1. This is the problem from Practice Problems 1.
Using Node Voltage
Analysis, determine the current I.

 $V_1 = 0.70 \text{ V}$ $V_2 = 0.34 \text{ V}$

[‡] 3V3 is shorthand for 3.3 V. You will see this often on schematics.

2. This is the problem from Lecture 2.

Using Node Voltage Analysis, V_1 , V_2 , and V_3 .

Then find the current through the battery.

$$V_2 = 6.61 \text{ V}$$

 $V_3 = 6.12 \text{ V}$

$$I = 2.33 \text{ A}$$

3. This is the same circuit as Problem 2. The reference node has moved.

Using Node Voltage Analysis, find V_1 , V_2 , and V_3 .

Then find the current through the battery.

(Note: with the ground at a different node, you now have 3 unknown nodes. But you also know the voltage relationship between 2 of them.)

$$V_1 = 5.88 \text{ V}$$

 $V_2 - 0.49 \text{ V}$
 $V_3 = -6.12 \text{ V}$
 $I = 2.33 \text{ A}$

4. Find the three voltages. You may need to dig a little to work this problem.

$$V_1 = 7.2 \text{ V}$$

 $V_2 = 17.4 \text{ V}$
 $V_3 = 9.6 \text{ V}$

5. Choose (judiciously) a reference node. Then find the current through the 7 V battery.

You may need to dig a little to work this problem. Note: if you choose to solve this problem using Mesh Current Analysis, you are on your own.

CHOOSING V_4 TO BE THE REFERENCE NODE, $I_7 = -1.84$ A (left to right, into the node)

CHOOSING V_2 TO BE THE REFERENCE NODE, $I_7 = -1.84$ A (left to right, into the node)

These problems will exercise your knowledge of KVL and KCL. Be sure to watch the video. "Legal" means that KCL and KVL are satisfied.

4. Is this a "legal" circuit? If not, why not?

Circuit is legal.

5. Is this a "legal" circuit? If not, why not?

Circuit is illegal.