Phys484: Quantum Theory

Yixing Gu

January 18, 2024

1 Deferential Geometry

1.1 Topology and manifold

Definition 1. Given any set X, a **topology** is a pair $(X, \mathcal{S}), \mathcal{S} \subseteq \mathcal{P}(X)$ that satisfies:

- 1. $\emptyset \in \mathcal{S}$
- 2. If $\forall \alpha, S_{\alpha} \in \mathcal{S}$, then $\bigcup_{\alpha} S_{\alpha} \in \mathcal{S}$
- 3. If $S_1, \ldots, S_n \in \mathcal{S}$, then $\bigcap_{i=1}^n S_i \in \mathcal{S}$

Definition 2. Given any set X, and a topology (X, \mathcal{S}) , the elements in \mathcal{S} are called open.

Definition 3. Given any set X, a collection of subsets $\mathcal{B} \subseteq \mathcal{P}(X)$ is said to be a basis of the topology \mathcal{S} if

- 1. $X = \bigcup_{B \in \mathcal{B}}$
- 2. If $B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2$, then $\exists B_x \in \mathcal{B}, x \in B_x \subseteq B_1 \cap B_2$
- 3. \mathcal{S} is the collection of all unions of the elements of \mathcal{B} .

Definition 4. A topology space S is called **2nd countable** if it has a countable basis.

Definition 5. A topology space is **Hausdorff** if $\forall x \neq y \in \mathcal{S}, \exists S_x, S_y \in \mathcal{S}, x \in S_x, y \in S_y, S_x \cap S_y = \emptyset$

Definition 6. If X is a topology space, and $Y \subseteq X$, then the subspace topology on Y is obtained by $U \subseteq Y$ is open if and only if $\exists V \subseteq X$ that is open, and $U = V \cap Y$

Proposition 1.1. If $Y \subseteq X$ with subspace topology, then if X is 2nd countable or Hausdorff, so is Y.

Definition 7. A collection of subsets $C = \{U_{\alpha} \subseteq X\}_{\alpha \in A}$ is called a **cover** for X if $X \subseteq \bigcup_{\alpha \in A} U_{\alpha}$. A cover is called an open cover if every U_{α} is open in the topology of X.

Definition 8. A collection of subsets \mathcal{X} is called **locally finite** if $\forall x \in X, \exists S_x \in \mathcal{S}$ an open neighborhood, such that S_x only intersects with finitely many elements in \mathcal{X} .

Definition 9. Given two sets X, Y, and there corresponding topology S, T, a map $f : X \to Y$ is **continuous** if $\forall T \in T, f^{-1}(T) \in S$. Namely, for any open set in Y, its preimage of f is also open in X.

Definition 10. Given two sets X, Y, and their corresponding topology \mathcal{S}, \mathcal{T} , a continuous map $f: X \to Y$ is a **homeomorphism** if it is invertible, and its inverse function is also continuous.

Remark. A homeomorphism is a map that preserves the topology structure between two sets.

Definition 11. An atlas $\mathcal{A} = \{(U_{\alpha}, \phi_{\alpha})\}_{\alpha}$ is a collection of **local charts** $(U_{\alpha}, \phi_{\alpha})$, where each $\phi_{\alpha} : U_{\alpha} \to \mathbb{R}^n$ is a homeomorphism onto its image $\phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^n$, and that $\bigcup_{\alpha} U_{\alpha} = X$.

Definition 12. A smooth atlas is an atlas such that $\forall (U_{\alpha}, \phi_{\alpha}), (U_{\beta}, \phi_{\beta}) \in \mathcal{A}, \ \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^{n}$ is C^{∞} smooth.

Definition 13. A smooth manifold $M = (\mathcal{S}, \mathcal{A})$ is a 2nd-countable Hausdorff topology with a smooth atlas. The dimension n of the manifold is the dimension of \mathbb{R}^n in the atlas \mathcal{A} .

1.2 Smooth functions and Diffeomorphism

Definition 14. Let M,N be smooth manifolds of dimension m,n, we say a function $F: M \to N$ is **smooth** at point $p \in M$ if and only if there are local charts $(U_{\alpha}, \phi_{\alpha})$ for M and $(V_{\beta}, \psi_{\beta})$ for N, such that:

- 1. $p \in U_{\alpha}$
- 2. $F(p) \in V_{\beta}$
- 3. $U_{\alpha} \cap F^{-1}(V_{\alpha}) \subseteq M$ is open
- 4. The **coordinate representation** $\hat{F} := \psi_{\beta} \circ F \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap F^{-1}(V_{\beta})) \to \mathbb{R}^{m}$ is smooth at $\phi_{\alpha}(p) \in \mathbb{R}^{n}$

Proposition 1.2. If F is continuous, then 3 is always met.

Proposition 1.3. If 4 is met for some coordinate maps, then it is always true for any other coordinate maps. Namely, the smoothness is independent of choices of coordinate maps.

Definition 15. If F is smooth at every $p \in M$, we say that F is a smooth function.

Definition 16. F is a **diffeomorphism** if F is invertible, and that both F, F^{-1} are smooth.

Proposition 1.4. A diffeomorphism is always a homeomorphism.

1.3 Bump functions

Definition 17. Given a function $f: M \to \mathbb{R}$, the support is $Supp(f) := \overline{\{x \in M | f(x) \neq 0\}}$

Definition 18. Let M be a smooth manifold, $\mathcal{X} = \{X_{\alpha}\}$ is an open cover of M. A smooth **partition of unity** is $\{\psi_{\alpha} : M \to \mathbb{R}\}_{\alpha \in A}$, such that:

- 1. $0 \le \psi_{\alpha}(x) \le 1, \forall \alpha \in A, x \in M$
- 2. $\forall \alpha, \operatorname{Supp}(\psi_{\alpha}) \subseteq X_{\alpha}$
- 3. $\{\operatorname{Supp}(\psi_{\alpha})\}_{\alpha\in A}$ is locally finite.
- 4. $\forall x \in M, \sum_{\alpha \in A} \psi_{\alpha}(x) = 1$

Theorem 1.5. A partition of unity always exists for any smooth manifold M and any open cover \mathcal{X} of M.

