# Opportunism and ordering strategies in derivative-free optimization

Loïc Anthony Sarrazin-Mc Cann Charles Audet, Sébastien Le Digabel and Christophe Tribes

> Department of Mathematics and Industrial Engineering École Polytechnique de Montréal

> > **GERAD**





# Presentation Outline

- 1 What are Derivative-Free and Blackbox Optimization?
- 2 Direct-search Methods
- Opportunism and ordering
- Mumerical results

- 1 What are Derivative-Free and Blackbox Optimization?
- ② Direct-search Methods
- Opportunism and ordering
- Mumerical results

# Derivative-Free and Blackbox Optimization

### Optimization problem :

$$\begin{cases} \min_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \\ \text{s.à.} & c_j(\mathbf{x}) \le 0 \ \forall j \in \{1, \dots, m\} \\ & l_i \le x_i \le u_i \ \forall i \in \{1, \dots, n\} \end{cases}$$

### Optimization problem:

$$\begin{cases} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.à.} & c_j(x) \le 0 \quad \forall j \in \{1, \dots, m\} \\ & l_i \le x_i \le u_i \quad \forall i \in \{1, \dots, n\} \end{cases}$$

• f(x) and  $c_i(x)$  are treated as blackboxes.

# Blackbox



Capyright © 2009 Boeing. All rights reserved.

# Trust Region Methods



#### Trust Region Methods



#### Direct-search Methods



### Trust Region Methods



#### Direct-search Methods



### Trust Region Methods



#### Direct-search Methods



#### Trust Region Methods



#### Direct-search Methods



Other methods

#### **Trust Region Methods**



#### Direct-search Methods



#### Other methods

Heuristics (Particle Swarm, Simulated Annealing)

#### Trust Region Methods



#### Direct-search Methods



#### Other methods

Heuristics (Particle Swarm, Simulated Annealing)

Hybrids (Implicit Filtering)

Our goal: reduce the amount of calls to the blackbox

Our goal : reduce the amount of calls to the blackbox

To do so, we consider the **Opportunistic Strategy**.

Our goal: reduce the amount of calls to the blackbox

To do so, we consider the **Opportunistic Strategy**.

### Opportunistic Strategy

The opportunistic strategy designates the premature termination of an algorithmic step as soon as the necessary conditions to proceed to the next step are met.

Our goal: reduce the amount of calls to the blackbox

To do so, we consider the **Opportunistic Strategy**.

### Opportunistic Strategy

The opportunistic strategy designates the premature termination of an algorithmic step as soon as the necessary conditions to proceed to the next step are met.

Often mentionned but never studied per se.

- What are Derivative-Free and Blackbox Optimization?
- ② Direct-search Methods
- Opportunism and ordering
- 4 Numerical results

#### Question 1.

For which methods is the opportunistic strategy applicable?

#### Question 1.

For which methods is the opportunistic strategy applicable?

Trust Region

#### Question 1.

For which methods is the opportunistic strategy applicable?

### Trust Region X

- Only one call to the blackbox per iteration of the method

#### Question 1.

For which methods is the opportunistic strategy applicable?

Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods

#### Question 1.

For which methods is the opportunistic strategy applicable?

### Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods X
- Already and inevitably opportunistic

#### Question 1.

For which methods is the opportunistic strategy applicable?

Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods X
- Already and inevitably opportunistic Directional direct-search methods

#### Question 1.

For which methods is the opportunistic strategy applicable?

### Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods X
- Already and inevitably opportunistic

#### Directional direct-search methods <

- Allows opportunistic termination.

#### Question 1.

For which methods is the opportunistic strategy applicable?

# Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods X
- Already and inevitably opportunistic

#### Directional direct-search methods

- Allows opportunistic termination.

Hybrid directional direct-search methods

#### Question 1.

For which methods is the opportunistic strategy applicable?

# Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods X
- Already and inevitably opportunistic

#### Directional direct-search methods <

- Allows opportunistic termination.

# Hybrid directional direct-search methods <

- Same as direct-search methods, but might impact performance.

### Question 1.

For which methods is the opportunistic strategy applicable?

### Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods X
- Already and inevitably opportunistic

#### Directional direct-search methods <

- Allows opportunistic termination.

