Pseudo-code for MDLINFER

For an epidemiological model $O_{\rm M}$, we need a calibrate procedure to learn parameterizations. Here, we assume the existence of the calibrate procedure for epidemiological model $O_{\rm M}$ and term it as Calibrate. The Calibrate takes two inputs: $O_{\rm M}$ and the dataset. We further assume the dataset contains at least reported infections time sequence $D_{\rm reported}$. This Calibrate uses loss function to learn parameterizations, usually root mean squared error (RMSE) or log likelihood [2, 1] loss functions. We then give the pseudo-code for MDLINFER:

Algorithm 1 MDLINFER

Input: Epidemiological model $O_{\rm M}$, calibration procedure CALIBRATE, reported infections time sequence $D_{\rm reported}$.

- 1: Calibrate baseline parameterization $\mathbf{p} = \text{Calibrate}(O_{\text{M}}, \{D_{\text{reported}}, \text{others}\})$
- 2: Find $\alpha_{\text{reported}}^* = \text{GetAlpha}(O_{\text{M}}, \text{Calibrate}, D_{\text{reported}}, \mathbf{p})$
- 3: Find $D^* = \text{GetTotalInfections}(O_{\text{M}}, \text{Calibrate}, D_{\text{reported}}, \alpha^*_{\text{reported}}, \mathbf{p})$

Output: Total infections D^*

Next, we give the pseudo-code for Getalpha and GetTotalInfections:

Algorithm 2 GETALPHA

```
Input: O_{\text{M}}, Calibrate, D_{\text{reported}}, p.

1: The array to save the MDL cost: CostArray = []
```

- 2: for α_{reported} in the grid search space from 0.01 to 1 with step 0.01 do
- 3: $D = \frac{D_{\text{reported}}}{\alpha_{\text{reported}}}$
- 4: $D_{\text{unreported}} = D D_{\text{reported}}$
- 5: Calibrate candidate parameterization $\mathbf{p'} = \text{CALIBRATE}(O_{\text{M}}, \{D_{\text{reported}}, D_{\text{unreported}}, \text{others}\})$
- 6: Save the MDL cost for α_{reported} in CostArray[α_{reported}] = $L(D_{\text{reported}}, D, \mathbf{p'}, \mathbf{p})$
- 7: end for
- 8: Find the $\alpha^*_{\rm reported} = \arg\min_{\alpha_{\rm reported}} \, {\rm CostArray}[\alpha_{\rm reported}]$

Output: Reported rate $\alpha_{\text{reported}}^*$

Algorithm 3 GetTotalInfections

Input: $O_{\rm M}$, Calibrate, $D_{\rm reported}$, $\alpha^*_{\rm reported}$, p.

1: Find the $D^* = \arg\min_D L(D_{\text{reported}}, D, \mathbf{p'}, \mathbf{p})$. (using the Nelder-Mead algorithm*).

Output: Total infections D^*

*Note: Nelder-Mead is an optimization algorithm.

References

- [1] HAO, X., CHENG, S., WU, D., WU, T., LIN, X., AND WANG, C. Reconstruction of the full transmission dynamics of covid-19 in wuhan. *Nature* 584, 7821 (2020), 420–424.
- [2] Kain, M. P., Childs, M. L., Becker, A. D., and Mordecai, E. A. Chopping the tail: How preventing superspreading can help to maintain covid-19 control. *Epidemics* 34 (2021), 100430.