Chapter 9: Virtual Memory

Chapter 9: Virtual Memory

- Background
- Demand Paging
- Copy-on-Write
- Page Replacement
- Allocation of Frames
- Thrashing
- Memory-Mapped Files
- Allocating Kernel Memory
- Other Considerations
- Operating-System Examples

Objectives

- To describe the benefits of a virtual memory system
- To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames
- To discuss the principle of the working-set model

Background

- Virtual memory separation of user logical memory from physical memory.
 - Only part of the program needs to be in memory for execution
 - Logical address space can therefore be much larger than physical address space
 - Allows address spaces to be shared by several processes
 - Allows for more efficient process creation
- Virtual memory can be implemented via:
 - Demand paging
 - Demand segmentation

Virtual Memory That is Larger Than Physical Memory

Virtual-address Space

Shared Library Using Virtual Memory

Demand Paging

- Bring a page into memory only when it is needed
 - Less I/O needed
 - Less memory needed
 - Faster response (no need to wait for all pages to load)
 - More users
- Page is needed ⇒ reference to it
 - invalid reference ⇒ abort
 - not-in-memory ⇒ bring to memory
- Lazy swapper never swaps a page into memory unless page will be needed
 - Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk Space

Valid-Invalid Bit

- With each page table entry a valid-invalid bit is associated $(\mathbf{v} \Rightarrow \text{in-memory}, \mathbf{i} \Rightarrow \text{not-in-memory})$
- Initially valid—invalid bit is set to i on all entries
- Example of a page table snapshot:

Frame #	valid-invalid bit
	V
	V
	V
	V
	i
	i
	i
page table	.

During address translation, if valid—invalid bit in page table entry is $| \Rightarrow$ page fault

Page Table When Some Pages Are Not in Main Memory

Page Fault

If there is a reference to a page, first reference to that page will trap to operating system:

page fault

- 1. Operating system looks at another table to decide:
 - Invalid reference ⇒ abort
 - Just not in memory
- 2. Get empty frame
- 3. Swap page into frame
- 4. Reset tables
- 5. Set validation bit = V
- 6. Restart the instruction that caused the page fault

Page Fault (Cont.)

- Restart instruction
 - block move

auto increment/decrement location

Steps in Handling a Page Fault

Performance of Demand Paging

- Page Fault Rate $0 \le p \le 1.0$
 - if p = 0 no page faults
 - if p = 1, every reference is a fault
- Effective Access Time (EAT)

```
EAT = (1 - p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead
```


Demand Paging Example

- Memory access time = 200 nanoseconds
- Average page-fault service time = 8 milliseconds
- EAT = $(1 p) \times 200 + p (8 \text{ milliseconds})$ = $(1 - p \times 200 + p \times 8,000,000$ = $200 + p \times 7,999,800$
- If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

To keep slowdown to 10% p < 0.0000025 (1 in operating System Concepts $= 8^{th}$ Edition Edition Edition

Process Creation

- Virtual memory allows other benefits during process creation:
 - Copy-on-Write
 - Memory-Mapped Files (later)

Copy-on-Write

- Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory If either process modifies a shared page, only then is the page copied
- COW allows more efficient process creation as only modified pages are copied
- Free pages are allocated from a pool of zeroed-out pages

Before Process 1 Modifies Page C

After Process 1 Modifies Page C

What happens if there is no free frame?

- Page replacement find some page in memory, but not really in use, swap it out
 - algorithm
 - performance want an algorithm which will result in minimum number of page faults
- Same page may be brought into memory several times

Page Replacement

- Prevent over-allocation of memory by modifying page-fault service routine to include page replacement
- Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written to disk
- Page replacement completes separation between logical memory and physical memory – large virtual memory can be provided on a smaller physical memory

Need For Page Replacement

Basic Page Replacement

- 1. Find the location of the desired page on disk
- 2. Find a free frame:
 - If there is a free frame, use it
 - If there is no free frame, use a page replacement algorithm to select a victim frame
- 3. Bring the desired page into the (newly) free frame; update the page and frame tables
- 4. Restart the process

Page Replacement

Page Replacement Algorithms

- Want lowest page-fault rate
- Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string
- In all our examples, the reference string is

Graph of Expected Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm

- Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
- 3 frames (3 pages can be in memory at a time per process)

1 | 1 | 5 | 4 | 2 | 2 | 1 | 5 | 10 page faults | 3 | 3 | 2 | 4 | 4 | 3

■ Belady's Anomaly: more frames ⇒ more page

FIFO Page Replacement

reference string

page frames

FIFO Illustrating Belady's Anomaly

Optimal Algorithm

- Replace page that will not be used for longest period of time
- 4 frames example

,	, , , , ,	- ,	,,	- ,	,
1	4				
2			6 page	e fau	ılts
3					
4	5				

How do you know this?

