Chapter 1

Hurwitz existence problem

Chapter 2

Monodromy

- 2.1 Symmetric group and partitions
- 2.2 Branched covering action of the fundamental group
- 2.3 Monodromy and realizability

Proposition 2.1. Let Σ_g be the connected sum of $g \geq 0$ tori, $d \geq 1$ an integer, $\pi_1, \ldots, \pi_n \in \Pi(d)$ partitions of d. Then there exists a realizable combinatorial datum $\mathcal{D} = (\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \ldots, \pi_n)$ if and only if there exist permutations $\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_n, \gamma_1, \ldots, \gamma_n \in \mathfrak{S}_g$ such that:

- (i) $[\alpha_i] = \pi_i$ for each $1 \le i \le n$;
- (i) $[\beta_1, \gamma_1] \cdots [\beta_q, \gamma_q] \cdot \alpha_1 \cdots \alpha_n = 1$;
- (i) the subgroup $\langle \alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_q, \gamma_1, \ldots, \gamma_q \rangle \leq \mathfrak{S}_d$ acts transitively on $\{1, \ldots, d\}$.

In this case, $\widetilde{\Sigma}$ is necessarily orientable.

Remark 2.1. Given Σ_g , d and π_1, \ldots, π_n , there is at most one surface $\widetilde{\Sigma}$ such that $\mathcal{D} = (\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \ldots, \pi_n)$ is a candidate datum. In fact, the Riemann-Hurwitz [??] formula gives

$$\chi(\widetilde{\Sigma}) = d\chi(\Sigma_g) - v(\pi_1) - \dots - v(\pi_n)$$

which, in turn, uniquely determines the orientable surface $\widetilde{\Sigma}$.

Proposition 2.2. Let N_g be the connected sum of $g \ge 1$ projective planes, $d \ge 1$ an integer, $\pi_1, \ldots, \pi_n \in \Pi(d)$ partitions of d. Then there exists a realizable combinatorial datum $\mathcal{D} = (\widetilde{\Sigma}, N_g; d; \pi_1, \ldots, \pi_n)$ if and only if there exist permutations $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_g \in \mathfrak{S}_d$ such that:

- (i) $[\alpha_i] = \pi_i$ for each $1 \le i \le n$;
- (i) $\beta_1^2 \cdots \beta_q^2 \cdot \alpha_1 \cdots \alpha_n = 1$;
- (i) the subgroup $\langle \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_g \rangle \leq \mathfrak{S}_d$ acts transitively on $\{1, \dots, d\}$.

In this case, $\widetilde{\Sigma}$ is orientable if and only if ??.

Remark 2.2. Given N_g , d and π_1, \ldots, π_n , there are at most two surfaces $\widetilde{\Sigma}$, one orientable and one non-orientable, such that $\mathcal{D} = (\widetilde{\Sigma}, N_g; d; \pi_1, \ldots, \pi_n)$ is a candidate datum: like in remark 2.1, the Riemann-Hurwitz [??] formula fixes $\chi(\widetilde{\Sigma})$ which, together with orientability, uniquely determines $\widetilde{\Sigma}$

Proposition 2.3. Let $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ be a combinatorial datum, with Σ non-orientable and $\widetilde{\Sigma}$ orientable. Then \mathcal{D} is realizable if and only if d is even and there exist partitions $\pi'_1, \dots, \pi'_n, \pi''_1, \dots, \pi''_n \in \Pi(d/2)$ with $\pi_i = \pi'_i \cup \pi''_i$ for each $1 \leq i \leq n$, such that the combinatorial datum

$$\mathcal{D}' = (\widetilde{\Sigma}, \widehat{\Sigma}; d/2; \pi'_1, \dots, \pi'_n, \pi''_i, \dots, \pi''_n)$$

is realizable, where $\widehat{\Sigma}$ is the orientable double covering of Σ .

2.4 Non-positive Euler characteristic

Lemma 2.4. Let $\alpha \in \mathfrak{S}_d$ be a permutation. Set $r = d - v(\alpha)$, and let $t \geq 0$ be an integer such that $2t \leq v(\alpha)$. Then α can be written as the product of a (r + 2t)-cycle and a d-cycle.

Proof. Without loss of generality, assume that

$$\alpha = (1, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{r-1} + 1, \dots, d_r),$$

where $d_r = d$. Fix

$$\beta_0 = (1, b_1, b_2, \dots, b_{2t}),$$
 $\beta_1 = (1, d_1 + 1, d_2 + 2, \dots, d_{r-1} + 1).$

Set

$$\beta = \beta_0 \beta_1 = (1, d_1 + 1, d_2 + 1, \dots, d_{r-1} + 1, b_1, b_2, \dots, b_{2t}).$$

An easy computation shows that

$$\beta \alpha = \beta_0 \beta_1 \alpha$$

$$= (1, b_1, b_2, \dots, b_{2t})(1, 2, \dots, d)$$

$$= (1, \dots, b_1 - 1, b_2, \dots, b_3 - 1, \dots, b_4, \dots, b_{2t-1} - 1, b_{2t}, \dots, d, b_1, \dots, b_2 - 1, b_3, \dots, b_{2t} - 1).$$

Writing $\alpha = \beta^{-1}(\beta \alpha)$ gives the desired decomposition.

Corollary 2.5. Let $\alpha \in \mathfrak{A}_d$ be an even permutation. Then α can be written as:

- (i) a commutator $[\beta, \gamma]$, where γ is a d-cycle;
- (i) a product of two squares $\delta^2 \epsilon^2$, where $\delta \epsilon$ is a d-cycle.

Proof. Since α is an even permutation, its branching number $v(\alpha)$ is even. By lemma 2.4, there exist two d-cycles $\tau, \sigma \in \mathfrak{S}_d$ such that $\alpha = \tau \sigma$.

(i) Since τ and σ^{-1} are conjugated, there exists a permutation $\beta \in \mathfrak{S}_d$ such that $\tau = \beta \sigma^{-1} \beta^{-1}$. Setting $\gamma = \sigma^{-1}$, we immediately get that

$$\alpha = \tau \sigma = \beta \sigma^{-1} \beta^{-1} \sigma = \beta \gamma \beta^{-1} \gamma^{-1} = [\beta, \gamma].$$

(i) Since τ and σ are conjugated, there exists a permutation $\delta \in \mathfrak{S}_d$ such that $\tau = \delta \sigma \delta^{-1}$. Setting $\epsilon = \delta^{-1} \sigma$, we have that

$$\alpha = \tau \sigma = \delta \sigma \delta^{-1} \sigma = \delta^2 (\delta^{-1} \sigma)^2 = \delta^2 \epsilon^2.$$

Theorem 2.6. Let $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ be a candidate datum. If $\chi(\Sigma) \leq 0$, then \mathcal{D} is realizable.

