Thyroid disease Classification using ML

Bachelor of Science in Computer Science

Submitted By

B. YUVARAJAN

TEAM ID: NM2023TMID31087

Under the Guidance of

Dr. B. UMADEVI M.Sc.,M.Phil.,Ph.D.,
(Assistant Professor, GAC, Melur)

GOVERNMENT ARTS COLLEGE
P.G & DEPARTMENT OF COMPUTER SCIENCE
MELUR – 625 106

TABLE OF CONTENTS:-

S. No	CONTENTS	Page No
1.	INTRODUCTION	1
	OVERVIEW	
	PURPOSE	
2.	LITERATURE SURVEY	2
	EXISTINGPROBLEM	
	PROPOSEDSYSTEM	
3.	THEORITICALANALYSIS	3
	BLOCK DIAGRAM	
	HARDWARE/SOFTWARE DESIGNING	
4.	EXPERIMENTALINVESTIGATIONS	5
5	FLOWCHART	6
6.	RESULT	7
7.	ADVANTAGES&DISADVANTAGES	10
8.	APPLICATIONS	10
9.	CONCLUSION	11
10.	FUTURESCOPE	11
11.	BIBILOGRAPHY	11
12.	APPENDIX	12

INTRODUCTION

OVERVIEW

Thyroid diseases, such as hypothyroid is mandhyper thyroidism, are common end ocrinedisorders that affect the function of the thyroidgland. These diseases can have a significant impacton apatient's healt hand quality of life. Early and accurate diagnosis of thyroid diseases is important for effective treatment.

inrecent years,machine learning techniq ues have been applied to the classification of thyroid diseases.the goal of the sestudiesistodevel opmodels that can accurately diagnose thyroid diseases based on clinicaland laboratory data.

PURPOSE

There are several machine learning algorithms that have been used for thyroid disease classification,including decision trees, random forests, k-nearest neighbors (KNN), support vector machines (SVM),artificial neural networks (ANN), and deep learning algorithms such as convolutional neural networks(CNNs)andrecurrentneuralnetworks(RNNs).

The input data for these models can include clinical features, such as age, gender, and symptoms, as wellas laboratory test results, such as thyroid-stimulating hormone (TSH) levels and levels of thyroxine (T4)andtriiodothyronine(T3).

The performance of these models is usually evaluated using metrics such as accuracy, precision, recall, and F1 score. In general, deep learning algorithms have shown better performance than other machinelearning algorithms in thyroid disease classification tasks.

LITERATURESURVEY

EXISTINGPROBLEM

Thecurrentexistingsystemincludes:

Clinical examination: This involves a physical examination of the neck to check for any visible signs ofthyroidenlargementornodules.

Blood tests: Blood tests are used to measure the levels of hormones produced by the thyroid gland and tocheck forantibodiesthatmayindicateautoimmune diseasessuchasHashimoto'sthyroiditis.

Ultrasound: An ultrasound scan can provide images of the thyroid gland and help to identify any nodulesorotherabnormalities.

Fine needle aspiration biopsy (FNAB): This is a procedure in which a small sample of tissue taken from a thyroid nodule using a fine needle, which is then examined under a microscope to check forcancer.

PROPOSEDSYSTEM

The proposed system is by using Artificial Intelligence (AI) and Machine Learning (ML) In recent years, there have been several studies exploring the use of AI and ML algorithmsfor predicting thyroiddiseases. These systems are trained on large datasets of patient data and use various features such asdemographic information, bloodtest results, and ultrasound imagestomake prediction.

THE ORETICALANALYSIS

BLOCK DIAGRAM

HARDWAREANDSOFTWAREDESIGNING

Python

Pythonisaninterpreted, object-oriented, high-level programming language with dynamics emantics. It was created by Guido van Rossum, and first released on February 20, 1991. Itshigh-level built-in data structures, combined with dynamic typing and dynamic binding, make itvery attractive for Rapid Application Development, as well as for use as a scripting or gluelanguagetoconnectexistingcomponentstogether. Python's simple, easytolearns yntaxemphasize s readability and therefore reduces the cost of program maintenance. Python supportsmodules and packages, which encourages program modularity and code reuse. The Pythoninterpreter and library available the extensive standard are in source binary form without charge for all major platforms, and can be freely distributed.

