

Calculation of the crosshead velocity in mm/min required to achieve a specified stress rate in MPa s⁻¹ or an estimated strain rate in s⁻¹

Hermann Bloching Zwick GmbH & Co. KG, Ulm, Germany hermann.bloching@zwick.de

Basics for setting the test speed

Specification of crosshead speed

Every tensile testing machine consists basically of a machine frame, a force-measuring device and fixturing devices. These machine parts undergo elastic deformations in tension. The sum of these elastic deformations describes the compliance K_M of the machine. It represents the reciprocal value of the machine stiffness C_M . Figure 1 shows the basic design configuration. The spring represents machine compliance K_M or stiffness C_M respectively. Most electronically controlled testing machines allow the test speed to be specified as a crosshead speed or traverse speed for spindle machines, or as a piston speed for hydraulic machines (in the following, the term crosshead speed will be used for simplicity).

This traverse speed is defined as change of displacement per time interval:

Configuration of a testing machine

Stiffness of testing equipment C_M : $C_M = f$ (frame, load cell, clamping system, ...)

Stiffness of specimen C_P : $C_P = f$ (slope of stress/strain curve, original cross-sectional area, parallel length,...)

Stiffness of test configuration C:

$$\frac{1}{C} = \frac{1}{C_M} + \frac{1}{C_P}$$

Speed for deformation of specimen during elastic range

If the testing machine were equal ideally stiff the crosshead speed to be set on the machine could be calculated using Hooke's Law:

$$\sigma = E * \varepsilon$$
 (1)

with
$$\varepsilon = \frac{\Delta L}{L_c}$$
 in m/m the result is:

$$\sigma = E * \frac{\Delta L}{L_c} \rightarrow \Delta L = \frac{\sigma}{E} * L_c \quad (2)$$

with (1) and (2) the result is:

$$v = \frac{\delta}{\Delta t} * \frac{L_c}{E} = L_c * \frac{\dot{\sigma}}{E}$$
 in mm/s

or

$$v_{\text{deform of specimen}} = 60*L_c*\frac{\vec{\sigma}}{E}$$
 in mm/min (3)

This is the speed required for deformation of the specimen in the elastic range

Speed for deformation of testing equipment

In additional to specimen deformation the testing equipment (load frame, load cell, grips, etc.) must also be considered.

This means we must add to the speed for deforming the specimen the following formula for deformation of the equipment:

$$\Delta I_{\text{equipment}} = \frac{F[N]}{C_M[N/mm]}$$
 (4)

Where C_M = stiffness of testing equipment

ETI 00111 Page 2 of 9

with (1) the result is

$$v_{deform\ equipment} = \frac{\Delta l_{equipment}}{\Delta t} = \frac{F}{C_M * \Delta t}$$

And with $F = \sigma * S_0$ the result is

$$v_{deform\ equipment} = \frac{\sigma * S_0}{\Delta t * C_M} = \dot{\sigma} * \frac{S_0}{C_M}$$
 in mm/s

or

$$v_{deform\ equipment} = \dot{\sigma} * \frac{S_0}{C_M} * 60 \quad \text{in mm/min} \quad (5)$$

Finally the crosshead speed required to achieve a specified stress rate in the elastic range can be calculated using the formula

v crosshead = v deform specimen + v deform equipment

$$v_{crosshead} = 60 * \dot{\sigma} \left(\frac{L_C}{E} + \frac{S_0}{C_M} \right)$$
 in mm/min

with $\dot{\sigma}$ = stress rate in MPa/sec

Lc = grip-to-grip separation (or parallel length of specimen) in mm

E = Young's modulus (slope of Hooke's Law graph)
of specimen in N/mm²

 S_0 = cross-section of specimen in mm²

 C_M = stiffness of equipment in N/mm

ETI 00111 Page 3 of 9

Table of calculated speeds in elastic range for practical use

a) v in mm/min for specimen deformation without equipment deformation: (specimen with parallel length of 120 mm)

	Young's modulus in [N/mm²]						
Stress rate in MPa/s	210000	175000	75000				
30	1.02	1.23	2.88				
20	0.68	0.82	2.92				
10	0.34	0.41	0.96				

b) v in mm/min for equipment deformation calculated for a stress rate of 30 MPa/s

