•••

Dr. April Wright 4.11.2016

The Question(s)

- What is the ancestral state for squamate parity?
- How many times has the alternative state evolved from that?
- Have there been reversals back to the ancestral state?

• Pyron and Burbrink 2014 (http://onlinelibrary.wiley.com/doi/10.1111/ele.12168/full)

- Pyron and Burbrink 2014
- 8000 species classified by parity mode

- Pyron and Burbrink 2014
- 8000 species classified by parity mode
- 4161 taxon tree

- Pyron and Burbrink 2014
- 8000 species classified by parity mode
- 4161 taxon tree
 - Overlap of 4059 taxa

- Pyron and Burbrink 2014
- 8000 species classified by parity mode
- 4161 taxon tree
 - Overlap of 4059 taxa
 - 12 species were bimodal

• Fit a model of speciation and extinction to these data

- Fit a model of speciation and extinction to these data
- This model, internally, estimates ancestral states

Early origin of viviparity and multiple reversions to oviparity in squamate reptiles

Ecology Letters

Volume 17, Issue 1, pages 13-21, 19 AUG 2013 DOI: 10.1111/ele.12168 http://onlinelibrary.wiley.com/doi/10.1111/ele.12168/full#ele12168-fig-0001

- 34 origins of oviparity
- 56 reversals to oviparity

What we'll do today

- Large tree inference
- State-dependent diversification models

http://people.sc.fsu.edu/~dswofford/paup_test/

website

paup

hs;

This will run 10 ish minutes.

showdist;

What do we observe?

What do we observe?

• Massive amounts of missing data

What do we observe?

- Massive amounts of missing data
- 1/8 of taxon pairs have no data that can be used to evaluate them with respect to one another

Tips	Number of unrooted (binary) trees	
4	3	
5	15	
6	105	
7	945	
8	10,395	
9	135,135	
10	2,027,025	
11	34,459,425	
12	654,729,075	
13	13,749,310,575	
14	316,234,143,225	
15	7,905,853,580,625	
16	213,458,046,676,875	
17	6,190,283,353,629,375	
18	191,898,783,962,510,625	
19	6,332,659,870,762,850,625	
20	22,164,309,5476,699,771,875	
21	8,200,794,532,637,891,559,375	
22	319,830,986,772,877,770,815,625	
23	13,113,070,457,687,988,603,440,625	>21 moles of trees
24	563,862,029,680,583,509,947,946,875	

Missing data and topology estimation

Random missing data are generally not a problem, if the sample size is large

Missing data and topology estimation

- Random missing data are generally not a problem, if the sample size is large
 - = reducing sample size

Missing data and topology estimation

- Random missing data are generally not a problem, if the sample size is large
 - = reducing sample size
- Biased missing data tend to cause a big problem

Tree estimation

• Maximum likelihood

Tips	Number of unrooted (binary) trees	
4	3	
5	15	
6	105	
7	945	
8	10,395	
9	135,135	
10	2,027,025	
11	34,459,425	
12	654,729,075	
13	13,749,310,575	
14	316,234,143,225	
15	7,905,853,580,625	
16	213,458,046,676,875	
17	6,190,283,353,629,375	
18	191,898,783,962,510,625	
19	6,332,659,870,762,850,625	
20	22,164,309,5476,699,771,875	
21	8,200,794,532,637,891,559,375	
22	319,830,986,772,877,770,815,625	
23	13,113,070,457,687,988,603,440,625	>21 moles of trees
24	563,862,029,680,583,509,947,946,875	

Tree estimation

- Maximum likelihood
 - o RAxML
 - Bootstraps

Branch Lengths

Tree estimation

• So we compromised

Tree estimation

- So we compromised
 - First pass estimation in RAxML
 - Optimization in Garli
 - For just branch lengths
 - For BL + topology

iPython Notebook

RF_Checking

iPython Notebook

RF_Checking

• What I want you to note is that there are 854 differences between the Pyron and Burbrink tree and our best one.

iPython Notebook

RF_Checking

- What I want you to note is that there are 854 differences between the Pyron and Burbrink tree and our best one.
 - Total possible differences 8118
 - About 10% of the tree is different

- Full BiSSe model
 - Two speciation parameters
 - Two extinction parameters
 - Two transition rates

- Full BiSSe model
 - Two speciation parameters
 - Two extinction parameters
 - Two transition rates

One of each parameter for oviparity and viviparity

R CMD BATCH bisse.R

Let's look inside the script

Heatmaps

Proportion of Oviparous Taxa Sampled

Proportion of Viviparous Taxa Sampled

Show that 4-tree figure again, zoom in on one.

Show that 4-tree figure again, zoom in on one.

• yes ma'am.

Table 2. Number of changes to viviparity and oviparity, and support for the root state, as estimated across four trees and three methods of taxon-sampling correction.

	Origins of viviparity	Minimum number of reversals to oviparity				Root state (% support for oviparity)		
Tree		1X	2X	зх	4X	No sampling correction	One term correction	Two term correction
Pyron and Burbrink tree	106–129	13	2	1	0	80.8	7.2	7.4
ExaML tree	103-126	12	3	1	0	75.0	87.9	11.2
Branch-length improved tree	103-124	12	3	1	0	90.4	97.5	24.4
Best tree	98-129	18	3	0	0	88.6	94.5	14.3

The ranges for origins of viviparity indicate the number of origins under the equal weighted model to the number of origins assuming no reversals to oviparity. Reversals to oviparity are shown for four models of character change: 1X = equal weighting of changes between viviparity and oviparity; 2X = twofold greater penalty of reversals to oviparity; 3X = threefold greater penalty of reversals to oviparity.

The story we tell about this trait depends on:

The story we tell about this trait depends on:

The tree we use

The story we tell about this trait depends on:

- The tree we use
- The model we use

The story we tell about this trait depends on:

- The tree we use
- The model we use
- How we parse teh model output

Future Directions

• Threshold model