MSBA7003 Decision Analytics

06 Mathematical Programming II

Agenda

- Linear Programming Applications
 - Worker scheduling
 - Portfolio selection
 - Transportation planning
 - Worst case maximization
- Mixed Integer Programming
 - Knapsack problem
 - Assignment problem
 - Supply chain planning

Worker Scheduling

• A post office requires different numbers of full-time employees on different days of the week. Union rules states that each full-time employee must work five consecutive days and then receive two days off. The post office wants to meet its daily requirements using only full-time employees, while minimizing the total number of full-time employees on its payroll.

Day of Week	Minimum Number of Employees Required
Monday	17
Tuesday	13
Wednesday	15
Thursday	19
Friday	14
Saturday	16
Sunday	11

Worker Scheduling

Decision variables:

- X_1 : the number of employees whose first working day is Monday
- X_2 : the number of employees whose first working day is Tuesday
- X_3 : the number of employees whose first working day is Wednesday
- X_4 : the number of employees whose first working day is Thursday
- X_5 : the number of employees whose first working day is Friday
- X_6 : the number of employees whose first working day is Saturday
- X_7 : the number of employees whose first working day is Sunday

• Objective:

• Minimize: $X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7$

When defining decision variables, try not to introduce addition constraints!

Worker Scheduling

Constraints:

• Monday constraint:
$$X_1 + X_4 + X_5 + X_6 + X_7 \ge 17$$

• Tuesday constraint:
$$X_1 + X_2 + X_5 + X_6 + X_7 \ge 13$$

• Wednesday constraint:
$$X_1 + X_2 + X_3 + X_6 + X_7 \ge 15$$

• Thursday constraint:
$$X_1 + X_2 + X_3 + X_4 + X_7 \ge 19$$

• Friday constraint:
$$X_1 + X_2 + X_3 + X_4 + X_5 \ge 14$$

• Saturday constraint:
$$X_2 + X_3 + X_4 + X_5 + X_6 \ge 16$$

• Sunday constraint:
$$X_3 + X_4 + X_5 + X_6 + X_7 \ge 11$$

• Non-negativity:
$$X_1, X_2, X_3, X_4, X_5, X_6, X_7 \ge 0$$

Worker Sche	eduling Mo	odel									
Decision Va	riables	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Total	No. of FT I	Employees
No. of FT Er	mployees:	6.333333333	3.333333333	2	7.333333333	C	3.333333333	0			22.33333
Constraints											RHS
	Monday	1			1	1	. 1	. 1	17	>=	17
	Tuesday	1	1			1	. 1	. 1	13	>=	13
W	ednesday/	1	1	1			1	. 1	15	>=	15
	Thursday	1	1	1	. 1			1	19	>=	19
	Friday	1	1	1	. 1	1			19	>=	14
	Saturday		1	1	. 1	1	. 1		16	>=	16
	Sunday			1	. 1	1	. 1	1	12.66667	>=	11

- Interpretation of non-integer solutions
 - Average value
 - Change the unit of measurement

- To get integer solutions
 - Add integer constraints
 - Round the solutions to the nearest integers

Portfolio Selection

- The Heinlein and Krampf Brokerage firm is instructed by a client to invest \$250,000 in five possible options, with guidelines:
 - Municipal bonds should constitute at least 20% of the investment
 - At least 40% of the investment should be placed in a combination of electronic firms, aerospace firms, and drug manufacturers
 - No more than 50% of the amount invested in municipal bonds should be placed in a high-risk, high-yield nursing home stock
- The goal is to maximize the projected return.

	Los Angeles municipal bonds	Thompson Electronics, Inc.	United Aerospace Corp.		Happy Days Nursing Homes
Projected Return (%)	5.3	6.8	4.9	8.4	11.8

Portfolio Selection

Α	В	С	D	E	F	G	Н	I
Investment	LA Municipal	Electronics,	Aerospace	Dalmor Drugs	Happy Days Nursing			
Projected Return (%)	5.3	6.8	4.9	8.4	11.8			
Amount	50000	0	0	175000	25000			
Total Return	20300							
Constraints								
	1	1	1	1	1	250000	<=	250000
	1					50000	>=	50000
		1	1	1		175000	>=	100000
					1	25000	<=	25000
	Investment Projected Return (%) Amount	LA Municipal Investment Bonds Projected Return (%) 5.3 Amount 50000 Total Return 20300	LA Municipal Electronics, Investment Bonds Inc. Projected Return (%) 5.3 6.8 Amount 50000 0 Total Return 20300	Thompson United Electronics, Aerospace Investment Bonds Inc. Corp. Projected Return (%) 5.3 6.8 4.9 Amount 50000 0 0 Total Return 20300 Constraints	Thompson United LA Municipal Electronics, Aerospace Investment Bonds Inc. Corp. Palmer Drugs Projected Return (%) 5.3 6.8 4.9 8.4 Amount 50000 0 0 175000 Total Return 20300 Constraints	Thompson United Aerospace Investment Bonds Inc. Corp. Palmer Drugs Homes Projected Return (%) 5.3 6.8 4.9 8.4 11.8 Amount 50000 0 0 175000 25000 Total Return 20300 Constraints	Thompson United Happy Days Nursing Homes	Thompson United Happy Days Nursing Investment Bonds Inc. Corp. Palmer Drugs Homes Projected Return (%) 5.3 6.8 4.9 8.4 11.8 Amount 50000 0 0 175000 25000 Total Return 20300

