

PROBLEMA DE LA MOCHILA 0/1 (CON PROGRAMACIÓN DINÁMICA)

Algoritmos y Programación

Escuela de Ingeniería Informática
Universidad de Las Palmas de Gran Canaria

Árbol de todas las posibles llamadas recursivas con su beneficio

Caso 1: No quedan items

Caso 2: No puedo cogerlo

Caso 3: Caso general

```
t(n-1, w) : W_n > w

t(n,w) = max (t(n-1,w), t(n-1,w-W_n) + B_n)

0 : n <= 0
```

El beneficio máximo que puedo obtener cuando no me queda ningún elemento es 0

```
t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n <= 0 \end{cases}
```

Si el peso del elemento *n* excede el peso que puedo añadir a la mochila, no podemos añadirlo y pasamos al siguiente

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) = max(t(n-1,w); t(n-1,w-W_n) + B_n)$
 $0 = 0$

En el resto de los casos, tenemos dos posibilidades:

 No añadir el elemento n, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta n

```
t(n-1, w) : W_n > w

t(n,w) - max(t(n-1,w), t(n-1,w-W_n) + B_n) : n <= 0
```

En el resto de los casos, tenemos dos posibilidades:

- No añadir el elemento n, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta n
- 2. Añadir el elemento n, con lo que ahora tenemos que calcular la mochila óptima restando su peso (w- W_n) pero teniendo en cuenta su beneficio (B_n)

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - (max (t(n-1,w), t(n-1,w-W_n) + B_n))$
: $n <= 0$

En el resto de los casos, tenemos dos posibilidades:

- No añadir el elemento n, con lo que el problema se reduce a calcular la/mochila óptima sin tener en cuenta n
- 2. Añadir n, con lo que ahora temenos que calcular la mochila óptima restando su peso (w- W_n) pero teniendo en cuenta su beneficio (B_n)

Y nos quedamos con la opción que maximice nuestro beneficio!

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Debemos crear una tabla para evitar repetir cálculos ... y como vamos a implementar tabulation rellenamos la tabla a partir de los casos base (*bottom-up*)

¿ Cuál es el número mínimo de filas de la tabla?

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Debemos crear una tabla para evitar repetir cálculos ... y como vamos a implementar tabulation rellenamos la tabla a partir de los casos base (*bottom-up*)

¿ Cuál es el número mínimo de <u>filas</u> de la tabla ? El número de ítems (en este ejemplo 4)

¿ Cuál es el número mínimo de columnas de la tabla?

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Debemos crear una tabla para evitar repetir cálculos ... y como vamos a implementar tabulation rellenamos la tabla a partir de los casos base (*bottom-up*)

1: (3,2)

Items:

2: (4,3)

¿ Cuál es el número mínimo de <u>filas</u> de la tabla ? El número de ítems (en este ejemplo 4)

4: (6,5)

3: (5,4)

¿ Cuál es el número mínimo de columnas de la tabla ?

Peso Máximo: 5 kilos

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Número mínimo de filas = 4 Número mínimo de columnas = 5

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Número mínimo de filas = 4 Número mínimo de columnas = 5

... pero si nos fijamos bien ...

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) = \max_{n \to \infty} (t(n-1,w), t(n-1,w-W_n) + B_n)$
 $0 = max_n = 0$

Número mínimo de filas = 4 Número mínimo de columnas = 5

... pero si nos fijamos bien ...

1) El caso base es cuando n <= 0

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

$$t(n,w) = \begin{cases} t(n-1,w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n)) + B_n) & Dinámica: Tabulation \\ 0 & : n <= 0 \end{cases}$$

Número mínimo de filas = 5 Número mínimo de columnas = 5

1: (3,2) pero si nos fijamos bien ...

2: (4,3)

1) El caso base es cuando n <= 0 *(añadimos una fila)* 3: (5,4)

2) Si lleno la mochila w = 0 4: (6,5)

Peso Máximo: 5 kilos

Items:

$$t(n,w) = \begin{bmatrix} t(n-1,w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) & Dinámica: Tabulation \\ 0 & : n <= 0 \end{bmatrix}$$

Número mínimo de filas = 5 Número mínimo de columnas = 6

1: (3,2) pero si nos fijamos bien ...

