Prof :Gharbi Taieb **09 - 03 - 2019**

NB : Il sera tenu compte de la rédaction et de la lisibilité de l'écriture.

Exercice 1 :(4pts)

Un centre de remise en forme a noté le poids perdu par ses clients en 3 mois.

Poids perdu (en kg)	[0;2[[2;4[[4;6[[6;8[
Nombre de clients	3	4	7	6

1 Calculer la moyenne arithmétique et l'écart type de cette série.

2 a) Tracer le polygone des la effectifs cumulée croissante de cette série

b) Déterminer graphiquement le médiane , le premier quartile $Q_1\,$ et le troisième quartile $Q_3\,$

c) Calculer de manière précise le médiane M_e , les quartiles $\ Q_1$ et Q_3

3 Construire le diagramme en boite

Exercice 2:(3pts)

Soit (U_n) une suite arithmétique telle que $U_1 + U_6 = 2$ et $U_{10} = -25$.

1 Déterminer la raison et le premier terme de la suite (U_n).

2On pose $U_0 = 15$ et r = -4.

a/ Donner le terme générale de la suite (Un).

b/ Calculer U_{15} et U_{114} .

c/ Soit $S = U_{15} + U_{16} + \dots + U_{114}$. Calculer S

Exercice 3 :(4,5pts)

Soit la suite (U_n) définie sur IN par $\begin{cases} U_0 = 2 \\ U_{n+1} = 2U_n - 1 \end{cases}$

 \bullet a- Calculer U_1 et U_2

b - Vérifier que la suite (Un) n'est ni arithmétique ni géométrique.

2^{ème} Sc

2 Soit $V_n = U_n - 1$

 $a-Montrer \ que \ (V_n) \ \ est \ \ une \ suite \ g\'eom\'etrique \ dont \ on \ pr\'ecisera \ le \ premier \ terme \ et \ la \ raison \ q.$

 $b-Exprimer\ V_n\ puis\ U_n\ en\ fonction\ de\ n.$

 \bullet a - Calculer en fonction de n la somme : $S_n = V_0 + V_1 + V_2 + \dots + V_n$

b –En déduire en fonction de n la somme : \mathbf{T}_n = U_0 + U_1 + U_2 + + U_n

Exercice 4:(4,5pts)

Soit OBC un triangle rectangle en B, A est le milieu de [OC], E est le milieu de [AB] et F est le symétrique de **O** par rapport à **B**.

- a/ Quelle est le rapport de l'homothétie \mathbf{h} de centre \mathbf{O} telle que $\mathbf{h}(\mathbf{A}) = \mathbf{C}$? b/On pose $\mathbf{H}(\mathbf{E}) = \mathbf{G}$, Montrer que \mathbf{G} est le milieu de [FC].
- 2 Soit h' l'homothétie de centre O et de rapport 3.
 - a/ On pose A' = h'(A). La parallèle à (AB) passant par A' coupe la droite (OB) en B'.
 - i) Déterminer h'(AB) et h'(OB)
 - ii) En déduire que h'(B) = B'

b/ Soit O' le milieu de [A'B'], montrer que O' est l'image de E par l'homothétie h'. c/ Montrer que E, G et O' sont alignés...

3 Soit ζ le cercle de diamètre [OC]. Construire $\zeta' = \mathbf{h}(\zeta)$. (préciser : centre et rayon)

Exercice 5 : (4pts)

Soit ABCD un carré directe de centre O

- Soit r la rotation directe de centre A et d'angle $\frac{\pi}{2}$
 - a- Déterminer r(B), puis r(BC).
 - b Construire le points \mathbf{F} image de \mathbf{C} par \mathbf{r} . puis montrer que $\mathbf{AF} = \sqrt{2} \ \mathbf{AB}$
 - c Soit I le milieu de [AF] .Montrer que r(O) = I
- 2 Soit R' la rotation directe de centre A et d'angle $\frac{\pi}{4}$
 - a Soit le point K image de B par R'. Montrer que R' (K) = D
 - b En déduire la nature du triangle KBD.
 - c Construire le points E image de C par R'. puis montrer que (EK) et (AK) sont perpendiculaires

Bon Travai

prof: Gharbi Taieb

ww.devoirat.net

Exercice 1

Poids perdu (en kg)	[0;2[[2;4[[4;6[[6;8[
Nombre de clients	3	4	7	6
Effectifs cumulés croissants				
Centre C _i				
nx _i				
nx_i^2				

Exercice 5

