class14

Jaewon Kim

#|eval: FALSE
library(DESeq2)

: S4Vectors

: stats4

: BiocGenerics

: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

: 'S4Vectors'

The following object is masked from 'package:utils':
findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

: IRanges

: 'IRanges'

The following object is masked from 'package:grDevices':

windows

: GenomicRanges

: GenomeInfoDb

: SummarizedExperiment

: MatrixGenerics

: matrixStats

: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds,

colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
metafile <- "GSE37704_metadata.csv"
countfile <- "GSE37704_featurecounts.csv"

colData = read.csv(metafile, row.names=1)
countData = read.csv(countfile, row.names=1)
head(colData)</pre>
```

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Q. Complete the code below to remove the troublesome first column from countData

```
countData <- as.matrix(countData[, -1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
zero.ind <- rowSums((countData[ ,1:length(countData[1,]) ] == 0)) > 0
countData <- countData[!zero.ind, ]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258

ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds

class: DESeqDataSet

dim: 13282 6

metadata(1): version

assays(4): counts mu H cooks

rownames(13282): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(2): condition sizeFactor

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
standard <- abs(res$log2FoldChange) > 2
mycols[standard] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (standard)
mycols[inds] <- "blue"
plot( res$log2FoldChange, -log(res$padj), col= mycols, xlab="Log2(FoldChange)", ylab="-Log2")</pre>
```


Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                  "ENSEMBLPROT"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                  "EVIDENCEALL"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                  "IPI"
[16] "OMIM"
                                   "ONTOLOGYALL" "PATH"
                    "ONTOLOGY"
[21] "PMID"
                                   "REFSEQ"
                    "PROSITE"
                                                 "SYMBOL"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys= row.names(res),
                      keytype="ENSEMBL",
                      column= "SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys= row.names(res),
                      keytype="ENSEMBL",
                      column= "ENTREZID",
```

"ENSEMBLTRANS"

"GENENAME"

"MAP"

"PFAM"

"UCSCKG"

```
'select()' returned 1:many mapping between keys and columns
```

multiVals="first")

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean I	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1803039	0.3121566	0.577607	5.63529e-01
ENSG00000187634	183.2296	0.4258966	0.1355303	3.142446	1.67543e-03
ENSG00000188976	1651.1881	-0.6927118	0.0549876	-12.597612	2.17635e-36
ENSG00000187961	209.6379	0.7299597	0.1277613	5.713463	1.10700e-08
ENSG00000187583	47.2551	0.0392549	0.2606192	0.150622	8.80274e-01
ENSG00000187642	11.9798	0.5395082	0.5001355	1.078724	2.80711e-01
ENSG00000188290	108.9221	2.0562855	0.1910714	10.761870	5.21018e-27
ENSG00000187608	350.7169	0.2570251	0.0999769	2.570845	1.01451e-02
ENSG00000188157	9128.4394	0.3899096	0.0482214	8.085827	6.17439e-16
ENSG00000131591	156.4791	0.1968918	0.1406800	1.399572	1.61641e-01
	pad	j symbol	entrez		genename
	<numeric< td=""><td><pre><character></character></pre></td><td><character></character></td><td></td><td><character></character></td></numeric<>	<pre><character></character></pre>	<character></character>		<character></character>
ENSG00000279457	6.47026e-0	L NA	NA		NA
ENSG00000187634	3.34029e-03	SAMD11	148398	sterile al	lpha motif
ENSG00000188976	2.35970e-3	NOC2L	26155	NOC2 like	nucleolar
ENSG00000187961	3.69612e-08	KLHL17	339451	kelch like	e family me
ENSG00000187583	9.10931e-0	l PLEKHN1	84069	pleckstri	n homology
ENSG00000187642	3.61174e-0	l PERM1	84808	PPARGC1 ar	nd ESRR ind
ENSG00000188290	4.17884e-26	HES4	57801	hes family	y bHLH tran
ENSG00000187608	1.79950e-02	2 ISG15	9636	ISG15 ubid	quitin like
ENSG00000188157	3.15902e-1	5 AGRN	375790		agrin
ENSG00000131591	2.23894e-0	l C1orf159	54991	chromosome	e 1 open re

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
ord <- order(res$padj)

