## Тема учебного предмета: «Сплавы железа с углеродом»

#### Лабораторная работа № 1

#### Тема работы: «Определение твердости металлов и сплавов»

#### 1. Цель работы

Научиться определять твердость металлов и сплавов методом Бринелля.

#### 2. Задание

Рассчитать твердость по методу Бринелля.

#### 3. Оснащение работы

- 1. Рычажный пресс.
- 2. Стальной шарик.
- 3. Образец металла.
- 4. Канцелярские принадлежности (ручка, карандаш, линейка и др.).
- 5. Калькулятор.

## 4. Основные теоретические сведения

Твердостью называют способность материала сопротивляться проникновению в него более твердого тела, не получающего при этом остаточной деформации. Высокой твердостью должны обладать инструменты, а также многие детали конструкций. Твердость металла определяется по наиболее распространенному методы Бринелля.

Метод Бринелля основан на вдавливании в испытуемую поверхность стального закаленного шарика (рисунок 1).



Рисунок 1 – Схема испытания на твердость

Число твердости HB — это отношение нагрузки, действующей на стальной шарик, к площади поверхности сферического отпечатка.

$$HB = \frac{F}{S},\tag{1}$$

где F — нагрузка, H; S — площадь,  $MM^2$ .

Для определения площади S,  $mm^2$ , измеряют диаметр отпечатка и подсчитывают площадь по формуле:

$$S = \frac{\pi \cdot D}{2} \cdot (D - \sqrt{D^2 - d_{cp}^2}), \qquad (2)$$

где D – диаметр шарика, мм;

 $d_{cp}$  – средний диаметр отпечатка, мм.

Твердость по методу Бринелля определяют на специальном рычажном прессе (рисунок 2).



1 - столик для центровки образца; 2 — маховик; 3 — грузы; 4 — шарик; 5 — электродвигатель

Рисунок 2 – Рычажный пресс для определения твердости

Испытуемый образец устанавливают на столике 1 в нижней части неподвижной станины пресса (рисунок 2), зашлифованной поверхностью кверху. Поворотом вручную маховика 2 по часовой стрелке столик поднимают так, чтобы шарик мог вдавиться в испытуемую поверхность. В прессах с электродвигателем вращают маховик 2 до упора и нажатием кнопки включают двигатель 5. Последний перемещает коромысло и постепенно вдавливает шарик под действием нагрузки, сообщаемой привешенным к коромыслу грузом. Эта нагрузка действует в течение определенного времени, обычно 10—60 с, в зависимости от твердости измеряемого материала, после чего вал двигателя, вращаясь в обратную сторону, соответственно перемещает коромысло и снимает нагрузку. После автоматического выключения двигателя, поворачивая маховик 2 против часовой стрелки, опускают столик прибора и затем снимают образец.

В образце остается отпечаток со сферической поверхностью (лунка). Диаметр отпечатка измеряют лупой, на окуляре которой нанесена шкала с делениями, соответствующими десятым долям миллиметра (рисунок 3). Диаметр отпечатка

измеряют с точностью до 0,05 мм (при вдавливании шарика диаметром 10 и 5 (мм) в двух взаимно перпендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин).



Рисунок 3 – Лупа с мерной сеткой

Испытание проводите дважды, а затем определяют средний диаметр отпечатка  $d_{\text{cp}}$  , мм, по формуле:

$$d_{cp} = \frac{d_1 + d_2}{2},\tag{3}$$

где  $d_1, d_2$  – диаметры отпечатка при двух измерениях.

Твердость материалов, определяемая по методу Бринелля, не должна превышать 450 H.

Примерный предел прочности  $G_{\scriptscriptstyle B}$  определяется по выражениям:

 $G_{\text{\tiny B}} \approx 0.36 \cdot \text{HB} -$  для стали,  $G_{\text{\tiny B}} \approx 0.5 \cdot \text{HB} -$  для сплавов меди,  $G_{\text{\tiny B}} \approx 0.4 \cdot \text{HB} -$  для сплавов алюминия.

