Regression Analysis Other Regression Methods

Nicoleta Serban, Ph.D.

Associate Professor

Stewart School of Industrial and Systems Engineering

Spatial Regression

About this lesson

Multiple Linear Regression

Data: $\{(x_{11},...,x_{1p}),Y_1\},....,\{(x_{n1},...,x_{np}),Y_n\}$

What if uncorrelated errors assumption does not hold?

- Degrees of freedom: not equal to the sample size
- Higher variability or uncertainty than estimated thus less reliable statistical inference
- Linearity/Mean Zero Assumption: $E(\varepsilon_i) = 0$
- Constant Variance Assumption: $Var(\varepsilon_i) = \sigma^2$
- Independence Assumption: $\{\epsilon_1,...,\epsilon_n\}$ are independent random variables
- Normality Assumption: $\varepsilon_i \sim Normal$

Example: Spatial Processes

Correlation in space:

- Travel distance to a primary care provider evaluated at the community level
- The number emergency department visit per member permonth
- Locations of outbreak of a disease, for example, Zika
- Functional Magentic Resonance Imaging (fMRI)
- Trajectory of the bison in the landscape

Spatial Process: Characteristics

- Trend: long-distance increase or decrease in the data over space
- Smoothness: observations change slowly as the distance between their location increases
- Heteroskedasticity: varying variance with space
- Continuous vs. Discrete: at each location observe a numeric value versus a binary response versus a count response
- Regular vs. irregular design: the spatial process can be observed within regular or irregular division of the space

Example 1: ED Care Utilization

Percentage of **Children** with an ED visit

Percentage of **Adults** with an ED visit

Example 2: fMRI

Example: Bison Trajectory

Spatial Analysis: Basics

Data: Y_s , where s indexes space, e.g. voxels, census tract **Model**:

- Y_s numeric response vs. point process
- Y_s stationary vs. non-stationary
- Y_s isotropic process
- $s \in S$ where S is the space domain: irregular vs regular observation grid
- Large scale vs. small-scale spatial dependence

Summary

