EE219 Project 2 - Report Clustering Winter 2018

Nrithya Theetharappan nrithya@ucla.edu 004946349 Shraddha Manchekar smanchekar@ucla.edu 004945217

Introduction

The project aims to explore Clustering algorithms, which provide unsupervised learning methods for grouping of similar data points together, when no *a priori* labelling is available.

K-means clustering tries to divide the datapoints into K clusters with each data point belonging to one and only one cluster. The algorithm works as follows:

- 1. Assign data points to clusters(initially random) such that the distance between each point and the center is minimized
- 2. Reassign data points depending on the distance from the center at each turn
- 3. Calculate centers based on the mean of distances of the data points

In this project, our goal is to find (a) proper representation of the data such that the clustering is efficient, (b) to perform K-means clustering on the dataset and evaluate its performance and (c) to try different preprocessing methods to improve the clustering performance.

Dataset

We use the "20 newsgroups" dataset. It is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups, each corresponding to a different topic. We pretend that the class labels are unknown to us and aim to group the data. We thus work with a well differentiated portion of the data, namely the two major classes: 'Computer Technology' and 'Recreational activity'.

Part 1: Building the TF-IDF Matrix

In this part, we find a good representation of the data to perform K-means clustering on the data in further steps. Following the steps in Project 1, in this step, we compute the TF-IDF representation of the data, in order to make the text data into analyzable and numeric format by setting min df=3 and excluding stopwords.

The dimensions of our TF-IDF matrix are (7882, 18469)

Part 2: Applying K-means with k=2 to the TF-IDF data

In this part, we applied K-means clustering algorithm with k=2. The following measures are computed and inspected to get a sense of the effectiveness of the clustering algorithm against the known class labels.

The contingency matrix gives the number of data points that are members of a both a given class and the corresponding cluster.

Various purity measures used here for a more complete analysis are: Homogeneity score, Completeness score, V-measure, Adjusted Rand Index and Adjusted Mutual Info Score

The following table shows the values of purity measures that we obtained.

Contingency Matrix	Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
[[2588 1315] [46 3933]]	0.417	0.453	0.434	0.429	0.417

From the contingency matrix, it can be seen that the clustering algorithm performed well for class 1(in our case, recreational activity) while it performed poorly for class 0, grouping a third of the documents from the other class into class 0. Our analysis is further affirmed by the lower values of purity scores we have obtained.

Part 3: Preprocessing the data

Part 3a(i): Dimensionality Reduction using LSI and NMF

In this part, first, we use Truncated SVD to reduce the dimensions of the data. Also, we plot the percentage of variance the top r principal components can retain v.s. r, for r=1 to 1000, which is as shown below:

We calculate the ratio of variance of the original data retained after dimensionality reduction by using SciPy's linalg.svds to decompose the matrix into U, S and V' and then calculate the ratio using trace(S'S).

The plot is observed to be monotonically increasing in nature.

Part 3a(ii): Finding the best dimension parameter r

Here, we use TruncatedSVD and NMF for dimensionality reduction and vary the dimension parameter r, calculating various metrics.

Truncated SVD:

We observed that the homogeneity values were around 0.41 on average. The following table and plot show the values of various metrics for dimensions r = [1, 2, 3, 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, 300]. The homogeneity and completeness scores were found to be highest for **r=30**.

R	Contingency Matrix	Homogeneity Score	Completeness score	V-measure	Adjusted Rand Score	Adjusted mutual info score
1	[[1557 2346]	0.0704453750	0.0710491582	0.0707459784	0.095402819	0.07036027377
	[2813 1166]]	15008249	65143728	1287493	288579882	1262
2	[[2748 1155]	0.4066283869	0.4292812801	0.4176478903	0.453102452	0.40657406250
	[133 3846]]	1795128	9082612	5596445	69969657	570954
3	[[1140 2763]	0.4141846047	0.4368874333	0.4252332136	0.460650366	0.41413097212
	[3853 126]]	2985036	9020164	5337691	33303785	235217
5	[[2551 1352]	0.4139128771	0.4532128825	0.4326722994	0.419251431	0.41385921884
	[37 3942]]	0227881	1607822	0120838	298241	221583
10	[[2676 1227]	0.4240578206	0.4547201902	0.4388540689	0.450373572	0.42400509165
	[69 3910]]	7972853	9533872	6277857	16015644	447903
20	[[1231 2672]	0.4261816431	0.4575061116	0.4412886913	0.450714303	0.42612910858
	[3915 64]]	9127272	1609461	0047033	17761102	501563
30	[[1236 2667]	0.4274659351	0.4594000978	0.4428580757	0.450373624	0.42741351811
	[3919 60]]	6022319	2806085	9996539	21229793	158901
40	[[2649 1254]	0.4241514921	0.4569930610	0.4399602495	0.444939917	0.42409877157
	[58 3921]]	2156966	9079668	2820356	36649258	496906
50	[[2589 1314]	0.4096670199	0.4449479854	0.4265792528	0.425188040	0.40961297311
	[57 3922]]	2395554	2304842	0732817	75614225	380784
100	[[2606 1297]	0.4139166832	0.4485362913	0.4305316568	0.430833282	0.41386302555
	[57 3922]]	4333331	8386492	1091454	14074418	109289
150	[[2606 1297]	0.4146305868	0.4497917817	0.4314960769	0.430167223	0.41457699450
	[57 3922]]	6183296	2198742	156288	35621016	713359
200	[[2586 1317]	0.4102252355	0.4458574017	0.4272997714	0.424857139	0.41017123979
	[55 3924]]	1229495	6026928	9103898	90731089	409847
250	[[2598 1305]	0.4132204641	0.4483828048	0.4300841405	0.428836606	0.41316674265
	[55 3924]]	145456	4421961	6418204	67029683	314107
300	[[2590 1313]	0.4112219480	0.4466974641	0.4282262384	0.426181568	0.41116804361
	[55 3924]]	6756335	1863759	6128466	1428498	302606

NMF:

For NMF, we observed the following metrics for different r values. The best dimension parameter r was observed to be at r=2.

R	Contingency Matrix	Homogeneity Score	Completeness score	V-measure	Adjusted Rand Score	Adjusted mutual info score
1	[[1690 2213]	0.06070124	0.061747532	0.06121991	0.08166192	0.060615250
	[2855 1124]]	3874015265	751851165,	8197158898	9849436113	286200378
2	[[3633 270]	0.44717190	0.451990582	0.44956833	0.53509233	0.447121294
	[788 3191]]	609737173	91946975	268958962	922553578	33799758
3	[[3517 386]	0.04059382	0.139404834	0.06287797	0.01056687	0.040505900
	[3962 17]]	7540793721	31334139	6360230362	0787302477	735849566

5	[[2486 1417] [110 3869]]	0.35415499 164683206	0.387338068 89581135	0.37000403 066188103	0.37512217 678006504	0.354095862 37684787
10	[[3899 4] [2746 1233]]	0.17035731 909746471	0.271710816 63207342	0.20941534 822379637	0.09122861 3549751675	0.170281347 9106218
20	[[5 3898] [1251 2728]]	0.17233076 995976931	0.272332387 74706481	0.21108674 848378528	0.09385453 0423786428	0.172254979 93163041
30	[[3893 10] [3979 0]]	0.00128771 9557284096 6	0.091729426 573068443	0.00253978 5007186998 1	5.52047163 78814561e- 05	0.001190770 702596841
40	[[3 3900] [991 2988]]	0.13340076 593020481	0.244006665 87271397	0.17249621 166174325	0.05800612 9706685221	0.133321402 94893544
50	[[3893 10] [3979 0]]	0.00128771 9557284096 6	0.091729426 573068443	0.00253978 5007186998 1	5.52047163 78814561e- 05	0.001190770 702596841
100	[[0 3903] [30 3949]]	0.00376398 9521894239 3	0.104338641 37514494	0.00726586 4847244577 8	-8.93743492 06971393e- 05	0.003671206 86194346
150	[[3855 48] [3979 0]]	0.00620280 7395775858 6	0.115767421 63576162	0.01177472 6091996297	0.00038243 6705713738 58	0.006110866 7769254497
200	[[3142 761] [3945 34]]	0.08344214 6005835605	0.176875622 18316386	0.11339127 247253541	0.03757860 7310198311	0.083358197 399429235
250	[[7 3896] [32 3947]]	0.00155191 8896364962 1	0.034471703 212745383	0.00297012 2629185304 1	-8.27667741 83442112e- 05	0.001459313 258783166
300	[[82 3821] [21 3958]]	0.00368716 6755579182 1	0.036683936 572652245	0.00670082 2134819971 5	0.00053637 0266030026 34	0.003595522 725708821

