Tema 2: Teoría de la Demostración

Lógica

Grado en Ingeniería Informática 2018/19

uc3m

Una vez en este punto...

- Hasta este momento nos hemos limitado a simbolizar (representar nociones por medio de símbolos) pero no hemos formalizado la estructura deductiva.
- Es necesario representar matemáticamente los procesos de razonamiento mediante los cuales se obtienen conclusiones a partir de premisas
- Para esto abordaremos la Teoría de la Demostración (deducción axiomática)

Introducción a la T. de la Demostración

 Estructura deductiva: es una representación formal de un proceso de razonamiento para obtener una conclusión a partir de unas premisas.

Premisas → Conclusión

- Las deducciones se demuestran fórmula a fórmula.
- Las conclusiones se apoyan en fórmulas previamente probadas o dadas por buenas

Introducción a la T. de la Demostración

- La formalización de las estructuras deductivas en teoría de la demostración requiere:
 - Un sistema de fórmulas válidas.
 - Una serie de fórmulas que se asumen como válidas por hipótesis (axiomas del sistema)
 - Unas reglas de demostración o inferencia que permiten obtener nuevas fórmulas válidas a partir de los axiomas.
 - Una definición de deducción que permita, aplicando las reglas, representar cualquier deducción correcta.

Teoría de la demostración

- **Definición:** un sistema de demostración formal S o sistema de pruebas se define matemáticamente mediante los siguientes cuatro elementos:
 - A es el alfabeto del sistema: el conjunto de símbolos que se pueden utilizar,
 - F es el conjunto de reglas de sintaxis: las reglas que permiten definir las fórmulas bien construidas,
 - X es el conjunto de axiomas: fórmulas válidas por definición,
 - R es el conjunto de reglas de inferencias: reglas de transformación que permiten inferir una fórmula, la conclusión, a partir de un conjunto de fórmulas, las condiciones o premisas.
- Es necesario que el conjunto de axiomas y reglas sea consistente (no contradictorio):
 - no pueda demostrarse una fórmula y su negación.

• Un sistema de demostración *S* como el anterior se puede representar en forma compacta como

$$S = (A, F, X, R)$$

- Existen varios sistemas, entre los que podemos mencionar:
 - Sistema L (Lukasiewizc y Church).
 - Sistema PM. (Principia Mathematica)
 - Sistema de Kleene.

Teoría de la demostración

- Sistemas de demostración se pueden dividir en dos clases:
 - Sistemas directos
 - Sistemas indirectos (o por refutación).
- Sistemas directos: los primeros aplican una cadena finita de reglas de inferencia hasta llegar a la fórmula que se quiere demostrar.
 - Los sistemas de demostración directos tienen interés histórico y además son los más naturales ya que son los más cercanos a la forma de razonamiento habitual.
 - Los sistemas directos son de difícil automatización.
 - El sistema de demostración directo que vamos a estudiar es el sistema axiomático de Kleene
- Sistemas indirectos: aplican la técnica de reducción al absurdo.

- Sistema L (Alfabeto A={prop., \rightarrow , \sim , (,)}
 - Axiomas:

A1.
$$\vdash A \rightarrow (B \rightarrow A)$$

A2. $\vdash (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
A3. $\vdash (\sim A \rightarrow \sim B) \rightarrow (B \rightarrow A)$

Regla de demostración:

$$\begin{array}{c|c}
 & \downarrow A \rightarrow B, \downarrow A \\
\hline
 & \downarrow B
\end{array}$$

Reglas de interdefinición de conectivas:

$$A \wedge B \iff \sim (A \rightarrow \sim B)$$

 $A \vee B \iff \sim A \rightarrow B$
 $A \leftrightarrow B \iff \sim ((A \rightarrow B) \rightarrow \sim (B \rightarrow A))$

Teoría de la demostración

• Sistema axiomático de KLEENE:

$$K = (A, F, X, R)$$

- Definido por:
 - 1. A: Un alfabeto compuesto por:
 - Símbolos p, q, r, s, t, .. (proposiciones atómicas)
 - Símbolos de conectivas $(\sim, \land, \lor, \rightarrow)$
 - · Paréntesis "(", ")".

