ME3-E Testat 2 Bohrgerät-Getriebe

Gruppe 9:
Daniel Skrypnikov,
Edis Duvnjak,
Marvin Müller

Inhaltsverzeichnis:

- 1. Anforderungsliste
- 2. Prinzip-Skizze
- 3. Entwurf-Skizze
- 4. Berechnungen:
 - 1) Auslegen der Übersetzung und Bestimmung der Zähnezahlen
 - 2) Berechnung der Wellen und Passfedern
 - 3) Zahnradbreite
 - 4) Schrägungswinkel
 - 5) Modul 1,2
 - 6) Teilkreisdurchmesser Z1,Z2
 - 7) Achsabstand 1,2
 - 8) Modul 3,4
 - 9) Teilkreisdurchmesser Z3,Z4
 - 10) Achsabstand 3,4
 - 11) Profilverschiebung
 - 12) Kopfspiel
 - 13) Weitere Auslegungen der Zahnräder
 - 14) Kopfspiel nach Verschiebung
 - 15) Profilüberdeckung
 - 16) Zusammenfassung wichtiger Komponenten der Zahnräder 1-4
 - 17) Zahnradkräfte
 - 18) Lagerkräfte und Schnittgrößenverläufe Antriebswelle
 - 19) Lagerkräfte und Schnittgrößenverläufe Vorgelegewelle
 - 20) Lagerkräfte und Schnittgrößenverläufe Abtriebswelle
 - 21) Auswahl Lagergröße
 - 22) Lebensdauer der Lager
 - 23) Zusammenfassung der gewählten Lager
 - 24) Allgemeine Daten Festigkeitsnachweis
 - 25) Festigkeitsnachweis Antriebswelle
 - 26) Festigkeitsnachweis Vorgelegewelle
 - 27) Festigkeitsnachweis Abtriebswelle
 - 28) Schmierstoffberechnung
 - 29) Fliehkraftkupplung
- 5. Isometrische Darstellung
- 6. Legende der verwendeten Formelzeichen

Vorgeg	gebene Auslegungsdaten:
Bezeichnung und Wert:	Benennung:
$T_{an} \coloneqq 50 \; N \cdot m$	Antriebsdrehmoment
$T_{ab1} \coloneqq 650 \ \textit{N} \cdot \textit{m}$	Abtriebsdrehmoment
$n_S\!\coloneqq\!1100 extbf{\textit{min}}^{-1}$	Schaltdrehzahl
$n_{an}\!\coloneqq\!2000$ min^{-1}	Antriebsdrehzahl
$F_B \coloneqq 1.5 \; kN$	Bohr-Abtriebskraft
$K_A \coloneqq 2.0$	Belastungsfaktor
1) Auslegen der Übersetzung	und Bestimmung der Zähnezahlen
rechnerisches Übersetzungsv $i_{ges}\!\coloneqq\!rac{T_{ab1}}{T_{an}}\!=\!13$	verhältnis
$i_{12}\!:=\!3.95$	TBM S. 269
$i_{34} \coloneqq \frac{i_{ges}}{i_{12}} = 3.291$	
$i_{ges}\!\coloneqq\!i_{12}\!\cdot\!i_{34}\!=\!13$	Das Gegenrechnen bestätigt den Wert für i
$n_{ab}\!\coloneqq\!rac{n_{an}}{i_{ges}}\!=\!153.846$ $m{min}^{-1}$	
Zähnezahlen der Zahnräder	
$z_1 \coloneqq 25$	
$z_2 = z_1 \cdot i_{12} = 98.75$ $z_2 = 99$	TBM S. 269
z_3 := 24	

