Федеральное агентство связи Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

Кафедра прикладной математики и кибернетики

Лабораторная работа № 3 «**Нахождение начального опорного плана транспортной задачи»** по дисциплине «Алгоритмы и вычислительные методы оптимизации»

Бригада № 1

Выполнил: студент 3 курса группы ИП-811 Мироненко К. А

Проверил: ассистент кафедры ПМиК Новожилов Д.И.

Оглавление

1. Постановка задачи	3
2. Примеры работы программы	4
Приложение Листинг	9

1. Постановка задачи

Написать программу, находящую начальный опорный план транспортной задачи одним из указанных методов (номер метода находится как n mod 3, где n – номер бригады).

- 0. Метод северо-западного угла.
- 1. Метод минимальной стоимости.
- 2. Метод Фогеля

Матрицу тарифов, запасы поставщиков и потребности потребителей вводить из файла.

Программа должна работать как с открытой, так и закрытой моделью транспортной задачи. Предусмотреть программное нахождение вырожденного плана. Вывести распределение перевозок и затраты. Для тестирования использовать несколько заданий из практических занятий.

2. Примеры работы программы

				Потребитель				
Поставщик +-	B1	[E	32	В3	B4		B5	Запас
A1	5		8	3		10	4	50
A2	10						5	130
АЗ							12	80
	80] !	50	60	20		50	+

Рис.1.1 Метод минимальной стоимости. Пример решения закрытой модели транспортной задачи

Командная строка	× + ×						- 0
		** - H					
			Потребит	ель			Запас
Поставщик +	B1	B2	B3	1	B4	B5	Sallac
A1	5		8 50	3	10	4	0
A2	10		7			5	130
A3	7		3			12	80
Тотребность	80	50	10		20	50	+
+		131.3			74471.11		
			Потребит	ель			3
Поставщик +	B1	B2	B3		B4	B5	Запас
A1	5		8 50		10	4	0

Рис.1.2 Метод минимальной стоимости. Пример решения закрытой модели транспортной задачи

	0		50		10		20	ļ ——	!		
Потребность	80	1	0		0	1	0	0	<u>i</u>		
++ Поставщик +					Потребит	ель			T į	Запас	
Поставщик +	B1	1	B2		В3	1	B4	B5	į	Janac	
A1	4.5	5		8		3	10		4	0	
AI					50					V	
		10							5	0	
A2	80							50		U	
A3	- 15	7		3		6	4		12	0	
AS			50		10		20			V	
—————+—— Потребность								0	Ť		

Рис.1.3 Метод минимальной стоимости. Пример решения закрытой модели транспортной задачи

ытая модель тр	msAndComputationa анспортной задачи	lOptimizationMet (фиктивный пост	:hods\labs\3lab>p -авщик)	ython main.py			
льное состоян 	we:	Потребит	ель	 †			
Поставщик +-	B1	B2	B3	B4	Запас		
A1				6	30		
A2		2		5	25		
A3					20		
A4	(0)	(0)	(0)	(0)			
+- отребность	20	15	25	20			

Рис.2.1 Метод минимальной стоимости. Пример решения открытой модели транспортной задачи

от. Командная строка	× + ×		*				×
		Потребі	итель	i	3		
Поставщик 4	B1	B2	В3	B4	- Запас		
A1			3	6	30		
A2	7	0	1 25	5	0		
АЗ	6	1	4	2	20		
A4	(0)	(0)		(0)	5		
Потребность	20	15	0	20			
 Поставщик +		Потребі	тель	<u> </u>	- Запас		
поставщик	B1	B2	В3	B4	Sanac		
A1	4	5	3	6	30		

Рис.2.2 Метод минимальной стоимости. Пример решения открытой модели транспортной задачи

———+- отребность	0	0	0	5	+	
+-			- MO.	 ‡		
 Поставщик +-		Потреби-	тель		Запас	
	B1	B2	B3	B4	Juliuc	
i i	4	5	3	6	i	
A1	20			10		
12	7	2	1	5	į	
A2			25			
		1		2	i	
A3		15				
A4	(0)	(0)	(0)	(0)	0	
A4			<u> </u>	5	•	
отребность	0	0	0	0 [
				*		
т: 190						

