Оглавление

0.1	Постановка задачи	1
0.2	Результаты	1
0.3	Выводы	2

0.1 Постановка задачи

Используя библиотеку sparskit, нужно было решить разреженную систему матриц формата CSR.

Необходимо установить SPARSKIT, написать код на Фортране, который подгру- жает матрицу, генерирует правую часть, строит переобуславливатель ILU(k) и запускает GMRES. Нужно замерить время построения переобуславливателя и время совершения итераций, а также число итераций.

- 1. Матрицы: по адресу https://old.inm.ras.ru/vtm/svt/matr.tgz
- 2. Правая часть: $b_i = sin(i)$
- 3. Точность GMRES: невязка должна быть уменьшена в $\epsilon = 10^{-8}$ раз.
- 4. Параметр k в ILU(k) = 0.
- 5. Количество крыловский пространств im в GMRES = 10.

0.2 Результаты

Время измерялось с помощью $cpu_time()$, код выполнялся на 8ядерном процессоре.

Код запускался с флагами -flto -Ofast -march=native.

Размер матрицы	Bремя ILU(K), с	Bремя GMRES, с	Итераций GMRES
4127	0.005	0.046	315
16527	0.021	4.856	584
66159	0.089	45.498	1874
264751	0.433	116.462	2243

Таблица 1: измерения времени работы программы.

0.3 Выводы

Как видно из 1, ассимтотическая сложность ILU близка к O(n).

Количество итераций и, следовательно, время работы GMRES резко возрастает между 16к и 64к, что может быть связано с изменений в спектрах матриц.

Видно, что время работы GMRES быстрее, чем $O(n^2)$, но дольше, чем $O(n^{\frac{4}{3}})$, равно примерно $O(n^{\frac{3}{2}})$.

Количество итераций зависит от спектра матрицы и получилось примерно равно $O(n^{\frac{1}{2}}).$