Машинное обучение: простые алгоритмы обучения с учителем

MADE academy Эмели Драль

Базовые концепции машинного обучения

- 1. Виды обучения, виды задач, базовые концепции
- 2. Простые алгоритмы: логика построения и связь с математикой
- 3. Оценка качества в машинном обучении

Простые методы обучения с учителем

- 1. Логический подход
- 2. Метрический подход
- 3. Вероятностный подход

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Простейшая выборка

Рассмотрим выборку объектов с одним признаком x:

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Логический

ПОДХОД

Простейшая выборка

Рассмотрим выборку объектов с одним признаком x:

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Логический подход

Как подобрать порог по признаку в задаче бинарной классификации?

Если выборка разделима, оптимальный порог - между последним объектом одного класса и первым объектом:

Часто выборка не разделима и есть несколько неплохих порогов:

Часто выборка не разделима и есть несколько неплохих порогов:

Часто выборка не разделима и есть несколько неплохих порогов:

Вариант 1: потребовать от модели максимальной точности

Логический подход

и не ограничивать количество порогов, чтобы разделить выборку идеально

Вариант 1: потребовать от модели максимальной точности

Логический подход

и не ограничивать количество порогов, чтобы разделить выборку идеально

Проблема: запоминание выборки вместо обучения

Вариант 1: потребовать от модели максимальной точности

Логический подход

Вариант 2: разрешить объединение интервалов

Вариант 1: потребовать от модели максимальной точности

Логический подход

Вариант 2: разрешить объединение интервалов

Такие интервалы можно строить последовательно

Простая выборка

Итак, выборка линейно не разделима

Требуется выбрать оптимальный порог:

Как поставить задачу?

Задача оптимизации

Задача оптимизации

Чтобы разделить классы хорошо – нужно, чтобы и в L и в R преобладал только один класс

Задача оптимизации

Пусть p_0 — доля класса 0 в R, а p_1 — доля класса 1 в R В нашем примере $p_0=\frac{1}{4}$, а $p_1=\frac{3}{4}$

Как записать, что один из классов преобладает?

Задача оптимизации

Как записать, что один из классов должен преобладать в R?

Например, так:

$$p_{max} = \max\{p_0, p_1\} \to \max_t$$

Или так:

$$1 - p_{max} \rightarrow \min_{t}$$

Логический подход

Другой вариант:

$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1 \to \min_t$$

Логический подход

Другой вариант:

$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1 \to \min_t$$
0.8
0.6
0.2
0.1
0.2
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Логический подход

Все это разные способы задать оптимизационную задачу, которую мы можем решить, перебирая порог t

Но если смотреть только на R, можем разделить выборку так:

Логический подход

Здесь проблема возникает только в левой части, в правой части преобладает один класс

Но если смотреть только на R, можем нечаянно разделить выборку так:

Логический подход

Здесь проблема возникает только в левой части, в правой части преобладает один класс

Значит надо учитывать обе части: R и L

Оптимизация разбиения

Вся выборка (п объектов)

$$G(t) = H(L) + H(R) \rightarrow \min_{t}$$

H(R) - мера «неоднородности» (impurity) множества R

Оптимизация разбиения

Вся выборка (п объектов)

$$G(t) = H(L) + H(R) \rightarrow \min_{t}$$

Но что если L и R сильно разного размера? Учтем это.

Оптимизация разбиения

Вся выборка (п объектов)

$$G(t) = \frac{|L|}{n}H(L) + \frac{|R|}{n}H(R) \to \min_{t}$$

Оптимизация разбиения

H(R) — мера «неоднородности» множества R

Оптимизация разбиения

H(R) — мера «неоднородности» множества R

Варианты этой функции:

Логический подход

1) Misclassification criteria:
$$H(R) = 1 - \max\{p_0, p_1\}$$

2) Entropy criteria:
$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1$$

3) Gini criteria:
$$H(R) = 1 - p_0^2 - p_1^2 = 2p_0p_1$$

Обобщение для N признаков

Рекурсивное построение

 $x^{(j)} < t$

Логический подход

Рекурсивное построение

Рекурсивное построение

Процесс можно продолжать в тех узлах, в которые попадает достаточно много объектов

