

12.40 446 50

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

AD-9044650

SUBACUTE TOXICITY OF RDX
AND THE IN MONKEYS

FINAL REPORT

Office of Naval Research 800 N. Quincy Street Arlington, Virginia

Contract No. N00014-73-C-0162, NR 108-985

Submitted By:

Litton Bionetics, Inc. 5516 Nicholson Lane Yensington, Maryland

April 5, 1974

Approved for subtle telepool

Domination (Name of Street)

SUBACUTE TOXICITY OF RDX AND THT IN MONKEYS Contract N00014-73-C-0162, NR 108-985

TABLE OF CONTENTS

			Page No.
	SUM	MARY	iii
1.	O[·]	ECTIVE	- 1
11.	MAT	ERIAL	- 1
ш.	MET	HODS	- 2
	Α.	Compound Preparation	- 2
	В.	Animals	- 3
	c.	Husbandry	- 3
	D.	Animal Groups	- 4
	Ε.	Physical Examination	- 5
	F.	Laboratory Tests	- 6
	s.	Compound Administration	- 8
IV.	RES	ULTS	- 9
	A.	Physical Examinations	. 9
	В.	Body Weight	- 10
	c.	Ophthalmoscopic Examination	- 10
	D.	Daily Observations	- 10
	٤.	Laboratory Tests	- 17
	F.	Postal Sam Examination	- 18
٧.	PATI	HOLOGY SUMMARY	- 19

TABLE OF CONTENTS

		<u> </u>	Page No.
VI.	APPENDIX		
	TABLE 1:	Body Weight	A-1
	TABLE 2:	Hematology - Cytology	A-6
	TABLE 3:	Hematology - Heinz Bodies	A-34
	TABLE 4:	Hematology - Methemograbin	A-37
	TABLE 5:	Hematology - Red Cell Fragility	A-40
	TABLE 6:	Blood Biochemistry	A-68
	TABLE 7:	Urinalysis, Individual Animals	A-96
	TABLE 8:	Urine Glutamic-Oxaloacetic Transaminase	A-177
	TABLE 9:	Sulfobromophthalein, U.S.P., Dye Clearance Test (BSP)	A-180
	TABLE 10:	RDX and TNT in Plasma	A-183
	TABLE 11:	Organ Weights	A-184
	TABLE 12:	Summary of Gross Lesions	A-185
	TABLE 13:	Summary of Microscopic Findings	A-186
	ANIMAL DEA	TH REPORT	A-190

Subacute Toxicity of RDX and TNT in Monkeys

o alor and

DATE: April 5, 1974

SUMMARY

A study was carried out in 42 rhesus monkeys to evaluate the toxicity of RDX and TNT when given orally, once daily, seven days per week for 13 weeks (90 days). Dosages of RDX were 10, 1 and 0.1 mg/kg/day and for TNT were 1, 0.1 and 0.02 mg/kg/day.

Five monkeys on the highest dose of RDX showed 12 instances of CNS disturbance, usually involving tonic convulsions. One of these monkeys were euthanatized; the others recovered and survived the study. Except for frequent episodes of emesis, predominantly in the high dosage RDX group, no other clinical signs of toxicologic significance were observed.

Laboratory testing revealed only scattered changes of no toxicologic significance. Histopathologic examination showed some increases in numbers of degenerate or necrotic megakaryocytes in bone marrow sections and increased amounts of iron-positive material in liver cord cytoplasm, both occurring in the high dosage groups of both RDX and TNT. The toxicologic importance of these two findings is uncertain.

SPONSOR: Office of Naval Research

DATE: April 5, 1974

MATERIAL: Cyclonite (RDX)

Trinitrotoluene (TNT)

SUBJECT: FINAL REPORT

Subacute Toxicity of RDX and TNT in Monkeys

Contract N00014-73-C-0162, NR 108-985

LBI Project No. 1366

I. OBJECTIVE

The objective of this study was to evaluate the toxicity of Cyclonite (RDX) and Trinitrotoluene (TNT) using oral administration to monkeys over a 90-day period.

II. MATERIAL

1

The test compounds and control mix used in this study were supplied by the Navy Toxicology Unit (NTU) and received by Litton Bionetics, Inc., in March 1973. The materials received consisted of the following:

Cyclonite (RDX) Mix: 20 bottles each containing 100 ml of a suspension of RDX. The concentration was stated to be 60 mg/ml in a 1 percent aqueous solution of methylcellulose. This was identified as LBI Compound No. 705.

Trinitrotoluene (TNT) Mix: 20 bottles each containing 100 ml of a suspension of TNT. The concentration was stated to be 2 mg/ml in a 1 percent aqueous solution of methylcellulose. This was identified as LBI Compound No. 706.

Control Mix: 20 bottles each containing 100 ml of a 1 percent aqueous solution of methylcellulose. This was identified as LBI Compound No. 707.

III. METHODS

A. Compound Preparation

After the compounds had been received at Litton Bionetics, the Sponsor discovered a residue of acetone was present in each bottle as a result of the process used to obtain a suspension of the material. In an effort to reduce whatever effect the acetone might have on the test results, each bottle of RDX, TNT, or Control Mix was mixed with the top off by means of a magnetic stirrer under 10 to 15 pounds negative pressure for a period of eight hours.

Just before dilution, the material was resuspended by gentle agitation or swirling and the dilution was prepared according to the following procedure.

- 1. To prepare Group A dilution (conc: 4 mg RDX/ml), dilute 33 ml of RDX Mix up to 500 ml with 1 percent methylcellulose.
- 2. To prepare Group B dilution (conc: 0.4 mg RDX/ml), dilute 50 ml of Group A dilution up to 500 ml with 1 percent methylcellulose.
- 3. To prepare Group C dilution (conc: 0.04 mg RDX/ml), dilute 50 ml of Group B dilution up to 500 ml with 1 percent methylcellulose.
- 4. To prepare Group D dilution (conc: 0.4 mg TNT/ml), dilute 100 ml of TNT Mix up to 500 ml with 1 percent methylcellulose.
- 5. To prepare Group E dilution (conc: 0.04 mg TNT/m?), dilute 50 ml of Group D dilution up to 500 ml with 1 percent methylcellulose.
- 6. To prepare Group F dilution (conc: 0.008 mg TNT/ml), dilute 100 ml of Group E ailution up to 500 ml with 1 percent methylcellulose.
- 7. To prepare Group G (Control) dilution, dilute 100 ml of Control Mix up to 500 ml with 1 percent methylcellulose.

B. Animals

Forty-two (42) juvenile and adult cynomolgus (<u>Macaca fascicularis</u>) monkeys equally divided as to sex were selected from a group of 43 animals made available by authorized transfer from other government projects. The animals ranged in age from 36 to 56 months at the beginning of the study. The females weighed 2.0 to 4.2 kg and the males 2.6 to 4.6 kg.

The animals were all born into the LBI colony and were hand-raised (i.e., separated from their mothers and bottle fed) in the Kensington facility. Their apparent good health was demonstrated by clinical examinations, biochemical and hematological tests. Intestinal parasitism is essentially absent in house born and reared primates in our colony. All animals had been tuberculin tested intrapalpebrally at 12-week intervals since six months of age. Clinical judgment of staff veterinarians throughout the pre-study and study periods determined the need for any treatment. By pre-arrangement, no treatment was instituted without checking with the study monitor at the Navy Toxicology Unit.

All animals were identified by a number assigned at birth and permanently tattooed on the chest.

C. <u>Husbandry</u>

During the course of the study (and for approximately one year prior to the study), the animals were individually housed in suspended wire cages in one animal room which was separate from other LBI animals' rooms.

The 42 animals on study were picked from a group of 43 which were available. Because of this, it was necessary to use five animals which had demonstrated high methemoglobin values during the pre-drug testing. Each of these animals was placed into one of five separate test groups for two reasons:

- 1. It would minimize the impact of the high methemoglobin values on any one group
- 2. These animals would be potentially more sensitive test systems in that they had already demonstrated a predisposition to methemoglobin formation under not all circumstances. Should the test compound have only a slight tendence of ause methemoglobin formation, it might be demonstrated more readily in these animals.

The groups selected to include these animals were Group A (high RDX), Group C (low RDX), Group D (high TNT), Group F (low TNT) and Group G (Control).

All the animals had water ad <u>libitum</u> and were fed once daily with a diet of commercial primate chow (Purina 25, Ralston Purina Co., St. Louis, Mo.).

D. Animal Groups

The 42 animals were divided into seven treatment groups, each containing six animals (three males and three females). One group of six animals served as controls for both test compounds.

The animals were assigned to groups in as random a way as possible consistent with the following:

- The animals with high methemoglobin values (see Section C above)
 were distributed throughout five groups.
- 2. Because of the wide variation in body weights, the animals were arranged so that total group weights for each sex were as equal as possible.

The animals were then assigned cages within the testing room in a manner which evenly distributed the animals of the various groups and of both sexes throughout the room.

Each test group was assigned a color as well as a letter designation as indicated in the table below. Once cage assignments were made, a piece of colored tape with the number of the animal was affixed to the cage. (See Section G - Compound Administration) The assignments are tabulated below.

Group	Dosage/Day	Color Code	Male	Age months	Female	Age months
A	High RDX (10 mg/kg)	Red	B4050 B3543	39 51	83609 B3739	50 48
	.		B3406	54	B3733	48
8	Medium RDX	Blue	B3952	43	83599	50
	(! mg/kg)		B3563	51	B3891	45
	Çi ingiringi		B4093	38	B3718	49
Ç	Low RDX	Yellow	B4254	36	B3613	50
	(0.1 mg/kg)		B3709	49	B3646	50
	(**************************************		B3773	48	B3617	50
9	High TNT	Green	B3697	49	B3516	52
	(1 mg/kg)		B3775	48	B3928	44
			B4301	36	B3857	46
E	Medium TNT	Purple	B3782	48	83720	49
	(0.1 mg/kg)	•	B3427	53	B3608	50
	3. 3.		B3773	48	B3863	45
F	Low TNT	Orange	B3559	51	B3818	47
	(0.02 mg/kg)	-	B3848	46	B3867	45
			B4239	36	83860	45
G	Centrol	White	B4046	40	B329?	56
			B4238	36	B3735	48
			B3628	50	64246	36
E f	Bhueisal Evaminat	ion		36-54 m	٠	34-56 mo senft

E. <u>Physical Examination</u>

1. General Examination

A general physical examination including a careful inspection of the general condition of the animals and palpation was performed prior to the

start of compound administration and was repeated during the rifth and ninth weeks and at the close of the study.

2. Body Weights

Body weights were obtained before the onset of compound administration and again during each week of study.

3. Ophthalmoscopic Examination

An ophthalmoscopic examination utilizing a transillumination light and a direct ophthalmoscope was conducted prior to the start of compound administration and again at the close of the study. The animals were chemically restrained with ketamine HCl (Ketaset), and the pupils were dilated with tropicamide (Mydriacyi, Alcon).

4. Daily Observations

Careful daily observations were made for indications of ill health or injury and for signs of systemic effects. These included general appearance, appetite, body excretions, motor activity, and behavior. In addition to the observations which took place at the times of compound administration and feeding, specific observations were also made early in the morning, late in the afternoon, and at least once during the night.

F. Laboratory Tests

The laboratory tests listed below were performed once each in November and December 1972, again just prior to starting the study in March 1973, during the fifth and night weeks of the study, and just after compound administration was stopped. Repeat determinations were performed when aberrant or possibly abnormal values were obtained.

1. Hematology

The following hematological determinations were performed:

complete blood count - including RBC, total and differential,
WBC, packed cell volume, hemoglobin, and reticulocyte count
Heinz body count
methemoglobin
RBC fragility test

2. Clinical Chemistry

The collection of blood for all of the following clinical chemistry determinations was done after an overnight fast.

calcium total protein
phosphorus albumin
glucose bilirubin
BUN alkaline phosphatase
uric acid LDH
cholesterol, total SGOT

3. Urinalysis

Urine was collected in aluminum pans suspended beneath the cages of the animals. The pans were constructed and positioned so that they covered the bottom of each cage and allowed the urine collected to flow directly into a collecting bottle. Wire mesh over each pan was used to minimize fecal contamination. Animals were watered from bottles during collection to prevent dilution of urine. A metal splash guard on each side of each cage prevented cross splashing of urine into adjacent pans. The following parameters were measured:

specific gravity sugar
pH ketones
bilirubin blood
protein microscopic examination of sediment

A 24-hour sample was used to determine the urine glutamic-oxaloacetic transaminase (UrineGOT) level.

4. Sulfobromophthalein, (Bromsulfophthalein), Dye Clearance Test (BSP)

The BSP test is a liver function test based on the measurement of the amount of time necessary for one half the amount of sulfobromophthalein dye, Bromsulfophthalein (BSP) to be cleared from the blood stream by the liver. It was performed by the method of C. Cornelius, modified for the rhesus monkey by W. F. Loeb of Bionetics. Application of this test to the cynomolgus monkey gave no evidence that it was not equally valid in this species.

5. RDX and TNT in Plasma

defiliangeries

The plasma level of each of the test materials was determined for each animal at NTU by a method developed at that institution. The plasma level determinations were obtained at five weeks and nine weeks and again after compound administration was stopped. Additionally, plasma was obtained from three animals at the time they demonstrated CNS disturbances during the study.

G. Compound Administration

One week's supply of test and control mixes was prepared each Thursday morning before dosing and was used through the following Wednesday. On Thursday afternoon each animal was weighed, and the dosage calculated for this weight was put into effect the following day (Friday) and used through the next Thursday. Each flask of diluted material was marked with a piece of colored tape, coded for the particular dilution, and labeled by group letter and compound dilution (control or low, medium or high of RDX or TNT). By matching the color on the cages and flasks, in addition to reading the animal number, the chances of mistakes in compound administration were minimized.

The test compounds were administered seven days per week, usually between 10:00 a.m. and noon. (Occasionally the bleeding schedule caused a slight delay in the start of compound administration.)

The administration was by oral-gastric intubation as this assured a correct amount of drug delivery to the animal and eliminated the possibility of animals not eating all of the vehicle in which the drug might be mixed.

At the beginning of the study, the animals were fed at 8:00 a.m. with compound administration following at 10:00 a.m. On Day 1 one animal vomited during the intubation process or immediately afterwards, and on Day 2 this occurred in three animals. On Day 3 of the study, therefore, the schedule was changed so that intubation occurred between 10:00 a.m. and moon and the animals were fed between 1:00 and 2:00 p.m.

Any animal which had an episode of emesis during the intubation process itself, while the tube was being withdrawn, or within one hour following intubation, was reintubated immediately and the original dose of test compound re-administered. Animals which demonstrated emesis more than one hour after intubation were not retreated.

IV. RESULTS

Because this study used only three animals of each sex in each dosage group, no formal statistical analysis is considered justifiable. A mean for each group is presented to facilitate comparisons. The significance or lack thereof of differences between groups is based upon the judgment of the experimenters.

A. Physical Examinations

There were no untoward effects observed during the scheduled physical examinations which could be attributed to compound administration.

B. Body Weight

It appears that there was a loss of about 10 percent of body weight during the first week of compound administration. Most animals did not regain all the lost weight although there was a return towards the initial values. This would not normally be expected in a group of young and, presumably, growing animals. The weight loss occurred in the control as well as all groups of test animals and can probably be attributed in part to the stress of compound administration each day. An effect of the test compounds is suggested by the fact that the test animals did not regain as much weight as the controls. (See Table 1.)

C. Ophthalmoscopic Examination

Ophthalmoscopic examination revealed no effects on the eyes of the test animals which could be attributed to the administration of the test compounds.

D. <u>Daily Observations</u>

For the most part, the animals remained alert and active during the entire course of the study. The test compounds had minimal effect on general physical activity, and the appetites of the animals remained good with few exceptions.

Emesis and CNS disturbances were the major exceptions to the normal status of the animals.

1. Emesis

As indicated in Section III.G., several animals demonstrated gagging upon oral-gastric tube passage. Since this resulted in loss of the food consumed when monkeys were fed prior to compound administration, the schedule was changed so that feeding occurred two to three hours postcompound administration.

Individual cases of emesis are recorded below:

Animal Number	Date	Time Emesis Occurred
CONTROL -	One animal vom	ited once.
4046	5/21/73	Emesis in a.m.
LOW RDX (<u>0.1 mg/kg)</u> - On	e animal vomited once.
4254	5/13/73	Emesis during night.
MEDIUM RD	X (1 mg/kg) - T	hree animals vomited 1 to 3 times each.
3952	5/22/73	Emesis when tubed; held compound second time.
	6/24/73	Emesis when first tubed; retubed.
	7/17/73	Emesis at tubing; retubed.
3563	8/08/73*	Emesis during day.
4093	6/24/73	Emesis a.m.
	6/25/73	Emesis during night.
HIGH RDX	<u>(10 mg/kg)</u> – Fi	ve animals vomited 3 to 10 times each
4050	5/13/73	Emesis during night and during that day.
	5/16/73	Emesis during day.
	6/05/73	Emesis during a.m.
3543	5/11/73	Emesis with convulsions observed by nightman.
	5/15/73	Emesis at tubing; retubed.
	5/17/73	Emesis at tubing; retubed.
	6/02/73	Emesis at tubing; retubed.
	6/03/73	Emesis at tubing; retubed.
	6/04/73	Emesis at tubing; retubed; some emesis again.
	6/05/73	Emesis at tubing; retubed.
	7/13/73	Emesis at tubing; retubed.
	7/23/73	Emesis at tubing; retubed.
	8/06/73	Emesis at tubing; retubed.

Animal		
Number	Date	Time Emesis Occurred
HIGH RDX (10	<u>) mg/kg)</u> cont'd	
3739	5/11/73	Emesis at 2:25 p.m.
\$	5/21/73	Emesis a.m.
	6/05/73	Emesis a.m.
3406	5/11/73	Emesis at 2:25 p.m.
	5/14/73	Emesis during night.
	5/20/73	Emesis a.m.
	5/21/73	Emesis a.m.
3609	5/21/73	Emesis a.m.
	5/25/73	Emesis a.m.
	6/05/73	Emesis a.m.
	8/05/73	Emesis when tubed.
LOW THT (0.0	<u>)2 mg/kg)</u> - Two	animals vomited 1 or 2 times each.
3559	5/13/73	Emesis during night.
	6/30/73	Emesis a.m.
3848	5/21/73	Emesis a.m.
MEDIUM THT	(<u>0.1 mg/kg)</u> - 0	ne animal vomited once.
3773	8/08/73*	Emesis during day.
HIGH TNT (1	mg/kg) - Two a	nimals vomited 1 or 3 times each.
3857	6/13/73	Heavy emesis a.m.
	7/04/73	Emesis a.m.
	8/08/73*	Emesis during day.
3928	8/08/73*	Emesis during day.

^{*}These episodes of emesis occurred on the day following the last day of compound administration.

2. CNS Disturbances

There were nine instances (in five different monkeys) when animals were observed to be having CNS disturbances. These all occurred in animals receiving the high dose level of RDX. Individual documentation of these is provided below. After the CNS disturbance in Animal No. B4050 on June 16, 1973, the Sponsor requested that, if possible, plasma be obtained for RDX levels during any future occurrences. Three such samples were obtained. These values are included in the reports below.

Animal No. B3733

June 26, 1973 (after the 48th dose): The animal was observed at 2:00 p.m. sitting in its cage and shaking. It then fell over to a prone position. There was heavy, ropy salivation with food still in the pouches of the animal. (It had been fed 30 minutes before.) When picked up four minutes later, the animal sat up and gave little resistance to handling. The plasma level of RDX was 3.2 ug/ml.

July 0, 1973 (after the 57th dose): The animal had received ketamine HC1 as a part of the ophthalmoscopic examination at 2:45 p.m. At 4:05 p.m., the animal was observed to be lying down in its cage with steady jerking movements of the limbs. When touched, the entire animal began to shake with tonic-type convulsions.

Animal No. B4050

June 13, 1973 (after the 35th dose): As observed by the night technician, the animal was found in a tonic-type convulsion and urinating. The eyes were open and the pupils dilated. The convulsion lasted approximately 45 to 55 seconds. The animal then became very sensitive to sounds ("jumpy") and salivated

profusely. There was no response to touch. After a recovery period of 1 to 1-1/2 minutes, the animal began to eat, and all was normal except that the pupils remained dilated.

June 16, 1973 (after the 38th dose): The animal was found having a tonic-type convulsion with urination, dilated pupils and salivation. The animal responded to sound, but not to touch. Recovery occurred over a 1 to 1-1/2 minute period.

Animal No. B3543

May 11, 1973 (after the 2nd dose): The animal was observed at 10:00 p.m. to be lying down in the cage and trembling. The pupils were dilated, and the head back. This lasted 1-1/2 to 2 minutes. Then there was slow improvement. The animal gripped the cage bars and finally sat back up. The animal seemed more aware of its surroundings. Recovery took 5 minutes.

Animal No. B3739

June 12, 1973 (after the 34th dose): The animal was acting in an unusual manner (unsteady, easily caught) when caught for the morning intubation. Shortly after the intubation dosing, the animal was observed lying in the cage in a tonic-type convulsion. It had pinpoint pupils and was salivating. It would lie quietly in the cage and then twitch. The body temperature was less than 93°F, and the gums were pale. The animal was given parenteral fluids and put on heat. Within an hour, the pupils were more normal in size. The animal was still lying down at 3:00 p.m., and fluids were again administered parenterally at that time. At 4:30 p.m., the animal started to move about. It would still have tonic-type twitches when touched. The eyes appeared normal and reacted to light. When returned to its cage, it grasped the cage bars.

June 13, 1973 (after the 35th dose): During the morning of June 13, the animal was observed to be hunched over with its chin resting in the water bowl (which had been put in the cage since the animal had appeared too weak to obtain water at the drinking valve the night before). The animal was stiff, the pupils pinpoint, and the cheek pouches stuffed with the paper cage-lining material. When placed on the edge of an examination table, the animal stood upright and lurched forward. It would have fallen if not restrained. With concurrence of the Sponsors, the animal was killed at noon. The plasma level of RDX at euthanasia was $2.0~\mu g/ml$.

Animal No. B3609

May 21, 1973 (after the 12th dose): The animal was found lying on the cage floor at 1:20 p.m. She sat up a short time later but seemed depressed for the rest of the afternoon and did not eat well that day.

June 29, 1973 (after the 51st dose): The animal was found lying on the cage floor markedly depressed at 2:35 p.m. By 2:40 p.m. she was sitting up. There was a moderate amount of salivation. The plasma level of RDX was 3.7 µg/ml. This animal displayed a poor appetite for most of the study period.

3. Other Conditions of Note

Animal No. 93891, Medium RDX

This animal displayed a poor appetite for most of the period of the study.

Animal No. B3609, High RDX

This animal displayed a poor appetite for most of the period of the study.

Animal No. B3406, High RDX

June 6, 1973 (after the 28th dose): The right humerus of this animal sustained a spiral midshaft fracture during the capture process for intubation. During the afternoon of the same day, the animal was given ketamine HCl and atropine and then anesthetized with pentobarbitol Na (Nembutate) "to effect." The fracture was reduced, and a pin inserted by the open method. There was a completely routine post-operative recovery and healing process. Daily administration of the RDX continued throughout the episode.

Animal No. B3559, Low TNT

This animal had a poor appetite on June 27, 1973, and on June 28 was observed to vomit up a black material. The animal salivated profusely and would lie down in the cage whenever no one was present. Through June 29 the animal appeared quite depressed and was observed to be unsteady in the cage (weaving and groggy in appearance). Its appetite was poor; the animal ate more during the night of June 29/30, and 75 cc of fluids were administered parenterally on June 30. By the afternoon of lune 30, the animal was only slightly depressed, and this improved to near normal by July 1.

Animal No. B3818, Low TNT

This animal had numerous episodes of diarrhea with blood and mucous during the study period. She had had these during the pre-drug period but was put on study due to a shortage of animals. The diarrhea was, for the most part, refractory to treatment.

Animal No. B3516, High TNT

On the morning of May 19, 1973, a small amount of a clear mucous material was found in the drop pan. The source was unknown, and the animal displayed no signs of illness.

E. Laboratory Tests

1. Hematology

The values obtained for the complete blood counts are presented in Table 2. The scattered instances of abnormal values completely fail to fall into any pattern suggesting compound effects.

The Heinz body counts are presented in Table 3. No compound effects are indicated.

The methemoglobin determinations are presented in Table 4. The occasional individual elevated values are inconsistent and of no toxicological importance.

The values for (erythrocyte) fragility are presented in Table 5.

No compound effects are revealed.

2. Clinical Chemistry

important deviations from normal were seen.

The results of the several blood analyses are presented in Table 6.

The scattered deviations from normal ranges appear to have no toxicological significance.

3. Urinalysis

Routine and microscopic examination of urine provided the results presented in Table 7. There do not appear to be any significant deviations from normal.

The urine glutamic-oxaloacetic transaminase (UrineGOT) values are presented in Table 8. The scattered values which might be considered abnormal show a potern of toxicological importance.

4. Sulfobromophthalein, (Bromsulfophthalein), Dye Clearance Test (BSP)
The results of BSP excretion tests are presented in Table 9. No

5. RDX and TNT in Plasma

The results of the analysis of plasma samples for RDX and TNT are presented in Table 10.

F. Postmortem Examination

The organ weights, gross necropsy findings, incidence of microscopic findings, detailed death report on the one monkey which became moribund (\$3739) and a summary of pathology signed by the pathologist are included as an Appendix.

Only two apparent differences between control and treated animals were noted. Necrotic and degenerative megakaryocytes were noted in all bone marrow sections, but two specimens in the high TNT group had no normal megakaryocytes. This is a toxic manifestation and may be related to thrombocytopenia, but the association cannot be made in this study since no platelet counts were made. The other difference (hetween control and high dosage groups of both RDX and TNT) is in the amount of iron-positive material in liver cord cell cytoplasm. The toxicologic importance of this finding is uncertain.

Submitted by:

DAVID P. MARTIN; V.M.D. Director, Leboratory of Anima

Medicine and Colons

Medicine and Science

E. NOSS HART, Ph.D. Director, Department of Pharmacology and Toxicology

P

V. PATHOLOGY SUMMARY

At the time of necropsy the following organs were removed and weighed: thyroid, heart, liver, kidneys and adrenal glands. The weights are given in a separate table.

Selected tissues were processed for microscopic examination. These were sections of stomach, small intestine, lung, heart, kidneys, liver, spleen, thyroid, bone marrow, adrenal glands, brain and any lesions from each monkey in the control and the two high dose groups. Liver, kidney, spleen and any lesions were examined from each of the monkeys in the other groups (low and intermediate).

Necrotic and degenerate megakaryocytes were noted in the bone marrow sections. Twenty-five megakaryocytes from each monkey bone marrow were examined and classed as necrotic, degenerate or normal. There appeared to be a difference between the high TNT group and the control and high RDX groups in that there were two specimens, 83516 and 83857, in which no normal megakaryocytes were seen. This is a toxic manifestation and may be related to thrombocytopenia, however, platelet counts were not performed so a further correlation can not be made.

Hemosiderin was noted in sections of bone marrow, intestine, liver and spleen. It was felt there might be a difference between the three groups, therefore a Prussian blue stain for iron was done on sections of bone marrow, intestine, liver and spleen from the control, high RDX and high TNT groups. The only readily apparent difference appears to be in the amount of iron-positive material present in the cytoplasm of the liver cord cells. It is greater in the high RDX and high TNT groups than in the control group.

October 10, 1973

Marion G. Valerio, D.V.M. Veterinary Pathologist

LITTON BIONETICS, INC.

A

TABLE 1

A TOTAL AND THE PROPERTY OF THE PROPERTY OF

Take

Pathology on the

Arthurs out

AND THE PROPERTY OF THE PARTY O

PHILIPPING THE

A Annia annia annia

BODY WEIGHT (kilograms)

	12		3.1 3.6	3.8	2.8	2.6		4.9 2.6 6.6	3.7	2.8	2.8
	=		64.60 4.00.00	4.0	3.0	2.7		3.6 2.6 6.6	3.6	3.3	2.8
	2		3.5	3.8	2.9	2.6		4.7 3.5 2.6	3.6	12 57 57 12 57 57	5.8
	6		3.67	3.7	2.7	5.6		3.5	3.6	3.2	2.8
RATION	œ		3.3	3.8	2.3	5.6		4.9 3.6 2.6	3.7	3.2	2.9
MINIST	7		3.7.8 3.8	3,9	2.9	9.6		2.6.9 2.6.6	3.6	2.9	2.8
DRUG ADMINISTRATION	9	(D)	6.4.6. 5.6.4.	3.7	2.8	2.5		4 6 7 8 7 7	3.6	2.5	2.8
0F	ကြ	3 MG/KG	3.6	3.7	2.8	5.6	MG/KG	4.6.9 6.0.9	3.6	3.2 2.8 2.4	2.8
WEEKS	4	RDX - 10	3.6 3.6 3.5	3.8	2.7	2.4	RDX - 1	3.6	3.6	3.2 2.8 5.5	2.8
	m	<u>ح</u> ا	3.2 3.6 3.6	3.8	2.2 2.3 4.5 8.3	5.5	Œί	3.7 2.5	w.	3.2	2.9
	2		3.1	3.8	2.5 2.4 3.4 5.3	2.4		3.5	3.5	3.1 2.8 4.2	2.8
	-		6.4° 7.8°,7.	4.	3.1 2.5 2.4	2.6		4 W V 0 4 4	3.6	3.3 2.8 4.5	2.3
	PRE- DRUG		မ က န ဆ က မ	4,	2.0.2 5.50	2.9		3.8 2.8 5.8	3.8	23.3 6.7.6	3.1
	MONKEY NO. AND SEX		B4050 (M) B3543 (M) B3405 (M)		83733 (F) 83739 (F) 83609 (F)	Mean		83952 (M) 83563 (M) 84093 (H)	Mean	83599 (F) 83718 (F) 83891 (F)	Mean

	ું	BIONETICS, INC.	BIONET	TOK		
WIII 1 - 1 - 0	processor, Namestones	The second second			4	The second second
(Billio mb	R.B.T.Brigathan		T.	_	-	

TABLE 1 (continued)

describing in the second

Fill within .

Parante Halle State Control

to effice or constant

haddekingases

Itton

BODY WEIGHT (kilograms)

			1		WEE	WEEKS OF DRUG	DRUG A	OMINIS	ADMINISTRATION	2				
MONKEY NO. AND SEX	PRE- DRUG	-	2	3	4	4 5	9	7	8	o.	2	=	12	
				Œ1	o - xa	.1 MG/	2							
B4254 (M) B3776 (M) B3709 (M)	8.8.8 6.6.4.	2.2 5.6 4.6	3.0 2.8 5.1	2.3	2.9 2.7 5.2	2.9	2.9 5.1	3.0 2.9 5.1	3.0 5.9 5.3	2.8 5.0	3.0 5.2 5.2	3.7 2.8 5.2	3.0 5.9	
Mean	3.9	3.6	3.6	3.7	3.6	3.6	3.6	3.v.	3.7	3.6	3.6	3.7	3.7	
83513 (F) 83646 (F) 83517 (F)	3.2.6	9.9.9. 4.0.8.	2.2.5	2.6 2.8 8.0	2.4 3.0 2.6	4.0.0 4.0.0	2.0 2.0 6.0	2.0 9.0 9.0	2.0.5 8.0.5	2.3 2.8 7.9	0 6 6 0 0 0	2.0% 2.0%	2.0 2.6 2.6	
Mean	3.0	2.7	2.7 2.7	2.8	2.6	2.6 2.7		2.7	2.7 2.8 2.6		8.2	5.6	2.7	

TABLE 1 (continued)

LITTON BIONETICS, INC.

BODY WEIGHT (kilograms)

SEX. DRUG 1 2 3 4 5 6 SEX. DRUG 1 2 3 4 5 6 TNT - 1 MG/KG (M) 5.1 5.4 4.6 4.7 4.6 4.6 4.4	1	4	u	,		•	•	8.		
$\frac{\text{TNT} - 1 \text{ MG/KG}}{\text{M}}$ 5.1 5.4 4.6 4.7 4.6 4.6 4.4			7	ام	/	ωľ	وا	2	=	12
(M) 5.1 5.4 4.6 4.7 4.6 4.6 4.4		1	1 MG/k	ဗ္ဗု						
	.6 4.	•	•	•	•	•				4.4
B3775 (M) 3.7 3.5 3.4 3.5 3.4 3.2 3.3 3 8 84301 (M) 3.4 3.0 3.1 3.2 3.2 3.1 3.0 3	4:L				9.8 4.0	3.5	3.3	3.3	3.4	3.5
Mean 4.1 4.0 3.7 3.8 3.7 3.6 3.6 3	.7 3.	•	•		3.6	3.6	3.5	3.6	3.6	3.6
(F) 2.3 2.0 2.0 2.1 2.0 2.0 2.2 (F) 3.8 3.4 3.6 3.8 3.9 3.5 3.6	9.5				2.1	2.0	3.6	2.1	2.1	2.1
) 2.8 2.5 2.4 2.5 2.5 2.6 2.5	.4 2.	•	•	•		2.5			2.4	2.4
Mean 3.0 2.6 2.6 2.8 2.8 2.7 2.R 2	.6 2.	•	•	•	2.8	2.7	2.7	2.7	2.7	2.7
TNT - 0.1 MG/KG				2						
3.9 4.0 4.1 4.1 4.n 4.0	0.0	•	•	•	4.0	۲.5	4.2	L.4 C.5	4.1	۲.۶
(M) 5.2 4.9 5.1 4.9 5.0 4.8 4.9) <u></u>					5.0		5.0	4.9	4.9
Mean 4.3 3.9 4.0 4.0 4.0 3.9 4.0 4	.0 4.	•	•	•	4.0	4.1	4.0	4.0	4.1	4.0
B3720 (F) 2.8 2.5 2.7 2.5 2.6 2 B3608 (F) 3.4 3.1 3.3 3.4 3.2 3.3 3.2 3	ئن. م.د. د				93.5	33.7	33.2	33.2	3.1	3.9
(r) 2.7 2.4 2.5 2.5 2.5 2.5 2.5 3.0 2.7 2.7 2.8 2.7 2.8 2.8	.7 .5.	2.7	2.8							

_
-
Ŧ
nue
=
-
-
¥
COU
$\overline{}$
~
U
~
_
_
-
·
·
·
·
ABLE
·

の機能をはない。 The Control of the Contro

Selection of the select

Π

LITTON BIONETICS, INC.