# Hybrid directional direct-search methods <

- Same as direct-search methods, but might impact performance.

Heuristics

#### Question 1.

For which methods is the opportunistic strategy applicable?

# Trust Region X

- Only one call to the blackbox per iteration of the method Simplicial direct-search methods X
- Already and inevitably opportunistic
- Directional direct-search methods  $\checkmark$
- Allows opportunistic termination.
- Hybrid directional direct-search methods
- Same as direct-search methods, but might impact performance.
- Heuristics?
- Highly dependent on the heuristic.

# Direcitonal direct-search framework

Directional direct-search methods:

# Directional direct-search framework

### Directional direct-search methods:

• Samples f(x) and c(x) on  $\mathcal{L}^k$ , a list of point specific to the  $k^{\text{th}}$  iteration.

#### Directional direct-search methods:

- Samples f(x) and c(x) on  $\mathcal{L}^k$ , a list of point specific to the  $k^{\text{th}}$  iteration.
- Generates the next list of candidates  $\mathcal{L}^{k+1}$  based on these values.

#### Directional direct-search methods:

- Samples f(x) and c(x) on  $\mathcal{L}^k$ , a list of point specific to the  $k^{\text{th}}$ iteration.
- Generates the next list of candidates  $\mathcal{L}^{k+1}$  based on these values.

### **Algorithm 1** Directional direct-search framework

```
for k = 1, 2, ... do
   Search: Evaluate f(x) at a finite set of point S^k.
   If successful, update x^k
```

```
Poll: Evaluate f(x) at a finite set of point
   P^k := \{x^k + \delta^k d : d \in D\}, where D is a positive spanning
   set of directions.
   If successful, update x^k and mesh parameters.
end for
```

Remark: this work only encompasses the study of the impact of the opportunistic strategy on poll steps.

# Coordinate Search (CS)

#### Algorithm 2 Coordinate Search

for 
$$k=1,2,\ldots$$
 do Poll: Evaluate  $f(x)$  at  $P^k:=\{x^k+\delta^kd:d\in D_{\oplus}\}$ , where  $D_{\oplus}:=\{\pm e_1,\pm e_2,\ldots,\pm e_n\}$ . If  $\exists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Successful step update  $x^{k+1}\leftarrow t$  et  $\delta^{k+1}\leftarrow \delta^k$ . Else  $\nexists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Unsuccessful step update  $x^{k+1}\leftarrow x^k$  et  $\delta^{k+1}\leftarrow \frac{\delta^k}{2}$ .



Figure: CS

end for

# Coordinate Search (CS)

#### Algorithm 2 Coordinate Search

for 
$$k=1,2,\ldots$$
 do Poll: Evaluate  $f(x)$  at  $P^k:=\{x^k+\delta^kd:d\in D_{\oplus}\},$  where  $D_{\oplus}:=\{\pm e_1,\pm e_2,\ldots,\pm e_n\}.$  If  $\exists$   $t$  for which  $f(t)< f(x^k),\ t\in P^k$  Successful step update  $x^{k+1}\leftarrow t$  et  $\delta^{k+1}\leftarrow \delta^k.$  Else  $\nexists$   $t$  for which  $f(t)< f(x^k),\ t\in P^k$  Unsuccessful step update  $x^{k+1}\leftarrow x^k$  et  $\delta^{k+1}\leftarrow \delta^k$ .



Figure: CS

end for

# Coordinate Search (CS)

#### Algorithm 2 Coordinate Search

for 
$$k=1,2,\ldots$$
 do Poll: Evaluate  $f(x)$  at  $P^k:=\{x^k+\delta^kd:d\in D_{\oplus}\}$ , where  $D_{\oplus}:=\{\pm e_1,\pm e_2,\ldots,\pm e_n\}$ . If  $\exists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Successful step update  $x^{k+1}\leftarrow t$  et  $\delta^{k+1}\leftarrow \delta^k$ . Else  $\nexists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Unsuccessful step update  $x^k$ 



Figure: CS

end for

# Generalized Pattern Search (GPS)

# **Algorithm 3** Generalized Pattern Search

```
\begin{array}{l} \text{for } k=1,2,\dots \text{ do} \\ \text{ with } \tau \in \{0,1\}. \\ \text{Poll} : \text{ Evaluate } f(x) \text{ at } \\ P^k := \{x^k + \delta^k d : d \in D\}, \text{ where } \\ D \text{ is a positive spanning set.} \end{array}
```

If  $\exists$  t for which  $f(t) < f(x^k)$ ,  $t \in P^k$  Successful step update  $x^{k+1} \leftarrow t$  et  $\delta^{k+1} \leftarrow \tau^{-1} \delta^k$ .

