STAT253/317 Winter 2022 Lecture 19

Cong Ma

March 6, 2022

Chapter 8 Queueing Models

Chapter 8 Queueing Models

A queueing model models "customers" arriving to receive some service and and departing. The mechanisms involved are

- input mechanism: the arrival pattern of customers in time
- queueing mechanism: the number of servers, order of the service
- service mechanism: the time to serve one or a batch of customers

We consider queueing models that follow the most common rule of service: **first come, first served.**

Common Queueing Processes

It is often reasonable to assume

- the interarrival times of customers are i.i.d. (the arrival of customers follows a renewal process),
- ▶ the service times for customers are i.i.d. and are independent of the arrival of customers.

Kendall's notation

M = memoryless, or Markov, G = General

- ▶ M/M/1: Poisson arrival, service time $\sim Exp(\mu)$, 1 server = a birth and death process with birth rates $\lambda_j \equiv \lambda$, and death rates $\mu_j \equiv \mu$
- ▶ $M/M/\infty$: Poisson arrival, service time $\sim Exp(\mu)$, ∞ servers = a birth and death process with birth rates $\lambda_j \equiv \lambda$, and death rates $\mu_i \equiv j\mu$
- ▶ M/M/k: Poisson arrival, service time $\sim Exp(\mu)$, k servers = a birth and death process with birth rates $\lambda_j \equiv \lambda$, and death rates $\mu_j \equiv \min(j,k)\mu$

Common Queueing Processes (Cont'd)

- ▶ M/G/1: Poisson arrival, General service times $\sim G$, 1 server
- ▶ $M/G/\infty$: Poisson arrival, General service time $\sim G$, ∞ servers
- ▶ M/G/k: Poisson arrival, General service times $\sim G$, k servers
- ▶ G/M/1: General interarrival times, service times $\sim Exp(\mu)$, 1 server
- ▶ G/G/k: General interarrival times $\sim F$, General service times $\sim G$, k servers
- **.**..

Quantities of Interest for Queueing Models

Let

$$X(t)=\#$$
 of customers in the system at time t $Q(t)=\#$ of customers waiting in queue at time t

Assume that $\{X(t), t \geq 0\}$ and $\{Q(t), t \geq 0\}$ have a stationary distribution.

$$L=\lim_{t o\infty}rac{\int_0^tX(t)dt}{t}=$$
 the average $\#$ of customers in the system $L_Q=\lim_{t o\infty}rac{\int_0^tQ(t)dt}{t}=$ the average $\#$ of customers waiting in queue $W=$ the average amount of time, including waiting time

and service time, a customer spends in the system; $W_{O}=$ the average amount of time a customer waiting in queue.

Little's Formula

Let

N(t) = # of customers enter the system at or before time t.

We define λ_a be the arrival rate of entering customers

$$\lambda_a = \lim_{t \to \infty} \frac{N(t)}{t}$$

Little's Formula:

$$L = \lambda_a W$$
$$L_Q = \lambda_a W_Q$$

Cost Identity

Many interesting and useful relationships between quantities in queueing models can be obtained by using the **cost identity**.

Imagine that entering customers are forced to pay money (according to some rule) to the system. We would then have the following basic cost identity:

average rate at which the system earns

 $=\lambda_{\it a} imes$ average amount an entering customer pays

Proof. Let R(t) be the amount of money the system has earned by time t. Then we have

average rate at which the system earns

$$=\lim_{t\to\infty}\frac{R(t)}{t}=\lim_{t\to\infty}\frac{N(t)}{t}\frac{R(t)}{N(t)}=\lambda_{a}\lim_{t\to\infty}\frac{R(t)}{N(t)}$$

 $=\lambda_{a} \times$ average amount an entering customer pays,

provided that the limits exist.

Proof of Little's Formula

To prove $L = \lambda_a W$:

we use the payment rule:

each customer pays \$1 per unit time while in the system.

- ightharpoonup the average amount a customer pay =W, the average waiting time of customers.
- ▶ the amount of money the system earns during the time interval $(t, t + \Delta t)$ is $X(t)\Delta t$, where X(t) is the number of customers in the system at time t,
- ▶ and the rate the system earns is thus $\lim_{t\to\infty}\frac{\int_0^t X(s)ds}{t}=L$, the formula follows from the cost identity.

