Learning outcome, core skiller	Worklood
Module B.Inf.1237: Deep Learning	4 WLFI
Georg-August-Universität Göttingen	6 C 4 WLH

Module B.Inf.1237: Deep Learning	7 ***
Learning outcome, core skills: Students I learn concepts and techniques of deep learning and understand their advantages and disadvantages compared to alternative approaches I learn to solve practical data science problems using deep learning implement deep learning techniques like multi-layer perceptrons, convolutional neural networks and other modern deep learning architectures learn techniques for optimization and regularization of deep neural networks learn applications of deep neural networks for computer vision tasks such as segmentation and object detection	Workload: Attendance time: 56 h Self-study time: 124 h
Course: Deep Learning for Computer Vision (Lecture) Goodfellow, Bengio, Courville: Deep Learning. https://www.deeplearningbook.org Bishop: Pattern Recognition and Machine Learning. https://cs.ugoe.de/prml	2 WLH
Examination: Written examination (90 minutes) Examination prerequisites: B.Inf.1237.Ex: At least 50% of homework exercises solved and N-1 attempts presented to tutors Examination requirements: Knowledge of basic deep learning techniques, their advantages and disadvantages and approaches to optimization and regularization. Ability to implement these techniques.	6 C
Course: Deep Learning for Computer Vision - Exercise (Exercise) Contents: Students present their solutions of the homework exercises to tutors and discuss them with their tutors.	2 WLH

Admission requirements:	Recommended previous knowledge:	
none	Basic knowledge of linear algebra and probability	
	Completion of B.Inf.1236 Machine Learning or equivalent	
Language:	Person responsible for module:	
English	Prof. Dr. Constantin Pape	
	Prof. Dr. Alexander Ecker	
Course frequency:	Duration:	
each winter semester	1 semester[s]	
Number of repeat examinations permitted:	Recommended semester:	
twice	5	
Maximum number of students: 100		