# Finding Optimal Alignment and Consensus of Circular Strings

T. Lee\*, J.C. Na, H. Park, K. Park, and J.S. Sim
\*Seoul National University

June 23, 2010

# Circular String

- The first (leftmost) symbol is wrapped around next to the last (rightmost) symbol
- A circular string of length n can be read as n different *linear* strings (called *instances*)



ATTGCAATAGGCTTCA
TTGCAATAGGCTTCA
TGCAATAGGCTTCAT
GCAATAGGCTTCATT
CAATAGGCTTCATT

# Circular Strings in Nature

 "Bacterial and mitochondrial DNA is typically circular, ... Consequently, tools for handling circular strings may someday be of use in those organisms." [Gusfield 1997]



# Consensus String Problem

- Given a set S of strings,
   find a representative string (consensus) of S
- Application: Motif recognition, ...

```
S = \begin{cases} s_1 & : & \text{a b c b a a c c a b e d a d a} \\ s_2 & : & \text{a a a b a b c c a b f d a c a} \\ s_3 & : & \text{a b a b d a c c a b e d a d a} \end{cases}
```

Consensus: ababaaccabedada

### Evaluation criteria

- Two major criteria of evaluating how well a string X represents a given set S are
  - Distance sum : The sum of distances from string X to the strings in  $\mathbb S$

- Radius : The longest distance from string X to the strings in  $\mathbb S$ 



distance sum =  $d(X,S_1) + d(X,S_2) + d(X,S_3)$ 



### Evaluation criteria

- A good representative string should minimize distance sum and/or radius
  - Consensus minimizing distance sum (CS)
  - Consensus minimizing radius (CR)
  - Consensus minimizing both distance sum & radius (CSR)

#### Distance measures

- Two well-known distances:
  - Hamming distance
    - Allowing only substitution
  - Edit distance
    - Allowing insertion and deletion as well as substitution

In this talk, we only consider the Hamming distance

# Consensus of Circular Strings

 Find not only consensus but also the optimal alignment of given set of circular strings

 $S = \{CACATTG, GCAATTT, AATTGCA\}$ 





Opt. alignment w/ ds=2 & r≡1

#### Previous Works

- Consensus of linear strings
  - CS: easy to find (in linear time)
    - Take majority symbol in each aligned position
  - CR: hard in general
    - NP-Complete for arbitrary number of strings (even for strings drawn from binary alphabet)
    - Approximation / Fixed parameter solutions

### Previous Works

- Fixed parameter solutions for CR and CSR
  - Algorithms for small constant m = |S|
  - Gramm et al. proposed a direct combinatorial algorithm for 3 strings
  - Sze et al. showed a condition for the existence of string whose radius is less than or equal to r
  - Boucher et al. proposed an algorithm to find a string whose radius is ≤ r for 4 binary strings.
  - Amir et al. proposed a linear time algorithm for CSR of 3 strings

#### Previous Works

- Multiple alignment of circular strings [Mosig et al., Fernandes et al.]
  - The sum of pairs score
  - General purpose multiple sequence alignment techniques (e.g. clustalW)

### Our Contribution

- Goal
  - Find the optimal consensus and alignment of given set of circular strings
- We present efficient algorithms for 3 or 4 circular strings of length n
  - $-O(n^2\log n)$  algorithm for CS of 3 strings
  - $-O(n^2\log n)$  algorithm for CR, CSR of 3 strings
  - $-O(n^3\log n)$  algorithm for CS of 4 strings

- Circular string S of length n
  - drawn from a constant-sized alphabet
  - The rth instance (linear string) S(r)
    - $S(r)=S[r]S[(r+1) \mod n]...S[(r-1) \mod n]$
    - For circular string S=abcde, S(0)=abcde, S(1)=bcdea, S(2)=cdeab, ...

•  $S=\{S_1,S_2,...,S_m\}$  of m circular strings of length n

- Alignment  $\rho = (\rho_1, \rho_2, ..., \rho_m)$  ( $\rho_k$ : integer in [0,n-1])
  - Juxtaposition of  $S_1(\rho_1)$ ,  $S_2(\rho_2)$ , ...,  $S_m(\rho_m)$
  - At most  $n^{m-1}$  (not  $n^m$ ) distinct alignments
    - All  $(\rho_1 + k \mod n, \rho_2 + k \mod n, ..., \rho_m + k \mod n)$  are equivalent for k = 0, ..., n-1 under Hamming dist.

