> Thomas Honold

First-Order Equations

Exact First-Order Equations

Math 286 Introduction to Differential Equations

Thomas Honold

ZJU-UIUC Institute

Fall Semester 2021

> Thomas Honold

First-Orde Equations

Exact First-Orde Equations **Outline**

1 Separable First-Order Equations

2 Exact First-Order Equations

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Today's Lecture:

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Separable Equations

Definition

An (explicit) first-order ODE y' = f(x, y) is said to be *separable* if f(x, y) factors as $f(x, y) = f_1(x)f_2(y)$

We assume that the domains I, J of f_1 , resp., f_2 are open intervals and that f_2 has no zero in J. Then $N(y) = 1/f_2(y)$ is well-defined and has no zero in J as well.

Writing $M = f_1$, we can rewrite $y' = f_1(x)f_2(y)$ as

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{M(x)}{N(y)}$$
 or $M(x) \, \mathrm{d}x - N(y) \, \mathrm{d}y = 0$.

Theorem

Suppose $M\colon I\to\mathbb{R}$ and $N\colon J\to\mathbb{R}$ are continuous and N has no zero in J. Let $(x_0,y_0)\in I\times J$, and define $H_1\colon I\to\mathbb{R},\, H_2\colon J\to\mathbb{R}$ by

$$H_1(x) = \int_{x_0}^x M(\xi) d\xi, \qquad H_2(y) = \int_{y_0}^y N(\eta) d\eta.$$

Let further $I' \subseteq I$ be an interval with $x_0 \in I'$ and $H_1(I') \subseteq H_2(J)$. Then there exists a unique solution $y: I' \to \mathbb{R}$ of the IVP $y' = M(x)/N(y) \land y(x_0) = y_0$, viz. $y(x) = H_2^{-1}(H_1(x))$ for $x \in I'$.

> Thomas Honold

Separable First-Order Equations

First-Orde Equations

Remark

The subsequent proof (cf. the notes thereafter) shows that for sufficiently small $\delta>0$ the interval $I'=(x_0-\delta,x_0+\delta)$ has the required property and hence that the IVP $y'=M(x)/N(y)\wedge y(x_0)=y_0$ has locally near (x_0,y_0) a (unique) solution.

Proof of the theorem.

Since N is continuous and has no zero in J, we have either N>0 or N<0 on J and hence that H_2 is either strictly increasing or strictly decreasing on J. In particular, $H_2: J \to H_2(J)$ is bijective and $y: I' \to \mathbb{R}$, $x \mapsto H_2^{-1}(H_1(x))$ is well-defined.

$$y'(x) = (H_2^{-1})'(H_1(x)) \cdot H_1'(x) = \frac{H_1'(x)}{H_2'(H_2^{-1}(H_1(x)))} = \frac{M(x)}{N(y(x))},$$

i.e.,
$$y(x)$$
 satisfies $y' = M(x)/N(y)$
 $H_1(x_0) = 0 = H_2(y_0) \Longrightarrow y(x_0) = H_2^{-1}(H_1(x_0)) = y_0$
It remains to show that any solution $y: I' \to \mathbb{R}$ of the IVP must

satisfy $H_2(y(x)) = H_1(x)$ for $x \in I'$.

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Proof cont'd.

To this end we write the ODE in the form y'(x)N(y(x)) = M(x) and integrate:

$$\int_{x_0}^x y'(\xi) N(y(\xi)) d\xi = \int_{x_0}^x M(\xi) d\xi = H_1(x)$$

Making the substitution $\eta = y(\xi)$, $d\eta = y'(\xi)d\xi$ on the left-hand side gives

$$\int_{y(x_0)}^{y(x)} N(\eta) \mathrm{d}\eta = \int_{y_0}^{y(x)} N(\eta) \mathrm{d}\eta = H_2(y(x)),$$

as desired.

Notes

• The proof has shown that $H_2(J)$ is an open interval containing $0 = H_2(y_0)$. Since H_1 is continuous and $H_1(x_0) = 0$, there exists $\delta > 0$ such that $H_1(x) \in H_2(J)$ for $x_0 - \delta < x < x_0 + \delta$, justifying the remark made before the proof.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Notes cont'd

- If the integrals in $H_2(y) = \int_{y_0}^y N(\eta) d\eta = \int_{x_0}^x M(\xi) d\xi = H_1(x)$ can be evaluated, we obtain y = y(x) in impicit form $H_2(y) = H_1(x)$. The condition $H_1(I') \subset H_2(J)$ guarantees
 - can be evaluated, we obtain y = y(x) in impicit form $H_2(y) = H_1(x)$. The condition $H_1(I') \subseteq H_2(J)$ guarantees that this equation has a solution $y \in J$ for each $x \in I'$. If we are lucky, we may be able to solve for y and obtain an explicit formula for y(x).
- The notation used in [BDM17], Ch. 2.2 is the same except that N, H_2 are replaced by -N, $-H_2$ to put the implicit ODE into the more symmetric form M(x) dx + N(y) dy = 0.

Example

We determine all solutions of the ODE $y' = dy/dt = t y^2$, which is separable with $f_1(t) = t$, $f_2(y) = y^2$.

One solution is the steady-state solution $y \equiv 0$.

For f_1 there is no restriction, and hence $I = \mathbb{R}$ in the theorem. Since $f_2(y) = 0$ is not allowed in the theorem, we split the domain of f_2 into the intervals $J_1 = (-\infty, 0)$, $J_2 = (0, +\infty)$. This corresponds to initial values $y(t_0) < 0$ and $y(t_0) > 0$, respectively. Differential Equations Thomas Honold

Math 286 Introduction to

Example (cont'd)

Rewriting the ODE formally as $dy/y^2 = t dt$ and integrating gives

$$\int_{y_0}^{y} \frac{\mathrm{d}\eta}{\eta^2} = \int_{t_0}^{t} \tau \mathrm{d}\tau$$

$$\frac{1}{y_0} - \frac{1}{y} = \left[-\frac{1}{\eta} \right]_{y_0}^{y} = \left[\frac{1}{2} \tau^2 \right]_{t_0}^{t} = \frac{1}{2} (t^2 - t_0^2)$$

$$\implies y(t) = \frac{1}{1/y_0 - \frac{1}{2} (t^2 - t_0^2)} = \frac{2}{2/y_0 + t_0^2 - t^2}$$

The non-constant solutions of y'=t y^2 are therefore $y(t)=y_C(t)=2/(C-t^2), \ C\in\mathbb{R}$. The solution y_C

- is defined for all $t \in \mathbb{R}$ if C < 0 or, equivalently, $-2/t_0^2 < y_0 < 0$ ($y_0 < 0$ for $t_0 = 0$);
- is defined only on the finite interval $(-\sqrt{C}, \sqrt{C})$ if $C > 0 \land |t_0| < \sqrt{C}$ or, equivalently, $y_0 > 0$;
- is defined only on $(-\infty, -\sqrt{C})$ if $C \ge 0 \land t_0 < -\sqrt{C}$ or, equivalently, $t_0 < 0 \land y_0 \le -2/t_0^2$;
- is defined only on $(\sqrt{C}, +\infty)$ if $C \ge 0 \land t_0 > \sqrt{C}$ or, equivalently, $t_0 > 0 \land y_0 < -2/t_0^2$.

