PATENT SPECIFICATION

NO DRAWINGS

(21) Application No. 45583/68 (22) Filed 25 Sept. 1968

(23) Complete Specification filed 16 Sept. 1969

(45) Complete Specification published 2 Aug. 1972 (51) International Classification D21J 1/20 7/00

(52) Index at acceptance

D2B 11A 13F 13H 13J1 13JX 20 38 C3N 12 17 25 3A2X 3B1C 3B2C 3B2D 3B4A 3B9A 3C X

(72) Inventor JOHN EDWARD CARTWRIGHT

(54) REFRACTORY HEAT INSULATING MATERIALS

(71)**Foseco** INTERNATIONAL LIMITED, a British Company of 285, Long Acre, Nechells, Birmingham 7, England, do hereby declare the invention for which we 5 pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

The present invention relates to refractory 10 heat-insulating materials for use in casting molten metal. Though their use is not so limited, the materials according to the present invention are of principal value in the casting of steel, because of their pro-

15 perties at very high temperatures.

According to the present invention, there are provided refractory heat-insulating materials which comprise 1-20% by weight of aluminium, magnesium, silicon or zir-20 conium in particulate form, 10-97% by weight of a refractory fibrous component selected from aluminosilicate fibre, zircon fibre and silica fibre, and a binding agent comprising an organic binder and colloidal 25 silica sol.

It is found that riser sleeves, hot-top lining slabs, feeder heads and like shapes made of such refractory heat-insulating materials can be used satisfactorily in the 30 casting of steel, at high temperatures such as 1600-1650°C. It is believed that the cause of unsatisfactory performance of riser sleeves of other types is the presence of molten oxides, e.g. of iron and manganese on the surface of the steel, which tend to flux away and destroy many of the ingredients of previous refractory heat-insulating compositions, and thus render them ineffective. It is believed that in the present case, 40 the metal in the heat-insulating material reduces the molten iron oxide to iron, with the production of a highly refractory oxide which forms a protective layer over the steel-contacting surface of the heat-insu-

45 lating material. It is found that by the

use of the present invention, refractory heatinsulating materials may be produced which are usable with steel but have a comparatively low density (and low thermal conductivity). Prior materials have been insuffici- 50 ently refractory for use with steel. By means of the invention, materials which are usable with steel but have a density of below 0.5 gm/cc may be produced.

The materials of the present invention 55 may include in addition to the components noted above, particulate refractory fillers such as crushed coke, alumina, magnesia and silica and other very highly refractory materials. These may constitute 10-87% by 60 weight of the heat insulating material.

The organic binder may be an organic gum or resin, but the preferred organic binder is starch. The binding agent preferably constitutes from 2-16% by weight of 65 the heat insulating material.

The particulate metal used is preferably of a grading such that at least 99% by weight will pass a 0.053 mm opening mesh.

The method of formation of the heat- 70 insulating material is preferably that of forming a slurry of the ingredients in a liquid medium (usually water) and sucking the liquid through a mesh former so as to deposit on the former a body of the slurry 75 solids, and subsequently removing and drying the coherent shape so formed.

A particular process for producing such materials is described in Specification No. 1204472. The slurry solids content employed 80 is preferably in the range 0.1 to 10% by weight.

The following examples will serve to illustrate the invention:

EXAMPLE I

A 1% solids content aqueous slurry was made up by adding the following ingredients in the proportions by weight stated:

85

2	1 283 692		
	Aluminosilicate fibre	71.44%	litres of water:-
	Aluminium (99% < 0.053mm)	7.14%	(A) Aluminosilicate 1
	Colloidal silica sol	14.28%	Starch
	Starch	7.14%	Colloidal silica so
5	Staron .		(30% SiO₂ by
~	•	100%	Aluminium sulph
	The aluminosilicate fibre had a	an analysis,	(b) Aluminosilicate
	by weight of 42-57% Al ₂ O ₃ , 45	-57% SiO	Starch
10	and 1-6% TiO2, together with trace	ces of other	Colloidal silica
	oxides.		(30% SiO ₂ by
	This slurry is dewatered into	a cylind-	Aluminium sulph
	rical mesh former to deposit a	sleeve of	Aluminium powe
	thickness 12mm, which was str	moned from	(99.7% < 0.053n
	the former and dried at 160°C for	r 24 hours.	Using the process
15	Such a sleeve was used as a rise	er sleeve in	tion 1204472 75 mm
13	a large steel casting, other riser	s of which	mm high sleeves of
	were lined with commercial rises	sleeves of	were formed using
	the same dimension. After casting	the risers	seconds. These sleev
	were examined. The commerce	ial sleeves	riser 120mm oube s
2 0	were badly damaged and the ris	ers showed	following results were
	a quantity of pipe, indicating	insufficient	The sleeve which
	thermal insulation. The riser slee	eve accord-	minium produced a
	ing to the invention was substa	ntially un-	to slagging and meta
0.5	damaged, and the solidified ri	ser had a	able dilation, and al
	fairly flat top and showed no pi	ne into the	casting. However, the
23		po mio m	minium gave consi
	casting.		with regard to slag
	EXAMPLE 2		dilation, and its feedi
	A 1% solids content aqueous	slurry was	good.
20	prepared by adding the following	ingredients	Dilation was asses
30	in the proportions by weight st	ated:—	diameter of the riser:
	Aluminosilicate fibre	61%	sions were 75mm in
	Starch	6%	containing aluminium
	Colloidal silica (as 30% SiO ₂ s		case of the sleeve wi
35	Aluminium powder	, /0	Feeding characteris
	(99.7%<0.053mm)	9%	measuring the pipe d
	A 1	1750	interface between th