AnacondaNavigator

AnacondaNavigatorisafreeandopen-sourcedistributionofthePythonandRprogramminglanguagesfor data science and machine learning related applications. It can be installed on Windows, Linux, andmacOS. Conda is an open-source, cross platform,packagemanagement system. Anacondacomeswith

sovery nice to ols like Jupyter Lab, Jupyter Notebook, Qt Console, Spyder, Glueviz, Orange, Rstudio, Visual Studio Code. For this project, we will be using Jupyter notebook and Spyder.

JupyterNotebook

The Jupyter Notebook is an open-source web application that you can use to create and sharedocumentsthatcontainlivecode, equations, visualizations, and text. Jupyter Notebook is maintaine d by the people at Project Jupyter. Jupyter Notebooks are a spin-off project from the IPython project, which used to have an IPython Notebook project itself. The name, Jupyter, comes from the core supported programming languages that it supports: Julia, Python, and R. Jupyterships with the IPython kernel, which allows you to write your programs in Python, but there are currently over 100 other kernels that you can also use

Spyder

Spyder, the Scientific Python Development Environment, is a free integrated development environment (IDE)thatisincludedwithAnaconda.Itincludesediting,interactivetesting,debugging, introspection features. Initially created and developed by Pierre Raybaut 2009, since 2012 Spyderhas been maintained andcontinuouslyimprovedbya teamofscientificPythondevelopers and the community. Spyderis extensible with first-party and third party pluginsincludes support for interactive tools for data inspection and embeds Python specific code. Spyderisalsopre-installedinAnaconda Navigator, which is included in Anaconda.

Flask

Web frame work used for building. It is a web application framework written in python whichwill be running in local browser with a user interface. In this application, whenever the user interacts with UI and select semoji, it will suggest the best and to provide of that genre to the user.

HardwareRequirements:

- $o\ Operating system: window 7 and above with 64 bito Processor Type-Intel Corei 3-3220$
- o RAM:4Gbandabove
- o Harddisk:min100GB

EXPERIMENTALINVESTIGATION

Here we are going to build a machine learning model that predicts whether the given message is aspamornot, based on these parameters a supervised machine learning model is built to predict the best

Material to beused for building 3Dmodels.A web application is build so that the user can type in the mention departameters and the material which suits the best is show case don UI.

FLOWCHART

USECASEDIAGRAM

1. RESULT

2.ADVANTAGES&DISADVANTAGES

ADVANTAGES

- Easytouse
- Costefficient
- Timeefficient

DISADVANTAGE

- 1. Initialcostsofprinter
- 2. Postprocessing
- 3. Printingtime
- 4. Specialskillrequiredfor3Dmodels
- 5. ManufacturingJobLosses

8. Applications

3D printing has gone through a number of changes over the years. In the early days, 3D printing wastime-consuming and costly, and not very practical for applications outside of industry. However, with theadventoftoday's moreflexible and cost-effective 3D printing methods, there are as where 3D printing has become a practical tool.

Itisapplicableindifferentsectorssuchas

- EngineeringAndDesign
- Consumerproducts
- Manufacturing
- Education
- Aerospace
- Medical
- Movies/Theatres
- Architectures

9. CONCLUSION

3D printing technology could revolutionize and re-shape the world. Advance in 3D technology cansignificantlychangeandimprovethe waywe manufacture productsgoods worldwide.

If the last industrial revolution brought us mass production and the advent of economics of scale – the digital 3D printing revolution could bring mass manufacturing back a full of circle – to an era of masspersonalization, and return to individual craftsmanship.

10. FUTURESCOPE

Future applications for 3D printing might include creating open-source scientific equipment to createopensourcelabs

Science-basedapplicationslikereconstructingfossilsinpalaeontology.Replicatingancientandpricelessartifacts inarchaeology

Reconstructing bones and body parts inforensic pathology. The technology currently being researched for building construction.

