| 59 9.43 990 44 9.45 702 48 10.54 298 9.95 258 4 1 60 9.44 034 9.45 750 48 10.54 250 9.95 254 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |            | 45  |                  |           |            | 9.98291     |          |            | co-function.                   |  |
| 60 9.44 034 44 9.45 750 48 10.54 250 9.95 284 4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |     |                  |           |            | 9.98288     |          | 1          |                                |  |
| Y CL (2) ( Dec Die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            | 44  |                  | 45        | 10.54 250  |             | *        | 0          |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u> | L Cos      | d   |                  | cd        |            | L Sin       | d        | ·          | Prop. Pts.                     |  |

74° — Logarithms of Trigonometric Functions

| 02                   | 62 16 - Logarithms of Trigonometric Functions |                      |                                              |                      |                                                  |                                              |                  |                             |                                                  |                                |
|----------------------|-----------------------------------------------|----------------------|----------------------------------------------|----------------------|--------------------------------------------------|----------------------------------------------|------------------|-----------------------------|--------------------------------------------------|--------------------------------|
| 1                    | L Sin                                         | ď                    | L Tan                                        | c d                  | L Cta                                            | L Cos                                        | d                |                             | Prop.                                            | Pts.                           |
| 0<br>1<br>2<br>3     | 9.44 034<br>9.44 078<br>9.44 122<br>9.44 166  | 44<br>44             | 9.45 750<br>9.45 797<br>9.45 845<br>9.45 892 | 47<br>48<br>47       | 10.54 250<br>10.54 203<br>10.54 155<br>10.54 108 | 9.98 284<br>9.98 281<br>9.98 277<br>9.98 273 | 3<br>4<br>4      | 60<br>59<br>58<br>57        | 48 4                                             |                                |
| 4<br>5               | 9.44 210<br>9.44 253                          | 44<br>43<br>44       | 9.45 940<br>9.45 987                         | 48<br>47<br>48       | 10.54 060<br>10.54 013<br>10.53 965              | 9.98 270<br>9.98 266<br>9.98 262             | 3<br>4<br>4      | 56<br><b>55</b>             | 3 14.4 14<br>4 19.2 18                           | .8 18.4                        |
| 6<br>7<br>8<br>9     | 9.44 297<br>9.44 341<br>9.44 385<br>9.44 428  | 44<br>44<br>43       | 9.46 035<br>9.46 082<br>9.46 130<br>9.46 177 | 47<br>48<br>47       | 10.53 905<br>10.53 918<br>10.53 870<br>10.53 823 | 9.98 259<br>9.98 255<br>9.98 251             | 3<br>4<br>4      | 54<br>53<br>52<br>51        | 5 24.0 23<br>6 28.8 28<br>7 33.6 32<br>8 38.4 37 | .2 27.6                        |
| 10<br>11<br>12       | 9.44 472<br>9.44 516<br>9.44 559              | 44<br>43             | 9.46 224<br>9.46 271<br>9.46 319             | 47<br>48             | 10.53 776<br>10.53 729<br>10.53 681              | 9.98 248<br>9.98 244<br>9.98 240             | 3 4 4            | 50<br>49<br>48              | 9   43.2   42                                    | .3 41.4                        |
| 13<br>14<br>15       | 9.44 602<br>9.44 646<br>9.44 689              | 43<br>44<br>43       | 9.46 366<br>9.46 413<br>9.46 460             | 47<br>47<br>47       | 10.53 634<br>10.53 587<br>10.53 540              | 9.98 237<br>9.98 233<br>9.98 229             | 3 4 4            | 47<br>46<br><b>45</b>       | 3   13.5   13                                    | .8 8.6<br>.2 12.9              |
| 16<br>17<br>18<br>19 | 9.44 733<br>9.44 776<br>9.44 819<br>9.44 862  | 44<br>43<br>43<br>43 | 9.46 507<br>9.46 554<br>9.46 601<br>9.46 648 | 47<br>47<br>47<br>47 | 10.53 493<br>10.53 446<br>10.53 399<br>10.53 352 | 9.98 226<br>9.98 222<br>9.98 218<br>9.98 215 | 3 4 4 3          | 44<br>43<br>42<br>41        | 4 18.0 17<br>5 22.5 22<br>6 27.0 26<br>7 31.5 30 | .0 21.5<br>.4 25.8<br>.8 30.1  |
| 20<br>21<br>22<br>23 | 9.44 905<br>9.44 948<br>9.44 992              | 43<br>43<br>44<br>43 | 9.46 694<br>9.46 741<br>9.46 788             | 46<br>47<br>47<br>47 | 10.53 306<br>10.53 259<br>10.53 212              | 9.98 211<br>9.98 207<br>9.98 204             | 4 3 4            | 40<br>39<br>38              | 8   36.0   35<br>9   40.5   39                   | 2 344                          |
| 23<br>24<br>25<br>26 | 9.45 035<br>9.45 077<br>9.45 120<br>9.45 163  | 42<br>43<br>43       | 9.46 835<br>9.46 881<br>9.46 928<br>9.46 975 | 46<br>47<br>47       | 10.53 165<br>10.53 119<br>10.53 072<br>10.53 025 | 9.98 200<br>9.98 196<br>9.98 192<br>9.98 189 | 4 4 3            | 37<br>36<br><b>35</b><br>34 | 2 8.4<br>3 12.6                                  | 8.2<br>12.3                    |
| 27<br>28<br>29       | 9.45 206<br>9.45 249<br>9.45 292              | 43<br>43<br>43<br>42 | 9.47 021<br>9.47 068<br>9.47 114             | 46<br>47<br>46<br>46 | 10.52 979<br>10.52 932<br>10.52 886              | 9.98 185<br>9.98 181<br>9.98 177             | 4 4 3            | 33<br>32<br>31              | 4   16.8<br>5   21.0<br>6   25.2<br>7   29.4     | 16.4<br>20.5<br>24.6<br>28.7   |
| 30<br>31<br>32<br>33 | 9.45 334<br>9.45 377<br>9.45 419<br>9.45 462  | 43<br>42<br>43       | 9.47 160<br>9.47 207<br>9.47 253<br>9.47 299 | 47<br>46<br>46       | 10.52 840<br>10.52 793<br>10.52 747<br>10.52 701 | 9.98 174<br>9.98 170<br>9.98 166<br>9.98 162 | 444              | 30<br>29<br>28<br>27        | 8   33.6<br>9   37.8                             | 32.8                           |
| 34<br>35<br>36       | 9.45 504<br>9.45 547<br>9.45 589              | 42<br>43<br>42<br>43 | 9.47 346<br>9.47 392<br>9.47 438             | 47<br>46<br>46<br>48 | 10.52 654<br>10.52 608<br>10.52 562              | 9.98 159<br>9.98 155<br>9.98 151             | 3<br>4<br>4<br>4 | 26<br>25<br>24              | 2 0.8<br>3 1.2                                   | 3<br>0.6<br>0.9                |
| 37<br>38<br>39<br>40 | 9.45 632<br>9.45 674<br>9.45 716<br>9.45 758  | 42<br>42<br>42       | 9.47 484<br>9.47 530<br>9.47 576<br>9.47 622 | 46<br>46<br>46       | 10.52 516<br>10.52 470<br>10.52 424<br>10.52 378 | 9.98 147<br>9.98 144<br>9.98 140<br>9.98 136 | 3<br>4<br>4      | 23<br>22<br>21<br><b>20</b> | 4 1.6<br>5 2.0<br>6 2.4<br>7 2.8                 | 1.2<br>1.5<br>1.8<br>2.1       |
| 41<br>42<br>43       | 9.45 801<br>9.45 843<br>9.45 885              | 43<br>42<br>42<br>42 | 9.47 668<br>9.47 714<br>9.47 760             | 46<br>46<br>46<br>46 | 10.52 332<br>10.52 286<br>10.52 240              | 9.98 132<br>9.98 129<br>9.98 125             | 4<br>3<br>4<br>4 | 19<br>18<br>17              | 8 3.2<br>9 3.6                                   | 2.4<br>2.7                     |
| 44<br>45<br>46       | 9.45 927<br>9.45 969<br>9.46 011              | 42<br>42<br>42       | 9.47 806<br>9.47 852<br>9.47 897             | 46<br>45<br>46       | 10.52 194<br>10.52 148<br>10.52 103              | 9.98 121<br>9.98 117<br>9.98 113             | 4 4 3            | 16<br>15<br>14              | From the<br>For 16°+                             | -                              |
| 47<br>48<br>49       | 9.46 053<br>9.46 095<br>9.46 136              | 42<br>41<br>42       | 9.47 943<br>9.47 989<br>9.48 035             | 46<br>46<br>45       | 10.52 057<br>10.52 011<br>10.51 965              | 9.98 110<br>9.98 106<br>9.98 102             | 4 4 4            | 13<br>12<br>11              | read as prii<br>106°+ or 28<br>co-function       | 6°+, read                      |
| 50<br>51<br>52<br>53 | 9.46 178<br>9.46 220<br>9.46 262<br>9.46 303  | 42<br>42<br>41       | 9.48 080<br>9.48 126<br>9.48 171<br>9.48 217 | 46<br>45<br>46       | 10.51 920<br>10.51 874<br>10.51 829<br>10.51 783 | 9.98 098<br>9.98 094<br>9.98 090<br>9.98 087 | 4 4 3            | 10<br>9<br>8<br>7           | From the                                         |                                |
| 54<br>55<br>56       | 9.46 345<br>9.46 386<br>9.46 428              | 42<br>41<br>42       | 9.48 262<br>9.48 307<br>9.48 353             | 45<br>45<br>46       | 10.51 738<br>10.51 693<br>10.51 647              | 9.98 083<br>9.98 079<br>9.98 075             | 4 4              | 6<br><b>5</b><br>4          | For 73°+ cread as prin                           | or <b>253°</b> +,<br>ated; for |
| 57<br>58<br>59       | 9.46 469<br>9.46 511<br>9.46 552              | 41<br>42<br>41       | 9.48 398<br>9.48 443<br>9.48 489             | 45<br>45<br>46       | 10.51 602<br>10.51 557<br>10.51 511              | 9.98 071<br>9.98 067<br>9.98 063             | 4 4              | 3 2 1                       | 163°+ or 34<br>co-function                       |                                |
| 60                   | 9.46 594                                      | 42                   | 9.48 534                                     | 45                   | 10.51 466                                        | 9.98 060                                     | 3                | 0                           |                                                  |                                |
| L                    | L Cos                                         | d                    | L Ctn                                        | cd                   | L Tan                                            | L Sin                                        | d                | ′                           | Prop.                                            | Pts.                           |

73° — Logarithms of Trigonometric Functions

72° — Logarithms of Trigonometric Functions

| (1-1          | 10 -                    | Logarithm                        | .5 01 111 <sub>6</sub>              | ·                                | e r ametions [III                                       |
|---------------|-------------------------|----------------------------------|-------------------------------------|----------------------------------|---------------------------------------------------------|
|               | L Sin ; d               | L Tan cd                         | L Ctn                               | L Cos d                          | Prop. Pts.                                              |
| 0             | 9.48998                 | 9.51 178                         | 10.48 822                           | 9.97 821                         |                                                         |
| 1             | 9.49037 $9.49076$       | 9.51 221<br>9.51 264             | 10.45779<br>10.45736                | 9.97.817                         |                                                         |
| $\frac{2}{3}$ | 9.49 115                | 9.51 306                         | 10.48 694                           | 9.97 S17<br>9.97 S12<br>9.97 S0S |                                                         |
| -1            | $9.49\ 153$             | $9.51\ 349$                      | 10.48 651                           | 9.97804                          |                                                         |
| 5             | $9.49\ 192$ $9.49\ 231$ | $9.51\ 392$ $9.51\ 435$          | 10.48 608<br>10.48 565              | 9.97 S00<br>9.97 796             | 43 42 41                                                |
| 6<br>7        | 9.49 269                | 9.51 47S                         | 10.48 522                           | 9.97792                          | 8.6 8.4 8.2<br>12.9 12.6 12.3                           |
| S             | 9.4930\$                | $9.51\ 520$                      | 10.48 480                           | 9.97788 $9.97784$                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$   |
| 9             | 9.49 347<br>9.49 385    | 9.51 563<br>9.51 606             | 10.48 437<br>10.48 394              | 9.97 779                         | 21.5 21 0 20 5                                          |
| 11            | 9.49 424                | 9.51 648                         | 10.48352                            | 9.07.775                         | 25.8 25.2 24.6<br>30.1 29.4 28.7                        |
| 12<br>13      | 9.49462                 | 9.51 691                         | 10.48309                            | 9.97 771<br>9.97 767             | 34.4   33.6   32.8                                      |
| 14            | 9.49 506<br>9.49 539    | 9.51 734<br>9.51 776             | $10.48266 \\ 10.48224$              | 9.97 763                         | 38.7 37.8 36.9                                          |
| 15            | 9.49 577                | 9.51 819                         | 10.48 181                           |                                  |                                                         |
| 13            | 9.49615                 | $9.51\ 861$                      | 10.48 139                           | 9.97759<br>9.97754               | 39   38   37                                            |
| 17            | 9.49654 $9.49692$       | 9.51 903<br>9.51 946             | 10.48 097<br>10.48 054              | 9.97750 $9.97746$                | 7.8 7.6 7.4                                             |
| 19            | 9.49 730                | 9.51 988                         | 10.48 012                           | 9.97742                          | 11.7 11.4 11.1                                          |
| 20            | 9.49 768                | 9.52 031                         | 10.47 969                           | 9.97738                          | 15.6   15.2   14.8   19.5   19.0   18.5                 |
| 21<br>22      | $9.49806 \\ 9.49844$    | 9.52 073<br>9.52 115             | 10.47 927<br>10.47 885              | 9.97734                          | 23.4 22.8 22.2                                          |
| 23            | 9.49582                 | 9.52 115<br>9.52 157<br>9.52 200 | 10.47 843<br>10.47 800              | 9.97 729<br>9.97 725<br>9.97 721 |                                                         |
| 24            | 9.49920                 |                                  |                                     | 9.97721                          | 31.2 30.4 29.6<br>35.1 34.2 33.3                        |
| 25<br>26      | 9.49 958<br>9.49 996    | 9.52 242                         | 10.47 758                           | 9.97 717<br>9.97 713<br>9.97 708 |                                                         |
| 27            | 9.50 034                | 9.52 284<br>9.52 326             | 10.47 716<br>10.47 674              | 9.97 708                         |                                                         |
| 28<br>29      | 9.50 072                | 9.52 368<br>9.52 410             | 10.47 632                           | 9.97704                          | 36   5                                                  |
| 30            | 9.50 110<br>9.50 148    | 9.52 452                         | 10.47 590<br>10.47 548              | 9.97 700<br>9.97 696             | $\begin{vmatrix} 7.2 & 1.0 \\ 10.8 & 1.5 \end{vmatrix}$ |
| 31            | 9.50 185                | 9.52 494                         | 10.47 506                           | 9.97 691                         | 14.4 2.0                                                |
| 32<br>33      | 9.50 223                | 9.52 536                         | 10.47 464                           | 9.97687                          | 18.0 2.5<br>21.6 3.0                                    |
| 34            | 9.50 261<br>9.50 298    | 9.52 578<br>9.52 620             | 10.47 422<br>10.47 380              | 9.97 683<br>9.97 679             | 25.2 3.5                                                |
| 35            | 9.50 336                | 9.52.661                         | 10.47 339                           | 9.97 674                         | 28.8 4.0<br>32.4 4.5                                    |
| 36<br>37      | 9.50374 $9.50411$       | 9.52 703<br>9.52 745<br>9.52 787 | 10.47 297<br>10.47 255<br>10.47 213 | 9.97 670<br>9.97 666             | 102.414.01                                              |
| 38            | 9.50 449                | 9.52 787                         | 10.47 213                           | 9.97 662                         |                                                         |
| 39            | 9.50 486                | 9.52 829                         | 10.47 171                           | 9.97657                          |                                                         |
| 40<br>41      | 9.50 523<br>9.50 561    | 9.52870 $9.52912$                | 10.47 130<br>10.47 088              | 9.97 653<br>9.97 649             |                                                         |
| 42            | 9.50 598                | 9.52953                          | 10.47 047                           | 9.97 645                         | From the top:                                           |
| 43            | 9.50 635                | 9.52 995                         | 10.47 005                           | 9.97 640                         | For 18°+ or 198°+,                                      |
| 44<br>45      | 9.50 673<br>9.50 710    | 9.53 037<br>9.53 078             | 10.46 963<br>10.46 922              | 9.97 636<br>9.97 632             | read as printed; for                                    |
| 46            | 9.50 747                | 9.53 120                         | 10.46 880                           | 9.97 628                         | 108°+ or 288°+, read                                    |
| 47<br>48      | 9.50 784                | 9.53 161<br>9.53 202             | 10.46 839                           | 9.97 623                         | co-function.                                            |
| 49            | 9.50 821<br>9.50 858    | 9.53 244<br>9.53 244             | 10.46 798<br>10.46 756              | 9.97619 $9.97615$                | •                                                       |
| 50            | 9.50 896                | 9.53 285                         | 10.46 715                           | 9.97610                          | From the bottom:                                        |
| 51<br>52      | 9.50 933<br>9.50 970    | 9.53 327<br>9.53 368             | 10.46 673<br>10.46 632              | 9.97606 $9.97602$                | For 71°+ or 251°+,                                      |
| 53            | 9.51 007                | $9.53 \pm 409$                   | 10.46 591                           | 9.97 597                         | read as printed; for                                    |
| 54            | 9.51 043                | 9.53 450                         | 10.46 550                           | 9.97593                          | 161°+ or 341°+, read                                    |
| <b>55</b>     | 9.51 080<br>9.51 117    | 9.53 492<br>9.53 533             | 10.46 508<br>10.46 467              | 9.97589 $9.97584$                | co-function.                                            |
| 57            | $9.51\ 154$             | 9.53574                          | 10.46 426                           | 9.97580                          |                                                         |
| 58<br>59      | 9.51 191<br>9.51 227    | 9.53 615                         | 10.46 385                           | 9.97576                          |                                                         |
| 60            | 9.51 264                | 9.53 656<br>9.53 697             | 10.46 344<br>10.46 303              | 9.97571<br>9.97567               |                                                         |
|               | L Cos                   | L Ctn cd                         | L Tan                               | L Sin                            | Prop. Pts.                                              |
|               |                         |                                  |                                     |                                  |                                                         |

71° - Logarithms of Trigonometric Functions

| 11                                  | Loga IIII               | ns or ring                  | onomen                                       | ic ru | actions $actions$                                                            |
|-------------------------------------|-------------------------|-----------------------------|----------------------------------------------|-------|------------------------------------------------------------------------------|
| LSin d                              | L Tan co                | I, L Ctn                    | L Cos                                        | ď     | Prop. Pts.                                                                   |
| $9.51\ 264$ $\pm$                   | 9.53 697                | 10.46 303                   |                                              | 60    |                                                                              |
| 7.51 301<br>9.51 338                | 9.53 738<br>9.53 779    | 10.46 262<br>10.46 221      | 1.11-11                                      |       |                                                                              |
| $\frac{9.51}{9.51} \frac{374}{374}$ | 9.53 826                | 10.46 186                   | 3347.578<br>3357.554                         |       |                                                                              |
| 9.51 411                            | 9.53  861               | 10.46 139                   | 9.97.559                                     |       |                                                                              |
| 9.51 447                            | 9.53 902                | 10.46 098                   | 9.97.515                                     |       | 41   40   39                                                                 |
| 9.51 484<br>9.51 520                | $9.53943 \\ 9.53984$    | $\frac{10.46057}{10.46016}$ | 9 97 576                                     |       | 41 40 39                                                                     |
| 9.51 520<br>9.51 557                | 9.54025                 | 10.45975                    | 9.97.541<br>9.97.536<br>9.97.532<br>9.97.528 |       | 4 10 4 11 11 11 11 11                                                        |
| 9.51 593                            | 9.54 065                | 10.45 935                   | 9.97.5±8                                     |       | 24.5 (2) 19.5                                                                |
| 9.51 629<br>9.51 666                | $9.54\ 106$ $9.54\ 147$ | 10.45594 $10.45553$         | 9.97 523<br>9.97 519<br>9.97 515<br>9.97 519 |       | 6 24.6 24 27.4 27.4                                                          |
| 9.51 702                            | $9.54\ 187$             | 10.45S13                    | 9.97 515                                     |       | 32.3 21.3                                                                    |
| 9.51738                             | 9.54 228                | 10.45772                    | 9.97.510                                     |       | 9   36.9   36.0   35.1                                                       |
| 9.51 774                            | 9.54 269                | 10.45 731<br>10.45 691      | 9.97.506                                     |       |                                                                              |
| 9.51 \$11<br>9.51 \$47              | 9.54309 $9.54350$       | 10.45 650                   | $\frac{9.97501}{9.97437}$                    |       | 1 97 1 96 1 98                                                               |
| 9.51 883                            | $9.54\ 390$             | 10.45610                    | 9.97492                                      |       | 37 36 35<br>2 7.4 7.2 7.0                                                    |
| 9.51 919<br>9.51 955                | 9.54431 $9.54471$       | 10.45 569<br>10.45 529      | 9.97.455<br>9.97.454                         |       | 3 11.1 10 5 10.5                                                             |
| 9.51 991                            | 9.54 512                | 10.45 488                   | 9.97479                                      |       | 4   14.5   14.4   14.0                                                       |
| 9.52 027                            | $9.54\ 552$             | 10.45 448                   | 9.97475                                      |       | 6 01010161016                                                                |
| 9.52 063<br>9.52 099                | 9.54 593<br>9.54 633    | 10.45 407<br>10.45 367      | 9.97 470                                     |       | 7 25.9 25.2 24.5                                                             |
| 9.52 135                            | 9.54 673                | 10.45 327                   | 9.97 466<br>9.97 461                         |       | 6 22.2 21.6 21.6<br>7 25.9 25.2 24.5<br>8 23.6 28.8 28.0<br>9 33.3 32.4 31.5 |
| 9.52 171                            | 9.54 714                | 10.45 256                   | 9.97457                                      |       | 3 1 00.0 1 0-12 1 01.0                                                       |
| 9.52 207<br>9.52 242                | $9.54754 \\ 9.54794$    | 10.45 246<br>10.45 206      | 9.97453 $9.97445$                            |       |                                                                              |
| 9.52 278                            | 9.54 835                | 10.45 165                   | 9.97 444                                     |       | 34 5 4                                                                       |
| 9.52314                             | 9.54875                 | 10.45125                    | 9.97439                                      |       | 6.8 1.0 0 8                                                                  |
| 9.52 350                            | 9.54 915<br>9.54 955    | 10.45 0\$5<br>10.45 045     | 9.97 435<br>9.97 430                         |       | 10.2 1.5 1.2<br>13.6 2.0 1.5                                                 |
| 9.52 385<br>9.52 421                | 9.54 995                | 10.45 005                   | 9.97 426                                     |       | 13.6 2.0 1.5<br>17.0 2.5 2.0                                                 |
| 9.52456                             | 9.55 035                | 10.44 965                   | 9.97421                                      |       | 17.0 2.5 2.0<br>20.4 3.0 2.4<br>23.8 3.5 2.5<br>27.2 4.0 3.2                 |
| 9.52 492                            | 9.55 075<br>9.55 115    | 10.44 925<br>10.44 885      | 9.97417<br>9.97412                           |       | 23.8 3.5 2.5<br>27.2 4.0 3.2<br>30.6 4.5 3.6                                 |
| 9.52 527<br>9.52 563                | 9.55 155                | 10.44 845                   | 9.97.408                                     |       | 30.6 4.5 3.6                                                                 |
| 0.52.508                            | 9.55 195<br>9.55 235    | 10.44805                    | 9.97403                                      |       |                                                                              |
| 9.52 634<br>9.52 669                | 9.55 235<br>9.55 275    | 10.44 765<br>10.44 725      | 9.97 403<br>9.97 399<br>9.97 394             |       |                                                                              |
| 9.52 705                            | 9.55 315                | 10.44 685                   | 9.97 390                                     |       |                                                                              |
| 9.52 740                            | 9.55 355                | 10.44645                    | $9.97355 \\ 9.97351$                         |       |                                                                              |
| 9.52 775<br>9.52 811                | 9.55 395<br>9.55 434    | 10.44 605<br>10.44 566      | 9.97 376                                     |       | From the top:                                                                |
| 9.52 846                            | 9.55 474                | 10.44 526                   | 9.97 372                                     |       | For 19° or 199°                                                              |
| 9.52 S81                            | 9.55 514                | 10.44 486                   | 9.97367<br>9.97363<br>9.97358                |       | read as printed; for 109°+ or 289°+, read                                    |
| 9.52 916<br>9.52 951                | 9.55 554<br>9.55 593    | 10.44 446<br>10.44 407      | 9.97 358                                     |       | co-function.                                                                 |
| 9.52986                             | 9.55 633                | 10.44 36                    | 9.97 353                                     |       | co-rancaoa,                                                                  |
| 9.53 021                            | 9.55 673                | 10.44 327                   | 9.97 349                                     |       | From the bottom:                                                             |
| 9.53 056<br>9.53 092                | 9.55712 $9.55752$       | 10.44 288<br>10.44 248      | 9.97344 $9.97340$                            |       | For 70°+ or 250°+,                                                           |
| 9.53 126                            | 9.55791                 | 10.44 209                   | 9.97335                                      |       | read as printed; for                                                         |
| 9.53 161<br>9.53 196                | 9.55 831<br>9.55 870    | 10.44 169<br>10.44 130      | 9.97 331<br>9.97 326                         |       | 160°+ or 340°+, read                                                         |
| 9 53 931                            | 9.55 910                | 10.44 090                   | 9.97 322                                     |       | co-function.                                                                 |
| 9.53 266                            | 9.55 949                | 10.44 051                   | 9 97 317                                     |       |                                                                              |
| 9.53 301<br>9.53 336                | 9.55 989<br>9.56 02S    | 10.44 011<br>10.43 972      | 9.97312                                      |       |                                                                              |
| 9.53 370                            | 9.56 067                | 10.43 933                   | 9.97 312<br>9.97 308<br>9.97 303             |       |                                                                              |
| 9.53 40                             | 9.56 107                | 10.43 893                   | 9.97 299                                     |       |                                                                              |
| L Cos d                             | L Ctn c                 | d L Tan                     | L Sin                                        |       | Prop. Pts.                                                                   |
|                                     |                         |                             |                                              |       |                                                                              |

70° — Logarithms of Trigonometric Functions

| 20 -                                                                                                                                         | - Logari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rums or 1118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | опошение                                                                                                                                     | runcuons [III                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L Sin   d                                                                                                                                    | L Tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cd L Ctn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L Cos                                                                                                                                        | Prop. Pts.                                                                                                                                                                               |
| 9.53 405<br>9.53 440<br>9.53 475<br>9.53 509<br>9.53 544                                                                                     | 9.56 107<br>9.56 146<br>9.56 185<br>9.56 224<br>9.56 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.43 893<br>10.43 854<br>10.43 815<br>10.43 776<br>10.43 736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.97 299<br>9.97 294<br>9.97 289<br>9.97 285<br>9.97 280                                                                                     |                                                                                                                                                                                          |
| 9.53 578<br>9.53 613<br>9.53 647<br>9.53 682<br>9.53 716<br>9.53 751<br>9.53 751<br>9.53 819<br>9.53 854                                     | 9.56 303<br>9.56 342<br>9.56 381<br>9.56 420<br>9.56 459<br>9.56 537<br>9.56 576<br>9.56 615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.43 697<br>10.43 658<br>10.43 619<br>10.43 550<br>10.43 541<br>10.43 502<br>10.43 463<br>10.43 423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.97 276<br>9.97 271<br>9.97 266<br>9.97 262<br>9.97 257<br>9.97 252<br>9.97 248<br>9.97 243<br>9.97 238                                     | 40   39   38   8.0   7.8   7.6   12.0   11.7   11.4   16.0   15.6   15.2   20.0   19.5   19.0   24.0   23.4   22.8   28.0   27.3   26.6   32.0   31.2   30.0   35.1   34.2               |
| 9.53 SSS<br>9.53 922<br>9.53 957<br>9.53 991<br>9.54 025<br>9.54 025<br>9.54 093<br>9.54 127<br>9.54 165<br>9.54 195<br>9.54 195<br>9.54 195 | 9.56 654<br>9.56 693<br>9.56 771<br>9.56 810<br>9.56 849<br>9.56 887<br>9.56 926<br>9.56 904<br>9.57 042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.43 346<br>10.43 207<br>10.43 268<br>10.43 229<br>10.43 190<br>10.43 151<br>10.43 113<br>10.43 074<br>10.43 035<br>10.42 958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.97 234<br>9.97 229<br>9.97 224<br>9.97 220<br>9.97 215<br>9.97 210<br>9.97 206<br>9.97 201<br>9.97 192<br>9.97 192<br>9.97 192<br>9.97 187 | 37   35   34   7.4   7.0   6.8   11.1   10.5   10.2   14.8   14.0   13.6   18.5   17.5   17.5   17.5   22.2   21.0   20.4   25.9   24.5   23.8   29.6   28.0   27.2   33.3   31.5   30.6 |
| 9.54 297<br>9.54 331<br>9.54 336<br>9.54 396<br>9.54 433<br>9.54 466<br>9.54 504<br>9.54 507<br>9.54 601<br>9.54 605<br>9.54 605<br>9.54 668 | 9.57 158<br>9.57 197<br>9.57 235<br>9.57 274<br>9.57 312<br>9.57 389<br>9.57 428<br>9.57 466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.42 880<br>10.42 842<br>10.42 765<br>10.42 765<br>10.42 768<br>10.42 649<br>10.42 611<br>10.42 572<br>10.42 534<br>10.42 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.97 173<br>9.97 168<br>9.97 163<br>9.97 159<br>9.97 154<br>9.97 145<br>9.97 145<br>9.97 135<br>9.97 135                                     | 33   5   6.6   1.0   9.9   1.5   13.2   2.0   16.5   2.5   19.8   3.0   23.1   3.5   26.4   4.0   29.7   4.5                                                                             |
| 9.54 735<br>9.54 769<br>9.54 802<br>9.54 836<br>9.54 869<br>9.54 903<br>9.54 969<br>9.55 003<br>9.55 036                                     | 9.57 619<br>9.57 658<br>9.57 696<br>9.57 734<br>9.57 870<br>9.57 849<br>9.57 887<br>9.57 925<br>9.57 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.42 381<br>10.42 342<br>10.42 304<br>10.42 266<br>10.42 298<br>10.42 151<br>10.42 113<br>10.42 075<br>10.42 037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.97 116<br>9.97 111<br>9.97 107<br>9.97 102<br>9.97 097<br>9.97 092<br>9.97 087<br>9.97 083<br>9.97 078<br>9.97 078                         | From the top: For 20°+ or 200°+, read as printed; for 110°+ or 290°+, read co-function.                                                                                                  |
| 9.55 102<br>9.55 136<br>9.55 169<br>9.55 202<br>9.55 235<br>9.55 268<br>9.55 301<br>9.55 334                                                 | 9.58 039<br>9.58 077<br>9.58 115<br>9.58 153<br>9.58 191<br>9.58 229<br>9.58 267<br>9.58 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.41 961<br>10.41 923<br>10.41 885<br>10.41 847<br>10.41 809<br>10.41 733<br>10.41 696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.97 063<br>9.97 059<br>9.97 054<br>9.97 049<br>9.97 044<br>9.97 039<br>9.97 035<br>9.97 030                                                 | From the bottom: For 69°+ or 249°+, read as printed; for 159°+ or 339°+, read co-function.                                                                                               |
| 9.55 367<br>9.55 400<br>9.55 433<br>L Cos   d                                                                                                | 9.58 380<br>9.58 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.41 620<br>10.41 582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.97 025<br>9.97 020<br>9.97 015<br>L Sin   d                                                                                                | Prop. Pts.                                                                                                                                                                               |
|                                                                                                                                              | L Sin   d  9.53 445  9.53 440  9.53 475  9.53 470  9.53 578  9.53 578  9.53 578  9.53 682  9.53 756  9.53 756  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.53 858  9.54 603  9.54 603  9.54 603  9.54 608  9.54 608  9.54 608  9.54 608  9.54 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608  9.55 608 | LSin   d L Tan  9.53 405   9.56 107  9.53 440   9.56 185  9.53 578   9.56 224  9.53 578   9.56 342  9.53 578   9.56 342  9.53 617   9.56 342  9.53 617   9.56 342  9.53 617   9.56 459  9.53 716   9.56 459  9.53 751   9.56 459  9.53 751   9.56 537  9.53 851   9.56 537  9.53 851   9.56 537  9.53 851   9.56 615  9.53 852   9.56 654  9.53 922   9.56 634  9.53 922   9.56 634  9.53 951   9.56 810  9.54 025   9.56 810  9.54 025   9.56 861  9.54 025   9.56 861  9.54 127   9.56 965  9.54 127   9.56 965  9.54 127   9.56 965  9.54 289   9.57 042  9.54 289   9.57 158  9.54 289   9.57 158  9.54 389   9.57 158  9.54 389   9.57 158  9.54 486   9.57 158  9.54 560   9.57 466  9.54 661   9.57 466  9.54 668   9.57 561  9.54 806   9.57 561  9.54 806   9.57 561  9.54 806   9.57 564  9.54 806   9.57 564  9.54 806   9.57 564  9.54 806   9.57 574  9.54 806   9.57 584  9.54 806   9.57 584  9.54 806   9.57 772  9.54 906   9.57 887  9.55 102   9.58 807  9.55 102   9.58 807  9.55 202   9.58 153  9.55 202   9.58 153  9.55 202   9.58 380  9.55 400   9.58 380  9.55 400   9.58 380  9.55 334   9.58 324  9.55 334   9.58 229  9.55 102   9.58 815  9.55 202   9.58 153  9.55 202   9.58 153  9.55 304   9.58 304  9.55 304   9.58 380  9.55 400   9.58 380  9.55 400   9.58 380  9.55 334   9.58 380  9.55 400   9.58 380  9.55 334   9.58 384 | LSin   d                                                                                                                                     | L Sin   d                                                                                                                                                                                |

69° — Logarithms of Trigonometric Functions

|                                  |                 | G                                |     |                                     | ,                                   | C A CHICAGO                                                                       |
|----------------------------------|-----------------|----------------------------------|-----|-------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|
| L Sin                            |                 | L Tan                            | c d | L Cin                               | L Cos id                            | Prop. Pts.                                                                        |
| 9.55 433<br>9.55 466             | 33<br>33        | 9.58 418<br>9.58 455             |     | 10.41 542<br>10.41 545              | 9.97 015<br>9.97 016                |                                                                                   |
| 9,55 499<br>9,55 532<br>5 564    | $\frac{33}{32}$ | 9.58 493<br>9.58 531<br>9.58 569 |     | 19.41 597<br>19.41 469<br>19.41 431 | 9,97 005<br>9,97 001<br>9,96 996    |                                                                                   |
| 9.55 597<br>9.55 630             | 33<br>33        | 9.58 606<br>9.58 644             |     | 10.41 394<br>10.41 356              | 9.96991<br>936986                   | 38 37 36                                                                          |
| 9,55 663<br>9,55 695             | 33<br>32<br>33  | 9.58 651<br>9.58 719             |     | 10.41 319 10.41 281                 | 9,96 981<br>9,96 976                | 4 152 115 155                                                                     |
| 9.55 725<br>9.55 761<br>9.55 793 | 33<br>32        | 9.58 757<br>9.58 794<br>9.58 832 |     | 10.41 243<br>10.41 206<br>10.41 165 | 9.96 971<br>9.96 966                |                                                                                   |
| 9.55 826<br>9.55 858             | 33<br>32<br>33  | 9.58 869<br>9.58 907             |     | 10.41 131<br>10.41 093              | 9,96,962<br>9,96,957<br>9,96,952    | 6 228                                                                             |
| 9.55 891<br>9.55 923<br>9.55 956 | 32<br>33        | 9.58 944<br>9.58 981<br>9.59 019 |     | 10.41 056                           | 9.96 947<br>9.96 942                |                                                                                   |
| 9.55 988<br>9.56 021             | 32<br>33<br>32  | $9.59\ 056$ $9.59\ 094$          |     | 10.40 951<br>10.40 944<br>10.40 906 | 9,96 937<br>9,96 932<br>9,96 927    | 33 32 31<br>2 6.6 6.4 6.2                                                         |
| 9.56 053<br>9.56 085             | 32<br>33        | 9.59 131<br>9.59 16S             |     | 10.40 869<br>10.40 832              | 9.96 922<br>9.96 917                | 3 9.5 9.6 9.5<br>1 1 1.2 12.5 12.4<br>5 10 5 15 0 15.5                            |
| 9.56 118<br>9.56 150<br>9.56 182 | 32<br>32        | 9.59 205<br>9.59 243<br>9.59 280 |     | 10.40 795<br>10.40 757<br>10.40 720 | 9.96 912<br>9.96 907<br>9.96 903    | 6 17.8 19.2 18.6                                                                  |
| 9.56 215<br>9.56 247             | 33<br>32<br>32  | 9.59 317<br>9.59 354             |     | 10.40 683<br>10.40 646              | 9.96 898<br>9.96 893                | 5 26.4 25.6 24.8<br>9 26.7 25.5 27.9                                              |
| 9.56 279<br>9.56 311<br>9.56 343 | $\frac{32}{32}$ | 9.59 391<br>9.59 429<br>9.59 466 |     | 10.40 609<br>10.40 571<br>10.40 534 | 9.96 555<br>9.96 553<br>9.96 578    | 1615:4                                                                            |
| 9.56 375<br>9.56 408             | 32<br>33<br>32  | 9.59 503<br>9.59 540             |     | 10.40 497<br>10.40 460              | 9.96 873<br>9.96 868                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             |
| 9.56 440<br>9.56 472<br>9.56 504 | $\frac{32}{32}$ | 9.59 577<br>9.59 614<br>9.59 651 |     | 10.40 423<br>10.40 386<br>10.40 349 | 9.96 863<br>9.96 858<br>9.96 853    | 4 2.4 2.0 1.6<br>5 3.0 2.5 2.0<br>6 3.6 3.0 2.4<br>7 4.2 3.5 2.5<br>8 4.5 4.0 3.3 |
| 9.56 536<br>9.56 568             | 32<br>32        | 9.59 688<br>9.59 725             |     | 10.40 312<br>10.40 275              | 9.96 848<br>9.96 843                | 5 3.0 2.3 2.0<br>6 3.6 3.0 2.4<br>7 4.2 3.5 2.5<br>8 4.5 4.0 3.2                  |
| 9.56 599<br>9.56 631<br>9.56 663 | 31<br>32<br>32  | 9.59 762<br>9.59 799<br>9.59 835 |     | 10.40 238<br>10.40 201<br>10.40 165 | 9.96 \$38<br>9.96 \$33<br>9.96 \$28 |                                                                                   |
| 9.56 695<br>9.56 727             | 32<br>32        | 9.59 872<br>9.59 909             |     | 10.40 128<br>10.40 091              | 9.96 S23<br>9.96 S1S                |                                                                                   |
| 9.56 759<br>9.56 790<br>9.56 822 | 32<br>31<br>32  | 9.59 946<br>9.59 983<br>9.60 019 |     | 10.40 054<br>10.40 017<br>10.39 981 | 9.96 813<br>9.96 808<br>9.96 803    | From the top:                                                                     |
| 9.56 854<br>9.56 886             | 32<br>32        | 9.60 056<br>9.60 093             |     | 10.39 944 10.39 907                 | 9.96 798<br>9.96 793                | For 21° or 201°, read as printed; for                                             |
| 9.56 917<br>9.56 949<br>9.56 980 | 31<br>32<br>31  | 9.60 130<br>9.60 166<br>9.60 203 |     | 10.39 870<br>10.39 834<br>10.39 79  | 9.96785<br>9.96783<br>9.96778       | 111°+ or 291°+, read co-function.                                                 |
| 9.57 012<br>9.57 044             | 32<br>32        | 9.60 240<br>9.60 276             |     | 10.39 760<br>10.39 724              | 9.96778<br>9.96772<br>9.96767       | From the bottom:                                                                  |
| 9.57 075<br>9.57 107<br>9.57 138 | 31<br>32<br>31  | 9.60 313<br>9.60 349<br>9.60 386 |     | 10.39 65'<br>10.39 651<br>10.39 614 | 9.96762<br>9.96757<br>9.96752       | For 68°+ or 248°+,<br>read as printed; for                                        |
| 9.57 169<br>9.57 201             | 31<br>32        | 9.60 422<br>9.60 459             |     | 10.39 578<br>10.39 541              | 9.96 747<br>9.96 742                | 158° + or 338° +, read co-function.                                               |
| 9.57 232<br>9.57 264<br>9.57 295 | 31<br>32<br>31  | 9.60 495<br>9.60 532<br>9.60 568 |     | 10.39 505<br>10.39 468<br>10.39 432 | 9.96 737<br>9.96 732<br>9.96 727    |                                                                                   |
| 9.57 326<br>9.57 358             | 31<br>32        | 9.60 605<br>9.60 641             |     | 10.39 395                           | 9.96 722<br>9.96 717                |                                                                                   |
| L Cos                            | d               |                                  | cd  | L Tan                               | L Sin                               | Prop. Pts.                                                                        |

68° - Logarithms of Trigonometric Functions

| -                                             |                                                                                  |                                              | Logan                                                                            |                                                    |                                                                                         |                                                                                  | merious [III               |                                               |                                                                                                                                       |
|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Ľ                                             | L Sin                                                                            | <u>d</u>                                     | L Tan                                                                            | cd                                                 | ·                                                                                       | L Cos                                                                            | d                          | _                                             | Prop. Pts.                                                                                                                            |
| 0<br>1<br>2<br>3<br>4                         | 9.57 358<br>9.57 389<br>9.57 420<br>9.57 451<br>9.57 482                         | 31<br>31<br>31<br>31                         | 9.60 641<br>9.60 677<br>9.60 714<br>9.60 750<br>9.60 786                         | 36<br>37<br>36<br>36                               | 10.39 359<br>10.39 323<br>10.39 286<br>10.39 250<br>10.39 214                           | 9.96717<br>9.96711<br>9.96706<br>9.96701<br>9.96696                              | 6 5 5 5                    | 59<br>58<br>57<br>56                          |                                                                                                                                       |
| 5<br>6<br>7<br>8<br>9<br>10                   | 9.57 514<br>9.57 545<br>9.57 576<br>9.57 607<br>9.57 638<br>9.57 669<br>9.57 700 | 32<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | 9.60 823<br>9.60 859<br>9.60 895<br>9.60 931<br>9.60 967<br>9.61 004<br>9.61 040 | 37<br>36<br>36<br>36<br>36<br>37<br>36<br>36<br>36 | 10.39 177<br>10.39 141<br>10.39 105<br>10.39 069<br>10.39 033<br>10.38 996<br>10.38 960 | 9.96 691<br>9.96 686<br>9.96 681<br>9.96 676<br>9.96 670<br>9.96 665<br>9.96 660 | 5 5 5 5 6 5 5 5            | 55<br>54<br>53<br>52<br>51<br>50<br>49        | 37   36   35   37   36   37   36   37   37   37   37                                                                                  |
| 12<br>13<br>14<br><b>15</b><br>16<br>17<br>18 | 9.57 731<br>9.57 762<br>9.57 793<br>9.57 824<br>9.57 855<br>9.57 885<br>9.57 916 | 31<br>31<br>31<br>31<br>30<br>31             | 9.61 076<br>9.61 112<br>9.61 148<br>9.61 184<br>9.61 220<br>9.61 256<br>9.61 292 | 36<br>36<br>36<br>36<br>36<br>36                   | 10.38 924<br>10.38 888<br>10.38 852<br>10.38 816<br>10.38 780<br>10.38 744<br>10.38 708 | 9.96 655<br>9.96 650<br>9.96 645<br>9.96 640<br>9.96 634<br>9.96 629<br>9.96 624 | 5 5 6 5 5                  | 48<br>47<br>46<br><b>45</b><br>44<br>43<br>42 | 8 29.6 28.8 28.0<br>9 33.3 32.4 31.5                                                                                                  |
| 19<br>20<br>21<br>22<br>23<br>24<br>25        | 9.57 947<br>9.57 978<br>9.58 008<br>9.58 039<br>9.58 070<br>9.58 101<br>9.58 131 | 31<br>30<br>31<br>31<br>31<br>31<br>30       | 9.61 328<br>9.61 364<br>9.61 400<br>9.61 436<br>9.61 472<br>9.61 508             | 36<br>36<br>36<br>36<br>36<br>36<br>36             | 10.38 672<br>10.38 636<br>10.38 600<br>10.38 564<br>10.38 528<br>10.38 492              | 9.96 619<br>9.96 614<br>9.96 608<br>9.96 603<br>9.96 598<br>9.96 593             | 5 6 5 5 5 5                | 41<br>40<br>39<br>38<br>37<br>36              | 3 9.6 9.3 9.0<br>4 12.8 12.4 12.0<br>5 16.0 15.5 15.0<br>6 19.2 18.6 18.0<br>7 22.4 21.7 21.0<br>8 25.6 24.8 24.0<br>9 28.8 27.9 27.0 |
| 26<br>27<br>28<br>29<br>30                    | 9.58 131<br>9.58 162<br>9.58 192<br>9.58 223<br>9.58 253<br>9.58 284<br>9.58 314 | 31<br>30<br>31<br>30<br>31<br>30             | 9.61 544<br>9.61 579<br>9.61 615<br>9.61 651<br>9.61 687<br>9.61 722<br>9.61 758 | 35<br>36<br>36<br>38<br>35<br>36                   | 10.38 456<br>10.38 421<br>10.38 385<br>10.38 349<br>10.38 313<br>10.38 278<br>10.38 242 | 9.96 588<br>9.96 582<br>9.96 577<br>9.96 572<br>9.96 567<br>9.96 562<br>9.96 556 | 6 5 5 5 5 6                | 35<br>34<br>33<br>32<br>31<br>30<br>29        | 29 6 5<br>2 5.8 1.2 1.0<br>3 8.7 1.8 1.5<br>4 11.6 2.4 2.0                                                                            |
| 32<br>33<br>34<br><b>35</b><br>36<br>37       | 9.58 345<br>9.58 375<br>9.58 406<br>9.58 436<br>9.58 467<br>9.58 497             | 31<br>30<br>31<br>30<br>31<br>30<br>30       | 9.61 794<br>9.61 830<br>9.61 865<br>9.61 901<br>9.61 936<br>9.61 972             | 36<br>35<br>36<br>35<br>36<br>36<br>36             | 10.38 206<br>10.38 170<br>10.38 135<br>10.38 099<br>10.38 064<br>10.38 028              | 9.96 551<br>9.96 546<br>9.96 541<br>9.96 535<br>9.96 530<br>9.96 525             | 5 5 5 6 5 5 5              | 28<br>27<br>26<br><b>25</b><br>24<br>23       | 5 14.5 3.0 2.5<br>6 17.4 3.6 3.0<br>7 20.3 4.2 3.5<br>8 23.2 4.8 4.0<br>9 26.1 5.4 4.5                                                |
| 38<br>39<br><b>40</b><br>41<br>42<br>43<br>44 | 9.58 527<br>9.58 557<br>9.58 588<br>9.58 618<br>9.58 648<br>9.58 678<br>9.58 709 | 30<br>31<br>30<br>30<br>30<br>31             | 9.62 008<br>9.62 043<br>9.62 079<br>9.62 114<br>9.62 150<br>9.62 185<br>9.62 221 | 35<br>36<br>35<br>36<br>35<br>36                   | 10.37 992<br>10.37 957<br>10.37 921<br>10.37 886<br>10.37 850<br>10.37 815<br>10.37 779 | 9.96 520<br>9.96 514<br>9.96 509<br>9.96 504<br>9.96 498<br>9.96 493<br>9.96 488 | 6<br>5<br>5<br>6<br>5<br>5 | 22<br>21<br><b>20</b><br>19<br>18<br>17<br>16 | From the top: For 22°+ or 202°+.                                                                                                      |
| 45<br>46<br>47<br>48<br>49<br>50              | 9.58 739<br>9.58 769<br>9.58 799<br>9.58 829<br>9.58 859<br>9.58 889             | 30<br>30<br>30<br>30<br>30<br>30             | 9.62 256<br>9.62 292<br>9.62 327<br>9.62 362<br>9.62 398<br>9.62 433             | 35<br>36<br>35<br>35<br>36<br>35                   | 10.37 744<br>10.37 708<br>10.37 673<br>10.37 638<br>10.37 602<br>10.37 567              | 9.96 483<br>9.96 477<br>9.96 472<br>9.96 467<br>9.96 461<br>9.96 456             | 5 6 5 5 6 5                | 15<br>14<br>13<br>12<br>11<br>10              | read as printed; for 112°+ or 292°+, read co-function.  From the bottom:                                                              |
| 51<br>52<br>53<br>54<br><b>55</b><br>56       | 9.58 919<br>9.58 949<br>9.58 979<br>9.59 009<br>9.59 039<br>9.59 069             | 30<br>30<br>30<br>30<br>30<br>30             | 9.62 468<br>9.62 504<br>9.62 539<br>9.62 574<br>9.62 609<br>9.62 645             | 35<br>36<br>35<br>35<br>35<br>36                   | 10.37 532<br>10.37 496<br>10.37 461<br>10.37 426<br>10.37 391<br>10.37 355              | 9.96 451<br>9.96 445<br>9.96 440<br>9.96 435<br>9.96 429<br>9.96 424             | 565565                     | 987654                                        | For 67°+ or 247°+,<br>read as printed; for<br>157°+ or 337°+, read<br>co-function.                                                    |
| 57<br>58<br>59<br><b>60</b>                   | 9.59 098<br>9.59 128<br>9.59 158<br>9.59 188<br><b>L Cos</b>                     | 29<br>30<br>30<br>30<br>30                   | 9.62 680<br>9.62 715<br>9.62 750<br>9.62 785<br>L Ctn                            | 35<br>35<br>35<br>35<br>c d                        | 10.37 320<br>10.37 285<br>10.37 250<br>10.37 215<br>L Tan                               | 9.96 419<br>9.96 413<br>9.96 408<br>9.96 403<br>L Sin                            | 5655 d                     | 3 2 1 0 ,                                     | Prop. Pts.                                                                                                                            |

| III]                       | 20                                                       |                            | Logarit                                                  | ums                        | or Ingo                                                       | ********                                                 |           | * 41                        |                                                                                    |
|----------------------------|----------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------|-----------|-----------------------------|------------------------------------------------------------------------------------|
|                            | L Sin                                                    | d                          | L Tan                                                    | c d                        | L Ctn                                                         | Cos                                                      | d         |                             | Prop. Pts.                                                                         |
|                            | 9.59 188<br>9.59 218<br>9.59 247<br>9.59 277             | 30<br>29<br>30             | 9.62 785<br>9.62 820<br>9.62 855<br>9.62 890             |                            | 0.37150                                                       | 1.96 403<br>1.96 397<br>1.96 392<br>1.96 357             | 5 5       | 60<br>50<br>55<br>57        | 36   35<br>2   7.2   7.0                                                           |
|                            | 9,59 307<br>9,59 336<br>9,59 366                         | 30<br>29<br>30<br>30       | 9.62 926<br>9.62 961<br>9.62 996                         |                            | .0.37 074<br>.0.37 039<br>.0.37 004                           | 7.96 351<br>2.96 376<br>7.96 370                         | 65 65     | 56<br>55<br>54              | 3 10.5 10.5<br>4 14.4 14.0<br>5 18.0 17.5                                          |
| 9<br>110                   | 9,59 396<br>9,59 425<br>9,59 455<br>9,59 484             | 29<br>30<br>29             | 9.63 031<br>9.63 066<br>9.63 101<br>9.63 135             |                            | 10.36 899<br>:0.36 865                                        | 3.96365<br>3.96360<br>3.96354<br>3.96349                 | 12 613 61 | 53<br>52<br>51<br><b>50</b> | 6 21.6 21.9<br>7 25.2 24.5<br>8 28.8 28.0<br>9 32.4 31.5                           |
| 11<br>12<br>13<br>14       | 9.59 514<br>9.59 543<br>9.59 573<br>9.59 602             | 30<br>29<br>30<br>29       | 9.63 170<br>9.63 205<br>9.63 240<br>9.63 275             |                            | 10.36 795<br>.0.36 760<br>.0.36 725                           | 9.96 343<br>9.96 335<br>9.96 333<br>9.96 327             | 55563     | 49<br>45<br>47<br>46        | 34 30<br>2 6.5 6.0<br>3 10.2 9.0                                                   |
| 15<br>16<br>17<br>18<br>19 | 9.59 632<br>9.59 661<br>9.59 690<br>9.59 720<br>9.59 749 | 30<br>29<br>29<br>30<br>29 | 9.63 310<br>9.63 345<br>9.63 379<br>9.63 414<br>9.63 449 |                            | $0.36655 \\ 10.36621$                                         | 9.96 322<br>9.96 316<br>9.96 311<br>9.96 305<br>9.96 300 | 65656     | 44<br>43<br>42<br>41        | 4 13.6 12.0<br>5 17.0 15.0<br>6 20.4 18.0<br>7 23.8 21.0<br>8 27.2 24.0            |
| 20<br>21<br>22<br>23       | 9.59 778<br>9.59 808<br>9.59 837<br>9.59 866             | 29<br>30<br>29<br>29<br>29 | 9.63 484<br>9.63 519<br>9.63 553<br>9.63 588             | 35<br>34<br>35<br>35       | 10.36 516<br>.0.36 481<br>.0.36 447<br>10.36 412<br>10.36 377 | 9.96 294<br>9.96 289<br>9.96 284<br>9.96 278<br>9.96 273 | 55565     | 40<br>39<br>35<br>37<br>36  | 9   30.6   27.0                                                                    |
| 24<br>25<br>26             | 9.59 895<br>9.59 924<br>9.59 954<br>9.59 983<br>9.60 012 | 29<br>30<br>29<br>29       | 9.63 623<br>9.63 657<br>9.63 692<br>9.63 726<br>9.63 761 | 34<br>35<br>34<br>35       | 10.36 343<br>10.36 305<br>10.36 274<br>10.36 23t              | 9.96 267<br>9.96 262<br>9.96 256<br>9.96 251             | 6 505     | 35<br>34<br>33<br>32        | 2 5.8 5.6<br>3 8.7 8.4<br>4 11.6 11.2<br>5 14.5 14.0<br>6 17.4 16.8                |
| 28<br>29<br>30<br>31<br>32 | 9.60 041<br>9.60 070<br>9.60 099<br>9.60 128             | 29<br>29<br>29<br>29       | 9.63 796<br>9.63 830<br>9.63 865<br>9.63 899             | 35<br>34<br>35<br>34<br>35 | 10.36 204<br>10.36 170<br>10.36 135<br>10.36 101              | 9.96 245<br>9.96 240<br>9.96 234<br>9.96 229             | 5         | 31<br>30<br>29<br>25<br>27  | 7 20.3 19.5<br>8 23.2 22.4<br>9 26.1 25.2                                          |
| 33<br>34<br>35<br>36       | 9.60 157<br>9.60 186<br>9.60 215<br>9.60 244             | 29<br>29<br>29<br>29<br>29 | 9.63 934<br>9.63 968<br>9.64 003<br>9.64 037             | 34<br>35<br>34<br>35       | 10.36 066<br>10.36 032<br>10.35 997<br>10.35 965<br>10.35 928 | 9.96 223<br>9.96 218<br>9.96 212<br>9.96 207<br>9.96 201 | 3         | 26<br><b>25</b><br>24<br>23 | 6 5<br>2 1.2 1.0<br>3 1.5 1.5<br>4 2.4 2.0                                         |
| 37<br>38<br>39<br>40       | 9.60 331<br>9.60 359                                     | 29<br>29<br>28<br>29       | 9.64 072<br>9.64 106<br>9.64 140<br>9.64 175             | 34<br>34<br>35<br>34       | 10.35 894<br>10.35 860<br>10.35 825<br>10.35 791              | 9.96 196<br>9.96 190<br>9.96 185<br>9.96 179             | 5         | 22<br>21<br><b>20</b><br>19 | 5 3.0 2.5<br>6 3.6 3.0<br>7 4.2 3.5<br>8 4.5 4.0                                   |
| 41<br>42<br>43<br>44       | 9.60 417<br>9.60 446<br>9.60 474                         | 29<br>29<br>28<br>29       | 9.04 01.                                                 | 34<br>35<br>34<br>34       | 10.35 757<br>10.35 722<br>10.35 688                           | 9.96 174<br>9.96 168<br>9.96 162<br>9.96 157             | 6 5       | 18<br>17<br>16<br><b>15</b> | 9   5.4   4.5  From the top:                                                       |
| 40                         | 9.60 532<br>9.60 561<br>9.60 589                         | 29<br>29<br>28             | 9.64 41<br>9.64 44<br>9.64 48                            | 35<br>34<br>34<br>34<br>3  | 10.35 654<br>10.35 61<br>10.35 58<br>10.35 55<br>10.35 51     | 9.96 151<br>9.96 146<br>9.96 146<br>9.96 135             | 5 6 5 6   | 14<br>13<br>12<br>11        | For 23°+ or 203°+,<br>read as printed; for<br>113°+ or 293°+, read<br>co-function. |
| 50<br>5<br>5<br>5          | 9.60 646<br>1 9.60 675<br>2 9.60 704<br>3 9.60 732       | 29                         | 9.64 55<br>9.64 55<br>9.64 586<br>9.64 620               | 35<br>34<br>34<br>34       | 10.35 48/<br>10.35 44<br>10.35 41<br>10.35 38(<br>10.35 34(   | 9.96 123<br>9.96 123<br>9.96 113<br>9.96 113<br>9.96 103 | 6 5 6 5   | 10 81-6                     | From the bottom: For 66°+ or 246°+,                                                |
| 5<br>5<br>5<br>5<br>5      | 5 9.60 789<br>6 9.60 818<br>7 9.60 846                   | 28                         | 9.64 68<br>9.64 72<br>9.64 75<br>9.64 79                 | 34<br>34<br>34<br>34       | 10.35 31<br>10.35 27<br>10.35 24<br>10.35 21                  | 9.96 10:<br>9.96 09:<br>9.96 09:<br>9.96 08:             | 1 6 5 6   | 433                         | read as printed; for 156; or 336; read co-function.                                |
|                            | 9 9.60 903                                               |                            | 9 64 85                                                  |                            | 10.35 17<br>10.35 142                                         | 9.96 07<br>9.96 07                                       | 9 ] 6     |                             |                                                                                    |
| 10                         | T. Cos                                                   |                            |                                                          | cd                         |                                                               | L Sin                                                    |           |                             |                                                                                    |

L Cos | d | L Ctn | cd | L Tan | L Sin

66° — Logarithms of Trigonometric Functions

|                                                                | L Sin   d                                                                                                                                                | L Tan  cd                                                                                                                                    | L Ctn                                                                                                                                                    | L Cos   d                                                                                                                                                | Prop. Pts.                                                                                                                                                  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10                                                             | 9.60 931<br>9.60 960<br>9.60 988<br>9.61 016<br>9.61 045<br>9.61 073<br>9.61 101<br>9.61 129<br>9.61 158<br>9.61 186<br>9.61 214                         | 9.64 858<br>9.64 892<br>9.64 926<br>9.64 960<br>9.64 994<br>9.65 028<br>9.65 028<br>9.65 130<br>9.65 164<br>9.65 197<br>9.65 231             | 10.35 142<br>10.35 108<br>10.35 074<br>10.35 040<br>10.35 040<br>10.34 972<br>10.34 938<br>10.34 904<br>10.34 870<br>10.34 830<br>10.34 803              | 9.96 073<br>9.96 062<br>9.96 056<br>9.96 056<br>9.96 050<br>9.96 045<br>9.96 034<br>9.96 028<br>9.96 022<br>9.96 017<br>9.96 011                         | 2 6.8 6.6 3 10.2 9.9 4 13.6 13.2 5 17.0 16.5 6 20.4 19.8 7 23.8 23.1 8 27.2 26.4 9 30.6 29.7                                                                |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21       | 9.61 270<br>9.61 298<br>9.61 326<br>9.61 354<br>9.61 382<br>9.61 411<br>9.61 438<br>9.61 466<br>9.61 494                                                 | 9.65 231<br>9.65 265<br>9.65 299<br>9.65 333<br>9.65 366<br>9.65 400<br>9.65 434<br>9.65 467<br>9.65 501                                     | 10.34 735<br>10.34 701<br>10.34 667<br>10.34 634<br>10.34 600<br>10.34 566<br>10.34 533<br>10.34 499<br>10.34 465                                        | 9.96 005<br>9.96 000<br>9.95 994<br>9.95 988<br>9.95 982<br>9.95 977<br>9.95 971<br>9.95 965<br>9.95 960<br>9.95 954                                     | 29   28<br>2   5.8   5.6<br>3   8.7   8.4<br>4   11.6   11.2<br>5   14.5   14.0<br>6   17.4   16.8<br>7   20.3   19.6<br>8   23.2   22.4<br>9   26.1   25.2 |
| 22<br>23<br>24<br>25<br>26<br>27<br>29<br>30<br>31<br>32<br>33 | 9.61 522<br>9.61 550<br>9.61 578<br>9.61 606<br>9.61 634<br>9.61 662<br>9.61 689<br>9.61 717<br>9.61 745<br>9.61 773<br>9.61 800<br>9.61 828<br>9.61 828 | 9.65 568<br>9.65 602<br>9.65 636<br>9.65 669<br>9.65 736<br>9.65 770<br>9.65 803<br>9.65 803<br>9.65 870<br>9.65 870<br>9.65 870<br>9.65 870 | 10.34 432<br>10.34 398<br>10.34 364<br>10.34 331<br>10.34 297<br>10.34 264<br>10.34 264<br>10.34 197<br>10.34 163<br>10.34 099<br>10.34 099<br>10.34 009 | 9.95 948<br>9.95 942<br>9.95 937<br>9.95 937<br>9.95 931<br>9.95 925<br>9.95 920<br>9.95 914<br>9.95 908<br>9.95 902<br>9.95 897<br>9.95 891<br>9.95 891 | 27   2, 5.4   1.2   3   8.1   1.8   4   10.8   2.4   5   13.5   3.0   6   16.2   3.6   7   18.9   4.2   8   21.6   4.8   9   24.3   5.4                     |
| 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | 9.61 883<br>9.61 911<br>9.61 939<br>9.61 966<br>9.61 994<br>9.62 021<br>9.62 049<br>9.62 049<br>9.62 104<br>9.62 131                                     | 9.66 004<br>9.66 038<br>9.66 071<br>9.66 104<br>9.66 138<br>9.66 171<br>9.66 204<br>9.66 271<br>9.66 271<br>9.66 337                         | 10.33 996<br>10.33 962<br>10.33 929<br>10.33 896<br>10.33 862<br>10.33 796<br>10.33 762<br>10.33 769<br>10.33 696<br>10.33 663                           | 9.95 879<br>9.95 878<br>9.95 868<br>9.95 862<br>9.95 856<br>9.95 850<br>9.95 844<br>9.95 839<br>9.95 833<br>9.95 827<br>9.95 821                         | 1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>4.5                                                                                                        |
| 45<br>46<br>47<br>48<br>49<br>50                               | 9.62 186<br>9.62 214<br>9.62 241<br>9.62 268<br>9.62 296<br>9.62 323<br>9.62 350                                                                         | 9.66 371<br>9.66 404<br>9.66 437<br>9.66 470<br>9.66 503<br>9.66 537<br>9.66 570                                                             | 10.33 629<br>10.33 596<br>10.33 563<br>10.33 530<br>10.33 497<br>10.33 463<br>10.33 430                                                                  | 9.95 815<br>9.95 810<br>9.95 804<br>9.95 798<br>9.95 792<br>9.95 786<br>9.95 780                                                                         | From the top: For 24°+ or 204°+, read as printed; for 114°+ or 294°+, read co-function.                                                                     |
| 52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br><b>60</b>      | 9.62 405<br>9.62 432<br>9.62 459<br>9.62 486<br>9.62 513<br>9.62 541<br>9.62 568                                                                         | 9.66 603<br>9.66 636<br>9.66 669<br>9.66 702<br>9.66 768<br>9.66 801<br>9.66 834<br>9.66 867                                                 | 10.33 397<br>10.33 364<br>10.33 331<br>10.33 298<br>10.33 265<br>10.33 232<br>10.33 199<br>10.33 166<br>10.33 133                                        | 9.95 775<br>9.95 769<br>9.95 763<br>9.95 757<br>9.95 751<br>9.95 745<br>9.95 739<br>9.95 733<br>9.95 728                                                 | From the bottom: For 65°+ or 245°+, read as printed; for 155°+ or 335°+, read co-function.                                                                  |
| 0                                                              |                                                                                                                                                          | L Ctn   cd                                                                                                                                   |                                                                                                                                                          |                                                                                                                                                          | Prop. Pts.                                                                                                                                                  |

| L Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 9.02 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pts.                                |
| 9.62 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                  |
| 9.62 \$11 9.62 \$835 9.67 163 12 9.62 \$835 9.67 163 33 0.32 \$809 9.95 685 9.62 \$12 9.67 196 33 0.32 \$804 9.95 668 9.62 \$12 9.67 229 33 0.32 \$771 9.95 668 9.62 \$12 9.67 229 33 0.32 \$771 9.95 668 9.62 \$12 9.67 262 33 0.32 \$775 9.95 667 9.62 \$12 9.67 367 33 0.32 \$775 9.95 667 9.62 \$12 9.67 367 33 0.32 \$775 9.95 667 9.62 \$12 9.67 367 33 0.32 \$775 9.95 667 9.62 \$12 9.67 367 33 0.32 \$775 9.95 667 9.62 \$12 9.67 367 33 0.32 \$775 9.95 667 9.63 \$16 9.63 \$16 9.67 367 33 0.32 \$775 9.95 667 9.95 677 9.63 \$16 9.63 \$16 9.67 367 33 0.32 \$177 9.95 667 34 9.10 \$18 9.68 \$177 9.95 667 34 9.10 \$18 9.68 \$177 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 677 9.95 | 6.4<br>9.6<br>12.5<br>16.0          |
| 9.62 972 27 9.67 327 12 0.32 673 9.95 651 9.62 999 27 9.67 327 13 0.32 640 9.95 639 4 10.5 9.63 052 26 9.67 426 31 0.32 574 9.95 637 16.2 18 9.63 052 27 9.67 426 31 0.32 574 9.95 627 16.2 19 9.63 106 27 9.67 426 32 10.32 542 9.95 621 7 15.9 20 9.63 133 26 9.67 524 32 10.32 446 9.95 609 9.15 615 7 15.9 21 9.63 153 26 9.67 556 32 10.32 441 9.95 603 9 124.3 21 9.63 156 27 9.67 589 33 0.32 476 9.95 609 9.15 615 8 12.6 22 9.63 156 27 9.67 550 32 10.32 441 9.95 603 9 124.3 22 9.63 156 27 9.67 550 32 10.32 441 9.95 603 9 124.3 23 9.63 213 27 9.67 589 33 0.32 241 9.95 597 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.2<br>22.4<br>25.6<br>28.8        |
| 9.63 026 27 9.67 393 33 0.32 607 9.95 633 5 13.5  18 9.63 079 27 9.67 426 33 10.32 542 9.95 627 115.2  19 9.63 106 27 9.67 491 33 0.32 542 9.95 609 5 115.2  19 9.63 133 26 9.67 524 33 10.32 542 9.95 609 5 115.2  120 9.63 135 26 9.67 556 32 10.32 446 9.95 609 9.124.3  21 9.63 159 27 9.67 559 33 0.32 444 9.95 609 9.124.3  22 9.63 156 27 9.67 559 33 0.32 444 9.95 609 9.124.3  23 9.63 213 27 9.67 652 33 0.32 344 9.95 507 124 9.63 239 26 9.67 654 32 10.32 346 9.95 585 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>26</b><br>5.2                    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5<br>10.4<br>13.0<br>15.6<br>15.2 |
| 24 9.63 289 27 9.67 687 33 10.32 313 9.95 573 (27 9.63 319 27 9.67 752 33 10.32 215 9.95 573 (27 9.63 319 27 9.67 752 33 10.32 215 9.95 567 (28 9.63 345 27 9.67 817 32 10.32 215 9.95 567 (29 9.63 372 27 9.67 817 32 10.32 215 9.95 561 (29 9.63 342 27 9.67 817 32 10.32 183 9.95 555 (29 9.63 425 27 9.67 817 32 10.32 183 9.95 555 (29 9.63 425 27 9.67 817 10.32 150 9.95 549 (29 9.63 475 27 9.67 947 10.32 035 9.95 537 (29 9.63 451 27 9.67 947 10.32 035 9.95 531 (29 9.63 531 27 9.68 012 10.31 988 9.95 519 (29 9.63 531 27 9.68 012 10.31 988 9.95 519 (29 9.63 531 27 9.68 012 10.31 988 9.95 519 (29 9.63 531 27 9.68 012 10.31 988 9.95 519 (29 9.63 531 27 9.68 012 10.31 988 9.95 519 (29 9.63 531 27 9.68 012 10.31 988 9.95 519 (29 9.63 531 27 9.68 102 10.31 988 9.95 519 (29 9.63 531 27 9.68 102 10.31 988 9.95 519 (29 9.63 531 27 9.68 102 10.31 988 9.95 519 (29 9.63 531 27 9.68 102 10.31 988 9.95 519 (29 9.63 531 27 9.68 102 10.31 988 9.95 519 (29 9.63 531 27 9.68 102 10.31 988 9.95 519 (29 9.63 531 27 9.68 102 10.31 989 9.95 507 (29 9.63 531 27 9.68 102 10.31 989 9.95 507 (29 9.63 9.68 102 10.31 809 9.95 548 (29 9.68 17 10.31 923 9.95 507 (29 9.63 542 49 9.68 380 (20 9.68 321 10.31 761 9.95 467 (20 9.68 231 10.31 761 9.95 467 (20 9.68 231 10.31 761 9.95 467 (20 9.68 231 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 321 10.31 604 9.95 467 (20 9.68 401 10.31 604 9.95 467 (20 9.68 401 10.31 604 9.95 467 (20 9.68 401 10.31 604 9.95 467 (20 9.68 401 10.31 604 9.95 467 (20 9.68 401 10.31 604 9.95 467 (20 9.68 401                                 | 29.3                                |
| 28 9.63 345 26 9.67 817 33 10.32 215 9.95 561 29 9.63 372 27 9.67 817 33 10.32 115 9.95 561 30 9.63 388 26 9.67 850 10.32 115 9.95 549 31 9.63 425 27 9.67 985 10.32 115 9.95 549 32 9.63 451 26 9.67 915 10.32 085 9.95 537 33 9.63 475 27 9.67 947 10.32 085 9.95 537 34 9.63 504 26 9.67 980 10.32 020 9.95 525 37 34 9.63 551 26 9.68 012 10.31 985 9.95 519 11.32 115 9.63 553 26 9.68 044 10.31 986 9.95 519 11.37 9.63 553 26 9.68 014 10.31 985 9.95 519 11.37 9.63 563 26 9.68 014 10.31 985 9.95 507 2.9 38 9.63 636 26 9.68 142 10.31 891 9.95 507 2.9 39 9.63 636 26 9.68 142 10.31 826 9.95 484 40 9.63 686 26 9.68 142 10.31 826 9.95 485 44 41 9.63 689 27 9.68 20 10.31 794 9.95 485 41 49.63 689 27 9.68 20 10.31 794 9.95 485 41 49.63 689 27 9.68 20 10.31 794 9.95 447 41 9.63 689 26 9.68 27 10.31 794 9.95 447 41 9.63 687 42 9.68 27 10.31 607 9.95 447 41 9.63 687 27 9.68 30 10.31 664 9.95 451 From the 4 4 9.63 896 26 9.68 401 10.31 664 9.95 445 49 9.63 898 26 9.68 401 10.31 607 9.95 447 49 9.63 898 26 9.68 401 10.31 607 9.95 447 49 9.63 898 26 9.68 401 10.31 607 9.95 447 49 9.63 898 26 9.68 401 10.31 503 9.95 447 49 9.63 898 26 9.68 401 10.31 503 9.95 447 115 60 9.68 9.68 9.68 401 10.31 600 9.95 447 115 60 9.68 9.68 401 10.31 600 9.95 447 115 600 9.68 9.68 401 10.31 600 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.95 447 115 600 9.68 401 10.31 503 9.                                | 6<br>1.2<br>1.8<br>2.4              |
| 32 9.63 451 26 9.67 947 10.32 085 9.95 537 34 9.63 504 28 9.67 980 10.32 020 9.95 525 5 5 35 9.63 531 27 9.68 012 10.31 988 9.95 519 1.03 9.63 557 26 9.68 044 10.31 986 9.95 513 1 1.03 983 9.63 557 26 9.68 044 10.31 956 9.95 513 1 1.03 983 9.63 583 26 9.68 077 10.31 923 9.95 507 2.03 9.63 636 26 9.68 142 10.31 891 9.95 500 2.03 9.63 636 26 9.68 142 10.31 891 9.95 500 2.03 9.63 636 26 9.68 142 10.31 891 9.95 500 2.03 9.95 482 40 9.63 662 27 9.68 20 10.31 794 9.95 482 9 4.1 9.63 689 27 9.68 20 10.31 794 9.95 482 9 4.1 9.63 689 27 9.68 20 10.31 794 9.95 482 9 4.1 9.63 671 26 9.68 27 10.31 729 9.95 47 44 9.63 761 26 9.68 27 10.31 729 9.95 47 44 9.63 761 26 9.68 27 10.31 697 9.95 464 47 9.63 808 26 9.68 40 10.31 600 9.95 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.0<br>3.6<br>4.2<br>4.8            |
| 35 9.63 537 26 9.68 012 10.31 958 9.95 519 1.36 9.63 557 26 9.68 077 10.31 953 9.95 507 2.13 9.63 563 26 9.68 142 10.31 839 9.95 507 2.13 9.63 636 26 9.68 142 10.31 836 9.95 444 41 9.63 659 26 9.68 142 10.31 858 9.95 444 41 9.63 659 27 9.68 20 10.31 794 9.95 485 42 9.63 715 26 9.68 23 10.31 794 9.95 47 42 9.63 715 26 9.68 23 10.31 794 9.95 47 44 9.63 767 26 9.68 27 10.31 897 9.95 47 44 9.63 767 26 9.68 27 10.31 697 9.95 46 46 9.63 870 27 9.68 30 10.31 664 9.95 45 From the transfer of the t                                | -                                   |
| 39 9.63 662 26 9.68 17: 10.31 826 9.53 482 41 9.63 6767 26 9.68 236 10.31 794 9.95 482 9 4.4 9.63 767 26 9.68 237 10.31 729 9.95 47 44 9.63 767 26 9.68 27 10.31 729 9.95 47 44 9.63 767 27 9.68 30 10.31 697 9.95 464 47 9.63 820 26 9.68 361 10.31 632 9.95 45; For 25° 47 9.63 846 26 9.68 361 10.31 632 9.95 45; For 25° 47 9.63 846 26 9.68 40; 10.31 600 9.95 44 read as print 48 9.63 872 26 9.68 46; 10.31 503 9.95 42; 11.5° or 295 45; 11.5° or 295 45                                | .5<br>.9<br>.5                      |
| 44 9.63 767 26 9.68 30 10.31 697 9.95 464  45 9.63 764 27 9.68 33 10.31 684 9.95 45; 46 9.63 820 26 9.68 36; 10.31 632 9.95 45; 47 9.63 846 26 9.68 40; 10.31 600 9.95 44; 48 9.63 872 26 9.68 40; 10.31 505 9.95 44; 49 9.63 898 26 9.68 46; 10.31 535 9.95 44; 50 9.63 924 26 9.68 49; 10.31 503 9.95 42; 51 9.63 950 26 9.68 52; 10.31 471 9.95 42; 52 9.63 976 26 9.68 56; 10.31 471 9.95 42; 53 9.64 002 26 9.68 56; 10.31 473 9.95 40; 54 9.64 022 26 9.68 59; 10.31 474 9.95 40; 55 9.64 054 26 9.68 62; 10.31 347 9.95 40; 55 9.64 054 26 9.68 65; 10.31 342 9.95 39; 55 9.64 054 26 9.68 65; 10.31 342 9.95 39; 56 9.68 055 10.31 342 9.95 39; 57 9.64 054 26 9.68 65; 10.31 342 9.95 39; 58 9.64 054 26 9.68 65; 10.31 342 9.95 39; 58 9.64 054 26 9.68 65; 10.31 342 9.95 39; 58 9.64 054 26 9.68 65; 10.31 342 9.95 39; 58 9.64 054 26 9.68 65; 10.31 342 9.95 39; 58 9.64 054 26 9.68 65; 10.31 342 9.95 39; 58 9.64 054 26 9.68 65; 58 9.64 054 26 9.68 65; 59 9.63 9.65 10.31 342 9.95 39; 58 9.64 054 26 9.68 65; 59 9.68 054 054 26 9.68 65; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 10.31 342 9.95 39; 50 9.65 9.65 9.65 9.65 9.65 9.65 9.65 9.65                                                                                                                                                                                                                                   | .5<br>.0                            |
| 48 9.63 872 26 9.68 43: 10.31 568 9.95 44 115° or 295 49 9.63 898 26 9.68 46 10.31 535 9.95 43 115° or 295 50 9.63 924 29 9.68 49 10.31 503 9.95 42 co-function. 51 9.63 950 26 9.68 52 10.31 471 9.95 42 52 9.63 976 26 9.68 56 10.31 439 9.95 41 53 9.64 002 26 9.68 56 10.31 477 9.95 40 From the 154 9.64 028 26 9.68 62 10.31 374 9.95 40 For 64° or 655 9.64 054 26 9.68 65 10.31 374 9.95 39 Frod as print 155 9.64 054 26 9.68 65 10.31 374 9.95 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| 51 9.63 950 26 9.68 52 10.31 471 9.95 42<br>52 9.63 976 26 9.68 56 10.31 439 9.95 41 From the l<br>53 9.64 002 26 9.68 59 10.31 407 9.95 40 For 64° 10.31 407 9.95 40 For 64° 10.31 374 9.95 40 For 64° 10.31 374 9.95 30 For 64° 10.31 374 9.95 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5°-, rea                            |
| 155 9 64 054 9 68 65 10.31 342 9.95 39 yeard as prin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 58 9.64 132 20 9.68 75 10.31 246 9.95 37 co-function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 <sup>3+</sup> , reac              |
| 59 9.64 158 26 9.68 78€ 10.31 214 9.95 3' 60 9.64 184 26 9.68 81 10.31 182 9.95 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pts.                                |

