LAB 2

VATTIKUTI SAI ANVITH - IMT2018528

13 August 2020

CONTENTS

1	Question 1		2
	1.1	Section A	2
	1.2	Section B	2
	1.3	Section C	3
	1.4	Section D	3
	1.5	Section E	3
	1.6	Section F	4
	1.7	Output of Code	4
	1.8	Code	5
	1.9	Description & Observations	6
2	Question 2		
	2.1	Section A	7
	2.2	Section B	8
	2.3	Section C	8
	2.4	Section D	8
	2.5	Code	9
	2.6	Output of Code	10
	2.7	Description & Observations	11
3	Refe	erences	11

1 QUESTION 1

- 1. Generation of signal and its transformation.
- a) Write a Matlab function signalx that evaluates the following signal at an arbitrary set of points:

$$x(t) = \begin{cases} 0; -\infty < t \le -2\\ 2; -2 < t \le 0\\ 2e^{-t/2}; 0 < t \le \infty \end{cases}$$

- b) Plot the signal x(t) versus t, for $-8 \le t \le 8$. Consider enough no. of closely spaced sample points to get a smooth plot.
- c) Use the function signalx to plot x(t-3) versus t.
- d) Use the function signal to plot x(3-t) versus t.
- e) Use the function signal to plot x(2t) versus t.
- f) Use the function signal to plot x(t/2) versus t.

1.1 Section A

This the MATLAB function for required plot within the range [-8, 8]

```
function out = signalx(x)
out = [];
for a = 1:length(x)
    t = x(a);
    if t > -2 && t <= 0
        out(end+1)= 2;
    elseif t > 0 && t <= 8
        out(end+1) = (2*exp(-t/2));
    else
        out(end+1) = 0;
    end
end</pre>
```

1.2 Section B

1.3 Section C

1.4 Section D

1.5 Section E

1.6 Section F

1.7 Output of Code

1.8 Code

```
close all, clc
sgtitle('Question 1')
fs = 10000;
time = -8:1/fs:8;
%plot of x(t)
subplot(3,2,1:2)
plot(time, signalx(time))
xlabel("t")
ylabel(" x(t) ")
title("b) plot of x(t) ")
%plot of x(t-3)
subplot(3,2,3)
plot(time, signalx(time-3))
xlabel("t")
ylabel(" x(t) ")
title("c) plot of x(t-3)")
%plot of x(3-t)
subplot(3,2,4)
plot(time, signalx(3-time))
xlabel("t")
ylabel(" x(t) ")
title("d) plot of x(3-t) ")
%plot of x(2t)
subplot(3,2,5)
plot(time, signalx(2*time))
xlabel("t")
ylabel(" x(t) ")
title("e) plot of x(2t) ")
%plot of x(t/2)
subplot(3,2,6);
plot(time, signalx(time/2))
xlabel("t")
ylabel(" x(t) ")
title("f) plot of x(t/2) ")
function out = signalx(x)
out = [];
for a = 1:length(x)
    t = x(a);
    if t > -2 \&\& t <= 0
        out(end+1)= 2;
    elseif t > 0 \& t <= 8
        out(end+1) = (2*exp(-t/2));
    else
        out(end+1) = 0;
    end
end
end
```

1.9 Description & Observations

1.9.1 Section A

A function signal is written which takes input argument time. We can add/modify this argument and call this function to get the required output. The function written is such that the value of x(t) is defined within the interval [-8, 8].

1.9.2 Section B

As observed in the plot, the signal x(t) satisfies the conditions mentioned in question. x(t) takes it values within the ranges as mentioned.

1.9.3 Section C

Here x(t-3) is required. Hence the plot has to shift right by 3 units of time. As seen in plots, it can be verified comparing with the original signal x(t).

1.9.4 Section D

Here x(3-t) is required. Hence the plot has to flip with y-axis acting like a mirror since the sign of t in function is negative. Also the plot has to shift 3 units right. As seen in plots, it can be verified comparing with the original signal x(t).

1.9.5 Section E

Here x(2t) is required. Hence the plot has to compress by 2 times along time scale to hold the validity of original signal. As seen in plots, it can be verified comparing with the original signal x(t).

1.9.6 Section F

Here x(t/2) is required. Hence the plot has to expand by 2 times along time scale to hold the validity of original signal. As seen in plots, it can be verified comparing with the original signal x(t).

