Bioconductor's DEDS package

Yuanyuan Xiao¹ and Yee Hwa Yang²

August 21, 2004

Departments of ¹Biopharmaceutical Sciences and ²Medicine University of California, San Francisco yxiao@itsa.ucsf.edu jean@biostat.ucsf.edu

Contents

1 Overview

This document provides a tutorial for the DEDS package for assessment of differential expression (DE) in microarray data.

Introduction to DEDS. There are numerous statistics in the microarray literature that rank genes in evidence of DE, to name a few, fold change (FC), t statistic, SAM (?). selecting a best statistic or ordering statistics in terms of merit has been problematic. No characterizations of microarray data that indicate desirability of a specific choice exist and, likewise, no comparisons across a sufficiently wide range of benchmark datasets have been undertaken. To avoid making fairly arbitrary choices when deciding which ranking statistic to use and to borrow strength across related measures, we apply a novel ranking scheme that assesses DE via distance synthesis (DEDS) of different related measures. Further details on the packages are given in ?.

Functionalities in DEDS. The DEDS package implements the DEDS procedure and several common statistics, such as, FC, t statistics, SAM, F statistics, B statistics (?) and moderated F and t statistics (?), for the analysis of DE in microarrys.

Case study. We demonstrate the functionality of the DEDS package using two microarray experiments: Affymetrix spike-in (?) and ApoA1 (?).

Related packages in Bioconductor. The Bioconductor packages marrayClasses, marrayInput and marrayNorm provide functions for reading and normalizing spotted microarray data. The package affy provides functions for reading and normalizing Affymetrix microarray data.

Help files. As with any R package, detailed information on functions, classes and methods can be obtained in the help files. For instance, to view the help file for the function comp.FC in a browser, use help.start() followed by ?comp.FC.

2 Case study 1: Affymetrix Spike-in Experiment

We demonstrate the functionality of this package using gene expression data from the Affymetrix spike-in experiment. To load the dataset, use data(affySpikeIn), and to view a description of the experiements and data, type ?affySpikeIn.

- > library(DEDS)
 > data(affySpikeIn)
- 2.1 Data

The spike-in experiment represents a portion of the data used by Affymetrix to develop their MAS 5.0 preprocessing algorithm. The whole dataset features 14 human genes spiked-in at a series of 14 known concentrations $(0, 2^{-2}, 2^{-1}, \dots, 2^{10} \text{ pM})$ according to a Latin square design among 12612 null genes. Each "row" of the Latin square (given spike-in gene at a given concentration) was replicated (typically 3 times, two rows 12 times, 59 arrays in total for the whole dataset). Further details are available at http://www.affymetrix.com/analysis/download_center2.affx. Here we showcase a portion of this dataset that presents a two-group comparison problem with 12 replicates in each group. Therefore, affySpikeIn contains the gene expression data for the 24 samples and 12,626 genes retained after RMA probe level summaries. The dataset includes

- affySpikeIn: a 12,626 × 24 matrix of expression levels;
- affySpikeIn.gnames: a vector of gene identifiers of length 12,626;
- affySpikeIn.L: a vector of class labels (0 for class 1, 1 for class 2).
- spikegene: a vector that shows that location and identities of the 14 spiked genes.
- > dim(affySpikeIn)
- [1] 12626 24
- > affySpikeIn.L
- > spikedgene

```
37777_at
                    1597_at 38734_at 39058_at 36311_at 36889_at
            684_at
                                                                      1024_at
    7843
             12244
                         658
                                  8810
                                           9137
                                                     6363
                                                               6946
                                                                           28
                                        1091_at
                                                  1708_at
36202_at 36085_at 40322_at
                               407_at
    6253
              6134
                       10414
                                10795
                                             102
                                                      780
```

2.2 The deds.stat.linkC and deds.stat functions

The deds.stat.linkC and deds.stat functions are the main functions that carry out the DEDS procedure. The former wraps around a C function and is therefore quicker than the latter; the latter does the computation solely in R and is slower but is more flexible in fine-tuning parameters for statisital measures. The user is recommended to use deds.stat.linkC for efficiency purpose. We describe the most important arguments in the function deds.stat.linkC below (see also ?deds.stat.linkC):

