Bootcamp: Analista de Machine Learning

Enunciado da Atividade Modular

Módulo: Redes Neurais e Aprendizado Profundo

Objetivos de Ensino

Exercitar os seguintes conceitos trabalhados no Módulo:

- 1. Entendimento do Modelo LSTM para Previsão de Séries Temporais
- 2. Aquisição e Preprocessamento dos Dados
- 3. Configuração e Divisão dos Dados
- 4. Desenvolvimento do Modelo LSTM
- 5. Treinamento do Modelo
- 6. Avaliação e Previsão de Resultados
- 7. Visualização e Interpretação dos Resultados

Enunciado

Você irá trabalhar com a implementação de um modelo Long Short-Term Memory (LSTM) para realizar a previsão de uma série temporal. O objetivo é aplicar as técnicas de previsão com LSTM em dados de consumo de energia elétrica para prever os valores futuros com base nos dados históricos fornecidos.

Atividades

Os alunos deverão desempenhar as seguintes atividades:

1. Obtenção dos Dados:

Utilize o conjunto de dados que contém registros de consumo de energia elétrica ao longo do tempo. Esses dados apresentam informações detalhadas sobre o uso de energia em diferentes intervalos de tempo. O conjunto de dados possui as seguintes colunas:

- Datetime`: Timestamp de cada registro.
- Global_active_power`: Consumo total de energia ativo em kilowatts (kW).

Faça o download do dataset diretamente (https://www.kaggle.com/amirrezaeian/time-series-data-analysis-using-lstm -tutorial) para realizar a atividade.

2. Pré-processamento:

- Carregue os dados em um DataFrame utilizando `pandas`.
- Transforme a coluna `Datetime` para o formato datetime.
- Trate os valores faltantes ou outliers, se necessário.
- Normalize os dados de consumo para adequar ao modelo LSTM, utilizando `MinMaxScaler` do `sklearn`.

3. Divisão dos Dados:

- Divida o conjunto de dados em dados de treino e teste, sendo que os últimos 20% dos registros serão reservados para o conjunto de teste.
- Crie uma janela de tempo para alimentar o modelo LSTM (por exemplo, 60 registros passados para prever o próximo registro).

4. Construção do Modelo LSTM:

• Utilize `Keras` ou `TensorFlow` para construir o modelo LSTM.

- O modelo deve conter pelo menos uma camada LSTM e uma camada
 `Dense` para a previsão do consumo futuro de energia.
- Compile o modelo com o otimizador `Adam` e utilize a função de perda `mean_squared_error`.

5. Treinamento do Modelo:

- Treine o modelo por 50 épocas com um batch size de 64.
- Utilize validação cruzada durante o processo de treinamento para avaliar o desempenho do modelo.

6. Avaliação e Previsão:

- Avalie o desempenho do modelo no conjunto de teste.
- Realize previsões para os próximos 30 dias com base nos dados históricos.

7. Visualização:

- Plote um gráfico comparando as previsões do modelo com os valores reais do conjunto de teste.
- Salve o gráfico gerado.