ESERCIZI TUTORATO ALGEBRA 2 11 DICEMBRE 2019 - LEZIONE 8 SOLUZIONI

MARCO ABBADINI

Di seguito si trovano le soluzioni degli esercizi svolti in classe. Non sono soluzioni complete, ma solo dei veloci riassunti.

Esercizio 1 (Seconda prova intermedia, 17 Dicembre 2014, eserc. 4).

Sia G un gruppo di ordine 1000. Si provino le seguenti affermazioni.

- (a) G non è un gruppo semplice.
- (b) Se G ha un sottogruppo ciclico di ordine 5^3 , allora ogni 5-sottogruppo di G è caratteristico in G.
- (c) Se G ha un sottogruppo ciclico di ordine 5^3 , allora G ha elementi di periodo 250.
- **Soluzione.** (a) $1000 = 2^3 \cdot 5^3$. Per i teoremi di Sylow, $|\text{Syl}_5(G)| \in \{1, 2, 4, 8\}$. Perciò c'è esattamente un sottogruppo di ordine 5^3 , che quindi è normale. Perciò G non è semplice.
- (b) Sia S un sottogruppo ciclico di ordine 5^3 . È l'unico sottogruppo di tale ordine per il punto precedente. Perciò è caratteristico. Ogni sottogruppo di un ciclico è caratteristico. Poichè ogni 5-sottogruppo H è contenuto in S, allora è caratteristico in S, che è caratteristico in G. Perciò H è caratteristico in G.
- (c) Sia S un 5-sottogruppo di Sylow. $\mathbf{N}_G(S)/\mathbf{C}_G(S)$ è isomorfo a un sottogruppo di $\mathrm{Aut}(S)$, che ha ordine 100. $|G:\mathbf{N}_G(S)|=|\mathrm{Syl}_5(G)|=1$, perciò $|\mathbf{N}_G(S)|=1000$. Perciò $|\mathbf{C}_G(S)|$ è un multiplo di 10. Per il lemma di Cauchy, esiste un elemento $x\in\mathbf{C}_G(S)$ di periodo 2. Il sottogruppo $S\langle x\rangle$ è prodotto diretto interno di $S\in\langle x\rangle$. Si deduce che è ciclico di ordine 250.

Esercizio 2 (Seconda prova intermedia, 17 Dicembre 2013, eserc. 3).

Sia G un gruppo di ordine 300. Si provino le seguenti conclusioni.

- (a) G non è semplice.
- (b) Se G ha un sottogruppo normale ciclico di ordine 25, allora G ha un sottogruppo normale di ordine 5.
- (c) Se G ha un sottogruppo normale ciclico di ordine 25, allora G ha un sottogruppo ciclico di ordine 75.
- Soluzione. (a) Supponiamo per assurdo G semplice. $300 = 2^2 \cdot 3 \cdot 5^2$. Per i teoremi di Sylow, $|\text{Syl}_5(G)| \in \{1, 3, 2, 6, 4, 22\}$. Poiché G è semplice, escludiamo anche 1. Perciò $|\text{Syl}_5(G)| = 6$. Sia S un 5-sottogruppo di Sylow. Si ha $|\text{Syl}_5(G)| = |G: \mathbf{N}_G(S)| = 6$. Utilizziamo il seguente.

Fatto. Sia G gruppo, e sia $H \leq G$ con |G:H| = n. Allora esiste $N \leq G$, $N \subseteq H$, tale che G/N è isomorfo a un sottogruppo di S_n ; in particolare |G/N| divide n!.

Allora esiste $N \leq G$, con $N \subseteq \mathbf{N}_G(S)$, tale che G/N è isomorfo a un sottogruppo di S_6 . Poiché G è semplice, $N = \{1\}$, e quindi G è isomorfo a un sottogruppo di S_6 . Ciò non è possibile perché nella decomposizione in primi di 6! il 5 ha esponente 1, mentre in 300 ha esponente 2. Assurdo.

(b) Sia S un sottogruppo normale ciclico di ordine 25. S possiede un unico sottogruppo T di ordine 5, che perciò è caratteristico in S. Caratteristico in normale è normale.

