Introduction

Au début de sa vie, l'organisme humain est composé d'une seule et unique cellule : la cellule-œuf. Elle est issue de la fécondation d'un ovule par un spermatozoïde et elle va former toutes les autres cellules du corps par des duplications successives (une cellule en forme 2, puis 4, puis 8...). Cela signifie que cette unique cellule-œuf contient donc toutes les informations génétiques d'un individu.

- **Quelle est la localisation de l'information génétique au niveau cellulaire?**
- Quelle est la nature chimique de cette information?
- ➤ Comment se fait la transmission et la conservation- de l'information, d'une cellule à l'autre?

I. Localisation de l'information génétique

- 1. Mise en évidence de la localisation de l'information génétique
 - a. Chez un être vivant unicellulaire

1.Décrivez l'expérience de section 2.émettre des hypothèses pour expliquer le résultat obtenu

On observe que seulement le rhizoïde contenant le noyau qui reste vivant et régénère une nouvelle algue. Tandis que les autres parties (chapeau et pédicule) qui ne contiennent pas de noyau meurent après quelques jours.

On déduit que le rhizoïde possède un élément (noyau ou autre chose) nécessaire à la survie et la croissance de l'algue

On observe que la forme du chapeau est liée au type du noyau présent dans le rhizoïde et non du type de l'algue dont le rhizoïde est issu. (Le chapeau nouvellement reconstitué présente les caractéristiques de l'algue dont le noyau est extrait).

On déduit que le noyau contient l'information génétique permettant la reconstitution du chapeau de l'espèce.

b. Chez un être vivant pluricellulaire

On observe que le xénope provenant du développement de l'ovule a hérité le caractère du xénope donneur du noyau et non pas celui du xénope qui a donné l'ovule sans noyau. Donc les caractéristiques d'un individu dépendent des informations contenues dans le noyau.

Bilan:

L'information génétique qui détermine les caractères héréditaires **est localisée dans le noyau** chez les organismes unicellulaires et pluricellulaires.

Quelle est la structure du noyau? Que contient le noyau?

2. Ultrastructure du noyau

- ➤ Observés au MET, les noyaux apparaissent délimités par une enveloppe percée de pores et constitués d'un matériel plus ou moins granuleux (chromatine et nucléole) baignant dans un nucléoplasme.
- En dehors des périodes de division cellulaire (pendant **l'interphase**) la chromatine se présente sous forme de filaments très fins appelés **nucléofilaments** (=filaments du noyau) uniquement visibles en microscopie électronique à très fort grossissement.
- Lors des divisions cellulaires, le noyau présente des structures filamenteuses appelées **chromosomes**. Le chromosome est de la chromatine soigneusement enroulée.

Chaque chromosome visible est constitué de deux chromatides unies entre-elles au niveau du centromère.

II. Transmission de l'information génétique d'une cellule à une autre

1. La mitose chez une cellule animale

Légende
1.Prophase
2. Métaphase
3. Anaphase
4. Télophase
2 cellules filles

La division cellulaire est nommée **mitose**, il s'agit d'une multiplication cellulaire où une cellule mère donne deux cellules filles identiques (reproduction conforme). La mitose comprend 4 phases : prophase, métaphase, anaphase et télophase.

Quelles sont les caractéristiques de chaque phase de mitose ?

Document 6								
	Schémas des phases de la mitose	Caractéristiques						
	Fibres du fuseau achromatique Centrosome Aster Chromosome à 2 chromatides Centromère	PROPHASE						
	Microtubule kinétochorien Chromosome métaphasique Microtubule polaire	MÉTAPHASE						
	Une chromatide	ANAPHASE						
	Enveloppe nucléaire Étranglement Une chromatide décondensée	TÉLOPHASE						

Phase	Caractéristique						
PROPHASE	 ▶ condensation de la chromatine sous forme de chromosomes ▶ Disparition de l'enveloppe nucléaire et du nucléole ▶ Apparition du fuseau de division (= fuseau achromatique) 						
METAPHASE	 La condensation des chromosomes est maximale Alignement des chromosomes sur le plan équatorial de la cellule 						
ANAPHASE	 Clivage des centromères et séparation des chromatides de chaque chromosome Migration des chromatides vers les pôles de la cellule 						
TELOPHASE	 Décondensation des chromosomes Réapparition de l'enveloppe nucléaire Disparition du fuseau Division du cytoplasme de la cellule mère par étranglement dans la région équatoriale de la cellule. Formation de 2 cellules filles identiques 						

