Chapter 3: Single-stage Amplifiers

- 3.1 Applications
- 3.2 General Considerations
- 3.3 Common-Source Stage
- 3.4 Source Follower
- 3.5 Common-Gate Stage
- 3.6 Cascode Stage

Ideal vs Non-ideal Amplifier

Ideal amplifier (Fig. a)

$$y(t) = \alpha_0 + \alpha_1 x(t)$$

- Large-signal characteristic is a straight line
- $-\alpha_1$ is the "gain", α_0 is the "dc bias"
- Nonlinear amplifier (Fig. b)

$$y(t) = \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \dots + \alpha_n x^n(t)$$

- Large signal excursions around bias point
- Varying "gain", approximated by polynomial
- Causes distortion of signal of interest

Analog Design

- Along with gain and speed, other parameters also important for amplifiers
- Input and output impedances decide interaction with preceding and subsequent stages
- Performance parameters trade with each other
 - Multi-dimensional optimization problem

- Very high input impedance at low frequencies
- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = V_{DD}$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

- When $V_{in} > V_{TH}$, M_1 turns on in saturation region, V_{out} falls
- When $V_{in} > V_{in1}$, M_1 enters triode region
- At point A, $V_{out} = V_{in1} V_{TH}$

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

• For
$$V_{in} > V_{in1}$$
,
$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{in} - V_{TH})V_{out} - V_{out}^2 \right]$$

• If V_{in} is high enough to drive M_1 into deep triode region so that $V_{out} << 2(V_{in} - V_{TH})$,

$$V_{out} = V_{DD} \frac{R_{on}}{R_{on} + R_D}$$

$$= \frac{V_{DD}}{1 + \mu_n C_{ox} \frac{W}{L} R_D(V_{in} - V_{TH})}$$

$$A_v = \frac{\partial V_{out}}{\partial V_{in}}$$
 • Taking derivative of \emph{I}_D equation in saturation region, small-signal gain is obtained
$$= -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})$$
 signal gain is obtained

V_{out} • Same result is obtained from small-signal equivalent circuit

$$V_{out} = -g_m V_1 R_D = -g_m V_{in} R_D$$

 g_m and A_v vary for large input signal swings according to

$$g_m = \mu_n C_{ox}(W/L)(V_{GS} - V_{TH}).$$

This causes non-linearity

• For large values of R_D , channel-length modulation of M_1 becomes significant, V_{out} equation becomes

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out})$$

$$A_v = -g_m \frac{r_O R_D}{r_O + R_D}.$$

Voltage gain is

Above result is also obtained from small-signal

Diode-Connected MOSFET

- A MOSFET can operate as a small-signal resistor if its gate and drain are shorted, called a "diode-connected" device
- Transistor always operates in saturation

 Impedance of the device can be found from small-signal equivalent model

$$V_1 = V_X$$

$$I_X = V_X/r_O + g_m V_X$$

$$V_X/I_X = (1/g_m)||r_O \approx 1/g_m$$

• Including body-effect, impedance "looking into" the source terminal of diode-connected device is found as

$$V_{1} = -V_{X} V_{bs} = -V_{X} \frac{V_{X}}{I_{X}} = \frac{1}{g_{m} + g_{mb} + r_{O}^{-1}}$$

$$= \frac{1}{g_{m} + g_{mb}} || r_{O}$$

$$(g_{m} + g_{mb})V_{X} + \frac{V_{X}}{r_{O}} = I_{X} \approx \frac{1}{g_{m} + g_{mb}}.$$

Diode-Connected MOSFET: Example

• Set independent sources to zero, apply V_X and find resulting I_X

$$V_1 = V_X$$
 $V_{bs} = -V_X$
 $(g_m + g_{mb})V_X = I_X$

$$\frac{V_X}{I_X} = \frac{1}{g_m + g_{mb}}.$$

- Result is same compared to when drain of M_1 is at ac ground, but only when $\lambda = 0$
- Loosely said that looking into source of MOSFET, we see $1/g_m$ when $\lambda = \gamma = 0$

 Neglecting channel-length modulation, using impedance result for diode-connected device,

$$A_{v} = -g_{m1} \frac{1}{g_{m2} + g_{mb2}}$$
$$= -\frac{g_{m1}}{g_{m2}} \frac{1}{1 + \eta},$$

where,
$$\eta = g_{mb2}/g_{m2}$$

• Expressing g_{m1} and g_{m2} in terms of device dimensions,

$$A_v = -\sqrt{\frac{(W/L)_1}{(W/L)_2}} \frac{1}{1+\eta}$$

 This shows that gain is a weak function of bias currents and voltages, i.e., relatively linear input-output characteristic

• From large-signal analysis,
$$\frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_{in} - V_{TH1})^2 = \frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_2 (V_{DD} - V_{out} - V_{TH2})^2$$

$$\sqrt{\left(\frac{W}{L}\right)_1} (V_{in} - V_{TH1}) = \sqrt{\left(\frac{W}{L}\right)_2} (V_{DD} - V_{out} - V_{TH2})^2$$

