Chapter 3

Block Ciphers and the Data Encryption Standard

Dr. Shin-Ming Cheng

ON ECTIFITY LAB

CS4003701

Block vs Stream Ciphers

Stream Cipher vs. Block Cipher

- > Stream Ciphers
 - Encrypt bits individually
 - Usually small and fast
 - > common in embedded devices
 - A5/1 for GSM phones
- > Block Ciphers:
 - Always encrypt a full block (several bits)
 - Are common for Internet applications

Encryption and Decryption with Stream Ciphers

Plaintext x_i , ciphertext y_i , and key stream s_i consist of individual bits

- Encryption and decryption are simple additions modulo 2 (aka XOR) Encrypt bits individually
- Encryption and decryption are the same functions

Encryption:
$$y_i = e_{s_i}(x_i) = x_i + s_i \mod 2$$
 $x_i, y_i, s_i \in \{0, 1\}$

Decryption:
$$x_i = e_{s_i}(y_i) = y_i + s_i \mod 2$$

Synchronous vs. Asynchronous Stream Cipher ^k₁

- Security of stream cipher depends entirely on the key stream s_i:
 - Should be random, i.e., $Pr(s_i = 0) = Pr(s_i = 1) = 0.5$
 - Must be reproducible by sender and receiver
- > Synchronous Stream Cipher
 - Key stream depend only on the key
- > Asynchronous Stream Ciphers
 - Key stream depends also on the ciphertext

Modern Block Ciphers

- > most widely used types of cryptographic algorithms
- > provide secrecy / authentication services
- > DES (Data Encryption Standard)
- > illustrate block cipher design principles

Block Cipher Principles

- Most symmetric block ciphers are based on a Feistel Cipher Structure
 - decrypt ciphertext to recover messages efficiently
- > block ciphers look like an extremely large substitution
 - need table of 2⁶⁴ entries for a 64-bit block
 - instead create from smaller building blocks
- > use the idea of a product cipher

Ideal Block Cipher

DES History

- > IBM developed Lucifer cipher
 - by team led by Feistel in late 60's
 - used 64-bit data blocks with 128-bit key
- > then redeveloped as a commercial cipher with input from NSA and others
- > in 1973 NBS issued request for proposals for a national cipher standard
- > IBM submitted their revised Lucifer which was eventually accepted as the DES

Block Cipher Primitives: Confusion and Diffusion

- > Confusion:
 - An encryption operation where the relationship between key and ciphertext is obscured.
 - Substitution
- > Diffusion:
 - An encryption operation where the influence of one plaintext symbol is spread over many ciphertext symbols with the goal of hiding statistical properties of the plaintext.
 - Bit permutation
- > Both operations by themselves cannot provide security.
- The idea is to concatenate confusion and diffusion elements to build so called product ciphers

Product Ciphers

- Consist of rounds which are applied repeatedly to the data
- > Reach excellent diffusion
 - changing of one bit of plaintext results on average in the change of half the output bits

Example:

Overview of the DES Algorithm

> Encrypts blocks of size 64 bits

Uses a key of size 56 bits

> Symmetric cipher

uses same key for encryption and decryption

 Uses 16 rounds which all perform the identical operation

 Different subkey in each round derived from main key

The DES Feistel Network (1)

- > DES structure is a Feistel network
 - Advantage: encryption and decryption differ only in key schedule
- > Bitwise initial permutation, then 16 rounds
 - Plaintext is split into 32-bit halves L_i and R_i
 - R_i is fed into the function f, the output of which is then XORed with L_i
 - Left and right half are swapped
- > Rounds can be expressed as:

$$L_i = R_{i-1},$$

$$R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$$

The DES Feistel Network (2)

> L and R swapped again at the end of the cipher, i.e., after round 16 followed by a final permutation

Initial and Final Permutation

- > Bitwise Permutations
- > Inverse operations
 - Described by tables IP and IP-1

Initial Permutation

	IP
58 50 42 3	4 26 18 10 2
60 52 44 3	6 28 20 12 4
	8 30 22 14 6
64 56 48 4	0 32 24 16 8
57 49 41 3	3 25 17 9 1
59 51 43 3	5 27 19 11 3
61 53 45 3	7 29 21 13 5
63 55 47 3	9 31 23 15 7

Final Permutation

			II	5 –1			
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

The f-Function

- Main operation of DES
- > f-function inputs:
 - R_{i-1} and round key k_i
- > 4 Steps:
 - Expansion E
 - XOR with round key
 - S-box substitution
 - Permutation

The Expansion Function E

- > main purpose
 - increases diffusion

		I	3		
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	16 20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

CONNECTIFITY LAB

JST

Add Round Key

- Bitwise XOR of the round key and the output of the expansion function E
- Round keys are derived from the main key in the DES keyschedule (in a few slides)

The DES S-Boxes

- > Eight substitution, tables
 - 6 bits of input, 4 bits of output
- > Crucial element
 - Non-linear
 - resistant to differential cryptanalysis

