# HATE CRIME ANALYSIS IN THE STATES OF USA FROM THE YEAR 1991-2017



Name: Christopher Mathew

**Student No: 10527033** 

Name: Darshan Chitagi Student No:10525916

Name: Ganesh Musandi Student No: 10525546

Name: Hemant Kumar Student No:10524847

### CONTENTS

| 1. Introduction                                      | 3  |
|------------------------------------------------------|----|
| 1.2. Reasons for selecting the subject area AND DATA | 3  |
| 1.3. Vision and Goals                                | 4  |
| 1.4. Key StakeHolders                                | 4  |
| 2. SCHEMA                                            | 4  |
| 3. ETL                                               | 5  |
| 3.1 etl process 1: Calendar_Dim                      | 6  |
| 3.2 etl process 2: Crime_scene_type_dim              | 6  |
| 3.3 etl process 3: Crime_type_dim                    | 7  |
| 3.4 etl process 4: race_dim                          | 7  |
| 3.5 etl process 5: state_dim                         | 8  |
| 3.6 ETL process five: fact_dim                       | 8  |
| 4. VISUALIZATIONS AND REPORTS                        | 9  |
| 4.1. Visualizations                                  | 9  |
| 4.1.1 visualisation 1                                | 9  |
| 4.1.2 visuaisation 2                                 | 9  |
| 4.1.3 visualisation 3                                | 10 |
| 4.1.4 visualisation 4                                | 11 |
| 4.2. Reports                                         | 11 |
| 4.2.1 report 1                                       | 11 |
| 4.2.2 report 2                                       | 12 |
| 4.2.3 report 3                                       | 12 |
| 4.2.4 report 4                                       | 13 |
| 4.2.5 report 5                                       | 14 |
| 5. Include XML and Schema                            | 14 |
| 5.1 xml and xsd validation                           | 17 |
| 6. Graph Databases                                   | 18 |
|                                                      |    |

| 6.1 Graph 1                                                     | 18 |
|-----------------------------------------------------------------|----|
| 6.2 graph 2                                                     | 19 |
| 6.3 graph 3                                                     | 20 |
| 6.4 graph 4                                                     | 21 |
| 6.5 graph 5                                                     | 22 |
| 6.2 COMAPRISON to realtional databases                          | 23 |
| 7. Conclusions                                                  | 23 |
| 8. Bibliography                                                 | 23 |
| Appendix A – Table createtion queries and visualisation queries | 23 |
| Appendix A.1: Query for table creation                          | 23 |
| Appendix a.2: visualisation queries                             | 25 |
| Appendix B – Neo 4J code                                        | 28 |

#### 1. INTRODUCTION

Crime reports describe information about different types of crimes which were committed - factoring in all the important and necessary details. Specifically focusing on the types of crime, number of victims, victim and offender race, and/or characteristics of the offenses. Considering the quantity of data in crime reports, data warehouse models can be implemented in accessing specific parts of the reports and statistics can be used in summarizing the information.

Data Warehousing and Statistics can be highly essential in the study of criminology. Using these tools, our understanding about the various types of crimes being committed, frequency of the crimes, race of people being affected which can be correlated with race of people committing the crime, and different characteristics of crimes would be little more than guesses.

Data Warehouse models of crime reports complemented with statistics can potentially serve as an important indicator of the wellbeing of a society. Increasing crime rates might suggest that society is suffering and irregular victimization among group of individuals might suggest a society which needs attention by a governing body. On the other hand, reduction in crime rate conveyed by these reports and statistics is an indicator of a better quality of life. Another important function served by crime reports and statistics is to assist researchers, governments and other organizations in the development and testing of crime and victimization theories, helping policymakers to design policies to reduce crime, assist crime victims, and effectively deal with offenders. Without consistent data and insights on crime, programs designed to reduce all crime and persecution would not only be unsuccessful but would also represent misappropriated or wasted valuable assets and resources.

Hate Crime is defined by the Federal Bureau of Investigation (FBI) as "a criminal offense against a person or property motivated in whole or in part by an offender's bias against a race, religion, disability, sexual orientation, ethnicity, gender, or gender identity" (U.S. Department of Justice, FBI, no date).

Since 1930, the FBI has been collecting crime data in the United States through the Uniform Crime Reporting (UCR) Program. The UCR Program's primary objective is to generate reliable information for use in law enforcement administration, operation, and management (U.S. Department of Justice, FBI, no date). This program is the most reliable source of crime statistics for law enforcement and administration, operation, and management. It is since used by researchers, politicians, policy makers and criminal justice professionals to gain a deeper understanding of crime and society.

