EECS 203 Discussion 6

Modular Arithmetic, Functions

Admin Notes:

- Homework/Groupwork 6 will be due Mar. 14th
 - Don't forget to match pages!
 - Please note as soon as you press submit you've successfully submitted by the deadline. You can still match pages with no rush without adding to your submission time.

Modular Arithmetic

Modular Arithmetic Definitions

- Division Definition
 - \circ a \equiv b (mod n) iff n | (a b)
- Remainder Definition
 - \circ a \equiv b (mod n) iff rem(a,n) = rem(b,n)
- Integer Definition *Useful when working with different mods!
 - \circ a \equiv b (mod n) iff there exists integer k such that a = b + nk

Modular Addition, Subtraction, and Multiplication

- Addition
 - Given a ≡ b (mod n) and c ≡ d (mod n), then
 a + c ≡ b + d (mod n)
- Subtraction
 - Given a ≡ b (mod n) and c ≡ d (mod n), then
 a c ≡ b d (mod n)
- Multiplication
 - Given a ≡ b (mod n) and c ≡ d (mod n), then
 ac ≡ bd (mod n)

1. The Mod Operator

Evaluate these quantities:

- a) $-17 \mod 2$
- b) 144 mod 7
- c) $-101 \mod 13$
- d) 199 mod 19

2. Working in Mod

Find the integer a such that

(a)
$$a \equiv -15 \pmod{27}$$
 and $-26 \le a \le 0$

(b)
$$a \equiv 24 \pmod{31}$$
 and $-15 \le a \le 15$

(c)
$$a \equiv 99 \pmod{41}$$
 and $100 \le a \le 140$

3. Arithmetic within a Mod

Suppose that a and b are integers, $a \equiv 11 \pmod{19}$, and $b \equiv 3 \pmod{19}$. Find the integer c with $0 \le c \le 18$ such that

- a) $c \equiv 13a \pmod{19}$.
- b) $c \equiv a b \pmod{19}$.
- c) $c \equiv 2a^2 + 3b^2 \pmod{19}$.
- d) $c \equiv a^3 + 4b^3 \pmod{19}$.

4. Arithmetic in Different Mods *

Suppose that $x \equiv 2 \pmod{8}$ and $y \equiv 5 \pmod{12}$. For each of the following, compute the value or explain why it can't be computed.

Hint: Recall that if $a \equiv b \pmod{m}$ then there exists an integer k such that a = b + mk.

- (a) $3y \mod 6$
- (b) $(x-y) \mod 4$
- (c) $xy \mod 24$

5. Fast Modular Exponentiation \star

Find $a \equiv 5^{20} \pmod{27}$ such that $0 \le a \le 26$. In other words, find $5^{20} \pmod{27}$.

Solution:

$$5^{20} \equiv (5^2)^{10} \equiv ((5^2)^2)^5 \equiv (25^5)^2 \equiv ((-2)^5)^2 \equiv (-32)^2 \equiv (-5)^2 \equiv 25 \pmod{27}$$

6. Extra Practice with Fast Modular Exponentiation

Find each of the following.

- a) $9^1 \mod 7$
- b) $9^2 \mod 7$
- c) $9^9 \mod 7$
- d) 9⁹⁰ mod 7

Functions

Onto and One-to-One Functions

- Function f: A → B: associates each element of set A to <u>exactly one</u> element in set B
 - Domain: A
 - Codomain: B
 - Range of f: the set of elements in the codomain which are mapped to by an element in the domain, <u>subset of codomain B</u>
- Onto Function f: A → B: all elements in B are mapped to by f
- One-to-One Function f: A → B: no two elements of A map to the same output in B

Injective (1-1) and Surjective (Onto) Proofs

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

More on Functions

• **Function Inverse** f^{-1} : Let f be a **bijection** from set A to set B. The inverse function of f is the function with domain B and codomain A that assigns every element $b \in B$ to the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} .

$$f^{-1}(b) = a$$
 if and only if $f(a) = b$.

Function Composition f ∘ g: Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all a ∈ A by f ∘ g, is defined by

$$(f\circ g)(a)=f\left(g(a)\right)$$

Adding and Multiplying Functions:

$$\circ$$
 $(f_1 + f_2)(x) = f_1(x) + f_2(x)$

$$\circ$$
 $(f_1f_2)(x) = f_1(x) f_2(x)$

7. One-to-One and Onto

Give an explicit formula for a function from the set of integers to the set of positive integers $f: \mathbb{Z} \to \mathbb{Z}^+$ that is:

- a) one-to-one, but not onto
- b) onto, but not one-to-one
- c) one-to-one and onto
- d) neither one-to-one nor onto

8. Bijections

Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} . Briefly discuss why or why not. If it is bijective, state the inverse function.

- (a) f(x) = 2x + 1
- (b) $f(x) = x^2 + 1$
- (c) $f(x) = x^3$
- (d) $f(x) = (x^2 + 1)/(x^2 + 2)$
- (e) $f(x) = x^2 + x^3$

9. One-to-One and Onto Proofs

Prove or disprove the following.

- a) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = \frac{1}{x^2+1}$ is onto
- b) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = |3x+1|$ is one-to-one
- c) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = ax + b$ where $a \neq 0$, is a bijection.

10. Function Composition

Consider the following two functions:

- $f: \mathbb{Z} \to \mathbb{Q}, \ f(x) = \frac{x+1}{3}$
- $g: \mathbb{Z}^+ \to \mathbb{Z}^+, \ g(x) = \frac{x(x+1)}{2}$

For each function, find it if it exists. If it does not, explain why.

- a) $f \circ g$
- b) $g \circ f$
- c) f^{-1}
- d) g^{-1}