

THE F-SIGNATURE OF AN AFFINE SEMIGROUP RING

ANURAG K. SINGH

Dedicated to Professor Kei-ichi Watanabe on the occasion of his sixtieth birthday

ABSTRACT. We prove that the F-signature of an affine semigroup ring of positive characteristic is always a rational number, and describe a method for computing this number. We use this method to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings. Our technique involves expressing the F-signature of an affine semigroup ring as the difference of the Hilbert-Kunz multiplicities of two monomial ideals, and then using Watanabe's result that these Hilbert-Kunz multiplicities are rational numbers.

1. INTRODUCTION

Let (R, \mathfrak{m}) be a Cohen-Macaulay local or graded ring of characteristic $p > 0$, such that the residue field R/\mathfrak{m} is perfect. We assume that R is reduced and F-finite. Throughout q shall denote a power of p , i.e., $q = p^e$ for $e \in \mathbb{N}$. Let

$$R^{1/q} \approx R^{a_q} \oplus M_q$$

where M_q is an R -module with no free summands. The number a_q is unchanged when we replace R by its \mathfrak{m} -adic completion, and hence is well-defined by the Krull-Schmidt theorem. In [HL] Huneke and Leuschke define the *F-signature* of R as

$$s(R) = \lim_{q \rightarrow \infty} \frac{a_q}{q^{\dim R}},$$

provided this limit exists. In this note we study the F-signature of normal monomial rings, and our main result is:

Theorem 1.1. *Let K be a perfect field of positive characteristic, and R be a normal subring of a polynomial ring $K[x_1, \dots, x_n]$ which is generated, as a K -algebra, by monomials in the variables x_1, \dots, x_n . Then the F-signature $s(R)$ exists and is a positive rational number.*

Moreover, $s(R)$ depends only on the semigroup of monomials generating R and not on the characteristic of the perfect field K .

We also develop a general method for computing $s(R)$ for monomial rings, and use it to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings.

In general, it seems reasonable to conjecture that the limit $s(R)$ exists and is a rational number. Huneke and Leuschke proved that the limit exists if R is a Gorenstein ring, [HL, Theorem 11]. They also proved that a ring R is weakly

This material is based upon work supported in part by the National Science Foundation under grants DMS-0070268 and DMS-0300600.

F-regular whenever the limit is positive, and this was extended by Aberbach and Leuschke in [AL]:

Theorem 1.2 (Huneke-Leuschke, Aberbach-Leuschke). *Let (R, \mathfrak{m}) be an F -finite reduced Cohen-Macaulay ring of characteristic $p > 0$. Then R is strongly F -regular if and only if*

$$\limsup_{q \rightarrow \infty} \frac{a_q}{q^{\dim R}} > 0.$$

Further results on the existence of the F -signature are obtained by Aberbach and Enescu in the recent preprint [AE]. Also, the work of Watanabe and Yoshida [WY] and Yao [Ya] is closely related to the questions studied here.

We mention that a graded R -module decomposition of $R^{1/q}$ was used by Peskine-Szpiro, Hartshorne, and Hochster, to construct small Cohen-Macaulay modules for R in the case where R is an \mathbb{N} -graded ring of dimension three, finitely generated over a field R_0 of characteristic $p > 0$, see [Ho3, §5 F]. The relationship between the R -module decomposition of $R^{1/q}$ and the singularities of R was investigated in the paper [SV].

2. SEMIGROUP RINGS

The semigroup of nonnegative integers will be denoted by \mathbb{N} . Let x_1, \dots, x_n be variables over a field K . By a *monomial* in the variables x_1, \dots, x_n , we will mean an element $x_1^{h_1} \cdots x_n^{h_n} \in K[x_1, \dots, x_n]$ where $h_i \in \mathbb{N}$. We frequently switch between semigroups of monomials in x_1, \dots, x_n and subsemigroups of \mathbb{N}^n , where we identify a monomial $x_1^{h_1} \cdots x_n^{h_n}$ with $(h_1, \dots, h_n) \in \mathbb{N}^n$. A semigroup M of monomials is *normal* if it is finitely generated, and whenever a, b and c are monomials in M such that $ab^k = c^k$ for some positive integer k , then there exists a monomial $\alpha \in M$ with $\alpha^k = a$. It is well-known that a semigroup M of monomials is normal if and only if the subring $K[M] \subseteq K[x_1, \dots, x_n]$ is a normal ring, see [Ho1, Proposition 1].

