Cours TalENS 2023-2024 RRrrr, Shadoks, Craies

Matthieu Boyer

25 février 2024

Plan

Introduction

Figure - Déroulé d'une partie de Lights Out

Source : Wikipédia

Introduction

Figure - Déroulé d'une partie de Lights Out

Source : Wikipédia

Il existe aussi des variantes du jeu où les lumières peuvent avoir plus que deux couleurs possibles

Plan

On part par exemple d'une situation semblable à celle-ci dessous :

État du Jeu

On part par exemple d'une situation semblable à celle-ci dessous :

On choisit de modéliser chaque couleur par un nombre différent : Violet = 0. Jaune = 1 et Menthe = 2

On part par exemple d'une situation semblable à celle-ci dessous :

On décrit alors la situation par la couleur de chaque lumière sous forme d'un vecteur :

$$\mathcal{P} = (0, 2, 0, 2, 0, 0, 2, 1, 0)$$

La lumière de la case i, j est représenté par la i * m + j-ème valeur.

Transitions de l'État du Jeu - 1

Si on appuie sur la lumière en haut au milieu :

C'est à dire :

$$L_{0,1}(0,2,0,2,0,0,2,1,0) = (1,0,1,0,1,1,2,1,0)$$

On a plus généralement :

C'est à dire que si on agit sur une case i, j:

$$L_{x,y}\left(u_0,\ldots,u_{nm-1}
ight)=\left(u_0',\ldots,u_{nm-1}'
ight)$$
 où :

$$\forall k, u_k' = \begin{cases} u_k & \text{si } im+j \text{ et } k \text{ ne sont pas adjacentes} \\ 1 & \text{si } u_k = 0 \\ 2 & \text{si } u_k = 1 \\ 0 & \text{si } u_k = 2 \end{cases}$$

Le diagramme commutatif cicontre est valable pour toutes paires (i,j) et (k,l). C'est à dire que

$$\forall (i,j), (k,l), L_{i,j} \circ L_{k,l} = L_{k,l} \circ L_{i,j}$$

Le diagramme commutatif cicontre est valable pour toutes paires (i,j) et (k,l). C'est à dire que

$$\forall (i,j), (k,l), L_{i,j} \circ L_{k,l} = L_{k,l} \circ L_{i,j}$$

Par ailleurs, si on prend $u=(u_0,\ldots,u_{mn-1})$ et $v=(v_0,\ldots,v_{mn-1})$ deux états de jeu, on a :

$$L_{i,j}(u+v) = L_{i,j}(u) + L_{i,j}(v)$$

Plan

Théorème 3.1: Division Euclidienne

Soit $n, q \in \mathbb{Z}$. Il existe un unique couple (p, q) vérifiant :

$$n = pq + r \text{ et } 0 \le r < q$$

Division Euclidienne

Théorème 3.1: Division Euclidienne

Soit $n, q \in \mathbb{Z}$. Il existe un unique couple (p, q) vérifiant :

$$n = pq + r \text{ et } 0 \le r < q$$

Démonstration.

Existence On soustrait q à n jusqu'à tomber sur r < q.

Unicité Si (p, r), (p', r') conviennent, on a (p - p')q = r - r'. Mais $|r - r'| \le q$ donc p - p' = 0 et par suite r = r'.

Définition 3.1: Modulo et Divisibilité

On note $a \mid b$ lorsque r = 0 dans la division euclidienne de a par b, i.e. $a = p \times b$.

On note $a \equiv b[n]$ lorsque a et b ont même reste dans la division euclidienne par n. On dit qu'ils sont congrus modulo n. On note $a \mod n$ ou a[n] la valeur de ce reste commun.

Proposition 3.1: Sur la Relation Modulo n

Soit $a, b, n \in \mathbb{Z}$.

- $ightharpoonup a+b \mod n=(a \mod n)+(b \mod n) \mod n$
- $ightharpoonup ab \mod n = (a \mod n) imes (b \mod n) \mod n$
- La relation $a \mod n = b \mod n$ est une relation d'équivalence.

