

有载能物质——工质(空气、水蒸气、燃气) 工质状态要发生变化,过程要分析、计算 持续能量转换需要循环,循环要分析、计算

能量的传递与转换分析与计算与工质的性质有关!

空天工礼...

第三章

气体和蒸汽的性质

理想气体

- 3-1 理想气体的概念
 - 3-2 理想气体的比热容
 - 3-3 理想气体的热力学能、焓和熵

重点

实际气体

- 3-4 水蒸气的饱和状态和相图
- 3-5 水的汽化过程和临界点
- 3-6 水和水蒸气的状态参数及热力性质图表

工程說分學 Engineering Thermodynamics

3-1 理想气体的概念

实际气体特点:

- 1)大量分子做毫无规则的微观热运动;
- 2)分子有一定的体积,分子之间存在相互作用力;
- 3)难以精确描述状态参数与分子微观热运动之间的关系。

一、理想气体模型

一种经过科学抽象, 假想的气体模型。

假设:1)气体分子是一些弹性的、不占体积的质点;

2) 分子之间没有相互作用力。

简单可压缩系统: 热力学能=内动能(与T有关)+

理想气体 u = f(T)

内位能(与v有关)

好处:可用简单的式子描述状态参数与分子微观热运动之间 的关系。

工程默力學 Engineering Thermodynamics

可以或不可以当作理想气体?

比体积 $\nu \rightarrow \infty$ 或压力 $p \rightarrow 0$ 时, 实际气体 \rightarrow 理想气体。

1)双原子和单原子气体

工程中常用的氧气、氮气、氢气、一氧化碳等及其混合气体、燃气、烟气等工质,在通常使用的温度、压力下都可作为理想气体处理。

2) 三原子分子气体

如: H_2O,CO_2 ,石油气,一般不能当作理想气体。

特殊情况,如湿空气中的水蒸气,高温烟气的CO₂也可以当作 理想气体。(含量很少,分压力很低)

- **3)制冷工质**(R22/R134a/R600a蒸气、氨气)离液态较近,分 子之间间距小,**不能当作理想气体**。
 - 一般按: 1) 气体所处的状态是否远离液态
 - 2) 工程计算所容许的误差

来决定能否作为 理想气体处理。

工程默分學 Engineering Thermodynamics

二、理想气体状态方程式

$$pv=R_gT$$

式中 p —绝对压力 Pa

v—比容 m³/kg

T—热力学温度 K

适用于1千克理想气体。

$$pV_m = MR_gT = RT$$

式中 V_m —气体的摩尔容积, m^{3}/mol ;

 $R=MR_g$ —通用气体常数, =8.3145 J/mol·K

适用于1摩尔理想气体。

$$pV = mR_gT$$

式中 V—质量为mkg气体所占的容积, m^3

 R_g —气体常数, $J/kg\cdot K$

适用于m千克理想气体。

$$pV = nRT$$

式中 V—n mol气体所占有的容积, m^3 ;

n—气体的摩尔数,mol,

→ 适用于n摩尔理想气体。

工程設分等 Engineering Thermodynamics

三、摩尔质量和摩尔体积

摩尔,物质的量的基本单位, mol

1mol~ 0.012kg 碳(C12)的原子数目,6.0225×10²³个/mol

阿伏伽德罗常数

M—摩尔质量

1mol物质的质量, kg/mol, 数值上等于物质的相对分子量 $(g/mol) \times 10^{-3}$.

n—摩尔数 $n = \frac{1}{M}$

 V_m —摩尔体积(与温度、压力有关)

 $pV_m = MR_qT = RT$

1mol物质的体积,m³/mol

阿伏伽德罗定律?

同温同压下,相同体积的任何 气体含有相同的分子数。

相同 p 和 T 下各种气体的摩尔体积 V_m 相同。

工程默力等 Engineering Thermodynamics

标准状态下,任意理想气体的摩尔体积均为 0.022414 m³/mol 标准状态 千摩尔体积为 22.4m³/kmol

$$T_0 = 273.15K$$

 $p_0 = 1.01325 \times 10^5 Pa$

$$p_0 V_{m0} = RT_0$$

$$R = \frac{p_0 V_{m0}}{T_0} = \frac{101325 \times 0.022414}{273.15} = 8.3145 J/(mol \cdot K)$$

四、摩尔气体常数(通用气体常数)和气体常数

R——摩尔气体常数,与气体种类、状态均无关。

R_g——<mark>气体常数</mark>,与状态无关,仅决定于气体种类。

$$R_g = \frac{R}{M}$$

例如,空气的摩尔质量M是28.97×10⁻³kg/mol,则空气的气体常数为287.0J/(kg·K)

工程默拉等 Engineering Thermodynamics

理想气体在**流动中**处于平衡状态时,流量、压力、温度 之间的关系也可以表达为方程式:

$$pq_v = q_m R_g T$$

$$pq_v = q_n RT$$

式中
$$q_v$$
—气体的体积流量, m^3/s ;

$$q_m$$
—气体的质量流量, kg/s ;

 q_n —气体的摩尔流量,mol/s;

$$pv = R_g T$$

$$pV = mR_gT$$

$$pV_m = RT$$

$$pV = nRT$$

注意:

- 1) p、v、T是同一状态下的量;
- 2) 压力p是绝对压力, Pa;
- 3)温度是绝对温度, K;
- 4) 统一单位,全部用国际单位,

$$R_g$$
—J/(kg·K), R—J/(mol·K)

工程銀分學 Engineering Thermodynamics

例1: V=1m³的容器有N₂,温度为20 °C ,压力表读数 1000mmHg, $p_b=1$ atm,求N₂质量。四个计算结果哪一个对?

1)
$$m = \frac{pVM}{RT} = \frac{1000 \times 1.0 \times 28}{8.3145 \times 20} = 168.4 \text{kg}$$

2)
$$m = \frac{pVM}{RT} = \frac{\frac{1000}{760} \times 1.013 \times 10^5 \times 1.0 \times 28}{8.3145 \times (20 + 273.15)} = 1531.5 \text{kg}$$

3)
$$m = \frac{pVM}{RT} = \frac{(\frac{1000}{760} + 1) \times 1.013 \times 10^5 \times 1.0 \times 28}{8.3145 \times 293.15} = 2658 \text{kg}$$

4)
$$m = \frac{pVM}{RT} = \frac{(\frac{1000}{760} + 1) \times 1.013 \times 10^5 \times 1.0 \times 28 \times 10^{-3})}{8.3145 \times 293.15} = 2.658 \text{kg}$$

工人工性於

工程說分學 Engineering Thermodynamics

例2:一钢瓶的容积为0.03 m³,其内装有压力为0.7Mpa、温度 为20℃的氧气。现由于使用,压力降至0.28 Mpa,而温度未变。 问钢瓶内的氧气被用去了多少?