Separable First-Order Equations

First-Order Equations

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Figure: Solution curves $y_C(t) = 2/(C - t^2)$ of $y' = t y^2$

Thomas Honold Separable First-Order

Exact First-Order

Simplified Variant (but keep the derivation in mind!)

It is often easier to use indefinite integration to determine the general solution of a separable 1st-order ODE as a 1-parameter family and then adapt the constant to satisfy a given initial condition:

$$y'(t)N(y(t)) = M(t)$$

$$\implies \int y'(t)N(y(t)) dt = \int M(t) dt + C, \quad C \in \mathbb{R}$$

$$\implies \int N(y) dy = \int M(t) dt + C, \quad C \in \mathbb{R}, y = y(t)$$

Memorizing the ODE as dy / dt = M(t)/N(y) and formally rewriting it as N(y) dy = N(t) dt, we can directly short-circuit to the previous line:

$$N(y) dy = M(t) dt$$

$$\implies \int N(y) dy = \int M(t) dt + C$$

In our present example: "dy $/y^2 = t$ dt $\Longrightarrow -1/y = t^2/2 + C$ ", leading again to $y = -\frac{1}{C+t^2/2} = \frac{2}{-2C-t^2} = \frac{2}{C'-t^2}$, $C' \in \mathbb{R}$.

Honold

Example We determ

We determine the solution of the IVP $mv' = mg - kv^2 \wedge v(0) = 0$ (best of the three models for a falling object).

Separating the variables gives

$$\frac{v'}{g - (k/m)v^2} = 1$$

$$\implies \int_0^v \frac{d\eta}{g - (k/m)\eta^2} = \int_0^t d\tau = t$$

Since $\int \frac{dx}{1-x^2} = \operatorname{artanh}(x) + C$, using the substitution

$$x = \sqrt{k/(mg)} \, \eta$$
 and $\tanh(y) = \frac{e^y - e^{-y}}{e^y + e^{-y}} = 1 - \frac{2}{e^{2y} + 1}$, we obtain

$$v(t) = \sqrt{rac{mg}{k}} anh \left(t \sqrt{rac{gk}{m}}
ight) = \sqrt{rac{mg}{k}} \left(1 - rac{2}{\mathrm{e}^{2t\sqrt{gk/m}} + 1}
ight),$$

for $0 \le t \le T$ (the time when the object hits the ground).

Setting $v_{\infty} = \sqrt{\frac{mg}{k}}$ (*limiting velocity*), this can also be written as

$$v(t) = v_{\infty} \left(1 - \frac{2}{e^{2t}g/v_{\infty} + 1} \right), \quad 0 \le t \le T.$$

Separable First-Order Equations

Exact First-Order Equations

> Thomas Honold

Separable First-Order Equations

First-Order Equations

Example (cont'd)

Reasonable values for a skydiver (S) and a parachutist (P) with round canopy are $v_{\infty}=50\,\text{m/s}$ and $v_{\infty}=5\,\text{m/s}$, respectively, which gives

$$v_S(t) = 50 \left(1 - \frac{2}{e^{0.4t} + 1} \right) \quad [\text{m/s}],$$

$$v_P(t) = 5 \left(1 - \frac{2}{e^{4t} + 1} \right) \quad [\text{m/s}],$$

when time is measured in seconds.

This agrees well with experimentally found data.

Remark

Here, in contrast with the 2nd model, we can compute T in closed form: Denoting by s(t) the distance traveled at time t, we have

$$s(t) = rac{m}{k} \log \cosh \left(t \sqrt{rac{gk}{m}}
ight),$$
 $t(s) = \sqrt{rac{m}{gk}} \operatorname{arcosh} \left(\mathrm{e}^{sk/m}
ight),$

and $T = t(s_0)$ if the object is released at height s_0 .

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Exercise

a) Show that in the 3rd model for a falling object released at height s_0 the terminal velocity v_T of the object at time of impact is given by

$$v_T = \sqrt{\frac{mg}{k}} \cdot \sqrt{1 - \mathrm{e}^{-2ks_0/m}}.$$

Hint: Consider the velocity as a function v(s) of the distance s traveled. Show that $y(s) = v(s)^2$ satisfies the ODE my' = 2mg - 2ky.

b) The limiting velocity of a falling basketball ($m = 620 \,\mathrm{g}$) has been estimated at 20 m/s. Using this data, graph v_T as a function of s_0 . For which heights s_0 does the basketball reach 50 %, 90 %, and 99 % of its limiting velocity?

Thomas Honold

First-Order Equations Exact

Separable

First-Order Equations Example

We solve $y' = y^2$, which is autonomous and hence separable with $f_1(t) = 1$, $f_2(y) = y^2$, using the simplified solution method.

There is the constant solution $y \equiv 0$.

Otherwise we can rewrite $dy / dt = y^2$ as $dy / y^2 = dt$ and obtain

$$\frac{\mathrm{d}y}{y^2} = \mathrm{d}t$$

$$\implies -\frac{1}{y} = \int \frac{\mathrm{d}y}{y^2} = \int \mathrm{d}t = \int 1 \, \mathrm{d}t = t + C$$

$$\implies y = \frac{1}{-C - t} = \frac{1}{C' - t}, \quad C, C' \in \mathbb{R}.$$

This recovers the already known general solution.

But don't forget: The informal computation is justified by rewriting it in terms of y(t) and using the substitution $\eta = y(t)$:

$$\frac{y'(t)}{y(t)^2} = 1$$

$$\iff \frac{-1}{y(t)} = \frac{-1}{\eta} = \int \frac{\mathrm{d}\eta}{\eta^2} = \int \frac{y'(t)}{y(t)^2} \, \mathrm{d}t = \int \mathrm{d}t = t + C$$

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Example (cont'd)

This tells us that the solutions $y: I \to \mathbb{R}$ of $y' = y^2$ with $y(t) \neq 0$ for all $t \in I$ are precisely the functions whose graph is contained in a contour of F(t,y) = -1/y - t, i.e., satisfy F(t,y(t)) = C for some $C \in \mathbb{R}$.

It doesn't tell us whether such functions actually exist.

However, in this particular case we can solve for y to show that precisely the functions y(t) = 1/(C-t), $C \in \mathbb{R}$ (defined on an appropriate interval I) have this property.

In the case of a general separable ODE we can't solve for y and must invoke the theorem on separable ODE's to conclude the local existence and uniqueness of solutions for any prescribed initial value $y(t_0) \neq 0$. (The Implicit Function Theorem also yield this, cf. subsequent remark.)

