Computational Geometry

Misha Kazhdan

Outline

- Algorithmic complexity
- Convex hull
- Duality
- Upper envelopes and lower hulls

Multi-label segmentation

Per-simplex algorithm:

```
For each (d+1)-tuple 1 \leq i_0 < \cdots < i_d \leq L

Compute the point \mathbf{p} s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p})

If \mathbf{p} is in the simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \leq l \leq L} f_l(\mathbf{p})

Add \mathbf{p} to the vertex list
```

Per simplex complexity is $O(L^{d+2})!$

Multi-label segmentation (d=1)

- Given an edge on the real line
- Consider the graphs of the affine functions
- Our goal is to find the positions where:
 - Two functions are equal ⇔ their graphs intersect
 - The two functions dominate ⇔ the point of intersection is above the other graphs
- **✗** Our implementation does this by:
 - Trying **all** intersections
 - Testing if they dominate $f_1 \\ f_3 \\ f_4 \\ f_4 \\ f_6 \\ f_6 \\ f_6 \\ f_7 \\ f_8 \\ f_8 \\ f_8 \\ f_9 \\$

Convex hull

Definition:

A region $\mathcal{R} \subset \mathbb{R}^d$ is said to be *convex* if it is the intersection of (closed) half-spaces.

Convex hull

Definition:

Given a set of points $\{\mathbf{p}_1, ..., \mathbf{p}_L\} \subset \mathbb{R}^d$, the convex hull, $\mathcal{H}(\{\mathbf{p}_1, ..., \mathbf{p}_L\})$, is the smallest convex set containing the points.

Note:

The hull is described be a set of (d-1)-dimensional simplices.*

^{*}Throughout will be assuming that geometry is "in general position"

Convex hull

Naïve convex hull algorithm:

```
For each d-tuple 1 \leq i_1 < \cdots < i_d \leq L Compute the hyperplane going through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} If the remaining points are on one side of the hyperplane Add the simplex through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} to the hull
```

- * Naïve complexity is $O(L^{d+1})$
- ✓ Efficient $O(L \log L + L^{\lfloor d/2 \rfloor})$ solutions exist

[Graham, 1972; Preparata et al., 1973; Seidel, 1981; Chazelle, 1993] http://www.qhull.org/

Naïve convex hull algorithm:

```
For each d-tuple 1 \leq i_1 < \cdots < i_d \leq L Compute the hyperplane going through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} If the remaining points are on one side of the hyperplane Add the simplex through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} to the hull
```

Naïve multi-label segmentation:

```
For each (d+1)-tuple 1 \leq i_0 < \cdots < i_d \leq L Compute the point \mathbf{p} s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) If \mathbf{p} is in the simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \leq l \leq L} f_l(\mathbf{p}) Add \mathbf{p} to the vertex list
```

Naïve convex hull algorithm:

```
For each <code>d-tuple</code> 1 \leq i_1 < \cdots < i_d \leq L Compute the hyperplane going through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} If the remaining points are on one side of the hyperplane Add the simplex through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} to the hull
```

Naïve multi-label segmentation:

```
For each <code>(d+1)-tuple</code> 1 \leq i_0 < \cdots < i_d \leq L Compute the point p s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) If p is in the simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \leq l \leq L} f_l(\mathbf{p}) Add p to the vertex list
```

Naïve convex hull algorithm:

```
For each d-tuple 1 \leq i_1 < \cdots < i_d \leq L Compute the hyperplane going through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} If the remaining points are on one side of the hyperplane Add the simplex through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} to the hull
```

Naïve multi-label segmentation:

```
For each (d+1)-tuple 1 \leq i_0 < \cdots < i_d \leq L

Compute the point \mathbf{p} s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p})

If \mathbf{p} is in the simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \leq l \leq L} f_l(\mathbf{p})

Add \mathbf{p} to the vertex list
```

Naïve convex hull algorithm:

```
For each d-tuple 1 \leq i_1 < \cdots < i_d \leq L Compute the hyperplane going through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} If the remaining points are on one side of the hyperplane Add the simplex through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} to the hull
```

Naïve multi-label segmentation:

```
For each (d+1)-tuple 1 \leq i_0 < \cdots < i_d \leq L

Compute the point \mathbf{p} s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p})

If \mathbf{p} is in the simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \leq l \leq L} f_l(\mathbf{p})

Add \mathbf{p} to the vertex list
```

Naïve convex hull algorithm:

```
For each d-tuple 1 \leq i_1 < \cdots < i_d \leq L Compute the hyperplane going through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} If the remaining points are on one side of the hyperplane Add the simplex through \{\mathbf{p}_{i_1}, \dots, \mathbf{p}_{i_d}\} to the hull
```

Naïve multi-label segmentation:

```
For each (d+1)-tuple 1 \leq i_0 < \cdots < i_d \leq L

Compute the point \mathbf{p} s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p})

If \mathbf{p} is in the simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \leq l \leq L} f_l(\mathbf{p})

Add \mathbf{p} to the vertex list
```

