

					•
a=() w=)
没月球重力加速度为 9 _月 ,地		知单	摆在地球上	上有Ti, 月Ŧ	求上有下2.
则 9a = ())				
*(3)复摆					
α=() ω:	=()	T= ()	
(4) 同何同频 简陷运动合成					
(示意图)	$X_1 = A$ $X_2 = A$	1005 (U 2005 (U	uttp)] μ	' 3	
	X= _				
12.4	A = _				
	tanp=				
岩Δ9=2kπ,则A=					
苔ΔY = (2k+1) Π,则 A=_					
(b) 互相垂直同频简准云动名 知道用於转矢量法找某 (b) 不同向不同频简路运动合同	術 1時烹定		路前旬.	ę.	

已知 Xi 和 Xi 两个简陷运动

合振幅变化的周期T=(、 拍版 J=(

口)波市力	吗) 羽主波。
の波动方程 (初相为の): Y =	{Y₁=Aωs[2∏()t-爻)] {Y₂=A∞s[2∏()t-爻)]. (屆用=角和差化积公式).
②推广至- 彩情形: 波动沿 Ox 正向传播,且已知距点 O为 Xo,点 Q 的振动规律为 y=A cos Cwt+pJ. 则距点 O为 x (在点 Q右侧) 的点 P 波动 f 经为 y =	①
③同一时刻波形图 X1, X2 两点	Aへ液中= ×n+1 - ×n =
$\Delta \varphi = \varphi_1 - \varphi_2 =$	△Xip膊= Xn+1 - Xn =
田波	(1) 多普勒教应. ① (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
若 $\mathcal{L}_1 = \mathcal{L}_2$ 、例 $\mathcal{L}_2 = \mathcal{L}_2$ 、 $\mathcal{L}_1 = \mathcal{L}_2$ 、 $\mathcal{L}_2 = \mathcal{L}_2$ 、 $\mathcal{L}_3 = \mathcal{L}_4$ 、 $\mathcal{L}_4 = \mathcal{L}_4$ 、	源近我近: ジ=
1977年3年12-17-1);干渉域るるとアールニ	

(11) 杨升双	缝干涉
----------	-----

(示意图)

0 Dr=12-11 &(

(13)光程

②若B为明纹中心,dsin0= (4)薄膜干涉

③对抗0,0=0,△r=0,k=0,是中

田因d'>>d, sino x tano = (

干涉加强: ____ = ±kλ

干涉减弱: _____ = ± (2kH)

① 相邻明教(暗教)间距: △×= Xk+1 - Xk = ____

[12]劳埃德、镜 (示意图).

出现实验的现象是为说明允 虚的年竟是虚的, 真正通过ろ

(示意图)

①光程差 丛= 根据折射定律 nisini = nasinr

反射打到屏上灵存在_____的,又取附加光程差____,则 Ar=_

当光垂直入射时 (i=0).

(干涉加强:Ar= ____ = ____

(15) 晉 尖. (示意图). n ₁ > n _{空气} . ① $\Delta = $	(门) 迈克耳孙干涉仪 (原理图). \$\$\begin{align*} \begin{align*} align*
③在核边外,d=	(18) 单缝衍射.
光程差 △=	3 - 般数対表と. 干済加強: bsino =

- (19) 圆孔衍射
 - ① 单光 (原艾里玟王 20 = ____ = ____ (示意图)

- ①②中〇和日。是两种不同的张角.
- (20) 衍射光栅

①光栅常数d = ____

- ②光栅方程(垂直入射) dsin P=_____
- ③光細方程(非垂直)射) d(sin ft + sin i)=±kl. [10-21 (3)]

(21) 马吕斯定律.

I = _____

自然光经过偏振片月光强由1。变为____.

经过 P. 《强再由 五· 变为 ______.

(22) 布儒斯特设律: tania = n 时, 会发生升化? (23) XX 折射现象.