9/2/25, 8:29 PM about:blank

Reading: Understanding Relational Model Constraints

Estimated time: 15 minutes

Objectives

After completing this reading, you will be able to:

- Define and identify entity integrity, referential integrity, and domain integrity constraints
- · Explain how each constraint maintains data integrity
- · Recognize examples of how these constraints are implemented in SQL

Overview

In any well-designed database, maintaining data integrity is essential to ensure the accuracy, consistency, and reliability of the stored information. This lab focuses on three key relational model constraints:

- · Entity Integrity
- · Referential Integrity
- Domain Integrity

These constraints enforce rules on how data is stored and related within tables.

Imagine you are building a Database BookShopDB. You need to ensure that:

- Each book and author has a unique identifier.
- · Every book must be linked to a valid author.
- Attributes like price, title, and date must have values within an acceptable range and format.

This reading will walk you through these constraints with examples to solidify your understanding.

Sample view of the tables used in this reading

1. BookShop table

This is a sample table structure and data view for the BookShop table used in this reading.

2. BookShop_AuthorDetails table

This is a sample table structure and data view for the BookShop_AuthorDetails table used in this reading.

Types of relational model constraints

Entity integrity constraint

This constraint ensures that every table in a relational database has a primary key. A primary key uniquely identifies each row in the table. A primary key column(s):

- must not contain NULL values
- must be unique across all rows

This constraint guarantees that each record (or entity) in a table is distinct and identifiable, preventing duplication and missing identifiers.

Example:

about:blank 1/3

```
CREATE TABLE BOOKShop (
BOOK_ID INT PRIMARY KEY,
TITLE VARCHAR(100),
AUTHOR_ID INT
):
```

Explanation

Here, BOOK ID is the primary key. It must be:

- Unique (no two books can have the same ID)
- Not NULL (every book must have an ID)

Note: Every table in a relational database should have a primary key to satisfy entity integrity.

Referential integrity constraint

This constraint ensures that a **foreign key** in one table always refers to a valid **primary key** in another table. This maintains **consistent and meaningful relationships** between tables.

It enforces the logical link between related data in different tables, preventing the existence of invalid or "orphaned" references.

Example

```
CREATE TABLE BookShop_AuthorDetails (
   AUTHOR_ID INT PRIMARY KEY,
   AUTHOR_NAME VARCHAR(100)
);
CREATE TABLE BookShop (
   BOOK_ID INT PRIMARY KEY,
   TITLE VARCHAR(100),
   AUTHOR_ID INT,
   FOREIGN KEY (AUTHOR_ID) REFERENCES BookShop_AuthorDetails(AUTHOR_ID));
```

Explanation

AUTHOR_ID in BookShop references AUTHOR_ID in BookShop_AuthorDetails.

This means every AUTHOR_ID in BookShop must exist in BookShop_AuthorDetails.

Trying to insert a book with an AUTHOR ID that doesn't exist in BookShop AuthorDetails will fail.

Domain integrity constraint

This constraint ensures that all values stored in a column fall within a defined domain. This includes rules about:

- · Data type
- Format
- Allowed values
- Nullability

It helps ensure that data in a column is valid, logical, and consistent with its intended use.

Example:

```
CREATE TABLE BookShop (
   BOOK_ID INT PRIMARY KEY,
   TITLE VARCHAR(100) NOT NULL,
   PRICE DECIMAL(5, 2) CHECK (PRICE >= 0),
   PUBLISHED_DATE DATE
);
```

about:blank 2/3

9/2/25, 8:29 PM about:blank

Explanation

Two standard mechanisms used to enforce domain integrity are the CHECK and NOT NULL constraints:

1. CHECK constraint

The CHECK constraint enforces rules about the range or pattern of acceptable values within a column. It ensures that the data entered meets specific logical conditions.

• The PRICE column in the example above has a CHECK constraint to ensure it's not negative.

2. NOT NULL constraint

The NOT NULL constraint enforces nullability rules, ensuring that a column must contain a value and cannot be left empty (NULL).

• TITLE is NOT NULL. A title must be provided.

Summary

In this reading, you explored three key types of constraints used in relational databases. By applying these constraints, you can create accurate, consistent, and easy-to-manage databases.

Author(s)

Monika Singh