- Given alignment  $\rho = (\rho_1, \rho_2, ..., \rho_m)$  and a string X,
  - Distance sum of X for  $\rho : E(\rho, X) = \sum_i d(X, S_i(\rho_i))$
  - Radius of X for  $\rho$ :  $R(\rho, X) = \max_i d(X, S_i(\rho_i))$
- For each alignment  $\rho_{r}$ 
  - Min. distance sum for  $\rho : E_{\min}(\rho) = \min_{X'} E(\rho, X')$
  - Min. radius for  $\rho : R_{\min}(\rho) = \min_{X'} R(\rho, X')$
- For any alignment  $\rho'$  and string X'
  - Optimal distance sum :  $E_{\text{opt}} = \min_{\rho' \in X'} E(\rho', X')$
  - Optimal radius :  $R_{\text{opt}} = \min_{\rho', X'} R(\rho', X')$

 $\divideontimes d(x,y)$ : Hamming distance

- Optimal consensus problems
  - Given a set S of m circular strings of length n, find an optimal alignment  $\rho$  and a string X (*if any*) that satisfy:
  - Problem CS  $E(\rho, X) = E_{\text{opt}}$
  - Problem CR  $R(\rho, X) = R_{\text{opt}}$
  - Problem CSR  $E(\rho, X) = E_{\text{opt}}$  and  $R(\rho, X) = R_{\text{opt}}$

In this talk, we will use notations CSk, CRk, and CSRk to represent Problems CS, CR, and CSR of k circular strings.

- Bounded consensus problems
  - Given a set S of m circular strings of length n, and two integer s>0 and r>0, find an optimal alignment  $\rho$  and a string X (*if any*) that satisfy:
  - Problem BS  $E(\rho, X) \leq s$
  - Problem BR  $R(\rho, X) \leq r$
  - Problem BSR  $E(\rho, X) \le s$  and  $R(\rho, X) \le r$

In this talk, we only present algorithms for CS and CSR, since they can be easily applied to CR, BS, BR, and BSR,

### Tools

 Algorithm for CSR of 3 linear strings [Amir et al. 09]

Convolution method for counting matches/mismatches

• For three linear strings of equal length n, CSR can be found in O(n) time

```
s_I a a b b b b a a a a a b c s_2 a a b a a a b b b a a b c b s_3 a a b a a a a a b b c a a
```

• Every aligned position i is divided into five types and algorithm counts each Types k as  $c_k$ 

|                      | ٦                          | Гуре (                                                               | )                                                             |                                  | Гуре :                                                               | 1                                               | Type 2 T                |                         | Тур   | e 3 | 3 Type 4 |   | 4                 |                             |
|----------------------|----------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------|-------------------------|-------|-----|----------|---|-------------------|-----------------------------|
| $s_1$                | a                          | a                                                                    | b                                                             | b                                | b                                                                    | b                                               | a                       | a                       | a     | a   | a        | a | b                 | С                           |
| $s_2$                | a                          | a                                                                    | b                                                             | a                                | a                                                                    | a                                               | b                       | b                       | b     | a   | a        | b | C                 | b                           |
| $s_3$                | a                          | a                                                                    | b                                                             | a                                | a                                                                    | a                                               | a                       | a                       | a     | b   | b        | C | a                 | a                           |
| •Typ<br>•Typ<br>•Typ | e 1: ,<br>e 2: ,<br>e 3: , | s <sub>1</sub> [i] 7<br>s <sub>2</sub> [i] 7<br>s <sub>3</sub> [i] 7 | $=s_2[i]$ $ eq s_2[i]$ $ eq s_1[i]$ $ eq s_1[i]$ $ eq s_2[i]$ | $= s_3[i]$ $= s_3[i]$ $= s_2[i]$ | [] (s <sub>1</sub> [<br>[] (s <sub>2</sub> [<br>[] (s <sub>3</sub> [ | <i>i]</i> is <i>i i</i> is <i>i</i> is <i>i</i> | the r<br>the r<br>the r | ninoi<br>ninoi<br>ninoi | rity) |     |          |   | $c_1$ $c_2$ $c_3$ | =3 $=3$ $=3$ $=3$ $=2$ $=3$ |