Sistema axiomático de KLEENE:

$$K = (A, F, X, R)$$

- Definido por:
 - 2. F: el conjunto de las fórmulas bien construidas (fbc) se define recursivamente como:
 - · At: toda proposición atómica es una fbc,
 - · ~: si A es una fbc entonces ~A es una fbc,,
 - Resto: si A y B son fbc, entonces A \land B, A \lor B, A \rightarrow B, B \rightarrow A son fbc.
 - · Toda fbc se obtiene mediante las tres reglas anteriores.

Nota: en lo que se sigue usaremos también la conectiva de equivalencia (o bicondicional) entre dos fórmulas, $A \leftrightarrow B$: Esta conectiva se entenderá como una forma abreviada de representar la fórmula bien construida ($A \rightarrow B$) \land ($B \rightarrow A$).

Teoría de la demostración

• Sistema axiomático de KLEENE:

$$K = (A, F, X, R)$$

- Definido por:
 - 3. X: Axiomas **Fórmula válida**

A1
$$(A \rightarrow (B \rightarrow A))$$

A2. $(A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$
A3. $(A \rightarrow (B \rightarrow A \land B))$

A4.
$$A \land B \rightarrow A$$
, $A \land B \rightarrow B$
A5. $A \rightarrow A \lor B$, $B \rightarrow A \lor B$
A6. $A \rightarrow A \lor B$, $A \rightarrow A \lor B$

A6.
$$f(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C)$$

A7. $f(A \rightarrow B) \rightarrow ((A \rightarrow \sim B) \rightarrow \sim A)$

A8.
$$\vdash \sim A \rightarrow A$$

• Sistema axiomático de KLEENE:

$$K = (A, F, X, R)$$

- Definido por:
 - 4. R: Regla de demostración (Modus Ponens):

De A → B y A, se puede deducir B (como fórmula válida)

Concepto de demostración

- Una demostración de una fórmula A en el sistema, es una sucesión de fórmulas p₁,p₂,p₃,...,p_n tales que:
 - Cada fórmula p_i, elemento de la sucesión es:
 - · Un axioma.
 - Una fórmula válida obtenida a partir de las anteriores, aplicando la regla de demostración.
 - $^{\circ}$ El **último elemento** de la sucesión: $\mathbf{p_n}$ es precisamente la **fórmula a demostrar** A.

Concepto de demostración

• Ejemplo de demostración I

T. Identidad: $\mathbf{A} \rightarrow \mathbf{A}$

- 1. $\vdash A \rightarrow (A \rightarrow A)$ Axioma 1 de Kleene $B \Leftrightarrow A$
- 2. \vdash (A \rightarrow (A \rightarrow A)) \rightarrow ((A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A))
 Axioma 2 de Kleene, definiendo B \Leftrightarrow A \rightarrow A, C \Leftrightarrow A, A \Leftrightarrow A
- 3. $\vdash (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$ Modus Ponens 1 y 2
- 4. \vdash (A \rightarrow ((A \rightarrow A) \rightarrow A)) Axioma 1 de Kleene, definiendo B \Leftrightarrow A \rightarrow A
- 5. \vdash (A \rightarrow A) Modus ponens 4,3

Concepto de demostración

• Ejemplo de demostración II

Commutatividad de la disyunción: $(A \lor B) \rightarrow (B \lor A)$

- 1. \vdash (A \rightarrow B \lor A) \rightarrow ((B \rightarrow B \lor A) \rightarrow (A \lor B \rightarrow B \lor A)) Axioma 6, definiendo C \Leftrightarrow B \lor A
- 2. $\vdash A \rightarrow B \lor A$ Axioma 5
- 3. \vdash (B \rightarrow B \lor A) \rightarrow (A \lor B \rightarrow B \lor A) Modus Ponens 1,2
- 4. $\vdash B \rightarrow B \lor A Axioma 5$
- 5. \vdash (A \lor B \rightarrow B \lor A) Modus Ponens 3,4

Deducción

 Una deducción o estructura deductiva se describe mediante dos sucesiones separadas por el signo ⇒

$$p_1, p_2, p_3, ..., p_n \Rightarrow q_1, q_2, ..., q_m$$

 La sucesión p_i es el antecedente de la deducción y sus elementos se llaman premisas. La sucesión q_i es el consecuente de la deducción y sus elementos se llaman conclusiones.

