3.	Aritmética binaria

Introducción

- ☐ La aritmética binaria es esencial en los ordenadores y en muchos otros tipos de sistemas digitales
- ☐ Para comprender los circuitos aritméticos es necesario conocer los principios básicos de estas operaciones
- □ Los objetivos de este tema son:
 - Describir las operaciones de suma, resta, multiplicación y división de números binarios
 - Introducir los distintos convenios usados para la representación de números negativos
 - Detallar el proceso de realización de operaciones aritméticas en el formato más frecuentemente usado: complemento a 2

🔾 Estructura del tema

- □ Introducción
- □ Operaciones aritméticas básicas
 - Suma
 - Resta
 - Multiplicación
 - División
- □ Representación de números enteros
 - Signo-magnitud
 - Complemento a 1
 - Complemento a 2
- □ Resumen y bibliografía

Aritmética binaria

3

Suma binaria

- ☐ La operación de suma se estructura en columnas
 - El bit menos significativo del resultado de una columna es la suma de dicha columna
 - El bit más significativo del resultado de una columna pasa como acarreo a la columna siguiente
- ☐ Las cuatro reglas básicas de la suma binaria son:

 $0 + 0 = 00 \Rightarrow$ suma 0, acarreo 0

0 + 1 = 01 → suma 1, acarreo 0

 $1 + 0 = 01 \rightarrow \text{suma 1, acarreo 0}$

1 + 1 = 10 → suma 0, acarreo 1

Aritmética binaria

4 |

Suma binaria

☐ En el momento en el que aparece un acarreo igual a 1 nos vemos obligados a sumar tres bits en lugar de dos

 $1 + 0 + 0 = 01 \implies$ suma 1, acarreo 0

1 + 0 + 1 = 10 → suma 0, acarreo 1

1 + 1 + 0 = 10 → suma 0, acarreo 1

1 + 1 + 1 = 11 → suma 1, acarreo 1

□ Ejemplo: 1110 + 1010

Aritmética binaria

5 I

Suma binaria

□ Otro ejemplo: 1001001010'11 + 1101010111'1

586'75 + 855'5 = 1442'25

Aritmética binaria

3 |

Resta binaria

- ☐ La operación de resta también se organiza en columnas
- ☐ Si el minuendo es menor que el sustraendo (0 menos 1)
 - El resultado de la resta es la diferencia entre los dos
 - Se produce un acarreo negativo, es decir, sumamos 1 al sustraendo de la siguiente columna
 - Sumar un acarreo negativo a un 1 en el sustraendo implica la generación de un nuevo acarreo negativo
- □ Ejemplo: 1101 111

Aritmética binaria

, I

Resta binaria

□ Otro ejemplo: 1010101110'10 – 1001110100'01

$$686'5 - 628'25 = 58'25$$

Aritmética binaria

3 |

Multiplicación binaria

☐ Las reglas básicas de la multiplicación binaria son:

$$0 \times 0 = 0$$
 $1 \times 0 = 0$

- ☐ La multiplicación se realiza generando productos parciales, desplazando cada nuevo producto parcial una posición a la izquierda y luego sumándolos todos
- □ Ejemplo: 11 x 10

Aritmética binaria

اه

🕽 Multiplicación binaria

□ Otro ejemplo: 11010 x 101

$$26 \times 5 = 130$$

Aritmética binaria

Q División binaria

- ☐ La división binaria sigue el procedimiento tradicional de multiplicación y resta al que estamos acostumbrados
- □ Ejemplo: 110 / 11

Aritmética binaria

11

🕽 División binaria

□ Otro ejemplo: 100011 / 110

$$35 / 6 = 5 \text{ (resto} = 5)$$

Aritmética binaria

🔾 Estructura del tema

- □ Introducción
- □ Operaciones aritméticas básicas
 - Suma
 - Resta
 - Multiplicación
 - División
- □ Representación de números enteros
 - Signo-magnitud
 - Complemento a 1
 - Complemento a 2
- □ Resumen y bibliografía

