Analyse I & II

Notes de cours pour MAT129 et MAT346 Université de Sherbrooke

> Maxence Mayrand Département de mathématiques Université de Sherbrooke

> > 6 décembre 2024

Table des matières

1	Le système des nombres réels					
	1.1	Les axiomes de l'analyse réelle	5			
	1.2	Quelques conséquences des axiomes	8			
	1.3	Supremum et infimum	14			
	1.4	Quelques propositions utiles avec $\varepsilon > 0$	17			
	1.5	Exercices	18			
2	Suites et convergence 20					
	2.1	Définition de la limite d'une suite	20			
	2.2	Quelques propriétés des limites	23			
	2.3	Suites monotones	26			
	2.4	Le nombre d'Euler	29			
	2.5	Ensembles dénombrables et non dénombrables	31			
	2.6	Sous-suites	34			
	2.7	Suites de Cauchy	36			
	2.8	Vers l'infini	40			
	2.9	Exercices	41			
3	Séries 43					
	3.1	Convergence d'une série	43			
	3.2	Tests de convergence	46			
	3.3	Convergence absolue et conditionnelle	50			
	3.4	Exercices	54			
4	Fonctions 56					
	4.1	Points d'accumulation	56			
	4.2	Limite	58			
	4.3	Limite à gauche, à droite et à l'infini	62			
	4.4	Continuité	63			
	4.5	Continuité uniforme	67			
	4.6	Fonctions trigonométriques	69			
	4.7	Exercices	73			

5	Dér	ivation	75			
	5.1	Définition de la dérivée	75			
	5.2	Propriétés de la dérivée	78			
	5.3	Théorème de la moyenne	81			
	5.4	Règle de l'Hôpital	85			
	5.5	Théorème de Taylor	88			
	5.6	La méthode de Newton	93			
	5.7	Exercices	96			
6	Intégration 98					
	6.1	Fonctions bornées sur un segment	98			
	6.2	Définition de l'intégrale	99			
	6.3	Critères d'intégrabilité	103			
	6.4	La fonction de Thomae	107			
	6.5	Critère de Lebesgue	109			
	6.6	Propriétés	111			
	6.7	Théorème fondamental du calcul différentiel et intégral	117			
	6.8	Techniques d'intégration	119			
	6.9	Intégrales impropres et test de l'intégrale	122			
	6.10	Exercices	126			
7	Suites de fonctions 129					
	7.1	Convergence ponctuelle et uniforme	129			
	7.2	Propriétés de la convergence uniforme	132			
	7.3	Fonction exponentielle et fonction logarithmique	135			
	7.4		141			
	7.5	La fonction gamma	142			
	7.6	· · · · · · · · · · · · · · · · · · ·	145			
	7.7		148			
8	Séries de fonctions					
	8.1		150			
	8.2		154			
	8.3		157			
	8.4		162			
	8.5	V	165			
	8.6		178			

Avant-propos

Ces notes sont en cours de rédaction pour les cours d'analyse I et II (MAT129 et MAT346) de l'Université de Sherbrooke. Elles seront mises à jour de manière continue tout au long du trimestre. Elles sont largement inspirées des livres *Introduction à l'analyse réelle* de Labelle et Mercier [1], *Real Analysis and Applications : Theory in Practice* de Davidson et Donsig [2], *Principles of mathematical analysis* de Rudin [3], et *Introduction to real analysis* de Bartle et Sherbert [4]. Aucun de ces livres n'est obligatoire pour le cours.

Le but principal de l'analyse réelle est d'établir une base solide et rigoureuse au calcul différentiel et intégral. Par exemple, on sait bien que

$$\lim_{x \to 0} \frac{\sin x}{x} = 1,$$

car quand x « s'approche » de 0, alors $\frac{\sin x}{x}$ « s'approche » de 1. Mais, qu'est-ce que « s'approcher » veut vraiment dire mathématiquement? Une fonction continue est une fonction « inintérompue » ou « qui peut se dessiner sans lever le crayon », mais peut-on définir précisément ce que cela veut dire pour une fonction abstraite $f: \mathbb{R} \to \mathbb{R}$ qui n'est pas donnée par un dessin? Par exemple, la fonction

$$f(x) = \sum_{n=0}^{\infty} \frac{\cos(5^n \pi x)}{2^n}$$

est-elle continue? Et que veut vraiment dire une somme infinie $\sum_{n=0}^{\infty}$? Peut-on donner une définition de l'intégrale $\int_0^1 f(x) dx$ plus précise que « l'aire sous la courbe »? Nous allons répondre à toutes ces questions dans les cours MAT129 (Analyse I) et MAT346 (Analyse II). En analyse, nous définissons ces concepts de manière rigoureuse et nous démontrons ensuite des conséquences de ces définitions. Par exemple, le célèbre théorème fondamental du calcul différentiel et intégral

$$\int_{a}^{b} F'(x)dx = F(b) - F(a) \tag{0.1}$$

prendra un tout autre sens : après avoir bien défini la dérivée et l'intégrale, ce résultat sera vu comme une conséquence logique des définitions, démontré hors de tout doute.

Symboles et notations

```
\mathbb{R}
         nombres réels
 \mathbb{N}
         entiers naturels \{1, 2, 3, 4, 5, \ldots\}
  \mathbb{Z}
         entiers relatifs
         nombres rationnels
 \mathbb{Q}
  \emptyset
         ensemble vide
         infini
 \infty
  \forall
         pour tout
  \exists
         il existe
  ∄
         il n'existe pas
 ∃!
         il existe un unique
 \subseteq
         inclus dans
  \in
         appartient à
  ∉
         n'appartient pas à
 U
         union
 \cap
         intersection
         implique que
\iff
         si et seulement si
sup
         supremum
inf
         infimum
         maximum
max
         minimum
min
 n!
         factorielle de l'entier naturel n
 |x|
         valeur absolue du nombre réel x
        = \{x \in \mathbb{R} : a \le x \le b\} intervalle fermé
[a,b]
        = \{x \in \mathbb{R} : a < x < b\} intervalle ouvert
(a,b)
[a,b)
        = \{ x \in \mathbb{R} : a \le x < b \}
        = \{ x \in \mathbb{R} : a < x \le b \}
(a,b]
```

Chapitre 1

Le système des nombres réels

Le but de l'analyse réelle est d'établir une base solide et rigoureuse au calcul différentiel et intégral. Il est alors nécessaire, avant toute chose, de définir précisément ce qu'on entend par les nombres réels eux-mêmes. C'est ce que nous aborderons dans ce chapitre.

1.1 Les axiomes de l'analyse réelle

L'objet d'étude de l'analyse réelle est le système des nombres réels, soit l'ensemble \mathbb{R} muni de ses opérations d'addition $(x,y) \mapsto x+y$, de multiplication $(x,y) \mapsto x \cdot y$, et sa relation d'ordre \leq (plus petit ou égal). Rappelons que l'ensemble \mathbb{R} des nombres réels contient les entiers naturels

$$\mathbb{N} \coloneqq \{1, 2, 3, 4, 5, \ldots\},\$$

les entiers relatifs

$$\mathbb{Z} := \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\},\$$

les nombres rationnels

$$\mathbb{Q} \coloneqq \{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N} \},\$$

ainsi que tous les nombres irrationnels tels que $\sqrt{2}$, π et e. L'ensemble \mathbb{R} est généralement visualisé comme une droite s'étandant à l'infinie dans les deux directions et contenant tous ses points :

Remarquez que nous n'avons pas encore donné de définition rigoureuse des nombres réels. Bien que l'idée d'une droite infinie contenant tous ses points soit relativement claire et intuitive, il est surprenamment difficile de la réaliser par une construction mathématique assez précise pour établir une théorie solide du calcul différentiel et intégral. Historiquement, il a fallu attendre la fin du 19e siècle pour qu'on trouve une façon satisfaisante de le faire. Compte tenu du fait que les nombres réels sont utilisés depuis l'Antiquité, nous avons pris plusieurs millénaires avant d'y arriver! Construire rigoureusement l'ensemble $\mathbb R$ est assez laborieux et est plus approprié pour un cours sur la théorie des ensembles. Heureusement, il existe une autre approche tout aussi rigoureuse pour faire de l'analyse réelle qui évite

ce problème délicat et qui est généralement utilisée pour un premier cours. C'est l'approche axiomatique, qui consiste à énumérer une liste de quelques propriétés élémentaires du système $(\mathbb{R},+,\cdot,\leq)$ qui serviront à démontrer toutes les autres. Rappelons la définition du mot axiome (tirée du dictionnaire en ligne Larousse) :

Axiome (nom masculin)

- (1) Dans la logique aristotélicienne, point de départ d'un raisonnement considéré comme non démontrable, évident.
- (2) Énoncé initial d'une théorie axiomatisée, qui sert de point de départ aux démonstrations dans cette théorie.
- (3) Vérité admise sans démonstration et sur laquelle se fonde une science, un raisonnement; principe posé hypothétiquement à la base d'une théorie déductive.

Le sens le plus approprié pour nous est (2). Les axiomes du système des nombres réels sont tous assez intuitifs et il est clair que toute définition des nombres réels devra les satisfaire. On compte quatre axiomes, que nous noterons (A1), (A2), (A3), et (A4). Voici les trois premiers :

- (A1) $(\mathbb{R}, +, \cdot)$ est un *corps*, c'est-à-dire :
 - (A1.1) **Associativité.** Pour tout $x, y, z \in \mathbb{R}$, x + (y + z) = (x + y) + z et x(yz) = (xy)z.
 - (A1.2) Commutativité. Pour tout $x, y \in \mathbb{R}$, x + y = y + x et xy = yx.
 - (A1.3) *Distributivité*. Pour tout $x, y, z \in \mathbb{R}$, x(y+z) = xy + xz.
 - (A1.4) *Identité additive*. Il existe un élément $0 \in \mathbb{R}$ tel que x + 0 = x pour tout $x \in \mathbb{R}$.
 - (A1.5) *Identité multiplicative*. Il existe un élément $1 \in \mathbb{R}$, $1 \neq 0$, tel que $x \cdot 1 = x$ pour tout $x \in \mathbb{R}$.
 - (A1.6) *Inverse additif.* Pour tout $x \in \mathbb{R}$, il existe un élément $-x \in \mathbb{R}$ tel que x + (-x) = 0.
 - (A1.7) *Inverse multiplicatif.* Pour tout $x \neq 0$ dans \mathbb{R} , il existe un élément $x^{-1} \in \mathbb{R}$ tel que $x \cdot x^{-1} = 1$.
- (A2) \leq est un *ordre total*, c'est-à-dire :
 - (A2.1) Reflexivité. Pour tout $x \in \mathbb{R}$, $x \leq x$.
 - (A2.2) Antisymétrie. Pour tout $x, y \in \mathbb{R}$, si $x \leq y$ et $y \leq x$, alors x = y.
 - (A2.3) **Transitivité.** Pour tout $x, y, z \in \mathbb{R}$, si $x \leq y$ et $y \leq z$, alors $x \leq z$.
 - (A2.4) **Totalité.** Pour tout x et y dans \mathbb{R} , x < y ou y < x.
- (A3) Les opérations + et \cdot sur \mathbb{R} sont *compatibles* avec la relation d'ordre \leq , c'est-à-dire :
 - (A3.1) Compatibilité avec l'addition. Pour tout $x, y, z \in \mathbb{R}$, si $x \leq y$, alors $x + z \leq y + z$.
 - (A3.2) Compatibilité avec la multiplication. Pour tout $x, y \in \mathbb{R}$, si $0 \le x$ et $0 \le y$, alors $0 \le xy$.

On utilise également la notation x < y pour dire que $x \le y$ et $x \ne y$. De plus la notation $x \ge y$ est équivalent à $y \le x$ et, de même, x > y est équivalent à y < x.

Le système des nombres réels n'est pas le seul à satisfaire (A1), (A2), et (A3). Par exemple, le système des nombres rationnels $\mathbb Q$ a les mêmes propriétés. La différence fondamentale entre les deux est que $\mathbb R$ satisfait un quatrième axiome (A4), appelé *principe de complétude*, que nous allons définir plus bas. Pour le définir, nous avons d'abord besoin de la définition suivante.

Définition 1.1. Un ensemble de nombres réels $E \subseteq \mathbb{R}$ est **borné supérieurement** s'il existe un nombre réel $M \in \mathbb{R}$ tel que $x \leq M$ pour tout $x \in E$. Dans ce cas, nous appelons M une **borne supérieure**. De même, un ensemble $E \subseteq \mathbb{R}$ est **borné inférieurement** s'il existe un nombre réel $m \in \mathbb{R}$ tel que $x \geq m$ pour tout $x \in E$, et nous appelons m une **borne inférieure**. Un ensemble $E \subseteq \mathbb{R}$ est **borné** s'il est borné supérieurement et inférieurement.

Exemple 1.2.

- (1) L'intervalle $[0,\infty)=\{x\in\mathbb{R}:x\geq 0\}$ est borné inférieurement mais pas supérieurement.
- (2) L'intervalle $(-\infty, 4] = \{x \in \mathbb{R} : x \le 4\}$ est borné supérieurement, mais pas inférieurement.
- (3) L'intervalle $[6, 11) = \{x \in \mathbb{R} : 6 \le x < 11\}$ est borné.
- (4) L'ensemble Z des entiers relatifs n'est pas borné.
- (5) L'ensemble \mathbb{N} des entiers naturels est borné inférieurement, mais pas supérieurement (voir Théorème 1.10).
- (6) L'ensemble

$$E := \{\frac{1}{n} : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\}$$

est borné par 0 et 1.

Notez qu'un ensemble E borné supérieurement a une infinité de bornes supérieures : si M est une borne supérieure, alors, tout nombre $M' \geq M$ est aussi une borne supérieure. Il est donc préférable de trouver la borne supérieure la plus petite. Si E possède un maximum, c'est-à-dire un élément $M \in E$ tel que $x \leq M$ pour tout $x \in E$, alors il est évident que M est la plus petite borne supérieure. Par contre, certains ensembles bornés supérieurement n'ont pas de maximum, tel que

$$E := \left\{ \frac{n-1}{n} : n \in \mathbb{N} \right\} = \left\{ 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots \right\}.$$

Un bon substitut au maximum est alors la plus petite borne supérieure, qui dans ce cas est 1. La propriété fondamentale de \mathbb{R} qui permet de faire de l'analyse est l'existence de cette plus petite borne supérieure :

(A4) **Principe de complétude.** Soit $E \subseteq \mathbb{R}$ un ensemble non vide borné supérieurement. Il existe une *plus petite borne supérieure de* E, c'est-à-dire une borne supérieure M de E telle que si $N \in \mathbb{R}$ est une autre borne supérieure de E, alors $M \leq N$.

En revanche, le système des nombres rationnels \mathbb{Q} ne satisfait pas au principe de complétude. Par exemple, soit un nombre irrationnel tel que $\sqrt{2} = 1.41421356237...$ (dont l'existence sera discutée à la prochaine section), considérons l'ensemble

$$E = \{1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, \ldots\}$$

de ses approximations successives. Tous les éléments de E sont rationnels : par exemple

$$1.414 = \frac{1414}{1000} \in \mathbb{Q}.$$

Par contre, la plus petite borne supérieure de E est $\sqrt{2}$ qui est irrationnel. On peut montrer que l'ensemble E ne possède pas de plus petite borne supérieure rationnelle.

Les points (A1)–(A4) sont les axiomes de l'analyse réelle. C'est-à-dire, nous supposons que les nombres réels existent et forment un système $(\mathbb{R}, +, \cdot, \leq)$ satisfaisant les axiomes (A1)–(A4), et notre tâche est de démontrer de nouvelles propriétés à partir de ceux-ci. Il est remarquable que tout le calcul différentiel et intégral repose sur ces quatre axiomes seulement. C'est ce que nous verrons dans les deux premiers cours d'analyse (Analyse I et II). Par exemple, nous verrons dans le cours d'Analyse II que le théorème fondamental du calcul différentiel et intégral (0.1) est une conséquence logique des axiomes.

Il est possible de *démontrer* que les nombres réels satisfont (A1)–(A4). Mais comme mentionné plus haut, il faut d'abord donner une construction rigoureuse des nombres réels, ce qui n'est pas évident. Pour un premier cours d'analyse, il est préférable de supposer que le système des nombres réels existe et satisfait (A1)–(A4).

1.2 Quelques conséquences des axiomes

Tout ce que l'on connaît des nombres réels peut être démontré à partir des axiomes (A1)—(A4). Nous verrons dans cette section quelques exemples simples de nouvelles propriétés démontrées à partir des axiomes afin de se familiariser avec ceux-ci et de s'entraîner à faire des démonstrations avec les nombres réels. Par exemple, nous montrerons que 1 > 0 et qu'il existe une racine carrée de 2. Bien que ces faits soient familiers, ils ne sont pas directement dans les axiomes, et il faut donc les démontrer.

1.2.1 Propriétés algébriques

Pour commencer, notons que l'axiome d'identité additive (A1.4) stipule seulement qu'il existe un nombre réel $0 \in \mathbb{R}$ tel que x + 0 = x pour tout $x \in \mathbb{R}$. Mais l'axiome ne dit pas si c'est le seul nombre avec cette propriété. Est-ce qu'il en existe un autre? On sait bien que non, mais il est rassurant de voir qu'on peut le démontrer rigoureusement :

Proposition 1.3.

(a) Si $x, z \in \mathbb{R}$ sont tels que x + z = x, alors z = 0. En particulier, l'identité additive (A1.4) est unique. C'est-à-dire, il existe un seul nombre $z \in \mathbb{R}$ tel que x + z = x pour tout $x \in \mathbb{R}$, que nous notons 0.

(b) Si $x, z \in \mathbb{R}$ sont tels que $x \neq 0$ et xz = x, alors z = 1. En particulier, l'identité multiplicative (A1.5) est unique. C'est-à-dire, il existe un seul nombre $z \in \mathbb{R}$ tel que $x \cdot z = x$ pour tout $x \in \mathbb{R}$, que nous notons 1.

Démonstration. (a) Soit $x, z \in \mathbb{R}$ tels que x + z = x. On a

$$z = z + 0$$
 (identité additive (A1.4))
 $= z + (x + (-x))$ (inverse additif (A1.6))
 $= (z + x) + (-x)$ (associativité (A1.1))
 $= (x + z) + (-x)$ (commutativité (A1.2))
 $= x + (-x)$ (par hypothèse)
 $= 0$. (inverse additif (A1.6))

En particulier, si $z \in \mathbb{R}$ est tel que x + z = x pour tout $x \in \mathbb{R}$, alors z = 0. La démonstration de la partie (b) est laissée en exercice (Exercice (1.1)).

De cette proposition, on déduit :

Proposition 1.4. Pour tout $y \in \mathbb{R}$, on a $y \cdot 0 = 0$.

Démonstration. Soit $y \in \mathbb{R}$. On a

$$\begin{array}{ll} y+y\cdot 0=y\cdot 1+y\cdot 0 & \text{(identit\'e multiplicative (A1.5))}\\ &=y\cdot (1+0) & \text{(distributivit\'e (A1.3))}\\ &=y\cdot 1 & \text{(identit\'e additive (A1.4))}\\ &=y & \text{(identit\'e multiplicative (A1.5))} \end{array}$$

Par la Proposition 1.3(a) (appliquée à x=y et $z=y\cdot 0$) on a $y\cdot 0=0$.

De manière similaire:

Proposition 1.5.

- (a) L'inverse additif (A1.6) est unique.
- (b) L'inverse multiplicatif (A1.7) est unique.

