All You Need Is Relative Information

Shaowei Lin (stealth startup)

Math Machine Learning Seminar MPI MIS + UCLA 20210909

Static Systems

Maximum Likelihood

Truth q(x)dx

Data $D_n = \{X_1, ..., X_n\}$

Model p(x|w)dx

Prior $\varphi(w)dw$

Maximize generalized log-likelihood

$$\sum_{i=1}^{n} \log p(X_i|w) + a_n \log \varphi(w)$$

Maximum Likelihood

Minimize generalized log-likelihood ratio

$$R_n(w) = \sum_{i=1}^n \log \frac{q(X_i)}{p(X_i|w)} - a_n \log \varphi(w)$$

Maximum likelihood estimate

$$\widehat{w} = \min_{w \in W} R_n(w)$$

Estimated density

$$p^*(X) = p(X|\widehat{w})$$

Relative Information

(KL divergence, relative entropy)

$$K(w) := I_{q \parallel p(\cdot \mid w)}(X) = \int q(x) \log \frac{q(x)}{p(x \mid w)} dx$$

Log-likelihood ratio, normalized training error

$$K_n(w) = \frac{1}{n} \sum_{i=1}^n \log \frac{q(X_i)}{p(X_i|w)}$$

$$\mathbb{E}[K_n(w)] = K(w)$$

$$\frac{1}{n}R_n(w) = K_n(w) + \frac{a_n}{n}\log\varphi(w)$$

Generalization Error

Normalized test error

$$\frac{1}{n}\sum_{i=1}^{n}\log\frac{q(X_i^*)}{p^*(X_i^*)}$$

Generalization error of estimated density $p^*(x)$

$$I_{q \parallel p^*}(X) = \int q(x) \log \frac{q(x)}{p^*(x)} dx$$

Generalization error for maximum likelihood

$$R_g = I_{q \parallel p(\cdot | \widehat{w})}(X) = K(\widehat{w})$$

Geometry of Singular Models

Resolution of Singularities

Singularities of K(w)

Resolution of singularities $\rho: M \to W$

Locally (in each chart of ρ)

$$K \circ \rho (\mu) = \mu^{2k} := \mu_1^{2k_1} \mu_2^{2k_2} \cdots \mu_d^{2k_d}$$

Standard form of log-likelihood ratio (Watanabe)

$$K_n \circ \rho (\mu) = \mu^{2k} - \frac{1}{\sqrt{n}} \mu^k \xi(\mu) + o_p \left(\frac{1}{n}\right)$$

- Gaussian process $\xi(\mu)$ on manifold M
- Random variable $o_p\left(\frac{1}{n}\right)$ with $n \ o_p\left(\frac{1}{n}\right) \to 0$ in probability

Asymptotic Generalization Error

Apply resolution of singularities $\rho: \mu \mapsto w$ and new local coordinates $(t, v_1, \dots, v_{d-1}) \mapsto (\mu_1, \dots, \mu_d)$ where $t = \mu^{2k}$

Generalized log-likelihood ratio

$$\frac{1}{n}R_n(t,v) = t^2 - \frac{1}{\sqrt{n}}t\,\xi(0,v) + \frac{a_n}{n}\log\varphi(0,v) + o_p\left(\frac{1}{n}\right)$$

Asymptotic generalization error (for $a_n = 0$)

$$\mathbb{E}[R_g] = \frac{1}{4n} \mathbb{E}\left[\max_{\mu: K(\mu)=0} \max\{0, \xi(\mu)\}^2\right] + o\left(\frac{1}{n}\right)$$

Bayesian Inference

Posterior distribution

$$p(w|D_n) = \frac{p(w)p(D_n|w)}{p(D_n)} = \frac{p(w)\frac{p(D_n|w)}{q(D_n)}}{\frac{p(D_n)}{q(D_n)}} = \frac{1}{Z_n^0}\varphi(w)e^{-nK_n(w)}$$

