Лабораторная работа № 3

- 1. Тема лабораторной работы: детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование.
- 2. Цель: изучение детерминированных циклических вычислительных процессов с управлением по аргументу с помощью среды программирования Lazarus на языке Pascal.
- 3. Используемое оборудование: ПК, среда программирования Lazarus.
- 4. Постановка задачи: вычислить определенный интеграл методом прямоугольника левых частей. Протестировать программу на вычисленном определенном интеграле. $\int_{0,4}^{1,2} \frac{\sin(1,5*x+0,3) \, dx}{2.3 + \cos(0.4*x^2+1)}$
- 5. Математическая модель:

$$\int_{a}^{b} f(x) dx \approx h * \sum_{x=a}^{b-h} f(x),$$
 где $h = \frac{b-a}{n}$, $f(x) = \frac{\sin(1.5 * x + 0.3)}{2.3 + \cos(0.4 * x^2 + 1)}$

6. Блок-схема:

Имя	Тип	Смысл	
a	const	Нижний предел интегрирования	
b	const	Верхний предел интегрирования	
n	integer	Количество частей	
S	real	Сумма значений функции	
h	real	Шаг	
X	real	Аргумент функции	
delimoe	real	Числитель подынтегральной функции	
delitel	real	Знаменатель подынтегральной функции	

8. Код программы:

I

```
program zadanie1;
const
 a=0.4;
 b=1.2;
var
 S, h, x, delimoe, delitel, I: real;
 n: integer;
begin
 write('n = ');
 readln(n);
 S := 0;
 h := (b - a) / n;
 x := a;
 while x<=b-h do
 begin
  delimoe:=\sin(1.5*x + 0.3);
  delite1:=2.3 + \cos(0.4 \times x \times x + 1);
  S:=S + delimoe / delitel;
  x := x + h;
 end:
 I:=S*h;
 writeln('I = ', I:2:5);
 readln();
end.
```

9. Результаты выполненной работы:

- 10. Анализ результатов вычисления: программа выводит в ответе вычисленный методом прямоугольника левых частей определенный интеграл в зависимости от числа делений п, который вводится с клавиатуры.
- 11.Вывод: программа вычисляет определенный интеграл методом прямоугольника левых частей.

- 1. Тема лабораторной работы: детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование.
- 2. Цель: изучение детерминированных циклических вычислительных процессов с управлением по аргументу с помощью среды программирования Lazarus на языке Pascal.
- 3. Используемое оборудование: ПК, среда программирования Lazarus.
- 4. Постановка задачи: вычислить определенный интеграл методом прямоугольника правых частей. Протестировать программу на вычисленном определенном интеграле. $\int_{0,4}^{1,2} \frac{\sin(1,5*x+0,3) dx}{2.3+\cos(0.4*x^2+1)}$
- 5. Математическая модель:

$$\int_{a}^{b} f(x) dx \approx h * \sum_{x=a+h}^{b} f(x),$$
 где $h = \frac{b-a}{n}$, $f(x) = \frac{\sin(1.5*x+0.3)}{2.3+\cos(0.4*x^2+1)}$,

6. Блок-схема:

Имя	Тип	Смысл	
a	const	Нижний предел интегрирования	
b	const	Верхний предел интегрирования	
n	integer	Количество частей	
S	real	Сумма значений функции	
h	real	Шаг	
X	real	Аргумент функции	
delimoe	real	Числитель подынтегральной функции	
delitel	real	Знаменатель подынтегральной функции	
I	real	Значение интеграла	

8. Код программы: program zadanie2; const a=0.4;b=1.2;var S, h, x, delimoe, delitel, I: real; n: integer; begin write('n = ');readln(n); S := 0;h := (b - a) / n;x := a+h;while x<=b do begin $delimoe:=\sin(1.5*x + 0.3);$ delite1:= $2.3 + \cos(0.4 \times x \times x + 1)$; S:=S + delimoe / delitel; x := x + h: end; I:=S*h;writeln('I = ', I:2:5);readln(); end.

9. Результаты выполненной работы:

- 10. Анализ результатов вычисления: программа выводит в ответе вычисленный методом прямоугольника правых частей определенный интеграл в зависимости от числа делений п, который вводится с клавиатуры.
- 11. Вывод: программа вычисляет определенный интеграл методом прямоугольника правых частей.

- 1. Тема лабораторной работы: детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование.
- 2. Цель: изучение детерминированных циклических вычислительных процессов с управлением по аргументу с помощью среды программирования Lazarus на языке Pascal.
- 3. Используемое оборудование: ПК, среда программирования Lazarus.
- 4. Постановка задачи: вычислить определенный интеграл методом трапеции. Протестировать программу на вычисленном определенном интеграле. $\int_{0,4}^{1,2} \frac{\sin(1,5*x+0,3)\,dx}{2.3+\cos(0.4*x^2+1)}$
- 5. Математическая модель:

$$\int_{a}^{b} f(x) dx \approx h * (\frac{f(a) + f(b)}{2} + \sum_{x=a+h}^{b-h} f(x)),$$
 где $h = \frac{b-a}{n}$, $f(x) = \frac{\sin(1.5 * x + 0.3)}{2.3 + \cos(0.4 * x^2 + 1)}$

6. Блок-схема:

Имя	Тип	Смысл	
a	const	Нижний предел интегрирования	
b	const	Верхний предел интегрирования	
n	integer	Количество частей	
S	real	Сумма значений функции от (a+h) до (b-h)	
h	real	Шаг	
X	real	Аргумент функции	
delimoe	real	Числитель подынтегральной функции	
delitel	real	Знаменатель подынтегральной функции	

fa	real	Значение функции в нижнем пределе	
		интегрирования	
fb	real	Значение функции в верхнем пределе	
		интегрирования	
I	real	Значение интеграла	

8. Код программы:

```
program zadanie3;
const
 a=0.4;
 b=1.2;
var
 S, h, x, delimoe, delitel, fa, fb, I: real;
 n: integer;
begin
 write('n = ');
 readln(n);
 S := 0;
 h := (b - a)/n;
 fa:=(\sin(1.5*a + 0.3))/(2.3 + \cos(0.4*a*a + 1));
 fb:=(\sin(1.5*b+0.3))/(2.3+\cos(0.4*b*b+1));
 x := a + h;
 while x \le (b - h) do
 begin
  delimoe:= \sin(1.5*x + 0.3);
  delitel:= 2.3 + \cos(0.4 \times x \times x + 1);
  S:=S + delimoe / delitel;
  x := x + h;
 end;
 I:=(fa/2 + fb/2 + S)*h;
 writeln('I = ', I:2:5);
 readln();
end.
```

9. Результаты выполненной работы:

10. Анализ результатов вычисления: программа выводит в ответе вычисленный методом трапеции определенный интеграл в зависимости от числа делений п, который вводится с клавиатуры.

трапеций.		

- 1. Тема лабораторной работы: детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование.
- 2. Цель: изучение детерминированных циклических вычислительных процессов с управлением по аргументу с помощью среды программирования Lazarus на языке Pascal.
- 3. Используемое оборудование: ПК, среда программирования Lazarus.
- 4. Постановка задачи: вычислить определенный интеграл методом парабол (метод Симпсона). Протестировать программу на вычисленном определенном интеграле. $\int_{0,4}^{1,2} \frac{\sin(1,5*x+0,3) dx}{2.3 + \cos(0.4*x^2+1)}$
- 5. Математическая модель:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} * (f(a) + 4 * \sum_{x=a+h}^{b-h} f(x) + 2 * \sum_{x=a+2*h}^{b-2*h} f(x) + f(b)),$$
 где $h = \frac{(b-a)}{n}$, $f(x) = \frac{\sin(1.5 * x + 0.3)}{2.3 + \cos(0.4 * x^2 + 1)}$

6. Блок-схема:

Имя	Тип	Смысл	
a	const	Нижний предел интегрирования	
b	const	Верхний предел интегрирования	
n	integer	Количество частей	
S1	real	Сумма нечетных значений функции от	
		(a+h) до (b-h)	
S2	real	Сумма четных значений функции от	
		(a+2*h) до (b-2*h)	
h	real	Шаг	
X	real	Аргумент функции	

fa	real	Значение функции в нижнем пределе	
		интегрирования	
fb	real	Значение функции в верхнем пределе	
		интегрирования	
Ι	real	Значение интеграла	

8. Код программы:

```
program zadanie2;
const
 a=0.4;
 b=1.2;
var
 S1, S2, fa, fb, h, x, I: real;
 n: integer;
begin
 write('n = ');
 readln(n);
 S1:=0;
 S2:=0;
 h := (b - a) / n;
 fa:=(\sin(1.5*a + 0.3)) / (2.3 + \cos(0.4*a*a + 1));
 fb := (\sin(1.5*b + 0.3)) / (2.3 + \cos(0.4*b*b + 1));
 x := a + h;
 while x<=b-h do
 begin
  S1:=S1 + (\sin(1.5*x + 0.3)) / (2.3 + \cos(0.4*x*x + 1));
  x := x + 2 * h;
 end;
 x := a + 2 * h;
 while x \le b-2 + h do
 begin
  S2:=S2 + (\sin(1.5*x + 0.3)) / (2.3 + \cos(0.4*x*x + 1));
  x := x + 2 * h;
 end;
 I:=h*(fa + 4*S1 + 2*S2 + fb)/3;
 writeln('I = ', I:2:5);
 readln();
end.
```

9. Результаты выполненной работы:

- 10. Анализ результатов вычисления: программа выводит в ответе вычисленный методом парабол определенный интеграл в зависимости от числа делений п, который вводится с клавиатуры.
- 11. Вывод: программа вычисляет определенный интеграл методом парабол.

N	Н	I	I	I	I
Количество	Шаг	Метод левых	Метод правых	Метод	Метод
разбиений		частей	частей	трапеций	парабол
		прямоугольников	прямоугольников		
10	0,08	0.28743	0.29502	0.29123	0.29151
100	0,008	0.28811	0.28888	0.28849	0.28546
1000	0,0008	0.29147	0.29155	0.29151	0.29091
10000	0,00008	0.29148	0.29149	0.29148	0.29145

Вывод: наиболее точным является метод трапеций, так как при делении на разное количество частей выдает наименьший разброс результатов (n = 10, 1000, 10000). Точность любого метода увеличивается при увеличении количества разбиений n.