Introduction to Differential Equations Thomas Honold Separable First-Order Equations

Math 286

The ODE $y' = \sqrt{|y|}$ can of course also be solved by the new

Example

method: A solution $y: I \to \mathbb{R}$ with $y(t) \neq 0$ for all $t \in I$ must satisfy either

v > 0 on I or v < 0 on I. y > 0: In this case $y' = \sqrt{y}$ and we get

Because of the middle equation, we must have
$$t > -C$$
, i.e., $I \subseteq (-C, +\infty)$. $\underline{y < 0}$: Here $y' = \sqrt{-y}$ and we get
$$\frac{dy}{\sqrt{-y}} = 1 \, \mathrm{d}t \iff -2\sqrt{-y} = t + C \iff y = -\frac{(t+C)^2}{4}, \ C \in \mathbb{R},$$

 $\frac{dy}{\sqrt{y}} = 1 \, dt \iff 2\sqrt{y} = t + C \iff y = \frac{(t+C)^2}{4}, \quad C \in \mathbb{R}.$ Because of the middle equation, we must have t > -C, i.e.,

$$I\subseteq (-C,+\infty)$$
. $\underline{y<0}$: Here $y'=\sqrt{-y}$ and we get

and t < -C, i.e., $I \subseteq (-\infty, -C)$. The guaranteed uniqueness of solutions applies only to the regions y > 0 and y < 0 in the (t, y)-plane and doesn't exlude the observed branching of solutions on the *t*-axis.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

General Remarks on $y' = f_1(x)f_2(y)$

Extracted from the previous examples

We assume that $f_1: I \to \mathbb{R}$, $f_2: J \to \mathbb{R}$ are continuous functions on open intervals $I, J \subseteq \mathbb{R}$. Thus $I \times J$ is an open rectangle with possibly infinite sides.

- 1 The zeros of f_2 (if any) partition J into open subintervals on which f_2 has no zeros. If J' is such a subinterval then on the rectangle $I \times J'$ we have local existence and uniqueness of solutions of IVP's $y' = f_1(x)f_2(y) \wedge y(x_0) = y_0$ at any point $(x_0, y_0) \in I \times J'$.
- 2 Rewriting $y' = f_1(x)f_2(y)$ as y' = M(x)/N(y) and denoting by $F: I \times J' \to \mathbb{R}$ an antiderivative of M(x) dx N(y) dy (i.e., $\partial F/\partial x = M \wedge \partial F/\partial y = -N$), the solutions y(x) with graph $G_y \subset I \times J'$ are given in implicit form as F(x,y) = C, $C \in \mathbb{R}$.

The function F in (2) can be chosen as

$$F(x,y) = \int_{x_0}^x M(\xi) d\xi - \int_{y_0}^y N(\eta) d\eta, \quad (x_0,y_0) \in I \times J'.$$

In particular the differential 1-form M(x) dx - N(y) dy is exact on $I \times J'$ (which also follows form $M_y = N_x = 0$ and the shape of $I \times J'$).

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Remarks on $y' = f_1(x)f_2(y)$ Cont'd

3 For any zero y_0 of f_2 there is the steady-state solution $y(x) \equiv y_0$ on I. Together with (1) this shows that all IVP's $y' = f_1(x)f_2(y) \land y(x_0) = y_0$ with $(x_0, y_0) \in I \times J$ are solvable.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Linear Versus Separable 1st-Order ODE's

Note the following important differences between the two cases.

- ① Domains of y' = a(x)y + b(x) are of the form $I \times \mathbb{R}$; domains of $y' = f_1(x)f_2(y)$ are of the form $I \times J$, where J may be a proper subinterval of \mathbb{R} .
- 2 Solutions of y' = a(x)y + b(x) can be extended to I (i.e., maximal solutions have domain I); solutions of $y' = f_1(x)f_2(y)$ may be defined only on proper subintervals $I' \subset I$, which depend on the solution and are not visible in the ODE.
- 3 Solutions of IVP's $y' = a(x)y + b(x) \land y(x_0) = y_0$ are unique in the sense that if $y_1: I_1 \to \mathbb{R}$, $y_2: I_2 \to \mathbb{R}$, solve the IVP then $y_1(x) = y_2(x)$ for all $x \in I_1 \cap I_2$; solutions of IVP's $y' = f_1(x)f_2(y) \land y(x_0) = y_0$ are unique only at points (x_0, y_0) with $f_2(y_0) \neq 0$, and only if their ranges don't contain zeros of f_2 .

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

The Logistic Equation

Definition

The ODE $y' = ay - by^2$ with constants a, b > 0 is called *logistic equation*.

The logistic equation was introduced by the Belgian mathematician P. VERHULST (1804–1849) in 1837 as a mathematical model for population growth. It provides a more accurate model of population growth than the exponential model y' = ay, adding a term $-by^2$, which accounts for the competition between individuals if resources are limited.

The logistic equation has the form $y' = f_1(t)f_2(y)$ with $f_1(t) = 1$, $f_2(y) = ay - by^2$, and hence is separable (even autonomous).

Since $ay - by^2 = y(a - by)$ the steady-state solutions are $y \equiv 0$ and $y \equiv a/b$.

Math 286
Introduction to
Differential
Equations
Thomas
Honold
Separable
First-Order
Equations

$$\frac{1}{y(a-by)}=\frac{1/a}{y}+\frac{b/a}{a-by},$$

e.g., by the method of partial fractions, we obtain

 $\int \frac{1}{v} + \frac{b}{a - bv} \, \mathrm{d}y = \int a \, \mathrm{d}t + C$

 $\ln|y| - \ln|a - bv| = at + C$

$$\ln\left|\frac{y}{a-by}\right| = at + C$$

$$\pm \frac{y}{a-by} = e^{at+C}$$

$$\pm y = e^{at+C}(a-by)$$

$$y = \frac{ae^{at+C}}{\pm 1 + be^{at+C}} = \frac{a}{\pm e^{-C}e^{-at} + b}.$$

Setting $d=\pm \mathrm{e}^{-C}$, we obtain the solution $y(t)=\frac{a}{d\mathrm{e}^{-at}+b},\ d\in\mathbb{R}$. d=0 gives the steady-state $y\equiv a/b$ (and $d=\infty$ gives $y\equiv 0$).

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Figure: Solution curves of $y' = y - y^2$, represented as level sets $F(t,y) = \ln \left| \frac{y}{1-y} \right| - t = C$

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Asymptotic behaviour

Observation

For every $d \in \mathbb{R}$ we have

$$\lim_{t\to +\infty}\frac{a}{d\mathrm{e}^{-at}+b}=\frac{a}{b},\qquad \lim_{t\to -\infty}\frac{a}{d\mathrm{e}^{-at}+b}=0.$$

Caution

This does not imply that all solutions y(t) to the logistic equation exist at any time t and have the indicated limits for $t \to \pm \infty$.

The precise asymptotics are given on the next slide.

Since $y' = ay - by^2$ is autonomous, horizontal shifts $t \mapsto y(t - t_0)$ of solutions y(t) are again solutions and we can assume w.l.o.g. that y(t) is defined at $t_0 = 0$. As usual, we set $y(0) = y_0$.

In terms of y_0 , the parameter d is given by

$$\frac{a}{d+b} = y_0$$
, i.e., $d = \frac{a}{v_0} - b$.

