● 11-C 計算 Linear Convolution

We know that when
$$y[n] = x[n] * h[n] = \sum_{k} x[n-k]h[k]$$

then $y[n] = IFFT(FFT\{x[n]\}FFT\{h[n]\})$ $P \ge M+N-1$

But how do we implement it correctly?

How do we choose *P*?

Note: When
$$y_1[n] = IFFT_P \left(FFT_P \left\{ x_1[n] \right\} FFT_P \left\{ h_1[n] \right\} \right)$$
 then $y_1[n] = \sum_{k=0}^{P-1} x_1[((n-k))_P]h_1[k]$ (circular convolution) FFT_P : the P -point FFT $IFFT_P$: the P -point inverse FFT $((a))_P$: a 除以 P 的餘數

Linear convolution
$$y[n] = \sum_{k=0}^{M-1} x[n-k]h[k]$$

Circular convolution $y_1[n] = \sum_{k=0}^{P-1} x_1[((n-k))_P]h_1[k]$

$$x_1[n] = x[n]$$
 for $0 \le n < N$, $x_1[n] = 0$ for $N \le n \le P - 1$
 $h_1[n] = h[n]$ for $0 \le n < M$, $h_1[n] = 0$ for $M \le n < P - 1$

When
$$P \ge M + N - 1$$

$$y[n] = y_1[n]$$
 for $0 \le n < N + M - 2$,
 $y[n] = 0$ for $N + M - 1 \le n < P - 1$

When
$$y_1[n] = IFFT_P(FFT_P\{x_1[n]\}FFT_P\{h_1[n]\})$$

then
$$y_1[n] = \sum_{k=0}^{P-1} x_1[((n-k))_P]h_1[k]$$

(Proof) Suppose that $X_1[m] = FFT_P\{x_1[n]\}, H_1[m] = FFT_P\{h_1[n]\}$

$$\frac{1}{P} \sum_{m=0}^{P-1} X_1[m] H_1[m] e^{j\frac{2\pi m}{P}n} = \frac{1}{P} \sum_{m=0}^{P-1} \sum_{k=0}^{P-1} x_1[k] e^{-j\frac{2\pi m}{P}k} \sum_{s=0}^{P-1} h_1[s] e^{-j\frac{2\pi m}{P}s} e^{j\frac{2\pi m}{P}n}$$

$$= \frac{1}{P} \sum_{k=0}^{P-1} \sum_{s=0}^{P-1} x_1 [k] h_1 [s] \sum_{m=0}^{P-1} e^{j\frac{2\pi(n-s-k)}{P}m}$$

$$= \frac{1}{P} \sum_{k=0}^{P-1} \sum_{s=0}^{P-1} g[k] h[s] P \delta_d [((n-s-k))_P]$$

$$= \sum_{k=0}^{P-1} \sum_{s=0}^{P-1} g[k]h[((n-k))_{P}]$$

Here we apply $\sum_{p=1}^{P-1} e^{j\frac{2\pi a}{P}n} = P\delta_d \left[((a))_p \right]$ ((a))_p: the remainder of a

after divided by P

[Discrete Circular Convolution and Discrete Linear Convolution]

A discrete linear time-invariant (LTI) system can always be expressed a discrete linear convolution:

$$y[n] = x[n] * h[n] = \sum_{k=0}^{N-1} x[k]h[n-k]$$

However, the convolution implemented by the DFT is the discrete circular convolution:

If

$$y_1[n] = IDFT(DFT\{x_1[n]\}DFT\{h_1[n]\}) = IDFT(X_1[m]H_1[m])$$

then

$$y_1[n] = x_1[n] *_c h_1[n] = \sum_{k=0}^{P-1} x_1[k] h_1[((n-k))_P]$$

 $((a))_P$: the remainder of a after divided by P

$$y[n] = x[n] * h[n] = \sum_{k=0}^{N-1} x[k]h[n-k]$$
 425

circular convolution:
$$y_1[n] = x_1[n] *_c h_1[n] = \sum_{k=0}^{P-1} x_1[k] h_1[((n-k))_P]$$

