MATH 567: FUNCTIONAL ANALYSIS (FALL 2020 SEMESTER)

SHEREEN ELAIDI AS TAUGHT BY PROF. LIN; LAST UPDATED: DECEMBER 1, 2020

This class is about linear functional analysis. This has a lot in common with linear algebra in infinite-dimensional spaces. We can think of this as infinite-dimensional linear algebra. There are two main applications of this: (a) geometry and topology in infinite dimensions and (b) solving PDEs. Recall that in regular linear algebra, we used those tools to solve linear systems. The infinite-dimensional equivalent to this is a PDE. In this class, we'll focus on the second application of functional analysis.

1. Basic Functional Analysis

This corresponds to Chapters 4 and 5 of the textbook.

1.1. Banach Spaces and General Topology. Let X be a vector space. Recall that this means that it is closed under addition and scalar multiplication.

Definition 1.1 (Norm). A norm on a vector space $X, ||\cdot|| : X \to [0, \infty[$, satisfies the following three properties:

- (1) $||x|| = 0 \iff x = 0.$
- (2) (Homogeneity): $||\lambda x|| = |\lambda|||x||$ for each $x \in X$, $\lambda \in \mathbb{R}$.
- (3) (Triangle Inequality): $||x + y|| \le ||x|| + ||y||$.

Definition 1.2 (Completeness / Banach Space). X is **complete** if every Cauchy sequence converges. $(X, ||\cdot||)$ is a **Banach space** if it is a complete normed vector space.

Definition 1.3 (Dense Subset). $Y \subseteq X$ is **dense** if

(1) $\overline{Y} = X$ (one thing we need to note: \overline{Y} is the closure, but we need to ask ourselves "in which topology"?). This is equivalent to:

$$\forall \varepsilon > 0, \ \forall x \in X, \ \exists y \in Y \ \text{s.t.} \ ||x - y|| < \varepsilon.$$

And also equivalent to,

$$\forall x \in X, \ \exists \{y_n\} \subseteq Y \text{ s.t. } y_n \to y \in X.$$

Definition 1.4 (Strong Topology). The **strong topology** is the topology induced by the norm, $||\cdot||$ (the open sets are characterized by the balls, $B_r := \{x \mid ||x|| < r\}$). In this topology, the definitions of density given above are equivalent.

Definition 1.5 (Separable). X is **separable** if \exists a countable dense subset.

We have the following equivalent definitions of compactness.

Definition 1.6 (Compactness 1). $E \subseteq X$ is **compact** if every open cover of E admits a finite subcover.

Definition 1.7 (Compactness 2). Every sequence has a convergent sub-sequence.

Definition 1.8 (Compactness 3). For any sequence $\{x_n\} \subseteq E$, there exists $\{x_{n_k}\}$ and $x^* \in E$ such that $x_{n_k} \to x^* \in E$.

Definition 1.9 (Pre-Compact). $E \subseteq X$ is **pre-compact** if \overline{E} is compact.

Date: Fall 2020 Semester.

1.2. Euclidean Space \mathbb{R}^n . Let $x \in \mathbb{R}^n$. This is denoted by $(x_1,...,x_n)$. Then, recall,

$$||x|| = ||x||_{\ell^2} = \left(\sum_{j=1}^n x_j^2\right)^{1/2}.$$

We also have these other typical norms on Euclidean space:

$$||x||_{\ell^{1}} = \sum_{j=1}^{n} |x_{j}|$$

$$||x||_{\ell^{p}} = \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{1/p}$$

$$||x||_{\ell^{\infty}} = \max_{1 \le j \le n} |x_{j}|.$$

Definition 1.10 (Equivalent Norms). We say that two norms, $|\cdot|$ and $||\cdot||$, are equivalent if and only if there exist two constants a and b such that

$$(1.11) |a||x|| \le |x| \le b||x|| \forall x \in X.$$

In words, this is saying that you can't be big on one norm but small in another. These norms are comparable; they are bounded by constants on either side.

Theorem 1.12. All norms on \mathbb{R}^n are equivalent (all norms in finite dimensions are equivalent).

Proof. Let $||\cdot||$ be the Euclidean norm, and let $|\cdot|$ be another norm. Let $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{R}^n ; recall that this is $e_i = (0, ..., 1, ..., 0)$ where the 1 is in the ith slot. Since this is a basis, for $x \in X$:

$$x = \sum_{i=1}^{n} x_i e_i.$$

By the reverse triangle inequality,

$$||x| - |y|| \le |x - y|$$

$$= \left| \sum_{i=1}^{n} (x_i - y_i) e_i \right|$$

$$\le \sum_{i=1}^{n} |x_i - y_i||e_i|$$

$$\le \underbrace{\left(\sum_{i=1}^{n} |e_i|^2 \right)^{1/2}}_{:=C} \left(\sum_{i=1}^{n} |x_i - y_i|^2 \right)^{1/2} \quad \text{(Cauchy-Schwarz)}$$

$$< C||x - y|| \qquad (*),$$

where C is some number. Norms are continuous; $x \mapsto ||x||$ is continuous $S = \{x \mid ||x|| = 1\}$ (the unit ball). By (*), $x \mapsto |x|$ is continuous on S. S is closed and bounded on \mathbb{R}^n which means that S is compact. By the extreme value theorem, this means that there exist two constants $a, b \in \mathbb{R}$ such that

$$(1.13) a \le |x| \le b \forall x \in S.$$

Observe that $|x|=0 \iff x=0$, which implies that a>0. For any $y\in\mathbb{R}^n$, let $x:=\frac{y}{||y||}\in S$. Then,

$$a \leq \left| \frac{y}{||y||} \right| \leq b \iff a \leq \frac{1}{||y||} |y| \leq b \iff a ||y|| \leq |y| \leq b ||y|| \quad \forall y \in \mathbb{R}^n \setminus \{0\}.$$

The case of y = 0 is straightforward. This proves that any norm in a finite-dimensional vector space are equivalent. Note that this proof rests on the fact that we have a basis.

Remark 1.14. \mathbb{R}^n is separable in any norm. The typical countable dense subset of \mathbb{R}^n is \mathbb{Q}^n . We will see in infinite-dimensions that all norms are not equivalent.

1.3. The Spaces of C^r , $C^{r,\gamma}$ of Continuous Functions.

Definition 1.15 (C^0) . Let $\Omega \subseteq \mathbb{R}^n$ be open. Then,

$$C^0(\Omega) := \{ f \mid \Omega \to \mathbb{R} \text{ s.t. } f \text{ is continuous on } \Omega \}$$

$$C^0(\overline{\Omega}) := \{ f \mid \overline{\Omega} \to \mathbb{R} \text{ s.t. } f \text{ is continuous on } \overline{\Omega} \}.$$

This implies that $f \in C^0(\overline{\Omega})$ is bounded and uniformly continuous.