The solution with d = -b is not defined at t = 0.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Asymptotic behaviour cont'd

- 1 Solutions y(t) with d>0 or, equivalently, $0< y_0< a/b$ exist at any time t (i.e., have maximal domain $\mathbb R$) and for $t\to\pm\infty$ have the limits indicated on the previous slide.
- 2 Solutions y(t) with d < 0 have two branches and a vertical asymptote at $t_{\infty} = (\ln(-d) \ln b)/a$, which is the solution of $de^{-at} + b = 0$.
 - (2.1) If -b < d < 0, we have $t_{\infty} < 0$ and the branch defined at t=0 has domain $(t_{\infty},+\infty)$; moreover, $\lim_{t\downarrow t_{\infty}} = +\infty$, $\lim_{t\to +\infty} y(t) = a/b$. All solutions satisfying $y_0 > a/b$ arise in this way (with $d=a/y_0-b$).
 - (2.2) If d < -b, we have $t_{\infty} > 0$ and the branch defined at t = 0 has domain $(-\infty, t_{\infty})$; moreover, $\lim_{t \to -\infty} y(t) = 0$, $\lim_{t \uparrow t_{\infty}} y(t) = -\infty$. All solutions satisfying $y_0 < 0$ arise in this way (with $d = a/y_0 b$).

The remaining solutions defined at t=0 are the two steadystate solutions $y(t) \equiv 0$ ($d=\infty$) and $y(t) \equiv a/b$ (d=0).

> Thomas Honold

Separable First-Order Equations

First-Order Equations \Longrightarrow The solutions (single branches!) defined at t=0 are in 1-1 correspondence with $d \in \mathbb{R} \setminus \{-b\} \cup \{\infty\}$.

But there are further solutions (the 2nd branches of the solutions for d < 0, $d \neq -b$, and both branches for d = -b).

Up to horizontal shifts, there are only 3 essentially different solutions:

$$y_1(t) = \frac{a}{b(1 + e^{-at})},$$
 $t \in \mathbb{R},$
 $y_2(t) = \frac{a}{b(1 - e^{-at})},$ $t \in (-\infty, 0),$
 $y_3(t) = \frac{a}{b(1 - e^{-at})},$ $t \in (0, +\infty).$

We also see that the corresponding graphs ("integral curves") depend only on the quotient a/b.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

The Case d > 0

For applications to population growth only Cases 1 and 2 are interesting. Information about the solution graphs can easily be obtained from the logistic equation:

$$y' = ay - by^2 = y(a - by),$$

 $y'' = ay' - 2byy' = y'(a - 2by)$

- 1 Solutions y(t) with 0 < y(0) < a/b are strictly increasing (since they satisfy 0 < y(t) < a/b for all $t \in \mathbb{R}$). Denoting by t_h the unique solution of $de^{-at} = b$, i.e. $t_h = (\ln d \ln b)/a$, we have $y(t_h) = \frac{a}{de^{-at_h} + b} = a/2b$ and further that y(t) is convex in $[-\infty, t_h]$ (since 0 < y(t) < a/2b in this interval) and concave in $[t_h, +\infty]$. In particular y(t) has a (unique) inflection point in $(t_h, a/2b)$.
- 2 Solutions y(t) with y(0) > a/b are strictly decreasing and convex in their domain $[t_{\infty}, +\infty)$.

Since the logistic equation is autonomous, in Case 1 every solution arises from the solution with $t_h = 0$ (i.e., d = b) by a time shift. This is visible in $y(t) = a/(de^{-at} + b) = a/(be^{-a(t-t_h)} + b)$.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Figure: Three S-curves following the Logistic Law with a/b=1 and d>0

Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Population of the Earth

The US Department of Commerce estimated in 1965 the world's population at 3.34 billion people, with an annual increase of 2% per year. Using the exponential model y'=ay, this gives

$$y(t) = 3.34 \cdot 10^9 \times e^{0.02(t-1965)}.$$

In this model the population would double every $\frac{\ln 2}{0.02}\approx 34.6$ years.

The logistic model $y' = ay - by^2$ with the reasonable parameter a = 0.029 (natural reproduction rate, if unlimited resources are available) and b, d' computed from

$$\frac{y'(1965)}{y(1965)} = a - b y(1965) = a - b \times 3.34 \cdot 10^9 = 0.02,$$
$$y(1965) = \frac{a}{d'e^{-a(t-1965)} + b} \Big|_{t-1965} = \frac{a}{d' + b}$$

i.e.
$$b = 2.695 \cdot 10^{-12}$$
, $d' = 5.988 \cdot 10^{-12}$, gives

$$y(t) = \frac{0.029 \cdot 10^{12}}{5.988 \, e^{-0.029(t-1965)} + 2.695}, \quad y(2020) = 7.42 \cdot 10^9, \quad \frac{a}{b} = 10.76 \cdot 10^9.$$

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Uniqueness of Solutions

So far we have proved uniqueness of solutions of initial value problems $y' = G(t, y) \land y(t_0) = y_0$ in the following two ways:

- 1 Derive the general solution of y' = G(t, y) and observe that it is a 1-parameter family of functions $y_C(t)$ depending on a constant C; plug in $y_C(t_0) = y_0$ to determine C, and hence the solution, uniquely.
- 2 If the solution to y' = G(t, y) involves more than one parameter, show additionally that an initial condition $y(t_0) = y_0$ cannot be satisfied by solutions corresponding to different parameters.

Way (1) applies to 1st-order linear ODE's (homogeneous or inhomogeneous) and to separable ODE's without steady-state solutions.

Way (2) applies to separable ODE's with steady-state solutions, such as $y' = y^2$, $y' = ty^2$, $y' = ay - by^2$.

"Different parameters" refers to both continuous 1-parameter families of solutions and "exceptional" steady-state solutions.

Neither way applies to $y' = \sqrt{|y|}$.

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Uniqueness of Solutions Cont'd

Example

The logistic equation $y'=ay-by^2$ has the solutions $y_\infty(t)\equiv 0$ and $y_d(t)=\frac{a}{de^{-at}+b},\ d\in\mathbb{R}.$ We assume that the solutions are maximal, i.e., the domains are \mathbb{R} for $d\geq 0$ and $\mathbb{R}\setminus\{t_\infty\}$ for d<0. For d<0 we count the two branches $y_d^+(t)$ as different solutions, according to our requirement that domains of ODE solutions should be intervals.

For $t_0 \in \mathbb{R}$ and $y_0 \neq 0$ we can solve $\frac{a}{de^{-at_0}+b} = y_0$ uniquely for d, showing that (t_0,y_0) is on precisely one solution curve (graph) $y_d(t), d \in \mathbb{R}$. Moreover, since $\frac{a}{de^{-at}+b} \neq 0$, these solution curves don't intersect the steady-state solution $y_\infty(t) \equiv 0$. This implies that the solution curves $y_d(t), d \in \mathbb{R} \cup \{\infty\}$, partition the (t,y)-plane, which is equivalent to the unique solvability of all IVP's $y' = ay - by^2 \land y(t_0) = y_0$ within the given class of functions.