• From  $c_1 \sim c_4$ , the minimum possible distance sum  $E_{min}$  and radius  $R_{min}$  can be determined:

$$-E_{min} = c_1 + c_2 + c_3 + 2c_4$$

$$-R_{min} \ge \max(L_1, L_2) \quad (L_1 = \lceil \max_{i \ne j} d(s_i, s_j)/2 \rceil, \quad L_2 = \lceil E_{min}/3 \rceil)$$

|       | Type 0 |   |   | Type 1 |   |   | Type 2 |   |   | Type 3 |   | Type 4 |   |   |
|-------|--------|---|---|--------|---|---|--------|---|---|--------|---|--------|---|---|
| $s_1$ | a      | a | b | b      | b | b | a      | a | a | a      | a | a      | b | С |
| $s_2$ | a      | a | b | a      | a | a | b      | b | b | a      | a | b      | C | b |
| $s_3$ | a      | a | b | a      | a | a | a      | a | a | b      | b | C      | a | a |
| S     | a      | a | b | a      | a | a | a      | a | a | a      | a | ?      | ? | ? |

$$L_1 = 5$$
,  $L_2 = 5$ 

$$E_{min}=14, \qquad R_{min}=5_1$$

- Algorithm then finds (constructs) a consensus string s with  $E_{min}$  and radius  $R_{min}$  if it exists
  - By selecting Type 4 symbols wisely to balance the distances of strings from the consensus.

|       | Type 0 |   |   | - | Type 1 |   |   | Type 2 |   |   | Type 3 |   | Type 4 |   |
|-------|--------|---|---|---|--------|---|---|--------|---|---|--------|---|--------|---|
| $s_1$ | a      | a | b | b | b      | b | a | a      | a | a | a      | a | b      | C |
| $s_2$ | a      | a | b | a | a      | a | b | b      | b | a | a      | b | C      | b |
| $s_3$ | a      | a | b | a | a      | a | a | a      | a | b | b      | С | a      | a |
| S     | a      | a | b | a | a      | a | a | a      | a | a | a      | b | С      | C |
|       |        |   |   |   |        |   |   |        |   |   |        |   |        |   |

$$E_{min}=14, \qquad R_{min}=5_2$$

### Tools

- Lemma 1. For three linear strings of length  $n_i$  if we are given counters  $c_1$  to  $c_4$ .
  - $-E_{min}$ ,  $R_{min}$  and the existence of a consensus w/ both  $E_{min}$  and  $R_{min}$  are determined in O(1) time
  - We can construct such a consensus in O(n) time
- Lemma 2. Given two circular strings X and Y of equal length n ( $|\Sigma|$  is constant), the numbers of matches or mismatches in all n alignments can be computed in  $O(n \log n)$  time, even with the presence of don't care or mismatch symbols.

### Discrete Convolution

Given integer arrays t and p (|t|=n and |p|=m),  $t \otimes p$  is the array of all inner products, where:

$$(t \otimes p)[i] = \sum_{j=0..m-1} t[i+j] p[j] \quad (i=0, ..., n-m).$$



### Discrete Convolution

Given integer arrays t and p (|t|=n and |p|=m),  $t \otimes p$  is the array of all inner products, where:  $(t \otimes p)[i] = \sum_{j=0..m-1} t[i+j] p[j] \quad (i=0, ..., n-m)$ .



- Using discrete convolution, we can count matches/mismatches in every alignments of two circular strings efficiently
  - $-in O(n \log n)$  time ( $|\Sigma|$  is constant)

| Alignment  | (0, 0)  | (0, 1)  | (0, 2)  | (0, 3)  |
|------------|---------|---------|---------|---------|
| X          | a a b a | a a b a | a a b a | a a b a |
| Y          | a b b a | b b a a | b a a b | a a b b |
| Matches    | 3       | 1       | 1       | 3       |
| Mismatches | 1       | 3       | 3       | 1       |

