## Simple procedures

Karl B Christensen

http://publicifsv.sund.ku.dk/~kach/SPSS

## 2. Simple procedures

- transformation
- descriptive procedures
- selection
- sorting data: split file
- graphical representation

## Example: Lung function in cystic fibrosis patients

## Data from O'Neill et.al. (1983)

| Sub | Age | Sex | Height | Weight | BMP | $FEV_1$ | RV  | FRC | TLC | PEmax |
|-----|-----|-----|--------|--------|-----|---------|-----|-----|-----|-------|
| 1   | 7   | 0   | 109    | 13.1   | 68  | 32      | 258 | 183 | 137 | 95    |
| 2   | 7   | 1   | 112    | 12.9   | 65  | 19      | 449 | 245 | 134 | 85    |
| 3   | 8   | 0   | 124    | 14.1   | 64  | 22      | 441 | 268 | 147 | 100   |
| 4   | 8   | 1   | 125    | 16.2   | 67  | 41      | 234 | 146 | 124 | 85    |
| 5   | 8   | 0   | 127    | 21.5   | 93  | 52      | 202 | 131 | 104 | 95    |
| 6   | 9   | 0   | 130    | 17.5   | 68  | 44      | 308 | 155 | 118 | 80    |
| 7   | 11  | 1   | 139    | 30.7   | 89  | 28      | 305 | 179 | 119 | 65    |
| 8   | 12  | 1   | 150    | 28.4   | 69  | 18      | 369 | 198 | 103 | 110   |
| 9   | 12  | 0   | 146    | 25.1   | 67  | 24      | 312 | 194 | 128 | 70    |
| 10  | 13  | 1   | 155    | 31.5   | 68  | 23      | 413 | 225 | 136 | 95    |
| 11  | 13  | 0   | 156    | 39.9   | 89  | 39      | 206 | 142 | 95  | 110   |
| 12  | 14  | 1   | 153    | 42.1   | 90  | 26      | 253 | 191 | 121 | 90    |
| 13  | 14  | 0   | 160    | 45.6   | 93  | 45      | 174 | 139 | 108 | 100   |
| 14  | 15  | 1   | 158    | 51.2   | 93  | 45      | 158 | 124 | 90  | 80    |
| 15  | 16  | 1   | 160    | 35.9   | 66  | 31      | 302 | 133 | 101 | 134   |
| 16  | 17  | 1   | 153    | 34.8   | 70  | 29      | 204 | 118 | 120 | 134   |
| 17  | 17  | 0   | 174    | 44.7   | 70  | 49      | 187 | 104 | 103 | 165   |
| 18  | 17  | 1   | 176    | 60.1   | 92  | 29      | 188 | 129 | 130 | 120   |
| 19  | 17  | 0   | 171    | 42.6   | 69  | 38      | 172 | 130 | 103 | 130   |
| 20  | 19  | 1   | 156    | 37.2   | 72  | 21      | 216 | 119 | 81  | 85    |
| 21  | 19  | 0   | 174    | 54.6   | 86  | 37      | 184 | 118 | 101 | 85    |
| 22  | 20  | 0   | 178    | 64.0   | 86  | 34      | 225 | 148 | 135 | 160   |
| 23  | 23  | 0   | 180    | 73.8   | 97  | 57      | 171 | 108 | 98  | 165   |
| 24  | 23  | 0   | 175    | 51.1   | 71  | 33      | 224 | 131 | 113 | 95    |
| 2.5 | 23  | 0   | 179    | 71.5   | 95  | 52      | 225 | 127 | 101 | 195   |

http://publicifsv.sund.ku.dk/~kach/SPSS/pemax.sav http://publicifsv.sund.ku.dk/~kach/SPSS/pemax.txt http://publicifsv.sund.ku.dk/~kach/SPSS/pemax.xlsx



## Definition of new variables

### We want to study body mass index

```
DATASET ACTIVATE DataSet2.
COMPUTE BMI=weight/(height/100) ** 2.
EXECUTE.
```

#### Transformations/Arithmetics

- $\bullet$  The usual operators: + \* /
- Raising to a power: \*\*, e.g.. x\*\*2
- Square root: SQRT(x)
- Logarithms: LN(x), LG10(x)

# Summary statistics

- Measures of location, centre
  - Average

$$\bar{x}=\frac{1}{n}(x_1+\cdots+x_n)$$

interpreted as the centre of gravity - heavily influenced by outlying observations

- Median = the middle observation, is not influenced by outlying observations (robustness)
- Variance

$$s^2 = \frac{1}{n-1} \Sigma (x_i - \bar{x})^2$$

- Standard deviation  $SD = \sqrt{\text{variance}}$  is on the original scale
- Quantiles (cutpoints dividing distribution into intervals with equal probabilities)
  - median: 50% quantile
  - quartiles: 25%, 50% and 75% quantiles



# Summary statistics in SPSS

### Syntax

```
MEANS TABLES=pemax BY sex
/CELLS=MEAN COUNT STDDEV MEDIAN MIN MAX.

FREQUENCIES VARIABLES=pemax
/NTILES=4
/STATISTICS=MEAN STDDEV MEDIAN
/ORDER=ANALYSIS.
```

### gives us the output

#### Report

| pernax |        |    |                |        |         |         |
|--------|--------|----|----------------|--------|---------|---------|
| sex    | Mean   | N  | Std. Deviation | Median | Minimum | Maximum |
| 1      | 117,50 | 14 | 38,618         | 100,00 | 70      | 195     |
| 2      | 98,45  | 11 | 22,827         | 90,00  | 65      | 134     |
| Total  | 109,12 | 25 | 33,437         | 95,00  | 65      | 195     |

## Categorical variables

Means are not the right way to illustrate distributions of categorical variables. Use

```
GET FILE = 'p:\bissau.sav'.
DISPLAY NAMES.
```

to get the bissau.sav data set. Tables for bcg, dtp and dead:

```
FREQUENCIES VARIABLES=bcg dtp dead
/ORDER=ANALYSIS.

CROSSTABS
/TABLES=bcg BY dead
/FORMAT=AVALUE TABLES
/CELLS=COUNT ROW
/COUNT ROUND CELL.
```

Note: row percentages are chosen, because these have an interpretation

## Categorical variables

#### Use



remember to click 'Paste'

## Categorical variables

#### Crosstabs

bcg \* dead Crosstabulation

|       |   |              | dead |       |        |
|-------|---|--------------|------|-------|--------|
|       |   |              | 1    | 2     | Total  |
| bcg   | 1 | Count        | 124  | 3176  | 3300   |
|       |   | % within bcg | 3,8% | 96,2% | 100,0% |
|       | 2 | Count        | 97   | 1876  | 1973   |
|       |   | % within bcg | 4,9% | 95,1% | 100,0% |
| Total |   | Count        | 221  | 5052  | 5273   |
|       |   | % within bcg | 4,2% | 95,8% | 100,0% |

Note: row percentages are chosen, because these have an interpretation



## Filtering data

#### Can select subsets

| Obs | age | csex | fev1 | pemax | bmi |
|-----|-----|------|------|-------|-----|
| :   | :   | m    | :    | :     | :   |
| :   | :   | m    | :    | :     | :   |
| :   | :   | m    | :    | :     | :   |
| :   | :   | f    | :    | :     | :   |
| :   | :   | f    | :    | :     | :   |
| :   | :   | f    | :    | :     | :   |

| Obs | age | csex | fev1 | pemax | bmi |
|-----|-----|------|------|-------|-----|
| :   | :   | :    | :    | :     | :   |
| :   | :   | :    | :    | :     | :   |
| :   | :   | :    | :    | :     | :   |
| :   | :   | :    | :    | :     | :   |
| :   | :   | :    | :    | :     | :   |
| :   | :   | :    | :    | :     | :   |
|     |     |      |      |       |     |

### How to make a smaller data set

### Can keep or delete variables. Keep three variables

```
*Set working directory.
cd 'P:\'.
*Open data file.
GET FILE='P:\bissau.sav'.
* Make small data set.
SAVE OUTFILE= 'P:\small.sav'
/KEEP bcg dtp dead.
```

#### can also specify which variables we want to keep

```
GET FILE='P:\bissau.sav'.
SAVE OUTFILE='P:\alsosmall.sav'
/DROP id agemm sex region ethnic.
```

## Select subset

GET FILE='P:\bissau.sav'.
SELECT IF (agemm <= 3).
FREQUENCIES VARIABLES=dtp dead.

