# **KBAI Project 3 (learning)**

#### Version 11/16/2018

| Date       | Changes (highlighted in yellow in the specification)                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 11/07/2018 | Modified example questions to remove 'daily'.                                                                                           |
| 11/07/2018 | Student agent should return string as opposed to int.                                                                                   |
| 11/07/2018 | Corrected some spelling.                                                                                                                |
| 11/10/2018 | Released version 11/10/2018.                                                                                                            |
| 11/11/2018 | Removed reference to 'class' in example statement.                                                                                      |
| 11/12/2018 | Added to statement requirements. Highlighted green words in example statements.                                                         |
| 11/13/2018 | Added sections: Question Answering Rules, Domain Limitations.                                                                           |
| 11/16/2018 | Reorganized sections to move vocabulary next to statement/question rules. Removed 'specification' and 'specifications' from vocabulary. |

|                    | Project 1                                       | Project 2                                                                                                                                                                                                                 | Project 3                                                                                                                                                                                                                              |
|--------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Understanding                                   | Classification                                                                                                                                                                                                            | Learning                                                                                                                                                                                                                               |
| KBAI<br>Algorithms | <ul><li>Thematic Roles</li><li>Frames</li></ul> | <ul> <li>Semantic Networks</li> <li>Generate and Test</li> <li>Production Systems (rules based systems) (decision trees)</li> <li>Means-Ends Analysis</li> <li>Problem Reduction</li> <li>Case Based Reasoning</li> </ul> | <ul> <li>Incremental Concept Learning</li> <li>Version Spaces</li> <li>Analogical Reasoning</li> <li>Logic</li> <li>Planning</li> <li>Scripts</li> <li>Learning by Correcting Mistakes</li> <li>Learning by Recording Cases</li> </ul> |

## Learning

"Much of human learning can be viewed as a gradual process of concept formation. In this view, the agent observes a succession of objects or events from which he induces a hierarchy of concepts that summarize and organize his experience." [2]

#### **Incremental Concept Learning**

"Incremental concept learning is intimately connected with human cognition. We can adopt two views of learning. In one view of learning, the intelligent agent is given with a large number of examples. The agent's task, then, is to detect patterns of regularity in those examples and learn those patterns of regularity. In the alternative view, the agent is given one example at a time. And the agent has to gradually, incrementally learn concepts out of those examples." [1]

#### **Version Spaces**

"Version spaces is a technique for learning concepts incrementally. This means that a technique is going to learn from a small set of examples, that are going to arrive one example at a time." [1]

#### **Analogical Reasoning**

"Analogical Reasoning involves understanding new problems, in terms of family of problems. It also involves addressing new problems, but transferring knowledge of relationships from known problems across domains." [1]

#### Logic

"Logic is a formal language that allows us to make assertions about the world in a very precise way." [1]

#### **Planning**

"Planning uses states, operators and goals in formal logic." [1]

#### **Scripts**

"A script is a knowledge representation for capturing causally coherent set of events. Casually means that one event sets of another." [1]

#### Learning by Correcting Mistakes

"Learning by correcting mistakes is a fundamental process of human learning. In fact, it may closely resemble the way you and I learn and practice. In our lives, we rarely are passive learners. Most of the time we're active participants in the learning process." [1]

#### Learning by Recording Cases

"Learning by storing cases in memory has a very strong connection to cognition. Cognitive agents like you and I are situated in a world. Our interactions with the world have certain patterns of regularity. The world offers us the same problems again and again. If we think about it, the kinds of problems that you and I deal within a routine everyday basis are the same problems that occurred yesterday and the day before." [1]

## **Project Goals**

Project 1 covered inference. Project 2 covered classification. Project 3 builds on project 2 with the addition of learning. The goal for this project is to understand learning by developing an agent that learns. "Roughly speaking, learning is the process of converting experience into expertise or knowledge. The input to a learning algorithm is training data, representing experience, and the output is some expertise, which usually takes the form of another computer program that can perform some task." [9]

In project 2, the syllabus knowledge was coded into the agent directly. For project 3, the agent must learn the syllabus. Your agent is given a knowledge base in the form of a vocabulary to bootstrap the learning process. The vocabulary is coded into the agent. The agent must use the vocabulary to learn the syllabus knowledge at run time. Bootstrapping the learning process. After learning the syllabus. The agent is asked questions about the syllabus, similar to project 2.