A semigroup M of monomials is *full* if whenever a, b and c are monomials such that $ab = c$ and $b, c \in M$, then $a \in M$. By [Ho1, Proposition 1], a normal semigroup of monomials is isomorphic (as a semigroup) to a full semigroup of monomials in a possibly different set of variables.

Lemma 2.1. *Let $A = K[x_1, \dots, x_n]$ be a polynomial ring over a field K , and $R \subseteq A$ be a subring generated by a full semigroup of monomials. Let \mathfrak{m} denote the homogeneous maximal ideal of R , and assume that R contains a monomial μ in which each variable x_i occurs with positive exponent. For positive integers t , let \mathfrak{a}_t denote the ideal of R generated by monomials in R which do not divide μ^t .*

- (1) *The ideals \mathfrak{a}_t are irreducible and \mathfrak{m} -primary, and the image of μ^t generates the socle of the ring R/\mathfrak{a}_t .*
- (2) *The ideals \mathfrak{a}_t form a non-increasing sequence $\mathfrak{a}_1 \supseteq \mathfrak{a}_2 \supseteq \mathfrak{a}_3 \supseteq \dots$ which is cofinal with the sequence $\mathfrak{m} \supseteq \mathfrak{m}^2 \supseteq \mathfrak{m}^3 \supseteq \dots$*
- (3) *Let M be a finitely generated R -module with no free summands. Then $\mu^t M \subseteq \mathfrak{a}_t M$ for all $t \gg 0$.*
- (4) *Let K be a perfect field of characteristic $p > 0$, and $R^{1/q} \approx R^{a_q} \oplus M_q$ be an R -module decomposition of $R^{1/q}$ where M_q has no free summands. Then*

$$a_q = \ell \left(\frac{R}{\mathfrak{a}_t^{[q]} :_R \mu^{tq}} \right) \quad \text{for all } t \gg 0.$$

Proof. (1) It suffices to consider $t = 1$ and $\mathfrak{a} = \mathfrak{a}_1$. Every non-constant monomial in R has a suitably high power which does not divide μ , so \mathfrak{a} is \mathfrak{m} -primary. If $\alpha \in R$ is any monomial of positive degree, then $\alpha\mu \in \mathfrak{a}$, and so $\mathfrak{m} \subseteq \mathfrak{a} :_R \mu$. Also $\mu \notin \mathfrak{a}$, so we conclude that $\mathfrak{a} :_R \mu = \mathfrak{m}$. Since \mathfrak{a} is a monomial ideal, the socle of R/\mathfrak{a} is spanned by the images of some monomials. If $\theta \in R$ is a monomial whose image is a nonzero element of the socle of R/\mathfrak{a} , then $\mu = \beta\theta$ for a monomial $\beta \in R$. If $\beta \in \mathfrak{m}$ then $\mu \in \mathfrak{m}\theta \subseteq \mathfrak{a}$, a contradiction. Consequently we must have $\beta = 1$, i.e., $\theta = \mu$.

(2) Since each x_i occurs in $\mu \in R$ with positive exponent and R is generated by a full semigroup of monomials, we see that

$$\mathfrak{a}_t \subseteq (x_1^{t+1}, \dots, x_n^{t+1})A \cap R.$$

It follows that $\{\mathfrak{a}_t\}_{t \in \mathbb{N}}$ is cofinal with $\{\mathfrak{m}^t\}_{t \in \mathbb{N}}$.