Proof. Let us first assume that Σ is orientable; this means that $\Sigma = \Sigma_g$ is the connected sum of $g \geq 1$ tori, and that $\widetilde{\Sigma}$ is orientable as well. Choose permutations $\alpha_1, \ldots, \alpha_n \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ for each $1 \leq i \leq n$. Let $\alpha = \alpha_1 \cdots \alpha_n$. Since \mathcal{D} is a candidate datum, we have that

$$v(\alpha) \equiv v(\alpha_1) + \ldots + v(\alpha_n) \equiv 0 \pmod{2}$$
.

By corollary 2.5, we can find permutations $\beta_1, \gamma_1 \in \mathfrak{S}_d$ such that $\alpha = [\gamma_1, \beta_1]$ and β_1 is a *d*-cycle. Set $\beta_2 = \ldots = \beta_g = \gamma_2 = \ldots = \gamma_g = \mathrm{id} \in \mathfrak{S}_d$. All the conditions of proposition 2.1 are satisfied; since $\widetilde{\Sigma}$ is orientable, this implies that \mathcal{D} is realizable (see remark 2.1).

Assume now that Σ and $\widetilde{\Sigma}$ are both non-orientable; this means that $\Sigma = N_g$ is the connected sum of $g \geq 2$ projective planes. Choose permutations $\alpha_1, \ldots, \alpha_n \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ for each $1 \leq i \leq n$. Let $\alpha = \alpha_1 \cdots \alpha_n$. Similarly to what we did for the previous case, we can find $\beta_1, \beta_2 \in \mathfrak{S}_d$ such that $\alpha = \beta_2^{-2}\beta_1^{-2}$ and $\beta_2\beta_1$ is a d-cycle. By setting $\beta_3 = \ldots = \beta_g = \mathrm{id} \in \mathfrak{S}_d$, proposition 2.2 (together with remark 2.2) implies the realizability of \mathcal{D} .

Finally, consider the case where Σ is non-orientable and $\widetilde{\Sigma}$ is orientable. Since \mathcal{D} is a candidate datum, d is even and there exist partitions $\pi'_1, \ldots, \pi'_n, \pi''_1, \ldots, \pi''_n \in \Pi(d/2)$ with $\pi_i = \pi'_1 \cup \pi''_i$ for each $1 \leq i \leq n$. Let $\widehat{\Sigma}$ be the double orientable covering of Σ ; by the first case we analyzed, the candidate datum

$$\mathcal{D}' = (\widetilde{\Sigma}, \widehat{\Sigma}; d/2; \pi'_1, \dots, \pi'_n, \pi''_1, \dots, \pi''_n)$$

is realizable. By proposition 2.3, \mathcal{D} is realizable as well.

2.5 Products in symmetric groups

Lemma 2.7. Let X, Y be finite sets; denote by h the cardinality of Y, and by k the cardinality of $X \cap Y$. Let $\alpha \in \mathfrak{S}(X)$, $\beta \in \mathfrak{S}(Y)$, $\gamma \in \mathfrak{S}(X \cap Y)$. Assume that $\beta = (b_1, \ldots, b_h)$ is a h-cycle, and that γ is a k-cycle of the form $\gamma = (b_{i_1}, \ldots, b_{i_k})$ with $1 \leq i_1 \leq \ldots \leq i_k \leq h$. Then $\alpha \in \mathfrak{S}(X)$ and $\alpha \gamma^{-1} \beta \in \mathfrak{S}(X \cup Y)$ have the same number of cycles.

Proof. Write $\gamma = (u_1, \dots, u_k)$, where $u_j = b_{i_j}$. Without loss of generality, assume that $i_1 = 1$. Then we can write

$$\beta = (u_1, \dots, w_1, u_2, \dots, w_2, u_3, \dots, w_{k-1}, u_k, \dots, w_k),$$

possibly with $u_j = w_j$ for some values of j. We immediately get that

$$\gamma^{-1}\beta = (u_1, \dots, w_1)(u_2, \dots, w_2) \cdots (u_k, \dots, w_k).$$

If we denote by $A_1, \ldots, A_r \subseteq X$ the orbits of α , it is then easy to see that the orbits of $\alpha \gamma^{-1} \beta$ are $A'_1, \ldots, A'_r \subseteq X \cup Y$, where

$$A'_j = A_j \cup \bigcup_{u_l \in A_j} \{u_l, \dots, w_l\}.$$

Proposition 2.8. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) < d$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $v(\alpha\beta) = v(\alpha) + v(\beta)$.

Proof. First of all, note that the conclusion is trivial whenever $v(\pi) = 0$ or $v(\rho) = 0$. This already solves the cases d = 1 and d = 2. We now proceed by induction on $d \ge 3$, assuming that $v(\pi) > 0$ and $v(\rho) > 0$. Write $\pi = [a_1, \ldots, a_r]$, $\rho = [b_1, \ldots, b_s]$; without loss of generality, assume that $b_1 > 1$. Fix

$$\beta = (1, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s),$$

where $b_1 = d_1 \ge 2$, $b_i = d_i - d_{i-1}$ for $2 \le i \le s$ (in particular, $d_s = d$). Note that

$$d-1 \ge v(\pi) + v(\rho) = (a_1 - 1) + \ldots + (a_r - 1) + d - s \ge a_1 - 1 + d - s,$$

hence $a_1 \leq s$. Fix $\alpha_1 = (1, d_1 + 1, \dots, d_{a_1-1} + 1)$, and let $A = \{1, d_1 + 1, \dots, d_{a_1-1} + 1\}$ be the support of α_1 . Define $Q = \{1, \dots, d_{a_1}\} \setminus A$; note that Q_1 is non-empty, since $d_1 + 1 \geq 3$ implies that $2 \in Q_1$. Consider the partitions

$$\pi' = [a_2, a_3, \dots, a_r],$$
 $\rho' = [|Q|, b_{a_1+1}, \dots, b_s].$

We have that

$$\sum \pi' = \sum \rho' = d - a_1, \qquad v(\pi') = v(\pi) - a_1 + 1, \qquad v(\rho') = v(\rho) - 1.$$

