Espaces Vectoriels Normés Fonctions à plusieurs variables

Lundi 15 janvier 2018

Soit E un espace vectoriel.

Le but de cette partie est de définir la notion de distance entre deux vecteurs de E.

Ex: $-E = \mathbb{R}$: On peut définir la distance entre deux réels a et a' par d(a, a') = |a - a'|.

$$-E = \mathbb{C}$$
: On peut poser $z, z' \in \mathbb{C}, d(z, z') = |z - z'|$. Si on écrit $z = x + iy$ et $z' = x' + iy'$, alors $d(z, z') = |x - x'| + i(y - y')| = \sqrt{(x - x')^2 + (y - y')^2}$.

$$-E = \mathbb{R}^2 : \text{Si } (x, y), (x', y') \in \mathbb{R}^2, \text{ on peut définir } d((x, y), (x', y')) = \sqrt{(x - x')^2 + (y - y')^2}.$$

1 Normes et distances sur un espace vectoriel

<u>Définition</u>: Soit E un espace vectoriel sur \mathbb{R} . Une norme sur E est par définition une application

 $N: E \to \mathbb{R}, x \mapsto N(x)$ vérifiant :

- $\forall x \in E, N(x) \ge 0$, et $(N(x) = 0 \iff x = 0)$,
- $\forall x \in E, \forall \lambda \in \mathbb{R}, N(\lambda x) = |\lambda|N(x),$
- (Inégalité triangulaire) $\forall x, y \in E, N(x + y) \leq N(x) + N(y)$.

<u>Définition</u>: Un espace vectoriel normé (e.v.n) est un couple (E, N) où E est un e.v et N une norme sur E.

Propriétés:

- Soient
$$x_1, x_2, x_3 \in E$$
 avec (E, N) un e.v.n. Alors,

$$N(x_1 + x_2 + x_3) = N((x_1 + x_2) + x_3) \le N(x_1 + x_2) + N(x_3) \le N(x_1) + N(x_2) + N(x_3)$$

- Si
$$x_1, ..., x_p \in E, N(x_1, ..., x_p) \leq N(x_1) + ... + N(x_p)$$
.

$$- \text{Si } x, y \in E, |N(x) - N(y)| \leq N(x - y).$$

Démo :

$$N(x) = N((x - y) + y) \leqslant N(x - y) + N(y), N(x) - N(y) \leqslant N(x - y).$$

Aussi
$$N(y) - N(x) \le N(y - x) = N((-1)(x - y)) = |-1|N(x - y) = N(x - y).$$

Finalement,
$$|N(x) - N(y)| = \text{Max}(N(x) - N(y), N(y) - N(x)) \leq N(x - y)$$
.

$\underline{\mathbf{E}\mathbf{x}}$:

$$-E = \mathbb{R}$$
: Posons $N(x) = |x|$ (Valeur absolue).

N est une norme sur \mathbb{R} , car $|x| \ge 0$, $(|x| = 0 \iff x = 0)$,

$$\forall \lambda \in \mathbb{R}, |\lambda x| = |\lambda||x|, \text{ et } \forall x, y \in E, |x + y| \leq |x| + |y|.$$

$$-E = \mathbb{C}$$
: Posons $N(x) = |x|$ (Module).

N est une norme sur \mathbb{C} , car $|z| \ge 0$, $(|z| = 0 \iff z = 0)$,

$$\forall \lambda \in \mathbb{C}, |\lambda z| = |\lambda||z|, \text{ et } \forall z, z' \in E, |z + z'| \leq |z| + |z'|.$$

- Espaces euclidiens :

Soit E un e.v. Une forme bilinéaire est une application $B: E \times E \to \mathbb{R}$, $(x, y) \mapsto B(x, y)$ telle qu'elle est linéaire en chacune de ses variables.

Un produit scalaire sur un e.v E est une forme bilinéaire symétrique sur E définie positive au sens suivant : $\forall x \in E, B(x,x) \ge 0$, et $B(x,x) = 0 \iff x = 0$. Un espace euclidien est un e.v muni d'un produit scalaire. On pose $B(x,y) = \sum_{i=1}^{n} x_{i}y_{j}$. B est un produit scalaire sur \mathbb{R}^{n} avec $(x,y \in \mathbb{R}^{n})$.

On pose maintenant : $N(x) = \sqrt{B(x,x)}$. Alors, N est une norme sur E.