2. La mitose chez les cellules végétales

La mitose d'une cellule végétale se déroule dans ses grandes lignes comme une mitose de cellules animales, à deux différences près :

a. Cellule animale b. cellule végétale

Cellule animale	Cellule végétale		
Présence d'un organite appelé	Absence de centrosome et d'aster qui		
centrosome qui, en prophase,	sont remplacés par des calottes		
s'entoure de fibres formant un aster.	polaires.		
La division du cytoplasme s'effectue	La division du cytoplasme s'effectue		
par un étranglement équatorial	par la construction d'une nouvelle		
	paroi à l'équateur de la cellule mère.		

3. Notion de cycle cellulaire

- ➤On appelle **cycle cellulaire** les différentes étapes par lesquelles passe la cellule, du début d'une interphase au début de l'interphase suivante. (Autrement dit <u>cycle cellulaire = interphase + mitose</u>).
- Deux événements fondamentaux caractérisent ce cycle :
- -La duplication des chromosomes **en interphase** matérialisée par le passage de chromosomes simples à une chromatide a des chromosomes doubles à 2 chromatides.
- -Un partage égal des chromosomes en **anaphase de mitose** : les chromatides de chaque chromosome se séparent. A la fin de la mitose, les deux cellules filles contiennent les mêmes chromosomes en nombre égal.

4. Notion de caryotype

Le **caryotype** est la représentation photographique ou dessinée de l'ensemble (nombre et forme) des chromosomes présents dans les cellules d'une espèce donnée. Les chromosomes sont classés selon leur longueur et la position de leurs centromères.

- Comparer ces deux caryotypes
- Ecrire la formule chromosomique correspondant à chaque caryotype
- ➤ L'analyse du caryotype de l'être humain montre **46 chromosomes** organisés en paires. Chaque paire de **chromosomes homologues** (semblables par la taille et la position du centromère) est constituée par un chromosome hérité de l'un des parents et un chromosome hérité de l'autre parent.
- \triangleright Les cellules comprennent donc **2n** chromosomes, **n** étant <u>le nombre de paires de chromosomes</u> : ces cellules sont dites **diploïdes** (2n = 46 chez l'homme, n = 23).
- ➤ La 23^{eme} paire appelée **chromosomes sexuels** est différente chez l'homme (chromosomes X et Y) et chez la femme (chromosomes X et X); leur présence détermine donc le sexe.
- Les 22 autres paires de chromosomes semblables chez l'homme et chez la femme sont appelées autosomes.

La formule chromosomique chez l'homme peut s'écrire de la façon suivante :

$$2n = 44 A + XY$$
 (ou $2n = 22AA + XY$)

La formule chromosomique chez la femme peut s'écrire de la façon suivante :

$$2n = 44 A + XX$$
 (ou $2n = 22AA + XX$)

III. Nature chimique du matériel génétique :

1. Les expériences de Griffith (1928)

Analyser les résultats de l'expérience de Griffith Proposer une hypothèse qui explique l'apparition des bactéries S dans la 4ème expérience

Ces expériences ont mis en évidence l'existence d'une substance libérée par les bactéries S tuées, susceptible d'être intégré par les bactéries R, et qui leur confère la capacité de synthétiser la capsule, ainsi elles se transforment en bactéries S. Griffith a appelé cette substance « **facteur transformant** » (ou principe transformant) mais il n'a pas déterminé sa nature chimique.

2. Mise en évidence de la nature chimique du principe transformant (1944)

En exploitant les données de l'expériences d'Avery, déduisez la nature chimique de l'information génétique.

A l'aide d'un schéma interprétez la transformation de la bactérie R en bactérie S

L'utilisation de protéase et de ribonucléase a montré que les protéines et l'ARN ne sont pas impliqués dans la transformation des bactéries R en S.

La substance responsable de la transformation des bactéries R en bactéries S est l'**ADN** (acide désoxyribonucléique) car lors de l'addition d'une ADNase (enzyme qui détruit l'ADN), la transformation n'avait pas lieu et la souris survivait.