Démonstration. (a) Soit $x \in \mathbb{R}$ et soit $z \in \mathbb{R}$ un nombre tel que x + z = 0. Nous devons montrer que z = -x. Or,

$$z = z + 0$$
 (identité additive (A1.4))
 $= z + (x + (-x))$ (inverse additif (A1.6))
 $= (z + x) + (-x)$ (associativité (A1.1))
 $= (x + z) + (-x)$ (commutativité (A1.2))
 $= 0 + (-x)$ (par hypothèse)
 $= (-x) + 0$ (commutativité (A1.2))
 $= -x$. (identité additive (A1.4))

(b) Cette partie est laissée en exercice (Exercice (1.2)).

On obtient alors une nouvelle opération, la soustraction, définie par

$$x - y \coloneqq x + (-y),$$

où (-y) est l'unique inverse additif de y. De même, la **division** est définie par $x/y := x \cdot y^{-1}$. On déduit des résultats précédents les faits suivants.

Proposition 1.6. Pour tout $x \in \mathbb{R}$, on a

- (a) (-1)x = -x,
- (b) -(-x) = x, et
- (c) $(-x)(-x) = x^2$.

Démonstration. Soit $x \in \mathbb{R}$.

(a) On a

$$x + (-1)x = x \cdot 1 + x \cdot (-1)$$
 (identité multiplicative (A1.5) et commutativité (A1.2))
 $= x \cdot (1 + (-1))$ (distributivité (A1.3))
 $= x \cdot 0$ (inverse additif (A1.6))
 $= 0$. (Proposition 1.4)

Par l'unicité de l'inverse additif (Proposition 1.5(a)), (-1)x = -x.

- (b) Par la commutativité (A1.2) et l'inverse additif (A1.6), on a (-x)+x=x+(-x)=0. Par l'unicité de l'inverse additif (Proposition 1.5(a)), x=-(-x).
 - (c) Par (a) et (b), on a (-1)(-1) = -(-1) = 1. Il s'ensuit que

$$(-x)(-x) = ((-1)x)((-1)x)$$
 (par (a))
 $= x^2((-1)(-1))$ (associativité (A1.1) et commutativité (A1.2))
 $= x^2 \cdot 1$ (par la phrase précédente)
 $= x^2$. (identité multiplicative (A1.5))

Proposition 1.7. Soit $x \in \mathbb{R}$.

- (a) $Si \ x > 0$, alors -x < 0.
- (b) $Si \ x < 0$, alors -x > 0.

Démonstration. (a) Soit $x \ge 0$. Par la compatibilité avec l'addition (A3.1), on a $0 + (-x) \le x + (-x)$. Par l'identité additive (A1.4) et la commutativité (A1.2), 0 + (-x) = -x, et par l'inverse additif (A1.6), x + (-x) = 0. Il s'ensuit que $-x \le 0$.

(b) Exercice
$$(1.5)$$
.

Proposition 1.8. Pour tout $x \in \mathbb{R}$, on a $x^2 \ge 0$.

Démonstration. Si $x \geq 0$, cela découle de la compatibilité avec la multiplication (A3.2). Sinon, $x \leq 0$ par totalité (A2.4). Il s'ensuit que $-x \geq 0$ par la Proposition 1.7, et donc $x^2 = (-x)(-x) \geq 0$ par la Proposition 1.6(c).

On en déduit le résultat suivant.

Théorème 1.9. 1 > 0

Démonstration. On a $1 = 1 \cdot 1 = 1^2 \ge 0$ par l'identité multiplicative (A1.5) et la Proposition 1.8. De plus, $1 \ne 0$ par (A1.5).

On peut facilement déduire à partir de ce théorème et de l'axiome (A3.1) que

$$x + 1 > x \quad \text{et} \quad x - 1 < x \tag{1.1}$$

pour tout $x \in \mathbb{R}$ (Exercice (1.11)). En particulier, n > 0 pour tout $n \in \mathbb{N}$ (Exercice (1.9)). Jusqu'ici, nous n'avons utilisé que les trois premiers axiomes (A1), (A2), (A3), mais par l'axiome de complétude (A4). En revanche, la propriété suivante, nommée en l'honneur du célèbre scientifique de la Grèce antique, utilise (A4).

Théorème 1.10 (Propriété d'Archimède). Pour tout $x \in \mathbb{R}$, il existe un entier naturel $n \in \mathbb{N}$ tel que $n \geq x$.

Démonstration. Supposons, par contradiction, qu'il existe un nombre réel $x \in \mathbb{R}$ qui a la propriété qu'aucun entier $n \in \mathbb{N}$ n'est tel que $n \geq x$. Autrement dit, par totalité (A2.4), $n \leq x$ pour tout $n \in \mathbb{N}$. L'ensemble $E := \mathbb{N}$ est alors borné supérieurement par x. Par le principe de complétude (A4), il existe une plus petite borne supérieure M de E. Puisque M-1 < M (Exercice (1.11)), on a que M-1 n'est pas une borne supérieure de E. Il existe alors un nombre $n \in E$ tel que M-1 < n, et donc M < n+1. Puisque $n+1 \in E$, cela contredit que M est une borne supérieure de E.

En d'autres mots, la propriété d'Archimède est l'énoncé que l'ensemble $\mathbb N$ des entiers naturels n'est pas borné supérieurement. En effet, le théorème dit précisément qu'aucun nombre réel $x \in \mathbb R$ n'est une borne supérieure de $\mathbb N$.

Remarque 1.11. Il existe des systèmes qui satisfont (A1), (A2) et (A3), mais pas la propriété d'Archimède. De tels systèmes sont difficiles à construire, mais leur étude est néanmoins fascinante. Un célèbre exemple est le système des nombres « surréels » introduit par John Conway. Notez que bien que le système des nombres rationnels Q ne satisfait pas le principe de complétude (A4), il satisfait tout de même la propriété d'Archimède. Donc la complétude est suffisante mais pas nécessaire pour obtenir le principe d'Archimède.

1.2.2 Simplifions pour le reste du cours

Le but premier de la sous-section précédente (1.2.1) est de se familiariser avec les axiomes du système des nombres réels et quelques techniques de démonstration. Il sera évidemment trop laborieux de démontrer le moindre détail comme nous l'avons fait plus haut en indiquant explicitement chaque axiome utilisé. Pour le reste du cours (sauf indication contraire dans les exercices) nous ne démontrerons pas les faits algébriques bien connus et utilisés depuis l'école secondaire, comme des manipulations standards telles que $1 - \frac{n^2}{1+n^2} = \frac{1+n^2-n^2}{1+n^2} = \frac{1}{1+n^2} \le \frac{1}{n^2}$. Il est néanmoins toujours possible de le faire, si l'on prend le temps. En revanche, nous ne tiendrons pas pour aquises les notions de calcul différentiel et intégral. En effet, le but de ce cours est de donner une base solide à ce dernier! Par exemple, il faudra démontrer que $\frac{d}{dx}x^2 = 2x$, et même donner une définition rigoureuse de la dérivée.

1.2.3 Existence de $\sqrt{2}$

Nous verrons dans cette sous-section une autre conséquence du principe de complétude (A4), soit l'existence d'une racine carrée de 2. C'est-à-dire, nous montrerons qu'il existe un unique nombre réel x > 0 tel que $x^2 = 2$. Pour le démontrer, on doit nécessairement utiliser le principe de complétude. En effet, le système des nombres rationnels \mathbb{Q} satisfait (A1), (A2), (A3), mais ne possède pas de telle racine :

Théorème 1.12. Il n'existe pas de nombre rationnel $r \in \mathbb{Q}$ tel que $r^2 = 2$.

Démonstration. Supposons, par contradiction, qu'il existe un nombre rationnel $r \in \mathbb{Q}$ tel que $r^2 = 2$. Écrivons $r = \frac{a}{b}$, où $a, b \in \mathbb{Z}$ n'ont pas de facteur commun. On a $\frac{a^2}{b^2} = 2$, donc

$$a^2 = 2b^2. (1.2)$$

Il s'ensuit que a^2 est pair. Le carré d'un nombre impair est impair, donc a doit nécessairement être pair. C'est-à-dire, a=2n pour un certain $n\in\mathbb{Z}$. Par (1.2), on a $4n^2=2b^2$, et donc $b^2=2n^2$. Par le même raisonnement, b est pair. Il s'ensuit que a est un facteur commun de a et a0, contredisant qu'ils n'aient pas de facteur commun.

En revanche, le principe de complétude implique que \mathbb{R} a bel et bien une racine carrée de 2, communément notée $\sqrt{2}$.

Théorème 1.13. Il existe un unique nombre réel x > 0 tel que $x^2 = 2$.

Démonstration. Pour démontrer ce théorème, nous diviserons la preuve en deux parties : l'existence d'un tel nombre et son unicité.

Existence. Considérons l'ensemble

$$E := \{x \in \mathbb{R} : x > 0 \text{ et } x^2 < 2\}.$$

Nous allons montrer que E est borné supérieurement et que sa plus petite borne supérieure est une racine carrée de 2.

Nottons que $1 \in E$, donc E n'est pas vide. Nous allons montrer que E est borné supérieurement par 2. Soit $x \in E$. Supposons par contradiction que x > 2. Alors, $x^2 > 2 \cdot 2 = 4 > 2$, contredisant que $x \in E$. Ainsi, $x \le 2$ et donc E est borné supérieurement par 2. Par le principe de complétude (A4), il existe une plus petite borne supérieure M de E. Puisque $1 \in E$, on a $M \ge 1 > 0$, donc M > 0. Nous allons montrer que $M^2 = 2$ en démontrant que $M^2 > 2$ et $M^2 < 2$.

Pour établir $M^2 \geq 2$, supposons par contradiction que $M^2 < 2$. Cela implique que $2-M^2>0$ et, en particulier, $2-M^2\neq 0$. Par la propriété d'Archimède (Théorème 1.10), il existe un entier naturel $n\in\mathbb{N}$ tel que

$$n > \frac{2M+1}{2-M^2}. (1.3)$$

^{1.} Par exemple, $\frac{4}{6}$ peut être écrit comme $\frac{2}{3}$, où 2 et 3 n'ont pas de facteur commun, contrairement à 4 et 6 qui ont 2 comme facteur commun.

(À noter que la division est valide puisque $2 - M^2 \neq 0$.) Il s'ensuit que

$$\frac{2M+1}{n} < 2 - M^2$$

et donc

$$\left(M + \frac{1}{n}\right)^2 = M^2 + \frac{2M}{n} + \frac{1}{n^2} \le M^2 + \frac{2M}{n} + \frac{1}{n} = M^2 + \frac{2M+1}{n} < M^2 + (2-M^2) = 2, (1.4)$$

c'est-à-dire $M + \frac{1}{n} \in E$. Puisque $M < M + \frac{1}{n}$, cela contredit le fait que M soit une borne supérieure de E. Ainsi, $M^2 \geq 2$.

De même, pour montrer que $M^2 \leq 2$, supposons par contradiction que $M^2 > 2$. Par la propriété d'Archimède (Théorème 1.10), il existe un entier naturel $n \in \mathbb{N}$ tel que $n > \frac{2M}{M^2-2}$ et donc $\frac{2M}{n} < M^2 - 2$. On a alors que

$$\left(M - \frac{1}{n}\right)^2 = M^2 - \frac{2M}{n} + \frac{1}{n^2} \ge M^2 - \frac{2M}{n} > M^2 - (M^2 - 2) = 2.$$
(1.5)

Cela implique que pour tout $x \in E$, on a $x^2 < 2 < (M - \frac{1}{n})^2$, et donc $x < M - \frac{1}{n}$. C'està-dire, $M - \frac{1}{n}$ est une borne supérieure de E, contredisant que M soit la plus petite borne supérieure. Par conséquent, $M^2 \le 2$.

Ayant montré que $M^2 \ge 2$ et $M^2 \le 2$, par antisymétrie (A2.2), $M^2 = 2$. On prend alors x = M.

Unicité. Soit y > 0 tel que $y^2 = 2$. Alors,

$$(x-y)(x+y) = x^2 - y^2 = 2 - 2 = 0.$$

Cela implique que x - y = 0 ou x + y = 0 (Exercice (1.4)). Si x + y = 0, alors y = -x < 0, contredisant que y > 0. Il s'ensuit que x - y = 0, c'est-à-dire y = x.

1.2.4 Densité des nombres rationnels et irrationnels

Les deux théorèmes précédents (Théorème 1.12 et Théorème 1.13) démontrent l'existence d'au moins un nombre irrationnel, soit $\sqrt{2}$. C'est-à-dire, $\sqrt{2} \in \mathbb{R}$ mais $\sqrt{2} \notin \mathbb{Q}$. Il est alors naturel de se demander si les nombres irrationnels sont rares ou communs. Le prochain théorème répond de manière précise à cette question, en montrant que les nombres rationnels et irrationnels sont tous deux « denses », c'est-à-dire qu'on en trouve partout sur la droite des réels.

Théorème 1.14. Tout intervalle ouvert $(a,b) = \{x \in \mathbb{R} : a < x < b\}$, où a < b, contient un nombre rationnel et un nombre irrationnel.

Démonstration. Puisque b-a>0, la propriété d'Archimède (Théorème 1.10) implique l'existence d'un entier naturel $n\in\mathbb{N}$ tel que $n>\frac{1}{b-a}$. Cela conduit à na+1< nb, et donc il existe un entier $m\in\mathbb{Z}$ tel que na< m< nb. Par conséquent, $a<\frac{m}{n}< b$, donnant ainsi un nombre rationnel $\frac{m}{n}\in(a,b)$. De même, il existe un nombre rationnel r dans l'intervalle $(\frac{a}{\sqrt{2}},\frac{b}{\sqrt{2}})$, et donc $r\sqrt{2}\in(a,b)$. De plus, $r\sqrt{2}$ est irrationnel, car si $r\sqrt{2}=q\in\mathbb{Q}$, alors $\sqrt{2}=\frac{q}{r}\in\mathbb{Q}$, contredisant le Théorème 1.12.

^{2.} Le fait que pour tout $x \in \mathbb{R}$ il existe un entier $n \in \mathbb{Z}$ tel que $x < n \le x + 1$ peut être démontré à partir des axiomes. En vue de la section 1.2.2, nous omettons la démonstration.

1.3 Supremum et infimum

Tout comme le maximum, la plus petite borne supérieure de E, si elle existe, est unique :

Proposition 1.15. Soit $E \subseteq \mathbb{R}$ un ensemble non vide borné supérieurement et M_1, M_2 deux plus petites bornes supérieures de E. Alors $M_1 = M_2$.

Démonstration. Puisque M_1 est une plus petite borne supérieure et M_2 est une borne supérieure, on a $M_1 \leq M_2$. De manière analogue, puisque M_2 est une plus petite borne supérieure et M_1 est une borne supérieure, on a $M_2 \leq M_1$. Par la propriété d'antisymétrie de (A2), nous avons $M_1 = M_2$.

On peut donc parler de la plus petite borne supérieure de E, et lui donner un nom et une notation :

Définition 1.16. Soit $E \subseteq \mathbb{R}$ un ensemble non vide borné supérieurement. La plus petite borne supérieure de E est appelée le **supremum** de E, et est notée $\sup(E)$ ou $\sup E$.

Exemple 1.17. Soit

$$E := \{\frac{n-1}{n} : n \in \mathbb{N}\} = \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\}.$$

Montrer que $\sup(E) = 1$.

Solution. La démontration comprend deux étapes :

- (1) 1 est une borne supérieure de E, et
- (2) si M est une autre borne supérieure de E, alors $1 \leq M$.

Pour montrer (1), soit $x \in E$. Alors $x = \frac{n-1}{n}$ pour un certain $n \in \mathbb{N}$. Il s'ensuit que $x = \frac{n-1}{n} = 1 - \frac{1}{n} < 1$.

Pour montrer (2), soit M une borne supérieure de E. Nous devons montrer que $1 \le M$. Si, au contraire 1 > M, alors 1 - M > 0 et donc $\frac{1}{1-M} > 0$. Il existe alors un nombre naturel $n > \frac{1}{1-M}$. Il s'ensuit que $1 - M > \frac{1}{n}$ et donc $M < 1 - \frac{1}{n} = \frac{n-1}{n} \in E$, contredisant que M est une borne supérieure de E. Par conséquent, $1 \le M$.

De façon analogue, si $E \subseteq \mathbb{R}$ est un ensemble non vide borné inférieurement, une **plus** grande borne inférieure de E est une borne inférieure m de E telle que si $n \in \mathbb{R}$ est une autre borne inférieure de E, alors $n \leq m$.

Le principe de complétude implique un principe similaire pour les bornes inférieures :

Proposition 1.18. Soit $E \subseteq \mathbb{R}$ un ensemble non vide borné inférieurement. Alors, il existe une plus grande borne inférieure de E. De plus, elle est unique.

Démonstration. Définissons

$$-E\coloneqq \{-x: x\in E\}.$$

Si m est une borne inférieure de E, alors $m \leq x$ pour tout $x \in E$, et donc $-x \leq -m$ pour tout $x \in E$. Autrement dit, -m est une borne supérieure de -E. Par le principe de complétude (A4), -E possède une plus petite borne supérieure $\sup(-E) \in \mathbb{R}$. Nous allons démontrer que $-\sup(-E)$ est une plus grande borne inférieure de E.

- (1) Nous devons d'abord démontrer que $-\sup(-E)$ est une borne inférieure de E. Soit $x \in E$, nous avons $-x \in -E$ et donc $-x \leq \sup(-E)$. Par conséquent, $-\sup(-E) \leq x$ pour tout $x \in E$, c'est-à-dire, $-\sup(-E)$ est une borne inférieure de E.
- (2) Nous devons maintenant démontrer que $-\sup(-E)$ est plus grand ou égal à toutes les bornes inférieures de E. Soit $m \in \mathbb{R}$ une borne inférieure de E. Par le premier paragraphe, -m est une borne supérieure de -E. Puisque $\sup(-E)$ est la plus petite borne supérieure de -E, nous avons $\sup(-E) \leq -m$ et donc $m \leq -\sup(-E)$.

Par (1) et (2), $-\sup(-E)$ est une plus grande borne inférieure de E. Maintenant, supposons qu'il existe une autre plus grande borne inférieure de E, denotée m. Par (2), nous avons $m \leq -\sup(-E)$. De manière analogue, puisque m est une plus grande borne inférieure et que $-\sup(-E)$ est une borne inférieure, nous avons $-\sup(-E) \leq m$. Par conséquent, $m = -\sup(-E)$.

Cette proposition justifie la définition suivante.

Définition 1.19. Soit E un ensemble non vide borné inférieurement. La plus grande borne inférieure de E est appelée infimum de E et est notée $\inf(E)$ ou $\inf E$.

Notez que la démonstration de la Proposition 1.18 implique que si E est borné inférieurement, alors -E est borné supérieurement et

$$\sup(-E) = -\inf(E).$$

Il est pratique de définir $\sup E$ et $\inf E$ même si E n'est pas borné supérieurement ou inférieurement :

Définition 1.20. Si un ensemble non vide $E \subseteq \mathbb{R}$ n'est pas borné supérieurement, nous écrivons

$$\sup E = \infty$$

et s'il n'est pas borné inférieurement, nous écrivons

$$\inf E = -\infty.$$

Par exemple, la propriété d'Archimède (Théorème 1.10) est l'énoncé que sup $\mathbb{N} = \infty$.