#### 1.2. REASONS FOR SELECTING THE SUBJECT AREA AND DATA

The primary intention of this study was to analyze and understand the different types of hate crimes which were committed in different states of the United States over the years.

The specific focus of this analysis was to understand and gain insights how different factors affect each other. For example, if there was a correlation between types of crime being committed against a particular race. Another reason for choosing this topic is to study the progressive crime rate over the years considering demographics, offender race, victim race and crime scene.

#### 1.3. VISION AND GOALS

#### 1. Better Patrolling:

Criminal justice professionals and policy makers can predict the increase in risk of crime with the help of hate crime statistics. Appropriate law enforcement can be implemented to prevent the predicted crimes from taking place. The predictive data can further be used to focus on specific areas, making optimum use of the available resources. The main objective is that by working with more data, crime rate can be forecasted and reduced efficiently in specific areas.

#### 2. Improved Public Community Relations:

Crime data is an excellent means in improving relations among different communities. Increasing transparency, it allows the law enforcement agency and the public they serve, to get hindsight on the ill happenings in the society. The public also deserves to be informed how well the policy makers and the law enforcement agencies are functioning in protecting the community, increasing trust and maintaining good working relationships.

#### 3. Monitoring Finances:

Budgets and finances are a vital part of a governing body and law enforcement at the local, state, and national level. Appropriate funding and allocating monetary resources to the right places and programs can help improve safety in different communities. Without crime statics it would be difficult to interpret and predict the distribution of financial resources efficiently.

#### 1.4. KEY STAKEHOLDERS

The key stake holder is the Government as we are analyzing on the crime data, what is the main reason for the crime and on which race does the crime is happening more and in which area or in which state does the crime rate is more so that Government can have clear idea about how to minimize the crime rate.

#### 2. SCHEMA

We have selected the Hate crime data set to analyze the crime happening in the states of US. We have segregated the data into following dimensions and fact as shown below:

As we can see below we have devided our data into five dimension depending on data and one fact table to analyze the data set as we mentioned reason for choosing the Hate Crime data set



Five dimesions asshown abovein the star schema

| Calendar_Dim         | Displays date and year of the incident           |
|----------------------|--------------------------------------------------|
| Crime_Scene_Type_Dim | Displays the crime area where crime had occurred |
| Crime_Type_Dim       | Displays the type of crime                       |
| Race_Dim             | Displays the race of the offender and victim     |
| State_Dim            | Displays the states in which crime happening     |

One fact table used in star scheme to analyze

| Hate Crime Incident Fact   | The facts holds information about all the dimensions  |
|----------------------------|-------------------------------------------------------|
| Trate_Crime_incluent_r act | The facts holds information about all the differsions |

#### 3. ETL

We have used Visual Studio SSDT to load the data into the dimension tables which are created in SQL. For queries refer Appendix A

#### 3.1 ETL PROCESS 1: CALENDAR\_DIM



In this dimension data load process, we are loading the data into Calendar\_Dim from our source file i.e. from our dataset. Here we have used sort to remove the multiple rows and derived column to replace the existing column .

#### 3.2 ETL PROCESS 2: CRIME\_SCENE\_TYPE\_DIM



In this dimension data load process, we are extracting data into Crime\_Scene\_Type\_Dim from our source file i.e. from our dataset. Here we have used to sort to sort or remove the multiple rows as we want only unique values in our dimension table. Our dimension tale consist of Crime\_Scene\_Id which is unique, Crime\_Scene\_Type which displays the crime areas for over years

#### 3.3 ETL PROCESS 3: CRIME\_TYPE\_DIM



In this dimension data load process, we are storing the data into Crime\_Type\_Dim from our dataset. Here we have used sort to remove the multiple values to have unique rows in our dimension table. In this dimension we have Crime\_Type\_Id which is unique for different with respect to different crime types which are happening over the years in the states of US

#### 3.4 ETL PROCESS 4: RACE\_DIM



In this dimension data load process, we are extracting data into Race\_Dim from our source file i.e. from our dataset. Here we have used sort to sort or remove the multiple rows as we have multiple rows with same value. This table consist of the race names of offender and victim people.

