Problem Set: Hypothesis Testing

Problem 1 (Calibrating a two-sided z-test and computing a p-value). Suppose an estimator $\hat{\theta}_n$ satisfies

$$\frac{\hat{\theta}_n - \theta}{\operatorname{se}(\hat{\theta}_n)} \stackrel{d}{\to} N(0, 1).$$

We test $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ using

$$T_n = \left| \frac{\hat{\theta}_n - \theta_0}{\operatorname{se}(\hat{\theta}_n)} \right|.$$

- (a) Show that choosing the critical value $c_{\alpha} = z_{1-\alpha/2}$ yields an asymptotic size- α test.
- (b) If in a particular application $T_n = 2.31$, report the (asymptotic) two-sided p-value and decide at $\alpha = 0.05$.

Problem 2 (One-sided test: statistic, p-value, and decisions). Consider $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ with test statistic

$$T_n = \frac{\hat{\theta}_n - \theta_0}{\operatorname{se}(\hat{\theta}_n)}.$$

Suppose the observed value is $T_n = 1.72$.

- (a) Compute the one-sided p-value for this right-tailed test and state the decision at $\alpha = 0.05$ and $\alpha = 0.01$.
- (b) If instead the alternative were $H_1: \theta < \theta_0$ (left-tailed), what would the one-sided p-value be for the same data?

Problem 3 (Power function of a two-sided z-test with known variance). Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\theta, \sigma^2)$ with known σ . Test $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ using

$$Z = \frac{\bar{X} - \theta_0}{\sigma/\sqrt{n}}, \quad reject \ if \ |Z| > z_{1-\alpha/2}.$$

- (a) Derive the power function $\pi(\theta) = P_{\theta}(\text{reject } H_0)$.
- (b) Take n = 100, $\sigma = 10$, $\theta_0 = 50$, $\alpha = 0.05$, and evaluate the power at $\theta = 52$.

Problem 4 (Duality: confidence intervals and hypothesis tests). Suppose an estimator yields $\hat{\theta} = 1.2$ with $se(\hat{\theta}) = 0.3$.

- (a) Construct a 95% (asymptotic) confidence interval for θ .
- (b) Using only the interval from (a), test $H_0: \theta = 1$ vs. $H_1: \theta \neq 1$ at $\alpha = 0.05$. Then compute the corresponding two-sided p-value.
- (c) Test $H_0: \theta \geq 1.5$ vs. $H_1: \theta < 1.5$ at $\alpha = 0.05$ and report the one-sided p-value.

Problem 5 (Design: sample size for desired power (one-sided z-test)). You will test H_0 : $\mu \geq \mu_0$ vs. $H_1: \mu < \mu_0$ using \bar{X} from $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with known σ . You will reject for small means:

reject if
$$\bar{X} < \mu_0 - z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$$
 (equivalently $T = -\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} > z_{1-\alpha}$).

Derive the smallest n that guarantees power $1 - \beta$ against the point alternative $\mu = \mu_0 - \delta$ $(\delta > 0)$.