

<110> Rosen et al.

<120> Nucleic Acids, Proteins, and Antibodies

<130> PA003P1

<150> unassigned

<151> 2001-11-30

<150> PCT/US00/22157

<151> 2000-08-11

<150> 60/148,680

<151> 1999-08-13

<160> 56

<170> PatentIn Ver. 2.0

<210> 1

<211> 733

<212> DNA

<213> Homo sapiens

<400> 1

gggatccgga	gccccaaatct	tctgacaaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	60
aattcgaggg	tgcaccgtca	gtcttcctct	tccccccaaa	acccaaggac	accctcatga	120
tctcccgac	tcctcgaggc	acatgcgtgg	tggtgacgt	aagccacgaa	gaccctgagg	180
tcaagttcaa	ctggtacg	gacggcgtgg	aggtgcataa	tgccaaagaca	aagccgcggg	240
aggagcagta	caacagc	taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	300
ggctgaatgg	caaggagtac	aagtgcagg	tctccaacaa	agccctccca	accccccattcg	360
agaaaaaccat	ctccaaagcc	aaagggcagc	cccggagaacc	acagggtgtac	accctgcccc	420
catcccgga	tgagctgacc	aagaaccagg	tcagcgtc	ctgcctggtc	aaaggcttct	480
atccaaagcg	catcgccgt	gagtgggaga	gcaatggca	gccggagaaac	aactacaaga	540
ccacgcctcc	cgtgcggac	tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	600
acaagagcag	gtggcagcag	ggggAACGTC	tctcatgctc	cgtatgc	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
gactctagag	gat					733

<210> 2

<211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> Site

<222> (3)

<223> Xaa equals any of the twenty naturally occurring L-amino acids

<400> 2

Trp	Ser	Xaa	Trp	Ser	
1				5	

<210> 3

<211> 86

<212> DNA

<213> Artificial Sequence

<220>

<221> Primer_Bind

<223> Synthetic sequence with 4 tandem copies of the GAS binding site found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)), 18 nucleotides complementary to the SV40 early promoter, and a Xho I restriction site.

<400> 3

gcccctcgag atttccccga aatctagatt tcccccgaat gatttcccg aaatgattc	60
cccgaaatat ctgccatctc aattag	86
<210> 4	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> Primer_Bind	
<223> Synthetic sequence complementary to the SV40 promoter; includes a Hind III restriction site.	
<400> 4	
gcggcaagct ttttgcaaag ccttaggc	27
<210> 5	
<211> 271	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> Protein_Bind	
<223> Synthetic promoter for use in biological assays; includes GAS binding sites found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)).	
<400> 5	
ctcgagatt ccccggaaatc tagatttccc cgaaaatgatt tcccccgaat gatttcccg	60
aaataatctgc catctcaatt agtcagcaac catagtcccg cccctaactc cgcccatccc	120
gcccctaact ccgcccagggtt ccgcccattc tccgccccat ggctgactaa ttttttttat	180
ttatgcagag gccgaggccg cctcggccctc tgagctattc cagaagtagt gaggaggctt	240
ttttggaggc cttaggtttt gcaaaaaagct t	271
<210> 6	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> Primer_Bind	
<223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Xho I restriction site.	
<400> 6	
gcgctcgagg gatgacagcg atagaacccc gg	32
<210> 7	
<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> Primer_Bind	
<223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Hind III restriction site.	
<400> 7	
gcgaagcttc gcgactcccc ggatccgcct c	31
<210> 8	
<211> 12	
<212> DNA	
<213> Homo sapiens	

<400> 8		
ggggactttc cc	12	
<210> 9		
<211> 73		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> Primer_Bind		
<223> Synthetic primer with 4 tandem copies of the NF-KB binding site (GGGGACTTCCCC), 18 nucleotides complementary to the 5' end of the SV40 early promoter sequence, and a XhoI restriction site.		
<400> 9		
gcggcctgaa ggggactttc ccggggactt tccggggact ttccgggact ttccatcctg	60	
ccatctcaat tag	73	
<210> 10		
<211> 256		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> Protein_Bind		
<223> Synthetic promoter for use in biological assays; includes NF-KB binding sites.		
<400> 10		
ctcgaggggg ctttccgggg gactttccgg ggactttccg ggactttcca tctgccatct	60	
caattagtca gcaaccatag tcccggccct aactccgccc atcccccccc taactccgccc	120	
cagttccggcc catttcggc cccatggctg actaattttt ttatattatg cagaggccga	180	
ggccgcctcg gcctctgagc tattccagaa gtatgtggaa ggctttttt gaggcttagg	240	
cttttgcaaa aagctt	256	
<210> 11		
<211> 800		
<212> DNA		
<213> Homo sapiens		
<400> 11		
tcgaccacacg cgtccqaact cagactcagc caacagagat tgttgatttg cctcttaagc	60	
aagagattca ttgcagctca gcatggctca gaccagctca tacttcatgc tgatctcctg	120	
cctgtatgttt ctgttcaga gccaaggcca agaggcccag acagagttgc cccaggcccc	180	
gatcagctgc ccagaaggca ccaatgccta tcgctctac tgctactact ttaatgaaga	240	
ccgttgagacc tgggttgatc cagatctcta ttgccagaac atgaattcgg gcaacctgg	300	
gtctgtgctc acccaggccg agggtgcctr tggggctca ctgatggagg agatggcac	360	
tgatgacttc aatgttcggaa ttggcctcca tgaccggaaa aagaaccggcc gctggcactg	420	
gagcagtggg tccctggctc cttacaagtc ctggggcatt ggagccccaa gcagtgttaa	480	
tcctggctac tgggtggagcc tgacctcaag cacaggattc cagaaatggg aggatgtgcc	540	
ttgtgaagac aagtcttcct ttgtctgcaa gttcaaaaac tagaggcagc tggaaaatac	600	
atgtcttagaa ctgatccagc aattacaacg gagtcaaaaaa taaaaccggg ccatctctcc	660	
aactcaactc aacctggaca ctctcttctc tgctgagtt gccttgtttaa tcttcaatag	720	
ttttacctac cccagttttt ggaaccctaa ataataaaaa taaacatgtt tccactatta	780	
aaacaaaaaaaaaaaaaaaaaaaa	800	
<210> 12		
<211> 514		
<212> DNA		
<213> Homo sapiens		
<400> 12		
ccacgcgtcc gctgcactct caggtattcc ctgctttac tccaaaaaaga tggaccagg	60	
tccgaagggg cactgccact gtggggggca tggccatctt ccaggtcact gcggggcacc	120	
ccctggccat gggccaggcc cttgcggcc acccccccac catggcccaag ggccctgcgg	180	

gccacccccc	caccatggtc	cagggccctg	cgggccaccc	cctggccatg	gcccaggggcc	240
ctgcggggcca	ccccccccacc	atggtccagg	gcccctgcggg	cctccccctg	gccatggccc	300
aggtcaccca	ccccctggtc	cacatcactg	aggaagtaga	agaaaaacagg	acacaagatg	360
gcaaggctga	gagaatttgcc	cagctgaccc	ggaatgaggc	ctaaaccaca	atttctctt	420
cctaataaac	agcctcctag	aggccacatt	ctattctta	aaaaaaaaaa	aaaaaaaaaa	480
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaa			514

<210> 13
<211> 1893

<212> DNA
<213> Homo sapiens

```
<220>
<221> misc_feature
<222> (1184)..(1184)
<223> n equals a,t,g, or c
```

```
<220>
<221> misc_feature
<222> (1865)..(1865)
<223> n equals a,t,g, or c
```

```
<220>
<221> misc_feature
<222> (1883)..(1883)
<223> n equals a,t,g, or c
```

```
<220>
<221> misc_feature
<222> (1887)..(1887)
<223> n equals a,t,g, or c
```

```
<220>
<221> misc_feature
<222> (1893)..(1893)
<223> n equals a,t,g, or c
```

tttcatgagc	agatcaggac	acttagcaaa	tgtaaaaata	aatctaact	ctcatttgac	1740
aagcagagaa	agaaaagtta	aataccagat	aagctttga	tttttgtatt	gtttgcattc	1800
ccttgccttc	aataaataaa	gttcttttt	agttccaaaaa	aaaaaaaaaaag	ggcgccccgtt	1860
taarngatcc	aasttacgta	cntgcntgc	gan			1893