Proposition 1.6. Bump function

Let $A \subseteq U \subseteq M$, where M is a smooth manifold, A is a closed set, and U is an open set. There exists a smooth map $\psi: M \to \mathbb{R}$, such that

- 1. $\forall x \in M, 0 \le \psi(x) \le 1$
- 2. $\forall x \in A, \psi(x) = 1$
- 3. Supp $(\psi) \subseteq U$

Definition 19. If A is closed, then a function $f: A \to \mathbb{R}^k$ is **smooth** if $\forall x \in A, \exists W_x \subseteq M, F_x: W_x \to \mathbb{R}^k$, such that W_x is open and $x \in W_x$, and $\forall p \in W_x \cap A, F_x(p) = f(p), F_x \in C^{\infty}(W_x)$

Lemma 1.7. Extension Lemma:

Let M be a smooth manifold, and $A \subseteq M$ be a closed subset. Let $f: A \to \mathbb{R}^k$ be smooth, then $\forall U \supseteq A$ be open, $\exists \tilde{f}: M \to \mathbb{R}^k$, such that \tilde{f} is smooth, and $\tilde{f}|_A = f, \operatorname{Supp}(\tilde{f}) \subseteq U$

1.4 Tangent space and derivatives

Definition 20. Let $C^{\infty}(M)$ be the real vector space of smooth functions from $M \to \mathbb{R}$, a **derivation** or **tangent vector** at $p \in M$ is an \mathbb{R} -linear map $D : C^{\infty}(M) \to \mathbb{R}$ satisfying the **Leibniz condition**: $\forall f, g \in C^{\infty}(M), D(fg) = f(p)D(g) + g(p)D(f)$

Definition 21. The tangent space to M at $p \in M$, T_pM , is the set of all tangent vectors at p.

Proposition 1.8. T_pM is a real vector space where $\forall X,Y \in T_pM, c \in \mathbb{R}, f \in C^{\infty}(M), (X+Y)(f) := X(f) + Y(f), (cX)(f) := c \cdot X(f), (-X)(f) := -X(f), 0(f) := 0$

Proposition 1.9. Let $D \in T_pM$, if $\forall x \in M$, f(x) = c is a constant function, then D(f) = 0

Proposition 1.10. If $\exists U \ni p$ be open, and $\forall x \in U, f(x) = 0$, then $\forall D \in T_pM, D(f) = 0$

Proposition 1.11. If $f,g \in C^{\infty}(M)$ and f=g on some open $U \ni p$, then $\forall D \in T_pM, D(f)=D(g)$

Definition 22. For $p, v = (v^1, \dots v^n) \in \mathbb{R}^n$, then the **directional derivative** of $f \in C^{\infty}(\mathbb{R}^n)$ in the direction of v is $D_v(f) := \left(\sum_{i=1}^n v^i \frac{\partial}{\partial x^i}|_p\right)(f) := \sum_{i=1}^n v^i \frac{\partial f}{\partial x^i}(p)$

Proposition 1.12. The directional derivative is a derivation.

Proposition 1.13. $\forall p \in \mathbb{R}^n$, the map $L : \mathbb{R}^n \to T_p \mathbb{R}^n$, where $L(v) := D_v$ is a vector space isomorphism.

Corollary 1.14. $\{\partial_1|_p,\ldots,\partial_n|_p\}$ is a basis for $T_p\mathbb{R}^n$.

Definition 23. Given a smooth function $F: M \to N$, the **differential** or **derivative** of F at $p \in M$ is the map $dF_p: T_pM \to T_{F(p)}N$, given by $\forall D \in T_pM, f \in C^{\infty}(N), dF_p(D)(f) := D(f \circ F)$

Remark. One can check that $dF_p(D) \in T_{F(p)}N$ for any $D \in T_pM$, and that $f \circ F \in C^{\infty}(M)$, so the derivative of F above is well-defined.

Proposition 1.15. Let M, N, R be smooth manifolds and $F: M \to N, G: N \to R$ are smooth maps, then for any $p \in M$, we have:

- 1. $dF_p: T_pM \to T_{F(p)}N$ is linear
- 2. $d(G \circ F)_p = dG_{F(p)} \circ dF_p : T_pM \to T_{G(F(p))}R$
- 3. $d(Id_M)_p: T_pM \to T_pM$ is an identity isomorphism.
- 4. If F is a diffeomorphism, then dF_p is an isomorphism, and $(dF_p)^{-1} = d(F^{-1})_{F(p)}$

Proposition 1.16. Let M be a smooth manifold, $U \subseteq M$ be open, and $i: U \to M$ be the inclusion map, then $\forall p \in U, di_p: T_pU \to T_pM$ is an isomorphism.

Corollary 1.17. Let M be a n-dimensional smooth manifold, for any $p \in M$, and any local chart (U, ϕ) containing p, we have $T_pM \cong T_pU \cong T_{\phi(p)}\phi(U) \cong T_{\phi(p)}\mathbb{R}^n \cong \mathbb{R}^n$, and the n-dimensional vector space T_pM has a basis of $\{\Upsilon_j|_p := \partial_j|_p := \frac{\partial}{\partial x^j}|_p := (di_p \circ (d\phi_p)^{-1})(\frac{\partial}{\partial x^j}|_{\phi(p)}) = (di_p \circ (d\phi_p)^{-1})(\partial_j|_{\phi(p)})\}_j$.

Proposition 1.18. Given $f \in C^{\infty}(M)$, $\Upsilon_j|_p(f) = \frac{\partial (f \circ \phi^{-1})}{\partial x^j}(\phi(p))$

Proof.

$$\Upsilon_{j|p}(f) = (di_{p} \circ (d\phi_{p})^{-1})(\partial_{j}|_{\phi(p)})(f)$$

$$= (d\phi_{p})^{-1}(\partial_{j}|_{\phi(p)})(f \circ \mathbf{i})$$

$$= d(\phi^{-1})_{\phi(p)}(\partial_{j}|_{\phi(p)})(f \circ \mathbf{i})$$

$$= (\partial_{j}|_{\phi(p)})(f \circ \mathbf{i} \circ \phi^{-1})(\phi(p))$$

$$= \frac{\partial (f \circ \phi^{-1})}{\partial x^{j}}(\phi(p))$$

Corollary 1.19. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, then

$$\Upsilon_j|_p(x^i) = \frac{\partial x^i}{\partial x^j}(p) = \frac{\partial (x^i \circ \phi^{-1})}{\partial x^j}(\phi(p)) = \delta^i_j$$

Theorem 1.20. Let $F: M \to N$ be smooth, (U, ϕ) and (V, ψ) be local charts for M and N, such that $p \in U, F(p) \in V$, if we choose the basis $\{\Upsilon_j|_p\}_j$, $\{\Upsilon_i|_{F(p)}\}_i$ associated to (U, ϕ) and (V, ψ) , we have that $[dF_p]_{ij} = \frac{\partial \hat{F}^i}{\partial x^j}(\phi(p))$. Namely, $dF_p(\Upsilon_j|_p) = \sum_{i=1}^{\dim(M)} \frac{\partial \hat{F}^i}{\partial x^j}(\phi(p))\Upsilon_i|_{F(p)} \in T_{F(p)}N$, where $\hat{F} = \psi \circ F \circ \phi^{-1}$ is the coordinate representation of F.

Definition 24. The tangent bundle $TM := \bigsqcup_{p \in M} T_p M$.

Proposition 1.21. If M is a n-dimension smooth manifold, then TM is a 2n-dimension smooth manifold.