#### 3.5 ETL PROCESS 5: STATE\_DIM



In this dimension data load process, we are extracting data into State\_Dim from our source file i.e. from our dataset. In this ETL we have used sort to take out the multiple rows to have unique values in our dimension table as we can get exact number and we have State\_Id which is unique for all the states.

#### 3.6 ETL PROCESS FIVE: FACT\_DIM



This is the final ETL process where I am loading the data into the fact table from the source file by connecting all the dimension one to another using lookup. Lookup used to compare the source and destination data. Lookup is used to filter out the matched and unmatched from the specific dimension table which I have populated the data already in my previous ETL process. After this final ETL process we can access the data by referencing the fact table which contains primary keys of all the dimension table as foreign key.

#### 4. VISUALIZATIONS AND REPORTS

#### 4.1. VISUALIZATIONS

#### 4.1.1 VISUALISATION 1

Crimes against different races in 2017



Here we are visualizing the crime happening on different races in the year 2017. Here we have used pie chart for visualizing to get better understanding the crimes happening on different races. As in the above diagram we can see that more crime is happening on the African American.

#### 4.1.2 VISUAISATION 2



Here we are visualizing the different types of crimes that are happening in more number in the year 2017. Here we have used bar graph visualizing different types of crimes. We can see that Destruction is the main crime that had happened a greater number of times compared to other crimes.

#### 4.1.3 VISUALISATION 3



Here we are analyzing the frequency of the crimes that are happening in the different areas or in different environments in the states of US. Here we frequency graph to analyze the frequency of the crimes happening in different areas or in different environment. From the above we can see that more number of crimes have happened in the residence area followed by highway.

#### 4.1.4 VISUALISATION 4





Here we are analyzing crime rates in the different states of US in the year 2017. We have used scatter plot for visualizing the crime rates that have happened in the states of US. In the above graph we can see that there is highest crime rate in California as compared to other states of US

#### 4.2. REPORTS

#### 4.2.1 REPORT 1

### No of crimes occured in various city sizes over the years

|                                      | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |     |
|--------------------------------------|------|------|------|------|------|------|------|------|------|------|-----|
| Cities 1000000<br>or over            | 38   | 32   | 421  | 554  | 473  | 749  | 751  | 699  | 583  | 574  | 597 |
| Cities from<br>10000 thru<br>24999   |      | 33   | 431  | 488  | 349  | 497  | 530  | 518  | 438  | 425  | 422 |
| Cities from<br>100000 thru<br>249000 |      | 58   | 390  | 371  | 274  | 422  | 491  | 418  | 377  | 425  | 513 |
| Cities from<br>2500 thru<br>9999     |      | 36   | 207  | 337  | 216  | 230  | 319  | 281  | 292  | 269  | 229 |
| Cities from<br>25000 thru<br>49999   |      | 35   | 454  | 523  | 360  | 514  | 663  | 534  | 522  | 507  | 550 |
| Cities from<br>250000 thru<br>499999 |      | 54   | 587  | 447  | 343  | 485  | 475  | 480  | 432  | 428  | 362 |
| Cities from<br>50000 thru<br>99000   |      | 30   | 320  | 384  | 334  | 530  | 595  | 526  | 495  | 521  | 482 |

First report is a matrix report showing the number of crimes occurred in cities with different sizes of population over the years from 1991 to 2017. One insight I found out is that over the years the number of crimes in big cities with a population greater than 1 million remained relatively small with respect to their population size but the smaller populated cities had an increase in the number of hate crimes. This may concrete the notion of openness of people in bigger cities than to smaller ones.

#### **4.2.2 REPORT 2**

### No of hate crimes against different races from 1991-2017

|                     | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |      |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|
| African<br>American |      | 1629 | 2313 | 2827 | 2179 | 2994 | 3677 | 3149 | 2970 | 2990 | 2940 |
| American<br>Indian  |      | 11   | 26   | 28   | 25   | 41   | 51   | 38   | 52   | 49   | 59   |
| Asian               |      | 269  | 222  | 260  | 211  | 355  | 356  | 346  | 297  | 304  | 280  |
| Multiple            |      | 86   | 147  | 162  | 128  | 221  | 211  | 215  | 288  | 214  | 246  |
| Native<br>Hawaiian  |      |      |      |      |      |      |      |      |      |      |      |
| White               |      | 837  | 1349 | 1477 | 1014 | 1229 | 1107 | 1009 | 803  | 788  | 904  |