Optimal Page Replacement

page frames

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1	1	1	1	5
2	2	2	2	2
3	5	5	4	4
4	4	3	3	3

- Counter implementation
 - Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter
 - When a page needs to be changed, look at the counters to determine which are to change

LRU Page Replacement

page frames

Suppose that the virtual Address space has eight pages and physical memory with four page frames. If LRU, Optimal page replacement algorithm is used, _____ number of page faults occur with the reference string.

021354637473355311172341

Given page reference string: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6 Compare the number of page faults for LRU, FIFO and Optimal page replacement algorithm

LRU Algorithm (Cont.)

- Stack implementation keep a stack of page numbers in a double link form:
 - Page referenced:
 - move it to the top
 - requires 6 pointers to be changed
 - No search for replacement

Use Of A Stack to Record The Most Recent Page References

reference string

LRU Approximation Algorithms

- Reference bit
 - With each page associate a bit, initially = 0
 - When page is referenced bit set to 1
 - Replace the one which is 0 (if one exists)
 - We do not know the order, however
- Second chance
 - Need reference bit
 - Clock replacement
 - If page to be replaced (in clock order) has reference bit = 1 then:
 - set reference bit 0
 - leave page in memory
 - replace next page (in clock order), subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

- Keep a counter of the number of references that have been made to each page
- LFU Algorithm: replaces page with smallest count
- MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used

Allocation of Frames

- Each process needs minimum number of pages
- Example: IBM 370 6 pages to handle SS MOVE instruction:
 - instruction is 6 bytes, might span 2 pages
 - 2 pages to handle from
 - 2 pages to handle to
- Two major allocation schemes
 - fixed allocation

Fixed Allocation

- Equal allocation For example, if there are 100 frames and 5 processes, give each process 20 frames.
- Proportional allocation Allocate according to the size of $process_i$ of process p_i

$$-S = \sum S_i$$

- -m = total number of frames
- $-a_i$ = allocation for $p_i = \frac{s_i}{S} \times m$

$$m = 64$$

$$s_1 = 10$$

$$s_2 = 127$$

$$a_1 = \frac{10}{137} \times 64 \approx 5$$

$$a_2 = \frac{127}{137} \times 64 \approx 59$$

Priority Allocation

- Use a proportional allocation scheme using priorities rather than size
- If process P_i generates a page fault,
 - select for replacement one of its frames
 - select for replacement a frame from a process with lower priority number

Global vs. Local Allocation

- Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another
- Local replacement each process selects from only its own set of allocated frames

Thrashing

- If a process does not have "enough" pages, the page-fault rate is very high. This leads to:
 - low CPU utilization
 - operating system thinks that it needs to increase the degree of multiprogramming
 - another process added to the system
- Thrashing = a process is busy swapping pages in and out

Thrashing (Cont.)

Demand Paging and Thrashing

- Why does demand paging work? Locality model
 - Process migrates from one locality to another
 - Localities may overlap
- Why does thrashing occur?
 Σ size of locality > total memory size

Locality In A Memory-Reference Pattern

Working-Set Model

- ∆ = working-set window = a fixed number of page references Example: 10,000 instruction
- WSS_i (working set of Process P_i) = total number of pages referenced in the most recent Δ (varies in time)
 - if ∆ too small will not encompass entire locality
 - ullet if Δ too large will encompass several localities
 - if $\Delta = \infty \Rightarrow$ will encompass entire program
- $D = \Sigma$ $WSS_i \equiv$ total demand frames
- if $D > m \Rightarrow$ Thrashing
- Policy if D > m, then suspend one of the processes

Working-set model

page reference table

... 2615777751623412344434344413234443444...

