Zadanie 35.

Jeden ze sposobów zapisania niezerowej liczby rzeczywistej x w pamięci komputera polega na:

1) przedstawieniu tej liczby w postaci iloczynu trzech liczb:

 $(-1)^S$ — przy czym S jest równe 0 lub 1 i nazywa się znakiem,

M — *mantysy*, która jest liczbą z przedziału [1;2),

 2^{C} — przy czym C jest liczbą całkowitą zwaną cechq,

$$x = (-1)^S * M * 2^C.$$

2) zapisaniu w pamięci oddzielnie: znaku, mantysy i cechy.

Przykład

$$5.5 = 2.75*2^{1} = \underbrace{1.375*2^{\textcircled{2}}}_{mantysa}$$
 cecha

Przyjmijmy, że każdą liczbę rzeczywistą zapisujemy na 8 bitach.

Najstarszy bit (pierwszy z lewej) jest bitem znaku: 0 oznacza liczbę dodatnią, 1 — ujemną.

Następne 3 bity reprezentują **cechę** — liczbę całkowitą z zakresu od –4 do 3, reprezentowaną przez trzy cyfry binarne następująco:

-4	000		0	100	
-3	001		1	101	
-2	010		2	110	
-1	011		3	111	

Do zapisu **mantysy** pozostają ostatnie 4 bity. Część całkowita mantysy będzie zawsze równa 1, więc wystarczy zapisać tylko jej część ułamkową. Ułamek przedstawiamy w postaci binarnej i zapisujemy cztery pierwsze cyfry rozwinięcia, o wagach: 2⁻¹, 2⁻², 2⁻³ i 2⁻⁴.

Przykład

Bit znaku ma wartość 0, więc liczba jest dodatnia $C = 110_2 - 4 = 6 - 4 = 2$ $M = 1.0110_2 = 1 + 0.25 + 0.125 = 1.375$ $x = M*2^C = 1.375*2^2 = 5.5$

35a.

Oceń, czy podane poniżej zdania dotyczące liczby rzeczywistej zapisanej obok w postaci binarnej są prawdziwe, czy fałszywe, stawiając znak X w odpowiedniej kolumnie poniższej tabeli:

		P	F
A	Liczba jest dodatnia.		
В	Cecha ma wartość dziesiętną równą -2.		
С	Mantysa ma wartość dziesiętną równą 0.75.		
D	Liczba ma wartość dziesiętną równą -0.4375.		

35b.

Jaką największą liczbę rzeczywistą *x* można zapisać, wykorzystując 8 bajtów w sposób opisany wyżej? Wypełnij bity reprezentacji binarnej tej liczby i podaj jej wartość dziesiętną.

35c.

Jaką najmniejszą liczbę nieujemną można zapisać w opisanej wyżej reprezentacji 8-bitowej? Wypełnij bity jej reprezentacji binarnej i podaj jej wartość dziesiętną.

cecha	_			
0		$C = \dots$ $M = \dots$		
znak	mantysa	<i>x</i> =		

Komentarz do zadania

Zauważ, że w przyjętej reprezentacji:

- można zapisać jedynie wybrane liczby z przedziału od –15.5 do 15.5,
- nie da się zapisać liczby dokładnie równej zero,
- kolejne dwie liczby mogą różnić się od siebie nie mniej niż o 0.125.

W praktyce liczby rzeczywiste zapisywane są na większej liczbie bitów: 32 (w pojedynczej precyzji) lub 64 (w podwójnej precyzji). Szerokości cechy i mantysy są więc dużo większe. Nie zmienia to jednak istoty problemu: zakres wartości liczbowych możliwych do zapisania jest ograniczony, a wielu wartości należących do tego zakresu nie da się dokładnie zapisać.

Publikacja opracowana przez zespół koordynowany przez **Renatę Świrko** działający w ramach projektu *Budowa banków zadań* realizowanego przez Centralną Komisję Egzaminacyjną pod kierunkiem Janiny Grzegorek.

Autorzy

dr Lech Duraj dr Ewa Kołczyk Agata Kordas-Łata dr Beata Laszkiewicz Michał Malarski dr Rafał Nowak Rita Pluta Dorota Roman-Jurdzińska

Komentatorzy

prof. dr hab. Krzysztof Diks prof. dr hab. Krzysztof Loryś Romualda Laskowska Joanna Śmigielska

Opracowanie redakcyjne

Jakub Pochrybniak

Redaktor naczelny

Julia Konkołowicz-Pniewska

Zbiory zadań opracowano w ramach projektu Budowa banków zadań,
Działanie 3.2 Rozwój systemu egzaminów zewnętrznych,
Priorytet III Wysoka jakość systemu oświaty,
Program Operacyjny Kapitał Ludzki