11. BIBILOGRAPHY

- http://mashable.com/2014/03/06/3d-printed-blood-vessels/
- http://www.3dprinter.net/

12. APPENDIX

```
### Sapert or, types
### Sapert or, types
### Sapert or probletore-client spart Conflag
### Sapert or crosses these crosses as file in your 38th Cloud Sapert Sapert Or probletore-client spart or crosses these crosses as file in your 38th Cloud Sapert S
```

```
In [6]: data['target']
Out[6]: 0 -
        9167 - 9188 - 9169 I 9170 - 9171 - 9171 - 9172, dtype: object
       'T': 'miscellaneous')
data['target'] = data['target'].map(diagnoses) #remapping
 In [8]: data
 Out[8]: age sex on_thyroxine query_on_thyroxine on_entithyroid_meds sick pregnant thyroid_surgery | 131_treatment query_hypothyroid ... tumor hypopitultary psych TSH T3 TT4 T4U FTI T8G
       0 29 F f f f f f
1 29 F f f f f f
2 41 F f f f f f
                                                                                                                      t ... f f f 0.3 NaN NaN NaN NaN NaN NaN NaN NaN f ... f f f 1.6 1.9 128.0 NaN NaN NaN NaN NaN
                                                                                                                     f ... f f NaN NaN 640 0.83 770 NaN ... f f f NaN NaN 910 0.92 990 NaN NaN f ... f f NaN NaN 113.0 127 990 NaN binding protein
         9168 22 M
        9169 69 M
9170 47 F
9171 31 M
                                                                                                                  f ... f f f NaN NaN 113.0 1.27 BMU PRIN LINGUISTS.
f ... f f f NaN NaN 75.0 0.85 88.0 NaN NaN
t ... f f f NaN NaN 66.0 1.02 65.0 NaN NaN
        9172 rows × 23 columns
```

	dat	a 10	mul1() e	um/1																						
	age sex on_que on_sic pre thyy I13 que lit goi tum hyp psy TSH T3 TT4 T4U FTI TBG tar	thyrery_cantick egnarroid ll_trery_h hium tre oor oopit ch	d_surgery reatment nypothyro nyperthyro n tuitary	ine meds	9 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					
	.,	12000																								
n [11_	dat hyp gen bin rep mis hyp	a.dr	ropna(sub target']. vroid con L health grotein ement the Laneous hyroid co vroid tre target, d	value_c ditions rapy ndition atment	s 593 436 376 336 281 182 33		ue)																			
n [11_rt[11]:	dat hyp gen bin rep mis hyp ant Nam	a.dr a['t ecthy eral ding clace icell erth ithy	roid con l health g protein mment the laneous yroid co yroid tre target, d	value_c ditions rapy ndition atment	s 593 436 376 336 281 182 33		ue)																			
In [11_	dat hyp gen bin rep mis hyp ant Nam	a.dr a['t ecthy eral ding clace cell erth ithy e: t	roid com t health g protein g protein ement the taneous nyroid co roid tre target, d	value_c ditions rapy ndition atment type: i	593 436 376 336 281 ns 182 33			i_meds	sick p	eregnant	thyroid_surge	ery	eatment query	_hypothyroid	tu	mor hypoj	bituitary ps	sych	тѕн	тз	TT4	T4U	FTI TB	ıG	t	target
n [11_t(11]:	dat hyp gen bin rep mis hyp ant Nam dat	ca.dr ca['t cothy eeral dding blace ccell eerth ithy ee: t ca.he	vroid com l health g protein ment the Laneous hyroid co vroid tre Larget, d ead() sex on_ F	value_c ditions rapy ndition atment type: i	counts() 5 593 436 376 336 231 115 182 33 11164	_thyroxine		f	f	1	thyroid_surge	f	1	1		mor hypos	ſ	t	NaN	NaN	NaN	NaN I	NaN 36	.0	miscellar	neous
1 [11]:	dat hyp gen bin rep mis hyp ant Nam dat	ca.dr ca['t cothy ceral ding call certh ithy certh ca.he age 32	roid com health protein ment the laneous hyroid co roid tre larget, d ead() sex on_ F	value_c ditions rapy ndition atment type: i	counts() 5 593 436 376 386 381 182 33 int64			f f	f t	1	thyroid_surge	f f	t t	f		mor hypoj f f	bituitary ps f f	t	NaN 68.000000	NaN NaN	NaN 48.0	NaN 1	NaN 36 47.0 Na	.0 iN hyp	miscellar	neous ditions
[11]:	dat hypgen bin rep mis hyp ant Nam dat	ta.dr ta['t ta] ta] ta] ta] ta] ta] ta] ta] ta] ta	roid con l health memory the memory the laneous memory the laneous memory the laneous memory de target, d ead() sex on F	value_c ditions rapy ndition atment type: i	sounts() 5 593 436 376 336 281 182 33 int64	n_thyroxine f f f		f f	f t	1 1	thyroid_surge	f f f	† †	1		f f	f f	f f	NaN 68.000000 0.050000	NaN NaN 1.6	NaN 48.0 39.0	NaN 1	NaN 36 47.0 Na 39.0 Na	iN hyp	miscellar othyroid cond miscellar	aneous ditions aneous
[11]:	dat hyp gen bin rep mis hyp ant Nam dat 18 32 33	ca.dr ca['t cothy eral ding blace ccell erth ithy ee: t ca.he 32 63 41	roid con l health g protein g protein g protein g protein taneous yroid cor yroid tre target, d ead() sex on F	value_c ditions rapy ndition atment type: i	sounts() 5 593 436 376 336 281 182 33 int64	_thyroxine		f f	f f	1	thyroid_surge	f f	t t	f f f		mor hypoi f f f	ſ	f f f	NaN 68.000000	NaN NaN 1.6 NaN	NaN 48.0 39.0 126.0	NaN 1 1.02 4 1.00 3	NaN 36 47.0 Na 39.0 Na 91.0 Na	iN hyp iN	miscellar	ditions aneous protein

