Concours en Mathématiques et Physique Session 2007 Corrigé de l'épreuve de physique

F-145	MTUT PREPAR
(4	BIBLIOTHEQUE)
120	COCS D'ESCUMENTS SENT

	A- CONDUCTION — EFFET HALL	
	I- CONDUCTEUR SOUMIS A UN CHAMP ELECTRIQUE	
I.1)	$m\frac{d\vec{v}}{dt} = -e\ \vec{E}_0 - \frac{m}{\tau}\ \vec{v}$	0.5
/		1.5
		0.5
I.2.a)	$\frac{\partial \vec{v}}{\partial t} = \vec{0} \qquad \Rightarrow \qquad \vec{v} = \vec{v}_{\ell} = -\frac{\tau \ e}{m} \ \vec{E}_{0}$	1
I.2.b)	$\vec{j} = -n e \vec{v}_{\ell} = \frac{n \tau e^2}{m} \vec{E}_0$	1
I.2.c)	$\vec{j} = \gamma \ \vec{E}_0 \qquad \Rightarrow \qquad \gamma = \frac{n \tau \ e^2}{m}$	1
I.3.a)	$\vec{v}_{\ell} = -\mu \vec{E}_0$ \Rightarrow $\vec{j} = -n e \vec{v} = n e \mu \vec{E}_0 = \gamma \vec{E}_0$ $\gamma = n e \mu$	1.5
	$\gamma_1 = 6.05 \ 10^7 \ S \ m^{-1}$ et $\gamma_2 = 10^2 \ S \ m^{-1}$ $\gamma_1 > \gamma_2 \implies le matériau (1) est plus conducteur que le matériau (2)$	1
I.3.b)	$\gamma = \frac{n \tau e^2}{m} = n e \mu$ $\Rightarrow \tau = \frac{m \mu}{e}$ $\tau = 3.07 \cdot 10^{-14} \text{ s}$ Le régime permanent est très rapidement atteint.	0.5 0.5 0.5
	II- CONDUCTEUR SOUMIS A UN CHAMP ELECTRIQUE ET A UN CHAMP MAGNETIQUE Le champ magnétique agit sur les porteurs de charge par l'intermédiaire de la force :	1

		400 to 100 to 10	
, å. ī,	II.1.a)	$\vec{F}_m = -e\vec{v} \wedge \vec{B} = -e \ \vec{v}\ \ \vec{B}\ \vec{u}_x = -\frac{1}{n} \ \vec{j}\ \ \vec{B}\ \vec{u}_x$	
-A S	80,7 M	Cette force tend à déplacer les électrons du plan $x = a/2$ vers le plan $x = -a/2$. Les électrons s'accumulent donc sur ce dernier qui se charge négativement. Le plan $x = a/2$ devient déficitaire en électrons et se charge alors positivement. Cette polarisation du matériau conduit donc à l'apparition d'un champ électrique \vec{E}_H dirigé suivant $-\vec{u}_x$, appelé champ de Hall, qui à son tour agit sur les électrons de conduction par l'intermédiaire de la force électrique $-e \vec{E}_H$.	2
nerile nerile	II.1.b)	L'existence de \vec{E}_H permet de rendre compte de l'apparition, entre les faces Σ_1 d'équation $x=-a/2$ et Σ_2 d'équation $x=a/2$, d'une tension de Hall: $V_H=V_{\Sigma 2}-V_{\Sigma 1}=V(x=a/2)-V(x=-a/2)$	1
*	II.1.c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5
		x = -a/2 Régime permanent	
	II.2.a)	En régime permanent $\vec{F}_m - e\vec{E}_H = \vec{0}$ $\vec{E}_H = -\vec{v}_0 \wedge \vec{B} = -R_H \vec{j} \wedge \vec{B} = R_H j B \vec{u}_x$	2
	II.2.b)	Au voisinage de Σ_1 : $\vec{E}_H = \frac{\sigma_1}{\varepsilon_2}$ $\vec{u}_x \Rightarrow \sigma_1 = R_H j B \varepsilon_0 < 0$	1
		Au voisinage de Σ_2 : $\vec{E}_H = -\frac{\sigma_2}{\varepsilon_0} \vec{u}_x \implies \sigma_2 = -R_H j B \varepsilon_0$	1
