Udaan 2025

Maths

Polynomials

DHA - 01

Q 1 Which of the following is a polynomial? (a) $x^2 + \frac{1}{x}$ (b) $2x^2 - 3\sqrt{x} + 1$ (c) $x^2 + x^{-2} + 7$

(B)
$$2x^2 - 3\sqrt{x} + 1$$

(C)
$$x^2 + x^{-2} + 7$$

(D)
$$3x^2 - 3x + 1$$

Q 2 A polynomial of degree 2 is called

- (A) linear polynomial
- (B) quadratic polynomial
- (C) cubic polynomial
- (D) biquadratic polynomia

Q 3 The maximum number of zeroes of a cubic polynomial are

- (A) 0
- **(**B) 1
- (C) 2
- **(**D) 3

Q 4 From the graph, the degree of the polynomial is

- (A) 0
- (B) 1

(D)3

- (C) 2
- **Q** 5 In figure, the graph of a polynomial p(x) is shown.

- (A) 1
- (B) 2
- (C) 3
- (D) 4

Q 6 Which of the following is not the graph of a quadratic

(B)

(C)

(D)

Q 7 The graph of the polynomial f(x) = 2x - 5 is a straight line which intersects the x-axis at exactly one point namely?

- (A) $\left(\frac{-5}{2}, 0\right)$ (B) $\left(0, \frac{-5}{2}\right)$ (C) $\left(\frac{5}{2}, 0\right)$ (D) $\left(\frac{5}{2}, \frac{-5}{2}\right)$

Q 8 If one of the zeroes of the quadratic polynomial $(k-1)x^2+kx+1$ is -3 , then the value of ${f k}$ is

Q 9 Find the value of $ax^2 + bx + c$ at $x = -\frac{b}{a}$.

- (A) a
- (B) $b^2 4ac$
- (C) c
- (D) b

Answer Key

ŲI	ע
Ω 2	В

 $\mathbf{Q3}$ **Q**4 В

Q5

Q6 D

Q7 C

В С **Q8**

Q9

Hints & Solutions

Q 1 Text Solution:

$$3x^2 - 3x + 1$$

Video Solution:

Q 2 Text Solution:

quadratic polynomial

Video Solution:

Q 3 Text Solution:

General form of a cubic polynomial=

$$ax^3 + bx^2 + cx + d$$

Since, the degree of the polynomial is 3,

The cubic polynomial gives a maximum of 3 zeroes.

Video Solution:

Q 4 Text Solution:

Since graph cuts x-axis at one point, so, it has one zero.

Video Solution:

Q 5 Text Solution:

Since the graph cuts x-axis at only one point, the given graph have only one zero.

Video Solution:

Q 6 Text Solution:

Since, it cuts the x-axis at 3 points.

Video Solution:

Q 7 Text Solution:

$$2x - 5 = 0$$
$$x = \frac{5}{2} = \left(\frac{5}{2}, 0\right)$$

Video Solution:

Text Solution:

Put x = -3 in polynomial in the given polynomial

$$p(-3) = 0$$

$$\Rightarrow (k-1)(-3)^{2} + k(-3) + 1 = 0$$

$$\Rightarrow 9k - 9 - 3k + 1 = 0$$

$$\Rightarrow 6k - 8 = 0$$

$$\Rightarrow 6k = 8$$

$$\Rightarrow k = \frac{8}{6} = \frac{4}{3}$$

Video Solution:

Q 9 Text Solution:

Put $x = \frac{-b}{a}$ in polynomial

$$egin{aligned} &\Rightarrow aig(rac{-b}{a}ig)^2 + big(rac{-b}{a}ig) + c \ &\Rightarrow aig(rac{b^2}{a^2}ig) - rac{b^2}{a} + c \ &\Rightarrow rac{b^2}{a} - rac{b^2}{a} + c = c \end{aligned}$$

Video Solution:

