REPRESENTING THE LANGUAGE OF A TOPOS AS QUOTIENT OF THE CATEGORY OF SPANS

M. GOLSHANI AND A.R SHIR ALI NASAB

ABSTRACT. We use quotients of span categories to introduce the language of a topos. We also study the logical relations and the quotients of span categories derived from them. As an application we show that the category of Boolean toposes is a reflective subcategory of the category of toposes, when the morphisms are logical functors.

1. Introduction

The Mitchell-Benabou language [6] is a form of the internal language of an elementary topos. In this form, types are the objects of topos and variables are interpreted as identity morphisms $1: A \to A$ and terms of type A in variables x_i of type X_i are interpreted as morphisms from the product of the X_i 's to A. Formulas of the language are thus terms of type Ω .

In [5], a different approach is presented in which the variables are interpreted as indeterminate morphisms. For every object A in topos \mathcal{T} , a category, $\mathcal{T}[x]$ is formed by adding an indeterminate morphism $1 \to A$ in a universal manner and $\mathcal{T}[x]$'s are used to interpret variables and terms of language. In this form, we have to travel between $\mathcal{T}[x]$'s and there is no integrated setting to have all variables and terms together. In [5] two approaches are introduced to add an indeterminate morphism, namely using:

- Free category generated by a graph, and
- Kleisli category.

In this paper, we follow the method of [5] and add indeterminate morphisms to \mathcal{T} in a universal manner to provide variables and terms. To do this we use the category of spans that has objects as objects of \mathcal{T} and morphisms as follows:

The category of spans and its quotients are used widely in categorical structures, see for example [2] and [3]. It has more morphisms than the base category and it makes us able

The first author's research has been supported by a grant from IPM (No. 1400030417). The second author's research is partially supported by IPM.

²⁰⁰⁰ Mathematics Subject Classification: 18A32, 18B99, 18C10, 03G30.

Key words and phrases: Language of topos, Span category, Allegory, Topos, Boolean Topos.

[©] M. Golshani and A.R Shir Ali Nasab, . Permission to copy for private use granted.

to construct new categories with various features by using its quotients. Using spans to add indeterminate morphisms to a category gives us more flexibility and we can add all of the variables in one stage and obtain a category that is cartesian closed and contains all variables and terms. Also all of logical connectives are defined as morphisms of this category. So all of the language is already in the category.

We then introduce some kind of relations generated by endospans which are spans with the same domain and codomain. We also study when a quotient of span category has the same logical property as the base category and in this way, we introduce a class of relations called logical relations. As an application of this kind of relation, we obtain a boolean topos from an elementary topos and using it we show that the category of Boolean toposes is a reflective subcategory of the category of toposes, when the morphisms are logical functors.

2. Preliminaries

We recall some definitions and preliminaries about spans categories. We consider *cate-gories equipped with a stable system of morphisms*; these are pairs (C, S) with a category C and a class S of morphisms in C such that:

- \bullet S contains all isomorphisms and is closed under composition, and
- pullbacks of S-morphisms along arbitrary morphisms exist in \mathcal{C} and belong to \mathcal{S} .

S is called an stable class. For objects A, B in C, an span (s, f) with domain A and codomain B is given by a pair of morphisms

$$A \stackrel{s}{\longleftrightarrow} D \stackrel{f}{\longrightarrow} B$$

with s in S and f in C.

For a stable class \mathcal{F} , we define a morphism $x:(s,f)\to(s',f')$ with $x\in\mathcal{F}$, if the following diagram commutes.

If there is a morphism $x:(s,f)\to (s',f')$, write $(s,f)\leq_{\mathcal{F}}(s',f')$. The equivalence relation generated by $\leq_{\mathcal{F}}$ is denoted by $\sim_{\mathcal{F}}$. We form the quotient category of spans $\mathsf{Span}_{\mathcal{F}}(\mathcal{C},\mathcal{S})$ that has objects of \mathcal{C} as objects and equivalence classes $[s,f]_{\sim_{\mathcal{F}}}$ as morphisms. Composition of its morphisms $[s,f]_{\sim_{\mathcal{F}}}:A\to B$ and $[t,g]_{\sim_{\mathcal{F}}}:B\to C$ is defined to be [st',gf'] as depicted in the following diagram.

The composition is well-defined. For simplicity we use the notation $[s, f]_{\mathcal{F}}$ instead of $[s, f]_{\sim_{\mathcal{F}}}$. If \mathcal{I} is the class of isomorphism, $\mathsf{Span}_{\mathcal{I}}(\mathcal{C}, \mathcal{S})$ is the ordinary category of spans and we use [s, f] instead of $[s, f]_{\mathcal{I}}$ for morphisms. We also mention a useful lemma about $\sim_{\mathcal{F}}$:

2.1. LEMMA. For an stable class \mathcal{F} , $(s, f) \sim_{\mathcal{F}} (s', f') \iff$ there exist $p, q \in \mathcal{F}$ such that the following diagram commutes.

Due to generality of $\sim_{\mathcal{F}}$ we define a *compatible* relation on $\mathsf{Span}(\mathcal{C},\mathcal{S})$, that is a relation for \mathcal{S} -spans such that

- only S-spans with the same domain and codomain may be related;
- vertically isomorphic S-spans are related;
- horizontal composition from either side preserves the relation.

For a compatible equivalence relation \sim we denote the \sim -equivalence class of (s, f) by $[s, f]_{\sim}$, or simply by [s, f] when the context makes it clear which relation \sim we are referring to, and we write

$$\mathsf{Span}_\sim(\mathcal{C},\mathcal{S})$$

for the resulting category.

3. Adding indeterminate arrows

Through out this section we let the category \mathcal{C} be a cartesian category. As in [5], we will try to add an indeterminate morphism $x: 1 \to A$ to the category \mathcal{C} in a universal manner. For an object A in category \mathcal{C} , let \mathcal{A} be the following class:

$$\mathcal{A} = \{\pi : A^n \times B \to B : \pi \text{ is a projection}\}.$$

3.1. Lemma. For every object $A \in \mathcal{C}$, $\mathcal{A} = \{\pi : A^n \times B \to B : \pi \text{ is a projection}\}$ is an stable class.