1.5 Vector field

Definition 25. A vector field is a smooth function $\mathbf{v}: M \to TM$, such that $\forall p, \mathbf{v}_p := \mathbf{v}(p) \in T_pM$

Definition 26. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, then we can always write $\mathbf{v}_p = \sum_{i=1}^n \mathbf{v}^i(p) \Upsilon_i|_p$, since $\{\Upsilon_i|_p = \frac{\partial}{\partial x^i}|_p\}$ is a basis for T_pM . The functions $\mathbf{v}^i : M \to \mathbb{R}$ are called the **component functions**.

Definition 27. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, the **partial derivatives** $\Upsilon_i = \partial_i : U \to TM$ is given by $\Upsilon_i(p) = \Upsilon_i|_p$, where $\{\Upsilon_i|_p = \frac{\partial}{\partial x^i}|_p\}$ is a basis for T_pM associated to $(U, \phi = (x^1, ..., x^n))$. One can check that $\Upsilon_i \in \mathfrak{X}(M)$

Proposition 1.22. Given $p \in M$, $\mathbf{u} \in T_pM$, and some open $U \subseteq M$ that contains p, there is a vector field \mathbf{v} on M, such that $\mathbf{v}|_p = \mathbf{u}$, and $\operatorname{Supp}(\mathbf{v}) \subseteq U$.

Definition 28. $\mathfrak{X}(M)$ is the set of all vector fields.

Proposition 1.23. $\mathfrak{X}(M)$ is a real vector space.

Definition 29. Given a smooth function $f \in C^{\infty}(M)$, and a vector field $\mathbf{v} \in \mathfrak{X}(M)$, we define $f\mathbf{v} := f \cdot \mathbf{v} \in \mathfrak{X}(M)$ to be $(f\mathbf{v})(p) := f(p)\mathbf{v}_p \in T_pM$

Proposition 1.24. The above definition of $\cdot: C^{\infty}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ gives a $C^{\infty}(M)$ -module of the vector fields.

Corollary 1.25. We can thus write any vector field $\mathbf{v} \in \mathfrak{X}(M)$ as $\sum_{i=1}^{n} \mathbf{v}^{i} \Upsilon_{i}$

Theorem 1.26. Canonical form of vector field

Let $\mathbf{v} \in \mathfrak{X}(M)$, and $V_p \neq 0$ for some $p \in M$, then there is a coordinate chart $(U, \phi = (x^1, \dots, x^n))$ for M, such that $p \in U$, $\mathbf{v}|_U = \frac{\partial}{\partial x^1} = \Upsilon_1$

Definition 30. Given a smooth function $f \in C^{\infty}(M)$, and a vector field $\mathbf{v} \in \mathfrak{X}(M)$, we define $\mathbf{v}(f) \in C^{\infty}(M)$ to be $\mathbf{v}(f)(p) := \mathbf{v}_p(f) \in \mathbb{R}$. Thus we can view a vector field \mathbf{v} as a function $C^{\infty}(M) \to C^{\infty}(M)$ as well.

1.6 Lie Bracket

Definition 31. Given two vector fields $\mathbf{v}, \mathbf{w} \in \mathfrak{X}(M)$, the **Lie Bracket** is $[\mathbf{v}, \mathbf{w}] := \mathbf{v} \circ \mathbf{w} - \mathbf{w} \circ \mathbf{v}$

Proposition 1.27. $[v, w] \in \mathfrak{X}(M)$ is a vector field.

Proposition 1.28. [v, w] is bilinear.

Proposition 1.29. [v, w] = -[w, v] is anti-symmetric

Proposition 1.30. [v, w] satisfies the Jacobian Identity: [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0

Proposition 1.31. For any $f, g \in C^{\infty}(M)$, $v, u \in \mathfrak{X}(M)$, we have [fv, gu] = fg[v, u] + f(vg)u - g(uf)v

Proposition 1.32. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, then for any two vector fields $\mathbf{v} = \sum_{i=1}^n \mathbf{v}^i \Upsilon_i, \mathbf{u} = \sum_{i=1}^n \mathbf{u}^j \Upsilon_j \in \mathfrak{X}(M)$, we have $[\mathbf{u}, \mathbf{v}] = \sum_{i=1}^n \left(\mathbf{v} \mathbf{u}^j - \mathbf{u} \mathbf{v}^j\right) \Upsilon_j$

1.7 Curve and Flow

Definition 32. Let $J \subseteq \mathbb{R}$ be open, a smooth map $\gamma : J \to M$ is called a **smooth curve** in M. Given $t_0 \in J$, let $\frac{d}{dt}|_{t_0}$ be the coordinate basis in $T_{t_0}J \cong T_{t_0}\mathbb{R}$. The **velocity** of γ at t_0 is $\gamma'(t_0) := d\gamma_{t_0}(\frac{d}{dt}|_{t_0}) \in T_{\gamma(t_0)}\mathbb{R}^n$

Proposition 1.33. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, and a curve $\gamma : J \to M$. If we let $\phi \circ \gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$, then we have $\gamma'(t_0) = d\gamma_{t_0}(\frac{d}{dt}|_{t_0}) = \sum_{i=1}^n \dot{\gamma}^i(t_0) \Upsilon_i|_{\gamma(t_0)} \in T_{\gamma(t_0)}M$

Definition 33. Let $\mathbf{v} \in \mathfrak{X}(M)$, an **integral curve** of \mathbf{v} is a curve $\gamma : J \to M$ such that $\forall t \in J, \gamma'(t) = \mathbf{v}_t$. If $0 \in J$, then $\gamma(0)$ is called the **starting point** of γ

Proposition 1.34. An integral curve should satisfy $\forall t \in J$, $\sum_{i=1}^{n} \dot{\gamma}^{i}(t) \Upsilon_{i}|_{\gamma(t_{0})} = \gamma'(t) = \mathbf{v}_{t} = \sum_{i=1}^{n} \mathbf{v}^{i}(\gamma(t)) \Upsilon_{i}|_{\gamma(t_{0})}$, thus $\forall i, \dot{\gamma}^{i}(t) = v^{i} \circ \phi^{-1}(\gamma^{1}(t), \dots, \gamma^{n}(t))$ gives an ODE.

Proposition 1.35. $\forall v \in \mathfrak{X}(M), p \in M, \exists \epsilon > 0, \gamma : (-\epsilon, \epsilon) \to M \text{ that is an integral curve of } v \text{ with starting point } p.$

Definition 34. A smooth global flow on M is a smooth map $\Theta : \mathbb{R} \times M \to M$, such that $\forall s, t \in \mathbb{R}, p \in M, \Theta(0, p) = p, \Theta(t, \Theta(s, p)) = \Theta(t + s, p)$

Remark. A global flow can be thought of as a table to show where something should be after t time and starting from p.

