Obrada informacija: Prva laboratorijska vježba

Rijeke imaju veliki gospodarski značaj, od termoelektrana i nuklearnih elektrana kojima su rijeke nužne za rad, javne vodoopskrbe do poljoprivrede i transporta. Premda ljudi danas uvelike upravljaju vodotocima, uslijed vremenskih prilika ipak može doći do poplava, erozija tla i sličnih prirodnih nepogoda. Kako bismo se mogli na vrijeme pripremiti za potencijalne probleme, potrebno je istražiti ponašanje rijeka na temelju višegodišnjih praćenja vodostaja. U ovoj laboratorijskoj vježbi ćete analizirati vodostaje rijeke Save kroz period od 25 godina.

Unutar komprimiranog direktorija u kojem se nalazi ova bilježnica, nalazi se i .mat datoteka s podacima o vodostaju rijeke Save u periodu od 1.1.1982. do 31.12.2007. Svaki podatak označava jedan dan mjerenja vodostaja.

Vježba se izvodi u Pythonu/Google Colabu, a sve naredbe potrebne za provedbu vježbe te njihova objašnjenja dana su u predavanju. Ova laboratorijska vježba nosi 3 boda.

Kad ste gotovi s vježbom, na *Moodle* postavite .pdf izvješće s vježbe (.pdf izvješće možete generirati s naredbom File-Print-Location: PDF).

1. Učitajte biblioteke: NumPy, matplotlib.pyplot, scipy.fft, signal iz scipy te pywt.

```
# Ovo je mjesto na kojem možete izvoditi svoj kod.
import numpy as np #
import matplotlib.pyplot as plt #
from scipy.fft import fft #
from scipy import signal #
import pywt #
```

2. Učitajte podatke o vodostaju iz .mat datoteke koja se nalazi unutar istog komprimiranog direktorija. Učitani podaci su spremljeni u rječnik. Izdvojite ključ i pripadne podatke o vodostajima te po potrebi smanjite dimenziju.

Savjet: .mat datoteku učitajte sa svog Google Drivea (unutar mape Colab Notebooks na svom Google Driveu postavite .mat datoteku). Ostali savjeti nalaze se u sljedećem programskom odsječku.

```
# Ovo je mjesto na kojem možete izvoditi svoj kod.
from google.colab import drive
drive.mount('/content/drive')
```

3. Ispišite: broj dana za koje postoje podaci o vodostajima, srednju vrijednost vodostaja, standardnu devijaciju, minimalnu vrijednost, maksimalnu vrijednost te median.

```
# Ovo je mjesto na kojem možete izvoditi svoj kod.
kobas = kobas_iz_matlaba['kobas']
kobas = np.squeeze(kobas)
#kobas = kobas[0].toList()
print(kobas.size)
print(np.mean(kobas))
print(np.std(kobas))
print(np.min(kobas))
print(np.max(kobas))
print(np.median(kobas))
     9496
     294.25758213984835
     183.09167165945507
     17
     878
     255.0
```

4. Nacrtajte vodostaj. Obilježite x i y os te naslov slike.

```
plt.figure(figsize=(20,6))
#plt.subplot(1,1,1)
#plt.stem(kobas)
plt.title('Vodostaj')
plt.xlabel('n')
plt.ylabel('x(n)')
#plt.xticks(np.arange(0,len(kobas)))
```

```
time = np.arange(v,len(kobas))
plt.plot(time,kobas)
plt.show()
```


5. Izračunajte diskretnu Fourierovu transformaciju zadanog vodostaja. Ispišite dobivene vrijednosti. Nacrtajte apsolutnu vrijednost dobivenih koeficijenata.

```
# Ovo je mjesto na kojem možete izvoditi svoj kod.
#x = np.array(kobas)
#print(x)
X = fft(kobas)
print(X)

plt.figure(1)
plt.subplot(1,1,1)
plt.stem(np.abs(X))
#plt.plot(X,absX)
plt.xlabel('k')
plt.ylabel('|X(k)|')
```

```
#plt.yticks(np.arange(0,kobas.size,step=1))
plt.show()
```

```
[2794270. -0.j -9312.52756202+49784.33987081j 80617.82235263-75905.53826228j ... -75144.8689581 -18406.78122837j 80617.82235263+75905.53826228j -9312.52756202-49784.33987081j]
```