Normalized marginal likelihood $Z_n^0 = \int \varphi(w)e^{-nK_n(w)}dw$

$$Z_n^0 = \int \varphi(w)e^{-nK_n(w)}dw$$

Estimated density
$$p^*(X) = \int p(X|w)p(w|D_n) dw$$

$$= \frac{\int p(X|w)p(D_n|w)p(w)dw}{\int p(D_n|w)p(w)dw}$$

$$= \frac{\int p(X,D_n|w)p(w)dw}{\int p(D_n|w)p(w)dw}$$

Bayesian Inference

Generalization error
$$B_g = \int q(x) \log \frac{q(x)}{p^*(x)} dx$$

$$= \int q(x) \log \frac{\int \frac{p(D_n|w)}{q(D_n)} p(w) dw}{\int \frac{p(x,D_n|w)}{q(x,D_n)} p(w) dw} dx$$

$$= \int q(x) \log \frac{Z_n^0}{Z_{n+1}^0} dx$$

$$= \log Z_n^0 - \mathbb{E}_{X_{n+1}} \left[\log Z_{n+1}^0 \right]$$

Expected generalization error

$$\mathbb{E}[B_g] = \mathbb{E}[\log Z_n^0] - \mathbb{E}[\log Z_{n+1}^0]$$

Zeta Function

Laplace integral
$$Z(n) = \int \varphi(w)e^{-nK(w)}dw$$

Zeta function
$$\zeta(z) = \int \varphi(w)K(w)^{-z}dw$$

Example. If $\varphi(w) = 1$, $K \circ \rho(\mu) = \mu^{2k}$, $\rho'(\mu) = \mu^h$, then locally in the chart $[0, 1]^d$

$$\zeta(z) = \int_{[0,1]^d} \mu^{-2kz+h} d\mu = \frac{1}{(-2k_1z+h_1+1)\cdots(-2k_dz+h_d+1)}$$

Poles are of the form $\lambda_i = \frac{h_i + 1}{2k_i}$ possibly with multiplicity

Real Log Canonical Threshold

Real log canonical threshold of K(w) consists of the smallest pole λ of $\zeta(z)$ and its multiplicity m

Convergence of stochastic complexity (Watanabe)

$$\log Z_n^0 = -\lambda \log n + (m-1) \log \log n + F^R(\xi) + o_p(1)$$

Generalization error of Bayesian inference

$$\mathbb{E}[B_g] = \mathbb{E}[\log Z_n^0] - \mathbb{E}[\log Z_{n+1}^0] \approx \frac{\lambda}{n} + o\left(\frac{1}{n}\right)$$

Conjecture. For singular models, $\mathbb{E}[R_g] \gg \mathbb{E}[B_g]$

Flatness of Minima

Volume of tubular neighborhood

$$V(n) = \int_{K(w) < \frac{1}{n}} \varphi(w) dw$$
$$\log V(n) = -\lambda \log n + (m-1) \log \log n + C + o(1)$$

Model selection criteria

- Smallest generalization error
- Smallest real log canonical threshold
- Largest K(w)-neighborhood
- Flatness/curvature not good enough

Variational Inference

Chain Rule

Conditional relative information

$$I_{q||p}(Z|X) \coloneqq \int q(x) \int q(z|x) \log \frac{q(z|x)}{p(z|x)} dz dx$$

Chain rule
$$I_{q||p}(Z,X) = I_{q||p}(Z|X) + I_{q||p}(X)$$

Corollary
$$I_{q||p}(Z,X) \ge I_{q||p}(X)$$

Variational Inference

Goal. Minimize $I_{q||p}(X)$ over p(X)

Strategy. Minimize upper bound $I_{q||p}(Z,X)$

- 1. Fix p and optimize over discriminative q(Z|X)
- 2. Fix q and optimize over generative p(Z,X), often approximately by sampling x from q(X)

Example. Expectation-maximization

- 1. Optimal q(Z|X) is p(Z|X)
- 2. E-step: $L(p|x) = \int q(z|x) \log p(z,x) dz$ M-step: Maximize L(p|x) over p(Z,X)

Maximum Likelihood

Goal. Minimize $I_{q||p}(X)$

- 1. True density q(x) is fixed so nothing to do
- 2. Find w that minimizes $K(w) = I_{q||p(\cdot|w)}(X)$

Maximum likelihood method

Sample $K_n(w)$, compute $\nabla K_n(w)$ and descend.

