

Taller Ciudad y Espacio

Broquedis - Lebedina - Murúa - Retamal - Schofield

Se estima que **3.600 millones** de personas viven en áreas que podrían sufrir **escasez de agua** 

lo que puede aumentar a **4.800 y 5.700** millones de personas **en el 2050** 

## **ESTRÉS HÍDRICO**



#### Cantidad de agua ocupada por rubro



#### Chile Empleo en agricultura por región



El grado de **desertificación** del suelo afecta un

76 %

del territorio nacional, concentrándose en las regiones de Coquimbo, Valparaíso, O'higgins y Metropolitana

# Agricultura en Petorca

Se solo entregan 50 litros de agua por persona

Ministerio de

**Agricultura** 



En 2014 se constató que, en el acuífero que la recarga es de 11,5 millones de m³/año y su demanda real de 134,6 millones m³/año

Declaración de emergencia agrícola por déficit hídrico

Genera el 30,5% de la producción de la fruta



Más del 90% de las plantaciones son paltos

Consumo de agua varía entre los 7.000 y 16.000 m³/ha/día

Se pierde un 15% del agua por percolación y por evaporación

mil millones de litros de aqua para producir 168.000 toneladas de palta Hass

El 2019 se ocuparon 65

Profundidad efectiva de la raíz de un palto





0-8 cm > 64,8%

8-15 cm > 21,4%

15-30 cm > 9,1%

30-60 cm > 4,4%

**Agricultura** 3.0 4.0

Apoya la toma de decisiones con la ayuda de dispositivos que interconectan y procesan información en tiempo real

Inteligencia artificial y analítica

#### Barreras - 7 C

Conectividad Calidad de data Claridad Costos Comprender Colaboración Capacitación











Wiseconn Equipo de riego



Growpal Cultivo interior

"No tengo donde juntar agua y estaba regando en forma directa no más. "

"No teníamos medición del agua y cada uno sacaba lo que quería."

Riego por surco 50% de eficiencia



Provoca uso desmesurado del acuífero

# Hipótesis / Desarrollo



¿Cómo podemos mejorar el acceso a técnicas avanzadas en cultivos de baja escala con el fin de mitigar los efectos de la escasez hídrica?

**Análisis** de ecosistemas

**Medición** tecnificada

**Optimización** por tecnología

Reducción de costos

**Usabilidad** general

Pasos para un desarrollo polivalente de la hipótesis planteada

#### Sistema Hídrico

## Sistema Lógico

obtener un control optimizado en el riego automático

sensar, procesar e interconectar la información



### Prototipo Case Sensor



#### **Prototipo Soporte**



## **Prototipo Case Sensor**





**Hecho con PLA** 









Proyección del prototipo



Mulch de vaporación Árbol de maíz abono natural durazno Paltos Sistema Mesh Paneles solares Bosque nativo Sistema de bombeo eléctrico automatizado



regulador biológico y polinizador

atraídas por el maíz

#### **Valor Aportado**

La generación del **prototipo** demostró la **factibilidad de sensar, extraer e interpretar** la información de **manera rápida y asequible**, además de poder **adaptarse** a cualquier entorno según lo que se encuentre cultivado.

Adap<mark>table a</mark> otros sistemas

Cultivo multitrófico

Low Cost

disminuye la brecha existente del pequeño agricultor

**Mapa de Actores** 

INDAP Instituto de Desarrollo Agropecuario con fondos se puede expandir el alcance a los usuarios



ODEPA Oficina de Estudios y Políticas Agrarias



Pequeño Agricultor

Municipalidad





# Objetivo a alcanzar para la tesis



#### Próximos pasos

- **Método** eficiencia energética en riego
- Prototipo humedad en un árbol
- Análisis selenoide vs bomba
- Sistema Mesh
- Análisis de profundidades
- Macrocostos
- Mapeo de cualidades del terreno (pronóstico)
- Automatización y desarrollo de IA
- Métodos de captación de agua



# Bibliografía

BBC (2019). Agricultura vertical: el boom del millonario negocio de las frutas y verduras futuristas que crecen en las ciudades. Recuperado de https://www.bbc.com/mundo/noticias-49530857

Burgos, L. (2021). ¿Dónde está Chile en el Agro 5.0?. Expo Chile Agrícola.

INE. Encuesta de Empleo. Trimestre noviembre 2009 - enero 2010.

FAO (2016). El estado mundial de la agricultura y la alimentación: Cambio climático, agricultura y seguridad alimentaria. Roma.

Gardiazábal & Magdahl (2005). Estudio del comportamiento de la palta en relación al clima. Chile.

Guerrero, R. (2021). ¿Infraestructura ante la crisis hídrica? Políticas de Estado en los ríos Petorca y La Ligua. Chile.

INDAP (2021). Aumento de presupuesto de riego 2021. Recuperado de https://www.indap.gob.cl/noticias/-detalle/2021/03/17/aumen-

ta-el-presupuesto-de-riego-2021-para-combatir-la-megasequía-en-la-región-de-valparaíso

Muñoz, A. et al. (2020). Water Crisis in Petorca Basin, Chile: The Combined Efects of a Mega-Drought and Water Management. Chile

Terram (2016). El 76% de la superficie del país está afectado por sequía, desertificación y suelo degradado. Recuperado de https://www.terram.cl/2016/03/el-76-de-la-superficie-del-pais-esta-afectado-por-sequia-desertificación-y-suelo-degradado/

UAI (2020). Escasez hídrica, la otra pandemia. Recuperado de https://noticias.uai.cl/escasez-hidrica-la-otra-pandemia/