Else  $\nexists$  t for which  $f(t) < f(x^k)$ ,  $t \in P^k$ 

Unsuccessful step update  $x^{k+1} \leftarrow x^k$  and  $\delta^{k+1} \leftarrow \tau \delta^k$ . end for



Figure: GPS

# Generalized Pattern Search (GPS)

# **Algorithm 4** Generalized Pattern Search

for  $k=1,2,\ldots$  do with  $\tau\in\{0,1\}$ . Poll: Evaluate f(x) at  $P^k:=\{x^k+\delta^kd:d\in D\}$ , where D is a positive spanning set.

If  $\exists$  t for which  $f(t) < f(x^k)$ ,  $t \in P^k$ Successful step update  $x^{k+1} \leftarrow t$  et  $\delta^{k+1} \leftarrow \tau^{-1} \delta^k$ .

Else  $\nexists t$  for which  $f(t) < f(x^k)$ ,  $t \in P^k$ Unsuccessful step

update  $x^{k+1} \leftarrow x^k$  and  $\delta^{k+1} \leftarrow \tau \delta^k$ . end for



Figure: GPS

# Generalized Pattern Search (GPS)

# **Algorithm 4** Generalized Pattern Search

```
\begin{aligned} &\text{for } k=1,2,\dots \text{ do} \\ &\text{ with } \tau \in \{0,1\}. \\ &\text{Poll}: \text{ Evaluate } f(x) \text{ at } \\ &P^k := \{x^k + \delta^k d : d \in D\}, \text{ where } \\ &D \text{ is a positive spanning set.} \end{aligned}
```

If  $\exists$  t for which  $f(t) < f(x^k)$ ,  $t \in P^k$ Successful step update  $x^{k+1} \leftarrow t$  et  $\delta^{k+1} \leftarrow \tau^{-1} \delta^k$ .

Else  $\nexists t$  for which  $f(t) < f(x^k)$ ,  $t \in P^k$ Unsuccessful step

update  $x^{k+1} \leftarrow x^k$  and  $\delta^{k+1} \leftarrow \tau \delta^k$ . end for



Figure: GPS

# Generating Set Search (GSS)

#### **Algorithm 4** Generating Set Search

for k = 1, 2, ... do

```
with \tau \in \{0, 1\}.

Poll: Evaluate f(x) at P^k := \{x^k + \delta^k d : d \in D\}, where D is a positive spanning set respecting multiple conditions.

If \exists t for which f(t) < f(x^k), t \in P^k
```

Successful step update 
$$x^{k+1} \leftarrow t$$
 et  $\delta^{k+1} \leftarrow \phi \delta^k$ . Else  $\nexists t$  for which  $f(t) < f(x^k)$ ,  $t \in P^k$  Unsuccessful step update  $x^{k+1} \leftarrow x^k$  and  $\delta^{k+1} \leftarrow \tau \delta^k$ . end for



Figure: GSS

# Generating Set Search (GSS)

#### **Algorithm 4** Generating Set Search

```
\begin{aligned} &\text{for } k=1,2,\dots \text{ do} \\ &\text{ with } \tau \in \{0,1\}. \\ &\text{Poll}: \text{ Evaluate } f(x) \text{ at } \\ &P^k := \{x^k + \delta^k d : d \in D\}, \text{ where } \\ &D \text{ is a positive spanning set } \\ &\text{ respecting multiple conditions.} \end{aligned}
```

If  $\exists$  t for which  $f(t) < f(x^k)$ ,  $t \in P^k$  Successful step update  $x^{k+1} \leftarrow t$  et  $\delta^{k+1} \leftarrow \phi \delta^k$ .

Else  $\nexists$  t for which  $f(t) < f(x^k)$ ,  $t \in P^k$ Unsuccessful step update  $x^{k+1} \leftarrow x^k$  and  $\delta^{k+1} \leftarrow \tau \delta^k$ .



