Elementary Differential Geometry

Hassium

1 Calculus on Euclidean Space 6 Geometry of Surfaces in \mathbb{R}^3

2 Frame Fields 7 Riemannian Geometry

3 Euclidean Geometry 8 Global Structure of Surfaces

4 Calculus on a Surface Exercises and Proofs

5 Shape Operators Alphabetical Index

1 Calculus on Euclidean Space

Definition 1.1. The *Euclidean 3-space*, denoted \mathbb{R}^3 , is the set of ordered triples of the form $p = (p_1, p_2, p_3)$, where $p_i \in \mathbb{R}$. An element of \mathbb{R}^3 is called a *point*.

Let $p = (p_1, p_2, p_3), q = (q_1, q_2, q_3) \in \mathbb{R}^3$ and let $a \in \mathbb{R}$. Define the addition to be $p + q = (p_i + q_i)$ and define the scalar multiplication to be $ap = (ap_i)$. The additive identity 0 = (0, 0, 0) is called the *origin* of \mathbb{R}^3 . It is trivial that \mathbb{R}^3 is a vector space over \mathbb{R} .

Definition 1.2. Let x, y, and z be real-valued functions on \mathbb{R}^3 such that for all $p = (p_1, p_2, p_3) \in \mathbb{R}^3$, $x(p) = p_1$. $y(p) = p_2$, and $z(p) = p_3$. We call x, y, and z the natural coordinate functions of \mathbb{R}^3 .

Let x, y, and z be the natural coordinate functions, rewrite $x = x_1$, $y = x_2$, and $z = x_3$. Then we have $p = (p_i) = (x_i(p))$.

Definition 1.3. A real-valued function f on \mathbb{R}^3 is differetiable if all partial derivatives exist and continuous.

Let
$$(x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3$$
, we define the norm to be $||x - y|| = \sqrt{\sum (x_i - y_i)^2}$.

Definition 1.4. A subset $O \subset \mathbb{R}^3$ is open if for all $p \in O$, there exists $\varepsilon > 0$ such that $\{x \in \mathbb{R}^3 \mid ||x - p|| < \varepsilon\} \subset O$.

Let $f: O \to \mathbb{R}$ be a function defined on an open set. The differentiability of f at p can be determined entirely from values of f on O. This means that differentiation is a local operation. We will discuss this later.

Definition 1.5. A tangent vector v_p is an ordered pair $v_p = (v, p)$, where $v, p \in \mathbb{R}^3$. Here v is called the vector part and p is called its point of application. Two tangent vectors are said to be parallel if they have the same vector part and different points of application.

Definition 1.6. Let $p \in \mathbb{R}^3$. The tangent space at p, denoted $T_p(\mathbb{R}^3)$, is the set of all tangent vectors that have p as point of application.

Fix a tangent space $T_p(\mathbb{R}^3)$ and let $T_p(\mathbb{R}^3)$ adapt the operations from $\mathbb{R}^3 \times \mathbb{R}^3$. We have a natural linear map $f: T_p(\mathbb{R}^3) \to \mathbb{R}^3$ defined by $v_p \to v$ and it is trivially an isomorphism.

Definition 1.7. A vector field V on \mathbb{R}^3 is a function $V: \mathbb{R}^3 \to \mathbb{R}^3$ such that for all $p \in \mathbb{R}^3$, $V(p) \subset T_p(\mathbb{R}^3)$.

Let V and W be vector field. Let f be a real-valued function. For all $p \in \mathbb{R}^3$, define V + W by (V + W)(p) = V(p) + W(p) and (fV)(p) = f(p)V(p).

Definition 1.8. Let U_1 , U_2 , and U_3 be vector fields on \mathbb{R}^3 such that $U_1(p) = (1,0,0)_p$, $U_2(p) = (0,1,0)_p$, and $U_3(p) = (0,0,1)_p$ for all $p \in \mathbb{R}^3$. We call (U_1, U_2, U_3) the natural frame field on \mathbb{R}^3 .

Proposition. Let V be a vector field on \mathbb{R}^3 . There are three uniquely determined real-valued functions v_1 , v_2 , and v_3 on \mathbb{R}^3 such that $V = v_1U_1 + v_2U_2 + v_3U_3$.

Proof. For all
$$p \in \mathbb{R}^3$$
, $V(p) = (v_1(p), v_2(p), v_3(p))_p = v_1(p)(1, 0, 0)_p + v_2(p)(0, 1, 0)_p + v_3(p)(0, 0, 1)_p = v_1(p)U_1(p) + v_2(p)U_2(p) + v_3U_3(p)$, hence $V = \sum v_iU_i$.

