CHALLENGE PROBLEM 1

LEANDRO RIBEIRO

Axiom (†). There exists a subset $\mathbb{N} \subseteq \mathbb{Z}$ with the following properties:

- (1) If $m, n \in \mathbb{N}$, then $m + n \in \mathbb{N}$.
- (2) If $m, n \in \mathbb{N}$, then $mn \in \mathbb{N}$.
- (3) $0 \notin \mathbb{N}$.
- (4) For every $m \in \mathbb{Z}$, we have $m \in \mathbb{N}$, m = 0, or $-m \in \mathbb{N}$.

Definition. The successor function on the integers is defined by s(x) := x + 1. For $m \ge 1$, we define $s^{m+1}(x)$ recursively by $s^{m+1}(x) := s(s^m(x))$.

Axiom(*). For all $m \ge 1$, $s^m(0) \ne 0$.

Axiom().** For all $x \in \mathbb{Z}$, there is $m \geq 0$ such that $s^m(x) = 0$ or $s^m(0) = x$.

Definition. The set of successors of zero is defined to be

$$N := \{ x \in \mathbb{Z} | \exists m \ge 1 s^m(0) = x \}$$

Prove the following proposition.

Proposition. Assume that the integers satisfy (*) and (**). Then, the set N satisfies axiom (\dagger) . That is to say, N satisfies the four conditions of the axiom.

Proof. (1) Let P(n) be the statement "if $m \in N$, then $m + n \in N$ ". Because $m \in N$, there exists some $y \ge 1$ such that $s^y(0) = m$. Let's first observe P(1)

Base. n = 1. $m + 1 = s^y(0) + 1 = s(s^y(0))$, because $m \in N$ and the definition of the successor function. Also by definition of the successor function, $s(s^y(0)) = s^{y+1}(0)$. Clearly, $y + 1 > y \ge 1$. Thus, for m + 1 there exists y + 1 > 1 such that $s^{y+1}(0) = m + 1$, $m + 1 \in N$, and the proposition holds.

Successor. Assume P(n) holds. That is, $m + n \in N$. By definition, this means there exists some $y \ge 1$ such that $s^y(0) = m + n$. Consider m + n + 1. $m + n + 1 = s(m + n) = s(s^y(0))$ by definition of the successor function. By induction, we know $m + n = s^y(0) \in N$. Thus,

Date: March 24, 2017.

 $s(s^y(0)) = s^{y+1}(0) \in N$ since for m+n+1 there exists $y+1 > y \ge 1$ such that $s^{y+1}(0) = m+n+1$. By the principle of mathematical induction, the proposition holds.

(2) Let P(n) be the statement " If $m \in N$, then $mn \in N$." Observe P(1):

Base. n = 1. $m \cdot 1 = m \in N$.

Successor. Assume P(n) holds. That is, $mn \in \mathbb{N}$. Consider m(n+1). By our axioms for the integers, we may rewrite this as mn + m. By induction, $mn \in N$, and we already know $m \in N$. Thus, by the first part of this proposition and induction, $mn + n \in N$.

- (3) By our axiom (*), we know $0 \notin N$.
- (4) Take $x \in \mathbb{Z}$. By axiom (**), there is $m \geq 0$ such that $s^m(x) = 0$ or $s^m(0) = x$. If x is such that $s^m(0) = x$, then by our definition of N, $x \in N$. If x = 0, then we are done. If $s^m(x) = 0$, we must prove two lemmas to show $-x \in N$.

Lemma. For all $x, y \in \mathbb{Z}$, $s^m(x+y) = s^m(x) + y$.

Proof. Take P(m) to be the statement " $s^m(x+y) = s^m(x) + y$ " Let's first observe m = 1

Base. m = 1. $s^{1}(x+y) = (x+y) + 1 = (x+1) + y = s^{1}(x) + y$.

Successor. Assume P(m) holds. Consider $s^{m+1}(x+y)$. By definition of the successor function, we may rewrite this as $s(s^m(x+y))$. By induction, we have that $s(s^m(x)+y)$. By definition, it follows that $s(s^m(x)+y)=s^m(x)+y+1=(s^m(x)+1)+y=s(s^m(x))+y=s^{m+1}(x)+y$. Thus, by the Principle of Mathematical Induction the lemma holds.

Lemma. For all $x \in \mathbb{Z}$ If $s^m(x) = 0$, then $-x \in N$.

Proof. Take P(m) to be the statement "If $s^m(x) = 0$, then $-x \in N$." Let's first observe m = 1.

Base. $s^1(x) = x + 1 = 0$. If x + 1 = 0, we may cancel to find that x = -1, and $-(-1) = 1 = s(0) \in N$.

Successor. Assume P(m) holds. Observe $s^{m+1}(x) = 0$. $s^{m+1}(x) = s(s^m(x)) = s^m(x) + 1$. Applying the previous lemma, it follows that $s^m(x) + 1 = s^m(x+1) = 0$. By induction, $-(x+1) \in N$. Thus for x < -1 the lemma holds, and from the base case we know the lemma holds for x = -1. Hence, the lemma holds by the Principle of Mathematical Induction.

By the proven lemma, the proposition thus holds.