Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea semanal 04:

Análisis de Argumentos

 $\begin{array}{c} Pablo~A.~Trinidad~Paz\\ 419004279\end{array}$

- 1. Sea Γ un conjunto de fórmulas y τ una tautología. Si Γ es insatisfacible, ¿como es $\Gamma \cup \{\tau\}$?
 - El nuevo conjunto de fórmulas $\varphi = \Gamma \cup \{\tau\}$ sigue siendo insatisfacible porque para que sea satisfacible debe existir una interpretación \mathcal{I} tal que $\mathcal{I}(P) = 1$ para toda $P \in \varphi$ y aunque todos los estados de τ son modelos, sabemos que no existe ningún estado de que satisfaga todas las fórmulas de Γ .
- 2. Decide si los siguientes conjuntos de fórmulas son satisfacibles. Justifica.
 - $\Gamma_1 = \{ p \lor q \lor r, \neg p, \neg q, \neg r \}$

Para probar si el conjunto de fórmulas Γ_1 es satisfacible podemos asumirlo y tratar de encontrar los estados de cada variable proposicional.

- 1) $\mathcal{I}(\Gamma_1) = 1$
- 2) $\mathcal{I}(p \vee q \vee r) = 1$
- 3) $\mathcal{I}(\neg p) = 1$
- 4) $\mathcal{I}(\neg q) = 1$
- 5) $\mathcal{I}(\neg r) = 1$
- 6) I(p) = 0 (por 3)
- 7) I(q) = 0 (por 4)
- 8) I(r) = 0 (por 5)

Hemos llegado a una contradicción ya que $\mathcal{I}(p \vee q \vee r) \text{ no puede evaluarse a 1}$ porque p,q y r son 0

 $\therefore \nexists I \mid I(P) = 1 \forall P \in \Gamma_1$

 Γ_1 es Insatisfacible

 $\Gamma_2 = \{p, \neg p \lor q, \neg p \lor r\}$

Para probar si el conjunto de fórmulas Γ_2 es satisfacible podemos asumirlo y tratar de encontrar los estados de cada variable proposicional.

- 1) $\mathcal{I}(\Gamma_2) = 1$
- 2) I(p) = 1
- 3) $\mathcal{I}(\neg p \lor q) = 1$
- 4) $\mathcal{I}(\neg p \lor r) = 1$
- 5) I(q) = 1 (por 2)
- 6) $\mathcal{I}(r) = 1 \text{ (por 2)}$

$$\therefore \exists I \mid I(P) = 1 \forall P \in \Gamma_2$$

 Γ_2 es **Satisfacible** (En el estado anterior)

- 3. Decide si las siguientes afirmaciones son ciertas o no. Si lo son, justifica; Si no lo son, da un contraejemplo.
 - a) Si $\{P_1, P_2, ..., P_n\}$: C es un argumento incorrecto, entonces el conjunto $\{P_1, P_2, ..., P_n, C\}$ es insatisfacible.

Si $\{P_1, P_2, ..., P_n\}/$ C es un argumento incorrecto, quiere decir que la fórmula $\varphi = P_1 \wedge P_2 \wedge P_3 \wedge ... \wedge P_n \to C$ no es tautología pero no limita a que sí existan algunos estados que sean modelo, por lo tanto el conjunto de fórmulas $\{P_1, P_2, ..., P_n, C\}$

NO necesariamente es insatisfacible

CONTRAEJEMPLO:

 $\{p \lor q\}/ \therefore p \land q$ es un argumento incorrecto porque se evalua en 0 cuando p=1 y q=0

$$p \lor q \to p \land q$$

$$1 \lor 0 \to 1 \land 0$$

$$1 \rightarrow 0 = 0$$

Pero el conjunto de fórmulas $\varphi=\{p\vee q,p\wedge q\}$ es satisfacible para el estado: p=1 y q=1

$$\mathcal{I}(1 \lor 1) = 1, \mathcal{I}(1 \land 1) = 1$$

$$\therefore \exists I \,|\, I(P) = 1 \forall P \in \varphi$$

: La afirmación anterior (a) es falsa.

- b) Cualquier argumento incorrecto se puede convertir en uno válido agragando una hipótesis extra.
 - Si $\{H_1, H_2, ..., H_n\}/$ ∴ C es un argumento incorrecto, quiere decir que existe un estado de las variables que evalua la implicación a falso, es decir, $H_1 \wedge H_2 \wedge ... \wedge H_n \rightarrow C = 0$. También, sabemos que una implicación sólamente es falsa cuando el precedente es verdadero y el consecuente es falso $(1 \rightarrow 0)$. Sabiendo esto, si agregamos una nueva hipótesis que evalue la conjunción a falso, la implicación se vuelve verdadera porque $0 \rightarrow 0 = 1$.

i.e:
$$H_1 \wedge H_2 \wedge ... \wedge H_n \rightarrow C = 0$$

$$H_1 \wedge H_2 \wedge ... \wedge H_n = 1$$

$$C = 0$$

$$1 \rightarrow 0 = 0$$

Si agregamos una nueva hipótesis P donde P=0, entonces la nueva conjunción $H_1 \wedge H_2 \wedge ... \wedge H_n \wedge P=0$ dando como resultado una implicación del siguiente tipo: $0 \to 0$ la cual es verdadera

∴ La afirmación anterior (b) es verdadera.