For example,

linear convolution:

$$y[2] = x[0]h[2] + x[1]h[1] + x[2]h[0] + x[3]h[-1] + x[4]h[-2] + \cdots$$
$$y_1[2] = x_1[0]h_1[2] + x_1[1]h_1[1] + x_1[2]h_1[0] + x_1[3]h_1[P-1] + x_1[4]h_1[P-2]$$

$$y_{1}[2] = x_{1}[0]h_{1}[2] + x_{1}[1]h_{1}[1] + x_{1}[2]h_{1}[0] + x_{1}[3]h_{1}[P-1] + x_{1}[4]h_{1}[P-2] + \cdots + x[P-1]h[3]$$

The condition where the circular convolution is equal to the linear convolution:

(i)
$$x[n] = 0$$
 for $n < 0$ or $n \ge N$ $x_1[n] = x[n]$ for $0 \le n < N$, $x_1[n] = 0$ for $N \le n < P-1$

(ii)
$$h[n] = 0$$
 for $n < 0$ or $n \ge M$
 $h_1[n] = h[n]$ for $0 \le n < M$, $h_1[n] = 0$ for $M \le n < P - 1$

(iii)
$$P \ge N + M - 1$$

The condition where the circular convolution is equal to the linear convolution:

(i)
$$x[n] = 0$$
 for $n < 0$ or $n \ge N$
$$x_1[n] = x[n]$$
 for $0 \le n < N$, $x_1[n] = 0$ for $N \le n < P - 1$

(ii)
$$h[n] = 0$$
 for $n < 0$ or $n \ge M$
 $h_1[n] = h[n]$ for $0 \le n < M$, $h_1[n] = 0$ for $M \le n < P - 1$

(iii)
$$P \ge N + M - 1$$

(Since $P+n+1-M \ge P+1-M \ge N$)

(Proof):
$$y_1[n] = \sum_{k=0}^{N-1} x_1[k]h_1[((n-k))_P]$$

 $y_1[n] = x_1[0]h_1[n] + x_1[1]h_1[n-1] + \dots + x_1[n]h_1[0] + x_1[n+1]h_1[P-1] + \dots + x_1[n+2]h_1[P-2] + \dots + x_1[P+n+1-M]h_1[M-1] + \dots + x_1[P-1]h_1[n+1]$
 $= x_1[0]h[n] + x_1[1]h[n-1] + \dots + x_1[n]h[0]$
 $+x_1[P+n+1-M]h[M-1] + \dots + x_1[P-1]h[n+1]$
 $= x[0]h[n] + x[1]h[n-1] + \dots + x[n]h[0] = y[n]$

$$y[n] = x[n] * h[n] = \sum_{k} x[n-k]h[k]$$

Linear Convolution 有幾種 Cases

Case A: Both x[n] and h[n] have infinite lengths. (impossible)

Case B: Both x[n] and h[n] have finite lengths.

Case C: x[n] has infinite length but h[n] has finite length.

Case D: x[n] has finite length but h[n] has infinite length.

We focus on Case B.

Case C and Case D can also be computed.

Case B: Both x[n] and h[n] have finite lengths.

$$x[n]$$
 的範圍為 $n \in [n_1, n_2]$,大小為 $N = n_2 - n_1 + 1$ $h[n]$ 的範圍為 $n \in [k_1, k_2]$,大小為 $K = k_2 - k_1 + 1$ $(n_1, k_1 \text{ can be nonzero})$

$$y[n] = x[n] * h[n] = \sum_{k=k_1}^{k_2} x[n-k]h[k]$$
 $y[n]$ 的範圍?

