egendre Polynomials	11/04/2024
n! the set of all polynomials with degree less than or equal to n	MEM
egendre Polynomials in the set of all polynomials with degree less than or equal to n . Ln) $n \ge 0$ the family of Legendre Polynomials $\left[L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \right]$	$\left[\left(\chi^{2}-1\right)^{n}\right]$
Noting that the Legendre polynomials are orthogonal basis on 6 h, m $\in \mathbb{N}$, $\int_{-1}^{1} L_n(x) L_m(x) dx = \frac{2}{2n+1} S_{nm}$ where $S_{mn} = \begin{cases} 1 & \text{if } \\ 0 & \text{otherwise} \end{cases}$	N = N
he Legendre polynomials are solutions of the differential equation $\left[\left(1-x^2\right)L_n'(x)\right]+n\left(n+1\right)L_n(x)=0\;,\;n\geq0\right]$	
nd they satisfy the following three - torn recurrence formula	
$L_0(x) = 1$	
$L_{1}(x) = x$	
$(n+i)L_{n+i}(x) = (2n+i)xL_n(x) - nL_{n-i}(x)$ for $n \ge 1$	
auss - Legendre Quadrature	
imerical quadratures are efficient tools for computing an approximation a smooth function up	ris of an integral
$\int_{-1}^{1} \varphi(x) dx = \sum_{i=1}^{s} \varphi(x_i) w_i + R_s(\varphi) \text{ where}$	
The points xi (the nodes) are the zeros of the Legendre polynomial	s Ls.
The real numbers Wi (the weights) are given by	
$W_{i} = \frac{2}{(1-x_{i}^{2})(L_{o}(x_{i}))^{2}}$	
The remainder is $R_s(4) = \frac{2^{2s+1}(5!)^4}{(2s+1)((2s)!)^3}$. $4^{(2s)}(5)$ for $5 \in (-1,1)$	
e Gauss - Legendre quadrature of order s is the approximation.	
$\int_{-1}^{1} \varphi(x) dx \approx \sum_{i=1}^{5} \varphi(x_i) w_i$	
egendre Series Exponsión	

Legendre Serce Expansion

For a function $f \in L^2(C-1,1)$, its Legendre equation $\int L(f) = \sum_{j=0}^{\infty} \hat{f}_j L_j^j$

the Legendre coefficients of defined by fi= (2) [fix) 5 (fix) 6 () dx

the truncated expansion

$$\mathcal{L}_{p}(z) = \sum_{j=0}^{p} \hat{f}_{j} L_{j}(x)$$