1 Definition

1.1 Defintion

Let Prop be a set of variables. Then a formula ϕ is defined as follows :

$$\phi ::= p \mid \bot \mid \phi \mid \phi \to \phi \mid \Box_i \phi$$

where $p \in Prop$ and \square_i is a modal operator. Other connectives are expressed through \bot and \to and dual modal operators \diamond_i as $\diamond_i \phi = \neg \square_i \neg \phi$

1.2 Defintion

A normal modal logic is a set of modal formulas containing all propositional tautologies, closed under Substitution $(\frac{\phi(p_i)}{\phi(\psi)})$, Modus Ponens $(\frac{\phi,\phi\to\psi}{\psi})$, Generalization rules $(\frac{\phi}{\Box_i\phi})$ and the following axioms

$$\Box_i(p \to q) \to (\Box_i p \to \Box_i q)$$

 K_n denotes the minimal normal modal logic with n modalities and $K = K_1$ Let L be a logic and let Γ be a set of formulas. Then L+ Γ denotes the minimal logic containing L and Γ

1.3 Definition

Let L1 and L2 be two modal logic with one modality \square . Then the fusion of these logics are defined as follows:

$$L1 \otimes L2 = K2 + L_{1(\square \to \square_1)} L_{2(\square \to \square_2)}$$

The follow logics may be important

$$D = K + \Box p \to \Diamond p$$

$$T = K + \Box p \to p$$

$$D4 = D + \Box p \to \Box \Box p$$

$$S4 = T + \Box p \to \Box \Box p$$

2 Topological Space Defintion

2.1 Defintion

A topological space is a pair (X, τ) where τ is a collection of subsets of X (elements of τ are also called open sets) such that :

- 1. the empty set \emptyset and X are open
- 2. the union of an arbitrary collection of open sets is open
- 3. the intersection of finite collection of open sets is open

A topological model is a structure $M = (X, \tau, v)$ where (X, τ) is a topological space and v is a valuation assigning subsets of X to propositional variables.

2.2 Defintion

Let $M = (X, \tau, v)$ a topological model and $x \in X$. The satisfaction of a formula at the point x in M is defined inductively as follows $:M, x \models \Box \phi$ iff $\exists U \in \tau \text{ s.t } x \in U$ and $\forall u \in U : M, u \models \phi$

 $M, x \models \Box \phi \text{ iff }, \exists U \in \tau \text{ s.t } x \in U \text{ and } \forall u \in U : M, u \models \phi M, x \models \Diamond \phi \text{ iff }, \forall U \in \tau \text{ s.t } x \in U \text{ and } \exists u \in U : M, u \models \phi$