BODY WEIGHT (kilograms)

	į					WEEKS OF DRUG ADMINISTRATION	DRUG ,	NDMINI	STRATI(;; ;;			
AND SEX	PRE-	- ,	2 3	m	, ,	2	او	~	اھ	6	의	10 11 12	12
				-1	IN - (TNT - 0.02 MG/KG	3/KG						
B3559 (M)	4 .0	60 c	ω. 	4.0	3.7		 	3.7		 	ຕຸຕ	3.6	3.6 7.6
64239 (M)	. 4	. 4. t. w.	40	4.5	4.0		, e	4.1	4.0	, e	9.0	6.6	0.4
Mean	4.2	3.8	3.7	3.8	3.8	3.7	3.7	3.8	3.6	3.6	3.6	3.6	3.7
B3818 (F)	4.0	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.3	2.1	2.2	2.3	2.5
B3860 (F)	2.7	5.6	2.4	2.5	2.5	2.4	2.5	2.3	2.5	2.4	2.4	2.4	2.4
Mean	3.1	2.8	8	2,8	2,5	2.7	8	2.7	8,	9	2.7	2.8 2.8 2.8 2.6 2.7 2.8 2.7 2.8 2.6 2.7 2.8	2.7

3.0

411	ָ ב	
	4	
-		
		5
•	-	-

TABLE 1 (continued)

The second of th

CHARTHAMAN I

The second secon

Total State of

Π

A THE PARTY OF THE

BODY WEIGHT (kilograms)

					HEE.	HEEKS OF	DRUG /	OMINI	ADMINISTRATION	Z			
AME SEX	. אררי אררי אררי אררי אררי אררי אררי אררי	-	2	3	4	2	9	~	8	6	12		12
					CON	CONTROL							
B4046 (M) B4238 (M) B3628 (M)	2.6 6.5.7	400 400	4.0.0.	2.6 7.3 6.2	6.0 8.0	2.7 4.4 6.1	2.5 6.2 5.4	2.6 6.3	2.5 6.3 5.5	2.4 6.0	2.5 6.3	2.4 6.5	2.5 6.5 6.6
Mean	O.4	3.8	3.5	3.8	3.6	3.6	3.7	3.8	3.8	3.6	3.7	3.8	3.8
B3297 (F) B4246 (F) B3735 (F)	8.0°8 8.0°8	3.7 2.0 7.7	3.6 2.8 6.8	3.7	သမ္မာ လေတ်က	2.6	3.5	3.8 1.9 2.6	3.9 2.6 6.6	3.6	3.6	3.7	3.5 2.5 5.5
Mean	2,9	2.8	2.8 2.6	જ જ.	2.6	2.7	5.6	2.8	2.8	5.6	5.6	2.7	5.6

LITTON BIONETICS, INC.

TABLE 2

Mountheathlise neightlyneid

THE PERSON NAMED OF THE PE

- Angelon

And marginal,

Constitution of the last

· Comments

HEMATOLOGY - CYTOLOGY

RDX - 10 MG/KG

(M) 6.40 1.6 39.5 11.6 19.9 6.64 0.9 43.7 13.0 16.3 [A. Co. 2.0 0.8 42.0 12.3 8.1 5.96 1.2 38.5 10.6 10.3 10.3 10.3 [A. Co. 2.0 0.8 42.3 12.2 9.6 10.3 11.7 6.02 0.8 38.5 10.3 11.7 6.32 0.6 43.5 12.2 11.1 10 MEEKS PRE-DRUG [M] 6.80 0.1 44.5 12.2 11.1 6.55 0.4 49.0 14.1 11.7 6.56 0.3 44.8 12.5 9.9
0.8 42.0 12.3 0.6 46.5 13.6 13.6 10.9 42.3 12.2 WEEKS PRE-D 22 WEEKS PRE-D 10.6 43.5 12.2 0.6 43.5 12.2 0.4 49.0 11.0 WEEKS PRE-D 0.4 49.0 11.0 0.3 44.8 12.5 0.3 44.8 12.5
5.84 0.9 42.3 12.2 6.63 0.4 48.5 14.6 1 6.02 0.8 38.5 10.3 1 6.32 0.6 43.5 12.2 1 6.80 0.1 44.5 12.5 1 6.52 0.4 49.0 14.1 1 6.56 0.3 44.8 12.5 1 6.56 0.3 44.8 12.5
6.63 0.4 48.5 14.0 6.02 0.8 38.5 10.3 6.32 0.6 43.5 12.2 10 WEEKS PRE-D 6.52 0.4 49.0 14.1 6.36 0.3 44.8 12.5 6.56 0.3 44.8 12.5
0.4 48.5 14.6 10. 0.8 38.5 10.3 11. 0.6 43.5 12.2 11. 10 WEEKS PRE-DRUG 0.1 44.5 12.5 11. 0.4 49.0 14.1 11. 0.4 41.0 11.0 6.
0.6 43.5 12.2 11. 10 WEEKS PRE-DRUG 0.1 44.5 12.5 11. 0.4 49.0 14.1 11. 0.4 49.0 14.1 11. 0.3 44.8 12.5 9.
10 WEEKS PRE-DRUG 0.1 44.5 12.5 11. 0.4 49.0 14.1 11. 0.4 41.0 11.0 6.
0.1 44.5 12.5 11. 0.4 49.0 14.1 11. 0.4 41.0 11.0 6. 0.3 44.8 12.5 9.
0.3 44.8 12.5 9.

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Seg - Segmented Neutrophils; Ly - Lymphocytes; Mo - Monocytes; Eo - Eosinophils, Bas - Basophils.

**Repeat values.

LITTON BIONETICS, INC.

TABLE 2 (continued)

Incide Pio II.

THE STREET

HEMATOLOGY - CYTOLOGY

RDX - 10 MG/KG

MONKEY NO. AND SEX	. × ×	R.B.C. (x10 ⁶ /mm ³)	RETIC. (%)	EST.	110. (ams)	14.13.C. (x10. ³ /mm ³)	討	Juv	3an	DIFFERE,ITIAL (3)	LYIAL	MO E0	\$ C.	ļ	Other
					4	WEEKS									
84050 83543 83406	EEE	6.97 7.68 6.25	0.00	42.0 46.0 33.5	13.1 15.8 10.2	5.9 10.6 6.7	000	000	0-6	22 64 71	77 31 27	-4-	000	200	000
2		6.97	0.2	40.5	13.0	7.7									
					ωι	8 WEEKS									
84050 83543 83406	EEE	6.40 6.49 6.49	00.3	36.5 36.0	13.6	7.7 9.1 8.4	000	000	-00	46 65 65	25 29 30	- s 2	000	00-	000
Kean		6.62	0.2	38.7	11.6	8.4									
					21	13 WEEKS									
84050 83543 83406	EEE	6.56 88.00 88.00 84.00	0.7 0.6 0.6	41.5 45.5 36.0	13.5	5.5 7.2 9.3	000	000	000	30 57 55	938 33 34	420	-04	000	000
Mean		69.9	9.0	41.0	11.8	7.3									

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Ser - Segmented deutrochils; Lv - Lymmocytes; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

TABLE 2 (continued)

Noting of the Steam of

design appropriate

LITTON BIONETICS, INC.

HEMATOLOGY - CYTULOGY

RDX - 10 MG/KG

													8-A
0ther		000			000			0	<u>.</u>		o-0		
3.18		000			000			0	-		೧೦೦		
* 0		000			~ 00			S			90၈		
AL (%)		2			042			_			0		
[:]]		£ 44 44			69 69 34			22			69 89 66		
Seq Ly Mo		67 55 55			24 27 64			37			29 29		
Oli Jan		000			000			0			00-		
Juv		000			000			0			000		
놝		000			000			0			000		
W.B.C. (x10 ³ /mm ³)	PRE-DRUG	17.2 5.8 8.2	10.4	PRE-DRUG	6.9 6.9 2.9	7.0	PRE-URUG	7.4	ı	PRE-DRUG	7.8 5.7 7.7	7.1	
HB. (qm%)	26 WEEKS	11.5 11.6	11.5	24 WEEKS	11.0 10.5 10.6	10.7	22 WEEKS	11.5	3	10 WEEKS	12.7 10.2 12.1	11.7	
::CT.		39.5 41.5 40.5	40.5		39.5 38.0 39.0	38.8		38.5	ı		42.0 34.5 41.0	39.5	
RETIC.		8	0.3		1.2	0.5		0.8	1		3.6 0.6 0.8	1.7	
R.B.C. (x10 ⁶ /mm ³)		5.60 5.60 8.90	6.07		6.06 5.80 5.50	5.82		5.56	*		6.50 5.71 6.10	0:19	
۶×		EEE			EEE			(F)			EEE		
MONKEY NO. AND SEX		B3733 B3609 B3739	Kezn		83733 83609 83739	Kean		83733	Mean		B3733 B3609 B3739	Mean	

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Ser - Semmented deutrochils; Ly - Lymr spectes; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

LITTON BIOMETICS, INC.

TABLE 2 (continued)

[

Transport Street,

Party 0-1

N

F

N

HEMATOLOGY - CYTOLOGY

RDX - 10 MG/KG

MONKEY	Ş	R.B.C.	RETIC.	:CT.	₩ ₩	M.B.C.	- 1		ā	DIFFERENTIAL (%)*	HITIA		Ì			
AND SEX	×	$(x10^6/mm^3)$	(%)	(%)	(Samp)	(x10 ³ /mm ³)	싎	Juv	Jan	Seq	ン こ	읡		5.15	Other	
					41	4 WEEKS										
83733	(<u>F</u>	6.71	0.0	38.0	13.8	4.1	00	00	00	36	60	ოი	-0	00	00	
B3739 (F)	Œ	6.34	0.3	36.5	11.2	7.2	0	0	0	80	8	8	0	0	0	
Hean		92.9	0.2	38.0	11.7	4.9										
					ωι	8 WEEKS										
B3733 B3609	EE	6.18 6.71	0.2	36.5 39.5	10.4	4.0	00	00	00	25 48	75 51	0-	00	00	00	
Mean		6.44	0.5	38.0	10.5	4.1										
					의	13 WEEKS										
B3733 B3609	ŒŒ	6.81 6.47	0.5	39.5 37.5	11.8	ເພີ່ ເພື່ອ	00	00	00	25 34	8 8 8	0 m	2	00	00	
Mean		6.64	9.0	38.5	11.2	5.4										

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Ser - Segmented deutrochils; Ly - Lynamocrtes; Mo - Monecytes; Eo - Eosinophils; Bas - Basophils.

1.

erite e amount de adamentamente e ancian monora

LITTON BIONETICS, INC.

TABLE 2 (continued)

The State of

Ĩ

The state of the s

and the tensor of the tensor o

- The Control of th

HEMATOLOGY - CYTOLOGY

RDX - 1 MG/KG

MONKEY	Š.	R.B.C.	RETIC.	<u>:</u>		M.O.C.			0	OIFFERE:ITIAL (♡)*	HIIA		1	Į	
AND SEX	<u>ن</u>	$(x10^6/mm^3)$	(%)	(3)	(3,11)	$(x10^{3}/mm^{3})$	ᅿ	7117	<u>Jan</u>	Seq	に	шI £I	ol	3.1S	Other Other
					26 WEEKS	PRE-DRUG									
B3952 B3563 B4093	EEE	6.53 6.07 6.52	4.0.0	43.5 39.0 38.5	12.0 11.2 1.5	8.6 17.5	000	000	000	19 79 35	74 21 61	900	-00	000	C00
Mean		6.37	0.5	40.3	11.6	10.9									
					24 WEEKS	PRE-DRUG									
83952 83563 84093	EEE.	7.14 6.09 6.51	0.8	43.0 37.5 39.0	11.9	8.3 5.2 6.7	000	000	000	£84 148	56 51 57	8-8	000	-00	000
Mean		6.58	0.3	39.8	11.1	6.7									
					22 WEEKS	PRE-DRUG									
83563	$\widehat{\mathbf{z}}$	97.9	0.8	41.5	11.4	7.6	0	0	0	88	69	0	ო	0	0
Mean		•	ı	•	ŧ	1									
					10 WEEKS	PRE-DRUG									
83952 83563 84093	EEE	6.73 6.40 6.65	0.0	43.5 40.0 41.5	11.7	7.7 6.2 9.1	000	000	000	45 39 42	54 59 57	-2-	000	000	000
Mean		6.59	0.4	41.7	11.6	7.7									•

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Ser - Semmented Jeutruchils; Ly - Lynchocytes; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

Miller T. . .

the second description of the second second

TABLE 2 (continued)
HEMATOLOGY - CYTOLOGY

RDX 1 MG/KG

No. of L

Manager and a

independential

LITTON BIONETICS, INC.

AND THE PROPERTY OF THE PROPER

MONKEY	NO.	R.B.C.	RETIC.	ict.	HB.	₩.5.C.			0	DIFFERENTIAL (5)*	.111/	ن پ	1		anne die entre in der in der	
AND SEX	ĘX	(×106/mm ³)	(%)	(%)	(तमाह्र)	(x10 ³ /mil ³)	à	SILV SILV	Jan	Seq	רל	2 2		3.45	0ther	
					41	4 WEEKS										
B3952 B3563	Œ	8.10 6.97	0.0 4.6.	45.0 39.0	13.2	5.9	00	00	00	46	54	00	0-	00	00	
84093	Ξ	7.11	0.8	38.0	12.9	18.1	0	0	0	74	23	က	0	0	0	
Mean		7.39	0.5	40.7	12.6	11.4										
				٠	ωι	8 WEEKS										
83952 83563	ΞΞ	7.73	0.2	47.0	13.4	5.3	00	00	00	34	50	0-	00	00	00	
84093	$\widehat{\Xi}$	90.9	0.3	32.0	9.5	8.4	0	0	0	56	7	m	0	0	0	
Mean		6.83	0.3	37.2	11.1	9.9										
					=1	13 WEEKS										
B3952 B3563	ΞΞ	7.31	1.0	41.5 39.5	11.7	3.7	00	00	00	54 27	41	40		00	00	
B4093	E	7.08	0.4	39.0	11.5	10.4	0	0	0	44	22	_	0	0	0	
Mean		7.05	0.6	40.0	11.5	7.5										

A TO STATE OF THE STATE OF THE

^{*}My = Myelocytes; Juv = Juveniles; Ban = Banis; Ser = Seemented Doutrochils; Lv = to observe; Mo = Monocytes; Eo = Eosinophils; Bas = Basochils.

LETTON BIONETICS, INC.

TABLE 2 (continued)

「「 Marie Marie

1

The state of the s

1

Frequence settle

Spellif Schoolschaft

Particular designation of the last

Common A

the edition says

-

A STREET

HEMMTOLOGY - CYTOLOGY

RDX 1 MG/KG

MONKEY NO. AND SEX		83599 83891 83718	Ksan		B3599 B3891 B3718	Mean		83599 83718	Mean		83599 83891 83718	Mean
e ×		EEE			EEE			(F)			EEE	
R.B.C. (x10 ⁶ /mn ³)		6.10 6.01 6.51	6.21		5.42 5.77 5.75	7.05		5.87 6.57	6.22		5.53 5.47 6.89	5.96
RETIC. (%)		0.00	0.2		4.4.8	6.0		0.8 0.6	0.7		0.0	9.0
(5)		42.5 36.5 42.5	40.5		41.5 37.5 38.0	39.0		42.5	41.5		39.0 36.0 43.5	39.5
HB.	26 WEEKS	13.1 10.4 12.0	11.8	24 WEEKS	12.3 10.3 10.8	11.1	22 WEEKS	12.5	12.1	10 WEEKS	1.01	11.0
W.S.C. (x10 ³ /mm ³)	PRE-DRUG	13.6 6.3 10.5	10.1	PRE-DRUG	10.3 4.0 7.0	7.1	PRE-DRUG	10.5 8.4	9.4	PRE-DRUG	7.9 4.8 6.6	6.0
삵		000			000			00			000	
JIIV		000			000			00			000	
Jan San		000			000			00			000	
FFERE:IT		402			49 57 53			30			34 42 42	
OIFFEREITIAL (%)* Seq Ly Mo Eo		36 38 28 0			50 1 42 1 47 0			66 2 43 1			63 60 56	
* 3		000			000			-0			2 0 0 0 2	
SrS		000			000			-0			0-0	
Other		000			000			00			000	

*My - Myelocytes; Juv - Juveniles; Ban - Baris; Ser - Seemented leutrochils; Lv - Lorrocotes; Mo - Monocytes; Eo - Eosinophils; Bas - Basochils.

and a familia commission and and and

.

LITTON BIONETICS, INC.

N

A

TABLE 2 (continued)

🖜 सान्यक करावान्त्रकी, मिरानुन्नानुन्ना स्थापना अनुनन्ना अनुनन्न

Transmission of

A

HEMATOLOGY - CYTOLOGY

RDX - 1 MG/KG

MONKEY NO. AND SEX	ж х	R.B.C. (x10 ⁶ /mm ³)	RETIC. (%)	::CT.	HB.	W.B.C. (x10 ³ /mn ³)	촲	JIIV	Jan	01 FFERE: ITIAL (:) *	LY			S-is	<u>Other</u>	
					71	4 WEEKS										
B3599 (F) B3891 (F) B3718 (F)	FFF	6.53 6.60 7.11	000 4:4	42.0 39.0 40.5	13.6	φ.υ.α 4.Γ.α:	000	000	000	04 68 89	58 50 11	0-0	-00	-00	000	
Mean		۲.75	6.3	40.5	12.5	6.9										
					ω,	8 WEEKS										
83599 83893 83718	EEE	6.48 6.19 6.54	0.0	40.5 39.5 38.0	11.6 11.0 10.8	8.8 7.9 3.8	000	000	000	10 75 74	85 25 25	m00	707	000	000	
Mean		6.40	0.1	39.3	1.1	8.9										
					71	13 WEEKS										
B3599 B3891 B3718	EEE	6.71 5.87 6.83	0.00	42.5 37.0 41.0	12.7 10.5 11.5	10.1 13.5 3.8	000	000	000	61 75 54	35 21 46	ოოΟ	-00	0-0	000	
Mean		6.47	0.7	40.2	11.6	9.1										

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Seg - Semmented deutrochils; Lv - Lymanocytes; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

The same is a second second

000

INC.
•
BICKETICS
-
-
ĹЦ
≕
5

8
7
~
\simeq
LITTON
_
-

HART STATE OF THE STATE OF THE

A STATE STATE OF THE STATE OF T

PAS THE STATE

MONKEY NO. AND SEX	NO.	R.B.C. (x10 ⁶ /mm ³)	RETIC. (%)	(c)	TABLE 2 (con HEMATOLOGY - ROX - 0.1 HD. (amm) (x)	TABLE 2 (continued) HEMATOLOGY - CYTOLOGY RDX - 0.1 MG/KG HD. M.J.C. (gm%) (x10 ½, mm³) 26 WEEKS PRE-DRUG	主	VIIV	D Jan	Seq	<u>æ </u>	RE:ITI	2
B4254 B3776 B3709	EEE	7.03 5.63 6.40	0.8 1.2 1.2	43.5 34.0 40.0	13.5 10.0 12.0	11.6 6.1 15.5	000	000		-00	1 0 0 41 0 87		30 41 87
K ean		6.35	6.0	39.2	11.8 24 WEEKS	11.1 PRE-DRUG							
B4254 B3776 B3709	EEE	6.42 5.23 6.13	000	40.0 33.5 40.5	9.0	9.7 8.5	000	000		0-0	0 29 1 41 0 72		20 41 72
Mean		5.93	0.5	38.0	10.8 22 WEEKS	10.8 7.7 22 WEEKS PRE-DRUG							
B3709	Ξ	5.93	0.4	41.0	11.9	9.0	0	0		0	0 78		78
Mean		•	t	ı	- 10 WEEKS	- PRE-DRUG							
84254 83776 83709	EEE	6.41 6.54	0.70	41.0 36.5 43.0	11.8 10.9 13.0	10.0 6.6 4.7	000	000		000	0 35 0 35 0 35		35 35 35
Mean		6.23	0.5	40.2	11.9	7.1							

000

00-

0

0

348 Other

000

000

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Ser - Segmented Leutrochils; Lv - Laminocytos; Mo - Monocytes; Eo - Eosinouhils; Bas - Basophils.

TABLE 2 (continued)

The state of the s

A The control of the

The signature of the second of the constitution of the second of the sec

HARITA TO PROSE

omenically one

hitingpoints v

de knapantsélés Lihadéléssaggi

and the same of the

And a second App.

ji crateri ko attititimanj

4

LITTON BICMETICS, INC.

HEMATOLOGY - CYTOLOGY

RDX - 0.1 MG/KG

RETIC. RCT. HB. N.S.C. (3) (x10 ³ /mm ³) Nr Juy Ban Seq Ly Mo E ₂ Bas Other 4 WEEKS	1.0 42.0 13.2 4.6 0 0 0 17 81 1 1 0 0 0 0.4 38.5 12.4 4.9 0 0 0 0 39 59 0 2 0 0 0 0 0.4 37.5 12.0 10.3 0 0 0 84 14 2 0 0 0	39.3 12.5		0.6 43.5 13.6 4.4 0 0 0 $2!$ 76 3 0 0 0.1 37.0 10.8 4.0 0 0 0 15 81 3 1 0 0 0.1 37.0 10.4 4.9 0 0 0 58 35 6 0 1	0.3 39.2 11.6 4.4	13 WEEKS	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(%) (gm%)	42.0 38.5 37.5	39.3 12.5	-•	43.5 37.0 37.0	39.2	⊷- Î	42.0 37.0 37.5	
AND 3EX (x106/mm3)	B4254 (M) 7.31 B3776 (M) 6.97 B370) (M) 6.53	Mean 6.94		B4254 (M) 7.63 B3776 (M) 6.37 B3709 (M) 6.47	Mean 6.82		B4254 (M) 7.23 B3776 (M) 6.32 B3709 (M) 6.46	

*My - Myelocytes; Juv - Juveniles; Ban - Banis; Ser - Semmented Leutro nils; l Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

11C.
•
ಬ
Ē
OKE.
8
8
1511
H
\$

HEMATOLOGY - CYTOLOGY

RDX - 0 1 MG/KG

TABLE 2 (continued)

Production of the control of the con

WathenHalletti

Hand Property Bank

HERENBERGER AND THE PROPERTY OF THE PROPERTY O

Manager Jacker

R.B.C. (x10 ⁶ /mm ³)	C. RETIC. (%)	ilCT.	HB. (em?)	W.J.C. (x10 ³ /mm ³)	2.1	Juv	igan Gan	Seq Ly Mo	111A	l	* C]	SI 55	0ther
			26 WEEKS	PRE-DRUG									
6.76 0.1 5.59 0.1 5.48 0.4		43.0 43.5 36.5	12.5 12.8 10.3	5.0 5.0 5.0	000	000	000	52 57 55	46 39 42	04 m	000	000	000
5.94 0.2		41.0	11.9	6.9									
			24 WEEKS	PRE-DRUG									
5.99 0.8 4.97 0.6 5.50 0.8		41.5 40.0 36.5	11.6 11.8 10.2	9.8 9.6 9.9	000	000	c-0	33 33	72 65 66	000	0	000	000
5.49 0.7		39.3	11.2	4.8									
			22 WEEKS	22 WEEKS PRE-DRUG									
1		ı	ı	ŧ	ı	ŧ	ı	1	ı	i	ı	ı	
			10 WEEKS	PRE-DRUG									
5.35 0.3 5.78 0.6 5.41 0.4		36.5 42.5 36.0	10.2 12.5 9.7	11.6 4.1 4.1	000	000	-00	62 36 37	36 64 63	-00	000	000	000
0.4		38.3	10.8	9.9							,		

*Ny - Myelocytes; Juy - Juveniles; Ban - Brols; Sono Sommonted Poutrochils; London Monocytes; Eq. - Eqsinochils; das - Masochils.

FABLE 2 (continued)

LITTON BIONE'S. CS. INC.

HEMATOLOGY - CYTOLOGY

RDX - 0.1 MG/KG

MONKEY NO. AND SEX	ارو	R.B.C. (x10 ⁶ /mm ³)	RETIC. (%)	(S)	HB. (gm5)	W.3.C. (x10 ³ /mu ³)		Juv	10 Gan	DIFFERE.ITIAL ()* Seq Ly Mo Ea	LY		į	SrS	<u>Other</u>	
					41	4 WEEKS										
B3613	E E	6.45	9.0	41.0	13.1	7.3	00	00	00	39	33	- 8	0 ~	00	00	
	(F)	6.48	9.0	35.5	10.5	6.3	0	0	0	5 2	23	0	_	0	0	
Mean		6.28	9.0	38.8	12.0	5.7										
					ωι	8 WEEKS										
83613	(F)	6.61	0.3	42.5	4.11.4	11.3	00	00	00	34	31	O r	0-	0-	00	
	<u>(E</u>	5.59	0.5	32.0	10.4	7.3	0	0	0	67	282	4		. 0	0	
Kean		6.03	0.2	37.5	10.9	7.4										
					21	13 WEEKS										
B3613 62646	Œ.	7.28	6.	44.5	12.6	7.3	00	00	00	55	43	2 6	0 -	00	00	
	Œ	6.07	0.4	36.5	10.0	5.0	00	00	0	44	26	0	- 0	0	0	
Mean		6.56	6.0	41.2	11.6	5.7										

*My = Myelocytes; Juv = Juveniles; Ban = Sends; Sende Sendentel Leutro hils: London Mo = Monocytes; Ec = Eosinophils; Bas = Basachils.

INC.
S.
I ONETI CS
810
TTON
=

TABLE 2 (continued)
HEMATOLOGY - CYTOLOGY
THT - 1 MG/KG

September 1.

Catalytements of

Instablishment

PHARMONIA OF A

THE STREET, SHIP AND STREET, S

HORKEY NO. AND SEX	NO.	R.B.C. (x10 ⁶ /mm ³)	RETIC. (5)	35. 33.	116. (324's)	H.3.C. (x10 //nm)		Juv	io ue;	Sed	וג	DIFFERENTIAL ()* Sea Ly Mo Eo	ļ	5.15	0ther
					26 WEEKS	PPE-DRUG									
B3697 B3775 B4301	EEE	7.08 5.58 5.65	000 444	42.0 39.0 41.0	12.3	10.8 11.7 7.4	000	000	000	96 36 36	44 64 64	000	000	000	000
Kean		6.09	4.0	41.0	12.2	10.0									
					24 WEEKS	PRE-DRUG									
83775 83775 84301	EEE	6.93 8.93 8.83	0.00 4.4.5	42.5 40.0 39.0	12.5	4 0 0 7.0 8.0	000	000	000	55 39	44 29 61	-00	080	000	000
Mean		5.93	2.3	40.5	11.9	7.8									
					22. WEEKS	PRE-DRUG									
		•	ı	ı	ı	•	ı	•	ı	1	•	1	1	ı	•
					10 WEEKS	PRE-DRUG									
83697 83775 84301	EEE	6.63 6.45 5.25	1.2 0.8 0.1	39.0 42.5 39.5	11.3	ກ. ກຸສ ກຸ	000	000	-00	53 50 51	4 4 4 4 0 3	3-8	00-	000	000
Mean		6.11	7.0	40.3	11.8	0.9									

*My - Myclocytes; Juv - Juvenilles; Ban - Ban Is; Ser - Jermented Wutru hils; Let - Bond Monocytes; Eo - Eosinophils; Bas - Base hils.

INC.
BIOMETICS.
}
w
z
0
\vdash
œ
7
Ö
POT I
-
—

HEPMTOLOGY - CYTOLOGY TABLE 2 (continued)

A STATE OF THE PROPERTY OF THE

elbenderskintelige

The state of the s

χ 6
₩2/
_
K

<u>Other</u>	000	000	000
Si-S	000	000	200
*LG	-00	000	000
DI FTERE, ITI AL (Seg Ly Mo	% - - ♥	000	m-0
E.T.	932	23 411	25 27 63
Seg	33,7	77 59 87	72 72 37
i i i i	000	000	000
λης.	000	000	000
	000	000	500
H.S.C. (x10 /mm³) 4 WEEKS	3.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	8 WEEKS 8.6 6.8 11.7 9.0	7.0 9.2 5.7 7.3
116.	13.0 12.5 11.7	10.9 11.0 10.9	8.6. 0
(3)	40.5 38.5 39.0	39.5 37.0 38.0	43.0 40.0 31.5
RETIC.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3 0.2 0.2 0.2	0.C. 6.69.64.64.64.64.64.64.64.64.64.64.64.64.64.
R.B.C. (x10%/nm ³)	7.35 6.22 6.07 6.55	6.52 6.63 5.65 6.07	7.05 6.74 8.93 6.24
X X	EEE	EES	ÊÊÊ
MONKEY NO.	83697 83775 (4301 Mea n	83775 83775 84301 Mean	83697 83775 84301 Mean

So mented Jentro Mils: L *My - Myelocytes; Juv - Juveniles; Bar - Sants; Se Mo - Monocytes; Eo - Essinounils; Bas - Sasuthils.

	٠ -
ひしていることもの	ز
-	4
۲	_
3	ï
t	5
÷	•
ø	٥
241	ξ
ř	
۲	_
-	4
-	-

HEMATOLOGY - CYTOLOGY TABLE 2 (continued) TNT - 1 MG/KG

Topeld Leading

pourse district

Presidentinist

Water State of The

To Bulliaged Hotels

THE STATE OF STREET

- distribution

PROMINE PRINCE

A.P. S. Principles

ß

MONKEY NU. AND SEX	KY.	R.B.C. (x10 ⁶ /mm ³)	RETIC. (5)	::C1:	HE.	H. G. C. (x10 1/1011)		Juv	C uer	DIFFERE Seq	LY NE		*	S15 (<u>Other</u>
					26 WEEKS	PRE-DRUG									
83857 83516 83928	EEE	6.31 5.97 5.43	0.00	41.5 39.5 35.5	12.4 11.1 10.3	7.5 6.1 21.2	000	ဝ၁၁	000	52 37 74	47 63 23	-om	000	000	೧೦೦
Tea.		5.90	0.2	38.8	1.3	11.6									
					24 WEEKS	PRE-DRUG									
83857 83516 83928	EEE	6.01 5.12 5.59	0.5 0.6 0.6	39.0 37.0 38.0	10.2	8.2 8.2 8.2	000	000	000	14 23 50	86 74 46	00%	0m-	000	000
Mean		5.57	1.1	38.0	10.7	7.0									
					22 WEEKS	PRE-DRUG									
83928	(F)	5.77	9.0	40.5	11.7	10.7	0	0	0	47	5	2	0	0	C
Mean		·	ı	•	ı	•									
					10 WEEKS	PRE-DRUG									
83857 83516 83928	EEE	6.30 5.95 5.66	000	40.0 38.5 38.5	11.1	4.1 9.4	000	000	000	14 18 42	83 83 56	~~~	-0-	000	000
Mean		5.94	0.2	39.0	10.7	7.0									

*My - Myglocytes; Juv - Juvenilas; Ban - Banls; Ser - Seamented leutra hils; Lv - Lr recrtes; Mo - Monocytes; Eu - Eosínnehils; Bas - Basachils.

LITTON BIONETICS, INC.

TABLE 2 (continued)

1

No. of Contract of

1

[

[]

8

man a comment of the comment of the

HEMATOLOGY - CYTOLOGY

TNT - 1 MG/KG

MONKEY NO. AND SEX	κχ Σχ Σχ	R.B.C. (x10 ⁶ /mm ³)	(5)	HCT.	HE.	W.3.C. (x10 ³ /mn ³)	금) JIIV	O uei	OIFFERE, ITIAL Sed LY MO	111A	ال	* 53) Sig	<u>Other</u>	
					J i	4 MCENS										
B3516 (F) B3928 (F)	EEE	6.45 6.33 6.40	000 444	37.5 37.5 37.5	11.5	3.7 8.7 7.5	000	000	000	32 27 53	61 70 43	562	000	0-0	700	
Mean		6.39	0.4	37.5	11.3	5.6										
					ωι	8 WEEKS										
83857 83516 83928	EEE	6.74 6.54 6.40	0.0 4.4.5	39.0 36.5 38.5	11.6 10.0 12.3	10.9 8.4 2.2	000	000	000	67 54 77	23	8-8	0-0	000	000	
Kea n		6.56	0.3	38.0	11.3	10.5										
					21	13 VEEKS										
8357 83516 83928	EEE.	6.69 6.39 6.51	0.3	41.0 39.5 38.5	11.5	5.2 5.8 10.0	000	000	000	22 40	69 74 55	200	8-0	000	000	
Mean		6.53	9.0	39.7	11.1	7.0										

*My - Myelocytes; Juv - Juveniles; Ban - Banis; Ser - Sequented Jeutrochils; Lv - Lygrandata; Mo - Monocytes; Eo - Eosinophils; Bas - Basachils.