- X: A matrix, in the case of gene expression data, rows correspond to N genes and columns to p mRNA samples.
- L: A vector of integers corresponding to observation (column) class labels. For k classes, the labels must be integers between 0 and k-1.
- B: The number of permutations.
- tests: A character vector specifying the statistics for synthesis of DEDS. test could be any of the following: "t" (t statistics), "f" (F statistics), "fc" (FC), "sam" (SAM), "modt" (moderated t statistics), "modf" (moderated F statistics) and "B" (B statistics). As a default, DEDS synthesizes t statistics, FC and SAM.
- tail: A character string specifying the type of rejection region; choices include "abs", "higher" and "lower".
- adj: A character string specifying the type of multiple testing adjustment; choices include "fdr" for returning q values controlling False Discovery Rate (FDR; see?) and "adjp" for adjusted p values (see?) controlling family wise type I error rate.
- nsig: If adj = "fdr", nsig specifies the number of top differentially expressed genes whose q values will be calculated; we recommend setting nsig < N, as the computation of q values will be extensive. q values for the rest of genes will be approximated to 1. If adj = "adjp", the calculation of the adjusted p values will be for the whole dataset.</p>

We apply deds.stat.linkC on the affySpikeIn dataset using 400 permutations and evaluating the q values for the top 100 genes. Here, as a default, DEDS synthesizes t statistics,FC and SAM. The information of the top 20 genes can be printed out using the function topgenes; note that the rankings of genes by DEDS balance among the three measures it synthesizes, t statistics, FC and SAM.

```
> deds.affy <- deds.stat.linkC(affySpikeIn, affySpikeIn.L, B = 400,
+ nsig = 100)</pre>
```

> topgenes(deds.affy, number = 20, genelist = affySpikeIn.gnames)

	Name	geneOrder	DEDS	t	fc	sam
1	684_at	12244	0.0000000	171.858505	7.2235484	82.349174
2	36085_at	6134	0.0000000	-19.250088	-0.7648563	-8.954151
3	36202_at	6253	0.0000000	-15.757862	-0.8603835	-8.579226
4	33818_at	3845	0.0000000	-16.560453	-0.6846256	-7.866767
5	1091_at	102	0.0000000	-19.858982	-0.4745293	-6.819760
6	36311_at	6363	0.0000000	-14.013592	-0.6919303	-7.278708
7	546_at	12106	0.0000000	-10.181562	-0.8456221	-6.568406
8	1024_at	28	0.0000000	-11.241182	-0.6650023	-6.342763
9	40322_at	10414	0.0000000	-12.258781	-0.5484858	-6.065384
10	38734_at	8810	0.0000000	-10.129580	-0.5154920	-5.337663
11	32660_at	2675	0.0000000	-13.974358	-0.3281164	-4.743865
12	1552_i_at	609	0.0000000	-6.499473	-0.6759853	-4.515819
13	36889_at	6946	0.00000000	-8.767056	-0.5016880	-4.874979

```
8325 0.03703704
                                                8.293945 0.3783841 4.144027
14
               38254_at
15
               37777_at
                             7843 0.03703704
                                              -8.696619 -0.2633858 -3.466853
16
               39058_at
                             9137 0.03703704
                                              -7.176070 -0.2977104 -3.415163
17
                1032_at
                                                4.684491 0.4109406 3.080278
                               37 0.03703704
18 AFFX-YEL021w/URA3_at
                            12625 0.03703704
                                              -2.130391 -0.6669140 -1.859075
                1708_at
                                               -5.415472 -0.3216362 -3.060909
19
                              780 0.03703704
20
                 407_at
                            10795 0.03703704
                                              -6.421535 -0.2044849 -2.637487
```

2.3 The plotting functions pairs.DEDS and hist.deds

We next illustrate the usage of the function pairs. DEDS, which is a S3 method for pairs. It displays a scatter matrix plot for individual statistics that DEDS synthesizes and highlights the top genes according to a user specified threshold (thresh); see also ?pairs.DEDS. Plots on the diagonal panels are QQ-plots as the default, but can be set as "histogram", "boxplot", "density" or "none". To display only qq-plots, the function qqnorm.DEDS can be use.

```
> pairs(deds.affy, subset = c(2:12626), thresh = 0.01, legend = F)
> qqnorm(deds.affy, subset = c(2:12626), thresh = 0.01)
```

3 Case study 2: ApoA1 Experiment

The next example we demonstrate is a set of cDNA microarray data from a study of a mouse model with very low HDL cholesterol levels described in ?. To load the dataset, use data(ApoA1), and to view a description of the experiements and data, type ?ApoA1.

```
> data(ApoA1)
```

3.1 Data

The goal of the ApoA1 experiment to identify DE genes in apolipoprotein A1 (apo A1) knock-out mice. The treatment group consists of eight knock-out mice and the control group consists of eight normal mice. The dataset includes

- ApoA1: a $6,384 \times 16$ matrix of expression levels;
- ApoA1.L: a vector of class labels (0 for the control group, 1 for the treatment group);

```
> dim(ApoA1)
```

```
[1] 6384 16
```