Since $d - a_1 < d$ and $v(\pi') + v(\rho') = v(\pi) + v(\rho) - a_1 < d - a_1$, by induction we find $\alpha', \beta' \in \mathfrak{S}(\{1, \ldots, d\} \setminus A)$ with $[\alpha'] = \pi'$ and $[\beta'] = \rho'$ such that $v(\alpha'\beta') = v(\alpha') + v(\beta')$. Up to conjugation, we may assume that

$$\beta' = \beta_1(d_{a_1} + 1, \dots, d_{a_1+1})(d_{a_1+1} + 1, \dots, d_{a_1+2}) \cdots (d_{s-1} + 1, \dots, d_s),$$

where β_1 is the |Q|-cycle whose entries are the elements of Q in increasing order. An easy computation shows that

$$\alpha_1\beta = (1, \dots, d_{a_1})(d_{a_1} + 1, \dots, d_{a_1+1}) \cdots (d_{s-1} + 1, \dots, d_s).$$

Therefore, setting $\alpha = \alpha' \alpha_1$, we have that

$$\alpha\beta = \alpha_1 \alpha' \beta$$

= $\alpha'(1, \dots, d_{a_1})(d_{a_1} + 1, \dots, d_{a_1+1}) \cdots (d_{s-1} + 1, \dots, d_s)$
= $\alpha' \beta' \beta_1^{-1}(1, \dots, d_{a_1})$

By lemma 2.7, this implies that $\alpha\beta$ has the same number of cycles as $\alpha'\beta'$, so that

$$v(\alpha\beta) = a_1 + v(\alpha'\beta')$$

= $a_1 + v(\alpha') + v(\beta')$
= $a_1 + (v(\pi) - a_1 + 1) + (v(\rho) - 1)$
= $v(\pi) + v(\rho)$.

Since $[\alpha] = \pi$ and $[\beta] = \rho$, the conclusion follows.

Proposition 2.9. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \ge d$, and let $t = v(\pi) + v(\rho) - d + 1$. Fix an integer $0 \le k \le t$ such that $k \equiv t \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $v(\alpha\beta) = d - 1 - k$ and the action of $\langle \alpha, \beta \rangle$ on $\{1, \ldots, d\}$ is transitive.

aybe only k = 0 eded (in this case, ansitivity is trivial)?

Proof. Write $\pi = [a_1, \dots, a_r]$. Since $v(\rho) \leq d - 1$ and $v(\pi) + v(\rho) \geq d$, there exists a largest integer $0 \leq i \leq r$ such that $(a_1 - 1) + \dots + (a_i - 1) + v(\rho) \leq d - 1$. Define

$$z = d - v(\rho) - (a_1 - 1) - \dots - (a_i - 1).$$

Consider the partition $\pi' = [a_1, \ldots, a_i, z, 1, \ldots, 1] \in \Pi(d)$. Since by construction $v(\pi') + v(\rho) = d-1$, thanks to proposition 2.8 we can find permutations $\alpha', \beta \in \mathfrak{S}_d$ with $[\alpha'] = \pi'$ and $[\beta] = \rho$ such that $v(\alpha'\beta) = d-1$; in other words, $\alpha'\beta$ is a d-cycle. Consider now the partition $\pi'' = [a_{i+1} - z + 1, a_{i+2}, \ldots, a_r]$, whose branching number is $v(\pi'') = t$. Let $v = \sum \pi''$; fix an element v = v of the v = v-cycle of v = v-cycle of

$$\alpha\beta = (\alpha''\gamma)\gamma^{-1}(\alpha'\beta);$$

by lemma 2.7, this implies that $\alpha\beta$ has the same number of cycles as $\alpha''\gamma \in \mathfrak{S}(\{u_1,\ldots,u_n\})$, that is $v(\alpha\beta) = d - (k+1)$. Since $[\alpha] = \pi$ and $[\beta] = \rho$, the only thing left to show is that the action of $\langle \alpha, \beta \rangle$ on $\{1,\ldots,d\}$ is transitive. Write

$$\alpha'\beta = (u_1, \dots, w_1, u_2, \dots, w_2, u_3, \dots, w_{n-1}, u_n, \dots, w_n)$$

as in the proof of lemma 2.7, where an explicit description of the orbits of $\alpha\beta = \alpha''\gamma\gamma^{-1}\alpha'\beta$ is given; from that description, it is clear that for each $1 \leq j \leq n$ the elements u_j, \ldots, w_j all belong to the same orbit. Moreover, since $\beta = (\alpha')^{-1}(u_1, \ldots, w_1, u_2, \ldots, w_n)$ and α' fixes u_2, \ldots, u_n , it follows that w_j and u_{j+1} belong to the same orbit for each $1 \leq j \leq n-1$; this completes the proof.

Corollary 2.10. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \ge d - 1$ and $v(\pi) + v(\rho) \equiv d - 1 \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $\alpha\beta$ is a d-cycle.

Proof. The conclusion immediately follows from proposition 2.8 if $v(\pi) + v(\rho) = d - 1$, or from proposition 2.9 if $v(\pi) + v(\rho) \ge d$.

Remark 2.3. Write $\pi = [a_1, \ldots, a_r]$, $\rho = [b_1, \ldots, b_s]$; assume that $b_1 \geq 2$. By directly examining the proof of proposition 2.8, we can see that the proposed construction yields permutations $\alpha, \beta \in \mathfrak{S}_d$ such that 1 belongs to the a_1 -the cycle of α and to the b_1 -cycle of β . It is not hard to see, once again by inspecting the proof, that the same can be said for proposition 2.9. As a consequence, the statement of corollary 2.10 can be enhanced by adding the following line: α and β can be chosen in such a way that 1 belongs to the a_1 -the cycle of α and to the b_1 -cycle of β , provided that $b_1 \geq 2$. We will need this improvement for the upcoming proof.

Proposition 2.11. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \geq d$ and $v(\pi) + v(\rho) \equiv d \pmod{2}$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$ and $[\beta] = \rho$ such that $\langle \alpha, \beta \rangle$ acts transitively on $\{1, \ldots, d\}$ and

$$[\alpha\beta] = \begin{cases} [d/2, d/2] & \text{if } \pi = \rho = [2, \dots, 2], \\ [1, d-1] & \text{otherwise.} \end{cases}$$

Terminology?

