Rebuttal Response

Anonymous Authors¹

1. Experiments of Class-incremental Learning

Table 1. Results of class-incremental experiments on Multiple Dataset (p denotes the noise rate).

	p = 0.0		p = 0.2		
Methods	ACC (†)	FGT (↓)	ACC (†)	FGT (↓)	
EWC	13.08±5.36	0.695±0.004	10.36±3.21	0.590±0.009	
MAS	10.06±1.13	0.613±0.019	6.04 ± 0.62	0.487±0.016	
AGEM	13.67±1.24	0.654 ± 0.018	12.10±1.24	0.548 ± 0.007	
OGD	13.00±0.74	0.707 ± 0.005	9.75±0.44	0.586±0.005	
DER	45.67±2.19	0.260 ± 0.039	40.88±2.15	0.248±0.026	
GDumb	40.69±3.32	0.128 ± 0.023	36.25±2.23	0.083±0.019	
MEGA	38.94±2.79	0.389 ± 0.026	34.03±2.23	0.134±0.023	
STREAM	47.92±0.45	0.153±0.018	43.32±0.018	0.367±0.013	

Table 2. Results of class-incremental experiments on Split CIFAR-10 (p denotes the noise rate).

	p =	= 0.0	p = 0.2		
Methods	ACC (†)	FGT (↓)	$ACC (\uparrow)$	FGT (↓)	
EWC	18.36±0.23	0.714±0.018	18.01±0.23	0.717±0.007	
MAS	14.36±1.13	0.275 ± 0.021	11.66±1.59	0.546±0.020	
AGEM	20.50±1.92	0.693±0.035	19.44±1.14	0.525±0.071	
OGD	19.02±0.12	0.734 ± 0.003	18.99±0.08	0.736±0.004	
DER	29.87±2.52	0.586±0.084	22.62±3.27	0.685±0.029	
GDumb	28.40±2.13	0.365±0.054	21.69±0.59	0.227±0.010	
MEGA	33.16±3.12	0.471±0.106	24.84±2.26	0.475±0.091	
STREAM	35.35±3.52	0.504±0.098	26.17±1.32	<u>0.303±0.056</u>	

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

2. Running Time Comparison

Table 3. Running time on Multiple Dataset and Split CIFAR-100.

Methods	Multiple Dataset (hours)	Split CIFAR-100 (hours)
EWC	0.16	1.31
MAS	0.17	1.31
AGEM	0.16	1.30
OGD	0.47	3.01
DER	0.18	1.27
GDumb	0.13	0.92
MEGA	0.15	1.05
STREAM	0.11	0.79

3. Failure Example

Figure 1. The Failure example for GEM, A-GEM and OGD, where the current gradient $\nabla f_2(\theta)$ is in the opposite direction to the memory gradient $\nabla f_1(\theta)$. The update direction is based on a rotation of the current gradient, which is orthogonal to the memory gradient: $\operatorname{Proj}_{\nabla f_1(\theta)}^{\perp}(\nabla f_2(\theta))$. Therefore it cannot learn task 2.

4. Results with Multiple Runs

Figure 2. Performance (test accuracy and forgetting) of continual learning methods on Multiple Dataset over 5 runs.

Figure 3. Performance (test accuracy and forgetting) of continual learning methods on Split CIFAR100 over 5 runs.

216217218219

Figure 4. Performance (test accuracy and forgetting) of continual learning methods on Split Tiny-Imagenet over 5 runs.

Figure 5. Performance (test accuracy and forgetting) of continual learning methods on AVE-CI over 5 runs

5. Synthetic Experiment for the counterexample

- (a) The value of the $\theta^{(1)}$ vs. iterations.
- (b) The forgetting vs. iterations.
- (c) Loss on task 2 vs. iterations.

