lmage Processing

Yousef Ahmed Bakier

GITHUB: REPO

Y-Baker/Image-Processing

Tech Stack

Python

Programming Languague

streamlit

GUI Python Lib (Web Based)

opency

Lib bindings for computer vision

INFO

Image Processing Toolbox 🔀

This application provides a comprehensive set of image processing tools organized into multiple categories for advanced image manipulation and analysis.

* Available Filter Categories

- Point Operations: Brightness, contrast, gamma correction
- Color Processing: Grayscale conversion, color channel manipulation
- Histogram Operations: Equalization, adaptive methods
- Neighborhood Processing: Blur, sharpening, noise reduction
- Image Restoration: Noise addition/removal, inverse filtering
- Segmentation: Thresholding, clustering methods
- Edge Detection: Sobel, Canny, Laplacian
- Mathematical Morphology: Erosion, dilation, opening, closing
- Advanced Filters: Bilateral, non-local means, guided filter
- Transformations: Rotation, scaling, perspective

Getting Started

- 1. Upload an image using the file uploader in the sidebar.
- 2. Select a filter category and operation.
- 3. Adjust parameters as needed.
- 4. Apply the filter and see real-time results.
- 5. Chain multiple filters to achieve desired effects.
- 6. Download your processed image.

Installation

streamlitPillow

Installation 1. Clone the repository: git clone https://github.com/Y-Baker/Image-Processing.git 2. Install the required packages: pip install -r requirements.txt 3. Run the application: streamlit run app.py 4. Open your web browser and navigate to http://localhost:8501 to access the application. 5. Upload an image and start processing! Dependencies numpy • opencv-python

Available Filter

Available Services

Category	Functions	Parameters
Point Operation	Brightness adjustment	brightness_value (-100 to 100)
	Contrast adjustment	contrast_value (0.5 to 3.0)
	Complement	
	Power law transformation	gamma (0.1 to 3.0)
	Log transformation	c (1 to 255)
Color Image Operation	Convert to Grayscale	
	Enhance Contrast	alpha (1.0 to 3.0)
	Color Channel Split	channel (R, G, B)
	HSV Color Space	
	Color Balance	red_gain, green_gain, blue_gain (0.5 to 2.0)
Image Histogram	Show Histogram	
	Histogram Equalization	
	Adaptive Histogram Equalization	clip_limit (1.0 to 4.0)
Neighborhood Processing	Mean Filter	kernel_size (3 to 15)
	Median Filter	kernel_size (3 to 15, step 2)
	Gaussian Blur	kernel_size (3 to 15, step 2), sigma (0.5 to 5.0, step 0.1)
	Sharpening Filter	strength (0.1 to 2.0)
	Unsharp Masking	radius (1 to 5), amount (0.5 to 2.0)

Available Filter

Image Restoration	Add Salt Pepper Noise	amount (0.01 to 0.2, step 0.01)
	Remove SP Noise (Average)	-
	Remove SP Noise (Median)	-
	Remove SP Noise (Outlier)	-
	Add Gaussian Noise	mean (-0.1 to 0.1, step 0.01), std (0.01 to 0.3, step 0.01)
	Remove Gaussian Noise (Average)	-
	Inverse Filtering	regularization (0.01 to 1.0)
	Motion Blur	length (1 to 20, step 1), angle (0 to 180, step 5)
Image Segmentation	Global Thresholding	threshold (0 to 255, step 5)
	Otsu's Method	-
	Adaptive Thresholding	block_size (3 to 15, step 2), C (2 to 10, step 2)
	K-Means Clustering	k (2 to 8)
Edge Detection	Sobel	-
	Prewitt	-
	Canny	low_threshold (50 to 150), high_threshold (100 to 200)
	Laplacian	kernel_size (1 to 7, step 2)
	Zero Crossing	threshold (0.1 to 1.0)
Mathematical Morphology	Erosion	kernel_size (3 to 15), iterations (1 to 5)
	Dilation	kernel_size (3 to 15), iterations (1 to 5)
	Opening	kernel_size (3 to 15)
	Closing	kernel_size (3 to 15)
	Gradient	kernel_size (3 to 15)
	Top Hat	kernel_size (3 to 15)
	Black Hat	kernel_size (3 to 15)

Available Filter

Advanced Filters	Bilateral Filter	d (5 to 15), sigma_color (10 to 100), sigma_space (10 to 100)
	Non-Local Means	h (3 to 15), template_window (7 to 21), search_window (21 to 35)
	Guided Filter	radius (1 to 8), eps (0.01 to 1.0)
	Anisotropic Diffusion	iterations (1 to 50), kappa (10 to 100)
Transformations	Rotate	angle (-180 to 180, step 5)
	Resize	width (50 to 2000), height (50 to 2000)
	Affine Transform	src_points, dst_points
	Perspective Transform	src_points, dst_points
	Translation	tx (-100 to 100), ty (-100 to 100)
	Scaling	sx (0.1 to 5.0), sy (0.1 to 5.0)

Authors:

Yousef Bakier GitHub

Main Screen

The start point of the project

Upload Image

You can upload the image from the left slider

Edit Screen

After upload, you can select filter and operation and set parameters if needed to apply

Upload Image

You can upload the image from the left slider

Filter Select

You can select the category for filters

Operation Select

You can select the filter for the selected category

Apply Filter

Click the button Apply Filter to apply the filter

Show Histogram

You can show the histogram in Category (Image Histogram)

Histogram Equalization

Histogram

Histogram after Histogram Equalization

Rotate

You need to specify an angle (parameter) for rotate to apply

Filter Sequences

The new filter applies to the result of the previous filter

History

You can see a history of all applied filters as sequence, and you can export it to JSON object

Download

You can download the image after edit as PNG or JPG

Reset Original

You can reset the image to original state in case things go wrong

Restoration

You can apply a restoration to image for example (salt pepper)

Restoration Options

Remove Noise

You can after apply a restoration to image for example (salt pepper) use filters to remove the noise

Dilation Morphology

Here you have two parameters (Kernel with step 2 and Iterations with step 1)

Remove Uploaded Image

Remove the uploaded image to upload another one

Thank You!