Stochastic approximation method

Compute $\nabla K(w)$, sample $[\nabla K]_n(w)$ and descend. Tends to explore w with large K(w)-neighborhoods.

Bayesian Inference

Goal. Minimize $I_{q||p}(w,X)$

- 1. Optimal q(w|X) is posterior p(w|X)
- 2. Find $\hat{p}(w)$ that minimizes

$$I_{q||p}(w,X) = \int q(w|x)q(x)\log\frac{q(w|x)q(x)}{\hat{p}(w)p(x|w)}dwdx$$

Sampling x from q(X), last step reduces to maximizing $\int q(w|x) \log \hat{p}(w) dw$

where the optimal $\hat{p}(w)$ is q(w|x) = p(w|x).

Hence, generative prior is updated with posterior.

Compute Perspective

• Distribution q(X) of sensor X is immutable. Distribution q(Z|X) of memory Z is mutable.

- Conditionals q(Z|X), p(X|Z) as (stochastic) *computations*. Discriminative q(Z|X) infers structures from observations. Generative p(X|Z) predicts observations from structures.
- $I_{q||p}(Z|X) = I_{q||p}(Z,X) I_{q||p}(X)$ Cost of structural learning completely determined by ability to invert generative p(X|Z) and compute p(Z|X).

Sheaf Perspective

Space Δ_Y of distributions over Y

Bundle $\pi: \Delta_{Z,X} \to \Delta_X$ by marginalization

Sections $p(Z|X): \Delta_X \to \Delta_{Z,X}$ by multiplication

Lift optimization of $I_{q||p}(X)$ over Δ_X to $I_{q||p}(Z,X)$ over $\Delta_{Z,X}$

Sheaf Perspective

$$I_{q||p}(Z,X)$$

$$I_{q||p}(Z|X)$$

$$I_{q||p}(X)$$

distance to point q(Z,X) from point p(Z,X) distance to point q(Z,X) from section p(Z|X) distance to point q(X) from point p(X)

$$I_{q||p}(Z,X)$$

$$= I_{q||p}(Z|X)$$

$$+ I_{q||p}(X)$$

Dynamic Systems

Stochastic Processes

 $X_{1...T}$ denotes the stochastic process $X_1, ..., X_T$

Truth $q(X_{1...T})$

Model $p(X_{1...T}|w)$

Minimize $I_{q||p}(X_{1...T})$

Mutable Processes

Discriminative Generative

$$q(Z_{1...T}, X_{1...T}) = q(Z_{1...T}|X_{1...T})q(X_{1...T})$$

$$p(Z_{1...T}, X_{1...T})$$

Constraints on mutable process $q(Z_{1...T}|X_{1...T})$ affect optimal value of upper bound $I_{q||p}(Z_{1...T},X_{1...T})$

Free Process

• No constraints on mutable process $q(Z_{1...T}|X_{1...T})$

$$q(Z_{1...T}|X_{1...T}) = q(Z_1| X_{1...T})$$

$$q(Z_2|Z_1, X_{1...T}) \cdots$$

$$q(Z_T|Z_{1...(T-1)}, X_{1...T})$$

• By chain rule, optimal value of $I_{q\parallel p}(Z_{1...T},X_{1...T})$ is

$$I_{\text{free}} = I_{q \parallel p}(X_{1...T})$$

Online Learning

• Given past observations $X_{1...k}$, mutable variable Z_{k+1} is independent of present and future observations $X_{(k+1)...T}$

$$q(Z_{k+1}|Z_{1...k}, X_{1...T}) = q(Z_{k+1}|Z_{1...k}, X_{1...k})$$

• Optimal value I_{online} of $I_{q\parallel p}(Z_{1...T},X_{1...T})$ under constraints; cost of online learning is $I_{\text{online}}-I_{\text{free}}$

