CSCE 411: Design and Analysis of Algorithms Fun Problems

Dr. Tiffani L. Williams

Department of Computer Science & Engineering Texas A&M University

Fall 2016

Fun Problem #1: Mystery Algorithm

What value of r is returned? What is the running time of this algorithm?

Algorithm 1: Mystery-Algorithm (n)

```
Input: Integer n
Output: The value of r
1 r \leftarrow 0
2 for i \leftarrow 1 to n do
3 | for j \leftarrow i to n do
4 | r \leftarrow r + j
5 return r
```

Fun Problem #2: Is *n* a Power of 2?

Given a positive integer n, write an algorithm that determines whether n is a power of 2.

What is the complexity of your algorithm?

Fun Problem #3: The Asymptotic Growth of Fraud

To standardize criminal sentences for fraud, U.S. judges use a point function mapping dollars stolen to sentencing level increases. For example, a fraud loss of \$500,000 will result in an sentence level increase of +12. What function best describes the asymptotic growth of the level of punishment with the amount of money stolen? Justify your answer.

Federal Sentencing Guidelines for Fraud (2016)

Loss (apply the greatest)	Increase in level
\$6,500 or less	no increase
More than \$6,500	add 2
More than \$15,000	add 4
More than \$40,000	add 6
More than \$95,000	add 8
More than \$150,000	add 10
More than \$250,000	add 12
More than \$550,000	add 14
More than \$1,500,000	add 16
More than \$3,500,000	add 18
More than \$9,500,000	add 20
More than \$25,000,000	add 22
More than \$65,000,000	add 24
More than \$150,000,000	add 26
More than \$250,000,00	add 28
More than \$550,000,000	add 30

Fun Problem #4: The Guessing Game

In this game, Player 1 thinks of a number in the range 1 to n. Player 2's objective is to guess the secret number k, where $1 \le n$, selected by Player 1. Each time Player 2 makes a guess, Player 1 states whether the guess is correct, higher than the selected number k, or lower than the selected number k.

- What is the optimal strategy if n is known? For example,
 Player 2 knows that Player 1 is selecting a secret number k
 between 1 and 100, where n is 100.
- What is a good strategy if n is not known? That is, Player 2
 has no idea of the range of numbers for selecting the secret
 number k.

Fun Problem #5: The Streets of Aggieville

The young mayor (Class of 2017) of Aggieville has made all of the streets one-way. Mayor Millennial, as she's affectionately called, contends that there is a way to drive legally from any intersection in the city to any other intersection, but the opposing residents (the 2-percenters!) are not convinced.

- (a) Formulate this problem graph-theoretically. That is, show how the problem can be mapped to a graph G = (V, E). Clearly, state the meaning of the vertices V and the edges E in the graph. What problem are you trying to solve with the graph?
- (b) Given the graph G from part (a), give a linear time (O(|V|+|E|)) algorithm that determines whether it is possible to drive legally from any intersection to any other intersection in the city.