The best r choice for SVD is at r=30 and for NMF is at r=2 as seen from the above results.

Q: How do you explain the non-monotonic behavior of the measures as r increases?

A: We observed that after a certain dimension, these metrics became almost constant, indicating higher dimensions didn't change the clustering result much. The number of singular values actually significant in the reconstruction of original matrix dips after a certain r. At this point, inclusion of these values in computing the metrics might be attributed to drop in scores.

Part 4: Visualization of Clusters

Part 4a: Visualizing the performance of case with best clustering results.

SVD:

Following figure shows the TF-IDF data reduced in dimensions at r=30 using Truncated SVD. As it can be seen from the plot below, the data is very close to 0 and is not easily separable.

Clustering results with TruncatedSVD

NMF:

Following figure shows the TF-IDF data reduced in dimensions at r=2 using NMF.

Clustering results with NMF

Part 4b(i): Visualizing the transformed data after normalizing

In this part, we apply various methods to improve the clustering performance. We visualized the clusters and calculated various purity scores for SVD and NMF after normalizing the data. We used StandardScaler for normalizing the data. It was observed that the result, after normalizing, is almost the same as without normalizing (though there is a slight improvement).

The following plots show visualization of the clusters.

Clustering results with TruncatedSVD (normalized)

Clustering results with NMF (normalized)

The following table shows the values of purity metrics that we obtained after normalizing the data.

	Contingency Matrix	Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
SVD	[[2561 1342]	0.4185866938	0.4578720040	0.437348910	0.42353491	0.41853346
	[34 3945]]	2846714	6708439	6543057	242879165	349325249
NMF	[[300 3603]	0.4583785876	0.4613172133	0.459843205	0.55306267	0.45832900
	[3269 710]]	1389916	4117681	70718235	16804482	190967441

Part 4b(ii): Visualizing the transformed data after a non-linear (logarithm) transformation (NMF)

It was observed that applying non-linear logarithmic transformation on the NMF-reduced data improves the clustering performance significantly. The following plots show visualization of the clusters for log transformation.

Clustering results with log transformation on NMF-reduced data

The following table shows the values of purity metrics that we obtained after applying logarithm transformation to the data.

	Contingency Matrix	Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
NMF	[[3422 481]	0.5354967200	0.5366350270	0.536065269	0.64206750	0.53545419
	[302 3677]]	0289172	5530663	24564746	415703473	456551313

In this task, we observed that the clustering results improve on a logarithm transformed data. However, while performing log transformation, one must be very careful of the 0s in the original TF-IDF matrix. The logarithm of 0 is undefined. Hence, to avoid this problem, we add a very small constant - 0.001 to all the values while performing this transformation.

Q: Can you justify why logarithm transformation may increase the clustering results?

A: The scoring functions can be considered additive by means of applying log transformation based on the following:

For independant terms, P(a.b)= P(a) * P(b)

Applying log, log(P(a.b)) = log(P(a)) + log(P(b))

Thus the influence of outliers is amortized

Part 4b(iii): Combination of normalization and log transformation on NMF-reduced data

It was observed that applying logarithm transformation after normalization on the NMF-reduced data and vice-versa improves the clustering result. The visualization plots for these transformation are as shown below:

Clustering results with log transformation on normalized NMF-reduced data

Clustering results normalization on log transformed NMF-reduced data

	Contingency Matrix	Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
norm	[[3438 465]	0.5329437539	0.5337203841	0.533331786	0.64044168	0.53290099
->log	[322 3657]]	4727811	1572298	30219658	522514522	479503594
log->	[[3406 497]	0.5356283084	0.5371153081	0.536370777	0.64125435	0.53558579
norm	[288 3691]]	2554687	6422526	6813319	364257122	502538894

