History

- Rirst appeared in IBM mainframes in 1972
- Allowed multiple users to share a batch-oriented system
- Formal definition of virtualization helped move it beyond IBM
 - A VMM provides an environment for programs that is essentially identical to the original machine
 - Programs running within that environment show only minor performance decreases
 - 3. The VMM is in complete control of system resources
- In late 1990s Intel CPUs fast enough for researchers to try virtualizing on general purpose PCs
 - Xen and VMware created technologies, still used today
 - Virtualization has expanded to many OSes, CPUs, VMMs

History(con..)

- VMware Modern Virtual Machine System.
- ™ Founded 1998, Mendel Rosenblum et al.
 - Research at Stanford University
- - Separates Host OS from virtualization layer
 - Most OS may be Windows, Linux, etc.
 - Wide variety of Guest operating systems

Virtual Machine

- :- A virtual machine (VM) is a software implementation of a machine that executes programs like a physical machine. It shares physical hardware resources with the other users but isolates the OS or application to avoid changing the end-user experience.
- Virtual Machine is the part of cloud computing.

Why We Need VM?

- Who has access to these system?
- How are they managed?
- What security is in place?

We Do Virtualization

- VM share the centralized server processor, memory & storage.
- Earlier 800 Million unique server is working.

But now with VM only 60 Million server is doing the

same work of 800 Million server.

System Models

(a) Nonvirtual machine

(b) Virtual machine

VMware Architecture

Definitions

03

A Host Operating System:

- The operating system actually running on the hardware
- Together with virtualization layer, it simulates environment for ...

Guest Operating System:

- The operating system running in the simulated environment
- ☑ E.g., the one we are trying to debug

Types of Virtual Machine

03

- System virtual machine:
- virtualization VMs) provide a complete substitute for the targeted real machine and a level of functionality required for the execution of a complete operating system.

System Virtual Machine

03

APP APP APP

APP

APP

APP

APP

Operating System

Simulated Machine

Operating System

Simulated Machine

Virtual Machine Monitor (VMM)

Hardware -- "real machine"

Process Virtual Machine

03

- or process virtual machines are designed to execute a single computer program by providing an abstracted and platform-independent program execution environment. A process VM, sometimes called an application virtual machine, or Managed Runtime Environment (MRE).
- It is created when the process is started and destroyed when it exits.
- A process VM provides a high-level abstraction that of a high-level programming language (compared to the low-level ISA abstraction of the system VM). Process VMs are implemented using an interpreter; performance comparable to compiled programming languages is achieved by the use of just-in-time compilation.

Process Virtual Machines

Language Virtual Machine

- This type of VM has become popular with the <u>Java programming</u> <u>language</u>, which is implemented using the <u>Java virtual machine</u>.
- The <u>Parrot virtual machine</u>, and the <u>.NET Framework</u>, which runs on a VM called the <u>Common Language Runtime</u>. All of them can serve as an <u>abstraction layer</u> for any computer language.
- Unlike other process VMs, these systems do not provide a specific programming language, but are embedded in an existing language; typically such a system provides bindings for several languages (e.g., C and FORTRAN).
- Examples are PVM (<u>Parallel Virtual Machine</u>) and MPI (<u>Message Passing Interface</u>). They are not strictly virtual machines, as the applications running on top still have access to all OS services, and are therefore not confined to the system model.

The Java Virtual Machine

Own idealized architecture Stylized machine language Byte codes Readily available interpreter

What is Hypervisor

- A hypervisor or virtual machine monitor (VMM) is a piece of computer software, firmware or hardware that creates and runs virtual machines.
- A computer on which a hypervisor is running one or more virtual machines is defined as a host machine. Each virtual machine is called a guest machine

Types of Hypervisor

VMware ESX, Microsoft Hyper-V,

Citrix XenServer

- Bare-Metal
- Hosted

VMware Workstation, Microsoft Virtual PC,

Sun VirtualBox, QEMU, KVM

Implementation of VMMs

- Vary greatly, with options including:
 - Type 0 hypervisors Hardware-based solutions that provide support for virtual machine creation and management via firmware
 - IBM LPARs and Oracle LDOMs are examples
 - Type 1 hypervisors Operating-system-like software built to provide virtualization
 - Including VMware ESX, Joyent SmartOS, and Citrix XenServer
 - Type 1 hypervisors Also includes general-purpose operating systems that provide standard functions as well as VMM functions
 - Including Microsoft Windows Server with HyperV and RedHat Linux with KVM
 - Type 2 hypervisors Applications that run on standard operating systems but provide VMM features to guest operating systems
 - Includeing VMware Workstation and Fusion, Parallels Desktop, and Oracle VirtualBox

Implementation of VMMs (cont.)