Limited Memory

• Mutable variables Z_{k+1} are Markov, with access only to latest memory Z_k and observation X_k

$$q(Z_{k+1}|Z_{1...k}, X_{1...k}) = q(Z_{k+1}|Z_k, X_k)$$

• Optimal value I_{mem} of $I_{q\parallel p}(Z_{1...T},X_{1...T})$ under constraints; cost of limited memory is $I_{\text{mem}}-I_{\text{online}}$

Limited Sensing

• Each $X_k = (V_k, U_k)$ where mutable process observes only V_k and generative process fixes distribution of U_k

$$q(Z_{k+1}|Z_k, V_k, U_k) = q(Z_{k+1}|Z_k, V_k)$$

- Assume true process with hidden variables is Markov
- Optimal value I_{sense} of $I_{q||p}(Z_{1...T}, X_{1...T})$ under constraints; cost of limited sensing is $I_{\text{sense}} I_{\text{mem}}$

Stationarity

Assume q has unique stationary distribution $\bar{\pi}$ (which holds under mild ergodicity conditions)

Let \bar{q} be Markov process with initial distribution $\bar{\pi}$ but same transition probabilities as q.

Under above constraints on mutable process,

$$\lim_{T \to \infty} \frac{1}{T} I_{q \parallel p}(Z_{1...T}, X_{1...T})$$

$$= \lim_{n \to \infty} I_{q \parallel p}(Z_{n+1}, X_{n+1} | Z_n, X_n)$$

$$= I_{\bar{q} \parallel p}(Z_2, X_2 | Z_1, X_1).$$

Online Learning Algorithm

Assume parametric $q_{\lambda}(Z_{1...T}|X_{1...T})$ and $p_{\theta}(Z_{1...T},X_{1...T})$

Goal. Minimize $I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$ over λ, θ

Strategy. Variational inference, stochastic approximation

- 1. Sample X_{n+1} from true process $q(X_{n+1}|X_n)$
- 2. Sample Z_{n+1} from mutable process $q_{\lambda}(Z_{n+1}|Z_n,X_n)$
- 3. Sample $\nabla_{\theta} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$ using Z_{n+1}, X_{n+1}
- 4. Sample $\nabla_{\lambda} I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1)$ using Z_{n+1}, X_{n+1}
- 5. Update λ , θ and repeat until convergence

Gradients

(easy part, similar to training fully-observed model)

$$\begin{split} & \nabla_{\theta} I_{\overline{q} \parallel p}(Z_{2}, X_{2} | Z_{1}, X_{1}) \\ &= \mathbb{E}_{\overline{q}} \big[\nabla_{\theta} \log p_{\theta}(Z_{2}, X_{2} | Z_{1}, X_{1}) \big] \\ &= \lim_{T \to \infty} \mathbb{E}_{q(Z_{1...T}, X_{1...T})} \big[\nabla_{\theta} \log p_{\theta}(Z_{T}, X_{T} | Z_{T-1}, X_{T-1}) \big] \end{split}$$

(hard part, involves derivative under stationary distribution)

$$\nabla_{\lambda} I_{\overline{q} \parallel p}(Z_{2}, X_{2} | Z_{1}, X_{1})$$

$$= \lim_{T \to \infty} \mathbb{E}_{q(Z_{1...T}, X_{1...T})} \left[\left(\log \frac{q_{\lambda}(Z_{T}, X_{T} | Z_{T-1}, X_{T-1})}{p_{\theta}(Z_{T}, X_{T} | Z_{T-1}, X_{T-1})} \right) \times \sum_{t=1}^{T-1} \nabla_{\lambda} \log q_{\lambda}(Z_{t+1} | Z_{t}, X_{t}) \right]$$

