Machine learning

Machine learning gives computers the ability to learn without being explicitly programmed.

Neural networks

Computing systems inspired (loosely) by the brain

Neuron - unit of computation

x - real number

Neuron network

Training (deep learning)

Loss function adjusts connections weights as learning proceeds

Transfer learning

Supervised learning

Classification

Regression

Unsupervised learning

Clustering

Frameworks

Manchester United

Not Manchester United

Model creation

Images									Show Less
					<u>O</u>				
a0.jpg	a1.jpg	a2.jpg	a3.jpg	a4.png	a5.jpg	a6.jpg	a7.jpg	a8.jpg	a9.jpg
b10.jpg	b11.jpg	b12.jpg	b13.jpeg	b14.jpg	b15.jpg	b16.jpg	b17.jpg	b18.jpeg	b19.jpg
		Action 68 Test Control		FIRE LINUTED					
c20.jpg	c21	c22.jpg	c23.jpg	c24.jpg	c25.jpg	c26.jpg	c27.jpg	c28.jpg	c29.jpg
d30.jpeg	d31.jpg	d32.jpg	d33.jpg						

Bounding boxes

Turi Create

```
import turicreate as tc
data = tc.image_analysis.load_images('train', with_path=True)
data = data.sort(['path'])
data['annotations'] = [
    [{'coordinates': {'height': 450, 'width': 410, 'x': 575, 'y': 320}, 'label': 'manch'}], #0
    [{'coordinates': {'height': 271, 'width': 261, 'x': 280, 'y': 176}, 'label': 'manch'}], #1
    [{'coordinates': {'height': 177, 'width': 177, 'x': 254, 'y': 250}, 'label': 'manch'}], #2
    [{'coordinates': {'height': 400, 'width': 380, 'x': 360, 'y': 235}, 'label': 'manch'}], #31
    [{'coordinates': {'height': 190, 'width': 190, 'x': 250, 'y': 205}, 'label': 'manch'}], #32
    [{'coordinates': {'height': 170, 'width': 170, 'x': 350, 'y': 620}, 'label': 'manch'}] #33
model = tc.object detector.create(data)
model.export_coreml('manchester.mlmodel')
```

Core ML framework

Core ML request

```
private var requests = [VNCoreMLRequest]()

let mlmodel = Manchester().model
let model = try VNCoreMLModel(for: mlmodel)

let request = VNCoreMLRequest(model: model, completionHandler: { [weak self] request, error in self?.processClassifications(for: request, error: error)
})

request.imageCropAndScaleOption = .scaleFill
requests.append(request)
```

Core ML request handler

handler.perform(requests)

Resources

- · course.fast.ai
- · coursera.org/learn/machine-learning with Andrew Ng
- Swift by Sundell 22: "A path for learning"
- · <u>lynda.com</u> iOS App Development: Core ML
- · github.com/blob8129/MUnotMU