Logarithms of Trigonometric Functions

| 72                                | 26                                                                   | inctions                               |                                                                      |                                        |                                                                            |                                                                      |                       |                                   |                                                                                    |
|-----------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|-----------------------------------|------------------------------------------------------------------------------------|
| 凵                                 | L Sin                                                                | d                                      | L Tan                                                                | cd                                     |                                                                            | L Cos                                                                | d                     |                                   | Prop. Pts.                                                                         |
| 0<br>1<br>2<br>3<br>4             | 9.64 184<br>9.64 210<br>9.64 236<br>9.64 262<br>9.64 288             | 26<br>26<br>26<br>26                   | 9.68 818<br>9.68 850<br>9.68 852<br>9.68 914<br>9.68 946             | 32<br>32<br>32<br>32                   | 10.31 182<br>10.31 150<br>10.31 118<br>10.31 086<br>10.31 054              | 9.95 366<br>9.95 360<br>9.95 354<br>9.95 348<br>9.95 341             | 6<br>6<br>7<br>6      | 59<br>58<br>57<br>56              | 32   31<br>2   6.4   6.2<br>3   9.6   9.3                                          |
| 56789                             | 9.64 313<br>9.64 339<br>9.64 365<br>9.64 391<br>9.64 417             | 25<br>26<br>26<br>26<br>26<br>25       | 9.68 978<br>9.69 010<br>9.69 042<br>9.69 074<br>9.69 106             | 32<br>32<br>32<br>32<br>32<br>32<br>32 | 10.31 022<br>10.30 990<br>10.30 958<br>10.30 926<br>10.30 894              | 9.95 335<br>9.95 329<br>9.95 323<br>9.95 317<br>9.95 310             | 66676                 | 55<br>54<br>53<br>52<br>51        | 4 12.8 12.4<br>5 16.0 15.5<br>6 19.2 18.6<br>7 22.4 21.7<br>8 25.6 24.8            |
| 10<br>11<br>12<br>13<br>14<br>15  | 9.64 442<br>9.64 468<br>9.64 494<br>9.64 519<br>9.64 545<br>9.64 571 | 26<br>26<br>25<br>26<br>26             | 9.69 138<br>9.69 170<br>9.69 202<br>9.69 234<br>9.69 266<br>9.69 298 | 32<br>32<br>32<br>32<br>32<br>32       | 10.30 862<br>10.30 830<br>10.30 798<br>10.30 766<br>10.30 734<br>10.30 702 | 9.95 304<br>9.95 298<br>9.95 292<br>9.95 286<br>9.95 279<br>9.95 273 | 6<br>6<br>6<br>7<br>6 | 50<br>49<br>48<br>47<br>46<br>45  | 9   28.8   27.9<br>  26   25<br>  2   5.2   5.0<br>  3   7.8   7.5                 |
| 16<br>17<br>18<br>19<br>20        | 9.64 571<br>9.64 596<br>9.64 622<br>9.64 647<br>9.64 673             | 25<br>26<br>25<br>26<br>25             | 9.69 329<br>9.69 361<br>9.69 393<br>9.69 425<br>9.69 457             | 31<br>32<br>32<br>32<br>32<br>32       | 10.30 671<br>10.30 639<br>10.30 607<br>10.30 575<br>10.30 543              | 9.95 267<br>9.95 261<br>9.95 254<br>9.95 248<br>9.95 242             | 6<br>6<br>7<br>6      | 44<br>43<br>42<br>41<br>40        | 4 10.4 10.0<br>5 13.0 12.5<br>6 15.6 15.0<br>7 18.2 17.5<br>8 20.8 20.0            |
| 21<br>22<br>23<br>24<br>25        | 9.64 724<br>9.64 749<br>9.64 775<br>9.64 800<br>9.64 826             | 26<br>25<br>26<br>25<br>26<br>25<br>26 | 9.69 488<br>9.69 520<br>9.69 552<br>9.69 584<br>9.69 615             | 31<br>32<br>32<br>32<br>31<br>32       | 10.30 512<br>10.30 480<br>10.30 448<br>10.30 416<br>10.30 385              | 9.95 236<br>9.95 229<br>9.95 223<br>9.95 217<br>9.95 211             | 67666                 | 39<br>38<br>37<br>36<br><b>35</b> | 9 23.4 22.5<br>24 7<br>2 4.8 1.4<br>3 7.2 2.1                                      |
| 26<br>27<br>29<br>29<br><b>30</b> | 9.64 851<br>9.64 877<br>9.64 902<br>9.64 927<br>9.64 953             | 26<br>25<br>25<br>26<br>25             | 9.69 647<br>9.69 679<br>9.69 710<br>9.69 742<br>9.69 774             | 32<br>31<br>32<br>32<br>32             | 10.30 353<br>10.30 321<br>10.30 290<br>10.30 258<br>10.30 226              | 9.95 204<br>9.95 198<br>9.95 192<br>9.95 185<br>9.95 179             | 7<br>6<br>6<br>7<br>6 | 34<br>33<br>32<br>31<br><b>30</b> | 4 9.6 2.8<br>5 12.0 3.5<br>6 14.4 4.2<br>7 16.8 4.9<br>8 19.2 5.6                  |
| 31<br>32<br>33<br>34<br><b>35</b> | 9.64 978<br>9.65 003<br>9.65 029<br>9.65 054<br>9.65 079             | 25<br>26<br>25<br>25                   | 9.69 805<br>9.69 837<br>9.69 868<br>9.69 900<br>9.69 932             | 32<br>31<br>32<br>32                   | 10.30 195<br>10.30 163<br>10.30 132<br>10.30 100<br>10.30 068              | 9.95 173<br>9.95 167<br>9.95 160<br>9.95 154<br>9.95 148             | 6<br>7<br>6<br>6      | 29<br>28<br>27<br>26<br><b>25</b> | 9   21.6   6.3<br>  6<br>  2   1.2                                                 |
| 36<br>37<br>38<br>39<br>40        | 9.65 104<br>9.65 130<br>9.65 155<br>9.65 180<br>9.65 205             | 25<br>26<br>25<br>25<br>25             | 9.69 963<br>9.69 995<br>9.70 026<br>9.70 058<br>9.70 089             | 31<br>32<br>31<br>32<br>31             | 10.30 037<br>10.30 005<br>10.29 974<br>10.29 942<br>10.29 911              | 9.95 141<br>9.95 135<br>9.95 129<br>9.95 122<br>9.95 116             | 7<br>6<br>6<br>7<br>6 | 24<br>23<br>22<br>21<br><b>20</b> | 3   1.8<br>4   2.4<br>5   3.0<br>6   3.6<br>7   4.2                                |
| 41<br>42<br>43<br>44              | 9.65 230<br>9.65 255<br>9.65 281<br>9.65 306                         | 25<br>25<br>26<br>25<br>25             | 9.70 121<br>9.70 152<br>9.70 184<br>9.70 215                         | 32<br>31<br>32<br>31<br>32             | 10.29 879<br>10.29 848<br>10.29 816<br>10.29 785                           | 9.95 110<br>9.95 103<br>9.95 097<br>9.95 090                         | 67676                 | 19<br>18<br>17<br>16              | 8   4.8<br>9   5.4<br>From the top:                                                |
| 45<br>46<br>47<br>48<br>49        | 9.65 331<br>9.65 356<br>9.65 381<br>9.65 406<br>9.65 431             | 25<br>25<br>25<br>25<br>25<br>25       | 9.70 247<br>9.70 278<br>9.70 309<br>9.70 341<br>9.70 372             | 31<br>31<br>32<br>31<br>32             | 10.29 753<br>10.29 722<br>10.29 691<br>10.29 659<br>10.29 628              | 9.95 084<br>9.95 078<br>9.95 071<br>9.95 065<br>9.95 059             | 6<br>7<br>6<br>6<br>7 | 15<br>14<br>13<br>12<br>11        | For 26°+ or 206°+,<br>read as printed; for<br>116°+ or 296°+, read<br>co-function. |
| 50<br>51<br>52<br>53<br>54        | 9.65 456<br>9.65 481<br>9.65 506<br>9.65 531<br>9.65 556             | 25<br>25<br>25<br>25<br>24             | 9.70 404<br>9.70 435<br>9.70 466<br>9.70 498<br>9.70 529             | 31<br>31<br>32<br>31<br>31             | 10.29 596<br>10.29 565<br>10.29 534<br>10.29 502<br>10.29 471              | 9.95 052<br>9.95 046<br>9.95 039<br>9.95 033<br>9.95 027             | 67667                 | 9<br>8<br>7<br>6                  | From the bottom: For 63°+ or 243°+,                                                |
| 55<br>56<br>57<br>58<br>59        | 9.65 580<br>9.65 605<br>9.65 630<br>9.65 655<br>9.65 680             | 25<br>25<br>25<br>25<br>25<br>25       | 9.70 560<br>9.70 592<br>9.70 623<br>9.70 654<br>9.70 685             | 32<br>31<br>31<br>31<br>31             | 10.29 440<br>10.29 408<br>10.29 377<br>10.29 346<br>10.29 315              | 9.95 020<br>9.95 014<br>9.95 007<br>9.95 001<br>9.94 995             | 67667                 | 5<br>4<br>3<br>2<br>1             | read as printed; for 153°+ or 333°+, read co-function.                             |
| 60                                | 9.65 705                                                             |                                        | 9.70 717                                                             |                                        | 10.29 283                                                                  | 9.94 988                                                             |                       | 0                                 | D                                                                                  |
|                                   | L Cos                                                                | d                                      | L Ctn                                                                | cd                                     | L Tan                                                                      | L Sin                                                                | d                     | l '                               | Prop                                                                               |

L Cos d L Ctn cd L Tan L Sin d / Prop

Logarithms of Trigonometric Functions

| 111                                                      |                                                                                                                                                                              |                                                                                                                      |     |                                                                                                                                                          | OHOMEC C                                                                                                                                                                          |            |                                                                                                                                                            |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | L Sin                                                                                                                                                                        |                                                                                                                      | cd, | L Cin                                                                                                                                                    | L Cos                                                                                                                                                                             | ď          | Prop. Pts.                                                                                                                                                 |
| 9<br> 10                                                 | 2.65 705   2<br>2.65 705   2<br>2.65 754<br>2.65 754<br>2.65 754<br>2.65 754<br>2.65 754<br>2.65 804<br>2.65 802<br>2.65 902<br>2.65 902<br>2.65 952<br>2.65 956<br>2.65 956 |                                                                                                                      |     | 10.29 283<br>10.29 252<br>10.29 291<br>10.29 100<br>10.29 159<br>10.29 096<br>10.29 634<br>10.29 663<br>10.29 663<br>10.29 672<br>10.28 972<br>10.28 974 | 9.94 9-8<br>9.94 9-82<br>9.94 9-75<br>9.94 9-69<br>9.94 9-69<br>9.94 9-36<br>9.94 9-36<br>9.94 9-36<br>9.94 9-36<br>9.94 9-36<br>9.94 9-36<br>9.94 9-36<br>9.94 9-36<br>9.94 9-36 | , <b>Q</b> | 32   31<br>2   64   6.2<br>3   9.6   9.3<br>4   12.8   12.4<br>5   16.0   15.5<br>6   19.2   18.6<br>7   22.4   21.7<br>8   25.6   24.8<br>9   28.8   27.9 |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 9.66 001<br>9.66 025<br>9.66 050<br>9.66 075<br>9.66 075<br>9.66 124<br>9.66 124<br>9.66 173<br>9.66 197<br>9.66 221<br>9.66 246                                             | 9.71 090<br>9.71 121<br>9.71 153<br>9.71 184<br>9.71 215<br>9.71 246<br>9.71 277<br>9.71 308<br>9.71 370<br>9.71 401 |     | 10.25 910<br>10.25 879<br>10.25 879<br>10.25 847<br>10.25 754<br>10.25 754<br>10.25 769<br>10.25 691<br>10.25 661<br>10.25 630<br>10.25 599              | 9.94 911<br>9.94 914<br>9.94 898<br>9.94 891<br>9.91 887<br>9.94 871<br>9.94 872<br>9.94 852<br>9.94 852<br>9.94 852                                                              |            | 30   25<br>6.0   5.0<br>9.0  <br>12.0   10.0<br>15.0   12.5<br>18.0   15.0<br>21.0   17.5<br>24.0   20.0<br>27.0   22.5                                    |
| 23<br>24<br>25<br>25<br>29<br>30<br>31<br>32             | 9.66 270<br>9.66 295<br>9.66 319<br>9.66 343<br>9.66 368<br>9.66 392<br>9.66 416<br>9.66 441<br>9.66 465<br>9.66 489                                                         | 9.71 431<br>9.71 462<br>9.71 493<br>9.71 524<br>9.71 555<br>9.71 586<br>9.71 648<br>9.71 679                         |     | 10.28 569<br>10.28 538<br>10.28 507<br>10.28 476<br>10.28 444<br>10.28 353<br>10.28 352<br>10.28 352<br>10.28 321<br>10.28 291                           | 9.94 839<br>9.94 832<br>9.94 819<br>9.94 819<br>9.94 819<br>9.94 709<br>9.94 739<br>9.94 780                                                                                      |            | 24 23<br>4.8 4.6<br>3 7.2 6.9<br>4 9.6 9.2<br>5 12.0 11.5<br>6 14.4 13.5<br>7 16.8 16.1<br>S 19.2 18.4<br>9 21.6 20.7                                      |
| 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 9.66 513<br>9.66 537<br>9.66 562<br>9.66 586<br>9.66 610<br>9.66 634<br>9.66 658<br>9.66 682<br>9.66 706<br>9.66 731                                                         | 9.71 709<br>9.71 740<br>9.71 771<br>9.71 802<br>9.71 833<br>9.71 894<br>9.71 925<br>9.71 955<br>9.71 955<br>9.72 017 |     | 10,28 260<br>10,28 229<br>10,28 198<br>10,28 167<br>10,28 137<br>10,28 075<br>10,28 045<br>10,28 044<br>10,27 983                                        | 9.94 773<br>9.94 760<br>9.94 753<br>9.94 747<br>9.94 747<br>9.94 749<br>9.94 727<br>9.94 720<br>9.94 714                                                                          |            | 7 6<br>2 1.4 1.2<br>3 2.1 1.5<br>2.5 2.4<br>3.5 3.0<br>4.2 3.6<br>4.9 4.2<br>8 5.6 4.8<br>9 6.3 5.4                                                        |
| 43<br>44<br>45<br>46<br>49<br>50                         | 9.66 755<br>9.66 779<br>9.66 803<br>9.66 827<br>9.66 851<br>9.66 875<br>9.66 899<br>9.66 922                                                                                 | 9.72 048<br>9.72 078<br>9.72 109<br>9.72 140<br>9.72 201<br>9.72 201<br>9.72 231<br>9.72 262                         |     | 10.27 952<br>10.27 922<br>10.27 891<br>10.27 860<br>10.27 780<br>10.27 769<br>10.27 738                                                                  | 9.94 707<br>9.94 700<br>9.94 694<br>9.94 687<br>9.94 680<br>9.94 667<br>9.94 660                                                                                                  |            | From the top: For 27°+ or 207°+, read as printed; for 117°+ or 297°+, read co-function.                                                                    |
| 51<br>52<br>5<br>54<br>55<br>56                          | 9.66 946<br>9.66 970<br>9.66 994<br>9.67 018<br>9.67 042<br>9.67 066<br>9.67 090<br>9.67 113<br>9.67 137                                                                     | 9.72 293<br>9.72 323<br>9.72 384<br>9.72 415<br>9.72 445<br>9.72 476<br>9.72 506<br>9.72 537                         |     | 10.27 707<br>10.27 677<br>10.27 646<br>10.27 616<br>10.27 585<br>10.27 524<br>10.27 494<br>10.27 463                                                     | 9.94 654<br>9.94 647<br>9.94 640<br>9.94 634<br>9.94 627<br>9.94 620<br>9.94 614<br>9.94 607<br>9.94 600                                                                          |            | From the bottom: For 62° or 242° -, read as printed; for 152° - or 332° -, read co-function.                                                               |
| 60                                                       | 9.67 161<br>L Cos                                                                                                                                                            | $9.72\ 567$                                                                                                          | c d | 10.27 433<br>L Tan                                                                                                                                       | 9.94 593<br><b>L</b> Sin                                                                                                                                                          | d          | Prop. Pts.                                                                                                                                                 |
|                                                          | 1                                                                                                                                                                            |                                                                                                                      |     |                                                                                                                                                          |                                                                                                                                                                                   |            |                                                                                                                                                            |

62° — Logarithms of Trigonometric Functions

| ′               | L Sin                   | d        | L Tan                | cd       | L Ctn                  | L Cos                | d      |                 | ]      | Prop.        | Pts.              |
|-----------------|-------------------------|----------|----------------------|----------|------------------------|----------------------|--------|-----------------|--------|--------------|-------------------|
| 0               | 9.67 161                | 24       | 9.72 567             | 31       | 10.27 433              | 9.94 593             | 6      | 60              |        |              |                   |
| 1               | 9.67 185                | 23       | 9.72 598             | 30       | 10.27 402              | 9.94 587             | 7      | 59              |        |              |                   |
| 3               | $9.67\ 208$ $9.67\ 232$ | 24       | 9.72 628<br>9.72 659 | 31       | 10.27 372<br>10.27 341 | 9.94 580<br>9.94 573 | 7      | 58<br>57        |        | 31           | 30                |
| 4               | 9.67 256                | 24       | 9.72 689             | 30       | 10.27 311              | 9.94 567             | 6      | 56              | 2      | 6.2          | 6.0               |
| 5               | 9.67 280                | 24       | 9.72 720             | 31       | 10.27 280              | 9.94 560             | 7      | 55              | 3<br>4 | 9.3<br>12.4  | 9.0               |
| 6               | 9.67 303                | 23       | 9.72 750             | 30       | 10.27 250              | 9.94 553             | 7      | 54              | 5      | 15.5         | 12.0<br>15.0      |
| 7               | 9.67 327                | 24       | 0.72.780             | 30       | 10.27 220              | 9.94 546             | 7      | 53              | 6      | 18.6         | 18.0              |
| 8               | 9.67 350                | 23       | 19.72811             | 31       | 10.27 189              | 9.94 540             | 6      | 52              | 7      | 21.7         | 21.0              |
| 9               | 9.67 374                | 24<br>24 | 9.72841              | 30<br>31 | 10.27 159              | 9.94 533             | 1      | 51              | 8      | 24.8         | 24.0              |
| 10              | 9.67 398                |          | 9.72 872             | 30       | 10.27 128              | 9.94 526             | 7      | 50              | 9      | 27.9         | 27.0              |
| 11              | 9.67421                 | 23<br>24 | 9.72902 $9.72932$    | 30       | 10.27 098              | 9.94 519             | 6      | 49              | 1      |              |                   |
| 12              | 9.67 445                | 23       | 9.72 932<br>9.72 963 | 31       | 10.27 068<br>10.27 037 | 9.94 513             | 7      | 48<br>47        | l      | 29 1         | 24                |
| 13<br>14        | 9.67 468<br>9.67 492    | 21       | 9.72 993             | 30       | 10.27 007              | 9.94506<br>9.94499   | 7      | 46              | 2      | 5.8          | 4.8               |
| 15              | 9.67 515                | 23       | 9.73 023             | 30       | 10.26 977              | 9.94492              | 7      | 45              | 3      | 8.7          | 7.2               |
| 16              | 9.67 539                | 24       | 9.73 054             | 31       | 10.26 946              | 9.94485              | 7      | 44              | 4      | 11.6         | 9.6               |
| 17              | 9.67 562                | 23       | 9.73 084             | 30       | 10.26 916              | 9.94479              | 8      | 43              | 5      | 14.5         | 12.0              |
| 18              | 9.67 586                | 24<br>23 | 9.73 114             | 30       | 10.26 886              | 9.94472              | 7      | 42              | 6<br>7 | 17.4<br>20.3 | 14.4              |
| 19              | 9.67 609                | 24       | 9.73 144             | 31       | 10.26 856              | 9.94465              | 7      | 41              | 8      | 23.2         | 16.8<br>19.2      |
| 20              | 9.67 633                | 23       | 9.73 175             | 30       | 10.26 825              | 9.94458              | 7      | 40              | 9      | 26.1         | 21.6              |
| $\frac{21}{22}$ | 9.67 656<br>9.67 680    | 24       | 9.73 205<br>9.73 235 | 30       | 10.26 795<br>10.26 765 | 9.94451<br>9.94445   | 6      | 39<br>38        | ľ      |              |                   |
| 23              | 9.67 703                | 23       | 9.73 265             | 30       | 10.26 735              | 9.94438              | 7      | 37              |        |              |                   |
| 24              | 9.67 726                | 23       | 9.73 295             | 30       | 10.26 705              | 9.94431              | 7      | 36              | _      | 23           | 22                |
| 25              | 9.67 750                | 24       | 9.73 326             | 31       | 10.26 674              | 9.94 424             | 7      | 35              | 3      | 4.6<br>6.9   | 4.4               |
| 26              | 9.67 773                | 23       | 9.73 356             | 30       | 10.26 644              | 9.94417              | 7      | 34              | 4      | 9.2          | 6.6<br>8.8        |
| 27              | 9.67 796                | 23<br>24 | 9.73 386             | 30<br>30 | 10.26 614              | 9.94410              | 7<br>6 | 33              | 5      | 11.5         | 11.0              |
| 28<br>29        | 9.67 820                | 23       | 9.73 416             | 30       | 10.26 584              | 9.94 404             | 7      | 32              | 6      | 13.8         | 13.2              |
|                 | 9.67 843                | 23       | 9.73 446             | 30       | 10.26 554              | 9.94 397             | 7      | 31              | 7      | 16.1         | 15.4              |
| 30<br>31        | 9.67 866<br>9.67 890    | 24       | 9.73 476<br>9.73 507 | 31       | 10.26 524<br>10.26 493 | 9.94 390             | 7      | 30<br>29        | 8<br>9 | 18.4<br>20.7 | 17.6              |
| 32              | 9.67 913                | 23       | 9.73 537             | 30       | 10.26 463              | 9.94 383<br>9.94 376 | 7      | 28              | 9      | 20.7         | 19.8              |
| 33              | 9.67 936                | 23       | 9.73 567             | 30       | 10.26 433              | 9.94 369             | 7      | 27              |        |              |                   |
| 34              | 9.67 959                | 23<br>23 | 9.73 597             | 30<br>30 | 10.26 403              | 9.94362              | 7      | 26              |        | 7            | 6                 |
| 35              | 9.67 982                | 24       | 9.73 627             | 30       | 10.26 373              | 9.94 355             |        | 25              | 2      | 1.4          | 1.2               |
| 36              | 9.68 006                | 23       | 9.73 657             | 30       | 10.26 343              | 9.94 349             | 6<br>7 | 24              | 3      | 2.1          | 1.8               |
| 37<br>38        | 9.68 029<br>9.68 052    | 23       | 9.73 687             | 30       | 10.26 313              | 9.94 342             | 7      | 23<br>22        | 5      | 2.8<br>3.5   | 2.4<br>3.0        |
| 39              | 9.68 075                | 23       | 9.73 717<br>9.73 747 | 30       | 10.26 283<br>10.26 253 | 9.94 335<br>9.94 328 | 7      | $\frac{22}{21}$ | ě      | 4.2          | 3.6               |
| 40              | 9.68 098                | 23       | 9.73 777             | 30       | 10.26 223              | 9.94 321             | 7      | 20              | 7      | 4.9          | 4.2               |
| 41              | 9.68 121                | 23       | 9.73 807             | 30       | 10.26 193              | 9.94 314             | 7      | 19              | 8      | 5.6          | 4.8               |
| 42              | 9.68 144                | 23<br>23 | 9.73 837             | 30       | 10.26 163              | 9.94 307             | 7      | 18              | 9      | 6.3          | 5.4               |
| 43              | 9.68 167                | 23       | 9.73 867             | 30       | 10.26 133              | 9.94 300             | 7      | 17              |        |              |                   |
| 44<br>45        | 9.68 190                | 23       | 9.73 897             | 30       | 10.26 103              | 9.94 293             | 7      | 16              | Fro    | m the        | ton:              |
| 45<br>46        | 9.68 213<br>9.68 237    | 24       | 9.73 927<br>9.73 957 | 30       | 10.26 073<br>10.26 043 | 9.94 286<br>9.94 279 | 7      | 15<br>14        |        |              | or 208°+.         |
| 47              | 9.68 260                | 23       | 9.73 987             | 30       | 10.26 013              | 9.94 279             | 6      | 13              |        |              | ,                 |
| 48              | 9.68 283                | 23       | 9.74 017             | 30       | 10.25 983              | 9.94 266             | 7      | 12              |        |              | ted; for          |
| 49              | 9.68 305                | 22<br>23 | 9.74 047             | 30<br>30 | 10.25 953              | 9.94 259             | 7      | 11              |        |              | o+, read          |
| 50              | 9.68 328                | 23       | 9.74 077             |          | 10.25 923              | 9.94 252             |        | 10              | co-fu  | action.      |                   |
| 51              | 9.68 351                | 23       | 9.74 107             | 30<br>30 | 10.25 893              | 9.94 245             | 7      | 9               |        |              |                   |
| 52<br>53        | 9.68 374<br>9.68 397    | 23       | 9.74 137             | 29       | 10.25 863              | 9.94 238             | 7      | 8               | Fra    | m the        | bottom:           |
| 54              | 9.68 420                | 23       | 9.74 166<br>9.74 196 | 30       | 10.25 834<br>10.25 804 | 9.94 231<br>9.94 224 | 7      | 7<br>6          |        |              |                   |
| 55              | 9.68 443                | 23       | 9.74 226             | 30       | 10.25 774              | 9.94 217             | 7      | 5               |        |              | or <b>241°</b> ÷, |
| 56              | 9.68 466                | 23       | 9.74 256             | 30       | 10.25 744              | 9.94 217             | 7      | 4               |        |              | ted; for          |
| 57              | 9.68 489                | 23<br>23 | 9.74 286             | 30       | 10.25 714              | 9.94 203             | 7      | 3               |        |              | o+, read          |
| 58              | 9.68 512                | 23       | 9.74 316             | 30<br>29 | 10.25 684              | 9.94 196             | 7      | 2               | co-fu  | action.      |                   |
| 59              | 9.68 534                | 23       | 9.74 345             | 30       | 10.25 655              | 9.94,189             | 7      | 1               |        |              |                   |
| 60              | 9.68 557                |          | 9.74 375             |          | 10.25 625              | 9.94 182             | _      | 0               |        |              |                   |
|                 | L Cos                   | d        | L Ctn                | c d      | L Tan                  | L Sin                | d      | ′               | I      | rop.         | Pts.              |

61 — Logarithms of Trigonometric Functions

| 111]             | 29°                | ·        | Logarit              | hms | s of Trig              | onomet                | ric F | unctions 75                                          |
|------------------|--------------------|----------|----------------------|-----|------------------------|-----------------------|-------|------------------------------------------------------|
| L                | Sin                | d        | L Tan                | cd  | L Ctn                  | L Cos                 | ď     | Prop. Pts.                                           |
|                  | 8 557              |          | 9.74 375             |     | 0.25625                | 9.94 152              |       |                                                      |
| 9.6              | 5 550              |          | 9.74 405             |     | 4.25595                | 3.94 175              |       |                                                      |
|                  | 5 603<br>5 625     |          | 9.74 435<br>9.74 465 |     | 4.25 565<br>0.25 535   | 9.94 165 (            |       |                                                      |
|                  | \$ 648             |          | 9.74 494             |     | 0.25506                | 9.94 154              |       |                                                      |
|                  | S 671              |          | 9.74524              |     | $0.25\ 476$            | 9.94 147              |       | 30 29                                                |
|                  | 5 694<br>5 716     |          | 9.74 554<br>9.74 583 |     | $0.25446\ 0.25417$     | 9.94 146;<br>9.94 133 |       | 6.0 5.5<br>9.0 5.7                                   |
| 9.6              | 5 739              |          | 9.74 613             |     | 0.253 %                | 9.94126               |       | 9 th 17 11.5                                         |
|                  | \$ 762             |          | 9.74 643             |     | .0.25 357              | 9.94 119              | -     | 159 145                                              |
|                  | 8 784<br>8 807     |          | 9.74 673<br>9.74 702 |     | .0.25 327<br>.0.25 295 | 9.94 112 9.94 105     | 5     | 0 15.0 17.4<br>21.0 20.3                             |
| 9.6              | 8 829              |          | 9.74 732             |     | 0.25265                | 9.94 098              |       | 24.6 23.2                                            |
|                  | is 852<br>is 875   |          | 9.74 762<br>9.74 791 |     | (0,25 238              | 9.94 050              |       | 27.0 ( 26 1                                          |
|                  | is 897             |          | 9.74 821             |     | .0.25179               | 9.94 076              |       |                                                      |
| 9.6              | is 920             |          | 9.74851              |     | 10.25149               | 9.04 069              |       | 23 22                                                |
| 9.6              | 88 942<br>88 965   | 23       | 9.74 SSO<br>9.74 910 |     | .0,25 120<br>10,25 090 | 9.94062 $9.94055$     |       | 2 4.6 4.4                                            |
|                  | 38 987             | 22<br>23 | 9.74 939             |     | .0.25061               | 9.94 045              |       | 3. 6.34 6.96                                         |
|                  | 39 010             | 22       | 9.74 969             |     | 0.25 031               | 9.94 041              |       | 5, 11.5, 11.0                                        |
| 9.6              | 59 032<br>59 055   | 23       | 9.74 998<br>9.75 028 |     | 0.25002 $10.24972$     | 9,94 034<br>9,94 027  |       | 6, 13.8, 13.2                                        |
| 9.6              | 69 077             | 22<br>23 | 9.75058              |     | 10.24 942              | 9,94 020              |       | 7 161 154<br>8 184 17.6                              |
|                  | 69 100             | 22       | 9.75 087             |     | 10.24 913              | 9.94 012 9.94 005     |       | 9   20.7   19 5                                      |
| 9.6              | 69 122<br>69 144   | 22       | 9.75 117<br>9.75 146 |     | 10.24 883<br>10.24 854 | 9,93 995              |       |                                                      |
| 9.6              | 69 167             | 23<br>22 | 9.75 176             |     | 10.24 824              | 9,93 991              |       | 7                                                    |
|                  | 69 189<br>69 212   | 23       | 9.75 205<br>9.75 235 |     | 10.24 795<br>10.24 765 | 9.93 954<br>9.93 977  |       | •                                                    |
|                  | 69 234             | 22       | 9.75 264             |     | 10.24 736              | 9.93 970              |       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 31 9.            | 69256              | 22<br>23 | 9.75 294             |     | 10.24 706              | 9,93,963              |       | 3.2 2.8<br>4.0 3.5                                   |
| 32 9.0<br>33 9.0 | 69 279<br>69 301   | 22       | 9.75 323<br>9.75 358 | 30  | 10.24 677<br>10.24 647 | 9,93 955<br>9,93 945  |       | 4.5 4.2                                              |
| 34 9.            | 69 323             | 22       | 9.75 382             |     | 10.24 615              | 9.93 941              |       | 5.6 4.9<br>64 5.6                                    |
|                  | 69 345             | 23       | 9.75 41              |     | 10.24 589<br>10.24 559 | 9.93934 $9.93927$     |       | 9   7.2   6.3                                        |
|                  | 69 368<br>69 390   |          | 9.75 44<br>9.75 47   |     | 10.24 530              | 9.93920               |       |                                                      |
| 38 9.            | 69 412             |          | 9.75 500             |     | 10.24 500              | -9.93912 $-9.93905$   |       |                                                      |
|                  | 69 434<br>69 456   |          | 9.75 52<br>9.75 558  |     | 10.24 471<br>10.24 442 | 9.93 898              |       |                                                      |
|                  | 69 479             | 23       | 9.75 5St             |     | 10.24 412              | 9.93891               |       | - 17 A                                               |
|                  | 69 501             |          | 9.75 61<br>9.75 64   |     | 10.24 383<br>10.24 353 |                       |       | From the top:                                        |
|                  | 69 523<br>69 545   |          | 9.75 67              |     | 10.24 324              | 9.93 869              |       | For 29°+ or 209°                                     |
|                  | 69 567             |          | 9.75 70              |     | 10.24 295              |                       |       | read as printed; for 119° or 299° or, read           |
|                  | .69 589<br>.69 611 |          | 9.75 738<br>9.75 764 |     | 10.24 265<br>10.24 236 | 9.93855 $9.93847$     |       | co-function.                                         |
| 48 9.            | 69 633             |          | 9.75 79.             |     | 10.24 207              | 9.93840               |       |                                                      |
|                  | .69 655            |          | 9.75 82:             |     | 10.24 178<br>10.24 148 |                       |       | From the bottom:                                     |
|                  | .69 677<br>.69 699 |          | 9.75 85<br>9.75 88   |     | 10.24 119              | 9.93 819              |       | For 60°+ or 240°-                                    |
| 52 9.            | .69721             |          | 9.7591               |     | 10.24 090              | 9.93811               |       | read as printed; for                                 |
|                  | .69 743<br>.69 765 |          | 9.75 93<br>9.75 96   |     | 10.24 061<br>10.24 031 |                       |       | 150° + or 330° +, read                               |
|                  | .69 787            |          | 9.75 99              |     | 10.24 002              | 9.93789               | )     | co-function.                                         |
| 56 9             | .69 809            |          | 9.76 02              |     | 10.23 973<br>10.23 944 | 9.93782               |       |                                                      |
| 57 9.<br>58 9.   | .69 831<br>.69 853 |          | 9.76 05<br>9.76 08   |     | 10.23914               | 9.93768               | ,     |                                                      |
| 59 9             | .69 87!            |          | 9.76 11              |     | 10.23 885              | 9.93760               | ,     |                                                      |
| _                | .69 897            |          | 9.76 1               |     | 10.23 856              | -                     | 5     | Prop. Pts.                                           |
|                  | L Co_              | ·        | , Ct                 |     | L Tan                  | LSin                  |       | The stiens                                           |

60° - Logarithms of Trigonometric Functions

| 76 30                                                    | 0° — Logarithms of Trigonometric I                                             | Innetion-                                                      |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                          | L Tan  cd   L Ctn   L Cos  d                                                   | 1,441                                                          |
| 0 9.69 897<br>1 9.69 919                                 | 9.76 144 10 23 856 0 03 750                                                    | Prop. Pts.                                                     |
| 2 [ 9.09 941                                             | 9.76 202 29 10.23 827 9.93 746                                                 | _                                                              |
| 3 9.69 963<br>4 9.69 984                                 | 0.76 261 30 10.23 769 9.93 731                                                 | 30 29                                                          |
| 5 9.70 006                                               | 9.76 290 29 10.23 710 0.03 717                                                 | 6.0 5.8<br>9.0 8.7                                             |
| 6 9.70 028<br>7 9.70 050                                 | 9.76 319 29 10.23 681 9.93 709                                                 | 12.0 11.6                                                      |
| 8 9.70 072<br>9 9.70 093                                 | 9.76 377 29 10.23 623 9.93 702                                                 | 18.0 17.4                                                      |
| 10 9.70 115                                              | 9.70 406 29 10.23 594 9.93 687                                                 | $\begin{array}{c c} 21.0 & 20.3 \\ 24.0 & 23.2 \\ \end{array}$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$    | 9.76 464 29 10.23 536 9.93 673                                                 | 27.0 26.1                                                      |
| 13 9.70 180                                              | 9.76 493 29 10.23 507 9.93 665 9.76 522 29 10.23 478 9.93 675                  | 00                                                             |
| 14   9.70 202<br>15   9.70 224                           | 9.76 551 29 10.23 449 9.93 650                                                 | 28 22<br>5.6 4.4                                               |
| 16 9.70 245                                              | 9.76 609 29 10.23 420 9.93 643<br>9.76 609 29 10.23 391 0.03 623               | 8.4 6.6                                                        |
| 17 9.70 267<br>18 9.70 288                               | 9.76 660 29 10.23 361 9.93 628 81                                              | $\begin{array}{ccc} 11.2 & 8.8 \\ 14.0 & 11.0 \end{array}$     |
| 19 9.70 310                                              | 9.76 697 29 10.23 303 9.93 614                                                 | 16.8 13.2                                                      |
| 20 9.70 332<br>21 9.70 353                               | 9.76 725 10.23 275 9.93 606                                                    | 224 170                                                        |
| 21 9.70 353<br>22 9.70 375<br>23 9.70 396<br>24 9.70 418 | 3.70 700 To 10.23 217 0 02 Eng                                                 | 25.2 19.8                                                      |
|                                                          |                                                                                | 21                                                             |
| 25 9.70 439<br>26 9.70 461                               | 9.76 870 10.23 130 0.03 560                                                    | 4.2 1.6                                                        |
| 27 9.70 482                                              | 9.76 928 29 10.23 072 0 02 554 8                                               | 6.3 2.4<br>8.4 3.2                                             |
| 29 9.70 525                                              |                                                                                | 10.5 4.0                                                       |
| 30 9.70 547<br>31 9.70 568                               | 9.77 015 29 10.22 985 9.93 532 9.77 044 29 10.22 985 9.93 532                  | 14.7 5.6                                                       |
| 32   9.70 590                                            | 9.77 044 29 10.22 956 9.93 525<br>9.77 073 29 10.22 927 9.93 517 28 .          | 16.8 6.4<br>18.9 7.2                                           |
| 34 9.70 633                                              | 9.77 101 29 10.22 899 9.93 510 27                                              |                                                                |
| 35 9.70 654<br>36 9.70 675                               | 9.77 159 20 10.22 841 9 93 405                                                 | 2 1.4                                                          |
| 37 9 70 607                                              | 9.77 217 29 10.22 812 9.93 487 8 24                                            | 3 2.1                                                          |
| 38 9.70 718<br>39 9.70 739                               | 07700 98 20.00 105 3.30 4(210 22)                                              | 4 2.8<br>5 3.5                                                 |
| 40   9.70 761                                            | 9.77 303 29 10 22 607 0 00 4 18 21                                             | 6 4.2                                                          |
| 42 9.70 803                                              | 9.77 361 29 10 99 690                                                          | 8 5.6                                                          |
| 43 9.70 824<br>44 9.70 846                               | 9.77 390 29 10.22 610 9 93 435 7 17                                            | 9 6.3                                                          |
| 45 9.70 867                                              | 3.77 418 29 10.22 582 9.93 427 8 16                                            | From the top:                                                  |
| 46 9.70 888<br>47 9.70 909                               | 9.77 476 29 10.22 524 9.93 412 8 14                                            | For 30°+ or 210°+,                                             |
| 48 9.70 931 77<br>49 9.70 952 21                         | 9.77 505 28 10.22 495 9.93 405 7 13 P<br>9.77 533 28 10.22 467 9.93 397 8 12 P | ead as printed for                                             |
| 50 9.70 973 21                                           |                                                                                | 20°+ or 300°+, read                                            |
| 51 9.70 994 21<br>52 9.71 015 21                         | 9.77 619 28 10.22 381 9.93 375                                                 | o-function.                                                    |
| 53 9.71 036 21<br>54 9.71 058 22                         | 9.77 677 29 10.22 352 9.93 367 8                                               | From 41 - 1 - 11                                               |
| 55 9.71 079 21                                           | 0 77 724 28                                                                    | From the bottom:<br>For 59°+ or 239°+                          |
| 56 9.71 100 21<br>57 9.71 121 21                         | 9.77 763 29 10.22 237 9 93 337 7 re                                            | ad as printed for                                              |
| 58 9.71 142 21                                           | 9.77 820 29 10.22 209 9.93 329 8 14                                            | l9°+ or 329°+, read                                            |
| 59 9.71 163 21<br>60 9.71 184 21                         | 9.77 877 28 10.22 151 9.93 314 8                                               | -function.                                                     |
| L Cos                                                    | I. Ctn   23   7 m                                                              |                                                                |
| 59°                                                      | Loin   di                                                                      |                                                                |
|                                                          | Logarithms of Trigonometric Func                                               | tions                                                          |

| III or                                                                                 | Logarithin                                               | s or reig                                                        | onometric                                                | runctions                                                                             |
|----------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|
| L Sin                                                                                  | L Tan cd                                                 | L Ctn                                                            | L Cos d                                                  | Prop. Pts.                                                                            |
| 0.71 184<br>(.71 285)<br>(0.71 226)<br>(0.71 247)                                      | 9.77 877<br>9.77 906<br>3.77 935<br>3.77 963<br>9.77 992 | 19,22 123<br>19,22 094<br>19,22 065<br>16,22 037                 | 9,93 307<br>9,93 299<br>9,93 291<br>9,93 284             |                                                                                       |
| 5 9.71 289<br>6 9.71 310<br>7 1 331                                                    | 9.78 020<br>9.78 049<br>0.78 077                         | 10,22 008<br>10,21 980<br>10,21 951<br>10,21 923                 | 9.93 276<br>9.93 264<br>9.93 261<br>9.93 253             | 29 28<br>5.8 5.6<br>5.4                                                               |
| \$ 9.71 352<br>9 9.71 373<br>10 9.71 393<br>11 9.71 414<br>12 9.71 435                 | 9.78 106<br>9.78 135<br>9.78 163<br>9.78 192<br>9.78 220 | 10.21 8:4<br>10.21 8:5<br>10.21 8:37<br>10.21 8:08<br>10.21 7:80 | 9,93,246<br>9,93,238<br>9,93,230<br>9,93,225<br>9,93,215 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                  |
| 11 9.71 414<br>12 9.71 435<br>13 9.71 456<br>14 9.71 477<br>15 9.71 498<br>16 9.71 519 | 9.78 249<br>9.78 277<br>9.78 306<br>9.78 334             | 10.21 751<br>10.21 723<br>10.21 694<br>10.21 666                 | 9,93 207<br>9,93 200<br>9,93 200<br>9,93 192<br>9,93 184 | 9 (26.1 25.2                                                                          |
| 17 9.71 539<br>15 9.71 560<br>19 9.71 581<br>20 9.71 602                               | 9.78 363<br>9.78 391<br>9.78 419<br>9.78 448             | 10.21 637<br>10.21 609<br>10.21 581<br>10.21 552                 | 9.93 177<br>9.93 169<br>9.93 161<br>9.93 154             | 21 20<br>4.2 4.0<br>6.3 6.0<br>5.4 5.0<br>10.5 10.0                                   |
| 21 9.71 6.22<br>22 9.71 643<br>23 9.71 664<br>24 9.71 685<br>25 9.71 705               | 9.78 476<br>9.78 505<br>9.78 533<br>9.78 562<br>9.78 590 | 10.21 524<br>10.21 495<br>10.21 467<br>10.21 438<br>10.21 410    | 9.93 146<br>9.93 138<br>9.93 131<br>9.93 123<br>9.93 115 | 12.6 12.0<br>14.7 14.0<br>16.5 16.0<br>15.9 18.0                                      |
| 25 9.71 726<br>26 9.71 747<br>27 9.71 747<br>28 9.71 767<br>29 9.71 788                | 9.78 618<br>9.78 647<br>9.78 675<br>9.78 704             | 10.21 382<br>10.21 353<br>10.21 325<br>10.21 296                 | 9.93 108<br>9.93 100<br>9.93 092<br>9.93 054             | 8 7<br>2 1.6 1.4                                                                      |
| 30 9.71 809<br>31 9.71 829<br>32 9.71 850<br>33 9.71 870<br>34 9.71 891                | 9.78 732<br>9.78 760<br>9.78 789<br>9.78 817<br>9.78 845 | 10.21 268<br>10.21 240<br>10.21 211<br>10.21 183<br>10.21 155    | 9.93 077<br>9.93 069<br>9.93 061<br>9.93 053<br>9.93 046 | 21 1.6 1.4<br>32 2.4 2.1<br>3.2 2.5<br>3.2 2.5<br>5 4.0 3.5<br>6 4.5 4.9<br>7 6.4 5.6 |
| 35 9.71 911<br>36 9.71 932<br>37 9.71 952<br>35 9.71 973<br>39 1 994                   | 9.78 574<br>9.78 902<br>9.78 930<br>9.78 939<br>9.78 987 | 10.21 126<br>10.21 098<br>10.21 070<br>10.21 041<br>10.21 013    | 9.93 038<br>9.93 030<br>9.93 022<br>9.93 014<br>9.93 007 | 8 6.4 5.6<br>9 7.2 6.3                                                                |
| 40 9.72 014<br>41 9.72 034<br>42 9.72 055<br>43 9.72 075<br>44 9.72 096                | 9.79 015<br>9.79 043<br>9.79 072<br>9.79 100<br>9.79 128 | 10.20 985<br>10.20 957<br>10.20 928<br>10.20 900<br>10.20 872    | 9.92999<br>9.92991<br>9.92983<br>9.92976<br>9.92968      | From the top: For 31° or 211°.                                                        |
| 45 9.72 116<br>46 9.72 137<br>4' 9.72 157<br>48 9.72 177<br>49 9.72 198                | 9.79 156<br>9.79 185<br>9.79 213<br>9.79 241<br>9.79 269 | 10.20 844<br>10.20 815<br>10.20 787<br>10.20 759<br>10.20 731    | 9.92 960<br>9.92 952<br>9.92 944<br>9.92 936<br>9.92 929 | read as printed; for 121° or 301°, read co-function.                                  |
| 50 9.72 218<br>51 9.72 238<br>52 9.72 259<br>53 9.72 279<br>54 9.72 299                | 9.79 297<br>9.79 326<br>9.79 354<br>9.79 382<br>9.79 410 | 10,20 703<br>10,20 674<br>10,20 646<br>10,20 618<br>10,20 590    | 9.92 921<br>9.92 913<br>9.92 905<br>9.92 897<br>9.92 889 | From the bottom: For 58°+ or 238°+, read as printed; for 148°+ or 328°+, read         |
| 55 9.72 320<br>56 9.72 340<br>57 9.72 360<br>58 9.72 381                               | 9.79 438<br>9.79 466<br>9.79 495<br>9.79 523             | 10.20 562<br>10.20 534<br>10.20 505<br>10.20 4'                  | 9.92 881<br>9.92 874<br>9.92 866<br>9.92 858             | co-function.                                                                          |
| 59 9.72 401<br>60 9.72 421<br>L Cos                                                    | 9.79 551<br>9.79 579<br>d L Ctn   cd                     | 10.20 449<br>10.20 421<br>L Tan                                  | 9.92 850<br>9.92 842<br><b>L Sin</b>                     | Prop. Pts.                                                                            |
| 2 000                                                                                  |                                                          |                                                                  |                                                          |                                                                                       |

| 10                                                                         | - 02                                                                                                                                         |                                                                                  | Logari                                                                                                                          |                                                                                 | ins of frigonomen                                                                                                                                        |                                                                                                                      |                                         | <u>. u</u>                                                           | 11000               | ns [III]                                                                                                                   |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|
| 7                                                                          | LSin                                                                                                                                         | ď                                                                                | L Tan                                                                                                                           | cd                                                                              | L Ctn                                                                                                                                                    | L Cos                                                                                                                | d                                       |                                                                      | F                   | rop. Pts.                                                                                                                  |
| 01234 <b>5</b> 6789                                                        | 9,72 421<br>9,72 441<br>9,72 461<br>9,72 482<br>9,72 502<br>9,72 522<br>9,72 542<br>9,72 562<br>9,72 562<br>9,72 602<br>9,72 622             | 20<br>20<br>21<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   | 9.79 579<br>9.79 607<br>9.79 635<br>9.79 663<br>9.79 691<br>9.79 717<br>9.79 777<br>9.79 804<br>9.79 832<br>9.79 860            | 28<br>28<br>28<br>28<br>28<br>29<br>28<br>28<br>28<br>28<br>28                  | 10.20 421<br>10.20 393<br>10.20 365<br>10.20 337<br>10.20 309<br>10.20 281<br>10.20 253<br>10.20 224<br>10.20 166<br>10.20 168                           | 9.92 842<br>9.92 834<br>9.92 826<br>9.92 818<br>9.92 810<br>9.92 803<br>9.92 795<br>9.92 777<br>9.92 777<br>9.92 777 | & & & & & & & & & & & & & & & & & & &   | 50<br>59<br>58<br>57<br>56<br>55<br>53<br>52<br>51<br>50             |                     | 29 28<br>5.8 5.6<br>8.7 8.4<br>11.6 11.2<br>14.5 14.0<br>17.4 16.8<br>20.3 19.6<br>23.2 22.4<br>26.1 25.2                  |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | 9.72 643<br>9.72 663<br>9.72 663<br>9.72 703<br>9.72 723<br>9.72 743<br>9.72 763<br>9.72 783<br>9.72 803<br>9.72 823<br>9.72 843<br>9.72 863 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2  | 9.79 888<br>9.79 916<br>9.79 92<br>9.80 000<br>9.80 028<br>9.80 056<br>9.80 056<br>9.80 112<br>9.80 140<br>9.80 168<br>9.80 195 | 28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>2 | 10.20 112<br>10.20 084<br>10.20 056<br>10.20 028<br>10.20 000<br>10.19 972<br>10.19 944<br>10.19 916<br>10.19 880<br>10.19 860<br>10.19 832<br>10.19 805 | 9.92755<br>9.92747<br>9.92731<br>9.92731<br>9.92707<br>9.92707<br>9.92699<br>9.92683<br>9.92675<br>9.92667           | 88888888                                | 46<br>45<br>44<br>43<br>42<br>41<br>40<br>39<br>38                   | 62                  | 27   21<br>5.4   4.2<br>8.1   6.3<br>10.8   8.4<br>13.5   10.5<br>16.2   12.6<br>18.9   14.7<br>21.6   16.8<br>24.3   18.9 |
| 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34       | 9.72 883<br>9.72 902<br>9.72 942<br>9.72 942<br>9.72 962<br>9.73 962<br>9.73 002<br>9.73 041<br>9.73 061<br>9.73 081<br>9.73 081             | 19<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 9.80 223<br>9.80 251<br>9.80 279<br>9.80 307<br>9.80 363<br>9.80 363<br>9.80 419<br>9.80 474<br>9.80 502<br>9.80 502            | 28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>2 | 10.19 777<br>10.19 749<br>10.19 721<br>10.19 693<br>10.19 665<br>10.19 637<br>10.19 509<br>10.19 553<br>10.19 553<br>10.19 526<br>10.19 498<br>10.19 498 | 9.92 659<br>9.92 643<br>9.92 635<br>9.92 619<br>9.92 619<br>9.92 611<br>9.92 503<br>9.92 595<br>9.92 577<br>9.92 577 | 000000000000000000000000000000000000000 | 37<br>36<br>35<br>34<br>33<br>32<br>31<br>30<br>29<br>28<br>27<br>26 |                     | 20 19<br>4.0 3.8<br>6.0 5.7<br>8.0 7.6<br>10.0 9.5<br>12.0 11.4<br>14.0 13.3<br>16.0 15.2<br>18.0 17.1                     |
| 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44                   | 9.73 121<br>9.73 140<br>9.73 160<br>9.73 180<br>9.73 200<br>9.73 219<br>9.73 259<br>9.73 278<br>9.73 278<br>9.73 278<br>9.73 318             | 20<br>19<br>20<br>20<br>19<br>20<br>20<br>19<br>20<br>20<br>20                   | 9.80 558<br>9.80 586<br>9.80 614<br>9.80 642<br>9.80 669<br>9.80 697<br>9.80 725<br>9.80 753<br>9.80 781<br>9.80 808            | 28<br>28<br>28<br>28<br>27<br>28<br>28<br>28<br>28<br>27<br>28                  | 10.19 442<br>10.19 414<br>10.19 386<br>10.19 358<br>10.19 331<br>10.19 303<br>10.19 275<br>10.19 247<br>10.19 219<br>10.19 192                           | 9.92 563<br>9.92 555<br>9.92 546<br>9.92 538<br>9.92 530<br>9.92 522<br>9.92 514<br>9.92 506<br>9.92 498<br>9.92 490 | 8 9 8 8 8 8 8 8 8                       | 25<br>24<br>23<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15       |                     | 1.8 1.6 1.4<br>2.7 2.4 2.1<br>3.6 3.2 2.8<br>4.5 4.0 3.5<br>5.4 4.8 4.2<br>6.3 5.6 4.9<br>7.2 6.4 5.6<br>8.1 7.2 6.3       |
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55                   | 9.73 337<br>9.73 357<br>9.73 357<br>9.73 396<br>9.73 416<br>9.73 435<br>9.73 455<br>9.73 474<br>9.73 494<br>9.73 513                         | 19<br>20<br>20<br>19<br>20<br>19<br>20<br>19<br>20<br>19                         | 9.80 836<br>9.80 864<br>9.80 892<br>9.80 919<br>9.80 947<br>9.80 975<br>9.81 003<br>9.81 030<br>9.81 058<br>9.81 113            | 28<br>28<br>27<br>28<br>28<br>28<br>27<br>28<br>27<br>28<br>27                  | 10.19 164<br>10.19 136<br>10.19 108<br>10.19 081<br>10.19 053<br>10.19 025<br>10.18 997<br>10.18 970<br>10.18 942<br>10.18 914<br>10.18 887              | 9.92 482<br>9.92 473<br>9.92 465<br>9.92 457<br>9.92 449<br>9.92 433<br>9.92 425<br>9.92 408<br>9.92 400             | 98888                                   | 14<br>13<br>12<br>11<br>10<br>9<br>8<br>7<br>6<br>5                  | For read 122° co-fu | r 32°+ or 212°+,<br>as printed; for<br>the or 302°+, read<br>notion.<br>om the bottom:<br>r 57°+ or 237°+,                 |
| 56<br>57<br>58<br>59<br><b>60</b>                                          | 9.73 533<br>9.73 552<br>9.73 572<br>9.73 591                                                                                                 | 20<br>19<br>20<br>19<br>20                                                       | 9.81 141<br>9.81 169<br>9.81 196<br>9.81 224<br>9.81 252<br>L Ctn                                                               | 28<br>28<br>27<br>28<br>28<br>28                                                | 10.18 859<br>10.18 831<br>10.18 804<br>10.18 776<br>10.18 748                                                                                            | 9.92 392<br>9.92 384<br>9.92 376<br>9.92 367<br>9.92 359<br>L Sin                                                    | 8<br>8<br>9<br>8<br><b>d</b>            | 3<br>2<br>1<br>0                                                     | 147°-<br>co-fu      | as printed; for or 327°+, read nction.                                                                                     |

|   | 1117            |                      |          |                      | 0 01 1116              | onomease             | 1 unctions                                |
|---|-----------------|----------------------|----------|----------------------|------------------------|----------------------|-------------------------------------------|
|   |                 | L Sin                |          | L Tan cd             | L Ctn                  | L Cos d              | Prop. Pts.                                |
|   |                 | 9.73 611             | 19       | 9.81 252             |                        | 9.923793             |                                           |
|   |                 | 9.73 630             | 20       | 9.51 279<br>9.51 307 | 10.18721               | 9.92.351             | 28 27                                     |
|   |                 | 9.73 650<br>9.73 669 | 19       | 9.81 335             | 10.18 663<br>10.18 665 | 9.92 343<br>9.92 335 |                                           |
|   |                 | 9.73 689             | 20<br>19 | $9.81\ 362$          | 10.15635               | 2 326                | 5.6 5.4<br>8.4 8.1                        |
|   |                 | 9.73 708<br>9.73 727 | 19       | 9.81 390             | 10.18610               | 9.92315              | 11.2 10.8                                 |
|   |                 | 9.73727 $9.73747$    | 20       | 9.81 418<br>9.81 445 | 10.18 552<br>10.18 555 | 9.92 310<br>9.92 302 | 14.0 13.5<br>16.8 16.2                    |
|   |                 | 9.73766              | 19       | 9.81473              | 10.15 527              | 9,92,293             | 19.6 15.9                                 |
| d |                 | 9.73 785             | 19       | 9.81 500             | 10.15 500              | 9.92 285             | 22.4 21.6                                 |
| ų | 10              | 9.73 805             | 19       | 9.81 528<br>9.81 556 | 10.18 472              | 9.92 277             | 24.3                                      |
|   | 11<br>12        | 9.73 524<br>9.73 543 | 19       | 9.51 553             | 10.15 444 10.15 417    | 9192 266<br>9192 266 |                                           |
| d | 13              | $9.73 \pm 63$        | 20<br>19 | 9.51 611             | 10.15359               | 9.92 252             | 20   19                                   |
|   | 14              | 9.73 882             | 19       | 9.81 638             | 10.15 362              | 9.92 244             | 2 4.0 3.8<br>3 6.0 5.7                    |
| ì | 15<br>10        | 9.73901 $9.73921$    | 20       | 9.81 666<br>9.81 693 | 10.15334<br>10.15307   | 9,92 235<br>9,92 227 | 4 6 11 7 11                               |
| 1 | 17              | 9.73 940             | 19       | 9.81 721             | 10.15 279              | 9.92 219             | 511001.05                                 |
|   | 18              | 9.73959              | 19<br>19 | 9.81 748             | 10.18252               | 9.92211              | 0   12.0   11.4<br>7   14.0   13.3        |
| d | 19<br><b>20</b> | 9.73 978             | 19       | 9.81 776             | 10.18 224              | 9.92 202             | 6 12.0 11.4<br>7 14.0 13.3<br>8 16.0 15.2 |
|   | 21              | 9.73 997<br>9.74 017 | 20       | 9.81 803<br>9.81 831 | 10.15 197<br>10.15 169 | 9.92 194             | 9   18.0   17.1                           |
|   | 22              | 9.74036              | 19       | 9.81 858             | 10.18 142              | $9.92186 \\ 9.92177$ |                                           |
|   | 23<br>24        | 9.74 055<br>9.74 074 | 19<br>19 | 9.81 886<br>9.81 913 | 10.15 114              | 9.92 169             | 18 9                                      |
|   | 25              | 9.74 074             | 19       | 9.81 941             | 10.18 087              | 9.92 161<br>9.92 152 | 3.6 - 1.8                                 |
|   | 26              | 9.74 113             | 20       | 9.81 968             | 10.18 032              | 9.92 144             | 3.6 1.8<br>5.4 2.7<br>4 7.2 3.6           |
|   | 27<br>28        | 9.74132              | 19<br>19 | 9.81 996             | 10.18 004              | 9.92 136             | 5; 9.0 4.5                                |
|   | 28<br>29        | 9.74 151<br>9.74 170 | 19       | 9.82 023<br>9.82 051 | 10.17 977<br>10.17 949 | 9.92 127<br>9.92 119 | 6 10.8 5.4                                |
|   | 30              | 9.74 189             | 19       | 9.82 078             | 10.17 922              | 9.92 111             | 7 12.6 63<br>5 14.4 7.2<br>9 16.2 8.1     |
|   | 31              | 9.74208              | 19<br>19 | 9.82 106             | 10.17 894              | $9.92\ 102$          | 9 16.2 5.1                                |
|   | 32<br>33        | 9.74 227<br>9.74 246 | 19       | 9.82 133<br>9.82 161 | 10.17 867<br>10.17 839 | 9.92 094<br>9.92 056 |                                           |
|   | 34              | 9.74 265             | 19       | 9.82 188             | 10.17 812              | 9.92 077             | 8                                         |
|   | 35              | 9.74 284             | 19       | 9.82 215<br>9.82 243 |                        | 9.92 069             | 1.6                                       |
|   | 36              | 9.74 303             | 19<br>19 | 9.82 243             | 10.17 755<br>10.17 757 | 9.92 060             | 1.6<br>3 2.4<br>4 3.2<br>5 4.0            |
|   | 37<br>38        | 9.74 322<br>9.74 341 | 19       | 9.82 270<br>9.82 298 | 10.17 730<br>10.17 702 | 9.92052 $9.92044$    | 5:4.0                                     |
|   | 39              | 9.74 360             | 19<br>19 | $9.82\ 325$          | 10.17 675              | 9.92035              | 5: 4.6<br>6: 4.8<br>7, 5.6                |
|   | 40              | 9.74 379             | 19       | 9.82 352             | 10.17 648              | 9.92 027             | 8 · h.4                                   |
|   | 41<br>42        | 9.74 398<br>9.74 417 | 19       | 9.82 380<br>9.82 407 | 10.17 620<br>10.17 593 | 9.92 018<br>9.92 010 | 9   7.2                                   |
|   | 43              | 9.74 436             | 19       | 9.82 435             | 10.17 565<br>10.17 538 | 9.92 002<br>9.91 993 |                                           |
|   | 44              | 9.74 455             | 19<br>19 | 9.82 462             |                        |                      | From the t. p:                            |
|   | 45<br>46        | 9.74 474<br>9.74 493 | 19       | 9.82 489<br>9.82 517 | 10.17 511              | 9.91 985<br>9.91 976 | For 33°+ or 213°+,                        |
|   | 47              | 9.74 512             | 19       | 9.82 544             | 10.17 483<br>10.17 456 | 9.91968              | read as printed; for                      |
|   | 48              | 9.74531              | 19<br>18 | 9.82571              | 10.17 429              | 9.91959              | 123°+ or 303°+, read                      |
|   | 49              | 9.74 549             | 19       | 9.82 599             | 10.17 401              | 9.91 951             | co-function.                              |
|   | 50<br>51        | 9.74 568<br>9.74 587 | 19       | 9.82 626<br>9.82 653 | 10.17 374<br>10.17 347 | 9.91 942<br>9.91 934 |                                           |
|   | 52              | 9.74 606             | 19<br>19 | 9.82 681             | 10.17 319              | 9.91 925             | From the bottom:                          |
|   | 53              | 9.74 625             | 19       | 9.82 708<br>9.82 735 | 10.17 292<br>10.17 265 | 9.91 917<br>9.91 908 | For <b>56°</b> + or <b>236°</b> -         |
|   | 54<br>55        | 9.74 644<br>9.74 662 | 18       | 9.82 762             | 10.17 238              | 9.91 900             | read as printed; for                      |
|   | 56              | 9.74681              | 19       | 9.82790              | 10.17 210              | 9.91 891             | 146° or 326° +, read                      |
|   | 57              | 9.74 700             | 19<br>19 | 9.82 817             | 10.17 183<br>10.17 156 | 9.91 883<br>9.91 874 | co-function.                              |
|   | 58<br>59        | 9.74 719<br>9.74 737 | 18       | 9.82 844<br>9.82 871 | 10.17 130              | 9.91866              |                                           |
|   | 60              |                      | 19       | 9.82 899             | 10.17 101              | 9.91 857             |                                           |
|   |                 | L Cos                | d        |                      |                        | L Sin   d            | Prop. Pts.                                |
|   |                 |                      |          |                      |                        |                      |                                           |

56° - Logarithms of Trigonometric Functions

|   |                                                    |                                                                                                          | ~                                                                                                        | •                                                                                                    |                                                                                                          |                                                           | [11]                                                                                                                    |
|---|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|   |                                                    | L Sin   c                                                                                                | i L Tan   c d                                                                                            | L Ctn                                                                                                | L Cos id                                                                                                 | l                                                         | Prop. Pts.                                                                                                              |
|   |                                                    | 9.74 756<br>9.74 775<br>9.74 794<br>9.74 812<br>9.74 831<br>9.74 850<br>9.74 868                         | 9.52 899<br>9.52 926<br>9.52 953<br>9.52 980<br>9.53 008<br>9.53 035<br>9.53 062                         | 10.17 101<br>10.17 074<br>10.17 04'<br>10.17 020<br>10.16 992<br>10.16 96<br>10.16 938               | 9.91 857<br>9.91 849<br>9.91 840<br>9.91 832<br>9.91 823<br>9.91 81<br>9.91 806                          | 59<br>58<br>57<br>56<br>55<br>54                          | 28   27<br>2   5.6   5.4<br>3   8.4   8.1<br>4   11.2   10.8                                                            |
|   | 10                                                 | 9.74 887<br>9.74 906<br>9.74 924<br>9.74 943<br>9.74 961                                                 | 9.83 089<br>9.83 11<br>9.83 144<br>9.83 171<br>9.83 198                                                  | 10.16 911<br>10.16 883<br>10.16 856<br>10.16 829<br>10.16 802                                        | 9.91 798<br>9.91 789<br>9.91 781<br>9.91 772<br>9.91 763<br>9.91 755                                     | 53<br>52<br>51<br><b>50</b><br>49                         | 6 16.8 16.2<br>7 19.6 18.9<br>8 22.4 21.6<br>9 25.2 24.3                                                                |
|   | 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19       | 9.74 980<br>9.74 999<br>9.75 017<br>9.75 036<br>9.75 054<br>9.75 073<br>9.75 110<br>9.75 128             | 9.83 225<br>9.83 252<br>9.83 280<br>9.83 307<br>9.83 361<br>9.83 361<br>9.83 415<br>9.83 415             | 10.16 775<br>10.16 748<br>10.16 720<br>10.16 693<br>10.16 669<br>10.16 639<br>10.16 612<br>10.16 585 | 9.91755<br>9.91746<br>9.91738<br>9.91729<br>9.91720<br>9.91712<br>9.91703<br>9.91695<br>9.91686          | 48<br>47<br>46<br>45<br>44<br>43<br>42<br>41<br>40        | 26 19<br>2 5.2 3.8<br>3 7.8 5.7<br>4 10.4 7.6<br>5 13.0 9.5<br>6 15.6 11.4<br>7 18.2 13.3<br>8 20.8 15.2<br>9 23.4 17.1 |
|   | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | 9.75 147<br>9.75 165<br>9.75 184<br>9.75 202<br>9.75 221<br>9.75 239<br>9.75 258<br>9.75 276<br>9.75 294 | 9.83 470<br>9.83 497<br>9.83 524<br>9.83 551<br>9.83 578<br>9.83 605<br>9.83 632<br>9.83 659<br>9.83 686 | 10.16 530<br>10.16 503<br>10.16 476<br>10.16 449<br>10.16 395<br>10.16 368<br>10.16 341<br>10.16 314 | 9.91 677<br>9.91 669<br>9.91 660<br>9.91 651<br>9.91 643<br>9.91 634<br>9.91 625<br>9.91 617<br>9.91 608 | 39<br>38<br>37<br>36<br><b>35</b><br>34<br>33<br>32<br>31 | 18   2   3.6   1.8   3.5.4   2.7   4   7.2   3.6   5.9   9.0   4.5   6   10.8   5.4                                     |
|   | 30<br>31<br>32<br>38<br>34                         | 9.75 313<br>9.75 331<br>9.75 350<br>9.75 368<br>9.75 386                                                 | 9.83 713<br>9.83 740<br>9.83 768<br>9.83 795<br>9.83 822                                                 | 10.16 287<br>10.16 260<br>10.16 232<br>10.16 205<br>10.16 178                                        | 9.91 599<br>9.91 591<br>9.91 582<br>9.91 573<br>9.91 565                                                 | 30<br>29<br>28<br>27<br>26                                | 8   14.4   7.2<br>9   16.2   8.1                                                                                        |
|   | 35<br>36<br>37<br>38<br>39<br>40                   | 9.75 405<br>9.75 423<br>9.75 441<br>9.75 459<br>9.75 478                                                 | 9.83 849<br>9.83 876<br>9.83 903<br>9.83 930<br>9.83 957                                                 | 10.16 151<br>10.16 124<br>10.16 097<br>10.16 070<br>10.16 043                                        | 9.91 556<br>9.91 547<br>9.91 538<br>9.91 530<br>9.91 521                                                 | 25<br>24<br>23<br>22<br>21                                | 1.6<br>2.4<br>3.2<br>4.0<br>4.8<br>5.6                                                                                  |
|   | 41<br>42<br>43<br>44<br>45                         | 9.75 496<br>9.75 514<br>9.75 533<br>9.75 551<br>9.75 569<br>9.75 587                                     | 9.83 984<br>9.84 011<br>9.84 038<br>9.84 065<br>9.84 092<br>9.84 119                                     | 10.16 016<br>10.15 989<br>10.15 962<br>10.15 935<br>10.15 908<br>10.15 881                           | 9.91 512<br>9.91 504<br>9.91 495<br>9.91 486<br>9.91 477<br>9.91 469                                     | 20<br>19<br>18<br>17<br>16<br>15                          | 6.4<br>7.2<br>From the top:                                                                                             |
|   | 46<br>47<br>48<br>49<br><b>50</b>                  | 9.75 605<br>9.75 624<br>9.75 642<br>9.75 660<br>9.75 678                                                 | 9.84 146<br>9.84 173<br>9.84 200                                                                         | 10.15 854<br>10.15 827<br>10.15 800<br>10.15 773<br>10.15 746                                        | 9.91 460<br>9.91 451<br>9.91 442<br>9.91 433<br>9.91 425                                                 | 14<br>13<br>12<br>11<br>10                                | For 34°+ or 214°+, read as printed; for 124°+ or 304°+, read co-function.                                               |
|   | 51<br>52<br>53<br>54<br>55                         | 9.75 696<br>9.75 714<br>9.75 733<br>9.75 751                                                             | 9.84 280<br>9.84 307<br>9.84 334<br>9.84 361                                                             | 10.15 720<br>10.15 693<br>10.15 666<br>10.15 639                                                     | 9.91 416<br>9.91 407<br>9.91 398<br>9.91 389                                                             | 9<br>8<br>7<br>6                                          | From the bottom: For 55°+ or 235°+,                                                                                     |
|   | 56<br>57<br>58<br>59<br><b>60</b>                  | 9.75 769<br>9.75 787<br>9.75 805<br>9.75 823<br>9.75 841                                                 | 9.84 415<br>9.84 442<br>9.84 469<br>9.84 496                                                             | 10.15 531<br>10.15 504                                                                               | 9.91 381<br>9.91 372<br>9.91 363<br>9.91 354<br>9.91 345                                                 | 5<br>4<br>3<br>2<br>1                                     | read as printed; for 145°+ or 325°+, read co-function.                                                                  |
| • | υU                                                 | 9.75 859<br>L Cos d                                                                                      | 9.84 523<br>  L Ctn   cd                                                                                 | 10.15 477<br>L Tan                                                                                   | 9.91 336<br>L Sin   d                                                                                    | 0                                                         | Prop. Pts.                                                                                                              |
|   |                                                    |                                                                                                          |                                                                                                          |                                                                                                      |                                                                                                          |                                                           |                                                                                                                         |

55° — Logarithms of Trigonometric Functions

III

KAO - Logarithms of Trigonometric Functions

| 7 G:                                                                                                                                                                                                                                                     | Logar                                                                                                                                                                                                                                                                                                       | ithms of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Frigonometr</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ic Functions                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| - 1                                                                                                                                                                                                                                                      | d L Tan                                                                                                                                                                                                                                                                                                     | cd L Ct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n L Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1111                                                                                                     |
| L Sin 0 9.76 9.22 1 9.76 9.39 2 9.76 9.74 4 9.76 9.91 5 9.77 0.96 6 9.77 0.96 7 9.77 0.78 10 9.77 0.78 11 9.77 112 12 9.77 130 13 9.77 147 14 9.77 169 15 9.77 181 16 9.77 199 17 9.77 216 18 9.77 233 19 9.77 250                                       | 17 9.86 126<br>17 9.86 153<br>18 9.86 153<br>17 9.86 206<br>17 9.86 232<br>18 9.86 232<br>17 9.86 232<br>17 9.86 312<br>18 9.86 312<br>17 9.86 312<br>17 9.86 312<br>18 9.86 335<br>17 9.86 415<br>18 9.86 471<br>19 9.86 471<br>17 9.86 498<br>17 9.86 524<br>9.86 524<br>9.86 577<br>9.86 630<br>9.86 630 | Ced   L Cr<br>  27   10.13 8<br>  26   10.13 8<br>  27   10.13 8<br>  27   10.13 7<br>  27   10.13 7<br>  27   10.13 6<br>  28   10.13 3<br>  29   10.13 3<br>  20   10.13 3<br>  20   10.13 4<br>  20   10.13 3<br>  21   10.13 3<br>  22   10.13 3<br>  23   10.13 3<br>  24   10.13 3<br>  25   10.13 3<br>  26   10.13 4<br>  27   10.13 3<br>  27   10.13 3<br>  28   10.13 3<br>  29   10.13 3<br>  20   10.13 3 | n L Cos   9.90 796   147 9.90 796   147 9.90 777   94 9.90 759   149 9.90 759   15 9.90 741   9.90 751   15 9.90 741   9.90 752   15 9.90 741   9.90 752   9.90 694   9.90 685   9.90 667   9.90 667   9.90 687   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689   9.90 689 | Prop. Pts.    27   26                                                                                    |
| 20   9.77 268<br>  9.77 285<br>  22   9.77 302<br>  23   9.77 319<br>  24   9.77 336<br>  25   9.77 370<br>  27   9.77 387<br>  28   9.77 485                                                                                                            | 9.86 656<br>9.86 683<br>9.86 709<br>9.86 736<br>9.86 762<br>9.86 789<br>9.86 815<br>9.86 868                                                                                                                                                                                                                | 10.13 34:<br>10.13 31:<br>27 10.13 31:<br>27 10.13 29:<br>16 10.13 26:<br>17 10.13 21:<br>16 10.13 15:<br>16 10.13 15:<br>16 10.13 15:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 9.90 611<br>7 9.90 602<br>9.90 592<br>4 9.90 583<br>9.90 574<br>9.90 565<br>9.90 555<br>9.90 546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.6   11.9   14.4   13.6   15.3   16.2   15.3   16   10   3.2   2.0   4.8   3.0   6.4   4.0   8.0   5.0 |
| 29   9.77 429   1<br>30   9.77 439   1<br>31   9.77 456   1<br>32   9.77 473   1<br>33   9.77 490   1<br>35   9.77 507   1<br>36   9.77 524   1<br>37   9.77 558   1<br>38   9.77 575   1<br>39   9.77 559   1<br>39   9.77 559   1<br>39   9.77 559   1 | 9.86 894 21<br>9.86 921 25<br>9.86 947 26<br>9.86 974 27<br>9.87 027 27<br>9.87 053 26<br>9.87 073 26                                                                                                                                                                                                       | 10.13 106<br>10.13 079<br>10.13 053<br>10.13 026<br>10.13 000<br>10.12 973<br>10.12 947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.90 537<br>9.90 527<br>9.90 518<br>9.90 509<br>9.90 499<br>9.90 490<br>9.90 480<br>9.90 471<br>9.90 462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.6 6.0<br>11.2 7.0<br>12.8 8.0<br>14.4 9.0                                                              |
| 41 9.77 626 17<br>42 9.77 643 17<br>43 9.77 660 17<br>44 9.77 677 17<br>45 9.77 694 17                                                                                                                                                                   | 9.87 106 27<br>9.87 132 26<br>9.87 158 26<br>9.87 185 27<br>9.87 211 26<br>9.87 238 27<br>9.87 264 26<br>9.87 290 26<br>9.87 290 27                                                                                                                                                                         | 10.12 894<br>10.12 868<br>10.12 842<br>10.12 815<br>10.12 789<br>10.12 762<br>10.12 736<br>10.12 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.90 452 10<br>9.90 443 9<br>9.90 424 9<br>9.90 405 9<br>9.90 396 9<br>9.90 386 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7<br>3.6<br>4.5<br>5.4<br>6.3<br>7.2<br>8.1                                                            |
| 46 9.77711 17<br>47 9.77728 17<br>48 9.77761 17<br>50 9.77761 17<br>51 9.77795 17<br>52 9.77812 17<br>53 9.77829 17<br>54 9.77846 17                                                                                                                     | 9.87 317 27<br>9.87 343 26<br>9.87 369 26<br>9.87 369 26<br>9.87 422 26<br>9.87 422 26<br>9.87 448 27<br>9.87 501 26<br>9.87 527 26                                                                                                                                                                         | 10.12 637<br>10.12 631<br>10.12 604<br>10.12 578<br>10.12 552<br>10.12 525<br>10.12 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.90 377<br>9.90 368<br>9.90 368<br>9.90 349<br>9.90 339<br>9.90 339<br>0.90 330<br>0.90 320<br>0.90 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | read as printed; for 126°+ or 306°+, read co-function.                                                   |
| 55 9.77 862 16 17 57 9.77 896 17 58 9.77 913 17 15 9.77 930 17 16 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                        | 9.87 554 27<br>9.87 580 26<br>9.87 606 26<br>9.87 633 27<br>9.87 659 26<br>0.87 685 26                                                                                                                                                                                                                      | 10.12 446 9<br>10.12 420 9<br>10.12 394 9<br>10.12 367 9<br>10.12 341 9<br>10.12 315 9<br>10.12 289 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.90 301   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | From the bottom: For 53°+ or 233°+, read as printed; for 143°+ or 323°+, read co-function.               |
| ,                                                                                                                                                                                                                                                        | Logarithms                                                                                                                                                                                                                                                                                                  | of Trigo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nometric Fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prop. Pts.                                                                                               |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             | 3**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |

| III]                                   | 37                                                                               | — Logarith                                                                       | шз       | ns of trigonometric                                                                     |                                                                                   |                      |                                   | The state of the s |                                                  |                                                 |            |
|----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------|
|                                        | Sin                                                                              | L Tan ice                                                                        | d        | L Ctn                                                                                   | L Cos                                                                             |                      |                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rop.                                             | Pts.                                            |            |
|                                        | .77 946<br>.77 963<br>.77 980<br>.77 997<br>.75 013                              | \$7711<br>\$7735<br>\$7764<br>\$7750<br>\$7517                                   |          | 0.12 289<br>0.12 262<br>0.12 236<br>0.12 210<br>0.12 183                                | 90 235<br>90 225<br>90 216<br>90 206<br>90 197                                    |                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07 1                                             | ne.                                             |            |
|                                        | .78 030<br>.75 047<br>.78 063<br>.78 050<br>).78 097                             | 1.87 843<br>1.87 809<br>1.87 805<br>1.87 922<br>1.87 945<br>1.87 974<br>1.83 000 | ĺ        | 0.12 157<br>0.12 131<br>0.12 105<br>0.12 075<br>0.12 052<br>0.12 026<br>0.12 000        | .90 187<br>.90 178<br>.90 168<br>.90 159<br>.90 149<br>.90 139                    |                      |                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4<br>5.1<br>10.8<br>13.5<br>16.2<br>18.9       | 5.2<br>7.8<br>10.4<br>13.0<br>15.6<br>18.2      |            |
|                                        | 1.75 130<br>1.75 147<br>1.75 163<br>1.75 180<br>1.78 197<br>1.75 213             | .88 053<br>.88 079<br>.88 105<br>.88 101<br>.88 158                              |          | 0.11 973<br>0.11 947<br>0.11 921<br>0.11 895<br>0.11 869<br>10.11 842                   | .90 120<br>.90 111<br>.90 101<br>.90 091<br>.90 052                               |                      |                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.6<br>24.3                                     | 20.8<br>23.4<br>16                              |            |
|                                        | 1.78 230<br>1.78 263<br>1.78 263<br>1.78 280<br>1.78 296<br>1.78 313<br>18 329   | .88 154<br>.88 210<br>.88 236<br>.88 262<br>.88 289<br>.88 315                   |          | .0.11 816<br>.0.11 790<br>.0.11 764<br>.0.11 738<br>.0.11 711<br>.0.11 685              | .90 072<br>.90 063<br>.90 053<br>.90 043<br>.90 034<br>.90 024<br>.90 014         |                      |                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.4<br>5.1<br>6.8<br>8.5<br>10.2<br>11.9<br>13.6 | 3.2<br>4.8<br>6.4<br>8.0<br>9.6<br>11.2<br>12.8 |            |
| 24<br>  26<br>  29                     | '8 346<br>9.78 362<br>\$ 379<br>9.78 395<br>9.78 412<br>9.78 428                 | 9.88 341<br>9.88 367<br>9.88 393<br>9.88 420<br>3.88 446<br>9.88 472             |          | 10.11 659<br>10.11 633<br>10.11 607<br>10.11 580<br>10.11 554<br>10.11 528<br>10.11 502 | .90 005<br>.89 995<br>.89 976<br>.89 976<br>.89 966<br>.89 956                    | •                    | 30                                | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.3<br>10<br>2.0<br>3.0                         | 1.8                                             |            |
| 30<br>31<br>32<br>33<br>34<br>35<br>36 | 9.78 445<br>9.78 461<br>9.78 478<br>9.78 494<br>9.78 510<br>9.78 527<br>9.78 543 | 9.88 498<br>9.88 524<br>9.88 550<br>9.88 577<br>9.88 603<br>9.88 629<br>9.88 655 |          | 10.11 476<br>10.11 476<br>10.11 423<br>10.11 397<br>10.11 371<br>10.11 345              | 9.59 93'<br>9.59 92'<br>9.59 915<br>9.59 905<br>9.89 895<br>9.59 858              |                      | 29<br>28<br>27<br>26<br><b>25</b> | 4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.0<br>5.0<br>6.0<br>7.0<br>9.0                  | 3.6<br>4.5<br>5.4<br>6.3<br>7.2<br>8.1          |            |
| 37<br>38<br>39<br>40<br>4<br>42        | 9.78 560<br>9.78 576<br>9.78 592<br>9.78 609<br>9.78 62<br>9.78 642              | 9.88 681<br>9.88 70'<br>9.88 733<br>9.88 759<br>9.88 786<br>9.88 812             |          | 10.11 319<br>10.11 293<br>10.11 26<br>10.11 241<br>10.11 214<br>10.11 188               | 9.89 879<br>9.89 869<br>9.89 859<br>9.89 849<br>9.89 840<br>9.89 830              |                      | 23<br>22<br>21<br><b>20</b><br>19 | Fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m the                                            | top:                                            |            |
| 4:<br>4:<br>45<br>4:<br>4<br>4         | 9.78 658<br>9.78 674<br>9.78 69<br>9.78 707<br>9.78 721<br>9.78 739              | 9.88 838<br>9.88 864<br>9.88 890<br>9.88 916<br>9.88 942<br>9.88 96              |          | 10.11 162<br>10.11 136<br>10.11 110<br>10.11 084<br>10.11 055<br>10.11 03<br>10.11 006  | 9.89 \$20<br>9.89 \$10<br>9.89 \$01<br>9.89 791<br>9.89 781<br>9.89 77<br>9.89 76 |                      | 17<br>16<br>15<br>1<br>1<br>1:    | read :<br>127°+<br>co-fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or 30<br>oction                                  |                                                 | or         |
| 50<br>5                                | 9.78 75<br>9.78 77<br>9.78 78<br>9.78 80<br>9.78 82<br>9.78 83<br>0.78 853       | 9.88 994<br>9.89 020<br>9.89 046<br>9.89 07<br>9.89 070<br>9.89 12<br>9.89 15    |          | 10.10 980<br>10.10 954<br>10.10 92<br>10.10 90<br>10.10 87<br>10.10 845                 | 9.89 752<br>9.89 74<br>9.89 73<br>9.89 72<br>9.89 71<br>9.89 702                  |                      | 10                                | For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52°+<br>as pr                                    | bottom<br>or 232<br>inted;<br>22°+, ren.        | e+,<br>for |
| 55                                     | 9.75 \$53<br>9.75 \$6<br>9.78 \$8(<br>9.78 90<br>9.78 91<br>9.78 93              | 9.89 17<br>9.89 20<br>9.89 225<br>16 9.89 255<br>16 9.89 281<br>d L Ctn          | 26<br>26 | 10.10 823<br>10.10 79<br>10.10 77<br>10.10 745<br>10.10 719<br>L Tan                    | 9.89 69;<br>9.89 683<br>9.89 67;<br>9.89 663<br>9.89 653<br>L Sin                 | 10<br>10<br>10<br>10 | 3<br>2<br>1<br>0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ртор                                             | . Pts.                                          |            |

L Cos d L Ctn cd L Tan L Sin d ' Prop.

