Supplemental file of "Selective-Candidate Framework with Similarity Selection Rule for Evolutionary Optimization"

Sheng Xin Zhang a*, Wing Shing Chan a, Zi Kang Peng b, Shao Yong Zheng b*, Kit Sang Tang a

^a Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong ^b School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China

Review of Evolutionary Algorithms and Swarm Intelligences

We briefly review and present the flow of three popular EAs and SIs including DE, ES and PSO and then give the general procedures.

Differential evolution (DE) as proposed by Storn and Price [1] is a simple yet powerful EA. At each generation G, three genetic operations, namely mutation, crossover, and selection are included.

Initialization: Given a *D*-dimensional minimization problem, DE starts with a population $P_0 = \{X_{1,0}, X_{2,0}, ..., X_{NP,0}\}$ of *NP* individuals which is uniformly sampled from the entire searching space.

Mutation: Mutation in DE is performed by combining a basic vector with one or more difference vectors to generate a mutant vector $V_{i,G}$ {i = 1, 2, ..., NP}. The classic "rand/1" mutation strategy is formulated as follows.

$$V_{i,G} = X_{r1,G} + F \times (X_{r2,G} - X_{r3,G})$$
(1)

 $V_{i,G} = X_{r1,G} + F \times (X_{r2,G} - X_{r3,G})$ (1) where r_1, r_2 and r_3 are three distinct integers within [1, NP] and are different from the index i, while F is a mutation factor between

Crossover: After mutation, crossover is performed between the mutant vector $V_{i,G}$ and the current vector $X_{i,G}$ to generate a trial vector $U_{i, G}$ as follows.

$$u_{i,j,G} = \begin{cases} v_{i,j,G} & \text{if } rand_j(0,1) \le CR \text{ or } j = j_{rand} \\ x_{i,j,G} & \text{otherwise} \end{cases}$$
 (2)

where $rand_i(0,1)$ is a uniform random number in (0, 1), j_{rand} is a randomly generated integer from [1, D], and CR is a crossover factor within [0,1].

Selection: Selection compares the fitness of $U_{i,G}$ with that of the corresponding $X_{i,G}$ and selects the better one to enter into the next generation.

$$\boldsymbol{X}_{i, G+1} = \begin{cases} \boldsymbol{U}_{i, G} & \text{if } f(\boldsymbol{U}_{i, G}) \leq f(\boldsymbol{X}_{i, G}) \\ \boldsymbol{X}_{i, G} & \text{otherwise} \end{cases}$$
 (3)

2. *ES*

Evolution strategy (ES) first appeared in 1964 at the Technical University of Berlin (TUB), and was used to solve hydrodynamic problems [2]. Different versions of ES have been proposed since this first version. Generally, ES can be categorized according to the number of parents and offspring involved in each generation. (1+1)-ES includes only one parent, which generates one offspring for each generation by means of Gaussian mutation. $(\mu + 1)$ -ES uses μ $(\mu > 1)$ parents to generate one offspring per generation. $(\mu$ $+\lambda$)-ES utilizes μ parents to generate λ ($\lambda > \mu$) offspring and then chooses μ individuals from the ($\mu + \lambda$) individuals to enter next generation, while (μ, λ) -ES chooses μ individuals only from the λ offspring.

Initialization: Given a *D*-dimensional minimization problem, ES starts with an initial population $P_0 = \{X_{1,0}, X_{2,0}, ..., X_{\mu,0}\}$ of μ individuals. Each individual $X_{i,0} = [x_{i,1,0}, x_{i,2,0}, \dots, x_{i,D,0}, \sigma_{i,1,0}, \sigma_{i,2,0}, \dots, \sigma_{i,D,0}], (i = 1, 2, \dots, \mu)$ has D variables and D independent standard deviations. The initial standard deviation $\sigma_{i,0}$ is calculated as

$$\sigma_{i,0} = \frac{\Delta X_i}{\sqrt{D}} \tag{4}$$

where ΔX_i is the Euclidian distance between $X_{i,0}$ and the fittest individual in the initial population.

Recombination: At each generation G, recombination is performed on two randomly selected individuals to produce a new individual $XR_{i,G}$ { $i = 1, 2, ..., \lambda$ }. Different recombination strategies are specified as follows:

$$xr_{i,j,G} = \begin{cases} x_{p,j,G}, & \text{without recombination} \\ x_{p,j,G} & \text{or } x_{q,j,G}, & \text{discrete recombination} \\ x_{p,j,G} + \chi \cdot (x_{q,j,G} - x_{p,j,G}), & \text{intermediate recombination} \end{cases}$$
(5)

where p and q are the two distinct integers uniformly selected from the set $\{1, 2, ..., \mu\}$, j = 1, 2, ..., D is the dimension to be recombined and χ is a constant value usually set to 0.5 [3].

Mutation: Following recombination, mutation is performed to generate λ mutant individuals $XM_{i,G}\{i=1,2,...,\lambda\}$ as described by the following:

$$\sigma_{i,i,G} = \sigma_{i,i,G} \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1)) \tag{6}$$

$$xm_{i,i,G} = xr_{i,j,G} + N(0,\sigma_{i,j,G})$$
 (7)

where j = 1, 2, ..., D, N(0,1) and $N_i(0,1)$ are two normal distributions, τ' and τ are constants usually set as unity.

Selection: Select μ fittest individuals from the set of $\mu + \lambda$ individuals (($\mu + \lambda$)-ES), or from the set of λ offspring produced by mutation ((μ , λ)-ES).

3. *PSO*

Particle swarm optimization (PSO) as proposed by Kennedy and Eberhart [4] imitates the swarm behavior of animals, such as birds flocking and fish schooling. Given a D-dimensional minimization problem, PSO explores the searching space by utilizing a swarm of NP particles with each particle associated with a velocity vector $V_i = [v_{i1}, v_{i2}, ..., v_{iD}]$ and a position vector $X_i = [x_{i1}, x_{i2}, ..., x_{iD}]$, i = 1, 2, ..., NP. During the searching process, each individual historical best position vector is recorded in $pbest_i = [p_{i1}, p_{i2}, ..., p_{iD}]$ and the global best position vector is stored in $pbest_i = [g_1, g_2, ..., g_D]$. Based on $pbest_i$ and $pbest_i$ particles update their velocity and position at each iteration by using Eq. (8) and (9) respectively:

$$v_{ij} = w \times v_{ij} + c_1 \times r_{1j} \times (pbest_{ij} - x_{ij}) + c_2 \times r_{2j} \times (gbest_j - x_{ij})$$

$$\tag{8}$$

$$X_{ij} = X_{ij} + V_{ij} \tag{9}$$

where w is the inertia weight, c_1 and c_2 are the acceleration constants, which are commonly set to 2.0. r_{1j} and r_{2j} are two uniformly distributed random numbers within (0, 1) for each dimension j. The updated velocity $|v_{ij}|$ on each dimension is bounded by a maximum value $V_{MAXj,.}$ If $|v_{ij}|$ exceeds V_{MAXj} , then it is set as $sign(v_{ij})$ V_{MAXj} .

4. General Procedures

From above, the general procedures for EAs and SIs is summarized as **Algorithm 1.**

Algorithm 1. General Procedures of EAs and SIs

- 1: Initialize population $X = \{X_1, X_2, ..., X_{NP}\};$
- 2: While the stopping criteria are not met **Do**
- 3: Determine the control parameters *CP* for genetic operations or social learning;
- 4: Produce a new population *Y* via genetic operations or social learning on *X*;
- 5: Evaluate the fitness of Y;
- 6: Select solutions as new X from $X \cup Y$ to enter next iteration.
- 7: End While

 R. Storn and K. Price, Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces, Berkeley, CA, Tech. Rep., 1995, tech. Rep. TR-95-012.

[3] T. Bäck, Evolutionary Algorithms in Theory and Practice. London, U.K.: Oxford Univ. Press, 1996.

^[2] T. Bäck and H.-P. Schwefel, An overview of evolutionary algorithms for parameter optimization, Evol. Comput., 1 (1993) 1–23.

J. Kennedy and R. C. Eberhart, Particle swarm optimization, in Proc. IEEE Int. Conf. Neural Netw., 4 (1995) 1942–1948.

SCSS variants:

The arrows "←" highlight the differences between the SCSS variants and the baseline algorithms. _____

Algorithm S1. SCSS-DE

1: Set the population size NP, initialize the population P_0 = $\{X_{1,0}, X_{2,0}, ..., X_{NP,0}\}$, set F and CR, set the generation counter G = 0;

- 2: Set *GD*;
- 3: While the stopping criteria are not met Do
- 4: Determine the fitness ranking rank(i) of each individual i ${i = 1, 2, ..., NP};$
- 5: **For** m = 1: M \Leftarrow
- 6: **For** i = 1: *NP* **Do**

-----Mutation -----

- Generate a mutant vector $V_{i,G}^{m}$ using Eq. (1);
- -----Crossover-----Generate a trial vector U_{i-G}^{m} using Eq. (2); 8:
- $dist_i^m$ = Euclidian distance ($U_{i,G}^m, X_{i,G}$); 9:
- 10: **End For**
- 11: End For
- 12: **For** i = 1: *NP* **Do**
- If $rank(i) \le ceil(NP \times GD)$ 13:
- 14: $index = arg min (dist_i^m);$ $m \in \{1, 2, ..., M\}$
- $U_{i, G} = U_i^{index}_{: G};$ 15: \leftarrow
- 16: Else \leftarrow
- 17: $index = arg max (dist_i^m);$ \leftarrow $m \in \{1, 2, ..., M\}$
- $U_{i,G} = U_i^{index}_{i,G};$ 18: \leftarrow
- 19: End If
- 20: End For
- 21: Evaluate the fitness of $U_{i,G}$ {i = 1, 2, ..., NP};

-----Selection-----

- 22: **For** i = 1: *NP* **Do**
- 23: If $f(U_{i,G}) \leq f(X_{i,G})$
- $X_{i, G+1} = U_{i, G};$ 24:
- 25: Else
- $X_{i, G+1} = X_{i, G};$ 26:
- 27: End If
- 28: End For
- 29: G = G + 1;
- 30: End While

Algorithm S2. SCSS-ES

- _____ 1: Set the population size μ , initialize the population $P_0 = \{X_{1,0}, A_{1,0}, A_{2,0}, A_{2,0},$ $X_{2,0}, ..., X_{\mu,0}$ }, set the generation counter G = 0;
- 2: Set *GD*;
- 3: While the stopping criteria are not met **Do**
- 4: Determine the fitness ranking RANK(k) of each individual k $\{k = 1, 2, ..., \mu\};$
- **5**: **For** i = 1: λ **Do**

-----Recombination-----

6: Randomly choose p and q, use the pth and qth individuals from P_G to generate a new individual $XR_{i,G}$ with the

- recombination strategy, i.e. Eq. (5);
- 7: Calculate the fitness rank(i) of individual $i\{i = 1, 2, ..., \lambda\}$ as (RANK(p)+RANK(q))/2;
- 8: End For
- 9: **For** m = 1: M \leftarrow
- 10: **For** $i = 1: \lambda$ **Do**

------Mutation-----

- Use Eq. (6) and (7) to mutate the individual XR_{iG} by recombination and generate a mutant produced individual XM_{i-G}^{m} ;
- 12: $dist_i^m = \text{Euclidian distance } (XM_{i,G}^m, XR_{i,G});$
- 13: End For
- 14: End For \leftarrow
- 15: **For** $i = 1: \lambda$ **Do**
- If $rank(i) \le ceil(\lambda \times GD)$ 16:
- $index = arg min (dist_i^m);$ 17: \leftarrow $m \in \{1, 2, ..., M\}$
- $XM_{i,G} = XM_i^{index}_{i,G};$ 18: \leftarrow
- 19: Else
- 20: $index = arg \max (dist_i^m);$ $m \in \{1, 2, ..., M\}$
- $XM_{i,G} = XM_i^{index}_{i,G};$ 21: \leftarrow
- 22: End If
- 23: End For
- 24: Evaluate the fitness of all the new individuals $XM_{i,G}$ {i = 1,

-----Selection-----

- 25: Select μ fittest individuals $X_{i,G}$ { $i = 1, 2, ..., \mu$ } from the $\mu + \lambda$ individuals to form a new population P_{G+1}
- 26: G = G + 1;
- 27: End While

 \leftarrow

Algorithm S3. SCSS-PSO

- 1: Set the swarm size NP, initialize positions $X = \{X_1, X_2, ..., X_n\}$ X_{NP} , initialize velocities $V = \{V_1, V_2, ..., V_{NP}\}$, record each particle's historical best position in *pbest*_i and the global best position in **gbest**, set w, c_1 and c_2 set iteration counter IT = 0;
- 2: Set *GD*; \leftarrow
- 3: While the stopping criteria are not met **Do**
- 4: Determine the fitness ranking rank(i) of each particle i $\{i = 1, 2, ..., NP\};$
- 5: **For** m = 1: M \leftarrow
- 6: **For** i = 1: *NP* **Do**
- 7: **For** j = 1: D **Do**
- 8:
- Update v_{ij}^{m} using Eq. (8); Adjust v_{ij}^{m} if it exceeds V_{MAXj} ; Update x_{ij}^{m} using Eq. (9); 9:
- 10:
- 11: **End For**
- $dist_i^m$ = Euclidian distance $(X_i^m, pbest_i)$; 12:
- 13: End For
- 14: End For \leftarrow

 \leftarrow

- 15: **For** i = 1: *NP* **Do**
- If $rank(i) \le ceil(NP \times GD)$ 16: \leftarrow
- 17: $index = arg min (dist_i^m);$ \leftarrow $m \in \{1, 2, ..., M\}$

```
X_i = X_i^{index};
18:
                                                                         \leftarrow
19:
        Else
                                                                         \Leftarrow
20:
            index = arg max (dist_i^m);
                     m \in \{1, 2, ..., M\}
            X_i = X_i^{index}:
21:
                                                                         \leftarrow
22:
        End If
                                                                         \Leftarrow
23: End For
24: For i = 1: NP Do
       Evaluate the fitness of the new position X_i;
26:
       If f(X_i) \leq f(pbest_i)
27:
          pbest_i = X_i;
28:
       End If
29:
       If f(X_i) \leq f(gbest)
30:
          gbest = X_i;
31:
       End If
32: End For
33: IT = IT + 1;
34: End While
```

Remark 1: In SCSS framework, the control parameters that are actually used, CP_i of Y_i should be determined (lines 15 and 19 in Algorithm 2) for the reason that different reproduction procedure m may use different CP and the CP may have further usages. For example, in the well-known JADE and SHADE algorithms, control parameters F and CR are generated according to Cauchy and normal distributions, respectively and after selection, the successful CP are archived to determine new location parameters of Cauchy and normal distributions. Thus, in SCSS, the generations of F and CR are independent in each reproduction procedure m and the successful CP that are actually used is archived. In Algorithms S1 and S3, this is not shown because the classic DE and PSO use pre-defined fixed CP, i.e. F and CR in DE and W, C_1 and C_2 in PSO.