PROOF. Letting n=0. So $A^n=1$. Then \mathcal{A} contains isomorphisms. Stability under pullback and composition is obvious.

Let us construct the quotient category of spans

$$\mathsf{Span}_{\mathcal{A}}(\mathcal{C},\mathcal{A}).$$

3.2. PROPOSITION. The map \mathbf{Q} , sending f to $[1, f]_{\mathcal{A}}$ from \mathcal{C} to $\mathsf{Span}_{\mathcal{A}}(\mathcal{C}, \mathcal{A})$ is a functor; furthermore if there is an arrow from terminal object, 1, to \mathcal{A} , then this functor is faithful.

PROOF. Obviously this map is a functor. For morphisms $B \xrightarrow{f} C$, let $[1, f]_{\mathcal{A}} = [1, g]_{\mathcal{A}}$. By Lemma 2.1, there exist $p, q \in \mathcal{A}$ such that the following diagram commutes.

This implies p=q. Since there is a morphism $1\to A, p$ is an epimorphism. Then f=g, hence functor is faithful.

3.3. Theorem. The functor $\mathbf{Q}: \mathcal{C} \to \mathsf{Span}_{\mathcal{A}}(\mathcal{C},\mathcal{A})$ preserves finite products.

PROOF. We have to show

$$B \leftarrow {}^{[1,\pi_B]_{\mathcal{A}}} B \times C \xrightarrow{[1,\pi_C]_{\mathcal{A}}} C$$

is product in $\mathsf{Span}_{\mathcal{A}}(\mathcal{C}, \mathcal{A})$, where π_B and π_C are projections in \mathcal{C} .

Let $B \xleftarrow{[d_1,f]_{\mathcal{A}}} D \xrightarrow{[d_2,g]_{\mathcal{A}}} C$ be given where $[d_1,f]_{\mathcal{A}}$ and $[d_2,g]_{\mathcal{A}}$ are depicted below.

Let $m \leq n$. We have the projection $\pi: A^n \times D \to A^m \times D$. So $[d_2, g]_{\mathcal{A}} = [d_2\pi, g\pi]_{\mathcal{A}}$. Since d_1 and $d_2\pi$ are projections from $A^n \times D$ to D, we can let n = m and $d_1 = d_2$. Set $d = d_1$ and $h = \langle f, g \rangle$. clearly $[1, \pi_B]_{\mathcal{A}}[d, h]_{\mathcal{A}} = [d, f]_{\mathcal{A}}$ and $[1, \pi_C]_{\mathcal{A}}[d, h]_{\mathcal{A}} = [d, g]_{\mathcal{A}}$.

To show the uniqueness of $[d, h]_A$, let $[e, k]_A$ be a morphism in which $[1, \pi_C][e, k] = [d, g]$ and $[1, \pi_B]_A[e, k]_A = [d, f]_A$.

By Lemma 2.1, morphisms $a, b, a', b' \in \mathcal{A}$ exist such that the following diagrams commutes.

As before we can let s = s', a = a' and b = b'. So the following diagram is commutative.

Hence $[e, k]_{\mathcal{A}} = [d, h]_{\mathcal{A}}$.

Our aim of this section is to add an indeterminate arrow $1 \to A$ to the category \mathcal{C} . We construct the category $\mathsf{Span}_{\mathcal{A}}(\mathcal{C},\mathcal{A})$ as a quotient of spans. The morphism $[!_A,1_A]_{\mathcal{A}}:1\to A$ is the morphism that we want. We denote $[!_A,1_A]_{\mathcal{A}}:1\to A$ by x and the category $\mathsf{Span}_{\mathcal{A}}(\mathcal{C},\mathcal{A})$ by $\mathcal{C}[x]$.

3.4. Proposition.

- (a) $x^n = [!_{A^n}, 1_{A^n}].$
- (b) $x^n \times 1_B = [\pi, 1_{A^n \times B}]$ where $\pi : A^n \times B \to B$ is the projection.

Proof.

(a) For n=2, uniqueness of X^2 in the following commutative diagram implies $x^2=[!_{A^2},1_{A^n}]_{\mathcal{A}}$.

By induction on n we get $x^n = [!_{A^n}, 1_{A^n}]$.

(b) Uniqueness of $x^n \times 1_B$ in the following diagram implies $x^n \times 1_B = [\pi, 1_{A^n \times B}]$.

3.5. PROPOSITION. Suppose the functor $\mathbf{F}: \mathcal{C} \longrightarrow \mathcal{C}'$ is a finite product preserving functor and $a: 1 \to \mathbf{F}(A)$ is a morphism in \mathcal{C}' . There is a unique functor $\mathbf{F}': \mathcal{C}' \longrightarrow \mathsf{Span}_{\mathcal{A}}(\mathcal{C}, \mathcal{A})$ such that $\mathbf{F}'(x) = a$ and the following triangle commutes.

$$\begin{array}{c}
\mathcal{C} \longrightarrow \operatorname{Span}_{\mathcal{A}}(\mathcal{C}, \mathcal{A}) \\
\downarrow \\
\mathcal{C}'
\end{array}$$

PROOF. For a morphism [p, f], depicted as follows:

$$B \stackrel{p}{\longleftarrow} A^n \times B \stackrel{f}{\longrightarrow} C$$

we define

$$\mathbf{F}'[p, f] = \mathbf{F}f\mathbf{F}'(x^n \times 1_B) = \mathbf{F}f(a^n \times 1_{\mathbf{F}(B)}).$$

To show \mathbf{F}' is well defined, suppose the following diagram is given:

We have

$$\mathbf{F}'[p,f] = \mathbf{F}(f)(a^n \times 1_{\mathbf{F}(B)}) = \mathbf{F}(f')\mathbf{F}(\pi)(a^n \times 1_{\mathbf{F}B}) = \mathbf{F}f'(a^m \times 1_{FB}) = \mathbf{F}'[p',f'].$$

By definition of \mathbf{F}' , we get the commutativity of the triangles and also the uniqueness.

