MTH 201: Calculus

Module 3A: Interpreting, estimating, and using the first and second derivatives

Prof. Talbert

GVSU

August 10, 2020

► Review of Daily Prep assignment, and Q+A

- ▶ Review of Daily Prep assignment, and Q+A
- Polling activity:Increasing/decreasing behavior, meaning of the derivative, concavity

- ▶ Review of Daily Prep assignment, and Q+A
- Polling activity:Increasing/decreasing behavior, meaning of the derivative, concavity
- ► Lecture: Connecting concave up/down to the first and second derivatives

- ► Review of Daily Prep assignment, and Q+A
- Polling activity:Increasing/decreasing behavior, meaning of the derivative, concavity
- Lecture: Connecting concave up/down to the first and second derivatives
- Polling activity to pull the pieces together

- ► Review of Daily Prep assignment, and Q+A
- Polling activity:Increasing/decreasing behavior, meaning of the derivative, concavity
- Lecture: Connecting concave up/down to the first and second derivatives
- Polling activity to pull the pieces together
- Followup activities and things to do

Review and Q+A

Go to www.menti.com and use code?

Concavity

Definition: Concave up

A function f is **concave up** on an interval if

- ► *f* is either increasing or decreasing at an increasing rate on the interval
- ▶ The graph of *f* sits above its tangent lines on the interval
- f' is increasing on the interval

Concavity

Definition: Concave down

A function f is **concave down** on an interval if

- ► *f* is either increasing or decreasing at an decreasing rate on the interval
- ▶ The graph of f sits below its tangent lines on the interval
- ▶ f' is decreasing on the interval

Four combinations of behaviors

Identifying concavity

The second derivative

The second derivative

The **second derivative** of a function f is the derivative of its derivative.

Notation:
$$f''(x)$$
 or $\frac{d^2y}{dx^2}$

The second derivative tells you **the rate at which the slopes of** *f* **are changing**

Or, whether f' is increasing or decreasing

Connecting some pieces

ightharpoonup f is concave up if f' is increasing

Connecting some pieces

- ightharpoonup f is concave up if f' is increasing
- ightharpoonup f' is increasing if the derivative of f' is positive

Therefore... f is concave up if

Connecting some pieces

- ightharpoonup f is concave up if f' is increasing
- ightharpoonup f' is increasing if the derivative of f' is positive
- ► The derivative of f' is f"

Therefore... f is concave up if

Next

All due dates are on the Course Calendar

Complete Followup Activities