|                     | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |      |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|
| African<br>American |      | 2922 | 2507 | 2573 | 2762 | 2671 | 2631 | 2674 | 2952 | 2299 | 2201 |
| American<br>Indian  |      | 78   | 62   | 71   | 85   | 79   | 61   | 61   | 56   | 68   | 44   |
| Asian               |      | 280  | 219  | 235  | 224  | 208  | 184  | 190  | 143  | 128  | 152  |
| Multiple            |      | 219  | 159  | 161  | 184  | 191  | 233  | 214  | 221  | 179  | 165  |
| Native<br>Hawaiian  |      |      |      |      |      |      |      |      |      |      |      |
| White               |      | 819  | 709  | 832  | 826  | 817  | 858  | 742  | 757  | 538  | 575  |

|                     | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
|---------------------|------|------|------|------|------|------|------|
| African<br>American | 2100 | 2060 | 1909 | 1657 | 1757 | 1789 | 2098 |
| American<br>Indian  | 64   | 105  | 92   | 138  | 131  | 157  | 245  |
| Asian               | 137  | 144  | 134  | 139  | 115  | 115  | 132  |
| Multiple            | 136  | 122  | 96   | 85   | 113  | 139  | 185  |
| Native<br>Hawaiian  |      |      | 3    | 3    | 4    | 9    | 17   |
| White               | 527  | 685  | 667  | 609  | 613  | 737  | 733  |

Second report is a matrix report showing the number of people of different races becoming victims in hate crimes over the years. This matrix shows an insight that African American people are the most targeted over the years

### 4.2.3 REPORT 3

### No of hate crimes for particular crime type at different crime scenes

|                                                                                                                       | Bank          | Bar      |          | Beach/Lake           | Camp/Campgr<br>ound            | Commercial<br>Building | Community<br>Center | Construction<br>Site | Cyberspace | Daycare<br>Facility      | Educat<br>Institut |      |
|-----------------------------------------------------------------------------------------------------------------------|---------------|----------|----------|----------------------|--------------------------------|------------------------|---------------------|----------------------|------------|--------------------------|--------------------|------|
| Aggravated<br>Assault                                                                                                 |               | 65       | 454      | 45                   | 1                              | 121                    | 3                   | 1                    | 11         |                          | 1                  | 482  |
| All Other<br>Larceny                                                                                                  |               | 13       | 10       | 2                    |                                | 31                     |                     | 1                    | 14         |                          |                    | 47   |
| Bribery                                                                                                               | /             |          |          |                      |                                |                        |                     |                      |            |                          |                    |      |
| Credit Card<br>Fraud                                                                                                  |               | 5        |          |                      |                                | 1                      |                     |                      |            |                          |                    |      |
| Destruction                                                                                                           | 19            | 97       | 121      | 32                   |                                | 767                    | 3                   | 18                   | 36         |                          | 2                  | 4680 |
| Drug<br>Violations                                                                                                    |               |          | 3        | 1                    |                                | 1                      |                     |                      | 1          |                          |                    | 18   |
| Embezzlement                                                                                                          | t             | 1        |          |                      |                                | 3                      |                     |                      |            |                          |                    |      |
| Extortion/Black<br>mail                                                                                               |               |          | 1        |                      |                                | 1                      |                     |                      |            |                          |                    |      |
| Fondling                                                                                                              | 1             | 2        |          | 1                    |                                |                        |                     |                      |            |                          | 1                  | 7    |
|                                                                                                                       | Farm Facility | Field/Wo | oods (   | Sovernment           | Highway                        | Hospital               | Hotel               | Military             | Other      | Parking                  | Prison             |      |
|                                                                                                                       | Farm Facility | Field/Wo | В        | Building             |                                |                        |                     | Installation         |            |                          |                    |      |
| Aggravated<br>Assault                                                                                                 |               | Field/Wo |          |                      | Highway<br>5547                | Hospital 59            | Hotel<br>90         | Installation         |            | Parking<br>209           | Prison             | 170  |
| Aggravated                                                                                                            |               |          | В        | Building             |                                |                        |                     | Installation         |            |                          |                    |      |
| Aggravated<br>Assault<br>All Other                                                                                    |               | 1        | 238      | Building<br>89       | 5547                           | 59                     | 90                  | Installation         |            | 209                      | 1177               | 176  |
| Aggravated<br>Assault<br>All Other<br>Larceny                                                                         |               | 1        | 238      | Building<br>89       | 5547                           | 59                     | 90                  | Installation         |            | 209                      | 1177               |      |
| Aggravated<br>Assault<br>All Other<br>Larceny<br>Bribery<br>Credit Card                                               |               | 1        | 238      | Building<br>89       | 5547<br>67                     | 59                     | 90                  | Installation         | 12         | 76                       | 1177               |      |
| Aggravated<br>Assault<br>All Other<br>Larceny<br>Bribery<br>Credit Card<br>Fraud                                      |               | 1        | 238<br>7 | building<br>89<br>13 | 5547<br>67                     | 59                     | 90                  | Installation         | 12         | 76                       | 1177<br>46         |      |
| Aggravated<br>Assault<br>All Other<br>Larceny<br>Bribery<br>Credit Card<br>Fraud<br>Destruction<br>Drug<br>Violations |               | 1        | 7 323    | 89 13 1 1 596        | 5547<br>67<br>1<br>3468        | 2<br>3<br>139<br>8     | 90 9 1 1 108 12     | Installation         | 12         | 7 550                    | 1177<br>46<br>1    | 21   |
| Aggravated<br>Assault<br>All Other<br>Larceny<br>Bribery<br>Credit Card<br>Fraud<br>Destruction<br>Drug               |               | 1        | 7 323    | 89 13 1 1 596        | 5547<br>67<br>1<br>3468<br>244 | 2<br>3<br>139<br>8     | 90 9 1 1 108 12     | Installation         | 12         | 7<br>7<br>7<br>550<br>32 | 1177<br>46<br>1    | 26   |

