ASEN 5044, Fall 2022

Statistical Estimation for Dynamical Systems

Lecture 08: Intro to Probability

Prof. Nisar Ahmed (Nisar.Ahmed@Colorado.edu)

Thursday 09/15/2022

Announcements

- HW 2 due tomorrow Fri 9/10 on Gradescope
- HW 3 posting today, due Fri 09/27
- Quiz 3 + HW 1 solutions posted
- NO QUIZ this week
- In person Lectures resume this Tues 09/24
- Midterm 1: will be out on Thurs 10/03, due 1 week later (Thurs 10/10)
 - Take home exam, to be submitted/graded via Gradescope
 - Topic coverage: all lectures + reading + materials for HWs 1-4 + Quizzes 1-4

Last Time

Nyquist rate for LTI systems (converting from CT→ DT)

Stability of LTI CT and DT systems

Observability in DT LTI Systems

LTI Observability Matrix

Does NOT systems lay!

A test for LTI observability: examine rank of observability matrix:

CT LTI:

$$C = \begin{cases} C \\ CA \end{cases}$$
w/analogous
interpretation

- If the system (F,H) is observable, then it is possible to solve for any x(0) using at most n vector measurements y(0), y(1),...,y(n-1)
- Corollary: if (F,H) observable, then possible to solve for any x(k) by either solving for initial condition x(0) and propagating solution forward, or by using k as initial time and measurements up to no more than y(k+n-1).

Example: 1D Block Mass

For DT LTI model, we have

$$x(k) = \begin{bmatrix} v(k) \\ \underline{d(k)} \end{bmatrix} = \begin{bmatrix} \text{velocity at time k} \\ \text{position at time k} \end{bmatrix}$$

 \rightarrow Convert from CT to DT (for some fixed Δt sample time):

$$x(k+1) = Fx(k) + Gu(k), \qquad F = \begin{bmatrix} 1 & 0 \\ \Delta t & 1 \end{bmatrix} = \underbrace{\text{STM}}_{\text{STM}} \text{ (see Lec 4)}$$

$$y(k+1) = \underbrace{Hx(k+1)}_{\text{pri}} \qquad \underbrace{\text{Suppose } u(k) = 0 \ \forall k \geq 0 \ \text{and we have a position sensor:}}_{\text{F}} \underbrace{H = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}}_{\text{F}} = \underbrace{\text{STM}}_{\text{F}} \text{ (see Lec 4)}$$

- \rightarrow We get following observability matrix:

$$\mathbb{O} = \begin{bmatrix} H \\ HF \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \Delta t & 1 \end{bmatrix} \xrightarrow{\text{rank}(\mathbb{O}) = 2,}$$
so system is observable!

 \rightarrow But now suppose we instead have a velocity sensor:

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix} \left(\begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{2} & \mathbf{1} \end{bmatrix} \right) = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{2} & \mathbf{1} \end{bmatrix} = \mathbf{1}$$

$$\Rightarrow \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{2} & \mathbf{0} \end{bmatrix} \rightarrow \operatorname{rank}(\mathbb{O}) = 1,$$

 \rightarrow We now get following observability matrix: $\mathbb{O} = \begin{bmatrix} H \\ HF \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ \rightarrow rank $(\mathbb{O}) = 1$, so system is NOT observable!

Today...

- Intro to Probability
 - OMotivation
 - oFormal definitions: sample spaces, event spaces, axioms...
 - Basic operations

READ: Chapter 2.3 in Simon book

Intro to Probability

- How to describe random non-determinism (i.e. random errors/noise) in SS models?
- Need to use probability theory
 - O What are probabilities?
 - O What are the rules?
 - O How to interpret for (scalar/vector-valued) quantities?

(Random non-deterministic variables in DT)

Example: 1D Robot Localization with an Inertial Sensor

- Consider robot with inertial position p(t) and acceleration input u(t)
- Robot can measure position with a GPS sensor
- Suppose we take CT model, and discretize with ZOH u(t) and time step Δt

$$X = \begin{bmatrix} P \end{bmatrix} - 3 \stackrel{?}{\times} = \begin{bmatrix} P \end{bmatrix} = \begin{bmatrix} O & 1 \\ O & O \end{bmatrix} \times + \begin{bmatrix} O & 1 \\ O & O \end{bmatrix} \times = CT \text{ ode}$$

$$\frac{DT}{20H} \times (uH) = \begin{bmatrix} P(uH) \\ P(uH) \end{bmatrix} = \begin{bmatrix} I & \Delta t \\ O & I \end{bmatrix} \times (u) + \begin{bmatrix} \frac{1}{2}\Delta t^2 \\ \Delta t \end{bmatrix} u(K)$$

$$\Delta t$$

$$y(kH) = \begin{bmatrix} I & O \\ O & I \end{bmatrix} \times (u)$$

- But robot needs to determine its <u>actual position(k) and velocity(k)</u> to drive on road correctly!
- Can position and velocity states at any time step k both be determined if only u and y are available?

