Single Parity Bit - Error Detection Study Notes

Overview

Single Parity Bit is a simple and cost-effective method for error detection in data communication. It uses the m+1 formula where:

- **m** = number of message bits
- +1 = one additional redundant bit (parity bit)

Key Characteristics

Advantages

- Least expensive method adds only 1 extra bit
- Simple implementation
- Suitable for applications that can tolerate minor errors (e.g., audio transmission)

Comparison with Other Methods

- Double Parity, CRC, and Checksum require more redundant bits
- Single parity sends fewer extra bits, making it cost-effective

Types of Parity

Even Parity (Most Common)

- Rule: Total number of 1s in the codeword should be even
- Implementation: Add parity bit to make total 1s even

Examples:

- Data: $(1010) \rightarrow \text{Number of 1s} = 2 \text{ (even)} \rightarrow \text{Parity bit} = (0) \rightarrow \text{Codeword: } (10100)$
- Data: $(1110) \rightarrow \text{Number of 1s} = 3 \text{ (odd)} \rightarrow \text{Parity bit} = (1) \rightarrow \text{Codeword:} (11101)$

Odd Parity

- Rule: Total number of 1s in the codeword should be odd
- Less commonly used than even parity

Data Word Length Convention

- Data words are typically sent in powers of 2: 4, 8, 16, 32, 64 bits
- This follows binary system conventions (base 2)

Error Detection Capabilities

Can Detect:

- 1. All single-bit errors
- 2. All odd-number bit errors (1, 3, 5, 7, ... bits)

Detection Process:

- 1. Receiver counts 1s in received data word
- 2. Calculates expected parity
- 3. Compares with received parity bit
- 4. Mismatch indicates error

Examples of Detection:

Single Bit Error:

- Sent: 11101
- Received: (01101) (first bit changed)
- Data bits: (0110) → 1s count = 2 → Expected parity = 0
- Received parity = 1 → Error detected

Three Bit Error:

- Sent: (11101)
- Received: 00001 (first 3 bits changed)
- Data bits: $(0000) \rightarrow 1$ s count = $0 \rightarrow Expected parity = 0$
- Received parity = 1 → **Error detected**

Cannot Detect:

• Even-number bit errors (2, 4, 6, ... bits)

Example of Undetected Error:

- Sent: (11101)
- Received: 00101 (first 2 bits changed)
- Data bits: $(0010) \rightarrow 1$ s count = $1 \rightarrow Expected parity = 1$
- Received parity = 1 → **No error detected** (false negative)

Limitations

• **Detection only** - cannot correct errors

- Cannot identify error location
- Cannot detect even-number bit errors

Hamming Distance Concept

Definition

- **Hamming Distance**: Number of bit positions where two codewords differ
- Calculated by performing XOR operation between two codewords and counting 1s

Calculation Steps:

- 1. Take any two valid codewords
- 2. Perform XOR operation
- 3. Count number of 1s in result

Example:

- Codeword 1: 0000
- Codeword 2: (1111)
- XOR result: (1111)
- Hamming Distance = 4

Error Detection Formula

If minimum Hamming Distance = **d**, then:

• Can detect up to (d-1) bit errors

For single parity bit systems:

- Minimum Hamming Distance = 2
- Can detect (2-1) = 1 bit error

Why d-1?

- If d bits change, the corrupted data might match another valid codeword
- Receiver cannot distinguish between valid transmission and error
- Only (d-1) bit changes guarantee detection

Valid Codewords Example (4-bit data with even parity)

Data	Parity	Codeword
0000	0	00000
0001	1	00011
0010	1	00101
0011	0	00110
0100	1	01001
0101	0	01010
0110	0	01100
0111	1	01111
1000	1	10001
1001	0	10010
1010	0	10100
1011	1	10111
1100	0	11000
1101	1	11011
1110	1	11101
1111	0	11110
◀		•

Key Formulas & Rules

- 1. Codeword length: m + 1 (m data bits + 1 parity bit)
- 2. **Even parity**: Total 1s in codeword = even number
- 3. Error detection: Can detect odd-number bit errors only
- 4. **Hamming distance**: $d \rightarrow can detect (d-1) bit errors$
- 5. Minimum Hamming distance for single parity: 2

Applications

- Systems where occasional errors are acceptable
- Cost-sensitive applications
- Simple communication protocols
- Audio/video transmission where minor errors don't significantly impact quality

Exam Tips

- Remember the m+1 formula
- Understand why even-bit errors cannot be detected
- Practice Hamming distance calculations

•	Know the relationship between minimum Hamming distance and error detection capability	