Polygons & Transformations Cheatsheet

3.AB PrelB Math

Adam Klepáč

Polygons

Polygon is a closed 2D shape made only of segments. We call the endpoints of those segments, vertices, and the segments themselves, edges.

Examples

Polygons with n sides are called n-gons.

Counterexamples

Convex Polygons

A polygon is called **convex** if it has no internal angle greater than 180°.

Special types of convex polygons

In addition, if a convex polygon has all sides of the same length and all angles of the same size, it is called **regular**.

Diagonals & Triangulations

A diagonal in a convex polygon is a segment connecting two of its non-adjacent vertices.

Diagonal in a convex hexagon.

A triangulation of a convex polygon is its division into triangles by non-intersecting diagonals.

Counterexamples of triangulations.

The total number of different triangulations of a convex n-gon is

$$\frac{n\cdot(n+1)\cdot\ldots\cdot(2n-4)}{(n-2)!},$$

which you of course don't have to remember. Interestingly enough, every triangulation can be transformed into any other by a series of flips.

A flip is a swap of one diagonal for the other in a chosen quadrilateral so that the result is again a triangulation.

Examples of flips.

Counterexamples of flips.

Passage from one triangulation to another through a series of flips.

I encourage you to think about how to determine the number of flips necessary to pass from one triangulation to another. Can I have made the passage above in fewer flips?

Plane Transformations

The plane is basically just the set \mathbb{R}^2 of all pairs of real numbers. A pair $(x,y) \in \mathbb{R}^2$ is typically called a point. Then, a plane transformation is a function which maps points to points. In symbols, it's a function $\mathbb{R}^2 \to \mathbb{R}^2$.

We can visualise what a transformation does for example by look at the image of a square (or an entire grid).

The transformation $(x,y) \mapsto (\frac{1}{3}(2x-y), \frac{1}{2}(x+2y)).$

The transformation $(x, y) \mapsto (100(\sin x + \cos y), 100(\cos x + \sin y)).$

Rotations & Reflections

We shall be interested in two specific plane transformations - rotations and reflections.

Rotations are plane transformations that, well ..., rotates the entire plane around a fixed point called anchor. Applied to polygons, rotations may look like this:

Examples of rotations around a given anchor.

Reflections are basically 'mirrors'. They mirror each point in the plane through a given line called axis (of reflection).

Examples of reflections over a given axis.

Symmetries of Regular Polygons

Some rotations and reflections get along nicely with regular polygons. By this, we mean that they keep them intact. We call them the **symmetries** of the polygon.

Each regular n-gon has multiple symmetries:

- (r) rotation by $k \cdot 360^{\circ}/n$ for any k between 1 and n.
- (s) reflection
 - over lines passing through centres of opposite sides or through opposite vertices if n is even; • over lines passing through a centre of a side and the opposite vertex if n is odd.

Therefore, an n-gon has n rotational and n reflectional symmetries.

Examples of regular polygon symmetries.

Moreover, symmetries (being functions) can be **chained** or **composed**, creating new symmetries. We'll label rotations by the letter r and reflections by s. A chain or composition is read left-to-right, that is, sr means 'apply s first, then r'.

Example of the composition \mathbf{sr} of a reflection \mathbf{s} and a rotation \mathbf{r} .

The order of composition matters!

In general, a composition of

- a rotation and a rotation is again a rotation,
- a rotation and a reflection (in any order) is a reflection,
- a reflection and a reflection is a rotation.

References (opcional)

[1] Claude E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423, 1948.