Bilan:

Ces expériences ont montrées que seule l'ADN est capable de conférer les bactéries R la capacité de synthétiser la capsule. L'ADN est donc le support de l'information génétique.

3. Confirmation du rôle de l'ADN : expérience de Hershey et Chase (1952)

Les virus sont des êtres qui se multiplient uniquement à l'intérieur des cellules, c'est pourquoi ils sont qualifiés de parasites obligatoires. Les virus qui parasitent les bactéries sont appelés bactériophages

Document 16								
Sachant que le phosphore est un cor les protéines et que le soufre est u	Expériences de Hershey et Chase (1952): Sachant que le phosphore est un constituant de l'ADN et n'existe pas dans les protéines et que le soufire est un constituant qu'on le trouve dans les protéines et pas dans l'ADN. Les expériences suivantes ont été réalisées.							
Expérience	Résultat							
phages T2 avec un traceur radioactif: 1	- quelques virus libérés possèdent un							
2. Marquage des protéines de la capsid d'une autre série de phages T2 avec us autre traceur radioactif : le soufre 3: (³⁵ S). En suite les phages marqués on été mises en présence de bactéries	- virus libérés non radioactifs							

Que peut on déduire

La capside protéique reste à l'extérieur de la bactérie tandis que l'ADN pénètre dans la bactérie. En effet, la fabrication des nouveaux virions s'effectue à l'intérieur de la bactérie et nécessite obligatoirement un support de l'information génétique pour qu'il y ait réplication de l'information génétique.

L'information génétique du bactériophage est portée par l'ADN qui se retrouve seul à l'intérieur de la bactérie (Rq : rétrovirus !!)

4. L'ADN: principal constituant des chromosomes

Chromosome = ADN + protéines

⇒Les chromosomes sont composés d'une molécule très fine et très longue d'ADN associée à des protéines.

IV. Composition chimique et structure de l'ADN

1. Composition chimique de l'ADN

L'ADN est constitué de trois types de molécules :

- Un sucre en C5 : le désoxyribose
- L'acide phosphorique : H₃PO₄
- Quatre types de bases azotées : l'Adénine (A), la Thymine (T), la Guanine (G) et la Cytosine (C).

Ces constituants chimiques sont assemblés en **nucléotides**. Chaque nucléotide est formé par 3 types de molécules : un acide phosphorique, le désoxyribose et une base azotée (A ou T ou C ou G).

M.jaouani

9

- 1. Groupement phosphate
- 2. Désoxyribose
- 3. Bases azotées
- 4. Nucléotide

L'ADN est une macromolécule formée de l'assemblage de plusieurs nucléotides : c'est un polynucléotide.

L'ADN est une molécule polarisée (extrémités 3'; 5')

2. Structure de l'ADN

		D	ocun	nent	22		
En 1 nucléotides s Les résultats	sur des	extraits	d'AD	N obten	us chez	différen	
	%	% des bases azotées			A	G	G+A
espèce	A	T	C	G	T	C	C+T
Homme	30,9	29,4	19,8	19,9	1,05	1,00	1,03
Poule	28,8	29,4	21,4	21	0,97	0,98	0,98
Blé	27,3	27,2	22,8	22,7	1,00	0,99	1
Levure	31,1	31,9	18,1	18,7	0,97	1,03	0,99
Oursin	32,8	32,1	17,7	17,3	1,02	0,97	1

Quelque soit la source de l'ADN, la proportion d'adénine est la même que celle de thymine et la proportion de guanine est la même que celle de cytosine, (par contre, le rapport A + T / G + C semble caractéristique de la source d'ADN).

Donc une molécule d'ADN peut être représentée de la façon suivante :

Les travaux de Rosalind Franklin (1951) sur l'ADN⇒ les clichés de diffraction aux rayons X de l'ADN montrent une figure en croix caractéristique des structures en double hélice.

