Perceived Unemployment Risks over Business Cycles

Tao Wang¹ William Du² Adrian Monninger² Xincheng Qiu³

¹Bank of Canada

² Johns Hopkins University

³Guanghua School of Management, Peking University

ESWC 2025 August 2025

Introduction

- Unemployment risk amplifies business cycles fluctuations in state-of-the-art
 INCOMPLETE-MARKET HA-MACRO MODELS (Bayer et al., 2019; Haan et al., 2018; Broer et al., 2021; Graves, 2020)
 - 1. ex-ante channel: fears of unemployment o precautionary saving o consumption \downarrow
 - 2. ex-post channel: realized unemployment \rightarrow reduced income \rightarrow consumption \downarrow
- Standard approach does not distinguish (a) perceived risk, (b) true risk, (c) realized outcome
 - full-information-rational-expectations (FIRE) assumes (a) perceived risk = (b) true risk
 - empirical implementation assumes (b) true risk = (c) realized outcome
- This paper aims to:
 - measure these three conceptually different objects
 - quantify the consumption response to unemployment risks due to (a), (b), (c)

This paper

- 1. Separately measure
 - (a) ex-ante perceived risk: expectations (and backcasts) in Survey of Consumer Expectations
 - (b) ex-ante true risk: real-time machine-efficient forecasts à la Bianchi et al. (2022)
 - (c) ex-post realized outcome: observed transition rates in Current Population Survey for job-finding rate and separation rate (the flow approach to unemployment)
- 2. "Plug" into the workhorse heterogeneous-agent model with unemployment risk and quantify consumption response to unemployment risk due to
 - ex-ante precautionary responses to (a)
 - ex-post impacts of (c)
 - under/over insurance due to misperception (a) (b)

Data

Perceived and realized transition rates

Realized job-finding and separation rates from Current Population Survey:

$$JF_t = \frac{UE_t}{U_{t-1}}, \quad JS_t = \frac{EU_t}{E_{t-1}}$$

where gross flows from U to E and E to U are measured using CPS panel dimension

- Perceived job-finding and separation rates from Survey of Consumer Expectations:
 - \widetilde{JF}_t : "Suppose you were to lose your main job this month, what do you think is the percent chance that you will find a job within the following 3 months?"
 - \widetilde{JS}_t : "What do you think is the percent chance that you will lose your main (for those with multiple jobs) or current (for those with single job) job during the next 12 months?"
- Time (dis)aggregation from monthly (12-month) to 3-month-horizon rates

Perceived and realized transition rates are highly correlated

- Over 3-month horizon
- A higher correlation if the month of Covid outbreak excluded
- Suggesting that perceptions do contain predictable future labor market movements
- Such pattern remains within each group: by employment status by education

Ex-ante Comparison

(Proxy for) true ex-ante unemployment risk

- Machine-learning efficient forecasts à la Bianchi et al. (2022):
 - 1. LASSO forecasting model $JF_{t+3|t} = \Gamma^t X_t + \epsilon_t$ with real-time data up to t
 - 2. Use the optimal model $\widehat{\mathit{JF}}_{t+3|t}^* = \widehat{\Gamma}^{t*}X_t$ to generate one-step out-of-sample prediction
 - 3. Repeat for each t
- Data: 600+ time series
 - Real-time macroeconomic realizations, such as inflation, unemployment rate, GDP growth, etc.
 - Professional forecasts of the macroeconomy from Survey of Professional Forecasters (SPF)
 - Realized worker flow rates
 - Household expectations from Michigan Survey of Consumers (MSC)

[real time] 5 / 25

Machine-learning forecast of unemployment risks

- Expectations in the MSC and real-time UE rate are the most important predictors
 - e.g., income expectations, inflation expectations, news heard, durable/vehicle-buying intentions, household finance expectations, etc.

Backcasting beliefs: what were people thinking before the SCE?