- If V_{TH2} does not vary much with V_{out} , input-output characteristic is relatively linear.
- Squaring function of M_1 (from its input voltage to its drain current) and square root function of M_2 (from its drain current to its overdrive) act as inverse functions

$$f^{-1}(f(x)) = x.$$

• As I_1 falls, so does overdrive of M_2 so that

$$V_{GS2} pprox V_{TH2}$$
 $V_{out} pprox V_{DD} - V_{TH2}$

- Subthreshold conduction of M_2 eventually brings V_{out} to V_{DD} , but at very low current levels, finite capacitance at output node C_P slows down the change in V_{out} from V_{DD} - V_{TH2} to V_{DD} .
- In high-frequency circuits, V_{out} remains around V_{DD} - V_{TH2} when I_1 falls to small values.

- For $V_{in} < V_{TH1}$, $V_{out} = V_{DD} V_{TH2}$
- When $V_{in} > V_{TH1}$, previous large-signal analysis predicts that V_{out} approximately follows a single line
- As V_{in} exceeds V_{out} + V_{TH1} (to the right of point A), M_1 enters the triode region and the characteristic becomes nonlinear.

CS Stage with Diode-Connected PMOS device

- · Diode-connected load can be implemented as a PMOS device, free of body-effect
- Small-signal voltage gain neglecting channel-len $\sqrt{\mu_n(W/L)}$. channel-len $A_v = -\sqrt{\frac{\mu_n(W/L)_1}{\mu_p(W/L)_2}}.$

Gain is a relatively weak function of device dimensions

- Since $\mu_n \approx 2\mu_p$, high gain requires "strong" input device (narrow) and "weak" load device (wide)
- This limits voltage swings since for $\lambda = 0$, we get

$$\frac{|V_{GS2} - V_{TH2}|}{V_{GS1} - V_{TH1}} = A_v$$

 For diode-connected loads, swing is constrained by both required overdrive voltage and threshold voltage, i.e., for small overdrive, output cannot exceed V_{DD} - $|V_{TH}|_{15}$

- Current-source load allows a high load resistance without limiting output swing
- Voltage gain is $A_v = -g_{m1}(r_{O1}||r_{O2})$
- Overdrive of M_2 can be reduced by increasing its width, r_{o2} can be increased by increasing its length
- Output bias voltage is not well-defined
- Intrinsic gain of M_1 increases with L and decreases with I_D

 $g_{m1}r_{O1} = \sqrt{2\left(\frac{W}{L}\right)_1 \mu_n C_{ox} I_D \frac{1}{\lambda I_D}}$

- Input signal is also applied to gate of load device, making it an "active" load
- M₁ and M₂ operate in parallel and enhance the voltage gain
- From small-signal equivalent circuit,

$$-(g_{m1} + g_{m2})V_{in}(r_{O1}||r_{O2}) = V_{out}$$
$$A_v = -(g_{m1} + g_{m2})(r_{O1}||r_{O2})$$

- Same output resistance as CS stage with current-source load, but higher transconductance
- Bias current of M_1 and M_2 is a strong function of PVT

CS Stage with Active Load: Supply sensitivity

$$V_{GS1} + |V_{GS2}| = V_{DD}$$

- Variations in V_{DD} or the threshold voltages directly translate to changes in the drain currents
- Supply voltage variations "supply noise" are amplified too
- Voltage gain from V_{DD} to V_{out} can be found to be

$$\frac{V_{out}}{V_{DD}} = \frac{g_{m2}r_{O2} + 1}{r_{O2} + r_{O1}}r_{O1}$$

$$= \left(g_{m2} + \frac{1}{r_{O2}}\right)(r_{O1}||r_{O2})$$

- A MOS device biased in the deep triode region acts as a
- Voltage gain is $A_v = -g_{m1}R_{on2}$, where R_{on2} is the MOS ON resistance given by

$$R_{on2} = \frac{1}{\mu_p C_{ox}(W/L)_2 (V_{DD} - V_b - |V_{THP}|)}$$

- R_{on2} depends on $\mu_p C_{ox}$, V_b and V_{THP} which vary with PVT
- Generating a precise value of V_b is complex, which makes circuit hard to use
- Triode loads consume lesser voltage headroom than diode-connected devices since $V_{out,max} = V_{DD}$ for the former whereas $V_{out,max} = V_{DD} - |V_{THP}|$ for the latter 19

- Degeneration resistor R_S in series with source terminal makes input device more linear
 - As V_{in} increases, so do I_D and the voltage drop across R_S
 - Part of the change in V_{in} appears across R_S rather than gate-source overdrive, making variation in I_D smoother
- Gain is now a weaker function of g_m