 \ldots pero si nos fijamos bien \ldots 2: (4,3)

1) El caso base es cuando n <= 0 (añadimos una fila) 3: (5,4)

2) Si lleno la mochila w = 0 (añadimos una columna) 4: (6,5)

Peso Máximo: 5 kilos

Items:

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

Número mínimo de filas = 5 Número mínimo de columnas = 6

$n \setminus W$	$\sqrt{0}$	1	2	3	4	5
0						
1						
2						
3						
4						

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

$n \setminus W$	V 0	1	2	3	4	5
0						
1						
2						
3						
4						

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

for w = 0 to W

t[0, w] = 0

Programación Dinámica: Tabulation

$n \setminus V$	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

$$t(n,w) = \begin{cases} t(n-1,w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n <= 0 \end{cases}$$
 for $w = 0$ to W $t[0,w] = 0$

for i = 1 to n

t[i, 0] = 0

Programación Dinámica: Tabulation

$n \setminus W$	V 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

. . .

for i = 1 to n for w = 1 to W

$n \setminus W$	<i>y</i> 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \end{cases} : W_n > w \\ \vdots & n <= 0 \end{cases}$$

. . .

for i = 1 to n

for w = 1 to W

$n\backslash W$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}$$

. . .

for
$$i = 1$$
 to n
for $w = 1$ to W
if $W_i \le w$

else
$$[t[i,w] = t[i-1,w]]$$

$n \setminus W$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

$$t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) & Dinámica: Tabulation \\ 0 & : n \le 0 \end{cases}$$

(Recordatorio) Problema del ladrón: taken

$$V = [3, 10, 3, 1, 2]$$
• Tabla = [3, 10, 10, 11, 12]

¿ Qué significaba cada uno de los valores que contiene la tabla ?

La solución óptima de cada subproblema

Ejemplo (1/17)

i\W	<u> </u>	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

for
$$w = 0$$
 to W
 $t [0,w] = 0$

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

Ejemplo (2/17)

i\W	7 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

for
$$i = 1$$
 to n
 $t [i,0] = 0$

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

Ejemplo (3/17)

$i\W$ 0 0 0 0 0 0 **†**0 0 0 3 ()4

Items:

1: (3,2)

2: (4,3)

3: (5,4) 4: (6,5)

 $w_i = 2$

w=1

 $W-W_{i} = -1$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + t \text{ [i-1,w-w_i]} > t \text{ [i-1,w]} \\ & t \text{ [i,w]} = b_i + t \text{ [i-1,w-w_i]} \\ & \text{else} \\ & t \text{ [i,w]} = t \text{ [i-1,w]} \\ & \text{else} \textbf{[t [i,w]} = t \text{ [i-1,w]} \text{ // } w_i > w \end{split}$$

Ejemplo (4/17)

Items:

1: (3,2)

2: (4,3)

3: (5,4) 4: (6,5)

 $w_i = 2$

w=2

 $w-w_i = 0$

if $w_i \le w$ // item i can be part of the solution

if
$$\mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] > \mathbf{t} [\mathbf{i-1, w}]$$

$$\{\mathbf{t} [\mathbf{i, w}] = \mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}]\}$$
else
$$\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}]$$
else $\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}] // \mathbf{w_i} > \mathbf{w}$

Ejemplo (5/17)

W i\W 3 0 0 0 0 0 3 () 0 3 ()4

Items:

1: (3,2)

2: (4,3)

3: (5,4) 4: (6,5)

 $w_i = 2$

w=3

 $W-W_i = 1$

if $w_i \le w$ // item i can be part of the solution

if
$$\mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] > \mathbf{t} [\mathbf{i-1, w}]$$

 $\{\mathbf{t} [\mathbf{i, w}] = \mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] \}$
else

$$t [i,w] = t [i-1,w]$$

else $t [i,w] = t [i-1,w] // w_i > w$

Ejemplo (6/17)