Third report tries to find a correlation between the type of crime occurred and the type of crime scene where it occurs by using a matrix report. Here people get assaulted at educational institutes and commercial buildings the most.

#### **4.2.4 REPORT 4**

## Number of crimes conducted by different races to others

|                     | African<br>American | American<br>Indian | Asian |     | Multiple | Native<br>Hawaiian | Unknown | White |
|---------------------|---------------------|--------------------|-------|-----|----------|--------------------|---------|-------|
| African<br>American | 187                 | 5                  | 214   | 414 | 1128     | 1                  | 27361   | 36237 |
| American<br>Indian  | 22                  | 8                  | 89    | 20  | 35       | 1                  | 710     | 894   |
| Asian               | 65                  | 5                  | 30    | 113 | 110      |                    | 2481    | 2390  |
| Multiple            | 28                  | 2                  | 12    | 17  | 149      |                    | 2832    | 1428  |
| Native<br>Hawaiian  |                     | 7                  |       |     | 1        | 1                  | 11      | 16    |
| White               | 1178                | 9                  | 332   | 223 | 547      | 2                  | 6025    | 3643  |

Fourth report is another matrix trying to find a correlation between the race of the offender and the race of the victims involved. The African-American and White people are the two races who do crime against each other the most.

#### **4.2.5 REPORT 5**

Total number of hate crimes occured in different states of USA 1991-2017



Fifth report is an illustrative map of USA showing the different states and corresponding number of crimes occurred in them. The states are color coded in the red-yellow-green color scheme with red denoting most number of crimes

and green the lowest. This report is highly useful for anybody to understand at a glance the quality of different states in terms of occurrence of hate crimes.

### 5. INCLUDE XML AND SCHEMA C:\Users\ganesh pc\Desktop\Hate\_Crime\xml and Xsd\hatecrime.xml - Notepad++ File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? [3 🚅 🗎 🖫 😘 😘 🚵 | 🕹 🐚 🛍 | 🗩 cc | m 🦙 | 🔍 🔍 🖳 📮 🖺 🔭 1 🃜 🗷 💹 🗈 👁 | 🗉 🗈 Þ E change.log ☑ E new 1 ☑ E hatecrime.xml ☑ <?xml version="1.0"?> </article="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="HateCrime.xsd"> <Year >1991</Year > -</Calendar\_Dim> -<Calendar\_Dim> -<Calendar\_Key>285</CalendarKey> <FullDate>1991-12-24</FullDate> <Year\_>1991</Year\_> <Year >1991</Year > </Calendar Dim> </crime Scene Type Dim> </crime Type Dim> Windows (CR LF) UTF-8 length: 3,411 lines: 116 Ln:1 Col:1 Sel:0|0 eXtensible Markup Language file INS

The above screen shot is of the XML



The above screen shot is of the XSD

#### 5.1 XML AND XSD VALIDATION



In the above screen shot we can see that both XML and XSD files have been validated.