Remarque 1.21. Si E n'est pas borné supérieurement, alors pour tout $n \in \mathbb{N}$ il existe $x \in E$ tel que x > n (car n n'est pas une borne supérieure de E). Ceci justifie la notation sup $E = \infty$. Une remarque similaire s'applique pour inf $E = -\infty$.

Définition 1.22. Le *maximum* d'un ensemble E, s'il existe, est un nombre réel $\max(E)$ dans E tel que $x \leq \max(E)$ pour tout $x \in E$. De même, le *minimum* de E, s'il existe, est un nombre réel $\min(E)$ dans E tel que $\min(E) \leq x$ pour tout $x \in E$.

Proposition 1.23. Soit $E \subseteq \mathbb{R}$ un ensemble non vide.

- (a) Si E possède un maximum, alors $\sup(E) = \max(E)$.
- (b) Si E possède un minimum, alors $\inf(E) = \min(E)$.

Démonstration. (a) Pour montrer que $\sup(E) = \max(E)$, il faut montrer que

- (1) $\max(E)$ est une borne supérieure de E, et
- (2) si N est une borne supérieure de E, alors $\max(E) \leq N$.

La partie (1) découle de la définition de $\max(E)$. Pour montrer (2), soit N une borne supérieure de E. Puisque $\max(E) \in E$, on a $\max(E) \leq N$.

(b) Exercice
$$(1.13)$$
.

Exemple 1.24.

(1) Soit $A = \{-1, 3, 4, 8\}$. Alors, min A = -1 et max A = 8. Donc aussi,

$$\inf A = -1$$
 et $\sup A = 8$.

- (2) Soit $B = \{2n : n \in \mathbb{N}\} = \{2, 4, 6, 8, \dots\}$. Alors $\inf B = \min B = 2$ et $\sup B = \infty$.
- (3) Soit

$$E := \{ \frac{1}{n} : n \in \mathbb{N} \}.$$

Puisque $1 \in E$ est un maximum, nous avons $\sup E = 1$. Par contre E n'a pas de minimum. En effet, si $x \in E$, alors $x = \frac{1}{n}$ pour un certain $n \in \mathbb{N}$. Il s'ensuit que $\frac{1}{n+1} \in E$ et $\frac{1}{n+1} < x$. Donc x n'est pas un minimum de E. Puisque x est arbitraire, on conclu que E n'a pas de minimum.

Par contre, nous allons montrer que

$$\inf E = 0.$$

La démonstration comprend deux étapes :

- (a) 0 est une borne inférieure de E, et
- (b) si m est une borne inférieure de E, alors $m \leq 0$.

Montrons (a). Soit $x \in E$. Alors $x = \frac{1}{n}$ pour un certain $n \in \mathbb{N}$, donc $x = \frac{1}{n} > 0$. Donc 0 est une borne inférieure de E.

Montrons (b). Soit m une borne inférieure de E. Nous devons montrer que $m \leq 0$. Si, au contraire, m > 0, alors $\frac{1}{m} > 0$, donc il existe $n \in \mathbb{N}$ tel que $n > \frac{1}{m}$. Il s'ensuit que $\frac{1}{n} < m$, et puisque $\frac{1}{n} \in E$, ceci contredit que m est une borne inférieure de E. Alors, $m \geq 0$.

Par (a) et (b), 0 est la plus grande borne inférieure de E, c'est-à-dire infE=0.

Le prochain résultat sera utile au prochain cours (Analyse II), lorsqu'on définira l'intégrale.

Proposition 1.25. Soient A et B deux ensembles non vides tels que $a \le b$ pour tout $a \in A$ et $b \in B$. Alors, A est borné supérieurement, B est borné inférieurement, et

$$\sup(A) \le \inf(B).$$

Démonstration. Montrons que A est borné supérieurement. Puisque B est non vide, il existe un élément $b \in B$. Par hypothèse, $a \leq b$ pour tout $a \in A$ et donc b est une borne supérieure de A. De même, B est borné inférieurement par tout élément de A.

Montrons que $\sup(A) \leq \inf(B)$. Puisque $\sup(A)$ est la plus petite borne supérieure de A, il suffit de montrer que $\inf(B)$ est une borne supérieure de A. Soit $a \in A$. On a $a \leq b$ pour tout $b \in B$, donc a est une borne inférieure de B. Comme $\inf(B)$ est la plus grande borne inférieure de B, on a $a \leq \inf(B)$. On a donc montré que $a \leq \inf(B)$ pour tout $a \in A$, c'est-à-dire, $\inf(B)$ est une borne supérieure de A. Comme $\sup(A)$ est la plus petite borne supérieure de A, on a $\sup(A) \leq \inf(B)$.

1.4 Quelques propositions utiles avec $\varepsilon > 0$

En analyse, lors des définitions et démonstrations, on travaille fréquemment avec un nombre réel positif arbitrairement petit, généralement noté ε . Les propositions suivantes sont alors utiles.

Proposition 1.26. Soit $x \in \mathbb{R}$. Si $|x| < \varepsilon$ pour tout $\varepsilon > 0$, alors x = 0.

Démonstration. Supposons, par contradiction, que $x \neq 0$. Choisissons $\varepsilon := |x|/2$. Ainsi, $\varepsilon > 0$ et $|x| > \varepsilon$, contredisant l'hypothèse que $|x| < \varepsilon$ pour tout $\varepsilon > 0$. Par conséquent, x = 0. \square

Proposition 1.27. Soient $x, y \in \mathbb{R}$. Si $x < y + \varepsilon$ pour tout $\varepsilon > 0$, alors $x \leq y$.

 $D\'{e}monstration$. Supposons, par contradiction, que x > y. Choisissons $\varepsilon \coloneqq \frac{x-y}{2}$. Alors, $\varepsilon > 0$ et $y + \varepsilon = y + \frac{x-y}{2} = \frac{x+y}{2} < \frac{x+x}{2} = x$, contredisant l'hypothèse que $x < y + \varepsilon$ pour tout $\varepsilon > 0$. Ainsi, $x \le y$.

Proposition 1.28. Soit $E \subseteq \mathbb{R}$ un ensemble non vide et borné supérieurement et soit $M \in \mathbb{R}$ une borne supérieure de E. Alors, $M = \sup(E)$ si et seulement si pour tout $\varepsilon > 0$ il existe un élément $x \in E$ tel que $M - \varepsilon < x$.

 $D\acute{e}monstration.\ (\Longrightarrow)$ Supposons que $M=\sup(E)$. On doit montrer que pour tout $\varepsilon>0$ il existe $x\in E$ tel que $M-\varepsilon< x$. Soit $\varepsilon>0$. Puisque $M-\varepsilon< M=\sup(E)$, et $\sup(E)$ est la plus petite borne supérieure de $E,\,M-\varepsilon$ n'est pas une borne supérieure de E. Cela signifie qu'il existe $x\in E$ tel que $M-\varepsilon< x$.

- (\Leftarrow) Soit M une borne supérieure de E telle que, pour tout $\varepsilon > 0$, il existe $x \in E$ tel que $M \varepsilon < x$. On doit montrer que $M = \sup(E)$, c'est-à-dire, que
 - (1) M est une borne supérieure de E et
 - (2) si N est une borne supérieure de E, alors $M \leq N$.

La partie (1) est vraie par la définition de M. Pour montrer (2), soit N une borne supérieure de E. Supposons, par contradiction, que M > N. Choisissons $\varepsilon := M - N$. On a $\varepsilon > 0$ donc, par hypothèse, il existe $x \in E$ tel que $M - \varepsilon < x$. Il s'ensuit que $x > M - \varepsilon = M - (M - N) = N$, contredisant que N est une borne supérieure de E.

^{3.} Cette proposition est un exemple d'énoncé de la forme « A est vrai si et seulement si B est vrai », c'est-à-dire, A et B sont *équivalents*. On note ce type d'énoncé comme « A \iff B », où le symbole \iff signifie « si et seulement si ». La démonstration doit alors comprendre deux étapes : montrer que A implique B (noté A \implies B), et montrer que B implique A (noté A \iff B). Ainsi, ces deux étapes sont notées (\implies) et (\iff) dans la démonstration.

1.5 Exercices

- (1.1) Démontrer la Proposition 1.3(b). Bien identifier chaque axiome utilisé.
- (1.2) Démontrer la Proposition 1.5(b). C'est-à-dire, montrer que si $x \in \mathbb{R}$, $x \neq 0$ et $y \in \mathbb{R}$ sont tels que xy = 1, alors $y = x^{-1}$. Bien identifier chaque axiome utilisé.
- (1.3) Montrer que si $x \in \mathbb{R}$ et $x \neq 0$, alors $(x^{-1})^{-1} = x$. Bien identifier chaque axiome utilisé.
- (1.4) Montrer que si xy = 0 alors x = 0 ou y = 0. Bien identifier chaque axiome utilisé. [Indice: preuve par contradiction.]
- (1.5) Démontrer la Proposition 1.7(b). Bien identifier chaque axiome utilisé.
- (1.6) Montrer que si $x \ge 0$ et $y \le 0$, alors $xy \le 0$. Déduire que si x > 0 alors $x^{-1} > 0$. Bien identifier chaque axiome utilisé.
- (1.7) Montrer que si $0 < x \le y$, alors $x^{-1} \ge y^{-1}$. Bien identifier chaque axiome utilisé. [Indice: considérer y x.]
- (1.8) Montrer que si x > 0 et y > 0 alors x + y > 0. Bien identifier chaque axiome utilisé.
- (1.9) Montrer par récurrence que n > 0 pour tout $n \in \mathbb{N}$. Bien identifier chaque axiome utilisé.
- (1.10) Soit $(\mathbb{S}, +, \cdot, \leq)$ un système satisfaisant les axiomes (A1), (A2) et (A3) (avec \mathbb{S} au lieu de \mathbb{R}), mais pas la propriété d'Archimède (avec \mathbb{S} au lieu de \mathbb{R}). Montrer qu'il existe un élément $\omega \in \mathbb{S}$ tel que $n < \omega$ pour tout $n \in \mathbb{N}$ (un «élément infini») et un élément $\varepsilon \in \mathbb{S}$ tel que $\varepsilon < \frac{1}{n}$ pour tout $n \in \mathbb{N}$ (un «élément infinitésimal»). Bien identifier chaque axiome utilisé.
- (1.11) Montrer que x-1 < x et x+1 > x pour tout $x \in \mathbb{R}$. Bien identifier chaque axiome utilisé. [Indice: utiliser le Théorème 1.9.]
- (1.12) Soit $a \in \mathbb{R}$ tel que a > 0. Montrer qu'il existe un unique nombre réel x > 0 tel que $x^2 = a$.
- (1.13) Montrer que si un ensemble $E \subseteq \mathbb{R}$ possède un minimum, alors inf $E = \min E$ (Proposition 1.23(b)).
- (1.14) Soit $E = \{\frac{n}{2n+1} : n \in \mathbb{N}\}$, trouver inf E et sup E.
- (1.15) Soit $E = \{\frac{n}{n^2+1} : n \in \mathbb{N}\}$, trouver inf E et sup E.
- (1.16) Soit $E = \{x \in \mathbb{Q} : x > 0\}$, trouver inf E et sup E.
- (1.17) Soit $E = \{x \in \mathbb{Q} : x^2 < 4\}$, trouver inf E et sup E.
- (1.18) Soit $E \subseteq \mathbb{R}$ un ensemble non vide borné supérieurement. Montrer que si $a < \sup E$ alors il existe $x \in E$ tel que a < x. (Remarque : ce fait a été utilisé et expliqué plusieurs fois dans les démonstrations de ce chapitre.)
- (1.19) Soient $A \subseteq \mathbb{R}$ et $B \subseteq \mathbb{R}$ deux ensembles non vides bornés supérieurement tels que $A \subseteq B$. Montrer que

$$\sup A \leq \sup B$$
.

(1.20) Soit $E \subseteq \mathbb{R}$ un ensemble non vide borné supérieurement, soit $r \in \mathbb{R}$, et soit

$$r + E := \{r + x : x \in E\}.$$

Montrer que

$$\sup(r+E) = r + \sup(E).$$

(1.21) Soit $E \subseteq \mathbb{R}$ un ensemble non vide borné supérieurement, soit r > 0, et soit

$$rE := \{rx : x \in E\}.$$

Montrer que

$$\sup(rE) = r\sup(E).$$

- (1.22) Soit $E = \{1 + \frac{1}{n^2} : n \in \mathbb{N}\}$, trouver inf E et sup E.
- (1.23) Soient $A \subseteq \mathbb{R}$ et $B \subseteq \mathbb{R}$ des ensembles bornés supérieurement. Soit $A+B=\{a+b:a\in A,b\in B\}$. Montrer que A+B est borné supérieurement et que $\sup(A+B)\leq \sup(A)+\sup(B)$. Formuler et démontrer un énoncé semblable pour l'infimum.

Chapitre 2

Suites et convergence

Le but de ce chapitre est de définir la notion

$$\lim_{n\to\infty} a_n$$

de la limite d'une suite de nombres réels $(a_n)_{n=1}^{\infty}$ et de démontrer certains résultats. Bien que cette notion ait déjà été introduite dans les cours de calcul différentiel et intégral, l'approche était davantage axée sur les méthodes de calcul. Dans ce cours, nous nous concentrons sur la formulation rigoureuse de cette notion et sur la démonstration de théorèmes.

2.1 Définition de la limite d'une suite

Définition 2.1. Une *suite* est une famille de nombres réels

$$(a_n)_{n=1}^{\infty} = (a_1, a_2, a_3, \ldots)$$

indexés par les entiers naturels $n \in \mathbb{N} = \{1, 2, 3, \ldots\}$. Les nombres $a_n \in \mathbb{R}$ sont appelés les **termes** de la suite $(a_n)_{n=1}^{\infty}$.

Exemple 2.2.

- (1) Si $b \in \mathbb{R}$, la suite $(b)_{n=1}^{\infty} = (b, b, b, \ldots)$ est la **suite constante** b.
- (2) Pour tout $c \in \mathbb{R}$, on a la suite $(c^n)_{n=1}^{\infty} = (c, c^2, c^3, \ldots)$ des puissances de c.
- (3) La *suite des nombres pairs* est la suite $(a_n)_{n=1}^{\infty}$ donnée par $a_n = 2n$, c'est-à-dire,

$$(2n)_{n=1}^{\infty} = (2, 4, 6, 8, 10, \ldots).$$

- (4) Pour toute fonction $f: \mathbb{N} \to \mathbb{R}$, on a une suite $(a_n)_{n=1}^{\infty}$, où $a_n := f(n)$. Inversement toute suite $(a_n)_{n=1}^{\infty}$ détermine une fonction $f: \mathbb{N} \to \mathbb{R}$, où $f(n) := a_n$.
- (5) La suite de Fibonacci est la suite $(F_n)_{n=1}^{\infty}$ définie par récurrence par

$$F_1 = 1$$

$$F_2 = 1$$

$$F_n = F_{n-1} + F_{n-2}, \text{ pour tout } n \ge 3.$$

Les quelques premiers termes sont donnés par

$$(F_n)_{n=1}^{\infty} = (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots).$$

Pour définir la notion de la limite d'une suite, rappelons d'abord que la valeur absolue d'un nombre réel x est définie par

$$|x| := \begin{cases} x & ; \text{ si } x \ge 0 \\ -x & ; \text{ si } x < 0. \end{cases}$$

On utilisera fréquemment que

$$x \le |x|$$
 pour tout $x \in \mathbb{R}$ (2.1)

et que

$$|x| < y \quad \Longleftrightarrow \quad -y < x < y \tag{2.2}$$

(Exercice (2.1)). En particulier, l'identité suivante sera utile :

$$|x - L| < \varepsilon \iff L - \varepsilon < x < L + \varepsilon \iff x \in (L - \varepsilon, L + \varepsilon)$$
 (2.3)

pour tous nombres réels $x, L \in \mathbb{R}$ et $\varepsilon > 0$ (Exercice (2.3)). En général, on interprète |x - y| comme la distance entre x et y.

La propriété fondamentale de la valeur absolue, pour ce qui a trait à l'analyse, est $\emph{l'in-\'egalit\'e triangulaire}$:

Théorème 2.3 (Inégalité triangulaire). On a

$$|x+y| \le |x| + |y| \quad pour \ tout \ x, y \in \mathbb{R}. \tag{2.4}$$

Démonstration. Soit $x, y \in \mathbb{R}$, on a

$$|x+y|^2 = (x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2|xy| = (|x| + |y|)^2,$$

 $donc |x+y| \le |x| + |y|.$

Définition 2.4. Un nombre réel L est la *limite* d'une suite $(a_n)_{n=1}^{\infty}$ si pour tout $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que

$$|a_n - L| < \varepsilon$$
 pour tout $n \ge N$.

Dans ce cas, on dit que la suite converge vers L, et on écrit

$$\lim_{n\to\infty} a_n = L.$$

Si aucune limite n'existe, on dit que la suite $(a_n)_{n=1}^{\infty}$ diverge.

Le point crucial de cette définition est que le nombre $\varepsilon > 0$ peut être aussi *petit* que l'on désire. Par exemple, soit $\varepsilon = 10^{-100}$, la définition implique que, éventuellement, la différence entre L et les termes a_n va être d'au plus 10^{-100} . Plus littérairement, la définition de convergence peut être énoncée comme suit :

« Pour tout intervalle centré en L, aussi petit soit-il, les termes de la suite sont éventuellement tous contenus dans cet intervalle. » **Exemple 2.5.** Soit $a_n = \frac{1}{n}$, montrer que $(a_n)_{n=1}^{\infty}$ converge vers L = 0.

Solution. Soit $\varepsilon > 0$. Nous avons $|a_n - L| = |\frac{1}{n} - 0| = \frac{1}{n}$. Nous devons donc trouver un nombre $N \in \mathbb{N}$ tel que $\frac{1}{n} < \varepsilon$ pour tout $n \ge N$. Il suffit de prendre un entier $N > 1/\varepsilon$ par la propriété d'Archimède (Théorème 1.10). En effet, si $n \ge N$, alors $|a_n - L| = \frac{1}{n} \le \frac{1}{N} < \varepsilon$. \square

Exemple 2.6. Soit

$$a_n = \frac{n}{n+1},$$

montrer que $(a_n)_{n=1}^{\infty}$ converge vers L=1.

Solution. Soit $\varepsilon > 0$. Nous avons

$$|a_n - L| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}.$$

Nous devons trouver N tel que $\frac{1}{n+1} < \varepsilon$ pour tout $n \ge N$. Prenons un entier $N > \frac{1}{\varepsilon}$ par la propriété d'Archimède (Théorème 1.10). Alors, pour tout $n \ge N$, nous avons

$$|a_n - L| = \frac{1}{n+1} \le \frac{1}{N+1} < \frac{1}{N} < \varepsilon.$$

Exemple 2.7. Soit $b \in \mathbb{R}$, montrer que la suite constance $(b)_{n=1}^{\infty}$ converge vers b.

Solution. Soit $a_n := b$ pour $n \in \mathbb{N}$. On veut montrer que $\lim_{n \to \infty} a_n = b$. Soit $\varepsilon > 0$. Prenons N = 1. Alors, pour tout $n \ge N$, on a $|a_n - b| = |b - b| = 0 < \varepsilon$.

Exemple 2.8. Montrer que la suite

$$((-1)^n)_{n=1}^{\infty} = (-1, 1, -1, 1, \ldots)$$

diverge.