Definition 35. For $p \in M$, we have $\Theta^{(p)} : \mathbb{R} \to M$ is a curve given by $\Theta^{(p)}(t) := \Theta(t,p)$

Definition 36. For $t \in \mathbb{R}$, we have $\Theta_t : \mathbb{R} \to M$ is a smooth map given by $\Theta_t(p) := \Theta(t,p)$

Proposition 1.36. Given a global flow $\Theta : \mathbb{R} \times M \to M$, we define $\mathbf{v} : M \to TM$ by $\mathbf{v}_p := {\Theta^{(p)}}'(0) \in T_pM$, then $\mathbf{v} \in \mathfrak{X}(M)$ is a vector field, and $\Theta^{(p)}$ is an integral curve for \mathbf{v} .

Definition 37. The $\mathbf{v} \in \mathfrak{X}(M)$ in the above proposition is called **infinitesimal generator** for the flow Θ .

Remark. The infinitesimal generator tells us how should something move at every point in M.

Definition 38. Let $D \subseteq \mathbb{R} \times M$ be open, such that $\forall p \in M, D^{(p)} := \{t \in \mathbb{R} | (t, p) \in D\}$ is an open interval containing 0. A **local flow** on M is a smooth map $\Theta : D \to M$, such that $\forall p \in M, s \in D^{(p)}, t \in D^{(\Theta(s,p))}$, s.t. $t+s \in D^{(p)}, \Theta(0,p) = p, \Theta(t,\Theta(s,p)) = \Theta(t+s,p)$

Definition 39. $\Theta^{(p)}: D^{(p)} \to M$ is a curve given by $\Theta^{(p)}(t) := \Theta(t, p)$. And for $t \in \mathbb{R}, M_t := \{p \in M | (t, p) \in D\}$, then $\Theta_t : M_t \to M$ is a smooth map given by $\Theta_t(p) := \Theta(t, p)$

Proposition 1.37. A local flow also has an infinitesimal generator as before.

Definition 40. An integral curve is **maximal** if it cannot be extended to an integral curve with a greater domain. A local flow is **maximal** if it cannot be extended to a local flow with a greater domain D.

Theorem 1.38. Fundamental theorem of flows:

For any $\mathbf{v} \in \mathfrak{X}(M)$, there is a unique maximal local flow $\Theta : D \to M$, such that \mathbf{v} is the generator of Θ . Moreover,

- 1. $\forall p \in M, \, \Theta^{(p)} : D^{(p)} \to M$ is the unique maximal integral curve of v starting at p.
- 2. If $s \in D^{(p)}$, then $D^{(\Theta(s,p))} = D^{(p)} s := \{t s : t \in D^{(p)}\}$
- 3. $\forall t \in \mathbb{R}, M_t \text{ is an open subset of } M, \text{ and } \Theta_t : M_t \to M_{-t} \text{ is a diffeomorphism with its inverse } \Theta_t^{-1} = \Theta_{-t}$

1.8 One-form and Co-vector fields

Definition 41. Let V be a vector space, a **co-vector** on V is a linear map $f: V \to \mathbb{R}$. The set of all co-vectors is called the **dual space** V^* .

Definition 42. A contraction $\langle \cdot, \cdot \rangle : V^* \times V \to \mathbb{R}$ is the evaluation $\langle f, v \rangle := f(v)$

Proposition 1.39. Given a basis $\{E_1, \ldots, E_n\}$ for a finite-dimensional V, let $E^1, \ldots, E^n \in V^*$ be defined by $\langle E^i, E_j \rangle := E^i(E_j) = \delta_{ij}$, then $\{E^i\}$ is a basis for V^* , called the **dual basis**.

Definition 43. Let V, W be vector spaces, $A: V \to W$ be a linear map. The **dual map** $A^*: W^* \to V^*$ is defined by $\forall f \in W^*, v \in V, \langle A^*(f), v \rangle = A^*(f)(v) := f(A(v)) = \langle f, A(v) \rangle$

Proposition 1.40. If $B: V \to W, A: W \to U$ are linear maps, then $(A \circ B)^* = B^* \circ A^*$

Proposition 1.41. $(Id_V)^*$ is the identity map for V^*

Proposition 1.42. If $A: V \to W$ is an isomorphism, then $(A^*)^{-1} = (A^{-1})^*$

Proposition 1.43. Let V and W be finite-dimensional vector spaces of dimensions n and m, $A: V \to W$ be a linear map, and [A] is the matrix with respect to basis $\{v_i\}_1^n, \{w_j\}_1^m$ for V, W, then $[A^*] = [A]^{\dagger}$

Definition 44. Let T_pM be the tangent space to M at p, then the **cotangent space** to M at p is the dual space of T_pM , denoted by T_p^*M . The elements in T_p^*M are called **co-vectors**.

Definition 45. $T^*M := \bigsqcup_{p \in M} T_p^*M$ is called the **cotangent bundle**.

Proposition 1.44. If M is an n-dimensional smooth manifold, then T^*M is a 2n-dimensional smooth manifold.

Definition 46. A **one-form** or **co-vector field** is a smooth map $\omega: M \to T^*M$ such that $\forall p \in M, \omega_p := \omega(p) \in T_p^*M$

Definition 47. $\mathfrak{X}^*(M)$ is the set of all one-forms on M.

Proposition 1.45. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, we have that for each $p \in U, \{\Upsilon_1|_p, \dots, \Upsilon_n|_p\}$ is a basis for T_pM , the dual basis for T_p^*M is $\{\Upsilon^1|_p, \dots, \Upsilon^n|_p\}$, such that $\langle\Upsilon^i, \Upsilon_j\rangle = \delta_{ij}$. Thus $\forall \omega_p \in T_p^*M, \omega = \sum_{i=1}^n \omega_i(p)\Upsilon^i|_p$ uniquely. And $\omega_i(p)$ can be get by $\omega_i(p) = \langle \omega, \Upsilon_i \rangle$

Definition 48. The coordinate co-vector field is the map $\Upsilon^i: U \to T^*M$ by $\Upsilon^i(p) := \Upsilon^i|_p$. One can check that $\Upsilon^i \in \mathfrak{X}^*(M)$ is a co-vector field.

Definition 49. Given a smooth function $f \in C^{\infty}(M)$, and a co-vector field $\omega \in \mathfrak{X}^*(M)$, we define $f\omega := f \cdot \omega \in \mathfrak{X}^*(M)$ to be $(f\omega)(p) := f(p)\omega_p \in T_p^*M$

Proposition 1.46. The above definition of $: C^{\infty}(M) \times \mathfrak{X}^{*}(M) \to \mathfrak{X}^{*}(M)$ gives a $C^{\infty}(M)$ -module of the co-vector fields.

Corollary 1.47. We can thus write any co-vector field $\omega \in \mathfrak{X}^*(M)$ as $\sum_{i=1}^n \omega_i \Upsilon^i$

Definition 50. Given any $\omega \in \mathfrak{X}^*(M)$, $\mathbf{v} \in \mathfrak{X}(M)$, we can define $\langle \omega, \mathbf{v} \rangle := \omega(\mathbf{v}) : M \to \mathbb{R}$ by $\langle \omega, \mathbf{v} \rangle (p) := \langle \omega_p, \mathbf{v}_p \rangle$.