Maybe explain why?

Proof. Assume first that $\pi = \rho = [2, ..., d]$. We can choose

$$\alpha = (2,3)(4,5)\cdots(d,1),$$
 $\beta = (1,2)(3,4)\cdots(d-1,d).$

The action of $\langle \alpha, \beta \rangle$ is obviously transitive, and

$$\alpha\beta = (1, 3, \dots, d-1)(2, 4, \dots, 2).$$

Otherwise, since $v(\pi) + v(\rho) \ge d$, at least one of π and ρ has an entry which is greater than 2; without loss of generality, we can assume it is ρ . Write $\pi = [a_1, \ldots, a_r], \ \rho = [b_1, \ldots, b_s]$ with $a_1 \ge 2$ (since $v(\pi) \ge 1$) and $b_1 \ge 3$. Fix

$$\beta = (1, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s),$$

where $b_1 = d_1 \ge 3$, $b_i = d_i - d_{i-1}$ for $2 \le i \le s$ (in particular, $d_s = d$). Consider the partitions

$$\pi' = [a_1 - 1, \dots, a_r],$$
 $\rho' = [b_1 - 1, \dots, b_s].$

Since $\sum \pi' = \sum \rho' = d - 1$ and $v(\pi') + v(\rho') = v(\pi) + v(\rho) - 2$, by corollary 2.10 we can find permutations $\alpha', \beta' \in \mathfrak{S}(\{2, \ldots, d\})$ with $[\alpha'] = \pi'$ and $[\beta'] = \rho'$ such that $\alpha'\beta'$ is a (d-1)-cycle. Up to conjugation, we can assume that

$$\beta' = (2, \dots, d_1)(d_1 + 1, \dots, d_2) \cdots (d_{s-1} + 1, \dots, d_s)$$

or, in other words, $\beta = (1,2)\beta'$; moreover, as explained in remark 2.3, we can choose α' in such a way that its $(a_1 - 1)$ -cycle contains 2. By setting $\alpha = \alpha'(1,2)$, we immediately get that $\alpha\beta = \alpha'\beta'$ is a (d-1)-cycle fixing 1. Finally, the action of $\langle \alpha, \beta \rangle$ is transitive since α does not fix 1.

Corollary 2.12. Let $\pi, \rho \in \Pi(d)$ be partitions of d. Assume that $v(\pi) + v(\rho) \ge d - 1$. Then there exist permutations $\alpha, \beta \in \mathfrak{S}_d$ with $[\alpha] = \pi$, $[\beta] = \rho$ such that $\langle \alpha, \beta \rangle$ acts transitively on $\{1, \ldots, d\}$ and

$$[\alpha\beta] \in \{[d], [1, d-1], [d/2, d/2]\}.$$

Proof. The conclusion follows immediately from proposition 2.9 or proposition 2.11 depending on the parity of $v(\pi) + v(\rho) + d$.

2.6 Projective plane

Theorem 2.13. Let $\mathcal{D} = (\widetilde{\Sigma}, \mathbb{RP}^2; d; \pi_1, \dots, \pi_n)$ be a candidate datum. If $\widetilde{\Sigma}$ is non-orientable, then \mathcal{D} is realizable.

Proof. First of all, since \mathcal{D} is a candidate datum, the Riemann-Hurwitz [??] formula implies that

$$v(\pi_1) + \ldots + v(\pi_n) = d\chi(\mathbb{RP}^2) - \chi(\widetilde{\Sigma}) \ge d - 1$$

(recall that $\widetilde{\Sigma}$ is non-orientable, so $\chi(\widetilde{\Sigma}) \leq 1$). Moreover, the total branching $v(\pi_1) + \ldots + v(\pi_n)$ is even. In order to apply proposition 2.2, we will now inductively define representatives $\alpha_i \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$, satisfying the following invariant: for every $0 \leq i \leq n$, either

$$v(\alpha_1 \cdots \alpha_i) = v(\pi_1) + \ldots + v(\pi_i)$$

or

$$[\alpha_1 \cdots \alpha_i] \in \{[d], [1, d-1], [d/2, d/2]\}$$
 and $(\alpha_1, \dots, \alpha_i)$ acts transitively.

Assume we have already defined $\alpha_1, \ldots, \alpha_{i-1}$; we want to suitably choose α_i . Let $\alpha = \alpha_1 \cdots \alpha_{i-1}$; there are two cases.

- If $v(\alpha) + v(\pi_i) < d$, by proposition 2.8 we can find $\alpha_i \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ such that $v(\alpha\alpha_i) = v(\alpha) + v(\alpha_i)$. The invariant is still satisfied: if $v(\alpha) = v(\pi_1) + \ldots + v(\pi_{i-1})$ then obviously $v(\alpha\alpha_i) = v(\pi_1) + \ldots + v(\pi_i)$. If instead $[\alpha] \in \{[d], [1, d-1], [d/2, d/2]\}$, then either α_i is the identity, or $\alpha\alpha_i$ is a d-cycle; either way, $[\alpha\alpha_i] \in \{[d], [1, d-1], [d/2, d/2]\}$. Note that if the action of $\langle \alpha_1, \ldots, \alpha_{i-1} \rangle$ is transitive, then the action of $\langle \alpha_1, \ldots, \alpha_i \rangle$ is transitive as well.
- If $v(\alpha) + v(\alpha_i) \geq d$, corollary 2.12 gives a permutation $\alpha_i \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ such that $[\alpha \alpha_i] \in \{[d], [1, d-1], [d/2, d/2]\}$ and the action of $\langle \alpha, \alpha_i \rangle$ is transitive. The invariant is obviously satisfied.

By induction, we can find $\alpha_1, \ldots, \alpha_n \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ such that

$$[\alpha_1 \cdots \alpha_n] \in \{[d], [1, d-1], [d/2, d/2]\}$$

and $\langle \alpha_1, \dots, \alpha_n \rangle$ acts transitively on $\{1, \dots, d\}$ (note that $v(\alpha_1 \cdots \alpha_n) = v(\alpha_1) + \dots + v(\alpha_n)$ also implies that $[\alpha_1 \cdots \alpha_n] = [d]$). Note that

Show that $v(\alpha\beta) \equiv v(\alpha) + v(\beta) \pmod{2}$.

$$v(\alpha_1 \cdots \alpha_n) \equiv v(\alpha_1) + \ldots + v(\alpha_n) \equiv 0 \pmod{2}.$$

We now prove that $\alpha = \alpha_1 \cdots \alpha_n$ is a square.