- Nonlinearity of circuit is due to nonlinear dependence of I_D upon V_{in}
- Equivalent transconductance G_m of the circuit can be defied as $G_m = \partial I_D/\partial V_{in}$

$$V_{out} = V_{DD} - I_D R_D$$

$$\partial V_{out} / \partial V_{in} = -(\partial I_D / \partial V_{in}) R_D$$

$$I_D = f(V_{GS})$$

$$G_m = \frac{\partial I_D}{\partial V_{in}}$$

$$= \frac{\partial f}{\partial V_{GS}} \frac{\partial V_{GS}}{\partial V_{in}}$$

- g_m is the transconductance of M_1
- Small-signal voltage gain A_v is then given by

$$A_v = -G_m R_D$$
$$= \frac{-g_m R_D}{1 + g_m R_S}$$

• Same result for G_m is obtained from small-signal equivalent circuit, by noting that

$$V_{in} = V_1 + I_D R_S$$
$$I_D = g_m V_1$$

- As R_S increases, G_m becomes a weaker function of g_m and hence I_D
- For $R_S\gg 1/g_m$, $G_m\approx 1/R_S$, i.e., $\Delta I_D\approx \Delta V_{in}/R_S$
- Most of the change in V_{in} across R_S and drain current becomes a "linearized" function of input voltage

• Including body-effect and channel-length modulation, G_m is found from modified small-signal equivalent circuit

$$V_{in} = V_1 + I_{out} R_S$$

$$I_{out} = g_m V_1 - g_{mb} V_X - \frac{I_{out} R_S}{r_O}$$

$$= g_m (V_{in} - I_{out} R_S) + g_{mb} (-I_{out} R_S) - \frac{I_{out} R_S}{r_O}$$

$$G_m = \frac{I_{out}}{V_{in}}$$

$$= \frac{g_m r_O}{R_S + [1 + (g_m + g_{mb}) R_S] r_O}$$

Large-signal behavior

CS Stage with Source Degeneration

• I_D and g_m vary with V_{in} as derived in calculations in Chapter 2

- At low current levels, turn-on behavior is similar to when R_s =0 since $1/g_m\gg R_S$ and hence $G_m\approx g_m$
- As overdrive and g_m increase, effect of R_S becomes more significant

Small-signal derived previously can be written as

$$A_v = -\frac{R_D}{\frac{1}{g_m} + R_S}$$

- Denominator = Series combination of inverse transconductance + explicit resistance seen from source to ground
- Called "resistance seen in the source path"
- Magnitude of gain = Resistance seen at the drain/ Total resistance seen in the source path

Degeneration causes increase in output resistance

• Ignoring R_D and including body effect in small-signal equivalent model,

$$V_{1} = -I_{X}R_{S}$$

$$I_{X} - (g_{m} + g_{mb})V_{1} = I_{X} + (g_{m} + g_{mb})R_{S}I_{X}$$

$$R_{out} = [1 + (g_{m} + g_{mb})R_{S}]r_{O} + R_{S}$$

$$= [1 + (g_{m} + g_{mb})r_{O}]R_{S} + r_{O}.$$

- r_o is boosted by a factor of $\{1 + (g_m + g_{mb})R_S\}$ and then added to R_S
- Alternatively, R_s is boosted by a factor of $\{1 + (g_m + g_{mb})r_o\}$ and then added to r_o

• Compare $R_S = 0$ with $R_S > 0$

• If
$$R_S$$
 = 0, $g_m V_1 = g_{mb} V_{bs} = 0$ and $I_X = V_X/r_O$

- If $R_{\rm S}$ > 0, I_XR_S > 0 and V_1 < 0, obtaining negative g_mV_1 and $g_{mb}V_{bs}$
- Thus, current supplied by V_X is less than V_X/r_o and hence output impedance is greater than r_o

Intuitive understanding of increased output impedance

• Apply voltage change ΔV at output and measure resulting change ΔI in output current, which is also the change in current through $R_{\rm S}$

- Resistance seen looking into the source of M_1 is $1/(g_m + g_{mb})$
- Voltage change across R_S is

$$\Delta V_{RS} = \Delta V \frac{\frac{1}{g_m + g_{mb}} || R_S}{\frac{1}{g_m + g_{mb}} || R_S + r_O}$$

Intuitive understanding of increased output impedance

• Change in current across R_s is

$$\Delta I = \frac{\Delta V_{RS}}{R_S}$$

$$= \Delta V \frac{1}{[1 + (g_m + g_{mb})]R_{STO} + R_S}$$

Output resistance is thus

$$\frac{\Delta V}{\Delta I} = [1 + (g_m + g_{mb})R_S]r_O + R_S$$

- To compute gain in the general case including body effect and channel-length modulation, consider above small-signal model
- From KVL at input,

$$V_1 = V_{in} + V_{out}R_S/R_D$$

KCL at output gives

$$I_{ro} = -\frac{V_{out}}{R_D} - (g_m V_1 + g_{mb} V_{bs})$$

$$= -\frac{V_{out}}{R_D} - \left[g_m \left(V_{in} + V_{out} \frac{R_S}{R_D}\right) + g_{mb} V_{out} \frac{R_S}{R_D}\right]$$

