第_106 學年度清華大學普通物理實驗(三)

□預報	或	☑結報	課程編號	:	106 10 PH	Y	5	101011	
-----	---	-----	------	---	-----------	---	---	--------	--

實驗名稱: 圓周至	重動與何心力實	感			
系級:材料)	-1 *	且 別:	4		
	09 106031204 #	生 名:	_ 彭慧文		
組 員: 林暄乾					
實驗日期: 106 年	9月20日 初	甫作日期:	年	月	日
◎ 以下為助教記錄區					
預報繳交日期	報告成績		助教簽	名欄	
預報繳交日期 結報繳交日期	報告成績		助教簽	名欄	

實驗三:圓周運動與向心力實驗

一、實驗目的:

- (一) 觀察物體做的圓周運動及其所受到之向心力之間的關係
- (二) 學習使用 GLX 數據擷取與分析處理器
- (三)探討向心力與物體質量、旋轉半徑、旋轉週期間的關係,驗證轉動系統中牛頓第二定律的有效性

二、實驗原理:

等速圓周運動是物體以固定速率繞著圓形路徑運轉的運動,速率相同,但速度方向改變,為變加速度運動,加速度的方向恆指向圓心。

物體質量為m,以等速率v在半徑r的圓形路徑做水平圓周運動,向心加速

度 a 和速率 v 及半徑的關係: $a = \frac{v^2}{r}$ 。

根據牛頓第二運動定律,物體有加速度,則必有外力作用。外力F與向心加速度a方向相同,為向心力。

向心力 F 與物體質量 m、速率 v(= rω)、旋轉週期 T、旋轉半徑 r、角速率ω的

關係:
$$F = \frac{mv^2}{r} = mr\omega^2 = \frac{4\pi^2 mr}{T^2}$$
。

本實驗藉由改變物體質量m、向心力F及圓周半徑r來探討。

三、實驗器材:

側支架	旋轉體	側滑輪	細繩
中心支架	平衡配重	旋轉平台	光電閘
A型基座	砝碼組	直流馬達	水平儀
直流電源供應器	GLX 數據處	理及轉接器	

四、實驗步驟:

- (一) 前置作業:使用水平儀進行旋轉平台的水平調整
- (二) 改變旋轉半徑(固定向心力及旋轉體質量)
 - 1. 測量旋轉體及砝碼質量後記錄
 - 2. 將細繩綁上裝置,進行調整
 - 3. 選一距離為半徑後記錄,並將側支架用螺絲拴緊
 - 4. 旋轉體垂直懸掛,調整兩端細繩呈水平
 - 5. 圓形指示器對齊指示托架
 - 6. 移開砝碼
 - 轉動裝置,使圓形指示器再次對齊指示托架(即旋轉體再次保持垂直, 並達到想要的半徑位置)
 - 8. 保持同速,利用 GDX 算出轉動週期後記錄
 - 9. 選另一半徑,重複步驟 2~8 五次

(三) 改變向心力(固定旋轉半徑及旋轉體質量)

- 1. 同(二)步驟 1~8
- 2. 改變向心力(即砝碼質量),重複步驟1五次
- (四) 改變旋轉體質量(固定旋轉半徑及向心力)
 - 1. 同(二)步驟 1~8
 - 2. 改變旋轉體質量,重複步驟1五次

五、結果與分析:

竹鱗炸輔坐狐

(一) 改變旋轉半徑

這部分的實驗透過調整側支架來改變旋轉半徑

向心力 F(N)	旋轉體質量 M(kg)	旋轉半徑 r(m)	旋轉週期 T(S)	週期平方 (s²)
0.385728	0.20978	0.17	1.902950	3.621217
0.385728	0.20978	0.18	1.908701	3.643369
0.385728	0.20978	0.19	1.933350	3.737783
0.385728	0.20978	0.20	2.042484	4.171741
0.385728	0.20978	0.21	2.127060	4.526935

由圖中可知,旋轉半徑 Г和週期平方呈現正相關,在一定的範圍內,當 旋轉半徑變大時,週期的平方也會變大。

實驗誤差原因:

- 1. 調整側支架時,沒有完全固定
- 2. 實驗中,圓形指示器的上下起伏較大
- 3. 旋轉平台上的刻度可能不夠準確
- 4. 改變馬達電壓的速度過快,使彈簧的形變量變化太快

(二) 改變向心力

這部分的實驗透過改變砝碼質量來改變向心力

砝碼質量 m(kg)	向心力 F(N)	旋轉體質量 M(kg)	旋轉半徑 r(m)	旋轉週期 T(S)	週期平方倒數 (1/s²)
0.0299	0.28812	0.20978	0.20	2.128670	0.220690
0.0394	0.38573	0.20978	0.20	1.904762	0.275625
0.0492	0.48216	0.20978	0.20	1.858474	0.289526
0.0586	0.57428	0.20978	0.20	1.684089	0.352590
0.0685	0.67130	0.20978	0.20	1.543441	0.419778

	旋轉體質量理論值
	M(kg)
	0. 20978
	斜率求得旋轉體質量
145	M(kg)
19.1.	0. 24158
	誤差(%)
	15

由圖中可知,向心力F和週期平方倒數呈現正相關,在一定的範圍內,當向心力變大時,週期平方倒數也會變大。

實驗誤差原因:

- 1. 重做實驗時,砝碼放置的順序沒有固定
- 2. 實驗中,圓形指示器的上下起伏較大
- 3. 改變馬達電壓的速度過快,使彈簧的形變量變化太快

(三) 改變旋轉體質量

這部分的實驗改變旋轉體質量

向心力理論值	旋轉體質量	旋轉半徑	旋轉週期	向心力實驗值	誤差
F(N)	M(kg)	r(m)	T(S)	F(N)	(%)
0.385728	0.20978	0.20	2.001457	0.4130073	7
0.385728	0.15928	0.20	1.745094	0.4166509	8
0.385728	0.10858	0.20	1.458887	0.4023978	4

由表中可知,旋轉體質量 M 和旋轉週期 T 呈正相關,在一定的範圍內, 當旋轉體質量變大時,旋轉週期也會變大。

實驗誤差原因:

- 1. 改變旋轉體質量後,沒有確認細繩完全水平
- 2. 實驗中,圓形指示器的上下起伏較大
- 3. 改變馬達電壓的速度過快,使彈簧的形變量變化太快

六、問題與討論

- (一) 此實驗中可能引起誤差的因素有哪些?
 - 1. 旋轉體上的三條棉線沒有達到互相水平或垂直。
 - 2. 因為生鏽,使每塊砝碼的重量都不相同,向心力的數值因此不準確。
 - 3. 旋轉平台沒有完全固定好,校正A型底座時沒有完全達到水平。
 - 4. 圓形指示片在指示托架附近上下晃動,沒有達到穩定狀態。
 - 5. 改變馬達電壓的速度過快,使彈簧的形變量變化太快
- (二) 當半徑增加時,轉動的週期增加或減少?

 $F = \frac{4\pi^2 M r}{T^2}$,固定 F 和 M ,半徑 r 增加 ,週期 T 也變大 。

- (三) 當半徑及轉動物體的質量固定時,增加週期會增加或減少向心力? $F = \frac{4\pi^2 M \Gamma}{\Gamma^2}$,固定 Γ 和 M ,週期 Γ 增加,向心力 Γ 就會減少。
- (四) 當物體的質量增加時,向心力增加或是減少?

 $F = \frac{4\pi^2 Mr}{T^2}$,M 正比於 F。旋轉體質量 M 增加時,向心力 F 也會增加。

(五) 在本實驗中,假設向心力F與圓周運動周期T的關係為F=aTn+b,式中 n、a和b皆為常數。請說明:如何由實驗得到的數據,作何種關係圖後,進行分析,推測n,a和b等數值?

n=-2

由改變向心力的實驗所得之數據,作向心力F和週期平方的關係圖,可得知當 n=2 時,a=-5.7299,b=6.1348

(六) 在實驗中,固定輸入馬達的電壓時,若此時發現圓形指示片持續上下振盪,不易穩定,請說明造成此現象的可能原因。

可能原因是改變電壓的速度太快,使彈簧的伸縮量改變太快。即使後來保持在固定電壓,圓形指示片依然會不停上下晃動。

七、主常是其写美有一分词作出下河场理量中国装置。

1. 图制是数图第二字中间数量集份设计员

2. 图用运轨运算平方T²单连维推定量W

B. 图用是新进第平方TP算能率并图页

理論上,上述三個關係應均為廣性關係,故可以線性迫斷分析數據,依 描示的實驗數據,請分別說明,所得到的線性迴擊站果,其最近的物理 意義。

(七) 由實驗測得數據,分別作出下列物理量的關係圖:

1. 圓周運動周期平方的倒數 $\frac{1}{T^2}$ 與向心力 F

2. 圓周運動週期平方T²與旋轉體質量 M

3. 圓周運動週期平方T²與旋轉半徑 r

理論上,上述三個關係應均為線性關係,故可以線性迴歸分析數據。依據你的實驗數據,請分別說明:所得到的線性迴歸結果,其截距的物理 意義。

- 1. 圓周運動周期平方的倒數¹_{T²}與向心力 F
 - 由圖中可知,旋轉半徑 r 和週期平方呈現正相關,在一定的範圍內,當旋轉半徑變大時,週期的平方也會變大。
- 圓周運動週期平方T²與旋轉體質量 M 由圖中可知,旋轉體質量 M 和週期平方呈現正相關,在一定的範圍內,當旋轉質量變大時,週期的平方也會變大。
- 3. 圓周運動週期平方T²與旋轉半徑 r 由圖中可知,旋轉半徑 r 和週期平方呈現正相關,在一定的範圍內, 當旋轉半徑變大時,週期的平方也會變大。

若以理論值作圖,三個圖應皆為通過原點 0 的斜直線,因此造成圖中出現截距的原因可能是實際值與理論值之間的誤差。

七、心得及建議

這次實驗的過程不是很順利。做完第一次時發現誤差太大,重做之後雖然誤差有較小,但花費了太多時間。藉由這次實驗,我們學習到做實驗必須不求快,求準確。每個步驟都要確實做好,貪快反而會欲速則不達。在修正誤差後,我們從中體會到了做實驗的樂趣與成就感,覺得付出的努力沒有白費。也要感謝助教的幫忙,不然不知道要重做到何時。希望以後的實驗可以順利進行,不要再留到這麼晚了!

八、參考資料

國立清華大學普通物理實驗室向心力實驗講義