

EE 451 Introduction to Parallel and Distributed Computation

Discussion 02/26/2021
University of Southern California

Map-Reduce Background

- Large set of data needs to be processed in a fast and efficient way
- In order to process large set of data in a reasonable amount time, this needs to be distributed across thousands of machines
- Programmers need to focus on solving problems without worrying about the implementation

MapReduce

- Programming Abstraction
- Two operations
 - Map
 - Reduce

MapReduce

- Map
 - Input : key-value pairs
 - Output: intermediate key-value pairs
- MapReduce framework groups all pairs with same key
- Reduce
 - Input: key, iterator values (list of values)
 - Output: list with results

MapReduce Example

Counting each word in a large set of documents

```
map (String key, String value)

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate (w, "1")
```

```
reduce ( String key, Iterator values)
  // key: word
  // value: a list of counts
  for each v in values:
    result + = ParseInt(v);
    Emit(AsString(result));
```

MapReduce Example

Counting each word in a large set of documents

Document_1

foo

bar

baz

foo

bar

test

test
foo
baz
bar
foo

Expected results:

<foo, 4>,<bar, 3>,<baz,2>,<test,2>

Counting each word in a large set of documents

```
map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

Map(document 1,contents(document 2))
```

```
Map(document_1,contents(document_1))

<foo, "1">

<bar, "1">

<bar, "1">

<foo, "1">

<test, "1">

<test, "1">

</test, "1">
```

```
Map(document_2,contents(document_2))

<test, "1">

<foo, "1">

<baz, "1">

<bar, "1">

<foo, "1">
```


Counting each word in a large set of documents

```
reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));
```

```
Reduce(word, values)

<foo, "2">

<bar,"2">

<bar, "1" >

<test,"1">
```

```
Reduce(word, values)

<test, "1">

<foo, "2">

<baz, "1">

<bar, "1">
```

MapReduce Example

Counting each word in a large set of documents

```
<foo, "2">
  <bar, "2">
  <bar, "1">
  <test,"1">
```

```
<test, "1">
<foo, "2">
<baz, "1">
<bar, "1">
```

```
Reduce(word, values)

<foo, "4">

<bar, "3">

<baz, "2">

<test,"2">
```

Expected results:

Benefit of MapReduce

 Easy to use for programmers that do not need to worry about the details of distributed computing

Flexible and scalable in large clusters of machines

Apache Spark (1)

- Open source cluster computing framework
- Provides an interface for programming entire cluster with implicit data parallelism and fault tolerance

Apache Spark (2)

Spark Components

- Core: distributed task dispatching, scheduling and basic I/O functionalities
- Spark SQL: provides support for structured and semi-structured data
- Spark streaming: provides support for streaming analytics
- Mlib: Distributed machine learning framework
- GraphX: Distributed graph processing framework

Resilient Distributed Datasets (RDD) (1)

- Fault tolerant read-only collection of datasets that can be operated in parallel
- Creating RDDs
 - Transformation from an existing RDD
 - Referencing an external dataset (filesystem, HDFS)
- Operating on RDD
 - Transformation: creates new dataset from existing ones
 - Action: returns a value after running a computation on a dataset

Resilient Distributed Datasets (RDD) (2)

Transformations:

- Map: each element passed through a function.
- Union: union of elements in source RDD
- Intersection: intersection of elements in source RDD
- Filter: elements which match a criteria in source RDD

Actions

- Reduce: aggregate elements of RDD using a function
- Collect: create an array out of RDD
- Count: count the number of elements in RDD

Resilient Distributed Datasets (RDD) (3)

- Transformations are lazy. Applied only when an action requires its results
- Transformation is recomputed each time an action is run on it. The results can be persisted in memory using functions such as: cache() or persist()

Running a job

Submit to spark cluster Cluster is the local machine ../bin/spark-submit --master local[*] kmeans.py data.txt centroid.txt arguments Python file

PHW #5

K-means Clustering (1)

- Input: a set of observations (values) $X = \{x_0, ..., x_{N-1}\}$
- Objective: partition observations into K clusters
 - Each cluster has a mean value, μ_i (0 < i < K)
 - Each observation belongs to the cluster with the closest mean

K-means Clustering (2)


```
Map (x, \mu_0, ... \mu_{K-1})
    Distance = \infty
    For j = 0 to K - 1 do
        If Distance < |x - \mu_j|
             Distance = |x - \mu_i|
             Cluster ID key = j
         End if
    End for
    Output key-value pair (key, x)
End for
```

Value

K-means Clustering (4)

- Shuffle: $L_i \leftarrow x \mid (i, x)$
- Reduce $(L_0, ... L_{K-1})$

For i=0 to K-1 do $\mu_i = \text{average of elements in } L_i$ End for

ReduceByKey(L)
 return average of element in L

K-means Clustering (5)

