

Cohomologie des figures impossibles

2017-04-24

Bonjour, je m'appelle Basile Pillet et je suis doctorant à l'institut de mathématiques de Rennes. Je vais vous parler d'un outil d'algèbre et de géométrie qu'on appelle Cohomologie et je vais vous le présenter sur l'exemple du triangle de Penrose.

Le triangle de Penrose, c'est l'objet impossible dessiné ici.

On va se servir de la cohomologie pour identifier ce qui empêche un tel objet d'exister.

Cohomologie des figures impossibles

On part de notre objet impossible

... adaueg é tued na nioa el aup abregar an no iè

... on remarque qu'il n'a plus rien d'impossible!

On peut le réaliser en vrai avec deux bouts de bois et un peu de colle

2017-04-24

2017-04-24

Revenons à notre triangle de Penrose ou plutôt son dessin

On peut découper ce dessin en trois parties autour de chaque coin.

...parties qui s'intersectent suivant la zone en rouge

Cohomologie des figures impossibles

Cohomologie des figures impossibles

Éclatons donc notre dessin. On a trois dessins qui chacun représente des objets RÉALISABLES

Ces trois dessins doivent être recollés suivant les zones rouges pour obtenir le dessin d'origine.

Notre figure impossible est LOCALEMENT possible. Mais si les trois dessins peuvent se recoller pour donner le dessin du triangle de Penrose, les trois objets physiques eux ne peuvent pas!

L'intérêt n'est pas de montrer que le triangle de Penrose est impossible! L'intérêt c'est qu'en mathématique (en algèbre et en géométrie), quand quelque chose ne marche pas, eh bien la vie ne s'arrête pas. Il y a des choses, de nouveaux objets, qui empêchent que ça marche et l'étude de ces obstructions se révèle bien souvent très riche

Cohomologie des figures impossibles

-Contradiction

2017-04-24

Cohomologie des figures impossibles

dans U_1 et une copie A_2 dans U_2

2017-04-24

 $08^{3} < 0C^{3}$

Contradiction Cohomologie des figures impossibles

que le point C3 De même pour l'objet 3, le point B3 apparaît plus proche

Cohomologie des figures impossibles

Après découpage, le point A se dédouble : une copie A₁

Prenons un point A à l'intersection de l'objet 1 et de l'objet 2

Numérotons ces trois parties qui recouvrent le dessin.

l'avait construit plus petit, il aurait fallu le mettre plus près. faut le mettre à une certaine distance de l'observateur. Si on certain taille. Et pour qu'il apparaisse tel quel sur le dessin, il Si maintenant on construit un coin numéro 1, il aura une

I immense mais très loin et l'objet 2 petit mais très près. distance de l'observateur. Imaginez que l'on construise l'objet Mais le coin numéro 2 n'est pas forcément à la même

> Finalement chacun des trois rapports est strictement Contradiction

inférieur à 1, on a donc une contradiction

Le triangle de Penrose n'existe pas.

Contradiction

Cohomologie des figures impossibles

2017-04-24

Pour garder cette information en mémoire, on va noter d_{12} le rapport des distances entre ces deux points.

Cohomologie des figures impossibles

Cohomologie des figures impossibles

On recommence avec un point B sur l'intersection de U_1 et U_3 et un point C sur l'intersection de U_2 et U_3

Cohomologie des figures impossibles 2017-04-24 -Contradiction

Concentrons nous sur l'objet 1, la perspective nous dit que le point A_1 est plus proche de l'observateur que le point B_1

Donc le rapport OA_1/OB_1 est inférieur à 1

Cohomologie des figures impossibles 2017-04-24

-Contradiction

De même pour l'objet 2, le point C_2 apparaît plus proche que le point A_2

On définit de même entre l'objet 1 et l'objet 3 le rapport d_{31}

 ϵ_t le rapport d_{23}

A quelle(s) condition(s) les trois objets construits se recollent-t-ils?

Il faut

que A₁ et A₂ se superposent

Mais si A_1 et A_2 se superposent ... ils sont à la même distance de l'observateur... donc que le rapport d_{12} vaut 1.

Donc le triangle de Penrose existe si et seulement si les d_{ij} forment un cobord.

On va montrer que c'est absurde

En revenant à la définition, on écrit chaque d_{ij} comme un rapport de distances

On peut réorganiser ce produit en un produit de 3 termes qui ne dépendent chaque que d'un seul objet.

Que voyons-nous?

C'est l'information importante sur cette construction. Qui ne se voit pas sur le dessin

Cependant

