

Final Project

Taxi Demand Prediction on Time Series Data with Autoregressive Moving Average (ARIMA)

Overview & Data Understanding Exploratory Data Analysis (EDA)

Modelling ARIMA

Overview

With the increasing success of NYC TLC, the demand for better services has also increased in order to be able to serve all incoming taxi requests.

They didn't want to allocate too many cars because it would be too expensive. On the other hand, they will lose money if they don't have enough cars to serve all incoming requests.

Thus, the **ARIMA** method will be used as a method to predict the number of occupants in order to serve all incoming requests successfully without paying for unused cars.

Data Understanding

Sources

Datasets

NOTED: There are 4 datasets in this project, namely:

- Data set trips Contains complete data on taxi trips in NYC
- Data set train Contains the number of taxi passengers in NYC per hour
- Data set sample Give an example of the predictive data you need to submit
- Data set test
 Contains test data to predict at a
 certain date time

Field Name	Description
vendor_id	A code indicating the TPEP provider that provided the record.
	Mobile Technologies
	VeriFone Inc
pickup_datetime	The date and time when the meter was engaged.
dropoff_datetime	The date and time when the meter was disengaged.
passenger_count	The Number of passengers in the vehicle. This is a driver-entered value.
trip_distance	The elapsed trip distance in miles reported by the taximeter.
rate_code	The final rate code in effect at the end of the trip. Standar rate
	• JFK
	Newark
	Nassau or Westchester
	Negoitated fare
	Group ride
payment_type	A numeric code signifying how the passenger paid for the trip.
	Credit Card
	Cash
	No Charge
	Dispute
	Unknown
	Voided Trip
store_and_fwd_flag	This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka 'store and forward'. because the vehicle did not have a connection to the server.
	Y = store and forward trip
	N = not a store and forward trip
	N = not a store and forward trip
fare_amount	The time-and-distance fare calculated by the meter.
extra	Miscellaneous extras and surcharges. Currentlly, this only includes. The \$0.50 and \$1 rush hour and overnight charges.
mta_tax	0.50 MTA tax that us automatically triggered based on the metered rate in use.
tip_amount	Tip amount - This field is automatically populated for credit card trips. Cash tips are not included.
tolls_amount	Total amount of all tolls paid in trip.
imp_surcharge	0.30 improvement surcharge assessed trips at the flag drop. The improvement surcharge began being levied in 2015.
airport_fee	
total_amount	The total amount charged to passengers. Does not include cash tips.
pickup_location_id	As specified by the pickup-point provider.
dropoff_location_id	As specified by the dropoff-point provider.
data_file_year	The file for a specific year.
data_file_month	The file for a specific month.

Overview & Data Understanding Exploratory Data Analysis (EDA)

Modelling ARIMA

EDA on Feature Vendor:

29 %

Mobile Technologies

EDA on Passengers Count:

Observation:

The number of frequencies is the most of the number of passengers per car, namely the number of passengers is only 1 person

EDA on Feature Payment Type:

Monthly Passenger Count:

Based on the graph above, it shows that every month during 2022 the number of passengers will **fluctuate**

An overview of the number of passengers per hour:

Based on the graph above, the busiest hours for pickup passengers are around 14.00-19.00.

Correlation for Data Trips:

Based on the results of the correlation between each columns, it can be concluded that if the correlation value is **more than 0.5** then the relationship between columns has a strong effect

Overview & Data Understanding Exploratory Data Analysis (EDA)

Modelling ARIMA

Test whether it is true that the data_train has fluctuated:

```
from statsmodels.tsa.stattools import adfuller

def ad_test(dataset):
    dftest = adfuller(dataset, autolag = 'AIC')
    print("1. ADF : ",dftest[0])
    print("2. P-Value : ", dftest[1])
    print("3. Num Of Lags : ", dftest[2])
    print("4. Num Of Observations Used For ADF Regression:", dftest[3])
    print("5. Critical Values :")
    for key, val in dftest[4].items():
        print("\t",key, ": ", val)

ad_test(train['passenger_count'])
```

Result:

```
1. ADF : -5.234425988209913
2. P-Value : 7.475326613689224e-06
3. Num Of Lags : 33
4. Num Of Observations Used For ADF Regression: 6272
5. Critical Values :
    1% : -3.431393045018898
    5% : -2.8620009336864833
    10% : -2.567015352019056
```

Because here it uses data_train, where this data contains the number of passengers per hour and is one of the summaries of data_trips. And the results show that the time series is **not** stationary (fluctuated).