Démo :

$$i/ \text{ Par d\'efinition, } N(x) \geqslant 0, \text{ et } N(x) = 0 \Longleftrightarrow B(x,x) = 0 \Longleftrightarrow x = 0$$

$$ii/ \text{ Si } \lambda \in \mathbb{R}, \ x \in E, \ N(\lambda x) = \sqrt{B(\lambda x, \lambda x)} = \sqrt{\lambda^2 B(x,x)} = |\lambda| \sqrt{B(x,x)} = |\lambda| N(x),$$

$$iii/ \text{ On va utiliser le lemme : } \forall \ x, \ y \in E, \text{ posons } p(\lambda) = B(x + \lambda y, x) + \lambda B(x + \lambda y, y). \text{ Si on pose } z = x + \lambda y \text{ fix\'e, et } u(\omega) = B(z,\omega), \text{ on a \'ecrit que } (u(x + \lambda y) = u(x) + \lambda u(y)).$$
 On aura $p(\lambda) = B(x,x) + \lambda B(y,x) + \lambda B(x,y) + \lambda^2 B(y,y) \text{ donc } p(\lambda) = B(x,x) + 2\lambda B(y,x) + \lambda^2 B(y,y) \text{ donc } \lambda \mapsto p(\lambda) \text{ est un polynôme de degr\'e} \leqslant 2 \text{ et } p(\lambda) = B(x + \lambda y, x + \lambda y) \geqslant 0.$ Or, si un polynôme de degr\'e \leq 2 ne change pas de signe, son discriminant est \leq 0.
$$(2B(x,y))^2 - 4B(x,x)B(y,y) \leqslant 0, \text{ donc } |B(x,y)| \leqslant \sqrt{B(x,x)} \sqrt{B(y,y)}. \text{ On a donc } N(x+y)^2 = B(x+y,x+y) = B(x,x+y) + B(y,x+y) = B(x,x) + B(y,x) + B(y,y) + B(y,y) = B(x,x) + 2B(x,y) + B(y,y) \leqslant N(x)^2 + N(x)N(y) + N(y)^2.$$
 On a obtenu $N(x+y)^2 \leqslant (N(x) + N(y))^2$ soit $N(x+y) \leqslant N(x) + N(y)$

$$-E = \mathbb{R}^n : B(x, y) = \sum x_i y_i$$
. La norme obtenue se note $||..||_2$ et pour $x = \begin{bmatrix} x_1 \\ \vdots \\ x \end{bmatrix}$ est donnée par

$$||\mathbf{x}||_2 \stackrel{def}{=} (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$$

- Autre exemple de normes : Soient $E,\,E'$ deux e.v et $\varphi:E\to E'$ linéaire injective.

Soit N' une norme sur E'. Pour $x \in E$, posons $N(x) \stackrel{def}{=} N'(\varphi(x))$. Alors N est une norme sur E: $i/N(x) \ge 0$ de plus $N(x) = 0 \Longrightarrow N'(\varphi(x)) = 0 \Longrightarrow \varphi(x) = 0$ (car N' est une norme) $\Longrightarrow x = 0$. (puisque φ est injective).

$$ii/N(\lambda x) = N'(\varphi(\lambda x)) = N'(\lambda \varphi(x)) = |\lambda|N'(\varphi(x)) = |\lambda|N(x)$$

 $iii/N(x+y) = N'(\varphi(x+y)) = N'(\varphi(x) + \varphi(y)) \le N'(\varphi(x)) + N'(\varphi(y)) = N(x) + N(y)$

1.1 Normes usuelles de \mathbb{R}^p

Soit
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix} \in \mathbb{R}^p$$
, les normes usuelles de \mathbb{R}^p sont définies par :

$$||x||_1 \stackrel{def}{=} \sum_{j=1}^p |x_j|, \qquad ||x||_2 \stackrel{def}{=} (\sum_{j=1}^p x_j^2)^{\frac{1}{2}}, \qquad ||x||_\infty \stackrel{def}{=} \max_{j \in \{0, \text{ ..., } p\}} [|x_j|].$$

Propriété : $||..||_1$, $||..||_2$, $||..||_{\infty}$, sont des normes de \mathbb{R}^p .

Démo:

- Pour $||...||_2$: voir plus haut.
- $\text{ Pour } ||..||_1 :$

Soit
$$x \in E$$
, $||x||_1 = \sum_{j=1}^p |x_j| \ge 0$, et $\sum_{j=1}^p |x_j| = 0 \iff \forall j \ x_j = 0 \iff x = 0$.

Soit
$$\lambda \in \mathbb{R}$$
, $||\lambda x||_1 = \sum_{j=1}^p |\lambda x_j| = |\lambda|(\sum_{j=1}^p |x_j|) = |\lambda|||x||_1$.