- If $[\alpha] = [d]$, then d is odd, so α is the square of $\alpha^{(d+1)/2}$.
- If $[\alpha] = [1, d-2]$, then d is even, so α is the square of $\alpha^{d/2}$.
- If $[\alpha] = [d/2, d/2]$, then d is even, and it is easy to see that α is the square of a d-cycle.

By proposition 2.2, this implies that there exists a realizable candidate datum $\mathcal{D}' = (\widetilde{\Sigma}', \mathbb{RP}^2; d; \pi_1, \dots, \pi_n)$. To see that $\widetilde{\Sigma}'$ is non-orientable (and, therefore, equal to $\widetilde{\Sigma}$, as shown in remark 2.2), simply note that ??.

2.7 Reduction technique on the sphere

Assume $n \geq 3$.

Proposition 2.14. Let $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \dots, \pi_{n-1}, [d])$ be a candidate datum. Then \mathcal{D} is realizable.

Proof. We proceed by induction on n, starting with the base case n = 3. If $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \pi_2, [d])$ is a candidate datum, by the Riemann-Hurwitz [??] formula we have that

$$v(\pi_1) + v(\pi_2) = 2d - 2 + 2g - (d - 1) \ge d - 1.$$

Moreover, the total branching number $v(\pi_1) + v(\pi_2) + d - 1$ is even. Corollary 2.10 then gives permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $[\alpha_1 \alpha_2] = [d]$. By proposition 2.1, \mathcal{D} is realizable (see remark 2.1).

We now turn to the case $n \geq 4$. Fix a candidate datum $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \dots, \pi_{n-1}, [d]);$ there are two cases.

• Assume that $v(\pi_1) + v(\pi_2) \leq d - 1$. By proposition 2.8, we can find permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1\alpha_2) = v(\alpha_1) + v(\alpha_2)$. Consider the candidate datum $\mathcal{D}' = (\Sigma_g, S^2; d; [\alpha_1\alpha_2], \pi_3, \dots, \pi_{n-1}, [d])$. By induction, \mathcal{D}' is realizable; proposition 2.1 then gives permutations $\alpha_3, \dots, \alpha_n \in \mathfrak{S}_d$ with $[\alpha_i] = \pi_i$ for $3 \leq i \leq n-1$ and $[\alpha_n] = [d]$ such that $(\alpha_1\alpha_2)\alpha_3 \cdots \alpha_n = 1$. It is easy to see that the permutations $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ imply the realizability of \mathcal{D} , again by proposition 2.1 (together, as usual, with remark 2.1).

• Otherwise, we have that $v(\pi_1) + v(\pi_2) \ge d$. By corollary 2.12, we can find permutations α_1, α_2 with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1 \alpha_2) \ge d - 2$. Let

$$g' = \frac{1}{2}(v(\alpha_1 \alpha_2) + v(\pi_3) + \dots + v(\pi_{n-1}) + d - 1) - d + 1$$

$$\geq \frac{1}{2}(d - 2 + 1 + d - 1) - d + 1 \geq 0.$$

It is easy to see that $\mathcal{D}' = (\Sigma_{g'}, S^2; d; [\alpha_1 \alpha_2], \pi_3, \dots, \pi_n)$ is a candidate datum, so it is realizable by induction. Similarly to the previous case, this implies that \mathcal{D} is realizable. \square

Proposition 2.15. Let $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \dots, \pi_{n-1}, [1, d-1])$ be a proper candidate datum. Then \mathcal{D} is non-realizable if and only if it satisfies one of the following.

(1)
$$\mathcal{D} = (\Sigma_{n-3}, S^2; 4; [2, 2], \dots, [2, 2], [1, 3]).$$

(2)
$$\mathcal{D} = (S^2, S^2; 2k; [2, \dots, 2], [2, \dots, 2], [1, 2k-1])$$
 with $k \ge 2$.

Proof. We proceed by induction on n, starting from the base case n=3. Let

$$\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \pi_2, [1, d-1]) \neq (S^2, S^2; d; [2, \dots, 2], [2, \dots, 2], [1, d-1])$$

be a candidate datum. The Riemann-Hurwitz [??] formula implies that

$$v(\pi_1) + v(\pi_2) = 2d - 2 + 2g - (d - 2) \ge d.$$

Moreover, the total branching number $v(\pi_1) + v(\pi_2) + d - 2$ is even. Proposition 2.11 then gives permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $[\alpha_1 \alpha_2] = [1, d - 1]$ and the action of $\langle \alpha_1, \alpha_2 \rangle$ is transitive. As usual, proposition 2.1 implies that \mathcal{D} is realizable.

We now turn to the case $n \geq 4$; we will employ a reduction technique. Fix a candidate datum

$$\mathcal{D} = (\Sigma_{n-3}, S^2; d; \pi_1, \dots, \pi_{n-1}, [1, d-1]) \neq (\Sigma_{n-3}, S^2; d; [2, 2], \dots, [2, 2], [1, 3]).$$

There are two cases.

- Assume that the inequality $v(\pi_i) + v(\pi_j) < d$ holds for a pair of indices $1 \le i < j \le n-1$; up to reindexing, we can assume that i = 1 and j = 2. By proposition 2.8, we can find permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1\alpha_2) = v(\alpha_1) + v(\alpha_2)$. Consider the candidate datum $\mathcal{D}' = (\Sigma_g, S^2; d; [\alpha_1\alpha_2], \pi_3, \dots, \pi_{n-1}, [1, d-1])$. By induction, \mathcal{D}' is realizable unless one of the following happens.
 - $-\mathcal{D}' = (S^2, S^2; 2k; [2, \dots, 2], [2, \dots, 2], [1, 2k-1])$ with 2k = d. If this is the case, then n = 4 and $v(\pi_1) + v(\pi_2) = v(\pi_3) = k$. This implies that

$$k < 1 + k \le v(\pi_1) + v(\pi_3) < 2k = d.$$

Repeating the construction with i = 1 and j = 3 will yield a realizable \mathcal{D}' .

