UNIVERSIDAD RICARDO PALMA

Facultad: Ciencias Biológicas Escuela Profesional: Biología

SILABO

I. DATOS ADMINISTRATIVOS

1. Asignatura : Taller de Biotecnologia Ambiental

2. Código : CB-1065 3. Naturaleza : Taller 4. Condición : Obrigatória : CB-0964 5. Requisito (s)

6. N° de Créditos : 3 7. N° de horas : 6 8. Semestre Academico : 2019-I

9. Docente : Ph.D. Mauro M. Quiñones Aguilar.

mauro.quinones@urp.edu.pe

II. SUMILLA.

Es un taller obligatorio, tiene como objetivo fundamental brindar a los estudiantes las bases científicas y tecnológicas de las diferentes metodologías de detección y análisis de los principales indicadores ambientales; fortaleces sus habilidades y destrezas en la aplicación, adaptación, optimización, desarrollo y dominio en el manejo de nuevas tecnologías ambientales en proyectos modelo, que involucren temas relacionadas al desarrollo de procesos biotecnológicos que permitan eliminar y/o disminuir los problemas de contaminación por compuestos tóxicos orgánicos y el aprovechamiento integral de desechos orgánicos generados por diferentes industrias y agroindustrias. El taller comprende 4 unidades de aprendizaje:

- Fundamentos básicos, metodologías y elementos de la Biotecnología ambiental.
- 2. Desechos orgánicos, agroindustriales y Biotransformación
- Suelos contaminados, Biorremediación y biomineria 3.
- Agua, aire contaminadas y vertidos industriales

III. COMPETENCIAS GENERICAS A LAS QUE TRIBUTA LA ASIGNATURA:

Tributa a la competencia genérica 2 (CG 02) Pensamiento crítico y creativo: Manifiesta sentido crítico en la valoración de objetos conceptuales y de hechos, así como de los productos y procesos de su propio trabajo, basado en criterios teóricos y metodológicos, orientándose a la mejora continua. Propone soluciones creativas a los problemas, mediante conocimientos e innovaciones al servicio de la sociedad.

IV. COMPETENCIAS ESPECIFICAS A LAS QUE TRIBUTA LA ASIGNATURA

La asignatura y/o el taller contribuyen en la adquisición de la competencia específica de la profesión (CE01) de identificar, valorar, conservar, remediar y transformar el ambiente con criterio integral y sostenible utilizando métodos e instrumentos adecuados, indudablemente, respetando la herencia cultural hacia las generaciones futuras, considerando al hombre como parte de la naturaleza y no como su dueño.

V. LOGROS DEL TALLER

Al término del Taller el alumno: Conoce los fundamentos básicos de la Biotecnología Ambiental; obtiene y utiliza la información científica, tecnológica en la formulación de proyectos de investigación básica y aplicada, para dar solución a problemas ambientales ocasionados por la minería, agroindustria, energética y la sociedad; ejecuta e interpreta los resultados obtenidos; elabora informe estructurado y presenta como un trabajo científico y en forma de comunicación oral. Aplica los métodos y técnicas de biorremediación basados en el uso de microorganismos, plantas, algas y hongos para restaurar los ecosistemas contaminados, en el marco del postulado de conservación y aprovechamiento sostenido del ambiente y utiliza los desechos orgánicos e inorgánicos para la obtención de productos de alto económico en mejora de la calidad del ambiente y vida humana.

VI. UNIDADES DIDACTICAS

UNIDAD 1: FUNDAMENTOS BÁSICOS, METODOLOGÍAS Y ELEMENTOS DE LA BIOTECNOLOGÍA AMBIENTAL.

Logros del aprendizaje:

Analiza críticamente la actividad humana tales como: la minería, agroindustria, energética y de la sociedad. Utiliza la información para formular proyectos de investigación formativa y/o aplicada en la solución de problemas ambientales.

Semana	Contenido	Metodología	
1.	Introducción al taller. Conceptos básicos de biotecnología ambiental. Aspectos históricos. Misión y visión. Pautas generales para la formulación, ejecución	Exposición con participación activa de estudiantes. Elección del delegado. Formacion de grupos de trabajo y elección del líder para cada taller.	
	del proyecto y redacción del informe estructurado.	Análisis crítico del silabo y discusión de temas del taller planteados en el silabo.	
		Elección de desechos orgánicos – productos de la agroindustria, industria y domésticos para biotransformar.	
2.	Preparación y entrega de los artículos científicos, plantilla para la revisión a fondo, estrategia para leer y guía para llenar el formato. Evaluación de los resultados, por grupo e individual. Lectura, análisis crítico de un a Científico sobre temas: 1. Biotransformación de des agroindustriales. 2. Biorremediación de socontaminados con xenobioticos. 3. Bioinsecticidas biofertilizantes.		
	Taller 1: Análisis crítico y síntesis de artículos científicos.	4. Organismos modificados genéticamente.	
		Elaboración informe grupal e individual, acorde a la plantilla establecida.	

