

DataScale-NoSQL

No Anonymat:

2016-17 L. YEH

Durée 1h. Tous documents autorisés. Justifier vos réponses lorsque c'est nécessaire.

1 Les Systèmes NoSQLs

Question 1: Les systèmes Base de Données NoSQL ne peuvent pas être transactionnels (entourer la ou les bonnes réponses) car :

1.	ils ne peuvent assurer la consistance (vrai/faux). Pourquoi?
2.	une ou plusieurs propriétés BASE interdisent, à savoir : Pourquoi ?
3.	ils violent une ou plusieurs propriétés CAP, à savoir : Pourquoi ?
4.	pas nécessaire. Pourquoi ?

Question 2: Peut-on traduire toutes requêtes PIG en une seule requête SQL équivalente? Si oui, expliquer pouquoi c'est possible, et si non, donner un contre exemple.

2 PIG

On re-utilise la base des "appels" présentée en TD et qui a pour schéma : calls(de, vers, duree) et users(Nom, Prenom, Tel, Dept, Ville)

Question 3: Traduire la requête SQL ci-après en PIG :

SELECT U1.Nom, Prenom, U1.Ville, U2.Ville FROM call C, users U1, users U2 WHERE U1.Tel=C.de and U2.Tel=C.vers GROUP BY U1.Nom, Prenom, U1.Ville, U2.Ville HAVING sum(durée)>1000;

3 XML

On reprend le schéma XML du TD ci-dessus. Une école gère sa formation dans un document XML suivant la structure :

FIGURE 1 – Tree Guide du Document

- L'élément ue signifie "unité d'enseignement". Il contient le code du cours correspondant à /formation/cours/@id
- Pour simplifier, adr ne contient que la région où réside l'enseignant.

Question 4: Écrire une requête XQuery qui donne les couples d'enseignants qui enseignent un même cours (même ue). Le résultat doit suivre la structure :

<res> (<remplacant>(<ue/><designation_ue/><nom1/><nom2/>)*</remplacant>)*</res>