Neural Networks

Jay chotaliya Supervisor : Dr. Bernd Bauerhenne

Objectives

- What are Neural Networks?
- 2. How we train them? (Back Propagation)
- 3. What is Convolution
- 4. How to write a Convolutional Neural Network to classify images

Neurons

- Perceptrons
 - Activation is step-function
 - Not differentiable

- Sigmoid Neurons
 - Activation is sigmoid function
 - o Differentiable

- Output of Sigmoid Neurons
 - \circ $\sigma(w.x + b)$
 - σ (z) = 1 / 1 + exp (-z)

The Network - Feed Forward

• Connections are Weights

• Each neurons have a Bias.

Learning Algorithm

- Cost Functions
 - Quadratic Cost Function

$$C = \frac{1}{dn} \sum_{x} ||y(x) - a^{2}(x)||^{2}$$
Tone
output || 4 diversion
output of a layer

Cross Entropy Cost Function

$$C = -\frac{1}{n} \sum_{x} [y(\ln a) + (1-y) \ln (1-a)]$$

Log likelihood Cost Function

Learning Algorithm - Back Propagation

- The idea is to Minimize the Cost Function -Negative Gradient of Cost
- We feed backwards how the cost function changes with weights and biases

$$a^l = o(w^l a^{l-1} + b^l)$$

$$a' = o(z)$$
 { $z' = w'a'^{-1} + b'$ weighted ment to layer 1.

Convolutional Neural Networks

Convolution Operation -

Effects of Convolution

Sharpen

Blur

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

Edge Detection

Padding, Stride and Max Pooling

Padding:

• Stride: How much you move the filter

Max-Pooling :

To The Code