Deducción

- Deducción correcta
 - Una estructura deductiva se define como correcta cuando la sucesión consecuente se obtiene de acuerdo con alguna de las reglas siguientes.
 - · q_i es una de las premisas.
 - q_i es una fórmula válida del sistema (axioma o teorema¹).
 - \cdot q_i se deduce de alguna premisa o alguna conclusión previa aplicando las reglas de inferencia.

¹Fórmula obtenida a partir de los axiomas mediante las reglas de inferencia con que se define el sistema.

Deducción

• Ejemplo de deducción (I)

$$A \rightarrow (B \rightarrow C), B, A \Rightarrow C$$

1. $A \rightarrow (B \rightarrow C)$ Premisa 12. BPremisa 23. APremisa 34. $B \rightarrow C$ Modus Ponens 3,15. CModus Ponens 2,4

Deducción

• Ejemplo de deducción (II)

$$A \rightarrow B, B \rightarrow C, A \Rightarrow C$$

Premisa 1
Premisa 2
Premisa 3
Modus Ponens 3,1
Modus Ponens 2,4

Teorema de la deducción

- Permite definir una relación entre las estructuras deductivas correctas y las fórmulas válidas.
- Si $p_1,p_2,...,p_n \Rightarrow q_1,q_2,...,q_m$ es una deducción correcta, existe una deducción correcta de $p_n \rightarrow q_m$ con premisas $p_1,p_2,...,p_{n-1}$:

$$p_1, p_2, ..., p_{n-1} \Rightarrow q_1, q_2, ..., q_{m-1}, p_n \rightarrow q_m$$

• Es decir, si $q_1,q_2,...,q_m$ es deducible de $p_1,p_2,...,p_n$, entonces $p_n{\rightarrow}q_m$ es deducible de $p_1,p_2,...,p_{n-1}$

Teorema de la deducción

 De acuerdo con el concepto de demostración, la deducción

$$p_1, p_2, ..., p_n \Rightarrow q_1, q_2, ..., q_m$$

se puede escribir como la secuencia

$$p_1, p_2, ..., p_{n-1}, p_n, q_1, q_2, ..., q_m$$
 o también (por teorema de la deducción)

$$p_{_{1}},p_{_{2}},...,p_{_{n-1}},q_{_{1}},q_{_{2}},...,q_{_{m-1}},p_{_{n}}\!\!\to\!\!q_{_{m}}$$

Teorema de la deducción

- Cuestiones clave:
 - De una estructura deductiva correcta siempre es posible encontrar una fórmula válida que la representa
 - Aplicar el teorema de la deducción de forma sucesiva hasta que desaparezca la secuencia antecedente).
 - Una estructura deductiva correcta es también una regla de demostración si se asumen como fórmulas válidas las premisas.

Teorema de la deducción

• Si $p_1,p_2,p_3,...,p_n \Rightarrow q$ es una deducción correcta, entonces

 $p_{_{1}},p_{_{2}},p_{_{3}},...,p_{_{n-1}}{\Rightarrow}\;p_{_{n}}{\rightarrow}q$ es también una deducción correcta

 $p_1,p_2,p_3,...,p_{n-2}$ ⇒ p_{n-1} → $(p_n$ → q) es también una deducción correcta

 También es válido el proceso inverso de fórmula válida a deducción correcta

Teorema de la deducción

• Ejemplo1:

Si A \land B, B \rightarrow C, C \rightarrow D \Rightarrow D es una deducción correcta, entonces:

A
$$\land$$
B, B \rightarrow C \Rightarrow (C \rightarrow D) \rightarrow D también lo es
A \land B \Rightarrow (B \rightarrow C) \rightarrow ((C \rightarrow D) \rightarrow D) también lo es
 \displaybreak \land AB \rightarrow ((B \rightarrow C) \rightarrow ((C \rightarrow D) \rightarrow D)) es fórmula
válida

• Ejemplo2:

Si \vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)) es fórmula válida, entonces:

 $(A \to B)$, $(B \to C) \Rightarrow \!\! (A \to C)$ es deducción correcta

 $(A \rightarrow B)$, $(B \rightarrow C)$, $A \Rightarrow C$ es deducción correcta

Reglas derivadas (aplicando TD)

Axiomas

• A1.
$$\vdash A \rightarrow (B \rightarrow A)$$

$$\bullet \quad \mathbf{A2.} \quad \vdash \quad (\mathbf{A} \rightarrow \mathbf{B}) \rightarrow ((\mathbf{A} \rightarrow (\mathbf{B} \rightarrow \mathbf{C})) \rightarrow (\mathbf{A} \rightarrow \mathbf{C})) \quad \quad \mathbf{A} \rightarrow \mathbf{B}, \ \mathbf{A} \rightarrow (\mathbf{B} \rightarrow \mathbf{C}), \ \mathbf{A} \Rightarrow \mathbf{C}$$

$$^{\square}$$
 A3. \vdash A \rightarrow (B \rightarrow A \land B)

• **A4.**
$$\vdash$$
 A \land B \rightarrow A ,, \vdash A \land B \rightarrow B

$$^{\square} A5. \vdash A \rightarrow A \lor B,, \vdash B \rightarrow A \lor B$$

Con el T. de la Deducción

$$A \Rightarrow B \rightarrow A$$

$$A \to B, A \to (B \to C), A \Rightarrow$$

$$A, B \Rightarrow A \wedge B$$

$$A \wedge B \Rightarrow A$$
 $A \wedge B \Rightarrow B$

$$A \Rightarrow A \lor B$$
 $B \Rightarrow A$

$$A \rightarrow C, B \rightarrow C, A \lor B =$$

$$A \rightarrow B, A \rightarrow \sim B \Rightarrow \sim A$$

$\sim \sim A \Rightarrow A$

Reglas derivadas (aplicando TD)

Axiomas

• **A1**.
$$A \Rightarrow B \rightarrow A$$

• **A2.**
$$A \rightarrow B, A \rightarrow (B \rightarrow C), A \Rightarrow C$$

• **A3.** A, B
$$\Rightarrow$$
 A \wedge B

$$^{\circ}$$
 A4. $A \wedge B \Rightarrow A$, $A \wedge B \Rightarrow B$

$$^{\square} \mathbf{A5.} \mathbf{A} \Rightarrow \mathbf{A} \vee \mathbf{B} ,, \quad \mathbf{B} \Rightarrow \mathbf{A} \vee \mathbf{B}$$

$$^{\circ}$$
 A6. A → C, B → C, A ∨ B ⇒ C

• A7.
$$A \rightarrow B, A \rightarrow \sim B \Rightarrow \sim A$$

• **A8.**
$$\sim \sim A \Rightarrow A$$

Introducción del antecente

Regla del producto

Regla de simplificación

Regla de la adición

Prueba por casos

Reducción al absurdo

Eliminación de la doble negación

Definición recursiva de teorema:

- Un teorema es una fórmula válida (demostrable) y tiene la siguiente definición recursiva:
 - Una fórmula bien construida *A* es un teorema si es un axioma o si se obtiene como conclusión de la aplicación de un conjunto de reglas de inferencias a otros teoremas.

Es un axioma O se obtiene como conclusión de otras reglas

 La demostración de un teorema es la demostración de una deducción cuyo conjunto de premisas es vacío.

Teoremas

T3: Modus ponens (T. Deducción)

$$\vdash A \rightarrow ((A \rightarrow B) \rightarrow B)$$

RD: A, A \rightarrow B, \Rightarrow B

• De una implicación y de su premisa se deduce su conclusión.

Ejemplo:

P1. Luis es un hombre

P2. Si Luis es un hombre entonces es mortal

 $Q => Luis \ es \ mortal.$

T1: Teorema de la identidad:

 $A \rightarrow A$

 $RD: A \Rightarrow A$

De toda fórmula se deduce ella misma.

Ya demostrado anteriormente.