52° — Logarithms of Trigonometric Functions

| 04                                                  | 54 58 — Logarithms of Trigonometric Functions [III                                           |                                        |                                                                                              |                                              |                                                                                                      |                                                                                              |                                  |                                                     |                       |                                              |                                                     |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------|-----------------------|----------------------------------------------|-----------------------------------------------------|
|                                                     | LOIR                                                                                         | d                                      | L Tan                                                                                        | cd                                           | L Ctn                                                                                                | L Cos                                                                                        | d                                |                                                     | F                     | тор.                                         | Pts.                                                |
| 0<br>1<br>2<br>3<br>4                               | 9.78 934<br>9.78 950<br>9.78 967<br>9.78 983<br>9.78 999                                     | 16<br>17<br>16<br>16<br>16             | 9.89 281<br>9.89 307<br>9.89 333<br>9.89 359<br>9.89 385                                     | 26<br>26<br>26<br>26<br>26<br>26             | 10.10719<br>10.10693<br>10.10667<br>10.10641<br>10.10615                                             | 9.89 653<br>9.89 643<br>9.89 633<br>9.89 624<br>9.89 614                                     | 10<br>10<br>9<br>10              | 59<br>58<br>57<br>56                                | 2 3                   | 26<br>5.2<br>7.8                             | 25<br>5.0                                           |
| 5<br>6<br>7<br>8<br>9<br>10                         | 9.79 015<br>9.79 031<br>9.79 047<br>9.79 063<br>9.79 079<br>9.79 095                         | 16<br>16<br>16<br>16<br>16             | 9.89 411<br>9.89 437<br>9.89 463<br>9.89 489<br>9.89 515<br>9.89 541                         | 26<br>26<br>26<br>26<br>26<br>26             | 10.10 589<br>10.10 563<br>10.10 537<br>10.10 511<br>10.10 485<br>10.10 459                           | 9.89 604<br>9.89 594<br>9.89 584<br>9.89 574<br>9.89 564<br>9.89 554                         | 10<br>10<br>10<br>10<br>10       | 55<br>54<br>53<br>52<br>51<br>50                    | 4<br>5<br>6<br>7<br>8 | 10.4<br>13.0<br>15.6<br>18.2<br>20.8<br>23.4 | 7.5<br>10.0<br>12.5<br>15.0<br>17.5<br>20.0<br>22.5 |
| 11<br>12<br>13<br>14<br><b>15</b><br>16<br>17<br>18 | 9.79 111<br>9.79 128<br>9.79 144<br>9.79 160<br>9.79 176<br>9.79 192<br>9.79 208<br>9.79 224 | 16<br>17<br>16<br>16<br>16<br>16<br>16 | 9.89 567<br>9.89 593<br>9.89 619<br>9.89 645<br>9.89 671<br>9.89 697<br>9.89 723<br>9.89 749 | 26<br>26<br>26<br>26<br>26<br>26<br>26<br>26 | 10.10 433<br>10.10 407<br>10.10 381<br>10.10 355<br>10.10 329<br>10.10 303<br>10.10 277<br>10.10 251 | 9.89 544<br>9.89 534<br>9.89 524<br>9.89 514<br>9.89 504<br>9.89 495<br>9.89 485<br>9.89 475 | 10<br>10<br>10<br>10<br>10<br>10 | 49<br>48<br>47<br>46<br><b>45</b><br>44<br>43<br>42 | 2<br>3<br>4<br>5<br>6 | 3.4<br>5.1<br>6.8<br>8.5<br>10.2             | 16<br>3.2<br>4.8<br>6.4<br>8.0<br>9.6               |
| 19<br>20<br>21<br>22<br>23<br>24                    | 9.79 240<br>9.79 256<br>9.79 272<br>9.79 288<br>9.79 304<br>9.79 319                         | 16<br>16<br>16<br>16<br>16<br>15       | 9.89 775<br>9.89 801<br>9.89 827<br>9.89 853<br>9.89 879<br>9.89 905                         | 26<br>26<br>26<br>26<br>26<br>26<br>26<br>26 | 10.10 225<br>10.10 199<br>10.10 173<br>10.10 147<br>10.10 121<br>10.10 095                           | 9.89 465<br>9.89 455<br>9.89 445<br>9.89 435<br>9.89 425<br>9.89 415                         | 10<br>10<br>10<br>10<br>10       | 41<br>40<br>39<br>38<br>37<br>36                    | 7<br>8<br>9           | 11.9<br>13.6<br>15.3<br>15.3                 | 11.2<br>12.8<br>14.4                                |
| 25<br>26<br>27<br>28<br>29<br>30                    | 9.79 335<br>9.79 351<br>9.79 367<br>9.79 383<br>9.79 399<br>9.79 415                         | 16<br>16<br>16<br>16<br>16             | 9.89 931<br>9.89 957<br>9.89 983<br>9.90 009<br>9.90 035<br>9.90 061                         | 26<br>26<br>26<br>26<br>26                   | 10.10 069<br>10.10 043<br>10.10 017<br>10.09 991<br>10.09 965<br>10.09 939                           | 9.89 405<br>9.89 395<br>9.89 385<br>9.89 375<br>9.89 364<br>9.89 354                         | 10<br>10<br>10<br>11<br>10       | 35<br>34<br>33<br>32<br>31<br>30                    | 345678                | 4.5<br>6.0<br>7.5<br>9.0<br>10.5<br>12.0     | 3.3<br>4.4<br>5.5<br>6.6<br>7.7<br>8.8              |
| 31<br>32<br>33<br>34<br><b>35</b><br>36             | 9.79 431<br>9.79 447<br>9.79 463<br>9.79 478<br>9.79 494<br>9.79 510                         | 16<br>16<br>15<br>16<br>16             | 9.90 086<br>9.90 112<br>9.90 138<br>9.90 164<br>9.90 190<br>9.90 216                         | 25<br>26<br>26<br>26<br>26<br>26<br>26       | 10.09 914<br>10.09 888<br>10.09 862<br>10.09 836<br>10.09 810                                        | 9.89 344<br>9.89 334<br>9.89 324<br>9.89 314<br>9.89 304                                     | 10<br>10<br>10<br>10<br>10       | 29<br>28<br>27<br>26<br><b>25</b>                   | 9<br>2<br>3           | 13.5<br>  10<br>  2.0<br>  3.0               | 9<br>1.8<br>2.7                                     |
| 37<br>38<br>39<br>40<br>41                          | 9.79 526<br>9.79 542<br>9.79 558<br>9.79 573<br>9.79 589                                     | 16<br>16<br>16<br>15                   | 9.90 242<br>9.90 268<br>9.90 294<br>9.90 320<br>9.90 346                                     | 26<br>26<br>26<br>26<br>26                   | 10.09 784<br>10.09 758<br>10.09 732<br>10.09 706<br>10.09 680<br>10.09 654                           | 9.89 294<br>9.89 284<br>9.89 274<br>9.89 264<br>9.89 254<br>9.89 244                         | 10<br>10<br>10<br>10             | 24<br>23<br>21<br>21<br>20<br>19                    | 4<br>5<br>6<br>7<br>8 | 4.0<br>5.0<br>6.0<br>7.0<br>8.0              | 3.6<br>4.5<br>5.4<br>6.3<br>7.2                     |
| 42<br>43<br>44<br>45<br>46                          | 9.79 605<br>9.79 621<br>9.79 636<br>9.79 652<br>9.79 668                                     | 16<br>15<br>16<br>16<br>16             | 9.90 371<br>9.90 397<br>9.90 423<br>9.90 449<br>9.90 475                                     | 25<br>26<br>26<br>26<br>26<br>26<br>26       | 10.09 629<br>10.09 603<br>10.09 577<br>10.09 551<br>10.09 525                                        | 9.89 233<br>9.89 223<br>9.89 213<br>9.89 203<br>9.89 193                                     | 10<br>10<br>10<br>10             | 18<br>17<br>16<br><b>15</b><br>14                   |                       | 1 9.0<br>m the<br>38°+                       |                                                     |
| 47<br>48<br>49<br><b>50</b><br>51<br>52             | 9.79 684<br>9.79 699<br>9.79 715<br>9.79 731<br>9.79 746                                     | 15<br>16<br>16<br>15<br>15             | 9.90 501<br>9.90 527<br>9.90 553<br>9.90 578<br>9.90 604                                     | 26<br>26<br>25<br>26<br>26<br>26             | 10.09 499<br>10.09 473<br>10.09 447<br>10.09 422<br>10.09 396                                        | 9.89 183<br>9.89 173<br>9.89 162<br>9.89 152<br>9.89 142                                     | 10<br>10<br>11<br>10<br>10       | 13<br>12<br>11<br>10                                |                       | or <b>30</b>                                 | ated; for<br>8°+, read                              |
| 53<br>54<br><b>55</b><br>56                         | 9.79 762<br>9.79 778<br>9.79 793<br>9.79 809<br>9.79 825                                     | 16<br>15<br>16<br>16<br>15             | 9.90 630<br>9.90 656<br>9.90 682<br>9.90 708<br>9.90 734                                     | 26<br>26<br>26<br>26<br>26<br>25             | 10.09 370<br>10.09 344<br>10.09 318<br>10.09 292<br>10.09 266                                        | 9.89 132<br>9.89 122<br>9.89 112<br>9.89 101<br>9.89 091                                     | 10<br>10<br>11<br>11<br>10       | 8<br>7<br>6<br><b>5</b><br>4                        | For<br>read s         | 51°+<br>as pri                               | bottom:<br>or 231°+,<br>nted; for<br>1°+, read      |
| 57<br>58<br>59<br><b>60</b>                         | 9.79 840<br>9.79 856<br>9.79 872<br>9.79 887<br><b>L Cos</b>                                 | 16<br>16<br>15                         | 9.90759<br>9.90785<br>9.90811<br>9.90837                                                     | 26<br>26<br>26                               | 10.09 241<br>10.09 215<br>10.09 189<br>10.09 163                                                     | 9.89 081<br>9.89 071<br>9.89 060<br>9.89 050                                                 | 10<br>11<br>10                   | 3210                                                | co-fur                | nction                                       | . ´•                                                |
| _                                                   | L Cos                                                                                        | q                                      | L Ctn                                                                                        | cd                                           | L Tan                                                                                                | L Sin                                                                                        | d                                |                                                     | ŀ                     | rop.                                         | r is.                                               |

| . 11                                                                              | 111 33 — Logarithms of Trigonometric Functions 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                     |                                           |   |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|---|
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d                                        | L Tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cd                                                      | L Ctn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d                                        | 1                                                                                   | Prop. Pts.                                |   |
| 5 5 7 7 5 11 11 11 11 11 11 11 11 11 12 20 11 11 11 11 11 11 11 11 11 11 11 11 11 | 9.79 887<br>9.79 983<br>9.79 984<br>9.79 985<br>9.79 986<br>9.79 986<br>9.79 986<br>9.79 986<br>9.50 105<br>9.50 105<br>9.50 151<br>9.50 259<br>9.50 259<br>9.50 336<br>9.50 336<br>9.50 336<br>9.50 336<br>9.50 351<br>9.50 351 | 16 16 16 16 16 16 16 16 16 16 16 16 16 1 | L Tan  9.90 \$37  9.90 \$63  9.90 914  9.90 914  9.90 916  9.90 92  9.91 1018  9.91 106  9.91 121  9.91 147  9.91 127  9.91 127  9.91 284  9.91 295  9.91 257  9.91 533  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 559  9.91 591  9.91 991  9.91 991  9.91 991  9.91 991  9.91 991  9.91 991  9.91 996 | ed 2552 26 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26 | L Ctn  19.09 17.3  10.09 08.6  10.09 08.6  10.09 08.6  10.08 95.7  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 57.9  10.08 62.7  10.08 62.7  10.08 59.6  10.08 59.6  10.08 57.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 59.6  10.08 132  10.08 05.5  10.08 05.5  10.08 05.6  10.08 05.6  10.08 05.6  10.08 05.6  10.08 05.6  10.08 05.6  10.08 05.6  10.08 05.6  10.08 05.6 | L Cos  9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 9.59 650 | 10 10 11 10 10 10 10 10 10 10 10 10 10 1 | 60355566 5545335 509 47446 4544344 409 5645 309 309 309 309 309 309 309 309 309 309 | ·                                         |   |
| 42<br>43                                                                          | 9.80 534<br>9.80 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15<br>16                                 | 9.91 919<br>9.91 945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26<br>26                                                | 10.08 081<br>10.08 055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.88 615<br>9.88 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>10                                 | 18<br>17                                                                            |                                           |   |
| 44<br><b>4</b> 5                                                                  | 9.80 565<br>9.80 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                       | 9.91 971<br>9.91 996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                      | 10.08 029<br>10.08 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.88 594<br>9.88 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                       | 16<br><b>15</b>                                                                     | read as printed; for                      |   |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 9.92 022<br>9.92 048<br>9.92 073<br>9.92 099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26<br>25<br>26                                          | 10.07 978<br>10.07 952<br>10.07 927<br>10.07 901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 14<br>13<br>12<br>11                                                                |                                           |   |
| 50                                                                                | 9.80 656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>15                                 | 9.92 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26<br>25                                                | 10.07.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.88 531<br>9.88 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11<br>10                                 | 10                                                                                  | From the bottom:<br>For 50°+ or 230°+.    | I |
| 51<br>52<br>53<br>54                                                              | 9.80 671<br>9.80 686<br>9.80 701<br>9.80 716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>15<br>15                           | 9.92 150<br>9.92 176<br>9.92 202<br>9.92 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26<br>26<br>25                                          | 10.07 \$50<br>10.07 \$24<br>10.07 79\$<br>10.07 773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.88 510<br>9.88 499<br>9.88 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11<br>11<br>10                           | 81-6                                                                                | read as printed; for 140°+ or 320°+, read |   |
| 55<br>56<br>57<br>58<br>59<br>60                                                  | 9.80 731<br>9.80 746<br>9.80 762<br>9.80 777<br>9.80 792<br>9.80 807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15<br>16<br>15<br>15<br>15               | 9.92 253<br>9.92 279<br>9.92 304<br>9.92 330<br>9.92 356<br>9.92 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26<br>25<br>26<br>26<br>26<br>25                        | 10.07 747<br>10.07 721<br>10.07 696<br>10.07 670<br>10.07 644<br>10.07 619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.88 478<br>9.88 468<br>9.88 457<br>9.88 447<br>9.88 436<br>9.88 425                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>11<br>10<br>10<br>11<br>11         | 5432110                                                                             | co-function.                              |   |
|                                                                                   | L Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d                                        | L Ctn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cd                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d                                        | 7                                                                                   | Prop. Pts.                                | - |
|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -:-                                      | E.                                                                                  | n etions                                  |   |

50° - Logarithms of Trigonometric Functions

|   |                 |                      |     | _                     |    |                      | •  |                      |   |                 |                     | FII                 |
|---|-----------------|----------------------|-----|-----------------------|----|----------------------|----|----------------------|---|-----------------|---------------------|---------------------|
|   |                 | L Sin                | d L | Tan                   | cd | L Ct                 | n  | L Cos                | d | P               | rop.                | Pts.                |
|   | 0               | 9.80 807             | 9.9 | 2381                  |    | 10.07 €              | 19 | 9.88 425             |   |                 |                     |                     |
|   | 1 2             | 9.80822 $9.80837$    |     | 92 407<br>92 433      |    | 10.07 5<br>10.07 5   |    | 9.88 415<br>9.88 404 |   |                 |                     |                     |
|   | ã               | 9.80 852             |     | 2 458                 |    | 10.07 5              |    | 9.88 394             |   |                 |                     |                     |
|   | 4               | 9.80867              | 9.9 | 2 484                 |    | 10.07 5              |    | 9.88383              |   |                 |                     |                     |
|   | 5               | 9.80 882             | 9.9 | 2 510                 |    | 10.074               |    | 9.88 372             |   |                 | 26                  | 25                  |
|   | 6<br>7          | 9.80 897<br>9.80 912 | 9.5 | $\frac{1}{1}$         |    | 10.07 4<br>10.07 4   |    | 9.88 362<br>9.88 351 |   |                 | 5.2                 | 5.0                 |
|   | 8               | 9.80 927             |     | $\frac{5}{2}$ 587     |    | 10.07 4              |    | 9.88 340             |   |                 | 7.8                 | 7.5                 |
|   | 9               | 9.80 942             |     | 2612                  |    | 10.07 3              | 88 | 9.88 330             |   |                 | 10.4<br>13.0        | 10.0<br>12.5        |
|   | 10              | 9.80 957<br>9.80 972 |     | )2 63S<br>)2 663      |    | 10.07 3<br>10.07 3   | 62 | 9.88 319<br>9.88 308 |   |                 | 15.6                | 15.0                |
|   | 12              | 9.80 987             |     | $\frac{5}{2}689$      |    | 10.07 3              | 11 | 9.88 298             |   |                 | $\frac{18.2}{20.8}$ | 17.5                |
|   | 13              | 9.81002              | 9.9 | 2715                  |    | 10.07 2              | 85 | 9.88287              |   |                 | 23.4                | $\frac{20.0}{22.5}$ |
|   | 14              | 9.81 017             |     | 2740                  |    | 10.07 2              |    | 9.88 276             |   |                 |                     |                     |
|   | 15<br>16        | 9.81 032<br>9.81 047 |     | $\frac{12766}{12792}$ |    | 10.07 2<br>10.07 2   |    | 9.88 266<br>9.88 255 |   |                 |                     |                     |
|   | 17              | 9.81 061             | 9.9 | 2817                  |    | 10.07 1<br>10.07 1   | ŠŠ | 9.88 244             |   |                 | 15                  | 14                  |
|   | 18              | 9.81 076<br>9.81 091 | 9.9 | 2 843<br>2 868        |    | 10.07 1              | 57 | 9.88 234             |   | $\frac{2}{3}$   | 3.0                 | 2.8                 |
|   | 20              | 9.81 106             |     | 2 894                 |    | 10.07 1              |    | 9.88 223             |   | 4               | 6.0                 | 4.2<br>5.6          |
|   | 21              | 9.81 121             | 9.9 | 2 920                 |    | 10.07 1<br>10.07 0   |    | 9.88 212<br>9.88 201 |   | 5               | 7.5                 | 7.0                 |
|   | 22              | 9.81 136             | 9.9 | 12945                 |    | 10.070               | 55 | 9.88 191             |   | 6 7             | 9.0   10.5          | 8.4<br>9.8          |
|   | 23<br>24        | 9.81 151<br>9.81 166 |     | $\frac{2971}{2996}$   |    | 10.07 0<br>10.07 0   |    | 9.88 180<br>9.88 169 |   | 81:             | 12.0                | 11.2                |
|   | 25              | 9.81 180             |     | 3 022                 |    | 10.06 9              |    | 9.88 158             |   | 91              | 13.5                | 12.6                |
|   | 26              | 9.81 195             | 9.9 | 3048                  |    | 10.069               | 52 | 9.88 148             |   |                 |                     |                     |
|   | 27<br>28        | 9.81 210<br>9.81 225 |     | 3 073<br>3 099        |    | 10.069<br>10.069     | 27 | 9.88 137<br>9.88 126 |   | ,               | 11 (                | 10                  |
|   | 29              | 9.81 240             |     | 3 124                 |    | 10.068               |    | 9.88 115             |   | 2               | 2.2                 | 2.0                 |
|   | 30              | 9.81 254             | 9.9 | 3 150                 |    | 10.068               |    | 9.88 105             |   | 3               | 3.3                 | 3.0                 |
|   | 31<br>32        | 9.81 269<br>9.81 284 | 9.9 | 3 175<br>3 201        |    | 10.068               |    | 9.88 094             |   | 4               |                     | 4.0                 |
|   | 33              | 9.81 299             |     | 3 227                 |    | 10.06 7<br>10.06 7   |    | 9.88 083<br>9.88 072 |   | 5<br>6          | 6.6                 | 5.0<br>6.0          |
|   | 34              | 9.81314              |     | 3252                  |    | 10.067               |    | 9.88061              |   | 7               | 7.7                 | 7.0                 |
|   | <b>35</b><br>36 | 9.81 328             |     | 3 278                 |    | 10.06 7              |    | 9.88 051             |   | 8               | 9.9                 | 8.0<br>9.0          |
|   | 37              | 9.81 343<br>9.81 358 |     | 3 303<br>3 329        |    | 10.06 6<br>10.06 6   |    | 9.88 040<br>9.88 029 |   | ٠,              | 0.0,                | •••                 |
|   | 38              | 9.81372              | 9.9 | 3 3 5 4               |    | 10.066               | 46 | 9.88 018             |   |                 |                     |                     |
|   | 39<br>40        | 9.81 387             |     | 3 380                 |    | 10.06 6              |    | 9.88 007             |   |                 |                     |                     |
| i | 41              | 9.81 402<br>9.81 417 |     | 3 406<br>3 431        |    | 10.06 50<br>10.06 50 |    | 9.87 996<br>9.87 985 |   |                 |                     |                     |
|   | 42              | 9.81 431             | 9.9 | 3457                  |    | 10.06 5              |    | 9.87 975             |   | From            | the t               | on:                 |
|   |                 | 9.81 446<br>9.81 461 |     | 3 482<br>3 508        |    | 10.06 5              |    | 9.87 964             |   |                 |                     | r <b>220</b> °+.    |
|   |                 | 9.81 475             |     | 3 533                 |    | 10.06 40             |    | 9.87 953<br>9.87 942 |   | read as         |                     |                     |
|   | 46              | 9.81 490             | 9.9 | 3 559                 |    | 10.06 4              |    | 9.87 931             |   | 130°+ o         |                     |                     |
|   |                 | 9.81 505             | 9.9 | 3 584                 |    | 10.06 4              |    | 9.87 920             |   | co-fund         |                     | ,                   |
|   |                 | 9.81 519<br>9.81 534 |     | 3 610<br>3 636        |    | 10.06 39<br>10.06 30 |    | 9.87 909<br>9.87 898 |   |                 |                     |                     |
| 1 |                 | 9.81 549             |     | 3 661                 |    | 10.06 3              |    | 9.87 887             |   | From            | the b               | ottom:              |
|   | 51              | 9.81 563             | 9.9 | 3 687                 |    | 10.063               | 13 | 9.87877              |   | For 4           | <b>9°+</b> o:       | r 229°+,            |
|   | 52<br>53        | 9.81 578<br>9.81 592 |     | 3712<br>3738          |    | 10.06 28<br>10.06 28 |    | 9.87 866<br>9.87 855 |   | read as         | prin                | ted; for            |
|   |                 | 9.81 607             |     | 3 763                 |    | 10.06 2              |    | 9.87 844             |   | <b>139°</b> + o |                     | o+, read            |
|   | 55              | 9.81 622             |     | 3 789                 |    | 10.06 2              |    | 9.87 833             |   | co-func         | tion.               |                     |
|   |                 | 9.81 636<br>9.81 651 |     | 3 814<br>3 840        |    | 10.06 18             | 36 | 9.87 822<br>9.87 811 |   |                 |                     |                     |
|   | 58              | 9.81 665             |     | 865                   |    | 10.06 16<br>10.06 13 |    | 9.87 800             |   |                 |                     |                     |
|   | 59              | 9.81 680             | 9.9 | 3 891                 |    | 10.06 10             |    | 9.87 789             |   |                 |                     |                     |
|   | 60              | 9.81 694             |     | 3 916                 |    |                      |    | 9.87778              |   |                 |                     |                     |
|   |                 | L Cos                | L   | Ctri                  | cd | L Tar                | 1  | L Sin                |   | Pr              | op. P               | ts.                 |

49° — Logarithms of Trigonometric Functions

| -                            | G                      | •                      |                                                       |                                                      |
|------------------------------|------------------------|------------------------|-------------------------------------------------------|------------------------------------------------------|
| L Sin                        | L Tan icd              | L Ctn                  | L Cos   d                                             | Prop. Pts.                                           |
| 9.51 694                     | 9.93 916               | 10.06 tes4             | 9.87.778                                              |                                                      |
| 9.81709                      | 9.93 9 12 1            | 10.06 058              | 9.87.767<br>9.87.756<br>9.87.745<br>9.87.734          |                                                      |
| 9.51723                      | 9.93 967               | 10.06 033              | 9.87.756                                              |                                                      |
| $\frac{9.81738}{9.81752}$ 11 | 9.93 993 ;<br>9.94 01S | 10.05 (9)7             | 0.74.440                                              |                                                      |
|                              |                        |                        | 37-74-4-0-X                                           |                                                      |
| 9.81767<br>9.81781 14        | 9.94 044<br>9.94 069   | 10.05 956              | 9.87.723<br>9.87.712<br>9.87.701                      | 26   25                                              |
| 9.81796                      | 9.94 095               | 10.95931<br>10.05905   | 0 ST THE                                              | 2 5.2 5.0<br>3 7.8 7.5                               |
| 9.81 810                     | 9.94 120               | 10.05 880              | 9.87 600                                              | 3 7.8 7.5                                            |
| 9.81825                      | 9.94 146               | 10.05 854              | 9.87 679                                              | 4   10.4   10.0<br>5   13.0   12.5                   |
| 9.81839                      | 9.94 171               | 10.05829               | 9.87 668                                              | 6 15.6 15.0                                          |
| 9.51 554                     | 9.94197                | 10.05 803              | 9.87 657                                              | 7 18.2 17.5                                          |
| 9.81.868                     | 9.94 222               | 10.05778               | 9.87646                                               | 5120.5120.0                                          |
| 9.51.582                     | 9.94 248               | 10.05 752              | 9.57.635                                              | 9 23.4 22.5                                          |
| 9.51 597                     | 9.94 273               | 10.05727               | 9.87 624                                              |                                                      |
| 9.81911 $9.81926$            | 9.94299 $9.94324$      | 10.05 701<br>10.05 676 | 9.87.613                                              |                                                      |
| 9.81 940                     | 9.94 350               | 10.05 650              | 9.87 601<br>9.87 590                                  | 15   14                                              |
| 9.81 955                     | 9.94 375               | 10.05 625              | 9.87 579                                              | 2 3.0 2.8                                            |
| 9.81 969                     | 9.94 401               | 10.05 599              | 9.87.568                                              | 3 4.5 4.2                                            |
| 9.81 983                     | 9.94 426               | 10.05 574              | 9.87 557                                              | 4 6.0 5.6                                            |
| 9.81 998                     | 9.94 452               | 10.05 548              | 9.87 546                                              | 5 7.5 7.0<br>6 9.0 8.4                               |
| 9.82012                      | 9.94 477               | 10.05523               | 9.87.535                                              | 6 9.0 8.4<br>7 10.5 9.8                              |
| 9.82026                      | 9.94 503               | 10.05 497              | $9.87524 \\ 9.87513 \\ 11 \\ 12$                      | 8 12.0 11.2                                          |
| 9.82041                      | 9.94 528               | 10.05 472              |                                                       | 7   10.5   9.8<br>8   12.0   11.2<br>9   13.5   12.6 |
| 9.82 055                     | 9.94 554               | 10.05 446              | 9.87 501                                              |                                                      |
| 9.82 069                     | 9.94 579               | 10.05 421              | J.1.71 T.174 /                                        |                                                      |
| 9.82 084<br>9.82 098         | 9.94 604<br>9.94 630   | 10.05 396              | 7.74 4(0)                                             | 12 111                                               |
| 9.S2 112                     | 9.94 655               | 10.05 345              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2 2.4 2.2                                            |
| 9.82 126                     | 9.94 681               | 10.05 319              | 9.87.446                                              | 3 3.6 3.3                                            |
| 9.82 141                     | 9.94 706               | 10.05 294              | 9.87 434 112                                          |                                                      |
| 9.82 155                     | 9.94732                | 10.05 268              | 9.87423                                               | 5 6.0 5.5                                            |
| 9.82 169                     | 9.94757                | 10.05 243              | 9.87412                                               | 4 4.8 4.4<br>5 6.0 3.5<br>6 7.2 6.6<br>7 8.4 7.7     |
| 9.82 184                     | 9.94 783               | 10.05 217              | 9.87 401                                              | 61 06122                                             |
| 9.82 198                     | 9.94 808               | 10.05 192              | 9.87 390                                              | 9 10.8 9.9                                           |
| 9.82 212<br>9.82 226         | 9.94 834               | 10.05 166              | 9.87 378<br>9.87 367                                  |                                                      |
| 9.82 240                     | 9.94 859<br>9.94 884   | 10.05 141<br>10.05 116 | 9.87 356                                              |                                                      |
| 9.S2 255                     | 9.94 910               | 10.05 090              | 9.87 345                                              |                                                      |
| 9.82 269                     | 9.94 935               | 10.05 065              | 9.87 334                                              |                                                      |
| 9.82 283                     | 9.94 961               | 10.05 039              | 9.87 322<br>9.87 311<br>9.87 300                      |                                                      |
| 9.82297                      | 9.94 986               | 10.05 014              | 9.87 311                                              | From the top:                                        |
| 9.82311                      | 9.95012                | 10.04 988              | 9.87 300                                              | For 41°+ or 221°+,                                   |
| 9.82 326                     | 9.95 037               | 10.04 963              | 9.87 288                                              | read as printed; for                                 |
| 9.82 340                     | 9.95 062               | 10.04 938              | 9.87 277<br>9.87 266<br>9.87 255                      | 131°+ or 311°+, read                                 |
| 9.82 354<br>9.82 368         | 9.95 088<br>9.95 113   | 10.04 912<br>10.04 887 | 9.87.255                                              | co-function.                                         |
| 9.82 382                     | 9.95 139               | 10.04 861              | 9.87 243                                              | co-iuncuon.                                          |
| 9.82 396                     | 9.95 164               | 10.04 836              | 9.87 232                                              | 77                                                   |
| 9.82410                      | 9.95 190               | 10.04810               | 9.87 221                                              | From the bottom:                                     |
| 9.82424                      | 9.95215                | 10.04785               | 9.87 209                                              | For 48°+ or 228°+,                                   |
| 9.82 439                     | 9.95 240<br>9.95 266   | 10.04760               | 9.87 198                                              | read as printed; for                                 |
| 9.82 453<br>9.82 467         | 9.95 266<br>9.95 291   | 10.04 734<br>10.04 709 | 9.87 187<br>9.87 175                                  | 138°+ or 318°+, read                                 |
| 9.82 481                     | 9.95 317               | 10.04 683              | 9.87 164                                              | co-function.                                         |
| 9.82 481<br>9.82 495         | 9.95 342               | 10.04 658              | 9 87 153                                              |                                                      |
| 9.82 509                     | 9.95 368               | 10.04 632              | 9.87 141                                              |                                                      |
| 9.82523                      | 9.95393                | 10.04607               | 9.87 130                                              |                                                      |
| 9.82537                      | 9.95418                | 10.04 582              | 9.87 119                                              |                                                      |
| 9.82 551                     | 9.95 444               | 10.04 556              | 9.87 107                                              | ar manare I                                          |
| L Cos   d                    | L Ctn   cd             | L Tan                  | L Sin                                                 | Prop. Pt                                             |

48° - Logarithms of Trigonometric Functions

| • |                             |                                                          | ~~5~~                                                    |     |                                                               | 50-0                                                     | The state of the s | 11 |
|---|-----------------------------|----------------------------------------------------------|----------------------------------------------------------|-----|---------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |                             | L Sin   d                                                | L Tan                                                    | cd. | L Ctn                                                         | L Cos                                                    | Prop. Pts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | 0<br>1<br>2<br>3            | 9.82 551<br>9.82 565<br>9.82 579<br>9.82 593             | 9.95 444<br>9.95 469<br>9.95 495<br>9.95 520             |     | 10.04 556<br>10.04 531<br>10.04 505<br>10.04 480              | 9.87 107<br>9.87 096<br>9.87 085<br>9.87 073             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|   | 4<br>5<br>6                 | 9.82 607<br>9.82 621<br>9.82 635                         | 9.95 545<br>9.95 571<br>9.95 596                         |     | 10.04 455<br>10.04 429<br>10.04 404                           | 9.87 062<br>9.87 050<br>9.87 039                         | 26   25<br>2   5.2   5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   | 7<br>8<br>9<br>110          | 9.82 649<br>9.82 663<br>9.82 677<br>9.82 691             | 9.95 622<br>9.95 647<br>9.95 672<br>9.95 698             |     | 10.04378<br>10.04353<br>10.04328<br>10.04302                  | 9.87 028<br>9.87 016<br>9.87 005<br>9.86 993             | 2 5.2 5.0<br>7.5 7.5<br>4 10.4 10.0<br>5 13.0 12.5<br>6 15.6 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | 11<br>12<br>13<br>14        | 9.82705<br>9.82719<br>9.82733<br>9.82747                 | 9.95 723<br>9.95 748<br>9.95 774<br>9.95 799             |     | 10.04 277<br>10.04 252<br>10.04 226<br>10.04 201              | 9.86 982<br>9.86 970<br>9.86 959<br>9.86 947             | 7   18.2   17.5<br>8   20.8   20.0<br>9   23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|   | 15<br>16<br>17<br>18<br>19  | 9.82 761<br>9.82 775<br>9.82 788<br>9.82 802<br>9.82 816 | 9.95 825<br>9.95 850<br>9.95 875<br>9.95 901<br>9.95 926 |     | 10.04 175<br>10.04 150<br>10.04 125<br>10.04 099<br>10.04 074 | 9.86 936<br>9.86 924<br>9.86 913<br>9.86 902<br>9.86 890 | 14   13<br>2   2.8   2.6<br>3   4.2   3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| 1 | 20<br>21<br>22<br>23        | 9.82 830<br>9.82 844<br>9.82 858<br>9.82 872             | 9.95 952<br>9.95 977<br>9.96 002<br>9.96 028             |     | 10.04 048<br>10.04 023<br>10.03 998<br>10.03 972              | 9.86 879<br>9.86 867<br>9.86 855<br>9.86 844             | 4 5.6 5.2<br>5 7.0 6.5<br>6 8.4 7.8<br>7 9.8 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 24<br>25<br>26<br>27        | 9.82 885<br>9.82 899<br>9.82 913<br>9.82 927             | 9.96 053<br>9.96 078<br>9.96 104<br>9.96 129             |     | 10.03 947<br>10.03 922<br>10.03 896<br>10.03 871              | 9.86 832<br>9.86 821<br>9.86 809<br>9.86 798             | 8   11.2   10.4<br>9   12.6   11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | 28<br>29<br><b>30</b><br>31 | 9.82 941<br>9.82 955<br>9.82 968<br>9.82 982             | 9.96 155<br>9.96 180<br>9.96 205<br>9.96 231             |     | 10.03 845<br>10.03 820<br>10.03 795<br>10.03 769              | 9.86 786<br>9.86 775<br>9.86 763<br>9.86 752             | 12   11<br>2   2.4   2.2<br>3   3.6   3.3<br>4   4.8   4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | 32<br>33<br>34<br><b>35</b> | 9.82 996<br>9.83 010<br>9.83 023<br>9.83 037             | 9.96 256<br>9.96 281<br>9.96 307<br>9.96 332             |     | 10.03 744<br>10.03 719<br>10.03 693<br>10.03 668              | 9.86 740<br>9.86 728<br>9.86 717<br>9.86 705             | 5 6.0 5.5<br>6 7.2 6.6<br>7 8.4 7.7<br>8 9.6 8.8<br>9 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | 36<br>37<br>38<br>39        | 9.83 051<br>9.83 065<br>9.83 078<br>9.83 092             | 9.96 357<br>9.96 383<br>9.96 408<br>9.96 433             |     | 10.03 643<br>10.03 617<br>10.03 592<br>10.03 567              | 9.86 694<br>9.86 682<br>9.86 670<br>9.86 659             | 9   10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   | 40<br>41<br>42<br>43        | 9.83 106<br>9.83 120<br>9.83 133<br>9.83 147             | 9.96 459<br>9.96 484<br>9.96 510<br>9.96 535             |     | 10.03 541<br>10.03 516<br>10.03 490<br>10.03 465              | 9.86 647<br>9.86 635<br>9.86 624<br>9.86 612             | From the top:<br>For <b>42°</b> + or <b>222°</b> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| - | 44<br>45<br>46<br>47<br>48  | 9.83 161<br>9.83 174<br>9.83 188<br>9.83 202<br>9.83 215 | 9.96 560<br>9.96 586<br>9.96 611<br>9.96 636<br>9.96 662 |     | 10.03 440<br>10.03 414<br>10.03 389<br>10.03 364<br>10.03 338 | 9.86 589<br>9.86 577<br>9.86 565<br>9.86 554             | read as printed; for 132°+, read co-function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r  |
|   | 49<br><b>50</b>             | 9.83 229<br>9.83 242                                     | 9.96 687<br>9.96 712                                     |     | 10.03 313<br>10.03 288                                        | 9.86 542<br>9.86 530                                     | From the bottom:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | 51<br>52<br>53<br>54        | 9.83 256<br>9.83 270<br>9.83 283<br>9.83 297             | 9.96 738<br>9.96 763<br>9.96 788<br>9.96 814             |     | 10.03 262<br>10.03 237<br>10.03 212<br>10.03 186              | 9.86 518<br>9.86 507<br>9.86 495<br>9.86 483             | For 47°+ or 227°+<br>read as printed; for<br>137°+ or 317°+, read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r  |
|   | 55<br>56<br>57<br>58<br>59  | 9.83 310<br>9.83 324<br>9.83 338<br>9.83 351<br>9.83 365 | 9.96 839<br>9.96 864<br>9.96 890<br>9.96 915<br>9.96 940 |     | 10.03 161<br>10.03 136<br>10.03 110<br>10.03 085              | 9.86 472<br>9.86 460<br>9.86 448<br>9.86 436             | co-function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   | 60                          | 9.83 378                                                 | 9.96 966                                                 |     | 10.03 060<br>10.03 034                                        | 9.86 425<br>9.86 413                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|   |                             | L Cos   d                                                | L Ctn                                                    |     | L Tan                                                         | L Sin                                                    | Prop. Pts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |

47° — Logarithms of Trigonometric Functions

| L Sin                                                                            | L Tan cd                                                                                                 | L Ctn L Cos d                                                                                                | Prop. Pts.                                                                                                     |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 9.53 378<br>9.53 392<br>9.53 405<br>9.53 419<br>9.53 432                         | 9.96 966<br>9.96 991<br>9.97 016<br>9.97 042<br>9.97 067                                                 | 10.03 034 9.86 413 6<br>10.03 009 9.86 401<br>10.02 984 9.86 389<br>10.02 958 9.86 377<br>10.02 933 9.86 396 | 60                                                                                                             |
| 9.53 446<br>9.53 459<br>9.53 473<br>9.53 450<br>9.53 500<br>9.53 513<br>9.53 527 | 9.97 092<br>9.97 118<br>9.97 143<br>9.97 168<br>9.97 193<br>9.97 219<br>9.97 244<br>9.97 269<br>9.97 295 | 10.02 908                                                                                                    | 26   25<br>2   5.2<br>3   7.5<br>4   10.4<br>10.1   12.5<br>6   15.6   15.<br>1   18.2   17.<br>8   20.8   20. |
| 9,83 540<br>9,83 554<br>9,83 567<br>9,83 581                                     | 9.97 269<br>9.97 295<br>9.97 320<br>9.97 345<br>9.97 371                                                 | 10.02 731 9.86 271<br>10.02 705 9.86 259<br>10.02 680 9.86 247<br>10.02 655 9.86 235                         | 8 20.8 1 20.<br>9 2 3.4 2 2.                                                                                   |
| 9.53 594<br>9.83 608<br>9.83 621<br>9.83 634                                     | 9.97 371<br>9.97 396<br>9.97 421<br>9.97 447<br>9.97 472                                                 | 10.02 629 9.86 223<br>10.02 604 9.86 211<br>10.02 579 9.86 200<br>10.02 553 9.86 188<br>10.02 528 9.86 176   | 14 13<br>2 2.5 2.6<br>3 4.2 3.6<br>4 5.6 5.2                                                                   |
| 9.83 648<br>9.83 661<br>9.83 674<br>9.83 688<br>9.83 701                         | 9.97 497<br>9.97 523<br>9.97 548<br>9.97 573                                                             | 10.02 503 9.86 164<br>10.02 477 9.86 152<br>10.02 452 9.86 140<br>10.02 427 9.86 128                         | 5 7.0 6.5<br>6 8.4 7.8<br>7 9.1<br>11.2 10.4<br>9 12.6 11.7                                                    |
| 9.83 715<br>9.83 728<br>9.83 741<br>9.83 755<br>9.83 768                         | 9.97 598<br>9.97 624<br>9.97 649<br>9.97 674<br>9.97 700                                                 | 10.02 402 9.86 116<br>10.02 376 9.86 104<br>10.02 351 9.86 092<br>10.02 326 9.86 080<br>10.02 300 9.86 068   | 12   11<br>2   2.4   2.2<br>3   3.6   3.3                                                                      |
| 9.83 781<br>9.83 795<br>9.83 808<br>9.83 821<br>9.83 834                         | 9.97725<br>9.97750<br>9.97776<br>9.97801<br>9.97826                                                      | 10.02 275 9.86 056<br>10.02 250 9.56 044<br>10.02 224 9.86 032<br>10.02 199 9.86 020<br>10.02 174 9.86 008   | 3 3.6 3.3<br>4 4.5 4.4<br>5 6.0 5.5<br>0 7.2 6.0<br>7 9.6 8.5                                                  |
| 9.83 848<br>9.83 861<br>9.83 874<br>9.83 887<br>9.83 901                         | 9.97 851<br>9.97 877<br>9.97 902<br>9.97 927<br>9.97 953                                                 | 10.02 149 9.85 996<br>10.02 123 9.85 984<br>10.02 098 9.85 972<br>10.02 073 9.85 960<br>10.02 047 9.85 948   | 9   10.5   9.9                                                                                                 |
| 9.83 914<br>9.83 927<br>9.83 940<br>9.83 954<br>9.83 967                         | 9.97978 $9.98003$ $9.98029$ $9.98054$ $9.98079$                                                          | 10.02 022 9.85 936<br>10.01 997 9.85 924<br>10.01 971 9.85 912<br>10.01 946 9.85 900<br>10.01 921 9.85 888   | From the top: For 43°+ or 223°+, read as printed: for                                                          |
| 9.83 980<br>9.83 993<br>9.84 006<br>9.84 020<br>9.84 033                         | 9.98 104<br>9.98 130<br>9.98 155<br>9.98 180<br>9.98 206                                                 | 10.01 896 9.85 876<br>10.01 870 9.85 864<br>10.01 845 9.85 851<br>10.01 820 9.85 839<br>10.01 794 9.85 827   | 133°+ or 313°+, read co-function.  From the bottom:                                                            |
| 9.84 046<br>9.84 059<br>9.84 072<br>9.84 085<br>9.84 098                         | 9.98 231<br>9.98 256<br>9.98 281<br>9.98 307<br>9.98 332                                                 | 10.01 769 9.85 815<br>10.01 744 9.85 803<br>10.01 719 9.85 791<br>10.01 693 9.85 779<br>10.01 668 9.85 766   | For 46°+ or 226°+, read as printed; for 136°+ or 316°+, read co-function.                                      |
| 9.84 112<br>9.84 125<br>9.84 138<br>9.84 151<br>9.84 164                         | 9.98357<br>9.98383<br>9.98408<br>9.98433<br>9.98458                                                      | 10.01 643 9.85 754<br>10.01 617 9.85 742<br>10.01 592 9.85 730<br>10.01 567 9.85 718<br>10.01 542 9.85 706   | 00-2 may be con-                                                                                               |
| 9.84 177                                                                         | 9.98 484                                                                                                 | 10.01 516 9.85 693<br>d L Tan L Sin d                                                                        | Prep. Pts.                                                                                                     |
| L Cos                                                                            | L Ctn   c                                                                                                |                                                                                                              | Functions                                                                                                      |

46° - Logarithms of Trigonometric Functions

| σU                                        | 44                                                       | - nogarimu                                               | IS OI III                                                     | 50HOIMCUIC I                                             | runctions [II]                                                                        |
|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                           | L Sin   d                                                | L Tan  cd                                                | L Ctn                                                         | L Cos d                                                  | Prop. Pts.                                                                            |
|                                           | 9.84 177<br>9.84 190<br>9.84 203<br>9.84 216<br>9.84 229 | 9.98 484<br>9.98 509<br>9.98 534<br>9.98 560<br>9.98 585 | 10.01 516<br>10.01 491<br>10.01 466<br>10.01 440<br>10.01 415 | 9.85 693<br>9.85 681<br>9.85 669<br>9.85 657<br>9.85 645 |                                                                                       |
|                                           | 9.84 242<br>9.84 255<br>9.84 269<br>9.84 282<br>9.84 295 | 9.98 610<br>9.98 635<br>9.98 661<br>9.98 686<br>9.98 711 | 10.01 390<br>10.01 365<br>10.01 339<br>10.01 314<br>10.01 289 | 9.85 632<br>9.85 620<br>9.85 608<br>9.85 596<br>9.85 583 | 26   25<br>2   5.2   5.0<br>3   7.8   7.5<br>4   10.4   10.0                          |
| 10<br>11<br>12<br>13<br>14                | 9.84 308<br>9.84 321<br>9.84 334<br>9.84 347             | 9.98737<br>9.98762<br>9.98787<br>9.98812<br>9.98838      | 10.01 263<br>10.01 238<br>10.01 213<br>10.01 188<br>10.01 162 | 9.85 571<br>9.85 559<br>9.85 547<br>9.85 534<br>9.85 522 | 5   13.0   12.5<br>6   15.6   15.0<br>7   18.2   17.5<br>8   20.8   20.0<br>9   23.4  |
| 15<br>16<br>17<br>18                      | 9.84373<br>9.84385<br>9.84398<br>9.84411                 | 9.98 863<br>9.98 888<br>9.98 913<br>9.98 939<br>9.98 964 | 10.01 137<br>10.01 112<br>10.01 087<br>10.01 061<br>10.01 036 | 9.85 510<br>9.85 497<br>9.85 485<br>9.85 473<br>9.85 460 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                 |
| 20 21 22 22 22                            | 9.84 437<br>1 9.84 450<br>2 9.84 463<br>3 9.84 476       | 9.98 989<br>9.99 015<br>9.99 040<br>9.99 065<br>9.99 090 | 10.01 011<br>10.00 985<br>10.00 960<br>10.00 935<br>10.00 910 | 9.85 448<br>9.85 436<br>9.85 423<br>9.85 411<br>9.85 399 | 4 5.6 5.2<br>5 7.0 6.5<br>6 8.4 7.8<br>7 9.8 9.1<br>8 11.2 10.4                       |
| 25 20 20 20 20 20 20 20 20 20 20 20 20 20 | 5 9.84 502<br>5 9.84 515<br>7 9.84 528<br>8 9.84 540     | 9.99 116<br>9.99 141<br>9.99 166<br>9.99 191<br>9.99 217 | 10.00 884<br>10.00 859<br>10.00 834<br>10.00 809<br>10.00 783 | 9.85 386<br>9.85 374<br>9.85 361<br>9.85 349<br>9.85 337 | 9   12.6   11.7<br>12<br>2.4                                                          |
| 30<br>31<br>32<br>33<br>33                | 9.84 566<br>1 9.84 579<br>2 9.84 592<br>3 9.84 605       | 9.99 242<br>9.99 267<br>9.99 293<br>9.99 318<br>9.99 343 | 10.00 758<br>10.00 733<br>10.00 707<br>10.00 682<br>10.00 657 | 9.85 324<br>9.85 312<br>9.85 299<br>9.85 287<br>9.85 274 | 3.6<br>4.8<br>6.0<br>7.2<br>8.4                                                       |
| 34<br>36<br>37<br>38<br>38                | 5 9.84 630<br>5 9.84 643<br>7 9.84 656<br>8 9.84 669     | 9.99 368<br>9.99 394<br>9.99 419<br>9.99 444<br>9.99 469 | 10.00 632<br>10.00 606<br>10.00 581<br>10.00 556<br>10.00 531 | 9.85 262<br>9.85 250<br>9.85 237<br>9.85 225<br>9.85 212 | 9.6<br>10.8                                                                           |
| 40                                        | 9.84 694<br>1 9.84 707<br>2 9.84 720<br>3 9.84 733       | 9.99 495<br>9.99 520<br>9.99 545<br>9.99 570<br>9.99 596 | 10.00 505<br>10.00 480<br>10.00 455<br>10.00 430<br>10.00 404 | 9.85 200<br>9.85 187<br>9.85 175<br>9.85 162<br>9.85 150 | From the top:<br>For <b>44°</b> ÷ or <b>224°</b> ÷                                    |
| 41 41 41                                  | 5 9.84758<br>6 9.84771<br>7 9.84784<br>8 9.84796         | 9.99 621<br>9.99 646<br>9.99 672<br>9.99 697<br>9.99 722 | 10.00 379<br>10.00 354<br>10.00 328<br>10.00 303<br>10.00 278 | 9.85 137<br>9.85 125<br>9.85 112<br>9.85 100             | read as printed; for 134°+, read co-function.                                         |
| 5555                                      | 0 9.84 822<br>1 9.84 835<br>2 9.84 847<br>3 9.84 860     | 9.99747<br>9.99773<br>9.99798<br>9.99823                 | 10.00 253<br>10.00 227<br>10.00 202<br>10.00 177              | 9.85 087<br>9.85 074<br>9.85 062<br>9.85 049<br>9.85 037 | From the bottom:<br>For 45°+ or 225°+<br>read as printed; for<br>135°+ or 315°+, read |
| 5 5 5 5 5 5                               | 5 9.84 885<br>6 9.84 898<br>7 9.84 911<br>8 9.84 923     | 9.99.848<br>9.99.874<br>9.99.899<br>9.99.924<br>9.99.949 | 10.00 152<br>10.00 126<br>10.00 101<br>10.00 076<br>10.00 051 | 9.85 024<br>9.85 012<br>9.84 999<br>9.84 986<br>9.84 974 | co-function.                                                                          |
| 6                                         |                                                          | 9.99 975<br>10.0000                                      | 10.00 025<br>10.00 000                                        | 9.84 961<br>9.84 949                                     |                                                                                       |
|                                           | L Cos d                                                  | L Ctn   cd                                               | L Tan                                                         | L Sin d                                                  | Prop. Pts.                                                                            |

| Γ                          |                                                                    |                                 | Degrees                                                            |                                 |                                                                      | Ī                          | Minutes                                                            | Т                          | Seconds                                                                                            |
|----------------------------|--------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------|
| 0-1-1-1-3-4                | 0.00000 00<br>0.01745 38<br>0.03190 66<br>0.05235 99<br>0.06981 32 | 60°<br>61<br>62<br>63<br>64     | 1.04719 76<br>1.06465 08<br>1.08216 41<br>1.09955 74<br>1.11701 07 | 121<br>122                      | 2.09439 51<br>2.11184 84<br>2.12969 17<br>2.14675 50<br>2.16420 83   | 01234                      | 0.008/29 09                                                        | 1 2 3                      | 0.00000 00<br>0.00000 48<br>0.00000 97<br>0.00001 45<br>0.00001 94                                 |
| 561-59                     | 0.08726 65<br>0.10471 98<br>0.12217 30<br>0.13962 63<br>0.15707 96 | 65<br>66<br>67<br>68<br>69      | 1.13446 40<br>1.15191 73<br>1.16937 06<br>1.18682 39<br>1.20427 72 | 126<br>127<br>128<br>129        | 2.18166 16<br>2.19911 49<br>2.21656 82<br>2.23402 14<br>2.25147 47   | 56789                      | 0.00145 44<br>0.00174 53<br>0.00203 62<br>0.00232 71<br>0.00261 80 | <b>5</b> 6789              | 0.00002 42<br>0.00002 91<br>0.00063 39<br>0.00003 88<br>0.00004 36                                 |
| 10<br>11<br>12<br>13<br>14 | 0.17453 29<br>0.19198 62<br>0.20943 95<br>0.22689 28<br>0.24434 61 | 70<br>71<br>72<br>73<br>74      | 1.27409 04<br>1.29154 36                                           | 132<br>133<br>134               | 2.26892 80<br>2.28638 13<br>2.30383 46<br>2.32128 79<br>2.33874 12   | 10<br>11<br>12<br>13<br>14 | 0.00290 89<br>0.00319 95<br>0.00349 07<br>0.00378 15<br>0.00407 24 | 10<br>11<br>12<br>13<br>14 | 0.00004 85<br>0.00005 33<br>0.00005 82<br>0.00006 30<br>0.00006 79                                 |
| 15<br>16<br>17<br>18<br>19 | 0.26179 94<br>0.27925 27<br>0.29670 60<br>0.31415 93<br>0.33161 26 | 75<br>76<br>77<br>78<br>79      | 1.32645 02<br>1.34390 35<br>1.36135 68<br>1.37881 01               | 135<br>136<br>137<br>138<br>139 | 2.39110 11<br>2.40855 44<br>2.42600 77                               | 15<br>16<br>17<br>18<br>19 | 0.00436 33<br>0.00465 42<br>0.00494 51<br>0.00523 60<br>0.00552 69 | 16<br>17<br>18<br>19       | 0.00007 27<br>0.00007 76<br>0.00008 24<br>0.00008 73<br>0.00009 21                                 |
| <b>20</b> 파워워컴             | 0.34906 59<br>0.36651 91<br>0.35397 24<br>0.40142 57<br>0.41587 90 | 80<br>81<br>82<br>83<br>84      | 1.41371 67<br>1.43117 00<br>1.44562 33<br>1.46607 66               | 143<br>144                      | 2.44346 10<br>2.46091 42<br>2.47836 75<br>2.49582 08<br>2.51327 41   | 31<br>22<br>23<br>24       | 0.00581 78<br>0.00610 87<br>0.00639 95<br>0.00669 64<br>0.00698 13 | 20<br>21<br>22<br>23<br>24 | 0.00009 70<br>0.00010 1S<br>0.00010 67<br>0.00011 15<br>0.00011 64                                 |
| <b>25</b> 252529           | 0,43633 23<br>0,45378 56<br>0,47123 89<br>0,48869 22<br>0,50614 55 | 85<br>86<br>87<br>88<br>89      |                                                                    | 145<br>146<br>147<br>148<br>149 | 2.53072 74<br>2.54\$18 07<br>2.56563 40<br>2.5\$308 73<br>2.60054 06 | 25<br>26<br>27<br>28<br>29 | 0.00727 22<br>0.00756 31<br>0.00785 40<br>0.00814 49<br>0.00843 58 | 2501-89                    | 0.00012 12<br>0.00012 61<br>0.00013 09<br>0.00013 57<br>0.00014 06                                 |
| 30<br>31<br>32<br>33<br>34 | 0.52359 88<br>0.54105 21<br>0.55850 54<br>0.57595 87<br>0.59341 19 | 90<br>91<br>92<br>93<br>94      |                                                                    | 150<br>151<br>152<br>153<br>154 | 2.61799 39<br>2.63544 72<br>2.65290 05<br>2.67035 38<br>2.68780 70   | 30<br>31<br>32<br>33<br>34 | 0.00872 66<br>0.00901 75<br>0.00930 84<br>0.00939 93<br>0.00989 02 | 30<br>31<br>32<br>33<br>34 | 0.00014 54<br>0.00015 03<br>0.00015 51<br>0.00016 00<br>0.00016 48                                 |
| 35<br>36<br>37<br>38<br>39 | 0.61086 52<br>0.62831 85<br>0.64577 18<br>0.66322 51<br>0.68067 84 | 95<br>96<br>97<br>98<br>99      | 1.65806 28<br>1.67551 61<br>1.69296 94<br>1.71042 27<br>1.72787 60 | 155<br>156<br>157<br>158<br>159 | 2.70526 03<br>2.72271 36<br>2.74016 69<br>2.75762 02<br>2.77507 35   | 35<br>36<br>37<br>36<br>39 | 0.01018 11<br>0.01047 20<br>0.01076 29<br>0.01105 35<br>0.01134 46 | 35<br>36<br>37<br>38<br>39 | 0.00016 97<br>0.00017 45<br>0.00017 94<br>0.00015 42<br>0.00018 91                                 |
| 40<br>41<br>42<br>48<br>44 | 0.69813 17<br>0.71558 50<br>0.73303 83<br>0.75049 16<br>0.76794 49 | 100<br>101<br>102<br>103<br>104 | 1.76278 25                                                         | 160<br>161<br>162<br>163<br>164 | 2.79252 68<br>2.80998 01<br>2.82743 34<br>2.84488 67<br>2.86234 00   | 40<br>41<br>42<br>43<br>44 | 0.01163 55<br>0.01192 64<br>0.01221 73<br>0.01250 52<br>0.01279 91 | 40<br>41<br>42<br>43<br>44 | 0,00019 39<br>0,00019 88<br>0,00020 36<br>0,00020 85<br>0,00021 33                                 |
| 45<br>46<br>47<br>48<br>49 |                                                                    | 105<br>106<br>107<br>108<br>109 | 1.85004 90<br>1.86750 23<br>1.88495 56                             | 165<br>166<br>167<br>168<br>169 | 2.87979 33<br>2.89724 66<br>2.91469 99<br>2.93215 31<br>2.94960 64   | 45<br>46<br>47<br>48<br>49 | 0.01309 00<br>0.01338 09<br>0.01367 17<br>0.01396 26<br>0.01425 35 | 45<br>46<br>47<br>48<br>49 | 0,00021 S2<br>0,00022 30<br>0,00022 79<br>0,00023 27<br>0,00023 76                                 |
| 50<br>51<br>52<br>53<br>54 | 0.87266 46<br>0.89011 79<br>0.90757 12<br>0.92502 45<br>0.94247 78 | 110<br>111<br>112<br>113<br>114 | 1.91986 22<br>1.93731 55<br>1.95476 88<br>1.97222 21<br>1.98967 53 | 170<br>171<br>172<br>173<br>174 | 2.96705 97<br>2.98451 30<br>3.00196 63<br>3.01941 96<br>3.03687 29   | 50<br>51<br>52<br>53<br>54 | 0.01454 44<br>0.01483 53<br>0.01512 62<br>0.01541 71<br>0.01570 S0 | 50<br>51<br>52<br>53<br>54 | $\begin{array}{c} 0.00024\ 24\\ 0.00024\ 73\\ 0.00025\ 21\\ 0.00025\ 70\\ 0.00026\ 18 \end{array}$ |
| 55<br>56<br>57<br>58<br>59 | 0.99483 77<br>1.01229 10                                           | 115<br>116<br>117<br>118<br>119 | 2.00712 86<br>2.02458 19<br>2.04203 52<br>2.05948 85<br>2.07694 18 | 175<br>176<br>177<br>178<br>179 | 3.12413 94                                                           |                            | 0.01599 89<br>0.01628 97<br>0.01658 06<br>0.01687 15<br>0.01716 24 | 55<br>56<br>57<br>58<br>59 | 0.00026 68<br>0.00027 15<br>0.00027 63<br>0.00028 12<br>0.00028 60                                 |
| 60                         | 1.04719 76                                                         | 120                             | 2.09439 51                                                         | 180                             | 3.14159 27                                                           | 60                         | 0.01745 33                                                         | 60                         | 0,00029 09                                                                                         |

|                   |                            |                            |                            |                                     |   |                   |                            |                                         |                          | TOTE [/                             |
|-------------------|----------------------------|----------------------------|----------------------------|-------------------------------------|---|-------------------|----------------------------|-----------------------------------------|--------------------------|-------------------------------------|
| x Radians         | Sin x                      | Cos x                      | Tan x                      | Equivalent of x                     |   | * Radians         | Sin x                      | Cos x                                   | Tan x                    | Equivalent of x                     |
| .00               | .00000                     | 1.0000                     | .00000                     | 0° 00′.0                            | П | .50               | .47943                     | .87758                                  | .54630                   | 28° 38'.9                           |
| .01               | .01000                     | .99995                     | .01000                     | 0° 34′.4                            |   | .51               | .48818                     | .87274                                  | .55936                   | 29° 13′.3                           |
| .02               | .02000                     | .99980                     | .02000                     | 1° 08′.8                            |   | .52               | .49688                     | .86782                                  | .57256                   | 29° 47′.6                           |
| .03               | .03000                     | .99955                     | .03001                     | 1° 43′.1                            |   | .53               | .50553                     | .86281                                  | .58592                   | 30° 22′.0                           |
| .04               | .03999                     | .99920                     | .04002                     | 2° 17′.5                            |   | .54               | .51414                     | .85771                                  | .59943                   | 30° 56′.4                           |
| 50.               | .04998                     | .99875                     | .05004                     | 2° 51′.9                            |   | .55               | .52269                     | .85252                                  | .61311                   | 31° 30′.8                           |
| 60.               | .05996                     | .99820                     | .06007                     | 3° 26′.3                            |   | .56               | .53119                     | .84726                                  | .62695                   | 32° 05′.1                           |
| .07               | .06994                     | .99755                     | .07011                     | 4° 00′.6                            |   | .57               | .53963                     | .84190                                  | .64097                   | 32° 39′.5                           |
| .08               | .07991                     | .99680                     | .08017                     | 4° 35′.0                            |   | .58               | .54802                     | .83646                                  | .65517                   | 33° 13′.9                           |
| .09               | .08988                     | .99595                     | .09024                     | 5° 09′.4                            |   | .59               | .55636                     | .83094                                  | .66956                   | 33° 48′.3                           |
| .10               | .09983                     | .99500                     | .10033                     | 5° 43′.8                            | П | .60               | .56464                     | .82534                                  | .68414                   | 34° 22′.6                           |
| .11               | .10978                     | .99396                     | .11045                     | 6° 18′.2                            |   | .61               | .57287                     | .81965                                  | .69892                   | 34° 57′.0                           |
| .12               | .11971                     | .99281                     | .12058                     | 6° 52′.5                            |   | .62               | .58104                     | .81388                                  | .71391                   | 35° 31′.4                           |
| .13               | .12963                     | .99156                     | .13074                     | 7° 26′.9                            |   | .63               | .58914                     | .80803                                  | .72911                   | 36° 05′.8                           |
| .14               | .13954                     | .99022                     | .14092                     | 8° 01′.3                            |   | .64               | .59720                     | .80210                                  | .74454                   | 36° 40′.2                           |
| .15               | .14944                     | .98877                     | .15114                     | 8° 35′.7                            |   | .65               | .60519                     | .79608                                  | .76020                   | 37° 14′.5                           |
| .16               | .15932                     | .98723                     | .16138                     | 9° 10′.0                            |   | .66               | .61312                     | .78999                                  | .77610                   | 37° 48′.9                           |
| .17               | .16918                     | .98558                     | .17166                     | 9° 44′.4                            |   | .67               | .62099                     | .78382                                  | .79225                   | 38° 23′.3                           |
| .18               | .17903                     | .98354                     | .18197                     | 10° 18′.8                           |   | .68               | .62879                     | .77757                                  | .80866                   | 38° 57′.7                           |
| .19               | .18886                     | .98200                     | .19232                     | 10° 53′.2                           |   | .69               | .63654                     | .77125                                  | .82534                   | 39° 32′.0                           |
| .20               | .19867                     | .98007                     | .20271                     | 11° 27′.5                           | П | .70               | .64422                     | .76484                                  | .84229                   | 40° 06'.4                           |
| .21               | .20846                     | .97803                     | .21314                     | 12° 01′.9                           |   | .71               | .65183                     | .75836                                  | .85953                   | 40° 40′.8                           |
| .22               | .21823                     | .97590                     | .22362                     | 12° 36′.3                           |   | .72               | .65938                     | .75181                                  | .87707                   | 41° 15′.2                           |
| .23               | .22798                     | .97367                     | .23414                     | 13° 10′.7                           |   | .73               | .66687                     | .74517                                  | .89492                   | 41° 49′.6                           |
| .24               | .23770                     | .97134                     | .24472                     | 13° 45′.1                           |   | .74               | .67429                     | .73847                                  | .91309                   | 42° 23′.9                           |
| .25               | .24740                     | .96891                     | .25534                     | 14° 19′.4                           |   | .75               | .68164                     | .73169                                  | .93160                   | 42° 58′.3                           |
| .26               | .25708                     | .96639                     | .26602                     | 14° 53′.8                           |   | .76               | .68892                     | .72484                                  | .95045                   | 43° 32′.7                           |
| .27               | .26673                     | .96377                     | .27676                     | 15° 28′.2                           |   | .77               | .69614                     | .71791                                  | .96967                   | 44° 07′.1                           |
| .28               | .27636                     | .96106                     | .28755                     | 16° 02′.6                           |   | .78               | .70328                     | .71091                                  | .98926                   | 44° 41′.4                           |
| .29               | .28595                     | .95824                     | .29841                     | 16° 36′.9                           |   | .79               | .71035                     | .70385                                  | 1.0092                   | 45° 15′.8                           |
| .30               | .29552                     | .95534                     | .30934                     | 17° 11′.3                           |   | .80               | .71736                     | .69671                                  | 1.0296                   | 45° 50′.2                           |
| .31               | .30506                     | .95233                     | .32033                     | 17° 45′.7                           |   | .81               | .72429                     | .68950                                  | 1.0505                   | 46° 24′.6                           |
| .32               | .31457                     | .94924                     | .33139                     | 18° 20′.1                           |   | .82               | .73115                     | .68222                                  | 1.0717                   | 46° 59′.0                           |
| ,33               | .32404                     | .94604                     | .34252                     | 18° 54′.5                           |   | .83               | .73793                     | .67488                                  | 1.0934                   | 47° 33′.3                           |
| .34               | .33349                     | .94275                     | .35374                     | 19° 28′.8                           |   | .84               | .74464                     | .66746                                  | 1.1156                   | 48° 07′.7                           |
| .35               | .34290                     | .93937                     | .36503                     | 20° 03′.2                           |   | .85               | .75128                     | .65998                                  | 1.1383                   | 48° 42′.1                           |
| .36               | .35227                     | .93590                     | .37640                     | 20° 37′.6                           |   | .86               | .75784                     | .65244                                  | 1.1616                   | 49° 16′.5                           |
| .37               | .36162                     | .93233                     | .38786                     | 21° 12′.0                           |   | .87               | .76433                     | .64483                                  | 1.1853                   | 49° 50′.8                           |
| .38               | .37092                     | .92866                     | .39941                     | 21° 46′.3                           |   | .88               | .77074                     | .63715                                  | 1.2097                   | 50° 25′.2                           |
| .39               | .38019                     | .92491                     | .41105                     | 22° 20′.7                           |   | .89               | .77707                     | .62941                                  | 1.2346                   | 50° 59′.6                           |
| .40               | .38942                     | .92106                     | .42279                     | 22° 55′.1                           | H | .90               | .78333                     | .62161                                  | 1.2602                   | 51° 34′.0                           |
| .41               | .39861                     | .91712                     | .43463                     | 23° 29′.5                           |   | .91               | .78950                     | .61375                                  | 1.2864                   | 52° 08′.3                           |
| .42               | .40776                     | .91309                     | .44657                     | 24° 03′.9                           |   | .92               | .79560                     | .60582                                  | 1.3133                   | 52° 42′.7                           |
| .43               | .41687                     | .90897                     | .45862                     | 24° 38′.2                           |   | .93               | .80162                     | .59783                                  | 1.3409                   | 53° 17′.1                           |
| .44<br>.45<br>.46 | .42594<br>.43497<br>.44395 | .90475<br>.90045<br>.89605 | .47078<br>.48306<br>.49545 | 25° 12′.6<br>25° 47′.0<br>26° 21′.4 |   | .94<br>.95<br>.96 | .80756<br>.81342<br>.81919 | .58979<br>.58168<br>.57352              | 1.3692 $1.3984$ $1.4284$ | 53° 51′.5<br>54° 25′.9<br>55° 00′.2 |
| .47               | .45289                     | .89157                     | .50797                     | 26° 55′.7                           |   | .97               | .82489                     | .56530                                  | 1.4592                   | 55° 34′.6                           |
| .48               | .46178                     | .88699                     | .52061                     | 27° 30′.1                           |   | .98               | .83050                     | .55702                                  | 1.4910                   | 56° 09′.0                           |
| .49               | .47063                     | .88233                     | .53339                     | 28° 04′.5                           |   | .99               | .83603                     | .54869                                  | 1.5237                   | 56° 43′.4                           |
| .50               | 47943                      | .87758                     | 54630                      | 380 361 U                           |   | 1 00              | 04447                      | - · · · · · · · · · · · · · · · · · · · |                          |                                     |

| x Radians            | Sîn x                      | Cos x                      | Tan x                                                     | Equivalent of x                     | х Касіапя            | Sin x                      | Cos x                      | Tan x                      | Equivalent of x                                  |
|----------------------|----------------------------|----------------------------|-----------------------------------------------------------|-------------------------------------|----------------------|----------------------------|----------------------------|----------------------------|--------------------------------------------------|
| 1.00                 | .84147                     | .54030                     | 1.5574                                                    | 57° 17′.7                           | 1.30                 | .96356                     | .26750                     | 3.6021                     | 74: 29'.1                                        |
| 1.01                 | .\$46\$3                   | .53186                     | 1.5922                                                    | 57° 52′.1                           | 1.31                 | .96618                     | 25785                      | 5.7471                     | 75° 03′.4                                        |
| 1.02                 | .\$5211                    | .52337                     | 1.6281                                                    | 58° 26′.5                           | 1.32                 | .96872                     | 24818                      | 3.9633                     | 75° 37′.8                                        |
| 1.03                 | .\$5730                    | .51482                     | 1.6652                                                    | 59° 00′.9                           | 1.33                 | .97115                     | 23848                      | 4.0723                     | 76° 12′.2                                        |
| 1.04                 | .\$6240                    | .50622                     | 1.7036                                                    | 59° 35′.3                           | 1.34                 | .97348                     | .22875                     | 4.2556                     | 76° 46′.6                                        |
| 1.05                 | .\$6742                    | .49757                     | 1.7433                                                    | 60° 09′.6                           | 1.35                 | .97572                     | .21901                     | 4.4552                     | 77° 21′.0                                        |
| 1.06                 | .\$7236                    | .48887                     | 1.7844                                                    | 60° 44′.0                           | 1.36                 | .97786                     | .20924                     | 4.6754                     | 77° 55′.3                                        |
| 1.07                 | .87720                     | .48012                     | $\substack{1.8270\\1.8712\\1.9171}$                       | 61° 18′.4                           | 1.37                 | .97991                     | .19945                     | 4.9131                     | 75° 297.7                                        |
| 1.08                 | .88196                     | .47133                     |                                                           | 61° 52′.8                           | 1.38                 | .98185                     | .18964                     | 5.1774                     | 78° 947.1                                        |
| 1.09                 | .88663                     | .46249                     |                                                           | 62° 27′.1                           | 1.39                 | .98370                     | .17981                     | 5.4707                     | 78° 35′.5                                        |
| 1.10                 | .S9121                     | .45360                     | 1.9648                                                    | 63° 01′.5                           | 1.40                 | .98545                     | .16997                     | 5.7979                     | 50° 12'5                                         |
| 1.11                 | .\$9570                    | .44466                     | 2.0143 $2.0660$ $2.1198$                                  | 63° 35′.9                           | 1.41                 | .98710                     | .16010                     | 6.1654                     | 80° 47′.2                                        |
| 1.12                 | .90010                     | .43568                     |                                                           | 64° 10′.3                           | 1.42                 | .98865                     | .15023                     | 6.5811                     | 81° 21′.6                                        |
| 1.13                 | .90441                     | .42666                     |                                                           | 64° 44′.7                           | 1.43                 | .99010                     | .14033                     | 7.0555                     | 81° 56′.0                                        |
| 1.14                 | .90863                     | .41759                     | 2.1759                                                    | 65° 19′.0                           | 1.44                 | .99146                     | .13042                     | 7.6018                     | \$2° 30′,4                                       |
| 1.15                 | .91276                     | .40849                     | 2.2345                                                    | 65° 53′.4                           | 1.45                 | .99271                     | .12050                     | 5.2351                     | \$3° 04′,7                                       |
| 1.16                 | .91680                     | .39934                     | 2.2958                                                    | 66° 27′.8                           | 1.46                 | .99387                     | .11057                     | 5.9856                     | \$3° 39′,1                                       |
| 1.17                 | .92075                     | .39015                     | $\begin{array}{c} 2.3600 \\ 2.4273 \\ 2.4979 \end{array}$ | 67° 02′.2                           | 1.47                 | .99492                     | .10063                     | 9.8874                     | 54° 13′ 5                                        |
| 1.18                 | .92461                     | .38092                     |                                                           | 67° 36′.5                           | 1.48                 | .99588                     | .09067                     | 10.983                     | 75° 21′ 9                                        |
| 1.19                 | .92837                     | .37166                     |                                                           | 68° 10′.9                           | 1.49                 | .99674                     | .08071                     | 12.050                     | 75° 21′ 9                                        |
| 1.20                 | .93204                     | .36236                     | 2.5722                                                    | 68° 45′.3                           | 1.50                 | .99749                     | .07074                     | 14.101                     | S5 2017                                          |
| 1.21<br>1.22<br>1.23 | .93562<br>.93910<br>.94249 | .35302<br>.34365<br>.33424 | 2.6503<br>2.7328<br>2.8198                                | 69° 19′.7<br>69° 54′.1<br>70° 28′.4 | 1.51<br>1.52<br>1.53 | .99815<br>.99871<br>.99917 | .05076<br>.05077<br>.04076 | 16.428<br>19.676<br>24.498 | 767 317 0<br>767 317 0<br>767 317 0<br>767 317 0 |
| 1.24                 | .94578                     | .32480                     | 2.9119                                                    | 71° 02′.8                           | 1.54                 | .99953                     | .03079                     | 32.461                     | 567 141.1                                        |
| 1.25                 | .94898                     | .31532                     | 3.0096                                                    | 71° 37′.2                           | 1.55                 | .99978                     | .02079                     | 45.475                     | 667 441.5                                        |
| 1.26                 | .95209                     | .30582                     | 3.1133                                                    | 72° 11′.6                           | 1.56                 | .99994                     | .0105d                     | 92.621                     | 567 221.5                                        |
| 1.27                 | .95510                     | .29628                     | 3.2236                                                    | 72° 45′.9                           | 1.57                 | •1.0000                    | *.00080                    | -108.65                    | 89° 57′.3                                        |
| 1.28                 | .95802                     | .28672                     | 3.3413                                                    | 73° 20′.3                           | 1.58                 | .99996                     | 00920                      |                            | 507 31′.6                                        |
| 1.29                 | .96084                     | .27712                     | 3.4672                                                    | 73° 54′.7                           | 1.59                 | .99982                     | 01920                      |                            | 51° 56′.6                                        |
| 1.30                 | .96356                     | .26750                     | 3.6021                                                    | 74° 29′.1                           | 1.60                 | .99957                     | -,((2)(2))                 | -34,233                    | 1412 407.4                                       |