Aritmética binaria

13

Números con signo

- ☐ Los sistemas digitales deben ser capaces de manejar tanto números positivos como números negativos
- ☐ Un número binario con signo se caracteriza por su magnitud y su signo
 - La magnitud indica el valor del número
 - El signo indica si es positivo o negativo
- □ Vamos a ver tres formatos binarios para representar números enteros
 - En todos ellos, el bit más significativo representa el signo
 - Todos los números en un ordenador tienen la mismo cantidad de bits, por lo que el bit de signo tiene una posición fija

Signo-magnitud

- ☐ El bit más a la izquierda representa el signo del número y el resto de bits representan la magnitud del número
- ☐ Un número negativo tiene los mismos bits de magnitud que su versión positiva, pero distinto bit de signo
 - Se utiliza un 0 para el signo positivo
 - Se utiliza un 1 para el signo negativo
- □ Dado que los números usados por un ordenador tienen tamaño fijo, supondremos números de 8 bits

Aritmética binaria

Rango de valores en signo-magnitud

- □ Los números binarios naturales de
 n bits pueden tener valores que van desde 0 hasta 2ⁿ 1
- □ Dado que los números en formato signo-magnitud usan un bit de signo, un número de n bits sólo dedicará (n − 1) bits a representar la magnitud
- □ Los números en signo-magnitud pueden tener valores que van desde $-(2^{n-1}-1)$ hasta $+(2^{n-1}-1)$

000	0
001	1
010	2
011	3
100	-0
101	– 1
110	-2
111	-3
	•

binario decimal

🔾 Aritmética en signo-magnitud

- □ Suma y resta en signo-magnitud
 - Se comparan el signo y la magnitud de los operandos
 - Si el signo de los operandos es el mismo se suman las magnitudes y se mantiene el mismo signo
 - Si el signo de los operandos es distinto, se resta la magnitud mayor menos la menor y se pone el signo de la mayor
- ☐ Multiplicación y división en signo-magnitud:
 - Se multiplican o dividen las magnitudes
 - Si los operandos tienen el mismo signo el resultado es positivo; en caso contrario el resultado es negativo

Aritmética binaria 17

🔾 Desventajas en signo-magnitud

- ☐ En el formato signo-magnitud existen dos ceros, uno positivo y otro negativo, pero con el mismo significado
- □ La multiplicación y la división pueden hacerse basándose en sumas y restas, pero es necesario tener circuitos capaces tanto de sumar como de restar
- □ Dado que las operaciones de suma y resta necesitan realizar comparaciones, los circuitos aritméticos en signo magnitud tienden a ser más lentos de lo deseado

🔾 Estructura del tema

- □ Introducción
- □ Operaciones aritméticas básicas
 - Suma
 - Resta
 - Multiplicación
 - División
- □ Representación de números enteros
 - Signo-magnitud
 - Complemento a 1
 - Complemento a 2
- □ Resumen y bibliografía

Aritmética binaria

Complemento a 1

- □ El complemento a 1 de un número binario se obtiene cambiando todos los 0 por 1 y todos los 1 por 0
- ☐ Los números positivos se representan igual que los números positivos en formato signo-magnitud
- ☐ Los números negativos son el complemento a 1 del correspondiente número positivo

Aritmética binaria

√ Valor decimal en complemento a 1

□ El valor decimal de los números positivos se calcula de la misma manera que en signo-magnitud

□ El valor decimal de los números negativos se calcula asignando el valor negativo del peso correspondiente al bit de signo y luego sumando uno al resultado

$$-2^{7} \ 2^{6} \ 2^{5} \ 2^{4} \ 2^{3} \ 2^{2} \ 2^{1} \ 2^{0}$$
1 1 1 0 1 0 1 0
-128 + 64 + 32 + 8 + 2 \rightarrow -22 + 1 \rightarrow -21

Aritmética binaria 2

Rango de valores en complemento a 1

- □ El bit más significativo de los números en formato complemento a 1 representa el signo
- □ Un número de n bits sólo dedicará (n-1) bits a representar la magnitud
- □ Los números en complemento a 1 pueden tener valores que van desde $-(2^{n-1}-1)$ hasta $+(2^{n-1}-1)$