	S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ſ	0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
١	1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
١	2	04	01	14	08	13	06	02	11	15	12	09	07	03	05 10	05	00
	3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

CONNECTIFITY LAB

NTUST

The Permutation P

- > Bitwise permutation
 - Introduces diffusion
 - Output bits of one S-Box effect several S-Boxes in next round
- Diffusion by E, S-Boxes and P guarantees
 - after Round 5 every bit is a function of each key bit and each plaintext bit

			1	D			
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

CONNECTIFITY LAB

Key Schedule (1/2)

- > Derives 16 round keys (or subkeys) k_i of 48 bits each from the original 56 bit key
- > The input key size of the DES is 64 bit ->56 bit key and 8 bit parity:

			РC	- 1			
57	49	41	33	25	17	9	1
58	50	42	34	26	18	10	2
59							
60	52	44	36	63	55	47	39
31	23	15	7	62	54	46	38
30	22	14	6	61	53	45	37
29	21	13	5	28	20	12	4

- Parity bits are removed in a first permuted choice PC -1: the bits 8, 16, 24, 32, 40, 48, 56 and 64 are not used at all)

Key Schedule (2/2)

- \rightarrow Split key into 28-bit halves C_0 and D_0
 - In rounds i = 1, 2, 9, 16, the two halves are each rotated left by one bit
 - In all other rounds where the two halves are each rotated left by two bits
- > In each round *i* permuted choice PC-2 selects a permuted subset of 48 bits of C_i and D_i as round key *k_i*,
 - each k_i is a permutation of k!
- > The total number of rotations:
 - $4 \times 1 + 12 \times 2 = 28 \Rightarrow D_0 = D_{16}$ and $C_0 = C_{16}$

Decryption

- Generate the same 16 round keys in reverse order
- > Reversed key schedule:
 - As D₀=D₁₆ and C₀ = C₁₆
 the first round key can be generated by applying
 PC 2 right after PC 1
 No rotation in round 1
- One bit rotation to the right in rounds 2, 9 and 16
- > Two bit rotations to the right in all other rounds

Security of DES (1/2)

- > Major criticisms
 - Key space is too small (2⁵⁶ keys)
 - S-box design criteria have been kept secret
 - Are there any hidden analytical attacks (backdoors), only known to the NSA?
- > Exhaustive key search:
 - For a given pair of plaintext-ciphertext (x, y)
 - Test all 2^{56} keys until the condition $DES_k^{-1}(y) = x$ is fulfilled
 - Relatively easy given today's computer technology

Security of DES (2/2)

- > Analytical Attacks:
 - DES is highly resistent to both differential and linear cryptanalysis, which have been published years later than the DES.
 - > This means IBM and NSA had been aware of these attacks for 15 years!
 - So far there is no known analytical attack which breaks DES in realistic scenarios.

History of Attacks on DES

Year	Proposed / implemented DES Attack
1977	Diffie & Hellman, (under-)estimate the costs of a key search machine
1990	Biham & Shamir propose differential cryptanalysis (247 chosen ciphertexts)
1993	Mike Wiener proposes design of a very efficient key search machine: Average search requires 36h. Costs: \$1,000,000
1993	Matsui proposes linear cryptanalysis (243 chosen ciphertexts)
Jun. 1997	DES Challenge I broken, 4.5 months of distributed search
Feb. 1998	DES Challenge II1 broken, 39 days (distributed search)
Jul. 1998	DES Challenge II2 broken, key search machine <i>Deep Crack</i> built by the Electronic Frontier Foundation (EFF): 1800 ASICs with 24 search engines each, Costs: \$250 000, 15 days average search time (required 56h for the Challenge)
Jan. 1999	DES Challenge III broken in 22h 15min (distributed search assisted by <i>Deep Crack</i>)
2006-2008	Reconfigurable key search machine <i>COPACOBANA</i> developed at the Universities in Bochum and Kiel (Germany), uses 120 FPGAs to break DES in 6.4 days (avg.) at a cost of \$10 000.

Triple DES – 3DES

> Triple encryption using DES is often used in practice to extend the effective key length of DES to 112. $y = DES_{k_3}(DES_{k_2}(DES_{k_1}(x)))$

- > Alternative version of 3DES: $y = DES_{k_3}(DES_{k_2}^{-1}(DES_{k_1}(x)))$.
- Choosing k₁ = k₂ = k₃ performs single DES encryption
- > No practical attack known today
- > Used in many legacy applications,
 - banking systems

Lessons Learned

- > DES was the dominant symmetric encryption algorithm from the mid-1970s to the mid-1990s.
 - Since 56-bit keys are no longer secure, the Advanced Encryption Standard (AES) was created
- Standard DES with 56-bit key length can be broken relatively easily nowadays through an exhaustive key search
- > DES is quite robust against known analytical attack
 - In practice it is very difficult to break the cipher with differential or linear cryptanalysis
- By encrypting with DES three times in a row, triple DES (3DES) is created, against which no practical attack is currently known