Soient
$$x, y \in \mathbb{R}^p$$
, $||x + y||_1 = \sum_{j=1}^p |x_j + y_j| \le \sum_{j=1}^p (|x_j| + |y_j|) = \sum_{j=1}^p |x_j| + \sum_{j=1}^p |y_j| = ||x||_1 + ||y||_1$

$$- \text{ Pour } ||..||_{\infty}$$
:

$$||x||_{\infty} = 0 \Longrightarrow \max_{j \in \{1, \dots, p\}} [|x_j|] = 0. \Longrightarrow \forall j \ x_j = 0 \Longleftrightarrow x = 0.$$

Vérifions l'inégalité triangulaire : $|x_j+y_j|\leqslant |x_j|+|y_j|=||x_j||_\infty+||y_j||_\infty$ donc

$$\max_{j \in \{1, \, \dots, \, p\}} [|x_j| + |y_j|] \leqslant ||x_j||_{\infty} + ||y_j||_{\infty}.$$

Propriété: $\forall x \in \mathbb{R}^p, ||x||_{\infty} \leq ||x||_2 \leq ||x||_1 \leq p||x||_{\infty}.$

$$\underline{\text{D\'emo}:} \ \forall \ j \in \{1, \ ..., \ p\}, \ |x_j| \leqslant \left(\sum_{j=1}^p x_j^2\right)^{\frac{1}{2}} \ \text{donc} \ ||x||_{\infty} = \max_{j \in \{1, \ ..., \ p\}} [|x_j|] \leqslant ||x||_2.$$

Pour montrer que $||x||_2 \leq ||x||_1$, il suffit de vérifier que $||x||_2^2 \leq ||x||_1^2$

Soit
$$\left(\sum_{j=1}^{p} x_j\right)^2 = \left(\sum_{j=1}^{p} x_j\right) \left(\sum_{j=1}^{p} x_j\right) = \sum_{j=1}^{p} \left(\sum_{i=1}^{p} |x_j| |x_i|\right) = \sum_{j=1}^{p} x_j^2 + \sum_{\substack{j=1 \ i \neq j}}^{p} \sum_{i=1}^{p} |x_j| |x_i|. \text{ Or, } \sum_{\substack{j=1 \ i \neq j}}^{p} \sum_{i \neq j}^{p} |x_j| |x_i| \geqslant 0,$$

donc

$$||x||_2^2 \le ||x||_1^2$$
, enfin $||x||_2 \le ||x||_1$.

$$||x||_1 = \sum_{j=1}^p |x_j| \le \sum_{j=1}^p ||x||_{\infty} = ||x||_{\infty} \sum_{j=1}^p 1 = p||x||_{\infty}$$

Remarque:

Si E est un e.v de dimension finie p, et si $(e_1, ..., e_p)$ est une base de E, alors $\forall x \in E$ s'écrit de

manière unique
$$x = \sum_{j=1}^{p} x_j e_j$$
. On peut donc définir des normes N_1, N_2, N_∞ sur E en posant

$$N_{\ell} \stackrel{def}{=} \left\| \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \right\|_{\ell}, \ \ell \in \{1, 2, \infty\}$$

1.2 Norme produit

Soient $(E_1, N_1), (E_2, N_2)$ deux e.v.n. Soit $E_1 \times E_2 = \{x = (x_1, x_2), x_1 \in E_1, x_2 \in E_2\}.$

<u>Définition</u>: $N(x) \stackrel{def}{=} \text{Max}[N_1(x_1), N_2(x_2)]$ est une norme sur E, et est appelée norme produit.

1.3 Distance associée à une norme

<u>Définition</u>: Soit (E, N) un e.v.n. la distance d(x, y) entre $x \in E$ et $y \in E$, associée à N est par définition d(x, y) = N(x - y).

Propriété : La distance précédente est une application $d:E\times E\to \mathbb{R}$ vérifiant :

$$i/\forall (x, y) \in E \times E \ d(x, y) \ge 0 \ \text{et} \ (d(x, y) = 0 \iff x = y)$$

$$ii/$$
 (symétrie) $\forall x, y \in E, d(x, y) = d(y, x)$

iii (Inégalité triangulaire) $\forall x, y, z \in E, d(x, z) \leq d(x, y) + d(y, z)$

<u>Démo</u>:

$$ii/d(x, y) = N(y - x) = N((-1)(x - y)) = |-1|N(x - y) = N(x - y) = d(y, x)$$

 $iii/d(x, z) = N(x - z) = N((x - y) + (y - z)) \le N(x - y) + N(y - z) = d(x, y) + d(y, z)$

Remarque:

De manière générale, si E est une ensemble, on définit une d distance sur E comme une application vérifiant $d: E \times E \to \mathbb{R}$ vérifiant i/, ii/, iii/.

C'est une notion de distance plus générale de la distance associée à une norme. Si d(x, y) = N(x - y). On peut prendre par exemple pour tout $a \in E$, d(x + a, y + a) = N((x + a) - (y + a)) = N(x - y) = d(x, y). Cette propriété n'est pas toujours vraie pour une distance "normale".

Soit (E, N) un e.v.n. Soit $a \in E$.