Convolution output 的範圍以及點數, 是學信號處理的人必需了解的常識

FFT implementation for Case B

$$x_1[n] = x[n+n_1]$$
 for $n=0, 1, 2, ..., N-1$ $x_1[n] = 0$ for $n=N, N+1, ..., P-1$ $P \ge N+M-1$ $h_1[n] = h[n+k_1]$ for $n=0, 1, 2, ..., M-1$ $h_1[n] = 0$ for $n=M, M+1, ..., P-1$ $y_1[n] = IFFT_P\left(FFT_P\left\{x_1[n]\right\}FFT_P\left\{h_1[n]\right\}\right)$ $y[n] = y_1[n-n_1-k_1]$ for $n=n_1+k_1$, n_1+k_1+1 , n_1+k_1+2 ,, k_2+n_2 i.e., $n-n_1-k_1=0, 1, \cdots, N+M-2$ 取 output 的前面 $N+M-1$ 個點

Case C: x[n] has finite length but h[n] has infinite length

$$x[n]$$
 的範圍為 $n \in [n_1, n_2]$, 範圍大小為 $N = n_2 - n_1 + 1$

h[n] 無限長

$$y[n] = \sum_{k} x[n-k]h[k]$$
 $y[n]$ 每一點都有值(範圍無限大)

但我們只想求出 y[n] 的其中一段

希望算出的y[n]的範圍為 $n \in [m_1, m_2]$,範圍大小為 $M = m_2 - m_1 + 1$

h[n] 的範圍?

要用多少點的 FFT?

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$
改寫成 $y[n] = x[n] * h[n] = \sum_{s=n_1}^{n_2} x[s]h[n-s]$
 $y[n] = x[n_1]h[n-n_1] + x[n_1+1]h[n-n_1-1] + x[n_1+2]h[n-n_1-2] + \cdots + x[n_2]h[n-n_2]$
當 $n = m_1$
 $y[m_1] = x[n_1]h[m_1-n_1] + x[n_1+1]h[m_1-n_1-1] + x[n_1+2]h[m_1-n_1-2] + \cdots + x[n_2]h[m_1-n_2]$
當 $n = m_2$
 $y[m_2] = x[n_1]h[m_2-n_1] + x[n_1+1]h[m_2-n_1-1] + x[n_1+2]h[m_2-n_1-2] + \cdots + x[n_2]h[m_2-n_2]$

此圖為
$$n-s$$
範圍示意圖 $y[n] = \sum_{s=n_1}^{n_2} x[s]h[n-s]$ $(n=m_1)$ m_1-n_2 m_1-n_1 $(n=m_1+1)$ m_1-n_2+1 m_1-n_1+1 m_1-n_1+2 m_1-n_1+2 m_1-n_1+2 m_1-n_1+2 m_1-n_1+2 m_1-n_1+2 $m=m_1$ 時 $n-s$ 的範圍 $n=m_1+2$ 時 $n-s$ 的範圍 $n=m_1+2$ 時 $n-s$ 的範圍 $n-s$ 的範圍 $n-s$ 的範圍 $n-s$ 的範圍

所以有用到的 h[k] 的範圍是 $k \in [m_1 - n_2, m_2 - n_1]$

範圍大小為
$$m_2 - n_1 - m_1 + n_2 + 1 = N + M - 1$$

FFT implementation for Case 3

$$x_{1}[n] = x[n + n_{1}]$$
 for $n = 0, 1, 2, ..., N-1$
 $x_{1}[n] = 0$ for $n = N, N+1, N+2, ..., P-1$ $P \ge N+M-1$
 $h_{1}[n] = h[n + m_{1} - n_{2}]$ for $n = 0, 1, 2, ..., L-1$
 $y_{1}[n] = IFFT_{P} \left(FFT_{P} \left\{ x_{1}[n] \right\} FFT_{P} \left\{ h_{1}[n] \right\} \right)$
 $y[n] = y_{1}[n - m_{1} + N - 1]$ for $n = m_{1}, m_{1} + 1, m_{1} + 2, ..., m_{2}$
 $n - m_{1} + N - 1 = N - 1, N, \dots, N + M - 2$