ť

The state of

, 1NC.
IONETICS,
æ
ITTON

тания печения борь

Property of

					TABLE 2	2 (continued)									
					HEMATOLOGY -	Y - CYTOLOGY									
					THT -	0.1 MG/KG									
MONKEY NO. AND SEX	£.×80.	R.B.C. (x10 ⁶ /mm³)	RETIC. (%)	:ict (%)	HE.	(x10 3/mm ³)) VIIV	Out	DIFFERE.ITIAL Seg LY M	1117 LV	ᆛᇊ	*(3	Si-S	Other.
					26 WEEKS	PRE-DRUG									
83782 83773 83427	EEE	5.56 8.86 8.86	000 4.6.6	41.5 40.0 45.5	12.6	3.0 11.1 12.7	000	000	000	40 75 44	60 24 54	000	0-0	000	ó00
Kean		5.53	0.5	42.3	12.4	6.8									
					24 WEEKS	PRE-DRUG									
83782 83773 83427	EEE	5.12 6.33 6.15	0.00 48	39.5 41.0 44.0	12.6 11.6 12.1	4.4.8 2.0.0	000	000	000	62 41 37	36 57 59	m		000	000
Mean		5.87	0.4	41.5	12.1	0.9									
					22 WEEKS	PRE-DRUG									
B377 3	$\widehat{\mathbf{E}}$	5.93	9.0	39.5	11.3	8.8	0	0	0	41	22	_	0	_	0
Hean		•		•	•	•									
					10 WEEKS	PRE-DRUG									
83782 83773 83427	ક∷ેંદ્રે	5.90 6.10 6.03	0.6 0.6 0.6	41.0 44.0	12.2	5.0 6.1 7.8	000	000	000	35 23 23	64 77 75	-0-	00-	000	000
Mean		6.01	0.5	45.0	12.0	6.3									

*My - Myelocytes; Juv - Juveniles; Ban - Banis; Ser - Sermented inutrochils; Lv - Ly: nocytes; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

TABLE 2 (continued)

The second secon

mand stands

Harris Haller C. 1

A

LITTON BIONETICS, INC.

Date (property)

Continued by the state of the s

HEMATOLOGY - CYTOLOGY

TNT - 0.1 MG/KG

MONKEY NO. AND SEX	EX XO	R.B.C. (x10 ⁶ /mm ³)	RETIC. (%)	::CT.	HB. (પ્રાથક)	H.B.C. (x10 ³ /mm ³)	놢	VIIV	San	DIFFERE ITIAL () Sea Ly MO E	LY L		* cl	5-15 ()	Other	
					9	WEEKS										
B3782 B3773 B3427	EEE	6.21 6.51 6.61	0.3	40.5 39.0 43.5	13.0	2.4.4. 5.5.0	000	000	-00	74 48 38	25 51 61	00-	0-0	000	000	
Hean		6.27	0.4	41.0	12.9	4.9										
					ωı	8 WEEKS										
B3782 B3773 B3427	EEE	6.00 6.50 6.87	0.0	36.5 39.0 42.0	12.3 10.8 11.2	6.3 9.7	000	000	000	70 30 37	29 65 59	- S 2	00-	00-	000	
Mean		6.46	0.3	39.5	11.4	6.7	•									
					[]	13 WEEKS										
83773 83773 83427	EEE	5.87 6.42 6.64	1.0 0.7 0.6	40.5 41.5 42.0	11.9	6.4 6.0 8.5	000	000	000	39 43	57 62 55	~ ~ ~	- r O	00~	000	
Hean		6.31	8.0	41.3	11.8	4.9										

*My - Myslocytes; Juv - Juvenilas; Ban - Banls; Ser - Scamented Leutro-hils; Lv - Lvarnocytes; Monocytes; Ec - Ecsinophils; Bas - Basophils.

í

)

,

•
∑
Z
-
_
"
=
_
ш
₹
BIONETICS
—
8
Z.
9
NE SE
-
-

TABLE 2 (continued)

The state of the s

West and the same of

Total Market a

Alleminiments of a

Periodentigibación

The state of the s

.

A

Andrew In tellings

Controller of the Controller of

П

all-Bigl Bechn.

奇

HEMATOLOGY - CYTOLOGY

TNT - 0.1 MG/KG

<u>Other</u>		000			000			00			000	ı
)* (50 0.348 0.3		000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			00			000	
		00-			0 − 4			~-			L04	
DI FFERE.ITIAL (55 9 66			60 81 57			69 63			56 67 56	
Seq		91 93			37			30			32 36 36	
.jan		000			000			00			000	
Juv		000			000			00			000	
싎		000			000			00			000	
W.3.C. (x10 1/mm ³)	PRE-DRUG	23.7 20.6 6.7	17.0	PRE-DRUG	ນ ໝູ່ ພູບ ພູບ ພູບ ພູບ ພູບ ພູບ ພູບ ພູບ ພູບ ພູບ	5.2	PRE-DRU	6.0	0*9	PRE-DRUG	4 ໄປ ໄປ ໝີ ຊີນ ໄປ	5.4
HB.	26 WEEKS	10.9	11.6	24 WEEKS	10.9	10.9	22 WEEKS	10.4	11.3	10 WEEKS	12.6 11.2 10.6	11.5
11CT.		38.0 37.5 40.0	38.5		38.5 36.0 38.0	37.5		37.0 39.0	38.0		43.0 38.5 36.0	39.2
RETIC. (5)		0.00 8.4.L.	0.4		0.0	0.3		4.4	0.4		0.6	0.5
R.B.C. (x10 ⁶ /mm ³)		5.55 5.27 5.90	5.57		6.03 5.48 5.48	5.34		5.27 5.26	5.26		6.59 5.13 5.36	5.69
% ×		EEE			EEE			(F)			<u> </u>	
MONKEY NO. AND SEX		B3720 B3608 B3863	Kean		B3720 B3608 B3663	Mean		B3720 B3608	Kean		83720 33608 83863	Kean

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Ser - Seemented leutrochils; Lv - Luminocrtes; Mo - Monocytes; Ec - Ecsinophils; Bas - Basaphils.

TABLE 2 (continued)

The second control of the second control of

1

LITTON BIONETICS, INC.

יובאענטרטעא - כאנסרספא

TNT - 0.1 MG/KG

MONKEY NO. AND SEX	.x %	R.B.C. (x10 ⁶ /irm ³)	RETIC. (%)	::CT	HG.	14.3.C. (x10.7/mm ³)	24	July	o dec	DIFFERE.ITIAL	TIA L	*() *) <u>Si-3</u>	Other
					71	4 WEEKS									
B3720 B3606 B3863	EEE	6.50 5.25 6.61	440	41.0 36.0 41.5	11.8	9.5	000	000	000	22 17 29	28 28 70	00-	0-0	000	000
Kean		6.12	0.3	39.5	12.2	5.6									
					ω,	8 WEEKS									
B3720 B3606 B3863	EEE	6.142 6.13	0000	37.0 37.0 39.5	10.6	8.6 12.1 5.1	000	000	000	63 57 28	33 12 67	308	2-2	000	000
Mean		5.99	0.2	37.8	11.2	8.6									
					-1	13 WEEKS									
B3720 B3668 B3863	EEE	6.65 5.63 6.00	0.6 0.6 0.6	41.0 39.5 37.0	11.8	7.4 4.4 6.6	000	000	000	42 20 46	54 72 48	440	04-	000	000
Mean		6.09	0.5	39.2	11.6	5.2									

Sepmented leutra hils: Ly - ly macrins: *My - Myelocytes; Juv - Juveniles; Ban - Banls; Ser Mo - Monocytes; Eo - Eosinochils; Bas - Baszehils.

ĭĭC.
=
S
F
품
81
₹
-

TABLE 2 (continued)

T

-

The same of the sa

Parameter .

Parent July

Target State of the state of th

AND THE PROPERTY OF THE PROPER

HEMATOLOGY - CYTOLOGY

TNT - 0.02 MG/KG

MONKEY NO. AND SEX	EX NO.	R.B.C. (x10 ⁶ /mm ³)	RETIC. (3)	::C1.	HB. (am?)	W.3.C. (x10 ³ /mm ³)	A	JIIV	O Jan	DI FFERE, ITIAL ()	LY		* 6	515	<u>Other</u>	
					26 WEEKS	PRE-DRUG										
83559 83848 84239	EEE	5.50 5.90	0.6 0.1 0.4	40.5 38.5 39.5	11.8	9.9 11.6 9.0	000	000	000	33 42	45 56 56	000	0 - 2	000	000	
Mean		5.69	0.4	39.5	11.6	10.2										
					24 WEEKS	24 WEEKS PRE-DRUG										
83559 83848 84239	EEE	ა.ა. ა.გ. გ.გ.	0.0 6.4.8	42.0 37.5 38.5	11.1	4.4 4.4	000	000	000	13 25	79 65 71	m 01 m	ന ന ~	00~	000	
Mean		5.65	9.0	39.3	1.1	5.5										
					22 WEEKS	PRE-DRUG										
		ı	ı	ı	•	•	ı	1	ı	1	ı	1	ı	1	ı	
					10 WEEKS	10 WEEKS PRE-DRUG										
83559 83848 84239	EEE	5.75 5.82 6.35	4.00.0	42.0 41.5 43.0	11.5	5.8 8.1 7.0	000	000	000	29 29	89 83 70	0 2 2	7	000	000	
Mean		5.97	0.2	41.5	11.7	7.0										

*My - Myelocytes; Juv - Juveniles; Ban - Banis; Ser - Sequented leutro hils; Let L. Mo - Monocytes; Eo - Eosinophils; Bas - Basorhils.

nued)
contin
2 (c
TABLE
_

an annual terror of the control of t

4

No. of the last

Î

1

Ī

LITTON BIONETICS, INC.

HEMATOLOSY - CYTOLOGY

TNT - 0.02 MG/KG

MONKEY NO. AND SEX	. ×	R.B.C. (x10 ⁶ /mm ³)	ETIC.	55	म्ह. इंग्रे	(x10 ³ /mm ³)	21	Juv	DI Gan	DI FFERE.ITIAL (°)* Seg Ly mo Eq	LY	Mo (?)	1	5-35 (Other.	
	•				ব।	4 WEEKS										
83559 83848 84239	EEE	6.29 6.74 6.54	0.1	39.0 40.5 40.5	11.6	3.6 6.2 6.2	000	000	000	24 33 51	75 65 48	08-	-00	000	000	
Hean		6.52	9.0	40.0	12.3	5.2										
					~,	8 WEEKS										
83559 83848 84239	EEE	6.13 5.96 6.30	1.8 0.4 0.3	36.5 41.5 37.0	10.4	6.1 5.1	000	000	000	40 41 27	56 56 68	m 0 m	٠٠2 -	0	000	
Mean		6.13	8.0	38.3	11.4	5.1										
					1	13 WEEKS										
83559 83648 84239	EEE	6.78 6.23 6.14	0.0 0.44	42.5 40.0 39.0	11.5	7.2 10.2 6.6	00	-	ی ب د.	25 52	90 68 45	-00	371	000	000	
Mean		6.48	9.0	40.5	11.7	8.0										

*My - Myelocytes; Juv - Juveniles; Ban - Banis; Son - Semmonted leutrochils; L/ - Londocytos; Mo - Monocytes; Eo - Eosimonhils; das - Basochils.

INC.
•
S
I
OMET
롱
9
8
₹
\vdash
-
=

* ** 1000 * 100 . 11

de o grande a materia interior de metros de comencia de las projectiones interioristas deposits de o o

Politica materiale

Childs white

Phi Summer

I

I

8

	515		000			000			00			000	
	* CJ		m00			000			m 0			90-	
	AP.		၁၀က			0 8 -						0-4	
	TE: 17		67 42 28			64 31 70			64 67			66 55 76	
	OIFFERE.ITIAL Seg Ly M		30 58 69			34 66 29			32			28 44 19	
	San		000	•		000			00			000	
	Juv		000			000			. 0			000	
			000			000			00			000	
TABLE 2 (continued) EMATOLOGY - CYTOLOGY TNT - 0.02 MG/KG	15.0.C. (×10. ³ /mm ³)	PRE-DRUG	16.3 5.9 19.9	14.0	PRE-DRUG	0 8 8 8 2 0	8.7	PRE-DRUG	11.0	8.8	PRE-DRUG	15.1 14.3 5.1	11.5
TABLE 2 (c HEMATOLOGY TNT - 0.C	HB. (gm%)	26 WEEKS	12.2 13.7 12.5	12.8	24 WEEKS	11.3 13.1 11.0	11.8	22 WEEKS	12.9	13.1	10 WEEKS	11.2	12.3
	::CT.		40.0 43.0 41.0	41.3		47.5 44.0 40.0	41.8		45.0	44.5		40.0 43.0 48.0	43.7
	RETIC.		0.00	0.5		0.0 8.4 8.	0.7		1.0	0.7		0.00	0.3
	R.B.C. (x106/mm ³)		6.12 6.72 5.48	6.11		6.10 7.03 5.14	6.09		6.33 6.84	6.58		6.20 5.90 6.84	6.31
	SEX		EEE			EEE			(F)(F)			E E E	
	MONKEY AND SE		83818 83867 83860	Mean		83818 83867 83860	Mean		83818 83860	Mean		E3818 B3867 B3860	Mean

000

00

Other

000

*My - Myslocytes; Juv - Juveniles; Ban - Banis; Ser · Segmented .eutivehils; Lv · Lv · Lv · Tocotos; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

. . .

INC.
\mathbb{S}
F
\equiv
æ
T S
I

or ill ~

*

pandinamos.

Surface distraction

Andrew of the State of the Stat

N

armae V

^{*}My - Myslow test Juv - Juvenilys; Ban - banks; Sa Mo - Monocv**, to - Eosinochils; das - banknils.

LITTON BIONETICS, INC.

Π

 \prod

The Park Hallerin

TABLE 2 (continued)

HEMATOLOGY - CYTOLOGY

CONTROL

MONKEY HO.	.X 30.	R.B.C. (x10 ⁶ /mm ³)	RETIC. (%)	HCT.	HB. (gm%)	W.B.C. (x10 ³ /mm ³)	計	Juv	Jan Jan	FFERE	DIFFEREITTAL (%) Seg LY NO E	*(%)	* 0 Bas	s Other	Ӹ
					26 WEEKS	PRE-DRUG									
84046 84238 83628	EEE	6.74 6.93 8.83	0.0	40.5 45.0 40.0	72. 13.8 5.3	5.1 9.8 15.5	000	000	-00	14 17 63	382	~·	-00	000	000
Mean		6,53	0.5	41.8	13.0	10.1									
					24 WEEKS	PRE-DRUG									
B4046 B4238 B3628	EEE	6.06 5.69 69	₽ 6.0 	40.0 38.0 39.5	12.7	7.7	000	000	000	33 27 45	67 73 53	008	000	000	000
Meen		6,05	4.0	39.5	12.0	9.9									
					22 WEEKS	PRE-DRUG									
83628	$\widehat{\mathbf{z}}$	5.94	9.0	43.5	12.9	12.0	0	0	0	75	23	2	0	0	0
Hean			•	ı	•	1									
					10 WEEKS	PRE-DRUG									
84046 84233 83628	EEE	. 5.10 6.46 6.23	0.0	38 € 41.0 41.0	11.5	9.9 7.9 8.7	000	000	000	44 34 39	55 59 59		00-	000	
Mean		6.26	0.3	40.0	11.8	8.5									Þ

*My - Myelocytes; Juv - Jt ...illes; Ban - Bands; Ser - Seamented Heutrochils; Ly - Lymnhocytes; Mo - Monocytes; Eo - Eosinophils; Bas - Rasophils.

.:	
S, IK	
ITTON BIONETICS, INC.	
LITTON	

TABLE 2 (continued)

geann' aon a sui, deannmeann ag deimer a

The state of the s

I

Partition of the last

では事業が

Positionality is

Seminario de la compansión de la compans

(finish) penishing

C.Britis/Q.Kilmin

Properties

Spiritaria a mingriff

following E,

HEMATOLOGY - CYTOLOGY

CONTROL

MONKEY NO. AND SEX	X X0.	R.B.C. (x10 ⁶ /mm ³)	RETIC. (%)	(%)	HB.	M.B.C. (x10 ³ /mm ³)	討	Juv	<u>Jan</u>	DI FFEREITIAL (%)* Seg Ly Mo Eo	LY	MO E)* Eo 848		Other	
					41	4 WEEKS										
B4238 (H) B3628 (H)	EEE	7.01 7.17 7.08	0.00 44.0	40.5 43.0 42.0	13.1 12.8 14.2	6.3 10.0 5.8	000	000	000	19 66 48	76 34 51	40-	-00	000	000	
7ean		7.09	0.5	41.8	12.4	7.4										
					ωı	8 WEEKS										
B4046 B4238 B3628	EEE	6.78 5.83 6.74	0.20 4.24	39.0 35.0 41.5	12.8 10.6 12.6	6.3 6.4 7.1	000	000	000	15 38 30	84 54 70	- 4 0	040	000	000	
Kean		6.45	1.0	38.5	12.0	6.5										
					=1	13 WEEKS										
84046 84238 83628	EEE	6.92 7.24 6.47	0.0 2.5 4.5	40.5 43.5 40.5	12.9 12.9	6.2 10.7 5.6	000	000	0-0	25 48 38	74 45 62	0 6 1	000	ဝဝင	000	
Mean		6.88	1.2	41.5	12.5	7.5										

*My - Myelocytes; Juv - Juveniles; Ban - Bands; Seg - Segmented Reutrochils; Ly - Lymphocytes; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

TABLE 2 (continued)

LITTON BIONETICS, INC.

HEMATOLOGY - CYTOLOGY

CONTROL

												A-
Other		G00			200			00			000	
848		000			00-			00			-00	
* 3		000			00 to			7			000	
AL NO		92			0 m N			4 W			000	
EIITI LV		۲ و			58 41 56			29 66			57 46 35	
OIFFEREUTIAL (%)		25 25 25 25			40 56 36			65 30			40 54 65	
3an		000			000			co			000	
Juv		000			000			00			000	
솱		000			000			00			000	
W.B.C. (x10 ³ /mm ³)	S -79E-DRUG	7.8 24.2 13.3	15.1	S PRE-DRUG	8.5.2	6.5	S PRE-DRUG	5.3	6.4	S PRE-DRUG	6.9 10.2	7.3
HB. (9m%)	26 WEEKS	12.8 9.3 10.4	10.8	24 WEEKS	11.0 8.2 11.0	10.0	22 WEEKS	9.9	10.4	10 WEEKS	13.4 9.6 10.8	10.6
£5.		42.0 32.5 35.0	36.5		37.0 31.0 41.0	36.3		34.5 39.0	35.8		39.5 34.0 37.5	37.0
RETIC. (%)		C.00. C.4.8	0.8		4.00 4.00	9.0		0.0 4.8	9:0		8.00 8.00 8.00	0.4
R.B.C. (x10 ⁶ /mm ³)		6.13 5.19 5.88	5,73		5.23 5.23 5.66	5.37		5.88 6.03	5,96		5.37 5.49 6.19	5.68
¥0.		EFF			EEE			EE			EEE	
MONKEY NO.		83297 (F) 84246 (F) 83735 (F)	200		83257 84246 83735	Fe :		84246 83735	Mean		83297 84246 83735	Mean

*My - Myclocytes; Juv - Juveniles; Ban - Bands; Seg - Segmented Heutrochils; Ly - Lymphocytes; Mo - Monocytes; Eq - Eosinonhils; Bas - Basophils.

LITTON BIONETICS, INC.

State of state in

The second

TABLE 2 (continued)

A CONTROL OF THE PROPERTY OF T

I

hill media pa

h seighioghade

Bellettingstillering

HEMATOLOGY - CYTOLOGY

CONTROL

717000	Ş	0	05.716		¥	c:				FFERE	HITIA) - -	*			
AND SEX	EX S	$(x10^6/mm^3)$	(%)	(E)	(gm%)	(x103/mm3)	놢		Jan	Seg Ly Mo Eo	ב	ş	1	B4S (Other.	
					7.	4 WEEKS										
83297 84246 83735	EEE	5.93 6.22 7.28	000 448	38.0 34.0 40.5	12.0	6.4 6.9 7.0	000	000	000	57 51 52	04 84 84 84		20 -	000	600	
Kean		6.48	0.5	37.5	12.1	7.9										
					,	8 WEEKS										
B3297 B4246	EE	5.37 6.23	2.5	35.5	10.7	5.7	000	000	000	33	61	400	201	000	000	
B3735	<u>(</u>	6.85	o. 0	38.0	10.8	3.1	0	0	0	<u>بر</u>	ž	>	ဂ	-	>	
Mean		6.15	9.0	35.3	10.2	5.1										
					; ;	13 WEEKS										
B3297 B4246	E (F)	5.97	 	38.0 35.5	11.5	8.7.9	000	000	000	200	34	90		-00	000	
R3735	Œ	6.99	9.0	39.0	T. T	12.2	0	0	0	5	17	>	>	>	>	
Nean		6.53	1.1	37.5	10.9	9.5										

^{*}My - Myelocytes; Juv - Juvenies; Ban - Bands; Sec - Segmented Reutrochils; Ly - Lymnocytes; Mo - Monocytes; Eo - Eosinophils; Bas - Basophils.

first and the state of the stat

TABLE 3
HEMATOLOGY - HEINZ BODIES

MONKEY NO.	WEEK	S OF DRUG	ADMINISTRA	TION
AND SEX	Pre	4_	8_	13
	RDX -	10 MG/KG		
84050 (M)	Neg.	Neg.	Neg.	Neg.
83543 (M)	Neg.	Neg.	Neg.	Neg.
83406 (M)	Neg.	Neg.	· Neg.	Neg.
B3733 (F)	Neg.	Neg.	Neg.	Neg.
B3609 (F)	Neg.	Neg.	Neg.	Neg.
B3739 (F)	Neg.	Neg.	Dead	Dead
	RDX	- 1 MG/KG		
B3952 (M)	Neg.	Neg.	Neg.	Neg.
B3563 (M)	Neg.	Neg.	Neg.	Neg.
B4093 (M)	Neg.	Neg.	Neg.	Neg.
B3599 (F)	Neg.	Neg.	Neg.	Neg.
B3891 (F)	Neg.	Neg.	Neg.	Neg.
B3718 (F)	Neg.	Neg.	Neg.	Neg.
	i.0x -	0.1 MS/KG	<u>ì</u>	
B4254 (M)	ileg.	Neg.	Neg.	Neg.
B3776 (M)	Neg.	Neg.	Neg.	Neg.
B3709 (M)	Neg.	Neg.	Neg.	Neg.
B3613 (F)	Neg.	Neg.	Neg.	Neg.
B3646 (F)	Neg.	Neg.	Neg.	Neg.
B3617 (F)	Neg.	Neg.	Neg.	Neg.

Automobilitation (s)

TABLE 3 (continued)
HEMATOLOGY - HEINZ BODIES

MONKEY NO.	MEEK	S OF DRUG	ADMINISTRA	TION
AND SEX	Pre	4	8_	_13_
	THT	- 1 MG/KG		
B3697 (M) B3775 (M) B4301 (M)	Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.
B3857 (F) B3516 (F) B3928 (F)	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.
	TNT -	0.1 MG/KG		
B3782 (M) B3773 (M) B3427 (M)	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.
B3720 (F) B3608 (F) B3863 (F)	Neg. Neg. Heg.	ileg. Neg. Neg.	Neg. Neg. Hæg.	Neg. Neg. Neg.
	TNT -	0.02 MG/KG		
B3559 (M) B3848 (M) B4239 (M)	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.
B3818 (F) B3867 (F) B3860 (F)	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.

The same

TABLE 3 (continued)
HEMATOLOGY - HEINZ BODIES

MONKEY NO.	WEEK	S OF DRUG I	ADMINISTRA	TION
AND SEX	Pre	_4_	8	13
	<u>c</u>	ONTROL		
B4046 (M) B4238 (M) B3628 (M)	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.
B3297 (F) B4246 (F) B3735 (F)	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.	Neg. Neg. Neg.

TABLE 4

HEMATOLOGY - METHEMOGLOBIN
(% saturation)

	PRE-D	RUG		IEEKS OF MINISTRATI	ON		
MONKEY NO. AND SEX	26 Wks	10 Wks	4_	8	13		
RDX - 10 MG/KG							
B4050 (M) B3543 (M) B3406 (M)	8.6* 0.0 0.0	12.0* 2.3 0.0	8.4* 3.1 0.0	10.9* 4.1* 0.0	0.0* 0.0* 0.0		
Mean	2.9	4.8	3.8	5.0	0.0		
B3733 (F) B3609 (F) B3739 (F)	0.0 0.0 0.0	1.8* 0.0 2.9	0.0 4.5 4.9	0.0* 11.0* Dead	0.0 3.6 Dead		
Mean	0.0	1.6	3.1	5.5	1.8		
	<u> </u>	RDX - 1 MG/KI	<u> </u>				
B3952 (M) B3563 (M) B4093 (M)	0.0* 0.0 0.0	0.0 0.0 3.1	14.0* 0.0* 7.9*	0.G* 9.4* 7.4*	0.0* 0.0* 0.0		
Mean	0.0	1.0	7.3	5.6	0.0		
B3599 (F) B3891 (f) B3718 (F)	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0*	0.0* 0.0* 1.3		
Mean	0.0	0.0	0.0	0.0	0.4		
RDX - 0.1 MG/KG							
B4254 (M) B3776 (M) B3709 (M)	0.0 0.0 0.0	0.0 0.0 0.0	1.8 0.0 0.0*	1.5* 0.0* 0.0*	2.3 0.0 1.3		
Hean	0.0	0.0	0.6	0.5	1.2		
B3613 (F) B3646 (F) B3617 (F)	0.0 0.0 0.0	9.6* 0.0 2.2	0.0 0.0* 0.0	13.7* 1.7* 0.0*	0.0* 0.0* 0.0		
Heari	0.0	3.9	0.0	5.1	0.0		

^{*}Repeat values.

TABLE 4 (continued)

HEMATOLOGY - METHEMOGLOBIN (% saturation)

PRE-DRUG		WEEKS OF DRUG ADMINISTRATION						
MONKEY NO. AND SEX	26 Wks	10 Wks	4_	8	_13_			
	TNT - 1 MG/KG							
B3697 (M) B3775 (M) B4301 (M)	0.0 0.0 0.0	12.6* 0.0 0.0	17.6* 0.0 0.0	20.4* 0.9* 12.2*	9.5* 0.0* 0.0			
Mean	0.0	4.2	5.9	11.2	3.2			
B3857 (F) B3516 (F) B3928 (F)	0.0 0.0 0.0	0.0 4.9* 0.0	0.0 13.4* 0.0	2.1 3.5* 12.2*	0.0 4.2* 0.0*			
Mean	0.0	1.6	4.5	5.9	1.4			
TNT - 0.1 MG/KG								
B3782 (M) B3773 (M) B3427 (M)	0.0 0.0 0.0	0.0 0.0 0.0	6.0 0.0 0.0	0.0* 3.6 0.0*	0.0* 0.0* 0.0			
Mean	0.0	0.0	2.0	1.2	0.0			
B3720 (M) B3608 (M) B3863 (M)	0.0 0.0 0.0	0.0 0.0 2.3*	0.0 0.0 11.1*	0.0* 4.4* 22.1*	0.0* 0.0 1.7			
Mean	0.0	8.0	3.7	8.8	0.6			
TNT - 0.02 MG/KG								
B3559 (M) B3848 (M) B4239 (M)	0.0 0.0 0.0	1.5 0.0 3.5	0.0 4.6 2.2	1.9 0.0* 0.0*	0.0 0.0* 1.7			
Mean	0.0	1.7	2.3	0.6	0.6			
B3818 (F) B3867 (F) B3860 (F)	0.0* 0.0 0.0	12.4* 3.9* 0.0	12.1* 2.9 0.0	11.6* 5.8* 1.8	3.3* 0.0* 0.0			
Mean	0.0	5.4	5.0	6.4	1.3			

^{*}Repeat values.

TABLE 4 (continued)

HEMATCLOGY - METHEMOGLOBIN (% saturation)

MONVEY NO	PRE-I	PRE~DRUG		WEEKS OF DRUG ADMINISTRATION	
MONKEY NO. AND SEX	26 Wks	10 Wks	4_	8	13
		CONTROL			
B4046 (M) B4238 (M) B3628 (M)	0.0 0.0 0.0	0.0 6.7* 3.0	1.2 9.4* 9.0*	11.3* 14.5* 15.1*	0.4 10.5* 0.0*
Mean	0.0	3.2	6.5	13.6	3.6
B3297 (F) B4246 (F) B3735 (F)	0.0 0.0 9.9*	0.0 0.0 0.0	0.0 0.0 0.0	6.3* 0.0* 4.5	0.0* 0.0 0.0*
Mean	3.3	0.0	0.0	3.6	0.0

Charles and Control

TABLE 5

HEMATOLOGY - RED CELL FRAGILITY

MONKEY			ø N-C1	% HEMOLYSIS
AND SE	<u> </u>	SE ALEK	% NaC1 S PRE-DRUG	& HEROLISIS
		ZO HLLK	3 FRE-DROG	
B4050	(M)	Max. Min.	.30 .50	100 1.3
B3543	(M)	Max. Min.	.30 .55	100 1.9
B3406	(M)	Max. Min.	.30 .60	100 1.5
Mean		Max. Min.	.30 .55	100 1.6
		24 WEEK	S PRE-DRUG	
B 4 050	(M)	Max. Min.	.30 .50	100 1.4
B3543	(M)	Max. Min.	.35 .65	100 1.3
* B3406	(M)	Max. Min.	.30 .55	100 8.0
Mean		Max. Min.	.32 .57	169 3.6
	-	10 WEEK	CS PRE-DRUG	
B 4 050	(M)	Max. Min.	.30 .50	100 1.6
B3543	(H)	Max. Min.	.30 .55	100 1.1
B3406	(H)	Max. Min.	.35 .55	100 4. 3
Mean		Max. Min.	.32 .53	100 2.3
*Repea	t values.			** *

TABLE 5 (continued)

MONKEY NO. AND SEX		% NaCl	% HEMOLYSIS
	4	WEEKS	
B405G (M)	Max.	.30	100
	Min.	.50	5.0
B3543 (M)	Max.	.30	100
	Mir	.55	2.0
B3406 (M)	Max.	.30	100
	Min.	.50	2.0
Mean	Max.	.30	100
	Min.	.52	3.0
	<u>8</u>	WEEKS	
*B4050 (M)	Max.	.30	100
	Min.	.50	1.6
B3543 . (M)	Max.	.30	160
	Min.	.55	1.2
B3406 (M)	Max.	.35	100
	Min.	.50	11.1
Mean	Max.	.32	100
	Min.	.52	4.6
	<u>13</u>	WEEKS	
B4050 (M)	Max.	.30	100
	Min.	.65	1.4
B3543 (M)	Max.	.35	100
	Min.	.55	2.5
B3406 (M)	Max.	.30	100
	Min.	.55	1.6
Mean	Max. Min.	.32 .58	100
*Repeat values.			

TABLE 5 (continued)

MONKEY AND SE			% NaCl	% HEMOLYSIS
		26 WEEKS	PRE-DRUG	
B3733	(F)	Ma~. Min.	.30 .55	100 12.7
в3739	(F)	Max. Min.	.35 .55	100 . 6.2
B3609	(F)	Max. Min.	.30 .60	100 0.9
Mean		Max. Min.	.32 .53	100 6.6
		24 WEEKS	PRE-DRUG	
B3733	(F)	Max. Min.	.30 .50	100 1.5
B3739	(F)	Max. Min.	.35 .55	100 1.5
B3609	(F)	Max. Min.	.30	100 3.3
Mean		Max. Min.	.32	100 2.1
		10 WEEKS	PRE-DRUG	
*B3733	(F)	Max. Min.	.35 .55	100 0.5
B3739	(F)	Max. Min.	.35 .55	100 5.7
B3€09	(F)	Max. Min.	.30 .55	100 5.1
Mean		Max. Min.	.33 .55	100 3.8

^{*}Repeat values.

