Trig Equations

Objectives

Solve trigonometric equations

Trig Equations

A trigonometric equation is one that contains a trig function with variable, such as $\sin x = \frac{1}{2}$.

Trig Equations

General Form of Solutions

The general form of this solution is

$$x = \frac{\pi}{6} + 2\pi n$$
 or $x = \frac{5\pi}{6} + 2\pi n$

where 2π is the period of the sine function.

General Form of Solutions

The general form of this solution is

$$x = \frac{\pi}{6} + 2\pi n$$
 or $x = \frac{5\pi}{6} + 2\pi n$

where 2π is the period of the sine function.

Since there are an infinite number of solutions, we will usually confine our answers to be between 0 and 2π .

How to Solve a Trig Equation

- Get the trig function by itself, if possible.
- Solve for the variable using inverse trig.

(a)
$$\cos(2x) = -\frac{\sqrt{3}}{2}$$

(a)
$$\cos(2x) = -\frac{\sqrt{3}}{2}$$

 $2x = 150^{\circ} + 360n$ $2x = 210 + 360n$

(a)
$$\cos(2x) = -\frac{\sqrt{3}}{2}$$

 $2x = 150^{\circ} + 360n$ $2x = 210 + 360n$
 $x = 75^{\circ} + 180n$ $x = 105^{\circ} + 180n$

(a)
$$\cos(2x) = -\frac{\sqrt{3}}{2}$$

 $2x = 150^{\circ} + 360n$ $2x = 210 + 360n$
 $x = 75^{\circ} + 180n$ $x = 105^{\circ} + 180n$
 $x = 75^{\circ}, 255^{\circ}$ $x = 105^{\circ}, 285^{\circ}$

(a)
$$\cos(2x) = -\frac{\sqrt{3}}{2}$$

 $2x = 150^{\circ} + 360n$ $2x = 210 + 360n$
 $x = 75^{\circ} + 180n$ $x = 105^{\circ} + 180n$
 $x = 75^{\circ}, 255^{\circ}$ $x = 105^{\circ}, 285^{\circ}$

$$x = \left\{ \frac{5\pi}{12}, \, \frac{7\pi}{12}, \, \frac{17\pi}{12}, \, \frac{19\pi}{12} \right\}$$

(b)
$$\csc\left(\frac{1}{3}x - \pi\right) = \sqrt{2}$$

(b)
$$\csc\left(\frac{1}{3}x - \pi\right) = \sqrt{2}$$

 $\frac{1}{3}x - 180^\circ = 45^\circ + 360n$ $\frac{1}{3}x - 180^\circ = 135^\circ + 360n$

(b)
$$\csc\left(\frac{1}{3}x - \pi\right) = \sqrt{2}$$

$$\frac{1}{3}x - 180^\circ = 45^\circ + 360n \qquad \frac{1}{3}x - 180^\circ = 135^\circ + 360n$$

$$\frac{1}{3}x = 225^\circ + 360n \qquad \frac{1}{3}x = 315^\circ + 360n$$

(b)
$$\csc\left(\frac{1}{3}x - \pi\right) = \sqrt{2}$$

$$\frac{1}{3}x - 180^{\circ} = 45^{\circ} + 360n \qquad \frac{1}{3}x - 180^{\circ} = 135^{\circ} + 360n$$

$$\frac{1}{3}x = 225^{\circ} + 360n \qquad \frac{1}{3}x = 315^{\circ} + 360n$$

$$x = 675^{\circ} + 1080n \qquad x = 945^{\circ} + 1080n$$

(b)
$$\csc\left(\frac{1}{3}x - \pi\right) = \sqrt{2}$$

$$\frac{1}{3}x - 180^\circ = 45^\circ + 360n \qquad \frac{1}{3}x - 180^\circ = 135^\circ + 360n$$

$$\frac{1}{3}x = 225^\circ + 360n \qquad \frac{1}{3}x = 315^\circ + 360n$$

$$x = 675^\circ + 1080n \qquad x = 945^\circ + 1080n$$

No angles between 0 and 2π

(c)
$$\cot(3x) = 0$$

(c)
$$\cot(3x) = 0$$

$$3x = 90^{\circ} + 180n$$

$$3x = 270^{\circ} + 180n$$

(c)
$$\cot(3x) = 0$$

$$3x = 90^{\circ} + 180n$$

$$x = 30^{\circ} + 60n$$

$$3x = 270^{\circ} + 180n$$

$$x = 90^{\circ} + 60n$$

(c)
$$\cot(3x) = 0$$

 $3x = 90^{\circ} + 180n$ $3x = 270^{\circ} + 180n$
 $x = 30^{\circ} + 60n$ $x = 90^{\circ} + 60n$
 $x = 30^{\circ}, 90^{\circ}, 150^{\circ}, 210^{\circ}, 270^{\circ}, 330^{\circ}$ $x = 90^{\circ}, 150^{\circ}, \dots$