	II.2.c)	$V_H = V_{\Sigma_2} - V_{\Sigma_1} = -\int_{-a/2}^{a/2} \vec{E}_H \cdot d\vec{x} = -\int_{-a/2}^{a/2} R_H j B dx = -R_H j B a$	
	w VE	$I = \iint \vec{j} \cdot d\vec{s} = j \ a \ b \Rightarrow V_H = -\frac{B \ R_H \ I}{b}$	2
	II.3)	En régime permanent le champ total ressentisenti	
	- 110	par un électron est $\vec{E} = \frac{\vec{j}}{\gamma} + \vec{E}_H$. Les lignes de	
7		champ de \vec{E} font avec celles associées au courant de conduction un angle θ tel que	
		$tg\theta = \frac{\ \vec{E}_H\ }{\ \vec{E}_0\ } = \frac{\ \vec{E}_H\ }{\ \vec{j}/\gamma\ } = \gamma B R_H $ \vec{E}_H	1
		A.N $tg\theta = 5.4 \ 10^{-3} \implies \theta = 5.4 \ 10^{-3} \text{ rad soit } \theta \approx 0.31^{\circ}.$	0.5
•		Sous l'action de \vec{B} les lignes de champ électrique sont faiblement modifiées et sont quasiment parallèles à celles associées au champ de conduction.	2

II.4.a)	Pour le conducteur métallique : $V_H = 0.89 \mu V$ Pour le semi-conducteur : $V_H = 6,25 \cdot 10^{-2} \text{ V}$	1 1
II.4.b)	On utilise un semi-conducteur car sa ddp est plus importante et par conséquent l'erreur de mesure serait acceptable. Pour le conducteur métallique l'erreur serait du même ordre de grandeur que la ddp elle même.	1.5
II.4.c)	Comme V_H est inversement proportionnelle à l'épaisseur b de la plaque, on a donc intérêt à choisir l'épaisseur la plus faible possible. Soit $b = 0,1$ mm.	1
1)	B-PRESSION DE RADIATION $ \underline{\vec{B}}_{i}(M,t) = \frac{\vec{k} \wedge \underline{\vec{E}}_{i}(M,t)}{\omega} = \frac{k}{\omega} \underline{E}_{i}(M,t) \vec{u}_{x} $ $ \underline{\vec{B}}_{i}(M,t) = \frac{E_{0}}{c} e^{i(ky-\omega t)} \vec{u}_{x} $	0.5
2.a)	$\overrightarrow{rot} \frac{\overrightarrow{B}_{t}}{M}(M,t) = \mu_{0} \left[\overrightarrow{j}(M,t) + \varepsilon_{0} \frac{\partial \overrightarrow{E}_{t}(M,t)}{\partial t} \right]$ $\Rightarrow \qquad \overrightarrow{j} = -\left[\frac{1}{\mu_{0}} \frac{\partial B_{t}}{\partial y} + \varepsilon_{0} \frac{\partial E_{t}}{\partial t} \right] \overrightarrow{u}_{z}$	1.5
2.b)	$div\vec{E}_t(M,t) = \frac{\rho}{\varepsilon_0}$ or $div\vec{E}_t(M,t) = 0 \Rightarrow \rho = 0$	1
3.a)	$\vec{d}\vec{F}(M,t) = \rho d\tau \vec{E}_t(M,t) + \vec{j}(M,t) d\tau \wedge \vec{B}_t(M,t)$ $\vec{f}(M,t) = \frac{d^3 \vec{F}(M,t)}{d\tau} = \rho \vec{E}_t(M,t) + \vec{j}(M,t) \wedge \vec{B}_t(M,t)$ $\text{Or } \rho = 0 \implies \vec{f}(M,t) = j(M,t) B_t(M,t) \vec{u}_y$ $\vec{f}(M,t) = -\left(\frac{1}{\mu_0} \frac{\partial B_t(y,t)}{\partial y} + \varepsilon_0 \frac{\partial E_t(y,t)}{\partial t}\right) B_t(y,t) \vec{u}_y$	2