 $<sup>\</sup>pi$  radians = 180°  $\pi$  = 3.14159265

## Table Va - Radians to Degrees

| Γ         | Radians                                                                                                                                    | Tentes                                                                                                                             | HUNDREDTHS                                                                                                                 | THOUSANDTES                                                                                                                | Ten-teousandtes                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 123456789 | 57°17'44".S<br>114°35'29".6<br>171°53'14".4<br>229°10'59".2<br>286°28'44".0<br>343°46'28".8<br>401°4'13".6<br>458°21'58".4<br>515°39'43".3 | 5°43′46″.5<br>11°27′33″.0<br>17°11′19″.4<br>22°55′05″.9<br>28°38′52″.4<br>34°22′38″.9<br>40° 6′25″.4<br>45°50′11″.8<br>51°33′58″.3 | 0°34'22".6<br>1° 8'45".3<br>1°43'07".9<br>2°17'30".6<br>2°51'53".2<br>3°26'15".9<br>4° 0'38".5<br>4°35'01".2<br>5° 9'23".8 | 0° 3′26″,3<br>0° 6′52″,5<br>0°10′15″,8<br>0°13′45″,1<br>0°17′11″,3<br>0°20′37″,6<br>0°24′03″,9<br>0°27′30″,1<br>0°30′56″,4 | 0° 0′20″.6<br>0° 6′41″.3<br>0° 1′01″.9<br>0° 1′43″.5<br>0° 1′43″.1<br>0° 2′03″.8<br>0° 2″24″.4<br>0° 2′45″.6 |

<sup>1</sup> radian =  $57^{\circ}$  17' 44".806 =  $57.^{\circ}$ 2957795 3600" = 60' =  $1^{\circ}$  = 0.01745329 radian

| n    | $n^2$                    | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$   | $\sqrt[3]{n}$ | $\sqrt[3]{10 n}$                                             | √100 n            | 1/n     |
|------|--------------------------|------------|---------------|---------|---------------|--------------------------------------------------------------|-------------------|---------|
| 1.00 | 1.0000                   | 1.00000    | 3.16228       | 1.00000 | 1.00000       | 2.15443                                                      | 4.64159           | 1.00006 |
| 1.01 | 1.0201                   | 1.00499    | 3.17805       | 1.03030 | 1.00332       | 2.16159                                                      | 4.65701           | .990099 |
| 1.02 | 1.0404                   | 1.00995    | 3.19374       | 1.06121 | 1.00662       | 2.16870                                                      | 4.67233           | .950392 |
| 1.03 | 1.0609                   | 1.01489    | 3.20936       | 1.09273 | 1.00990       | 2.17577                                                      | 4.68755           | .970874 |
| 1.04 | 1.0816                   | 1.01980    | 3.22490       | 1.12486 | 1.01316       | 2.18279                                                      | 4.70267           | .961538 |
| 1.05 | 1.1025                   | 1.02470    | 3.24037       | 1.15762 | 1.01640       | 2.18976                                                      | 4.71769           | .952381 |
| 1.06 | 1.1236                   | 1.02956    | 3.25576       | 1.19102 | 1.01961       | 2.19669                                                      | 4.73262           | .943396 |
| 1.07 | 1.1449                   | 1.03441    | 3.27109       | 1.22504 | 1.02281       | 2.20358                                                      | 4.74746           | .934579 |
| 1.08 | 1.1664                   | 1.03923    | 3.28634       | 1.25971 | 1.02599       | 2.21042                                                      | 4.76220           | .925926 |
| 1.09 | 1.1881                   | 1.04403    | 3.30151       | 1.29503 | 1.02914       | 2.21722                                                      | 4.77686           | .917431 |
| 1.10 | 1.2100                   | 1.04551    | 3.31662       | 1.33100 | 1.03228       | 2.22398                                                      | 4.79142           | .909091 |
| 1.11 | 1.2321                   | 1.05357    | 3.33167       | 1.36763 | 1.03540       | 2.23070                                                      | 4.80590           | .900901 |
| 1.12 | 1.2544                   | 1.05830    | 3.34664       | 1.40493 | 1.03850       | 2.23738                                                      | 4.82028           | .892857 |
| 1.13 | 1.2769                   | 1.06301    | 3.36155       | 1.44290 | 1.04158       | 2.24402                                                      | 4.83459           | .884956 |
| 1.14 | 1.2996                   | 1.06771    | 3.37639       | 1.48154 | 1.04464       | 2.25062                                                      | 4.84881           | .877193 |
| 1.15 | 1.3225                   | 1.07238    | 3.39116       | 1.52088 | 1.04769       | 2.25718                                                      | 4.86294           | .869565 |
| 1.16 | 1.3456                   | 1.07703    | 3.40588       | 1.56090 | 1.05072       | 2.26370                                                      | 4.87700           | .862069 |
| 1.17 | 1.3689                   | 1.08167    | 3.42053       | 1.60161 | 1.05373       | $\begin{array}{c} 2.27019 \\ 2.27664 \\ 2.28305 \end{array}$ | 4.89097           | .854701 |
| 1.18 | 1.3924                   | 1.08628    | 3.43511       | 1.64303 | 1.05672       |                                                              | 4.90487           | .847458 |
| 1.19 | 1.4161                   | 1.09087    | 3.44964       | 1.68516 | 1.05970       |                                                              | 4.91868           | .840336 |
| 1.20 | 1.4400                   | 1.09545    | 3.46410       | 1.72800 | 1.06266       | 2.28943                                                      | 4.93242           | .833333 |
| 1.21 | 1.4641                   | 1.10000    | 3.47851       | 1.77156 | 1.06560       | 2.29577                                                      | 4.94609           | .826446 |
| 1.22 | 1.4884                   | 1.10454    | 3.49285       | 1.81585 | 1.06853       | 2.30208                                                      | 4.95968           | .819672 |
| 1.23 | 1.5129                   | 1.10905    | 3.50714       | 1.86087 | 1.07144       | 2.30835                                                      | 4.97319           | .813008 |
| 1.24 | 1.5376                   | 1.11355    | 3.52136       | 1.90662 | 1.07434       | 2.31459                                                      | 4.98663           | .806452 |
| 1.25 | 1.5625                   | 1.11803    | 3.53553       | 1.95312 | 1.07722       | 2.32079                                                      | 5.00000           | .800000 |
| 1.26 | 1.5876                   | 1.12250    | 3.54965       | 2.00038 | 1.08008       | 2.32697                                                      | 5.01330           | .793651 |
| 1.27 | 1.6129                   | 1.12694    | 3.56371       | 2.04838 | 1.08293       | 2.33311                                                      | 5.02653           | .787402 |
| 1.28 | 1.6384                   | 1.13137    | 3.57771       | 2.09715 | 1.08577       | 2.33921                                                      | 5.03968           | .781250 |
| 1.29 | 1.6641                   | 1.13578    | 3.59166       | 2.14669 | 1.08859       | 2.34529                                                      | 5.05277           | .775194 |
| 1.30 | 1.6900                   | 1.14018    | 3.60555       | 2.19700 | 1.09139       | 2.35133                                                      | 5.06580           | .769231 |
| 1.31 | 1.7161                   | 1.14455    | 3.61939       | 2.24809 | 1.09418       | 2.35735                                                      | 5.07875           | .763359 |
| 1.32 | 1.7424                   | 1.14891    | 3.63318       | 2.29997 | 1.09696       | 2.36333                                                      | 5.09164           | .757576 |
| 1.33 | 1.7689                   | 1.15326    | 3.64692       | 2.35264 | 1.09972       | 2.36928                                                      | 5.10447           | .751880 |
| 1.34 | 1.7956                   | 1.15758    | 3.66060       | 2.40610 | 1.10247       | 2.37521                                                      | 5.11723           | .746269 |
| 1.35 | 1.8225                   | 1.16190    | 3.67423       | 2.46038 | 1.10521       | 2.38110                                                      | 5.12993           | .740741 |
| 1.36 | 1.8496                   | 1.16619    | 3.68782       | 2.51546 | 1.10793       | 2.38697                                                      | 5.14256           | .735294 |
| 1.37 | 1.8769                   | 1.17047    | 3.70135       | 2.57135 | 1.11064       | 2.39280                                                      | 5.15514           | .729927 |
| 1.38 | 1.9044                   | 1.17473    | 3.71484       | 2.62807 | 1.11334       | 2.39861                                                      | 5.16765           | .724638 |
| 1.39 | 1.9321                   | 1.17898    | 3.72827       | 2.68562 | 1.11602       | 2.40439                                                      | 5.18010           | .719424 |
| 1.40 | 1.9600                   | 1.18322    | 3.74166       | 2.74400 | 1.11869       | 2.41014                                                      | 5.19249           | .714286 |
| 1.41 | 1.9881                   | 1.18743    | 3.75500       | 2.80322 | 1.12135       | 2.41587                                                      | 5.20483           | .709220 |
| 1.42 | 2.0164                   | 1.19164    | 3.76829       | 2.86329 | 1.12399       | 2.42156                                                      | 5.21710           | .704225 |
| 1.43 | 2.0449                   | 1.19583    | 3.78153       | 2.92421 | 1.12662       | 2.42724                                                      | 5.22932           | .699301 |
| 1.44 | 2.0736 $2.1025$ $2.1316$ | 1.20000    | 3.79473       | 2.98598 | 1.12924       | 2.43288                                                      | 5.24148           | .694444 |
| 1.45 |                          | 1.20416    | 3.80789       | 3.04862 | 1.13185       | 2.43850                                                      | 5.25359           | .689655 |
| 1.46 |                          | 1.20830    | 3.82099       | 3.11214 | 1.13445       | 2.44409                                                      | 5.26564           | .684932 |
| 1.47 | 2.1609                   | 1.21244    | 3.83406       | 3.17652 | 1.13703       | 2.44966                                                      | 5.27763           | .680272 |
| 1.48 | 2.1904                   | 1.21655    | 3.84708       | 3.24179 | 1.13960       | 2.45520                                                      | 5.28957           | .675676 |
| 1.49 | 2.2201                   | 1.22066    | 3.86005       | 3.30795 | 1.14216       | 2.46072                                                      | 5.30146           | .671141 |
| 1.50 | 2.2500                   | 1.22474    | 3.87298       | 3.37500 | 1.14471       | 2.46621                                                      | 5.31329           | .666667 |
| n    | $n^2$                    | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$   | $\sqrt[3]{n}$ | $\sqrt[3]{10 n}$                                             | $\sqrt[3]{100 n}$ | 1/n     |

| 111  |                          |            |               |          | 10001         |                                                              |         | 24.       |
|------|--------------------------|------------|---------------|----------|---------------|--------------------------------------------------------------|---------|-----------|
| n    | $n^2$                    | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$    | in            | $\sqrt{10 n}$                                                | 1100 n  | l n       |
| 1.50 | 2.2500                   | 1.22474    | 3.57295       | 3,375(9) | 1.11471       | 2.19921                                                      | 5.31329 | SEE BEAGT |
| 1.51 | 2.2501                   | 1.22582    | 3,88587       | 3.44295  | 1.14725       | 2.47165                                                      | 5.325(7 | .652352   |
| 1.52 | 2.3104                   | 1.23255    | 3,89872       | 3.51181  | 1.14978       | 2.47712                                                      | 5.3365) | .6523565  |
| 1.53 | 2.3409                   | 1.23693    | 3,91152       | 3.58158  | 1.15230       | 2.48255                                                      | 5.34548 | .6533565  |
| 1.54 | 2.3716 $2.4025$ $2.4336$ | 1.24097    | 3.92428       | 3.65226  | 1.15480       | 2.48794                                                      | 5.36011 | .649351   |
| 1.55 |                          | 1.24499    | 3.93700       | 3.72358  | 1.15729       | 2.49332                                                      | 5.37169 | .645161   |
| 1.56 |                          | 1.24900    | 3.94968       | 3.79642  | 1.15978       | 2.49867                                                      | 5.38321 | .641026   |
| 1.57 | 2.4649                   | 1.25300    | 3.96232       | 3.86989  | 1.16225       | 2.50399                                                      | 5.39469 | .636943   |
| 1.58 | 2.4964                   | 1.25698    | 3.97492       | 3.94431  | 1.16471       | 2.50930                                                      | 5.40612 | .632911   |
| 1.59 | 2.5281                   | 1.26095    | 3.98748       | 4.01968  | 1.16717       | 2.51458                                                      | 5.41750 | .625931   |
| 1.60 | 2,5600                   | 1.26491    | 4.00000       | 4.09600  | 1.16961       | 2.51984                                                      | 5.42884 | .6250(8)  |
| 1.61 | 2.5921                   | 1.26886    | 4.01248       | 4.17328  | 1.17204       | 2,52568                                                      | 5.43912 | .621115   |
| 1.62 | 2.6244                   | 1.27279    | 4.02492       | 4.25153  | 1.17446       | 2,53980                                                      | 5.45136 | .617254   |
| 1.63 | 2.6569                   | 1.27671    | 4.03733       | 4.33075  | 1.17687       | 2,53549                                                      | 5.46256 | .613497   |
| 1.64 | 2.6896                   | 1.28062    | 4.04969       | 4.41094  | 1.17927       | 2,54067                                                      | 5.47370 | .609756   |
| 1.65 | 2.7225                   | 1.28452    | 4.06202       | 4.49212  | 1.18167       | 2,54582                                                      | 5.48481 | .606061   |
| 1.66 | 2.7556                   | 1.28841    | 4.07431       | 4.57430  | 1.18405       | 2,55095                                                      | 5.49586 | .602410   |
| 1.67 | 2.7889                   | 1.29228    | 4.08656       | 4.65746  | 1.18642       | 2.55607                                                      | 5.50688 | .598802   |
| 1.68 | 2.8224                   | 1.29615    | 4.09878       | 4.74163  | 1.18878       | 2.56116                                                      | 5.51785 | .595238   |
| 1.69 | 2.8561                   | 1.30000    | 4.11096       | 4.82681  | 1.19114       | 2.56623                                                      | 5.52877 | .591716   |
| 1.70 | 2.8900                   | 1.30354    | 4.12311       | 4.91300  | 1.19348       | 2.57125                                                      | 3.55966 | .555235   |
| 1.71 | 2.9241                   | 1.30767    | 4.13521       | 5.00021  | 1.19582       | 2.57631                                                      | 5.55950 | .584795   |
| 1.72 | 2.9584                   | 1.31149    | 4.14729       | 5.08845  | 1.19815       | 2.58133                                                      | 5.56130 | .581395   |
| 1.73 | 2.9029                   | 1.31529    | 4.15933       | 5.17772  | 1.20046       | 2.58632                                                      | 5.57205 | .578035   |
| 1.74 | 3.0276                   | 1.31909    | 4.17133       | 5.26802  | 1.20277       | 2.59129                                                      | 5.58277 | .574713   |
| 1.75 | 3.0625                   | 1.32288    | 4.18330       | 5.35938  | 1.20507       | 2.59625                                                      | 5.59344 | .571429   |
| 1.76 | 3.0976                   | 1.32665    | 4.19524       | 5.45178  | 1.20736       | 2.60118                                                      | 5.60408 | .568182   |
| 1.77 | 3.1329                   | 1.33041    | 4.20714       | 5.54523  | 1.20964       | $\begin{array}{c} 2.60610 \\ 2.61100 \\ 2.61588 \end{array}$ | 5.61467 | .564972   |
| 1.78 | 3.1684                   | 1.33417    | 4.21900       | 5.63975  | 1.21192       |                                                              | 5.62523 | .561798   |
| 1.79 | 3.2041                   | 1.33791    | 4.23084       | 5.73534  | 1.21418       |                                                              | 5.63574 | .558659   |
| 1.80 | 3.2400                   | 1.34164    | 4.24264       | 5.83200  | 1.21644       | 2.62074                                                      | 5.64622 | .555556   |
| 1.81 | 3.2761                   | 1.34536    | 4.25441       | 5.92974  | 1.21869       | 2.62559                                                      | 5.65655 | .552456   |
| 1.52 | 3.3124                   | 1.34907    | 4.26615       | 6.02857  | 1.22093       | 2.63041                                                      | 5.66705 | .549451   |
| 1.83 | 3.3489                   | 1.35277    | 4.27785       | 6.12849  | 1.22316       | 2.63522                                                      | 5.67741 | .546448   |
| 1.84 | 3.3856                   | 1.35647    | 4.28952       | 6.22950  | 1.22539       | 2.64001                                                      | 5.68773 | .543478   |
| 1.85 | 3.4225                   | 1.36015    | 4.30116       | 6.33162  | 1.22760       | 2.64479                                                      | 5.69802 | .540541   |
| 1.86 | 3.4596                   | 1.36382    | 4.31277       | 6.43486  | 1.22981       | 2.64954                                                      | 5.70827 | .537634   |
| 1.87 | 3.4969                   | 1.36748    | 4.32435       | 6.53920  | 1.23201       | 2.65428                                                      | 5.71848 | .534759   |
| 1.88 | 3.5344                   | 1.37113    | 4.33590       | 6.64467  | 1.23420       | 2.65901                                                      | 5.72865 | .531915   |
| 1.89 | 3.5721                   | 1.37477    | 4.34741       | 6.75127  | 1.23639       | 2.66371                                                      | 5.73879 | .529101   |
| 1.90 | 3.6100                   | 1.37840    | 4.35890       | 6.85900  | 1.23556       | 2.66840                                                      | 5.74590 | .526316   |
| 1.91 | 3.6481                   | 1.38203    | 4.37035       | 6.96757  | 1.24073       | 2.67307                                                      | 3.75597 | .523560   |
| 1.92 | 3.6864                   | 1.38564    | 4.38178       | 7.07789  | 1.24289       | 2.67773                                                      | 5.76900 | .520833   |
| 1.93 | 3.7249                   | 1.38924    | 4.39318       | 7.18906  | 1.24505       | 2.68237                                                      | 5.77900 | .518135   |
| 1.94 | 3.7636                   | 1.39284    | 4.40454       | 7.30138  | 1.24719       | 2.68700                                                      | 5.78896 | .515464   |
| 1.95 | 3.8025                   | 1.39642    | 4.41588       | 7.41488  | 1.24933       | 2.69161                                                      | 5.79889 | .512821   |
| 1.96 | 3.8416                   | 1.40000    | 4.42719       | 7.52954  | 1.25146       | 2.69620                                                      | 5.80879 | .510204   |
| 1.97 | 3.8809                   | 1.40357    | 4.43847       | 7.64537  | 1.25359       | 2.70078                                                      | 5.81865 | .507614   |
| 1.98 | 3.9204                   | 1.40712    | 4.44972       | 7.76239  | 1.25571       | 2.70534                                                      | 5.82848 | .505051   |
| 1.99 | 3.9601                   | 1.41067    | 4.46094       | 7.88060  | 1.25782       | 2.70989                                                      | 5.83827 | .502513   |
| 2.00 | 4.0000                   | 1.41421    | 4.47214       | 8.00000  | 1.25992       | 2.71442                                                      | 5.84804 | .500000   |
| n    | $n^2$                    | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$    | $\sqrt[3]{n}$ | $\sqrt[3]{10}$ n                                             | ₹100 n  | 1/n       |

| n                  | $n^2$  | $\sqrt{n}$ | $\sqrt{10 n}$               | $n^3$   | $\sqrt[3]{n}$        | $\sqrt[3]{10 n}$ | $\sqrt[3]{100 n}$   | 1/n     |
|--------------------|--------|------------|-----------------------------|---------|----------------------|------------------|---------------------|---------|
| 2.00               | 4.0000 | 1.41421    | 4.47214                     | 8.00000 | 1.25992              | 2.71442          | 5.84804             | 500000  |
| 2.01               | 4.0401 | 1.41774    | 4.48330                     | 8.12060 | 1.26202              | 2.71893          | 5.85777             | .497512 |
| 2.02               | 4.0804 | 1.42127    | 4.49444                     | 8.24241 | 1.26411              | 2.72344          | 5.86746             | .495050 |
| 2.03               | 4.1209 | 1.42478    | 4.50555                     | 8.36543 | 1.26619              | 2.72792          | 5.87713             | .492611 |
| 2.04               | 4.1616 | 1.42829    | 4.51664                     | 8.48966 | 1.26827              | 2.73239          | 5.88677             | .490196 |
| 2.05               | 4.2025 | 1.43178    | 4.52769                     | 8.61512 | 1.27033              | 2.73685          | 5.89637             | .487805 |
| 2.06               | 4.2436 | 1.43527    | 4.53872                     | 8.74182 | 1.27240              | 2.74129          | 5.90594             | .485437 |
| 2.07               | 4.2849 | 1.43875    | 4.54973                     | 8.86974 | 1.27445              | 2.74572          | 5.91548             | .483092 |
| 2.08               | 4.3264 | 1.44222    | 4.56070                     | 8.99891 | 1.27650              | 2.75014          | 5.92499             | .480769 |
| 2.09               | 4.3681 | 1.44568    | 4.57165                     | 9.12933 | 1.27854              | 2.75454          | 5.93447             | .478469 |
| 2.10               | 4.4100 | 1.44914    | 4.58258                     | 9.26100 | 1.28058              | 2.75892          | 5.94392             | .476190 |
| 2.11               | 4.4521 | 1.45258    | 4.59347                     | 9.39393 | 1.28261              | 2.76330          | 5.95334             | .473934 |
| 2.12               | 4.4944 | 1.45602    | 4.60435                     | 9.52813 | 1.28463              | 2.76766          | 5.96273             | .471696 |
| 2.13               | 4.5369 | 1.45945    | 4.61519                     | 9.66360 | 1.28665              | 2.77200          | 5.97209             | .469434 |
| 2.14               | 4.5796 | 1.46287    | 4.62601                     | 9.80034 | 1.28866              | 2.77633          | 5.98142             | .467290 |
| 2.15               | 4.6225 | 1.46629    | 4.63681                     | 9.93838 | 1.29066              | 2.78065          | 5.99073             | .465116 |
| 2.16               | 4.6656 | 1.46969    | 4.64758                     | 10.0777 | 1.29266              | 2.78495          | 6.00000             | .462963 |
| 2.17               | 4.70S9 | 1.47309    | 4.65833                     | 10.2183 | 1.29465              | 2.78924          | 6.00925             | .460829 |
| 2.18               | 4.7524 | 1.47648    | 4.66905                     | 10.3602 | 1.29664              | 2.79352          | 6.01846             | .458716 |
| 2.19               | 4.7961 | 1.47986    | 4.67974                     | 10.5035 | 1.29862              | 2.79779          | 6.02765             | .456621 |
| 2.20               | 4.8400 | 1.48324    | 4.69042                     | 10.6480 | 1.30059              | 2.80204          | 6.03681             | .454545 |
| 2.21               | 4.8841 | 1.48661    | 4.70106 $4.71169$ $4.72229$ | 10.7939 | 1.30256              | 2.80628          | 6.04594             | .452489 |
| 2.22               | 4.9284 | 1.48997    |                             | 10.9410 | 1.30452              | 2.81050          | 6.05505             | .450450 |
| 2.23               | 4.9729 | 1.49332    |                             | 11.0896 | 1.30648              | 2.81472          | 6.06413             | .448430 |
| 2.24               | 5.0176 | 1.49666    | 4.73286                     | 11.2394 | 1.30843              | 2.81892          | 6.07318             | .446429 |
| 2.25               | 5.0625 | 1.50000    | 4.74342                     | 11.3906 | 1.31037              | 2.82311          | 6.08220             | .44444  |
| 2.26               | 5.1076 | 1.50333    | 4.75395                     | 11.5432 | 1.31231              | 2.82728          | 6.09120             | .442478 |
| 2.27               | 5.1529 | 1.50665    | 4.76445                     | 11.6971 | ·1.31424             | 2.83145          | 6.10017             | .440529 |
| 2.28               | 5.1984 | 1.50997    | 4.77493                     | 11.8524 | 1.31617              | 2.83560          | 6.10911             | .438596 |
| 2.29               | 5.2441 | 1.51327    | 4.78539                     | 12.0090 | 1.31809              | 2.83974          | 6.11803             | .436681 |
| 2.30               | 5.2900 | 1.51658    | 4.79583                     | 12.1670 | 1.32001              | 2.84387          | 6.12693             | .434753 |
| 2.31               | 5.3361 | 1.51987    | 4.80625                     | 12.3264 | 1.32192              | 2.84798          | 6.13579             | .432900 |
| 2.32               | 5.3824 | 1.52315    | 4.81664                     | 12.4872 | 1.32382              | 2.85209          | 6.14463             | .431034 |
| 2.33               | 5.4289 | 1.52643    | 4.82701                     | 12.6493 | 1.32572              | 2.85618          | 6.15345             | .429185 |
| 2:34               | 5.4756 | 1.52971    | 4.83735                     | 12.8129 | 1.32761              | 2.86026          | 6.16224             | .427350 |
| 2:35               | 5.5225 | 1.53297    | 4.84768                     | 12.9779 | 1.32950              | 2.86433          | 6.17101             | .425532 |
| 2:36               | 5.5696 | 1.53623    | 4.85798                     | 13.1443 | 1.33139              | 2.86838          | 6.17975             | .423729 |
| 2.37 $2.38$ $2.39$ | 5.6169 | 1.53948    | 4.86826                     | 13.3121 | 1.33326              | 2.87243          | 6.18846             | .421941 |
|                    | 5.6644 | 1.54272    | 4.87852                     | 13.4813 | 1.33514              | 2.87646          | 6.19715             | .420168 |
|                    | 5.7121 | 1.54596    | 4.88876                     | 13.6519 | 1.33700              | 2.88049          | 6.20582             | .418410 |
| 2.40               | 5.7600 | 1.54919    | 4.89898                     | 13.8240 | 1.33887              | 2.88450          | 6.21447             | .416667 |
| 2.41               | 5.8081 | 1.55242    | 4.90918                     | 13.9975 | 1.34072              | 2.88850          | 6.22308             | .414938 |
| 2.42               | 5.8564 | 1.55563    | 4.91935                     | 14.1725 | 1.34257              | 2.89249          | 6.23168             | .413223 |
| 2.43               | 5.9049 | 1.55885    | 4.92950                     | 14.3489 | 1.34442              | 2.89647          | 6.24025             | .411523 |
| 2.44               | 5.9536 | 1.56205    | 4.93964                     | 14.5268 | 1.34626 <sup>5</sup> | 2.90044          | 6.24880             | .409836 |
| 2.45               | 6.0025 | 1.56525    | 4.94975                     | 14.7061 | 1.34810              | 2.90439          | 6.25732             | .408163 |
| 2.46               | 6.0516 | 1.56844    | 4.95984                     | 14.8869 | 1.34993              | 2.90834          | 6.26583             | .406504 |
| 2.47               | 6.1009 | 1.57162    | 4.96991                     | 15.0692 | 1.35176              | 2.91227          | 6.27431             | .404858 |
| 2.48               | 6.1504 | 1.57480    | 4.97996                     | 15.2530 | 1.35358              | 2.91620          | 6.28276             | .403226 |
| 2.49               | 6.2001 | 1.57797    | 4.98999                     | 15.4382 | 1.35540              | 2.92011          | 6.29119             | .401606 |
| 2.50               | 6.2500 | 1.58114    | 5.00000                     | 15.6250 | 1.35721              | 2.92402          | 6.29961             | .400000 |
| n                  | $n^2$  | $\sqrt{n}$ | $\sqrt{10 n}$               | $n^3$   | $\sqrt[3]{n}$        | ∛10 n            | <sup>3</sup> √100 n | 1/n     |

| n    | $n^2$  | $\sqrt{n}$                                                   | $\sqrt{10 n}$       | $n^3$                                                        | in      | 110 n                                                        | √100 n  | 1 'n    |
|------|--------|--------------------------------------------------------------|---------------------|--------------------------------------------------------------|---------|--------------------------------------------------------------|---------|---------|
| 2.50 | 6.2500 | 1.58114                                                      | 5.00000             | 15.6250                                                      | 1.35721 | 2.92402                                                      | 6.Phmi  | 4+)-MXX |
| 2.51 | 6.3001 | 1.55430                                                      | 5.00999             | 15.8133                                                      | 1.35962 | 2.92791                                                      | 6.35710 | 3445257 |
| 2.52 | 6.3504 | 1.55745                                                      | 5.01996             | 16.0030                                                      | 1.36082 | 2.93179                                                      | 6.31636 | 345257  |
| 2.53 | 6.4009 | 1.59060                                                      | 5.02991             | 16.1943                                                      | 1.36262 | 2.93567                                                      | 6.32470 | 345257  |
| 2.54 | 6.4516 | 1.59374                                                      | 5.03984             | 16.3871                                                      | 1.36441 | 2.93953                                                      | 6.33303 | .393701 |
| 2.55 | 6.5025 | 1.59687                                                      | 5.04975             | 16.5814                                                      | 1.36620 | 2.94338                                                      | 6.34133 | .392157 |
| 2.56 | 6.5536 | 1.60000                                                      | 5.05964             | 16.7772                                                      | 1.36798 | 2.94723                                                      | 6.34960 | .390625 |
| 2.57 | 6.6049 | 1.60312                                                      | 5.06952             | 16.9746                                                      | 1.36976 | 2.95106                                                      | 6.35786 | .389105 |
| 2.58 | 6.6564 | 1.60624                                                      | 5.07937             | 17.1735                                                      | 1.37153 | 2.95488                                                      | 6.36610 | .387597 |
| 2.59 | 6.70S1 | 1.60935                                                      | 5.08920             | 17.3740                                                      | 1.37330 | 2.95869                                                      | 6.37431 | .386100 |
| 2.60 | 6.7600 | 1.61245                                                      | 5.09902             | 17.5760                                                      | 1.37507 | 2.96250                                                      | 6.38250 | .384613 |
| 2.61 | 6.8121 | 1.61555                                                      | 5.10882             | 17.7796                                                      | 1.37683 | 2.96629                                                      | 6.39068 | .383142 |
| 2.62 | 6.8644 | 1.61564                                                      | 5.11859             | 17.9847                                                      | 1.37859 | 2.97007                                                      | 6.39883 | .381679 |
| 2.63 | 6.9169 | 1.62173                                                      | 5.12835             | 18.1914                                                      | 1.38034 | 2.97385                                                      | 6.40696 | .380228 |
| 2.64 | 6.9696 | 1.62481                                                      | 5.13809             | 18.3997                                                      | 1.38208 | $\begin{array}{c} 2.97761 \\ 2.98137 \\ 2.98511 \end{array}$ | 6.41507 | .378788 |
| 2.65 | 7.0225 | 1.62788                                                      | 5.14782             | 18.6096                                                      | 1.38383 |                                                              | 6.42316 | .377358 |
| 2.66 | 7.0756 | 1.63095                                                      | 5.15752             | 18.8211                                                      | 1.38557 |                                                              | 6.43123 | .375940 |
| 2.67 | 7.1289 | 1.63401                                                      | 5.16720             | 19.0342                                                      | 1.38730 | 2.98885                                                      | 6.43928 | .374532 |
| 2.68 | 7.1824 | 1.63707                                                      | 5.17687             | 19.2488                                                      | 1.38903 | 2.99257                                                      | 6.44731 | .373134 |
| 2.69 | 7.2361 | 1.64012                                                      | 5.18652             | 19.4651                                                      | 1.39076 | 2.99629                                                      | 6.45531 | .371747 |
| 2.70 | 7.2900 | 1.64317                                                      | 5.19615             | 19.6530                                                      | 1.39248 | 3.00000                                                      | 6.46330 | .37037c |
| 2.71 | 7.3441 | $\begin{array}{c} 1.64621 \\ 1.64924 \\ 1.65227 \end{array}$ | 5.20577             | 19.9025                                                      | 1.39419 | 3.00370                                                      | 6.47127 | .369064 |
| 2.72 | 7.3984 |                                                              | 5.21536             | 20.1236                                                      | 1.39591 | 3.00739                                                      | 6.47922 | .367647 |
| 2.73 | 7.4529 |                                                              | 5.22494             | 20.3464                                                      | 1.39761 | 3.01107                                                      | 6.48715 | .366300 |
| 2.74 | 7.5076 | 1.65529                                                      | 5.23450             | 20.5708                                                      | 1.39932 | 3.01474                                                      | 6.49507 | .364964 |
| 2.75 | 7.5625 | 1.65831                                                      | 5.24404             | 20.7969                                                      | 1.40102 | 3.01841                                                      | 6.50296 | .363636 |
| 2.76 | 7.6176 | 1.66132                                                      | 5.25357             | 21.0246                                                      | 1.40272 | 3.02206                                                      | 6.51083 | .362319 |
| 2.77 | 7.6729 | 1.66433                                                      | 5.26308             | $\begin{array}{c} 21.2539 \\ 21.4850 \\ 21.7176 \end{array}$ | 1.40441 | 3.02570                                                      | 6.51868 | .361011 |
| 2.78 | 7.7284 | 1.66733                                                      | 5.27257             |                                                              | 1.40610 | 3.02934                                                      | 6.52652 | .359712 |
| 2.79 | 7.7841 | 1.67033                                                      | 5.28205             |                                                              | 1.40778 | 3.03297                                                      | 6.53434 | .358423 |
| 2.80 | 7.8400 | 1.67332                                                      | 5.29150             | 21.9520                                                      | 1.40946 | 3.03659                                                      | 6.54213 | .357143 |
| 2.81 | 7.8961 | 1.67631                                                      | 5.30094             | 22.1880                                                      | 1.41114 | 3.04020                                                      | 6.54991 | .355\72 |
| 2.82 | 7.9524 | 1.67929                                                      | 5.31037             | 22.4258                                                      | 1.41281 | 3.04380                                                      | 6.55767 | .354610 |
| 2.83 | 8.0089 | 1.68226                                                      | 5.31977             | 22.6652                                                      | 1.41448 | 3.04740                                                      | 6.56541 | .353357 |
| 2.84 | 8.0656 | 1.68523                                                      | 5.32917             | 22.9063                                                      | 1.41614 | 3.05098                                                      | 6.57314 | .352113 |
| 2.85 | 8.1225 | 1.68819                                                      | 5.33854             | 23.1491                                                      | 1.41780 | 3.05456                                                      | 6.58084 | .350577 |
| 2.86 | 8.1796 | 1.69115                                                      | 5.34790             | 23.3937                                                      | 1.41946 | 3.05813                                                      | 6.58853 | .349650 |
| 2.87 | 8.2369 | 1.69411                                                      | 5.35724             | 23.6399                                                      | 1.42111 | 3.06169                                                      | 6.59620 | .348432 |
| 2.88 | 8.2944 | 1.69706                                                      | 5.36656             | 23.8879                                                      | 1.42276 | 3.06524                                                      | 6.60385 | .347222 |
| 2.89 | 8.3521 | 1.70000                                                      | 5.37587             | 24.1376                                                      | 1.42440 | 3.06878                                                      | 6.61149 | .346021 |
| 2.90 | 8.4100 | 1.70294                                                      | 5.38516             | 24.3890                                                      | 1.42604 | 3.07232                                                      | 6.61911 | .344828 |
| 2.91 | 8.4681 | 1.70587                                                      | 5.39 <del>414</del> | 24.6422                                                      | 1.42768 | 3.07584                                                      | 6.62671 | .343643 |
| 2.92 | 8.5264 | 1.70880                                                      | 5.40370             | 24.8971                                                      | 1.42931 | 3.07936                                                      | 6.63429 | .342466 |
| 2.93 | 8.5849 | 1.71172                                                      | 5.41295             | 25.1538                                                      | 1.43094 | 3.08287                                                      | 6.64185 | .341297 |
| 2.94 | 8.6436 | 1.71464                                                      | 5.42218             | 25.4122                                                      | 1.43257 | 3.08638                                                      | 6.64940 | .340136 |
| 2.95 | 8.7025 | 1.71756                                                      | 5.43139             | 25.6724                                                      | 1.43419 | 3.08987                                                      | 6.65693 | .338983 |
| 2.96 | 8.7616 | 1.72047                                                      | 5.44059             | 25.9343                                                      | 1.43581 | 3.09336                                                      | 6.66444 | .337838 |
| 2.97 | 8.8209 | $\begin{array}{c} 1.72337 \\ 1.72627 \\ 1.72916 \end{array}$ | 5.44977             | 26.1981                                                      | 1.43743 | 3.09684                                                      | 6.67194 | .336700 |
| 2.98 | 8.8804 |                                                              | 5.45894             | 26.4636                                                      | 1.43904 | 3.10031                                                      | 6.67942 | .335570 |
| 2.99 | 8.9401 |                                                              | 5.46809             | 26.7309                                                      | 1.44065 | 3.10378                                                      | 6.68688 | .334448 |
| 3.00 | 9.0000 | 1.73205                                                      | 5.47723             | 27.0000                                                      | 1.44225 | 3.10723                                                      | 6.69433 | .333333 |
| n    | $n^2$  | $\sqrt{n}$                                                   | $\sqrt{10 n}$       | $n^3$                                                        | √n      | $\sqrt[3]{10 n}$                                             | ∛100 n  | 1/n     |

|                     |                    |                    |                    | _                  | 3/                 | 3/                 | 1 3                | [11]               |
|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| n                   | $n^2$              | $\neg n$           | $\sqrt{10 n}$      | $n^3$              | $\sqrt[3]{n}$      |                    | $\sqrt[3]{100} n$  | 1/n                |
| 3.00                | 9.0000             | 1.73205            | 5.47723            | 27.0000            | 1.44225            | 3.10723            | 6.69433            | .333333            |
| 3.01                | 9.0601             | 1.73494            | 5.45635            | 27.2709            | 1.44385            | 3.11068            | 6.70176            | .332226            |
| $\frac{3.02}{3.03}$ | 9.1204<br>9.1809   | 1.73781<br>1.74069 | 5.49545 $5.50454$  | 27.5436<br>27.5151 | 1.44545            | 3.11412            | 6.70917<br>6.71657 | .331126            |
| 3.04                | 9.2416             | 1.74356            | 5.51362            | 28.0945            | 1.44863            | 3.12098            | 6.72395            | .328947            |
| 3.05                | 9.3025             | 1.74642            | 5.52268            | 28.3726            | 1.45022            | 3.12440            | 6.73132            | .327869            |
| 3.06                | 9.3636             | 1.74929            | 5.53173            | 28.6526            | 1.45180            | 3.12781            | 6.73866            | .326797            |
| 3.07<br>3.08        | 9.4249<br>9.4864   | 1.75214<br>1.75499 | 5.54076<br>5.54977 | 28.9344<br>29.2181 | 1.45338<br>1.45496 | 3.13121            | 6.74600            | .325733            |
| 3.09                | 9.5481             | 1.75784            | 5.55\$78           | 29.5036            | 1.45653            | 3.13800            | 6.75331            | .324675<br>.323625 |
| 3.10                | 9.6100             | 1.76068            | 5.56776            | 29.7910            | 1.45810            | 3.14138            | 6.76790            | .322581            |
| 3.11                | 9.6721             | 1.76352            | 5.57674            | 30.0802            | 1.45967            | 3.14475            | 6.77517            | .321543            |
| 3.12<br>3.13        | 9.7344<br>9.7969   | 1.76635<br>1.76918 | 5.58570<br>5.59464 | 30.3713<br>30.6643 | 1.46123<br>1.46279 | 3.14812            | 6.78242            | .320513            |
| 1                   |                    |                    |                    |                    | ł                  |                    | 6.78966            | .319489            |
| 3.14<br>3.15        | 9.8596<br>9.9225   | 1.77200<br>1.77482 | 5.60357<br>5.61249 | 30.9591<br>31.2559 | 1.46434<br>1.46590 | 3.15483            | 6.79688            | .318471<br>.317460 |
| 3.16                | 9.9856             | 1.77764            | 5.62139            | 31.5545            | 1.46745            | 3.16152            | 6.81128            | .316456            |
| 3.17                | 10.0489            | 1.78045            | 5.63028            | 31.8550            | 1.46899            | 3.16485            | 6.81846            | .315457            |
| 3.18<br>3.19        | 10.1124<br>10.1761 | 1.78326<br>1.78606 | 5.63915<br>5.64801 | 32.1574<br>32.4618 | 1.47054            | 3.16817            | 6.82562<br>6.83277 | .314465<br>.313480 |
| 3.20                | 10.2400            | 1.78885            | 5.65685            | 32.7680            | 1.47361            | 3.17480            | 6.83990            | .312500            |
| 3.21                | 10.3041            | 1.79165            | 5.66569            | 33.0762            | 1.47515            | 3.17811            | 6.84702            | .311526            |
| 3.22                | 10.3684            | 1.79444            | 5.67450            | 33.3862            | 1.47668            | 3.18140            | 6.85412            | .310559            |
| 3.23                | 10.4329            | 1.79722            | 5.68331            | 33.6983            | 1.47820            | 3.18469            | 6.86121            | .309598            |
| 3.24<br>3.25        | 10.4976<br>10.5625 | 1.80000<br>1.80278 | 5.69210<br>5.70088 | 34.0122<br>34.3281 | 1.47973<br>1.48125 | 3.18798<br>3.19125 | 6.86829            | .308642<br>.307692 |
| 3.26                | 10.6276            | 1.80555            | 5.70964            | 34.6460            | 1.48277            | 3.19452            | 6.88239            | .306748            |
| 3.27                | 10.6929            | 1.80831            | 5.71839            | 34.9658            | 1.48428            | 3.19778            | 6.88942            | .305810            |
| 3.28<br>3.29        | 10.7584<br>10.8241 | 1.81108<br>1.81384 | 5.72713<br>5.73585 | 35.2876<br>35.6113 | 1.48579<br>1.48730 | 3.20104<br>3.20429 | 6.89643            | .304878<br>.303951 |
| 3.30                | 10.8900            | 1.81659            | 5.74456            | 35.9370            | 1.48881            | 3.20753            | 6.91042            | .303030            |
| 3.31                | 10,9561            | 1.81934            | 5.75326            | 36.2647            | 1.49031            | 3.21077            | 6.91740            | .302115            |
| 3.32                | 11.0224            | 1.82209            | 5.76194            | 36.5944            | 1.49181            | 3.21400            | 6.92436            | .301205            |
| 3.33                | 11.0889            | 1.82483            | 5.77062            | 36.9260            | 1.49330            | 3.21722            | 6.93130            | .300300            |
| 3.34                | 11.1556<br>11.2225 | 1.82757            | 5.77927<br>5.78792 | 37.2597<br>37.5954 | 1.49480            | 3.22044            | 6.93823            | .299401<br>.298507 |
| 3.36                | 11.2896            | 1.83303            | 5.79655            | 37.9331            | 1.49777            | 3.22686            | 6.95205            | .297619            |
| 3.37                | 11.3569            | 1.83576            | 5.80517            | 38.2728            | 1.49926            | 3.23006            | 6.95894            | .296736            |
| 3.38<br>3.39        | 11.4244<br>11.4921 | 1.83848<br>1.84120 | 5.81378<br>5.82237 | 38.6145<br>38.9582 | 1.50074<br>1.50222 | 3.23325<br>3.23643 | 6.96582            | .295858<br>.294985 |
| 3.40                | 11.5600            | 1.84391            | 5.83095            | 39.3040            | 1.50369            | 3.23961            | 6.97953            | .294985            |
| 3.41                | 11.6281            | 1.84662            | 5.83952            | 39,6518            | 1.50517            | 3.24278            | 6.98637            | .293255            |
| 3.42                | 11.6964            | 1.84932            | 5.84808            | 40.0017            | 1.50664            | 3.24595            | 6.99319            | .292398            |
| 3.43                | 11.7649            | 1.85203            | 5.85662            | 40.3536            | 1.50810            | 3.24911            | 7.00000            | .291545            |
| 3.44<br>3.45        | 11.8336<br>11.9025 | 1.85472<br>1.85742 | 5.86515<br>5.87367 | 40.7076<br>41.0636 | 1.50957<br>1.51103 | 3.25227<br>3.25542 | 7.00680<br>7.01358 | .290698<br>.289855 |
| 3.46                | 11.9716            | 1.86011            | 5.88218            | 41.4217            | 1.51249            | 3.25856            | 7.02035            | .289017            |
| 3.47                | 12.0409            | 1.86279            | 5.89067            | 41.7819            | 1.51394            | 3.26169            | 7.02711            | .288184            |
| 3.48<br>3.49        | 12.1104<br>12.1801 | 1.86548<br>1.86815 | 5.89915<br>5.90762 | 42.1442            | 1.51540            | 3.26482<br>3.26795 | 7.03385            | .287356<br>.286533 |
| 3.50                | 12.1801            | 1.87083            | 5.91608            | 42.5085<br>42.8750 | 1.51685            | 3.26795            | 7.04058            | .285714            |
| -                   |                    |                    |                    |                    |                    |                    |                    |                    |
| n                   | $n^2$              | $\sqrt{n}$         | $\sqrt{10 n}$      | $n^3$              | √n                 | $\sqrt[3]{10 n}$   | $\sqrt[3]{100} n$  | 1/n                |

| _            |                    |                                                   |                     |                    |                            |                      |                    |                    |
|--------------|--------------------|---------------------------------------------------|---------------------|--------------------|----------------------------|----------------------|--------------------|--------------------|
| n            | $n^2$              | $\gamma n$                                        | $\sqrt{10}n$        | n <sup>3</sup>     | Šn                         | 110 n                | \$100 n            | $1^{n}$            |
| 3.50         | 12.2500            | 1.87083                                           | 5.91608             | 42.8750            | 1.51829                    | 3.27197              | 7.647.60           | .285714            |
| 3.51         | 12.3201            | 1.87350<br>1.87617                                | 5.92453             | 43.2436            | 1.51974                    | 3.27415              | T. Holding         | 28460              |
| 3.52<br>3.53 | 12.3904<br>12.4609 | 1.57883                                           | 5.93296<br>5.9413S  | 43.6142<br>43.9870 | 1.52118<br>1.52262         | 3.27729<br>3.25039   | 7.06735            | .254991<br>.253286 |
| 3.54         | 12.5316            | 1.88149                                           | 5.94979             | 44.3619            | 1.52406                    | 3.28348              | 7.07404            | .282486            |
| 3.55<br>3.56 | 12.6025<br>12.6736 | 1.88414<br>1.88680                                | 5.95S19<br>5.96657  | 44.7359<br>45.1150 | 1.52549<br>1.52692         | 3.25657<br>3.25965   | 7.05734            | .251696<br>.250899 |
| 3.57         | 12.7449            | 1.88944                                           | 5.97495             | 45.4993            | 1.52835                    | 3.29273              | 7.09397            | .280112            |
| 3.58<br>3.59 | 12.8164<br>12.8881 | 1.89209<br>1.89473                                | 5.9\$331<br>5.99166 | 45.8827<br>46.2683 | 1.52978<br>1.53120         | 3.29580<br>3.29587   | 7.10059<br>7.10719 | .279330<br>.275552 |
| 3.60         | 12.9600            | 1.89737                                           | 6.00000             | 46.6560            | 1.53262                    | 3.30193              | 7.11379            | .277775            |
| 3.61         | 13.0321<br>13.1044 | 1.90000<br>1.90263                                | 6.00833<br>6.01664  | 47.0459<br>47.4379 | 1.53404                    | 3.30498              | 7.12937            | .277005            |
| 3.62<br>3.63 | 13.1769            | 1.90526                                           | 6.02495             | 47.8321            | 1.53545<br>1.53686         | 3.30803<br>3.31107   | 7.12694<br>7.13349 | .276243<br>.275452 |
| 3.64         | 13.2496            | 1.90788                                           | 6.03324             | 48,2285            | 1.53827                    | 3.31411              | 7.14004            | .274723            |
| 3.65<br>3.66 | 13.3225<br>13.3956 | 1.91050<br>1.91311                                | 6.04152<br>6.04979  | 48.6271<br>49.0279 | 1.53968<br>1.54109         | 3.31714              | 7.14657<br>7.15309 | .273973<br>.273224 |
| 3.67         | 13.4689            | 1.91572                                           | 6.05805             | 49.4309            | 1.54249                    | 3.32319              | 7.15960            | .272450            |
| 3.68<br>3.69 | 13.5424<br>13.6161 | 1.91833<br>1.92094                                | 6.06630<br>6.07454  | 49.8360<br>50,2434 | 1.54389<br>1.54529         | 3.32621<br>3.32922   | 7.16610<br>7.17258 | .271739<br>.271003 |
| 3.70         | 13.6900            | 1.92354                                           | 6.08276             | 50.6530            | 1.54065                    | 3.33222              |                    | .270270            |
| 3.71         | 13.7641            | 1.92614                                           | 6.09098             | 51.0648            | 1.54507                    | 3.33522              | 7.18352            | .20.4542           |
| 3.72<br>3.73 | 13.8384<br>13.9129 | $\begin{array}{c} 1.92873 \\ 1.93132 \end{array}$ | 6.09918<br>6.10737  | 51.4788<br>51.8951 | 1.54946<br>1.55085         | 3.33822<br>3.34120   | 7.19197<br>7.19540 | .265097            |
| 3.74         | 13.9876            | 1.93391                                           | 6.11555             | 52.3136            | 1.55223                    | 3.34419              | 7.20483            | .267380            |
| 3.75<br>3.76 | 14.0625<br>14.1376 | 1.93649<br>1.93907                                | 6.12372<br>6.13188  | 52.7344<br>53.1574 | 1.55362<br>1.55500         | $3.34716 \\ 3.35014$ | 7.21125<br>7.21763 | .266667<br>.265957 |
| 3.77         | 14.2129            | 1.94165                                           | 6.14003             | 53.5826            | 1.55637                    | 3.35310              | 7.22405            | .265252            |
| 3.78<br>3.79 | 14.2884<br>14.3641 | 1.94422<br>1.94679                                | 6.14817<br>6.15630  | 54.0102<br>54.4399 | 1.55775<br>1.55912         | 3.35607<br>3.35902   | 7.23043<br>7.23650 | .264550<br>.263852 |
| 3.80         | 14.4400            | 1.94936                                           | 6.16441             | 54.8720            | 1.56049                    | 3.36198              | 7.24316            | .263158            |
| 3.81         | 14.5161            | 1.95192                                           | 6.17252             | 55.3063            | 1.56186                    | 3.35492              | 7.21950            | .262467            |
| 3.82<br>3.83 | 14.5924<br>14.6689 | 1.95448<br>1.95704                                | 6.18061<br>6.18870  | 55.7430<br>56.1819 | 1.56322<br>1.56459         | 3.36786<br>3.37080   | 7.25534<br>7.26217 | .2617%)<br>.261097 |
| 3.84         | 14.7456            | 1.95959                                           | 6.19677             | 56.6231            | 1.56595                    | 3.37373              | 7.26848            | .260417            |
| 3.85<br>3.86 | 14.8225<br>14.8996 | 1.96214<br>1.96469                                | 6.20484<br>6.21289  | 57.0666<br>57.5125 | 1.56731<br>1.5686 <b>6</b> | 3.37666<br>3.37958   | 7.27479<br>7.28108 | .259740<br>.259067 |
| 3.87         | 14.9769            | 1.96723                                           | 6.22093             | 57.9606            | 1.57001                    | 3.38249              | 7.28736            | .258398            |
| 3.88<br>3.89 | 15.0544<br>15.1321 | 1.96977 $1.97231$                                 | 6.22896<br>6.23699  | 58.4111<br>58.8639 | 1.57137<br>1.57271         | 3.38540<br>3.38831   | 7.29363<br>7.29989 | .257732<br>.257069 |
| 3.90         | 15.2100            | 1.97484                                           | 6.24500             | 59.3190            | 1.57406                    | 3.39121              | 7.30614            | .256410            |
| 3.91         | 15.2881            | 1.97737                                           | 6.25300             | 59.7765            | 1.57541                    | 3.39411              | 7.31238<br>7.31861 | .255754<br>.255102 |
| 3.92<br>3.93 | 15.3664<br>15.4449 | $\begin{array}{c} 1.97990 \\ 1.98242 \end{array}$ | 6.26099<br>6.26897  | 60.2363<br>60.6985 | 1.57675<br>1.57809         | 3.39700<br>3.39988   | 7.32483            | .254453            |
| 3.94         | 15.5236            | 1.98494                                           | 6.27694             | 61.1630            | 1.57942                    | 3.40277 $3.40564$    | 7.33104<br>7.33723 | .253807<br>.253165 |
| 3.95<br>3.96 | 15.6025<br>15.6816 | 1.98746<br>1.98997                                | 6.28490<br>6.29285  | 61.6299<br>62.0991 | 1.58076<br>1.58209         | 3.40551              | 7.34342            | .252525            |
| 3.97         | 15.7609            | 1.99249                                           | 6.30079             | 62.5708            | 1.58342                    | 3.41138              | 7.34960            | .251889<br>.251256 |
| 3.98<br>3.99 | 15.8404<br>15.9201 | 1.99499<br>1.99750                                | 6.30872<br>6.31664  | 63.0448<br>63.5212 | 1.58475<br>1.58608         | 3.41424<br>3.41710   | 7.35576<br>7.36192 | .250627            |
| 4.00         | 16.0000            | 2.00000                                           | 6.32456             | 64.0000            | 1.58740                    | 3.41995              | 7.36806            | .250000            |
| n            | $n^2$              | $\sqrt{n}$                                        | $\sqrt{10 n}$       | $n^3$              | ∛n                         | $\sqrt[3]{10} n$     | $\sqrt[4]{100} n$  | 1/n                |

|                     |                           | ,                         | 70                 | -3                 | 3/                                                | 3/10                      | $\sqrt[3]{100}$ n               | - /                |
|---------------------|---------------------------|---------------------------|--------------------|--------------------|---------------------------------------------------|---------------------------|---------------------------------|--------------------|
| n                   | $n^2$                     | $\sqrt{n}$                | $\sqrt{10} n$      | $\frac{n^3}{n^3}$  | <u>vn</u>                                         |                           |                                 | 1/n                |
| 4.00                | 16.0000                   | 2.00000                   | 6.32456            | 64.0000            | 1.58740                                           | 3.41995                   | 7.36806                         | .250000            |
| $\frac{4.01}{4.02}$ | 16.0801<br>16.1604        | 2.00250<br>2.00499        | 6.33246<br>6.34035 | 64.4812<br>64.9648 | 1.58872<br>1.59004                                | $3.42280 \\ 3.42564$      | 7.37420 <sup>1</sup><br>7.38032 | .249377<br>.245756 |
| 4.03                | 16.2409                   | 2.00749                   | 6.34823            | 65.4508            | 1.59136                                           | 3.42848                   | 7.35644                         | .245139            |
| 4.04                | 16.3216                   | 2.00998                   | 6.35610            | 65.9393            | 1.59267                                           | 3.43131                   | 7.39254                         | .247525            |
| 4.05<br>4.06        | 16.4025<br>16.4836        | 2.01246<br>2.01494        | 6.36396<br>6.37181 | 66.4301<br>66.9234 | 1.59399<br>1.59530                                | 3.43414<br>3.43697        | 7.39864 $7.40472$               | .246914<br>.246305 |
| 4.07                | 16.5649                   | 2.01742                   | 6.37966            | 67.4191            | 1.59661                                           | 3.43979                   | 7.41080                         | .245700            |
| 4.08                | 16.6464                   | 2.01990                   | 6.38749<br>6.39531 | 67.9173<br>68.4179 | $\begin{array}{c} 1.59791 \\ 1.59922 \end{array}$ | 3.44260<br>3.44541        | 7.41686 $7.42291$               | .245098            |
| $\frac{4.09}{4.10}$ | $\frac{16.7281}{16.8100}$ | $\frac{2.02237}{2.02485}$ | 6.40312            | 68.9210            | 1.60052                                           | 3.44822                   | $\frac{7.42291}{7.42896}$       | .244499            |
| 4.10                | 16.8921                   | 2.02731                   | 6.41093            | 69.4265            | 1.60182                                           | 3.45102                   | 43499                           | .243309            |
| 4.12                | 16.9744                   | 2.02978                   | 6.41872            | 69.9345            | 1.60312                                           | 3.45382                   | 7.44102                         | .242718            |
| 4.13                | 17.0569                   | 2.03224                   | 6.42651            | 70.4450            | 1.60441                                           | 3.45661                   | 7.44703                         | .242131            |
| 4.14<br>4.15        | 17.1396<br>17.2225        | 2.03470 $2.03715$         | 6.43428<br>6.44205 | 70.9579<br>71.4734 | 1.60571<br>1.60700                                | 3.45939<br>3.46218        | 7.45304<br>7.45904              | .241546            |
| 4.16                | 17.3056                   | 2.03961                   | 6.44981            | 71.9913            | 1.60829                                           | 3.46496                   | 7.46502                         | .240385            |
| 4.17                | 17.3889                   | 2.04206                   | 6.45755            | 72.5117            | 1.60958                                           | 3.46773                   | 7.47100                         | .239808            |
| 4.18<br>4.19        | 17.4724<br>17.5561        | 2.04450 $2.04695$         | 6.46529<br>6.47302 | 73.0346<br>73.5601 | 1.61086<br>1.61215                                | $\frac{3.47050}{3.47327}$ | 7.47697 $7.48292$               | .239234<br>.23S663 |
| 4.20                | 17.6400                   | 2.04939                   |                    | 74.0880            | 1.61343                                           | 3.47603                   |                                 | .238095            |
| 4.21                | 17.7241                   | 2.05183                   | 6.48845            | 74.6185            | 1.61471                                           | 3.47878                   | 7.49481                         | .237530            |
| 4.22<br>4.23        | 17.8084<br>17.8929        | 2.05426 $2.05670$         | 6.49615<br>6.50384 | 75.1514<br>75.6870 | 1.61599<br>1.61726                                | 3.48154<br>3.48428        | 7.50074<br>7.50666              | .236967<br>.236407 |
| 4.24                | 17.9776                   | 2.05913                   | 6.51153            | 76.2250            | 1.61853                                           | 3.48703                   | 7.51257                         | .235849            |
| 4.25                | 18.0625                   | 2.06155                   | 6.51920            | 76.7656            | 1.61981                                           | 3.48977<br>3.49250        | 7.51847                         | .235294            |
| 4.26<br>4.27        | 18.1476<br>18.2329        | 2.06398<br>2.06640        | 6.52687<br>6.53452 | 77.3088<br>77.8545 | 1.62108<br>1.62234                                | 3.49523                   | 7.52437<br>7.53025              | .234742            |
| 4.28                | 18.3184                   | 2.06882                   | 6.54217            | 78.4028            | 1.62361                                           | 3.49796                   | 7.53612                         | .233645            |
| 4.29                | 18.4041                   | 2.07123                   | 6.54981            | 78.9536            | 1.62487                                           | 3.50068                   | 7.54199                         | .233100            |
|                     |                           |                           | 6.55744            | 79.5070            | 1.62613                                           |                           | 7.54784                         | .232558            |
| 4.31<br>4.32        | 18.5761<br>18.6624        | 2.07605 $2.07846$         | 6.56506<br>6.57267 | 80.0630<br>80.6216 | 1.62739<br>1.62865                                | 3.50611<br>3.50882        | 7.55369<br>7.55953              | .232019<br>.231481 |
| 4.33                | 18.7489                   | 2.08087                   | 6.58027            | 81.1827            | 1.62991                                           | 3.51153                   | 7.56535                         | .230947            |
| 4.34                | 18.8356<br>18.9225        | 2.08327<br>2.08567        | 6.58787<br>6.59545 | 81.7465<br>82.3129 | 1.63116<br>1.63241                                | 3.51423<br>3.51692        | 7.57117<br>7.57698              | .230415            |
| 4.35<br>4.36        | 19.0096                   | 2.08806                   | 6.60303            | 82.8819            | 1.63366                                           | 3.51962                   | 7.58279                         | .229358            |
| 4.37                | 19.0969                   | 2.09045                   | 6.61060            | 83.4535            | 1.63491                                           | 3.52231                   | 7.58858                         | .228833            |
| 4.38<br>4.39        | 19.1844<br>19.2721        | 2.09284<br>2.09523        | 6.61816<br>6.62571 | 84.0277<br>84.6045 | 1.63619<br>1.63740                                | 3.52499<br>3.52767        | 7.59436<br>7.60014              | .228311            |
| 4.40                | 19.3600                   | 2.09762                   | 6.63325            | 85.1840            | 1.63864                                           | -                         |                                 | .227273            |
| 4.41                | 19.4481                   | ۵.10000                   | 6.64078            | 85.7661            | 1.63988                                           |                           | 7.61166                         | .226757            |
| 4.42<br>4.43        | 19.5364<br>19.6249        | 2.10238<br>2.10476        | 6.64831<br>6.65582 | 86.3509<br>86.9383 | 1.64112<br>1.64236                                | 3.53569                   | 7.61741<br>7.62315              | .226244            |
| 4.40                | 19.6249                   |                           | 6.66333            | 87.5284            | 1.64359                                           |                           | 7.62888                         | .225225            |
|                     | 19.8025                   | 2.10950                   | 6.67083            | 88.1211            | 1.64483                                           | 3.54367                   | 7.63461                         | .224719            |
|                     | 19.8916                   |                           | 6.67832            | 88.7165            | 1.64606                                           |                           | 7.64032                         | .224215            |
|                     | 19.9809<br>20.0704        |                           | 6.68581<br>6.69328 |                    |                                                   | 3.54897<br>3.55162        | 7.64603<br>7.65172              | .223714<br>.223214 |
|                     | 20.1601                   |                           | 6.70075            |                    |                                                   | 3.55426                   | 7.65741                         | .222717            |
|                     |                           |                           |                    |                    |                                                   | 3.55689                   | 7.66309                         | .222222            |

| n                    | n²                                                           | $\sqrt{n}$                                                   | $\sqrt{10 n}$                 | $n^3$                         | $\sqrt[3]{n}$                 | √10 n                         | √100 n                        | 1 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.50                 | 20.2500                                                      | 2.12132                                                      | 6.70520                       | 91.1250                       | 1.65096                       | 3.55689                       |                               | 1819 3 417 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.51                 | 20.3401                                                      | 2.12368                                                      | 6.71565                       | 91.7339                       | 1.65219                       | 3.55953                       | 7.65/577                      | 221724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.52                 | 20.4304                                                      | 2.12603                                                      | 6.72309                       | 92.3454                       | 1.65341                       | 3.56215                       | 7.67443                       | 22126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.53                 | 20.5209                                                      | 2.12838                                                      | 6.73053                       | 92.9597                       | 1.65462                       | 3.56475                       | 7.63909                       | 224731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.54                 | 20.6116                                                      | 2.13073                                                      | 6.73795                       | 93.5767                       | 1.65584                       | 3.56740                       | 7.68573                       | .220264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.55                 | 20.7025                                                      | 2.13307                                                      | 6.74537                       | 94.1964                       | 1.65706                       | 3.57002                       | 7.69137                       | .210780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.56                 | 20.7936                                                      | 2.13542                                                      | 6.75278                       | 94.8188                       | 1.65827                       | 3.57263                       | 7.69700                       | .210298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.57<br>4.58<br>4.59 | 20.8549<br>20.9764<br>21.0681                                | 2.13776<br>2.14009<br>2.14243                                | 6.76018<br>6.76757<br>6.77495 | 95.4440<br>96.0719<br>96.7026 | 1.65948<br>1.66069<br>1.66190 | 3.57524<br>3.57785<br>3.58045 | 7.70262<br>7.70824<br>7.71884 | 21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55<br>21.55 |
| 4.60                 | 21.1600                                                      | 2.14476                                                      | 6.78233                       | 97.3360                       | 1.66310                       | 3.58395                       | 7.71944                       | .2173/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.61                 | 21.2521                                                      | $\begin{array}{c} 2.14709 \\ 2.14942 \\ 2.15174 \end{array}$ | 6.78970                       | 97,9722                       | 1.66431                       | 3.58564                       | 7.72563                       | 11575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.62                 | 21.3444                                                      |                                                              | 6.79706                       | 98,6111                       | 1.66551                       | 3.5823                        | 7.73763                       | 11545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.63                 | 21.4369                                                      |                                                              | 6.80441                       | 99,2528                       | 1.66671                       | 3.59082                       | 7.73619                       | 215983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.64<br>4.65<br>4.66 | $\begin{array}{c} 21.5296 \\ 21.6225 \\ 21.7156 \end{array}$ | $\begin{array}{c} 2.15407 \\ 2.15639 \\ 2.15870 \end{array}$ | 6.81175<br>6.81909<br>6.82642 | 99.8973<br>100.545<br>101.195 | 1.66791<br>1.66911<br>1.67030 | 3.59340<br>3.59598<br>3.59856 | 7.74175<br>7.74731<br>7.75286 | .215517<br>.215054<br>.214592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.67                 | 21.8089                                                      | 2.16102                                                      | 6.83374                       | 101.848                       | 1.67150                       | 3.60113                       | 7.75840                       | .214133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.68                 | 21.9024                                                      | 2.16333                                                      | 6.84105                       | 102.503                       | 1.67269                       | 3.60370                       | 7.76394                       | .213675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.69                 | 21.9961                                                      | 2.16564                                                      | 6.84836                       | 103.162                       | 1.67388                       | 3.60626                       | 7.76946                       | .213220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.70                 | 22.0900                                                      | 2.16795                                                      | 6.85565                       | 103.823                       | 1.67507                       | 3.60883                       | 7.77495                       | .212764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.71                 | 22.1841                                                      | 2.17025 $2.17256$ $2.17486$                                  | 6.80294                       | 104.487                       | 1.67626                       | 3.61135                       | 7.7 %49                       | .212814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.72                 | 22.2784                                                      |                                                              | 6.87023                       | 105.154                       | 1.67744                       | 3.61394                       | 7.7 %593                      | .211864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.73                 | 22.3729                                                      |                                                              | 6.87750                       | 105.824                       | 1.67863                       | 3.61649                       | 7.7 9149                      | .211416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.74                 | 22.4676                                                      | 2.17715                                                      | 6.88477                       | 106.496                       | 1.67981                       | 3.61903                       | 7.79697                       | .210970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.75                 | 22.5625                                                      | 2.17945                                                      | 6.89202                       | 107.172                       | 1.68099                       | 3.62158                       | 7.80245                       | .210526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.76                 | 22.6576                                                      | 2.18174                                                      | 6.89928                       | 107.850                       | 1.68217                       | 3.62412                       | 7.80793                       | .210084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.77                 | 22.7529                                                      | 2.18403                                                      | 6.90652                       | 108.531                       | 1.68334                       | 3.62665                       | 7.81339                       | .209644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.78                 | 22.8484                                                      | 2.18632                                                      | 6.91375                       | 109.215                       | 1.68452                       | 3.62919                       | 7.81885                       | .209205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.79                 | 22.9441                                                      | 2.18861                                                      | 6.92098                       | 109.902                       | 1.68569                       | 3.63172                       | 7.82429                       | .208768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.80                 | 23.0400                                                      | 2.19089                                                      | 6.92820                       | 110.592                       | 1.68687                       | 3.63424                       | 7.82974                       | ,208333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.81<br>4.82<br>4.83 | 23.1361<br>23.2324<br>23.3289                                | 2.19317<br>2.19545<br>2.19773                                | 6.93542<br>6.94262<br>6.94982 | 111.285<br>111.980<br>112.679 | 1.65804<br>1.65920<br>1.69037 | 3.63676<br>3.63928<br>3.64180 | 7.54059<br>7.54601            | .207900<br>.207460<br>.207039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.84                 | 23.4256                                                      | 2.20000                                                      | 6.95701                       | 113.380                       | 1.69154                       | 3.64431                       | 7.85142                       | .206612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.85                 | 23.5225                                                      | 2.20227                                                      | 6.96419                       | 114.084                       | 1.69270                       | 3.64682                       | 7.85683                       | .206186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.86                 | 23.6196                                                      | 2.20454                                                      | 6.97137                       | 114.791                       | 1.69386                       | 3.64932                       | 7.86222                       | .205761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.87                 | 23.7169                                                      | 2.20681                                                      | 6.97854                       | 115.501                       | 1.69503                       | 3.65182                       | 7.86761                       | .205339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.88                 | 23.8144                                                      | 2.20907                                                      | 6.98570                       | 116.214                       | 1.69619                       | 3.65432                       | 7.87299                       | .204918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.89                 | 23.9121                                                      | 2.21133                                                      | 6.99285                       | 116.930                       | 1.69734                       | 3.65681                       | 7.87837                       | .204499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.90                 | 24.0100                                                      | 2.21359                                                      | 7.00000                       | 117.649                       | 1.69850                       | 3.65931                       | 7.88374                       | ,204082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.91                 | 24.1081                                                      | 2.21585                                                      | 7.00714                       | 118.371                       | 1.69965                       | 3.66179                       | 7.88909                       | .203666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.92                 | 24.2064                                                      | 2.21811                                                      | 7.01427                       | 119.095                       | 1.70081                       | 3.66428                       | 7.89445                       | .203252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.93                 | 24.3049                                                      | 2.22036                                                      | 7.02140                       | 119.823                       | 1.70196                       | 3.66676                       | 7.89979                       | .202540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.94                 | 24.4036                                                      | 2.22261                                                      | 7.02851                       | 120.554                       | 1.70311                       | 3.66924                       | 7.90513                       | .202429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.95                 | 24.5025                                                      | 2.22486                                                      | 7.03562                       | 121.287                       | 1.70426                       | 3.67171                       | 7.91046                       | .202020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.96                 | 24.6016                                                      | 2.22711                                                      | 7.04273                       | 122.024                       | 1.70540                       | 3.67418                       | 7.91578                       | .201613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.97                 | 24.7009                                                      | 2.22935                                                      | 7.04982                       | 122.763                       | 1.70655                       | 3.67665                       | 7.92110                       | .201207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.98                 | 24.8004                                                      | 2.23159                                                      | 7.05691                       | 123.506                       | 1.70769                       | 3.67911                       | 7.92641                       | .200803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.99                 | 24.9001                                                      | 2.23383                                                      | 7.06399                       | 124.251                       | 1.70884                       | 3.68157                       | 7.93171                       | .200401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.00                 | 25.0000                                                      | 2.23607                                                      | 7.07107                       | 125.000                       | 1.70998                       | 3.68403                       | 7.93701                       | .200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| n                    | $n^2$                                                        | $\sqrt{n}$                                                   | $\sqrt{10 n}$                 | $n^3$                         | $\sqrt[3]{n}$                 | $\sqrt[3]{10 n}$              | ₹100 n                        | 1/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|              |                    |                    |                    |                    | 7,                 | 1                  |                    |                    |
|--------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| n            | $n^2$              | n                  | $\sqrt{10 n}$      | $n^3$              | √n                 | $\sqrt[3]{10} n$   | $\sqrt[3]{100} n$  | 1/n                |
| 5.00         | 25.0000            | 2.23607            | 7.07107            | 125.000            | 1.70998            | 3.68403            | 7.93701            | .200000            |
| 5.01         | 25.1001            | 2.23830            | 7.07814            | 125.752<br>126.506 | 1.71112 $1.71225$  | 3.68649            | 7.94229            | .199601            |
| 5.02<br>5.03 | 25.2004<br>25.3009 | 2.24054<br>2.24277 | 7.05520<br>7.09225 | 127.264            | 1.71223            | 3.68894<br>3.69138 | 7.94757<br>7.95285 | .199203<br>.198807 |
| 5.04         | 25.4016            | 2.24499            | 7.09930            | 128.024            | 1.71452            | 3.69383            | 7.95811            | .198413            |
| 5.05<br>5.06 | 25.5025<br>25.6036 | 2.24722<br>2.24944 | 7.10634 $7.11337$  | 128.788<br>129.554 | 1.71566<br>1.71679 | 3.69627<br>3.69871 | 7.96337<br>7.96863 | .198020<br>.197628 |
| 5.07         | 25.7049            | 2.25167            | 7.12039            | 130,324            | 1.71792            | 3.70114            | 7.97387            | .197028            |
| 5.08         | 25.8064            | 2.25389            | 7.12741            | 131.097            | 1.71905            | 3.70357            | 7.97911            | .196850            |
| 5.09<br>5.10 | 25.9081            | 2.25610            | 7.13442            | 131.872            | 1.72017            | 3.70600            | 7.98434            | .196464            |
| 5.11         | 26.0100            | 2.26053            | 7.14143<br>7.14S43 | 132.651            | 1.72242            | 3.710843           | 7.98957            | .196078            |
| 5.12         | 26.2144            | 2.26274            | 7.15542            | 134.218            | 1.72355            | 3.71327            | 8.00000            | .195695<br>.195312 |
| 5.13         | 26.3169            | 2.26495            | 7.16240            | 135.006            | 1.72467            | 3.71569            | 8.00520            | .194932            |
| 5.14<br>5.15 | 26.4196<br>26.5225 | 2.26716<br>2.26936 | 7.16938<br>7.17635 | 135.797<br>136.591 | 1.72579<br>1.72691 | 3.71810<br>3.72051 | 8.01040<br>8.01559 | .194553<br>.194175 |
| 5.16         | 26.6256            | 2.27156            | 7.18331            | 137.388            | 1.72802            | 3.72292            | 8.02078            | .193798            |
| 5.17         | 26.7289            | 2.27376            | 7.19027            | 138.188            | 1.72914            | 3.72532            | 8.02596            | .193424            |
| 5.18<br>5.19 | 26.8324<br>26.9361 | 2.27596<br>2.27816 | 7.19722<br>7.20417 | 138.992<br>139.798 | 1.73025<br>1.73137 | 3.72772<br>3.73012 | 8.03113<br>8.03629 | .193050<br>.192678 |
| 5.20         | 27.0400            | 2.28035            | 7.21110            | 140.608            | 1.73248            | 3.73251            | 8.04145            | .192308            |
| 5.21         | 27.1441            | 2.28254            | 7.21803            | 141.421            | 1.73359            | 3.73490            | 8.04660            | .191939            |
| 5.22<br>5.23 | 27.2484<br>27.3529 | 2.28473<br>2.28692 | 7.22496<br>7.23187 | 142.237<br>143.056 | 1.73470<br>1.73580 | 3.73729<br>3.73968 | 8.05175<br>8.05689 | .191571            |
| 5.24         | 27.4576            | 2.28910            | 7.23878            | 143.878            | 1.73691            | 3.74206            | 8.06202            | .190840            |
| 5.25<br>5.26 | 27.5625<br>27.6676 | 2.29129<br>2.29347 | 7.24569<br>7.25259 | 144.703<br>145.532 | 1.73801<br>1.73912 | 3.74443<br>3.74681 | 8.06714<br>8.07226 | .190476<br>.190114 |
| 5.27         | 27,7729            | 2.29565            | 7.25948            | 146.363            | 1.74022            | 3.74918            | 8.07737            | .189753            |
| 5.28<br>5.29 | 27.8784            | 2.29783            | 7.26636            | 147.198            | 1.74132            | 3.75155            | 8.08248            | .189394            |
| 5.29         | 27.9841<br>28.0900 | 2.30000            | 7.27324            | 148.036<br>148.877 | 1.74242            | 3.75392<br>3.75629 | 8.08758<br>8.09267 | .189036            |
| 5.31         | 28.1961            | 2.30217            |                    | 149.721            |                    |                    | 8.09267            | .188324            |
| 5.32         | 28.3024            | 2.30651            | 7.28697<br>7.29383 | 150.569            | 1.74461<br>1.74570 | 3.75865<br>3.76101 | 8.10284            | .187970            |
| 5.33         | 28.4089            | 2.30868            | 7.30068            | 151.419            | 1.74680            | 3.76336            | 8.10791            | .187617            |
| 5.34<br>5.35 | 28.5156<br>28.6225 | 2.31084<br>2.31301 | 7.30753<br>7.31437 | 152,273<br>153,130 | 1.74789<br>1.74898 | 3.76571            | 8.11298<br>8.11804 | .187266<br>.186916 |
| 5.36         | 28.7296            | 2.31517            | 7.32120            | 153.991            | 1.75007            | 3.77041            | 8.12310            | .186567            |
| 5.37         | 28.8369            | 2.31733            | 7.32803            | 154.854            | 1.75116            | 3.77275            | 8.12814            | .186220            |
| 5.38<br>5.39 | 28.9444<br>29.0521 | 2.31948<br>2.32164 | 7.33485<br>7.34166 | 155.721<br>156.591 | 1.75224<br>1.75333 | 3.77509<br>3.77743 | 8.13319<br>8.13822 | .185874<br>.185529 |
| 5.40         | 29.1600            | 2.32379            | 7.34847            | 157.464            | 1.75441            | 3.77976            | 8.14325            | .185185            |
| 5.41         | 29.2681            | 2.32594            | 7.35527            | 158.340            | 1.75549            | 3.78209            | 8.14828            | .184843            |
| 5.42<br>5.43 | 29.3764<br>29.4849 | 2.32809<br>2.33024 | 7.36206<br>7.36885 | 159.220<br>160.103 | 1.75657<br>1.75765 | 3.78442<br>3.78675 | 8.15329<br>8.15831 | .184502<br>.184162 |
| 5.44         | 29.5936            | 2.33238            | 7.37564            | 160.989            | 1.75873            | 3.78907            | 8.16331            | .183824            |
| 5.45<br>5.46 | 29.7025<br>29.8116 | 2.33452            | 7.38241<br>7.38918 | 161.879<br>162.771 | 1.75981            | 3.79139            | 8.16831<br>8.17330 | .183486<br>.183150 |
| 5.47         | 29,9209            | 2.33880            | 7.39594            | 163.667            | 1.76196            | 3.79603            | 8.17829            | .182815            |
| 5.48<br>5.49 | 30.0304<br>30.1401 | 2.34094<br>2.34307 | 7.40270            | 164.567            | 1.76303            | 3.79834            | 8.18327<br>8.18824 | .182482<br>.182149 |
| 5.50         | 30.2500            | 2.34521            | 7.40945<br>7.41620 | 165.469<br>166.375 | 1.76410            | 3.80065            | 8.19321            | .181818            |
| -            | <del></del>        |                    |                    | <del></del>        |                    |                    |                    |                    |
| n            | $n^2$              | $  \sqrt{n}  $     | $\sqrt{10} n$      | $n^3$              | $\sqrt[3]{n}$      | <sup>3</sup> √10 n | $\sqrt[3]{100 n}$  | 1/n                |