Question: How to set cells I9 and I10?

Portfolio Selection: Sensitivity Report

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$3	Amount LA Municipal Bonds	50000	0	0.053	0.014	0.406
\$C\$3	Amount Thompson Electronics, Inc.	0	-0.016	0.068	0.016	1E+30
\$D\$3	Amount United Aerospace Corp.	0	-0.035	0.049	0.035	1E+30
\$E\$3	Amount Palmer Drugs	175000	0	0.084	0.034	0.009333333
\$F\$3	Amount Happy Days Nursing Homes	25000	0	0.118	0.028	0.034

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$G\$8	Total Amount Constraint	250000	0.0812	250000	1E+30	250000
\$G\$9	Municipal Bond Constraint	50000	-0.014	0	50000	50000
\$G\$10	E.A.D. Constraint	175000	0	0	75000	1E+30
\$G\$11	Nursing Home Constraint	25000	0.034	0	75000	25000

Question: What is the marginal return rate?

Transportation Problem

• The Executive Furniture Corporation is faced with the following transportation problem and is trying to minimize the daily transportation cost. How to optimize the shipping plan, while the demand must be satisfied?

Transportation Problem

4	Α	В	С	D	Е	F
1	Executive Fu	rniture Corpor	ation			
2						
3	Source		Des Moines	Evansville	Fort Lauderdale	Demand Sum
4	Destination	Albuquerque	100	0	200	300
5		Boston	0	200	0	200
6		Cleveland	0	100	100	200
7		Supply Sum	100	300	300	
8						
9	Model Paran	neters	Des Moines	Evansville	Fort Lauderdale	Demand
10		Albuquerque	\$ 5.00	\$ 8.00	\$ 9.00	300
11		Boston	\$ 4.00	\$ 4.00	\$ 7.00	200
12		Cleveland	\$ 3.00	\$ 3.00	\$ 5.00	200
13		Supply	100	300	300	
14						
15	Total Cost	\$ 3,900.00				

In-Class Exercise

• The following table shows the sensitivity analysis of the transportation problem. If you can expand the supply by 100, which plant would you choose?

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$C\$7	Supply Sum Des Moines	100	-4	100	200	0
\$D\$7	Supply Sum Evansville	300	-2	300	100	0
\$E\$7	Supply Sum Fort Lauderdale	300	0	300	1E+30	0
\$F\$4	Albuquerque Demand Sum	300	9	300	0	200
\$F\$5	Boston Demand Sum	200	6	200	0	100
\$F\$6	Cleveland Demand Sum	200	5	200	0	100

Dealing with Nonlinear Functions

• Sometimes, nonlinear objective functions and constraint functions can be reformulated as linear ones in an LP.

Maximize $min\{X, Y\}$

Maximize ZSubject to: $Z \le X$ and $Z \le Y$ Maximize 2X + 3YSubject to: $2X + Y \le \min\{X, Y - X\}$

Maximize 2X + 3YSubject to: $2X + Y \le X$ and $2X + Y \le Y - X$

Transportation Problem Revisited

- Reconsider the Transportation Problem.
- Suppose each source can supply more than its capacity by outsourcing at price $p_i=3$, and demand can be unsatisfied with a revenue loss of $r_j=10$ per unit. What is the optimal outsourcing and transportation plan? Formulate the LP.
- $\min_{x_{ij} \ge 0} \sum_{i,j} c_{ij} \cdot x_{ij} + \sum_{i} p_i \cdot \max\{0, \sum_{j} x_{ij} s_i\} + \sum_{j} r_j \cdot \max\{0, d_j \sum_{i} x_{ij}\}$
- Introduce $z_i \ge 0$ and $w_i \ge 0$ such that
 - $z_i \ge 0$ and $z_i \ge \sum_j x_{ij} s_i$
 - $w_j \ge 0$ and $w_j \ge d_j \sum_i x_{ij}$
 - Objective = $\sum_{i,j} c_{ij} \cdot x_{ij} + \sum_{i} p_i \cdot z_i + \sum_{j} r_j \cdot w_j$.