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

mm	2		
$n_P \coloneqq 1$		Anzahl Passfedern pr	o Welle-Nabe Verbindun
$\varphi = 1$		Traganteil der Passfe	der
$R_e \coloneqq 295 \frac{N}{mm}$	2	Streckgrenze E295	
Tum		C: 1 1 :: =!: 0	
$S_F \coloneqq 1.1$		Sicherheit Fließgrenze	9
$p_{Fzul} \coloneqq rac{R_e}{S_F} = 20$	38.182 N	Zulässige Flächenpre	ssung einer Passfeder
S_F	mm^2		
Antriebswell	e:		
$d_{min1} \coloneqq \sqrt[3]{rac{16 \cdot}{}}$	$\overline{T_{an}\!\cdot\! K_{\!A}} = 21.677$ ms	$m{m}$ d_{W1} := 30 $m{mm}$	$t_{1:W1} \coloneqq 4$ mm
γ π	$ullet au_{tzul}$		37/72
_	$2 \cdot T_{an}$		
$l_{t1} \coloneqq \frac{1}{d_{W1} \cdot (7 n)}$	$egin{aligned} 2m{\cdot}T_{an} \ m{nm}-t_{1;W1}m{)}m{\cdot}n_Pm{\cdot}arphim{\cdot}p_1 \end{aligned}$	—== 4.143 mm Fzul	$b_{P1} \coloneqq 8$ mm
$l_{P1} \coloneqq 28$ mm		gewählt: Antriebswelle Passfeder DI	e Ø 30mm N 6885 - A8 x 7 x 28
Vorgelegew	elle:		
3 16·	$\overline{T_{an}\!\cdot\! K_{A}\!\cdot\! i_{12}}$		4
$a_{min2} \coloneqq $	$\pi \cdot \tau_{tzul} = 34.295$	$d_{W2} = 45 \; mm$	$t_{1,W2}\!\coloneqq\!5.5~m{mm}$
1:-	$2 m{\cdot} T_{an} m{\cdot} i_{12} \ m{nm} - t_{1:W2} m{ angle} m{\cdot} n_P m{\cdot} m{arphi} m{\cdot} p_i$		$b_{P2} \coloneqq 14 m{mm}$
$d_{W2} \cdot d_{W2} \cdot (9 n)$	$m{nm} - t_{1;W2} angle m{\cdot} n_P m{\cdot} arphi m{\cdot} p_p$	Fzul	op <u>z</u> 11 mm
		er der ungefähren Breite de	
sollte, wird im angeglichen.	roigenden die Lange	an die später berechnete	zannradbreite
angegnerien.		gewählt: Vorgelegewe	lle Ø 45mm
	$l_{P2} \coloneqq 50$ mm		
	$l_{P2} = 50$ mm	Passfeder DI	N 6885 - A14 x 9 x 28 N 6885 - A14 x 9 x 50
		Passfeder DI	N 6885 - A14 x 9 x 28

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg)
Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

$d_{min3} \coloneqq \sqrt[3]{rac{10 \cdot T_{an} \cdot K_A \cdot i_{ges}}{\pi \cdot au_{tzul}}} = 51.016$ mm $d_{W3} \coloneqq 60$ mm	$t_{1;W3} = 7$ mm
2.T . i	
$l_{t3} \coloneqq rac{2 \cdot T_{an} \cdot i_{ges}}{d_{W3} \cdot \left(11 m{mm} - t_{1;W3} ight) \cdot n_P \cdot arphi \cdot p_{Fzul}} = 20.252 m{mm}$	$b_{P3} \coloneqq 18$ mm

Da die tragende Länge der Passfeder der ungefähren Breite der Zahnräder entsprechen sollte, wird im Folgenden die Länge an die später berechnete Zahnradbreite angeglichen.

gewählt: Abtriebswelle Ø 60mm $l_{P3} = 50 \ mm$ Passfeder DIN 6885 - A18 x 11 x 50

3) Zahnradbreite

$B_{zul}\!\coloneqq\!4.0~rac{N}{mm^2}$	Überschlägigier Belastungswert
$b_1 \coloneqq \frac{2 \cdot T_{an}}{d_{W_1}^2 \cdot B_{md}} = 27.778 \; \boldsymbol{mm}$	Formel nach Vereinbarungen
$d_{W1}^{-2} \cdot B_{zul}$	Um auf eine ganze Zahl für die Breite zu
	kommen, wird hier aufgerundet. Da ein
$b_1 = 30 \ mm$	ständiger Eingriff der Zahnräder 1 und 2 nötig
	ist, wird das Zahnrad 2 aufgrund des größeren
$b_2 = 28 \ mm$	Durchmessers etwas kleiner gewählt.
9. T.	
$b_3 \coloneqq rac{2 \cdot T_{an} \cdot i_{12}}{d_{W2}^2 \cdot B_{cul}} = 48.889 \; m{mm}$	Formel nach Vereinbarungen
$d_{W2}^{-2} ullet B_{zul}$	
	Um auf eine ganze Zahl für die Breite zu
$b_3 = 52 \ mm$	kommen, wird hier aufgerundet. Da ein
	ständiger Eingriff der Zahnräder 3 und 4 nötig
$b_4 = 50 \ mm$	ist, wird das Zahnrad 4 aufgrund des größeren

Durchmessers etwas kleiner gewählt.

4) Schrägungswinkel

 $b_4 = 50 \ mm$

Der Schrägungswinkel ist mit $\beta = 20$ ° bereits in den Vereinbarungen gegeben.

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient:

 $d_2 := \frac{z_3 \cdot m_{n34}}{1} = 76.621 \ mm$

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

10) Achsabstand 3,4

$$a_{34} := \frac{d_3 + d_4}{2} = 164.415 \ \textit{mm}$$

Differenz Achsabstände

$$p_v \coloneqq a_{12} - a_{34} = 0.532 \ mm$$

Diese Differenz der Achsabstände muss durch eine Profilverschiebung angeglichen werden. Diese wird im Folgenden berechnet.

11) Profilverschiebung

Aufgrund weniger Drehmomentkräfte an den Zahnrädern 1 und 2 haben wir uns dort für die Profilverschiebung entschieden.