In the following, we will show the construction of indeterminate morphism is hereditary. For an object B in C, we know B is an object in $\mathsf{Span}_{\mathcal{A}}(C,\mathcal{A}) = C[x]$. We form the following class:

$$\mathcal{B} = \{[1,\pi]_{\mathcal{A}}: B^n \times C \to C: [1,\pi]_{\mathcal{A}} \text{ is a projection in } \mathsf{Span}_{\mathcal{A}}(\mathcal{C},\mathcal{A})\}.$$

We also define the following class:

$$\mathcal{A} \circ \mathcal{B} = \{A^n \times B^m \times C \to C : \pi \text{ is a projection in } \mathcal{C}\}.$$

3.6. THEOREM. $\mathsf{Span}_{\mathcal{B}}(\mathsf{Span}(\mathcal{C},\mathcal{A}),\mathcal{B})$ is isomorphic to $\mathsf{Span}_{\mathcal{A}\circ\mathcal{B}}(\mathcal{C},\mathcal{A}\circ\mathcal{B})$.

PROOF. We define the map:

$$[[1, pr]_{\mathcal{A}}, [p, f]_{\mathcal{A}}] \longmapsto [pr.p, f]_{\mathcal{A} \circ \mathcal{B}}.$$

Suppose we have the following commutative diagram.

So we have

$$[pr'.q, g]_{\mathcal{A} \circ \mathcal{B}} = [q, g]_{\mathcal{A} \circ \mathcal{B}} [pr', 1]_{\mathcal{A} \circ \mathcal{B}}$$

$$= [q, g]_{\mathcal{A} \circ \mathcal{B}} [1, \pi]_{\mathcal{A} \circ \mathcal{B}} [\pi, 1]_{\mathcal{A} \circ \mathcal{B}} [pr', 1]_{\mathcal{A} \circ \mathcal{B}}$$

$$= [p, f]_{\mathcal{A} \circ \mathcal{B}} [pr, 1]_{\mathcal{A} \circ \mathcal{B}}$$

$$= [pr.p, f]_{\mathcal{A} \circ \mathcal{B}}.$$

Thus the map is well defined. Obviously this map is an isomorphic functor.

3.7. COROLLARY. The functor $\mathcal{C} \to \mathsf{Span}_{\mathcal{A} \circ \mathcal{B}}(\mathcal{C}, \mathcal{A} \circ \mathcal{B})$ which is defined as

$$f \longmapsto [1, f]_{\mathcal{A} \circ \mathcal{B}}$$

preserves finite product.

PROOF. This functor in the composition of the following finite product preserving functors:

$$\mathcal{C} \to \mathsf{Span}_{\mathcal{A}}(\mathcal{C},\mathcal{A}) \to \mathsf{Span}_{\mathcal{B}}(\mathsf{Span}_{\mathcal{A}}(\mathcal{C},\mathcal{A}),\mathcal{B}) \cong \mathsf{Span}_{\mathcal{A} \circ \mathcal{B}}(\mathcal{C},\mathcal{A} \circ \mathcal{B}),$$

and hence it preserves finite products.

Let Π be the class of all projections. Obviously Π is an stable class. So we can form the following quotient category of spans:

$$\mathsf{Span}_\Pi(\mathcal{C},\Pi)$$

3.8. THEOREM. The functor $\mathbf{Q}:\mathcal{C}\longrightarrow \mathsf{Span}_{\Pi}(\mathcal{C},\Pi), sending\ f\ to\ [1,f]_{\Pi}\ preserves\ products.$

PROOF. Let $C \leftarrow \xrightarrow{\pi_1} C \times D \xrightarrow{\pi_2} D$ be a product diagram in C. We will show $C \leftarrow \xrightarrow{[1,\pi_1]_{\Pi}} C \times D \xrightarrow{[1,\pi_2]_{\Pi}} D$ is a product diagram in $\operatorname{Span}_{\Pi}(C,\Pi)$. Let the diagram $C \leftarrow \xrightarrow{[p,f]_{\Pi}} E \xrightarrow{[q,g]_{\Pi}} D$ be given, where [p,f] and [q,g] are depicted as follows:

By replacing Π by $\mathcal{A} \circ \mathcal{B}$, there is a unique morphism $[r,h]: E \to C \times D$ such that the triangles in the following left diagram are commutative. So the triangles in the following right diagram are commutative as well.

To show the uniqueness of $[r, h]_{\Pi}$, let $[s, k]_{\Pi}$ be a morphism such that $[1, \pi_1]_{\Pi}[s, k]_{\Pi} = [p, f]_{\Pi}$ and $[1, \pi_2]_{\Pi}[s, k]_{\Pi} = [q, g]_{\Pi}$.

By Lemma 2.1, there exist some projections such that the following diagrams commute.

Set $\Pi' = \mathcal{A} \circ \mathcal{B} \circ \mathcal{X} \circ \mathcal{Y} \circ \mathcal{Z}$. In $\mathsf{Span}_{\Pi'}(\mathcal{C}, \Pi')$, we have $[s, k]_{\Pi'} = [r, h]_{\Pi'}$. So $[s, k]_{\Pi} = [r, h]_{\Pi}$. Hence $[r, h]_{\Pi}$ is unique.

3.9. Theorem. If C is a cartesian closed category, then so is $\mathsf{Span}_{\Pi}(\mathcal{C},\Pi)$.

PROOF. We want to show evaluation map $ev: B^A \times A \longrightarrow B$ in \mathcal{C} is also evaluation map in $\mathsf{Span}_{\Pi}(\mathcal{C},\Pi)$. Suppose that the morphism $[p,f]_{\Pi}$ is given and assume $[p,f]_{\Pi}$ is depicted as follows:

There is the unique morphism \tilde{f} in C such that the following diagram commutes.

$$\begin{array}{c|c}
B^A \times A & \xrightarrow{ev} B \\
\tilde{f} \times 1 & & f \\
(D \times C) \times A
\end{array}$$

We form the following diagram in \mathcal{C} by using product diagrams.