However, this doesn't exclude the existence of further solutions. In fact there are no further solutions, and a rigorous proof is given on the next slide.

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Example (cont'd)

The theorem on separable ODE's implies that there can't be two distinct solutions through a point (t_0, y_0) with $y_0 \notin \{0, a/b\}$, and hence all solutions not intersecting the lines y = 0, y = a/b are known.

Now suppose there is a non-constant solution y(t) satisfying $y(t_0) = 0$, say, for some $t_0 \in \mathbb{R}$. (The case $y(t_0) = a/b$ is done in the same way.)

W.l.o.g. we can assume that 0 < y(t) < a/b for $t_0 < t < t_0 + \delta$, where δ is some positive number. (By symmetry, we can assume that there exists $t_1 > t_0$ satisfying $y(t_1) > 0$. Since y(t) is continuous, there exists a largest zero t^* of y(t) in $[t_0, t_1]$. Then y(t) > 0 for $t^* < t < t_1$, and hence our assumption is satisfied if we replace t_0 by t^* and set $\delta = t_1 - t^*$.)

Now, by continuity, we must have $\lim_{t\downarrow t_0} y(t) = 0$, but none of the solutions that are defined for $t\in (t_0,t_0+\delta)$ and attain small positive values there (these must be of the form $y_d(t)$ with d>0) has this property, since $y_d(t)=\frac{a}{de^{-at}+b}\to \frac{a}{de^{-at_0}+b}\neq 0$ for $t\downarrow t_0$. This contradiction completes the proof.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Example

The equation $y = \sqrt{|y|}$ has the steady-state solution $y(t) \equiv 0$ and the two 1-parameter families

$$y_c^-(t) = -\frac{1}{4}(t-c)^2, \qquad t \in (-\infty, c), y_c^+(t) = \frac{1}{4}(t-c)^2, \qquad t \in (c, +\infty),$$

as solutions, where $c \in \mathbb{R}$ is arbitrary.

Collectively, these solutions partition the (t,y)-plane, so that every point $(t_0,y_0)\in\mathbb{R}^2$ is on exactly one solution curve of this kind. (This follows, e.g., from the theorem on separable ODE's.) However, there are further (maximal) solutions obtained by glueing together $y_c^\pm(t)$ at t=c (and other combinations as well), which leads to non-uniqueness of solutions of all IVP's $y=\sqrt{|y|}\wedge y(t_0)=y_0$. (The indicated combination shows this only for the points (c,0) on the t-axis, through which we have the solution combined from $y_c^\pm(t)$ and also the steady-state solution $y(t)\equiv 0$.)

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Remark

The general Existence and Uniqueness Theorem for solutions of 1st-order ODE's (to be proved later) will explain the observed fundamental difference between the two examples and give a more conceptual proof of the uniqueness of solutions of all IVP's $y' = ay - by^2 \wedge y(t_0) = y_0 \text{ (and, similarly, of the uniqueness of solutions of all IVP's corresponding to the harvesting equation discussed subsequently).}$

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

The Harvesting Equation

Suppose a population follows the logistic law of growth but additionally individuals are removed ("harvested") at a constant rate h > 0.

Definition

The ODE $y' = ay - by^2 - h$ (a, b, h > 0) is called *harvesting* equation.

Changes

• For $h < a^2/4b$ the quadratic $-by^2 + ay - h = 0$, whose discriminant is $\Delta = a^2 - 4bh$, still has two zeros, viz.

$$y_1 = (a - \sqrt{a^2 - 4bh})/2b$$
, $y_2 = (a + \sqrt{a^2 - 4bh})/2b$, which satisfy $0 < y_1 < y_2$ and provide two steady-state solutions.

- For $h = a^2/4b$ the quadratic has a double root, which provides one steady-state solution $y \equiv a/2b$.
- $h > a^2/4b$ the quadratic has no real zeros, and the harvesting equation has no steady-state solutions.

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations For a more detailed analysis we transform the harvesting equation into canonical form.

Lemma

We can transform the harvesting equation by means of a substitution y(t) = u z(mt) + v with $u, v, m \in \mathbb{R}$ and u, m > 0 into one of the three canonical forms

$$z' = -z^2 + 1$$
, $z' = -z^2$, $z' = -z^2 - 1$.

Proof.

Writing s = mt have y'(t) = mu z'(mt) = mu z'(s) and hence, using the usual shorthands

$$z' = \frac{y'}{mu} = \frac{-b(uz + v)^2 + a(uz + v) - h}{mu}$$
$$= -\frac{bu}{m}z^2 + \frac{a - 2bv}{m}z + \frac{-bv^2 + av - h}{mu}.$$

With m = bu, v = a/2b this becomes

$$z' = -z^2 + \frac{\frac{-a^2}{4b} + \frac{a^2}{2b} - h}{bu^2} = -z^2 + \frac{a^2 - 4bh}{4b^2u^2} = -z^2 + \frac{\Delta}{4b^2u^2}.$$

> Thomas Honold

Separable First-Order Equations

First-Orde Equations

Proof cont'd.

If
$$\Delta > 0$$
 ($\Delta < 0$) then $u = \sqrt{\Delta}/(2b)$ (resp., $u = \sqrt{-\Delta}/(2b)$) gives $z' = -z^2 + 1$ (resp., $z' = -z^2 - 1$).

Notes

- Substitutions of the form $y(t) = u z(mt) + v (u, v, m \in \mathbb{R}, u, v > 0)$ arise from changing the units of measurement on both the t-axis and the y-axis and an additional vertical shift of the graph of $t \mapsto y(t)$. They do not change the overall shape of the solution graphs.
- Substitutions of this form do not change the number of steady-state solutions, and hence the corresponding canonical form is also determined by the number of zeros of $-by^2 + ay h = 0$.
- The logistic equation $y' = ay by^2$ has canonical form $z' = -z^2 + 1$ (regardless of the particular choice of a, b > 0).

Thomas Honold

Separable First-Order Equations

Analysis of the Canonical Forms

In the following we will test "stability" of solutions y(t) of the harvesting equation—a concept that describes their asymptotic behaviour for $t \to +\infty$.

Definition (Stability)

A steady-state solution $y \equiv y_0$ of an autonomous first-order ODE y' = f(y) (i.e., $f(y_0) = 0$) is said to be (asymptotically) stable if there exists $\delta > 0$ such that every solution y(t) of y' = f(y) with initial value $y(0) \in [y_0 - \delta, y_0 + \delta]$ is defined for sufficiently large t and satisfies $\lim_{t\to+\infty} y(t) = y_0$, and *unstable* otherwise.

1
$$z' = -z^2 + 1$$
.

This is the logistic equation (without harvesting), with steady states $z = \pm 1$.

Our previous analysis shows that

$$\lim_{s \to +\infty} z(s) = \begin{cases} 1 & \text{if } z_0 > -1, \\ \text{undefined} & \text{if } z_0 < -1. \end{cases}$$

Thus z = 1 is stable and z = -1 is unstable.

