제목 : CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING

저자: Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra

1. 핵심 내용

논문은 딥러닝과 강화학습의 결합을 통해 연속적인 행동 공간에서의 문제를 해결하는 방법을 제 시

이 연구에서는 Deep Q-Learning의 성공을 연속적인 행동 도메인에 확장하기 위해 액터-크리틱 모델을 소개

다양한 시뮬레이션 물리 과제를 안정적으로 해결하는 결과 도출

2. 주요 연구 및 소개

2-1.액터-크리틱 모델의 소개:

결정론적 정책 기울기를 기반으로 한 액터-크리틱 모델이 연속적인 행동 공간에서 작동할 수 있음을 보여줌.

2-2.다양한 시뮬레이션 물리 과제 해결:

같은 학습 알고리즘과 네트워크 아키텍처를 사용하여 20개 이상의 시뮬레이션 물리 과제를 안정적으로 해결

고전적인 문제뿐만 아니라, cartpole swing-up, dexterous manipulation, legged locomotion, car driving 등이 포함.

2-3.Raw pixel inputs에서의 정책 학습:

많은 과제에서 raw pixel inputs에서 직접 정책을 학습할 수 있음을 입증