W i\W 0 0 0 0 3 3 () 0 3 ()4

Items:

1: (3,2)

2: (4,3)

3: (5,4) 4: (6,5)

 $\mathbf{w_i} = \mathbf{2}$

w=4

 $W-W_i = 2$

if $w_i \le w$ // item i can be part of the solution

if
$$\mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] > \mathbf{t} [\mathbf{i-1, w}]$$

$$\{\mathbf{t} [\mathbf{i, w}] = \mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}]\}$$
else
$$\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}]$$
else $\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}] // \mathbf{w_i} > \mathbf{w}$

Ejemplo (7/17)

i\W 0 0 0 0 0 3 3 () 0 3 ()4

Items:

1: (3,2)

2: (4,3)

W

3: (5,4) 4: (6,5)

 $w_i = 2$

w=5

 $W-W_i = 3$

if $w_i \le w$ // item i can be part of the solution if $b_i + t[i-1,w-w_i] > t[i-1,w]$ $[t[i,w] = b_i + t[i-1,w-w_i]$ else t [i,w] = t [i-1,w]else t $[i,w] = t [i-1,w] // w_i > w$

Ejemplo (8/17)

			↓ ↓				
	i\W	0	1	2	3	4	5
	0	0	0	0	0	0	0
	1	0	0	3	3	3	3
i→	2	0	0				
	3	0					
	4	0					
	4	0					

Items:

1: (3,2)

2: (4,3)

3:(5,4)

i=2

4: (6,5)

 $b_i = 4$

 $W_i = 3$

w=1

 $W-W_i = -2$

if
$$w_i \le w$$
 // item i can be part of the solution if $b_i + t$ [i-1,w- w_i] > t [i-1,w] t [i,w] = $b_i + t$ [i-1,w- w_i] else t [i,w] = t [i-1,w] // w_i > w

Ejemplo (9/17)

				\				
	$i \setminus W$	<i>y</i> 0	1	2	3	4	5	
	0	0	0	0	0	0	0	
	1	0	0	3	3	3	3	
i→	2	0	0	3				
	3	0						
	4	0						_

Items:

1: (3,2)

2: (4,3

3:(5,4)

i=2

4: (6,5)

 $b_i = 4$

 $W_i = 3$

w=2

 $W-W_i = -1$

$$\begin{split} & \text{if } w_i <= w \text{ // item i can be part of the solution} \\ & \text{if } b_i + t \text{ [i-1,w-w_i]} > t \text{ [i-1,w]} \\ & t \text{ [i,w]} = b_i + t \text{ [i-1,w-w_i]} \\ & \text{else} \\ & t \text{ [i,w]} = t \text{ [i-1,w]} \text{ // } w_i > w \end{split}$$

Ejemplo (10/17)

Items:

1: (3,2)

2: (4,3)

3: (5,4) 4: (6,5)

 $W_i = 3$

w=3

 $W-W_i = 0$

if $w_i \le w$ // item i can be part of the solution

if
$$\mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] > \mathbf{t} [\mathbf{i-1, w}]$$

$$\{\mathbf{t} [\mathbf{i, w}] = \mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}]\}$$
else
$$\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}]$$
else $\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}] // \mathbf{w_i} > \mathbf{w}$

Ejemplo (11/17)

Items:

1: (3,2)

2: (4,3)

3: (5,4) 4: (6,5)

 $W_i = 3$

w=4

 $W-W_i = 1$

if $w_i \le w$ // item i can be part of the solution if $b_i + t[i-1,w-w_i] > t[i-1,w]$ $[t[i,w] = b_i + t[i-1,w-w_i]$

else
$$t [i,w] = b_i + t [i-1,w-w_i]$$

$$else$$

$$t [i,w] = t [i-1,w]$$

$$else t [i,w] = t [i-1,w] // w_i > w$$

Ejemplo (12/17)

i\W 0 0 0 0 0 3 () 3 () 3 0 4

Items:

1: (3,2)

2: (4,3)