- Bit mask  $B_{x,\sigma}$  and inverse bit mask  $B_{x,\sigma}'$ 
  - For given string x and each symbol  $\sigma \in \Sigma$ ,

$$B_{x,\sigma}[i] = \begin{cases} 1, & \text{if } x[i] = \sigma \\ 0, & \text{if } x[i] \neq \sigma \end{cases} \text{ and } B'_{x,\sigma}[i] = \begin{cases} 0, & \text{if } x[i] = \sigma \\ 1, & \text{if } x[i] \neq \sigma \end{cases}$$

| x                  | a | a | b | a |
|--------------------|---|---|---|---|
| $B_{x,a}$          | 1 | 1 | 0 | 1 |
| $B_{x,\mathbf{b}}$ | 0 | 0 | 1 | 0 |

| i                                                         | 0 | 1  | 2   | 3   | 4   | 5    | 6   | 7 |
|-----------------------------------------------------------|---|----|-----|-----|-----|------|-----|---|
| $X(0)X(0) = X^2(0)$                                       | a | a  | b   | a   | a   | a    | b   | a |
| <i>Y</i> (0)                                              | a | b  | b   | a   |     |      |     |   |
| $B_{X^2(0),\mathtt{a}}$                                   | 1 | 1  | 0   | 1   | 1   | 1    | 0   | 1 |
| $B_{Y\!(0),\mathtt{a}}$                                   | 1 | 0  | 0   | 1   |     |      |     |   |
| $B_{X^2(0),\mathbf{a}} \!\!\otimes B_{Y(0),\mathbf{a}}$   | 2 |    |     |     |     |      |     |   |
| $B_{X^2(0),\mathbf{b}}$                                   | 0 | 0  | 1   | 0   | 0   | 0    | 1   | 0 |
| $B_{Y\!(0),\mathtt{b}}$                                   | 0 | 1  | 1   | 0   |     |      |     |   |
| $B_{X^2(0),\mathbf{b}} \!\!\otimes B_{Y(0),\mathbf{b}}$   |   |    |     | ma  |     |      |     |   |
| $\sum_{\sigma} B_{X^2(0),\sigma} \otimes B_{Y(0),\sigma}$ | 3 | 4_ | all | gnn | ien | ι (υ | ,U) |   |

| i                                                         | 0 | 1 | 2          | 3                                               | 4   | 5   | 6    | 7   |  |  |
|-----------------------------------------------------------|---|---|------------|-------------------------------------------------|-----|-----|------|-----|--|--|
| $X^{2}(0)$                                                | a | a | b          | a                                               | a   | a   | b    | a   |  |  |
| <i>Y</i> (0)                                              |   | a | b          | b                                               | a   |     |      |     |  |  |
| $B_{X^2(0),\mathtt{a}}$                                   | 1 | 1 | 0          | 1                                               | 1   | 1   | 0    | 1   |  |  |
| $B_{Y\!(0),\mathtt{a}}$                                   |   | 1 | 0          | 0                                               | 1   |     |      |     |  |  |
| $B_{X^2(0),\mathtt{a}} \!\!\otimes B_{Y(0),\mathtt{a}}$   | 2 | 2 |            |                                                 |     |     |      |     |  |  |
| $B_{X^2(0),\mathbf{b}}$                                   | 0 | 0 | 1          | 0                                               | 0   | 0   | 1    | 0   |  |  |
| $B_{Y\!(O),\mathbf{b}}$                                   |   | 0 | 1_         | 1                                               | _   |     |      |     |  |  |
| $B_{X^2(0),\mathbf{b}} \!\!\otimes B_{Y(0),\mathbf{b}}$   | 1 | 1 |            | <ul><li>#. matches in alignment (0,3)</li></ul> |     |     |      |     |  |  |
| $\sum_{\sigma} B_{X^2(0),\sigma} \otimes B_{Y(0),\sigma}$ | 3 | 3 | <b>Z</b> _ | all                                             | gnn | nen | ι (υ | ,3) |  |  |

