

FCC Measurement/Technical Report on

Bluetooth Low Energy Module with passive NFC Tag functionality NINA-B1

FCC ID: XPYNINAB1

IC: 8595A-NINAB1

Test Report Reference: MDE_MR&D_1701_FCCa_rev01

Geschäftsführer/

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0

Managing Directors: Frank Spiller Bernhard Retka F +49 (0) 2102 749 350 Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554

USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary / Signatures	5
2	Administrative Data	7
2.1	Testing Laboratory	7
2.2	Project Data	7
2.3	Applicant Data	7
2.4	Manufacturer Data	7
3	Test object Data	8
3.1	General EUT Description	8
3.2	EUT Main components	9
3.3	Ancillary Equipment	9
3.4	Auxiliary Equipment	10
3.5 3.6	EUT Setups Operating Modes	10 10
3.7	Product labelling	10
4	Test Results	11
- 4.1	Peak Power Output	11
4.2	Transmitter Spurious Radiated Emissions	13
4.3	Band Edge Compliance Radiated	18
5	Test Equipment	20
6	Antenna Factors, Cable Loss and Sample Calculations	22
6.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	22
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	23
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	24
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	25
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	26
6.6	Antenna EMCO 3160-10 (18 GHz – 26.5 GHz)	27
7	Setup Drawings	28
8	Measurement Uncertainties	29
9	Photo Report	29

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note 1: (DTS Equipment)

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v04, 2017-04-05".

ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

TEST REPORT REFERENCE: MDE_MR&D_1701_FCCa_rev01

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (1)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	-	_

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b)	(3)	
Peak Power Output			
The measurement was performed according to ANSI C63.10		Final Result	
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Measurement method	1		
Bluetooth LE, high, conducted	S07_BD01	Passed	Passed
Bluetooth LE, low, conducted	S07_BD01	Passed	Passed
Bluetooth LE, mid, conducted	S07_BD01	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)		
Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63	R 10	Final Re	eult
The measurement was performed according to ANSI Co.	7.10	i iliai ixe	-suit
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Measurement range			
Bluetooth LE, high, 30 MHz - 1 GHz Remark: integral antenna [ANT1]	S01_AA01	Passed	Passed
Bluetooth LE, high, 1 GHz - 26 GHz Remark: integral antenna [ANT1]	S01_AA01	Passed	Passed
Bluetooth LE, low, 1 GHz - 26 GHz Remark: integral antenna [ANT1]	S01_AA01	Passed	Passed
Bluetooth LE, mid, 1 GHz - 26 GHz Remark: integral antenna [ANT1]	S01_AA01	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)		
Band Edge Compliance Radiated			
The measurement was performed according to ANSI C63	3.10	Final Re	esult
OP-Mode	Setup	FCC	IC
Radio Technology, Operating Frequency, Band Edge			

N/A: Not applicable N/P: Not performed

Bluetooth LE, high, high

Remark: integral antenna [ANT1]

Remark: This test report contains results of a partial test plan that was defined to show that the module still complies with the applicable FCC rules using the new antenna

Passed

S01_AA01 Passed

Revision History

Report version control					
Version	Release date	Change Description	Version validity		
Initial	2017-10-27		invalid		
rev01	2017-11-28	Added RSE values on page 15	valid		

(responsible for accreditation scope)
Dipl.-Ing. Daniel Gall

(responsible for testing and report)
Dipl.-Ing. Imad Hjije

#layers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-00

Responsible for accreditation scope: Dipl.-Ing. Daniel Gall

Report Template Version: 2016-06-07

2.2 PROJECT DATA

Responsible for testing and report: M. Sc. Imad Hjije

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2017-11-28

Testing Period: 2017-09-04 to 2017-09-06

2.3 APPLICANT DATA

Company Name: u-blox

Address: Zürcherstrasse 68

8800 Thalwil

Switzerland

Contact Person: Mr. Olof Viklund

2.4 MANUFACTURER DATA

Company Name: See Applicant Data

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Module supporting BTLE and NFC (passive)		
Product name	NINA-B1		
Туре	NINA-B111/NINA-B112		
Declared EUT data by	the supplier		
Voltage Type	DC		
Voltage Level	Evaluation board: 5.0 V Module: 3.3 V		
Tested Modulation Type	GFSK Modulation, 1-DH1 packets		
General product description	The EUT is an intentional radiator in the license-free 2.4 GHz ISM band.		
Specific product description for the EUT	The NINA-B1 series are small stand-alone Bluetooth low energy modules working in 2.4 GHz band only. They are offered in two versions; a version with an RF pin, and a version with an interna PIFA antenna. The only supported data rate is 1Mbps.		
The EUT provides the following ports:	Evaluation board: - Enclosure - USB (1m, shielded USB cable connected for radiated tests) - DC in (AUX 1 connected for all tests) - 50 Ohm Antenna Port (only NINA-B111)		
Tested data rates:	1 Mbps		
Duty Cycle:	The duty cycle in the used test modes for all tests was 100 %.		
Special software used for testing:	The EUT was flashed with a special software which allowed to set the required operating mode via three buttons on the evaluation board (EVK1 / EVK2)		