 $-\mathcal{D}' = (\Sigma_{n-3}, S^2; 4; [2, 2], \dots, [2, 2], [1, 3])$. This implies that $\pi_1 = \pi_2 = [1, 1, 2]$ and $\pi_3 = \dots = \pi_{n-1} = [2, 2]$. Repeating the construction with i = 1 and j = 3 will yield a realizable \mathcal{D}' .

Therefore we can assume that \mathcal{D}' is realizable. A reduction argument shows that \mathcal{D} is realizable as well.

plain the reduction chnique, with transiity.

the non-realizability the listed candidate ta will be addressed some point.

• Otherwise, the inequality $v(\pi_1) + v(\pi_j) \ge d$ holds for every $1 \le i < j \le n-1$. Corollary 2.12 then gives permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1 \alpha_2) \ge d-2$. If d = 4 we can assume that $\pi_1 \ne [2, 2]$, so that we can choose $[\alpha_1 \alpha_2] \ne [2, 2]$ (see proposition 2.11). Let

$$g' = \frac{1}{2}(v(\alpha_1 \alpha_2) + v(\pi_3) + \dots + v(\pi_{n-1}) + d - 2) - d + 1$$
$$\geq \frac{1}{2}(d - 2 + 1 + d - 2) - d + 1 \geq -\frac{1}{2}.$$

Actually, since the total branching number of \mathcal{D} is even, g' must be an integer, therefore $g' \geq 0$. It is easy to see that $\mathcal{D}' = (\Sigma_{g'}, S^2; d; [\alpha_1 \alpha_2], \pi_3, \dots, \pi_{n-1}, [1, d-1])$ is a candidate datum. Moreover, \mathcal{D}' is realizable by induction: the case d = 4 was addressed above, and $\mathcal{D}' = (S^2, S^2; d; [2, \dots, 2], [2, \dots, 2], [1, d-2])$ is impossible for $d \geq 6$, since

$$v(\alpha_1 \alpha_2) \ge d - 2 > \frac{d}{2} = v([2, \dots, 2]).$$

The usual reduction argument implies that \mathcal{D} is realizable as well.

Proposition 2.16. Let $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \dots, \pi_n)$ be a candidate datum. Assume that $d \neq 4$ and that $2g \geq d-1$. Then \mathcal{D} is realizable.

Proof. Note that the condition $2g \geq d-1$ is equivalent to

$$v(\pi_1) + \ldots + v(\pi_n) > 3d - 3$$

by the Riemann-Hurwitz [??] formula. Moreover, the cases where d=2 are trivial; therefore, assume that $d \geq 3$.

We proceed by induction, starting from the base case n=3. If n=3, the inequality $v(\pi_1)+v(\pi_2)+v(\pi_3)\geq 3d-3$ implies that $\pi_1=\pi_2=\pi_3=[d]$; by proposition 2.14, \mathcal{D} is realizable.

We now turn to the case $n \geq 4$; we will employ a reduction technique. Fix a candidate datum $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \dots, \pi_n)$. We can assume that $\pi_i \neq [d]$ for every $1 \leq i \leq n$, otherwise \mathcal{D} is immediately realizable by proposition 2.14. There are two cases.

- Assume that the inequality $v(\pi_i) + v(\pi_j) < d$ holds for a pair of indices $1 \le i < j \le n$. The standard reduction argument shows that \mathcal{D} is realizable in this case.
- Otherwise, we have $v(\pi_i) + v(\pi_j) \ge d$ for every $1 \le i < j \le n$. We consider two sub-cases.
 - Assume first that there is a partition, say π_1 , which is different from $[2, \ldots, 2]$. By corollary 2.10 and proposition 2.11, we can find permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $[\alpha_1 \alpha_2] \in \{[d], [1, d-1]\}$. Let

$$g' = \frac{1}{2}(v(\alpha_1 \alpha_2) + v(\pi_3) + \dots + v(\pi_n)) - d + 1$$

$$\geq \frac{1}{2}(d - 2 + d) - d + 1 \geq 0.$$

Consider the candidate datum $\mathcal{D}' = (\Sigma_{g'}, S^2; d; [\alpha_1 \alpha_2], \pi_3, \dots, \pi_n)$. By propositions 2.14 and 2.15, \mathcal{D}' is realizable unless $\mathcal{D}' = (S^2, S^2; d; [2, \dots, 2], [2, \dots, 2], [1, d-1])$. If this were the case, we would have n = 4 and

$$v(\pi_1) + v(\pi_2) + v(\pi_3) + v(\pi_4) \le d - 2 + d - 2 + \frac{d}{2} + \frac{d}{2} = 3d - 4,$$

which contradicts the hypothesis. Therefore \mathcal{D}' is realizable; by the usual reduction argument, \mathcal{D} is realizable as well.

- Finally, consider the case where $\pi_1 = \ldots = \pi_n = [2, \ldots, 2]$. In this situation d = 2k is even and

$$v(\pi_1) + \ldots + v(\pi_n) = nk > 6k - 3$$

(the inequality is strict since the total branching number is even, while 6k-3 is odd). Since $k \geq 3$, this immediately implies that $n \geq 6$. Applying proposition 2.11 once and then corollary 2.10 or proposition 2.11 again yields permutations $\alpha_1, \alpha_2, \alpha_3 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$, $[\alpha_2] = \pi_2$ and $[\alpha_3] = \pi_3$ such that $[\alpha_1\alpha_2\alpha_3] \in \{[d], [1, 2k-1]\}$. Let

$$g' = \frac{1}{2}(v(\alpha_1 \alpha_2 \alpha_3) + v(\pi_4) + \dots + v(\pi_n)) - 2k + 1$$

$$\geq \frac{1}{2}(2k - 2 + (n - 3)k) - 2k + 1 = \frac{n - 5}{2} \cdot k > 0.$$

It is easy to see that $\mathcal{D}' = (\Sigma_{g'}, S^2; 2k; [\alpha_1 \alpha_2 \alpha_3], \pi_4, \dots, \pi_n)$ is a candidate datum. By propositions 2.14 and 2.15, \mathcal{D}' is realizable; a reduction argument shows that \mathcal{D} is realizable as well.

Corollary 2.17. Let d be a positive integer with $d \neq 4$. Then there exist at most finitely many non-realizable proper candidate data of the form $(\Sigma_q, S^2; d; \pi_1, \dots, \pi_n)$.

Proof. By proposition 2.16, every proper candidate datum with $n \geq 3d-3$ is realizable, and there are a finite number of proper candidate data with n < 3d-3.