Note that in the above diagram, the left squares are pullbacks. By using the above diagram, we get the following diagram in $\mathsf{Span}_{\Pi}(\mathcal{C},\Pi)$.

$$B^{A} \longleftarrow B^{A} \times A \longrightarrow A$$

$$[\pi, \tilde{f}]_{\Pi} \qquad [p, \tilde{f} \times 1]_{\Pi} \qquad 1$$

$$C \longleftarrow C \times A \longrightarrow A$$

So $[p, \tilde{f} \times 1]_{\Pi} = [\pi, \tilde{f}]_{\Pi} \times 1$. Then we get $[1, ev]_{\Pi}([\pi, \tilde{f}]_{\Pi} \times 1) = [p, f]_{\Pi}$. We have to show $[\pi, \tilde{f}]_{\Pi}$ is the unique morphism by this property. Thus suppose that for another morphism $[\pi', f']_{\Pi}$, we have $[1, ev]_{\Pi}([\pi', f'] \times 1) = [p, f]$. There are $r, s \in \Pi$ such that the following diagram commutes.

We can show r, s as

$$r = pr \times 1 : (L \times E \times D \times C) \times A \longrightarrow D \times C \times A$$

and

$$s = pr' \times 1 : (L \times E \times D \times C) \times A \longrightarrow E \times C \times A$$

These imply \tilde{f} pr = f' pr'. So the following commutative diagram implies $[\pi, \tilde{f}]_{\Pi} = [\pi', f']_{\Pi}$ and the uniqueness of $[\pi, \tilde{f}]_{\Pi}$ is proved.

Hence $\mathsf{Span}_\Pi(\mathcal{C},\Pi)$ is cartesian closed.

For objects $A_1, A_2, ..., A_n \in \mathcal{C}$ we have the functor

$$\mathbf{Q}: \mathsf{Span}_{\mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_{n-1}}(\mathcal{C}, \mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_{n-1}) \longrightarrow \mathsf{Span}_{\mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_n}(\mathcal{C}, \mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_n)$$

So we can form a diagram in category Cat.

3.10. THEOREM. Span_{Π}(\mathcal{C}, Π) is colimit for the above diagram.

Proof. Obviously

$$\mathsf{Span}_{\mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_{n-1}}(\mathcal{C}, \mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_{n-1}) \xrightarrow{} \mathsf{Span}_{\Pi}(\mathcal{C}, \Pi)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathsf{Span}_{\mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_n}(\mathcal{C}, \mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_n)$$

is natural. Now suppose we have the natural sink

$$\begin{split} \mathsf{Span}_{\mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_{n-1}} (\mathcal{C}, \mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_{n-1}) & \xrightarrow{\mathbf{F}_{\mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_{n-1}}} & \mathcal{D} \\ & & \downarrow & & \downarrow \\ \mathsf{Span}_{\mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_n} (\mathcal{C}, \mathcal{A}_1 \circ \mathcal{A}_2 \circ \ldots \circ \mathcal{A}_n) & \end{split}$$

We define the functor $U:\mathsf{Span}_\Pi(\mathcal{C},\Pi)\longrightarrow \mathcal{D}$ as follows:

$$[\pi, f]_{\Pi} \mapsto \mathbf{F}_{\mathcal{A}}[\pi, f]_{\mathcal{A}}$$

where $[\pi, f]$ is depicted as follows:

To show U is well defined, suppose we have the following commutative diagram with p projection.

So $[\pi, f]_{A \circ D} = [\pi', f']_{A \circ D}$. By the naturality of diagram we get

$$\mathbf{U}[\pi, f]_{\Pi} = \mathbf{F}_{\mathcal{A}}[\pi, f]_{\mathcal{A}} = \mathbf{F}_{\mathcal{A} \circ \mathcal{D}}[\pi, f]_{\mathcal{A} \circ \mathcal{D}} = F_{\mathcal{A} \circ \mathcal{D}}[\pi', f']_{\mathcal{A} \circ \mathcal{D}} = \mathbf{U}[\pi', f']_{\Pi}$$

Uniqueness of U can be seen easily.

4. Language of a topos

Throughout this section we assume \mathcal{T} is a topos. We will show the category $\mathsf{Span}_{\Pi}(\mathcal{T}, \Pi)$ can be seen as the language of topos \mathcal{T} . The language of topos \mathcal{T} has objects of \mathcal{T} as types and morphisms $[!_A, f]_{\Pi} : 1 \to B$ as terms of type $B \in \mathcal{T}$. We denote terms $[!_A, f]_{\Pi} : 1 \to B$ by $\phi(x) : 1 \to B$. Here, x is used to denote $[!_A, 1_A] : 1 \to A$. So x is a term of type A. We call x a variable of type A. Terms of type Ω are called formula.

4.1. Definition. For $\alpha(x) = [!_A, f]_{\Pi} : 1 \to D$, $\beta(y) = [!_B, g]_{\Pi} : 1 \to D$ and $\gamma(z) = [!_C, h]_{\Pi} : 1 \to \mathbf{P}D$

• $\alpha(x) = \beta(y)$ is the formula

$$1 \xrightarrow{\langle \alpha, \beta \rangle} D \times D \xrightarrow{[1, \delta_D]_{\Pi}} \Omega$$

• $\alpha \varepsilon \gamma$ is the formula $1 \xrightarrow{\langle \alpha, \gamma \rangle} D \times PD \xrightarrow{[1, ev]_{\Pi}} \Omega$

For formulas $\phi(x) = [!_A, f] : 1 \to \Omega$ and $\psi(y) = [!_B, g] : 1 \to \Omega$ we define

• $\phi \wedge \psi$ is defined as follows:

$$1 \xrightarrow{\langle \phi, \psi \rangle} \Omega \times \Omega \xrightarrow{[1, \wedge]_{\Pi}} \Omega$$

• $\phi \lor \psi$ as:

$$1 \xrightarrow{\langle \phi, \psi \rangle} \Omega \times \Omega \xrightarrow{[1, \vee]_{\Pi}} \Omega$$

 $\bullet \phi \implies \psi \ as:$

$$1 \xrightarrow{\langle \phi, \psi \rangle} \Omega \times \Omega \xrightarrow{[1, \Longrightarrow]_{\Pi}} \Omega$$