<210> 14
<211> 1681
<212> DNA
<213> Homo sapiens

<400> 14						
gcccgttag	gacgcagcgt	cagctgacct	ggggagtcgc	gattcggtgcc	ggccgggtcct	60
gttctccgg	tcccgccgct	cccgcagcag	ccatgtcggt	cttcccgagg	ctttacttta	120
acgtggacaa	tggctacttg	gagggactgg	tgcgccggcct	gaaggccggg	gtgctcagcc	180
aggccgacta	cctcaacctg	gtgcagtgcg	agacgctaga	gacttgaaa	ctgcattctgc	240
agagcactga	ttatgttaac	ttctctggcca	acgaggcata	acctctgacg	gtgtcagtca	300
tcgatgaccg	gctcaaggag	aagatggtg	tggagttccg	ccacatgagg	aaccatgcct	360
atgagccact	cgccagcttc	ctagacttca	ttacttacag	ttacatgatc	gacaacgtga	420
tcctgctcat	cacaggcacg	ctgcaccaggc	gctccatcgc	tgagctcggt	cccaagtggc	480
acccactagg	cagcttcgag	cagatggagg	ccgtgaacat	tgctcagaca	cctgtcgagc	540
tctacaatgc	cattctggtg	gacacgcctc	ttgcggctt	tttccaggac	tgcatttcag	600
agcaggaccc	tgacgagatg	aacatcgaga	tcatccgcaa	caccctctac	aaggccctacc	660
tggagtcctt	ctacaagttc	tgccaccctac	tgggggggac	tacggctgtat	gccatgtgccc	720
ccatccttgg	gtttaagca	gaccggccgg	ccttcatcat	caccaatcaat	tctttcggca	780
cagagctgtc	caaagaggac	cgtgccaagg	tctttccaca	ctgtgggggg	ctctaccctg	840
agggcctggc	gcagctggct	cgggctgacg	actatgaaca	gttcaagaac	gtggccgatt	900
actaccggaa	gtacaagctg	ctcttcgagg	gtgcaggtag	caaccctgg	gacaagacgc	960
tggaggaccc	attctttgag	cacgaggtaa	agctgaacaa	gttggccttc	ctgaaccagt	1020
tccactttgg	tgtcttctat	gccttcgtga	agctcaagga	gcaggagtg	cgcaacatcg	1080
tgtggatcgc	tgaatgtatc	gcccagcgcc	accgcgcctaa	atcgacaaac	tacatcccta	1140
tcttctagcg	tcctggccca	aggctctcaat	ttgcactt	tgtgtgtgt	tgtgtgtgt	1200
tgcgcggtgt	tgtcggtgt	tgtgtatgt	gtctgtgaca	agcctgtggc	tcacctgcct	1260
gtccgggggt	tagtacgt	tccttagcgcc	tgcccagttc	tcctgaccct	cttagagact	1320
gttcttaggg	ctgaaaagg	gctgggcacc	cccccccccacc	aaggatggac	gaagaccccc	1380
tccagagcaa	ggaggcccccc	ttagccctgt	gtttacagcc	gctgtatgtat	ctaagaagca	1440
tgtcaatttc	atgttcttcc	ctaactccct	gacctgagaa	ccctggggcc	tggggggcagt	1500
ttgagcctcc	tctcccttct	gtgggtcgct	cccagagcca	tggcccatgg	gaaggacaga	1560
gtgtgtgtgt	ccttggggcc	tggggggatg	ttgctcctca	gctccctccc	tcagccctgc	1620
ccctctgaga	caataaaaact	gcccctctca	aggcaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1680
a						1681

<210> 15
<211> 502
<212> DNA
<213> Homo sapiens

<400> 15						
ggcacgagga	gctctattgc	caccatgagt	tttccggca	agtaccaact	gcagagccag	60
aaaaactttg	aaggccatcat	gaaggcaatc	ggtctccgg	aagagctcat	ccagaagggg	120
aaggatata	aggggggtgtc	gaaaatcggt	cagaatggga	agcacttcaa	gttcaccatc	180
accgctgggt	ccaaagtgtat	ccaaaacgaa	ttcacgggt	gggaggaatg	tgagctggag	240
acaatgacag	gggagaaagt	caagacagtg	gttcagttgg	aagggtacaa	taaactgggt	300
acaactttca	aaaacatcaa	gtctgtgacc	gaactcaacg	gacataat	caccaatacc	360
atgacatttg	gtgacattgt	tttcaagaga	atcagcaaga	gaatttaaac	aagtctgcat	420
ttcatattat	tttagtgtgt	aaaattaatg	taataaaatg	aactttgttt	taaaaaaaaaa	480
aaaaaaaaaa	aaaaaaaaaa	aa				502

<210> 16
<211> 1478
<212> DNA
<213> Homo sapiens

<400> 16						
tggctgctc	ctgacctcag	caaaccaaga	gggtatcact	gggatacata	agattggatg	60
ccaaggcgttc	ctctggccgga	catacaagag	ttccccaact	atgaggtgtat	tgtgagcag	120
acacccctgt	actcagcaga	tccaaacgccc	atcgatacgg	actattaccc	tggaggctac	180

gacatcgaaa	gtgatTTcc	tccacCCca	gaagacttcc	ccgcagctga	tgagctacca	240
ccgttaccgc	ccgaattcag	caatcagtt	gaatccatcc	accctccat	agacatgcct	300
gccgcgggta	gcttgggttc	ttcatcaaga	aaccggcaga	ggttcaactt	gaatcagtat	360
ttgcccatt	tttatccccct	cgatatgtct	gaacctcaaa	caaaaggcac	tggtgagaat	420
agtacttgta	gagaacCCca	tgccccttac	ccgcCagggt	atcaaagaca	cttcgaggcg	480
cccgctgtcg	agagcatGCC	catgtctgt	tacgcctcca	ccgcctcc	ctctgacgtg	540
tcagcctgtc	gCGaagtGGA	gtccgaggTC	atgtatgt	actatgagAG	cggggacgac	600
ggccacttcg	aagaggtgac	gatCCCGCC	ctggatCCC	agcagcacac	gaaagtctga	660
ctctcaactc	cccccaaat	gcctgactt	agtgaaccta	gagggtatgt	gagtaatCCG	720
cgctgttctt	tgCAGCAGT	cttccaagt	tttttgggt	agccgaatGG	gcatggctgc	780
gctggatctt	gCGCCTCTGG	acgtgcttagc	catttccagt	gtcccaacta	ctgtcatcg	840
gagggtttca	tcggctgtgc	catttCCCAA	cgtctttgg	gatttacatc	tgtctgtgtt	900
aaaataatca	aacaaaaaat	cagtccctgt	ttgtcagcat	gatttcatgt	tttatataga	960
tttgattatt	ttaattttcc	tgtctcttt	ttttgtaaat	tttatgtaca	gattttgattt	1020
ttcatagttt	taactagatt	tccaagat	tttgcatt	tgttcaact	gaattttgggt	1080
ggtgtcagt	ccatatatcta	gcacCCGT	ttttttttt	tttactata	accagggttt	1140
cattctgtct	ttttccactg	aagtgtgaca	ttttgttagt	acatttcagt	gtagtcatTC	1200
atttctagct	gtacatagga	tgaaggagag	atcagataca	tgaacatgtc	ttacatgggt	1260
tgctgttattt	agaattataa	acatTTCA	ttatGGAAA	gtgtAACGGG	gaccttctgc	1320
atacctgttt	agaaccaaaaa	ccaccatgac	acagttttt	atagtgtctg	tatatttgtg	1380
atgcaatgg	cttgaaagg	tttttaatga	aaactaccat	tagccagtct	ttcttactga	1440
caataaatta	ttaataaaat	aaaaaaaaaa	aaaaaaaaaa			1478