Validation link: <a href="https://www.liquid-technologies.com/online-xsd-validator">https://www.liquid-technologies.com/online-xsd-validator</a>

#### **6. GRAPH DATABASES**

#### 6.1 GRAPH 1



This graph shows one node from our fact namely HateCrimeIncident and its relationship with all the dimensions in the warehouse. The incident with one victim which happened in the year 1991 at Highway in Arkansas which was affected by African American and the crime was committed by the White and incident committed was intimidation.

### 6.2 GRAPH 2



All incident that happened in the state Colorado in the year 1991 on different races of people.

### 6.3 GRAPH 3



All the incidents, where the affected victim has the race white in the year 1991 in different places in the states of US

### 6.4 GRAPH 4



The above graph shows Crime type which has happened the most in states of US over the year

### 6.5 GRAPH 5



The above graph represents a snapshot of hate crime data warehouse with all the relationship between the fact and all the dimensions.

#### 6.2 COMAPRISON TO REALTIONAL DATABASES

- The main difference between relational database and graphical data base is that the relationships are sorted at different levels in graphical database whereas in relational database the structure is defined at higher like higher level like tables.
- A relational database is much faster as compared to graphical database when operating on huge volume
  of data or records. But in graphical database each record must be checked individually in a query in order
  to obtain structure or the graph of the data.
- Relational database uses less space as compared to graphical database because relational database does not store all the relationships

#### 7. CONCLUSIONS

We modelled the historical data provided by FBI on all hate crime incidents occurred in the USA during the years 1991-2017. Using the dimensions crime type, crime scene, race and the date we analyzed the characteristics of the incidents and looked for any correlation between any of the dimensions. We found out that the greatest number of hate crimes were conducted by African American and White population against each other over the years across the USA. The central states have the lowest reported number of racial hate crimes over the years. The public places where the most hate crimes occur are the educational places and the commercial buildings where the crimes of aggravated assault and destruction have occurred the most. The hate crime incidents have increased over the years in USA and the warehouse represents the general landscape of USA with respect to hate crimes.

#### 8. BIBLIOGRAPHY

Data Source: Federal Bureau of Investigation – Crime Reporting Services.

Web site: Crime-data-explorer.fr.cloud.gov

URL: https://crime-data-explorer.fr.cloud.gov/downloads-and-docs

#### APPENDIX A - TABLE CREATETION QUERIES AND VISUALISATION QUERIES

#### APPENDIX A.1: QUERY FOR TABLE CREATION

CREATE TABLE Calendar\_Dim
(
CalendarKey INT NOT NULL IDENTITY,
FullDate DATE,

```
Year_ Date,
PRIMARY KEY (CalendarKey));
GO
CREATE TABLE Crime_Scene_Type_Dim
(Crime_Scene_ID INT NOT NULL IDENTITY,
CrimeType varchar (500),
PRIMARY KEY (Crime_Scene_ID));
GO
CREATE TABLE Crime_Type_Dim
(Crime_Type_ID INT NOT NULL IDENTITY,
Crime_Type varchar (500),
PRIMARY KEY (Crime_Type_ID));
GO
CREATE TABLE State_Dim
(State_Id varchar (100),
State_Abbr varchar (100),
State_Name varchar (200),
Population_Group_Description varchar (200),
PRIMARY KEY (State_Id));
GO
CREATE TABLE Race_Dim
(Race_Id INT NOT NULL IDENTITY,
Race_Name varchar (500),
PRIMARY KEY (Race_Id));
CREATE TABLE Hate_Crime_Incident_Fact
CalendarKey INT,
Crime_Scene_ID INT,
Crime_Type_ID INT,
Victim_Race_Id INT,
Offender_Race_Id INT,
State_Id VARCHAR (100),
Victim_Count INT,
```

```
PRIMARY KEY (CalendarKey, Crime_Scene_ID, Crime_Type_ID, Victim_Race_Id, Offender_Race_Id, State_Id),
FOREIGN KEY (Calendarkey) REFERENCES Calendar_Dim (CalendarKey),
FOREIGN KEY (Crime_Scene_ID) REFERENCES Crime_Scene_Type_Dim (Crime_Scene_ID),
FOREIGN KEY (Crime_Type_ID) REFERENCES Crime_Type_Dim (Crime_Type_ID),
FOREIGN KEY (Victim_Race_Id) REFERENCES Race_Dim (Race_Id),
FOREIGN KEY (Offender_Race_Id) REFERENCES Race_Dim (Race_Id),
FOREIGN KEY (State_Id) REFERENCES State_Dim (State_Id),
);
```