Solution. Il faut montrer qu'aucun nombre $L \in \mathbb{R}$ n'est la limite de cette suite. Soit $L \in \mathbb{R}$. On doit montrer qu'il existe un nombre $\varepsilon > 0$ tel que, pour tout $N \in \mathbb{N}$, il existe $n \geq N$ pour lequel $|a_n - L| \geq \varepsilon$. Prenons $\varepsilon := \frac{1}{2}$. Soit $N \in \mathbb{N}$. Si $L \geq 0$, on prend un nombre impair $n \geq N$. Ainsi, on obtient $|(-1)^n - L| = |-1 - L| = 1 + L \geq 1 > \frac{1}{2} = \varepsilon$. Si L < 0, on prend un nombre pair $n \geq N$. Cela conduit à $|(-1)^n - L| = |1 - L| = 1 - L > 1 > \frac{1}{2} = \varepsilon$.

Pour parler de *la* limite d'une suite, il faut montrer que si une limite existe telle qu'à la Définition 2.4, alors cette limite est unique.

Proposition 2.9. Soient L et M des limites d'une suite $(a_n)_{n=1}^{\infty}$. Alors, L = M.

Démonstration. Il suffit de montrer que $|L-M| < \varepsilon$ pour tout $\varepsilon > 0$ (Proposition 1.26). Soit $\varepsilon > 0$. Puisque $\lim_{n\to\infty} a_n = L$, il existe $N_1 \in \mathbb{N}$ tel que $|a_n - L| < \varepsilon/2$ pour tout $n \ge N_1$. De même, avec $\lim_{n\to\infty} a_n = M$, on a $N_2 \in \mathbb{N}$ tel que $|a_n - M| < \varepsilon/2$ pour tout $n \ge N_2$. Soit $n := \max(N_1, N_2)$. Alors, $n \ge N_1$ et $n \ge N_2$ donc, par l'inégalité triangulaire (2.4),

$$|L - M| = |(L - a_n) + (a_n - M)| \le |L - a_n| + |a_n - M| = |a_n - L| + |a_n - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Puisque ε est arbitraire, cela implique que |L-M|=0 (Proposition 1.26), et donc L=M.

2.2 Quelques propriétés des limites

Théorème 2.10 (Théorème du sandwich). Soient $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$, et $(c_n)_{n=1}^{\infty}$ des suites telles que

$$a_n < b_n < c_n$$
 pour tout $n \in \mathbb{N}$.

 $Si\ (a_n)_{n=1}^{\infty}\ et\ (c_n)_{n=1}^{\infty}\ convergent\ vers\ la\ même\ valeur\ L,\ alors\ (b_n)_{n=1}^{\infty}\ converge\ aussi\ vers\ L.$

Démonstration. Soit $\varepsilon > 0$. Puisque $\lim_{n \to \infty} a_n = L$, il existe $N_1 \in \mathbb{N}$ tel que

$$|a_n - L| < \varepsilon$$
 pour tout $n \ge N_1$.

De même, puisque $\lim_{n\to\infty} c_n = L$, il existe $N_2 \in \mathbb{N}$ tel que

$$|c_n - L| < \varepsilon$$
 pour tout $n \ge N_2$.

Soit $N := \max(N_1, N_2)$. Alors, pour tout $n \ge N$, nous avons $n \ge N_1$ et $n \ge N_2$, et donc

$$L - \varepsilon < a_n \le b_n \le c_n < L + \varepsilon$$
.

Ainsi, $|b_n - L| < \varepsilon$ pour tout $n \ge N$, et donc $\lim_{n \to \infty} b_n = L$.

Exemple 2.11. Montrer que

$$\lim_{n \to \infty} \frac{1}{n^2} = 0.$$

Démonstration. Observons que

$$0 \le \frac{1}{n^2} \le \frac{1}{n}$$
 pour tout $n \in \mathbb{N}$.

Étant donné que $\lim_{n\to\infty} 0 = 0$ (Exemple 2.5) et $\lim_{n\to\infty} \frac{1}{n} = 0$ (Exemple 2.7), le théorème du sandwich (Théorème 2.10) nous permet de conclure que $\lim_{n\to\infty} \frac{1}{n^2} = 0$.

Exemple 2.12. Montrer que

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

Solution. Nous avons

$$-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}.$$

Il a été démontré que $\lim_{n\to\infty}\frac{1}{n}=0$. De manière analogue $\lim_{n\to\infty}-\frac{1}{n}=0$. Ainsi, le théorème du sandwich (Théorème 2.10) implique que $\lim_{n\to\infty}\frac{\sin n}{n}=0$.

Définition 2.13. Une suite $(a_n)_{n=1}^{\infty}$ est dite **bornée** s'il existe des nombres réels m et M tels que

$$m \le a_n \le M$$

pour tout $n \in \mathbb{N}$.

Exemple 2.14. Considérons la suite $(a_n)_{n=1}^{\infty}$ définie par $a_n = \frac{(-1)^n}{n}$. Cette suite est bornée, car pour tout $n \in \mathbb{N}$, nous avons $-1 \le a_n \le 1$. En revanche, la suite définie par $a_n = n^2$ n'est pas bornée.

Proposition 2.15. Toute suite convergente est bornée.

Démonstration. Soit $(a_n)_{n=1}^{\infty}$ une suite convergente et $L = \lim_{n \to \infty} a_n$ sa limite. En utilisant la définition de la limite avec $\varepsilon = 1$, on obtient qu'il existe $N \in \mathbb{N}$ tel que $|a_n - L| < 1$ pour tout $n \ge N$. Autrement dit,

$$L-1 < a_n < L+1$$

pour tout $n \geq N$. Soit

$$M := \max\{a_1, a_2, \dots, a_{N-1}, L+1\}$$

et

$$m := \min\{a_1, a_2, \dots, a_{N-1}, L-1\},\$$

on a que

$$m \le a_n \le M$$

pour tout $n \in \mathbb{N}$.

Il est important de noter que la Proposition 2.15 ne va que dans un sens : elle affirme que si une suite est convergente, alors elle est bornée. L'énoncé inverse n'est pas vrai, c'est-à-dire qu'une suite bornée n'est pas nécessairement convergente. Par exemple, la suite $((-1)^n)_{n=1}^{\infty} = (-1, 1, -1, 1, ...)$ de l'Exemple 2.8 est bornée, mais divergente.

Il est souvent plus pratique de reformuler la définition d'une suite bornée de la façon suivante.

Lemme 2.16. Une suite $(a_n)_{n=1}^{\infty}$ est bornée si et seulement si il existe B > 0 tel que $|a_n| < B$ pour tout $n \in \mathbb{N}$.

Démonstration. Soit $(a_n)_{n=1}^{\infty}$ une suite bornée. Par la Définition 2.13, il existe $m, M \in \mathbb{R}$ tels que $m \leq a_n \leq M$ pour tout $n \in \mathbb{N}$. On a donc

$$-|m|-|M| \le -|m| \le m \le a_n \le M \le |M| \le |m|+|M| \quad \text{pour tout } n \in \mathbb{N},$$

c'est-à-dire,

$$|a_n| \le |m| + |M| < |m| + |M| + 1$$
 pour tout $n \in \mathbb{N}$,

On peut donc prendre B = |m| + |M| + 1.

Inversement, soit $(a_n)_{n=1}^{\infty}$ une suite telle qu'il existe B > 0 tel que $|a_n| \leq B$ pour tout $n \in \mathbb{N}$. Alors, $-B \leq a_n \leq B$ pour tout $n \in \mathbb{N}$, et on peut donc prendre m = -B et M = B.

Exemple 2.17. Montrer que la suite $(n)_{n=1}^{\infty} = (1, 2, 3, \ldots)$ est divergente.

Solution. Si la suite $(n)_{n=1}^{\infty}$ converge, alors elle est bornée (Proposition 2.15), contredisant la propriété d'Archimède (Théorème 1.10).

Il est utile de savoir que les limites sont compatibles avec les opérations d'addition, de multiplication, et de division :

Théorème 2.18. Soient $(a_n)_{n=1}^{\infty}$ et $(b_n)_{n=1}^{\infty}$ des suites convergentes, et $c \in \mathbb{R}$. Alors

$$\lim_{n \to \infty} (a_n + b_n) = \left(\lim_{n \to \infty} a_n\right) + \left(\lim_{n \to \infty} b_n\right)$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

(c)
$$\lim_{n \to \infty} a_n b_n = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right)$$

(d) $Si \lim_{n\to\infty} b_n \neq 0$, alors

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$$

 $D\acute{e}monstration$. (a) Soit $L = \lim_{n \to \infty} a_n$ et $M = \lim_{n \to \infty} b_n$. On veut montrer que $\lim_{n \to \infty} (a_n + b_n) = L + M$. Soit $\varepsilon > 0$. Puisque $\lim_{n \to \infty} a_n = L$, il existe $N_1 \in \mathbb{N}$ tel que $|a_n - L| < \varepsilon/2$ pour tout $n \ge N_1$. Puisque $\lim_{n \to \infty} b_n = M$, il existe $N_2 \in \mathbb{N}$ tel que $|b_n - M| < \varepsilon/2$ pour tout $n \ge N_2$. Soit $N := \max(N_1, N_2)$. Alors, pour tout $n \ge N$, on a $n \ge N_1$ et $n \ge N_2$, donc par l'inégalité triangulaire (2.4),

$$|(a_n + b_n) - (L + M)| = |(a_n - L) + (b_n - M)|$$

$$\leq |a_n - L| + |b_n - M|$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon.$$

Il s'ensuit que $\lim_{n\to\infty} (a_n + b_n) = L + M$.

(b) Soit $L = \lim_{n \to \infty} a_n$. On veut montrer que $\lim_{n \to \infty} ca_n = cL$. Si c = 0, le résultat est trivial $(\lim_{n \to \infty} 0 = 0)$. Supposons que $c \neq 0$. Soit $\varepsilon > 0$. Puisque $c \neq 0$, on a |c| > 0 et donc $\varepsilon/|c| > 0$. En utilisant $\varepsilon/|c| > 0$ dans la définition de la limite $\lim_{n \to \infty} a_n = L$, on trouve qu'il existe un entier $N \in \mathbb{N}$ tel que $|a_n - L| < \varepsilon/|c|$ pour tout $n \geq N$. Il s'ensuit que pour tout $n \geq N$, on a $|ca_n - cL| = |c||a_n - L| < |c|\varepsilon/|c| = \varepsilon$.

Les parties (c) et (d) sont laissées en exercice (Exercice (2.11)).

Remarque 2.19. Dans la partie (4), on ignore les termes $\frac{a_n}{b_n}$ où $b_n = 0$. Cela ne pose pas problème, car la condition $\lim_{n\to\infty} b_n \neq 0$ implique que $b_n \neq 0$ pour tout n suffisamment grand (c'est-à-dire qu'il existe $N \in \mathbb{N}$ tel que $b_n \neq 0$ pour tout $n \geq N$; voir Exercice (2.10)).

Exemple 2.20. Montrer que

$$\lim_{n\to\infty}\frac{2n+1}{n+5}=2.$$

Solution. On a

$$\frac{2n+1}{n+5} = \frac{2+1/n}{1+5/n}.$$

Puisque $\lim_{n\to\infty}\frac{1}{n}=0$ (Exemple 2.5) et $\lim_{n\to\infty}b=b$ pour tout $b\in\mathbb{R}$ (Exemple 2.7), les parties (a) et (b) du Théorème 2.18 montrent que

$$\lim_{n \to \infty} (2 + 1/n) = 2 + 0 = 2 \quad \text{et} \quad \lim_{n \to \infty} (1 + 5/n) = 1 + 5 \cdot 0 = 1.$$

Comme $\lim_{n\to\infty} (1+5/n) \neq 0$, la partie (d) du Théorème 2.18 implique que

$$\lim_{n \to \infty} \frac{2n+1}{n+5} = \lim_{n \to \infty} \frac{2+1/n}{1+5/n} = \frac{2}{1} = 2.$$

Proposition 2.21. Soient $(a_n)_{n=1}^{\infty}$ et $(b_n)_{n=1}^{\infty}$ deux suites convergentes telles que

$$\lim_{n \to \infty} a_n = L \quad et \quad \lim_{n \to \infty} b_n = M.$$

 $Si \ a_n \leq b_n \ pour \ tout \ n \in \mathbb{N} \ alors \ L \leq M.$

Démonstration. Il suffit de montrer que $L < M + \varepsilon$ pour tout $\varepsilon > 0$ (Proposition 1.27). Soit $\varepsilon > 0$. Puisque $\lim_{n\to\infty}(b_n - a_n) = M - L$ (Théorème 2.18), il existe $N \in \mathbb{N}$ tel que $|(b_n - a_n) - (M - L)| < \varepsilon$ pour tout $n \ge N$. Puisque $b_N - a_N \ge 0$, on a $L - M \le (b_N - a_N) + (L - M) \le |(b_N - a_N) + (L - M)| < \varepsilon$. Comme $\varepsilon > 0$ est arbitraire, on conclut que $L \le M$.

On obtient immédiatement :

Proposition 2.22. Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $\lim_{n\to\infty} a_n = L$. Si $b \in \mathbb{R}$ est tel que $a_n \leq b$ pour tout $n \in \mathbb{N}$, alors $L \leq b$. De même, si $a_n \geq b$ pour tout $n \in \mathbb{N}$, alors $L \geq b$.

Démonstration. On applique la Proposition 2.21 avec la suite constante $(b)_{n=1}^{\infty}$.

Proposition 2.23. Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $\lim_{n\to\infty} a_n = L$. Alors,

$$\lim_{n \to \infty} a_{n-1} = L,$$

où la suite $(a_{n-1})_{n=1}^{\infty}$ est définie en choisissant a_0 arbitrairement.

Démonstration. Soit $\varepsilon > 0$. Puisque $\lim_{n \to \infty} a_n = L$, il existe $N \in \mathbb{N}$ tel que $|a_n - L| < \varepsilon$ pour tout $n \ge N$. Il s'ensuit que pour tout $n \ge N + 1$, on a $n - 1 \ge N$, et donc $|a_{n-1} - L| < \varepsilon$. \square

2.3 Suites monotones

Jusqu'ici dans ce chapitre, nous n'avons pas utilisé le principe de complétude (A4), et donc les mêmes définitions et résultats fonctionnent pour le système des nombres rationnels. En revanche, le prochain théorème utilise de manière essentielle le principe de complétude. Pour le formuler, nous commençons par la définition suivante.

Définition 2.24. Une suite $(a_n)_{n=1}^{\infty}$ est *croissante* si

$$a_1 < a_2 < a_3 < a_4 < \cdots$$

c'est-à-dire $a_n \leq a_{n+1}$ pour tout $n \in \mathbb{N}$. La suite est **strictement croissante** si $a_n < a_{n+1}$ pour tout $n \in \mathbb{N}$. De même, une suite $(a_n)_{n=1}^{\infty}$ est **décroissante** si $a_n \geq a_{n+1}$ pour tout $n \in \mathbb{N}$ et **strictement décroissante** si $a_n > a_{n+1}$ pour tout $n \in \mathbb{N}$. Une suite est **monotone** si elle est croissante ou décroissante.

Théorème 2.25 (Théorème de convergence monotone). *Toute suite monotone et bornée est convergente*.

Démonstration. Soit $(a_n)_{n=1}^{\infty}$ une suite croissante bornée. En particulier, l'ensemble $E := \{a_n : n \in \mathbb{N}\}$ est borné supérieurement. Par le principe de complétude (A4), $L := \sup(E)$ existe. Nous allons montrer que $\lim_{n\to\infty} a_n = L$. Soit $\varepsilon > 0$. Puisque $L - \varepsilon < \sup(E)$, $L - \varepsilon$ n'est pas une borne supérieure de E (car $\sup(E)$ est la plus petite borne supérieure). Donc il doit exister au moins un $N \in \mathbb{N}$ tel que $L - \varepsilon < a_N$. Puisque $(a_n)_{n=1}^{\infty}$ est croissante, nous avons

$$L - \varepsilon < a_N \le a_n \le L < L + \varepsilon$$

pour tout $n \geq N$. Autrement dit, $|a_n - L| < \varepsilon$ pour tout $n \geq N$, c'est-à-dire $\lim_{n \to \infty} a_n = L$. Si $(a_n)_{n=1}^{\infty}$ est décroissante et bornée, alors la suite $(-a_n)_{n=1}^{\infty}$ est croissante et bornée. Par le précédent paragraphe, $(-a_n)_{n=1}^{\infty}$ est convergente. Par le Théorème 2.18(b), $(a_n)_{n=1}^{\infty}$ est aussi convergente et $\lim_{n \to \infty} a_n = -\lim_{n \to \infty} -a_n$.

Remarque 2.26. La démonstration montre, plus précisément, que si $(a_n)_{n=1}^{\infty}$ est croissante et bornée, alors

$$\lim_{n \to \infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$$

En particulier, la limite $L = \lim_{n\to\infty} a_n$ satisfait $a_n \leq L$ pour tout $n \in \mathbb{N}$. De même, si $(a_n)_{n=1}^{\infty}$ est décroissante et bornée, alors

$$\lim_{n \to \infty} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

Exemple 2.27. Montrer que

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

Solution. La suite $(1/\sqrt{n})_{n=1}^{\infty}$ est décroissante et bornée entre 0 et 1. Par le théorème de convergence monotone (Théorème 2.25), $\lim_{n\to\infty} 1/\sqrt{n} = L$ existe. Par le Théorème 2.18(c), $L^2 = \lim_{n\to\infty} \left(\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}}\right) = \lim_{n\to\infty} \frac{1}{n} = 0$ (Exemple 2.5). Par conséquent, L = 0.

Exemple 2.28. Soit -1 < c < 1, montrons que

$$\lim_{n \to \infty} c^n = 0.$$

Solution. Supposons, tout d'abord, que 0 < c < 1. On a $c^n - c^{n+1} = (1-c)c^n > 0$ donc $c^n > c^{n+1}$ pour tout $n \in \mathbb{N}$. La suite $(a_n)_{n=1}^{\infty}$, où $a_n = c^n$, est donc décroissante. De plus, $0 < c^n < 1$ pour tout $n \in \mathbb{N}$, donc $(a_n)_{n=1}^{\infty}$ est bornée. Par le théorème de convergence monotone (Théorème 2.25), la limite $\lim_{n\to\infty} a_n = L$ existe. Nous allons montrer que L = 0. Par le Théorème 2.18(b), nous avons

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} ca_{n-1} = c \lim_{n \to \infty} a_{n-1} = cL,$$

et donc (1-c)L=0. Puisque $1-c\neq 0$, ceci implique que L=0.

Si c = 0, alors $c^n = 0$ pour tout n donc $\lim_{n \to \infty} c^n = 0$.

Finalement, supposons que -1 < c < 0. Soit $\varepsilon > 0$. Nous avons 0 < |c| < 1, donc $\lim_{n\to\infty} |c|^n = 0$. Il existe alors $N \in \mathbb{N}$ tel que $|c|^n < \varepsilon$ pour tout $n \ge N$, et donc $|c^n - 0| = |c|^n < \varepsilon$ pour tout $n \ge N$. Il s'ensuit que $\lim_{n\to\infty} c^n = 0$.

Exemple 2.29. Soit $(a_n)_{n=1}^{\infty}$ la suite définie par récurrence par

$$a_1 = 2$$

$$a_n = \frac{a_{n-1}}{2} + \frac{1}{a_{n-1}}, \quad \text{pour tout entier } n \ge 2.$$

Montrer que $\lim_{n\to\infty} a_n = \sqrt{2}$.