Définition:

i/ Soit r>0, la boule ouverte de centre a et de rayon r est par définition $B(a,\ r)=\{x\in E,\ N(x-a)< r\}=\{x\in E,\ d(x,\ a)< r\}$

ii/ Soit $r\geqslant 0,$ la boule fermée de centre a et de rayon r est par définition $\bar{B}(a,\ r)=\{x\in E,\ N(x-a)\leqslant r\}=\{x\in E,\ d(x,\ a)\leqslant r\}$

Remarque:

- Soit
$$r > 0$$
, alors $a \in B(a, r) \subset \bar{B}(a, r)$

$$-\bar{B}(a, 0) = \{a\}$$

$$-\operatorname{Si} r < r' B(a, r) \subset B(a, r'), \, \bar{B}(a, r) \subset \bar{B}(a, r')$$

Ex:

$$-E = \mathbb{R} , N(x) = |x|. \text{ Soit } a \in \mathbb{R}, \text{ alors } B(a,r) = \{x \in E, |x - a| < r\} = |a - r, a + r[, \frac{a - r - a - a + r}{a - r - a - a + r}]$$

$$\bar{B}(a,r) = \{x \in \mathbb{R}, |x - a| \le r\} = [a - r, a + r], \frac{a - r - a - a + r}{a - r - a - a + r}$$

$$-E = \mathbb{C}, N(z) = |z|, \text{ pour } z \in \mathbb{C}. \text{ Soient } a, r > 0.$$

Alors $B(a, r) = \{z \in \mathbb{C}, |z - a| < r\}$ c'est le disque <u>ouvert</u> de centre a, et de rayon r:

Alors $\bar{B}(a, r) = \{z \in \mathbb{C}, |z - a| \leq r\}$ c'est le disque fermé de centre a, et de rayon r:

 $-E = \mathbb{R}^p \text{ muni des normes } ||..||_1, ||..||_2, ||..||_{\infty}, \text{ on a vu que } \forall \ x \in \mathbb{R}^p, ||x||_{\infty} \leqslant ||x||_2 \leqslant ||x||_1 \leqslant p||x||_{\infty}$ Notons $B_{\ell}(a, r) = \{x \in \mathbb{R}^p, \ ||x - a||_{\ell} \leqslant r\}. \ \ell \in \{1, 2, \infty\}$ Soit r > 0, soit $x \in B_{\ell}(0, \frac{r}{p})$. Alors $||x||_{\infty} < \frac{r}{p}$, donc $||x||_1 \leqslant p||x||_{\infty} < p^r_p = r$ or $x \in B_1(0, r)$. On en déduit que $B_{\infty}(0, \frac{r}{p}) \subset B_1(0, r)$ De même $B_1(0, r) \subset B_2(0, r) \subset B_{\infty}(0, r)$.

$$\forall x \in E, B_{\infty}(0, \frac{r}{p}) \subset B_1(0, r) \subset B_2(0, r) \subset B_{\infty}(0, r).$$

Cas de p = 2, r = 1

Alors
$$B_{\infty}(0, 1) = \{x = (x_1, x_2) \in \mathbb{R}^2, ||x||_{\infty} \}$$

= $\{(x_1, x_2) \in \mathbb{R}^2, \text{Max}[|x_1|, |x_2|] < 1\}$
= $\{(x_1, x_2) \in \mathbb{R}^2, |x_1| < 1 \text{ et } |x_2| < 1\}$

Alors
$$B_2(0, 1) = \{x = (x_1, x_2) \in \mathbb{R}^2, ||x||_2\}$$

$$= \{(x_1, x_2) \in \mathbb{R}^2, \sqrt{x_1^2 + x_2^2} < 1\}$$

$$= \{(x_1, x_2) \in \mathbb{R}^2, |x_1| < 1 \text{ et } |x_2| < 1\}$$

$$= \{z = x_1 + ix_2, |z| < 1\}$$

Alors $B_{\infty}(0, 1) = \{x = (x_1, x_2) \in \mathbb{R}^2, ||(x_1, x_2)||_1\} = \{(x_1, x_2) \in \mathbb{R}^2, |x_1| + |x_2| < 1\}$

Alors $B_1(0, 1) \cap \{(x_1, x_2), x_1 \leq 0, x_2\} = A$. $B_1(0, 1)$ s'obtient par symétrie par A, par rapport aux axes.

Définition:

On dit que deux normes N_1 et N_2 sont équivalentes ssi $\exists C > 0$, telle que $\forall x \in E, N_1(x) \leqslant CN_2(x)$ et $N_2(x) \leqslant CN_1(x)$.

Remarque:

On définit aussi " N_1 et N_2 sont équivalentes" par :

 $\exists C_1 > 0$, telle que $\forall x \in E, N_2(x) \leqslant C_1 N_1(x)$ et, $\exists C_2 > 0$, telle que $\forall x \in E, N_1(x) \leqslant C_2 N_2(x)$.

Cette définition est équivalente à la précédente.

Déf 1 \Longrightarrow Déf 2, c'est évident, on prend $C_1 = C_2 = C$. Déf 1 \Longrightarrow Déf 2, en prennant $C = \text{Max}[C_1, C_2]$. $\underline{\text{Ex}} : \text{Sur } \mathbb{R}^p \mid |...|_1, \mid |...|_2, \mid |...|_{\infty}$, sont des normes équivalentes (car $\forall x \in \mathbb{R}^p, \mid |x||_{\infty} \leqslant ||x||_2 \leqslant ||x||_1 \leqslant p||x||_{\infty}$.)