Stirneingriffswinkel

$$\alpha_n\!\coloneqq\!\beta\!=\!20$$
 °

$$\alpha_t = \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right) = 21.173$$
°

Gl.: 21.35

Ersatzzähnezahl

$$\beta_b \coloneqq \operatorname{acos}\left(\frac{\sin\left(\alpha_n\right)}{\sin\left(\alpha_t\right)}\right) = 18.747$$

Gl.: 21.36

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Profilverschiebungsfaktoren und Profilverschiebung

Bei der Profilverschiebung V ist zum Berechnen der Wert x nötig. Dieser wird in der Formel für die Summe der Profilverschiebungsfaktoren errechnet, welche bis auf den Betriebseingriffswinkel zurückblickt. Daher werden im Folgenden mehrere Gleichungen angewendet, um letztendlich auf die Profilverschiebung zu kommen.

Betriebseingriffswinkel:

$$\alpha_{wt} \coloneqq \operatorname{acos}\left(\cos\left(\alpha_{t}\right) \cdot \frac{a_{12}}{a_{34}}\right) = 20.689$$
 aus Gl.: 21.54 umgestellt

Profilverschiebungsfaktoren:

$$inv\alpha_{wt} \coloneqq \tan\left(\alpha_{wt}\right) - \alpha_{wt} \cdot \frac{\pi}{180} = 0.017$$
 aus Hinweisen von S.797/809 $inv\alpha_{t} \coloneqq \tan\left(\alpha_{t}\right) - \alpha_{t} \cdot \frac{\pi}{180} = 0.018$

$$\Sigma x := \frac{inv\alpha_{wt} - inv\alpha_t}{2 \cdot \tan{\langle \alpha_n \rangle}} \cdot (z_1 + z_2) = -0.211$$
 Gl.: 21.56

x berechnen:

$$x_1 \coloneqq \frac{\Sigma x}{2} + \left(0.5 - \frac{\Sigma x}{2}\right) \cdot \frac{\log\left(\frac{z_2}{z_1}\right)}{\log\left(\frac{z_{n1} \cdot z_{n2}}{100}\right)} = 0.133 \qquad \text{aus Gl.: 21.33 umgestellt}$$

$$x_2 = \Sigma x - x_1 = -0.343$$

Verschiebungen:

$$V_1 := x_1 \cdot m_{n12} = 0.332 \ \textit{mm}$$
 Gl.: 21.49

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

13) Weitere Auslegungen der Zahnräder

Grundkreisdurchmesser

$$d_{b1} := d_1 \cdot \cos{(\alpha_t)} = 62.021 \ mm$$

$$d_{b2} = d_2 \cdot \cos{(\alpha_t)} = 245.604 \ mm$$

$$d_{b3} := d_3 \cdot \cos{(\alpha_t)} = 71.449 \ mm$$

$$d_{b4} := d_4 \cdot \cos{(\alpha_t)} = 235.185 \ mm$$

Kopfkreisdurchmesser

$$d_{a1} := d_1 + 2 \cdot (m_{n12} + V_1 + k) = 72.164 \ mm$$

$$d_{a2} := d_2 + 2 \cdot (m_{n12} + V_2 + k) = 266.655 \ mm$$

$$d_{a3} := d_3 + 2 \cdot m_{n34} = 82.621 \ mm$$

$$d_{a4} \coloneqq d_4 + 2 \cdot m_{n34} = 258.21 \ mm$$

Fußkreisdurchmesser

$$d_{f_1} := d_1 - 2 \cdot ((m_{n_{12}} + c_{12}) - V_1) = 60.926 \ mm$$
 Gl.: 21.24

$$d_{f2} := d_2 - 2 \cdot ((m_{n12} + c_{12}) - V_2) = 255.417$$
 mm

$$d_{f3} := d_3 - 2 \cdot m_{n34} = 70.621 \ mm$$

$$d_{f4} \coloneqq d_4 - 2 \cdot m_{n34} = 246.21 \ mm$$

14) Kopfspiel nach Profilverschiebung

$$c_{12neu} := a_{v12} - 0.5 \cdot (d_{a1} + d_{f2}) = 0.625$$
 mm

Da c_{12} und c_{12neu} augenscheinlich gleich sind, ist das nötige Kopfspiel eingehalten.