#View(res[ord,])
head(res[ord,])</pre>
```

```
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 9 columns
```

ENSG00000183508	2053.88	3.20186	6 0.0728530	43.9496	0
ENSG00000159176	5692.46	-2.31371	1 0.0589160	-39.2714	0
ENSG00000116016	4423.95	-1.88800	0.0442896	-42.6285	0
ENSG00000164251	2348.77	3.34448	8 0.0695586	48.0815	0
ENSG00000124766	2576.65	2.39226	6 0.0623261	38.3829	0
	padj	symbol	entrez		genename
	<numeric></numeric>	<character> <</character>	character>		<character></character>
ENSG00000117519	0	CNN3	1266		calponin 3
ENSG00000183508	0	TENT5C	54855	terminal n	ucleotidyl
ENSG00000159176	0	CSRP1	1465	cysteine a	nd glycine
ENSG00000116016	0	EPAS1	2034	endothelia	l PAS doma
ENSG00000164251	0	F2RL1	2150	F2R like t	rypsin rec
ENSG00000124766	0	SOX4	6659	SRY-box tra	anscriptio

```
write.csv(res[ord,], "deseq_results.csv")

# BiocManager::install(c("pathview", "gage", "gageData"))
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

```
library(gage)
```

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)
```

head(kegg.sets.hs, 3)