The functions v_1 , v_2 , and v_3 are called the Euclidean coordinate functions on V.

Definition 1.9. A vector field V is differetiable if its Euclidean coordinate functions are differetiable.

Definition 1.10. Let f be a differentiable real-valued function on \mathbb{R}^3 and let v_p be a tangent vector on \mathbb{R}^3 . The directional derivative of f with respect to v_p , denoted $v_p[f]$, is defined to be (d/dt)f(p+tv) at t=0.

Remark. We will not write the restriction every time for convenience.

Proposition. Let $v_p = (v_1, v_2, v_3)_p$ be a tangent vector, then $v_p[f] = \sum v_i (\partial f/\partial x_i)(p)$.

Proof. Let
$$p = (p_1, p_2, p_3)$$
. Then $v_p[f] = (d/dt)f(p + tv)|_{t=0} = \sum (\partial f/\partial z)(p) \cdot (d/dt)(p_i + tv_i) = \sum (\partial f/\partial x_i)(p)v_i$.

Example. Consider $f = x^2yz$ with p = (1, 1, 0) and v = (1, 0, -3). By the definition, p + tv = (1 + t, 1, -3t), so $v_p[f] = (d/dt)(-3t^3 - 6t^2 - 3t) = -3$. Since $(\partial f/\partial x) = 2xyz$, $(\partial f/\partial y) = x^2z$, and $(\partial f/\partial z) = x^2y$, we have $(\partial f/\partial x)(p) = (\partial f/\partial y)(p) = 0$ and $(\partial f/\partial z)(p) = 1$, so $v_p[f] = -3$.

Proposition. Let f and g be functions on \mathbb{R}^3 . Let v_p and w_p be tangent vectors. For all $a, b \in \mathbb{R}$, the following properties hold.

- 1. $(av_p + bw_p)[f] = av_p[f] + bw_p[f]$.
- 2. $v_p[af + bg] = av_p[f] + bv_p[g]$.
- 3. $v_p[fg] = v_p[f]g(p) + f(p)v_p[g]$.

Proof. (i) We have $(av_p+bw_p)[f] = \sum (av_i+bw_i)(\partial f/\partial x_i)(p) = \sum av_i(\partial f/\partial x_i) + \sum bw_i(\partial f/\partial x_i)(p) = av_p[f] + bw_p[f]$. (ii) We have $v_p[af + bg] = \sum v_i(\partial (af + bg)/\partial x_i)(p) = \sum v_i(\partial (af)/\partial x_i)(p) + \sum v_i(\partial (bg)/\partial x_i)(p) = av_p[f] + bv_p[g]$. (iii) We have $v_p[fg] = \sum v_i(\partial (fg)/\partial x_i)(p) = \sum v_i(\partial f/\partial x_i)(p)g(p) + f(p)\sum v_i(\partial g/\partial x_i)(p) = v_p[f]g(p) + f(p)v_p[g]$.

Let V be a vector field, we define V[f] at $p \in \mathbb{R}^3$ to be V(p)[f]. By the convention, $U_i(p)[f] = (\partial f/\partial x_i)(p)$.

Proposition. Let V and W be vector fields. Let f, g, and h be real-valued functions. For all $a, b \in \mathbb{R}$, the following properties hold.

- 1. (fV + gW)[h] = fV[h] + gW[h].
- 2. V[af + bg] = aV[f] + bV[g].
- 3. V[fg] = V[f]g + fV[g].

Proof. (i) For all $p \in \mathbb{R}^3$, (fV + gW)(p)[h] = (f(p)V(p) + g(p)W(p))[h] = fV[h] + gW[h]. (ii) For all $p \in \mathbb{R}^3$, V(p)[af + bg] = aV(p)[f] + bV(p)[g]. (iii) For all $p \in \mathbb{R}^3$, V(p)[f]g(p) + f(p)V(p)[g] = V[f](p)g(p) + f(p)V[g](p) = (V[f]g + fV[g])(p). □

Example. Let $V = xU_1 - y^2U_3$ and let $f = x^2y + z^3$. Then $V[f] = xU_1[x^2y] + xU_1[z^3] - y^2U_3[x^2y] - y^2U_3[z^3] = 2x^2y - 3y^2z^2$.