(c)
$$\cot(3x) = 0$$

 $3x = 90^{\circ} + 180n$ $3x = 270^{\circ} + 180n$
 $x = 30^{\circ} + 60n$ $x = 90^{\circ} + 60n$
 $x = 30^{\circ}, 90^{\circ}, 150^{\circ}, 210^{\circ}, 270^{\circ}, 330^{\circ}$ $x = 90^{\circ}, 150^{\circ}, \dots$

$$x = \left\{ \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6} \right\}$$

(d)
$$\sec^2 x = 4$$

(d)
$$\sec^2 x = 4$$

$$\sqrt{\sec^2 x} = \pm \sqrt{4}$$

(d)
$$\sec^2 x = 4$$

$$\sqrt{\sec^2 x} = \pm \sqrt{4}$$

$$\sec x = 2 \qquad \sec x = -2$$

(d)
$$\sec^2 x = 4$$

$$\sqrt{\sec^2 x} = \pm \sqrt{4}$$

$$\sec x = 2 \qquad \sec x = -2$$

$$x = 60^\circ, 300^\circ \qquad x = 120^\circ, 240^\circ$$

(d)
$$\sec^2 x = 4$$

$$\sqrt{\sec^2 x} = \pm \sqrt{4}$$

$$\sec x = 2 \qquad \sec x = -2$$

$$x = 60^\circ, 300^\circ \qquad x = 120^\circ, 240^\circ$$

$$x = \left\{\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\right\}$$

(e)
$$\tan\left(\frac{x}{2}\right) = -3$$

(e)
$$\tan\left(\frac{x}{2}\right)=-3$$

$$\frac{x}{2}=\tan^{-1}(-3)+180n \qquad (\arctan(-3)\approx -143^\circ)$$

(e)
$$\tan\left(\frac{x}{2}\right) = -3$$
 $\frac{x}{2} = \tan^{-1}(-3) + 180n$ $(\arctan(-3) \approx -143^{\circ})$ $x = 2\tan^{-1}(-3) + 360n$ $(2\arctan(-3) \approx -286^{\circ})$

(e)
$$\tan\left(\frac{x}{2}\right) = -3$$
 $\frac{x}{2} = \tan^{-1}(-3) + 180n$ $(\arctan(-3) \approx -143^\circ)$ $x = 2\tan^{-1}(-3) + 360n$ $(2\arctan(-3) \approx -286^\circ)$ $x = 2\tan^{-1}(-3) + 360^\circ$

(e)
$$\tan\left(\frac{x}{2}\right) = -3$$
 $\frac{x}{2} = \tan^{-1}(-3) + 180n$ $(\arctan(-3) \approx -143^{\circ})$ $x = 2\tan^{-1}(-3) + 360n$ $(2\arctan(-3) \approx -286^{\circ})$ $x = 2\tan^{-1}(-3) + 360^{\circ}$ $x = 2\tan^{-1}(-3) + 2\pi$

Using Algebraic Techniques and Trig Identities

The following examples make use of trig identities and algebraic techniques to solve the equations.

Solve each in the interval $[0, 2\pi)$

(a)
$$3\sin^3 x = \sin^2 x$$

Solve each in the interval $[0, 2\pi)$

(a)
$$3\sin^3 x = \sin^2 x$$

 $3\sin^3 x - \sin^2 x = 0$

Solve each in the interval $[0,2\pi)$

(a)
$$3\sin^3 x = \sin^2 x$$
$$3\sin^3 x - \sin^2 x = 0$$
$$\sin^2 x (3\sin x - 1) = 0$$

Solve each in the interval $[0,2\pi)$

(a)
$$3\sin^3 x = \sin^2 x$$

 $3\sin^3 x - \sin^2 x = 0$
 $\sin^2 x (3\sin x - 1) = 0$
 $\sin^2 x = 0$ $3\sin x - 1 = 0$

