Agile Trajectory Generation for Tensile Perching with Aerial Robots

Progress Update

Focussed around the learning from previous demos of the approaching stage.

- Adapted the environment to be part of a gym wrapper & standard baselines wrapper.
 - Gym: Framework of RL environments.
 - Standard Baselines: Set of reliable RL algorithms in PyTorch.
- Approaching Stage
 - \circ R = $-distance_to_goal$ where goal is just above the branch.
 - Soft Actor Critic (from Demonstrations).

Action

- Originally using a single step action system i.e. the drone takes a very small movement action.
- o Adapted to use the 2 level system i.e. waypoints defined as wrappers

Next Steps

- Starting positions
 - Currently the drone starts in a fixed position unless (this makes the task much easier but unrealistic).
- Simulator Staying Alive
 - Can't save new trajectories need some time to debug this.
- Speed
 - Numpy: Inefficient list operations in pybullet simulation (36%)
 - Headless: Currently only implemented a "human" env, want a way in the wrapper to not show the GUI. (52%)
 - Imperial DoC GPUs: Currently just running on my own laptop.
 - Parallelisation: Stable Baselines provides relatively straightforward methods to use multiple enviornments at the same time in parallel.

Overall Progess

- Exams/Break for 2 weeks, I will miss:
 - Wednesday 20th March
 - Friday 22nd March
 - Wednesday 27th March

Demonstrations

- Approaching Stage 5 demonstrations seems to perform quite well.
- Combination of 3 types of demonstrations:
 - Optimised Trajectory (Hann)
 - Non-Agile Manuever (Fabian/Luca/Maxi)
 - Random Flight Tethered Flight (Luca/Maxi)

Demo Type	Expert Demos	Non- Agile	Mixed Demos	Poor Quality	Very Poor Quality
Optimised	5	0	3	0	О
Non-Agile	0	5	2	3	0
Random	1	1	1	3	6

- Total: 5x Fast Demos, 5x Slow Mauever, 5x Random Flight.
- Fast Demos
 - Hopefully get these from Hann he said he would add me to his GitHub repo this morning.
- Non-Agile Manuever human piloted flight from a range of approaching angles e.g. 0, 72, 144, 216, 288 degrees approximately.
 - Full manuever including approaching, wrapping and hanging if possible.

Reward System

- Sparse Reward: Easy to define but harder to train from, Some evidence that can still perform well with demonstrations.
 - R = hanging underneath the branch structure defining a zone.
- Dense Reward: Harder to define but makes training faster.
 - Approaching
 - Wrapping
 - Hanging
 - Safe Tether
 - Faster Agile (1-shot) motion