

Mini-batch gradient descent

Batch vs. mini-batch gradient descent

Vectorization allows you to efficiently compute on m examples.

of grabit deat Mini-batch gradient descent vey XIII YIL. (os ifmel soo) Formal peop on X sel. HECO = Pero (5 cos)

HEO = Pero (5 cos)

HEO = Pero Xers African

Ten = Compute cost $J_{i=1000}^{i=1} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{2.1000} = \frac{1}{2$ Bookprop to compart growths cort Jees (usy (x8es Y8es)) Mic Mes - 48 mm, Persi - Pres - especies "I epoch" poss through training set.

Understanding mini-batch gradient descent

Training with mini batch gradient descent

Batch gradient descent

Mini-batch gradient descent

Choosing your mini-batch size Sorth gedart desed.

(X sig / sig) = (X X)

> If Min=both size=1: Stochacte growth descet. Every excepte is (X stockete growth descet. (x to y) min=both.

Every excuple is it our

In practice: Somewh in-between I all m

Stochostic grebert Descent

ton vorterior

In-bother Cominghoods size not too by/small)

Fustest learning.

· Vectorzoti en .

(ns and)

· Make poon without processing entire tray sot.

Bastily godiet desul (min; hoth size = m)

Two long per iteration

Andrew Ng

Choosing your mini-batch size

If small tray set: Use booth graher desient.
(m = 2000) Typical mint-borth sizes: -> 64, 128, 256, 512 26 22 28 2° 1024 Make sure ministrate fire in CPU/GPU memory. X EX3 Y SKI

Exponentially weighted averages

Temperature in London

Exponentially weighted averages

Understanding exponentially weighted averages

Exponentially weighted averages

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t \qquad \beta = 0.9$$

Exponentially weighted averages $v_t = \beta v_{t-1} + (1-\beta)\theta_t$

Implementing exponentially weighted averages

$$v_0 = 0$$

 $v_1 = \beta v_0 + (1 - \beta) \theta_1$
 $v_2 = \beta v_1 + (1 - \beta) \theta_2$
 $v_3 = \beta v_2 + (1 - \beta) \theta_3$
...

$$V_{0} := 0$$
 $V_{0} := \beta V + (1-\beta) O_{1}$
 $V_{0} := \beta V + (1-\beta) O_{2}$
 $V_{0} := \beta V + (1-\beta) O_{2}$
 $V_{0} := \beta V + (1-\beta) O_{2}$

Andrew

Andrew

Andrew Ng

Bias correction in exponentially weighted average

Bias correction

$$v_{t} = \beta v_{t-1} + (1 - \beta)\theta_{t}$$

$$V_{t} = 0$$

$$V_{t} = 0.98 V_{0} + 0.02 \Theta_{1}$$

$$V_{t} = 0.98 V_{0} + 0.02 \Theta_{2}$$

$$= 0.98 \times 0.02 \times \Theta_{1} + 0.02 \Theta_{2}$$

$$= 0.98 \times 0.02 \times \Theta_{1} + 0.02 \Theta_{2}$$

$$= 0.0196 \Theta_{1} + 0.02 \Theta_{2}$$

$$\frac{1-\beta^{t}}{1-\beta^{t}}$$

$$t=2: 1-\beta^{t} = 1-(0.98)^{2} = 0.0396$$

$$0.0396 = 0.0396$$

Andrew Ng

Gradient descent with momentum

Implementation details

On iteration t:

Compute on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta) dW$$

$$v_{db} = \beta v_{db} + (1 - \beta) db$$

$$W = W - \alpha v_{dW}, \quad b = b - \alpha v_{db}$$

$$W = W - \alpha v_{dW}, \quad b = b - \alpha v_{dt}$$

Hyperparameters:

$$\beta = 0.9$$

RMSprop

Adam optimization algorithm

Adam optimization algorithm

Hyperparameters choice:

$$\rightarrow$$
 α : needs to be tune
 \rightarrow β_1 : 0.9 \rightarrow ($\Delta\omega$)
 \rightarrow β_2 : 0.999 \rightarrow ($\Delta\omega^2$)
 \rightarrow Σ : 10-8

Adam: Adapter moment estimation

Adam Coates

Learning rate decay

Learning rate decay

Learning rate decay do = 0.2 E poch 0.67 6.5

Other learning rate decay methods

The problem of local optima

Local optima in neural networks

Problem of plateaus

- Unlikely to get stuck in a bad local optima
- Plateaus can make learning slow