Stochastic Approximation

$$X_{n+1} \sim q(X_{n+1}|X_n)$$

$$Z_{n+1} \sim q_{\lambda_n}(Z_{n+1}|Z_n, X_n)$$

$$\theta_{n+1} = \theta_n + \eta_{n+1} \nabla_{\theta} \log p_{\theta}(Z_{n+1}, X_{n+1}|Z_n, X_n)|_{\theta = \theta_n}$$

$$\alpha_{n+1} = \alpha_n + \nabla_{\lambda} \log q_{\lambda}(Z_{n+1}|Z_n, X_n)|_{\lambda = \lambda_n}$$

$$\gamma_{n+1} = \xi(X_{n+1}|X_n) + \log \frac{q_{\lambda_n}(Z_{n+1}|Z_n, X_n)}{p_{\theta_n}(Z_{n+1}, X_{n+1}|Z_n, X_n)}$$

$$\lambda_{n+1} = \lambda_n - \eta_{n+1}\alpha_{n+1}\gamma_{n+1}$$

Proof of Convergence

$$X_{n+1} \sim q(X_{n+1}|X_n)$$

$$Z_{n+1} \sim q_{\lambda_n}(Z_{n+1}|Z_n, X_n)$$

$$\theta_{n+1} = \theta_n + \eta_{n+1} \nabla_{\theta} \log p_{\theta}(Z_{n+1}, X_{n+1}|Z_n, X_n)|_{\theta = \theta_n}$$

$$\alpha_{n+1} = \rho \alpha_n + \nabla_{\lambda} \log q_{\lambda}(Z_{n+1}|Z_n, X_n)|_{\lambda = \lambda_n}$$

$$\gamma_{n+1} = \xi(X_{n+1}|X_n) + \log \frac{q_{\lambda_n}(Z_{n+1}|Z_n, X_n)}{p_{\theta_n}(Z_{n+1}, X_{n+1}|Z_n, X_n)}$$

$$\lambda_{n+1} = \lambda_n - \eta_{n+1}\alpha_{n+1}\gamma_{n+1}$$

- Convergence requires discount factor $0 < \rho < 1$
- Proof involves theory of biased stochastic approximation

Exploration and Exploitation

By assumption, Z_k independent of X_k given their past, so

$$I_{\bar{q}\parallel p}(Z_2, X_2|Z_1, X_1) = I_{\bar{q}\parallel p}(Z_2|Z_1, X_1) + I_{\bar{q}\parallel p}(X_2|Z_1, X_1)$$
 exploitation exploration

Exploitation. $I_{\bar{q}||p}(Z_2|Z_1,X_1)$ minimized when $q(Z_2|Z_1,X_1)$ equals/exploits $p(Z_2|Z_1,X_1)$ from the generative process.

Exploration. $I_{\overline{q}||p}(X_2|Z_1,X_1)$ minimized when $p(X_2|Z_1,X_1)$ close to true $q(X_2|X_1)$, where Z_1 controlled by stationary distribution of $q(Z_2,X_2|Z_1,X_1)$. During optimization, Z_1 that help predict the next observation is explored and preferred.

Exploration and Exploitation

$$I_{\bar{q}||p}(Z_2, X_2|Z_1, X_1) = I_{\bar{q}||p}(Z_2|Z_1, X_1) + I_{\bar{q}||p}(X_2|Z_1, X_1)$$

exploitation exploration

Exploitative Modulation

$$\alpha_{n+1} \left(\log q_{\lambda_n}(Z_{n+1}|Z_n, X_n) - \log p_{\theta_n}(Z_{n+1}|Z_n, X_n) \right)$$

Explorative Modulation

$$\alpha_{n+1}(\xi(X_{n+1}|X_n) - \log p_{\theta_n}(Z_{n+1}|Z_n, X_n))$$
novelty

For convergence, function $\xi(X_{n+1}|X_n)$ can be any estimate of the true $\log q(X_{n+1}|X_n)$.

Conclusions

- Singularities of relative information determine asymptotic behavior of learning algorithms
- Variational inference is a powerful framework for designing learning algorithms and analyzing tradeoffs
 - To design and train recurrent networks, we need both discriminative and generative processes
 - Stationarity of discriminative process affects exploitation, exploration and convergence

Questions?

https://shaoweilin.github.io/