

Data Science and Business Intelligence

BU.330.780

Session 4

Instructor: Changmi Jung, Ph.D.

Announcement

- Assignment #3 due before week 6 class
 - Two files you need to download and work on: R Markdown and an Excel file (data) on Canvas > Week 6
 - Follow the directions in the markdown file to complete the assignment
 - The style is similar to the previous assignments (answer the test style
 questions and attach the knitted file render it to a Word docx or HTML)

>>> Project status report (1 page suggested) is due Week 6

Data science as a process

Supervised Segmentation:

Linear Classifier – SVM and Logit Regression

What alternatives are there to partitioning?

Linear classifiers

$$\begin{aligned} & class(x) \\ &= \begin{cases} + & \text{if } 1.0 \times \text{Income } -1.5 \times Balance + 60 > 0 \\ & \bullet & \text{if } 1.0 \times \text{Income } -1.5 \times Balance + 60 \leq 0 \end{cases} \end{aligned}$$

>>> A linear classifier is a numeric classification model, which can be written as a linear function.

$$f(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + \cdots c$$

Income

- >>> Fit parameters to a particular dataset
 - Find a good set of weights w.r.t. the features
 - For normalized variables, weights may be interpreted as the importance indicators
 - Considers all attributes at once rather than select one at a time

Balance

● Not Default – 17 cases

Default – 15 cases

Which linear classifier should we choose?

- >>> What should be our objective in choosing the parameters?
 - = What weights should we choose?
- We need to define an objective function that represents our goal sufficiently
 Income

An intuitive approach to Support Vector Machines (SVM)

- SVM classifies instances based on a linear function of the features
- >>> Objective function is based on a simple idea: maximize the margin
 - Fit the widest bar between the classes
 - Once the widest bar is found, the linear discriminant will be the center line through the bar
- >>> We will focus or linear kernels but SVM can use different types of kernels.

What if we cannot find a margin that perfectly separate two classes?

What if there is no perfect separating line?

>>> Intuitively, solve the following optimization problem:

Maximize (Margin – loss)

>>> A loss function determines how much penalty should be assigned to an instance based on the error in the model's predicted value.

zero-one loss: 0 for a correct prediction and 1 for an incorrect prediction. This one is hard to minimize.

SVM Algorithm

>>> Soft Margin SVM

Minimize
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i$$

Subject to

$$y_i(w^T x_i + b) \ge 1 - \xi_i,$$
 $\xi_i \ge 0, \ \forall i$

- w: weight vector which defines the hyperplane
- b: bias term
- ξ_i : slack variables = penalties for misclassification or margin violation
- C: regularization parameter controls the trade-off between margin width and classification error

The Role of Kernel Functions

>>> A kernel function implicitly maps the input data into a higher-dimensional feature space where it becomes easier to separate the data with a linear hyperplane.

The Role of Kernel Functions

Radial transformation is applied to lift 2D

into 3D.
$$r = \sqrt{(x^2 + y^2)}$$

Strength and Weakness of SVM

Feature	Advantage
High-Dimensional Data	Very effective —
Kernel Trick	Powerful for non-linear problems /
Small training data	Efficient with small datasets
Outliers & Noise	Margin helps some generalization /
Multi-class Problems	Can handle with extensions

Feature	Disadvantage
Scalability	Not efficient with a large dataset \mathcal{F}
Kernel Functions	Performance varies based on Kernel types, kernel-specific parameters, and C (regularization parameter)
Probability scores	Does not produce probability output ,
Interpretability	Hard to explain

What if we want estimates of class membership probability?

- >>> SVM produces decision values (scores) not probability. Probability should range from zero to one.
- >>> What if we want numeric function based model and estimates of class membership probability?

Income

>> Logistic Regression

$$\log\left(\frac{p}{1-p}\right) = f(x) = w_0 + w_1 x_1 + w_2 x_2 + \cdots$$

$$\hat{p}_{+}(x) = \frac{1}{1 + e^{-f(x)}}$$

Linear Regression vs. Logistic Regression (1/2)

- Purpose?
- Good regression line vs. Good decision boundary?
- Well... it's not an apple-to-apple comparison (one (s. two variables)

Linear Regression vs. Logistic Regression (2/2)

A simpler case (one independent variable) - Estimate the probability of membership in class 1

From Probability to Odds to Log Odds

р	p/(1-p)	Log(p/1-p)
0.5	1	0
0.9	9	2.19
0.999	999	6.9
0.01	0.010101	-4.6
0.001	0.001001	-6.9

 The odd of event is the ratio of the probability of the event occurring to the probability of the event not occurring.