- Other variations include:
- Para virtualization Technique in which the guest operating system is modified to work in cooperation with the VMM to optimize performance
- Programming-environment virtualization VMMs do not virtualize real hardware but instead create an optimized virtual system

 Used by Oracle Java and Microsoft.Net
- Emulators Allow applications written for one hardware environment to run on a very different hardware environment, such as a different type of CPU
- Application containment Not virtualization at all but rather provides virtualization-like features by segregating applications from the operating system, making them more secure, manageable Including Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs
- Much variation due to breadth, depth and importance of virtualization in modern computing

What is Virtualization

03

Virtualization is defined as the abstraction of objects ("things"), creating a virtual (rather than actual) version of objects such as a server or storage device.

For example, when you partition a hard drive into two partitions - C and D, say - you create virtual drives but the physical hard drive has not changed.

OR

Virtualization is a technology to run multiple same or different operating systems which is completely isolated from each other. "Ex: Run both Windows and Linux on the same machine.

Types of Virtualization

- Server Virtualization
- Desktop Virtualization
- Application Virtualization
- **Memory**
- Storage
- ™ Data
- Network

Server Virtualization

- Hardware virtualization or platform virtualization refers to the creation of a virtual machine that acts like a real computer with an operating system. Software executed on these virtual machines is separated from the underlying hardware resources.
- Oifferent types of hardware virtualization include:
- Full virtualization almost complete simulation of the actual hardware to allow software, which typically consists of a guest operating system, to run unmodified.
- Partial virtualization some but not all of the target environment is simulated. Some guest programs, therefore, may need modifications to run in this virtual environment.
- Para virtualization a hardware environment is not simulated; however, the guest programs are executed in their own isolated domains, as if they are running on a separate system. Guest programs need to be specifically modified to run in this environment.

Normal Server Issue

03

Re-build OS

○ Disaster Recovery

Same Vendor

Solution

- Consolidation
- Shared CPU, Memory, NIC, DISK
- Maximum utilization − 90-95%
- Centralized Management
- Migration

Server Virtualization-Benefits

- → Host servers connected over SAN
- Hardware fail tolerance
- High availability
- Online live migration
- Reasy management
- Disaster Recovery
- Easily scalable, Adjustable
- Different Vendor, Type, Model servers controlled by Hypervisor
- Call Less hardware management / maintenance cost
- Better efficiency with less cost
- Maintain average utilization %

Desktop Virtualization

- Same as server Virtualization
- User's desktop runs on data servers as Virtual machines
- Secured by design
- Multiple OSes runs on same Hypervisor host
- ca Centralized management
- Shared resources with maximum utilization
- Supports multimedia / memory intensive apps on VM

Desktop Pool

Desktop Virtualization - Benefits

03

- Centralized Service pack upgrade / OS patch installation
- OS upgrade from one version to another
- High availability
- Rault tolerance
- Accessed via LAN, WAN, Internet & Mobile
- Offline use with help of VM Player / XenClient on Desktop, Laptop and ThinClients.

Application Virtualization

- Business applications runs on servers located in datacenter
- Secured by design
- One / more apps runs on same set of servers
- Centralized application management
- Shared resources with maximum utilization
- Supports multimedia / memory intensive apps
- Reduces licensing cost
- Role based user access controlled by policies

How it Work?

Application Virtualization - Benefits

- Applications delivered on-demand
- No need to install and manage on every user desktop
- Increased performance
- Reasily upgraded and deliver instantly
- Rublished either locally installed or steamed to server

Application Virtualization - Benefits

03

- Offline access via streamed on client machines with help of offline plug-in
- Role based application functionality
- Multiple version of same application accessibility
- Application isolation
- Accessed via LAN, WAN, Internet & Mobile
- Server to client

Top 10 Virtualization Technology Companies

- ca Citrix
- Oracle
- Microsoft
- Red hat
- Amazon
- Google
- Virtual bridges
- R Proxmox
- R Parallels

Summary

03

Virtual machines are a number of discrete identical execution environments on a single computer, each of which runs an operating system. This can allow applications written for one OS to be executed on a machine which runs a different OS which provide a greater level of isolation between processes than is achieved when running multiple processes on the same instance of an OS.