4. 9)
$$f(\lambda) \ge 0 =$$
 $|a|^2 + \lambda^2 |b|^2 - 2\lambda(a \cdot b) \ge 0$
minima occurs at $\frac{\partial f(\lambda)}{\partial \lambda} = 0$

$$\frac{1}{160} = \frac{1}{160} = \frac{1}$$

Treating I and I as independent voriables:

$$\frac{\partial f(\lambda)}{\partial \lambda} = \frac{\partial f(\lambda)}{\partial \lambda^{\dagger}} = 0$$

$$>>$$
 $|\langle a|b\rangle|^2 \leq \langle a|a\rangle \langle b|b\rangle$

- c) 10+b1 = 101+1b1
 - ≥ la+b12 ≤ la12+ lb12 + 21a11b!
 - $\Rightarrow |a|^{2} + |b|^{2} + |a| +$
 - 2) 2/<9/b>/ \le 2/9/16/
 - =) curiting in seriese order, we get meanality of triangle