

# МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Рівненський фаховий коледж інформаційних технологій

### Звіт

Про виконання лабораторної роботи №2

Цілісність і резервне копіювання даних.

Виконав Студент 3 курсу групи КН-3/1 Валерій ФОРМАНЮК 13.09.2025 р.

### Лабораторна робота №2

Тема: Цілісність і резервне копіювання даних.

### **МЕТА РОБОТИ:**

Ознайомитися з методами забезпечення цілісності даних.

Навчитися використовувати хеш-функції для перевірки змін у файлах.

Освоїти базові підходи до **резервного копіювання** та **відновлення інформації**.

### 1. Обладнання та ПЗ:

ПК з Windows.

Командний рядок Windows: certutil для обчислення хешів.

Програма для архівації: 7 - Zip.

Хмарний диск (Google Drive) або зовнішній USB.

## 2. Теоретичні відомості:

Цілісність даних - властивість, що гарантує відсутність

несанкціонованих змін.

Основний метод контролю цілісності: хешування.

Популярні алгоритми:

SHA-256,

SHA-3 (актуальні),

MD5 (застарілий, використовується для демонстрацій).

### Резервне копіювання (backup):

```
повне (full),
інкрементальне (incremental),
диференціальне (differential).
```

Засоби: вбудовані утиліти ОС, хмарні сервіси, зовнішні носії.

## 3. Хід роботи.

# 1. Контроль цілісності файлів.

Вибрати будь-який текстовий файл (наприклад, lab2.txt).

Обчислити його хеш у алгоритмах MD5 та IPФ-256.

Windows:

certutil -hashfile lab2.txt MD5 certutil -hashfile lab2.txt SHA-256.

Внести зміни у файл і повторити обчислення хешів.

Порівняти результати та зробити висновок.

# 2. Резервне копіювання.

Створити папку з кількома файлами (lab\_backup).

Виконати її архівацію у форматі ZIP.

Зберегти копію на зовнішньому носії або хмарному диску.

### 3. Відновлення даних.

Видалити один із файлів у вихідній папці.

Розпакувати архів і відновити видалений файл.

# 4. Контрольні питання.

- 1. Чим відрізняється повне, інкрементальне і диференціальне резервне копіювання?
- 2. Чому MD5 вважається ненадійним для перевірки цілісності?
- 3. Наведіть приклади, коли порушення цілісності може призвести до критичних наслідків?
- 4. Як організувати регулярне резервне копіювання в ОС Windows?
- 5. Які недоліки у використанні лише резервних копій без хеш-контролю?

# 5. Форма звіту.

- 1. Титульний аркуш.
- 2. Мета роботи.
- 3. Скріншоти/результати:

обчислення хешів,

архівування і відновлення даних.

4. Таблиця результатів:

| Файл | Алгоритм | Хеш (до змін) | Хеш (після змін) | Висновок |  |
|------|----------|---------------|------------------|----------|--|
|------|----------|---------------|------------------|----------|--|

#### 5. Висновки.

Шаблон таблиці для Лабораторної роботи №2

### хешування

| № | Файл     | Алгоритм<br>хешування | Хеш (до змін) | Хеш (після<br>змін) | Висновок(змінився/не змінився) |
|---|----------|-----------------------|---------------|---------------------|--------------------------------|
| 1 | lab2.txt | MD5                   |               |                     |                                |
| 2 | lab2.txt | SHA-256               |               |                     |                                |
| 3 |          |                       |               |                     |                                |

# резервне копіювання

| No | Операція            | Засіб/Команда         | Результат (скриншот/опис) | Висновок |
|----|---------------------|-----------------------|---------------------------|----------|
| 1  | Архівація<br>папки  | 7-Zip                 |                           |          |
| 2  | Збереження<br>копії | Google Drive /<br>USB |                           |          |
| 3  |                     |                       |                           |          |

### 1. Хід Роботи

### 1.1. Контроль цілісності файлів.

Створив файл (lab2.txt) у папці

D:\teaching\_2025-2026\Osnovu\_Info\_Bezpeki\lab2\_formaniuk.

У командному рядку Windows виконав обчислення хешів за допомогою утиліти **certutil**:

certutil -hashfile lab2.txt MD5 (хеш до змін)

```
D:\teaching_2025-2026\Osnovu_Info_Bezpeki\lab2_formaniuk>certutil -hashfile lab2.txt MD5
MD5 hash of lab2.txt:
98edee057735c2d158258a67e4ac662b
CertUtil: -hashfile command completed successfully.
```

certutil -hashfile lab2.txt SHA256 (хеш до змін)

```
D:\teaching_2025-2026\Osnovu_Info_Bezpeki\lab2_formaniuk>certutil -hashfile lab2.txt SHA256 SHA256 hash of lab2.txt: b71a62727b194fec9ddcabce3c6cd97d365f065dacfd91469516194054b82a4b CertUtil: -hashfile command completed successfully.
```

Вніс зміни до файлу та повторно виконав обчислення хешів.

