(A short intro to) LLMs-based Recommender Systems

Marie Al-Ghossein

June 2, 2025

The emergence of Large Language Models (LLMs)

- LLMs emerging as a powerful tool for NLP
- Remarkable abilities in several areas, e.g.,
 - ► Text completion, summarization, Q&A, translation, among others
- Billions of parameters, trained on a chunk of the internet
- Pretrained models, supports fine-tuning and in-context learning

Generative Models for RecSys

BERT4Rec for sequential recommendation

NLP:

- Token sequence
- Inter-token correlations

RecSys:

- ▸ ID sequence
- Inter-item correlations

RecFormer - Text is all you need

In-Context Learning/LLMs for RecSys

Recommendation as language processing

Recommendation as language processing

LLMs as a reranker

Point-wise

You are a movie recommender system now.

{{Demonstration Examples}}

Input: Here is the watching history of a user: $\{\{User\ History\}\}$. Based on this history, please predict the user's rating for the following item: $\{\{Candidate\ item\}\}\$ (1 being lowest and 5 being highest)

Output: {{Answer}}

Pair-wise

You are a movie recommender system now.

{{Demonstration Examples}}

Input: Here is the watching history of a user: {{User History}}. Based on this history, would this user prefer {{Candidate Item 1}} and {{Candidate Item 2}}? Answer Choices: (A) {{Candidate Item 1}}(B) {{Candidate Item 2}} Output: {{Answer}}

List-wise

You are a movie recommender system now.

{{Demonstration Examples}}

Input: Here is the watching history of a user: {{User History}}. Based on this history, please rank the following candidate movies: (A) {{Candidate Item 1}} (B) {{Candidate Item 2}} (C) {{Candidate Item 3}} (D) {{Candidate Item 4}} (E) {{Candidate Item 5}}
Output: The answer index is {{Answer}}}

Addressing position bias

Addressing position bias

Triggering LLMs to perceive order

- Sequential prompting: Historical interactions in their natural order
- Recency-focused prompting: "Note that my most recently watched movie is [...]"
- In-context learning: "If I've watched the following movies in the past in order: [...] then you should recommend [...] to me and now that I've watched [...], then:"

Bootstrapping candidates

Randomly shuffle candidates, use each sample to query the LLM, combine outputs

Knowledge augmentation from LLMs

LLMs as zero-shot conversational RS

Tuning LLMs for recommendation

Transforms the recommendation data as instructions used to tune the LLM via an instruction tuning process, e.g.,

Instruction Input	
Task Instruction:	Given the user's historical interactions, please determine whether the user will enjoy the target new movie by answering "Yes" or "No".
Task Input:	User's liked items: GodFather. User's disliked items: Star Wars. Target new movie: Iron Man
	Instruction Output
Task Output:	No.

Multimodal RecSys

Multimodal foundation models for recommendation

Personalized multimodal generation with LLMs

(b) $w_p : w_t = 1 : 3$

(c) $w_p: w_t = 2:2$

(d) $w_p: w_t = 3:1$

(e) $w_p : w_t = 4 : 0$

Conclusion