<210> 17

<211> 926

<212> DNA

<213> Homo sapiens

<400> 17

ggcacgagga	gaactccagg	attgtcctgc	agatcgacaa	cgcCcgtctg	gctgcagatg	60
acttccgaac	caagtttgag	acggAACAGG	ctctgcgc	gagcgtggag	gcccacatca	120
acggcctgcg	cagggtgctg	gtatggctga	ccctggcc	gaccgaccc	gagatgcaga	180
tcgaaggcct	gaaggaaAGG	ctggcctacc	tgaAGAAAGA	ccatggagg	gaaatcgt	240
cgctgaggGG	ccaagtggga	ggccaggtca	gtgtggaggt	ggatTCGCT	ccgggcaccc	300
atctcgccaa	gatcctgagt	gacatgcgaa	gccaatatga	ggtcatggcc	gagcagaacc	360
ggaaggatgc	tgaagcctgg	ttcaccagcc	ggactgaaga	attgaaccgg	gaggtcgctg	420
gccacacgg	gcagctccag	atgagcaggt	ccgaggttac	tgacctgcgg	cgcacCCttc	480
agggtcttga	gattgagctg	cagtccacagc	tgagcatgaa	agcgccttgc	gaagacacac	540
tgccagaaac	ggggcgcgc	tttggagccc	agctggcgca	tatccaggcg	ctgatcagcg	600
gtattgaagc	ccagctgggc	gtatgtcgag	ctgatagtga	gcggcagaata	caggagtacc	660
agcggctcat	ggacatcaag	tcgcggctgg	agcaggat	tgcCACCTAC	cgacgcctgc	720
tcgagggaca	ggaagatcac	tacaacaatt	tgtctgcctc	caagggtcctc	tgaggcagca	780
ggctctgggg	cttctgctgt	ccttggagg	gtgtcttctg	ggttagaggg	tggaaaggaa	840
gggaccctta	cccccgctc	ttctcctgac	ctgcacataa	aaatttatgg	tccaaggggaa	900
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa			926

<210> 18

<211> 547

<212> DNA

<213> Homo sapiens

<400> 18

caggtgtccc	tgagcagctc	catgtcggt	tcagagctga	aggcgcagat	caccCAGAAg	60
atcggcgtgc	acgccttcca	gcagcgtctg	gctgtccacc	cgagcgggt	ggcgctgcag	120
gacagggtcc	cccttgcag	ccaggggctt	ggccccggca	gcacggct	gctgggtgg	180
gacaaatgcg	acgaacctct	gacatcctg	gtgaggaata	acaagggc	cagcagcacc	240
tacgaggtcg	ggctgacgca	gaccgtggcc	cacctgaagc	agcaagtgg	cgggctggag	300
ggtgtgcagg	acgcacctgtt	ctggctgacc	ttcgggggaa	agccccctga	ggaccagctc	360
ccgctggggg	agtacggcct	caagccccctg	agcaccgtgt	tcatgaatct	gcgcctgcgg	420
ggaggcggca	cagacgcctgg	cggcggagc	taagggctc	caccagcatc	cgacgaggat	480
caagggccgg	aaataaaggc	tgttgaag	agaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	540
aaaaaaaaaa						547

<210> 19

<211> 565

<212> DNA

<213> Homo sapiens

<400> 19

ggcacgagga	gacgcggagg	gtcgccctga	ggaaagactc	tgcggatga	caggagcggg	60
cctcggagg	gactcggggc	gctggaggga	agtttcgttc	tccggagaaa	cagaacgcgc	120
tcgagggggc	accgtggggc	gagggcgcac	tcggttgcgg	ccgcaggagt	gagggacagt	180
cccccgatt	cctgtccct	ggggccctgg	ggacgttccg	gccaccggag	cgactgtcac	240
ggccgagggg	atcaccggcg	cgagtggggg	gtcggaaagc	gcctcctccc	cgcccggtcg	300
gcggctcccg	ctgagccact	tcctccgctt	gccctgttcc	cgctccttca	ggagccagct	360
gtgccttttt	ggaggcagga	ataggtgtgt	ctgtcgcctg	cagccttacg	ggctggctgg	420
tcgtgggtag	gttttattgc	ataagaatca	agtttctgt	agggaaattt	acagaccggt	480
actctttcta	aattccctcg	cattttttc	tagtttaaat	tatgcctccc	ccacgtcccc	540
gccttgtaaa	aaaaaaaaaa	aaaaaa				565

<210> 20

<211> 1768

<212> DNA

<213> Homo sapiens

<400> 20

ggcacgagct	cccccagcct	tgctgaagat	ccgttccaag	gagggcaggt	gtgcgcagcc	60
atcccggact	atacagacca	tctgcgtcc	ctcgatgtat	aacgatcccc	agtttggcac	120
aaegtgttag	atcactggct	ttggaaaaga	gaattcttagt	aagtgcacaat	tgcgactgac	180
ttagaagggt	ctgaggagtg	ttttgacctg	aaatatgagcc	cagtgtatc	aagggaagac	240
tgccaggtt	gaggtgggg	cactgaggcc	gtggcagatg	gttccaggga	tggatgaaga	300
gtgttgttta	gggagcgtat	ggctgcaaaag	gttaatagat	gttaggggct	ataggtggag	360
taaaggctca	gatttgcatt	gaagagaata	agggccttcc	ctggtagaga	tactttatgg	420
ttcccctctc	ttggcagactc	ccagtgacca	gataaaatctt	gatgcacaaac	cctccctgtt	480
ttctccacct	agccgactat	ctctatccgg	agcagctgaa	aatgactgtt	gtgaagctga	540
tttcccaccc	ggaggtgtcag	cagcccccact	actacggctc	tgaagtcaacc	acccaaatgc	600
tgtgtgtc	tgaccacac	ttggaaaacag	attccctgcca	ggggactctca	gggggacccc	660
tcgtctgtc	cctccaaaggc	ccgtactttt	tgacttggat	tgtgagctgg	ggccgtggat	720
gtgcctcttga	ggacaagcca	ggcgtctaca	cgagactctc	acacttctta	ccctggatcc	780
gcagtcacac	caagaaagag	aatggcttgg	ccctctgagg	gtccccaggg	aggaaacggg	840
caccacccgc	tttcttgctg	gttgcatttt	ttgcagtaga	gtcatctcca	tcagctgtaa	900
gaagagactg	ggaagatagg	ctctgcacag	atggatttgc	ctgtgcacacc	caccagggtg	960
aacgacaata	gttttaccct	caggcatagg	cctgggtgt	ggctgcccag	acccctctgg	1020
ccaggatgga	gggggtggtcc	tgactcaaca	tgttactgac	cagcaacttg	tcttttctg	1080
gactgaagcc	tgcaggagtt	aaaaaggggca	gggcattctcc	tgtgcatggg	tgaagggaga	1140
gccagctccc	ccgcacgggt	gcattttgtga	ggcccatgtgg	ttagaaatat	ataattttccc	1200
aatttaggaat	tgtaacagctt	gagggttctt	gagggagctt	agccaatgtt	ggagcagcgg	1260
tttggggagc	agagacacta	acgacttcag	ggcaggggctc	tgatatttcca	tgaatgtatc	1320
aggaaatata	tatgtgtgt	tatgtttgca	cacttgtgt	ttggctgtga	gtgttaagtgt	1380
gagtaagagc	tggtgtctga	ttgttaagt	taaatatitc	ttttttttttt	gtggactgtg	1440
atgccacaca	gagtggcttt	tctggagagg	ttataggtca	ctcctggggc	ctcttgggtc	1500
ccccacgtt	cagtgcgtt	gaatgttata	ttctgcagca	tgacctgtt	ccagcaactgt	1560
ctcagtttca	ctttcacata	gtatgttttt	tcttggccag	ttatccctt	cttttagcct	1620
atgtcatca	atccttactg	ggtgggggtt	ggaccactcc	ttacactgaa	tatttatatt	1680
tcactattt	tatttatatt	tttgcatttt	taaataaaaag	tatgtcaataa	aatgtgattt	1740
ttctgtatgac	aaaaaaaaaa	aaaaaa				1768