UNIDAD 2: RESIDUOS SÓLIDOS ORGÁNICOS AGROINDUSTRIALES Y LA BIOTRANSFORMACIÓN

Logros de aprendizaje:

Analiza críticamente los artículos científicos sobre los residuos orgánicos agroindustriales e industriales contaminantes del ambiente que emiten el gas de efecto invernadero aumentado el calentamiento global. Aplican los métodos de biotransformación y obtienen productos de alto valor económico, utilizando organismos vivos.

Semana	Contenido	Metodología
3.	Contaminación Ambiental: Tipos de	Análisis crítico del estado del arte, sobre

	contaminantes. Impactos sobre el ambiente terrestre, acuático, la atmósfera, la salud humana e impacto del desarrollo industrial sobre el medio ambiente Talleres 2: Biotransformación de Residuos Agroindustriales u otros.	biotransformación de desechos orgánicos contaminantes del ambiente Formulación de los proyectos: 1. Biotransformación de residuos domésticos en fertilizante orgánico. 2. Trasformación de desechos de langostino en biopolímero (quitosano). 3. Biotransformación de residuos de la industria pesquera o de otras.
4.	Manejo de residuos sólidos. Problemática de residuos sólidos agroindustriales. Alternativas de manejo y tratamiento. Aplicaciones exitosas.	Método de Proyectos: Exposición oral. Análisis de casos, Descripción. Ejemplificación, formulación de proyecto. Experimentación.
5.	Biotransformación de residuos orgánicos: Introducción. Sistemas de biotransformación de residuos agroindustriales y domésticos. Asesoramiento en la ejecución del proyecto.	Establecimiento del experimento o taller de biotransformación en condiciones del invernadero y/o laboratorio. Recolectan los residuos orgánicos agroindustriales o domésticos.
6	Fertilizantes orgánicos y biofertilizantes. Tipos de biofertilizantes y su importancia. Abonos orgánicos en la agricultura moderna. Ventajas y desventajas en la producción orgánica.	Seguimiento del experimento: Observación, determinación de los parámetros como temperatura, pH, humedad, microorganismos que intervienen en las diferentes etapas (mezófila, termófila y maduración) de biotransformación.
7	Biopolímeros: Introducción y sus aplicaciones en la medicina, elaboración de alimentos, industria de plásticos y en la ingeniería de tejidos. Evaluación del informe y selección de los mejores trabajos para la presentación en un evento científico y/o publicación en una revista de divulgación científica.	Determinación de la calidad del producto obtenido en el experimento. Elaboración (redacción) del informe estructurado como un trabajo científico y presentación en forma de comunicación oral.

UNIDAD 3. SUELOS CONTAMINADOS, BIORREMEDIACIÓN Y BIOMINERIA

Logros de aprendizaje:

Analiza y comprende, que la contaminación del suelo es causado por, sustancias xenobioticos, metales pesados de relaves mineras y por la aplicación de insecticidas químicas en la agricultura. Aplica los métodos de biorremediación, utilizando organismos vivos. Desarrolla las bioinsecticidas y/o bioplaguicidas y biofertilizantes para la agricultura

Semana	Contenido	Metodología	
8	Contaminación de tierras de cultivo, Propiedades físicas y químicas del	Análisis del estado del arte, sobre biorremediación.	
	suelo. Metales pesados. Análisis de normas internacionales sobre niveles permisibles de metales pesados y		

	xenobioticos en productos de agro exportación. Introducción a biomineria (lixiviación bacteriana) y sus aplicaciones en la industria minara. Taller 3: Biorremediación de suelos contaminados.	 Bio-insecticidas y bio—larbicidas. Microorganismos y sus aplicaciones en biorremediación. Biofertilizantes y sus aplicaciones en la conservación del ambiente 	
9	Biorremediación. Fundamentos básicos, tipos y sistemas de biorremediación. Uso de microorganismos usados en la biorremdiación.	Formulación del proyecto de biorremediacion, desrrollo de bioinsecticidas y de biofertilizantes.	
10	Introducción a biopesticidas y/o bioplaguicidas (Bioinsecticidas y biolarbicidas), Bacillus turengensis, Beauveria bassiana y sus aplicaciones en la agricultura moderna.	Establecimiento del experimento. Diseño y/o adaptación de tecnologías de biorremediacion, desarrollo de bioinsecticidas o de biofertilizantes.	
11	Introducción a biofertilizantes, tipos: azotobactrin, nitrobacterin y fosfobacterin.	Observación del experimento, muestreo y análisis, recolección de datos del experimento.	
12.	Introducción a la biominería, Biolexiviación, tipos, rol de las biominerías en la conservación del ambiente	Análisis crítico e interpretan de los resultados obtenidos en el experimento. Elaboración del informe estructurado como un trabajo científico y presentación en forma de comunicación oral.	

