MIT Integration Bee 2023 Regular Season

Problem 8

$$\int_{0}^{\pi} x \sin^{4}(x) dx$$
Let $x = \pi - u$, $u = \pi - x$, $dx = -du$
When $x = 0$, $u = \pi$, and when $x = \pi$, $u = 0$

$$= \int_{\pi}^{0} (\pi - u) \sin^{4}(\pi - u)(-du)$$

$$= \int_{0}^{\pi} (\pi - u) \sin^{4}(\pi - u) du$$

$$= \int_{0}^{\pi} (\pi - u) \sin^{4}(u) du$$

$$= \int_{0}^{\pi} \pi \sin^{4}(u) du - \int_{0}^{\pi} u \sin^{4}(u) du$$

$$= \int_{0}^{\pi} \pi \sin^{4}(u) du - I$$

$$= \frac{\pi}{2} \int_{0}^{\pi} \sin^{4}(u) du$$

$$= \frac{\pi}{2} \int_{0}^{\pi} \left(\frac{1 - \cos 2u}{2} \right)^{2} du$$

$$= \frac{\pi}{8} \left(\int_{0}^{\pi} du - 2 \int_{0}^{\pi} \cos(2u) du + \int_{0}^{\pi} \cos^{2}(2u) du \right)$$

$$= \frac{\pi}{8} \left(\pi - 2 \int_{0}^{\pi} \cos(2u) du + \int_{0}^{\pi} \frac{1 + \cos(4u)}{2} du \right)$$

$$= \frac{\pi}{8} \left(\pi - 2 \cdot \left[\frac{1}{2} \sin(2u) \right]_{0}^{\pi} + \frac{1}{2} \int_{0}^{\pi} \left[1 + \cos(4u) \right] du \right)$$

$$= \frac{\pi}{8} \left(\pi - 2 \cdot (0 - 0) + \frac{1}{2} \int_{0}^{\pi} du + \frac{1}{2} \int_{0}^{\pi} \cos(4u) du \right)$$

$$= \frac{\pi}{8} \left(\pi + \frac{1}{2}\pi + \frac{1}{2} \cdot \left[\frac{1}{4} \sin(4u) \right]_{0}^{\pi} \right)$$

$$= \frac{\pi}{8} \left(\frac{3}{2}\pi + \frac{1}{2} \cdot (0 - 0) \right)$$

$$= \frac{3}{16}\pi$$