2 Projektmanagement

Abbildung 2 stellt ein CPM-Netzwerk dar. Die Ereignisse sind fortlaufend nummeriert (Nummer im Inneren der Kreise) und tragen keine Namen. Gestrichelte Linien stellen Pseudo-Aktivitäten mit einer Dauer von 0 dar.

(a) Berechnen Sie die früheste Zeit für jedes Ereignis, wobei angenommen wird, dass das Projekt zum Zeitpunkt 0 startet! (5 Punkte)

FZ_i	Nebenrechnung	
1		0
2		10
3		22
4	$10_{(1\to 2)} + 8_{(2\to 4)}$	18
5	$\max(10_{(\to 2)} + 5, 6_{(\to 1)}, 18_{(\to 4)} + 1) = \max(15, 6, 19)$	19
6	$\max(5_{(\to 1)}, 22_{(\to 3)} + 8, 19_{(\to 5)} + 0) = \max(5, 30, 19)$	30
7	$18_{(\to 4)} + 12$	30
8	$\max(30_{(\to 7)} + 3, 19_{(\to 5)} + 0) = \max(33, 19)$	33
9	$30_{(\to 6)} + 11$	41
10	$\max(30_{(\to 7)} + 6,33_{(\to 8)} + 7,41_{(\to 9)} + 9) = \max(36,40,50)$	50

(b) Setzen Sie anschließend beim letzten Ereignis die späteste Zeit gleich der frühesten Zeit und berechnen Sie die spätesten Zeiten! (5 Punkte)

SZ_i	Nebenrechnung	
	resemeening	
1		0
2	$\min(28_{(\to v)} - 8,30_{(\to 5)} - 5)$	20
3	$30_{(\to 6)} - 8$	22
4	$\min(30_{(\to 6)} - 0.40_{(\to 7)} - 12)$	28
5	$\min(30_{(\to 5)} - 1, 43_{(\to 8)} - 0)$	30
6	$41_{(\to 9)} - 11$	30
7	$\min(50_{(\rightarrow 10)} - 6,43_{(\rightarrow 8)} - 3)\min(44,40)$	40
8	$50_{(\to 10)} - 7$	43
9	$50_{(\to 10)} - 9$	41
10	siehe FZ ₁ 0	50

(c) Berechnen Sie nun für jedes Ereignis die Pufferzeiten! (5 Punkte)

	i	1	2	3	4	5	6	7	8	9	10
	FZ_i	0	10	22	18	19	30	30	33	41	50
Ì	SZ_i	0	20	22	28	30	30	40	43	41	50
ĺ	GP	0	10	0	10	11	0	10	10	0	0

(d) Bestimmen Sie den kritischen Pfad! (2 Punkte)

(e) Konvertieren Sie das Gantt-Diagramm aus Abbildung 3 in ein CPM-Netzwerk! (10 Punkte)