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
ah01	DE1015042ah01	Sample with permanent 50	
		Ohm connector	
Sample Parameter	Val	ue	
HW Version	02		
Integral Antenna	No		
Serial No.	683D4CA6EB00AC70200		
SW Version	2.0.0.17		
Comment	Module mounted on the evaluation board "EVK1" with 50 Ohm		
	antenna connector.		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless, Ancillary Equipment can influence the test results.

Sample Name	Detailed Description		
Device	Details (Manufacturer, Type Model, OUT Code)	Description	
ANT1	External Antenna		
External Antenna Inside- 2400	Walsin, RFPCA501012IMAB3xx, - External antenna for NINA-B111		
EVK1	EVK for NINA-B111 (external antenna)		
EVK-NINA-B111	u-blox Malmo, EVK-NINA-B111, Evaluation bo S/N: 10000000598229000000, HW: 2.0; NINA-B111 SW: J-Link OB-SAM3U128 V3		

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device Details (Manufacturer, HW, SW, S/N)		Description	
Power Supply	Nordic Power, -, -, -	9820A-120090	

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale	
S01_AH01	ANT1, ah01, EVK1, Power Supply,	NINA-B111 with external antenna (radiated tests)	
S02_AH01	ah01, EVK1, Power Supply,	NINA-B111 without external antenna (conducted tests)	

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1 TEST CHANNELS

3.7 PRODUCT LABELLING

3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

Resolution Bandwidth (RBW): 1 MHzVideo Bandwidth (VBW): 3 MHz

Trace: MaxholdSweeps: 2000Sweeptime: 5 msDetector: Peak

4.1.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

TEST REPORT REFERENCE: MDE_MR&D_1701_FCCa_rev01 Page 11 of 29

4.1.3 TEST PROTOCOL

Ambient temperature: 23 °C
Air Pressure: 1007 hPa
Humidity: 45 %

BT LE

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]
2.4 GHz ISM	0	2402.0	3.94	30.0	26.06
	19	2440.0	3.74	30.0	26.26
	39	2480.0	3.94	30.0	26.06

Remark: Please see next sub-clause for the measurement plot.

4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

4.1.5 TEST EQUIPMENT USED

BT Test Lab.

4.2 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHzIF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms

TEST REPORT REFERENCE: MDE_MR&D_1701_FCCa_rev01

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 45 ° around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

Detector: Peak, AverageIF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 1 MHz - Measuring time: 1 s

4.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.2.3 TEST PROTOCOL

Ambient temperature: 24–27 °C

Air Pressure: 1006–1007 hPa Humidity: 43–47 %

BT low En	p: S02_AH01	Applied duty cycle correction (AV) [dB]: 0.0						
	Ch. Center	Spurious	Spurious				Margin to	
Ch. No.	Freq. [MHz]	Freq. [MHz]	Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Limit [dB]	Limit Type
0	2402	2273.9	44.85	AV	1000	54.00	9.15	RB
0	2402	2274.3	56.50	PK	1000	74.00	17.50	RB
0	2402	4803.8	40.06	AV	1000	54.00	13.94	RB
0	2402	4804	57.45	PK	1000	74.00	16.55	RB
39	2480	121.80	31.72	QP	120	43.50	11.78	RB
39	2480	123.27	32.22	QP	120	43.50	11.28	RB
39	2480	2483.5	38.86	AV	1000	54.00	15.14	RB
39	2480	2483.5	61.84	PK	1000	74.00	12.16	RB
39	2480	2487.7	58.13	PK	1000	74.00	15.87	RB
39	2480	2487.8	40.94	AV	1000	54.00	13.06	RB
19	2440	1599.7	36.52	AV	1000	54.00	17.48	RB
19	2440	1599.7	58.72	PK	1000	74.00	15.28	RB

Remark: Please see next sub-clause for the measurement plot.

