

Segmenter des clients d'un site e-commerce

Guilhem Berthou - Pierre-Antoine Ganaye (mentor)

Introduction

<u>Problématique</u>: Olist est un site de e-commerce Segmentation site e-commerce.

Comprendre les différents types d'utilisateurs

Descriptions actionnables de **segmentation Marketing**

Contrat de maintenance

⇒ Interprétation : Il s'agit d'un problème de classification qui pourra être résolu grâce à l'utilisation d'algorithmes non supervisés.

Sommaire

1. Préparation de la donnée

- a. Structure du dataset
- b. Nettoyage
- c. Feature Engineering

2. Clustering

- a. Segmentation RFM
 - i. Description de la méthode
 - ii. Interprétation des segments
- b. Classification non supervisée
 - i. k-means
 - ii. CAH
 - iii. DBSCAN

3. Analyse de stabilité

- a. Pourquoi une analyse de stabilité?
- b. Description de l'algorithme utilisé
- c. Contrat de maintenance préconisé

4. Conclusion

Sommaire

1. Préparation de la donnée

- a. Structure du dataset
- b. Nettoyage
- c. Feature Engineering

2. Clustering

- a. Segmentation RFM
 - i. Description de la méthode
 - ii. Interprétation des segments
- b. Classification non supervisée
 - i. k-means
 - ii. CAH
 - iii. DBSCAN

3. Analyse de stabilité

- a. Pourquoi une analyse de stabilité ?
- b. Description de l'algorithme utilisé
- c. Contrat de maintenance préconisé

4. Conclusion

Préparation de la donnée

Structure du dataset

1. Préparation de la donnée

- a. Structure du dataset
- b. Nettoyage
- . Feature Engineering

```
Orders [99441, 8]
Order Items [112650, 7]
Customers [99441, 5]
Products Items [32951, 9]
Product Catagory Translation [71, 2]
Payments [103886, 5]
Review [100000, 7]
Geolocation [1000163, 5]
Sellers [3095, 4]
```

Préparation de la donnée

- Préparation de la donnée
 - Structure du datase
 - b. Nettoyage
 - Feature Engineering

Nettoyage

- Commandes livrées (98%)
- Suppression des outliers (dernier quantile 99%)
- Suppression des périodes bornes

Orders monthly trends over the period

Préparation de la donnée

- Préparation de la donnée
 - Structure du datase
 - b. Nettoyage
 - c. Feature Engineering

Feature Engineering

Temps de livraison

Average Daylag per Month

Sommaire

1. Préparation de la donnée

- a. Structure du dataset
- b. Nettoyage
- c. Feature Engineering

2. Clustering

- a. Segmentation RFM
 - i. Description de la méthode
 - ii. Interprétation des segments
- b. Classification non supervisée
 - i. k-means
 - ii. CAH
 - iii. DBSCAN

3. Analyse de stabilité

- a. Pourquoi une analyse de stabilité ?
- b. Description de l'algorithme utilisé
- c. Contrat de maintenance préconisé

4. Conclusion

- Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée

Segmentation RFM

- <u>Description de la méthode :</u>
 - Méthode marketing
 - Récence
 - Fréquence
 - Monétaire
 - Mode de calcul des scores
 - <u>R-M:</u> Division selon les 3 premiers quantiles
 - <u>Fréquence</u> : utilisation d'un booléen selon La valeur de la fréquence (1 pour 1 ou 2)

	R	F	м
count	90164.000000	90164.000000	90164.000000
mean	236.380884	1.032840	159.077784
std	151.946197	0.207759	218.678270
min	0.000000	1.000000	9.590000
25%	113.000000	1.000000	61.960000
50%	219.000000	1.000000	105.115000
75%	347.000000	1.000000	175.330000
max	602.000000	15.000000	13664.080000

=> Conclusion : Nous constatons que les clients de la plateforme n'ont pas renouvelés leurs achats (**fréquence = 0**). Nous allons donc privilégier l'ajout d'autres variables pour réaliser une segmentation pertinente.