解:

氧气
$$R_g = \frac{R}{M} = \frac{8.3145}{32 \times 10^{-3}} = 259.8 \text{J/}(\text{kg·K})$$
 $T_2 = T_1 = T$

使用前:
$$p_1V = m_1R_gT \Rightarrow m_1 = \frac{p_1V}{R_gT}$$

使用后:
$$m_2 = \frac{p_2 V}{R_o T}$$

用去的氧气:
$$\Delta m = m_2 - m_1 = \frac{(p_2 - p_1)V}{R_g T} = \frac{(0.7 - 0.28) \times 10^6 \times 0.03}{259.8 \times (20 + 273.15)} = 0.1656 \text{kg}$$

例3: 教材p68, 例3-1, 理想气体状态方程式的精度验证

工程設分等 Engineering Thermodynamics

3-2 理想气体的比热容

一、比热容的定义

$$Q = mc(t_2 - t_1)$$

单位物量的物质,温度升高1K或1℃所吸收的热量。

定义式:
$$c = \frac{\delta q}{dT}$$
 或 $c = \frac{\delta q}{dt}$ "比"常省略。

$$=\frac{\delta q}{dT}$$

$$c = \frac{\delta q}{dt}$$

根据所取物量单位的不同,比热容分为:

- **1)** c: 质量热容,1kg物质....J/(kg·K)
- 2) C_m :摩尔热容,1mol物质... $J/(mol \cdot K)$
- **3)** C': 容积热容,标准状态下,1m³物质... J/(m³·K)

換算关系:
$$C_m = M \cdot c = V_{m0}C'$$
, $V_{m0} = 0.0224m^3/mol$

$$V_{m0} = 0.0224m^3/mol$$

工程競步等 Engineering Thermodynamics

比热容影响因素?

空气和水的比热容是否相同?

_与工质种类有关,

热物性参数之一。

比热容是否是状态参数?

——不是状态参数,**与过程有关**。

理想气体比热容还与什么参数有关?如何获得或计算?

——**与温度有关**,查表/计算。

工程說分學 Engineering Thermodynamics

二、比定压热容与比定容热容——与过程的关系

加入的热量部分增加气体热力 学能,温度升高,部分用于推 动活塞升高而对外作膨胀功。

c_n :比定压热容(质量定压热容)

 $J/(kg \cdot K)$

容积不变

加入的热量全用于增加气体的 热力学能,使气体温度升高。

c_V :比定容热容(质量定容热容)

 $J/(kg \cdot K)$

工程競步等 Engineering Thermodynamics

可逆过程中,热力学第一定律:

$$\delta q = du + pdv$$
, $\delta q = dh - vdp$

$$u = f(T, v)$$

定容:

$$dv = 0$$
 , $\delta q = du$, $c_V = \left(\frac{\delta q}{dT}\right)_V = \left(\frac{\partial u}{\partial T}\right)_V$

定压:

$$dp=0$$
 , $\delta q=dh$, $c_p=\left(rac{\delta q}{dT}
ight)_p=\left(rac{\partial h}{\partial T}
ight)_p$

适用于 一切气 体的可 逆过程

c是过程量,但是 c_p 、 c_V 还与状态参数有关。

 c_V 物理意义: 定容过程中1kg工质升高1K热力学能的增加量。

 c_p 物理意义: 定压过程中1kg工质升高1K焓的增加量。

工程默分學 Engineering Thermodynamics

理想气体
$$h = u + pv = u + R_g T$$
 $u = f_1(T), h = f_2(T)$

$$u = f_1(T), \quad h = f_2(T)$$

理想气体u、h只与温度的单值函数。

理想气体可逆过程
$$c_V = \frac{du}{dT} \quad c_p = \frac{dh}{dT}$$

$$du = c_V dT, \quad dh = c_p dT$$

$$du = c_V dT$$
, $dh = c_p dT$

c 是过程量 \Rightarrow 实际气体 c_v , c_p 是 (T, v) 的函数

理想气体 c_V , c_p 仅 是(T)的函数

比热容影响因素:

- 1) 物质性质 ✓
- 2) 热力过程?
- 3) 所处状态?

工程默拉等 Engineering Thermodynamics

三、迈耶公式及比热比

$-c_p$ 、 c_V 的关系

理想气体:
$$h = u + pv = u + R_g T$$
, $\frac{dh}{dT} = \frac{du}{dT} + R$

1. 迈耶公式

$$C_{p,m} - C_{V,m} = R$$

$$C'_{p} - C'_{V} = \rho_0 R_g$$

2. 比热容比y: 比定压热容与比定容热容的比值。

对于固体和液体而言,因 其热膨胀性很小,可认为: $c_p \approx c_V$

工程說分學 Engineering Thermodynamics

问题:

- (1) 理想气体 c_p 、 c_V 是温度的单值函数, c_p - c_V 呢?
- (2) c_p c_V 哪个容易测准确?
- (3) $c_p > c_V$ 的原因?
- (4) 比热容与温度的关系?

四、气体的真实比热容和平均比热容——与状态的关系

–与状态的关系 与温度的关系

1. 真实比热容——实际的,实验测得的

比热容随着温度的升高而增大。

附表3	低压时一些常用气体的质量热容
-----	----------------

									本白京於				
=		C_p	C_V		C_p	$c_{_{V}}$		C_p	$c_{_{V}}$		来自实验		
(T / K	kJ/(kg·K)	kJ/(kg·K)	γ	$kJ/(kg\cdot K)$	kJ/(kg·K)	γ	$kJ/(kg\cdot K)$	$kJ/(kg\cdot K)$	γ			
			空气		氮	(气(N ₂)		牽	气(O ₂)				
	250	1.003	0.716	1.401	1.039	0.742	1.400	0.913	0.653	1.398			
	300	1.005	0.718	1.400	1.039	0.743	1.400	0.918	0.658	1.395			
	350	1.008	0.721	1.398	1.041	0.744	1.399	0.928	0.668	1.389			
	400	1.013	0.726	1.395	1.044	0.747	1.397	0.941	0.681	1.382			
	450	1.020	0.733	1.391	1.049	0.752	1.395	0.956		$c_p \Big _{250}^{1000} = (1.003 + 1.142) / 2$			
	500	1.029	0.742	1.387	1.056	0.759	1.391	0.972					
	550	1.040	0.753	1.381	1.065	0.768	1.387	0.988	=1.0	/3KJ	$J/(kg \cdot K)$		
	600	不	司温	由	T T	一百分上	トお	机交	0.743	1.350			
	650	1,1		又加		יונםי	し が	イン	0.758	1.343			
	700	1.075	0:788	1:364	1.098	0.801	1.371	1.031	0.771	1.337			
	750	1.087	0.800	1.354	1.121	0.825	1.360	1.054	0.794	1.327			
	800	1.099	0.812	1.354	1.121	0.825	1.360	1.054	0.794	1.327			
	900	1.121	0.834	1.344	1.145	0.849	1.349	1.074	0.814	1.319			
	1000	1.142	0.855	1.336	1.167	0.870	1.341	1.090	0.830	1.313	19		

=

工程設分等 Engineering Thermodynamics

四、气体的真实比热容和平均比热容——与状态的关系 与温度的关系

1. 真实比热容——实际的

根据实验结果,通常将比热容与温度的关系拟合为温度的 三次多项式:

$$c = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + \cdots$$
$$c = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \cdots$$