> ApoA1.L

```
[1] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
```

3.2 Application of the deds.stat.linkC function

We apply deds.stat.linkC on the ApoA1 dataset using 400 permutations and evaluating the adjusted p. Here, as a default, DEDS synthesizes t statistics, FC and SAM.

```
> deds.ApoA1 <- deds.stat.linkC(ApoA1, ApoA1.L, B = 400, adj = "adjp")</pre>
> sum(deds.ApoA1$p <= 0.01)
[1] 7
> sum(deds.ApoA1$p <= 0.05)
Γ1 9
> topgenes(deds.ApoA1, number = 9)
  geneOrder
              DEDS
                                      fc
                                               sam
                                          8.674891
1
       2149 0.0025 16.500624
                               3.2440281
2
        540 0.0025
                    8.784189
                               2.9692008
                                          5.761274
3
       5356 0.0025
                    9.256464
                               1.7848039
                                          4.821543
4
       1739 0.0025
                   9.789541
                              0.9976147
                                          3.572326
5
       2537 0.0050
                    7.842692
                              0.9840616
                                          3.249543
6
       4139 0.0050
                   7.880206
                              0.9779046
                                          3.243980
7
          2 0.0100 -6.656223 -0.8907498 -2.862510
8
       4941 0.0150 5.909812
                              0.9214721
                                          2.764874
       1204 0.0250 -5.156277 -0.9961325 -2.688297
9
> pairs(deds.ApoA1, legend = F)
```

4 Statistical functions

4.1 The comp.t and other related functions

The DEDS package provides the following functions, comp.FC, comp.t, comp.SAM, comp.F, comp.B, comp.modt and comp.modF for the computation of FC, t-statistics, SAM, F statistics, B statistics, moderated t- and F- statistics respectively.

There are two steps in applying the above functions to obtain corresponding statistics:

- 1. Create the statistic function.
- 2. Apply the function to the microarray expression matrix.

We illustrate the usage with comp.t and other functions follow the same rules. The function comp.t has three arguments (see also ?comp.t):

L: A vector of integers corresponding to observation (column) class labels. For k classes, the labels must be integers between 0 and k-1.

Figure 1: Pairs plots for the ApoA1 data

mu: A number indicating the true value of the mean (or difference in means if two sample statistics are calculated; default set at 0.

var.equal: a logical variable indicating whether to treat the two variances as being equal.

comp.t returns a function of one argument with bindings for L, mu and var.equal. This function accepts a microarray data matrix as its single argment, when evaluated, computes t statistic for each row of the matrix.

```
> t <- comp.t(L = affySpikeIn.L)
> t.affy <- t(affySpikeIn)</pre>
```

4.2 The comp.stat function

A simple wrapper function comp.stat is provided for users interested in applying a standard set of statistical measures using default parameters. The most important arguments for comp.stat are elaborated below:

- X: A matrix, with rows correspond to genes and columns to mRNA samples.
- L: A vector of integers corresponding to observation (column) class labels. For k classes, the labels must be integers between 0 and k-1.

test: A character string specifying the statistic to be applied.

```
est: A character string specifying the
"t" - t statistics;
"fc" - FC;
"sam" - SAM statistics;
"F" - F statistics;
"modt" - moderated t statistics;
"modF" - moderated F statistics;
"B" - B statistics;
```

To compute t statistics on the affySpikeIn data, instead of using comp.t, the users can also use comp.stat by specifying the test as "t". However, comp.stat computes t statistics assuming unequal variance (if it is a two-sample comparison); if the user desires to use an equal variance option, the function comp.t has to be applied instead.

```
> t.affy <- comp.stat(affySpikeIn, affySpikeIn.L, test = "t")
```

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57:289–300.

Dudoit, S., Shaffer, J. P., and Boldrick, J. C. (2002a). Multiple hypothesis testing in microarray experiments. Submitted.

Dudoit, S., Yang, Y. H., Callow, M. J., and Speed, T. P. (2002b). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. *Statistica Sinica*, 12(1):111–139.

- Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L., Hobbs, B., and Speed, T. P. (2003). Summaries of affymetrix genechip probe level data. *Nucleic Acids Research*, 31:e15.
- Lönnstedt, I. and Speed, T. P. (2001). Replicated microarray data. Statistica Sinica, 12(1):31-46.
- Smyth, G., Ritchie, M., Wettenhall, J., and Thorne, N. (2003). Linear models for microarray data. R package, http://lib.stat.cmu.edu/R/CRAN/.
- Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. *Proc. Natl. Acad. Sci.*, 98:5116–5121.
- Yang, Y. H., Xiao, Y., and Segal, M. (2004). Indentifying differentially expressed genes from micorray experiments via statistic synthesis. *Manuscript in preparation*.