Colles semaine 16 - Estimation paramétrique

1 Principe de l'estimation paramétrique

Notion d'échantillon de la loi étudiée

Un échantillon $X_1, ..., X_n$ de la loi étudiée, est une famille de variables aléatoires qui sont :

- mutuellement indépendantes,
- ▶ toutes de même loi, dépendant d'un paramètre inconnu *a*.

Estimateur

Un **estimateur** est une **statistique** : une variable aléatoire $\varphi(X_1,...,X_n)$ définie en termes de l'échantillon, qui vise à **estimer** le paramètre inconnu a.

Biais, risque quadratique

Notion	(Interprétation)	Formule
Biais	(erreur moyenne)	$b_a(A_n) = \mathbb{E}_a[A_n - a] = \mathbb{E}_a[A_n] - a$
Risque quadratique	(erreur quadratique)	$r_a(A_n) = \mathbb{E}_a\big[(A_n - a)^2\big]$
Décomposition biais-variance (Kænig-Huygens)		$r_a(A_n) = (b_a(A_n))^2 + \operatorname{Var}_a(A_n)$

2 Estimateurs usuels

> Estimateur de moyenne empirique

La statistique : $\overline{X_n} = \frac{1}{n} \cdot \sum_{k=1}^n X_k$ est un **estimateur sans biais** de $\mu = \mathbb{E}[X]$.

Son risque quadratique est sa variance : $\frac{1}{n} \cdot \text{Var}(X) = \frac{\sigma^2}{n} \xrightarrow[n \to \infty]{} 0.$

- ▶ Estimateurs par min/max On trouve la loi de :
 - ► $S_n = \max(X_1, ..., X_n)$ par la fonction de répartition : $\mathbb{P}(S_n \le x) = (\mathbb{P}(X \le x))^n$.
 - ▶ $I_n = \min(X_1, ..., X_n)$ par la fonction d'anti-répartition : $\mathbb{P}(I_n > x) = (\mathbb{P}(X > x))^n$.

(→ calcul de l'espérance/variance et biais/risque)

3 Convergence en probabilités

▶ **Inégalité de Markov** Soit X une variable aléatoire ≥ 0 admettant une espérance.

Pour A > 0, on a: $\mathbb{P}(X \ge A) \le \frac{\mathbb{E}[X]}{A}$.

▶ **Inégalité de Bienaymé-Tchebychev** Soit *X* une *v.a.* ayant un moment d'ordre 2.

Pour $\lambda > 0$, on a: $\mathbb{P}(|X - \mathbb{E}[X]| \ge \lambda) \le \frac{\text{Var}(X)}{\lambda^2}$.

▶ Loi faible des grands nombres

pour un échantillon de loi de X, la moyenne empirique $\overline{X_n}$ vérifie : $\mathbb{P}(|\overline{X_n} - \mathbb{E}[X]| \ge \epsilon) \xrightarrow[n \to \infty]{} 0$.

Estimateur convergent

la suite d'estimateurs (T_n) pour θ est **convergente** si : $\mathbb{P}_{\theta}(|T_n - \theta| \ge \epsilon) \xrightarrow[n \to \infty]{} 0$.

(« pas convergent » ←→ « mauvais » : même avec un échantillon « infini », l'estimation fluctue)

Condition suffisante de convergence

Pour que (T_n) soit convergent, il suffit que le risque quadratique : $r_{\theta}(T_n) \xrightarrow[n \to \infty]{} 0$.

4 Questions de cours

1. Déterminer l'espérance et la variance de : $\overline{X} = \frac{1}{n} \cdot \sum_{k=1}^{n} X_k$.

(+ hypothèses sur l'échantillon)

2. Énoncer l'inégalité de Bienaymé-Tchebychev.

3. Déterminer la fonction de répartition du max indépendant $S_n = \max(X_1, ..., X_n)$.

4. Définition et condition suffisante de convergence d'un estimateur.

5. La loi faible des grands nombres.