Definition 1.16 ($||\cdot||_{\infty}$). The standard norm on $C^0(\Omega)$ is

(1.17)
$$||u||_{\infty} := \sup_{x \in \Omega} |u(x)| \leftrightarrow \text{ uniform convergence.}$$

Proposition 1.18. (1) $(C^0(\Omega), ||\cdot||_{\infty})$ is a Banach space.

(2) If $\Omega \subseteq \mathbb{R}^n$ is bounded, then $C^0(\overline{\Omega})$ is separable.

We will only give a sketch of the proof.

Proof. (1) The uniform limit of continuous functions is continuous.

- (2) Follows from the Weierstrass approximation theorem: polynomials are dense in $C^0(\overline{\Omega})$; then, consider the polynomials with rational coefficients.
- 1.3.1. Higher-Order Derivatives. Recall some notation from advanced calculus:

(1.19)
$$Du = \nabla u = \text{ gradient of } u = \begin{bmatrix} \partial_1 u \\ \vdots \\ \partial_n u \end{bmatrix}.$$

We consider the **multi-index** $\alpha = (\alpha_1, ..., \alpha_n)$, where $|\alpha| := \alpha_1 + ... + \alpha_n$, and $\forall k \in \mathbb{R}^n$, define $k^{\alpha} := k_1^{\alpha_1} \cdots k_n^{\alpha_n}$. Then, in this notation,

$$D^{\alpha}u = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n} u$$

$$= \frac{\partial^{|\alpha|} u}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$
 (partial derivative).

Definition 1.20 $(C^r(\Omega))$.

$$(1.21) C^r(\Omega) := \{ f \mid D^{\alpha} f \in C^0(\Omega) \ \forall \ |\alpha| < r \}$$

In words, this means that all partial derivatives less than or equal to r are continuous. Then, we can define the following space:

(1.22)
$$C^{\infty}(\Omega) := \bigcap_{r=1}^{\infty} C^{r}(\Omega).$$

Definition 1.23 (Support of f). The **support** of f is defined as the smallest closed set such that $f \equiv 0$ on $\mathbb{R}^n \setminus \text{supp}(f)$.

(1.24)
$$\operatorname{supp}(f) := \overline{\{x \mid f(x) \neq 0\}}.$$

Definition 1.25 (Compactly Contained). A set $K \subset\subset \Omega$ means that $K \subseteq \Omega$ is compact. We say that K is **compactly contained** in Ω if $K \subset\subset \Omega$, Ω is bounded, and that there exists an $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq \Omega$ for all $x \in K$. This is equivalent to for all $x \in K$,

(1.26)
$$\exists \ \varepsilon > 0 \text{ s.t. } d(x, \partial \Omega) \coloneqq \inf_{y \in \partial \Omega} |x - y| > \varepsilon.$$

Definition 1.27 $(C_c^r(\Omega))$.

$$(1.28) C_c^r(\Omega) := \{ f \mid f \in C^r(\Omega), \operatorname{supp}(f) \subset \subset \Omega \}.$$

Definition 1.29 (Norm on $C^r(\overline{\Omega})$). Let Ω be bounded. Then,

(1.30)
$$||f||_{C^r} := \sum_{|\alpha| \le r} \sup_{x \in \Omega} |D^{\alpha} f(x)|.$$

Proposition 1.31. Let $\Omega \subseteq \mathbb{R}^n$ be bounded. Then, $C^r(\Omega)$ is a separable Banach space (in fact, all you need for separable is that it is bounded) for all $r < \infty$.

Remarks 1.32. $C_c^r(\Omega)$ is not complete. $C^{\infty}(\Omega)$ is not complete. However, subspaces of C^{∞} is still complete with some norm.

We also introduce,

Definition 1.33 (Hölder Continuous $C^{0,\gamma}(\Omega)$). $f:\Omega\to\mathbb{R}$ is **Hölder Continuous** with exponent $\gamma\in[0,1[$ if there exists a C such that

$$(1.34) |f(x) - f(y)| \le C||x - y||^{\gamma}.$$

If $\gamma = 1 \Rightarrow f$ is Lipschitz Continuous.

Also,

$$[f]_{C^{0,\gamma}(\Omega)} \coloneqq \sup_{x,y \in \Omega} \frac{|f(x) - f(y)|}{||x - y||^{\gamma}}$$

is called the **Hölder seminorm**. This is nor a norm, but we can make it a norm:

Definition 1.35 $(||\cdot||_{C^{0,\gamma}})$.

(1.36)
$$||f||_{C^{0,\gamma}(\Omega)} := ||f||_{\infty} + [f]_{C^{0,\gamma}(\Omega)}.$$

On the homework, you'll show that

$$(C^{0,\gamma}(\Omega),||f||_{C^{0,\gamma}(\Omega)})$$

is complete.

Definition 1.37 $(C^{r,\gamma})$.

$$(1.38) C^{r,\gamma}(\Omega) := \{ f \mid f \in C^r(\Omega) \text{ and } |D^{\alpha}f(x) - D^{\alpha}f(y)| \le C||x - y||^{\gamma} \ \forall \ |\alpha| = r \}$$

The norm of this space is given by,

(1.39)
$$||f||_{C^{r,\gamma}} := ||f||_{C^r} + \sup_{|\alpha|=r} [D^{\alpha}f]_{C^{0,r}}.$$

Remark 1.40. If $f \in C^{0,\gamma}(\Omega)$, Ω bounded, then $f \in C^{0,\alpha}(\Omega)$ for all $0 < \alpha \le \gamma$

Remark 1.41. (Rademacher's Theorem). If $f \in C^{0,1}$, then f is differentiable a.e.

1.4. Integration Theorems.

Theorem 1.42 (Monotone Convergence Theorem). If $f_n \uparrow f$ pointwise for almost every x, then

(1.43)
$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} f(x) dx.$$

Theorem 1.44 (Fatou's Lemma). Let $\{f_n\}$ be a sequence of measurable functions that are all positive. Then,

(1.45)
$$\int_{\Omega} \liminf_{n \to \infty} f_n(x) \le \liminf_{n \to \infty} \int_{\Omega} f_n(x) dx$$

Theorem 1.46 (Dominated Convergence Theorem). Assume that $\{f_n\}$ are measurable, $f_n \to f$ pointwise a.e. Then, if $|f_n(x)| \leq g(x)$ for all $n \in \mathbb{N}$ for almost every x, where $g \in L^1(\Omega)$, then

(1.47)
$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} f(x) dx$$

This is the theorem that you use when you want to differentiate under integrals.

Theorem 1.48. The space $C_c^0(\mathbb{R}^n)$ is dense in $L^1(\mathbb{R}^n)$.