Figure: GSS

end for

# Generating Set Search (GSS)

#### **Algorithm 4** Generating Set Search

```
for k = 1, 2, ... do
   with \tau \in \{0, 1\}.
    Poll: Evaluate f(x) at
    P^k := \{x^k + \delta^k d : d \in D\}, where
    D is a positive spanning set
    respecting multiple conditions.
    If \exists t for which f(t) < f(x^k), t \in P^k
    Successful step
    update x^{k+1} \leftarrow t et \delta^{k+1} \leftarrow \phi \delta^k
    Else \nexists t for which f(t) < f(x^k), t \in
    P^k
    Unsuccessful step
    update x^{k+1} \leftarrow x^k and \delta^{k+1} \leftarrow \tau \delta^k
```



Figure: GSS

end for

# Mesh Adaptive Direct Search (MADS)

# **Algorithm 5** Mesh Adaptive Direct Search

```
for k = 1, 2, ... do
    with \tau \in \{0, 1\}.
    Update: \delta^k \leftarrow \min(\Delta^k, (\Delta^k)^2)
    Poll: Evaluate f(x) at
    P^k := \{x^k + \delta^k d : d \in D\}, where
    D \subset F^k, with F^k frame of size \Delta^k.
    If \exists t for which f(t) < f(x^k), t \in P^k
    Successful step
    update x^{k+1} \leftarrow t et \delta^{k+1} \leftarrow \phi \delta^k
    Else \nexists t for which f(t) < f(x^k), t \in
    \mathbf{p}^{k}
    Unsuccessful step
    update x^{k+1} \leftarrow x^k and \delta^{k+1} \leftarrow \tau \delta^k
end for
```



Figure: MADS

# Mesh Adaptive Direct Search (MADS)

# **Algorithm 5** Mesh Adaptive Direct Search

```
for k = 1, 2, ... do
                               with \tau \in \{0, 1\}.
                                 Update: \delta^k \leftarrow \min(\Delta^k, (\Delta^k)^2)
                                 Poll: Evaluate f(x) at
                                 P^k := \{x^k + \delta^k d : d \in D\}, \text{ where }
                                 D \subset F^k with F^k frame of size \Delta^k.
                                 If \exists t for which f(t) < f(x^k), t \in P^k
                                 Successful step
                                 update x^{k+1} \leftarrow t et \delta^{k+1} \leftarrow \phi \delta^k
                                 Else \nexists t for which f(t) < f(x^k), t \in
                                 P^k
                                 Unsuccessful step
                                 update x^{k+1} \leftarrow x^k and \delta^{k+1} \leftarrow {\color{red} {\color{gray} {\{gray} {g} {\color{gra
```



Figure: MADS

end for

# Mesh Adaptive Direct Search (MADS)

# **Algorithm 5** Mesh Adaptive Direct Search

```
for k = 1, 2, ... do
                              with \tau \in \{0, 1\}.
                                Update: \delta^k \leftarrow \min(\Delta^k, (\Delta^k)^2)
                                Poll: Evaluate f(x) at
                                P^k := \{x^k + \delta^k d : d \in D\}, \text{ where }
                                D \subset F^k with F^k frame of size \Delta^k
                                If \exists t for which f(t) < f(x^k), t \in P^k
                                Successful step
                                update x^{k+1} \leftarrow t et \delta^{k+1} \leftarrow \phi \delta^k
                                Else \nexists t for which f(t) < f(x^k), t \in
                                P^k
                                Unsuccessful step
                                update x^{k+1} \leftarrow x^k and \delta^{k+1} \leftarrow {\color{red} {\color{gray} {\{gray} {g} {\color{gra
  end for
```



Figure: MADS

# Implicit Filtering (IMFIL)

#### Algorithm 6 Implicit Filtering

for 
$$k=1,2,\ldots$$
 do Poll: Evaluate  $f(x)$  at  $P^k:=\{x^k+\delta^kd:d\in D_{\oplus}\}$ , where  $D_{\oplus}:=\{\pm e_1,\pm e_2,\ldots,\pm e_n\}$ . If  $\exists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Successful step Line search following  $-\nabla_s f(x^k)$  update  $x^{k+1}\leftarrow t$  et  $\delta^{k+1}\leftarrow \delta^k$ . Else  $\nexists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Unsuccessful step update  $x^{k+1}\leftarrow x^k$  et  $\delta^{k+1}\leftarrow \delta^k$ . end for