(3) For an arbitrary element $m \in M$, consider the homomorphism $\phi : R \rightarrow M$ given by $r \mapsto rm$. Since the module M has no free summands, ϕ is not a split homomorphism. By [Ho2, Remark 2], there exists $t_0 \in \mathbb{N}$ such that $\mu^{t_0}m \in \mathfrak{a}_{t_0}M$, equivalently, such that the induced map

$$\overline{\phi}_{t_0} : R/\mathfrak{a}_{t_0} \rightarrow M/\mathfrak{a}_{t_0}M$$

is not injective. If $\overline{\phi}_t : R/\mathfrak{a}_t \rightarrow M/\mathfrak{a}_tM$ is injective for some $t \geq t_0$, then it splits since R/\mathfrak{a}_t is a Gorenstein ring of dimension zero; however this implies that

$$\overline{\phi}_{t_0} : R/\mathfrak{a}_t \otimes_{R/\mathfrak{a}_t} R/\mathfrak{a}_{t_0} \rightarrow M/\mathfrak{a}_tM \otimes_{R/\mathfrak{a}_t} R/\mathfrak{a}_{t_0}$$

splits as well, a contradiction. Consequently $\overline{\phi}_t(\overline{\mu^t}) = 0$, i.e., $\mu^t m \in \mathfrak{a}_t M$ for all $t \gg t_0$. The module M is finitely generated, and so $\mu^t M \subseteq \mathfrak{a}_t M$ for all $t \gg 0$.

(4) For any ideal $\mathfrak{b} \subseteq R$, we have

$$\frac{R^{1/q}}{\mathfrak{b}R^{1/q}} \cong \left(\frac{R}{\mathfrak{b}R}\right)^{a_q} \oplus \frac{M_q}{\mathfrak{b}M_q},$$

and so

$$\ell\left(\frac{R}{\mathfrak{b}^{[q]}}\right) = \ell\left(\frac{R^{1/q}}{\mathfrak{b}R^{1/q}}\right) = a_q \ell\left(\frac{R}{\mathfrak{b}}\right) + \ell\left(\frac{M_q}{\mathfrak{b}M_q}\right).$$

Using this for the ideals \mathfrak{a}_t and $\mathfrak{a}_t + \mu^t R$ and taking the difference, we get

$$\begin{aligned} a_q \left[\ell\left(\frac{R}{\mathfrak{a}_t}\right) - \ell\left(\frac{R}{\mathfrak{a}_t + \mu^t R}\right) \right] + \ell\left(\frac{M_q}{\mathfrak{a}_t M_q}\right) - \ell\left(\frac{M_q}{\mathfrak{a}_t M_q + \mu^t M_q}\right) \\ = \ell\left(\frac{R}{\mathfrak{a}_t^{[q]}}\right) - \ell\left(\frac{R}{\mathfrak{a}_t^{[q]} + \mu^{tq} R}\right) = \ell\left(\frac{R}{\mathfrak{a}_t^{[q]} :_R \mu^{tq}}\right) \end{aligned}$$

By (3) $\mu^t M_q \subseteq \mathfrak{a}_t M_q$ for all $t \gg 0$, and the result follows. \square

Lemma 2.2. *Let K be a perfect field of characteristic $p > 0$, and R be a subring of $A = K[x_1, \dots, x_n]$ generated by a full semigroup of monomials with the property that for every i with $1 \leq i \leq n$, there exists a monomial $a_i \in A$ in the variables $x_1, \dots, \widehat{x}_i, \dots, x_n$ such that $a_i/x_i = \mu_i/\eta_i$ for monomials $\mu_i, \eta_i \in R$. Let $\mu_0 \in R$ be a monomial in which each x_i occurs with positive exponent, and set $\mu = \mu_0\mu_1 \cdots \mu_n$. For $t \geq 1$, let \mathfrak{a}_t be the ideal of R generated by monomials in R which do not divide μ^t . Then, for every prime power $q = p^e$ and integer $t \geq 1$, we have*

$$\mathfrak{a}_t^{[q]} :_R \mu^{tq} = \mathfrak{m}_A^{[q]} \cap R$$

where $\mathfrak{m}_A = (x_1, \dots, x_n)A$ is the maximal ideal of A . If $R^{1/q} \approx R^{a_q} \oplus M_q$ is an R -module decomposition of $R^{1/q}$ where M_q has no free summands, then

$$a_q = \ell \left(\frac{R}{\mathfrak{a}_t^{[q]} :_R \mu^{tq}} \right) = \ell \left(\frac{R}{\mathfrak{m}_A^{[q]} \cap R} \right) \quad \text{for all } q = p^e \quad \text{and } t \geq 1.$$