<210> 21

<211> 424

<212> DNA

<213> Homo sapiens

<400> 21

ccacgcgtcc	ggccggaagc	aggaagcagc	ctgtgtccccc	caggacactgc	ctgggtgggg	60
gaattggagg	tttcttaggag	gtggcacgtt	gcacgccaag	atggctgtgt	ccacagagga	120
gctggaggcc	acgggttcagg	aagtccctgg	gagactgaag	agccaccagt	ttttccatgc	180
cacatgggac	actgttgcct	tcattttttt	cctcacccctc	atgggcaccc	tgctgtccct	240
gctgtgtctg	gtcgtcgccc	actgtgtctg	ctgcagctcc	ccggggccccc	gcagggaaag	300
ccccaggaaag	gaaagaccca	agggagtgaa	taacttggcc	ctggaaaccct	gaccctgtgt	360
ctcctgcccc	gtggcagtaa	caaaggcttc	tgtctgccc	gaaaaaaaaaa	aaaaaaaaaa	420
aaaa						424

```

<210> 22
<211> 629
<212> DNA
<213> Homo sapiens

<400> 22
ggcacgagct cgtgccgtga gacacaacca cccgggactt caccaggcgc aacgagctgc      60
aatggcgctt tcccaggcgc ctgggtgtcc ttggcttccc ttgcaaccaa ttggacatc      120
agaggcaggag agacagaagt agcaaaccct ctttcgagat gtccctccag ccccagaagt      180
acctccagcc tcacaccatc tcttcagctc agcaagttgc tggagggagt ctataaccta      240
ccaggagcca gccagccatt tgtatcaaga aatagaaaatc tgccagggtt cagtggtca      300
cacctataat cccagcgctt tggggaggctt agttcttagga caaggcaaga agaaagcaag      360
aagctgtaaa tcccattcct ctgggtctca atttcaccct cagttcaagg agctgagtag      420
gcagaggccaa aggctataact caacacacgt gcaattgaaa gcaggcgagg caaaaccagg      480
gcagaggaaa gaaaagggggt gtgtgtgttag aactgctcag gtagactgg agacaaaaagc      540
aacagctcag aagtgtctaaa ttttgaagag cagccaaagc atgggcaaca aagtgagacc      600
ccatctctac aaaaaaaaaaaaaaaa aaaaaaaaaaaa 629

<210> 23
<211> 777
<212> DNA
<213> Homo sapiens

<400> 23
tcgacccacg cgtccgcccc cgcttccggcc cacgcgtccg cccacgcgtc cggcgagggtt      60
gcagcgccgt gtggccgccc agcagcagaa ggcgcagttt actgcacagg ccacgtgccc      120
gtagaaaaga tactcatcca ctgtgggttt tggtttcgccc gtcacccac tgcctcactg      180
gattgtgagg atcatatgcg acaatgtatt taaaacacgt tagaacattha tcggaggaag      240
gtggactctg aagttagtcgc ttagactat ggatgttagaa caagggtttt gaggccctcg      300
gacatggttc taacgcggcc tgacttcttg ctggctacat gaccttggac tacataatca      360
cgccctttaa atgggaggtg atgacagctt tccttgagga ctttagagag aactgatttc      420
tttagtaccca gcctcacaaa tagtgcattttt cttcatggag ttatgttggg ataaatgtgt      480
ggagaagcca gggatcgcc tagactctcg cactgaaaat tgcctctcca gctgtgtaga      540
ccgcttcattt gacaccactt ttgcattcac cagtcggttt gcccagatgg tacagaaaagg      600
agggcagtag gccatcccccc aggagaatga cagaagcaaa ggacttggta ctaagcagat      660
ttaagggcgttca gtgggggaag gctatcaacc catttgtcaga tcagcatcag gctgttatca      720
agtctgttgg tgctaaaaag taaaagatga aatgttcaaa gaaaaaaaaaaa aaaaaaaaaaaa 777

<210> 24
<211> 843
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (812)..(812)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (822)..(822)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (829)..(829)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (838)..(838)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (841)..(841)

```

<223> n equals a,t,g, or c

<400> 24

aattcggcac gagctggcct gagaagccaa ctcagactca gccaacagag attgttatt	60
tgcctcttaa gcaagagatt cattgcagct cagcatggct cagaccagct cataacttcat	120
gctgatctcc tgcctgtatgt ttctgtctca gagccaaggc caagaggccc agacagagtt	180
gccccaggcc cggatcagct gcccagaagg caccaatgcc tatacgctct actgtacta	240
ctttaatgaa gaccgtgaga cctgggttga tgcagatctc tattgcccaga acatgaattc	300
gggcaacccgt gtgtctgtgc tcaccaggc cgagggtgcc tttgtggct cactgattaa	360
ggagagtggc actgtacta tcaatgtctg gattggcctc catgaccctt aaaaagaaccg	420
ccgctggcac tggagcagtg ggtcccttgt ctccatacaag tcctggggca ttggagcccc	480
aaggcagtgtt aatctggct actgtgttag cctgacctca agcacaggat tccagaaatg	540
gaaggatgtg ctttgtgaag acaagttctc ctttgtctgc aagttaaaaa actagaggca	600
gctggaaaat acatgtctag aactgatcca gcaattacaa cggagtcaaa aattaaaccg	660
gaccatctt ccaactcaac tcaacctgga cactcttctc tctgtctgagt ttgccttg	720
aatcttcaat agtttacact accccagctt ttggAACCTT aaataataaa aataaacatg	780
tttccactaa aaaaaaaaaa aaaaaaaaaaamt cncagggggg gnccggtanc caattcgnc	840
nna	843

<210> 25

<211> 373

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (329)..(329)

<223> n equals a,t,g, or c

<220>

<221> misc_feature

<222> (332)..(332)

<223> n equals a,t,g, or c

<400> 25

gctgcactct caggtattcc ctgctttac tccaaaaaga tggacccagg tccgaagggg	60
cactgcccact gtggggggca tggccatctt ccagtcact gcggggccacc ccctggccat	120
ggcccaaggcc cctgcgggccc accccccccac catgcccag ggccctgcgg gccacccccc	180
caccatggtc cagggccctg cgggcccaccc cctgcccattt gcccaggccc ctgcgggcca	240
cccccccccacc atggccagg gcccgcggg cctccccctg gccatggccc aggtcaccca	300
ccccctggtc cacatcaactg aggaagtana anaaaaacagg acacaagatg gcaaggctga	360
gagaaattgc cca	373

,

<210> 26

<211> 441

<212> DNA

<213> Homo sapiens

<400> 26

ggcacgagga aaatcaaaaa gaccctctgg ctgtggacaa aataatgaag gacctggacc	60
agtgttagaga tggcaaagtg ggcttccaga gcttctttt cctaattgcg ggcctcacca	120
ttgcatgaa tgactatttt gtatgtacaca tgaagcagaa gggaaagaag taggcagaaaa	180
tgagcagttc gctctccct gataagagtt gtcccaaagg gtgcgttaag gaatctgccc	240
cacagcttcc cccatagaag gatttcatga gcagatcagg acacttagca aatgtaaaaaa	300
taaaatctaa ctctcattttt acaagcagag aaagaaaaagt taaataccag ataagcttt	360
gatttttcta ttgttgtcat ccccttgccc tcaataaaata aagttctttt ttagttccaa	420
aaaaaaaaaaaa aaaaaaaaaa a	441

<210> 27

<211> 1637

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (738)..(738)

<223> n equals a,t,g, or c

<220>

<221> misc_feature

<222> (771)..(771)

