Classification

Ngoc Hoang Luong

University of Information Technology (UIT), VNU-HCM

May 22, 2023

phân loại

Lương Ngọc Hoàng

Trường Đại học Công nghệ Thông tin (UIT), ĐHQG-HCM

22 Tháng Năm, 2023

Introduction

- The goal in classification is to take an input vector x and to assign it into one of K discrete classes or groups C_k where k = 1, 2, ..., K.
- The classes are assumed to be disjoint, i.e., each input is assigned to one and only one class.

Machine Translated by Google

Giới thiệu

Mục tiêu của phân loại là lấy một vectơ đầu vào x và gán nó vào một trong K lớp hoặc nhóm rời rạc Ck trong đó k = 1, 2, ...,

Các lớp được coi là rời rạc, nghĩa là mỗi đầu vào được gán vào một và chỉ một lớp.

- Consider a credit application with p predictors $X = [X_1, \dots, X_p]$: Age, Salary, Residential Status, Marital Status, Debt, etc.
- A **credit score** is computed for each application to relate how like each applicant can pay the debt.
- Customers are divided into two classes: *good* and *bad*:
 - Good customers are those that payed their loan back.
 - Bad customers are those that defaulted on their loan

Phân loại - Ví dụ

- Xem xét một ứng dụng tín dụng với p dự đoán X = [X1, . . . , Xp]: Tuổi,
 Mức lương, Tình trạng cư trú, Tình trạng hôn nhân, Khoản nợ,
- v.v. Điểm tín dụng được tính cho mỗi đơn đăng ký để liên quan đến việc mỗi người đăng ký có thể trả nợ như thế nào.
- Khách hàng được chia thành hai loại: tốt và xấu:
 Khách hàng tốt là những khách hàng đã trả nợ.
 Khách hàng xấu là những khách hàng không trả được nợ

Classification - Supervised Learning Diagram

- Joint distribution of data: $P(\mathbf{x}, y)$
- Conditional distribution of target, given inputs $P(y \mid \mathbf{x})$
- Marginal distribution of inputs $P(\mathbf{x})$

Machine Translated by Google

Phân loại - Sơ đồ học tập có giám sát

• Phân phối dữ liệu chung: P(x, y) •

Phân phối có điều kiện của mục tiêu, cho trước đầu vào P(y

x) • Phân phối cận biên của đầu vào P(x)

Machine Translated by Google

Classification - Supervised Learning Diagram

- The idea in classification problems is: Given a customer's attributes $X = \mathbf{x}$, to which class y we should assign this customer?
- We would like to know what is **the conditional probability**:

$$P(y \mid X = \mathbf{x})$$

Phân loại - Sơ đồ học tập có giám sát

- Ý tưởng trong các bài toán phân loại là: Cho trước một khách hàng thuộc tính X = x, chúng ta nên gán khách hàng này cho lớp y nào?
- Chúng tôi muốn biết xác suất có điều kiện là gì:

$$P(y X = x)$$

- Suppose we have n individuals in a p-dimensional space.
- Suppose each class of customers forms its own cloud: the good customers, the bad customers.

Machine Translated by Google

Phân loại - Ví dụ

- Giả sử chúng ta có n cá nhân trong không gian p chiều.
- Giả sử mỗi lớp khách hàng hình thành đám mây của riêng mình: khách hàng tốt, khách hàng xấu.

- Now, assume there are four individuals a,b,c,d that we want to predict their classes.
- We want to have a mechanism or rule to classify observations.

Machine Translated by Google

Phân loại - Ví dụ

 Bây giờ, giả sử có bốn cá nhân a, b, c, d mà chúng ta muốn dự đoán lớp của họ.

Chúng tôi muốn có một cơ chế hoặc quy tắc để phân loại các quan sát.

- Customer a could be assigned to class bad.
- Customer d could also be assigned to class bad with high confidence.
- Customer c could be assigned with high confidence to class good.
- We could be uncertain to which class customer b belongs.

Phân loại - Ví dụ • Khách hàng

Machine Translated by Google

a có thể được xếp vào loại xấu. • Khách hàng d cũng có thể được chỉ định vào lớp xấu với mức cao sự tự tin.

Khách hàng c có thể được xếp vào loại tốt với độ tin cậy cao.
 Chúng ta có thể không chắc khách hàng b thuộc loại nào.

- Classification rules allow us to divide the input space into regions \mathcal{R}_k called **decision regions** (one for each class).
- The boundaries between decision regions establish the decision boundaries or decision surfaces.

Machine Translated by Google

Phân loại - Ví dụ

- Các luật phân loại cho phép chúng ta chia không gian đầu vào thành các vùng Rk
 được gọi là các vùng quyết định (một vùng cho mỗi lớp).
- Ranh giới giữa các vùng quyết định thiết lập quyết định ranh giới hoặc bề mặt quyết định.

Classification - Two-class Example

- We have customers belonging to one of two classes C_1 = good and C_2 = bad.
- We can first investigate how X values vary according to a given class \mathcal{C}_k the class-conditional distribution:

$$P(X = \mathbf{x} \mid y = k)$$

Machine Translated by Google

Phân loại - Ví dụ hai lớp

- Chúng tôi có khách hàng thuộc một trong hai loại C1 = tốt và
 C2 = xấu.
- Trước tiên, chúng ta có thể điều tra xem các giá trị X thay đổi như thế nào theo một lớp Ck đã cho - phân phối có điều kiện của lớp:

$$P(X = x y = k)$$

6

- How does $X_i \mid y = 1$ compare with $X_i \mid y = 2$?
- How does $X_q \mid y = 1$ compare with $X_q \mid y = 2$?
- From data, we can have descriptive information about $X \mid y = k$. We calculate summary statistics, compare visual displays of these distributions.

Machine Translated by Google

Phân loại - Khám phá phân phối có điều kiện

so với Xq y = 2 như thế nào ? • Từ dữ liệu, chúng ta có thể

có thông tin mô tả về X y = k.

Chúng tôi tính toán số liệu thống kê tóm tắt, so sánh hiển thị trực quan của các bản phân phối này.

Classification - Exploring Conditional Distributions

• If we have the class-conditional distribution $P(X \mid y = k)$, we can compute:

$$P(X = \mathbf{x} \mid \mathsf{Good}) = \frac{\mathsf{applicant} \; \mathsf{is} \; \mathsf{Good} \; \mathsf{and} \; \mathsf{has} \; \mathsf{attributes} \; \mathbf{x}}{\mathsf{applicant} \; \mathsf{is} \; \mathsf{Good}}$$

or

$$P(X = \mathbf{x} \mid \mathsf{Bad}) = \frac{\mathsf{applicant} \text{ is Bad and has attributes } \mathbf{x}}{\mathsf{applicant} \text{ is Bad}}$$

Machine Translated by Google

Phân loại - Khám phá phân phối có điều kiện

• Nếu chúng ta có phân phối loại có điều kiện P(X y = k), chúng ta có thể tính toán:

Classification - Conditional Probability

• However, we are actually interested in the conditional probability $P(y = k \mid X = \mathbf{x})$, we can compute:

$$P(\text{Good} \mid X = \mathbf{x}) = \frac{\text{applicant is Good and has attributes } \mathbf{x}}{\text{applicant has attributes } \mathbf{x}}$$

or

$$P(\mathsf{Bad} \mid X = \mathbf{x}) = \frac{\mathsf{applicant} \text{ is Bad and has attributes } \mathbf{x}}{\mathsf{applicant} \text{ has attributes } \mathbf{x}}$$

Machine Translated by Google

Phân loại - Xác suất có điều kiện

• Tuy nhiên, chúng tôi thực sự quan tâm đến xác suất có điều kiện $P(y = k \quad X = x)$, chúng ta tính được:

$$P(T \acute{o}t \qquad X = x) = \frac{ \acute{u}ng \ viên \ là \ T \acute{o}t \ và \ c \acute{o} \ thuộc \ t \acute{n}h \ x}{ \acute{u}ng \ viên \ c \acute{o} \ thuộc \ t \acute{n}h \ x}$$

hoặc

$$P(X \hat{a} u \quad X = x) = \frac{\text{\'eng viên là X\'au và có thuộc tính x}}{\text{\'eng viên có thuộc tính x}}$$

3 / 17

$$P(X = \mathbf{x} \mid y = k) = \frac{P(y = k, X = \mathbf{x})}{P(y = k)}$$

and

$$P(y = k \mid X = \mathbf{x}) = \frac{P(y = k, X = \mathbf{x})}{P(X = \mathbf{x})}$$

