### Modelo de von Neumann



- CPU processamento da informação através da execução do programa armazenado em memória
- Memory armazenamento de: programas, dados para processamento, resultados
- Input/Output comunicação com o exterior (periféricos)

**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 2

### Modelo de Harvard



### von Neumann versus Harvard - resumo

#### Modelo de von Neumann

- um único espaço de endereçamento para instruções e dados (i.e. uma única memória)
- acesso a instruções e dados é feito em ciclos de relógio distintos

#### Modelo de Harvard

- dois espaços de endereçamento separados: um para dados e outro para instruções (i.e. duas memórias independentes)
- possibilidade de acesso, no mesmo ciclo de relógio, a dados e instruções (i.e. CPU pode fazer o fetch da instrução e ler os dados que a instrução vai manipular no mesmo ciclo de relógio)
- memórias de dados e instruções podem ter comprimentos de palavra diferentes

**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 4

# Implementação de um Datapath - juntando tudo

 Relembremos o formato de codificação dos três tipos de instruções:



**DETI-UA** 

Arquitetura de Computadores I

### Implementação de um Datapath - juntando tudo

• 1º passo: combinação das instruções de acesso à memória com as instruções aritméticas e lógicas do tipo R e do tipo I:



**DETI-UA** 

Arquitetura de Computadores I

### Implementação de um Datapath - instruções tipo R

- Operações realizadas no decurso da execução de uma instrução tipo R:
  - Instruction Fetch (leitura da instrução, cálculo de PC+4)
  - Leitura dos registos operando (registos especificados nos campos "rs" e "rt" da instrução)
  - Realização da operação na ALU (especificada no campo "funct")
  - Escrita do resultado no registo destino (especificado no campo "rd")

Exemplo: add \$2, \$3, \$4



Código máquina: 0x00641020

**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 18

# Implementação de um Datapath - juntando tudo

 Fluxo da informação na execução de uma instrução do tipo R. Exemplo: add \$2,\$3,\$4



**DETI-UA** 

Arquitetura de Computadores I



- Operações realizadas na execução de uma instrução "sw":
  - Instruction Fetch (leitura da instrução, cálculo de PC+4)
  - Leitura dos registos que contêm o endereço-base e o valor a transferir (registos especificados nos campos "rs" e "rt"da instrução, respetivamente)
  - Cálculo, na ALU, do endereço de acesso (soma algébrica entre o conteúdo do registo "rs" e o offset especificado na instrução)

Escrita na memória

Exemplo: **sw \$2**, **0x24(\$4)** 

Endereço inicial da memória onde vai ser escrita a word de 32 bits armazenada no registo \$2

| opcode | rs  | rt  | offset   |
|--------|-----|-----|----------|
| (0x2B) | (4) | (2) | ( 0x24 ) |

**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 26

# Implementação de um *Datapath* – juntando tudo

Fluxo da informação na execução de uma instrução SW (store word). Exemplo: sw \$2,0x24(\$4)



**DETI-UA** 

Arquitetura de Computadores I

### Implementação de um *Datapath* (Instrução LW)

- Operações realizadas na execução de uma instrução "lw"
  - Instruction Fetch (leitura da instrução, cálculo de PC+4)
  - Leitura do registo que contém o endereço base (registo especificado no campo "rs" da instrução)
  - Cálculo, na ALU, do endereço de acesso (soma algébrica entre o conteúdo do registo "rs" e o offset especificado na instrução)
  - Leitura da memória
  - Escrita do valor lido da memória no registo destino (especificado no campo "rt" da instrução)



**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 27

# Implementação de um *Datapath* – juntando tudo





**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 44

# Implementação de um Datapath - juntando tudo



**DETI-UA** 

Arquitetura de Computadores I



# Implementação de um Datapath - juntando tudo

• 3º passo: adição das instruções de salto condicional (branches)



#### **DETI-UA**

Arquitetura de Computadores I

Aulas 14 a 16 - 46

# Implementação de um Datapath - juntando tudo

• Encaminhamento de PC+4 para a entrada do Program Counter



**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 47

### Implementação de um *Datapath* (Instruções de *branch*)

- Operações realizadas na execução de uma instrução de branch:
  - Instruction Fetch (leitura da instrução, cálculo de PC+4)
  - Leitura de dois registos, do banco de registos
  - Comparação dos conteúdos dos registos (realização de uma operação de subtração na ALU)
  - Cálculo do endereco-alvo da instrução de branch (Branch Target Address - BTA)

- Alteração do valor do registo PC:
  - se a condição testada pelo branch for verdadeira PC = BTA
  - se a condição testada pelo branch for falsa PC = PC + 4

Exemplo: **beq \$2, \$3, 0x20** 

| opcode | rs  | rt  | instruction_offset |
|--------|-----|-----|--------------------|
| (4)    | (2) | (3) | ( 0x20 )           |

**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 35

# Implementação de um Datapath - juntando tudo

• Fluxo da informação na execução de uma instrução de branch (beq) PC+4 PC+4



O valor a ser escrito no registo PC, no próximo flanco ativo do relógio, depende da saída "zero" da ALU: "PC+4" se zero=0; BTA se zero=1

**DETI-UA** 

Arquitetura de Computadores I

# Datapath com suporte para a instrução "j" ( jump )

- A instrução "j" é codificada com um caso particular de codificação, o formato J
- No formato J existem apenas dois campos:
  - o campo opcode (bits 31-26) e o
  - campo de endereço (bits 25-0)
- Na instrução "j", o endereço alvo (Jump Target Address -JTA) obtém-se pela concatenação:
  - dos bits 31-28 do PC+4 com
  - os bits do campo de endereço da instrução (26 bits) multiplicados por 4 (2 shifts à esquerda)
- No próximo flanco ativo do relógio, o valor do PC será incondicionalmente alterado com o valor do JTA

**DETI-UA** 

Arquitetura de Computadores I

Aulas 14 a 16 - 49

# Datapath com suporte para a instrução "jump" ( j )



**DETI-UA** 

Arquitetura de Computadores I

# Datapath single-cycle completo (com sinais de controlo)

