COMPUTER SCIENCE 349A

Handout Number 8

THE BISECTION METHOD (Section 5.2: pp. 127-135 7th ed; pp. 124-131 6th ed)

-- can be used to compute a zero of any function f(x) that is continuous on an interval $[x_{\ell}, x_{\mu}]$ for which $f(x_{\ell}) \times f(x_{\mu}) < 0$.

Consider x_{ℓ} and x_{u} as **two initial approximations** to a zero, say x_{ℓ} , of f(x). The new approximation is the midpoint of the interval $[x_{\ell}, x_{u}]$, which is $x_{r} = \frac{x_{\ell} + x_{u}}{2}$.

If $f(x_r) = 0$, then x_r is the desired zero of f(x). Otherwise, a new interval $[x_\ell, x_u]$ that is half the length of the previous interval is determined as follows.

If $f(x_{\ell}) \times f(x_r) < 0$ then $[x_{\ell}, x_r]$ contains a zero, so set $x_u \leftarrow x_r$. Otherwise, $f(x_u) \times f(x_r) < 0$ (necessarily) and $[x_r, x_u]$ contains a zero, so set $x_{\ell} \leftarrow x_r$.

The above procedure is repeated, continually halving the interval $[x_\ell, x_u]$, until $[x_\ell, x_u]$ is sufficiently small, at which time the midpoint $x_r = \frac{x_\ell + x_u}{2}$ will be arbitrarily close to a zero of f(x).

Convergence criterion

As this is an iterative algorithm that computes a sequence of approximations

$$X_1, X_2, X_3, \ldots, X_{i-1}, X_i, \ldots$$

to a zero x_t , recall from Section 3.3 that

$$\left| \mathcal{E}_a \right| = \left| \frac{\text{current approx - previous approx}}{\text{current approx}} \right| = \left| \frac{x_i - x_{i-1}}{x_i} \right| = \left| 1 - \frac{x_{i-1}}{x_i} \right|$$

is a good approximation to the actual relative error $|\varepsilon_t|$ in x_i , and can be used to determine the accuracy of x_i .

Note that each approximation x_i is equal to $\frac{x_u + x_\ell}{2}$ and the previous approximation x_{i-1} is either x_ℓ or x_u . Therefore,

$$|x_i - x_{i-1}| = \frac{x_u - x_\ell}{2}$$
 and thus $|\varepsilon_a| = \frac{|x_i - x_{i-1}|}{|x_i|} = \frac{\frac{x_u - x_\ell}{2}}{\left|\frac{x_u + x_\ell}{2}\right|} = \frac{x_u - x_\ell}{|x_u + x_\ell|}.$

See (5.3) on page 132 in the 7^{th} ed.; page 129 in the 6^{th} ed.

How many iterations n are required to obtain a desired accuracy?

Suppose you want the <u>absolute error</u> $< \varepsilon$, and that the length of the initial interval $[x_{\ell}, x_{\mu}]$ is Δx^{0} .

approximation	absolute error
$x_1 = \frac{x_\ell + x_u}{2}$	$\left x_{t} - x_{1} \right \leq \frac{\Delta x^{0}}{2}$
x_2	$\left x_{t}-x_{2}\right \leq \frac{\Delta x^{0}}{4}$
X_{2}	$\left x_t - x_3 \right \le \frac{\Delta x^0}{8}$
: :	
\mathcal{X}_n	$\left x_{t} - x_{n} \right \leq \frac{\Delta x^{0}}{2^{n}}$

Therefore,

$$\frac{\Delta x^0}{2^n} \le \varepsilon \quad \text{implies that} \quad 2^n \ge \frac{\Delta x^0}{\varepsilon} \quad \text{and} \quad n \ge \log_2 \left(\frac{\Delta x^0}{\varepsilon}\right)$$

(see (5.5) on page 132 of the 7^{th} ed. or page 129 of the 6^{th} ed.) or

$$n \ln 2 \ge \ln(\Delta x^0) - \ln(\varepsilon)$$
 and $n \ge \frac{\ln(\Delta x^0) - \ln(\varepsilon)}{\ln 2}$.

Example

If initially $x_u - x_\ell = \Delta x^0 = 1$ and $\varepsilon = 10^{-5}$, then the above formula gives $n \ge 16.61$. Thus, 17 iterations would guarantee that the absolute error of the computed approximation to a zero x_t of f(x) is $< 10^{-5}$.

An algorithm for the Bisection method

```
function root = Bisect (x_{\ell}, x_{u}, \varepsilon, imax)
i \leftarrow 1
f_{\ell} \leftarrow f(x_{\ell})
while i \le \max
        x_r \leftarrow (x_\ell + x_u)/2 [or x_\ell + (x_u - x_\ell)/2]
        f_r \leftarrow f(x_r)
       if f_r = 0 or (x_u - x_\ell)/|x_u + x_\ell| < \varepsilon then
                root \leftarrow x_r
                exit
        end if
        i \leftarrow i + 1
        if f_{\ell} \times f_{r} < 0 then
                x_u \leftarrow x_r
        else
                 x_{\ell} \leftarrow x_r
                f_{\ell} \leftarrow f_{r}
        end if
end while
root = 'failed to converge'
```

Example

Use the Bisection method to solve Problem 5.17 on page 143 in the 7^{th} ed. (Problem 5.17 on page 140 in the 6^{th} ed.). The volume of liquid in a spherical tank is given by

$$V = \frac{\pi h^2 (3R - h)}{3}$$

where h is the depth of water in the tank and R is the radius of the tank. If R = 3, to what depth must the tank be filled so that it contains $30m^3$ of water?

Solution

Compute a root h of the equation f(h) = 0, where $f(h) = \frac{\pi h^2 (9 - h)}{3} - 30$. Since $f(1) \approx -21.6224$ and $f(3) \approx 26.5487$, the Bisection method can be used with

since $f(1) \approx -21.0224$ and $f(3) \approx 20.3487$, the disection method can be used with $x_{\ell} = 1$ and $x_{u} = 3$. If the above algorithm is run in MATLAB with $\varepsilon = 10^{-3}$, then the following results are obtained.

iteration	approximation
1	2.0000
2	2.5000
3	2.2500
4	2.1250
5	2.0625
6	2.0313
7	2.0156
8	2.0234
9	2.0273
10	2.0254

Note: the exact answer is $2.02690\cdots$.

Advantage of the Bisection method relative to other methods: if f(x) is continuous and if appropriate initial values x_{ℓ} and x_{u} can be found, then the method is **guaranteed** to converge

Disadvantages

- converges slowly (requires more iterations than other methods)
- it may be difficult to find appropriate initial values
- it cannot be used to compute a zero x_t of **even multiplicity** of a function f(x); that is, if

$$f(x) = (x - x_t)^m g(x)$$
 where *m* is a positive even integer and $g(x_t) \neq 0$