

5%–19%

)%–24%

5%–29%

30%

0%–14%

10%

o Data







0%–14%









o Data

10%

0%–14%

5%–19%

)%–24%

5%–29%







0%–14%











o Data

10%

0%–14%

5%–19%

)%–24%

5%–29%



o Data

10%

0%–14%

5%–19%

)%–24%

5%–29%





# Rising Obesity Levels Worldwide



# **Obesity co-morbidities**



- Dyslipidemia
- Hepatic steatosis
- Cardio-vascular diseases
- Insulin resistance/Typ 2
  Diabetes
- Depression
- Cancer

# Typ 2 Diabetes und Adipositas



# Lipodistrophic co-morbidities





- Dyslipidemia
- Hepatic steatosis
- Cardio-vascular diseases
- Insulin resistance/Typ 2Diabetes
- Depression
- Cancer

# BMI dependent risk of death



#### **Lecture: Molecular Disease Mechanisms**

**Obesity and Energy Metabolism (2h)** 

**Central Control of Food Intake (2h)** 

**Obesity and Insulin Resistance (2h)** 

Insulin Resistance and Type 2 Diabetes (2h)

Hepatic Lipid Metabolism/Steatosis (2h)

**Endothelial Function and Hypertension (2h)** 

**Lipid Metabolism and Cardiovascular** 

**Complications (4h)** 

Paper discussion (2h)

- Hunger- sensation associated with the drive to eat
- Appetite- psychological desire to eat
- Satiation- termination of eating after hunger has been satisfied



#### **Energy homeostasis**

- The brain is a key player in the control of energy homeostasis
- The brain integrates incoming information in the form of hormonal and neural signals with data on energetic needs or anticipated needs
- Environmental factors



Woods., 2009

The physiological regulation of food intake is a complex homeostatic process that is regulated by many endocrine and metabolic factors in a combination with visual, olfactory, taste sensation, emotions, memory and the life conditions



Adapted from J. Blundell



#### **Historical overview**



ob/ob mice (1950)

1994- Jeffrey Friedman cloned the ob gene in mice and its homolog in humans.

1995- purification of the gene product, hormone called leptin.



Leptin, is a 16-kilodalton adipocyte derived hormone that circulates in the serum

#### The role of leptin

- Increases metabolic rate/energy expenditure
- Decreases food intake



#### **Defects in leptin leading to obesity**



#### How does it work?

1. Inhibiting appetite through appetite-stimulating neuropeptide Y (NPY) neurons and the appetite-inhibiting proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus.

Leptin inhibits NPY/AGRP neurons that increase NPY and results in inhibition of food intake.