000	0
001	1
010	2
011	3
100	-3
101	-2
110	–1
111	-0
-	-

Aritmética binaria

🔾 Generalización: complemento a la base – 1

□ El complemento a la base menos uno de un número se calcula restándolo a la potencia de la base que se corresponde con la cantidad de dígitos del número y luego restando uno al resultado

Sistema binario \rightarrow Complemento a 1 Con 3 bits \rightarrow 011₍₂₎ \rightarrow 1000₍₂₎ - 011₍₂₎ - 1 = 100₍₂₎

Sistema decimal → Complemento a 9

Con 2 dígitos decimales \Rightarrow 28₍₁₀₎ \Rightarrow 100₍₁₀₎ - 28₍₁₀₎ - 1 = 71₍₁₀₎

☐ La conversión de un número a este formato se puede realizar de forma sencilla, dígito a dígito

en binario se intercambian 0's y 1's: $011_{(2)} \rightarrow 100_{(2)}$ en decimal se resta cada dígito a 9: $28_{(10)} \rightarrow 71_{(10)}$

Aritmética binaria 2

🔾 Generalización: complemento a la base – 1

- □ Representando los números negativos en complemento a la base menos uno se simplifica la operación de resta
- ☐ La resta de dos números se expresa como la suma de un número positivo y otro negativo
 - El minuendo se mantiene positivo
 - El sustraendo se pasa a negativo calculando su complemento a la base menos uno

con 3 bits
$$\rightarrow$$
 011₍₂₎ - 011₍₂₎ = 0₍₂₎ \rightarrow 011₍₂₎ + 100₍₂₎ = 111₍₂₎ = -0 con 2 dígitos decimales \rightarrow 28₍₁₀₎ - 28₍₁₀₎ = 0₍₁₀₎ \rightarrow 28₍₁₀₎ + 71₍₁₀₎ = 99₍₁₀₎ = -0

🔾 Aritmética en complemento a 1

- □ La operación de resta es innecesaria: para restar podemos limitarnos a sumar el complemento a 1 del número que queremos restar
- □ Por ejemplo, suponiendo números de 8 bits (1 *byte*):

$$00011000 - 00011001 = 00011000 + 11100110$$

1 1 1 1 1 1 0
$$24-25=24+(-25)=-1$$

☐ La multiplicación y la división también pueden realizarse partiendo de la suma

Aritmética binaria 2:

🕽 Aritmética en complemento a 1

- □ La suma puede producir un acarreo en la última columna, que no puede representarse en 8 bits
- ☐ Para obtener el valor correcto debemos sumar este acarreo al resultado de la suma
- □ Por ejemplo, suponiendo de nuevo números de 8 bits:

$$00011001 - 00011000 = 00011001 + 11100111$$

$$25 - 24 = 25 + (-24) = 1$$

Aritmética binaria

Desbordamiento

- □ Dado que los números en un ordenador tienen una cantidad fija de bits, es posible un desbordamiento, es decir, que el resultado tenga demasiados bits
- □ Podremos identificar un resultado como incorrecto a causa de un desbordamiento porque no tendrá el signo que debería tener

	0 1	1 1	1	1	1	1	1	→	127
+	0 (0 (0	0	0	1	1	→	3
	1 (0 0	0	0	0	1	0	→	-125

→ Dos sumandos positivos no pueden sumar negativo

Aritmética binaria 2

🕽 Desventajas del complemento a 1

- □ En el formato complemento a 1 existen dos ceros, uno positivo y otro negativo, pero con el mismo significado
- □ La multiplicación, la división y la resta pueden hacerse basándose en sumas, pero los circuitos sumadores se complican porque en determinadas circunstancias hay que sumar un acarreo al resultado
- □ Debido a esta complicación, los circuitos aritméticos en complemento a 1 también tienden a ser más lentos de lo que se querría

🕽 Estructura del tema

- □ Introducción
- □ Operaciones aritméticas básicas
 - Suma
 - Resta
 - Multiplicación
 - División
- □ Representación de números enteros
 - Signo-magnitud
 - Complemento a 1
 - Complemento a 2
- □ Resumen y bibliografía