idotoi iiig

Segmentation RFM

<u>Interprétation des segments obtenus :</u>

Segment name	Description	Marketing Strategies
1. CORE - Best Customers	Highly engaged customers who have bought the most recent, the most often, and generated the most revenue.	Focus on loyalty programs and new product introductions. These customers have proven to have a higher willingness to pay, so don't use discount pricing to generate incremental sales. Instead, focus on value added offers through product recommendations based on previous purchases.
2. LOYAL - Your Most Loyal Customers	Customers who buy the most often from your store.	Loyalty programs are effective for these repeat visitors. Advocacy programs and reviews are also common strategies. Lastly, consider rewarding these customers with Free Shipping or other like benefits.
3. WHALES - Your Highest Paying Customers	Customers who have generated the most revenue for your store.	These customers have demonstrated a high willingness to pay. Consider premium offers, subscription tiers, luxury products, or value add cross/up-sells to increase AOV. Don't waste margin on discounts.
4. REGULAR - Faithful customers	Customers who return often, but do not spend a lot.	You've already succeeded in creating loyalty. Focus on increasing monetization through product recommendations based on past purchases and incentives tied to spending thresholds.
5. ROOKIES - Your Newest Customers	First time buyers on your site.	Most customers never graduate to loyal. Having clear strategies in place for first time buyers such as triggered welcome emails will pay dividends.
6. GONE - Once Loyal, Now Gone	Great past customers who haven't bought in a while.	Customers leave for a variety of reasons. Depending on your situation price deals, new product launches, or other retention strategies.

Segmentation RFM

o. Classification Non-supervisée

Segmentation RFM

Interprétation des segments obtenus :

Treemap of RFM clusters

RecencyMean	FrequencyMean	MonetaryMean	GroupSize
73.047904	2.194611	271.292712	334
338.257627	1.000000	127.955765	48640
307.323859	2.100775	84.392004	1161
74.031496	2.127559	86.252458	635
74.259326	1.000000	164.344075	29272
223.104624	1.056115	302.833424	10122
	73.047904 338.257627 307.323859 74.031496 74.259326	73.047904 2.194611 338.257627 1.000000 307.323859 2.100775 74.031496 2.127559 74.259326 1.000000	73.047904 2.194611 271.292712 338.257627 1.000000 127.955765 307.323859 2.100775 84.392004 74.031496 2.127559 86.252458 74.259326 1.000000 164.344075

- Clustering
 - Segmentation RFM
 - o. Classification Non-supervisée

Ajout de variables supplémentaires

Actual lead time (days)

Nombre de jours nécessaires pour qu'un produit soit livré

Monetary

Issu de la segmentation marketing RFM

Recency

Issu de la segmentation marketing RFM

Review Score (Score 1-5)

Avis client

Nombre de produit achetés (par client)

=> Conclusion : Nous n'identifions pas de tendances visuelles nettes.

- 2. Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée
 - . K-means
 - ii. CAH
 - ii. DBSCAN

➤ k-means

- Paramètre à harmoniser
 - \blacksquare k voisins (K = 3)

- Métrique d'évaluation
 - Score silhouette

- 2. Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée
 - K-means
 - ii. CAH
 - ii. DBSCAN

- ➤ k-means
 - Paramètre à harmoniser
 - \blacksquare k voisins (K = 3)

- Métrique d'évaluation
 - Score silhouette

- Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée
 - i. K-means
 - ii. CAH
 - ii. DBSCAN

- ➤ k-means
 - Paramètre à harmoniser
 - \blacksquare k voisins (K = 3)

- Métrique d'évaluation
 - Score silhouette
 - Distance inter-cluster

PC2

- Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée
 - K-means
 - ii. CAH
 - DBSCAN

➤ k-means

Interprétation des segments (3 clusters)

ii. CAH

ii. DBSCAN

➤ k-means

- Interprétation des segments (3 clusters)
 - Cluster 1 (label = 0) : Clients récents livrés rapidement
 - Cluster 2 (label = 1) : Clients fidèles et tolérants
 - Cluster 3 (label = 2) : Clients exigeants déçus de la livraison

kmeans_label	delivery_timing	review_score	order_item_id	recency	monetary
0	9.303846	4.720106	1.244721	119.051722	139.369774
1	11.322123	4.656238	1.253527	380.069183	141.019543
2	13.911063	1.872737	1.603809	225.614583	154.388790

- Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée
 - i. K-means
 - ii. CAH
 - iii. DBSCAN

➤ CAH

Clustering alglomératif

- Paramètre à harmoniser
 - Choix de la distance

 (linkage criterion = ward)

- Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée
 - . K-means
 - ii. CAH
 - DBSCAN

➤ CAH

Interprétation des segments (3 clusters)

- Clustering
 - a. Segmentation RFM
 - b. Classification Non-supervisée
 - i. K-means
 - ii. CAH
 - i. DBSCAN

➤ DBSCAN

Clustering basé sur la densité

- Paramètre à harmoniser
 - Epsilon
 - Minimum sample size

hritamkumarmund.98@gmail.con

- Choix de l'algorithme
 - K-means
 - Meilleur choix
 - o CAH:
 - Gourmand en mémoire (distance quadratique)
 - OBSCAN:
 - Pas adapté à la structure des données

- Clustering
 - Segmentation RFM
 - b. Classification Non-supervisée

Sommaire

1. Préparation de la donnée

- a. Structure du dataset
- b. Nettoyage
- c. Feature Engineering

2. Clustering

- a. Segmentation RFM
 - i. Description de la méthode
 - ii. Interprétation des segments
- b. Classification non supervisée
 - i. k-means
 - ii. CAH
 - iii. DBSCAN

3. Analyse de stabilité

- a. Pourquoi une analyse de stabilité?
- b. Description de l'algorithme utilisé
- c. Contrat de maintenance préconisé

4. Conclusion

- Analyse de stabilité
 - . Pourquoi une analyse de stabilité ?
 - Description de l'algorithme utilisé
 - . Contrat de maintenance préconisé

Pourquoi une analyse de stabilité ?

- A partir de quand est-ce que le client doit renouveler le modèle ?
- A partir de quand est-ce que les données sur lesquelles le modèle a été entrainé n'est plus représentatif?
- Que les clusters ne reflètent plus les comportements des clients (évolution en fonction des saisons etc.)

Quand est-ce que l'on renouvelle l'entraînement du modèle ?

Analyse de stabilité

- Analyse de stabilité
 - a. Pourquoi une analyse de stabilité
 - b. Description de l'algorithme utilisé
 - Contrat de maintenance préconisé

- Algorithme d'analyse de stabilité
 - Division de la base de donnée :
 - **B0**: Base de donnée initiale (12 mois)
 - **B1** ... **BN** : Base de données subséquentes (12 mois + k mois).
 - Clustering selon chaque sous-base de données :
 - **C0** : clustering initiale livré au client
 - C1 ... cN : Clustering subséquents
 - Comparaison des clusterings subséquents

- Analyse de stabilité
 - a. Pourquoi une analyse de stabilité
 - Description de l'algorithme utilisé
 - . Contrat de maintenance préconisé

Maintenance préconisé à horizon 3 mois

Sommaire

1. Préparation de la donnée

- a. Structure du dataset
- b. Nettoyage
- c. Feature Engineering

2. Clustering

- a. Segmentation RFM
 - i. Description de la méthode
 - ii. Interprétation des segments
- b. Classification non supervisée
 - i. k-means
 - ii. CAH
 - iii. DBSCAN

3. Analyse de stabilité

- a. Pourquoi une analyse de stabilité ?
- b. Description de l'algorithme utilisé
- c. Contrat de maintenance préconisé

4. Conclusion

Conclusion

- Comparaisons de 3 méthodes de clustering automatiques :
 - K-means (k=3) le plus adapté à la structure de nos données
- Axes d'amélioration :
 - Connecter des données où il existe une fréquence (RFM)
 - Nouveaux indicateurs catégoriels pourraient être ajoutés pour raffiner l'analyse (k-prototype)