15) Profilüberdeckung

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

756				
Zähnezahl	$z_1 = 25$	$z_2 = 99$	$z_3 = 24$	$z_4 = 79$
Teilkreisdurchmesser	$d_1 = 66.511 \; mm$	$d_2 = 263.384 \; mm$	$d_3 = 76.621 \; mm$	$d_4 = 252.21 \; m$
Betriebswälzdurchmesser	d_{wd1} = 66.297 mm	$d_{wd2} = 262.534$ mm	$d_{wd3} = 76.621$ mm	$d_{wd4}\!=\!252.21$
Kopfkreisdurchmesser	$d_{a1} = 72.164 \; mm$	$d_{a2} = 266.655 \ mm$	$d_{a3} = 82.621 \ mm$	$d_{a4} = 258.21$ n
Fußkreisdurchmesser	$d_{f1}\!=\!60.926~\!m{mm}$	$d_{f2} = 255.417$ mm	$d_{f3} = 70.621 \; mm$	$d_{f4} = 246.21$ n
Zahnradbreite	$b_1 = 30 \ mm$	$b_2 = 28 \ mm$	$b_3 = 52 \; mm$	$b_4 = 50 \; mm$
Modul	$m_{n12}\!=\!2.5\; m$	nm	$m_{n34} = 3$	mm
Achsabstand	$a_{v12} = 164.41$.5 <i>mm</i>	a_{v34} $=$ 16	4.415 <i>mm</i>
Verschiebung	$V_1 = 0.332 \ mm$	$V_2 = -0.859 \ \textit{mm}$	$V_3 = 0$ mm	$V_4 = 0$ mm
Profilüberdeckung	$arepsilon_{lpha12}\!=\!1.576$		$arepsilon_{lpha 34} = 1.7$	705
Sprungüberdeckung	$arepsilon_{eta12} = 1.298$		$arepsilon_{eta 34} = 1.9$	931
Gesamtüberdeckung	$\varepsilon_{\gamma12}\!=\!2.873$		$arepsilon_{\gamma 34} = 3.6$	336
17) Zahnradkräfte				
Zahnrad 1:				
Umfangskraft:		$F_{T1} \coloneqq \frac{2 \cdot T_{an}}{d_1} = 1$.504 kN	Gl.:21.70
Radialkraft:		$F_{R1} \coloneqq \frac{F_{T1} \cdot \tan \left(\cos \left(\beta \right) \right)}{\cos \left(\beta \right)}$	$\frac{\left(\alpha_n\right)}{\left(\alpha_n\right)} = 0.582 \text{ kN}$	Gl.:21.72
Axialkraft:		$F_{A1} := F_{T1} \cdot \tan(g$	β)=0.547 kN	Gl.:21.73

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Umfangskraft:	$F_{T2} \coloneqq F_{T1} = 1.504 \ kN$
Radialkraft:	$F_{R2} \coloneqq \left F_{R1} \right = 0.582 \ $ kN
Axialkraft:	$F_{A2} := F_{A1} = 0.547 \ kN$
Zahnrad 3:	
Umfangskraft:	$F_{T3}\!\coloneqq\!2\! ext{-}\!rac{T_{an}\! ext{-}\!i_{12}}{d_3}\!\!=\!5.168$ kN
Ulliangskraft.	$F_{T3} \coloneqq 2 \cdot \frac{}{d_3} \equiv 5.168 \text{ keV}$
Radialkraft:	$F_{R3} \coloneqq rac{F_{T3} \cdot an\left(lpha_n ight)}{\cos\left(eta ight)} = 2.002 \; m{kN}$
	$\cos(\beta)$
Axialkraft:	$F_{A3} \coloneqq F_{T3} \cdot \tan(\beta) = 1.881 \ \mathbf{kN}$
Zaharad 4.	
Zahnrad 4:	
Umfangskraft:	$F_{T4} \coloneqq F_{T3} = 5.168 \ kN$
Radialkraft:	$F_{R4} := F_{R3} = 2.002 \ kN$
Axialkraft:	$F_{A4} \coloneqq F_{A3} = 1.881 \text{ kN}$
Hier werden nur Beträge be	
Die Richtungen der Kräfte s	sind den Schnittverläufen der Wellen zu entnehmen.

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Längen: $X_1 \coloneqq 33.5 \ \textit{mm}$ $X_2 \coloneqq 26.5 \ \textit{mm}$

Lagerkräfte:

XY-Ebene: XZ-Ebene:

$$F_{By1} \coloneqq rac{F_{T1} \cdot X_1}{\left(X_1 + X_2
ight)} = 0.839 \ {\it kN}$$
 $F_{Bz1} \coloneqq rac{F_{R1} \cdot X_1 + F_{A1} \cdot rac{d_1}{2}}{\left(X_1 + X_2
ight)} = 0.628 \ {\it kN}$

$$F_{Ay1} := F_{T1} - F_{By1} = 0.664 \text{ kN}$$
 $F_{Az1} := F_{R1} - F_{Bz1} = -0.046 \text{ kN}$

Resultierende Lagerkräfte:

$$F_{RA1} \coloneqq \sqrt{F_{Ay1}^2 + F_{Az1}^2} = 0.666 \text{ kN}$$

$$F_{RB1} \coloneqq \sqrt{F_{By1}^2 + F_{Bz1}^2} = 1.049 \text{ kN}$$

Da $F_{RA1} < F_{RB1}$ wird das Lager A, mit den geringeren Radialkräften, als Festlager gewählt. Dadurch ergibt sich: $F_{Ax1} := -F_{A1} = -0.547$ kN mit: $F_{Bx1} := 0$ kN

Schnittgrößenverläufe:

XY-Ebene:

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Längen: $X_3 \coloneqq 39.8 \ \textit{mm}$ $X_4 \coloneqq 101.7 \ \textit{mm}$ $X_5 \coloneqq 36.8 \ \textit{mm}$

Lagerkräfte:

XY-Ebene:

$$F_{By2} \coloneqq rac{F_{T2} \cdot X_3 + F_{T3} \cdot \left(X_3 + X_4
ight)}{\left(X_3 + X_4 + X_5
ight)} = 4.437 \,\,$$
 kN

$$F_{Ay2} := F_{T2} + F_{T3} - F_{By2} = 2.235 \text{ kN}$$

XZ-Ebene:

$$F_{Bz2} \coloneqq \frac{F_{R3} \cdot \left(X_3 + X_4\right) + F_{A3} \cdot \frac{d_3}{2} - F_{A2} \cdot \frac{d_2}{2} + F_{R2} \cdot X_3}{\left(X_3 + X_4 + X_5\right)} = 1.719 \text{ kN}$$

$$F_{Az2} := F_{R2} + F_{R3} - F_{Bz2} = 0.866 \text{ kN}$$

Resultierende Lagerkräfte:

$$F_{RA2} \coloneqq \sqrt{{F_{Ay2}}^2 + {F_{Az2}}^2} = 2.396 \text{ kN}$$
 $F_{RB2} \coloneqq \sqrt{{F_{By2}}^2 + {F_{Bz2}}^2} = 4.758 \text{ kN}$

Da $F_{RA2} < F_{RB2}$ wird das Lager A, mit den geringeren Radialkräften, als Festlager gewählt. Dadurch ergibt sich: $F_{Ax2} := F_{A2} - F_{A3} = -1.334$ kN mit: $F_{Bx2} := 0$ kN

Schnittgrößenverläufe:

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

ME3 Entwurf SoSe2022

Gruppe 9

Längen: $X_6 = 39.7 \, mm$ $X_7 = 45.3 \, mm$

Lagerkräfte:

XY-Ebene:

$$F_{By3} \coloneqq \frac{F_{T4} \cdot X_6}{(X_6 + X_7)} = 2.414 \ kN$$
 $F_{Ay3} \coloneqq F_{T4} - F_{By3} = 2.754 \ kN$

XZ-Ebene:

$$F_{Bz3} \coloneqq \frac{F_{R4} \cdot X_6 - F_{A4} \cdot \frac{d_4}{2}}{\left(X_6 + X_7\right)} = -1.856 \text{ kN} \qquad F_{Az3} \coloneqq F_{R4} - F_{Bz3} = 3.858 \text{ kN}$$

Resultierende Lagerkräfte:

$$F_{RA3} \coloneqq \sqrt{F_{Ay3}^2 + F_{Az3}^2} = 4.74 \text{ kN}$$
 $F_{RB3} \coloneqq \sqrt{F_{By3}^2 + F_{Bz3}^2} = 3.045 \text{ kN}$

Da $F_{RB3} < F_{RA3}$ wird das Lager B, mit den geringeren Radialkräften, als Festlager gewählt. Dadurch ergibt sich: $F_{Bx3} := F_{A4} + F_B = 3.381$ kN mit: $F_{Ax3} := 0$ kN

Schnittgrößenverläufe:

XY-Ebene:

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Gl.: TB:

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Welle	Loslager	Lebensdauer (hr)	Festlager	Lebensdauer (hr)
Antriebswelle	6006	19220	6206	27660
Vorgelegewelle	6209	11510	6309	150100
Abtriebswelle	6012	26410	6212	23290
24) Allgemeine D	aten Festigke	itsnachweis		
Wellenmaterial nach	n Vereinbarung	en 42CrMo4		
$R_m \coloneqq 1100 \; \frac{N}{mm^2}$	$R_{p0;2N}$:=	$900 \frac{N}{mm^2}$		TB: 1-1
$\sigma_{bWN} = 550 \frac{N}{mm^2}$	$ au_{tWN} \coloneqq 3$	$30 \frac{N}{mm^2}$		
$R_z = 6.3 \ \mu m$				TB: 2-12
25) Festigkeitsna	chweis Antrie	ebswelle		
Statischer Festigk	keitsnachweis	5:		Nach Schema RN S.72
vorhandene Spannu	ngen:			
Biegung				
$W_{B1} \coloneqq 0.012 \cdot ig(d_{W1} - ig)$	$+\left(d_{W1}\!-\!t_{1;W1} ight) ight)$	$^{3} = (2.107 \cdot 10^{3}) n$	nm³	TB: 11-3
$\sigma_{bmax1} \coloneqq \frac{M_{sAmax}}{W_{B1}} = 1$	$13.186 \frac{N}{mm^2}$			Bild 3.2
Torsion				
$W_{T1}\!\coloneqq\!0.2ullet ig(d_{W1}\!-\!t_1)$	$\left(3.515\right)^{3} = \left(3.515\right)^{3}$	• 10^3) mm^3		TB: 11-3
$ \tau_{tmax1} \coloneqq \frac{T_{an}}{W_{T1}} = 14.5 $	N N			Bild 3.2