	$\vec{f}(M,t) = -\left(\frac{1}{\mu_0}B_t(y,t)\frac{\partial B_t(y,t)}{\partial y} + \varepsilon_0 B_t(y,t)\frac{\partial E_t(y,t)}{\partial t}\right)\vec{u}_y$ $MF: \overrightarrow{rot}\vec{E}_t(M,t) = -\frac{\partial \vec{B}_t(M,t)}{\partial t} \Rightarrow \frac{\partial E_t}{\partial y} = -\frac{\partial B_t}{\partial t}$	
3.b)	$\frac{\partial(E_t B_t)}{\partial t} = E_t \frac{\partial B_t}{\partial t} + B_t \frac{\partial E_t}{\partial t} = -E_t \frac{\partial E_t}{\partial y} + B_t \frac{\partial E_t}{\partial t}$ $B_t \frac{\partial E_t}{\partial t} = \frac{\partial(E_t B_t)}{\partial t} + E_t \frac{\partial E_t}{\partial y} = \frac{\partial(E_t B_t)}{\partial t} + \frac{\partial}{\partial y} \left(\frac{E_t^2}{2}\right)$	

	or $<\frac{\partial(E_tB_t)}{\partial t}>=0$, d'où:	
	$\langle \vec{f} \rangle = -\frac{1}{T} \int_{0}^{T} \left[\frac{1}{\mu_{o}} B_{t}(y, t) \frac{\partial B_{t}(y, t)}{\partial y} + \varepsilon_{o} E_{t}(y, t) \frac{\partial E_{t}(y, t)}{\partial y} \right] dt \vec{u}_{y}$	3
	$\langle \vec{f} \rangle = -\frac{1}{T} \int_{0}^{T} \frac{\partial}{\partial y} \left(\frac{B_{t}^{2}(y,t)}{2\mu_{o}} + \frac{\varepsilon_{o}}{2} E_{t}^{2}(y,t) \right) dt \vec{u}_{y}$	
	$ \langle \vec{F}_R \rangle = -\langle \int_0^{tx} \int_0^{tz} \int_0^{+\infty} \frac{\partial}{\partial y} \left(\frac{B_t^2(y,t)}{2\mu_o} + \frac{\varepsilon_o}{2} E_t^2(y,t) \right) \rangle dy dx dz \vec{u}_y$	2
3.c)	$ \left \langle \vec{F}_R \rangle = \langle \int_0^{\ell x} \int_0^{\ell z} \left(\frac{B_t^2(0,t)}{2\mu_o} + \frac{\varepsilon_o}{2} E_t^2(0,t) \right) \rangle \right dx dz \vec{u}_y $	2
	$<\vec{F}_R> = <\left(\frac{B_t^2(0,t)}{2\mu_o} + \frac{\varepsilon_o}{2}E_t^2(0,t)\right) > \ell_x \ell_z \vec{u}_y$	
	$<\vec{F}_R>=< u_{em}>\ell_x\ell_z\;\vec{u}_y$	0.5
3.d)	$\langle \vec{F}_R \rangle = P_R \ell_x \ell_z \vec{u}_y = P_R dS \vec{u}_y \Rightarrow P_R = \langle \left(\frac{B_t^2(0,t)}{2\mu_o} + \frac{\varepsilon_o}{2} E_t^2(0,t) \right) \rangle \qquad , $	1
,	L'ARQS étant valable, le vecteur de déplacement $\vec{j}_D = \varepsilon_0 \frac{\partial \vec{E}_t(M,t)}{\partial t}$ est	
	négligeable devant le courant de conduction $\vec{j}(M,t)$. L'équation de M-A	
4)	implique : $\vec{j} = -\frac{1}{\mu_0} \frac{\partial B_t}{\partial y} \vec{u}_z$. D'après (3.a), l'expression de la force de radiation se	2
	réduit à : $ <\vec{F}_R> = \frac{< B_t^2(0,t)>}{2\mu_o} \ell_x \ell_z \; \vec{u}_y $	
	L'existence de l'onde réfléchie	
5.a)	Comme \vec{E}_i est perpendiculaire à \vec{k}_i (\vec{E}_i est transverse), le champ \vec{E}_i possède donc une composante tangentielle non nulle. Ce résultat est en contradiction avec la condition aux limites traduisant la continuité de la composante tangentielle de \vec{E} à la traversée d'une surface chargée. En effet, le champ \vec{E} au sein d'un conducteur	
