Exercise 1 Find

$$\lim_{x \to 0} f(x) = \boxed{1}.$$

where

$$f(x) = \begin{cases} \cos(x) & x \le 0, \\ x^2 + 3x + 1 & x > 0. \end{cases}$$

Hint: Both pieces of f(x), $\cos(x)$, for $x \leq 0$, and $x^2 + 3x + 1$, for x > 0, are continuous for all x. However, for the limit $\lim_{x \to 0} f(x)$ to exist, both the left-hand and the right-hand limits of f(x) at 0 must exist and be equal.

Hint: Take a look at the graph of the function

Hint: Evaluating $\lim_{x\to 0^+} f(x)$ we see that it is 1. This follows because for x>0, we are on the piece of f(x) given by x^2+3x+1 and the limit $\lim_{x\to 0} \left(x^2+3x+1\right)=\left(\lim_{x\to 0}(x)\right)^2+3\cdot\lim_{x\to 0}(x)+\lim_{x\to 0}(1)=1$, certainly. On the other hand, evaluating $\lim_{x\to 0^-} f(x)$ we see it is equal to 1. This follows because, for $x\le 0$, we are on the piece of f(x) given by $\cos(x)$ and the limit $\lim_{x\to 0}\cos(x)=1$, certainly. These are equal, so the limit exists and is equal to 1.