Chapter 5: Cubic Spline and Curve Fitting

Cubic Spline

Cubic Spline is one of the examples of what is called the piecewise polynomial interpolation.

Given
$$(x_0, y_0) \dots (x_n, y_n)$$

We want to find a function S(x)

But what is the general form of S(x)?

well,

$$S(x)=(\,S_0(x)=$$
ش للنفسيبنقلەبعدين $-$ ا $-$ ش $-$

We end up with 4n unknowns. For S(x) to be a cublic spline, it needs to satisfy

- 1. S(x) must pass through all of (x_0, y_0) (x_n, y_n) , that is $S_0(x_0) = y_0, S_1(x_1) = y_1, \ldots S_n(x_n) = y_n$
- 2. S(x) is connected at the conjunctions, that is $S_0(x_1) = S_1(x_1), S_1(x_2) = S_2(x_2), \ldots, S_{n-2}(x_{n-1}) = S_{n-1}(x_{n-1})$
- 3. S(x)' is connected at the conjunctions, that is $S_0'(x_1) = S_1'(x_1), S_1'(x_2) = S_2'(x_2), \ldots, S_{n-2}'(x_{n-1}) = S_{n-1}'(x_{n-1})$
- **4.** S(x)'' is connected at the conjunctions, that is $S_0''(x_1) = S_1''(x_1), S_1''(x_2) = S_2''(x_2), \dots, S_{n-2}''(x_{n-1}) = S_{n-1}''(x_{n-1})$

The sum of the conditions = (n+1) + 3(n-1) = 4n-2

So we are 2 assumtions short right now!

Now, According to the 2 missing conditions we add, there are 2 types of cubic splines.

- 1. Natural Cubic Spline
 - a. $S_0''(x_0) = 0$
 - b. $S''_{n-1}(x_n) = 0$
- 2. Clamped Cubic Spline
 - a. $S_0'(x_0) = f'(x_0)$
 - b. $S'_{n-1}(x_n) = f'(x_n)$

Curve Fitting

Say we have points $(x_1, y_1) \dots (x_n, y_n)$

we need to find a curve f(x) that fits these points the most.

There are 3 types of error norms

1. Max Error = Let error $E = MAX_{1 \le k \le n} |e_k|$

- 2. Average Error = Let error $E = \frac{\sum_{k=1}^{n} |e_k|}{n}$
- 3. Root Mean Square error = Let error $E = \sqrt{\frac{\sum_{k=1}^{n}{(e_k)^2}}{n}}$

We will be using the third norm to find the f(x) that fits the data the most. This f(x) is called the least square curve

Lineraization

The general idea is to change the shape of the curve to linear. We do tis sby changing

$$y = f(x) \rightarrow \gamma = AX + B$$

we use the normal equations

$$A\sum X_k^2 + B\sum X_k = \sum X_k \gamma_k$$

and

$$A\sum X_k + nB = \sum \gamma_k$$