Лабораторная работа №4

Архитектура вычислительных систем

Касымова Эллина

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	8
4	Выводы	13
Сп	исок литературы	14

Список иллюстраций

3.1	Каталог	8
3.2	Текствой файл	8
3.3	Текст	9
3.4	Текст	9
3.5	Текст	9
3.6	Обработка	10
3.7	Ключ-о	10
3.8	Запуск	10
3.9	Запуск	10
3.10	Текстовой редактор	11
3.11	Текст	11
3.12	Компиляция	11
3.13	Обработка	11
3.14	Ключ	11
3.15	Запуск	12
3.16	Github	12
3.17	Github	12

Список таблиц

2.1 Описание некоторых каталогов файловой системы GNU Linux . . . 6

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

Цель данного шаблона — максимально упростить подготовку отчётов по лабораторным работам. Модифицируя данный шаблон, студенты смогут без труда подготовить отчёт по лабораторным работам, а также познакомиться с основными возможностями разметки Markdown.

2 Задание

- 1. В каталоге ~/work/arch-pc/lab05 с помощью команды ср создайте копию файла hello.asm с именем lab5.asm
- 2. С помощью любого текстового редактора внесите изменения в текст программы в файле lab5.asm так, чтобы вместо Hello world! на экран выводилась строка с вашими фамилией и именем.
- 3. Оттранслируйте полученный текст программы lab5.asm в объектный файл. Выполните компоновку объектного файла и запустите получивший- ся исполняемый файл.
- 4. Скопируйте файлы hello.asm и lab5.asm в Ваш локальный репозиторий в каталог ~/work/study/2022-2023/"Архитектура компьютера"/archpc/labs/lab05/. Загрузите файлы на Github. # Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы. Например, в табл. 2.1 приведено краткое описание стандартных каталогов Unix.

Таблица 2.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-				
талога	Описание каталога			
/	Корневая директория, содержащая всю файловую			
/bin	Основные системные утилиты, необходимые как в			
	однопользовательском режиме, так и при обычной работе всем			
	пользователям			

Имя ка-				
талога	Описание каталога			
/etc	Общесистемные конфигурационные файлы и файлы конфигурации			
	установленных программ			
/home	Содержит домашние директории пользователей, которые, в свою			
	очередь, содержат персональные настройки и данные пользователя			
/media	Точки монтирования для сменных носителей			
/root	Домашняя директория пользователя root			
/tmp	Временные файлы			
/usr	Вторичная иерархия для данных пользователя			

Более подробно об Unix см. в [1-6].

3 Выполнение лабораторной работы

1)Перехожу в каталог.

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab 04 $ touch hello.asm ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab 04 $ ls hello.asm presentation report
```

Рис. 3.1: Каталог

2)Создаю текстовый файл с именем hello.asm

ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab 04 \$ gedit hello.asm

Рис. 3.2: Текствой файл

3)Ввожу в него текст.

```
hello.asm
 Открыть ▼ 🛨
                             ~/work/study/2022-2023/Архитектура компьютера/arch-pc/lab
 1; hello.asm
 2 SECTION .data ; Начало секции данных
 3 hello: DB 'Hello world!',10 ; 'Hello world!' плюс
 4; символ перевода строки
 5 helloLen: EQU $-hello ; Длина строки hello
 6 SECTION .text ; Начало секции кода
 7 GLOBAL _start
 8 _start: ; Точка входа в программу
9 mov eax,4 ; Системный вызов для записи (sys_write)
10 mov ebx,1 ; Описатель файла '1' - стандартный вывод
11 mov ecx, hello ; Адрес строки hello в есх
12 mov edx, helloLen ; Размер строки hello
13 int 80h ; Вызов ядра
14 mov eax,1 ; Системный вызов для выхода (sys_exit)
15 mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
16 int 80h ; Вызов ядра
```

Рис. 3.3: Текст

4)Компилируем выше введеный текст программы "Hello World".

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab
04 $ nasm -f elf hello.asm
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab
04 $ ls
hello.asm hello.o presentation report
```

Рис. 3.4: Текст

5)Полный вариант командной строки nasm выглядит так.

