1. Solve the equation for x and choose the interval that contains the solution (if it exists).

$$5^{-4x-5} = 16^{-3x+4}$$

- A. $x \in [9, 12]$
- B. $x \in [1, 5]$
- C. $x \in [-10, -8]$
- D. $x \in [-21, -17]$
- E. There is no Real solution to the equation.
- 2. Which of the following intervals describes the Domain of the function below?

$$f(x) = -\log_2(x+1) + 3$$

- A. $[a, \infty), a \in [1.99, 4.45]$
- B. $(-\infty, a], a \in [-4.13, -2.94]$
- C. $(-\infty, a), a \in [-0.12, 1.99]$
- D. $(a, \infty), a \in [-2.12, -0.02]$
- E. $(-\infty, \infty)$
- 3. Solve the equation for x and choose the interval that contains the solution (if it exists).

$$\log_5(2x+5) + 5 = 2$$

- A. $x \in [-4, -2]$
- B. $x \in [-128, -121]$
- C. $x \in [7, 12]$

D.
$$x \in [-122, -113]$$

- E. There is no Real solution to the equation.
- 4. Which of the following intervals describes the Range of the function below?

$$f(x) = e^{x+7} + 6$$

A.
$$(-\infty, a], a \in [-8, -4]$$

B.
$$[a, \infty), a \in [3, 9]$$

C.
$$(a, \infty), a \in [3, 9]$$

D.
$$(-\infty, a), a \in [-8, -4]$$

E.
$$(-\infty, \infty)$$

5. Solve the equation for x and choose the interval that contains x (if it exists).

$$7 = \ln \sqrt[5]{\frac{6}{e^{8x}}}$$

A.
$$x \in [-1.6, -1.5]$$

B.
$$x \in [-4.22, -4.11]$$

C.
$$x \in [-1.49, -1.38]$$

- D. There is no Real solution to the equation.
- E. None of the above.