Remark 2: In PSO, the personal best position of each particle is regarded as a current solution for the similarity calculation (line 12 in Algorithm S3).

Remark 3: Different from the one-to-one reproduction procedures in DE and PSO, λ offspring is generated by using μ parents in ES. Therefore, we treat the λ new individuals XR produced by recombination as the current solutions, and their fitness rankings are calculated to be the average ranking of the pth and qth individuals used to perform recombination (lines 6 and 7 in Algorithm S2).

TABLE CAPTIONS

- **TABLE S1** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **ADVANCED ALGORITHMS** WITH THE BASELINES ON 30-D CEC2014 BENCHMARK SET
- **TABLE S2** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **ADVANCED ALGORITHMS** WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET
- **TABLE S3** Comparisons results of SCSS variants with different SS rules Against the Baselines on 30-d cec2014 test functions (M = 2 for all the SCSS variants, best entries are Highlighted)
- **TABLE S4** PERFORMANCE COMPARISONS OF SCSS-JADE AND SCSS-SHADE WITH THE OPPOSITE SS RULE ON 30-D CEC2014 BENCHMARK SET
- **TABLE S5** PERFORMANCE COMPARISON OF SCSS VARIANTS WITH DIFFERENT M SETTINGS WITH THE BASELINES (BEST ENTRIES ARE HIGHLIGHTED)
- TABLE S6 PERFORMANCE COMPARISON BETWEEN SCSS VARIANTS WITH ADJACENT M SETTINGS
- **TABLE S7** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 30-D CEC2014 BENCHMARK SET
- **TABLE S8** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET
- **TABLE S9** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **ADVANCED ALGORITHMS** WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET
- TABLE S10 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 50-D CEC2017 BENCHMARK SET
- **TABLE S11** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET
- **TABLE S12** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 50-D CEC2017 BENCHMARK SET
- **TABLE S13** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 100-D CEC2017 BENCHMARK SET

 $\begin{array}{c} \text{table S1 Performance (Mean(Std)) comparisons of four SCSS-based advanced algorithms with the baselines} \\ \text{on 30-D cec2014 benchmark set} \end{array}$

			acaa	ON 30-D CEC		1	acaa		acaa
		JADE	SCSS- JADE	SHADE	SCSS- SHADE	CMA-ES	SCSS- CMA-ES	LIPS	SCSS- LIPS
	F1	2.04E+03 =	1.47E+03	1.61E+03 =	1.50E+03	0.00E+00 =	0.00E+00	2.84E+07 -	5.42E+06
	cec14	(2.59E+03)	(2.14E+03)	(2.04E+03)	(2.68E+03)	(0.00E+00)	(0.00E+00)	(2.65E+07)	(6.50E+06)
ioda	F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	2.58E+03 =	5.84E+03
Unimodal Functions	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(4.30E+03)	(8.14E+03)
ר ו	F3	2.08E-05 -	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	3.93E+03 -	2.13E+03
	cec14	(1.13E-04)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(3.64E+03)	(1.95E+03)
	. F4	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	2.74E+02 -	1.40E+02
	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.13E+02)	(6.49E+01)
	F5 cec14	2.03E+01 -	2.03E+01	2.02E+01 -	2.01E+01	2.00E+01 +	2.13E+01	2.00E+01 +	2.09E+01
		(3.12E-02)	(7.09E-02)	(2.78E-02)	(2.29E-02)	(3.27E-05)	(5.20E-01)	(8.23E-05)	(4.90E-02)
	F6	8.76E+00 =	7.33E+00	6.42E+00 -	4.12E+00	4.12E+01 -	4.19E+00	1.48E+01 -	7.72E+00
		(2.72E+00)	(3.86E+00)	(3.15E+00)	(3.37E+00)	(9.58E+00)	(5.18E+00)	(2.70E+00)	(2.24E+00)
	F7	3.38E-04 =	1.93E-04	0.00E+00 =	0.00E+00	1.64E-03 =	1.59E-03	1.59E-03 =	2.37E-03
		(1.71E-03)	(1.38E-03)	(0.00E+00)	(0.00E+00)	(3.51E-03)	(4.45E-03)	(4.86E-03)	(4.57E-03)
	F8 cec14	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	4.08E+02 -	2.31E+02	5.35E+01 -	2.64E+01
	T0	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(8.57E+01)	(2.00E+02)	(1.26E+01)	(6.79E+00)
dal	F9 cec14	2.58E+01 -	2.13E+01	2.10E+01 -	1.92E+01	6.35E+02 -	2.17E+02	6.29E+01 -	3.62E+01
timc		(3.62E+00) 4.49E-03 +	(4.82E+00) 9.39E-03	(3.81E+00) 5.31E-03 =	(3.44E+00)	(1.23E+02)	(2.74E+02) 3.49E+03	(1.82E+01)	(8.74E+00) 9.61E+02
Mult	F10				7.76E-03	4.92E+03 -		1.97E+03 -	
Simple Multimodal Functions		(1.05E-02) 1.66E+03 -	(1.52E-02) 1.54E+03	(1.01E-02) 1.48E+03 =	(1.17E-02) 1.50E+03	(7.43E+02) 5.10E+03 -	(1.10E+03) 3.58E+03	(4.14E+02) 2.54E+03 -	(2.63E+02) 2.02E+03
Sim	F11	(2.67E+02)	(2.28E+02)	(2.35E+03)	(2.02E+02)	(8.25E+02)	3.58E+03 (1.15E+03)	(4.39E+02)	(4.10E+02)
	F12	2.60E-01 -	2.27E-01	2.10E-01 -	1.68E-01	3.76E-01 -	2.40E-01	1.78E-01 =	7.59E-01
	cec14	(4.06E-02)	(4.87E-02)	(2.67E-02)	(2.45E-02)	(4.02E-01)	(1.01E+00)	(4.81E-02)	(1.02E+00)
	E12	2.10E-01 -	1.85E-01	2.23E-01 -	2.04E-01	2.62E-01 +	4.24E-01	3.06E-01 -	2.75E-01
	F13 cec14 F14 cec14	(3.53E-02)	(3.68E-02)	(3.61E-02)	(3.18E-02)	(7.72E-02)	(1.46E-01)	(6.43E-02)	(5.22E-02)
		2.24E-01 =	2.32E-01	2.27E-01 -	2.09E-01	3.71E-01 +	5.66E-01	2.45E-01 +	3.10E-01
	cec14	(3.09E-02)	(3.71E-02)	(3.04E-02)	(3.26E-02)	(9.68E-02)	(2.97E-01)	(3.56E-02)	(7.15E-02)
	F15	3.11E+00 -	2.86E+00	2.97E+00 -	2.59E+00	3.49E+00 =	3.21E+00	1.08E+01 -	3.92E+00
	cec14	(4.17E-01)	(3.22E-01)	(3.67E-01)	(3.03E-01)	(7.56E-01)	(6.63E-01)	(3.87E+00)	(8.93E-01)
	F16	9.49E+00 =	9.34E+00	9.51E+00 =	9.50E+00	1.43E+01 -	1.38E+01	1.15E+01 -	1.06E+01
	cec14	(3.17E-01)	(4.29E-01)	(3.99E-01)	(4.24E-01)	(4.33E-01)	(7.44E-01)	(4.96E-01)	(4.65E-01)
	F17	1.24E+03 -	8.28E+02	9.44E+02 -	5.78E+02	1.56E+03 =	1.71E+03	2.89E+05 -	1.86E+05
	cec14	(3.35E+02)	(3.47E+02)	(3.12E+02)	(2.32E+02)	(4.64E+02)	(3.84E+02)	(3.04E+05)	(2.99E+05)
	F18	2.11E+02 -	4.72E+01	3.44E+01 -	2.05E+01	1.35E+02 +	1.78E+02	4.88E+02 =	4.92E+02
	cec14	(8.15E+02)	(2.34E+01)	(1.74E+01)	(1.20E+01)	(4.50E+01)	(7.13E+01)	(7.08E+02)	(9.08E+02)
×	F19	4.52E+00 -	4.01E+00	3.95E+00 =	3.84E+00	1.01E+01 -	6.74E+00	2.54E+01 -	8.85E+00
Hybrid Functions	cec14	(6.74E-01)	(8.54E-01)	(4.72E-01)	(6.58E-01)	(2.11E+00)	(1.58E+00)	(2.49E+01)	(2.76E+00)
Hyt	F20	2.02E+03 =	1.88E+03	1.09E+01 -	8.41E+00	2.89E+02 -	1.49E+02	1.47E+04 =	1.23E+04
п	cec14	(2.81E+03)	(2.44E+03)	(4.61E+00)	(3.45E+00)	(1.01E+02)	(5.45E+01)	(7.71E+03)	(7.41E+03)
	F21	4.07E+03 -	2.41E+02	2.13E+02 =	1.90E+02	1.04E+03 -	8.64E+02	1.11E+05 -	4.26E+04
	cec14	(1.89E+04)	(1.15E+02)	(1.01E+02)	(1.12E+02)	(3.50E+02)	(3.05E+02)	(8.42E+04)	(5.58E+04)
	F22	1.30E+02 =	1.10E+02	6.36E+01 =	7.12E+01	3.07E+02 -	1.16E+02	3.27E+02 -	2.28E+02
		(6.92E+01)	(6.90E+01)	(4.93E+01)	(6.10E+01)	(2.29E+02)	(1.10E+02)	(1.20E+02)	(1.10E+02)
	F23	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 +	3.15E+02	3.24E+02 -	3.16E+02
		(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(3.15E-12)	(2.57E-11)	(5.26E+00)	(5.73E-01)
	F24	2.26E+02 =	2.25E+02	2.24E+02 =	2.24E+02	2.33E+02 -	2.26E+02	2.39E+02 -	2.33E+02
		(3.11E+00)	(3.27E+00)	(1.01E+00)	(1.21E+00)	(6.83E+00)	(6.96E+00)	(4.83E+00)	(5.09E+00)
	F25	2.05E+02 -	2.03E+02	2.04E+02 -	2.03E+02	2.04E+02 -	2.03E+02	2.16E+02 -	2.11E+02
	F2.6	(2.18E+00)	(6.04E-01)	(1.04E+00)	(4.63E-01)	(2.42E+00)	(5.20E-01)	(3.59E+00)	(1.97E+00)
Composition Functions	F26	1.00E+02 -	1.00E+02	1.00E+02 -	1.00E+02	1.31E+02 - (1.37E+02)	1.26E+02	1.32E+02 -	1.09E+02
nctic	E27	(3.77E-02) 3.60E+02 =	(3.56E-02)	(3.26E-02) 3.16E+02 =	(3.42E-02) 3.21E+02	`	(1.58E+02)	(4.40E+01) 6.03E+02 -	(2.68E+01)
Conr	F27	5.00E+02 = (5.07E+01)	3.44E+02 (5.09E+01)	3.16E+02 = (3.71E+01)	(4.03E+01)	4.40E+02 - (2.10E+02)	3.40E+02 (3.93E+01)	(1.66E+02)	4.79E+02 (9.74E+01)
	F28	7.99E+02 =	8.01E+02	7.95E+02 =	7.93E+02	4.43E+03 -	1.25E+03	1.78E+03 -	1.12E+03
	cec14	(2.34E+01)	(1.64E+01)	(1.99E+02 = (1.99E+01)	(2.17E+01)	(3.23E+03)	(1.41E+03)	(3.95E+02)	(1.70E+02)
	F29	7.33E+02 -	7.20E+02	7.25E+02 -	7.12E+02	7.88E+02 =	8.00E+02	1.34E+04 -	1.29E+03
	cec14	(1.60E+01)	(7.10E+01)	(1.02E+01)	(5.40E+01)	(9.18E+01)	(1.45E+02)	(5.19E+04)	(2.46E+02)
	F30	1.55E+03 =	1.53E+03	1.45E+03 -	1.19E+03	2.30E+03 -	1.58E+03	3.84E+04 -	1.08E+04
	cec14	(6.33E+02)	(6.34E+02)	(6.13E+02)	(3.57E+02)	(5.50E+02)	(5.95E+02)	(2.59E+04)	(6.59E+03)
	/=/+	14/15/1	(5.2.2.02)	14/16/0	(2.2.12102)	17/8/5	(=====)	23/5/2	(0.02.21.00)
<u> </u>	, →, 1	17/13/1	l	17/10/0	<u> </u>	111015		401 JI 4	l

