ЗАДАЧИ ОД ПРЕТХОДНИ ИСПИТИ

(магнетизам)

- 1 Даден е долг соленоид со N' навивки по единица должина и кружен напречен пресек со радиус a. Низ соленоидот тече константна струја I_1 во означената насока која во внатрешноста на соленоидот создава магнетното што се смета за хомогено, а надвор од соленоидот магнетното поле се занемарува. Во бесконечност се наоѓа квадратна контура со страна b < a во која тече константна струја I_2 . Во оваа состојба енергијата на целиот систем е W_{m0} .
- а) Под дејство на надворешни сили потоа контурата се поместува и се поставува во внатрешноста на соленоидот при што струите I_1 и I_2 се одржуваат константни. Во оваа положба (прикажана на сликата) кружната контура лежи во рамнината S која зафаќа агол $\pi/6$ со рамнината S на подолжниот пресек на соленоидот. Да се определи моментот на сили кој дејствува на кружната контура во оваа положба. Да се определи меѓусебната индуктивност на двете контури и магнетната енергија во системот.
- б) Потоа, под дејство на моментот на сили кружната контура се завртува во рамнотежна положба. Во оваа нова положба да се определи меѓусебната индуктивност на двете контури и новата вредност на магнетната енергија во системот.

- 2 Неограничен тенок спроводник кој води константна струја I лежи во рамнината на цртежот.
- а) Во истата рамнина на оддалеченост d од тенкиот спроводник се наоѓаат два тенки спроводници, првиот форма на завртена латинична буква L со должина a и висина b (A_1 -B- C_1), и вториот, прав спроводник со должина c поставен под агол од 30^0 (A_2 - C_2). Спроводниците се движат транслаторно надолу со иста константна брзина v (димензиите се прикажани на сликата десно). Да се определат напоните меѓу точките C посебно во двата спроводници.

б) Потоа двата спроводници се спојуваат и формираат триаголна контура A-B-C која исто така се движи транслаторно надолу со истата константна брзина v (како на сликата лево). Според Фарадеевиот закон да се пресмета индуцираната ЕМС во контурата. Од добиениот резултат да се докаже дека вкупната индуцирана ЕМС во контурата е алгебарски збир од индуцираните ЕМС во двата спроводници определени под а).

3 Во рамнината на цртежот се посматра метална плочка во форма на четвртина од диск со радиус R. Плочката ротира во истата рамнина околу оската O така што за време од 1s прави едно завртување во насока на стрелката на часовникот. Во просторот постои хомогено магнетно поле со вектор на магнетна индукција \vec{B} насочен нормално на

рамнината на цртежот според ознаката на сликата. Во моментот t=0 точката A која лежи на едниот крај од периферијата на плочката допира до контактот кој преку шина е поврзан со едниот приклучок од волтметарот (како што е прикажано на сликата). Другиот приклучок од волтметарот е поврзан на оската O. Да се определи индуцираната ЕМС во плочката. Да се нацрта графикот на функцијата на напонот што го мери волтметарот во временски интервал $0 \le t \le 1$ s.

4 Во просторот определен со магнетна пермеабилност μ_0 (воздух) е воспоставено хомогено магнетно поле со јачина $B=\mu_0 0.8$ Т. Две метални стрелки со радиуси $R_1=2$ ст и $R_2=3$ ст лежат во иста рамнина и во неа се вртат околу своите оски O_1 и O_2 . Аголната брзина на првата стрелка е $\omega_1=60$ rad/s во означената насока, а втората стрелка се врти со аголна брзина $\omega_2=180$ rad/s во означената насока. Да се определи колку изнесува потенцијалната разлика меѓу оските O_1 и O_2 во моментите кога двете стрелки ќе се допрат при вртењето.

- 5 Торусно јадро со правоаголен напречен пресек со радиуси a и b и висина h изработено е од материјал со пермеабилност μ_1 . На торусот рамномерно и густо е намотана намотка со N навивки (слика a). Низ намотката тече константна струја I.
- а) Да се определи енергијата на магнетното поле во торусот.
- δ) Симетрично околу торусната намотка се поставува правоаголна контура со страни c=a+b и d=2h со положба според димензии на слика δ). Да се определи меѓусебната индуктивност помеѓу торусната намотка и правоаголна контура.
- e) Ако наместо претходното под e) во внатрешноста на торусната намотка се постави контура со страни m < (b-a) и n = h/2 со положба според димензии на слика e) да се определи меѓусебната индуктивност помеѓу торусната намотка и правоаголна контура во овој случај.