- Based on the optimal LASSO estimated on post-2013 SCE/MSC patterns
- No evidence for a structural break in survey beliefs based on the test of Andrews (1993)

Validating the backcasting method: two examples

Imputed Beliefs versus Observed Expectations in the MSC

Surveys versus machine: job-finding

$$\log(\widetilde{\mathit{JF}}_{t+3|t}) = 1.92 + \mathbf{0.51} \log(\widehat{\mathit{JF}}_{t+3|t}^*) + \epsilon_t,$$

Surveys versus machine: job-separation

$$\log(\widetilde{\textit{JS}}_{t+3|\textit{t}}) = 1.13 + \textbf{0.19} \log(\widehat{\textit{JS}}_{t+3|\textit{t}}^*) + \epsilon_\textit{t},$$

Heterogeneity in risks and perceptions

- Repeat the exercise with q-th percentile perceived risks $\widetilde{\mathit{JF}}^q$ and $\widetilde{\mathit{JS}}^q$, $\forall q \in \{0.25, 0.5, 0.75\}$
- Whose expectations react to their real-time unemployment risks the most?

$$\begin{aligned} \log(\widetilde{\mathit{JF}}_{t+3|t}^{0.25}) &= -1.55 + \mathbf{1.22} \log(\widehat{\mathit{JF}}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{\mathit{JF}}_{t+3|t}^{0.5}) &= 1.54 + \mathbf{0.63} \log(\widehat{\mathit{JF}}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{\mathit{JF}}_{t+3|t}^{0.5}) &= 3.62 + \mathbf{0.20} \log(\widehat{\mathit{JF}}_{t+3|t}^*) + \epsilon_t \end{aligned} \qquad \begin{aligned} \log(\widetilde{\mathit{JS}}_{t+3|t}^{0.25}) &= -0.42 + \mathbf{0.46} \log(\widehat{\mathit{JS}}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{\mathit{JS}}_{t+3|t}^{0.5}) &= 1.06 + \mathbf{0.68} \log(\widehat{\mathit{JS}}_{t+3|t}^*) + \epsilon_t \end{aligned} \end{aligned}$$

► In-sample → by education

Business cycle patterns of risks and perceptions: job-finding

Table: Peak-to-trough ratio of JF

	1990	2001	2007	2020	Mean
ĨF	$\frac{0.57}{0.52} = 1.10$	$\frac{0.56}{0.53} = 1.06$	$\frac{0.53}{0.48} = 1.10$	$\frac{0.60}{0.50} = 1.20$	1.11
$\widetilde{\mathit{JF}}^{25}$	$\frac{0.34}{0.27} = 1.26$	$\frac{0.34}{0.29} = 1.17$	$\frac{0.28}{0.22} = 1.27$	$\frac{0.39}{0.27} = 1.44$	1.29
	0.00	0.02	$\frac{0.58}{0.51} = 1.14$	$\frac{0.68}{0.52} = 1.31$	1.19
$\widetilde{\mathit{JF}}^{75}$	$\frac{0.86}{0.81} = 1.06$	$\frac{0.84}{0.78} = 1.08$	$\frac{0.84}{0.80} = 1.05$	$\frac{0.89}{0.81} = 1.10$	1.07
JF*	$\frac{0.61}{0.56} = 1.09$	$\frac{0.66}{0.60} = 1.10$	$\frac{0.59}{0.39} = 1.51$	$\frac{0.62}{0.41} = 1.51$	1.30
JF	$\frac{0.64}{0.60} = 1.07$	$\frac{0.68}{0.63} = 1.08$	$\frac{0.59}{0.43} = 1.37$	$\frac{0.63}{0.62} = 1.02$	1.13

