FT Properties

Baba C. Vemuri

Professor, Department of Computer & Information Science and Engineering University of Florida

ıfl-logo

Fourier Transform Properties

1 Image Processing (Chapter 6 from BKP Horn)

Some Useful Fourier Transforms

• If f(x, y) and F(u, v) are a transform pair i.e., F(u, v) is the FT of f(x, y) and f(x, y) is the IFT of F(u, v), denoted by, $f(x, y) \longleftrightarrow F(u, v)$, what are the FTs of the $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

$$\mathcal{F}\left(\frac{\partial f}{\partial x}\right) = \iint_{-\infty}^{\infty} \frac{\partial f}{\partial x} \exp\{-j2\pi(ux + vy)\} dxdy$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \frac{\partial f}{\partial x} \exp\{-j2\pi ux\} dx\right) \exp\{-j2\pi vy\} dy$$
(2)

Applying integration-by-parts for the inner integral, we get,

$$\{f(x,y)\exp\{-j2\pi ux\}\}_{-\infty}^{\infty}+(j2\pi u)\int_{-\infty}^{\infty}f(x,y)\exp\{-j2\pi ux\}\frac{dx}{utl-logo}$$
(3)

 Unless f(x, y) → 0 as x → +(-)∞, can not proceed further. If its is true (otherwise use convergence factors as in the book), we get,

$$\int_{-\infty}^{\infty} (j2\pi u) \int_{-\infty}^{\infty} \exp\{-j2\pi(ux+vy)\} dxdy = (j2\pi u)F(u,v)$$
(4)

Applying similar steps to $\frac{\partial f}{\partial y}$ we get,

$$\mathcal{F}\{\frac{\partial f}{\partial y}\}=(j2\pi v)F(u,v).$$

• Laplacian: $\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$. Its Fourier transform is,

$$\mathcal{F}\{\nabla^2 f\} = -(u^2 + v^2)F(u, v). \tag{5}$$

 Note: Taking derivatives in the spatial domain corresponds to multiplication in the spatial-frequency domain. Why?

Useful Properties of FT

- Linearity: $\mathcal{F}\{af(x,y)+bg(x,y)\}=aF(u,v)+bG(u,v)$.
- Similarity Theorem: $\mathcal{F}\{f(ax,by)\} = \frac{1}{|ab|}F(u/a,v/b)$.
- Shift Theorem: $\mathcal{F}\{f(x-a,y-b)\} = \exp\{-j2\pi(au+bv)\}F(u,v).$
- Convolution Theorem: $\mathcal{F}\{f(x,y)\otimes g(x,y)\}=F(u,v)G(u,v).$

Useful Properties (Contd.)

- Rotation
 - **Theorem:** $\mathcal{F}\{f(x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta)\} = F(u\cos\theta v\sin\theta, u\sin\theta + v\cos\theta)$
- Shear Theoreom: $\mathcal{F}\{f(x+by,y)\}=F(u,v-bu)$
- Affine Theorem: Let g(x, y) = f(ax + by + c, dx + ey + f) then,

$$G(u, v) = \frac{1}{|\Delta|} \exp\{\frac{j2\pi}{\Delta} \left((ec - bf)u + (af - cd)v \right) \}$$
$$\cdot F\left(\frac{eu - dv}{\Delta}, \frac{av - bu}{\Delta}\right)$$

Where,
$$\Delta = det \begin{pmatrix} a & b \\ d & e \end{pmatrix} = (ae - bd)$$
.

Important Functions & their FTs

Figure: Some important functions (cf. Goodman)

Table of FTs

TABLE 2.1

Transform pairs for some functions separable in rectangular coordinates.

Function	Transform
$\exp[-\pi(a^2x^2+b^2y^2)]$	$\frac{1}{ ab } \exp \left[-\pi \left(\frac{f_X^2}{a^2} + \frac{f_Y^2}{b^2} \right) \right]$
rect(ax) rect(by)	$\frac{1}{ ab }$ sinc (f_X/a) sinc (f_Y/b)
$\Lambda(ax)\Lambda(by)$	$\frac{1}{ ab } \operatorname{sinc}^2(f_X/a) \operatorname{sinc}^2(f_Y/b)$
$\delta(ax, by)$	$\frac{1}{ ab }$
$\exp[j\pi(ax+by)]$	$\delta(f_X-a/2,f_Y-b/2)$
sgn(ax) sgn(by)	$\frac{ab}{ ab } \frac{1}{j\pi f_X} \frac{1}{j\pi f_Y}$
comb(ax) comb(by)	$\frac{1}{ ab }\operatorname{comb}(f_X/a)\operatorname{comb}(f_Y/b)$
$\exp[j\pi(a^2x^2+b^2y^2)]$	$\frac{j}{ ab } \exp \left[-j\pi \left(\frac{f_X^2}{a^2} + \frac{f_Y^2}{b^2} \right) \right]$
$\exp[-(a x +b y)]$	$\frac{1}{ ab } \frac{2}{1 + (2\pi f_X/a)^2} \frac{2}{1 + (2\pi f_Y/b)^2}$