• We have the joint probability:

$$P(X = \mathbf{x}, y = k) = P(y = k \mid X = \mathbf{x})P(X = \mathbf{x})$$
$$= P(X = \mathbf{x} \mid y = k)P(y = k)$$

Thus, we have:

$$P(y = k \mid X = \mathbf{x}) = \frac{P(X = \mathbf{x} \mid y = k)P(y = k)}{P(X = \mathbf{x})}$$

Machine Translated by Google

Nhắc nhở Quy tắc Bayes •

Ta có các xác suất có điều kiên:

$$P(X = x y = k) = \frac{P(y = k, X = x)}{p(y = k)}$$

۷à

$$P(y = k X = x) = \frac{P(y = k, X = x)}{P(X = x)}$$

• Ta có xác suất chung là:

Như vậy, ta có:

$$P(y = k X = x) = \frac{P(X = x y = k)P(y = k)}{P(X = x)}$$

$$P(y = k \mid X = \mathbf{x}) = \frac{P(X = \mathbf{x} \mid y = k)P(y = k)}{P(X = \mathbf{x})}$$

where the marginal probability $P(X = \mathbf{x})$ can be computed with the total probability formula:

$$P(X = \mathbf{x}) = \sum_{k} P(X = \mathbf{x} \mid y = k) P(y = k)$$

We can use Bayes' Theorem for classification purpose:

- $P(X = \mathbf{x} \mid y = k) = \pi_k$: the prior probability for class k.
- $P(X = \mathbf{x} \mid y = k) = f_k(\mathbf{x})$: the class-conditional density for inputs X in class k.

The **posterior probability** (the conditional probability of the response given the input) is:

$$P(y = k \mid X = \mathbf{x}) = \frac{f_k(\mathbf{x})\pi_k}{\sum_{k=1}^K f_k(\mathbf{x})\pi_k}$$

Machine Translated by Google

Nhắc nhở Quy tắc Bayes

$$P(y = k X = x) = \frac{P(X = x y = k)P(y = k)}{P(X = x)}$$

trong đó xác suất cận biên P(X = x) có thể được tính bằng công thức xác suất tổng:

$$P(X = x) = P(X = x y = k)P(y = k)$$

Chúng ta có thể sử dụng Định lý Bayes cho mục đích phân loại:

- $P(X = x y = k) = \pi k$: xác suất ưu tiên của lớp k. •
- X ở lớp k.

Xác suất sau (xác suất có điều kiện của phản hồi cho đầu vào) là:

$$P(y = k \qquad X = x) = \frac{fk(x)\pi k}{\frac{K}{k=1} fk(x)\pi k}$$

• The posterior probability:

$$P(y = k \mid X = \mathbf{x}) = \frac{f_k(\mathbf{x})\pi_k}{\sum_{k=1}^K f_k(\mathbf{x})\pi_k}$$

 By using Bayes' Theorem, we are modeling the posterior probability $P(y = k \mid X = \mathbf{x})$ in terms of likelihood densities $f_k(\mathbf{x})$ and prior probabilities π_k .

$$posterior = \frac{likelihood \times prior}{evidence}$$

Nhắc nhở Quy tắc Bayes

Xác suất sau:

Machine Translated by Google

$$P(y = k X = x) = \frac{fk(x)\pi k}{K \atop k=1} fk(x)\pi k$$

• Bằng cách sử dụng Định lý Bayes, chúng ta đang mô hình hóa hậu nghiệm suất trước πk.

sau =
$$\frac{\text{khả năng} \times \text{trước}}{\text{chứng cớ}}$$

Bayes Classifiers

- In supervised learning, the goal is to find a model $\hat{f}()$ that makes good predictions.
- In a classification setting, we minimize the probability of assigning an individual x_i to the wrong class.
- We should classify \mathbf{x}_i to the class k that makes $P(y = k \mid X = \mathbf{x})$ as large as possible, i.e., classify \mathbf{x}_i to the most likely class, given its predictors.

Bộ phân loại Bayes

- Trong học có giám sát, mục tiêu là tìm một mô hình ^f() khiến dư đoán tốt.
- Trong cài đặt phân loại, chúng tôi giảm thiểu khả năng chỉ định một cá nhân xi vào nhầm lớp.
- Chúng ta nên phân loại xi vào lớp k sao cho $P(y = k \quad X = x)$ càng lớn càng tốt, nghĩa là phân loại xi vào lớp có nhiều khả năng nhất, với các biến dự đoán của nó.