

Understanding IPv4 Addresses & Binary Math

Understanding IPv4 Addresses

- An IP Address is a logical address used in order to uniquely identify a device on an IP network.
- It's a Network Layer Address
- There are Two Versions:
 - o IP version 4 (IPv4)
 - IP version 6 (IPv6)
- This lesson focuses on IPv4, and we'll discuss IPv6 later in the course.

IPv4 Address Anatomy

- Made up of 32 binary bits, which can be divided into a **network portion** and a host portion with the help of a subnet mask.
 - o The 32 binary bits are broken into four octets (1 octet = 8 bits).
 - Each octet is converted to decimal and separated by a period (dot).
 - o For this reason, an IP address is said to be expressed in dotted decimal format.

IPv4 Address Anatomy

First Octet	Second Octet	Third Octet	Fourth Octet
192	168	1	131
11000000	10101000	00000001	10000011
8 bits	8 bits	8 bits	8 bits

Network and Host Portion

- An IP address is broken down into two parts:
 - Network Address
 - Uniquely identifies each network
 - Your Street Name: 7682 Wilshire Drive
 - Host Address
 - Uniquely identifies each machine on a network
 - Your House Address: 7682 Wilshire Drive
- Network Address + Host Address = IP Address
 - Wilshire Drive 7682

IPv4 Address Components

- Each device on a network is assigned an IP address, subnet mask and default gateway:
 - o **IP Address**: Unique logical address assigned to each device on a network.
 - Subnet Mask: Used by the device to determine what subnet it's on, specifically the network and host portions of the IP address.
 - Default Gateway: The IP address of a network's router that allows devices on the local network to communicate with other networks.

```
Microsoft Windows [Version 10.0.18363.1256]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\Users\Alton>ipconfig
Windows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suffix :
Link-local IPv6 Address . . . : fe80::60e8:cb47:2617:cd4b%10
IPv4 Address . . . . : 192.168.0.254
Subnet Mask . . . . : 255.255.255.0
Default Gateway . . . . : 192.168.0.1
```


Binary Math Basics

Basics of Binary Math

Lecture Goals

- Convert Binary to Decimal
- Convert Decimal to Binary

Basics of Binary Math

Why is it important?

We need to know basic binary math to perform subnetting, as well as to understand how IPv4 addresses work.

Remember This

What is the binary IIIIIII in decimal?

	128	64	32		16		8		4		2		1	
Binary	1	1	1		1		1		1		1		1	
Decimal	128 +	64	+ 32	+	16	+	8	+	4	+	2	+	1	= 255 Decimal

Add the number where there is a "1". Add zero, when there is a "0".

What is the binary 10101010 in decimal?

	128	64		32		16		8		4		2		1	
Binary	1	0		1		0		1		0		1		0	
Decimal	128 +	0	+	32	+	0	+	8	+	0	+	2	+	0	= 170 Decimal

Add the number where there is a "1". Add zero, when there is a "0".

What is the binary 10000011 in decimal?

	128	64		32		16		8		4		2		1	
Binary	1	0		0		0		0		0		1		1	
Decimal	128 +	0	+	0	+	0	+	0	+	0	+	2	+	1	= 131 Decimal

Add the number where there is a "1". Add zero, when there is a "0".

What's 192 in binary?

	128	64		32		16		8		4		2		1		
Binary	1	1		0		0		0		0		0		0	=	11000000
Decimal	128 +	64	+	0	+	0	+	0	+	0	+	0	+	0	=	192 Decimal

Start adding the numbers from left to right until you achieve the decimal amount you are looking for!

What's 202 in binary?

	128	64		32		16		8		4		2		1		
Binary	1	1		0		0		1		0		1		0	=	11001010
Decimal	128 +	64	+	0	+	0	+	8	+	0	+	2	+	0	=	202 Decimal

Start adding the numbers from left to right until you achieve the decimal amount you are looking for!

What's 54 in binary?

	128		64		32		16		8		4		2		1		
Binary	0		0		1		1		0		1		1		0	=	00110110
Decimal	0	+	0	+	32	+	16	+	0	+	4	+	2	+	0	=	54 Decimal

Start adding the numbers from left to right until you achieve the decimal amount you are looking for!

IP Address Conversion Process

192.	168.	32.	4	Dotted Decimal
11000000.	10101000.	00100000.	00000100	Binary
1st Octet	2 nd Octet	3 rd Octet	4 th Octet	

Whether you are given an IP address in dotted-decimal or binary format, follow the respective process above for each octet one by one until you have completed the process.