Рис.2.3 Метод минимальной стоимости. Пример решения открытой модели транспортной задачи

Рис.3.1 Метод минимальной стоимости. Пример решения с нулевой стоимостью

Командная строка	× +	~							
ļ.	B1	I	B2	1	В3				
A1							0		
A2							1		
A3		0		0		0	1		
							ļ		
Потребность	0	1	1	1	1				
+- Поставщик +-			Потребит	гель			+ + Запас		
ПОСТИВЩИК +	B1	1	B2	1	В3				
A1		0		0		0	0		
	1					av.			
A2		0		0		0	0		
А3							1		

Рис.3.2 Метод минимальной стоимости. Пример решения с нулевой стоимостью

Рис.3.3 Метод минимальной стоимости. Пример решения с нулевой стоимостью

Приложение Листинг

import sys

```
def print_step(stocs, needs, matrix):
         cell width = 15
        print(("+{:-^15}+{:-^{"}} + str(cell_width * len(matrix[0]) + len(matrix[0]) - 1) + "}+{:-^{"}} + str(cell_width)
+"}+").format(", ", "))
        print(("|\{:^15\}|\{:^{"} + str(cell width * len(matrix[0]) + len(matrix[0]) - 1) + "\}|\{:^{"} + str(cell width) + len(matrix[0]) - 1) + "\}|\{:^{"} + str(cell width) + len(matrix[0]) + len(matrix[0]) - 1) + "\}|\{:^{"} + str(cell width) + len(matrix[0]) + len(matrix[0]) - 1) + "\}|\{:^{"} + str(cell width) + len(matrix[0]) + len(matrix[0]) - 1) + "\}|\{:^{"} + str(cell width) + len(matrix[0]) + len(matrix[0]) - 1) + "\}|\{:^{"} + str(cell width) + len(matrix[0]) + len(matrix[0]) - 1) + "\}|\{:^{"} + str(cell width) + len(matrix[0]) + len(ma
"}|").format(", "Потребитель", "))
         print(("|\{:^15\}+\{:^n" + str(cell width * len(matrix[0]) + len(matrix[0]) - 1) + "\}+\{:^n" + str(cell width)\}
+"] |").format("Поставщик", ", "Запас"))
        print("|{:^15}|".format("), end=")
        for i in range(len(matrix[0])):
                  print(("{:^* + str(cell\_width) + "}|").format("B" + str(i + 1)), end=")
        print(("{:^" + str(cell width) + "}|").format("))
        print(("+{:-^15}+{:-^{"}} + str(cell width * len(matrix[0]) + len(matrix[0]) - 1) + "}+{:-^{"}} + str(cell width) + len(matrix[0]) + len(mat
"}+").format(", ", "))
         for line in enumerate(matrix):
                  print("|{:^15}|".format("), end=")
                  for el in line[1]:
                           print(("{:>" + str(cell_width - 2) + "} |").format("(0)" if el["tariff"] == (sys.maxsize - 1) else
el["tariff"]), end=")
                  print(("{:^" + str(cell_width) + "}|").format("))
                  print("|{:^15}|".format("A" + str(line[0] + 1)), end=")
                  for el in line[1]:
                           print(("{:^" + str(cell_width) + "}|").format("), end=")
                  print(("{:^" + str(cell_width) + "}|").format(stocs[line[0]]))
                  print("|{:^15}|".format("), end=")
                  for el in line[1]:
                           print(("{:^" + str(cell_width) + "}|").format("" if el["quantity"] is None else ('---' if el["quantity"] == -1
else el["quantity"])), end=")
                  print(("{:^" + str(cell width) + "}|").format("))
                  print(("+{:-^15}+{:-^{"}} + str(cell width * len(matrix[0]) + len(matrix[0]) - 1) + "}+{:-^{"}} + str(cell width) + [numatrix[0]] + [numatri
"}+").format(", ", "))
        print("|{:^15}|".format("Потребность"), end=")
         for i in needs:
                  print(("{:^" + str(cell_width) + "}|").format(str(i)), end=")
        print(("n+{:-^15}+{:-^* + str(cell width * len(matrix[0]) + len(matrix[0]) - 1) + "}+").format(","))
