

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ

Katedra fyzikální elektroniky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Student: Bc. Petr V a l e n t a

Obor: Informatická fyzika

Školní rok: **2016/2017**

Zaostření krátkého intenzivního laserového impulsu do velmi malého

ohniska v PIC simulacích interakce s plazmatem

Název práce:

Tight-focusing of short intense laser pulses in PIC simulations of

laser-plasma interaction

Vedoucí práce: doc. Ing. Ondřej Klimo, PhD.

Konzultant: Dr. Stefan Weber

Cíl práce:

Cílem práce je implementovat novou okrajovou podmínku v PIC simulačním kódu EPOCH (případně vytvořit za tímto účelem zvláštní program), která umožní simulaci krátkého intenzivního laserového impulsu zaostřeného do ohniska menšího, než umožňuje paraxiální aproximace. Tato okrajová podmínka bude otestována a použita v modelových simulacích, kde bude studován vliv zaostření laserového impulsu na průběh laserové interakce s plazmatem.

Pokyny pro vypracování:

1) Seznamte se s fyzikou šíření a fokusace krátkých ultra-intenzivních laserových impulsů. Popište paraxiální aproximaci a její omezení a vypracujte přehled možností zaostření laserových impulsů do velmi malého ohniska.

- 2) Připravte metodu pro zadání okrajové podmínky v PIC simulacích s kódem EPOCH, která umožní zaostření laserového impulsu do ohniska menšího než je střední vlnová délka laserového záření. Metodu implementujte a otestujte.
- 3) Pro vybrané případy provádějte simulace interakce laserového záření s plazmatem a popište kvantitativní a kvalitativní rozdíly v závislosti na velikosti ohniska.

Literatura:

Datum zadání:

- 1) P. Gibbon, *Short Pulse Laser Interactions with Matter*, Imperial College Press, London, 2005.
- 2) T. D. Arber et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Physics and Controlled Fusion 57, 113001 (2015).
- 3) A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer, SpringerBriefs in Physics, Springer, Dordrecht (2013).
- 4) C. K. Birdsall, A. B. Langdon, Plasma Physics via Computer Simulation, Hilger, Bristol (1991).
- 5) I. Thiele et al., Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes, Journal of Computational Physics 321, 1110 (2016).
- 6) R. L. Garay-Avendaño et al., Exact analytic solutions of Maxwell's equations describing propagating nonparaxial electromagnetic beams, Applied Optics 53, 4524 (2014).
- 7) JX. Li. et al., Fields of an ultrashort tightly focused laser pulse, Journal of the Optical Society of America B 33, 405 (2016).

	5	
Datum odevzdání:	5.květen 2017	
Vedoucí katedry		Děkan

říjen 2016