```
$`hsa00232 Caffeine metabolism`
[1] "10"
            "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                                                                "1549"
                         "10720"
                                  "10941"
                                            "151531" "1548"
                                                                         "1551"
 [9] "1553"
               "1576"
                         "1577"
                                  "1806"
                                            "1807"
                                                      "1890"
                                                                "221223" "2990"
[17] "3251"
                                  "3704"
                                            "51733"
                                                                "54575"
               "3614"
                         "3615"
                                                      "54490"
                                                                         "54576"
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                         "54963"
                                  "7084"
[33] "574537" "64816"
                         "7083"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                         "7365"
[41] "7366"
                                  "7372"
               "7367"
                         "7371"
                                            "7378"
                                                      "7498"
                                                                "79799"
                                                                         "83549"
[49] "8824"
               "8833"
                         "9"
                                  "978"
$`hsa01100 Metabolic pathways`
   [1] "10"
                    "100"
                                 "10007"
                                              "100137049" "10020"
                                                                        "10026"
   [7] "100510686" "10063"
                                                           "10195"
                                 "10157"
                                              "10170"
                                                                        "10201"
  [13] "10229"
                    "10312"
                                 "10317"
                                              "10327"
                                                           "10331"
                                                                        "1036"
  [19] "10380"
                    "10390"
                                 "1040"
                                              "10400"
                                                           "10402"
                                                                        "10423"
  [25] "10449"
                    "10476"
                                 "10554"
                                              "10555"
                                                           "10558"
                                                                        "1056"
  [31] "10588"
                                              "10622"
                                                           "10623"
                                                                        "10632"
                    "10606"
                                 "10621"
  [37] "10654"
                    "1066"
                                              "10682"
                                                           "10690"
                                                                        "10714"
                                 "10678"
  [43] "10720"
                    "10768"
                                 "10797"
                                              "10826"
                                                           "10841"
                                                                        "10855"
                                                           "10975"
                                                                        "10993"
  [49] "10873"
                    "10901"
                                 "10905"
                                              "10941"
  [55] "10998"
                    "11019"
                                 "11041"
                                              "1109"
                                                           "11112"
                                                                        "11128"
  [61] "1119"
                    "1120"
                                 "11226"
                                              "11227"
                                                           "11232"
                                                                        "112483"
  [67] "11253"
                    "11282"
