```
Sample directory:
/disk/bulk_atp/gator/Sample_Sim_and_Analysis_Results/Tetratex_LEGEND
 ====== Simulation input ======
 (See geometry below)
gatordir="/disk/bulk_atp/gator"
binary="/disk/bulk_atp/gator/simulations/gator_v2.0/bin/Linux-g++/gator_1.2"
datadir="/disk/bulk_atp/gator/Sample_Sim_and_Analysis_Results"
sample="Tetratex_LEGEND"
queue="2:00:00"
maxnodes=50
totevents= 100000000
n_beamOn= 1000000
isotope_list=[ "238U", "232Th", "40K", "60Co", "137Cs", "226Ra", "235U", "228Th", "110mA
g", "207Bi", "54Mn", "58Co", "57Co", "134Cs", "46Sc"]
 ====== Line efficiency =======
See values in Table 1.
 ====== Livetime and inputs for the analysis =======
Measure life time: 4.32e+06 s = 50 d
Background life time: 3.24e+06 s = 37.5 d
Background folder:
/disk/bulk_atp/gator/background/bkg_2019_10_red_clean_excludefirstfiles
Calibration folder: /disk/bulk_atp/gator/Calibrations/2015.08.07
Amount of material (kg or pieces): 1.06
 === List of SPE files used for the analysis ===
Tetratex_20191125_v1_008.SPE
Tetratex_20191125_v1_009.SPE
Tetratex_20191125_v1_010.SPE
Tetratex_20191125_v1_011.SPE
Tetratex_20191125_v1_012.SPE
Tetratex_20191125_v1_014.SPE
Tetratex_20191125_v1_015.SPE
Tetratex_20191125_v1_016.SPE
Tetratex_20191125_v1_017.SPE
Tetratex_20191125_v1_018.SPE
Tetratex_20191125_v1_019.SPE
Tetratex_20191125_v1_020.SPE
Tetratex_20191125_v1_021.SPE
Tetratex_20191125_v1_022.SPE
Tetratex_20191125_v1_024.SPE
Tetratex_20191125_v1_025.SPE
Tetratex_20191125_v1_026.SPE
Tetratex_20191125_v1_027.SPE
Tetratex_20191125_v1_028.SPE
Tetratex_20191125_v1_029.SPE
Tetratex_20191125_v1_031.SPE
Tetratex_20191125_v1_032.SPE
Tetratex_20191125_v1_033.SPE
Tetratex_20191125_v1_034.SPE
Tetratex_20191125_v1_036.SPE
Tetratex_20191125_v1_037.SPE
Tetratex_20191125_v1_038.SPE
Tetratex_20191125_v1_039.SPE
Tetratex_20191125_v1_040.SPE
Tetratex_20191125_v1_042.SPE
Tetratex_20191125_v1_043.SPE
Tetratex_20191125_v1_044.SPE
Tetratex_20191125_v1_045.SPE
```

```
Tetratex_20191125_v1_046.SPE
Tetratex_20191125_v1_047.SPE
Tetratex_20191125_v1_048.SPE
Tetratex_20191125_v1_050.SPE
Tetratex_20191125_v1_051.SPE
Tetratex_20191125_v1_052.SPE
Tetratex_20191125_v1_053.SPE
Tetratex_20191125_v1_054.SPE
Tetratex_20191125_v1_056.SPE
Tetratex_20191125_v1_057.SPE
Tetratex_20191125_v1_058.SPE
Tetratex_20191125_v1_059.SPE
Tetratex_20191125_v1_060.SPE
Tetratex_20191125_v1_061.SPE
Tetratex_20191125_v1_062.SPE
Tetratex_20191125_v1_064.SPE
Tetratex_20191125_v1_065.SPE
Tetratex_20191125_v1_066.SPE
Tetratex_20191125_v1_067.SPE
Tetratex_20191125_v1_068.SPE
Tetratex_20191125_v1_070.SPE
Tetratex_20191125_v1_071.SPE
Tetratex_20191125_v1_072.SPE
Tetratex_20191125_v1_073.SPE
Tetratex_20191125_v1_074.SPE
Tetratex 20191125 v1 075.SPE
Tetratex 20191125 v1 077.SPE
Tetratex_20191125_v1_078.SPE
Tetratex_20191125_v1_079.SPE
Tetratex_20191125_v1_080.SPE
Tetratex_20191125_v1_081.SPE
Tetratex_20191125_v1_082.SPE
Tetratex_20191125_v1_084.SPE
Tetratex_20191125_v1_085.SPE
Tetratex_20191125_v1_086.SPE
Tetratex_20191125_v1_087.SPE
Tetratex_20191125_v1_088.SPE
Tetratex_20191125_v1_089.SPE
Tetratex_20191125_v1_090.SPE
Tetratex_20191125_v1_091.SPE
Tetratex_20191125_v1_093.SPE
Tetratex_20191125_v1_094.SPE
Tetratex_20191125_v1_095.SPE
Tetratex_20191125_v1_096.SPE
Tetratex_20191125_v1_098.SPE
Tetratex_20191125_v1_099.SPE
Tetratex_20191125_v1_100.SPE
Tetratex_20191125_v1_101.SPE
Tetratex_20191125_v1_102.SPE
Tetratex_20191125_v1_103.SPE
Tetratex_20191125_v1_104.SPE
Tetratex_20191125_v1_106.SPE
Tetratex_20191125_v1_107.SPE
Tetratex_20191125_v1_108.SPE
Tetratex_20191125_v1_109.SPE
Tetratex_20191125_v1_110.SPE
Tetratex_20191125_v1_112.SPE
Tetratex_20191125_v1_113.SPE
