Report on BioInformatics Assignment

CSE463

Mashroor Hasan Bhuiyan(1905069)

Md. Nafiu Rahman (1905077)

Kazi Reyazul Hasan(1905082)

Wasif Jalal (1905084)

Mubasshira Musarrat(1905088)

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET)

March 14, 2024

Contents

1	Dat	a	2
	1.1	Datasets Overview	2
	1.2	Biomarker/Ground Truth	2
2	Met	thods	3
	2.1	Gibbs Sampler	3
	2.2	Randomized Motif Search	4
	2.3	Enhanced Randomized Motif Search	5
	2.4	Modified Gibbs Sampler with Exempted Sequences	6
	2.5	Targeted Gibbs Sampler with Score-Based Selection	7
3	Soft	tware	8
	3.1	Commands to run	8
	3.2	Scripts to run	8
4	Res	sults	10
	4.1	Exp. configuration	10
	4.2	Comparison	11
5	Con	nclusion	17
	5.1	Insights Gained	17
	5.2	Challenges Encountered	17
	5.3	Future Directions	17

Data

In order to evaluate the performance of our selected methods, modifications, and third-party tools, they were applied to three distinct datasets derived from the TRANSFAC database (Matys, 2003), as done in the provided publication (Karaboga and Aslan, 2018).

1.1 Datasets Overview

The first dataset, labeled as **hm03r**, consists of 10 sequences from humans, each 1500 nucleotides in length. The complexity and diversity of the human genome necessitate sophisticated approaches to accurately identify motifs. The second and third datasets, **yst04r** and **yst08r**, are derived from yeast, containing 7 and 11 sequences respectively, each 1000 nucleotides long. The compact nature of yeast genomes presents a different set of challenges, including dense packing of regulatory elements.

1.2 Biomarker/Ground Truth

Exact ground truth (motifs) for selected datasets cannot be found; however, it is possible to examine identified motifs and compare them with known motifs. For this purpose, the Tomtom motif comparison tool of the MEME Suite was used (Gupta et al., 2007).

Methods

2.1 Gibbs Sampler

Gibbs Sampler is a widely used algorithm for motif discovery in biological sequences. In our study, we applied the Gibbs Sampler algorithm to identify conserved motifs within a set of DNA sequences. The algorithm works by iteratively sampling potential motif occurrences from the input sequences and updating the motif model based on the sampled occurrences. Here's an overview of the steps involved:

```
Algorithm 1: Gibbs Sampler Algorithm
   Input: Sequences S, Motif length k, Number of sequences t, Number of iterations N
   Output: Best motifs M, Best score score, Consensus sequence consensus
1 Initialize M by randomly selecting k-mers from S;
 2 best\_motifs \leftarrow M;
 \mathbf{3} \ best\_score, consensus \leftarrow \text{Score}(best\_motifs, k);
 4 for j \leftarrow 1 to N do
       Choose a random sequence index i from 1 to t;
 5
       Create profile matrix P excluding motif M[i];
 6
      Sample a new motif for sequence S[i] using profile-weighted random selection;
 7
       Calculate score current_score and consensus for the updated motifs;
 8
      if current\_score < best\_score then
 9
          best\_motifs \leftarrow M;
          best\_score \leftarrow current\_score;
11
      end
13 end
14 return best_motifs, best_score, consensus;
```

We implemented the Gibbs Sampler algorithm using Python and tuned its parameters to achieve optimal motif discovery performance.

2.2 Randomized Motif Search

16 return best_motifs, best_score, consensus;

Randomized Motif Search is another popular algorithm for motif discovery, particularly useful for its simplicity and effectiveness. In our study, we employed the Randomized Motif Search algorithm to identify conserved motifs across a set of DNA sequences. The algorithm involves the following steps:

```
Algorithm 2: Randomized Motif Search Algorithm
   Input: Sequences S, Motif length k, Number of sequences t, Number of iterations N
   Output: Best motifs M, Best score score, Consensus sequence consensus
1 Initialize M by randomly selecting k-mers from S;
 2 best\_motifs \leftarrow M;
 \mathbf{3} \ best\_score, consensus \leftarrow \mathbf{Score}(best\_motifs, k);
4 while True do
       Create profile matrix P based on M;
 5
      Update M by choosing the highest probability k-mer from each sequence using P;
 6
      Calculate score current_score for the updated motifs;
 7
      if current_score < best_score then
 8
          best\_motifs \leftarrow M;
 9
          best\_score \leftarrow current\_score;
10
      end
11
      else
12
          Break;
13
      end
14
15 end
```

We implemented the Randomized Motif Search algorithm and adjusted its parameters to optimize motif discovery performance for our specific dataset.