注意:y[n] 只選 $y_1[n]$ 的第 N 個點到第 N+M-1 個點

O 11-D Relations between the Signal Length and the Convolution Algorithm

Suppose that

x[n]: input, h[n]: the impulse response of the filter

length(x[n]) = N, length(h[n]) = M (Both of them have finite lengths)

We want to compute

$$y[n] = \sum_{m=0}^{M-1} x[n-m]h[m]$$
 , $y[n] = x[n] * h[n]$.

The above convolution needs the *P*-point DFT, $P \ge M + N - 1$.

complexity: $O(P \log_2 P)$

[Case 1]: When *M* is a very small integer:

Directly computing

Number of multiplications for directly computing: $N \times M$

• Number of real multiplications for directly computing:

$$3N \times M$$

• When using $y[n] = IFFT_P(FFT_P\{x[n]\}FFT_P\{h[n]\})$

Number of real multiplications

$$2MUL_P + 3P$$

 MUL_p : the number of multiplications for the *P*-point DFT

When
$$3N \times M \leq 2MUL_P + 3P$$
,

it is proper to do directly computing instead of applying the DFT.

Example:
$$N = 126$$
, $M = 3$, (difference, edge detection)
 $(3/2)\log_2 N = 10.4659$

When compute the number of real multiplications explicitly, using direct implementation: $3N \times M = 1134$, using the 128-point DFT:

using the 144-point DFT:

Although in usual "directly computing" is not a good idea for convolution implementation, in the cases where

- (a) M is small
- (b) The filter has some symmetric relation

using the directly computing method may be efficient for convolution implementation.

Example: edge detection

$$h[n] = [-0.1, -0.3, -0.6, 0, 0.6, 0.3, 0.1]$$
 for $n = -3 \sim 3$

Example: smooth filter

$$h[n] = [0.1, 0.2, 0.4, 0.2, 0.1]$$
 for $n = -2 \sim 2$

[Case 2]: When M is not a very small integer but much less than N(N >> M):

It is proper to divide the input x[n] into several parts:

Each part has the size of L (L > M).

$$x[n] (n = 0, 1, ..., N-1) \rightarrow x_1[n], x_2[n], x_3[n], ..., x_S[n]$$

x[n]

$$S = \lceil N/L \rceil$$

 $S = \lceil N/L \rceil$, $\lceil \rceil$ means rounding toward infinite

 $x_1[n] = x[n]$ Section 1

for
$$n = 0, 1, 2, ..., L-1$$
,

Section 2 $x_2[n] = x[n+L]$

for
$$n = 0, 1, 2, ..., L-1$$
,

for
$$n = 0, 1, 2, ..., L-1,$$

$$s = 1, 2, 3,, S$$

Section s $x_s[n] = x[n + (s-1)L]$

$$x[n] = \sum_{s=1}^{S} x_s[n-(s-1)L]$$

$$y[n] = x[n] * h[n] = \sum_{s=1}^{S} x_s[n - (s-1)L] * h[n] = \sum_{s=1}^{S} y_s[n - (s-1)L]$$

where
$$y_s[n] = x_s[n] * h[n] = \sum_{m=0}^{M-1} x_s[n-m] h[m]$$

$$length = L \qquad length = M$$

It should perform the *P*-point FFTs 2*S* times. Why?

$$P \ge L + M - 1$$

Detail of Implementation

Suppose that the *P*-point DFT is applied for each section

$$x[n] = 0$$
 when $n < 0$ and $n \ge N$

(1) First, determine L = P - M + 1

(2)
$$x_s[n] = x[(s-1)L + n]$$
 for $n = 0, 1, 2, ..., L - 1, s = 1, 2, 3, ..., S$
 $x_s[n] = 0$ for $n = L, L + 1, ..., P - 1$ $S = \lceil N/L \rceil$
 $h_1[n] = h[n]$ for $n = 0, 1, 2, ..., M - 1,$
 $h_1[n] = 0$ for $n = M, M + 1, ..., P - 1$