Ultimo aggiornamento: 16 dicembre 2019. Non esitate a segnalare eventuali errori a marco.abbadini@unimi.it.

(c) Sia S un 5-sottogruppo di Sylow. $\mathbf{N}_G(S)/\mathbf{C}_G(S)$ è isomorfo a un sottogruppo di $\mathrm{Aut}(S)$, che ha ordine 20. $|G:\mathbf{N}_G(S)|=|\mathrm{Syl}_5(G)|=1$, perciò $|\mathbf{N}_G(S)|=300$. Perciò $|\mathbf{C}_G(S)|$ è un multiplo di 15. Per il lemma di Cauchy, esiste un elemento $x\in\mathbf{C}_G(S)$ di periodo 3. Il sottogruppo $S\langle x\rangle$ è prodotto diretto interno di S e $\langle x\rangle$. Allora $S\langle x\rangle$ è un sottogruppo di ordine 75, che è ciclico perchè prodotto diretto di gruppi ciclici di ordini coprimi.

Esercizio 3 (Seconda prova intermedia, 17 Dicembre 2015, eserc. 3).

- (a) Si trovino, a meno di isomorfismi, tutti i gruppi di ordine 2015.
- (b) Sia G un gruppo di ordine 1016. Provare che G ha un elemento di ordine 254. Supponendo poi che G abbia un 2-sottogruppo di Sylow abeliano, si provi che $\mathbf{Z}(G)$ ha ordine divisibile per 4, ma si mostri con un esempio che G non ha necessariamente elementi di ordine 508.

Soluzione. (a) $2015 = 5 \cdot 13 \cdot 31$. Sia G di ordine 2015. $|\text{Syl}_{31}(G)| = 1$, $|\text{Syl}_{13}(G)| = 1$, $|\text{Syl}_{5}(G)| \in \{1, 31\}$. Nel caso $|\text{Syl}_{5}(G)| = 1$, G è prodotto diretto dei 3 Sylow, e quindi è ciclico.

Rimane l'altro caso. $|\text{Syl}_5(G)|=31$. Sia P_5 un 5-sottogruppo di Sylow, P_{13} un 13-sottogruppo di Sylow, e P_{31} un 31-sottogruppo di Sylow. Affermo che G è prodotto diretto interno di P_5P_{31} e P_{13} . Infatti consideriamo la mappa

$$\varphi \colon P_5 P_{31} \longrightarrow \operatorname{Aut}(P_{13})$$

$$g \longmapsto g^{-1}(-)g; h \mapsto g^{-1}hg.$$

Questa è ben definita perché P_{13} normale, ed inoltre per questioni di cardinalità (il codominio e il dominio hanno ordine coprimo) è l'omomorfismo banale. Perciò ogni elemento di P_5P_{31} commuta con ogni elemento di P_{13} . Mettendo questa informazione insieme a $P_5P_{31}P_{13}=G$ e $P_5P_{31}\cap P_{13}=1$, otteniamo $G=P_5P_{31}\times P_5$. Resta da capire come è fatto $H:=P_5P_{31}$. Si ha $H=P_{31}\times P_5$ (prodotto semidiretto interno). Si studino perciò gli omomorfismi da P_5 a $\operatorname{Aut}(P_{31})$. $\operatorname{Aut}(P_{31})$ è ciclico di ordine 30. Un omomorfismo da P_5 a $\operatorname{Aut}(P_{31})$ è ottenuto mandando un generatore g in un elemento di ordine 5 di $\operatorname{Aut}(P_{31})$. $\operatorname{Aut}(P_{31})$ ha un unico sottogruppo di ordine 5 e quindi esattamente 4 elementi di periodo 5. L'omomorfismo banale da P_5 a P_{31} corrisponde al prodotto diretto, che abbiamo escluso. Tutti gli altri 4 omomorfismi corrispondono a gruppi tra loro isomorfi. Cerchiamo di rendere più esplicito un tale gruppo. Prendiamo $P_5=\mathbb{Z}_5$ e $P_{31}=\mathbb{Z}_{31}$, per semplicità. Consideriamo l'omomorfismo $\varphi\colon \mathbb{Z}_5\to\operatorname{Aut}(\mathbb{Z}_{31})$ che manda $1\in\mathbb{Z}_5$ nell'automorfismo $\gamma\colon\mathbb{Z}_{31}\to\mathbb{Z}_{31}$, $x\mapsto 2x$ (questo automorfismo è di ordine 5). Come descrivere il corrispondente gruppo H? (si veda Algebra di Isaacs, p. 96.) H è un sottogruppo di $\operatorname{Sym}(\mathbb{Z}_5\times\mathbb{Z}_{31})$, ma siccome l'omomorfismo φ è iniettivo, la parte su \mathbb{Z}_5 non dà informazioni aggiuntive, cioè il gruppo H è un sottogruppo di $\operatorname{Sym}(\mathbb{Z}_{31})$. Precisamente H è il sottogruppo di $\operatorname{Sym}(\mathbb{Z}_{31})$ generato da $x\mapsto x+1$ e $x\mapsto 2x$.