<223> n equals a,t,g, or c

<400> 27

gcccgcgttag	gacgcagcgt	cactgacctg	gggagtcgct	attcgtgcgt	gccggccctg	60
gttctccgg	cccgccgctc	ccgcagcagc	catgtcggtc	ttcccgagc	tttactttaa	120
cgtggacaat	ggctacttgg	agggactgtt	gcgcggcctg	aaggccgggg	tgcctagcca	180
ggccgactac	ctcaaccctgg	tgcgtgcga	gacgttagag	gacttgaac	tgcatactgca	240
gagcaactgt	tatggtaact	tcctggccaa	cgagggcatca	cctctgacgg	tgtcagtcat	300
cgatgacgg	ctcaaggaga	agatgggtgg	ggagtccgc	cacatgagga	accatgccta	360
tgagccactc	gccagcttcc	tagacttcat	tacttacat	tacatgatcg	acaacgttat	420
cctgctcata	acaggcacgc	tgcaccagcg	ctccatcgct	gagctcggtc	ccaagtgcct	480
cccaactaggc	agttcgagc	agatggaggc	cgtgaacatt	gctcagacac	ctgctgagct	540
ctacaatgcc	attctgggtt	acacgcctct	tgcggctttt	ttccaggact	gcatttcaga	600
gcaggacctt	gacgagatga	acatcgagat	catccgcaac	accctctaca	aggcctacct	660
ggagtccttc	tacaagttct	gcaccctact	gggcggact	acggctgtat	ccatgtgcct	720
catccctggg	tttsaangc	agaccgtgcc	aagcttttc	cacactgtgg	ncggctctac	780
cctgaggggcc	tggcgcastg	gctcgggct	acgactatga	acaggtcaag	aacgtggccg	840
attactacc	gggatcaag	ctgctcttc	agggtgcagg	tagcaaccct	ggagacaaga	900
cgcgtggagga	ccgattcttt	gagcacgagg	taaagctgaa	caagttggcc	ttcctgaaacc	960
agttccactt	tggtgtcttc	tatgccttc	tgaagctcaa	ggagcaggag	tgtcgcaaca	1020
tctgtggat	cgctgaatgt	atcgcccagc	gccacccgc	aaaaatcgac	aactacatcc	1080
ctatcttcta	gcgtccctggc	ccaaaggctct	caattgcact	ctttgtgtgt	gtgtgtgtgt	1140
gtgtgcgcgt	gtgtgtgcgt	gtgtgtgtat	gtggctctgt	acaaggctgt	ggctcacctg	1200
cctgtccggg	gtgttagtacg	ctgtccctagc	ggctgcccag	ttctccctgac	cctcttagag	1260
actgttctta	ggcctgaaaa	ggggctgggc	acccccccccc	accaaggatg	gacgaagacc	1320
ccctccagag	caaggaggcc	ccctcagccc	tgtggttaca	gcccgtgtat	tatctaagaa	1380
gcatgtca	ttcatgttcc	tccctaactc	cctgacacctg	gaaccctggg	gcctgggggc	1440
agtttgagcc	tcctctccct	tctgtgggtc	gctcccagag	ccatggccca	tgggaaggac	1500
agagtgtgt	tgtccttggg	gcctgggggg	atgttgcctc	ttagctccct	ccctcagcccc	1560
tgcctctgt	agacaataaa	actgcctct	ctaaggccaa	aaaaaaaaaa	aaaaaaaaaa	1620
	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1637

<210> 28

<211> 1471

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1014)..(1014)

<223> n equals a,t,g, or c

<400> 28

ttttttttttttttt	attaataattt	tattgtcaat	aagaaagact	ggctaattgg	60	
agttttcat	aaaaaccttt	acaagaccat	tgcataccaa	atatacagac	actataaaaa	120
ctgtgtcat	gtgggggg	ttctaaacag	gtatgcagaa	gttccccgtt	acactttcca	180
ataatgaaaa	atgttataaa	ttctaaatac	aqcaacccat	gtaagacatg	ttcatgtatc	240
tgtatctctcc	ttcatcctat	gtacagctag	aatgaatga	ctacactgaa	atgtactaac	300
aaaatgtcac	acttcagtgg	aaaaagacag	aatgaaaccc	tggttatagt	aaaaaaaaaa	360
aatcagggtg	ctagataatg	gcacttaccac	cacaaaatt	cagttgaaac	aatgcacaa	420
aatatcttgg	aaatcttagtt	aaaactatga	aaaatcaa	ctgtacataa	aatttacaaa	480
aaaaaagagac	aggaaaaattt	aaataatcaa	atctatataa	atacatgaa	catgtgtaca	540
acacaggact	gatttttcg	tttattttttt	taacacagac	agatgttaat	cccaaaaagac	600
gttgggaaat	ggcgcacagcc	atgaaaacct	cacgatgaca	gtatgtggg	cactggaaat	660
ggctagcacg	tccagaggcg	caggatccag	cgcaggccat	cccattcggc	tcacccaaaa	720
aagcttggaa	gcactgtgc	aaagaacagc	gcggattact	cacatcacct	ctaggttac	780
taaagtcaagg	cactttgggg	ggagttgaga	gtcagacttc	cgtgtgtctc	tgggaatcca	840
ggggcgggat	cgtcacctct	tcaagttggc	cgtcgcccc	gtctctatag	tcactcatca	900
tgacctcgga	ctccacttgc	cagcaggctg	acacgtcaga	gcaggaggcg	gtggaggcg	960
acacagacat	gggcatgtct	tcgacagcg	gcccctcgaa	gtgtcttga	tacnctggcg	1020
ggttaaggggcc	atggggttct	ctacaagttac	tatttcacc	agtgcctttt	gtttgagggtt	1080

cagacatac gagggataa aaattggca aatactgatt caagttgaac ctctgccgtt
 ttcttgatga agaaccagg ctaccggcg cagggatgtc tctaggaggg tggatggatt
 caaactgatt gctgaattcg ggcggtaacg gtggtagtc atcagctgcg gggaaagtctt
 ctgggggtgg aggaaaatca ctttcgatgt cgtagcctcc aggtaatag tccgtatcga
 tgccgttgg atctgctgag tacaggggtg tctgctcatc aattcacatca tagttggga
 actcttgtat gtccggcaga ggaacgctt gcatccaatc tgatgtatcc cagtgatacc
 ctcttggtt gctgaggcata ggagcagcca a 1140
 1200
 1260
 1320
 1380
 1440
 1471

<210> 29
<211> 422
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (419)..(419)
<223> n equals a,t,g, or c

<400> 29
gacggagccg gaaggaggaa gcagcctgtk ctccccagga cctgcctgg tgggggaatt
ggaggcttct aggaggtggc acgggtgcacg ccaagatggc tgtgtccaca gaggagctgg 60
aggccacggc tcagaagtc cggggagac tgaagagcca ccagttttc cagtccacat 120
ggggacactgt tgcccttcatt gttttcctca ccttcatggg caccgtgtc ctcctgctgc 180
tgctggctgt cgcccaactgc tgctgctgca gctccccgg gccccgcagg gaaagcccc 240
ggaaggaaag acccaaggaa gtggataact tggccctgga accctgaccc tgtgtctcct 300
gcccggtggc agtaacaaag ctttcgtct gcccagaaaa aaaaaaaaaa aaaaaaaaaang 360
gg 420
422

<210> 30
<211> 166
<212> PRT
<213> Homo sapiens

<400> 30
Met Ala Gln Thr Ser Ser Tyr Phe Met Leu Ile Ser Cys Leu Met Phe
1 5 10 15

Leu Ser Gln Ser Gln Gly Gln Glu Ala Gln Thr Glu Leu Pro Gln Ala
20 25 30

Arg Ile Ser Cys Pro Glu Gly Thr Asn Ala Tyr Arg Ser Tyr Cys Tyr
35 40 45

Tyr Phe Asn Glu Asp Arg Glu Thr Trp Val Asp Ala Asp Leu Tyr Cys
50 55 60

Gln Asn Met Asn Ser Gly Asn Leu Val Ser Val Leu Thr Gln Ala Glu
65 70 75 80

Gly Ala Phe Val Ala Ser Leu Ile Lys Glu Ser Gly Thr Asp Asp Phe
85 90 95

Asn Val Trp Ile Gly Leu His Asp Pro Lys Lys Asn Arg Arg Trp His
100 105 110

Trp Ser Ser Gly Ser Leu Val Ser Tyr Lys Ser Trp Gly Ile Gly Ala
115 120 125

Pro Ser Ser Val Asn Pro Gly Tyr Cys Val Ser Leu Thr Ser Ser Thr
130 135 140

Gly Phe Gln Lys Trp Lys Asp Val Pro Cys Glu Asp Lys Phe Ser Phe
145 150 155 160

Val Cys Lys Phe Lys Asn
165

<210> 31
<211> 93
<212> PRT
<213> Homo sapiens

<400> 31
Met Asp Pro Gly Pro Lys Gly His Cys His Cys Gly Gly His Gly His
1 5 10 15
Pro Pro Gly His Cys Gly Pro Pro Pro Gly His Gly Pro Gly Pro Cys
20 25 30
Gly Pro Pro Pro His His Gly Pro Gly Pro Cys Gly Pro Pro Pro His
35 40 45
His Gly Pro Gly Pro Cys Gly Pro Pro Pro Gly His Gly Pro Gly Pro
50 55 60
Cys Gly Pro Pro Pro His His Gly Pro Gly Pro Cys Gly Pro Pro Pro
65 70 75 80
Gly His Gly Pro Gly His Pro Pro Pro Gly Pro His His
85 90