Figure: IMFIL

## Implicit Filtering (IMFIL)

#### Algorithm 6 Implicit Filtering

for 
$$k=1,2,\ldots$$
 do Poll: Evaluate  $f(x)$  at  $P^k:=\{x^k+\delta^kd:d\in D_{\oplus}\}$ , where  $D_{\oplus}:=\{\pm e_1,\pm e_2,\ldots,\pm e_n\}$ . If  $\exists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Successful step Line search following  $-\nabla_s f(x^k)$ , update  $x^{k+1}\leftarrow t$  et  $\delta^{k+1}\leftarrow \delta^k$ . Else  $\nexists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Unsuccessful step update  $x^{k+1}\leftarrow x^k$  et  $\delta^{k+1}\leftarrow \frac{\delta^k}{2}$ . end for



Figure: IMFIL

#### Algorithm 6 Implicit Filtering

for 
$$k=1,2,\ldots$$
 do Poll: Evaluate  $f(x)$  at  $P^k:=\{x^k+\delta^kd:d\in D_{\oplus}\}$ , where  $D_{\oplus}:=\{\pm e_1,\pm e_2,\ldots,\pm e_n\}$ . If  $\exists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Successful step Line search following  $-\nabla_s f(x^k)$  update  $x^{k+1}\leftarrow t$  et  $\delta^{k+1}\leftarrow \delta^k$ . Else  $\nexists$   $t$  for which  $f(t)< f(x^k)$ ,  $t\in P^k$  Unsuccessful step update  $x^{k+1}\leftarrow x^k$  et  $\delta^{k+1}\leftarrow \frac{\delta^k}{2}$ . end for



Figure: IMFIL

- Opportunism and ordering

#### Complete polling

Designates the evaluation of f(x) and c(x) at every point generated in the poll step.

#### Complete polling

Designates the evaluation of f(x) and c(x) at every point generated in the poll step.

#### Simple opportunistic strategy

Designates the opportunistic termination of the poll after a single successful point

#### Complete polling

Designates the evaluation of f(x) and c(x) at every point generated in the poll step.

#### Simple opportunistic strategy

Designates the opportunistic termination of the poll after **a single successful point** 

#### Opportunistic strategy after p success

Opportunistic termination of the poll following the evaluation of p successful points.

#### Complete polling

Designates the evaluation of f(x) and c(x) at every point generated in the poll step.

#### Simple opportunistic strategy

Designates the opportunistic termination of the poll after **a single successful point** 

#### Opportunistic strategy after p success

Opportunistic termination of the poll following the evaluation of p successful points.

#### Opportunistic strategy after q evaluations

Opportunistic termination of the poll following the evaluations of q points.

#### Ordering strategy

Rule guiding the ordering of points in a set  $\mathcal{L}$ .

Lexicographic

#### Ordering strategy

Rule guiding the ordering of points in a set  $\mathcal{L}$ .

Lexicographic

Ordered as in a dictionary, i.e.  $(0,0,1) \prec (0,0,3) \prec (0,1,0)$ .

#### Ordering strategy

- Lexicographic Ordered as in a dictionary, i.e.  $(0,0,1) \prec (0,0,3) \prec (0,1,0)$ .
- Random

#### Ordering strategy

- Lexicographic Ordered as in a dictionary, i.e.  $(0,0,1) \prec (0,0,3) \prec (0,1,0)$ .
- Random
- Last success direction

#### Ordering strategy

- Lexicographic Ordered as in a dictionary, i.e.  $(0,0,1) \prec (0,0,3) \prec (0,1,0)$ .
- Random
- Last success direction Ordered by the angle made with the last successful point's corresponding direction

#### Ordering strategy

- Lexicographic Ordered as in a dictionary, i.e.  $(0,0,1) \prec (0,0,3) \prec (0,1,0)$ .
- Random
- Last success direction Ordered by the angle made with the last successful point's corresponding direction
- Quadratic models

#### Ordering strategy

- Lexicographic Ordered as in a dictionary, i.e.  $(0,0,1) \prec (0,0,3) \prec (0,1,0)$ .
- Random
- Last success direction Ordered by the angle made with the last successful point's corresponding direction
- Quadratic models

$$A \prec B$$
 if  $\tilde{f}(A) < \tilde{f}(B)$ 

#### Ordering strategy

Rule guiding the ordering of points in a set  $\mathcal{L}$ .