• Since voltage drops across r_o and R_s must add up to V_{out} ,

$$V_{out} = I_{ro}r_O - \frac{V_{out}}{R_D}R_S$$

$$= -\frac{V_{out}}{R_D}r_O - \left[g_m\left(V_{in} + V_{out}\frac{R_S}{R_D}\right) + g_{mb}V_{out}\frac{R_S}{R_D}\right]r_O - V_{out}\frac{R_S}{R_D}$$

Voltage gain is therefore

$$\frac{V_{out}}{V_{in}} = \frac{-g_m r_O R_D}{R_D + R_S + r_O + (g_m + g_{mb}) R_S r_O}$$

Lemma

- In a linear circuit, the voltage gain is equal to $-G_mR_{out}$
 - $-G_m$ denotes the transconductance of the circuit when output is shorted to ground
 - R_{out} represents the output resistance of the circuit when the input voltage is set to zero
- Norton equivalent of a linear circuit

Source Follower

- Source follower (also called "common-drain" stage)
 senses the input at the gate and drives load at the source
- It presents a high input impedance, allowing source potential to "follow" the gate voltage
- Acts as a voltage buffer

Source Follower

- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = 0$
- As V_{in} exceeds V_{TH} , M_1 turns on in saturation since $V_{DS} = V_{DD}$ and $V_{GS} V_{TH} \approx 0$ and I_{D1} flows through R_S
- As V_{in} increases further, V_{out} follows the input with a difference (level shift) equal to V_{GS}
- Input-output characteristic neglecting channel-length modulation can be expressed as

$$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})^2 R_S = V_{out}$$

Source Follower

- For $V_{in} < V_{TH}$, M_1 is off and $V_{OUT} = 0$
- Differentiating both sides of large-signal equation for V_{out} ,

$$\frac{1}{2}\mu_n C_{ox} \frac{W}{L} 2(V_{in} - V_{TH} - V_{out}) \left(1 - \frac{\partial V_{TH}}{\partial V_{in}} - \frac{\partial V_{out}}{\partial V_{in}}\right) R_S = \frac{\partial V_{out}}{\partial V_{in}}$$

Since

$$\partial V_{TH}/\partial V_{in} = (\partial V_{TH}/\partial V_{SB})(\partial V_{SB}/\partial V_{in}) = \eta \partial V_{out}/\partial V_{in}$$

• Therefore,
$$\frac{\partial V_{out}}{\partial V_{in}} = \frac{\mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S}{1 + \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_S (1 + \eta)}$$

• Note that
$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})$$

Therefore,

$$A_v = \frac{g_m R_S}{1 + (g_m + g_{mb})R_S}$$

 Small-signal gain can be obtained more easily using small-signal equivalent model

We have,

· KVL:

$$V_{in} - V_1 = V_{out}, V_{bs} = -V_{out}$$

· KCL:

$$g_m V_1 - g_{mb} V_{out} = V_{out} / R_S$$

• Therefore,

$$V_{out}/V_{in} = g_m R_S/[1 + (g_m + g_{mb})R_S]$$

- Voltage gain begins from zero for $V_{in} \approx V_{TH}$ ($g_m \approx 0$), and monotonically increases
- As drain current and g_m increase, A_v approaches

$$g_m/(g_m + g_{mb}) = 1/(1+\eta)$$

- Since η itself slowly decreases with V_{out} , A_v would eventually become equal to unity, but for typical allowable source-bulk voltages, η remains greater than roughly than 0.2
- Even if $R_S = \infty$, voltage gain of a source follower is not equal to one

- Drain current of M_1 depends heavily of input dc level
- Even if V_{TH} is relatively constant, the increase in V_{GS} means that V_{out} (= V_{in} - V_{GS}) does not follow V_{in} faithfully, incurring nonlinearity
- To alleviate this issue, the resistor can be replaced by a constant current source
- Current source is itself is implemented as an NMOS transistor operating in the saturation region

Calculation of output impedance

- From small-signal equivalent circuit, $V_X = -V_{bs}$
- It follows that $I_X-g_mV_X-g_{mb}V_X=\mathbf{0}$ and $R_{out}=rac{1}{g_m+g_{mb}}$
- Body effect decreases output resistance of source followers
- If V_X decreases by ΔV so the drain current increases
 - w/o body effect, V_{GS} increases by ΔV
 - with body effect, V_{TH} decreases as well, thus $(V_{GS}-V_{TH})^2$ and I_{D1} increase by a greater amount, hence lower output impedance