Business cycle patterns of risks and perceptions: job-separation

Table: Peak-to-trough ratio of JS

	1990	2001	2007	2020	Mean
$\widetilde{\mathit{JS}}$	$\frac{0.036}{0.040} = 0.90$	$\frac{0.042}{0.044} = 0.95$	$\frac{0.042}{0.047} = 0.89$	$\frac{0.036}{0.043} = 0.84$	0.90
$\widetilde{\mathit{JS}}^{25}$	$\frac{0.011}{0.014} = 0.79$	$\frac{0.012}{0.012} = 1$	$\frac{0.013}{0.015} = 0.87$	$\frac{0.010}{0.014} = 0.71$	0.84
$\widetilde{\mathit{JS}}^{50}$	$\frac{0.066}{0.082} = 0.80$	$\frac{0.064}{0.060} = 1.07$	$\frac{0.072}{0.120} = 0.6$	$\frac{0.053}{0.077} = 0.69$	0.79
$\widetilde{\mathit{JS}}^{75}$	$\frac{0.20}{0.20} = 1$	$\frac{0.20}{0.21} = 0.95$	$\frac{0.18}{0.24} = 0.75$	$\frac{0.16}{0.20} = 0.80$	0.88
JS^*	$\frac{0.037}{0.047} = 0.79$	$\frac{0.032}{0.039} = 0.82$	$\frac{0.033}{0.054} = 0.61$	$\frac{0.031}{0.055} = 0.56$	0.70
JS	$\frac{0.044}{0.047} = 0.94$	$\frac{0.034}{0.042} = 0.81$	$\frac{0.034}{0.051} = 0.67$	$\frac{0.026}{0.16} = 0.16$	0.64

Model quantification of consumption fluctuations due to (a), (b), (c)

Model elements

- Buffer-stock consumers
- Uninsured idiosyncratic income risks:
 - persistent unemployment
 - persistent + transitory wage risks
- CRRA utility
- Zero-borrowing constraint
- Self-insurance via one risk-free asset.
- Homogeneous (baseline) \rightarrow heterogeneous unemployment risks (extension)
- Monthly frequency

Household block of the model: income process

Wage

$$\mathbf{z}_{i,t} = e_{i,t}\zeta_{it}$$

$$\log e_{i,t} = \rho_e \log e_{i,t-1} + \eta_{i,t}, \quad \eta_{i,t} \sim \mathcal{N}(0, \sigma_e^2)$$

$$\zeta_{it} = \begin{cases} \theta_{it}, \text{ if employed} : n_{i,t} = e \\ \\ \theta_{it}\gamma, \text{ if unemployed} : n_{i,t} = u \end{cases}$$

Labor market transitions

$$p(n_{i,t} = e | n_{i,t-1} = u) = JF_t$$

 $p(n_{i,t} = u | n_{i,t-1} = e) = JS_t$

• $\beta \to {\rm average}$ quarterly MPC of 0.21; UI replacement ratio $\gamma = 0.5.$

Aggregate consumption response: ex-post impacts

- Sequence-space Jacobian method Auclert et al. (2021)
- Jacobian decomposed into (a) ex-ante risk response (b) ex-post shock response

Aggregate consumption response: ex-ante response

- Sequence-space Jacobian method Auclert et al. (2021)
- Jacobian decomposed into (a) ex-ante risk response (b) ex-post shock response

Aggregate consumption response: ex-ante + ex-post

- Sequence-space Jacobian method Auclert et al. (2021)
- Jacobian decomposed into (a) ex-ante risk response (b) ex-post shock response

Mapping data to the model

Realizations

$$p(n_{i,t} = u | n_{i,t-1} = e) = JS_t$$

$$JF_t = \rho_{JF}JF_{t-1} + \varepsilon_{JF,t}$$

$$JS_t = \rho_{JS}JS_{t-1} + \varepsilon_{JS,t}$$

 $p(n_{i,t} = e | n_{i,t-1} = u) = JF_t$

Perceptions

$$\widetilde{p}(n_{i,t+1} = e | n_{i,t} = u) = \widetilde{JF}_t$$

$$\widetilde{p}(n_{i,t+1} = u | n_{i,t} = e) = \widetilde{JS}_t$$

$$\widetilde{JF}_t = \rho_{\widetilde{JF}}\widetilde{JF}_{t-1} + \varepsilon_{\widetilde{JF},t}$$

$$\widetilde{JS}_t = \rho_{\widetilde{IS}}\widetilde{JS}_{t-1} + \varepsilon_{\widetilde{IS},t}$$