2 QUESTION 2

- 2. Convolution of two continuous-time signals
- a) Write a Matlab function contconv that computes an approximation to continuous-time convolution for the following signals:

$$x_1(t) = \begin{cases} 1; 0 < t \le 2 \\ 0; elsewhere \end{cases} \text{ and } x_2(t) = \begin{cases} 1; 0 < t \le 3 \\ 0; elsewhere \end{cases}$$

- b) Plot all the three signals $x_1(t)$, $x_2(t)$ and convolved output signal y(t) in the same plot using subplots.
- c) Also verify your output plot using in -built matlab command 'conv'. Plot the convolved output obtained in part (b) & (c) i.e. with & without using in -built matlab command 'conv' in the same plot using subplots.
- d) Convolve the signal $x_1(t)$ with itself to obtain output signal z(t). Plot the two signals $x_1(t)$ and z(t) in the same plot using subplots.

2.1 Section A

Below is the MATLAB contconv function written to solve the question.

```
%convolution function
function Y = contconv(a, b)
m = length(a);
n = length(b);
X=[a,zeros(1,n)];
H=[b,zeros(1,m)];
for i=1:n+m-1
    Y(i)=0;
    for j=1:m
        if(i-j+1>0)
            Y(i)=Y(i)+X(j)*H(i-j+1);
        else
        end
    end
end
end
```

2.2 Section B

2.3 Section C

2.4 Section D


```
2.5 Code
close all, clc
sgtitle('Question 2')
fs = 1000;
time = -1:1/fs:4;
t1 = -2:1/fs:8;
%plot of x1(t)
subplot(5,1,1)
plot(time, X_out1(time))
xlabel("t")
ylabel(" x1(t) ")
title("b) plot of x1(t) ")
%plot of x2(t)
subplot(5,1,2)
plot(time, X_out2(time))
xlabel("t")
ylabel(" x2(t) ")
title("b) plot of x2(t) ")
%plot of convolution without using conv function
Y = contconv(X_out1(time), X_out2(time));
subplot(5,1,3)
plot(t1,Y/fs)
xlabel("t")
ylabel(" x1(t)*x2(t) ")
title("b) plot of convolution without using conv function ")
%plot of convolution using conv function
new = conv(X_out1(time), X_out2(time));
subplot(5,1,4)
plot(t1,new/fs)
xlabel("t")
ylabel(" x1(t)*x2(t) ")
title("b) plot of convolution using conv function")
%plot of convolution of x1 with itself
z = conv(X_out1(time), X_out1(time));
subplot(5,1,5)
plot(t1,z/fs)
xlabel("t")
ylabel(" z(t) ")
title("b) plot of convolution of x1 with itself ")
function out1 = X_{out1}(x)
out1 = [];
for a = 1:length(x)
    t = x(a);
    if t \le 2 \&\& t > 0
        out1(end+1)=1;
    else
        out1(end+1) = 0;
    end
```

```
end
end
function out2 = X_{out2}(x)
out2 = [];
for a = 1:length(x)
    t = x(a);
    if t \le 3 \&\& t > 0
        out2(end+1)= 1;
    else
        out2(end+1) = 0;
    end
end
end
%convolution function
function Y = contconv(a, b)
m = length(a);
n = length(b);
X=[a,zeros(1,n)];
H=[b,zeros(1,m)];
for i=1:n+m-1
    Y(i)=0;
    for j=1:m
        if(i-j+1>0)
            Y(i)=Y(i)+X(j)*H(i-j+1);
        else
        end
    end
end
end
```

2.6 Output of Code

2.7 Description & Observations

2.7.1 Section A

As asked in question, I've created a function contconv which takes signals for input and convolves them to give output. The function is written at last and we call it whenever we need to use it.

2.7.2 Section B

The subplot function is used here. The output shows both the input signals and the convolved signal.

2.7.3 Section C

Here we've plotted 2 graphs. One is the convolution of the signals found by using contconv function, The other is the output using in-built conv function. As seen both are the same, Hence my contconv function works good. Again subplot function is used to plot these

2.7.4 Section D

As mentioned, here I've convolved signal x1(t) with itself. We can notice that there is only a single peak value. This is because during convolution the whole signal overlaps with itself only once. Hence a single peak.

REFERENCES 3

- 1. https://www.overleaf.com/learn/latex/lists
- 2. https://in.mathworks.com/help/matlab/ref/exp.html
- 3. https://in.mathworks.com/matlabcentral/answers/76446-how-to-time-shift-a-
- 4. https://in.mathworks.com/help/matlab/ref/function.html
- 5. http://matlab.izmiran.ru/help/techdoc/ref/end.html
- https://in.mathworks.com/help/matlabmobile/ug/accessing-array-elements.html
- 7. https://www.youtube.com/watch?v=E3633vpoCGQ