		age	TSH	Т3	TT4	T4U	FTI	TBG													
coun	nt 223	7.000000	2087.000000	1643.000000	2140.000000	2059.000000	2060.000000	98.000000													
mean	in 5	2.792579	14.930791	1.961875	116.390495	1.013439	120.363369	47.717347													
sto	td 1	19.677450	46.204092	1.452238	60.351600	0.280222	70.996728	32.398750													
mir	in '	1.000000	0.005000	0.050000	2.000000	0.170000	1.400000	9.299999													
25%	% 36	6.000000	0.255000	1.000000	76.000000	0.850000	83.000000	32.000000													
50%	% 56	6.000000	2.000000	1.700000	109.000000	0.960000	109.000000	36.000000													
75%	% 69	9.000000	8.799999	2.500000	156.000000	1.120000	157.000000	46.750000													
max	x 9	5.000000	530.000000	18.000000	600.000000	2.330000	881.000000	200.000000													
#Che	ecking	whether	the age abi	ove 100																	
data	a[data	a.age>100	1																		
age	e sex	on_thyro	xine query_o	_thyroxine o	n_antithyroid	_meds sick p	regnant thyr	oid_surgery	1131_treatment que	ery_hypothyroid	tumor	hypopituitar	ry psych	TSH T	T3 TT4 T	4U F1	TBG	target			
impo #cha	ort nu					age)															
impo #cha data	ort nu anging a['age	umpy as n	p observation			age)															
impo #cha data	ort nu anging a['age	umpy as n g age of e']=np.wh	p observation ere((data.a	ge>100), np	nan, data.a		ick pregnant	thyroid_surg	ery I131_treatmen	nt query_hypothyr	oid tu	imor hypop	ituitary ps	ych	TSH	Т3	TT4 T	IU F	T TBG	target	
impo #cha data data	ort nu anging a['age	umpy as n g age of e']=np.wh	p observation ere((data.a	ge>100), np	nan, data.a		ick pregnant	thyroid_surg	ery I131_treatmen	nt query_hypothyre	oid tu	imor hypop	ituitary ps	sych			TT4 T			target miscellaneous	
impo #cha data data	ort nu anging a['age a	umpy as n g age of b']=np.wh	p observation ere((data.a	ge>100), np	nan, data.a		f f	thyroid_surg	ery I131_treatmen	nt query_hypothyre		imor hypop f		Ť	NaN	NaN	NaN N	aN Na	N 36.0		
impo #cha data data 4	ort nu anging a['age a a age 4 32.0	mpy as n g age of a']=np.wh	p observation ere((data.a _thyroxine qu	ge>100), np	nan, data.a	yroid_meds s	f f	thyroid_surg	pery H31_treatmen f f f	nt query_hypothyre	f	emor hypop f f f	Ť	f f 6	NaN	NaN NaN	NaN N 48.0 1	aN Na 02 47	N 36.0 NaN	miscellaneous	
impo #cha data data 4 18	ort nu anging a['age a age 4 32.0 B 63.0	ampy as n age of age of age of sex on F M	p observation ere((data.a _thyroxine qu	ge>100), np	nan, data.a ine on_antith f	yroid_meds s	f f	thyroid_surg	jery i131_treatmen f f f f	at query_hypothyre	f	imor hypop f f f f	f	f f 6 f	NaN 8.000000	NaN NaN 1.6	NaN N 48.0 1. 39.0 1.	aN Na 02 47 00 39	N 36.0 O NaN O NaN	miscellaneous hypothyroid conditions	
impo #cha data data 4 18 32 33	a age 4 32.0 8 63.0 2 41.0	sex on	p observation ere((data.au thyroxine qu f t	ge>100), np	ine on_antith f f	yroid_meds s	f f	thyroid_surg	jery i131_treatmen f f f f f	at query_hypothyre f f f f	f f	imor hypop f f f f	1	f f 6 f	NaN 8.000000 0.050000	NaN NaN 1.6 NaN	NaN N 48.0 1. 39.0 1.	aN Na 02 47 00 39 38 91	N 36.0 NaN NaN NaN	miscellaneous hypothyroid conditions miscellaneous	
impo #cha data data 4 18 32 33	a age 4 32.0 B 63.0 2 41.0 9 55.0	sex on	p observation ere((data.au thyroxine qu f t	ge>100), np	ine on_antith f f	yroid_meds s f f f f	f f t t f f f f	thyroid_surg	rery H31_treatmen	at query_hypothyre	f f f	f f f f	1	f f 6 f	NaN 8.000000 0.050000 0.050000	NaN NaN 1.6 NaN	NaN N 48.0 1. 39.0 1.	aN Na 02 47 00 39 38 91	N 36.0 NaN NaN NaN	miscellaneous hypothyroid conditions miscellaneous binding protein	
impo #cha data data 4 18 32 33	a age 4 32.0 B 63.0 2 41.0 9 55.0	age of ']=np.wh	p observation ere((data.au thyroxine qu f t	ge>100), np	ine on_antith f f	yroid_meds s f f f f	f f f f f f f f	thyroid_surg	tery I131_treatmen f f f f f f	at query_hypothyre f f f f f f	f f f f	imor hypop f f f f f f	1	f f 6 f	NaN 8.000000 0.050000 0.050000	NaN NaN 1.6 NaN 2.4	NaN N 48.0 1. 39.0 1. 126.0 1.	9N Na 02 47 00 39 38 91 48 92	N 36.0 NaN NaN NaN NaN NaN	miscellaneous hypothyroid conditions miscellaneous binding protein replacement therapy	
impo #cha data data 4 18 32 33 39 	a age 4 32.0 B 63.0 2 41.0 3 71.0 9 55.0	mpy as n n n age of ' =np.wh	p observation ere((data.au thyroxine qu f t	ge>100), np	ine on_antith f f	yroid_meds s f f f f	f f f f f f f f	thyroid_surg	gery 1131_treatmen f f f f f f f f f	at query_hypothyrri f f f f f f	f f f f	imor hypop f f f f f f	1	f f 6 f	NaN 8.000000 0.050000 0.050000 9.599999	NaN 1.6 NaN 2.4 NaN	NaN N 48.0 1. 39.0 1. 126.0 1. 136.0 1. 	9N Na 02 47 00 39 38 91 48 92 	N 36.0 NaN NaN NaN NaN NaN NaN	miscellaneous hypothyroid conditions miscellaneous binding protein replacement therapy 	