Objective/True risks

$$\hat{p}(n_{i,t+1} = e | n_{i,t} = u) = \widehat{JF}_{t}^{*}$$

$$\hat{p}(n_{i,t+1} = u | n_{i,t} = e) = \widehat{JS}_{t}^{*}$$

$$\widehat{JF}_{t}^{*} = \rho_{\widehat{JF}^{*}} \widehat{JF}_{t-1}^{*} + \varepsilon_{\widehat{JF}^{*},t}$$

$$\widehat{JS}_{t} = \rho_{\widehat{JS}^{*}} \widehat{JS}_{t-1}^{*} + \varepsilon_{\widehat{JS}^{*},t}$$

$$\Rightarrow \{\hat{\varepsilon}_{JF,t}, \quad \hat{\varepsilon}_{JS,t}, \quad \hat{\varepsilon}_{\widetilde{JF},t}, \quad \hat{\varepsilon}_{\widetilde{JS},t}, \quad \hat{\varepsilon}_{\widehat{JS}^*,t}, \quad \hat{\varepsilon}_{\widehat{JS}^*,t}\} \quad \text{for } t = 1, \dots, T.$$

 Feeding these shocks into the model, we obtain the partial equilibrium deviations of aggregate consumption relative to the model's steady state level

Consumption fluctuations under subjective perceptions

- Ex-ante \leftarrow (a) perceived risks \times ex-ante Jacobians
- Ex-post \leftarrow (c) realized transitions \times ex-post Jacobians

Subjective total

Counterfactual I: (a) perceptions = (b) objective risks

- **Ex-ante** \leftarrow (b) objective risks \times ex-ante Jacobians
- Ex-post \leftarrow (c) realized transitions \times ex-post Jacobians

Counterfactual II: (b) objective risks = (c) realized transitions

- Ex-ante \leftarrow (c) realized transitions \times ex-ante Jacobians
- Ex-post \leftarrow (c) realized transitions \times ex-post Jacobians

"Perfect foresight"

Allowing for **heterogeneity** in risks and perceptions by education

- Calibrated to match education-specific MPCs (Fuster et al., 2021)
- Group with the larger risk exposure has stickier belief, hence more underinsured

A case study of the COVID recession

- Job-finding impacts were primarily due to precautionary responses
- Job-separation impacts were mostly income losses

Conclusion

- We quantify the aggregate consumption fluctuations due to
 - Perceived risks → ex-ante responses
 - Realized shocks → ex-post impacts
 - True risks (a counterfactual benchmark as opposed to perceived risks)
- Ex-ante risk response is important and sizable in past recessions
- But the stickiness of risk perceptions limited the role of self-insurance behaviors
- Both risks and perceptions are widely heterogeneous
- The correlation pattern of risk exposure and belief distortion as an amplification mechanism

Appendix

JF perceptions by the unemployed and employed

Perceived and realized transition rates remain correlated within education

Why is real-time important?

 $--\cdot \widehat{IS}^* - IS$: retrospective

The most important covariates of perceived unemployment risks

- UERate: real-time unemployment rate.
- Durrn gt all: good time to buy durables.
- Pexp f all: expecting better finance.
- Bus12 f all: better business conditions.
- Px1 15p all: expected inflation above 15 percent.
- Vehrn gt all: good time to buy vehicles.
- ptrd bb all: better off financially now and future.
- bago s all: same business conditions.
- Pagorn hp all: worse finance due to higher prices.
- Ptrd ss all: same personal finance now and future.