Proposition 1.48. Given any $\omega = \sum_{i=1}^n \omega_i \Upsilon^i \in \mathfrak{X}^*(M)$, $\mathbf{v} = \sum_{i=1}^n \mathbf{v}^i \Upsilon_i \in \mathfrak{X}(M)$, $\langle \omega, \mathbf{v} \rangle = \sum_{i=1}^n \omega_i \mathbf{v}^i$

Definition 51. Let $f \in C^{\infty}(M)$, the **differential** of f is $df \in \mathfrak{X}^*(M)$, such that $\forall p \in M, D \in T_pM, (df)_p(D) := Df \in \mathbb{R}$. Thus we have a function $d : C^{\infty}(M) \to \mathfrak{X}^*(M)$

Proposition 1.49. Given a vector field \mathbf{v} , we have $\langle df, \mathbf{v} \rangle|_p = \langle df_p, \mathbf{v}_p \rangle = \mathbf{v}_p(f)$

Proposition 1.50. Notice that $T_{f(p)}\mathbb{R} \cong \mathbb{R}$, and if we identify them canonically, we have that $(df)_p \in T_p^*M$: $T_pM \to \mathbb{R} \cong df_p : T_pM \to T_{f(p)}\mathbb{R}$. Namely, $\forall D \in T_pM, df_p(D) = (df)_p(D) \frac{d}{dt}|_{f(p)} \in T_{f(p)}\mathbb{R}$

Proposition 1.51. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, then for any $f \in C^{\infty}(M)$, we have $df|_{U} = \sum_{i=1}^{n} \Upsilon_{i}(f)\Upsilon^{i}$

Corollary 1.52. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, we have $d(x^j)|_U = \sum_{i=1}^n \Upsilon_i(x^j)\Upsilon^i = \sum_{i=1}^n \delta_{ij}\Upsilon^i = \Upsilon^j$. Thus we can write Υ^j as dx^j , and Υ_j as $\frac{\partial}{\partial x^j}$ or ∂_j .

Corollary 1.53. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, then for any $f \in C^{\infty}(M)$, we have

$$df|_{U} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i} = (\partial_{i} f) dx^{i}$$

Definition 52. Let $F: M \to N$ be a smooth map, the **cotangent map** of F is $dF_p^*: T_{F(p)}^*N \to T_p^*M$, which is the dual map of $dF_p: T_pM \to T_{F(p)}N$

Proposition 1.54. Given any $\omega_{F(p)} \in T_{F(p)}^*N$, $v_p \in T_pM$, we have $\langle dF_p^*(\omega_{F(p)}), v_p \rangle = \langle \omega_{F(p)}, dF_p(v_p) \rangle$

1.9 Tensors

Definition 53. Let V be a n-dimensional vector space, then $T^k(V^*) := V^* \otimes V^* \otimes \cdots \otimes V^* = (V^*)^{\otimes k}$ is a vector space of dimension n^k . An element in $T^k(V^*)$ is called a **covariant k-tensor** on V.

Definition 54. More generally, a (r,s) tensor, or a **r-variant-s-covariant-tensor** is an element from $(V)^{\otimes r} \otimes (V^*)^{\otimes s}$.

Proposition 1.55. Let V be n-dimensional vector space, and $\{E_1, \ldots, E_n\}$ be a basis for V, then $\{E^{i_1} \otimes \cdots \otimes E^{i_k}\}_{(i_1, \ldots, i_k) \in [n]}$ is a basis for $T^k(V^*)$, thus any $\alpha \in T^k(V^*)$ can be uniquely written as $\sum_{(i_1, \ldots, i_k) \in [n]^k} \alpha_{i_1, \ldots, i_k} E^{i_1} \otimes \cdots \otimes E^{i_k}$

Definition 55. We can thus view $\alpha \in T^k(V^*)$ as a function $V^k \to \mathbb{R}$ defined by $\alpha(v_1, \ldots, v_n) := \sum_{(i_1, \ldots, i_k) \in [n]^k} \alpha_{i_1, \ldots, i_k} E^{i_1}(v_1) \cdots E^{i_k}(v_k) = \alpha_{i_1, \ldots, i_k} \left\langle E^{i_1}, v_1 \right\rangle \cdots \left\langle E^{i_k}, v_k \right\rangle$

Definition 56. More generally, a (r, s) tensor $\mathcal{T} = \sum_{\substack{(i_1, \dots, i_r, j_1, \dots, j_s) \in [n]^{r+s}}} \mathcal{T}^{i_1, \dots, i_r}_{j_1, \dots, j_s} E_{i_1} \otimes \dots \otimes E_{i_r} \otimes E^{j_1} \otimes \dots \otimes E^{j_s}$ can be viewed as a map $(V^*)^r \times V^s \to \mathbb{R}$ defined by

$$\mathcal{T}(\omega^{1},\ldots,\omega^{r},v_{1},\ldots,v_{s}) := \sum_{\substack{(i_{1},\ldots,i_{r},j_{1},\ldots,j_{s}) \in [n]^{r+s}}} \mathcal{T}_{j_{1},\ldots,j_{s}}^{i_{1},\ldots,i_{r}} \omega^{1}(E_{i_{1}}) \cdots \omega^{r}(E_{i_{r}}) E^{j_{1}}(v_{1}) \cdots E^{j_{s}}(v_{s})$$

$$= \mathcal{T}_{j_{1},\ldots,j_{s}}^{i_{1},\ldots,i_{r}} \left\langle \omega^{1}, E_{i_{1}} \right\rangle \cdots \left\langle \omega^{r}, E_{i_{r}} \right\rangle \left\langle E^{j_{1}}, v_{1} \right\rangle \cdots \left\langle E^{j_{s}}, v_{s} \right\rangle$$

Proposition 1.56. The map defined by the tensors is multi-linear.

Example 1.9.1. A vector is a (1,0) tensor.

Example 1.9.2. A co-vector is a (0,1) tensor.

Example 1.9.3. A real inner product is a (0,2) tensor.

Example 1.9.4. The determinant of a $n \times n$ real matrix is a (0,n) tensor as a function on the column/row vectors.