impo #cha data data 4 18 32 33 39 9153	age 4 32.0 B 63.0 2 41.0 3 71.0 9 55.0	mpy as n n n age of ' =np.wh	p observation ere((data.au thyroxine qu f t	ge>100), np	ine on_antith f f	yroid_meds s f f f f f	f f f f f f f f	thyroid_surg	pery 1131_treatmen f f f f f f f f	at query_hypothyro f f f f f f f f f	f f f f f f f	imor hypop f f f f f f f f f	1	f f 6 f	NaN 8.000000 0.050000 0.050000 9.599999 0.810000 0.180000	NaN 1.6 NaN 2.4 NaN NaN NaN	NaN N 48.0 1. 39.0 1. 126.0 1. 136.0 1. 	n Na 02 47 00 39 38 91 48 92 55 56 87 32	N 36.0 NaN NaN NaN NaN NaN NaN NaN Na	miscellaneous hypothyroid conditions miscellaneous binding protein replacement therapy general health general health	
impo #cha data data 4 18 32 33 39 9153 9157 9158	age 4 32.0 8 63.0 2 41.0 3 71.0 9 55.0	range of age of set on a set o	p p observation ere((data.a) thyroxine qu f t t f t t t	ge>100), np	nan, data.a	groid_meds s f f f f f t		thyroid_surç	rery II31_treatmen f f f f f f f f f f	at query_hypothyre f f f f f f f f	f f f f f f f f	imor hypop f f f f f f f f f	† † † † † † † † † † † † † † † † † † †	f f 6 f f f	NaN 8.000000 0.050000 0.050000 9.599999 0.810000 0.180000	NaN 1.6 NaN 2.4 NaN NaN NaN NaN	NaN N 48.0 1. 39.0 1. 126.0 1. 336.0 1. 31.0 0. 28.0 0	9N Na 02 47 00 39 38 91 48 92 55 56 87 32	N 36.0 NaN NaN NaN NaN NaN NaN NaN Na	miscellaneous hypothyroid conditions miscellaneous binding protein replacement therapy general health general health	


```
In [42_ x_test_bal
Out[42]: array([[-1.5229667, -0.44869477, -0.4238 , ..., 1.06342846, ...]
[-0.1246699, -0.1949409], ...
[-0.8947653, -0.44696477, -0.4238 , ..., 1.76703086, ...
[-0.30218342, -0.1949409], ...
[-0.9496008, 2.2.5960776, -0.4238 , ..., -0.39789962, -0.99585239, -0.13494049], ..., -0.39789962,
                               ..., [1.39013447, -0.44060477, 2.35960359, ..., 0.81835453, 0.70904189, -0.19404049], [1.33846247, -0.44060477, 2.35960359, ..., 0.81987378, 0.67327619, -0.19404049], [-0.19842352, -0.44060477, -0.4238 , ..., 0.24830842, 0.37610348, -0.19494049]))
  In (43_ y_bal.value_counts()
 Out[43]: target
                  dtype: int64
   In [44. columnse['age', 'sex', 'on_thyroxine', 'query_on_thyroxine', 'on_antithyroid_meds', 'sick', 'pregnant', 'thyroid_surgery', 'I33_treatment', 'query_hypothyroid', 'query_hyperthyroid', 'lithium', 'goitre', 'tumor', 'hypopituitary', 'psych', '
   In [45_ x_test_bal= pd.DataFrame(x_test_bal,columns=columns)
   In [46_ x_bal= pd.DataFrame(x_bal,columns=columns)
  In [47_ x_bal
 Out[47]:
                                                        sex on_thyroxine query_on_thyroxine on_antithyroid_meds sick pregnant thyroid_surgery 1131_treatment query_hypothyroid ... goitre tumor hypopituitary psych TSH
                                                                                                                                                                                                                                                                                                                                                                                       Т3
                                                                                                                                                                                                                                                                                                                                                                                                     TT4
                        0 -1.627215 -0.440605 -0.423800
                                                                                                      -0.105069
                                                                                                                                        -0.158703 -0.141815 -0.137297
                                                                                                                                                                                                    -0.239601
                                                                                                                                                                                                                             -0.162675
