

Datenbankmanagement

Theorie

Prof. Dr. Gregor Hülsken

Copyright

© FOM Hochschule für Oekonomie und Management gemeinnützige Gesellschaft mbH (FOM), Leimkugelstraße 6, 45141 Essen

Dieses Werk ist urheberrechtlich geschützt und nur für den persönlichen Gebrauch im Rahmen der Veranstaltungen der FOM bestimmt.

Die durch die Urheberschaft begründeten Rechte (u.a. Vervielfältigung, Verbreitung, Übersetzung, Nachdruck) bleiben dem Urheber vorbehalten.

Das Werk oder Teile daraus dürfen nicht ohne schriftliche Genehmigung der FOM reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Kurzvorstellung

Prof. Dr. med. Gregor Hülsken Kurzvita

Berufsausbildung (1991-1998):

Staatsexamen Humanmedizin 1998 Zertifizierung Medizinische Informatik 2002 Promotion 2002

1999-2010:

Oberarzt am UKM, Herzchirurgie Medizinische Informatik Bereichsleitung Qualitätssicherung & Datenverarbeitung

2011-2017: Abteilungsleiter IT Klinische Systeme, UKM

Seit 2018 hauptamtlicher Dozent (Prof.) an der FOM mit Schwerpunkt Wirtschafts- und Medizininformatik

Auszeichnungen:

2013,2018,2015,2016 IUIG Business Alignement 2013 Deutsche Ges. f. Informatik (Zertifikat MI)

An der FOM seit 2018 (Studienzentrun Münster)

Rechtliche Hinweise

Veranstaltungsetikette

IT-Basics - Einführung in die Wirtschaftsinformatik

Online Campus

Modulorganisation erfolgt per Online Campus

- <u>https://campus.bildungscentrum.de</u> oder onca.mobi
- Im Online Campus der FOM Hochschule können die Studierenden Dinge erledigen, die an anderen Hochschulen oft zeitraubend und aufwendig sind. Dort finden sie beispielsweise ihre Prüfungsergebnisse und erhalten einen Überblick über ihr persönliches Arbeitspensum. Zudem können sie sich zu Prüfungen an- und abmelden und erhalten Informationen rund um ihr Studium von Vorlesungsskripten über Raumhinweise bis zu Literaturempfehlungen.

Organisatorisches

Allgemeines

- Anwesenheit
- Kursinhalt
 - Das Skript gibt nicht den vollständigen Kursinhalt wieder.
 Es dient lediglich als Roter Faden!
 - Machen Sie sich Notizen!
 - Nutzen Sie die Übungen zum Mitmachen und Mitdenken!
- Gute Klausurvorbereitung
- Machen Sie mit, Stellen Sie Fragen!
- Hands On !

Organisatorisches

Handbuch

- Das offizielle MySQL Handbuch in Deutsch finden Sie unter: http://dev.mysql.com/doc/refman/5.1/de/index.html
- Englisch: http://dev.mysql.com/doc/refman/5.6/en/create-procedure.html
- Empfohlene weiterführende Literatur:
 - Das offizielle MYSQL Handbuch (MYSQL PRESS)
 - MySQI 5 Einsteigerseminar (Däßler,Rolf)
 - MySQL kurz & gut (Reese, Georg u. Schulten, Lars)

Datenbankmanagement

Modulgliederung

1	Einführung und Überblick			
1.1	Grundbegriffe Datenbanken			
1.2	Datenbankmodelle			
1.3	Weitere Grundbegriffe			
2	Modellierung			
3	Normalisierung			
4	Relationale Algebra			
5	Lookup etc. in der Praxis			
6	SQL – Data Definition Language			
7	SQL – Data Manipulation Language			
8	SQL - Trigger			
9	SQL – Funktionen / Prozeduren			
10	SQL – Datenschutz			
11	Transaktionen			

