NORTHEASTERN UNIVERSITY

Department of Mechanical and Industrial Engineering

Supply Chain Engineering IE 7200

Prof. Gupta Spring 2014 (Mondays)

Homework No. 5 (Solution)

Problem 1.

Annual cost of holding inventory is 25% Therefore, holding cost, $H = $120 \times 0.25 = 30 per motor/year

Transit time
By truck = 3 days
By rail = 5 days

AM Rail Proposal

Minimum shipment is 20,000lbs or 2,000 motors Replenishment lead time, L = 5+1 = 6 days For Q = 2,000 motors,

Cycle inventory = Q/2 = 1,000 motors

Safety inventory = L/2 days of demand = (6/2)(120,000/365)

= 986 motors

Total annual cost = \$108,900 + \$78,000 = \$186,900

Northeast Trucking Proposal

Minimum shipment is 10,000lbs or 1,000 motors Replenishment lead time, $L = \frac{3+1}{4} = 4$ days For Q = 1,000 motors,

Cycle inventory = Q/2 = 500 motors

Safety inventory = $\frac{L/2}{days}$ of demand = (4/2)(120,000/365)

= 658 motors

Total annual cost = \$64,320 + \$90,000 = \$154,320

Golden Freightways Proposal (50 cwt)

Minimum shipment is 5,000lbs or 500 motors Replenishment lead time, L = 3+1 = 4 days For Q = 500 motors, Cycle inventory = Q/2 = 250 motors

Safety inventory = L/2 days of demand = (4/2)(120,000/365)

= 658 motors

In-transit inventory = 120,000(3/365) = 986 motors Total average inventory = 250 + 658 + 986 = 1,894 motors Annual holding cost = $1,894 \times \$30$ = \$56,820Annual transportation cost = $120,000 \times 0.8$ = \$96,000

Total annual cost = \$56,820 + \$96,000 = \$152,820

Golden Freightways Proposal (150 cwt)

Minimum shipment is 15,000lbs or 1,500 motors Replenishment lead time, L = 3+1 = 4 days For Q = 1,500 motors,

Cycle inventory = Q/2 = 750 motors

Safety inventory = L/2 days of demand = (4/2)(120,000/365)

= 658 motors

Total annual cost = \$71,820 + \$96,000 = \$167,820

Golden Freightways Proposal (250 cwt)

Minimum shipment is 25,000lbs or 2,500 motors Replenishment lead time, L = 3+1 = 4 days For Q = 2,500 motors,

Cycle inventory = Q/2 = 1250 motors

Safety inventory = L/2 days of demand = (4/2)(120,000/365)

= 658 motors

Total annual cost = \$86,820 + \$86,400 = \$173,220

Golden Freightways Proposal (300 cwt)

Minimum shipment is 30,000lbs or 3,000 motors Replenishment lead time, L = 3+1 = 4 days For Q = 3,000 motors,

Cycle inventory = Q/2 = 1500 motors

Safety inventory = L/2 days of demand = (4/2)(120,000/365)

= 658 motors

In-transit inventory = 120,000(3/365) = 986 motors Total average inventory = 1500 + 658 + 986 = 3,144 motors

^{*}Note that 0.72 is derived from (150x0.80 + 100x0.60)/250

Annual holding cost = $3,144 \times \$30$ = \$94,320Annual transportation cost = $120,000 \times 2/3*$ = \$80,000

Total annual cost = \$94,320 + \$80,000 = \$174,320

*Note that 2/3 is derived from (150x0.80 + 100x0.60 + 50x0.40)/300

Golden Freightways Proposal (Old Proposal)

Minimum shipment is 40,000lbs or 4,000 motors Replenishment lead time, L = 3+1 = 4 days For Q = 4,000 motors,

Cycle inventory = Q/2 = 2000 motors

Safety inventory = L/2 days of demand = (4/2)(120,000/365)

= 658 motors

Total annual cost = \$109,320 + \$72,000 = \$181,320

Golden Freightways Proposal (New Proposal)

Minimum shipment is 40,000lbs or 4,000 motors Replenishment lead time, L = 3+1 = 4 days For Q = 4,000 motors,

Cycle inventory = Q/2 = 2000 motors

Safety inventory = L/2 days of demand = (4/2)(120,000/365)

= 658 motors

Total annual cost = \$109,320 + \$67,500 = \$176,820

From the results, the plant manager should sign a contract with Golden Freightways and order motors in lots of 500.

^{*}Note that 0.60 is derived from (150x0.80 + 100x0.60 + 150x0.40)/400

^{*}Note that 0.60 is derived from (150x0.80 + 100x0.60 + 150x0.30)/400

Problem 2.

Current Scenario

Replenishment lead time, L = 1 week Reorder interval, T = 4 weeks CSL = 0.997 $F^{-1}(0.997) = z$ = 2.75

1. HighMed Inventory Cost

For Highval

Average lot size, Q_H = expected demand during T weeks = $T \times \mu_H$

 $= 4 \times 2 = 8$ units

Safety inventory, $SS_H = F^{-1}(CSL) \times \sigma_{T+L} = F^{-1}(CSL) \times \sqrt{T+L} \times \sigma_H$

 $= F^{-1}(0.997) \times \sqrt{4+1} \times 5$ = 30.7 units

Total Highval inventory = $Q_H/2+SS_H=(8/2)+30.7$ = 34.7 units Total across all 24 territories = 24×34.7 = 832.8 units

Average lot size, Q_L = expected demand during T weeks = $T \times \mu_L$

 $=4\times20=80$ units

Safety inventory, $SS_L = F^{-1}(0.997) \times \sqrt{4+1} \times 5 = 30.7$ units Total Lowval inventory = (80/2) + 30.7 = 70.7 units Total across all 24 territories = 24×70.7 = 1696.8 units