Teoremas

T2: Regla del silogismo (prop. Transitiva)

$$\vdash (A \to B) \to ((B \to C) \to (A \to C)) \quad \boxed{\text{RD: } A \to B, B \to C \Rightarrow A \to C}$$

De dos implicaciones (A \rightarrow B y B \rightarrow C) tales que la conclusión de la primera es la premisa de la segunda se deduce la implicación de la premisa de la primera fórmula a la conclusión de la segunda. (A \rightarrow C).

Ejemplo:

P1. Si como mucho entonces me duele la tripa.

P2. Si me duele la tripa entonces me tumbo en la cama

Q => Si como mucho entonces me tumbo en la cama

Ya demostrado anteriormente.

T4: Excontradictione Quodlibet

 $A \rightarrow (\sim A \rightarrow B)$ o bien, $-\sim A \rightarrow (A \rightarrow B)$ RD: A, $\sim A \Rightarrow B$

- De una fórmula y de su negación se deduce cualquier fórmula.
- Ejemplo:
 - P1. Pedro es un hombre
 - P2. Pedro no es un hombre.
- Q = Por lo tanto se deduce que el cielo es azul.

Ya demostrado anteriormente.

Teoremas

T5: Producto Condicional

$$\vdash (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B \land C))$$

 $RD: A \to B, A \to C \Rightarrow A \to B \wedge C$

- De dos implicaciones con la misma premisa se deduce la implicación de esa misma premisa y conjunción de sus conclusiones.
- **Ejemplo**: si x es par, es divisible entre dos y si x es par entonces no es impar, por lo tanto, se deduce que si x es par, entonces x es divisible entre dos y no es impar.

T5: Producto Condicional

- 1. $A \rightarrow B$
- Premisa 1
- 2. $A \rightarrow C$
- Premisa 2

3. A

Premisa 3

4. B

Modus Ponens 3,1

5. C

- Modus Ponens 3,2
- **6.** \vdash B \rightarrow (C \rightarrow B \land C) Ax 3
- 7. $(C \rightarrow B \land C)$
- Modus Ponens 4,6
- **8.** B ∧ C
- Modus Ponens 5,7

Teoremas

T6: Contraposición

RD: $A \rightarrow B \Rightarrow \sim B \rightarrow \sim A$

$$\vdash$$
 (A \rightarrow B) \rightarrow (\sim B \rightarrow \sim A),

$$\vdash$$
 (A \rightarrow ~ B) \rightarrow (B \rightarrow ~ A), (Equivalente)

$$\vdash$$
 (~ A \rightarrow B) \rightarrow (~ B \rightarrow A) (Equivalente)

- De una implicación se deduce su "contrapositiva".
- **Ejemplo**: de "voy en metro sólo si llueve", se deduce, que "si no llueve no voy en metro"

T7: Interdefinición (de conectivas) respecto conjunción

 \vdash (A \rightarrow B) \rightarrow (\sim (A $\land \sim$ B))

(Directa)

RD: $A \rightarrow B \Rightarrow \sim (A \land \sim B)$

- De una implicación se deduce la negación de la conjunción de su premisa con la negación de su conclusión.
- **Ejemplo**: de "voy en metro sólo si llueve" se deduce que no es posible que vaya en metro y no llueva.
- Y también el recíproco del anterior: una implicación se deduce de la negación de la conjunción de su premisa con la negación de su conclusión:

 $\vdash \sim (A \land \sim B) \rightarrow (A \rightarrow B)$

(Recíproca)

RD: $\sim (A \land \sim B) \Rightarrow A \rightarrow B$

Teoremas

T8: Interdefinición (de conectivas) respecto disyunción

 \vdash (A \rightarrow B) $\rightarrow \sim$ A \vee B

(Directa)

RD: $A \rightarrow B \Rightarrow \sim A \vee B$

- De una implicación se deduce la disyunción de la negación de su premisa con su conclusión.
- **Ejemplo:** de "Una función derivable es continua" se deduce que "Una función o no es derivable, o es continua".

