Modular forms modulo 2

Paul Dubois

February 20, 2020

Abstract

We are interested in Modular forms modulo 2, and computing thing about it. [temporary abstract] Key words that should appear: Modular forms; Mod 2; Duality of definitions; Governing fields; Frobenian map?; Exact computations;

Contents

	Finding coefficients of Hecke operators 1.1 (Very) General Method	2
	Hecke OperatorsA.1 Primes Hecke OperatorsA.2 Powers of Hecke Operators	
В	Speed Comparison	4
\mathbf{C}	${\bf Modular Forms Modulo Two.jl}$	4
D	Other Programs	4

1 Numerics

1.1 Finding coefficients of Hecke operators

It is important to make the program as fast as possible. Indeed, the faster the program goes, the more data it will generate (within the same amount of time). This data will be used for numerical analysis and we will also use it for interpretation. Therefore, with more data, we have more knowledge, and we can make smarter guesses.

There are two main ways to make a program faster: use a better algorithm, or use a faster implementation. A better algorithm means, for example, test factors only up to square root (in the case of primality a test). A better implementation simply means optimisation inside the computer (i.e. on operations that are made, types that are used...). We will try to optimise both.

1.1.1 Choice of implementation

As explained above, investigations on which tool will be the more suitable for the computations is an important part. Of course, the best would be to find a programming language that can already deal with modular forms modulo two. Unfortunately, this (yet) doesn't exist. There are packages that have modular forms implemented, but none with modular forms modulo two specifically. The goal of looking at modulo two is to conclude more than what we know in general. So using what has already been done in general to make computations modulo two won't give any thing interesting.

Now we realize that there is no other way than just creating a package for modular forms modulo two on our own. In fact, this is what we will do later, but before, we want to determine the tools to build this package. Modular forms modulo 2 come from maths, so it makes sense to use a high level programming language.

1.2 (Very) General Method

We want to find the coefficients a_{ij} such that

$$\sum_{i,j} a_{ij} T_3^i T_5^j = T_p$$

(with $a_{ij} \in \mathbb{F}_2$).

Let $k \ge 1$ an integer. Then there exists an integer N(k) > 0 such that, for all pairs of non-negative integers (i,j) with $i+j \ge N(k)$, we have $T_3^i T_5^j | \Delta^k = 0$.

This allows us to write:

$$\sum_{i+j < N(k)} a_{ij} T_3^i T_5^j |\Delta^k = T_p |\Delta^k \qquad (*)$$

Now, suppose that we want to calculate the table of the $a_{ij}(p)$ for $p \in \mathbb{P}$:

- 1. Take an odd power for Δ (say k, we usually start with the smallest: 1 and the increase gradually)
- 2. Plug Δ^k in the equation above, ie:
- 3. Calculate $T_3^i T_5^j | \Delta^k \forall i + j < N(k)$
- 4. Calculate $T_p | \Delta^k \forall i + j < N(k)$
- 5. Equate both sides of (*), if not zero (which unfortunately happens often), use the equation to deduce $a_{ij}(p)$

[How much of the algorithm is there? too much? too little? I could develop much more on how everything is calculated: how I go back and forward between q and Δ representations of modular forms to both be efficient in calculations and catch up the error in numerical approximation, what techniques are used for speed, argue the implementation choices, describe how the code is split, etc... I could write at least pages on all of that, but is it the point of a math paper?]

A Hecke Operators

A.1 Primes Hecke Operators

 T_p

A.2 Powers of Hecke Operators

 $T_3^iT_5^j$

- B Speed Comparison
- ${\bf C} \quad {\bf Modular Forms Modulo Two.jl}$
- D Other Programs

References

- Keith Conrad. $SL_2(\mathbb{Z})$. [Online], 2020. URL https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2, Z).pdf. Available from https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,Z).pdf.
- William Stein. Modular forms, a computational approach, volume 79 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. ISBN 978-0-8218-3960-7; 0-8218-3960-8. doi: 10.1090/gsm/079. URL https://doi.org/10.1090/gsm/079. With an appendix by Paul E. Gunnells.
- Bertil Westergren Lennart Rade. *Mathematics Handbook for Science and Engineering*. Springer Science and Business Media, 2013, 2013. 5th edition, illustrated.
- J.-P. Serre. A course in arithmetic. Springer-Verlag, New York-Heidelberg, 1973. Translated from the French, Graduate Texts in Mathematics, No. 7.
- Sagar Shrivastava. Introduction to modular forms, 2017.
- Victor Saul Miller. DIOPHANTINE AND P-ADIC ANALYSIS OF ELLIPTIC CURVES AND MODULAR FORMS, 1975. URL http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info: ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0295447. Thesis (Ph.D.)—Harvard University.
- SageMath Contributors. Sagemath. Software tool, 2020. URL https://www.sagemath.org/.
- O. Kolberg. Congruences for Ramanujan's function $\tau(n)$. Arbok Univ. Bergen Mat.-Natur. Ser., 1962(11), 1962. ISSN 0522-9189.
- Jean-Louis Nicolas and Jean-Pierre Serre. Formes modulaires modulo 2: l'ordre de nilpotence des opérateurs de Hecke. C. R. Math. Acad. Sci. Paris, 350(7-8):343-348, 2012a. ISSN 1631-073X. doi: 10.1016/j.crma.2012. 03.013. URL https://doi.org/10.1016/j.crma.2012.03.013.
- Jean-Louis Nicolas and Jean-Pierre Serre. Formes modulaires modulo 2: structure de l'algèbre de Hecke. C. R. Math. Acad. Sci. Paris, 350(9-10):449-454, 2012b. ISSN 1631-073X. doi: 10.1016/j.crma.2012.03.019. URL https://doi.org/10.1016/j.crma.2012.03.019.
- Ken Ono. The web of modularity: arithmetic of the coefficients of modular forms and q-series, volume 102 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. ISBN 0-8218-3368-5.
- Kazuyuki Hatada. Eigenvalues of Hecke operators on SL(2, **Z**). *Math. Ann.*, 239(1):75–96, 1979. ISSN 0025-5831. doi: 10.1007/BF01420494. URL https://doi.org/10.1007/BF01420494.
- Lawrence C. Washington. *Introduction to cyclotomic fields*, volume 83 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1997. ISBN 0-387-94762-0. doi: 10.1007/978-1-4612-1934-7. URL https://doi.org/10.1007/978-1-4612-1934-7.
- Gerald J. Janusz. Algebraic number fields, volume 7 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 1996. ISBN 0-8218-0429-4.
- N. Tschebotareff. Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören. *Math. Ann.*, 95(1):191–228, 1926. ISSN 0025-5831. doi: 10.1007/BF01206606. URL https://doi.org/10.1007/BF01206606.