• $not\phi$ as:

$$1 \xrightarrow{\phi} \Omega \xrightarrow{[1,not]_{\Pi}} \Omega$$

- $\forall \phi(x) = [1, \forall_A \tilde{f}]$
- $\exists \phi(x) = [1, \exists_A \tilde{f}]$

where \forall_A is right adjoint and \exists_A is left adjoint for $\mathbf{P}(!_A): \Omega \to (P)(A)$ and \tilde{f} is obtained by the following diagram.

$$\begin{array}{c|c}
\mathbf{P}(A) \times A & \xrightarrow{ev} & \Omega \\
\tilde{f} \times 1 & & \uparrow f \\
1 \times A & \longrightarrow A
\end{array}$$

• For $\phi(x) = [1, f][!_A, 1] : 1 \to A \to \Omega$:

$$\{x \in A : \phi(x)\}$$

is the unique morphism u obtained by the following diagram.

4.2. Proposition. $\forall \phi(x)$ and $\exists \phi(x)$ are well defined.

PROOF. Suppose we have

We have to show $\forall_A \tilde{f} = \forall_{A \times C} \tilde{f} \pi$. The following diagram implies $\tilde{f} \pi = \mathbf{P}(\pi) \tilde{f}$.

By morphisms $!_{A\times C}=!_A\pi:A\times C\to A\to 1$ we have the following adjunctions.

$$\mathbf{P}(A \times C) \xrightarrow{\forall_{\pi}} \mathbf{P}A \xrightarrow{\forall_{A}} \Omega$$

So $\forall_{A\times C} = \forall_A \forall_{\pi}$. In external case we have the following diagrams for $\mathbf{P}\pi$ and \forall_{π} :

By the right one we get $\pi^{-1}d = d \times 1$. So we get $\forall_{\pi} \mathbf{P} \pi = 1$. This implies

$$\forall_{A \times C} \tilde{f} \pi = \forall_A \forall_\pi \mathbf{P} \pi \tilde{f} = \forall_A \tilde{f}$$

For the case $\exists \phi(x)$, by [4, Lemma 2.3.6] we have $\exists_C \mathbf{P}\pi = 1$. So

$$\exists_{A \times C} \tilde{f} \pi = \exists_A \exists_C \mathbf{P} \pi \tilde{f} = \exists_A \tilde{f}$$

5. Relations generated by a class of endospans

In the previous sections we used compatible relations generated by a class of morphisms, especially the class of epimorphisms. Now we consider a more general kind of compatible relations. In this kind we replace morphisms by endospans:

If in the above endospan p = q and p is isomorphism, it is called endospan of an iso.

5.1. Definition.

- A class of endospans is called saturated if it contains all of endospans of isos.
- Suppose A is a saturated class of endospans. The smallest compatible relation \sim on the category Span(C) such that for all (a,b) in A:

$$(a,b) \sim (1,1)$$

is called the compatible relation generated by A and it is denoted by $\sim_{\mathcal{A}}$.

5.2. Proposition. For a compatible class of endospans, A, the compatible relation generated by A is described as follows:

$$(h,k) \sim (r,s) \iff for \ decompositions$$

$$(h,k) = (h_n, k_n)...(h_1, k_1)$$
 and $(r,s) = (r_m, s_m)...(r_1, s_1)$

and $(a_1, b_1), ..., (a_n, b_n) \in A$ and $(c_1, d_1), ..., (c_m, d_m) \in A$, we have

$$(r_m, s_m)(c_m, d_m)...(r_1, s_1)(c_1, d_1) = (h_n, k_n)(a_n, b_n)...(h_1, k_1)(a_1, b_1)$$

Proof. Obvious

5.3. Example.

- Let \mathcal{I} be the class of all endospans of isos. The compatible relation generated by this class is defined as follows: $(f,g) \sim (h,k)$ if there is an isomorphism ϕ such that $f = h\phi$ and $g = k\phi$. So $\mathsf{Span}_{\sim}(\mathcal{C})$ is the ordinary category of spans.
- For a Compatible Class of morphism, \mathcal{B} , we can form a compatible class of endospans containing (b,b) for all $b \in \mathcal{B}$. The compatible relation generated by this class of endospans is the same as $\sim_{\mathcal{B}}$
- For a morphism $f: A \to B$ we can form a compatible endospan class by adding the kernel pair of $f: A \to B$ to \mathcal{I} , the class of all endospans of isos.
- For a morphism $f: A \to B$ we can form a compatible endospan class by adding the kernel pair of $f: A \to B$ to the class of endospans containing (e, e) for epimorphisms e.
- 5.4. DEFINITION. For a morphism $f: A \to B$, let K(f) be the compatible endospan class containing kernel pair of all morphisms h in which f = gh for some morphism g and (e, e) for all epimorphisms e.

The compatible relations generated by K(f) imply $(p_1, p_2) \sim_{k(f)} (1, 1)$, in which p_1, p_2 are obtained by the following pullback diagram:

where f = gh for some morphism g.

- 5.5. Lemma. Using the above definitions and notations, we have:
 - (a) for an epimorphism e, $[1, e]_{K(e)}$ is an isomorphism and its inverse is $[e, 1]_{V(e)}$.
 - (b) if f = gh, then $K(h) \subseteq K(f)$.

PROOF. Obvious.

- 5.6. Definition. For a topos \mathcal{T} , a compatible relation \sim on $\mathsf{Span}(\mathcal{T})$ is called logical if,
 - \bullet $\mathcal{E} \subset \sim$
 - for spans $(f,g),(h,k):A\to C$ and morphism $a:A\to B$

$$(f,g) \sim (h,k) \implies (\pi_1 \forall_{a \times 1} m, \pi_2 \forall_{a \times 1} m) \sim (\pi_1 \forall_{a \times 1} n, \pi_2 \forall_{a \times 1} n)$$

where m and n are the M parts of $\langle f, g \rangle$ and $\langle h, k \rangle$ respectively.

The smallest logical relation containing K(f) is denoted by L(f).