Annual inventory holding cost for HighMed = (average HighVal inventory × \$200 + average LowVal

inventory \times \$30) \times 0.25

 $= (832.8 \times \$200 + 1696.8 \times \$30) \times 0.25$

= \$54,366

2. HighMed Transportation Cost

Average weight of each replenishment order = $0.1Q_H + 0.04Q_L = 0.1 \times 8 + 0.04 \times 80$

= 4 pounds

Shipping cost per replenishment order $= \$0.66 + 0.26 \times 4$

= \$1.70

Each territory has 13 replenishment orders per year and there are 24 territories. Therefore,

Annual transportation cost = $\$1.70 \times 13 \times 24$

= \$530.40

3. HighMed Total Cost

HighMed Annual Total Cost = inventory cost + transportation cost

= \$54,366 + \$530.40

= \$54,896.40

Option A

Replenishment lead time, L = 1 week Reorder interval, T = 1 week CSL = 0.997

1. HighMed Inventory Cost

For Highval

Average lot size, Q_H = expected demand during T weeks

 $= T \times \mu_H$

 $= 1 \times 2 = 2$ units

Safety inventory, SS_H = $F^{-1}(CSL) \times \sigma_{T+L} = F^{-1}(CSL) \times \sqrt{T+L} \times \sigma_H$

 $= F^{-1}(0.997) \times \sqrt{1+1} \times 5$ = 19.4 units

Total Highval inventory = $Q_H/2+SS_H=(2/2)+19.4$ = 20.4 units Total across all 24 territories = 24×20.4 = 490 units

For Lowval

Average lot size, Q_L = expected demand during T weeks = $T \times \mu_L$

 $= 1 \times 20 = 20 \text{ units}$

Safety inventory, $SS_L = F^{-1}(0.997) \times \sqrt{1+1} \times 5 = 19.4$ units Total Lowval inventory = (20/2) + 19.4 = 29.4 units Total across all 24 territories = $24 \times 29.4 = 706$ units

 $Annual\ inventory\ holding\ cost\ for\ HighMed = (average\ HighVal\ inventory\ \times\ \$200 + average\ LowVal\ inventory\ +\ (average\ LowVal\ inventory\ +\ (ave$

inventory \times \$30) \times 0.25 = $(490 \times \$200 + 706 \times \$30) \times 0.25$ = \$29,795

2. HighMed Transportation Cost

Average weight of each replenishment order = $0.1Q_H + 0.04Q_L = 0.1 \times 2 + 0.04 \times 20$

= 1 pound

Shipping cost per replenishment order = $\$0.66 + 0.26 \times 1$

= \$0.92

Each territory has 52 replenishment orders per year and there are 24 territories. Therefore,

Annual transportation cost = $\$0.92 \times 52 \times 24$

= \$1,148.16

3. HighMed Total Cost

HighMed Annual Total Cost = inventory cost + transportation cost

= \$29,795 + \$1,148.16

= \$30,943.16

Option B

Replenishment lead time, L = 1 week Reorder interval, T = 1 week CSL = 0.997

1. HighMed Inventory Cost

For Highval

Average lot size, Q_H = expected demand during T weeks

 $= T \times \mu_H$

 $= 1 \times 48 = 48 \text{ units}$

Safety inventory, $SS_H = F^{-1}(0.997) \times \sqrt{1+1} \times \sqrt{24 \times 5^2} = 95.2$ units Total Highval inventory $= Q_H/2 + SS_H = (48/2) + 95.2 = 119.2$ units For Lowval

Average lot size, Q_L = expected demand during T weeks = $T \times \mu_L$

 $= 1 \times 480 = 480$ units

Safety inventory, $SS_L = F^{-1}(0.997) \times \sqrt{1+1} \times \sqrt{24 \times 5^2} = 95.2$ units Total Lowval inventory = (480/2) + 95.2 = 335.2 units

Annual inventory holding cost for HighMed = (average HighVal inventory × \$200 + average LowVal

inventory
$$\times$$
 \$30) \times 0.25
= $(119.2 \times \$200 + 355.2 \times \$30) \times 0.25$
= $\$8.474$

2. HighMed Transportation Cost

Average weight of each shipment $= 0.1 \times 1 + 0.04 \times 10$

= 0.5 pound

Shipping cost per order = $\$5.\overline{53} + 0.53 \times 0.5$

= \$5.80

Aggregate territory has 2 x 24 x 52 shipments per year. Therefore,

Annual transportation cost = $\$5.80 \times 2 \times 24 \times 52$

= \$14,464.32

3. HighMed Total Cost

HighMed Annual Total Cost = inventory cost + transportation cost

= \$8,474 + \$14,464.32

= \$22,938

From the result, HighMed should apply Option B by aggregating all inventories and using FedEX transportation.

Comparison

	Current Scenario	Option A	Option B
No. of stocking locations	24	24	1
Reorder interval	4 weeks	1 week	1 week
HighVal cycle inventory	96 units	24 units	24 units
HighVal safety inventory	736.8 units	466 units	95.2 units
HighVal inventory	832.8 units	490 units	119.2 units
LowVal cycle inventory	960 units	240 units	240 units
LowVal safety inventory	736.8 units	466 units	95.2 units
LowVal inventory	1696.8 units	706 units	335.2 units
Annual inventory cost	\$54,366	\$29,795	\$8,474
Shipment type	Replenishment	Replenishment	Customer order
Shipment size	8 HighVal+80 LowVal	2 HighVal+20 LowVal	1 HighVal+10 LowVal
Shipment weight	4 lbs.	1 lbs.	0.5 lbs.
Annual transport cost	\$530	\$1,148	\$14,464
Total annual cost	\$54,896	\$30,943	\$22,938