Hasibul Islam

Physics207-Lab#2

10/06/2016

**Force Tables** 

Introduction

The purpose of this lab is to understand and gain knowledge of

vectors and to learn about how to add vectors. In the lab, we're using the

table of force able to accomplish. This enables us to establish equilibrium

between the objects and by using mathematics and vector addition we

can manipulate their equilibrium. Graphical and analytical methods will

be utilized in the lab to add vectors.

**Experiment 1: Sensitivity of the instrument** 

Sensitivity of the instrument: 10 grams

**Experiment 2: Symmetric Arrangement** 

Step up two pans and mass systems based on values.

1. Mass 1: 25 grams

Direction 1: 30 degree

2. Mass 2: 25 grams

Direction 2: 330 degree

We Choose Direction: 180 degree

Experimentally balanced of the system is 140 grams.

Also we find experimentally balanced of the system is 131 grams.

# Experiment. 3: Find a Function

Formula: (p1+p2)cosb=p3

| Angle    | Mass of P3 |  |
|----------|------------|--|
| (Degree) | System     |  |
| 5        | 190g       |  |
| 10       | 190g       |  |
| 15       | 180g       |  |
| 20       | 170g       |  |
| 25       | 170g       |  |
| 30       | 160g       |  |
| 35       | 150g       |  |
| 40       | 150g       |  |
| 45       | 150g       |  |
| 50       | 130g       |  |
| 55       | 120g       |  |
| 60       | 110g       |  |
| 65       | 90g        |  |
| 70       | 70g        |  |
| 75       | 50g        |  |
| 80       | Not to Do? |  |
|          |            |  |

## **Vector Component**

Angle Ax=

Angle Ay=

| Experiment 4: Return to the Force Table |
|-----------------------------------------|
| Vector A                                |
| Vector B                                |
| Vector C                                |

Vector D

#### Lab Question

#### Question 1

What factors contribute to the sensitivity?

- The major factors that contribute to the sensitivity are tension, weight, human error in calibration and the angle of the pan.
- Experiment#1

#### Question 2

Report the difference between what you've experimentally measured and what the simulation predicted.

- The experiment of this lab to measured sensitivity, which is measure we got 10grams.
- Experimentally balanced of the system is 140 grams.
- Also we find experimentally balanced of the system is 131 grams.

Are they within the expected sensitivity of the instrument?

• Agree with the sensitivity of the instrument

### Question 3

On one graph plot the experimental data from your table along with the analytical prediction of the function you found. Do they follow the same trend?

| Angle (degree)       | cos(Angle)                             | Mass of P3 system      |
|----------------------|----------------------------------------|------------------------|
| 5                    | 0.996195                               | 190                    |
| 10                   | 0.984808                               | 190                    |
| 15                   | 0.965926                               | 180                    |
| 20                   | 0.939693                               | 170                    |
| 25                   | 0.906308                               | 170                    |
| 30                   | 0.866025                               | 160                    |
| 35                   | 0.819152                               | 150                    |
| 40                   | 0.766044                               | 150                    |
| 45                   | 0.707107                               | 150                    |
| 50                   | 0.642788                               | 130                    |
| 55                   | 0.573576                               | 120                    |
| 60                   | 0.5                                    | 110                    |
| 65                   | 0.422618                               | 90                     |
| 70                   | 0.34202                                | 70                     |
| 75                   | 0.258819                               | 50                     |
|                      |                                        |                        |
| 55<br>60<br>65<br>70 | 0.573576<br>0.5<br>0.422618<br>0.34202 | 120<br>110<br>90<br>70 |

# Mass of P3 system vs cos(Angle)



### Question 4

Give the details of this calculation and compare your analytical results with the experimental results. Draw a vector diagram that shows the table arrangement.

The details of this calculation, first we did multiplying the mass of g=9.8 m.s<sup>2</sup> with vector to find the vector.

#### Conclusion

Throughout this lab showing how to knowledge of adding vector and then we were able to correlate this equilibrium condition with vector addition. But the relation with mathematical procedures and their relations are applied to maintain equilibrium. Experiment of the lab is harder than I thought but to calculate all to experiment is become more easier and excel make easier to see the accurate slope.