(3) Then calculate

$$y_s[n] = IDFT_P \left\{ DFT_P \left(x_s[n] \right) DFT_P \left(h_1[n] \right) \right\}$$

(4) Then, apply "overlapped addition"

$$y[n] = \sum_{s=1}^{S} y_s[n-(s-1)L]$$

運算量:
$$2S \times \text{MUL}_P + 3S \times P$$
 $S \approx N/L$, $P \approx L + M - 1$

 MUL_P : the number of multiplications for the P-point DFT

運算量:
$$2S \times [(3P/2)\log_2 P] + 3S \times P$$
 $S \approx N/L$, $P \approx L + M - 1$ (理論值)
$$\approx \frac{N}{L} 3(L + M - 1) [\log_2 (L + M - 1) + 1]$$
 (linear with N)

何時為 optimal?
$$\rightarrow \frac{\partial$$
運算量 $}{\partial L} = 0$
$$N \frac{L - (L + M - 1)}{L^2} \Big[\log_2(L + M - 1) + 1 \Big] + N \frac{L + M - 1}{L} \frac{1}{(L + M - 1)\log 2} = 0$$

$$L = (M - 1) \Big[\log(L + M - 1) + \log 2 \Big]$$

In practice, a computer program is applied to determine the optimal L.

How do we estimate the optimal L?

- (1) Find L_0 to minimize $\frac{N}{L} 3(L+M-1) [\log_2(L+M-1)+1]$
- (2) Estimate P_0 from $P_0 = L_0 + M 1$. Then several values of P around P_0 to make MUL_P smaller
- (3) Calculate L, S, and the number of real multiplications for each possible P to find the optimal P and L.

注意:

- (1) Optimal section length is independent to N
- (2) If M is a fixed constant, then the complexity is linear with N, i.e., O(N)

比較:使用原本方法時, complexity = $O((N+M-1)\log_2(N+M-1))$

(3) 實際上,需要考量 P-point FFT 的乘法量必需不多

$$P = L + M - 1$$

例如,根據 page 442 的方法,算出當 M=10 時, L=41.5439 為 optimal

但實際上,應該選L=39,因為此時 P=L+M-1=48 點的 DFT 有較少的乘法量

[Case 3]: When *M* has the same order as *N*

[Case 4]: When *M* is much larger than *N*

[Case 5]: When *N* is a very small integer

Case 1	Case 2	Case 3	Case 4	Case 5
M is a very small integer	M << N	M pprox N	M>>N	N is a very small integer

M

• Sectioned Convolution for the Condition where One Sequence is Finite and the Other One is Infinite

$$y[m] = \sum_{n} x[n]h[m-n]$$

 $x[n] \neq 0$ for $n_1 \leq n \leq n_2$, length of $x[n] = N = n_2 - n_1 + 1$, length of h[n] is infinite, and we want to calculate y[m] for $m_1 \leq m \leq m_2$, $M = m_2 - m_1 + 1$.

Suppose that $M \ll N$.

In this case, we can try to partition x[n] into several sections.

section 1:
$$x_1[n] = x[n]$$
 for $n = n_1 \sim n_1 + L - 1$, $x_1[n] = 0$ otherwise, section 2: $x_2[n] = x[n]$ for $n = n_1 + L \sim n_1 + 2L - 1$, $x_2[n] = 0$ otherwise, : section $q: x_q[n] = x[n]$ for $n = n_1 + (q-1)L \sim n_1 + qL - 1$, $x_q[n] = 0$ otherwise, :

Then we perform the convolution of $x_q[n] * h[n]$ for each of the sections by the method on pages 431-433.

(Since the length of
$$x_q[n]$$
 is L , it requires the P -point DFT, $P \ge L + M - 1$.