| i                                                         | 0 | 1 | 2 | 3  | 4               | 5 | 6 | 7 |  |  |  |
|-----------------------------------------------------------|---|---|---|----|-----------------|---|---|---|--|--|--|
| $X^2(0)$                                                  | a | a | b | a  | a               | a | b | a |  |  |  |
| <i>Y</i> (0)                                              |   |   | a | b  | b               | a |   |   |  |  |  |
| $B_{X^2(0),\mathtt{a}}$                                   | 1 | 1 | 0 | 1  | 1               | 1 | 0 | 1 |  |  |  |
| $B_{Y\!(0),\mathtt{a}}$                                   |   |   | 1 | 0  | 0               | 1 |   |   |  |  |  |
| $B_{X^2(0),\mathbf{a}} \!\!\otimes B_{Y(0),\mathbf{a}}$   | 2 | 2 | 1 |    |                 |   |   |   |  |  |  |
| $B_{X^2(0),\mathbf{b}}$                                   | 0 | 0 | 1 | 0  | 0               | 0 | 1 | 0 |  |  |  |
| $B_{Y\!(0),\mathbf{b}}$                                   |   |   | 0 | 1  | 1               | 0 |   |   |  |  |  |
| $B_{X^2(0),\mathbf{b}} \!\!\otimes B_{Y(0),\mathbf{b}}$   |   |   | 0 |    | #. matches in   |   |   |   |  |  |  |
| $\sum_{\sigma} B_{X^2(0),\sigma} \otimes B_{Y(0),\sigma}$ | 3 | 3 | 1 | 4_ | alignment (0,2) |   |   |   |  |  |  |

| i                                                         | 0 | 1 | 2 | 3 | 4  | 5          | 6   | 7           |   |  |  |  |
|-----------------------------------------------------------|---|---|---|---|----|------------|-----|-------------|---|--|--|--|
| $X^2(0)$                                                  | a | a | b | a | a  | a          | b   | a           | • |  |  |  |
| <i>Y</i> (0)                                              |   |   |   | a | b  | b          | a   |             |   |  |  |  |
| $B_{X^2(0),\mathtt{a}}$                                   | 1 | 1 | 0 | 1 | 1  | 1          | 0   | 1           |   |  |  |  |
| $B_{Y\!(0),\mathtt{a}}$                                   |   |   |   | 1 | 0  | 0          | 1   |             |   |  |  |  |
| $B_{X^2(0),\mathbf{a}} \!\!\otimes B_{Y(0),\mathbf{a}}$   | 2 | 2 | 1 | 1 |    |            |     |             |   |  |  |  |
| $B_{X^2(0),\mathbf{b}}$                                   | 0 | 0 | 1 | 0 | 0  | 0          | 1   | 0           |   |  |  |  |
| $B_{Y\!(0),\mathbf{b}}$                                   |   |   |   | 0 | 1— | 1          | 0   |             |   |  |  |  |
| $B_{X^2(0),\mathbf{b}} \otimes B_{Y(0),\mathbf{b}}$       |   | 1 | 0 | 0 |    | #. matches |     |             |   |  |  |  |
| $\sum_{\sigma} B_{X^2(0),\sigma} \otimes B_{Y(0),\sigma}$ | 3 | 3 | 1 | 1 | 4_ | all        | ynn | nment (0,1) |   |  |  |  |

- Counting matches with mismatch '#'
  - $-B_{x,\sigma}[i]=0$  if x[i]=# and  $B_{y,\sigma}[i]=0$  if y[i]=# for  $\forall \sigma$
- Counting mismatches with don't care '\$'
  - $-B_{x,\sigma}[i]=0$  if x[i]=\$ and  $B'_{y,\sigma}[i]=0$  if y[i]=\$ for  $\forall \sigma$

### Tools

- Lemma 1. For three linear strings of length  $n_i$  if we are given counters  $c_1$  to  $c_4$ ,
  - $-E_{min}$ ,  $R_{min}$  and the existence of a consensus w/ both  $E_{min}$  and  $R_{min}$  are determined in O(1) time
  - We can construct such a consensus in O(n) time
- Lemma 2. Given two circular strings X and Y of equal length n ( $|\Sigma|$  is constant), the numbers of matches or mismatches in all n alignments can be computed in  $O(n \log n)$  time, even with the presence of don't care or mismatch symbols.

