Teoremas del límite: ley de los grandes números y teorema límite central

Jorge Antonio Gómez García Saud Antonio Morales González

16 de diciembre de 2022

Índice

1.	Introducción
2.	Ley de los grandes números
	2.1. Ley débil de los grandes números
	2.1.1. Ejemplo en Python
	2.2. Ley fuerte de los grandes números
3.	Teorema límite central
	3.1. Teorema de Moivre-Laplace

1. Introducción

TEXT

2. Ley de los grandes números

2.1. Ley débil de los grandes números

Sea X_i una secuencia de variables aleatorias independientes tales que $E[X_i] = \mu$ y $var(X_n) \leq M$ para todo $n \geq 1$. Entonces, la siguiente secuencia de variables aleatorias converge a μ en probabilidad:

$$\overline{X}_n := \frac{1}{n}(X_1 + \dots + X_n) = \frac{1}{n}\sum_{i=1}^n X_i \longrightarrow \mu$$
 en probabilidad.

De esta ecuación tenemos que:

$$\mathrm{E}[\overline{X}_n^2] \to \mu^2$$

2.1.1. Ejemplo en Python

Considere el siguiente ejemplo: Sean X_1, X_2, \ldots variables aleatorias independientes con distribución exponencial, tal que $X_i \sim \text{Exp}(\lambda)$. El segundo momento $\text{E}[\overline{X}_i^2]$ de X_i , con m diferentes valores de ω , puede ser simulado en Python de la siguiente manera:

Importamos las librerías necesarias y definimos los parámetros:

```
# Librerias
import numpy as np
import matplotlib.pyplot as plt

# Parametros
media_exp = 2  # beta = 0.5
n = 10000  # Numero de variables aleatorias
m = 50  # Numero de w's
```

Generamos m muestras de n variables aleatorias con distribucion exponencial:

```
x = np.random.exponential(media_exp, (m,n))
# (m,n) es una matriz (filas, columnas)
```

Obtenemos la media de cada una de las muestras:

```
x_barra = np.mean(x, axis=1)
    # axis=1: calcula la media de cada fila
    # (m, 1) es un vector columna
```

Obtenemos el segundo momento de cada una de las muestras:

2.2. Ley fuerte de los grandes números

3. Teorema límite central

Sean $X_1, X_2, ..., X_n$ n variables aleatorias IID con una distribución de probabilidad no específicada y que tienen una media μ y una varianza σ^2 finita. El promedio muestral $\overline{X} = (X_1, X_2, ..., X_n)/n$ tiene una distribución con media μ y varianza σ^2/n que tiende hacia una distribución normal conforme n tiende a ∞ . En otras palabras, la variable aleatoria $(\overline{X} - \mu)/(\sigma/\sqrt{n})$ tiene como limite una distribución normal estándar.

La demostración de este teorema puede ser consultada en las páginas 247-249 del libro de *Probabilidad y estadística: aplicaciones y métodos* de George Canavos.

3.1. Teorema de Moivre-Laplace

Sea X una variable aleatoria binomial con media np y desviación estandar $\sqrt{np(1-p)}$. La distribución de la variable aleatoria tiende a la normal estandar conforme el número de ensayos independientes $n \to \infty$. ² En otras palabras, una distribución binomial tenderá a la normal estándar conforme el número de ensayos vaya aumentando.

Para ilustrarlo se graficaran las funciones de masa de probabilidad de que una moneda caiga cara en n experimentos. Donde n tomará valores cada vez más grandes.

Como es observado, mientras más aumenta la cantidad de experimentos realizados, más se asemeja la función de masa de probabilidad de la distribución binomial a la función de densidad de probabilidad de la distribución normal.

¹George C. Canavos, *Probabilidad y estadística: aplicaciones y métodos*, trad. Edmundo Urbina (Ciudad de México: McGraw Hill, 1988), 230.

²Canavos, Probabilidad y estadística: aplicaciones y métodos, 141-142.

Figura 1: Teorema de Moivre-Laplace