	Cross-section of specimen in mm ²											
Stiffness of equipment in N/mm	10	20	30	40	50	60	70	80	90	100	150	200
5800	3.10	6.20	9.31	12.41	15.51	18.62	21.72	24.82	27.93	31.03	46.55	62.06
10000	1.8	3.6	5.4	7.2	9	10.8	12.6	14.4	16.2	18	27	36
20000	0.9	1.8	2.7	3.6	4.5	5.4	6.3	7.2	8.1	9	13.5	18
30000	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6	9	12
40000	0.45	0.9	1.35	1.8	2.25	2.7	3.15	3.6	4.05	4.5	6.75	9
50000	0.36	0.72	1.08	1.44	1.8	2.16	2.52	2.88	3.25	3.6	5.4	7.2

ETI 00111 Page 4 of 9

ZwickMaterials Testing

60000	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0	4.5	6.0
70000	0.26	0.51	0.77	1.03	1.28	4.54	1.8	2.06	2.31	2.57	3.86	5.14
80000	0.23	0.45	0.67	0.9	1.13	1.35	1.58	1.8	2.03	2.25	3.37	4.5
90000	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2	3	4.0
100000	0.18	0.36	0.54	0.72	0.9	1.08	1.26	1.44	1.62	1.8	2.7	3.6
110000	0.16	0.32	0.49	0.65	0.81	0.98	1.14	1.30	1.47	1.64	2.45	3.27

ETI 00111 Page 5 of 9

Summary of relationship: stress-rates $\leftarrow \rightarrow$ stain-rates $\leftarrow \rightarrow$ crosshead speeds

Specimen:

Material St. 15 (Y's mod.=210000 N/mm²) b = 20mm; a = 0.81mm \rightarrow 16.02mm²

 $L_C = 120 \text{mm}$

Stiffness of test equipment 3.3 or 25kN/mm

Stress-rate	6 N/mr	n² sec.	30 N/m	m² sec.	60 N/mm² sec.		
Stiffness in kN/mm	3.3	25	3.3	25	3.3	25	
Crosshead speed for deformation of specimen in mm/min	0.20	0.2	1.02	1.02	2.05	2.05	
Crosshead speed for deformation of equipment in mm/min	1.74	0.23	8.73	1.15	17.4	2.3	
∑ of crosshead speed for deformation in mm/min	1.94	0.43	9.75	2.17	19.45	4.35	
\sum of crosshead speed in % L_C/\min	1.6	0.3	8.1	1.8	16.1	3.6	

 \sum = speed for equipment + specimen deformation

ETI 00111 Page 6 of 9

Relationship: crosshead speed $\leftarrow \rightarrow$ strain-rate $\leftarrow \rightarrow$ stress-rate

Examples and utilities for calculation of crosshead speed for achieving a specified strain rate

As published in different reportsespecially the R_p or R_{eh} values in tensile tests, based on constant separation of the crossheads within defined stress rate limits, are influenced by the stiffness of the testing equipment and the specimen. To obtain more reproducible results the use of strain rate controlled tests is recommended.

Some test equipment, particularly older versions, is not capable of controlling the strain rate, so a crosshead speed equivalent to the recommended strain rate can be used.

ETI 00111 Page 7 of 9

ZwickMaterials Testing

On the basis of the above considerations, the crosshead speed required to achieve a specified strain rate can be calculated using the formula:

$$v_C = 60 * e_m (m*S_C + L_C) mm min^{-1}$$

 C_M

- v_C crosshead separation rate in mm s⁻¹
- \dot{e}_m resulting strain rate in the specimen in s⁻¹
- m slope of the stress/strain curve at a given moment of the test (e.g. around the area of interest such as $R_{00,2}$) in MPa
- S_o original cross-section area in mm²
- *L*_C parallel length of the test piece in mm
- C_M stiffness of the testing equipment in N mm⁻¹ (around the point of interest such as $R_{p0,2}$, if stiffness is not linear, e.g. when using wedge grips)

Remark:

the use of E (modulus of elasticity) as m (slope of stress strain-curve near the R_{eh} or R_{p} value) falsifies the result!

For diagrams of calculated crosshead speeds V_C for practical use (based on the specimen dimensions on page 5 and a resulting strain rate of 0.00025 s⁻¹) see next page

ETI 00111 Page 8 of 9

With const C_M and variable S_0 :

ETI 00111 Page 9 of 9