|              | $n^2$                | $\sqrt{n}$          | $\sqrt{10 n}$      | n <sup>3</sup>     | 3 <u>-</u>         | (370=              | v 100 n              | 110                |
|--------------|----------------------|---------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|
| 5.50         | 30.2500              | 2.34521             | 7.41620            | 166,375            |                    |                    |                      | <u> </u>           |
| 5.51         | 30.3601              | 2.34734             | 7.42294            | 167,284            | 1.76624            | 3.80526            | (8.19321<br>(8.19818 | .181818            |
| 5.52         | 30.4704              | 2.34947             | 7.42967            | 168.197            | 1.76731            | 3.80756            | 8,20313              | .181159            |
| 5.53         | 30.5809              | 2.35160             | 7.43640            | 169.112            | 1.76838            | 3.80985            | 5.20808              | .150832            |
| 5.54<br>5.55 | 30.6916<br>30.8025   | 2.35372<br>2.355\$4 | 7.44312<br>7.44983 | 170.031<br>170.954 | 1.76944<br>1.77051 | 3.81215<br>3.81444 | 8.21303              | .180505<br>.180180 |
| 5.56         | 30.9136              | 2.35797             | 7.45654            | 171.850            | 1.77157            | 3.51673            | 5.22290              | 179550             |
| 5.57         | 31.0249              | 2.36008             | 7.46324            | 172.809            | 1.77263            | 3.81902            | 8.22783              | .179333            |
| 5.58<br>5.59 | 31.1364<br>31.2481   | 2.36220<br>2.36432  | 7.46994<br>7.47663 | 173.741<br>174.677 | 1.77369            | 3.82130<br>3.82358 | 8.23275<br>8.23766   | .179211            |
| 5.60         | 31.3600              | 2.36643             | 7.45331            | 175,616            | 1.77551            | 3.52586            | 5.24257              | .178571            |
| 5.61         | 31.4721              | 2.36854             | 7.48999            | 176.558            | 1.77686            | 3.82814            | 5.24747              | -178-50            |
| 5.62<br>5.63 | 31.5844<br>31.6969   | 2.37065 $2.37276$   | 7.49667<br>7.50333 | 177.504<br>178.454 | 1.77792<br>1.77597 | 3.83265            | 5.23237<br>5.23726   | 32.071.<br>02.071. |
| 5.64         | 31.8096              | 2.37487             | 7.50999            | 179.406            | 1.78003            | 3.83495            | 8.26215              | 177305             |
| 5.65         | 31.9225              | 2.37697             | 7.51665            | 180.362            | 1.78108            | 3.83722            | 5.26703              | .176991            |
| 5.66         | 32,0356              | 2.37908             | 7.52330            | 181.321            | 1.78213            | 3.83948            | 8.27190              | .176678            |
| 5.67<br>5.68 | 32.1489<br>32.2624   | 2.38118<br>2.38328  | 7.52994<br>7.53658 | 182.284<br>183.250 | 1.78318<br>1.78422 | 3.84174<br>3.84399 | 8.27677<br>8.28164   | .176367<br>.176056 |
| 5.69         | 32.3761              | 2.38537             | 7.54321            | 184,220            | 1.78527            | 3.84625            | 8.28649              | .175747            |
| 5.70         | 32.4900              | 2.38747             | 7.54983            | 185.193            | 1.78632            | 3.54550            | 8.29134              | .175439            |
| 5.71<br>5.72 | $32.6041 \\ 32.7184$ | 2.38956<br>2.39165  | 7.55645<br>7.56307 | 186.169<br>187.149 | 1.78736<br>1.78540 | 3.55575<br>3.55309 | 5.29619<br>5.30103   | .175131<br>.174525 |
| 5.73         | 32.8329              | 2.39374             | 7.56968            | 188.133            | 1.78944            | 3.55524            | 8.30387              | .174520            |
| 5.74         | 32.9476              | 2.39583             | 7.57628            | 189.119            | 1.79048            | 3.85748            | 8.31069              | .174216            |
| 5.75<br>5.76 | 33.0625<br>33.1776   | 2.39792<br>2.40000  | 7.58288<br>7.58947 | 190.109<br>191.103 | 1.79152 $1.79256$  | 3.85972<br>3.86196 | 8.31552<br>8.32034   | .173913            |
| 5.77         | 33.2929              | 2.40208             | 7.59605            | 192.100            | 1.79360            | 3.86419            | 8.32515              | .173310            |
| 5.78<br>5.79 | 33.4084<br>33.5241   | 2.40416 $2.40624$   | 7.60263<br>7.60920 | 193.101<br>194.105 | 1.79463<br>1.79567 | 3.86642<br>3.86865 | 5.32995<br>5.33476   | .173010<br>.172712 |
| 5.80         | 33.6400              | 2.40832             | 7.61577            | 195,112            | 1.79670            | 3.57088            | 8.33955              | .172414            |
| 5.81         | 33.7561              | 2.41039             | 7.62234            | 196.123            | 1.79773            | 3.57310            | 5.34434              | .172117            |
| 5.82         | 33.8724              | 2.41247             | 7.62589            | 197.137            | 1.79876            | 3.57532            | 8.34913              | .171521            |
| 5.83         | 33.9889              | 2.41454             | 7.63544            | 198.155            | 1.79979            | 3.87754            | 5.35390              | .171527            |
| 5.84<br>5.85 | 34.1056<br>34.2225   | 2.41661<br>2.41868  | 7.64199<br>7.64853 | 199.177<br>200.202 | 1.80082<br>1.80185 | 3.87975<br>3.85197 | 8.35868<br>8.36345   | .171233            |
| 5.86         | 34.3396              | 2.42074             | 7.65506            | 201.230            | 1.80288            | 3.88418            | 8.36821              | .170649            |
| 5.87<br>5.88 | 34.4569<br>34.5744   | 2.42281<br>2.42487  | 7.66159<br>7.66812 | 202,262<br>203,297 | 1.80390<br>1.80492 | 3.88639<br>3.88859 | 8.37297<br>8.37772   | .170358            |
| 5.89         | 34.6921              | 2.42693             | 7.67463            | 204.336            | 1.80595            | 3.89080            | 5.35247              | .169779            |
| 5.90         | 34.8100              | 2.42899             | 7.68115            | 205.379            | 1.80697            | 3.89300            | 5.35721              | .169492            |
| 5.91         | 34.9281              | 2.43105             | 7.68765            | 206.425            | 1.80799            | 3.89519            | 5.39194              | .169205            |
| 5.92<br>5.93 | 35.0464<br>35.1649   | 2.43311<br>2.43516  | 7.69415<br>7.70065 | 207.475<br>208.528 | 1.80901<br>1.81003 | 3.89739<br>3.89958 | \$.39667<br>\$.40140 | .168919<br>.168634 |
| 5.94         | 35.2836              | 2.43721             | 7.70714            | 209,585            | 1.51104            | 3.90177            | 8.40612              | .168350            |
| 5.95<br>5.96 | 35.4025<br>35.5216   | 2.43926<br>2.44131  | 7.71362<br>7.72010 | 210.645 $211.709$  | 1.81206<br>1.81307 | 3.90396<br>3.90615 | 8.41083<br>8.41554   | .168067            |
| 5.97         | 35.6409              | 2,44336             | 7.72658            | 212.776            | 1.81409            | 3.90833            | 8.42025              | .167504            |
| 5.98         | 35.7604              | 2.44540             | 7.73305            | 213.847            | 1.81510            | 3.91051            | 8.42494              | .167224            |
| 5.99         | 35.8801              | 2.44745             | 7.73951            | 214.922            | 1.81611            | 3.91269<br>3.91487 | S.42964<br>S.43433   | .166945            |
| 6.00         | 36.0000              | 2.44949             | 7.74597            | 216.000            | 1.81712            |                    |                      |                    |
| n            | $n^2$                | $\sqrt{n}$          | $\sqrt{10 n}$      | $n^2$              | $\sqrt[3]{n}$      | √10 n              | ₹100 n               | 1/n                |

|              |                    |                      |                    |                    | 7,                 | 3                  | i 2                 | FAT.               |
|--------------|--------------------|----------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|
| n            | $n^2$              | $\sqrt{n}$           | $\sqrt{10 n}$      | $n^3$              | $\sqrt[3]{n}$      | $\sqrt[3]{10 n}$   | $\sqrt[3]{100} n$   | 1/n                |
| 6.00         | 36.0000            | 2.44949              | 7.74597            | 216.000            | 1.81712            | 3.91487            | 8.43433             | .166667            |
| 6.01         | 36.1201            | 2.45153              | 7.75242            | 217.082            | 1.81813            | 3.91704            | 8.43901             | .166389            |
| 6.02<br>6.03 | 36.2404<br>36.3609 | 2.45357<br>2.45561   | 7.75887<br>7.76531 | 218.167<br>219.256 | 1.81914<br>1.82014 | 3.91921<br>3.92138 | 8.44369<br>8.44836  | -166113<br>-165837 |
| 6.04         | 36.4816            | 2.45764              | 7.77174            | 220.349            | 1.82115            | 3.92355            | 8.45303             | .165563            |
| 6.05<br>6.06 | 36.6025<br>36.7236 | 2.45967<br>2.46171   | 7.77817<br>7.78460 | 221.445<br>222.545 | 1.82215<br>1.82316 | 3.92571<br>3.92787 | 8.45769<br>8.46235  | .165289<br>.165017 |
| 6.07         | 36.8449            | 2.46374              | 7.79102            | 223.649            | 1.82416            | 3.93003            | 8.46700             | .164745            |
| 6.08<br>6.09 | 36.9664<br>37.0881 | 2.46577<br>2.46779   | 7.79744<br>7.80385 | 224.756<br>225.867 | 1.82516<br>1.82616 | 3.93219<br>3.93434 | 8.47165<br>8.47629  | .164474<br>.164204 |
| 6.10         | 37.2100            | 2.46982              | 7.81025            | 226.981            | 1.82716            | 3.93650            | 8.48093             | .163934            |
| 6.11         | 37.3321            | 2.47184              | 7.81665            | 228.099            | 1.82816            | 3.93865            | 8.48556             | .163666            |
| 6.12<br>6.13 | 37.4544<br>37.5769 | $2.47386 \\ 2.47588$ | 7.82304<br>7.82943 | 229.221<br>230.346 | 1.82915<br>1.83015 | 3.94079<br>3.94294 | 8.49018<br>8.49481  | .163399<br>.163132 |
| 6.14         | 37.6996            | 2.47790              | 7.83582            | 231.476            | 1.83115            | 3.94508            | 8.49942             | .162866            |
| 6.15<br>6.16 | 37.8225<br>37.9456 | 2.47992<br>2.48193   | 7.84219<br>7.84857 | 232.608<br>233.745 | 1.83214<br>1.83313 | 3.94722<br>3.94936 | 8.50403<br>8.50864  | .162602<br>.162338 |
| 6.17         | 38.0689            | 2.48395              | 7.85493            | 234.885            | 1.83412            | 3.95150            | 8.51324             | .162075            |
| 6.18<br>6.19 | 38.1924<br>38.3161 | 2.48596<br>2.48797   | 7.86130<br>7.86766 | 236.029<br>237.177 | 1.83511<br>1.83610 | 3.95363<br>3.95576 | 8.51784<br>8.52243  | .161812<br>.161551 |
| 6.20         | 38.4400            | 2.48998              | 7.87401            | 238.328            | 1.83709            | 3.95789            | 8.52702             | .161290            |
| 6.21         | 38.5641            | 2.49199              | 7.88036            | 239.483            | 1.83808            | 3.96002            | 8.53160             | .161031            |
| 6.22<br>6.23 | 38.6884<br>38.8129 | 2.49399<br>2.49600   | 7.88670<br>7.89303 | 240.642 $241.804$  | 1.83906<br>1.84005 | 3.96214<br>3.96427 | 8.53618<br>8.54075  | .160772<br>.160514 |
| 6.24         | 38.9376            | 2.49800              | 7.89937            | 242.971            | 1.84103            | 3.96638            | 8.54532             | .160256            |
| 6.25<br>6.26 | 39.0625<br>39.1876 | 2.50000<br>2.50200   | 7.90569<br>7.91202 | 244.141<br>245.314 | 1.84202<br>1.84300 | 3.96850<br>3.97062 | 8.54988<br>8.55444  | .160000<br>.159744 |
| 6.27         | 39.3129            | 2.50400              | 7.91833            | 246.492            | 1.84398            | 3.97273            | 8.55899             | .159490            |
| 6.28<br>6.29 | 39.4384<br>39.5641 | 2.50599<br>2.50799   | 7.92465<br>7.93095 | 247.673<br>248.858 | 1.84496<br>1.84594 | 3.97484<br>3.97695 | 8.56354<br>8.56808  | .159236<br>.158983 |
| 6.30         | 39.6900            | 2.50998              | 7.93725            | 250.047            | 1.84691            | 3.97906            | 8.57262             | .158730            |
| 6.31         | 39.8161            | 2.51197              | 7.94355            | 251.240            | 1.84789            | 3.98116            | 8.57715             | .158479            |
| 6.32<br>6.33 | 39.9424<br>40.0689 | 2.51396<br>2.51595   | 7.94984<br>7.95613 | 252.436<br>253.636 | 1.84887<br>1.84984 | 3.98326<br>3.98536 | 8.58168<br>8.58620  | .158228<br>.157978 |
| 6.34         | 40.1956            | 2.51794              | 7.96241            | 254.840            | 1.85082            | 3.98746            | 8.59072             | .157729            |
| 6.35<br>6.36 | 40.3225<br>40.4496 | 2.51992<br>2.52190   | 7.96869<br>7.97496 | 256.048<br>257.259 | 1.85179<br>1.85276 | 3.98956<br>3.99165 | 8.59524<br>8.59975  | .157480<br>.157233 |
| 6.37         | 40.5769            | 2.52389              | 7.98123            | 258.475            | 1.85373            | 3.99374            | 8.60425             | .156986            |
| 6.38<br>6.39 | 40.7044<br>40.8321 | 2.52587<br>2.52784   | 7.98749<br>7.99375 | 259.694<br>260.917 | 1.85470<br>1.85567 | 3.99583<br>3.99792 | 8.60875<br>8.61325  | .156740<br>.156495 |
| 6.40         | 40.9600            | 2.52982              | 8.00000            | 262.144            | 1.85664            | 4.00000            | 8.61774             | .156250            |
| 6.41         | 41.0881            | 2.53180              | 8.00625            | 263.375            | 1.85760            | 4.00208            | 8.62222             | .156006            |
| 6.42<br>6.43 | 41.2164<br>41.3449 | $2.53377 \\ 2.53574$ | 8.01249<br>8.01873 | 264.609<br>265.848 | 1.85857<br>1.85953 | 4.00416<br>4.00624 | 8.62671<br>8.63118  | .155763<br>.155521 |
| 6.44         | 41.4736            | 2.53772              | 8.02496            | 267.090            | 1.86050            | 4.00832            | 8.63566             | .155280            |
| 6.45<br>6.46 | 41.6025<br>41.7316 | 2.53969<br>2.54165   | 8.03119<br>8.03741 | 268.336<br>269.586 | 1.86146<br>1.86242 | 4.01039<br>4.01246 | 8.64012<br>8.64459  | .155039<br>.154799 |
| 6.47         | 41.8609            | 2.54362              | 8.04363            | 270.840            | 1.86338            | 4.01453            | 8.64904             | .154560            |
| 6.48<br>6.49 | 41.9904<br>42.1201 | 2.54558<br>2.54755   | 8.04984<br>8.05605 | 272.098<br>273.359 | 1.86434<br>1.86530 | 4.01660<br>4.01866 | 8.65350<br>8.65795  | .154321            |
| 6.50         | 42.2500            | 2.54951              | 8.06226            | 274.625            | 1.86626            | 4.02073            | 8.66239             | .153846            |
| n            | $n^2$              | $\sqrt{n}$           | $\sqrt{10 n}$      | $n^3$              | $\sqrt[3]{n}$      | $\sqrt[3]{10 n}$   | <sup>3</sup> √100 n | 1/n                |

| n                      | $n^2$                         | $\sqrt{n}$                                                   | $\sqrt{10 n}$                 | $n^3$                         | ν̈́n                          | $\sqrt[3]{10}$ n              | ₹100 n             | l n                           |
|------------------------|-------------------------------|--------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------|-------------------------------|
| 6.50                   | 42.2500                       | 2.54951                                                      | 8.06226                       | 274.625                       |                               | 4.92573                       |                    | .15.av46                      |
| $6.51 \\ 6.52 \\ 6.53$ | 42.3801                       | 2.55147                                                      | 8.06546                       | 275.894                       | 1.86721                       | 4.02279                       | 5.66683            | .153610                       |
|                        | 42.5104                       | 2.55343                                                      | 8.07465                       | 277.168                       | 1.86817                       | 4.02485                       | 5.67127            | .153374                       |
|                        | 42.6409                       | 2.55539                                                      | 8.08084                       | 278.445                       | 1.86912                       | 4.02690                       | 5.67576            | .153139                       |
| 6.54                   | 42.7716                       | 2.55734                                                      | 8.08703                       | 279.726                       | 1.87008                       | 4.02896                       | 5.68012            | .152905                       |
| 6.55                   | 42.9025                       | 2.55930                                                      | 8.09321                       | 281.011                       | 1.87103                       | 4.03101                       | 5.68455            | .152672                       |
| 6.56                   | 43.0336                       | 2.56125                                                      | 8.09938                       | 282.300                       | 1.87198                       | 4.03306                       | 5.68896            | .152439                       |
| 6.57                   | 43.1649                       | $\begin{array}{c} 2.56320 \\ 2.56515 \\ 2.56710 \end{array}$ | 8.10555                       | 283.593                       | 1.87293                       | 4.03511                       | 5.69338            | .152207                       |
| 6.58                   | 43.2964                       |                                                              | 8.11172                       | 284.890                       | 1.87388                       | 4.03715                       | 5.69775            | .151976                       |
| 6.59                   | 43.4281                       |                                                              | 8.11788                       | 286.191                       | 1.87483                       | 4.03920                       | 5.70219            | .151745                       |
| 6.60                   | 43.5600                       | 2.56905                                                      | 8.12404                       | 287.496                       | 1.87578                       | 4.04124                       | 5.70659            | .151515                       |
| 6.61                   | 43.6921                       | 2.57099                                                      | 8.13019                       | 288.805                       | 1.87672                       | 4.04728                       | 5.71895            | .151286                       |
| 6.62                   | 43.8244                       | 2.57294                                                      | 8.13634                       | 290.118                       | 1.87767                       | 4.04732                       | 5.71587            | .151467                       |
| 6.63                   | 43.9569                       | 2.57488                                                      | 8.14248                       | 291.434                       | 1.87862                       | 4.04735                       | 5.71976            | .156838                       |
| 6.64                   | 44.0896                       | 2.57682                                                      | 8.14862                       | 292,755                       | 1.87956                       | 4.04939                       | 8.72414            | .150602                       |
| 6.65                   | 44.2225                       | 2.57876                                                      | 8.15475                       | 294,080                       | 1.88050                       | 4.05142                       | 8.72552            | .150376                       |
| 6.66                   | 44.3556                       | 2.58070                                                      | 8.16088                       | 295,408                       | 1.88144                       | 4.05345                       | 8.73289            | .150150                       |
| 6.67                   | 44.4889                       | 2.58263                                                      | 8.16701                       | 296,741                       | 1.88239                       | 4.05548                       | 8.73726            | .149925                       |
| 6.68                   | 44.6224                       | 2.58457                                                      | 8.17313                       | 298,078                       | 1.88333                       | 4.65750                       | 8.74162            | .149761                       |
| 6.69                   | 44.7561                       | 2.58650                                                      | 8.17924                       | 299,418                       | 1.88427                       | 4.75953                       | 8.74508            | .149477                       |
| 6.70                   | 44.8900                       | 2.58844                                                      | 8.18535                       | 300.763                       | 1.58520                       | 4393155                       | 5.75(64            | .149254                       |
| 6.71                   | 45.0241                       | 2.59037                                                      | 8.19146                       | 302.112                       | 1.88614                       | 4.06557                       | \$.75469           | .149031                       |
| 6.72                   | 45.1584                       | 2.59230                                                      | 8.19756                       | 303.464                       | 1.88708                       | 4.06559                       | \$.75564           | .148810                       |
| 6.73                   | 45.2929                       | 2.59422                                                      | 8.20366                       | 304.821                       | 1.88801                       | 4.06760                       | \$.76338           | .148588                       |
| 6.74                   | 45.4276                       | 2.59615                                                      | 8.20975                       | 306.182                       | 1.88895                       | 4.06961                       | 8.76772            | .148368                       |
| 6.75                   | 45.5625                       | 2.59808                                                      | 8.21584                       | 307.547                       | 1.88988                       | 4.07163                       | 8.77205            | .148148                       |
| 6.76                   | 45.6976                       | 2.60000                                                      | 8.22192                       | 308.916                       | 1.89081                       | 4.07364                       | 8.77638            | .147929                       |
| 6.77                   | 45.8329                       | 2.60192                                                      | 8.22800                       | 310.289                       | 1.89175                       | 4.07564                       | 8,78071            | .147710                       |
| 6.78                   | 45.9684                       | 2.60384                                                      | 8.23408                       | 311.666                       | 1.89268                       | 4.07765                       | 8,78503            | .147493                       |
| 6.79                   | 46.1041                       | 2.60576                                                      | 8.24015                       | 313.047                       | 1.89361                       | 4.07965                       | 8,78935            | .147273                       |
| 6.80                   | 46.2400                       | 2.60768                                                      | 8.24621                       | 314.432                       | 1.89454                       | 4.051(6)                      | 5.73366            | .147059                       |
| 6.81                   | 46.3761                       | 2.60960                                                      | 8.25227                       | 315.821                       | 1.89546                       | 4.08365                       | 8.79797            | .146843                       |
| 6.82                   | 46.5124                       | 2.61151                                                      | 8.25833                       | 317.215                       | 1.89639                       | 4.08565                       | 8.80227            | .146628                       |
| 6.83                   | 46.6489                       | 2.61343                                                      | 8.26438                       | 318.612                       | 1.89732                       | 4.08763                       | 8.80657            | .146413                       |
| 6.84                   | 46.7856                       | 2.61534                                                      | 8.27043                       | 320.014                       | 1.89824                       | 4.08964                       | 8.81087            | .146199                       |
| 6.85                   | 46.9225                       | 2.61725                                                      | 8.27647                       | 321.419                       | 1.89917                       | 4.09163                       | 8.81516            | .145985                       |
| 6.86                   | 47.0596                       | 2.61916                                                      | 8.28251                       | 322.829                       | 1.90009                       | 4.09362                       | 8.81945            | .145773                       |
| 6.87                   | 47.1969                       | 2.62107                                                      | 8.28855                       | 324.243                       | 1.90102                       | 4.09561                       | 8.82373            | .145560                       |
| 6.88                   | 47.3344                       | 2.62298                                                      | 8.29458                       | 325.661                       | 1.90194                       | 4.09760                       | 8.82801            | .145349                       |
| 6.89                   | 47.4721                       | 2.62488                                                      | 8.30060                       | 327.083                       | 1.90286                       | 4.09958                       | 8.83228            | .145138                       |
| 6.90                   | 47.6100                       | 2.62679                                                      | 8.30662                       | 328.509                       | 1.90378                       | 4.10157                       | S.83656            | .144928                       |
| 6.91<br>6.92<br>6.93   | 47.7481<br>47.8864<br>48.0249 | 2.62869<br>2.63059<br>2.63249                                | 8.31264<br>8.31865<br>8.32466 | 329.939<br>331.374<br>332.813 | 1.90470<br>1.90562<br>1.90653 | 4.10355<br>4.10552<br>4.10750 | 5.54509<br>8.84934 | .14471\<br>.144509<br>.144300 |
| 6.94                   | 48.1636                       | 2.63439                                                      | 8.33067                       | 334.255                       | 1.90745                       | 4.10948                       | 8.85360            | .144092                       |
| 6.95                   | 48.3025                       | 2.63629                                                      | 8.33667                       | 335.702                       | 1.90837                       | 4.11145                       | 8.85785            | .143885                       |
| 6.96                   | 48.4416                       | 2.63818                                                      | 8.34266                       | 337.154                       | 1.90928                       | 4.11342                       | 8.86210            | .143678                       |
| 6.97                   | 48.5809                       | 2.64008                                                      | 8.34865                       | 338.609                       | 1.91019                       | 4.11539                       | 8.86634            | .143472                       |
| 6.98                   | 48.7204                       | 2.64197                                                      | 8.35464                       | 340.068                       | 1.91111                       | 4.11736                       | 8.87058            | .143266                       |
| 6.99                   | 48.8601                       | 2.64386                                                      | 8.36062                       | 341.532                       | 1.91202                       | 4.11932                       | 8.87481            | .143062                       |
| 7.00                   | 49.0000                       | 2.64575                                                      | 8.36660                       | 343.000                       | 1.91293                       | 4.12129                       | 8.87904            | .142857                       |
| n                      | $n^2$                         | $\sqrt{n}$                                                   | $\sqrt{10 n}$                 | $n^3$                         | $\sqrt[3]{n}$                 | $\sqrt[3]{10 n}$              | √100 n             | 1/n                           |

| n                    | $n^2$                         | $\sqrt{n}$                                                   | $\sqrt{10 n}$                 | $n^3$                         | $\sqrt[3]{n}$                 | $\sqrt[3]{10 n}$              | $\sqrt[3]{100 n}$             | 1/n                                    |
|----------------------|-------------------------------|--------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------------|
| 7.00                 | 49.0000                       | 2.64575                                                      | 5.36660                       | 343.000                       | 1.91293                       | 4.12129                       | S.87904                       | .142857                                |
| 7.01<br>7.02<br>7.03 | 49.1401<br>49.2804<br>49.4209 | $\substack{2.64764\\2.64953\\2.65141}$                       | 8.37257<br>8.37854<br>8.38451 | 344.472<br>345.948<br>347.429 | 1.91384<br>1.91475<br>1.91566 | 4.12325<br>4.12521<br>4.12716 | 8.88327<br>8.88749<br>8.89171 | $\substack{.142653\\.142450\\.142248}$ |
| 7.04                 | 49.5616                       | 2.65330                                                      | S.39047                       | 348.914                       | 1.91657                       | 4.12912                       | 8.89592                       | .142045                                |
| 7.05                 | 49.7025                       | 2.65518                                                      | S.39643                       | 350.403                       | 1.91747                       | 4.13107                       | 8.90013                       | .141844                                |
| 7.06                 | 49.8436                       | 2.65707                                                      | S.40238                       | 351.896                       | 1.91838                       | 4.13303                       | 8.90434                       | .141643                                |
| 7.07                 | 49.9849                       | 2.65895                                                      | 8.40833                       | 353.393                       | 1.91929                       | 4.13498                       | 8.90854                       | .141443                                |
| 7.08                 | 50.1264                       | 2.66083                                                      | 8.41427                       | 354.895                       | 1.92019                       | 4.13693                       | 8.91274                       | .141243                                |
| 7.09                 | 50.2681                       | 2.66271                                                      | 8.42021                       | 356.401                       | 1.92109                       | 4.13887                       | 8.91693                       | .141044                                |
| 7.10                 | 50.4100                       | 2.6645S                                                      | 8.42615                       | 357.911                       | 1.92200                       | 4.14082                       | 8.92112                       | .140845                                |
| 7.11                 | 50.5321                       | 2.66646                                                      | 8.43208                       | 359.425                       | 1.92290                       | 4.14276                       | 8.92531                       | .140647                                |
| 7.12                 | 50.6944                       | 2.66833                                                      | 8.43801                       | 360.944                       | 1.92380                       | 4.14470                       | 8.92949                       | .140449                                |
| 7.13                 | 50.8369                       | 2.67021                                                      | 8.44393                       | 362.467                       | 1.92470                       | 4.14664                       | 8.93367                       | .140252                                |
| 7.14                 | 50.9796                       | 2.67208                                                      | 8.44985                       | 363,994                       | 1.92560                       | 4.14858                       | 8.93784                       | .140056                                |
| 7.15                 | 51.1225                       | 2.67395                                                      | 8.45577                       | 365,526                       | 1.92650                       | 4.15052                       | 8.94201                       | .139860                                |
| 7.16                 | 51.2656                       | 2.67582                                                      | 8.46168                       | 367,062                       | 1.92740                       | 4.15245                       | 8.94618                       | .139665                                |
| 7.17                 | 51.4089                       | $\begin{array}{c} 2.67769 \\ 2.67955 \\ 2.68142 \end{array}$ | 8.46759                       | 368.602                       | 1.92829                       | 4.15438                       | 8.95034                       | .139470                                |
| 7.18                 | 51.5524                       |                                                              | 8.47349                       | 370.146                       | 1.92919                       | 4.15631                       | 8.95450                       | .139276                                |
| 7.19                 | 51.6961                       |                                                              | 8.47939                       | 371.695                       | 1.93008                       | 4.15824                       | 8.95866                       | .139082                                |
| 7.20                 | 51.8400                       | 2.68328                                                      | 8.48528                       | 373.248                       | 1.93098                       | 4.16017                       | 8.96281                       | .138889                                |
| 7.21                 | 51.9841                       | $\begin{array}{c} 2.68514 \\ 2.68701 \\ 2.68887 \end{array}$ | 8.49117                       | 374.805                       | 1.93187                       | 4.16209                       | 8.96696                       | .138696                                |
| 7.22                 | 52.1284                       |                                                              | 8.49706                       | 376.367                       | 1.93277                       | 4.16402                       | 8.97110                       | .138504                                |
| 7.23                 | 52.2729                       |                                                              | 8.50294                       | 377.933                       | 1.93366                       | 4.16594                       | 8.97524                       | .138313                                |
| 7.24                 | 52.4176                       | 2.69072                                                      | 8.50882                       | 379.503                       | 1.93455                       | 4.16786                       | 8.97938                       | .138122                                |
| 7.25                 | 52.5625                       | 2.69258                                                      | 8.51469                       | 381.078                       | 1.93544                       | 4.16978                       | 8.98351                       | .137931                                |
| 7.26                 | 52.7076                       | 2.69444                                                      | 8.52056                       | 382.657                       | 1.93633                       | 4.17169                       | 8.98764                       | .137741                                |
| 7.27                 | 52.8529                       | 2.69629                                                      | 8.52643                       | 384.241                       | 1.93722                       | 4.17361                       | 8.99176                       | .137552                                |
| 7.28                 | 52.9984                       | 2.69815                                                      | 8.53229                       | 385.828                       | 1.93810                       | 4.17552                       | 8.99588                       | .137363                                |
| 7.29                 | 53.1441                       | 2.70000                                                      | 8.53815                       | 387.420                       | 1.93899                       | 4.17743                       | 9.00000                       | .137174                                |
| 7.30                 | 53.2900                       | 2.70185                                                      | 8.54400                       | 389.017                       | 1.93988                       | 4.17934                       | 9.00411                       | .136986                                |
| 7.31                 | 53.4361                       | 2.70370                                                      | 8.54985                       | 390.618                       | 1.94076                       | 4.18125                       | 9.00822                       | .136799                                |
| 7.32                 | 53.5824                       | 2.70555                                                      | 8.55570                       | 392.223                       | 1.94165                       | 4.18315                       | 9.01233                       | .136612                                |
| 7.33                 | 53.7289                       | 2.70740                                                      | 8.56154                       | 393.833                       | 1.94253                       | 4.18506                       | 9.01643                       | .136426                                |
| 7.34                 | 53.8756                       | 2.70924                                                      | 8.56738                       | 395.447                       | 1.94341                       | 4.18696                       | 9.02053                       | .136240                                |
| 7.35                 | 54.0225                       | 2.71109                                                      | 8.57321                       | 397.065                       | 1.94430                       | 4.18886                       | 9.02462                       | .136054                                |
| 7.36                 | 54.1696                       | 2.71293                                                      | 8.57904                       | 398.688                       | 1.94518                       | 4.19076                       | 9.02871                       | .135870                                |
| 7.37                 | 54.3169                       | $\begin{array}{c} 2.71477 \\ 2.71662 \\ 2.71846 \end{array}$ | 8.58487                       | 400.316                       | 1.94606                       | 4.19266                       | 9.03280                       | .135685                                |
| 7.38                 | 54.4644                       |                                                              | 8.59069                       | 401.947                       | 1.94694                       | 4.19455                       | 9.03689                       | .135501                                |
| 7.39                 | 54.6121                       |                                                              | 8.59651                       | 403.583                       | 1.94782                       | 4.19644                       | 9.04097                       | .135318                                |
| 7.40                 | 54.7600                       | 2.72029                                                      | 8.60233                       | 405.224                       | 1.94870                       | 4.19834                       | 9.04504                       | .135135                                |
| 7.41                 | 54.9081                       | 2.72213                                                      | 8.60814                       | 406.869                       | 1.94957                       | 4.20023                       | 9.04911                       | .134953                                |
| 7.42                 | 55.0564                       | 2.72397                                                      | 8.61394                       | 408.518                       | 1.95045                       | 4.20212                       | 9.05318                       | .134771                                |
| 7.43                 | 55.2049                       | 2.72580                                                      | 8.61974                       | 410.172                       | 1.95132                       | 4.20400                       | 9.05725                       | .134590                                |
| 7.44                 | 55.3536                       | 2.72764                                                      | 8.62554                       | 411.831                       | 1.95220                       | 4.20589                       | 9.06131                       | .134409                                |
| 7.45                 | 55.5025                       | 2.72947                                                      | 8.63134                       | 413.494                       | 1.95307                       | 4.20777                       | 9.06537                       | .134228                                |
| 7.46                 | 55.6516                       | 2.73130                                                      | 8.63713                       | 415.161                       | 1.95395                       | 4.20965                       | 9.06942                       | .134048                                |
| 7.47                 | 55.8009                       | 2.73313                                                      | 8.64292                       | 416.833                       | 1.95482                       | 4.21153                       | 9.07347                       | .133869                                |
| 7.48                 | 55.9504                       | 2.73496                                                      | 8.64870                       | 418.509                       | 1.95569                       | 4.21341                       | 9.07752                       | .133690                                |
| 7.49                 | 56.1001                       | 2.73679                                                      | 8.65448                       | 420.190                       | 1.95656                       | 4.21529                       | 9.08156                       | .133511                                |
| 7.50                 | 56.2500                       | 2.73861                                                      | 8.66025                       | 421.875                       | 1.95743                       | 4.21716                       | 9.08560                       | .133333                                |
| n                    | $n^2$                         | $\sqrt{n}$                                                   | $\sqrt{10 n}$                 | $n^3$                         | ∛re                           | $\sqrt[3]{10 n}$              | $\sqrt[3]{100} n$             | 1/n                                    |

|                     | $n^2$                         | $\sqrt{n}$                    | 110 n                        | $n^{\circ}$                   | $\sqrt[3]{n}$                    | $\sqrt[3]{10 n}$              | ₹100 n             | 1 n                |
|---------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------------|-------------------------------|--------------------|--------------------|
| 7.50                | 56.2500                       | 2.73861                       | 8.66025                      | 21.875                        | .95743                           | .21716                        | 1.08560            | 333.13             |
| 7.51                | 56.4001                       | 2.74044                       |                              | 423,565                       | .95830                           | .21904                        | .05964             | 33154              |
| 7.52                | 56.5504                       | 2.74226                       |                              | 425,259                       | .95917                           | .22091                        | .09367             | 32979              |
| 7.53                | 56.7009                       | 2.74408                       |                              | 426,958                       | .96004                           | .22278                        | .09770             | 32802              |
| 7.54                | 56.8516                       | 2.74591                       | .68332                       | 28.661                        | .96091                           | .22465                        | .10173             | 32626              |
| 7.55                | 57.0025                       | 2.74773                       | .68907                       | 30.369                        | .96177                           | .22651                        | .10375             | 13245              |
| 7.56                | 57.1536                       | 2.74955                       | .69483                       | 32.081                        | .96264                           | .22838                        | .10977             | 132275             |
| 7.57                | 57.3049                       | 2.75136                       | .70057                       | 33.798                        | .96350                           | 4.23024                       | 111378             | 132100             |
| 7.58                | 57.4564                       | 2.75318                       | .70632                       | 35.520                        | .96437                           | :.23210                       | 111779             | 131926             |
| 7.59                | 57.6081                       | 2.75500                       | .71206                       | 37.245                        | .96523                           | :.23396                       | 112180             | 131752             |
| 7.60                | 57.7600                       | 2.75681                       | .71780                       | 38.976                        | .96610                           | 23582                         | .12581             | 131579             |
| 7.61                | 57.9121                       | 2.75862                       | .72353                       | 440.711                       | .96696                           | .23768                        | 1.12981            | 131406             |
| 7.62                | 58.0644                       | 2.76043                       | .72926                       | 2.451                         | .96782                           | .23954                        | 1.13380            | 131234             |
| 7.63                | 58.2169                       | 2.76225                       | .73499                       | 444.195                       | .96868                           | 4.24139                       | 9.13780            | 131062             |
| 7.64                | 58.3696                       | 2.76405                       | 1.74071                      | 445.944                       | .96954                           | 4.24324                       | 9.14179            | 130890             |
| 7.65                | 58.5225                       | 2.76586                       | 1.74643                      | 447.697                       | .97040                           | 4.24509                       | 1.14577            | 130719             |
| 7.66                | 58.6756                       | 2.76767                       | 1.75214                      | 449.455                       | .97126                           | 4.24694                       | 9.14976            | 130348             |
| 7.67                | 58.8289                       | 2.76948                       | 3.75785                      | .51.218                       | .97211                           | .24879                        | 9.15374            | .130378            |
| 7.68                | 58.9824                       | 2.77128                       | 3.76356                      | 452.985                       | .97297                           | .25063                        | 9.15771            | 130208             |
| 7.69                | 59,1361                       | 2.77308                       | 3.76926                      | 454.757                       | .97383                           | .25248                        | 9.16169            | .130039            |
| 7.70                | 59.2900                       | 2.77489                       | 8.77496                      | 456.533                       | 1.97468                          | 4.25432                       | 9.16566            | 129870             |
| 7.71                | 59.4441                       | 2.77669                       | 8.78066                      | 458.314                       | .97554                           | 4.25616                       | 9.16962            | 129702             |
| 7.72                | 59.5984                       | 2.77849                       | 8.78635                      | 460.100                       | 1.97639                          | 4.25800                       | 9.17359            | 129534             |
| 7.73                | 59.7529                       | 2.78029                       | 8.79204                      | 461.890                       | 1.97724                          | 4.25984                       | 9.17754            | 129366             |
| 7.74                | 59.9076                       | 2.78209                       | 8.79773                      | 463.685                       | 1.97809                          | 4.26167                       | 9.18150            | 129199             |
| 7.75                | 60.0625                       | 2.78388                       | 8.80341                      | 465.484                       | 1.97895                          | 4.26351                       | 9.18545            | 12903              |
| 7.76                | 60.2176                       | 2.78568                       | 8.80909                      | 467.289                       | 1.97980                          | 4.26534                       | 9.18940            | 128866             |
| 7.77                | 60.3729                       | 2.78747                       | 8.81476                      | 469.09'                       | 1.98065                          | 4.26717                       | 9.19335            | 128700             |
| 7.78                | 60.5284                       | 2.78927                       | 8.82043                      | 470.911                       | 1.98150                          | 4.26900                       | 9.19729            | 128535             |
| 7.79                | 60.6841                       | 2.79106                       | 8.82610                      | 472.729                       | .98234                           | 4.27083                       | 9.20123            | 128370             |
| 7.80                | 60.8400                       | 2.79285                       | .8317 $\epsilon$             | 474.552                       | 1.98319                          | 4.27266                       | 9.20516            | 128205             |
| 7.81<br>.82<br>7.83 | 60.9961<br>61.1524<br>61.3089 | 2.79464<br>2.79643<br>2.79821 | 8.83742<br>8.84308<br>8.848  | 476.380<br>478.212<br>480.049 | 1.9\$404<br>1.9\$489<br>1.9\$573 | 4.27445<br>4.27631<br>4.27813 | 9,21302<br>9,21695 | 127877<br>12771    |
| 7.84                | 61.4656                       | 2.80000                       | 8.85438                      | 481.890                       | 1.98658                          | 4.27995                       | 9.2208'            | 127551             |
| 7.85                | 61.6225                       | 2.80179                       | 8.86002                      | 483.73                        | 1.98742                          | 4.281                         | 9.22479            | 127389             |
| 7.86                | 61.7796                       | 2.80357                       | 8.86566                      | 485.588                       | 1.98826                          | 4.28359                       | 9.22871            | 127226             |
| 7.87                | 61.9369                       | 2.80535                       | 8.8713                       | 487.443                       | 1.98911                          | 4.28540                       | 9.23262            | 127065             |
| 7.88                | 62.0944                       | 2.80713                       | 8.87694                      | 489.304                       | 1.98995                          | 4.28722                       | 9.23653            | 12390-             |
| 7.89                | 62.2521                       | 2.80891                       | 8.8825                       | 491.169                       | 1.99079                          | 4.28903                       | 9.24043            | 126743             |
| 7.90                | 62.4100                       | 2.8106                        | 8.8881                       | 493.039                       | 1.99163                          | 4.29084                       | 9.24434            | 126582             |
| 7.92                | 62.5681<br>62.7264<br>62.8849 | 2.8124'<br>2.81425<br>2.81603 | 8.89382<br>8.89944<br>8.9050 | 494.91<br>496.793<br>498.677  | 1.99247<br>1.99331<br>1.99415    | 4.29:<br>4.29446<br>4.29627   | 9.25213<br>9.25602 | .126263<br>.126103 |
| 7.94                | 63.0436                       | 2.8178(                       | 8.9106'                      | 500.566                       | 1.99499                          | 4.29807                       | 9.25 <b>99</b>     | .125948            |
| 7.95                | 63.2025                       | 2.8195'                       | 8.9162;                      | 502.460                       | 1.99582                          | 4.29987                       | 9.26380            | .125786            |
| 7.96                | 63.3616                       | 2.8213£                       | 8.92188                      | 504.358                       | 1.99666                          | 4.30168                       | 9.26768            | .125628            |
| 7.97                | 63.5209                       | 2.8231                        | 8.9274!                      | 506.262                       | 1.99750                          | 4.3034                        | 9.27156            | .12547             |
| 7.98                | 63.6804                       | 2.82489                       | 8.93308                      | 508.17                        | 1.99833                          | 4.30528                       | 9.27544            | .12531             |
| 7.99                | 63.8401                       | 2.8266€                       | 8.93868                      | 510.082                       | 1.9991                           | 4.30707                       | 9.2793             | .125156            |
| 8.00                | 64.0000                       | 2.8284;                       | 8.9442                       | 512.000                       | 2.00000                          | 4.30887                       | 9.2831             | .12500             |
|                     | n²                            | $\sqrt{n}$                    | $\sqrt{10 n}$                | $n^{\epsilon}$                |                                  | √10 n                         | <b>√100</b>        | 1/n                |

| n              | $n^2$              | $\sqrt{n}$         | $\sqrt{10 n}$      | $n^3$              | $\sqrt[3]{n}$      | $\sqrt[3]{10 n}$   | <sup>3</sup> √100 n | 7/                 |
|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|
| 8.00           | 64,0000            | 2.82843            | 8.94427            | 512,000            | 2,00000            | 4.30887            |                     | 1/n                |
| 8.01           | 64.1601            | 2.83019            | 8.94986            | 513.922            | 2.00083            | 4.31066            | 9.28318             | .125000            |
| 8.02           | 64.3204            | 2.83196            | 8.95545            | 515.850            | 2.00167            | 4.31246            | 9.29091             | .124844<br>.124688 |
| 8.03           | 64.4809            | 2.83373            | 8.96103            | 517.782            | 2.00250            | 4.31425            | 9.29477             | .124533            |
| 8.04<br>8.05   | 64.6416<br>64.8025 | 2.83549<br>2.83725 | 8.96660<br>8.97218 | 519.718<br>521.660 | 2.00333            | 4.31604<br>4.31783 | 9.29862<br>9.30248  | -124378<br>-124224 |
| 8.06           | 64.9636            | 2.83901            | 8.97775            | 523.607            | 2.00499            | 4.31961            | 9.30633             | .124069            |
| 8.07<br>8.08   | 65.1249<br>65.2864 | 2.84077<br>2.84253 | 8.98332<br>8.98888 | 525.558<br>527.514 | 2.00582<br>2.00664 | 4.32140<br>4.32318 | 9.31018<br>9.31402  | .123916<br>.123762 |
| 8.09           | 65.4481            | 2.84429            | 8.99444            | 529.475            | 2.00747            | 4.32497            | 9.31786             | .123609            |
| 8.10           | 65.6100            | 2.84605            | 9.00000            | 531.441            | 2.00830            | 4.32675            | 9.32170             | .123457            |
| 8.11<br>8.12   | 65.7721<br>65.9344 | 2.84781<br>2.84956 | 9.00555<br>9.01110 | 533.412<br>535.387 | 2.00912<br>2.00995 | 4.32853<br>4.33031 | 9.32553<br>9.32936  | -123305            |
| 8.13           | 66.0969            | 2.85132            | 9.01665            | 537.368            | 2.01078            | 4.33208            | 9.33319             | .123153<br>.123001 |
| 8.14           | 66.2596            | 2.85307            | 9.02219            | 539.353            | 2.01160            | 4.33386            | 9.33702             | .122850            |
| 8.15<br>8.16   | 66.4225<br>66.5856 | 2.85482<br>2.85657 | 9.02774<br>9.03327 | 541.343<br>543.338 | 2.01242<br>2.01325 | 4.33563            | 9.34084<br>9.34466  | .122699<br>.122549 |
| 8.17           | 66.7489            | 2.85832            | 9.03881            | 545.339            | 2.01407            | 4.33918            | 9.34847             | .122399            |
| 8.18<br>8.19   | 66.9124<br>67.0761 | 2.86007<br>2.86182 | 9.04434<br>9.04986 | 547.343<br>549.353 | 2.01489<br>2.01571 | 4.34095            | 9.35229<br>9.35610  | .122249            |
| 8.20           | 67.2400            | 2.86356            | 9,05539            | 551.368            | 2.01653            | 4.34448            | 9.35990             | .121951            |
| 8.21           | 67.4041            | 2.86531            | 9.06091            | 553.388            | 2.01735            | 4.34625            | 9.36370             | .121803            |
| 8.22<br>8.23   | 67.5684<br>67.7329 | 2.86705<br>2.86880 | 9.06642<br>9.07193 | 555.412<br>557.442 | 2.01817<br>2.01899 | 4.34801<br>4.34977 | 9.36751<br>9.37130  | .121655<br>.121507 |
| 8.24           | 67.8976            | 2.87054            | 9.07744            | 559.476            | 2.01980            | 4.35153            | 9.37510             | .121359            |
| 8.25<br>8.26   | 68.0625<br>68.2276 | 2.87228<br>2.87402 | 9.08295<br>9.08845 | 561.516<br>563.560 | 2.02062<br>2.02144 | 4.35329<br>4.35505 | 9.37889             | .121212            |
| 8.27           | 68.3929            | 2.87576            | 9.09395            | 565,609            | 2.02144            | 4.35681            | 9.38268             | .121065            |
| 8.28           | 68.5584            | 2.87750            | 9.09945            | 567.664            | 2.02307            | 4.35856            | 9.39024             | .120773            |
| 8.29           | 68.7241<br>68.8900 | 2.87924            | 9.10494            | 569.723<br>571.787 | 2.02388            | 4.36032            | 9.39402             | .120627            |
| 8.31           | 69.0561            | 2.88271            | 9.11592            | 573.856            | 2.02469            | 4.36382            | 9.39780             | .120482            |
| 8.32           | 69.2224            | 2.88444            | 9.12140            | 575.930            | 2.02632            | 4.36557            | 9.40534             | .120337<br>.120192 |
| 8.33           | 69.3889            | 2.88617            | 9.12688            | 578.010            | 2.02713            | 4.36732            | 9.40911             | .120048            |
| 8.34<br>8.35   | 69.5556<br>69.7225 | 2.88791<br>2.88964 | 9.13236<br>9.13783 | 580.094<br>582.183 | 2.02794<br>2.02875 | 4.36907<br>4.37081 | 9.41287<br>9.41663  | .119904            |
| 8.36           | 69.8896            | 2.89137            | 9.14330            | 584.277            | 2.02956            | 4.37256            | 9.42039             | .119617            |
| 8.37<br>8.38   | 70.0569<br>70.2244 | 2.89310<br>2.89482 | 9.14877<br>9.15423 | 586.376<br>588.480 | 2.03037<br>2.03118 | 4.37430<br>4.37604 | 9.42414<br>9.42789  | .119474            |
| 8.39           | 70.3921            | 2.89655            | 9.15969            | 590.590            | 2.03199            | 4.37778            | 9.43164             | .119190            |
| 8.40           | 70.5600            | 2.89828            | 9.16515            | 592.704            | 2.03279            | 4.37952            | 9.43539             | .119048            |
| 8.41<br>8.42   | 70.7281<br>70.8964 | 2.90000<br>2.90172 | 9.17061<br>9.17606 | 594.823<br>596.948 | 2.03360<br>2.03440 | 4.38126<br>4.38299 | 9.43913<br>9.44287  | .118906<br>.118765 |
| 8.43           | 71.0649            | 2.90345            | 9.18150            | 599.077            | 2.03521            | 4.38473            | 9.44661             | .118624            |
| 8.44<br>8.45   | 71.2336<br>71.4025 | 2.90517<br>2.90689 | 9.18695            | 601.212<br>603.351 | 2.03601<br>2.03682 | 4.38646            | 9.45034             | .118483            |
| 8.46           | 71.4025            | 2.90889            | 9.19239<br>9.19783 | 605.496            | 2.03682            | 4.38819<br>4.38992 | 9.45407<br>9.45780  | .118343            |
| 8.47           | 71.7409            | 2.91033            | 9.20326            | 607.645            | 2.03842            | 4.39165            | 9.46152             | .118064            |
| 8.48<br>8.49   | 71.9104<br>72.0801 | 2.91204<br>2.91376 | 9.20869<br>9.21412 | 609.800<br>611.960 | 2.03923<br>2.04003 | 4.39338<br>4.39510 | 9.46525<br>9.46897  | .117925<br>.117786 |
| 8.50           | 72.2500            | 2.91548            | 9.21954            | 614.125            | 2.04083            | 4.39683            | 9.47268             | .117647            |
| $\overline{n}$ | $n^2$              | $\sqrt{n}$         | $\sqrt{10 n}$      | $n^3$              | $\sqrt[3]{n}$      | $\sqrt[3]{10 n}$   | $\sqrt[3]{100 n}$   | 1/n                |

| n                    | $n^2$                         | $\sqrt{n}$                    | $\sqrt{10 n}$                 | $n^3$              | \n\                                                          | $\sqrt{10n}$                  | √100 n                        | l n                           |
|----------------------|-------------------------------|-------------------------------|-------------------------------|--------------------|--------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 8.50                 | 72,2500                       | 2.91548                       | 9.21954                       | 614.125            | 2.04983                                                      | 4.39683                       | 9.47265                       | .117647                       |
| 5.51                 | 72.4201                       | 2.91719                       | 9.22497                       | 616.295            | 2.04163                                                      | 4.39855                       | 9.47940                       | .117.56%                      |
| 5.52                 | 72.5904                       | 2.91890                       | 9.23038                       | 618.470            | 2.04243                                                      | 4.49928                       | 9.48911                       | .117.371                      |
| 5.53                 | 72.7609                       | 2.92062                       | 9.23580                       | 620.650            | 2.04323                                                      | 4.49200                       | 9.48381                       | .117.233                      |
| 8.54                 | 72.9316                       | 2.92233                       | 9.24121                       | 622.836            | 2.04402                                                      | 4.40372                       | 9.48752                       | .117696                       |
| 8.55                 | 73.1025                       | 2.92404                       | 9.24662                       | 625.026            | 2.04452                                                      | 4.40513                       | 9.49122                       | .116539                       |
| 8.56                 | 73.2736                       | 2.92575                       | 9.25203                       | 627.222            | 2.04562                                                      | 4.40715                       | 9.49492                       | .116822                       |
| 8.57                 | 73.4449                       | 2.92746                       | 9.25743                       | 629.423            | 2.04641                                                      | 4.40887                       | 9.498 <b>61</b>               | .116686                       |
| 8.58                 | 73.6164                       | 2.92916                       | 9.26283                       | 631.629            | 2.04721                                                      | 4.41058                       | 9.50231                       | .116350                       |
| 8.59                 | 73.7881                       | 2.93087                       | 9.26823                       | 633.840            | 2.04801                                                      | 4.41220                       | 9.50600                       | .116414                       |
| 8.60                 | 73.9600                       | 2.93258                       | 9.27362                       | 636.050            | 2.04550                                                      | 4.41400                       | 9.50960                       | .116279                       |
| 8.61                 | 74.1321                       | 2.93428                       | 9.27901                       | 635.277            | 2.04959                                                      | 4.41571                       | 9.51337                       | .116144                       |
| 8.62                 | 74.3044                       | 2.93598                       | 9.28440                       | 640.504            | 2.05c39                                                      | 4.41742                       | 9.51705                       | .116009                       |
| 8.63                 | 74.4769                       | 2.93769                       | 9.28978                       | 642.736            | 2.05118                                                      | 4.41913                       | 9.52073                       | .115873                       |
| 8.64                 | 74.6496                       | 2.93939                       | 9.29516                       | 644.973            | 2.05197                                                      | 4.42084                       | 9.52441                       | .115741                       |
| 8.65                 | 74.8225                       | 2.94109                       | 9.30054                       | 647.215            | 2.05276                                                      | 4.42254                       | 9.52565                       | .115607                       |
| 8.66                 | 74.9956                       | 2.94279                       | 9.30591                       | 649.462            | 2.05355                                                      | 4.42425                       | 9.53175                       | .115473                       |
| 8.67                 | 75.1689                       | 2.94449                       | 9.31128                       | 651.714            | 2.05434                                                      | 4.42595                       | 9.53542                       | .115340                       |
| 8.68                 | 75.3424                       | 2.94618                       | 9.31665                       | 653.972            | 2.05513                                                      | 4.42765                       | 9.53908                       | .115207                       |
| 8.69                 | 75.5161                       | 2.94788                       | 9.32202                       | 656.235            | 2.05592                                                      | 4.42935                       | 9.54274                       | .115075                       |
| 8.70                 | 75.6900                       | 2.94958                       | 9.32738                       | 658.503            | 2.05671                                                      | 4.43105                       | 9.54640                       | .114943                       |
| 8.71<br>8.72<br>8.73 | 75.8641<br>76.0384<br>76.2129 | 2.95127<br>2.95296<br>2.95466 | 9.33274<br>9.33809<br>9.34345 | 663.055<br>665.339 | 2.05750<br>2.05828<br>2.05907                                | 4.43274<br>4.43444<br>4.43613 | 9.55371<br>9.55371<br>9.55736 | .114511<br>.114679<br>.114548 |
| 8.74                 | 76.3876                       | 2.95635                       | 9.34880                       | 667.628            | 2.05986                                                      | 4.43783                       | 9.56101                       | .114416                       |
| 8.75                 | 76.5625                       | 2.95804                       | 9.35414                       | 669.922            | 2.06064                                                      | 4.43952                       | 9.56466                       | .114256                       |
| 8.76                 | 76.7376                       | 2.95973                       | 9.35949                       | 672.221            | 2.06143                                                      | 4.44121                       | 9.56830                       | .114155                       |
| 8.77                 | 76.9129                       | 2.96142                       | 9.36483                       | 674.526            | 2.06221                                                      | 4.44290                       | 9.57194                       | .114025                       |
| 8.78                 | 77.0884                       | 2.96311                       | 9.37017                       | 676.836            | 2.06299                                                      | 4.44459                       | 9.57557                       | .113895                       |
| 8.79                 | 77.2641                       | 2.96479                       | 9.37550                       | 679.151            | 2.06378                                                      | 4.44627                       | 9.57021                       | .113766                       |
| 8.80                 | 77.4400                       | 2.96648                       | 9.38083                       | 681.472            | 2.06456                                                      | 4.44796                       | 9.55254                       | .113696                       |
| 8.81                 | 77.6161                       | 2.96816                       | 9.38616                       | 683.798            | 2.06534                                                      | 4.44964                       | 9.55647                       | .113507                       |
| 8.82                 | 77.7924                       | 2.96985                       | 9.39149                       | 686.129            | 2.06612                                                      | 4.45133                       | 9.59009                       | .113379                       |
| 8.83                 | 77.9689                       | 2.97153                       | 9.39681                       | 688.465            | 2.06690                                                      | 4.45301                       | 9.59372                       | .113230                       |
| 8.84                 | 78.1456                       | 2.97321                       | 9.40213                       | 690.807            | 2.06768                                                      | 4.45469                       | 9.59734                       | .113122                       |
| 8.85                 | 78.3225                       | 2.97489                       | 9.40744                       | 693.154            | 2.06846                                                      | 4.45637                       | 9.60095                       | .112994                       |
| 8.86                 | 78.4996                       | 2.97658                       | 9.41276                       | 695.506            | 2.06924                                                      | 4.45805                       | 9.60457                       | .112567                       |
| 8.87                 | 78.6769                       | 2.97825                       | 9.41807                       | 697.864            | 2.07002                                                      | 4.45972                       | 9.60818                       | .112740                       |
| 8.88                 | 78.8544                       | 2.97993                       | 9.42338                       | 700.227            | 2.07080                                                      | 4.46140                       | 9.61179                       | .112613                       |
| 8.89                 | 79.0321                       | 2.98161                       | 9.42868                       | 702.595            | 2.07157                                                      | 4.46307                       | 9.61540                       | .112486                       |
| 8.90                 | 79.2100                       | 2.98329                       | 9.43398                       | 704.969            | 2.07235                                                      | 4.46475                       | 9.61900                       | .112360                       |
| 8.91                 | 79.3881                       | 2.98496                       | 9.43928                       | 707.348            | 2.07313                                                      | 4.46642                       | 9.62260                       | .112233                       |
| 8.92                 | 79.5664                       | 2.98664                       | 9.44458                       | 709.732            | 2.07390                                                      | 4.46509                       | 9.62620                       | .112168                       |
| 8.93                 | 79.7449                       | 2.98831                       | 9.44987                       | 712.122            | 2.07468                                                      | 4.46976                       | 9.62980                       | .111982                       |
| 8.94                 | 79.9236                       | 2.98998                       | 9.45516                       | 714.517            | 2.07545                                                      | 4.47142                       | 9.63339                       | .111857                       |
| 8.95                 | 80.1025                       | 2.99166                       | 9.46044                       | 716.917            | 2.07622                                                      | 4.47309                       | 9.63698                       | .111732                       |
| 8.96                 | 80.2816                       | 2.99333                       | 9.46573                       | 719.323            | 2.07700                                                      | 4.47476                       | 9.64057                       | .111607                       |
| 8.97                 | 80.4609                       | 2.99500                       | 9.47101                       | 721.734            | $\begin{array}{c} 2.07777 \\ 2.07854 \\ 2.07931 \end{array}$ | 4.47642                       | 9.64415                       | .111483                       |
| 8.98                 | 80.6404                       | 2.99666                       | 9.47629                       | 724.151            |                                                              | 4.47808                       | 9.64774                       | .111359                       |
| 8.99                 | 80.8201                       | 2.99833                       | 9.48156                       | 726.573            |                                                              | 4.47974                       | 9.65132                       | .111235                       |
| 9.00                 | 81.0000                       | 3.00000                       | 9.48683                       | 729.000            | 2.08008                                                      | 4.48140                       | 9.65489                       | .111111                       |
| n                    | $n^2$                         | $\sqrt{n}$                    | $\sqrt{10 n}$                 | $n^3$              | $\sqrt[3]{n}$                                                | $\sqrt[3]{10 n}$              | √100 n                        | 1 'n                          |

| n    | $n^2$    | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$    | $\sqrt[3]{n}$                   | $\sqrt[3]{10 n}$   | $\sqrt[3]{100 n}$ | 1/n     |
|------|----------|------------|---------------|----------|---------------------------------|--------------------|-------------------|---------|
| 9.00 | 81.0000  | 3.00000    | 9.48683       | 729.000  | 2.08008                         | 4.48140            | 9.65459           | .111111 |
| 9.01 | 81.1801  | 3.00167    | 9.49210       | 731.433  | 2.08085                         | 4.48306            | 9.65847           | .110988 |
| 9.02 | 81.3604  | 3.00333    | 9.49737       | 733.871  | 2.08162                         | 4.48472            | 9.66204           | .110865 |
| 9.03 | 81.5409  | 3.00500    | 9.50263       | 736.314  | 2.08239                         | 4.48638            | 9.66561           | .110742 |
| 9.04 | \$1.7216 | 3.00666    | 9.50789       | 738.763  | 2.08316                         | 4.48803            | 9.66918           | .110619 |
| 9.05 | \$1.9025 | 3.00\$32   | 9.51315       | 741.218  | 2.08393                         | 4.48969            | 9.67274           | .110497 |
| 9.06 | \$2.0836 | 3.00998    | 9.51840       | 743.677  | 2.08470                         | 4.49134            | 9.67630           | .110375 |
| 9.07 | 82.2649  | 3.01164    | 9.52365       | 746.143  | 2.08546                         | 4.49299            | 9.67986           | .110254 |
| 9.08 | 82.4464  | 3.01330    | 9.52890       | 748.613  | 2.08623                         | 4.49464            | 9.68342           | .110132 |
| 9.09 | 82.6281  | 3.01496    | 9.53415       | 751.089  | 2.08699                         | 4.49629            | 9.68697           | .110011 |
| 9.10 | 82.5100  | 3.01662    | 9.53939       | 753.571  | 2.08776                         | 4.49794            | 9.69052           | .103890 |
| 9.11 | \$2.9921 | 3.01828    | 9.54463       | 756.058  | 2.08852                         | 4.49959            | 9.69407           | .109769 |
| 9.12 | 83.1744  | 3.01993    | 9.54987       | 758.551  | 2.08929                         | 4.50123            | 9.69762           | .109649 |
| 9.13 | 83.3569  | 3.02159    | 9.55510       | 761.048  | 2.09005                         | 4.50288            | 9.70116           | .109529 |
| 9.14 | \$3.5396 | 3.02324    | 9.56033       | 763.552  | 2.09081                         | 4.50452            | 9.70470           | .109409 |
| 9.15 | \$3.7225 | 3.02490    | 9.56556       | 766.061  | 2.09158                         | 4.50616            | 9.70824           | .109290 |
| 9.16 | \$3.9056 | 3.02655    | 9.57079       | 768.575  | 2.09234                         | 4.50781            | 9.71177           | .109170 |
| 9.17 | 84.0889  | 3.02820    | 9.57601       | 771.095  | 2.09310                         | 4.50945            | 9.71531           | .109051 |
| 9.18 | 84.2724  | 3.02985    | 9.58123       | 773.621  | 2.09386                         | 4.51108            | 9.71884           | .108932 |
| 9.19 | 84.4561  | 3.03150    | 9.58645       | 776.152  | 2.09462                         | 4.51272            | 9.72236           | .108814 |
| 9.20 | 84.6400  | 3.03315    | 9.59166       | 778.688  | 2.09538                         | 4.51436            | 9.72589           | .105696 |
| 9.21 | 84.8241  | 3.03480    | 9.59687       | 781.230  | 2.09614                         | 4.51599            | 9.72941           | .108578 |
| 9.22 | 85.0084  | 3.03645    | 9.60208       | 783.777  | 2.09690                         | 4.51763            | 9.73293           | .108460 |
| 9.23 | 85.1929  | 3.03809    | 9.60729       | 786.330  | 2.09765                         | 4.51926            | 9.73645           | .108342 |
| 9.24 | 85.3776  | 3.03974    | 9.61249       | 788.889  | 2.09841                         | 4.52089            | 9.73996           | .108225 |
| 9.25 | 85.5625  | 3.04138    | 9.61769       | 791.453  | 2.09917                         | 4.52252            | 9.74348           | .108108 |
| 9.26 | 85.7476  | 3.04302    | 9.62289       | 794.023  | 2.09992                         | 4.52415            | 9.74699           | .107991 |
| 9.27 | 85.9329  | 3.04467    | 9.62808       | 796.598  | 2.10068                         | 4.52578            | 9.75049           | .107875 |
| 9.28 | 86.1184  | 3.04631    | 9.63328       | 799.179  | 2.10144                         | 4.52740            | 9.75400           | .107759 |
| 9.29 | 86.3041  | 3.04795    | 9.63846       | 801.765  | 2.10219                         | 4.52903            | 9.75750           | .107643 |
| 9.30 | 86.4900  | 3.04959    | 9.64365       | 804.357  | 2.10294                         | 4.53065            | 9.76100           | .107527 |
| 9.31 | 86.6761  | 3.05123    | 9.64883       | \$06.954 | $2.10370 \\ 2.10445 \\ 2.10520$ | 4.53228            | 9.76450           | .107411 |
| 9.32 | 86.8624  | 3.05287    | 9.65401       | \$09.558 |                                 | 4.53390            | 9.76799           | .107296 |
| 9.33 | 87.0489  | 3.05450    | 9.65919       | \$12.166 |                                 | 4.53552            | 9.77148           | .107181 |
| 9.34 | 87.2356  | 3.05614    | 9.66437       | 814.781  | 2.10595 $2.10671$ $2.10746$     | 4.53714            | 9.77497           | .107066 |
| 9.35 | 87.4225  | 3.05778    | 9.66954       | 817.400  |                                 | 4.53876            | 9.77846           | .106952 |
| 9.36 | 87.6096  | 3.05941    | 9.67471       | 820.026  |                                 | 4.54038            | 9.78195           | .106838 |
| 9.37 | 87.7969  | 3.06105    | 9.67988       | 822.657  | 2.10821                         | 4.54199            | 9.78543           | .106724 |
| 9.38 | 87.9844  | 3.06268    | 9.68504       | 825.294  | 2.10896                         | 4.54361            | 9.78891           | .106610 |
| 9.39 | 88.1721  | 3.06431    | 9.69020       | 827.936  | 2.10971                         | 4.54522            | 9.79239           | .106496 |
| 9.40 | 88.3600  | 3.06594    | 9.69536       | 830.584  | 2.11045                         | 4.54684            | 9.79586           | .106383 |
| 9.41 | 88.5481  | 3.06757    | 9.70052       | 833.238  | 2.11120                         | 4.54845            | 9.79933           | .106270 |
| 9.42 | 88.7364  | 3.06920    | 9.70567       | 835.897  | 2.11195                         | 4.55006            | 9.80280           | .106157 |
| 9.43 | 88.9249  | 3.07083    | 9.71082       | 838.562  | 2.11270                         | 4.55167            | 9.80627           | .106045 |
| 9.44 | 89.1136  | 3.07246    | 9.71597       | 841.232  | 2.11344                         | 4.55328            | 9.80974           | .105932 |
| 9.45 | 89.3025  | 3.07409    | 9.72111       | 843.909  | 2.11419                         | 4.55488            | 9.81320           | .105820 |
| 9.46 | 89.4916  | 3.07571    | 9.72625       | 846.591  | 2.11494                         | 4.55649            | 9.81666           | .105708 |
| 9.47 | 89.6809  | 3.07734    | 9.73139       | 849.278  | 2.11568                         | 4.55809            | 9.82012           | .105597 |
| 9.48 | 89.8704  | 3.07896    | 9.73653       | 851.971  | 2.11642                         | 4.55970            | 9.82357           | .105485 |
| 9.49 | 90.0601  | 3.08058    | 9.74166       | 854.670  | 2.11717                         | 4.56130            | 9.82703           | .105374 |
| 9.50 | 90.2500  | 3.08221    | 9.74679       | 857.375  | 2.11791                         | 4.56290            | 9.83048           | .105263 |
| n    | $n^2$    | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$    | $\sqrt[3]{n}$                   | <sup>3</sup> √10 n | $\sqrt[3]{100 n}$ | 1/n     |