Proof. By Lemma 2.1 (4), it suffices to prove that

$$\mathfrak{a}_t^{[q]} :_R \mu^{tq} = \mathfrak{m}_A^{[q]} \cap R \quad \text{for all } q = p^e \quad \text{and } t \geq 1.$$

Given a monomial $r \in \mathfrak{a}_t^{[q]} :_R \mu^{tq}$, there exists a monomial $\eta \in R$ which does not divide μ^t for which $r\mu^{tq} \in \eta^q R$. Since μ^t/η is an element of the fraction field of R which is not in R , we must have $\mu^t/\eta \notin A$ and so $\eta A :_A \mu^t \subseteq \mathfrak{m}_A$. Taking Frobenius powers over the regular ring A , we get

$$\eta^q A :_A \mu^{tq} \subseteq \mathfrak{m}_A^{[q]}$$

and hence $r \in \mathfrak{m}_A^{[q]} \cap R$. This shows that $\mathfrak{a}_t^{[q]} :_R \mu^{tq} \subseteq \mathfrak{m}_A^{[q]} \cap R$.

For the reverse inclusion, consider a monomial $bx_i^q \in R$ where $b \in A$. Then

$$bx_i^q \mu^{tq} = ba_i^q \left(\frac{\mu^t \eta_i}{\mu_i} \right)^q$$

where ba_i^q and $\mu^t \eta_i / \mu_i$ are elements of R . It remains to verify that $\mu^t \eta_i / \mu_i \in \mathfrak{a}_t$, i.e., that it does not divide μ^t in R . Since

$$\frac{\mu^t}{\mu^t \eta_i / \mu_i} = \frac{a_i}{x_i},$$

this follows immediately. \square

Lemma 2.3. *Let R' be a normal monomial subring of a polynomial ring over a field K . Then R' is isomorphic to a subring R of a polynomial ring $A = K[x_1, \dots, x_n]$ where R is generated by a full semigroup of monomials, and for every $1 \leq i \leq n$, there exists a monomial $a_i \in A$ in the variables $x_1, \dots, \widehat{x}_i, \dots, x_n$, for which a_i/x_i is an element of the fraction field of R .*

Proof. Let $M \subseteq \mathbb{N}^r$ be the subsemigroup corresponding to $R' \subseteq K[y_1, \dots, y_r]$. Let $W \subseteq \mathbb{Q}^r$ denote the \mathbb{Q} -vector space spanned by M , and $W^* = \text{Hom}_{\mathbb{Q}}(W, \mathbb{Q})$ be its dual vector space. Then

$$U = \{w^* \in W^* : w^*(m) \geq 0 \quad \text{for all } m \in M\}$$

is a finite intersection of half-spaces in W^* . Let $w_1^*, \dots, w_n^* \in U$ be a minimal \mathbb{Q}_+ -generating set for U , where \mathbb{Q}_+ denotes the nonnegative rationals. Replacing each w_i^* by a suitable positive multiple, we may ensure that $w_i^*(m) \in \mathbb{N}$ for all $m \in M$, and also that $w_i^*(M) \not\subseteq a\mathbb{Z}$ for any integer $a \geq 2$. It is established in [Ho1, §2] that the map $T : W \rightarrow \mathbb{Q}^n$ given by

$$T = (w_1^*, \dots, w_n^*)$$

takes M to an isomorphic copy $T(M) \subseteq \mathbb{N}^n$, which is a full subsemigroup of \mathbb{N}^n . Let $R \subseteq A = K[x_1, \dots, x_n]$ be the monomial subring corresponding to $T(M) \subseteq \mathbb{N}^n$.

