1. Consider the following vectors in \mathbb{R}^4 :

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 3 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 3 \\ 3 \\ 3 \\ 3 \end{bmatrix} \qquad \frac{0 + 0 + 3}{2 + (-2) + 0 + (-3)}$$

The set $\mathcal{B} = \{v_1, v_2, v_3\}$ is a basis of some subspace V of \mathbb{R}^4 .

a) Find an orthogonal basis
$$\mathcal{D} = \{w_1, w_2, w_3\}$$
 of the subspace V .

b) Compute the vector $\operatorname{proj}_{V}u$, the orthogonal projection of u on V .

a) $w_1 = V_1$
 $w_2 = V_2 - \left(\frac{w_1 \cdot v_2}{w_1 \cdot w_1}\right) w_1$
 $w_3 = \left(\frac{v_3}{v_3}\right) \left(\frac{v_3}{v_3$