хеш після змін MD5

```
D:\teaching_2025-2026\Osnovu_Info_Bezpeki\lab2_formaniuk>certutil -hashfile lab2.txt MD5
MD5 hash of lab2.txt:
89614aa0ebb5066a951843efd2e52b98
CertUtil: -hashfile command completed successfully.
```

хеш після змін SHA256

```
D:\teaching_2025-2026\Osnovu_Info_Bezpeki\lab2_formaniuk>certutil -hashfile lab2.txt SHA256
SHA256 hash of lab2.txt:
4447d82880afc2f22b677e86cd5513bc3a50ae72b65828c8676545365002d466
CertUtil: -hashfile command completed successfully.
```

Висновок: отримані результати не співпадають що свідчить: при зміні символів значення хешів змінюється повністю.

### 1.2. Резервне копіювання.

1. Створив папку lab\_backup з кількома текстовими файлами (в які вніс кілька рядків тексту для прикладу)



2. Виконав архівацію використавши програму 7-Zip для архівації папки у форматі ZIP.

Ввівши команду в командний рядок:

"C:\Program Files\7-Zip\7z.exe" a lab\_backup.zip lab\_backup\



3. Зберіг копію папки lab\_backup.zip на (Google Drive)



### 1.3. Відновлення даних.

1. Видалив один із файлів у папці lab backup



### 2. Відновлення даних (файлу).

Виконав відновлення з архіву: відкрив провідник, знайшов lab backup.zip



у папці D:\teaching\_2025-2026\Osnovu\_Info\_Bezpeki\lab2\_formaniuk відкрив архів за допомогою 7-Zір та розархівував у папку lab\_backup видалений файл (text\_lab.txt)



Видалений файл був успішно відновлений.

### 2. Контрольні питання.

# 2.1. Чим відрізняється повне, інкрементальне і диференціальне резервне копіювання?

Повне резервне копіювання - копіюються всі файли кожного разу. Найнадійніше, але займає багато місця.

Інкрементальне резервне копіювання - копіюються тільки ті файли, які були змінені або додані після останнього копіювання. Економить місце, але для відновлення потрібно всі попередні копії.

Диференціальне - копіюються всі зміни після останнього повного копіювання. Займає більше місця ніж інкрементальне, але відновлювати легше.

### 2.2. Чому MD5 вважається ненадійним для перевірки цілісності?

MD5 вважається ненадійним, тому що для нього існують колізії - різні файли можуть мати однакове хеш-значення. Це дозволяє зловмисникам підмінювати дані без виявлення.

# 2.3. Наведіть приклади, коли порушення цілісності може призвести до критичних наслідків?

Пошкодження системних файлів Windows - ОС не завантажується.

Зміна файлів бази даних - втрата або спотворення інформації.

Модифікація файлів програм - запуск шкідливого коду.

Підробка фінансових документів чи звітів - матеріальні збитки.

### 2.4. Як організувати регулярне резервне копіювання в ОС Windows?

Використати вбудований засіб (Резервне копіювання та відновлення (Windows backup)).

Налаштувати розклад через Планувальник завдань, щоб автоматично запускати backup.

Для хмарного зберігання - налаштувати OneDrive / Google Drive

# 2.5. Які недоліки у використанні лише резервних копій без хеш-контролю?

Можна зберегти вже пошкоджені або змінені файли.

Неможливо відрізнити оригінал від модифікованої версії.

Втрачається гарантія цілісності: відновлені дані можуть бути некоректними.

#### 3. Висновок.

У ході лабораторної роботи я ознайомився з методами забезпечення цілісності даних та з базовими підходами до резервного копіювання і відновлення інформації.

Для перевірки цілісності файлів було використано вбудовану утиліту Windows certutil.

Я створив файл lab2.txt.

Оголосив його хеші за алгоритмами MD5 та SHA-256.

Після внесення змін у файл повторно обчислив хеші та порівняв результати. Висновок: при зміні навіть одного символу у файлі значення хешу повністю

змінюється, що підтверджує придатність хеш-функцій для контролю

цілісності.

Для резервного копіювання я створив папку lab\_backup з кількома файлами (osnov lab.txt, prob lab.txt, screen lab.txt, text lab.txt).

За допомогою утиліти 7-Zip (команда у терміналі "С:\Program

Files\7-Zip\7z.exe" a lab\_backup.zip lab\_backup\) я створив apxiв lab\_backup.zip

Для перевірки відновлення даних я видалив один з файлів із папки lab\_backup.

Далі виконав відновлення з архіву розпакувавши файл lab\_backup.zip за

допомогою утиліти 7-Zір та відновив видалений файл.

Файл успішно відновився.

Папка з скріншотами до lab2

https://drive.google.com/drive/u/0/folders/1fJcckGGFtYGt3uvAWaeeSr2dp1tj-28M