附录表4给出下式的系数:

$$c_p = c_0 + c_1 \theta + c_2 \theta^2 + c_3 \theta^3$$
$$c_V = c_p - R_g$$

$$\theta = \frac{T}{1000}$$
 温度单位为K。

附表4 一些气体在理想气体状态的比定压热容

 $c_p = C_0 + C_1 \theta + C_2 \theta^2 + C_3 \theta^3 \quad \text{kJ/(kg · K)}$

CF₃CH₂F

 SO_2

0.165

0.37

2.81

1.05

-2.23

-0.77

R134a*

一氧化硫

空气

二氧化碳

 $\theta = \left\{ T \right\}_{\mathrm{K}} / 1\ 000$

适用范围: 250 K~1 200 K, 带*的物质最高适用温度为500 K。

. 0 / 13	10 E. 250 II	1 200 11, 15	17 07/25 25 101 4	= / 14 HML/ / / 4	
气体	分子式	C_0	C_1	C_2	C_3
水蒸气	H ₂ O	1.79	0.107	0.586	-0.20
乙炔	C ₂ H ₂	1.03	2.91	-1.92	0.54
空气		1.05	-0.365	0.85	-0.39
氨	NH ₃	1.60	1.4	1.0	-0.7
氩	Ar	0.52	0	0	0
正丁烷	C ₄ H ₁₀	0.163	5.70	-1.906	-0.049
二氧化碳	CO ₂	0.45	1.67	-1.27	0.39
一氧化碳	СО	1.10	-0.46	1.9	-0.454
乙烷	С2Н6	0.18	5.92	-2.31	0.29
乙醇	С ₂ Н ₅ ОН	0.2	-4.65	-1.82	0.03
乙烯	C ₂ H ₄	1.36	5.58	-3.0	0.63
氦	Не	5.193	0	0	0
氢	Н2	13.46	4.6	-6.85	3.79
甲烷	CH ₄	1.2	3.25	0.75	-0.71
甲醇	СН3ОН	0.66	2.21	0.81	-0.89
氮	N_2	1.11	-0.48	0.96	-0.42
正辛烷	C ₈ H ₁₈	-0.053	6.75	-3.67	0.775
氧	02	0.88	-0.0001	0.54	-0.33
丙烷	С ₃ Н ₈	-0.096	6.95	-3.6	0.73
R22*	CHCIF ₂	0.2	1.87	-1.35	0.35

1.11

0.21

工程說分學 Engineering Thermodynamics

1kg气体温度从 T_1 升高到 T_2 所吸收的热量:

定压过程:
$$q_p = \Delta h = \int_{T_1}^{T_2} c_p dT$$
 定容过程: $q_v = \Delta u = \int_{T_1}^{T_2} c_V dT$

结论: 在获得气体真实比热容的基础上,利用上式可以求出 热力学能差、焓差和熵差(见后)等。

2. 平均比热容

工程实际中为免去求积分的 麻烦,利用积分中值定理引入<mark>平</mark> <mark>均比热容</mark>,列表给出,方便查用。

$$q = \int_{t_1}^{t_2} c dt$$
 面积EFDBE

积分中值
$$c|_{t_1}^{t_2} = \frac{q}{(t_2 - t_1)}$$
 线段MN

工程默力等 Engineering Thermodynamics

平均比热容表

$$c|_{t_1}^{t_2} = \frac{q}{(t_2 - t_1)}$$

t₁到t₂之间的平均比热容

与 t_1 、 t_2 相关,给列表带来麻烦。

故将 $t_1 - t_2$ 之间的积分分为 $0 - t_2$ 和 $0 - t_1$ 两项,计算出0 - t(不同温度)之间的平均比热容,容易列表(**有共同的初温,终温**为变量)。 面积AFDOA 面积AEBOA

0 - t 之间的平均比热容,查附录表5得到。

附表5 理想气体的平均比定压热容

kJ/(kg·K)

	•
modyna	amics

温度℃	O_2	N_2	СО	CO_2	H ₂ O	SO_2	空气
•	0.915	1.039	1.040	0.815	1.859	0.607	1.004
0-100°C 100	0.923	1.040	1.042	0.866	1.873	0.636	1.006
200	0.935	1.043	1.046	0.910	1.894	0.662	1.012
2-200°C 300	0.950	1.049	1.054	0.949	1.919	0.687	1.019
400	0.965	1.057	1.063	0.983	1.948	0.708	1.028
0-500°C 500	0.979	1.066	1.075	1.013	1.978	0.724	1.039
600	0.993	1.076	1.086	1.040	2.009	0.737	1.050
700	1.005	1.087	1.093	1.064	2.042	0.754	1.061
800	1.016	1.097	1.109	1.085	2.075	0.762	1.071
900	1.026	1.108	1.120	1.104	2.110	0.775	1.081
1 000	1.035	1.118	1.130	1.122	2.144	0.783	1.091
1 100	1.043	1.127	1.140	1.138	2.177	0.791	1.100
1200	1.051	1.136	1.149	1.153	2.211	0.795	1.108
1 300	1.058	1.145	1.158	1.166	2.243	_	1.117
1 400	1.065	1.153	1.166	1.178	2.274	_	1.124
1 500	1.071	1.160	1.173	1.189	2.305		1.131

$$|q - c|_0^{t_2} t_2 - c|_0^{t_1} t_1|$$

$$c\Big|_{t_1}^{t_2} = \frac{c\Big|_0^{t_2} t_2 - c\Big|_0^{t_1} t_1}{t_2 - t_1}$$

$$c_V = c_p - R_g$$

0℃到不同 t 之间的平均比定压热容

1 900 2 000 2 100	1.094	1.186	l	1.226	2.417	_	1.156
2 000	1.099	1.191	11	1.233	2.442	_	1.161
2 100	1.104	1.197		1.241	2.466	_	1.166
2 200	1.109	1.201		1.247	2.489	_	1.171
2 200 2 300 2 400	1.114	1.206	''	1.253	2.512	_	1.176
2 400	1.118	1.210	1.222	1.259	2.533	_	1.180
2 500	1.123	1.214	1.226	1.264	2.554	_	1.184
2 600	1.127	_	_	_	2.574	_	_
2 500 2 600 2 700	1.131	_	_	_	2.594	_	_

注意单位!!!

24

求O₂在100-500℃的平均比定压热容

$$c\Big|_{t_1}^{t_2} = \frac{c\Big|_0^{t_2} t_2 - c\Big|_0^{t_1} t_1}{t_2 - t_1}$$

查附录表5

$$c_{p,O_2}\Big|_0^{100} = 0.923 \text{ kJ/(kg} \cdot \text{K)}$$

$$c_{p,O_2}\Big|_0^{500} = 0.979 \text{ kJ/(kg} \cdot \text{K)}$$

$$c_{p,O_2} \Big|_{100}^{500} = \frac{c_{p,O_2} \Big|_0^{t_2} t_2 - c_{p,O_2} \Big|_0^{t_1} t_1}{t_2 - t_1}$$

$$= \frac{0.979 \times 500 - 0.923 \times 100}{500 - 100} = 0.993 \text{ kJ/(kg · K)}$$

工程默分學 Engineering TI

根据附录表5,求 $\left.c_{p,O_2}\right|_0^{150}$

线性插值

$$\frac{y_1 - y_0}{x_1 - x_0} = \frac{y - y_0}{x - x_0}$$

$$y = y_0 + \frac{x - x_0}{x_1 - x_0} (y_1 - y_0)$$

查附录表5

$$c_{p,O_2}\Big|_0^{100} = 0.923 \text{ kJ/(kg} \cdot \text{K)}$$

$$c_{p,O_2}\Big|_0^{200} = 0.935 \text{ kJ/(kg} \cdot \text{K)}$$

$$c_{p,O_2} \Big|_0^{150}$$
= 0.923 + $\frac{150 - 100}{200 - 100}$ (0.935 - 0.923)
= 0.929 kJ/(kg·K)

用真实比热容和平均比热容都足够精确!