TABLE S2 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET

		JADE	SCSS- JADE	SHADE	SCSS- SHADE	CMA-ES	SCSS- CMA-ES	LIPS	SCSS- LIPS
	F1	1.88E+04 =	1.97E+04	2.24E+04 =	2.66E+04	0.00E+00 =	0.00E+00	1.29E+08 -	8.45E+06
	cec14	(1.26E+04)	(1.52E+04)	(1.14E+04)	(1.09E+04)	(0.00E+00)	(0.00E+00)	(7.81E+07)	(1.32E+07)
Unimodal Functions	F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	7.57E+02 +	1.72E+03
nim	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.40E+03)	(2.71E+03)
7 H	F3	3.06E+03 -	2.01E+03	3.13E-06 -	1.02E-07	0.00E+00 =	0.00E+00	1.67E+04 -	1.14E+04
	cec14	(2.03E+03)	(2.98E+03)	(1.39E-05)	(3.42E-07)	(0.00E+00)	(0.00E+00)	(6.05E+03)	(5.51E+03)
	.F4	1.37E+01 =	2.32E+01	2.81E+01 -	3.08E+01	3.28E+01 =	1.35E+01	7.09E+02 -	2.08E+02
	cec14	(3.36E+01)	(4.20E+01)	(4.30E+01)	(4.60E+01)	(4.68E+01)	(3.42E+01)	(3.77E+02)	(5.28E+01)
	F5	2.04E+01 -	2.02E+01	2.02E+01 -	2.02E+01	2.00E+01 +	2.14E+01	2.00E+01 +	2.11E+01
		(3.27E-02)	(2.06E-01)	(2.34E-02)	(2.30E-02)	(1.77E-06)	(3.67E-01)	(1.49E-05)	(3.62E-02)
	F6	1.59E+01 =	1.67E+01	6.87E+00 =	5.35E+00	7.68E+01 -	1.74E+01	3.71E+01 -	2.33E+01
		(6.47E+00)	(6.84E+00)	(5.99E+00)	(4.96E+00)	(1.08E+01)	(1.85E+01)	(4.26E+00)	(3.96E+00)
	F7	4.15E-03 =	2.42E-03	1.59E-03 =	1.69E-03	5.32E-04 =	6.77E-04	5.88E-03 -	7.25E-04
		(5.75E-03)	(4.81E-03)	(3.91E-03)	(4.22E-03)	(2.22E-03)	(2.42E-03)	(1.93E-02)	(2.57E-03)
	F8	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	7.39E+02 - (1.09E+02)	6.12E+02 (2.31E+02)	1.44E+02 - (1.89E+01)	6.73E+01 (1.23E+01)
	F9	5.43E+01 -	3.86E+01	4.03E+00	3.95E+01	1.13E+03 -	5.88E+02	1.81E+02 -	1.08E+02
odal	cec14	(7.72E+00)	(8.83E+00)	(5.05E+00)	(5.80E+00)	(2.41E+02)	(4.78E+02)	(2.84E+01)	(2.14E+01)
ltim ons	F10	1.05E-02 =	1.25E-02	5.14E-03 =	9.06E-03	8.43E+03 -	7.21E+03	4.33E+03 -	2.52E+03
Mu	cec14	(9.47E-03)	(1.56E-02)	(8.35E-03)	(1.30E-02)	(9.42E+02)	(1.17E+03)	(5.04E+02)	(4.62E+02)
Simple Multimodal Functions	F11	3.82E+03 -	3.53E+03	3.65E+03 =	3.55E+03	8.23E+03 -	7.25E+03	5.15E+03 -	4.20E+03
Sir	cec14	(2.72E+02)	(2.87E+02)	(3.25E+02)	(3.46E+02)	(9.32E+02)	(1.10E+03)	(4.95E+02)	(6.68E+02)
	F12	2.61E-01 -	2.14E-01	2.07E-01 -	1.71E-01	2.71E-01 -	7.63E-02	2.63E-01 -	6.84E-01
	cec14	(3.01E-02)	(7.30E-02)	(2.79E-02)	(2.59E-02)	(2.55E-01)	(4.56E-01)	(7.48E-02)	(1.12E+00)
	F13	3.13E-01 -	2.75E-01	3.20E-01 =	3.12E-01	3.48E-01 +	8.08E-01	4.31E-01 =	4.12E-01
	cec14	(4.70E-02)	(3.91E-02)	(3.32E-02)	(4.02E-02)	(7.71E-02)	(1.59E-01)	(5.93E-02)	(5.70E-02)
	F14	3.00E-01 =	3.18E-01	2.86E-01 =	2.69E-01	4.43E-01 +	1.26E+00	2.71E-01 +	3.48E-01
	cec14	(2.93E-02)	(9.22E-02)	(6.25E-02)	(4.02E-02)	(2.50E-01)	(4.03E-01)	(3.14E-02)	(1.19E-01)
	F15	7.27E+00 -	5.94E+00	6.35E+00 -	5.66E+00	6.41E+00 =	6.02E+00	7.62E+01 -	1.20E+01
		(8.65E-01)	(6.97E-01)	(7.66E-01)	(5.90E-01)	(1.25E+00)	(1.20E+00)	(4.32E+01)	(2.95E+00)
	F16	1.77E+01 =	1.80E+01	1.79E+01 =	1.79E+01	2.38E+01 =	2.40E+01	2.05E+01 -	1.94E+01
		(5.34E-01)	(1.05E+00)	(4.14E-01)	(3.62E-01)	(5.19E-01)	(6.18E-01)	(6.41E-01)	(6.37E-01)
	F17	2.29E+03 =	2.53E+03	2.74E+03 =	2.74E+03	2.69E+03 =	2.60E+03	4.00E+06 -	7.38E+05
		(6.74E+02)	(7.80E+02)	(8.65E+02) 1.47E+02 =	(8.27E+02)	(6.15E+02) 2.30E+02 +	(5.98E+02) 2.67E+02	(5.97E+06)	(1.42E+06)
	F18	1.64E+02 = (4.16E+01)	1.66E+02 (4.06E+01)	1.47E+02 = (4.44E+01)	1.39E+02 (4.31E+01)	(4.57E+01)	(7.08E+01)	3.26E+02 - (1.64E+02)	2.53E+02
	E10	1.48E+01 -	1.06E+01)	1.63E+01 -	1.28E+01	1.84E+01 -	1.46E+01	5.78E+01 -	(7.76E+01) 4.25E+01
Hybrid Functions	F19	(5.97E+00)	(5.22E+00)	(7.08E+00)	(4.48E+00)	(2.57E+00)	(2.30E+00)	(2.86E+01)	(2.26E+01)
Iybr	F20	8.19E+03 -	1.99E+03	1.92E+02 -	1.10E+02	4.44E+02 -	2.71E+02	3.02E+04 -	1.91E+04
T E	cec14	(6.72E+03)	(4.70E+03)	(6.69E+01)	(4.37E+01)	(1.22E+02)	(8.53E+01)	(1.09E+04)	(7.19E+03)
	F21	1.29E+03 -	2.36E+04	1.40E+03 -	1.01E+03	1.70E+03 =	1.62E+03	5.78E+05 -	1.71E+05
	cec14	(4.85E+02)	(1.61E+05)	(4.92E+02)	(3.33E+02)	(4.32E+02)	(3.71E+02)	(4.16E+05)	(1.07E+05)
	F22	4.78E+02 -	3.76E+02	3.76E+02 =	3.38E+02	4.19E+02 -	3.20E+02	8.43E+02 -	5.69E+02
<u></u>	cec14	(1.66E+02)	(1.61E+02)	(1.18E+02)	(1.09E+02)	(2.61E+02)	(2.11E+02)	(2.08E+02)	(1.88E+02)
	F23	3.44E+02 +	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.77E+02 -	3.50E+02
	cec14	(4.55E-13)	(5.16E-13)	(4.31E-13)	(4.50E-13)	(2.32E-05)	(2.38E-05)	(1.34E+01)	(1.83E+00)
	F24	2.74E+02 =	2.75E+02	2.73E+02 =	2.72E+02	3.67E+02 -	2.76E+02	2.95E+02 -	2.80E+02
		(2.05E+00)	(1.89E+00)	(1.93E+00)	(1.89E+00)	(5.44E+02)	(2.43E+00)	(6.01E+00)	(3.16E+00)
	F25	2.23E+02 -	2.11E+02	2.18E+02 -	2.11E+02	2.05E+02 -	2.05E+02	2.40E+02 -	2.25E+02
		(3.19E+00)	(6.51E+00)	(5.01E+00)	(6.05E+00)	(9.61E-01)	(2.18E-01)	(8.81E+00)	(4.59E+00)
ition	F26	1.04E+02 -	1.00E+02	1.02E+02 -	1.00E+02	1.17E+02 +	1.09E+02	1.66E+02 -	1.36E+02
Composition Functions		(1.95E+01)	(8.92E-02)	(1.40E+01)	(5.89E-02)	(5.81E+01)	(4.04E+01)	(4.65E+01)	(4.82E+01)
Com	F27	4.65E+02 - (5.76E+01)	4.35E+02 (5.42E+01)	3.91E+02 = (4.89E+01)	3.79E+02 (4.65E+01)	5.33E+02 - (1.06E+02)	4.57E+02 (7.00E+01)	1.39E+03 - (1.29E+02)	9.91E+02 (8.80E+01)
	EJS	1.15E+03 -	1.12E+03	1.13E+03 =	1.11E+03	7.61E+03 -	4.39E+03	4.52E+03 -	2.55E+03
	F28	(3.72E+01)	(3.47E+01)	(4.00E+01)	(3.05E+01)	(5.87E+03)	(2.98E+03)	(7.42E+02)	(3.27E+02)
	F29	8.81E+02 =	8.94E+02	9.01E+02 =	9.02E+02	8.86E+02 =	8.94E+02	8.33E+06 -	2.09E+03
	cec14	(5.80E+01)	(9.69E+01)	(6.55E+01)	(6.54E+01)	(6.70E+01)	(8.74E+01)	(4.37E+07)	(5.43E+02)
	F30	9.78E+03 -	9.26E+03	9.35E+03 -	8.87E+03	9.31E+03 =	9.45E+03	2.84E+05 -	6.41E+04
	cec14	(7.82E+02)	(8.07E+02)	(6.62E+02)	(6.64E+02)	(7.96E+02)	(1.09E+03)	(1.17E+05)	(2.21E+04)
_	/=/+	16/13/1	,	11/19/0		13/12/5		26/1/3	
									ıl

Table S3 comparisons results of SCSS variants with different SS rules against the Baselines on 30-D CEC2014 test functions (M = 2 for all the SCSS variants, best entries are highlighted)

CEC201 TEST TOTALISTIC (III - 2 TOTALES THE SCOOL TRANSITION, BEST EXTRES THE INGINESITE.										
-/=/+ (P-N)			Sche	me 1			Scheme 2			
	GD = 0	GD = 0 $GD = 0.2$ $GD = 0.4$ $GD = 0.6$ $GD = 0.8$ $GD = 1.0$								
DE	0/5/25(-25)	1/13/16(-15)	2/21/7(-5)	11/19/0(11)	19/11/0 (19)	21/8/1(20)	5/21/4(1)			
ES	0/3/27 (-27)	0/3/27 (-27) 25/5/0 (25) 26/4/0 (26) 26/4/0 (26) 26/4/0 (26) 26/4/0 (26)								
PSO	0/4/26 (-26)	10/15/5(5)	10/18/2(8)	14/16/0(14)	14/16/0(14)	15/15/0(15)	13/17/0(13)			
JADE	14/9/7 (7)	15/11/4 (11)	19/8/3 (16)	15/14/1 (14)	5/11/14 (-9)	2/6/22 (-20)	14/15/1 (13)			
SHADE	12/12/6 (6)	14/13/3 (11)	15/14/1 (14)	14/16/0 (14)	5/21/4(1)	3/9/18 (-15)	14/16/0 (14)			
CMA-ES	13/15/2 (11)	6/23/1 (5)	0/30/0 (0)	1/25/4 (-3)	1/19/10 (-9)	1/21/8 (-7)	2/26/2 (0)			
LIPS	16/5/9 (7)	22/4/4 (18)	22/5/3 (19)	22/5/3 (19)	21/5/4 (17)	20/8/2 (18)	23/4/3 (20)			

table S4 Performance comparisons of SCSS-Jade and SCSS-shade with opposite SS rule on 30-D cec2014 benchmark set

	SCSS-	SCSS-	SCSS-	SCSS-		SCSS-	SCSS-	SCSS-	SCSS-
	JADE_oppo	JADE	SHADE_oppo	SHADE		JADE_oppo	JADE	SHADE_oppo	SHADE
F1	1.81E+05 -	1.47E+03	2.96E+03 -	1.50E+03	F16	9.91E+00 -	9.34E+00	9.70E+00 -	9.50E+00
cec14	(1.28E+06)	(2.14E+03)	(2.97E+03)	(2.68E+03)	cec14	(2.48E-01)	(4.29E-01)	(3.76E-01)	(4.24E-01)
F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	F17	2.85E+05 -	8.28E+02	1.28E+03 -	5.78E+02
cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(4.29E+05)	(3.47E+02)	(3.31E+02)	(2.32E+02)
F3	2.90E+00 -	0.00E+00	0.00E+00 =	0.00E+00	F18	2.85E+03 -	4.72E+01	7.89E+01 -	2.05E+01
cec14	(3.03E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(3.60E+03)	(2.34E+01)	(2.74E+01)	(1.20E+01)
F4	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	F19	4.86E+00 -	4.01E+00	4.33E+00 -	3.84E+00
cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(7.86E-01)	(8.54E-01)	(4.82E-01)	(6.58E-01)
F5	2.03E+01 -	2.03E+01	2.02E+01 -	2.01E+01	F20	3.53E+03 -	1.88E+03	2.50E+01 -	8.41E+00
cec14	(2.70E-02)	(7.09E-02)	(2.61E-02)	(2.29E-02)	cec14	(2.22E+03)	(2.44E+03)	(1.35E+01)	(3.45E+00)
F6	1.24E+01 -	7.33E+00	7.78E+00 -	4.12E+00	F21	7.95E+04 -	2.41E+02	4.46E+02 -	1.90E+02
cec14	(1.20E+00)	(3.86E+00)	(2.87E+00)	(3.37E+00)	cec14	(8.65E+04)	(1.15E+02)	(1.96E+02)	(1.12E+02)
F7	0.00E+00 =	1.93E-04	0.00E+00 =	0.00E+00	F22	1.64E+02 -	1.10E+02	9.88E+01 -	7.12E+01
cec14	(0.00E+00)	(1.38E-03)	(0.00E+00)	(0.00E+00)	cec14	(7.95E+01)	(6.90E+01)	(5.80E+01)	(6.10E+01)
F8	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	F23	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02
cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(2.48E-11)	(4.02E-13)	(4.02E-13)	(4.02E-13)
F9	3.91E+01 -	2.13E+01	2.76E+01 -	1.92E+01	F24	2.26E+02 -	2.25E+02	2.24E+02 =	2.24E+02
cec14	(5.50E+00)	(4.82E+00)	(3.80E+00)	(3.44E+00)	cec14	(3.01E+00)	(3.27E+00)	(1.03E+00)	(1.21E+00)
F10	2.45E-03 +	9.39E-03	3.27E-03 +	7.76E-03	F25	2.05E+02 -	2.03E+02	2.05E+02 -	2.03E+02
cec14	(6.77E-03)	(1.52E-02)	(7.65E-03)	(1.17E-02)	cec14	(2.05E+00)	(6.04E-01)	(1.99E+00)	(4.63E-01)
F11	2.24E+03 -	1.54E+03	1.95E+03 -	1.50E+03	F26	1.00E+02 -	1.00E+02	1.00E+02 -	1.00E+02
cec14	(1.84E+02)	(2.28E+02)	(2.02E+02)	(2.02E+02)	cec14	(3.71E-02)	(3.56E-02)	(3.07E-02)	(3.42E-02)
F12	3.76E-01 -	2.27E-01	3.28E-01 -	1.68E-01	F27	3.61E+02 -	3.44E+02	3.19E+02 -	3.21E+02
cec14	(3.71E-02)	(4.87E-02)	(2.69E-02)	(2.45E-02)	cec14	(5.23E+01)	(5.09E+01)	(4.00E+01)	(4.03E+01)
F13	2.59E-01 -	1.85E-01	2.47E-01 -	2.04E-01	F28	8.15E+02 -	8.01E+02	7.96E+02 =	7.93E+02
cec14	(3.58E-02)	(3.68E-02)	(3.04E-02)	(3.18E-02)	cec14	(1.91E+01)	(1.64E+01)	(1.88E+01)	(2.17E+01)
F14	2.46E-01 -	2.32E-01	2.41E-01 -	2.09E-01	F29	1.28E+03 -	7.20E+02	7.34E+02 -	7.12E+02
cec14	(3.02E-02)	(3.71E-02)	(2.56E-02)	(3.26E-02)	cec14	(4.43E+02)	(7.10E+01)	(1.92E+01)	(5.40E+01)
F15	4.30E+00 -	2.86E+00	3.76E+00 -	2.59E+00	F30	1.97E+03 -	1.53E+03	1.54E+03 -	1.19E+03
cec14	(4.90E-01)	(3.22E-01)	(4.39E-01)	(3.03E-01)	cec14	(6.55E+02)	(6.34E+02)	(5.46E+02)	(3.57E+02)
-/=/+	24/5/1		21/8/1			•			