TABLE 5 (continued)

RDX - 10 MC/KG

1	MONKEY AND SI			% NaCl	% HEMOLYSIS
			4	WEEKS	
The state of the s	B3733	(F)	Max. Min.	.30 .60	î00 2.0
Parity Section 1	B3739	(F)	Max. Min.	.30 .50	100 3.0
li efer, an el	B3609	(F)	Max. Min.	.35 .50	100 6.0
Magazilla e e e e e e e e e e e e e e e e e e	Mean		Max. Min.	.32 .53	100 3.7
distant er star itt.			<u>8</u>	WEEKS	
	B3733	(F)	Max. Min.	.30 .55	100 1.6
Proposession of the propos	B3739	(F)	Max. Min.	<u>.</u>	- -
H · · · · · · · · · · · · · · · · · · ·	B3509	(F)	Max. Min.	.35 .50	100 7.5
di di	Mean		Max. Min.	.33 .53	100 4.7
diposition office			<u>13</u>	WEEKS	
de comment une de la commente de la	*B3733	(F)	Max. Min.	.30 .45	100 10.6
Remarkation of the second of t	B3739	(F)	Max. Min.	-	- -
-	В3609	(F)	Max. Min.	0.0 .50	100 3.2
	Mean		Max. Min.	.15 .48	100 6.9
Contraction (******	• 10	V. 3
*	*Repea	t values.	•		

randy dust na communication and a communication of the property of the second of the s

TABLE 5 (continued)

HEMATOLOGY - RED CELL FRAGILITY

3	MONKEY NO.			
r	AND SEX		% NaCl	% HEMOLYSIS
Ī		26 WEEK	S PRE-DRUG	
	B3952 (M)	Max. Min.	.30 .55	100 0.9
To distribute the	B3563 (M)	Max. Min.	.30 .60	100 0.9
e e ui-	B4093 (M)	Max. Min.	.35 .60	100 2.0
e transfer arrange	Mean	Max. Min.	.32 .58	100
Authorization and Authorizatio		24 WEEK	S PRE-DRUG	
	B3952 (M)	Max. Min.	0.0 .50	100 2.4
of Assessing Participation of Assessing Participation of the Company of the Compa	B3563 (M)	Max. Min.	.35 .55	100 1.6
[-1]	B4093 (M)	Иах. Min.	.30 .60	100 1.5
t, perture deserve	Mean	Max. Min.	.22 .55	100 1.8
u u		10 WEEK	S PRE-DRUG	
	B3952 (M)	Max. Min.	.30 .50	100 3.4
Citinger-actions	B3563 (M)	Max. Min.	9.0 .55	100 5.0
Professional profession of the contract of the	B4093 (M)	Max. Min.	.30 .55	100 3.9
	Mean	Max. Min.	.20 .53	100 4.1

TABLE 5 (continued)

MONKEY NO. AND SEX		% NaCl	% HEMOLYSIS
	4 WI	<u>EEKS</u>	
83952 (M)	Max.	.30	109
	Min.	.55	12.0
B3563 (M)	Max.	0.0	100
	Min.	.55	3.0
B4093 (M)	Max.	.35	100
	Min.	.60	3.0
Mean	Max.	.22	100
	Min.	.57	6.0
	<u>8 h</u>	IEEKS	
83952 (M)	Max.	.30	100
	Min.	.55	1.1
B3563 (M)	Max.	.30	100
	Min.	.55	1.5
B4093 (M)	Max.	.30	100
	Min.	.55	1.8
Mean	Hax.	.30	100
	Min.	.55	1.5
	<u>13 h</u>	<u>IEEKS</u>	
B3952 (M)	Max.	.30	100
	Min.	.50	4.2
B3583 (M)	Max.	.30	100
	Min.	.60	1.4
64093 (M)	Max.	.30	100
	Min.	.65	1.4
Mean	Max.	.30	100
	Min.	.58	2.3

TABLE 5 (continued)

MONKEY AND SI			% NaCl	% HEMOLYSIS
		26 WEEK	S PRE-DRUG	
B3599	(F)	Max. Min.	.35 .55	100 1.0
B3891	(F)	Max. Min.	0.0 .30	100 1.6
B3718	(F)	Max. Min.	.35 .65	100 4.6
Mean		Max. Min.	.23 .60	100 2.4
		24 WEEK	S PRE-DRUG	
B3599	(F)	Max. Min.	.35 .50	100 27.2
83891	(F)	Max. Min.	.30 .55	100 1.5
*B3718	(F)	Max. Min.	.30 .55	100 1.4
Mean		Max. Hin.	.32 .53	100 10.1
		10 WEEK	S PRE-DRUG	
B3599	(F)	Max. Min.	.40 .60	100 0.9
B3891	(F)	Max. Min.	0.Q .60	166 1.3
B3718	(F)	Max. Min.	.35 .60	100 1.4
Hean		Max. Min.	.25 .6ป	100 1.2

^{*}Repeat values.

TABLE 5 (continued)

MONKEY A AND SEX		85	NaC1	% HEMOLYSIS
		4 WEEKS		
B3599 (Max. Min.	.40 .60	100 4.0
B3891 (Max. Min.	.30 .60	100 3.0
B3718 (Max. Min.	0.0 .55	100 4.0
Mean		Ľ∡x. Min.	.23 .58	100 3.7
		8 WEEKS		
B3599		Max. Min.	.35 .50	100 9.2
B3891	(F)	Max. Min.	.30 .55	100 3.4
B3718	(F)	Max. Min.	.30 .55	100 6.2
Mean		Nax. Min.	.32 .53	100 6.3
		13 WEEKS		
B3599	(F)	Max. Min.	.35 .55	100 1.3
B3891	(F)	Max. Min.	.30 .60	100 1.6
B3718	(F)	Max. Min.	.30 .65	100 1.4
Mean		Mex. Min.	.32 .60	100 1.4

TABLE 5 (continued)

HEMATOLOGY - RED CELL FRAGILITY

MONKEY NO. AND SEX		% NaCl	% HEMOLYSIS
	26 WEEKS	PRE-DRUG	
B4254 (M)	Max.	.30	001
	Min.	.60	0.8
B3776 (M)	Max.	.35	100
	Min.	.50	6.4
B3709 (M)	Max.	.35	100
	Min.	.55	2.0
Mean	Max.	.33	100
	Min.	.55	3.1
	24 WEEKS	PRE-DRUG	
B4254 (M)	Max.	.35	100
	Min.	.55	0.9
B3776 (M)	Max.	.30	100
	Min.	.45	22.2
B3709 (M)	Max.	.35	100
	Min.	.60	1.5
Mean	Max.	,33	100
	Min.	.53	8.2
	10 MEEKS	PRE-DRUS	
B4254 (M)	Max.	.35	100
	Min.	.55	1.7
B3776 (M)	Max.	.35	100
	Hin.	.50	6.2
B3709 (M)	Max.	.35	100
	Min.	.60	0.5
Hean	Max.	.35	100
	Hin.	.55	2.8

.

British Theparis

Commercial of the Commercial o

Harman Caraca

TABLE 5 (continued)

HEMATOLOGY - RED CELL FRAGILITY

RDX - 0.1 MG/KG

MONKEY AND SI			% NaCl	% HEMOLYSIS
		4 1	WEEKS	
B4254	(M)	Max. Min.	.35 .60	100 3.0
B3776	(M)	Max. Min.	.30 .55	100 3.0
32709	(M)	Max. Min.	.35 .65	100 3.0
Mean		Max. Min.	.33 .60	100 3.0
		8	WEEKS	
84254	(M)	Max. Min.	.35 .65	700 0.5
B3776	(H)	Max. Min.	.30 .50	100 1.6
≈ 83709	(M)	Max. Min.	.35 .50	100 14.3
Mean		Max. Min.	.33 .55	100 5.3
		13	WEEKS	
*B4254	(H)	Kax. Min.	.30 .50	100 4.2
83776	(M)	Max. !ffn.	.30 .50	100 3.2
83709	(H)	Max. Min.	.35 .55	100 1.6
Hean		Max. Kin.	.32 .52	100 3.0

^{*}Repeat values.

TABLE 5 (continued)

RDX - 0.1 MG/KG

MONKEY NO. AND SEX		% NaCl	# HEMOLYSIS				
26 WEEKS PRE-DRUG							
B3613 (F)	Max.	.30	100				
	Min.	.50	5.7				
B3646 (F)	Max.	.35	100				
	Min.	.55	10.4				
B3617 (F)	Max.	.35	100				
	Min.	.55	1.6				
Mean	Max.	.33	100				
	Min.	.53	5.9				
	24 WEEKS	S PRE-DRUG					
83613 (F)	Max.	.35	100				
	Min.	.65	1.5				
B3646 (F)	Max.	0.0	100				
	Min.	.60	1.4				
B3617 (F)	Max.	.35	100				
	Min.	.60	1.7				
Mean	Max.	.23	100				
	Min.	.62	1.5				
	10 WEEK	S PRE-DRUG					
B3613 (F)	Max.	.30	100				
	Min.	.55	1.6				
B3646 (F)	Max.	.35	100				
	Min.	.55	3.5				
B3617 (F)	Hax.	.35	100				
	Hin.	.55	3.3				
Hean	Max.	.33	100				
	Min.	.55	2 8				

TABLE 5 (continued)

HEMATOLOGY - RED CELL FRAGILITY

RDX - 0.1 MG/KG

•	HANDEV	NO			
I	YENCM S DAA			% NaCl	% HEMOLYSIS
			4	WEEKS	
I	B3613	(F)	Max. Min.	.30 .55	100 2.0
Topic and a	B3646	(F)	Max. Min.	.30 .50	100 28.0
Wangd it ad	B3617	(F)	Max. Min.	0.0 .55	100 3.0
The second	Mean		Max. Min.	.20 .53	100 11.0
I conglitationer			8	WEEKS	
Parameters	B3613	(F)	Max. Min.	.35 .55	100 2.9
	B3646	(F)	Max. Min.	.35 .60	100 12.1
	B3617	(F)	Max. Min.	.30 .55	100 5.3
- : - · · · · · · · · · · · · · · · · ·	Mean		Max. Min.	.33 .57	100 6.8
Perminance			13	WEEKS_	
р положения	B3613	(F)	Max. Min.	.30 .55	100 1.3
Dispussion	83646	(F)	Max. Min.	.30 .60	100 5.5
	83617	(F)	Max. Min.	.30 .55	100 6.6
1	Hean		Max. Min.	.30 .57	100 4.5

TABLE 5 (continued)

). 	<u>% 1</u>	iaC1	% HEMOLYSIS
	26 WEEKS PRE-	DRUG	
			100 2.4
			100 18.2
			100 î.9
			100 7.5
	24 WEEKS PRE-	DRUG	
			100 1.4
			106 10.1
			100 1.5
			100 4.3
	10 WEEKS PRE-	DRUG	
		.35 .55	190 1.4
		.30 .55	100 5.9
		.35 .60	100
		.33 .57	100 2.5
	M) Ma Mi	26 WEEKS PRE-1 Max. Min. Max. Min.	26 WEEKS PRE-DRUG Min30 Min55 M) Max40 Min55 Max30 Min55 Max33 Min55 Max33 Min55 Max35 Min60 M) Max35 Min65 Max35 Min55 Max35 Min55 Min55 Max35 Min55 Min65 Max35 Min65 Max35 Min65 Max35 Min65 Max35 Min65 Max35 Min65 Max35 Min60 Max35 Min60 Max35 Min55

TABLE 5 (continued)

MONKEY AND S			% NaC1	% HEMOLYSIS	
		4 1	IEEKS		
B3697	(M)	Max. Min.	.35 .55	100 3.0	
*B3775	(M)	Max. Min.	.30 .60	100 2.0	
B4301	(M)	Max. Min.	.35 .55	100 1.0	
' "an		Max. Min.	.33 .57	100 2.0	
		<u>8 1</u>	MEEKS		
B3697	(M)	Max. Min.	.30 .65	100 3.0	
B3775	(M)	Max. Min.	.35 .60	100 3.2	
B4301	(H)	Max. Min.	.30 .55	100 4.5	
Mean		Max. Min.	.32 .60	190 3.6	
13 WEEKS					
B3697	(M)	Max. Min.	.35 .55	100 7.1	
B3775	(M)	Max. Hin.	.35 .50	100 6.2	
B4301	(M)	Hax. Min.	.30 .55	100 3.4	
Mean		Max. Hin.	.33 .53	100 5.6	

^{*}Repeat values.

TABLE 5 (continued)

MONKEY AND SI			% NaCl	% HEMOLYSIS
		26 WEEK	S PRE-DRUG	
Б3857	(F)	Max. Min.	.40 .55	100 6.9
B3516	(F)	Max. Min.	.35 .55	100 0.6
B3928	(F)	Max. Min.	0.0 .50	100 6.7
Mean		Max. Min.	.25 .53	100 4.7
		24 WEEK	S PRE-DRUG	
B3857	(F)	Max. Min.	.40 .60	100 1.5
B3516	(F)	Max. Min.	.30 .65	100 1.7
83928	(F)	Max. Min.	.35 .55	100 1.6
Mean		Max. Min.	.35 .60	100 1.6
		10 WEEK	KS PRE-DRUG	
B3857	(F)	Max. Min.	0.0 .60	100 1.4
83516	(F)	Max. Min.	.30 .60	100 0.6
B3928	(F)	Max. M'n.	.35 .55	100 1.5
Hean		Max. Min.	.22 .58	100 1.2

Open Company of the C

TABLE 5 (continued)

HEMATOLOGY - RED CELL FRAGILITY

MONKEY AND SI			% NaCl	% HEMOLYSIS
		4	WEEKS	
B3857	(F)	Max. Min.	.40 .55	100 3.0
B3516	(F)	Max. Min.	.35 .60	100 3.0
B3928	(F)	Max. Min.	.30 .60	100 4.0
Mean		Max. Min.	.35 .58	100 3.3
		8	WEEKS	
B3857	(F)	Max. , Min.	.30 .55	100 2.1
B3516	(F)	Max. Min.	.35 .50	100 10.0
B3928	(F)	Max. Min.	.30 .55	100 0.6
Mean		Max. Min.	.32 .53	100 4.2
		<u>13 </u>	WEEKS	
B3857	(F)	Max. Min.	.30 .65	100 1.5
*B3516	(F)	Max. Min.	.35 .50	100 17.8
B3928	(F)	Max. Min.	0.0 .55	100 1.5
Mean		Max. Min.	.23 .57	100 6.9
*Repea	t values	s.		

TABLE 5 (continued)

TNT - 0.1 MG/KG

MONKEY AND SI			% NaCl	% HEMOLYSIS			
	26 WEEKS PRE-DRUG						
B3782	(M)	Max. Kin.	0.0 .65	100 3.7			
B3773	(M)	Max. Min.	0.0 .55	100 2.6			
B3427	(M)	Max. Min.	0.0 .50	100 1.9			
Mean		Max. Min.	0.0 .57	100 2.7			
		24 WEEK	S PRE-DRUG				
B3782	(M)	Max. Min.	.30 .55	100 1.4			
B3773	(M)	Max. Min.	0,0 .55	100 5.3			
B3427	(M)	Max. Min.	.30 .65	100 1.4			
Mean		Max. Min.	.20 .58	100 2.7			
		10 WEEK	S PRE-DRUG				
B3782	(M)	Max. Min.	.35 .50	100 8.0			
*B3773	(H)	Max. Min.	.35 .60	100 0.2			
B3427	(M)	Hax. Min.	,30 .50	100 3.2			
Mean		Max. Min.	.33 .53	100 3.8			

*Repeat values.

TABLE 5 (continued)

MONKEY I		 .	% NaCl	% HEMOLYSIS
		<u>4</u>	WEEKS	
*B3782	(M)	Max. Min.	.30 .60	100 3.0
B3773	(M)	Max. Min.	.35 .60	100 3.0
B3427	(M)	Max. Min.	.30 .60	100 3.0
Mean		Max. Min.	.32 .60	100 3.0
		<u> </u>	8 WEEKS	
B3782	(M)	Max. Min.	.30 .55	100 5.7
B3773	(M)	Max. Min.	.35 .55	100 1.2
B3427	(M)	Max. Min.	.30 .50	100 2.9
Mean		Max. Min.	.32 .53	100 3.3
		1	3 WEEKS	
B3782	(M)	Max. Min.	.30 .45	100 14.2
B3773	(M)	Max. Min.	.35 .50	100 12.1
B3427	(M)	Max. Min.	.35 .50	100 1.4
Mean		Max. Min.	.33 .48	100 9.2

^{*}Repeat values.

TABLE 5 (continued)

MONKEY AND S			9 N-C1	& filthur Acte
7110 3	<u> </u>	מב עודו	% NaC1	% HEMOLYSIS
		ZO WEE	EKS PRE-DRUG	
*B3720	(F)	Max. Min.	.35 .50	100 10.3
B3608	(F)	Max. Min.	.30 .65	100 1.1
B3863	(F)	Max. Min.	.30 .55	100 4.0
Mean		Max. Min.	.32 .57	100 5.1
		24 WEE	EKS PRE-DRUG	
B3720	(F)	Max. Min.	.40 .55	100 1.6
*B3608	(F)	Max. Min.	.35 .55	300 4.1
B3863	(F)	Max. Min.	.30 .55	100 1.5
Mean		Max. Min.	.35 .55	100 2.4
		10 WEE	EKS PRE-DRUG	
83720	(F)	Max. Min.	.35 .50	100 8.0
*B3608	(F)	Max. Min.	.30 .55	100 1.5
B3863	(F)	Max. Min.	.30 .60	100 1.9
Mean		Max. Min.	.32 .55	100 3.8
*Repea	t values.			

TAPLE 5 (continued)

MONKEY AND S			% NaCl	% HEMOLYSIS
		<u>4</u>	WEEKS	
B3720	(F)	Max. Min.	.30 .60	100 3.0
B3608	(F)	Max. Min.	.30 .55	100 2.0
B3863	(F)	Max. Min.	.30 .50	100 0.5
Mean		Max. Min.	.30 .55	100 1.8
		8	WEEKS	
B3720	(F)	Max. Min.	0.0 .55	100 3.1
B3608	(F)	Max. Min.	.30 .65	100 0.€
B3863	(F)	Maħ. Min.	.30 .65	100 0.8
Mean		Max. Min.	.20 .62	10
		13_	<u>WEEKS</u>	
B3720	(F)	Max. Min.	.30 .5ľ	100 4.4
B3608	(F)	Ma∶. Min.	.35 .55	100 1.5
B3863	' F)	Max. Min.	.35 .50	100 3.3
iean		Max. Min.	.33 .52	100 3.1

TABLE 5 (continued)

THT - 0.02 MG/KG

MONKEY				
AND SE	<u> </u>		% NaCl	% HEMOLYSIS
		26 WEEKS PF	RE-DRUG	
B3559	(M)	Max. Min.	.30 .50	100 16.0
B3848	(W) .	Max. Min.	.35 .65	100 0 . 97
B4239	(M)	Max. Min.	0.0 .55	100 5.4
Mean		Max. Min.	.22 .53	100 7.5
		24 WEEKS PE	RE-DRUG	
B3559	(M)	Max. Min.	.35 .60	100 1.5
B3848	(M)	Max. Min.	.40 .50	100 6.1
B4239	(M)	Max. Min.	.35 .59	100 1.5
Mean		Max. Min.	.37 .55	100 3.2
		10 WEEKS P	RE-DRUG	
B3559	(M)	Max. Min.	.35 .55	100 5.1
B3848	(M)	Max. Mîn.	.30 .55	10G 0.5
84239	(H)	Max. Min,	.40 .55	100 1.4
Kean		Max. Min.	.35 .55	100 2,3

*Repeat values.

TABLE _5 (continued)

HEMATOLOGY - RED CELL FRAGILITY

TNT - 0.02 MG/KG

MONKEY AND SE	NO. X		% NaC1	# HEMOLYSIS
		<u>4 WE</u>	EKS	
B3559	(M)	Max. Min.	.35 .50	100 3.0
*B3848	(M)	Max. Min.	.35 .55	100 3.0
*R\$239	(M)	Max. Mln.	.35 .60	100 3.0
Mean		Max. Min.	.35 .58	100 3.0
		8 W	EEKS	
B3559	(M)	Max. Min.	.30 .50	100 6.6
B38 ³ 48	(M)	Max. Min.	.35 .50	100 12.7
*64239	(M)	Max. Min.	.40 .55	100 6.2
Mean		Hax. Min.	.35 ,52	100 8.5
		<u>13 l</u>	IEEKS	
B3559	(M)	Max. Hin.	.30 .60	100 1.4
B3848	(M)	Max. Min.	.35 .65	100 2.8
B4239	(M)	Max. Hin.	.35 .50	100 17.6
Nean		Max. Min.	.33 .58	100 7.3

TABLE 5 (continued)

TNT - 0.02 MG/KG

MONKEY NO. AND SEX		% NaCl	% HEMOLYSIS
	26 WEE	KS PRE-DRUG	
B3818 (F)	Max.	.30	¹ 00
	Min.	.55	2.0
B3867 (F)	Max.	0.0	100
	Min.	.50	15.2
B3860 (F)	Max.	.35	100
	Min.	.60	2.0
Mean	Max.	.22	100
	Min.	.55	6.4
	24 WEE	KS PRE-DRUG	
B3818 (F)	Max.	.35	100
	Min.	.65	1.4
B3867 (F)	Max.	.35	100
	Min.	.55	1.3
B3860 (F)	Max.	.35	100
	Kin.	.55	1.5
Mean	Max.	.35	100
	Min.	.58	1.4
	10 WEE	KS PRE-DRUG	
B381r (F)	Max.	.35	100
	Min.	.50	5.3
B3867 (F)	Mox.	.30	100
	Min.	.60	2.8
83860 (F)	Max.	.40	100
	Min.	.60	0.7
Xean	Max.	.35	10 <u>0</u>
	Min.	.57	2.9

TABLE 5 (continued)

TNT - 0.02 MG/KG

MONKEY AND S			% NaCl	% HEMOLYSIS
		4 1	<u>ieeks</u>	
B3818	(F)	Max. Min.	.35 .50	100 7.0
B3867	(F)	Max. Min.	.30 .50	100 0.5
B3860	(F)	Max. Min.	.30 .50	100 6.0
Mean		Max. Min.	.32 .50	100 4.5
		<u>8 I</u>	<u>IEEKS</u>	
B3818	(F)	Max. Min.	.30 .50	100 4.0
B3867	(F)	Max. Min.	.30 .65	100 0.8
*B3860	(F)	₩ 	.30 .55	100 0.6
Mean		Max. Min.	.30 .57	100 1.8
		<u> 13 h</u>	IEEKS	
B3818	(F)	Max. Min.	.35 .50	100 1.4
B3867	(F)	Max. Min.	0.0 .55	100 1.4
B3860	(F)	Max. Hin.	.30 .60	100 5.7
Mean		Max. Min.	.23 .52	100 2.8
*Repeat	t value	s.		

TABLE 5 (continued)

HEMATOLOGY - RED CELL FRAGILITY CONTROL

MONKEY AND S			% NaCl	% HEMOLYSIS
		26 WEEKS	PRE-DRUG	
B4046	(M)	Max. Min.	.35 .55	100 12.7
B4238	(M)	Max, Min.	.45 .65	130 2.0
33628	(M)	Max. Min.	.35 .60	100 1.1
Mean		Max. Min.	.38 .60	100 5.3
		24 WEEKS	PRE-DRUG	
B4046	(M)	Max. Min.	.35 .55	100 5.6
B4238	(M)	Max. Min.	.35 .65	100 1.4
B3628	(M)	Max. Min.	.30 .55	100 2.9
Mean		Max. Min.	.33 .58	100 3.3
		10 WEEKS	PRE~DRUG	
B4046	(M)	Max. Min.	.35 .55	100 2.5
*B4238	(M)	Max. Min.	.35 .55	1 <u>0</u> 0 6.8
B3628	(M)	Max. Min.	.35 .55	10C 2.7
Mean		Max. Min.	.35 .55	100 4.0

*Repert value.

TABLE 5 (continued)
HEMATOLOGY - RED CELL FRAGILITY

CONTROL

MONKEY AND S			% NaCl	% HEMOLYSIS
		4	WEEKS	
B4046	(M)	Max. Min.	.30 .55	100 3.0
B4238	(M)	Max. Min.	.40 .60	100 3.0
B3628	(M)	Max. Min.	.35 .50	100 4.0
Mean		Max. Min.	.35 .55	100 3.3
		8	WEEKS	
B4046	(M)	Max. Min.	.35 .55	100 1.0
B4238	(M)	Max. Min.	.35 .65	100 1.6
B3628	(M)	Max. Min.	0.0 .55	100 0.8
Mean		Max. Min.	.23 .58	100 1.1
		<u>13</u>	WEEKS	
B4046	(M)	Max. Hin.	.35 .50	100 8.8
B4238	(M)	Max. Min.	.30 .50	100 11.8
B3628	(M)	Max. Min.	.30 .50	100 5.5
Hean		riax. Min.	.32 .50	100 8.7

TABLE 5 (continued)

HEMATOLOGY - RED CELL FRAGILITY

CONTROL

MONKEY NO. AND SEX		% NaCl	% HEMOLYSIS
	26 WEEKS	S PRE-DRUG	
B3297 (F)	Max.	.30	100
	Min.	.55	2.7
B4246 (F)	Max.	0.0	100
	Min.	.50	3.5
B3735 (F)	Max.	.35	100
	Min.	.55	9.3
Mean	Max.	.22	100
	Min.	.38	5.2
	24 WEEK	S PRE-DRUG	
B3297 (F)	Max.	.30	1C0
	Min.	.55	1.5
B4246 (F)	Max.	.35	100
	Min.	.55	2.0
B3735 (F)	Max.	.35	100
	Min.	.55	3.1
Mean	Max.	.33	190
	Min.	.55	2.2
	10 WEE	KS PRE-DRUG	
B3297 (F)	Max. Min.	.30	100 15.9
B4246 (F)	Max.	.30	100
	Min.	.55	2.7
B3735 'F)	Max.	.30	100
	Min.	.55	4.5
Hean	Max.	.30	160
	Min.	.53	?.7

TABLE 5 (continued)
MEMATOLOGY - RED CELL FRAGILITY
CONTROL

MONKEY AND SI			% NaCl	% HEMOLYSIS
			4 WEEKS	
B3297	(F)	Max. Min.	.30 .60	100 3.0
B4246	(F)	Max. Min.	.35 .55	100 2.0
*B3735	(F)	Max. Min.	.35 .50	100 17.0
Mean		Max. Min.	.33 .55	100 7.3
			8 WEEKS	
B3297	(F)	Max. Min.	.35 .50	100 3.9
B4246	(F)	Max. Min.	.35 .55	100 0.6
B3735	(F)	Max. Min.	.35 .50	100 16.7
Mean		Max. Min.	.35 .52	100 7.1
			13 WEEKS	
B3297	(F)	Max. Hin.	.30 .65	100 1.4
B4246	(F)	Max. Min.	0.0 .50	100 8.3
B3735	(F)	Max. Min.	.35 .60	100 2.9
Mean		Max. Min.	.23 .58	100 4.2

*Repeat value.

LITTON BIONETICS, INC.

9	
ш	
138	
•	

BLOOD BIOCHENISTRY

RDX - 10 MG/KG

MOKKEY NO.		GLU- COSE (ma%)	BUN (mg%)	Ca (mg/k)	P ("gm)	URIC ACID (mg%)	CITOL. (mg.3)	811.1- PUST! (mg%)	TOTAL PROT. (qm%)	AL - BULTH (GM t.)	ALK. P:105. (mU/m1)	(m/\m)	SGOT (mU/m1)
						7 92	26 WEEKS PRE-DRUG	-DRUG					
B4050 B3543 B3406	EEE	858 8	21 27 29	11.0	5.7 6.0 5.6	0.3	190 155 145	0.00	7.8 7.3 7.8	4 4 &	350 350 350	345 340 505	38 45 105
Mean		73	56	1.1	5.8	0.5	163	0.3	7.6		350	397	63
		•				24 W	24 WEEKS PRE-DRUG	-DRUG					
84050 83543 83406	ÊÊÊ	80 70 85	18 21 22	11.3	လုလ်လ စ.ထိထိ	0.3	205 160 160	0.8 0.7 0.7	7.6	4.2	350 350 303	365 600 600	48 85 60
Mean		78	20	11.2	5.8	0.4	175	0.7	7.6	4.2	334	525	64
						22 H	WEEKS PRE-DRUG	DRUG					
84050 83543 83406	EEE	77 75 140	23 23 25	12.1 11.2 10.2	6.0 5.0 6.0	0.0 4.6.3	190 170 160	0.3	8.1 7.7 7.7	4.4 6.13	612 310 262	480 592 542	55 50 50
Mean		25	21	11.2	6.0	0.4	173	0.2	7.8	4.1	395	538	52
						10 M	WEEKS PRE-DRUG	-DRUG					
B4050 B3543 83406	EEE	90 93 125	20 31 31	10.6 10.8 9.2	6.65 6.58 6.58	0.5	150 155	0.00	7.1 7.4 7.7	4.E.E.O.B.R.	1110 410 283	340 550 1228	40 53 65
Mean		103	24	10.2	6.3	0.3	155	0.2	7.2	3.8	109	902	53

LIT	TON BIG	LITTON BIONETICS, INC.	INC.	٠	-		•		-	- - -			!
						TABLE	TABLE 6 (continued)	inued)					
						3F00	всоор втоснеитятки	(I STRY					
						RDX	X - 10 MG/KG	3/KG					
MONKEY NO. AND SEX	NO.	COSE (mg%)	BUN (mg%)	Ca (mg%)	р (ж <u>р</u> м)	URIC ACID (mg/3)	CHOL.	81LI- RUSI!! ("9")	TOTAL PROT. (qing)	AL- BULLH (GML)	ALK. P:10S. (mU/m1)	(mU/m1)	SGOT (mU/m1)
						•	4 WEEKS						
8-1550 83543 83466	EEE	55 55	26 25 34	9.5 4.6 8.5	8.8 7.0	0.00	190 151 125	000 000	7.5	4 K K 6 Q K	695 255 400	585 1050 2450	60 55 145
Mean		19	58	7.	5.9	0.2	155	0.2	7.9	3.9	450	1362	87
						-	8 WEEKS						
84050 83543 83406	EEE	S S S.	14 18 25	10.5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.2	160 160 140	0.00	7.3 8.1 7.7	33.7 9.50	885 280 480	915 890 1125	65 65 65
Mean		52	19	10.9	6.4	0.2	153	0.9	7.7	3.7	548	716	62
						~ I	13 WEEKS						
84050 83543 8340£	EEE	118 56 73	18 20 28	9.6 10.0	5.4 4.6	0.8 0.4 0.2	162 162 143	0.2	7.6 8.0 7.6	44.6. 45.6.	612 310 358	504 626 948	82 66 109
Mean		82	22	10.01	5.5	0.5	156	0.2	7.7	4.0	427	693	98

LITTON		BIONETICS, IN	TAC.	distribution of the	W alls compositions	Anger of the state	dimensional distribution of the control of the cont		* ■ :	e no selle i c	pr	ge valender i departer	,	*
						TABLE	:ABLE 6 (continued)	inued)						
						3F00D	э втеснентятки	11 STRY						
						RDX	10 MG/KG	3/KG						
MOUKEY NO. AND SEX	EX NO.	GLU- COSE (mg%)	BUN (mg%)	Ca (mg%)	ار (mg%)	URIC ACID (mg%)	CHOL. (mg2)	81LI- RUSIN (mg%)	TOTAL PROT. (qmf.)	AL- BUTT:: (cm)	ALK. P:10S. (mU/m1)	LD.i (INU/INT)	\$60T (mU/m1)	
			· .			26 W	26 WEEKS PRE-DRUG	- DRUG						
83733 83609 83739	EE.	001 001 86	20 34 34	11.9 10.0 10.6	5.0 5.7 5.0	0.00	150 175 150	0.00	7.6	3.0 4.0	350 350 232	600 370 279	85 45 85	
Mean		66	56	10.8	5.2	0.4	158	0.2	7.4	4.0	311	416	28	
						24 W	24 WEEKS PRE-DRUG	-DRUG						
B3733 B3609 B3739	E.F.E	65 65 65	1, 19 29	10.0 10.6 10.4	5.5.2 9.5.2	000	170 180 150	0.7	7.3	3.6 4.0 0.0	340 329 210	600 425 358	73 45 75	
Mean		22	22	10.3	5.4	0.3	167	0.8	7.5	3.9	293	461	64	
						22 W	22 WEEKS PRE-DRUG	- DRUG						
B3733 B3609 B3739	EEE	55 60 60	20 20 20	10.2	6.4.6.	0.0 4.4.3	155 190 145	0.00	7.0	3.5 0.4 0.0	323 308 185	1040 335 405	73 35 40	
Mean		20	23	10.4	4.3	6.4	163	0.2	7.3	3.8	272	909	49	
						10 1	WEEKS PRE-DRUG	-DRUG						
B3733 B3609 B3739	EEE	70 124 85	8:38	10.2 9.6 9.8	 	0.0 2.4 2.	210 190 130	0.00	7.0 6.9 7.2	പെ പെ പെ പെ	410 310 335	560 300 1275	60 45 500	Λ"
Mean		93	8	10.2	5.5	0.4	177	0.2	7.0	3.5	352	712	202	70

I≅C.
•
TICS
-
-
لنا
=
5
-
8 I ONE
_
8
NOLLI
-

•			MONKEY NO. COSE BUN CA AND SEX (mg%) (mg%) (mg%)		(F) 104 21 10.8 (F) 65 25 10.0 (F) 10 52 8.8	60 33 9.9		(F) 40 21 10.2 (F) 30 20 10.0 (F) -	50 21 10.1		(F) 48 18 9.8 (F) 54 24 10.2 (F)	51 21 16.0
			(mg%)		4.8 7.5 12.5	8.3		4.4	4.2		4.8	4.5
TAP'E	פרכסם	RDX	URIC ACID (mg%)		0.6 0.2 0.6	0.5		0.2	0.2	•	0.4	0.3
TAPLE 6 (continued)	вьсов втоснемізтях	10 MG/KG	CHOL. (mg3)	4 WEEKS	115 160 100	125	8 WEEKS	145 145 -	145	13 WEEKS	160 158 -	159
nued)	ISTRY	/KG	811.1- 835.11 (mg%)		0.2	0.2		0.0 9.0	0.8		0.2	0.2
			TOTAL PROT. (am%)		8.3 7.8 7.1	7.7		7.1	7.2		7.4	7.4
			AL- BU!'I:4 (Gm?)		4 E E	4.0		98,1	3.7		3.2	3.8
			ALK. P!105. (mU/ml)		400 375 283	352		470 340 -	405		442 310 -	376
			LD.i (mU/ml)		390 1160 2400	13.12		1020 775 -	863		992 622 -	807
			SGOT (mU/m1)		50 50 270	123		70 50 -	90		86 81	84

LITTON BIONETICS, INC.