4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Setup S01_AH01, Channel 39, 2480 MHz, 30 MHz - 1 GHz

Setup S01_AH01, Channel 39, 2480 MHz, 1 GHz - 24 GHz

4.2.5 TEST EQUIPMENT USED

Radiated Emissions

Page 18 of 29

4.3 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

4.3.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

4.3.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

TEST REPORT REFERENCE: MDE_MR&D_1701_FCCa_rev01

4.3.3 TEST PROTOCOL

Ambient temperature: 24–27 °C Air Pressure: 1006–1007 hPa

Humidity: 43-47 %

BT LE	GFSK			Applied duty cycle correction (AV) [dB]: 0.0					
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec -tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type	Setup
39	2480	2483.5	61.8	PEAK	1000	74.0	12.2	BE	S01_AH01
39	2480	2483.5	38.8	AV	1000	54.0	15.2	BE	S01_AH01

Remark: Please see next sub-clause for the measurement plot.

4.3.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Setup: S01_AA01

4.3.5 TEST EQUIPMENT USED

Radiated Emissions

5 TEST EQUIPMENT

1 Conducted Emissions Shielded Room 02

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	Opus10 TPR (8253.00)	sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.2	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2016-05	2019-05
1.3	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
1.4	-1.5-KK	High Pass Filter	Trilithic	9942012		
1.5	Room	8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2015-06	2018-06
1.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.7		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.8	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
1.9	3160-09		EMCO Elektronic GmbH	00083069		
1.10	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.11	-1.5-KK	High Pass Filter	Trilithic	9942011		
1.12		AC Power Source	Chroma ATE INC.	64040001304		
1.13	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.14	HL 562 Ultralog	Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.15	3160-10		EMCO Elektronic GmbH	00086675		
1.16	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
1.17	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2014-11	2017-11
1.18	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
1.19	ESR 7		Rohde & Schwarz	101424	2016-11	2018-11
1.20	JS4-00101800-		Miteq	896037		

TEST REPORT REFERENCE: MDE_MR&D_1701_FCCa_rev01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.21	AS 620 P	Antenna mast	HD GmbH	620/37		
	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
1.23	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
1.24	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
1.25	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

Radiated EmissionsLab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
_	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2016-09	2017-09
	EX520	Digital Multimeter 12 (Multimeter)	Extech Instruments Corp	05157876	2016-02	2018-02
1.28	NRV Z1 A	Power Sensor	Rohde & Schwarz	832279/013	2017-09	2018-09
1.29	Opus10 THI (8152.00)	T/H Logger 15	Lufft Mess- und Regeltechnik GmbH	13985	2017-04	2019-04
1.30	TOCT Switching Unit		7layers, Inc.	040107		
1.31	KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2016-03	2018-03
1.32	ADU 200 Relay Box 7	used for automated testing (EMMI) only	Ontrak Control Systems Inc	A04380		
1.33	CBT	IL BT RF Test Solution	Rohde & Schwarz	100302	2017-02	2018-02
1.34	NRVD	Powermeter	Rohde & Schwarz	832025/059	2017-09	2018-09
1.35	FSIQ26	Signal Analyser	Rohde & Schwarz	832695/007	2016-09	2018-09
1.36	SMP02	Signal Generator SMP	Rohde & Schwarz	833286/0014	2016-05	2019-05
1.37	SMIQ03B	Signal Generator	Rohde & Schwarz	832870/017	2016-06	2019-06
1.38	СВТ	Bluetooth Tester	Rohde & Schwarz	100589	2015-01	2018-01
1.39	NGSM 32/10	Power Supply	Rohde & Schwarz	2725	2017-06	2019-06

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

-	
Frequency	Corr.
MHz	dB
0,15	10,1
5 7	10,3
7	10,5
10	10,5
12	10,7
14	10,7
16	10,8
18	10,9
20	10,9
22	11,1
24	11,1
26	11,2
28	11,2
30	11,3

cable
loss
(incl. 10
dB
atten-
uator)
dB
10,0
10,2
10,3
10,3
10,4
10,4
10,4
10,5
10,5
10,6
10,6
10,7
10,7
10,8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	1	
	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0,009	20,50	-79,6
0,003	20,45	-79,6
0,015	20,37	-79,6
0,013	20,36	-79,6
0,025	20,38	-79,6
0,03	20,32	-79,6
0,05	20,35	-79,6
0,08	20,30	-79,6
0,1	20,20	-79,6
0,2	20,17	-79,6
0,3	20,14	-79,6
0,49	20,12	-79,6
0,490001	20,12	-39,6
0,5	20,11	-39,6
0,8	20,10	-39,6
1	20,09	-39,6
2	20,08	-39,6
3	20,06	-39,6
4	20,05	-39,5
5	20,05	-39,5
6	20,02	-39,5
8	19,95	-39,5
10	19,83	-39,4
12	19,71	-39,4
14	19,54	-39,4
16	19,53	-39,3
18	19,50	-39,3
20	19,57	-39,3
22	19,61	-39,3
24	19,61	-39,3
26	19,54	-39,3 -39,3
28	19,46	-39,2
30	19,73	-39,1

