Atividade de PDS - Danilo C. Celestino - 201207140064

Para a realização dessa atividade utilizou-se os scripts p1.m e p2.m, e para o caso 2 foi utilizado o áudio "net2.wav". O áudio "netruido.wav" refere-se o áudio com ruído somado a ele.

Foi utilizado Filtro Passa baixa Butterwoth para ambos os casos. ordem 3 para o caso 1 e ordem 40 para o caso 2.

GRÁFICOS NO DOMÍNIO DO TEMPO DISCRETOS Sinal ruidoso (q[n]) e sinal filtrado (y[n])

Caso 1:

Caso 2:

GRÁFICOS NO DOMÍNIO DA FREQUÊNCIA (DISCRETA)

Caso1: X (sinal original)

R (ruído),

Q (sinal com ruído)

H (filtro)

Y (sinal filtrado)

Caso 2
X (sinal original)

R (ruído),

Q (sinal com ruído)

Filtro (H)

Y (sinal filtrado)

Gráfico do sinal erro para o caso 1

GRÁFICOS NO DOMÍNIO DA FREQUÊNCIA CONTÍNUA DE MÓDULO E FASE DE Y(f)

Caso 1

Caso 2

Cálculo da razão $RSR_2 = P_x / P_e$, em escala linear e da figura de mérito $FM = RSR_2 / MULT$

Caso 1

//Px=0.34 ;Pr=0,034 RSR=10

MULT=3; FM=3,3333...

Caso 2

Px=0.0047 ;Pr=4,6958.10⁻⁵ RSR=100

MULT=40; FM=2.5