Homework for Math 351-003

Team Homework: Due 2/5. Be sure to assign the role of scribe to a new person this week.

- 1. Prove that if (x_n) converges to $x \neq 0$ and x_n is non-zero for all n, then $(\frac{1}{x_n})$ converges to $\frac{1}{x}$. (Hint: $\left|\frac{1}{x_n} \frac{1}{x}\right| = \frac{|x_n x|}{|x_n \cdot x|}$.)
- 2. (a) Prove that if (s_n) is monotone increasing and unbounded, then $\lim s_n = +\infty$.
 - (b) Give an example of a sequence that is unbounded but does not diverge to infinity. (Remember that sequences can be "piecewise defined"!)
- 3. Note: you might find it useful to look over all the things we have proved so far about sequences in order to help with this one (especially part (a)).
 - (a) Prove that [a, b] is a closed subset of \mathbb{R} .
 - (b) Prove that [a, b) is not a closed subset of \mathbb{R} .
- 4. Find the supremum and infimum of $\{1 \frac{1}{n} \mid n \in \mathbb{N}\}$, and prove that your answer is correct.
- 5. Suppose that S and T are non-empty subsets of \mathbb{R} and that for any $s \in S$ and $t \in T$, $s \leq t$. Prove that $\sup S \leq \inf T$.