Tetratex_20191125_v1_114.SPE
Tetratex_20191125_v1_115.SPE
Tetratex_20191125_v1_116.SPE
Tetratex_20191125_v1_117.SPE
Tetratex_20191125_v1_118.SPE
Tetratex_20191125_v1_120.SPE
```

```
Tetratex_20191125_v1_121.SPE
Tetratex_20191125_v1_122.SPE
Tetratex_20191125_v1_123.SPE
=== List of SPE files excluded from the analysis ===
Tetratex_20191125_v1_000.SPE
Tetratex_20191125_v1_001.SPE
Tetratex_20191125_v1_002.SPE
Tetratex_20191125_v1_003.SPE
Tetratex_20191125_v1_004.SPE
Tetratex_20191125_v1_005.SPE
Tetratex_20191125_v1_006.SPE
Tetratex_20191125_v1_007.SPE
Tetratex_20191125_v1_013.SPE
Tetratex_20191125_v1_023.SPE
Tetratex_20191125_v1_030.SPE
Tetratex_20191125_v1_035.SPE
Tetratex_20191125_v1_041.SPE
Tetratex_20191125_v1_049.SPE
Tetratex_20191125_v1_055.SPE
Tetratex_20191125_v1_063.SPE
Tetratex_20191125_v1_069.SPE
Tetratex_20191125_v1_076.SPE
Tetratex_20191125_v1_083.SPE
Tetratex_20191125_v1_092.SPE
Tetratex 20191125 v1 097.SPE
Tetratex_20191125_v1_105.SPE
Tetratex_20191125_v1_111.SPE
Tetratex_20191125_v1_119.SPE
Tetratex_20191125_v1_124.SPE
Tetratex_20191125_v1_125.SPE
 ====== Geometry of the sample ======
See figure of the geometry below.
The .wrl file is also saved in the sample directory. And the
dimensions/material and position are specified in the code below.
----- icc file code ------
// Set visibility properties for all the samples
G4VisAttributes* sample_vis = new G4VisAttributes(red);
sample_vis -> SetVisibility(true);
sample_vis -> SetForceSolid(false);
//---- volume Tetratex_LEGEND ------
//Dimensions of the sample in box and definition of the geometry
G4double box_Tetratex_LEGEND_x= 190*mm;
 G4double box_Tetratex_LEGEND_y= 200*mm;
 G4double box_Tetratex_LEGEND_z= 70*mm;
 G4Box* Tetratex_LEGEND= new
G4Box("Tetratex_LEGEND", 0.5*box_Tetratex_LEGEND_x, 0.5*box_Tetratex_LEGEND_y, 0.5*
box_Tetratex_LEGEND_z);
//Construct the logical volume
G4LogicalVolume* Tetratex_LEGEND_log = new
G4LogicalVolume(Tetratex_LEGEND, Tetratex_mat, "Tetratex_LEGEND_log");
// Set visibility for the sample (all are set to the same color, change it if
necessary)
Tetratex_LEGEND_log -> SetVisAttributes(sample_vis);
// Set coordinates for the position of the sample at the top of the detector
```

```
G4double Tetratex_LEGEND_Pos_x =0*mm;
G4double Tetratex_LEGEND_Pos_y =0*mm;
G4double Tetratex_LEGEND_Pos_z=
endcapPos_z+0.5*endcapHeight1+0.5*box_Tetratex_LEGEND_z+0.01*mm;

// Define the position vector
G4ThreeVector
Tetratex_LEGEND_Pos(Tetratex_LEGEND_Pos_x,Tetratex_LEGEND_Pos_y,Tetratex_LEGEND_Pos_z);

// Define the physical volume
G4VPhysicalVolume* Tetratex_LEGEND_phys = new
G4PVPlacement(0,Tetratex_LEGEND_Pos,Tetratex_LEGEND_log,"Tetratex_LEGEND_phys",c
avity1_log,false,0,true);
```


	Energy (keV)	Line BR	Effic	BRxEffic
²³⁴ Th		0.0433	0.0111	0.000483
	185.72	0.572	0.000995	0.000569
²¹² Pb	238.632	0.436	0.0184	0.00803
²¹⁴ Pb	295.224	0.184	0.0187	0.00345
^{228}Ac	338.32	0.114	0.0179	0.00204
²¹⁴ Pb	351.932	0.356	0.0176	0.00625
²⁰⁸ Tl	583.187	0.3054	0.0120	0.00365
²¹⁴ Bi	609.312	0.4549	0.0126	0.00573
$^{137}\mathrm{Cs}$	661.657	0.8499	0.0140	0.0119
$^{54}\mathrm{Mn}$	834.838	0.999746	0.0125	0.0125
$^{46}\mathrm{Sc}$	889.271	0.99984	0.0113	0.0113
^{228}Ac	911.196	0.262	0.00990	0.00259
^{228}Ac	968.96	0.159	0.00985	0.00157
²¹⁴ Bi	1120.29	0.1491	0.00937	0.00140
$^{46}\mathrm{Sc}$	1120.54	0.99987	0.0100	0.0100
⁶⁰ Co	1173.23	0.9985	0.00988	0.00986
⁶⁰ Co	1332.49	0.9998	0.00924	0.00924
⁵⁸ Co	810.775	0.99	0.0124	0.0123
$^{40}\mathrm{K}$	1460.88	0.1055	0.00939	0.000990
²¹⁴ Bi	1764.49	0.1531	0.00786	0.00120
²⁰⁸ Tl	2614.51	0.3584	0.00521	0.00187

Table 1: Efficiency Table, as calculated by the simulation.