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Figure: Solution curves of $z' = 1 - z^2$

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Analysis of the Canonical Forms Cont'd

2 $z' = -z^2$.

The standard solution method gives

$$\frac{1}{z} - \frac{1}{z_0} = \int_{z_0}^{z} -\frac{\mathrm{d}\zeta}{\zeta^2} = \int_{s_0}^{s} \mathrm{d}\sigma = s - s_0,$$

i.e.,
$$z(s) = 1/(s - C)$$
 with $C = s_0 - 1/z_0$.

This tells us:

Solutions z(s) with $z(s_0) = z_0 > 0$ (equivalently, $s_0 > C$) exist forever and satisfy $\lim_{s \to +\infty} z(s) = 0$.

Solutions z(s) with $z(s_0) = z_0 < 0$ (equivalently, $s_0 < C$) exist only on $(-\infty, C)$ and satisfy $\lim_{s \uparrow C} z(s) = -\infty$.

In other words, the steady-state solution $z \equiv 0$ is *one-sided* stable (stable from above).

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Figure: Solution curves of $z' = -z^2$

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Analysis of the Canonical Forms Cont'd

3 $z' = -z^2 - 1$.

Here the standard solution method gives

$$rctan z_0 - rctan z = \int_{z_0}^z -rac{\mathrm{d}\zeta}{\zeta^2+1} = \int_{s_0}^s \mathrm{d}\sigma = s - s_0,$$

i.e., $z(s) = \tan(C - s)$ with $C = s_0 + \arctan z_0$.

This tells us:

Solutions z(s) with $z(s_0) = z_0$ exist only on $(C - \pi/2, C + \pi/2)$ and satisfy $\lim_{s \uparrow C + \pi/2} z(s) = -\infty$.

The solutions with $z_0 > 0$ have $C > s_0$ and hence exist for a period larger than $\pi/2$, while those with $z_0 < 0$ have $C < s_0$ and exist for a period less than $\pi/2$.

Since there are no steady-state solutions, the question of stability does not arise.

> Thomas Honold

Separable First-Order Equations

Exact First-Order Equations

Figure: Solution curves of $z' = -1 - z^2$

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations

Remark

It is instructive to represent the solution curves (except the steady-state solutions) in the preceding examples as function t(y) resp. s(z). This makes sense for any autonomous ODE and (provided the ODE can be integrated in closed form) often yields a simpler formula for the solution curves which better explains their shape.

Exercise

Show that the graph of $y(t) = a/(de^{-at} + b)$ (a, b, d > 0) is point-symmetric to its inflection point.

Hint: A superb way to solve this exercise is to observe that the mirror image of a solution curve w.r.t. its inflection point represents a solution as well and use the uniqueness of solutions of associated IVP's.

Remark: For d < 0 graphs have a similar symmetry, but the meaning of the center of symmetry is different.

> Thomas Honold

Separable First-Order Equations

Exact First-Orde Equations Finally we translate the results on the asymptotic behaviour back into the original harvesting equation $y' = ay - by^2 - h$ (a,b,h>0). Recall that for $\Delta = a^2 - 4bh \ge 0$ there are the steady-sate solutions $y \equiv y_{1/2}$ with $y_1 = \left(a - \sqrt{a^2 - 4bh}\right)/2b$, $y_2 = \left(a + \sqrt{a^2 - 4bh}\right)/2b$, which satisfy $0 < y_1 \le y_2$.

Analysis of the Harvesting Equation

 $h < a^2/4b$ If the initial population $y(t_0)$ satisfies $y_1 < y(t_0) < y_2$ then the population y(t) increases and $\lim_{t \to +\infty} y(t) = y_2$. If $y(t_0) > y_2$ then y(t) decreases and $\lim_{t \to \infty} y(t) = y_2$. If $y(t_0) < y_1$ then y(t) decreases and $y(t_1) = 0$ for some $t_1 > t_0$, i.e., the population dies out.

- $h = a^2/4b$ If $y(t_0) > a/2b$, the population decreases and $\lim_{t\to\infty} y(t) = a/2b$. If $y(t_0) < a/2b$, the population decreases and dies out at some time $t_1 > t_0$.
- $h > a^2/4b$ Regardless of the initial population, the population dies out in finite time.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Exact First-Order Equations

Definition

A first-order ODE of the form

$$M(x,y) dx + N(x,y) dy = 0$$
 (D)

with $M, N: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^2$ open, is said to be *exact* if there exists a function $f: D \to \mathbb{R}$ satisfying df = M(x, y) dx + N(x, y) dy or, equivalently, $\nabla f = (f_x, f_y) = (M, N)$.

Notes

- Criteria for exactness have been developed in Calculus III. Recall that for C^1 -functions $M, N: D \to \mathbb{R}$ a necessary condition for exactness is $M_y = N_x$, which is also sufficient if D is simply connected.
- As explained on the next two slides, the "differential-like" form (D) of a first-order ODE is essentially equivalent to the explicit form

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{M(x,y)}{N(x,y)}.$$

obtained from (D) by pretending that dx, dy are numbers.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Solutions of (D)

By a solution curve (integral curve, parametrized solution) of (D) we mean a smooth differentiable curve $\gamma \colon I \to D$, $t \mapsto (x(t), y(t))$ satisfying

$$M(x(t),y(t))x'(t) + N(x(t),y(t))y'(t) = 0$$
 for $t \in I$. (O)

Geometrically, the tangent to the curve at any point must be orthogonal (perpendicular) to the vector of the vector field (M, N) at that point (since (D) is equivalent to $(M, N) \cdot \gamma' = 0$).

By an *(explicit)* solution y=y(x) (resp., x=x(y)) we mean a function $y:I\to\mathbb{R}$ (resp., $x:J\to\mathbb{R}$) with graph contained in D and satisfying

$$Mig(x,y(x)ig)+Nig(x,y(x)ig)y'(x)=0 \quad ext{for } x\in I, \quad ext{resp.}, \ Mig(x(y),yig)x'(y)+Nig(x(y),yig))=0 \quad ext{for } y\in J.$$

Notes

These concepts make sense for any (not necessarily exact)
 1st-order ODE in differential-like form.

Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Notes cont'd

- A point (x₀, y₀) ∈ D is said to be a singular point of the ODE M(x, y) dx +N(x, y) dy = 0 if M(x₀, y₀) = N(x₀, y₀) = 0.
 The orthogonality condition (O) is trivially satisfied in any singular point.
- Suppose (x₀, y₀) is a non-singular point of M(x, y) dx +N(x, y) dy = 0 and satisfies N(x₀, y₀) = 0.
 ⇒ Any solution curve γ = (x, y) passing through (x₀, y₀) must have x' = 0 at (x₀, y₀).
 This says that γ has a vertical tangent at (x₀, y₀) and clearly forms an obstruction to representing it as a function y(x). Conversely, if γ satisfies γ(t₀) = (x₀, y₀) and x'(t₀) = 0 then y'(t₀) ≠ 0 (since solution curves are smooth) and hence N(x₀, y₀) = 0.