Lernziele

Im Anschluss an diesen Themenblock sollten Sie wissen:

- Welche Gründe es für Datenbanksysteme gibt
- Welche Anforderungen an Datenbanksysteme gestellt werden
- Wie der Aufbau von Datenbanksystemen ist
- Wie Datenbanksysteme klassifiziert werden können
- Wie beim Entwurf von Datenbanksystemen vorgegangen wird
- Begriffsdefinitionen DB, DBS, DBMS

Datenbankmanagement

Bücher

Andreas Gadatsch,
Datenmodellierung Einführung in die Entity-Relationship - Modellierung
und das Relationenmodell
2., aktualisierte Auflage
Springer Vieweg

René Steiner, Grundkurs Relationale Datenbanken Einführung in die Praxis der Datenbankentwicklung für Ausbildung, Studium und IT-Beruf 9. Auflage Springer Vieweg

Software

1.1 Grundbegriffe Datenbanken

Aufgabe

Ein kleine Übung vorab:

Sie haben ein Schraubengeschäft und möchten alle wichtigen Daten in einem System erfassen. Auf diese Daten sollen verschiedene Benutzer gleichzeitig mit unterschiedlichen Rechten zugreifen können.

Keine Daten sollen doppelt erfasst werden!

Nehmen Sie Papier und Bleistift und zeichnen Sie sich ein Konzept bestehend aus Rechnern, Strukturen und Software auf....

Kunden Lieferanten Mitarbeiter Fillialen

Bestellungen Rechnungen Regale & Fächer

Material Gewindetypen

Datei – Anwendungssystem

Nachteile

- Redundante Datenspeicherung
- Schnittstellen für Zugriff auf Daten anderer Anwendungen
- Änderung in Datenstruktur erfordert Umprogrammierung vom Anwender / Konverter
- Exklusive Nutzung der Daten erschwert Zugriff anderer Anwendungen
- Anwendung ist Verantwortlich für
 - Zugriffsschutz
 - Datensicherheit

Vorteil

effizient / performant

Datenbanksystem

Vorteile

- Redundanzfreiheit
- Flexibilität
- Physische Datenunabhängigkeit
- Mehrbenutzerbetrieb
- Datenintegrität
- Zugriffsschutz
- Recovery

Nachteil

"Ressourcenzehrend"

Anforderungen an ein DBS Redundanz-8. abbau Daten-Datenintegrität unabhängigkeit **DBMS** Effizienz / Datensicherheit Performanz Benutzer-5. 6. Synchronisation/ freundlichkeit Datenschutz Mehrfachzugriff

Aufbau DBMS

1.2 Datenbankmodelle

Weitere Typen

Volltextdatenbanken

In Volltextdatenbanken sind – im Gegensatz zu Referenz- und Faktendatenbanken – Dokumente mit ihrem vollen Text gespeichert.

Bild- und Multimediadatenbanken (MAM)

Digital-Asset-Management (DAM) ist die Speicherung und Verwaltung von beliebigen digitalen Inhalten, insbesondere von Mediendateien wie Grafiken, Videos, Musikdateien und Textbausteinen. Im medialen Bereich wird es teilweise auch als Media-Asset-Management (MAM) bzw. im spezielleren als Video-Asset-Management (VAM) bezeichnet

XML-Datenbanken

XML ist eine Auszeichnungssprache zur Strukturierung textorientierter Informationen. XML Datenbanken gehören deshalb zu den dokumentenorientierten Datenbanken.

Weitere Typen

NoSQL

NoSQL (englisch für *Not only <u>SQL</u>* deutsch: "Nicht nur SQL")-Datenbanken verfolgen einen **nicht-relationalen** Ansatz und benötigen daher keine festgelegten Tabellenschemata. Joins werden vermieden.

Saklierung in die Breite (horizontal)

Bekannte Implementierungen sind Riak, Apache Cassandra, CouchDB, MongoDB und Redis.