To prove $L_Q = \lambda_a W_Q$, we use the payment rule:

each customer pays \$1 per unit time while in queue.

The argument is similar.

8.3.1 M/M/1 Model

Let X(t) be number of customers in the system at time t. $\{X(t), t \ge 0\}$ is a birth and death process with

birth rates $\lambda_j \equiv \lambda$, and death rates $\mu_j \equiv \mu$.

Recall that (see Example 6.14 in the book) we have showed that the stationary distribution exists when $\lambda < \mu$, and the stationary distribution is

$$P_n = \lim_{t \to \infty} P(X(t) = n) = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^n, \quad n = 0, 1, \dots$$

Thus

$$\begin{split} L = \lim_{t \to \infty} \mathbb{E}[X(t)] = & \sum_{n=1}^{\infty} n P_n = \frac{\lambda}{\mu - \lambda} = \frac{1/\mu}{1/\lambda - 1/\mu} \\ & = \frac{\mathbb{E}[\text{service time}]}{\mathbb{E}[\text{interarrival time}] - \mathbb{E}[\text{service time}]} \end{split}$$

19 - 10

8.3.1 M/M/1 Model (Cont'd)

 \sim Gamma($n+1,\mu$). That is,

Let T be the time of a customer spend in the system.

If there are n customers in the system while this customer arrives, then \mathcal{T} is the sum of the service times of the n+1 customers

$$P(T \le t) = \sum_{n=0}^{\infty} P_n \int_0^t \frac{\mu^{n+1}}{n!} s^n e^{-\mu s} ds$$

$$= \sum_{n=0}^{\infty} \left(1 - \frac{\lambda}{\mu} \right) \left(\frac{\lambda}{\mu} \right)^n \int_0^t \frac{\mu^{n+1}}{n!} s^n e^{-\mu s} ds$$

$$= (\mu - \lambda) \int_0^t \left(\sum_{n=0}^{\infty} \frac{(\lambda s)^n}{n!} \right) e^{-\mu s} ds$$

$$= (\mu - \lambda) \int_0^t e^{-(\mu - \lambda)s} ds = 1 - e^{-(\mu - \lambda)t}$$

Therefore, $T \sim Exp(\mu - \lambda) \quad \Rightarrow \quad W = \mathbb{E}[T] = \frac{1}{\mu - \lambda}$.

This verifies Little's formula, $L = \lambda W$. Lecture 19 - 11

8.3.1 M/M/1 Model (Cont'd)

$$W_Q = W - \mathbb{E}[\text{service time}] = W - 1/\mu = \frac{\lambda}{\mu(\mu - \lambda)}$$

Note that

of customers in queue = $\max(0, \# \text{ of customers in system} - 1)$.

So

$$L_Q = \sum_{n=1}^{\infty} (n-1)P_n = \underbrace{\sum_{n=1}^{\infty} nP_n}_{L} - \underbrace{\left(\sum_{n=1}^{\infty} P_n\right)}_{1-P_0}$$

$$= L - 1 + P_0$$

$$= \frac{\lambda}{\mu - \lambda} - 1 + \left(1 - \frac{\lambda}{\mu}\right)$$

$$= \frac{\lambda^2}{\mu(\mu - \lambda)} = \lambda W_Q$$

Example 8.2

Suppose customers arrive at a Poisson rate of 1 in 12 minutes, and that the service time is exponential at a rate of one service per 8 minutes. What are L and W?

Solution. Since $\lambda=1/12$, $\mu=1/8$, we have

$$L = \frac{1/\mu}{1/\lambda - 1/\mu} = \frac{8}{12 - 8} = 2, \ W = \frac{1}{\mu - \lambda} = 24$$

Observe if the arrival rate increases 20% to $\lambda=1/10$, then

$$L = 4, W = 40$$

When $\lambda/\mu \approx 1$, a slight increase in λ/μ will lead to a large increase in L and W.

$M/M/\infty$ Model

In this case, customers will be served immediately upon arrival. Nobody will be in queue. We have

$$W_Q = L_Q = 0$$
, $W = \text{average service time} = 1/\mu$,

and hence $L = \lambda W = \lambda/\mu$.