(b) Sia P un 2-sottogruppo di Sylow abeliano. Consideriamo la mappa

$$\varphi \colon P \longrightarrow \operatorname{Aut}(S)$$

 $g \longmapsto g^{-1}(-)g : h \mapsto g^{-1}hg.$

Sappiamo che $\operatorname{Aut}(S)$ ha ordine 126. Perciò $P/\ker \varphi$, in quanto isomorfo a un sottogruppo di $\operatorname{Aut}(S)$, ha ordine che divide 126, cioè $8/|\ker \varphi|$ divide 126. Nella scomposizione di 126 in fattori primi, il 2 compare con esponente 1. Perciò $K \coloneqq \ker \varphi$ ha ordine un multiplo di 4. Ogni elemento di K commuta con ogni elemento di P e di P0, perciò commuta con ogni elemento di P1 (il centralizzante di P2 contiene P3 ed è un sottogruppo, perciò è P4). Perciò P5 è contenuto nel centro.

Per l'esempio richiesto si prenda $\mathbb{Z}_{127} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Esercizio 4 (Prova scritta, 28 Gennaio 2019, eserc. 1).

Siano n, m interi positivi. Consideriamo gli insiemi di numeri naturali $Y_m = \{1, 2, ..., m\}$ e $Y_n = \{1, 2, ..., n\}$, e definiamo

$$X = \{f \colon Y_m \to Y_n \mid f \text{ applicazione} \}$$
.

Sia inoltre G il prodotto diretto $S_m \times S_n$, e consideriamo l'applicazione $X \times G \to X$ definita da

$$(f,(\sigma,\tau))\mapsto \sigma^{-1}f\tau.$$

- (a) Provare che in tal modo resta definita un'azione di G su X.
- (b) Tale azione è fedele?
- (c) Per n=m=3, calcolare le cardinalità delle orbite in cui l'insieme X viene ripartito mediante tale azione.

Soluzione. (a) ...

- (b) Se n=1, allora X è un singoletto. Perciò il nucleo dell'azione è G. Perciò, nel caso n=1, l'azione è fedele se e solo se m=1 (è l'unico caso in cui S_m è banale). Poniamoci nel caso $n\geq 2$. Sia $(\sigma,\tau)\in S_m\times S_n$ tale che $(\sigma,\tau)\neq (\mathrm{Id}_m,\mathrm{Id}_n)$. Se $\sigma\neq \mathrm{Id}_m$, allora sia $x\in Y_m$ tale che $x\neq \sigma(x)$. Scelgo $f\colon Y_m\to Y_n$ tale che $f(\sigma^{-1}(x))=1$ e $f(x)\neq \tau(a)$. Una tale f esiste. Si ha $\sigma^{-1}f\tau\neq f$ perchè in x assumono valori differenti. Supponiamo invece $\tau\neq \mathrm{Id}_n$. Sia $x\in Y_n$ tale che $\tau(x)\neq x$. Consideriamo la funzione costante $f\colon Y_m\to Y_n$ che manda ogni elemento in x. $\sigma^{-1}f\tau$ è a funzione costantemente uguale a $\tau(x)$. Ricapitolando: m=1, n=1: fedele. $m\geq 1, n\geq 2$: fedele. $m\geq 2, n=1$: non fedele.
- (c) Nel caso n=m=3, due funzioni f e g stanno nella stessa orbita se e solo se le immagini di f e g hanno la stessa cardinalità. Di funzioni $Y_3 \to Y_3$ con immagine di cardinalità 1 ce ne sono 3, con immagine di cardinalità 2 ce ne sono 18.