Solution. Pour établir la convergence, nous montrerons que la suite $(a_n)_{n=1}^{\infty}$ est décroissante et bornée et appliquerons le théorème de convergence monotone (Théorème 2.25).

Pour montrer que $(a_n)_{n=1}^{\infty}$ est décroissante, c'est-à-dire $a_{n+1} \geq a_n$ pour tout $n \in \mathbb{N}$, on observe d'abord que

$$a_{n+1} - a_n = \frac{a_n}{2} + \frac{1}{a_n} - a_n = \frac{2 - a_n^2}{2a_n}.$$
 (2.5)

Il suffit alors de montrer que $a_n > 0$ et $2 - a_n^2 \le 0$ pour tout $n \in \mathbb{N}$.

Commençons par démontrer par récurrence que $a_n > 0$ pour tout $n \in \mathbb{N}$. Le cas n = 1 est donné : on a $a_1=2>0$. Supposons maintenant que $a_n>0$ pour un certain $n\in\mathbb{N}$. Alors, $a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n} > 0$. Par récurrence, il s'ensuit que $a_n > 0$ pour tout $n \in \mathbb{N}$. Montrons maintenant, toujours par récurrence, que $a_n^2 \ge 2$ pour tout $n \in \mathbb{N}$. Le cas n = 1

est évident : $a_1^2=2^2=4\geq 2$. Maintenant, pour tout entier $n\geq 2$, on a

$$a_n^2 - 2 = \left(\frac{a_{n-1}}{2} + \frac{1}{a_{n-1}}\right)^2 - 2 = \frac{a_{n-1}^2}{4} - 1 + \frac{1}{a_{n-1}^2} = \left(\frac{a_{n-1}}{2} - \frac{1}{a_{n-1}}\right)^2 \ge 0,$$

et donc $a_n^2 \geq 2$.

L'équation (2.5) implique donc que $(a_n)_{n=1}^{\infty}$ est décroissante. On a aussi $0 < a_n \ge a_1 =$ 2 pour tout $n \in \mathbb{N}$, donc $(a_n)_{n=1}^{\infty}$ est bornée. Par le théorème de convergence monotone (Théorème 2.25), la limite

$$L = \lim_{n \to \infty} a_n$$

existe.

Puisque $a_n^2 \ge 2$ et $a_n > 0$, nous avons $a_n \ge \sqrt{2}$ pour tout n. La Proposition 2.22 implique alors que $L \ge \sqrt{2}$, et en particulier, $L \ne 0$. Par le Théorème 2.18, nous avons donc

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{a_{n-1}}{2} + \frac{1}{a_{n-1}} \right) = \frac{L}{2} + \frac{1}{L}.$$

En simplifiant cette équation, on trouve $L^2=2$. Puisque L>0, il s'ensuit que $L=\sqrt{2}$.

Le prochain théorème est une conséquence du théorème de convergence monotone qui sera utile dans les prochaines sections.

Théorème 2.30 (Théorème des segments emboîtés). Soient $I_n = [a_n, b_n]$, pour $n \in \mathbb{N}$, des segments emboîtés, c'est-à-dire $I_{n+1} \subseteq I_n$ pour tout $n \in \mathbb{N}$. Alors l'intersection

$$\bigcap_{n=1}^{\infty} I_n = \{ x \in \mathbb{R} : a_n \le x \le b_n \text{ pour tout } n \in \mathbb{N} \}$$

est non vide.

Démonstration. Puisque $I_{n+1} \subseteq I_n$ et $a_{n+1}, b_{n+1} \in I_{n+1}$, on a $a_{n+1}, b_{n+1} \in I_n$, c'est-à-dire

$$a_n \le a_{n+1} \le b_{n+1} \le b_n$$
 pour tout $n \in \mathbb{N}$.

En particulier, la suite $(a_n)_{n=1}^{\infty}$ est croissante. Elle est aussi bornée, car $a_1 \leq a_n \leq b_1$ pour tout $n \in \mathbb{N}$. De même, la suite $(b_n)_{n=1}^{\infty}$ est décroissante et bornée. Par le théorème de convergence monotone (Théorème 2.25), les limites

$$a \coloneqq \lim_{n \to \infty} a_n$$
 et $b \coloneqq \lim_{n \to \infty} b_n$

existent. Par la Proposition 2.22, on a $a \leq b$, et par la Remarque 2.26,

$$a_n \le a \le b \le b_n$$

pour tout $n \in \mathbb{N}$. Par conséquent, tous les points dans le segment [a,b] sont contenus dans l'intersection $\bigcap_{n=1}^{\infty} I_n$. En particulier, $a \in \bigcap_{n=1}^{\infty} I_n$.

2.4 Le nombre d'Euler

Nous introduisons maintenant le nombre d'Euler

$$e = 2.718281828459045...$$

soit l'un des plus importants nombres réels en mathématiques. Pour le définir, nous montrerons que la suite $((1+\frac{1}{n})^n)_{n=1}^{\infty}$ est convergente en utilisant le théorème de convergence monotone, et définirons le nombre d'Euler comme sa limite :

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
.

Pour montrer la convergence, nous aurons besoin des deux résultats standards suivant.

Théorème 2.31 (Formule du binôme de Newton). Pour tout $x, y \in \mathbb{R}$ et $n \in \mathbb{N}$, on a

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k,$$

οù

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

sont les coefficients binomiaux.

Démonstration. Pour développer l'expression $(x+y)^n = (x+y)(x+y)\cdots(x+y)$, on choisit x ou y dans chacun des termes (x+y) et on les multiplie. Le coefficient de $x^{n-k}y^k$ correspond alors au nombre de façons de choisir n-k fois le terme x et k fois le terme y. Par la définition du coefficient binomial, il y a $\binom{n}{k}$ façons de le faire.

Exemple 2.32.

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

Théorème 2.33. Pour tout $r \in \mathbb{R}$, on a

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

Démonstration. Soit

$$s_n = 1 + r + r^2 + \dots + r^n. (2.6)$$

Alors,

$$rs_n = r + r^2 + \dots + r^n + r^{n+1}$$
 (2.7)

En soustrayant (2.7) à (2.6), on obtient

$$s_n - rs_n = 1 - r^{n+1}$$

et donc $s_n = \frac{1 - r^{n+1}}{1 - r}$.

Soit

$$a_n := \left(1 + \frac{1}{n}\right)^n$$
.

Montrons que la suite $(a_n)_{n=1}^{\infty}$ est croissante. Par la formule du binôme de Newton (Théorème 2.31), on a

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= \binom{n}{0} 1 + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^{2}} + \binom{n}{3} \frac{1}{n^{3}} + \dots + \binom{n}{n} \frac{1}{n^{n}}$$

$$= 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}} + \frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^{3}} + \dots + \frac{n(n-1)\cdots 2 \cdot 1}{n!} \cdot \dots \cdot \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right).$$

$$(2.8)$$

On a donc aussi

$$a_{n+1} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right)$$

$$+ \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right)$$

$$+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right)$$

$$(2.9)$$

On remarque que la somme (2.8) a n+1 termes, tandis (2.9) a n+2 termes. De plus, chaque terme de a_n est plus petit ou égal au terme correspondant de a_{n+1} , c'est-à-dire

$$\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{k-1}{n}\right) \leq \frac{1}{k!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)\cdots\left(1-\frac{k-1}{n+1}\right)$$

pour tout k. Puisque le dernier terme de a_{n+1} dans (2.9) est positif, on trouve que

$$a_n < a_{n+1}$$

pour tout n, et donc la suite est croissante. En particulier, $a_n \ge a_1 = 2$ pour tout $n \in \mathbb{N}$. Il suffit alors de montrer que la suite $(a_n)_{n=1}^{\infty}$ est bornée supérieurement.

Lemme 2.34. Pour tout $k \in \mathbb{N}$, on a $2^{k-1} \le k!$.

Démonstration. Montrons le résultat par récurrence sur k. Le cas où k=1 découle du fait que $2^{1-1}=2^0=1\le 1=1!$. Supposons que $2^{k-1}\le k!$ pour un certain k. Alors, $2^k=2\cdot 2^{k-1}\le 2\cdot k!\le (k+1)\cdot k!=(k+1)!$.

Il s'ensuit que $1/k! \le 1/2^{k-1}$ pour tout k. Puisqu'on a aussi $(1-\frac{k}{n}) < 1$ pour tout k, l'identité (2.8) et le Théorème 2.33 impliquent que

$$2 \le a_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 1 + \frac{1 - (1/2)^n}{1 - 1/2} = 1 + 2 - \frac{1}{2^{n-1}} < 3.$$

Il s'ensuit que $2 \le a_n < 3$ pour tout $n \in \mathbb{N}$, donc $(a_n)_{n=1}^{\infty}$ est bornée. Par le théorème de convergence monotone (Théorème 2.25), la limite

$$e := \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

existe. De plus, par la Proposition 2.22,

$$2 \le e \le 3$$
.

2.5 Ensembles dénombrables et non dénombrables

Le but de cette section est d'introduire la notion d'infini dénombrable et d'infini non dénombrable et de montrer que l'ensemble Q des nombres rationnels contient une infinité dénombrable d'éléments, tandis que son complément, les nombres irrationnels, en contiennent une infinité non dénombrable.

Définition 2.35. Un ensemble E est $d\acute{e}nombrable$ si ses éléments peuvent être énumérés, c'est-à-dire s'il existe une suite $(a_n)_{n=1}^{\infty}$ telle que $E = \{a_n : n \in \mathbb{N}\}$. Dans ce cas, la suite $(a_n)_{n=1}^{\infty}$ est appelée une $\acute{e}num\acute{e}ration$ de E. On dit que E est infini $d\acute{e}nombrable$ s'il est dénombrable et n'est pas fini.

Il est important de noter que l'énumération $(a_n)_{n=1}^{\infty}$ n'est pas unique pour un ensemble donné. Par exemple, si $E = \mathbb{N}$, alors les suites $(1, 2, 3, 4, 5, \ldots)$ et $(2, 1, 4, 3, 6, 5, \ldots)$ sont deux énumérations possibles de E.

Exemple 2.36.

- (1) Tout ensemble fini est dénombrable. Par exemple, si $E = \{-\frac{1}{2}, 0, \frac{5}{7}\}$, une énumération possible est $(a_n)_{n=1}^{\infty} = (-\frac{1}{2}, 0, \frac{5}{7}, \frac{5}{7}, \frac{5}{7}, \frac{5}{7}, \dots)$.
- (2) L'ensemble \mathbb{N} des entiers naturels est infini dénombrable (avec $a_n = n$).
- (3) De même, l'ensemble $2\mathbb{N}$ des nombres pairs est infini dénombrable (avec $a_n=2n$).
- (4) Plus généralement, si E est dénombrable et $A \subseteq E$ est un sous-ensemble, alors A est aussi dénombrable.
- (5) L'ensemble $\mathbb Z$ des entiers relatifs est dénombrable. On peut énumérer ses éléments comme suit :

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\},\$$

c'est-à-dire, avec la suite

$$a_n := \begin{cases} n/2 & \text{si } n \text{ est pair} \\ -(n-1)/2 & \text{si } n \text{ est impair.} \end{cases}$$

Il est remarquable que bien que l'ensemble \mathbb{Q} des nombres rationnels soit dense (Théorème 1.14), il est néanmoins dénombrable.

Proposition 2.37. L'ensemble \mathbb{Q} des nombres rationnels est dénombrable.

Démonstration. Il existe plusieurs façons d'énumérer les éléments de \mathbb{Q} . L'une des plus simples consiste à commencer par énumérer les nombres rationnels positifs $\mathbb{Q}_+ := \{\frac{a}{b} : a, b \in \mathbb{N}\}$ comme illustrée dans de diagramme suivant.

On obtient ainsi une suite

$$(a_n)_{n=1}^{\infty} = (\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{3}{1}, \frac{2}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \ldots)$$

telle que $\mathbb{Q}_+ = \{a_n : n \in \mathbb{N}\}$. Une énumération de \mathbb{Q} peut ensuite être obtenue avec

$$\mathbb{Q} = \{0, a_1, -a_1, a_2, -a_2, a_3, -a_3, \dots\}.$$

Le même argument peut également être utilisé pour montrer :

Proposition 2.38. Soient E_n des ensembles dénombrables, où $n \in \mathbb{N}$. Alors, leur union $\bigcup_{n=1}^{\infty} E_n$ est aussi dénombrable.

Démonstration. Pour tout $n \in \mathbb{N}$, l'ensemble E_n est dénombrable, donc il existe une énumération $(a_{nm})_{m=1}^{\infty}$ de E_n . C'est-à-dire,

$$E_n = \{a_{nm} : m \in \mathbb{N}\}$$
 pour tout $n \in \mathbb{N}$.

On construit une énumération de l'union de la manière suivante

En revanche, les nombres réels \mathbb{R} ne peuvent pas être énumérés.

Théorème 2.39. L'ensemble \mathbb{R} des nombres réels est non dénombrable.

Démonstration. Supposons, par contradiction, que \mathbb{R} est dénombrable. Le sous-ensemble $I := [0,1] \subseteq \mathbb{R}$ est alors également dénombrable. Soit $I = \{a_n : n \in \mathbb{N}\}$ une énumération de I. Considérons un segment $I_1 \subseteq I$ tel que $a_1 \notin I_1$ (par exemple, si $a_1 > 0$ on peut prendre $I_1 = [0, a_1/2]$ et si $a_1 = 0$ on peut prendre I = [1/2, 1]). De même, trouvons un segment $I_2 \subseteq I_1$ tel que $a_2 \notin I_2$. On poursuivant de cette manière, on obtient des segments emboîtés I_n tels que $a_n \notin I_n$ pour tout $n \in \mathbb{N}$. Par le théorème des segments emboîtés (Théorème 2.30), il existe $x \in \mathbb{R}$ tel que $x \in I_n$ pour tout $n \in \mathbb{N}$. Puisque $a_n \notin I_n$, on a $x \neq a_n$ pour tout $n \in \mathbb{N}$. Cela signifie que $x \notin \{a_n : n \in \mathbb{N}\} = I$, contredisant que $x \in I_1 \subseteq I$.

Corollaire 2.40. L'ensemble des nombres irrationnels est non dénombrable.

Démonstration. Puisqu'une union d'ensembles dénombrables est dénombrable, si $\mathbb{R} \setminus \mathbb{Q}$ est dénombrable, alors $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$ l'est aussi.

^{1.} L'union $\bigcup_{n=1}^{\infty} E_n$ est l'ensemble des $x \in \mathbb{R}$ tels que $x \in E_n$ pour au moins un $n \in \mathbb{N}$.

On conclut alors que, bien que les nombres rationnels et irrationnels forment deux ensembles infinis et denses, il y a, d'une certaine manière, "plus" de nombres irrationnels que de rationnels, car les nombres irrationnels ne peuvent pas être énumérés.

Terminons par une reformulation de la densité des nombres rationnels et irrationnels qui sera utile.

Proposition 2.41. Soit $x \in \mathbb{R}$. Alors, il existe une suite $(a_n)_{n=1}^{\infty}$ de nombres rationnels telle que $\lim_{n\to\infty} a_n = x$. De même, il existe une suite $(b_n)_{n=1}^{\infty}$ de nombres irrationnels telle que $\lim_{n\to\infty} b_n = x$.

Démonstration. Pour tout $n \in \mathbb{N}$, le Théorème 1.14 implique qu'il existe $a_n \in \mathbb{Q}$ tel que $x < a_n < x + \frac{1}{n}$. Par le théorème du sandwich (Théorème 2.10), on a $\lim_{n\to\infty} a_n = x$. La deuxième partie est démontrée par un argument similaire.

2.6 Sous-suites

Soit une suite $(a_n)_{n=1}^{\infty}$, on peut obtenir d'autres suites comme, par exemple,

$$(a_{2k})_{k=1}^{\infty} = (a_2, a_4, a_6, a_8, a_{10}, \ldots)$$

ou

$$(a_{k^2})_{k=1}^{\infty} = (a_1, a_4, a_9, a_{16}, a_{25}, \ldots).$$

Plus généralement :

Définition 2.42. Soit $(a_n)_{n=1}^{\infty}$ une suite. Une **sous-suite** de $(a_n)_{n=1}^{\infty}$ est une suite de la forme $(a_{n_k})_{k=1}^{\infty} = (a_{n_1}, a_{n_2}, a_{n_3}, \ldots)$, où $n_k \in \mathbb{N}$ satisfont $n_1 < n_2 < n_3 < \cdots$.

Lemme 2.43. Soit $(a_{n_k})_{k=1}^{\infty}$ une sous-suite de $(a_n)_{n=1}^{\infty}$. Alors, $n_k \geq k$ pour tout $k \in \mathbb{N}$.

Démonstration. Nous allons montrer ce résultat par récurrence sur k. Le cas de base k = 1 découle du fait que $n_1 \ge 1$ car $n_1 \in \mathbb{N}$. Supposons que pour un certain $k \in \mathbb{N}$, on a $n_k \ge k$. Puisque $n_{k+1} > n_k$ et que ces deux nombres sont des entiers, on a $n_{k+1} \ge n_k + 1$. Il s'ensuit que $n_{k+1} \ge n_k + 1 \ge k + 1$. Par récurrence, $n_k \ge k$ pour tout $k \in \mathbb{N}$.

Proposition 2.44. Soit $(a_n)_{n=1}^{\infty}$ une suite convergente. Toute sous-suite $(a_{n_k})_{k=1}^{\infty}$ de $(a_n)_{n=1}^{\infty}$ converge et

$$\lim_{k \to \infty} a_{n_k} = \lim_{n \to \infty} a_n.$$

Démonstration. Soit $L = \lim_{n \to \infty} a_n$. Soit $\varepsilon > 0$. Puisque $\lim_{n \to \infty} a_n = L$, il existe $N \in \mathbb{N}$ tel que $|a_n - L| < \varepsilon$ pour tout $n \ge N$. En particulier, si $k \ge N$, on a $n_k \ge k \ge N$ et donc $|a_{n_k} - L| < \varepsilon$.

Exemple 2.45. Montrer que la suite $(a_n)_{n=1}^{\infty}$ donnée par $a_n = (-1)^n$ diverge.

Solution. Si la suite converge, alors toutes ses sous-suites convergent vers la même limite (Proposition 2.44). Mais $(a_{2k})_{k=1}^{\infty} = (1)_{k=1}^{\infty}$ converge vers 1 et $(a_{2k+1})_{k=1}^{\infty} = (-1)_{k=1}^{\infty}$ converge vers -1.

Théorème 2.46 (Théorème de Bolzano-Weierstrass). *Toute suite bornée possède une sous-suite convergente.*

Démonstration. Soit $(a_n)_{n=1}^{\infty}$ une suite bornée :

$$m \le a_n \le M$$
 pour tout $n \in \mathbb{N}$.

Le segment $I_1 = [m, M]$ contient tous les termes a_n . Si on sépare I_1 en deux segments égaux $I_1 = [m, c] \cup [c, M]$, où $c = \frac{m+M}{2}$, alors un des deux segments [m, c] ou [c, M] contient une infinité de termes a_n . En effet, si [m, c] et [c, M] contiennent chacun un nombre fini de termes a_n , alors $I_1 = [m, M]$ contient aussi un nombre fini de a_n , contredisant le fait que I_1 contient tous les a_n . Appelons donc I_2 le segment [m, c] ou [c, M] qui contient une infinité de termes a_n . La longueur de I_2 est la moitié de celle de I_1 , soit $\frac{1}{2}(M-m)$. On peut répéter le processus en divisant I_2 en deux segments égaux et en choisissant $I_3 \subseteq I_2$ celui qui contient une infinité de termes a_n . En continuant de la sorte, on obtient une suite de segments emboités $I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$, qui contiennent chacun une infinité de termes a_n , et tel que I_k est de longueur $\frac{1}{2^{k-1}}(M-m)$. Par le théorème des segments emboîtés (Théorème 2.30), il existe un nombre

$$L \in \bigcap_{k=1}^{\infty} I_k$$
.

