"SASUKE" Traffic Monitoring Tool

Traffic Shift Monitoring Based on Correlation between BGP Messages and Flow Data

Atsushi Kobayashi

Yutaka Hirokawa

Hiroshi Kurakami

NTT Information Sharing Laboratories

Outline

- Introduction
 - Background
 - Motivation
 - Challenge
- System Architecture
 - BGP Collection
 - Flow Collection
 - Visualization
- □ Traffic Change Detection Method
- Conclusion

Background

- Announcement of unwanted or invalid BGP route suddenly leads to traffic diversions.
 - Cutting of submarine cable, route hijacking, misconfiguration, ...
- Moreover, it disrupts traffic or causes congestion on other backbone links.

Motivation

- Our goal is to reduce the load for troubleshooting.
- Our tool detects a traffic change and then identifies BGP route announcements involved.
 - Monitors traffic volume for BGP attributes that have an impact on the traffic change:
 - ✓ Origin ASN
 - ✓ Neighbor ASN (peer ASN)
 - ✓ AS Path
 - ✓ BGP Next Hop
 - ✓ Community.
 - Identifies route changes that have an impact on the traffic change.

Related Work

- □ Flow records from border routers can be utilized for origin or neighbor ASN traffic analysis.
 - However, border gateway router cannot export both origin and neighbor ASNs.
 - Difficult to collect BGP Next Hop and AS Path info.
- Some commercial collectors with BGP sessions can sum up traffic on the basis of BGP attributes.
 - There are few tools for analyzing the interrelation of BGP and Flow data.
- BGP and Flow analysis system have been proposed by several groups¹⁾.
 - Simpler method and its visualization are required.
- 1) For example, J. Wu, Z. M. Mao, J. Rexford, and J. Wang, "Finding a needle in a haystack: Pinpointing significant BGP routing changes in an IP network," in Proc. NSDI, May 2005.

Challenge

- The challenge is to identify route changes from a huge number of BGP route announcements.
 - Hundreds of thousands of route announcements per day
- □ Handle the huge load of flow records.
 - Thousands of flow records per second
- Explore a simple detection method and its real-time visualization.

Data Source

- Captures BGP data from BGP sessions to border routers or route reflectors as a BGP route reflector client.
 - Border router feeds best routes to SASUKE tool.
- Sets NetFlow/sFlow observation points at the periphery of the target AS.

System Architecture

- □ 3 system components:
 - BGP Collection
 - Flow Collection
 - Data Analysis: correlation between BGP and Flow data

BGP Collection

- Builds BGP routing tables as Patricia trie.
 - Maintains tables for each BGP peering session.
- Creates a BGP log report B to identify BGP messages that may cause a traffic change by comparing against the Patricia trie.
 - Identifies BGP message type and BGP attributes that have changed from the old ones in the Patricia trie.

BGP Log Reports

■ BGP log report is represented as follows.

$$B = \{t, c_{type}, a_{type}, a_{new}, a_{old}, prefix, id\}$$

- \blacksquare t is timestamp of when the BGP message arrived.
- \mathbf{c}_{tvve} is change type:
 - □ "New", "Withdraw", "Change", or "Duplicate".
- a_{tvve} indicates the changed BGP attribute type:
 - "Origin ASN", "Neighbor ASN", "AS Path", "BGP NH", or "Community"
 - BGP community often gives route categories: region, peering type.
- a_{new}/a_{old} are new/old BGP attribute values.
 - \square When c_{type} is "New" or "Withdraw", a_{old} or a_{new} is a "null" value.
- Prefix is network address in NLRI.
- Id is an identifier to correlate with traffic data.
 - ☐ At this stage, the value is "null".

BGP Log Reports

 Creates multiple BGP log reports when multiple BGP attributes are changed.

Visualization for BGP Log Reports

■ Labeled BGP logs are presented in time-series.

Top-N origin/neighbor ASNs involved in the most BGP messages are represented when the spike happens.

Flow Collection

- Selects an appropriate Patricia trie.
 - Compares the Flow Record and peering data.
 - □ Are Exporter and BGP router the same device or not?
 - Are Exporter and BGP router located in the same region or not?
- Sums up traffic on the basis of BGP attributes:
 - Origin ASN, Neighbor ASN, AS Path, BGP NH, Community, and Prefix
 - These BGP attributes are retrieved from the Patricia trie by a longest match based on source/destination IP addresses.