                                 "11285"
                                              "113026"
                                                           "11320"
                                                                        "11343"
  [73] "113451"
                    "113612"
                                 "114805"
                                              "1152"
                                                           "1158"
                                                                        "1159"
  [79] "1160"
                                                                        "121278"
                    "116285"
                                 "117248"
                                              "119548"
                                                           "120227"
  [85] "122481"
                    "122622"
                                 "123099"
                                              "123745"
                                                           "123876"
                                                                        "124"
  [91] "124454"
                    "124975"
                                 "125"
                                              "125061"
                                                           "125965"
                                                                        "125981"
  [97] "126"
                                 "126792"
                                              "127"
                                                           "127124"
                                                                        "128"
                    "126328"
 [103] "128869"
                    "129607"
                                 "129642"
                                              "130"
                                                           "130013"
                                                                        "131"
 [109] "1312"
                    "131669"
                                 "132"
                                              "132158"
                                                           "1327"
                                                                        "132789"
 [115] "1329"
                    "1337"
                                 "1339"
                                              "1340"
                                                           "134147"
                                                                        "1345"
 [121] "1349"
                                              "135152"
                                                           "1352"
                                                                        "1353"
                    "1350"
                                 "1351"
 [127] "1355"
                    "1371"
                                 "1373"
                                              "137964"
                                                           "138050"
                                                                        "138429"
 [133] "139596"
                    "140838"
                                 "1431"
                                              "144193"
                                                           "144245"
                                                                        "145226"
                                 "15"
                                                           "150763"
                                                                        "151056"
 [139] "146664"
                    "1491"
                                              "1503"
 [145] "151531"
                    "1537"
                                 "154141"
                                              "1543"
                                                           "1544"
                                                                        "1548"
 [151] "1549"
                    "155066"
                                 "1551"
                                              "1553"
                                                           "1555"
                                                                        "1557"
```

[157]	"1558"	"1559"	"1562"	"1571"	"1573"	"157506"
[163]	"1576"	"1577"	"1579"	"158"	"1581"	"1582"
[169]	"1583"	"1584"	"1585"	"1586"	"1588"	"1589"
[175]	"159"	"1593"	"1594"	"1595"	"160287"	"1603"
[181]	"1606"	"1607"	"1608"	"160851"	"1609"	"1610"
[187]	"1621"	"162417"	"162466"	"1629"	"1633"	"1635"
[193]	"1638"	"1644"	"1650"	"166929"	"168391"	"169355"
[199]	"170712"	"171568"	"1716"	"1717"	"1718"	"1719"
[205]	"1723"	"1737"	"1738"	"1743"	"1757"	"178"
[211]	"1786"	"1787"	"1788"	"1789"	"1798"	"18"
[217]	"1806"	"1807"	"1841"	"1854"	"189"	"1890"
[223]	"1892"	"191"	"192134"	"1962"	"197258"	"199857"
[229]	"201595"	"2023"	"2026"	"2027"	"203"	"204"
[235]	"205"	"2053"	"2058"	"210"	"211"	"212"