(x1,y1)

工程說句等 Engineering Thermodynamics

3. 平均比热容的直线关系式

工程上,为简化计算**,将真实比热容的实验数据拟合成直线:**

$$c = a + b't$$
 精确性显然低于多项式。

$$q = \int_{t_1}^{t_2} c dt = \int_{t_1}^{t_2} (a + b't) dt = a(t_2 - t_1) + \frac{b'}{2} (t_2^2 - t_1^2) = \left[a + \frac{b'}{2} (t_2 + t_1) \right] (t_2 - t_1)$$

改写为: $\{c\} = a + b\{t\}$

注意: 1) b 与 b' 不同; 2) $\{t\} = t_1 + t_2$

不同气体a、b不同, 查附录表6得到a、b。

附 附表6 体的平均比定压热容的直线关系式

rmodynamics

	平均比热容
空气	$ {c_v}_{kJ/(kg.K)} = 0.708 8 + 0.000 093 {t}_{c} $ $ {c_p}_{kJ/(kg.K)} = 0.995 6 + 0.000 093 {t}_{c} $
H ₂	$\begin{aligned} \left\{c_{_{V}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 10.12 + 0.000\ 594\ 5\left\{t\right\}_{^{\circ}\mathrm{C}} \\ \left\{c_{_{p}}\right\}_{_{\mathrm{kJ/(kg\cdot K)}}} &= 14.33 + 0.000\ 594\ 5\left\{t\right\}_{^{\circ}\mathrm{C}} \end{aligned}$
N ₂	$ \begin{split} \left\{c_{_{V}}\right\}_{_{\text{kJ/(kg-K)}}} &= 0.730\ 4 + 0.000\ 089\ 55\left\{t\right\}_{\text{`c}} \\ \left\{c_{_{p}}\right\}_{_{\text{kJ/(kg-K)}}} &= 1.03 + 0.000\ 089\ 55\left\{t\right\}_{\text{`c}} \end{split} $
O ₂	$ \begin{aligned} \left\{c_{\nu}\right\}_{\text{kJ/(kg-K)}} &= 0.659 \ 4 + 0.000 \ 106 \ 5\left\{t\right\}_{\text{C}} \\ \left\{c_{p}\right\}_{\text{kJ/(kg-K)}} &= 0.919 + 0.000 \ 106 \ 5\left\{t\right\}_{\text{C}} \end{aligned} $
СО	$ \left\{ c_{\nu} \right\}_{\text{kJ/(kg-K)}} = 0.733 \ 1 + 0.000 \ 096 \ 81 \left\{ t \right\}_{\text{c}} $ $ \left\{ c_{\nu} \right\}_{\text{kJ/(kg-K)}} = 1.035 + 0.000 \ 096 \ 81 \left\{ t \right\}_{\text{c}} $
H ₂ 0	$ \begin{aligned} \left\{c_{v}\right\}_{\text{kJ/(kg-K)}} &= 1.372 + 0.000 \ 311 \ 1\left\{t\right\}_{\text{c}} \\ \left\{c_{p}\right\}_{\text{kJ/(kg-K)}} &= 1.833 + 0.000 \ 311 \ 1\left\{t\right\}_{\text{c}} \end{aligned} $
C0 ₂	$ \left\{ c_{\nu} \right\}_{\text{kJ/(kg-K)}} = 0.683 \ 7 + 0.000 \ 240 \ 6 \left\{ t \right\}_{\text{c}} $ $ \left\{ c_{p} \right\}_{\text{kJ/(kg-K)}} = 0.872 \ 5 + 0.000 \ 240 \ 6 \left\{ t \right\}_{\text{c}} $

注意:

 $\{t\} = t_1 + t_2$

单位: 摄氏度℃

kJ/kgK

对于每一种工质: 尽管 c_p 、 c_v 随温度变化, 但二者之差等于定值, 为什么?

$$R_g = c_p - c_V$$

三. 定值比热容

基于分子运动论,1mol理想气体热力学能: $U_m = \frac{l}{2}RT$

$$U_m = \frac{\iota}{2}RT$$

摩尔定容热容: $C_{V,m} = \frac{dU_m}{dT} = \frac{l}{2}R$

摩尔定压热容: $C_{p,m} = C_{V,m} + R = \frac{i+2}{2}R$

比热容之比: $\gamma = \frac{C_{p,m}}{C_{cr}} = \frac{i+2}{i}$

i:分子运动运动自由度

单原子气体i=3; 双原子气体 i=5; 多原子气体i=6;

R: 通用气体常数

只要是理想气体,摩尔热容都相等。

质量热容:

只与气体常数 有关,对于每 一种工质,是 一定值。

$$c_V = \frac{C_{V,m}}{M} = \frac{i}{2} R_g$$

$$c_p = \frac{C_{p,m}}{M} = \frac{i+2}{2} R_g$$

工程计算中,如气体温 度不太高,使用定值比热容 来计算偏差不大;或计算精 度要求不高的情况下,用定 值比热容可简化计算。

—— 总结:

1) 真实比热容——数据来自实验,最准确。 $c\Big|_{t}^{t_2} = \frac{1}{2}[c(t_1) + c(t_2)]$ 可以列表给出,见附录表3,

2) 平均比热容——为了方便工程应用,基于真实比热容数据 拟合的多项式,积分求出0—t之间的平均比热容,列表给出, 见附录表5, t_1-t_2 之间的平均比热容计算如下:足够精确。

$$c\Big|_{t_1}^{t_2} = \frac{c\Big|_0^{t_2} t_2 - c\Big|_0^{t_1} t_1}{t_2 - t_1}$$

$$c|_{t_1}^{t_2} = \frac{c|_0^{t_2} t_2 - c|_0^{t_1} t_1}{t_2 - t_1} \qquad q_p = c_p|_{T_1}^{T_2} (T_2 - T_1)$$

或基于真实比热容数据拟合的直线关系 $\{c\} = a + b\{t\} \quad \{t\} = t_1 + t_2$ 式,积分求出平均比热容,见附录表6

3) 定值比热容——

不考虑温度的影响,比热容为定值。 $c_p = \frac{C_{p,m}}{M} = \frac{i+2}{2}R_g$

$$c_V = \frac{C_{V,m}}{M} = \frac{i}{2} R_g$$

$$c_p = \frac{C_{p,m}}{M} = \frac{i+2}{2} R_g$$

工程說分學 Engineering Thermodynamics

自学P75,例3-3

采用不同的比热容计算加热量的结果对比。

3-3 理想气体的热力学能、焓和熵

一、理想气体热力学能和焓——仅是温度的函数

1. 理想气体热力学能

设:

1-2': 定容过程

1-2": 定压过程

1-2: 某多变过程

2'、2"、2均在一条等温线上

1-2'、1-2"、1-2三个过程的热力学能、焓的变化量是否相同?