Let $I \subset \mathbb{R}$ be an open interval. Let $\alpha : I \to \mathbb{R}^3$ be a function. We can rewrite $\alpha(t)$ as $(\alpha_1(t), \alpha_2(t), \alpha_3(t))$, where $\alpha_i : I \to \mathbb{R}$. We say α is differentiable if α_i are differentiable.

Definition 1.11. A *curve* in \mathbb{R}^3 is a differentiable function $\alpha: I \to \mathbb{R}^3$, where $I \subset \mathbb{R}$ is an open interval.

Example. Here are some examples of curves.

- 1. A curve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = p + tq$, where $\alpha(0) = p$ and $q \neq 0$, is called a *straight* line.
- 2. The cruve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (a \cos t, a \sin t, bt)$.
- 3. The cruve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (1 + \cos t, \sin t, 2\sin(t/2))$.
- 4. The cruve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (e^t, e^{-t}, \sqrt{2}t)$.
- 5. The cruve $\alpha : \mathbb{R} \to \mathbb{R}^3$ defined by $\alpha(t) = (3t t^3, 3t^2, 3t + t^3)$.

Definition 1.12. Let $\alpha: I \to \mathbb{R}^3$ be a curve with $\alpha = (\alpha_1, \alpha_2, \alpha_3)$. For all $t \in I$, the *velocity vector* of α at t is the tangent vector $\alpha'(t) = ((\mathrm{d}\alpha_1/\mathrm{d}t)(t), (\mathrm{d}\alpha_2/\mathrm{d}t)(t), (\mathrm{d}\alpha_3/\mathrm{d}t)(t))_{\alpha(t)}$ at the point $\alpha(t) \in \mathbb{R}^3$. The curve α is said to be *regular* if $\alpha_i \neq 0$ for all i.

Consider the velocity vector $\alpha'(t)$, we can rewrite it by the natural frame fields, so $\alpha'(t) = \sum (d\alpha_i/dt)(t)U_i(\alpha(t))$.

Definition 1.13. Let $\alpha: I \to \mathbb{R}^3$ be a curve and let $h: J \to I$ be differentiable, where J is an open interval of \mathbb{R} . The *reparametrization* of α by h is the composition $\alpha \circ h: J \to \mathbb{R}^3$.

The composition of differentiable functions is differentiable, so any reparametrization is differentiable, which means it is a curve.

Proposition. Let β be the reparametrization of α by h, then $\beta'(s) = (dh/ds)(s)\alpha'(h(s))$.

Proof. Rewrite
$$\beta(s) = \alpha(h(s))$$
, then we have $\beta'(s) = (d(\alpha_i h_i)/ds)(s)_{\alpha(h(s))} = (d\alpha_i/ds)(h(s)) \cdot (dh/ds)(s)_{\alpha(h(s))}$ \Box

Proposition. Let α be a curve and let f be a differentiable function on \mathbb{R}^3 , then $\alpha'(t)[f] = (\mathrm{d}(f\alpha)/\mathrm{d}t)(t)$.

Proof. We have
$$\alpha'(t)[f] = \sum (d\alpha_i/dt)(t) \cdot (\partial f/\partial x_i)(\alpha(t)) = (d(f\alpha)/dt)(t)$$
 by the chain rule. \square

Now we show a general idea of parametrizations. The proofs will be included in other sections when we have enough tools. Assume every result is correct for now.

Definition 1.14. A topology on a set X is a set \mathcal{T} of subsets of X such that:

- 1. \varnothing and X are in \mathcal{T} ;
- 2. the union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} ;
- 3. the intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

If \mathcal{T} is a topology on X, we say the pair (X, \mathcal{T}) is a topological space.

Definition 1.15. Let \mathcal{T} be a topology on X. A subset $U \subset X$ is said to be *open* if $U \in \mathcal{T}$. A subset V is said to be *closed* if $X \setminus V$ is open. Let $x \in X$. A *neighborhood* of X is an open set U_x such that $x \in U$.

Theorem 1.1 (implicit function theorem). If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable in a neighborhood of some point (x_0, y_0) and $\nabla f(x_0, y_0) \neq 0$, then there exists a unique differentiable function φ such that $\varphi(x_0) = y_0$ and $f(x, \varphi(x)) = 0$ in a neighborhood of x_0 .

If $f: \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable everywhere and if

Definition 1.16. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function. The level set $C_f(a)$ of height a is defined to be the set $\{p \in \mathbb{R}^2 \mid f(p) = a\}$.

