Севастопольский государственный университет Кафедра «Информационные системы»

Управление данными курс лекций

лектор:

ст. преподаватель кафедры ИС Абрамович А.Ю.

Лекция 5 МОДЕЛИ ДАННЫХ.

Постреляционная, многомерная, объектно-ориентированная и объектно-реляционная модели данных

Модели данных

Модель данных - интегрированный набор понятий для описания и обработки данных, связей между ними и ограничений, накладываемых на данные в некоторой организации.

Структурная часть

• набор правил, по которым может быть построена база данных

Управляющая часть

• определяющая типы допустимых операций с данными

Ограничения

• набор (необязательный) ограничений поддержки целостности данных, гарантирующих корректность используемых данных.

Цель построения модели данных заключается в представлении данных в понятном виде.

Модели данных подразделяются на три категории:

- о объектные (object-based) модели данных;
- о модели данных на основе записей (record-based);
- физические модели данных.

Логические модели данных на основе записей

Существуют три основных типа логических моделей данных на основе записей:

о иерархическая модель данных (hierarchical data model)

В иерархической модели связи между данными можно описать с помощью упорядоченного графа (или дерева).

o сетевая модель данных (network data model)

Сетевая модель данных позволяет отображать разнообразные взаимосвязи элементов данных в виде произвольного графа, обобщая тем самым иерархическую модель данных.

○ реляционная модель данных (relational data model)

Основывается на понятии отношение (relation), которое представляет собой множество элементов, называемых кортежами. Наглядной формой представления отношения является привычная для человеческого восприятия двумерная таблица.

Постреляционная модель

Постреляционная модель данных представляет собой расширенную реляционную модель, снимающую ограничение неделимости данных, хранящихся в записях таблиц. Постреляционная модель данных допускает многозначные поля — поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встроенной в основную таблицу.

РЕЛЯЦИОННАЯ МОДЕЛЬ

INVOICES

INVNO	CUSTNO
3 73	8723
8374	8232
7464	8723

INVOICE JTEMS

INVNO	GOODS	QTY		
3 73	Сыр	3		
3 73	Рыба	2		
8374	Лимонад	1		
8374	Сок	6		
8374	Печенье	2		
7364	Йогурт	1		

ПОСТРЕЛЯЦИОННАЯ МОДЕЛЬ

INVOICES

INVNO	CUSTNO	GOODS	QTY
3 73	8723	Сыр	3
		Рыба	2
8374	8232	Лимонад	1
		Сок	6
		Печенье	2
7364	8723	Йогурт	1

Постреляционная модель поддерживает ассоциированные многозначные поля (множественные группы). Совокупность полей ассоциированных называется ассоциацией. При этом в строке первое значение одного столбца ассоциации соответствует первым значениям всех столбцов других ассоциации. Аналогичным образом связаны все вторые значения столбцов и т.д.

Постреляционная модель

Поскольку постреляционная модель допускает хранение в таблицах ненормализованных данных, возникает проблема обеспечения целостности и непротиворечивости данных. Эта проблема решается включением в СУБД механизмов, подобных хранимым процедурам в клиент-серверных системах.

Для описания функций контроля значений в полях имеется возможность создавать процедуры (коды конверсии и коды корреляции), автоматически вызываемые до или после обращения к данным. Коды корреляции выполняются сразу после чтения данных, перед их обработкой. Коды конверсии, наоборот, выполняются после обработки данных.

- Достоинства: возможность представления совокупности связанных реляционных таблиц одной постреляционной таблицей, что обеспечивает высокую наглядность представления информации и повышение эффективности ее обработки.
- Недостатки: сложность решения проблемы обеспечения целостности и непротиворечивости хранимых данных.

Многомерная модель

Многомерные системы позволяют оперативно обрабатывать информацию для проведения анализа и принятия решения. Многомерные СУБД являются узкоспециализированными СУБД, предназначенными для интерактивной аналитической обработки информации. Основные свойства, присущие к этим СУБД: агрегируемость, историчность и прогнозируемость данных.

- о **Агрегируемость данных** означает рассмотрение информации на различных уровнях ее обобщения.
- Историчность данных предполагает обеспечение высокого уровня статичности (неизменности)
 собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени.
- о **Прогнозируемость данных** подразумевает задание функций прогнозирования и применение их к различным временным интервалам.