TABLE S5 PERFORMANCE COMPARISON OF SCSS VARIANTS WITH DIFFERENT $\it m$ SETTINGS WITH THE BASELINES (BEST ENTRIES ARE HIGHLIGHTED)

-/=/+ (P-N)	M=2	M = 3	M = 4	M = 5	M = 10
DE	21/8/1 (20)	25/4/1 (24)	23/6/1 (22)	26/3/1 (25)	27/2/1 (26)
ES	26/4/0 (26)	27/3/0 (27)	27/3/0 (27)	27/2/1 (26)	27/2/1 (26)
PSO	15/15/0 (15)	13/16/1(12)	12/17/1(11)	10/18/2(8)	10/17/3 (7)
JADE	14/15/1 (13)	16/13/1 (15)	14/15/1 (13)	13/14/3 (10)	8/10/12 (-4)
SHADE	14/16/0 (14)	13/15/2 (11)	14/13/3 (11)	12/14/4 (8)	12/8/10(2)
CMA-ES	13/15/2 (11)	15/11/4 (11)	15/11/4 (11)	17/8/5 (12)	17/7/6 (11)
LIPS	23/4/3 (20)	23/4/3 (20)	23/5/2(21)	23/4/3 (20)	20/5/5 (15)

TABLE S6 PERFORMANCE COMPARISON BETWEEN SCSS VARIANTS WITH ADJACENT M SETTINGS

		CATEGORY 1							
-/=/+ (P-N)	M = 2 v.s. M = 3	M = 3 v.s. M = 4	M = 4 V.s. M = 5	M = 5 v.s. M = 10					
DE	17/12/1 (16)	5/24/1 (4)	6/23/1 (5)	12/14/4 (8)					
ES	25/5/0 (25)	23/7/0(23)	12/18/0 (12)	28/2/0 (28)					
CMA-ES	8/18/4 (4)	7/20/3(4)	1/29/0(1)	5/18/7 (-2)					
LIPS	8/21/1 (7)	2/28/0 (2)	0/29/1 (-1)	3/23/4 (-1)					
		CATEGORY 2							
-/=/+ (P-N)	M = 2 v.s. M = 3	M = 3 v.s. M = 4	M = 4 v.s. M = 5	M = 5 v.s. M = 10					
PSO	1/22/7 (-6)	1/28/1 (0)	0/29/1 (-1)	0/28/2 (-2)					
JADE	3/25/2(1)	5/22/3 (2)	4/18/8 (-4)	5/7/18 (-13)					
SHADE	4/24/2 (2)	4/23/3 (1)	7/15/8 (-1)	5/13/12 (-7)					

table S7 Performance comparisons of four SCSS-based top algorithms with the baselines on 30-D cec2014 benchmark set

					EC2014 BENCH		SCSS-		
		L-SHADE	SCSS-	IIMOEA II	SCSS-	L-SHADE_		:50	SCSS-
		L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	EpSin	L-SHADE_	jSO	jSO
<u> </u>	F14	0.00E : 00	0.000:00	0.00E : 00	0.000		EpSin	0.00E : 00	-
	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
Jal ns		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Unimodal Functions	F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00=	0.00E+00
Fun Fun		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
<u> </u>		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F4	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F5	2.01E+01 -	2.01E+01	2.00E+01 =	2.00E+01	2.01E+01 -	2.01E+01	2.09E+01 =	2.09E+01
		(3.46E-02)	(5.37E-02)	(1.03E-03)	(4.78E-05)	(2.98E-02)	(4.75E-02)	(8.04E-02)	(4.80E-02)
	F6	9.01E-03 =	9.01E-03	1.99E-01 =	4.24E-06	0.00E+00 =	0.00E+00	8.61E-06 =	1.02E-02
		(6.43E-02)	(6.43E-02)	(1.35E+00)	(1.86E-05)	(0.00E+00)	(0.00E+00)	(3.52E-05)	(7.27E-02)
	F7	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F8	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
dal	F9 cec14	7.22E+00 =	7.38E+00	8.97E+00 =	9.03E+00	1.31E+01 -	1.24E+01	8.76E+00 -	7.57E+00
Simple Multimodal Functions		(1.33E+00)	(1.63E+00)	(1.79E+00)	(2.07E+00)	(1.94E+00)	(2.15E+00)	(1.97E+00)	(1.62E+00)
Mult	F10	5.72E-03 =	7.35E-03	1.63E-03 =	4.08E-03	4.49E-03 =	4.90E-03	1.43E+00 =	1.64E+00
ile N Fun		(1.11E-02)	(1.37E-02)	(5.65E-03)	(8.35E-03)	(9.60E-03)	(1.07E-02)	(1.02E+00)	(9.94E-01)
Junis	F11	1.23E+03 =	1.24E+03	1.41E+03 =	1.43E+03	1.14E+03 =	1.16E+03	1.20E+03 =	1.26E+03
J2		(1.92E+02)	(1.85E+02)	(3.01E+02)	(3.18E+02)	(2.09E+02)	(2.03E+02)	(2.73E+02)	(2.45E+02)
	F12	1.73E-01 =	1.65E-01	1.01E-01 =	1.08E-01	1.54E-01 =	1.46E-01	4.17E-01 +	9.00E-01
	F13	(2.13E-02)	(3.01E-02)	(5.51E-02)	(6.90E-02)	(2.30E-02)	(2.77E-02)	(4.93E-01)	(7.61E-01)
	F14 cec14 F15 cec14	1.05E-01 =	1.08E-01	1.14E-01 =	1.09E-01	1.34E-01 -	1.24E-01	1.37E-01 +	1.52E-01
		(1.35E-02)	(1.56E-02)	(1.81E-02)	(2.15E-02)	(1.64E-02)	(1.61E-02)	(2.24E-02)	(3.04E-02)
	F14	2.38E-01 -	1.90E-01	2.29E-01 -	2.10E-01	1.93E-01 =	1.93E-01	2.26E-01 =	2.30E-01
		(2.69E-02)	(2.41E-02)	(2.52E-02)	(3.27E-02)	(2.91E-02)	(2.44E-02)	(4.08E-02)	(3.63E-02)
	F15	2.28E+00 -	2.16E+00	2.44E+00 =	2.29E+00	2.37E+00 -	2.24E+00	2.37E+00 -	2.13E+00
		(2.93E-01)	(2.47E-01)	(4.60E-01)	(5.34E-01)	(2.41E-01)	(2.91E-01)	(2.73E-01)	(3.37E-01)
	F16	8.51E+00 +	8.65E+00	9.15E+00 +	9.57E+00	8.30E+00 =	8.26E+00	8.58E+00 =	8.60E+00
-		(3.61E-01)	(4.00E-01)	(5.25E-01)	(6.20E-01)	(4.58E-01)	(3.76E-01)	(7.71E-01)	(7.27E-01)
	F17	2.09E+02 -	8.89E+01	1.29E+02 -	7.77E+01	1.94E+02 -	1.42E+02	6.38E+01 =	6.22E+01
		(1.13E+02)	(4.59E+01)	(7.85E+01)	(4.25E+01)	(8.71E+01)	(8.41E+01)	(2.31E+01)	(2.13E+01)
	F18	6.89E+00 -	3.01E+00	4.85E+00 -	3.89E+00	6.02E+00 =	5.68E+00	2.14E+00 =	2.19E+00
		(3.23E+00)	(1.50E+00)	(1.76E+00)	(1.47E+00)	(2.44E+00)	(2.09E+00)	(1.23E+00)	(1.17E+00)
d ins	F19	3.75E+00 -	3.08E+00	2.69E+00 -	2.23E+00	2.63E+00 =	2.78E+00	2.04E+00 =	1.86E+00
Hybrid Functions		(5.74E-01)	(6.64E-01)	(6.23E-01)	(6.65E-01)	(8.21E-01)	(6.45E-01)	(7.16E-01)	(6.30E-01)
H II	F20	2.84E+00 =	2.59E+00	3.57E+00 =	3.72E+00	2.34E+00 =	2.67E+00	2.04E+00 =	1.97E+00
		(1.04E+00)	(1.07E+00)	(1.41E+00)	(1.34E+00)	(1.06E+00)	(1.18E+00)	(8.67E-01)	(8.07E-01)
	F21	9.08E+01 -	3.33E+01	7.84E+01 -	2.43E+01	9.09E+01 =	9.96E+01	2.86E+01 =	1.18E+01
		(7.29E+01)	(5.40E+01) 2.31E+01	(7.25E+01)	(4.11E+01)	(7.94E+01)	(8.91E+01)	(4.42E+01)	(8.29E+00)
	F22	2.45E+01 - (3.35E+00)		3.43E+01 - (2.47E+01)	2.54E+01 (4.05E+00)	5.17E+01 - (5.09E+01)	3.76E+01	2.91E+01 - (2.45E+01)	2.31E+01 (3.73E+00)
-			(2.00E+00)				(3.85E+01)		
	F23	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02
		(4.02E-13)	(3.18E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.16E-13)	(4.16E-13)	(4.02E-13)
	F24	2.24E+02 -	2.22E+02	2.24E+02 -	2.22E+02	2.11E+02 =	2.11E+02	2.09E+02 -	2.02E+02
		(1.46E+00)	(3.44E+00)	(1.95E+00)	(4.63E+00)	(1.10E+01)	(1.10E+01)	(1.08E+01)	(5.83E+00)
	F25	2.03E+02 -	2.03E+02	2.03E+02 -	2.03E+02	2.03E+02 =	2.03E+02	2.03E+02 =	2.03E+02
		(5.33E-02)	(4.10E-02)	(3.95E-02)	(4.46E-02)	(3.95E-02)	(3.24E-02)	(2.75E-02)	(2.60E-02)
ition	F26	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 -	1.00E+02	1.00E+02 =	1.00E+02
Composition Functions		(1.47E-02)	(1.38E-02)	(1.92E-02)	(1.98E-02)	(1.25E-02)	(1.64E-02)	(2.13E-02)	(2.44E-02)
Fun	F27	3.00E+02 +	3.00E+02	3.02E+02 =	3.02E+02	3.00E+02 -	3.00E+02	3.00E+02 =	3.00E+02
		(1.25E-13)	(2.16E-13)	(1.40E+01)	(1.40E+01)	(1.85E-13)	(9.09E-14)	(2.30E-13)	(1.23E-05)
	F28	8.35E+02 =	8.33E+02	8.39E+02 =	8.35E+02	8.37E+02 =	8.37E+02	8.25E+02 -	8.16E+02
		(1.83E+01)	(1.96E+01)	(1.42E+01)	(1.53E+01)	(1.56E+01)	(1.81E+01)	(2.15E+01)	(1.94E+01)
	F29	7.16E+02 =	7.15E+02	7.17E+02 -	7.16E+02	7.22E+02 =	7.20E+02	7.16E+02 -	7.15E+02
		(2.52E+00)	(1.55E+00)	(3.10E+00)	(2.28E+00)	(1.17E+01)	(6.36E+00)	(2.07E+00)	(1.17E+00)
Ī	F30	1.40E+03 =	1.37E+03	9.28E+02 =	9.35E+02	1.46E+03 =	1.51E+03	6.20E+02 -	5.70E+02
		(6.66E+02)	(6.31E+02)	(3.55E+02)	(4.83E+02)	(6.33E+02)	(6.72E+02)	(1.67E+02)	(1.73E+02)
_	/=/+	10/18/2		9/20/1		8/22/0		7/21/2	

Note: The structural bias that affects the performance of UMOEA-II and L-SHADE_EpSin were removed according to the suggestions in [5]. In detail, in UMOEA-II and SCSS-UMOEA-II, the mutation strategy $V_{i,G} = F_i \times X_{r1,G} + (X_{r2,G} - X_{r3,G})$ was modified as $V_{i,G} = X_{r1,G} + (X_{r2,G} - X_{r3,G})$ by setting $F_i = 1$. In L-SHADE_EpSin and SCSS-L-SHADE_EpSin, the local search procedures were skipped.

TABLE S8 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED TOP ALGORITHMS WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET

			~~~		~~~		SCSS-		
		L-SHADE	SCSS-	UMOEA-II	SCSS-	L-SHADE_	L-SHADE_	iSO	SCSS-
		2 5111.12.2	L-SHADE	0111021111	UMOEA-II	EpSin	EpSin	jso	jSO
	F1	9.71E+02 -	1.04E+02	1.17E-03 -	5.83E-04	1.33E-02 -	5.13E-05	1.49E+01 -	1.59E+00
	cec14	(1.66E+03)	(5.89E+02)	(9.11E-04)	(3.83E-04)	(7.34E-02)	(3.62E-04)	(3.06E+01)	(2.80E+00)
Unimodal Functions	F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
umc ncti	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Tu F	F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F4	8.23E+01 =	7.62E+01	2.69E+01 +	5.00E+00)	5.65E+01 -	4.12E+01	5.02E+00	5.79E+01
	cec14	(3.38E+01)	(4.00E+01)	(4.42E+01)	(4.95E+01)	(4.83E+01)	(4.81E+01)	(4.93E+01)	(4.86E+01)
	T.C	2.03E+01 -	2.02E+01	2.00E+01 =	2.00E+01	2.03E+01 -	2.02E+01	2.11E+01 =	2.11E+01
	F5								
		(3.08E-02)	(8.40E-02)	(6.24E-04)	(4.88E-06)	(3.24E-02)	(7.18E-02)	(5.59E-02)	(5.17E-02)
	F6	9.14E-02 -	5.69E-02	3.49E-01 -	8.13E-02	2.04E-04 -	2.14E-05	3.80E-03 -	3.66E-02
		(2.74E-01)	(2.45E-01)	(4.91E-01)	(3.21E-01)	(2.15E-04)	(4.97E-05)	(5.50E-03)	(1.44E-01)
	F7	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F8	3.64E-08 -	2.37E-08	0.00E+00 =	0.00E+00	3.53E-09 =	0.00E+00	0.00E+00 +	1.82E-09
		(3.14E-08)	(4.23E-08)	(0.00E+00)	(0.00E+00)	(2.52E-08)	(0.00E+00)	(0.00E+00)	(6.41E-09)
lal	F9	1.26E+01 -	1.18E+01	1.60E+01 -	1.39E+01	3.03E+01 -	1.90E+01	1.59E+01 -	1.13E+01
Simple Multimodal Functions		(2.44E+00)	(2.02E+00)	(4.61E+00)	(3.94E+00)	(5.20E+00)	(5.72E+00)	(3.69E+00)	(2.93E+00)
fulti	F10	1.72E-01 -	1.38E-01	1.30E+00 +	3.53E+00	4.17E-02 =	3.73E-02	9.92E+00 =	8.40E+00
le M	cec14	(5.24E-02)	(5.18E-02)	(1.19E+00)	(2.29E+00)	(2.19E-02)	(1.78E-02)	(3.90E+00)	(3.24E+00)
ldm F	F11	3.42E+03 -	3.28E+03	3.94E+03 =	3.93E+03	3.09E+03 =	3.00E+03	3.22E+03 =	3.26E+03
Si	cec14	(3.46E+02)	(3.38E+02)	(7.60E+02)	(6.03E+02)	(3.06E+02)	(3.23E+02)	(3.37E+02)	(3.75E+02)
	F12	2.44E-01 -	2.11E-01	1.63E-01 =	1.68E-01	2.16E-01 -	1.99E-01	3.69E-01 =	7.48E-01
	cec14	(3.53E-02)	(3.26E-02)	(1.06E-01)	(1.06E-01)	(2.70E-02)	(2.81E-02)	(4.10E-01)	(7.45E-01)
	F13	1.60E-01 -	1.50E-01	1.63E-01 =	1.60E-01	2.06E-01 -	1.90E-01	1.92E-01 =	2.01E-01
	cec14	(1.74E-02)	(2.08E-02)	(2.40E-02)	(2.33E-02)	(2.08E-02)	(2.35E-02)	(2.83E-02)	(4.22E-02)
	F14	3.23E-01 -	2.49E-01	3.01E-01 -	2.63E-01	1.89E-01 -	1.84E-01	2.91E-01 -	2.73E-01
	cec14	(4.96E-02)	(9.34E-02)	(2.29E-02)	(2.99E-02)	(2.33E-02)	(3.13E-02)	(4.34E-02)	(4.15E-02)
	F15	5.30E+00 -	4.99E+00	5.39E+00 =	5.13E+00	5.68E+00 -	5.04E+00	5.18E+00 -	4.68E+00
	cec14	(5.66E-01)	(4.75E-01)	(1.04E+00)	(1.06E+00)	(4.74E-01)	(5.05E-01)	(4.85E-01)	(6.92E-01)
	F16	1.69E+01 +	1.71E+01	1.84E+01 +	1.86E+01	1.67E+01 -	1.65E+01	1.70E+01 +	1.73E+01
	cec14	(4.35E-01)	(4.88E-01)	(7.63E-01)	(6.65E-01)	(3.44E-01)	(4.28E-01)	(9.41E-01)	(7.30E-01)
	F17	1.63E+03 -	5.59E+02	1.11E+03 -	3.94E+02	3.60E+02 =	3.51E+02	3.51E+02 -	1.76E+02
	cec14	(3.52E+02)	(2.32E+02)	(3.60E+02)	(1.81E+02)	(1.60E+02)	(1.39E+02)	(1.70E+02)	(1.11E+02)
	E10	1.05E+02 -	2.30E+01	5.70E+01 -	1.56E+01	1.89E+01 =	1.83E+01	1.08E+01 -	7.21E+00
	F18			(2.14E+01)		(6.40E+00)	(6.76E+00)	(3.24E+00)	
		(1.38E+01) <b>8.11E+00</b> +	(6.42E+00) 9.64E+00	8.17E+00=	(4.28E+00) 7.66E+00	9.99E+00 -		9.25E+00 -	(2.16E+00)
q pus	F19						9.76E+00		8.56E+00
Hybrid Functions		(1.87E+00)	(1.45E+00)	(2.20E+00)	(2.39E+00)	(8.84E-01)	(8.22E-01)	(8.19E-01)	(7.29E-01)
H. H.	F20	1.45E+01 -	7.96E+00	1.34E+01 -	9.33E+00	6.04E+00 =	5.93E+00	5.67E+00 =	5.17E+00
		(3.75E+00)	(1.96E+00)	(3.52E+00)	(3.05E+00)	(2.23E+00)	(1.86E+00)	(1.95E+00)	(1.71E+00)
	F21	5.59E+02 -	3.42E+02	4.38E+02 -	3.49E+02	3.25E+02 =	3.08E+02	3.03E+02 -	2.36E+02
		(1.62E+02)	(1.11E+02)	(1.27E+02)	(1.32E+02)	(9.65E+01)	(1.05E+02)	(9.88E+01)	(8.45E+01)
	F22	1.03E+02 =	9.95E+01	1.81E+02 =	1.93E+02	9.35E+01 -	6.34E+01	1.51E+02 -	1.03E+02
		(7.30E+01)	(7.03E+01)	(8.35E+01)	(1.19E+02)	(6.13E+01)	(5.00E+01)	(1.00E+02)	(8.34E+01)
	F23	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02
		(3.20E-13)	(3.46E-13)	(4.67E-13)	(4.73E-13)	(2.93E-13)	(3.18E-13)	(3.03E-13)	(3.46E-13)
	F24	2.75E+02 -	2.74E+02	2.75E+02 -	2.75E+02	2.68E+02 =	2.68E+02	2.72E+02 -	2.70E+02
	cec14	(4.98E-01)	(1.13E+00)	(8.57E-01)	(7.27E-01)	(1.23E+00)	(1.50E+00)	(1.80E+00)	(2.18E+00)
	F25	2.05E+02 -	2.05E+02	2.05E+02 =	2.05E+02	2.05E+02 =	2.05E+02	2.05E+02 -	2.05E+02
	cec14	(3.48E-01)	(2.33E-01)	(2.98E-01)	(3.00E-01)	(1.39E-01)	(9.28E-02)	(1.82E-01)	(1.35E-01)
on	F26	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 -	1.00E+02	1.00E+02 =	1.00E+02
Composition Functions	cec14	(1.98E-02)	(1.66E-02)	(2.50E-02)	(2.05E-02)	(4.98E-02)	(3.46E-02)	(2.37E-02)	(3.87E-02)
mpc	F27	3.42E+02 -	3.35E+02	3.34E+02 -	3.23E+02	3.17E+02 =	3.25E+02	3.10E+02 -	3.10E+02
ನಿ ಗ್	cec14	(2.68E+01)	(2.17E+01)	(3.31E+01)	(2.59E+01)	(2.28E+01)	(2.34E+01)	(1.85E+01)	(1.84E+01)
	F28	1.13E+03 =	1.12E+03	1.12E+03 =	1.11E+03	1.14E+03 =	1.14E+03	1.09E+03 =	1.08E+03
	cec14	(3.69E+01)	(3.09E+01)	(2.83E+01)	(2.69E+01)	(3.72E+01)	(3.83E+01)	(2.81E+01)	(3.04E+01)
	F29	8.04E+02 =	8.02E+02	8.05E+02 =	7.95E+02	8.05E+02 =	8.13E+02	8.04E+02 =	8.03E+02
	cec14	(3.34E+01)	(3.22E+01)	(4.27E+01)	(3.95E+01)	(2.77E+01)	(4.03E+01)	(4.11E+01)	(4.48E+01)
	F30	8.59E+03 =	8.53E+03	8.62E+03 =	8.64E+03	8.50E+03 =	8.60E+03	8.38E+03 =	8.30E+03
	cec14	(4.15E+02)	(3.14E+02)	(4.71E+02)	(5.04E+02)	(3.71E+02)	(4.33E+02)	(3.90E+02)	(3.38E+02)
	/=/+	18/10/2	(3.171102)	10/17/3	(3.072102)	13/17/0	(7.55£102)	13/15/2	(3.301102)
	/ —/ 1	10/10/4		10/1//3		13/1//0		13/13/4	

TABLE S9 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET

		JADE	SCSS- JADE	SHADE	SCSS- SHADE	CMA-ES	SCSS- CMA-ES	LIPS	SCSS- LIPS
	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	8.03E+02 +	2.73E+03
dal		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.45E+03)	(4.18E+03)
Unimodal Functions	F2	1.58E-05 = (8.56E-06)	1.70E-05 (9.99E-06)	1.77E-05 = (1.03E-05)	1.39E-05 (8.49E-06)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	2.33E+01 - (9.02E+01)	1.87E-03 (1.95E-04)
D. B.	F3	1.18E+04 -	7.74E+02	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	1.60E+04 -	7.74E+03
	cec17	(1.92E+04)	(5.53E+03)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(7.66E+03)	(3.55E+03)
	_F4	5.18E+01 =	5.14E+01	5.47E+01 =	5.29E+01	3.99E+01 +	4.30E+01	1.64E+02 -	1.11E+02
	cec17	(2.08E+01)	(2.06E+01)	(1.62E+01)	(1.76E+01)	(2.74E+01)	(2.55E+01)	(9.39E+01)	(4.93E+01)
	F5	2.83E+01 -	2.17E+01	1.99E+01 =	1.97E+01	6.58E+02 -	1.34E+02	6.43E+01 -	3.43E+01
		(4.01E+00) 0.00E+00 =	(4.50E+00) 0.00E+00	(3.24E+00) 0.00E+00 =	(3.18E+00) 0.00E+00	(2.22E+02) 9.91E+01 -	(2.26E+02) 3.99E+01	(1.35E+01) 8.27E+00 -	(9.30E+00) 4.58E-01
ıodal	F6 cec17	(0.00E+00 =	(0.00E+00)	(0.00E+00 =	(0.00E+00)	(1.56E+01)	(4.70E+01)	(5.05E+00)	(5.87E-01)
ultim	F7	5.61E+01 -	5.19E+01	5.09E+01 -	4.92E+01	3.66E+03 -	2.71E+02	9.77E+01 -	7.32E+01
e Mt	cec17	(3.87E+00)	(4.41E+00)	(3.87E+00)	(2.84E+00)	(1.11E+03)	(8.12E+02)	(2.10E+01)	(1.09E+01)
Simple Multimodal Functions	F8	2.84E+01 -	2.39E+01	2.16E+01 =	2.07E+01	5.79E+02 -	1.60E+02	6.23E+01 -	3.58E+01
S		(5.00E+00)	(4.09E+00)	(3.42E+00)	(3.64E+00)	(1.43E+02)	(2.05E+02)	(1.31E+01)	(8.35E+00)
	F9 cec17	2.13E-02 = (9.01E-02)	7.02E-03 (2.43E-02)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	1.37E+04 - (3.23E+03)	5.85E+03 (7.13E+03)	6.01E+02 - (4.21E+02)	2.07E+01 (2.53E+01)
	F10	1.88E+03 -	1.79E+03	1.73E+03 =	1.72E+03	4.93E+03 -	4.05E+03	2.80E+03 -	2.15E+03
	cec17	(2.70E+02)	(2.39E+02)	(2.71E+02)	(2.46E+02)	(5.98E+02)	(1.01E+03)	(4.44E+02)	(3.40E+02)
	F11	3.37E+01 -	2.28E+01	2.10E+01 =	2.13E+01	1.67E+02 -	1.20E+02	1.99E+02 -	8.58E+01
	cec17	(2.26E+01)	(2.00E+01)	(2.53E+01)	(2.47E+01)	(5.67E+01)	(3.97E+01)	(1.41E+02)	(4.31E+01)
	F12	1.48E+03 =	1.30E+03	2.03E+03 -	1.20E+03	1.51E+03 =	1.55E+03	1.85E+06 -	1.78E+05
	Cec17	(8.87E+02)	(7.31E+02)	(2.68E+03)	(5.83E+02)	(3.69E+02)	(3.41E+02)	(6.00E+06)	(2.11E+05)
	F13	4.36E+01 = (2.16E+01)	3.92E+01 (1.61E+01)	3.84E+01 - (1.76E+01)	2.68E+01 (1.20E+01)	1.57E+03 = (7.42E+02)	1.35E+03 (7.07E+02)	5.74E+03 - (5.63E+03)	2.78E+03 (4.82E+03)
	F14	9.70E+01)	2.05E+03	2.73E+01 =	2.61E+01	1.85E+02	1.66E+02	1.40E+04 -	8.81E+03
	cec17	(1.12E+04)	(7.03E+03)	(5.83E+00)	(4.08E+00)	(5.74E+01)	(5.33E+01)	(1.13E+04)	(2.02E+04)
100	F15	1.94E+03 -	1.14E+02	1.32E+01 =	1.05E+01	3.09E+02 =	2.83E+02	2.35E+03 -	1.40E+03
brid	cec17	(3.78E+03)	(6.60E+02)	(9.70E+00)	(5.76E+00)	(1.32E+02)	(1.36E+02)	(3.05E+03)	(2.16E+03)
Hybrid Functions	F16	3.92E+02 -	3.27E+02	2.91E+02 -	2.43E+02	5.92E+02 -	3.36E+02	7.30E+02 -	4.78E+02
		(1.27E+02)	(1.28E+02)	(1.16E+02)	(1.35E+02)	(2.96E+02)	(2.36E+02)	(2.21E+02)	(1.61E+02)
