

Private Set Intersection

安全多方计算应用

作者: 牛午甲&潘云石&石磊鑫&孙霄鹍&陈昊

组织: USTC

时间: April 29, 2023

版本: 0.1

:

目录

	数学基础	
0.1	数论基础	1
	0.1.1 中国剩余定理	1
0.2	抽象代数基础	1
	—·-··	2
1.1	不经意传输(Oblivious transfer,OT)	
	1.1.1 Rabin 不经意传输协议	
	1.1.2 1-2 不经意传输	3
第一	·章 练习	3

第零章 数学基础

0.1 数论基础

内容提要

- □ 中国剩余定理 0.1
- Fubini 定理 1.1
- □ 最优性原理 1.1

- □ 柯西列性质 1.1.2
- □ 韦达定理

0.1.1 中国剩余定理

定理 0.1 (中国剩余定理, Chinese Remainder Theorem, CRT)

设 $m_1, m_2, ..., m_k$ 是 k 个两两互素的正整数, $m = m_1 m_2 \cdots m_k$,记 $m = m_i M_i (i = 1, 2, ..., k)$,则同余式组 $x \equiv b_1 (mod \ m_1), x \equiv b_2 (mod \ m_2), ..., x \equiv b_k (mod \ m_k)$

有唯一解

$$x \equiv M'_1 M_1 b_1 + M'_2 M_2 b_2 + \dots + M'_k M_k b_k (mod m)$$

其中 $M'_iM_i \equiv 1 \pmod{m_i} (i = 1, 2, ..., k).$

证明 证明: 构造性证明, 详见

推论 0.1

设 $m_1, m_2, ..., m_k$ 是 k 个两两互素的正整数, $m = m_1 m_2 \cdots m_k$,则同余式 $f(x) \equiv 0 \pmod{m}$ 有解的充分必要条件是同余式 $f(x) \equiv 0 \pmod{m_i} (i = 1, 2, ..., k)$ 每一个都有解,并且若用 T_i 表示 $f(x) \equiv 0 \pmod{m_i}$ 的解数,T 表示 $f(x) \equiv 0 \pmod{m}$ 的解数,则 $T = T_1 T_2 \cdots T_k$.

证明 证明

0.2 抽象代数基础

 \Diamond

第一章 基础知识介绍

内容提要

- □ Rabin 不经意传输协议 1.1
- Fubini 定理 1.1
- □ 最优性原理 1.1

- □ 柯西列性质 1.1.2
- □ 韦达定理

1.1 不经意传输(Oblivious transfer, OT)

不经意传输(Oblivious transfer,OT)是密码学中的一类协议,实现了发送方将潜在的许多信息中的一个传递给接收方,但但事后对发送了哪一条消息给接收方保持未知状态。

1.1.1 Rabin 不经意传输协议

不经意传输最早由 Michael O. Rabin 在 1981 年提出。在这种形式下,发送方以 $\frac{1}{2}$ 的概率向接收方发送一个信息,而发送方不知道接收方是否收到该信息,只有接收方能确信地知道自己是否收到了消息。Rabin 的方案是基于 RSA 的。在介绍 Rabin 的方案之前,需要介绍几个模平方根相关的引理。

引理 1.1

C

定义 1.1 (Rabin's oblivious transfer protocol)

准备工作: Alice 按照 RSA 算法生成模数 N=pq (这里 p,q 是大素数)、指数 e (要保证 e 和 r=(p-1)(q-1) 互素)。

- 1. Alice 发送 $N, e, m^e \mod N$ 给 Bob;
- 2. Bob 选择随机数 x, 将 x² mod N 发给 Alice;
- 3. Alice 求解 x^2 mod N 的四个平方根, 选择其中一个(记作 v) 发给 Bob;

如果 Bob 发现 $y \mod N$ 既不等于 $x \mod N$ 也不等于 $-x \mod N$,那么 Bob 就可以对 N 进行素因子分解得到 p,q,从而求得 r。然后 Bob 求解 $ed \equiv 1 \mod r$ 得到 d,再解密 $m^{ed} \mod N$ 获得 m 的明文。然而,如果 $y \mod N$ 是 $x \mod N$ 和 $-x \mod N$ 中的一个,那么 Bob 就无法分解 N,从而不能解密得到明文。

注 对上述协议需要做几点说明:

1. 在协议第 2.步中,由于 N 的素因子只有 p,q,并且 N 非常大,因此认为 x 和 N 互素,从而 x^2 mod N 有四个平方根。

2.

推论 1.1 (推论名称)

推论内容

 \Diamond

1.1.2 1-2 不经意传输

定义 1.2 (定义名称)

定义内容

(1.1)

▲ 练习 1.1 练习

解解

注注

证明 证明

定理 1.1 (定理名称)

定理内容

о О

奎记 笔记

命题 1.1 (命题名称)

命题内容

图片

图 1.1: 散点图示例 $\hat{y} = a + bx$

性质 性质

- 1. 条目 1
- 2. 条目 2

结论 结论

例题 1.1 例题

❤ 第一章练习 ❤

- 1. 练习1
- 2. 练习 2
- 3. 练习3