РЕЛЯЦИОННАЯ МОДЕЛЬ

Дисциплина	Месяц	Должники
Управление данными	Сентябрь	15
Высшая математика	Сентябрь	13
Веб-технологии	Сентябрь	12
Управление данными	Октябрь	7
Управление данными	Ноябрь	4
Веб-технологии	Октябрь	6

МНОГОМЕРНАЯ МОДЕЛЬ

Дисциплина	Сентябрь	Октябрь	Ноябрь
Управление данными	15	7	4
Высшая математика	13	NULL	NULL
Веб-технологии	12	6	NULL

Многомерность модели данных означает не многомерность визуализации цифровых данных, а многомерное логическое представление структуры информации при описании и в операциях манипулирования данными.

По сравнению с реляционной моделью многомерная организация данных обладает более высокой наглядностью и информативностью.

Многомерная модель

Если речь идет о **многомерной модели с мерностью больше двух, то визуально информация представляется в виде многомерных объектов (трех-, четырех- и более мерных гиперкубов).**

В существующих МСУБД используются два основных варианта (схемы) организации данных: гиперкубическая и поликубическая.

В поликубической схеме предполагается, что в БД может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней.

В случае гиперкубической схемы предполагается, что все показатели определяются одним и тем же набором измерений. Это означает, что при наличии нескольких гиперкубов БД все они имеют одинаковую размерность и совпадающие измерения.

Достоинства: удобство и эффективность аналитической обработки больших объемов данных, связанных со временем.

Недостатки: громоздкость для простейших задач обычной оперативной обработки информации

Объектно-ориентированная модель

В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы. Между записями базы данных и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.

Стандартизованная объектно-ориентированной модель описана в рекомендациях стандарта ODMG (Object Database Management Group — группа управления объектно-ориентированными базами данных).

Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное отличие между ними состоит в методах манипулирования данными.

Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом (например, строковым — string) или типом, конструируемым пользователем (определяется как class).

Объектно-ориентированная модель

Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма. Ограниченно могут применяться операции, подобные командам SQL (например, для создания БД).

Поиск в объектно-ориентированной БД состоит в выяснении сходства между объектом, задаваемым пользователем, и объектами, хранящимися в БД. Определяемый пользователем объект, называемый объектом-целью (свойство объекта имеет *mun goal*) в общем случае может представлять собой подмножество всей хранимой в БД иерархии объектов. Объект-цель, а также результат выполнения запроса могут храниться в самой базе.

- Достоинства: возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.
- —— Недостатки: высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.

Объектно-реляционная модель

Объектно-реляционная модель данных является **реляционной моделью с некоторыми свойствами объектной модели данных**, или наоборот. Четкого определения не существует ©

В соответствии с подходом UniSQL, в ОРСУБД должны поддерживаться следующие возможности:

- n-мерное объектно-ориентированное моделирование;
- двухмерное реляционное моделирование;
- наследование;
- инкапсуляция;
- постоянство существования объектов (object persistence);
- композиция классов;
- полиморфизм;
- навигационный доступ к объектам;
- реляционный доступ (соединения);
- непроцедурный доступ через запросы;
- о интерфейсы для традиционных языков третьего поколения;
- интерфейсы для объектных языков третьего поколения;
- о интерфейсы для языков четвертого поколения;
- независимое от языков хранение данных;
- о независимость служб баз данных от файловых систем;
- поддержка оперативных служб СУБД.

Объектно-реляционная модель

- Достоинства: расширенные возможности SQL, в особенности, средства серверного программирования, обеспечивающие возможности определения хранимых процедур и функций, триггеров и т.д. позволяют переносить на сервер баз данных все большую часть логики приложений.
- Достоинства: при проектировании приложения базы данных имеется три альтернативы: можно реализовать логику приложения на стороне клиента, на сервере приложений и на сервере баз данных. Очевидно, что каждая альтернатива имеет право на жизнь, и каждая из них может оказаться выигрышной в конкретной ситуации.
- Недостатки: обширные возможности можно так же отнести и к недостаткам, так как некоторые возможности в значительной степени противоречит учению Кодда, в котором обосновывалась целесообразность независимости базы данных от приложений. Независимость базы данных от приложений часто выглядит очень привлекательной идеей, но для ее применения разумно отказаться от многих расширений SQL.