Que déduire d'un générateur d'aléa qui passe des tests statistiques avec succès ?

Guenaëlle De Julis

API Hour #13

- L'aléa en cryptographie
- Attaque sur signature ECDSA par l'aléa
- Evaluation de l'aléa par tests d'hypothèses
- 4 En conclusion

Aléa en cryptographie

- Utilisation massive en cryptographie :
 - \rightarrow besoin d'une graine, d'un token, d'un masque aléatoire, de padding, d'une clef, \dots
- Deux types de sources brutes sont distinguées :
 - déterministes (DRBG) :
 - → graine + algorithme
 - non déterministes (NDRBG) :
 - ightarrow phénomène physique + mécanisme d'extraction

Aléa et signature ECDSA

La signature a besoin, entre autres, d'un aléa r et d'une clef privée k.

- Aléa et sécurité de la signature :
 - \rightarrow si *r* est connu, alors *k* est compromise
 - ightarrow si le même r est utilisé pour signer 2 messages différents, alors r peut être facilement calculé
- Sony PS3 (2010)
 - $\rightarrow r$ était toujours le même . . .
 - → forger des signatures de jeux valides
- Bitcoin, Java PRNG (2013)
 - \rightarrow trop de collisions, donc des *r* prédictibles
 - \rightarrow vol de compte

- L'aléa en cryptographie
- Attaque sur signature ECDSA par l'aléa
- Evaluation de l'aléa par tests d'hypothèses
- 4 En conclusion

Comment évaluer une source d'aléa?

- Bonne ou mauvaise source?
 - → si j'observe une suite de 50 zéros ?
 - → si je n'observe jamais 50 zéros à la suite?
- source idéale : « jeu de pile ou face infini, avec pièce équilibrée et lancers indépendants »
- par séries de tests statistiques :
 - standards NIST: FIPS 140-2 (2002), SP800-22(2010),
 - standard BSI (2011): AIS31,
- évaluations «en aveugle»
 - → modèle de la source en entrée inconnu
 - ightarrow obj : donner un degré de vraisemblance de l'entrée par rapport à la source idéale.

Tests d'hypothèse : théorie

	Entrée		Sortie
Données :	X ₁ ,,X _n n variables aléatoires	\rightarrow fonction \rightarrow	S _n (statistique de test)
Théorie :	source idéale	\Rightarrow	\mathcal{S}_n de loi $\mathcal{D}_\mathcal{S}$
Utilisation:	b_1, \ldots, b_n n observations		S _n (s-valeur)

Tests d'hypothèse : pratique

- Comment interpréter s_n
 pour décider si la source en entrée est idéale?
 → PASS/FAIL par zone de rejet + taux de réussite
- 2 Exemple : test de fréquence sur n = 20 000 bits
 - entrée : *b*₁ . . . *b*_{20 000}
 - sortie : $s_{20\ 000}$ = nombre de '1' $\in [0, 20\ 000]$
 - décision pratiquée : PASS si $s_{20\ 000} \in [9725\ ,\ 10\ 275],$ FAII sinon
 - ce que dit la théorie pour une source idéale en entrée : la sortie suit la loi binomiale B (20 000, ½).

Escroquerie au test de fréquence #1

Source évaluée, non idéale : la pièce est équilibrée mais les lancers ne sont pas indépendants.

ightarrow taux de réussite élevé : la zone de rejet n'est pas un critère suffisant

Escroquerie au test de fréquence #2

→ taux de réussite 100% : la zone de rejet n'est pas un critère pertinent

Escroquerie au test de fréquence #3

Source non idéale : lancers indépendants par groupe de m bits avec m+1 motifs au lieu des 2^m possibles selon la règle

- ullet 0 ... 0 o probabilité $rac{1}{2^m}$
- 0 ... $01 \rightarrow \text{probabilité } k \times \frac{1}{2^m}$
- 0 ... 011 \rightarrow probabilité $\binom{m}{2} \times \frac{1}{2^m}$
- 0 ... 0111 \rightarrow probabilité $\binom{m}{3} \times \frac{1}{2^m}$
- ...

→ loi en sortie identique à la loi attendue

- L'aléa en cryptographie
- Attaque sur signature ECDSA par l'aléa
- Evaluation de l'aléa par tests d'hypothèses
- 4 En conclusion

Que déduire d'un RNG qui «passe FIPS 140-2»?

- Pas grand chose . . .
 - ightarrow il existe des sources non idéales en entrée qui se comporte comme la source idéale en sortie
 - \rightarrow les zones de rejets ne sont pas suffisantes
 - ightarrow les taux de réussite ne garantissent rien
- Les risques viennent de la façon d'interpréter la sortie :
 - quelques valeurs ne représentent pas la loi en sortie
 - la théorie dit « $A \Rightarrow B$ » et non « $B \Rightarrow A$ »!

Merci pour votre attention

