If \mathcal{M} is a σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all the countable subsets of \mathcal{E} (Hint: show the latter object is itself a σ -algebra).

Solution. Let $K = \{\mathcal{F} : \mathcal{F} \text{ is a countable subset of } \mathcal{E}\}$ Then we must show that

$$\mathcal{M} := \sigma(\mathcal{E}) = \bigcup_{\mathcal{F} \in K} \sigma(\mathcal{F}). \tag{1}$$

Let the RHS of (1) be \mathcal{A} . We will show that \mathcal{A} is a σ -algebra. Let $E \in \mathcal{A}$. Then $E \in \sigma(\mathcal{F})$ for some $\mathcal{F} \in K$, so $E^c \in \sigma(\mathcal{F})$, meaning $E^c \in \mathcal{A}$. Now let $\{E_j\}_1^{\infty}$ be a collection of sets in \mathcal{A} . For each $j \in \mathbb{N}$, there is a countable $\mathcal{F}_j \subset \mathcal{E}$ so that $E_j \in \sigma(\mathcal{F}_j)$ meaning

$${E_j}_1^\infty \subset \bigcup_{j=1}^\infty \sigma(\mathcal{F}_j).$$

Then $\bigcup_{j=1}^{\infty} \mathcal{F}_j$ is also countable as a countable union of countable sets, and is thus in K. Since $\mathcal{F}_{\ell} \subset \bigcup_{j=1}^{\infty} \mathcal{F}_j$ for each ℓ , $\sigma(\mathcal{F}_{\ell}) \subset \sigma(\bigcup_{j=1}^{\infty} \mathcal{F}_j)$ for each ℓ . But this means that

$$\bigcup_{j=1}^{\infty} \sigma(\mathcal{F}_j) \subset \sigma\left(\bigcup_{j=1}^{\infty} \mathcal{F}_j\right).$$

Then since the latter object is σ -algebra in which the countable collection $\{E_j\}$ is contained, and since the latter object is a subset of \mathcal{A} , we have

$$\bigcup_{j=1}^{\infty} E_j \in \sigma\left(\bigcup_{j=1}^{\infty} \mathcal{F}_j\right) \subset \bigcup_{\mathcal{F} \in K} \sigma(\mathcal{F}).$$

Thus \mathcal{A} is closed under countable unions. Given that the \mathcal{A} is a σ -algebra, we now show the identity in (1). Suppose $E \in \mathcal{E}$. Then $\{E\}$ is a countable subset of \mathcal{E} , so that $\sigma(\{E\}) \subset \mathcal{A}$. But $E \in \sigma(\{E\})$, so $E \in \mathcal{A}$. Thus $\mathcal{E} \subset \mathcal{A}$, and since \mathcal{A} is a σ -algebra, $\sigma(\mathcal{E}) \subset \mathcal{A}$. Conversely, suppose $A \in \mathcal{A}$. Then $A \in \sigma(\mathcal{F})$ for some $\mathcal{F} \in K$. But $\mathcal{F} \subset \mathcal{E}$, so $\sigma(\mathcal{F}) \subset \sigma(\mathcal{E})$, meaning $A \in \sigma(\mathcal{E})$. Thus $\mathcal{A} \subset \sigma(\mathcal{E})$. We have shown inclusion in both directions, so the identity in (1) holds.