Aritmética binaria

Complemento a 2

□ El complemento a 2 de un número binario se obtiene sumando uno al bit menos significativo del complemento a 1 del número

☐ Un método alternativo es comenzar por el bit menos significativo hasta encontrar un 1 y luego hacer el complemento a 1 del resto del número

Valor decimal en complemento a 2

□ El valor decimal de los números positivos se calcula de la misma manera que en signo-magnitud

□ El valor decimal de los números negativos se calcula asignando el valor negativo del peso correspondiente al bit de signo

$$-2^{7} \ 2^{6} \ 2^{5} \ 2^{4} \ 2^{3} \ 2^{2} \ 2^{1} \ 2^{0}$$
1 1 1 0 1 0 1 1
-128 + 64 + 32 + 8 + 2 + 1 \rightarrow -21

Aritmética binaria

Rango de valores en complemento a 2

- ☐ El bit más significativo de los números en formato complemento a 2 representa el signo
- □ Un número de n bits sólo dedicará (n-1) bits a representar la magnitud
- □ Los números en signo-magnitud pueden tener valores que van desde $-(2^{n-1})$ hasta $+(2^{n-1}-1)$

000	0
001	1
010	2
011	3
100	-4
101	-3
110	-2
111	-1

🕽 Generalización: complemento a la base

□ El complemento a la base de un número se calcula restándolo a la potencia de la base correspondiente a la cantidad de dígitos del número

Sistema binario \rightarrow Complemento a 2 Con 3 bits \rightarrow 011₍₂₎ \rightarrow 1000₍₂₎ - 011₍₂₎ = 101₍₂₎

Sistema decimal → Complemento a 10

Con 2 dígitos decimales \Rightarrow 28₍₁₀₎ \Rightarrow 100₍₁₀₎ – 28₍₁₀₎ = 72₍₁₀₎

□ Representando los números negativos en complemento a la base se simplifica la resta, permitiendo expresarla como la suma de un número positivo y otro negativo

Con 3 bits \rightarrow 011₍₂₎ - 011₍₂₎ = 0₍₂₎ \rightarrow 011₍₂₎ + 101₍₂₎ = $\cancel{(}000_{(2)}$ Con 2 dígitos decimales \rightarrow 28₍₁₀₎ - 28₍₁₀₎ = 0₍₁₀₎ \rightarrow 28₍₁₀₎ + 72₍₁₀₎ = $\cancel{(}00_{(10)}$

Aritmética binaria 33

📿 Ventajas del complemento a 2

- □ Solo existe una representación del cero
- □ Todas las operaciones pueden hacerse con un circuito sumador, más simple que el usado por signo-magnitud o complemento a 1 y, por tanto, más rápido
- ☐ Por estos motivos, el complemento a 2 es el formato más utilizado por los ordenadores actuales

binario	signo-magnitud	complemento a 1	complemento a 2
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	-0	− 3	–4
101	-1	-2	-3
110	-2	– 1	-2
111	-3	-0	- 1

🕽 Suma en complemento a 2

- □ Dado que el complemento a 2 es el formato más usado, estudiaremos su aritmética con más detalle
- □ Vamos a suponer que los números con los que trabajaremos tienen 8 bits (1 byte)
- ☐ A la hora de sumar dos números en complemento a 2, existen cuatro situaciones posibles
 - Ambos números son positivos
 - Los dos números tienen distinto signo
 - El número positivo tiene un valor absoluto mayor que el negativo
 - El número negativo tiene un valor absoluto mayor que el positivo
 - Ambos números son negativos

Aritmética binaria 3

🔾 Suma en complemento a 2

- ☐ Si los dos valores sumados son positivos, el resultado también será positivo
- □ Existe la posibilidad de un desbordamiento (*overflow*), es decir, de obtener un resultado incorrecto porque necesita más bits de los que se pueden representar

Suma en complemento a 2

- □ Si los dos valores sumados son negativos el resultado también será negativo
- □ Existe la posibilidad de que aparezca un acarreo (*carry*) pero no invalida el resultado y debe descartarse

Aritmética binaria 3

🕽 Suma en complemento a 2

☐ Si los dos valores sumados son negativos también existe la posibilidad de que ocurra un desbordamiento y, por tanto, el resultado sea incorrecto