The resulting project 3 agent will be capable of learning a syllabus automatically and answering questions about the class defined by the syllabus. A simple virtual TA. Although simple, the KBAI techniques used in projects 2 and 3 are the same KBAI techniques used in Jill Watson.



## **Project Details**

For project 2 you were given a syllabus in advance. You "trained" your agent by coding the syllabus details into the agent. For project 3, your agent must learn a syllabus at runtime. The only prior knowledge is the vocabulary.

Your agent will be given a list of statements using the vocabulary to describe a syllabus (world). Your agent must then answer yes/no/I Don't Know(IDK) questions about the resulting syllabus (world). The only available prior knowledge of the syllabus (world) is the vocabulary.

#### Sequence Diagram



#### Sequence

- 1. AgentGrader instantiates AgentInterface which instantiates StudentAgent
- 2. AgentGrader calls LoadSyllabus() with a list of **statements**
- 3. The StudentsAgent should build its model based on the **statements** before returning from LoadSyllabus()
- 4. The AgentGrader will call input\_output() with questions one at a time (just like P1 and P2).
- 5. For each question, the StudentAgent should return string: "no", "idk", "yes

### Syllabus Definition

After your agent is instantiated, it will be passed a list of statements using the vocabulary. The statements are training data. Your agent must build a model of the syllabus based on the training data. After training, your agent will be asked questions about the syllabus. Your agent must use its model to answer the questions.

Your agent does not know anything about the syllabus in advance. The examples (statements and questions) below are strictly examples. The test syllabus will be unique within the limitations of the defined below.



## Domain Vocabulary

| project                   | the   | Al     | piazza | yaroslav  | monday          |
|---------------------------|-------|--------|--------|-----------|-----------------|
| projects                  | will  | during | due    | mandatory | tuesday         |
| assignment                | be    | long   | slack  | python    | wednesday       |
| assignments               | in    | and    | ashok  | canvas    | thursday        |
| midterm                   | is    | pdf    | goel   | learning  | friday          |
| final                     | of    | doing  | start  | everyday  | saturday        |
| course                    | has   | need   | litvak | finish    | sunday          |
| announcements             | to    | into   | posted | complete  | procedure       |
| instructor                | are   | turn   | class  | check     | reading-list    |
| report                    | а     | xx%    | week   | many      | contribute      |
| reports                   | this  | java   | weeks  | submit    | class-grade     |
| <del>specification</del>  | as    | C++    | videos | there     | morning         |
| <del>specifications</del> | by    | close  | hours  | reading   | midnight        |
| exams                     | for   | list   | video  | human     | classroom       |
| strategies                | on    | book   | late   | occurs    | available       |
| strategy                  | all   | does   | end    | example   | submitted       |
| policy                    | occur | docx   | files  | regularly | distributed     |
| peer-feedback             | must  | text   | after  | should    | attendance      |
| office-days               | no    | worth  | write  | method    | knowledge-based |
| content                   | every | file   | learn  | planning  | self-reflection |
| communication             | do    | open   | have   | cognition | peer-to-peer    |
| submissions               | can   | turned | teach  | released  | decision-making |
| TA                        | get   | credit | 0-100  | preferred | collaboration   |
| component                 | I     | zip    | grade  |           |                 |
| code                      | if    | gz     | work   |           |                 |
| policies                  | my    | bz2    | begin  |           |                 |

