General Caches

- kmem_cache: internal cache of cache description objects
- size-N: Generic cache of size N
- size-N(DMA): Generic cache of size N for direct memory access use

Networking

flow_cache: Generic flow cache

RPC

o rpc_buffers: RPC requests, data buffers

o rpc_tasks: RPC requests, task structures

o rpc_inode_cache: RPC requests, inodes

TCP/IP

o ip_fib_alias: IP Datagram forwarding

o ip_fib_hash: IP Datagram forwarding

o ip_mrt_cache: IP multicast routing

o tcp_tw_bucket: Time Wait

o tcp_bind_bucket: Socket-interface bindings

tcp_open_request: Open TCP requests

 inet_peer_cache:Storage for permanent information about peers

arp_cache: Address resolution protocol caches

Sockets

o unix sock: BSD Unix domain sockets

o raw sock: Raw socket

udp_sock: Unix Datagram Protocol sockets

tcp_sock: Transmission control protocol sockets

sock_inode_cache: Socket inodes

skbuff_head_cache: Socket buffers

sock: Sockets

Storage

Device Mapper

o dm_tio: Target I/Os

o dm io: Basic DM I/Os

a dan bersa Ni. Darrian mananan bilani. 1/0 eratan af sina Ni

- απ-ανές-ιν: Device mapper αιόςκ ι/Ο vector οι size ιν bytes.
- o dm-bio: Basic DM block I/O structures

SCSI

- scsi_cmd_cache: SCSI command pool
- sgpool-N: SCSI queuing pool of size N bytes

Filesystems

General

- buffer_head: Filesystem buffers
- bdev_cache: Filesystem block device cache
- o mnt_cache: Virtual filesystem mount caching
- o audit_watch_cache: Filesystem auditing
- o inode_cache: Index node caching
- file_lock_cache: Generic filesystem file locking
- o dquot: Disk quota
- dnotify_cache: Directory notifications
- Directory entry caching
 - dentry_cache: Directory entry caches
 - filp: File pointer cache
 - names_cache: Pathname cache

o EXT2/3

- ext3_inode_cache: EXT3 I-Node cache
- ext3_xattr: EXT3 extended attributes
- ext2_inode_cache: EXT2 I-node cache
- ext2_xattr: EXT2 extended attributes

General Filesystem Journaling

- journal_handle:Journal identifier/handles cache
- journal_head: Journal list heads
- revoke_table: Revoked record tables
- revoke_record: Revoked records

Asynchronous I/O

- kioctx: Asynchronous I/O context structures
- kiocb: Asynchronous I/O control blocks

I/O Scheduling

crq_pool: Complete fairness queuing (CFQ) request pool

Common slabs objects

How to observ slab cache objects?

You can get raw statitics reading /proc/slabinfo or can use slabtop. Read the man, it's short and comprehensive http://man7.org/linux/man-pages/man1/slabtop.1.html

```
root@ip-192-168-172-53:~# slabtop -o -s c
Active / Total Objects (% used) : 435085 / 447064 (97.3%)
Active / Total Slabs (% used)
                                  : 13244 / 13244 (100.0%)
Active / Total Caches (% used)
                                  : 87 / 138 (63.0%)
Active / Total Size (% used)
                                  : 118774.38K / 124296.67K
(95.6%)
Minimum / Average / Maximum Object : 0.01K / 0.28K / 16.00K
OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME
29700 27715 93% 1.05K 990 30 31680K
ext4 inode cache
                                   27 16912K inode_cache
21 14676K dentry
34 6600K
                   0.59K 1057
28539 28201 98%
77049 74432 96%
                   0.19K 3669
56100 55629 99%
                   0.12K 1650
kernfs node cache
                   0.81K 200 39 6400K fuse_inode
0.57K 355 28 5680K
 7800 7800 100%
 9940 8818 88%
radix tree node

      49179
      49179
      100%
      0.10K
      1261
      39
      5044K buffer_head

      720
      638
      88%
      5.81K
      144
      5
      4608K task_struct

      3168
      3140
      99%
      1.00K
      99
      32
      3168K kmalloc-

1024
                   0.50K 177 32 2832K kmalloc-512
0.66K 176 24 2816K
 5664 5645 99%
 4224 3839 90%
proc inode cache
11340 11090 97%
                   0.20K 567 20 2268K
vm area struct
 1088 1069 98%
                   2.00K 68
                                   16
                                            2176K kmalloc-
                     2.06K 47 15
  705 601 85%
                                                1504K
sighand cache
                                             1344K kmalloc-256
                                   32
32
 5376 3682 68%
                   0.25K 168
 1312 1208 92%
                     1.00K 41
                                                1312K
signal cache
 1794 1641 91%
                   0.69K 78 23 1248K
shmem inode cache
19520 19520 100%
                   0.06K 305 64 1220K
anon vma chain
                   4.00K 37 8
  296 266 89%
                                            1184K kmalloc-
4096
                                   21 1096K cred_jar
 5754 5754 100%
                   0.19K 274
                   0.03K
 31872 31286 98%
                              249
                                       128
                                                996K kmalloc-32
                                               992K mm_struct
                             31
                                      16
                   2.00K
  496
        496 100%
                     8.00K
  112
         112 100%
                              28
                                                896K kmalloc-
                                       4
8192
  9894 9894 100%
                   0.08K 194
                                   51
                                                 776K anon vma
  1058 1037 98%
                   0.69K
                                                 736K
```