UNIDAD 4. AGUA, AIRE CONTAMINADO Y VERTIDOS INDUSTRIALES.

Logros de aprendizaje:

Conoce, maneja y aplica los métodos y técnicas, tanto de producción de biocombustibles, de biorremediación, de aire y agua, desarrollando en un proyecto modelo a nivel laboratorio, para impulsar el "Mecanismo del Desarrollo Limpio" en el Perú.

Semana	Contenido	Metodología
13	Fitorremediación de suelos: Fitoextracción, fitoestabilización, fitoinmovilización, fitovolatilización, fitodegradación, rizofiltración. ficorremediación. Micorremediacion. compuestos xenobióticos, Microorganismos que metabolizan los hidrocarburos, depuración aerobia de los vertidos o aguas residuales, Uso de OGMs, fundamentos básicos del desarrollo limpio y/o sostenido.	 Análisis crítico de artículos científicos sobre: 1. Biorremediación del agua contaminada con Hidrocarburos o metales pesados xenobióticos. 2. Biocombustibles: Biodiesel, Bioetanol. 3. Selección de microorganismos que degradan los hidrocaburos fósiles.
	Talleres Nº 4: Biotratamiento del agua (vertidos industriales) y aire contaminado - lucha del efecto invernadero.	

14	Introducción a los biocombustibles, crisis energética o crisis de gobernanza, causas y efectos de la producción de agrobiocombustibles sobre la soberanía alimentaria y los productores, cultivos energéticos, impactos internacionales que origina la expansión continúa de la producción de bioetanol en los EE.UU.	Formulación y ejecución del proyecto. Preparación de los medios de cultivo para cultivo de microorganismos o microalgas (ficorremediación), suplementados con hidrocarburo, metales pesados xenobióticos, entre otros.
15	Producción más limpia: Que es y cómo aprovecharla, como estimular la adopción de la PL. Beneficios Financieros del Mecanismo de Desarrollo Limpio en Proyectos de Biocombustibles.	Proyecto, ejecución y seguimiento del experimento. Observación, determinación de los parámetros tecnológicos y recolectan de datos.
16	Energías Renovables, Biocombustibles y Medio Ambiente. Balance de la Biomasa con fines energéticos en el Perú. Fuentes alternativas de energía en el Perú: Canola, Palma aceitera, Jatropha curcas como plantas energéticas, ventajas y desventajas. Demandas Tecnológicas para hacer eficiente y sostenible la producción de biocombustibles en el Perú.	Análisis crítico e interpretan de los resultados obtenidos en el taller Elaboración o redacción del informe estructurado como un trabajo científico y presentan en forma de comunicación oral.
Semana 1	7	Evaluación final

VII. EVALUACION

manera indicada.

UNIDAD	INSTRUMENTOS	PORCENTAJE	
	Evaluación oral de clases de teoría	20 %	
	Participación activa en las clases de teoría.	5 %	
	Asistencia puntualidad y dedicación al taller	5 %	
	Calidad en la formulación del proyecto	15 %	
	Creatividad para adaptar protocolos de	10 %	
1,2,3,4	investigación.		
	Calidad de redacción de informes e interpretación	15 %	
	de los resultados obtenidos en cada taller.		
	Presentación y sustentación oportuna de los	20 %	
	proyectos e informes de los talleres.		
	Presentación oral o posters en eventos científicos	10 %	
	y/o publicación en revistas de divulgación científica.		
Nota: Est	Nota: Esta evaluación es por taller, o sea, cada taller se evalúa independientemente de la		

El promedio final de aprobación del taller se obtiene utilizando la siguiente fórmula:

Dónde: **PF** = promedio final: **T1** = promedio del taller 1; **T2** = Promedio del taller 2; **T3** = Promedio del taller 3 y **T4** = Promedio del taller 4.

La escala de notas es vigesimal, el taller se aprueba con la nota 11. La fracción mayor o igual a 0.5 se computa como una unidad a favor del alumno, esto es sólo para el caso del promedio de la nota final.

Nota. El taller no contempla los exámenes parciales, finales ni sustitutorios. La evaluación del mismo se basa en los aspectos contemplados en el cuadro de evaluaciones.

VII: Recursos:

Computadora. Proyector multimedia. Pizarra acrílica y plumones, artículos científicos.