Fix i with $1 \leq i \leq n$. Since $w_i^*(M) \not\subseteq a\mathbb{Z}$ for any integer $a \geq 2$, the fraction field of R contains an element $x_1^{h_1} \cdots x_n^{h_n}$ such that $h_1, \dots, h_n \in \mathbb{Z}$ and $h_i = -1$. Also, there exists $m \in M$ such that $w_i^*(m) = 0$ and $w_j^*(m) \neq 0$ for all $j \neq i$.

Consequently R contains a monomial $\alpha = x_1^{s_1} \cdots x_n^{s_n}$ with $s_i = 0$ and $s_j > 0$ for all $j \neq i$. For a suitably large integer $t \geq 1$, the element

$$x_1^{h_1} \cdots x_n^{h_n} \alpha^t = a_i/x_i$$

belongs to the fraction field of R where $a_i \in A$ is a monomial in the variables $x_1, \dots, \widehat{x}_i, \dots, x_n$. \square

Proof of Theorem 1.1. By Lemma 2.3, we may assume that R is a monomial subring of $A = K[x_1, \dots, x_n]$ satisfying the hypotheses of Lemma 2.2. For the choice of μ as in Lemma 2.2, the ideals $\mathfrak{a}_t^{[q]} :_R \mu^{tq}$ do not depend on $t \in \mathbb{N}$. Setting $\mathfrak{a} = \mathfrak{a}_1$ we get

$$a_q = \ell \left(\frac{R}{\mathfrak{a}^{[q]} :_R \mu^q} \right) = \ell \left(\frac{R}{\mathfrak{a}^{[q]}} \right) - \ell \left(\frac{R}{\mathfrak{a}^{[q]} + \mu^q R} \right),$$

i.e., a_q , as a function of $q = p^e$, is a difference of two Hilbert-Kunz functions. Let $d = \dim R$. By [Mo] the limits

$$e_{\text{HK}}(\mathfrak{a}) = \lim_{q \rightarrow \infty} \frac{1}{q^d} \ell \left(\frac{R}{\mathfrak{a}^{[q]}} \right) \quad \text{and} \quad e_{\text{HK}}(\mathfrak{a} + \mu R) = \lim_{q \rightarrow \infty} \frac{1}{q^d} \ell \left(\frac{R}{\mathfrak{a}^{[q]} + \mu^q R} \right)$$

exist, and by [Wa] they are rational numbers. Consequently the limit

$$\lim_{q \rightarrow \infty} \frac{a_q}{q^d} = e_{\text{HK}}(\mathfrak{a}) - e_{\text{HK}}(\mathfrak{a} + \mu R)$$

exists and is a rational number. The ring R is F-regular, so the positivity of $s(R)$ follows from the main result of [AL]; as an alternative proof, we point out that $\mu \notin \mathfrak{a}^*$, and consequently $e_{\text{HK}}(\mathfrak{a}) > e_{\text{HK}}(\mathfrak{a} + \mu R)$ by [HH, Theorem 8.17].

By [Wa] the Hilbert-Kunz multiplicities $e_{\text{HK}}(\mathfrak{a})$ and $e_{\text{HK}}(\mathfrak{a} + \mu R)$ do not depend on the characteristic of the field K , and so the same is true for $s(R)$. \square

Remark 2.4. Let (R, \mathfrak{m}, K) be a local or graded ring of characteristic $p > 0$, and let $\eta \in E_R(K)$ be a generator of the socle of the injective hull of K . In [WY] Watanabe and Yoshida define the *minimal relative Hilbert-Kunz multiplicity* of R to be

$$m_{\text{HK}}(R) = \liminf_{e \rightarrow \infty} \frac{\ell(R/\text{ann}_R(F^e(\eta)))}{p^{de}},$$

where $d = \dim R$. They compute $m_{\text{HK}}(R)$ in the case R is the Segre product of polynomial rings, [WY, Theorem 5.8]. Their work is closely related to our computation of $s(R)$ in the example below.