`		<u> </u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-80	300	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,1	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,1	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,2	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,2	0,1	-40	30	3
0,3	0,1	0,3	0,1	-40	30	3
0,4	0,1	0,3	0,1	-40	30	3
- / -	- / -	- , -	- /-			

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m)$		
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18,6	0,6
50	6,0	0,9
100	9,7	1,2
150	7,9	1,6
200	7,6	1 9
250	9,5	1,9 2,1
300	11,0	2,3
350	12,4	2,6
400	13,6	2,6 2,9
450	14,7	
500	15,6	3,2
550	16,3	3,5
600	17,2	3,5
650	18,1	3,1 3,2 3,5 3,5 3,6
700	18,5	3,6
750	19,1	4,1
800	19,6	4,1
850	20,1	4,4
900	20,8	4,7
950	21,1	4,8
1000	21,6	4,9

			1			
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,29	0,04	0,23	0,02	0,0	3	3
0,39	0,09	0,32	0,08	0,0	3	3
0,56	0,14	0,47	0,08	0,0	3	3
0,73	0,20	0,59	0,12	0,0	3	3
0,84	0,21	0,70	0,11	0,0	3	3
0,98	0,24	0,80	0,13	0,0	3	3
1,04	0,26	0,89	0,15	0,0	3	3
1,18	0,31	0,96	0,13	0,0	3	3
1,28	0,35	1,03	0,19	0,0	3	3
1,39	0,38	1,11	0,22	0,0	3	3
1,44	0,39	1,20	0,19	0,0	3	3
1,55	0,46	1,24	0,23	0,0	3	3
1,59	0,43	1,29	0,23	0,0	3	3
1,67	0,34	1,35	0,22	0,0	3	3
1,67	0,42	1,41	0,15	0,0	3	3
1,87	0,54	1,46	0,25	0,0	3	3
1,90	0,46	1,51	0,25	0,0	3	3
1,99	0,60	1,56	0,27	0,0	З	3
2,14	0,60	1,63	0,29	0,0	3	3
2,22	0,60	1,66	0,33	0,0	З	3
2,23	0,61	1,71	0,30	0,0	3	3

 $(d_{Limit} = 10 m)$

(
30	18,6	-9,9	0,29	0,04	0,23	0,02	-10,5	10	3
50	6,0	-9,6	0,39	0,09	0,32	0,08	-10,5	10	3
100	9,7	-9,2	0,56	0,14	0,47	0,08	-10,5	10	3
150	7,9	-8,8	0,73	0,20	0,59	0,12	-10,5	10	3
200	7,6	-8,6	0,84	0,21	0,70	0,11	-10,5	10	3
250	9,5	-8,3	0,98	0,24	0,80	0,13	-10,5	10	3
300	11,0	-8,1	1,04	0,26	0,89	0,15	-10,5	10	3
350	12,4	-7,9	1,18	0,31	0,96	0,13	-10,5	10	3
400	13,6	-7,6	1,28	0,35	1,03	0,19	-10,5	10	3
450	14,7	-7,4	1,39	0,38	1,11	0,22	-10,5	10	3
500	15,6	-7,2	1,44	0,39	1,20	0,19	-10,5	10	3
550	16,3	-7,0	1,55	0,46	1,24	0,23	-10,5	10	3
600	17,2	-6,9	1,59	0,43	1,29	0,23	-10,5	10	3
650	18,1	-6,9	1,67	0,34	1,35	0,22	-10,5	10	3
700	18,5	-6,8	1,67	0,42	1,41	0,15	-10,5	10	3
750	19,1	-6,3	1,87	0,54	1,46	0,25	-10,5	10	3
800	19,6	-6,3	1,90	0,46	1,51	0,25	-10,5	10	3
850	20,1	-6,0	1,99	0,60	1,56	0,27	-10,5	10	3
900	20,8	-5,8	2,14	0,60	1,63	0,29	-10,5	10	3
950	21,1	-5,6	2,22	0,60	1,66	0,33	-10,5	10	3
1000	21,6	-5,6	2,23	0,61	1,71	0,30	-10,5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24,4	-19,4
2000	28,5	-17,4
3000	31,0	-16,1
4000	33,1	-14,7
5000	34,4	-13,7
6000	34,7	-12,7
7000	35,6	-11,0

cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0,99	0,31	-21,51	0,79	
1,44	0,44	-20,63	1,38	
1,87	0,53	-19,85	1,33	
2,41	0,67	-19,13	1,31	
2,78	0,86	-18,71	1,40	
2,74	0,90	-17,83	1,47	
2,82	0,86	-16,19	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31,0	-23,4
4000	33,1	-23,3
5000	34,4	-21,7
6000	34,7	-21,2
7000	35,6	-19,8

