ω (1420)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ω (1420) MASS

 VALUE (MeV)
 EVTS
 DOCUMENT ID
 TECN
 COMMENT

(1400-1450) OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • •

$1470\pm$	50	13.1k	¹ AULCHENKO	15A	SND	$1.05 - 1.80 e^{+}_{\pi} e^{-}_{\pi} \rightarrow$
$1382\pm$	23± 70		AUBERT	07 AU	BABR	$10.6 e^{+}e^{-} \rightarrow \omega \pi^{+}\pi^{-}\gamma$
$1350\pm$	20 ± 20		AUBERT,B	04N	BABR	10.6 $e^+e^- \to \pi^+\pi^-\pi^0\gamma$
1400 \pm	50 ± 130	1.2M	² ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$
$1450\pm$	10		³ HENNER	02	RVUE	1.2–2.0 $e^+e^- \rightarrow \rho\pi$, $\omega\pi\pi$
$1373\pm$	70	177	⁴ AKHMETSHIN			1.2–1.38 $e^+e^- \to \omega \pi^+\pi^-$
$1370\pm$	25	5095	ANISOVICH	00н	SPEC	$0.0 \ p\overline{p} \rightarrow \ \omega \pi^0 \pi^0 \pi^0$
1400^{+1}_{-2}	00 00		⁵ ACHASOV	98н	RVUE	$e^+e^-\rightarrow~\pi^+\pi^-\pi^0$
~ 1400			⁶ ACHASOV		_	$e^+e^- ightarrow \omega \pi^+\pi^-$
~ 1460			⁷ ACHASOV	98н	RVUE	$e^+e^- ightarrow K^+K^-$
$1440\pm$	70		⁸ CLEGG	94	RVUE	
$1419\pm$	31	315	⁹ ANTONELLI	92	DM2	$1.34-2.4e^{+}e^{-} \rightarrow \rho\pi$

¹ From a fit with contributions from $\omega(782)$, $\phi(1020)$, $\omega(1420)$, and $\omega(1650)$.

ω (1420) WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

(180–250) OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • • •

880 ± 170	13.1k	¹⁰ AULCHENKO	15A	SND	$1.05-1.80 e^{+}_{\pi^{+}\pi^{-}\pi^{0}}e^{-} \rightarrow$
$130\pm\ 50\pm100$		AUBERT	07 AU	BABR	10.6 $e^+e^- \rightarrow \omega \pi^+\pi^-\gamma$
$450 \pm70 \pm70$		AUBERT,B	04N	BABR	10.6 $e^+e^- \to \pi^+\pi^-\pi^0\gamma$
$870^{+500}_{-300}\pm450$	1.2M	¹¹ ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}_{\pi^{+}\pi^{-},\pi^{0}}e^{-} \rightarrow$
199± 15		¹² HENNER	02	RVUE	$\pi^{+}\pi^{-}\pi^{0}$ 1.2-2.0 e ⁺ e ⁻ $\rightarrow \rho\pi, \omega\pi\pi$

HTTP://PDG.LBL.GOV

Page 1

Created: 5/30/2017 17:21

 $^{^2}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

³Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.

⁴ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

⁵ Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.

⁶ Using the data from ANTONELLI 92.

⁷Using the data from IVANOV 81 and BISELLO 88B.

⁸ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.

ANTONELLI 92. 9 From a fit to two Breit-Wigner functions interfering between them and with the ω , ϕ tails with fixed (+,-,+) phases.

$188\pm~45$	177	¹³ AKHMETSHIN	100 D	CMD2	1.2–1.38 $e^+e^- \to \omega \pi^+\pi^-$
360^{+100}_{-60}	5095	ANISOVICH	00н	SPEC	$0.0~\rho \overline{\rho} \rightarrow ~\omega \pi^0 \pi^0 \pi^0$
240 ± 70			-	RVUE	
174 ± 59	315	¹⁵ ANTONELLI	92	DM2	$1.34-2.4e^{+}e^{-} \rightarrow \rho\pi$

¹⁰ From a fit with contributions from $\omega(782)$, $\phi(1020)$, $\omega(1420)$, and $\omega(1650)$.