Result:

Choose the best Autoregressive Moving Average (ARIMA) model based on data_train using auto_arima or hereinafter referred to as Historical Data:

```
Best model: ARIMA(2,1,3)(0,0,0)[0]
Total fit time: 242,520 seconds
                     SARIMAX Results
 Dep. Variable: V
                                No. Observations: 6306
    Model:
               SARIMAX(2, 1, 3) Log Likelihood -19368,923
               Mon. 28 Aug 2023
                                                 38749.847
     Time:
               14:47:08
                                                38790.342
    Sample:
                                      HOIC
                                                38763.874
               - 6306
Covariance Type: opg
                              P>|z| [0.025 0.975]
 ar.L1 1.9269 0.001 1517.606 0.000 1.924 1.929
 arL2 -0.9945 0.001 -783.067 0.000 -0.997 -0.992
 mall -2 7683 0 006 -446 467 0 000 -2 780 -2 756
 mal 2 2 6125 0 012 214 398 0 000 2 589 2 636
ma.L3 -0.8395 0.006 -134.866 0.000 -0.852 -0.827
sigma2 27.1528 0.378 71.844 0.000 26.412 27.894
 Ljung-Box (L1) (Q): 36.10 Jargue-Bera (JB): 924.47
      Prob(Q):
                              Prob(JB):
                                          0.00
Heteroskedasticity (H): 1.40
                               Skew:
                                          0.66
 Prob(H) (two-sided): 0.00
                              Kurtosis:
                                          433
```

From the results of the pmdarima library (Python AutoRegressive Integrated Moving Average) shows that the best model is with p (Order of Autoregressive - AR), d (Order of Integration - I) and q (Order of Moving Average - MA) worth (2, 1,3).

Because data_test only contains the index of the desired datetime to predict, so here I make predictions for the number of passengers using the ARIMA model based on historical data starting from 2022-09-26 08:00:00+00:00 to 2022-11-30 23:00:00+ 00:00

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
# Tanggal-tanggal yang diberikan dengan zona waktu UTC
start date = pd.to datetime('2022-09-26 08:00:00+00:00')
end date = pd.to datetime('2022-11-30 23:00:00+00:00')
predicted index = pd.date range(start date, end date, freq='H')
# Buat DataFrame kosong untuk menyimpan prediksi
predicted data = pd.DataFrame(index=predicted index)
# Pilih deret waktu dari data historis
historical_data = train['passenger_count']
# Perluas indeks historis untuk mencakup rentang waktu yang ingin diprediksi
extended index = historical data.index.union(predicted index)
# Reindeks ulang deret waktu historis
data train = historical data.reindex(extended index)
# Fit model ARIMA ke data yang sudah diperluas indeksnya
# Gunakan model ARIMA terbaik yang telah di uji coba sebelum nya dengan p = 2, d = 1, dan q = 3
model = sm.tsa.ARIMA(data train, order=(2, 1, 3))
results = model.fit()
# Lakukan prediksi untuk rentang waktu yang diinginkan
predictions = results.predict(start=start date, end=end date, dynamic=True)
predicted data['predicted passenger count'] = predictions
```


6.332948	2022-09-26 08:00:00+00:00
8.171293	2022-09-26 09:00:00+00:00
10.195562	2022-09-26 10:00:00+00:00
12.267755	2022-09-26 11:00:00+00:00
14.247313	2022-09-26 12:00:00+00:00
275	
1 <mark>1.2084</mark> 10	2022-11-30 19:00:00+00:00
11,208503	2022-11-30 20:00:00+00:00
11.198026	2022-11-30 21:00:00+00:00
11.177739	2022-11-30 22:00:00+00:00
11.149067	2022-11-30 23:00:00+00:00

From the overall results of this model I made based on literature studies and my abilities. In time series data, you can use "Weighted MA", "Exponential WMA", "Triple EWMA" as features. Also "Fourier Transform" could provide better features, but in this case it's quite functional.

If there is an error please I am open to being corrected and reminded.

Overview & Data Understanding Exploratory Data Analysis (EDA)

Modelling

Business Recommendation

Fleet Allocation Optimization:

Companies can allocate cars at 10 o'clock and above, because seeing the predictions at that hour there will be an increase in passengers

Fleet Maintenance:

By predicting future demand, taxi companies can better plan fleet upkeep and maintenance. This helps minimize the impact on service from a damaged fleet.

Improved Customer Service:

This predictive information can be used to provide customers with more accurate wait time updates. This can increase customer satisfaction by providing realistic expectations.

Partnerships and Void Ride Mitigation:

Partnerships and Void Ride
Mitigation: If possible,
consider a partnership
between Mobile Technologies
and VeriFone Inc with a
ridesharing service to help
meet demand when taxi fleets
are limited.

Thank You for Attention!