Question 1 (10 points)

- Partial Credit:
 - This question is only based on the **answer**, not the process.
 - No partial credit is available for the process.
- Grading Criteria:
 - (1) Yes (or other positive answers, **5 points**)
 - (2) No (or other negative answers, 5 points)
- Explanation:
 - Illegible or intentionally confusing handwriting will be considered incorrect and receive 0 point.

Question 2 (10 points)

- Partial Credit:
 - \circ Proving |A|=|B| part earns **2 points**.
 - Proving |A| < |B| part earns **4 points**.
 - Proving |A| > |B| part earns **4 points**.
- Grading Criteria:
 - **Exampling is not the proof!** The example will be ignored if it is a proof question.
 - Deductions may be made for the use of **imprecise or flawed methods of proof**, such as "obvious," "easily seen," "definitely," or simple drawings without explanation.
 - Deductions may be made for **errors** in conditions, reasoning, or conclusions during the proof.

Question 3 (10 points)

- Partial Credit:
 - \circ Correctly writing $(B-A)=B\cap\overline{A}$ (2 points) and $(C-A)=C\cap\overline{A}$ (2 points).
 - \circ Expanding and calculating or directly applying set identity theorems to get $(B \cup C) \cap \overline{A}$ (4 points).
 - Using definitions to derive the conclusion $(B \cup C) A$ (2 points).
- Grading Criteria:
 - If it is not proven using the set identities based method, the maximum score should not exceed 5 points.

Question 4 (10 points)

• 1 point for **each** correct answer.

Question 5 (10 points)

- Partial Scores for Completing the Process:
- 1. By definition

```
|A| \leq |B| means that there is (1 point) a injective function f: A \to B (1 point)
```

$$|B|=|C|$$
 means that there is (1 point) a bijective function $g:B\to C$ (1 point)

- 2. Then, by definition we need to show there is a injective function from A to C(1 **point**). It suffices to show the composition $g \circ f$ (1 **point**) is injective: i.e., for any $x,y \in A$ such that $x \neq y$, we have $g \circ f(x) \neq g \circ f(y)$.
- 3. The above holds because f and g are both injective:

```
f injective: for any x,y\in A such that x
eq y , we have f(x)
eq f(y) (1 point)
```

g injective: for any $x,y\in B$ such that x
eq y , we have g(x)
eq g(y) (1 point)

- 4. So, for $x,y\in A$ such that $x\neq y$, we have $f(x)\neq f(y)$ with $f(x),f(y)\in B$, and hence $g(f(x))\neq g(f(y))$, i.e., $g\circ f(x)\neq g\circ f(y)$. (2 **point**)
- General Scoring Criteria:
 - Process 1:

Mention there is a injective (one to one) function from $A \to B$, give **2 point**. (incomplete/inaccurate statement give **1 point**, otherwise **0 point**)

Mention there is a bijective (injective) function from $B \to C$, give **2 point**. (incomplete/inaccurate statement give **1 point**, otherwise **0 point**)

o Process 2:

If mentioned there is a injective function from A to C, give **1 point**. If mentioned composition $g \circ f$ is injective and correctly write the term of composition, give **1 point** (otherwise, **0 point**)

o Process 3 and 4:

Contrapositive statement derive by definition, give **4 point**. Incomplete/inaccurate statement give **1-3 point**, otherwise **0 point**.

• Other way to prove (discretionary grading).

Contact

If you have any questions, contact corresponding TA:

Q1-3: 12112910 罗嘉诚

Q4-5 and Grade computation: 12332414 李昊洋