Michael Alexandre Costa

Memórias Transacionais

Trabalho Individual apresentado ao Programa de Pós-Graduação em Computação da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Mestre em Ciência da Computação

Orientador: Prof. Dr. André Rauber Du Bois Coorientador: Prof. Dr. Mauricio Lima Pilla

RESUMO

COSTA, Michael Alexandre. **Memórias Transacionais**. 2018. 16 f. Trabalho Individual (Mestrado em Ciência da Computação) — Programa de Pós-Graduação em Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2018.

...

Palavras-Chave: memótia transacional; numa; uma; escalonamento

ABSTRACT

COSTA, Michael Alexandre. **Transacional Memory**. 2018. 16 f. Trabalho Individual (Mestrado em Ciência da Computação) — Programa de Pós-Graduação em Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2018.

Keywords: transacional memory; numa; uma; scheduler

LISTA DE FIGURAS

LISTA DE TABELAS

LISTA DE ABREVIATURAS E SIGLAS

SMP Symmetric Multi-Processor

NUMA Non-Uniform Memory Access

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

ABNT Associação Brasileira de Normas Técnicas

SUMÁRIO

1 1.1	INTRODUÇÃO
2 2.1	MEMÓRIA TRANSACIONAL
3	ESCALONAMENTO DE TRANSAÇÕES
4	ESCALONADORES NUMA
5	ESCALONAMENTO DE TRANSAÇÕES APLICADO À NUMA 12
6	DISCUSSÕES
7	CONCLUSÃO
RE	FERÊNCIAS 15
ΔΝ	FXO A UM ANEXO

1 INTRODUÇÃO

...

1.1 Uma subseção

2 MEMÓRIA TRANSACIONAL

Memória Transacional, ou *Transactional Memory* (TM), é uma classe de mecanismos de sincronização que fornece uma execução atômica e isolada de alterações em um conjunto de dados compartilhados. Estas estão sendo desenvolvidas para que no futuro tornem-se o principal meio de fazer a sincronização em um programa concorrente, substituindo a sincronização baseada em *locks* (MORESHET; BAHAR; HER-LIHY, 2006). As TMs podem ser implementadas em *software* (STM), em *hardware* (HTM) ou ainda em uma versão híbrida de *hardware* e *software*.

Na programação utilizando STMs, todo o acesso à memória compartilhada é realizado dentro de transações e todas as transações são executadas atomicamente em relação a transações concorrentes.

A principal vantagem na programação usando STM é que o programador apenas delimita as seções criticas e não é necessário preocupar-se com a aquisição e liberação de *locks*. Os *locks*, quando utilizados de forma incorreta, podem levar a problemas como *deadlocks* (BANDEIRA, 2010).

2.1 Propriedades

Transação é uma sequência finita de escritas e leituras na memória executada por uma *thread* (HERLIHY; ELIOT; MOSS, 1993), e deve satisfazer três propriedades:

- Atomicidade: cada transação faz uma sequência de mudanças provisórias na memória compartilhada. Quando a transação é concluída, pode ocorrer um commit, tornando suas mudanças visíveis a outras threads instantaneamente, ou pode ocorrer um abort, fazendo com que suas alterações sejam descartadas;
- Consistência: as transações devem garantir que um sistema consistente deve ser mantido consistente. Esta propriedade esta relacionada com o conceito de invariância;
- **Isolamento**: as transações não interferem nas execuções de outras transações, assim parecendo que elas são executadas serialmente. Uma transação não

observa o estado intermediário de outra.

3 ESCALONAMENTO DE TRANSAÇÕES

4 ESCALONADORES NUMA

5 ESCALONAMENTO DE TRANSAÇÕES APLICADO À NUMA

6 DISCUSSÕES

7 CONCLUSÃO

REFERÊNCIAS

BANDEIRA, R. de Leão. **Compilador para a linguagem CMTJava**. 2010. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) — Universidade Federal de Pelotas.

HERLIHY, M.; ELIOT, J.; MOSS, B. Transactional Memory: Architectural Support for Lock-Free Data Structures. In: PROC. OF THE 20TH ANNUAL INTL. SYMPOSIUM ON COMPUTER ARCHITECTURE, 1993. **Anais...** [S.I.: s.n.], 1993. p.289–300.

MORESHET, T.; BAHAR, R. I.; HERLIHY, M. Energy-Aware Microprocessor Synchronization: Transactional Memory vs. Locks. In: WORKSHOP ON MEMORY PERFORMANCE ISSUES, 2006. **Proceedings...** [S.I.: s.n.], 2006.

ANEXO A UM ANEXO