mpi.md 2025-04-18

Metody probabilistyczne informatyki

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.140.03339.22

Języki wykładowe : polski

Dyscypliny: Informatyka, Matematyka

Klasyfikacja ISCED: 0541 Matematyka, 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.MPI.OL

Koordynator przedmiotu

Piotr Micek

Prowadzący zajęcia

Okres Semestr 3

Piotr Micek

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Forma prowadzenia i godziny zajęć

wykład: 30 ćwiczenia: 30

Liczba punktów ECTS 6.0

Cele kształcenia dla przedmiotu

C1 Zapoznanie studentów z pojęciami i twierdzeniami z zakresu rachunku prawdopodobieństwa oraz wykształcenie umiejętności swobodnego posługiwania się nimi

mpi.md 2025-04-18

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie		Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	Student zna klasyczne rozkłady zmiennych losowych i umie analizować ich modyfikacje.		egzamin ustny, zaliczenie
W2	Student rozumie zasadę liniowości wartości oczekiwanej i potrafi z niej skorzystać w rozwiązywaniu zadań.		egzamin ustny, zaliczenie
W3	Student potrafi rozpoznać i analizować proste procesy losowe: spacery, procesy gałązkowe, łańcuchy Markowa.		egzamin ustny, zaliczenie
Umiejętności – Student potrafi:			
U1	Student potrafi zamodelować przestrzeń probabilistyczną dla opisanych eksperymentów losowych.	IAN_K1_U01, IAN_K1_U02	egzamin ustny, zaliczenie
U2	Student rozumie ideę symulacji zmiennych losowych w infomatyce.	ustny.	

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć
wykład	30
ćwiczenia	30
przygotowanie do ćwiczeń	90
przygotowanie do egzaminu	29
uczestnictwo w egzaminie	1

mpi.md 2025-04-18

Łączny nakład pracy	1: 1 1: 100	ECTS
studenta	Liczba godzin 180	6.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	1. Aksjomaty rachunku prawdopodobieństwa. 2. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3. Zmienna losowa: jej rozkład i dystrybuanta. 4. Dyskretne zmienne losowe i ich parametry. 5. Spacery losowe. 6. Ciągłe zmienne losowe i ich parametry. 7. Igła Buffona i prawdopodobieństwo geometryczne. 8. Funkcje tworzące zmiennych losowych. 9. Funkcje tworzące dla spacerów losowych i procesów gałązkowych. 10. Twierdzenia graniczne i funckja charakterystyczna. 11. Proces Poissona i łańcuch Markova. 12. Teoria kodów i entropii. 13. Symulacja zmiennych losowych. Elementy statystyki.	W1, W2, W3, U1, U2

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, wykład z prezentacją multimedialną, ćwiczenia przedmiotowe

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin ustny	Uzyskanie odpowiedniej liczby punktów za egzamin i ćwiczenia
ćwiczenia	zaliczenie	Uzyskanie odpowiedniej liczby punktów za ćwiczenia

Wymagania wstępne i dodatkowe

znajomość zagadnień z matematyki dyskretnej oraz analizy matemycznej

Literatura

Obowiązkowa

- Geoffrey G. Grimmet, David R. Stirzaker, Probability and Random Processes, Oxford University Press 2001
 - 2. Jacek Jakubowski, Rafał Sztencel, Wstęp do teorii prawdopodobieństwa, Wydawnictwo SCRIPT 2004
 - 3. Agnieszka i Edmund Plucińscy, Probabilistyka, Wydawnictwo Naukowo-Techniczne Warszawa
 - 4. Sheldon Ross, A first course in probability, 8th edition