Андреев Артём Русланович

Группа: М32001

Практическая работа №1

Метод Монте-Карло

Задание:

Методом Монте-Карло оценить объем части тела $\{F(\bar{x}) \leq c\}$, заключённой в k-мерном кубе с ребром [0, 1]. Функция имеет вид $F(\bar{x}) = f(x_1) + f(x_2) + \dots + f(x_k)$. Для выбранной надежности $\gamma \geq 0.95$ указать асимптотическую точность оценивания и построить асимптотический доверительный интервал для истинного значения объёма.

Используя объем выборки $n=10^4$ и $n=10^6$ оценить скорость сходимости и показать, что доверительные интервалы пересекаются.

Вариант №1:

$$f(x) = \alpha^{x};$$
 Размерность k = 3; Параметр c = 4.3; Параметр α = 2

Выбранная надёжность $\gamma = 0.95$

Результаты:

Объём выборки	Искомый объём	Доверительный интервал	Длина доверительного интервала
$n = 10^4$	0.4937	[0.4839; 0.5035]	0.0196
$n = 10^4$	0.4891	[0.4881; 0.4901]	0.0020

Выводы:

- 1) Доверительный интервал большего объёма выборки лежит в доверительном интервале меньшей выборки.
- 2) При увеличении объёма выборки в 100 раз, точность полученного значения (длина доверительного интервала) уменьшилась в ≈ 10 раз, из чего следует, что скорость сходимость доверительного интервала пропорциональна \sqrt{n} .