Objective:

In this session, you will learn to build SVM for classification problems

Key takeaways:

- Build SVM model for classification using different kernels
- Perform Grid Search for appropriate parameters for these kernels

Activity:

DatasetDetails

Attribute	Description
ID	CustomerID
Age	Customer's agein completed years
Experience	#yearsof professionalexperience
Income	Annualincomeof thecustomer (\$000)
ZIPCode	HomeAddressZIPcode.
Family	Familysizeof thecustomer
CCAvg	Avg.spendingoncreditcardspermonth(\$000)
Education	EducationLevel.1:Undergrad;2:Graduate;3:Advanced/Professional
Mortgage	Valueof housemortgageif any.(\$000)
PersonalLoan	Didthiscustomeracceptthepersonalloanofferedinthelastcampaign? (Target
	attribute)
SecuritiesAccount	Doesthecustomerhaveasecuritiesaccountwiththebank?
CDAccount	Doesthecustomerhaveacertificateof deposit(CD)accountwiththebank?
Online	Doesthecustomeruseinternetbankingfacilities?
CreditCard	Does the customer use a credit card is sued by Universal Bank?

- 1. Load Datainto R:
- 2. Data preparation
 - a. toremove the columns ID&ZIP
 - b. Convert categorical attribute "Education" to numeric
 - c. StandardizationofData
 - d. Split the data into train and test datasets
- 3. Model Building

#Classification using SVM

install.packages("e1071")
library(e1071)

#Buildingthe modelon traindata

x =subset(train_bankdata,select =-Personal.Loan) #removeresponse variable y =as.factor(train_bankdata\$Personal.Loan)

20180210_Batch 37_CSE 7305c_Lab05_SVM

model = svm(x,y, method="C-classification", kernel="linear",cost =10,gamma=0.1) summary(model) #Interpretation of summary

- 4. Applying the modelon train data & test data and predict whether personal loan is taken or not
- 5. Build the confusion matrix
- 6. Compute the error metrics # perform a gridsearch

tuneResult<- tune(svm,train.x= x,train.y =y, ranges=list(gamma=10^(-6:-1),cost =2^(2:3)))
print(tuneResult)
tunedModel<tuneResult\$best.modeltunedModelY<predict(tunedModel,as.matrix(x)) Conf<table(y,tunedModelY)
#you can now compute the metrics.

References:

http://eeecon.uibk.ac.at/~zeileis/papers/Ensemble-2005.pdf

https://escience.rpi.edu/data/DA/svmbasic notes.pdf

