ТЕОРИЯ К КУРСУ «АНАЛИТИЧЕСКАЯ МЕХАНИКА II» ФОПФ

За авторством: Хоружего К.

Примака Е.

От: 10 февраля 2021 г.

Содержание

Малые колебания консервативной системы около положения равновесия 14.1 Теорема Лагранжа об устойчивости положения равновесия	2
Устойчивость движения	2
15.2 Основные теоремы прямого метода Ляпунова	2
15.4 Влиянение диссипативных и гироскопических сил на устойчивость равновесия консервативной	
системы	3

Малые колебания консервативной системы около положения равновесия

14.1 Теорема Лагранжа об устойчивости положения равновесия

Устойчивость равновесия

Thr 14.1 (Общее уравнение статики¹). Чтобы некоторое допускаемое идеальными удерживающими связями состояние равновесия системы было состоянием равновесия на интервале $t_0 \le t \le t_1$, необходимо и достаточно, чтобы для любого момента времени из этого интервала элементарная работа активных сил на любом виртуальном перемещении равнялась нулю, т.е. чтобы выполнялось

$$\sum_{\nu=1}^{N} \mathbf{F}_{\nu} \cdot \delta \mathbf{r}_{\nu} = 0 \qquad (t_0 \leqslant t \leqslant t_1).$$

Если система является потенциальной, то уравнения примут вид

$$Q_i = -\frac{\partial \Pi}{\partial a^i} = 0.$$

Def 14.2. Положение равновесия q=0 – $yстойчиво по Ляпунову, если <math>\forall \varepsilon>0$ $\exists \delta>0$, такая что

$$\forall |q(t_0)| < \delta, |\dot{q}(t_0)| < \delta : |q(t)| < \varepsilon, |\dot{q}(t)| < \varepsilon, \forall t \geqslant t_0.$$

$$(14.1)$$

Def 14.3. Положение равновесия q = 0 – *неустойчиво по Ляпунову*, если $\exists \varepsilon > 0 \ \forall \delta > 0$, такая что

$$\forall \delta > 0 \ \exists |q(t_0)| < \delta, \ |\dot{q}(t_0)| < \delta, \ t^* \colon \ |q(t^*)| > \varepsilon$$
 или $|\dot{q}(t^*)| > \varepsilon$. (14.2)

Теорема Лагранжа

Thr 14.4 (Теорема Лагранжа-Дирихле). Если в положении равновесия конесервативной системы $\Pi(q)$ имеет строгий локальный минимум, то это положение равновесия устойчиво.

Lem 14.5. При наличии гироскопических и диссипативных сил положение равновесия сохранится.

Теоремы Ляпунова о неустойчивости положения равновесия консервативной системы

Thr 14.6 (Теорма Ляпунова о неустойчивости I). Если в положении равновесия $\Pi(q)$ не имеет минимума и это определяется по квадратичной форме её разложения в ряд (в окрестности положения равновесия), то это положение равновесия неустойчиво.

Thr 14.7 (Теорема Ляпунова о неустойчивости II). Если в положении равновесия $\Pi(q)$ имеет строгий максимум и это определяется по наинизшей степени её разложения в ряд (в окрестности положения равновесия), то это положение равновесия неустойчиво.

Устойчивость движения

15.2 Основные теоремы прямого метода Ляпунова

Здесь и далее для простоты рассматриваем установившееся движение.

Thr 15.8 (Теорема Ляпунова об устойчивости). Если дифференциальные уравнения возмущенного движения таковы, что существует знакоопределенная функция V, производная которой \dot{V} в силу этих уравнений является знакопостоянной функцией противоположного знака с V, или тождественно равной нулю, то невозмущенное движение устойчиво.

Thr 15.9 (Теорема Ляпунова об асимптотической устойчивости). Если дифференциальные уравнения возмущенного движения таковы, что существует знакоопределенная функция $V(x_1, x_2, \ldots, x_m)$, производная которой \dot{V} в силу этих уравнений есть знакоопределенная функция противоположного знака с V, то невозмущенное движение асимптотически устойчиво.