Definition 1.17. Let C be a level curve. If $C = (C_1, C_2)$, where C_1 and C_2 are regular, then we call C_1 and C_2 the *parametrizations* of C.

Definition 1.18. A 1-form φ on \mathbb{R}^3 is a function $\varphi : \{T_p(\mathbb{R}^3) \mid p \in \mathbb{R}^3\} \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w \in T_p(\mathbb{R}^3)$ for some $p \in \mathbb{R}^3$, $\varphi(av + bw) = a\varphi(v) + b\varphi(w)$.

Given a 1-form φ , for any point p, the restriction $\varphi|_{T_p(\mathbb{R}^3)}:T_p(\mathbb{R}^3)\to\mathbb{R}$ is denoted by φ_p .

- 2 Frame Fields
- 3 Euclidean Geometry
- 4 Calculus on a Surface
- 5 Shape Operators
- 6 Geometry of Surfaces in \mathbb{R}^3
- 7 Riemannian Geometry
- 8 Global Structure of Surfaces

Exercises and Proofs

Exercise 1.1.1. Let $f = x^2y$ and $g = y\sin z$ be functions on \mathbb{R}^3 . Express the following functions in terms of x, y, and z: fg^2 , $\frac{\partial f}{\partial x}g + \frac{\partial g}{\partial y}f$, $\frac{\partial^2(fg)}{\partial y\partial z}$, and $\frac{\partial}{\partial y}(\sin f)$.

Proof. (i) We have
$$fg^2 = x^2yy^2\sin^2z = x^2y^3\sin^2z$$
. (ii) We have $\partial f/\partial x = 2xy$ and $\partial g/\partial y = \sin z$, then $\frac{\partial f}{\partial x}g + \frac{\partial g}{\partial y}f = 2xy^2\sin z + x^2y\sin z$. (iii) We have $fg = x^2y^2\sin z$, then $\frac{\partial^2(fg)}{\partial y\partial z} = 2x^2y\cos z$. (iv) We have $\sin f = \sin(x^2y)$, then $\frac{\partial}{\partial y}(\sin f) = x^2\cos(x^2y)$.

Exercise 1.1.3. Express $\partial f/\partial x$ in terms of x, y, and z for the following functions.

- 1. $f = x\sin(xy) + y\cos(xz);$
- 2. $f = \sin q$, $q = e^h$, and $h = x^2 + y^2 + z^2$.

Proof. (i) We have
$$\frac{\partial f}{\partial x} = \frac{\partial (x \sin(xy))}{\partial x} + \frac{\partial (y \cos(xz))}{\partial x} = \sin(xy) + xy \cos(xy) - yz \sin(xz)$$
. (ii) We have $f = \sin(e^{x^2+y^2+z^2})$, then $\frac{\partial f}{\partial x} = 2x \cos(e^{x^2+y^2+z^2})e^{x^2+y^2+z^2}$.

Exercise 1.2.1. Let v = (-2, 1, -1) and w = (0, 1, 3). At an arbitrary point p, express the tangent vector $3v_p - 2w_p$ as a linear combination of $U_1(p)$, $U_2(p)$, and $U_3(p)$.

Proof. We have
$$3v_p - 2w_p = (-6, 1, -9)_p = -6U_1(p) + U_2(p) - 9U_3(p)$$
.

Exercise 1.2.3. Let $p = (p_1, p_2, p_3)$. In each case, express the given vector field V in the standard form $\sum v_i U_i$.

- 1. $2z^2U_1 = 7V + xyU_3$.
- 2. $V(p) = (p_1, p_3 p_1, 0)_p$ for all p.
- 3. $V = 2(xU_1 + yU_2) x(U_1 y^2U_3)$.
- 4. For all $p \in \mathbb{R}^3$, V(p) is the vector from (p_1, p_2, p_3) to $(1 + p_1, p_2p_3, p_2)$.
- 5. For all $p \in \mathbb{R}^3$, V(p) is the vector from p to 0.

Proof. (i) We have
$$V = (2z^2U_1 - xyU_3)/7$$
. For all $p \in \mathbb{R}^3$, $V(p) = ((2z^2, 0, 0) - (0, 0, xy))/7 = (2z^2/7, 0, -xy/7)$, so $(v_i) = (2z^2/7, 0, -xy/7)$. (ii) Here $V(p) = xU_1 + (z - x)U_2 + 0U_3$.