Рекурсивное построение

Рекурсивное построение

H(R) — мера «неоднородности» множества R

Варианты этой функции:

Логический подход

1) Misclassification criteria:
$$H(R) = 1 - \max\{p_0, p_1\}$$

2) Entropy criteria:
$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1$$

3) Gini criteria:
$$H(R) = 1 - p_0^2 - p_1^2 = 2p_0p_1$$

Критерии разбиений

Дерево решений

Логический подход

Деревья решений

Область применения:

- базовый алгоритм в ансамбле
- очень небольшие выборки
- алгоритм для интерпретации сложной модели

Ограничения:

- сильнейшее переобучение

Границы сложной формы

Метрический подход

Границы сложной формы

С помощью дерева решений такие границы строить неудобно

Границы сложной формы

Гипотеза о "компактности":

- объекты одного класса похожи на представителей своего класса, а значит расположены в пространстве рядом друг с другом

Сложные границы

Границы сложной формы

Гипотеза о "компактности":

- объекты одного класса похожи на представителей своего класса, а значит расположены в пространстве рядом друг с другом

Идея:

- давайте классифицировать объекты на основе близости

Бинарная классификация

Метрический подход

Бинарная классификация

Метрический подход

Бинарная классификация

Возьмём две точки в многомерном пространстве:

$$x_1$$
 и x_2

$$x_1 = (x_1^{(1)}, \dots, x_1^{(d)})$$

Расстояние между объектами

Есть две точки в многомерном пространстве: x_1 и x_2 Как ввести расстояние между ними?

$$x_2 - x_1 = (x_2^{(1)} - x_1^{(1)}, \dots, x_2^{(d)} - x_1^{(d)})$$

Частая практика:

(1)
$$d(x_1, x_2) = d(x_2, x_1) = ||x_2 - x_1||$$

Расстояние между объектами

Есть две точки в многомерном пространстве: x_1 и x_2 Как ввести расстояние между ними?

$$x_2 - x_1 = (x_2^{(1)} - x_1^{(1)}, \dots, x_2^{(d)} - x_1^{(d)})$$

Частая практика:

(1)
$$d(x_1, x_2) = d(x_2, x_1) = ||x_2 - x_1||$$

$$(2)d(x_1, x_2) = \sqrt{\left(x_2^{(1)} - x_1^{(1)}\right)^2 + \dots + \left(x_2^{(d)} - x_1^{(d)}\right)^2}$$

Расстояние между объектами

В зависимости от выбора способа вычислять норму (длину) вектора получаем разные метрики.

Примеры норм:

$$||x||_{\ell_2} = \sqrt{(x^{(1)})^2 + \dots + (x^{(d)})^2}$$

$$||x||_{\ell_1} = |x^{(1)}| + \dots + |x^{(d)}|$$

$$||x||_{\ell_\infty} = \max\{|x^{(1)}|, \dots, |x^{(d)}|\}$$

$$||x||_{\ell_p} = \sqrt[p]{|x^{(1)}|^p + \dots + |x^{(d)}|^p}$$

Варианты норм

Расстояние между объектами

Расстояние должно иметь смысл для решаемой задачи:

- Как оценить расстояние между клиентами?
- Как оценить расстояние между фильмами?

Расстояние между объектами

Расстояние должно иметь смысл для решаемой задачи:

- Как оценить расстояние между клиентами?
- Как оценить расстояние между фильмами?

Идеи:

- Можно ввести кастомизированную метрику (кажется, можно даже не метрику, а функцию)
- Можно вместо расстояния ввести меру близости

Расстояние между объектами

Пример:

Косинусная мера близости (cosine similarity)

$$sim(x_1, x_2) = \frac{\langle x_1, x_2 \rangle}{\|x_1\| \cdot \|x_2\|} = \frac{x_1^{(1)} \cdot x_2^{(1)} + \dots + x_1^{(d)} \cdot x_2^{(d)}}{\|x_1\| \cdot \|x_2\|}$$

Расстояние между объектами

Пример:

Косинусная мера близости (cosine similarity)

$$sim(x_1, x_2) = \frac{\langle x_1, x_2 \rangle}{\|x_1\| \cdot \|x_2\|} = \frac{x_1^{(1)} \cdot x_2^{(1)} + \dots + x_1^{(d)} \cdot x_2^{(d)}}{\|x_1\| \cdot \|x_2\|}$$

$$x_1 = (x_1^{(1)}, \dots, x_1^{(d)})$$

$$x_2 = (x_2^{(1)}, \dots, x_2^{(d)})$$

$$sim(x_1, x_2) = \cos \alpha$$

Метод 1NN

Метод 1NN

Метрический подход

Метод kNN

Пример классификации для k = 5:

Метод kNN

Пример классификации для k = 5: Выбираем класс, который преобладает

Метод kNN

Метод kNN

Как подобрать оптимальное значение k?

Какое количество соседей оптимально выбрать с точки зрения качества работы на обучающей выборке?

Метод kNN

Как подобрать оптимальное значение к?

Какое количество соседей оптимально выбрать с точки зрения качества работы на обучающей выборке?

Правильно, k=1 – для каждого объекта обучающей выборки смотрим на ближайшего соседа (этот же объект)

Метод kNN

Как подобрать оптимальное значение к?

Какое количество соседей оптимально выбрать с точки зрения качества работы на обучающей выборке?

Правильно, k=1 – для каждого объекта обучающей выборки смотрим на ближайшего соседа (этот же объект)

Замечание: некоторые параметры алгоритмов (например, количество соседей k) нужно подбирать на отложенной выборке или кросс-валидации

Метод kNN

Пример классификации (k = 6):

Как принять решение, если за каждый класс голосует одинаковое количество объектов?

Метод kNN

Пример классификации (k = 6):

Как принять решение, если за каждый класс голосует одинаковое количество объектов?

Идея: давайте взвесим вклад от соседей

Метод kNN

Пример классификации (k = 6):

Beca:

- функция от номера объекта $w(x_{(i)}) = w(i)$
- функция от расстояния $w(x(i)) = w(d(x, x_{(i)}))$

Метод kNN

Пример классификации (k = 6):

Beca:

$$- w(x_{(i)}) = w(i)$$

$$- w(x(i)) = w(d(x, x_{(i)}))$$

$$Z_{\bullet} = \frac{\left[w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) \right]}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

$$Z_{\bullet} = \frac{W(X_{(4)}) + W(X_{(5)}) + W(X_{(6)})}{W(X_{(1)}) + W(X_{(2)}) + W(X_{(3)}) + W(X_{(4)}) + W(X_{(5)}) + W(X_{(6)})}$$

Метод kNN в задаче регрессии

Пример взвешенного kNN (k = 6) в задаче регрессии:

Метрический подход

Метод kNN в задаче регрессии

Пример взвешенного kNN (k = 6) в задаче регрессии:

$$= \frac{4 \cdot w(x_{(1)}) + 4 \cdot w(x_{(2)}) + 5 \cdot w(x_{(3)}) + 4 \cdot w(x_{(4)}) + 3 \cdot w(x_{(5)}) + 3 \cdot w(x_{(6)})}{w(x_{(1)}) + w(x_{(2)}) + w(x_{(3)}) + w(x_{(4)}) + w(x_{(5)}) + w(x_{(6)})}$$

Обобщенный метрический классификатор

$$a(x; X^{l}) = argmax_{y \in Y} \sum_{i=1}^{l} [y^{(i)} = y] w(i; x)$$

$$\Gamma_{y}(x)$$

w(i; x) – вес *i*-го соседа объекта x $\Gamma_{v}(x)$ - оценка близости объекта x к классу y

Метрический ПОДХОД

Метод Парзеновского окна

$$w(i;x) = K\left(\frac{\rho(x,x^{(i)})}{h}\right)$$
, где h — ширина окна

K(r) – ядро, не возрастает и положительно на [0, 1]

Метод Парзеновского окна фиксированной ширины:

$$a(x; X^{l}, h, K) = argmax_{y \in Y} \sum_{i=1}^{l} [y^{(i)} = y] K\left(\frac{\rho(x, x^{(i)})}{h}\right)$$