- Pexp_u_all: expecting worse personal finance.
- Newsrn u eng all: heard unfavorable news about energy crisis.
- Newsrn u stk all: heard about unfavorable news regarding stock market.
- Vehrn fb all: bad time to buy vehicles due to uncertain future.
- Px1_dkup_all: do not know about future inflation.
- Newsrn u dem all: heard unfavorable news about lower consumer demand
- INF Y2Y: real-time inflation rate.
- Bago f all: better business conditions.
- Pagorn hd all: worse personal finance due to higher debt.

Heterogeneity in risks and perceptions (2013-2023)

$$\begin{split} \log(\widetilde{JF}_{t+3|t}) &= 0.71 + \mathbf{0.81} \log(\widehat{JF}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{JF}_{t+3|t}^{0.25}) &= -5.73 + \mathbf{2.26} \log(\widehat{JF}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{JF}_{t+3|t}^{0.25}) &= -0.84 + \mathbf{1.22} \log(\widehat{JF}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{JF}_{t+3|t}^{0.5}) &= -0.84 + \mathbf{1.22} \log(\widehat{JF}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{JF}_{t+3|t}^{0.5}) &= 2.66 + \mathbf{0.44} \log(\widehat{JF}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{JF}_{t+3|t}^{0.75}) &= 1.40 + \mathbf{0.06} \log(\widehat{JS}_{t+3|t}^*) + \epsilon_t \\ \log(\widetilde{JS}_{t+3|t}^{0.75}) &= 1.40 + \mathbf{0.06} \log(\widehat{JS}_{t+3|t}^*) + \epsilon_t \end{split}$$

Observable heterogeneity: education

$$\log(\widetilde{JF}_{t+3|t}^{LEdu}) = 1.28 + \mathbf{0.66} \log(\widehat{JF}_{t+3|t}^{*LEdu}) + \epsilon_t$$

$$\log(\widetilde{JF}_{t+3|t}^{MEdu}) = 2.53 + \mathbf{0.36} \log(\widehat{JF}_{t+3|t}^{*MEdu}) + \epsilon_t$$

$$\log(\widetilde{JF}_{t+3|t}^{HEdu}) = 1.87 + \mathbf{0.53} \log(\widehat{JF}_{t+3|t}^{*HEdu}) + \epsilon_t$$

$$\begin{split} & \boxed{\log(\widetilde{JS}_{t+3|t}^{LEdu}) = 1.1 + \mathbf{0.17} \log(\widehat{JS}_{t+3|t}^{*LEdu}) + \epsilon_t} \\ & \log(\widetilde{JS}_{t+3|t}^{MEdu}) = 0.95 + \mathbf{0.35} \log(\widehat{JS}_{t+3|t}^{*MEdu}) + \epsilon_t \\ & \log(\widetilde{JS}_{t+3|t}^{HEdu})) = 1.08 + \mathbf{0.33} \log(\widehat{JS}_{t+3|t}^{*HEdu}) + \epsilon_t \end{split}$$

 Low-education group's perceptions, especially regarding job separations, are the most underreactive to "true" risks.

Observable heterogeneity: education (2013-2023)

$$\log(\widetilde{JF}_{t+3|t}^{LEdu}) = 0.05 + \mathbf{0.82} \log(\widehat{JF}_{t+3|t}^{*LEdu}) + \epsilon_t \qquad \log(\widetilde{JS}_{t+3|t}^{LEdu}) = 0.88 + \mathbf{0.25} \log(\widehat{JS}_{t+3|t}^{*LEdu}) + \epsilon_t$$

$$\log(\widetilde{JF}_{t+3|t}^{MEdu}) = 0.12 + \mathbf{0.73} \log(\widehat{JF}_{t+3|t}^{*MEdu}) + \epsilon_t \qquad \log(\widetilde{JS}_{t+3|t}^{MEdu}) = 0.99 + \mathbf{0.24} \log(\widehat{JS}_{t+3|t}^{*MEdu}) + \epsilon_t$$

$$\log(\widetilde{JF}_{t+3|t}^{HEdu}) = 0.19 + \mathbf{0.62} \log(\widehat{JF}_{t+3|t}^{*HEdu}) + \epsilon_t \qquad \log(\widetilde{JS}_{t+3|t}^{HEdu}) = 1.06 + \mathbf{0.22} \log(\widehat{JS}_{t+3|t}^{*HEdu}) + \epsilon_t$$