# Algorithms

- A naïve algorithm
  - For CS3 or CSR3, we apply O(n)-time algorithm for linear strings in each of all  $O(n^2)$  alignments  $\rightarrow O(n^3)$  time
  - Similarly, CS4 can be found in  $O(n^4)$  time
- Our algorithms achieve (n/logn)-speedup
  - $-O(n^2 \log n)$  time for CS3 and CSR3
  - $-O(n^3 \log n)$  time for CS4

# Algorithm for Problem CS3

- Computation of  $E_{\min}(\theta, \delta, \gamma)$ 
  - We first superpose  $S_1(0)$  and  $S_2(\delta)$  into  $Z_{\delta}$   $Z_{\delta}[i] = \langle S_1(0)[i], S_2(\delta)[i] \rangle$
  - Generate bit masks of  $Z_{\delta}$  and  $S_{3}(\gamma)$

$$B_{Z_{\mathcal{S}}\sigma}[i] = 1$$
, if  $Z_{\mathcal{S}}[i] = \langle \sigma, * \rangle$  or  $\langle *, \sigma \rangle$ ;  $0$ , otherwise

- Compute inner products of  $B_{Z_{\delta}\sigma}$  and  $B'_{S_{\mathcal{J}(\gamma)},\sigma}$
- Key observation: sum of all inner products over  $\sigma$  equals to  $E_{\min}(\theta, \delta, \gamma)$

# Algorithm for Problem CS3

- For each  $\sigma$ ,  $B_{(Z_{\delta})^2,\sigma} \otimes B'_{S_{3}(0),\sigma}$  produces the array of n inner products  $B_{(Z_{\delta})^2,\sigma}$  and  $B'_{S_{3}(\gamma),\sigma}$  ( $\gamma=0,...,n-1$ )
- Thus, we can compute n distance sums  $E_{\min}(\theta, \delta, \theta) \sim E_{\min}(\theta, \delta, n-1)$  in  $O(n \log n)$  time by FFT

 $E_{\min}$ 's for all  $n^2$  alignment  $\rightarrow O(n^2 \log n)$  time

- Workflow
  - Compute  $E_{\min}$  for all alignments in  $O(n^2 \log n)$  time by using FFT
  - Among all  $n^2$  alignments, find the best alignment  $\rho$  with the smallest  $E_{\min}$  (= $E_{\mathrm{opt}}$ ) and construct a consensus in  $\rho$

• Theorem 1. Problem CS3 can be solved in  $O(n^2 \log n)$  time and O(n) space

• Algorithm for CS3 directly computes  $E_{\min}$  for each alignment, but it does not give any information of counters  $c_1$  to  $c_4$  which are essential to apply Lemma 1

- How can we efficiently count  $c_1$  to  $c_4$  for each alignment?
  - Convolution and system of linear equations

For three linear strings, we obtain :

$$\begin{cases} c_1 + c_2 + c_3 + c_4 = n - c_0, \\ c_1 + c_2 + c_4 = d(s_1, s_2), \\ c_1 + c_3 + c_4 = d(s_1, s_3), \\ c_2 + c_3 + c_4 = d(s_2, s_3). \end{cases}$$

|                  | Type 0 |   |   | Type 1 |   |   | Type 2 |   |   | Type 3 |   | Type 4 |   |    |
|------------------|--------|---|---|--------|---|---|--------|---|---|--------|---|--------|---|----|
| $s_1$            | a      | a | b | b      | b | b | a      | a | a | a      | a | a      | b | C  |
| $s_2$            | a      | a | b | a      | a | a | b      | b | b | a      | a | b      | C | b  |
| $s_3$            | a      | a | b | a      | a | a | a      | a | a | b      | b | C      | a | a  |
| $\ell(s_1, s_2)$ | =      |   |   | 3      | + |   | 3      | + |   |        |   | 3      |   | 39 |

• Once  $c_0$  and the pairwise distances have been computed, we can compute  $c_1$  to  $c_4$ 

$$c_1 = n - d(s_2, s_3) - c_0$$
,  
 $c_2 = n - d(s_1, s_3) - c_0$ ,  
 $c_3 = n - d(s_1, s_2) - c_0$ ,  
 $c_4 = d(s_1, s_2) + d(s_1, s_3) + d(s_2, s_3) - 2c_0 - 2n$ 

- Algorithm efficiently computes
  - $d(S_i(0), S_j(\delta))$ 's for all  $i,j,\delta$  in  $O(n \log n)$  time using FFT (by Lemma 2)
  - Counters  $c_0$ 's for all alignments in  $O(n^2 \log n)$  time using FFT and superposition (similar to Algorithm CS3)