Theorem 1.49 (Fubini-Tonelli). For all $f: X \times Y \to \mathbb{R}^n$,

(1.50)
$$\int_{X} \int_{Y} |f(x,y)| dy dx = \int_{Y} \int_{X} |f(x,y)| dx dy = \int_{X \times Y} |f(x,y)| d(x,y).$$

If, moreover, $f \in L^1(X \times Y)$,

(1.51)
$$\int_X \int_Y f(x,y) dy dx = \int_Y \int_X f(x,y) dx dy = \int_{X \times y} f(x,y) d(x,y)$$

1.5. Elementary L^p Spaces.

Definition 1.52 (L^p) . Fix $1 \leq p < \infty$, let $\Omega \subseteq \mathbb{R}^n$. Then, we define the L^p space to be

(1.53)
$$L^p(\Omega) := \{ f : \Omega \to \mathbb{R} \mid f \text{ measurable } |f|^p \in L^1(\Omega) \}$$

with the following norm,

$$(1.54) ||f||_{L^p} \coloneqq \left[\int_{\Omega} |f(x)|^p \right]^{1/p}.$$

Definition 1.55 (L^{∞}) . We define L^{∞} to be:

(1.56)
$$L^{\infty}(\Omega) := \{ f : \Omega \to \mathbb{R} \mid f \text{ measurable }, \exists C \text{ s.t. } |f(x)| \leq C \text{ a.e. } \},$$

with the following norm,

$$(1.57) ||f||_{L^{\infty}} = ||f||_{\infty} = \inf\{c \mid |f(x)| \le c \text{ a.e.}\}\$$

This definition implies that $f(x) \leq ||f||_{\infty}$ almost everywhere. Below are some fundamental tools that we'll be using

Theorem 1.58 (Hölder's Inequality). Let $1 \le p, p' \le \infty$. If $f \in L^p(\Omega)$, $g \in L^{p'}(\Omega)$ and 1/p + 1/p' = 1, then $fg \in L^1$ and

(1.59)
$$\int |fg| dx \le ||f||_p ||g||_{p'}$$

Theorem 1.60 (Minkowski's Inequality). For all $p \in [1, \infty]$,

$$(1.61) ||f+g||_p \le ||f||_p + ||g||_p.$$

As a consequence of Minkowski's Inequality, L^p is a vector space.

Theorem 1.62 (Riesz-Fischer). L^p is a Banach space for all $p \in [1, \infty]$.

Proof. Case # 1: $p = \infty$. Let $\{f_n\} \subseteq L^{\infty}$ be Cauchy. Hence, for all $k \in \mathbb{N}$, there exists an N_k such that for all $n, m \geq N_k$,

$$(1.63) ||f_n - f_m||_{\infty} < \frac{1}{k}.$$

Then, there exists a null set E_k such that $\forall n, m \geq N_k$.

$$|f_n(x) - f_m(x)| \le \frac{1}{k}.$$

for all $x \in \Omega \setminus E_k$, $\{f_n\} \subseteq \mathbb{R}$ is a Cauchy sequence. Since \mathbb{R} is complete, there exists an $f(x) \in \mathbb{R}$ such that

$$f_n(x) \to f(x)$$
 $x \in \Omega \setminus E$.

So, in particular, $\forall m \geq N_k$,

$$|f_n(x) - f(x)| \le \frac{1}{k} \ \forall x \in \Omega \setminus E.$$

We can then take the supremum,

$$\sup_{x \in \Omega \setminus E} |f_m(x) - f(x)| \le \frac{1}{k}.$$

Extend f to be whatever on E:

$$\Rightarrow ||f - f_m||_{\infty} \le \frac{1}{k}, \quad n \ge N_k,$$

$$\Rightarrow f_n \to f \text{ in } L^{\infty}.$$

Also, $f = (f - f_n) + f_n$. We have that $(f - f_n) \in L^{\infty}$ and $f_n \in L^{\infty}$. Hence, $f \in L^{\infty}$ since L^{∞} i a vector space. Hence, we have proven that L^p is a Banach space for $p = \infty$.

Case # 2: $1 \le p < \infty$. Similarly, $\{f_n\} \subseteq L^p$ be Cauchy. Choose a subsequence such that,

$$||f_{n_{k+1}} - f_{n_k}||_{L^p} < \frac{1}{2^k} \qquad \forall k \ge 1.$$

Then,

$$\left| \left| \sum_{k=1}^{N} |f_{n_{k+1}} - f_{n_k}| \right| \right|_{L^p} \le \sum_{k=1}^{N} \left(\frac{1}{2^k} \right) < 1.$$

Define,

$$v(x) := \lim_{N \to \infty} \sum_{k=1}^{N} |f_{n_{k+1}}(x) - f_{n_k}(x)|.$$

(Possibly infinite, but always positive). By Fatou's Lemma,

$$\int_{\Omega} |v|^p dx \le \liminf_{N \to \infty} \int_{\Omega} \left(\sum_{k=1}^N |f_{n_{k+1}}(x) - f_{n_k}(x)| \right)^p dx \le 1.$$

Hence, $v \in L^p$ which implies that $|v(x)| < \infty$ a.e. and,

$$f_{n_{k+1}}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$
 (*)

converges almost everywhere for x. Observe that the partial sums of the above in (*) are just $f_{n_{k+1}}(x)$ (telescoping series):

$$f(x) := \lim_{k \to \infty} f_{n_k}(x),$$

which we already knew converges for a.e. x and extend this to be whatever on a null set. Claim: $f \in L^p$ and $||f_n - f||_{L^p} \to 0$. By Fatou's Lemma, for k sufficiently large,

$$\int_{\Omega} |f - f_{n_k}|^p dx \le \liminf_{j \to \infty} \int_{\Omega} |f_{n_j} - f_{n_k}|^p \le \frac{\varepsilon}{2} \quad \text{(since Cauchy)}$$

Which implies,

$$\Rightarrow f - f_{n_k} \in L^p(\Omega)$$

$$\Rightarrow f(x) = \underbrace{(f(x) - f_{n_k}(x))}_{\in L^p} + \underbrace{f_{n_k}(x)}_{\in L^p}$$

$$\Rightarrow f \in L^p.$$

Break at the subsequence, which means that the limiting guy is in L^p . Also, for all $n \geq N$, $n_k \geq N$,

$$||f_n(x) - f(x)||_{L^p} \le ||f_n(x) - f_{n_k}(x)||_{L^p} + ||f_{n_k}(x) - f(x)||_{L^p}$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Hence, $f_n \to f$ in L^p .

Corollary 1.64. Let $\{f_n\} \subseteq L^p$ and let $f \in L^p$ such that $||f_n - f||_{L^p} \to 0$, then there exists a subsequence such that,

$$f_{n_k}(x) \to f(x)$$
 on Ω .

Proof. Hidden in Reisz-Fischer.