¹²Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-

 14 From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and

ω (1420) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$ ho\pi$	dominant
Γ_2	$\omega\pi\pi$	seen
Γ_3	$\omega \eta$	
	$b_1(1235)\pi$	seen
Γ_5	$e^+e^- \ \pi^0\gamma$	seen
Γ ₅ Γ ₆	$\pi^0\gamma$	

$\omega(1420) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(total)$

$\Gamma(\rho\pi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_1/\Gamma \times \Gamma_5/\Gamma$

Created: 5/30/2017 17:21

<i>VALUE</i> (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use t					
0.73 ± 0.08	13.1k	16 AULCHENKO	15A	SND	$1.05 - 1.80 e^{+}_{+} e^{-} \rightarrow$
$0.82\ \pm0.05\ \pm0.06$		AUBERT,B	04N	BABR	$1.05-1.80 e^{+}e^{-} \rightarrow \\ \pi^{+}\pi^{-}\pi^{0}$ $10.6 e^{+}e^{-} \rightarrow \\ \pi^{+}\pi^{-}\pi^{0}\gamma$ $0.44-2.00 e^{+}e^{-} \rightarrow \\ \pi^{+}\pi^{-}\pi^{0}$
$0.65\ \pm0.13\ \pm0.21$	1.2M ¹⁷	^{,18} ACHASOV	03 D	RVUE	$0.44-2.00 \ e^{+}e^{-} \rightarrow -+0$
0.625 ± 0.160 0.466 ± 0.178	19	^{,20} CLEGG	94	R\/IIF	$1.34-2.4e^+e^- \rightarrow \rho\pi$

¹⁶ From a fit with contributions from $\omega(782)$, $\phi(1020)$, $\omega(1420)$, and $\omega(1650)$.

¹¹ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

TONELLI 92. 13 Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

ANTONELLI 92. 15 From a fit to two Breit-Wigner functions interfering between them and with the ω,ϕ tails with fixed (+,-,+) phases.

¹⁷ Calculated by us from the cross section at the peak.

¹⁸ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

 $^{^{19}}$ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92. 20 From the partial and leptonic width given by the authors.

²¹ From a fit to two Breit-Wigner functions interfering between them and with the ω , ϕ tails with fixed (+,-,+) phases.

 $^{^{22}}$ From the product of the leptonic width and partial branching ratio given by the authors.

$\Gamma(\omega\pi\pi)/\Gamma_{\text{total}} \times \Gamma($	$(e^+e^-)/\Gamma_{ m total}$		$\Gamma_2/\Gamma \times \Gamma_5/\Gamma$				
VALUE (units 10^{-8})	DOCUMENT ID	TECN COMMENT					
• • • We do not use the	e following data for average	ges, fits, limits, etc. • •	•				
19.7 ± 5.7		7AU BABR 10.6 e ⁺ e ⁻					
1.9 ± 1.9	²³ AKHMETSHIN 0	OD CMD2 1.2-2.4 e ⁺	$e^- \rightarrow \omega \pi^+ \pi^-$				
²³ Using the data of Ak energy dependence o	KHMETSHIN 00D and AN f the $\omega(1420)$ and $\omega(165)$	NTONELLI 92. The $ ho\pi$ 0) width assumed.	dominance for the				
$\Gamma(\omega\eta)/\Gamma_{\rm total} \times \Gamma(e^{-1})$	$^+e^-)/\Gamma_{ m total}$		$\Gamma_3/\Gamma \times \Gamma_5/\Gamma$				
VALUE (units 10^{-8})	,	TECN COMMEI	NT				
	e following data for avera	ges, fits, limits, etc. • •	•				
$1.6^{+0.9}_{-0.7}$	898 ²⁴ ACHASOV	16B SND 1.34-2.0	$00 e^+e^- \rightarrow \omega \eta$				
24 From a fit with cont width of $\omega(1420)$ are	ributions from $\omega(1420)$, ω e fixed to the 2014 edition	$\omega(1650)$, and $\phi(1680)$. $^{-1}$	The mass and the w.				
$\Gamma(\pi^0\gamma)/\Gamma_{\text{total}} \times \Gamma(\sigma^0\gamma)$,		$\Gamma_6/\Gamma \times \Gamma_5/\Gamma$				
·	DOCUMENT ID						
• • • We do not use the	e following data for average	ges, fits, limits, etc. • •	•				
$2.03^{igoplus 0.70}_{igoplus 0.75}$	²⁵ AKHMETSHIN 0	5 CMD2 0.60-1.38 e	$+_{e^-} \rightarrow \pi^0 \gamma$				
²⁵ Using 1420 MeV and	I 220 MeV for the $\omega(1420$	0) mass and width.					
ω (1420) BRANCHING RATIOS							
Γ () /Γ			Г. /Г				
$\Gamma(\omega\pi\pi)/\Gamma_{ ext{total}}$	DOCUMENT ID	TECN COMMENT	Γ_2/Γ				
•	e following data for average		•				
0.301±0.029		2 RVUE 1.2–2.0 e ⁺					
possibly seen		OD CMD2 $e^+e^- \rightarrow 0$	• •				
$\Gamma(\omega\pi\pi)/\Gamma(b_1(1235)$	π)		Γ_2/Γ_4				
VALUE	<u>EVTS</u> <u>DOCUMENT I</u>	D TECN COMME					
● ● We do not use the	e following data for average	ges, fits, limits, etc. • •	•				
$0.60\!\pm\!0.16$	5095 ANISOVICH	00н SPEC 0.0 <i>р</i>	$\rightarrow \omega \pi^0 \pi^0 \pi^0$				
$\Gamma(\rho\pi)/\Gamma_{\text{total}}$	DOCUMENT ID	TECN COMMENT	Γ_1/Γ				
VALUE • • • We do not use the	e following data for average	TECN COMMENT	•				
0.699 ± 0.029	0.0	2 RVUE 1.2–2.0 e^+					
0.039 ± 0.029	TILININER U	2 NVOL 1.2-2.0 6	$e \rightarrow \rho \pi, \omega \pi \pi$				