2 Limites et continuité

Définition:

On considère (E, N) un e.v.n. Soit $(u_n)_{n \in \mathbb{N}}$ une suite d'éléments de E. On dit que u_n converge vers ℓ ssi la suite réelle $(N(u_n - \ell))_{n \in \mathbb{N}}$ converge vers 0.

Propriété: Supposons que
$$u_n \xrightarrow[n \to +\infty]{} \ell$$
, $u'_n \xrightarrow[n \to +\infty]{} \ell'$. Alors, $u_n + u'_n \xrightarrow[n \to +\infty]{} \ell + \ell'$.

Démo:

$$N((u_n + u'_n) - (\ell + \ell')) = N((u_n - \ell) + (u'_n - \ell')) \leqslant \underbrace{N(u_n - \ell)}_{\xrightarrow[n \to +\infty]{}} + \underbrace{N(u'_n - \ell')}_{\xrightarrow[n \to +\infty]{}}$$

donc
$$N((u_n + u_n') - (\ell + \ell')) \xrightarrow[n \to +\infty]{} 0$$
. On en déduit que $u_n + u_n' \xrightarrow[n \to +\infty]{} \ell + \ell'$

Remarque:

Si
$$(u_n)_{n\in\mathbb{N}}$$
 une suite de (E, N) converge, la limite est unique : Supposons que $u_n \longrightarrow \ell$, $u'_n \longrightarrow \ell'$. Alors, $0 \le N(\ell - \ell') = N((\ell - u_n) + (\ell' - u_n)) \le N(\ell - u_n) + N(\ell' - u_n) \xrightarrow[n \to +\infty]{} 0$

$$\implies 0 \leqslant N(\ell - \ell') \leqslant \lim_{n \to +\infty} \sum_{i=1}^{n} u_i = 0 \text{ d'où } N(\ell - \ell') = 0, \text{ donc } \ell - \ell' = 0.$$

Proposition:

Soient N_1 , N_2 deux normes equivalentes sur un e.v E. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de E, soit $\ell\in E$. Alors $(N_1(u_n-\ell)\Longrightarrow 0)\Longleftrightarrow (N_2(u_n-\ell)\Longrightarrow 0)$. $((i)\Longleftrightarrow (ii))$.

<u>Démo</u>:

Montrons que $i/\Longrightarrow ii/$. Comme $N_1,\,N_2$ sont équivalents, $\exists\,\,C>0$, tel que $\forall\,\,x\in E,\,N_2(x)\leqslant CN_1(x)$ donc $0\leqslant N_2(u_n-\ell)\leqslant\underbrace{CN_1(u_n-\ell)}_{\text{poly}}$. Donc $N_2(u_n-\ell)\longrightarrow 0$. De même $ii/\Longrightarrow i/$ en inversant N_1 et N_2 .

Corollaire:

Comme les normes $||..||_1$, $||..||_2$, $||..||_{\infty}$ sont équivalentes :

Une suite de \mathbb{R}^p converge vers $\ell \in \mathbb{R}^p$ pour l'une de ces normes ssi elle converge pour une autre.

Remarque:

Pour montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ de (E, N) converge vers ℓ , il est équivalent de montrer que la suite $(u_n - \ell)_{n\in\mathbb{N}}$ converge vers 0.

Proposition:

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 une suite de \mathbb{R}^p , $u_n=\begin{bmatrix}x_{1,n}\\ \vdots\\ x_{p,n}\end{bmatrix}$ où $((x_{j,n})_{n\in\mathbb{N}}$ est une suite de $\mathbb{R}\ \forall\ j\in\{1,\ ...,\ p\}$). Alors

$$(u_n)_{n\in\mathbb{N}}$$
 converge vers $\ell=\begin{bmatrix}\ell_1\\\vdots\\\ell_p\end{bmatrix}\in\mathbb{R}^{\scriptscriptstyle{\parallel}}$ muni de l'une des normes $||..||_1,\,||..||_2,\,||..||_\infty$ \Longleftrightarrow Les suites $(x_{p,n})_{n\in\mathbb{N}}$ vers $\ell_j,\,\forall\,j\in\{1,\,...,\,p\}$).