Visualization for Traffic Data

Drill down into the detailed traffic data step by step from stacked area chart.

Traffic Change Detection Method

- □ Focuses on a Top-N ranked by traffic volume on BGP attributes:
 - Origin ASN, Neighbor ASN, AS Path, BGP NH, and Community.
- □ Evaluates similarities of Top-N ranks between time slot t and t-1.
 - Traffic volume weights the evaluation results.

Traffic Change Detection Method

□ Calculates the correlation coefficient r(t,t-1) between the ranks of time slots t and t-1.

$$r(t,t-1) = \frac{\sum_{i=1}^{N} (c(f(i,t),t) - c_{avg}(t))(c(f(i,t),t-1) - c_{avg}(t-1))}{\sqrt{\sum_{i=1}^{N} (c(f(i,t),t) - c_{avg}(t))^{2}} \sqrt{\sum_{i=1}^{N} (c(f(i,t),t-1) - c_{avg}(t-1))^{2}}}$$

- f(i,t) is defined as a BGP attribute value ranked i by traffic volume of time slot t.
- c(f(i,t),t) is traffic volume of f(i,t).
- Top-N statistics data set $C(t)_i$ is presented as an array:
 - \Box $C(t)_i = \{c(f(1,t),t), c(f(2,t),t), ..., c(f(N,t),t)\}$ (i=1, 2, 3, ..., N)
- $C_{avg}(t)$ gives the average of $C(t)_i$.
- \square Evaluates whether r(t,t-1) exceeds a threshold.

Identify Most Affected Traffic

- □ Investigates which f(i,k) has the greatest impact on traffic change, as follows.
 - Top-N rank $C(k)(t)_i$ indicates $C(t)_i$ except for c(f(k,t),t) ranked k.

```
C(k)(t)_i = \{c(f(1,t),t), ..., c(f(k-1,t),t), c(f(k+1,t),t), ..., c(f(N,t),t)\}
```

- Calculates the correlation coefficient r(k)(t,t-1).
- Selects the greatest values r(k)(t,t-1) from $\{r(1)(t,t-1), r(2)(t,t-1), ..., r(N)(t,t-1)\}.$
- □ Then, we recognize that f(k,t) is the most affected BGP attribute.

Traffic Change Reports

 \square Finally, it creates a traffic change report R.

$$R=\{t, type, f(i,k), r(t,t-1), \delta, id\}$$

- □ *type* gives traffic volume type:
 - "Origin ASN", "Neighbor ASN", "AS Path", "BGP NH", or "Community"
- \square δ gives the traffic volume difference between t and t-1.
- \square id is an identifier to correlate with BGP log reports.
 - At this stage, the value is set to a unique value.

Correlation between BGP and Flow

- □ Correlates between BGP log report B and traffic change report R.
 - Looks for the BGP log report B involved with traffic change report R.
 - Then, R and B are given the same id value to link them.

```
R=\{t,\ type,\ f(i,k),\ r(t,t-1)\ ,\ \delta,\ id\}
B=\{t,\ c_{type},\ a_{type},\ a_{new},\ a_{old},\ prefix,\ id\}
for all BGP log reports B where t\text{-}Tw < B.t < t\text{+}Tw do

if R.\delta > 0 and B.a_{type} = R.type and B.a_{new} = R.f(i,k) then B.id = R.id; else if R.\delta < 0 and B.a_{type} = R.type and B.a_{old} = R.f(i,k) then B.id = R.id; end if
```

Visualization for BGP and Flow

- Creates traffic-change-related alert for operators.
 - Alert links the graphs of traffic volume area chart and of BGP log reports involved.

Overall Traffic View

Evaluation of SASUKE Tool

- "SASUKE" has been introduced in some commercial networks as an experimental phase.
 - Much more performance evaluation is needed.

Conclusion

- I demonstrated the traffic change detection method implemented in the "SASUKE" tool.
 - Focuses on the similarities between time consecutive Top-N ranks in time-series.
 - Correlates between BGP log reports B and traffic change reports R.
 - Alleviates the troubleshooting load for network operators.
 - □ Visualizes BGP log and traffic data.
 - Links multidimensional traffic data related to BGP attributes.
- More evaluation is needed for performance and accuracy.

Thank you very much.

This study was supported by the Ministry of Internal Affairs and Communications of Japan.