	parfait est nul. Il ne peut y avoir seulement une onde incidente dans le demi espace $y < 0$, il doit donc y avoir une autre onde \vec{E}_r , se propageant dans le même milieu que l'onde incidente : c'est l'onde réfléchie.	1.5
	L'origine physique de l'onde réfléchie	
	En tombant sur la surface du conducteur, l'onde incidente (\bar{E}_i, \bar{B}_i) interagit avec les électrons libres de celle ci. Ces électrons accélérés vont émettre un	

- 1 \ I		0.5
5.b)	$\underline{\underline{E}}_{r}(M,t) = -E_{0} e^{-i(ky+\omega t)} \underline{u}_{z}$	0.5
	$\underline{\underline{B}}_{r}(M,t) = \frac{\underline{E}_{0}}{c} e^{-i(ky+\omega t)} \overline{u}_{x}$	0.5
	$\underline{\underline{E}}(M,t) = \underline{\underline{E}}_{i}(M,t) + \underline{\underline{E}}_{r}(M,t) \qquad \Rightarrow \qquad \underline{\underline{E}}(M,t) = 2iE_{0}\sin(ky)e^{-i\omega t}\overline{u}_{z}$	0.5
	$\underline{\underline{B}}(M,t) = \underline{\underline{B}}_{i}(M,t) + \underline{\underline{B}}_{r}(M,t) \qquad \Rightarrow \qquad \underline{\underline{B}}(M,t) = 2\frac{\underline{E}_{0}}{2}\cos(ky)e^{-i\omega t}\underline{u}_{x}$	0.5
		0.5
	L'onde résultante est une onde stationnaire. Le vecteur densité de courant au sein du conducteur est volumique et par	0.5
5.c)	conséquent le champ magnétique est continu à la surface de ce dernier (y=0):	
	$\Rightarrow \ \underline{\underline{B}}(y=0^+,t) = \underline{\underline{B}}(y=0^-,t), \Rightarrow \ \underline{\underline{B}}_t(0,t) = \underline{\underline{B}}(y=0^-,t) = \underline{\underline{B}}(y=0^+,t)$	2.5
	$= 4E_0^2$	2.3
	$<\vec{F}_{R}> = \frac{4E_{0}^{2}}{2\mu_{0}c^{2}} < \cos^{2}\omega t > \vec{u}_{y} = \varepsilon_{0}E_{0}^{2}\ell_{x}\ell_{z}\vec{u}_{y}$	2.5
	$\ell_z \ell_z = \vec{F} \wedge \vec{D}$	2.5
	$\langle P \rangle = \int_{0}^{\ell_z \ell_x} \int_{0}^{\ell_x} \langle \frac{\vec{E}_i \wedge \vec{B}_i}{\mu_0} \rangle dx dz \vec{u}_y = \frac{\varepsilon_0 c E_0^2}{2} \ell_x \ell_z \Rightarrow \langle \vec{F}_R \approx \frac{2 \langle P \rangle}{c} \vec{u}_y \qquad$	
2.5	C- RAYONNEMENT DIPOLAIRE	
1)	$\ \vec{s}\ < \Re$: approximation non relativiste	0.5
1)	$\ \vec{s}\ < $: approximation dipolaire $\lambda < $: zone de rayonnement	0.5
2.a)	$\left\ \frac{\left\ \vec{F}_m \right\ }{\left\ \vec{F}_e \right\ } = \frac{\left\ \vec{v} \wedge \vec{B} \right\ }{\left\ \vec{E} \right\ } = \frac{v B}{E}$	1
2.a)	$\ \vec{F}\ _{2}$	1
	Pour une onde plane, $\ \vec{E}\ = c \ \vec{B}\ \implies \frac{\ \vec{F}_m\ }{\ \vec{F}_e\ } = \frac{v}{c} < 4$.	