3-3 理想气体的热力学能、焓和熵

一、理想气体热力学能和焓——仅是温度的函数

$$u_{2'} = u_{2''} = u_2$$

 $h_{2'} = h_{2''} = h_2$

$$du = c_V dT$$
$$dh = c_p dT$$

$$\Delta u_{1-2} = \Delta u_{1-2'} = \int_{T_1}^{T_2} c_V dT$$

$$\Delta h_{1-2} = \Delta h_{1-2''} = \int_{T_1}^{T_2} c_P dT$$

与过程无关。。。

工程設分等 Engineering Thermodynamics

理想气体、任何过程△u的计算

$$du = c_V dT$$

1)
$$c_V = const$$
, 定值

1)
$$c_V = const$$
, 定值 $\Delta u = c_V \Delta T = c_V (T_2 - T_1)$

2) c_V 为真实比热

$$\Delta u = \int_{T_1}^{T_2} c_V dT$$

3) c_v 为平均比热

$$\Delta u = c_V \Big|_{t_1}^{t_2} (T_2 - T_1)$$

4) 若取0K为热力学能零点 $u = c_V \Big|_0^T \cdot T$

$$u = c_V \big|_0^T \cdot T$$

是题知学 Engineering Thermodynamics

2. 理想气体焓

$$h = f(T)$$

$$c_p = \frac{dh}{dT}$$

理想气体、任何过程△ℎ的计算

 $dh = c_{p}dT$

1)
$$c_p = const$$
, 定值 $\Delta h = c_p(T_2 - T_1)$

$$\Delta h = c_p (T_2 - T_1)$$

$$2) c_p$$
 为真实比热

2)
$$c_p$$
 为真实比热
$$\Delta h = \int_{T_1}^{T_2} c_p dT$$

3)
$$c_p$$
 为平均比热

$$\Delta h = c_p \Big|_{t_1}^{t_2} (T_2 - T_1)$$

$$h = c_p \Big|_0^T \cdot T$$

$$h = u + pv = u + R_g T$$

若设T=0K为焓基准点, $h_{0K}=0$,则 $u_{0K}=0$ 。

任意温度T下: $h = c_p \Big|_{0K}^T T$, $u = c_V \Big|_{0K}^I T$

若设t=0°C为焓基准点, h_0 °C=0,则 u_0 °C=-273.15 R_g 。

意 任意温度t下: $h = c_p \Big|_{0 \le c}^t t$, $u = c_V \Big|_{0 \le c}^t t - 273.15 R_g$

在应用热力学第一定律时,是 $\Delta u \times \Delta h$ 参与计算,与基 准点选择无关。

附录表7、8的应用

附表7 空气的热力性质

= '							
	T/K	t/°C	h/(kJ/kg)	$p_{_{\rm f}}$	$v_{\rm r}$	s^0 /[kJ/(kg · K)]	$\mathbf{h}_{0\mathrm{K}} = 0$
	200	-73.15	201.87	0.341 4	585.82	6.300 0	110K - 0
	210	-63.15	211.94	0.405 1	518.39	6.349 1	
	220	-53.15	221.99	0.476 8	461.41	6.395 9	
	230	-43.15	232.04	0.557 1	412.85	6.440 6	
	240	-33.15	242.08	0.646 6	371.17	6.483 3	
	250	-23.15	252.12	0.745 8	335.21	6.524 3	
	260	-13.15	262.15	0.855 5	303 92	6.563 6	
	270	-3.15	272.19	0.976 1	276.61	6.601 5	
	280	6.85	282.22	1.108 4	252.62	6.638 0	
	290	16.85	292.25	1.253 1	231.43	6.673 2	
	300	26.85	302.29	1.410 8	212.65	6.707 2	
	310	36.85	312.33	1.582 3	195.92	6.740 1	
	320	46.85	322.37	1.768 2	180.98	6.772 0	
	330	56.85	332.42	1.969 3	167.57	6.802 9	
	340	66.85	342.47	2.186 5	155.50	6.833 0	
	350	76.85	352.54	2.420 4	144.60	6.862 1	
	360	86.85	362.61	2.672 0	134.73	6.890 5	
	370	96.85	372.69	2.941 9	125.77	6.918 1	
	380	106.85	382.79	3.231 2	117.60	6.945 0	
	390	116.85	392.89	3.540 7	110.15	6.971 3	
	400	126.85	403.01	3.871 2	103.33	6.996 9	37

附表8 气体的热力性质

H_m的单位为 J/mol, S_m0 的单位为 J/(mol·K)

 $h_{0K} = 0$

T/K	CO		CO ₂		H ₂		Н	H ₂ O		N ₂	
1/K	H _m	S_{m}^{0}	H_{m}	S_{m}^{0}	H _m	S_{m}^{0}	H _m	$S_{\scriptscriptstyle \mathrm{m}}^0$	H _m	S_{m}^{0}	T/K
200	5 804.9	185.991	5 951.8	199.980	5 667.8	119.303	6 626.8	175.506	5 803.1	179.944	200
298.15	8 671.0	197.653	9 364.0	213.795	8 467.0	130.680	9 904.0	188.834	8 670.0	191.609	298. 15
300	8 724.9	197.833	9 432.8	214.025	8 520.4	130.858	9 966.1	189.042	8 723.9	191.789	300
400	11 646.2	206.236	13 366.7	225.314	11 424.9	139.212	13 357.0	198.792	11 640.4	200. 179	400
500	14 601.4	212.828	17 668.9	234.901	14 348.6	145.736	16 830.2	206.538	14 580.2	206.737	500
600	17 612.7	218.317	22 271.3	243.284	17 278.6	151.078	20 405.9	213.054	17 564.2	212. 176	600
700	20 692.6	223.063	27 120.0	250.754	20 215.1	155.604	24 096.2	218.741	20 606.6	216. 865	700
800	23 845.9	227.273	32 172.6	257.498	23 166.4	159.545	27 907.2	223.828	23 715.2	221.015	800
900	27 070.6	231.070	37 395.9	263.648	26 141.9	163.049	31 842.5	228.461	26 891.8	224.756	900
1 000	30 359.8	234.535	42 763.1	269.302	29 147.3	166.215	35 904.6	232.740	30 132.2	228. 169	1 000
1 100	33 705.1	237.723	48 248.2	274.529	32 187.4	169.112	40 094.1	236.732	33 428.8	231.311	1 100
1 200	37 099.6	240.676	53 836.7	279.391	35 266.4	171.791	44 412.4	240.489	36 778.0	234. 225	1 200
1 300	40 537.1	243.428	59 512.8	283.934	38 386.7	174. 289	48 851.4	244.041	40 173.0	236.942	1 300
1 400	44 012.0	246.003	65 263.1	288. 195	41 549.8	176.633	53 403.6	247.414	43 607.8	239.487	1 400

工程說分學 Engineering Thermodynamics

理想气体可逆过程,热力学第一定律可具体化为:

$$\delta q = c_{V}dT + pdV$$
$$\delta q = c_{p}dT - vdp$$

$$q = c_V \Big|_{T_1}^{T_2} (T_2 - T_1) + \int_{v_1}^{v_2} p dv$$

$$q = c_p \Big|_{T_1}^{T_2} (T_2 - T_1) - \int_{p_1}^{p_2} v dp$$

说明:

- 1) 比热容不仅仅可用来求换热量大小;
- 2) 重要的是,对于理想气体,比定容热容可以用来求过程的热力学能变化,比定压热容可用来求过程的焓变。

二、状态参数熵及理想气体熵变计算

1. 熵定义: $ds = \frac{\delta q_{rev}}{T}$

 δq_{rev} 为微元**可逆**过程的**换热量**;

T为微元**可逆**传热过程的热力学温度;

ds为微元可逆过程的比熵变。

理想气体可逆过程:

$$\begin{split} \delta q &= c_V dT + p dv & c_p - c_V = R_g \\ \delta q &= c_p dT - v dp & C_{p,m} - C_{V,m} = R \\ p v &= R_g T & C'_p - C'_V = \rho_0 R_g \end{split}$$

$$ds = \frac{c_V dT + p dv}{T} = c_V \frac{dT}{T} + R_g \frac{dv}{v}$$

$$ds = \frac{c_p dT - v dp}{T} = c_p \frac{dT}{T} - R_g \frac{dp}{p}$$

$$ds = c_V \frac{dp}{p} + c_p \frac{dv}{v}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \frac{dT}{T} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_V \frac{dT}{T} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = \int_{p_1}^{p_2} c_V \frac{dp}{p} + \int_{v_1}^{v_2} c_p \frac{dv}{v}$$

Engineering Thermodynamics

1. 熵变的计算

取定值比热容时:初、终态温度变化不大

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \frac{dT}{T} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_v \frac{dT}{T} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_v \frac{dT}{T} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = \int_{p_1}^{p_2} c_v \frac{dp}{p} + \int_{v_1}^{v_2} c_p \frac{dv}{v}$$

$$\Delta s_{1-2} = c_v \ln \frac{T_2}{T_1} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = c_v \ln \frac{T_2}{T_1} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = c_v \ln \frac{p_2}{p_1} + c_p \ln \frac{v_2}{v_1}$$

取真实比热容时:

选择基准状态($p_0=101325$ Pa, $T_0=0$ K),熵等于0, $s_{0K}^0=0$

则 (T、p) 与 (T₀、p₀) 之间的熵差:
$$s-s_{0K}^{0}=\int_{T_0}^T c_p \frac{dT}{T}-R_g \ln \frac{p}{p_0}$$

其它任意状态(T、p)下的熵:

$$s = \int_{T_0}^T c_p \, \frac{dT}{T} - R_g \ln \frac{p}{p_0}$$

状态(T、p₀)下的熵:

$$s^{0} = \int_{T_{0}}^{T} c_{p} \frac{dT}{T} - R_{g} \ln \frac{p_{0}}{p_{0}} = \int_{T_{0}}^{T} c_{p} \frac{dT}{T}$$
| 与温度 T 有关。
| 根据 c_{p} 与温度的
| 关系和分录出

与温度 T 有关。 关系积分求出。

工程默切等 Engineering Thermodynamics

状态(T_{λ} p_0)下的摩尔熵:

$$S_m^0 = M \cdot s^0$$
 与温度有关。

附录表7给出了 1 kg空气的 s^0 值;

附录表8给出了1mol其它常见理想气体的 s_m 0值,以便查用。

 (T_1, p_1) 与 (T_1, p_1) 之间的熵差:

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \frac{dT}{T} - R_g \ln \frac{p_2}{p_1} = \int_{T_0}^{T_2} c_p \frac{dT}{T} - \int_{T_0}^{T_1} c_p \frac{dT}{T} - R_g \ln \frac{p_2}{p_1}$$

$$s_2^0 \qquad s_1^0$$

工程默分學 Engineering Thermodynamics

则:基于 s^0 值,理想气体任意两状态之间的熵差:

$$\Delta s_{1-2} = s_2^0 - s_1^0 - R_g \ln \frac{p_2}{p_1}$$

$$\Delta S_{m,1-2} = S_{m,2}^0 - S_{m,1}^0 - R \ln \frac{p_2}{p_1}$$

熵变与过程无关,只与初、终态温度、压力有关。

p80, 例3-4 用变比热容计算传热量及熵变。

p82,例3-5 一绝热刚性容器用隔板一分为二,A部分充满1kg空气,压力为0.2MPa,温度为27°C,B部分为真空,如抽去隔板,空气发生自由膨胀,达到新的热力平衡时,分析 Δu 、 T_2 、 p_2 、 Δs 。比热容取为定值

 p_1, T_1

取整个A+B为系统 ——闭口系

$$\int_{0}^{0} = \Delta u + v \int_{0}^{0} \Delta u = 0, \quad u_2 = u_1$$

$$T_2 = T_1 = 273.15 + 27 = 300.15$$
K

$$v_2 = 2v_1$$

$$pv = R_g T \longrightarrow \frac{p_2 v_2}{T_2} = \frac{p_1 v_1}{T_1} \longrightarrow \frac{p_2}{p_1} = \frac{v_1}{v_2} = \frac{1}{2} \longrightarrow p_2 = 0.1 \text{MPa}$$

$$ds = \frac{\delta q}{T} \implies \Delta s = \int_{1}^{2} ds = \int_{1}^{2} \frac{\delta q}{T} = 0$$

哪一个结果正确? 为什么?

$$\Delta s = c_V \ln \frac{T_2}{T_1} + R_g \ln \frac{v_2}{v_1} = R_g \ln 2 = 198.93 \text{J/(kg} \cdot \text{K)} > 0$$

45

工程設分等 Engineering Thermodynamics

结论:

- 1) $ds = \frac{\delta q_{\text{rev}}}{T}$ 必须可逆
- 2) 熵是状态参数, 熵变只取决于 初、终态参数,故基于可逆过程推 出的公式也可用于不可逆过程。
- 3)不可逆绝热过程的熵变大于零。 第五章热力学第二定律回答

$$\frac{\delta q}{\delta q} = c_V dT + p dv$$
$$\delta q = c_p dT - v dp$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \, \frac{dT}{T} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_V \, \frac{dT}{T} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = \int_{p_1}^{p_2} c_V \, \frac{dp}{p} + \int_{v_1}^{v_2} c_p \, \frac{dv}{v}$$

理想气体的热力性质小结

一、理想气体状态方程

$$pv = R_g T$$

$$pV_{\rm m} = RT$$

$$R = 8.3145 \text{ J/(mol \cdot K)}$$

$$R_g = \frac{R}{M}$$

[J/(kg.K)]

二、理想气体的比热容

c 是过程量

实际气体 c_V , c_p 是 (T, v) 的函数

理想气体 c_V , c_p 仅 是 (T) 的函数

四种形式的比热容计算、查表。要理解并会用。

理想气体的热力性质小结

三、理想气体热力学能变、焓变、熵变的计算

$$du = c_V dT \qquad dh = c_p dT$$

$$ds = c_V \frac{dT}{T} + R_g \frac{dv}{v} = c_p \frac{dT}{T} - R_g \frac{dp}{p} = c_p \frac{dv}{v} + c_V \frac{dp}{p}$$