 $\vdash \sim A \lor B \to (A \to B)$

(Recíproca)

RD: $\sim A \vee B \Rightarrow A \rightarrow B$

T9: Leyes de De Morgan

$$\vdash \sim (A \lor B) \to \sim A \land \sim B \text{ (Directa)}$$

 $\vdash \sim A \land \sim B \to \sim (A \lor B) \text{ (Recíproca)}$

RD:
$$\sim$$
(A \vee B) \Rightarrow \sim A \wedge \sim B

RD:
$$\sim A \land \sim B \Rightarrow \sim (A \lor B)$$

De la negación de la disyunción de dos fórmulas se deduce la conjunción de las negaciones de las mismas.

• **Ejemplo**: de "no es posible que Pedro sea hermano de Marta o que sea hermano de Luis". De esto se deduce que "Pedro no es hermano de Marta y Pedro no es hermano de Luis".

Tob: Leves de De Morgan

$$\vdash \sim (A \land B) \rightarrow \sim A \lor \sim B \text{ (Directa)}, \ \vdash \sim A \lor \sim B \rightarrow \sim (A \land B) \text{ (Recíproca)}$$

RD:
$$\sim$$
(A \wedge B) \Rightarrow \sim A \vee \sim B

RD:
$$\sim A \lor \sim B \Rightarrow \sim (A \land B)$$

Teoremas

Propiedades conjunción <

T10: Propiedad conmutativa

$$\vdash (A \land B) \rightarrow (B \land A), \vdash (B \land A) \rightarrow (A \land B)$$

T11: Propiedad asociativa

$$\vdash A \land (B \land C) \rightarrow (A \land B) \land C$$
, $\vdash (A \land B) \land C \rightarrow A \land (B \land C)$

T12: Propiedad distributiva

T13: Propiedad de absorción

$$\vdash A \land (A \lor B) \rightarrow A, \vdash A \rightarrow A \land (A \lor B)$$

T14: Idempotencia

$$\mid A \land A \rightarrow A, \mid A \rightarrow A \land A$$

Propiedades disyunción imes

Teoremas

T₁₅: Propiedad conmutativa

 \vdash (A \vee B) \rightarrow (B \vee A), \vdash (B \vee A) \rightarrow (A \vee B)

T16: Propiedad asociativa

 $\vdash A \lor (B \lor C) \rightarrow (A \lor B) \lor C$, $\vdash (A \lor B) \lor C \rightarrow A \lor (B \lor C)$

T₁₇: Propiedad distributiva

 $\begin{vmatrix}
A \lor (B \land C) \rightarrow (A \lor B) \land (A \lor C), \\
A \lor B \land (A \lor C) \rightarrow A \lor (B \land C)
\end{vmatrix}$

T18: Propiedad de absorción

 $\vdash A \lor (A \land B) \rightarrow A, \vdash A \rightarrow A \lor (A \land B)$

T19: Idempotencia

 $\vdash A \lor A \to A, \vdash A \to A \lor A$

Teoremas

T20: Coimplicación

 $\vdash (A \rightarrow B) \rightarrow (B \rightarrow A) \rightarrow (A \leftrightarrow B)$

 La coimplicación (doble implicación) entre dos fórmulas se deduce de las dos implicaciones que tienen estas dos fórmulas como premisa y conclusión y como conclusión y premisa, respectivamente.

T21: Eliminación de la Coimplicación

• De una coimplicación entre dos fórmulas se deducen las implicaciones de cada una a la otra.

T22: Propiedad Simétrica Coimplicación

$$\vdash (A \leftrightarrow B) \to (B \leftrightarrow A)$$

Teoremas

T23: Importación-Exportación

$$\begin{array}{l} \mbox{\mid} (A \rightarrow (B \rightarrow C)) \rightarrow (A \wedge B \rightarrow C) \ \mbox{(Directa)} \\ \mbox{\mid} (A \wedge B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C)) \ \mbox{(Recíproca)} \end{array}$$

- De una implicación cuya conclusión es una implicación A → B se deduce la implicación de la conjunción de las dos premisas a la conclusión B.
- Ejemplo: Sean
 - p = n es un número natural,
 - q = n es par,
 - r =el cuadrado de n es par.

entonces,

"si n es número natural, entonces, si n es par, su cuadrado es par. Se deduce que:

"si n es un número natural y es par, entonces su cuadrado es par"

T23: Importación-Exportación

$$A \rightarrow (B \rightarrow C), A \wedge B \Rightarrow C$$

Demostración:

Regla de intercambio

 Sea F_A la notación correspondiente a una fórmula del cálculo proposicional en la que aparece la fórmula A. El teorema dice:

Si
$$\vdash A \leftrightarrow B$$
 entonces $\vdash F_A \leftrightarrow F_B$

• Siendo F_B la fórmula resultante de sustituir la ocurrencia de A en F_A por B

Regla de intercambio

• 1. Conjunción

$$\vdash (A \land A) \leftrightarrow A$$

$$\vdash A \land (B \land C) \leftrightarrow (A \land B) \land C$$

$$\vdash A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$$

• 2. Disyunción

$$\vdash (A \lor A) \leftrightarrow A$$

$$\vdash$$
 A \lor (B \lor C) \leftrightarrow (A \lor B) \lor C

$$\vdash$$
 A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)

Regla de intercambio

• 3. Negación

$$-\sim A \leftrightarrow A$$

• 4. Interdefiniciones

$$\vdash$$
 ~A \lor B \leftrightarrow (A \rightarrow B)

$$\vdash \sim (A \land B) \leftrightarrow \sim A \lor \sim B$$

$$\vdash \sim (A \lor B) \leftrightarrow \sim A \land \sim B$$

$$\vdash \sim (A \land \sim B) \leftrightarrow (A \rightarrow B)$$

Regla de intercambio

• Ejemplo:

Transformación de \sim (A \rightarrow \sim B) \wedge (B \rightarrow \sim (C \vee D)) en una conjución de disyunciones donde A, B, C y D

1.
$$\sim$$
 (A \rightarrow \sim B) \wedge (B \rightarrow \sim (C \vee D))

2.
$$\sim$$
(\sim A \vee \sim B) \wedge (B \rightarrow \sim (C \vee D)) 4.1

3.
$$\sim (\sim A \vee \sim B) \wedge (\sim B \vee \sim (C \vee D))$$
 4.1

4.
$$(\sim A \land \sim B) \land (\sim B \lor \sim (C \lor D))$$
 4.2

7.
$$A \wedge B \wedge (\sim B \vee \sim C) \wedge (\sim B \vee \sim D)$$
 3.1

• Modus Ponens
$$P, P \rightarrow Q \Longrightarrow Q$$

Silogismo

$$P \rightarrow Q, Q \rightarrow R \Longrightarrow P \rightarrow R$$

• Mutación de premisas

$$A \rightarrow (B \rightarrow C) \Longrightarrow B \rightarrow (A \rightarrow C)$$

- Introducción de antecedente $A \Longrightarrow B \rightarrow A$
- Conmutativa $A \wedge B \Longrightarrow B \wedge A$
- Contraposición en → $A \rightarrow B \Longrightarrow \sim B \rightarrow \sim A$
- Modus Tollens $A \rightarrow B, \sim B \Longrightarrow \sim A$

- $A \Longrightarrow \sim \sim A$ • Tercio excluso $\Gamma \Longrightarrow A \vee \sim A$
- Ex contradictione quodlibet $A \land \sim A \Longrightarrow B$
- Simplificación $A \wedge B \Longrightarrow A$
- Asociativa

$$(A \land B) \land C \Longrightarrow A \land (B \land C)$$

- Distributiva
- $A \wedge (B \vee C) \Longrightarrow (A \wedge B) \vee (A \wedge C) \quad \bullet \text{ Transitiva}$
- Idempotencia $A \wedge A \Longrightarrow A$
- Absorción $A \wedge (A \vee B) \Longrightarrow A$

• Reglas de Morgan

$$\sim (A \lor B) \Longrightarrow \sim A \land \sim B$$

$$\sim A \land \sim B \Longrightarrow \sim (A \lor B)$$

$$\sim (A \wedge B) \Longrightarrow \sim A \vee \sim B$$

$$\sim A \lor \sim B \Longrightarrow \sim (A \land B)$$

Implicación

$$\begin{array}{c} \sim A \vee B \Longrightarrow A \to B \\ A \to B \Longrightarrow \sim A \vee B \end{array}$$

 Reflexiva $\implies A \rightarrow A$

 $A \to B, B \to C \Longrightarrow A \to C$