11.2 单相整流及电容滤波电路

- 11.2.1 单相桥式整流电路 设
- 1. 电路组成

(a)
$$u_2 = \sqrt{2}U_2 \sin \omega t$$

(b) 二极管D₁~D₄性能理想

1. 工作原理

a. 当u₂>0时

电流流动方向

上页

下页

b. 当u₂<0时

电流流动方向

上页

下页

1.如果D₁开路或者短路,输出电压如何变化?

D₁开路:半波整流,输出 电压平均值减小;

D₁短路:短接变压器二次侧, 烧毁二极管D2和变压器;

2.如果有二极管有一个接 反,后果如何?

会出现两个正偏二极管并接的情况,短接变压器二次侧,烧毁二极管和变压器,输出电压为零。

3. 主要性能指标

(1)整流输出直流电压

因为输出电压

$$u_0 = \frac{2\sqrt{2}}{\pi}U_2(1 - \frac{2}{3}\cos 2\omega t - \frac{2}{15}\cos 4\omega t - \frac{2}{35}\cos 6\omega t - \cdots)$$

输出直流电压

$$U_{0} = \frac{1}{\pi} \int_{0}^{\pi} u_{2} d\omega t = \frac{2\sqrt{2}}{\pi} U_{2} = 0.9U_{2}$$

(2)输出电压纹波因数γ

定义

$$\gamma = \frac{U_{\text{or}}}{U_{\text{O}}}$$

式中

 $U_{
m or}$ —输出电压中各次谐波电压有效值的总和

U₀——输出电压的平均值

对于全波整流电路

由于

$$u_0 = \frac{2\sqrt{2}}{\pi}U_2(1 - \frac{2}{3}\cos 2\omega t - \frac{2}{15}\cos 4\omega t - \frac{2}{35}\cos 6\omega t - \cdots)$$

$$U_{\text{or}} = \sqrt{U_{\text{o}2}^2 + U_{\text{o}4}^2 + U_{\text{o}6}^2 + \cdots}$$
$$= \sqrt{U_2^2 - U_0^2}$$

$$\dot{\nabla} \gamma = \frac{U_{\text{or}}}{U_{\text{O}}} = \frac{\sqrt{U_2^2 - U_{\text{O}}^2}}{U_{\text{O}}^2} = \sqrt{\left(\frac{U_2}{U_{\text{O}}}\right)^2 - 1} = 0.483$$

(3)整流二极管的正向平均电流

$$I_{\rm D} = \frac{I_{\rm O}}{2} = \frac{U_{\rm O}}{2R_{\rm L}} = \frac{0.9U_{\rm 2}}{2R_{\rm L}} = \frac{0.45U_{\rm 2}}{R_{\rm L}}$$

(4)整流二极管的最高反向电压

$$U_{\rm RM} = \sqrt{2}U_2$$

11.2.2 电容滤波电路

1. 电路组成

上页

2. 工作原理

输入电压

$$(1)$$
 当 $C=0$ 时 无滤波

桥式整流电路

输出电压

 $U_0 \approx 0.9U_2$

输入电压

输出电压波形

上页

下页

$(2) \quad$ **当** $C \neq 0 \ R_{\rm L} = \infty$ 时

由于电容器的充电时间常数

$$\tau_1 = r_{\rm o}C = (r_{\rm T} + 2r_{\rm D})C \approx 0$$

输入电压

输出电压波形

(3) 当 $C \neq 0$ 、 $R_{\rm L} \neq \infty$ 时

电容器的充电时间常数

$$\tau_1 = (r_0 // R_L)C \approx r_0 C \approx 0$$

$$u_{\rm O} = u_{\rm C} \approx u_2$$

输入电压

上页

下页

输入电压

当C充电到最高点时, 二极管D₁、D₃将截止,

C将通过RL开始放电。

上页 下页

电容器的放电时间常数

$$\tau_2 = R_{\rm L}C$$

由于τ2较大,放电比较缓慢

当 $|u_2|>u_{\rm C}$ 时

二极管D₂、D₄导通

C又开始充电,直到最大值。

输出电压

 3π

0

输入电压

上页

下页

3. 电容滤波电路的外特性及主要参数估计

(1)电容滤波电路的外特性

$$u_{\rm O} = f(i_{\rm O})$$

上页

下页

外特性特点:

b. *i*_O越大, *u*_{O(AV)}越小。

结论: 外特性差

 $u_{0} \uparrow$ $0.9U_{2}$ CI

电容滤波电路适用于负载电流比较小或基本不变的场合。

(2) 输出电压平均值

若
$$\tau = CR_L \ge (3 \sim 5) \frac{T}{2}$$

$$U_{O(AV)} = (1.1 \sim 1.4)U_2$$

一段取 $U_{\mathrm{O(AV)}} \approx 1.2U_2$

(3) 输出电流平均值

$$I_{\mathrm{O(AV)}} = \frac{U_{\mathrm{O(AV)}}}{R_{\mathrm{L}}} \approx 1.2 \frac{U_{2}}{R_{\mathrm{L}}}$$

(4) 整流二极管的平均电流

考虑二极管内阻时 输出电压波形

二极管电流的特点:

- (a) 比无滤波电容时的平均电流大。
- (b) 二极管导通时,有冲击电流。

(c) 冲击电流与二极管的导通 $\mathbf{h}\theta(\theta < \pi)$ 有关。

放电时间常数越大, θ越 小,冲击电流越大。

(5)整流二极管的最高反向电压

$$U_{\rm RM} = \sqrt{2}U_2$$

2.π型滤波电路

RC— π 型滤波电路

LC— π 型滤波电路

上页 下页 后退

例1. 下图D为理想二极管,C足够大,求以下三种情况下的直流平均电压 U_0 (注: U_2 的有效值为10V)

- (1) A、B间接R_L;
 - (2) A、B间接C;
- (3) A、B间接 R_L 和C并联。

解: (1)
$$U_0 = 0.9 \ U_2 = 9V$$

(2)
$$U_{\rm O} = \sqrt{2}U_{\rm 2} = 14{\rm V}$$

(3)
$$U_0 = 1.2U_2 = 12V$$

例2下图电路中有否不妥之处?(U_2 有效值为30V) 电容 $C=100\mu F/30V$, $R_{\rm L}=50\Omega$ 。

解:有,一是滤波电容耐压应为

$$\sqrt{2}U_2 = 30\sqrt{2} \text{ V}$$

而此处只有 30V, 电容耐压 不够。

二是滤波电容容量太小,

$$RC = 50 \times 10^{-4} = 5 \times 10^{-3}$$

 $\frac{T}{2} = 0.01 \text{ s}$ $RC \prec (3 \sim 5) \frac{T}{2}$
 \therefore 滤波效果不佳。