Démo:

Par la remarque précédente, on peut supposer $\ell=0$. On doit montrer $||u_n||_k \xrightarrow[n \to +\infty]{} 0 \iff \forall j \in \{1, ..., p\} \ (x_{j,n})_{n \in \mathbb{N}} \text{ vers } 0 \text{ (où } k=1, 2 \text{ ou } \infty). \text{ Montrons} \implies \text{Supposons } ||u_n||_{\infty} \xrightarrow[n \to +\infty]{} 0. \text{ Or,}$ $||u_n||_{\infty} = \text{Max}[|x_{1,n}|, |x_{2,n}|, ..., |x_{p,n}|]. \text{ Alors } |x_{j,n}| \leqslant ||u_n||_{\infty} \xrightarrow[n \to +\infty]{} 0. \text{ Donc, } x_{j,n} \xrightarrow[n \to +\infty]{} 0,$

 $\forall \ j \in \{1, \ ..., \ p\}.$

Montrons \iff , On a: $x_{j,n} \xrightarrow[n \to +\infty]{} 0, \forall j \in \{1, ..., p\}.$

Alors $||u_n||_1 = |x_{1,n}| + |x_{2,n}| + \dots + |x_{p,n}| \xrightarrow[n \to +\infty]{} 0 + 0 + \dots + 0 = 0$. Donc $||u_n||_1 \xrightarrow[n \to +\infty]{} 0$.

2.1 Applications Continues

Définition:

Soient (E, N), (E', N') deux e.v.n. Soient $A \subset E$, $f: A \longrightarrow E'$, $a \in A$. On dit que f est continue en a ssi $\forall \varepsilon > 0$, $\exists \eta > 0$ et $\forall x \in A$, $\underbrace{N(x-a) < \eta}_{x \in B_E(a, \eta)} \Longrightarrow \underbrace{N'(f(x) - f(a)) < \varepsilon}_{f(x) \in B_{E'}(f(a), \varepsilon)}$.

Remarque:

 $\implies \forall \ \varepsilon > 0, \ \exists \ \eta > 0 \ \text{et} \ \forall \ x \in A \cap B_E(a, \ \eta), \ \text{on a} \ f(x) \in B_{E'}(f(a), \ \varepsilon)$

Remarque:

Cela généralise la définition des fonctions continues d'une variable : I intervalle de \mathbb{R} , $a \in I$, f est continue en $a : \forall \varepsilon > 0$, $\exists \eta > 0$ et $\forall x \in I$, $x \in |x - a| < \eta \Longrightarrow |f(x) - f(a)| < \varepsilon$.

Proprosition:

Soit $f: A \longrightarrow E'$ continue en $a \in E$. Alors, pour toute suite $(x_n)_{n \in \mathbb{N}}$ de A convergeant vers a, la suite $f((x_n))_{n \in \mathbb{N}}$ converge vers f(a) dans E'.

Démo:

Soit $\varepsilon > 0$. Comme f est continue en a, $\exists \eta > 0$ tel que $\forall x \in A$, $N(x-a) < \eta \Longrightarrow N'(f(x)-f(a)) < \varepsilon$. Soit (x_n) convergeant vers a, $x_n \in A$. Cela signifie que $N(x_n-a) \xrightarrow[n \to +\infty]{} 0$. Il existe donc n_0 , tel que $\forall n \geqslant n_0$, $N'(f(x)-f(a)) < \varepsilon$. On a prouvé que $\forall \varepsilon > 0$, $\exists n_0$, et $\forall n \geqslant n_0$, $N'(f(x)-f(a)) < \varepsilon$. Donc, $N'(f(x_n)-f(a)) \longrightarrow 0$ si $n \longrightarrow +\infty$ donc $f(x_n) \longrightarrow f(a)$ dans E'.

Théorème :

Soient (E, N), (E', N') deux e.v.n. Soient $A \subset E, f : A \longrightarrow E', a \in A$.

f est continue en $a \iff$ Pour toute suite $(x_n)_{n \in \mathbb{N}}$ de A convergeant vers a, la suite $f(x_n)_{n \in \mathbb{N}}$ converge vers f(a).

<u>Démo</u>:

 $i/\longrightarrow ii/$ est la proposition précédente.

On peut montrer $ii/\longrightarrow i/$ par contraposée. On suppose donc : $\exists \ \varepsilon_0 > 0 \ \text{et} \ \forall \ \eta > 0, \ \exists \ x \in A \ \text{avec} \ N(x-a) < \eta \ \text{et} \ N'(f(x)-f(a)) \geqslant \varepsilon_0.$

Appliquons cela avec $\eta = \frac{1}{n+1}$ $(n \in \mathbb{N})$. Il existe donc pour tout $n \in \mathbb{N}$, $x_n \in A$ vérifiant $N(x_n - a) < \frac{1}{n+1}$ et $N'(f(x) - f(a)) \ge \varepsilon_0$.

On a donc $N(x_n-a) \xrightarrow[n \to +\infty]{} 0$, donc $(x_n)_{n \in \mathbb{N}}$ est une suite de A convergeant vers a. De plus la suite

 $f(x_n)_{n\in\mathbb{N}}$ ne peut converger vers f(a) (puisque si elle convergeait vers f(a), $0 = \lim_{n\to+\infty} N'(f(x) - f(a)) \ge \varepsilon_0$ > 0 : absurde.) On a montré que i/ (faux) $\Longrightarrow ii/$ (faux)

Application du théorème précédent :

Proposition:

Soient E, E' deux e.v, N, N_1 deux normes équivalentes sur E, et N', N'_1 deux normes équivalentes sur E'. Soient $A \subset E$, $a \in A$, $f: A \longrightarrow E'$. Il y a équivalence entre :

- -i/f est continue en a lorsque E est muni de N, et E' est muni de N'.
- -ii/f est continue en a lorsque E est muni de $N_1,$ et E' est muni de N_1' .