<210> 32
<211> 97
<212> PRT
<213> Homo sapiens

<400> 32
Met Pro Ser Gln Met Glu His Ala Met Glu Thr Met Met Phe Thr Phe
1 5 10 15
His Lys Phe Ala Gly Asp Lys Gly Tyr Leu Thr Lys Glu Asp Leu Arg
20 25 30
Val Leu Met Glu Lys Glu Phe Pro Gly Phe Leu Glu Asn Gln Lys Asp
35 40 45
Pro Leu Ala Val Asp Lys Ile Met Lys Asp Leu Asp Gln Cys Arg Asp
50 55 60
Gly Lys Val Gly Phe Gln Ser Phe Phe Ser Leu Ile Ala Gly Leu Thr
65 70 75 80
Ile Ala Cys Asn Asp Tyr Phe Val Val His Met Lys Gln Lys Gly Lys
85 90 95
Lys

<210> 33
<211> 351
<212> PRT
<213> Homo sapiens

<400> 33
Met Ser Phe Phe Pro Glu Leu Tyr Phe Asn Val Asp Asn Gly Tyr Leu
1 5 10 15

Glu Gly Leu Val Arg Gly Leu Lys Ala Gly Val Leu Ser Gln Ala Asp
 20 25 30

Tyr Leu Asn Leu Val Gln Cys Glu Thr Leu Glu Asp Leu Lys Leu His
 35 40 45

Leu Gln Ser Thr Asp Tyr Gly Asn Phe Leu Ala Asn Glu Ala Ser Pro
 50 55 60

Leu Thr Val Ser Val Ile Asp Asp Arg Leu Lys Glu Lys Met Val Val
 65 70 75 80

Glu Phe Arg His Met Arg Asn His Ala Tyr Glu Pro Leu Ala Ser Phe
 85 90 95

Leu Asp Phe Ile Thr Tyr Ser Tyr Met Ile Asp Asn Val Ile Leu Leu
 100 105 110

Ile Thr Gly Thr Leu His Gln Arg Ser Ile Ala Glu Leu Val Pro Lys
 115 120 125

Cys His Pro Leu Gly Ser Phe Glu Gln Met Glu Ala Val Asn Ile Ala
 130 135 140

Gln Thr Pro Ala Glu Leu Tyr Asn Ala Ile Leu Val Asp Thr Pro Leu
 145 150 155 160

Ala Ala Phe Phe Gln Asp Cys Ile Ser Glu Gln Asp Leu Asp Glu Met
 165 170 175

Asn Ile Glu Ile Ile Arg Asn Thr Leu Tyr Lys Ala Tyr Leu Glu Ser
 180 185 190

Phe Tyr Lys Phe Cys Thr Leu Leu Gly Gly Thr Thr Ala Asp Ala Met
 195 200 205

Cys Pro Ile Leu Glu Phe Glu Ala Asp Arg Arg Ala Phe Ile Ile Thr
 210 215 220

Ile Asn Ser Phe Gly Thr Glu Leu Ser Lys Glu Asp Arg Ala Lys Leu
 225 230 235 240

Phe Pro His Cys Gly Arg Leu Tyr Pro Glu Gly Leu Ala Gln Leu Ala
 245 250 255

Arg Ala Asp Asp Tyr Glu Gln Val Lys Asn Val Ala Asp Tyr Tyr Pro
 260 265 270

Glu Tyr Lys Leu Leu Phe Glu Gly Ala Gly Ser Asn Pro Gly Asp Lys
 275 280 285

Thr Leu Glu Asp Arg Phe Phe Glu His Glu Val Lys Leu Asn Lys Leu
 290 295 300

Ala Phe Leu Asn Gln Phe His Phe Gly Val Phe Tyr Ala Phe Val Lys
 305 310 315 320

Leu Lys Glu Gln Glu Cys Arg Asn Ile Val Trp Ile Ala Glu Cys Ile
 325 330 335

Ala Gln Arg His Arg Ala Lys Ile Asp Asn Tyr Ile Pro Ile Phe
 340 345 350

<210> 34
 <211> 127
 <212> PRT
 <213> Homo sapiens

<400> 34
 Met Ser Phe Ser Gly Lys Tyr Gln Leu Gln Ser Gln Glu Asn Phe Glu
 1 5 10 15

Ala	Phe	Met	Lys	Ala	Ile	Gly	Leu	Pro	Glu	Glu	Leu	Ile	Gln	Lys	Gly
20							25						30		

Lys	Asp	Ile	Lys	Gly	Val	Ser	Glu	Ile	Val	Gln	Asn	Gly	Lys	His	Phe
35						40							45		

Lys	Phe	Thr	Ile	Thr	Ala	Gly	Ser	Lys	Val	Ile	Gln	Asn	Glu	Phe	Thr
50						55						60			

Val	Gly	Glu	Glu	Cys	Glu	Leu	Glu	Thr	Met	Thr	Gly	Glu	Lys	Val	Lys
65					70				75				80		

Thr	Val	Val	Gln	Leu	Glu	Gly	Asp	Asn	Lys	Leu	Val	Thr	Thr	Phe	Lys
85							90						95		

Asn	Ile	Lys	Ser	Val	Thr	Glu	Leu	Asn	Gly	Asp	Ile	Ile	Thr	Asn	Thr
100							105						110		

Met	Thr	Leu	Gly	Asp	Ile	Val	Phe	Lys	Arg	Ile	Ser	Lys	Arg	Ile	
115						120						125			

<210> 35
 <211> 219
 <212> PRT
 <213> Homo sapiens

<400> 35
 Leu Ala Ala Pro Asp Leu Ser Lys Pro Arg Gly Tyr His Trp Asp Thr
 1 5 10 15

Ser	Asp	Trp	Met	Pro	Ser	Val	Pro	Leu	Pro	Asp	Ile	Gln	Glu	Phe	Pro
20							25						30		

Asn	Tyr	Glu	Val	Ile	Asp	Glu	Gln	Thr	Pro	Leu	Tyr	Ser	Ala	Asp	Pro
35						40						45			

Asn	Ala	Ile	Asp	Thr	Asp	Tyr	Tyr	Pro	Gly	Gly	Tyr	Asp	Ile	Glu	Ser
50						55						60			

Asp	Phe	Pro	Pro	Pro	Glu	Asp	Phe	Pro	Ala	Ala	Asp	Glu	Leu	Pro	
65					70				75			80			

Pro	Leu	Pro	Pro	Glu	Phe	Ser	Asn	Gln	Phe	Glu	Ser	Ile	His	Pro	Pro
85							90					95			

Arg	Asp	Met	Pro	Ala	Ala	Gly	Ser	Leu	Gly	Ser	Ser	Ser	Arg	Asn	Arg
100							105					110			

Gln	Arg	Phe	Asn	Leu	Asn	Gln	Tyr	Leu	Pro	Asn	Phe	Tyr	Pro	Leu	Asp
115							120					125			

Met	Ser	Glu	Pro	Gln	Thr	Lys	Gly	Thr	Gly	Glu	Asn	Ser	Thr	Cys	Arg
130						135						140			

Glu Pro His Ala Pro Tyr Pro Pro Gly Tyr Gln Arg His Phe Glu Ala

145	150	155	160
Pro Ala Val Glu Ser Met Pro Met Ser Val Tyr Ala Ser Thr Ala Ser			
165	170	175	
Cys Ser Asp Val Ser Ala Cys Cys Glu Val Glu Ser Glu Val Met Met			
180	185	190	
Ser Asp Tyr Glu Ser Gly Asp Asp Gly His Phe Glu Glu Val Thr Ile			
195	200	205	
Pro Pro Leu Asp Ser Gln Gln His Thr Glu Val			
210	215		