- Example
 - $X = \{12, 10, 20, 34, 38, 40\}$
 - -K=2 ; Initially $\mu_0=10$, $\mu_1=20$
- Map $(X, \mu_0, \mu_1) \rightarrow (0, 12), (0, 10), (1,20), (1,34), (1,38), (1,40)$
- Shuffle() \rightarrow L_0 =(0; 12, 10), L_1 =(1; 20, 34, 38, 40) (automatically done by the spark framework)
- Reduce $(L_0, L_1) \rightarrow \mu_0 = 11$, $\mu_1 = 32$ (Using ReduceByKey operation)
- Map $(X, \mu_0, \mu_1) \rightarrow (0, 12), (0, 10), (0, 20), (1, 34), (1, 38), (1, 40)$
- •

Template for k-means program


```
import sys
 from pyspark import SparkContext

    def mapToCluster(data, means):

     #data -> a single integer value.
     #means -> list of the mean values.
     #return the mean value to which this data point belongs to
     return 0.0
def updatemeans (data1, data2):
     #data1.data2 -> tuple of format (meanvalue, count)
     #give (avg1, n1), (avg2, n2), new average will be (n1*avg1 + n2*avg2)/(n1+n2)
     return (newavg, newcount)
pif __name__ == "__main__":
     if len(sys.argv) != 3:
         print(str(len(sys.argv))+"Usage: kmeans <datafile> <initialmeanfile>")
         exit(-1)
     #Create a sparkcontext
     sc = SparkContext(appName="kmeans")
     #load data from the text file
     data = sc.textFile(sys.argv[1]).cache()
     #load initial mean values from the text file
     means = sc.textFile(sys.argv[2])
     #We cannot directory use RDD. It should first be converted into a list to be iterated upon.
     meansList = means.collect()
     #we will run 50 iterations for calculating k means.
     numiter = 50
     for i in range(numiter):
         #For each data point create a tuple of the format (meanvalue, (datapoint, 1))
         clustermap = data.map(lambda p: (mapToCluster(p,meansList),(p,1)))
         #Use reduce operation to calculate new mean value for all the datapoint belonging to the same key
         newmeans = clustermap.reduceByKey(updatemeans)
         #Create a list from the RDD
         meansTupleList = newmeans.collect()
         meansList = []
         for mi in meansTupleList:
             meansList.append(mi[1][0])
      finalclustermap = data.map(lambda p: (mapToCluster(p,meansList),p)).sortByKey()
      finalclustermap.saveAsTextFile("output");
```

Triangle Counting (1)

- Input: directed graph
- Output: how many graph triangles each vertex belongs to

Triangle Counting (2)

Map

- -X: $\{x_1, x_2, ..., x_N\}$ be a list relating vertex X with vertices $x_1, x_2 ... x_n$
- Produce key-value pairs (k, v)
 - k: neighbour of X
 - v: x_i
 - E.g. 3:3 -> map -> (0,3), (2,3)
 - Number of key-value pairs produced for X: $|d^+(X)| \times N$, where d^+ is the out-degree of X

Triangle Counting (3)

Reduce

- Collect all the key-value pairs produced in the previous Map step and produce $L_k = (k; v_1, v_2, ...)$

- Eg.

•
$$L_0 = (0; 2,3)$$

•
$$L_1 = (1;0)$$

•
$$L_2 = (2; 1,3)$$

Triangle Counting (4)

- The algorithm has 3 rounds
- Each round runs a map reduce step as described previously
- Interpretation of the rounds:
 - Input to Round i: $(X; \{x_1, x_2, ..., x_N\})$: $\{x_1, x_2, ..., x_N\}$ denote all the vertices from which we can reach X in i-1 steps.
 - Map: (d, s), all pairs of vertices such that we can reach d from s in i steps.
 - Reduce: $(X; \{x_1, x_2, ..., x_N\})$: $\{x_1, x_2, ..., x_N\}$ denote all the vertices from which we can reach X in i steps. Used as input for map in the next round.

Triangle Counting (5)

• Input: 0-1, 1-2, 1-3, 2-0, 3-0, 3-2

Map: Given (a;b) produce (destn(a),b)

- Round 1:
 - $-X_n: (0;0), (1;1), (2;2), (3;3)$
 - Map: (1,0), (2,1), (3,1), (0,2), (0,3), (2,3)
 - Reduce: (1;0), (2;(1,3)), (0;(3,2)), (3;1)
- Round 2:
 - $-X_n$: (1;0), (2;(1,3)), (0;(3,2)), (3;1)
 - Map: (2,0), (3,0), (0,1), (0,3), (0,1), (2,1), (1,2), (1,3)
 - Reduce: (2;(0,1)), (3;0),(0;(1,1,3)),(1;(2,3))

Triangle Counting (6)

Round 3:

- $-X_n:(2;(0,1)),(3;0),(0;(1,1,3)),(1;(2,3))$
- Map: (0,0), (0,1), (0,0), (2,0), (1,1), (1,3), (1,1), (2,2), (2,3), (3,2), (3,3)
- Reduce: (0;(0,1,0)), (2;(0,2,3)), (1;(1,3,1)), (3;(2,3))

Output:

- -0 -> 2
- -2 -> 1
- -1 -> 2
- -3 -> 1

Questions?

Thank you

Reference:

https://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

http://www.slideshare.net/mcorrea11/mapreduce-5584234

http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduceosdi04.pdf

https://github.com/himank/K-Means

