# **Unit 1: Introduction to data**

Data Collection +
Observational studies & experiments

Sta 104 - Summer2015

Duke University, Department of Statistical Science

May 15, 2015

## 1. Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- Use side-by-side box plots to visualize relationships between numerical and categorical variables

#### **Announcements**

- Piazza participation
- ▶ Lab 1 due Sunday night
- PS 1 due Monday night
- Bring deck of cards to class on Monday

Fram last time...

## Application exercise: 1.1 Scientific studies in the press

See course website for details: http://bit.ly/sta104su15 (10 minutes)

## Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- Use side-by-side box plots to visualize relationships between numerical and categorical variables

## Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- Use side-by-side box plots to visualize relationships between numerical and categorical variables

# Do you see anything out of the ordinary?





# Do you see anything out of the ordinary?



Some people reported very low ages, which might suggest the survey question wasn't clear: romantic kiss or any kiss?

# How are people reporting lower vs. higher values of FB visits?



# How are people reporting lower vs. higher values of FB visits?



Finer scale for lower numbers.

# Describe the spatial distribution of preferred sweetened carbonated beverage drink.



# What is missing in this visualization?



## Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- 2. When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- 7. Use side-by-side box plots to visualize relationships between numerical and categorical variables

# Describing distributions of numerical variables

- Shape: skewness, modality
- ➤ Center: an estimate of a typical observation in the distribution (mean, median, mode, etc.)
  - Notation:  $\mu$ : population mean,  $\bar{x}$ : sample mean
- Spread: measure of variability in the distribution (standard deviation, IQR, range, etc.)
- Unusual observations: observations that stand out from the rest of the data that may be suspected outliers

Which of these is most likely to have a roughly symmetric distribution?

- (a) salaries of a random sample of people from North Carolina
- (b) weights of adult females
- (c) scores on an well-designed exam
- (d) last digits of phone numbers

Which of these is most likely to have a roughly symmetric distribution?

- (a) salaries of a random sample of people from North Carolina
- (b) weights of adult females
- (c) scores on an well-designed exam
- (d) last digits of phone numbers

How do the mean and median of the following two datasets compare?

Dataset 1: 30, 50, 70, 90 Dataset 2: 30, 50, 70, 1000

- (a)  $\bar{x}_1 = \bar{x}_2$ ,  $median_1 = median_2$
- (b)  $\bar{x}_1 < \bar{x}_2$ ,  $median_1 = median_2$
- (c)  $\bar{x}_1 < \bar{x}_2$ ,  $median_1 < median_2$
- (d)  $\bar{x}_1 > \bar{x}_2$ ,  $median_1 < median_2$
- (e)  $\bar{x}_1 > \bar{x}_2$ ,  $median_1 = median_2$

How do the mean and median of the following two datasets compare?

Dataset 1: 30, 50, 70, 90 Dataset 2: 30, 50, 70, 1000

- (a)  $\bar{x}_1 = \bar{x}_2$ ,  $median_1 = median_2$
- (b)  $\bar{x}_1 < \bar{x}_2$ ,  $median_1 = median_2$
- (c)  $\bar{x}_1 < \bar{x}_2$ ,  $median_1 < median_2$
- (d)  $\bar{x}_1 > \bar{x}_2$ ,  $median_1 < median_2$
- (e)  $\bar{x}_1 > \bar{x}_2$ ,  $median_1 = median_2$

- Most commonly used measure of variability is the standard deviation, which roughly measures the average deviation from the mean
  - Notation:  $\sigma$ : population standard deviation, s: sample standard deviation
- Calculating the standard deviation, for a population (rarely, if ever) and for a sample:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{n}}$$
  $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$ 

▶ Square of the standard deviation is called the *variance*.

### More on SD

Why divide by n-1 instead of n when calculating the sample standard deviation?

Why divide by n-1 instead of n when calculating the sample standard deviation?

Lose a "degree of freedom" for using an estimate (the sample mean,  $\bar{x}$ ), in estimating the sample variance/standard deviation.

Why divide by n-1 instead of n when calculating the sample standard deviation?

Lose a "degree of freedom" for using an estimate (the sample mean,  $\bar{x}$ ), in estimating the sample variance/standard deviation.

Why do we use the squared deviation in the calculation of variance?

