TUTORIAL

CSCI361 – Computer Security

Sionggo Japit sjapit@uow.edu.au

12 February 2024

RSA

RSA is insecure against chosen ciphertext attack. Explain or show by example that RSA is insecure against chosen ciphertext attack.

An adversary wants to decrypt C, a ciphertext, in the form of $C = m^e \mod n$, to obtain the plaintext m. For example, Alice sends y to Bob and Charlie (the adversary) want to know what message Alice sends.

- The adversary, Charlie, creates a random message m_1 such that $gcd(m_1, n) = 1$.
- Charlie then encrypts the message m_1 to produce a ciphertext $C_1 = m_1^e \mod n$. (C_1 is a chosen ciphertext.)
- Charlie then creates a new ciphetext $C_2 = C_1 \cdot C$.

- Charlie sends C_2 to Bob, and asks Bob to decrypt, saying he wants to test if his encryption is correct. Tricked to believe Charlie, Bob decrypts C_2 and sends m_2 to Charlie. $(m_2 = C_2^d \mod n)$
- Since $C_2 = C_1 \, \hat{} \, C$, and $C_2 = m_2^e \mod n$, Charlie can compute $m_2^e = m_1^e \, \hat{} \, m^e \mod n$.

 $(Note: C_2 = m_2^e \mod n, C_1 = m_1^e \mod n, and C = m^e \mod n)$

$$m_{2}^{e} = m_{1}^{e} m^{e} \mod n$$

$$m_{2} = m_{1} m \mod n$$

$$m = \frac{m_{2}}{m_{1}} \mod n$$

$$m = m_{2} m_{1}^{-1} \mod n$$

Since $gcd(m_1, n) = 1$, m^{-1} can be computed using extended Euclidean algorithm. Charlie also receives m_2 from Bob, and hence m can be computed easily.

ElGamal

ElGamal is insecure against chosen ciphertext attack. Explain or show by example that ElGamal is insecure against chosen ciphertext attack.

An attacker wants to decrypt a target ciphertext message C, which consists of $C = (c_1, c_2)$, where $c_1 = g^{k_1} \mod p$, and $c_2 = m \cdot (y_2)^{k_1} = m \cdot K \mod p$, to obtain a plaintext m. For example, Alice sends C to Bob and Charlie (the adversary) wants to know what message Alice sends. (Note:

 k_1 = Alice's private key,

 y_2 = Bob's public key, which equals g^{k_2} , and

$$K = (y_2)^{k_1} = (g^{k_2})^{k_1}$$
 is a common key)

- The attacker randomly chooses r such that gcd(r, p) = 1, and computes $c_3 = r \cdot c_2$; c_3 is the chosen ciphertext.
- The attacker then sends (c_1, c_3) to Bob asking Bob to decrypt, saying he wants to test if his encryption is correct.
- Tricked to believe the attacker, Bob decrypts the ciphertext c_3 and sends m_3 to the attacker.

· The attacker then computes:

$$\circ K = c_1^{k_2} = (g^{k_1})^{k_2} = g^{k_1 k_2}$$

 \circ K^{-1} using extended Euclidean algorithm

$$\circ \quad m_3 = \frac{c_3}{K} = c_3 \cdot K^{-1} \mod p$$

$$m_3 = \frac{r - c_2}{K} = r \cdot c_2 \cdot K^{-1} \mod p$$
 Since $c_3 = r \cdot c_2$

$$\circ m_3 = r \cdot m \cdot K \cdot K^{-1} \mod p \qquad \text{and since } c_2 = m \cdot K$$

$$\circ$$
 $m_3 = r m$

\(\) m can be computed as $m = r^{-1}$ \(\) m_3 .

(Note: The attacker has m_3 from Bob, r and r^{-1} are decided by the attacker. Hence m can be computed.)