Theorem 1.65. $C_c(\mathbb{R}^N)$ is dense in $L^p(\mathbb{R}^N)$ for all $p \in [1, \infty[$.

Proof. We'll work with the truncation operator. It's a function $T_n: \mathbb{R} \to R$ defined by,

$$T_n r := \begin{cases} r & \text{if } |r| \le n, \\ \frac{nr}{|r|} & \text{if } |r| \ge n. \end{cases}$$

Claim: for all $f \in L^p(\mathbb{R}^N)$ and for all $\varepsilon > 0$ there exist a $g \in L^\infty(\mathbb{R}^N)$ and a compact set $K \subseteq \mathbb{R}^N$ such that,

$$\operatorname{supp}(g) \subseteq K \text{ and } ||f - g||_{L^p} < \varepsilon.$$

Let $f_n := T_n(f)\chi_{B(0,n)}$. Note that $f_n - f \to 0$ a.e. Then,

$$|f_n - f| \le 2|f| \in L^p.$$

By the DCT, $||f_n - f||_{L^p} \to 0$. Thus, let $g(x) = f_n(x)$ for n large. So, $g \in L^p(\mathbb{R}^N)$ and is compactly supported. Hence, by inclusions in L^p and Hölder's inequality, we obtain:

$$g \in L^1(\mathbb{R}^N).$$

Thus, for all $\delta > 0$, by the density in L^p , there exists a $g \in C_c^0$ such that

$$||g - g_1||_{L^1} < \delta.$$

WLOG, we may assume that $||g_1||_{\infty} \leq ||g||_{\infty}$ (by replacing g_1 for T_ng_1 for n large). Since $p \in]1, \infty[$,

$$||g - g_1||_{L^p} = \left(\int |g - g_1|^p\right)^{1/p}$$

$$= \left(\int |g - g_1||g - g_1|^{p-1}\right)^{1/p}$$

$$= ||g - g_1||_{\infty}^{(p-1)/p}||g - g_1||_{L^1}^{1/p}$$

$$= \delta^{1/p}||g - g_1||_{\infty}^{1-1/p}$$

$$= 2||g||_{L^\infty}^{1-1/p} \delta^{1/p}.$$

Choosing δ sufficiently small,

$$\leq \varepsilon$$
.

By Minkowski, $g \in C_c^0(\mathbb{R}^N)$,

$$||f - g_1||_{L^p} \le ||f - g||_{L^p} + ||g - g_1||_{L^p} \le 2\varepsilon,$$

as desired. Hence, $C_c(\mathbb{R}^N)$ is dense in $L^p(\mathbb{R}^N)$.

Theorem 1.66. The vector space $L^p(\mathbb{R}^N)$ is separable.

Proof. Define the following,

$$\mathcal{R} := \left\{ \prod_{k=1}^{N}]a_k, b_k[, \ a_k, b_k \in \mathbb{Q} \text{ rational rectangles.} \right\}.$$

And let,

 $\mathcal{E} := \{\text{finite linear combination of elements of } \chi_{\mathcal{R}}, R \in \mathcal{R}, \text{ with rational coefficients.} \}$

(You can think of this as a vector space over the rationals \mathbb{Q}). Claim: \mathcal{E} is dense in L^p . Given an $f \in L^p(\mathbb{R}^N)$, $\varepsilon > 0$ we know that there is a $f_1 \in C_c^0(\mathbb{R}^N)$ such that,

$$||f - f_1|| < \varepsilon.$$

Let supp $(f_1) \subseteq R \subseteq \mathcal{R}$. Now, for all $\delta > 0$, build an $f_2 \in \mathcal{E}$ such that $||f_1 - f_2||_{\infty} < \delta$. Indeed, re-write,

$$R := \bigcup_{i=1}^{N} R_i \text{ where } R_i \in \mathcal{R} \text{ and } \forall i, \operatorname{osc}_{R_i} f_1 = \sup_{R_i} f_1 - \inf_{R_i} f_1 < \delta.$$

Hence,

$$f_2 = \sum_{i=1}^{N} q_i \chi_{R_i} \text{ with } q_i \in \mathbb{Q}, q \approx f_1|_{R_i}.$$

Which implies,

$$||f_1 - f_2||_{L^{\infty}} \leq \delta.$$

So,

$$||f_1 - f_2||_{L^p} \le ||f_1 - f_2||_{\infty} |R|^{1/p}$$
 (compact support)
 $\le \delta |R|^{1/p}$
 $< \delta$ for δ chosen.

Which implies that,

$$||f - f_2||_{L^p} \le ||f - f_1||_{L^p} + ||f - f_2||_{L^p}$$

 $\le \varepsilon + \varepsilon = 2\varepsilon,$

as asserted.

Remark 1.67. These results are more general. In particular, if Ω is separable, then $L^p(\Omega)$ is separable.

1.6. Convolutions and Mollifers.

Definition 1.68 (Convolution). Let f and g be functions. Their **convolution** is defined as:

$$(f * g)(x) := \int_{\mathbb{R}^N} f(x - y)g(y)dy = \int_{\mathbb{R}^N} g(x - y)f(y)dy = (g * f)(x).$$

Theorem 1.69 (Young's Inequality). If $f \in L^1$, $g \in L^p$, then,

$$||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}$$

Hence, $f * g \in L^p$ and hence f * g is defined almost everywhere.

Proposition 1.70. Let f, g be functions. Then,

$$supp(f * g) \subseteq \overline{sup(f) + sup(g)}$$

Remark 1.71. If f, g are both compactly supported, then f * g is compactly supported. If only one is compactly supported, you cannot say anything.

Definition 1.72 (L_{loc}^p) . Let f be a function. $f \in L_{\text{loc}}^p$ if $f\chi_K \in L^p$ for all K compact, $K \subseteq \Omega$.

Remark 1.73. By using some sort of a Hölder-estimate, we can show that $f \in L^p_{loc} \Rightarrow f \in L^1_{loc}$.

Proposition 1.74. Let f, g be functions. If $f \in C_c^0(\mathbb{R}^N)$, $g \in L^1_{loc}(\mathbb{R}^N)$. Then, (f * g)(x) is defined for every x and $(f * g) \in C(\mathbb{R}^N)$.

Proof. We have that for every $x \in \mathbb{R}^N$,

$$\left| \int f(x-y)g(y)dy \right| = \left| \int g(x-y)f(y)dy \right|$$

$$\leq ||f||_{\infty} \int_{K} |g(x-y)|dy \text{ (by compactly supported)}$$

$$\leq ||f||_{\infty}||g||_{L}^{1}(\tilde{K}) \text{ (since } g \in L_{\text{loc}}^{1})$$

$$< \infty$$

Since \tilde{K} is compact. Now suppose that $x_n \to x$ (which means that $|x_n - x| \le B_1$ for all $n \ge N$). Then, since $\sup_{x \in S} f(x)$ is compact, there exists a compact set such that,

$$|f(x_n - y) - f(x - y)| \le \varepsilon_n \chi_K(y)$$

(by the uniform continuity and by taking $\varepsilon_n \to 0$). So, now it's obvious,

$$|(f * g)(x_n) - (f * g)(x)| \le \varepsilon_n \int_K |g(y)| dy \to 0,$$

where the last limit follows from the fact that $g \in L^1_{loc}$.