1. Hierarchisches Datenbankmodell

- Baumartige Verknüpfung verschiedener Datensätze
- Jeder Entitytyp hat nur einen Vorgänger (Ausnahme erste Ebene)
- Jeder Entitytyp kann mehrere Nachfolger haben
- Vorteile
 - Effiziente computergerechte Datenorganisation
 - Sehr schnell
- Nachteile
 - Benutzer muss die Datenstruktur sehr gut kennen
 - Redundanzen sind möglich

2. Netzwerk Datenbankmodell

- Entitytypen können mehrere Vorgänger und Nachfolger haben
- Es kann mehrere Wege zu einer Information geben
- Vorteile
 - Einfache Modellierung, da n:m abgebildet werden kann
 - Komplexe Strukturen können abgebildet werden

Benutzer muss die Datenstruktur sehr genau kennen

unübersichtlich

3. Relationales Datenbankmodell

Eine relationale Datenbank kann man sich als eine Sammlung von Tabellen (den Relationen) vorstellen, in welchen Datensätze abgespeichert sind. Jede Zeile (Tupel) in einer Tabelle ist ein Datensatz (record).

Jedes Tupel besteht aus einer Reihe von Attributwerten (Attribute = Eigenschaften), den Spalten der Tabelle. Das Relationenschema legt dabei die Anzahl und den Typ der Attribute für eine Relation fest.

- Vorteile
 - Große Verbreitung
 - Finfach und Flexibel
- Nachteile
 - Aufwendige Segmentierung
 - Künstliche Schlüsselattribute
 - Anspruchsvolle Komposition

Objektorientiertes Datenbankmodell

- Objekte" können ohne "Zerlegung" gespeichert werden
- Integration objektorientierter Eigenschaften in DBS (Kapselung, Vererbung, Polymorphysmus)
- Darstellung komplexer Strukturen
- Vorteile
 - "Object-relational impedance mismatch" Problem wird behoben
 - Komplexe Kompositionen (JOINS) entfallen
 - Schlüsselverwaltung systemintern
- Nachteile
 - Bis heute geringe Verbreitung (z.B. db4o)
 - Bei Mengenoperationen langsam
 - Aufwändige Bearbeitung vererbter Objekte, incl. Schreibsperren

1.3 Weitere Grundbegriffe

Definition Datenverteilung

Logisch zusammenhängende Datenbestände werden physisch verteilt (Verwaltung erfolgt übergeordnet durch das DB – System)

Datenbankentwurf 1

Datenbankentwurf 2

Datenbankmanagement

SQL – Geschichte

Etw	va 1974	SEQUEL als Abfragesprache des Systems R von IBM als nicht kommerzielles System erstmals erstellt			
	1976	System R – der erste Prototype einer relationalen Datenbank – entstand			
	1979	SEQUEL SQL wird als Sprache für DB2 von IBM erstmalig für kommerzielle Zwecke angeboten			
	1980	ORACLE, INFORMIX und andere Hersteller bieten erstmals relationale Datenbanken mit SQL an			
	1981	SQL/DS von IBM unter DOS/VSE			
	1982	ANSI gründet ein Komitee um SQL zu standardisieren			
	1983	SQL/DS wird von IBM mit DB2 unter MVS angeboten			
	1986	Der erste SQL-Standard wird von der ANSI verabschiedet			
A	Ab 1987	SQL entwickelt sich zum Industriestandard			
A	Ab 1987	Viele neue Datenbank Anbieter: INGRES, SYBASE, etc.			
	1989	Verabschiedung des SQL1-Standards von der ISO-Behörde			
	1992	SQL 2 Standard wird von der ISO-Behörde verabschiedet			
	1999	Verabschiedung von SQL 1999 als Vorläufer von SQL 2003			
	2003	SQL 2003 wurde verabschiedet			
	2006	ISO/IEC 9075-14:2006 legt fest, wie SQL in Zusammenhang mit XML verwendet werden kann.			
	2008	ISO/IEC 9075:2008 ist die aktuelle Revision des SQL-Standards.			

