Theorem 1 (7.1). If $\langle a_0, a_1, \dots, a_j \rangle = \langle b_0, b_1, \dots, b_j \rangle$ where these finite continued fractions are simple, and if $a_j > 1$ and $b_n > 1$, then j = n and $a_i = b_i$ for $i = 0, 1, \dots, n$.

Theorem 2 (7.2). Any finite simple continued fraction represents a rational number. Conversely, any rational number can be expressed as a finite simple continued fraction, and in exactly two ways.

Note. Suppose $u_0/u_1 \in \mathbb{Q}$. Then $\frac{u_0}{u_1} = \langle a_0, a_1, \cdots a_j \rangle = \langle a_0, a_1, \cdots a_j - 1, 1 \rangle$. Those are its two sole representations.

Definition. Let a_0, a_1, a_2, \ldots be an infinite sequence of integers, all positive except perhaps a_0 . We define two sequences of integers $\{h_n\}$ and $\{k_n\}$ inductively as follows:

$$h_{-2} = 0, h_{-1} = 1, h_i = a_i h_{i-1} + h_{i-2}, \text{ for } i \ge 0$$

 $k_{-2} = 1, k_{-1} = 0, k_i = a_i k_{i-1} + k_{i-2}, \text{ for } i \ge 0$

We note that $1 = k_0 < k_1 < k_2 < k_3 < \cdots < k_n < \cdots$.

Theorem 3. For any positive real number x,

$$\langle a_0, a_1, \cdots, a_{n-1}, x \rangle = \frac{xh_{n-1} + h_{n-2}}{xk_{n-1} + k_{n-2}}.$$

Theorem 4. If we define $r_n = \langle a_0, a_1, \dots, a_n \rangle$ for all integers $n \geq 0$, then $r_n = \frac{h_n}{k_n}$.

Theorem 5. The equations

$$h_i k_{i-1} - h_{i-1} k_i = (-1)^{i-1}$$
 and $r_i - r_{i-1} = \frac{(-1)^{i-1}}{k_i k_{i-1}}$

hold for $i \geq 1$. The identities

$$h_i k_{i-2} - h_{i-2} k_i = (-1)^i a_i$$
 and $r_i - r_{i-2} = \frac{(-1)^{i-1}}{k_i k_{i-2}}$

hold for $i \geq 1$. The fraction h_i/k_i is reduced, that is $(h_i, k_i) = 1$.

Theorem 6. The values r_n defined in Theorem 7.4 satisfy the infinite chan of inequalities $r_0 < r_2 < r_4 < r_6 < \cdots < r_7 < r_5 < r_3 < r_1$. Stated in words, the r_n with even subscripts form an increasing sequence, those with odd subscripts form a decreasing sequence, and every r_{2n} is less than every r_{2j-1} . Furthermore, $\lim_{n\to\infty} r_n$ exists, and for every $j \geq 0$, $r_{2j} < \lim_{n\to\infty} r_n < r_{2j+1}$.

Definition. An infinite sequence a_0, a_1, a_2, \cdots of integers, all positive except perhaps for a_0 , determines an infinite simple continued fraction $\langle a_0, a_1, a_2, \cdots \rangle$. The value of $\langle a_0, a_1, a_2, \cdots \rangle$ is defined to be $\lim_{n \to \infty} \langle a_0, a_1, a_2, \cdots, a_n \rangle$.

Theorem 7. The value of any infinite simple continued fraction (a_0, a_1, a_2, \cdots) is irrational.

Theorem 8. Two distinct infinite simple continued fractions converge to different values.

Lemma 1. Let $\theta = \langle a_0, a_1, a_2, \cdots \rangle$ be a simple continued fraction. Then $a_0 = [\theta]$. Furthermore, if θ_1 denotes $\langle a_1, a_2, a_3, \cdots \rangle$, then $\theta = a_0 + 1/\theta_1$.

Note. To construct the continued fraction of an irrational number:

$$\xi_0 = \xi$$

$$a_i = [\xi_i]$$

$$\xi_{i+1} = \frac{1}{\xi_i - a_i}.$$

Note that this implies $\xi_i = a_i + \frac{1}{\xi_{i+1}}$. Now we get

$$\xi = \xi_0 = a_0 + \frac{1}{\xi_1} = \langle a_0, \xi_1 \rangle$$

$$= \left\langle a_0, a_1 + \frac{1}{\xi_2} \right\rangle = \langle a_0, a_1, \xi_2 \rangle$$

$$= \vdots$$

$$= \left\langle a_0, a_1, a_2, \dots, a_{m-2}, a_{m-1} + \frac{1}{\xi_m} \right\rangle = \langle a_0, a_1, \dots, a_{m-1}, \xi_m \rangle,$$

so

$$\xi = \langle a_0, a_1, \cdots, a_{n-1}, \xi_n \rangle = \frac{\xi_n h_{n-1} + h_{n-2}}{\xi_n k_{n-1} + k_{n-2}}.$$

Theorem 9. Any irrational number ξ is uniquely expressible, by the procedure gave in the previous note, as an infinite simple continued fraction $\langle a_0, a_1, a_2, \cdots \rangle$. Conversely, any such continued fraction determined by integers a_i that are positive for all i > 0 represents an irrational number, ξ . The finite simple continued fraction $\langle a_0, a_1, \cdots, a_n \rangle$ has the rational value $\frac{h_n}{k_n} = r_n$, and is called the nth convergent to ξ . Even convergents form a monotonically increasing sequence with ξ as the limit. Similarly, odd convergents form a monotonically decreasing sequence tending to ξ . The denominators k_n of the convergents are an increasing sequence of positive integers for n > 0. Finally, with ξ_i defined as in our previous note, we have $\langle a_0, a_1, \cdots \rangle = \langle a_0, a_1, \cdots, a_{n-1}, \xi_n \rangle$ and $\xi_n = \langle a_n, a_{n+1}, a_{n+2}, \cdots \rangle$.

Theorem 10. We have for any $n \geq 0$,

$$\left| \xi - \frac{h_n}{k_n} \right| < \frac{1}{k_n k_{n+1}} \quad and \quad |\xi k_n - h_n| < \frac{1}{k_{n+1}}$$

Theorem 11. The convergents h_n/k_n are successively closer to ξ , that is

$$\left|\xi - \frac{h_n}{k_n}\right| < \left|\xi - \frac{h_{n-1}}{k_{n-1}}\right|,$$

in fact the stronger inequality

$$|\xi k_n - h_n| < |\xi k_{n-1} - h_{n-1}|$$

holds.

Theorem 12. If a/b is a rational number with positive denominator such that $|\xi - a/b| < |\xi - h_n/k_n|$ for some $n \ge 1$, then $b > k_n$. In fact if $|\xi b - a| < |\xi k_n - h_n|$ for some $n \ge 0$, then $b \ge k_{n+1}$.

Theorem 13. Let ξ denote any irrational number. If there is a rational number a/b with $b \ge 1$ such that

$$\left|\xi - \frac{a}{b}\right| < \frac{1}{2b^2},$$

then a/b equals one of the convergents of the simple continued fraction expansion of ξ .

Theorem 14. The nth convergent of 1/x is the reciprocal of the (n-1)st converget of x if x is any real number > 1.

Theorem 15. Hurwitz. Given any irrational number ξ , there exist infinitely many rational numbers h/k such that

$$\left|\xi - \frac{h}{k}\right| < \frac{1}{\sqrt{5}k^2}.$$

Theorem 16. The constant $\sqrt{5}$ in the preceding theorem is the best possible. In other words, the theorem does not hold if $\sqrt{5}$ is replaced by a larger number.