To avoid confusion, this table is the single source vocabulary reference

| green<br>background | Syllabus objects. These objects represent concepts for a generic classroom.  These concepts are derived from reviewing various class syllabi.  Some concepts are discrete, but others may overlap.  To learn more about how some of these concepts apply to a syllabus, please review the syllabus for this class as an example. |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| white background    | These words are either assigned to concepts, or used to make assignments to concepts.                                                                                                                                                                                                                                            |

## Example Syllabus

| Statements                                  | Questions                                       |     |                                               |
|---------------------------------------------|-------------------------------------------------|-----|-----------------------------------------------|
| (loaded at initialization)                  | (asked after initialization)                    | Ans | Explanation                                   |
| the course is 10 weeks                      | is this a 16 week class                         | no  | course = 16week                               |
| project 1 will be available start of week 3 | does project 1 begin on week 3                  | yes | project 1 = week 3                            |
| Project 1 will be due end of week 6         | is project 1 due on week 6                      | yes | project 1 = week 6                            |
| projects must be turned into canvas         | do I submit projects to canvas                  | yes | project = canvas                              |
| assignment 1 will be released in week 6     | can I get assignment 1 in week 6                | yes | Assignment 1 = week 6                         |
| assignment 1 is due week 7                  | do I have 1 week to complete assignment         | yes | Assignment 1 = week 7 - week 6                |
| the midterm occurs on week 8                | is there a midterm                              | ,   | Midterm = week 8                              |
| the final occurs on week 9                  | Is the final during week 9                      | yes | Final = week 9                                |
| the final must be submitted to piazza       | do I need to check piazza everyday              | idk | We have no data to infer this                 |
| projects are submitted as zip files         | do I turn in my project as a pdf                | no  | project = zip                                 |
| assignments are submitted as pdf files      | do I turn in my assignments as zip files        | no  | assignment = pdf                              |
|                                             | are there 2 projects                            | no  | project 2 = NULL                              |
|                                             | is the midterm after assignment 1               | yes | Assignment 1 = week, Midterm = week 8         |
|                                             | will I have 3 weeks to finish project 1         | yes | project 1 = available week 3                  |
|                                             | can I have 4 weeks to finish project 1          | no  | project 1 = 3 weeks (has release and due)     |
|                                             | can I start project 1 in week 2                 | no  | project 1 = available week 3                  |
|                                             | do I need to check Piazza regularly             | idk | We have no data to infer this                 |
|                                             | will I learn human cognition                    | idk | We have no data to infer this                 |
|                                             | is project 1 worth 15%                          | idk | We have no data to infer this                 |
|                                             | is assignment 1 worth 20%                       | idk | We have no data to infer this                 |
|                                             | does this class teach knowledge-based Al        | idk | We have no data to infer this                 |
|                                             | are projects distributed on Canvas              | idk | See question and answer rules                 |
|                                             | does this class have projects and assignments   | yes | project 1, Assignment 1                       |
|                                             | is there a final in this class                  | yes | Final = week 9                                |
|                                             | are there many projects                         | no  | project 2 = NULL                              |
|                                             | is there a procedure for project 1              | idk | This question is too complex for this project |
|                                             | can I submit projects to Piazza                 | no  | project = canvas                              |
|                                             | should I code my projects in Python             | idk | We have no data to infer this                 |
|                                             | does project 1 contribute 15% to my grade       | idk | We have no data to infer this                 |
|                                             | do I need to write a report for project 1       | idk | We have no data to infer this                 |
|                                             | do I need to check Piazza regularly             | idk | We have no data to infer this                 |
|                                             | If I turn in project 1 late do I get credit     | idk | We have no data to infer this                 |
|                                             | Is Piazza the preferred method of collaboration | idk | We have no data to infer this                 |

### **Test Statement/Question Constraints**

#### **Statement Limitations**

Statements are limited to the domain vocabulary.
Statements are limited to 11 words including digits.
Statement must contain one and only one green word.
Statements are both simple and semantically correct.

