Triangulation

Lower & Upper Bounds of Tetrahedralization

Junhui DENG

deng@tsinghua.edu.cn

Chazelle's Lower Bound

- ❖ Using Steiner points, we can triangulate every polyhedron. But ...
- ❖ How many Steiner points are needed to triangulate a polyhedron? And how many tetrahedra will a polyhedron be partitioned into?
- ❖ If the goal is to cut the polyhedron into pieces as few as possible, how well can you do? i.e.,
- ❖[Chazelle, 1984] The tetrahedralization (using Steiner points)
 of a polyhedron with n vertices
 - consists of $\Omega(n^2)$ tetrahedra in the worst cases
- ❖ The lower bound is achieved by Chazelle's polyhedron ...

how many tetrahedra are necessary in the worst cases?

Hyperbolic paraboloid

$$z = yx$$

Constructing Chazelle's Polyhedron

Start with an orthogonal cube

Constructing Chazelle's Polyhedron

Cut k thin notches into the top face, parallel to the xz-plane

Constructing Chazelle's Polyhedron

Cut k thin notches into the top face, parallel to the yz-plane

Chazelle's Polyhedra - $\Omega(n^2)$

❖ [Thomas, 1962]

A hyperbolic paraboloid can be generated by two sets of orthogonal lines.

to lie on the surface $z = xy + \epsilon$

the k bottom edges can be chosen

to lie on the surface $z = xy - \epsilon$

Chazelle's Polyhedra - $\Omega(n^2)$

- Chazelle proved that
 - 1) The intersection of the warped shape between the two hyperbolic paraboloids with any convex subset of the polyhedron can only have such a small volume that
 - 2) $\Omega(n^2)$ pieces are necessary z to make up the volume of the shape

Chazelle's Polyhedra - $\Omega(n^2)$

❖ More precisely,

[Chazelle, 1984] proved that ...

At least $\Omega(n^2)$ convex pieces are necessary

in any convex partition

of Chazelle's polyhedron

with n vertices

Upper Bound - Algorithms

- ***** Every polyhedron with \boxed{n} vertices can be triangulated into $\boxed{O(n^2)}$ tetrahedra with Steiner points
- ❖ The upper bound was "improved" later by Chazelle and Palios, by taking into consideration r, the number of reflex edges
- ❖[Chazelle & Palios, 1989]//again, r can be as large as n in the worst cases
 Every polyhedron with n vertices
 can be triangulated into O(n + r²) tetrahedra with Steiner points,

where r is the number of reflex edges on the original polyhedron

❖ Since this complexity depends
not only on the input size but also on the polyhedron's shape,

you may want to call it input sensitive, or only real preserves sensitive

Beyond 3-Dimension

- ❖ R. P. Stanley

 Decompositions of Rational Convex Polytopes

 Ann. Discrete Math., 6:333-342, 1980
- ❖ I. M. Gelfand, M. M. Kapranov, and A. V. Zelvinsky Newton Polytopes of the Classical Discriminant and Resultant Adv. Math., 84:237-254, 1990
- ❖ J. E. Goodman and <u>J. Pach</u>
 Cell Decomposition of Polytopes by Bending
 Israel J. Math., 64:129-138, 1988
- ❖ <u>M. Haiman</u>
 - A Simple and Relatively Efficient Triangulation of the n-Cube Discrete Comput. Geom., 6:287-289, 1991