Mollification is approximating a function by a smooth function. We define a mollifier by:

$$\rho(x) := \begin{cases} C \exp\left(-\frac{1}{1-|x|^2}\right) & \text{if } |x| \le 1, \\ 0 & \text{if } |x| > 1 \end{cases}$$

This is continuous and smooth, with C chosen based on the dimensions such that,

$$\int_{\mathbb{R}^N} \rho(x) dx = 1.$$

Note that $\rho \in C_c^{\infty}(\mathbb{R}^N)$. We define:

$$\rho_h(x) := \frac{\rho(x/h)}{h^N} \qquad u_h(x) := (\rho_h * u)(x) = \frac{1}{h^N} \int_{\Omega} \rho\left(\frac{x-y}{h}\right) u(y) dy.$$

Proposition 1.75. Let $u \in C_c^0(\Omega)$. Then, $u_h \in C_c^{\infty}(\Omega)$ and if $u < \operatorname{dist}(\operatorname{supp}, \partial\Omega)$, then $u_h \to u$ uniformly on Ω as $h \to 0$.

Proof. Let $h < \text{dist}(\text{supp}, \partial\Omega)$. Observe that by the dominated convergence theorem,

$$\partial_i u_h(x) = \int_{\Omega} \partial_i \rho\left(\frac{x-y}{h}\right) u(y) dy,$$

where $\partial_i \rho\left(\frac{x-y}{h}\right)$ is smooth with compact support, and hence the integral is finite. This implies that $\rho \in C_c^{\infty}(\Omega)$ and hence $u_h \in C_c^{\infty}(\Omega)$. Observe,

$$\begin{split} &\frac{1}{h^N} \int_{\mathbb{R}^N} \rho\left(\frac{y}{h}\right) dy = 1 \\ \Rightarrow &\frac{1}{h^N} \int_{B(0,h)} \rho\left(\frac{y}{h}\right) dy = 1 \\ \Rightarrow &\frac{1}{h^N} \int_{B(0,h)} \rho\left(\frac{x-y}{h}\right) dy = 1 \ \forall x. \end{split}$$

Hence,

$$u_h(x) - u(x) = \frac{1}{h^N} \int_{\Omega} \rho\left(\frac{x-y}{h}\right) [u(y) - u(x)] dy$$
 (multiplying by 1 in a smart way)

Hence,

$$|u_h(x) - u(x)| = \left| \frac{1}{h^N} \int_{|x-y| \le h} \rho\left(\frac{x-y}{h}\right) |u(y) - u(x)| dy \right|$$

$$\leq \sup_{|x-y| \le h} |u(y) - u(x)| \frac{1}{h^N} \int_{|x-y| \le h} \rho\left(\frac{x-y}{h}\right) dy$$

$$= \sup_{|x-y| \le h} |u(y) - u(x)|.$$

Invoking the uniform continuity of $u \in C_c^0$, we can bound $\sup_{|x-y| \le h} |u(y) - u(x)| \le u(h)$. Hence,

$$\sup_{x \in \Omega} |u_h(x) - u(x)| \to 0 \text{ as } h \to 0.$$

Theorem 1.76. Assume that $f \in L^p(\mathbb{R}^N)$ with $1 \leq p < \infty$. Then,

$$(\rho_h * f) \to f \text{ as } h \to 0 \text{ in } L^p.$$

Proof. Fix an $\varepsilon > 0$. We know that there exists an $f_1 \in C_c^0(\mathbb{R}^N)$, $||f - f_1||_L^P < \varepsilon$. Also, since $f_1 \in C_c^0(\mathbb{R}^N)$, we know that

$$(\rho_h * f_1) \to f_1$$
 uniformly.

We also have that

$$\operatorname{supp}(\rho_h * f_1) \subseteq \overline{B(0,h) + \operatorname{supp}(f_1)}$$

$$\subseteq \underbrace{\overline{B(0,1) + \operatorname{supp}(f_1)}}_{\text{compact}}$$

Hence,

$$||(\rho_h * f_1) - f_1||_{L^p} \to 0.$$

Thus,

$$(\rho_h * f) - f = (\rho_h * (f - f_1)) + [(\rho_h * f_1) - f_1] + f_1 - f.$$

By the triangle inequality and Young's inequality,

$$||(\rho_h * f) - f||_{L^p} \le 2\underbrace{||f - f_1||_{L^p}}_{:=(1)} + \underbrace{||(\rho_h * f_1) - f_1||_{L^p}}_{:=(2)}$$

Where (1) is small by density and (2) is small because we just did it. Hence,

$$\limsup_{h \to 0} ||(\rho_h * f) - f||_{L^p} \le \varepsilon$$

$$\Rightarrow \lim_{h \to 0} ||(\rho_h * f) - f||_{L^p} = 0$$

Corollary 1.77. Let $\Omega \subseteq \mathbb{R}^N$ (possibly all of \mathbb{R}^N) with $1 \leq p < \infty$. Then, $(\rho_h * f) \to f$ in $L^P(\mathbb{R}^N)$ as $h \to 0$.

Proof. Given an $f \in L^p(\Omega)$, we extend to $\overline{f} \in L^p(\mathbb{R}^n)$ by:

$$\overline{f}(x) := \begin{cases} f(x) & x \in \Omega, \\ 0 & x \in \mathbb{R}^n \setminus \Omega. \end{cases}$$

Let $\{K_N\} \subseteq \mathbb{R}^N$ be a compact set such that $\bigcup_{n=1}^{\infty} K_N = \Omega$. (Remark: if $\Omega \subseteq \mathbb{R}^N$ is bounded, then $\operatorname{dist}(K_n \cap \Omega^c) > 2/n$). Now let $g_n := \overline{f}\chi_{K_n}$. This is compactly supported. Also, $f_n := \rho_{1/n} * g_n$ is compactly supported. Hence,

$$\operatorname{supp}(f_n) \subseteq \overline{B(0,1/n) + K_n} \subseteq \Omega,$$

and $f_n \in C_c^{\infty}(\Omega)$ for all $n \in \mathbb{N}$. Also,

$$||f_n - f||_{L^p(\Omega)} = ||f_n - \overline{f}||_{L^p(\mathbb{R}^N)}$$

$$\leq ||(\rho_{1/n} * g_n) - (\rho_{1/n} * \overline{f})||_{L^p(\mathbb{R}^N)} + ||(\rho_{1/n} * \overline{f}) - \overline{f}||_{L^p(\mathbb{R}^N)}$$
 (Minkowski and triangle inequality)