10

► Modèle de la double hélice

- L'ADN est constitué par l'enroulement de deux chaines nucléotidiques : C'est le modèle de la double hélice.
- -Les deux chaines sont associées par des liaisons hydrogènes (2 liaisons entre A et T et 3 liaisons entre C et G) au niveau des bases azotées :
 - L'adénine est **complémentaire** à la thymine
 - La guanine est complémentaire à la cytosine
- -Les deux chaînes s'enroulent l'une autour de l'autre selon deux directions opposées, et sont dites anti-parallèles

3. Relation entre chromosomes et ADN

Chez les eucaryotes l'ADN est fortement replié au cours du cycle cellulaire de façon à pouvoir être contenu dans le noyau. Cette condensation est assurée par l'interaction de l'ADN avec des protéines structurales :

- Durant l'interphase : l'observation de la chromatine au MET révèle l'aspect en **collier de perles** des nucléofilaments . Chaque nucléofilament est constitué de l'enroulement d'une molécule d'ADN autour des protéines appelées **histones** pour constituer des **nucléosomes**
- Pendant la prophase, la spiralisation des nucléofilaments, puis leur enroulement autour d'un squelette protéique forme les **chromosomes**

V. La réplication de l'ADN

1. Mise en évidence de la réplication du matériel génétique

- -Légende -Analyse de l'évolution de la qté d'ADN pendant l'interphase
- -Conséquence de dédoublement de la qté d'ADN sur la structure des chromosomes
- -Explication du passage de la qté d'ADN de 2Q à Q pendant la mitose
- -Représentation de l'aspect des chromosomes pendant chacune des phases
- ⇒ Au cours de l'interphase la qté d'ADN est constante à Q pendant la phase G1 (1^{ere} phase de croissance), puis elle augmente pour atteindre 2Q pendant la phase S (phase de synthèse), ensuite elle reste stable pendant la phase G2 (2^{eme} phase de croissance).
- ⇒Au cours de la **mitose** la qté d'ADN passe de 2Q à Q

Lorsque la qté d'ADN se dédouble, chaque chromosome qui était formé par une seule chromatide apparait formé de deux chromatides.

2. Mécanisme de réplication de l'ADN

a. Expérience de Meselson et stahl (1958)

Afin de déterminer le mécanisme par lequel la quantité d'ADN se duplique pendant la phase S, trois hypothèses ont été proposés jusqu'en 1958. le document 1 illustre ces hypothèses. Document 1 Pour valider une de ces hypothèses, → Hypothèse 1: les deux brins d'ADN de la molécule mère restent ensemble après Meselson et Stahl ont cultivé, servis de modèle. C'est la **réplication conservative** pendant un grand nombre de cycles, → Hypothèse 2: chaque molécule fille d'ADN contient un brin de la molécule mère et un brin nouvellement synthétisé. C'est la réplication semi-conservative des bactéries E.coli sur un milieu → Hypothèse 3: les deux molécules filles d'ADN comportent des fragment d'ADN parental et d'ADN nouvellement synthétisés. C'est la réplication dispersive contenant de l'azote « lourde » 15N, isotope de 14N, l'azote est l'un des atomes entrant dans la constitution Réplication Réplication dispersive des bases azotées de l'ADN. Certaines bactéries ont été prélevées Molécule d'ADN et leur ADN extrait puis centrifugé parental pour séparer les molécules d'ADN de densités différentes (tube1). La même expérience a été réalisée Molécule d'ADN avant la mise en culture des de la première génération bactéries sur un milieu contenant du ¹⁵N (tube 2) Les cultures sont alors transférées

Exercice intégré

Les centures sont aions transferées sur milieu froid (contenant de l'azote « léger » ¹⁴N) et de l'ADN est extrait et centrifugé à chaque génération cellulaire (une génération après le transfert pour le **tube 3** et deux générations après le transfert pour le **tube 4**). Les résultats obtenus sont présentés dans le document 2.

1.a/ D'après les résultats de la première génération, **indiquez**, en argumentant, quelle hypothèse est à réfuter b/ **Quelle** hypothèse donc peut-on conserver pour expliquer les résultats obtenus à la 2^{eme} génération. **justifiez** 2. **Tracez** l'aspect du tube à essai qu'on obtient dans la génération 3, **justifiez** votre réponse par des schémas explicatifs et légendés.

1.a/ Au bout d'une génération sur milieu ¹⁴N, la densité de l'ADN de l'extrait des bactéries est intermédiaire entre la densité de l'ADN lourd (¹⁵N) et de l'ADN léger (¹⁴N). On a donc 100 % d'ADN hybride. Donc l'hypothèse à réfuter est celle du modèle conservatif car selon cette hypothèse il y a 50% d'ADN léger et 50% d'ADN lourd à la 1^{see} génération ce qui n'est pas conforme avec les résultats expérimentaux.

b/ Au bout de deux générations on obtient 50% d'ADN léger et 50% d'ADN hybride. Or selon le modèle dispersif on obtient toujours que de l'ADN hybride ce qui n'est pas conforme avec les résultats expérimentaux. Ainsi, les expériences de Meselson et Stahl valident l'hypothèse de la réplication semi conservative et réfutent les autres hypothèses.

