Lesson 11: Inference for One Mean; Sigma unknown (Hypothesis Test)

Preparation

Solutions

D., . l. l	D4	C-1-4:
Problem	Part	Solution
1	-	- Symmetrical
		- Mean of 0
		- Exact shape depends on the degrees of freedom
		- Bell Shaped
		- More area in the tails than the standard normal distribution
2	-	df = n - 1(that is sample size -1)
3	-	$\bar{x} - t^* \times \frac{s}{\sqrt{n}}, \bar{x} + t^* \times \frac{s}{\sqrt{n}}$
4	-	- Sigma is not known
		- We compute a t-score from the Student t-distribution rather than a z-score from the normal distrib
		- We must now consider degrees of freedom for the t-distribution where the normal distribution did r
5	-	$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$
6	-	- A simple random sample was drawn from a population.
		- \bar{x} is normally distributed.
7	-	The mean is 46.733. The standard devation is 8.827
8	-	It is a random sample from a population. The \bar{x} 's are normally distributed
9	-	(41.845, 51.622)
10	-	(39.948, 53.518)
11	A	(41.845, 51.622)
11	В	$(39.948 \; , 53.518)$
12	-	The margin of error for the confidence interval is smaller for a 95% confidence level
		than a 99% confidence level.
13	A	$H_o: \mu = 47$
		$H_a: \mu \neq 47$
13	В	t = -0.117
13	$^{\mathrm{C}}$	df = 14

