个性化推荐系统的几个的几个问题

2012.12.22 北京

演讲者

胖子@豆瓣 http://www.douban.com/people/1000037/ 随缘放旷,任性逍遥,但尽凡心,别无胜解

- 工学学士、工学硕士,清华大学
- 3年时间,供应链管理研究、咨询
- 2年时间,商学院撰写运营管理案例
- 7年在豆瓣,算法工程师

两种基本算法再比较

User/Item Based CF

基本假设

归一化的评分矩阵 $U_{m \times n}$

假设其非零元素个数为 $CC \ll m \times n$

假设非零元素个数为均匀分布

平均每行为L = C / m 平均每列为L' = C / n

 $\max(L, L') \ll \min(m, n)$

相似矩阵计算复杂度

$$|S_{m \times m}| = m^2 \left[1 - \left(1 - \frac{L^2}{n^2} \right)^n \right] \qquad |S_{n \times n}| = n^2 \left[1 - \left(1 - \frac{L^2}{m^2} \right)^m \right]$$

在不是非常严格的意义下,经展开忽略高阶项化简后,有:

$$|S_{m \times m}| \approx \frac{m^2 L^2}{n} = \frac{C^2}{n}, \qquad |S'_{n \times n}| \approx \frac{n^2 L'^2}{m} = \frac{C^2}{m}$$

讨论

• 近似线性的时间和空间复杂度

与非零元平方成正比,与用户和条目数成反比

● 增量更新

用户与条目收藏的幂律分布

实际的计算复杂度

$$\sum_{i=i}^{m} L_i(L_i - 1) \ge mL^2 \qquad \sum_{i=i}^{n} L_i(L_i - 1) \ge nL^2$$

在幂律分布的假设下,相似度矩阵的计算量与收藏的分布直接相关,通常基于条目的CF要显著低于基于用户的CF算法

算法与产品的适配

- 不同的产品阶段
- 不同的用户群
- 不同的计算资源和框架

缺失值的处理

Missing Value

缺失值

- 收藏/评分矩阵非常稀疏
- 缺失代表什么?
- 怎样利用缺失值改善推荐?

缺失值作为负面反馈

- User-Oriented Negative Sampling
- Item-Oriented Negative Sampling

$$L(U,V) = \sum_{ij} W_{ij} (R_{ij} - U_{i.} V_{j.}^T)^2 + \lambda (||U||_F^2 + ||V||_F^2)$$

如何评价

- 负面反馈采样在给定数据集上能得到比较好的效果
- 改变了原有的信息结构
- 给用户带来了什么?

矩阵分解与生成模型

Matrix Factorization & Generative Model

矩阵分解

$$V = WH \qquad \qquad v_i = \sum_{j=1}^N h_{ji} w_j$$

$$F(W,H) = ||V - WH||_F^2$$

不同损失函数可以引出不同的矩阵分解形式和优化方法

生成模型

- 隐马模型,高斯混合模型
- 贝叶斯模型
- LDA, RBM

统一性

- 假设层面的统一
- 技术层面的统一

	冷启动	可解释性	惊喜	时效性	鲁棒性
协同过滤					* *
图模型					
矩阵分解					
Topic Model					
增强学习				* *	
决策树					
Boosting					

算法与产品

	用户数	条目数	稀疏性	多样性	时效性	反馈	推荐效果
图书	3,000,000	3,000,000	< 0.5%	高	低	慢	В
电影	5,000,000	100,000	1% ~5%	低	中	中	C
唱片	1,500,000	400,000	< 1%	低	低	中	C
小组	5,000,000	200,000	%1	中	中	中	В
人	5,000,000	5,000,000	< 0.5%	高	低	慢	D
文章	500,000	10,000,000	< 0.1%	高	高	快	С
单曲	5,000,000	1,000,000	5% ~ 10%	低	低	快	A
广告	30,000,000	50,000	1%	低	高	中	D

什么样的产品适合推荐?

能够获得 快速反馈

条目增长 相对稳定 稀疏性多 样性和时 效性平衡

其他

个性化推荐的历史

 $1992 \sim 2002$

 $2002 \sim 2012$

2012 ~

电子商务

web 2.0

云计算

新闻组

广告 分类浏览

兴趣 网络

SNS

移动互联

网络融合

机器学习与人的学习

- 产品与人群
- 短期指标与长期指标
- 我们学到了什么

web面临的挑战

- 从自由与开放走向私有与封闭?
- 从第二人生走向第一人生
- 从信息经济走向体验经济

个性化推荐

- 前所未有的机会
- web 2.0, 云计算,成熟的技术准备
- 要么是平台,要么是平台的一部分

Algorithms should facilitate rather than replace social processes.

謝射! Q&A