1.10 Alternating Tensor and wedge product

Definition 57. A covariant k-tensor is **symmetric** if $\forall 1 \leq i < j \leq k, v_1, \ldots, v_k \in V$, $\alpha(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = \alpha(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k)$. It is **alternating** or **anti-symmetric** if $\alpha(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = -\alpha(v_1, \ldots, v_j, \ldots, v_k)$

Definition 58. The set of alternating covariant k-tensors is $\Lambda^k(V^*) \subseteq T^k(V^*)$

Definition 59. The **permutation group** S_k is the set of all permutations of $[k] := \{1, \ldots, k\}$

Definition 60. Given a permutation $\sigma \in S_k$, sign of it is $Sgn(\sigma) := \begin{cases} 1 & \text{permutation is got by even transposition} \\ -1 & \text{permutation is got by odd transposition} \end{cases}$

Definition 61. Given a tensor $\alpha \in T^k(V^*)$, the **alternation** of it is $Alt(\alpha) \in T^k(V^*)$, defined by $Alt(\alpha)(v_1,\ldots,v_k) := \frac{1}{k!} \sum_{\sigma \in S_k} sgn(\sigma)\alpha(v_{\sigma(1)},\ldots,v_{\sigma(k)})$

Proposition 1.57. $\forall \alpha \in T^k(V^*), Alt(\alpha) \in \Lambda^k(V^*)$

Proposition 1.58. $\forall \alpha \in \Lambda^k(V^*), Alt(\alpha) = \alpha$

Definition 62. An ordered k-tuple $I = (i_1, \dots, i_k) \in [n]^k$ is called a multi-index of length k.

Definition 63. Let $\{E^1,\ldots,E^n\}$ be a dual basis for V^* , and $I=(i_1,\ldots,i_k)\in[n]^k$, then we define the

elementary alternating tensor $E^I \in \Lambda^k(V^*)$ by $E^I(v_1, \dots, v_k) := \det \begin{pmatrix} E^{i_1}(v_1) & \dots & E^{i_1}(v_k) \\ \vdots & \ddots & \vdots \\ E^{i_k}(v_1) & \dots & E^{i_k}(v_k) \end{pmatrix}$

Definition 64. Let $I = (i_1, ..., i_k), J = (j_1, ..., j_k) \in [n]^k$, then $\delta_J^I := \det \begin{pmatrix} \delta_{j_1}^{i_1} & ... & \delta_{j_k}^{i_1} \\ \vdots & \ddots & \vdots \\ \delta_{j_1}^{i_k} & ... & \delta_{j_k}^{i_k} \end{pmatrix}$

 $\textbf{Proposition 1.59.} \ \, \delta_J^I = \begin{cases} 0 & \textit{if I or J have repeated indices, or I is not any permutation of J} \\ 1 & \textit{if I is an even permutation of J} \\ -1 & \textit{if I is an odd permutation of J} \end{cases}$

Proposition 1.60. If $I = (i_1, ..., i_k)$ have any repeated indices, i.e. $\exists 1 \leq l \neq m \leq k, i_l = i_m$, then $E^I = 0$

Proposition 1.61. If $J = (i_{\sigma(1)}, \dots, i_{\sigma(k)})$, then $E^J = sgn(\sigma)E^I$

Proposition 1.62. Let $I = (i_1, ..., i_k), J = (j_1, ..., j_k) \in [n]^k$, then $E^I(E_{j_1}, ..., E_{j_k}) = \delta^I_J$

Definition 65. $I = (i_1, \dots, i_k) \in [n]^k$ is increasing if $i_1 < i_2 < \dots < i_k$

Proposition 1.63. Let dim $(V) = n, k \in \mathbb{N}^+$, if K > n, then $\Lambda^k(V^*) = \{0\}$, otherwise dim $(\Lambda^k(V^*)) = \binom{n}{k}$, and a basis is given by $\mathcal{E}^k := \{E^I | I \text{ is increasing multi-index of length } k\}$

Definition 66. The wedge product of two covariant tensors u, v is defined to be $u \wedge v := u \otimes v - v \otimes u$

Proposition 1.64. $\forall s, s \land s = 0$

Proposition 1.65. For u_1, \ldots, u_k , we have $u_1 \wedge \cdots \wedge u_k = k! Alt(u_1 \otimes \cdots \otimes u_k) = \sum_{\sigma \in S_k} sgn(\sigma)v_{\sigma(1)}, \ldots, v_{\sigma(k)}$

Proposition 1.66. $E^I = E^{i_1} \wedge \cdots \wedge E^{i_k}$

Proposition 1.67. Let $I, J \in [n]^k$ be both increasing, then $E^I \wedge E^J = (-1)^{|I| \cdot |J|} E^J \wedge E^I$

1.11 Tensor fields or k-form

Definition 67. The bundle of all covariant k-tensors on M is $T^kT^*M := \bigsqcup_{n \in M} T^K(T_n^*M)$

Proposition 1.68. T^kT^*M is a smooth manifold of dimension n^{k+1}

Definition 68. Given a smooth manifold M, a **covariant k-tensor field on M** or a **k-form** is a smooth map $A: M \to T^k T^* M$, s.t. $A_p := A(p) \in T^K(T_p^* M)$. The set of all k-forms is $\Gamma(T^K T_p^* M)$

Proposition 1.69. $\Gamma(T^KT_p^*M)$ is an infinite dimensional vector space.

Proposition 1.70. Let $(U, \phi = (x^1, ..., x^n))$ be a coordinate chart for M, then for covariant k-tensor field $A \in \Gamma(T^K T_p^* M)$, it can be written as $A|_U = \sum_{(i_1, ..., i_k) \in [n]^k} A_{i_1, ..., i_k} dx^{i_1} \otimes \cdots \otimes dx^{i_k}$

Definition 69. An alternating covariant k-tensor field or alternating k-form on M is a smooth map $A: M \to \bigsqcup_{p \in M} \Lambda^k(T_p^*M)$ such that $\forall p \in M, A_p := A(p) \in \Lambda^k(T_p^*M)$. The set of all alternating k-forms on M is $\Omega^k(M)$

Definition 70. $\Omega^0(M) := c^{\infty}(M)$

Definition 71. $\wedge: \Omega^k(M) \times \Omega^l(M) \to \Omega^{k+l}(M)$ is defined to be $(\zeta \wedge \eta)_p := \zeta_p \wedge \eta_p$, where $\zeta_p \in \Lambda^k(T_p^*M), \eta_p \in \Lambda^l(T_p^*M)$. For $k = 0, f \in C^{\infty}(M), f \wedge \eta := f\eta$

Proposition 1.71. $\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M)$ is an anti-commutative algebra.

Proposition 1.72. Let $(U, \phi = (x^1, \dots, x^n))$ be a coordinate chart for M, then for an alternating covariant k-tensor field $\omega \in \Omega^k(M)$, it can be written as $\omega|_U = \sum_{(i_1 < \dots < i_k) \in [n]^k} \omega_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$, where $\omega_{i_1,\dots,i_k} = \omega(\partial_{i_1},\dots,\partial_{i_k})$, and $dx^{i_1} \wedge \dots \wedge dx^{i_k}(\partial_{j_1},\dots,\partial_{j_k}) = \delta^I_J$

1.12 Push-forward and Pull-back

Definition 72. For $f \in \Omega^0(N) = C^\infty(N)$, we have the **pull-back** of f by a smooth map $F : M \to N$ is $F^*f = f \circ F \in C^\infty(M)$.