	F17	8.33E+01 - (2.86E+01)	7.21E+01 (2.09E+01)	4.83E+01 = (1.29E+01)	5.10E+01 (9.63E+00)	2.80E+02 - (2.03E+02)	1.45E+02 (9.83E+01)	2.89E+02 - (1.19E+02)	1.52E+02 (6.88E+01)
	F18	5.06E+04 -	7.69E+03	7.32E+01 -	3.43E+01	2.07E+02 =	1.98E+02	1.71E+05 -	1.16E+05
	cec17	(7.16E+04)	(3.87E+04)	(4.20E+01)	(1.53E+01)	(8.94E+01)	(7.43E+01)	(1.53E+05)	(6.72E+04)
	F19 cec17	1.88E+03 -	1.20E+01	7.83E+00 =	7.40E+00	2.04E+02 -	1.73E+02	1.55E+03 =	1.61E+03
	cec17	(4.75E+03)	(6.37E+00)	(3.06E+00)	(2.40E+00)	(8.72E+01)	(6.95E+01)	(1.99E+03)	(3.30E+03)
	F20	9.72E+01 -	7.83E+01	6.23E+01 =	5.43E+01	1.38E+03 -	2.05E+02	3.21E+02 -	1.83E+02
		(5.22E+01) 2.28E+02 -	(4.58E+01) 2.22E+02	(3.64E+01) 2.21E+02 =	(3.33E+01) 2.20E+02	(3.73E+02) 4.92E+02 -	(1.65E+02) 3.03E+02	(1.02E+02) 2.65E+02 -	(7.84E+01) 2.39E+02
	F21	(4.78E+00)	(4.93E+00)	(3.13E+02 = (3.13E+00))	(3.86E+00)	(2.67E+02)	3.03E+02 (1.56E+02)	(1.55E+01)	(9.85E+02)
	F22	1.00E+02 =	1.39E+02	1.00E+02 =	1.00E+02	5.70E+03 -	3.05E+03	1.58E+02 -	1.00E+02
	cec17	(2.56E-05)	(2.76E+02)	(1.00E-13)	(1.00E-13)	(1.03E+03)	(2.50E+03)	(4.06E+02)	(2.11E-13)
	F23	3.75E+02 -	3.71E+02	3.68E+02 =	3.66E+02	1.99E+03 -	6.46E+02	4.45E+02 -	3.91E+02
	cec17	(6.33E+00)	(6.99E+00)	(4.87E+00)	(5.71E+00)	(8.26E+02)	(6.87E+02)	(3.32E+01)	(1.08E+01)
	F24	4.40E+02 -	4.36E+02	4.38E+02 -	4.36E+02	4.74E+02 =	4.57E+02	5.00E+02 -	4.49E+02
_		(4.90E+00) 3.87E+02 -	(5.27E+00) 3.87E+02	(3.82E+00) 3.87E+02 -	(3.77E+00) 3.87E+02	(9.73E+01) 3.87E+02 -	(1.09E+01) <b>3.87E+02</b>	(2.83E+01) 4.29E+02 -	(1.02E+01) 3.99E+02
Composition Functions	F25	(1.86E-01)	(1.72E-01)	(1.38E-01)	(1.33E-01)	(2.74E+00)	(2.71E-02)	(2.71E+01)	(1.32E+01)
mpo	F26	1.19E+03 -	1.16E+03	1.12E+03 =	1.09E+03	1.20E+03 -	1.20E+03	1.47E+03 -	1.14E+03
Co	cec17	(1.51E+02)	(8.12E+01)	(6.24E+01)	(6.26E+01)	(4.75E+02)	(3.22E+02)	(8.10E+02)	(5.73E+02)
	F27	5.01E+02 =	5.03E+02	5.02E+02 =	5.02E+02	8.04E+02 -	4.86E+02	6.12E+02 -	5.56E+02
		(7.16E+00)	(7.65E+00)	(5.62E+00)	(4.92E+00)	(1.74E+03)	(1.08E+01)	(2.52E+01)	(1.69E+01)
	F28	3.41E+02 = (5.64E+01)	3.34E+02 (5.44E+01)	3.34E+02 = (5.47E+01)	3.30E+02 (4.90E+01)	3.51E+02 = (6.13E+01)	3.42E+02 (5.34E+01)	5.00E+02 - (9.70E+01)	3.90E+02 (7.31E+01)
	F29	4.85E+02 -	4.74E+01)	4.63E+02 =	4.65E+02	7.88E+02 -	6.36E+02	9.73E+02 -	7.05E+01)
	cec17	(2.28E+01)	(1.52E+01)	(2.62E+01)	(1.66E+01)	(1.84E+02)	(1.25E+02)	(1.78E+02)	(7.69E+01)
	F30	2.79E+03 =	2.13E+03	2.10E+03 =	2.08E+03	2.22E+03 =	2.19E+03	1.19E+05 -	1.20E+04
	cec17	(2.00E+03)	(1.42E+02)	(1.27E+02)	(1.39E+02)	(2.09E+02)	(2.20E+02)	(1.81E+05)	(5.61E+03)
	/=/+	19/11/0		7/23/0		18/11/1		28/1/1	

TABLE S10 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 50-D CEC2017 BENCHMARK SET

		JADE	SCSS-	SHADE	SCSS-	CMA-ES	SCSS-	LIPS	SCSS-
	F1		JADE		SHADE		CMA-ES		LIPS
	F1	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	1.17E+03 + (2.02E+03)	2.89E+03 (4.25E+03)
Unimodal Functions	F2	4.21E-05 +	4.93E-05	5.08E-05 =	5.41E-05	0.00E+00	0.00E+00)	7.62E+02 -	3.25E-03
ncti	cec17	(1.21E-05)	(1.63E-05)	(1.48E-05)	(1.87E-05)	(0.00E+00)	(0.00E+00)	(7.84E+02)	(4.46E-04)
고로	F3	1.42E+04 -	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	9.27E+04 -	6.53E+04
	cec17	(3.38E+04)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.23E+04)	(1.57E+04)
	F4	5.46E+01 =	5.37E+01	6.40E+01 =	5.50E+01	4.34E+01 =	3.61E+01	6.66E+02 -	2.52E+02
	cec17	(5.18E+01)	(5.01E+01)	(5.03E+01)	(4.53E+01)	(4.79E+01)	(4.31E+01)	(3.39E+02)	(7.79E+01)
	F5	5.18E+01 -	3.98E+01	4.35E+01 -	3.89E+01	1.03E+03 -	6.32E+02	1.68E+02 -	1.00E+02
	cec17	(9.01E+00)	(9.33E+00)	(5.40E+00)	(6.36E+00)	(1.78E+02)	(4.78E+02)	(2.62E+01)	(2.00E+01)
qal	F6 cec17	0.00E+00 +	5.77E-07	1.59E-06 =	1.67E-06	9.54E+01 -	7.49E+01	2.41E+01 -	4.92E+00
Simple Multimodal Functions	D7	(0.00E+00)	(2.18E-06)	(2.26E-06)	(1.87E-06)	(1.04E+01)	(3.66E+01)	(5.43E+00)	(2.13E+00) 1.74E+02
	F7	9.89E+01 - (8.16E+00)	8.94E+01	8.91E+01 - (5.48E+00)	8.60E+01 (5.82E+00)	6.42E+03 - (1.55E+03)	1.65E+03 (2.74E+03)	3.74E+02 - (6.09E+01)	1.74E+02 (2.69E+01)
	F8	5.43E+01 -	(8.04E+00) 4.17E+01	4.21E+01 =	4.10E+01	1.09E+03 -	5.94E+03)	1.74E+02 -	1.02E+02
	cec17	(8.64E+00)	(8.53E+00)	(6.54E+00)	(7.27E+00)	(2.12E+02)	(4.60E+02)	(3.49E+01)	(1.71E+01)
	F9	1.44E+00 =	1.46E+00	3.87E-01 =	3.55E-01	3.08E+04 =	2.64E+04	4.44E+03 -	8.85E+02
	cec17	(1.52E+00)	(1.26E+00)	(3.94E-01)	(4.33E-01)	(5.49E+03)	(1.16E+04)	(1.45E+03)	(5.90E+02)
	F10	3.70E+03 -	3.49E+03	3.48E+03 =	3.43E+03	8.04E+03 -	7.19E+03	5.14E+03 -	4.24E+03
	cec17	(3.77E+02)	(3.97E+02)	(3.77E+02)	(3.50E+02)	(9.92E+02)	(1.22E+03)	(6.66E+02)	(6.02E+02)
	F11	1.57E+02 -	1.32E+02	8.67E+01 -	6.88E+01	2.88E+02 -	2.08E+02	2.35E+03 -	2.58E+02
	cec17	(5.18E+01)	(3.61E+01)	(2.71E+01)	(1.66E+01)	(6.63E+01)	(5.01E+01)	(2.45E+03)	(8.87E+01)
	F12	7.02E+03 =	6.57E+03	5.66E+03 =	6.95E+03	2.66E+03 =	2.64E+03	1.35E+07 -	1.84E+06
		(6.81E+03)	(3.92E+03)	(3.09E+03)	(4.86E+03)	(6.49E+02)	(6.45E+02)	(4.17E+07)	(1.55E+06)
	F13	2.52E+02 =	2.10E+02	2.94E+02 -	1.33E+02	2.55E+03 =	2.28E+03	6.58E+03 -	1.16E+03
		(1.52E+02) 6.91E+04 -	(1.23E+02) <b>5.09E+03</b>	(1.94E+02)	(5.36E+01)	(7.76E+02)	(7.63E+02)	(3.64E+03)	(7.74E+02)
	F14	6.91E+04 - (1.19E+05)		1.82E+02 - (4.59E+01)	8.43E+01	3.16E+02 = (7.64E+01)	2.97E+02 (9.08E+01)	1.32E+05 - (3.30E+05)	2.61E+04
	F15	1.13E+03)	(2.12E+04) 1.92E+02	2.52E+02 -	(2.75E+01) 1.28E+02	4.88E+02 =	4.84E+02	1.97E+03 -	(2.66E+04) 8.09E+02
pi	cec17	(2.51E+03)	(9.30E+01)	(1.05E+02)	(5.77E+01)	(1.68E+02)	(1.20E+02)	(1.89E+03)	(6.53E+02)
Hybrid	F16	9.06E+02 -	7.24E+02	7.26E+02 =	7.44E+02	9.06E+02 -	5.49E+02	1.44E+03 -	9.12E+02
一正	cec17	(1.65E+02)	(1.67E+02)	(1.83E+02)	(1.31E+02)	(3.97E+02)	(3.04E+02)	(3.37E+02)	(2.46E+02)
	F17	6.40E+02 -	5.52E+02	4.78E+02 =	4.90E+02	9.86E+02 -	5.71E+02	1.16E+03 -	7.70E+02
	cec17	(1.59E+02)	(1.55E+02)	(1.37E+02)	(1.25E+02)	(2.57E+02)	(2.25E+02)	(2.11E+02)	(1.70E+02)
	F18	1.82E+05 -	1.59E+02	1.38E+02 -	1.10E+02	3.60E+02 =	3.31E+02	1.21E+06 -	3.56E+05
	cec1/	(4.33E+05)	(1.54E+02)	(8.50E+01)	(7.29E+01)	(1.23E+02)	(1.07E+02)	(2.22E+06)	(2.38E+05)
	F19 cec17	9.41E+02 -	1.19E+02	1.14E+02 -	7.53E+01	2.71E+02 =	2.43E+02	3.34E+03 =	3.26E+03
	720	(2.46E+03)	(4.55E+01)	(4.32E+01)	(3.39E+01)	(1.30E+02)	(7.61E+01)	(4.99E+03)	(5.11E+03)
	F20 cec17	4.74E+02 -	3.97E+02	3.46E+02 =	3.27E+02	2.37E+03 -	8.23E+02 (8.32E+02)	6.79E+02 -	4.60E+02
-		(1.35E+02) 2.54E+02 -	(1.28E+02) 2.41E+02	(1.19E+02) 2.44E+02 =	(9.96E+01) 2.42E+02	(5.04E+02) 7.97E+02 -	4.13E+02	(1.67E+02) 3.60E+02 -	(1.57E+02) 3.01E+02
	F21	(1.03E+01)	(8.60E+00)	(6.19E+00)	(7.15E+00)	(4.85E+02)	(3.21E+02)	(3.55E+01)	(1.72E+01)
	F22	3.68E+03 -	3.41E+03	3.50E+03 =	3.27E+03	9.11E+03 -	7.94E+03	4.55E+03 -	3.92E+03
	cec17	(1.67E+03)	(1.45E+03)	(1.50E+03)	(1.57E+03)	(1.09E+03)	(1.30E+03)	(2.41E+03)	(1.87E+03)
	F23	4.79E+02 -	4.65E+02	4.66E+02 -	4.60E+02	3.18E+03 -	1.20E+03	7.13E+02 -	5.59E+02
	cec17	(1.09E+01)	(1.01E+01)	(8.46E+00)	(8.48E+00)	(6.79E+02)	(1.18E+03)	(6.14E+01)	(2.46E+01)
	F24	5.40E+02 -	5.29E+02	5.35E+02 -	5.30E+02	7.00E+02 -	5.72E+02	7.71E+02 -	6.05E+02
	cec17	(8.46E+00)	(6.59E+00)	(8.93E+00)	(6.90E+00)	(2.49E+02)	(2.19E+01)	(7.71E+01)	(1.99E+01)
ion	F25	5.23E+02 =	5.20E+02	5.15E+02 =	5.08E+02	5.02E+02 =	4.94E+02	9.66E+02 -	6.35E+02
Composition Functions		(3.28E+01)	(3.62E+01)	(3.61E+01)	(3.75E+01)	(3.32E+01)	(2.97E+01)	(2.15E+02)	(4.87E+01)
Yom! Fun	F26	1.63E+03 -	1.50E+03	1.45E+03 -	1.41E+03	1.90E+03 -	1.76E+03	3.87E+03 -	2.19E+03
		(1.22E+02)	(1.34E+02)	(9.07E+01) 5.37E+02 =	(9.53E+01)	(5.02E+02)	(5.10E+02)	(6.48E+02)	(6.09E+02)
	F27	5.58E+02 = (2.58E+01)	5.55E+02 (2.94E+01)	5.3/E+02 = (1.88E+01)	5.31E+02 (1.33E+01)	7.55E+02 - (1.17E+03)	4.76E+02 (1.37E+01)	1.19E+03 - (9.61E+01)	8.66E+02 (6.62E+01)
	F28	4.91E+02 =	4.94E+01)	4.82E+02 =	4.85E+02	4.70E+03	4.64E+02	1.49E+03 -	6.25E+02
	cec17	(2.25E+01)	(2.11E+01)	(2.44E+01)	(2.38E+01)	(2.01E+01)	(1.60E+01)	(4.96E+02)	(5.57E+01)
	F29	4.60E+02 =	4.72E+02	4.38E+02 =	4.46E+02	1.04E+03 -	6.93E+02	2.02E+03 -	1.12E+03
	cec17	(6.92E+01)	(7.48E+01)	(5.83E+01)	(5.42E+01)	(2.96E+02)	(1.73E+02)	(3.35E+02)	(1.80E+02)
	F30	6.64E+05 =	6.56E+05	6.57E+05 =	6.54E+05	7.86E+05 =	7.87E+05	3.31E+07 -	4.90E+06
	cec17	(9.01E+04)	(8.03E+04)	(7.82E+04)	(6.50E+04)	(1.45E+05)	(1.72E+05)	(1.45E+07)	(1.58E+06)
	/=/+	18/10/2		11/19/0		16/14/0		28/1/1	
					l l	l l			

TABLE S11 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED TOP ALGORITHMS WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET

							SCSS-		
		L-SHADE	SCSS-	UMOEA-II	SCSS-	L-SHADE_	L-SHADE_	iSO	SCSS-
		E SIII IDE	L-SHADE	CIVIOLATIA	UMOEA-II	EpSin	EpSin	JSO	jSO
