Car hacking

Communication network and security risks in a car system

Tommaso Peletta & Jonathan Lo

Software in modern cars

- Modern automobiles are no longer mere mechanical device
- Cars are more and more driven by software

Software in modern cars

 Major advancements in efficiency and safety have introduced a range of new potential risks

Cars' components: ECU

• ECU (Electronic Control Unit): controls the electronical systems of a vehicle

Cars' components: ECU (history)

• Motivation to use ECU : Improve efficiency

 To measure the oxygen present in exhaust fumes then adjust fuel/oxygen mixture

Cars' components: ECU (coupling)

Many features require complex interactions across ECUs

 Active Cruise Control (ACC): systems scan the road and automatically adapt acceleration

Cars' components: CAN

- CAN bus (Controller Area Network) : allow devices to communicate with each other without host computer
- Broadcast

Cars' components: CAN

- High Speed and Low Speed CAN bus connects the components
- «Bridged»: example of Central Locking systems (CLS)

Cars' components : CAN

Component	Functionality	Low-Speed Comm. Bus	High-Speed Comm. Bus
ECM	Engine Control Module		√
	Controls the engine using information from sensors to determine the amount		
	of fuel, ignition timing, and other engine parameters.		
EBCM	Electronic Brake Control Module		\checkmark
	Controls the Antilock Brake System (ABS) pump motor and valves, prevent-		
	ing brakes from locking up and skidding by regulating hydraulic pressure.		
TCM	Transmission Control Module		\checkmark
	Controls electronic transmission using data from sensors and from the ECM		
	to determine when and how to change gears.		
BCM	Body Control Module	\checkmark	\checkmark
	Controls various vehicle functions, provides information to occupants, and		
	acts as a firewall between the two subnets.		
Telematics	Telematics Module	\checkmark	✓
	Enables remote data communication with the vehicle via cellular link.		
RCDLR	Remote Control Door Lock Receiver	\checkmark	
	Receives the signal from the car's key fob to lock/unlock the doors and		
	the trunk. It also receives data wirelessly from the Tire Pressure Monitoring		
	System sensors.		
HVAC	Heating, Ventilation, Air Conditioning	\checkmark	
	Controls cabin environment.		
SDM	Inflatable Restraint Sensing and Diagnostic Module	\checkmark	
	Controls airbags and seat belt pretensioners.		
IPC/DIC	Instrument Panel Cluster/Driver Information Center	\checkmark	
	Displays information to the driver about speed, fuel level, and various alerts		
	about the car's status.		
Radio	Radio	\checkmark	
	In addition to regular radio functions, funnels and generates most of the in-		
	cabin sounds (beeps, buzzes, chimes).		
TDM	Theft Deterrent Module	✓	
	Prevents vehicle from starting without a legitimate key.		

Cars' components : OBD-II

- On-Board Diagnostic (OBD-II): port under the dash in almost every modern vehicles
- It provides direct and standard access to internal automotive networks

Transfer protocol: ISO-TP

- International standard for sending data packets over CAN bus
- Publish and subscribe model (broadcast)
- One or more metadata bytes to the beginning of each CAN packets (PCI, Protocol Control Information)
- The ID of the packet (first two bytes) represent also a measure of the priority (low ID = high priority)

ID: 0760, Len: 08, Data: 10 82 FF 00 00 00 00 00

External connection to the CAN bus

- Physical connection to the OBD-II port via a OBD-II adapter cable
- Wireless connection via Bluetooth, radio, ...

Retrieve sensitive informations

Easy to sniff CAN packets because of broadcast transfer

Understand used protocol

Identify the actions triggered by the packets

Attacks via CAN bus : speedometer hack

- Isolate the packets sent to the RPM display and replay it
- In the Ford Escape 2010, it is controlled by packets with ID 0201 on the high speed connector

ID: 0201, Len: 08, Data: AA BB 00 00 CC DD 00 00

- AA BB : RPM displayed
- CC DD : speed displayed

Attacks via CAN bus: DOS

 Flood the CAN network with packets containing ID 00 00 (highest possible priority)

Every other packets will be ignored

 By attacking this way while the car is still shut down, the vehicle will never start

Attacks via CAN bus: Diagnostic packets

 Authentication needed to send diagnostic packets (challengeresponse)

The ECU and the sender share a cryptographic function and a key

The sender request a cryptographic seed to the ECU

 The sender encrypt the obtained seed and send it back to the ECU to prove that it has the key

Attacks via CAN bus: Diagnostic packets

• Some cars always use the same seed, meaning that if we sniff one time the encrypted seed, we can always use it to authenticate

 Ford Escape 2010 uses different pseudo-random seed, so we need the key in order to authenticate

• It uses 407 keys that do not have a high entropy such as:

JAMES MAZDA MazdA mAZDa PANDA

Attacks via CAN bus : engage brakes

• Send *DiagnosticCommand B1003C*

 Second parameter of one byte gives how much the brakes should be applied

ID: 0760, Len: 08, Data: 04 B1 00 3C FF 00 00 00

How to prevent these attacks

• Observe the frequency of the packets sent in a normal routine

Remote patch system in order to regularly patch vehicle

Thanks for your attention!

Questions?