Exercise 1.2.5. Let $V_1 = U_1 - xU_3$, $V_2 = U_2$, and $V_3 = xU_1 + U_3$. Prove that the vectors $V_1(p)$, $V_2(p)$, $V_3(p)$ are linearly independent at each $p \in \mathbb{R}^3$. Express the vector field $xU_1 + yU_2 + zU_3$ as a linear combination of V_i .

Proof. For all $p \in \mathbb{R}^3$, we have $V_1(p) = U_1(p) - xU_3(p) = (1, 0, -x)$. Similarly, $V_2(p) = (0, 1, 0)$ and $V_3 = (x, 0, 1)$. Consider $aV_1(p) + bV_2(p) + cV_3(p) = 0$, where $a, b, c \in \mathbb{R}$. Solve for (a, b, c), then $c(x^2 + 1) = 0$, so c = 0. Now (a, b, c) = (0, 0, 0), hence $V_i(p)$ are linearly independent. For all $p \in \mathbb{R}^3$, $aV_1(p) + bV_2(p) + cV_3(p) = (a + cx, b, c - a)$ and $xU_1(p) + yU_2(p) + zU_3(p) = (x, y, z)$. Solve (a + cx, b, c - a) = (x, y, z), then $(a, b, c) = ((x - zx)/(1 + x^2), y, (x^2 + z)/(1 + x^2))$.

Exercise 1.3.1. Let v_p be the tangent vector with v = (2, -1, 3) and p = (2, 0, -1). Use the definition to compute the directional derivative for the following functions.

- 1. $f = y^2 z$.
- 2. $f = x^7$.
- 3. $f = e^x \cos y$.

Proof. We have p + tv = (2 + 2t, -t, 3t - 1). (i) Now $f(p + tv) = 3t^3 - t^2$, then $v_p[f] = 9t^2 - 2t = 0$. (ii) Now $f(p + tv) = (2 + 2t)^7$, then $v_p[f] = 7(2 + 2t)^6 \cdot 2 = 14(2 + 2t)^6 = 7 \cdot 2^7$. (iii) Now $f(p + tv) = e^{2+2t}\cos(-t)$, then $v_p[f] = e^{2+2t}\sin(-t) + 2e^{2+2t}\cos(-t) = 2e^2$.

Exercise 1.3.3. Let $V = y^2U_1 - xU_3$. Let f = xy and let $g = z^3$. Compute the following functions.

- 1. V[f].
- 2. V[g].
- 3. V[fg].
- 4. fV[g] gV[f].
- 5. $V[f^2 + g^2]$.
- 6. V[V[f]].

Proof. (i) We have $V[f] = y^2U_1[xy] - xU_3[xy] = y^3$. (ii) We have $V[g] = y^2U_1[z^3] - xU_3[z^3] = -3xz^2$. (iii) We have $V[fg] = V[f]g + fV[g] = y^3z^3 - 3x^2yz^2$. (iv) We have $fV[g] - gV[f] = -3x^2yz^2 - y^3z^3$. (v) We have $V[f^2 + g^2] = V[f^2] + V[g^2] = V[f]f + fV[f] + V[g]g + gV[g] = 2xy^4 - 6xz^5$. (vi) We have $V[V[f]] = V[y^3] = y^2U_1[y^3] - xU_3[y^3] = 0$.

Exercise 1.3.5. If V[f] = W[f] for all f on \mathbb{R}^3 , prove that V = W.

Proof. Let $V = \sum a_i U_i$ and let $W = \sum b_i U_i$. Since V[f] = W[f], $(V - W)[f] = \sum (a_i - b_i) \frac{\partial f}{\partial x_i} = 0$. Pick f = x, then $a_1 = b_1$. Similarly, if we pick f = y and f = z, we have $a_2 = b_2$ and $a_3 = b_3$. Hence V = W.

Alphabetical Index

1-form, 4	level set, 4	regular, 3
closed, 4	natural coordinate	reparametrization, 3
curve, 3	functions, 1 natural frame field, 2	straight line, 3
differentiable, 3	neighborhood, 4	tangent space, 2
differetiable, 1, 2 directional derivative, 2	open, 1, 4 origin, 1	tangent vector, 1 topological space, 4
Euclidean 3-space, 1 Euclidean coordinate	parallel, 1	topology, 4
functions, 2	parametrizations, 4	vector field, 2
	point, 1	vector part, 1
height, 4	point of application, 1	velocity vector, 3