2.3 Enhanced Randomized Motif Search

We build upon the traditional Randomized Motif Search approach by incorporating multiple iterations of the entire search process to more effectively navigate the solution space. This enhancement aims to mitigate the risk of converging on local optima by initiating the search from various random starting points, thereby increasing the probability of identifying the globally optimal motif set. Herein, we mention the steps of this augmented algorithm:

Algorithm 3: Enhanced Randomized Motif Search Algorithm **Input:** Sequences S, Motif length k, Number of sequences t, Total iterations TOutput: Best motifs M, Best score score, Consensus sequence consensus 1 Initialize global_best_motifs with an arbitrary high score; 2 Initialize global_best_score to infinity; з for $iteration \leftarrow 1$ to T do Seed the random number generator with the current time; Randomly select initial k-mers from S to form M; 5 $best_motifs \leftarrow M;$ 6 $best_score, consensus \leftarrow Score(best_motifs, k);$ 7 while True do 8 Create profile matrix P based on M; Update M by choosing the highest probability k-mer from each sequence using P; 10 Calculate score *current_score* for the updated motifs; 11 if current_score < best_score then 12 $best_motifs \leftarrow M;$ 13 $best_score \leftarrow current_score;$ 14 end 15 16 else 17 Break; end 18 19 end if $best_score < global_best_score$ then 20 $global_best_motifs \leftarrow best_motifs;$ 21 $global_best_score \leftarrow best_score;$ 22 end 23 24 end

The dynamic seeding mechanism further ensures a varied and comprehensive exploration in each run, enhancing the overall efficiency of the motif finding process.

25 return global_best_motifs, global_best_score, Consensus(global_best_motifs);

2.4 Modified Gibbs Sampler with Exempted Sequences

The Modified Gibbs Sampler is an extension of the traditional Gibbs Sampler algorithm. This variant introduces the concept of exempted sequences, allowing a predefined number of sequences to remain unaltered during the motif sampling process. This modification aims to explore the impact of stabilizing certain sequences on the overall motif discovery process. Below we detail the steps of the modified algorithm:

Algorithm 4: Modified Gibbs Sampler Algorithm with Exempted Sequences **Input:** Sequences S, Motif length k, Number of sequences t, Number of iterations N, Number of exempt sequences num_exempt Output: Best motifs M, Best score score, Consensus sequence consensus 1 Initialize M by randomly selecting k-mers from S; **2** $best_motifs \leftarrow M$; **3** $best_score, consensus \leftarrow Score(best_motifs, k);$ 4 for $j \leftarrow 1$ to N do 5 $exempt_indices \leftarrow Randomly select num_exempt indices from 1 to t;$ for $i \leftarrow 1$ to t do 6 if i not in exempt_indices then 7 Create profile matrix P excluding motifs in $exempt_indices$; Sample a new motif for sequence S[i] using profile-weighted random selection based 9 on P; Update motif M[i] with the sampled motif; 10 end11 **12** end Calculate score $current_score$ and consensus for M including all motifs; 13 if current_score < best_score then 14 $best_motifs \leftarrow M;$ 15 $best_score \leftarrow current_score;$ 16 17 end 18 end

We iteratively sample potential motif occurrences from a set of DNA sequences while fixing a subset of the motifs, chosen randomly at the start of each iteration, to explore the motif space more diversely. By exempting a fraction of sequences from updates, we aim to identify more accurate motifs in selected k-mers.

19 return best_motifs, best_score, consensus;

2.5 Targeted Gibbs Sampler with Score-Based Selection

The Targeted Gibbs Sampler is an innovative adaptation of the traditional Gibbs Sampler algorithm used for motif discovery in biological sequences. Unlike the standard approach, which randomly selects sequences for updating, this version prioritizes the update of sequences that, when temporarily excluded, most decrease the overall motif set score. Below, we outline the steps of this targeted algorithm:

```
Algorithm 5: Targeted Gibbs Sampler Algorithm with Score-Based Selection
   Input: Sequences S, Motif length k, Number of sequences t, Number of iterations N
   Output: Best motifs M, Best score score, Consensus sequence consensus
 1 Initialize M by randomly selecting k-mers from S;
 2 best\_motifs \leftarrow M;
 \mathbf{3} \ best\_score, consensus \leftarrow \mathbf{Score}(best\_motifs, k);
 4 for j \leftarrow 1 to N do
      Identify the sequence M[i] whose removal most decreases the score;
 5
       Create profile matrix P excluding motif M[i];
 6
      Sample a new motif for sequence S[i] using profile-weighted random selection based on P;
 7
      Update motif M[i] with the sampled motif;
 8
      Recalculate score current_score and consensus for the updated motifs;
      if current\_score < best\_score then
10
          best\_motifs \leftarrow M;
11
          best\_score \leftarrow current\_score;
12
      end
13
14 end
15 return best_motifs, best_score, consensus;
```

This modified algorithm introduces a more deliberate approach to motif refinement by focusing on the weakest links within the motif set.