• Theorem 2. Problem CSR3 can be solved in  $O(n^2 \log n)$  time and O(n) space

- Given four linear strings (instances),
  - We define 5 types and 15 counters wrt.
     combinations of distinct symbols

$$-E_{\min} = \sum_{i} b_{i} + 2(\sum_{i} c_{i} + \sum_{i} d_{i}) + 3e$$

| Туре              | A |       | F        | 3        |          | C     |          |          | D     |                  |          |                  |                    |          | Е        |
|-------------------|---|-------|----------|----------|----------|-------|----------|----------|-------|------------------|----------|------------------|--------------------|----------|----------|
| $s_1$             | * | *     | <b>•</b> | <b>•</b> | <b>•</b> | *     | <b>•</b> | <b>•</b> | *     | *                | *        | <b>•</b>         | <b>•</b>           | <b>•</b> | *        |
| $s_2$             | * | •     | *        | <b>•</b> | <b>•</b> | •     | *        | <b>•</b> | *     | <b>•</b>         | <b>•</b> | *                | *                  | •        | •        |
| $s_3$             | * | •     | <b>•</b> | *        | •        | •     | •        | *        | •     | *                | •        | *                | •                  | *        | •        |
| $S_{\mathcal{A}}$ | * | •     | <b>•</b> | <b>•</b> | *        | *     | *        | *        | •     | •                | *        | •                | *                  | *        |          |
| Counter           | a | $b_1$ | $b_2$    | $b_3$    | $b_4$    | $c_1$ | $c_2$    | $c_3$    | $d_1$ | $\overline{d}_2$ | $d_3$    | $\overline{d}_4$ | $\overline{d}_{5}$ | $d_6$    | $e_{42}$ |

System of linear equations

$$\begin{array}{l} a+b_{3}+b_{4}+c_{3}+d_{1}=M_{12}\,,\quad a+b_{4}=M_{123}\,,\quad a=M_{1234}\,,\\ a+b_{2}+b_{4}+c_{2}+d_{2}=M_{13}\,,\quad a+b_{3}=M_{124}\,,\\ a+b_{2}+b_{3}+c_{1}+d_{3}=M_{14}\,,\quad a+b_{2}=M_{134}\,,\\ a+b_{1}+b_{4}+c_{1}+d_{4}=M_{23}\,,\quad a+b_{1}=M_{234}\,,\\ a+b_{1}+b_{3}+c_{2}+d_{5}=M_{24}\,,\\ a+b_{1}+b_{2}+c_{3}+d_{6}=M_{34}\,,\\ c_{3}=d(s_{12},s_{34})\,,\qquad c_{2}=d(s_{13},s_{24})\,,\qquad c_{1}=d(s_{14},s_{23})\,,\\ a+\Sigma b_{i}+\Sigma c_{i}+\Sigma d_{i}+e=n\,\,. \end{array}$$

- $M_{ij}$ ,  $M_{ijk}$ ,  $M_{ijkl}$ : Numbers of pair/triple/quadruple-wise matches ( $\{i,j,k,l\}=\{1,2,3,4\}$ )
- Pair string  $s_{ij}$  of  $s_i$  and  $s_j$ -  $s_{ii}[p] = s_i[p]$  if  $s_i[p] = s_i[p]$ ; otherwise,  $s_{ii}[p] = \$$
- Distance between  $s_{ij}$  and  $s_{kl}$ ,  $d(s_{ij}, s_{kl})$

| $s_1$               | a | b  | a  | a | a  | a        | a  | b  | b | $M_{12}=5$ |
|---------------------|---|----|----|---|----|----------|----|----|---|------------|
| $s_2$               | a | C  | a  | a | b  | b        | b  | b  | b |            |
| $s_3$               | b | a  | a  | a | a  | C        | b  | a  | C |            |
| $S_4$               | b | a  | b  | a | b  | d        | a  | b  | C |            |
| $\overline{s_{12}}$ | a | \$ | a  | a | \$ | \$<br>\$ | \$ | b  | b |            |
| $S_{32}$            | b | a  | \$ | a | \$ | \$       | \$ | \$ | C |            |