5.7. Lemma. The following diagram is formed by pulling back and g is epi. We have $\forall_{g \times g} \langle q_1, q_2 \rangle = \langle p_1, p_2 \rangle$.

$$Q \xrightarrow{v_2} R \xrightarrow{r} C$$

$$\downarrow v_1 \qquad r_2 \qquad \downarrow g$$

$$\downarrow q_1 \qquad R \xrightarrow{r_1} P \xrightarrow{p_2} B$$

$$\downarrow r \qquad p_1 \qquad \downarrow f$$

$$\downarrow r \qquad p_1 \qquad \downarrow f$$

$$\downarrow r \qquad p_2 \qquad \downarrow f$$

$$\downarrow r \qquad p_3 \qquad \downarrow f$$

$$\downarrow r \qquad p_4 \qquad \downarrow f$$

PROOF. Let $(g \times g)^{-1}\langle x, y \rangle \leq \langle q_1, q_2 \rangle$. Then there is i such that $(g \times g)^{-1}\langle x, y \rangle = \langle q_1, q_2 \rangle i$. Set $(g \times g)^{-1}\langle x, y \rangle = \langle x', y' \rangle$ and $\langle x, y \rangle^{-1}(g \times g) = e$. Since g is epi, $(g \times g)$ is epi and since in a topos epimorphisms are stable under pullbacks, we have e is epi as well. We have the following equalizer diagrams.

$$P \xrightarrow{\langle p_1, p_2 \rangle} B \times B \xrightarrow{f\pi_1} A \qquad P \xrightarrow{\langle q_1, q_2 \rangle} C \times C \xrightarrow{fg\pi'_1} A$$

We have $fg\pi'_1 = f\pi_1(g \times g)$ and $fg\pi'_2 = f\pi_2(g \times g)$. So we get

$$fxe = f\pi_1\langle x, y \rangle e$$

$$= f\pi_1(g \times g)\langle x', y' \rangle$$

$$= fg\pi'_1\langle q_1, q_2 \rangle i$$

$$= fg\pi'_2\langle q_1, q_2 \rangle i$$

$$= f\pi_2(g \times g)\langle x', y' \rangle$$

$$= f\pi_2\langle x, y \rangle e$$

$$= fye.$$

Since e is epi, fx = fy. Then $\langle x, y \rangle \leq \langle p_1, p_2 \rangle$.

By the following pullback diagrams we get $(g \times g)^{-1} \langle p_1, p_2 \rangle = \langle q_1, q_2 \rangle$. Then, $\langle x, y \rangle \leq \langle p_1, p_2 \rangle$ implies $(g \times g)^{-1} \langle x, y \rangle \leq \langle q_1, q_2 \rangle$.

$$Q \xrightarrow{v_1} R \xrightarrow{r_1} P$$

$$\langle q_1, q_2 \rangle \downarrow \qquad \langle r, p_2 r_1 \rangle \downarrow \qquad \downarrow \langle p_1, p_2 \rangle$$

$$C \times C \xrightarrow{1 \times g} C \times B \xrightarrow{g \times 1} B \times B$$

5.8. Corollary. Suppose f = gh and h is epi. Then $L(g) \subseteq L(f)$.

PROOF. Let g = uv and consequently f = uvh. So the kernel pair of v is related to (1,1) by L(g) and the kernel pair of vh is related to (1,1) by L(f). Since the kernel pairs of h and vh are related by L(f), by using $\forall_{h \times h}$ and Lemma 5.7, kernel pair of v is related to (1,1) by L(f).

6. Booleanization of a topos

Allegories were defined in [1] as categories which reflect properties that hold in the category of relations.

6.1. Definition. An allegory is a locally ordered 2-category \mathcal{A} whose hom-posets have binary intersections, equipped with an anti-involution $\phi \mapsto \phi^{\circ}$ and satisfying the modular law

$$\psi \phi \cap \chi \leq (\psi \cap \chi \phi^{\circ}) \phi$$
,

whenever this makes sense.

6.2. DEFINITION. Given an allegory A, let MAP(A) denote the subcategory of maps of A.

A power allegory is a division allegory with some extra properties. First we give the definition of a division allegory and then the definition of power allegory. See [4] for more information.

6.3. DEFINITION. ([4, Definition 3.4.1]) An allegory A is called a division allegory if, for each $\phi: A \to B$ and object C, the order preserving map $(-)\phi: \mathcal{A}(B,C) \longrightarrow \mathcal{A}(A,C)$ has a right adjoint, which we call right division by ϕ and denote $(-)/\phi$.

Of course, the anti-involution ensures that if we have right division we also have left division $\phi \setminus (-)$ (right adjoint to $\phi(-)$). We write $(\phi|\psi)$ for

$$(\phi \setminus \psi) \cap (\psi \setminus \phi)^{\circ}.$$

6.4. DEFINITION. [4] A division allegory \mathcal{A} is called a power allegory if there is an operation assigning to each object A a morphism \in_A : $PA \to A$ satisfying $(\in_A \mid \in_A) = 1_{PA}$ and

$$1_B \le (\phi \setminus \in_A)(\in_A \setminus \phi)$$

for any $\phi: B \to A$.

Given a category \mathcal{C} let $\mathsf{Rel}(\mathcal{C})$ be such that whose objects are the same as \mathcal{C} and whose morphisms are relations in \mathcal{C} . The next lemma shows that under some extra conditions on \mathcal{C} , $\mathsf{Rel}(\mathcal{C})$ is a category.

6.5. Lemma. (see [4, Corollary 3.1.2]) Suppose C is a regular category. Then Rel(C) is a category.

Let us recall that every topos is a regular category and has $(\mathcal{E}, \mathcal{M})$ factorization structure, where \mathcal{E} denotes the class of all epimorphisms and \mathcal{M} denotes the class of all monomorphisms.

As a first step, we would like to make $\mathsf{Span}_{\sim}(\mathcal{T})$ a division allegory. For a logical relation \sim , since $\mathcal{E} \subseteq \sim$, the mapping $Q : \mathsf{Span}_{\mathcal{E}}(\mathcal{T}) \longrightarrow \mathsf{Span}_{\sim}(\mathcal{T})$ defined by

$$Q([f,g]_{\mathcal{E}}) = [f,g]_{\sim}$$

is a representation of allegories, that means Q preserves $^{\circ}$ and \cap .

