

RAJARATA UNIVERSITY OF SRI LANKA FCULTY OF APPLIED SCIENCES

B.Sc. Second year Semester I Examination - September/October 2014 CHE 2105 - Inorganic Chemistry II

Answer both questions.

Time: 1 hour.

Use of non-programmable calculator is permitted.		
Electronic rest mass	$m_e = 9.11 \times 10^{-31} \text{ kg}$	
Proton rest mass	$m_p = 1.672 \times 10^{-27} \text{ kg}$	
Neutron rest mass	$m_n = 1.675 \times 10^{-27} \text{ kg}$	*
Magnitude of the electron charge	$e = 1.60 \times 10^{-19} C$	
Universal gas constant	$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	
Planck constant	$h = 6.626 \times 10^{-34} \text{ J s}$	
Avogadro number	$N_A = 6.022 \times 10^{23} \text{mol}^{-1}$	
Speed of light	$c = 3.0 \times 10^8 \text{ ms}^{-1}$	
1 atomic mass unit (amu)	1 amu = $1.66 \times 10^{-27} \text{ kg}$	
1 eV	$1eV = 1.602 \times 10^{-19} J$	

- Write a balanced equation to show the reaction between CaH₂ and H₂O. How 1). (a) many grams of CaH₂ are needed to produce 26.4 L of H₂ gas at 20 °C and 10⁵ Pa? (molar mass of H and Ca are 1 and 40 g/mol respectively)
 - Arrange the increasing order of melting point of the alkali metal Li,Na,K. (b)
 - (c) Write the balanced equation for the following reactions:
 - $NH_3 + O_2 \rightarrow$ (i)
 - $Fe_2O_3 + CO \rightarrow$ (ii)

- (d) Explain in terms of molecular geometry account that the CF₄ molecule is nonpolar whereas the SF₄ molecule is polar.
- (e) Draw the shape of SF³⁺ ion and predict the F-S-F angle.
- (f) Write a balanced ionic equation to represent the oxidation of iodide ion by permanganate ion in basic solution.
- (g) Name four types of detectors to detect radiation associated with radioactivity.
- (h) Give radiochemical equation for a fusion reaction of $^{235}_{92}U$ producing $^{141}_{56}Ba$ and $^{92}_{36}Kr$.
- (i) Calculate the energy released if the mass loss in reaction above (h), is 0.213 g for 1 mol of $^{235}_{92}U$.
- (j) Show that the half life ($t_{1/2}$) is independent of the initial concentration.

 $(10 \times 12 \text{ marks} = 120 \text{ marks})$

2). Answer either part (A) or part (B)

Part (A)

Answer all parts.

- (a) Write the balanced chemical reactions of the following:
 - (i) Solid ammonium nitrate is heated to temperature above 300 °C
 - (ii) A mixture of powdered iron(III) oxide and powdered aluminium metal is heated strongly.

(20 marks)

- (b) Sketch the trends for the properties mentioned below, and account for the trend in each case.
 - (i) Boiling point of the element Na, Mg and Al.
 - (ii) Solubility in water of MgSO₄, CaSO₄, SrSO₄, BaSO₄.

(20 marks)

(c) Chalcopyrite (CuFeS₂) is a principle ore of copper. Calculate the amount of Cu obtained in 3.71 x 10³ kg of chalcopyrite.
The molar masses of Cu and CuFeS₂ are 63.5 g mol⁻¹ and 183.5 g mol⁻¹ respectively.

(20 marks)

(d) Show the possible stereoisomers of octahedral complex ion of $[Mn(H_2O)_2(ox)_2]^{2-}$.

(20 marks)

Part (B)

Answer all parts.

- (a) Comment on the stability of the following nuclides, and the type of radioactive decay (if any) that they undergo.
 - (i) $^{18}_{10}Ne$
 - (ii) 236 Th

(12 marks)

- (b) Write balanced nuclear equations for the following reactions.
 - (i) Beta decay of ${}^{66}_{28}Ni$.
 - (ii) Positron decay of $_{19}^{40} K$.

(12 marks)

(c) Strontium-90 is one of the harmful nuclides resulting from nuclear fission explosions. Strontium-90 decays by beta particle emission with a half-life of 28.0 years. How long (in years) would it take for 99.0% of a sample of strontium-90 released in an atmospheric test of an atomic bomb to decay?

(32 marks)

(d) Write down four uses of radioisotopes and briefly explain one of them.

(24 marks)