On peut utiliser l'hypothèse validée pour expliquer l'aspect des tubes 3 et 4.

2. Aspect du tube à la 3éme génération :

Bilan

La réplication de l'ADN se fait selon le mode semi-conservatif selon lequel chaque brin de la molécule "mère" sert de matrice pour la synthèse d'un brin complémentaire.

Schéma montrant la duplication d'une molécule d'ADN

Les deux molécules filles sont strictement identiques à la molécule mère

► Exercice expérience de Taylor

b. Les yeux de réplication : structures témoignant d'une réplication d'ADN

Légende:
1.Les 2 brins initiaux
2.Yeux de réplication
3.Les 2 brins en formation
4. 2 molécules d'ADN identiques

- >Cette figure représente des yeux de réplications observés au ME. Ces structures apparaissent au cours de la phase S et correspondent aux endroits ou l'ADN se réplique.
- Chaque œil comporte deux fourches de réplication, figure en Y, où une ADN polymérase effectue la réplication, Ces fourches progressent en sens inverses (réplication bidirectionnelle), assurant la réplication de l'ensemble de la molécule d'ADN.

c. Mécanisme de la réplication d'ADN

La réplication est un processus selon lequel un nouveau brin d'ADN est synthétisé à partir d'un brin matrice d'ADN, dont il est complémentaire. Chaque brin de la double hélice sert de matrice pour la synthèse d'un nouveau brin par complémentarité de bases. Cette synthèse est catalysée par **l'ADN polymérase**, qui ne fonctionne que dans le sens 5'→3'.

Remarque: La réplication est asymétrique. L'un des deux brins est synthétisé de façon continue (brin précoce ou avancé) tandis que l'autre est synthétisé sous forme de fragments connus sous le nom de fragments d'Okazaki (brin tardif ou retardé).

3. Complémentarité de la duplication et de la mitose

⇒A l'issue de la duplication de l'ADN, les deux molécules néoformées contiennent des informations rigoureusement identiques et rigoureusement identiques aux informations de la molécule mère. Elles formeront les deux chromatides des chromosomes métaphasiques.

⇒ Au cours de la mitose, les chromatides de chaque chromosome se séparent et migrent vers des pôles opposés. Ainsi chaque cellule fille va recevoir un nombre de chromosomes égal à celui de la cellule-mère, contenant exactement les mêmes informations que la cellule-mère d'où la conservation de l'information génétique au cours du cycle cellulaire.

Table des matières

I. 1	Localisation de l'information génétique	1
1.	Mise en évidence de la localisation de l'information génétique	1
á	a. Chez un être vivant unicellulaire	1
I	b. Chez un être vivant pluricellulaire	2
2.	Ultrastructure du noyau	2
II.	Fransmission de l'information génétique d'une cellule à une autre	3
1.	La mitose chez une cellule animale	3
2.	La mitose chez les cellules végétales	4
3.	Notion de cycle cellulaire	5
4.	Notion de caryotype	5
III.	Nature chimique du matériel génétique :	6
1.	Les expériences de Griffith (1928)	6
2.	Mise en évidence de la nature chimique du principe transformant (1944)	7
3.	Confirmation du rôle de l'ADN : expérience de Hershey et Chase (1952)	8
4.	L'ADN: principal constituant des chromosomes	9
IV.	Composition chimique et structure de l'ADN	9
1.	Composition chimique de l'ADN	9
2.	Structure de l'ADN	10
3.	Relation entre chromosomes et ADN	11
V. 1	La réplication de l'ADN	12
1.	Mise en évidence de la réplication du matériel génétique	12
2.	Mécanisme de réplication de l'ADN	12
â	a. Expérience de Meselson et stahl (1958)	12
l	Les yeux de réplication : structures témoignant d'une réplication d'ADN	13
(c. Mécanisme de la réplication d'ADN	14
3	Complémentarité de la duplication et de la mitose	1.4