	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00 =	(0.00E+00)	(0.00E+00)	(0.00E+00)
dal	F2			4.14E-08 =					
moc	F2	4.06E-09 -	0.00E+00		3.23E-08	0.00E+00 =	0.00E+00	6.65E-08 =	9.39E-08
Unimodal Functions		(8.59E-09)	(0.00E+00)	(5.51E-08)	(5.00E-08)	(0.00E+00)	(0.00E+00)	(9.56E-08)	(9.54E-08)
	F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F4	5.86E+01 =	5.86E+01	5.86E+01 =	5.87E+01	5.86E+01 =	5.86E+01	5.86E+01 =	5.86E+01
	cec17	(3.75E-14)	(3.27E-14)	(4.90E-14)	(7.78E-01)	(2.88E-14)	(2.93E-14)	(2.13E-14)	(2.41E-14)
	_F5	7.02E+00 =	7.61E+00	8.29E+00 =	8.54E+00	1.22E+01 -	1.06E+01	8.32E+00 -	7.49E+00
	cec17	(1.52E+00)	(1.58E+00)	(2.19E+00)	(2.06E+00)	(1.60E+00)	(2.43E+00)	(1.74E+00)	(1.80E+00)
Б	F6	3.38E-09 =	1.14E-08	1.81E-08 =	6.71E-09	8.05E-09 =	0.00E+00	9.39E-09 =	1.74E-08
nod s	cec17	(1.98E-08)	(3.73E-08)	(8.05E-08)	(2.74E-08)	(3.25E-08)	(0.00E+00)	(3.29E-08)	(4.45E-08)
ulti	_F7	3.79E+01 +	3.91E+01	4.04E+01 =	4.06E+01	4.35E+01 -	4.19E+01	3.84E+01 -	3.75E+01
Simple Multimodal Functions	cec17	(1.18E+00)	(2.03E+00)	(2.73E+00)	(2.68E+00)	(2.48E+00)	(2.75E+00)	(1.83E+00)	(1.33E+00)
Idm F	F8	7.11E+00 =	8.09E+00	8.45E+00 =	8.54E+00	1.35E+01 -	1.26E+01	8.81E+00 -	7.57E+00
Si	cec17	(1.58E+00)	(2.13E+00)	(1.86E+00)	(2.36E+00)	(1.50E+00)	(2.46E+00)	(2.17E+00)	(2.04E+00)
	F9	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F10	1.41E+03 =	1.44E+03	1.69E+03 =	1.63E+03	1.35E+03 =	1.28E+03	1.49E+03 =	1.54E+03
	cec17	(2.31E+02)	(2.33E+02)	(3.17E+02)	(3.04E+02)	(1.90E+02)	(2.38E+02)	(2.66E+02)	(2.18E+02)
	F11	3.73E+01 -	3.36E+01	1.34E+01 =	1.53E+01	1.58E+01 =	1.97E+01	9.87E+00 =	6.46E+00
	cec17	(2.91E+01)	(2.90E+01)	(2.02E+01)	(2.34E+01)	(2.30E+01)	(2.55E+01)	(1.89E+01)	(1.39E+01)
	F12	1.04E+03 -	6.95E+02	8.28E+02 -	2.84E+02	4.03E+02 =	3.77E+02	1.66E+02 -	8.34E+01
	cec17	(3.37E+02)	(3.16E+02)	(3.18E+02)	(1.85E+02)	(2.22E+02)	(2.15E+02)	(8.86E+01)	(7.27E+01)
	F13	1.92E+01 -	1.73E+01	1.53E+01 =	1.61E+01	1.42E+01 =	1.54E+01	1.60E+01 =	1.63E+01
	cec17	(4.61E+00)	(4.88E+00)	(6.24E+00)	(5.99E+00)	(6.02E+00)	(5.86E+00)	(5.76E+00)	(4.50E+00)
	F14	2.19E+01 +	2.22E+01	2.22E+01 =	2.22E+01	2.13E+01 =	2.26E+01	2.20E+01 =	2.14E+01
	cec17	(1.22E+00)	(3.11E+00)	(3.42E+00)	(4.58E+00)	(4.65E+00)	(1.20E+00)	(1.08E+00)	(3.19E+00)
	F15	3.54E+00 -	2.80E+00	3.30E+00 -	2.83E+00	2.41E+00 =	2.58E+00	1.26E+00 =	1.03E+00
Hybrid Functions	cec17	(1.56E+00)	(1.34E+00)	(1.70E+00)	(2.22E+00)	(1.44E+00)	(1.61E+00)	(8.34E-01)	(8.73E-01)
Hyb. incti	F16 cec17	4.00E+01 =	3.43E+01	9.31E+01 =	7.11E+01	5.09E+01 -	3.12E+01	6.50E+01 =	5.02E+01
F	cec17	(2.74E+01)	(1.48E+01)	(9.08E+01)	(8.16E+01)	(4.44E+01)	(3.38E+01)	(6.92E+01)	(6.73E+01)
	F17	3.29E+01 =	3.44E+01	4.07E+01 +	4.46E+01	2.83E+01 =	2.91E+01	3.45E+01 -	3.17E+01
	cec17	(6.27E+00)	(5.90E+00)	(8.68E+00)	(1.00E+01)	(6.47E+00)	(5.86E+00)	(7.04E+00)	(7.19E+00)
	F18	2.23E+01 -	2.04E+01	2.15E+01 =	2.13E+01	2.13E+01 =	2.13E+01	2.08E+01 =	1.95E+01
	cec17	(1.28E+00)	(2.79E+00)	(6.94E-01)	(7.26E-01)	(9.45E-01)	(9.30E-01)	(3.79E-01)	(4.82E+00)
	F19	5.96E+00 =	5.90E+00	6.38E+00 =	7.13E+00	5.24E+00 =	5.10E+00	4.53E+00 =	4.06E+00
	cec17	(1.87E+00)	(2.05E+00)	(1.91E+00)	(2.35E+00)	(1.63E+00)	(1.87E+00)	(1.90E+00)	(1.43E+00)
	F20	3.01E+01 =	2.99E+01	4.27E+01 =	3.97E+01	2.83E+01 =	2.60E+01	3.01E+01 =	2.75E+01
	cec17	(5.93E+00)	(4.37E+00)	(9.05E+00)	(7.88E+00)	(7.68E+00)	(5.45E+00)	(8.53E+00)	(7.25E+00)
	E21	2.08E+02 =	2.08E+02	2.09E+02 =	2.10E+02	2.12E+02 -	2.10E+02	2.09E+02 -	2.08E+02
	F21	(1.65E+00)	(1.53E+02)	(2.11E+00)	(2.43E+00)	(2.62E+02)	(2.50E+02)	(1.93E+02 -	(2.04E+00)
	F22	1.00E+00	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02
	cec17	(9.20E-14)	(1.00E+02	(1.39E-13)	(1.87E-13)	(1.00E+02 =	(1.00E+02	(9.20E-14)	(1.00E+02
	F23	3.54E+02 =	3.54E+02	3.54E+02 =	3.54E+02	3.55E+02 =	3.55E+02	3.51E+02 -	3.50E+02
	cec17	(3.16E+00)	(2.98E+00)	(4.25E+00)	(3.85E+00)	(2.86E+00)	(3.71E+00)	(3.46E+00)	(3.15E+00)
	F24	4.28E+02 =	4.28E+02	4.28E+02 +	4.29E+02	4.29E+02 -	4.27E+02	4.26E+02 =	4.26E+02
	cec17	(1.58E+00)	(1.87E+00)	(2.39E+00)	(2.35E+02)	(2.73E+00)	(2.07E+02)	(2.38E+00)	(3.06E+00)
_	F25	3.87E+02 -	3.87E+02	3.87E+02 -	3.87E+02	3.87E+02 =	3.87E+02	3.87E+02 =	3.87E+02
ition	cec17	(1.97E-02)	(1.26E-02)	(2.43E-02)	(1.71E-02)	(5.91E-03)	(5.70E-03)	(5.99E-03)	(6.30E-03)
Composition Functions	F26	9.85E+02 -	9.65E+02	9.51E+02 =	9.52E+02	9.55E+02 -	9.35E+02	9.30E+02 =	9.25E+02
Conr	cec17	9.83E+02 - (3.55E+01)	(3.66E+01)	9.51E+02 = (3.60E+01)	(4.31E+01)	(3.92E+01)	9.55E+02 (4.45E+01)	9.50E+02 = (3.65E+01)	(4.04E+01)
1 -	F27	5.07E+02 =	5.06E+01)	5.03E+01	5.01E+02	5.05E+02 =	5.05E+02	4.97E+02 =	4.95E+02
	cec17	(4.03E+00)	(5.63E+00)	(4.75E+00)	(6.09E+00)	(4.52E+00)	(4.34E+00)	(6.63E+00)	(7.76E+00)
	EJS	3.39E+02 =	3.27E+02	3.20E+02 =	3.26E+02	3.06E+02 +	3.24E+02	3.13E+02 =	3.02E+02
	F28	(5.61E+01)	(4.88E+01)	(4.37E+01)	(4.74E+01)	(2.63E+01)	(4.66E+01)	(3.54E+01)	(1.60E+01)
	F29	4.36E+02 +	4.42E+02	4.38E+02 +	4.45E+02	4.29E+02 +	4.35E+02	4.32E+02 =	4.27E+02
	cec17	(7.53E+00)	(1.15E+01)	(1.62E+01)	(1.19E+01)	(6.34E+00)	(8.65E+00)	(1.58E+01)	(2.42E+01)
	E20	1.99E+03 -	1.97E+03	1.97E+03 =	1.98E+03	1.99E+03 =	1.99E+03	1.97E+03 =	1.97E+03
	F30	(5.56E+01)	(4.32E+01)	(3.05E+01)	(3.66E+01)	(7.24E+01)	(5.68E+01)	(1.68E+01)	(1.11E+01)
<b>—</b>	-/=/+	9/18/3	(110211701)	3/24/3	(3.001101)	7/21/2	(5.001/01)	7/23/0	(1.1111101)
<u> </u>	, — 1	7/10/3		J1 <b>27</b> 1 J	l	11414		112310	l

TABLE S12 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED TOP ALGORITHMS WITH THE BASELINES
ON 50-D CEC2017 BENCHMARK SET

			SCSS-		SCSS-	L-SHADE_	SCSS-		SCSS-
		L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	EpSin	L-SHADE_	jSO	jSO
						_	EpSin		-
	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
lal ns		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Unimodal Functions	F2	5.01E-06 -	1.66E-06	1.37E-05 -	6.55E-06	2.23E-07 -	9.62E-08	1.38E-05 =	1.48E-05
Uni		(3.12E-06)	(9.79E-07)	(6.95E-06)	(4.16E-06)	(1.36E-07)	(6.14E-08)	(8.23E-06)	(8.26E-06)
	F3	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	3.00E-10 +	1.54E-08	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00
	Ε4	`		(2.14E-09)	(2.31E-08)		_ `	_ `	(0.00E+00)
	F4 cec17	7.23E+01 = (4.94E+01)	7.34E+01 (5.05E+01)	7.22E+01 = (4.97E+01)	8.27E+01 (5.36E+01)	5.04E+01 = (4.38E+01)	4.51E+01 (3.97E+01)	5.85E+01 = (4.56E+01)	4.87E+01
		1.19E+01	1.20E+01	1.61E+01 -	1.43E+01	2.90E+01 -	1.94E+01	1.56E+01 -	(4.11E+01) <b>1.26E+01</b>
	F5 cec17	(2.46E+00)	(1.99E+00)	(4.55E+00)	(3.11E+00)	(6.65E+00)	(6.64E+01)	(2.65E+00)	(2.70E+00)
	F6	7.12E-08 -	2,22E-08	1.66E-04 -	1.16E-07	2.57E-07 -	4.20E-08	4.10E-07 =	2.85E-07
odal	cec17	(2.58E-07)	(6.76E-08)	(5.76E-04)	(2.28E-07)	(3.41E-07)	(6.98E-08)	(5.52E-07)	(5.12E-07)
Simple Multimodal Functions	F7	6.50E+01 =	6.46E+01	7.04E+01 =	6.85E+01	7.98E+01 -	7.15E+01	6.66E+01 -	6.33E+01
Mu	cec17	(2.23E+00)	(2.12E+00)	(5.17E+00)	(5.14E+00)	(7.02E+00)	(5.69E+00)	(3.10E+00)	(2.66E+00)
nple Fu	F8	1.21E+01 =	1.17E+01	1.58E+01 =	1.43E+01	3.07E+01 -	1.96E+01	1.69E+01 -	1.20E+01
Sin	cec17	(2.39E+00)	(2.56E+00)	(4.09E+00)	(4.17E+00)	(3.99E+00)	(6.59E+00)	(3.43E+00)	(2.67E+00)
	F9	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F10	3.32E+03 -	3.12E+03	3.75E+03 =	3.64E+03	3.07E+03 -	2.89E+03	3.21E+03 -	3.05E+03
	cec17	(2.81E+02)	(3.27E+02)	(5.99E+02)	(5.22E+02)	(2.91E+02)	(2.90E+02)	(3.78E+02)	(3.63E+02)
	F11	4.80E+01 -	3.37E+01	4.42E+01 -	3.16E+01	2.75E+01 =	2.71E+01	2.66E+01 -	2.50E+01
	cec17	(6.64E+00)	(4.65E+00)	(9.48E+00)	(4.51E+00)	(2.01E+00)	(2.06E+00)	(3.13E+00)	(4.12E+00)
	F12	2.07E+03 =	2.10E+03	2.17E+03 =	2.01E+03	1.38E+03 =	1.36E+03	1.61E+03 -	1.29E+03
	cec17	(5.21E+02)	(4.81E+02)	(5.36E+02)	(4.99E+02)	(3.79E+02)	(3.67E+02)	(4.42E+02)	(3.66E+02)
	F13	6.52E+01 -	5.09E+01	4.69E+01 -	3.56E+01	3.76E+01 =	4.29E+01	3.17E+01 =	2.60E+01
	cec17	(2.98E+01)	(2.89E+01)	(1.73E+01)	(1.57E+01)	(2.60E+01)	(2.23E+01)	(2.01E+01)	(2.09E+01)
	F14	3.06E+01 -	2.48E+01	2.85E+01 -	2.70E+01	2.71E+01 =	2.67E+01	2.50E+01 =	2.51E+01
	F14	(3.73E+00)	(2.30E+00)	(3.30E+00)	(2.35E+00)	(2.68E+00)	(2.57E+00)	(2.34E+00)	(2.46E+00)
s	F15	4.53E+01 -	2.77E+01	3.45E+01 -	2.69E+01	2.51E+01 =	2.39E+01	2.37E+01 -	2.12E+01
brid	cec17	(1.40E+01)	(3.82E+00)	(6.42E+00)	(3.14E+00)	(3.17E+00)	(2.44E+00)	(2.77E+00)	(1.81E+00)
Hybrid Functions	F16	3.76E+02 =	3.49E+02	4.58E+02 =	4.07E+02	3.31E+02 -	2.68E+02	4.77E+02 =	4.45E+02
_	cec1/	(1.36E+02)	(1.17E+02)	(1.68E+02)	(1.69E+02)	(1.25E+02)	(1.16E+02)	(1.36E+02)	(1.55E+02)
	F17	2.32E+02 =	2.04E+02	3.14E+02 =	3.01E+02	2.40E+02 -	2.04E+02	2.93E+02 =	2.61E+02