Figure 6. Synthetic experiment for the counterexample. (a), (b), (c) show the evolution of the value of $\theta^{(1)}$, the forgetting on task 1 and the loss on task 2. STREAM can find the optimal $\theta^{(1)}$ and achieve minimal forgetting and loss on the new task. But A-GEM and OGD fail to update their parameter $\theta^{(1)}$ toward the optimum throughout the training process, thus cannot minimize the loss on the new task. ER minimizes the loss functions f_1 and f_2 jointly (Assume that memory is large enough, it can visit f_1 as it needs). ER cannot find the the optimal value of $\theta^{(1)}$, thus can not achieve the low loss on task 2. ER performs well in terms of forgetting, but STREAM still exhibits good forgetting metric (forgetting = 0).

6. The Frequency Statistics of Model Update on Current/Memory Data

Figure 7. The frequency statistics of model update on the current/memory data.

7. Hyperparameter Tuning

Table 4. Results vs. memory size (m is the memory size) on Multiple Dataset.

	m	= 64	m =	= 128	m =	= 256
Methods	ACC (†)	FGT (↓)	ACC (†)	$FGT(\downarrow)$	$ACC (\uparrow)$	FGT (↓)
EWC	26.50±1.66	0.377±0.013	26.67±1.40	0.245±0.017	26.59±0.11	0.223±0.008
MAS	32.46±3.83	0.538±0.181	33.54±1.47	0.538 ± 0.041	34.15±1.63	0.536±0.039
AGEM	33.47±1.61	0.541±0.179	36.04±0.94	0.480 ± 0.005	41.90±1.52	0.424±0.026
OGD	27.88±1.23	0.375±0.015	32.24±1.34	0.544±0.051	33.63±1.24	0.303±0.022
DER	59.25±4.52	0.273±0.106	59.78±0.94	0.225±0.015	60.53±2.67	0.240±0.028
GDumb	53.03±0.34	0.032 ± 0.026	58.64±0.42	0.000 ± 0.006	69.11±2.83	0.000 ± 0.018
MEGA	63.36±3.51	0.210±0.109	66.44±2.03	0.292±0.015	67.24±2.38	0.214±0.003
STREAM	72.08±1.40	0.152±0.035	74.14±2.01	0.145±0.016	74.07±0.95	0.025±0.048

Table 5. Results vs. memory size (m is the memory size) Split Tiny ImageNet.

	m =	= 256	m =	= 512	: 1024	
Methods	$ACC (\uparrow)$	FGT (↓)	ACC (†)	$FGT(\downarrow)$	$ACC (\uparrow)$	FGT (↓)
EWC	16.79±0.74	0.311±0.010	17.15±0.44	0.306±0.002	17.05±0.10	0.324±0.003
MAS	15.51±0.89	0.312±0.010	17.03±0.08	0.332 ± 0.008	18.56±0.52	0.316±0.000
AGEM	26.22±0.36	0.210±0.003	27.95±0.58	0.217±0.004	32.97±0.15	0.181±0.004
OGD	15.21±0.53	0.325±0.008	16.53±0.67	0.357±0.007	17.15±0.52	0.347±0.005
DER	18.00±0.76	0.262±0.010	21.46±1.13	0.236±0.005	23.10±0.51	0.214±0.007
GDumb	27.15±0.83	0.035 ± 0.001	32.81±0.25	0.040 ± 0.004	33.51±0.14	0.021 ± 0.002
MEGA	29.30±0.38	0.148 ± 0.002	32.87±0.63	0.137±0.007	33.20±0.44	0.104±0.001
STREAM	31.36±0.71	0.121±0.008	33.02±0.53	0.115±0.003	34.67±0.14	0.104±0.002

Table 6. Results vs. the number of tasks (T denotes the number of tasks) on Split CIFAR-100.