Affine functions

Recall:

We refer to $\mathcal{A}(d)$ as the space of affine functions on \mathbb{R}^d

Notation:

For $f \in \mathcal{A}(d)$, we associate f with the pair $(\alpha_f, \mathbf{v}_f) \in \mathbb{R} \times \mathbb{R}^d$, with: $f(\mathbf{q}) = \alpha_f + \langle \mathbf{v}_f, \mathbf{q} \rangle$

Observation:

The graph of a function gives a one-to-one mapping between affine functions and non-vertical hyperplanes in \mathbb{R}^{d+1}

Affine functions

Observation:

The graph of a function gives a one-to-one mapping between affine functions and non-vertical hyperplanes in \mathbb{R}^{d+1}

Duality

Definition:

Given an affine function $f \in \mathcal{A}(d)$ we define $f^* \in \mathbb{R}^{d+1}$ to be the *dual* point: $f^* = \begin{pmatrix} -\alpha_f, \mathbf{v}_f^\top \end{pmatrix}^\top$

Given a point $\mathbf{p} = (p_0, p_1, ..., p_d)^{\mathsf{T}} \in \mathbb{R}^{d+1}$ we define $\mathbf{p}^* \in \mathcal{A}(d)$ to be the dual function:

$$\mathbf{p}^*(\mathbf{q}) = -p_0 + \langle \mathbf{q}, (p_1, \dots, p_d)^{\mathsf{T}} \rangle \quad \forall \mathbf{q} \in \mathbb{R}^d$$

Note:

The two duals are inverses of each other:

$$\mathbf{p}^{**} = \mathbf{p}$$
 and $f^{**} = f$ $\forall \mathbf{p} \in \mathbb{R}^{d+1}, f \in \mathcal{A}(d)$

Pairing

Definition:

We define $\pi: \mathcal{A}(d) \times \mathbb{R}^{d+1} \to \mathbb{R}$ to be the pairing map: $(f, (p_0, p_1, \dots, p_d)^\mathsf{T}) \mapsto f(p_1, \dots, p_d) - p_0$

This gives the signed vertical offset of $\bf p$ from the hyperplane defined by f.

- $\pi(f, \mathbf{p}) < 0 \Rightarrow$ The point **p** is above (the graph of) f
- $\pi(f, \mathbf{p}) > 0 \Rightarrow$ The point \mathbf{p} is below (the graph of) f
- $\pi(f, \mathbf{p}) = 0 \Rightarrow$ The point \mathbf{p} is on (the graph of) f

Pairing

$$f^* = (-\alpha_f, \mathbf{v}_f^{\mathsf{T}})^{\mathsf{T}}$$
 and $\mathbf{p}^*(\mathbf{q}) = -p_0 + \langle \mathbf{q}, (p_1, ..., p_d)^{\mathsf{T}} \rangle$
 $\pi(f, \mathbf{p}) = \alpha_f + \langle \mathbf{v}_f, (p_1, ..., p_d)^{\mathsf{T}} \rangle - p_0$

Claim:

The value of the pairing map $\pi: \mathcal{A}(d) \times \mathbb{R}^{d+1} \to \mathbb{R}$ is preserved by the dual.

Proof:

Taking the duals and applying the pairing (flipping the order):

$$\pi(\mathbf{p}^*, f^*) = -p_0 + \langle (p_1, \dots, p_d)^\top, \mathbf{v}_f \rangle - (-\alpha_f)$$

$$= \alpha_f + \langle \mathbf{v}_f, (p_1, \dots, p_d)^\top \rangle - p_0$$

$$= \pi(f, \mathbf{p})$$

Pairing

$$f^* = (-\alpha_f, \mathbf{v}_f^{\mathsf{T}})^{\mathsf{T}} \text{ and } \mathbf{p}^*(\mathbf{q}) = -p_0 + \langle \mathbf{q}, (p_1, ..., p_d)^{\mathsf{T}} \rangle$$
$$\pi(f, \mathbf{p}) = \alpha_f + \langle \mathbf{v}_f, (p_1, ..., p_d)^{\mathsf{T}} \rangle - p_0$$

Claim:

The value of the pairing map $\pi: \mathcal{A}(d) \times \mathbb{R}^{d+1} \to \mathbb{R}$ is preserved by the dual.

⇒ The above/below/on relationship between points and (the graphs of) functions is preserved by the dual.

