

Faculty of Engineering and Technology Electrical and Computer Engineering Department ENEE4113

Communications Lab

PreLab No.3

Frequency Modulation

Student's Name: Lojain Abdalrazaq. ID: 1190707.

Instructor's Name: Ashraf Al-Rimawi.

Section: 5.

April 11, 2023

Table of Contents

Frequ	uency Modulation Using Simulink Matlab	1
1.	Message Signal m(t):	1
	Plotting Message Signal m(t) and modulated signal s(t):	
3.	Differentiate s(t) with respect to t and plot ds(t)/dt:	2
	Applying ds(t)/dt to an ideal envelope detector s(t):	
5.	Extract message signal by using phase-locked loop (PLL):	3

Table of Figures

Figure 1 Message signal m(t) in time domain	1
Figure 2 FM-Modulated signal s(t) in time domain	
Figure 3 FM-Modulation Block Diagram using simulink.	
Figure 4 Differentiate s(t) plot in time domain.	
Figure 5 Differentiate FM Modulated signal block diagram.	
Figure 6 Demodualted signal using PLL in time domain.	
Figure 7 The block diagram od the PLL demodulation in Simulink.	

Frequency Modulation Using Simulink Matlab

Consider the frequency modulated signal:

$$s(t) = \cos(2\pi(20k)t + 6\sin(1000\pi t))$$

1. Message Signal m(t):

Since the modulated signal using **FM modulation** has the following general formula:

$$s(t) = A\cos[2\pi f ct + \beta \sin 2\pi f m t]$$

Where
$$\beta$$
 FM modulation index = $\frac{peak\ frequency\ deviation}{message\ bandwidth} = \frac{Kf*Am}{fm} = \frac{\Delta f}{fm}$

So, we can find from the given formula the following values:

- Message frequency Fm = 500 Hz.
- Carrier Signal $Fc = 20 \, KHz$.
- Assuming that Kf = 1; then the $\beta = \frac{1*Am}{fm} = \frac{Am}{500} \rightarrow Am = 3000$.

So, the message signal will be: $m(t) = Am \cos(2\pi f m t) = 3000 \cos(2\pi 500 t)$

2. Plotting Message Signal m(t) and modulated signal s(t):

Figure 2 FM-Modulated signal s(t) in time domain.

Figure 1 Message signal m(t) in time domain.

Figure 3 FM-Modulation Block Diagram using simulink.

3. Differentiate s(t) with respect to t and plot ds(t)/dt:

Now, the differentiate of the s(t) is as the following formula:

$$s(t) = A\cos\left[2\pi f c t + \beta \sin 2\pi f m t\right]$$

$$s'(t) = sin((2\pi fct) + \beta sin(2\pi fmt)) * ((2\pi fc) + 2 * \beta * fmcos(2\pi fmt))$$

$$s'(t) = sin((2\pi 20kt) + 6 sin(2\pi 500t)) * ((2\pi 20k) + 6000cos(2\pi 500t))$$

Figure 4 Differentiate s(t) plot in time domain.

It is noticed that it the differentiation transforms the FM waveform into an AM waveform.

Figure 5 Differentiate FM Modulated signal block diagram.

4. Applying ds(t)/dt to an ideal envelope detector s(t):

Now, in this step, and taking the envelop detector of the differentiation signal s`(t) which can be done by taking its absolute value then applying it to the Hilbert transform to remove the negative part, and the DC term:

Envelop of
$$s'(t) = |\sin((2\pi 20kt) + 6\sin(2\pi 500t)) * ((2\pi 20k) + 6000\cos(2\pi 500t))|$$

And subtracting the DC term, we get the following output:

Envelop of
$$s'(t) = 6000cos(2\pi 500t)$$

Which is the same as the input message signal; in other words it is linearly proportional to the original message signal m(t).

5. Extract message signal by using phase-locked loop (PLL):

Finally, to extract the message signal m(t), the phase-locked loop was used. The message extracted is as the following:

Figure 6 Demodulated signal using PLL in time domain.

Figure 7 The block diagram of the PLL demodulation in Simulink.