<210> 36			
<211> 256			
<212> PRT			
<213> Homo sapiens			
<400> 36			
His Glu Glu Asn Ser Arg Ile Val Leu Gln Ile Asp Asn Ala Arg Leu			
1	5	10	15
Ala Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Glu Gln Ala Leu Arg			
20	25	30	
Met Ser Val Glu Ala Asp Ile Asn Gly Leu Arg Arg Val Leu Asp Glu			
35	40	45	
Leu Thr Leu Ala Arg Thr Asp Leu Glu Met Gln Ile Glu Gly Leu Lys			
50	55	60	
Glu Glu Leu Ala Tyr Leu Lys Lys Asn His Glu Glu Glu Ile Ser Thr			
65	70	75	80
Leu Arg Gly Gln Val Gly Gly Gln Val Ser Val Glu Val Asp Ser Ala			
85	90	95	
Pro Gly Thr Asp Leu Ala Lys Ile Leu Ser Asp Met Arg Ser Gln Tyr			
100	105	110	
Glu Val Met Ala Glu Gln Asn Arg Lys Asp Ala Glu Ala Trp Phe Thr			
115	120	125	
Ser Arg Thr Glu Glu Leu Asn Arg Glu Val Ala Gly His Thr Glu Gln			
130	135	140	
Leu Gln Met Ser Arg Ser Glu Val Thr Asp Leu Arg Arg Thr Leu Gln			
145	150	155	160
Gly Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser Met Lys Ala Ala Leu			
165	170	175	
Glu Asp Thr Leu Ala Glu Thr Glu Ala Arg Phe Gly Ala Gln Leu Ala			
180	185	190	
His Ile Gln Ala Leu Ile Ser Gly Ile Glu Ala Gln Leu Gly Asp Val			
195	200	205	
Arg Ala Asp Ser Glu Arg Gln Asn Gln Glu Tyr Gln Arg Leu Met Asp			
210	215	220	
Ile Lys Ser Arg Leu Glu Gln Glu Ile Ala Thr Tyr Arg Ser Leu Leu			
225	230	235	240

Glu Gly Gln Glu Asp His Tyr Asn Asn Leu Ser Ala Ser Lys Val Leu
 245 250 255

<210> 37
 <211> 143
 <212> PRT
 <213> Homo sapiens

<400> 37
 Met Ser Val Ser Glu Leu Lys Ala Gln Ile Thr Gln Lys Ile Gly Val
 1 5 10 15

His Ala Phe Gln Gln Arg Leu Ala Val His Pro Ser Gly Val Ala Leu
 20 25 30

Gln Asp Arg Val Pro Leu Ala Ser Gln Gly Leu Gly Pro Gly Ser Thr
 35 40 45

Val Leu Leu Val Val Asp Lys Cys Asp Glu Pro Leu Ser Ile Leu Val
 50 55 60

Arg Asn Asn Lys Gly Arg Ser Ser Thr Tyr Glu Val Arg Leu Thr Gln
 65 70 75 80

Thr Val Ala His Leu Lys Gln Gln Val Ser Gly Leu Glu Gly Val Gln
 85 90 95

Asp Asp Leu Phe Trp Leu Thr Phe Glu Gly Lys Pro Leu Glu Asp Gln
 100 105 110

Leu Pro Leu Gly Glu Tyr Gly Leu Lys Pro Leu Ser Thr Val Phe Met
 115 120 125

Asn Leu Arg Leu Arg Gly Gly Thr Glu Pro Gly Gly Arg Ser
 130 135 140

<210> 38
 <211> 41
 <212> PRT
 <213> Homo sapiens

<400> 38

Met Thr Gly Ala Gly Leu Gly Arg Asp Ser Gly Arg Trp Arg Glu Val
 1 5 10 15

Ser Phe Phe Gly Glu Thr Glu Arg Ala Arg Gly Gly Thr Val Gly Arg
 20 25 30

Gly Arg Thr Arg Leu Arg Arg Gln Glu
 35 40

<210> 39
 <211> 118
 <212> PRT
 <213> Homo sapiens

<400> 39
 Met Gln Thr Pro Pro Cys Phe Leu His Leu Ala Asp Tyr Leu Tyr Pro
 1 5 10 15
 Glu Gln Leu Lys Met Thr Val Val Lys Leu Ile Ser His Arg Glu Cys
 20 25 30
 Gln Gln Pro His Tyr Tyr Gly Ser Glu Val Thr Thr Lys Met Leu Cys
 35 40 45
 Ala Ala Asp Pro Gln Trp Lys Thr Asp Ser Cys Gln Gly Asp Ser Gly
 50 55 60
 Gly Pro Leu Val Cys Ser Leu Gln Gly Arg Met Thr Leu Thr Gly Ile
 65 70 75 80
 Val Ser Trp Gly Arg Gly Cys Ala Leu Lys Asp Lys Pro Gly Val Tyr
 85 90 95
 Thr Arg Val Ser His Phe Leu Pro Trp Ile Arg Ser His Thr Lys Glu
 100 105 110
 Glu Asn Gly Leu Ala Leu
 115

<210> 40
<211> 110
<212> PRT
<213> Homo sapiens
<400> 40
 Pro Arg Val Arg Pro Glu Ala Gly Ser Ser Leu Cys Ser Pro Gly Pro
 1 5 10 15
 Ala Trp Leu Gly Glu Leu Glu Ala Ser Arg Arg Trp His Gly Ala Arg
 20 25 30
 Gln Asp Gly Cys Val His Arg Gly Ala Gly Gly His Gly Ser Gly Ser
 35 40 45
 Pro Gly Glu Thr Glu Glu Pro Pro Val Phe Pro Val His Met Gly His
 50 55 60
 Cys Cys Leu His Cys Phe Pro His Leu His Gly His Arg Ala Ala Pro
 65 70 75 80
 Ala Ala Ala Gly Arg Arg Pro Leu Leu Leu Leu Gln Leu Pro Arg Ala
 85 90 95
 Pro Gln Gly Lys Pro Gln Glu Gly Lys Thr Gln Gly Ser Gly
 100 105 110

<210> 41
<211> 63
<212> PRT
<213> Homo sapiens
<400> 41
 Asp Thr Thr Thr Arg Asp Phe Thr Gln Leu Asn Glu Leu Gln Cys Arg
 1 5 10 15
 Phe Pro Arg Arg Leu Val Val Leu Gly Phe Pro Cys Asn Gln Phe Gly

20

25

30

His Gln Ser Arg Arg Asp Arg Ser Ser Lys Pro Ser Phe Glu Met Ser
 35 40 45

Leu Gln Pro Gln Lys Tyr Leu Gln Pro His Thr Ile Ser Ser Ala
 50 55 60

<210> 42

<211> 61

<212> PRT

<213> Homo sapiens

<400> 42

Tyr Pro Ala Ser Gln Ile Val His His Phe Met Glu Leu Cys Trp Asp
 1 5 10 15

Lys Cys Val Glu Lys Pro Gly Asn Arg Leu Asp Ser Arg Thr Glu Asn
 20 25 30

Cys Leu Ser Ser Cys Val Asp Arg Phe Ile Asp Thr Thr Leu Ala Ile
 35 40 45

Thr Ser Arg Phe Ala Gln Ile Val Gln Lys Gly Gly Gln
 50 55 60

<210> 43

<211> 166

<212> PRT

<213> Homo sapiens

<400> 43

Met Ala Gln Thr Ser Ser Tyr Phe Met Leu Ile Ser Cys Leu Met Phe
 1 5 10 15

Leu Ser Gln Ser Gln Gly Gln Glu Ala Gln Thr Glu Leu Pro Gln Ala
 20 25 30

Arg Ile Ser Cys Pro Glu Gly Thr Asn Ala Tyr Arg Ser Tyr Cys Tyr
 35 40 45

Tyr Phe Asn Glu Asp Arg Glu Thr Trp Val Asp Ala Asp Leu Tyr Cys
 50 55 60

Gln Asn Met Asn Ser Gly Asn Leu Val Ser Val Leu Thr Gln Ala Glu
 65 70 75 80

Gly Ala Phe Val Ala Ser Leu Ile Lys Glu Ser Gly Thr Asp Asp Phe
 85 90 95

Asn Val Trp Ile Gly Leu His Asp Pro Lys Lys Asn Arg Arg Trp His
 100 105 110

Trp Ser Ser Gly Ser Leu Val Ser Tyr Lys Ser Trp Gly Ile Gly Ala
 115 120 125

Pro Ser Ser Val Asn Pro Gly Tyr Cys Val Ser Leu Thr Ser Ser Thr
 130 135 140

Gly Phe Gln Lys Trp Lys Asp Val Pro Cys Glu Asp Lys Phe Ser Phe
 145 150 155 160

Val Cys Lys Phe Lys Asn
165

<210> 44
 <211> 93
 <212> PRT
 <213> Homo sapiens

<400>	44		
Met Asp Pro Gly Pro Lys Gly His Cys His Cys Gly Gly His Gly His			
1	5	10	15
Pro Pro Gly His Cys Gly Pro Pro Pro Gly His Gly Pro Gly Pro Cys			
20	25	30	
Gly Pro Pro His His Gly Pro Gly Pro Cys Gly Pro Pro Pro His			
35	40	45	
His Gly Pro Gly Pro Cys Gly Pro Pro Pro Gly His Gly Pro Gly Pro			
50	55	60	
Cys Gly Pro Pro Pro His His Gly Pro Gly Pro Cys Gly Pro Pro Pro			
65	70	75	80
Gly His Gly Pro Gly His Pro Pro Pro Gly Pro His His			
85	90		