Solve each in the interval $[0,2\pi)$

(a)
$$3\sin^3 x = \sin^2 x$$

 $3\sin^3 x - \sin^2 x = 0$
 $\sin^2 x (3\sin x - 1) = 0$
 $\sin^2 x = 0$ $3\sin x - 1 = 0$
 $\sin x = 0$ $\sin x = \frac{1}{3}$

Solve each in the interval $[0, 2\pi)$

(a)
$$3\sin^3 x = \sin^2 x$$

 $3\sin^3 x - \sin^2 x = 0$
 $\sin^2 x (3\sin x - 1) = 0$
 $\sin^2 x = 0$ $3\sin x - 1 = 0$
 $\sin x = 0$ $\sin x = \frac{1}{3}$
 $x = 0,180^\circ$ $x \approx 19.471^\circ, 160.529^\circ$

Solve each in the interval $[0,2\pi)$

(a)
$$3\sin^3 x = \sin^2 x$$

 $3\sin^3 x - \sin^2 x = 0$
 $\sin^2 x (3\sin x - 1) = 0$
 $\sin^2 x = 0$ $3\sin x - 1 = 0$
 $\sin x = 0$ $\sin x = \frac{1}{3}$
 $x = 0,180^\circ$ $x \approx 19.471^\circ, 160.529^\circ$
 $x = \left\{0, \arcsin\left(\frac{1}{3}\right), \pi - \arcsin\left(\frac{1}{3}\right), \pi\right\}$

(b)
$$\sec^2 x = \tan x + 3$$

(b)
$$\sec^2 x = \tan x + 3$$

$$\tan^2 x + 1 = \tan x + 3$$

(b)
$$\sec^2 x = \tan x + 3$$

$$\tan^2 x + 1 = \tan x + 3$$

$$\tan^2 x - \tan x - 2 = 0$$

(b)
$$\sec^2 x = \tan x + 3$$

$$\tan^2 x + 1 = \tan x + 3$$

$$\tan^2 x - \tan x - 2 = 0$$

$$(\tan x - 2)(\tan x + 1) = 0$$

(b)
$$\sec^2 x = \tan x + 3$$

$$\tan^2 x + 1 = \tan x + 3$$

$$\tan^2 x - \tan x - 2 = 0$$

$$(\tan x - 2)(\tan x + 1) = 0$$

$$\tan x - 2 = 0$$

$$\tan x + 1 = 0$$

(b)
$$\sec^2 x = \tan x + 3$$

$$\tan^2 x + 1 = \tan x + 3$$

$$\tan^2 x - \tan x - 2 = 0$$

$$(\tan x - 2)(\tan x + 1) = 0$$

$$\tan x - 2 = 0$$

$$\tan x + 1 = 0$$

$$\tan x = 2$$

$$\tan x = -1$$

(b)
$$\sec^2 x = \tan x + 3$$

$$\tan^2 x + 1 = \tan x + 3$$

$$\tan^2 x - \tan x - 2 = 0$$

$$(\tan x - 2)(\tan x + 1) = 0$$

$$\tan x - 2 = 0$$

$$\tan x + 1 = 0$$

$$\tan x = 2$$

$$\tan x = -1$$

$$x \approx 63.5^\circ, 243.5^\circ$$

$$x = 135^\circ, 315^\circ$$

(b)
$$\sec^2 x = \tan x + 3$$

$$\tan^2 x + 1 = \tan x + 3$$

$$\tan^2 x - \tan x - 2 = 0$$

$$(\tan x - 2)(\tan x + 1) = 0$$

$$\tan x - 2 = 0$$

$$\tan x + 1 = 0$$

$$\tan x = 2$$

$$\tan x = -1$$

$$x \approx 63.5^\circ, 243.5^\circ$$

$$x = \left\{\arctan(2), \frac{3\pi}{4}, \pi + \arctan(2), \frac{7\pi}{4}\right\}$$

