NIOS II Processor

Reminders

- No quiz this weekend
- Assembly demo due Friday
- Lab 1 due next week
 - Get a head start
 - Next lab will be challenging

Last Weeks Questions

- What is a caller saved register?
 - Volatile registers used to hold temporary values that need do not need to be preserved between calls
 - Call refers to a procedural access
 - Callee saved registers are non-volatile and must be saved if a function needs to overwrite the value
- Can a stw offset be a register? No

ctual / ctuario

nstruction	store word to memory or I/O peripheral	
Operation	$Mem32[rA + \sigma(IMM16)] \leftarrow rB$	
ssembler Syntax	stw rB, byte_offset(rA) stwio rB, byte_offset(rA)	
xample	stw r6, 100(r5)	

Processor Types - CISC

- CISC Processor Architecture
 - CISC → Complex Instruction Set Computer
 - Processors that are easy to program and make efficient use of memory.
 - Earliest machines were programmed in assembly language and memory was slow and expensive
 - Big programs require a lot of memory \$\$\$\$
 - CISC developed to make compiler development simpler
 - Shifts burden of generating machine instructions to the processor
 - Ex: Instead of compiler writing long machine instructions to calculate a square-root →ability was built-in CISC processor
 - Instructions require multiple clock cycles to execute
 - Examples:
 - Intel 80x86
 - Motorola 68K series

CISC Processors

- CISC Instruction Sets
 - More complex instructions
 - Instruction fit into multiple words
 - More complex hardware
 - Shorter programs
 - Complex address modes supported
 - Memory-to-memory transfer supported

Processor Types - RISC

- RISC Processor Architecture
 - RISC→ Reduced Instruction Set Computer
 - Processor architecture that uses small, highly-optimized set of instructions
 - RISC Characteristics
 - one cycle execution time
 - RISC processors have a CPI (clock per instruction executed)
 - Pipelining
 - Technique for simultaneous execution of instructions
 - Large number of registers
 - Prevent large interactions with memory
 - Examples:
 - ARM
 - Nios II
 - PowerPC

RISC Processors

- RISC Instruction Sets
 - Simpler instructions
 - Instruction fits into single word
 - Simpler hardware
 - Faster instruction execution
 - Longer programs
 - Simpler address modes
 - Load/Store architecture used
 - Memory only access via load/store instructions
 - Arithmetic/logic operations work on register

Processor Types

CISC

RISC

Emphasis on hardware

Software simple

Includes multi-clock, complex instructions

Memory-to-memory:
"LOAD" and "STORE"
incorporated in instructions

Small code sizes, high cycles per second

Transistors used for storing complex instructions

Emphasis on software

Hardware simple

Single-clock, reduced instruction only

Register to register:

"LOAD" and "STORE"

are independent instructions

Low cycles per second, large code sizes

Spends more transistors on memory registers

RISC systems shorten execution time by reducing the *clock cycles per instruction* (i.e. simple instructions take less time to interpret)

CISC systems shorten execution time by reducing the *number of instructions per program*

ROCHESTER INSTITUTE OF TECHNOLOGY

Processor Types

- CISC and RISC Processor Architecture
 - Line between RISC and CISC blurring
 - CISC processor borrowing goodness from RISC
 - Ex: Pipeline introduced into CISC
 - RISC processor borrowing goodness from CISC
 - Ex: More complex addressing added into RISC

Nios II Processor Overview

- What is the Nios II Processor?
 - Soft-core processor developed by Altera (now Intel)
 - Soft core design → not fixed in silicon
 - Soft core allows customizing of processor and peripherals
 - Add processor features as required
 - Remove unused processor features
 - Create custom instructions
 - Nios II is second generation of software processor
 - 32-bit RISC Processor
 - RISC → Simple instructions provide higher performance
 - If instructions are simple enough to execute very quickly

NIOS II Basics

- General-purpose RISC processor core
 - 32-bit instruction set, data path and address space
 - 32 general-purpose registers
 - Optional shadow register sets useful for context switching and multitasking systems (RTOS)
 - 32 interrupt sources
 - External interrupt controller interface for more interrupt sources
 - Single instruction 32 x 32 multiply and divide producing a 32 bit result
 - Dedicated instructions for computing 64-bit and 128-bit products of multiplication
 - Floating-point instructions for single-precision floatingpoint operations

NIOS II Basics (con't)

- Single-instruction barrel shifter
- Access to a variety of on-chip peripherals, and interfaces to off-chip memories and peripherals
- Optional memory management unit (MMU) to support operating systems that require MMU
- Optional memory protection unit (MPU)
- Instruction set architecture (ISA) compatible across all NIOS
 Il processor systems

NIOS II Processor System

 A NIOS II processor system is equivalent to a microcontroller that includes a processor, memory and a combination of peripherals

NIOS II Architecture

- The NIOS II architecture defines the following functional units:
 - Register file
 - Arithmetic logic unit (ALU)
 - Interface to custom instruction logic
 - Exception controller
 - Internal or external interrupt controller
 - Instruction bus
 - Data bus
 - Memory management unit (MMU)
 - Memory protection unit (MPU)
 - Instruction and data cache memories
 - Tightly-coupled memory interfaces for instruction and data
 - JTAG debug module

R·I·T

NIOS II Architecture

NIOS II Architecture

- The functional units of the NIOS II architecture form the foundation for the NIOS II instruction set
 - This does not indicate that any unit is implemented in hardware
 - The NIOS II architecture describes an instruction set, not a particular hardware implementation
 - A functional unit can be implemented in hardware, emulated in software or omitted entirely
- A NIOS II implementation is a set of design choices embodied by a particular NIOS II processor core
 - Each implementation achieves specific objectives such as smaller core size or higher performance
 - Allows the NIOS II architecture to adapt to the needs of different target applications.