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Kerbwirkungszahl $\beta_{kb1} \coloneqq 2.4$ $\beta_{kt1} \coloneqq 2.2$ TB: 3-8 / 3-9 Geometrischer Größeneinflussfaktor $K_{g1} = 1 - 0.2 \cdot \frac{\log\left(\frac{(a_{W1} - t_{1;W1})}{7.5 \ mm}\right)}{\log(20)} = 0.917$ TB: 3-11c Oberflächenrauheit $K_{O\sigma 1} \coloneqq 1 - 0.22 \cdot \log \left(\frac{R_z}{\mu m} \right) \cdot \left(\log \left(\frac{R_m}{20 \cdot \frac{N}{mm^2}} \right) - 1 \right) = 0.87$ TB: 3-10 $K_{O\tau 1} = 0.575 \cdot K_{O\sigma 1} + 0.425 = 0.925$ Oberflächenverfestigung TB: 3-12 $K_{V1} := 1.2$ $K_{Db1} := \left(\frac{\beta_{kb1}}{K_{a1}} + \frac{1}{K_{Oc1}} - 1\right) \cdot \frac{1}{K_{V1}} = 2.306$ Gl.: 3.16 $K_{Dt1} := \left(\frac{\beta_{kt1}}{K_{g1}} + \frac{1}{K_{Ot1}} - 1\right) \cdot \frac{1}{K_{V1}} = 2.067$ Wechselfestigkeit für die Antriebswelle $\sigma_{bGW1} \coloneqq K_{t1} \cdot \frac{\sigma_{bWN}}{K_{Db1}} = 225.457 \frac{N}{mm^2}$ $\tau_{tGW1} := K_{t1} \cdot \frac{\tau_{tWN}}{K_{Dt1}} = 150.921 \frac{N}{mm^2}$ Durch das wählen von $\sigma_{bm1} = 0$ $\frac{N}{mm^2}$ und $\tau_{tm1} = 0$ $\frac{N}{mm^2}$ werden die weiteren Zwischenrechnungen aus dem Roloff/Matek gleich null. So kann direkt die Gesamtsicherheit berechnet werden.

Als Literatur für die Formeln dient:

Gesamtsicherheit

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

$S_{D2min}\!\coloneqq\!1.5$	Voraussetzung
$S_{z2} \coloneqq 1.4$	TB: 3-14c
$S_{Derf2} \coloneqq S_{D2min} \cdot S_{z2} = 2.1$	Gl.: 3.31
Mit $S_{D2} > S_{Derf2}$ ist die Vorgelegewelle dauerfest.	
27) Festigkeitsnachweis Abtriebswelle	
Statischer Festigkeitsnachweis:	Nach Schema RN S.72
vorhandene Spannungen:	0.72
Biegung	
$W_{B3} = 0.012 \cdot \left(d_{W3} + \left(d_{W3} - t_{1,W3}\right)\right)^3 = \left(1.731 \cdot 10^4\right) \ \textit{mm}^3$	TB: 11-3
σ_{bmax3} := $\frac{M_{sWmax}}{W_{B3}}$ = $10.868 \; \frac{N}{mm^2}$	Bild 3.2
Torsion	
$W_{T3}\!\coloneqq\!0.2\!\cdot\!\left(d_{W3}\!-\!t_{1;W3} ight)^3 =\!\left(2.978\!\cdot\!10^4 ight)\;m{mm}^3$	TB: 11-3
$ au_{tmax3} \coloneqq \frac{T_{ab2}}{W_{T3}} = 21.889 \; \frac{N}{mm^2}$	Bild 3.2
Technologischer Größeneinflussfaktor	
$K_{t3} = 1 - 0.26 \cdot \log \left(\frac{\left(d_{W3} - t_{1;W3} \right)}{16 \ mm} \right) = 0.865$	TB: 3-11
Bauteilfestigkeit:	
$\sigma_{bF3} \coloneqq 1.2 \cdot R_{p0;2N} \cdot K_{t3} = 933.94 \frac{N}{mm^2}$	
$ \tau_{tF3} := 1.2 \cdot R_{p0;2N} \cdot \frac{K_{t3}}{\sqrt[2]{3}} = 539.211 \frac{N}{mm^2} $	

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg)
Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient:

Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

	F_F	_? :=	μ_0	• F	NK :	=2	80.	556	3 N	r						Re	eibk	craf	tz	wis	che	en F	lie	hkċ	irp	er	unc	l G	ehä	ius
	T_{I}	_? :=	N_I	₹K•	F_R) _R =	= 58	8.9	17.	N•	m				Re	eibr	nor	me	nt										
	Da wi	rd,	as wi	erf rd	ord die	erli Fli	che ehk	e Ar kraf	ntrie tku	ebs ppl	dre un	ehr g n	noi nit	mei dre	nt v ei F	von liel	50 nkö)Nn rpe	n h ern	ier ge	gro bau	oßzi it.	ügi	g e	ing	jeh	alte	en		

Als Literatur für die Formeln dient: Roloff/Matek Maschinenelemente 24. Auflage (Springer Vieweg) Tabellenbuch Metall 48. Auflage (Europa Lehrmittel)