Esercizio 5 (Prova scritta, 29 Gennaio 2016, eserc. 2).

Sia G un gruppo, e siano H e K sottogruppi di G tali che G sia prodotto diretto (interno) di H e K. Provare che $\operatorname{Aut}(H) \times \operatorname{Aut}(K)$ è isomorfo ad un sottogruppo di $\operatorname{Aut}(G)$. Provare poi che, se H e K sono sottogruppi caratteristici di G, allora $\operatorname{Aut}(H) \times \operatorname{Aut}(K) \simeq \operatorname{Aut}(G)$.

Soluzione. Possiamo suppore $G = H \times K$ (prodotto diretto esterno). Abbiamo il seguente omomorfismo iniettivo.

$$\Gamma \colon \operatorname{Aut}(H) \times \operatorname{Aut}(K) \longrightarrow \operatorname{Aut}(H \times K)$$
$$(\varphi, \psi) \mapsto \varphi \times \psi$$

dove $(\varphi \times \psi)(h, k) = (\varphi(h), \psi(k))$.

In termini di prodotto diretto interno, questo vuol dire $(\Gamma(\varphi,\psi))(hk) = \varphi(h)\psi(k)$.

Qui è più comodo tenere il prodotto diretto interno. Supponiamo che H e K siano caratteristici. Per definizione, ogni automorfismo ρ di G restringe ad un automorfismo $\rho_{|H}$ di H e ad un automorfismo $\rho_{|K}$ di K. Sia Λ : Aut $(G) \to \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, $\rho \mapsto (\rho_{|H}, \rho_{|K})$. Si faccia vedere che Λ è la funzione inversa di Γ .

Esercizio 6 (Prova scritta, 26 Febbraio 2016, eserc. 3).

(a) Siano G_1 , G_2 gruppi, ed N_1 , N_2 sottogruppi normali rispettivamente di G_1 e G_2 . Provare che

$$\frac{G_1 \times G_2}{N_1 \times N_2} \simeq \frac{G_1}{N_1} \times \frac{G_2}{N_2}.$$

(b) Trovare tre sottogruppi distinti di indice 2 in $\mathbb{Z} \times \mathbb{Z}$. (Sugg.: si applichi il punto precedente con $N_i = 2\mathbb{Z}$.)

(c) Si provi che $\mathbb{Z} \times \mathbb{Z}$ ha esattamente tre sottogruppi di indice 2.

Soluzione. (a) Sia

$$\varphi \colon G_1 \times G_2 \longrightarrow \frac{G_1}{N_1} \times \frac{G_2}{N_2}$$

$$(g_1, g_2) \longmapsto (N_1 g_1, N_2 g_2)$$

Questo è un omomorfismo suriettivo, il cui nucleo è $N_1 \times N_2$. Si applichi il primo teorema di omomorfismo.

- (b) $2\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z} \times 2\mathbb{Z}$, $\{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x \text{ e } y \text{ entrambi pari, oppure } x \text{ e } y \text{ entrambi dispari}\}$.
- (c) Sia H un sottogruppo di indice 2. Allora $H \supseteq 2\mathbb{Z} \times 2\mathbb{Z}$ (per vedere questo, si dimostri che, dato un gruppo G ed un sottogruppo normale N di indice 2, si ha $N \supseteq \{g^2 \mid g \in G\}$). Poi si quozienti e si applichi il teorema di corrispondenza.