3: (5,4) 4: (6,5)

W

 $\mathbf{w_i} = \mathbf{3}$

w=5

 $W-W_i = 2$

if $w_i \le w$ // item i can be part of the solution

if
$$\mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] > \mathbf{t} [\mathbf{i-1, w}]$$

$$\{\mathbf{t} [\mathbf{i, w}] = \mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}]\}$$
else
$$\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}]$$
else $\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}] // \mathbf{w_i} > \mathbf{w}$

Ejemplo (13/17)

W i\W ()

Items:

$$i=3$$

$$b_i = 5$$

$$\mathbf{w_i} = \underline{\mathbf{4}}$$

$$w = 1..3$$

if
$$w_i \le w$$
 // item i can be part of the solution if $b_i + t$ [i-1,w- w_i] > t [i-1,w] t [i,w] = $b_i + t$ [i-1,w- w_i] else t [i,w] = t [i-1,w] // $w_i > w$

Ejemplo (14/17)

i\W 0 1 2 3 4 5 0 0 0 0 0 0 0 0 1 0 0 3 3 3 3 2 0 0 3 4 4 7 1→ 3 0 0 3 4 5 4 0

Items:

1: (3,2)

2: (4,3)

3: **(5,<u>4</u>)**

i=3

4: (6,5)

 $b_i = 5$

 $w_i = \underline{4}$

w=4

 $w-w_i=0$

if $w_i \le w$ // item i can be part of the solution

W

if
$$\mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] > \mathbf{t} [\mathbf{i-1, w}]$$

$$\{\mathbf{t} [\mathbf{i, w}] = \mathbf{b_i} + \mathbf{t} [\mathbf{i-1, w-w_i}] \}$$
else
$$\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}]$$
else $\mathbf{t} [\mathbf{i, w}] = \mathbf{t} [\mathbf{i-1, w}] // \mathbf{w_i} > \mathbf{w}$

Ejemplo (15/17)

i\W () ()

Items:

1: (3,2)

2: (4,3)

3: (5,4)

i=3

W

4: (6,5)

$$b_i = 5$$

$$w_i = \underline{4}$$

$$w=5$$

$$w-w_i=1$$

if $\mathbf{w_i} \leftarrow \mathbf{w}$ // item i can be part of the solution if $\mathbf{b_i} + \mathbf{t}$ [i-1,w-w_i] > t [i-1,w] t [i,w] = $\mathbf{b_i} + \mathbf{t}$ [i-1,w-w_i] else \mathbf{t} [i,w] = \mathbf{t} [i-1,w] | else t [i,w] = \mathbf{t} [i-1,w] // w_i > w

Ejemplo (16/17)

$i\W$ () () ()

W

Items:

$$i=4$$

$$b_i = 6$$

$$w_i = \underline{5}$$

$$w = 1..4$$

$$\begin{split} &\text{if } w_i <= w \text{ // item i can be part of the solution} \\ &\text{if } b_i + t \text{ [i-1,w-w_i]} > t \text{ [i-1,w]} \\ &\text{t [i,w]} = b_i + t \text{ [i-1,w-w_i]} \\ &\text{else} \\ &\text{t [i,w]} = t \text{ [i-1,w]} \\ &\text{else} \text{[t [i,w]} = t \text{ [i-1,w]} \text{ // } w_i > w \end{split}$$

Ejemplo (17/17)

$i\W$ () ()

Items:

1: (3,2)

2: (4,3)

3: (5,4)

=4 | 2

4: (6<u>,5</u>)

 $b_i = \overline{6}$

W

 $w_i = \underline{5}$

w=5

 $w-w_i=0$

if $\mathbf{w}_i \le \mathbf{w}$ // item i can be part of the solution if $\mathbf{b}_i + \mathbf{t}$ [i-1,w-w_i] > t [i-1,w] t [i,w] = $\mathbf{b}_i + \mathbf{t}$ [i-1,w-w_i] else \mathbf{t} [i,w] = \mathbf{t} [i-1,w] | else t [i,w] = \mathbf{t} [i-1,w] // w_i > w

¿ Qué elementos contiene la mochila?

