$\operatorname{MAT}246$ - Concepts in Abstract Mathematics

Callum Cassidy-Nolan

September 7, 2019

Contents

1	Lecture 1																			9
	1.1 Induction																			9

4 CONTENTS

List of Definitions

1	Definition	(The principle of mathmatical induction)	9
2	Definition	(Extended principle of mathmatical induction)	11

List of Theorems

Chapter 1

Lecture 1

1.1 Induction

Note 1

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

 $\textbf{Definition 1} \ (\text{The principle of mathmatical induction }) \\$

 $suppose\ S\subseteq \mathbb{N}$

If

- $1 \in S$
- $k+1 \in S$ whenever $k \in S$

Then

$$S = \mathbb{N}$$

The principle of mathmatical induction is simply saying if 1 is in S then $2,3,\ldots$ is also in S

Example 1.1.1

Prove

$$\forall n \in \mathbb{N}, 1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof.

Let $S = \{n \in \mathbb{N} : \chi \text{ holds }\}$ At this point we don't know what S consists of but we must

show it is \mathbb{N} , then we can conclude that the formula holds for all natural numbers. We commence by verifying that $1 \in S$, we have

$$1^2 = \frac{1(1+1)(2+1)}{6}$$

both the right hand side and left hand side are equal to eachother, so the formula holds for 1

We will now show if $k \in S$ then $k+1 \in S$. We assume that $k \in S$, that is:

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{k(k+1)(2k+1)}{6}$$

We observe that if we add k + 1 to both sides of the above equation we get the left hand side, of what we want to prove.

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)(k(2k+1) + 6(k+1))}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6}$$

After working out the right hand side it is the original formula with k+1 subbed in. Therefore we have shown that if $k \in S$ then $k+1 \in S$ as wanted, thus by the principle of mathmatical induction

$$S = \mathbb{N}$$

1.1. INDUCTION

Definition 2 (Extended principle of mathmatical induction)

This is the same as normal induction, though now we don't have to start with 1. If

- Let $n_0 \in \mathbb{N}, n_0 \in S$
- $k \in S \implies k+1 \in S$

Then

$$S \supseteq \{n_0, n_0 + 1, \ldots\}$$

Observe that S is only a subset of these numbers as these are the ones that are guarenteed to be in S, there may be others.

Example 1.1.2

Prove for all integers n greater than or equal to 7 that the following holds:

$$n! \ge 3^n \chi$$

Let S be the set of all natural numbers that χ holds for. We verify that $7 \in S$

$$7!_{5040} \ge 3^{7}_{2187}$$

therefore 7 satisfies χ and so $7 \in S$. Let $k \in \mathbb{N}$, we assume χ holds for k, that is

$$k! > 3^k$$

We will prove

$$(k+1)! \ge 3^{k+1}$$

We observe that (k+1)! = (k+1)k!, but recall that we assumed that $k! \geq 3^k$ so we have

$$k!(k+1) \ge 3^k(k+1)$$

Recall that $k \geq 7$

$$\geq 3^k 8$$
$$\geq 3^{k+1}$$

Therefore, we've shown that

$$(k+1)! \ge 3^{k+1}$$

as required, and so

$$S \supseteq \{7, 8, 9, \ldots\}$$