# Why divide by n-1 instead of n when calculating the sample standard deviation?

Lose a "degree of freedom" for using an estimate (the sample mean,  $\bar{x}$ ), in estimating the sample variance/standard deviation.

# Why do we use the squared deviation in the calculation of variance?

- ➤ To get rid of negatives so that observations equally distant from the mean are weighed equally.
- To weigh larger deviations more heavily.

True / False: The range is always at least as large as the IQR for a given dataset.

- (a) Yes
- (b) No

True / False: The range is always at least as large as the IQR for a given dataset.

- (a) Yes
- (b) No

Range = max - min, IQR = Q3 - Q1

True / False: The range is always at least as large as the IQR for a given dataset.

- (a) Yes
- (b) No

Range = max - min, IQR = Q3 - Q1

Is the range or the IQR more robust to outliers?

True / False: The range is always at least as large as the IQR for a given dataset.

- (a) Yes
- (b) No

Range = max - min, IQR = Q3 - Q1

Is the range or the IQR more robust to outliers?

**IQR** 

## Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- Use side-by-side box plots to visualize relationships between numerical and categorical variables

#### Robust statistics

- Mean and standard deviation are easily affected by extreme observations since the value of each data point contributes to their calculation.
- Median and IQR are more robust.
- ➤ Therefore we choose median&IQR (over mean&SD) when describing skewed distributions.

# Application exercise: 1.2 Distributions of numerical variables

See course website for details: http://bit.ly/sta104su15 (15 minutes)

## Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- Use side-by-side box plots to visualize relationships between numerical and categorical variables

A *box plot* visualizes the median, the quartiles, and suspected outliers. An *outlier* is defined as an observation more than 1.5×IQR away from the quartiles.



# Application exercise: 1.3 Boxplots

See course website for details: http://bit.ly/sta104su15 (10 minutes)

## Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- 5. Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- Use side-by-side box plots to visualize relationships between numerical and categorical variables

What do the widths of the bars represent? What about the heights of the boxes? Is there a relationship between class year and relationship status? What other tools could we use to summarize these data?



## Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables

# 6. Be aware of Simpson's paradox

Use side-by-side box plots to visualize relationships between numerical and categorical variables

A 1991 study by Radelet and Pierce on race and death-penalty (DP) sentences gives the following table:

| Defendant's race | DP | No DP | Total | % DP |
|------------------|----|-------|-------|------|
| Caucasian        | 53 | 430   | 483   |      |
| African American | 15 | 176   | 191   |      |
| Total            | 68 | 606   | 674   |      |

Adapted from Subsection 2.3.2 of A. Agresti (2002), Categorical Data Analysis, 2nd ed., and

A 1991 study by Radelet and Pierce on race and death-penalty (DP) sentences gives the following table:

| Defendant's race | DP | No DP | Total | % DP |
|------------------|----|-------|-------|------|
| Caucasian        | 53 | 430   | 483   | 11%  |
| African American | 15 | 176   | 191   |      |
| Total            | 68 | 606   | 674   |      |

Adapted from Subsection 2.3.2 of A. Agresti (2002), Categorical Data Analysis, 2nd ed., and

A 1991 study by Radelet and Pierce on race and death-penalty (DP) sentences gives the following table:

| Defendant's race | DP | No DP | Total | % DP |
|------------------|----|-------|-------|------|
| Caucasian        | 53 | 430   | 483   | 11%  |
| African American | 15 | 176   | 191   | 7.9% |
| Total            | 68 | 606   | 674   |      |

Adapted from Subsection 2.3.2 of A. Agresti (2002), Categorical Data Analysis, 2nd ed., and

A 1991 study by Radelet and Pierce on race and death-penalty (DP) sentences gives the following table:

| Defendant's race | DP | No DP | Total | % DP |
|------------------|----|-------|-------|------|
| Caucasian        | 53 | 430   | 483   | 11%  |
| African American | 15 | 176   | 191   | 7.9% |
| Total            | 68 | 606   | 674   |      |

Who is more likely to get the death penalty?

