MÉTHODE 1

Pour calculer p(X = k)

SITUATION

Une fois démontré qu'une variable aléatoire X suit une loi binomiale de paramètres n et p, il est parfois demandé de déterminer la probabilité $p\left(X=k\right)$ pour une valeur particulière de k comprise entre 0 et n.

ÉNONCÉ

X est une variable aléatoire suivant la loi binomiale de paramètres 10 et 0,2.

Calculer $p\left(X=2\right)$ (on donnera une valeur approchée au centième).

ETAPE 1

Énoncer la formule

Comme X suit la loi binomiale de paramètres n et p, et que k est un entier compris entre 0 et n, on a :

$$p\left(X=k
ight)=inom{n}{k}p^{k}\left(1-p
ight)^{n-k}$$

APPLICATION

Comme X suit la loi binomiale de paramètres 10 et 0,2, on a :

$$orall k \in \left\{0;1;...;10
ight\}, p\left(X=k
ight) = inom{10}{k}0,\!2^k \left(1-0,\!2
ight)^{10-k}$$

En particulier, pour $\,k=2$, on a :

$$p\left(X=2
ight) = inom{10}{2}0,\!2^2 \left(1-0,\!2
ight)^{10-2}$$

ETAPE 2

Calculer $\binom{n}{k}$

Si k vaut 0, 1, 2 , n-2 , n-1 ou n, on peut calculer ce coefficient binomial à l'aide des formules suivantes :

•
$$\binom{n}{0} = \binom{n}{n} = 1$$

•
$$\binom{n}{1} = \binom{n}{n-1} = n$$

•
$$\binom{n}{2} = \binom{n}{n-2} = \frac{n(n-1)}{2}$$

Si ce n'est pas le cas, on utilise la calculatrice pour déterminer la valeur de ce coefficient.

APPLICATION

D'après la formule du cours, on a :

$$\binom{10}{2} = \frac{10 \times 9}{2} = 45$$

ETAPE 3

Calculer la probabilité

On calcule (éventuellement à l'aide de la calculatrice) la probabilité voulue en remplaçant le coefficient binomial par sa valeur.

APPLICATION

On a donc:

$$p\left(X=2
ight)=45 imes0,2^{2} imes0,8^{8}$$

À l'aide de la calculatrice, on peut conclure :

$$p\left(X=2
ight)pprox0,30$$

MÉTHODE 2

Pour calculer $p(X \leq k)$ ou $p(X \geqslant k)$

SITUATION

Une fois démontré qu'une variable aléatoire X suit une loi binomiale de paramètres n et p, il est parfois demandé de déterminer la probabilité $p\left(X\leqslant k\right)$ ou la probabilité $p\left(X\geqslant k\right)$ pour une valeur particulière de k comprise entre 0 et n.

ÉNONCÉ

X est une variable aléatoire suivant la loi binomiale de paramètres 10 et 0,2.

Déterminer la valeur de la probabilité $p\left(X\leqslant2
ight)$ (on donnera une valeur approchée au centième).

ETAPE 1

Décider si l'on calcule la probabilité demandée ou celle de l'événement contraire

- Au lieu de déterminer la probabilité $p\left(X\leq k
 ight)$, il est parfois plus simple de déterminer la probabilité de l'événement contraire, à savoir $p\left(X>k
 ight)$ soit $p\left(X\geqslant k+1
 ight)$.
- De même, au lieu de déterminer la probabilité $p\left(X\geqslant k\right)$, il est parfois plus simple de déterminer la probabilité de l'événement contraire, à savoir $p\left(X< k\right)$ soit $p\left(X\leqslant k-1\right)$.

On devra alors dans la dernière étape de la méthode utiliser la relation $p\left(X\geqslant k\right)=1-p\left(X\leqslant k-1\right)$, ou la relation $p\left(X\leq k\right)=1-p\left(X\geqslant k+1\right)$, pour conclure.

APPLICATION

L'événement contraire de $[X\leqslant 2]$ est $[X\geqslant 3]$. Ce dernier événement regroupe plus de cas que le premier. On détermine donc directement p $(X\leqslant 2)$.

ETAPE 2

Décomposer la probabilité

On exprime la probabilité demandée en fonction de probabilités de la forme $P\left(X=i
ight)$:

•
$$p\left(X\leqslant k
ight)=\sum_{i=0}^{k}p\left(X=i
ight)$$

•
$$p(X \geqslant k) = \sum_{i=k}^{n} p(X=i)$$

APPLICATION

On a:

$$p\left(X\leqslant 2
ight)=\sum_{i=0}^{2}p\left(X=i
ight)=p\left(X=0
ight)+p\left(X=1
ight)+p\left(X=2
ight)$$

ETAPE 3

Remplacer chaque probabilité par son expression en fonction de *n* et *p*

On remplace chacune des probabilités sous le signe "somme" par son expression en fonction de p et n :

•
$$p\left(X\leqslant k
ight)=\sum_{i=0}^{k}inom{n}{i}p^{i}\left(1-p
ight)^{n-i}$$

•
$$p\left(X\geqslant k
ight)=\sum_{i=k}^{n}inom{n}{i}p^{i}\left(1-p
ight)^{n-i}$$

APPLICATION

Comme \emph{X} suit la loi binomiale de paramètres n=10 et p=0,2 , on a :

$$orall k \in \left\{0;1;...;10
ight\}, p\left(X=k
ight) = inom{10}{k}0, 2^k \left(1-0,2
ight)^{10-k}$$

On obtient alors:

$$p\left(X\leqslant 2
ight)=inom{10}{0}0,2^{0}\left(1-0,2
ight)^{10-0}+inom{10}{1}0,2^{1}\left(1-0,2
ight)^{10-1}+inom{10}{2}0,2^{2}\left(1-0,2
ight)^{10-2}$$

ETAPE 4

Effectuer le calcul

On effectue le calcul demandé, en commençant par la détermination des coefficients binomiaux et en se servant si nécessaire de sa calculatrice.

APPLICATION

D'après les formules du cours, on a :

•
$$\binom{10}{0} = 1$$

•
$$\binom{10}{1} = 10$$

•
$$\binom{10}{2} = \frac{10 \times 9}{2} = 45$$

On obtient donc:

$$p\left(X \leqslant 2
ight) = 1 imes 0.2^{0} \left(1 - 0.2
ight)^{10 - 0} + 10 imes 0.2^{1} \left(1 - 0.2
ight)^{10 - 1} + 45 imes 0.2^{2} \left(1 - 0.2
ight)^{10 - 2}$$

$$p\left(X\leqslant 2
ight)=0.8^{10}+10 imes0.2^{1} imes0.8^{9}+45 imes0.2^{2} imes0.8^{8}$$

À l'aide de la calculatrice, on en déduit :

$$p\left(X\leqslant2
ight)pprox0,68$$