K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC CIRCUIT

Numerical 1: Find the current in 15Ω resistor using the Superposition theorem.

Figure 1: Circuit:1

Solution:

Using Superposition theorem:

Case 1: 60V battery is active:

Figure 2: When 60V source is active

Simplifying the Circuit,

Figure 3: Simplified Circuit for Figure2

$$I = \frac{60}{20}$$

$$I = 3A$$
.. (Refer Figure 3)

Using the current divion rule,

$$I_1 = \frac{3 \times 30}{45}$$

$$I_1 = 2A$$

Case 2: 30V battery is active:

Figure 4: When 30V source is active

Simplifying the Circuit,

$$I = \frac{30}{30 + (10||15)}$$
$$I = 0.8333A$$

Using the current divison rule,

$$\begin{split} \mathrm{I}_2 &= \frac{10 \times 0.833}{25} \\ \mathrm{I}_2 &= 0.333A \end{split}$$
 Current through $15\Omega = I1 + I2$

$$= 2 + 0.33$$

$$= 2.333A$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 5: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
$I_{15\Omega}$	2.3333A	2.333A

Table 1: Numerical 1

Numerical 2: Find the current in 10Ω resistor using the Superposition theorem.

Figure 6: Circuit:2

Solution:

Using Superposition theorem:

Case 1: 50V battery is active:

Figure 7: When 50V source is active

No current will flow through 10Ω resistor

 $I_1 = 0A$

Case 2: 25V battery is active:

Figure 8: When 25V source is active

Simplifying the Circuit we get,

$$I = -\frac{25}{12.5}$$

I = -2A

Using the current divison rule,

$$I_2 = -\frac{25}{50}$$

$$I_2 = -1A$$

Current through $10\Omega = I_1 + I_2$ = 0-1= -1A

SIMULATED RESULTS:

The following circuit was simulated in LTspice and the simulated result are as follows:

Figure 9: Circuit schematic and Simulated Result

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
$I_{10\Omega}$	-1A	-1A

Table 2: Numerical 2

Numerical 3: Using Thevenin's Theorem solve for the current I in the circuit 3.

Figure 10: Circuit 3

Solution:

1) Calculation of V_{Th} :

Figure 11: When 60V source is active

Applying KCL,

$$50 - 10I_1 - 40I_2 = 0$$
$$I_1 = 1A$$

For V_{Th} ,

$$30 + V_{Th} - 40 = 0$$
$$V_{Th} = 10V$$

2) Calculation of R_{Th} :

Figure 12: Circuit for R_{Th}

$$R_{Th} = \frac{40 \times 10}{50}$$

$$R_{Th} = 8\Omega$$

3) Calculation of I:

Figure 13: Circuit for calculation of I

$$I = \frac{10}{8 + 12}$$

$$I = 0.5A$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 14: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
$I_{12\Omega}$	0.5A	0.5A

Table 3: Numerical 3

Numerical 4: Apply Thevenin's Theorem to find Vo in the circuit.

Figure 15: Circuit 4

Solution:

1) Calculation of V_{Th} :

Figure 16: Circuit for calculating V_{Th}

At Node 1,

$$3 = \frac{V_1}{16} + \frac{V_1 - V_2}{4}$$

$$5V_1 - 4V_2 = 48$$
(1)

At Node 2:

$$\frac{V_1 - V_2}{4} + \frac{12 - V_2}{5} = \mathbf{0}$$

$$-5V_1 + 9V_2 = 48$$
(2)

Solving Equation (1) and (2),

$$V_{Th} = V_2 = 19.2V$$

2) Calculation of \mathbf{R}_{Th} :

Figure 17: Circuit for R_{Th}

$$R_{Th} = \frac{20 \times 5}{25} + 1$$

$$R_{Th} = 5\Omega$$

3) Calculation of I:

Figure 18: Circuit for calculation of I

$$I = \frac{19.2}{10 + 5}$$

$$I = 1.28A$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 19: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
V_o	12.8V	12.8V

Table 4: Numerical 4

Numerical 5: Find the Norton's equivalent circuit between A and B.

Figure 20: Circuit 5

Solution:

Step 1) Finding I_N :

Figure 21: Circuit for calculating I_N

Applying KVL to Mesh 1, $80 - 5I_1 - 4(I_1 - I_2) = 0$

$$80 - 9I_1 + 4I_2 = 0$$
 ...(1)

Applying KVL to Mesh 2,

$$-4(I_2 - I_1) - 8I_2 = 0$$

 $4I_1 - 12I_2 = 0$...(2)

Applying KVL to Mesh 3, $20 - 3I_3 = 0$...(3)

Solving equations (1), (2) & (3)

 $I_2 = 3.478A$ $I_3 = 6.666A$ $\mathbf{I}_N = I_3 - I_2$

 $I_N = 6.666 - 3.478$

 $I_N = 3.188A$

Step 2) Finding R_{Th} :

Figure 22: Circuit for R_{Th}

$$R_{Th} = \frac{276}{119}$$

 $R_{Th} = 2.139\Omega$

Norton's Equivalent Circuit

Figure 23: Norton's Equivalent Circuit

SIMULATED RESULTS: The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 24: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
I_N	3.188A	3.18841A
R_{Th}	2.319Ω	2.3193Ω

Table 5: Numerical 5

Numerical 6: Find the current flowing through the 4Ω resistor using Thevenin's and Norton's Theorem.