sock_ind	ode_cad	che				
11328	10712	94%	0.06K	177	64	708K kmalloc-64
748	748	100%	0.94K	22	34	704K xfs_inode
6636	5508	83%	0.09K	158	42	632K kmalloc-96
1470	1470	100%	0.38K	70	21	560K kmem_cache
2856	2856	100%	0.19K	136	21	544K kmalloc-192
11832	11832	100%	0.04K	116	102	464K
ext4_ext	tent_st	tatus				
621	621	100%	0.69K	27	23	432K files_cache
2976	2849	95%	0.12K	93	32	372K kmalloc-128
5950	5950	100%	0.05K	70	85	280K
ftrace_e	event_i	field				
15872	15872	100%	0.02K	62	256	248K kmalloc-16
3304	3304	100%	0.07K	59	56	236K Acpi-
Operand						
1792	1792	100%	0.12K	56	32	224K pid
288	288	100%	0.66K	12	24	192K ovl_inode
483	483	100%	0.38K	23	21	184K mnt_cache
1886	1886	100%	0.09K	41	46	164K
trace_e	vent_fi	ile				
1156	1156	100%	0.12K	34	34	136K
jbd2_jou	urnal_h	nead				
1536	1536	100%	0.06K	24	64	96K
kmem cad	che noo	de				
45	45	100%	2.06K	3	15	96K dmaengine-
unmap-25	56					
102	102	100%	0.94K	3	34	96K RAW
140	140	100%	0.56K	5	28	80K task group
1836	1836	100%	0.04K	18	102	72K Acpi-
Namespa	ce					
216	216	100%	0.32K	9	24	72K taskstats
	78	100%	0.81K	2	39	64K bdev cache
7/8	, 0					

Whats conclussian can we makes based on this output?

General output:

TOTAL SIZE—tototal slab objects memory consumption in kb

Object specific output:

- NAME—there are SLABs for specific and generic use.
- CACHE SIZE—Total size (KB) of active SLAB cache entries.

Constant: Monotoneous workload w.r.t specific SLAB cache entry. **Increasing:** The workload is active in using the specific SLAB cache entry. For specific SLABs, it means a specific activity for some part of the kernel.

Decreasing: The specific or generic kernel code (including modules) are releasing allocated SLAB cache entries. This means that the generic or specific SLAB cache demand is decreasing generally indicating decrease in the workload

- (OBJ-ACTIVE)*OBJ SIZE—Total size (KB) of available SLAB cache entries. Constant: Stable workload w.r.t. specific SLAB cache entry.

 Increasing: There is recent significant request on specific SLAB cache. It means the increase in use is quite recent so a specific workload might be causing this. This can also mean that there is a leak for the specific SLAB and it can be a defect in the kernel or a kernel module.

 Decreasing: Available entries for some other SLAB cache needed to enlarge and therefore this specific SLAB cache entries are shrank.
- **USE** %—Percentage (%) of active cache entries to the total available for specific SLAB.

Low: The specific SLAB cache has not been active for some time and there are a lot available SLABs. If there are a couple of low percentages constantly, a contention on SLAB cache is unlikely.

High: For values near 100% it means that this SLAB cache cannot shrink and if columns ACTIVE and CACHE SIZE keep increasing this can be an agressive load or a leak on the specific SLAB.