TOPICS IN ALGEBRAIC LOGIC AND DUALITY THEORY Lecture 4

Rodrigo N. Almeida, Simon Lemal June 12, 2025

Plan for the Day

 Maksimova's characterisation of superintuitionistic logics with the interpolation property

Maksimova's characterisation

A superintuitionistic logic has the interpolation property iff it is one of

```
CPC,  \begin{aligned} \mathsf{LC}_2 &= \mathsf{IPC} + \mathsf{bd}_2 + \mathsf{bw}_1 &= \mathsf{logic} \ \mathsf{of} \ \mathsf{the} \ \mathsf{2\text{-chain}}, \\ \mathsf{LC} &= \mathsf{IPC} + p \to q \lor q \to p = \mathsf{logic} \ \mathsf{of} \ \mathsf{chains}, \\ \mathsf{KC} &= \mathsf{IPC} + \neg p \lor \neg \neg p &= \mathsf{logic} \ \mathsf{of} \ \mathsf{directed} \ \mathsf{frames}, \\ \mathsf{BD}_2 &= \mathsf{IPC} + \mathsf{bd}_2 &= \mathsf{logic} \ \mathsf{of} \ \mathsf{frames} \ \mathsf{of} \ \mathsf{depth} \ \mathsf{at} \ \mathsf{most} \ \mathsf{2}, \\ \mathsf{BDW}_2 &= \mathsf{BD}_2 + \mathsf{bw}_2 &= \mathsf{logic} \ \mathsf{of} \ \mathsf{the} \ \mathsf{2\text{-fork}}, \\ \mathsf{IPC}. \end{aligned}
```

Understanding the statement

Logics of bounded depth

Definition

We define a sequence of formulas \mathbf{bd}_n inductively:

$$\begin{aligned} \mathsf{bd}_0 &= \bot, \\ \mathsf{bd}_{n+1} &= p_{n+1} \lor (p_{n+1} \to \mathsf{bd}_n), \end{aligned}$$

Logics of bounded depth

Definition

We define a sequence of formulas bd_n inductively:

$$\mathsf{bd}_0 = \bot,$$

 $\mathsf{bd}_{n+1} = p_{n+1} \lor (p_{n+1} \to \mathsf{bd}_n),$

Proposition

A frame validates bd_n iff it doesn't contain a chain of n+1 points, i.e. iff its depth is bounded by n.

Logics of bounded depth

Definition

We define a sequence of formulas bd_n inductively:

$$\mathsf{bd}_0 = \bot,$$
 $\mathsf{bd}_{n+1} = p_{n+1} \lor (p_{n+1} \to \mathsf{bd}_n),$

Proposition

A frame validates \mathbf{bd}_n iff it doesn't contain a chain of n+1 points, i.e. iff its depth is bounded by n.

Proof.

Exercise.

Logics of bounded width

Definition

We define formulas bw_n as follows:

$$\mathsf{bw}_n = \bigvee_{i=0}^n \left(p_i \to \bigvee_{j \neq i} p_j \right).$$

Logics of bounded width

Definition

We define formulas bw_n as follows:

$$\mathsf{bw}_n = \bigvee_{i=0}^n \left(p_i \to \bigvee_{j \neq i} p_j \right).$$

Proposition

A frame validates bw_n iff none of its rooted subframes contain an antichain of n+1 points, i.e. iff its width is bounded by n.

Logics of bounded width

Definition

We define formulas bw_n as follows:

$$\mathsf{bw}_n = \bigvee_{i=0}^n \left(p_i \to \bigvee_{j \neq i} p_j \right).$$

Proposition

A frame validates bw_n iff none of its rooted subframes contain an antichain of n+1 points, i.e. iff its width is bounded by n.

Proof.

Exercise.

Preliminary tools

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Corollary

Let F be a finite rooted frame and L be a logic. We have $\chi(F) \notin L$ iff $F \models L$.

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Corollary

Let F be a finite rooted frame and L be a logic. We have $\chi(F) \notin L$ iff $F \models L$.

Proof.

Exercise.

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Corollary

Let F be a finite rooted frame and L be a logic. We have $\chi(F) \notin L$ iff $F \models L$.

Proof.

Exercise.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(P) \mid P \not\models L\}.$$

Corollary

The logic of a finite rooted frame is axiomatisable by Jankov formulas.

Lattice of finite rooted frames

Definition

We turn the class of finite rooted frames into a poset by setting $F\leqslant G$ iff G is a p-morphic image of F.

Lattice of finite rooted frames

Definition

We turn the class of finite rooted frames into a poset by setting $F \leqslant G$ iff G is a p-morphic image of F.

