Técnicas Avanzadas de Programación – 2010

Lo que debemos aprender a hacer lo aprendemos haciéndolo – Aristóteles

Práctica nº 1

Sea un robot al que se conoce con el nombre de *robotech* que se mueve sobre un espacio de dos dimensiones. El centro del espacio, localizado en la coordenada <u>0@0</u> se conoce como "inicio". El robot se orienta en una dirección que varia entre 0º y 359º.

	north - 0°	
west - 90°	Inicio (0@0)	east - 270°
	south - 180°	

Tiene una bateria que disminuye su carga a medida que el robot se mueve. Y tiene la capacidad de dejar marcado su recorrido. Los mensajes que el robot entiende son:

#brushDown, #brushUp, #isBrushDown, #isBrushUp, #direction:, #move:, #battery

Ejercicio 1

Evalúe en el ambiente del robot las siguientes expresiones.

a) robotech brushDown.

robotech move: 50.

robotech west.

robotech move:50.

robotech south.

robotech move:50.

robotech east.

robotech move:50.

robotech north.

robotech brushUp.

b) robotech brushDown.

robotech east; move: 50; south.

robotech move: 50; west.

robotech move: 50; north.

robotech move: 50; east.

c) robotech brushUp; move:50; north; brushDown; move:50; east; move:50; south; move:50; west; move:50; brushUp.

Ejercicio 2

¿Cuál cree que será el resultado de los siguientes envíos de mensaje si se los ejecuta luego de cada una de las expresiones del ejercicio 1?

	a)	b)	c)
robotech position			
robotech direction			
robotech isBrushDown			
robotech isGoingNorth / isGoingEast / isGoingWest			

Compruebe en el ambiente del robot que sus respuestas al ejercicio anterior son correctas (utilice *print-it* o *inspect-it*).

Ejercicio 3

Utilizando el robot realice un rombo de lado 10 con alguna esquina en inicio.

Ejercicio 4

Extienda la definición (en el tab "Definition" del "robot inspector") del robot para que sea capaz de entender los mensajes: northEast, northWest, southEast, southWest.

Ejercicio 5

Resuelva el ejercicio 3 utilizando los mensajes definidos en el ejercicio 4.

Ejercicio 6

Explore la implementación de los siguientes mensajes que entienden los robots: refillBattery / north / isBrushDown / direction / isGoingNorth.

Preste atención en cada caso a como el robot interactúa con los objetos a los que conoce.

Ejercicio 7

a)Ejecute este código en el workspace

robotech + 2

Elegir el botón "Terminate" en la ventana que aparece. ¿Qué pasó, qué es esta ventana?

b)El cálculo del factorial de un número puede o no "venir" con Visual Works. Si viene, la forma de obtener el factorial de un número tiene que ser enviarle un mensaje a un objeto.

Para obtener el factorial de 7, ¿qué mensaje le enviaría a qué objeto? Conjeturar y probar.

Ejercicio 8

1.En las siguientes expresiones del leguaje Smalltalk, indique quién es el objeto receptor, cuál es el mensaje, y cuáles son los argumentos del mensaje, para el último mensaje que se ejecuta en cada caso.

a.4 squared

b.7 >= 8

c.90 asCharacter

d.'un string chico?' asUppercase

e.true & false

f.#(555) at: 2

g.1 * 2 + 3

h.8 between: 1 and: 2

2. Para cada una de estas expresiones, analizar qué objetos intervienen, qué mensajes tiene que entender cada uno para que la expresión funcione, qué devuelve cada mensaje, y en qué orden se envían los mensajes

a.4 squared between: 3 + 4 * 10 and: 'hello' size

b.cliente1 cajaDeAhorro transferir: cliente1 saldoTotal - 3000 a: cliente2 cuentaCorriente

Ejercicio 9

1. Para cada una de las siguientes expresiones, analizar antes de ejecutar qué resultado deberían dar, después ejecutarlas y comprobar.

a)3 + 4 squared

b)(3 + 4) squared

c)3 + (4 squared)

d)3 min: 4 * 2

e)(3 min: 4) * 2

2.La ejecución de cada una de las siguientes expresiones da un error. Entender a qué se debe el error, y lograr que la ejecución no dé error agregando paréntesis adecuados

a) 3 > 4 not

b)3 raisedTo: 5 > 7 squared

Ejercicio 10

1. Ver el resultado (print-it/Ctrl-P o inspect-it/Ctrl-I) de la expresión robotech position

va a aparecer algo como

30@20

¿qué puede imaginarse de este objeto? Para ayudar a aclararse las ideas, puede probar con robotech position x

2.Teniendo en cuenta lo que se analizó en el punto anterior, pensar cuál de las siguientes dos expresiones robotech position even robotech position x even anda y cuál no, justificar, y después comprobar

Ejercicio 11

- 1.Decimos que un robot está feliz (isHappy) si la suma de las coordenadas x e y de su posición es par. Implementar el método correspondiente y probar.
- 2.Decimos que un robot se siente bien (isFeelingGood) si: o bien es feliz, o bien apunta al oeste. Implementar el método correspondiente y probar.

Ejercicio 12

Mirar el método move: en robotech, tratar de entender qué pasa ahí, y comentar con un ayudante.