ACH2011 – Cálculo I (2025.1)

Primeira Prova – Maio/2025

Nome:	Nº USP:	

Explicitar os passos importantes na resolução; a mera apresentação das respostas não é digna de pontuação positiva

- 1) Uma função $f: \mathbb{R} \to \mathbb{R}$ é **par** se f(x) = f(-x) para todo x do domínio (de f). Se f for derivável, mostrar que existe um ponto ξ onde a derivada de f é nula.
- 2) Escolher UMA (e SOMENTE UMA) das seguintes funções (cuja fórmula é apresentada) e esboçar seu gráfico indicando, quando houver, pontos críticos, de inflexão e retas assíntotas.

(A)
$$f(x) = \frac{x^3 - 1}{x^3 + 1}$$

(A)
$$f(x) = \frac{x^3 - 1}{x^3 + 1}$$
 (B) $f(x) = \operatorname{arccot}\left(\frac{x^2}{\sqrt{3}}\right)$

Função escolhida:

1) Resolução 1: Pela regra da cadeia, f'(x) = -f'(-x). Consequentemente, no ponto x = 0 tem-se f'(0) = -f'(0), donde se tem f'(0) = 0. Logo, existe (ao menos) um ponto onde a derivada de f é nula.

Resolução 2: Tome $a \neq 0$; da paridade de f, sabe-se que f(a) = f(-a). Logo, do teorema de Rolle, existe $\xi \in (-|a|, |a|)$ tal que $f'(\xi) = 0$, completando a prova.

- 2) A) O esboço do gráfico será feito a partir de algumas considerações iniciais.
- (i) Domínio. Assumindo o domínio da função como sendo um subconjunto maximal dos reais, a exigência sobre a função

$$f(x) = \frac{x^3 - 1}{x^3 + 1} = \frac{(x - 1)(x^2 + x + 1)}{(x + 1)(x^2 - x + 1)}$$

limita-se a $x \neq -1$ (divergência de f devido ao denominador). Notar que as formas quadráticas $x^2 + x + 1$ e $x^2 - x + 1$ são sempre positivas (consequentemente, $x^2 \pm x + 1 = 0$ não admitem solução real). Em suma,

$$Dom(f) = \mathbb{R} \setminus \{-1\}.$$

- (ii) Zero(s) da função. Da representação da função vista acima, a função admite uma única solução em $x=\overline{1}$
- (iii) Crescimento de f. O crescimento da função pode ser examinado mediante a análise de sua primeira derivada, f', com

$$f'(x) = \left(\frac{x^3 - 1}{x^3 + 1}\right)' = \left(1 - \frac{2}{x^3 + 1}\right)' = \frac{6x^2}{\left(x^3 + 1\right)^2} = \frac{6x^2}{\left(x + 1\right)^2 \left(x^2 - x + 1\right)^2} \ge 0.$$

A função f' é, pois, monotonicamente crescente em todos os pontos exceto em x=-1 (quando a função não é definida) e x = 0 (quando f'(0) = 0). De forma mais detalhada,

x	$(-\infty, -1)$	-1	(-1,0)	0	$(0,\infty)$
f'(x)	+	Ø	+	0	+
f'	7	×	7	\rightarrow	7

Notar que a função apresenta um ponto crítico em x = -1 (onde f' não está definida) e x = 0 (onde a derivada é nula, mas não se trata de um ponto de máximo ou mínimo local).