Proposition

Let $\mathcal{F}'\subseteq\mathcal{F}$ be classes of finite rooted frames such that every frame in \mathcal{F} is below a frame in \mathcal{F}' . Then

$$\mathsf{IPC} + \{\chi(F) \mid F \in \mathcal{F}\} = \mathsf{IPC} + \{\chi(F) \mid F \in \mathcal{F}'\}.$$

Lemma

Let F be a frame and $x, y \in F$ be distinct.

1. Suppose that y is the only immediate successor of x, i.e. $\uparrow y = \uparrow x \setminus \{x\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an α -reduction.

Lemma

Let F be a frame and $x, y \in F$ be distinct.

- 1. Suppose that y is the only immediate successor of x, i.e. $\uparrow y = \uparrow x \setminus \{x\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an α -reduction.
- 2. Suppose that x and y have the same immediate successors, i.e. $\uparrow x \setminus \{x\} = \uparrow y \setminus \{y\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an β -reduction.

Lemma

Let F be a frame and $x, y \in F$ be distinct.

- 1. Suppose that y is the only immediate successor of x, i.e. $\uparrow y = \uparrow x \setminus \{x\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an α -reduction.
- 2. Suppose that x and y have the same immediate successors, i.e. $\uparrow x \setminus \{x\} = \uparrow y \setminus \{y\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an β -reduction.

Lemma

Let F be a frame and $x, y \in F$ be distinct.

- 1. Suppose that y is the only immediate successor of x, i.e. $\uparrow y = \uparrow x \setminus \{x\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an α -reduction.
- 2. Suppose that x and y have the same immediate successors, i.e. $\uparrow x \setminus \{x\} = \uparrow y \setminus \{y\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an β -reduction.

Proof.

Routine check.

Proposition

Let $f\colon F\to G$ be an onto p-morphism between finite frames. Then f factors as a sequence of α - and β -reductions.

Lemma

Let F be a frame and $x, y \in F$ be distinct.

- 1. Suppose that y is the only immediate successor of x, i.e. $\uparrow y = \uparrow x \setminus \{x\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an α -reduction.
- 2. Suppose that x and y have the same immediate successors, i.e. $\uparrow x \setminus \{x\} = \uparrow y \setminus \{y\}$. Then the equivalence relation identifying x and y is a bisimulation equivalence, and the quotient map an β -reduction.

Proof.

Routine check.

Proposition

Let $f: F \to G$ be an onto p-morphism between finite frames. Then f factors as a sequence of α - and β -reductions.

Proof.

Exercise. Hint: induction on the number of points that are identified.

Poset of finite rooted frames

See board.

Maksimova's characterisation

←: Exercise.

←: Exercise.

 $\Rightarrow:$ Assume that L is a superintuitionistic with interpolation.

←: Exercise.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L=\mbox{CPC},$ we are done.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L=\mathsf{CPC}$, we are done. Otherwise, observe that CPC is the logic of the 1-frame, whose only cover is the 2-chain.

←: Exercise.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L = \mathsf{CPC}$, we are done. Otherwise, observe that CPC is the logic of the 1-frame, whose only cover is the 2-chain.

Therefore CPC is axiomatised by the Jankov formula χ_{2c} of the 2-chain.

←: Exercise.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L = \mathsf{CPC}$, we are done. Otherwise, observe that CPC is the logic of the 1-frame, whose only cover is the 2-chain.

Therefore CPC is axiomatised by the Jankov formula χ_{2c} of the 2-chain. As $L \subsetneq \text{CPC}$, we have $\chi_{2c} \notin L$, thus the 2-chain is an L-frame.

If L is the logic of the 2-chain, then $L = LC_2$, and we are done.

Proof of Maksimova's characterisation (cont.d)

Otherwise, observe that the only covers of the 2-chain are the 3-chain and the 2-fork.

Therefore, LC $_2$ is axiomatized by the Jankov formulas χ_{3c} of the 3-chain and χ_{2f} of the 2-fork.

Proof of Maksimova's characterisation (cont.d)

Otherwise, observe that the only covers of the 2-chain are the 3-chain and the 2-fork.

Therefore, LC_2 is axiomatized by the Jankov formulas χ_{3c} of the 3-chain and χ_{2f} of the 2-fork. As $L \subsetneq L_2$, we have $\chi_{3c} \notin L$ or $\chi_{2f} \notin L$, thus either the 3-chain or the 2-fork are L-frames.

Appendix

Locally finite logics and Jankov formulas

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(P)\mid P\not\models L\}.$$

Proof.

Let
$$L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}.$$

Locally finite logics and Jankov formulas

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(P) \mid P \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

Locally finite logics and Jankov formulas

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(P) \mid P \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

⊆:

