$\begin{array}{c} {\bf Standortplanung\ und\ strategisches}\\ {\bf SCM} \end{array}$

Ecko Tan

February 11, 2018

Don't panic!

Contents

1	Vol	kswirtschaftliche und deskriptive Standortmodelle	5
	1.1	Volkswirtschaftliche Standortmodelle	5
	1.2	Deskriptive überbetriebliche Standortmodelle	5
		1.2.1 Prüflisten-Verfahren	5
		1.2.2 Rangfolge-Verfahren	5
	1.3	Standortplanung unter Wettbewerb	5
		1.3.1 Modelle mit vollständiger Zuordnung	5
		1.3.2 Modelle mit partieller Aufteilung	5
		1.3.3 Leader-Follower-Modelle	5
2	Sta	ndortplanung in der Ebene	7
	2.1	Theorie der Standortplanung	7
	2.2	Begriffe und Symbole	7
	2.3	1-Medianprobleme	7
		2.3.1 1-Median probleme mit l_1 -Metrik	7
		2.3.2 1-Median probleme mit ${l_2}^2$ -Metrik	7
		2.3.3 1-Median probleme mit l_2 -Metrik	7
	2.4	1-Centerprobleme	7
		2.4.1 1-Centerprobleme mit l_1 -Metrik	7
		2.4.2 1-Centerprobleme mit l_2 -Metrik	7
	2.5	Mehrstandortprobleme	7
		2.5.1 Modelle mit Interaktion	7
	2.6	Zuordnungs-Modelle	7
3	Sta	ndortplanung auf Netzwerken	9
	3.1	Graphentheorie	9
	3.2	1-Medianprobleme	9
		3.2.1 1-Medianprobleme auf allgemeinen Graphen	9
		3.2.2 1-Medianprobleme auf Bäume	9

4 CONTENTS

	3.3	1-Centerprobleme	9
		3.3.1 1-Centerprobleme auf allgemeinen Graphen	9
		3.3.2 1-Centerprobleme auf Bäume	9
	3.4	Mehrstandortprobleme	9
4	Disl	krete Standortplanung	11
	4.1	Klassifikation diskreter Standortprobleme	11
	4.2	Das Warehouse Location Problem (WLP)	11
		4.2.1 Modellierug	11
		4.2.2 Heuristiken	11
		4.2.2.1 Greedy-Heuristik	11
		4.2.2.2 Interchange-Heuristik	11
		4.2.3 Das DUALOC-Verfahren	11
	4.3	Hub-Location-Probleme	11
5	Geb	oietsplanung 1	13
	5.1	Basismodell	13
		5.1.1 Definitionen und Symbole	13
		5.1.2 Modell-Kriterien	14
		5.1.3 Ziel der Gebietsplanung	14
	5.2	Vorgehensweisen zur Gebietsplanung	15
		5.2.1 Notation	15
		5.2.2 LP-Formulierung	15
	5.3	Recursive-Partitioning-Algorithmus	15
		5.3.1 Definitionen	16
		5.3.2 Recursive-Partitioning	16
		5.3.3 Algorithmus	16

Volkswirtschaftliche und deskriptive Standortmodelle

- 1.1 Volkswirtschaftliche Standortmodelle
- 1.2 Deskriptive überbetriebliche Standortmodelle
- 1.2.1 Prüflisten-Verfahren
- 1.2.2 Rangfolge-Verfahren
- 1.3 Standortplanung unter Wettbewerb
- 1.3.1 Modelle mit vollständiger Zuordnung
- 1.3.2 Modelle mit partieller Aufteilung
- 1.3.3 Leader-Follower-Modelle

Standortplanung in der Ebene

- 2.1 Theorie der Standortplanung
- 2.2 Begriffe und Symbole
- 2.3 1-Medianprobleme
- 2.3.1 1-Medianprobleme mit l_1 -Metrik
- 2.3.2 1-Medianprobleme mit l_2^2 -Metrik
- 2.3.3 1-Median probleme mit l_2 -Metrik
- 2.4 1-Centerprobleme
- 2.4.1 1-Centerprobleme mit l_1 -Metrik
- 2.4.2 1-Centerprobleme mit l_2 -Metrik
- 2.5 Mehrstandortprobleme
- 2.5.1 Modelle mit Interaktion
- 2.6 Zuordnungs-Modelle

Standortplanung auf Netzwerken

- 3.1 Graphentheorie
- 3.2 1-Medianprobleme
- 3.2.1 1-Medianprobleme auf allgemeinen Graphen
- 3.2.2 1-Medianprobleme auf Bäume
- 3.3 1-Centerprobleme
- 3.3.1 1-Centerprobleme auf allgemeinen Graphen
- 3.3.2 1-Centerprobleme auf Bäume
- 3.4 Mehrstandortprobleme

Diskrete Standortplanung

- 4.1 Klassifikation diskreter Standortprobleme
- 4.2 Das Warehouse Location Problem (WLP)
- 4.2.1 Modellierug
- 4.2.2 Heuristiken
- 4.2.2.1 Greedy-Heuristik
- 4.2.2.2 Interchange-Heuristik
- 4.2.3 Das DUALOC-Verfahren
- 4.3 Hub-Location-Probleme

Gebietsplanung

Ziel: kleine geographische Einheiten (sogenannte Basisgebiete) zu über- geordneten Gebieten (häufig als Bezirke, Cluster oder Territorien bezeichnet) unter der Berücksichtigung verschiedener relevanter Planungskriterien zusammenzufassen.

5.1 Basismodell

5.1.1 Definitionen und Symbole

Ein Gebietsplanungsproblem umfasst eine Menge $V = \{1, \dots, M\}$ von Basisgebieten.

Ein **Basisgebiet** $i \in V$ ist durch seinen Mittelpunkt $b_i = (x_i, y_i)$ bestimmt.

Für jedes Basisgebiet $i \in V$ ist eine einzelne quantifizierbare Eigenschaft, das sogenannte **Aktivitätsmaß** w_i , gegeben.

Gebiet:

• Gebiete D_1, \ldots, D_p sind disjunkte Teilmengen der Basismenge, so dass jedes Basisgebiet in genau einem Gebiet enthalten ist:

$$D_1 \cup \cdots \cup D_p = V$$
 und $D_i \cap D_j = \emptyset, i \neq j, b < p$

 Aktivitätsmaß oder die Größe eines Gebiets: die Summe der Aktivitätsmaße seiner Basisgebiete

$$w(D_j) = \sum_{i \in D_j} w_i$$

• **Zentrum** des Gebiets j: c_j (Im Allgemeinen entspricht c_j einem der Mittelpunkte der zum Gebiet j gehörenden Basisgebiete.)

Zusammenhang:

Basisgebiet $b_i = (x_i, y_i) \in Menge der Basisgebiete V \supseteq Gebiet D_j$

5.1.2 Modell-Kriterien

Balance

Alle Gebiete sollen balanciert sein, also möglichst gleich groß bzw. stark bezüglich der Aktivitätsmaße der Gebiete.

• perfekt balnciert \Leftrightarrow sein Aktivitätsmaß entspricht dem durchschnittlichen Aktivitätsmaß aller Gebiete μ

$$w(D_j) = \mu = \frac{w(V)}{p} \tag{5.1}$$

Auf Grund der diskreten Struktur des Problems können perfekt balancierte Vertriebsgebiete im Allgemeinen NICHT erzielt werden.

• relative Abweichung des Aktivitätsmaßes eines Gebiet

$$bal(D_j) = \frac{|w(D_j) - \mu|}{\mu}$$

Kontiguität (Contiguity)

Zwei Basisgebiete werden als benachbart bezeichnet, wenn ihre geographischen Anordnungen nichtleere Schnittmengen besitzen.

Kompaktheit (Compactness)

 Reock-Test: Bilde das Verhältnis der Fläche des Gebiets zur Fläche des kleinsten, das Gebiet umschließenden Kreises.

$$cp(D_j) = \frac{A_{A_j}}{A_{uk}} \le 1$$

 Schwartzberg-Test: Bilde das Verhältnis zwischen dem Umfang eines Kreises, der dadurch festgelegt ist, dass er den gleichen Flächeninhalt wie das Gebiet hat, und dem Umfangs des Gebiets.

$$cp(D_j) = \frac{2 \cdot \sqrt{\pi \cdot A_{D_j}}}{U_{D_j}} \le 1$$

Je näher $cp(D_j)$ an 1, umso kompakter ist das Gebiet.

5.1.3 Ziel der Gebietsplanung

Untergliedere alle Basisgebiete V in p Gebiete, welche die Planungskriterien der Balance, Kompaktheit, Kontiguität und Disjunktheit erfüllen.

5.2 Vorgehensweisen zur Gebietsplanung

5.2.1 Notation

- V: Menge der Basisgebiete
- w_u : Aktivitätsmaß des Basisgebiets u
- p: Anzahl der Gebiete
- d_{uv} : Distanzen
- μ : Durchschnittsgröße bzgl. w ((5.1))
- \bullet τ : Toleranz der Balance

•

$$x_{uv} = \begin{cases} 1 & \text{falls Basisgebiet } u \text{ einem Gebit mit dem Zentrum } v \text{ zugeordnet wird.} \\ 0 & sonst \end{cases}$$

5.2.2 LP-Formulierung

$$\min_{u,v \in V} d_{uv}^2 w_u x_{uv}$$
s.t.
$$\sum_{v \in V} x_{uv} = 1$$
 $(u \in V)$ (Vollst. Zuordnung)
$$\mu(1-\tau)x_{vv} \leq \sum_{u \in V} w_u x_{uv} \leq \mu(1+\tau)x_{vv} \qquad (v \in V)$$
 (Balance)
$$\sum_{v \in V} x_{vv} = p \qquad (p \text{ Gebiete})$$

$$x_{uv} \in \{0,1\} \qquad (u,v \in V)$$

5.3 Recursive-Partitioning-Algorithmus

(Bsp: Aufgabe 19)

Grundidee:

- Unterteile das Problem rekursiv auf geometrische Weise durch Linien in immer kleinere Teilprobleme.
- Wiederhole dies solange, bis eine elementare Größe erreicht ist, in welcher das Gebietsplanungsproblem in effizienter Zeit gelöst wird.

5.3.1 Definitionen

Partionsproblem

PP = (B, q) wird als Partitions problem bezeichnet, falls $B \subseteq V$ und $1 \le q \le p$ gilt.

Linienpartition

 $LP = (B_l, B_r, q_l, q_r)$ wird als Linienpartition bezeichnet, falls:

- 1. $B_l \cup b_r = B \text{und} B_l \cap B_r = \emptyset$
- 2. \exists Line $L: B_l = B \cap H^{\leq}(L)$ und $B_r = B \cap H^{>}(L)$
- 3. $q \le q_l, q_r \le q \text{ und } q_l + q_r = q$

5.3.2 Recursive-Partitioning

Gleichmäßige Aufteilung:

- $q_l = q_r = \frac{q}{2}$, falls q gerade
- $q_l = \frac{q-1}{2}, q_r = \frac{q+1}{2}$ und $q_l = \frac{q+1}{2}, q_r = \frac{q-1}{2}$, falls q ungerade

Balance:

$$bal(LP) = \max\{\frac{\left|\frac{w(B_L)}{q_l} - \mu\right|}{\mu}, \frac{\left|\frac{w(B_r)}{q_r} - \mu\right|}{\mu}\}$$

Partionsposition:

Bestimme k', so dass $\frac{w(B_l^{k'})}{q_l} < \frac{w(B)}{q}$ und $\frac{w(B_l^{k'+1})}{q_l} \ge \frac{w(B)}{q}$

$$k^* = \begin{cases} k' & \text{falls } \frac{w(B)}{q} - \frac{w(B_l^{k'})}{q_l} \le \frac{w(B_l^{k'+1})}{q_l} - \frac{w(B)}{q} \\ k' + 1 & \text{sonst} \end{cases}$$

Kompaktheit:

$$cp(LP) = d(c_1.c_2) = l_2(c_1, c_2)$$

5.3.3 Algorithmus

Algorithm 1 My algorithm

Input: Anzahl Suchrichtungen K, β, V, p

- 1: Markiere Partitionsproblem PP = (V, p) als ungelöst
- 2: while es gibt ungelöste Probleme do:
- 3: Wähle ein ungelöstes Problem PP = (B, q)
- 4: if q = 1 then
- 5: füge B der Lösungsmenge DL hinzu und markiere PP als gelöst
- 6: end if
- 7: if q > 1 then
- 8: Bestimme für jede Suchrichtung die Linienpartition $LP(k^*)$ mit der besten Balance und füge sie einer Menge FLP hinzu.
- 9: Bewerte alle Linienpartitionen LP der Menge FLP durch:

$$rk(LP) = \beta \frac{bal(LP)}{bal^{max}} + (1 - \beta) \frac{cp(LP)}{cp^{max}}$$

- 10: Wähle $LP^* = (B_l^*, B_r^*, q_l^*, q_r^*) = \min_{LP \in FLP} rk(FLP)$
- 11: Erstelle Partitionsprobleme $PP_l = (B_l^*, q_l^*)$ und $PP_r = (B_r^*, q_r^*)$ und markiere sie als ungelöst, markiere PP als gelöst.
- 12: end if
- 13: end while

Output: Gebietslayout DL