[241]	"2131"	"2132"	"2134"	"2135"	"2137"	"216"
[247]	"217"	"218"	"2180"	"2181"	"2182"	"2184"
[253]	"219"	"2194"	"220"	"2203"	"221"	"221223"
[259]	"221823"	"222"	"2222"	"2224"	"223"	"2235"
[265]	"224"	"226"	"2271"	"22845"	"22856"	"229"
[271]	"22928"	"22929"	"22934"	"22978"	"230"	"23057"
[277]	"231"	"23193"	"23236"	"23305"	"23382"	"23396"
[283]	"23417"	"23475"	"23483"	"23498"	"23530"	"23545"
[289]	"23553"	"23556"	"2356"	"23600"	"23649"	"23761"
[295]	"239"	"240"	"242"	"245972"	"245973"	"246"
[301]	"246721"	"247"	"248"	"249"	"250"	"251"
[307]	"2523"	"2524"	"2525"	"2526"	"2527"	"2528"
[313]	"2529"	"2530"	"2531"	"253558"	"2538"	"2539"
[319]	"254531"	"2548"	"256435"	"2571"	"2572"	"25796"
[325]	"2581"	"2582"	"2583"	"25834"	"2584"	"2585"
[331]	"2588"	"25885"	"2589"	"2590"	"25902"	"2591"
[337]	"2592"	"259230"	"2593"	"259307"	"2595"	"2597"
[343]	"26007"	"26035"	"2618"	"262"	"26227"	"26229"
[349]	"26275"	"26279"	"2628"	"26289"	"2629"	"26290"
[355]	"26301"	"2632"	"26330"	"2639"	"2643"	"2645"
[361]	"2650"	"2651"	"2673"	"2678"	"2683"	"2686"
[367]	"2687"	"270"	"27010"	"27034"	"27087"	"27089"
[373]	"27090"	"271"	"2710"	"2712"	"27124"	"27165"
[379]	"272"	"2720"	"27235"	"2729"	"2730"	"27306"
[385]	"2731"	"27349"	"27430"	"2744"	"2746"	"2747"
[391]	"275"	"2752"	"276"	"2762"	"277"	"278"
[397]	"279"	"2799"	"28"	"280"	"2805"	"2806"
[403]	"2821"	"283208"	"283871"	"284098"	"284541"	"2875"
[409]	"290"	"29071"	"2937"	"2954"	"29796"	"2987"

[44F]	110000011	11000011	1100000011	11000001	110000011	"29925"
[415]	"29880"	"2990"	"29906"	"29920"	"29922"	
[421]	"29926"	"29929"	"29947"	"29958"	"29968"	"30"
[427]	"3028"	"3030"	"3032"	"3033"	"3034"	"3067"
[433]	"3073"	"3074"	"3081"	"30814"	"30815"	"30833"
[439]	"30834"	"3098"	"3099"	"31"	"3101"	"314"
[445]	"3141"	"3145"	"3155"	"3156"	"3157"	"3158"
[451]	"316"	"317749"	"32"	"3242"	"3251"	"326625"
[457]	"3283"	"3284"	"3290"	"3291"	"3292"	"3293"
[463]	"3294"	"3295"	"33"	"3340"	"3373"	"337876"
[469]	"339221"	"34"	"340485"	"341392"	"3417"	"3418"
[475]	"3419"	"341947"	"3420"	"3421"	"3422"	"3423"
[481]	"3425"	"348158"	"349565"	"35"	"353"	"36"
[487]	"3612"	"3613"	"3614"	"3615"	"3620"	"3628"
[493]	"3631"	"3632"	"3633"	"3636"	"37"	"3703"
[499]	"3704"	"3705"	"3706"	"3707"	"3712"	"374291"
[505]	"374378"	"3795"	"38"	"383"	"384"	"387787"
[511]	"39"	"3906"	"391013"	"3938"	"3939"	"3945"
[517]	"3948"	"3990"	"4047"	"4048"	"4051"	"4056"
[523]	"411"	"4121"	"4122"	"4124"	"4128"	"4129"
[529]	"4143"	"4144"	"4190"	"4191"	"4199"	"4245"
[535]	"4247"	"4248"	"4249"	"427"	"4329"	"435"
[541]	"4351"	"4357"	"438"	"440"	"440138"	"440567"
[547]	"441024"	"441531"	"442117"	"445"	"4507"	"4508"
[553]	"4509"	"4512"	"4513"	"4514"	"4519"	"4522"
[559]	"4524"	"4535"	"4536"	"4537"	"4538"	"4539"
[565]	"4540"	"4541"	"4548"	"4594"	"4597"	"4598"
[571]	"4669"	"4694"	"4695"	"4696"	"4697"	"4698"
[577]	"47"	"4700"	"4701"	"4702"	"4704"	"4705"
[583]	"4706"	"4707"	"4708"	"4709"	"471"	"4710"
[589]	"4711"	"4712"	"4713"	"4714"	"4715"	"4716"
[595]	"4717"	"4718"	"4719"	"4720"	"4722"	"4723"
[601]	"4724"	"4725"	"4726"	"4728"	"4729"	"4731"
[607]	"48"	"4830"	"4831"	"4832"	"4833"	"4837"
[613]	"4842"	"4843"	"4846"	"4860"	"4907"	"493911"
[619]	"4942"	"4952"	"4953"	"4967"	"498"	"50"
[625]	"5009"	"501"	"5033"	"5048"	"50484"	"50487"
[631]	"5049"	"5050"	"5051"	"5053"	"506"	"50614"
[637]	"50617"	"50700"	"50814"	"509"	"5091"	"5095"
[643]	"5096"	"51"	"51004"	"5105"	"51056"	"5106"
[649]	"51074"	"51082"	"51084"	"51102"	"51109"	"51144"
[655]	"51166"	"51179"	"51181"	"51196"	"51227"	"51251"
[661]	"51268"	"513"	"5130"	"51301"	"51380"	"51382"
[667]	"514"	"51477"	"51478"	"515"	"51540"	"516"
[001]	J = 1	J	31113	310	31010	010

[673]	"5160"	"51601"	"51604"	"51606"	"5161"	"5162"
[679]	"5167"	"5169"	"517"	"51703"	"51727"	"51728"
[685]	"51733"	"51763"	"518"	"51805"	"51809"	"5198"
[691]	"521"	"5211"	"5213"	"5214"	"522"	"5223"
[697]	"5224"	"5226"	"523"	"5230"	"5232"	"5236"
[703]	"525"	"526"	"527"	"5277"	"5279"	"528"
[709]	"5281"	"5283"	"5286"	"5287"	"5288"	"5289"
[715]	"529"	"5297"	"5298"	"5313"	"5315"	"5319"
[721]	"5320"	"5321"	"5322"	"533"	"5330"	"5331"
[727]	"5332"	"5333"	"5335"	"53354"	"5336"	"5337"
[733]	"5338"	"534"	"535"	"53630"	"537"	"5372"
[739]	"5373"	"539"	"53947"	"5406"	"5407"	"5408"
[745]	"5409"	"54107"	"54187"	"5422"	"5424"	"5425"
[751]	"5426"	"5427"	"5428"	"5430"	"5431"	"5432"
[757]	"5433"	"5434"	"54344"	"5435"	"5436"	"54363"
[763]	"5437"	"5438"	"5439"	"5440"	"5441"	"5444"
[769]	"5445"	"5446"	"54480"	"54490"	"54575"	"54576"
[775]	"54577"	"54578"	"54579"	"54600"	"54657"	"54658"
[781]	"54659"	"54675"	"5471"	"54802"	"548596"	"548644"
[787]	"549"	"54947"	"54963"	"54965"	"5498"	"54988"
[793]	"54995"	"55163"	"55191"	"55224"	"55229"	"55256"
[799]	"55276"	"55300"	"55301"	"55304"	"55312"	"55361"
[805]	"5538"	"55454"	"55500"	"55512"	"55568"	"5557"
[811]	"5558"	"55627"	"55650"	"55703"	"55750"	"55753"
[817]	"55790"	"55808"	"55821"	"55902"	"55907"	"56052"
[823]	"5625"	"56267"	"5631"	"5634"	"56474"	"56623"