6.6. THEOREM. For every Topos \mathcal{T} , $\mathsf{Span}_{\varepsilon}(\mathcal{T})$ is a division allegory.

PROOF. By [4, Theorem 3.4.2] and [3, Theorem 4.2], $\mathsf{Span}_{\mathcal{E}}(\mathcal{T})$ is a division allegory defined by

$$[h,k]_{\mathcal{E}}/[f,g]_{\mathcal{E}}=[\pi_1 a,\pi_2 a]_{\mathcal{E}}$$

where $a = \forall_{q \times 1} (f \times 1)^*(m_{\langle h, k \rangle}), m_{\langle h, k \rangle}$ is the mono part of $\langle h, k \rangle$

6.7. Theorem. For a logical relation \sim , $Span_{\sim}(\mathcal{T})$ is a division allegory and

$$Q((-)/[f,g]_{\mathcal{E}}) = (-)/[f,g]_{\sim}.$$

PROOF. We define $(-)/[f,g]_{\sim} := Q((-)/[f,g]_{\varepsilon})$. It follows from the definition of logical relation that this definition is well-defined. We have

$$[h,k]_{\sim} = Q[h,k]_{\mathcal{E}} \leq Q(([h,k]_{\mathcal{E}}[f,g]_{\mathcal{E}})/[f,g]_{\mathcal{E}}) = ([h,k]_{\sim}[f,g]_{\sim})/[f,g]_{\sim}$$

and

$$([r,s]_{\sim}/[f,g]_{\sim})[f,g]_{\sim} = Q([r,s]_{\mathcal{E}}/[f,g]_{\mathcal{E}})Q[f,g]_{\mathcal{E}} = Q(([r,s]_{\mathcal{E}}/[f,g]_{\mathcal{E}})[f,g]_{\mathcal{E}}) \leq Q[r,s]_{\mathcal{E}} = [r,s]_{\sim}$$

So
$$(-)/[f,g]_{\sim}$$
 is right adjoint for $(-)[f,g]_{\sim}$.

Since \mathcal{T} is a topos, $Rel(\mathcal{T}, \mathcal{E}, \mathcal{M})$ is a power allegory and $\in_A: PA \to A$ is

6.8. THEOREM. Span_{\mathcal{E}}(\mathcal{T}) is a power allegory.

PROOF. This follows from $Rel(\mathcal{T}, \mathcal{E}, \mathcal{M}) \cong Span_{\mathcal{E}}(\mathcal{T})$ and that $\in_A: PA \to A$ in $Span_{\mathcal{E}}(\mathcal{T})$ is defined as in $Rel(\mathcal{T}, \mathcal{E}, \mathcal{M})$.

6.9. THEOREM. For a logical relation \sim , $\mathsf{Span}_{\sim}(\mathcal{T})$ is a power allegory and $\mathsf{Map}(\mathsf{Span}_{\sim}(\mathcal{T}))$ is a topos.

PROOF. Let \in_A : $PA \to A$ in $\operatorname{Span}_{\sim}(\mathcal{T})$ be $Q(\in_A: PA \to A)$. Since $Q((-)/[f,g]_{\varepsilon}) = (-)/[f,g]_{\sim}$ and Q is a representation, we get $\operatorname{Span}_{\sim}(\mathcal{T})$ is a power allegory. Thus [4, Corollary 3.4.7] implies $\operatorname{\mathsf{Map}}(\operatorname{\mathsf{Span}}_{\sim}(\mathcal{T}))$ is a topos.

We use η for the functor $Q: \mathcal{T} \longrightarrow \mathsf{Map}(\mathsf{Span}_{\mathfrak{A}}(\mathcal{T}))$. So we have:

6.10. THEOREM. $\eta: \mathcal{T} \longrightarrow \mathsf{Map}(\mathsf{Span}_{\sim}(\mathcal{T}))$ is a logical functor.

7. Morphism classes yielding a logical relation

- 7.1. Definition. We call a class of morphism W a logical class if
 - W is closed under composition and closed under pullbacks and contains isomorphisms,
 - $\mathcal{E} \subset \mathcal{W}$,
 - for each $w \in \mathcal{W}$, \mathcal{M} -part of w is in \mathcal{W} ,
 - for monomorphism $m \in \mathcal{W}$ and for monomorphism f and morphism g in \mathcal{T} , $\forall_g m$ is in \mathcal{W}

7.2. Theorem. \sim_W is a logical relation.

PROOF. This is obvious.

As an application we will use this technique to make a topos boolean. The morphism $b: 1+1 \to \Omega$ is mono in every topos. We will try to make this an isomorphism in a logical manner to construct a boolean topos. Let the class $\mathcal{B}(\mathcal{T})$ denote the least logical class containing $b: 1+1 \to \Omega$.

7.3. THEOREM. $\mathsf{Map}(\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}))$ is a boolean topos.

PROOF. Since $(b, b) \sim_{\mathcal{B}(\mathcal{T})} (1, 1)$, we have $[b, b]_{\mathcal{B}(\mathcal{T})} = [1, 1]_{\mathcal{B}(\mathcal{T})}$. So $[1, b]_{\mathcal{B}(\mathcal{T})}$ is a retraction. Because b is mono, we get $[b, 1]_{\mathcal{B}(\mathcal{T})}[1, b]_{\mathcal{B}(\mathcal{T})} = 1$. So [1, b] is an isomorphism in $\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T})$ and then in $\mathsf{Map}(\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}))$. By Theorem 6.10, $\eta: \mathcal{T} \longrightarrow \mathsf{Map}(\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}))$ is a logical functor. By [4, Corollary 2.2.10], η is cocartesian. So

$$\eta(b:1+1\to\Omega) = [1,b]:1+1\to\Omega.$$

Thus $\mathsf{Map}(\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}))$ is a boolean topos, as claimed.

We may note that this construction is universal.