By the linearity of convolution,

$$\leq ||\rho_{1/n} * (g_n - \overline{f})||_{L^p(\mathbb{R}^N)} + ||(\rho_{1/n} * \overline{f}) - \overline{f}||_{L^p(\mathbb{R}^N)}.$$

Apply Young's Inequality to the first term,

$$\leq ||g_n - \overline{f}||_{L^p(\mathbb{R}^N)} + ||(\rho_{1/n} * \overline{f}) - \overline{f}||_{L^p(\mathbb{R}^N)}.$$

Note that $g_n := \overline{f}\chi_{k_n}$, and hence by the dominated convergence theorem,

$$||g_n - \overline{f}||_{L^p(\mathbb{R}^N)} \to 0,$$

and by the last theorem,

$$||(\rho_{1/n}*\overline{f})-\overline{f}||_{L^p(\mathbb{R}^N)}\to 0.$$

Combining everything together, we get

$$||f_n - f||_{L^p(\Omega)} \to 0.$$

Which proves that smooth functions with compact support are dense in L^p .

1.7. Hilbert Spaces.

Definition 1.78 (Inner Product). An **inner product** over a vector space X is a map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ such that:

- (1) $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ for all $\lambda, \mu \in \mathbb{R}$.
- (2) $\langle y, x \rangle = \langle x, y \rangle$ for all $x, y \in X$.
- (3) $\langle x, x \rangle \ge 0$ for all $x \in X$ and $\langle x, x \rangle = 0 \iff x = 0$.

An inner product generates a norm:

$$||x|| := \sqrt{\langle x, x, \rangle}.$$

And we have Cauchy-Schwarz:

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Proof of Cauchy-Schwarz:

Proof. Let $z := x - \frac{\langle x, y \rangle}{\langle y, y \rangle} y$. We have that,

$$\begin{split} 0 &\leq ||z||^2 = \left\langle x - \frac{\langle x, y \rangle}{\langle x, x \rangle} y, x - \frac{\langle x, y \rangle}{\langle y, y \rangle} \right\rangle \\ &= \langle x, x \rangle - \frac{\langle x, y \rangle^2}{\langle y, y \rangle} - \frac{\langle x, y \rangle^2}{\langle y, y \rangle} + \frac{\langle x, y \rangle^2 \langle y, y \rangle}{\langle y, y \rangle^2} \\ &= ||x||^2 - \frac{\langle x, y \rangle^2}{||y||^2} \end{split}$$

And hence,

$$\langle x,y\rangle^2 \leq ||x||^2||y||^2 \iff \boxed{.||\langle x,y\rangle|| \leq ||x||||y||}$$

Definition 1.79 (Hilbert Space). A **Hilbert Space** \mathcal{H} is a complete inner product space (with respect to the norm induced by the inner product). This satisfies the parallelogram law,

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$$

Examples of Hilbert Spaces you've encountered:

- (1) ℓ^2 with the inner product $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$.
- (2) L^2 with inner product $\langle f, g \rangle := \int_{\Omega} \overline{f(x)} g(x) dx$.

1.7.1. Orthogonal Projections. If $M \subseteq H$ is a subset, then the **orthogonal complement** of H is defined as:

$$\boxed{M^{\perp} := \{ u \in H \mid \langle u, v \rangle = 0 \} \ \forall v \in M}$$

Proposition 1.80. If M is a closed linear subspace of H, then every $x \in H$ has the following unique decomposition:

$$x = u + v, \ u \in M, \ v \in M^{\perp}$$

Proof. Fix an $x \in H$. If $x \in M$, then u = x and v = 0 (straightforward). Now assume that $x \notin H$; then, we claim that there exists a $u \in M$ such that

$$||x - u|| = \inf_{y \in M} ||x - y|| = \delta > 0.$$

By the definition of infimum, there exists a sequence $\{u_n\}\subseteq M$ such that

$$||x - u_n|| \le \delta^2 + \frac{1}{n} \tag{*}$$

We'll show that this sequence $\{u_n\}$ is Cauchy. To that end, let

$$v \coloneqq u_m - x,$$
$$w \coloneqq u_n - x$$

Using the Parallelogram law,

$$||u_m - u_n||^2 + ||u_m + u_n + 2x||^2 = 2||u_m - x||^2 + 2||u_n - x||^2.$$

Note. $||u_m + u_n + 2x||^2 = 4||1/2(u_m + u_n) - x||^2$ and therefore,

$$||u_m - u_n||^2 = 2||u_m - x||^2 + 2||u_n - x||^2 - 4||(1/2)(u_m + u_n) - x||^2.$$

However, M is a linear subspace, and therefore

$$1/2(u_n + u_m) \in M \Rightarrow ||x - (1/2)(u_m + u_n)|| > \delta.$$

By (*) and the above,

$$||u_m - u_n||^2 \le 2\left(\delta^2 + \frac{1}{m}\right) + 2\left(\delta^2 + \frac{1}{n}\right) - 4\delta^2$$

= $\frac{1}{m} - \frac{1}{n}$.

Hence, $\{u_n\} \subseteq M$ is Cauchy and since H is complete, M is closed. Hence, $u_n \to u \in M$. Using the triangle inequality,

$$||x - u|| \le ||x - u_n|| + ||u_n - u||$$

 $\le \left(\delta^2 + \frac{1}{n}\right)^{1/2} + ||u_n - u||$

Letting $n \to \infty$, we get that $||x - u|| \le \delta$. Hence,

$$\delta \le ||x - u|| \le \Delta \iff ||x - u|| = \delta,$$

which proves that the infimum was attained and hence proves the claim. Next claim – Claim: if v = x - u, then $v \in M^{\perp}$. To show this, consider $y \in M$. Then,

$$||x - (u - ty)||^2 = ||v + ty|| = ||v||^2 + 2t\langle v, y \rangle + t^2||y||^2.$$

Note that the map $t \mapsto ||v + ty||$ is minimized when t = 0. So,

$$\begin{split} \frac{\partial}{\partial t} \left[||v||^2 + 2t \langle v, y \rangle + t^2 ||y||^2 \right]_{t=0} &= [2 \langle v, y \rangle + 2t ||y||^2]_{t=0} \\ &= 2 \langle v, y \rangle = 0 \ \forall y \in M, \\ &\Rightarrow v \in M^\perp \end{split}$$

Hence, x = u + v where $u \in M$ and $v \in M^{\perp}$. Now, to show uniqueness, assume, not:

$$x = u_1 + v_1 = u_2 + v_2$$
.

