MORE STATISTICS WITH GAUSSIANS

10.9.2020

PROBLEM SET 3

* how's it going?

W. S. Gosset aka "Student"

- * Let's say we have two sets of samples from different gaussian random variables
- * We want to know whether the means of these two samples are equal, or if one is greater than the other

* the t-test uses the t statistic, which is defined as:

$$t = \frac{Z}{s} = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

* under the null hypothesis, the t
statistic follows the t distribution,
which has one parameter (the number of
degrees of freedom)

- * the t-test is implemented in scipy.stats
 - * scipy.stats.ttest_ind : tests whether two different (independent) samples have the same mean

- * scipy.stats also includes other flavors
 of t-test which are useful
 - * scipy.stats.ttest_1samp : tests whether the mean of your sample is different from a given value (assuming your sample has a gaussian distribution)

PAIRED T-TEST

- * scipy.stats also includes other flavors
 of t-test which are useful
 - * scipy.stats.ttest_rel : aka the paired t-test, tests whether two related sets of samples have different means

PAIRED T-TEST

- * fMRI example: suppose you measure the response of each voxel in a given brain area under condition A, and then again under condition B. you now have 2 different samples, but they are related
- * testing for the difference of the two populations could obscure a difference between the conditions

PAIRED T-TEST

* the solution: compute the difference between resp(A) and resp(B), then do a ttest on whether that difference is different from zero

END