Project 9.7. Suppose $f: A \to B$ and $g: B \to C$. Decide if each of the following is true or false; support your answers.

- (i) If f is injective and g is surjective then $g \circ f$ is surjective.
- (ii) If $g \circ f$ is bijective then g is surjective and f is injective.
- (i) is false. As a counterexample you could take your favorite injective function $f: \mathbb{Z} \to \mathbb{R}$, e.g., the one defined by f(x) = x, and choose $g = \mathrm{id}_{\mathbb{R}}$ (so g is certainly surjective). Then $g \circ f = f$, however, this function cannot be surjective, e.g., for f(x) = x there is no $x \in \mathbb{Z}$ such that f(x) = 1/2.
- (ii) is true: Suppose $f:A\to B$ and $g:B\to C$ are functions such that $g\circ f:A\to C$ is bijective. We first prove that g is surjective. Given $c\in C$, we need to construct $b\in B$ such that g(b)=c. Given such a c, we use the fact that $g\circ f$ is surjective, so there exists $a\in A$ such that g(f(a))=c. Choose b=f(a); then g(b)=g(f(a))=c, as desired.

Next we prove that f is injective. Given $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$, we need to conclude that $a_1 = a_2$. We can apply the function g to the number $f(a_1) = f(a_2)$ to obtain $g(f(a_1)) = g(f(a_2))$. But now, since g is injective, we can deduce that $a_1 = a_2$.