Régulation

Vocabulaire

Élément

Comparateur construit $e(t) = \omega(t) - y(t)$

 $\begin{array}{ll} \textbf{Régulateur} & \text{Traite } e(t) \text{ et déduit } u(t) \text{ afin de réduire l'erreur} \\ \textbf{Amplificateur} & \text{Amplifie } u(t) \text{ afin de l'appliquer sur l'accusateur} \\ \end{array}$

Processus installation à asservir

Capteur crée l'image y(t) en fonction de x(t)

Signaux

- $\omega(t)$ Consigne
- e(t) Erreur ou écart
- u(t) Commande
- v(t) Perturbation
- n(t) Bruit sur la mesure
- x(t) Grandeur réglée brute
- y(t) Grandeur réglée mesurée
- K Gain statique = $\lim_{s \to 0} G(s) = G(0)$

Mode de régulation

 ${\bf Correspondance} \quad y(t) \ {\rm suit} \ w(t)$

 $G_{yw}(s)$ Y(s)/W(s) Idéal = 1 **Maintient** maintient y(t) = w(t) malgré les perturb.

 $G_{yv}(s)$ mainteint g(t) = w(t) in $G_{yv}(s)$ Y(s)/V(s) Idéal = 0

Réponse temporelle

Ordre 1

Sous la forme : $y(t) = K \cdot (1 - e^{\frac{-t}{\tau}}) \cdot \varepsilon(t)$

Formes Bode $K\frac{1}{1+s\cdot\tau} = K\frac{1}{1+j\cdot\frac{w}{w_{n_2}}}$

Formes Laplace $\frac{K}{s-1}$

 $\frac{\kappa}{s - s_1}$ $R\acute{e}el = -\frac{1}{\tau}$

Pôles Réel = -

au constante de temps

Temps transitoire $T_p = 3\tau$

Ordre 2

sous la forme : avec l'oscillation $g(t) = \frac{K}{\omega_o} \cdot e^{-\delta \cdot t} \cdot \sin(\omega_o \cdot t) \cdot \varepsilon(t)$

Bode $K \cdot \frac{1}{1 + \frac{2\zeta}{\omega_n} s + \frac{1}{\omega_n^2} s^2}$

Pôles Complexe avec conjugué $-\delta \pm j \cdot \omega_o$ ω_o pulsation propre du régime libre

 $\begin{array}{ll} \omega_n & \text{puls. propre du non-amortie} \to \sqrt{\delta^2 + \omega_o^2} \\ \delta & \text{Facteur d'amortissement} \to \zeta \cdot \omega_n \end{array}$

 $\zeta \in [0,1]$ Taux d'amortissement $\to \sin(\Psi) = \frac{\delta}{\omega_n}$

Temps settling $T_{settling} = \frac{3}{\delta} = \frac{3}{|Re[s_{1,2}]|}$

Retard Pur

Sous la forme : $U(s) \cdot e^{-s \cdot T_r}$

Gain = 0 $arg(e^{-j \cdot w \cdot T_r}) = -w \cdot T_r$

 $u(+\infty)$ $K \cdot y(+\infty)$

Formes de Bode

Tout système régulé automatiquement pour être décrit par des filtres fondamentaux d'ordre 1 ou 2.

Type α d'un système

 $\leftarrow T_r \rightarrow$

Le type α d'un système est le nombre de pôles $s=0\frac{rad}{s}$ soit le nombre d'intégrateurs.

Théorème de la valeur finale et initiale valeur initiale

$$y(0) = \lim_{s \to \infty} Y(s)$$

valeur finale

$$y(\infty) = \lim_{s \to 0} Y(s)$$

Gain statique

$$y(\infty) = G(0)$$

Gain permanant

$$y(\infty) = \lim_{s \to 0} s' \alpha G(s)$$

Diagramme de Bode

Ordre un fondamental(pseudo-intégrateur et pseudo-dérivateur)

$$G(s) = \frac{1 + j \cdot \frac{w}{w_{p1}}}{1 + j \cdot \frac{w}{w_{p2}}}$$

Ordre 2 fondamental

$$G(s) = \frac{Y(S)}{U(S)} = \frac{1}{\left(1 + \frac{2\zeta}{\omega_n}s + \frac{1}{\omega_n^2}s^2\right)}$$

Intégrateur, retard pur et gain

$$G(s) = \frac{Y(S)}{U(S)} = \frac{K}{s} \cdot e^{T_r \cdot s}$$

Schéma fonctionnel et fonction de transfert des sys. regul. auto.

Système asservi

 $G(s) = \frac{Y(s)}{U(s)} = G_k(s) \pm G_2(s)$

Par le théorème de Mason : $G(s) = \frac{Y(s)}{U(s)} = \frac{G_o(s)}{1 \mp G_o(s)}$

 $G(s) = \frac{Y(s)}{U(s)} = G_k(s) \cdot \dots \cdot G_2(s) \cdot G_1(s)$

Pour définir le gain en boucle ouverte $G_o(s)$ il faut définir la fonction de transfert $G_o(s) = \frac{Y(s)}{E(s)}$

Fonction de transfert classique

Correspondance

$$G_{yw}(s)$$
 = $\frac{Y(s)}{W(s)} = \frac{G_0(s)}{1+G_0(s)}$

Maintient

$$G_{yv}(s)$$
 = $\frac{Y(s)}{V(s)} = \frac{G_{a2}(s)}{1+G_0(s)}$

Stabilité

Condition fondamentale

Système stable si $Reel\{S_i\} < 0rad/s$

Cas particulier

Le système est :

- $\bullet\,$ Instable : un ou plusieurs pôles à partie réelle positive
- Stable : aucun pôle à partie réelle $R(s1) > 0 \frac{rad}{s}$
- Marginalement stable : Si imaginaire pur.

Critère de Nyquist simplifié

Un système de régulation automatique est stable en boucle fermée si : Le système en boucle ouverte est stable. A $w=w_{co}$ la phase en boucle ouverte est supérieur à 180°, où w_{co} est la pulsation de coupure 0dB en boucle ouverte

Méthode de Bode

- 1. Tracer le diagramme de Bode de $Go(j \cdot w)$ pour Kp = 1.
- 2. Repérer la pulsation w_p à laquelle $argGo(j\cdot w_p)=180-\varphi_{md}$
- 3. Relever le gain en boucle ouverte en w_p : $|G_0(j\cdot w_p)|_{K_p=1}$.
- 4. Calculer le gain K_p à appliquer pour obtenir gain unitaire : $K_p = \frac{1}{|G_0(j \cdot w_p)|_{K_p=1}}$
- 5. Tracer $|G_0(j\cdot w_p)|_{K_p}$ et vérifier que Am>6dB

Regulateur

PD

Loi de commande
$$u(t) = K_p \cdot (e(t) + T_d \cdot \frac{d_e}{d_t})$$

Fonction de transfert
$$u(t) = \frac{U(s)}{E(s)} = K_p \cdot (1 + s \cdot T_d)$$

©MEE pid_05_2(.mp)

\mathbf{PI}

PID

Diagramme de bode

rouge = PID, vert = PD, bleu = PI

avec:

$$K_p = 1$$

$$T_i = 0, 5$$

$$T_d = 2$$

rouge = PI, vert = PD, bleu = erreur

Compensation pole-zéros

Consiste à supprimer une constante de temps à l'aide du régulateur.

Attention : Suppression d'un pôle en boucle-ouverte ne le supprime pas de la fonction de maintien