	CeC17	(6.72E+01)	(9.33E+01)	(1.18E+02)	(1.07E+02)	(6.48E+01)	(8.12E+01)	(1.10E+02)	(1.04E+02)
	F18	5.06E+01 -	2.80E+01	3.26E+01 -	2.60E+01	2.53E+01 =	2.46E+01	2.46E+01 -	2.24E+01
		(1.72E+01)	(3.87E+00)	(7.70E+00)	(2.90E+00)	(2.70E+00)	(2.15E+00)	(2.42E+00)	(1.14E+00)
	F19 cec17	3.50E+01 -	1.71E+01	2.08E+01 -	1.70E+01	1.62E+01 =	1.56E+01	1.42E+01 -	1.17E+01
		(1.39E+01)	(3.01E+00)	(3.32E+00)	(3.00E+00)	(3.11E+00)	(2.97E+00)	(2.73E+00)	(2.65E+00)
	F20	1.56E+02 =	1.72E+02	2.60E+02 =	2.80E+02	1.35E+02 -	1.07E+02	1.17E+02 =	1.14E+02
		(4.95E+01)	(6.37E+01)	(1.20E+02)	(1.16E+02)	(5.03E+01)	(2.47E+01)	(6.45E+01)	(6.57E+01)
	F21	2.16E+02 -	2.14E+02	2.20E+02 -	2.18E+02	2.30E+02 -	2.20E+02	2.17E+02 -	2.14E+02
		(2.26E+00)	(2.74E+00)	(5.20E+00)	(4.64E+00)	(6.27E+00)	(6.07E+00)	(2.73E+00)	(3.27E+00)
	F22	2.84E+03 =	3.33E+03	2.82E+03 =	2.78E+03	1.54E+03 =	2.10E+03	1.07E+03 =	1.63E+03
		(1.53E+03)	(8.42E+02)	(2.11E+03)	(2.16E+03)	(1.62E+03)	(1.46E+03)	(1.61E+03)	(1.79E+03)
	F23	4.33E+02 -	4.30E+02	4.42E+02 -	4.37E+02	4.43E+02 -	4.35E+02	4.30E+02 -	4.26E+02
	E214	(4.04E+00) 5.12E+02 -	(4.60E+00) 5.11E+02	(8.43E+00) 5.12E+02 =	( <b>7.54E+00</b> ) 5.11E+02	(6.60E+00) 5.13E+02 -	(7.00E+00) 5.08E+02	(6.16E+00) 5.08E+02 =	( <b>6.54E+00</b> ) 5.07E+02
	F24	(3.01E+00)		5.12E+02 = (4.82E+00)	(3.86E+00)	5.13E+02 - (5.58E+00)		5.08E+02 = (4.54E+00)	
_	F25	4.82E+02 -	(2.81E+00) 4.81E+02	4.82E+00)	4.81E+02	4.80E+00	( <b>4.57E+00</b> ) 4.81E+02	4.81E+02 -	(3.77E+00) <b>4.81E+02</b>
Composition Functions	cec17	4.82E+02 - (4.55E+00)	4.81E+02 (3.57E+00)	4.82E+02 - (6.18E+00)	4.81E+02 (2.33E+00)	4.80E+02 = (1.44E-02)	4.81E+02 (3.52E+00)	4.81E+02 - (2.32E+00)	4.81E+02 (3.15E+00)
nctic	F26	1.21E+03 -	1.17E+03	1.21E+03 =	1.19E+03	1.27E+03 -	1.18E+03	(2.32E+00) 1.13E+03 =	1.12E+03
Com	cec17	(4.31E+01)	(3.93E+01)	(6.22E+01)	(5.77E+01)	(7.63E+01)	(1.08E+02)	(4.90E+03) = (4.90E+01)	(5.07E+01)
	F27	5.43E+01	5.38E+01)	5.36E+02 -	5.31E+02	5.33E+01	5.28E+02	5.14E+02 =	5.10E+02
	cec17	(2.15E+01)	(1.56E+01)	(1.67E+01)	(1.78E+01)	(1.56E+01)	(1.16E+01)	(1.01E+01)	(1.37E+01)
	F28	4.64E+02 -	4.60E+02	4.73E+02 -	4.64E+02	4.60E+01	4.60E+02	4.59E+02 =	4.59E+02
	cec17	(1.51E+01)	(5.68E+00)	(2.25E+01)	(1.55E+01)	(6.84E+00)	(6.84E+00)	(3.03E-13)	(3.32E-13)
	F29	3.53E+02 =	3.57E+02	3.62E+02 +	3.84E+02	3.49E+02 =	3.49E+02	3.65E+02 =	3.65E+02
	cec17	(1.08E+01)	(1.44E+01)	(1.91E+01)	(1.93E+01)	(9.11E+00)	(1.14E+01)	(1.52E+01)	(1.40E+01)
	F30 cec17	6.68E+05 =	6.51E+05	6.68E+05 =	6.38E+05	6.50E+05 =	6.72E+05	6.08E+05 =	6.04E+05
	cec17	(8.12E+04)	(8.03E+04)	(1.02E+05)	(5.48E+04)	(6.32E+04)	(8.23E+04)	(3.03E+04)	(2.57E+04)
	/=/+	15/15/0	(======================================	14/14/2	(2.1.22.0.)	13/17/0	(=====:0:)	12/18/0	(=.0.3.0.)
								, 10, 0	

Table S13 Performance comparisons of four SCSS-based top algorithms with the baselines on 100-D cec2017 benchmark set

							SCSS-		
		I GILLDE	SCSS-	IIMOE 4 II	SCSS-	L-SHADE_		.00	SCSS-
		L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	EpSin	L-SHADE_	jSO	jSO
						_	EpSin		-
Unimodal Functions	F1	0.00E+00 =	0.00E+00						
	cec17	(0.00E+00)							
	F2	3.16E-04 +	3.41E-04	9.66E-05 =	9.31E-05	1.58E-04 -	1.38E-04	3.10E-04 +	3.66E-04
	cec17	(5.07E-05)	(5.81E-05)	(1.75E-05)	(1.35E-05)	(4.22E-05)	(4.25E-05)	(5.45E-05)	(6.77E-05)
	F2		1.07E-03	2.84E-06 +	6.60E-06	5.35E-09 -	2.20E-10	2.71E-06 +	1.52E-04
	F3	5.47E-06 +							
		(6.19E-06)	(1.73E-03)	(3.01E-06)	(4.57E-06)	(1.11E-08)	(1.57E-09)	(2.72E-06)	(1.69E-04)
Simple Multimodal Functions	_F4	2.01E+02 -	2.00E+02	1.87E+02 =	1.93E+02	2.04E+02 =	2.05E+02	1.94E+02 =	1.96E+02
	cec17	(7.69E+00)	(8.00E+00)	(4.03E+01)	(3.12E+01)	(9.79E+00)	(1.11E+01)	(2.35E+01)	(1.09E+01)
	F5	3.78E+01 -	2.69E+01	3.53E+01 -	2.79E+01	6.06E+01 -	4.15E+01	4.29E+01 -	2.84E+01
	cec17	(7.64E+00)	(6.48E+00)	(7.62E+00)	(7.14E+00)	(7.15E+00)	(6.26E+00)	(7.17E+00)	(5.43E+00)
	F6	1.37E-03 -	5.37E-04	8.12E-03 -	2.61E-03	3.51E-05 -	9.41E-06	1.61E-04 -	1.68E-05
	cec17	(8.75E-04)	(4.36E-04)	(5.54E-03)	(2.27E-03)	(1.38E-05)	(5.14E-06)	(4.30E-04)	(1.18E-05)
	F7	1.51E+02 -	1.38E+02	1.41E+02 -	1.36E+02	1.67E+02 -	1.45E+02	1.41E+02 -	1.27E+02
	cec17								
		(4.80E+00)	(4.48E+00)	(9.72E+00)	(9.40E+00)	(9.13E+00)	(5.70E+00)	(6.94E+00)	(4.53E+00)
	F8	3.92E+01 -	2.75E+01	3.60E+01 -	2.78E+01	5.73E+01 -	3.87E+01	4.31E+01 -	2.99E+01
	cec17	(5.48E+00)	(5.11E+00)	(7.09E+00)	(7.23E+00)	(9.38E+00)	(6.26E+00)	(5.58E+00)	(5.62E+00)
	F9	1.56E-01 -	1.42E-02	5.35E-01 -	9.17E-02	0.00E+00 =	0.00E+00	4.60E-02 -	0.00E+00
	F10	(2.22E-01)	(6.64E-02)	(5.13E-01)	(1.35E-01)	(0.00E+00)	(0.00E+00)	(1.11E-01)	(0.00E+00)
		1.14E+04 -	1.05E+04	1.19E+04 =	1.13E+04	1.05E+04 -	9.57E+03	9.71E+03 -	9.23E+03
	cec17	(6.11E+02)	(4.67E+02)	(1.25E+03)	(1.59E+03)	(5.15E+02)	(4.63E+02)	(6.59E+02)	(6.08E+02)
	F11	3.86E+02 -	1.54E+02	4.27E+02 -	1.58E+02	4.16E+01 =	4.26E+01	1.06E+02 -	7.21E+01
Hybrid Functions	FII cec17								
		(9.53E+01)	(5.30E+01)	(1.03E+02)	(4.12E+01)	(2.39E+01)	(2.91E+01)	(3.82E+01)	(3.10E+01)
	F12	2.37E+04 =	2.25E+04	4.52E+03 =	4.86E+03	5.28E+03 -	4.62E+03	2.05E+04 -	1.41E+04
	cec17	(1.05E+04)	(8.53E+03)	(8.56E+02)	(1.42E+03)	(1.39E+03)	(7.33E+02)	(1.06E+04)	(8.02E+03)
	F13	1.36E+03 -	2.45E+02	3.60E+02 -	1.64E+02	7.92E+01 =	8.36E+01	1.60E+02 -	1.12E+02
	cec17	(8.06E+02)	(7.34E+01)	(1.47E+02)	(4.77E+01)	(2.87E+01)	(3.44E+01)	(4.19E+01)	(2.79E+01)
	F14	2.55E+02 -	1.01E+02	2.35E+02 -	7.25E+01	5.13E+01 =	4.86E+01	6.28E+01 -	3.95E+01
	F14	(3.25E+01)	(2.01E+01)	(3.25E+01)	(1.56E+01)	(8.93E+00)	(6.46E+00)	(1.18E+01)	(4.08E+00)
	F15	2.50E+02 =	2.59E+02	2.67E+02 -	2.21E+02	7.28E+01 =	7.73E+01	1.64E+02 -	9.73E+01
	cec17	(4.87E+01)	(4.34E+01)	(5.38E+01)	(4.82E+01)	(3.14E+01)	(2.83E+01)	(4.20E+01)	(3.56E+01)
	F16	1.79E+03 -	1.55E+03	1.67E+03 =	1.64E+03	1.55E+03 -	1.31E+03	1.84E+03 =	1.74E+03
		(2.58E+02)	(2.39E+02)	(4.55E+02)	(4.27E+02)	(2.51E+02)	(2.61E+02)	(3.15E+02)	(2.99E+02)
	F17	1.20E+03 -	1.04E+03	1.36E+03 =	1.28E+03	1.16E+03 -	9.23E+02	1.26E+03 -	1.13E+03
	CeC17	(2.21E+02)	(2.00E+02)	(3.13E+02)	(2.62E+02)	(1.72E+02)	(1.76E+02)	(2.63E+02)	(2.20E+02)
	F18	2.15E+02 =	2.11E+02	2.35E+02 =	2.16E+02	7.92E+01 =	7.59E+01	1.76E+02 -	1.11E+02
	cec17	(4.60E+01)	(5.33E+01)	(6.29E+01)	(4.72E+01)	(2.19E+01)	(1.83E+01)	(4.05E+01)	(3.07E+01)
	F19	1.77E+02 -	1.63E+02	1.76E+02 -	1.52E+02	5.22E+01 =	5.09E+01	1.07E+02 -	5.22E+01
	cec17	(2.31E+01)	(2.46E+01)	(2.65E+01)	(2.50E+01)	(6.65E+00)	(5.78E+00)	(2.14E+01)	(5.72E+00)
	F20	1.57E+03 -	1.50E+03	1.93E+03 =	1.89E+03	1.44E+03 -	1.23E+03	1.38E+03 =	1.29E+03
	cec17	(2.42E+02)	(1.79E+02)	(3.61E+02)	(3.11E+02)	(1.96E+02)	(1.89E+02)	(2.44E+02)	(2.12E+02)
	E0.1		2.59E+02)						
Composition Functions	F21	2.69E+02 -		2.56E+02 =	2.55E+02	2.83E+02 -	2.64E+02	2.64E+02 -	2.49E+02
		(5.81E+00)	(4.38E+00)	(6.84E+00)	(6.49E+00)	(1.41E+01)	(5.61E+00)	(6.56E+00)	(5.18E+00)
	F22	1.19E+04 -	1.12E+04	1.27E+04 =	1.25E+04	1.08E+04 -	9.54E+03	1.07E+04 -	1.01E+04
		(5.24E+02)	(6.26E+02)	(1.81E+03)	(1.61E+03)	(5.90E+02)	(5.05E+02)	(6.27E+02)	(6.70E+02)
	F23	5.68E+02 =	5.67E+02	5.70E+02 =	5.70E+02	5.98E+02 -	5.92E+02	5.69E+02 =	5.67E+02
	F23	(7.98E+00)	(7.15E+00)	(9.40E+00)	(1.34E+01)	(7.21E+00)	(6.32E+00)	(1.37E+01)	(1.14E+01)
	F24	9.19E+02 -	9.12E+02	9.22E+02 -	9.16E+02	9.37E+02 -	9.08E+02	9.01E+02 -	8.96E+02
	cec17	(8.98E+00)	(8.61E+00)	(8.89E+00)	(1.16E+01)	(2.15E+01)	(8.10E+00)	(1.04E+01)	(7.84E+00)
	F25	7.46E+02 =	7.44E+02	7.49E+02 -	7.29E+02	6.93E+02 =	6.89E+02	7.18E+02 =	7.13E+02
	cec17	(3.47E+01)	(3.50E+01)	(2.76E+01)	(3.77E+01)	(4.53E+01)	(4.55E+01)	(3.87E+01)	(4.26E+01)
							_ `		
	F26	3.41E+03 -	3.31E+03	3.42E+03 -	3.32E+03	3.24E+03 -	3.06E+03	3.20E+03 -	3.12E+03
		(1.02E+02)	(9.92E+01)	(9.37E+01)	(9.49E+01)	(2.51E+02)	(9.06E+01)	(8.46E+01)	(9.03E+01)
	F27	6.58E+02 -	6.47E+02	6.41E+02 -	6.32E+02	5.92E+02 =	5.90E+02	5.86E+02 -	5.77E+02
	cec17	(1.38E+01)	(1.57E+01)	(1.79E+01)	(1.61E+01)	(1.37E+01)	(1.81E+01)	(2.05E+01)	(2.28E+01)
	F28 cec17	5.28E+02 =	5.34E+02	5.18E+02 +	5.28E+02	5.15E+02 =	5.22E+02	5.29E+02 =	5.25E+02
	cec17	(2.19E+01)	(2.30E+01)	(3.80E+01)	(3.07E+01)	(1.95E+01)	(2.30E+01)	(2.78E+01)	(2.86E+01)
	F29	1.53E+03 =	1.48E+03	1.40E+03 =	1.48E+03	1.23E+03 =	1.21E+03	1.33E+03 -	1.25E+03
	cec17	(1.92E+02)	(1.83E+02)	(2.46E+02)	(2.33E+02)	(1.62E+02)	(1.42E+02)	(2.02E+02)	(1.82E+02)
	F30	2.43E+03 -	2.34E+03	2.36E+03 =	2.36E+03	2.34E+03 =	2.37E+03	2.31E+03 =	2.27E+03
	cec17						(1.92E+02)		
	1 1	(1.45E+02)	(1.32E+02)	(1.26E+02)	(1.53E+02)	(1.35E+02)	(1.92E+U2)	(1.23E+02)	(1.06E+02)
	/=/+	20/8/2		14/14/2		16/14/0		20/8/2	1