<210> 45
 <211> 56
 <212> PRT
 <213> Homo sapiens

<400>	45		
His Glu Glu Asn Gln Lys Asp Pro Leu Ala Val Asp Lys Ile Met Lys			
1	5	10	15
Asp Leu Asp Gln Cys Arg Asp Gly Lys Val Gly Phe Gln Ser Phe Phe			
20	25	30	
Ser Leu Ile Ala Gly Leu Thr Ile Ala Cys Asn Asp Tyr Phe Val Val			
35	40	45	
His Met Lys Gln Lys Gly Lys Lys			
50	55		

<210> 46
 <211> 239
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (215)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (216)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (227)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (236)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 46
Met Ser Phe Phe Pro Glu Leu Tyr Phe Asn Val Asp Asn Gly Tyr Leu
1 5 10 15

Glu Gly Leu Val Arg Gly Leu Lys Ala Gly Val Leu Ser Gln Ala Asp
20 25 30

Tyr Leu Asn Leu Val Gln Cys Glu Thr Leu Glu Asp Leu Lys Leu His
35 40 45

Leu Gln Ser Thr Asp Tyr Gly Asn Phe Leu Ala Asn Glu Ala Ser Pro
50 55 60

Leu Thr Val Ser Val Ile Asp Asp Arg Leu Lys Glu Lys Met Val Val
65 70 75 80

Glu Phe Arg His Met Arg Asn His Ala Tyr Glu Pro Leu Ala Ser Phe
85 90 95

Leu Asp Phe Ile Thr Tyr Ser Tyr Met Ile Asp Asn Val Ile Leu Leu
100 105 110

Ile Thr Gly Thr Leu His Gln Arg Ser Ile Ala Glu Leu Val Pro Lys
115 120 125

Cys His Pro Leu Gly Ser Phe Glu Gln Met Glu Ala Val Asn Ile Ala
130 135 140

Gln Thr Pro Ala Glu Leu Tyr Asn Ala Ile Leu Val Asp Thr Pro Leu
145 150 155 160

Ala Ala Phe Phe Gln Asp Cys Ile Ser Glu Gln Asp Leu Asp Glu Met
165 170 175

Asn Ile Glu Ile Ile Arg Asn Thr Leu Tyr Lys Ala Tyr Leu Glu Ser
180 185 190

Phe Tyr Lys Phe Cys Thr Leu Leu Gly Gly Thr Thr Ala Asp Ala Met
195 200 205

Cys Pro Ile Leu Glu Phe Xaa Xaa Gln Thr Val Pro Ser Ser Phe His
210 215 220

Thr Val Xaa Gly Ser Thr Leu Arg Ala Trp Arg Xaa Gly Ser Gly
225 230 235

<210> 47
<211> 219
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (153)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 47

Leu	Ala	Ala	Pro	Asp	Leu	Ser	Lys	Pro	Arg	Gly	Tyr	His	Trp	Asp	Thr
1					5			10					15		

Ser	Asp	Trp	Met	Pro	Ser	Val	Pro	Leu	Pro	Asp	Ile	Gln	Glu	Phe	Pro
						20		25				30			

Asn	Tyr	Glu	Val	Ile	Asp	Glu	Gln	Thr	Pro	Leu	Tyr	Ser	Ala	Asp	Pro
						35	40					45			

Asn	Ala	Ile	Asp	Thr	Asp	Tyr	Tyr	Pro	Gly	Gly	Tyr	Asp	Ile	Glu	Ser
						50	55		60						

Asp	Phe	Pro	Pro	Pro	Pro	Glu	Asp	Phe	Pro	Ala	Ala	Asp	Glu	Leu	Pro
						65	70		75			80			

Pro	Leu	Pro	Pro	Glu	Phe	Ser	Asn	Gln	Phe	Glu	Ser	Ile	His	Pro	Pro
						85		90		95					

Arg	Asp	Met	Pro	Ala	Ala	Gly	Ser	Leu	Gly	Ser	Ser	Ser	Arg	Asn	Arg
						100		105					110		

Gln	Arg	Phe	Asn	Leu	Asn	Gln	Tyr	Leu	Pro	Asn	Phe	Tyr	Pro	Leu	Asp
						115		120				125			

Met	Ser	Glu	Pro	Gln	Thr	Lys	Gly	Thr	Gly	Glu	Asn	Ser	Thr	Cys	Arg
						130		135		140					

Glu	Pro	His	Ala	Pro	Tyr	Pro	Pro	Xaa	Tyr	Gln	Arg	His	Phe	Glu	Ala
						145		150		155			160		

Pro	Ala	Val	Glu	Ser	Met	Pro	Met	Ser	Val	Tyr	Ala	Ser	Thr	Ala	Ser
						165		170				175			

Cys	Ser	Asp	Val	Ser	Ala	Cys	Cys	Glu	Val	Glu	Ser	Glu	Val	Met	Met
						180		185		190					

Ser	Asp	Tyr	Glu	Ser	Gly	Asp	Asp	Gly	His	Phe	Glu	Glu	Val	Thr	Ile
						195		200			205				

Pro	Pro	Leu	Asp	Ser	Gln	Gln	His	Thr	Glu	Val					
						210		215							

<210> 48

<211> 49

<212> PRT

<213> Homo sapiens

<400> 48

Met	Gly	His	Cys	Cys	Leu	His	Cys	Phe	Pro	His	Leu	His	Gly	His	Arg
1					5				10		15				

Ala	Ala	Pro	Ala	Ala	Ala	Gly	Arg	Arg	Pro	Leu	Leu	Leu	Gln	Leu	
						20		25			30				

Pro	Arg	Ala	Pro	Gln	Gly	Lys	Pro	Gln	Glu	Gly	Lys	Thr	Gln	Gly	Ser
						35		40		45					

Gly

<210> 49
<211> 26
<212> PRT
<213> Homo sapiens

<400> 49
Cys Val Ser Leu Thr Ser Ser Thr Gly Phe Gln Lys Trp Lys Asp Val
1 5 10 15
Pro Cys Glu Asp Lys Phe Ser Phe Val Cys
20 25

<210> 50
<211> 22
<212> PRT
<213> Homo sapiens

<400> 50
Ile Met Lys Asp Leu Asp Gln Cys Arg Asp Gly Lys Val Gly Phe Gln
1 5 10 15
Ser Phe Phe Ser Leu Ile
20

<210> 51
<211> 18
<212> PRT
<213> Homo sapiens

<400> 51
Gly Lys Tyr Gln Leu Gln Ser Gln Glu Asn Phe Glu Ala Phe Met Lys
1 5 10 15
Ala Ile

<210> 52
<211> 9
<212> PRT
<213> Homo sapiens

<400> 52
Ile Ala Thr Tyr Arg Ser Leu Leu Glu
1 5

<210> 53
<211> 12
<212> PRT
<213> Homo sapiens

<400> 53
Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val
1 5 10

<210> 54

<211> 54
<212> PRT
<213> Homo sapiens

<400> 54
Ala Arg Ala Pro Pro Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg
1 5 10 15
Cys Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met
20 25 30
Tyr Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly
35 40 45
Lys Glu Asn Ser Ser Lys
50

<210> 55
<211> 8
<212> PRT
<213> Homo sapiens

<400> 55
Gly Lys Pro Gln Glu Gly Lys Thr
1 5

<210> 56
<211> 8
<212> PRT
<213> Homo sapiens

<400> 56
Leu Gly Phe Pro Cys Asn Gln Phe
1 5