Software

We used MEME and STREME software tools from https://meme-suite.org/meme/tools/streme and https://meme-suite.org/meme/tools/meme. MEME discovers novel, ungapped motifs (recurring, fixed-length patterns) in sequences (sample output from sequences). MEME splits variable-length patterns into two or more separate motifs. STREME discovers ungapped motifs (recurring, fixed-length patterns) that are enriched in your sequences or relatively enriched in them compared to control sequences (sample output from sequences).

3.1 Commands to run

```
To run MEME type the following command -

meme <input file in fasta format> -dna -oc . -nostatus -time 14400 -mod zoops

-nmotifs 10 -minw <min k> -maxw <max k> -objfun classic -revcomp -markov_order 0

To run STREME type the following command -

streme --verbosity 1 --oc . --dna --totallength 4000000 --time 14400

--minw <min k> --maxw <max k> --thresh 0.05 --align center --p <input file in fasta format>
```

3.2 Scripts to run

```
To run the tools run tools.sh . The shell script file is-
export PATH=\$HOME/meme/bin:\$HOME/meme/libexec/meme-:\$PATH
methods=("meme" "streme")
datasets=("hm03" "yst04r" "yst08r")

for d in \${datasets[@]}; do
    for m in \${methods[@]}; do
```

```
mkdir -p "tool_output/\$d/\$m/k_\$k"
            cd "tool_output/\$d/\m/k_\$k"
            echo -e "\nTool: \n\nDataset: \d\n k=\k\n"
            if [ "\mbox{$m'' = "meme"}]; then
                meme "../../../\$d.txt" -dna -oc . -nostatus -time 14400
                -mod zoops -nmotifs 10 -minw \$k -maxw \$k -objfun classic -revcomp
                -markov_order 0
            elif [ "\mbox{$m$" = "streme"}]; then
                streme --verbosity 1 --oc . --dna --totallength
                4000000 --time 14400 --minw \$k --maxw \$k
                --thresh 0.05 --align center --p "../../\$d.txt"
            fi
            cd ../../..
        done
    done
done
  To calculate the scores run toolscore.sh . The shell script file is-
export PATH=$HOME/meme/bin:$HOME/meme/libexec/meme-:$PATH
methods=("meme" "streme")
datasets=("hm03" "yst04r" "yst08r")
for m in ${methods[@]}; do
    for d in ${datasets[@]}; do
        for k in \{8...15\}; do
            mkdir -p "tool_output/$d/$m/k_$k"
            cd "tool_output/$d/$m/k_$k"
            echo -e "\nTool: $m\nDataset: $d\n k=$k\n"
            if [ "$m" = "meme" ]; then
                python3 "../../../meme_score.py" meme.txt
            elif [ "$m" = "streme" ]; then
                python3 "../../../streme_score.py" sites.tsv
            fi
            cd ../../..
        done
    done
done
```

for k in $\{8...15\}$; do

Results

4.1 Exp. configuration

The motif outputs from the two third-party tools MEME and STREME were parsed into motif matrices. The standard mismatch-scoring similar to Gibbs sampling and Randomized Motif Search was applied on the outputs of MEME and STREME to compare them with the methods we implemented.

4.2 Comparison

Table 4.1: Performance of Meme Tool on Various Datasets

Dataset	k	Score	Consensus
hm03	8	4	TGGACCCA
hm03	9	7	TCTGTCTCT
hm03	10	11	CTCTGTCTCT
hm03	11	14	GTCTCTGTCCC
hm03	12	17	TGTCTCTGTCCC
hm03	13	18	AATGAAAAAAAA
hm03	14	26	GCTCTGACACTCAC
hm03	15	26	GAATGAAAAAAAAAT
yst04r	8	2	TTTCTGGC
yst04r	9	4	TTTTCTGGC
yst04r	10	8	CTTTTCTGGC
yst04r	11	7	TCTTTTCTTCC
yst04r	12	4	TTTTTTTTTTTT
yst04r	13	10	TTTTTTTCTTCCTT
yst04r	14	8	TTTTTTTTTTTTC
yst04r	15	9	TTTTTTTTTTTCTTTTC
yst08r	8	5	TTTCTGGC
yst08r	9	4	TTTCTTTTT
yst08r	10	7	GAAAAAAAA
yst08r	11	6	TTTTTTTTTT
yst08r	12	9	AAAAAAAAAAT
yst08r	13	16	TTTTTTTTTCC
yst08r	14	20	AGGAAAAAAAAAA
yst08r	15	23	TTTTTTTTTTTCC