Remark. Notice that the definition of pull-back between smooth function spaces coincides with the definition of dual maps for linear function spaces.

Definition 73. Let M, N be smooth manifolds and $F: M \to N$ be a smooth function, then two vector fields $\mathbf{v} \in \mathfrak{X}(M)$, $\mathbf{u} \in \mathfrak{X}(N)$ are **F-related** if $\forall p \in M, dF_p(\mathbf{v}_p) = \mathbf{u}_{F(p)}$

Proposition 1.73. If $F: M \to N$ is a diffeomorphism, for every vector field $\mathbf{v} \in \mathfrak{X}(M)$, there is a unique vector field $F_*\mathbf{v} \in \mathfrak{X}(N)$ that is F-related to \mathbf{v} .

Definition 74. The **push-forward** of a vector field $\mathbf{v} \in \mathfrak{X}(M)$ by a diffeomorphism $F: M \to N$ is the unique vector field $F_*\mathbf{v} \in \mathfrak{X}(N)$ in the previous proposition, defined by $\forall q \in N, F_*\mathbf{v}_q := dF_{F^{-1}(q)}(\mathbf{v}_{F^{-1}(q)})$

Proposition 1.74. For any diffeomorphism $F: M \to N$, vector field $\mathbf{v} \in \mathfrak{X}(N)$, $f \in c^{\infty}(N)$, we always have $\mathbf{v}(F^*f) = \mathbf{v}(f \circ F) = ((F_*\mathbf{v})f) \circ F \in C^{\infty}(M)$

Definition 75. Given a smooth map $F: M \to N$, and a co-vector field $\omega \in \mathfrak{X}(N)$, the **pull-back of a 1-form** ω by F is $F^*\omega \in \mathfrak{X}^*(M)$ defined by $(F^*\omega)_p := dF_p^*(\omega_{F(p)}) \in T_p^*M$

Proposition 1.75. Consider any $D \in T_pM$, $(F^*\omega)_p(D) = \langle dF_p^*(\omega_{F(p)}), D \rangle = \langle \omega_{F(p)}, dF_p(D) \rangle$

Proposition 1.76. For any smooth $F: M \to N$, co-vector field $\omega \in \mathfrak{X}^*(N), u \in c^{\infty}(N), v \in \mathfrak{X}(M), p \in M$,

- 1. $\langle F^*\omega, \boldsymbol{v} \rangle|_p = \langle \omega, F_*\boldsymbol{v} \rangle|_{F(p)}$
- 2. $F^*uF^*\omega = (u \circ F)F^*\omega = F^*(u\omega) \in \mathfrak{X}^*(M)$
- 3. $F^*(du) = d(u \circ F) = d(F^*u) \in \mathfrak{X}^*(M)$

$$Proof. \qquad 1. \ \langle F^*\omega, \mathbf{v} \rangle \mid_p = \langle F^*\omega_p, \mathbf{v}_p \rangle = \langle dF_p^*(\omega_{F(p)}), \mathbf{v}_p \rangle = \langle \omega_{F(p)}, dF_p(\mathbf{v}_p) \rangle = \langle \omega_{F(p)}, F_*\mathbf{v}_{F(p)} \rangle = \langle \omega, F_*\mathbf{v} \rangle \mid_{F(p)} \rangle$$

Definition 76. Given a smooth map $F: M \to N, p \in M, \alpha \in T^k(T^*_{F(p)}N)$, the **pull-back of a covariant k-tensor** α by F at p is $dF_p^*(\alpha) \in T^k(T_p^*M)$, defined by $dF_p^*(\alpha)(v_1, \ldots, v_k) = \alpha(dF_p(v_1), \ldots, dF_p(v_k)) \in C^{\infty}(N)$. This way we obtain a linear map $dF_p^*: T^k(T_{F(p)}^*N) \to T^k(T_p^*M)$

Definition 77. Let $A \in \Gamma(T^kT^*N)$ be a k-form, the **pull-back of a k-form** A by a smooth map $F: M \to N$ is $F^*A \in \Gamma(T^kT^*M)$ defined by $(F^*A)_p := dF_p^*(A_{F(p)})$. This way we get a $F^*: \Gamma(T^kT^*N) \to \Gamma(T^kT^*M)$

Definition 78. The **push-forward of a contra-variant k-tensor field V** $\in \Lambda(T^kTM)$ by a diffeomorphism $F: M \to N$ is $F^*(\mathbf{V}) \in \Lambda(T^kTN)$, defined by $\forall A \in \Gamma(T^{k-1}T^*N), p \in M, \langle \mathbf{V}, F^*A \rangle|_p = \langle (F_*\mathbf{V}), A \rangle|_{F(p)}$

Proposition 1.77. For any $\forall A \in \Gamma(T^kT^*N), V \in \Lambda(T^kTM), p \in M, \langle F^*A, V \rangle|_p = \langle A, (F_*V) \rangle|_{F(p)}$

Definition 79. We define the **pull-back of a contra-variant k-tensor field V** $\in \Gamma(T^kTN)$ by a diffeomorphism $F: M \to N$ to be $F^*(\mathbf{V}) := F_*^{-1}(\mathbf{V}) \in \Lambda(T^kTM)$, which is the push-forward of \mathbf{V} by $F^{-1}: N \to N$

Definition 80. The pull-back of an (r,s)-tensor field \mathcal{T} is by taking the pullback on the r-contra-variant field and the s-co-variant part respectively.

Definition 81. Let $A \in \Omega^k(N)$, the **pull-back of an alternating k-form** A by a smooth map $F: M \to N$ is $F^*A \in \Omega^k(M)$ defined by $(F^*A)_p := dF_p^*(A_{F(p)})$. This way we get a $F^*: \Omega^k(N) \to \Omega^k(M)$

Proposition 1.78. $F^*: \Omega^k(N) \to \Omega^k(M)$ is a linear map.