Mindle of Mindle

No. of Contraction

TABLE 6 (continued)

BLOOD BIOCHEMISTRY

	SG0T (mU/ml)		88 88 88	48		70 55 47	22		23 23 23 23	59		45 35 38	33
	LD.: (mU/m1)		520 285 310	372		600 600 405	535		552 570 455	526		420 395 315	377
	ALK. PHOS. (mU/m1)		350 350 350	350		350 350 350	350		566 402 344	437		800 512 695	699
	AL- BULTH (gm.)		4.5	4.5		444 5.5	4.4		4.4. 2.5.2	4.4		44.4	4.2
	TOTAL PROT. (qm%)		7,88 7,47.	8.3		7.0 8.0 8.4	7.8		7.8 8.2 8.3	8.0		7.2 7.8 8.1	7.7
MG/KG	81Lt- 80514 (193)	DRUG	0.2	0.3	PRE-DRUG	1.0	6.0	PRE-DRUG	0.00	0.2	PRE-DRUG	0.53	0.2
RDX - 1 MG	CHOL. (mg?)	WEEKS PRE-DRUG	140 170 23"	182	WEEKS PRE-	155 185 245	195	WEEKS PRE-	150 175 215	180	WEEKS PRE-	110 160 220	163
ž	URIC ACID (mg%)	26 WE	0.00	0.4	24 WE	0.2	0.3	22 WE	0.3	0.4	10 VI	0.0 4.6 5.3	0.4
	ارچ <u>a</u>		5.2	5.1		 6.5.5	5.7		ກ.ບ. ພະນະ	5,3		5.0.2 4.0.2	5.2
	Ca (mg%)		12.0 11.4 13.0	12.1		10.7	1.1		11.4	11.2		10.5 10.8 12.7	11.3
	BUN (ms.*)		25 27 29	22		15 21 29	22		17 22 27	22		10 24 22	19
	6LU- 60SE (7243)		95 65 125	92		59 50 50	22		50 80 75	88		001 000 001	66
	ND.		EEE			EEE			EEE			EEE	
	MONKEY NO. AND SEX		83952 83563 84093	Mean		83952 83563 84093	Mean		83952 83553 84093	Mean		83952 83563 84093	Hean

				The control of the co				CALIFORNIA DE LA COMUNICACIONA DE CALIFORNIA	THE CASE OF THE PARTY OF THE CASE OF THE C				To the second se	
5	LITTON	BIONETI	BIONETICS, INC	.:										
							TABLE	TABLE 6 (continued)	:inued)					
							BL001	BLOOD BIOCHEMISTRY	MISTRY					
							쿋	RDX - 1 MG/KG	6/KG					
AND	MONKEY NO. AND SEX	GLU- COSE (mg%)		BUN (mg%)	Ca (mg%)	م (۳۹%)	URIC ACID (mg%)	CHOL.	BILI- RUBIN (mg%)	TOTAL PROT. (gm%)	AL- BUITE (FIRE)	ALK. PHOS. (mU/ml)	LD:4 (mU/m1)	SG0T (mU/m1)
								4 WEEKS						
83952 83563 64093	222 EEE	55.50	000	18 24 24	10.8 10.1	6.2 7.4 4.4	0.00 0.33	135 165 190	0.00	8.0 7.9 7.9	4.4.E.	485 485 550	1130 1025 1265	75 60 85
Mean	è	C)	2	22	10.6	5.4	0.3	163	0.3	7.9	4.1	202	1140	73
								8 WEEKS						
83952 83563 84093		EEE OUG	502 5	15 20 16	11.2	5.3	0.3	170 176 180	0.9 0.9	7.8 7.8 7.6	3.8.2	690 690 755	950 950 1300	70 90 90
Fean	ė	4	49	11	10.9	6.2	0.2	173	0.9	7.7	4.1	712	1067	11
							~ 1	13 WEEKS						
B3952 B3563 B4093	388 888		68 78 55	14 20 27	10.8 9.8 11.0	4.6 6.9 5.5	0.0	154 165 171	0.00	8.8 7.8	4.6. 4.8.0.	584 548 472	778 840 960	102 112 134
H-an	E	9	29	02	10.5	(a)	0.3	163	0.2	8.1	3.9	535	859	116

Ĭĸ.
_
55
置
BIONETICS,
MEL

Tall Disposited

TABLE 6 (continued)

Application of

DLOOD BIOCHEMISTRY

RDX - 7 MG/KG

		- :				(•	;		
MOHKEY NO.	£ ¥9.	GLU- COSE (mg%)	MUR (Mg%)	Ca (mg%)	Р (т <u>я</u> %)	ACID ACID	G10L. (mag)	811.1- 805.1:1 (mg%)	PROT.	AL RGF.174 (Gmb)	ALK. P!10S. (mU,'m1)	LD:1 (mU/m1)	\$69T (Int/Int)
						26 W	26 WEEKS PRE-DRUG	DRUG					
83599 83891 83718	EEE	85 55	20 20 20 20 20	10.3 10.6 11.2	5.6.8 5.2.8	0.00	210 175 190	4.6.6.	888 20.5	4.4. 6.6.	330 315 350	560 50 445	50 45 53
Teas.		8	8	10.7	5.8	4.0	192	0.3	8.1	4.4	332	335	D
						24 M	24 WEEKS PRE-DRUG	DP:UG					
B3599 B3891 B3718	EEE	72 90 85	25 81 81 81	10.9	5.1 5.7	0.00 6.44	178 195 175	0.7 0.8 0.7	7.7	444 -24	240 265 270	400 600 455	48 60 45
Hean		85	23	11.0	5.5	0.4	182	0.7	7.7	4.2	258	485	53
						22 WEEKS		PRE-DRUS					
83599 83891 83718	EEE	75.	- 19 21	10.2	5.1	0.0	- 165 180	0.1	7.3		260 270	- 616 340	85 33
Hean		80	50	10.7	5.1	0.4	172	0.2	7.4	4.0	265	478	29
		•				10 H	10 WEEKS PRE-DRUG	-DRUG					
B3599 B3891 B3718	EEE	85 88 88	24 19	70.7 9.9 70.6	លួយល កំពើលំ	00.0	165 110 160	0.2	7.5	8.8.4 8.4.0	512 450 345	325 1465 340	32 160 50
Wean		92	12	10.4	4.9	0.3	145	0.2	7.2	3.7	436	710	8

The same of the sa

LITTON BIONETICS, INC.

TABLE 6 (continued)

en odder sjaffilligingenbestjanskeldfielden. Der necesser gene einen ene er en en el er ap

on medical destructions and the contract of the second of

BLOOD BIOCHEMISTRY

RDX - 1 MG/KG

CHOL. RUBILI PROT. BULITH PHOS. LDH SGG
Ca P ACID CHOL. RUBILI PROT. BUILLI [mU/m1]] [mu/
CHIC CHOL. RUSI!! PROT. BUI'I! BUI'I
CIOL RUEII PROT BUILLI FROT BUILLI PROT BUILLI PROT BUILLI PROT CURGA
SILII- TOTAL AL- AL- ALK. LD3 SULTIN PROT. BUTTIN PROS. LD3 Cmd2
BILI- TOTAL AL- ALK. LDN SUISIN PROT. BUISIN
TOTAL AL- PROT. BUILLIH PROS. LDH SULLIH SUL
AL- ALK. LDii SUUTII (mU/m1) (mU/m1) (m 3.9 255 1050 3.9 410 1385 4.0 450 875 3.9 600 1125 4.0 458 860 4.0 320 466 4.2 508 1158 4.4 306 444
ALK. PHOS. LDH S (mU/m1) (mU/m1) (m 255 1050 410 1385 355 510 340 982 450 875 600 1125 325 580 458 860 320 466 508 1158 306 444
ED3 S (mU/m1) (m 1050 1385 510 982 1125 1125 580 860 866 1158
∞ E
SGOT (mU/m1) 60 80 85 85 85 85 85 85 85 85 85 85 85 85 85

, INC.
•
BIONETICS
-
7
\vdash
i
Ţ
Z
莱
u
-
E
Œ
0
ᆖ
_
-
_

A Chert Wall

The state of the s

The Party and th

distanting the

And the second

The state of the state of

Hamiltoning

Alle - anne

Anthony or and the

TABLE 6 (continued)

BLOOD BIOCHEMISTRY

	SG0T (mU/ml)		09 105 40	88		55 48 32	45		45 55	48		40 35	39
	LD;i (mU/m1)		482 600 395	492		980 380 390	513		483 608 590	260		450 608 570	543
	ÀLK. PHOS. (mU/ml)		350 350 350	350		35C 35C 35C	350		444 420 320	395		695 420 464	526
	AL- BUILIN (qmg)		4.4.4 L.0.4.	4.2		. ც. 4 ფ. ბ. ბ.	4.0		4.8 9.8 1.8	4.0		3.7	3.9
	TOTAL PROT. (gmg)		7.8 7.2 8.6	7.9		6.6 9.8 9.8	7.5		7.3 7.1 9.1	7.8		6.9 7.1 8.3	7.4
G/KG	8161- 80511 (119%)	PRE-DRUG	0.0	0.4	-DRUG	0.9 0.7	9.0	-DRUG	0.2 0.1	0.2	-DRUG	0.2	0.2
RDX - 0.01 MG/KG	Citol. (max)	26 WEEKS PRE	155 125 135	138	24 WEEKS PRE-DRUG	138 123 148	136	WEEKS PRE-DRUG	140 125 125	130	WEEKS PRE-DRUG	105 125 160	130
RDX	URIC ACID (mg%)	26 W	0.6 0.3	0.4	24 W	0.2 0.3 0.5	0.3	22 H	0.00	0.3	2	0.00	0.3
	P (mg%)		5.8	5.9		ທູນທູ ທູກ,ນ	5.5		9.0.0 6.0	5.3		5.0 8.0 0.0	6.3
	Ca (mg%)		12.4 10.9	11.4		9.6 4.[[10.2		11.3	10.8		10.8 10.4 11.3	10.8
	MUS (%5m)		20 S	22		20 18 18	25		20 13 16	25		288	24
	GLU- COSE (mg%)		55 75 70	20		888	19		84.8 8.8 8.8	17		8 8 80 80	79
	9×		EEE			EEE			EEE			EEE	
	MONKEY NO. AND SEX		84254 83776 83709	Fee		B4254 B3776 B3709	Hean		84254 83776 83709	Mean		84254 83776 83709	# ea

_	
_	
~	
INC.	
BIONETICS	
23	
=	
ш.	
Z	
0	
\Box	
7	
7	
=	
_	
-	

	MONKEY NO. AND SEX		B4254 (M) B3776 (M) B3709 (M)	Mean		B4254 (M) B3776 (M) B3709 (M)	Hean		B4254 (H) B3776 (H) B3709 (H)	N C
	GLU- COSE (mg%)		68 54 8	83		75 60 60	83		88 87 87 87	æ
	BUN (#B#)		21 33 27	27		23 25 25	33		20 20 20	24
	Ca (mg%)		10.4	10.7		12.0 9.5 10.8	10.8		9.6 11.3	10.2
	р (ж <u>р</u> т)		7.8 6.0 6.3	6.7		8.6 6.0 6.6	7.1		7.6 5.3 7.6	9
SLOO RDX	URIC ACID (mg%)		0.00	0.3		0.3	0.2	~ I	0.0	~
D BIOCHET	CHOL.	4 WEEKS	150 120 165	145	8 WEEKS	155 125 150	143	3 WEEKS	132 112 169	138
41STRY MG/KG	BILI- RUGIII (mg%).		0.2	0.2		0.50	1.0		0.2	C
	TOTAL PROT. (am%)		7.6 7.1 8.6	7.8		8.98	7.7		7.6 6.3 7.9	7.3
	AL - BUT:1!! (qml.s).		ww.4	3.8		4.64 2.60	3.8		8. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	α,
	ALK. PHOS. (mU/ml)		525 535 345	468		750 705 450	635		564 548 287	466
	1.5.i (mU/m1)		1105 1060 980	1048		445 770 875	697		850 837 579	755
	S607 (mU/ml)		65 75 60	<i>L</i> 9		45 70 50	55		82 81 43	69
	BLOOD BIOCHEMISTRY RDX - 0.01 MG/KG	CLU- RDX - 0.01 MG/KG RDX - RDX	COSE BUN Ca P ACID CHOX CHOL RUSI! PROT RUS!! PHOS CHU/ml CHU/ml	COSE BUN Ca P ACID CHOL. RUSI! PROT. BUT!!! PHOS. L.B.i	COSE BUN Ca P ACID CITOL RUSTI PROT CITOL RUSTI RUSTI	COSE BUN Ca P ACID CHOLL RUSTH PROT CHOLL RUSTH CHOLT CHOLL CHOLT CHOL	CLU- CLU-	COSE BUN Ca P ACTD CIOL. FUST CIOL. FUST CIOL. FUST CIOL. CI	COSE BUN Ca P ACID CIOL RUSTI PROT. BUT.II BUT.II	SLOOD BIOCHE/NISTRY SLUOD BIOCHE/NISTRY SLUD MG/MG COSE COSE CMG* CM

IKC.
•
IJ,
TICS
\vdash
-
ш
Z
8
\equiv
31 ONE TIC
<u>ن</u>
矢
\mathbf{c}
NOLL I
-

State Control of the Control of the

Part of the last o

Диникомина

Segment manages

· · !							•	•					
						TABLE	TABLE 6 (continued)	inued)					
						BL00D	вьоор втоснеитятк	41STRY					
						RDX	- 0.01 MG/KG	₩G/KG					
MONKEY NO. AND SEX	* & X	GLU- COSE (mg%)	BUN (mg%)	Ca (mg%)	Р (мд%)	URIC ACID (mg%)	CHOL.	811.1- RUSI!! (mg%)	PROT.	AL- BUTTH (GRIS)	ALK. PHOS. (mU/ml)	LD:1 (mU/m1)	SGOT (mU/m1)
				. •		26 H	26 WEEKS PRE-DRUG	E-DRUG					
83613 83646 83617	EEE	4 r. r.	5 22 9 22	11.2	ນ ຄູ່ອີສຸກ ຄູ່ອີສຸກ	0.0 4.0 0.6	200 150 155	0.00 6.4.6.	7.6 8.3 8.0	444 2.6.	350 150 350	530 305 555	45 60 75
£		ଝ	52	11	0.9	0.5	168	0.3	8.0	4.2	283	463	09
						24 M	WEEKS PRE-DRUG	E-DRUG					
83613 83646 83617	EEE	8 72	222	11.6 10.8 11.2	5.52	0.00 4.6.00	215 140 205	0.8 0.7 0.8	7.5 7.8 8.1	444 E.C.S.	325 107 350	525 425 600	58 58 58
Mean		75	23	11.2	5.8	0.4	187	0.8	7.8	4.2	261	217	49
						7 22	22 WEEKS PRE-DRUG	E-DRUG					
83613 83646 83617	EEE	120 - 90	26 - 26	11.6	6.4	0.4	183 - 145	0.2	7.5	4.0	330 - 320	455 - 554	35 70
Mean		105	56	1.1	6.0	0.4	164	0.2	7.6	4.0	325	504	25
-							10 WEEKS PRE-DRUG	E-DRUG					
B3613 B3646 B3617	EEE	70 82 80	22 22	11.3	6.6 5.1 5.5	0.4	215 140 175	0.3 0.3	7.4 7.8 7.8	3.7	448 215 362	340 280 530	40 45 53
Mean		11	2	11.0	5.7	0.4	177	0.3	7.7	3.8	342	383	46

	•
t.	3
Ξ	5
7	•
Z	٠
	3
Ξ	-
	•
1	•
ı	1
4	5
	5
	Ξ.
-	•
N	1
-	_
3	2.
	5
ū	-
-	
_	•
ŕ	ė
	÷
-	

TABLE 6 (continued)

BLOOD BIOCHEMISTRY

RDX - 0.01 MG/KG

MOKKEY NO. AND SEX B3613 (F) B3646 (F) B3617 (F)	SX EFF	GLU- COSE (mq%) 51. 51.	8UN (mg%) 26 17 21 21	Ca (mg%) 10.2 10.3 10.9	р (mg%) 5.3 7.4 7.7	URIC ACID 0.2 0.2 0.5	CHOL. (MQZ) 4 WEEKS 160 130 170	811.1- RUSIII (mg%) 0.2 0.2	701AL PROT. (9m%)	AL-BUILIN (Gmis) 3.7 3.5 4.0	ALK. PiOS. (mU/m1) 385 270 450	LD:i (mU/m1) 1295 405 1070	
B3613 B3646 B3617	EEE	655	25 16 22	12.5 1.6 1.6	6.9	0.22	3 WEEKS 340 340 185	0.00	4.7 7.6 8.8	დ დ 4 თ ი	555 240 705	525 475 770	
Mean	-	63	23	11.3	7.0	0.2	173 13 WEEKS	1.0	7.8	3.8	200	290	
83613 83646 82517	EEE	44 55	18 18 22	10.2		0.00 4.4.2.	156 164 175	0.2	7.0 8.0 8.1	4 0 :	394 288 428	502 328 909	
Mean		88	19	10.5	5.8	0.4	158	0.2	7.7	3.9	370	580	

U PE	BIONETICS, INC	INC.	<u>[</u>	Management of the control of the con	TABLE	TABLE 6 (continued)	ntinued)	feature as a feature for the feature as a feature for the feature as a feature for the feature	Branchesser	Transport or The Contraction of	the resugner of	The second as a
					F	TNT - 1 MC	1 MG/KG					
MONKEY NO.	GLU- COSE (mg%)	BUN (mg%)	Ca (mg%)	P (۳۹%)	URIC ACID (mg%)	CHOL. (mgs)	81L1- RU31!1 (mg%)	TOTAL PROT.	AL- BUTT:: (GML)	ALK. P:10S. (mU/m1)	LD.i (mU/m1)	S60T (m/Um)
					26 1	26 WEEKS PRE	PRE-DRUG					
B3697 (M B3775 (M B4301 (M	93 65 65	28 2 8	12.1 11.4 11.6	ດ. 4. ຕ ຜິດ: ຜິ	0000	130 192 195	0.00 4.00 6.00	8 8 6	.4.4 	210 (350 350	385 300 400	45 90 90
Kean	92	82	11.7	5.4	0.3	172	0.3	8.5	4.6	303	362	28
					24 4	WEEKS PRE-DRUG	-DRUG					
83697 (H) 83775 (H) 84301 (H)	200 85 90 90	24 25	11.9 10.7 10.3	5.7. 5.7.	0.3 6.3	145 215 185	0.8 0.9 0.7	8.8 7.7 7.5	444 922	177 350 314	415 445 600	45 47 65
Hean	75	24	11.0	5.6	0.3	182	9.0	8.0	4.4	280	487	52
					22 4	WEEKS PRE-DRUG	-DRUG					
B3697 (M B3775 (M B4301 (M) 100) 75) 145	222	10.5 11.5 10.0	5.7.5	0.00	138 230 170	0.5	8.2 8.3 7.8	4.44 1.22	154 345 273	544 358 600	30 90 60
Mean	107	24	10.7	5.1	0.3	179	0.2	8.1	4.2	257	501	44
					5	WEEKS PRE	PRE-DRUG					
63697 (M) 83775 (M) 84301 (M)	<pre></pre>	22 52 22 28	1.6 1.11	5.7	0.00	140 190 160	0.2	8.2 7.7 7.3	4.0 3.8	210 512 450	415 900 480	47 110 53
Mean	78	92	10.9	5.4	0.3	163	0.2	7.7	3.9	391	598	70

INC.	
S.	
BIONETI	
Z	
H	

TABLE 6 (continued)

BLOOD BIOCHEMISTRY

SCOT (mU/m1)		75 45 115	78		200	23		82 54 84	73
LD.i (mU/m1)		1385 475 1345	¥068		710 525 365	533		868 528 722	902
ALK. P:10S. (mU/r:1)		285 590 400	425		275 720 525	203		332 584 372	459
AL- BUTI:		4.4.8 0.6.0	4.0		4.8.8. 8.8.	3.8		5.4 0.2.0	4.4
TOTAL PROT. (qm%)		8.4 7.9 7.4	7.9		8.4 7.4 7.3	7.7		9.2 7.8 7.0	8.0
811.1- RUE 14 (mg3)		0.2	0.3		0.00	0.9		40.00	0.3
CHOL. (mg%)	4 WEEKS	130 210 153	164	8 WEEKS	120 205 160	162	13 HEEKS	164 200 188	184
URIC ACID (mg%)		0.4 0.2	0.3		000	0.3	•	0.00	0.5
P (<u>mg%)</u>		5.4 5.4	5.6		លលល កម្មវិសិ	5.4		7.0 6.4 6.0	6.5
Ca (mg%)		11.3 9.1	10.6		70.2 9.8 9.8	10.5		7.0 9.6 9.2	6.6
BUN (mg%)		288	82		22 24 29	56		55 25 26 28	52
GLU- COSE (max)		282	62		584	53		74 72 66	11
EX NO.		EEE			EEE			EEE	
MOHKEY NO. AND SEX		83697 83775 84301	Hean		83697 83775 84301	Mean		83697 83775 84301	Mean

and take the and

1 N.	: :
ŧi	•
いてはいるよう	ز
F	-
3	
2	2
3	Ŝ
Ē	=
	7
	_

TABLE 6 (continued)

reconstructe objetite all illinearistic sections in the section of the section of

BLOOD BIOCHEMISTRY

AND SEX (COS AND SEX (COS AND SEX (COS B33857 (F) 105 85 85 85 85 85 85 85 85 85 85 85 85 85	1 w 2€	880 20 20 20 20 20 20 20 20 20 20 20 20 20	(mg%) 10.7 9.9 10.3 10.8 10.8 10.9 10.9 11.2	(mg %) (m	URIC ACID (mg%) 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6	C CHOL. PUBLIST (mg%) (m	81L1- PUSITI (mg%) 0.2 0.2 0.3 0.7 0.8 0.8 0.8 0.2 0.2 0.2	7.7 7.7 8.2 7.5 7.6 8.1 7.6 8.1 7.6 7.9	AL-Buria (qmi.) (qmi.) 4.2 4.2 4.3 4.2 4.3 4.2 4.2	ALK. PHOS. (mU/m1) 350 350 350 313 318 327 327 328 343 343	LDii (mU/m1) 345 345 345 345 345 345 346 430 588 370 446 1028 350 815	SCOT (mU/m1) 70 45 45 45 70 70 48 70 88 85 60 82
83857 (F) 105 83516 (F) 110 83928 (F) 85	wow	15 20	10.2 10.8 10.0	6.3 5.0	2 00.5	10 WEEKS PRE-DRUG 5 155 0.3 4 170 0.3 4 155 0.2	E-DRUG 0.3 0.2	7.4	ო ო ო ლ თ თ	525 340 470	1075 410 290	75 50 40
Mean 100	0	18	10.3	5.8	0.4	160	0.3	7.5	3,9	445	592	55

IXC.
-
—
*
ഗ
ខ
-
-
10ETI
-
×
$\overline{}$
19.
z
0
_
301
-
-

TABLE 6 (continued)

THE CHARMACTURE

agithur streeth,

Andrewskiller (III)

PARTITION OF THE PARTY OF THE P

5
7 KG
:=
₹
~
_
75
_

ՏԸ0T (ա/Մա)		70 60 75	89		75 75 70	73		86 92 121	100
LD:i (mlJ/m1)		990 1165 1305	1153		770 850 575	732		766 864 634	755
ALK. P!(OS. (mU/m1)		355 420 375	383		515 530 450	498		566 536 330	477
AL- BUTTH (qmfs).		4.E 7.C	3.6		3.3 3.7	3.7		9.9.9	3.7
TOTAL PROT.		7.0	7.5		6.9 7.6 7.5	7.3		7.2	7.5
BILI- RUSIN (mg%)		0.00	0.3		0.0 0.0	0.9		0.2	0.2
CHOL. (mg%)	4 WEEKS	100 145 145	130	8 WEEKS	100 155 145	133	13 WEEKS	128 158 147	144
URIC ACID (mg%)		0.02	0.2		0.03	0.3	·	0.0	0.4
р (<u>ж</u> дж)		2.7 7.4 5.8	5.3		5.5.5	4.6		6.0 5.6	5.2
Ca (mg%)		0.6 4.8.8	10.0		9.5	10.5		10.4	10.9
8UN (mg%)		22 4 4 9	52		22 23 23	24		26 30 18	52
G).U- COSE (mg%)		67 45 40	51		35 70 40	84		108 64 80	84
EX S		EEE			EEE			EEE	
MONKEY NO. AND SEX		83857 83516 83928	Mean		83857 83516 83928	Kean		83857 83516 83928	Mean

317

524

3.9

7.3

0.2

132

0.3

10.4

Mean

566

340 220 390

428 616 528

3.4.8 ...8

6.8 8.0 7.1

9.5

2228

55 75 75

EEE

B3782 B3773 B5427

85 37

415 408

278 352

4.4

8.3

0.2

4.2

8.0

138

0.4

11.0

22

Mean

11.3 10.6

22

188

FFF

83773 83773 83427 WEEKS PRE-DRUG

2

61

LITTON BIONETICS, INC.

The state of the s

Sent billion est

LD.i (mU/m1) 415 312 295 410 250 393 341 351 ALK. PHOS. (mU/ml) 350 272 330 350 305 350 350 317 AL-80:'1:: TOTAL PROT. (amis) 7.8 7.3 8.6 7.6 7.8 7.6 8.0 7.7 811.1-805.11 (893) 0.00 0.2 1.0 24 WEEKS PRE-DRUG 22 WEEKS PRE-URIJG 26 HEEKS PRE-DRUG TABLE 5 (continued) BLOOD BIOCHEMISTRY TNT - 0.1 MG/KG CHOL. (mg.) 132 151 URIC ACID (mg33) 0.20 0.3 р (<u>mg</u>%) 3.4 6.0 6.0 4 2 2. 2 6 9. 5.5 Ca (mg%) 10.8 9.8 10.0 10.7 BUN (mg%) 282 2888 7 GLU-COSE (mg%) 60 50 60 60 858 MONKEY NO. AND SEX EEE **EEE** B3782 B3773 B3427 B3782 B3773 B3427 Mean Kean

842

56

848

47

SG0T (mU/m1)

LITTON SIGNETICS, INC.

TABLE 6 (continued)

are to an encounter spage to make a new specific and the spage of the

BLOOD BIOCHEMISTRY

TNT - 0.1 MG/KG

1									
SG0T (mU/m1)		60 85 60	99		50 50 60	23		72 60 112	18
LD:1 (mU/m1)		980 1355 1165	1167		575 365 515	485		466 330 576	457
AL (PHOS. (mU/ml)		345 350 420	372		320 525 575	473		514 492 586	531
AL- BUTIT		4.8 8.7.	3.9		4.0 4.1 3.7	3.9		4.4.8 4.2.0	4.1
TOTAL PROT. (an%)		7.6	7.5		7.1 8.2 7.5	3.6		7.4	7.7
BILI- RUSIN (mg%)		0.22			0.9		νI	0.00	0.2
CHOL.	4 WEEKS	150 135 165	150	8 WEEKS	150 130 150	143	13 WEEK	156 132 137	142
URIC ACID (mg%)		0.00	0.2		0.0	0.3		0.0 4.0 6.0	0.4
р (жуж)		8.8 8.8 8.9	5.6		3.7 5.8 5.0	4.8		.0.4 0.00	5.2
(mg/k)		10.3	10.2		9.8 11.2 10.0	10.3		0 0 0 4 6 6	9.7
8UN (#9%)		222	22		25 25	23		20 16 24	20
GLU- COSE (mg%)		24 24 24 34	20		30 20 30 20	8		85 <u>5</u>	79
EX 3					EEE			EEE	
MONKEY NO.		B3782 B3773 B3427	Mean		83782 83773 83427	Mean		83782 83773 83427	Mean

Thermoon the second	•
	CS, INC
i sa Waf	BIONE TICS
	LITTON

TABLE 6 (continued)

ANDMINISTERS

Bellemmmen, es

and head being

Distribution special

opposite the same

BLOOD BIOCHEMISTRY

TNT - 0.1 MG/KG

										A	-00
\$607 (m/\m)	40 70 145	89 10		45 55	48		- 43 110	9/		75 45 43	54
LDii (mU/m1)	440 575 600	538		455 600 500	513		508 505	206		290 435 320	348
ALK. P!10S. (mU/ml)	203 245 350	266		162 157 325	215		220 338	579		233 278 475	329
AL- BUNIN (GMC)	4.4.8 9.0	4.1		8.0 8.0	3.9		, e.e. 0.4.	3.6		ი ო ო ი ო ო	3.6
TOTAL PROT. (ging)	8.2 7.7 7.1	7.7		7.2	7.3		7.4	6.8		7.8 7.0 6.6	7.1
BILI- RUBIN (mg%)	0.2	0.3	-DRUG	1.0 0.7 0.9	0.9	E-DRUG	0.2	0.5	E-DRUG	0.2	0.2
C CHOL. RUSII MAX (MAX) (MAX 26 WEEKS PRE-DRUG	210 180 145	178	WEEKS PRE-DRUG	195 155 155	168	22 WEEKS PRE-DRUG	160 150	155	10 WEEKS PRE-DRUG	220 155 130	168
URIC ACID (mg%)	0.5	0.4	24 1	0.3	0.4	22	0	0.3	9	0.3 0.6 0.5	0.5
р (т <u>д</u> я)	3.0.5 3.1.8	5.1		5.2 4.8	5.4		6.7	5.8		6.0 8.2 4.9	6.4
Ca (mg%)	11.9 9.9 12.1	11.3	•	11.4 16.8 10.3	10.8		10.4	10.8		11.2 10.3 9.9	10.5
BUN (m98).	₩ ##\$ %	88		27 31	25		27 40	34		25 25 25	52
(ma%) COSE (ma%)	등록용	78		55.8 45.8	% ∵		. 00 88	36		900 900 900	70
X	EEE	-		EEE	-		EEE			EEE	
MONKEY NO.	83720 83608 83863	Hean		83608 83608 83863	Fea	<u>.</u>	83720 83608 83863	Mean		83720 83608 83863	Mean

And the same of th

INC.
BIONETICS,
SELI

TABLE 6 (continued)

ennemen und e au mantere person er gener mentenniggerichtighenden is meine der generalen bei der generalen bet generalen bei der generalen bei der generalen bei der generalen

Anthonymouth de safety

politification political

ANIAN MENTANTIANA

| Kermanian-kan

Hamilton Hamilton

And the second second second

The second

Ĥ

BLOOD BIOCHEMISTRY

TNT - 0.1 MG/KG

MONKEY NO. AND SEX AND	233 SEE	LITTON BIONETICS, INC GLU- GLU- GLU- BEX (mgx) (mg	BUN (mg%) 33 33 33 33 33 33 33 33 33 33 33 33 33	Ca (mgg) 10.0 10.5 11.8 10.8	F (mg%) 3.7	TABLE BLOOF TABLE BLOOF (mg%) (mg%) (mg%) (0.4 %) (0.3 %) (0.3 %) (0.3 %)	E 6 (company) 126 12	(continued) 10CHEMISTRY 0.02 MG/KG 0.02 MG/KG MGZ) (MGZ) KS PRE-DRUG 125 0.4 185 0.3 125 0.3 125 0.3 125 0.3	TOTAL PROT. (qung.)	AL- BUILLA (Qmis) 4.4 4.2	ALK. PHOS. (mU/m1) 350 173 350 291	LDii (mU/m1) 270 425 600 432	SGOT (mU/m1) 25 65 50 47
83559 83848 64239	EEE	80 72 60 12	24 - 24 - 24	10.9	α.σ.σ. π α.φ.ν. α	42.60	155 222 178 18	0.0	8.2 6.9 6.8	444 4	350 350 385	600 560 600 687	
169		=	77	6.0	o.c	0.3	3 185 0.9 22 WEEKS PRE-DRUG	0.9 E-DRUG	9.	4 .	582	/85	99
83559 83848 84239	EEE	168 65 75	ឧនឧ	7.11.7 10.5 1.11	64.5	0 0 0 0 0 0	140 200 180	0.22	8.2 8.1 7.4	444 9.6.0	305 136 612	1036 585 510	110 85 58
Mean		103	24	1.1	ů.	0.6	6 173 0.2 10 WEEKS PRE-DRUG	0.2 E-DRUG	7.9	4. 3	351	710	84
83559 83848 84239	EEE	120 85 100	25 20 20	11.5 10.4 10.0	6.0 5.0 6.7	00.3	115 175 175	000	7.6 7.8 6.7	4.0 4.0	436 210 1415	390 370 440	38 55
Mean		102	20	10.6	5.9	0.4	155	0.3	7.4	4.1	687	400	44