Puisque chaque segment I_k contient une infinité de termes a_n , on peut choisir une suite $n_1 < n_2 < n_3 < \cdots$ telle que $a_{n_k} \in I_k$ pour tout $k \in \mathbb{N}$. Nous allons démontrer que $\lim_{n\to\infty} a_{n_k} = L$. En effet, a_{n_k} et L sont tous deux des éléments de I_k , qui est de longueur $\frac{1}{2^{k-1}}(M-m)$, donc

$$|a_{n_k} - L| \le \frac{1}{2^{k-1}}(M - m).$$

Puisque $\frac{1}{2^{k-1}}(M-m)$ converge vers 0 (Exercice (2.4)), on a $\lim_{k\to\infty} a_{n_k} = L$ (Exercice (2.9)).

Exemple 2.47. Montrer qu'il existe une sous-suite de

$$(a_n)_{n=1}^{\infty} = \left(\frac{n^4 \sin(1 + \cos(n)^{\ln n})}{1 + n^4}\right)_{n=1}^{\infty}$$

qui converge.

Solution. Puisque $|\sin x| \leq 1$ pour tout $x \in \mathbb{R}$, on a

$$|a_n| = \left| \frac{n^4 \sin(1 + \cos(n)^{\ln(n)})}{1 + n^4} \right| \le \frac{n^4}{1 + n^4} < 1$$

et donc $(a_n)_{n=1}^{\infty}$ est bornée entre -1 et 1. Par le théorème de Bolzano-Weierstrass (Théorème 2.46), $(a_n)_{n=1}^{\infty}$ a une sous-suite convergente.

2.7 Suites de Cauchy

Revenons au principe de complétude. Nous allons voir dans cette section que ce principe est lié au fait que, d'une certaine manière, \mathbb{R} contienne toutes ses limites. En revanche, cette propriété n'est pas satisfaite par le système des nombres rationnels \mathbb{Q} . Par exemple, la suite $a_n = (1 + \frac{1}{n})^n$ converge vers le nombre d'Euler e = 2.71828... qui est irrationnel, bien que $a_n \in \mathbb{Q}$ pour tout n. Le fait que \mathbb{R} contienne toutes ses limites peut sembler évident, car, dans la définition de la limite, on suppose déjà que la limite est dans \mathbb{R} . Cet énoncé peut prendre un sens seulement s'il y a une façon de déterminer si une suite est convergente sans spécifier la limite. C'est en effet possible :

Définition 2.48. Une *suite de Cauchy* est une suite $(a_n)_{n=1}^{\infty}$ telle que pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$ tel que

$$|a_m - a_n| < \varepsilon$$

pour tous $m, n \geq N$.

Remarque 2.49. Puisque $|a_m - a_n| = |a_n - a_m|$ on peut énoncer la définition d'une suite de Cauchy avec $m > n \ge N$ plutôt que $m, n \ge N$.

Vérifions d'abord que les suites convergentes sont des suites de Cauchy :

Proposition 2.50. Toute suite convergente est une suite de Cauchy.

Démonstration. Soit $(a_n)_{n=1}^{\infty}$ une suite convergente,

$$\lim_{n \to \infty} a_n = L.$$

Soit $\varepsilon > 0$. En prenant $\frac{\varepsilon}{2}$ dans la définition de la limite, on trouve qu'il existe $N \in \mathbb{N}$ tel que $|a_n - L| < \frac{\varepsilon}{2}$ pour tout $n \geq N$. Donc, par l'inégalité triangulaire (2.4), pour tout $m, n \geq N$, on a

$$|a_m - a_n| = |(a_m - L) + (L - a_n)| \le |a_m - L| + |L - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Le principe de complétude implique l'inverse :

Proposition 2.51. Toute suite de Cauchy est convergente.

Démonstration. Soit $(a_n)_{n=1}^{\infty}$ une suite de Cauchy. Commençons par démontrer que $(a_n)_{n=1}^{\infty}$ est bornée. En utilisant $\varepsilon = 1$ dans la définition d'une suite de Cauchy, on a qu'il existe $N \in \mathbb{N}$ tel que $|a_m - a_n| < 1$ pour tout $m, n \geq N$. En particulier, pour tout $n \geq N$, on a

$$|a_n| = |(a_n - a_N) + a_N| \le |a_n - a_N| + |a_N| < 1 + |a_N|.$$

Par conséquent, pour tout $n \in \mathbb{N}$ on a

$$|a_n| \le \max(|a_1|, |a_2|, \dots, |a_{N-1}|, 1 + |a_N|),$$

et la suite est donc bornée (Lemme 2.16). Par le théorème de Bolzano-Weierstrass (Théorème 2.46), il existe une sous-suite convergente $(a_{n_k})_{k=1}^{\infty}$. Soit

$$L = \lim_{k \to \infty} a_{n_k}.$$

Nous allons montrer que $(a_n)_{n=1}^{\infty}$ converge aussi vers L. Soit $\varepsilon > 0$. En utilisant $\frac{\varepsilon}{2}$ dans la définition d'une suite de Cauchy, on obtient qu'il existe $N \in \mathbb{N}$ tel que $|a_m - a_n| < \frac{\varepsilon}{2}$ pour tout $m, n \geq N$. De même, en utilisant $\frac{\varepsilon}{2}$ dans la définition de la convergence de a_{n_k} , il existe $K \in \mathbb{N}$ tel que $|a_{n_k} - L| < \frac{\varepsilon}{2}$ pour tout $k \geq K$. Soit $k := \max(K, N)$. Alors, $k \geq K$ et $n_k \geq k \geq N$, donc pour tout $n \geq N$, on a

$$|a_n - L| = |(a_n - a_{n_k}) + (a_{n_k} - L)| \le |a_n - a_{n_k}| + |a_{n_k} - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Donc $\lim_{n\to\infty} a_n = L$.

Par les propositions 2.50 et 2.51, on a :

Théorème 2.52. Une suite est convergente si et seulement si c'est une suite de Cauchy.

Remarque 2.53. Il est aussi possible de démontrer le principe de complétude en supposant que toute suite de Cauchy converge. Le principe de complétude est donc equivalant à la convergence des suites de Cauchy.

Le prochain résultat donne un critère utile pour déterminer si une suite converge.

Proposition 2.54. Soit $(a_n)_{n=1}^{\infty}$ une suite telle qu'il existe un nombre réel c tel que

et

$$|a_{n+1} - a_n| \le c|a_n - a_{n-1}|, \quad pour \ tout \ n \ge 2.$$

Alors, la suite $(a_n)_{n=1}^{\infty}$ est convergente.

Démonstration. On a

$$|a_{n+1} - a_n| \le c|a_n - a_{n-1}|$$

$$\le c^2|a_{n-1} - a_{n-2}|$$

$$\le c^3|a_{n-2} - a_{n-3}|$$

$$\vdots$$

$$\le c^{n-1}|a_2 - a_1|,$$

et donc

$$|a_{n+1} - a_n| \le c^{n-1}|a_2 - a_1|$$
 pour tout $n \in \mathbb{N}$. (2.10)

Si $a_2 = a_1$, (2.10) montre que $a_{n+1} - a_n = 0$ pour tout n, alors la suite est constante et donc

convergente. On peut alors supposer que $a_2 \neq a_1$. Ainsi, pour tout m > n, on a

$$|a_{m} - a_{n}| = |(a_{m} - a_{m-1}) + (a_{m-1} - a_{m-2}) + \dots + (a_{n+1} - a_{n})|$$

$$\leq |a_{m} - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_{n}|$$
(par l'inégalité triangulaire (Exercice (2.2))
$$\leq (c^{m-2} + c^{m-3} + \dots + c^{n-1})|a_{2} - a_{1}|$$
(par (2.10))
$$= c^{n-1}(1 + c + c^{2} + \dots + c^{m-n-1})|a_{2} - a_{1}|$$

$$= c^{n-1}\frac{1 - c^{m-n}}{1 - c}|a_{2} - a_{1}|$$
(Théorème 2.33)
$$< \frac{c^{n-1}}{1 - c}|a_{2} - a_{1}|.$$

Montrons maintenant que $(a_n)_{n=1}^{\infty}$ est une suite de Cauchy. Soit $\varepsilon > 0$. Puisque 0 < c < 1, on a

$$\lim_{n \to \infty} \frac{c^{n-1}}{1 - c} |a_2 - a_1| = \frac{c^{-1}}{1 - c} |a_2 - a_1| \lim_{n \to \infty} c^n = 0$$

(Exemple 2.28 et Théorème 2.18(b)), donc il existe $N \in \mathbb{N}$ tel que $\frac{c^{n-1}}{1-c}|a_2-a_1| < \varepsilon$ pour tout $n \geq N$. Par conséquent, pour tout $m, n \geq N$, on a $|a_m-a_n| < \frac{c^{n-1}}{1-c}|a_2-a_1| < \varepsilon$. Il s'ensuit que $(a_n)_{n=1}^{\infty}$ est une suite de Cauchy et est donc convergente (Théorème 2.52). \square

Définition 2.55. Une suite qui satisfait l'hypothèse de la Proposition 2.54 est appelée *suite contractante*.

Exemple 2.56. Soit $(F_n)_{n=1}^{\infty}$ la suite de Fibonacci (Exemple 2.2(5)). Montrer que

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \varphi,$$

οù

$$\varphi \coloneqq \frac{1+\sqrt{5}}{2} = 1.61803\dots$$

est le nombre d'or.

Solution. Nous allons montrer que la suite $(a_n)_{n=1}^{\infty} := (F_{n+1}/F_n)_{n=1}^{\infty}$ est contractante. Pour tout $n \ge 2$, on a

$$a_n = \frac{F_{n+1}}{F_n} = \frac{F_n + F_{n-1}}{F_n} = 1 + \frac{F_{n-1}}{F_n} = 1 + \frac{1}{F_n/F_{n-1}} = 1 + \frac{1}{a_{n-1}}.$$

La suite $(a_n)_{n=1}^{\infty}$ satisfait donc la relation de récurrence

$$a_1 = 1$$
 $a_n = 1 + \frac{1}{a_{n-1}}, \text{ pour tout } n \ge 2.$ (2.11)

Montrons par récurrence que

$$\frac{3}{2} \le a_n \le 2 \tag{2.12}$$

pour tout $n \geq 2$. Le cas où n=2 découle du fait que $a_2=\frac{F_3}{F_2}=\frac{2}{1}=2$. Supposons que (2.12) est vraie pour un certain $n\geq 2$. Alors $a_{n+1}=1+\frac{1}{a_n}\leq 1+\frac{1}{3/2}=\frac{5}{3}<2$ et $a_{n+1}=1+\frac{1}{a_n}\geq 1+\frac{1}{2}=\frac{3}{2}$. Par récurrence, (2.12) est valide pour tout $n\geq 2$. Il s'ensuit que pour tout $n\geq 2$, on a

$$|a_{n+1} - a_n| = \left| \left(1 + \frac{1}{a_n} \right) - \left(1 + \frac{1}{a_{n-1}} \right) \right| = \left| \frac{1}{a_n} - \frac{1}{a_{n-1}} \right| = \frac{|a_n - a_{n-1}|}{a_n a_{n-1}} \le \frac{|a_n - a_{n-1}|}{(3/2)(3/2)} = \frac{4}{9} |a_n - a_{n-1}|.$$

La suite $(a_n)_{n=1}^{\infty}$ est donc contractante et (par la Proposition 2.54 avec c=4/9), la limite

$$\lim_{n \to \infty} a_n = L$$

existe. Puisque $a_n \ge 3/2$ pour tout $n \ge 2$, on a $L \ge 3/2$ (Proposition 2.22) et donc $L \ne 0$. Par (2.11), la Proposition 2.23 et le Théorème 2.18, on a

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{a_{n-1}} \right) = 1 + \frac{1}{L},$$

c'est-à-dire,

$$L^2 = L + 1.$$

Les solutions de cette équation quadratique sont

$$L = \frac{1 \pm \sqrt{5}}{2}$$

Puisque L > 0, on trouve $L = \frac{1+\sqrt{5}}{2}$.

Par la relation de récurrence (2.11), on a

$$a_{1} = 1$$

$$a_{2} = 1 + \frac{1}{a_{1}} = 1 + 1$$

$$a_{3} = 1 + \frac{1}{a_{2}} = 1 + \frac{1}{1+1}$$

$$a_{4} = 1 + \frac{1}{a_{3}} = 1 + \frac{1}{1 + \frac{1}{1+1}}$$

$$a_{5} = 1 + \frac{1}{a_{4}} = 1 + \frac{1}{1 + \frac{1}{1+\frac{1}{1+1}}}$$

$$a_{6} = 1 + \frac{1}{a_{5}} = 1 + \frac{1}{1 + \frac{1}{1+\frac{1}{1+1}}}$$

On peut donc interpréter l'Exemple 2.56 comme le fait que

$$1 + \frac{1}{1 + \dots}}}}}}} = \varphi$$

où la fraction se poursuit avec un nombre infini d'étages. Ce type de fraction est appelé fraction continue.

2.8 Vers l'infini

Définition 2.57. On dit qu'une suite $(a_n)_{n=1}^{\infty}$ tend vers ∞ , noté

$$\lim_{n\to\infty} a_n = \infty,$$

si pour tout $x \in \mathbb{R}$ il existe $N \in \mathbb{N}$ tel que $a_n > x$ pour tout $n \ge N$. De même, la suite **tend** $vers -\infty$, noté

$$\lim_{n \to \infty} a_n = -\infty$$

si pour tout $x \in \mathbb{R}$ il existe $N \in \mathbb{N}$ tel que $a_n < x$ pour tout $n \ge N$.

Exemple 2.58.

- (1) La suite $(n)_{n=1}^{\infty}$ tend vers ∞ par la propriété d'Archimède (Théorème 1.10).
- (2) La suite $(n^2)_{n=1}^{\infty}$ tend vers ∞ . En effet, soit $x \in \mathbb{R}$. Par la propriété d'Archimède (Théorème 1.10), il existe $N \in \mathbb{N}$ tel que N > x. Donc, pour tout $n \geq N$, on a $n^2 > n > N > x$.
- (3) Montrons que

$$\lim_{n\to\infty} \sqrt[3]{n} = \infty.$$

Soit $x \in \mathbb{R}$. Par la Propriété d'Archimède, il existe $N \in \mathbb{N}$ tel que $N > x^3$, et donc $\sqrt[3]{N} > x$. Il s'ensuit que pour tout $n \ge N$, on a $\sqrt[3]{n} \ge \sqrt[3]{N} > x$.

Proposition 2.59. Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $a_n \neq 0$ pour tout n et

$$\lim_{n\to\infty} a_n = \infty,$$

et $(b_n)_{n=1}^{\infty}$ une suite bornée. Alors,

$$\lim_{n \to \infty} \frac{b_n}{a_n} = 0.$$

Démonstration. Puisque $(b_n)_{n=1}^{\infty}$ est bornée, il existe un nombre B>0 tel que $|b_n|< B$ pour tout $n\in\mathbb{N}$ (Lemme 2.16). Soit $\varepsilon>0$. Puisque $\lim_{n\to\infty}a_n=\infty$, il existe $N\in\mathbb{N}$ tel que $a_n>B/\varepsilon$ pour tout $n\geq N$. Il s'ensuit que pour tout $n\geq N$, on a $|b_n/a_n|\leq B/a_n<\varepsilon$, et donc $\lim_{n\to\infty}b_n/a_n=0$.

Exemple 2.60. La suite $(\cos(n))_{n=1}^{\infty}$ est bornée donc, par l'Exemple 2.58(3), on a

$$\lim_{n \to \infty} \frac{\cos n}{\sqrt[3]{n}} = 0.$$

2.9 Exercices

- (2.1) Montrer (2.1) et (2.2).
- (2.2) Démontrer par récurrence que pour tous nombres réels $x_1, x_2, \ldots, x_n \in \mathbb{R}$,

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$$
.

- (2.3) Démontrer l'équation (2.3).
- (2.4) Montrer que $\lim_{n\to\infty}\frac{1}{2^n}=0$ directement selon la Définition 2.4.
- (2.5) Montrer que $\lim_{n\to\infty} (1+\frac{(-1)^n}{2n})=1$ directement selon la Définition 2.4.
- (2.6) Montrer que $\lim_{n\to\infty} \frac{n^2}{n^2+1} = 1$ directement selon la Définition 2.4.
- (2.7) Montrer que $\lim_{n\to\infty} \frac{\sqrt{n}}{1+n} = 0$ directement selon la Définition 2.4.
- (2.8) Soit $(a_n)_{n=1}^{\infty}$ une suite convergente, montrer que $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = \lim_{n\to\infty} a_n$.
- (2.9) Soient $(a_n)_{n=1}^{\infty}$ et $(b_n)_{n=1}^{\infty}$ deux suites telles que $\lim_{n\to\infty} b_n = 0$ et $|a_n L| \le b_n$ pour tout $n \in \mathbb{N}$. Montrer que $\lim_{n\to\infty} a_n = L$.
- (2.10) Soit $(b_n)_{n=1}^{\infty}$ une suite convergente et $c \in \mathbb{R}$ tel que $\lim_{n\to\infty} b_n \neq c$. Montrer qu'il existe $N \in \mathbb{N}$ tel que $b_n \neq c$ pour tout $n \geq N$.
- (2.11) Démontrer les parties (c) et (d) du Théorème 2.18.
- (2.12) Montrer que $\lim_{n\to\infty} \frac{2n}{n^2+1} = 0$.
- (2.13) Trouver $\lim_{n\to\infty} \frac{\sqrt{n}-1}{\sqrt{n}+1}$.
- (2.14) Soit c > 0, trouver $\lim_{n \to \infty} \frac{1}{1+c^n}$. (La réponse dépend de c.)
- (2.15) Soit $(a_n)_{n=1}^{\infty}$ une suite monotone telle que $a_n > 0$ pour tout n et $\lim_{n \to \infty} a_n = L > 0$. Montrer que $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{L}$.
- (2.16) Soient $(a_n)_{n=1}^{\infty}$ et $(b_n)_{n=1}^{\infty}$ deux suites telles que $|a_n b_n| < \frac{1}{n}$ pour tout n. Montrer que, si $(a_n)_{n=1}^{\infty}$ converge vers L, alors $(b_n)_{n=1}^{\infty}$ converge aussi vers L.
- (2.17) Soit $(a_n)_{n=1}^{\infty}$ la suite définie par

$$a_1 = 2$$

$$a_n = \frac{a_{n-1}}{2} + \frac{3}{2a_{n-1}},$$

montrer que $(a_n)_{n=1}^{\infty}$ converge vers $\sqrt{3}$.

(2.18) Soit $(a_n)_{n=1}^{\infty}$ la suite définie par

$$a_1 = 1$$

$$a_n = \frac{2a_{n-1} + 3}{4} \quad \text{pour tout } n \ge 2.$$

Montrer que $\lim_{n\to\infty} a_n = 3/2$.