- The Hong Kong Family Office is instructed by a client to invest \$250,000 among the following five asset classes. The market has three possible scenarios, and the asset classes will have different returns.
- How to allocate the money such that worst case return is maximized?

Investment Return (%)	Class 1	ass 1 Class 2 Clas		Class 4	Class 5	
Scenario 1	5	7	5	8	10	
Scenario 2	5	6	3	12	15	
Scenario 3	5	8	8	4	-5	

Worst Case Maximization

```
• Maximize t

• s.t. t \le 5x_1 + 7x_2 + 5x_3 + 8x_4 + 10x_5

• t \le 5x_1 + 6x_2 + 3x_3 + 12x_4 + 15x_5

• t \le 5x_1 + 8x_2 + 8x_3 + 4x_4 - 5x_5

• x_1 + x_2 + x_3 + x_4 + x_5 \le 250,000

• x_1, x_2, x_3, x_4, x_5 \ge 0
```

- 0-1 (binary) variables are very useful in practical problems.
 - Making a selection among a set of choices
 - Discrete (either-or) choices with fixed costs
 - Dependent selections

• An LP with 0-1 variables is called a Mixed Integer Program.

- Making a selection
- Quemo Chemical Company is considering three possible improvement projects:

		Required Investment				
Project	NPV	Year 1	Year 2			
(1) Catalytic Converter	\$25,000	\$8,000	\$7,000			
(2) Software Upgrade	\$18,000	\$6,000	\$4,000			
(3) Warehouse Expansion	\$32,000	\$12,000	\$8,000			
А	vailable Funds	\$20,000	\$16,000			

Which project(s) to undertake to maximize NPV?

Define the decision variables as

$$X_i = \begin{cases} 1 \text{ if project } (i) \text{ is funded} \\ 0 \text{ otherwise} \end{cases}$$

The mathematical statement of the problem:

Max NPV =
$$25,000X_1+18,000X_2+32,000X_3$$

Subject to $8,000X_1+6,000X_2+12,000X_3 \leq 20,000$
 $7,000X_1+4,000X_2+8,000X_3 \leq 16,000$
 $X_1,X_2,X_3 \in \{0,1\}$

Modeling dependent selections

 Suppose that the catalytic converter could be purchased only if the software was upgraded.

• Add a constraint: $X_1 \leq X_2$.

What if the two projects must be undertaken together?

• Add the constraint: $X_1 = X_2$.

Modeling fixed and variable costs

• Suppose there is a fourth option: a marketing program to build the brand name. To start the program, the company has to hire a marketing team, which costs \$10,000 in year 1. The company can then decide the amount of money to invest in year 2. The NPV should be 1.5 times the year-2 investment minus the hiring cost.

• Add variables X_4 and M_4 .

• The new problem can be modeled as follows:

• Max NPV =
$$25,000X_1 + 18,000X_2 + 32,000X_3 + 1.5M_4 - 10,000X_4$$

New constraints:

•
$$8,000X_1 + 6,000X_2 + 12,000X_3 + 10,000X_4 \le 20,000$$

•
$$7,000X_1 + 4,000X_2 + 8,000X_3 + M_4 \le 16,000$$

 $M_4 \le 16,000X_4 \blacktriangleleft$

• $M_4 \ge 0$ and $X_1, X_2, X_3, X_4 \in \{0,1\}$

This constraint is to ensure $M_4=0$ when $X_4=0$. The control limit can be any positive number greater than 16,000.

In-class Exercises

 How to model "at most one can be selected between catalytic converter and warehouse expansion?"

 How to model "catalytic converter could be purchased only when either the software upgrading or the marketing program was undertaken but not both?"

• How to formulate the model if, for the marketing program, an investment could be made in year 1 in addition to the \$10,000 needed to hire marketing team. The NPV is 1.5 times the total marketing investment in two years, minus the hiring cost.

Truck Loading (Knapsack Problem)

- Goodman Shipping Co. is deciding which items to load on a truck so as to maximize the total value shipped.
- The truck has a capacity of 10,000 pounds and the following items are awaiting shipment.

ITEM	VALUE (\$)	WEIGHT (lbs)		
1	22,500	7,500		
2	24,000	7,500		
3	8,000	3,000		
4	9,500	3,500		
5	11,500	4,000		
6	9,750	3,500		

Truck Loading (Knapsack Problem)

• All the decision variables are binary.

