Does $\sum_{n=1}^{\infty} \frac{\cos \pi n}{n}$ diverge, converge absolutely, or converge conditionally?

Solution

The series $\sum_{n=1}^{\infty} \frac{\cos \pi n}{n}$ is an alternating series. Note $b_n = |a_n| = \frac{1}{n}$. Since the sequence b_n is decreasing and

 $b_n \to 0$, by the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{\cos \pi n}{n}$ converges.

To figure out whether $\sum_{n=1}^{\infty} \frac{\cos \pi n}{n}$ converges absolutely or conditionally, we consider the series

$$\sum_{n=1}^{\infty} \left| \frac{\cos \pi n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

which diverges by the *p*-test, so the series $\sum_{n=1}^{\infty} \frac{\cos \pi n}{n}$ converges conditionally.