Keeping Track of the Working Set

- Approximate with interval timer + a reference bit
- Example: $\Delta = 10,000$
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts copy and sets the values of all reference bits to 0
 - If one of the bits in memory = 1 ⇒ page in working set
- Why is this not completely accurate?
- Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency Scheme

- Establish "acceptable" page-fault rate
 - If actual rate too low, process loses frame
 - If actual rate too high, process gains frame

Working Sets and Page Fault Rates

Memory-Mapped Files

- Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page in memory
- A file is initially read using demand paging. A pagesized portion of the file is read from the file system into a physical page. Subsequent reads/writes to/from the file are treated as ordinary memory accesses.
- Simplifies file access by treating file I/O through memory rather than read() write() system calls
- Also allows several processes to map the same file allowing the pages in memory to be shared

Memory Mapped Files

Memory-Mapped Shared Memory in Windows

Allocating Kernel Memory

- Treated differently from user memory
- Often allocated from a free-memory pool
 - Kernel requests memory for structures of varying sizes
 - Some kernel memory needs to be contiguous

Buddy System

- Allocates memory from fixed-size segment consisting of physically-contiguous pages
- Memory allocated using power-of-2 allocator
 - Satisfies requests in units sized as power of 2
 - Request rounded up to next highest power of 2
 - When smaller allocation needed than is available, current chunk split into two buddies of next-lower power of 2

Buddy System Allocator

physically contiguous pages

Slab Allocator

- Alternate strategy
- Slab is one or more physically contiguous pages
- Cache consists of one or more slabs
- Single cache for each unique kernel data structure
 - Each cache filled with objects instantiations of the data structure
- When cache created, filled with objects marked as free
- When structures stored, objects marked as used
- If slab is full of used objects, next object allocated from empty slab
 - If no empty slabs, new slab allocated
- Benefits include no fragmentation, fast memory request

Slab Allocation

Other Issues -- Prepaging

- Prepaging
 - To reduce the large number of page faults that occurs at process startup
 - Prepage all or some of the pages a process will need, before they are referenced
 - But if prepaged pages are unused, I/O and memory was wasted
 - Assume s pages are prepaged and α of the pages is used
 - Is cost of s * α save pages faults > or < than the cost of prepaging s * (1- α) unnecessary pages?
 - α near zero \Rightarrow prepaging loses

Other Issues – Page Size

- Page size selection must take into consideration:
 - fragmentation
 - table size
 - I/O overhead
 - locality

Other Issues - TLB Reach

- TLB Reach The amount of memory accessible from the TLB
- TLB Reach = (TLB Size) X (Page Size)
- Ideally, the working set of each process is stored in the TLB
 - Otherwise there is a high degree of page faults
- Increase the Page Size
 - This may lead to an increase in fragmentation as not all applications require a large page size
- Provide Multiple Page Sizes
 - This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation

Other Issues – Program Structure

- Program structure
 - Int[128,128] data;
 - Each row is stored in one page
 - Program 1

for
$$(j = 0; j < 128; j++)$$

for $(i = 0; i < 128; i++)$
data $[i,j] = 0;$

 $128 \times 128 = 16,384$ page faults

Program 2

128 page faults

Other Issues – I/O interlock

- I/O Interlock Pages must sometimes be locked into memory
- Consider I/O Pages that are used for copying a file from a device must be locked from being selected for eviction by a page replacement algorithm

Reason Why Frames Used For I/O Must Be In Memory

Operating System Examples

- Windows XP
- Solaris

Windows XP

- Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page
- Processes are assigned working set minimum and working set maximum
- Working set minimum is the minimum number of pages the process is guaranteed to have in memory
- A process may be assigned as many pages up to its working set maximum
- When the amount of free memory in the system falls below a threshold, automatic working set trimming is performed to restore the amount of free memory
- Working set trimming removes pages from processes that have pages in excess of their working set minimum

Solaris

- Maintains a list of free pages to assign faulting processes
- Lotsfree threshold parameter (amount of free memory) to begin paging
- Desfree threshold parameter to increasing paging
- Minfree threshold parameter to being swapping
- Paging is performed by pageout process
- Pageout scans pages using modified clock algorithm
- Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan
- Pageout is called more frequently depending upon the amount of free memory available

Solaris 2 Page Scanner

End of Chapter 9