Метод Парзеновского окна переменной ширины:
$$a(x; X^l, k, K) = argmax_{y \in Y} \sum_{i=1}^l [y^{(i)} = y] \mathbb{K} \left(\frac{\rho(x, x^{(i)})}{\rho(x, x^{(k+1)})} \right)$$

Метод потенциальных функций

$$w(i;x) = \gamma^{(i)} K\left(\frac{\rho(x,x^{(i)})}{h}\right)$$
, где $\gamma^{(i)}$ вес объекта i

$$a(x; Xl, h, K) = argmax_{y \in Y} \sum_{i=1}^{l} [y^{(i)} = y] \gamma^{(i)} K\left(\frac{\rho(x, x^{(i)})}{h_i}\right)$$

Аналогия из физики:

- $\gamma^{(i)}$ величина заряда в точке x_i
- h_i радиус действия потенциала с центром в точке x_i
- y_i знак заряда
- K(r) = 1/r

Метод Парзеновского окна

Область применения:

- задачи, в которых оценить близость легче, чем ввести признаки
- небольшие выборки
- fall-back алгоритм

Ограничения:

- ленивое обучение
- выбор расстояния
- чувствителен к выбросам в обучении

Бинарная классификация

Одномерный случай

Плотность распределения

Оценка плотности

- 1. Непараметрическая оценка плотности
- 2. Параметрическая оценка плотности
 - а) Оценка параметров некоторого стандартного распределения (нормальное, мультиномиальное, бернулли)
 - b) Восстановление смеси распределений

Нормальное распределение

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Нормальное распределение

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$

Вероятностный подход

другой вариант оценки для σ^2 :

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Многомерное нормальное распределение

0.0012

Очень много параметров: вектор средних μ и матрица ковариаций Σ

Вероятностный ПОДХОД

Наивное предположение Можно представить $p(x) = p(x^{(1)})p(x^{(2)})$

Наивное предположение

Если признаки $x^{(1)}$, ..., $x^{(d)}$ распределены независимо:

$$p(x) = p(x^{(1)}) \dots p(x^{(d)})$$

- в общем случае это не так
- если признаки не независимы, это можно предположить и всё равно воспользоваться этим свойством
- отсюда название наивный байесовский классификатор

Наивный Байесовский классификатор

Если мы знаем плотности классов, то можем относить объект выборки к тому классу, плотность которого в этой точке признакового пространства больше:

Наивный Байесовский классификатор

- 1. Считаем, что $p(x) = p(x^{(1)}) \dots p(x^{(d)})$
- 2. Оцениваем для каждого класса каждую из одномерных плотностей по выборке (например, считаем нормальными и вычисляем параметры по формуле)
- 3. Классифицируя объект *x* выбираем класс с максимальной плотностью в точке *x*

Наивный Байесовский классификатор

- 1. Считаем, что $p(x) = p(x^{(1)}) \dots p(x^{(d)})$
- 2. Оцениваем для каждого класса каждую из одномерных плотностей по выборке (например, считаем нормальными и вычисляем параметры по формуле)
- 3. Классифицируя объект *x* выбираем класс с максимальной плотностью в точке *x*

Проблема: как сделать поправку на то, что какой-то класс в принципе редко встречается?

Наивный Байесовский классификатор

$$p(x,y) = P(y)p(x|y) = P(x)p(y|x)$$
 — формула Байеса $P(y|x) = P(y)p(x|y)$ — так как $p(x) = 1$,мы наблюдаем х $p(x|y) = p\big(x^{(1)}|y\big) \dots p\big(x^{(d)}|y\big)$ - наивное предположение

Обучение модели:

- 1. Оцениваем для каждого класса y каждую из одномерных плотностей $p(x^{(k)}|y)$ по выборке
- 2. Оцениваем для для каждого класса y его априорную вероятность P(y)
- 3. Классифицируя объект x выбираем класс с максимальной P(y|x)

Применение модели:

$$a(x) = \underset{y}{\operatorname{argmax}} \left(P(y) p(x^{(1)}|y) \dots p(x^{(d)}|y) \right)$$

Наивный Байесовский классификатор

Особенности:

- требуется восстановление плотности
- предположение о независимости признаков работает не всегда (но иногда работает!)

Машинное обучение: простые алгоритмы обучения с учителем

Спасибо! Эмели Драль