Few-shot Learning with Meta-Learning for Earth Observation

Cesar Luis Aybar Camacho

* Student at Copernicus Master in Digital Earth (EMCDE)

April 22, 2021

With the support of the Erasmus+ Programme of the European Union

Standard Supervised Learning Problem

How we can map forest disturbance in the Atlantic rainforest?

How we can map forest disturbance in the Atlantic rainforest?

How we can map forest disturbance in the Atlantic rainforest?

How we can map forest disturbance in the Atlantic

rainforest? input target

U-NET

- Large dataset are not always available.

- Large dataset are not always available.
- Need retrain every time new data is added.

- Large dataset are not always available.
- Need retrain every time new data is added.

- Large dataset are not always available.
- Need retrain every time new data is added.

- Large dataset are not always available.
- Need retrain every time new data is added.

One model per region

Brazi Model 1

One model on pooled data

Beyond Supervised Learning

Semantic segmentation approaches:

Semantic segmentation approaches:

Few-shot Learning

Tom

What is her name?

Tom

Tom

What is her name?

Tom

What is her name?

Query Dataset Qn

Support Dataset Sn

Few Shot L

Few Shot L

Support Set:

Few Shot L

What is her name?

Basic Idea

- Divide the dataset in query and support.
- 2. Learn a similarity function.
- 3. Apply the **similarity function** to the predictions.

Few shot Learning approaches:

- Feature Transfer: Standard transfer learning, Baseline++ (Chen et al. 2019), Simpleshot (Wang et al. 2019), etc.
- Metric Learning: Matching Networks (Vinyals et al. 2016), Prototypical Networks (Snell et al. 2017), Relation Networks (Sunget et al. 2018), etc.
- Meta-learning: Model-Agnostic Meta-Learning (MAML, Finn et al. 2017), MAML ++ (Antoniou et al. 2019), Meta-SGD (Li et al. 2017), etc.
- Bayesian methods: Bayesian MAML (Yoon et al. 2018), VERSA (Gordon et al. 2019), ALPaCA (Harrison et al. 2018), etc.

Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels - Massimiliano Patacchiola 2020 - NeurIPS 2020

MetaLearning + Few-Shot Learning

In meta-learning models learn how to learn!

Single Task (from scratch)

Learn task and perform task

Pretraining and fine-tuning

Refresh task of interest

meta-learning

Quickly learn a new task

Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels - Massimiliano Patacchiola 2020 - NeurIPS 2020

Model-Agnostic Meta-Learning

MAML

Agnostic, in the sense that the method can be used in different contexts, few-shot learning is a particular case.

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

$$\min_{ heta} \, heta - lpha igtriangledown_{ heta} \mathcal{L}(heta, \mathcal{D})$$

A few to the complete seed, which is to be a complete to the c

1. Copy Model per task

- 1. Copy Model per task
- 2. Support set train

- 1. Copy Model per task
- 2. Support set train
- 3. Calculate query set loss

- 1. Copy Model per task
- 2. Support set train
- 3. Calculate query set loss
- 4. Sum task losses

$$\min_{ heta} \, heta - lpha igtriangledown_{ heta} \mathcal{L}(heta, \mathcal{D})$$

$$\min_{ heta} \sum_{ au_i \sim p(au)} \mathcal{L}ig(heta - lpha igtarrow_{ heta} \mathcal{L}ig(heta, \, \mathcal{D}_{ au_i}^{\mathcal{S}}ig), \mathcal{D}_{ au_i}^{\mathcal{Q}}ig) = \sum_{ au_i \sim p(au)} \mathcal{L}ig(heta', \, \mathcal{D}_{ au_i}^{\mathcal{Q}}ig)$$

Model-Agnostic Meta-Learning

```
model = ConvolutionalNeuralNetwork(out_features=5) #we suppose a 5-way setting
 meta optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
4 #[...] outer loop starts here, sample batch of tasks
 for task in batch:
     train inputs, train targets = task['support'] #input-output train pairs
     test inputs, test targets = task['query'] #input-output test pairs
     train_logit = model(train_input)
     inner_loss = F.cross_entropy(train_logit, train_target) #on train set
     model.zero grad()
     grads = torch.autograd.grad(inner loss, model.meta params(), create graph=True
     params = OrderedDict()
     for (name, param), grad in zip(model.meta_named_pars(), grads):
         params[name] = param - step_size * grad
     test logit = model(test input, params=params) #assign params to model
     outer loss += F.cross entropy(test logit, test target) #on test set
 outer_loss.backward()
 meta optimizer.step()
```

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

Model-Agnostic Meta-Learning

```
model = ConvolutionalNeuralNetwork(out_features=5) #we suppose a 5-way setting
 meta optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
4 #[...] outer loop starts here, sample batch of tasks
 for task in batch:
     train inputs, train targets = task['support'] #input-output train pairs
     test inputs, test targets = task['query'] #input-output test pairs
     train_logit = model(train_input)
     inner_loss = F.cross_entropy(train_logit, train_target) #on train set
     model.zero grad()
     grads = torch.autograd.grad(inner loss, model.meta params(), create graph=True
     params = OrderedDict()
     for (name, param), grad in zip(model.meta_named_pars(), grads):
         params[name] = param - step_size * grad
     test logit = model(test input, params=params) #assign params to model
     outer loss += F.cross entropy(test logit, test target) #on test set
 outer_loss.backward()
 meta optimizer.step()
```

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

MAML pro vs cons

- Elegant and neat.
- Fully differentiable method
- Agnostic (easily adapted to multiple setting).

- Unstable, hard to train.
- High order derivatives.
- Vanishing gradient.

HOW TO TRAIN YOUR MAML

Antreas Antoniou
University of Edinburgh
{a.antoniou}@sms.ed.ac.uk

Amos Storkey
University of Edinburgh
{a.storkey}@ed.ac.uk

Harrison Edwards
OpenAI, University of Edinburgh
{h.l.edwards}@sms.ed.ac.uk

- https://paperswithcode.com/sota/few-shot-image-classification-on-mini-2
- https://paperswithcode.com/sota/few-shot-semantic-segmentation-on-fss-1000

Earth Observation?

This CVPR 2020 workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Meta-Learning for Few-Shot Land Cover Classification

Marc Rußwurm^{1,*,†}, Sherrie Wang^{2,3,*}, Marco Körner¹, and David Lobell²

¹Technical University of Munich, Chair of Remote Sensing Technology ²Stanford University, Center on Food Security and the Environment ³Stanford University, Institute for Computational and Mathematical Engineering

SEN12MS

- "Global" dataset
- Sentinel2 + MODIS
- 125 image tiles

Geographic regions as meta-learning task

 MAML adjusts to new distribution in a single shot and outperforms baselines.

DeepGloble

- RGB
- High Resolution (0.5 m)
- Semantic segmentation

When:

$$P_{train}(X,y) \neq P_{test}(X,y)$$

MAML outperforms pretraining

When:

$$P_{train}(X,y) \neq P_{test}(X,y)$$

MAML outperforms pretraining

Conclusion

Conclusions

- Results in computer vision paper show us that **meta-learning outperforms** pretraining and fine-tuning when the **meta-task tasks have data distribution that are different from meta-train tasks**.
- Current EO Deep Learning Dataset are a limitation.
- meta-learning framework can lead deep learning in Earth observation to a new era.

Muchas Gracias