Table 4.2: Performance of Streme Tool on Various Datasets

Dataset	k	Score	Consensus
hm03	8	8	AAACAAAG
hm03	9	10	AGACACAGA
hm03	10	12	AAAGAAGAAT
hm03	11	12	GAGACTCACAG
hm03	12	22	AAACAAAGYGAA
hm03	13	25	AAAACAAAGCGAA
hm03	14	24	GAATGAAAAMAAAA
hm03	15	32	AAAAAAAAGTGAAR
yst04r	8	6	AATTAATT
yst04r	9	28	WRATTAATYW
yst04r	10	10	AAGGTATATA
yst04r	11	12	ACAAGAGAGAA
yst04r	12	15	AAAAAATTAAKR
yst04r	13	8	AGAAAAGAAAAA
yst04r	14	18	ARAAAAAAAAAA
yst04r	15	12	AGAAAAAAAAAA
yst08r	8	9	GTAAATAA
yst08r	9	8	AAGAAAAGA
yst08r	10	10	AGGAAGAAAA
yst08r	11	13	GAAAAGAAAA
yst08r	12	8	AAAAAAAAAAT
yst08r	13	11	AAAAAAAAAAATA
yst08r	14	18	AAAAAAAAAATAG
yst08r	15	28	AAAAAAAAAAATAGN

Table 4.3: Performance of Gibbs Sampler on various Datasets

Dataset	k	Score	Consensus
hm03	8	9	AAAAAAA
hm03	9	12	AAAATAAAA
hm03	10	15	AAAAAAATAA
hm03	11	19	AATGAAAAAA
hm03	12	19	AAAAAAAATAAA
hm03	13	24	AAAAAAAATAAAA
hm03	14	26	AATGAAAAAAAAAT
hm03	15	28	AGAAAAAAAAAAAA
yst04r	8	2	TTTTTTTT
yst04r	9	6	AAAAAAAA
yst04r	10	6	TTTTTTTCT
yst04r	11	8	AAAAAAAAAA
yst04r	12	9	AAAAAAAAAAA
yst04r	13	10	TTATTTTTTTTT
yst04r	14	14	AAAAAAAAAAAAAA
yst04r	15	14	TTATTTTTTTTTT
yst08r	8	6	TTTTTTTT
yst08r	9	8	AAGAAAAA
yst08r	10	9	TTTTTTTTT
yst08r	11	12	ATTTTTTTTT
yst08r	12	13	TATTTTTTTTT
yst08r	13	21	AAAAAAAAAAAA
yst08r	14	27	AAAAAAAAAAAAA
yst08r	15	30	TTTTATTTTTTTT

Table 4.4: Performance of Modified Gibbs Sampler on various Datasets

Dataset	k	Score	Consensus
hm03	8	10	AAACAAAA
hm03	9	17	GAGAAAACA
hm03	10	25	ACTAAAACAC
hm03	11	28	AGTTTTCTTTC
hm03	12	23	AAGAAAAATCAA
hm03	13	29	AAATGGAAAAGAG
hm03	14	38	TAGATAAAAAAATA
hm03	15	45	TCCCTTGAGCCCAGG
yst04r	8	5	TCTTTCTT
yst04r	9	10	TTTTTTTTC
yst04r	10	16	TTTGCATGTA
yst04r	11	10	TTCTTTTTTTT
yst04r	12	14	CATATATAAATA
yst04r	13	18	AAGGAAAAAAAA
yst04r	14	15	TTTATTTTTTTTT
yst04r	15	24	TTTTTTTTTAAAACT
yst08r	8	14	AAAAATAA
yst08r	9	12	TATTTTTT
yst08r	10	21	AAAATTATTT
yst08r	11	15	TTTATTTTTCT
yst08r	12	22	TTTTTTTTTTTT
yst08r	13	29	CAAAAAAAAAAA
yst08r	14	37	ATTTTTCTTCTCA
yst08r	15	37	ATGAAAAAAGAAAAA