6 Даден е систем кој се состои од две паралелни метални шини поставени во рамнината на цртежот. Метален диск со радиус a ротира со константна аголна брзина ω околу оската О во рамнината на шините. Оската на дискот преку контакт е поврзана со едната шина, додека периферијата на дискот преку контакт е поврзана со другата шина. По шините се лизга кус прав проводник со должина L кој стои под агол α =30 0 во однос на шините. Линиската брзина на кусиот проводник е константна и изнесува v. Во просторот постои хомогено магнетно поле со вектор на магнетна индукција B дискот поставен нормално на рамнината во која лежат шините и во насока како што е означено. Да се определи јачината и насоката на струјата која протекува низ отпорникот R кој ја претставува вкупната електрична отпорност во системот.

7 Дадено е торусно јадро со правоаголен напречен пресек со радиуси a и b и висина h,

изработено од материјал со магнетна константа μ_0 . На торусот се намотани две намотки со N_1 и N_2 навивки. Да се определи меѓусебната индуктивност на двете намотки. Ако во првата намотка тече временски променлива струја $i_1 = I_m \cos \omega t$ А да се определи индуцираниот напон u_{AB} меѓу отворените пристапи А и В на втората намотка. Графички да се прикажат струјата и индуцираниот напон во функција од времето.

8 Да се определи изразот за индуцираната ЕМС во кусиот проводник со должина L кој се движи транслаторно со брзина v во рамнината во која лежи неограничен спроводник кој води струја I. Растојанијата и позицијата на кусиот спроводник се означени на сликата.

9 Неограничен праволиниски спроводник и триаголна контура лежат во иста рамнина. Димензиите на контурата и нејзината положба во однос на спроводникот се определени со димензиите означени на сликата. Да се определи меѓусебната индуктивност помеѓу неограничениот спроводник и триаголната контура.

- 10 Торусно јадро со правоаголен напречен пресек има радиуси a и b и висина h. На јадрото направено од материјал со магнетна пропустливост μ_0 рамномерно и густо се намотани N_1 навивки. Околу јадрото поставена е триаголна контура изработена од крута жица.
 - Димензиите на контурата се висина c и основа d што е прикажано на сликата
- а) Да се определи меѓусебната индуктивност на торусната намотка и триаголната контура.
- б) Ако низ торусната намотка тече струја со константна јачина I_1 да се определи магнетната енергија во јадрото.
- в) Ако низ торусната намотка тече струја чија јачина се менува според функцијата $i_1 = e^{-at}$ А да се определи индуцираната електромоторна сила во триаголната контура.

11 Да се определи изразот за индуцираната ЕМС во функција од времето во кусиот проводник со должина l кој се движи со брзина v во рамнината во која лежат два неограничени проводници кои водат струи I_1 и I_2 . Моментните растојанијата се означени на сликата.

12 Торусно јадро има правоаголен напречен пресек со радиуси a и b и висина h. На јадрото рамномерно и густо се намотани две намотки со N_1 и N_2 навивки. Намотките се приклучени кон отпорници со отпорности R_1 односно R_2 и со генератори со константни електромоторни сили E_1 односно E_2 . Да се определи вкупната магнетната енергија во системот.

13 Струјна контура со правоаголен облик, со страни b и l, лежи во иста рамнина со многу долг праволиниски спроводник кој води струја І. Околниот простор е воздух. Почетното растојание меѓу спроводникот и контурата е a. Во моментот t=0 контурата започнува да се движи со константна брзина v. Да се одреди индуцираната ЕМС во струјната контура со текот на времето.

- 14 a)Долг соленоид со N_1 навивки има кружен напречен пресек со радиус a и должина l. Низ соленоидот тече константна струја I_1 во означената насока која во внатрешноста на соленоидот создава магнетното што се смета за хомогено, а надвор од соленоидот магнетното поле се занемарува. Да се определи сопствената индуктивност на соленоидната намотка. Да се определи енергија на магнетното поле во соленоидот.
- б) Потоа контурата k_2 со радиус b>a со N_2 навивки се поставува околу соленоидот нормално на неговата оска. Да се определи меѓусебната индуктивност L_{12} меѓу соленоидната намотка и кружната контура k_2 .
- e) На местото на кружната контура k_2 во внатрешноста на соленоидот се поставува друга кружна контура k_3 со радиус c < a со N_3 навивки и тоа под агол $\pi/3$ со оската на соленоидот. Да се определи меѓусебната индуктивност L_{13} меѓу соленоидната намотка и кружната контура k_3 .