                                                                                                                                                                                                                                                           -0.230986 ... -0.052319 -0.137297
                                                                                                                                                                                                                                                                                                                         -0.024637 -0.107982 -0.315458 -1.035358 -1.704935 -2.508707 -1.400881 3.2944
                                                                                                                                                                                                                          -0.162675 -0.230986 ... -0.052319 -0.137297 -0.024637 -0.107982 -0.090056 0.155233 -0.197223 -0.262591 0.072098 -0.19494
                                                                                                                             -0.158703 -0.141815 -0.137297
                                                                                                                                                                                              -0.239601
                    1 -0.115614 -0.440605 2.359604
                                                                                                  -0.105069
                        2 1.187490 2.269608
                                                                    -0.423800
                                                                                                                                        -0.158703 -0.141815 -0.137297
                                                                                                                                                                                                                                                             -0.230986 ... -0.052319 -0.137297
                                                                                                                                                                                                                                                                                                                         -0.024637 -0.107982 -0.278907 -0.471394 -0.227079 0.170395 -0.193521 -0.1949
                  3 -1366594 -0.442800 -0.105069 -0.158703 -0.141815 -0.137297 -0.239601 -0.162675 -0.230986 ... -0.052319 7.283487 -0.024637 -0.107982 -0.284999 0.969848 0.041822 0.495134 -0.133153 -0.19494
                        4 -0.167738 -0.440605 -0.423800
                                                                                                      -0.105069
                                                                                                                                        -0.158703 -0.141815 -0.137297
                                                                                                                                                                                                   -0.239601
                                                                                                                                                                                                                            -0.162675
                                                                                                                                                                                                                                                           -0.230986 ... -0.052319 -0.137297 -0.024637 -0.107982 -0.306321 4.541622 1.459767 -0.127283 1.496783 -0.19494
                                                                                                                                          -0.158703 -0.141815 -0.137297
                                                                                                                                                                                                                           -0.162675 -0.230986 ... -0.052319 -0.137297 -0.024637 -0.107982 -0.309176 -0.856540 0.565143 -0.513902 1.085434 -0.19494
                   3293 0.383062 -0.440605 2.359604
                                                                                                   -0.105069