Aluminium sulphate Using the process described in Specifica-40 tion No. 1204472 75mm × 150mm high sleeves were produced. The density was 0.30 - 0.40 g/cc.

Alumina.

One such sleeves was used to feed a 120mm cube (a standard laid down by the 45 Steel Foundries Society of America) the assembly being moulded up in silicatebonded sand. A bottom running system was used and the casting was produced from fully killed, 0.24-0.40 carbon steel, at a 50 ladle temperature of 1590 ± 10°C. The sur-

face of the metal in the sleeve was covered with a layer of FERRUX 40 anti-piping compound. (FERRUX is a Registered Trade Mark).

After casting the sleeve stripped easily from the riser giving a smooth surface free from penetration or dilation. On sectioning the casting was found to be sound.

EXAMPLE 3

Comparative tests were carried out using two sleeves, one of which contained alumininm.

Low-solids-content slurries were prepared 65 by dispersing the following materials in 400

litres of water:—			
(A) Aluminosilicate fibre		g	
Starch	140	g	
Colloidal silica sol			
(30% SiO ₂ (by wt)	400		7 0
Aluminium sulphate	25		
(b) Aluminosilicate fibre	1500	g	
Starch	140	g	
Colloidal silica			
(30% SiO ₂ by wt)	400	g	75
Aluminium sulphate	25	g	
Aluminium powder			
(99.7% < 0.053mm)	300	g	

described in Specifican internal diameter 150 80 wall thickness 12mm a forming time of 60 wes were then used to steel castings and the 85 e obtained.

did not contain alupoor riser surface due al penetration, apprecilso unsoundness in the e sleeve containing alu- 90 siderable improvement gging, penetration and ing characteristics were

essed by measuring the 95 : at its base the dimenthe case of the sleeve m and 96mm in the ithout aluminium.

stics were assessed by 100 depth in cms. from the interface between the riser and the casting, the results being recorded as positive into the riser and negative into the casting. The sleeve containing aluminium produced a pipe depth of + 3.6 cm while the sleeve without aluminium produced a pipe depth -5.5 cm.

WHAT WE CLAIM IS:-

110 1. A refractory heat-insulating material comprising 1-20% by weight of aluminium, magnesium, silicon or zirconium in particulate form, 10-97% by weight of a refractory fibrous component selected from alumino- 115 silicate fibre, zircon fibre and silica fibre, and a binding agent comprising an organic binder and colloidal silica sol.

2. A refractory heat-insulating material according to claim 1 which contains a pro- 120 portion of a particulate refractory filler.

3. A refractory heat-insulating material according to claim 2 wherein said proportion is 10-87% by weight.

4. A refractory heat-insulating material 125 according to claim 2 or 3 wherein said refractory filler is selected from crushed coke, alumina, magnesia and silica.

5. A refractory heat-insulating material according to any of claims 1-4 wherein the 130 binding agent constitutes 2-16% by weight of the material.

6. A refractory heat-insulating material according to any of claims 1 to 5 wherein 5 the organic binder is starch.

7. A refractory heat-insulating material according to any of claims 1-6 wherein at least 99% by weight of the particulate metal used will pass a 0.053 mm opening 10 mesh.

8. A refractory heat-insulating material according to claim 1 substantially as hereinbefore described in any one of the fore-

going specific examples.

9. A refractory heat-insulating material 15 according to any of claims 1-8 in the form of a slab or sleeve.

10. A lining for a riser, feeder head, hot top or mould for casting steel which is formed from sleeve or slabs as defined in claim 9.

Agents for the Applicants.
GALLAFENT & CO.,
Chartered Patent Agents,
8 Staple Inn,
London, WC1V 7QH.

Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1972. Published at the Patent Office, 25 Southampton Buildings, London WC2A 1AY from which copies may be obtained.