INC.
ર ડ
BIONETICS
810
₹
I

continued)
$\overline{}$
9
ш
\Box
TABLE
5
_

populitikalidi Geograpiski

to the second

de de stimpliment

BLOOD BIOCHEMISTRY

TNT - 0.02 MG/KG

ONKEY NO. AND SEX	. ×	GLU- COSE (mg%)	BUN (mg%)	Ca (mg%)	Р (ж <u>р</u> т)	URIC ACID (mg%)	CHOL. (mq%)	811.1- RUS I II (mg%)	TOTAL PROT. (qm%)	AL- BUIT!! (um%)	ALK. PHOS. (mU/ml)	(mU/m1)	SGOT (mU/ml)
			-			•	4 WEEKS						
83559 83848 84230	EEE	24 24	16 24 27	2005	6.5 6.5	0.00	160 200 200 200 200 200 200 200 200 200 2	000	888	4 6 4 0 6 4	425 345 1140	1280 1080 1120	
Mean	È		; %	10.4	7.7	0.3	185	0.4	8.1	4.1	637	1160	
							8 WEEKS						
83559	E E	84	15	10.2	7.0	0.5	135	0.0	7.6	ა ი 4 ი	585 245	935 580	
84239	Ē	75	23	10.4	9.9	0.4	190	1.0	7.3	4.3	1105	730	
Kean		88	23	10.3	6.7	0.4	175	1.0	7.6	3.9	645	748	
						— I	13 WEEKS						
B3559	Œ	132	6 E	10.4	7.8	9.0	144	0.5	8.8	4.6 5.0	418 258	838 582	68 113
84239	E	88	23	6.6	5.7	0.3	163	0.2	7.2	3.8	612	622	
Fean		35	19	10.3	6.4	0.4	162	0.5	7.8	3.9	429	681	90

TABLE 6 (continued)

The second of the

physical and particular and particul

lice through a

The street of th

djudes apa

Interesting the second

THE STREET

BLOOD BIOCHEMISTRY

TNT - 0.02 MG/KG

MONKEY NO.	EX.	GLU- COSE (mg%)	BUN (mg%)	Ca (mg%)	р (% <u>рт)</u>	URIC ACID (mg%)	CHOL. (mg%)	81LI- RUBIN (mg%)	TOTAL PROT. (om%)	AL- BUNITA (qm%)	ALK. PHOS. (mU/ml)	LD!! (mU/m1)	SGOT (mU/m1)
					•	92	26 WEEKS PRE-DRUG	E-DRUG					
B3818 B3867	Œ	185 75	328 328	10.0	3.6	0.2	170	0.2	 8	6.4 6.4	350 180	600 415	55 45
B3860	(F)	92	30	11.4	4.4	0.3	208	0.5	8.0	3.9	270	009	54
Mean		118	83	10.9	4.8	0.3	189	0.2	7.5	3.9	267	538	51
		-				24	24 WEEKS PRE-DRUG	E-DRUG					
B3818	E	28	8	9.6	2.5	۳. ن	183	1.0	6.3	3.4	350	510	55
B3867 B3860	Œ	50 50	22	11.9	5.7	0.0 4.6	200 200 200 200	1.0	7.6	4.60 4.80	145 203	435 500	43 55
Mean		96	22	10.7	5.6	0.3	194	0.9	7.4	3.9	233	482	51
						22	WEEKS PRE-DRUG	E-DRUG					
83818	E	65	58	10.5	3.8	0.5	190	0.2	6.7	3.5	358	548	06
B3867 B3860	ĒĒ	*8	' 88	1.8	5.2	0.6	180	0.2	8.3	4.2	138	530	- 09

A-90

38

330

303

3.5

7.0

182

10.8

23

97

Hean

The second secon

45 40 40

300 295 395

425 288 195

33.0 3.0 9.0

6.0 7.2 7.8

0.20

140 175 230

00.3

6.4.2 6.8.6

10.1 10.5 11.7

388

25 120

EEE

B3818 B3867 B3860

75

539

248

7.5

185

9.0

Mean

I S S
ś
<u>ဗ</u>
BIONETICS
5
3
SET.
┪

TABLE 6 (continued)	BLOOD BIOCHEMISTRY	TNT _ 0 02 MG/KG

AND SEX AND SEX AND SEX AND SEX B3818 (F) B3867 (F) B3867 (F) B3867 (F) B3867 (F)	GLU- COSE (mg%) 30 35 35 37 50	8UN (mg%) 27 22 30 30 26 27 27 27 27 27 27	Ca (mg%) 9.6 10.6 10.1 10.1	р 4.8 5.3 6.2 6.3 6.3	URIC ACID 0.3 0.9 0.5 0.5 0.3	GIOL. (mgg) 4 WEEKS 210 155 160 215 160	81LI- RUSIII (mg%) 0.3 0.5 0.5 1.0	101AL PROT. (quig.) 7.9 7.0 7.0 7.0 7.0	AL- BUILS (GES) 3.5 3.3 3.3 3.3 4.1 3.3	ALK. PHOS. (mU/m1) 355 285 1140 593 470 330 200	LD:((mU/m1) 1140 1025 1120 1095 510 420 1065	
Hean	63	24	10.6	5.2		178	1.0	6.9	3.5	333	999	
					• - •	13 WEEKS						
33818 (F) 33867 (F) 33860 (F)	4 6 82 82 83	18 33	10.0 10.8 11.0	4.0.4	0.0	180 226 159	0.00	6.0 8.6 7.4	9.4.0 0.4.0	480 302 230	408 292 813	
Mean	19	27	10.6	4.7		188	0.2	7.3	3.6	337	504	

The state of the s	
	INC
	ý
•	LITTON BIONETICS, INC.
	81
	Ž
	L

_
~
Ξ.
Ð
3
7
-
٠,
·
=
8
0
u
_
•
11
-
ш
≂
쯸
ABI
TABI
TABI
TABI

BLOOD BIOCHEMISTRY

CONTROL

Ca PACID (mg%) CHOL (mg%)
1. (mg%)
URIC CIOL, RUSITI PROT. EUTITI PROT. EUTIT PROT. EUTT PROT. EUTIT PROT. EUTT PROT. EUTIT PROT. EUTIT PROT. EUTT
SIL1- TOTAL AL- ALK, Lbi CHOL, RUSITI PROT. BUTITI PHIOS. Lbi WEEKS PRE-DRUG Com2 Com2 Com2 Com3 C
7.5 3.8 350 485 9.3 4.8 350 370 8.4 4.4 350 393 7.5 4.1 350 600 7.7 4.4 350 600 7.7 4.4 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 3.6 428 7.5 4.2 350 600 7.5 4.2 350 600 7.7 4.4 550 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.0 590 1030 7.0 3.7 735 360 7.0 3.7 735 360 7.0 3.7 735 360 7.0 3.7 735 360 7.0 3.7 735 360
7.5 3.8 350 485 9.3 4.8 350 370 8.4 4.4 350 393 7.5 4.1 350 600 7.7 4.4 350 600 7.7 4.4 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 350 600 7.7 4.1 3.6 428 7.5 4.2 350 600 7.5 4.2 350 600 7.7 4.4 550 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.2 350 600 7.5 4.0 590 1030 7.0 3.7 735 360 7.0 3.7 735 360 7.0 3.7 735 360 7.0 3.7 735 360 7.0 3.7 735 360
AL- ALK. BUTTH PHOS. LD.i (GML) (mU/m1) (mU/m1) 3.8 350 485 4.8 350 370 4.5 350 382 4.1 350 600 4.4 350 600 4.2 350 600 4.4 350 600 4.2 350 600 4.2 350 600 4.2 350 600 4.2 350 600 4.2 350 600 4.2 350 600 4.2 350 600 4.2 350 600 4.2 350 600 4.1 426 527 4.1 426 586 4.0 590 1030 4.0 566 480
ALK. PHOS. LD.i (mtl/mt]) (mtl/mt]) 350 350 350 350 350 350 600 350 600 350 600 444 6622 602 444 6622 602 426 527 735 735 735 735 566 480
LD.i 485 370 325 393 393 393 527 527 527 586 586 1030 480
5607 (mU/m1) 63 60 60 60 60 60 61 61 61 61 61 61 61 61

INC.	
BIONETICS,	
LITTON	

TABLE 6 (continued)

Carlo Carlo

可以持续被犯罪的法法可以持续人工的,而且是不可以可以不可以不是不是一个人的,不是不是一个人的,可以不是一个人的人的人的人的人,可以是一个人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人

BLOOD BIOCHEMISTRY

CONTROL

MONKEY NO.	61U- 60SE (mg%)	BUN (mg%)	Ca (mg%)	р (жрт)	URIC TOID (mg%)	GIOL. (mg%)	81L1- 8051# (mg%)	TOTAL PROT. (qun%)	AL- BUSTS (qm%)	ALK. P:10S. (mU/m1)	LD:1 (mU/m1)	SGOT (mU/m1)
	65 78 78	18 24 24	10.4 10.9	5.7	000 6.46	4 WEEKS 165 155 175	000	7.6	8 9 0.	575 550 550	1120 1240 1050	70 70 60
	92		10.6	0.9		165 8 WEEKS	0.2	7.6	3.9	258	1137	29
	222	79 70 70 70 70 70 70 70 70 70 70 70 70 70	10.3 10.9	66.6 6.6.5	0.00	180 145 160	0.8 0.7 0.9	7.9	3.7	960 1060 200	910 1200 970	75 80 65
	70	12	10.6	6.5		162	0.8	7.5	3.9	973	1027	73
	70 86 85	75. 20. 20.	0.01	7.2 6.0 7.5	•	13 NEEKS 190 140 170	0.52	7.8 8.0 7.3	44.6 04.0	766 612 510	724 944 939	102 82 98
	88	19	10.3	6.9	0.5	167	0.2	7.7	4.0	629	869	94

₹.
_
బ
N. BIONETICS,
8
8
LITOR

TABLE 6 (continued)
6 (contin
_
_
95
H

BLOOD BIOCHEMISTRY

CONTROL

SGOT (mU/m1)		40 45	58		48 68 45	54		56 39	48		32 45 73	50
LD:1 S(mU/m1)		345 585 600	510		570 600 555	575		- 837 590	714		355 380 1430	722
ALK. P:10S. (mU/m1) (m		160 350 245	252		350 198	220		- 488 187	338		120 320 240	227
AL - A BUTTH P (400.) (11		446	4.0		3.8.7 8.8.9	3.7		3.9	3.8		ນ ພຸນ ນີ້ສະນ	3.6
TOTAL PROT.		7.7 7.4 8.1	7.7		6.9 3.1 8.1	7.4		7.3	7.6		7.2 6.8 7.8	7.3
81L1- PUSTH (119%)	E-DRUG	0.0 0.2 0.2	0.3	RE-DRUG	0.7	0.8	PRE-DRUG	0.2	0.2	RE-DRUG	0.3	0.2
CHOL. (max)	26 WEEKS PRE-DRUG	155 160 155	157	24 WEEKS PRE-DRUG	145 160 165	157	22 WEEKS PR	170 170	170	10 WEEKS PRE-DRUG	180 120 140	147
URIC ACID (mg%)	56	000 4.8.4	0.4	24	0.00 6.4.4	0.4	22	0.3	0.3	의	0.00 2.4.5	0.3
P (mg%)		5.7 5.1 4.6	5.1		004 446	5.0		 	5.2		5.14 1.14	4.8
Ca (mg%)		11.0 9.8 10.6	10.5		10.0 10.0 10.5	10.2		_ 0.00	6.6		10.2 9.1 9.6	9.6
BUN (%gm)		27 28 19	52		22 24 19	22		21,	<u>6</u>		28 24 18	8
GLU- COSE (max)		588 888	63		22862	22		F) 75 - 65 65	2		(F) (F) 50 80 80 80	
MONKEY NO.		83297 (F) 84246 (F) 83735 (F)	Kean		83297 (F 84246 (F 83735 (F	Mean		B3297 (F B4246 (F B3735 (F	Hean		83297 (1 84246 (1 83735 (1	

	•
=	=
77.	3
ひんしんしんしょう	35
115	5
-	j

September 1

Contraction of the last of the

THE STREET, ST

Special second

(RECOMMENDATIONS)

With the second second

the overale to

E 5)	LITTON BIONETICS, INC.	1110				•	•					
						TABLE BLOOD	TABLE 6 (continued) BLOOD BIOCHEMISTRY	fnued) ISTRY					
							CONTROL	_					
MOHKEY NO.	EX	COSE COSE (mox)	BUN (mg%)	Ca (mg%)	P (mg%)	URIC ACID (mg%)	CHOL. (140%)	8111- 80517 (805)	TOTAL PROT. (and:3)	AL- BUTT: (GER)	ALK. PHOS. (PU/PT)	LBii (mU/m1)	SCOT (mU/m1)
							4 WEEKS						
83297 84246 83735	EEE	ង សូលូខ ទីសូលូ	27 24 15	9.8 10.0 10.5	404	0.00	135 150 190	0.00	6.9 7.1	3.5	185 475 245	590 555 1185	80 80 80
1		22	25	10.1	4.7	0.2	158	0.2	7.3	3.7	302	777	22
							8 WEEKS						
83297 84246 83735	EEE	5.6 5.70	88'	10.1	6.6 6.6	0.5	145 155	0.7	7.9	4.0	185 810 -	· 670 745 -	60 -
Mean		28	22	10.2	6.5	0.2	150	8.0	7.5	4.1	498	708	50
						-1	13 WEEKS						
83297 84246 83735	EEE	922 922 922	8835	0 0 0 0.0 0.0 4.0	5.7 6.7 9.6	0.00 4.6.5	158 139 146	0.2	7.2 6.7 7.8	3.5 3.6	206 456 228	494 578 996	84 0 86 48
Tean	-	9	5	9.5	5.0	0.3	148	0.2	7.2	3.6	297	689	79

TABLE 7

URINALYSIS

RDX - 10 MG/KG 24 MEEKS PRE-DRUG

	MON	KEY NO. & SEX	
	B4050 (M)	B3543 (M)	B3406 (M)
- #	6.0	8.5	8.0
Specific Gravity	1.014	1.017	1.023
Glucose	Negative	Negative	Negative
Albumin	Negative	Negative	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Trace
White Blood Cells*	1-3	.0-2	Rare
Red Blood Cells*	Negative	Negative	Rare
Ecithelial Cells*	Occasional	Negative	Rare
Bacteria*	Negative	Negative	Negative
Amorphous Crystals*	Little	Little	Kéavy
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Cas ts*	O-1 Coarsely Granular; Occ. Finely Granular	Negative	Negative

^{*}Microscopic (per high power field).

URINALYSIS

RDS - 10 MG/KG

	MONKEY NO. & SEX		
	B4050 (M)	B3543 (M)	B3406 (M)
7.1	8.0	8.0	7.0
Shecific Gravity	1.024	1.019	1.021
Glucose	Negative	Negative	Negative
Albunin	Trace	Negative	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	1+	Negative	Sma11
unite Blood Cells*	2-5	6-8	2-3
Red Blood Cells*	10-12	Negative	Rare
Ecitholial Cells*	Frequent	Few	Occasional
Bacteria*	Occasional	Heavy	Negative
Amorphous Crystals*	Heavy	Heavy	Little
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Occ. L.S.**	Occ. U.A.**

^{*}Microscopic (për high power field). **L.S. - Legcine Spheres; U.A. - Uric Acid.

URINALYSIS

RDX - 10 MG/KG

9 WEEKS PRE-DRUG

MONKEY NO. & SEX	
B4050 (M)	
9.0	
1.027	
Negative	
Trace	
Negative	
Negative	
Negative	
6-8	
Negative	
Frequent	
Moderate	
Heavy	
Occasional	
Negative	
Negative	
Occ. U.A.**	
	Negative 6-8 Negative Frequent Moderate Heavy Occasional Negative Negative

^{*}Microscopic (per high power field). **U.A. - Uric Acid.

URINALYSIS

RDX - 10 MG/KG

	<u> </u>	MONKEY NO. & SEX		
	B4050 (M)	B3543 (M)	B3406 (M)	
-;;	8.0	6.5	6.5	
Specific Gravity	1.005	1.016	1.015	
Glucose	Negative	Negative	Negative	
Alburin	Trace	Negative	Negative	
Ketone	Negative	Negative	Negative	
Bile	Negative	Negative	Negative	
Occult Blood	1+	Negative	Negative	
Unite Blood Cells*	8-10	2-3	0-1	
Red Blood Cells*	4-6	Negative	Negative	
Ecithelial Cells*	Frequent	Occasional	Occasional	
Bacteria*	Negative	Moderate	Negative	
Amorphous Crystals*	Heavy	Moderate	Moderate	
P0 ₄ *	Negative	Negative	Negative	
Oxalate*	Negative	Negative	Negative	
Casts*	Negative	Negative	Negative	
Other*			Few L.S.**	

^{*}Microscopic (per high power field). **L.S. = Leucine Spheres.

distribution and

TABLE 7 (continued)

URINALYSIS

RDX - 10 MG/KG

	MONKEY NO. & SEX		
	B4050 (M)	B3543 (M)	B3406 (M)
n t	9.0	8.0	9.0
Specific Gravity	1.027	1.029	1.016
Glucose	Negative	Negative	Negative
Albumin	300 mg	Hegative	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blend Celis*	1-3	Negative	2-5
Rad Blood Cells*	Negative	Negative	Negative
Epitholial Cells*	Occasional	4- 8	Occasional
Bacteria*	Moderate	Negative	Moderate
Amorphous Crystals*	Heavy	Heavy	Moderate
PO_**	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Cas ts*	Negative	Negative	Negative
Other*	Mod. L.S.**	•	

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

RDX - 10 MG/KG

	MONKEY NO. & SEX		
	_B4050 (M)	_83543_(M)	B3466 (M)
ng.	8.0	8.0	6.0
Specific Gravity	1.028	1.029	1.014
Glucose	Negative**	Negative	Negative
Albumán	Trace	Trace	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blood Celis*	2-5	20-25	0-2
Red Blood Cells*	Negative	Negative	Negative
Ecitholial Cells*	Occasional	Frequent	Negative
Bacteria*	Negative	Occasional	Negative
Amorphous Crystals*	Moderate	Heavy	Little
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	Occ. L.S.***	Freq. L.S.*	**

^{*}Microscopic (per high power field).

**Positive for noneglucose reducing substance.

***L.S. -- Leucine Spheres.

URINALYSIS

RDX - 10 MG/KG

	MONKEY NO. & SEX		
	B3733 (F)	B3609 (F)	<u>83739 (F)</u>
7.4	7.0	9.0	8.0
Specific Gravity	1.018	1.012	1.017
Glucose	Negative	Regative	Negative
Albumin	Negative	Trace	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blood Cells*	Negative	3-6	0-2
Red Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Occasional	Many	Negative
Bacteria*	Negative	Negative	Negative
Amorphous Crystals*	Some	Moderate	Negative
PG ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	Fed L.S,**		Many L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

RDX - 10 MG/KG

	1001	KEY NO. & SEX	
	B3773 (F)	B3609 (F)	B3739 (F)
-: 	8.0	9.0	8.0
Srecific Gravity	1.006	120	1.015
Glucose	Negative	Negative	Negative
Albumit.	Negative	30 mg	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Binod	1+	Negative	Negative
Unite Blood Cells*	Occasiona1	12-15	2-3
Red Blood Cells*	2-5	Negative	Negative
Epithelial Cells*	Few	Frequent	Many
Bacteria*	Small	Negative	Small
Amorphous Crystals*	Moderate	Moderate	Moderate
₽0 <u>4</u> *	Negative	Negative	Negative
0xalate*	Negative	Negative	Negative
Cas ts*	Negative	Negative	Negative
Other*			Few U.A.**

^{*}Microscopic (per high power field). **U.A. - Uric Acid.

URINALYSIS

RDX - 10 MG/KG

4 NEEKS

	MONKEY NO. & SEX		
	B3733 (F)	B3609 (F)	B3739 (F)
~ . :	7.5	8.0	-
Specific Gravity	1.005	1.019	-
Glucose	Ne gative	Negative	-
Albumin	Negative	Trace	-
Ketone	Negative	Negative	-
Bile	Negative	Negative	-
Occult Blood	Negative	Negative	-
Unite Blood Cells*	Rare	0-1	-
Red Blood Cells*	Negative	Negative	-
Epitholial Cells*	Rare	Few	-
Bacteria*	Small	Large	-
Amorphous Crystals*	Moderate	Moderate	
P0 ₄ *	Negative	Negative	-
Oxalate*	Negative	Regative	
Casts*	Negative	Negative	-
Other*		Occ. L.S.**	

^{*}Microscopic (per high power field). **L.S. - Leucine Spheres.

URINALYSIS

RDX - 10 MG/KG

	MONKEY NO. & SEX		
	B3733 (F)	_B3609 (F)	B3739 (F)
าส	7.0	8.0	-
Shecific Gravity	1.015	1.019	-
Glucose	Negative	Negative	-
Albumin	Negative	Negative	-
Ketone	Negative	Negative	-
Bile	Negative	Negative	-
Occult Blood	Negative	Negative	-
Unite Blood Cells*	Rare	2-5	-
Red Blood Cells*	Negative	Negative	-
Epitherial Cells*	Rare	Frequent	-
Bacteria*	Small	Occasional	-
Amorphous Crystals*	Moderate	Heavy	-
P0 ₄ *	Negative	Negative	-
Oxalate*	Negative	Negative	<u>.</u>
Casts*	Negative	Negative	-
Other*		Occ. L.S.** Occ. U.A.	

^{*}Microscopic (per high power field).
**L.S. = Leucine Spheres; U.A. - Uric Acid.

URINALYSIS

RDX - 10 MG/KG

	MONKEY NO. & SEX		
	B3733 (F)	B3609 (F)	B3739 (F)
بائع	7.5	6.5	-
Specific Gravity	1.018	1.015	-
Glucose	Negative	Negative	-
Albunia	Negative	Negative	-
Ketone	Negative	Negative	-
Bile	Negative	Negative	-
Occult Blood	Negative	Negative	-
Unite Blood Cells*	1-3	1-3	-
Red Blood Cells*	Negative	Negative	-
Ecithelial Cells*	Occasional	Occasional	-
Bacteria*	Occasional	Moderate	-
Amorphous Crystals*	Moderate	Little	-
PO ₄ *	Negative	Negative	-
Oxalate*	Negative	Negative	-
Casts*	Negative	Negative	-
Other*	Freq. L.S.**	•	

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

TABLE 7 (continued) URINALYSIS

RDX - 1 MG/KG 24 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3952 (M)	B3563 (M)	B4093 (H)
ná	9.0	8.0	5.0
Shecific Gravity	1.034	1.019	1.025
Glucose	Negative	Negative	Negative
Albumin	30 mg	Negative	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blood Cells*	4-5	Negative	0-1
Rod Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Occasional	Occasional	Occasional
Bacteria*	Little	Negative	Negative
Amorphous Crystals*	Much	Negative	Large
DO +	Negative	Occasional	Negative
P0 ₄ *	negative	occas iona i	negacive
Oxalate* .	Negative	Negative	Negative
Cas ts*	Negative	Negative	Negative
Other*		Many L.S.**	0cc. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

RDX - 1 MG/KG

	MOHKEY NO. & SEX		
	83952 (M)	B3563 (M)	B4093 (M)
~#	9.0	7.5	7.0
Greatity	1.033	1.015	1.021
Glucose	Negative	Negative	Negative
Albumin	100 mg	Negative	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Heavy	Negative	Negative
Unito Blood Cells*	7-10	Rare	4-6
Red Blood Cells*	18-20	Negative	Negative
Emithelial Cells*	Frequent	Occasional	Occasional
Bacteria*	Small	Negative	Negative
Amorphous Crystals*	Moderate	Little	Moderate
DO *	Negative	Negative	Negative
P0 ₄ *	negacive	negative	-
Oxalate*	Negative	Many	Negative
Casits*	Negative	Negative	Negative
Other*		Many L.S.**	

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

RDX - 1 MG/KG 9 WEEKS PRE-DRUG

	MONKEY NO. & SEX	
	B3952 (M)	•
cH .	8.5	
Specific Gravity	1.021	
Glucose	Negative	
Albumin	100 тд	
Ketone	Negative	
Bile	Negative	
Occult Blood	Negative	
White Blood Cells*	4-6	
Red Blood Cells*	Negative	
Epithelial Cells*	Frequent	
Bacteria*	Small	
Amorphous Crystals+	Heavy	
DA #	N	
P0 ₄ *	Hegative	
Oxalate*	Negative	
Casts*	Negative	

^{*}Microscopic (per high power field).

URINALYSIS

RDX - 1 MG/KG 4 WEEKS

MONKEY NO. & SEX		
B3952 (II)	B3563 (M)	B4093 (M)
6.0	7.0	7.5
1.017	1.010	1.014
Negative	Negative	Negative
Negative	Negative	Negative
2+	Negative	Negative
Negative	Negative	Negative
Negative	Negative	Slight Trace
Rare	Negative	0-1
Negative	Negative	Negative
Few	Occasional	Occasional
Moderate	Negative	Negative
Heavy	Moderate	Little
Negative	Negative	Negative
Negative	Negative	Negative
Negative	Negative	Negative
	Few L.S.**	Few L.S.**
	B3952 (M) 6.0 1.017 Negative Negative 2+ Negative Rare Negative Few Moderate Heavy Negative	B3952 (M) 6.0 7.0 1.017 1.010 Negative Negative

The manufacture of the second second

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

RDX - 1 MG/KG 8 WEEKS

	MONKEY NO. & SEX		
	B3952 (M)	B3563 (M)	B4093 (14)
ad	7.0	8.0	6.5
Specific Gravity	1.023	1.009	1.014
Glucose	Negative	Negative	Negative
Albumin	Negative	Negative	Negative
Ketone	degative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
√hite Blood Cells*	Negative	2-3	Rare
Red Blood Cells*	Negativ€	Negative	Negative
Emithelial Cells*	Few	Rare	Negative
Bacteria*	Moderate	Negative	Small
Amorphous Crystals*	Heavy	Moderate	Little
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Neg tive
Cas ts*	Negative	Negative	Negative

^{*}Microscopic (per high power field).

TABLE 7 (continued) URINALYSIS

RDX - 1 MG/KG 13 WEEKS

	MONKEY NO. & SEX		
	B3952 (N)	B3563 (M)	B4093 (H)
掘	8.0	6.5	6.0
Shecific Gravity	7.030	1.006	1.009
Glucose	Negative	Negative	Negative
Albumin	Trace	Negative	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blood Cells*	2-4	2-3	Rare
Red Blood Cells*	Negative	Negative	Negative
Ecithelial Cells*	Occasional	Negative	Negative
Bacteria*	Occasiona!	Moderate	Smalî
Amorphous Crystals*	Moderate	Moderate	Little
	•		M
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Ne gative	Negative
Casts*	Ne gative	Negative	Negative

^{*}Microscopic (per high power field).

talesque al r

TABLE 7 (continued)

URINALYSIS

RDX - 1 MG/KG 24 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3599 (F)	B3891 (F)	83718 (F)
~ ?	6.0	5.0	6.0
Shecific Gravity	1.009	1.009	1.011
Glucos@	Negative	Negative	Negative
Albusin	Trace	Negative	100 m.g
Ketone	Negative	Negative	Negative
Bile	Negativ e	Negative	Negative
Occult Blood	Sma11	Negative	3+
Unite Blood Cells*	0-3	1-3	8-10
Red Blood Cells*	0-1	Negative	TNTC
Ecithelial Cells*	Few Squamous	Occasional	Occasional
Bacteria*	Negative	Negative	Negative
Amorphous Crystals*	Some	Moderate	Little
PO ₄ *	Negative	Negative	Negative
0xalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Occ. U.A.**	

^{*}Microscopic (per high power field).

URINALYSIS

RDX - 1 MG/KG

	MONKEY NO. & SEX		
	B3599 (F)	B3891 (F)	B3718 (F)
^ #	9.0	7.5	8.0
Smecific Gravity	1.024	1.036	1.017
Glucose	Negative	Negative	Negative
Alburin	30 mg	100 mg	Trace
Ketone	Negative	Hegative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Small	Heavy	1+
Unite Blood Cells*	5-6	18-20	6-8
Red Blood Celis*	3-4	TNTC	10-15
Ecithelial Cells*	Frequent	Few	Many
Bacteria*	Heavy	Negative	Moderate
Amorphous Crystals*	Heavy	Heavy	Moderate
P0 ₄ *	Negative	Few	Negative
0xalate*	Negative	Negative	Negative
Casts*	Negative	Rare, Finely Granular	/ N e gative

^{*}Microscopic (per high power field).

URINALYSIS

RDX - 1 MG/KG

	MON	KEY NO. & SEX
	B3891(E)	
್ಷ	0.3	7.0
Specific Gravity	1.034	1.017
Glucose	Negative **	Negative
Alberin	30 mg	30 mg
Ketone	Negative	Negative
Bile	Negative	Negative
Occult Blood	1+	Negative
Unite Blood Cells*	2-4	6-8
Red Blood Cells*	10-12	Negative
Ecithelial Cells*	Few	Frequent
Bacteria*	Sma11	Moderate
Amorphous Crystals*	Moderate	iłeavy
PG ₄ *	Negative	Negative
Oxalate*	Negative	Negative
Cas ts*	Negative	Negative
Other*		Occ. L.S.***

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***L.S. -- Leucine Spheres.

URINALYSIS

RDX - 1 MG/KG 4 WEEKS

	MONKEY NO. & SEX		
	B3599 (F)	B3891 (F)	B3718 (F)
~. :	6.0	6.0	8.0
Shecific Gravity	1.004	1.033	1.032
Glucose	Negative	Negative **	Negative
Albumin	Negative	Trace	Trace
Ketone	1+	2+	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negativo	Negative
Unite Blood Cells*	3-4	5-7	0-1
Rod Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Many	Few	Few
Bacteria*	Moderate	Moderate	Negative
Amorrhous Crystals*	Moderate	Heavy	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		0cc. U.A.**	* Many L.S.***

The Control of the Co

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substance.

***U.A. - Uric Acid; L.S. - Leucine Spheres.

URINALYSIS

RDX - 1 MG/KG 8

8 WEEKS

	MONKEY NO. & SEX		
	B3599 (F)	B3891 (F)	B3718 (F)
ا. ب	7.0	8.0	7.5
Specific Gravity	1.016	1.026	1.031
Glucose	Negative	Negative	Negative
Albumin	Negative	Negative	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Megative
Unite Blood Cells*	Rare	Rare	1-3
Rcd Blood Cells*	Negative	Negative	Negative
Etithelial Cells*	5-15	0-2	Rare
Bacteria*	Light	Negative	Moderate
Amorrhous Crystals*	Moderate	Heavy	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
	•	-	•
Casts*	Hegative	Negative	Negative
Other*			Occ. U.A.**

^{*}Microscopic (per high power field): **U.A. - Uric Acid.

URINALYSIS

RDX - 1 MG/KG

13 WEEKS

	MONKEY NO. & SEX		
	B3579 (F)	B3891 (F)	B3718 (F)
аН	7.0	6.5	7.0
Specific Gravity	1.012	1.022	1.021
Glucose	Negative	Negative	Negative
Albumin	Negative	30 mg	50 mg
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
White Blood Cells*	0-2	8-10	8-10
Red Blood Cells*	Negative	Negative	Occasional
Epithelial Cells*	Occasional	Occasional	Occasional
Bacteria*	Moderate	Small	Occasional
Amorphous Crystals*	Little	heavy	Heavy
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	0cc. L.S.**	0cc. L.S.*	•

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

のでは、これには、日本のでは、日本

TABLE 7 (continued)

URINALYSIS

RDX - 0.1 MG/KG

	MONKEY NO. & SEX		
	B4254 (M)	B3776 (M)	B3709 (M)
~H	8.0	7.5	7.0
Shecific Gravity	1.021	1.019	1.015
Glucose	Negative	Nega tive	Negative
Albumin	Negative	Negative	100 mg
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Trace
Unite Blood Cells*	Negative	0.2	Occasional
Red Blood Cells*	Negative	Negative	1-3
Ecithelial Cells*	Few	Negative	Rare
Bacteria*	Some	Negative	Negative
Amorphous Crystals*	Some	Little	Moderate
DO +	Nogrativo	Nogativo	Nogatávo
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	Heavy L.S.**	Occ. L.S.**	

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

TABLE 7 (continued)

URINALYSIS

RDX - 0.1 MG/KG

10 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B4254 (M)	B3776 (M)	B3709 (M)
÷4	8.0	9.0	8.0
Specific Gravity	1.021	1.023	1.032
Glucose	Negative	Negative	Negative**
Alburtin	Negative	Trace	30 mg
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Moderate	Negative
Unite Blood Cells*	4-6	2-4	2-4
Rcd Blood Cells*	Negative	10-12	Occasional
Emithelial Cells*	Occasional	Negative	Many
Bacteria*	lag ative	Negative	Negative
Amorphous Crystals*	Moderate	Little	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Occ. T.P.***	Occ. T.P.***

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***T.P. - Triple Phosphate.

URINALYSIS

RDX - 0.1 MG/KG

	MUN	KEY NO. & SEX	
	B3776 (M)	B3709 (M)	
cH	9.0	7.0	
Specific Gravity	1.020	1.012	
Glucose	Negative	Negative	
Albumin	30 mg	Negative	
Ketone	Negative	Negative	
Bile	Negative	Negative	
Occult Blood	Negative	Regative	
White Block Cells*	2-4	2-3	
Red Blood Cells*	Negative	Negative	
Epithelial Cells*	Rare	Occasional	
Bacteria*	Small	Sma 11	
Amorphous Crystals*	Heavy	Moderate	
P0 ₄ *	Negative	Negative	
Oxalate*	Negative	Negative	
Cas ts*	Negative	Negative	

^{*}Microscopic (per high power field).