- Magnitude of the current source $g_{mb}V_{bs} = g_{mb}V_X$ is linearly proportional to the voltage across it, can be modelled by a resistor equal to $1/g_{mb}$ (valid only for source followers)
- This appears in parallel with the output, decreasing the overall output resistance
- Since without $1/g_{mb}$, the output resistance is $1/g_m$, we conclude that

$$R_{out} = \frac{1}{g_m} || \frac{1}{g_{mb}}$$
$$= \frac{1}{g_m + g_{mb}}$$

- Modelling effect of g_{mb} by a resistor helps explain lower than unity gain for $R_S = \infty$
- From the Thevenin equivalent circuit

$$A_v = \frac{\frac{1}{g_{mb}}}{\frac{1}{g_m} + \frac{1}{g_{mb}}}$$
$$= \frac{g_m}{g_m + g_{mb}}.$$

 Small-signal equivalent circuit with a finite load resistance and channel-length modulation is shown

• $1/g_{mb}$, r_{O1} , r_{O2} and R_L are in parallel, therefore,

$$R_{eq} = (1/g_{mb})||r_{O1}||r_{O2}||R_L$$

It follows that

$$A_v = \frac{R_{eq}}{R_{eq} + \frac{1}{q_m}}$$

- Source followers exhibit high input impedance and moderate output impedance, but at the cost of
 - Nonlinearity
 - Voltage headroom limitation
- Even when biased by ideal current source, there is inputoutput nonlinearity due to nonlinear dependence of V_{TH} on the source potential
- In submicron technologies, $r_{\rm O}$ changes substantially with $V_{\rm DS}$ and introduces additional variation in small-signal gain

Issues with Source Follower

- Nonlinearity can be eliminated if the bulk is tied to the source
 - Possible only for PFETs since all NFETs usually share the same substrate
- PMOS source follower employing two separate n-wells can eliminate the body effect of M_1
- Lower mobility of PFETs yields a higher output impedance than that available in the NMOS counterpart

Issues with Source Follower

• Source followers also shift the dc level of the signal by V_{GS} , thereby consuming voltage headroom

- In the cascade of US stage and source tollower shown above,
 - w/o source follower, minimum allowable value of V_X would be V_{GS1} - V_{TH1} (for M_1 to remain in saturation)
 - with source follower, V_X must be greater than V_{GS2} +(V_{GS3} - V_{TH3}) so that M_3 is saturated
- For comparable overdrive voltages in M_1 and M_3 , allowable swing at X is reduced by V_{GS2}

Comparison of CS stage and Source Follower

- Comparing the gain of source followers and CS stage with a low load impedance
 - E.g., driving an external 50-Ω termination in a highfrequency environment
- When load is driven by a source follower, overall voltage gain is

$$\frac{V_{out}}{V_{in}}|_{SF} \approx \frac{R_L}{R_L + 1/g_{m1}}$$

$$\approx \frac{g_{m1}R_L}{1 + g_{m1}R_L}.$$

Comparison of CS stage and Source Follower

 Load can be included as part of a common-source stage, providing a gain of

$$\frac{V_{out}}{V_{in}}|_{CS} \approx -g_{m1}R_L$$

- Key difference between the two topologies is the achievable voltage gain for a given bias current
- For example, if $1/g_{m1}\approx R_L$, source follower exhibits a gain of at most 0.5 whereas the common-source stage provides a gain close to unity
- Thus, source followers are not efficient drivers

Common-Gate Stage

- A common-gate (CG) stage senses the input at the source and produces the output at the drain
- Gate is biased to establish proper operating conditions

- Bias current of M_1 flows through the input signal source
- Alternatively, M_1 can be biased by a constant current source, with the signal capacitively coupled to the circuit

Stage Stage Vig decreases from a large positive value and that $\lambda=0$ For $V_{in} \ge V_b$.

For lower values of V_{in} , if M_1 is in

- saturation.

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2.$$

• As V_{in} decreases further, so does V_{out} driving M_1 into the triode region if

$$V_{DD} - \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D = V_b - V_{TH}$$

• In the region where M_1 is saturated, we can express the output voltage as

$$V_{out} = V_{DD} - \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D$$

Common. Caracteristic

- For M_1 in saturation, $V_{out}=V_{DD}-\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_b-V_{in}-V_{TH})^2R_D$
- Small-signal gain can thus be obtained

$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH}) \left(-1 - \frac{\partial V_{TH}}{\partial V_{in}} \right) R_D$$

• Since $\partial V_{TH}/\partial V_{in} = \partial V_{TH}/\partial V_{SB} = \eta$, we have

$$\frac{\partial V_{out}}{\partial V_{in}} = \mu_n C_{ox} \frac{W}{L} R_D (V_b - V_{in} - V_{TH}) (1+\eta)$$

$$= g_m (1+\eta) R_D.$$
 51 Graw-Hill Education.

