CLUSTER AND FITTING

NAME: MISHAL MOHAMMED

REG NO: 21031226

CLUSTER

CURVE FITTING

Introduction

The dataset is used from world bank api. The 2 dataset are population and GDP of 2 countries.

The following shows the dataset of population of 20 countries.

Clustering

To do the clustering we done the following steps

- Combine 2 dataset into a single data frame
- Using libraries sklearn, we imported k-means clustering and done the clustering process.
- After the process we got the ideal number of grouping as 3.
- Next, we normalize the dataset using the library preprocessing also from sklearn to get a better result from the same dataset.
- After normalizing the data, we again done the process of K-Mean clustering.
- This result in having 3 cluster as the ideal case.

Output graph

The output graph of clustering of data set.

Curve Fitting

Curve fitting is the process of finding a mathematical formula that displays the relation between the dependent variable, x and as independent variable y. It also estimate the parameter values with the help of nonlinear regression. For curve fitting we use electricity consumption and access to electricity. The data is from 20 countries in the period of 2004 to 2013, 10 years.

_	access	consumtion
0	100.000000	10554.815823
1	96.765106	1956.159381
2	100.000000	17264.736744
3	97.989670	1585.838782
4	100.000000	7108.962524
•••		
195	100.000000	6539.207375
196	100.000000	8784.756106
197	100.000000	2755.623957
198	100.000000	13004.023569
199	85.199997	4285.645767

Curve Fitting - Procedure

To do the curve fitting we do the following procedures

- We took data from 20 countries about electricity consumption and access to electricity using world bank api
- The 2 dataset of dimension 10x20 is then converted to 200x2 dimension
- The new dataset is plotted using scatter plot from matplotlib
- A new function names expoFunc is build to create the formula of an exponential function
- Using curve fit function from scipy library we took the desired output curve
- The curve is then fit into the scatterplot build from the original data.

Conclusion

The 2 graph with and without curve fit is showing below.

Introduction

The following dataset is of the GDP of 20 countries in the period of year 2009 to 2018.

BRA	-0.125812	7.528226	3.974423	1.921176	3.004823	0.503956	-3.545763	-3.275917	1.322869	1.783667
CAN	-2.928400	3.089495	3.146881	1.762223	2.329123	2.870036	0.659177	1.001394	3.039880	2.777041
CHN	9.398726	10.635871	9.550832	7.863736	7.766150	7.425764	7.041329	6.848762	6.947201	6.749774
DEU	-5.693836	4.179882	3.925193	0.418498	0.437591	2.209543	1.491932	2.230000	2.680231	1.086025
FRA	-2.873314	1.949438	2.192701	0.313135	0.576327	0.956183	1.112912	1.095464	2.291420	1.865066
GBR	-4.247356	2.131438	1.457563	1.469888	1.890018	2.991165	2.622597	2.263464	2.134453	1.650925
IDN	4.628871	6.223854	6.169784	6.030051	5.557264	5.006668	4.876322	5.033069	5.069786	5.174292
IND	7.861889	8.497585	5.241315	5.456389	6.386106	7.410228	7.996254	8.256306	6.795383	6.532989
IRN	1.007385	5.797938	2.645718	-7.444557	-0.194073	4.603419	-1.320645	13.396243	3.755196	-6.025972
ITA	-5.280937	1.713296	0.707333	-2.980906	-1.841065	-0.004548	0.778304	1.293463	1.667859	0.925811
JPN	-5.693236	4.097918	0.023810	1.374751	2.005100	0.296206	1.560627	0.753827	1.675332	0.558851
KOR	0.792699	6.804825	3.685668	2.402531	3.164709	3.202454	2.809103	2.946882	3.159636	2.907404
MEX	-5.285744	5.118118	3.663008	3.642323	1.354092	2.849773	3.293152	2.630532	2.113129	2.194995
POL	2.832178	3.740521	4.757636	1.324896	1.125763	3.378582	4.236327	3.141726	4.830656	5.353703
RUS	-7.799994	4.500000	4.300029	4.024086	1.755422	0.736267	-1.972719	0.193690	1.825790	2.807245
SAU	-2.059249	5.039484	9.996847	5.411445	2.699255	3.652482	4.106409	1.670625	-0.741503	2.434111
TUR	-4.823154	8.427104	11.200111	4.788493	8.485817	4.939715	6.084487	3.323084	7.501997	2.979885
USA	-2.536757	2.563767	1.550836	2.249546	1.842081	2.525973	3.075515	1.711427	2.332679	2.996464
ZAF	-1.538089	3.039733	3.168556	2.396232	2.485468	1.413826	1.321862	0.664552	1.157947	1.487617