Example: 1D Robot Localization with an Inertial Sensor

• But how to account for all of the <u>random physical disturbances</u> that robot encounters?

Probability as a Description of Randomness

- Probability is a mathematical tool for describing random events, i.e.
 - o those events which we do not/cannot explicitly know to have occurred for certain...
 - o ...but which would otherwise "explain" why certain other observed events happen
- "...probability summarizes uncertainty due to our laziness and ignorance" (Stuart Russell and Peter Norvig, "Artificial Intelligence")
- <u>Laziness:</u> too much cost/work to predict system behavior exactly (e.g. radio environment)
- O Theoretical ignorance: incomplete domain knowledge (e.g. biomedical; quantum: HUP)
- Practical ignorance: even if we knew all dynamics, may not know values for all parts (e.g. system ID for robot actuators, solar radiation pressure, wind speed, lateral stability derivatives of aircraft)

Probability as a Description of Randomness

- Many different interpretations of probability exist each has its own issues
- (i) "relative frequency": Prob. of event A = lim $\frac{N_A}{N} = \frac{\text{# +. wes event A occurs}}{\text{total # experiments}}$

______ but in what senses does "lim" ex. st? (ie com't affant to)

-(ii) "measure of belief" (subjective): make an argument that may or may not be based on experimental data (but they're based on good old common sense)

Formal Axiomatic Definition of Probability (modern underpinning)

Define an experiment to be a process with a random outcome

(i.e. actual outcome is unpredictable: we can't know what will actually happen, but the important point is that we do know what things could possibly happen)

• Sample space S: the set of all possible random outcomes of the experiment

• The sample space S is also sometimes called the **outcome space**

Events and Event Spaces

- Event: a subset A of outcomes for the experiment, i.e. A is subset of sample space S
- Event space: the set of all events A that are defined on S
- Many ways to define events: each element of S could form its own event, or multiple elements of S could form events, or we can mix and match...

• If we observe an outcome in S belonging to event A, then we say that **event A has occurred** (or, **event A has been observed**)

Probabilities and Probability Spaces

• 3 Axioms of Probability: The probability of event A, denoted P(A), satisfies:

(1)
$$P(A) \ge 0$$

(2) $P(S) = 1$
[A & B don't purple overlap]

(3) If $A \land B = Set$ of outcomes in both events $A \& B \& A \land B = \emptyset$
(3) Then $P(A \cup B) = P(A) + P(B)$ (A) $P(B) = P(A \land B)$ [if $P(A \land B) \ne 0$]

(4) $P(B) = P(A \land B) = P(A \land B)$ [if $P(A \land B) \ne 0$]

[YA & B overlap] (A) $P(B) = P(A \land B)$ [if $P(A \land B) \ne 0$]

- **Probability space:** a given specification $(S, \{A_i\}, \{P(A_i)\})$ (i.e. a specific sample space S, an event space on S, and probabilities on that event space)
- This formalism covers both discrete and continuous sample spaces S (we will focus on discrete case for time being, and move to continuous case later...)

Example: Rolling a Die

Consider observing the number on top of a standard 6-sided die

set of outcomes:
$$S = \{f_1, f_2, \cdots, f_6\}$$
, $f_i = \text{`outcome: face } i \text{ on top'} \ (i = 1, ..., 6)$

Events: are subsets of S , e.g.

*event $F_1 = \{f_1\}$ So from axioms:

*event $F_{even} = \{i \text{ is even}\} = \{f_2, f_4, f_6\}$ $p(F_{even}) = \sum_{i=2,4,6} p(f_i) = \frac{1}{2}$

*event $F_{\heartsuit} = \{2 < i \le 4\} = \{f_3, f_4\}$

*sure event: $\{\text{any face i}\} = S$

*Impossible: e.g. $\{i \le 1 \text{ \& even}\} = \emptyset$

So from axioms:

$$p(F_{even}) = \sum_{i=2,4,6} p(f_i) = \frac{1}{2}$$

 \Rightarrow probabilities are postulated for each element of S, e.g. $p(f_i) = \frac{1}{6}$ (fair die)