Haller State of the State of th

a septimental

TABLE 7 (continued)

URINALYSIS

RDX - 0.1 MG/KG 4 WEEKS

	<u>1001</u>	KEY NO. & SEX	
	B4254 (M)	B3776 (M)	B3709 (M)
್ಣ	5.0	8.0	7.0
Shecific Gravity	1.007	1.0.1	1.025
Glucos*	Negative	Negacice	Negative
Alburii	Trace	Negative	Trace
Ketone	1+	Negative	Negative
Bile	Negative	Negative	Negative
Oscult Blood	Negative	Negative	Negative
Unite Blood Cells*	1-2	Negative	Negative
Red Blood Cells*	Negative	Negative	Negative
Ecithelial Cells*	Rare	Occasional	Occasional
Bacteria*	Moderate	Negative	Negative
Amorphous Crystals*	Moderate	Heavy	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Few L.S.**	Many L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

RDX - 0.1 MG/KG 8 WEEKS

	MONKEY NO. & SEX		
	B4254 (M)	B3776 (M)	B3709 (M)
~ ;	7.0	7.5	7.0
Shecific Gravity	1.018	1.031	1.020
Giucos#	Negative	Negative	Negative
Albumin	Negative	Negative	Trace
Ketone	Negative	Negative	Negative
Bile	Negati	···ive	Negative
Occult Blood	Negative	:. ive	Negative
Unito Blood Cells*	Negative	<i>3</i>	2-3
Red Blood Cells*	Negative	Negative	Negative
Emithelial Cells*	0-2	Occasional	Occasional
Bacteria*	Light	Occasional	Heavy
Amorphous Crystals*	Moderate	Heavy	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Rare L.S.**	Occ. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

RDX - 0.1 MG/KG

13 WEEKS

	M	CNKEY NO. & SEX	
	B4254 (M)	B3776 (M)	B3709 (M)
[*] ಗೆ	9.0	7.0	6.5
Specific Gravity	1.015	1.029	1.018
Glucose	Negative	Negative	Negative
Albuctis	30 mg	30 mg	Negative
Ketone	Negative	Negative	Negative
Bile	Negrti	Negative	Negative
Occult Blood	Neg 35 5%	Negative	Negative
Unite slood Cells*	0-2	Rare	0-1
Red Blood Cells*	Negative	Negative	Negative
Enithelial Cells*	Rare	Frequent	Negative
Bacteria*	Moderate	Moderate	Occasional
Amorrhous Crystals*	Heavy	Heavy [.]	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Occ. L.S.**	Occ. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

UPINILYMS

RDX - 0.1 MG/KG 24 WEEKS PRE-DRUG

	011	NKEY NO. & SE	(
	B3613 (F)	B3646 (F)	B3617 (F)
~;;	6.5	6.0	8.0
Shedific Engvity	1.014	1.014	1.014
Glucos	Negative	Negative	Negative
Albur 15	Megative	Negative	Trace
Ketone	Negative	Negative	Negative
Sile	Negative	Negative	Negative
Occult Blood	Negative	Trace	Trace
Unite Bloom Colls*	2-3	6-8	1-3
Red Blood Cells*	Negative	2-3	Occasional
Emithelial Cells*	Frequent	Few	Many
Bacteria*	Occasional	Negative	Rare
Amorrhous Crystals*	Heavy	Little	Little
Dn *	Negative	Negative	Negative
P0 ₄ *	•	_	-
Oxalate*	Regative	Negative	Negative
Casits*	Negative	Negative	Negative

^{*}Microscopic (per high power field).

"PRINCEY" IS

RDX - 0.1 MG/KG

	1/(ONKEY NO. & SE)	(
	B3613 (F)	B3646 (F)	B3617 (F)
7.5	7.5	8.0	8.0
annuific Gravity	1.031	1.026	1.020
Glicosc	Negative	Negative	Negative
Alburi	30 mg	Trace	Trace
Ketone	Negative	Negative	Negative
3110	Negative	Negative	Negative
Occult Blood	Negative	Negative	1+
Unita Glood Cells*	1-3	2-3	6-8
Rod Blood Colls*	Negative	Negative	10-12
Enithelial Cells*	Few	Few	Frequent
Bacteria*	Moderate	Small	Moderate
Amorthous Crystals*	Heavy	Moderate	Heavy
	81 - m - A d	Nogotivo	Nogativo
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Many	Negative	Negative
C:sts*	Negative	Negative	Negative

^{*}Microscopic (per high power field).

URBITLY 15

RDX - 0.1 MG/KG 4 WEEKS

	MON	KEY NO. & SEX	
	63613 (F)	B3646 (F)	B3617 (F)
°.,	6.0	9.0	8.0
Dincific Gravity	1.035	1.027	1.026
Glucose	Negative	Negative**	Negative
Alburis	Trace	390 mg	Negative
Ketone	4+	4+	Negative
dile	Negative	Negative	Negative
Occult Blood	Negative	4+	1+
Unite blood Cells*	2-4	6-8	0-ï
Red Blood Cells*	Negative	8-10	25+
Enithelial Cells*	Few	Frequent	Occasional
Bacteria*	Negative	Moderate	Some
Amonghous Crystals*	Moderate	Moderate	Heavy
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Few	Negative
C:sts*	Negative	0-2 Coarsely Granular	યegative
Other*	Freq. U.A.***	Few T.P.***	Many L.S.***

^{*}Microscopic (per high power field).

**Positi e for non-glucose reducing substance.

***U. A. - Uric Acid; T.P. - Triple Phosphate; L.S. - Leucine Spheres.

UNITED IN

RDX - 0.1 MG/KG 8 WEEKS

	M	ONKEY NO. & SE	χ
	B3613 (F)	B3646 (F)	B3617 (F)
~	8.0	6.5	7.5
s noific Gravit'	1.032	1.035	1.031
Glucos*	Negative	Negative	Negative**
Alburis	Negative	Trace	Trace
Ketone	Negative	Negative	Negative
Sile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unito blood Calis*	Negati: 2	3-5	Rare
Rud Bined Celis*	Negative	Negative	Negative
Shirhelial Cells*	Negative	Frequent	Rare
Basteria*	Negative	Occasional	Negative
Amonchous Crystalo*	Heavy	Much	Little
P0 <u>&</u> ≠	Regative	Negative	Negative
Oxalate*	Negativa	Negative	Negative
Casits*	Negative	Negative	Negative
ůther*		Occ. L.3.*	** Rare L.S.*

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***L.S. - Leucine Spheres.

-

TABLE 7 (continued)

學出現,545

RDX - 0.1 MG/KG 13 WEEKS

	1011	KEY NO. & SEX	
	B3613 (F)	B3646 (F)	B3617 (F)
n.,	7.5	8.0	9.0
Unneific Gravity	1.027	1.034	1.030
Glucose	Negative	Negative	Negative
Alburi:	Negative	100 mg	100 mg
Ketone	Megative	Negative	Negative
Dile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unito Slood Calls*	Occasional	20-25	2-4
Red Blood Colls*	Negative	degative	Negative
Enithelial Cells*	Occasional	Frequent	Occasional
Bacteria*	Little	Moderate	Moderate
Amorrhous Crystals*	Little	Heavy	Heavy
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	Occ. L.S.**		Freq. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

TNT - 1 MG/KG 24 WEEKS PRE-DRUG

	MO	NKEY NO. & SEX	
	83697 (M)	B3775 (M)	B4301 (M)
nif	5.0	9.0	8.0
Specific Gravity	1.021	1.034	1.034
Glucose	Negative	Negative	Negative
Albumin	Trace	Trace	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
White Blood Cells*	7-3	1-3	0-1
Red Blood Cells*	Negative	Negative	0-1
Epithelial Cells*	Rare	Occasional	Occ. Squamous
Bacteria*	Negative	Negative	Negative
Amorphous Crystals*	Little	Moderate	Some
PO ₄ *	Nagadina	Alman A.S.	
•	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*			Occ. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

TNT - 1 MG/KG 10 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3697 (M)	B3775 (M)	B4301 (M)
n d	8.0	6.5	8.0
Specific Gravity	1.022	1.017	1.017
Glucose	Negative	Negative	Negative
Albumin	Trace	30 mg	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	1+	1+	Negative
White Blood Cells*	4-6	1-2	2-3
Red Blood Cells*	3-5	12-15	Negative
Epithelial Cells*	Occasional	Occasional	Frequent
Bacteria*	Negative	Small	Small
Amorphous Crystals*	Moderate	Moderate	Moderate
P() *	Nogativo	Nogativo	Nogativo
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Megative	Negative

The first of the second second

^{*}Microscopic (per high power field).

URINALYSIS

TNT - 1 MG/KG

	MONKEY NO. & SEX	
	B3775 (#1)	
гн	8.0	
Specific Gravity	1.019	
Glucose	Negative	
Albumin	30 mg	
Ketone	Negative	
Bile	Negative	
Occult Blood	Negative	
White Blood Cells*	2-4	
Red Blood Cells*	Negative	
Epithelial Cells*	Occasional	
Bacteria*	Negative	
Amorphous Crystals*	Little	
DO →		
P0 ₄ *	Occasional	
Oxalate*	Negative	
Cas ts*	Negative	

[&]quot;Microscopic (per high power field).

URINALYSIS

TNT - 1 MG/KG 4 WEEKS

MONKEY NO. & SEX		
B3697 (M)	B3775 (M)	B4301 (M)
6.0	6.5	7.5
1.008	1.010	1.030
Negative	Negative	Negative
Negative	Negat 've	Negative
Negative	Negative	Negative
Negative	Negative	Negative
Negative	Negative	Negative
2-4	2-5	1-3
Negative	Negative	Negative
Rare	Occasional	Negative
Negative	Small	Negative
Little	Moderate	Moderate
Negative	Negative	Negative
Negative	Negative	Negative
Regative	Negative	Negative
		Freq. L.S.**
	B3697 (M) 6.0 1.008 Negative Negative Negative Negative 2-4 Negative Rare Negative Little Negative	B3697 (M) 6.0 6.5 1.008 1.010 Negative Small Little Negative Negative

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

TNT - 1 MG/KG 8 WEEKS

	MONKEY NO. & SEX		
	B3697 (M)	B3775 (M)	B4301 (M)
nt	7.ũ	8.0	9.0
Specific Gravity	1.027	1.029	1.035
Glucose	Negative	Negative	Negative
Albumin	Negative	Negative	30 mg
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blood Cells*	Negative	Negative	8-10
Red Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Negative	1-4 Squam.	Frequent
Bacteria*	Negative	Light	Small
Amorphous Crystals*	Heavy	Light	Heavy
P.O.4.*	Few	Negative	Occasional
Oxalate*	Negative	Light	Negative
Casts*	Negative	Negative	Negative

^{*}Microscopic (per high power field).

URINALYSIS

TNT - 1 MG/KG

13 WEEKS

	MC	NKEY NO. & SE)	(
	B3697 (M)	B3775 (M)	B4301 (M)
ત્ત	7.5	7.5	8.0
Smecific Gravity	1.013	1.032	1.058
Glucose	Negative	Negative	Negative
Albumin	Negative	30 mg	Trace
Ketone	Negative	Negative	Small
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
White Blood Cells*	Rare	10-12	1-2
Red Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Rare	Frequent	Frequent
Bacteria*	Moderate	Moderate	Sma 11
Amorphous Crystals*	Little	Heavy	Moderate
PO4*	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Freq. L.S.	** Freq. L.S.*

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

TRITLEY IS

TNT - 1 MG/KG

	MONKEY NO. & SEX		
	B3857 (F)	B3516 (F)	B3928 (F)
7 .4	8.0	5.0	7.5
Gracific Gravity	1.017	1.008	1.009
Glucose	Negative	Negati .	Negative
Alburis	Negative	Negative	Negative
Ketone	Negative	Negative	Negative
Dile	Negative	Negative	Negative
Occult Blood	Sma11	Trace	Negative
Unite Blood Cells*	0-1	2-5	1-3
Red Blood Cells*	0-3	Rare	Negative
Enithelial Cells*	Occ. Squamous	s Few	Frequent
Bacteria*	Negative	Negative	Negative
Amorrhous Crystals*	Negative	Moderate	Heavy
00.4	Negative	Negative	Negative
P0 ₄ *	•	-	•
Oxalate*	Negative	Negative	Negative
Cas ts*	Negative	Negative	Negative
Other*	Many L.S.**		

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

PRINCEYSES

THT - 1 11G/KG

	MONKEY NO. & SEX		
	B3857 (F)	B3516 (F)	B3928 (F)
-	9.0	5.0	8.0
and the Trivity	1.028	1.014	1.026
Sturnsr	Negative	Negative	Negative
Albur i	Trace	Trace	100 mg
Katana	Negative	Negative	Negative
311e	Negative	Negative	Negative
Occult Blood	1+	Small	Heavy
Unito Wicos Collist	2-5	1-3	2-3
Rid Blood Cells*	8-10	2-5	Many
Eritholial Colls*	Occasional	Few	Frequent
Bactoria*	Moderate	Sma11	Negative
Amorrhous Crystals*	Heavy	Moderate	Heavy
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casits*	Negative	Negative	Negative
Other*	Occ. L.S.**		

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

- and the second of the contraction of the contract

TABLE 7 (continued)

"RINLYSI".

TNT - 1 MG/KG

	MONKEY NO. & SEX
	B3928 (F)
~	9.0
unneific Enavity	1.022
Glucost	Negative**
Albie i	Trace
Ketone	Negative
Sile	Negative
Occult Blood	Negative
Unite Winod Calls*	2-4
Rad Blood Cells*	Negative
Chithelial Cells*	Occasional
Bacteria*	Occasional
Amorthous Crystals*	Heavy
PO4*	Negative
Oxalate*	Negative
Casits*	Negative

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substance.

URINALYSIS

TNT - 1 MG/KG 4 WEEKS

	MONKEY NO. & SEX		
	B3857 (F)	B3516 (F)	B3928 (F)
~ ,	7.5	7.0	7.5
Grecific Gravity	1.024	1.042	1.035
Glucosc	Negative**	Negative**	Negative
Albur 15	100 mg	Negative	Trace
Ketone	3+	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Trace
Unito ploon Cells*	0-2	0-1	0-1
Red Blood Cells*	Negative	Negative	25+
Emithelial Cells*	Rare	Occasional	Occasional
Bacteria*	Negative	Negative	Negative
Amonthous Crystals*	Heavy	Moderate	Negativ.
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative 🕚	Negative
Other*	Occ. U.A.***	Occ. L.S.**	+

^{*}Microscopic (per high power field).

**Positive for non-reducing substances.

***U.A. - Uric Acid; L.S. - Leucine Spheres.

URITALYSIS

TNT - 1 MG/KG 8 WEEKS

	1401	KEY NO. & SEX	
	B3857 (F)	B3516 (F)	B3928 (F)
" .	8.0	8.0	9.0
a confin frivity	1.031	1.024	1.027
Silvens	Negative	Regative	Negative
Albur i	Negative	Negative	Negative
Ketone	Negative	Negative	Negative
Sile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
unico Slood Cells*	Negative	0-2	1-2
Rud Blood Cells*	Negative	Negative	Negative
Emithelial Colls*	0-2 Squam.	Occasional	Frequent
Bactoria*	Moderate	Negative	Moderate
Amorphous Crystals*	Moderate	Moderate	Heavy
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Few	Negative	Negative
C.sts*	Negative	Negative	Negative
Other*			0cc. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

UPINIEYSI V

TNT - 1 MG/KG 13 WEEKS

	MOHKEY NO. & SEX		
	B3857 (F)	B3516 (F)	B3928 (F)
~ ,	8.0	6.5	8.0
Decific Gravita	1.031	1.021	1.031
Glucosr	Negative**	Regative	Negative
Alburi	100 mg	Negative	Negative
Katona	Negative	Negative	Negative
Dile	Negative	Negative	Negative
Occult Blocd	Negative	Negative	Negative
Unite wicen Celis*	15-20	0-2	4-6
Red Block Cells*	Negative	Negative	Negativo
Enithelial Cells*	Many	Negative	Frequent
Bactrina*	Occasional	Small	Negative
Amonghous Crystals*	Heavy	Heavy	Неачу
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casits*	hegative	Negative	Negative
Other*		Occ. U.A.**	*

The state of the s

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***U.A. - Uric Acid.

RILLLYSI .

TNT - 0.1 MG/KG 24 WEEKS PRE-DRUG

	MOHKEY NO. & SEX		
	B3782 (M)	B3773 (M)	B3427 (M)
•	9.0	9.0	8.0
Socific fruvit	1.022	1.023	1.015
Gluchs	Negative	Negative	Negative
Alburi	Negative	Negative	Trace
Ketone	Negative	Negative	Negative
ุธi ์ e	Negative	Negative	Negative
Occult Blood	Trace	Negative	2+
Unito Wines Cells*	Rare	0-2	Occasional
Red Blood Cells*	Very rare	Negative	10-12
Enithelial Cells*	Rare	Rare	Few
Bacteria*	Negative	Negative	Moderate
Amorrhous Crystals*	Little	Little	Heavy
P0 ₄ *	Negative	Negative	Occasional
Oxalate*	Negațive	Negative	Negative
C:sts*	Negative	Negative	Negative
Other*	Few L.S.**		

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

MRIG LYTIN

TNT - 0.1 MG/KG

	MONKEY NO. & SEX		
	B3782 (M)	B3773 (M)	B3427 (M)
۲.,	7.5	8.0	6.3
5 ocific fravity	1.028	1.013	1.021
Glucos	Negative	Negative	" sative
Alburi	Trace	Negative	Negative
Ketone	Negative	Negative	Negative
Sile	Negative	Negative	Negative
Orbult Blood	1+	1-3	Trace
Unite place Cells*	3-4	Negative	2-5
Rad Blood Cells*	10-12	Occasional	3-4
E ithelial Cells*	Negative	Negative	Rare
Bacteria*	Negative	Negative	Heavy
Amonahous Crystals*	Keavy	Moderate	Heavy
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
C:sts*	Negative	Negative	Negative
Other*	Few L.S.**		Occ. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URIN'LY'IS

TNT - 0.1 MG/KG 9 WEEKS PRE-DRUG

	MONKEY NO. & SEX
	R3782 (M)
~ .	9.0
armsific Fravity	1.023
Glychse	- Negative
Alburi:	Negative
Ketone	Negative
üile	Negative
Occult Blood	Trace
Unite Blood Cells*	3-4
Red Blood Cells*	0-2
Emithelial Cells*	Few
Bacteria*	Negative
Amorrhous Crystals*	Moderate
PO ₄ *	Negative
4 Oxalate*	Negative
C:sts*	Negative

^{*}Microscopic (per high power field).

URINALYSIS

TNT - 0.1 MG/KG 4 WEEKS

	MO	NKEY NO. & SEX	
	B3782 (M)	B3773 (M)	B3427 (M)
nd	6.5	7.0	8.0
Specific Gravity	1.013	1.015	1.028
Glucose	Negative**	Negative	Negative
Albumin	Negative	Negative	30 mg
Ketone	· Trace	1+	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
√hite Blood Cells*	3-4	2-3	Negative
Red Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Few	Occasional	Occasional
Bacteria*	Moderate	Moderate	Some
Amorphous Crystals*	Heavy	Moderate	Heavy
PO <u>4</u> *	Negative	Negative	Negative
Oxalate*	Negative	Negacive	Negative
Casts*	Negative	Negative	Negative
Other*			Many L.S.***

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substance.

***L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.1 MG/KG 8 WEEKS

	MON	KEY NO. & SEX	
	B3782 (M)	B3773 (M)	B3427 (M)
pH	8.0	8.0	6.5
Specific Gravity	1.026	1.032	1.024
Glucose	Negative	Negative	Negative
Albumin	Negative	Trace	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Jhite Blood Cells*	Negative	Negative	0-1
Red Blood Ceils*	Negative	Negative	Negative
Epithelial Cells*	0-2 Squam.	2-4 Squam.	Negative
Bacteria*	Negative	Negative	Moderate
Amorphous Crystals*	Heavy	Moderate	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative

^{*}Microscopic (per high power field).

URINALYSIS

TNT - 0.1 MG/KG

13 WEEKS

	MONKEY NO. & SEX		
	B3782 (M)	B3773 (M)	B3427 (M)
Ha	7.5	8.0	6.5
Specific Gravity	1.026	1.024	1.024
Glucose	Negative	Negative**	Negative
Albumin	Trace	Trace	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
White Blood Cells*	2-4	1-4	0-1
Red Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Frequent	Rare	Negative
Bacteria*	Cccasional	Moderate	Moderate
Amorphous Crystals*	Heavy	Moderate	Moderate
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Regative	Negative
Other*	0cc. L.S.** 0cc. S.C.	*	

^{*}Microscopic (per high power field).
**Positive for non-glucose reducing substance.
***L. S. - Leucine Spheres; S.C. - Sulfa Crystals.

URINGLYSIS

TNT - 0.1 MG/KG 24 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3720 (F)	B3608 (F)	B3863 (F)
-:	9.0	7.0	7.5
Sincific Gravity	1.016	1.007	1.026
Glucose	Negative	Negative	Negative
Albumin	Trace	Negative	Negative
Ketone	Negative	Negative	Negative
Cile	Negative	Negative	Negative
Occult Blood	Negative	Trace	Negative
Unito Blood Cells*	0-1	4-6	1-2
Red Blood Cells*	0-1	0-2	Negative
Emitholial Cells*	Many	Occasional	Occasional
Bacteria*	Negative	Heavy	Negative
Amorrhous Crystals*	Negative	Heavy	Heavy
P0 ₄ *	Negative	Regative	Negative
0xalate*	Occasional	Negative	Negative
Casits*	Negative	Negative	Negative

^{*}Microscopic (par high power field).

TRIBLIYETS.

TNT - 0.1 MG/KG 10 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3720 (F)	B3608 (F)	B3863 (F)
~,	9.0	9.0	6.0
Shecific Gravity	1.051	1.023	1.026
Slucos#	Negative**	Negative	Negative
Alburia	300 mg	Trace	Negative
Ketone	Negative	Negative	1+
Bile	Negative	Negative	Negative
Occult Blood	3+	Small	Sma11
Unite Blood Cells*	1-3	2-5	1-4
Red Blood Cells*	18-20 occ. clumps	Rare	2-5
Enitholial Cells*	Frequent	Frequent	Frequent
Bacteria*	Negative	Moderate	Negative
Amorphous Crystals*	Moderate	Heavy	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Few
Casts*	0-2 Finely	Negative	Negative
Other*	Granular	Occ. U.A.**	•

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***U.A. - Uric Acid.

UPLUTATE

TNT - 0.1 MG/KG 9 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3720 (E)		
- .	9.0		
Shooifin Gravity	1.031		
Glucos	Negative		
Alburi:	30 mg		
Ketone	Negative		
Bile	Negative		
Occult Blood	Moderate		
Unito Sloom Calls*	0-1		
Rud Blood Cells*	None		
Emitholial Colls*	4-1		
Bactoria*	Negative		
Amonthous Crystals*	Moderate		
P0 ₄ *	Negative		
Oxalate*	Negative		
Casits*	Negative		

^{*}Microscopic (per high power field).

URINALYSIS

TNT - 0.1 MG/KG 4 WEEKS

	<u> </u>	NKEY NO. & SEX	<u> </u>
	B3720 (F)	B3608 (F)	B3863 (F)
nd .	6.0	7 5	8.0
Shecific Gravity	1.009	1.009	1.032
Glucose	Negative	Negative	Negative
Albumin	Trace	Trace	Negative
Ketone]+	Trace	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blood Cells*	1-3	0-2	Negative
Red Blood Cells*	Negative	Negative	Negative
Ecithelial Cells*	Few	Negative	Occasional
Bacteria*	Small	Moderate	Negative
Amorphous Crystals*	Moderate	Moderate	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Many
Casts*	Negative	Negative	Negative
Other*		Few U.A.**	Many L.S.**

^{*}Microscopic (per high power field).
**U.A. - Uric Acid; L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.1 MG/KG 8 WEEKS

	MONKEY NO. & SEX		
	B3720 (F)	B3608 (F)	B3863 (F)
na na	8.0	8.0	8.0
Simplific Gravity	1.034	1.028	1.030
Glucos	Negative	Negative	Negative
Alburin	Trace	Trace	Megative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Trace	Negative	Negative
Unito Blood Calls*	1-3	0-1	2-4
Rod Blood Ceils*	Negative	Negative	Negative
Frithelial Cells*	2-5 Squam.	1-3 Squam.	Occasional
Bacteria*	Light	Negative	Small
Amorphous Crystals*	Heavy	Light	Moderate
PO <u>4</u> *	Negative	Negative	Negative
Oxalate*	Negative	Few	Negative
Cas ts*	Negative	Negative	Negative
Other*			0cc. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.1 MG/KG 13 WEEKS

	MONKEY NO. & SEX		
	B3720 (F)	B3608 (F)	B3863 (F)
7.4	8.0	6.5	6.5
Specific Gravity	1.030	1.011	1.029
Glucosc	Negative	Negative**	Negative
Alburin	30 mg	Trace	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Trace	Negative
Unite Plood Cells*	1-3	2-3	1-3
Red Blood Cells*	Regative	2-4	Negative
Epithelial Cells*	Frequent	Occasional	Occasional
Bacteria*	Moderate	Small	Negative
Amorrhous Crystals*	Heavy	Heavy	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	0cc. L.S.***	t	Occ. L.S.***

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.02 MG/KG

	MONKEY NO. & SEX		
	<u>B3559 (M)</u>	B3848 (M)	B4239 (M)
nH Ha	0.8	8.0	7.0
Specific Gravity	1.022	1.021	1.022
Glucose	Negative**	Negative	Negative
Albumin	30 mg	30 mg	Negative
Ketone	Negative	Negative	Negative
Bile	Negacive	Negative	Negative
Occult Blood	Negative	Trace	Negative
White Blood Cells*	0-2	0-2	0-1
Red Blood Calls*	Negative	Rare	Negative
Epithelial Cells*	Occasional	Occasional	Occ. Squam.
Bacceria*	Negative	Negative	Negative
Amorphous Crystals*	Little	Moderate	Large
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Freq. L.S.	* *

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.02 MG/KG 10 WEEKS PRE-DRUG

	MONKEY NO. & SLX		
	B3559 (M)	B3848 (M)	B4239 (M)
pi:	7.0	6.5	0.8
Srecific Gravity	1.027	1.026	1.015
Glucose	Negative	Negative	Negative
Albumin	Trace	Trace	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult B3 od	Small	Small	Negative
White Blood Cells*	1-3	Rare	Rare
Red Blood Cells*	3-5	Rare	Negative
Epithelial Cells*	Few	Occasional	Rare
Bacteria*	Negative	Negative	Moderate
Amorphous Crystals*	Little	Little	Moderate
20.4			
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Regative	Neyative
Casts*	Negative	Nega ive	Negative
Other*	Occ. U.A.**	Occ. U.A.**	

^{*}Microscopic (per high power field).
**U.A. ~ Uric Acid.

URINALYSIS

TNT - 0.02 MG/KG 4 WEEKS

	MOI	NKEY NO. & SEX	
	B3559 (M)	B3848 (M)	B4239 (M)
9H	6.0	6.5	8.0
Specific Gravity	1.021	1.012	1.035
Glucose	Negative**	Negative	Negative
Albumin	Trace	Negative	Negative
Ketone	1+	Negative	Negative
Bile .	Negative	Negative	Negative
Occult Blood	Negaťive	Negative	Negative
Ahite Blood Cells*	2-3	0-2	0-1
Red Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Rare	Occasional	Occasional
Bacteria*	Moderate	Some	Negative
Amorphous Crystals*	Moderate	Negative	Moderate
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Few	Negative	Negative
Cas ts*	Negative	Negative	Negative
Other*			Occ. L.S.***

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.02 MG/KG 8

8 WEEKS

	MONKEY NO. & SEX		
	B3559 (M)	B3848 (M)	B4239 (M)
рH	7.0	7 0	8.0
Specific Gravity	1.028	1.017	1.034
Slucose	Negative	Negative	Negative**
Albumin	Nagative	Negative	Negative
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
White Blood Cells*	0-2	3-6	8-6
Red Blood Cells*	Negative	Negative	Negative
Epithelial Cells*	Negative	Few	Frequent
Bacteria*	Light	Moderate	Moderate
Amorphous Crystals*	Moderate	Moderate	Moderata
PO4*	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*		Occ. L.S.***	Few L.S.*** Occ. U.A.

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substance.

***L.S. - Leucine Spheres; U.A. - Uric Acid.

URINALYSIS

TNT - 0.02 MG/KG

13 WEEKS

	MONKEY NO SEX		
	B3559 (M)	B384f (M)	B4239 (M)
эH	8.0	6.5	6.5
Specific Gravity	1.008	1.008	1.033
Glucose	Negative	Negative	Negative
Albumin	Negative	Negative	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
White Blood Cells*	4-6	1-3	0-2
Red Blood Cells*	Negative	Negative	Negative
-pithelial Celis*	Occasional	Occasional	Frequent
Bactería*	Heavy	Moderate	Negativa
Amorphous Crystals*	Moderate	Moderate	Heavy
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*			Freq. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.02 MG/KG 24 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3818 (F)	B3867 (F)	B3860 (F)
-;;	8.0	6.0	8.0
Smecific Gravity	1.026	1.017	1.020
Glucose	Negative	Negative	Negative
Alburis	Trace	Negative	30 mg
Retone	Negative	Negative	Negative
Bile	Negative	Negative	Trace
Occult Blood	Negative	Negative	0-1
Units Blood Cells*	Negative	2-3	Rare
Red Blood Cells*	Negative	Negative	Occasional
Emithelial Cells*	Large Squamous	Frequent	Negative
Bacteria*	Negative	Negative	Negative
Amorphous Crystals*	Large	Heavy	Much
PO ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	Few L.S.**	Few U.A.**	

^{*}Microscopic (per high power field).
**L.S. - Leucing Spheres; U.A. - Uric Acid.

URINALYSIS

TNT - 0.02 MG/KG 10 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B3818 (F)	B3867 (F)	B3860 (F)
~ <u>;</u>	6.0	6.0	8.0
Specific Gravity	1.010	1.010	1.028
G1#cose	Negative	Negative	Negative
Alburis	Negative	Trace	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Heavy	Negative
Unite Blood Calls*	1-3	2-3	6-8
Red Blood Cells*	Negative	TNTC	Negative
Ecitholial Cells*	Frequent	Rare	Many
Bacteria*	Negative	Negative	Negative
Amorphous Crystals*	Moderate	Moderate	Little
PO ₄ *	Negative	Negative	Frequent
•	•	•	·
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative

^{*}Micro: copic (per high power field).

URINALYSIS

TNT - 0.02 MG/KG 9 WEEKS PRE-DRUG

	MONKEY NO. % SEX	
	B3867 (F)	
~; ,	6.5	
Specific Gravity	1.011	
Glucose	Negative**	
Albumin	30 mg	
Ketone	Negative	
Bile	Negative	
Occult Blood	Negative	
Unito Blood Cells*	8-10 w/clumping	
Red Blood Cells*	Negative	
Exithelial Cells*	Few	
Bacteria*	Negative _.	
Amorphous Crystals*	Little	
P0 ₄ *	Negative	
Oxalata*	Negative	
Casts*	Negative	

^{*}Microscopic (per high power field).
**Positive for non-glucose reducing substance.

URINALYSIS

TNT - 0.02 MG/KG 4 WEEKS

	MONKEY NO. & SEX		
	B3818 (F)	B3867 (F)	B3860 (F)
~ ;	5.0	8.0	9.0
Specific Gravity	1.033	1.011	1.030
Glucos#	Negative**	Negative	Negative
Alburin	30 mg	100 mg	Trace
Ketone	4+	2÷	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	4+	1+
Unito Blood Cells*	2-4	6-8	0-1
Rod Blood Cells*	Negative	TNTC	Negative
Emithelial Cells*	Frequent	Frequent	Occasional
Bacteria*	Moderate	Small	Negative
Amorphous Crystals*	Heavy	Heavy	Heavy
P0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Many
Casts*	Negative	Negative	Negative
Other*			Occ. L.S.***

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.02 MG/KG 8 WEEKS

	MONKEY NO. & SEX		
	B3818 (F)	B3867 (F)	B3860 (F)
~;;	8.0	٤.5	9.0
Specific Gravity	1.032	1.029	1.023
Glucose	Negative	Negative	Negative
Albumin	Trace	Negative	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Trace	Negative	Negative
Unite Blood Cells*	1-2	2-5	4-8
Red Blood Cells*	2-7	Negative	Negative
Ecithelial Cells*	Negative	Frequent	Few
Bacteria*	Large	Negative	Heavy
Amorphous Crystals*	Negative	Much	Heavy
PO4*	Negative	Occasional	Negalive
Oxalate*	Negative	Occasional	Negative
Casts*	Negative	Negative	Negative
Other*			Occ. L.S.**

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

URINALYSIS

TNT - 0.02 MG/KG 13 WEEKS

	MONKEY NO. & SEX		
	B3818 (F)	B3867 (F)	B3860 (F)
-;;	7.5	7.5	9.0
Specific Gravity	1.027	1.032	1.028
Glucose	Negative	Negative**	Negative
Albumin	200 mg	30 mg	50 mg
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	1+	Megative	Negative
Unito Blood Cells*	6-8	18-20	1-3
Red Blood Cells*	4.7	Occasional	Negative
Ecithelial Cells*	Few	Negative	Few
Bacteria*	Occasional	Little	Moderate
Amorphous Crystals*	Heavy	Heavy	Heavy
F0 ₄ *	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casts*	Negative	Negative	Negative
Other*	0cc. L.S.***	•	

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substance.

