Multiway cut, linear programming and randomized rounding

How do we round?

Partition triangle into three areas: one for (0,0,1) one for (1,0,0) one for (0,1,0)

$$\mathbf{x_{a_2}} = (\mathbf{0}, \mathbf{1}, \mathbf{0})$$

How do we round?

Vertices • go with a1
Vertices • go with a2
a2 Vertices • go with a3
Pay cost of edges across

Good rounding = small cost choice of partition of triangle into three areas

LP relaxation

$\mathbf{d}(\mathbf{u}, \mathbf{v}) = \frac{1}{2} |\mathbf{x}_{\mathbf{u}} - \mathbf{x}_{\mathbf{v}}|_{\mathbf{1}}$

Place vertices in triangle, min lengths of edge projections on sides

How do we round?

$$d(\mathbf{u}, \mathbf{v}) = \frac{1}{2}(|\mathbf{x_1} - \mathbf{y_1}| + |\mathbf{x_2} - \mathbf{y_2}| + |\mathbf{x_3} - \mathbf{y_3}|)$$

= $\frac{1}{2}(d(\mathbf{x}', \mathbf{y}') + d(\mathbf{x}'', \mathbf{y}'') + d(\mathbf{x}''', \mathbf{y}'''))$

Using balls in 11 metric

Pick random r, assign B(a3,r) to a3

Pick random r, assign B(a3,r) to a3

Consider terminals in random order

$$\mathbf{a}_{\sigma(\mathbf{1})}, \mathbf{a}_{\sigma(\mathbf{2})}, \mathbf{a}_{\sigma(\mathbf{3})}$$

Assigning u

if $d(a_{\sigma(1)}, u) < r$ then assign to $a_{\sigma(1)}$ else if $d(a_{\sigma(2)}, u) < r$ then assign to $a_{\sigma(2)}$ else assign to $a_{\sigma(3)}$

 $\mathbf{B}(\mathbf{a}_{\sigma(\mathbf{1})},\mathbf{r})$ $\mathbf{B}(\mathbf{a}_{\sigma(\mathbf{1})},\mathbf{r})$ $\mathbf{a}_{\sigma(\mathbf{3})}$ $\mathbf{a}_{\sigma(\mathbf{3})}$

Full Algorithm for 3-way cut

- Solve relaxation: embed vertices in triangle Pick random permutation of terminals -assign to first terminal a all vertices in B(a,r) where r is random uniform in CO,13 -assign to second terminal ball unassigned vertices in B(b,r)
- -assign to third terminal remaining vertices

Algorithm

$$\mathbf{d}(\mathbf{u}, \mathbf{v}) = \frac{1}{2} |\mathbf{x_u} - \mathbf{x_v}|_1$$

LP relaxation: embed vertices in k-simplex with terminals at corners

random ordering $a_{\sigma(1)}, a_{\sigma(2)}, \cdots, a_{\sigma(k)}$ $r \in [0, 1]$

for i = 1, ..., k - 1:

assign to $a_{\sigma(i)}$ unassigned vertices of $B(a_{\sigma(i)}, r)$ assign rest to $a_{\sigma(k)}$

Multiway cut, linear programming and randomized rounding