#### APPENDIX A.2: VISUALISATION QUERIES

```
library(hrbrthemes)
library(RODBC)
library(dplyr)
conn = odbcDriverConnect("Driver={SQL Server};
             server=LAPTOP-CNTL30JD\\DARSHANSQL;
             database=HateCrimeWarehouseNew;
             trusted_connection=true")
conn
############## 1 st Visualization
p_data = sqlQuery(conn, "SELECT r.Race_Name,
           SUM(f.Victim_Count) as Total_Crimes
          FROM Race_Dim r
           INNER JOIN Hate_Crime_Incident_Fact f
           ON r.Race_Id = f.Victim_Race_Id
          INNER JOIN Calendar Dim d
          ON f.CalendarKey = d.CalendarKey
          WHERE d.Year_=2017
          group by Race_Name")
p_data
p_percentage = round(p_data $Total_Crimes * 100/sum(p_data $Total_Crimes),1)
p_percentage
pie(pie_data$Total_Crimes, main="Crimes against different races in 2017",
  labels = paste(p_percentage,"%"), col=rainbow(length(p_data$Race_Name)),radius = 1)
legend("topright", c("African American ","American Indian","Asian","Multiple","Native Hawaiian","White"),
```

```
fill=rainbow(length(p_data$Race_Name)),cex=.7)
b_data = sqlQuery(conn, "SELECT c.Crime_Type,
          SUM(f.Victim_Count) as Total_Crimes
          FROM Crime_Type_Dim c
          INNER JOIN Hate_Crime_Incident_Fact f
          ON c.Crime_type_ID = f.Crime_Type_ID
          INNER JOIN Calendar_Dim d
         ON f.CalendarKey = d.CalendarKey
         WHERE d.Year_=2017
          group by Crime_Type")
b_data
n = quantile(b_data$Total_Crimes, probs = 0.70) # quar
b_data = filter(b_data,b_data$Total_Crimes>n)
barplot(bar_data$Total_Crimes, main="Different types of crimes in 2017",
   xlab="Crime Type", ylab="Total Crimes",names.arg=b_data$Crime_Type,
   cex.names = 0.7,
   cex.axis=.7,
   col=rainbow(length(unique(b_data$Crime_Type))),
   args.legend = list(horiz=FALSE, x="topleft", cex=0.5))
data = sqlQuery(conn, "SELECT c.Crime_Scene_Type,
          SUM(f.Victim_Count) as count
         FROM Crime_Scene_Type_Dim c
          INNER JOIN Hate_Crime_Incident_Fact f
          ON c.Crime_Scene_ID = f.Crime_Scene_ID
          group by Crime_Scene_Type")
data
library(ggplot2)
data <- data.frame(
  Crime_Scene_Type=data$Crime_Scene_Type,
  count=data$count
```

```
)
library(forcats)
count
data = data[order(-data$count),]
data
data %>%
  #mutate(Crime_Scene_Type = fct_reorder(Crime_Scene_Type, count)) %>%
  ggplot( aes(x=data$Crime_Scene_Type, y=data$count)) +
  geom_bar(stat="identity", fill="#f68060", alpha=.6, width=.4) +
  coord_flip() +
  labs(title = 'No of hate crimes in different environments', x = 'Crime Scene Types', y = 'Frequency') +
  #xlab("Crime Scene Types") +
 # ylab("Frequency")+
  #main("No of hate crimes in different environments")
  theme_bw()
data1 = sqlQuery(conn, "SELECT s.State_Name,
           SUM(f.Victim_Count) as Total_Crimes
           FROM State_Dim s
           INNER JOIN Hate_Crime_Incident_Fact f
           ON s.State_Id = f.State_Id
           INNER JOIN Calendar_Dim d
           ON f.CalendarKey = d.CalendarKey
           WHERE d.Year =2017
           group by State_Name")
data1
m = quantile(data1$Total_Crimes, probs = 0.30) # quar
data1 = filter(data1,data1$Total_Crimes>m)
data1
data2<-ggplot(data1, aes(Total_Crimes, State_Name)) +
 geom_point(size=4)+theme_ipsum()
print(data2+ggtitle("Crime rate in different states in 2017"))
```