Datenbankmanagementsystem Hersteller

Produkt	Hersteller	Modell
Access	Microsoft	Relational
SQL Server	Microsoft	Relational
Oracle	Oracle	Relational
DB2	IBM	Relational
IMS	IBM	Hierarchisch
Informix	Informix → IBM	Netzwerk
MYSQL	MySQL AB → SUN → Oracle	Relational
db4objects	Versant	Objektorientiert
PostgreSQL	PostgreSQL Global Development Group	Objektrelational

Data Warehouse

Data Warehousing beschreibt ein Konzept zur Informations-analyse, -selektion und -aufbereitung, bei dem Anwender entscheidungsrelevante Daten aus unterschiedlichen Quellen in einer einheitlichen zentralen Systemumgebung zur Auswertung zur Verfügung gestellt werden.

- Ein Data Warehouse ist eine extrem große Datenbank, die unabhängig von den operativen Systemen installiert ist und einen vordefinierten Set von meist verdichteten Daten enthält.
- Die Benutzer k\u00f6nnen auf die Datenbank beliebig zugreifen und alle gew\u00fcnschten Daten herausziehen, sofern die Informationen enthalten sind und eine Zugriffsberechtigung vorliegt.
- Der Grad der Informationstiefe und die jeweilige Sichtweise kann dabei individuell festgelegt werden.
- Betrachtungsebenen sind beispielsweise Konten, Kostenstellen, Kostenträger, Artikel, Kunden, Märkte oder Vertreter. Es gibt keine festen Vorgaben für die Art der Reihenfolge und der Verdichtung.

Komponenten eines integrierten Managementunterstützungssystems

Data Mart

Data Marts sind abteilungs- oder funktionsbezogene Datenbanken mit einer speziellen Aufgabenstellung, die eine Untermenge der im zentralen Data Warehouse gespeicherten operativen Daten enthalten.

- Data Marts enthalten lediglich Informationen, die in einem bestimmten Funktionsbereich, z.B. Marketing, des Unternehmens zur Anwendung kommen.
- Data Marts bilden daher eine Teilmenge der umfassenden Data Warehouse-Datenbank.
- Data Marts werden auch Datenwürfel, Power Cube oder Info Cube genannt.

OLAP (Online Analytical Processing)

Online Analytical Processing ist ein "top-down"-Ansatz, um sehr flexibel mehrdimensionale Datenanalysen durchzuführen und Hypothesen zu bilden.

Datenanalyse mit OLAP:

"Wer sind meine zehn umsatzstärksten Kunden, über alle Regionen über alle Produkte und Farben?"

Data Mining

Data Mining bezeichnet das automatische Entdecken von Modellen und Mustern in großen Datenbeständen durch Anwendung bestimmter Data Mining-Werkzeuge.

- Data Mining ist eine "intelligente" Anwendung auf Basis einer Data Warehouse-Architektur
- Beziehungen zwischen Daten werden hergestellt (Zeitreihenanalyse, Datenklassifikation, Prognosen)
- Data Mining versucht den Anwender auf bemerkenswerte
 Datenkonstellationen aufmerksam zu machen und zu signifikanten Aussagen hinzuführen
- Analyseziel: "Finde Gold in Deinen Daten!"

Architektur eines integrierten Managementunterstützungssystems

Zusammenfassung

- welche Anforderungen an ein DBMS gestellt werden
- welche Datenbankmodelle mit Ihren Vor- und Nachteilen es gibt
- wie ein DBS aufgebaut ist und können die einzelnen Begriffe erklären
- was der ANSI 3 Ebenen Modell ist und können es Beschreiben.
- was das Phasenmodell ist und k\u00f6nnen die einzelnen Phasen beschreiben

