Summary

Document

https://loraiot.cattelecom.com

Support: LoRa Alliance, NBTC, LoRa IoT Platform Manual

Device

https://www.st.com

Application Note: Examples of AT commands on I-CUBE-LRWAN

https://mydevices.com/cayenne/docs/lora/

STM32CubeExpansion_LRWAN_V1.1.5\Projects\Multi\Applications\LoRa

<u>ข้อกำหนด</u>

• Project: STM32CubeExpansion_LRWAN_V1.1.5\Projects\Multi\Applications\LoRa

Operation: AT_Slave

DeviceEUI: AA-00-DB-CA-12-EF-11-XX

Activation Mode: OTAA

Application EUI: 16-28-AE-2B-7E-15-D2-A6

• LoRa: Class A

Application Key: 16-28-AE-2B-7E-15-D2-A6-AB-F7-CF-4F-3C-15-88-09

Account: TGR13_XX

โจทย์ประชันทักษะ Hardware Programming

หัวข้อการประชันทักษะ	รายการตัดสิน	คำอธิบาย
เชื่อมต่อ เข้าสู่ระบบได้	แสดงสถานะการเชื่อมต่อด้วยคำสั่ง	การเชื่อมต่อ เข้าระบบ มีขั้นตอนที่ต้องทำตามลำดับ และมีคำสั่งให้ตรวจสถานะได้
Operation Mode: AT Command	AT Command	<u>สิ่งที่จำเป็นต้องทราบ</u> คำสั่ง AT Command, Protocol ที่ใช้
Activation Mode: OTAA		<u> </u>
		1. กำหนดค่า Key, Activation Mode ใน commissioning.h ให้
		เรียบร้อย
		2. ชุดคำสั่งที่ใช้
		AT+CLASS=A => กำหนด class การเชื่อมต่อเป็น class A
		AT+JOIN => สำหรับสั่งให้ อุปกรณ์เชื่อมต่อระบบ
		3. เช็คสถานะการเชื่อมต่อ ด้วย
		AT+NJS=? => 1 เชื่อมต่อสำเร็จ / 0 เชื่อมต่อไม่สำเร็จ
	แสดง Log การส่งข้อมูลบน	วัดความเข้าใจการเชื่อมต่อ และการแสดงสถานะบนระบบ ซึ่งสถานะการเชื่อมต่อ
	Portal LoRa IoT CAT	ในหน้า Logger บน Portal LoRa IoT CAT จะแสดงต่อเมื่อมีการส่ง
		ข้อมูล ดังนั้น หลังจากเชื่อมต่อเรียบร้อย หากเรียกคำสั่งส่ง ถึงจะมีสถานะขึ้น Log
Ç		AT+SENDB = เลขพอร์ต:ค่าที่ต้องการส่ง

โจทย์ประชันทักษะ Hardware Programming

หัวข้อการประชันทักษะ	รายการตัดสิน	คำอธิบาย
สื่อสารส่งข้อมูลขา Uplink	ส่งค่า เลขทีม ไปยัง Cayenne ได้	จะส่งได้เมื่อ มีการ JOIN เข้าสู่ระบบเรียบร้อย และสถานะเชื่อมต่อเป็น 1
(เข้าใจคำสั่งสำหรับ ส่งข้อมูล)		AT+SENDB = เลขพอร์ต:ค่าที่ต้องการส่ง
		*เข้าใจ Cayenne Format (Channel : Sensor Type : Value)
		และค่าที่ส่งต้องแปลงเป็นเลขฐาน 16
	ส่งค่า อุณหภูมิที่กำหนด	จะส่งได้เมื่อ มีการ $JOIN$ เข้าสู่ระบบเรียบร้อย และสถานะเชื่อมต่อเป็น $\mathbf 1$
	ไปยัง Cayenne ได้	AT+SENDB = เลขพอร์ต:ค่าที่ต้องการส่ง
		*เข้าใจ Cayenne Format (Channel : Sensor Type : Value) และค่าที่ส่งต้องแปลงเป็นเลขฐาน 16 และเข้าใจเพิ่มเติมเรื่อง เลขติดลบ (2's Complement)

Payload (Hex)	03 67 01 10 05 67 00 FF	
Data Channel	Туре	Value
03 ⇒ 3	67 ⇒ Temperature	0110 = 272 ⇒ 27.2°C
05 ⇒ 5	67 ⇒ Temperature	00FF = 255 ⇒ 25.5°C

Payload (Hex)	01 67 FF D7	
Data Channel	Туре	Value
01 ⇒ 1	67 ⇒ Temperature	FFD7 = -41 ⇒ -4.1°C

โจทย์ประชันทักษะ Hardware Programming

หัวข้อการประชันทักษะ	รายการตัดสิน	คำอธิบาย
สื่อสารรับข้อมูลขา Downlink	ส่งค่า Downlink จาก Portal	เพื่อให้ทราบถึงความเข้าใจลักษณะเฉพาะของ การเชื่อมต่อแบบ Class A ที่การเปิด
(เข้าใจคำสั่งสำหรับ อ่านค่าข้อมูลที่	LoRa IoT CAT มายัง อุปกรณ์ได้	ช่องสัญญาณมีลักษณะเด่น สำหรับประหยัดพลังงาน เมื่อส่งข้อมูล Uplink เสร็จจะ
รับได้ และเข้าใจลักษณะเฉพาะของ		เปิดช่องสัญญาณ Downlink เป็นช่วงสั้นๆหลังจากส่งเท่านั้น ซึ่งต่างจาก Class C
การเชื่อมต่อแบบ Class A)		ที่ต้องการส่งต่อเนื่อง หากเข้าใจรูปแบบเฉพาะของ Class A แล้ว
		ดังนั้นเมื่อส่ง Downlink แล้ว หากมีการส่ง Uplink เพื่อเป็นการ Initiate การ
 Battery Powered – Class A Bidirectional communications 		 เปิดช่องสัญญาณ ให้ RX เปิด ข้อมูลจะมาในจังหวะนั้น
		<u>-</u>

การเขียนคำสั่ง ส่งผ่าน Serial Program เอง

จะทำให้เห็นลักษณะดังกล่าวได้ชัดเจนขึ้น

ต่างจาก Project รอบ Pre-Training ที่ Loop

Program ช่วยทำงาน เป็นCycle อีกทั้งยังเป็นการ

ให้เข้าใจคำสั่ง บน MCU อย่างแท้จริง

- Unicast messages
- Small payloads, long intervals
- End-device initiates communication (uplink)
- Server communicates with end-device (downlink) during predetermined response windows:

บริษัท กสท โทรคมนาคม จำกัด (มหาชน)

99 หมู่ 3 ถนนแจ้งวัฒนะ แขวงทุ่งสองห้อง เขตหลักสี่ กรุงเทพუ 10210-0298

www.cattelecom.com