7.4. Lemma. For a logical functor $F: \mathcal{T} \to \mathcal{T}'$, $F(\mathcal{B}(\mathcal{T})) \subseteq \mathcal{B}(\mathcal{T}')$.

PROOF. Since F is a logical functor, it preserves epi, mono and \forall . So one can easily verify $F^{-1}(\mathcal{B}(\mathcal{T}'))$ is a logical class. F(b) = b' implies $b \in F^{-1}(\mathcal{B}(\mathcal{T}'))$. So $\mathcal{B}(\mathcal{T}) \subseteq F^{-1}(\mathcal{B}(\mathcal{T}'))$ and we get $F(\mathcal{B}(\mathcal{T})) \subseteq \mathcal{B}(\mathcal{T}')$.

- 7.5. Theorem. For a logical functor $F: \mathcal{T} \to \mathcal{T}'$
 - (a) the mapping $PF : \mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}) \longrightarrow \mathsf{Span}_{\mathcal{B}(\mathcal{T}')}(\mathcal{T}')$ by taking $[f,g]_{\mathcal{B}(\mathcal{T})}$ to $[Ff,Fg]_{\mathcal{B}(\mathcal{T}')}$ is a representation of allegories.
 - $(b) \ \operatorname{\mathsf{Map}}(PF) : \operatorname{\mathsf{Map}}(\operatorname{\mathsf{Span}}_{\mathcal{B}(\mathcal{T})}(\mathcal{T})) \longrightarrow \operatorname{\mathsf{Map}}(\operatorname{\mathsf{Span}}_{\mathcal{B}(\mathcal{T}')}(\mathcal{T}')) \ is \ a \ logical \ functor.$

PROOF. For clause (a), note that by lemma 7.4, the map is well-defined. The rest of proof comes from the fact that F preserves pullbacks. Clause (b) follows from the definition of \in_A in $\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T})$ and $\mathsf{Span}_{\mathcal{B}(\mathcal{T}')}(\mathcal{T}')$.

Now let BoolTop be the category with boolean toposes as objects and logical functors as morphisms. This is a subcategory of the category Top of toposes and logical functors. Using Theorem 7.5, we can define the functor

$$Bool : \mathsf{Top} \longrightarrow \mathsf{BoolTop}$$

in which Bool(F) and $Bool(\mathcal{T})$ are used instead of $\mathsf{Map}(PF)$ and $\mathsf{Map}(\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}))$ respectively.

7.6. THEOREM. BoolTop is a reflective subcategory of Top.

PROOF. We will show the functor Bool is a left adjoint for the inclusion functor. It is enough to show

$$\eta: \mathcal{T} o \mathsf{Map}(\mathsf{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}) = \imath \cdot Bool(\mathcal{T})$$

is universal, where i denotes the inclusion functor i: BoolTop \longrightarrow Top.

Let $F: \mathcal{T} \to \mathcal{T}' = \imath(\mathcal{T}')$ be a logical functor and A a boolean topos. Since F is cocartesian and \mathcal{T}' is boolean, $F(b: 1+1 \to \Omega) = 1+1 \to \Omega$ is an isomorphism in \mathcal{T}' . Using Theorem 7.5, we have the functor $Bool(F): Bool(\mathcal{T}) \to Bool(\mathcal{T}')$. It is easy to verify $\mathcal{B}(\mathcal{T}') = \mathcal{E}$ and then $Bool(\mathcal{T}') = \mathcal{T}'$. So we have the following commutative triangle.

$$\mathcal{T} \xrightarrow{\eta} \operatorname{Map}(\operatorname{Span}_{\mathcal{B}(\mathcal{T})}(\mathcal{T}) = \imath \cdot \operatorname{Bool}(\mathcal{T})$$

$$\mathcal{T}' \xleftarrow{Bool(F)}$$

For uniqueness, let [f, g] be a map in $\mathsf{Span}_{\mathcal{B}}(\mathcal{T})$. So [f, 1] is an iso and the inverse is [1, f]. For the functor G, set $F = G\eta$. Since [f, g] = [1, g][f, 1], we have

$$\begin{split} G[f,g] &= G[1,g]G[f,1] \\ &= G[1,g](G[1,f])^{-1} \\ &= G\eta(g)(G\eta(f))^{-1} \\ &= F(g)(F(f))^{-1} \\ &= Bool(F)[f,g]. \end{split}$$

The result follows.

References

- [1] Freyd, Peter J.; Scedrov, Andre Categories, allegories. North-Holland Mathematical Library, 39. North-Holland Publishing Co., Amsterdam, 1990. xviii+296 pp. ISBN: 0-444-70368-3; 0-444-70367-5.
- [2] Hosseini, S. N.; Shir Ali Nasab, A. R.; Tholen, W.; Fraction, restriction, and range categories from stable systems of morphisms. J. Pure Appl. Algebra 224 (2020), no. 9, 106361, 28 pp.
- [3] Hosseini, S. N.; Shir Ali Nasab, A. R.; Tholen, W.; Yeganeh, L.; Quotients of span categories that are allegories and the representation of regular categories, https://arxiv.org/abs/2112.04599
- [4] Johnstone, Peter T. Sketches of an elephant: a topos theory compendium. Vol. 1. Oxford Logic Guides, 43. The Clarendon Press, Oxford University Press, New York, 2002. xxii+468+71 pp. ISBN: 0-19-853425-6
- [5] Lambek, J.; Scott, P. J. Introduction to higher order categorical logic. Cambridge Studies in Advanced Mathematics, 7. Cambridge University Press, Cambridge, 1986. x+293 pp. ISBN: 0-521-24665-2
- [6] Mac Lane, Saunders; Moerdijk, Ieke Sheaves in geometry and logic. A first introduction to topos theory. Corrected reprint of the 1992 edition. Universitext. Springer-Verlag, New York, 1994. xii+629 pp. ISBN: 0-387-97710-4.

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran-Iran.

E-mail address: golshani.m@gmail.com

Mathematics Department, Shahid Bahonar University of Kerman, Kerman, Iran. E-mail address: ashirali@math.uk.ac.ir