	T :	= 10	T =	= 20	T =	= 25
Methods	$ACC (\uparrow)$	FGT (↓)	ACC (†)	FGT (↓)	ACC (†)	FGT (↓)
EWC	27.98±1.57	0.403±0.013	48.56±2.16	0.473±0.014	47.43±3.23,	0.530±0.033
MAS	31.40±2.34	0.380 ± 0.021	34.90±1.54	0.438±0.009	31.68±2.16	0.496±0.022
AGEM	39.72±2.43	0.292±0.019	54.02±1.61	0.251±0.013	48.19±1.65	0.345±0.019
OGD	29.13±1.52	0.262±0.025	34.19±1.57	0.451±0.019	36.35±1.43	0.353 ± 0.023
DER	41.99±1.80	0.264±0.018	46.05±1.29	0.324 ± 0.011	49.65±0.90	0.334 ± 0.008
GDumb	38.80±1.08	0.058 ± 0.002	55.85±0.46	0.036±0.006	67.56±0.53	0.008 ± 0.009
MEGA	48.03±1.44	0.176±0.003	61.74±0.77	0.156±0.010	68.55±0.57	0.094 ± 0.007
STREAM	50.33±0.66	0.167±0.008	64.06±0.86	0.132±0.010	69.70±0.37	0.080 ± 0.010

8. New Advanced Baselines

Table 7. Results of task-incremental experiments on Multiple Dataset and Split Tiny-Imagenet (p denotes the noise rate).

		p =	= 0.0	p =	= 0.2	
	Methods	ACC (†)	FGT (↓)	ACC (†)	$FGT(\downarrow)$	
Multiple Dataset	OCS	55.65±2.26	0.062±0.001	45.03±4.16	0.049±0.012	
	MetaSP	57.14±1.10	0.113±0.042	47.14±1.66	0.081±0.027	
	STREAM	72.08±1.40	0.152±0.035	73.50±2.25	0.130±0.037	
Split Tiny-Imagenet	OCS	28.16±0.09	0.112±0.001	20.42±0.94	0.061±0.005	
	MetaSP	27.66±0.51	0.127±0.002	22.43±0.34	0.068±0.007	
	STREAM	31.36±0.71	0.121±0.008	29.50±0.51	0.189±0.005	

9. Ablation Study for Large Batch Size

Figure 8. Ablation study for large batch size, where β is momentum parameter, B is the batch size, and " $\beta=0.9, B=64$ " denotes STREAM algorithm, and " $\beta=0.0, B=512$ ", " $\beta=0.0, B=1024$ " denote SSG with different batch size.

10. Results on Split Tiny-Imagenet with DER Settings

Table 8. Hyperparameter settings for Split Tiny-Imagenet.

rable 6. Hyperparameter settings for Spite Tiny imagenet.			
Methods	Hyperparameter settings		
EWC	lr: 0.03, batch_size: 32, λ : 25		
MAS	Ir: 0.03, batch_size: 32, λ : 1.0		
AGEM	lr: 0.01, batch_size: 32		
OGD	lr: 0.01, batch_size: 32		
DER	lr: 0.03, batch_size: 32, softmax_temp: 2.0, α : 0.1		
GDumb	lr: 0.10, batch_size: 32		
MEGA	lr: 0.10, batch_size: 32		
STREAM	lr: 0.05, batch_size: 32, γ : 0.05		

Table 9. Results on Tiny-Imagenet (with DER settings).

Methods	Class-in	ncremental FGT (↓)	Task-incremental ACC (↑) FGT (↓)		
	ACC ()	roi (†)	ACC ()	roi (†)	
EWC	7.41±0.19	0.737 ± 0.007	15.67±0.99	0.646±0.010	
MAS	6.91±0.23	0.676±0.010	23.99±0.33	0.143±0.007	
AGEM	7.69 ± 0.02	0.335±0.010	24.57±0.94	0.480 ± 0.005	
OGD	7.90 ± 0.04	0.778 ± 0.003	17.02±0.82	0.676±0.010	
DER	8.26±0.84	0.698±0.570	40.56±0.82	0.302±0.033	
GDumb	7.34±0.67	0.032 ± 0.026	39.34±0.67	0.042 ± 0.004	
MEGA	8.39±0.20	0.743±0.016	41.45±0.97	0.465±0.013	
STREAM	8.57±0.13	0.726 ± 0.002	42.04±0.82	0.280±0.016	