Technically: "log odds" is a linear function of the features and ranges between $-\infty$ to ∞ .

SVM and Logit Regression with R

Logistic Regression with R

- >>> The R command glm() fits generalized linear models, a class of models that includes logistic regression.
- >> For logistic regression, the family of error distribution is the *binomial*, > glm (formula, family = "binomial", data)
- >> Model:
- >> Our goal is to find w_0 , w_1 , w_2 , and w_3 that fit the data best.

```
f(x) = Default = w_0 + w_1 \times Student + w_2 \times Balance + w_3 \times Income
> ols_model < -lm(default \sim student + balance + income, data = Default)
> logit_model < -glm(default \sim student + balance + income, family = "binomial", data = Default)
> summary(logit_model) # the logistic regression results.
```



```
> summary(logit model)
Call:
glm(formula = default ~ student + obtained by
"binomial", data = Default)
      The changes of the log odds of
    the target when the variable
                                    3Q
-2.46 changes by one unit
```

```
The z-value is
calculating
"estimate"/"std.e
rror".
```

Max

3.7383

The larger z-value is, the smaller Pr(>|z|) is. A small pvalue (usually, less than 0.05) indicates the higher chance that the variable is associated with the target.

```
ICoefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16
                                                ***
studentYes -6.468e-01 2.363e-01 -2.738 0.00619
          5.737e-03 2.319e-04 24.738 < 2e-16 ***
balance
                                         0.71152
            3.033e-06 8.203e-06 0.370
income
```

0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (), 1 Signif. codes:

J.J203

Interpret the Results (2/2)

- Log(p/1-p) = -10.87 0.64 Student + 0.0057 Balance $= 2 = f^{(\alpha)}$.
- 1+e-z
- The estimated coefficient is the expected change in the log odds of being a defaulter for a unit increase in the predictor variable, holding the other predictors equal.
- **Student**: The log odd of a student being a defaulter is 0.64 *less* than a customer who is not a student (holding balance constant).
- **Balance**: The log odds of being a defaulter increase by 0.0057 with the increase in Balance by one dollar.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Use of Model to Predict


```
f(x) = Default = -10.1 + (-0.64) \times Student + (0.005) \times Balance + (0.0000003) \times Income
> Default$log_odd<-predi/ct(logit_mode1)</pre>
                                                         #get log-odd (default)
> Default$prob<-predigt(logit_mode1,type="response")
                                                         #get probability
> head(Default)
  default student/
                                 income log_odd
                     balance/
                                                         prob
                    729.5265 44361.625 -6.549544 0.0014287239
       No
               No
              Yes 817.1804 12106.135 -6.791338 0.0011222039
       No
               No 1073.5492 31767.139 -4.614261 0.0098122716
       No
               No 529.2506 35704.494 -7.724689 0.0004415893
4
       No
               No 785.6559 38463.496 -6.245449 0.0019355062
       No
              Yes 919.5885 7491.559 -6.217871 0.0019895182
       No
```

prob <- 1 / (1 + exp(-logit))

Supervised Segmentation -Summary

Important differences between classification tree and linear models

»A classification tree

- uses decision boundaries that are perpendicular to the instance-space axes
- is a "piecewise" classifier that segments the instance space recursively → cut into arbitrarily small regions, possible

»A linear classifier

 use decision boundaries of any direction or orientation

 places a single decision surface through the entire space

Which of these characteristics are a better match to a given data set?

Classification Tree vs. Linear model: Factors to consider

- >>> What is more comprehensible to the stakeholders?
 - rules?
 - a numeric function?
- How much data do you have?!
 - There is a key tradeoff between the complexity that can be modeled and the amount of training data available
- >>> What are the characteristics of the data: missing values, types of variables (numeric, categorical), relationships between them, how many are irrelevant, etc.
 - Trees are fairly robust to these complications

Choice of algorithm is not trivial!

Or, why not try both!

- >>> Integrated DM/ML packages now allow us to try multiple models easily...
- ... and sort them out in Evaluation

Preview of next week...

- >>> What is overfitting and can we avoid it?
- >>> Hold-out (& cross) validation
- >>> Confusion matrix
- >>> ROC analysis

Actual classes

Predicted classes

	Р	N
PP	True positives	False positives
PN	False negatives	True negatives