Locality in Random SAT Instances

Jesús Giráldez-Cru

KTH Royal Institute of Technology Stockholm, Sweden

Jordi Levy

IIIA, CSIC, Barcelona, Spain

IJCAl'17, Melbourne, Australia

SAT in Practice

- SAT is NP-complete
- Random SAT formulas require exponential tree-like refutations
- SAT solvers solve industrial instances with millions of clauses in seconds

SAT in Practice

- SAT is NP-complete
- Random SAT formulas require exponential tree-like refutations
- SAT solvers solve industrial instances with millions of clauses in seconds

Objectives

- Study the structural properties of real-world SAT instances
- Propose new models of random formulas
- Exploit this knowledge to improve SAT solvers specialized in those kind of formulas

SAT in Practice

Objectives

- Study the structural properties of real-world SAT instances
- Propose new models of random formulas
- Exploit this knowledge to improve SAT solvers specialized in those kind of formulas

Scale-free Formulas [Ansotegui, Bonet & Levy, IJCAI'09]

Consider all variables of the SAT'08 Competition and sort them N(i) = number of occurrences of i-th most frequent variable Most have 5 occurrences, although the average is 13.6!!! A few have millions of occurrences!!!

Scale-free Formulas [Ansotegui, Bonet & Levy, IJCAI'09]

Expected number of occurrences of i-th most frequent variable

$$N(i) \sim i^{-0.82}$$

Seen as a graph, industrial SAT formulas are scale-free

Drawbacks of the (simple) Scale-free Model

- Since formulas are scale-free, the best variable branching heuristics is assigning most frequent variables.
- VSIDS heuristics: try to focus in some area of the formula.
- Scale-free formulas are too easy on practice (popular variables are too inter-connected)
- Real-world networks: scale-free structure (popularity) alone does not explain high clustering of networks

Drawbacks of the (simple) Scale-free Model

- Since formulas are scale-free, the best variable branching heuristics is assigning most frequent variables.
- VSIDS heuristics: try to focus in some area of the formula.
- Scale-free formulas are too easy on practice (popular variables are too inter-connected)
- Real-world networks: scale-free structure (popularity) alone does not explain high clustering of networks

In this paper

- There is a notion of locality in formulas
- This notion coincides with the notion of similarity used in complex networks

For every variable $i \in 1 ... n$ and clause $j \in 1 ... m$ assign a random angle (position) $\theta_i \in [0, 2\pi]$ and $\theta'_i \in [0, 2\pi]$.

For every variable $i \in 1 \dots n$ and clause $j \in 1 \dots m$ assign a random angle (position) $\theta_i \in [0, 2\pi]$ and $\theta_j' \in [0, 2\pi]$. Define the energy of edge $i \leftrightarrow j$ (occurrence of variable i in clause j) as

$$e_{ij} = \beta \log i + \beta' \log j + \log \theta_{ij}$$

Popularity of variable *i*

Popularity of clause *j*

Similarity between *i* and *j*

(more energetic edges are less probable)

We do not allow multiple edges between the same pair of nodes (hence tautologies $a \lor \neg a \lor b$ or simplificable clauses $a \lor a \lor b$ are disallowed)

For every variable $i \in 1 \dots n$ and clause $j \in 1 \dots m$ assign a random angle (position) $\theta_i \in [0, 2\pi]$ and $\theta_j' \in [0, 2\pi]$. Define the energy of edge $i \leftrightarrow j$ (occurrence of variable i in clause j) as

$$e_{ij} = \beta \log i + \beta' \log j + \log \theta_{ij}$$

Use the Fermi-Dirac probability distribution for fermions

$$E[n_{ij}] = \frac{1}{1 + e^{\frac{e_{ij} - \mu}{kT}}}$$

where μ is the total chemical potential, k the Boltzmann's constant and T the temperature.

For every variable $i \in 1 \dots n$ and clause $j \in 1 \dots m$ assign a random angle (position) $\theta_i \in [0, 2\pi]$ and $\theta_j' \in [0, 2\pi]$. Define the energy of edge $i \leftrightarrow j$ (occurrence of variable i in clause j) as

$$e_{ij} = \beta \log i + \beta' \log j + \log \theta_{ij}$$

Use the Fermi-Dirac probability distribution for fermions

$$E[n_{ij}] = \frac{1}{1 + e^{\frac{e_{ij} - \mu}{kT}}}$$

where μ is the total chemical potential, k the Boltzmann's constant and T the temperature.

Redefining T = k T and $\mu = \log R$, this results into

$$P(i \leftrightarrow j) = rac{1}{1 + \left(rac{i^{eta} \cdot j^{eta'} \cdot heta_{ij}}{R}
ight)^{1/T}}$$

$$P(i \leftrightarrow j) = \frac{1}{1 + \left(\frac{i^{\beta} \cdot j^{\beta'} \cdot \theta_{ij}}{R}\right)^{1/T}}$$

For T = 0 we have

$$P(i \leftrightarrow j) = \begin{cases} 1 & \text{if } e_{ij} < \mu \text{ i.e. } i^{\beta} \cdot j^{\beta'} \cdot \theta_{ij} < R \\ 0 & \text{if } e_{ij} > \mu \text{ i.e. } i^{\beta} \cdot j^{\beta'} \cdot \theta_{ij} > R \end{cases}$$

Fixed θ 's, the model is deterministic

$$P(i \leftrightarrow j) = \frac{1}{1 + \left(\frac{i^{\beta} \cdot j^{\beta'} \cdot \theta_{ij}}{R}\right)^{1/T}}$$

In general, if k is the desired average size of clauses we compute the R satisfying:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} P(i \leftrightarrow j) = k \cdot m$$

The chemical potential R depends on temperature T

$$P(i \leftrightarrow j) = \frac{1}{1 + \left(\frac{i^{\beta} \cdot j^{\beta'} \cdot \theta_{ij}}{R}\right)^{1/T}}$$

In general, if k is the desired average size of clauses we compute the R satisfying:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} P(i \leftrightarrow j) = k \cdot m$$

Lemma

If $P(i \leftrightarrow j) = f(i^{\beta}j^{\beta'}\theta_{ij})$, and f decreases fast enough, then the resulting SAT instance is scale-free with variable occurrences $P(k) \sim k^{-\delta}$, where $\delta = 1 + 1/\beta$ and clauses sizes $P(s) \sim s^{-\delta'}$ where $\delta' = 1 + 1/\beta'$.

Hyperbolic Geometry

$$\beta = 0.1$$
 prefer similar nodes ($T = 1$)

$$\beta = 2$$
 prefer popular nodes $(T = 1)$

 $\beta = 0.8$ balance similarity-popularity (T = 1)

T = 0.1 connect only to closest nodes ($\beta = 0.8$)

T=3 connect to random nodes ($\beta=0.8$)

Some Problems (solved in the paper)

- How to compute R: It can be analytically approximated for $T \approx 0$. For big temperature we use an algorithm based on Newton-Raphson method.
- We present a simplified model where the probability of connection is

$$P(i \leftrightarrow j) = \min \left\{ 1, \frac{R}{(i^{\beta}j^{\beta'}\theta_{ij})^{1/T}} \right\}$$

 Proliferation of small clauses make most formulas trivially unsatisfiable. A minimum size of clauses is proposed as a solution

Decided Variable

Decided Variable

Decided Variable

Conclusions and Further Work

- An equilibrium between the forces of popularity and similarity defines the structure of industrial SAT instances
- Modern SAT solvers exploit both structures
- Explicit computation of variable coordinates may lead to better branching heuristics
- Analysis of the temperature of formulas may characterize their difficulty