EGZAMIN WSTĘPNY Z MATEMATYKI

Zestaw składa się z 30 zadań. Zadania 1–10 oceniane będą w skali 0–2 punkty, zadania 11–30 w skali 0–4 punkty. Czas trwania egzaminu — 240 minut.

Powodzenia!

- 1. Rozwiązać nierówność $x \frac{2}{x} \geqslant 1$.
- 2. Dla jakich a równanie $x^2 + ax + a 1 = 0$ posiada co najmniej jeden pierwiastek rzeczywisty?
- 3. Rozwiązać równanie $\sqrt{x} + 2 = x$.
- 4. Trzy liczby tworzą ciąg arytmetyczny o sumie równej 18. Największa z nich jest równa 9. Wyznaczyć pozostałe liczby.
- 5. Rozwiązać nierówność $\left(\frac{1}{2}\right)^{|x-3|} \geqslant \frac{1}{4}$.
- 6. Dany jest sześcian o krawędzi a Obliczyć objętość kuli stycznej do wszystkich krawędzi tego sześcianu.
- 7. Obliczyć $\left(\sqrt[3]{4}\right)^{\frac{3}{2\log_3 2}}$.
- 8. Dla jakich $x \in (0; \pi)$ spełniona jest nierówność $\operatorname{ctg}^2 x \geqslant 3$?
- 9. Obliczyć granicę $\lim_{n\to\infty} \frac{(n+2)!}{n^2 \cdot n!}$.
- 10. Graficznie rozwiązać nierówność $\log_{\frac{1}{2}}|x|\geqslant x^2-1.$
- 11. Wielomian $w(x) = x^3 3x + a$ rozłożyć na czynniki wiedząc, że liczba -1 jest jego pierwiastkiem.
- 12. Dla jakich parametrów m układ równań $\begin{cases} mx 2y = 1 \\ 8x my = 2 \end{cases}$ jest sprzeczny?
- 13. Trójkąt ma boki długości 6, 8 i 10. Obliczyć promień okręgu opisanego na tym trójkącie i promień okręgu wpisanego w ten trójkąt.
- 14. Napisać równanie stycznej do wykresu funkcji $f(x) = 4\sqrt[3]{8 + \sin 3x}$ w punkcie $x_0 = 0$.
- 15. Dla jakich wartości parametru m okręgi $x^2+y^2-2x=0$ oraz $x^2+(y-m)^2=9$ są styczne wewnętrznie?