Aachen, June, 2025 SWS: V3/Ü1, ECTS: 6

Professor Dr.-Ing. Stefan Kowalewski

Julius Kahle, M.Sc. RWTH

Exercise for

Embedded Systems

Summer Term 2025

Sheet 4: Real Time

Exercise 1: Basics

- Name the two requirements needed for real time.
- Expain the terms
 - Hard real time
 - Soft real time

Exercise 2: OSEK

- Sketch the extended OSEK task model
- How many processes and resources are needed for
 - Deadlock
 - Priority Inversion

Exercise 3: Real Time and Resources

Given are four tasks that are all executed only once.

Start denotes at which point in time the task enters the ready state.

Run denotes how many time units the task whiches to run without doing any requests.

Req denotes that a tasks requests exclusive access to a system resource.

T denotes that a tasks terminates releasing all resources.

DL denotes the absolute deadline, i.e., the point in time when the computation must be finished.

Schedule these tasks (sorted by prioriy; first task has highest priority)

Task	Execution	Deadline (absolute)
Task A	Start @ 5 runs 1 Req. runs 1 T	DL @ 10
Task B	Start @ 3 runs 1 T	DL @ 5 DL @ 13
Task C	Start @ 5 runs 3 T	DL @ 13
Task D	Start @ 1 runs 3 Req. runs 3 T	DL @ 13

using

- Cooperative scheduling
- Preemptive scheduling
- with priority inheritance protocol
- with priority ceiling protocol

Exercise 4: Periodic Scheduling

Use earliest deadline first to schedule this task system:

Why is the following task system not schedulable?