Part 5: Expand Dataset into 20 categories

All the analysis thus far was conducted by setting k=2 for two classes. The analysis is extended to the whole dataset of 20 subclasses with 20 clusters. The TF-IDF representation is found and dimensions are reduced using both truncated SVD and NMF and then different transformations are applied. The contingency matrix, purity scores and visualization is obtained in each case and tabulated below.

Part 5.1: Building the TFIDF matrix

We compute the TF-IDF representation of the data, in order to make the text data into analyzable and numeric format by setting min_df=3 and excluding stopwords

Shape of TF-IDF matrix: (18846, 52295)

Part 5.2: Applying K means with k=20 to the TFIDF matrix

We applied K-means clustering algorithm with k=2. The following measures are computed and inspected to get a sense of the effectiveness of the clustering algorithm against the known class labels.

Contingency matrix:

We obtained the following contingency matrix for k=20.

[[0 68 0 174 92 1 0 0 28 0 1 0 229 168 0 0 38 0 0 0] [22 73 1 1 93 0 2 379 2 36 16 2 318 0 0 0 0 4 22 2] [13 36 5 0 74 0 1 133 0 71 5 0 207 0 11 0 0 2 417 10] [144 27 1 0 145 0 3 36 3 104 13 0 256 0 197 0 0 5 43 5]

```
[542 21 1 0 47 0 13 8 2 7 11 1 231 0 69 0 0 3 6 1]
[ 4 73 2 0 97 2 2 543 0 4 31 0 170 0 0 0 0 4 55 1]
[92 5 14 0 164 0 30 2 6 8 4 0 561 0 46 0 0 12 23 8]
[ 0 25 2 0 527 0 32 0 9 0 11 3 373 0 0 0 0 5 2 1]
[ 3 108 0 0 562 0 6 0 2 0 24 0 278 0 0 0 0 12 0 1]
[ 3 2 14 0 149 0 7 1 425 1 7 0 381 0 0 0 0 3 0 1]
[8 3 19 0 42 0 6 0 660 0 10 0 198 0 0 0 0 53 0 0]
[ 4 49 0 0 148 552 11 20 32 0 11 0 123 0 0 0 0 0 4 37]
[45 53 17 0 257 1 6 26 1 18 35 2 505 0 6 0 0 7 4 1]
[ 2 22 15 3 300 75 5 2 14 0 24 0 523 0 0 0 0 11 3]
[ 1 22 4 0 113 0 0 8 9 84 114 316 213 0 0 0 0 0 0 103]
[ 0 15 29 576 105 0 0 0 18 0 5 0 247 0 0 0 1 0 1 0 ]
[ 0 16 7 1 274 5 5 1 429 3 7 0 154 0 0 0 0 50 3]
[ 0 5 3 4 49 0 2 0 292 0 0 0 157 0 0 410 0 180 0]
[ 0 12 0 4 170 2 155 0 183 0 23 0 206 0 0 0 0 190 1]
[ 0 10 0 147 101 1 2 1 53 0 0 1 185 39 0 0 70 14 0 4]]
```

We observed the following purity metrics for the entire dataset with 20 subclasses. It can be observed that the quality of clustering results decrease as the number of clusters increase.

Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
0.303	0.385	0.339	0.100	0.301

Part 5.3a(i): Dimensionality Reduction

Visualization of variance retained for different r values. We performed TruncatedSVD on the TF-IDF data and used the explained_variance_ratio_ attribute to calculate the variance ratio. The graph is seen to be monotonic in nature as shown below.

Part 5.3a(ii): Preprocessing data to find the best dimension parameter

Truncated SVD:

We observed that the homogeneity values were around 0.29 on average. The following table and plot show the values of various metrics for dimensions r = [1, 2, 3, 5, 10, 20,30, 50, 100, 300]. The homogeneity score was highest for r=10.