| n     | $n^2$   | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$     | $\sqrt[3]{n}$               | $\sqrt[3]{10 n}$ | √100 n   | 1/n       |
|-------|---------|------------|---------------|-----------|-----------------------------|------------------|----------|-----------|
| 9.50  | 90.2500 | 3.08221    | 9.74679       | 857.375   | 2.11791                     | 4.505.50         | 90×274×  | .11.7.4.3 |
| 9.51  | 90.4401 | 3.08383    | 9.75192       | 860,0%    | 2.11565                     | 4.55450          | 9.545.7  | .165152   |
| 9.52  | 90.6304 | 3.08545    | 9.75705       | 862,801   | 2.11940                     | 4.56610          | 9.545.7  | .165642   |
| 9.53  | 90.8209 | 3.08707    | 9.76217       | 865,523   | 2.12014                     | 4.56770          | 9.546.1  | .164932   |
| 9.54  | 91.0116 | 3.08869    | 9.76729       | 868.251   | 2.12088                     | 4.56930          | 9.84125  | .164822   |
| 9.55  | 91.2025 | 3.09031    | 9.77241       | 870.984   | 2.12162                     | 4.57089          | 9.84769  | .164712   |
| 9.56  | 91.3936 | 3.09192    | 9.77753       | 873.723   | 2.12236                     | 4.57249          | 9.85113  | .164663   |
| 9.57  | 91.5849 | 3.09354    | 9.78264       | \$76.467  | 2.12310                     | 4.57408          | 9.85456  | .104493   |
| 9.58  | 91.7764 | 3.09516    | 9.78775       | \$79.21\$ | 2.12384                     | 4.57567          | 9.85709  | .104754   |
| 9.59  | 91.9681 | 3.09677    | 9.79285       | \$81.974  | 2.12458                     | 4.57727          | 9.86142  | .104275   |
| 9.60  | 92.1600 | 3.09839    | 9.79796       | 854.736   | 2.12532                     | 4.57886          | 9.864%   | .104167   |
| 9.61  | 92.3521 | 3.10000    | 9.80306       | 557,504   | 2.12605                     | 4.5%204          | 9,70527  | 104 (5)   |
| 9.62  | 92.5444 | 3.10161    | 9.80816       | 590,277   | 2.12679                     | 4.5%204          | 9,77103  | 10 (6)    |
| 9.63  | 92.7369 | 3.10322    | 9.81326       | 593,056   | 2.12753                     | 4.5%302          | 9,77511  | 105-41    |
| 9.64  | 92.9296 | 3.10483    | 9.81835       | 895.841   | 2.12826                     | 4.58521          | 9.87833  | .103734   |
| 9.65  | 93.1225 | 3.10644    | 9.82344       | 898.632   | 2.12900                     | 4.58679          | 9.88195  | .103627   |
| 9.66  | 93.3156 | 3.10805    | 9.82853       | 901.429   | 2.12974                     | 4.58838          | 9.88536  | .103520   |
| 9.67  | 93.5089 | 3.10966    | 9.83362       | 904.231   | 2.13047                     | 4.58996          | 9.88877  | .103413   |
| 9.68  | 93.7024 | 3.11127    | 9.83870       | 907.039   | 2.13120                     | 4.59154          | 9.89217  | .103306   |
| 9.69  | 93.8961 | 3.11288    | 9.84378       | 909.853   | 2.13194                     | 4.59312          | 9.89558  | .103199   |
| 9.70  | 94.0900 | 3.11448    | 9.84886       | 912.673   | 2.13267                     | 4.59470          | 9.59595  | .1desthes |
| 9.71  | 94.2541 | 3.11609    | 9.85393       | 915.499   | 2.13340                     | 4.59625          | 9.99,238 | .102573   |
| 9.72  | 94.4784 | 3.11769    | 9.85901       | 918.330   | 2.13414                     | 4.59786          | 9.95578  | .102573   |
| 9.73  | 94.6729 | 3.11929    | 9.86408       | 921.167   | 2.13487                     | 4.59943          | 9.90918  | .102773   |
| 9.74  | 94.8676 | 3.12090    | 9.86914       | 924.010   | 2.13560                     | 4.60101          | 9.91257  | .102669   |
| 9.75  | 95.0625 | 3.12250    | 9.87421       | 926.859   | 2.13633                     | 4.60258          | 9.51556  | .10.15/4  |
| 9.76  | 95.2576 | 3.12410    | 9.87927       | 929.714   | 2.13706                     | 4.60416          | 9.91935  | .10.145   |
| 9.77  | 95.4529 | 3.12570    | 9.88433       | 932.575   | 2.13779                     | 4.60573          | 9.92274  | .102354   |
| 9.78  | 95.6484 | 3.12730    | 9.88939       | 935.441   | 2.13852                     | 4.60730          | 9.92612  | .102249   |
| 9.79  | 95.8441 | 3.12890    | 9.89444       | 938.314   | 2.13925                     | 4.60887          | 9.92950  | .102145   |
| 9.80  | 96.0400 | 3.13050    | 9.89949       | 941.192   | 2.13997                     | 4.61044          | 9,93288  | .192041   |
| 9.81  | 96.2361 | 3.13209    | 9.90454       | 944.076   | 2.14070                     | 4.61200          | 9,93626  | .101937   |
| 9.82  | 96.4324 | 3.13369    | 9.90959       | 946.966   | 2.14143                     | 4.61357          | 9,93564  | .101833   |
| 9.83  | 96.6289 | 3.13528    | 9.91464       | 949.862   | 2.14216                     | 4.61514          | 9,94361  | .101729   |
| 9.84  | 96.8256 | 3.13688    | 9.91968       | 952.764   | 2.14288                     | 4.61670          | 9.94638  | .101626   |
| 9.85  | 97.0225 | 3.13847    | 9.92472       | 955.672   | 2.14361                     | 4.61826          | 9.94975  | .101523   |
| 9.86  | 97.2196 | 3.14006    | 9.92975       | 958.585   | 2.14433                     | 4.61983          | 9.95311  | .101420   |
| 9.87  | 97.4169 | 3.14166    | 9.93479       | 961.505   | 2.14506                     | 4.62139          | 9.95648  | .101317   |
| 9.88  | 97.6144 | 3.14325    | 9.93982       | 964.430   | 2.14578                     | 4.62295          | 9.95984  | .101215   |
| 9.89  | 97.8121 | 3.14484    | 9.94485       | 967.362   | 2.14651                     | 4.62451          | 9.96320  | .101112   |
| 9.90  | 98.0100 | 3.14643    | 9.94987       | 970.299   | 2.14723                     | 4.62607          | 9.96655  | .101010   |
| 9.91  | 98.2081 | 3.14802    | 9.95490       | 973.242   | 2.14795 $2.14867$ $2.14940$ | 4.62762          | 9.96991  | .100908   |
| 9.92  | 98.4064 | 3.14960    | 9.95992       | 976.191   |                             | 4.62918          | 9.97326  | .100806   |
| 9.93  | 98.6049 | 3.15119    | 9.96494       | 979.147   |                             | 4.63073          | 9.97661  | .100705   |
| 9.94  | 98.8036 | 3.15278    | 9.96995       | 982.108   | 2.15012                     | 4.63229          | 9,97996  | .100604   |
| 9.95  | 99.0025 | 3.15436    | 9.97497       | 985.075   | 2.15084                     | 4.63384          | 9,98331  | .100503   |
| 9.96  | 99.2016 | 3.15595    | 9.97998       | 988.048   | 2.15156                     | 4.63539          | 9,98665  | .100402   |
| 9.97  | 99.4009 | 3.15753    | 9.98499       | 991.027   | 2.15228                     | 4.63694          | 9,98999  | .100301   |
| 9.98  | 99.6004 | 3.15911    | 9.98999       | 994.012   | 2.15300                     | 4.63849          | 9,99333  | .100200   |
| 9.99  | 99.8001 | 3.16070    | 9.99500       | 997.003   | 2.15372                     | 4.64004          | 9,99667  | .100106   |
| 10.00 | 100.000 | 3.16228    | 10.0000       | 1000.00   | 2.15443                     | 4.64159          | 10.0000  | .100000   |
| n     | $n^2$   | $\sqrt{n}$ | $\sqrt{10 n}$ | $n^3$     | $\sqrt[3]{n}$               | √10 n            | √100 n   | 1/n       |

| N                   | 0                             | 1                     | 2                       | 3                       | 4                     | 5                       | 6                     | 7                       | 8                       | 9                       |
|---------------------|-------------------------------|-----------------------|-------------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|
| 0.0                 |                               | 5.395                 | 6.088                   | 6.493                   | 6.781                 | 7.004                   | 7.187                 | 7.341                   | 7.474                   | 7.592                   |
| $0.1 \\ 0.2 \\ 0.3$ | 9 7.697<br>1 8.391<br>9 8.796 | 8.439                 | 7.880<br>8.486<br>8.861 | 8.530                   |                       | 8.103<br>8.614<br>8.950 |                       | 8.228<br>8.691<br>9.006 | 8.285<br>8.727<br>9.032 | 8.339<br>8.762<br>9.058 |
| 0.4<br>0.5<br>0.6   | 9.084<br># 9.307<br>9.489     | 9.327                 | 9.132<br>9.346<br>9.522 | 9.365                   | 9.384                 | 9.201<br>9.402<br>9.569 | 9.420                 | 9.600                   | 9.266<br>9.455<br>9.614 | 9.472<br>9.629          |
| 0.7<br>0.8<br>0.9   | 9.643<br>9.777<br>9.895       | 9.789                 | 9.671<br>9.802<br>9.917 | 9.685<br>9.814<br>9.927 | 9.826                 | 9.712<br>9.837<br>9.949 | 9.849                 | 9.861                   | 9.752<br>9.872<br>9.980 | 9.883                   |
| 1.0                 | 0.00000                       | 0995                  | 1980                    | 2956                    | 3922                  | 4879                    | 5827                  | 6766                    | 7696                    | 8618                    |
| 1.1<br>1.2<br>1.3   | 9531<br>0.1 8232<br>0.2 6236  | *0436<br>9062<br>7003 | *1333<br>9885<br>7763   | *2222<br>*0701<br>8518  | *1511                 | *3976<br>*2314<br>*0010 | *3111                 | *5700<br>*3902<br>*1481 | *4626                   | *5464                   |
| 1.4<br>1.5<br>1.6   | 0.3 3647<br>0.4 0547<br>7000  | 4359<br>1211<br>7623  | 5066<br>1871<br>8243    | 5767<br>2527<br>8858    | 6464<br>3178<br>9470  | 7156<br>3825<br>*0078   | 7844<br>4469<br>*0682 | 8526<br>5108<br>*1282   | 9204<br>5742<br>*1879   | 9878<br>6373<br>*2473   |
| 1.7<br>1.8<br>1.9   | 0.5 3063<br>8779<br>0.6 4185  | 3649<br>9333<br>4710  | 5233                    | 4812<br>*0433<br>5752   | 5389<br>*0977<br>6269 | 5962<br>*1519<br>6783   | 6531<br>*2058<br>7294 | 7098<br>*2594<br>7803   | 7661<br>*3127<br>8310   | 8222<br>*3658<br>8813   |
| 2.0                 | 9315                          | 9813                  | *0310                   | *0804                   | *1295                 | *1784                   | *2271                 | *2755                   | *3237                   | *3716                   |
| 2.1<br>2.2<br>2.3   | 0.7 4194<br>8846<br>0.8 3291  | 4669<br>9299<br>3725  | 5142<br>9751<br>4157    | 5612<br>*0200<br>4587   | 6081<br>*0648<br>5015 | 6547<br>*1093<br>5442   | 7011<br>*1536<br>5866 | 7473<br>*1978<br>6289   | 7932<br>*2418<br>6710   | 8390<br>*2855<br>7129   |
| 2.4<br>2.5<br>2.6   | 7547<br>0.9 1629<br>5551      | 7963<br>2028<br>5935  | 8377<br>2426<br>6317    | 8789<br>2822<br>6698    | 9200<br>3216<br>7078  | 9609<br>3609<br>7456    | *0016<br>4001<br>7833 | *0422<br>4391<br>8208   | *0826<br>4779<br>8582   | *1228<br>5166<br>8954   |
| 2.7<br>2.8<br>2.9   | 9325<br>1.0 2962<br>6471      | 9695<br>3318<br>6815  | *0063<br>3674<br>7158   | *0430<br>4028<br>7500   | *0796<br>4380<br>7841 | *1160<br>4732<br>8181   | *1523<br>5082<br>8519 | *1885<br>5431<br>8856   | *2245<br>5779<br>9192   | *2604<br>6126<br>9527   |
| 3.0                 | 9861                          | *0194                 | *0526                   | *0856                   | *1186                 | *1514                   | *1841                 | *2168                   | *2493                   | *2817                   |
| 3.1<br>3.2<br>3.3   | 1.1 3140<br>6315<br>9392      | 3462<br>6627<br>9695  | 3783<br>6938<br>9996    | 4103<br>7248<br>*0297   | 4422<br>7557<br>*0597 | 4740<br>7865<br>*0896   | 5057<br>8173<br>*1194 | 5373<br>8479<br>*1491   | 5688<br>8784<br>*1788   | 6002<br>9089<br>*2083   |
| 3.4<br>3.5<br>3.6   | 1.2 2378<br>5276<br>8093      | 2671<br>5562<br>8371  | 2964<br>5846<br>8647    | 3256<br>6130<br>8923    | 3547<br>6413<br>9198  | 3837<br>6695<br>9473    | 4127<br>6976<br>9746  | 4415<br>7257<br>*0019   | 4703<br>7536<br>*0291   | 4990<br>7815<br>*0563   |
| 3.7<br>3.8<br>3.9   | 1.3 0833<br>3500<br>6098      | 1103<br>3763<br>6354  | 1372<br>4025<br>6609    | 1641<br>4286<br>6864    | 1909<br>4547<br>7118  | 2176<br>4807<br>7372    | 2442<br>5067<br>7624  | 2708<br>5325<br>7877    | 2972<br>5584<br>8128    | 3237<br>5841<br>8379    |
| 4.0                 | 8629                          | 8879                  | 9128                    | 9377                    | 9624                  | 9872                    | *0118                 | *0364                   | *0610                   | *0854                   |
| 4.1<br>4.2<br>4.3   | 1.4 1099<br>3508<br>5862      | 1342<br>3746<br>6094  | 1585<br>3984<br>6326    | 1828<br>4220<br>6557    | 2070<br>4456<br>6787  | 2311<br>4692<br>7018    | 2552<br>4927<br>7247  | 2792<br>5161<br>7476    | 3031<br>5395<br>7705    | 3270<br>5629<br>7933    |
| 4.4<br>4.5<br>4.6   | 8160<br>1.5 0408<br>2606      | 8387<br>0630<br>2823  | 8614<br>0851<br>3039    | 8840<br>1072<br>3256    | 9065<br>1293<br>3471  | 9290<br>1513<br>3687    | 9515<br>1732<br>3902  | 9739<br>1951<br>4116    | 9962<br>2170<br>4330    | *0185<br>2388<br>4543   |
| 4.7<br>4.8<br>4.9   | 4756<br>6862<br>8924          | 4969<br>7070<br>9127  | 5181<br>7277<br>9331    | 5393<br>7485<br>9534    | 5604<br>7691<br>9737  |                         | 6025<br>8104<br>*0141 |                         |                         | 6653<br>8719<br>*0744   |
| 5.0                 | 1.6 0944                      | 1144                  | 1343                    | 1542                    | 1741                  | 1939                    | 2137                  | 2334                    | 2531                    | 2728                    |
| N                   | 0                             | 1                     | 2                       | 3                       | 4                     | 5                       | 6                     | 7                       | 8                       | 9                       |

| N                 | 0                   | 2                                | 8                                | . 7                                     | 8                   | 11.          |
|-------------------|---------------------|----------------------------------|----------------------------------|-----------------------------------------|---------------------|--------------|
| 5.0               | 1.6 0944            | 1144 1343 1542                   | 1741 1939 2137                   |                                         | 2531                | 2728         |
| 5.1               | 2924                | 3120 3315 3511                   | 3705 3900 4094                   |                                         | 4481                |              |
| 5.2               | 4866                | 5058 5250 5441                   | 5632 5823 6013                   |                                         | 6393                | 4673<br>6352 |
| 5.3               | 6771                | 6959 7147 7335                   | 7523 7710 7896                   |                                         | 5269                | 5455         |
| $\frac{5.4}{5.5}$ | 8640<br>1.7 0475    | 8825 9010 9194<br>0656 0838 1019 | 937S 9562 9745<br>1199 1380 1560 | 9928 *<br>1740                          |                     | 0293         |
| 5.6               | 2277                | 2455 2633 2811                   | 2988 3166 3342                   |                                         | 1919<br>3695        | 3871         |
| 5.7               | 4047                | 4222 4397 4572                   | 4746 4920 5094                   | 5267                                    | 5440                | 5613         |
| 5.S<br>5.9        | 5786<br>7495        | 5958 6130 6302<br>7665 7834 8002 | 6473 6644 6815<br>8171 8339 8507 |                                         | 7156                | 7326         |
| 6.0               | 9176                | 9342 9509 9675                   | 9840 *0006 *0171                 | *0336 *                                 |                     | 9009<br>9995 |
| 6.1               | 1.8 0829            | 0993 1156 1319                   | 1482 1645 1808                   | *************************************** |                     | 2294         |
| 6.2               | 2455                | 2616 2777 2938<br>4214 4372 4530 | 3098 3258 3418                   | 3575                                    | 2132<br>3737        | 3596         |
| 6.3               | 4055                |                                  | 4688 4845 5003                   |                                         | 5317                | 5473         |
| $6.4 \\ 6.5$      | 5630<br>7180        | 5786 5942 6097<br>7334 7487 7641 | 6253 6408 6563<br>7794 7947 8099 |                                         | 6872<br>8403        | 7026<br>8555 |
| 6.6               | 8707                | 8858 9010 9160                   | 9311 9462 9612                   |                                         |                     | 0061         |
| 6.7               | 1.9 0211            | 0360 0509 0658                   | 0806 0954 1102                   |                                         | 1398                | 1545         |
| 6.8<br>6.9        | $\frac{1692}{3152}$ | 1839 1986 2132<br>3297 3442 3586 | 2279 2425 2571<br>3730 3874 4018 | 2716<br>4162                            | 2562<br>4305        | 3007<br>4448 |
| 7.0               | 4591                | 4734 4876 5019                   | 5161 5303 5445                   | 5586                                    | *******             | ****         |
| 7.1               | 6009                | 6150 6291 6431                   | 6571 6711 6851                   |                                         | 7130                | 7269         |
| $\frac{7.2}{7.3}$ | 7408<br>8787        | 7547 7685 7824<br>8924 9061 9198 | 7962 8100 8238<br>9334 9470 9606 | 8376                                    | 8513                | 8650<br>0013 |
| 7.4               | 2.0 0148            | 0283 0418 0553                   | 0687 0821 0936                   |                                         |                     | 1357         |
| 7.5               | 1490                | 1624 1757 1890                   | 2022 2155 2287                   | 2419                                    | 1223<br>2551        | 2683         |
| 7.6               | 2815                | 2946 3078 3209                   | 3340 3471 3601                   | 3732                                    | 3562                | 3992         |
| 7.7<br>7.8        | 4122<br>5412        | 4252 4381 4511<br>5540 5668 5796 | 4640 4769 489S<br>5924 6051 6179 |                                         | 5156<br>6433        | 5254<br>6560 |
| 7.9               | 66S6                | 6813 6939 7065                   | 7191 7317 7443                   |                                         | 7694                | 7519         |
| 8.0               | 7944                | 8194 8318                        | 8443 8567                        | 8815                                    | ×939                | 9063         |
|                   | 9186                | 9310 9433 9556                   | 9679 9802 9924                   |                                         | 0169 *              |              |
|                   | $2.1\ 0413\ 1626$   | 0535 0657 0779<br>1746 1866 1986 | 0900 1021 1142<br>2106 2226 2346 |                                         | 1354<br>2555        | 1505<br>2704 |
|                   | 2823                | 2942 3061 3180                   | 3298 3417 3535                   |                                         | 3771                | 3589         |
|                   | 4007                | 4124 4242 4359                   | 4476 4593 4710<br>5640 5756 5871 |                                         | 4943<br>6102        | 5060<br>6217 |
|                   | 5176                | 5292 5409 5524                   | 6791 6905 7020                   |                                         | 7248                | 7361         |
|                   | 6332<br>7475        | 6447 6562 6677<br>7589 7702 7816 | 7929 8042 8155                   |                                         |                     | 8493         |
|                   | 8605                | 8717 8830 8942                   | 9054 9165 9277                   | 9389                                    |                     | 9611         |
| 9.0               | 9722                | 9834 9944 *0055                  |                                  |                                         | 0607 *              | 0717         |
|                   | 2.2 0827            | 0937 1047 1157                   | 1266 1375 1485<br>2354 2462 2570 |                                         | $\frac{1703}{2786}$ | 1512<br>2594 |
|                   | 1920<br>3001        | 2029 2138 2246<br>3109 3216 3324 | 2354 2462 2570<br>3431 3538 3645 |                                         |                     | 3965         |
|                   | 4071                | 4177 4284 4390                   | 4496 4601 4707                   |                                         | 4918                | 5024         |
|                   | 5129                | 5234 5339 5444                   | 5549 5654 5759<br>6592 6696 6799 |                                         | 5968<br>7006        | 6072<br>7109 |
|                   | 6176                |                                  | 7624 7727 7829                   |                                         |                     | 8136         |
|                   | 7213<br>8238        | 7316 7419 7521<br>8340 8442 8544 | 8646 8747 8849                   | 8950                                    | 9051                | 9152         |
|                   | 9253                | 9354 9455 9556                   | 9657 9757 9858                   |                                         |                     | 0158         |
|                   | 2.3 0259            | 0358 0458 0558                   | 0857                             |                                         | 1055                | 1154         |
|                   |                     |                                  |                                  | 7                                       | 8                   | 9            |

| 10 | 2.30259 | 25 | 3.21888 | 40 | 3.68588 | 55 | 4.00733 | 70 | 4.24850 | 85 | 4.44265 |
|----|---------|----|---------|----|---------|----|---------|----|---------|----|---------|
| 11 | 2.39790 | 26 | 3.25810 | 41 | 3.71357 | 56 | 4.02535 | 71 | 4.26268 | 80 | 4.45435 |
| 12 | 2.48491 | 27 | 3.29584 | 42 | 3.73767 | 57 | 4.04305 | 72 | 4.27667 | 87 | 4.46591 |
| 13 | 2.56495 | 28 | 3.33220 | 43 | 3.76120 | 58 | 4.06044 | 73 | 4.29046 | 88 | 4.47734 |
| 14 | 2.63906 | 29 | 3.36730 | 44 | 3.78419 | 59 | 4.07754 | 74 | 4.30407 | 89 | 4.48864 |
| 15 | 2.70805 | 30 | 3.40120 | 45 | 3.80666 | 60 | 4.09434 | 75 | 4.31749 | 90 | 4.49981 |
| 16 | 2.77259 | 31 | 3.43399 | 46 | 3.82864 | 61 | 4.11087 | 76 | 4.33073 | 91 | 4.51086 |
| 17 | 2.83321 | 32 | 3.46574 | 47 | 3.85015 | 62 | 4.12713 | 77 | 4.34381 | 92 | 4.52179 |
| 18 | 2.89037 | 33 | 3.49651 | 48 | 3.87120 | 63 | 4.14313 | 78 | 4.35671 | 93 | 4.53260 |
| 19 | 2.94444 | 34 | 3.52636 | 49 | 3.89182 | 64 | 4.15888 | 79 | 4.36945 | 94 | 4.54329 |
| 20 | 2.99573 | 35 | 3.55535 | 50 | 3.91202 | 65 | 4.17439 | 80 | 4.38203 | 95 | 4.55388 |
| 21 | 3.04452 | 36 | 3.58352 | 51 | 3.93183 | 66 | 4.18965 | 81 | 4.39445 | 96 | 4.56435 |
| 22 | 3.09104 | 37 | 3.61092 | 52 | 3.95124 | 67 | 4.20469 | 82 | 4.40672 | 97 | 4.57471 |
| 23 | 3.13549 | 38 | 3.63759 | 53 | 3.97029 | 68 | 4.21951 | 83 | 4.41884 | 98 | 4.58497 |
| 24 | 3.17805 | 39 | 3.66356 | 54 | 3.98898 | 69 | 4.23411 | 84 | 4.43082 | 99 | 4.59512 |

## Napierian or Natural Logarithms - 100 to 409

| N              | 0                            | 1                     | 2                     | 3                     | 4                     | - 5                    | 6                     | 7                      | 8                      | 9                      |
|----------------|------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|
| 10             | 4.6 0517                     | 1512                  | 2497                  | 3473                  | 4439                  | 5396                   | 6344                  | 7283                   | 8213                   | 9135                   |
| 11<br>12<br>13 | 4.7 0048<br>8749<br>4.8 6753 | 0953<br>9579<br>7520  | 1850<br>*0402<br>8280 | 2739<br>*1218<br>9035 |                       | 4493<br>*2831<br>*0527 |                       | 6217<br>*4419<br>*1998 | 7068<br>*5203<br>*2725 | 7912<br>*5981<br>*3447 |
| 14<br>15<br>16 | 4.9 4164<br>5.0 1064<br>7517 | 4876<br>1728<br>8140  | 5583<br>2388<br>8760  | 6284<br>3044<br>9375  | 6981<br>3695<br>9987  | 7673<br>4343<br>*0595  | 8361<br>4986<br>*1199 | 9043<br>5625<br>*1799  | 6260                   | *0395<br>6890<br>*2990 |
| 17<br>18<br>19 | 5.1 3580<br>9296<br>5.2 4702 | 4166<br>9850<br>5227  | 4749<br>*0401<br>5750 | 5329<br>*0949<br>6269 | 5906<br>*1494<br>6786 | 6479<br>*2036<br>7300  | 7048<br>*2575<br>7811 | 7615<br>*3111<br>8320  | 8178<br>*3644<br>8827  |                        |
| 20             | 9832                         | *0330                 | *0827                 | *1321                 | *1812                 | *2301                  | *2788                 | *3272                  | *3754                  | *4233                  |
| 21<br>22<br>23 | 5.3 4711<br>9363<br>5.4 3808 | 5186<br>9816<br>4242  | 5659<br>*0268<br>4674 | 6129<br>*0717<br>5104 | 6598<br>*1165<br>5532 | 7064<br>*1610<br>5959  | 7528<br>*2053<br>6383 | 7990<br>*2495<br>6806  | 8450<br>*2935<br>7227  | 8907<br>*3372<br>7646  |
| 24<br>25<br>26 | 8064<br>5.5 2146<br>6068     | 8480<br>2545<br>6452  | 8894<br>2943<br>6834  | 9306<br>3339<br>7215  | 9717<br>3733<br>7595  | *0126<br>4126<br>7973  | *0533<br>4518<br>8350 | *0939<br>4908<br>8725  | *1343<br>5296<br>9099  | *1745<br>5683<br>9471  |
| 27<br>28<br>29 | 9842<br>5.6 3479<br>6988     | *0212<br>3835<br>7332 | *0580<br>4191<br>7675 | *0947<br>4545<br>8017 | *1313<br>4897<br>8358 | *1677<br>5249<br>8698  | *2040<br>5599<br>9036 | *2402<br>5948<br>9373  | 6296                   | *3121<br>6643<br>*0044 |
| 30             | 5.7 0378                     | 0711                  | 1043                  | 1373                  | 1703                  | 2031                   | 2359                  | 2685                   | 3010                   | 3334                   |
| 31<br>32<br>33 | 3657<br>6832<br>9909         | 3979<br>7144<br>*0212 |                       |                       |                       | 5257<br>8383<br>*1413  | 5574<br>8690<br>*1711 | 5890<br>8996<br>*2008  | 6205<br>9301<br>*2305  | 6519<br>9606<br>*2600  |
| 34<br>35<br>36 | 5.8 2895<br>5793<br>8610     | 3188<br>6079<br>8888  | 3481<br>6363<br>9164  | 3773<br>6647<br>9440  | 4064<br>6930<br>9715  |                        | 4644<br>7493<br>*0263 | 4932<br>7774<br>*0536  | 5220<br>8053<br>*0808  | 5507<br>8332<br>*1080  |
| 37<br>38<br>39 | 5.9 1350<br>4017<br>6615     | 1620<br>4280<br>6871  | 1889<br>4542<br>7126  | 2158<br>4803<br>7381  | 2426<br>5064<br>7635  | 2693<br>5324<br>7889   | 2959<br>5584<br>8141  | 3225<br>5842<br>8394   | 3489<br>6101<br>8645   | 3754<br>6358<br>8896   |
| 40             | 9146                         | 9396                  | 9645                  | 9894                  | *0141                 | *0389                  | *0635                 | *0881                  | *1127                  | *1372                  |
| N              | 0                            | 1                     | 2                     | 3                     | 4                     | 5                      | 6                     | 7                      | 8                      | 9                      |

Above 409, use the formula  $\log_e 10n \cdot \log_e n + \log_e 10 = \log_e n + 2.30258509$ ,

| N              | N·M                                          | N              | N·M                                                                         | N              | N + M                                        | N              | N + M                                           |
|----------------|----------------------------------------------|----------------|-----------------------------------------------------------------------------|----------------|----------------------------------------------|----------------|-------------------------------------------------|
| 0              | 0.00000 000                                  | 50             | 21.71472 410                                                                | 0              | 0.000000000                                  | 50             | 115.12925 465                                   |
| 1<br>2<br>3    | 0,43429 448<br>0,86858 896<br>1,30288 345    | 51<br>52<br>53 | $\begin{array}{c} 22.14901~858 \\ 22.58331~306 \\ 23.01760~754 \end{array}$ | 1 21 3         | 2.30258 509<br>4.60517 019<br>6.90775 528    | 51<br>52<br>53 | 117,43183 974<br>119,73442 484<br>122,03700 993 |
| 4<br>5<br>6    | 1.73717 793<br>2.17147 241<br>2.60576 689    | 54<br>55<br>56 | 23.45190 202<br>23.88619 650<br>24.32049 099                                | 456            | 9,21034 037<br>11,51292 546<br>13,51551 056  | 54<br>55<br>56 | 124.33959 502<br>126.64215 011<br>128.94476 521 |
| 7              | 3.04006 137                                  | 57             | 24.75478 547                                                                | 7              | 16.11809 565                                 | 57             | 131.24735 030                                   |
| 8              | 3.47435 586                                  | 58             | 25.18907 995                                                                | 8              | 18.42068 074                                 | 58             | 133.54993 539                                   |
| 9              | 3.90865 034                                  | 59             | 25.62337 443                                                                | 9              | 20.72326 584                                 | 59             | 135.85252 049                                   |
| 10             | 4.34294 482                                  | 60             | 26.05766 891                                                                | 10             | 23.02585 093                                 | 60             | 138,15510 558                                   |
| 11             | 4.77723 930                                  | 61             | 26.49196 340                                                                | 11             | 25.32843 602                                 | 61             | 149,45769 0×17                                  |
| 12             | 5.21153 378                                  | 62             | 26.92625 788                                                                | 12             | 27.63102 112                                 | 62             | 142,76027 577                                   |
| 13             | 5.64582 826                                  | 63             | 27.36055 236                                                                | 13             | 29.93360 621                                 | <b>63</b>      | 145,06286 086                                   |
| 14             | 6.08012 275                                  | 64             | 27.79484 684                                                                | 14             | 32.23619 130                                 | 64             | 147.36544 595                                   |
| 15             | 6.51441 723                                  | 65             | 28.22914 132                                                                | 15             | 34.53877 639                                 | 65             | 149.66803 104                                   |
| 16             | 6.94871 171                                  | 66             | 28.66343 581                                                                | 16             | 36.84136 149                                 | 66             | 151.97061 614                                   |
| 17             | 7.38300 619                                  | 67             | 29.09773 029                                                                | 17             | 39.14394 658                                 | 67             | 154,27320 123                                   |
| 18             | 7.81730 067                                  | 68             | 29.53202 477                                                                | 18             | 41.44653 167                                 | 68             | 156,57578 632                                   |
| 19             | 8.25159 516                                  | 69             | 29.96631 925                                                                | 19             | 43.74911 677                                 | 69             | 158,87837 142                                   |
| 20             | 8.68588 964                                  | 70             | 30.40061 373                                                                | 20             | 46.05170 156                                 | 70             | 161.15/95 651                                   |
| 21             | 9.12018 412                                  | 71             | 30.83490 822                                                                | 21             | 45.35425 695                                 | 71             | 163.48354 160                                   |
| 22             | 9.55447 860                                  | 72             | 31.26920 270                                                                | 22             | 50.65687 205                                 | 72             | 165.78612 670                                   |
| 23             | 9.98877 308                                  | 73             | 31.70349 718                                                                | 23             | 52.95945 714                                 | 73             | 168.08871 179                                   |
| 24             | 10.42306 757                                 | 74             | 32.13779 166                                                                | 24             | 55.26204 223                                 | 74             | 170.39129 688                                   |
| 25             | 10.85736 205                                 | 75             | 32.57208 614                                                                | 25             | 57.56462 732                                 | 75             | 172.69388 197                                   |
| 26             | 11.29165 653                                 | 76             | 33.00638 062                                                                | 26             | 59.86721 242                                 | 76             | 174.99646 707                                   |
| 27<br>28<br>29 | 11.72595 101<br>12.16024 549<br>12.59453 998 | 77<br>78<br>79 | 33.44067 511<br>33.87496 959<br>34.30926 407                                | 27<br>28<br>29 | 62.16979 751<br>64.47238 260<br>66.77496 770 | 11879          | 177,29905 216<br>179,60163 725<br>151,90422 235 |
| 30             | 13.02883 446                                 | 80             | 34.74355 855                                                                | 30             | 69.07755 279                                 | 80             | 184.20680 744                                   |
| 31             | 13.46312 894                                 | 81             | 35.177\$5 303                                                               | 31             | 71.38013 758                                 | 81             | 186,50939 253                                   |
| 32             | 13.89742 342                                 | 82             | 35.61214 752                                                                | 32             | 73.68272 298                                 | 82             | 188,81197 763                                   |
| 33             | 14.33171 790                                 | 83             | 36.04644 200                                                                | 33             | 75.98530 807                                 | 83             | 191,11456 272                                   |
| 34             | 14.76601 238                                 | 84             | 36.48073 648                                                                | 34             | 78.28789 316                                 | 84             | 193,41714 781                                   |
| 35             | 15.20030 687                                 | 85             | 36.91503 096                                                                | 35             | 80.59047 825                                 | 85             | 195,71973 290                                   |
| 36             | 15.63460 135                                 | 86             | 37.34932 544                                                                | 36             | 82.89306 335                                 | 86             | 198,02231 800                                   |
| 37             | 16.06889 583                                 | 87             | 37.78361 993                                                                | 37             | 85.19564 844                                 | 87             | 200.32490 309                                   |
| 38             | 16.50319 031                                 | 88             | 38.21791 441                                                                | 38             | 87.49823 353                                 | 88             | 202.62748 818                                   |
| 39             | 16.93748 479                                 | 89             | 38.65220 889                                                                | 39             | 89.80081 863                                 | 89             | 204.93007 328                                   |
| 40             | 17.37177 928                                 | 90             | 39.08650 337                                                                | 40             | 92.10340 372                                 | 90             | 207,23265 837                                   |
| 41             | 17.80607 376                                 | 91             | 39.52079 785                                                                | 41             | 94.40593 881                                 | 91             | 209.53524 346                                   |
| 42             | 18.24036 824                                 | 92             | 39.95509 234                                                                | 42             | 96.70857 391                                 | 92             | 211.83782 856                                   |
| 43             | 18.67466 272                                 | 93             | 40.38938 682                                                                | 43             | 99.01115 900                                 | 93             | 214.14041 365                                   |
| 44             | 19.10895 720                                 | 94             | 40.82368 130                                                                | 44             | 101.31374 409                                | 94             | 216.44299 874                                   |
| 45             | 19.54325 169                                 | 95             | 41.25797 578                                                                | 45             | 103.61632 918                                | 95             | 218.74558 383                                   |
| 46             | 19.97754 617                                 | 96             | 41.69227 026                                                                | 46             | 105.91891 428                                | 96             | 221.04816 893                                   |
| 47             | 20.41184 065                                 | 97             | 42.12656 474                                                                | 47             | 108.22149 937                                | 97             | 223.35075 402                                   |
| 48             | 20.84613 513                                 | 98             | 42.56085 923                                                                | 48             | 110.52408 446                                | 98             | 225.65333 911                                   |
| 49             | 21.28042 961                                 | 99             | 42.99515 371                                                                | 49             | 112.82666 956                                | 99             | 227.95592 421                                   |
| 50             | 21.71472 410                                 | 100            | 43.42944 819                                                                | 50             | 115.12925 465                                | 100            | 230.25850 930                                   |

 $M = \log_{10} e = .43429 \ 44819 \ 03251 \ 82765$  $\log_{10} n = \log_{e} n \cdot \log_{10} e = M \log_{e} n.$ 

 $1/M = \log_e 10 = 2.30258509299404568402$   $\log_e n = \log_{10} n \cdot \log_e 10 = (1/M) \log_{10} n$ .

| $e^x$                                                                                        |                            | Sinh x                                                    |                            | Cosh x                     |                            | Tanh:                      |
|----------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Value Log <sub>10</sub>                                                                      |                            | Value                                                     | $Log_{10}$                 | Value                      | $Log_{10}$                 | Value                      |
| 0.00 1.0000 .00000                                                                           | 1.0000                     | 0.0000                                                    | _ &_                       | 1.0000                     | .00000                     |                            |
| 0.01     1.0101     .00434       0.02     1.0202     .00869       0.03     1.0305     .01303 | .99005                     | 0.0100                                                    | .00001                     | 1.0001                     | .00002                     | .02000                     |
|                                                                                              | .98020                     | 0.0200                                                    | .30106                     | 1.0002                     | .00009                     | .02000                     |
|                                                                                              | .97045                     | 0.0300                                                    | .47719                     | 1.0005                     | .00020                     | .02999                     |
| 0.04 1.0408 .01737                                                                           | .96079                     | 0.0400                                                    | .60218                     | 1.0008                     | .00035                     | .03998                     |
| 0.05 1.0513 .02171                                                                           | .95123                     | 0.0500                                                    | .69915                     | 1.0013                     | .00054                     | .04996                     |
| 0.06 1.0618 .02606                                                                           | .94176                     | 0.0600                                                    | .77841                     | 1.0018                     | .00078                     | .05993                     |
| 0.07 1.0725 .03040                                                                           | .93239                     | 0.0701                                                    | .84545                     | 1.0025                     | .00106                     | .06989                     |
| 0.08 1.0833 .03474                                                                           | .92312                     | 0.0801                                                    | .90355                     | 1.0032                     | .00139                     | .07983                     |
| 0.09 1.0942 .03909                                                                           | .91393                     | 0.0901                                                    | .95483                     | 1.0041                     | .00176                     | .08976                     |
| 1.1052 .04343                                                                                | .90484                     | 0.1002                                                    | .00072                     |                            | .00217                     | .09967                     |
| 0.11 1.1163 .04777                                                                           | .89583                     | 0.1102                                                    | .04227                     | 1.0061                     | .00262                     | .10956                     |
| 0.12 1.1275 .05212                                                                           | .88692                     | 0.1203                                                    | .08022                     | 1.0072                     | .00312                     | .11943                     |
| 0.13 1.1388 .05646                                                                           | .87810                     | 0.1304                                                    | .11517                     | 1.0085                     | .00366                     | .12927                     |
| 0.14 1.1503 .06080                                                                           | .86936                     | 0.1405                                                    | .14755                     | 1.0098                     | .00424                     | .13909                     |
| 0.15 1.1618 .06514                                                                           | .86071                     | 0.1506                                                    | .17772                     | 1.0113                     | .00487                     | .14889                     |
| 0.16 1.1735 .06949                                                                           | .85214                     | 0.1607                                                    | .20597                     | 1.0128                     | .00554                     | .15865                     |
| 0.17 1.1853 .07383                                                                           | .84366                     | 0.1708                                                    | .23254                     | 1.0145                     | .00625                     | .16838                     |
| 0.18 1.1972 .07817                                                                           | .83527                     | 0.1810                                                    | .25762                     | 1.0162                     | .00700                     | .17808                     |
| 0.19 1.2092 .08252                                                                           | .82696                     | 0.1911                                                    | .28136                     | 1.0181                     | .00779                     | .18775                     |
| 0.20 1.2214                                                                                  | .81873                     | 0.2013                                                    |                            | 1.0201                     | .00863                     |                            |
| 0.21                                                                                         | .81058                     | $\begin{array}{c} 0.2115 \\ 0.2218 \\ 0.2320 \end{array}$ | .32541                     | 1.0221                     | .00951                     | .20697                     |
| 0.22                                                                                         | .80252                     |                                                           | .34592                     | 1.0243                     | .01043                     | .21652                     |
| 0.23                                                                                         | .79453                     |                                                           | .36555                     | 1.0266                     | .01139                     | .22603                     |
| 0.24                                                                                         | .78663                     | 0.2423                                                    | .38437                     | 1.0289                     | .01239                     | .23550                     |
| 0.25                                                                                         | .77880                     | 0.2526                                                    | .40245                     | 1.0314                     | .01343                     | .24492                     |
| 0.26                                                                                         | .77105                     | 0.2629                                                    | .41986                     | 1.0340                     | .01452                     | .25430                     |
| 0.27                                                                                         | .76338                     | 0.2733 $0.2837$ $0.2941$                                  | .43663                     | 1.0367                     | .01564                     | .26362                     |
| 0.28                                                                                         | .75578                     |                                                           | .45282                     | 1.0395                     | .01681                     | .27291                     |
| 0.29                                                                                         | .74826                     |                                                           | .46847                     | 1.0423                     | .01801                     | .28213                     |
| 0.30 1.3499 .13029                                                                           | .74082                     | 0.3045                                                    |                            | 1.0453                     | .01926                     |                            |
| 0.31     1.3634     .13463       0.32     1.3771     .13897       0.33     1.3910     .14332 | .73345                     | 0.3150                                                    | .49830                     | 1.0484                     | .02054                     | .30044                     |
|                                                                                              | .72615                     | 0.3255                                                    | .51254                     | 1.0516                     | .02187                     | .30951                     |
|                                                                                              | .71892                     | 0.3360                                                    | .52637                     | 1.0549                     | .02323                     | .31852                     |
| 0.34     1.4049     .14766       0.35     1.4191     .15200       0.36     1.4333     .15635 | .71177                     | 0.3466                                                    | .53981                     | 1.0584                     | .02463                     | .32748                     |
|                                                                                              | .70469                     | 0.3572                                                    | .55290                     | 1.0619                     | .02607                     | .33638                     |
|                                                                                              | .69768                     | 0.3678                                                    | .56564                     | 1.0655                     | .02755                     | .34521                     |
| 0.37     1.4477     .16069       0.38     1.4623     .16503       0.39     1.4770     .16937 | .69073<br>.68386<br>.67706 | $0.3785 \\ 0.3892 \\ 0.4000$                              | .57807<br>.59019<br>.60202 | 1.0692<br>1.0731<br>1.0770 | .02907<br>.03063<br>.03222 | .35399<br>.36271<br>.37136 |
| 1.4918 .17372                                                                                | .67032                     |                                                           | .61358                     | 1.0811                     | .03385                     | .37995                     |
| 0.41     1.5068     .17806       0.42     1.5220     .18240       0.43     1.5373     .18675 | .66365                     | 0.4216                                                    | .62488                     | 1.0852                     | .03552                     | .38847                     |
|                                                                                              | .65705                     | 0.4325                                                    | .63594                     | 1.0895                     | .03723                     | .39693                     |
|                                                                                              | .65051                     | 0.4434                                                    | .64677                     | 1.0939                     | .03897                     | .40532                     |
| 0.44 1.5527 .19109                                                                           | .64404                     | 0.4543                                                    | .65738                     | 1.0984                     | .04075                     | .41364                     |
| 0.45 1.5683 .19543                                                                           | .63763                     | 0.4653                                                    | .66777                     | 1.1030                     | .04256                     | .42190                     |
| 0.46 1.5841 .19978                                                                           | .63128                     | 0.4764                                                    | .67797                     | 1.1077                     | .04441                     | .43008                     |
| 0.47   1.6000 .20412                                                                         | .62500                     | 0.4875                                                    | .68797                     | 1.1125                     | .04630                     | .43820                     |
| 0.48   1.6161 .20846                                                                         | .61878                     | 0.4986                                                    | .69779                     | 1.1174                     | .04822                     | .44624                     |
| 0.49   1.6323 .21280                                                                         | .61263                     | 0.5098                                                    | .70744                     | 1.1225                     | .05018                     | .45422                     |
| <b>0.50</b> 1.6487 .21715                                                                    |                            | 0.5211                                                    | .71692                     | 1.1276                     | .05217                     |                            |

|                | er               | ;                | e-z              | Sin                | l x               | Cosl             | n x              | Tanh x           |
|----------------|------------------|------------------|------------------|--------------------|-------------------|------------------|------------------|------------------|
| x              | Value            | Logio            | Value            | Value              | Log <sub>13</sub> | Value            | Logo             | Value            |
| 0.50           | 1.6487           | .21715           | .60653           | 0.5211             | .71692            | 1.1276           | .05217 (         | .46212           |
| 0.51           | 1.6653           | .22149<br>.22583 | .60050           | 0.5324             | .72624            | 1.1329           | .05419           | 41/045           |
| 0.52<br>0.53   | 1.6820<br>1.6989 | .23018           | .59452<br>.58860 | 0.5438<br>0.5552   | .73540<br>.74442  | 1.1383<br>1.1438 | 205625<br>305844 | .47770           |
| 0.54           | 1.7160           | .23452           | .58275           | 0.5666             | .75330            | 1.1494           | .06046           | 49290            |
| 0.55           | 1.7333           | .23886           | .57695           | 0.5782             | 76204             | 1.1551           | 06262            | 50052            |
| 0.56           | 1.7507           | .24320           | .57121           | 0.5897             | .77065            | 1.1609           | .06481           | .50795           |
| 0.57<br>0.58   | 1.7683<br>1.7860 | .24755           | .55990           | 0.6014             | .77914<br>.78751  | 1.1669<br>1.1730 | .06703<br>.06929 | .51536<br>.52267 |
| 0.59           | 1.8040           | .25623           | .55433           | 0.6248             | .79576            | 1.1792           | .07157           | .5.5990          |
| 0.60           | 1.8221           | .26058           | .54881           | 0.6367             | .80390            | 1.1855           | 31.354           | .53740           |
| 0.61           | 1.8404           | .26492           | .54335           | 0.6485             | .81194            | 1.1919           | .07624           | .5441.5          |
| 0.62<br>0.63   | 1.8589<br>1.8776 | .26926<br>.27361 | .53794<br>.53259 | $0.6605 \\ 0.6725$ | .81987<br>.82770  | 1.1984 $1.2051$  | .07861<br>.08102 | .55113<br>.55805 |
| 0.64           | 1.8965           | .27795           | .52729           | 0.6846             | .83543            | 1.2119           | .08346           | .56490           |
| 0.65           | 1.9155           | .28229<br>.28663 | .52205<br>.51685 | 0.6967<br>0.7090   | .84308<br>.85063  | 1.2188<br>1.2258 | .08593           | .57167<br>.57836 |
| 0.66           | 1.9348           | .29098           | .51171           | 0.7090             | .85809            | 1.2330           | .09095           | .58498           |
| 0.68           | 1.9739           | .29532           | .50662           | 0.7336             | .86548            | 1.2402           | .09351           | .59152           |
| 0.69           | 1.9937           | .29966           | .50158           | 0.7461             | .87278            | 1.2476           | .09609           | .59798           |
| 0.70           | 2.0138           | .30401           | .49659           | 0.7586             | .88000            | 1.2552           | .09870           | .60437           |
| 0.71           | 2.0340           | .30835           | .49164           | 0.7712             | .88715            | 1.2628           | .10134           | .61068           |
| $0.72 \\ 0.73$ | 2.0544<br>2.0751 | .31269<br>.31703 | .48675<br>.48191 | 0.7838<br>0.7966   | .89423<br>.90123  | 1.2706<br>1.2785 | .10401           | .61691<br>.62307 |
| 0.74           | 2.0959           | .32138           | .47711           | 0.8094             | .90817            | 1.2865           | .10942           | .62915           |
| 0.75           | 2.1170           | .32572           | .47237<br>.46767 | 0.8223<br>0.8353   | .91504<br>.92185  | 1.2947           | .11216           | .63515<br>.64108 |
| 0.76           | 2.1383           | .33006           | 1                | 1                  | .92859            | 1.3030           | .11773           | .64693           |
| 0.77<br>0.78   | 2.1598<br>2.1815 | .33441<br>.33875 | .46301           | 0.8484             | .93527            | 1.3199           | .12055           | .65271           |
| 0.79           | 2.2034           | .34309           | .45384           | 0.8748             | .94190            | 1.3286           | .12340           | .65841           |
| 0.80           | 2.2255           | .34744           | .44933           | 0.8881             | .94846            | 1.3374           | .12627           | .66404           |
| 0.81           | 2.2479           | .35178           | .44486           | 0.9015             | .95498            | 1.3464           | .12917           | .66959<br>.67507 |
| 0.82<br>0.83   | 2.2705           | .35612<br>.36046 | .44043           | 0.9150             | .96144<br>.96784  | 1.3555           | .13503           | .68048           |
| 0.84           | 2.3164           | .36481           | .43171           | 0.9423             | .97420            | 1.3740           | .13800           | .68581           |
| 0.85           | 2.3396           | .36915           | .42741           | 0.9561             | .98051            | 1.3835           | .14099           | .69107           |
| 0.86           | 2.3632           | .37349           | .42316           | 0.9700             | .98677            | 1.3932           | .14400           | .69626           |
| 0.87           | 2.3869           | .37784           | .41895           | 0.9840             | .99299<br>.99916  | 1.4029           | .14704           | .70137<br>.70642 |
| 0.88<br>0.89   | 2.4109<br>2.4351 | .38218<br>.38652 | .41478           | 1.0122             | .00528            | 1.4229           | .15317           | .71139           |
| 0.90           |                  | .39087           | .40657           | 1.0265             | .01137            | 1.4331           | .15627           | .71630           |
| 0.91           |                  | .39521           | .40252           | 1.0409             | .01741            | 1.4434           | .15939           | .72113           |
| 0.92           | 2.5093           | .39955<br>.40389 | .39852<br>.39455 | 1.0554             | .02341            | 1.4539<br>1.4645 | .16254<br>.16570 | .72590<br>.73059 |
| 0.93           | 1                | .40824           | .39063           | 1.0847             | .03530            | 1.4753           | 16888            | .73522           |
| 0.94           |                  | .41258           | .38674           | 1.0995             | .04119            | 1.4862           | .17208<br>.17531 | .73978           |
| 0.96           |                  | .41692           | .38289           | 1.1144             | .04704            | 1.4973           |                  | .74428           |
| 0.97           |                  | .42127           | .37908           | 1.1294             | .05286            | 1.5085<br>1.5199 | .17855<br>.18181 | .74870           |
| 0.98           |                  | .42561<br>.42995 | .37531<br>.37158 | 1.1446<br>1.1598   | .06439            | 1.5314           | .18509           | .75736           |
| 1.00           |                  | .43429           | .36788           | 1.1752             | .07011            | 1.5431           | .18839           | .76159           |
| 1.00           | ·   ±./188       | Caror.           | 1 .00100         |                    |                   |                  |                  |                  |

|                        | e                          | z ·                        |                            | Sin                        | h x                        |                                      |                            |                                      |
|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------------------|
|                        | Value                      | Log <sub>10</sub>          |                            | Value                      | Logio                      |                                      |                            |                                      |
| 1.00                   | 2.7183                     | .43429                     | .36788                     | 1.1752                     | .07011                     |                                      |                            | .76159                               |
| $1.01 \\ 1.02 \\ 1.03$ | 2.7456                     | .43864                     | .36422                     | 1.1907                     | .07580                     | 1.5549                               | .19171                     | .76576                               |
|                        | 2.7732                     | .44298                     | .36060                     | 1.2063                     | .08146                     | 1.5669                               | .19504                     | .76987                               |
|                        | 2.8011                     | .44732                     | .35701                     | 1.2220                     | .08708                     | 1.5790                               | .19839                     | .77391                               |
| 1.04                   | 2.8292                     | .45167                     | .35345                     | 1.2379                     | .09268                     | 1.5913                               | .20176                     | .77789                               |
| 1.05                   | 2.8577                     | .45601                     | .34994                     | 1.2539                     | .09825                     | 1.6038                               | .20515                     | .78181                               |
| 1.06                   | 2.8864                     | .46035                     | .34646                     | 1.2700                     | .10379                     | 1.6164                               | .20855                     | .78566                               |
| 1.07                   | 2.9154                     | .46470                     | .34301                     | 1.2862                     | .10930                     | 1.6292                               | .21197                     | .78946                               |
| 1.08                   | 2.9447                     | .46904                     | .33960                     | 1.3025                     | .11479                     | 1.6421                               | .21541                     | .79320                               |
| 1.09                   | 2.9743                     | .47338                     | .33622                     | 1.3190                     | .12025                     | 1.6552                               | .21886                     | .79688                               |
| 1.10                   | 3.0042                     | .47772                     | .33287                     | 1.3356                     | .12569                     | 1.6685                               | .22233                     | .80050                               |
|                        | 3.0344                     | .48207                     | .32956                     | 1.3524                     | .13111                     | 1.6820                               | .22582                     | .80406                               |
|                        | 3.0649                     | .48641                     | .32628                     | 1.3693                     | .13649                     | 1.6956                               | .22931                     | .80757                               |
|                        | 3.0957                     | .49075                     | .32303                     | 1.3863                     | .14186                     | 1.7093                               | .23283                     | .81102                               |
|                        | 3.1268                     | .49510                     | .31982                     | 1.4035                     | .14720                     | 1.7233                               | .23636                     | .81441                               |
|                        | 3.1582                     | .49944                     | .31664                     | 1.4208                     | .15253                     | 1.7374                               | .23990                     | .81775                               |
|                        | 3.1899                     | .50378                     | .31349                     | 1.4382                     | .15783                     | 1.7517                               | .24346                     | .82104                               |
|                        | 3.2220 $3.2544$ $3.2871$   | .50812<br>.51247<br>.51681 | .31037<br>.30728<br>.30422 | 1.4558<br>1.4735<br>1.4914 | .16311<br>.16836<br>.17360 | 1.7662<br>1.7808<br>1.7957           | .24703<br>.25062<br>.25422 | .82427<br>.82745<br>.83058           |
|                        | 3.3201                     | .52115                     | .30119                     |                            | .17882                     | 1.8107                               | .25784                     | .83365                               |
|                        | 3.3535<br>3.3872<br>3.4212 | .52550<br>.52984<br>.53418 | .29820<br>.29523<br>.29229 | 1.5276<br>1.5460<br>1.5645 | .18402<br>.18920<br>.19437 | 1.8258<br>1.8412<br>1.8568           | .26146<br>.26510<br>.26876 | .83965<br>.84258                     |
|                        | 3.4556                     | .53853                     | .28938                     | 1.5831                     | .19951                     | 1.8725                               | .27242                     | .84546                               |
|                        | 3.4903                     | .54287                     | .28650                     | 1.6019                     | .20464                     | 1.8884                               | .27610                     | .84828                               |
|                        | 3.5254                     | .54721                     | .28365                     | 1.6209                     | .20975                     | 1.9045                               | .27979                     | .85106                               |
| 1.27                   | 3.5609                     | .55155                     | .28083                     | 1.6400                     | .21485                     | 1.9208                               | .28349                     | .85380                               |
| 1.28                   | 3.5966                     | .55590                     | .27804                     | 1.6593                     | .21993                     | 1.9373                               | .28721                     | .85648                               |
| 1.29                   | 3.6328                     | .56024                     | .27527                     | 1.6788                     | .22499                     | 1.9540                               | .29093                     | .85913                               |
| 1.30                   | 3.6693                     | .56458                     | .27258                     | 1.6984                     | .23004                     | 1.9709                               | .29467                     | .86172                               |
| 1.31                   | 3.7062                     | .56893                     | .26982                     | 1.7182                     | .23507                     | 1.9880                               | .29842                     | .86428                               |
| 1.32                   | 3.7434                     | .57327                     | .26714                     | 1.7381                     | .24009                     | 2.0053                               | .30217                     | .86678                               |
| 1.33                   | 3.7810                     | .57761                     | .26448                     | 1.7583                     | .24509                     | 2.0228                               | .30594                     | .86925                               |
|                        | 3.8190                     | .58195                     | .26185                     | 1.7786                     | .25008                     | 2.0404                               | .30972                     | .87167                               |
|                        | 3.8574                     | .58630                     | .25924                     | 1.7991                     | .25505                     | 2.0583                               | .31352                     | .87405                               |
|                        | 3.8962                     | .59064                     | .25666                     | 1.8198                     | .26002                     | 2.0764                               | .31732                     | .87639                               |
| 1.37                   | 3.9354                     | .59498                     | .25411                     | 1.8406                     | .26496                     | 2.0947                               | .32113                     |                                      |
| 1.38                   | 3.9749                     | .59933                     | .25158                     | 1.8617                     | .26990                     | 2.1132                               | .32495                     |                                      |
| 1.39                   | 4.0149                     | .60367                     | .24908                     | 1.8829                     | .27482                     | 2.1320                               | .32878                     |                                      |
|                        |                            | .60801                     |                            |                            |                            | 2,1509                               | .33262                     |                                      |
|                        | 4.0960<br>4.1371<br>4.1787 | .61236<br>.61670<br>.62104 | .24414<br>.24171<br>.23931 | 1.9259<br>1.9477<br>1.9697 | .28464<br>.28952<br>.29440 | 2.1700<br>2.1894<br>2.2090           | .33647<br>.34033<br>.34420 |                                      |
|                        | 4.2207                     | .62538                     | .23693                     | 1.9919                     | .29926                     | 2.2288                               | .34807                     | .89370                               |
|                        | 4.2631                     | .62973                     | .23457                     | 2.0143                     | .30412                     | 2.2488                               | .35196                     | .89569                               |
|                        | 4.3060                     | .63407                     | .23224                     | 2.0369                     | .30896                     | 2.2691                               | .35585                     | .89765                               |
|                        | 4.3492<br>4.3929<br>4.4371 | .63841<br>.64276<br>.64710 | .22993<br>.22764<br>.22537 | 2.0597<br>2.0827<br>2.1059 | .31379<br>.31862<br>.32343 | 2.2896<br>2.3103<br>2.3312<br>2.3524 | .35976<br>.36367<br>.36759 | .89958<br>.90147<br>.90332<br>.90515 |

|      |        | ez         | e-2    | Sin                                                       | nh x   | Co                                                        | sh x   | TL     |
|------|--------|------------|--------|-----------------------------------------------------------|--------|-----------------------------------------------------------|--------|--------|
|      | Value  | $Log_{10}$ | Value  | Value                                                     | Logn   | Value                                                     | Loga   | Tanh : |
| 1.50 | 4.4817 | .65144     | .22313 | 2.1293                                                    | .32823 | 2,3524                                                    | .37151 | .90515 |
| 1.51 | 4.5267 | .65578     | .22091 | 2.1529                                                    | .33303 | 2.3738                                                    | .37545 | .90694 |
| 1.52 | 4.5722 | .66013     | .21871 | 2.1768                                                    | .33781 | 2.3955                                                    | .37939 | .90870 |
| 1.53 | 4.6182 | .66447     | .21654 | 2.2008                                                    | .34258 | 2.4174                                                    | .35334 | .91042 |
| 1.54 | 4.6646 | .66881     | .21438 | 2.2251                                                    | .34735 | 2.4395                                                    | .38730 | .91212 |
| 1.55 | 4.7115 | .67316     | .21225 | 2.2496                                                    | .35211 | 2.4619                                                    | .39126 | .91379 |
| 1.56 | 4.7588 | .67750     | .21014 | 2.2743                                                    | .35686 | 2.4845                                                    | .39524 | .91542 |
| 1.57 | 4.8066 | .68184     | .20805 | 2.2993                                                    | .36160 | $\begin{array}{c} 2.5073 \\ 2.5305 \\ 2.5538 \end{array}$ | .39921 | .91703 |
| 1.58 | 4.8550 | .68619     | .20598 | 2.3245                                                    | .36633 |                                                           | .40320 | .91860 |
| 1.59 | 4.9037 | .69053     | .20393 | 2.3499                                                    | .37105 |                                                           | .40719 | .92015 |
| 1.60 | 4.9530 | .69487     | .20190 | 2.3756                                                    | .37577 | 2.5775                                                    | .41119 | .92167 |
| 1.61 | 5.0028 | .69921     | .19989 | 2.4015                                                    | .38048 | 2.6013                                                    | .41520 | .92316 |
| 1.62 | 5.0531 | .70356     | .19790 | 2.4276                                                    | .38518 | 2.6255                                                    | .41921 | .92462 |
| 1.63 | 5.1039 | .70790     | .19593 | 2.4540                                                    | .38987 | 2.6499                                                    | .42323 | .92606 |
| 1.64 | 5.1552 | .71224     | .19398 | 2.4806                                                    | .39456 | 2.6746                                                    | .42725 | .92747 |
| 1.65 | 5.2070 | .71659     | .19205 | 2.5075                                                    | .39923 | 2.6995                                                    | .43129 | .92886 |
| 1.66 | 5.2593 | .72093     | .19014 | 2.5346                                                    | .40391 | 2.7247                                                    | .43532 | .93022 |
| 1.67 | 5.3122 | .72527     | .18825 | 2.5620                                                    | .40857 | 2.7502                                                    | .43937 | .93155 |
| 1.68 | 5.3656 | .72961     | .18637 | 2.5896                                                    | .41323 | 2.7760                                                    | .44341 | .93286 |
| 1.69 | 5.4195 | .73396     | .18452 | 2.6175                                                    | .41788 | 2.8020                                                    | .44747 | .93415 |
| 1.70 | 5.4739 | .73830     | .18268 | 2.6456                                                    | .42253 | 2.8283                                                    | .45153 | .93541 |
| 1.71 | 5.5290 | .74264     | .18087 | $\begin{array}{c} 2.6740 \\ 2.7027 \\ 2.7317 \end{array}$ | .42717 | 2.8549                                                    | .45559 | .93665 |
| 1.72 | 5.5845 | .74699     | .17907 |                                                           | .43180 | 2.8818                                                    | .45966 | .93786 |
| 1.73 | 5.6407 | .75133     | .17728 |                                                           | .43643 | 2.9090                                                    | .46374 | .93906 |
| 1.74 | 5.6973 | .75567     | .17552 | 2.7609                                                    | .44105 | 2.9364                                                    | .46782 | .94023 |
| 1.75 | 5.7546 | .76002     | .17377 | 2.7904                                                    | .44567 | 2.9642                                                    | .47191 | .94138 |
| 1.76 | 5.8124 | .76436     | .17204 | 2.8202                                                    | .45028 | 2.9922                                                    | .47600 | .94250 |
| 1.77 | 5.8709 | .76870     | .17033 | 2.8503                                                    | .45488 | 3.0206                                                    | .48009 | .94361 |
| 1.78 | 5.9299 | .77304     | .16864 | 2.8806                                                    | .45948 | 3.0492                                                    | .48419 | .94470 |
| 1.79 | 5.9895 | .77739     | .16696 | 2.9112                                                    | .46408 | 3.0782                                                    | .48830 | .94576 |
| 1.80 | 6.0496 | .78173     | .16530 | 2.9422                                                    | .46867 | 3.1075                                                    | .49241 | .94681 |
| 1.81 | 6.1104 | .78607     | .16365 | 2.9734                                                    | .47325 | 3.1371                                                    | .49652 | .94783 |
| 1.82 | 6.1719 | .79042     | .16203 | 3.0049                                                    | .47783 | 3.1669                                                    | .50064 | .94884 |
| 1.83 | 6.2339 | .79476     | .16041 | 3.0367                                                    | .48241 | 3.1972                                                    | .50476 | .94983 |
| 1.84 | 6.2965 | .79910     | .15882 | 3.0689                                                    | .48698 | 3.2277                                                    | .50889 | .95080 |
| 1.85 | 6.3598 | .80344     | .15724 | 3.1013                                                    | .49154 | 3.2585                                                    | .51302 | .95175 |
| 1.86 | 6.4237 | .80779     | .15567 | 3.1340                                                    | .49610 | 3.2897                                                    | .51716 | .95268 |
| 1.87 | 6.4883 | .81213     | .15412 | 3.1671                                                    | .50066 | 3.3212                                                    | .52130 | .95359 |
| 1.88 | 6.5535 | .81647     | .15259 | 3.2005                                                    | .50521 | 3.3530                                                    | .52544 | .95449 |
| 1.89 | 6.6194 | .82082     | .15107 | 3.2341                                                    | .50976 | 3.3852                                                    | .52959 | .95537 |
| 1.90 | 6.6859 | .82516     | .14957 | 3.2682                                                    | .51430 | 3.4177                                                    | .53374 | .95624 |
| 1.91 | 6.7531 | .82950     | .14808 | 3.3025                                                    | .51884 | 3,4506                                                    | .53789 | .95709 |
| 1.92 | 6.8210 | .83385     | .14661 | 3.3372                                                    | .52338 | 3,4838                                                    | .54205 | .95792 |
| 1.93 | 6.8895 | .83819     | .14515 | 3.3722                                                    | .52791 | 3,5173                                                    | .54621 | .95873 |
| 1.94 | 6.9588 | .84253     | .14370 | 3.4075                                                    | .53244 | 3.5512                                                    | .55038 | .95953 |
| 1.95 | 7.0287 | .84687     | .14227 | 3.4432                                                    | .53696 | 3.5855                                                    | .55455 | .96032 |
| 1.96 | 7.0993 | .85122     | .14086 | 3.4792                                                    | .54148 | 3.6201                                                    | .55872 | .96109 |
| 1.97 | 7.1707 | .85556     | .13946 | 3.5156                                                    | .54600 | 3.6551                                                    | .56290 | .96185 |
| 1.98 | 7.2427 | .85990     | .13807 | 3.5523                                                    | .55051 | 3.6904                                                    | .56707 | .96259 |
| 1.99 | 7.3155 | .86425     | .13670 | 3.5894                                                    | .55502 | 3.7261                                                    | .57126 | .96331 |
| 2.00 | 7.3891 | .86859     | .13534 | 3.6269                                                    | .55953 | 3.7622                                                    | .57544 | .96403 |

|      |         |                   |                          |              |                          |              |                          | £1.7            |
|------|---------|-------------------|--------------------------|--------------|--------------------------|--------------|--------------------------|-----------------|
| ·x   | Value e | Log <sub>10</sub> | e <sup>-z</sup><br>Value | Sin<br>Value | h x<br>Log <sub>10</sub> | Cos<br>Value | h x<br>Log <sub>10</sub> | Tanh x<br>Value |
| 2.00 | 7.3891  | .86859            | .13534                   | 3.6269       | .55953                   | 3.7622       | .57544                   | .96403          |
| 2.01 | 7.4633  | .87293            | .13399                   | 3.6647       | .56403                   | 3.7987       | .57963                   | .96473          |
| 2.02 | 7.5383  | .87727            | .13266                   | 3.7028       | .56853                   | 3.8355       | .58382                   | .96541          |
| 2.03 | 7.6141  | .88162            | .13134                   | 3.7414       | .57303                   | 3.8727       | .58802                   | .96609          |
| 2.04 | 7.6906  | .88596            | .13003                   | 3.7803       | .57753                   | 3.9103       | .59221                   | .96675          |
| 2.05 | 7.7679  | .89030            | .12873                   | 3.8196       | .58202                   | 3.9483       | .59641                   | .96740          |
| 2.06 | 7.8460  | .89465            | .12745                   | 3.8593       | .58650                   | 3.9867       | .60061                   | .96803          |
| 2.07 | 7.9248  | .89899            | .12619                   | 3.8993       | .59099                   | 4.0255       | .60482                   | .96865          |
| 2.08 | 8.0045  | .90333            | .12493                   | 3.9398       | .59547                   | 4.0647       | .60903                   | .96926          |
| 2.09 | 8.0849  | .90768            | .12369                   | 3.9806       | .59995                   | 4.1043       | .61324                   | .96986          |
| 2.10 | 8.1662  | .91202            | .12246                   | 4.0219       | .60443                   | 4.1443       | .61745                   | .97045          |
| 2.11 | 8.2482  | .91636            | .12124                   | 4.0635       | .60890                   | 4.1847       | .62167                   | .97103          |
| 2.12 | 8.3311  | .92070            | .12003                   | 4.1056       | .61337                   | 4.2256       | .62589                   | .97159          |
| 2.13 | 8.4149  | .92505            | .11884                   | 4.1480       | .61784                   | 4.2669       | .63011                   | .97215          |
| 2.14 | 8.4994  | .92939            | .11765                   | 4.1909       | .62231                   | 4.3085       | .63433                   | .97269          |
| 2.15 | 8.5849  | .93373            | .11648                   | 4.2342       | .62677                   | 4.3507       | .63856                   | .97323          |
| 2.16 | 8.6711  | .93808            | .11533                   | 4.2779       | .63123                   | 4.3932       | .64278                   | .97375          |
| 2.17 | 8.7583  | .94242            | .11418                   | 4.3221       | .63569                   | 4.4362       | .64701                   | .97426          |
| 2.18 | 8.8463  | .94676            | .11304                   | 4.3666       | .64015                   | 4.4797       | .65125                   | .97477          |
| 2.19 | 8.9352  | .95110            | .11192                   | 4.4116       | .64460                   | 4.5236       | .65548                   | .97526          |
| 2.20 | 9.0250  | .95545            | .11080                   | 4.4571       | .64905                   | 4.5679       | .65972                   | .97574          |
| 2.21 | 9.1157  | .95979            | .10970                   | 4.5030       | .65350                   | 4.6127       | .66396                   | .97622          |
| 2.22 | 9.2073  | .96413            | .10861                   | 4.5494       | .65795                   | 4.6580       | .66820                   | .97668          |
| 2.23 | 9.2999  | .96848            | .10753                   | 4.5962       | .66240                   | 4.7037       | .67244                   | .97714          |
| 2.24 | 9.3933  | .97282            | .10646                   | 4.6434       | .66684                   | 4.7499       | .67668                   | .97759          |
| 2.25 | 9.4877  | .97716            | .10540                   | 4.6912       | .67128                   | 4.7966       | .68093                   | .97803          |
| 2.26 | 9.5831  | .98151            | .10435                   | 4.7394       | .67572                   | 4.8437       | .68518                   | .97846          |
| 2.27 | 9.6794  | .98585            | .10331                   | 4.7880       | .68016                   | 4.8914       | .68943                   | .97888          |
| 2.28 | 9.7767  | .99019            | .10228                   | 4.8372       | .68459                   | 4.9395       | .69368                   | .97929          |
| 2.29 | 9.8749  | .99453            | .10127                   | 4.8868       | .68903                   | 4.9881       | .69794                   | .97970          |
| 2.30 | 9.9742  | .99888            | .10026                   | 4.9370       | .69346                   | 5.0372       | .70219                   | .98010          |
| 2.31 | 10.074  | .00322            | .09926                   | 4.9876       | .69789                   | 5.0868       | .70645                   | .98049          |
| 2.32 | 10.176  | .00756            | .09827                   | 5.0387       | .70232                   | 5.1370       | .71071                   | .98087          |
| 2.33 | 10.278  | .01191            | .09730                   | 5.0903       | .70675                   | 5.1876       | .71497                   | .98124          |
| 2.34 | 10.381  | .01625            | .09633                   | 5.1425       | .71117                   | 5.2388       | .71923                   | .98161          |
| 2.35 | 10.486  | .02059            | .09537                   | 5.1951       | .71559                   | 5.2905       | .72349                   | .98197          |
| 2.36 | 10.591  | .02493            | .09442                   | 5.2483       | .72002                   | 5.3427       | .72776                   | .98233          |
| 2.37 | 10.697  | .02928            | .09348                   | 5.3020       | .72444                   | 5.3954       | .73203                   | .98267          |
| 2.38 | 10.805  | .03362            | .09255                   | 5.3562       | .72885                   | 5.4487       | .73630                   | .98301          |
| 2.39 | 10.913  | .03796            | .09163                   | 5.4109       | .73327                   | 5.5026       | .74056                   | .98335          |
| 2.40 | 11.023  | .04231            | .09072                   | 5.4662       | .73769                   | 5.5569       | .74484                   | .98367          |
| 2.41 | 11.134  | .04665            | .08982                   | 5.5221       | .74210                   | 5.6119       | .74911                   | .98400          |
| 2.42 | 11.246  | .05099            | .08892                   | 5.5785       | .74652                   | 5.6674       | .75338                   | .98431          |
| 2.43 | 11.359  | .05534            | .08804                   | 5.6354       | .75093                   | 5.7235       | .75766                   | .98462          |
| 2.44 | 11.473  | .05968            | .08716                   | 5.6929       | .75534                   | 5.7801       | .76194                   | .98492          |
| 2.45 | 11.588  | .06402            | .08629                   | 5.7510       | .75975                   | 5.8373       | .76621                   | .98522          |
| 2.46 | 11.705  | .06836            | .08543                   | 5.8097       | .76415                   | 5.8951       | .77049                   | .98551          |
| 2.47 | 11.822  | .07271            | .08458                   | 5.8689       | .76856                   | 5.9535       | .77477                   | .98579          |
| 2.48 | 11.941  | .07705            | .08374                   | 5.9288       | .77296                   | 6.0125       | .77906                   | .98607          |
| 2.49 | 12.061  | .08139            | .08291                   | 5.9892       | .77737                   | 6.0721       | .78334                   | .98635          |
| 2.50 | 12.182  | .08574            | .08208                   | 6.0502       | .78177                   | 6.1323       | .78762                   | .98661          |

|                      | e                          | z 1                        | e-x                        | Sin                        | <u>.</u>                   | Δ.               | ,                          | ~ .                        |
|----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------|----------------------------|----------------------------|
| x                    | Value                      | Logu                       | Value                      | Value                      | Logie                      | Value            | h x<br>Loga                | Tanh x<br>Value            |
| 2.50                 | 12.182                     | .08574                     | .08208                     | 6.0502                     | .78177                     | 6.1323           | .78762                     | .95661                     |
| 2.51                 | 12.305                     | .09008                     | .05127                     | 6.1115                     | .75617                     | 6.1931           | .79191                     | .9555                      |
| 2.52                 | 12.429                     | .09442                     | .08046                     | 6.1741                     | .79057                     | 6.2545           | .79619                     | .95714                     |
| 2.53                 | 12.554                     | .09877                     | .07966                     | 6.2369                     | .79497                     | 6.3166           | .50048                     | .95739                     |
| 2.54                 | 12.680                     | .10311                     | .07887                     | 6.3004                     | .79937                     | 6.3793           | .50477                     | .98764                     |
| 2.55                 | 12.807                     | .10745                     | .07808                     | 6.3645                     | .80377                     | 6.4426           | .50906                     | .98788                     |
| 2.56                 | 12.936                     | .11179                     | .07730                     | 6.4293                     | .80\$16                    | 6.5066           | .51335                     | .98812                     |
| 2.57                 | 13.066                     | .11614                     | .07654                     | 6.4946                     | .81256                     | 6.5712           | .81764                     | .95835                     |
| 2.58                 | 13.197                     | .12048                     | .07577                     | 6.5607                     | .81695                     | 6.6365           | .82194                     | .95858                     |
| 2.59                 | 13.330                     | .12482                     | .07502                     | 6.6274                     | .82134                     | 6.7024           | .82623                     | .95851                     |
| 2.60                 | 13.464                     | .12917                     | .07427                     | 6.6947                     | .82573                     | 6.7690           | .83052                     | .9593                      |
| 2.61                 | 13.599                     | .13351                     | .07353                     | 6.7628                     | .83012                     | 6.8363           | .83482                     | .95924                     |
| 2.62                 | 13.736                     | .13785                     | .07280                     | 6.8315                     | .83451                     | 6.9043           | .83912                     | .95946                     |
| 2.63                 | 13.874                     | .14219                     | .07208                     | 6.9008                     | .83890                     | 6.9729           | .84341                     | .95966                     |
| 2.64                 | 14.013                     | .14654                     | .07136                     | 6.9709                     | .84329                     | 7.0423           | .84771                     | .98987                     |
| 2.65                 | 14.154                     | .15088                     | .07065                     | 7.0417                     | .84768                     | 7.1123           | .85201                     | .99007                     |
| 2.66                 | 14.296                     | .15522                     | .06995                     | 7.1132                     | .85206                     | 7.1831           | .85631                     | .99026                     |
| 2.67                 | 14.440                     | .15957                     | .06925                     | 7.1854                     | .85645                     | 7.2546           | .86061                     | .99045                     |
| 2.68                 | 14.585                     | .16391                     | .06856                     | 7.2583                     | .86083                     | 7.3268           | .86492                     | .99064                     |
| 2.69                 | 14.732                     | .16825                     | .06788                     | 7.3319                     | .86522                     | 7.3998           | .86922                     | .99083                     |
| 2.70                 | 14.880                     | .17260                     | .06721                     | 7.4063                     | .86960                     | 7.4735           | .57352                     | .99101                     |
| 2.71                 | 15.029                     | .17694                     | .0654                      | 7.4814                     | .87398                     | 7.5479           | .57753                     | .99118                     |
| 2.72                 | 15.180                     | .18128                     | .06587                     | 7.5572                     | .87836                     | 7.6231           | .88213                     | .99136                     |
| 2.73                 | 15.333                     | .18562                     | .06522                     | 7.6338                     | .88274                     | 7.6991           | .58644                     | .99153                     |
| 2.74                 | 15.487                     | .18997                     | .06457                     | 7.7112                     | .88712                     | 7.7758           | .89074                     | .99170                     |
| 2.75                 | 15.643                     | .19431                     | .06393                     | 7.7894                     | .89150                     | 7.8533           | .89505                     | .99186                     |
| 2.76                 | 15.800                     | .19865                     | .06329                     | 7.8683                     | .89588                     | 7.9316           | .89936                     | .99202                     |
| 2.77                 | 15.959                     | .20300                     | .06266                     | 7.9480                     | .90026                     | 8.0106           | .90367                     | .99218                     |
| 2.78                 | 16.119                     | .20734                     | .06204                     | 8.0285                     | .90463                     | 8.0905           | .90798                     | .99233                     |
| 2.79                 | 16.281                     | .21168                     | .06142                     | 8.1098                     | .90901                     | 8.1712           | .91229                     | .99248                     |
| 2.80                 | 16.445                     | .21602                     | .06081                     | 8.1919                     | .91339                     | 8.2527           | .91660                     | .99263                     |
| 2.81                 | 16.610                     | .22037                     | .06020                     | 8.2749                     | .91776                     | \$.3351          | .92091                     | .99278                     |
| 2.82                 | 16.777                     | .22471                     | .05961                     | 8.3586                     | .92213                     | \$.4182          | .92522                     | .99292                     |
| 2.83                 | 16.945                     | .22905                     | .05901                     | 8.4432                     | .92651                     | \$.5022          | .92953                     | .99306                     |
| 2.84                 | 17.116                     | .23340                     | .05843                     | 8.5287                     | .93088                     | 8.5871           | .93385                     | .99320                     |
| 2.85                 | 17.288                     | .23774                     | .05784                     | 8.6150                     | .93525                     | 8.6728           | .93816                     | .99333                     |
| 2.86                 | 17.462                     | .24208                     | .05727                     | 8.7021                     | .93963                     | 8.7594           | .94247                     | .99346                     |
| 2.87<br>2.88<br>2.89 | 17.637<br>17.814<br>17.993 | .24643<br>.25077<br>.25511 | .05670<br>.05613<br>.05558 | 8.7902<br>8.8791<br>8.9689 | .94400<br>.94837<br>.95274 | 8.9352<br>9.0244 | .94679<br>.95110<br>.95542 | .99359<br>.99372<br>.99384 |
| 2.90                 | 18.174                     | .25945                     | .05502                     | 9.0596                     | .95711                     | 9.1146           | .95974                     | .99396                     |
| 2.91                 | 18.357                     | .26380                     | .05448                     | 9.1512                     | .96148                     | 9.2056           | .96405                     | .99408                     |
| 2.92                 | 18.541                     | .26814                     | .05393                     | 9.2437                     | .96584                     | 9.2976           | .96837                     | .99420                     |
| 2.93                 | 18.728                     | .27248                     | .05340                     | 9.3371                     | .97021                     | 9.3905           | .97269                     | .99431                     |
| 2.94                 | 18.916                     | .27683                     | .05287                     | 9.4315                     | .97458                     | 9.4844           | .97701                     | .99443                     |
| 2.95                 | 19.106                     | .28117                     | .05234                     | 9.5268                     | .97895                     | 9.5791           | .98133                     | .99454                     |
| 2.96                 | 19.298                     | .28551                     | .05182                     | 9.6231                     | .98331                     | 9.6749           | .98565                     | .99464                     |
| 2.97                 | 19.492                     | .28985                     | .05130                     | 9.7203                     | .98768                     | 9.7716           | .98997                     | .99475                     |
| 2.98                 | 19.688                     | .29420                     | .05079                     | 9.8185                     | .99205                     | 9.8693           | .99429                     | .99485                     |
| 2.99                 | 19.886                     | .29854                     | .05029                     | 9.9177                     | .99641                     | 9.9680           | .99861                     | .99496                     |
| 3.00                 | 20.086                     | .30288                     | .04979                     | 10.018                     | .00078                     | 10.068           | .00293                     | .99505                     |

|       | e      | ž .                 | e-s    | Sin    |        |                              | h x    | Tanh x |
|-------|--------|---------------------|--------|--------|--------|------------------------------|--------|--------|
| x     | Value  | Loga                | Value  | Value  | Logio  | Value                        | Logie  | Value  |
| 3.00  | 20.086 | .30288              | .04979 | 10.018 | .00078 | 10.068                       | .00293 | .99505 |
| 3.05  | 21.115 | .32460              | .04736 | 10.534 | .02259 | 10.581                       | .02454 | .99552 |
| 3.10  | 22.198 | .34631              | .04505 | 11.076 | .04440 | 11.122                       | .04616 | .99595 |
| 3.15  | 23.336 | .36803              | .04285 | 11.647 | .06620 | 11.689                       | .06779 | .99633 |
| 3.20  | 24.533 | .38974              | .04076 | 12.246 | .08799 | 12.287                       | .08943 | .99668 |
| 3.25  | 25.790 | .41146              | .03877 | 12.876 | .10977 | 12.915                       | .11108 | .99700 |
| 3.30  | 27.113 | .43317              | .03688 | 13.538 | .13155 | 13.575                       | .13273 | .99728 |
| 3.35  | 28.503 | .45489              | .03508 | 14.234 | .15332 | 14.269                       | .15439 | .99754 |
| 3.40  | 29.964 | .47660              | .03337 | 14.965 | .17509 | 14.999                       | .17605 | .99777 |
| 3.45  | 31.500 | .49832              | .03175 | 15.734 | .19685 | 15.766                       | .19772 | .99799 |
| 3.50  | 33.115 | .52003              | .03020 | 16.543 | .21860 | 16.573                       | .21940 | .99818 |
| 3,55  | 34.813 | .54175              | .02872 | 17.392 | .24036 | 17.421                       | .24107 | .99835 |
| 3,60  | 36.598 | .56346              | .02732 | 18.285 | .26211 | 18.313                       | .26275 | .99851 |
| 3,65  | 38.475 | .58517              | .02599 | 19.224 | .28385 | 19.250                       | .28444 | .99865 |
| 3.70  | 40.447 | .60689              | .02472 | 20.211 | .30559 | 20.236                       | .30612 | .99878 |
| 3.75  | 42.521 | .62860              | .02352 | 21.249 | .32733 | 21.272                       | .32781 | .99889 |
| 3.80  | 44.701 | .65032              | .02237 | 22.339 | .34907 | 22.362                       | .34951 | .99900 |
| 3.85  | 46.993 | .67203              | .02128 | 23.486 | .37081 | 23.507                       | .37120 | .99909 |
| 3.90  | 49.402 | .69375              | .02024 | 24.691 | .39254 | 24.711                       | .39290 | .99918 |
| 3.95  | 51.935 | .71546              | .01925 | 25.958 | .41427 | 25.977                       | .41459 | .99926 |
| 4.00  | 54.598 | .73718              | .01832 | 27.290 | .43600 | 27.308                       | .43629 | .99933 |
| 4.10  | 60.340 | .78061              | .01657 | 30.162 | .47946 | 30.178                       | .47970 | .99945 |
| 4.20  | 66.686 | .82404              | .01500 | 33.336 | .52291 | 33.351                       | .52310 | .99955 |
| 4.30  | 73.700 | .86747              | .01357 | 36.843 | .56636 | 36.857                       | .56652 | .99963 |
| 4.40  | 81.451 | .91090              | .01228 | 40.719 | .60980 | 40.732                       | .60993 | .99970 |
| 4.50  | 90.017 | .95433              | .01111 | 45.003 | .65324 | 45.014                       | .65335 | .99975 |
| 4.60  | 99.484 | .99775              | .01005 | 49.737 | .69668 | 49.747                       | .69677 | .99980 |
| 4.70  | 109.95 | .04118              | .00910 | 54.969 | .74012 | 54.978                       | .74019 | .99983 |
| 4.80  | 121.51 | . <del>0</del> 8461 | .00823 | 60.751 | .78355 | 60.759                       | .78361 | .99986 |
| 4.90  | 134.29 | .12804              | .00745 | 67.141 | .82699 | 67.149                       | .82704 | .99989 |
| 5.00  | 148.41 | .17147              | .00674 | 74.203 | .87042 | 74.210                       | .87046 | .99991 |
| 5.10  | 164.02 | .21490              | .00610 | 82.008 | .91386 | 82.014                       | .91389 | .99993 |
| 5.20  | 181.27 | .25833              | .00552 | 90.633 | .95729 | 90.639                       | .95731 | .99994 |
| 5.30  | 200.34 | .30176              | .00499 | 100.17 | .00072 | 100.17                       | .00074 | .99995 |
| 5.40  | 221.41 | .34519              | .00452 | 110.70 | .04415 | $110.71 \\ 122.35 \\ 135.22$ | .04417 | .99996 |
| 5.50  | 244.69 | .38862              | .00409 | 122.34 | .08758 |                              | .08760 | .99997 |
| 5.60  | 270.43 | .43205              | .00370 | 135.21 | .13101 |                              | .13103 | .99997 |
| 5.70  | 298.87 | .47548              | .00335 | 149.43 | .17444 | 149.44                       | .17445 | .99998 |
| 5.80  | 330.30 | .51891              | .00303 | 165.15 | .21787 | 165.15                       | .21788 | .99998 |
| 5.90  | 365.04 | .56234              | .00274 | 182.52 | .26130 | 182.52                       | .26131 | .99998 |
| 6.00  | 403.43 | .60577              | .00248 | 201.71 | .30473 | 201.72                       | .30474 | .99999 |
| 6.25  | 518.01 | .71434              | .00193 | 259.01 | .41331 | 259.01                       | .41331 | .99999 |
| 6.50  | 665.14 | .82291              | .00150 | 332.57 | .52188 | 332.57                       | .52189 | 1.0000 |
| 6.75  | 854.06 | .93149              | .00117 | 427.03 | .63046 | 427.03                       | .63046 | 1.0000 |
| 7.00  | 1096.6 | .04006              | .00091 | 548.32 | .73903 | 548.32                       | .73903 | 1.0000 |
| 7.50  | 1808.0 | .25721              | .00055 | 904.02 | .95618 | 904.02                       | .95618 | 1.0000 |
| 8.00  | 2981.0 | .47436              | .00034 | 1490.5 | .17333 | 1490.5                       | .17333 | 1.0000 |
| 8.50  | 4914.8 | .69150              | .00020 | 2457.4 | .39047 | 2457.4                       | .39047 | 1.0000 |
| 9.00  | 8103.1 | .90865              | .00012 | 4051.5 | .60762 | 4051.5                       | .60762 | 1.0000 |
| 9.50  | 13360. | .12580              | .00007 | 6679.9 | .82477 | 6679.9                       | .82477 | 1.0000 |
| 10.00 | 22026. | .34294              | .00005 | 11013. | .04191 | 11013.                       | .04191 | 1.0000 |

