MATH 152 Study Notes <u>Linear Systems</u>

Yecheng Liang

Contents

	Scalars	
2.	Vectors	. 4
	2.1. Vector Dimensions	. 4
	2.2. Linear Combinations	. 4
	2.3. Vector Operations	. 4
	2.3.1. Vector & Scalar	. 4
	2.4. Addition & Subtraction	. 4
	2.4.1. Dot Product	. 5
	2.4.2. Angle Between Vectors	. 5
	2.4.3. Vector Length	
	2.4.4. Projection	. 6
	2.4.4.1. Derivation	. 6
	2.4.5. Parallelogram	. 6
	2.5. Matrices	. 7
	2.5.1. Determinant of 2x2 Matrix	. 7
	2.5.2. Determinant of 3x3 Matrix	. 7
	2.5.3. Linear Dependence	. 8
	2.5.4. Cross Product	. 8
	2.5.5. Volume of Parallelepiped	. 9
	Lines, Curves and Planes in Vector Form	
	3.1. Lines in 2D Space	10

1. Scalars

A scalar x has

$$x \in \mathbb{R}.$$
 (1)

In this course,

$$x \in \mathbb{C}$$
 (complex numbers) (2)

is also a scalar.

2. Vectors

A vector is 2 or more scalars arranged in a predetermined order.

When written, an arrow is placed above the variable to indicate that it is a vector.

$$x$$
 is a normal variable, (3.1)

$$\vec{x}$$
 is a vector. (3.2)

In printed media, vectors are often written in boldface.

$$x$$
 is a vector. (4)

2.1. Vector Dimensions

The number of scalars in a vector is called the dimension of the vector. For example,

$$a = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \text{ is a } \mathbb{R}^2 \tag{5.1}$$

$$\boldsymbol{b} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \text{ is a } \mathbb{R}^4 \tag{5.2}$$

2.2. Linear Combinations

A linear combination of vectors is the sum of the vectors multiplied by scalars. Each vector is a orthogonal basis vector.

For example, $a \in \mathbb{R}^3$ can be written as

$$\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \tag{6}$$

where i, j, k are the orthogonal basis vectors for a 3 dimensional space.

2.3. Vector Operations

2.3.1. Vector & Scalar

Yeah just do it.

2.4. Addition & Subtraction

For addition and subtraction, simply add or subtract the corresponding scalars. Commutate, associate and distribute them.

$$a + b = c + d = e \tag{7.1}$$

$$e - a = b \tag{7.2}$$

$$e - c = d \tag{7.3}$$

By subtracting vectors, we can find the vector that connects the two vectors. The length of the connecting vector is the distance between the two vectors.

2.4.1. Dot Product

The two vectors must have the same size/dimension. The dot product of two vectors is the sum of the products of the corresponding scalars.

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3. \tag{8}$$

Note that the result is a scalar.

Dot product is commutative (even with scalars) and distributive.

2.4.2. Angle Between Vectors

The angle between two vectors can be found using the dot product.

$$\cos(\theta) = \frac{a \cdot b}{\|a\| \|b\|} \tag{9}$$

where θ is the smallest angle between the two vectors.

(This can be proven using Pythagorean theorem.)

If neither of the vectors is the zero vector, and the dot product is 0, then the vectors are orthogonal (perpendicular) to each other.

Given
$$a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, the angle between them is

$$\cos(\theta) = \frac{1 \times 1 + 1 \times -1 + 1 \times 1}{\sqrt{1^2 + 1^2 + 1^2} \times \sqrt{1^2 + -1^2 + 1^2}} = \frac{1}{3}$$
 (10.1)

$$\theta \approx 1.23 \,\text{rad} = 70.53^{\circ}.$$
 (10.2)

Note: if the dot product of two vectors $\mathbf{a} \cdot \mathbf{b} = 0$, then vectors \mathbf{a} and \mathbf{b} are **perbendicular**.

2.4.3. Vector Length

The length of a vector is the square root of the sum of the squares of the scalars in the vector, which is also the square root of the dot product of the vector with itself. It can be notated as $\|a\|$.

$$\|a\| = \sqrt{a \cdot a} = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$
 (11)

For example, $\| \boldsymbol{x} - \boldsymbol{c} \| = 1$ means all points which are 1 unit away from \boldsymbol{c} , a circle.

2.4.4. Projection

The projection of a onto b is the vector that is parallel to b and has the same length as the projection of a onto b.

$$\operatorname{proj}_{b} a = \operatorname{'shadow'} \operatorname{length} \operatorname{of} a \operatorname{on} b \times \operatorname{direction} \operatorname{of} b$$
 (12.1)

$$= (\boldsymbol{a} \cdot \boldsymbol{b}) \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|^2}. \tag{12.2}$$

2.4.4.1. Derivation

The projection of a onto b can be represented as a scalar multipled by b, where $b \neq 0$.

$$\operatorname{proj}_{\boldsymbol{b}}\boldsymbol{a} = s\boldsymbol{b} \tag{13}$$

We know that the perpendicular vector, connecting point on \boldsymbol{b} to the end of \boldsymbol{a} , can be denoted as $\boldsymbol{a} - s\boldsymbol{b}$.