Then,

$$|u_1 - u_2 = v_2 - v_1 \iff ||v_1 - v_2||^2 = \langle v_1 - v_2, v_1 - v_2 \rangle = \langle v_1 - v_2, u_2 - u_2 \rangle = 0$$

where $v_1 - v_2 \in M^{\perp}$ and $u_2 - u_1 \in M$. Hence, $v_1 \equiv v_2$ and $u_2 \equiv u_2$.

We can now define orthogonal projections onto M: $P_M(x) = u$. Observe that the following hold:

- $\bullet \ P_M^2 = P_M \circ P_M = P_M.$
- By orthogonality, one has

$$||x||^2 = \underbrace{||u||^2}_{=P_M(x)} + ||x - u||^2$$

which implies that

$$||P_M(x)|| \le ||x||,$$

that is, projecting can only shorten vectors.

1.7.2. Orthonormal Bases.

Definition 1.81 (Orthonormal Set). Let $\{e_j\} \subseteq H$. Then, $\{e_j\}$ is orthonormal $\iff \langle e_i, e_j \rangle = \delta_{ij}$.

Definition 1.82 (Orthonormal Basis). We say that $\{e_j\} \subseteq H$ is an orthonormal basis for H if $\{e_j\}$ is orthonormal and,

$$x = \sum_{j=1}^{\infty} \langle x, e_j \rangle e_j \qquad \forall x \in H.$$

This happens \iff :

$$\left\| x - \sum_{j=1}^{N} \langle x, e_j \rangle e_j \right\| \to 0 \text{ as } N \to \infty$$

Proposition 1.83 (Parseval's Equality). Let $\{e_j\} \subseteq H$ be orthonormal. Then, its a basis \iff

$$(1.84) ||x||^2 = \sum_{j=1}^{\infty} \langle x_j, e_j \rangle^2 \forall x \in H.$$

Proof. " \Rightarrow ": Suppose that we have a basis. Then,

$$\left\| \sum_{j=1}^{n} \langle x, e_j \rangle e_j \right\| = \sum_{j=1}^{n} \langle x_i, e_j \rangle^2.$$

Taking the limit, we obtain:

$$||x||^2 = \sum_{j=1}^{\infty} \langle x, e_j \rangle^2.$$

" \Leftarrow ": Suppose that Parseval's holds for all $x \in H$. Set:

$$Y := \{ x \mid x = \sum_{j=1}^{\infty} \langle x, e_j \rangle e_j \}.$$

Claim: Y = H. We'll show that Y is closed and dense in H. This will be sufficient to prove the claim.

(1) Y is closed in H: Let $\{Y_n\} \subseteq Y$ be a Cauchy sequence. Note that by Parseval's,

$$Y \simeq \ell^2$$
 (square-summable sequence).

We have that ℓ^2 is complete, which means that Cauchy sequences converge to points in the set ℓ^2 :

$$\Rightarrow \{y_n\} \to y^*, \ y^* \in Y,$$
$$\Rightarrow Y \text{ is closed.}$$

(2) Y is dense in H: Suppose that Y is not dense. Then, $H \setminus Y$ has a non-zero element. Hence, Y^{\perp} has a non-zero element. But, if $x \in Y^{\perp}$, $\langle x, e_j \rangle = 0 \forall j$, and hence by Parseval, $x \equiv 0$ which is a contradiction.

Hence,
$$Y = H$$
.

Proposition 1.85. H is separable \iff H has a countable basis.

Proof. If H has a countable basis, then,

 $\mathrm{span}_{\mathbb{O}}\{\mathrm{basis}\}$ is a countable dense set.

If H is separable, let $\{x_n\}$ be the countable dense subset. Use Gram Schmidt: for $\{x_n\}$, remove a linear combination of the proceeding elements as follows:

$$e_i = \frac{x_1}{||x_1||}$$
$$y_n = x_n - \sum_{i=1}^{n-1} \langle x_n, e_i \rangle e_i,$$

and let $e_n := \frac{y_n}{||y_n||}$. Then, span $\{e_n\} = \text{span}\{x_n\}$ and e_n are orthonormal and dense (the linear combination is dense).

All of this allows us to see the following proposition:

Proposition 1.86. The nit ball in any infinite-dimensional Hilbert Space is not compact.

Proof. Let $\{w_n\}_{n=1}^{\infty}$ be orthonormal with $||w_n||=1$ for all $n\in\mathbb{N}$. Then,

$$||w_n - w_m||^2 = \langle w_n - w_m, w_n - w_m \rangle,$$

= $||w_n||^2 + ||w_m||^2$
= 2 (if $m \neq n$).

Hence, no subsequence can converge, and hence the unit ball is not compact.

2. Hahn-Banach Theorem and Convex Conjugate Functions

Let E be a vector space over \mathbb{R} . Recall that $f: E \to R$ is a functional. **Goal:** given $G \subseteq E$ a linear space and a linear functional g on G, when can we extend this to a functional defined on all of E? Before stating the main theorem, we will first provide two definitions and a lemma.

Definition 2.1 (Partially-Ordered). Let P be a set. We say that a **partial order**, denoted \leq , on P satisfies the following:

- (1) a < a for all $a \in P$.
- (2) $a \le b$ and $b \le c$ implies that $a \le c$.
- (3) If $a \le b$ and $b \le a$, then a = b.

Definition 2.2 (Totally Ordered Set/Upper Bound/Maximal Element). (1) We say that $Q \subseteq P$ is **totally-ordered** if for all $a, b \in Q$, either a < b or b < a (or both).

- (2) We say that $c \in P$ is an upper bound of Q if $\forall a \in Q, a \leq c$.
- (3) We say that $m \in P$ is a **maximal element** if $m \le x \Rightarrow m = x$.
- (4) We say that P is **inductive** if every totally-ordered subset $Q \subseteq P$ has an upper-bound.

Lemma 2.3. Every non-empty partially-ordered set that is inductive has a maximal element.

Theorem 2.4 (Hahn-Banach). Let E be a vector space on \mathbb{R} . Let $p: E \to \mathbb{R}$ be a function satisfying:

- (1) $p(\lambda x) = \lambda p(x) \forall \lambda \ge 0$
- (2) $p(x+y) \le p(x) + p(y)$.

Let $G \subseteq E$ be a linear subspace and let $g: G \to \mathbb{R}$ be a linear functional such that $g(x) \leq p(x)$ for all $x \in G$. Then, there exists an $f: E \to \mathbb{R}$ linear functional such that

- (1) f(x) = g(x) for all $x \in G$ ("f extends g") and
- (2) f(x) < p(x) for all $x \in E$.

Proof. To do...

2.1. Application of Hahn-Banach and Duals. Let E be a normed vector space.

Definition 2.5 (Dual Space). We denote $E^* = E = \text{dual space of } E$.

$$E^* := \{ f : E \to \mathbb{R}, \text{ ctslinear functionals.} \},$$

with the following norm,

$$||f||_{E^*} = ||f|| = \sup_{||x|| \le 1} |f(x)| = \sup_{x \in E} = \frac{|f(x)|}{||x||}$$

We will write $f(x) = \langle f, x \rangle$, where $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{E^*E}$ (scalar product, not to be confused with inner product).