Antriebswelle

Vorgelegewelle

Abtriebswelle

Abkürzung	Benennung
a ₁₂	Achsabstand 1,2
a ₃₄	Achsabstand 3,4
a _{v12}	Neuer Achsabstand 1,2
a _{v34}	(Neuer) Achsabstand 3,4
b ₁ - b ₄	Breite Zahnrad 1 bis 4
b _{P1} - b _{P4}	Breite Passfeder auf Welle 1 bis 3
B _{zul}	Überschlägiger Belastungswert
Cerf	erforderliche dynamische Tragzahl
C ₁₂	Kopfspiel 1,2
C ₃₄	Kopfspiel 3,4
C _{12neu}	Kopfspiel 1,2 nach Verschiebung
d ₁ - d ₄	Teilkreisdurchmesser Z1 bis Z4
$d_{a1} - d_{a4}$	Kopfkreisdurchmesser Z1 bis Z4
d _{b1} - d _{b4}	Grundkreisdurchmesser Z1 bis Z4
d _{f1} - d _{f4}	Fußkreisdurchmesser Z1 bis Z4
d _{min1} - d _{min3}	Mindestdurchmesser Welle 1 bis 3
D_R	Reibdurchmesser
d _{w1} - d _{w3}	gewählter Wellendurchmesser 1 bis 3
d _{wd1} - d _{wd4}	Betriebswälzkreisdurchmesser 1 bis 4
F _B	Axiale Bohrkraft
F _{A1} - F _{A4}	Axialkraft Z1 bis Z4
F _{Ax1} - F _{Ax3}	Axiale Lagerkraft A XY/XZ-Ebene Welle 1 bis 3
F _{Ay1} - F _{Ay3}	Radiale Lagerkraft A XY-Ebene Welle 1 bis 3
F _{Az1} - F _{Az3}	Radiale Lagerkraft A XZ-Ebene Welle 1 bis 3
F _{RA1} - F _{RA3}	Resultierende Lagerkraft im Lager A Welle 1 bis 3
F _{Bx1} - F _{Bx3}	Axiale Lagerkraft B XY/XZ-Ebene Welle 1 bis 3
F _{By1} - F _{By3}	Radiale Lagerkraft B XY-Ebene Welle 1 bis 3
F _{Bz1} - F _{Bz3}	Radiale Lagerkraft B XZ-Ebene Welle 1 bis 3
F _{RB1} - F _{RB3}	Resultierende Lagerkraft im Lager B Welle 1 bis 3
F _F	Gesamtfederkraft Fliehkraftkupplung
F _{Flieh}	Fliehkraft
F_N	Normalkraft
F _{NK}	Kontaktkraft
FQ	Querkraft
F _R	Reibkraft
F _{R1} - F _{R4}	Radialkraft Z1 bis Z4
F _{T1} - F _{T4}	Umfangskraft Z1 bis Z4
i ₁₂	Übersetzungsverhältnis 1,2
i ₂₃	Übersetzungsverhältnis 2,3
i ₃₄	Übersetzungsverhältnis 3,4

i	Gesamtübersetzungsverhältnis
l _{ges}	Kopfhöhenänderung
K	Belastungsfaktor
K _{0σ1} - K _{0σ3}	Oberflächen- Einflussfaktor Welle 1 bis 3
$K_{0\tau 1} - K_{0\tau 3}$	Oberflächen- Einflussfaktor Welle 1 bis 3
K _{Db1} - K _{Db3}	Konstruktionsfaktor Biegung Welle 1 bis 3
K _{Dt1} - K _{Dt3}	Konstruktionsfaktor Torsion Welle 1 bis 3
K _{g1} - K _{g3}	Geometrischer Größeneinflussfaktor
K _s _v	Kraft-Geschwindigkeits-Faktor
K _{t1} - K _{t3}	Technologischer Größeneinflussfaktor
K _{V1} - K _{V3}	Oberflächenverfestigungs- Einflussfaktor Welle 1 bis 3
I _{t1} - I _{t3}	Tragende Passfederlänge 1 bis 3
t1	Gesamtlänge der Passfeder 1 bis 3
I10h	anzustrebende nominelle Lebensauer
m _{FK}	Masse Einzelfliehkörper
m _{n12}	Modul 1,2
	Modul 3,4
m _{n34}	Moment um s1 bis s7 in XY-Ebene
M_{s1xy} - M_{s7xy}	
M _{s1xymin} - M _{s7xymin}	Minimales Moment um s1 bis s7 in XY-Ebene
M _{s1xymax} - M _{s7xymax}	Maximales Moment um s1 bis s7 in XY-Ebene
M_{s1xz} - M_{s7xz}	Moment um s1 bis s7 in XZ-Ebene
M _{s1xzmin} - M _{s7xzmin}	Minimales Moment um s1 bis s7 in XZ-Ebene
M _{s1xzmax} - M _{s7xzmax}	Maximales Moment um s1 bis s7 in XZ-Ebene
M _{sAmax}	Maximales Drehmoment Antriebswelle
M _{sVmax}	Maximales Drehmoment Vorgelegewelle
M _{sWmax}	Maximales Drehmoment Abtriebswelle
m _{t12}	Stirnmodul 1,2
m _{t34}	Stirnmodul 3,4
n _{an}	Antriebsdrehzahl
n _{ab}	Abtriebsdrehzahl
N_{FK}	Anzahl Fliehkörper
n _P	Anzahl Passfedern pro Verbindung
n_S	Schaltdrehzahl Fliehkraftkupplung
р	Lebensdauerexponent
p_{Fzul}	Zulässige Flächenpressung
P1L-P3L	dynamische Lagerbelastung (Loslager)
P1F-P3F	dynamische Lagerbelastung (Festlager)
P _v	Differenz Achsabstände
R _e	Streckgrenze von E295
r _{FK}	Fliehkörperschwerpunktradius
R _m	Zugfestigkeit
R _{p0;2N}	Dehngrenze