[Characteristics of Logarithms omitted-determine by rule from the value]

|                   |                                                                     |                                                    |                                           |                                                    |                                  |                                           |                                           |                                                    |                                           |                                                    | -                                             |                                                    |
|-------------------|---------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
|                   | Value                                                               |                                                    | Value                                     |                                                    | -                                | Logie                                     | Value                                     |                                                    | Value                                     |                                                    | Value                                         |                                                    |
|                   | .0003<br>.0007<br>.0012                                             | .4837<br>.8358<br>.0856                            | .0008<br>.001 <b>3</b>                    | .5532<br>.8828<br>.1211                            | .0004<br>.0008<br>.0014          | .6176<br>.9273<br>.1551                   | .0005<br>.0009<br>.0015                   | .6775<br>.9697<br>.1879                            | .0005<br>.0010<br>.0017                   | .7336<br>.0101<br>.2195                            | .0006<br>.0011<br>.0018                       | 5.7223<br>.408<br>.7862<br>.9487<br>.2499          |
|                   | .0019<br>.0027<br>.0037<br>.0049<br>.0062                           | .7893                                              | .0029<br>.0039<br>.0051                   | .3078<br>.4614<br>.5918<br>.7051<br>.8052          | .0031<br>.0041<br>.0053          |                                           | .0032<br>.0043<br>.0055<br>.0069          | .5071<br>.6312<br>.7397<br>.8361                   | .0045<br>.0057<br>.0071                   | .3880<br>.5290<br>.6503<br>.7566<br>.8512          | .0036<br>.0047<br>.0059<br>.0073              | .4132<br>.5504<br>.6689<br>.7731<br>.8660          |
|                   | 10 .0076<br>11 .0092<br>12 0109<br>13 .0128<br>14 .0149             | .0385<br>.1077<br>.1718                            | .0095<br>.0112<br>.0131<br>.0152          | .8949<br>.9762<br>.0504<br>.1187<br>.1820          | .0097<br>.0115<br>.0135<br>.0156 | .9890<br>.0622<br>.1296<br>.1921          | .0138<br>.0159                            | .9229<br>.0016<br>.0738<br>.1404<br>.2021          | .0122<br>.0142<br>.0163                   | .9365<br>.0141<br>.0853<br>.1510<br>.2120          | .0106<br>.0125<br>.0145<br>.0167              | .9499<br>.0264<br>.0966<br>.1614<br>.2218          |
| The second second | 15 .0170<br>16 .0194<br>1 .0218<br>18 .0245<br>19 .0272<br>20 .0302 | .3394<br>.3887<br>.4352                            | .0174<br>.0198<br>.0223<br>.0249<br>.0277 | .2409<br>.2961<br>.3478<br>.3966<br>.4427<br>.4865 | .0202<br>.0227<br>.0254<br>.0282 | .3049                                     | .0287                                     | .2597<br>.3137<br>.3644<br>.4123<br>.4576          | .0236<br>.0263<br>.0292                   | .2689<br>.3223<br>.3726<br>.4200<br>.4649          | .0190<br>.0214<br>.0240<br>.0268<br>.0297     | .2781<br>.3309<br>.3806<br>.4276<br>.4721<br>.5144 |
|                   | 21 .0332<br>22 .0364<br>23 .0397<br>24 .0432<br>25 .0468            | .5213<br>.5612<br>.5993<br>.6357                   | .0337<br>.0370<br>.0403<br>.0438          | .5281<br>.5677                                     | .0343<br>.0375<br>.0409<br>.0444 | .5348<br>.5741<br>.6116                   | .0348<br>.0381<br>.0415<br>.0450          | .5415<br>.5805<br>.6177<br>.6534                   | .0353<br>.0386<br>.0421<br>.0456          | .5481<br>.5868<br>.6238                            | .0359<br>.0392<br>.0426<br>.0462              | .5547<br>.5931<br>.6298<br>.6650                   |
| -                 | 26 .0506<br>27 .0545<br>28 .0585<br>29 .0627<br><b>30</b> .0670     | .7673                                              | .0552<br>.0592<br>.0634                   | .7096<br>.7416<br>.7724<br>.8020<br>.8307          | .0519<br>.0558<br>.0599<br>.0641 | .7151<br>.7468<br>.7774<br>.8069<br>.8354 | .0525<br>.0565<br>.0606<br>.0648          | .7204<br>.7520<br>.7824<br>.8117<br>.8400          | .0532<br>.0572<br>.0613<br>.0655          | .7258<br>.7572<br>.7874<br>.8165                   | .0538<br>.0578<br>.0620<br>.0663              | .7311<br>.7623<br>.7923<br>.8213<br>.8492          |
| -                 | 31 .0714<br>32 .0760<br>33 .0807<br>34 .0855<br><b>35</b> .0904     | .8538<br>.8807<br>.9067<br>.9319                   | .0722<br>.0767<br>.0815<br>.0863          | .8583<br>.8851<br>.9109<br>.9360<br>.9603          | .0729<br>.0775<br>.0823<br>.0871 | .8629<br>.8894<br>.9152<br>.9401<br>.9643 | .0737<br>.0783<br>.0831<br>.0879          | .8673<br>.8938<br>.9194<br>.9442                   | .0744<br>.0791<br>.0839<br>.0888          | .8718<br>.8981<br>.9236<br>.9482<br>.9722          | .0752<br>0799<br>0847<br>0896<br>.0946        | .8763<br>.9024<br>.9277<br>.9523<br>.9761          |
|                   | 36 .0955<br>37 .1007<br>38 .1060<br>39 .1114<br>40 .1170            | .9800<br>.0030<br>.0253<br>.0470                   | .1069                                     | .9838<br>.0067<br>.0289<br>.0505                   | .1024<br>.1078<br>.1133<br>.1189 | .0326<br>.0541<br>.0750                   | .1033<br>.1087<br>.1142                   | .9915<br>.0142<br>.0362<br>.0576<br>.0784<br>.0987 | 1042<br>1096<br>1151<br>1207              | .9954<br>.0179<br>.0398<br>.0611<br>.0817<br>.1021 | .0998<br>1051<br>1105<br>1160<br>1217<br>1275 | .9992<br>.0216<br>.0434<br>.0646<br>.0853<br>.1054 |
| -                 | 41 1226<br>42 .1284<br>43 .1343<br>44 .1403<br>45 .1464<br>46 .1527 | .0887<br>.1087<br>.1282<br>.1472<br>.1657          | .1294<br>.1353<br>.1413                   | .0920<br>.1119<br>.1314<br>.1503<br>.1687<br>.1867 | .1304<br>.1363<br>.1424<br>.1485 | .1152<br>.1345<br>.1534<br>.1718          | .1314<br>.1373<br>.1434<br>.1495<br>.1558 | .1185<br>.1377<br>.1565<br>.1748                   | .1323<br>.1383<br>.1444<br>.1506          | .1217<br>.1409<br>.1596<br>.1778<br>.1956          | 1333                                          | .1249<br>.1440<br>.1626<br>.1808<br>.1985          |
| -                 | 4' .1590<br>48 .1654<br>49 .1720<br><b>50</b> .1786<br>51 .1853     | .1838<br>.2014<br>.2186<br>.2355<br>.2519<br>.2680 | .1665<br>.1731<br>.1797                   | .2043<br>.2215<br>.2382<br>.2546<br>.2706          | .1611<br>.1676<br>.1742          | .2072<br>.2243<br>.2410<br>.2573<br>.2732 | .1622<br>.1687<br>.1753<br>.1820<br>.1887 | .2101<br>.2271<br>.2437<br>.2600<br>.2759          | .1633<br>.1698<br>.1764<br>.1831<br>.1899 | ,2129<br>,2299<br>,2465<br>,2627<br>,2785          | 1644<br>1709<br>1775<br>1842<br>1910          | .2158<br>.2327<br>.2492<br>.2653<br>.2811          |
| -                 | 52 .1922<br>53 .1991<br>54 .2061<br>55 .2132                        | .2837<br>.2991<br>.3141<br>.3288<br>.3432          | .1933<br>.2003<br>.2073<br>.2144<br>.2216 | .2863<br>.3016<br>.3166<br>.3312<br>3456           | .1945<br>.2014<br>.2085<br>.2156 | .2888<br>.3041<br>.3190<br>.3336<br>.3480 | .1956<br>.2026<br>.2096<br>.2168<br>.2240 | .3215<br>.3361<br>.3503                            | .2180                                     | .3384<br>3527                                      | 1979<br>.2049<br>.2120<br>.2192<br>.2265      | .2965<br>.3116<br>.3264<br>.3408<br>.3550          |
| -                 | 56 .2204<br>57 .2277<br>58 .2350<br>59 .2425                        | .3573<br>.3711<br>.3847                            | .2289<br>.2363<br>.2437                   | .3596<br>.3734<br>.3869                            | .2301 $.2375$                    | .3620<br>.3757<br>.3891                   | .2314<br>.2388<br>.2462                   | .3643<br>.3779<br>.3913                            | .2326<br>.2400<br>.2475                   |                                                    | .2338<br>.2412<br>.2487                       | .3689<br>.3824<br>.3957                            |

[Characteristics of Logarithms omitted-determine by rule from the value]

|                                                                            | ) <b>'</b>                       | 10                                        | o <b>′</b>                                | 2                                         | o,                                        | 3                                          | 0′                                        |                                            | 0'                                        | _                                         | O.f                                                |
|----------------------------------------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|
| alue                                                                       | Logie                            | Value                                     | $L_{0g_{10}}$                             | Value                                     | Logn                                      | Value                                      | Logio                                     | Value                                      | Log <sub>10</sub>                         | Value                                     | $Log_{10}$                                         |
| 60 .2500<br>61 .2576<br>62 .2653<br>63 .2730<br>64 .2808                   | .4109<br>.4237<br>.4362          | .2589<br>.2665<br>.2743                   | .4131                                     | .2601<br>.2678<br>.2756                   | .4152                                     | .2614                                      | .4045<br>.4173<br>.4300<br>.4423<br>.4545 | .2551<br>.2627<br>.2704<br>.2782<br>.2861  | .4066<br>.4195<br>.4320<br>.4144<br>.4565 | .2563<br>.2640<br>.2717<br>.2795<br>.2874 | .4088<br>.4216<br>.4341<br>.4464<br>.4584          |
| 65 .2887<br>66 .2966<br>.3046<br>.3127                                     | .4604<br>.4722                   | .2900<br>.2980<br>.3060                   | 4694                                      | 2913<br>2993<br>3073<br>3154<br>3235      |                                           | .2927<br>.3006<br>.3087<br>.3167<br>.3249  | .4664<br>.4780<br>.4895<br>.5007<br>.5117 | .2940<br>.3020<br>.3100<br>.3181<br>.3263  | .4683<br>.4799<br>.4914<br>.5026          | 2953<br>3033<br>.3113<br>.3195<br>.3276   | .4703<br>.4819<br>.4932<br>.5044<br>.5154          |
| 70 .3290<br>.3372<br>.3455<br>.3538<br>.3622                               | .5172<br>.5279<br>.5384<br>.5488 | .3304<br>.3386<br>.3469<br>.3552<br>.3636 | .5190                                     | .3317<br>.3400<br>.3483<br>.3566<br>.3650 | .5208<br>.5314<br>.5419<br>.5522          | .3331<br>.3413<br>.3496<br>.3580           | .5226<br>.5332<br>.5436<br>.5539<br>.5639 | .3345<br>.3427<br>.3510<br>.3594<br>.3678  | .5244<br>.5349<br>.5454<br>.5556          | .3358                                     | .5261<br>.5367<br>.5471<br>.5572<br>.5672          |
| 75 .3706<br>76 .3790<br>77 .3875<br>78 .3960<br>79 .4046                   | .5787<br>.5883<br>.5977          | .3720<br>.3805<br>.3889<br>.3975<br>.4060 | .5803<br>.5899<br>.5993<br>.6085          | .3734<br>.3819<br>.3904<br>.3989<br>.4075 | .5722<br>.5819<br>.5915<br>.6009          | .3748<br>.3833<br>.3918<br>.4003<br>.4089  | .5930                                     | .3762<br>.3847<br>.3932<br>.4017<br>.4103  | .5754<br>.5851<br>.5946<br>.6039<br>.6131 | .3861                                     | .5771<br>.5867<br>.5962<br>.6055<br>.6146          |
| 80 .4132<br>81 .4218<br>82 .4304<br>83 .4391<br>84 .4477                   | .6251<br>.6339<br>.6425<br>.6510 | 4232<br>4319<br>4405<br>4492              | .6353<br>.6440<br>.6524                   | .4247<br>.4333<br>.4420<br>.4506          | .6368<br>.6454<br>.6538                   | .4261<br>.4347<br>.4434<br>.4521           | .6206<br>.6295<br>.6382<br>.6468<br>.6552 | .4275<br>.4362<br>.4448<br>.4535           | .6397<br>.6482<br>.6566                   | .4290<br>.4376<br>.4463<br>.4550          | .6236<br>.6324<br>.6411<br>.6496<br>.6580          |
| 85 4564<br>4651<br>4738<br>4826<br>4913                                    | .6676<br>.6756<br>.6835<br>.6913 | .4666<br>.4753<br>.4840<br> .4937         | .6770<br>.6848<br>.6926                   | .4942                                     | .6703<br>.6783<br>.6862<br>.6939          |                                            | .6716<br>.6796<br>.6875<br>.6952          | .4796<br>.4884<br>.4971                    | .6730<br>.6809<br>.6887<br>.6964          | .4898<br>.4985                            | .6662<br>.6743<br>.6822<br>.6900<br>.6977          |
| .5000<br>.5087<br>.5174<br>.5262<br>.5349                                  | .7065<br>.7139<br>.7211<br>.7283 |                                           | .7151<br>.7223<br>.7294                   |                                           | .7163<br>.7235<br>.7306                   | .5044<br>.5131<br>.5218<br>.5305<br>.5392  | .7027<br>.7102<br>.7175<br>.7247<br>.7318 | .5233<br>.5320<br>.5407                    | .7114<br>.7187<br>.7259<br>.7329          | .5073<br>.5160<br>.5247<br>.5334<br>.5421 | .7052<br>.7126<br>.7199<br>.7271<br>.7341          |
| 95 .5436<br>96 .5523<br>9'.5609<br>98 .5696<br>99 .5782                    | .7421<br>.7489<br>.7556<br>.7621 |                                           | .7433<br>.7500<br>.7567<br>.7632          | .5811                                     | .7511<br>.7577<br>.7642                   | .5566<br>.5653<br>.5739<br>.5825           |                                           | .5840                                      | .7599<br>.7664                            | .5508<br>.5595<br>.5682<br>.5768<br>.5854 | .7410<br>.7478<br>.7545<br>.7610<br>.7674          |
| 100 5868<br>101 5954<br>102 6040<br>103 6125<br>104 6210                   | .7748<br>.7810<br>.7871<br>.7931 | .6054<br>.6139<br>.6224                   | .7820<br>.7881<br>.7940                   | .6153<br>.6238                            | .7830<br>.7891<br>.7950                   | .5911<br>.5997<br>.6082<br> .6167<br>.6252 | .7841<br>.7901<br>.7960                   | .5925<br>.6011<br> .6096<br>.6181<br>.6266 | .7970                                     | .6111<br>.6195<br>.6280                   | .7738<br>.7800<br>.7861<br>.7921<br>.7980          |
| 105 6294<br>106 6378<br>107 6462<br>108 6545<br>109 6628                   | .8047<br>.8104<br>.8159<br>.8214 | .6392<br>.6476<br>.6559<br>.6642          | .7999<br>.8056<br>.8113<br>.8168<br>.8223 | .6406<br>.6490<br>.6573<br>.6655          | .8009<br>.8066<br>.8122<br>.8177<br>.8232 | .6336<br>.6420<br>.6504<br>.6587           | .8075<br>.8131<br>.8187<br>.8241          | .6350<br>.6434<br>.6517<br>.6600<br>.6683  | .8085<br>.8141<br>.8196<br>.8250          | .6364<br>.6448<br>.6531<br>.6614<br>.6696 | .8037<br>.8094<br>.8150<br>.8205<br>.8258          |
| 110 .6710<br>111 .6792<br>112 .6873<br>113 .6954<br>114 .7034<br>115 .7113 | .8320<br>.8371<br>.8422<br>.8472 | .6887<br>.6967<br>.7047                   | .8380<br>.8430                            | .6819<br>.6900<br>.6980<br>.7060          | .8337<br>.8388<br>.8439<br>.8488          | .6751<br>.6833<br>.6913<br>.6994<br>.7073  | .8294<br>.8346<br>.8397<br>.8447<br>.8496 | .6927<br>.7007<br>.7087                    | .8354                                     |                                           | .8311<br>.8363<br>.8414<br>.8464<br>.8513<br>.8561 |
| 116,7192<br>117,7270<br>118,7347<br>119,7424                               | 8568                             | 7205                                      | 8576                                      | 7218                                      | 8584                                      | 7231                                       | 8592                                      | .7244<br>.7322<br>.7399                    | 8600                                      | .7257<br>.7335                            | .8608<br>.8654<br>.8699<br>.8743                   |

[Characteristics of Logarithms omitted-determine by rule from the value]

| 0'<br>Value Log <sub>10</sub>                                            | Value Log <sub>10</sub>                                  | 20'<br>Value Logic                                       | Value Logic                                                   | Value Logis                                              | Value Log                                                               |
|--------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|
| 120 .7500 .8751<br>121 .7575 .8794                                       | .7513 .5758                                              |                                                          | 57538 .8772<br>612 .8815                                      | 1550 .8780<br>1625 .8822                                 |                                                                         |
| 123 .7723 .8878<br>124 .7796 .8919                                       | 35 .8885<br>.7808 .8925<br>.7880 .8965                   | 7748 .8892<br>7820 .8932                                 | 760 .8598<br>.7832 .8539                                      | .7772 .8905<br>.7844 .8945                               | .7784 .8912<br>.7856 .8952                                              |
|                                                                          | .7951 .9004<br>.8021 .9042                               | 7892 .8972<br>.7962 .9010<br> .8032 .9048<br>.8101 .9085 | .8044 .9055                                                   |                                                          | .7927 .5991<br>.7997 .9039<br>.5067 .9067                               |
| 129 .8147 .9110<br>130 .8214 .9146                                       |                                                          | .\$169 .9122<br>.\$236 .9157                             | .8180 .9125<br>.8247 .9163                                    | .\$192 .9134<br>\$255 .9169                              | .\$135 .9104<br>.\$203 .9140<br>.\$269 .9175                            |
| 132 8346 .9215                                                           | .\$356 .9220<br>.\$421 .9253                             | .8367 .9226<br>.8431 .9259                               | .\$313 .9198<br>.\$378 .9231<br>.\$442 .9264<br>[.\$501 .9297 |                                                          | .8335 .9209<br>.8399 .9242<br>.8463 .9275<br>.8525 .9307                |
| 135 .8536 .9312<br>136 .8597 .9343<br>137 .8657 .9374                    | .8546 .9318<br>.8607 .9348                               | .8556 .9323<br>.8617 .9353                               | .S566 .9328                                                   |                                                          | .8587 .9338<br>.8647 .9369<br>.8706 .9398                               |
| 138 .5716 .9403<br>139 .8774 .9432<br>140 .5830 .9460                    | .8725 .9408                                              | .8735 .9413<br>.8793 .9441                               | .8745 .9417<br>.8802 .9446<br>.8858 .9473                     | .8754 .9422<br>.8811 .9450                               | .8764 .9427<br>.8821 .9455<br>.8877 .9482                               |
| 141 .8856 .9487<br>142 .8940 .9513<br>143 .8993 .9539<br>144 .9045 .9564 | .8895 .9491<br>.8949 .9518<br>.9002 .9543                | .8904 .9496<br>.8958 .9522<br>.9011 .9548<br>.9062 .9572 | .8913 .9500<br>.8967 .9526<br>.9019 .9552<br>.9071 .9576      | .8922 .9505<br>.8976 .9531<br>.9028 .9556                | .9931 .9509<br>.8984 .9535<br>.9037 .9560<br>.9057 .9584                |
| 145 9096 .9588<br>146 9145 .9612<br>147 9193 .9635                       | .9104 .9592<br>.9153 .9616<br>.9201 .9638                | .9112 .9596<br>.9161 .9620<br>.9209 .9642                | .9121 .9600<br>.9169 .9623<br>.9217 .9646                     | .9129 .9604<br>.9177 .9627<br>.9225 .9650                | .9137 .9608<br>.9185 .9631<br>.9233 .9653                               |
| 148 9240 .9657<br>149 9286 .9678<br>150 9330 .9699                       | .9293 .9682                                              | .9256 .9664<br>.9301 .9685<br>.9345 .9706                | .9263 .9668<br>.9308 .9689<br>.9352 .9709                     | .9316 .9692 .9359 .9712                                  | .9275 .9675<br>.9323 .9695<br>.9366 .9716                               |
| 151 .9373 .9719<br>152 .9415 .9738<br>153 .9455 .9757<br>154 .9494 .9774 | .9380 .9722<br>.9422 .9741<br>.9462 .9760<br>.9500 .9777 | .9387 .9725<br>.9428 .9744<br>.9468 .9763<br>.9507 .9780 | .9394 .9729<br>.9435 .9747<br>.9475 .9766<br>.9513 .9783      | .9401 .9732<br>.9442 .9751<br>.9481 .9769<br>.9519 .9756 | .9408 .9735<br>.9448 .9754<br>.9488 .9772<br>.9525 .9789                |
| 155 9532 .9792<br>156 9568 .9808<br>157 9603 .9824                       | .9538 .9794<br>.9574 .9811<br>.9608 .9826                | .9544 .9797<br>.9579 .9813<br>.9614 .9829                | .9550 .9800<br>.9585 .9816<br>.9619 .9831                     | .9556 .9803<br>.9591 .9819<br>.9625 .9834                | .9562 .9805<br>.9597 .9821<br>.9630 .9836<br>.9663 .9851                |
| 158 .9636 .9839<br>159 .9668 .9853<br>160 .9698 .9867                    | .9641 .9841 .9673 .9856 .9703 .9869                      | .9678 .9858<br>.9708 .9871                               | .9683 .9860<br>.9713 .9874                                    | .9688 .9863<br>.9718 .9876                               | .9693 .9865                                                             |
| 161 .9728 .9880<br>162 .9755 .9892<br>163 .9782 .9904<br>164 .9806 .9915 | .9760 .9894                                              | .9737 .9884<br>.9764 .9896<br>.9790 .9908<br>.9814 .9919 |                                                               | .9746 .9585<br>.9773 .9906<br>.9795 .9911<br>.9822 .9922 | .9751 .9890<br>.9777 .9902<br>.9802 .9913<br>.9826 .9923                |
| 167 .9872 .9944<br>168 .9891 .9952                                       | .9855 .9937<br>.9875 .9945<br>.9894 .9954                | .9837 .9929<br>.9858 .9938<br>.9878 .9947<br>.9897 .9955 | .9841 .9930<br>.9862 .9940<br>.9881 .9948<br>.9900 .9956      | .9865 .9941<br>.9885 .9950<br>.9903 .9957                | .9848 .9933<br>.9869 .9943<br>.9888 .9951<br>.9905 .9959<br>.9921 .9966 |
| 171 .9938 .9973<br>172 .9951 .9979                                       | .9941 .9974<br>.9953 .9980                               | .9955 .9981                                              | .9916 .9963<br>.9931 .9970<br>.9945 .9976<br>.9957 .9981      | .9934 .9971<br>.9947 .9977<br>.9959 .9982                | .9936 .9972<br>.9949 .9978<br>.9961 .9983                               |
| 173 .9963 .9984<br>174 .9973 .9988<br>175 .9981 .9992                    | .9964 .9984 .9974 .9988 .9982 .9992                      | .9966 .9985<br>.9976 .9989<br>.9983 .9993                | .9968 .9986<br>.9977 .9990<br>.9985 .9993                     |                                                          | .9971 .9957<br>.9980 .9991<br>.9987 .9994                               |
| 176 .9988 .9995<br>177 .9993 .9997<br>178 .9997 .9999                    | .9989 .9995<br>.9994 .9997<br>.9997 .9999                | .9990 .9996<br>.9995 .9998<br>.9998 .9999<br>.9999 .9999 | .9991 .9996<br>.9995 .9998<br>.9998 .9999                     | .9992 .9996<br>.9996 .9998<br>.9999 .9999                | .9992 .9997<br>.9996 .9996<br>.9999 .9999<br>1.0000 .0000               |

[If N is prime, its logarithm is given. If N is not prime, its factors are given.]

| N                          | 1                                                                                 | 3                                                                    | 7                                                             | 9                                                               |   | Ŋ                               |                      | Log N                                                                   |
|----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|---|---------------------------------|----------------------|-------------------------------------------------------------------------|
| 10<br>11<br>12<br>13<br>14 | 0043213738<br>3·37<br>11 <sup>2</sup><br>1172712957<br>3·47                       | 0128372247<br>0530784435<br>3·41<br>7·19<br>11·13                    | 0293837777<br>32-13<br>1038037210<br>1367205672<br>3-72       | 6374264979<br>7·17<br>3·43<br>1430148003<br>1731862684          |   | 2<br>3<br>5<br>7<br>11          | 47<br>69<br>84       | 1029995664<br>7121254729<br>8970004336<br>5098040014<br>1392685158      |
| 15<br>16<br>17<br>18<br>19 | 1789769473<br>7 · 23<br>3 · 19<br>2576785749<br>2810333672                        | 32-17<br>2121876044<br>2380461031<br>3-61<br>2855573090              | 1958996524<br>2227164711<br>3·59<br>11·17<br>2944662262       | 3·53<br>13²<br>2528530310<br>3³·7<br>2988530764                 |   | 13<br>17<br>19<br>23<br>29      | 11<br>23<br>27<br>36 | 3943352307<br>0448921378<br>8753600953<br>1727836018<br>2397997899      |
| 20<br>21<br>22<br>23<br>24 | 3.67<br>3242824553<br>13.17<br>3.7.11<br>3820170426                               | 7·29<br>3·71<br>3483048630<br>3673559210<br>38                       | 3 <sup>2</sup> ·23<br>7·31<br>3560258572<br>3·79<br>13·19     | 11·19<br>3·73<br>3598354823<br>3783979009<br>3·83               | ۱ | 31<br>37<br>41<br>43<br>47      | 56<br>61<br>63       | 1361693834<br>8201724067<br>.2783856720<br>3468455580<br>2097857936     |
| 25<br>26<br>27<br>28<br>29 | 3996737215<br>32·29<br>4329692909<br>4487063199<br>3·97                           | 11·23<br>4199557485<br>3·7·13<br>4517864355<br>4668676204            | 4099331233<br>3.89<br>4424797691<br>7.41<br>3.11              | 7·37<br>4297522800<br>3²·31<br>17²<br>13·23                     |   | 53<br>59<br>61<br>67<br>71      | 77<br>78<br>82       | 24275869601<br>70852011642<br>85329835011<br>86074802701<br>61258348719 |
| 30<br>31<br>32<br>33<br>34 | 7·43<br>4927603890<br>3·107<br>5198279938<br>11·31                                | 3·101<br>4955443375<br>17·19<br>31·37                                | 4871383755<br>5010592622<br>3·109<br>5276299009<br>5403294748 | 3·103<br>11·29<br>7·47<br>3·113<br>5428254270                   |   | 73<br>79<br>83<br>89<br>97      | 91<br>94             | 3322860120<br>07627091290<br>19078092376<br>19390006645<br>36771734266  |
| 35<br>36<br>37<br>38<br>39 | 35-13<br>192<br>7-53<br>3-127<br>17-23                                            | 5477747054<br>3·11 <sup>2</sup><br>5717088318<br>5831987740<br>3·131 | 3·7·17<br>5646660643<br>13·29<br>3·43<br>5987905068           | 5550944486<br>32-41<br>5786392100<br>5899496013<br>3-7-19       |   | 130<br>130<br>130<br>131<br>132 | 3 7 9                | 1142772966<br>1149444157<br>1162755876<br>1202447955<br>1209028176      |
| 40<br>41<br>42<br>43<br>44 | 6031443726<br>3·137<br>6242820958<br>6344772702<br>3 <sup>1</sup> ·7 <sup>2</sup> | 13·31<br>7·59<br>32·47<br>6364878964<br>6464037262                   | 11·37<br>3·139<br>7·61<br>19·23<br>3·149                      | 6117233080<br>6222140230<br>3·11·13<br>6424645202<br>6522463410 |   | 132<br>136<br>136<br>137<br>138 | 7 3                  | 1228709229<br>1338581252<br>1357685146<br>1376705372<br>1401936786      |
| 45<br>46<br>47<br>48<br>49 | 11·41<br>6637009254<br>3·157<br>13·37<br>6910814921                               | 3·151<br>6655809910<br>11·43<br>3·7·23<br>17·29                      | 6599162001<br>6693168806<br>32-53<br>6875289612<br>7-71       | 3*·17<br>7·67<br>6803355134<br>3·163<br>6981005456              |   | 139<br>140<br>142<br>142<br>142 | 9 3 7                | 1458177145<br>1489109931<br>1532049001<br>1544239731<br>1550322288      |
| 50<br>51<br>52<br>53<br>54 | 3·167<br>7·73<br>7168377233<br>3²·59<br>7331972651                                | 7015679851<br>3*·19<br>7185016889<br>13·41<br>3·181                  | 3·13 <sup>2</sup><br>11·47<br>17·31<br>3·179<br>7379873263    | 7067177823<br>3·173<br>23²<br>7²·11<br>3³·61                    |   | 143<br>143<br>144<br>145<br>145 | 9                    | 1562461904<br>1580607939<br>1604685311<br>1616674124<br>1622656143      |
| 55<br>56<br>57<br>58<br>59 | 19·29<br>3·11·17<br>7566361082<br>7·83<br>3·197                                   | 7.79<br>7505083949<br>3.191<br>11.53<br>7730546934                   | 7458551952<br>34.7<br>7611758132<br>7686381012<br>3.199       | 13·43<br>7551122664<br>3·193<br>19·31<br>7774268224             |   | 145<br>147<br>148<br>148<br>148 | 1 3                  | 1640552919<br>1676126727<br>1705550585<br>1711411510<br>1723109685      |
| 60<br>61<br>62<br>63<br>64 | 7788744720<br>13·47<br>3·23<br>8000293592<br>8068580295                           | 32-67<br>7874604745<br>7-89<br>3-211<br>8082109729                   | 7831886911<br>7902851640<br>3·11·19<br>72-13<br>8109042807    | 3·7·29<br>7916906490<br>17·37<br>3²·71<br>11·59                 |   | 148<br>149<br>149<br>151<br>152 | 3<br>9<br>1          | 1728946978<br>1740598077<br>1758016328<br>1792644643<br>1826999033      |
| 65<br>66<br>67<br>68<br>69 | 3.7.31<br>8202014595<br>11.61<br>3.227<br>8394780474                              | 8149131813<br>3·13·17<br>8280150642<br>8344207037<br>3²·7·11         | 3*-73<br>23-29<br>8305886687<br>3-229<br>17-41                | 8188854146<br>3·223<br>7·97<br>13·53<br>3·233                   |   | 153<br>154<br>154<br>155<br>155 | 3 9 3                | 1849751907<br>1883659261<br>1900514178<br>1911714557<br>1928461152      |

[If N is a prime, its locarithm is given. If N is not a prime, its factors are given.]

| Ŋ                               | 1                                                                           | 3                                                                      | 7                                                           | 9                                                            | N                                            | Log N                                                |
|---------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| 70<br>71<br>72<br>73<br>74      | \$457180180<br>32.79<br>7.103<br>17.43<br>3.13.19                           | 19·37<br>23·31<br>3·241<br>8651039746<br>8709888138                    | 7-101<br>3-239<br>8615344109<br>11-67<br>3*-83              | N506462352<br>N567288904<br>31<br>S686444384<br>7-107        | 1567<br>1571<br>1579<br>1583                 | 1950689965<br>1961761850<br>198821300<br>1994829149  |
| 75<br>76<br>77<br>78<br>79      | 8756399370<br>8813846568<br>3.257<br>11.71<br>7.113                         | 3·251<br>7·109<br>8881794939<br>3·-29<br>13·61                         | 8790958795<br>13·59<br>3·7·37<br>8959747324<br>9014583214   | 3-11-23<br>8559263398<br>19-41<br>3-263<br>17-47             | 1397<br>1601<br>1607<br>1609<br>1613<br>1619 | 2076343674                                           |
| 80<br>81<br>82<br>83<br>84      | 32·89<br>9090208542<br>9143431571<br>3·277<br>292                           | 11.73<br>3.271<br>9153998352<br>72.17<br>3.281                         | 3·269<br>19·43<br>9175055096<br>3*·31<br>7·112              | 9079485216<br>32-7-13<br>9185545306<br>9237619608<br>3-283   | 1621<br>1627<br>1637<br>1637<br>1657         | 2097830148<br>2113873329<br>2140456794<br>2193225084 |
| 85<br>86<br>87<br>88<br>89      | 23-37<br>3·7·41<br>13·67<br>9449759084<br>3·11                              | 9309490312<br>9360107957<br>32-97<br>9459607036<br>19-47               | 9329808219<br>3·17²<br>9429995934<br>9479236198<br>3·13·23  | 9339931638<br>11·79<br>3·293<br>7·127<br>29·31               | 1667<br>1669<br>1693<br>1697<br>1699         | 2219355998<br>2224563367<br>2286569561<br>2296818423 |
| 90<br>91<br>92<br>93<br>94      | 17·53<br>9595183770<br>3·307<br>7²·19<br>9735896234                         | 3·7·43<br>11·83<br>13·71<br>3·311<br>23·41                             | 9576072871<br>7·131<br>3²·103<br>9717395909<br>9763499790   | 32-101<br>9633155114<br>96S0157140<br>3-313<br>13-73         | 1709<br>1721<br>1723<br>1733<br>1741         | 2357808703<br>2362852774<br>2387985627<br>2407987711 |
| 95<br>96<br>97<br>98<br>99      | 3·317<br>31 <sup>2</sup><br>9872192299<br>3 <sup>2</sup> ·109<br>9960736545 | 9790929006<br>32-107<br>7-139<br>9925535178<br>3-331                   | 3·11·29<br>9854264741<br>9898945637<br>3·7·47<br>9986951583 | 7·137<br>3·17·19<br>11·89<br>23·43<br>3·37                   | 1747<br>1753<br>1759<br>1777<br>1783         | 2437819161<br>2452658395<br>2496874278<br>2511513432 |
| 100<br>101<br>102<br>103<br>104 | 7·11·13<br>3·337<br>0090257421<br>0132586653<br>3·347                       | 17.59<br>0056094454<br>3.11.31<br>0141003215<br>7.149                  | 19·53<br>3²·113<br>13·79<br>17·61<br>3·349                  | 0038911662<br>0081741840<br>3.77<br>0166155476<br>0207754882 | 1787<br>1789<br>1801<br>1811<br>1823         | 2526103446<br>2555137128<br>2579184503<br>2607866687 |
| 105<br>106<br>107<br>108<br>109 | 0216027160<br>0257153839<br>32.7.17<br>23.47<br>0378247506                  | 34-13<br>0265332645<br>29-37<br>3-19 <sup>2</sup><br>0386201619        | 7·151<br>11·97<br>3·359<br>0362295441<br>0402066276         | 3·353<br>0289777052<br>13·83<br>3·112<br>7·157               | 1831<br>1847<br>1861<br>1867<br>1871         | 2664668964<br>2697463731<br>2711443179<br>2720737875 |
| 110<br>111<br>112<br>113<br>114 | 3·367<br>11·101<br>19·59<br>3·13·29<br>7·163                                | 0425755124<br>3·7·53<br>0503797563<br>11·103<br>3²·127                 | 3*-41<br>0480531731<br>7*-23<br>3-379<br>31-37              | 0449315461<br>3·373<br>0526939419<br>17·67<br>3·383          | 1873<br>1877<br>1879<br>1889<br>1901         | 2734642726<br>2739267801<br>2762319579<br>2789821169 |
| 115<br>116<br>117<br>118<br>119 | 0610753236<br>3*-43<br>0685568951<br>0722498976<br>3-397                    | 0618293073<br>0655797147<br>3·17·23<br>7·13 <sup>2</sup><br>0766404437 | 13·89<br>3·389<br>11·107<br>0744507190<br>3²·7·19           | 19-61<br>7-167<br>32-131<br>29-41<br>11-109                  | 1907<br>1913<br>1931<br>1933<br>1949         | 2817149700<br>2857822738<br>2862318540<br>2898118391 |
| 120<br>121<br>122<br>123<br>124 | 0795430074<br>7·173<br>3·11·37<br>0902580529<br>17·73                       | 3·401<br>0838608009<br>0874264570<br>3²·137<br>11·113                  | 17·71<br>0852905782<br>3·409<br>0923696996<br>29·43         | 3·13·31<br>23·53<br>0895518829<br>3·7·59<br>0965624384       | 1951<br>1973<br>1979<br>1987<br>1993         | 2961270853<br>2964457942<br>2981978671<br>2995072957 |
| 125<br>126<br>127<br>128<br>129 | 3*-139<br>13-97<br>31-41<br>3-7-61<br>1109262423                            | 7·179<br>3·421<br>19·67<br>1082266564<br>3·431                         | 3·419<br>7·181<br>1061908973<br>3²-11·13<br>1129399761      | 1000257301<br>31·47<br>1068705445<br>1102529174<br>3·433     | 1997<br>1999<br>2003<br>2011<br>2017         | 3008127941<br>3016809493<br>3034120706               |

AMOUNT OF ONE DOLLAR PRINCIPAL AT COMPOUND INTEREST AFTER IN YEARS

| n  | 2 %    | 21 %   | 3 %                                                       | 31 %   | 4 %    | 41 °c  | 5 °,c   | 6%      | 7%      |
|----|--------|--------|-----------------------------------------------------------|--------|--------|--------|---------|---------|---------|
| 1  | 1.0200 | 1.0250 | 1.0300                                                    | 1.0350 | 1.0400 | 1.0450 | 1.0500  | 1.0600  | 1.0700  |
| 2  | 1.0404 | 1.0506 | 1.0609                                                    | 1.0712 | 1.0816 | 1.0920 | 1.1025  | 1.1236  | 1.1449  |
| 3  | 1.0612 | 1.0769 | 1.0927                                                    | 1.1087 | 1.1249 | 1.1412 | 1.1576  | 1.1910  | 1.2250  |
| 4  | 1.0824 | 1.1038 | 1.1255                                                    | 1.1475 | 1.1699 | 1.1925 | 1.2153  | 1.2625  | 1.3105  |
| 5  | 1.1041 | 1.1314 | 1.1593                                                    | 1.1577 | 1.2167 | 1.2462 | 1.2763  | 1.3382  | 1.4026  |
| 6  | 1.1262 | 1.1597 | 1.1941                                                    | 1.2293 | 1.2653 | 1.3023 | 1.3401  | 1.4185  | 1.5007  |
| 7  | 1.1487 | 1.1887 | 1.2299                                                    | 1.2723 | 1.3159 | 1.3609 | 1.4071  | 1.5036  | 1.6058  |
| 8  | 1.1717 | 1.2184 | 1.2668                                                    | 1.3168 | 1.3686 | 1.4221 | 1.4775  | 1.5938  | 1.7182  |
| 9  | 1.1951 | 1.2489 | 1.3048                                                    | 1.3629 | 1.4233 | 1.4861 | 1.5513  | 1.6895  | 1.8385  |
| 10 | 1.2190 | 1.2801 | 1.3439                                                    | 1.4106 | 1.4802 | 1.5530 | 1.6289  | 1.7908  | 1.9672  |
| 11 | 1.2434 | 1.3121 | 1.3S42                                                    | 1.4600 | 1.5395 | 1.6229 | 1.7103  | 1.8983  | 2.1049  |
| 12 | 1.2682 | 1.3449 | 1.4258                                                    | 1.5111 | 1.6010 | 1.6959 | 1.7959  | 2.0122  | 2.2522  |
| 13 | 1.2936 | 1.3785 | 1.4685                                                    | 1.5640 | 1.6651 | 1.7722 | 1.8856  | 2.1329  | 2.4098  |
| 14 | 1.3195 | 1.4130 | 1.5126                                                    | 1.6187 | 1.7317 | 1.8519 | 1.9799  | 2.2609  | 2.5785  |
| 15 | 1.3459 | 1.4483 | 1.5580                                                    | 1.6753 | 1.8009 | 1.9353 | 2.0789  | 2.3966  | 2.7590  |
| 16 | 1.3728 | 1.4845 | 1.6047                                                    | 1.7340 | 1.8730 | 2.0224 | 2.1829  | 2.5404  | 2.9522  |
| 17 | 1.4002 | 1.5216 | 1.6528                                                    | 1.7947 | 1.9479 | 2.1134 | 2.2920  | 2.6928  | 3.1588  |
| 18 | 1.4282 | 1.5597 | 1.7024                                                    | 1.8575 | 2.0258 | 2.2085 | 2.4066  | 2.8543  | 3.3799  |
| 19 | 1.4568 | 1.5987 | 1.7535                                                    | 1.9225 | 2.1068 | 2.3079 | 2.5270  | 3.0256  | 3.6165  |
| 20 | 1.4859 | 1.6386 | 1.8061                                                    | 1.9898 | 2.1911 | 2.4117 | 2.6533  | 3.2071  | 3.8697  |
| 21 | 1.5157 | 1.6796 | 1.8603                                                    | 2.0594 | 2.2788 | 2.5202 | 2.7860  | 3.3996  | 4.1406  |
| 22 | 1.5460 | 1.7216 | 1.9161                                                    | 2.1315 | 2.3699 | 2.6337 | 2.9253  | 3.6035  | 4.4304  |
| 23 | 1.5769 | 1.7646 | 1.9736                                                    | 2.2061 | 2.4647 | 2.7522 | 3.0715  | 3.8197  | 4.7405  |
| 24 | 1.6084 | 1.8087 | 2.0328                                                    | 2.2833 | 2.5633 | 2.8760 | 3.2251  | 4.0489  | 5.0724  |
| 25 | 1.6406 | 1.8539 | 2.0938                                                    | 2.3632 | 2.6658 | 3.0054 | 3.3864  | 4.2919  | 5.4274  |
| 26 | 1.6734 | 1.9003 | 2.1566                                                    | 2.4460 | 2.7725 | 3.1407 | 3.5557  | 4.5494  | 5.8074  |
| 27 | 1.7069 | 1.9478 | 2.2213                                                    | 2.5316 | 2.8834 | 3.2820 | 3.7335  | 4.8223  | 6.2139  |
| 28 | 1.7410 | 1.9965 | 2.2879                                                    | 2.6202 | 2.9987 | 3.4297 | 3.9201  | 5.1117  | 6.6488  |
| 29 | 1.7758 | 2.0464 | 2.3566                                                    | 2.7119 | 3.1187 | 3.5840 | 4.1161  | 5.4184  | 7.1143  |
| 30 | 1.8114 | 2.0976 | 2.4273                                                    | 2.8068 | 3.2434 | 3.7453 | 4.3219  | 5.7435  | 7.6123  |
| 31 | 1.8476 | 2.1500 | $\begin{array}{c} 2.5001 \\ 2.5751 \\ 2.6523 \end{array}$ | 2.9050 | 3.3731 | 3.9139 | 4.5380  | 6.0881  | 8.1451  |
| 32 | 1.8845 | 2.203S |                                                           | 3.0067 | 3.5081 | 4.0900 | 4.7649  | 6.4534  | 8.7153  |
| 33 | 1.9222 | 2.2589 |                                                           | 3.1119 | 3.6484 | 4.2740 | 5.0032  | 6.8406  | 9.3253  |
| 34 | 1.9607 | 2.3153 | 2.7319                                                    | 3.2209 | 3.7943 | 4.4664 | 5.2533  | 7.2510  | 9.9781  |
| 35 | 1.9999 | 2.3732 | 2.8139                                                    | 3.3336 | 3.9461 | 4.6673 | 5.5160  | 7.6861  | 10.6766 |
| 36 | 2.0399 | 2.4325 | 2.8983                                                    | 3.4503 | 4.1039 | 4.8774 | 5.7918  | 8.1473  | 11.4239 |
| 37 | 2.0807 | 2.4933 | 2.9852                                                    | 3.5710 | 4.2681 | 5.0969 | 6.0814  | 8.6361  | 12.2236 |
| 38 | 2.1223 | 2.5557 | 3.0748                                                    | 3.6960 | 4.4388 | 5.3262 | 6.3855  | 9.1543  | 13.0793 |
| 39 | 2.1647 | 2.6196 | 3.1670                                                    | 3.8254 | 4.6164 | 5.5659 | 6.7048  | 9.7035  | 13.9948 |
| 40 | 2.2080 | 2.6851 | 3.2620                                                    | 3.9593 | 4.8010 | 5.8164 | 7.0400  | 10.2857 | 14.9745 |
| 41 | 2.2522 | 2.7522 | 3.3599                                                    | 4.0978 | 4.9931 | 6.0781 | 7.3920  | 10.9029 | 16.0227 |
| 42 | 2.2972 | 2.8210 | 3.4607                                                    | 4.2413 | 5.1928 | 6.3516 | 7.7616  | 11.5570 | 17.1443 |
| 43 | 2.3432 | 2.8915 | 3.5645                                                    | 4.3897 | 5.4005 | 6.6374 | 8.1497  | 12.2505 | 18.3444 |
| 44 | 2.3901 | 2.9638 | 3.6715                                                    | 4.5433 | 5.6165 | 6.9361 | 8.5572  | 12.9855 | 19.6285 |
| 45 | 2.4379 | 3.0379 | 3.7816                                                    | 4.7024 | 5.8412 | 7.2482 | 8.9850  | 13.7646 | 21.0025 |
| 46 | 2.4866 | 3.1139 | 3.8950                                                    | 4.8669 | 6.0748 | 7.5744 | 9.4343  | 14.5905 | 22.4726 |
| 47 | 2.5363 | 3.1917 | 4.0119                                                    | 5.0373 | 6.3178 | 7.9153 | 9.9060  | 15.4659 | 24.0457 |
| 48 | 2.5871 | 3.2715 | 4.1323                                                    | 5.2136 | 6.5705 | 8.2715 | 10.4013 | 16.3939 | 25.7289 |
| 49 | 2.6388 | 3.3533 | 4.2562                                                    | 5.3961 | 6.8333 | 8.6437 | 10.9213 | 17.3775 | 27.5299 |
| 50 | 2.6916 | 3.4371 | 4.3839                                                    | 5.5849 | 7.1067 | 9.0326 | 11.4674 | 18.4202 | 29.4570 |

PRESENT VALUE OF ONE DOLLAR DUR AT THE LAD OF A LEARS

| n    | 2 ℃                        | 21 %                       | 3 °                        | 3; 👣                       | 4 °c                        | 41 %                       | 5'.     | <b>6</b> .                 | 7 0                             |
|------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|---------|----------------------------|---------------------------------|
| 1213 | .97:39<br>.46117<br>.94232 | .97561<br>.95151<br>.92860 | .97087<br>.94260<br>.91514 | .96615<br>.93551<br>.90194 | .5%154<br>.3/2156<br>.58900 | .95694<br>.91573<br>.87630 |         | .44 .4<br>-2.646<br>-2.646 | 14 14 14<br>15 14 4<br>15 16 60 |
| 4 5  | .92385                     | .90595                     | .88849                     | .87144                     | .85480                      | .83856                     | 352270  | .792939                    | .76_5#3                         |
|      | .90573                     | .55355                     | .80261                     | .84197                     | .82193                      | .80245                     | 375333  | .74726                     | .7124#                          |
| 6    | .88797                     | .86230                     | .83748                     | .81350                     | .79031                      | .76790                     | .74622  | .70496                     | .650.4                          |
| 7    | .87056                     | .84127                     | .81309                     | .78599                     | .75992                      | .734×3                     | .71995  | .66506                     | .63275                          |
| 8    | .85349                     | .82075                     | .75941                     | .75941                     | .730+9                      | .70319                     | .67654  | .62741                     | .58201                          |
| 9    | .83676                     | .80073                     | .76642                     | .73373                     | .70259                      | .672%)                     | .64461  | 39190                      | 54393                           |
| 10   | .82035                     | .78120                     | .74409                     | .76892                     | .67556                      | .64353                     | .61.891 | 55×65                      | , d: 33                         |
| 11   | .\$0426                    | .76214                     | .72242                     | .65495                     | .64958                      | .61620                     | .55465  | .52679                     | .477496                         |
| 12   | .78549                     | .74356                     | .70138                     | .66178                     | .62460                      | .58966                     | .55654  | .49677                     | .44401                          |
| 13   | .77303                     | .72542                     | .68095                     | .63940                     | .60057                      | .56427                     | .53932  | .46884                     | .41496                          |
| 14   | .75788                     | .70773                     | .66112                     | .61778                     | .57748                      | .53997                     | .56567  | .44230                     | .35752                          |
| 15   | .74301                     | .69047                     | .64186                     | .59689                     | .55526                      | .51672                     | .45162  | .41727                     | .36245                          |
| 16   | .72845                     | .67362                     | .62317                     | .57671                     | .53591                      | .49447                     | .45511  | .39365                     | .34573                          |
| 17   | .71416                     | .65720                     | .60502                     | .55720                     | .51337                      | .47318                     | .43630  | .37136                     | .31657                          |
| 18   | .70016                     | .64117                     | .58739                     | .53536                     | .49363                      | .45280                     | .41552  | .35034                     | .27656                          |
| 19   | .68643                     | .62553                     | .57029                     | .52016                     | .47464                      | .43330                     | .39573  | .36051                     | .27651                          |
| 20   | .67297                     | .61027                     | .55308                     | .50257                     | .45629                      | .41464                     | 41.715  | .31180                     | .27842                          |
| 21   | .65978                     | .59539                     | .53755                     | .48557                     | .43883                      | .39679                     | .35594  | .29416                     | .24151                          |
| 22   | .64654                     | .58086                     | .52189                     | .46915                     | .42196                      | .37970                     | .34185  | .27751                     | .22571                          |
| 23   | .63416                     | .56670                     | .50669                     | .45329                     | .40573                      | .36335                     | .32557  | .26180                     | .21095                          |
| 24   | .62172                     | .55288                     | .49193                     | .43796                     | .39012                      | .34770                     | .31007  | .24698                     | .19715                          |
| 25   | .60953                     | .53939                     | .47761                     | .42315                     | .37512                      | .33273                     | .29530  | .23300                     | .18425                          |
| 26   | .59758                     | .52623                     | .46369                     | .40884                     | .36069                      | .31840                     | .28124  | .21951                     | .17220                          |
| 27   | .58586                     | .51340                     | .45019                     | .39501                     | .34682                      | .30469                     | .267\$5 | .20737                     | .15093                          |
| 28   | .57437                     | .50088                     | .43708                     | .38165                     | .33348                      | .29157                     | .25509  | .19563                     | .15040                          |
| 29   | .56311                     | .48866                     | .42435                     | .36875                     | .32065                      | .27902                     | .24295  | .18456                     | .14056                          |
| 30   | .55207                     | .47674                     | .41199                     | .35628                     | .30832                      | .26700                     | .23138  | .17411                     | , .15137                        |
| 31   | .54125                     | .46511                     | .39999                     | .34423                     | .29646                      | .25550                     | .22036  | .16425                     | .1.2277                         |
| 32   | .53063                     | .45377                     | .38834                     | .33259                     | .28506                      | .24450                     | .26987  | .15496                     | .11474                          |
| 33   | .52023                     | .44270                     | .37703                     | .32134                     | .27409                      | .23397                     | .19987  | .14619                     | .10723                          |
| 34   | .51003                     | .43191                     | .36604                     | .31048                     | .26355                      | .22390                     | .19035  | .13791                     | .10022                          |
| 35   | .50003                     | .42137                     | .35538                     | .29998                     | .25342                      | .21425                     | .18129  | .13011                     | .09366                          |
| 36   | .49022                     | .41109                     | .34503                     | .28983                     | .24367                      | .20503                     | .17266  | .12274                     | .05754                          |
| 37   | .48061                     | .40107                     | .33498                     | .28003                     | .23430                      | .19620                     | .16444  | .11580                     | .08181                          |
| 38   | .47119                     | .39128                     | .32523                     | .27056                     | .22529                      | .18775                     | .15661  | .10924                     | .07646                          |
| 39   | .46195                     | .35174                     | .31575                     | .26141                     | .21662                      | .17967                     | .14915  | .10306                     | .07146                          |
| 40   | .45289                     | .37243                     | ,30656                     | .25257                     | .20829                      | .17193                     | .14265  | .09722                     | 7.06675                         |
| 41   | .44401                     | .36335                     | .29763                     | .24403                     | .20028                      | .16453                     | .13528  | .0517.2                    | (#241                           |
| 42   | .43530                     | .35445                     | .28896                     | .23578                     | .19257                      | .15744                     | .12534  | .0517.3                    | (#373                           |
| 43   | .42677                     | .34584                     | .28054                     | .22781                     | .18517                      | .15066                     | .12270  | .08163                     | (#3451                          |
| 44   | .41840                     | .33740                     | .27237                     | .22010                     | .17805                      | .14417                     | .11686  | .07701                     | .05095                          |
| 45   | .41020                     | .32917                     | .26444                     | .21266                     | .17120                      | .13796                     | .11130  | .07265                     | .04761                          |
| 46   | .40215                     | .32115                     | .25674                     | .20547                     | .16461                      | .13202                     | .10600  | .06854                     | .04450                          |
| 47   | .39427                     | .31331                     | .24926                     | .19852                     | .15828                      | .12634                     | .10095  | .06466                     | .04159                          |
| 48   | .38654                     | .30567                     | .24200                     | .19181                     | .15219                      | .12090                     | .09614  | .06100                     | .03557                          |
| 49   | .37896                     | .29822                     | .23495                     | .18532                     | .14634                      | .11569                     | .09156  | .05755                     | .03632                          |
| 50   | .37153                     | .29094                     | .22811                     | .17905                     | .14071                      | .11071                     | .05720  | .05429                     | .03395                          |

AMOUNT OF AN ANNUTTY OF ONE DOLLAR PER YEAR AFTER n YEARS

| 2 %                                    | 21 %                                                      | 3 %                                                       | 31 %                             | 450                           | 41 1                             |                                  | 6 °c                             | 7 %                              |
|----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 1.0000<br>2.0200<br>3.0604             | $\begin{array}{c} 1.0000 \\ 2.0250 \\ 3.0756 \end{array}$ | $\begin{array}{c} 1.0000 \\ 2.0300 \\ 3.0909 \end{array}$ | 1.0000<br>2.0350<br>3.1062       | 1.0000<br>2.0400<br>3.1216    | 1.0000<br>2.0450<br>3.1370       | 1.0000<br>2.0500<br>3.1525       | 1.0000<br>2.0600<br>3.1836       | 1.0000<br>2.0700<br>3.2149       |
| 4.1216<br>5.2040<br>6  6.3081          | 4.1525<br>5.2563<br>6.3877                                | 4.1836<br>5.3091<br>6.4684                                | 4.2149<br>5.3625<br>6.5502       | 4.2465<br>5.4163<br>6.6330    | 4.2782<br>5.4707<br>6.7169       | 4.3101<br>5.5256<br>6.8019       | 4.3746<br>5.6371<br>6.9753       | 4.4399<br>5.7507<br>7.1533       |
| 7.4343<br>8.5830<br>9.7546             |                                                           | 7.6625<br>8.8923<br>10.1591                               | 7.7794<br>9.0517<br>10.3685      | 7.8983<br>9.2142<br>10.5828   | 8.0192<br>9.3800<br>10.8021      | 8.1420<br>9.5491<br>11.0266      | 8.3938<br>9.8975<br>11.4913      | 8.6540<br>10.2598<br>11.9780     |
| 10 10,9497                             | 11.2034                                                   | 11.4639                                                   | 11.7314                          | 12.0061                       | 12.2882                          | 12.5779                          | 13.1808                          | 13.8164                          |
|                                        | 12.4835<br>13.7956<br>15.1404                             | 12.8078<br>14.1920<br>15.6178                             | 13.1420<br>14.6020<br>16.1130    | 13.4864<br>15.0258<br>16.6268 | 13.8412<br>15.4640<br>17.1599    | 14.2068<br>15.9171<br>17.7130    | 14.9716<br>16.8699<br>18.8821    | 15.7836<br>17.8885<br>20.1406    |
| 14 15.9739<br>17.2934<br>6 18.6393     | 17.9319                                                   | 17.0863<br>18.5989<br>20.1569                             | 17.6770<br>19.2957<br>20.9710    | 18.2919<br>20.0236<br>21.8245 | 18.9321<br>20.7841<br>22.7193    | 19.5986<br>21.5786<br>23.6575    | 21.0151<br>23.2760<br>25.6725    | 22.5505<br>25.1290<br>27.8881    |
|                                        | 20.864<br>22.3863<br>23.9460                              | 21.7616<br>23.4144<br>25.1169                             | 22.7050<br>24.4997<br>26.3572    | 23.6975<br>25.6454<br>27.6712 | 24.7417<br>26.8551<br>29.0636    | 25.8404<br>28.1324<br>30.5390    | 28.2129<br>30.9057<br>33.7600    | 30.8402<br>33.9990<br>37.3790    |
| 24.2974                                | 25.5447                                                   | 26.8704                                                   | 28.2797                          | 29.7781                       | 31.3714                          | 33.0660                          | 36.7856                          | 40.9955                          |
|                                        | 27.1833<br>28.8629<br>30.5844                             | 28.6765<br>30.5368<br>32.4529                             | 30.2695<br>32.3289<br>34.4604    | 31.9692<br>34.2480<br>36.6179 | 33.7831<br>36.3034<br>38.9370    | 35.7193<br>38.5052<br>41.4305    | 39.9927<br>43.3923<br>46.9958    | 44.8652<br>49.0057<br>53.4361    |
|                                        | 32.3490<br>34.1578<br>36.0117                             | 34.4265<br>36.4593<br>38.5530                             | 36.6665<br>38.9499<br>41.3131    | 39.0826<br>41.6459<br>44.3117 |                                  | 44.5020<br>47.7271<br>51.1135    | 50.8156<br>54.8645<br>59.1564    | 58.1767<br>63.2490<br>68.6765    |
| 35.3443<br>28 37.0512<br>29 38.7922    | 37.9120<br>39.8598<br>41.8563                             | 40.7096<br>42.9309<br>45.2189                             | 43.7591<br>46.2906<br>48.9108    | 47.084<br>49.9676<br>52.9663  | 50.7113<br>53.9933<br>57.4230    | 54.6691<br>58.4026<br>62.3227    | 63.7058<br>68.5281<br>73.6398    | 74.4838<br>80.6977<br>87.3465    |
| <b>30</b> 40.5681                      | 43.9027                                                   | 47.5754                                                   | 51.6227                          | 56.0849                       | 61.0071                          | 66.4388                          | 79.0582                          | 94.4608                          |
| 44.2270<br>46.1116                     | 46.0003<br>48.1503<br>50.3540                             | 50.0027<br>52.5028<br>55.0778                             | 54.4295<br>57.3345<br>60.341     | 59.3283<br>62.7015<br>66.2095 | 64.7524<br>68.666:<br>72.7562    | 75.2988                          | 90.8898                          | 102.0730<br>110.2182<br>118.9334 |
|                                        | 52.6129<br>54.9282<br>57.3014                             | 57.730<br>60.4621<br>63.2759                              | 63.453:<br>66.6740<br>70.0076    | 69.8579<br>73.6522<br>77.5983 | 77.0303<br>81.4966<br>86.1640    | 90.3203                          | 104.1838<br>111.4348<br>119.1209 | 138.2369                         |
| 56.1149                                | 59.7339<br>62.2273<br>64.7830                             | 66.1742<br>69.1594<br>72.2342                             | 73.4579<br>77.0289<br>80.7249    | 81.7022<br>85.9703<br>90.4091 | 91.041<br>96.1382<br>101.4644    | 101.6281<br>107.7095<br>114.0950 | 135.9042                         | 172.5610                         |
| <b>40</b> 60.4020                      | 67.4026                                                   | 75.4013                                                   | 84.5503                          | 95.0255                       | 107.0303                         | 120.7998                         | 154.7620                         | 199.6351                         |
| 41 62.6100<br>42 64.8622<br>67.1595    |                                                           | 78.6633<br>82.023<br>85.4839                              | 92.6074                          | 104.8196                      | 112.8467<br>118.9248<br>125.2764 | 135.2318                         | 175.9505                         | 230.6322                         |
| 44 69.5027<br>45 71.892<br>46 74.3306  | 81.5161                                                   | 92.7199                                                   | 101.2383<br>105.7817<br>110.4840 | 121.0294                      | 138.8500                         | 159.7002                         | 212.7435                         | 285.7493                         |
| 47 76.8172<br>48 79.3535<br>49 81.9406 | 90.8596                                                   | 104.4084                                                  | 120.3883                         | 139.2632                      | 161.5879                         | 188.0254                         | 256.5645                         | 353.270                          |
| 50 84.5794                             | 97.4843                                                   | 112.7969                                                  | 130.9979                         | 152.6671                      | 178.5030                         | 209.3480                         | 290.3359                         | 406.528                          |

PRESENT VALUE OF ONE DOLLAR PER YEAR FOR IT YEARS

| n                    | 2 🖫                                                          | 2] : [                        | <b>3</b> %                            | 31 C                          | 4 %                           | 41 %                           | 5 °;                          | 6 %                            | 7%                                 |
|----------------------|--------------------------------------------------------------|-------------------------------|---------------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|------------------------------------|
| 1<br>2<br>3          | .9864<br>1.9416<br>2.8809                                    | .9756<br>1.9274<br>2.5560     | 1.9135                                |                               | .9615<br>1.8561<br>2.7751     | .9569<br>1.8727<br>2.7490      | .9524<br>1.8574<br>2.7232     | .9454<br>15334<br>2.675        | .9346<br>1.8686<br>2.6216          |
| 4 5 6                | 3.8077<br>4.7135<br>5.6014                                   | 3.7620<br>4.6458<br>5.5081    | 3.7171<br>4.5797<br>5.4172            | 3.6731<br>4.5151<br>5.3286    | 3.6299<br>4.4518<br>5.2421    | 3.5875<br>4.3900<br>5.1579     | 3.5460<br>4.3295<br>5.0757    | 3,4651<br>4,2124<br>4,9173     | 3,3872<br>4,1062<br>4,7665         |
| 1.09                 | 6.4720<br>7.3255<br>8.1622                                   | 6.3494<br>7.1701<br>7.9709    | 6.2303<br>7.0197<br>7.7%61            | 6.1145<br>6.8740<br>7.6977    | 6.0021<br>6.7327<br>7.4353    | 5.8927<br>6.5959<br>7.2688     | 5.7864<br>6.4632<br>7.1078    | 5,5524<br>6,2995<br>6 5017     | 5,3893<br>5,9713<br>6,5152         |
| 10                   | 8.9526                                                       | 8.7521                        | 8.5.502                               | 8.5166                        | 5.1109                        | 7.9127                         | 7.7217                        | 7,300/1                        | 7.632.96                           |
| 11<br>12<br>13       | 9.7565<br>10.5753<br>11.3484                                 | 9,5142<br>19,2578<br>10,9532  | 9.2526<br>9.951<br>12.6350            | 9.0016<br>4.6534<br>10.3027   | 5.7605<br>9.3551<br>9.9856    | 8.5289<br>9.1186<br>9.6829     | 8.8633<br>9.3936              | 8,3838                         | 7.4957<br>7.9427<br>8.3577         |
| 14<br>15<br>16       | 12.1062<br>12.5493<br>13.5777                                | 11.6909<br>12.3514<br>13.0550 | 11.9379<br>12.5611                    |                               | 10.5631<br>11.1154<br>11.6523 | 1 .7395 \<br>11.2349:          |                               |                                | 5,7455<br>9,11.79<br>9,4496        |
| 17<br>18<br>19       | 14.2919<br>14.9920<br>15.6785                                | 13.7122<br>14.3534<br>14.9789 | 13.1601<br>13.73-15<br>14.3235        | 12.6513<br>11.1597<br>13.7095 | 12,1437<br>12,65 3<br>13,1336 | 11.7072<br>12.164 o<br>12.5988 | 11.2741<br>11.68 41<br>12.556 |                                | 9.76.52<br>1 (25.51<br>10.28 5.56) |
| 20                   | 16.3514                                                      | 15.5592                       | 14.5775                               | 14.2124                       | 13.5903                       | 13.0079                        | 12,4622,                      | 🖂 बर्गान्ध                     | 1 + 5.44%                          |
| 21<br>22<br>23<br>23 | 17.0112<br>17.6580<br>18.2922                                | 16.1515<br>16.7654<br>17.3021 | 15.415 <i>0</i><br>15.9369<br>16.4436 | 14.69×<br>15.1671<br>15.6264  | 14.53.2<br>14.4511<br>14.5568 | 13.1 :47<br>19.7544<br>14.1475 | 12.521.<br>13.16.<br>13.4880  | 11 Thill<br>12 416<br>123-34   | 1: NGS<br>11: 21:<br>11: 21:       |
| 24<br>25<br>26       | 18.9139<br>19.5235<br>20.1210                                | 18.4244                       | 17.4131<br>17.8768                    | 16.4515<br>16.5994            | 15.0221<br>15.0828            | 14.5252                        | 11/60/<br>11/37/2             | 12.5514<br>12.7534<br>13.0662  | 11.525                             |
| 27<br>28<br>29       | 21,5444                                                      | 20.4555                       | 19.1580                               | 17.0000                       | 15.953.                       | 100/2194                       | 1.1.1411                      | 13.21 (5<br>17 4.42<br>13.3.47 |                                    |
| 30                   | 22.3965                                                      |                               |                                       |                               | ·                             |                                |                               | 13.7645                        |                                    |
| 31<br>32<br>33       | 22.9377<br>23.4683<br>23.9886                                | 121.0492                      | 120.000                               | 113.0033                      | 114.50.36:                    | 16.5444<br>16.7559<br>17.0229  | 10.30                         |                                | 12.781.5<br>12.6456<br>12.781.4    |
| 34<br>35<br>36       | 24.4986<br>24.9986<br>25.4888                                | 22.7238<br>23.1452<br>23.5563 | 21.1318<br>21.4872<br>21.8323         |                               | 18.6646                       | 17.2468<br>17.4610<br>17.6660  | 16,3742                       | 14.36×1<br>14.4×2<br>14.5216   | 12.540<br>12.447<br>13.352         |
| 37<br>38<br>39       | $\begin{array}{c} 25.9695 \\ 26.4406 \\ 26.9026 \end{array}$ | 23.9573<br>24.3486<br>24.7303 | 22.1672<br>22.4925<br>22.8082         | 20.8411                       | 19.3679                       | 18.6500                        | 16,8679                       | 14.75%<br>14.8460<br>14.9401   | 13.1935                            |
| 40                   | 27.3555                                                      | 25.1028                       | 23.1148                               | 21.3551                       | 19.7928                       | 18,4016                        | 17.15.4                       | 13.54 10 :                     | 13,5317                            |
| 41<br>42<br>43       | 27.7995<br>28.2348<br>28.6616                                | 26.1664                       | 23.9819                               | 21.8349<br>22.0627            | 20.1556<br>20.3705            | 18.7236<br>18.8742             | 17.4232<br>17.5459            | 15.3062                        | 13,45.4<br>13,5670                 |
| 44<br>45<br>46       | 29.0800<br>29.4902<br>29.8923                                | 26.5038 $26.8330$ $27.1542$   |                                       | 22.4955<br>22.7009            | 20.7200<br>20.5847            | 19.2884                        | 17.7741<br>17.8801            |                                | 13.6055<br>13.6500                 |
| 47<br>48<br>49       | 30,2866<br>30,6731<br>31,0521                                | 27.7732<br>28.0714            | 25.2667<br>25.5017                    | 23.0912<br>23.2766            | 21.1951<br>21.3415            | 19.4147<br>19.5356<br>19.6513  | 18.6772<br>18.1687            | 15.5890<br>15.4580<br>15.7076  | 13,73%<br>13,7668                  |
| 50                   | 31.4236                                                      | 28.3623                       | 25.7298                               | 23.4556                       | 21.4822                       | 19.7620                        | 18.2559                       | 15.7619                        | 13.5007                            |

# 132 Table XII e — Logarithms for Interest Computations [XII.

|                                          | I + r                                                                                  | log(I+r)                                                                                                                                                                                                       |                                                   | l+r                                                                                    | log (I.                                                                                                                                                                                                        |
|------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 11 12 12 12 12 12 12 12 12 12 12 12 1 | 1.005<br>1.010<br>1.015<br>1.020<br>1.025<br>1.030<br>1.035<br>1.040<br>1.045<br>1.050 | 00216 60617 56508<br>00432 13737 82643<br>00646 60422 49232<br>00860 01717 61918<br>01072 38653 91773<br>01283 72247 05172<br>01494 03497 92937<br>01703 33392 98780<br>01911 62904 47073<br>02118 92990 69938 | 2.6.6.0. 2.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 1.055<br>1.060<br>1.065<br>1.075<br>1.075<br>1.080<br>1.085<br>1.090<br>1.095<br>1.100 | 02325 24596 33711<br>02530 58652 64770<br>02734 59607 74757<br>02938 37776 85210<br>03140 84642 51624<br>03342 37354 89950<br>03542 97381 84548<br>03742 64979 40624<br>03941 41191 76137<br>04139 26851 58225 |
|                                          |                                                                                        |                                                                                                                                                                                                                |                                                   |                                                                                        |                                                                                                                                                                                                                |

For Amount, A, of any principal, P, after n years:  $A = P(1 + r)^n$ . For present worth, P, of any amount, A, at the end of n years:  $P = A \div (1 + r)^n$ . To find logarithms and antilogarithms of A and P to many significant figures, use Table XI, p. 126, and Table I a. p. 20.