3. Compact Operators, Spectral Decomposition, Self-Adjoint Compact Operators

3.1. Definitions, Elementary Properties.

Definition 3.1 (Compact Operator). A linear operator $T: E \to F$ is **compact** if $T(B_E)$ is pre-compact (compact closure).

This is true if $\overline{T(W)}$ is compact for any $W \subseteq E$ bounded. This is true if and only if the following hold:

- $T(B_E)$ can be covered by finitely many balls in the strong topology of F.
- $\{x_n\} \subseteq E$ bounded and T compact means that $\{Tx_n\} \subseteq C$ compact subset of F. Hence, there exists a strongly convergent subsequence in F.

Example 3.2. An example of a non-compact operator is the identity operator:

$$T: H \to H,$$

$$Tx = x$$

We saw that $T(B_H)$ is not compact if H is an infinite-dimensional vector space. Hence, the identity operator is a non-compact operator.

Lemma 3.3. Any compact operator is bounded.

Proof. Since B_E is bounded and T is compact, $\overline{T(B_E)} \subseteq B_F(0,R)$ for some R > 0. Hence, it's compact in the strong topology. Hence,

$$\Rightarrow \sup_{||x|| \le 1} ||Tx||_F \le R$$
$$\Rightarrow ||T|| \le R \text{ (operator norm)}$$
$$\Rightarrow T \text{ is bounded.}$$

So, WLOG, we could define a compact operator as belonging to $\mathcal{L}(E, F)$ (bounded linear operators between E and F). We'll call $\mathcal{K}(E, F) \subseteq \mathcal{L}(E, F)$ the set of **compact operators** from E to F.

Theorem 3.4. $\mathcal{K}(E,F)$ forms a Banach space with the $\mathcal{L}_{(E,F)}$ norm.

$$||T||_{\mathcal{L}(E,F)} = \sup_{x \in E, ||x|| \le 1} ||Tx||_F$$

Proof. Clearly, $\mathcal{K}(E,F)$ is closed under linear combinations. We claim now that $\mathcal{K}(E,F)$ is closed under limits. This will require some work. Let $\{T_n\} \subseteq \mathcal{K}(E,F)$ be a convergence sequence such that:

$$||T_n - T||_{\mathcal{L}(\mathcal{E}, \mathcal{F})} \to 0.$$

Note that $\mathcal{L}(E,F)$ is a Banach space, and so $T \in \mathcal{L}(E,F)$. We need to now check the compactness of T. Let $\{x_n\} \subseteq E$ be a bounded sequence. We need to extract from this a convergent subsequence. We will construct this using diagonalization.

 T_1 is compact. Hence, $\{T_1(x_{n_{1_j}})\}_n$ has a convergent subsequence in F, since T_1 is compact. Call it $T_1(x_{1_j})$. Similarly, $T_2(x_{n_{2_j}})$ has a convergent sequence. (to do: finish the proof)

Definition 3.5 (Finite-Rank). $T \in \mathcal{L}(E, F)$ has finite rank if R(T) has finite dimensions.

Lemma 3.6. If $T \in \mathcal{L}(E, F)$ and is finite-rank, then T is a compact operator.

Proof. Let $\{x_n\} \subseteq E$ be bounded. Then,

$$||Tx_n|| \le ||T|| \underbrace{||x_n||}_{:=C} < \infty$$

which implies that $\{Tx_n\}$ is bounded in F. But, R(T) is finite-dimensional. However, finite-dimensional Banach spaces are isomorphic to \mathbb{R}^n . By the Bolzano-Weierstrass theorem plus the fact that all norms on a finite-dimensional space are equivalent, we have that $\{Tx_n\}$ has a strongly convergent subsequence. Hence, T is compact.

Corollary 3.7. If $\{T_n\} \subseteq \mathcal{L}(E,F)$ is finite-rank, $T_n \to T$ in $\mathcal{L}(E,F)$. Then, T is compact.

Example 3.8. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain. The **kernel**, denoted by $K(x,y) \in L^2(\Omega \times \Omega)$, is defined as:

$$T_u(x) := \int_{\Omega} K(x, y) u(y) dy,$$

where $T: L^2(\Omega) \to L^2(\Omega)$ and $u \in L^2(\Omega)$.

Claim: the T_u operator is a compact operator. To see why, recall that L^2 is a Hilbert space. Hence, it has an orthonormal basis; let $\{\phi_j\}$ be an orthonormal basis of L^2 . Then, we claim that $\{\phi_i(x)\phi_j(y)\}$ forms an orthonormal basis for $L^2(\Omega \times \Omega)$. To see why, we may apply Fubini's theorem:

$$\iint (\phi_i(x)\phi_j(y))\phi_m(x)\phi_n(y)dxdy = \int \phi_i(x)\phi_m(x)dx \int \phi_j(y)\phi_n(y)dy$$

where $\int \phi_i(x)\phi_m(x)dx = 1$ if and only if i = m and 0 otherwise, and similarly for $\int \phi_i(y)\phi_n(y)dy$.

Now, $K(x,y) \in L^2(\Omega \times \Omega)$ implies that $K^2(x,y) \in L^1(\Omega \times \Omega)$. Hence, we can re-arrange the integrals as we'd like, and we obtain that $K(x,\cdot) \in L^2(\Omega)$. We can write out K(x,y) in the orthonormal basis as:

$$K(x,y) = \sum k_{ij}\phi_i(x)\phi_j(y)$$

Let $K_n(x,y)$ be given by:

$$K_n(x,y) := \sum_{i,j=1}^n k_{ij}\phi_j(x)\phi_j(y),$$

which gives us a new set of operators:

$$T_n(u) := \int_{\Omega} K_n(x, y) u(y) dy.$$

Since $u \in L^2(\Omega)$, we can write u out in terms of the basis of L^2 :

$$u = \sum_{\ell=1}^{\infty} c_{\ell} \phi_{\ell}$$

By orthogonality:

$$T_n(u) = \int_{\Omega} \sum_{i,j=1}^n K_{ij} \phi_i(x) \phi_j(y) \left(\sum_{\ell=1}^\infty c_\ell \phi_\ell(y) \right) dy$$
$$= \sum_{i,j=1}^n K_{ij} c_j \phi_i(x)$$

which implies that T_n has rank n. By the Lemma, this implies that T_n is compact for all n. We now claim that $||T_n - T|| \to 0$ as $n \to \infty$. We have:

$$||T - T_n||^2 = \sup_{||u|| \le 1} \left| \left| \int_{\Omega} \int_{\Omega} [K(x, y) - K_n(x, y)] u(y) dy dx \right| \right|^2$$