МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №1.1.4

Измерение интенсивности радиационного фона

Пилюгин Л. С. Б02-212 21 сентября 2022 г.

1 Аннотация

Цель работы: применить методы обработки экспериментальных данный для изучения статистических закономерностей при измерении интенсивности радиационного фона.

Оборудование: счётчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счётчиком.

2 Теоритические сведения

Значительную часть радиационного фона составляет поток космических частиц. Он изменяется во времени случайным образом. Характеристиками этого потока являются среднее и СКО. Для их рассчёта используются те же методы, что и для оценки случайных погрешностей.

Космические лучи разделяют на первичные, которые приходят из космоса, и вторичные, которые возникают из-за взаимодействия первичных с землёй. Вторичные лучи составляют основную часть фона у поверхности земли.

Первичные космические лучи — поток стабильных частиц с кинетической энергией от 10^9 до 10^{21} эВ. В космическом пространстве поток частиц изотропен. В основном космические лучи состоят из протонов. Изменения интенсивности потока первичных частицневелики и в основном связаны с процессами в Солнце.

Первичные лучи попадают в атмосферу, взаимодействуют с её атомами и образуют вторичные космические лучи.

Количество частиц в космических лучах характеризуется интенсивностью I — числом частиц, падающих в единицу времени на единичную площадку, перпендикулярную к направлению наблюдения, отнесённое к единице телесного угла.

Плотность потока вторичных космических лучей вблизи поверхности Земли сильно зависит от направления. Она максимальна в вертикальном и минимальна в горизонтальном направлении. Её изменение приблизительно равно квадрату косинуса угла отклонения от вертикали. Изменения плотности потока во времени вызваны изменениями в атмосфере и магнитном поле.

Среднеквадратическая ошибка отсчётов, измеренная за некоторый интервал времени, равна корню из измеренного значения n: $\sigma = \sqrt{n}$. Результат измерений записывается как $n_0 = n \pm \sqrt{n}$.

При N измерениях среднее значение числа частиц:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i$$

Стандартная ошибка измерения:

$$\sigma_{ ext{otd}} = \sqrt{rac{1}{N} \sum_{i=1}^{N} \left(n_i - \overline{n}
ight)^2}$$
 $\sigma_{ ext{otd}} pprox \sqrt{\overline{n}}$

Стандартная ошибка отклонения \overline{n} от n_0 :

$$\sigma_{\overline{n}} = rac{1}{N}\sqrt{\sum_{i=0}^{N}\left(n_i - \overline{n}
ight)^2} = rac{\sigma_{ ext{otm}}}{\sqrt{N}}$$

Относительная ошибка отдельного измерения:

$$arepsilon_{ ext{отд}} = rac{\sigma_{\overline{n}}}{n_i} pprox rac{1}{\sqrt{n_i}}$$

Относительная ошибка в определении среднего по всем измерениям \overline{n} :

$$arepsilon_{\overline{n}} = rac{\sigma_{\overline{n}}}{\overline{n}} = rac{\sigma_{ ext{otd}}}{\overline{n}\sqrt{N}} pprox rac{1}{\sqrt{\overline{n}N}}$$

3 Оборудование и инструментальные погрешности

Для обнаружения и измерения интенсивности космических лучей используется счётчик Гейгера—Мюллера. Он представляет собой тонкостенный металический цилиндр с проводящей нитью в центре и газом в камере. К электродам приложено напряжение. При прохождении частицы через счётчик возникает лавина электронов, которая приводит к появлению тока.

Схема включения счётчика приведена на рисунке. Через сопротивление R на счётчик от блока питания подаётся сопротивление. В исходном состоянии электроды и конденсатор C_1 заряжены до $400\,\mathrm{B}$. Конденсатор C_2 не пропускает постоянное напряжение источника питания в интерфейсные схемы компьютера. При возникновении тока через источник заряд на счётчике и C_1 обеспечивает развитие электронной лавины на короткое время. При разряде энергия поступает от от заряженного конденсатора C_1 . После лавины схема приходит в исходное состояние за время порядка нескольких RC_1 . При этом через

 C_2 на компьютер передаётся короткий импульс. Значительную часть регистрируемых частиц составляет естественный радиоактивный фон.

Ошибки в измерениях счётчика малы по сравнению с изменением фона. Погрешности измерений определяются в основном временем, в течении которого восстанавливаются нормальные условия в схеме.

4 Результаты измерений

Сначала проведём демонстрационный эксперимент. Из его результатов можно сделать выводы:

- 1. Измеряемая величина флуктуирует
- 2. Среднее значение сначала сильно меняется, потом выходит на постоянное значение.
- 3. Погрешность отдельного измерения тоже устанавливается со временем
- 4. Средняя погрешность и её колебания со временем уменьшаются

Проведём основной эксперимент, результаты для $t=20\,\mathrm{c}$ занесём в таблицу 1, а для $t=10\,\mathrm{c}$ — в таблицу 3. Разобьём значения из таблицы 1 по парам и занесём их суммы в таблицу 2.

По данным таблиц 3 и 2 строим гистрограммы. Светлая гистрограмма построена по таблице 3, а тёмная — по таблице 2. Масштаб светлой гистрограммы по оси x на верхней шкале, тёмной — на нижней.

