Winter Math Camp: Algebra Problems

Dan Brown, Certicom Research

January 8, 2004

- 1. Let $f_j(x)$ be a polynomial of degree j. Suppose $\sum_{j=0}^{n-1} f_j(y_i)z_j = 0$ for $0 \le i \le n-1$ and y_j are all distinct. Show that $z_i = 0$.
- 2. Let $d_0 = 1$, $d_1 = 0$, and $d_n = (n-1)(d_{n-1} + d_{n-2})$. Show $d_n = \lfloor n!/e \rfloor$ Conteques for n > 1.
- 3. Octahedral dice, each with its 8 sides labelled 0,1,1,1,2,2,2 and 3, rolled 2004 times total to a multiple of 3 with what probability?
- 4. Does the arrangement of nine squares in Figure 1 form a tenth square? (Bonus: Find another arrangement of noncongruent squares that makes a square.)
- 5. Let $0 \le p_i \le 1$ with $\sum_{j=1}^n p_j = 1$. Show $\prod_{j=1}^n (1 p_j) < 1/e$.
- 6. Show $\sum_{i=1}^{n} \frac{1}{p_i} \geq n^2$, with p_i as above.

417. 1

- 7. Let $f(r) = \sqrt[r]{\sum_{j=1}^{n} p_i^{r+1}}$ for r > 0, with p_j as above. Show $f(r) \ge f(s)$ for $r \ge s > 0$.
- 8. Let $S \subset \mathbb{Q}$ satisfy: $\forall b, d \in S, \exists a, c, e \in S : a < b < c < d < e$. Prove or disprove: \exists increasing bijection $f : S \to \mathbb{Q}$.
- 9. Let $b_0=2$, $b_1=3$, and $b_n=3b_{n-1}-b_{n-2}$. Let $f_n(x)=x^{2n}-b_nx^n+1$. Show $f_m(x)|f_{dm}(x)$ for integers d,m.
- 10. Let a, b be integers. Let c, d be integers such that $1 + c + d\sqrt{2} = 1$ $(a + b\sqrt{2})^{120}$. Prove or disprove: c and d are divisible by 11.
- 11. Prove or disprove: $\sin(\cos(x)) < \cos(\sin(x))$ for all x.

Figure 1: An arrangement of nine squares

- 12. Let $U_n = \{(a, b, c, d) : a, b, c, d \in \mathbb{Z}, 1 \le a, b, c \le d \le n\}$. Let $V_n = \{(e, f, g, h) : e, f, g, h \in \mathbb{Z}, 1 \le e \le f \le n, 1 \le g \le h \le n\}$. Show $|U_n| = |V_n|$.
- 13. Let f be a polynomial with integer coefficients. For $i \in \{1, ..., 10\}$, let $x_i \in \mathbb{Z}$ be distinct with $f(x_i) = 2004$. If f(y) = -2004, show $y \notin \mathbb{Z}$.
- 14. Let $A(x) = \sum_{1 \leq i,j,k \leq n} x_i^3 x_j^3 x_k^2$ and $B(x) = \sum_{1 \leq i,j,k \leq n} x_i^6 x_j^5 x_k^5$, both summed over distinct i,j,k only. Show there exists $y,z \in \{(x_1,\ldots,x_n): 0 < x_i \in \mathbb{R}\}$ with A(y) < B(y) and A(z) > B(z).
- 15. Let $\mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}$. Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be an invertible and convex function. Is there an increasing function $g : \mathbb{R}_+ \to \mathbb{R}_+$ such that g(g(x)) = f(x)?
- 16. Show $\sum_{j=1}^{n} \frac{1}{j(j+1)(j+2)(j+3)} < \frac{1}{18}$.

na i

 $g(g(x)) = 3^{\times}$ g(0) = a, g(a) = 1 g(0) = a g(0) = a, g(a) = 1 g(0) = a = 1 g