Proposition 2.18. Let $\mathcal{D} = (\Sigma_g, S^2; 4; \pi_1, \dots, \pi_n)$ be a proper candidate datum. Then \mathcal{D} is realizable if and only if

$$\mathcal{D} \neq (\Sigma_{n-3}, S^2; 4; [2, 2], \dots, [2, 2], [1, 3]).$$

<u>Proof.</u> We proceed by induction, starting from the base case n=3. Note that if any partition is either [4] or [1,3], we immediately conclude by propositions 2.14 and 2.15. By the Riemann-Hurwitz [??] formula, we have the inequality $v(\pi_1) + v(\pi_2) + v(\pi_3) \ge 6$; therefore, the only candidate datum left to consider is $(S^2, S^2; 4; [2, 2], [2, 2], [2, 2])$. This datum is realizable, for instance, by choosing

$$\alpha_1 = (1,2)(3,4),$$
 $\alpha_2 = (1,3)(2,4),$ $\alpha_3 = (1,4)(2,3).$

We now turn to the case $n \ge 4$; once again, we can assume that all the partitions are either [1,1,2] or [2,2]. There are three cases.

- If all the partitions are equal to [2, 2], then we can apply proposition 2.11 to combine two partitions into a single [2, 2], and conclude by a reduction argument.
- If all the partitions are equal to [1, 1, 2], then by the Riemann-Hurwitz [??] formula we have $n \ge 6$. We can apply proposition 2.8 twice to combine three partitions into a single [d], and conclude by reduction.
- Otherwise, there is at least one [2,2] and one [1,1,2]; using proposition 2.8, we can combine them into a single [d] and conclude by reduction.

on-realizability will addressed at some int.

2.8 Prime-degree conjecture

Proposition 2.19. Let d be a positive integer. Assume that every candidate datum $(\Sigma_g, S^2; d; \pi_1, \pi_2, \pi_3)$ is realizable. Then every candidate datum $(\Sigma_g, S^2; d; \pi_1, \dots, \pi_n)$ with $n \geq 3$ is realizable.

Proof. We proceed by induction on $n \geq 4$. Fix a candidate datum $\mathcal{D} = (\Sigma_g, S^2; d; \pi_1, \dots, \pi_n)$; there are two cases.

- If there are two indices $1 \le i < j \le n$ such that $v(\pi_i) + v(\pi_j) \le d 1$, then a routine reduction argument shows that \mathcal{D} is realizable.
- Otherwise, $v(\pi_i) + v(\pi_j) \ge d$ for every $1 \le i < j \le n$. By corollary 2.12, we can find permutations α_1, α_2 with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1 \alpha_2) \ge d 2$. Let

$$g' = \frac{1}{2}(v(\alpha_1 \alpha_2) + v(\pi_3) + \dots + v(\pi_n)) - d + 1$$

$$\geq \frac{1}{2}(d - 2 + d) - d + 1 \geq 0.$$

It is easy to see that $\mathcal{D}' = (\Sigma_{g'}, S^2; d; [\alpha_1 \alpha_2], \pi_3, \dots, \pi_n)$ is a candidate datum, so it is realizable by induction. A reduction argument shows that \mathcal{D} is realizable as well.

Chapter 3

Exceptional data with a short partition

Always assume $n \geq 3$

3.1 Realizability on the sphere

Theorem 3.1. Let $\mathcal{D} = (S^2; d; \pi_1, \pi_2, [s, d-s])$ be a candidate datum. Then \mathcal{D} is realizable unless it satisfies one of the following.

- (1) $\mathcal{D} = (S^2; 12; [2, 2, 2, 2, 2, 2], [1, 1, 1, 3, 3, 3], [6, 6]).$
- (2) $\mathcal{D} = (S^2; 2k; [2, \dots, 2], [2, \dots, 2], [s, 2k s])$ with $k \ge 2$, $s \ne k$.
- (3) $\mathcal{D} = (S^2; 2k; [2, \dots, 2], [1, 2, \dots, 2, 3], [k, k])$ with $k \ge 2$.
- (4) $\mathcal{D} = (S^2; 4k+2; [2,\ldots,2], [1,\ldots,1,k+1,k+2], [2k+1,2k+1])$ with $k \ge 1$.
- (5) $\mathcal{D} = (S^2; 4k; [2, \dots, 2], [1, \dots, 1, k+1, k+1], [2k-1, 2k+1])$ with $k \ge 2$.
- (6) $\mathcal{D} = (S^2; kh; [h, \dots, h], [1, \dots, 1, k+1], [lk, (h-l)k])$ with $h \ge 2, k \ge 2, 1 \le l < h$.

Theorem 3.2. Let $\mathcal{D} = (S^2; d; \pi_1, \dots, \pi_{n-1}, [s, d-s])$ be a proper candidate datum with $n \geq 4$. Then \mathcal{D} is realizable.

3.2 Realizability on the torus for n = 3

Theorem 3.3. Let $\mathcal{D} = (\Sigma_1; d; \pi_1, \pi_2, [s, d - s])$ be a candidate datum. Then \mathcal{D} is realizable unless it satisfies one of the following.

- (1) $\mathcal{D} = (\Sigma_1; 6; [3, 3], [3, 3], [2, 4]).$
- (2) $\mathcal{D} = (\Sigma_1; 8; [2, 2, 2, 2], [4, 4], [3, 5]).$
- (3) $\mathcal{D} = (\Sigma_1; 12; [2, 2, 2, 2, 2, 2], [3, 3, 3, 3], [5, 7]).$
- (4) $\mathcal{D} = (\Sigma_1; 16; [2, 2, 2, 2, 2, 2, 2, 2], [1, 3, 3, 3, 3, 3], [8, 8]).$
- (5) $\mathcal{D} = (\Sigma_1; 2k; [2, \dots, 2], [2, \dots, 2, 3, 5], [k, k])$ with $k \geq 5$.

3.3 Realizability on higher genus surfaces for n=3

Theorem 3.4. Let $\mathcal{D} = (\Sigma_g; d; \pi_1, \pi_2, [s, d-s])$ be a candidate datum with $g \geq 2$. Then \mathcal{D} is realizable.

3.4 Realizability for $n \ge 4$

Theorem 3.5. Let $\mathcal{D} = (\Sigma_g; d; \pi_1, \dots, \pi_{n-1}, [s, d-s])$ be a proper candidate datum with $n \geq 4$. Then \mathcal{D} is realizable unless it satisfies one of the following.