A	Α	В	С	D	E	F	G	Н	1	J	K
1	1 Goodman Shipping Co.										
2											
3	Item	1	2	3	4	5	6				
4	Variable	X1	X2	X3	X4	X5	X6				
5	Decision	0	0	1	1	0	1		Total Valu	e	
6	Value	22500	24000	8000	9500	11500	9750		27250		
7									Total Wei	ght	Capacity
8	Weight	7500	7500	3000	3500	4000	3500		10000	≤	10000

Truck Loading (Assignment Problem)

• If Goodman Shipping Co. must ship all the items and they can use more than one truck in their fleet. What is the loading plan that minimizes the unused capacity.

Truck No.	1	2	3	4	5	6
Capacity (lbs)	10,000	5,000	12,000	8,000	4,500	4,000

Truck Loading (Assignment Problem)

• All the decision variables are binary.

Goodman	Shipping C	0.										
Item	1	2	3	4	5	6	Total Wasted Capacity					
Weight	7500	7500	3000	3500	4000	3500	1000				Available	Spare
Truck							Capacity	Used?	Load		Capacity	Capacity
1	0	0	1	1	0	1	10000	1	10000	≤	10000	0
2	0	0	0	0	0	0	5000	0	0	≤	0	0
3	1	0	0	0	1	0	12000	1	11500	≤	12000	500
4	0	1	0	0	0	0	8000	1	7500	≤	8000	500
5	0	0	0	0	0	0	4500	0	0	≤	0	0
6	0	0	0	0	0	0	4000	0	0	≤	0	0
Shipped?	1	1	1	1	1	1						
	=	=	=	=	=	=						
	1	1	1	1	1	1						

Supply Chain Planning

• The Executive Furniture Corporation is faced with the following supply chain planning problem. There are three possible locations to operate a plant, and there are three possible markets.

Supply Chain Planning

- Suppose there is a daily fixed cost of running each plant and the selling prices at the three destinations differ.
- Which plants and destinations should be chosen to maximize profit?

Source	Des Moines	Evansville	Fort Lauderdale		
Daily Fixed Cost	\$1,000	\$3,000	\$5,000		
Destination	Albuquerque	Boston	Cleveland		
Selling Price	\$18	\$30	\$25		

Supply Chain Planning

Executive Furn	iture Corporatio	n (Supply Chain I	Planning)				
			<u>. </u>				
Using Source?	Des Moines	es Moines Evansville					Total Profit
Decision	1	1	0	(binary)			\$ 5,600.00
Fixed Cost	\$ 1,000.00	\$ 3,000.00	\$ 5,000.00				=
Cover Market?	Albuquerque	Boston	Cleveland				Total Revenue
Decision	0	1	1	(binary)			\$ 11,000.00
Selling Price	\$ 18.00	\$ 30.00	\$ 25.00				-
							Total Cost
Model Parame	ters	Des Moines	Evansville	Fort Lauderdale	Demand		\$ 5,400.00
	Albuquerque	\$ 5.00	\$ 8.00	\$ 9.00	300		
	Boston	\$ 4.00	\$ 4.00	\$ 7.00	200		
	Cleveland	\$ 3.00	\$ 3.00	\$ 5.00	200		
	Supply	100	300	300			
Source		Des Moines	Evansville	Fort Lauderdale	Demand Sum		Planned Demand
Destination	Albuquerque	0	0	0	0	=	0
	Boston	100	100	0	200	=	200
	Cleveland	0	200	0	200	=	200
	Supply Sum	100	300	0			
		≤	≤	≤			
	Planned Supply	100	300	0			

Quiz

• As the factory HR, you are hiring two workers to work on a two-stage production line. Each stage requires one worker only. Stage A precedes stage B, so it is required that the processing rate of stage B should not be lower than that of stage A. There are three candidates: Jack, Ken, and Logan. Their job processing rates along with their required wage rates are listed in the table below. To ensure the line throughput rate is no less than M units per hour, how can the hiring plan minimize the wage cost for the factory? Formulate this problem as a mix integer program.

		Jack	Ken	Logan
Drocossing Pata	Stage A	r_{Aj}	r_{Ak}	r_{Al}
Processing Rate	Stage B	r_{Bj}	r_{Bk}	r_{Bl}
Required wage rate		w_j	W_k	w_l

• True/False: If we use binary variable x_{sn} (n=j,k,l;s=A,B) to indicate whether to assign candidate n to stage s, we need constraint $x_{Bj} \cdot r_{Bj} + x_{Bk} \cdot r_{Bk} + x_{Bl} \cdot r_{Bl} \ge M$ to ensure the line throughput rate is no less than M.