Equipos: Cámara de flujo laminar. Balanza analítica. pH-metro. Microscopio. Shaker. Destilador de agua. Refrigeradora. Autoclve. Incubadora. Baño María. Cámara fotográfica. Termómetro. Cocina eléctrica. Microondas. Cámara de cultivo y/o cuarto de cultivo con temperatura controlada, etc.

Materiales: Material de vidrio. Instrumentos de disección. Pipetas automáticas, Mascarillas o tapabocas. Material biológico (A. tumefacien y A. rhizógenes), entre otros.

Reactivos: Medio de cultivo. Macro y microelementos. Carbohidratos. Agentes gelificantes (agar-agar). Antibióticos, etc.

El promedio final de aprobación del taller se obtiene utilizando la siguiente fórmula:

$$PF = \frac{T1 + T2 + T3 + T4}{4}$$

Donde: **PF** = promedio final: **T1** = promedio del taller 1; **T2** = Promedio del taller 2; **T3** = Promedio del taller 3 y **T4** = Promedio del taller 4.

La escala de notas es vigesimal, el taller se aprueba con la nota 11. La fracción mayor o igual a 0.5 se computa como una unidad a favor del alumno, esto es sólo para el caso del promedio de la nota final.

Nota. El taller no contempla los exámenes parciales, finales ni sustitutorios. La evaluación del mismo se basa en los aspectos contemplados en el cuadro de evaluaciones.

VIII. REFERENCIA BIBLIGRAFÍCA.

- 1. Carmen Bautista Parejo, Luis Mecati Granado 2000. Guía Práctica de la Gestión Ambiental Ed. Mundi Prensa Madrid España.
- Reinhard Renneberg 2008. Biotecnología para principiantes: Ed. Reverté S.A. Barcelona. España.
- 3. Carmen Orozco B. Antonio Pérez S. Nieves González D. Francisco J. Rodríguez V. José M. Alfayate B. 2008. Contaminación Ambiental. Una visión desde la Química: Ed. Paraninfo, S.A. Madrid España.
- 4. **Thomas G. Spiro, William M. Stigliani 2004.** Química Medioambiental 2da edición Ed. Person Prentice Hall, Madrid España.
- 5. **McEldowney, S. Hardman, D. J. and Waite**, **2003**. Pollution: ecology and Biotreatment Longman, Scientific and Tecnical, Harlow, UK
- 6. **Albert Sason 2006.** Plant and Agricultural biotechnology. Ed. Ciencia y tecnología de nueva visión UNESCO
- 7. **J. Glynn Henry y Gary W. Heinke 1996.** Ingeniería Ambiental, 2a Ed. Editorial Prentice Hall Hispano Americano. Mexico.
- 8. **David Hunt, Catherine Johnson 1999.** Sistemas de Gestión Medioambiental: principios y práctica: Ed. NOMOS S.A. Colombia.

- 9. **Francisco Aramburu Ordozgiti 2003.** Medio ambiente y Educación. Ed. Síntesis Educación, Madrid España.
- 10. La Contaminación del Medio Ambiente http://www.monografias.com/trabajos/contamamb/contamamb.shtml
- 11. Contaminacion del Medio Ambiente: Ecología. Actividad humana. Agua contaminada. Monóxido de carbono. Ley de bases. Agentes infecciosos. Industrias. Prevención http://html.rincondelvago.com/contaminacion-del-medio-ambiente.html
- 12. Sistemas de tratamientos de residuos sólidos petrolizados. http://www.monografias.com/trabajos19/residuos-petrolizados/residuos-petrolizados.shtml
- 13. Biorremediación de Suelos Contaminados con Hidrocarburos Utilizando Bacterias Antárticas Sicrotolerantes http://www.dna.gov.ar/CIENCIA/SANTAR04/CD/PDF/206BH.PDF
- 14. Investigaciones Ambientales http://www.uaem.mx/ceib/lab/invamb.htm
- 15. Bacillus thuringiensis: Una alternativa biotecnológica a los insecticidas http://hosting.udlap.mx/profesores/miguela.mendez/alephzero/archivo/historico/az29/stebaliz.html
- 16. **Avances en Biotecnología Ambiental:** Tratamiento de Residuos Líquidos y sólidos http://www.euv.cl/archivos_pdf/concurso3/fbiotecnología.pdf
- 17. Biominería, una alternativa para mejorar el ambiente. http://www.comunicarseweb.com.ar/lbiblioteca/tendencias/biomineria.html
- 18. Hitos en la Evolución de la Industria en el Mundo Biominería. http://www.innovamineria.cl/contenidos.phtml?sección=38contenido=253

Prof. Mauro M. Quiñones A.