(c)
$$\cos(2x) = 3\cos x - 2$$

(c)
$$\cos(2x) = 3\cos x - 2$$

 $2\cos^2 x - 1 = 3\cos x - 2$

(c)
$$\cos(2x) = 3\cos x - 2$$

 $2\cos^2 x - 1 = 3\cos x - 2$
 $2\cos^2 x - 3\cos x + 1 = 0$

(c)
$$\cos(2x) = 3\cos x - 2$$

$$2\cos^2 x - 1 = 3\cos x - 2$$

$$2\cos^2 x - 3\cos x + 1 = 0$$

$$(2\cos x - 1)(\cos x - 1) = 0$$

(c)
$$\cos(2x) = 3\cos x - 2$$

 $2\cos^2 x - 1 = 3\cos x - 2$
 $2\cos^2 x - 3\cos x + 1 = 0$
 $(2\cos x - 1)(\cos x - 1) = 0$
 $2\cos x - 1 = 0$ $\cos x - 1 = 0$

(c)
$$\cos(2x) = 3\cos x - 2$$

 $2\cos^2 x - 1 = 3\cos x - 2$
 $2\cos^2 x - 3\cos x + 1 = 0$
 $(2\cos x - 1)(\cos x - 1) = 0$
 $2\cos x - 1 = 0$ $\cos x - 1 = 0$
 $\cos x = \frac{1}{2}$ $\cos x = 1$

(c)
$$\cos(2x) = 3\cos x - 2$$

 $2\cos^2 x - 1 = 3\cos x - 2$
 $2\cos^2 x - 3\cos x + 1 = 0$
 $(2\cos x - 1)(\cos x - 1) = 0$
 $2\cos x - 1 = 0$ $\cos x - 1 = 0$
 $\cos x = \frac{1}{2}$ $\cos x = 1$
 $x = 60^\circ, 300^\circ$ $x = 0$

(c)
$$\cos(2x) = 3\cos x - 2$$

 $2\cos^2 x - 1 = 3\cos x - 2$
 $2\cos^2 x - 3\cos x + 1 = 0$
 $(2\cos x - 1)(\cos x - 1) = 0$
 $2\cos x - 1 = 0$ $\cos x - 1 = 0$
 $\cos x = \frac{1}{2}$ $\cos x = 1$
 $x = 60^\circ, 300^\circ$ $x = 0$
 $x = \left\{0, \frac{\pi}{3}, \frac{5\pi}{3}\right\}$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$

$$2\sin x\cos x = \sqrt{3}\cos x$$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$

$$2\sin x \cos x = \sqrt{3}\cos x$$

$$2\sin x \cos x - \sqrt{3}\cos x = 0$$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$
$$2\sin x \cos x = \sqrt{3}\cos x$$
$$2\sin x \cos x - \sqrt{3}\cos x = 0$$
$$\cos x(2\sin x - \sqrt{3}) = 0$$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$
$$2\sin x \cos x = \sqrt{3}\cos x$$
$$2\sin x \cos x - \sqrt{3}\cos x = 0$$
$$\cos x(2\sin x - \sqrt{3}) = 0$$

$$\cos x = 0 \qquad \qquad 2\sin x - \sqrt{3} = 0$$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$
$$2\sin x \cos x = \sqrt{3}\cos x$$
$$2\sin x \cos x - \sqrt{3}\cos x = 0$$
$$\cos x(2\sin x - \sqrt{3}) = 0$$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$

$$2\sin x \cos x = \sqrt{3}\cos x$$

$$2\sin x \cos x - \sqrt{3}\cos x = 0$$

$$\cos x(2\sin x - \sqrt{3}) = 0$$

$$\cos x = 0$$
 $2\sin x - \sqrt{3} = 0$ $x = 90^{\circ}, 270^{\circ}$ $2\sin x = \frac{\sqrt{3}}{2}$

(d)
$$\sin(2x) = \sqrt{3}\cos x$$
$$2\sin x \cos x = \sqrt{3}\cos x$$
$$2\sin x \cos x - \sqrt{3}\cos x = 0$$
$$\cos x(2\sin x - \sqrt{3}) = 0$$

$$\cos x = 0$$

$$2\sin x - \sqrt{3} = 0$$

$$2\sin x = \sqrt{3}$$

$$\sin x = \frac{\sqrt{3}}{2}$$

$$x = 60^{\circ}, 120^{\circ}$$

$$x = 60^{\circ}, \, 90^{\circ}, \, 120^{\circ}, \, 270^{\circ}$$

$$x = 60^{\circ}, 90^{\circ}, 120^{\circ}, 270^{\circ}$$

$$x = \left\{ \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{2} \right\}$$