Средние значения чисел срабатывания за 10 и 40 с:

$$\overline{n_{10}} \approx 12,42$$
 $\overline{n_{40}} \approx 49,63$

Стандартные отклонения:

$$\sigma_{n_{10}} \approx 3,68$$
 $\sigma_{n_{40}} \approx 7,9$

Стандартные отклонения не сильно отличяются от $\sqrt{\overline{n}}$:

$$\sqrt{\overline{n_{10}}} \approx 3.52 \approx \sigma_{n_{10}}$$
 $\sqrt{\overline{n_{40}}} \approx 7.04 \approx \sigma_{n_{40}}$

С увеличением t уменьшается ширина пика и его высота. Относительная полуширина распределений:

$$\frac{\sigma_{n_{10}}}{\overline{n_{10}}} \approx 0.3$$

$$\frac{\sigma_{n_{40}}}{\overline{n_{40}}} \approx 0.16$$

Стандартная ошибка для 400 измерений по $10\,\mathrm{c}$ и для 100 измерений по $40\,\mathrm{c}$:

$$\sigma_{\overline{n_{10}}} = \frac{\sigma_{n_{10}}}{\sqrt{400}} \approx 0.18$$

$$\sigma_{\overline{n_{40}}} = \frac{\sigma_{n_{40}}}{\sqrt{100}} \approx 0.79$$

Относительные ошибки:

$$\varepsilon_{\overline{n_{10}}_{1}} = \frac{\sigma_{\overline{n_{10}}}}{\overline{n_{10}}} \approx 0.014$$

$$\varepsilon_{\overline{n_{10}}_{2}} = \frac{1}{\sqrt{\overline{n_{10} \cdot 400}}} \approx 0.014$$

$$\varepsilon_{\overline{n_{40}}_{1}} = \frac{\sigma_{\overline{n_{40}}}}{\overline{n_{40}}} \approx 0.016$$

$$\varepsilon_{\overline{n_{40}}_{2}} = \frac{1}{\sqrt{\overline{n_{40} \cdot 100}}} \approx 0.014$$

Итого:

$$n_{10} = 12.42 \pm 0.18$$

 $n_{40} = 49.63 \pm 0.79$

Таблица 1. Число срабатывания счётчика за 20 секунд

№ опыта	1	2	3	4	5	6	7	8	9	10
0	39	24	23	30	33	19	24	19	25	22
10	22	29	30	26	13	25	23	19	20	36
20	27	20	34	31	27	21	34	16	21	23
30	29	24	22	26	23	31	26	23	22	11
40	14	21	23	22	21	17	24	30	29	25
50	23	29	22	40	28	29	32	28	20	19
60	18	29	34	26	32	25	17	28	35	21
70	21	25	30	22	23	21	26	17	20	19
80	27	21	24	27	20	28	19	29	25	22
90	30	33	20	18	24	16	21	18	26	24
100	16	38	27	34	18	23	32	21	27	22
110	31	25	23	23	21	21	27	29	31	24
120	28	23	24	28	26	35	27	29	21	28
130	22	21	23	35	31	27	18	18	26	20
140	21	21	23	23	29	37	23	34	37	32
150	23	17	24	25	35	18	23	24	21	23
160	28	20	19	21	14	21	22	24	21	24
170	31	14	26	28	23	34	24	19	18	20
180	32	24	29	26	24	23	20	26	29	40
190	16	20	26	31	25	34	23	27	21	31

Таблица 2. Число срабатывания счётчика за 40 секунд

№ опыта	1	2	3	4	5	6	7	8	9	10
0	63	53	52	43	47	51	56	38	42	56
10	47	65	48	50	44	53	48	54	49	33
20	35	45	38	54	54	52	62	57	60	39
30	47	60	57	45	56	46	52	44	43	39
40	48	51	48	48	47	63	38	40	39	50
50	54	61	41	53	49	56	46	42	56	55
60	51	52	61	56	49	43	58	58	36	46
70	42	46	66	57	69	40	49	53	47	44
80	48	40	35	46	45	45	54	57	43	38
90	56	55	47	46	69	36	57	59	50	52

Таблица 3. Число срабатывания счётчика за 10 секунд

Число импульсов	Число случаев	Доля случаев
4	2	0.005
5	1	0.0025
6	13	0.0325
7	14	0.035
8	26	0.065
9	31	0.0775
10	43	0.1075
11	46	0.115
12	40	0.1
13	46	0.115
14	30	0.075
15	26	0.065
16	23	0.0575
17	26	0.065
18	11	0.0275
19	6	0.015
20	6	0.015
21	3	0.0075
22	3	0.0075
23	2	0.005
24	1	0.0025
25	1	0.0025

Таблица 4. Доля отклонений

Ошибка	Доля случаев	Теоретическая оценка
$\pm \sigma_{n_{10}}$	0.71	0.68
$\pm 2\sigma_{n_{10}}$	0.95	0.95
$\pm \sigma_{n_{40}}$	0.7	0.68
$\pm 2\sigma_{n_{40}}$	0.96	0.95

Гистрограммы для t = 10 с (светлый) и t = 40 с (тёмный) п, число срабатываний 0.12 0.10 0.08 0.00 0.00 0.00 0.04 0.02

5 Вывод

Получены данные интенсивности радиоактивного фона, применены методы экспериментальной обработки данных.