ГОСТ 9012-59 устанавливает зависимость между диаметром шарика, нагрузкой, продолжительностью выдержки под нагрузкой материала и толщиной испытуемого образца.

## 5. Порядок выполнения работы

- 1. Изучите основные теоретические сведения.
- 2. Исходные данные запишите в таблицу 1 отчета.
- 3. Рассчитайте средний диаметр  $d_{cp}$ , число твердости HB, предел прочности  $G_{\text{в}}$ .
- 4. Результаты вычислений запишите в таблицу 2 отчета.
- 5. Оформите отчет по рекомендуемой форме.

## 6. Форма отчета о работе

Лабораторная работа № \_\_\_

| Номер учебной гр  | уппы       |            |                     |                     |  |
|-------------------|------------|------------|---------------------|---------------------|--|
| Фамилия, инициа.  | лы обучаю  | щегося     |                     |                     |  |
| Дата выполнения   | работы     |            |                     |                     |  |
| Тема работы       |            |            |                     |                     |  |
| Цель работы       |            |            |                     |                     |  |
| Задание:          |            |            |                     |                     |  |
| Оснащение работ   | ы:         |            |                     |                     |  |
| Результаты выпол  | нения рабо | оты:       |                     |                     |  |
|                   |            |            |                     |                     |  |
|                   |            |            |                     |                     |  |
| Таблица 1 – Исход | дные данні | ые         |                     |                     |  |
| Наименование      | У          | словия исп | d <sub>1</sub> , мм | d <sub>2</sub> , мм |  |
| материала         | Dane       | E          |                     |                     |  |
| образца           | D, мм      | F, кг      | Время               |                     |  |

Таблица 2 – Результаты вычислений

| Taomique 2 Tosymbianisi bis memerinin |                   |    |           |         |         |                              |          |       |
|---------------------------------------|-------------------|----|-----------|---------|---------|------------------------------|----------|-------|
| Наименование                          | Условия испытания |    | Диаметр   |         | HB,     | $G_{\scriptscriptstyle B}$ , |          |       |
| материала                             |                   |    | отпечатка |         |         | $H/MM^2$                     | $H/mm^2$ |       |
| образца                               | D,                | F, | Время     | $d_1$ , | $d_2$ , | $d_{cp}$ ,                   | (МПа)    | (МПа) |
|                                       | MM                | КГ | выдержки, | MM      | MM      | MM                           |          |       |
|                                       |                   |    | c         |         |         |                              |          |       |
|                                       |                   |    |           |         |         |                              |          |       |

выдержки, с

| Вывод: |  |
|--------|--|
|        |  |

#### 7. Контрольные вопросы и задания

- 1. Сформулируйте понятие "твердость материалов".
- 2. Изложите краткое описание пресса для определения твердости конструкционных материалов.
- 3. Покажите, как обозначается твердость металлов по Бринеллю и чем она характеризуется.
- 4. Рассчитайте предел прочности для низкоуглеродистой стали, если твердость HB 130.
- 5. Вычертите схему испытания конструкционных материалов на твердость по методу Бринелля.
- 6. Продемонстрируйте, как определяется твердость металлов по ГОСТ 9015-59.

# 8. Рекомендуемая литература

- 1. Берлин, В.И. Материаловедение: учебник для техникумов / В. И. Берлин, П.С. Костяев, К.Д. Шапкин. М.: Транспорт, 1979. 382 с.
- 2. Гелин, Ф. Д. Материаловедение: пособие с элементами программирования для металлистов / Ф. Д. Гелин, Э. И. Крупицкий, И. П. Позняк. Минск: Вышэйшая школа, 1977. 269 с.
- 3. Журавлева, Л.В. Электроматериаловедение: учебник для нач. проф. образования / Л. В. Журавлева. М.: Издательский центр "Академия", 2008. 352 с.