The last note helps to clarify the correspondence between solution curves of M(x, y) dx + N(x, y) dy = 0 and solutions of y' = -M(x, y)/N(x, y); cf. next slide.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Correspondence

Solution curves of M dx + N dy = 0 and explicit solutions correspond to each other in the following way:

1 Given a solution curve γ , smoothness implies that at each non-singular point $(x_0, y_0) \in \gamma(I)$ we can write the curve locally as graph of a C¹-function y(x) or x(y) (or both), and these functions satisfy

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y / \mathrm{d}t}{\mathrm{d}x / \mathrm{d}t} = -\frac{M(x, y)}{N(x, y)}, \quad \text{resp.},$$
$$x' = \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{\mathrm{d}x / \mathrm{d}t}{\mathrm{d}y / \mathrm{d}t} = -\frac{N(x, y)}{M(x, y)},$$

i.e., are explicit solutions. Note that, e.g., the representation y(x) implies $x'(t) \neq 0$ and hence $N(x(t), y(t)) \neq 0$, as remarked in the previous note.

2 Conversely, given an explicit solution y(x), we can use, e.g., x(t) = t as parameter to define a curve $\gamma(t) = (t, y(t))$, and this curve γ is a solution curve on account of

$$M(x, y)x' + N(x, y)y' = M(x, y) \cdot 1 + N(x, y)y' = 0.$$

Differential Equations Thomas Honold Exact First-Order Equations

Math 286

form a closed set, and call the resulting domain D', we get a 1-1 correspondence between non-parametric solution curves of M dx + N dy = 0 (or classes of parametric solution curves under the equivalence relation of smooth reparametrization) and explicit solutions of y' = -M(x,y)/N(x,y); and similarly for the case M(x,y) = 0.

Example
In the lecture and an exercise we have considered the four ODE's

 $y' = \pm x/y$, $y' = \pm y/x$. Associated differential-like forms are

Thus, if we remove from D all points (x, y) with N(x, y) = 0, which

2 $y' = x/y \triangleq x dx - y dy = 0;$ 3 $y' = -y/x \triangleq x dy + y dx = 0;$

 $4 y' = y/x \triangleq x \, \mathrm{d}y - y \, \mathrm{d}x = 0.$

All four differential-like ODE's have exactly one singular point, viz. (0,0), and we need to remove either the *x*-axis (1st and 2nd ODE) or the *y*-axis (3rd and 4th ODE) in order to get a 1-1 correspondence of their solution curves with the solutions of the original explicit ODE. Solution curves are shown on the next slide.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Theorem

Suppose M(x,y) dx + N(x,y) dy = 0 is exact with antiderivative (potential function) F. Then the solution curves of M(x,y) dx + N(x,y) dy = 0 are precisely the parametrized level sets (contours) F(x,y) = C, $C \in \mathbb{R}$, or (sub-)branches thereof.

Proof.

It suffices to show that any solution $\gamma(t) = (x(t), y(t)), t \in I$, of M(x, y) dx + N(x, y) dy = 0 is contained in a level set of F. We have

$$\frac{\mathrm{d}}{\mathrm{d}t}F(\gamma(t)) = \nabla F(\gamma(t)) \cdot \gamma'(t)
= \binom{M(x(t), y(t))}{N(x(t), y(t))} \cdot \binom{x'(t)}{y'(t)}
= M(x(t), y(t))x'(t) + N(x(t), y(t))y'(t)
= 0.$$

because $\gamma(t)$ is a solution of M(x,y) dx + N(x,y) dy = 0. This shows that $t \mapsto F(\gamma(t))$ is constant on I, i.e., $\{\gamma(t); t \in I\}$ is contained in a level set of F.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Example

Consider the ODE

$$(x-y)\,\mathrm{d}x + \left(\frac{1}{y^2} - x\right)\mathrm{d}y = 0$$

The domain consists of all $(x, y) \in \mathbb{R}^2$ with $y \neq 0$ and has two simply-connected components (upper half plane and lower half plane).

Since $\frac{d}{dy}(x-y) = -1 = \frac{d}{dx}(y^{-2}-x)$, the ODE is exact.

An antiderivative, determined as usual by partial integration, is

$$f(x,y)=\frac{x^2}{2}-xy-\frac{1}{y}.$$

The general solution in implicit form is therefore

$$x^2y - 2y^2x - 2 - Cy = 0$$
, $C \in \mathbb{R}$.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Figure: Solution curves of $(x - y) dx + (y^{-2} - x) dy = 0$, represented as contours of $F(x, y) = x^2/2 - xy - 1/y$

> Thomas Honold

Separable First-Orde

Exact First-Order Equations

Figure: The same with all points highlighted that satisfy M(x,y)=0 or N(x,y)=0; removing the red (green) curve leaves solutions y(x) of $y'=\frac{x-y}{x-y^{-2}}$ (resp., solutions x(y) of $x'=\frac{x-y^{-2}}{x-y}$)

Thomas Honold

Separabl First-Ord Equation

Exact First-Order Equations

Example

Of the four ODE's $y' = \pm x/y$, $y' = \pm y/x$ three are exact, viz.

- 1 x dx + y dy = dF for $F(x, y) = \frac{1}{2}(x^2 + y^2)$;
- 2 x dx y dy = dF for $F(x, y) = \frac{1}{2}(x^2 y^2)$;
- 3 x dy + y dx = dF for F(x, y) = xy.

This shows that the corresponding solution curves are

- 1 circles centered at the origin (contours of $(x, y) \mapsto x^2 + y^2$);
- 2 hyperbolas centered at the origin with asymptotes $y = \pm x$ (contours of $(x, y) \mapsto x^2 y^2$);
- 3 hyperbolas centered at the origin with asymptotes x = 0 and y = 0 (contours of $(x, y) \mapsto xy$).

The 4th ODE x dy - y dx = 0 (corresponding to the winding form/field) is not exact.

But it can be multiplied by 1/(xy) to yield the exact (even separable) ODE $y^{-1} dy - x^{-1} dx = 0$ (\rightarrow integrating factors), which has solution curves $\ln |y| - \ln |x| = C$ or, equivalently, $y/x = \pm e^C$; compare with the previous plot of these curves.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Integrating Factors

The ODE $y dx + (x^2y - x) dy = 0$ is not exact, since $\frac{\partial M}{\partial y} = 1$ and $\frac{\partial N}{\partial x} = 2xy - 1$.

But we can multiply the equation by $1/x^2$, turning it into the exact ODE

$$\frac{y}{x^2}\,\mathrm{d}x + \left(y - \frac{1}{x}\right)\mathrm{d}y = 0$$

with potential $f(x, y) = -y/x + y^2/2$ and general solution $xy^2 - 2y - Cx = 0$.

Since the exact ODE has a strictly smaller domain, viz. \mathbb{R}^2 without the *y*-axis, we also need to check whether the parametrized *y*-axis $\gamma(t)=(0,t)$ is a solution of $y\,\mathrm{d} x+(x^2y-x)\,\mathrm{d} y=0$, and indeed it is (x(t)=x'(t)=0). But it is missing in the implicit solution.