Hence, we know that

$$(\mathbf{a} - s\mathbf{b}) \cdot \mathbf{b} = 0 \tag{14}$$

$$\mathbf{a} \cdot \mathbf{b} - s(\mathbf{b} \cdot \mathbf{b}) = 0 \tag{15}$$

$$s = \frac{a \cdot b}{b \cdot b} \tag{16}$$

Plugging back into Equation 13, we hence get:

$$\operatorname{proj}_{\boldsymbol{b}} \boldsymbol{a} = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{b}\|^2} \boldsymbol{b} \tag{17}$$

2.4.5. Parallelogram

A parallelogram is a quadrilateral with opposite sides parallel. Given two vectors a and b, the area of the parallelogram formed by them is

$$A = \text{base} \times \text{height} \tag{18.1}$$

$$= \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin(\theta) \tag{18.2}$$

$$= \|\boldsymbol{a}\| \ \|\boldsymbol{b}\| \cos\left(\frac{\pi}{2} - \theta\right) \tag{18.3}$$

$$= \boldsymbol{a}_{\perp} \cdot \boldsymbol{b} \tag{18.4}$$

where a_{\perp} is the vector perpendicular to a.

2.5. Matrices

A matrix is a rectangular array of scalars. It can also be thought of as rows of vectors.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} . \tag{19}$$

2.5.1. Determinant of 2x2 Matrix

Given a matrix $a = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant of a 2x2 matrix is

$$\det \mathbf{a} \equiv \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc. \tag{20}$$

2.5.2. Determinant of 3x3 Matrix

Let a matrix be defined as:

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
 (21)

The minor matrix for an element is the 2x2 matrix obtained from deleting the row and column that element is in.

e.g.

minor matrix of
$$f = \begin{bmatrix} a_1 & a_2 \\ c_1 & c_2 \end{bmatrix}$$
 (22)

One way to find the determinant is by row expansion, which is taking each of the elements in a row OR column and multiplying it by the determinant of the minor matrix. Take note of the alternating signs. (This is knkown as "Laplace Expansion" for anyone curious).

The signs for computing the sum of each element x its minor is:

$$\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix} \tag{23}$$

If you pick row 1:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}.$$
 (24)

If you pick row 2:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -b_1 \begin{vmatrix} a_2 & a_3 \\ c_2 & c_3 \end{vmatrix} + b_2 \begin{vmatrix} a_1 & a_3 \\ c_1 & c_3 \end{vmatrix} - b_3 \begin{vmatrix} a_1 & a_2 \\ c_1 & c_2 \end{vmatrix}. \tag{25}$$

If you pick column 2:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + b_2 \begin{vmatrix} a_1 & a_3 \\ c_1 & c_3 \end{vmatrix} - c_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}.$$
 (26)

Tip pick any row / column with the MOST ZEROES.

The determinant of a 3x3 matrix is

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$$
 (27.1)

$$(try find a pattern here!)$$
 (27.2)

This can be visualised as putting copying the first two columns onto the right, then for each 3 number diagonal in the shape of a backslash, take the product of the three numbers and sum them, and for each 3 number diagonal in the shape, subtract the each product from the previous sum.

For a parallelogram formed by two vectors a and b, the area is the absolute value of the determinant of the matrix formed by the vectors:

$$A_{\text{parallelogram}} = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}. \tag{28}$$

For example, for $a = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and $b = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$, the area of the parallelogram is

$$A_{\text{parallelogram}} = \begin{vmatrix} 1 & 3 \\ -2 & 5 \end{vmatrix} = 11. \tag{29}$$

2.5.3. Linear Dependence

2.5.4. Cross Product

The cross product of two vectors is a vector that is orthogonal to the two vectors, a.k.a. the normal vector of the plane formed by the two vectors, a.k.a. the vector that is perpendicular to the two vectors.

Given
$$\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, the cross product is

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 (30.1)

$$= \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}. \tag{30.2}$$

In a Right Hand (RH) coordinate system, the cross product is the vector that points in the direction of the thumb when the fingers of the right hand curl from a to b. In other words, the cross product is the vector that is orthogonal/perpendicular to the two vectors.

$$\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0 \tag{31}$$

2.5.5. Volume of Parallelepiped

The volume of a parallelepiped formed by three vectors a, b, and c is the absolute value of the determinant of the matrix formed by the vectors.

$$V_{\rm parallelepiped} = {\rm base~area} \times {\rm height} \tag{32.1}$$

$$= A_{\text{parallelogram}} \times \cos(\theta) \ \|\boldsymbol{c}\| \tag{32.2}$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 (32.3)

$$= |\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})|. \tag{32.4}$$

3. Lines, Curves and Planes in Vector Form

3.1. Lines in 2D Space

There is a line L. Take a point on the line, $p=\binom{x}{y}$, then take a vector that is parallel to the line, $l=\binom{i}{j}$. The line can be represented as

$$x = p + tl \tag{33}$$

where $t \in \mathbb{R}$.

Where there is a line, there is a normal vector to the line, n. Thus the line can also be represented as

$$\boldsymbol{n} \cdot (\boldsymbol{x} - \boldsymbol{p}) = 0 \tag{34.1}$$

$$n \cdot x = n \cdot p. \tag{34.2}$$

If we have a line x-2y+3z=0, we know that the LHS is not 0, while the RHS $n\cdot p=0$, $p=\begin{pmatrix} 0\\0\\0 \end{pmatrix}$, so the line must pass through the origin. Additionally, the normal vector is $\begin{pmatrix} 1\\-2\\3 \end{pmatrix}$.