QM6:

Schätzgenauigkeit:

Punktschätzer, Standardfehler (SE) und Konfidenzintervall

Die Differenz als Schätzfehler

je größer die Stichprobe, desto näher sind die Stichprobenmittelwerte am wahren Populationsmittelwert

Beobachtung:

- Kennzahlen ,in der Mitte' unserer Stichprobe sind bei kleineren Stichproben bessere Schätzer (Median, iqr)
- Aggregierende Kennzahlen haben die Tendenz zur Mitte, der MW (mean) ist deshalb der häufigste Schätzer

Die Differenz als Schätzfehler

je größer die Stichprobe, desto näher sind die Stichprobenmittelwerte am wahren Populationsmittelwert

Fig.: Verteilung der Differenz zwischen population_mean und Stichprobenmittelwerte

Verteilung von Stichprobenmittelwerten

z.B. ,flights'

- Wir können nie wissen wie nah unser MW aus dem sample am wahren μ liegt, da μ in der Regel gesucht wird.
- Je größer die Stichprobe, desto schmaler ist die Verteilung der Stichprobenmittelwerte. Dadurch wird der Populationsmittelwert präziser geschätzt. Die Breite der Stichprobenverteilung wird durch die Streuung/ sd bestimmt.

Verteilung von Stichprobenmittelwerten

z.B. ,flights'

- Wir benötigen demnach nur die sd der Stichprobenmittelwerte um die Genauigkeit unserer Punktschätzung anzugeben
- Vorgehen:
- 1) Standardfehler berechnen (theoretisch oder praktisch)
- 2) 95%- Intervall berechnen

Punktschätzer und Konfidenzintervall

- Die Schätzgenauigkeit kann man oft besser durch eine untere und eine obere Grenze einordnen.
- Der Stichprobenmittelwert gilt dabei als Punktschätzer.
- Das Intervall nennt sich Vertrauensintervall, oder häufiger: Konfidenzintervall.

Punktschätzer und Konfidenzintervall

- Die Schätzgenauigkeit kann man oft besser durch eine untere und eine obere Grenze einordnen.
- Der Stichprobenmittelwert gilt dabei als **Punktschätzer.**
- Das Intervall nennt sich Vertrauensintervall, oder häufiger: **Konfidenzintervall**.

$$x_u = ar{x} - z \cdot rac{\sigma}{\sqrt{n}}$$
 $x_o = ar{x} + z \cdot rac{\sigma}{\sqrt{n}}$

Mittels des Standardfehlers SE wird häufig die 95%-Umgebung um den Punktschätzer angegeben.

Herangehensweise: empirische oder theoretische Berechnung des Standardfehlers (standard error: SE)

Praktische Berechnung:

ziehe samples berechne means berechne sd dieser means (=Standardfehler)

Herangehensweise: empirische oder theoretische Berechnung des Standardfehlers (standard error: SE)

Praktische Berechnung:

ziehe samples berechne means berechne sd dieser means (=Standardfehler)

Theoretische Berechnung:

ziehe ein sample berechne sd teile sd durch Wurzel aus n (=Standardfehler)

$$SE_{\bar{x}} = \frac{S}{\sqrt{n}}$$

Quelle: http://statweb.stanford.edu/~tibs/stat315a/Supplements/bootstrap.pdf

Kleine(re) Stichprobe (n=100)

Kleine(re) Stichprobe (n=100)

Große Stichprobe (n=10.000)

Große Stichprobe (n=10.000)