Démonstration.

On calcule simplement les résultats à l'aide d'un tableau de congruence.

Anneaux

Définition 3.2: Anneau $\mathbb{Z}/n\mathbb{Z}$

On définit sur l'ensemble $\{0,\ldots,n-1\}$ l'addition et le produit par le passage au modulo.

Formellement, il s'agit du passage au quotient de $\mathbb Z$ par son idéal $n\mathbb Z$.

Anneaux

Définition 3.2: Anneau $\mathbb{Z}/n\mathbb{Z}$

On définit sur l'ensemble $\{0, \ldots, n-1\}$ l'addition et le produit par le passage au modulo.

Formellement, il s'agit du passage au quotient de $\mathbb Z$ par son idéal $n\mathbb Z$.

Proposition 3.2: Corps Primaux

L'anneau $\mathbb{Z}/p\mathbb{Z}$ est un corps (i.e. il y a des inverses multiplicatifs) si et seulement si il est intègre si et seulement si $p \in \mathcal{P}$.

Modélisation

Si nos lampes peuvent avoir p couleurs différentes, on va donc modéliser l'état de chacune de nos lampes comme un nombre sur $\mathbb{Z}/p\mathbb{Z}$. On a alors bien :

$$0+1=1$$
 $1+1=2$
 \vdots
 $p-1+1=0$

et on modélise correctement le cycle des couleurs.

Espace Vectoriel sur un Corps

Définition 4.1: Espace Vectoriel

Etant donné un corps \mathbb{K} , on appelle espace vectoriel sur \mathbb{K} ou \mathbb{K} -espace vectoriel un ensemble E muni d'une addition commutative + et d'un produit externe \times distributif sur l'addition.

Espace Vectoriel sur un Corps

Définition 4.1: Espace Vectoriel

Étant donné un corps \mathbb{K} , on appelle espace vectoriel sur \mathbb{K} ou \mathbb{K} -espace vectoriel un ensemble E muni d'une addition commutative + et d'un produit externe \times distributif sur l'addition.

Proposition 4.1: Quelques Exemples

- $ightharpoonup \mathbb{R}$, $\mathbb{R}^{\mathbb{R}}$, $\mathbb{R}^{\mathbb{N}}$ ou $\mathbb{R}[X]$ sont des \mathbb{R} -ev.
- $ightharpoonup \mathbb{Z}/p\mathbb{Z}$ est un $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel.

Définition 4.2: Application Linéaire

Soient E,F deux $\mathbb{K} ext{-espaces}$ vectoriels. Une application f :

 $E \to F$ est dite linéaire si :

- $\forall x, y \in E, \ f(x+y) = f(x) + f(y)$
- $\blacktriangleright \ \forall x \in E, \lambda \in \mathbb{K}, f(\lambda x) = \lambda f(x)$

Proposition 4.2: Exemples

 $ightharpoonup ev_x: P \in \mathbb{R}[X] \mapsto P(x) \in \mathbb{R}$ est linéaire.

Proposition 4.2: Exemples

- $ev_x: P \in \mathbb{R}[X] \mapsto P(x) \in \mathbb{R}$ est linéaire.
- $lacksquare \Delta: P \in \mathbb{R}[X] \mapsto P' \in \mathbb{R}[X]$ est linéaire.

Applications Linéaires

Proposition 4.2: Exemples

- $ightharpoonup ev_x: P \in \mathbb{R}[X] \mapsto P(x) \in \mathbb{R}$ est linéaire.
- $lacksquare \Delta: P \in \mathbb{R}[X] \mapsto P' \in \mathbb{R}[X]$ est linéaire.
- $ightharpoonup L_a: x \in \mathbb{Z}/p\mathbb{Z} \mapsto a \times x \in \mathbb{Z}/p\mathbb{Z}$ est linéaire.

