USTHB, Faculté de Mathématiques 1ère année LMD MI Section 03

Epreuve finale d'Analyse I

Exercice 1 (3 pts): Soit $f:[0,1] \to \mathbb{R}$ une fonction continue telle que f(0)=f(1). Montrer que l'équation $f(x)-f(x+\frac{1}{2})=0$ admet une solution dans $\left[0,\frac{1}{2}\right]$.

Exercice 2 (3 pts): Pour $n \in \mathbb{N}^*$, on pose

$$f_n(t) = \sum_{k=1}^{k=n} \frac{t^k}{k!} = 1 + t + \frac{t^2}{2!} + \dots + \frac{t^n}{n!}.$$

Montrer que pour tout x > 0 et $n \in \mathbb{N}^*$, $\exp(x) > f_n(x)$.

O Exercice 3 (3 pts): Soient $a, b \in \mathbb{R}$ et

$$f(x) = \begin{cases} e^x - a \sin x < 0 \\ b \ln(1+x) \sin x \ge 0. \end{cases}$$

Pour quelles valeurs de a et b la fonction f est

i) continue en 0,

ii) dérivable en 0.

Exercice 4 (3 pts): Soit $f:]0, +\infty[\to \mathbb{R}$ définie par $f(x) = \frac{1}{x}$, en utilisant le théorème des accroissements finis pour la fonction f sur l'intervalle [k, k+1] où $k \in \mathbb{N}^*$, montrer que la suite (u_n) définie par

 $u_n = \sum_{k=1}^{k=n} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$

est majorée par 2.

Conclure pour la nature de la suite (u_n) .

9 Exercice 5 (5 pts): Calculer les limites suivantes:

$$\lim_{x \to 0} \frac{\exp(\sin(x)) - \sin(x) - 1}{1 - \cos(x)}, \quad \lim_{x \to 0} \frac{2\sqrt{1 + x} - 2 - x}{2x^2},$$

$$\lim_{x \to 0} \frac{\ln(1 + \sin(x)) - \sin(x) + 1 - \cos(x)}{x^3}.$$

O Exercice 6 (3 pts): Etudier suivant le paramètre réel α la nature de la suite (V_n) définie par $V_0 = \alpha$, $V_{n+1} = \frac{1}{2}V_n + 1$ pour tout $n \in \mathbb{N}$.

Obligations d'examen:

1) L'usage des calculatrices, d'effaceurs et de téléphones portables est interdit.

2) Toute réponse non justifiée ou qui ne répond pas clairement à la question, ne sera pas prise en considération.