

Mobile Robots | Summery Autonomous Mobile Robots

Roland Siegwart, Margarita Chli, Juan Nieto, Nick Lawrance

Introduction | probabilistic map-based localization

Legged Robots and Kinematics

- Types and application of legged systems
 - Number of legs
 - Analogy to nature
- Static and dynamic stability
- Locomotion control

- Basics of rigid body kinematics
 - Translation, rotations, and homogeneous transformation
 - Translational and angular velocities
 - Rigid body kinematics formulation
 - Vector differentiation in moving coordinate systems

Wheeled Locomotion

- Constraints imposed by wheels
- Forward or inverse differential kinematics

- Analysis of the differential kinematics equations
 - the degree of maneuverabilitydegree of mobility + degree of steerability

Commputer Vision | Projective Geometry

- Perspective projection
- Cuber shot
- Intrinsic and extrinsic parameters
- Stereo vision

- Correspondence search
- Rectification
- Disparity map
- Structure from motion
 - Epipolar geometry
 - Epipolar constraint
 - Essential matrix
 - 8-point algorithm

Perspective Projection Matrix

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K[R|T] \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

$$Z_P = \underbrace{\frac{bf}{u_l - u_r}}$$

Disparity

Image Saliency | image filtering & place recognition

Image Filtering:

Correlation vs. Convolution

 Use in template matching, smoothing & taking the derivate of an image

Image filtering for Edge Detection

Point Features:
 Harris, SIFT, FAST, BRIEF, BRISK
 & their characteristics
 e.g. scale/rotation invariance,
 computational time

Building and using the visual vocabulary for **Place Recognition**

Line Fitting | algorithms & error propagation

The Error Propagation Law

How uncertainties propagate through a function.

- Line Fitting algorithms for image/laser point clouds
 - Split-and-merge, RANSAC, Hough Transform,...
 - How they work & their relative characteristics and applications

Courtesy of ETH - ASL

Localization | where am I?

- SEE: The robot queries its sensors
 → finds itself next to a pillar
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief update (information fusion)

SLAM | approaches & current challenges

- What is SLAM and how does it work?
- The graphical representation SLAM & the approaches to solve it:
 - Full graph optimization
 - Filtering
 - Keyframe-based

Popular techniques & how they work:

■ EKF SLAM via MonoSLAM [Davison et al. 2007]

SLAM today & Challenges

Motion Planning | the planning problem

Motion Planning | hierarchical decomposition & approaches

1. Local collision avoidance

- Dynamic Window Approach
- (Reciprocal) Velocitiy Obstaces
- Local potential fields

- Harmonic potential fields
- Graph search (BF, Dijkstra, A*)
- Randomized tree search (RRT)

Exam

- Type
 - Written session examination
- Language of examination
 - English
- Course attendance confirmation required
 - No
- Repetition
 - The performance assessment is only offered in the session after the course unit. Repetition only possible after re-enrolling.
- Mode of examination
 - written 120 minutes
- Aids
 - 4 A4-pages personal summary; Calculator

Exam | Wednesday 15.08.2017, 14:00-16:00

- Content of the exam:
 - MOOC (video segment, exercises, quizzes)
 - Book "Autonomous Mobile Robots" and add on slides
- Mode: The exam will be a combination of
 - Multiple Choice (comprehensive) 20-30%
 - Comprehension questions
 - Calculations, similar to exercises, but simpler and solvable without computer
- Two preparation sessions:
 - First: around 2 weeks before the exam
 - Second: 2-3 day before the exam
- More information about the preparation session and an example exam will be sent to you before the end of June.

Exam (example exercise exam)

Autonomous Mobile Robots - Exercise Exam

Roland Siegwart, Margarita Chli, Martin Rufli

Date of Exam: Exercise summer 2016

Points	Score
20	
3	
6	
8+2	
7+1+2+5	
4+4	
7	
6+3+2+4	
6+5+2	
2+2+3	
	20 3 6 8+2 7+1+2+5 4+4 7 6+3+2+4 6+5+2

Exam (example exercise exam)

Autonomous Mobile Robots

Exercise Exam 2016, ETH Zurich

A. Multiple Choice Questions

Decide whether the following statements are true or false. Cross the checkbox on the corresponding

You will be credited 1 point for a correct answer, while 1 point will be subtracted from the total, if your answer is wrong.

1	In a holonomic system, the measure of the traveled distance of each wheel is sufficient to calculate the final position of the robot.	TRUE	FALSE [
2	For a robot with 2 degrees of maneuverability, position of instantaneous center of rotation is constrained to a line.	TRUE	FALSE [
3	Open-loop control can be used to move the robot in the unknown environment.	TRUE	FALSE [
4	Non-holonomic robot is able to move instantaneously in any direction in the space of its degrees of freedom.	TRUE	FALSE [

Exam (example exercise exam)

B. Mobile Robot Kinematics

Please specify degrees of maneuverability, mobility and steerability for the following three-wheel configurations and explain why.

Differential

Tricycle Omnidirectional