Adapted from Subsection 2.3.2 of A. Agresti (2002), Categorical Data Analysis, 2nd ed., and

| Victim's race    | Defendant's race | DP | No DP | Total | % DP |
|------------------|------------------|----|-------|-------|------|
| Caucasian        | Caucasian        | 53 | 414   | 467   |      |
| Caucasian        | African American | 11 | 37    | 48    |      |
| African American | Caucasian        | 0  | 16    | 16    |      |
| African American | African American | 4  | 139   | 143   |      |
| Total            |                  | 68 | 606   | 674   |      |

| Victim's race    | Defendant's race | DP | No DP | Total | % DP  |
|------------------|------------------|----|-------|-------|-------|
| Caucasian        | Caucasian        | 53 | 414   | 467   | 11.3% |
| Caucasian        | African American | 11 | 37    | 48    |       |
| African American | Caucasian        | 0  | 16    | 16    |       |
| African American | African American | 4  | 139   | 143   |       |
| Total            |                  | 68 | 606   | 674   |       |

| Victim's race    | Defendant's race | DP | No DP | Total | % DP  |
|------------------|------------------|----|-------|-------|-------|
| Caucasian        | Caucasian        | 53 | 414   | 467   | 11.3% |
| Caucasian        | African American | 11 | 37    | 48    | 22.9% |
| African American | Caucasian        | 0  | 16    | 16    |       |
| African American | African American | 4  | 139   | 143   |       |
| Total            |                  | 68 | 606   | 674   |       |

| Victim's race    | Defendant's race | DP | No DP | Total | % DP  |
|------------------|------------------|----|-------|-------|-------|
| Caucasian        | Caucasian        | 53 | 414   | 467   | 11.3% |
| Caucasian        | African American | 11 | 37    | 48    | 22.9% |
| African American | Caucasian        | 0  | 16    | 16    | 0%    |
| African American | African American | 4  | 139   | 143   |       |
| Total            |                  | 68 | 606   | 674   |       |

| Victim's race    | Defendant's race | DP | No DP | Total | % DP  |
|------------------|------------------|----|-------|-------|-------|
| Caucasian        | Caucasian        | 53 | 414   | 467   | 11.3% |
| Caucasian        | African American | 11 | 37    | 48    | 22.9% |
| African American | Caucasian        | 0  | 16    | 16    | 0%    |
| African American | African American | 4  | 139   | 143   | 2.8%  |
| Total            |                  | 68 | 606   | 674   |       |

| Victim's race    | Defendant's race | DP | No DP | Total | % DP  |
|------------------|------------------|----|-------|-------|-------|
| Caucasian        | Caucasian        | 53 | 414   | 467   | 11.3% |
| Caucasian        | African American | 11 | 37    | 48    | 22.9% |
| African American | Caucasian        | 0  | 16    | 16    | 0%    |
| African American | African American | 4  | 139   | 143   | 2.8%  |
| Total            |                  | 68 | 606   | 674   |       |

Who is more likely to get the death penalty?

▶ People of one race are more likely to murder others of the same race, murdering a Caucasian is more likely to result in the death penalty, and there are more Caucasian defendants than African American defendants in the sample.

- ▶ People of one race are more likely to murder others of the same race, murdering a Caucasian is more likely to result in the death penalty, and there are more Caucasian defendants than African American defendants in the sample.
- ➤ Controlling for the victim's race reveals more insights into the data, and changes the direction of the relationship between race and death penalty.

- ▶ People of one race are more likely to murder others of the same race, murdering a Caucasian is more likely to result in the death penalty, and there are more Caucasian defendants than African American defendants in the sample.
- ➤ Controlling for the victim's race reveals more insights into the data, and changes the direction of the relationship between race and death penalty.
- ➤ This phenomenon is called *Simpson's Paradox*: An association, or a comparison, that holds when we compare two groups can disappear or even be reversed when the original groups are broken down into smaller groups according to some other feature (a confounding/lurking variable).

### Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- 7. Use side-by-side box plots to visualize relationships between numerical and categorical variables

### 3. Summary

How do drinking habits of vegetarian vs. non-vegetarian students compare?



### Housekeeping

#### 2. Main ideas

- 1. Always start your exploration with a visualization
- When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
  - 6. Be aware of Simpson's paradox
- Use side-by-side box plots to visualize relationships between numerical and categorical variables

### 3. Summary

- 1. Always start your exploration with a visualization
- 2. When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
- 4. Use box plots to display quartiles, median, and outliers
- Use mosaic plots for visualizing relationship between two categorical variables
- 6. Be aware of Simpson's paradox
- 7. Use side-by-side box plots to visualize relationships between numerical and categorical variables