Proposition 1.79. Given any two alternating k-covariant tensor fields $A, B \in \Omega^k(N)$, we have $F^*(A \wedge B) = F^*(A) \wedge F^*(B)$

Proposition 1.80.
$$F^*(\sum_{Iincreasing} A_I dy^{i_1} \wedge \cdots \wedge dy^{i_k}) = \sum_{Iincreasing} (A_I \circ F) d(y^{i_1} \circ F) \wedge \cdots \wedge d(y^{i_k} \circ F)$$

Example 1.12.1. Consider $M = U = \mathbb{R}^2 \setminus \{(x,0) | x \leq 0\}$ be the open set of \mathbb{R}^2 minus the negative x axis, with a polar coordinate local map $\phi(r\cos(\theta), r\sin(\theta)) = (r, \theta)$ on U, let this be M. We then consider N = U to be with a Cartesian coordinate $\psi = (x(a,b) = a, y(a,b) = b) : N \to \mathbb{R}^2$. Let $Id : U \to U$ be the identity map. We thus have $x \circ Id \circ \phi^{-1}, y \circ Id \circ \phi^{-1} : \mathbb{R}^2 \to \mathbb{R}^2, x \circ Id \circ \phi^{-1}(r,\theta) = r\cos(\theta), y \circ Id \circ \phi^{-1}(r,\theta) = r\sin(\theta)$.

$$Id^*(dx \wedge dy) = Id^*(\mathbf{1}dx \wedge dy), \text{ in which } \mathbf{1}(x,y) = 1 : N \to \mathbb{R}$$

$$= (\mathbf{1} \circ Id) \cdot d(x \circ Id) \wedge d(y \circ Id), \text{ in which } x \circ Id, y \circ Id : U \to \mathbb{R},$$

$$= d(x \circ Id) \wedge d(x \circ Id)$$

$$= \left(\frac{\partial x \circ Id \circ \phi^{-1}}{\partial \theta} d\theta + \frac{\partial y \circ Id \circ \phi^{-1}}{\partial r} dr\right) \wedge \left(\frac{\partial x \circ Id \circ \phi^{-1}}{\partial \theta} d\theta + \frac{\partial y \circ Id \circ \phi^{-1}}{\partial r} dr\right)$$

$$= \left(\frac{\partial r \cos \theta}{\partial \theta} d\theta + \frac{\partial r \cos \theta}{\partial r} dr\right) \wedge \left(\frac{\partial r \sin \theta}{\partial \theta} d\theta + \frac{\partial r \sin \theta}{\partial r} dr\right)$$

$$= (-r \sin \theta d\theta + \cos \theta dr) \wedge (r \cos \theta d\theta + \sin \theta dr)$$

$$= -r \sin^2 \theta d\theta \wedge dr + r \cos^2 \theta dr \wedge d\theta, \text{ since } dr \wedge dr = d\theta \wedge d\theta = 0$$

$$= r \sin^2 \theta dr \wedge d\theta + r \cos^2 \theta dr \wedge d\theta$$

$$= r dr \wedge d\theta$$

Thus there is a canonical mapping between $dx \wedge dy \in \Omega^2(M)$ and $rdr \wedge d\theta \in \Omega^2(N)$

1.13 Lie Derivative

Definition 82. Let $\mathbf{v}, \mathbf{w} \in \mathfrak{X}(M)$, the **Lie derivative** of \mathbf{w} with respect to \mathbf{v} is a map $\mathcal{L}_{\mathbf{v}}\mathbf{w} : M \to TM$ defined by $\mathcal{L}_{\mathbf{v}}\mathbf{w}_p = \frac{d}{dt}|_{t=0}(d(\Theta_{-t})_{\Theta_t(p)}\mathbf{w}_{\Theta_t(p)})$, where Θ is the flow generated by \mathbf{v} .

Lemma 1.81. $\mathcal{L}_{\boldsymbol{v}}\boldsymbol{w} \in \mathfrak{X}(M)$ is a vector field.

Theorem 1.82. If $v, w \in \mathfrak{X}(M)$, then $\mathcal{L}_v w = [v, w]$

Remark. $d(\Theta_{-t})_{\Theta_t(p)} \mathbf{w}_{\Theta_t(p)} = d(\Theta_{-t})_{(\Theta_{-t})^{-1}(p)} \mathbf{w}_{(\Theta_{-t})^{-1}(p)} = (\Theta_{-t})_* \mathbf{w}_p = \Theta_t^* \mathbf{w}_p$, thus we can write $\mathcal{L}_{\mathbf{v}} \mathbf{w}_p = \frac{d}{dt}|_{t=0} \Theta_t^* \mathbf{w}_p$

Definition 83. We can generalize the **Lie derivative** to act on any (r,s)-tensor field \mathcal{T} by

$$\mathcal{L}_{\mathbf{v}}\mathcal{T}_p := \frac{d}{dt}|_{t=0}(\Theta_t^*\mathcal{T})|_p := \lim_{t \to 0} \frac{\Theta_t^*\mathcal{T}_{\Theta_t(p)} - \mathcal{T}_p}{t},$$

which is still a (r,s)-tensor. As before, Θ is the flow generated by \mathbf{v} .

Proposition 1.83. $\mathcal{L}_v(\mathcal{T} \otimes \mathcal{S}) = \mathcal{L}_v \mathcal{T} \otimes \mathcal{S} + \mathcal{T} \otimes \mathcal{L}_v \mathcal{S}$

Proposition 1.84. $\mathcal{L}_v(\langle \mathcal{T}, \mathcal{S} \rangle) = \langle \mathcal{L}_v \mathcal{T}, \mathcal{S} \rangle + \langle \mathcal{T}, \mathcal{L}_v \mathcal{S} \rangle$

Proposition 1.85. For $f \in C^{\infty}(M)$, $\mathcal{L}_{\boldsymbol{v}}(f) = \boldsymbol{v}(f)$

1.14 Exterior derivative

Definition 84. Let $\omega = \sum_{(i_1 < \dots < i_k) \in [n]^k} \omega_{i_1,\dots,i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k} \in \Omega^k(\mathbb{R})$, the **exterior derivative** of ω is $\mathbf{d}\omega := \sum_{(i_1 < \dots < i_k) \in [n]^k} d(\omega_{i_1,\dots,i_k}) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} = \frac{\partial \omega_{i_1,\dots,i_k}}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k} \in \Omega^{k+1}(\mathbb{R})$

Proposition 1.86. If $f \in C^{\infty}(U) = \Omega^{0}(U)$, then we have $df = df \in \Omega^{1}(U)$

Proposition 1.87. $d: \Omega^k(U) \to \Omega^{k+1}(U)$ is linear

Proposition 1.88. $d \circ d : \Omega^k(U) \to \Omega^{k+2}(U)$ is the zero map.

Proposition 1.89. $\forall \omega \in \Omega^k(U), \eta \in \Omega^l(U), we have \mathbf{d}(\omega \wedge \eta) = \mathbf{d}\omega \wedge \eta + (-1)^k \omega \wedge \mathbf{d}\eta$

Proposition 1.90. For any smooth map $F: U \to V$, and any alternating k-form $\omega \in \Omega^k(V)$, we always have $d(F^*\omega) = F^*(d\omega)$

Theorem 1.91. For any smooth manifold M and $k \in \mathbb{N}$, there is a unique linear map $\mathbf{d}: \Omega^k(M) \to \Omega^{k+1}(M)$ such that

- 1. If $f \in C^{\infty}(M) = \Omega^{0}(M)$, then we have $\mathbf{d}f = df \in \Omega^{1}(M)$
- 2. $\mathbf{d} \circ \mathbf{d} : \Omega^k(M) \to \Omega^{k+2}(M)$ is the zero map.
- 3. $\forall \omega \in \Omega^k(M), \eta \in \Omega^l(M), \text{ we have } d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$