• Cammonthe atemstagegate (CG) stage is positive

$$\frac{\partial V_{out}}{\partial V_{in}} = \mu_n C_{ox} \frac{W}{L} R_D (V_b - V_{in} - V_{TH}) (1 + \eta)$$
$$= g_m (1 + \eta) R_D.$$

- Body effect increases the effective transconductance of the stage
- For a given bias current and supply voltage (i.e., a given power budget), voltage gain of the CG stage can be maximized by
 - Increasing gm by widening the input device, eventually reaching subthreshold operation $[g_m = I_D/\zeta V_T]$
 - Increasing R_D and inevitably, the dc drop across it
- The minimum allowable value of V_{out} is V_{GS} - V_{TH} + V_{I1} , where V_{I1} denotes the minimum voltage required by I_1

• Consider output impedance of transistor and impedance of the signal source

• In small-signal equivalent circuit, since current flowing R_s is $-V_{out}/R_D$,

$$V_1 - \frac{V_{out}}{R_D} R_S + V_{in} = 0. {1}$$

• Moreover, since current through r_0 is $-V_{out}/R_D - g_m V_1 - g_{mb} V_1$

$$r_O\left(\frac{-V_{out}}{R_D} - g_m V_1 - g_{mb} V_1\right) - \frac{V_{out}}{R_D} R_S + V_{in} = V_{out}$$
 (2)

Common-Gate Stage

• Substituting V_1 from (1) in (2),

$$r_O \left[\frac{-V_{out}}{R_D} - (g_m + g_{mb}) \left(V_{out} \frac{R_S}{R_D} - V_{in} \right) \right] - \frac{V_{out} R_S}{R_D} + V_{in} = V_{out}$$

Therefore,

$$\frac{V_{out}}{V_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_O R_S + R_S + R_D} R_D$$

 The voltage gain expression is similar to that of a degenerated CS stage

 From the small-signal equivalent circuit for finding input impedance, we have

$$V_1 = -V_X$$

- The current through r_O is equal to $I_X + g_m V_1 + g_{mb} V_1$ = $I_X - (g_m + g_{mb}) V_X$
- Voltages across r_0 and R_D can be added and equated to

$$R_D I_X + r_O [I_X - (g_m + g_{mb})V_X] = V_X$$

If $(g_m + g_{mb})r_O >> 1$

• The drain impedance is divided by
$$(g_m + g_{mb})r_O$$
 when seen at the source

Important in short-channel devices because of their low intrinsic gain

• Suppose $R_D = 0$, then

$$\frac{V_X}{I_X} = \frac{r_O}{1 + (g_m + g_{mb})r_O} \\
= \frac{1}{\frac{1}{r_O} + g_m + g_{mb}},$$

• This is the impedance seen at the source of a source follower, a predictable result since with $R_D = 0$ the circuit configuration is the same as a source follower

Common-Gate Stage:

- If R_D is replaced with an ideal current source, earlier result predicts that input impedance approaches infinity
- Total current through the transistor is fixed and is equal to I₁
- Therefore, a change in the source potential cannot change the device current, and hence $I_X = 0$
- The input impedance of a CG stage is relatively low only if the load impedance connected to the drain is small

• In a CG stage with a current source load, substituting $R_D = \infty$ in the voltage gain equation, we get

$$A_v = (g_m + g_{mb})r_O + 1$$

- Gain does not depend on R_s
- From the foregoing discussion, if $R_D \rightarrow \infty$, so does the impedance seen at the source of M_1 , and the small-signal voltage at node X becomes equal to V_{in}

- In a degenerated CS stage, we loosely say that a transistor transforms its source resistance up
- In a CG stage, the transistor transforms its drain resistance down
- The MOS transistor can thus be viewed as an resistance transformer

Common-Gate Sta

 From the above small-signal equivalent circuit, we can find output impedance as

$$R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_S + r_O \} || R_D$$

Result is similar to that obtained for a degenerated CS stage

• Input signal of a common-gate stage may be a current rather than a voltage as shown below

- Input current source exhibits output impedance of R_P
- To find the "gain" V_{out}/I_{in} , replace I_{in} and R_P with a Thevenin equivalent and use derived result to write

$$\frac{V_{out}}{I_{in}} = \frac{(g_m + g_{mb})r_O + 1}{r_O + (g_m + g_{mb})r_O R_P + R_P + R_D} R_D R_P$$

Output impedance is simply given by

$$R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_P + r_O \} || R_D.$$

The cascade of a CS stage and a CG stage is called a cascode topology

cascode topology

V_{DD}

R

V_{OUT}

- M_1 is called the input device and M_2 the cascode device
- M₁ and M₂ in this example carry equal bias and signal currents
 - Topology also called as "telescopic cascode"

Cascode Stage:

- Assume both transistors are in saturation and $\lambda = \gamma = 0$
- If V_{in} rises by ΔV , then I_{D1} increases by $g_{m1}\Delta V$
- This change in current flows through the impedance seen at X, i.e., the impedance seen at the source of M_2 , which is equal to $1/g_{m2}$
- Thus, V_X falls by an amount given by $g_{m1}\Delta V \cdot (1/g_{m2})$
- This change in I_{D1} also flows through R_D , producing a drop of $g_{m1}\Delta VR_D$ in V_{out} , just as in a simple CS stage

Cascode Stage: $AV \longrightarrow M_2$ $AV \longrightarrow M_2$ $AV \longrightarrow M_2$ $AV \longrightarrow M_2$ $AV \longrightarrow M_2$

- Consider the case when V_{in} is fixed and V_b increases by ΔV
- Since V_{GS1} is constant and $r_{O1} = \infty$, M_1 can be replaced by an ideal current source
- For node X, M_2 operates as a source follower, it senses an input ΔV at its gate and generates an output at X
- With $\lambda = \gamma = 0$, the small-signal voltage of the follower is unity regardless of R_D
- V_X rises by ΔV_b but V_{out} does not change since $I_{D2}=I_{D1}=constant$, thus voltage gain from V_b to V_{out} is zero

e: BFar Monte in pergate in saturation, we must

- primarily determined by $V_b: V_X = V_b V_{GS2}$
- For M_2 to be saturated, $V_{out} \geq V_b V_{TH2}$

• Thus,
$$V_{out} \geq V_{in} - V_{TH1} + V_{GS2} - V_{TH2}$$

= $(V_{GS1} - V_{TH1}) + (V_{GS2} - V_{TH2})$

if V_h is chosen to place M_1 at the edge of saturation

- Minimum output level for which both transistors are in saturation is equal to the sum of overdrives of M_1 and M_2
- Addition of M_2 to the circuit reduces the output voltage swing by at least its overdrive voltage 66

- For $V_{in} \le V_{TH1}$, M_1 and M_2 are off, $V_{out} = V_{DD}$, and $V_X \approx V_b V_{TH2}$
- As V_{in} exceeds V_{TH1} , M_1 draws current, and V_{out} drops
- Since I_{D2} increases, V_{GS2} must increase as well, causing V_X to fall
- As V_{in} becomes sufficiently large, two effects can occur:
 - V_X falls below V_{in} by V_{TH1} , forcing M_1 into the triode region
 - V_{out} drops below V_b by V_{TH2} , driving M_2 into triode region
- Depending on device dimensions and R_D and V_b , one effect may occur before the other

- Assume both transistors operate in saturation and $\lambda=0$
- Voltage gain is equal to that of a common-source stage because the drain current produced by the input device must flow through the cascode device
- This result is independent of the transconductance and body effect of M_2 , the cascode device
- Can be verified using $A_v = -G_m R_{out}$

output impedance

- For calculation of R_{out} , the circuit can be viewed as a common-source stage with a degeneration resistor equal to r_{O1}
- Thus, $R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2}$
- Assuming $g_m r_o >> 1$, we have $R_{out} \approx (g_{m2} + g_{mb2}) r_{O2} r_{O1}$
- M2 boosts the output impedance of M1 by a factor of $(g_{m2}+g_{mb2})r_{O2}$

- ு தேத் oding அம் be extended to three or more stacked devices to achieve higher output impedance
- But required additional voltage headroom makes it less attractive
- For a triple cascode, the minimum output voltage is equal to the sum of three overdrive voltages

- Voltage gain can be maximized by maximizing G_m and/or ascode stage with current source load
- Since G_m is typically determined by the transconductance of a transistor and has trade-offs with the bias current and device capacitances, it is desirable to increase voltage gain by maximizing R_{out}

- If both M_1 and M_2 operate in saturation, $G_m \approx g_{m1}$ and $R_{out} \approx (g_{m2} + g_{mb2})r_{O2}r_{O1}$ yielding $A_v = (g_{m2} + g_{mb2})r_{O2}g_{m1}r_{O1}$
- Maximum gain is roughly equal to the square of the intrinsic gain of the transistors

- Increasing length of the input transistor for a given bias current increases the output impedance
- Suppose the length of the input transistor is quadrupled while the width remains constant
- Since $I_D=(1/2)\mu_n C_{ox}(W/L)(V_{GS}-V_{TH})^2$, the overdrive voltage is doubled and the transistor consumes the same amount of voltage headroom as does a cascode stage, i.e., circuits in (b) and (c) impose equal voltage swing constraints

Since

$$g_m r_O = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} \frac{1}{\lambda I_D}$$

- And $\lambda \propto 1/L$, quadrupling L only doubles the value of $g_m r_o$ while cascoding results in an output impedance of roughly $g_m r_o^2$
- Transconductance of M_1 in (b) is only half of that in (c), degrading the performance
- For a given voltage headroom, the cascode structure provides a higher output impedance

 V_{b3} Cascode structure yields a current source closer to the ideal, but at the cost of voltage headroom