[829]	"56624"	"56655"	"56848"	"56894"	"56895"	"56898"
[835]	"56901"	"56913"	"56922"	"56953"	"56994"	"570"
[841]	"57016"	"57026"	"57134"	"5723"	"5730"	"5740"
[847]	"5742"	"5743"	"57452"	"574537"	"57678"	"57804"
[853]	"57818"	"57834"	"5805"	"5831"	"5832"	"5833"
[859]	"58510"	"5859"	"586"	"5860"	"587"	"593"
[865]	"594"	"5980"	"60490"	"60495"	"6120"	"6184"
[871]	"6185"	"622"	"6240"	"6241"	"6296"	"6303"
[877]	"6307"	"6309"	"6342"	"635"	"6389"	"6390"
[883]	"6391"	"63917"	"6392"	"64087"	"64131"	"64132"
[889]	"64409"	"64425"	"6448"	"64579"	"64600"	"646625"
[895]	"6470"	"6472"	"6476"	"64768"	"6480"	"64802"
[901]	"64816"	"6482"	"6483"	"6484"	"6487"	"6489"
[907]	"64902"	"65220"	"65263"	"654364"	"6609"	"661"
[913]	"6610"	"6611"	"6652"	"6675"	"6677"	"669"
[919]	"6697"	"6713"	"6718"	"6723"	"683"	"686"
[925]	"6888"	"6898"	"6916"	"6999"	"7054"	"7083"

[931]	"7084"	"7086"	"7108"	"7166"	"7167"	"7173"
[937]	"7263"	"7264"	"729020"	"7298"	"7299"	"7306"
[943]	"7357"	"7358"	"7360"	"7363"	"7364"	"7365"
[949]	"7366"	"7367"	"7368"	"7371"	"7372"	"7378"
[955]	"7381"	"7384"	"7385"	"7386"	"7388"	"7389"
[961]	"7390"	"7498"	"7841"	"790"	"79053"	"79087"
[967]	"7915"	"79178"	"7923"	"79369"	"7941"	"79586"
[973]	"79611"	"79623"	"79646"	"79695"	"79717"	"79796"
[979]	"79799"	"79814"	"79868"	"79888"	"7991"	"80025"
[985]	"80055"	"80142"	"80146"	"80201"	"80270"	"80308"
[991]	"80339"	"80347"	"8050"	"81490"	"81579"	"81616"
[997]	"81849"	"81888"	"8277"	"8309"	"8310"	"83440"
[1003]	"83549"	"8372"	"8382"	"8394"	"8395"	"8398"
[1009]	"8399"	"84002"	"84076"	"84172"	"84245"	"84265"
[1015]	"84274"	"84284"	"84532"	"84618"	"84620"	"84647"
[1021]	"84649"	"84693"	"847"	"84701"	"84706"	"84720"
[1027]	"84735"	"84803"	"84812"	"84890"	"84920"	"84992"
[1033]	"8509"	"8513"	"8525"	"8526"	"8527"	"8529"
[1039]	"85365"	"8540"	"85465"	"8560"	"8564"	"8566"
[1045]	"8608"	"8611"	"8612"	"8613"	"8630"	"8639"
[1051]	"8659"	"8681"	"8692"	"8693"	"8694"	"8702"
[1057]	"8703"	"8704"	"8705"	"8706"	"8707"	"8708"
[1063]	"873"	"8733"	"874"	"875"	"8760"	"8789"
[1069]	"8790"	"8801"	"8802"	"8803"	"8813"	"8818"
[1075]	"8821"	"883"	"8833"	"8854"	"8867"	"8869"
[1081]	"8871"	"8877"	"8879"	"8942"	"8972"	"8974"
[1087]	"89869"	"8992"	"9"	"90423"	"9060"	"9061"
[1093]	"9091"	"9114"	"91373"	"9162"	"91734"	"9197"
[1099]	"9245"	"92483"	"9249"	"9296"	"93034"	"93183"
[1105]	"9331"	"9348"	"9374"	"9377"	"9380"	"9388"
[1111]	"94005"	"9453"	"9468"	"9487"	"9488"	"9489"
[1117]	"95"	"9514"	"9517"	"952"	"9533"	"9536"
[1123]	"9550"	"9551"	"9563"	"9588"	"9615"	"978"
[1129]	"9791"	"9942"	"9945"			

foldchanges = res\$log2FoldChange
names(foldchanges) = res\$entrez
head(foldchanges)

<NA> 148398 26155 339451 84069 84808
0.18030389 0.42589661 -0.69271181 0.72995968 0.03925487 0.53950816

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
  head(keggres$less)
                                                  p.geomean stat.mean
hsa04110 Cell cycle
                                               3.548176e-06 -4.604234
hsa03030 DNA replication
                                               3.992330e-05 -4.191094
hsa04114 Oocyte meiosis
                                               2.332810e-04 -3.564509
hsa05130 Pathogenic Escherichia coli infection 6.474555e-04 -3.326950
hsa03440 Homologous recombination
                                               2.248158e-03 -2.967340
hsa03013 RNA transport
                                               3.743589e-03 -2.698970
                                                      p.val
                                                                   q.val
hsa04110 Cell cycle
                                               3.548176e-06 0.0007202798
hsa03030 DNA replication
                                               3.992330e-05 0.0040522154
hsa04114 Oocyte meiosis
                                               2.332810e-04 0.0157853509
hsa05130 Pathogenic Escherichia coli infection 6.474555e-04 0.0328583656
hsa03440 Homologous recombination
                                               2.248158e-03 0.0912752208
hsa03013 RNA transport
                                               3.743589e-03 0.1266580962
                                               set.size
                                                                 exp1
hsa04110 Cell cycle
                                                    118 3.548176e-06
hsa03030 DNA replication
                                                     36 3.992330e-05
                                                     95 2.332810e-04
hsa04114 Oocyte meiosis
hsa05130 Pathogenic Escherichia coli infection
                                                    46 6.474555e-04
hsa03440 Homologous recombination
                                                    28 2.248158e-03
hsa03013 RNA transport
                                                    140 3.743589e-03
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14
Info: Writing image file hsa04110.pathview.png
```


pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14

Info: Writing image file hsa04110.pathview.pdf


```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04142" "hsa05323" "hsa04060" "hsa04640" "hsa05332"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14

Info: Writing image file hsa04142.pathview.png

Info: some node width is different from others, and hence adjusted!

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14

Info: Writing image file hsa05323.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14

Info: Writing image file hsa04060.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14

Info: Writing image file hsa04640.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14

Info: Writing image file hsa05332.pathview.png

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
questionpathways <- rownames(keggres$less)[1:5]
questioninput = substr(questionpathways, start=1, stop=8)
questioninput</pre>
```

[1] "hsa04110" "hsa03030" "hsa04114" "hsa05130" "hsa03440"

```
pathview(gene.data= foldchanges, pathway.id= questioninput, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14
Info: Writing image file hsa04114.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14
Info: Writing image file hsa05130.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/louis/Downloads/bimm143/R code/class14/class14
Info: Writing image file hsa03440.pathview.png
```



```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

	p.geomean	stat.mean
GO:0007156 homophilic cell adhesion	7.523307e-05	3.873939
GO:0016339 calcium-dependent cell-cell adhesion	8.556504e-04	3.340855
GO:0010817 regulation of hormone levels	1.058523e-03	3.091986
GO:0048729 tissue morphogenesis	1.389102e-03	3.002504
GO:0008285 negative regulation of cell proliferation	1.443571e-03	2.989717
GO:0051047 positive regulation of secretion	1.877703e-03	2.927781
	p.val	q.val
GO:0007156 homophilic cell adhesion	7.523307e-05	0.2796413
GO:0016339 calcium-dependent cell-cell adhesion	8.556504e-04	0.5718590
GO:0010817 regulation of hormone levels	1.058523e-03	0.5718590
GO:0048729 tissue morphogenesis	1.389102e-03	0.5718590

```
GO:0008285 negative regulation of cell proliferation 1.443571e-03 0.5718590
GO:0051047 positive regulation of secretion
                                                   1.877703e-03 0.5718590
                                                    set.size
                                                                    exp1
GO:0007156 homophilic cell adhesion
                                                         90 7.523307e-05
GO:0016339 calcium-dependent cell-cell adhesion
                                                         24 8.556504e-04
GO:0010817 regulation of hormone levels
                                                        225 1.058523e-03
GO:0048729 tissue morphogenesis
                                                        347 1.389102e-03
GO:0008285 negative regulation of cell proliferation 386 1.443571e-03
GO:0051047 positive regulation of secretion
                                                        130 1.877703e-03
$less
                                           p.geomean stat.mean
GO:0000279 M phase
                                        6.451975e-18 -8.738701 6.451975e-18
GO:0048285 organelle fission
                                        1.832907e-16 -8.369971 1.832907e-16
GO:0000280 nuclear division
                                        2.627088e-16 -8.340038 2.627088e-16
GO:0007067 mitosis
                                        2.627088e-16 -8.340038 2.627088e-16
GO:0000087 M phase of mitotic cell cycle 9.244549e-16 -8.166584 9.244549e-16
GO:0007059 chromosome segregation
                                        2.502912e-12 -7.264756 2.502912e-12
                                               q.val set.size
                                                                     exp1
GO:0000279 M phase
                                        2.398199e-14
                                                          467 6.451975e-18
GO:0048285 organelle fission
                                        2.441221e-13
                                                          360 1.832907e-16
GO:0000280 nuclear division
                                        2.441221e-13
                                                         338 2.627088e-16
GO:0007067 mitosis
                                        2.441221e-13
                                                         338 2.627088e-16
GO:0000087 M phase of mitotic cell cycle 6.872398e-13
                                                         348 9.244549e-16
GO:0007059 chromosome segregation 1.550554e-09
                                                         135 2.502912e-12
$stats
                                                    stat.mean
                                                                  exp1
GO:0007156 homophilic cell adhesion
                                                     3.873939 3.873939
GO:0016339 calcium-dependent cell-cell adhesion
                                                     3.340855 3.340855
                                                     3.091986 3.091986
GO:0010817 regulation of hormone levels
GO:0048729 tissue morphogenesis
                                                     3.002504 3.002504
GO:0008285 negative regulation of cell proliferation 2.989717 2.989717
GO:0051047 positive regulation of secretion
                                                     2.927781 2.927781
  sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
  print(paste("Total number of significant genes:", length(sig_genes)))
```

[1] "Total number of significant genes: 8186"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

On KEGG, cell cycle had lowest p-value, where GO result had 'biological process' (p-value 8.25e-74) of stimulus detection pathway as lowest. The difference between KEGG and GO is that KEGG computes gene length and abudance bias through tricubemovingaverage() where as GO uses monotonic regression.