#### P:\bissau.sav

#### Statistics

|   |         | dtp  | dead |
|---|---------|------|------|
| N | Valid   | 3489 | 3489 |
|   | Missing | 0    | 0    |

#### Frequency Table

#### dtp

|       |       | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|-------|-----------|---------|---------------|-----------------------|
| Valid | 1     | 916       | 26,3    | 26,3          | 26,3                  |
| l     | 2     | 2573      | 73,7    | 73,7          | 100,0                 |
|       | Total | 3489      | 100,0   | 100,0         |                       |

#### dead

|       |       | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|-------|-----------|---------|---------------|-----------------------|
| Valid | 1     | 139       | 4,0     | 4,0           | 4,0                   |
|       | 2     | 3350      | 96,0    | 96,0          | 100,0                 |
|       | Total | 3489      | 100,0   | 100,0         |                       |

## Sorting data - 'split file'

#### Use

```
http://publicifsv.sund.ku.dk/~kach/SPSS/F2_gif1.gif
```

#### or

```
SORT CASES BY sex.
SPLIT FILE SEPARATE BY sex.
```

Now data are sorted by sex and all analyses are stratified until we specify

```
SPLIT FILE OFF.
```

## Sorting data - 'split file'

### Runs analyses within groups (stratified analyses)

```
GET FILE='P:\pemax.sav'.

SORT CASES BY sex.

SPLIT FILE SEPARATE BY sex.

FREQUENCIES VARIABLES=pemax
    /FORMAT=NOTABLE
    /NTILES=4
    /STATISTICS=MEDIAN
    /ORDER=ANALYSIS.
```

# Output

sex = 1 pemax

#### Statistics<sup>a</sup>

| Valid   | 14                  |
|---------|---------------------|
| Missing | 0                   |
|         | 100,00              |
| 25      | 92,50               |
| 50      | 100,00              |
| 75      | 161,25              |
|         | Missing<br>25<br>50 |

a. sex = 1

#### sex = 2

#### Statistics\*

| pemax  |   |
|--------|---|
| N      | ١ |
|        |   |
| Median |   |

| N           | Valid   | - 11   |
|-------------|---------|--------|
|             | Missing | 0      |
| Median      |         | 90,00  |
| Percentiles | 25      | 85,00  |
|             | 50      | 90,00  |
|             | 75      | 120,00 |

a. sex = 2

## Descriptive statistics - bar charts

```
GET FILE='P:\bissau.sav'.
FREQUENCIES ethnic region
/FORMAT NOTABLE
/BARCHART.
```



### The Juul data set

Serum IGF-I (Insulin-like Growth Factor) reference data set

```
Age N Source
0-5 44 Circumcision, hernia operation
5-20 833 4 schools in the Copenhagen area
20+ 153 Hospital staff
```

Anders Juul et al., Dep. GR, Rigshosp.

```
AGE age

MENARCHE 1st menstrual period occurred (1/2, 2 for yes)

SEXNR 1 for boys, 2 for girls

SIGF1 Serum IGF-I

TANNER Puberty stage (1-5)

TESTVOL Testicular volume

WEIGHT weight
```

http://publicifsv.sund.ku.dk/~kach/SPSS/juul2.sav

## Exercise: Simple procedures

- Find the data set juul2.sav on the homepage and save on your computer.
- Read the data set into SPSS using syntax. Compute lsigf1=LN(sigf1)
- Calculate median and IQR of sigf1 for each Tanner group using split file.
- Use 'crosstabs' and bar charts to compare the distribution of the variable Tanner across the two genders.
- Make a new variable with BMI for each person
- O Describe BMI distribution for each Tanner stage.