R	Homogeneity Score	Completeness score	V-measure	Adjusted Rand Score	Adjusted mutual info
	ſ	1			

					score
1	0.0281070197	0.0309159533	0.0294446472	0.006021175	0.02493630345
	73196011	1920349	52510375	1706676581	6201764
2	0.2095191413	0.2230694142	0.2160820554	0.064249053	0.20695783280
	3391025	1762116	5403908	02647238	876393
3	0.2355805871	0.2454901065	0.2404332843	0.081917412	0.23310933214
	6226349	0209704	1326175	999576403	839799
5	0.3110191070	0.3291859608	0.3198447770	0.120593379	0.30879086583
	0863244	3978752	0014213	14262762	944593
10	0.3259609376	0.3650143581	0.3443840124	0.135913227	0.32376961300
	9562934	4036226	7862177	14360388	2518
20	0.2822493999	0.3571182779	0.3153003291	0.095820467	0.27990415487
	1399189	6697615	8949835	06647783	132947
30	0.2940505061	0.4203122843	0.3460231736	0.086230069	0.29173333027
	9360712	6815843	8925778	501824477	897275
50	0.2951233351	0.3971144018	0.3386054253	0.093553929	0.29281381242
	4028388	4060065	978738	16604989	239518
100	0.2992450649	0.3885865805	0.3381135988	0.111427738	0.29694881134
	8024189	4117684	7736797	16226147	254736
300	0.3044972245	0.4129783881	0.3505367172	0.096385719	0.30220353968
	5296929	9996124	683273	561590269	889985

NMF:

For NMF, we observed the following metrics for different r values. The best dimension parameter r was observed to be at r=10.

R	Homogeneity Score	Completeness score	V-measure	Adjusted Rand Score	Adjusted mutual info score
1	0.0278531623	0.0309756590	[0.029331543	0.005782541	0.02468068829
	77013976	98749334	313950131	4233596993	7136693
2	0.1688224344	0.1796214674	0.1740546082	0.050696060	0.16611255406
	9500522	0078624	1199817	258931044	74267
3	0.1911178761	0.2078624127	0.1991387743	0.056577107	0.18849267824
	4765977	613814	3148153	014621417	615845
5	0.2927499762	0.3101205781	0.3011850262	0.105156580	0.29046111307
	0352683	5998179	6955956	47825127	105998
10	0.3149473319	0.3550860580	0.3338144285	0.123181728	0.31272075720
	994191	5453686	7784027	56292847	611181

20	0.2758844267	0.3703884421	0.3162268074	0.083526929	0.27351282948
	0080543	62289	2364301	197327515	276689
50	0.1794235683	0.3152034106	0.2286770560	0.035448645	0.17672613002
	3031942	7060154	1760596	286705514	141202,
300	0.0978855138	0.2735190331	0.1441746005	0.006161444	0.09481050147
	30824361	817568	5813272	8866317457	2847683

Part 5.4a: Visualizing the performance of case with best clustering results

SVD:

Following figure shows the TF-IDF data reduced in dimensions at r=10 using Truncated SVD.

NMF:

Following figure shows the TF-IDF data reduced to dimensions at r=10 using NMF.

Part 5.4b(i): Visualizing the transformed data after normalizing

We visualized the clusters and calculated various purity scores for SVD and NMF after normalizing the data. We used StandardScaler for normalizing the data. It was observed that the result improve slightly after normalizing.

The following plots show visualization of the clusters.

SVD:

Clustering results with TruncatedSVD(normalized)

Clustering results with NMF (normalized)

The obtained Contingency matrices for normalized TruncatedSVD and NMF are listed below:

SVD:

[[0 59 282 58 0 1 121 1 38 0 0 68 7 116 0 38 10 0 0 0] [0 150 1 0 69 16 164 0 4 19 0 38 9 1 420 82 0 0 0 0] [0 64 0 0 363 3 73 0 2 39 2 4 9 0 369 57 0 0 0 0] [4 104 0 0 43 4 88 0 1 305 105 13 29 0 171 113 0 0 0 2] [2 173 0 0 9 9 239 0 2 258 22 13 34 0 119 83 0 0 0 0] [0 119 0 0 95 23 108 0 0 1 0 40 4 0 491 101 0 00 6] [22 242 1 0 16 5 312 0 3 124 16 6 45 1 55 125 0 20 0] [8292 0 0 0 8227 0 79 6 0 8 40 4 8 310 0 0 0 0] [22 260 5 0 0 16 161 0 29 2 0 52 15 30 1 403 0 0 0 0] [416 95 0 0 0 2 205 0 10 0 0 1 8 3 1 126 0 127 0 0] $[471\ 42\ 0\ 0\ 0\ 3\ 64\ 0\ 3\ 0\ 0\ 1\ 10\ 1\ 0\ 36\ 0\ 368\ 0\ 0]$ [0 49 0 0 6 5 55 222 43 0 0 35 6 14 32 64 0 0 0 460] [7 372 1 0 5 33 222 0 2 33 1 27 6 0 94 176 0 00 5] [3 425 13 1 2 18 203 0 50 0 0 101 7 5 8 154 0 00 0] [0 239 0 0 0 526 114 0 21 1 0 9 1 1 6 69 0 00 0] [1 135 494 228 1 3 53 0 16 1 0 9 1 2 3 48 2 0 0 0] [0 86 1 0 1 4 93 2 455 0 0 8 19 100 0 132 6 0 0 3] [0 82 5 2 0 0 90 0 54 0 0 3 19 5 1 26 482 0 171 0] [7110 14 2 0 13 87 1 285 0 0 71 45 47 0 87 5 0 0 1] [0 89 172 81 0 2 76 0 68 0 0 21 18 49 0 48 3 00 1]]

NMF:

[[14 0 105 1 230 1 0 2 8 0 108 0 5 49 1 88 0 0 115 72]
[19 3 98 1 1 0 0 13 0 0 127 102 419 0 8 159 0 1 4 18]
[12 24 70 1 0 0 2 12 0 0 51 340 382 0 2 77 0 0 2 10]
[16 199 137 6 0 0 91 16 0 0 95 38 228 0 2 126 0 4 1 23]
[17 130 97 7 0 0 15 10 0 0 236 6 186 0 4 237 0 2 1 15]
[12 1 124 1 0 0 0 18 0 0 73 133 472 0 15 108 0 12 0 19]
[18 89 129 19 1 0 12 11 0 0 343 8 68 0 1 246 3 1 3 23]
[5 2 333 7 0 0 0 16 0 0 244 0 8 0 4 220 0 0 82 69]
[10 2 373 27 8 0 0 20 0 0 137 0 16 0 2 207 0 0 35 159]
[25 0 104 459 0 0 0 3 0 0 152 0 2 0 1 89 127 02 30]
[9 0 24 470 1 0 0 3 0 0 42 0 0 0 0 35 407 01 7]
[8 0 71 2 0 243 0 15 7 0 36 7 33 0 11 50 0 431 31 46]
[22 14 190 11 0 0 1 45 0 0 174 5 113 0 14 356 0 85 26]
[120 0 196 4 7 0 0 29 2 75 114 2 11 1 2 317 0 087 23]
[5 1 65 2 0 0 0 401 0 0 57 0 8 0 285 130 0 017 16]

```
[ 2 1 56 0 495 0 0 3 2 0 44 1 6 209 2 141 0 0 27 8]

[ 11 0 123 1 1 2 0 5 153 0 72 0 0 0 3 43 0 4 375 117]

[ 9 0 50 0 2 0 0 0 352 0 89 0 1 2 0 58 0 0 370 7]

[ 7 0 108 4 6 1 0 29 74 0 98 0 1 1 4 59 0 1 322 60]

[ 14 0 78 0 170 0 0 5 14 2 67 0 1 69 0 89 0 1 83 35]]
```

The following table shows the values of purity metrics that we obtained after normalizing the data

	Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
SVD	0.3342395671	0.3769819284	0.354326401	0.13146145	0.33208181
	4648284	6077722	4628591	137821147	010857502
NMF	0.3167711985	0.3567313158	0.335565804	0.12424793	0.31455061
	2076052	799324	32881578	493359659	654218192

Part 5.4b(ii): Visualizing the transformed data after a non-linear (logarithm) transformation (NMF)

The following plot shows visualization of the clusters for log transformation.