→ Back

Imputing beliefs including or excluding the Covid era

Observable heterogeneity: education

 low education group faces higher separation rate, but perceived separation risks did not go up as much

Belief distortions by education: job finding

Belief distortions by education: job separation

Household block of the model

$$v_t(\mathbf{m}_{it}, e_{it}, n_{it}) = \max_{\{\mathbf{c}_{it}, \mathbf{a}_{it}\}} \{U(\mathbf{c}_{it})\} + \beta_i (1 - D) \mathbf{E}_t \left[v_{t+1}(\mathbf{m}_{t+1}, e_{it+1}, n_{it+1})\right]\}$$

$$s.t. \quad \mathbf{a}_{it} = \mathbf{m}_{it} - \mathbf{c}_{it}$$

$$\mathbf{a}_{it} + \mathbf{c}_{it} = \mathbf{z}_{it} + (1 + r_t^a) \mathbf{a}_{it-1}$$

$$\mathbf{a}_{it} \ge 0$$

Calibration

Description	Parameter	Value	Source/Target
CRRA	CRRA	2	Standard
Real Interest Rate	r	$1.05^{\frac{1}{12}} - 1$	5% annualized real rate
UI replacement rate	γ	0.5	50% replacement rate
Persistence of idiosyncratic income process	$ ho_{e}$	0.997	Kekre (2023)
Std Dev of idiosyncratic income process	σ_e	0.057	Kekre (2023)
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.244	Kekre (2023)
Steady state Job-Finding Rate	JF	0.25	CPS
Steady state Job-Separation Rate	JS	0.017	CPS
Discount Factor	β	0.988	Quarterly MPC $= 0.21$

A case study of the COVID recession

Job-finding versus job-separation

Perception and realization shocks during COVID

JS

References I

- **Andrews, Donald WK**, "Tests for parameter instability and structural change with unknown change point," *Econometrica*, 1993, pp. 821–856.
- Auclert, Adrien, Bence Bardóczy, Matthew Rognlie, and Ludwig Straub, "Using the sequence-space Jacobian to solve and estimate heterogeneous-agent models," *Econometrica*, 2021, 89 (5), 2375–2408.
- Bayer, Christian, Ralph Lütticke, Lien Pham-Dao, and Volker Tjaden, "Precautionary savings, illiquid assets, and the aggregate consequences of shocks to household income risk," *Econometrica*, 2019, *87* (1), 255–290.
- **Bianchi, Francesco, Sydney C Ludvigson, and Sai Ma**, "Belief distortions and macroeconomic fluctuations," *American Economic Review*, 2022, 112 (7), 2269–2315.
- **Broer, Tobias, Jeppe Druedahl, Karl Harmenberg, and Erik Öberg**, "The Unemployment-Risk Channel in Business-Cycle Fluctuations," *International Economic Review*, 2021.

References II

- den Haan, Wouter J., Pontus Rendahl, and Markus Riegler, "Unemployment (fears) and deflationary spirals," *Journal of the European Economic Association*, 2018, 16 (5), 1281–1349.
- **Fuster, Andreas, Greg Kaplan, and Basit Zafar**, "What would you do with \$500? Spending responses to gains, losses, news, and loans," *The Review of Economic Studies*, 2021, 88 (4), 1760–1795.
- **Graves, Sebastian**, "Does Unemployment Risk Affect Business Cycle Dynamics?," *International Finance Discussion Paper*, 2020, (1298).
- **Kekre, Rohan**, "Unemployment insurance in macroeconomic stabilization," *Review of Economic Studies*, 2023, *90* (5), 2439–2480.