Rz	Rautiefe
S ₁ - S ₇	Strecken s1 bis s7 für Schnittgrößenverläufe
S _{1min} - S _{7min}	Minimale Länge Strecke s1 bis s7
S _{1max} - S _{7max}	Maximale Länge Strecke s1 bis s7
S _{D1} - S _{D3}	Dynamische Gesamtsicherheit / Dauerfestigkeit
S _{Derf1} - S _{Derf3}	Erforderliche Dauerfestigkeit
S _{D1min} - S _{D3min}	Mindestsicherheit Dauerfestigkeit
S _F	Sicherheit Fließgrenze
S _{F1} - S _{F3}	Sicherheit Fließgrenze Welle 1 bis 3
S _{F1min} - S _{F3min}	Mindestsicherheit Fließgrenze Welle 1 bis 3
S _{z1} - S _{z3}	Dynamischer Sicherheitsfaktor
T _{an}	Antriebsdrehmoment
T _{ab1}	Abtriebsdrehmoment Vorgabe
T _{ab2}	Abtriebsdrehmoment Ausarbeitung
T_R	Reibmoment
V ₁ - V ₄	Verschiebung 1 bis 4
W _{B1} - W _{B3}	Biegewiderstandsmoment Welle 1 bis 3
W _{T1} - W _{T3}	Torsionswiderstandsmoment Welle 1 bis 3
Σχ	Summe von x ₁ und x ₂
x_1/x_2	Variablen zur Verschiebung
X ₁ - X ₇	Längen der Wellenabschnitte
z ₁ - z ₄	Zähnezahl Zahnrad 1 bis 4
z _{n1} / z _{n2}	Ersatzzähnezahl 1 und 2
α_{n}	Normaleingriffswinkel
α_{t}	Stirneingriffswinkel
α_{wt}	Betriebseingriffswinkel
$\text{inv}\alpha_{\text{wt}}$	Profilverschiebung
$\text{inv}\alpha_t$	Profilverschiebung
β β_b	Schrägungswinkel
β _b	Grundschrägungswinkel
β_{kb1} - β_{kb3}	Kerbwirkungszahl Biegung Welle 1 bis 3
β_{kt1} - β_{kt3}	Kerbwirkungszahl Torsion Welle 1 bis 3
$\mathcal{E}_{\alpha 12}$	Profilüberdeckung 1,2
$\mathcal{E}_{\alpha 34}$	Profilüberdeckung 3,4
$\varepsilon_{\beta 12}$	Sprungüberdeckung 1,2
ε _{β34}	Sprungüberdeckung 3,4
ε _{γ12}	Gesamtüberdeckung 1,2
ε _{γ34}	Gesamtüberdeckung 3,4
μ_0	Haftreibwert
ф	Traganteil der Passfeder
σ _{ba1} - σ _{ba3}	Dynamische Biegespannung Welle 1 bis 3
σ_{bF1} - σ_{bF3}	Statische Bauteilfestigkeit gegen Biegung Welle 1 bis 3

σ_{bGW1} - σ_{bGW3}	Biege- Wechselfestigkeit
σ_{bm1} - σ_{bm3}	Vernachlässigter Faktor dynamische Biegespannung
σ_{bmax1} - σ_{bmax3}	Maximale statische Biegespannung Welle 1 bis 3
σ_{bWN}	Biegespannung
τ_{tmax1} - τ_{tmax3}	Maximale statische Torsionsspannung Welle 1 bis 3
τ_{tF1} - τ_{tF3}	Statische Bauteilfestigkeit gegen Torsion Welle 1 bis 3
τ_{ta1} - τ_{ta3}	Dynamische Torsionsspannung Welle 1 bis 3
τ_{tm1} - τ_{tm3}	Vernachlässigter Faktor dynamische Torsionsspannung
τ_{tGW1} - τ_{tGW4}	Torsions- Wechselfestigkeit
τ_{tWN}	Torsionsspannung
τ_{tzul}	Dauerfestigkeitsschubspannung von 42CrMo4
ω	Winkelgeschwindigkeit Fliehkraftkupplung