1 0 0 0
$$\stackrel{1}{0}$$
 0 1 1 \Rightarrow -125
+ 1 1 0 0 0 1 1 0 \Rightarrow -58
1 0 1 0 0 1 0 0 1 \Rightarrow -183 (min = -2⁷ = 128)
Overflow!! El resultado debe ser negativo
Carry!! Se descarta

Suma en complemento a 2

- ☐ Si los dos valores sumados tienen distinto signo es imposible que ocurra un desbordamiento
- □ Cuando el valor absoluto del número positivo es mayor que el del negativo puede aparecer un acarreo, pero se descarta y el resultado es correcto

Aritmética binaria 3

🕽 Resta en complemento a 2

□ Para restar dos números se calcula el complemento a 2 del número restado y se suman, descartando cualquiera acarreo que pueda aparecer y controlando la posibilidad de que ocurra un desbordamiento

$$57 - 29 = 57 + (-29) = 28$$

$$\stackrel{1}{0} \stackrel{1}{0} \stackrel{1}{0} \stackrel{1}{1} \stackrel{1}{0} \stackrel{1}{0} \stackrel{1}{0} \stackrel{1}{1} \longrightarrow 57$$

$$+ 1 1 1 0 0 0 1 1 \longrightarrow -29$$

$$\stackrel{2}{0} \stackrel{1}{0} \stackrel{1}{0}$$

➤ Carry!! Se descarta y el resultado es correcto

🕽 Resta en complemento a 2

□ Para restar dos números se calcula el complemento a 2 del número restado y se suman, descartando cualquiera acarreo que pueda aparecer y controlando la posibilidad de que ocurra un desbordamiento

$$-125 - 58 = -125 + (-58) = -183$$

→ Overflow!! El resultado debe ser negativo→ Carry!! Se descarta

Aritmética binaria

11

Sumas o restas en cadena

☐ Para sumar o restar varios números aplicamos la propiedad asociativa, es decir, sumamos o restamos los números de dos en dos

$$68 + 27 + 14 + 18 = ((68 + 27) + 14) + 18 = 127$$

Aritmética binaria

🔾 Multiplicación en complemento a 2

- ☐ La suma directa es el método más simple: sumar el multiplicando tantas veces como el multiplicador
- ☐ La desventaja de este método es que puede llegar a ser muy lento si el multiplicador es muy grande
- □ El método más común es el de los productos parciales
 - Se multiplica el multiplicando por cada bit del multiplicador
 - Cada producto parcial se desplaza un bit a la izquierda
 - La suma de los productos parciales nos da el resultado

Aritmética binaria 4

🔾 Multiplicación en complemento a 2

- ☐ El signo del resultado depende de los signos de los números multiplicados
 - Si son del mismo signo, el resultado es positivo
 - Si son de distinto signo, el resultado es negativo
- ☐ Después de comprobar los signos, los números a multiplicar deben ser pasados a binario real
- ☐ Es bastante posible que el resultado tenga más bits que la representación de los operandos

$$3 \times 3 = 9 \rightarrow 11 \times 11 = 1001$$

🔾 Multiplicación en complemento a 2

- \Box Ejemplo: 83 X -59 = -4897
- ☐ Los números tienen distinto signo, luego el resultado será un número negativo

83 = 01010011 -59 = 11000101

- ☐ Pasamos los números a binario real
 - Ignoramos el bit de signo del número positivo
 - Deshacemos el complemento a 2 del número negativo y luego ignoramos el bit de signo

83 = 01010011 $-59 = 11000101 \rightarrow 59 = 00111011$

Aritmética binaria 4

Multiplicación en complemento a 2

□ Realizamos la multiplicación entre los dos números positivos

ros positivos		U	1	U	1	U	U	1	1
	Х	0	0	1	1	1	0	1	1
			1	0	1	0	0	1	1
	+	1	0	1	0	0	1	1	
		1	1	1	1	1	0	0	1
+	0	0	0	0	0	0	0		
	0	1	1	1	1	1	0	0	1
+ 1	0	1	0	0	1	1			
1	1	1	0	0	1	0	0	0	1
+ 1 0	1	0	0	1	1				
1 0 0	0	1	1	0	0	0	0	0	1
+101	0	0	1	1					
1 0 0 1	1	0	0	1	0	0	0	0	1

