MATH 233H ATTENDANCE PROBLEMS

These are the quick problems given in class to (randomly) take attendance. Please let me know if you find any mistakes.

- (1) Let $\mathbf{v} = \langle 1, 1, 1 \rangle$, $\mathbf{w} = \langle 1, 3, -1 \rangle$. Find a unit vector perpendicular to \mathbf{v} and \mathbf{w} . Answer: Take the cross product to get $\mathbf{r} = \langle -4, 2, 2 \rangle$. Using the dot product we see that \mathbf{r} is perpendicular to both \mathbf{v} and \mathbf{w} . The length of \mathbf{r} is $\sqrt{16+4+4} = \sqrt{24} = 2\sqrt{6}$. So the unit vector is $\langle -2, 1, 1 \rangle / \sqrt{6}$.
- (2) Find the distance between the lines $\langle t, -t, 1 \rangle$ and the x-axis. **Answer:** The lines are skew. The direction vectors are $\hat{\imath}$ and $\langle 1, -1, 0 \rangle$, so a common perpendicular is \hat{k} . A vector going in between is $\mathbf{w} = \langle 0, 0, 1 \rangle$ (take t = 0 and the origin) so the distance is $|\mathbf{w} \cdot \hat{\mathbf{k}}| = 1$.
- (3) Let $\mathbf{r}(t) = \langle te^t, t^2 + t, \sin t^2 \rangle$. Compute \mathbf{r}' and \mathbf{r}'' . Answer: $\mathbf{r}' = \langle te^t + e^t, 2t + 1, 2t \cos t^2 \rangle$, $\mathbf{r}'' = \langle 2e^t + te^t, 2, -4t^2 \sin t^2 + 2 \cos t^2 \rangle$.

Date: September 19, 2025.