Clustering results with log transformation on NMF-reduced data

The following table shows the values of purity metrics that we obtained after applying logarithm transformation to the data.

Contingency matrix:

```
[208 8 7 44 0 73 1 1 239 24 86 5 1 0 151 13 36 20 53 3]
[276 6 6 11 0 47 0 0 223 11 57 4 2 0 199 42 59 9 31 2]
[44 0 4 9 0 37 1 1 73 17 147 3 5 0 44 273 281 13 27 3]
[21 0 8 24 8 25 0 0 109 13 242 1 6 0 21 275 163 22 19 6]
[238 3 9 21 0 87 0 0 159 34 14 9 13 1 338 0 21 5 35 1]
[13 1 39 3 10 47 0 2 138 20 157 6 4 2 36 262 112 64 19 40]
[ 7 1 38 22 22 12 7 65 67 30 33 7 2 1 77 7 29 409 147 7]
[ 1 2 146 28 8 17 20 69 34 28 17 9 0 0 89 15 37 302 167 7]
[ 0 11 260 39 3 22 0 0 27 6 13 0 1 1 7 0 1 86 44 473]
[ 1 8 2 3 0 9 1 1 0 0 0 5 8 3 0 0 1 5 0 0 8 1 0 7 0 0]
[ 7 3 2 28 6 13 0 6 12 15 26 459 342 0 17 0 9 11 34 1]
[24 1 37 47 6 38 5 4 110 53 261 23 16 6 52 24 57 68 147 5]
[ 8 10 13 317 26 127 12 59 52 31 17 7 1 14 40 1 6 76 168 5]
[ 5 12 5 69 7 16 2 6 29 660 26 6 1 2 18 0 4 34 81 4]
[5344 6 20 2 4 225 1 11 9 5 1 0 342 0 0 1 5 14 2]
[ 1 36 8 54 229 1 9 370 4 12 7 22 9 3 16 0 2 71 56 0]
[ 2 44 1 45 575 18 3 186 10 0 2 1 3 2 2 0 0 31 12 3]
[\ 0\ 49\ 8\ 54\ 138\ 3\ 14\ 273\ 14\ 29\ 3\ 8\ 12\ 13\ 5\ 0\ 1\ 77\ 67\ 7]
[ 1 111  1 48 31  7 215 43  6  5  0  4  0  99  8  0  1  32  15  1]]
```

Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
0.3709122034846	0.3749908959086	0.3729403982938	0.2005230989514	0.3688817970538
8257	7285	3263	5071	2163

Part 5.4b(iii): Combination of normalization and log transformation on NMF-reduced data

Clustering results with log transformation on normalized NMF-reduced data

It was observed that applying logarithm transformation after normalization on the NMF-reduced data and vice-versa improves the clustering result. The visualization plots for these transformation are as shown below:

Clustering results with log transformation on normalized NMF-reduced data

Contingency matrix:

```
[[ 3 232 7 65 25 3 16 0 0 1 0 19 1 34 133 1 1 0 17 241]
[24 6270 51 9 6 47 195 155 2 1 0 104 1 0 40 9 24 27 2]
[12 5 243 27 17 2 28 258 214 2 0 0 54 0 0 61 4 47 11 0]
[16 0 78 18 15 2 26 41 47 6 3 0 127 1 0 292 5 296 8 1]
[13 0 99 30 14 9 19 19 18 1 0 8 196 0 0 175 9 328 25 0]
[36 1210 36 10 3 33 220 366 10 0 0 27 0 1 20 11 0 4 0]
[13 1115 21 81 59 15 11 18 3 7 13 130 1 2 104 44 288 49 0]
[22 1 50 27 136 15 108 5 34 7 0 24 21 56 1 22 43 7 406 5]
[28 1 23 38 147 15 134 0 55 1 0 11 9 62 0 29 149 15 261 18]
[5 3 20 42 13 430 29 0 4 0 86 3 15 0 0 0 239 0 105 0]
[ 3 2 2 7 3 467 9 1 3 0 311 1 1 0 1 0 176 0 12 0]
[18 4 15 44 9 2 44 9 23 721 1 10 54 8 0 15 1 0 13 0]
[52 2112 51 25 8131 22 52 16 10 8280 4 6 64 38 27 73 3]
[31 20 52 378 71 10 195 7 26 1 1 24 29 47 11 5 11 1 63 7]
[649 15 28 42 26 3 88 4 12 3 3 8 37 1 2 4 6 0 54 2]
[ 9 365 10 16 0 4 29 4 2 1 0 2 5 1 307 1 6 1 4 2 30]
[12 36 6 48 32 0 46 1 4 13 0 241 8 372 2 1 8 0 69 11]
[ 1 52 7 43 20 6 9 2 1 0 0 570 4 185 0 0 1 0 35 4]
[29 52 10 48 19 7 68 0 4 6 0 142 7 271 10 1 6 0 76 19]
[5115 5 46 19 1 25 0 4 1 1 31 1 43 86 1 1 0 23 220]]
```

Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
0.3768080402511	0.3801895968363	0.3784912657295	0.2044152745580	0.3747967785053
2846	5245	8436	3085	3338

Clustering results with normalization on log transformed on NMF-reduced data

Clustering results with normalization on log transformed on NMF-reduced data

Contingency matrix:

```
[[ 1 1 0 9 0273 7 0 0 10 22 80 5 3 226 85 24 34 1 18]
[ 6 8 164 195 3 0 152 23 52 128 127 3 26 23 0 37 3 1 22 0]
[ 5 3 247 214 0 1 187 61 26 94 60 3 16 17 0 6 0 0 45 0]
[ 6 1 33 56 2 0 52 270 128 61 18 9 17 20 0 10 3 1 295 0]
[ 2 11 17 73 3 0 24 369 169 42 39 5 10 33 0 16 9 8 133 0]
[19 2 197 144 6 1 327 5 14 137 58 3 37 5 1 12 1 2 17 0]
[ 5 52 8 106 15 1 55 329 92 44 60 18 16 65 2 1 12 11 83 0]
[ 9 24 4 51 9 6 78 21 22 6 67 212 28 335 1 32 18 33 21 13]
[ 3 41 0 24 28 7 119 24 6 11 56 175 34 305 12 42 38 12 31 28]
[\ 1\ 435\ 0\ 18\ 185\ 6\ 16\ 0\ 4\ 6\ 34\ 22\ 9\ 90\ 0\ 28\ 135\ 4\ 1\ 0]
[ \ 0 \ 439 \ 1 \ 3 \ 422 \ 1 \ 6 \ 0 \ 2 \ 1 \ 4 \ 1 \ 9 \ 18 \ 0 \ 11 \ 80 \ 10 \ 0 ]
[765 1 4 11 2 3 20 0 51 25 29 6 20 4 0 25 10 8 2 5]
[21 15 23 78 11 1 67 43 243 57 135 13 50 135 2 35 7 8 37 3]
[ 5 8 5 30 3 8 39 2 7 58 73 83 33 52 7 364 171 26 5 11]
[ 4 3 3 19 2 3 14 1 16 13 57 17 691 50 1 75 6 11 1 0]
[ 1 2 4 7 4 463 2 1 0 8 36 6 10 8 402 26 8 8 1 0]
[21 4 1 2 2 25 23 0 4 6 28 212 17 47 3 47 25 215 2 226]
```

[0 9 2 6 0 40 2 0 1 4 16 99 0 16 0 25 39 364 0 317] [20 7 0 7 4 54 6 0 9 3 39 184 37 28 13 68 15 139 0 142] [2 3 0 4 1 182 15 0 0 6 15 56 5 7 191 59 22 39 0 21]]

Homogeneity score	Completeness score	V_measure	Adjusted Rand-Index	Adjusted Mutual info score
0.3646341098132	0.3664725064077	0.3655509967499	0.2020609321703	0.3625838865789
7699	4032	1942	1865	2437