Figure 25: Circuit 6

Solution:

1) Norton's Theorem Step 1): Finding I_N

Figure 26: Circuit for calculating I_N

For Mesh 1,
$$I_1 = 5A$$
 ...(1)

For the supermesh,

$$-2(I_2 - 5) - 6 = 0$$

 $I_N = 2A$...(2)
 $\therefore I_N = I_2 + 1$
 $I_N = 4A$

Step 2) Finding R_{Th} :

Figure 27: Circuit for R_{Th}

...(3)

$$R_{Th} = 2\Omega$$

Step 3) Norton's Equivalent Circuit:

Figure 28: Norton's Equivalent Circuit

$$I_{4\Omega} = \frac{2 \times 4}{6}$$

$$I_{4\Omega} = 1.33A$$

2) Thevenin's Theorem:

Step 1): Find V_{Th} ,

Figure 29: Circuit for calculating V_{TH}

From Mesh 1,

$$I_1 = 5A$$

 $I_3 - I_2 = 2A$
 $I_2 = 2A$
 $V_{TH} + 6 - 2(5 + 2) = 0$
 $V_{TH} = 8V$...(From (2))

Step 2):Finding \mathbf{R}_{TH} ,

 $R_{TH} = 2\Omega$

...(From(3))

Step 3): Calculating I,

Figure 30: Thevenin's Equivalent Circuit

SIMULATED RESULTS: The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 31: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
$I_{4\Omega}$ (Norton's Theorem)	1.33Ω	1.33Ω
$I_{4\Omega}$ (Thevenin's Theorem)	1.333Ω	1.33Ω

Table 6: Numerical 6

Numerical 7: Find the current in $1k\Omega$ resistor using Norton's Theorem.

Figure 32: Circuit 7

Solution:

Step 1) Finding I_N :

Figure 33: Circuit for calculating I_N

$$I_1 = 1mA$$

For Mesh 2,

$$3 - 2(I_2 - 1) = 0$$

 $I_2 = 2.5mA$

$$I_2 = 2.5 mA$$

$$I_N = (5 - 2.5)mA$$

$$I_N = 2.5mA$$

Step 2) Finding R_{Th} :

Figure 34: Circuit for R_{Th}

$$R_{Th} = 2k\Omega$$

Step 3) Finding $\mathbf{I}_{1k\Omega}$:

Figure 35: Norton's Equivalent Circuit

$$I_{1k\Omega} = \frac{2.5 \times 2}{3}$$
$$I_{1k\Omega} = 1.66A$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 36: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
$I_{1k\Omega}$	1.666mA	1.666mA

Table 7: Numerical 7

Numerical 8: Find the maximum power in R_L of circuit 1.

Figure 37: Circuit 8

Solution:

Step 1: Finding V_{TH}

Figure 38: Circuit for finding V_{TH}

Applying KCL at node A

$$\mathbf{0} = \frac{V_A}{60} + \frac{V_A - 100}{40}$$

$$V_A = 60V$$

Applying KCL at node B

$$\mathbf{0} = \frac{V_C}{50} + \frac{V_C - 100}{40}$$

$$V_C = 50V$$

$$V_B = V_C + 2$$

$$\mathbf{V}_B = 52V$$

$$V_{TH} = V_A - V_B$$
$$V_{TH} = 60 - 52$$
$$V_{TH} = 8V$$

Step 2: Finding R_{TH}

Figure 39: Circuit for finding R_{TH}

$$R_{TH} = (60||40) + (50||50)$$

 $R_{TH} = 49\Omega$

Step 3: Calculating Maximum Power

For maximum power transfer $R_L = R_{TH} = 48.99991\Omega$

Figure 40: Circuit for Maximum Power

$$Power = I^{2} \times R_{L}$$
$$= (0.0816)^{2} \times 49$$
$$Power = 0.3262W$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result obtained are as follows:

Figure 41: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
P_{R_L}	0.3262W	0.3262W

Table 8: Numerical 8

Numerical 9: Determine maximum power that can be delivered to variable resistance \mathbf{R}_L .

Figure 42: Circuit 9

Solution:

Step1: Finding V_{TH}

Figure 43: Circuit for calculating V_{TH}

Applying KCL at node A

$$\mathbf{0} = \frac{V_A}{20} + \frac{V_A - 60}{10}$$

$$V_A = \frac{120}{3}$$

$$V_A = 40V$$

Applying KCL at node B

$$\mathbf{0} = \frac{V_B}{5} + \frac{V_B - 60}{25}$$

$$V_B = \frac{60}{6}$$

$$V_B = 10V$$

$$V_{TH} = V_B - V_A$$
$$V_{TH} = 40 - 10$$

$$V_{TH} = 40 - 10$$

$$V_{TH} = 30V$$

Step 2: Finding R_{TH}

Figure 44: Circuit for finding R_{TH}

$$R_{TH} = (20||10) + (25||5)$$

$$R_{TH} = \frac{200}{30} + \frac{125}{30}$$

$$R_{TH} = 10.833\Omega$$

Step 3: Calculating Maximum Power

For maximum power transfer $R_L = R_{TH} = 10.833\Omega$

Figure 45: Circuit for Maximum Power

$$Power = I^2 \times R_L$$
$$= (1.389)^2 \times 10.833$$
$$Power = 20.769W$$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the result brained are as follows:

Figure 46: Circuit schematic and Simulated Results

Comparison of Theoretical and Simulated values:

Parameters	Theoretical Values	Simulated Values
P_{R_L}	20.769W	20.7693W

Table 9: Numerical 9