Its complexity and the optimal section length can also be determined by the formulas on page 442.

11-E Recursive Method for Convolution Implementation

$$y[n] = \sum_{m=0}^{N-1} x[n-m]a \cdot b^{m} = x[n] * a \cdot b^{n}u[n]$$

u[n]: unit step function

$$Y(z) = X(z) \frac{a}{1 - bz^{-1}}$$

$$(1-bz^{-1})Y(z) = aX(z)$$

$$y[n] = by[n-1] + ax[n]$$

Only two multiplications required for calculating each output.

$$y[n] = x[n] * h[n]$$

$$h[n] = 0.25 \cdot 0.6^{|n|}$$

$$H(z) = \frac{0.25}{1 - 0.6z^{-1}} + \frac{0.25}{1 - 0.6z} - 0.25$$
$$= 0.25 \frac{1}{\frac{1.36}{0.64} - \frac{0.6}{0.64} (z^{-1} + z)}$$

12. Fast Algorithm 的補充

12-A Discrete Fourier Transform for Real Inputs

DFT:
$$F[m] = \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi}{N}mn}$$

當f[n] 為 real 時,F[m] = F*[N-m]

*: conjugation

若我們要對兩個 real sequences $f_1[n]$, $f_2[n]$ 做 DFTs

Step 1:
$$f_3[n] = f_1[n] + j f_2[n]$$

Step 2:
$$F_3[m] = DFT\{f_3[n]\}$$

Step 3:
$$F_1[m] = \frac{F_3[m] + F_3^*[N-m]}{2}$$
 $F_2[m] = \frac{F_3[m] - F_3^*[N-m]}{2j}$

只需一個 DFT

證明:由於DFT是一個 linear operation

$$F_3[m] = F_1[m] + jF_2[m]$$

$$F_{1}[m] = F_{1}*[N-m] \qquad F_{2}[m] = F_{2}*[N-m]$$

$$F_{3}[m] + F_{3}^{*}[N-m] = F_{1}[m] + jF_{2}[m] + F_{1}^{*}[N-m] - jF_{2}^{*}[N-m]$$

$$= 2F_{1}[m]$$

$$F_{3}[m] - F_{3}^{*}[N-m] = j2F_{2}[m]$$

同理,當兩個 inputs 為

- (1) pure imaginary
- (2) one is real and another one is pure imaginary

時,也可以用同樣的方法將運算量減半

- 若 input sequence 為 even f[n] = f[N-n], 則 DFT output 也為 even F[n] = F[N-n]
- 若 input sequence 為 odd f[n] = -f[N-n], 則 DFT output 也為 odd F[n] = -F[N-n]

若有四個 input sequences,二個為 even and real,二個為 odd and real, 則乘法量可減為 1/4

[Corollary 1]

If we have known that the IDFTs of $F_1[m]$ and $F_2[m]$ are real, then the IDFTs of $F_1[m]$ and $F_2[m]$ can be implemented using only one IDFT:

(Step 1)
$$F_3[m] = F_1[m] + j F_2[m]$$

$$(Step 2) f_3[n] = IDFT \{F_3[m]\}$$

(Step 3)
$$f_1[n] = \Re\{f_3[n]\}, f_2[n] = \Im\{f_2[n]\},$$

[Corollary 2]

When x[n] and h[n] are both real, the computation loading of the convolution (or the sectioned convolution) of x[n] and h[n] can be halved.