def main():
        # Чтение из файла
        with open('input.txt', 'r', encoding="utf-8") as f:
                  lines = list(filter(lambda x: x != " and '#' not in x, list(map(lambda x: x.strip(), f.readlines()))))
         f.close()
        # print(lines)
        # "Распарс" по переменным
        stocks = list(map(int, lines[0].split(''))) # Запасы
        needs = list(map(int, lines[1].split(''))) # Потребности
        matrix = list(list(dict(tariff=int(y), quantity=None, used=False) for y in x.split(' ')) for x in lines[2:])
        # print(stocks, needs, ", *matrix, sep=\\n')
```

```
res = 0 # Otbet
# Проверка на тип модели и добавление в случае чего
if sum(stocks) < sum(needs):
  print("Открытая модель транспортной задачи (фиктивный поставщик)")
  matrix.append(list(dict(tariff=sys.maxsize - 1, quantity=None, used=False) for _ in range(len(matrix[0]))))
  stocks.append(sum(needs) - sum(stocks))
elif sum(stocks) > sum(needs):
  print("Открытая модель транспортной задачи (фиктивный потребитель)")
  for i in range(len(matrix)):
    matrix[i].append(dict(tariff=sys.maxsize - 1, quantity=None, used=False))
  needs.append(sum(stocks) - sum(needs))
else:
  print("Закрытая модель транспортной задачи")
print("Начальное состояние:")
print_step(stocks, needs, matrix)
print('\n')
while sum(stocks) != 0 and sum(needs) != 0:
  min_el = sys.maxsize
  row = -1
  column = -1
  # Поиск минимального тарифа
  for i in range(len(matrix)):
    for j in range(len(matrix[i])):
       if matrix[i][j]["tariff"] < min_el and not matrix[i][j]["used"]:
         min_el = matrix[i][j]["tariff"]
         row = i
         column = i
  min_el = min(needs[column], stocks[row])
  matrix[row][column]["used"] = True
  matrix[row][column]["quantity"] = min_el
  needs[column] -= min_el
  stocks[row] -= min el
  # "Вычеркивание" строк/столбцов
  if sum(stocks) != 0 and sum(needs) != 0:
    if needs[column] < stocks[row]:</pre>
       for i in matrix:
         if not i[column]["used"]:
            i[column]["used"] = True
            i[column]["quantity"] = -1
     elif needs[column] > stocks[row]:
       for i in matrix[row]:
         if not i["used"]:
            i["used"] = True
            i["quantity"] = -1
    else:
       min_tmp = sys.maxsize
       row_tmp = -1
       column_tmp = -1
```

for i in range(len(matrix)):

```
if not matrix[i][column]["used"]:
               matrix[i][column]["used"] = True
               matrix[i][column]["quantity"] = -1
               if matrix[i][column]["tariff"] < min_tmp:</pre>
                 min_tmp = matrix[i][column]["tariff"]
                 row_tmp = i
                 column\_tmp = column
          for j in range(len(matrix[row])):
            if not matrix[row][j]["used"]:
               matrix[row][j]["used"] = True
               matrix[row][j]["quantity"] = -1
               if matrix[row][j]["tariff"] < min_tmp:</pre>
                 min_tmp = matrix[row][j]["tariff"]
                 row\_tmp = row
                 column_tmp = i
          matrix[row_tmp][column_tmp]["quantity"] = 0
     print_step(stocks, needs, matrix)
     print('\n')
     res += 0 if matrix[row][column]["tariff"] == (sys.maxsize - 1) else matrix[row][column]["tariff"] *
matrix[row][column]["quantity"]
  print("Otbet: " + str(res))
  return
if __name__ == '__main__':
  main()
  # test()
```