CHBE 552 PROBLEM SET 2 Assigned: January 27, 2024 Total marks: 12

- Q1 (3 marks). Solve the following problems
 - a) Apply *Newton's* method for the minimization to find the minimum of the following two functions
 - 1. $F(x)=1 + x_1 + x_2 + x_3 + x_4 + x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 + x_1^2 + x_2^2 + x_3^2 + x_4^2$ with initial guess (-3, -30, -4, -0.1). and also (0.5, 1.0, 8.0, -0.7)
 - 2. $F(x)=8x_1^2 + 4x_1x_2 + 5x_2^2$ starting at (10,10)
 - b) Use the *Fletcher-Reeves* method to find the minimum of the following objective function $F(x)=4(x_1-5)^2+(x_2-6)^2$
 - c) Apply the *DFP method* to the minimization of $F(x)=x_1-x_2+2x_1^2+2x_1x_2+x_2^2$ with a starting point (0,0).

Q2 (1 mark). Solve the following problems

- a) Minimize $F(x_1, x_2) = x_1^2 + x_2^2 + 10x_1 + 20x_2 + 25$ subject to $x_1 + x_2 = 0$ using the Langrange multiplier method. Calculate the optimum values of x_1, x_2, λ and F. Also, using sensitivity analysis, determine the increase in F_{opt} when the constraint is changed to $x_1 + x_2 = 0.01$.
- b) Determine the dimensions of a cylindrical can of maximum volume subject to the condition that the total surface area be equal to 24π . Show that the answer indeed corresponds to a maximum (x₁=radius, x₂=height). The problem is equivalent to

Minimize $F(x_1,x_2) = -\pi x_1^2 x_2$ *such that* $2\pi x_1^2 + 2\pi x_1 x_2 = A_0 = 24\pi$

Q3 (1 mark). A problem in *chemical equilibrium* is to minimize the following objective function

$$f(x) = \sum_{i=1}^{n} x_i \left(w_i + lnP + ln \frac{x_i}{\sum_{i=1}^{n} x_i} \right)$$

subject to the material balances

 $x_1+2x_2+2x_3+x_6+x_{10}=2$

 $x_4+2x_5+x_6+x_7=1$

 $x_3+x_7+x_8+2x_9+x_{10}=1$

given P=750 and w_i

i	Wi	i	Wi
1	-10.021	6	-18.918
2	-21.096	7	-28.032
3	-37.986	8	-14.640
4	-9.846	9	-30.594
5	-28.653	10	-26.111

What is x^* and $f(x^*)$?

Q4 (1 mark). Find the point on $z^2=4x^2+2y^2$ which is nearest to the point (2,0,1). Since the minimizer of the distance d is also the minimizer of d^2 we write the problem as

Minimize $F(x,y,z)=(x-2)^2+y^2+(z-1)^2$

Subject to $z^2-4x^2-2y^2=0$

Q5 (3 marks). Solve the following problems

- a) Minimize $F(x_1, x_2) = x_1^2 + x_2^2 14x_1 6x_2 7$ such that $x_1 + x_2 \le 2$ and $x_1 + 2x_2 \le 3$ b) Minimize $F(\mathbf{x}) = x_1^2 + 2(x_2 + 1)^2$ such that $-x_1 + x_2 = 2$, and $-x_1 x_2 1 \le 0$.

Use the Langrange multiplier method. Calculate the optimum values of x^* , λ^* , u^* , F^* . Demonstrate the sufficiency conditions.

Q6 (3 marks). Solve the following problems

- Minimize $F(x_1, x_2) = x_1^2 + \frac{3}{2}x_2^2 4x_1 7x_2 + x_1x_2 + 9 \ln(x_1) \ln(x_2)$
- Minimize $F(x_1, x_2) = x_1^2 + \frac{5}{2}x_2^2 4x_1 7x_2 + x_1x_2 + 9 \ln(x_1) \ln(x_2)$ b. subject to $4 - x_1 x_2 \le 0$.
- Minimize $F(x_1, x_2) = x_1^2 + \frac{3}{2}x_2^2 4x_1 7x_2 + x_1x_2 + 9 \ln(x_1) \ln(x_2)$ c. subject to $4 - x_1 x_2 \le 0$. and $2x_1 - x_2 = 0$.

Use the Langrange multiplier method. Calculate the optimum values of x^* , λ^* , u^* , F^* . Demonstrate the sufficiency conditions.