Upper envelope and lower hull

Definition:

Given affine functions, $\{f_1, ..., f_L\} \subset \mathcal{A}(d)$, their *upper envelope* is the set of points in \mathbb{R}^{d+1} corresponding to the maxima of the functions:

$$\left\{ (p_0, p_1, \dots, p_d)^\top \in \mathbb{R}^{d+1} \middle| p_0 = \max_{1 \le l \le L} f_l(p_1, \dots, p_d) \right\}$$

Upper envelope and lower hull

Definition:

Given a set of points, $\{\mathbf{p}_1, ..., \mathbf{p}_L\} \subset \mathbb{R}^d$, the *lower hull* is the subset of the simplices $\sigma \in \mathcal{H}(\{\mathbf{p}_1, ..., \mathbf{p}_L\})$ such that the points are above (or on) σ .

Note:

Assuming the simplices of the hull are oriented so the normal is outward facing, these are the subset of hull simplices whose normal points down.

Upper envelope ↔ lower hull

Claim:

Given affine functions $\{f_1, ..., f_L\} \subset \mathcal{A}(d)$ the vertices of the upper envelope of $\{f_1, ..., f_L\}$ are in one-to-one correspondence with the simplices of the lower hull of the function duals $\{f_1^*, ..., f_L^*\} \subset \mathbb{R}^{d+1}$.

Upper envelope ← lower hull

Proof:

Given vertices $\{f_{i_0}^*, \dots, f_{i_d}^*\}$ of a simplex on the lower hull:

- \Rightarrow There is a non-vertical plane $P \subset \mathbb{R}^d$ s.t.:
 - The points $f_{i_0}^*$, ..., $f_{i_d}^*$ are on P
 - All other points are above *P*

Let $f: \mathbb{R}^d \to \mathbb{R}$ be the affine function whose graph is P.

Taking the duals:

- The dual f^* lies on the graphs of f_{i_0} , ..., f_{i_d}
- The dual f^* is above the graphs of all the other points

$$\Rightarrow \text{Writing } f^* = \begin{pmatrix} -\alpha_f, \mathbf{v}_f \end{pmatrix} \text{ we have:} \\ -\alpha_f = f_{i_0}(\mathbf{v}_f) = \dots = f_{i_0}(\mathbf{v}_f) = \max_j f_j(\mathbf{v}_f)$$

 $\Rightarrow f^*$ is a vertex of the upper envelope.

Upper envelope → lower hull

Proof:

Given vertices $\{f_{i_0}^*, \dots, f_{i_d}^*\}$ of a simplex on the lower hull:

- \Rightarrow There is a non-vertical plane $P \subset \mathbb{R}^d$ s.t.:
 - The points $f_{i_0}^*$, ..., $f_{i_d}^*$ are on P
 - All other points are above P

Let $f: \mathbb{R}^d \to \mathbb{R}$ be the affine function whose graph is P.

Taking the duals:

- The dual f^* lies on the graphs of f_{i_0} , ..., f_{i_d}
- The dual f^* is above the graphs of all the other points

$$\Rightarrow \text{Writing } f^* = \begin{pmatrix} -\alpha_f, \mathbf{v}_f \end{pmatrix} \text{ we have:} \\ -\alpha_f = f_{i_0}(\mathbf{v}_f) = \dots = f_{i_0}(\mathbf{v}_f) = \max_j f_j(\mathbf{v}_f)$$

 $\Rightarrow f^*$ The proof in the other direction is analogous

Faster multi-label segmentation (version 1)

```
For each (d+1)-tuple 1 \le i_0 < \cdots < i_d \le L
     Compute the point \mathbf{p} s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p})
         If \mathbf{p} is in the original simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \le l \le L} f_l(\mathbf{p})
              Add p to the vertex list (with annotations)
Compute the convex hull of \{f_1^*, ..., f_L^*\} \subset \mathbb{R}^{d+1}
For each (d+1)-dimensional simplex \sigma = \{f_{i_0}^*, \dots, f_{i_d}^*\}
     If \sigma is on the lower hull
          Compute the affine function f whose graph contains \sigma
         Set f^* = (-\alpha_f, \mathbf{v}_f) to be the dual
         If \mathbf{v}_f is in the original simplex
              Add \mathbf{v}_f to the vertex list (with annotations)
```

Faster multi-label segmentation (version 2)

```
For each (d+1)-tuple 1 \le i_0 < \cdots < i_d \le L
     Compute the point \mathbf{p} s.t. f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p})
          If \mathbf{p} is in the original simplex and f_{i_0}(\mathbf{p}) = \cdots = f_{i_d}(\mathbf{p}) = \max_{1 \le l \le L} f_l(\mathbf{p})
               Add p to the vertex list (with annotations)
Compute the convex hull of \{f_1^*, ..., f_L^*\} \subset \mathbb{R}^{d+1}
For each (d+1)-dimensional simplex \sigma = \{f_{i_0}^*, \dots, f_{i_d}^*\}
     If \sigma is on the lower hull
          Set \mathbf{p} \in \mathbb{R}^d to be the intersection point at which f_{i_0}(\mathbf{p}) = \cdots f_{i_d}(\mathbf{p})
          If p is in the original simplex
               Add p to the vertex list (with annotations)
```