(2.19) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que

$$\lim_{n \to \infty} a_n = L.$$

Montrer que

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = L.$$

- (2.20) Soit $(a_n)_{n=1}^{\infty}$ une énumération de \mathbb{Q} . Montrer que la suite $(a_n)_{n=1}^{\infty}$ diverge.
- (2.21) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $a_n > 0$ pour tout $n \in \mathbb{N}$, et $\lim_{n \to \infty} a_n = L > 0$. Montrer que $\inf\{a_n : n \in \mathbb{N}\} > 0$.
- (2.22) (a) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que les sous-suites $(a_{2n-1})_{n=1}^{\infty}$ et $(a_{2n})_{n=1}^{\infty}$ convergent vers la même valeur $L \in \mathbb{R}$. Montrer que $(a_n)_{n=1}^{\infty}$ converge aussi vers L.
 - (b) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que les sous-suites $(a_{3n-2})_{n=1}^{\infty}$, $(a_{3n-1})_{n=1}^{\infty}$, et $(a_{3n})_{n=1}^{\infty}$ convergent vers la même valeur $L \in \mathbb{R}$. Montrer que $(a_n)_{n=1}^{\infty}$ converge aussi vers L.
- (2.23) Soit $(a_n)_{n=1}^{\infty}$ une suite de Cauchy et $(a_{n_k})_{k=1}^{\infty}$ une sous-suite telle que $\lim_{k\to\infty} a_{n_k} = L$. Montrer que $\lim_{n\to\infty} a_n = L$.
- (2.24) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que la suite $(b_n)_{n=1}^{\infty}$ où $b_n = \sum_{k=1}^n |a_k a_{k+1}|$ converge. Montrer que $(a_n)_{n=1}^{\infty}$ converge.
- (2.25) Soient $c \in \mathbb{R}$ et $a_n = \frac{\lfloor nc \rfloor}{n}$, où $\lfloor x \rfloor$ est la partie entière de x. Montrer que $\lim_{n \to \infty} a_n = c$.
- (2.26) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $\lim_{n\to\infty} a_n = 0$ et $(b_n)_{n=1}^{\infty}$ une suite bornée. Montrer que $\lim_{n\to\infty} a_n b_n = 0$.
- (2.27) Montrer que la suite $((-1)^n + 1/n)_{n=1}^{\infty}$ diverge.
- (2.28) Établir la convergence des suites suivantes et trouver leur limite.
 - (a) $((1+1/n^2)^{n^2})_{n=1}^{\infty}$
 - (b) $((1+1/2n)^{4n})_{n=1}^{\infty}$
- (2.29) Soit $(a_n)_{n=1}^{\infty}$ une suite de Cauchy telle que $a_n \in \mathbb{N}$ pour tout $n \in \mathbb{N}$. Montrer que $(a_n)_{n=1}^{\infty}$ est évantuellement constante, c'est-à-dire, qu'il existe $c \in \mathbb{R}$ et $N \in \mathbb{N}$ tels que $a_n = c$ pour tout $n \geq N$.
- (2.30) Soit $(a_n)_{n=1}^{\infty}$ une suite. Supposons qu'il existe 0 < r < 1 tel que $|a_{n+1} a_n| < r^n$ pour tout $n \in \mathbb{N}$. Montrer que $(a_n)_{n=1}^{\infty}$ converge.
- (2.31) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $a_1 = 1$ et $a_n = \frac{1}{2+a_{n-1}}$ pour tout $n \geq 2$. Montrer que la suite converge et trouver sa limite. (Indice : montrer que $\frac{1}{3} \leq a_n \leq 1$ pour tout $n \in \mathbb{N}$.)
- (2.32) Montrer que

$$\frac{2}{1 + \frac{2}{1 + \frac{2}{1 + \frac{2}{1 + \frac{2}{1 + \dots}}}}} = 1.$$

(2.33) Soient $(a_n)_{n=1}^{\infty}$ et $(b_n)_{n=1}^{\infty}$ des suites telles que $\lim_{n\to\infty} a_n = \infty$ et $\lim_{n\to\infty} a_n b_n = L \in \mathbb{R}$. Montrer que $\lim_{n\to\infty} b_n = 0$.

Chapitre 3

Séries

Dans ce chapitre, on définit la notion de convergence d'une série

$$\sum_{n=1}^{\infty} a_n,$$

où $a_n \in \mathbb{R}$, et on démontre quelques tests de convergence.

3.1 Convergence d'une série

Définition 3.1. Soit $(a_n)_{n=1}^{\infty}$ une suite. La **série** associée à $(a_n)_{n=1}^{\infty}$ est l'expression

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots . {(3.1)}$$

La suite des sommes partielles de la série (3.1) est la suite $(s_n)_{n=1}^{\infty}$ où

$$s_n := \sum_{k=1}^n a_k = a_1 + a_2 + a_3 + \dots + a_n.$$
 (3.2)

On dit que la série (3.1) *converge* si la suite des sommes partielles (3.2) converge au sens de la Définition 2.4. Dans ce cas, si $\lim_{n\to\infty} s_n = L$, on écrit

$$\sum_{n=1}^{\infty} a_n = L,$$

et on appelle le nombre L la valeur de la série. Si la suite des sommes partielles ne converge pas, on dit que la série diverge.

Exemple 3.2 (Série géométrique). Soit $r \in \mathbb{R}$ tel que |r| < 1. Montrer que

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}.$$

Solution. Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles. On a

$$s_n = 1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

par le Théorème 2.33. Puisque -1 < r < 1, on a $\lim_{n\to\infty} r^n = 0$ par l'Exemple 2.28. Le Théorème 2.18 implique alors que

$$\lim_{n \to \infty} s_n = \frac{1 - 0}{1 - r} = \frac{1}{1 - r}.$$

Exemple 3.3. Montrer que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Solution. Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles. Puisque

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}, \quad \text{pour tout } k \in \mathbb{N},$$

on a

$$s_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)}$$

$$= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1}$$

$$= 1 - \frac{1}{n+1}.$$

Il s'ensuit que

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = \left(\lim_{n \to \infty} 1 \right) - \left(\lim_{n \to \infty} \frac{1}{n+1} \right) = 1 - 0 = 1,$$

et donc $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

Pour une série donnée, il n'est pas toujours possible de déterminer explicitement la suite des sommes partielles et vérifier directement sa convergence comme nous l'avons fait pour les deux derniers exemples. Heureusement, il existe plusieurs critères de convergence qui ne requièrent pas de calculer les sommes partielles.

Ce premier critère permet de déterminer facilement si une série diverge :

Théorème 3.4. Si la série $\sum_{n=1}^{\infty} a_n$ converge, alors $\lim_{n\to\infty} a_n = 0$. Par conséquent, si la suite $(a_n)_{n=1}^{\infty}$ ne converge pas vers 0, alors la série $\sum_{n=1}^{\infty} a_n$ diverge.

Démonstration. Soit $\sum_{n=1}^{\infty} a_n$ une série convergente, soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles, et soit $L = \lim_{n \to \infty} s_n$. On a que $a_n = s_n - s_{n-1}$ pour tout $n \ge 2$, et donc (par le Théorème 2.18(a) et la Proposition 2.23)

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \left(\lim_{n \to \infty} s_n\right) - \left(\lim_{n \to \infty} s_{n-1}\right) = L - L = 0.$$

Exemple 3.5. La série $\sum_{n=1}^{\infty} (-1)^n$ diverge car la suite $((-1)^n)_{n=1}^{\infty}$ diverge (Exemple 2.45).

Exemple 3.6. La série $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverge car $\lim_{n\to\infty} \frac{n}{n+1} = 1 \neq 0$ (Exemple 2.6).

On doit faire attention au fait que si une série $\sum_{n=1}^{\infty} a_n$ satisfait $\lim_{n\to\infty} a_n = 0$, le Théorème 3.4 ne donne aucune information sur sa convergence. L'exemple classique est la série harmonique

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

Cette série diverge, bien que $\lim_{n\to\infty}\frac{1}{n}=0$. Pour le démontrer, nous observons d'abord le critère suivant.

Théorème 3.7 (Critère de Cauchy). La série $\sum_{n=1}^{\infty} a_n$ converge si et seulement si pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$ tel que pour tous $m > n \geq N$, on a

$$\left| \sum_{k=n+1}^{m} a_k \right| = |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$$

Démonstration. Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles. Alors, pour tous $m, n \in \mathbb{N}$ tels que m > n, on a

$$|s_m - s_n| = \left| \sum_{k=1}^m a_k - \sum_{k=1}^n a_k \right| = \left| \sum_{k=n+1}^m a_k \right|.$$

Il s'ensuit que le critère de Cauchy est satisfait si et seulement si $(s_n)_{n=1}^{\infty}$ est une suite de Cauchy. Par le Théorème 2.52, ceci est équivalent à la convergence de $(s_n)_{n=1}^{\infty}$.

Exemple 3.8. Montrer que la série harmonique $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Solution. Il suffit de montrer que le critère de Cauchy n'est pas satisfait. C'est-à-dire, nous devons montrer qu'il existe $\varepsilon > 0$ tel que pour tout $N \in \mathbb{N}$, il existe $m > n \geq N$ tels que $\left| \sum_{k=n+1}^{m} \frac{1}{k} \right| \ge \varepsilon.$ Pour tout $N \in \mathbb{N}$, on a

$$\left| \sum_{k=N+1}^{2N} \frac{1}{k} \right| = \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{2N}$$

Chacun des termes de cette somme est plus grand ou égal à $\frac{1}{2N}$, et il y a N termes, donc

$$\left| \sum_{k=N+1}^{2N} \frac{1}{k} \right| \ge N \cdot \frac{1}{2N} = \frac{1}{2}.$$

Le critère de Cauchy n'est alors pas satisfait pour $\varepsilon = \frac{1}{2}$ (en utilisant m = 2N et n = N).

Le fait que la convergence d'une série est définie en fonction de la convergence d'une suite implique que les résultats du Chapitre 2 peuvent être adaptés aux séries. En particulier, le Théorème 2.18 implique le prochain résultat.

Théorème 3.9. Soient $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ des séries convergentes et $c \in \mathbb{R}$.

(a) La série $\sum_{n=1}^{\infty} (a_n + b_n)$ est convergente et

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

(b) La série $\sum_{n=1}^{\infty} ca_n$ est convergente et

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n.$$

Démonstration. Soient $(s_n)_{n=1}^{\infty}$ et $(t_n)_{n=1}^{\infty}$ les suites des sommes partielles de $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$, respectivement.

(a) La suite $(s_n + t_n)_{n=1}^{\infty}$ est la suite des sommes partielles de $\sum_{n=1}^{\infty} (a_n + b_n)$, car

$$s_n + t_n = (a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n) = (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n).$$

Par le Théorème 2.18(a), $\lim_{n\to\infty}(s_n+t_n)=(\lim_{n\to\infty}s_n)+(\lim_{n\to\infty}t_n)=\sum_{n=1}^{\infty}a_n+\sum_{n=1}^{\infty}b_n$. Par la définition de la convergence d'une série (Définition 3.1), on a $\sum_{n=1}^{\infty}(a_n+b_n)=$ $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$ (b) La suite $(cs_n)_{n=1}^{\infty}$ est la suite des sommes partielles de $\sum_{n=1}^{\infty} ca_n$, car

$$cs_n = c(a_1 + a_2 + \dots + a_n) = ca_1 + ca_2 + \dots + ca_n.$$

Par le Théorème 2.18(b), $\lim_{n\to\infty} cs_n = c \lim_{n\to\infty} s_n = c \sum_{n=1}^{\infty} a_n$. Par la définition de la convergence d'une série (Définition 3.1), on a $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$.

3.2Tests de convergence

Proposition 3.10. Soit $\sum_{n=1}^{\infty} a_n$ une série telle que $a_n \geq 0$ pour tout n. Cette série converge si et seulement si sa suite des sommes partielles est bornée.

Démonstration. Puisque $a_n \geq 0$ pour tout n, la suite des sommes partielles $s_n = \sum_{k=1}^n a_k$ est croissante. Par le théorème de convergence monotone (Théorème 2.25), si la suite (s_n) est bornée, elle converge. Inversement, puisque toute suite convergente est bornée (Proposition 2.15), si la suite $(s_n)_{n=1}^{\infty}$ converge, alors elle est bornée.

Théorème 3.11 (Test de comparaison). Soient $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ deux séries. Si $\sum_{n=1}^{\infty} b_n$ converge et il existe $N \in \mathbb{N}$ tel que

$$|a_n| \le b_n \quad pour \ tout \ n \ge N,$$

alors $\sum_{n=1}^{\infty} a_n$ converge aussi.

 $D\acute{e}monstration$. Montrons que $\sum_{n=1}^{\infty} a_n$ satisfait le critère de Cauchy (Théorème 3.7). Soit $\varepsilon > 0$. Puisque $\sum_{n=1}^{\infty} b_n$ converge, le critère de Cauchy implique qu'il existe $M \geq N$ tel que

$$\sum_{k=n+1}^{m} b_k < \varepsilon \quad \text{ pour tout } m > n \ge M.$$

Par conséquent (Exercice (2.2)),

$$\left| \sum_{k=n+1}^{m} a_k \right| \le \sum_{k=n+1}^{m} |a_k| \le \sum_{k=n+1}^{m} b_k < \varepsilon$$

pour tous $m>n\geq M.$ Le critère de Cauchy (Théorème 3.7) implique donc que $\sum_{n=1}^{\infty}a_n$ converge.

Exemple 3.12. Montrer que la série

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converge.

Solution. Pour tout $n \geq 2$, on a $n^2 \geq n(n-1)$, donc

$$\frac{1}{n^2} \le \frac{1}{n(n-1)}.$$

Par l'Exemple 3.3, la série $\sum_{n=2}^{\infty} \frac{1}{n(n-1)} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converge. Par le test de comparaison (Théorème 3.11), la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge.

Théorème 3.13 (Test du rapport). Soit $\sum_{n=1}^{\infty} a_n$ une série telle que $a_n > 0$ pour tout $n \in \mathbb{N}$ et

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L.$$

- (1) Si L < 1, la série converge.
- (2) Si L > 1, la série diverge.

Démonstration. (1) Supposons que L < 1. Puisque $a_n > 0$ pour tout $n \in \mathbb{N}$, il suffit de montrer que la suite $(s_n)_{n=1}^{\infty}$ des sommes partielles est bornée (Proposition 3.10). Soit r > 0 tel que L < r < 1 et soit $\varepsilon := r - L > 0$. Par la définition de la limite $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$, il existe $N \in \mathbb{N}$ tel que

$$\left| \frac{a_{n+1}}{a_n} - L \right| < \varepsilon \quad \text{pour tout } n \ge N.$$

Puisque $a_n > 0$, ceci est équivalent à

$$\frac{a_{n+1}}{a_n} < L + \varepsilon = r \quad \text{pour tout } n \ge N.$$

On a donc pour tout $k \geq N$ que

$$a_{N+1} < ra_N$$

 $a_{N+2} < ra_{N+1} < r^2 a_N$
 $a_{N+3} < ra_{N+2} < r^3 a_N$
 \vdots
 $a_n < r^{n-N} a_N$, pour tout $n \ge N+1$.

Par l'Exemple 3.2, il s'ensuit que pour tout $n \geq N + 1$, on a

$$s_n = s_{N-1} + a_N + a_{N+1} + \dots + a_n$$

$$< s_{N-1} + a_N + ra_N + \dots + r^{n-N}a_N$$

$$= s_{N-1} + a_N (1 + r + r^2 + \dots + r^{n-N})$$

$$= s_{N-1} + a_N \frac{1 - r^{n-N+1}}{1 - r}$$

$$\le s_{N-1} + \frac{a_N}{1 - r}.$$

Par conséquent, soit $M := \max(s_1, \dots, s_N, s_{N-1} + \frac{a_N}{1-r})$, on a $0 \le s_n \le M$ pour tout $n \in \mathbb{N}$ et donc $(s_n)_{n=1}^{\infty}$ est bornée. Par la Proposition 3.10, $\sum_{n=1}^{\infty} a_n$ converge.

(2) Supposons que L > 1. Soit $r \in \mathbb{R}$ tel que 1 < r < L. Le même argument qu'en (1) montre qu'il existe $N \in \mathbb{N}$ tel que $a_n > r^{n-N}a_N$ pour tout $n \ge N+1$. Puisque r > 1, ceci implique que $a_n > a_N > 0$ pour tout $n \ge N$. En particulier, $(a_n)_{n=1}^{\infty}$ ne converge pas vers zero, et donc la série $\sum_{n=1}^{\infty} a_n$ diverge par le Théorème 3.4.

Remarque 3.14. Si L=1 dans le Théorème 3.13, on ne peut rien conclure. Par exemple, la série harmonique $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge et $\lim_{n\to\infty} \frac{1/(n+1)}{1/n} = 1$, mais la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge et $\lim_{n\to\infty} \frac{1/(n+1)^2}{1/n^2} = 1$.

Exemple 3.15. Montrer que pour tout $x \in \mathbb{R}$, la série

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converge.

Solution. Soit $a_n = \frac{x^n}{n!}$. On a $a_n > 0$ pour tout n et

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{x^{n+1}/(n+1)!}{x^n/n!} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1,$$

donc la série converge par le test du rapport (Théorème 3.13).

Théorème 3.16 (Test des séries alternées). Soit $(a_n)_{n=1}^{\infty}$ une suite décroissante telle que $\lim_{n\to\infty} a_n = 0$. Alors la série

$$\sum_{n=1}^{\infty} (-1)^n a_n$$

converge.

Démonstration. Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles. Nous allons montrer que la suite $(s_n)_{n=1}^{\infty}$ se comporte comme sur la figure suivante :

$$s_1 \hspace{1cm} s_3 \hspace{1cm} s_5 \hspace{1cm} s_7 \hspace{1cm} s_8 \hspace{1cm} s_6 \hspace{1cm} s_4 \hspace{1cm} s_2$$

Plus précisément :

- (1) La sous-suite $(s_1, s_3, s_5, \ldots) = (s_{2n-1})_{n=1}^{\infty}$ est croissante.
- (2) La sous-suite $(s_2, s_4, s_6, \ldots) = (s_{2n})_{n=1}^{\infty}$ est décroissante.
- (3) $s_{2m-1} \leq s_{2n}$ pour tous $m, n \in \mathbb{N}$.

Pour montrer (1), on a

$$s_{2n+1} - s_{2n-1} = -a_{2n+1} + a_{2n} \ge 0$$
 pour tout $n \in \mathbb{N}$,

car $a_{2n} \ge a_{2n+1}$ par la supposition que $(a_n)_{n=1}^{\infty}$ est décroissante. Pour montrer (2), on a

$$s_{2n+2} - s_{2n} = a_{2n+2} - a_{2n+1} \le 0$$
 pour tout $n \in \mathbb{N}$,

car $a_{2n+2} \leq a_{2n+1}$ par la décroissance de $(a_n)_{n=1}^{\infty}$. Pour montrer (3), soit $m, n \in \mathbb{N}$. Soit $N = \max(m, n)$. Alors,

$$s_{2m-1} \le s_{2N-1} \le s_{2N-1} + a_{2N} = s_{2N} \le s_{2n},$$

où nous avons utilisé la croissance de $(s_{2n-1})_{n=1}^{\infty}$ pour la première inégalité, le fait que $a_{2N} \geq 0$ pour la deuxième inégalité, et la décroissance de $(s_{2n})_{n=1}^{\infty}$ pour la troisième inégalité.