Algèbre Linéaire

Espace Engendré

Définition 4.3: Espace Engendré

Soit $e=e_1,\ldots,e_n\in E.$ On appelle Espace Vectoriel Engendré par e_1,\ldots,e_n le plus petit sous-espace vectoriel de E comprenant chacun des e_i i.e.

$$\operatorname{Vect}(e) = \operatorname{Vect}(e_1, \dots, e_n) = \left\{ \sum_{i=1}^n \lambda_i e_i \mid (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \right\}$$

Par exemple:

$$Vect(1, X, \dots, X^n, \dots) = \mathbb{R}[X]$$

Bases

Définition 4.4: Famille Génératrice, Libre, Base

On dit que:

ightharpoonup e est une base si $\operatorname{Vect}(e \setminus \{e_i\}) \subsetneq \operatorname{Vect}(e)$ pour tout i

Bases

Définition 4.4: Famille Génératrice, Libre, Base

On dit que:

- e est une base si $Vect(e \setminus \{e_i\}) \subsetneq Vect(e)$ pour tout i
- ightharpoonup e est génératrice si $\mathrm{Vect}(e) = E$

Définition 4.4: Famille Génératrice, Libre, Base

On dit que:

- e est une base si $Vect(e \setminus \{e_i\}) \subsetneq Vect(e)$ pour tout i
- e est génératrice si Vect(e) = E
- e est une base si e est génératrice et libre

Définition 4.4: Famille Génératrice, Libre, Base

On dit que:

- e est une base si $Vect(e \setminus \{e_i\}) \subsetneq Vect(e)$ pour tout i
- ightharpoonup e est génératrice si $\operatorname{Vect}(e) = E$
- ightharpoonup e est une base si e est génératrice et libre

E est de dimension finie s'il existe une famille génératrice finie.

Définition 4.4: Famille Génératrice, Libre, Base

On dit que:

- e est une base si $Vect(e \setminus \{e_i\}) \subsetneq Vect(e)$ pour tout i
- ightharpoonup e est génératrice si $\operatorname{Vect}(e) = E$
- ightharpoonup e est une base si e est génératrice et libre

E est de dimension finie s'il existe une famille génératrice finie.

En dimension finie (\mathbb{K}^n , $\mathbb{K}_n[X]$, $L(\mathbb{K}, \mathbb{K})$), ces trois propositions sont équivalentes.

Proposition 4.3: Image d'une Base

L'image par une application linéaire est une famille génératrice de l'image de l'application linéaire.

Applications Linéaires et Base

Proposition 4.3: Image d'une Base

L'image par une application linéaire est une famille génératrice de l'image de l'application linéaire.

Démonstration.

Si
$$x = \sum_{i} \lambda_i e_i$$
, $f(x) = \sum_{i} \lambda_i f(e_i)$.

Applications Linéaires et Base

Proposition 4.3: Image d'une Base

L'image par une application linéaire est une famille génératrice de l'image de l'application linéaire.

Démonstration.

Si
$$x = \sum_{i} \lambda_i e_i$$
, $f(x) = \sum_{i} \lambda_i f(e_i)$.

On n'a donc besoin que de l'image d'une base pour caractériser une application linéaire. On n'a par ailleurs besoin que d'une base pour caractériser un espace.

Définition 4.5: Matrice d'une Application Linéaire

Soit $e=e_1,\ldots,e_n$ une base d'un \mathbb{K} -espace $E,\ f=f_1,\ldots,f_m$ une base d'un \mathbb{K} -espace F. Soit $u:E\to F$ linéaire. Si on a, pour tout $i\in [\![1,m]\!]:u(e_i)=\sum_{j=1}^n a_{i,j}f_j$ la matrice de u relativement à e et f est :

$$Mat_{e,f}(u) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}$$

Elle est de taille m, n. On note $\mathcal{M}_{m,n}(\mathbb{K})$ l'ensemble des telles matrices.