理想气体,任何过程三

$$\Delta u = c_V (T_2 - T_1)$$

$$\Delta h = c_p (T_2 - T_1)$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \frac{dT}{T} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_V \frac{dT}{T} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = \int_{p_1}^{p_2} c_V \frac{dp}{p} + \int_{v_1}^{v_2} c_p \frac{dv}{v}$$

作 业:

p99, 思考题3-11, 判断并回答为什么。

思考题3-14。

思考题3-15

p100-103, 3-5

3-9

3-10

3-17

3-3 水蒸气的饱和状态和相图

- 一、水蒸气 与空气性质明显不同
- □ 18世纪,蒸汽机(1784)的发明,水蒸气是热机的唯一工质;
- □ 直到1862年,奥托(德国)发明内燃机,才有燃气工质;
- □ 目前仍是火电、核电、供暖、化工的工质;
- □ 是其它实际气体的代表。
- ▶ 优点: 便宜、易得、无毒、不污染环境、膨胀性能好、 传热性能好。
- 一般使用范围内,靠近液体,需看做为<mark>实际气体</mark>,物性采用程 序计算或查水蒸气热力性质图表。
- 在空气中含量极小,水蒸气分压力低,当作理想气体。

工程銀分學 Engineering Thermodynamics

二、水的相变

水的三态:冰、水和水蒸气

汽

蒸发:液体表面上的汽化过程,任何温度下 都可以发生。

沸腾:液体内部的汽化过程,达到沸点温度

才发生。

加热或减压都能实现沸腾。

化

空气

水

20°C

三、水的三相图

表示水的相态及相间转化时饱和温度和饱和压力之间关系的

三、水的三相图

三、水的三相图

Pressure

热能工程使用的 水:

曲线AC及两侧 区域——气相和 汽液两相区。

超临界工质(比如超临界 CO_2)因性质独特(如:具有与液体相近的密度、表面张力很小(几乎接近0)、导热系数比常压气体大、粘度低等性质),开始研究其工程应用。

水和水蒸气状态

饱和状态:液相、气相处于动态平衡的状态

饱和温度 T_s (t_s) ——对应,压力越高, 饱和压力 p_s **饱和温度也越高**。

 $t_{s} = f(p_{s})$

饱和蒸汽:处于饱和状态下的水蒸气 (h'', s'', v'')

饱和水:处于饱和状态下的液态水(h'、s'、v')

湿蒸汽:饱和蒸汽和饱和水的混合物。

干饱和蒸汽:不含饱和水的饱和蒸汽。

过热蒸汽:温度超过饱和温度的蒸汽。

过冷水:温度低于饱和温度的水。

3-5 水的汽化过程和临界点

空天工程系

工程競力等 Engineering Thermodynamics

二、几个新的名词及关系

过冷度:

$$\Delta t_{\text{phy}} = t_{\text{s}} - t$$

汽化潜热:

$$h'' - h' = r$$

干度: x =干饱和蒸汽量 / 湿蒸汽量

过热度:

$$\Delta t_{\text{jdM}} = t - t_{\text{s}}$$

工程競步等 Engineering Thermodynamics

二、水蒸气的p-v图与T-s图

 a_0 未饱和水(过冷水) a' 饱和水 a'' 干饱和蒸汽 a'' 过热蒸汽

水的压缩性极小,故压力提高,只要温度不变 $(0.01 \degree)$,其比体积就基本保持不变。

工程競力學 Engineering Thermodynamics

二、水蒸气的 $\emph{p-v}$ 图与 $\emph{T-s}$ 图

 a_0 未饱和水 a' 饱和水 a'' 干饱和蒸汽 a'' 过热蒸汽

水受热膨胀的影响大于压缩的 影响,压力增大时,其比体积 变化甚小,而随饱和温度的升 高,水的比体积明显增大。

工程競力學 Engineering Thermodynamics

二、水蒸气的p-v图与T-s图

 a_0 未饱和水 a' 饱和水 a'' 干饱和蒸汽 a 过热蒸汽

蒸汽比体积受热膨胀的影响小于受压缩的影响,因而压力较高时的干饱和蒸汽比体积小于压力较低的比体积。

工程競步等 Engineering Thermodynamics

 $\overline{a}_0|_A$

一点: 临界点C, 与物质种类有关

未饱和

液体区

过热蒸汽

a''

 b_0

 a_0

两线: 饱和液体线AC(下界线)、饱和蒸汽线BC(上界线)

三区:未饱和液体区、湿饱和蒸汽区、过热蒸汽区

湿饱和

蒸汽区

湿蒸汽

工程競力等 Engineering Thermodynamics

二、水蒸气的 $\emph{p-v}$ 图与 $\emph{T-s}$ 图

五种状态:

未饱和水状态 a_0 、饱和水状态a'、湿蒸汽状态(a'—a'')、 干饱和蒸汽状态a''、过热蒸汽状态a。

工程競步等 Engineering Thermodynamics

二、水蒸气的p-v图与T-s图

湿蒸汽的成分用干度x表示:

 $x = \frac{湿蒸汽中含干蒸汽的质量}{湿蒸汽的总质量}$

1-x 为湿度

x=0,饱和水

x = 1,干饱和蒸汽

3-6 水和水蒸气的状态参数及热力性质图表

一、水蒸气状态参数

在水蒸气性质表中,通常列出状态参数p, v, T, h和s。

零点的规定

1963年第六届国际水蒸气会议规定:

以水物质在三相平衡共存状态下的饱和水作为基准点:

在三相点时饱和水的热力学能和熵为零。

$$t_0 = 0.01 \, ^{\circ}\text{C}$$

$$u_0' = 0 \text{ kJ/kg}$$

$$p_0 = 0.6112 \text{ kPa}$$

$$s_0' = 0 \text{ kJ/(kg.k)}$$

$$v_0' = 0.00100022 \text{ m}^3/\text{kg}$$

$$v_0' = 0.00100022 \text{ m}^3/\text{kg}$$
 $h_0' = u_0' + p_0 v_0' = 0.00061 \text{ kJ/kg} \approx 0$

各国编制的蒸气表基准点有所不同,应注意其采用的基准点。

二、水蒸气表

□ 饱和水和饱和蒸汽表

饱和水和饱和蒸汽表的参数范围为三相点至临界点。

饱和水与	饱和水蒸气表 ^①	(按温度排列

附表 1

		比体积(比容)		H	/ 焓	3≓ 11°9#9 #¥	比熵	
温度	饱和压力	饱和水	饱和蒸汽	饱和水	饱和蒸汽	汽化潜热	饱和水	饱和蒸汽
t (°C)	Ps	v'	υ"	h'	h"	r	s'	5"
, 0,	(MPa)	(m ³ /	/kg)	(kJ	/kg)	(kJ/kg)	饱和水	• K))
0.00	0.0006112	0.00100022	206, 154	-0.05	2500. 51	2500.6	-0.0002	9. 1544
0.01	0.0005117	0.00100021	206. 012	0.00®	2500. 53	2500. 5	0.0000	9, 1541
1	0.0006571	0. 00100018	192. 464	4. 18	2502. 35	2498. 2	0.0153	9. 1278
2	0.0007059	0. 00100013	179. 787	8. 39	2504. 19	2495. 8	0.0306	9. 1014
3	0.0007580	0.00100009	168.041	12. 61	2506.03	2493. 4	0.0459	9. 0752
4	0.0008135	0.00100008	157. 151	16. 82	2507. 87	2491.1	0.0611	9. 0493
5	0.0008725	0.00100008	147.048	21.02	2509. 71	2488. 7	0.0763	9, 0236
6	0.0009252	0.00100010	137. 670	25. 22	2511. 55	2486. 3	0.0913	8. 9982
7	0.0010019	0.00100014	128. 961	29. 42	2513, 39	2484.0	0. 1063	8. 9730
8	0.0010728	0.00100019	120. 868	33. 62	2515. 23	2481.6	0. 1213	8. 9480
9	0.0011480	0.00100026	113. 342	37. 81	2517.06	2479.3	0.1362	8, 9233