#### **APPENDIX B - NEO 4J CODE**

#### **USING PERIODIC COMMIT 15**

load csv with headers from "file:///DimCrimeScenetype.csv" as row create (c:CrimeSceneTypeDim) set c = row {crimeSceneKey:row.Crime\_Scene\_ID, crimeSceneType:row.Crime\_Scene\_Type} return c

load csv with headers from "file:///DimCrimetype.csv" as row create (c:CrimeTypeDim) set c = row {crimeTypeKey:row.Crime\_Type\_ID

, crimeType:row.Crime\_Type} return c

load csv with headers from "file:///DimRace.csv" as row create (c:RaceDim) set c = row {raceKey:row.Race\_Id

, raceName:row.Race\_Name} return c

load csv with headers from "file:///DimState.csv" as row create (c:StateDim) set c = row {stateKey:row.State\_Id

,stateAbbr:row.State\_Abbr,stateName:row.State\_Name,popGroupDesc:row.Population\_Group\_Description} return c

match(c:StateDim) detach delete(c)

load csv with headers from "file:///DimCal.csv" as row create (c:CalendarDim) set c = row {calKey:row.CalendarKey

,fullDate:row.FullDate,year:row.Year\_} return c

USING PERIODIC COMMIT

load csv with headers from "file:///Fact.csv" as row

WITH row LIMIT 50

create (c:HateCrimeFact) set c = row {incidentId:row.Incident\_ID

,calendarKey:row.CalendarKey,crimeSceneID:row.Crime\_Scene\_ID,crimeTypeID:row.Crime\_Type\_ID,victimRac eld:row.Victim\_Race\_Id,offenderRaceId:row.Offender\_Race\_Id,stateId:row.State\_Id,victimCount:row.Victim\_Count} return c

create constraint on (c:CalendarDim) assert c.calKey is unique

create constraint on (c:StateDim) assert c.stateKey is unique

```
create constraint on (c:RaceDim) assert c.raceKey is unique
create constraint on (c:CrimeTypeDim) assert c.crimeTypeKey is unique
create constraint on (c:CrimeSceneTypeDim) assert c.crimeSceneKey is unique
MATCH (s:HateCrimeFact), (p:CalendarDim) where s.CalendarKey=p.calKey create (s)-[r:dated]- >(p) return s, p,
r
MATCH (s:HateCrimeFact), (p:StateDim) where s.stateId=p.stateKey create (s)-[r:in]- >(p) return s, p, r
MATCH (s:HateCrimeFact), (p:RaceDim) where s.victimRaceId=p.raceKey create (s)-[r:affected]- >(p) return s, p,
MATCH (s:HateCrimeFact), (p:RaceDim) where s.offenderRaceId=p.raceKey create (s)-[r:caused]- >(p) return s,
p, r
MATCH (s:HateCrimeFact), (p:CrimeTypeDim) where s.crimeTypeID=p.crimeTypeKey create (s)-[r:is]- >(p) return
s, p, r
MATCH (s:HateCrimeFact), (p:CrimeSceneTypeDim) where s.crimeSceneID=p.crimeSceneKey create (s)-[r:at]-
>(p) return s, p, r
match(c:HateCrimeFact) where c.incidentId = '1' return c
match(h:HateCrimeFact) < -[r:in]- >(s:StateDim) return h,r,s
match(h:HateCrimeFact) < -[r:in]- >(s:StateDim{stateName:"Colorado"}) return h,r,s
match(h:HateCrimeFact)< -[r:in]- >(s:StateDim{stateName:"Colorado"})< -[a:affected]-
>(f:RaceDim{raceName:"White"}) return h,r,s,a,f
match(h:HateCrimeFact) < -[r:in]- >(s:StateDim) return h,r,s
match(h:HateCrimeFact)< -[r:affected]- >(f:RaceDim{raceName:"White"}) return h,r,f
match(h:HateCrimeFact)< -[r:is]- >(f:CrimeTypeDim{crimeType:"Aggravated Assault"}) return h,r,f
match(h:HateCrimeFact)< -[r:in]- >(s:StateDim)< -[c:] return h,r,s
```

| HATE CRIME ANALYSIS IN THE STATES OF USA FROM THE YEAR 1997-2017 | 30 |
|------------------------------------------------------------------|----|