1

A finite impulse response (FIR) filter has only two non-zero samples in its impulse response h[n], namely h[0] = h[1] = 1. The Discrete Time Fourier Transform (DTFT) of h[n] equals  $H(e^{j\omega})$ , as a function of the normalized angular frequency  $\omega$ . For the range  $|\omega| \le \pi$ ,  $|H(e^{j\omega})|$  is equal to

- (A)  $2 |\cos(\omega)|$
- (B)  $2|\sin(\omega)|$
- (C)  $2 \left| \cos(\frac{\omega}{2}) \right|$
- (D)  $2 \left| \sin(\frac{\omega}{2}) \right|$

(GATE BM 2023)

## **Solution:**

| Parameter        | Value                              | Description                 |
|------------------|------------------------------------|-----------------------------|
| h[n]             | -                                  | impulse response            |
| h[0]             | 1                                  | impulse response at $n = 0$ |
| h[1]             | 1                                  | impulse response at $n = 1$ |
| ω                | $-\pi \le \omega \le \pi$          | normalized frequency        |
| $H(e^{j\omega})$ | $\sum_{n=0}^{M} h[n]e^{-jn\omega}$ | frequency response          |

TABLE I INPUT PARAMETERS TABLE

From Table I,

$$H(e^{j\omega}) = 1 + e^{-j\omega} \tag{1}$$

$$=e^{\frac{-j\omega}{2}}(e^{\frac{j\omega}{2}} + e^{\frac{-j\omega}{2}}) \tag{2}$$

$$=e^{\frac{-j\omega}{2}}(2\cos\left(\frac{\omega}{2}\right))\tag{3}$$

$$= e^{\frac{-j\omega}{2}} (2\cos\left(\frac{\omega}{2}\right)) \tag{3}$$

$$\left| H(e^{j\omega}) \right| = 2 \left| \cos\left(\frac{\omega}{2}\right) \right| \tag{4}$$