2.b)	$m\frac{d^2\vec{s}}{dt^2} = -e\ \vec{E} - m\omega_0^2\vec{s} \tag{1}$	1
	En régime forcé, l'expression du déplacement \vec{s} de l'électron par rapport à sa position d'équilibre est donnée par : $\vec{\underline{s}}(t) = s_0 \ e^{-i\omega t} \ \vec{u}_z$. La projection de (1) sur Oz donne :	v
2.c)	$-m \omega^2 s_0 = -m \omega_0^2 s_0 - e E_0 \Rightarrow s_0 = \frac{e E_0}{m \left(\omega^2 + \omega_0^2\right)} \approx -\frac{e E_0}{m \omega_0^2}$	1.5
	$\underline{\vec{s}}(t) \approx -\frac{e E_0}{m \omega_0^2} e^{-i\omega t} \overline{u}_z$	
2.d)	Le moment dipolaire $\underline{\vec{p}}(t) = -e\underline{\vec{s}}(t)$	
2.0)	$\Rightarrow \qquad \underline{\vec{p}}(t) \approx \frac{e^2 E_0}{m \omega_0^2} e^{-i\omega t} \vec{u}_z$	1,

	Pour un dipôle oscillant constitué de deux charges ponctuelles $q(t)$ et $-q(t)$ distantes de ℓ de moment dipolaire $\underline{\vec{p}}(t)$, on a :	
3.a)	$\frac{d\vec{\underline{p}}(t)}{dt} = \ell\frac{d\underline{q}}{dt}\vec{u}_z = \ell\underline{I}\vec{u}_z = \ell\underline{I}_0e^{-i\omega t}\vec{u}_z$	
	Dans le cas de l'atome étudié, on a : $\frac{d\underline{\vec{p}}(t)}{dt} = -i \frac{\omega e^2 E_0}{m \omega_0^2} e^{-i\omega t} \underline{\vec{u}}_z$	2.5
	Par analogie, on en déduit que : $\ell \underline{I}_0 = -i \frac{\omega e^2 E_0}{m \omega_0^2}$	
3.b)	$\langle P \rangle = \frac{\mu_0 \omega^2 \left \ell \underline{I}_0 \right ^2}{12 \pi c} = \frac{\mu_0 \omega^2}{12 \pi c} \left(\frac{\omega e^2 E_o}{m \omega_o^2} \right)^2$	1
	$\Rightarrow \qquad \langle P \rangle = \frac{\mu_0 e^4 E_0^2}{12 \pi c m^2} \left(\frac{\omega}{\omega_0} \right)^4$	1
3.c)	La puissance moyenne de l'onde incidente par unité de surface est donnée par : $ < P_0 > = \frac{ \vec{E} \wedge \vec{B} }{\mu_0} = \frac{E_0^2}{2 \mu_0 c} $	1.5
	$\Rightarrow \frac{\langle P \rangle}{\langle P_0 \rangle} = \frac{\mu_0^2 e^4}{6\pi m^2} \left(\frac{\omega}{\omega_0}\right)^4$	1.5
4)	$\frac{\langle P \rangle}{\langle P_0 \rangle} = \frac{\mu_0^2 e^4}{6 \pi m^2} (\frac{\lambda_0}{\lambda})^4$	
	$\frac{\langle P \rangle}{\langle P_0 \rangle}$ est inversement proportionnel à la longueur d'onde λ : dans le visible, la puissance maximale rayonnée se trouve dans le bleu.	1
	D- TRANSFERT THERMIQUE	
I.1.a)	En régime permanent : $\Phi(y) = \Phi(y+dy)$	
