Mehrschichtige und dezentrale Entscheidungsprozesse in Agentensystemen

Gruppe 3: H. Stadler, M. Betz, P. Heger und B. Wladasch

Fachpraktikum Künstliche Intelligenz: Multiagentenprogrammierung Artificial Intelligence Group, University of Hagen, Germany

30. September 2022

Entwicklung und Bewertung unterschiedlicher Entscheidungsprozesse von Agentensystemen im Kontext des Multi-Agent Programming Contest 2022

- 2 Varianten basierend auf der BDI-Architektur mit unterschiedlich stark dezentralisierten Entscheidungsprozessen
 - Agent V1
 - Agent V2
- Leistungsfähigkeit beider Varianten bewerten
- Verschiedene Lösungsansätze zu erhalten, die zwischen den Systemen ausgetauscht werden können

- 1 Technische Umsetzung
- 2 Agentensystem V1
- 3 Agentensystem V2
- 4 Turniere
- 5 Rekapitulation

Technische Umsetzung

- Programmiersprache Java Version 17
 - Wunsch nach umfangreichen Werkzeugen und Bibliotheken zur Verifikation und Problemfindung
- Beide Agentensysteme basieren auf javaagents Gerüst der MASSim (Multi-Agent Systems Simulation Platform)

- 1 Technische Umsetzung
- 2 Agentensystem V1
- 3 Agentensystem V2
- 4 Turniere
- 5 Rekapitulation

Ziele

- ▶ BDI-Konzept durch mehrschichtigen Entscheidungsprozess erweitern
- Aufbau einer umfangreichen Wissensbasis
- Integration der Wegfindung in den Entscheidungsprozess
- ► Strategien zur Verifikation und Problemfindung entwickeln

Agentensystem V1 – Schichtenarchitektur

Entscheidungsschichten

Wissensschichten

Agentensystem V1 – Wegfindung

Ziel: Ermittlung Entfernungsdaten mit intelligenter Behandlung von Hindernissen für Entscheidungsfindung

- ▶ 50-100 Berechnungen pro Agent und Simulationsschritt
- CPU-basierte Lösung scheidet aufgrund Zeitbeschränkung aus

Lösung: GPU basierte Wegfindung mittels OpenGL-Computeshader

- bis zu 1.000 Berechnungen pro Simulationsschritt
- A* Algorithmus mit Heuristik Manhattan-Distanz
- ► Herausforderungen im Bereich Speicherkomplexität

Agentensystem V1 – Ziel- und Absichtsfindung

Agentensystem V1 – Verifikation und Problemfindung

Validierung

• erfolgt über erreichte Punktzahl in Testspielen

Verifizierung / Problemfindung

- der Wissensbasis über Einzeltests
- des Entscheidungsprozesses über punktuelle Einzeltests (Flächendeckende Tests sind aufgrund des dynamischen Systems nicht effizient umsetzbar)
- Problemfindung stattdessen über Beobachtungen analog eines Trainers einer Sportmannschaft

Agentensystem V1 – Grafisches Analysewerkzeug

- 1 Technische Umsetzung
- 2 Agentensystem V1
- 3 Agentensystem V2
- 4 Turniere
- 5 Rekapitulation

Struktur

- ▶ Der AgentV2 arbeitet mit der Step-Methode
- Desires mit und ohne Task-Bezug

ohne Task LocalExploreDesire GoAdoptRoleDesire ExploreMapSizeDesire

mit Task GoAbandonedBlockDesire GoDispenserDesire GoGoalZoneDesire SubmitDesire

MehrBlockTask MasterMultiBlocksDesire HelperMultiBlocksDesire Helper2MultiBlocksDesire ConnectMultiBlocksDesire

Wie finden die Agenten ihre Desires?

- ▶ In jedem Step werden alle Desires auf Ausführbarkeit geprüft
- ▶ Alle ausführbaren Desires bekommen dynamisch eine Priorität vergeben
- Das Desire mit der höchsten Priorität wird zur Intention
- Aus der Intention wird die nächste Aktion des Agenten abgeleitet

Wie arbeiten die Agenten zusammen?

- ▶ Bildung von Supervisor-Gruppen bei jedem Treffen fremder Agenten
- Bildung von dynamischen Adhoc-Kooperationen innerhalb der Supervisor-Gruppen zur Bearbeitung einer Task
- Keine zentrale Koordination der Agenten
- ▶ Steuern der Art und Anzahl der Adhoc-Kooperationen über Setup-Variablen
- ▶ Nutzung der Adhoc-Kooperationen auch zur Ermittlung der Mapgröße

- 1 Technische Umsetzung
- 2 Agentensystem V1
- 3 Agentensystem V2
- 4 Turniere
- 5 Rekapitulation

Turniere

Teilnahme an Turnier 2-6.

Hauptagent war Agent V1 (Agent V2 hat insgesamt 4 Spiele bestritten)

Turnier 2

- max. 370 Punkte über Einzelblockaufgaben (zweiter Platz)
- © übermäßige Gruppenbildung und gegenseitige Behinderung

Turnier 3

- max. 720 Punkte über Einzelblockaufgaben (zweiter Platz)
- © teilweise Gruppenbildung und gegenseitige Behinderung

Turnier 4

- © Mehrblockaufgaben wurden abgegeben
- kaum Gruppenbildung
- © schlechte Agentenzusammenarbeit (dritter Platz und *nur* max. 680 Punkte)

Turniere

Turnier 5

- stark verbesserte Agentenzusammenarbeit
- max. 1300 Punkte (erster Platz)

Turnier 6

- © verschärfter Schwierigkeitsgrad wurde gut gemeistert
- Abgabe von Dreiblockaufgaben
- max. 910 Punkte (erster Platz)

Bonusspiel – Jeder gegen Jeden mit insgesamt 150 Agenten

- Agenten blieben performant
- © 1370 Punkte (erster Platz)
- © Gruppenbildung und gegenseitige Behinderung war zu beobachten

- 1 Technische Umsetzung
- 2 Agentensystem V1
- 3 Agentensystem V2
- 4 Turniere
- 5 Rekapitulation

Rekapitulation

- ▶ Die umgesetzten Architekturen waren sehr erfolgreich in den Turnieren.
- Abgesehen von der Verwendung einer gemeinsamen Wissensbasis fand kaum Austausch zwischen den verfolgten Ansätzen statt, was kritisch zu bewerten ist.
- Aufgrund der erreichten Punkte wird vermutet, dass der mehrschichtige
 Entscheidungsprozess (Agent V1) leistungsfähiger ist als der vollständig dezentrale
 Ansatz (Agent V2)
- Ein direkter Vergleich ist aber aufgrund der unterschiedlichen Architekturen und Ersteller nur schwer durchzuführen und daher bleibt die Aussage eine Vermutung.
- Die Gruppe ist mit der erreichten Funktionalität und deren Qualität zufrieden. Dennoch besteht vielfältiges Verbesserungspotential in der Entscheidungs- und Strategiefindung der Agenten.