- Lexicographic Ordered as in a dictionary, i.e.  $(0,0,1) \prec (0,0,3) \prec (0,1,0)$ .
- Random
- Cast success direction Ordered by the angle made with the last successful point's corresponding direction
- Quadratic models

$$A \prec B$$
 if  $\tilde{f}(A) < \tilde{f}(B)$ 

where  $\tilde{f}(x)$  is a dynamic quadratic surrogate of f(x).

Use f(x) as a surrogate for f(x) to simulate the best ordering possible.

Use f(x) as a surrogate for f(x) to simulate the best ordering possible.

**Omniscient** 

Use f(x) as a surrogate for f(x) to simulate the best ordering possible.

6 Omniscient

$$A \prec B$$
 if  $f(A) < f(B)$ 

Use f(x) as a surrogate for f(x) to simulate the best ordering possible.

Omniscient

$$A \prec B$$
 if  $f(A) < f(B)$ 

Use -f(x) as a surrogate for f(x) to simulate the worst ordering possible.

Use f(x) as a surrogate for f(x) to simulate the best ordering possible.

Omniscient

$$A \prec B$$
 if  $f(A) < f(B)$ 

Use -f(x) as a surrogate for f(x) to simulate the worst ordering possible.

Reverse Omniscient

Use f(x) as a surrogate for f(x) to simulate the best ordering possible.

Omniscient

$$A \prec B$$
 if  $f(A) < f(B)$ 

Use -f(x) as a surrogate for f(x) to simulate the worst ordering possible.

Reverse Omniscient

$$A \prec B$$
 if  $f(A) > f(B)$ 

Use f(x) as a surrogate for f(x) to simulate the best ordering possible.

Omniscient

$$A \prec B$$
 if  $f(A) < f(B)$ 

Use -f(x) as a surrogate for f(x) to simulate the worst ordering possible.

Reverse Omniscient

$$A \prec B$$
 if  $f(A) > f(B)$ 

No practical use, for comparaison only.

- What are Derivative-Free and Blackbox Optimization?
- ② Direct-search Methods
- Opportunism and ordering
- Mumerical results

1 212 instances of problems taken from [?]

- 1 212 instances of problems taken from [?]
- 2 18 constrained problems taken from [?]

- 1 212 instances of problems taken from [?]
- 2 18 constrained problems taken from [?] Infeasable starting point  $x^0$

- 1 212 instances of problems taken from [?]
- 2 18 constrained problems taken from [?] Infeasable starting point  $x^0$
- 3 A blackbox taken from [?]

- 1 212 instances of problems taken from [?]
- 2 18 constrained problems taken from [?] Infeasable starting point  $x^0$
- 3 A blackbox taken from [?]  $f: R^8 \mapsto R, c: R^8 \mapsto R^{11}, 4$  binary constraints, 7 relaxables constraints

- 1 212 instances of problems taken from [?]
- 2 18 constrained problems taken from [?] Infeasable starting point  $x^0$
- 3 A blackbox taken from [?]  $f: R^8 \mapsto R, c: R^8 \mapsto R^{11}, 4$  binary constraints, 7 relaxables constraints



Figure: Styrene production chart [?]



Figure: Left: CS on Moré-Wild, Right MADS on Moré-Wild



Figure: Left: CS on Moré-Wild, Right MADS on Moré-Wild

Model ordering used.



Figure: Left: CS on Moré-Wild, Right MADS on Moré-Wild

- Model ordering used.
- Most efficient opprtunistic strategy: simple



Figure: Left: CS on Moré-Wild, Right MADS on Moré-Wild

- Model ordering used.
- Most efficient opprtunistic strategy: simple

Impact less important on MADS.



Figure: CS on Moré-Wild



Figure: GPS on Moré-Wild



Figure: GPS on Moré-Wild

 Omniscient strategy less imactful.



Figure: GPS on Moré-Wild

1 Omniscient strategy less imactful.

2 Model ordering less dominant