## Table XII f - American Experience Mortality Table

Based on 100,000 living at age 10

| A Ag                       | Number<br>Surviving                             | Death                           | A Ag                       |                                                | r<br>g                                |                            |                                                |                                           |                            |                                           |                                     |
|----------------------------|-------------------------------------------------|---------------------------------|----------------------------|------------------------------------------------|---------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------|----------------------------|-------------------------------------------|-------------------------------------|
|                            | 190,000<br>99,251<br>98,505<br>97,762<br>97,022 | 746<br>743<br>740<br>737        | 35<br>36<br>37<br>38<br>39 | 81,090<br>80,353<br>79,611                     | 737<br>742<br>749                     | 61<br>62<br>63             | 56,371<br>54,743<br>53.030                     | 1,628<br>1,713<br>1.800                   | 85<br>86<br>87<br>88<br>89 | 5,485<br>4,193<br>3,079<br>2,146<br>1,402 | 1,292<br>1,114<br>933<br>744<br>555 |
|                            | 96,285<br>95,550<br>94,818<br>94,089<br>93,362  | 735<br>732<br>729<br>727<br>725 | 40<br>41<br>42<br>43<br>44 | 78,106<br>77,341<br>76,567<br>75,782<br>74,985 | 765<br>774<br>785<br>797<br>812       | 66<br>67<br>68             | 49,341<br>47,361<br>45,291<br>43,133<br>40,890 | 1,980<br>2,070<br>2,158<br>2,243<br>2,321 | 90<br>91<br>92<br>93<br>94 | 847                                       | 385                                 |
|                            | 92,637<br>91,914<br>91,192<br>90,471<br>89,751  | 723<br>722<br>721<br>720<br>719 | 45<br>46<br>47<br>48<br>49 | 74,173<br>73,345<br>72,497<br>71,627<br>70,731 | 828<br>848<br>870<br>896<br>927       | 70<br>71<br>72<br>73<br>74 | 38,569<br>36,178<br>33,730<br>31,243<br>28,738 | 2,391<br>2,448<br>2,487<br>2,505<br>2,505 | 95                         |                                           |                                     |
| 1                          | 89,032<br>88,314<br>87,596<br>86,878<br>86,160  | 718<br>718<br>718<br>718<br>719 | 50<br>51<br>52<br>53<br>54 | 69,804<br>68,842<br>67,841<br>66,797<br>65,706 | 962<br>1,001<br>1,044<br>1,091<br>143 | 75<br>76                   | 26,237<br>23,761<br>21,330<br>18,961<br>16,670 | 2,476<br>2,431<br>2,369<br>2,291<br>2,196 |                            |                                           |                                     |
| 30<br>31<br>32<br>33<br>34 | 85,441<br>84,721<br>84,000<br>83,277<br>82,551  | 721<br>723<br>726               | 55<br>56<br>57<br>58<br>59 | 64,563<br>63,364<br>62,104<br>60,779<br>59,385 | 1,260<br>1,325<br>1,394               | 80<br>81<br>83<br>84       | 14,474<br>12,383<br>10,419<br>8,603<br>6,955   | 2,091<br>1,964<br>1,816<br>1,648<br>1,470 |                            |                                           |                                     |

#### LOGARITHMS OF IMPORTANT CONSTANTS

| a = numere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vallu-Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lar                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $1 \div \pi$ $\pi^{2}$ $\pi^{2}$ $\pi^{2}$ $\delta = \text{Naperian Base}$ $M = \log_{10} \epsilon$ $1 \div M = \log_{10} \epsilon$ $1 \circ \pi = \text{degrees in 1 radian}$ $\pi \div 180 = \text{radians in 1}^{2}$ $\pi \div 10800 = \text{radians in 1}^{2}$ $\pi \div 648000 = \text{radians in 1}^{2}$ $\tan 1^{2}$ $\operatorname{centimeters in 1 ft.}$ $\operatorname{feet in 1 cm.}$ $\operatorname{inches in 1 m.}$ $\operatorname{pounds in 1 kg.}$ $\operatorname{kilograms in 1 lb.}$ $g (\operatorname{average value})$ $\operatorname{weight of 1 cu. ft. of water}$ $\operatorname{weight of 1 cu. ft. of air}$ $\operatorname{cu. in. in 1 (U. S.) gallon}$ $\operatorname{ft. lb. per sec. in 1 H. P.}$ $\operatorname{kg. m. per sec. in 1 H. P.}$ $\operatorname{watts in 1 H. P.}$ | d.14150265<br>0.31830989<br>9.8660440<br>1.77245385<br>2.771828183<br>0.43429448<br>2.30258500<br>57.2957795<br>0.002908882<br>0.6660488136811025<br>0.000004848136811076<br>0.000004848136811133<br>39.480<br>0.032808<br>39.37 exact legal value)<br>2.20462<br>0.453593<br>32.16 ft. sec. sec.<br>= 981 cm. sec. sec.<br>62.425 lb. (max. density)<br>0.0807 lb. (at 32° F.)<br>231 sexact legal value,<br>550 exact legal value,<br>76.0404<br>745.957 | 0.4.714.657<br>9.7.257.13<br>0.5042.075<br>0.2457.404<br>9.0677.812<br>0.362217.01<br>1.75512.03<br>8.2448.7737<br>6.4637.512<br>4.06537.457<br>4.06537.457<br>1.45401.58<br>8.555.064<br>0.3433340<br>9.06666.00<br>1.5073<br>2.9016600<br>1.7953.56<br>8.907<br>2.36636120<br>2.7403027<br>1.8510445<br>2.8727135 |

#### SEVERAL NUMBERS VERY ACCURATELY

| *                   | = 3.14159 | 26535 | 89793 | 23546 | 26433 | 83280 |  |
|---------------------|-----------|-------|-------|-------|-------|-------|--|
| $\epsilon$          | = 2.71828 | 18284 | 59045 | 23536 | 02574 | 71353 |  |
| M                   | = 0.43429 | 44819 | 03251 | 82765 | 11289 | 18917 |  |
| $1 \div M$          | = 2.30258 | 50929 | 94045 | 68401 | 79914 | 54654 |  |
| log <sub>10</sub> # | = 0.49714 | 98726 | 94133 | 85435 | 12682 | 58291 |  |
| $\log_{10} M$       | = 9.63778 | 43113 | 00536 | 78912 |       |       |  |
|                     |           |       |       |       |       |       |  |

#### CERTAIN CONVENIENT VALUES FOR n = 1 to n = 10

| n                                     | 1, n                                                                                                                 | γ'n                                                                                                        | γπ                                                                                                         | n!                                                                   | 1, a!                                                                                                                         | Linius n                                                                                                                                                           |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>23<br>4<br>5<br>6<br>7<br>8<br>9 | 1.000000<br>0.500000<br>0.333333<br>0.250000<br>0.200000<br>0.166667<br>0.142857<br>0.125000<br>0.111111<br>0.100000 | 1.00000<br>1.41421<br>1.73205<br>2.00000<br>2.23607<br>2.44949<br>2.64575<br>2.82843<br>3.00000<br>3.16228 | 1.00000<br>1.25992<br>1.44225<br>1.58740<br>1.70998<br>1.81712<br>1.91293<br>2.00000<br>2.05008<br>2.15443 | 1<br>2<br>6<br>24<br>120<br>720<br>5040<br>40320<br>362580<br>362580 | 1.0000000<br>0.5000000<br>0.1666667<br>0.0416667<br>0.005333<br>0.0013889<br>0.0001984<br>0.0000248<br>0.0000028<br>0.0000003 | 0.000000000<br>0.301029996<br>0.477121275<br>0.602059991<br>0.605970014<br>0.775151274<br>0.54506549<br>0.905365857<br>0.905365957<br>0.9054212559<br>1.00000.0000 |

| N              | 0                    | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    | 7                    | 8                    | 9                    | 1             | 2              | 3              | 4           | 5              | 6              | 17             | 8              | -              |
|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------|----------------|----------------|-------------|----------------|----------------|----------------|----------------|----------------|
| 10             | 0000                 | 0043                 | 0080                 | 0128                 | 0170                 | 0212                 | 0253                 | 0294                 | 0334                 | 0374                 | 4             | 8              | 12             | 17          | 21             | 25             | 29             | -              | _              |
| 12             | 0792                 | ,0828                | 0564                 | 10899                | 10934                | 10969                | 1004                 | 1038                 | 1072                 | 0755<br>1106<br>1430 | 13            | 7              | 11<br>10<br>10 | 14          | 19<br>17<br>16 | 21             | 26             | 30<br>28       | 3:             |
| 15             | 1761                 | 1790                 | 1818                 | 1847                 | 1575                 | 1903                 | 1931                 | 1959                 | 1987                 | 1732<br>2014<br>2279 | 13            | 6<br>5         | 9<br>8<br>8    | 11          | 15<br>14<br>13 | 17             | 21<br>20<br>18 | 24<br>22       | 27<br>20       |
| 18             | 2553                 | 2577                 | 2001                 | 2625                 | 2645                 | 12672                | 12695                | 2718                 | 2742                 | 2529<br>2765<br>2989 | 2             | 5<br>5<br>4    | 7777           | 9           | 12<br>12<br>11 | 14             | 17<br>16<br>16 | 20<br>19       | 22<br>21       |
| 20             | 3010                 | 3032                 | 3054                 | 3075                 | 3096                 | 3118                 | 3139                 | 3160                 | 3181                 | 3201                 | 2             | 4              | 6              | 8           | 11             | 13             | 15             |                |                |
| 21<br>22<br>23 | 3222<br>3424<br>3617 | 3243<br>3444<br>3636 | 3263<br>3464<br>3655 | 3284<br>3483<br>3674 | 3304<br>3502<br>3692 | 3324<br>3522<br>3711 | 3345<br>3541<br>3729 | 3365<br>3560<br>3747 | 3385<br>3579<br>3766 | 3404<br>3598<br>3784 | 222           | 4<br>4<br>4    | 6<br>6<br>6    |             | 10<br>10<br>9  |                | 14<br>14<br>13 | 16             | 17             |
| 25<br>26       | 3979<br>4150         | 3997<br>4166         | 4014<br>4183         | 4031<br>4200         | 4048<br>4216         | $\frac{4065}{4232}$  | 4082<br>4249         | $\frac{4099}{4265}$  | $\frac{4116}{4281}$  | 4298                 | $\frac{2}{2}$ | 4<br>4<br>3    | 5<br>5<br>5    | 777         | 9              | 11<br>10<br>10 | 12<br>12<br>11 | 14             | 16             |
| 28             | 4472                 | 4487                 | 4502                 | 4362<br>4518<br>4669 | 4533                 | 4548                 | 4564                 | 4579                 | 4594                 | 4456<br>4609<br>4757 | 2<br>2<br>1   | 3              | 5<br>5<br>4    | 6<br>6      | 8<br>8<br>7    | 9<br>9         | 11<br>11<br>10 | 12             | 14             |
| 30             | 4771                 | 4786                 | 4800                 | 4814                 | 4829                 | 4843                 | 4857                 | 4871                 | 4886                 | 4900                 | 1             | 3              | 4              | 6           | 7              | 9              | 10             | 11             | 13             |
| 32             | 5051                 | 5065                 | 5079                 | 5092                 | 5105                 | 5119                 | 5132                 | 5145                 | 5159                 | 5038<br>5172<br>5302 | 1             | 3              | 444            | 5<br>5<br>5 | 7<br>7<br>7    | 888            |                | 11<br>11<br>11 | 12             |
| 35             | 5441                 | 5453                 | 5465                 | 5353<br>5478<br>5599 | 5490                 | 5502                 | 5514                 | 5527                 | 5539                 | 5428<br>5551<br>5670 | 111           | 2              | 4<br>4<br>4    | 5<br>5<br>5 | 6<br>6<br>6    | 877            | 9              | 10<br>10<br>10 | 11             |
| 38             | 5798                 | 5809                 | 5821                 | 5832                 | 5843                 | 5855                 | 5866                 | 5877                 | 5888                 | 5786<br>5899<br>6010 | 1             | 2              | 4<br>3<br>3    | 5<br>5<br>4 | 6<br>6<br>5    | 7<br>7         | 8              | 9              | 11<br>10<br>10 |
| 40             | 6021                 | 6031                 | 6042                 | 6053                 | 6064                 | 6075                 | 6085                 | 6096                 | 6107                 | 6117                 | 1             | 2              | 3              | 4           | 5              | 6              | 8              | 9              | 10             |
| 42             | 6232                 | 6243                 | 6253                 |                      | 6274                 | 6284                 | 6294                 | 6304                 | 6314                 | 6222<br>6325<br>6425 |               | 2              | 3<br>3<br>3    | 4<br>4<br>4 | 5<br>5<br>5    | 6<br>6<br>6    | 777            | 8 8 8          | 9              |
| 45             | 6532                 | 6542                 | 6551                 | 6561                 | 6571                 | 6580                 | 6590                 | 6599                 | 6609                 | 6522<br>6618<br>6712 | 1             | 2              | 3<br>3<br>3    | 4<br>4<br>4 | 5<br>5<br>5    | 6<br>6<br>6    | 7<br>7<br>7    | 8<br>8<br>7    | 9 8            |
| 48             | 6812                 | 6821                 | 6830                 | 6839                 | 6848                 | 6857                 | 6866                 | 6875                 | 6884                 | 6803<br>6893<br>6981 | 1             | $\bar{2}$      | 3<br>3<br>3    | 4<br>4<br>4 | 5<br>5<br>4    | 6<br>6<br>5    | 7<br>7<br>6    | 7<br>7         | 8              |
| 50             | 6990                 | 6998                 | 7007                 | 7016                 | 7024                 | 7033                 | 7042                 | 7050                 | 7059                 | 7067                 | 1             | $\overline{2}$ | 3              | 3           | 4              | 5              | 6              | 7              | 8              |
| 51<br>52<br>53 | 7160                 | 7168                 | 7177                 | 7101<br>7185<br>7267 | 7193                 | 7202                 | 7210                 | 7218                 | 7226                 | 7152<br>7235<br>7316 | 1<br>1<br>1   |                | 3<br>3<br>2    | 3<br>3<br>3 | 4<br>4<br>4    | 5 5 5          | 6<br>6<br>6    | 7<br>7<br>6    | 8<br>7<br>7    |
| 54             | 7324                 | 7332                 | 7340                 | 7348                 | 7356                 | 7364                 | 7372                 | 7380                 | 7388                 | 7396                 | 1             | 2              | 2              | 3           | 4              | 5              | б              | 6              | 7              |
| N              | 0                    | 1                    | 2                    | 3                    | 4                    | 5                    | 6                    | 7                    | 8                    | 9                    | 1             | 2              | 3              | 4           | 5              | 6              | 7              | 8              | 9              |

The proportional parts are stated in full for every tenth at the right-hand side The logarithm of any number of four significant figures can be read directly by add-

| N               |                                                                        |                                                                                              | ,                     | 7            | 8        |              | 1 | 2   | 3               |        |        |            |          |     |       |
|-----------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------|--------------|----------|--------------|---|-----|-----------------|--------|--------|------------|----------|-----|-------|
|                 | 7404 7412 7419<br>7482 7490 7497                                       | 7427 7435 7445<br>7595,7513 752                                                              | 7451 74<br>7525 75    | 59 7         | din,     | 7474         | 1 |     | 2               |        |        |            |          |     |       |
| 57<br>55        | 7559 7566 7 <b>574</b><br>7634 7542 7 <b>6</b> 49                      | 7552 7559 7597                                                                               | 7604 76               | 127          | 635      | 7-12-1       | 1 |     | -<br>           | ;      | 1      | -          |          |     |       |
| 59<br><b>60</b> | 7709,7716,7723                                                         | 7731 7735,7747                                                                               | 7732,77               |              |          | 7774         | 1 | -   | -               |        | ÷      | i          |          | _   |       |
| -               | 7853,7800,7808                                                         | 7503 7810 7515<br>7573 7552 7852                                                             | 7596.75               | - 3.5,70     | 27.1     | 7927         | 1 | -   |                 |        |        | - i        | <b>m</b> |     |       |
|                 | 924   931,7935<br> 7993 5000 5007                                      | ,7945,7952,7959                                                                              | 7966,79               | 73,7         | e % :    | 1957         | ! | 1   | <u>.</u><br>2 : | 5      | :      | 1          |          |     |       |
|                 | \$062 \$069 \$075<br> \$129 \$135 \$142                                | \$0\$2 <sup>*</sup> \$0\$9 <sup>*</sup> \$000<br>\$149 <sup>*</sup> \$150 <sup>*</sup> \$162 | 5102/81               | 04's<br>70's | 11<br>15 | 5122<br>5151 | 1 | 1   | 2               | 3      | 3      | 1          |          |     |       |
|                 | 5195(5202 5209                                                         | 5215 5222[5225                                                                               | 5235,52               | 41 5         | 245,     | 5254         | 1 | 1   | 3               | 3      |        | 1          |          |     |       |
|                 | 5261 5261 5274<br>5325 5331 5338<br>5355 539, 5401                     | ,53441535115357                                                                              | 7363,74               | 10/2         | \$ 15    | 737          | 1 | 1   | 7.              | 333    |        |            |          |     |       |
| 70              | 8451 8457 8463                                                         |                                                                                              | `                     |              |          |              | 1 | 1   | 2               | 3      |        |            |          |     | e eti |
|                 | \$513,5519,5525<br>\$573,5579,555                                      | 8531 8537 8543                                                                               | 5349,55               | 55,5         | 7*1      |              | 1 |     | 2               |        | .5     |            |          |     |       |
|                 | 5633 8639 8645                                                         | 5051 5651 5663                                                                               | ,~600 ~3              | 7.7 V        | ,~I      | بدريد        | 1 | 1   | 2               | -2     | 3      | 4          | 1        | 1 5 |       |
|                 | \$692  \$695  \$704<br>  \$751   \$756  \$762<br>  \$805  \$814  \$820 | N765 N774.N779                                                                               | A                     |              |          | A            | 1 | 1   | 2               | 213    |        | 3          | 1        | 1   | 1     |
|                 | 8808 8814 8820<br>8805 8871 8876                                       | 3552 5557 5593                                                                               | بالماران مرابا        | 1.7          | 11.      | -91.7        | 1 | 1   | 2               | 2      | 3      |            | . 1      | 4   |       |
|                 | 8921,8927,8932<br>8976,8982,8987,                                      |                                                                                              |                       |              |          |              | 1 | 1   | 5               | 2      |        | .\$<br>.;} | -        |     |       |
| 80              | 9031[9036]9042]                                                        |                                                                                              |                       |              | _        |              | 1 |     | 2               | 2      | 3      | 1          | 1 4      |     |       |
|                 | 9135 9143 9149<br>9191 9196 9201                                       | 9154/9159 9165                                                                               | 9170 91               | 7.73         | × 1      | 11 -         | Î | 1   | 3               |        |        |            |          | 4   | ĭ     |
|                 | 9243 9248 9253                                                         | 9258 9263 9269                                                                               | 9274 92               | 70,0         | -1       | 2254         | 1 | 1   | 2               | 2      | 3      | 3          | 4        | 4   | .5    |
|                 | 9294 9299 9304<br>9345 9350 9355                                       | 9360 9365 9370                                                                               | 9375 93               | <b>~</b> (3) |          | ا معنی و     | 1 | 1   | 2               | -      | -(3    | 13         | 1        | 1   |       |
|                 | 9395 9400 9405<br>9445 9450 9455                                       | 9460 9465 9469                                                                               | 9474 947              | 799          | 14       | 9459         | 0 | 1   | 2               |        |        |            |          | 4   |       |
|                 | 9494 9499 9504<br>9542 9547 9552                                       |                                                                                              |                       |              |          |              |   | 1   | l<br>l          |        |        |            | 1        | 1   |       |
|                 | 9590,9595,9600<br>9638,9443,9647                                       | 0605 00 tr. 5614                                                                             | (a) 1 (a) (ary        | 14.14        | ر باي.   | Dein s       | U | 1   | 1 1             | 31.01  | *1.3   | 3          |          | 1   |       |
|                 | 14000 this 14004                                                       | 4664-4763 4765                                                                               | 9713 <sub>(</sub> 97) | 17 %         |          | 47.27        | 0 | 1   | 1               | 2      | -      | . 3        | 15       | 4   | ł     |
|                 | 9731 9736 9741<br>9777 9782 9786                                       | 9791 9795 9989                                                                               | 100                   | Pales        | 14       | :514         | Õ | 1   | 1               | 210101 | 010101 | 31.0       | 3        | 4   | 1     |
|                 | 9828,9827,9832<br>9868,9872,9877,                                      |                                                                                              |                       |              |          | - 1          | 0 | -   | 1               | 2      | 2      | 3          | 3        | 4   | 4     |
|                 | 9912 9917 9921<br>9956 9961 9965                                       | 9926(9930 9934)                                                                              | 9939 99               | 4.3 94       | 4        | r.5.4        |   |     | 1               | 22     | 20     | 3          |          | 3   |       |
| N               | 1 2                                                                    |                                                                                              |                       |              |          |              | 1 | 2 : | 3 -             | 1      | ă      | ř          | • :      |     | я     |

ing the proportional part corresponding to the fourth figure to the tabular number corresponding to the first three figures. There may be an error of 1 in the last place.

|                           | 0                                 | 1                    | 2                    | 3                      | 4                      | 5                    | 6                      | 7                    | 8                                 | 9                      | 1           | 2 3                                                       | 456                                                                                        | 789                                                                 |
|---------------------------|-----------------------------------|----------------------|----------------------|------------------------|------------------------|----------------------|------------------------|----------------------|-----------------------------------|------------------------|-------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| .00                       | 1000                              | 1002                 | 1005                 | 1007                   | 1009                   | 1012                 | 1014                   | 1016                 | 1019                              | 1021                   | 0           | 0 1                                                       | 1 1 1                                                                                      | 2 2 2                                                               |
| .01<br>.02<br>.03         | 1023<br>1047<br>1072              | 1026<br>1050<br>1074 | 1028<br>1052<br>1076 | 1030<br>1054<br>1079   | 1033<br>1057<br>1081   | 1035<br>1059<br>1054 | 1038<br>1062<br>1086   | 1040<br>1064<br>1089 | 1042<br>1067<br>1091              | 1045<br>1069<br>1094   | Ü           | U 1<br>0 1<br>0 1                                         | 1 1 1 1 1 1 1 1 1                                                                          | 2222222222                                                          |
| .04<br>.05<br>.06         | 1096<br>1122<br>1148              | 1125                 | 1127                 | 1130                   | 1132                   | 1135                 | 1135                   | 1140                 | 1117<br>1143<br>1169              | 1146                   | 0           | 1 1<br>1 1<br>1 1                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                      | 2 2 2<br>2 2 2<br>2 2 2                                             |
|                           | 1202<br>1230                      | $\frac{1205}{1233}$  | 1208<br>1236         | $\frac{1211}{1239}$    | $\frac{1213}{1242}$    | $\frac{1216}{1245}$  | 1219<br>1247           | $\frac{1222}{1250}$  |                                   | $\frac{1227}{1256}$    | 0           | 1 1<br>1 1<br>1 1                                         | 1 1 2<br>1 1 2<br>1 1 2                                                                    | $\begin{array}{c} 2 & 2 & 2 \\ 2 & 2 & 3 \\ 2 & 2 & 3 \end{array}$  |
| .10                       |                                   |                      |                      |                        |                        |                      |                        |                      | 1282                              |                        | 0           | 1 1                                                       | 112                                                                                        | 2 2 3                                                               |
| .11<br>.12<br>.13         |                                   | 1321                 | 1324                 | 1327                   | 1330                   | 1334                 | 1337                   | 1340                 | 1312<br>1343<br>1374              | 1346                   |             | 1 1<br>1 1<br>1 1                                         | $\begin{array}{ c c c c }\hline 1 & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \\ \hline \end{array}$ | 2 2 3<br>2 2 3<br>2 3 3                                             |
|                           | 1380<br>1413<br>1 <del>41</del> 5 | 1416                 | 1419                 | 1422                   | 1426                   | 1429                 | 1432                   | 1435                 |                                   | 1442                   | Ō           | 1 1<br>1 1<br>1 1                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      | 2 3 3<br>2 3 3<br>2 3 3                                             |
| .17<br>.18<br>.19         | 1514                              | 1517                 | 1521                 | 1524                   | 1528                   | 1531                 | 1535                   | 1538                 | 1507<br>1542<br>1578              | 1545                   | 0           | 1 1<br>1 1<br>1 1                                         | 1 2 2<br>1 2 2<br>1 2 2                                                                    | $\begin{bmatrix} 2 & 3 & 3 \\ 2 & 3 & 3 \\ 2 & 3 & 3 \end{bmatrix}$ |
| .20                       | 1585                              | 1589                 | 1592                 | 1596                   | 1600                   | 1603                 | 1607                   | 1611                 | 1614                              | 1618                   | 0           | 1 1                                                       | 1 2 2                                                                                      | 3 3 3                                                               |
| .21<br>.22<br>.23         | 1660                              | 1663                 | 1667                 | 1671                   | 1675                   | 1679                 | 1683                   | 1687                 | 1652<br>1690<br>1730              | 1694                   |             | 1 1<br>1 1<br>1 1                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                     | 3 3 3<br>3 3 3<br>3 3 3                                             |
| .24<br>.25<br>.26         | 1778                              | 1782                 | 1786                 | 1791                   | 1795                   | 1799                 | 1803                   | 1807                 | 1770<br>1811<br>1854              | 1816                   | Ö           | 1 1<br>1 1<br>1 1                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                     | 3 3 4<br>3 3 4<br>3 3 4                                             |
| .27<br>.28<br>.29         | 1862<br>1905<br>1950              | 1866<br>1910<br>1954 | 1871<br>1914<br>1959 | 1875<br>1919<br>1963   | 1879<br>1923<br>1968   | 1884<br>1928<br>1972 | 1888<br>1932<br>1977   | 1892<br>1936<br>1982 | 1897<br>1941<br>1986              | 1901<br>1945<br>1991   |             | 1 1<br>1 1<br>1 1                                         | 2 2 3<br>2 2 3<br>2 2 3                                                                    | 3 3 4<br>3 4 4<br>3 4 4                                             |
| .30                       | 1995                              | 2000                 | 2004                 | 2009                   | 2014                   | 2018                 | 2023                   | 2028                 | 2032                              | 2037                   | 0           | 1 1                                                       | 2 2 3                                                                                      | 3 4 4                                                               |
| .31<br>.32<br>.33         | 2042 $2089$ $2138$                | 2046<br>2094<br>2143 | 2051<br>2099<br>2148 | $2056 \\ 2104 \\ 2153$ | $2061 \\ 2109 \\ 2158$ | 2065 $2113$ $2163$   | $2070 \\ 2118 \\ 2168$ | 2075<br>2123<br>2173 | 2080<br>2128<br>2178              | $2084 \\ 2133 \\ 2183$ | 0           | 1 1<br>1 1<br>1 1                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                      | 3 4 4<br>3 4 4<br>3 4 4                                             |
| .34<br>. <b>35</b><br>.36 | 2239                              | 2244                 | 2249                 | 2254                   | 2259                   | 2265                 | 2270                   | 2275                 | 2228<br>2280<br>2333              | 2286                   |             | $\begin{array}{ccc} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array}$  | $\begin{bmatrix} 2 & 3 & 3 \\ 2 & 3 & 3 \\ 2 & 3 & 3 \end{bmatrix}$                        | 4 4 5<br>4 4 5<br>4 4 5                                             |
| .37<br>.38<br>.39         | 2399                              | 2404                 | 2410                 | 2415                   | 2421                   | 2427                 | 2432                   | 2438                 | $2388 \\ 2443 \\ 2500$            | 2449                   | 1<br>1<br>1 | $\begin{array}{ccc} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array}$  | 2 3 3<br>2 3 3<br>2 3 3                                                                    | $\begin{array}{c} 4 & 4 & 5 \\ 4 & 5 & 5 \\ 4 & 5 & 5 \end{array}$  |
| .40                       | 2512                              | 2518                 | 2523                 | 2529                   | 2535                   | 2541                 | 2547                   | 2553                 | 2559                              | 2564                   | 1           | 1 2                                                       | 2 3 4                                                                                      | 4 5 5                                                               |
| .41<br>.42<br>.43         | 2630                              | 2636                 | 2642                 | 2649                   | 2655                   | 2661                 | 2667                   | 2673                 | 2618<br>2679<br>27 <del>4</del> 2 | 2685                   | 1<br>1<br>1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                     | $\begin{array}{c} 4 & 5 & 6 \\ 4 & 5 & 6 \\ 4 & 5 & 6 \end{array}$  |
| .44<br>.45<br>.46         | 2818                              | 2825                 | 2831                 | 2838                   | 2844                   | 2851                 | 2858                   | 2864                 | 2805<br>2871<br>2938              | 2877                   | 1<br>1<br>1 | $\begin{array}{cccc} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array}$ | 3 3 4<br>3 3 4<br>3 3 4                                                                    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$               |
| .47<br>.48<br>.49         | 3020                              | 3027                 | 3034                 | 3041                   | 3048                   | 3055                 | 3062                   | 3069                 | 3006<br>3076<br>3148              | 3083                   | 1<br>1<br>1 | $\begin{array}{ccc} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{array}$  | 3 3 4<br>3 3 4<br>3 4 4                                                                    | 5 6 6<br>5 6 6<br>5 6 6                                             |

|            | Τ_                       |              |                     |              |              |                |              |                             |                      |                | -        |          |            |                                    |         |            |          |   |
|------------|--------------------------|--------------|---------------------|--------------|--------------|----------------|--------------|-----------------------------|----------------------|----------------|----------|----------|------------|------------------------------------|---------|------------|----------|---|
| <u>_</u>   | 0                        | 1            |                     | 3            | -            | -              |              | -                           | -                    |                | 1        | -        |            | 1                                  | · .     | 7          | `        | 4 |
| 50         | _                        | -            |                     | 3154         |              | -              | -            | -                           | -                    | ***            | Ŀ        | 1        |            |                                    | 4 4     | . 5        | ٠,       | 7 |
| 1.1        | 3236                     |              |                     | 3331         |              |                |              |                             | اسمار)<br>در در ک    |                | 1        | 1        | 2 :        | 3                                  | 1 1     | 5          | 1)       | - |
| .53        | 3355                     |              |                     |              |              |                | 3435         | .14.                        | 3451                 | 345.           | 3 -      | 2        | -          |                                    | 4<br>4  | 6          | 6        | ÷ |
|            | 3467                     |              |                     |              |              |                |              |                             | 35.12                | 14             | 1        | 4)       | 2          | 3                                  | 4 5     | 1 6        | 6        | 7 |
| .50        | 3545<br>3631             | 3639         | 3045<br>3045        | 3656         | 3551         | 3573           | 2007<br>351  | ر قرار دارد.<br>در هواردگار | . \$1.14<br>- struce | 37.30          | 1        |          | <u>.</u>   |                                    | 1       | <i>F</i> , | =        | - |
| .57        | 3715                     | 3724         | 3733                | 3741         | 3754         | 375            | 3767         | 77,                         |                      | . <del>.</del> | 1        | -        | 3          |                                    | 4 5     | 47         | -        |   |
| .58        | 3502<br>3590             | 3511         | 3519                | 3525         | 3557         | 3540           | 15.5         | 3744                        | 3.5                  |                | 1        |          | 3          |                                    | 1       | *3         | -        | • |
| 1          | 3951                     |              |                     | -            |              |                |              |                             |                      |                | +        | -        | ;<br>[8    | * .                                | 1 1     |            | <u>.</u> | _ |
| -          | 1074                     |              |                     | <del></del>  |              |                |              |                             |                      |                | <u> </u> | <u>.</u> | .3         | 2                                  | <u></u> |            |          | - |
| .62        | 4169                     | 4178         | 4155                | 4195         | 4207         | 4217           | 4227         | 123%                        | 4.44                 | 4.             | î        |          | 3          |                                    |         | ; 7        | 8        | g |
| .63        | 4200                     | 12.0         | 4250                | 4773         | 4305         | 4315           | 4325         | 4335                        | 4340                 | 4353           | 1        |          | 3          |                                    | 5 6     | 7          | 8        | 9 |
|            | 4365<br>4467             |              |                     |              |              |                |              |                             |                      |                | 1        |          | 3          | 4 .                                | 5 粉     | . <u>T</u> | S        | 9 |
|            | 4571                     |              |                     |              |              |                |              |                             |                      |                | î        |          | 3          | 4                                  | 11      | . 7        |          | Ü |
|            | 4677                     |              |                     |              |              | 4732           | 4742         | 4753                        | 4.64                 | 4775           | 1        |          | 3          | 4                                  |         | S          | 9.1      |   |
|            | 4786<br>4898             |              |                     |              |              |                |              |                             |                      |                | 1        |          | 3 1        | 5                                  |         |            | 91       |   |
| .70        | 5012                     | 5023         | 5035                | 5047         | 5055         | 5070           | 5082         | 5093                        | 51 (5)               | 5117           | 1        | _*       | ÷,         | 7, 4                               | 7       | ``         | 3# I     | - |
| .71        | 5129                     | 5140         | 5152                | 5164         | 3170         | 5155           | 5200         | 5212                        | 5224                 | J23:           | :        |          | 1          | • •                                | -       | `          |          | ī |
| 1.72<br>73 | 5245<br>5370             | 5260<br>5383 | 5272<br>5395        | 5254<br>5405 | 5297 $5420$  | 5309<br>5433   | 5321<br>5445 | 3333<br>3435                | 5349<br>5470         | 3337<br>5453   | *        |          | 4          |                                    | Ξ       |            |          | 1 |
|            | 5495                     | •            |                     | 1 1          | ŧ :          |                |              |                             |                      |                | ī        | -        | 4          | · ·                                |         | 9          | 13.1     |   |
| .75        | 5623                     | 5636         | 5649                | 5062         | 5675         | 5689           | ,5702,       | 5715                        | 572                  | J. 41          | ī        | ₹ ,      | 4          | : 3                                |         | 4          |          | - |
|            | 5754                     | 1            | }                   |              | 1 1          |                |              |                             |                      |                | ,        |          | 1          | <br>                               |         |            |          | 7 |
| 1.78       | 5888<br>6026             | 6039         | 6053                | 6067         | 6081         | 6095           | 6109         | 6124                        | 6135                 | 91.52          | :        |          | i<br>i     | . :                                | . ;     |            |          | 7 |
| 1-         | 6166                     |              |                     |              |              |                |              |                             |                      |                | 1        |          |            | · :                                | 1       | -          | 11:      | 4 |
|            | 6310                     |              |                     |              |              |                |              |                             |                      |                | 1        |          | <u>-</u> - | ř. ;                               | ::      | -          |          | 4 |
| .81<br>80  | 6457<br>6607             | 6622         | 6486 $6637$         | 6501<br>6653 | 6665         | 6531 $6683$    | 6699         | 0561<br>6714                | 6577<br>6730         | $6591 \\ 6745$ | 5        |          |            | , .                                | ;       | 11         | 3        | 1 |
| .\$3       | 6761                     | 6770         | 6792                | 6808         | 6823         | 6539           | 6855,        | 6871                        | ບ້ວວ.                | 6902           | 2        | 3        | 5          | ٠,                                 | . !!    | 11         | 13.1     | 4 |
| .S4        | 6918                     | 6934         | 6950                | 6966         | 6982         | 6998           | 7015         | 7031                        | 7047                 | 7063           | 2 2      | 3 .      |            | Ξ :                                | 11      | 11         | 13 1     | 3 |
|            | 7079<br>72 <del>11</del> |              |                     | 7295         |              |                |              |                             |                      |                | 5        | 3        | į.         | ÷ :                                | 1       | 12         | 41       | 5 |
| .87        | 7413                     | 7430         | 7447                | 7464         | 7482         | 7499           | 7516         | 7534                        | 7551 <sup>1</sup>    | 7565           | 2        |          | 5          |                                    | 1.      | 13         | 4 1      |   |
| .88        | 7586<br>7762             | 7603         | $\frac{7621}{7798}$ | 7638         | 7656<br>7834 | $7674 \\ 7852$ | 7691<br>7870 | 7709<br>7589                | 772.                 | 7925           | 3        | 4 :      |            |                                    |         | 13         |          |   |
|            | 7943                     |              |                     | <del></del>  |              |                |              |                             |                      |                | 2        |          |            |                                    | 11      | 1,         | 5 1      | 7 |
|            | 8128                     | 8147         | 8166                | 8155         | 8204         | 5222           | 8241         | 8260                        | \$279                | 5299           | 2        | 4        |            | • :                                |         | 130        | 31       | 7 |
| 92         | 15318                    | 3337         | 18356               | 15340        | 5395         | 2414           | 5-133        | 3403                        | >1. =                | 11-            | 510      | 4        | i<br>i     | <ul> <li>15</li> <li>16</li> </ul> | 12      | 11         | 5.1      | 1 |
| .93        | 8511<br>8710             | 2730         | 8750                | 8770         | 8700         | 5510           | 8831         | SS51                        | 8870                 | 2000           | 2        | -        | ω.<br>6    | 3 16<br>3 16                       | -12     | 14         | <br>16 I |   |
| 195        | 15913                    | 15033        | 8054                | 18974        | 18995        | 9016           | 19036        | 9057                        | 9075                 | .54(31)7(3     | 1010     | 4        | 6          | <b>-</b> 11                        | :12     | 45         | - i      | 4 |
|            | 9120                     |              |                     |              |              |                |              |                             |                      |                | -        | -        | 6<br>e     | 9 1)<br>0 1)                       |         | 10.        | i. 1.    | 1 |
| 0.0        | 9333<br>9550             | 0579         | 0.50.1              | 10616        | 19638        | 9661           | 10653        | 9705                        | 9727                 | 9750           | 21.51    | 4        |            | 9 11                               |         | 10         | 15.2     |   |
| .99        | 9772                     | 9795         | 9817                | 9840         | 9863         | 9886           | 9908         | 9931                        | 9954                 | 9977           |          | 5        | 7 '        | 9 1                                | 14      | 10         | 18.2     | 1 |

## 138 Table XIV c - Four Place Trigonometric Functions [XIV c

[Characteristics of Logarithms omitted-determine by the usual rule from the value]

| Radians                                            | Degrees                              | Sine<br>Value Logo                                                      | TANGENT<br>Value Logio                                                  | COTANGENT<br>Value Logio                                                                     | Cosing<br>Value Loga                                                                   |                                                                                 |
|----------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| .0000<br>.0029<br>.0058<br>.0087<br>.0116<br>.0145 | 40<br>50                             | .0116 .0658<br>.0145 .1627                                              | .0087 .9409<br>.0116 .0658<br>.0145 .1627                               | 343.77 .5363<br>171.89 .2352<br>114.59 .0591<br>85.940 .9342<br>68.750 .8373                 | 1.0000 .0000<br>1.0000 .0000<br>1.0000 .0000<br>1.0000 .0000<br>.9999 .0000            | 90° 00′ 1.5708<br>50 1.5679<br>40 1.5650<br>30 1.5621<br>20 1.5592<br>10 1.5563 |
| .0175<br>.0204<br>.0233<br>.0262<br>.0291<br>.0320 | 1° 00′<br>10<br>20<br>30<br>40<br>50 | .0204 .3088<br>.0233 .3668<br>.0262 .4179<br>.0291 .4637<br>.0320 .5050 | .0204 .3089<br>.0233 .3669<br>.0262 .4181<br>.0291 .4638<br>.0320 .5053 | 57.290 .7581<br>49.104 .6911<br>42.964 .6331<br>38.188 .5819<br>34.368 .5362<br>31.242 .4947 | .9998 .9999<br>.9997 .9999<br>.9997 .9998<br>.9996 .9998<br>.9995 .9998                | 89° 00′ 1.5533<br>50 1.5504<br>40 1.5475<br>30 1.5446<br>20 1.5417<br>10 1.5388 |
| .0349<br>.0378<br>.0407<br>.0436<br>.0465<br>.0495 | 40<br>50                             | .0407 .6097<br>.0436 .6397<br>.0465 .6677<br>.0494 .6940                | .0466 .6682<br>.0495 .6945                                              | 24.542 .3899<br>22.904 .3599<br>21.470 .3318<br>20.206 .3055                                 | .9993 .9997<br>.9992 .9996<br>.9990 .9996<br>.9989 .9995<br>.9988 .9995                | 50 1.5330<br>40 1.5301<br>30 1.5272<br>20 1.5243<br>10 1.5213                   |
| .0524<br>.0553<br>.0582<br>.0611<br>.0640<br>.0669 | 3° 00′<br>10<br>20<br>30<br>40<br>50 | .0552 .7423<br>.0581 .7645<br>.0610 .7857<br>.0640 .8059<br>.0669 .8251 | .0582 .7652<br>.0612 .7865<br>.0641 .8067<br>.0670 .8261                | 18.075 .2571<br>17.169 .2348<br>16.350 .2135<br>15.605 .1933<br>14.924 .1739                 | .9978 .9990                                                                            | 50 1.5155<br>40 1.5126<br>30 1.5097<br>20 1.5068<br>10 1.5039                   |
| .0698<br>.0727<br>.0756<br>.0785<br>.0814<br>.0844 | 4° 00′<br>10<br>20<br>30<br>40<br>50 | .0727 .8613<br>.0756 .8783<br>.0785 .8946<br>.0814 .9104<br>.0843 .9256 | .0729 .8624<br>.0758 .8795<br>.0787 .8960<br>.0816 .9118<br>.0846 .9272 | 14.301 .1554<br>13.727 .1376<br>13.197 .1205<br>12.706 .1040<br>12.251 .0882<br>11.826 .0728 | .9967 .9986<br>.9964 .9985                                                             | 86° 00′ 1.5010<br>50 1.4981<br>40 1.4952<br>30 1.4923<br>20 1.4893<br>10 1.4864 |
| .0873<br>.0902<br>.0931<br>.0960<br>.0989<br>.1018 | 5° 00'<br>10<br>20<br>30<br>40<br>50 | .0901 .9545<br>.0929 .9682<br>.0958 .9816<br>.0987 .9945                | .0904 .9563<br>.0934 .9701<br>.0963 .9836<br>.0992 .9966                | 11.430 .0580<br>11.059 .0437<br>10.712 .0299<br>10.385 .0164<br>10.078 .0034<br>9.7882 .9907 | .9959 .9982<br>.9957 .9981<br>.9954 .9980                                              | 85° 00′ 1.4835<br>50 1.4806<br>40 1.4777<br>30 1.4748<br>20 1.4719<br>10 1.4690 |
| .1047<br>.1076<br>.1105<br>.1134<br>.1164<br>.1193 | 20<br>30<br>40                       | .1074 .0311<br>.1103 .0426<br>.1132 .0539<br>.1161 .0648                | .1080 .0336<br>.1110 .0453<br>.1139 .0567<br>.1169 .0678                | 9.5144 .9784<br>9.2553 .9664<br>9.0098 .9547<br>8.7769 .9433<br>8.5555 .9322<br>8.3450 .9214 | .9945 .9976<br>.9942 .9975<br>.9939 .9973<br>.9936 .9972<br>.9932 .9971<br>.9929 .9969 | 84° 00′ 1.4661<br>50 1.4632<br>40 1.4603<br>30 1.4573<br>20 1.4544<br>10 1.4515 |
| .1222<br>.1251<br>.1280<br>.1309<br>.1338<br>.1367 | 7° 00′<br>10<br>20<br>30<br>40<br>50 | .1248 .0961<br>.1276 .1060<br>.1305 .1157<br>.1334 .1252                | .1257 .0995<br>.1287 .1096<br>.1317 .1194<br>.1346 .1291                | 8.1443 .9109<br>7.9530 .9005<br>7.7704 .8904<br>7.5958 .8806<br>7.4287 .8709<br>7.2687 .8615 | .9925 .9968<br>.9922 .9966<br>.9918 .9964<br>.9914 .9963<br>.9911 .9961<br>.9907 .9959 | 50 1.4457<br>40 1.4428<br>30 1.4399<br>20 1.4370                                |
| .1396<br>.1425<br>.1454<br>.1484<br>.1513<br>.1542 | 50                                   | .1421 .1525<br>.1449 .1612<br>.1478 .1697<br>.1507 .1781<br>.1536 .1863 | .1435 .1569<br>.1465 .1658<br>.1495 .1745<br>.1524 .1831<br>.1554 .1915 | 7.1154 .8522<br>6.9682 .8431<br>6.8269 .8342<br>6.6912 .8255<br>6.5606 .8169<br>6.4348 .8085 |                                                                                        | 82° 00′ 1.4312<br>50 1.4283<br>40 1.4254<br>30 1.4224<br>20 1.4195<br>10 1.4166 |
| .1571                                              | 9° 00′                               | .1564 .1943                                                             | .1584 .1997                                                             | 6.3138 .8003                                                                                 |                                                                                        | 81° 00′ 1.4137                                                                  |
|                                                    |                                      | Value Logio<br>Cosine                                                   | Value Logio<br>COTANGENT                                                | Value Logio<br>TANGENT                                                                       | Value Log <sub>10</sub><br>Sine                                                        | DEGREES RADIANS                                                                 |

### Four Place Trigonometric Functions

[Characteristics of Logarithms cmitted-determine by the usual rule from the value]

| Radians                                            | Decrees                               | Sive Tangert Cotangert Cotangert Value Logic Value Logic Value Logic Value Logic Value Logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                                          |
|----------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|
| .1571<br>.1600<br>.1629<br>.1658<br>.1687          | 20<br>30                              | .1564 .1943 .1584 .1997 6.3138 .5367 5877 .9946 .1593 .2922 .1944 .1978 6.1970 .7922 .9872 .6944 .1692 .2196 .1974 .2158 6.0844 .7842 .9868 .6942 .1650 .2176 .1976 .2236 5.9787 .7784 .9863 .6940 .1679 .2257 177 .2336 5.8788 .7887 5878 .6886 .2524 .1768 .2389 5.7687 .687 .688 .6886 .2524 .1768 .2389 5.7684 .7611 .9853 .6938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81° 00°<br>50°<br>40°<br>30°<br>20°<br>10°   | 1.4147<br>1.4108<br>1.4079<br>1.4056<br>1.4021<br>1.3092 |
| .1745<br>.1774<br>.1804<br>.1833<br>.1862<br>.1891 | 10° 00′<br>10<br>20<br>30<br>40<br>50 | .1765 .215 8.17 8 .25 a) 5.57 64 .74 64 6812 .0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>80° 00′</b><br>30<br>40<br>30<br>20<br>10 | 1.3963<br>1.3764<br>1.3764<br>1.3875<br>1.3846<br>1.3817 |
| .1920<br>.1949<br>.1978<br>.2007<br>.2036<br>.2065 | 11° 00′<br>10<br>20<br>30<br>40<br>50 | .1908 .2806 1944 .2887 5.1446 .7113 9816 .0914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79° 00°<br>50°<br>40°<br>30°<br>20°<br>10°   | 1.3788<br>1.3759<br>1.3750<br>1.3701<br>1.3672<br>1.3643 |
| .2094<br>.2123<br>.2153<br>.2182<br>.2211<br>.2240 | 12° 00′<br>10<br>20<br>30<br>40<br>50 | .2108 .3238 .2156 .3336 4.6352 .6664 .9775 .9601 .2136 .3296 .2156 .3307 4.5736 .0564 .9775 .9899 .2164 .3353 .2217 .3458 4.5107 .0542 .9775 .9896 .2193 .3410 .2247 .3517 4.4494 .048 .9777 .9890 .2221 .3466 .2278 .3576 4.3597 .6424 .9750 .9890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78° 00'<br>50<br>40<br>30<br>20<br>10        | 1.3614<br>1.3584<br>1.3555<br>1.3526<br>1.3497<br>1.3468 |
| .2269<br>.2298<br>.2327<br>.2356<br>.2385<br>.2414 | 13° 00′<br>10<br>20<br>30<br>40<br>50 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50<br>40<br>30<br>20<br>10                   | 1.3439<br>1.3410<br>1.3351<br>1.3352<br>1.3323<br>1.3294 |
| .2443<br>.2473<br>.2502<br>.2531<br>.2560<br>.2589 | 14° 00′<br>10<br>20<br>30<br>40<br>50 | .2447 .3587 .2524 .4021 3.9617 .5979 .9696 .9866 .2476 .3937 .2555 .4074 3.9136 .5926 .9680 .9630 .2504 .3986 .2556 .4127 3.8667 .5873 .9681 .9859 .2532 .4033 .2617 .4178 3.8208 .5822 .9674 .9856 .2560 .4083 .2648 .4230 3.7760 .5770 .9667 .9853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                           | 1,3265<br>1,3235<br>1,3266<br>1,3177<br>1,3148<br>1,3119 |
| .2618<br>.2647<br>.2676<br>.2705<br>.2734<br>.2763 | 15° 00′<br>10<br>20<br>30<br>40<br>50 | . 2616 .4177 .2711 .4331 3.6891 .5669 .9652 .9846 .2644 .4223 .2742 .4381 3.6470 .5619 .9644 .9843 .2672 .4269 .2773 .4430 3.6059 .5570 .9636 .9839 .2700 .4314 .2805 .4479 3.5656 .5521 .9628 .9836 .2728 .4359 .2836 .4527 3.5261 .5473 .9621 .9832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40<br>30<br>20<br>10                         | 1.3090<br>1.3061<br>1.3032<br>1.3003<br>1.2974<br>1.2945 |
| .2793<br>.2822<br>.2851<br>.2880<br>.2909<br>.2938 | 16° 00′<br>10<br>20<br>30<br>40<br>50 | 2784   .4447   .2899   .4622   3.4495   .3378   .5505   .9825   .2812   .4491   .2931   .4669   3.4124   .3311   .556   .9821   .2840   .4533   .2962   .4716   3.3759   .5254   .5588   .9817   .2868   .4576   .2994   .4762   3.3402   .5238   .9559   .5814   .2896   .4618   .3026   .4808   3.3052   .5192   .9372   .9810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40<br>30<br>20<br>10                         | 1.2915<br>1.2586<br>1.2557<br>1.2828<br>1.2729<br>1.2770 |
| .2967<br>.2996<br>.3025<br>.3054<br>.3083<br>.3113 | 17° 00′<br>10<br>20<br>30<br>40<br>50 | 2952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>30<br>20<br>10                         | 1,2741<br>1,2712<br>1,2653<br>1,2654<br>1,2625<br>1,2595 |
| .3142                                              | 18° 00′                               | 3090   4900   3249   5118   3.0777   4882   9511   9782   Value   Logis   Va | DEGREES                                      |                                                          |

[Characteristics of Logarithms omitted-determine by the usual rule from the value]

| RADIANS                                            | Degrees                               | SINE<br>Value Logae                                                                                                                                                                                                                                      | Tano<br>Value                                        | ENT<br>Loga                                        | COTAN<br>Value                                           | GENT<br>Logu                                       | Cos<br>Value                                       | INE<br>Logn                                        |                                        |                                                          |
|----------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------------|
| .3142<br>.3171<br>.3200<br>.3229<br>.3258<br>.3287 | 18° 00′<br>10<br>20<br>30<br>40<br>50 | .3090<br>.3118<br>.3145<br>.3145<br>.3201<br>.3201<br>.3228<br>.3256<br>.3283<br>.3311<br>.3338<br>.3365<br>.3393                                                                                                                                        |                                                      | .5118<br>.5161<br>.5203<br>.5245<br>.5287<br>.5329 | 3.0777<br>3.0475<br>3.0178<br>2.9887<br>2.9600<br>2.9319 | .4882<br>.4839<br>.4797<br>.4755<br>.4713          | .9511<br>.9502<br>.9492<br>.9483<br>.9474<br>.9465 | .9782<br>.9778<br>.9774<br>.977<br>.976<br>.9761   | 72° 00′<br>50<br>40<br>30<br>20<br>-10 | 1.2566<br>1.2537<br>1.2508<br>1.2479<br>1.2450<br>1.2421 |
| .3316<br>.3345<br>.3374<br>.3403<br>.3432<br>.3462 | 19° 00′<br>10<br>20<br>30<br>40<br>50 | .3256<br>.3283<br>.3311<br>.3338<br>.3365<br>.3393                                                                                                                                                                                                       | :443<br>: : : : :                                    | .5370<br>.5411<br>.5451<br>.5491<br>.5531<br>.5571 | 2.9042<br>2.8770<br>2.8502<br>2.8239<br>2.7980<br>2.7725 | .4630<br>.4589<br>.4549<br>.4509<br>.4469          | .9455<br>.9446<br>.9436<br>.9426<br>.9417<br>.9407 | .9757<br>.9752<br>.9748<br>.9743<br>.9739<br>.9734 | 71° 00′<br>50<br>40<br>30<br>20<br>10  | 1.2392<br>1.2363<br>1.2334<br>1.2305<br>1.2275<br>1.2246 |
| .3491<br>.3520<br>.3549<br>.3578<br> .3607         | 90                                    | .3420 .5341<br>.3448 .5375<br>.3475 .5409<br>.3502 .5443<br>.3529 .5477<br>.3557 .5510                                                                                                                                                                   | 1.0000                                               | .0004                                              | 2.6279                                                   | .4196                                              | .9346                                              | .97                                                |                                        | 1.2217<br>1.2188<br>1.2159<br>1.2130<br>1.2101<br>1.2072 |
| .3694<br>.3723<br>.3752<br>.3782                   | 40                                    | .3584 .5543<br>.3611 .5576<br>.3638 .5609<br>.3665 .5641<br>.3692 .5673<br>.3719 .5704                                                                                                                                                                   | .3973                                                | .5954                                              | 2.5386                                                   | .4046<br>.4009                                     | .9304                                              | .9687                                              |                                        | 1.2043<br>1.2014<br>1.1985<br>1.1956<br>1.1926<br>1.1897 |
| .3840<br>.3869<br>.3898<br>.3927<br>.3956<br>.3985 | 22° 00′<br>10<br>20<br>30<br>40<br>50 | 3719 .5704<br>.3746 .573<br>.3773 .5767<br>.3800 .5798<br>.3827 .5828<br>.3854 .5856<br>.3881 .5856<br>.3934 .5948<br>.3961 .5978<br>.3987 .6007<br>.4014 .6036<br>.4067 .6093<br>.4040 .612<br>.4120 .6149<br>.4147 .6177<br>.4173 .6203<br>.4200 .6232 | .4040<br>.4074<br>.4108<br>.4142<br>.4176<br>.4210   | .6064<br>.6100<br>.6136<br>.6172<br>.6208<br>.6243 | 2.4751<br>2.4545<br>2.4342<br>2.4142<br>2.3945<br>2.3750 | .3936<br>.3900<br>.3864<br>.3828<br>.3792<br>.3757 | .9272<br>.9261<br>.9250<br>.9239<br>.9228<br>.9216 | .9672                                              | <b>68</b> ° ÕÕ,                        | 1.1868<br>1.1839<br>1.1810<br>1.1781<br>1.1752<br>1.1723 |
| .4014<br>.4043<br>.4072<br>.4102<br>.4131<br>.4160 | 23° 00′<br>10<br>20<br>30<br>40<br>50 | .3907 .5919<br>.3934 .5948<br>.3961 .5978<br>.3987 .6007<br>.4014 .6036<br>.4041 .6068                                                                                                                                                                   | .4245<br>.4279<br>.4314<br>.4348<br>.4383<br>.4417   | .6279<br>.6314<br>.6348<br>.6383<br>.6417<br>.6452 | 2.3559<br>2.3369<br>2.3183<br>2.2998<br>2.2817<br>2.2637 | .3721<br>.3686<br>.3652<br>.3617<br>.3583<br>.3548 | .9205<br>.9194<br>.9182<br>.9171<br>.9159          | •                                                  |                                        | 1.1694<br>1.1665<br>1.1636<br>1.1606<br>1.1577<br>1.1548 |
| .4189<br>.4218<br>.4247<br>.4276<br>.4305<br>.4334 | 24° 00′<br>10<br>20<br>30<br>40<br>50 | .4067 .6093<br>.4094 .6121<br>.4120 .6149<br>.4147 .6177<br>.4173 .6203<br>.4200 .6232                                                                                                                                                                   | .4452<br>.4487<br>.4522<br>.4557<br>.4592<br>.4628   | .6486<br>.6520<br>.6553<br>.6587<br>.6620<br>.6654 | 2.2460<br>2.2286<br>2.2113<br>2.1943<br>2.1775<br>2.1609 | .3514<br>.3480<br>.3447<br>.3413                   | .9135<br>.9124<br>.9112<br>.9100                   | .95<br>.959<br>.9584<br>.9579                      | 40<br>30<br>20<br>10                   | 1.1519<br>1.1490<br>1.1461<br>1.1432<br>1.1403<br>1.1374 |
| .4363<br>.4392<br>.4422<br>.4451<br>.4480<br>.4509 | 25° 00′<br>10<br>20<br>30<br>40<br>50 | .4226                                                                                                                                                                                                                                                    | .4663<br>.4699<br>.4734<br>.4770<br>.4806            | .6687<br>.6720<br>.6752<br>.6785<br>.6817          | 2.1445<br>2.1283<br>2.1123<br>2.0965<br>2.0809<br>2.0655 |                                                    | •                                                  | .9573<br>.9567<br>.9561<br>.955<br>.9549           | 65° 00′<br>50                          | 1.1345<br>1.1316<br>1.1286<br>1.1257<br>1.1228<br>1.1199 |
| .4567<br>.4596<br>.4625<br>.4654<br>.4683          | 26° 00′<br>10<br>20<br>30<br>40<br>50 | .4410 .6444<br>.4436 .6470<br>.4462 .6490<br>.4488 .652<br>.4514 .6540                                                                                                                                                                                   | .4877<br>.4913<br>).4950<br>.4986<br>.5022<br>5.5059 | .6882<br>.6914<br>.6946<br>.6977<br>.7009<br>.7040 | 2.0503<br>2.0353<br>2.0204<br>2.0057<br>1.9912<br>1.9768 | .3118<br>.3086<br>.3054<br>.3023<br>.2991<br>.2960 | .8988<br>.8975<br>.8962<br>.8949<br>.8936<br>.8923 | .9537<br>.9530<br>.9524<br>.951<br>.9512<br>.9505  | <b>64° 00′</b><br>50<br>40             | 1.1170<br>1.1141<br>1.1112<br>1.1083<br>1.1054<br>1.1025 |
| .4712                                              | 27° 00′                               | Value Loga<br>Cosine                                                                                                                                                                                                                                     | Value                                                | .7072                                              | 1.9626                                                   | .2928                                              | .8910                                              | .9499                                              | 63° 00′<br>Degrees                     |                                                          |

[Characteristics of Logarithms omitted-determine by the usual rule from the value]

| RADIANS DEGREES                                                                  | Sinz<br>Value Loga                                                      | TANGENT<br>Value Logis                                                  | COTANGENT<br>Value Loga                                                      | Cosing<br>Value Loga                                                                        |                              |                                                          |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|
| .4712 <b>27° 00′</b><br>.4741 10<br>.4771 20<br>.4800 30<br>.4829 40<br>.4858 50 | .4566 .6595<br>.4592 .6620<br>.4617 .6644<br>.4643 .6668                | .5132 .7103<br>.5169 .7134<br>.5206 165<br>.5243 .7196                  | 1.9486 .289<br>1.9347 .286<br>1.9210 .283<br>1.9074 .280                     | 6 .8884 .94%<br>5 .8870 .9479                                                               | 31.1<br>41.1<br>30.1<br>21.1 | 1.05<br>1.05<br>1.15<br>1.15<br>1.05<br>1.05<br>1.05     |
| .4887 <b>28° 00′</b><br>.4916 10<br>.4945 20<br>.4974 30<br>.5003 40<br>.5032 50 |                                                                         | .5354 .7257<br>.5392 .731<br>.5430 .348<br>.5467 .378<br>.5505 .740s    | 1.8676 .2713<br>1.8546 .2683<br>1.8418 .2652<br>1.8291 .2622<br>1.8165 .2592 | .8774 .9432<br>.8760 .9425                                                                  | 30<br>40<br>30<br>10         | 1.0521<br>1.0753<br>1.0753<br>1.0765<br>1.0076           |
| .5061 <b>29°00'</b><br>.5091 10<br>.5120 20<br>.5149 30<br>.5178 40<br>.5207 50  | .4874 .6878<br>.4899 .6901<br>.4924 .6923<br>.4950 .6946<br>.4975 .6968 | .5581 .7407<br>.5619 .7497<br>.5658 .7526<br>.5696 .7556<br>.5735 '585  | 1.7917 .2533<br>1.7796 .2503<br>1.7675 .2474<br>1.7556 .2444<br>1.7437 .2415 | \$689 .9390<br>\$675 .9383                                                                  | 30<br>40<br>30<br>10         | 1.6547<br>1.6575<br>1.0559<br>1.0530<br>1.0501           |
| .5236 <b>30° 00'</b><br>.5265 10<br>.5294 20<br>.5323 30<br>.5352 40<br>.5381 50 | .5100 .7076<br>5125 .7097                                               | .5812 .7644<br>.5851 .7673<br>.5890 .7701<br>.5930 .7730<br>.5969 .7759 | 1.7205 .2356<br>1.7090 .2327<br>1.6977 .2299<br>1.6864 .2270<br>1.6753 .2241 | \$601 .9346<br>\$587 .9338                                                                  | 50<br>40<br>30<br>20<br>18   | 1.0472<br>1.0443<br>1.0414<br>1.0355<br>1.0356<br>1.0327 |
| .5411 31°00′<br>.5440 10<br>.5469 20<br>.5498 30<br>.5527 40<br>.5556 50         | .5275 .7222                                                             | .6048 816<br>.6088 845<br>.6128 .7873<br>.6168 .7902<br>.6208 .7930     | 1.6534 .2184<br>1.6426 .215<br>1.6319 .212;<br>1.6212 .2098<br>1.6107 .2070  | 1                                                                                           | 50<br>40<br>30<br>20<br>10   | 1.0297<br>1.0268<br>14:239<br>1.0210<br>1.0181<br>1.0152 |
| .5585 <b>32°00'</b><br>.5614 10<br>.5643 20<br>.5672 30<br>.5701 40<br>.5730 50  | 5373 .7302<br>5398 .7322<br>5422 .7342                                  | .6289 .7986<br>6330 .8014<br>.6371 .8042<br>.6412 .8070<br>.6453 .8097  | 1.5900 .2014<br>1.5798 .1986<br>1.5697 .1958<br>1.559' .1930<br>1.5497 .1903 | 8434 .9260<br>8418 .9252<br>8403 .9244                                                      | 30<br>40<br>30<br>20<br>10   | 1.0123<br>1.0094<br>1.0055<br>1.0036<br>1.0007<br>.9977  |
| .5760 <b>33° 00'</b><br>.5789 10<br>.5818 20<br>.5847 30<br>.5876 40<br>.5905 50 | .5471 .7380<br>.5495 .7400<br>.5519 .7419<br>.5544 .7438<br>.5568 .745; | .6536 .8153<br>.6577 .8180<br>.6619 .8208<br>.6661 .8235<br>.6703 .8263 | 1.5301 ,1847<br>1.5204 ,1820<br>1.5108 ,1792<br>1.5013 ,1765<br>1.4919 ,1737 | \$355 .9219<br>\$339 .9211<br>\$323 .9203<br>\$307 .9194                                    | 30<br>30<br>20<br>10         | .9948<br>.9919<br>.9890<br>.9861<br>.9832<br>.9803       |
| .5934 <b>34° 00′</b><br>.5963 10<br>.5992 20<br>.6021 30<br>.6050 40<br>.6080 50 | .5688 .7550<br>.5712 .7568                                              | 6787 .8317<br>6830 .8344<br>.6873 .8371<br>.6916 .8398<br>.6959 .8425   | 1.4733 .1683<br>1.4641 .1656<br>1.4550 .1629<br>1.4460 .1602<br>1.4370 .1575 | 8258 .9169<br>8241 .9160<br>.225 .9151<br>8208 .9142                                        | 40<br>30<br>20<br>10         | .9774<br>.9745<br>.9716<br>.9657<br>.9657                |
| .6109 <b>35° 00′</b><br>.6138 10<br>.6167 20<br>.6196 30<br>.6225 40<br>.6254 50 | .5760 .7604<br>.5783 .7622<br>.5807 .7640<br>.5831 .765'<br>.5854 .7675 | .7046 .8479<br>.7089 .8506<br>.7133 .8533<br>.7177 .8559<br>.7221 .8586 | 1.4193 .1521<br>1.4106 .1494<br>1.4019 .1467<br>1.3934 .1441<br>1.3848 .1414 | S192 .9134<br>  S175 .9125<br>  S158 .9116<br>  .141 .9107<br>  .5124 .9098<br>  S107 .9089 | 40<br>30<br>20<br>10         | .9599<br>.9570<br>.9541<br>.9512<br>.9483<br>.9454       |
| .6283 <b>36° 00</b> ′                                                            | .5878 .7692                                                             | .7265 .8613                                                             | 1.3764 .1387                                                                 | .5090 .9050                                                                                 | 04"00"                       | .9425                                                    |

Value Logio Value Logio Value Logio Value Logio Value Logio Degrees Radians Coenne Cotanogent Tangent Sine

[Characteristics of Logarithms omitted-determine by the usual rule from the value]

|                                                    | Degrees              | Su:<br>Value                                      | Logue                                              | Tang<br>Value                                      | ENT<br>Loga                               | COTAN<br>Value                                           | GENT<br>Logn                                       |                                                    | INE<br>Logic                                      |                                       |                                                    |
|----------------------------------------------------|----------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------|----------------------------------------------------|
| .6283<br>.6312<br>.6341<br>.6370<br>.6400<br>.6429 | 20<br>30             | .5901<br>.5925<br>.5948                           | .7710<br>.772<br>.7744                             | .7355<br>.7400                                     | .8666<br>.8692                            | 1.3764<br>1.3680<br>1.3597<br>1.3514<br>1.3432<br>1.3351 | .1334                                              | .8036<br>.8039                                     | .9061                                             | 54° 00¢<br>50<br>40<br>30<br>20<br>10 | .9425<br>.9396<br>.9367<br>.9338<br>.9308<br>.9279 |
| 6487<br>6516<br>.6545<br>.6574<br>.6603            |                      | 6041<br>6065<br>6088<br>6111<br>6134              | .7811<br>.7828<br>.7844<br>.7861<br>.7877          | .7581<br>.7627<br>.7673<br>.7720<br>.7766          | .8797<br>.8824<br>.8850<br>.8876<br>.8902 | 1.3190<br>1.3111<br>1.3032<br>1.2954<br>1.2876           | .1203<br>.1176<br>.1150<br>.1124<br>.1098          | .7969<br>.7951<br>.7934<br>.7916<br>.7898          | .9014<br>.9004<br>.8995<br>.8985<br>.8975         | 50<br>40<br>30<br>20<br>10            | .9250<br>.9221<br>.9192<br>.9163<br>.9134<br>.9105 |
| .6632<br>.6661<br>.6690<br>.6720<br>.6749<br>.6778 | 20<br>30<br>40       | .6157<br>6180<br>.6202<br>.6225<br>.6248<br>.6271 | .7893<br>.7910<br>926<br>941<br>95<br>7973         | .7860<br>.7907<br>.7954<br>.8002<br>.8050          | .8954<br>.8980<br>.9006<br>.9032<br>.9058 | 1.2723<br>1.2647<br>1.2572<br>1.2497<br>1.2423           | .1046<br>.1020<br>.0994<br>.0968<br>.0942          | .7862<br>.7844<br>.7826<br>.7808<br>.7790          | .8955<br>.8945<br>.8935<br>.8925<br>.8915         | 50° 00°  <br>50° 40° 30° 20° 10°      | .9076<br>.9047<br>.9018<br>.8988<br>.8959<br>.8930 |
| .6807<br>.6836<br>.6865<br>.6894<br>.6923<br>.6952 | 20<br>30<br>40       | .6316<br>.6338<br>.6361<br>.6383                  | .7989<br>.8004<br>.8020<br>.8035<br>.8050<br>.8066 | .8195<br>.8243                                     | .9135                                     | 1.2349<br>1.2276<br>1.2203<br>1.2131<br>1.2059<br>1.1988 | .0865                                              | .7735<br>.7716                                     | .8884<br>.8874                                    | 50<br>40<br>30<br>20<br>10            | .8901<br>.8872<br>.8843<br>.8814<br>.8785          |
| .6981<br>.7010<br>.7039<br>.7069<br>.7098<br>.7127 | 20<br>30             | 6450<br>6472<br>6494<br>6517                      | .8081<br>.8096<br>.8111<br>.8125<br>.8140<br>.8155 | .8441<br>.8491<br>.8541<br>.8591                   | .9264<br>.9289<br>.9315<br>.9341          | 1.1918<br>1.1847<br>1.1778<br>1.1708<br>1.1640<br>1.1571 | .0736<br>.0711<br>.0685<br>.0659                   | .7642<br>.7623<br>.7604<br>.7585                   | .8832<br>.8821<br>.8810<br>.8800                  | 50° 00°<br>50<br>40<br>30<br>20<br>10 | .8727<br>.8698<br>.8668<br>.8639<br>.8610<br>.8581 |
| .7156<br>.7185<br>.7214<br>.7243<br>.7272<br>.7301 | 20<br>30<br>40       | .6583<br>6604<br>.6626<br>.6648                   | .8184<br>.8198<br>.S213                            | .8744<br>.8796<br>.8847<br>.8899                   | .941<br>.9443<br>.9468<br>.9494           | 1.1504<br>1.1436<br>1.1369<br>1.1303<br>1.1237<br>1.1171 | .0583<br>.055<br>.0532<br>.0506                    | .7528<br>.7509<br>.7490<br>.7470                   | .8767<br>.8756<br>.8745<br>.8733                  | 49° 00′<br>50<br>40<br>30<br>20<br>10 | .8552<br>.8523<br>.8494<br>.8465<br>.8436<br>.8407 |
| .7330<br>.7359<br>.7389<br>.7418<br>.7447<br>.7476 | 20<br>30<br>40       | 6713<br>6734<br>6756<br>.6777                     | .8269<br>.8283<br>.8297                            | .9057,<br>.9110<br>.9163                           | .9570<br>.9595<br>.9621                   | 1.1106<br>1.1041<br>1.0977<br>1.0913<br>1.0850<br>1.0786 | .0430<br>.0405<br>.0379                            | .7412<br>.7392<br>.7373                            | .8699<br>.8688<br>.8676                           | 48° 00′<br>50<br>40<br>30<br>20<br>10 | .8378<br>.8348<br>.8319<br>.8290<br>.8261<br>.8232 |
| .7505<br>.7534<br>.7563<br>.7592<br>.7621<br>.7650 | 20<br>30<br>40       | .6841<br>6862<br>6884<br>6905                     | .8338<br>.8351<br>.8365<br>.8378<br>.8391<br>.8405 | .9380                                              | 9722                                      | 1.0724<br>1.0661<br>1.0599<br>1.0538<br>1.0477<br>1.0416 | .0278 $.0253$                                      | .7294 $.7274$                                      | .8629<br>.8618                                    | 47° 00′<br>50<br>40<br>30<br>20<br>10 | .8203<br>.8174<br>.8145<br>.8116<br>.8087<br>.8058 |
| .7709<br>.7738<br>.7767<br>.7796<br>.7825          | 20<br>30<br>40<br>50 | .6967<br>.6988<br>.7009<br>.7030<br>.7050         | .8431<br>.8444<br>.8457<br>.8469<br>.8482          | .9657<br>.9713<br>.9770<br>.9827<br>.9884<br>.9942 | .9848<br>.9874<br>.9899<br>.9924<br>.9949 | 1.0355<br>1.0295<br>1.0235<br>1.0176<br>1.0117<br>1.0058 | .0152<br>.0126<br>.0101<br>.0076<br>.0051<br>.0025 | .7193<br>.7173<br>.7153<br>.7133<br>.7112<br>.7092 | .8569<br>.855<br>.8545<br>.8532<br>.8520<br>.8507 | 46° 00′<br>50<br>40<br>30<br>20<br>10 | .8029<br>.7999<br>.7970<br>.7941<br>.7912<br>.7883 |
| .7854                                              | 45° 00′              | Value                                             |                                                    | Value<br>COTAN                                     | Logio                                     |                                                          | Loga                                               |                                                    | Logn                                              | 45° 00′<br>Decembs                    | .7854                                              |