	$J_{th}(y) S = J_{th}(y+dy) S \implies \frac{dj_{th}}{dy} = 0$, or d'après la loi de Fourier : $\vec{j}_{th} = -\lambda \frac{dT}{dy} \vec{u}_y$	
	$\Rightarrow \frac{d^2T}{dy^2} = 0$	0.5
	$\Rightarrow T(y) = \alpha y + \beta$	
	en $y = \frac{b}{2}$, $T\left(\frac{b}{2}\right) = \alpha \frac{b}{2} + \beta = T_2$	
	en $y = -\frac{b}{2}$, $T\left(-\frac{b}{2}\right) = -\alpha \frac{b}{2} + \beta = T_1 \implies \alpha = \frac{T_2 - T_1}{b}$ et $\beta = \frac{T_1 + T_2}{2}$	
	$\Rightarrow T(y) = \frac{T_2 - T_1}{b} y + \frac{T_1 + T_2}{2}$	1

I.1.b)	$\vec{j}_{th} = -\lambda \frac{dT}{dv} \vec{u}_y = \lambda \frac{T_1 - T_2}{h} \vec{u}_y$	
	Ainsi: $\Phi = \frac{T_1 - T_2}{b} S \lambda$	0.5
2.a)	Loi de Fourier Loi d'Ohm $ \overline{j}_{th} = -\lambda \overline{grad} T \qquad \overline{j} = \gamma \overline{E} = -\gamma \overline{grad} V $	
	la conductivité thermique λ la conductivité électrique γ la température T le potentiel électrique V la puissance thermique P l'intensité du courant I	2
2.b)	Ainsi la résistance thermique est définie par : $R_{th} = \frac{T_1 - T_2}{\Phi} \qquad \Rightarrow \qquad R_{th} = \frac{b}{\lambda S}$	1
1.a)	II) Approximation d'un milieu continu En régime permanent, le flux thermique traversant les plaques suivant l'axe Oy est le même donc la résistance thermique d'une épaisseur e du matériau, de surface S, constituée d'un empilement de N éléments P ₁ P ₂ est équivalente à une association en série de résistances.	0.5
£.8.	La résistance thermique équivalente est la somme des résistances des N plaques constituant l'empilement : $R'_{th} = \sum_{i=1}^{N} \frac{e_i}{\lambda_i S} = \frac{N}{S} \left(\frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} \right) = \frac{N}{S} \frac{\lambda_1 e_2 + \lambda_2 e_1}{\lambda_1 \lambda_2}$	1.5
1.b)	L'empilement est équivalent à un matériau homogène de section S, d'épaisseur $L=N(e_1+e_2)$, de conductivité thermique équivalente λ_e et de résistance thermique R_{th} telle que : $R'_{th} = \frac{L}{\lambda_e S} = \frac{N}{S} \frac{\lambda_1 e_2 + \lambda_2 e_1}{\lambda_1 \lambda_2} \qquad \Rightarrow \qquad \frac{L}{\lambda_e} = N \frac{\lambda_1 e_2 + \lambda_2 e_1}{\lambda_1 \lambda_2}$ $\Rightarrow \qquad \qquad \lambda_e = \frac{L}{N} \frac{\lambda_1 \lambda_2}{\lambda_1 e_2 + \lambda_2 e_1}$	