- $M_{ij}$ ,  $M_{ijk}$ ,  $M_{ijkl}$ : Numbers of pair/triple/quadruple-wise matches ( $\{i,j,k,l\}=\{1,2,3,4\}$ )
- Pair string  $s_{ij}$  of  $s_i$  and  $s_j$ -  $s_{ii}[p] = s_i[p]$  if  $s_i[p] = s_i[p]$ ; otherwise,  $s_{ij}[p] = \$$
- Distance between  $s_{ij}$  and  $s_{kl}$ ,  $d(s_{ij}, s_{kl})$

| $s_1$               | a | b  | a  | a | a  | a  | a  | b  | b      | $M_{12} = 5$ |
|---------------------|---|----|----|---|----|----|----|----|--------|--------------|
| $s_2$               | a | C  | a  | a | b  | b  | b  | b  | b      | $M_{124}=2$  |
| $s_3$               | b | a  | a  | a | a  | C  | b  | a  | C      |              |
| $S_4$               | b | a  | b  | a | b  | d  | a  | b  | C      |              |
| $\overline{s_{12}}$ | a | \$ | a  | a | \$ | \$ | \$ | b  | b<br>c |              |
| S 2.1               | b | a  | \$ | a | \$ | \$ | \$ | \$ | C      |              |

- $M_{ij}$ ,  $M_{ijk}$ ,  $M_{ijkl}$ : Numbers of pair/triple/quadruple-wise matches ( $\{i,j,k,l\}=\{1,2,3,4\}$ )
- Pair string  $s_{ij}$  of  $s_i$  and  $s_j$ -  $s_{ij}[p] = s_i[p]$  if  $s_i[p] = s_i[p]$ ; otherwise,  $s_{ij}[p] = \$$
- Distance between  $s_{ij}$  and  $s_{kl}$ ,  $d(s_{ij}, s_{kl})$

| $s_1$ | a | b | a | a | a | a | a | b | b      | $M_{12} = 5$      |
|-------|---|---|---|---|---|---|---|---|--------|-------------------|
| $s_2$ | a | C | a | a | b | b | b | b | b      | $M_{124}=2$       |
| $s_3$ | b | a | a | a | a | C | b | a | C      | $(101_{124} - 2)$ |
| $S_A$ | b | а | b | а | b | Ь | a | b | C /    | $M_{1234}=1$      |
| 4     |   |   |   |   |   |   |   |   |        | 1234 -            |
|       |   |   |   |   |   |   |   |   | b<br>c |                   |

- $M_{ij}$ ,  $M_{ijk}$ ,  $M_{ijkl}$ : Numbers of pair/triple/quadruple-wise matches ( $\{i,j,k,l\}=\{1,2,3,4\}$ )
- Pair string  $s_{ij}$  of  $s_i$  and  $s_j$ -  $s_{ij}[p] = s_i[p]$  if  $s_i[p] = s_i[p]$ ; otherwise,  $s_{ij}[p] = \$$
- Distance between  $s_{ij}$  and  $s_{kl}$ ,  $d(s_{ij}, s_{kl})$

| $s_1$               | a | b  | a  | a | a  | a  | a  | b  | b | $M_{12} = 5$            |
|---------------------|---|----|----|---|----|----|----|----|---|-------------------------|
| $s_2$               | a | C  | a  | a | b  | b  | b  | b  | b | $M_{124}=2$             |
| $s_3$               | b | a  | a  | a | a  | C  | b  | a  | C | $101_{124} - 2$         |
| $S_4$               | b | a  | b  | a | b  | d  | a  | b  | C | $M_{1234}=1$            |
| $\overline{S_{12}}$ | a | \$ | a  | a | \$ | \$ | \$ | b  | b | 1/                      |
| S <sub>34</sub>     | b | a  | \$ | a | \$ | \$ | \$ | \$ | C | $d(s_{12}, s_{34}) = 2$ |

- By using FFT, we can efficiently compute, for all  $n^3$  alignments,
  - all  $M_{ij}$ ,  $M_{ijk}$ ,  $M_{ijkl}$  in  $O(n^2)$ ,  $O(n^3)$ , and  $O(n^3 \log n)$  time
  - all  $d(s_{ij}, s_{kl})$  in  $O(n^3 \log n)$  time

• Theorem 3. Problem CS4 can be solved in  $O(n^3 \log n)$  time and O(n) space

#### Conclusion

 We proposed efficient algorithms to solve the optimal/bounded consensus problems for 3 or 4 circular strings

- Future works
  - Algorithms for CSR4 or more strings
  - Algorithms with edit distance measure

# Thank you!