

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

По лабораторной работе № 1

По курсу: «Моделирование»

Тема: «Генераторы случайных чисел»

Студент: Керимов А. Ш.

Группа: ИУ7-74Б

Оценка (баллы): _____

Преподаватель: Рудаков И. В.

Оглавление

1	Теоретическая часть				
	1.1	Вихрь Мерсенна	3		
	1.2	Табличный метод	3		
	1.3	Критерий равномерности	3		
2 Результат работы					
Вывод					

1 Теоретическая часть

1.1 Вихрь Мерсенна

В качестве генератора псевдослучайных чисел был выбран вихрь Мерсенна, а именно вариант МТ19937 с периодом $2^{19937} - 1$, поставляемый стандартной библиотекой языка C++.

Алгоритм основывается на свойствах простых чисел Мерсенна и обеспечивает быструю генерацию высококачественных по критерию случайности псевдослучайных чисел.

Вихрь Мерсенна лишён многих недостатков, присущих другим ГПСЧ, таких как малый период, предсказуемость, легко выявляемые статистические закономерности.

1.2 Табличный метод

Табличные генераторы в качестве источника случайных чисел используют специальным образом составленные таблицы, содержащие проверенные некоррелированные цифры.

Табличный генератор случайных чисел в лабораторной работе использует таблицу из книги «A Million Random Digits with 100,000 Normal Deviates».

1.3 Критерий равномерности

В качестве критерия равномерности был выбран критерий серий.

Пусть имеется последовательность целых чисел $\langle X_{2n} \rangle = X_0, X_1, \dots, X_{2n-1}$, элементы которого, как предполагается, независимы и распределены между 0 и d-1. Требование, предъявляемое к этой последовательности, состоит в следующем: пары последовательных чисел должны быть распределены независимо и равномерно.

Рис. 1.1: Геометрический смысл критерия серий

Для каждой категории чисел (q,r), где $0 \le q,r < d$, подсчитываем количество случаев, когда пара $(X_{2j},X_{2j+1})=(q,r)$ для $j=\overline{0,n-1}$. Затем применяем критерий хи-квадрат к этим $k=d^2$ категориям, с вероятностью $p=1/d^2$ отнесения пары чисел к каждой из категорий.

В критерии хи-квадрат вычисляется статистика

$$\chi^2 = \sum_{i=0}^{k-1} \frac{(Y_i - np_i)^2}{np_i},\tag{1.1}$$

где n — число независимых наблюдений, p_i — вероятность того, что наблюдение относится к категории i, Y_i — число наблюдений, которые относятся к категории i, при этом:

$$\sum_{i=0}^{k-1} Y_i = n, \quad \sum_{i=0}^{k-1} p_i = 1. \tag{1.2}$$

С учётом также $p_0=p_1=\ldots=p_{k-1}=p,$ формулу (1.1) можно преобразовать:

$$\chi^2 = \frac{p}{n} \sum_{i=0}^{k-1} Y_i^2 - n. \tag{1.3}$$

Число степеней свободы ν статистики хи-квадрат на единицу меньше числа категорий k. Далее значение статистики сравнивается с приемлемым (табличным). Если значение χ^2 много больше или много меньше табличного, то гипотеза о равномерности случайной величины не выполняется, т. к. разброс чисел слишком велик или мал соответственно. Если значение χ^2 лежит между теоретическими значениями двух рядом стоящих столбцов — гипотеза о равномерности случайной величины выполняется с вероятностью p, которая, в идеале, должна стремиться к 50 %, но хорошим считается результат 5 — 95 %.

Таблица 1.1: Некоторые процентные точки χ^2 -распределения

	$\nu = 99$	$\nu = 8099$	$\nu = 809999$
p = 0.999	61,137	7711,395	806071,478
p = 0.995	66,510	7774,928	806724,263
p = 0.99	69,230	7805,867	807040,986
p = 0.975	73,361	7851,452	807506,270
p = 0.95	77,046	7890,800	807906,582
p = 0.75	89,181	8012,797	809140,152
p = 0.5	98,334	8098,333	809998,333
p = 0.25	108,093	8184,476	810857,121
p = 0.05	123,225	8309,474	812093,692
p = 0.025	128,422	8350,336	812495,519
p = 0.01	134,642	8398,015	812962,897
p = 0.005	138,987	8430,585	813281,250
p = 0.001	148,230	8498,004	813937,922

2 Результат работы

Для исследования генераторов псевдослучайных чисел алгоритмическим методом было сгенерировано по $2\,000\,000$ одно-, двух- и трёх-разрядных чисел, табличным методом — по $150\,000$ чисел.

Рис. 2.1: Результат работы программы

Вывод

Рассмотрены алгоритмический (МТ19937) и табличный генераторы псевдослучайных чисел. Оба метода удовлетворяют критерию серий — получают оценку 5-95%, а именно:

Таблица 2.1: Оценка ГПСЧ

	09	1099	100999
Алгоритмический метод	$p = 72,\!422~\%$	p = 93,923 %	p = 74,400 %
Табличный метод	p = 55,227 %	p = 92,639 %	p = 54,141 %

Достоинством данных методов является быстродействие и генерация качественных псевдослучайных чисел. Хороший результат табличного ГПСЧ обусловлен тем, что в таблице содержатся проверенные некоррелированные цифры. В то же время, для хранения большого количества цифр, от которого зависит период генератора, требуется много памяти.

Алгоритм МТ19937 этих недостатков лишён, его период составляет практически недостижимые $2^{19937}-1$, однако по качеству генерируемых чисел немного уступает табличному методу.