	or $L = N(e_1 + e_2)$ \Rightarrow $\lambda_1 e_2 + \lambda_2 e_1$ $\lambda_2 = \frac{\lambda_1 \lambda_2 (e_1 + e_2)}{\lambda_1 e_2 + \lambda_2 e_1}$	0.5
1.c)	Si $\lambda_1 = \lambda_2$, alors $\lambda_e = \frac{\lambda_1 \lambda_2 (e_1 + e_2)}{\lambda_2 e_1 + \lambda_1 e_2} = \lambda_1 = \lambda_2$ Résultat cohérent puisque si $\lambda_1 = \lambda_2$, on forme un matériau homogène. L'expression de R_{th} donnée dans 1.b) est tout à fait pertinente.	1

20)	Bilan thermique en tenant compte, en plus du transfert thermique par conduction,	
2.a)	de celui par convection : Pour une tranche du matériau comprise entre y et y+dy, on a :	
	$\left[\Phi(y) - \Phi(y + dy)\right] dt = mc dT$	
	$[j_{th}(y) - j_{th}(y + dy)] \ell a dt - 2h(a + \ell)(T - T_a) dy dt = \rho c \ell a \frac{\partial T}{\partial t} dt dy$	
	$-\frac{\partial j_{th}}{\partial y}a\ell - 2h(a+\ell)(T-T_a) = \rho c a\ell \frac{\partial T}{\partial t}$	
	$\frac{\partial^2 T}{\partial y^2} - \frac{2h(a+\ell)}{\lambda a \ell} (T - T_a) = \frac{\rho c}{\lambda} \frac{\partial T}{\partial t}$	3
	· Puper and the second	
	En régime permanent, la température T en un point du matériau vérifie l'équation:	
	$\frac{\mathrm{d}^2 T}{\mathrm{d}v^2} - \frac{2h(a+\ell)}{\lambda a \ell} (T - T_a) = 0$	
	$\frac{1}{dv^2} - \frac{\lambda a \ell}{\lambda a \ell} (I - I_a) = 0$	
2.b)	$2h(a+\ell)$	
	On pose $\theta(y) = T(y) - T_a$ et $k^2 = \frac{2h(a+\ell)}{\lambda a \ell}$, on obtient alors :	1.65
	$\frac{\mathrm{d}^2\theta(y)}{\mathrm{d}y^2} - k^2\theta(y) = 0$	
	dy^2	
	dont la solution est de la forme : $\theta(y) = T(y) - T_a = A e^{ky} + B e^{-ky}$	
	en $y = \frac{L}{2}$, on a T = T ₀ \Rightarrow $T_0 - T_a = A e^{kL/2} + B e^{-kL/2}$	
	en $y = -\frac{L}{2}$, on a $T = T_0$ \Rightarrow $T_0 - T_a = A e^{-kL/2} + B e^{kL/2}$	
	$\Rightarrow (A - B) e^{kL/2} + (B - A) e^{-kL/2} = 0 \Rightarrow (A - B) (e^{kL/2} - e^{-kL/2}) = 0$	
	$\Rightarrow 2(A-B) sh(kL/2) = 0 \Rightarrow A = B.$	3.5
	$\Rightarrow T_0 - T_a = A (e^{kL/2} + e^{-kL/2}) = 2 A ch(kL/2)$	
	$\Rightarrow T_0 - T_a = A (e^{kL/2} + e^{-kL/2}) = 2 A ch(kL/2) \Rightarrow A = \frac{T_0 - T_a}{2 ch(kL/2)}$	
	D'où: $T_0 - T_a = A (e^{ky} + e^{-ky}) = 2 A ch(y)$	
	$T(y) = T_a + (T_0 - T_a) \frac{ch(ky)}{ch(kL/2)}$	
	$2h(a \mid b)$	
	avec $k = \sqrt{\frac{2h(a+\ell)}{\lambda a \ell}}$.	