#### **Question Limitations**

Questions are limited to the domain vocabulary Questions are limited to 11 words including digits

Question must be answerable with yes, no, or I do not Know (IDK)

Questions are semantically correct.

#### **Domain Limitations**

- No object will be assigned 100% of the grade.
- No question will require inferring a grade %.
- There will be no conflicting information.
- If project X exists, so does projects (X-1), (X-2), (X-3), .....
- Many means more than 1.
- No commas in statements or questions.
- Questions will be similar to project 2.

#### **Question Answering Rules**

The goal is to provide an answer to the user that is as accurate as possible.

- To do this, the agent must be able to answer 'I Do not Know".
- IDK tells the user to look for the answer using another resource.
- We need to use open-world assumption, but with some rules to explicitly define when to use **idk** versus **no**.
- With the goal of helping the user as much as possible, we want to answer no, only when we are sure the answer is no.

| yes | If the object/concept is assigned a parameter the questions explicitly asks about.  If the question asks about data that can be inferred from a combination of parameters.                                                                                                                                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| no  | If the object/concept is assigned a parameter the questions explicitly asks about.                                                                                                                                                                                                                                                                             |
| idk | If the data required for the answer is not explicitly defined or cannot be inferred from explicit definitions.  If the agent has conflicting information.  Are projects distributed on Canvas? Although projects are turned into Canvas, it is risky to infer they are distributed by Canvas. It would be best for the user to get this information elsewhere. |

### Student Examples

Statement: project 1 is due week 3 Statement: project 2 is due week 6

Statement: project 3 is due week 9

Statement: projects must be turned into canvas

Question: Must I turn project 4 into canvas? <<< is this idk or no

conflicting information - There is no project 4, all projects are turned into Canvas

Answer: idk

Statement: The class is on Monday and Wednesday.

Statement: Attendance is mandatory on Monday and Wednesday.

Question: Does the class have mandatory attendance? - YES

Question: Is attendance mandatory everyday in class? - YES

#### What to Do

- 1. Create a syllabus defining the attributes of the objects (green in vocabulary chart).
- 2. Encode the syllabus into statements using the vocabulary (this is your training set).
- 3. Share your statements on Piazza.
- 4. Create a list of yes/idk/no questions about your syllabus.
- 5. Share your questions on Piazza.
- 6. Help your fellow classmates, and ask questions about their syllabus on Piazza.
- 7. Test your agent with your syllabus statements, and those of your classmates.

#### Getting the code

git clone <a href="https://github.gatech.edu/Dilab/CS7637AOProjects.git">https://github.gatech.edu/Dilab/CS7637AOProjects.git</a>

Look in project 3 directory

### Executing the code (you must use Python 3)

python AgentGrader.py -v

#### Code (in project 3 directory)

| File              | Change? | Description                                                                                                    |
|-------------------|---------|----------------------------------------------------------------------------------------------------------------|
| syllabus.json     |         | Contains an example syllabus defined by statements along with example questions. Overwrite with your syllabus. |
| StudentAgent.py   | YES     | Add your code here                                                                                             |
| Syllabus.json     | YES     | Example statements and questions                                                                               |
| AgentInterface.py | NO      | Autograder to agent interface                                                                                  |
| AgentGrader.py    | NO      | The autograder will test your agent and output a result                                                        |

You can ADD more files for your project. The autograder simply overwrites the files in red above.

### Grading

The autograder will pass a syllabus to your agent as a list of statements. The autograder will then ask your agent a set of yes, idk, and no questions. Your agent gets one point for each correct answer.