 The current source load in a cascode stage can be implemented as a PMOS cascode, exhibiting an impedance equal to

$$[1 + (g_{m3} + g_{mb3})r_{O3}]r_{O4} + r_{O3}$$

- To find the voltage gain, $G_m \approx g_{m1}$
- Rout is the parallel combination of the NMOS and PMOS cascode output impedances

- The gain is given by $|A_v| \approx g_{m1} R_{out}$
- For typical values, this is approximated as

$$|A_v| \approx g_{m1}[(g_{m2}r_{O2}r_{O1})||(g_{m3}r_{O3}r_{O4})]$$

• A "minimalist" cascode current source omits the bias Poor Man's Cascode voltage necessary for the cascode device

- Called "poor man's cascode", M_2 is placed in the triode region because $V_{GS1} > V_{TH1}$ and $V_{DS2} = V_{GS2} V_{GS1} < V_{GS2} V_{TH2}$
- If M_1 and M_2 have the same dimensions, the structure is equivalent to a single transistor having twice the length-not really a cascode
- In modern CMOS technologies, transistors with different threshold voltages are allowable, allowing M_2 to operate in saturation if M_1 has a lower threshold than M_2

- High output impedance arises from the fact that if the output node voltage is changed by ΔV, the resulting change at the source of the cascode device is much less
 - Cascode transistor "shields" the input device from voltage variations at the output
- Shielding property diminishes if cascode device enters triode region
- In above circuit, as V_X falls below V_{b2} - V_{TH2} , M_2 enters triode region and requires a greater gate-source overdrive to sustain the current drawn by M_1 therefore

$$I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 \left[2(V_{b2} - V_P - V_{TH2})(V_X - V_P) - (V_X - V_P)^2 \right]$$

• As V_X decreases, V_P also drops to keep I_{D2} constant so variation of V_X is less attenuated as it appears at P

• The input device and the cascode device in a cascode Folded Cascode structure need not be of the same type

- In the figure above, (a) shows a PMOS-NMOS cascode combination that performs the same function as a telescopic cascode
- In order to bias M_1 and M_2 , a current source must be added as shown in (b)
- $|I_{D1}| + I_{D2}$ is equal to I_1 and hence constant
- (c) shows an NMOS-PMOS folded cascode

- If V_{in} becomes more positive, $|I_{D1}|$ decreases, forcing I_{D2} to increase and hence V_{out} to drop
- The voltage gain and output impedance can be obtained as calculated for the NMOS-NMOS cascode shown earlier
- (b) and (c) are called "folded cascode" stages because the small-signal current is "folded" up [in (b)] or down [in (c)]
- In the telescopic cascode, the bias current is reused whereas those of M_1 and M_2 add up to I_1 in (b) and (c), leading to a higher bias current

Folded Cascode: Li $V_{in} \sim V_{in} \sim V_{out}$ $V_{out} \sim V_{out}$ $V_{in} \sim V_{out}$ $V_{in} \sim V_{out}$ $V_{in} \sim V_{out}$ $V_{in} \sim V_{out}$ $V_{out} \sim V_{out}$

- Suppose V_{in} decreases from V_{DD} to zero
- For $V_{in} > V_{DD}$ - $|V_{TH1}|$, M_1 is off and M_2 carries all of I_1 , yielding $V_{out} = V_{DD} I_1 R_D$
- For $V_{in} < V_{DD}$ $|V_{TH1}|$, M_1 turns on in saturation, giving

$$I_{D2} = I_1 - \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right)_1 (V_{DD} - V_{in} - |V_{TH1}|)^2$$

• As V_{in} drops, I_{D2} decreases further, falling to zero if $I_{D1}=I_1$

• This occurs at $V_{in} = V_{in1}$ if

$$\frac{1}{2}\mu_p C_{ox} \left(\frac{W}{L}\right)_1 (V_{DD} - V_{in1} - |V_{TH1}|)^2 = I_1$$

• Thus,

$$V_{in1} = V_{DD} - \sqrt{\frac{2I_1}{\mu_p C_{ox}(W/L)_1}} - |V_{TH1}|$$

- If V_{in} falls below this level, I_{D1} tends to be greater than I_1 and M_1 enters the triode region to ensure $I_{D1}=I_1$
- As I_{D2} drops, V_X rises, reaching V_b - V_{TH2} for I_{D2} =0
- As M_1 enters the triode region, V_X approaches V_{DD}

- M_3 operates as the bias current source
- Using earlier results,

$$R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}](r_{O1}||r_{O3}) + r_{O2}$$

 The circuit exhibits a lower output impedance than a nonfolded (telescopic) cascode • To achieve a high voltage gain, the load of a folded Folded Cascode with cascode load cascode itself

- Increasing the output resistance of voltage amplifiers to obtain a high gain may make the speed of the circuit susceptible to the load capacitance
- A high output impedance itself does not pose a serious issue if the amplifier is placed in a proper feedback loop