(iv) Convexidade de f. A convexidade da função é investigada através de sua segunda derivada, f'', sendo que

$$f''(x) = [f'(x)]' = \left[\frac{6x^2}{(x^3+1)^2}\right]' = \frac{(6x^2)'(x^3+1)^2 - (6x^2)[(x^3+1)^2]'}{[(x^3+1)^2]^2}$$
$$= -\frac{12x(2x^3-1)}{(x^3+1)^3} = -\frac{12x(x-2^{-1/3})(2x^2+2^{2/3}x+2^{1/3})}{(x+1)^3(x^2-x+1)^3}$$

Os candidatos a pontos de inflexão satisfazem f''(x) = 0. Como $2x^2 + 2^{2/3}x + 2^{1/3} > 0$ para todo $x \in \mathbb{R}$, as raízes de f''(x) = 0 formam o conjunto $\{0, 2^{-1/3}\}$. A partir dos pontos-chave, em f'',

x	$(-\infty, -1)$	-1	(-1,0)	0	$(0,2^{-1/3})$	$2^{-1/3}$	$(2^{-1/3},\infty)$
f''(x)	+	Ø	_	0	+	0	4
f''	U	×	Λ	_	U	_	\cap

Logo, a função admite dois pontos de inflexão, que ocorrem em $x \in \{0, 2^{-1/3}\}$.

(v) Limites de f. Segundo o domínio, além das regiões $x\gg 1$ e $x\ll -1$, a vizinhança de x=-1 (ponto onde a função não está definida) deve ser caracterizada. É imediato que

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3 - 1}{x^3 + 1} = \lim_{x \to \infty} \frac{x^3 \left(1 - \frac{1}{x^3}\right)}{x^3 \left(1 + \frac{1}{x^3}\right)} = \lim_{x \to \infty} \frac{\left(1 - \frac{1}{x^3}\right)}{\left(1 + \frac{1}{x^3}\right)} = 1$$

e

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3 - 1}{x^3 + 1} = \lim_{x \to -\infty} \frac{x^3 \left(1 - \frac{1}{x^3}\right)}{x^3 \left(1 + \frac{1}{x^3}\right)} = \lim_{x \to -\infty} \frac{\left(1 - \frac{1}{x^3}\right)}{\left(1 + \frac{1}{x^3}\right)} = 1.$$

Obter-se-iam, aqui, os mesmos resultados recorrendo à regra de l'Hôpital.

Por outro lado, na vizinhança de x = -1, o numerador de f(x) tende a um valor nagativo (-2), ao passo que o denominador tende a zero. Logo.

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{x^3 - 1}{x^3 + 1} = -\infty$$

$$\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{x^3 - 1}{x^3 + 1} = \infty.$$

e

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{x^{3} - 1}{x^{3} + 1} = \infty$$

(vi) Retas assíntotas. Denote por

$$r_{\pm} := \{(x, y) \in \mathbb{R}^2 : y = a_{\pm}x + b_{\pm}\}$$

os gráficos associados às retas assíntotas r_{\pm} para $x \to \pm \infty$. De

$$a_{+} = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{1}{x} \frac{x^{3} - 1}{x^{3} + 1} = 0,$$

é imediato que

$$b_{+} = \lim_{x \to \infty} [f(x) - a_{+}x] = \lim_{x \to \infty} f(x) = 1,$$

onde um dos limites em (v) foi invocado. Finalmente, de

$$a_{-} = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{1}{x} \frac{x^3 - 1}{x^3 + 1} = 0,$$

Figura 1: Gráfico de $f(x) = \frac{x^3 - 1}{x^3 + 1}$ (vermelho) e indicação de retas assíntotas (azul).

é imediato que

$$b_{-} = \lim_{x \to -\infty} [f(x) - a_{-}x] = \lim_{x \to -\infty} f(x) = 1,$$

onde um dos limites em (v) foi novamente invocado.

Logo, a função admite uma assíntota (horizontal) y=1 em $x\sim\pm\infty$ e uma assíntota (vertical) em

Com as informações acima, pode-se esboçar o gráfico da função, apresentado na figura 1.