3. EXAMPLES

Example 3.1. Let K be a perfect field of positive characteristic, and consider integers $r, s \geq 2$. Let R be the Segre product of the polynomial rings $K[x_1, \dots, x_r]$ and $K[y_1, \dots, y_s]$, i.e., R is subring of $A = K[x_1, \dots, x_r, y_1, \dots, y_s]$ generated over K by the monomials $x_i y_j$ for $1 \leq i \leq r$ and $1 \leq j \leq s$. It is well-known that R is isomorphic to the determinantal ring obtained by killing the size two minors of an $r \times s$ matrix of indeterminates, and that the dimension of the ring R is $d = r + s - 1$. Lemma 2.2 enables us to compute not just the F-signature $s(R)$, but also a closed-form expression for the numbers a_q .

The rings $R \subseteq A$ satisfy the hypotheses of Lemma 2.2, and so

$$a_q = \ell \left(\frac{R}{\mathfrak{m}_A^{[q]} \cap R} \right) = \ell \left(\frac{K[x_1, \dots, x_r]}{(x_1^q, \dots, x_r^q)} \# \frac{K[y_1, \dots, y_s]}{(y_1^q, \dots, y_s^q)} \right),$$

where $\#$ denotes the Segre product. The Hilbert-Poincaré series of these rings are

$$\text{Hilb} \left(\frac{K[x_1, \dots, x_r]}{(x_1^q, \dots, x_r^q)}, u \right) = \frac{(1-u^q)^r}{(1-u)^r} \quad \text{and} \quad \text{Hilb} \left(\frac{K[y_1, \dots, y_s]}{(y_1^q, \dots, y_s^q)}, v \right) = \frac{(1-v^q)^s}{(1-v)^s}$$

and so a_q is the sum of the coefficients of $u^i v^i$ in the polynomial

$$\frac{(1-u^q)^r}{(1-u)^r} \frac{(1-v^q)^s}{(1-v)^s} \in \mathbb{Z}[u, v].$$

Therefore a_q equals the constant term of the Laurent polynomial

$$\frac{(1-u^q)^r}{(1-u)^r} \frac{(1-u^{-q})^s}{(1-u^{-1})^s} = \frac{u^s (1-u^q)^{r+s}}{u^{sq} (1-u)^{r+s}} \in \mathbb{Z}[u, u^{-1}],$$

and hence the coefficient of $u^{s(q-1)}$ in

$$\frac{(1-u^q)^{r+s}}{(1-u)^{r+s}} = \left[\sum_{i=0}^{r+s} (-1)^i \binom{r+s}{i} u^{iq} \right] \left[\sum_{n \geq 0} \binom{d+n}{d} u^n \right].$$

Consequently we get

$$a_q = \sum_{i=0}^s (-1)^i \binom{r+s}{i} \binom{d+s(q-1)-iq}{d} = \sum_{i=0}^s (-1)^i \binom{d+1}{i} \binom{q(s-i)+d-s}{d}$$

where we follows the convention that $\binom{m}{n} = 0$ unless $0 \leq n \leq m$. This shows that the F-signature of R is

$$s(R) = \lim_{q \rightarrow \infty} \frac{a_q}{q^d} = \frac{1}{d!} \sum_{i=0}^s (-1)^i \binom{d+1}{i} (s-i)^d.$$

We point out that $s(R) = A(d, s)/d!$ where the numbers

$$A(d, s) = \sum_{i=0}^s (-1)^i \binom{d+1}{i} (s-i)^d$$

are the *Eulerian numbers*, i.e., the number of permutations of d objects with $s-1$ descents; more precisely, $A(d, s)$ is the number of permutations $\pi = a_1 a_2 \dots a_d \in S_d$ whose descent set

$$D(\pi) = \{i : a_i > a_{i+1}\}$$

has cardinality $s-1$, see [St, §1.3]. These numbers satisfy the recursion

$$A(d, s) = sA(d-1, s) + (d-s+1)A(d-1, s-1) \quad \text{where} \quad A(1, 1) = 1.$$

Example 3.2. Let K be a perfect field of positive characteristic. For integers $n \geq 1$ and $d \geq 2$, let R be the n th Veronese subring of the polynomial ring $A = K[x_1, \dots, x_d]$, i.e., R is subring of A which is generated, as a K -algebra, by the monomials of degree n . In the case $d = 2$ and $p \nmid n$, the F-signature of R is $s(R) = 1/n$, as worked out in [HL, Example 17].

