Quantum numbers can be used to describe the location of any one electron within an atom.

#### Four components:

- 1.Principal quantum number (n)
- 2.Azimuthal quantum number (I)
- 3. Magnetic quantum number (m<sub>I</sub>)
- 4. Spin quantum number (m<sub>s</sub> or s)

#### 1. Principal Quantum Number

Represented as "n".

n indicates the energy level.

n has a whole number value  $\geq 1$ .

2. Azimuthal Quantum Number

Represented as "I".

I indicates the orbital type.

I has a whole number value  $\geq 0$ .

I = 0 represents the s-orbital

l = 1 represents the p-orbitals
etc.

#### 3. Magnetic Quantum Number

Represented as "m<sub>I</sub>".

m<sub>I</sub> is determined by the I value:

 $-1 \le m_1 \le +1$ , where  $m_1$  are integers

Each m<sub>1</sub> value represents a specific orbital.

#### Example #3

List all quantum numbers for all orbitals containing electrons for the first four energy levels.

| Principal Quantum Number  Symbol = n Values = 1, 2, 3, n = number of subshells | l | Angular Momentum<br>Quantum Number | Magnetic Quantum Number                                    |
|--------------------------------------------------------------------------------|---|------------------------------------|------------------------------------------------------------|
|                                                                                |   | Symbol = ℓ<br>Values = 0 n − 1     | Symbol = $m_\ell$<br>Values = $-\ell \dots 0 \dots + \ell$ |
| 1                                                                              |   | 0 S                                | .0                                                         |
| 2                                                                              |   | 0 S<br>1 P                         | 0<br>+ 1, 0, -1                                            |
| 3                                                                              |   | o S<br>1 P<br>2 d                  | 0<br>+ 1, 0, -1<br>+ 2, +1, 0, -1, -2                      |
| 4                                                                              |   | 0 S<br>1 P<br>2 d<br>3 f           | 0<br>+1,0,-1<br>+2,+1,0,-1,-2<br>+3,+2,+1,0,-1,-2,-3       |

#### 4. Spin Quantum Number

Represented as "s" or "m<sub>s</sub>".

Electrons spin in one of two directions.

$$s = +\frac{1}{2}$$
 (up-spin) or  $s = -\frac{1}{2}$  (down-spin)

Convention suggest up-spin electrons are placed in orbitals first.

#### 4. Spin Quantum Number

Spin numbers and magnetism:



By spinning in one direction, the electron produces the magnetic field oriented to the north. Spinning in the other direction produces a magnetic field in the opposite direction.

#### Example #4

What is the set of quantum numbers that represents the final electrons added to the following atoms:

a)He 
$$n = 1; l = 0; m_l = 0; s = -1/2$$

b)O  $n = 2; l = 1; m_l = -1; s = -1/2$ 

c)Al  $n = 3; l = 1; m_l = -1; s = +1/2$ 

d)Fe  $n = 3; l = 2; m_l = -2; s = -1/2$ 

#### Example #5

Identify the atom represented by the following electron address. This would be the last electron added to the atom.

a)n = 1; 
$$I = 0$$
;  $m_I = 0$ ;  $s = +1/2$ 

b)n = 3; 
$$I = 2$$
;  $m_I = +1$ ;  $s = -1/2$  Cu

#### Example #5





Homework: Page 159 # 1 - 3, 5 - 12