BECA / Dr. Huson / Geometry 09-Congruence-transformat<br/>Name: pset ID: 160

## 9-7CW-Similarity-review

- 1. Find the image of P(1, -4) after the translation  $(x, y) \to (x 5, y + 4)$ .
- 2. Given  $\triangle ABC \sim \triangle DEF$ .  $m \angle A = 90^{\circ}$  and  $m \angle F = 45^{\circ}$ . Find the measure of  $\angle D$ .
- 3. In the diagram of  $\triangle ABC$ , D is a point on  $\overline{BA}$ , E is a point on  $\overline{BC}$ , and  $\overline{DE}$  is drawn. If BD=6.5, DA=13, and BE=8, what is the length of  $\overline{BC}$  so that  $\overline{AC} \parallel \overline{DE}$ ?



4. In diagram below, each centimeter represents one foot. Find the length of each side in feet. (measure with a metric scale)









(c) AB =



(d) Find the area of  $\triangle ABC$ 

5. Given  $\triangle ABP \sim \triangle JKP$  as shown below.  $AB=13.5,\ AP=10.0,\ BP=9,$  and JP=27.0. Find JK.



6. A dilation centered at the origin with scale factor  $k = \frac{1}{2}$  maps  $\overline{AB} \to \overline{A'B'}$ .



(b) What is the ratio of the length of  $\overline{A'B'}$  to  $\overline{AB}$ ?



- (c) What is the relationship of the slope of  $\overline{A'B'}$  and  $\overline{AB}$ ?
- 7. A translation maps  $N(-2,7) \to N'(-4,9)$ . What is the image of M(3,-1) under the same translation?

BECA / Dr. Huson / Geometry 09-Congruence-transformat<br/>N ${\bf ns}$ ne: pset ID: 160

8. The vertices of  $\triangle JKL$  have the coordinates J(-4,-2), K(4,2), and L(-2,4), as shown.

Apply a dilation to  $\triangle JKL \to \triangle J'K'L'$ , centered on the origin and with a scale factor k=1.5. Draw the image  $\triangle J'K'L'$  on the set of axes below, labeling the vertices, and make a table showing the correspondence of both triangles' coordinate pairs.



9. A dilation centered at A maps  $\triangle ABC \rightarrow \triangle ADE$ . Given AB = 9, AC = 6, BD = 15, and DE = 16. Find AD and the scale factor k. Then find AE and BC.

(a) 
$$AD =$$

(b) 
$$k =$$

(c) 
$$AE =$$

(d) 
$$BC =$$



10. The line  $\overrightarrow{AB}$  has the equation  $y = -\frac{1}{2}x + 2$ . Apply a dilation mapping  $\overrightarrow{AB} \to \overrightarrow{A'B'}$  with a factor of k = 2 centered at the origin. Draw and label the image on the grid. Write the equation of the line  $\overrightarrow{A'B'}$ .



11. The diagram below shows  $\triangle ABC$ , with  $\overline{AEB}$ ,  $\overline{ADC}$ , and  $\angle ACB \cong \angle AED$ . AB = 18, AD = 12, AE = 9, and DE = 7. Find the scale factor k, AC, and BC.

(a) 
$$k =$$

(b) 
$$AC =$$

(c) 
$$BC =$$



12. In the diagram below, the chords  $\overline{AE}$  and  $\overline{BD}$  intersect at C. Given  $\triangle ABC \sim \triangle DEC$ , BC=6, CD=10, and CE=8. Determine the length of  $\overline{CA}$ .



## Congruence transformations

13. What transformation or series of transformations map  $\triangle ABC$  onto  $\triangle DEF$ , shown below? Fully specify the transformation(s).



14. Reflect  $\triangle ABC$  over the y-axis. Make a table of the coordinates and plot and label the image on the axes.



15. Rotate  $\triangle ABC$  90° counterclockwise around the origin, yielding  $\triangle A'B'C'$ . Then translate it by  $(x,y) \rightarrow (x+2,y+7)$ . Make a table of the coordinates showing  $\triangle ABC \rightarrow \triangle A'B'C' \rightarrow \triangle A''B''C''$  and plot and label the images on the axes.



16. The  $\triangle ABC$  is reflected across l to yield  $\triangle A'B'C'$ . AB = 4x + 4, A'B' = 7x - 8, and BC = 5x + 10. Find the length B'C'.



BECA / Dr. Huson / Geometry 09-Congruence-transformat**Nam**e: pset ID: 160

## Using the distance formula to prove an isosceles triangle

17. In this problem use the following theorem (copy it at the bottom of the page after your calculations):

A triangle is isosceles if and only two of its sides are congruent.

Shown below is triangle ABC, A(-2,2), B(4,5), and C(1,-1).

Prove it is an isosceles triangle by

- (a) finding the length of each of the three sides,
- (b) stating which sides are congruent,
- (c) copying the theorem as your conclusion, adding therefore  $\triangle ABC$  is isosceles.