 $^{^{1}}$ Если с необходимостью всё понятно, то достаточность может быть доказана через уравнения Аппеля (см. п. 158, Маркеев Π . A.).

Теоремы о неустойчивости

Def 15.10. Окрестностью положения равновесия, считая, что положение равновесия находится в точке $q^1 = \ldots = q^n = 0$, назовём область такую, что

$$|q^i| < h,$$
 $(i = 1, 2, \dots, m).$

Def 15.11. Областью V > 0 назовём какую-либо область окрестности положения равновесия, в которой $V(x_1, x_2, ..., x_m) > 0$. Поверхность V = 0 назовём границей области V > 0.

Thr 15.12 (Теорема Читаева о неустойчивости). Если дифференциальные уравнения возмущенного движения таковы, что существует функция $V(x_1,\ldots,x_m)$ такая, что в сколь угодно малой окрестности положения равновесия существует область V>0 и во всех точках области V>0 производная \dot{V} в силу уравнений принимает положительные значения, то невозмущенное движение неустойчиво.

Def 15.13. Функцию V, удовлетворяющую теореме Читаева о неустойчивости, называют функцией Читаева.

Thr 15.14 (I теорема Ляпунова о неустойчивости движения). Если дифференциальные уравнения возмущенного движения таковы, что существует функция $V(x_1,\ldots,x_m)$ такая, что ее производная \dot{V} в силу этих уравнений есть функция знакоопределенная, сама функция V не является знакопостоянной, противоположного с \dot{V} знака, то невозмущенное движенние неустойчиво.

Thr 15.15 (II теорема Ляпунова о неустойчивости движения). Если дифференциальные уравнения возмущенного движения таковы, что существует функция V такая, что её производная, в силу этих уравнений, в области положения равновесия может быть представлена в виде

$$\dot{V} = \alpha V + W$$

где x – положтельная постоянная, а W **или** тождественно обращается в нуль, **или** представляет собой знакопостоянную функцию. Если W – знакопостоянная функция, а V **не является** знакопостоянной функцией: WV < 0, **то** невозмущенное движение неустойчиво (ну w = 0).

15.4 Влиянение диссипативных и гироскопических сил на устойчивость равновесия консервативной системы

Влияние гироскопических сил и диссипативных сил с полной диссипацией на устойчивое положение равновесия голономнои системы

Thr 15.16 (Теорема Томсона-Тэта-Четаева). Если в некотором изолированном положении равновесия потенциальная энергия имеет строгий локальный минимум, то при добавлении гироскопических и диссипативных сил с полной диссипацией это положение равновесия становится асимптотически устойчивым.

Влияние гироскопических и диссипативных сил на неустойчивое равновесие

Разложим до квадратичных членов кинетическую и потенциальную энергию системы, и приведем к каноническому виду

$$T = \frac{1}{2} \sum_{i=1}^{n} \dot{\theta}_{i}^{2}, \qquad \Pi = \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \theta_{i}^{2}.$$

Если П положительно определена, то все величины λ_i положительны, и положение устойчиво. Если же присутствуют отрицательные λ_i , то положение равновесия неустойчиво (по теореме о неустойчивости по первому приближению).

Def 15.17. Величины λ_i Пуанкаре предложил называть коэффициентами устойчивости. Число отрицательных коэффициентов устойчивости называется степенью неустойчивости.

Thr 15.18. *Если* среди коэффициентов устойчивости хотя бы один является отрицательным, **то** изолированое положение равновесия не может быть стабилизировано диссипативными силами с полной диссипацией.

Thr 15.19. Если степень неустойчивости изолированного положения равновесия консервативной системы нечетна, то стабилизация его добавлением гироскопических сил невозможна. Если степень неустойчивости четна, то гироскопическая стабилизация возможна.

Thr 15.20. *Если* изолированное положение равновесия консервативной системы имеет отличную от нуля степень неустойчивости, **то** оно остается неустойчивым при добавлении гироскопических сил и диссипативных сил с полной диссипацией.

Def 15.21. Устойчивость, существующую при одних потенциальных силах, называют вековой, а устойчивость, полученную с помощью гироскопических сил, – временной.