 $\Gamma(e^+e^-)/\Gamma_{\mathsf{total}}$ Γ_5/Γ

VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 $\sim 6.6 \\ 1.2 \text{M} \ \ ^{27,28} \ \text{ACHASOV} \qquad 03 \text{D} \ \ \text{RVUE} \ \ 0.44-2.00 \ e^+ \ e^- \rightarrow \\ \pi^+ \pi^- \pi^0 \\ 23 \ \pm 1 \\ 26 \ \text{HENNER} \qquad 02 \ \ \text{RVUE} \ \ 1.2-2.0 \ e^+ \ e^- \rightarrow \ \rho \pi \text{, } \omega \pi \pi$

ω (1420) REFERENCES

ACHASOV AULCHENKO	16B 15A	PR D94 092002 JETP 121 27	M.N. Achasov <i>et al.</i> V.M. Aulchenko <i>et al.</i>		Collab.) Collab.)
PDG	14	Translated from ZETF 14 CP C38 070001	18-34. K. Olive <i>et al.</i>	(DDC	Collab.)
-				(,
AUBERT	07AU	PR D76 092005	B. Aubert <i>et al.</i>	(BABAR	
AKHMETSHIN		PL B605 26	R.R. Akhmetshin et al.	(Novosibirsk CMD-2	
AUBERT,B	04N	PR D70 072004	B. Aubert <i>et al.</i>	(BABAR	Collab.)
ACHASOV	03D	PR D68 052006	M.N. Achasov et al.	(Novosibirsk SND	Collab.)
ACHASOV	02E	PR D66 032001	M.N. Achasov et al.	(Novosibirsk SND	Collab.)
HENNER	02	EPJ C26 3	V.K. Henner et al.	•	,
ACHASOV	01E	PR D63 072002	M.N. Achasov et al.	(Novosibirsk SND	Collab.)
AKHMETSHIN	00D	PL B489 125	R.R. Akhmetshin et al.	(Novosibirsk CMD-2	Collab.)
ANISOVICH	00H	PL B485 341	A.V. Anisovich et al.	•	,
ACHASOV	99E	PL B462 365	M.N. Achasov et al.	(Novosibirsk SND	Collab.)
ACHASOV	98H	PR D57 4334	N.N. Achasov, A.A. Kozhev	nikov	ŕ
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC,	MCHS)
ANTONELLI	92	ZPHY C56 15	A. Antonelli <i>et al.</i>	(DM2	Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky et al.	`	(NOVO)
BISELLO	88B	ZPHY C39 13	D. Bisello <i>et al.</i>	(PADO, CLER,	(
BARKOV	87	JETPL 46 164	L.M. Barkov <i>et al.</i>		(NOVO)
D/ II II I V	01	Translated from ZETFP			(11010)
CORDIER	81	PL 106B 155	A. Cordier <i>et al.</i>	(ORSAY)
IVANOV	81	PL 107B 297	P.M. Ivanov <i>et al.</i>		(NOVO)
		. 2 10. 2 201	· ····· · · · · · · · · · · · · · · ·		()

Created: 5/30/2017 17:21

 $^{^{26}}$ Assuming that the $\omega(1420)$ decays into $\rho\pi$ and $\omega\,\pi\,\pi$ only.

²⁷ Calculated by us from the cross section at the peak.

²⁸ Assuming that the $\omega(1420)$ decays into $\rho\pi$ only.