СОЗДАНИЕ НОВОСТНОГО АІ-БОТА

или как избавиться от информационного шума

КОМАНДА М&L

Науменко Дмитрий, ML

Кутькина Татьяна, ML

Дамдинов Зорикто, Капитан, ML

ПРОБЛЕМАТИКА

- 1. Слишком много источников ненужной читателю информации
- 2. Слишком много дубликатов новостей
- 3. Думскроллинг
- 4. Отсутствие единого новостного агрегата, способного персонализировать новостные предпочтения читателя

ЗАДАЧИ

Необходимо разработать 2 алгоритма:

- 1. Алгоритм, способный классифицировать новости по категориям
- 2. Алгоритм, способный точно и быстро идентифицировать дубликаты новостей

ДАННЫЕ

Способы улучшения датасета:

- Разметить все данные. То есть перевести задачу в обучение с учителем.
 Недостаток: долго или дорого.
- Использовать сторонние датасеты для обогащения данных.
 Однако обучение на датасете Лента.ру (700к сэмплов) не дало значимых улучшений.

В итоге используем первоначальный датасет и решаем задачу обучения без учителя.

Для процедуры валидации отобрали 1000 случайных новостей из датасета и разметили 3-мя разными людьми. Метрика F1-score измеряется как среднее среди 3-х датасетов.

СРАВНЕНИЕ АЛГОРИТМОВ

	model	f1 micro (all)	f1 micro (without rare)	accuracy
0	validation/1. clf_kernel.xlsx	0.295553	0.296112	0.478435
1	validation/2. part_bert_res.xlsx	0.051822	0.052332	0.094283
2	validation/3. closest_word_bert.xlsx	0.032765	0.028534	0.053159
3	validation/4. cats_from_gpt_news.xlsx	0.106653	0.106357	0.199599
4	validation/5. closest_gpt_news.xlsx	0.091608	0.090401	0.178536
5	validation/6. optimazed_clf_kernel.xlsx	0.295553	0.296112	0.478435

ПОИСК ДУБЛИКАТОВ

Недостатки ANN-алгоритмов FAISS, NeoFuzz:

- о Пропускает даже явные дубликаты (до 5%)
- о Для частотных векторов не хватает памяти
- о Эмбеддинги теряют данные и требуют времени на расчет

Оптимальное решение – сравнение коэффициента Жаккара по «Bag-of-Words».

Алгоритм показывает хороший результат нахождения дубликатов вкупе с быстрой скоростью (~2 минуты для 50к сэмплов с мультпроцессингом).

КОЭФФИЦИЕНТ **WAKKAPA**

$$K_J = \frac{n(A \cap B)}{n(A \cup B)}$$

Пересечение множеств

Объединение множеств

Пример работы алгоритма:

- «В лесу упало дерево»
- «Дерево упало в лесу»
- III. «Кошка забежала на дерево»

ИНСТРУМЕНТЫ И ТЕХНОЛОГИИ

- Python
- Pandas
- Numpy
- BERT
- Universal Sentence Transformer
- Torch
- Navec
- Faiss
- NeoFuzz
- FastAPI
- Unicorn
- Docker

СПАСИБО за внимание

GITHUB:

Контакты:

Науменко Дмитрий – https://t.me/naumenko_ds Кутькина Татьяна – https://t.me/Tatyanna_Kutkina Дамдинов Зорикто – https://t.me/suzuyajxiii