6. Izračunajte Fourierovu transformaciju na vremenskom otvoru zadanog vodostaja koristeći pravokutni otvor širine 2 godine. Prikažite rezultat pomoću pcolormesh. Odgovorite: koje frekvencije su vidljive u vodostaju? Koje godine se javljaju?

```
# Ovo je mjesto na kojem možete izvoditi svoj kod.
fs = 365
window = 'boxcar'
f,t,Zxx = signal.stft(kobas,fs,window,nperseg=365*2) #slajd 73
#plt.plot()
plt.pcolormesh(t,f,np.abs(Zxx),vmin=0,vmax=np.abs(Zxx.max())/10,shading='gouraud')
plt.colorbar()
plt.title('STFT amplituda')
plt.ylabel('frekvencija k')
plt.xlabel('vrijeme(godine)')
plt.show()
```


Vide se veće amplitude za mali k (do otprilike 4). Možemo zaključiti da kako se k povećava sve je veći razmak između susjednih amplituda. Za npr. k = 1 vidimo uglavnom jaču prisutnost frekvencija a kad je k = 2 vidimo razmake između. Malo su očitije godine: 7,10,22,25

7. Upotrijebite drugu širinu otvora (po izboru) i ponovite prethodni zadatak. Ispišite koju širinu ste upotrijebili. Objasnite razlike u dobivenim slikama.

```
fs = 365
T = 365
window = 'boxcar'
f,t,Zxx = signal.stft(kobas,fs,window,nperseg=T/2)

print(T/2)
plt.figure(figsize=(12,5))
plt.pcolormesh(t,f,np.abs(Zxx),vmin=0,vmax=np.abs(Zxx.max())/10,shading='gouraud')
plt.colorbar()
plt.title('STFT amplituda')
plt.ylabel('frekvencija k')
plt.xlabel('vrijeme(godine)')
plt.xlabel('vrijeme(godine)')
plt.show()
```


Razlika je u tome što je u drugoj slici korišten kraći vremenski interval (pola godine) pa dobivamo bolju rezoluciju za vrijeme, ali lošiju za frekvenciju k. Sada malo bolje vidimo koje godine se javljaju.

8. Ispišite sve obitelji kontinuiranih valića koje se nalaze u PyWavelets biblioteci. Na istoj slici, koristeći subplot naredbu, nacrtajte dvije valićne funkcije po izboru. U naslovu svake slike napišite o kojim valićima se radi.

```
print(pywt.wavelist(kind='continuous'))
wave1 = 'morl'
wave2 = 'mexh'

w = pywt.ContinuousWavelet(wave1)
psi, t = w.wavefun(level=10)

plt.figure(1)
plt.subplot(2,1,1)
plt.plot(t,psi)
plt.title('Morlet wavelet')
plt.xlabel('time')
```

```
plt.ylabel('amplitude')
w = pywt.ContinuousWavelet(wave2)
psi, t = w.wavefun(level=10)

plt.subplot(2,1,2)
plt.plot(t,psi)
plt.title('Mexican hat')
plt.xlabel('time')
plt.ylabel('amplitude')

plt.show()
```

['cgau1', 'cgau2', 'cgau3', 'cgau4', 'cgau5', 'cgau6', 'cgau7', 'cgau8', 'cmor', 'fbs $\,$

9. Koristeći Morlet valić, odredite kontinuiranu valićnu transformaciju zadanog vodostaja. Nacrtajte apsolutnu vrijednost dobivenih koeficijenata. Odgovorite: koje frekvencije su vidljive u vodostaju? Koje godine se javljaju?

```
# Ovo je mjesto na kojem možete izvoditi svoj kod.
val = 'morl'
T = 365
w = pywt.ContinuousWavelet(val)
psi, t = w.wavefun(level=10)
```

```
step = 0.7
skala = np.arange(0.1,2*T,step)
coef, freqs = pywt.cwt(kobas,skala,val)

plt.matshow(abs(coef))
plt.xticks(np.arange(0, kobas.size, 365), np.arange(1982, 2009, 1))
plt.yticks([T//12,T//4,T//2,T])
plt.title('Morlet')
plt.show()
```


Najizraženije amplitude su za k = 1 za godine: 1982-1988, 1993-1995,2000-2001,2003-2005. Također su u manjoj mjeri vidljive amplitude za k = 2.

10. Odgovorite: objasnite razliku u dobivenim rezultatima STFT i CWT.

STFT: dijeli podatke na segmente i na svakom segmentu obavi FT. Rezolucija slike temelji se na širini prozora. Manja širina daje bolju sliku za vrijeme, ali lošiju za frekvenciju. Također, STFT se koristi za diskretnu analizu.

CWT: koristi se za kontinuiranu analizu. Ne vidi se podjela signala u pravokutnike. Umjesto otvora, CWT upari dani signal sa kontinuiranim valićem i rezultat je graf koji pokazuje jačinu pojedinih frekvencija za neki trenutak u vremenu. CWT je više intenzivan za računala.

9 of 9