***L.S. - Leucine Spheres.

URINALYSIS

CONTROL

24 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B4046 (M)	B4238 (M)	B3628 (M)
na na	9.0	8.0	9.0
Specific Gravity	1.016	1.028	1.026
Glucoso	Negative	Negative	Negative
Albumin	Trace	30 mg	Trace
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unite Blood Cells*	5-6	1-3	0-1
Rod Blood Cells*	Negative	0-1	Negative
Enithelial Cells*	Occasional	Few Squam.	Occ. Squam.
Bacteria*	Negative	Negative	Negative
Amorphous Crystals*	Heavy	Some	Negative
PO_**	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
Casits*	Negative	Negative	Negative
Other*		0cc. L.S.**	

^{*}Microscopic (per high power field).

**L.S. - Leucine Sphers:

URINALYSIS

CONTROL - 10 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B4046 (M)	B4238 (M)	B3628 (M)
^ 	9.0	9.0	9.0
Specific Gravity	1.032	1.029	1.033
Glucose	Negative	Negative	Negative
Albumin	100 mg	30 mg	30 mg
Ketone	Negative	Negative	Negative
Bile	Negative	Negative	Negative
Occult Blood	Sma 11	Negative	1+
Unite Blood Cells*	2-4	2-4	3-5
Red Blood Cells*	10-12	Negative	10-12
Enithelial Cells*	Frequent	Few	Few
Bacteria*	Negative	Small	Small
Amorphous Crystals*	Little	Little	Moderate
P0 ₄ *	Negative	Occasional	Negative
0xalate*	Negative	Negative	Ne _' jative
Cas ès*	Negative	Negative	Megative

^{*}Microscopic (per high power field).

TABLE 7 (continued)

URINALYSIS

CONTROL

9 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B4046 (M)	B3628 (M)	
7.5	8.0	8.5	
Specific Gravity	1.031	1.015	
Glucose	Negative**	Negative	
Albunia	Negative	30 mg	
Ketone	Negative	Negative	
Bile	Negative	1÷	
Occult Blood	1+	3-5	
Unite blood Cells*	2-3	10-12	
Red Blood Cells'	3-5	Few	
Enithelial Cells*	Rare	Small	
Bacteria*	Negative	Moderate	
Amon; tous Crystals*	Little	Moderate	
20.4	A1 A 2	Manadina	
P0 ₄ *	Negative	Negative	
Oxalate*	Negative	Negative	
Cas ts*	Negativa	Negative	

^{*}Microscopic (per high power field).
**Positive for non-glucose reducing substance.

TABLE 7 (continued)

URINALYSI5

CUNTROL

4 WEEKS

	MONKEY NO. & SEX		
•	B4046 (M)	B4238 (M)	B3628 (M)
7.5.	5.0	7.0	6.5
Shedific Gravity	1.006	1.028	1.015
Glucose	Negative	Negative	Negative
Albunin	Trace	Trace	Negative
Ketone	1.4	4+	Negative
Bile	Negative	Negative	Negative
Occult Blood	Negative	Negative	Negative
Unito Blood Calls*	F - 4	2-4	Rare
Red Blood Calls*	N∈ative	Negative	Negative
Emithelial Cells*	Occ.sional	Rare	Negative
Pacteria*	Moderate	Small	Negative
Amonghous Crystals*	Moderate	Moderate	Moderate
PO4*	Negative	Negative	Negative
Oxalate*	Negative	Negative	Negative
	Negative	Negative	Negative
Casits*	neyatiye	-	-
Other*		Occ. U.A.*	k

^{*}Microscopic (per high power field).
**U.A. - Uric Acid.

Comments of the Control of the Contr

TABLE 7 (continued)

URINGLYSIS

CONTROL 8 WEEKS

	MONKEY NO. & SEX				
	B4046 (M)	B4238 (M)	B3628 (M)		
~~;	8.0	7.0	7.0		
Shecific Gravity	0.011	1.034	1.015		
Glucose	Negative	Negative	Negative		
Albumin	Negative	Negative	Negative		
Ketone	Negative	Negative	Negative		
Bile	Negative	Negative	Negative		
Occult Blood	Negative	Negative	Negative		
Unito Blood Cells*	0-2	0-3	0-3		
Red Blood Cells*	Negative	Negative	Negative		
Enithelial Cells*	Negative	Negative	Occasional		
Bacteria*	Moderate	Negative	Moderate		
Amorphous Crystals*	Little	Heavy	Moderate		
DO +	Negative	Few	Negative		
P0 ₄ *	-		•		
Oxalate*	Negative	Negative	Negative		
Casts*	Negative	Negative	Negative		
Other*			Few L.S.**		

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

TRITTAL COS

CONTROL 13 WEEKS

	MONKEY NO. & SEX			
	B4046 (M)	B4238 (M)	B3628 (M)	
^ **	7.5	6.5	7.0	
Implific Anavity	1.020	1.013	1.030	
Glucose	Negative	Nega tive	Negative	
Alburis	Trace	Trace	30 mg	
Ketone	Negative	Negative	Negative Negative Negative	
3ile	Negative	Negative		
Occult Blood	Negative	Negative		
Unito Blood Cells*	3-5	6-8	0-1	
Red Blood Cells*	Negative	Negative	Negative	
Etithelial Cells*	ƙare	Few	Occasiona?	
Bacteria*	Heavy	Moderate	Occasional	
Amonghous Crystals*	Moderate	Heavy	Heavy	
PO ₄ *	Negative	Negative	Negative	
Oxalate*	Negative	Negative	Negative	
Casits*	Negative	Negative	Negative	
Other*		Occ. L.S.**	Occ, L.S.**	

^{*}Microscopic (per high power field).
**L.S. - Leucine Spheres.

SRINCLYSIS

CONTROL 24 WEEKS PRE-DRUG

	140	MONKEY NO. & SEX			
	B3297 (F)	B4246 (F)	63735 (F)		
~ ;	9.0	6.0	7.5		
procific Gravity	1.018	1.027	1.021		
\$1ucns:	Negative	Negative	Negative		
Alburis	30 mg	Trace	Negative		
Kntone	Negative	Negative	Negative		
Sile	Negative	Negative	Negative		
Occult Blood	Trace	Small	Trace		
Unite Blood Cells*	2-4	0-1	0-1		
Red Blood Cells*	Rare	0-1	Rare		
Enithelial Cells*	Few	Negative	Few		
Bacteria*	Occasional	Negative	Occasional		
Amorchous Crystals*	Heavy	Negative	Moderate		
P0 ₄ *	Negative	Negative	Negative		
Oxalate*	Negative	Negative	Negative		
Casts*	Negative	Negative	Negative		

^{*}Microscopic (per high power field).

TRIT LYTIS

CONTROL

10 WEEKS PRE-DRUG

	MONKEY NO. & SEX			
	B3297 (F)	B4246 (F)	B3735 (F)	
~;	7.5	9.0	7.5	
unesific Amavity	1.026	1.027	1.025	
Sturnsr	Negative	Negative	Negative**	
Albur i	30 mg	30 mg	Negative	
Kritone	Negative	Negative	Negative	
Dile	Negative	Negative	Negative	
Occult Blood	Moderate	2+	Trace	
Unite Blood Cells*	6-8	2-3	8-10	
Red Blood Cells*	10-12	12-14	Rare	
Emithelial Cells*	Few	Occasional	Few	
Bacteria*	Negative	Small	Moderate	
Amorrhous Crystals*	Moderate	Moderate	Little	
no +	Occasional	Few	Negative	
P0 ₄ *	OCC45 TOTAL	I CM	negacive	
Oxalate*	Negative	Negative	Negative	
Casts*	Negative	Negative	Negative	

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substance.

URINALYSIS

CONTROL 9 WEEKS PRE-DRUG

	MONKEY NO. & SEX		
	B4246 (F)		
ា ភ	9.0		
Smecific Gravity	1.029		
Glucos*	Negative**		
Alburin	30 mg		
Ketone	Negative		
Bile	Negative		
Occult Blood	Negative		
Unite Blood Cells*	10-12		
Red Blood Cells*	Negative		
Ecithelial Cells*	Few		
Bacteria*	Occasional		
Amorphous Crystals*	Heavy		
P0 ₄ *	Occasional		
0xalate*	Negative		
Cas ts*	Negative .		

^{*}Microscopic (per high power field).
**Positive for non-glucose reducing substance.

URINALYSIS

CONTROL 4 WEEKS

	MONKEY NO. & SEX			
	B3297 (F)	B4246 (F)	B3735 (F)	
na n	8.0	8.0	7.0	
Specific Gravity	1.031	1.021	1 004	
Glucose	Negative**	Negative	Negative	
Albumin	30 mg	Negative	Negative	
Ketone	4+	Negative	Negative	
Bile	Negative	Negative	Negative	
Occult Blood	Negative	Negative	Trace	
Unite Blood Cells*	2-4	0-1	0-1	
Red Blood Cells*	Negative	Negative	Negative	
Enithelial Cells*	Few	Few	Occasional	
Bacteria*	Negative	Negative	Many	
Amonphous Crystals*	Heavy	Moderate	Moderate	
P0 ₄ *	Frequent	Negative	Negative	
Oxalate*	Negative	Many	Negative	
Casts*	Negative	Negative	Negative	
Other*		Few L.S.***	Occ. L.S.***	

^{*}Microscopic (per high power field).

**Positive for non-glucose reducing substances.

***L.S. - Leucine Spheres.

URINALY IS

CONTROL 8 WEEKS

	MONKEY NO. & SEX			
	B3297 (F)	B4246 (F)	B3735 (F)	
^ .	7.0	8.0	6.0	
Presific Provite	1.039	1.021	1.003	
Gluchse	Negative	Negative	Negative	
Alburti :	Negative	Negative	Negative	
Kotone	Sma11	Negative	Negative	
Jila	Negative	Negative	Negative	
Occult Blocd	Negative	Negative	Negative	
Unite Bloom Cells*	0-2	2-3	1-3	
Red Blood Cells*	Negative	Negative	Negative	
Enithelial Cells*	5-15 Squam.	Few	Occasional	
Bacteria*	Negative	Negative	Moderate	
Amonthous Crystals*	Little	Sma11	Moderate	
PO <u>4</u> *	Few	Negative	Negative	
0xalate*	Negative	Negative	Negative	
Casts*	Negative	Negative	Negative	
Other*		Few L.S.**		

^{*}Microscopic (per high power field). **L.S. - Leucine Spheres.

URINALYSIS

CONTROL

13 WEEKS

	MONKEY NO. & SEX			
	B3297 (F)	B4246 (F)	B3735 (F)	
na na	8.0	6.5	6.5	
Shecific Gravity	1.021	1.027	1.014	
Glucose	Negative	Negative	Negative	
Alburia	Negative	Negative	Negative	
Ketone	Negative	Negative	Sma11	
Bile	Negative	Negative	Negative	
Occult Bined	Negative	Negative	Negative	
Unite Blood Cells*	4-6	2-5	1-3	
Red Blood Ceils*	Negative	Negative	Negative	
Emithelial Cells*	Occasional	Frequent	Occasional	
Bacteria*	Occasional	Negative	Occasional	
Amorphous Crystals*	Moderate	Heavy	Moderate	
P0 ₄ *	Negative	Negative	Negative	
0xalate*	Negative	Negative	Negative	
	Negative	Negative	Negative	
Casits*	Heguerre	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	

^{*}Microscopic (per high power field).

TABLE 8

URINE GLUTAMIC-OXALOACETIC TRANSAMINASE
(I.U.)

PRE-DRUG					EEKS OF DMINISTRA	ATION
MONKEY NO. AND SEX	24 Wks	10 Wks	9 Wks	4	8_	13
		RDX - 10	MG/KG			
B4050 (M)	62	172	80	51	86*	100*
B3543 (M) B3406 (M)	24 68	39 30	105 80	45 99	89* 65	148* 39
Ass.	51	80	88	65	80	95
	33	86	27	67	86	137
83733 (F) 83609 (F)	33 30	54	68	68	59	33
B3739 (F)	24	65	111	Dead	Dead	Dead
Mean	29	68	68	68	72	85
		00V 3	NO IVO			
		RDX - 1	MG/KG			
B3952 (M)	51	71	86	83	77*	138
B3563 (M)	45	24	59	22	33	22
B4093 (M)	11	48	83	36	65	21
Mean	36	48	76	47	58	60
B3599 (F)	27	77	71	83	148	39
B3891 (F)	68	122	າກຳ	45	154*	68
B3718 (F)	59	80	80	83	111	95
Mean	51	93	87	70	138	67
		<u>RDX</u> - 0.	1 MG/KG			
		المتحصية المنا				
B4254 (M)	21	68	89	39	59*	122
B3776 (M)	30	21 45	80 83	74 57	91 74	83 92
B3709 (M)	36	40	03	37	7-7	72
Mean	29	44	84	56	74	99
B3613 (F)	36	186	83	333	68	83
B3646 (F)	59	105	137	319	111	143
83617 (F)	71	86	62	74	122	95
Mean	55	126	94	242	100	107

^{*}Repeat values.

を受けている。 は、他のでは、他のでは、他のできない。 では、他のできない。 では、他のできない。 では、他のできない。 できない。 できない

TABLE 8 (continued)

URINE GLUTAMIC-OXALOACETIC TRANSAMINASE (I.U.)

MONKEY NO. PRE				PRE-DRUG		WEEKS OF DRUG ADMINISTRATION		
	AND SE		24 Wks	10 Wks	9 Wks	4	8_	13
				<u>TNT - 1</u>	MG/KG			
	B3697 B3775 B4301	(M) (M) (M)	19 77 36	62 65 148	21 65 86	45 30 74	22 71 143	77 165 137
	Mean		44	92	57	50	78	126
	B3857 B3516 B3928	(F) (F) (F)	39 33 39	95 148 74	111 92 65	271 83 89	105 74 89	68 57 62
	Mean		37	106	89	148	89	62
				TNT - 0.1	MG/KG			
	B3782 B3773 B3427	(M) (M) (M)	39 80 19	221 27 30	86 54 77	48 54 122	77 122 51	95 95 62
	Mean		46	92	72	74	83	84
	B3720 B3508 B3863	(F) (F) (F)	22 17 62	137 57 62	92 86 53	57 74 73	92 74 111	143 116 86
	Mean		34	85	77	68	92	115
				TNT - 0.03	2 MG/KG			
	63559 83848 84239	(M) (M) (M)	30 11 57	68 65 54	68 77 57	51 42 92	83 65 111	62 19 80
	Mean		32	62	67	62	86	54
	B3818 B3867 B3860	(F) (F) (F)	33 59 22	86 42 68	89 170 95	45 77 92	207* 89 111	291* 89 89
	Mean		38	65	94	71	136	156

^{*}Repeat values.

LITTON BIONETICS, INC.

TABLE 8 (continued)

URINE GLUTAMIC-OXALOACETIC TRANSAMINASE (I.U.)

MONKEY NO		PRE-DRUG			EEKS OF IDMINISTE	RATION
AND SEX	24 Hks	10 Wks	9 Wks	4	_8_	13
		CONT	ROL			
B4046 (M B4238 (M B3628 (M) 30	86 111 111	127 138 59	39 207 71	62 51 68	137 111 92
Mean	44	102	108	106	60	113
B3297 (F B4246 (F B3735 (F) 74	68 68 71	74 51 36	214 100 36	86 68 17	179 59 62
Mean	64	69	54	116	57	100

TABLE 9

SULFOBROMOPHTHALEIN, U.S.P., DYE CLEARANCE TEST (BSP)
Half-Time (minutes)

MONKEY NO.		WEEKS OF DRUG ADMINISTRATION			
AND SEX	22 Wks	10 Wks	4	_ 8	13
	RD	X - 10 MG/I	<u> </u>		
B4050 (M) B3543 (M) B3406 (M)	5.10 2.55 2.15	3.55 2.40 2.15	3.35 2.25 2.20	3.05 2.40 2.45	4.40 2.50 2.20*
Mean	3.26	2.70	2.60	2.63	3.03
B3733 (F) B3609 (F) B3739 (F)	2.25 2.50* 2.00	2.15 3.00* 3.30	2.15 2.10 Dead	2.05 2.55 Dead	2.05 3.25 Dead
Mean	2.25	2.82	2.12	2.30	2.65
	<u>R</u>	DX - 1 MG/I	K <u>G</u>		
B3952 (M) B3563 (M) B4093 (M)	2.35 2.10 2.20	2.20 3.50 4.25	2.15 2.30 2.25*	1.30* 2.15 2.25	2.00 2.00 2.15*
Mean	2.22	3.32	2.23	1.90	2.05
B3599 (F) B3891 (F) B3718 (F)	1.35 3.20 2.15	4.20* 3.35 2.30	2.15 2.10 2.30*	2.40 2.10 2.20	2.05 3.00 2.25*
Mean	2.23	3.28	2.18	2.23	2.43
	RD	X - 0.1 MG	/KG		
B4254 (M) B3776 (M) B3709 (M)	2.30 2.10 2.10	2.05 4.25 2.15	2.30 2.10 2.05*	2.00 2.35 2.00	2.15 3.25 2.35
Mean	2.16	2.82	2.15	2.12	2.58
B3613 (F) B3646 (F) B3617 (F)	2.30 3.30* 2.20	3.15 3.40 3.15	2.05 2.10 1.50*	2.40	
Mēan	2.60	3.23	1.88	2.10	2.98

^{*}Repeat Values.

TABLE 9 (continued)

SULFOBROMOPHTHALEIN, U.S.P., DYE CLEARANCE TEST (BSP) Half-Time (minutes)

•				WEEKS OF									
MAKEY NO.	PRE-D			ADMINISTR									
AND SEX	22 Wks	10 Wks	4	_8_	<u>13</u>								
	TNT - 1 MG/KG												
B3697 (M)	2.40	4.20	3.50	2.30	3.20								
B3775 (M) B4301 (M)	2.50 2.40	2.25	2.45	3.00	2.40								
D4301 (H)	2.40	2.05	2.15*	3.00	2.00								
Mean	2.43	2.83	2.70	2.76	2.53								
B3857 (F)	3.05	4.10	2.45	2.45	2.15								
B3516 (F) B3928 (F)	2.40 2.00	4.00 3.20	3.20* 2.10*	2.05 1.55*	3.20								
03320 (1)	2.00	3.20	2.10"	1.55"	2.05								
Mean	2.48	3.76	2.58	2.02	2.46								
	<u> </u>	T - 0.1 MG	/KG										
B3782 (M)	2.05*	3.20	2.05	2.00	2.20								
B3773 (M)	2.25	4.25	3.00*	2.35	2.40								
B3427 (M) `	2.25	3.26*	2.20	2.45	3.20								
Mean	2.18	3,55	2.42	2.26	2.60								
B3720 (F)	2.30	2.30	2.20	1.50*	2.05								
B3608 (F)	2.25	3.20	3.20	2.25	2.20								
B3863 (F)	2.50	2.45	2.10	3,20	. 4.30								
Mean	2.35	2.65	2.50	2.32	2.85								
	TNT	- 0.02 MG	/KG										
B3559 (M)	3.25	3.30	2.45*	2.15	2.45								
83848 (M)	2.15	2.35	2.30*	2.25	2.55*								
B4239 (M)	2.35	3.00	2.45	2.25	2.45								
Mean	2.58	2.8 ^p	2.40	2.22	2.48								
B3818 (F)	3.00	2.15*	2.30	2.30*	3.05								
B3867 (F)	2.15*	2.10*	2.35	1.40*	2.20								
B3860 (F)	2.25*	2.20	2.05	2.40	2.40								
Mean	2.46	2.15	2.23	2.03	2.55								

^{*}Repeat values.

TABLE 9 (continued)

SULFOBROMOPHTHALEIN, U.S.P., DYE CLEARANCE TEST (BSP) Half-Time (minutes)

MONKEY NO.	PRE-1	DRUG	WEEKS OF DRUG ADMINISTRATION							
AND SEX	22 Wks	10 Wks	4	8	<u>13</u>					
		CONTROL								
B4046 (M) B4238 (M) B3628 (M)	2.50 2.40 2.05	2.55* 2.15 2.50	2.25 2.15 2.35	2.50 3.05 2.00*	3.45 3.20 2.00					
Mean	2.32	2.40	2.25	2.52	2.83					
B3297 (F) B4246 (F) B3735 (F)	2.15 3.00 2.00	3.20 3.05 2.00*	2.30* 2.45 2.25*	2.55 2.35 2.20	3.10 3.20 2.20*					
Mean	2.38	2.75	2.33	2.36	2.83					

TABLE 10

RDX AND TNT IN PLASMA (ug/ml of plasma)

			 -		INTERVAL	•		
DOSE LEVEL	MONKEY NO.	Date	30-Day	Date	Convulsive Events	60-Day	Date	90-Day
High RDX	B3733 64050 B3543 B3739 B3406 B3609	6/12	0.30 0.65 0.58 2.70 1.42 0.84	6/26 6/13 7/2	3.22 2.0 3.7	0.41 0.64 0.39 0.31 0.08	8/9 8/13 8/9 8/8 8/8	0.0 0.9 0.0 1.08 0.16
Med. RDX		All v	alues we	re 0.02	μg/ml.			
Low RDX		A11 v	alues we	re 0.02	μ g/ml.			
High TNT		A11 v	alues we	re below	5 kg/ml.			
Med. TNT		A11 v	alues we	re below	5 μg/ml.			
Low TNT		A11 v	alues we	re below	5 µg/ml.			
Control		, A11 v	alues we	re below	5 μg/ml.			

Shareness of

Partition of the last

TABLE 11

ORGAN WEIGHTS (grams)

ANIMAL NUMBER	THYROID	HEART	LIVER	RIGHT KIDNEY	LEFT KIDNEY	RI GHT ADRENAL	LEFT ADRENAL
Control							
B4238	. 34	9.17	59.0	6.02	5.41	.23	.21
B4046	. ¿4	7.10	59.0	5.63	5.53	.30	.23
B3628	.64	21.47	141.0	12.71	13.06	.34	.27
B3735	.27	8.51	72.0	5.94	5.87	.20	.22
B3297	.57	11.64	66.0	7.61	7.72	.24	.21
B4246	.23	7.65	46.0	4.86	5.39	.24	.21
Low RDX	.23	7.03	40.0	4.00	3.33	• • • •	
B3709	. 31	20.00	115.0	10.34	9.13	.47	. 32
B3776	.31	10.75	81.0	7.51	7.24	.23	.19
B4254	.20	9.61	58.0	5.07	5.22	.34	.24
B3613	.17	9.35	58.0	6.38	6.59	.27	.22
B3617	. 39	9.91	64.0	6.16	5.89	.29	.24
B3646	.31	11.36	74.0	7.23	6.96	.31	.17
Med.RDX	. 51	11.50	77.0	7.25	0.50		• • •
B3563	.28	10.47	88.0	6.50	6.59	.27	.23
B3952	.53	17.82	107.0	10.20	9.70	.31	.30
B4093	.28	9.08	58.0	5.80	5.81	.24	.22
B3891	.22	9.10	69.0	6.70	6.84	.31	.22
B3718	.35	10.77	65.0	5.31	6.30	.27	.26
B3599	.41	11.15	84.0	6.18	6.46	.23	.21
High RDX	.71	11.15	04.0	0.10	0.40	.23	• 6.1
B4050	.21	10.31	71.0	7.06	7.88	.27	.21
53406	.38	14.13	102.0	7.52	7.90	.56	.38
B3543	.52	15.15	110.0	9.17	7.90 8.48	.50 .47	.39
B3739*	.32	7.83	.37. 9	4.72	5.41	.33	.42
B3733	.32			7.72		.33 .40	.23
	.19	8.81	77.0		8.77		.23
83609 Low TNT	.25	7.87	77.0	5.62	5.41	. 30	.22
	co.	14.10	03.0	7 22	7 (1	42	.32
B3848	.50	14.13	91.0	7.32	7.51	.43	
B3559	. 32	12.79	89.0	8.09	7.85	.36	.23 .24
B4239	.14	12.36	96.0	7.54	7.23	.31	
B3860	.42	7.99	49.0	4.31	4.41	.21	.14 .32
B3867	.47	13.39	- -	8.80	8.40	.41	.32 .27
B3818	.24	5.64	56.0	5.04	4.64	.28	.21
Med.TNT	27	15 54	oc n	0.54	0.50	£3	20
B3782	. 37	15.54	96.9 302.0	9.54	9.50 7.61	.51 .33	. 38 . 26
. B3773	.21	12.57	102.0	6.81 8.21	7.01 8.06		.26 .23
B3427	.37	15.36	96.0		5.72	.30 .23	.23 .19
B3863	.30	10.30	76.0	5.87		.23 .24	.29
B3720	.30	10.16	63.0	6.13	6.23		.19
B3608	.27	12.94	74.0	5.81	6.00	.23	.17
High TNT	C1	10.00	60.0	7 21	7 53	22	10
B3775	.61	10.23	68.0	7.31	7.53	.22	.18
B4301	. 37	10.65	84.0	6.69	6.85	.24	.18
B3697	.54	13.50	95.0	7.62	6.88	.33	.23
B3516	.22	? 4.3 6	81.0	761	8.01	.37	.23
B3928	.20	8.75	91.6	5.99	5.95	.24	.24
<u> 83857</u>	.19	7.40	45.0	5.04	5.71	.22	16

^{*}This animal became moribund and was killed on June 13.

TABLE 12

SUMMARY OF GROSS LESIONS

Control	B3628	Renal subcapsular hemorrhage.
Low RDX	B4254 B3613 B3776	Renal subcapsular hemorrhage. Nodule on spleen. Small intestine focally thickened.
Medium RDX	No gross	lesions.
High RDX	B4050 B3543 B3739	Large intestines and fat appear more yellow than normal. Nodule on right kidney, ? accessory adrenal gland. Killed at request of investigator - postmortem report included.
Low TNT	No gross	lesions.
Medium TNT	B3720	Subcapsular renal hemorrhage, left kidney.
High TNT	B3516 B3928	Focal subcapsular hemorrhages. Large in estine - slight mucosal reddening and focal thickenings.

Animals not specifically listed showed no gross lesions.

TABLE 13

MICROSCOPIC FINDINGS

LEGEND

- = negative + = minima! ++ = mild +++ = moderate ++++ = marked P = present

F = focal M = missing

TABLE 13
SUMMRY OF HICROSCOPIC FINDINGS

A CONTROL OF THE PROPERTY OF

Unintratification |

	ON THE PROPERTY OF THE PROPERT			A-187
	THYROID	Degenerate follicles Lymphocytic cymphocytic	100111 111111 111011	
	LUNGS	å noitzepnod smebe	000000 000 100 0 1 100 1	
3	HEART	Ryocardî tis	1 1 + 1 1 1 1 + 1 1 1 1 1 1 1 1 1 1 1 1	
SUMMER OF HICKOSCOPIC FINDINGS	BRAIN	Perivascular spaces, vacuoles	Perfused # # # # # # # # # # # # # # # # # # #	
SUTTERED OF 11	SMAIL INTESTINES	Phagocytized debris Hemosiderin	:+::::::::::::::::::::::::::::::::::::	
	BONE MARROW	Hemosiderin Lron stain Cellularity Mecrotic Degenerate Mornal	++++++++++++++++++++++++++++++++++++++	
			Controls 84238 84046 83735 83735 84246 84246 84246 84050 83406 83406 83406 83406 83406 83733 83733 83735 84301 83697 8375 84301 83697 8375 84301 83697	

IADLE 13 (continued)
SUMMARY OF MICROSCOPIC FINDINGS

GIILO	1	and a company with the contract of the contrac		LIVer: centrilobular postmortem degeneration.	liver: fatty change: Deriarterities heart thought	Control of the contro				Ctomach: micosal condestion	Thermid: interaction odem 2			Administration of a management of the Company of th	Aurena diane, mendolegrin at corticomeduliary	Adrenal Gland: supracapsular cortical nodule:	CMS: mineralization, multifocal, midbrain,		Lungs: granulomatous pneumonia; CMS: paraven- tricular granuloma with birefringent crystals.	A-122
SULPHE OF PICKUSCUPIC FINDINGS	Mineralization Mineralization medulla Multinucleated cells, tubules cells, tubules inclusions	describerations from construction and antiferror describeration for an array resource and construction from the	+ + + + + + + + + + + + + + + + + + + +	1 +	+		+	•	1 + +	+	+	d + - +++	*** *** + -	+++++++++++++++++++++++++++++++++++++++		d ++++ - ++	+++ ++	a · · · · · ·	÷ ÷	
AND DE STATE OF THE STATE OF TH	Hemosiderin Cord cells Hemosiderin Kuppfer cells Cord cells Cord cells Lron s.ain Kuppfer cells Microgranulomas		+ 1		•	•	**		* * * * * * * * * * * * * * * * * * * *	*	+ ++ ++ .	+ ++++ + .	+	•		++++ + +	÷ +	÷ ÷	Σ *	
SPLEEN	ni⊤abizomaH niszę novi		* *	. +	+		+		. +		‡		‡ ‡	+	+	‡	+	+	+	
		Controls	84238	83628	83735	83297	84246	Migh ROX	9076	83543	83739	83733	83609 141 441	83775	E430	83697	83516	83928	83857	

SUMMARY OF MICROSCOPIC FINDINGS TASLE 13 (continued)

	OTHER			Small intestine: hypertrophy of inner muscu- lar layer, marked.	Kidney: subepithelial aggregates of phago- cytized hemosiderin, renal pelvis.	Kidney: focal nephritis with debris casts, cortex.	Kidney: focally diffuse subcapsular hemorrhage.
SUMMARY OF THEROSCOPIC FINDINGS	KIDNEYS	Dilated tubules Mineralization medulla Hultinucleated cells, tubules Eosinophilic inclusions Subcapsular hemorrhage			;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		+ +
SUMP	LIVER	Hemosiderin Cord cells Hemosiderir Kuppfer cr Microgranulomas Hepatitis	1 1 1 1 + 1 1 1 +	· · · · · · · · · · · · · · · · · · ·	* ; ‡ ; ; ;	 	*
	SPLEEN	Lymphoid hyperplasia Hemostoerosis	112		11111	‡+‡ _{,,,}	‡‡‡‡‡ ;;;;;
			Low RDX B3709 84254 B3613	83546 83776 83517		1347 83860 83859 83818 83867 83848	83720 83720 8363 8373 8373 83863 83863

A-190

LITTON BIONETICS, INC.

PM No.: 73/1700

<u>NECR</u>	OPSY REPORT	757.700
	Date: Date: 6/13/73 Time: 11:55 am	Contract or Project: 1366 Investigator(s): DPM Inoculum: Inoculation Date:
Pertinent Experimental & Clinical Data:		
GROSS NECROPSY: Date: 6/13/73 Description of gross lesions and addition		, Initials: MGV/MB / (
Thin and emaciated appearing. Subcutant istration. Veins collapsed and venipund the left ventricle and perfused with 500 paraformaldehyde. The descending aorta incised. Gross Findings: Edema of sali minute ulcerations and/or hemorrhage in hemisphere slightly depressed, kidneys seems small and firm.	eous fluid, abdomen, ture difficult. The onl. heparinized sal was clamped and the vary glands (perfusi gastric mucosa, fron	aorta was cannulated through ine followed by 1000 ml. right atria and ventricle on artefact ?), multifocal tal lobe of right cerebral
•		
Tissues submitted to: Bacteriology Virology Ultrastructu		<u> Histopathology</u> <u>Frozen</u>
		Per protocol blood, no urine, 1 gm. brain
		, , , , , , , , , , , , , , , , , , , ,
Photography =		
Tissues cut by.	, date:	# capsules:

PM No.: 73/1700 TISSUE LAAMIN " OH

mass-Micro.		6:055-M: 10.	Esophagus
	A in & Appendages		· · · · ·
'	Aucous Hembranes		Stomach
	Hair		Small Intestine Duotenum
	External Abnormalities		Je johom
	Lymph Nodes, Superficial		Hean
			Large Intestic
	Normany Glands		Colon
	Eurs		Rection
	Nares	<u>* 5.41</u>	Aidney (Left)
	Oral Casity	<u>* 4.72</u>	_ Kiánc, (Right)
	Laryux	<u>* .42 .</u>	_ Adrenal Gland (LCFC)
	Tongue	* .33	Adrenal Gland (might)
	5 livary Glands		_ Unimary Bladder
* · <u>32</u>	Higroid .		_Gonad (Left)
	Parathyroid		_ uonad (Right)
	Піункіз		Uteru, Prostati
	Trachea		_ Vagina, Seminal Verrele
	Lung		_ bone flation:
	Plear, 6, or nedications		_ Sternom Rib
	•		Fenta
	Lymph Nodes, Thoracis		Bone Marrow Smear
	Pericardium		Brain
* 7 . 83	Heart		— _ Pituitary
·	Peritones. Peritoneal vity		_ Spinal Cord (Cervical)
	Mesentery & Unientum		_ Eye, Left; kight
*37.89	Liver		Optic Herves
<u> </u>	Gallbladder		_ (ranga
	Spleen		Norve with Muscle
	. Pancréas		ormal eston/coment
	Lymph Nodes, Ablaninal	۾ ج	utolyed
	Other	NE = ii	at present at examined 3 per protocul