Table 4.5: Performance of Enhanced Randomized-Motif on various Datasets

Dataset	k	Score	Consensus
hm03	8	6	CTCTGTCC
hm03	9	12	TCTCCTTCC
hm03	10	18	TGGAAGAGAG
hm03	11	19	ATGAAAAAAA
hm03	12	25	ATGGAAAAGATA
hm03	13	27	AGAAAGAGAGAAA
hm03	14	30	AGAAAAGAGAAAG
hm03	15	31	AGCCAACAAAATAAA
yst04r	8	1	ATTTTTTT
yst04r	9	5	ATTTTTTT
yst04r	10	6	TTTTTTTTTT
yst04r	11	14	ATCCTTTTCTT
yst04r	12	12	AAAAAAAAAAA
yst04r	13	14	ATTTTTTTTTTTT
yst04r	14	23	AAGAAGAAAAAAA
yst04r	15	22	AAAAAAAAAAAAAA
yst08r	8	4	ATTTTTTT
yst08r	9	6	ATTTTTTT
yst08r	10	9	ATTTTTTTT
yst08r	11	12	TATTTTTTTT
yst08r	12	16	ATTTTTTTTTT
yst08r	13	20	CTATTTTTTTT
yst08r	14	27	ATTTTTTTTTTT
yst08r	15	32	AAAAAAAAAAAAA

Table 4.6: Performance of Randomized-Motif on hm03 Dataset

\overline{k}	Score	Consensus
8	5	AAAATAAA
9	9	CTCTGTCCC
10	12	GACACAGGGA
11	15	GACACAGGGAG
12	18	AAAAAAAATAAA
13	21	AAAAAAATAAAAA
14	24	AGCAAACAAAATAA
15	28	AGCAAACAAAATAAA

Table 4.7: Summary of Gibbs Sampler Exempt Results

Dataset	k	Score	Consensus
hm03	8	7	AAAATAAA
hm03	9	12	AAAAAAAA
hm03	10	13	AAAATAAAAA
hm03	11	16	AAAAAAAATAA
hm03	12	17	AAAAAAAATAAA
hm03	13	21	AAAAAAAATAAAA
hm03	14	24	AATGAAAAAAAAAT
hm03	15	27	AGTAAACAAAATAAA
yst04r	8	3	TTTTTTTT
yst04r	9	4	ATTTTTTT
yst04r	10	5	TTTTTTTTCT
yst04r	11	7	TATTTTTTTTT
yst04r	12	8	TATTTTTTTTT
yst04r	13	9	TTATTTTTTTTT
yst04r	14	14	AAAAAAAAAAAAA
yst04r	15	14	TTATTTTTTTTT
yst08r	9	8	AAAAAAAA
yst08r	10	9	TTTTTTTTTT
yst08r	11	13	AAAAAAAAAA
yst08r	12	13	TATTTTTTTTT
yst08r	13	17	TATTTTTTTTT
yst08r	14	23	TATTTTTTTTTTT
yst08r	15	30	AAAAAAAAAAAAA

Conclusion

Throughout this work, we have done a comprehensive exploration of motif discovery algorithms, with a particular focus on the Gibbs Sampler and Randomized Motif Search methodologies. Our journey included the implementation of standard approaches, innovative modifications to enhance their effectiveness, and the application of third-party tools like MEME and STREME for comparative analysis.

5.1 Insights Gained

The modifications to the Gibbs Sampler algorithm, designed to introduce a more targeted selection of sequences for updating and the incorporation of exempt sequences, have shown promising results. Similarly, the Enhanced Randomized Motif Search strategy, which emphasizes multiple iterations from varied initial conditions, highlighted the importance of exploring the motif space comprehensively. By avoiding premature convergence on suboptimal motifs, this approach underlines the stochastic nature of biological data analysis.

5.2 Challenges Encountered

One of the main challenges in motif discovery remains the validation of identified motifs due to the absence of a universally accepted "ground truth." The reliance on tools like Tomtom for comparison against known motifs databases underscores the difficulty in ensuring the biological relevance of newly discovered motifs.

5.3 Future Directions

Looking ahead, there are several paths for further research and development in the field of motif discovery. The integration of machine learning techniques, particularly deep learning, offers an exciting road for the development of algorithms that can learn complex patterns and predict motifs with higher accuracy.

References

- Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., and Noble, W. S. (2007). Quantifying similarity between motifs. *Genome biology*, 8:1–9.
- Karaboga, D. and Aslan, S. (2018). Discovery of conserved regions in dna sequences by artificial bee colony (abc) algorithm based methods. *Natural Computing*, 18(2):333–350.
- Matys, V. (2003). Transfac(r): transcriptional regulation, from patterns to profiles. *Nucleic Acids Research*, 31(1):374–378.