<u>Démo</u>:

Par le théorème précédent, i/ équivaut à :

 $-i'/\forall (x_n)_{n\in\mathbb{N}}$ de A vérifiant $N(x_n-a)\longrightarrow 0$, on $a:N'(f(x)-f(a))\longrightarrow 0$.

De même ii/ équivaut à :

 $-ii'/\forall (x_n)_{n\in\mathbb{N}}$ de A vérifiant $N_1(x_n-a)\longrightarrow 0$, on a : $N_1'(f(x)-f(a))\longrightarrow 0$.

Or, on a vu que si N est équivalente à $N_1: (N(x_n-a) \longrightarrow 0) \iff (N_1(x_n-a) \longrightarrow 0)$. De même, comme N' est équivalente à N_1' , $(N'(f(x)-f(a)) \longrightarrow 0) \iff (N_1'(f(x)-f(a)) \longrightarrow 0)$. Donc $i'/\iff ii'/$.

Remarque:

Supposons $E = \mathbb{R}^n$, $E' = \mathbb{R}^p$. On sait que les normes $||...||_1$, $||...||_2$, $||...||_\infty$, sont équivalentes. Lorsqu'on étudie la continuité de $f: A \longrightarrow E'$. où $A \subset E$, on peut étudier n'importe laquelle de ces normes.

2.2 Sommes de fonctions continues en un point

Notation:

$$f:A\longrightarrow E',\,g:A\longrightarrow E',\,$$
 on note $f+g:A\longrightarrow E',\,x\mapsto (f+g)(x)=f(x)+g(x).$ Si $\lambda\in\mathbb{R},\,$ on pose $(\lambda\cdot f)(x):=\lambda f(x),\,\forall\,x\in a.$

Proposition:

Si f et g sont continues en $a \in A$ alors f + g et $\lambda f(x)$ sont continues en a.

Démo:

Pour voir que f+g est continue en a, il suffit de montrer que $\forall (x_n)_{n\in\mathbb{N}}$ de A convergeant vers a, $((f+g)(x_n))_{n\in\mathbb{N}}$ converge vers (f+g)(a). Or comme f est continue en a, $f(x_n) \longrightarrow f(a)$ et g est continue en a, $g(x_n) \longrightarrow g(a)$. Donc $f(x_n) + g(x_n) \longrightarrow f(a) + g(a)$.

Proposition:

Soient (E, N), (E', N'), (E'', N'') trois e.v.n. Soient $A \subset E$, $B \subset E'$, $f : A \longrightarrow E'$, $g : B \longrightarrow E''$. Supposons $f(A) \subset B$. On peut donc définir $g \circ f : A \longrightarrow E''$. Soit $a \in A$. On pose b = f(a) $(\in f(A) \subset B)$ Supposons f continue en a et g continue en b. Alors $g \circ f$ continue en $g \circ f$ est continue en a.

Démo:

Il suffit de voir que pour toute quite $(x_n)_{n\in\mathbb{N}}$ de A convergeant vers a $((g\circ f)(x_n))_{n\in\mathbb{N}}$ converge vers $(g\circ f)(a)$. Or comme f est continue en $a, x_n \longrightarrow a \iff a, f(x_n) \longrightarrow b$, et comme g est continue en $b, y_n = f(x_n) \longrightarrow b \iff g(y_n) = (g\circ f)(x_n) \longrightarrow g(b) = (g\circ f)(a)$

Proposition:

Soient (E, N) un e.v.n. $A \subset E$, $a \in E$, $f: A \longrightarrow \mathbb{R}^p$. On munit \mathbb{R}^p de l'une des normes $||...||_1, ||...||_2, ||...||_{\infty}$.

Pour
$$x \in A$$
, écrivons $f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_p(x) \end{bmatrix} \in \mathbb{R}^p$ On obtient $f_j : A \longrightarrow \mathbb{R}, j \in \{1, ..., p\}$. Il y a équivalence

entre:

- -i/f est continue en a.
- $-ii/ \forall j \in \{1, ..., p\}, f_j$ est continue en a.

<u>Démo</u>:

 $-i/\iff (x_n)_{n\in\mathbb{N}}$ de $A\longrightarrow a$, la suite $f((x_n))_{n\in\mathbb{N}}$ converge vers f(a) dans \mathbb{R} .