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab
04 $ nasm -o obj.o -f elf -g -l list.lst hello.asm
```

Рис. 3.5: Текст

6)Объектный файл передаю на обработку компоновщику.

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab
04 $ ld -m elf_i386 hello.o -o hello
```

Рис. 3.6: Обработка

7)Ключ -о с последующим значением задаёт в данном случае имя создаваемого исполняемого файла. Выполдняю следующую команду.

```
a4 $ ld -m elf_i386 obj.o -o main
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab
a4 $ ls
hello hello.asm hello.o list.lst main obj.o presentation report
```

Рис. 3.7: Ключ - о

8)Запускаю на выполнение созданный исполняемый файл, находящийся в текущем каталоге.

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab
04 $ ./hello
Hello world!
```

Рис. 3.8: Запуск

Задание для самостоятельной работы.

- 1)В каталоге ~/work/arch-pc/lab05 с помощью команды ср создайте копию файла hello.asm с именем lab5.asm.
 - 2) С помощью любого текстового редактора внесите изменения в текст программы в файле lab5.asm так, чтобы вместо Hello world! на экран выводилась строка с вашими фамилией и именем.

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab
04 $ cp hello.asm lab4.asm
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $
ls
hello hello.asm hello.o lab4.asm list.lst main obj.o presentation report
```

Рис. 3.9: Запуск

Рис. 3.10: Текстовой редактор

```
; hello.asm
SECTION .data ; Начало секции данных
} hello: DB 'Касымова Элина',10 ; 'Касымова Элина' плюс
; символ перевода строки
helloLen: EQU $-hello ; Длина строки hello
SECTION .text ; Начало секции кода
'GLOBAL _start
]_start: ; Точка входа в программу
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла '1' - стандартный вывод
mov ecx, hello ; Адрес строки hello в есх
? mov edx, helloLen ; Размер строки hello
int 80h ; Вызов ядра
l mov eax,1 ; Системный вызов для выхода (sys_exit)
mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
int 80h; Вызов ядра
```

Рис. 3.11: Текст

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $
nasm -f elf lab4.asm
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $
ls
hello hello.o lab4.o main presentation
hello.asm lab4.asm list.lst obj.o report
```

Рис. 3.12: Компиляция

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $ ld -m elf_i386 lab4.o -o hello ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $ ls hello hello.o lab4.o main presentation hello.asm lab4.asm list.lst obj.o report
```

Рис. 3.13: Обработка

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $
ld -m elf_i386 obj.o -o main
```

Рис. 3.14: Ключ

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $
./hello
Касымова Элина
```

Рис. 3.15: Запуск

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $
git add .
```

Рис. 3.16: Github

```
ekasihmova@dk2n26 ~/work/study/2022-2023/Архитектура компьютера/arch-pc/labs/lab04 $
git commit -am 'feat (main): add files lab-4'
[master 88f65ef] feat (main): add files lab-4
9 files changed, 49 insertions(+)
create mode 100755 labs/lab04/hello
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/hello.o
create mode 100644 labs/lab04/lab4.asm
create mode 100644 labs/lab04/lab4.o
create mode 100644 labs/lab04/list.lst
create mode 100755 labs/lab04/main
create mode 100644 labs/lab04/obj.o
create mode 100644 labs/lab04/report/report.docx
```

Рис. 3.17: Github

Github

4 Выводы

Проделав данную лабораторную работу я освоила процедуры компиляции и сборки програм, написанных на ассемблере NASM.

Список литературы

- 1. GNU Bash Manual [Электронный ресурс]. Free Software Foundation, 2016. URL: https://www.gnu.org/software/bash/manual/.
- 2. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 5. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. 874 с.
- 6. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.