E .1.	No. of a little offer	比体积	(比容)	比焓		No (1, 3th 4h	比熵		
压力	饱和温度	饱和水	饱和蒸汽	饱和水	饱和蒸汽	作化槽熱 (kJ/kg) 2484.1 2459.1 2443.6 2432.2 2422.8 2415.0 2408.3 2402.3 2396.8 2392.0 2372.3 2357.5 2345.5 2345.5 2335.3 2318.5	饱和水	饱和蒸汽	
p,	t.	v'	v"	h'	h"	r	s'	s"	
(MPa)	(°C)	(m ³ ,	/kg)	(kJ	/kg)	(kJ/kg)	(kJ/(kg	· K))	
0.0010	6. 9491	0.0010001	129. 185	29. 21	2513. 29	2484. 1	0.1056	8. 9735	
0.0020	17.5403	0.0010014	67.008	73. 58	2532. 71	2459.1	0.2611	8. 7220	
0. 0030	24. 1142	0.0010028	45.666	101.07	2544, 68	2443. 6	0.3546	8, 5758	
0.0040	28. 9533	0.0010041	34, 796	121.30	2553. 45	2432. 2	0. 4221	8. 4725	
0. 0050	32. 8793	0.0010053	28, 191	137.72	2560.55	2422. 8	0.4761	8. 3930	
0. 0060	36, 1663	0.0010065	23. 738	151.47	2566. 48	2415.0	0.5208	8. 3283	
0.0070	38. 9967	0.0010075	20. 528	163, 31	2571.56	2408.3	0.5589	8. 2737	
0. 0080	41.5075	0.0010085	18. 102	173.81	2576.06	2402.3	0.5924	8, 2266	
0. 0090	43.7901	0.0010094	16. 204	183. 36	2580. 15	2396. 8	0.6226	8, 1854	
0.010	45.7988	0.0010103	14. 673	191.76	2583.72	2392.0	0.6490	8, 1481	
0.015	53.9705	0.0010140	10. 022	225. 93	2598, 21	2372.3	0.7548	8. 0065	
0.020	60.0650	0.0010172	7.6497	251.43	2608. 90	2357.5	0.8320	7. 9068	
0. 025	64.9726	0.0010198	6. 2047	271, 96	2617. 43	2345.5	0.8932	7. 8298	
0. 030	69. 1041	0.0010222	5. 2296	289. 26	2624. 56	2335. 3	0.9440	7.7671	
0.040	75.8720	0.0010264	3. 9939	317.61	2636. 10	2318.5	1.0260	7. 6688	
0. 050	81. 3388	0.0010299	3. 2409	340.55	2645. 31	2304. 8	1.0912	7, 5928	
0.060	85. 9496	0.0010331	2, 7324	359.91	2652. 97	2293. 1	1. 1454	7. 5310	

工程競力等 Engineering Thermodynamics

汽化过程为一定压、定温过程:

$$r = T_s(s'' - s')$$

$$h'' = h' + r$$

$$u'' = h'' - pv''$$

$$s'' = s' + \frac{r}{T_s}$$

工程顯分學 Engineering Thermodynamics

湿蒸汽的参数(温度、压力不独立,需要已知干度x)

$$v_x = xv'' + (1-x)v' = v' + x(v'' - v')$$

$$v_x \approx xv''$$
 (当p不太大,x不太小时)

$$h_{x} = xh'' + (1-x)h' = h' + x(h'' - h') = h' + xr$$

$$s_x = xs'' + (1-x)s' = s' + x(s'' - s') = s' + x\frac{r}{T_s}$$

$$u_{x} = h_{x} - pv_{x}$$

若已知温度或压力、 v_x : $x = \frac{v_x - v'}{v'' - v'}$

$$x = \frac{v_{x} - v'}{v'' - v'}$$

工程說分學 Engineering Thermodynamics

□ 未饱和水和过热蒸汽表

Þ	W 1880-1980-1980	0.001 MPa $(t_s=6.949\%)$		65 488	0. 005 MPa $(t_s = 32.879)$	
饱和参数	υ' 0. 001001 m³/kg υ" 129. 185 m³/kg	h' 29. 21 kJ/kg h" 2513. 3 kJ/kg	s' 0. 1056 kJ/(kg • K) s" 8. 9735 kJ/(kg • K)	υ' 0.0010053 m³/kg υ" 28.191 m³/kg	h' 137.72 kJ/kg h" 2560.6 kJ/kg	s' 0. 4761 kJ/(kg • K) s" 8. 3930 kJ/(kg • K)
t	บ	h	5	บ	h	s
٣	m³ kg	kJ kg	k] kg • K	m³ kg	kJ kg	kJ kg • K
0	0, 001002	-0.05	-0.0002	0.0010002	-o. os	-0.0002
10	130. 598 [©]	2 519. 0	8. 9938	0.0010003	未饱和	0. 1510
20	135. 226	2537. 7	9. 0588	0.0010018	83. 87	0. 2963
40	144. 475	2575. 2	9. 1823	28. 854	2574.0	8. 4366
60	153, 717	2612. 7	。 <mark>" 过热</mark>	蒸汽	2611.8	8. 5537
80	162. 956	2650, 3	9. 4080	32. 566	2649.7	8. 6639

已知(t, p),可以由下面方法判断水蒸气状态

$$t < t_s(p)$$

$$p > p_s(t)$$

$$p = p_s(t)$$

 $t = t_s(p)$

$$t > t_s(p)$$

$$p < p_s(t)$$

工程競力等 Engineering Thermodynamics

三、水蒸气的焓熵图

一系列定压线、定容 ₋ 线、定温线、定干度 线。

定容线比定压线陡。 在工程上用到的水蒸 气h-s图上, 定容线用 红色以便与定压线区 分。

Engineering Thermodynamics

三、水蒸气的焓熵图

h(kJ/kg)

湿蒸汽区域(0<x<1) 定压线与定温线重合, 为直线。

定干度线汇合于临界点

工程上用到的焓熵图, 一般只绘出干度大于 0.6 的部分。因为小干 度区,线条太密,工程 上又不经常使用。

Engineering Thermodynamics

三、水蒸气的焓熵图

h(kJ/kg)

在过热蒸汽区:定温线 较平坦,定压线较陡。

随着温度的升高,压力 的降低,定温线趋于水 平。

水蒸气部分重点是概念。

- 1. 什么叫一点、两线、三区、五态?
- 2. 了解水的定压发生过程,掌握饱和状态、汽化潜热、过冷度、干度、过热度等概念。
- 3. 水/水蒸气状态的判断。
- 4. 湿蒸汽状态参数的计算。