NIOS II Processor Tradeoffs

- Implementation variables generally fit one of three tradeoff patterns:
 - More or less features
 - Example: To fine-tune performance, you can increase or decrease the amount of instruction cache memory. A larger cache increases execution speed of large programs, while a smaller cache conserves on-chip memory resources
 - Inclusion or exclusion of a feature
 - Example: To reduce cost, you can choose to omit the JTAG debug module. This decision conserves on-chip logic and memory resources, but it eliminates the ability to use a software debugger to debug applications.
 - Hardware implementation or software emulation of a feature
 - Example: For applications that rarely perform complex arithmetic, you can choose for the division instruction to be emulated in software. Removing the divide hardware conserves on-chip resources but increases the execution time of division operations

- The flexible nature of the NIOS II memory and I/O organization are the most notable difference between NIOS II processor systems and traditional microcontrollers
- Because NIOS II processor systems are configurable, the memories and peripherals vary from system to system
 - As a result, the memory and I/O organizations varies from system to system

- A NIOS II core uses one or more of the following to provide memory and I/O access:
 - Instruction master port An Avalon Memory-Mapped (Avalon-MM) master port that connects to instruction memory via system interconnect fabric
 - Instruction cache Fast cache memory internal to the NIOS II core
 - Data master port An Avalon-MM master port that connects to data memory and peripherals via system interconnect fabric
 - Data cache Fast cache memory internal to the NIOS II core
 - Tightly coupled instruction or data memory port interface to fast on-chip memory outside the NIOS II core
- The NIOS II architecture hides the hardware details from the programmer so programmers can usually develop applications without specific knowledge of the hardware implementation

R·I·T

- The NIOS II architecture does not specify anything about the existence of memory and peripherals; the quantity, type, and connection of memory and peripherals are system-dependent
 - Typically, NIOS II processor systems contain a mix of fast on-chip memory and slower off-chip memory
 - Peripherals typically reside on-chip, although interfaces to off-chip peripherals also exist

Two Types of Processor Architectures

- Harvard
 - Has physically separate signals and storage for code and data memory
 - Two data buses and two address buses
 - Instructions can be fetched simultaneously with data being fetched
- VonNeumann
 - Shared signals and memory for code and data
 - One data bus and one address bus
 - Program can be modified by itself

Two Types of Processor Architectures

Instruction and Data Buses

- The NIOS II architecture supports separate instruction and data buses, classifying it as a Harvard Architecture
 - Both the instruction and data buses are implemented as Avalon-MM master ports that adhere to the Avalon-MM interface specification
 - The data master port connects to both memory and peripheral components, while the instruction master port connects only to memory components
 - Known as memory-mapped I/O both the memory and peripherals are mapped into the address space of the data master port
 - Use pointers to addresses in programs to access both memory and I/O

Two Types of Data Storage

 Endian describes the order in which bytes of data are stored in memory

Data Storage

- The NIOS II architecture is little endian
 - Words and halfwords are stored in memory with the moresignificant bytes at higher addresses

- Words in NIOS II are 32 bits
 - In ESD 1, when in doubt, the answer is 32!

Nios II Processor Overview (Classic)

- Three levels of Performance
 - Allows design scale as requirements change

	Nios II /f Fast	Nios II /s Standard	Nios II /e Economy
Pipeline	6 Stage	5 Stage	None
H/W Multiplier & Barrel Shifter	1 Cycle	3 Cycle	Emulated In Software
Branch Prediction	Dynamic	Static	None
Instruction Cache	Configurable	Configurable	None
Data Cache	Configurable	None	None
Logic Requirements (Typical LEs)	1800 w/o MMU 3200 w/ MMU	1200	600
Custom Instructions	Up to 256		

Nios II Processor Overview (Classic)

- Three level of Performance
 - Performance & Size
 - Performance varies by factor of 9
 - Size varies by factor of 3

Feature		Core		
		Nios II/e	Nios II/s	Nios II/f
Objective	72	Minimal core size	Small core size	Fast execution speed
Performance	DMIPS/MHz (1)	0.15	0.74	1.16
	Max. DMIPS (2)	31	127	218
	Max. f _{MAX} (2)	200 MHz	165 MHz	185 MHz
Area		< 700 LEs; < 350 ALMs	< 1400 LEs; < 700 ALMs	Without MMU or MPU: < 1800 LEs; < 900 ALMs With MMU: < 3000 LEs; < 1500 ALMs With MPU: < 2400 LEs; < 1200 ALMs
Pipeline		1 stage	5 stages	6 stages
External Addres	ss Space	2 GB	2 GB	2 GB without MMU 4 GB with MMU

NIOS II Processor Overview

- Our version of Platform Designer suggests not using classic
- We will choose between NIOS II/e and NIOS II/f
- We will be using NIOSII/e this semester, but the default is NIOSII/f
- Be sure to choose the correct processor!