                                                                                                                               -0.158703 -0.141815 -0.137297 -0.239601
                                                                                                                              -0.188703 -0.14815 -0.137297 -0.239801 -0.162675 -0.23986 ... -0.052319 -0.137297 -0.024637 -0.107982 -0.095452 -0.172405 0.248906 0.436150 0.061010 -0.19499 -0.188703 -0.14815 -0.137297 -0.239801 -0.162675 -0.239866 ... -0.052319 -0.137297 -0.024637 -0.107982 -0.311566 0.067864 1.071643 0.143333 0.890866 -0.19499 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 -0.188703 
                  3294 1.395987 -0.440605
                                                                      2.359604
                                                                                                      -0.105069
                  3295 0.728028 -0.440605 2.359604
                                                                                                   -0.105069
                  3296 1.156281 -0.440605
                                                                    2.359604
                                                                                                      -0.105069
                                                                                                                                        -0.158703 -0.141815 -0.137297
                                                                                                                                                                                                                                                           -0.230986 ... -0.052319 -0.137297
                                                                                                                                                                                                                                                                                                                       -0.024637 -0.107982 -0.072439 0.079407 -0.200359 0.397235 -0.265887 -0.1949
                 3297 rows × 22 columns
```



```
In [70_ random_svc.best_params_
Out[70]: {'kernel': 'rbf', 'gamma': 1, 'C': 1000}
 In [78- sv1=SVC(kernel= 'rbf', gamma= 0.1,C= 100)
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages/sklearn/utils/validation.py:111: DataConversionWarming: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example y = column_or_1a(y, warn=True)

Out[79]: 
SVC
          SVC(C=100, gamma=0.1)
 In [80_ y_pred= sv1.predict(x_test_bal)
 In [81_ print(classification_report(y_test_bal,y_pred))
                           precision recall f1-score support
                                                                      122
122
122
122
122
122
122
           accuracy
macro avg
weighted avg
                                                                      854
854
854
                              0.73 0.73
0.73 0.73
 In [82= train_score= accuracy_score(y_bal,sv1.predict(x_bal))
train_score
Out[82]: 0.8125568698817106
 In [83_ # saving the model
           import pickle
pickle.dump(sv1,open('thyroid_1_model.pkl','wb'))
 In [85_ features = np.array([[0,0,0,0,0.000000,0.0,0.0,1.00,0.0,40.0]])
print(label_encoder.inverse_transform(sv1.predict(features)))
           ['binding protein']
           /opt/conda/envs/Python-3.9/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but SVC was fitted with feature names warnings.warn(
```

```
Deliant in uny, nature;

In [82. picks. dump (label_encoder.ppm:'label_encoder.pkl','wb'))

In [82. picks. dump (label_encoder.ppm:'label_encoder.pkl','wb'))

In [83. defal'target'].uniquet)

Deliant arryl('siscellaneus', 'hypothyroid conditions', 'binding protein', 'hypothyroid conditions', 'binding protein', 'hypothyroid conditions', 'binding protein', 'hypothyroid conditions', 'binding protein', 'hypothyroid conditions', 'hypot
```

```
In ILL
software_spec_uide client.software_specifications.get_uid_by_mame("nutime-22.1-py3.9")
Software_spec_uide client.software_specifications.get_uid_by_mame("nutime-22.1-py3.9")
Software_spec_uide client.repository.store_modelinodel='thyroid_disease_mow.tgr',
Client.repository.ModelMetaManes.TMPE:"scikit-lear=1.8",
Client.repository.ModelMetaManes.TMPE:"scikit-lear=1.8",
Client.repository.ModelMetaManes.SOFTWAME_SPEC_UID:software_spec_uid
Training_disease_train,
Training_disease_train
Training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_training_disease_trai
```