Définition 4.6: Anneau Matriciel

- Si $P,Q \in \mathcal{M}_{p,q}(\mathbb{K})$ sont les matrices de u et v dans certaines bases, P+Q est la matrice de u+v dans ces bases.
- ▶ Si $P \in \mathcal{M}_{p,q}(\mathbb{K})$ est la matrice de $u : F \to G$ et si $Q \in \mathcal{M}_{q,r}(\mathbb{K})$ est la matrice de $v : E \to F$ alors $PQ \in \mathcal{M}_{p,r}(\mathbb{K})$ est la matrice de $u \circ v : E \to G$.

Proposition 4.4: Propriétés des Matrices

La matrice d'une application la caractérise entièrement.

Espaces de Matrices

Proposition 4.4: Propriétés des Matrices

- La matrice d'une application la caractérise entièrement.
- ightharpoonup P + Q est la matrice somme des coefficients :

$$(P+Q)_{i,j} = P_{i,j} + Q_{i,j}$$

Proposition 4.4: Propriétés des Matrices

- La matrice d'une application la caractérise entièrement.
- ightharpoonup P+Q est la matrice somme des coefficients :

$$(P+Q)_{i,j} = P_{i,j} + Q_{i,j}$$

ightharpoonup P imes Q se calcule comme suit :

$$(P \times Q)_{i,j} = \sum_{k=1}^{q} p_{i,k} q_{k,j}$$

On peut voir une transition de jeu comme une application linéaire de $\mathbb{Z}/p\mathbb{Z}^{mn}$ vers $\mathbb{Z}/p\mathbb{Z}^{mn}$.

On peut voir une transition de jeu comme une application linéaire de $\mathbb{Z}/p\mathbb{Z}^{mn}$ vers $\mathbb{Z}/p\mathbb{Z}^{mn}$. En 3×3 :

$$\mathcal{L}(3,3) = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Plan

Système Linéaire

On peut finalement voir Lights Out comme un système linéaire :

$$\mathcal{L}(3,3) \times a = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \times a = b$$

où b est la situation initiale et où on cherche a

Exemple de Résolution

Dans notre cas :

$$b = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

$$a = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 1 \\ 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$$

Pour résoudre le problème, on a calculé la matrice inverse de

Déterminant

Définition 5.1: Déterminant d'une Matrice

Si $A=(a_{i,j})\in M_{n,n}(\mathbb{K})$, on appelle déterminant de A le nombre :

$$\det A = \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

Déterminant

Définition 5.1: Déterminant d'une Matrice

Si $A=(a_{i,j})\in M_{n,n}(\mathbb{K})$, on appelle déterminant de A le nombre :

$$\det A = \begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix} = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

Proposition 5.1: Inversibilité et Déterminant

A est inversible, i.e. A^{-1} existe si et seulement si $\det A \neq 0$.

Proposition 5.2: Déterminant Sur $\mathbb{Z}/p\mathbb{Z}$

On a, si
$$A \in \mathcal{M}_n(\mathbb{Z}/p\mathbb{Z})$$
 :

$$\det_{\mathbb{Z}/p\mathbb{Z}} A = \det_{\mathbb{R}} A \text{ mod } p$$

Proposition 5.2: Déterminant Sur $\mathbb{Z}/p\mathbb{Z}$

On a, si $A \in \mathcal{M}_n(\mathbb{Z}/p\mathbb{Z})$:

$$\det_{\mathbb{Z}/p\mathbb{Z}} A = \det_{\mathbb{R}} A \bmod p$$

```
Pour calculer A^{-1} on dispose de l'algorithme de Gauss-Jordan :
```

```
r \leftarrow 0
for i=1 à m do
    k \leftarrow \arg \max_{r \perp 1 \le i \le n} |A_{i,j}|
    if A_{k,i} \neq 0 then
         r \leftarrow r + 1
         Diviser la ligne k par A_{k,i}
         if k \neq r then
             Échanger les lignes k et r
         end if
         for i = 1 à n do
             if i \neq r then
                  Soustraire à la ligne i la ligne r multipliée par A[i, j]
             end if
         end for
    end if
end for
```