 $-ii/\iff (x_n)_{n\in\mathbb{N}} \text{ de } A \longrightarrow a, \forall j \in \{1, ..., p\} \text{ la suite } f_j((x_n))_{n\in\mathbb{N}} \longrightarrow f_j(a).$

Or on a vu que
$$\begin{bmatrix} f_1(x_n) \\ \vdots \\ f_p(x_n) \end{bmatrix} \longrightarrow \begin{bmatrix} f_1(a) \\ \vdots \\ f_p(a) \end{bmatrix} \Longleftrightarrow \forall \ j \in \{1, \ ..., \ p\} \ f_j((x_n))_{n \in \mathbb{N}} \xrightarrow[n \to +\infty]{} f_j(a).$$

Définition:

On dit que $f: A \longrightarrow E'$ est continue sur $A \iff \forall a, \in A \ f$ est continue est a.

Théorème:

Soient (E, N), (E', N') deux e.v.n. Soient $u: E \longrightarrow E'$ linéaire. Il y a équivalence entre :

- -i/u est continue sur E
- -ii/u est continue sur 0
- $-iii/\exists C > 0, \forall x \in E, N'(u(x)) \leqslant CN(u(x)).$

Démo:

 $i/\Longrightarrow ii/:$ évident. $0\in E$

 $ii/\Longrightarrow iii/:$ Si u est continue en $0, \forall \varepsilon > 0$ et $\exists \eta > 0$ et $\forall x \in E, N(x-0) < \eta \Longrightarrow N'(u(x)-u(0)) < \varepsilon$

Comme u est linéaire, u(0) = 0 donc $N(x) < \eta \Longrightarrow N'(u(x)) < \varepsilon$ Appliquons cela avec $\varepsilon = 1$.

 $\exists \eta_0 > 0 \text{ tel que } N(x) < \eta_0 \Longrightarrow N'(u(x)) < 1. \text{ Soit } y \in E, y \neq 0. \text{ Posons } x = \frac{y}{N(y)} \cdot \frac{\eta_0}{2}. \text{ Alors } N(x) = \frac{\eta_0}{2}$

 $<\eta_0$ donc soit $N'(\frac{\eta_0}{2N(y)}u(y))<1$ puisque u est linéaire. Donc, $\forall~y\in E\smallsetminus\{0\}~\frac{N'(u(y))}{2N(y)/\eta_0}<1$ d'où

N'(u(y)) < CN(y) avec $C = \frac{2}{n_0}$ Donc iii/ est vraie.

 $iii/\Longrightarrow i/:$ Soit $a\in E$. On veut monter que u est continue en a. $\exists C>0$ et $\forall y\in E, N'(y)< CN(y)$.

Pour $\varepsilon > 0$ donné, posons $\eta = \varepsilon/C$, supposons $N(x - a) < \eta$. Alors,

 $N'(u(x) - u(a)) = N'(u(x - a)) \leqslant CN(x - a) < C\eta = \varepsilon$. Donc u est continue en a.

Proposition:

Munissons \mathbb{R}^p de l'une des normes $||...||_1$, $||...||_2$, $||...||_{\infty}$. Soient (E, N) un e.v.n et $u : \mathbb{R}^p \longrightarrow E$, une application linéaire. Alors u est continue.

Démo:

Notons $(e_1, ..., e_p)$ la base canonique de \mathbb{R}^p , si $x \in \mathbb{R}^p$, $\sum_{j=1}^p x_j e_j$. Alors $u(x) = \sum_{j=1}^p x_j u(e_j)$ car u est linéaire.

Alors $N(u(x)) = N(\sum_{j=1}^{p} x_j u(e_j)) \leqslant \sum_{j=1}^{p} N(x_j u(e_j)) = \sum_{j=1}^{p} |x_j| N(u(e_j))$. Posons $M = \text{Max}[N'(u(e_j))]$. Donc

 $N(u(x)) \leqslant M \sum_{i=1}^{p} |x_i| = M||x||_1$. D'après iii/ de la propriété pécédente, cela implique que u est continue.

2.3 Exemples de fonctions continues

Ex 1:

L'application $E \times E \longrightarrow E$, $(x, y) \mapsto x + y$ est continue.

$\operatorname{Ex} 2$:

L'application $\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, $(x, y) \mapsto x \cdot y$ est continue.

Ex 3:

L'application $\mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$, $(z, \omega) \mapsto z \cdot \omega$ est continue.

$\operatorname{Ex} 4:$

Soient (E, N) un e.v.n, $A \subset E$, $f : A \longrightarrow \mathbb{R}^*$. Soit $a \in E$, supposons f continue en a. Alors, $x \mapsto \frac{1}{f(x)}$ est continue en a.

Ex 5:

Soit $E = M_p(\mathbb{R})$ l'ensemble des matrices carrées d'ordre p. Si $A = (a_{ij})_{1 \leq i,j \leq p} \in M_p(\mathbb{R})$, posons

 $N(A) = p \max_{1 \leqslant i,j \leqslant p} |a_{ij}|$. N est une norme et on pose N' une norme sur E, telle que $\forall A, B \in M_p(\mathbb{R} \setminus N'((A,B))) = \max[N(A),N(B)]$. Soit $\Phi: E \times E \longrightarrow E$. $(A,B) \longrightarrow AB$.