Definition

A function $\mu(x, y)$ with domain $D' \subseteq D$ is called an *integrating factor* (or *Euler multiplier*) of M(x, y) dx + N(x, y) dy = 0, if

- 2 $\mu(x,y)M(x,y) dx + \mu(x,y)N(x,y) dy = 0$ is exact on D'.

Honold

First-Orde Equations

Exact First-Order Equations

Lemma

If an ODE M dx + N dy = 0 has a general solution of the form f(x, y) = C then it has an integrating factor.

Proof.

Differentiating f(x, y) = C gives $\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0$.

$$\Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{M}{N} = -\frac{\partial f/\partial x}{\partial f/\partial y},$$

which can be rewritten as

$$\frac{\partial f/\partial x}{M} = \frac{\partial f/\partial y}{N} = \mu(x,y), \quad \text{say}.$$

This says that $\mu M dx + \mu N dy = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0$ is exact.

Remark

We can multiply an integrating factor μ by any continuous function F(f) of the antiderivative f of the resulting exact equation, thereby obtaining another integrating factor $\mu F(f)$. (Check that a suitable antiderivative is G(f), where G' = F.) Hence integrating factors are highly non-unique.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

How to Find an Integrating Factor?

The (local) exactness condition for an integrating factor μ is $\partial(\mu M)/\partial y = \partial(\mu N)/\partial x$. This gives

$$\mu \, \frac{\partial \mathbf{M}}{\partial \mathbf{y}} + \mathbf{M} \, \frac{\partial \mu}{\partial \mathbf{y}} = \mu \, \frac{\partial \mathbf{N}}{\partial \mathbf{x}} + \mathbf{N} \, \frac{\partial \mu}{\partial \mathbf{x}}, \qquad \text{or} \quad$$

$$\mu\left(\frac{\partial \mathbf{M}}{\partial \mathbf{y}} - \frac{\partial \mathbf{N}}{\partial \mathbf{x}}\right) = \mathbf{N}\frac{\partial \mu}{\partial \mathbf{x}} - \mathbf{M}\frac{\partial \mu}{\partial \mathbf{y}}.$$

This partial differential equation (PDE) for μ is not easy to solve in general, but frequently one can make a particular "Ansatz" for μ and solve it in this special case.

Example

Suppose $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=g(x)$ depends only on x but not on y.

Then M dx + N dy = 0 has the integrating factor $\mu(x) = e^{\int g(x) dx}$.

Reason: In this case the PDE for $\mu(x, y) = \mu(x)$ is equivalent to $\mu'(x) = g(x)\mu(x)$.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Example (cont'd)

As a concrete example we reconsider $y dx + (x^2y - x) dy = 0$.

Here we have

$$\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) = \frac{M_y-N_x}{N} = \frac{1-(2xy-1)}{x^2y-x} = \frac{2(1-xy)}{x(xy-1)} = -\frac{2}{x}.$$

An integrating factor is therefore

$$\mu(x) = e^{\int (-2/x) dx} = e^{-2 \ln x} = \frac{1}{x^2},$$

as we have seen before.

Remark

In particular we can solve the PDE for μ if all of μ , M_y-N_x , N depend only on x. But we only need the weaker condition " $(M_y-N_x)/N$ depends only on x". In the example above both M_y-N_x and N depend on both x and y but $(M_y-N_x)/N$ depends only on x.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Theorem

The ODE M dx + N dy = 0 has an integrating factor of the form

2
$$\mu(y)$$
 if $\frac{M_y - N_x}{M} = g(y)$;

3
$$\mu(xy)$$
 if $\frac{M_y-N_x}{N_Y-M_X}=g(xy)$;

4
$$\mu(y/x)$$
 if $\frac{x^2(M_y-N_x)}{N_y+M_x}=g(y/x)$.

Proof.

In each case the PDE $(M_y-N_x)\mu=N\mu_x-M\mu_y$ derived for $\mu(x,y)$ becomes a homogeneous linear 1st-order ODE for the one-variable function $\mu(s)$ (note the slight abuse of notation in the last two cases!), which can be solved using the standard method. The resulting ODE for $\mu(s)$ is $\mu'(s)=g(s)\mu(s)$ in Cases (1) and (3), and $\mu'(s)=-g(s)\mu(s)$ in Cases (2) and (4).

Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Proof cont'd.

We do this explicitly for the last case:

$$\begin{split} \frac{\partial}{\partial x} \, \mu \left(\frac{y}{x} \right) &= \mu' \left(\frac{y}{x} \right) \left(-\frac{y}{x^2} \right), \\ \frac{\partial}{\partial y} \, \mu \left(\frac{y}{x} \right) &= \mu' \left(\frac{y}{x} \right) \frac{1}{x}. \end{split}$$

Hence $(M_y - N_x)\mu = N\mu_x - M\mu_y$ becomes

$$(M_{y} - N_{x}) \mu \left(\frac{y}{x}\right) = N \mu' \left(\frac{y}{x}\right) \left(-\frac{y}{x^{2}}\right) - M \mu' \left(\frac{y}{x}\right) \frac{1}{x}$$

$$\iff x^{2}(M_{y} - N_{x}) \mu \left(\frac{y}{x}\right) = -(Ny + Mx) \mu' \left(\frac{y}{x}\right)$$

$$\iff \mu' \left(\frac{y}{x}\right) = -\frac{x^{2}(M_{y} - N_{x})}{Ny + Mx} \mu \left(\frac{y}{x}\right).$$

If $\frac{x^2(M_y-N_x)}{Ny+Mx}=g(y/x)$ depends only on y/x, we can substitute s=y/x and obtain the equivalent ODE $\mu'(s)=-g(s)\mu(s)$.

> Thomas Honold

Separable First-Orde Equations

Exact First-Order Equations

Final Remarks

- In some texts the case of an integrating factor of the form $\mu(x/y)$ is listed as well. But this reduces to Case (4) if we consider $\tilde{\mu}(s) = \mu(1/s)$.
- The PDE $(M_y N_x)\mu = N\mu_x M\mu_y$ only guarantees local exactness of $(\mu M) dx + (\mu N) dy$ on D'. To obtain an anti-derivative, it may be necessary to restrict the domain further to simply-connected subsets of D', on which $(\mu M) dx + (\mu N) dy$ then must be exact, and determine solutions there.

For example, $x \, \mathrm{d} y - y \, \mathrm{d} x = 0$ has the integrating factor 1/(xy), as we have seen, whose domain \mathbb{R}^2 with the coordinate axes removed consists of 4 simply connected regions (the 4 open quadrants). On each quadrant, an antiderivative of $(xy)^{-1}(x \, \mathrm{d} y - y \, \mathrm{d} x) = y^{-1} \, \mathrm{d} y - x^{-1} \, \mathrm{d} x$ exists and can be taken as $f(x,y) = \ln |y| - \ln |x|$, amounting to 4 different choices of signs of x, y for the 4 regions.