As a verification, observe that $\{X(t), t \geq 0\}$ is a birth and death process with

birth rates
$$\lambda_i \equiv \lambda$$
, and death rates $\mu_i \equiv j\mu$.

The stationary distribution is

$$P_n = \frac{\lambda^n}{n!\mu^n} P_0 = \frac{\lambda^n}{n!\mu^n} \frac{1}{\sum_{n=0}^{\infty} \frac{\lambda^n}{n! \cdot n}} = e^{-\lambda/\mu} \frac{(\lambda/\mu)^n}{n!}, \quad n = 0, 1, \dots$$

Therefore $X(t) \sim Poisson(\lambda/\mu)$ as $t \to \infty$,

$$L = \mathbb{E}[X(t)] = \lambda/\mu.$$

Birth & Death Queueing Models

In addition to M/M/1 and $M/M/\infty$ models, a more general family of birth & death queueing models is the following:

M/M/k Queueing System with Balking

Consider a M/M/k system, but suppose a customer arrives finding n others in the system will only join the system with probability α_n , i.e., he balks (walks away) w/ prob. $1-\alpha_n$. This system is a birth and death process with

$$\lambda_n = \lambda \alpha_n, \quad n \ge 0$$
 $\mu_n = \min(n, k)\mu, \quad n \ge 1$

A special case of M/M/k queueing system with balking is the M/M/k system with finite capacity N, where

$$\alpha_n = \begin{cases} 1 & \text{if } n < N \\ 0 & \text{if } n \ge N \end{cases}$$

Birth & Death Queueing Models

For a birth & death queueing model, the stationary distribution of the number of customers in the system is given by

$$P_k = \lim_{t \to \infty} \mathrm{P}(X(t) = k) = rac{\lambda_0 \lambda_1 \cdots \lambda_{k-1} / (\mu_1 \mu_2 \cdots \mu_k)}{1 + \sum_{n=1}^{\infty} rac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n}}, \quad k \ge 1$$

The necessary and sufficient condition for such a stationary distribution to exists is that

$$\sum_{n=1}^{\infty} \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} < \infty.$$

With $\{P_n\}$, the average number of customers in the system is simply

$$L=\sum_{n=0}^{\infty}nP_{n}.$$

Birth & Death Queueing Models (Cont'd)

With balking, the rate that customers enter the system is not λ (since not all customers enter the system), but

$$\lambda_{\mathsf{a}} = \sum\nolimits_{n=0}^{\infty} \lambda_{n} P_{n}.$$

Consequently, the average waiting time is

$$W = L/\lambda_a = \frac{\sum_{n=0}^{\infty} nP_n}{\sum_{n=0}^{\infty} \lambda_n P_n},$$

and the average amount of time waiting in queue (W_Q) and average number of customers in queue (L_Q) are respectively

$$W_Q = W - \mathbb{E}[ext{service time}] = W - (1/\mu), \ L_Q = \lambda_{\scriptscriptstyle \mathcal{S}} W_Q$$

Busy Period in a Birth & Death Queueing Model

There is an alternating renewal process embedded in a birth & death queueing model.

We say a renewal occurs if the system become empty.

Using the alternating renewal theory, the long-run proportion of time that the system is empty is $\frac{\mathbb{E}[\mathsf{Idle}]}{\mathbb{E}[\mathsf{Idle}] + \mathbb{E}[\mathsf{Busy}]}$, where

$$\mathbb{E}[\mathsf{Idle}] = \mathsf{expected}$$
 length of an idle period $\mathbb{E}[\mathsf{Busy}] = \mathsf{expected}$ length of a busy period

Also note that the long-run proportion of time that the system is empty is simply $P_0 = \lim_{t \to \infty} \mathrm{P}(X(t) = 0)$. Since the length of an idle period $\sim \mathit{Exp}(\lambda_0)$, we have $\mathbb{E}[\mathsf{Idle}] = 1/\lambda_0$. In summary, we have that

$$P_0 = rac{1/\lambda_0}{(1/\lambda_0) + \mathbb{E}[\mathsf{Busy}]}$$

or

$$\mathbb{E}[\mathsf{Busy}] = \frac{1 - P_0}{\lambda_0 P_0}$$