- B) O esboço do gráfico será feito a partir de algumas considerações iniciais.
- (i) <u>Domínio</u>. Além do domínio da função arco-cotangente abranger toda a reta real, não há singularidades ou outras restrições em seu argumento. Logo,

$$Dom(f) = \mathbb{R}.$$

- (ii) Zero(s) da função. A imagem de uma função arco-cotangente é $(0,\pi)$. Logo, a função não apresenta raiz
- (iii) Crescimento de f. O crescimento da função pode ser examinado mediante a análise de sua primeira

$$f'(x) = \left[\operatorname{arccot}\left(\frac{x^2}{\sqrt{3}}\right)\right]' = -\frac{1}{1 + \left(\frac{x^2}{\sqrt{3}}\right)^2} \left(\frac{x^2}{\sqrt{3}}\right)' = -\frac{2\sqrt{3}x}{x^4 + 3}.$$

Notar que o denominador $x^4 + 3$ é estritamente positivo. Ademais, a função f' anula-se em x = 0. De forma mais detalhada,

x	$(-\infty,0)$	0	$(0,\infty)$
f'(x)	+	0	_
f'	7	\rightarrow	7

Notar que a função apresenta um ponto crítico em x=0 (em que a derivada é nula), onde se situa um máximo local.

(iv) Convexidade de f. A convexidade da função é investigada através de sua segunda derivada, f'', sendo que

$$f''(x) = [f'(x)]' = \left(-\frac{2\sqrt{3}x}{x^4 + 3}\right)' = -2\sqrt{3} \frac{(x)'(x^4 + 3) - (x)(x^4 + 3)'}{(x^4 + 3)^2}$$
$$= \frac{6\sqrt{3}(x^4 - 1)}{(x^4 + 3)^2} = \frac{6\sqrt{3}(x - 1)(x + 1)(x^2 + 1)}{(x^4 + 3)^2}.$$

Os candidatos a pontos de inflexão satisfazem f''(x) = 0, e são os pontos x = -1 ou x = 1 no presente caso. A partir dos pontos-chave, em f'',

x	$(-\infty, -1)$	-1	(-1,1)	1	$(1,\infty)$
f'(x)	+	0	_	0	+
f'	U	_	Λ	_	U

Logo, a função admite dois pontos de inflexão, que ocorrem em $x \in \{-1, 1\}$

(v) Limites de f. Segundo o domínio, é suficiente analisar as regiões $x\gg 1$ e $x\ll -1$. É imediato que

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \operatorname{arccot}\left(\frac{x^2}{\sqrt{3}}\right) = 0$$

e

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \operatorname{arccot}\left(\frac{x^2}{\sqrt{3}}\right) = 0,$$

o que não é surpreendente, visto que a função é par $(f(x) = f(-x), \forall x \in \mathbb{R})$.

(vi) Retas assíntotas. Denote por

$$r_{\pm} := \{(x, y) \in \mathbb{R}^2 : y = a_{\pm}x + b_{\pm}\}$$

os gráficos associados às retas assíntotas r_{\pm} para $x \to \pm \infty$. De

$$a_{+} = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{1}{x} \operatorname{arccot}\left(\frac{x^{2}}{\sqrt{3}}\right) = 0,$$

é imediato que

$$b_{+} = \lim_{x \to \infty} [f(x) - a_{+}x] = \lim_{x \to \infty} f(x) = 0,$$

onde um dos limites em (v) foi invocado. Finalmente, de

$$a_{-} = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{1}{x} \operatorname{arccot}\left(\frac{x^2}{\sqrt{3}}\right) = 0,$$

é imediato que

$$b_{-} = \lim_{x \to -\infty} [f(x) - a_{-}x] = \lim_{x \to -\infty} f(x) = 0,$$

onde um dos limites em (v) foi novamente invocado.

Logo, a função admite uma assíntota (horizontal) y = 0 em $x \sim \pm \infty$.

Com as informações acima, pode-se esboçar o gráfico da função, apresentado na figura 2.

Figura 2: Gráfico de $f(x) = \operatorname{arccot}\left(\frac{x^2}{\sqrt{3}}\right)$ (vermelho) e indicação de reta assíntota (azul).