

Transfer learning for crowd numerosity estimation

Pavel lanko pavel.ianko@studenti.unipd.it University of Padua, Data Science MSc

Overview

- Alternative approaches to crowd counting
 - Why ML approach is valid?
- Dataset
 - Target distribution
- Method
 - Selected architectures
 - Target metrics
- Experiments
 - Baseline selection
 (validation MAE, trainable parameters, training time)
 - Pretraining on another dataset
 - Correct pretraining technique
- Test report
- Conclusion

Alternative approaches to crowd counting

Regression-based approach

Idea: learn a regression model on low-level and local visual features

Perspective normalisation map

Cell-splitting

Cell-wise local feature extraction

Ordered feature vectors

- Regression model estimates people foreach region independently [1]
- Some approaches learn global regression model [2]
- Created the "Mall Dataset"
- 3.15 MAE
- [1]. Ke Chen et al. Feature mining for localised crowd counting.
- [2]. A.B. Chan et al. Counting people with low-level features and Bayesian regression.

Detection-based approach

Idea: detect instances of people

- Bayesian Marked Point Process model [1].
- Detection rate 92%

- HOG feature extraction for head-shoulder pattern [2]
 - Ada-boost detector [2]
- [1]. W. Ge et al. Marked point processes for crowd counting.
- [2]. Min Li et al. Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection.

Clustering-based approach

Idea: "pair of points that appears to move together is likely to be part of the same individual" [1]

- Bayesian clustering model [1]
- Feature detector (Rosten-Drummond + Tomasi-Kanade features)
 - Feature tracker

Why CNN approach is valid

	Regression	Clustering	Detection	CNNs
Feature extraction	Manual	Manual	Manual	Automatic
Pipeline complexity	>1 components [2, 3, 4, 5]	>1 components [2, 3, 4, 5]	>1 components [2, 3, 4, 5]	1 model (end-to-end- learning [1])
Computational efficiency	Yes, compared to clustering and detection [2]	Worse than regression [2]	Worse than regression [2]	Depends on requirements & architecture
Clutter & object occlusion	Performs better [2]	Worse than regression [2]	Worse than regression [2]	Can learn occlusion-robust features

- [1]. Andrew Ng. Machine Learning Yearning.
- [2]. Ke Chen et al. Feature mining for localised crowd counting.
- [3]. G. J. Brostow et al. Unsupervised Bayesian Detection of Independent Motion in Crowds.
- [4]. Min Li et al. Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection.
- [5]. A.B. Chan et al. Counting people with low-level features and Bayesian regression.

Dataset

Dataset

- Collected in the work of Chen et al. [1]
- 2,000 sequential images
 - 480 × 640 pixels

- Trainval / Test split 80% / 20%
 (400 + 1600 images)
 - Train / Val split 80% / 20%
 (1280 + 320 images)
- Equally representative subsets

Method

Pipeline

- Models are pretrained on ImageNet dataset
- Target metrics MAE
- Optimized metrics MSE

Selected architectures

Each model:

- Retains only feature extractor
- Appends a classification block
- Unfreezes 7 top layers (classification block + 2 layers of feature extractor)

Training hyperparameters:

- ≤ 30 epochs
- Adam optimizer
- Batch size of 64
- EarlyStopping and ReduceLROnPlateau callbacks

Experiments. Baseline selection

Baseline shortlisting

Baseline shortlisting

Baseline shortlisting

Experiments. Optimal number of unfrozen layers

The best number of unfrozen layers

Idea for the experiment is taken from [1]

Baseline classification block

Xception +

Dense (400, ReLU)

Dropout (0.3)

Dense (400, ReLU)

Dropout (0.3)

Dense (1, Linear)

Unfreeze N layers

+ and apply training

pipeline

[1]. A. Geron. Hands on Machine Learning Guide

Experiments. Pretraining on another dataset

PRW dataset

- PRW (Person Reidentification in the Wild) dataset is taken from [1]
- Dataset parameters:
 - 11,816 sequential images
 - $1080 \times 1920 \text{ pixels}$

[1]. Liang Zheng et al. Person reidentification in the wild.

Pretraining pipeline and results

	Pre-training	Training	
Number of epochs	≤20	≤30	
Dataset	PRW dataset	Mall dataset	
Batch size	32		
EarlyStopping	+		
Reduce LROnPlateau	+		

Reasons for unsuccessful pretraining

Reason 2: different scale of humans, point of view and outfit

Experiments. Correct pretraining technique

Correct pretraining

- Correct pretraining algorithm [1]:
 - Unfreeze only the layers with randomly initialized weights
 - Train for 5-6 epochs
 - Unfreeze all layers, that must be reused (number found experimentally)
 - Consider decreasing learning rate
 - Initiate training procedure

Test report

Final solution

- Final solution parameters:
 - Xception feature extractor, pretrained on ImageNet
 - Deeper classification block with ELU activations
 - Correct pretraining procedure [1]

Final classification block

Dense (500, ELU)			
Dense (400, ELU)			
Dense (400, ELU)			
Dropout (0.3)			
Dense (400, ELU)			
Dropout (0.3)			
Dense			
(1, ReLU + he_normal)			

	Pre-training	Training	
Number of epochs	6	≤40	
Number of unfreezed layers	7	17	
Dataset	Mall dataset		
Optimizer	Adam		
Learning rate	0.001	0.0004	
EarlyStopping	-	+	
ReduceLR OnPlateau	-	+	

Final solution

[1]. A. Geron. Hands on Machine Learning Guide.

[2]. Ke Chen et al. Feature mining for localised crowd counting.

Conclusions

- CNN approach is competitive with regression-based, clustering-based, and detection-based techniques:
 - No complex pipelines, end-to-end learning
 - Automatic feature extraction
- 5 / 6 architectures achieved < 3 validation MAE, on a baseline level:
 - ResNet 50
 - Xception
 - Inception v3
 - Inception ResNet v2
 - VGG19
- Pretraining on PRW dataset helped to reduce initial loss, but did not increase generalization ability
- Correct pre-training procedure reduced validation MAE to <2
- Final solution achieves **1.63 validation MAE**, **1.64 test MAE**, which outperforms regression based approach [1] and object detection approach [3]
- [1]. Ke Chen et al. Feature mining for localised crowd counting.
- [2]. A. Geron. Hands on Machine Learning Guide.
- [3]. https://www.kaggle.com/code/ekaterinadranitsyna/crowd-detection-model