	E(keV)	PeakCnts	CompCnts	BkCnts	isBkdet	LineCnts	LdCnts	LdActiv	Activity (mBq/u.)
²³⁴ Th	92.6	141 +- 12	139 +- 12	-24 +- 13	Τ	2 + - 22	75.1	37.8	< 38.5
$^{235}{ m U}$		219 + -15	216 + -15	-8 + -17	${ m T}$	3 + -27	94.0	40.0	< 41.2
II			173 + 13		${ m T}$	7 + -25	89.3	2.70	< 2.90
	295.224	146 + 12	113 + - 11	-3 + -14	${ m T}$	34 + -21	73.7	5.19	< 7.32
228 Ac	338.32	91.0 + - 9.6	89.7 + 9.5	25 + -11	${ m T}$	-24 + -17	64.7	7.69	< 7.69
$ ^{214}$ Pb	351.932	186 + - 14	68.4 + - 8.3	30 + - 13	${ m T}$	88 + - 21	67.1	2.60	3.07 + 0.79
208 Tl	583.187	75.8 + -8.8	$39.8 \; + \; 6.4$	17.4 + - 8.2	$^{\circ}$ T	19 + - 14	47.3	3.15	< 4.26
II			$48.6 \; + \; 7.0$			100 + - 18	55.2	2.34	3.80 + -0.79
137Cs	661.657	96.5 + 9.9	36.7 + - 6.1	13.4 + - 6.4	· T	46 + 13	42.2	0.863	0.85 + -0.26
$10^{54} \mathrm{Mn}$	834.838	24.4 + 5.0	21.9 + - 4.8	5.3 + -5.7	${ m T}$	-2.8 + -9.0	34.4	0.668	< 0.668
46 Sc	889.271	18.0 + - 4.4	16.5 + - 4.2	3.5 + -5.3	${ m T}$	-2.1 + -8.1	31.2	0.671	< 0.671
			$28.2 \; + \!\!\!\!\! - \; 5.4$			9 + - 11	40.0	3.74	< 4.46
	968.96	43.4 + -6.7	$23.1 \; + \!\!\!\! - \; 4.9$	10.7 + -5.3	T	9.6 + - 9.8	35.2	5.45	< 6.79
	1120.29	78.3 + 8.9	9.4 + - 3.2	9.3 + -5.8	${ m T}$	60 + -11	30.5	5.31	9.3 + -2.0
	1120.54	78.9 + 8.9	10.4 + - 3.4	6.3 + -5.9	${ m T}$	62 + -11	30.4	0.736	1.35 + -0.28
60Co	1173.23	20.9 + -4.7	16.1 + - 4.1	-0.1 + -5.7	T	4.7 + -8.4	31.1	0.764	< 0.868
60Co	1332.49	10.7 + -3.4	$10.3 +\!\!\!\!- 3.4$	5.3 + -4.6	${ m T}$	-5.0 + -6.7	27.2	0.715	< 0.715
58Co	810.775	29.6 + -5.5	25.0 + -5.1	-0.6 + -4.7	T	4.6 + -8.9	32.5	0.640	< 0.722
^{40}K	1460.88	316 + - 18	9.2 + - 3.2	62 + -11	${ m T}$	$245 +\!\!\!- 21$	51.1	12.5	54.0 + -7.1
			1.9 + 1.7			57 + -11	30.9	6.23	10.3 + -2.3
208Tl	2614.51	97.5 +- 9.9	0.5 + -1.2	13.3 + -5.7		84 +- 11	27.0	3.51	9.8 + -1.7

Table 2: Activity Table, as calculated by the analysis code and given per unit, as indicated in the analysis input. Limits are given at $95\mathrm{CL}$, activities at one sigma.