Igual que en el problema del ladrón, la información está en la tabla
 ... sólo tenemos que recorrerla <u>hacia atrás!</u>

i∖W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i = i - 1

						•	
$i \setminus W$	<u> </u>	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	0	3	3	3	3	
2	0	0	3	4	4	7	
3	0	0	3	4	5	7	
$i \rightarrow 4$	0	0	3	4	5	7	
		·	·	·	·		

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

$$b_i = 6$$

$$w_i = 5$$

$$t[i,k] = 7$$

$$t[i-1,k] = 7$$

i=n, k=W
while i,k > 0
if
$$t [i,k] \neq t [i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i = i-1, k = k-w_i$
else
 $i = i-1$

						v
$i \setminus V$	$\sqrt{0}$	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
→ 4	0	0	3	4	5	7

Items:

1: (3,2)

2: (4,3)

3: (5,4)

4: (6,5)

k=5

i=4

$$w_i = 5$$

$$t[i,k] = 7$$

$$t[i-1,k] = 7$$

i=n, k=W
while i,k > 0
if
$$t [i,k] \neq t [i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i = i-1, k = k-w_i$
else
 $\{\vec{i} = \vec{i} - \vec{l}\}$

Items:

Encontrando los elementos

	i∖W	<i>J</i> 0	1	2	3	4	5
	0	0	0	0	0	0	0
	1	0	0	3	3	3	3
	2	0	0	3	4	4	7
i→	3	0	0	3	4	5	7
	4	0	0	3	4	5	7

$\begin{array}{c} 1: (3,2) \\ 2: (4,3) \\ 3: (5,4) \\ 4: (6,5) \end{array}$ $\begin{array}{c} b_{i}=5 \\ w_{i}=4 \\ t[i,k] = 7 \end{array}$

i=n, k=W
while i,k > 0

if
$$t [i,k] \neq t [i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i = i-1, k = k-w_i$
else
$$[i=i-1]$$

Items:

Encontrando los elementos

1: (3,2) 2: (4,3) 3: (5,4) i=24: (6,5) k=5 $b_i = 4$ $w_i = 3$ t[i,k] = 7t[i-1,k] = 3 $k - w_i = 2$

i=n, k=W
while i,k > 0
if
$$t [i,k] \neq t [i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i = i-1, k = k-w_i$
else
 $i = i-1$

i\W () ()

Items:

$$i=1$$
 $k=2$

$$b_i = 3$$

$$w_i=2$$

$$t[i,k] = 3$$

$$t[i-1,k] = 0$$

$$k - w_i = 0$$

i=n, k=W
while i,k > 0
if
$$t [i,k] \neq t [i-1,k]$$
 then
el elemento i^{th} está en la mochila
 $i = i-1, k = k-w_i$
else
 $i = i-1$

	k ↓					
i\W	0	1	2	3	4	5
i → 0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

Items:

$$k=0$$

La mochila óptima contiene {1, 2}

i=n, k=W

while i,k > 0

if
$$t [i,k] \neq t [i-1,k]$$
 then

el elemento i^{th} está en la mochila k

 $i = i-1, k = k-w_i$

else

 $i = i-1$

Programación Dinámica: Tabulation

Fase 1 del algoritmo: Rellenar la tabla

```
for w = 0 to W

t [0,w] = 0

for i = 1 to n

t [i,0] = 0

for i = 1 to n

for w = 1 to W

if w_i \le w

if b_i + t [i-1,w-w_i] > t [i-1,w]

t [i,w] = b_i + t [i-1,w-w_i]

else

t [i,w] = t [i-1,w]
```

Fase 2 del algoritmo: Utilizando el contenido # de la tabla identificar los items elegidos

i=n , k=W

i = i - 1

```
while ....
if t [i,k] ≠ t [i-1,k] then
// El i<sup>th</sup> elemento está en la mochila
i = i-1, k = k-w<sub>i</sub>
else
// El i<sup>th</sup> elemento no está en la mochila
```