Optimizavimo metodai. Paskaitų konspektas.

Rimantas Grigutis

1 paskaita. Optimizavimo uždavinio formulavimas. Globalaus ir lokalaus ekstremumo apibrėžimas.

Optimizavimo uždavinio apibrėžimas.

Globalaus ir lokalaus ekstremumo apibrėžimas.

Optimizavimo uždavinys - tai funkcijos, kurią čia vadiname tikslo funkcija, minimumo arba maksimumo radimas kurioje nors galimų reikšmių srityje.

Tegu f(x), čia $x = (x_1, ..., x_n)$, yra tikslo funkcija apibrėžta Euklido erdvėje \mathbf{R}^n . Šios funkcijos reikšmės nusako tikslo, kuriam ir formuluojamas pats uždavinys, pasiekimo laipsnį. Tegu $X \subseteq \mathbf{R}^n$ yra galimų sprendinių sritis, kurioje ir yra vykdoma sprendinio paieška. Reikia rasti tokį \mathbf{x}^* , priklausantį galimų sprendinių sričiai, kad tikslo funkcija šiame taške įgytų mažiausią (didžiausią) reikšme:

$$f\left(x^{*}\right) = \min_{x \in X} f\left(x\right)$$

Apibrėžimas 1.1 Taškas $x^* \in X$ vadinamas funkcijos f(x) globalaus minimumo tašku srityje X, jei

$$f(x^*) \le f(x), \quad \forall x \in X.$$

Apibrėžimas 1.2 Taškas $x^* \in X$ vadinamas funkcijos f(x) lokalaus minimumo tašku srityje X, jei egzistuoja toks $\varepsilon > 0$, kad

$$f\left(x^{\ast}\right) \leq f\left(x\right) ,$$

kai

$$||x - x^*|| < \varepsilon \text{ ir } x \in X.$$

Čia $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$ – vektoriaus x ilgis Euklido erdvėje \mathbf{R}^n .

Pavyzdys 1.3 Tegu $X = \mathbf{R}$ ir funkcijos f(x) grafikas pavaizduotas piešinyje

Piešinyje yra išskirtos taškų A,B,C,D,E,F ε -sritys. Taškas A yra lokalaus minimumo taškas, B - lokalaus maksimumo taškas, atkarpos CD taškai yra lokalaus minimumo taškai, taškas F yra lokalaus ir globalaus minimumo taškas. Funkcija neturi globalaus maksimumo taško.

Funkcijos gradiento apibrėžimas

Hesse matricos apibrėžimas

Teigiamai (neigiamai) apibrėžta kvadratinė forma (apibrėžimai)

Neneigiamai (neteigiamai) apibrėžta kvadratinė forma (apibrėžimai)

Apibrėžimas 1.4

Tolydžiai diferencijuojamos funkcijos f(x) gradientu $\nabla f(x)$ vadiname jos dalinių išvestinių reikšmes taške x:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \dots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Funkcijos gradiento kryptis sutampa su normalės vektoriaus, kuris yra statmenas liečiančiai plokštumai, einančiai per tašką x, kryptimi, kuri rodo didžiausią funkcijos pokytį duotame taške.

Apibrėžimas 1.5

Dukart tolydžiai diferencijuojamos funkcijos f(x) taške x Hesse matrica vadinama antros eilės dalinių išvestinių reikšmių duotame taške matrica:

$$H(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \cdots & h_{nn} \end{pmatrix}$$

čia
$$h_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, i, j = 1, ..., n.$$

Pavyzdys 1.6

Funkcijai $f(x) = x_1^2 + x_2^2$ rasime gradientą taškuose $\mathbf{x}^0 = (0, 1)^T$, $x^1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T$, $x^2 = (1, 0)^T$, $x^3 = (0, -1)^T$ ir rasime Hesse matricą.

Turime

$$\nabla f(x) = (2x_1; 2x_2)^T, \qquad \nabla f(x^0) = (0; 2)^T, \nabla f(x^1) = (\sqrt{2}; \sqrt{2}), \qquad \nabla f(x^2) = (2; 0)^T \nabla f(x^3) = (0; -2)^T, \qquad H(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Pastebėkime, kad Hesse matrica nepriklauso nuo x. Žemiau esančiame paveikslėlyje pavaiduoti rasti gradientai

Apibrėžimas 1.6.

Nagrinėjamas Hesse matricos $H(x^*)$ stacionariame taške x^* determinantas

$$\det H(x^*) = \begin{vmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \cdots & h_{nn} \end{vmatrix}.$$

1. Determinantai
$$\Delta_1 = h_{11}, \Delta_2 = \begin{vmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{vmatrix}, ..., \Delta_n = \begin{vmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \cdots & h_{nn} \end{vmatrix}$$

vadinami kampiniais minorais.

2. m-osios eilės determinantai, gauti iš matricos $H(x^*)$ determinanto išbraukus kurias nors (n-m) eilutes ir (n-m) stulpelius su tais pačiais numeriais, vadinami pagrindiniais minorais.

Apibrėžimai 1.7

Hesse matrica $H\left(x^{*}\right)$ vadinama teigiamai apibrėžta, jei visų jos kampiniai minorai yra teigiami:

$$\Delta_1 > 0, \Delta_2 > 0, ..., \Delta_n > 0.$$

Hesse matrica $H(x^*)$ vadinama neigiamai apibrėžta, jei visų jos kampinių minorų ženklai kas kart keičiasi pradedant neigiamui:

$$\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, ..., (-1)^n \Delta_n > 0.$$

Hesse matrica $H(x^*)$ vadinama pusiau teigiamai apibrėžta, jei visų jos pagrindiniai minorai yra neneigiami.

Hesse matrica $H(x^*)$ vadinama pusiau neigiamai apibrėžta, jei visų jos lyginės eilės pagrindiniai minorai yra neneigiami, o nelyginės eilės pagrindiniai minorai - neteigiami.

Pavyzdys 1.8

Funkcijos $f(x) = x_1^2 + x_2^2$ Hesse matrica yra $H = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Ši matrica yra teigiamai apibrėžta.

Apibrėžimas 1.9

Hesse matricos $H(x^*)$ tikrinėmis reikšmėmis $\lambda_i, i = 1, ..., n$ vadiname charakteristinio polinomo(tai n-ojo laipsnio polinomas):

$$\det(H(x^*) - \lambda I_n) = \begin{vmatrix} h_{11} - \lambda & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} - \lambda & \cdots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \cdots & h_{nn} - \lambda \end{vmatrix} = 0$$

šaknis.

Pastaba 1.10

Realiosios simetrinės Hesse matricos $H(x^*)$ visos tikrinės reikšmės yra realieji skaičiai.

Teiginys 1.11

Hesse matrica yra teigiamai apibrėžta tada ir tik tada, kai visos jos tikrinės reikšmės yra teigiamos: $\lambda_i > 0$ su visais i.

Hesse matrica yra neigiamai apibrėžta tada ir tik tada, kai visos jos tikrinės reikšmės yra neigiamos: $\lambda_i < 0$ su visais i.

Hesse matrica yra pusiau teigiamai apibrėžta tada ir tik tada, kai visos jos tikrinės reikšmės yra neneigiamos: $\lambda_i \geq 0$ su visais i.

Hesse matrica yra pusiau neigiamai apibrėžta tada ir tik tada, kai visos jos tikrinės reikšmės yra neteigiamos: $\lambda_i \leq 0$ su visais i.