CLO #1: Investigate working of a DC Machine

Q1: [marks =25]

A 30HP, 240V compensated DC shunt motor has armature resistance of 0.35 Ω . Its field resistance is 90 Ω and adjustable resistance connected in series with field coil can vary from 70 Ω to 300 Ω . Its no load characteristic curve at a speed of 1400 rpm is tabulated as under.

		The San San			The second second	116
TIAN	102	0.6	0.9	1.2	1.4	1.0
I _F (A)	0.5	0.0		200	202	295
	130	230	274	288	272	1275
$E_A(V)$	130	230		The state of the s		

Investigate the DC machine to find out following quantities assuming rated terminal voltage in all cases.

- a) What is the maximum and minimum no load speed at which this motor can operate
- b) No load speed of motor if adjustable resistance connected in series with field coil has been set to a value of 120 ohm.
- c) The induced torque in loaded condition at line current of 70A, with same field current as in part (b)
- d) Fully labeled Circuit diagram for part (c)
- e) Also draw the general torque speed curve of a compensated DC shunt motor

CLO #3: Analyze Synchronous Generator perfermence along with special emphasis towards environmental cost of generation

Q2: [marks 25]

A 2300 V, 1200 KVA, 0.85-PF-lagging, 50-Hz, 24 pole, Y-connected synchronous generator, has a synchronous reactance of 1.2 Ω and an armature resistance of 0.2 Ω . At 50 Hz, its friction and windage losses are 28.5 KW, and its core losses are 23.5 KW. The field circuit has a dc voltage of 220 V, and the maximum I_F is 10 A. The resistance of the field circuit is adjustable over the range from 12 to 200 Ω . (The generator is providing 250 A to a load at rated power factor and a terminal voltage

(The generator is providing 250 A to a load at rated power factor and a terminal voltage of 2200V. Analyze the Synchronous Generator circuit to find out the following quantities)

- a) Rotational speed
- b) Internally generated voltage
- c) Voltage regulation
- d) Efficiency
- e) Output torque of prime mover

Page 2 of 2