

Table of contents

01

Objective

Why a better classification model matters for investors

04

Neural Network Models

Evaluated an alternative prediction model

02

The dataset and its trends

A collection of annual company data features and their bankruptcy status

05

Key Findings

Compare various modeling strategies and future efforts

O3 Random Forest, XGBoost

How we trained and evaluated a prediction model

06 Next steps: Recursive Neural Networks

Model that handles time-series data well

01 Objective

We have been contracted to advise a hedge fund looking to add prudent investments to their portfolio. The client is risk-averse.

We will build a classification model that predicts whether a company will succeed or go bankrupt in order to better advise our client which companies to invest with and which to avoid.

Exploratory data analysis of bankruptcy

The dataset

US Company Bankruptcy Prediction Dataset (1999 - 2018)

- 8,971 distinct companies:
 - 8,362 are in business "alive"
 - 609 are bankrupt
- **18 financial metrics** such as:

Total assets

Earnings before interest and taxes

Total long-term debt

Link to dataset: https://www.kaggle.com/datasets/ut karshx27/american-companies-ban kruptcy-prediction-dataset

The relationship between **EBITDA** and bankruptcy

The relationship between **Net income** and bankruptcy

The relationship between market value and bankruptcy

The relationship between total liabilities and bankruptcy

The relationship between operating costs and bankruptcy

03

Tree models for classification

Handling imbalanced classes

Correcting class imbalances before training a model is important to reduce bias, improve generalization, ensure accurate performance metrics, and facilitate better decision-making.

Random Forest + RandomSearchCV

Test set accuracy: 0.9407

Precision (TP / (TP + FP)):

23%

Recall (TP / (TP + FN)):

64%

Positive	Positive
310	995
172	18194

True

Negative

False

Negative

Random Forest

Feature Importances:

XGBoost

35%

Test set accuracy: 0.9395

Precision (TP / (TP + FP)):

Recall (TP / (TP + FN)): 57%

True Positive	False Positive
459	846
345	18021

True

Negative

False

Negative

XGBoost

Feature Importances:

04

Neural networks Cor classification

Neural Network model

Test set accuracy: 0.8343

Precision (TP / (TP + FP)):

45%

Recall (TP / (TP + FN)):

19%

True Positive	False Positive
594	711
2549	15817

True

Negative

False

Negative

Recurrent Neural Network model

Explored LSTM, Dense, Dropout, BatchNormalization, and EarlyStopping to optimize

Only achieved Test set accuracy: 0.9025

05

Key Findings

Accuracy over baseline

