CHAPITRE OM6 Vecteurs: produit vectoriel, produit mixte

1 Produit vectoriel de deux vecteurs

1.1 Définition

- **Définition**: Le **produit vectoriel** de deux vecteurs \vec{a} et \vec{b} , noté $\vec{a} \wedge \vec{b}$, est un **vecteur** défini par :
 - ullet <u>Direction</u>: orthogonale au plan défini par \overline{a} et \overline{b}
- Sens : donné par la règle du tire-bouchon ou de la main droite : le trièdre $(\vec{a},\vec{b},\vec{a}\wedge\vec{b})$ est direct
 - Norme: $\|\vec{a} \wedge \vec{b}\| = \|\vec{a}\| \cdot \|\vec{b}\| \cdot \sin(\widehat{\vec{a},\vec{b}})$

1.2 Propriétés

- Anti commutativité $\vec{a} \wedge \vec{b} = -\vec{b} \wedge \vec{a}$
- Non associativité $(\vec{a} \wedge \vec{b}) \wedge \vec{c} \neq \vec{a} \wedge (\vec{b} \wedge \vec{c})$
- > <u>Distributivité</u> $(\vec{a} + \vec{b}) \wedge \vec{c} = \vec{a} \wedge \vec{c} + \vec{b} \wedge \vec{c}$
- > Associativité avec le produit simple $k(\vec{a} \wedge \vec{b}) = (k\vec{a}) \wedge \vec{b} = \vec{a} \wedge (k\vec{b})$

1.3 Cas particuliers

- ightharpoonup Vecteur nul: $|\vec{a} \wedge \vec{0} = \vec{0}|$
- > Vecteurs colinéaires

<u>Propriété</u>: Si les vecteurs \vec{a} et \vec{b} sont colinéaires, alors le produit vectoriel $\vec{a} \wedge \vec{b}$ est nul.

Expression en coordonnées cartésiennes

Expression de $\vec{a} \wedge \vec{b}$:

On utilise la notation colonne:

$$\vec{a} = \begin{vmatrix} a_x & b_z \\ a_y & \text{et } \vec{b} = \begin{vmatrix} b_y \\ b_z \end{vmatrix}$$

$$\begin{vmatrix} \vec{a} \wedge \vec{b} = \begin{vmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{vmatrix}$$

$$\vec{a} \wedge \vec{b} = \begin{vmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{vmatrix}$$

- Calcul pratique des composantes
 - Composante selon u_x : On raye la ligne a_x , b_x et on calcule le déterminant :

$$\begin{vmatrix} a_y & b_y \\ a_z & b_z \end{vmatrix} = a_y b_z - a_z b_y$$

1.4 Expression en coordonnées cartésiennes

Expression de $\vec{a} \wedge \vec{b}$: On utilise la notation colonne:

$$\vec{a} = \begin{vmatrix} a_x & b_x \\ a_y & \text{et } \vec{b} = b_y \\ a_z & b_z \end{vmatrix}$$

$$\begin{vmatrix} a_x & b_z \\ a_z & b_z \end{vmatrix}$$

$$\begin{vmatrix} a_x & b_z \\ a_x & b_z \end{vmatrix}$$

$$\vec{a} \wedge \vec{b} = \begin{vmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{vmatrix}$$

- Calcul pratique des composantes
 - Composante selon $\overline{u_y}$: On raye la ligne a_y , b_y , on rajoute la ligne a_x , b_x **sous la ligne** a_z , b_z et on calcule le déterminant :

$$\begin{vmatrix} a_z & b_z \\ a_x & b_x \end{vmatrix} = a_z b_x - a_x b_z$$

1.4 Expression en coordonnées cartésiennes

Expression de $\vec{a} \wedge \vec{b}$:

On utilise la notation colonne:

$$\vec{a} = \begin{vmatrix} a_x \\ a_y \\ a_z \end{vmatrix}$$
 et $\vec{b} = \begin{vmatrix} b_x \\ b_y \\ b_z \end{vmatrix}$
$$\vec{a} \wedge \vec{b} = \begin{vmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{vmatrix}$$

$$\vec{a} \wedge \vec{b} = \begin{vmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{vmatrix}$$

- Calcul pratique des composantes
- Composante selon $\overline{u_z}$: On raye la ligne a_z , b_z et on calcule le déterminant :

$$\begin{vmatrix} a_x & b_x \\ a_y & b_y \end{vmatrix} = a_x b_y - a_y b_x$$

1.5 Dérivation

Comme pour tout produit (scalaire, simple), la dérivée d'un produit vectoriel est obtenue en dérivant successivement les deux éléments du produit :

$$\boxed{\frac{d}{dt}(\vec{a} \wedge \vec{b}) = \frac{d\vec{a}}{dt} \wedge \vec{b} + \vec{a} \wedge \frac{d\vec{b}}{dt}}$$

1.6 Base orthonormée

> Base cartésienne

$$\overrightarrow{u_x} \wedge \overrightarrow{u_y} = \overrightarrow{u_z} \qquad \overrightarrow{u_y} \wedge \overrightarrow{u_z} = \overrightarrow{u_x} \qquad \overrightarrow{u_z} \wedge \overrightarrow{u_x} = \overrightarrow{u_y}$$

$$\overrightarrow{u_x} \wedge \overrightarrow{u_z} = -\overrightarrow{u_y} \qquad \overrightarrow{u_y} \wedge \overrightarrow{u_x} = -\overrightarrow{u_z} \qquad \overrightarrow{u_z} \wedge \overrightarrow{u_y} = -\overrightarrow{u_x}$$

Base cylindrique

2 Produit mixte entre trois vecteurs

▶ <u>Définition</u>: Le produit mixte est une opération entre les trois vecteurs \vec{a} , \vec{b} et \vec{c} combinant produit vectoriel et produit scalaire : $(\vec{a} \land \vec{b}) \cdot \vec{c}$ Le résultat obtenu est un **scalaire**.

> Permutation circulaire des vecteurs