12-B Converting into Convolution

一般的 linear operation:

$$z[m] = \sum_{n=0}^{N-1} x[n]k[m,n]$$
 (習慣上,把 $k[m,n]$ 稱作"kernel") $n = 0, 1,, N-1, m = 0, 1,, M-1$ 可以用矩陣 (matrix) 來表示 運算量為 MN

若為 linear time-invariant operation:

$$z[m] = \sum_{n=0}^{N-1} x[n]h[m-n] k[m,n] = h[m-n]$$
 (dependent on m, n 之間的差) $n = 0, 1,, N-1, m = 0, 1,, M-1$ $m-n$ 的範圍:從 $1-N$ 到 $M-1$,全長 $M+N-1$ 運算量為 $L\log_2 L$, $L \ge M+2N-2$

大致上,變成 convolution 後 總是可以節省運算量

例子A
$$z[m] = \sum_{n=0}^{N-1} x[n] 2^{mn}$$
 可以改寫為
$$z[m] = 2^{\frac{m^2}{2}} \sum_{n=0}^{N-1} \left\{ x[n] 2^{\frac{n^2}{2}} \right\} 2^{\frac{-(n-m)^2}{2}}$$
 convolution

運算量為 $M+N+L\log_2 L$

例子B Linear Canonical Transform

$$y(k) = A \int_{-\infty}^{\infty} e^{j\alpha k^{2} + j\beta kt + j\gamma t^{2}} x(t) dt$$

$$y(k) = A \int_{-\infty}^{\infty} e^{j(\alpha + \beta/2)k^{2} - j\frac{\beta}{2}(k-t)^{2} + j(\gamma + \beta/2)t^{2}} x(t) dt$$

$$y(k) = A e^{j(\alpha + \beta/2)k^{2}} \int_{-\infty}^{\infty} e^{-j\frac{\beta}{2}(k-t)^{2}} \left[e^{j(\gamma + \beta/2)t^{2}} x(t) \right] dt$$

General rules:

當k[m, n] 可以拆解成 $A[m] \times B[m-n] \times C[n]$

或
$$k[m,n] = \sum_{s} A_{s}[m]B_{s}[m-n]C_{s}[n]$$

即可以使用 convolution

12-C LUT

LUT (lookup table)

道理和背九九乘法表一樣

記憶體容量夠大時可用的方法

Problem: memory requirement wasting energy

九九乘法表的例子

附錄十四 創意思考

New ideas 聽起來偉大,但大多是由既有的 ideas 變化而產生

- (1) Combination
- (2) Analogous
- (3) Connection
- (4) Generalization
- (5) Simplification
- (6) Reverse
- 註:感謝已過逝的李茂輝教授,他開的課「創造發明工程」, 讓我一生受用無窮
- (7) Key Factor Analysis
- (8) 胡思亂想,純粹意外

(7) Key Factor

(8) Imagination

(9) 純粹意外

(1) Combination

(2) Analog

例:

(3) Connection

(4) Generalization

(5) Simplification

(6) Reverse

(1) 研究問題的第一步,往往是先想辦法把問題簡化

如果不將複雜的經濟問題簡化成二維供需圖,經濟學也就無從發展起來 如果不將電子學的問題簡化常小訊號模型,電子電路的許多問題都將難 以解決

個人在研究影像處理時,也常常先針對 size 很小,且較不複雜的影像來做處理,成功之後再處理 size 較大且較複雜的影像

問題簡化之後,才比較容易對問題做分析,並提出改良之道

- (2) 如果有好點子,趕快用筆記下來, 好點子是很容易稍縱即逝而忘記的。
- (3)練習多畫系統圖

系統圖畫得越多,越容易發現新的點子

(4) 其實,對台大的同學而言,提出 new ideas 並不難,但是要把 ideas 變成有用的、成功的 ideas,不可以缺少分析和解決問題的能力

很少有一個 new idea 一開始就 works well for any case,任何一個成功的創意,都是經由問題的分析,解決一連串的技術上的問題,才產生出來的

- (5) 當心情放鬆時,想像力特別強,有助於發現意外的點子。
- (6) 就短期而言,技術性的問題固然重要

但是就長期而言,不要因為技術上的困難,而否定了一個偉大的構想

大學以前的教育,是學習前人的智慧結晶 研究所的教育,是訓練創造發明和解決問題的能力