It is readily seen that the rings $R \subseteq A$ satisfy the hypotheses of Lemma 2.2, and therefore

$$a_q = \ell \left(\frac{R}{\mathfrak{m}_A^{[q]} \cap R} \right).$$

Consequently a_q equals the sum of the coefficients of $1, t^n, t^{2n}, \dots$ in

$$\text{Hilb} \left(\frac{K[x_1, \dots, x_d]}{(x_1^q, \dots, x_d^q)}, t \right) = \frac{(1-t^q)^d}{(1-t)^d} = (1+t+t^2+\dots+t^{q-1})^d.$$

Let $f(m)$ be the sum of the coefficients of powers of t^n in

$$(1+t+t^2+\dots+t^{m-1})^d.$$

A routine computation using, for example, induction on d , gives us $f(n) = n^{d-1}$, and it follows that

$$f(kn) = k^d f(n) = k^d n^{d-1}.$$

To obtain bounds for $a_q = f(q)$, choose integers k_i with $k_1 n \leq q \leq k_2 n$ where $0 \leq |q - k_i n| \leq n - 1$. Then $f(k_1 n) \leq f(q) \leq f(k_2 n)$, and hence

$$\left(\frac{q-n+1}{n} \right)^d n^{d-1} \leq k_1^d n^{d-1} \leq a_q \leq k_2^d n^{d-1} \leq \left(\frac{q+n-1}{n} \right)^d n^{d-1}$$

Consequently

$$a_q = \frac{q^d}{n} + O(q^{d-1}),$$

and $s(R) = 1/n$.

ACKNOWLEDGMENTS

I would like to thank Ezra Miller for several useful discussions.

REFERENCES

- [AE] I. M. Aberbach and F. Enescu, *When does the F-signature exist?* preprint.
- [AL] I. M. Aberbach and G. J. Leuschke, *The F-signature and strong F-regularity*, Math. Res. Lett. **10** (2003), 51–56.
- [Ho1] M. Hochster, *Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes*, Ann. of Math. (2) **96** (1972), 318–337.
- [Ho2] M. Hochster, *Contracted ideals from integral extensions of regular rings*, Nagoya Math. J. **51** (1973), 25–43.
- [Ho3] M. Hochster, *Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors*, Conference on Commutative Algebra–1975 (Queen’s Univ., Kingston, Ont., 1975), pp. 106–195. Queen’s Papers on Pure and Applied Math., No. 42, Queen’s Univ., Kingston, Ont., 1975.
- [HH] M. Hochster and C. Huneke, *Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc. **3** (1990), 31–116.
- [HL] C. Huneke and G. J. Leuschke, *Two theorems about maximal Cohen-Macaulay modules*, Math. Ann. **324** (2002), 391–404.
- [Mo] P. Monsky, *The Hilbert-Kunz function*, Math. Ann. **263** (1983), 43–49.
- [SV] K. E. Smith and M. Van den Bergh, *Simplicity of rings of differential operators in prime characteristic*, Proc. London Math. Soc. (3) **75** (1997), 32–62.
- [St] R. Stanley, *Enumerative combinatorics, Volume I*, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986.
- [Wa] K.-i. Watanabe, *Hilbert-Kunz multiplicity of toric rings*, Proc. Inst. Natural Sci., Nihon Univ., **35** (2000), 173–177.
- [WY] K.-i. Watanabe and K.-i. Yoshida *Minimal relative Hilbert-Kunz multiplicity*, Illinois J. Math. **428** (2004), 273–294.
- [Ya] Y. Yao, *Observations on the F-signature of local rings of characteristic p*, preprint.