The Quantum Random Oracle Toolbox

Hans Heum ®

NTNU - Norwegian University of Science and Technology, Trondheim, Norway. $\verb|hans.heum@ntnu.no||$

Abstract. The tricks of the trade.

Keywords: Provable Security \cdot Quantum Random Oracles

Table of Contents

References				
1	Introduction			
	1.1	Recording ROs (or, Random Oracles are Good PRFs)	3	
	1.2	Reprogramming ROs (or, Random Oracles yield Simple PKEs)	3	
	1.3	Rewinding ROs (or, Random Oracles yield Efficient Signatures) .	3	
2	Reprogramming QROs – O2H and Friends			
3	Recording QROs – The Compressed Oracle Technique		5	
4	Rewinding QROs – Post-quantum Fiat-Shamir and more			

1 Introduction

Hans: Idea: Take the basic examples from "Random Oracles Are Practical" [BR93] as motivating examples running through the paper.

In the following and throughout, \mathcal{H} is a random oracle.

1.1 Recording ROs (or, Random Oracles are Good PRFs)

We start with the simplest ROM proof imaginable: showing that random oracles are good pseudorandom functions. Specifically, we will show that $\mathsf{PRF}_k(x) = \mathcal{H}(k||x)$ is indistinguishable from a random function, provided the key k is hard to guess.

We will do this by showing that if an adversary A can distinguish the output of PRF_k from random, then a reduction B can recover the key k. Crucially, the reduction does this by *recording* the queries of the adversary A to the random oracle \mathcal{H} .

- 1.2 Reprogramming ROs (or, Random Oracles yield Simple PKEs)
- 1.3 Rewinding ROs (or, Random Oracles yield Efficient Signatures)

Experiment $Exp^{\mathrm{ind}}_{PRF}(\mathbb{A})$	Oracle $\mathcal{E}(x)$
$k \leftarrow s \mathcal{K}$	if $b^* = 0$:
$b^* \leftarrow \$ \{0,1\}$	$y \leftarrow \mathcal{H}(k x)$
$\hat{b} \leftarrow \mathbb{A}^{\mathcal{H},\mathcal{E}}$	else :
$\mathbf{return}b^* = \hat{b}$	$y \leftarrow \mathcal{R}(x)$
	$\mathbf{return}\ y$

 ${\bf Fig.\,1.}\ \ {\bf The\,\, pseudorandomness\,\, indistinguishability\,\, game.}$

Fig. 2. The pseudorandomness key recovery game.

$$\begin{array}{ll} \text{Reduction } \mathbb{B}^{\mathcal{H}} & \text{Oracle } \mathcal{E}(x) \\ \\ \hat{b} \leftarrow & \mathbb{A}^{\mathcal{H},\mathcal{E}} & \\ \text{return } \hat{k} & \text{return } y \end{array}$$

Fig. 3. The pseudorandomness key recovery game.

- ${\bf 2} \quad {\bf Reprogramming} \ {\bf QROs-O2H} \ {\bf and} \ {\bf Friends}$
- ${\bf 3}\quad {\bf Recording~QROs-The~Compressed~Oracle~Technique}$
- ${\bf 4} \quad {\bf Rewinding} \ {\bf QROs-Post-quantum} \ {\bf Fiat-Shamir} \ {\bf and} \\ {\bf more}$

References

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, *ACM CCS 93*, pages 62–73. ACM Press, November 1993.