Aritmética binaria

Multiplicación en complemento a 2

- ☐ Multiplicando números de 8 bits hemos obtenido un resultado de 13 bits
 - Supondremos que el resultado tiene 16 bits
 - Será importante recordar esto para diseñar multiplicadores
 - Dado que hemos multiplicado dos números positivos, el bit de signo debe ser positivo o habrá habido un desbordamiento

0001001100100001

☐ Una vez obtenido el resultado, y dado que habíamos determinado que éste era negativo, calculamos el complemento a 2 del mismo

0001001100100001 **→** 1110110011011111

Aritmética binaria 4

División en complemento a 2

- ☐ El esquema básico de división usado en los ordenadores está basado en la resta
- □ Dado que las restas en complemento a 2 son sumas, la división puede realizarse con circuitos sumadores
- ☐ El signo del resultado depende de los signos de los dos operandos de la división
 - Si son del mismo signo, el resultado es positivo
 - Si son de distinto signo, el resultado es negativo
- ☐ Tras comprobar los signos, cualquier número negativo debe ser convertido en el positivo corresponidente

🔾 División en complemento a 2

- \Box Ejemplo: 100 / 25 = 4
- □ Los números tienen el mismo signo, luego el resultado será un número positivo

- 25 = 00011001
- ☐ En caso de que alguno de ellos hubiera sido un número negativo hubiéramos tenido que deshacer el complemento a 2
- □ El valor inicial del cociente es cero

$$C = 0$$

Aritmética binaria

10

🕽 División en complemento a 2

□ Restamos el divisor del dividendo (sumando su complemento a 2) para obtener el primer resto parcial y luego sumamos uno al cociente

$$01100100 - 00011001$$

$$C = C + 1 = 0 + 1 = 1$$

- ☐ Si el resto parcial es cero o negativo, damos la división por finalizada
- ☐ Si el resto parcial es positivo, repetimos el proceso, restando el divisor del resto parcial y volviendo a sumar uno al cociente

Aritmética binaria

🔾 División en complemento a 2

□ Segunda iteración:

$$01001011 - 00011001$$
 $01001011 + 11100111 = 100110010$
 $C = C + 1 = 1 + 1 = 10$

□ Tercera iteración:

$$00110010 - 00011001$$

 $00110010 + 11100111 = 100011001$
 $C = C + 1 = 10 + 1 = 11$

Aritmética binaria

51

🔾 División en complemento a 2

□ Cuarta iteración:

$$00011001 - 00011001$$

 $00011001 + 11100111 = 100000000$
 $C = C + 1 = 11 + 1 = 100$

- □ El resto parcial es cero, por lo que la división termina
- □ Sólo queda asegurarse de que el bit de signo es el correcto, en este caso, signo positivo

$$C = 100$$
7 bits magnitud $\rightarrow C = 0000100$
1 bit de signo positivo $\rightarrow C = 00000100$

Aritmética binaria

Estructura del tema

- □ Introducción
- □ Operaciones aritméticas básicas
 - Suma
 - Resta
 - Multiplicación
 - División
- □ Representación de números enteros
 - Signo-magnitud
 - Complemento a 1
 - Complemento a 2
- □ Resumen y bibliografía

Aritmética binaria

53

Resumen

- ☐ La comprensión de las operaciones básicas de la aritmética binaria es importante para el diseño de los circuitos digitales que las realizan
- ☐ Existen varios formatos que permiten la representación de números enteros negativos
- □ Los ordenadores actuales utilizan generalmente el formato de complemento a 2 para representar números negativos porque permite simplificar en gran medida el diseño de los circuitos necesarios

Aritmética binaria

Q Bibliografía

Fundamentos de Sistemas Digitales (7ª edición)

Capítulo 2 Thomas L. Floyd Prentice Hall, 2000

Principios de Diseño Digital

Capítulo 2 Daniel D. Gajski Prentice Hall, 1997