# Reflection Rubric (50% of grade) (scientists ask why)

| Item # | Р  | Address in your report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 10 | <ul> <li>Metacognition: Given a syllabus described by a "list of statements":</li> <li>As you read the "list of statements", explain your cognitive process.</li> <li>What happens with your mental model after your read each statement?</li> <li>What prior knowledge, did you (as a human) require to create your mental model?</li> <li>How did the number of statements affect your resulting mental model?</li> </ul>                                                                                                                                      |
| 2      | 10 | <ul> <li>Map human thought processes to KBAI techniques: Based on your experience answering question 1.</li> <li>Create a diagram that describes the cognitive process you used to creating your mental model from question 1.</li> <li>How do the KBAI techniques taught in class compare to the cognitive processes you followed in question 1?</li> <li>Are there techniques you use for which there is no corresponding KBAI technique?</li> <li>What are the tasks or processes at which human brains perform better than computational systems?</li> </ul> |
| 3      | 10 | <ul> <li>Program a learning agent based on your cognitive process: Based on your diagram from question 2.</li> <li>Create a diagram of your agent.</li> <li>Compare this diagram to the diagram of your mental model (created in question 2).</li> <li>Explain the comparison with an emphasis on why. Why are there differences?</li> <li>Please mention any tradeoffs you faced and explain the rationale behind your design decisions.</li> </ul>                                                                                                             |
| 4      | 10 | <ul> <li>Reflection:</li> <li>How are these differences reflected in the approaches we use to solve problems?</li> <li>Assuming an infinitely scalable vocabulary, what, if any, are the limitations of your chosen process?</li> <li>Will it be close to human-level intelligence, why or why not?</li> </ul>                                                                                                                                                                                                                                                   |
| 5      | 10 | <ul> <li>Speculation:</li> <li>What makes a question answering system "robust" or "brittle"?</li> <li>Where does your agent fall on that spectrum?</li> <li>There is an agent (written using KBAI techniques) running on Piazza for this class.</li> <li>Who do you think is the agent? Why?</li> </ul>                                                                                                                                                                                                                                                          |

Please refer to the class syllabus for guidance on report writing and word limits.

#### Libraries

Only libraries listed below are allowed. Your code can only import modules you have created or modules listed in the table below.

## Legal Libraries (ALL OTHER LIBRARIES ARE NOT PERMITTED)

| Python 3 standard library ( <a href="https://docs.python.org/3/library/">https://docs.python.org/3/library/</a> ) |  |
|-------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                   |  |

The autograding machine will not have any additional libraries installed. Please verify your imports do not require any libraries not listed above. If you use any libraries not listed above, your code will not run on the autograding machine and you will get a 0.

Some Python IDE's will automatically import debug libraries. Please test your final code outside of the IDE directly from the command line in a clean Python environment.

### References

- 1. KBAI Ebook
- 2. <u>Gennari, John H., Pat Langley, and Doug Fisher. "Models of incremental concept formation." Artificial intelligence 40.1-3 (1989): 11-61.</u>
- 3. Aha, David W. "Case-based learning algorithms." Proceedings of the 1991 DARPA Case-Based Reasoning Workshop. Vol. 1. 1991.
- 4. Structural Case-Based Reasoning and Ontology-Based Knowledge Management: A Perfect Match?
- 5. Explanation-Driven Case-Based Reasoning
- 6. An Ontology-based Similarity Measurement for Problem-based Case Reasoning
- 7. An Ontology-Supported Case-Based Reasoning Technique for FAQ Proxy Service
- Amjad Abou Assali, Dominique Lenne, Bruno Debray. Case retrieval in ontology-based CBR systems.
   <u>MERTSCHING, B.</u>; HUND, M.; AZIZ, Z. 32. Annual Conference on artificial intelligence (KI 2009).
   <u>Sep 2009, Paderborn, Germany. Springer, 5803, pp.564-571, 2009, Lecture Notes in Artificial Intelligence</u>. <10.1007/978-3-642-04617-9 71>.
- 9. <u>Understanding Machine Learning: From Theory to Algorithms</u>
- 10. Building Machines That Learn and Think Like People
- 11.