- (1) $\mathcal{D} = (\Sigma_{n-3}; 4; [2, 2], \dots, [2, 2], [1, 3]).$
- (2) $\mathcal{D} = (\Sigma_2; 8; [2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2], [3, 5]).$

Proof. We will proceed by induction on n. We start with the base case n=4, which requires the heaviest casework. Fix a proper candidate datum $\mathcal{D}=(\Sigma_q;d;\pi_1,\pi_2,\pi_3,[s,d-s])$.

- If $d \leq 16$, realizability can be checked by a computer. The only exceptional data are:
 - (1) $\mathcal{D} = (\Sigma_1; 4; [2, 2], [2, 2], [2, 2], [1, 3]);$
 - (2) $\mathcal{D} = (\Sigma_2; 8; [2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2], [3, 5]).$
- If g = 0, then \mathcal{D} is realizable by theorem 3.2.
- Assume that the inequality $v(\pi_i) + v(\pi_j) < d$ holds for a pair of indices $1 \le i < j \le 3$; up to reindexing, we can assume that $v(\pi_1) + v(\pi_2) < d$. By proposition 2.8, we can find permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1\alpha_2) = v(\alpha_1) + v(\alpha_2)$. Consider the candidate datum

$$\mathcal{D}' = (\Sigma_q; d; [\alpha_1 \alpha_2], \pi_3, [s, d - s]).$$

A standard reduction argument implies that \mathcal{D} is realizable provided that \mathcal{D}' is. If $g \geq 2$, then \mathcal{D}' is realizable by theorem 3.4. If instead g = 1, then \mathcal{D}' is realizable unless

$$\mathcal{D}' = (\Sigma_1; 2k; [2, \dots, 2], [2, \dots, 2, 3, 5], [k, k])$$
 with $2k = d$.

If this is the case, then s = k and $\{ [\alpha_1 \alpha_2], \pi_3 \} = \{ [2, \dots, 2], [2, \dots, 2, 3, 5] \}$. Some more casework is required to show that \mathcal{D}' can actually be chosen to be realizable.

- If $[\alpha_1\alpha_2] = [2,\ldots,2]$, then $v(\alpha_1\alpha_2) = k$ and $v(\pi_3) = k+2$. Assume without loss of generality that $v(\pi_1) \leq k/2$. We have that

$$k+2 < 1+k+2 \le v(\pi_1) + v(\pi_3) \le \frac{k}{2} + k + 2 < d.$$

Repeating the construction with i = 1 and j = 3 will yield a realizable \mathcal{D}' .

- If $\pi_3 = [2, ..., 2]$ and $v(\pi_1) \notin \{2, k, k+1\}$ then $v(\pi_1) + v(\pi_3) < d$ and $v(\pi_1) + v(\pi_3) \notin \{k, k+2\}$. Therefore, repeating the construction with i=1 and j=3 will yield a realizable \mathcal{D}' .
- If $\pi_3 = [2, ..., 2]$, $v(\pi_1) = 2$ and $\pi_2 \neq [2, ..., 2]$, then repeating the construction with i = 1 and j = 3 will yield a realizable \mathcal{D}' .

- If $\pi_2 = \pi_3 = [2, \ldots, 2]$, we follow a different approach. By proposition 2.11, we can find permutations $\beta_2, \beta_3 \in \mathfrak{S}_d$ with $[\beta_2] = [\beta_3] = [2, \ldots, 2]$ such that $[\beta_2\beta_3] = [k, k]$. It is easy to see that $\mathcal{D}'' = (S^2; 2k; \pi_1, [k, k], [k, k])$ is a candidate datum, and it is realizable by theorem 3.1. A reduction argument implies that \mathcal{D} is realizable as well.

Up to swapping π_1 and π_2 , this analysis covers all the possible cases.

• Otherwise, the inequality $v(\pi_i) + v(\pi_j) \ge d$ holds for every $1 \le i < j \le 3$. In particular, up to reindexing, we can assume that $v(\pi_3) \ge d/2$. Corollary 2.12 gives permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1 \alpha_2) \ge d - 2$. Let

$$g' = \frac{1}{2}(v(\alpha_1\alpha_2) + v(\pi_3) + d - 2) - d + 1 \ge \frac{1}{2}\left(d - 2 + \frac{d}{2} + d - 2\right) - d + 1 = \frac{d}{4} - 1 \ge 2.$$

It is easy to see that $\mathcal{D}' = (\Sigma_{g'}; d; [\alpha_1, \alpha_2], \pi_3, [s, d - s])$ is candidate datum, and it is realizable by theorem 3.4. A reduction argument implies that \mathcal{D} is realizable as well.

We now turn to the case $n \geq 5$; we will show by induction that every candidate datum $\mathcal{D} = (\Sigma_g; d; \pi_1, \dots, \pi_{n-1}, [s, d-s])$ different from $(\Sigma_{n-3}; 4; [2, 2], \dots, [2, 2], [1, 3])$ is realizable. The case d=4 is addressed by proposition 2.18. If n=5 and d=8, a computer-aided search shows that \mathcal{D} is realizable. Otherwise, we once again employ a reduction argument.

- If the inequality $v(\pi_i) + v(\pi_j) < d$ holds for a pair of indices $1 \le i < j \le n-1$, it is now routine to show that \mathcal{D} is realizable.
- Otherwise, the inequality $v(\pi_i) + v(\pi_j) \ge d$ holds for every $1 \le i < j \le n-1$. By corollary 2.12, we can find permutations $\alpha_1, \alpha_2 \in \mathfrak{S}_d$ with $[\alpha_1] = \pi_1$ and $[\alpha_2] = \pi_2$ such that $v(\alpha_1\alpha_2) \ge d-2$. Let

$$g' = \frac{1}{2}(v(\alpha_1 \alpha_2) + v(\pi_3) + \dots + v(\pi_{n-1}) + d - 2) - d + 1$$

$$\ge \frac{1}{2}(d - 2 + d + d - 2) - d + 1$$

$$= \frac{d}{2} - 1 \ge 0.$$

It is easy to see that $\mathcal{D}' = (\Sigma_{g'}; d; [\alpha_1 \alpha_2], \pi_3, \dots, \pi_{n-1}, [s, d-s])$ is a candidate datum, and it is realizable by induction. The usual reduction argument implies that \mathcal{D} is realizable as well.