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	13.247
0,47	1,87	0,53	-27,58	1,33	
0,56	2,41	0,67	-28,23	1,31	
0,61	2,78	0,86	-27,35	1,40	
0,58	2,74	0,90	-26,89	1,47	
0,66	2,82	0,86	-25,58	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35,6	-57,3
8000	36,3	-56,3
9000	37,1	-55,3
10000	37,5	-56,2
11000	37,5	-55,3
12000	37,6	-53,7
13000	38,2	-53,5
14000	39,9	-56,3
15000	40,9	-54,1
16000	41,3	-54,1
17000	42,8	-54,4
18000	44,2	-54,7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0,56	1,28	-62,72	2,66	0,94	1,46
0,69	0,71	-61,49	2,84	1,00	1,53
0,68	0,65	-60,80	3,06	1,09	1,60
0,70	0,54	-61,91	3,28	1,20	1,67
0,80	0,61	-61,40	3,43	1,27	1,70
0,84	0,42	-59,70	3,53	1,26	1,73
0,83	0,44	-59,81	3,75	1,32	1,83
0,91	0,53	-63,03	3,91	1,40	1,77
0,98	0,54	-61,05	4,02	1,44	1,83
1,23	0,49	-61,51	4,17	1,51	1,85
1,36	0,76	-62,36	4,34	1,53	2,00
1,70	0,53	-62,88	4,41	1,55	1,91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF	
	EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40,2	-23,5
18500	40,2	-23,2
19000	40,2	-22,0
19500	40,3	-21,3
20000	40,3	-20,3
20500	40,3	-19,9
21000	40,3	-19,1
21500	40,3	-19,1
22000	40,3	-18,7
22500	40,4	-19,0
23000	40,4	-19,5
23500	40,4	-19,3
24000	40,4	-19,8
24500	40,4	-19,5
25000	40,4	-19,3
25500	40,5	-20,4
26000	40,5	-21,3
26500	40,5	-21,1

•		,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0,72	-35,85	6,20	2,81	2,65
0,69	-35,71	6,46	2,76	2,59
0,76	-35,44	6,69	3,15	2,79
0,74	-35,07	7,04	3,11	2,91
0,72	-34,49	7,30	3,07	3,05
0,78	-34,46	7,48	3,12	3,15
0,87	-34,07	7,61	3,20	3,33
0,90	-33,96	7,47	3,28	3,19
0,89	-33,57	7,34	3,35	3,28
0,87	-33,66	7,06	3,75	2,94
0,88	-33,75	6,92	3,77	2,70
0,90	-33,35	6,99	3,52	2,66
0,88	-33,99	6,88	3,88	2,58
0,91	-33,89	7,01	3,93	2,51
0,88	-33,00	6,72	3,96	2,14
0,89	-34,07	6,90	3,66	2,22
0,86	-35,11	7,02	3,69	2,28
0,90	-35,20	7,15	3,91	2,36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (18 GHZ - 26.5 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26,5	43,4	-11,2
27,0	43,4	-11,2
28,0	43,4	-11,1
29,0	43,5	-11,0
30,0	43,5	-10,9
31,0	43,5	-10,8
32,0	43,5	-10,7
33,0	43,6	-10,7
34,0	43,6	-10,6
35,0	43,6	-10,5
36,0	43,6	-10,4
37,0	43,7	-10,3
38,0	43,7	-10,2
39,0	43,7	-10,2
40,0	43,8	-10,1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4,4				-15,6	3	0,5
4,4				-15,6	3	0,5
4,5				-15,6	3	0,5
4,6				-15,6	3	0,5
4,7				-15,6	3	0,5
4,7				-15,6	3	0,5
4,8				-15,6	3	0,5
4,9				-15,6	3	0,5
5,0				-15,6	3	0,5
5,1				-15,6	3	0,5
5,1				-15,6	3	0,5
5,2				-15,6	3	0,5
5,3				-15,6	3	0,5
5,4				-15,6	3	0,5
5,5				-15,6	3	0,5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolarisation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 SETUP DRAWINGS

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

Drawing 2: Setup for conducted radio tests.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

9 PHOTO REPORT

Please see separate photo report.