Donc la suite $(s_n)_{n=1}^{\infty}$ satisfait (1), (2), et (3). Par (1), la suite $(s_{2n-1})_{n=1}^{\infty}$ est monotone, et par (3), elle est bornée entre s_1 et s_2 . Par le théorème de convergence monotone (Théorème 2.25), la limite

$$\lim_{n \to \infty} s_{2n-1} = L$$

existe. De même, (2) et (3) implique que $(s_{2n})_{n=1}^{\infty}$ est monotone et bornée, donc la limite

$$\lim_{n \to \infty} s_{2n} = M$$

existe. Nous avons alors,

$$M - L = \lim_{n \to \infty} s_{2n} - \lim_{n \to \infty} s_{2n-1} = \lim_{n \to \infty} (s_{2n} - s_{2n-1}) = \lim_{n \to \infty} a_{2n} = 0,$$

donc L = M. Il s'ensuit que $\lim_{n\to\infty} s_n = L$ (Exercice (2.22)a).

Exemple 3.17. Bien que la série harmonique $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge, sa version alternée

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converge par le test des séries alternées (Théorème 3.16). Il est possible de montrer que la valeur de cette série est ln(2), mais il faut d'abord définir l'intégrale, ce qui viendra au

prochain cours. Pour le moment, nous nous contentons de constater que $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} > 0$. En effet, soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles. Alors, pour tout $n \in \mathbb{N}$, on a

$$s_{2n} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{2n}\right)$$
$$= \frac{1}{2} + \frac{1}{3 \cdot 4} + \frac{1}{5 \cdot 6} + \dots + \frac{1}{(2n - 1)(2n)}$$
$$> \frac{1}{2}.$$

Puisqu'une sous-suite d'une suite convergente converge vers la même limite (Proposition 2.44), nous avons que $(s_{2n})_{n=1}^{\infty}$ converge. Par la Proposition 2.22,

$$\lim_{n \to \infty} s_{2n} \ge \frac{1}{2}.$$

Il s'ensuit que

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} s_{2n} \ge \frac{1}{2}.$$

3.3 Convergence absolue et conditionnelle

Cette section illustre le fait que, pour certaines séries, l'ordre des termes est important pour en déterminer sa valeur.

Exemple 3.18. Dans la dernière section, nous avons montré que la série harmonique alternée

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$
 (3.3)

converge vers une valeur L>0. Considérons maintenant la série suivante, où l'on a simplement changé l'ordre des termes :

$$\sum_{n=1}^{\infty} a_n = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \cdots,$$
 (3.4)

οù

$$a_{3n-2} = \frac{1}{2n-1}$$
, $a_{3n-1} = -\frac{1}{4n-2}$, $a_{3n} = -\frac{1}{4n}$, $n \in \mathbb{N}$.

Nous allons montrer que

$$\sum_{n=1}^{\infty} a_n = \frac{L}{2},$$

c'est-à-dire, en réarrangeant les termes de (3.3), la valeur de la série passe de L à $\frac{L}{2}$.

Montrons d'abord que la série (3.4) converge. Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles. Puisque

$$a_{3n-2} + a_{3n-1} + a_{3n} = \frac{1}{2n-1} - \frac{1}{2(2n-1)} - \frac{1}{4n}$$
(3.5)

$$=\frac{1}{2(2n-1)} - \frac{1}{4n} \tag{3.6}$$

$$=\frac{2n-(2n-1)}{4n(2n-1)}\tag{3.7}$$

$$=\frac{1}{4n(2n-1)},$$
 (3.8)

on a que

$$s_{3n} = \sum_{k=1}^{n} \frac{1}{4k(2k-1)}.$$

C'est-à-dire, $(s_{3n})_{n=1}^{\infty}$ est la suite des sommes partielles de la série $\sum_{n=1}^{\infty} \frac{1}{4n(2n-1)}$. On a $\frac{1}{4n(2n-1)} \leq \frac{1}{4n(2n-2)} = \frac{1}{8n(n-1)} \leq \frac{1}{n(n-1)}$, donc $\sum_{n=1}^{\infty} \frac{1}{4n(2n-1)}$ converge par le test de comparaison (Théorème 3.11) et l'Exemple 3.3. Il s'ensuit que $(s_{3n})_{n=1}^{\infty}$ converge. De plus,

$$|s_{3n} - s_{3n-1}| = \frac{1}{4n}$$

donc $(s_{3n-1})_{n=1}^{\infty}$ converge vers la même limite (Exercice (2.16)). De même,

$$|s_{3n} - s_{3n+1}| = \frac{1}{2n+1}$$

donc

$$\lim_{n \to \infty} s_{3n} = \lim_{n \to \infty} s_{3n-1} = \lim_{n \to \infty} s_{3n+1}.$$

Il s'ensuit que $(s_n)_{n=1}^{\infty}$ converge (Exercice (2.22)b) et donc (3.4) est une série convergente. Par (3.6), on a

$$a_{3k-2} + a_{3k-1} + a_{3k} = \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k} \right), \text{ pour tout } k \in \mathbb{N},$$

et donc

$$s_{3n} = (a_1 + a_2 + a_3) + (a_4 + a_5 + a_6) + \dots + (a_{3n-2} + a_{3n-1} + a_{3n})$$
$$= \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} \right).$$

Par conséquent,

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_{3n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{L}{2}.$$

L'exemple précédent montre que la valeur d'une série peut changer en changeant l'ordre des termes. Cependant, certaines séries ont la propriété que leur valeur est indépendante de l'ordre des termes :

Définition 3.19. Une série $\sum_{n=1}^{\infty} a_n$ converge absolument si $\sum_{n=1}^{\infty} |a_n|$ converge. Une série $\sum_{n=1}^{\infty} a_n$ converge conditionnellement si elle converge, mais $\sum_{n=1}^{\infty} |a_n|$ diverge.

Exemple 3.20. La série $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ converge absolument, car $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converge (Exemple 3.12). En revanche, la série $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converge conditionnellement, car $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ est la série harmonique qui diverge (Exemple 3.8).

Théorème 3.21. Toute série absolument convergente converge.

Démonstration. Il s'agit d'un cas spécial du test de comparaison (Théorème 3.11) avec $b_n = |a_n|$ et N = 1.

Définition 3.22. Un réarrangement d'une série

$$\sum_{n=1}^{\infty} a_n$$

est une série de la forme

$$\sum_{n=1}^{\infty} a_{f(n)},$$

οù

$$f: \mathbb{N} \longrightarrow \mathbb{N}$$

est une fonction bijective.

Théorème 3.23. Soit $\sum_{n=1}^{\infty} a_n$ une série absolument convergente telle que

$$\sum_{n=1}^{\infty} a_n = L.$$

Tout réarrangement de $\sum_{n=1}^{\infty} a_n$ converge aussi vers L.

Démonstration. Soit $f: \mathbb{N} \to \mathbb{N}$ une fonction bijective. Soit $\varepsilon > 0$. Puisque la suite $\sum_{n=1}^{\infty} |a_n|$ converge, elle satisfait au critère de Cauchy (Théorème 3.7). Il existe alors $N \in \mathbb{N}$ tel que

$$\sum_{k=n+1}^{m} |a_k| < \frac{\varepsilon}{2}, \quad \text{pour tous } m > n \ge N.$$

De plus, comme $\sum_{n=1}^{\infty} a_n = L$, il existe $M \geq N$ tel que

$$\left| \sum_{k=1}^{n} a_k - L \right| < \frac{\varepsilon}{2}, \quad \text{pour tout } n \ge M.$$

Puisque f est bijective, il existe $K \in \mathbb{N}$ tel que

$$\{1, 2, \dots, M\} \subseteq \{f(1), f(2), \dots, f(K)\}.$$

Soit $n \geq K$, et soit

$$m := \max\{f(k) : 1 \le k \le n\}.$$

On a

$$\begin{split} \left| \sum_{k=1}^{n} a_{f(k)} - L \right| &= \left| \left(\sum_{k=1}^{n} a_{f(k)} - \sum_{k=1}^{M} a_k \right) + \left(\sum_{k=1}^{M} a_k - L \right) \right| \\ &\leq \left| \sum_{k=1}^{n} a_{f(k)} - \sum_{k=1}^{M} a_k \right| + \left| \sum_{k=1}^{M} a_k - L \right| \\ &\leq \sum_{k=M+1}^{m} |a_k| + \left| \sum_{k=1}^{M} a_k - L \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon. \end{split}$$

Il s'ensuit que $\sum_{k=1}^{\infty} a_{f(k)} = L$.

Remarque 3.24. Il existe une grande généralisation de l'Exemple 3.18, appelée *Théorème* de Riemann, qui montre que si $\sum_{n=1}^{\infty} a_n$ est une série qui converge conditionnellement, alors pour tout $L \in \mathbb{R}$, il existe un réarrangement $\sum_{n=1}^{\infty} a_{f(n)}$ qui converge vers L. Nous ne couvrons pas la démonstration dans ce cours, mais l'étudiante ou l'étudiant intéressé peut se référer à [1, Théorème 7.38].

Exercices 3.4

- (3.1) Dire si les séries suivantes sont convergentes ou divergentes.

 - (a) $\sum_{n=1}^{\infty} \frac{1}{5n}$ (b) $\sum_{n=1}^{\infty} \frac{n+5}{n+7}$ (c) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ (e) $\sum_{n=1}^{\infty} \frac{1}{(n+2)(n+3)}$
- (3.2) Montrer que

$$\sum_{n=1}^{\infty} \frac{1}{(4n-3)(4n+1)} = \frac{1}{4}.$$

(Indice: Trouver $A, B \in \mathbb{R}$ tel que $\frac{1}{(4n-3)(4n+1)} = \frac{A}{4n-3} + \frac{B}{4n+1}$ et utiliser une approche semblable à celle de l'Exemple 3.3.)

(3.3) Montrer que

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{3}{4}.$$

(Indice: $\frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right)$. Utiliser une approche semblable à celle de l'Exemple 3.3.

(3.4) Calculer

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n} + n\sqrt{n+1}}.$$

(Indice: multiplier le numérateur et le dénominateur par $\sqrt{n+1} - \sqrt{n}$ et utiliser une approche semblable à celle de l'Exemple 3.3.)

- (3.5) Soit $\sum_{n=1}^{\infty} a_n$ une série convergente telle que $a_n \ge 0$ pour tout $n \in \mathbb{N}$. Montrer que $\sum_{n=1}^{\infty} a_n^2$ est convergente. Est-ce toujours vrai si l'on ne requiert pas que $a_n \ge 0$ pour tout $n \in \mathbb{N}$?
- (3.6) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $\lim_{n\to\infty} |a_n| = 0$. Montrer qu'il existe une sous-suite $(a_{n_k})_{k=1}^{\infty}$ telle que $\sum_{k=1}^{\infty} a_{n_k}$ converge.
- (3.7) Montrer que si $\sum_{n=1}^{\infty} a_n^2$ et $\sum_{n=1}^{\infty} b_n^2$ convergent, alors $\sum_{n=1}^{\infty} a_n b_n$ converge. (Indice : Montrer que $|ab| \leq \frac{1}{2}(a^2 + b^2)$ pour tout $a, b \in \mathbb{R}$ en utilisant que $(|a| |b|)^2 \geq 0$. Utiliser le test de comparaison.)
- (3.8) (Test de la racine.) Soit $\sum_{n=1}^{\infty} a_n$ une série telle que $a_n \geq 0$ pour tout n et la suite $(\sqrt[n]{a_n})_{n=1}^{\infty}$ converge vers $L \in \mathbb{R}$. Montrer que si L < 1, alors la série converge, et si L > 1, alors la série diverge. (Indice: s'inspirer de la démonstration du test du rapport (Théorème 3.13).)
- (3.9) Montrer que si $\sum_{n=1}^{\infty} a_n$ converge et $a_n \neq -1$ pour tout $n \in \mathbb{N}$, alors $\sum_{n=1}^{\infty} \frac{1-a_n}{1+a_n}$
- (3.10) Soit $\sum_{n=1}^{\infty} a_n$ une série absolument convergente, et $(b_n)_{n=1}^{\infty}$ une suite bornée. Montrer que $\sum_{n=1}^{\infty} a_n b_n$ converge absolument.

- (3.11) Montrer que si la suite $(a_n)_{n=1}^{\infty}$ satisfait $a_n > 0$ pour tout $n \in \mathbb{N}$ et $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L < 1$, alors $\lim_{n \to \infty} a_n = 0$. (Indice: Utiliser le test du rapport (Théorème 3.13).)
- (3.12) Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $\lim_{n\to\infty} a_n = L$ existe. Montrer que la série $\sum_{n=1}^{\infty} (a_n a_{n+1})$ converge et trouver sa valeur.
- (3.13) Est-il vrai que si $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ sont des séries convergentes, alors $\sum_{n=1}^{\infty} a_n b_n$ est aussi convergente?
- (3.14) Soit $\sum_{n=1}^{\infty} a_n$ une série convergente telle que $a_n > 0$ pour tout $n \in \mathbb{N}$, et $\sum_{n=1}^{\infty} b_n$ une série telle que

$$\lim_{n \to \infty} \left| \frac{b_n}{a_n} \right| = L$$

existe. Montrer que $\sum_{n=1}^{\infty} b_n$ converge absolument.

- (3.15) Soient $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ des séries telles qu'il existe $N \in \mathbb{N}$ tel que $a_n = b_n$ pour tout $n \geq N$. Montrer que $\sum_{n=1}^{\infty} a_n$ converge si et seulement si $\sum_{n=1}^{\infty} b_n$ converge.
- (3.16) Soit $\sum_{n=1}^{\infty} a_n$ une série convergente telle que $a_n > 0$ pour tout $n \in \mathbb{N}$. Soit $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$. Montrer que la série $\sum_{n=1}^{\infty} b_n$ est divergente.
- (3.17) Soit $\sum_{n=1}^{\infty} a_n$ une série convergente, telle que $\sum_{n=1}^{\infty} a_n = L$. Montrer que $\sum_{n=1}^{\infty} (a_n + a_{n+1})$ converge et trouver sa valeur en fonction de L.
- (3.18) Soient $\sum_{n=1}^{\infty} a_n$ et $\sum_{n=1}^{\infty} b_n$ des séries convergentes telles que $a_n \ge 0$ et $b_n \ge 0$ pour tout $n \in \mathbb{N}$. Montrer que la série $\sum_{n=1}^{\infty} \max(a_n, b_n)$ est convergente.
- (3.19) Soit $(a_n)_{n=1}^{\infty}$ une suite décroissante telle que $a_n > 0$ pour tout $n \in \mathbb{N}$ et $\sum_{n=1}^{\infty} a_n$ converge. Montrer que $\lim_{n\to\infty} na_n = 0$.
- (3.20) Soit $\sum_{n=1}^{\infty} a_n$ une série convergente. Montrer que $\lim_{k\to\infty} \sum_{n=k}^{\infty} a_n = 0$.

Chapitre 4

Fonctions

Le but de cette section est d'introduire la notion de la limite

$$\lim_{x \to x_0} f(x)$$

d'une fonction f ainsi que la notion de continuité, et de démontrer certaines propriétés.

Dans ces notes, le terme « fonction » désignera toujours une fonction d'une variable réelle

$$f:D\longrightarrow \mathbb{R},$$

où le **domaine** D de f est un sous-ensemble des nombres réels \mathbb{R} . On pense donc à f comme une règle d'association, qui envoie à chaque nombre réel $x \in D$ un nombre réel $f(x) \in \mathbb{R}$.

4.1 Points d'accumulation

L'idée intuitive d'une fonction f qui a une limite L au point $x_0 \in \mathbb{R}$ est que les valeurs f(x) sont près de L quand x est près de x_0 et $x \neq x_0$. Pour bien définir cette notion, il est alors nécessaire que f soit défini pour suffisamment de points « près » de x_0 . Plus précisément, nous avons besoin de la notion suivante.

Définition 4.1. Soit $D \subseteq \mathbb{R}$. Un nombre $x_0 \in \mathbb{R}$ est un **point d'accumulation** de D si pour tout $\delta > 0$ il existe (au moins) un nombre $x \in D$ tel que $0 < |x - x_0| < \delta$.

Remarque 4.2. On a $0 < |x - x_0|$ si et seulement si $x \neq x_0$. La condition sur x dans la Définition 4.1 est donc équivalente à $|x - x_0| < \delta$ et $x \neq x_0$.

Autrement dit, pour qu'un nombre $x_0 \in \mathbb{R}$ soit un point d'accumulation de D, il doit exister des nombres $x \in D$ aussi près de x_0 que ce que l'on désire, sans être égals à x_0 . En effet, l'inégalité $0 < |x - x_0| < \delta$ se traduit par

$$x \neq x_0$$
 et $x \in (x_0 - \delta, x_0 + \delta)$,

où $\delta > 0$ est arbitrairement petit.

Exemple 4.3.

- (1) Soit D = (0, 1). Alors, 0 est un point d'accumulation de D, car pour tout $\delta > 0$, le nombre $x = \min(\delta/2, 1/2)$ satisfait $0 < |x 0| = x \le \delta/2 < \delta$ et $0 < x \le 1/2 < 1$ donc $x \in D$. De même, 1 est un point d'accumulation de D ainsi que tout point dans D. L'ensemble des points d'accumulation de D est donc le segment [0, 1].
- (2) Soit $D = \{0, 1\}$. Le nombre $0 \in D$ n'est pas un point d'accumulation de D, car pour $\delta = 1/2$, il n'existe pas de nombre $x \in D$ satisfaisant $0 < |x 0| < \delta$. De même, 1 n'est pas un point d'accumulation de D. En fait, D n'a aucun point d'accumulation.

Par le premier exemple, on remarque qu'un point d'accumulation d'un ensemble D peut être dans D ou non. De plus, par le deuxième exemple, on voit que les éléments de D ne sont pas nécessairement tous des points d'accumulation.

Une autre façon de caractériser les points d'accumulation est la suivante.

Théorème 4.4. Un nombre $x_0 \in \mathbb{R}$ est un point d'accumulation de D si et seulement si il existe une suite $(a_n)_{n=1}^{\infty}$ qui converge vers x_0 telle que $a_n \in D$ et $a_n \neq x_0$ pour tout $n \in \mathbb{N}$.

Démonstration. (\Longrightarrow) Soit $x_0 \in \mathbb{R}$ un point d'accumulation de D. En posant $\delta = \frac{1}{n} > 0$ pour $n \in \mathbb{N}$ dans la Définition 4.1, il existe un nombre $a_n \in D$ tel que $0 < |a_n - x_0| < \frac{1}{n}$. C'est-à-dire, on a une suite $(a_n)_{n=1}^{\infty}$ telle que $a_n \in D$, $a_n \neq x_0$, et

$$|a_n - x_0| < \frac{1}{n}, \quad \text{pour tout } n \in \mathbb{N}.$$
 (4.1)

Puisque (4.1) est équivalent à $x_0 - \frac{1}{n} < a_n < x_0 + \frac{1}{n}$, on a $\lim_{n \to \infty} a_n = x_0$ par le théorème du sandwich (Théorème 2.10).

(\Leftarrow) Supposons qu'il existe une suite $(a_n)_{n=1}^{\infty}$ telle que $a_n \in D$, $a_n \neq x_0$ pour tout $n \in \mathbb{N}$ et $\lim_{n \to \infty} a_n = x_0$. Montrons que x_0 est un point d'accumulation de D. Soit $\delta > 0$. Puisque $\lim_{n \to \infty} a_n = x_0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$, on a $|a_n - x_0| < \delta$. En particulier, en posant $x = a_N$, on a que $x \in D$ et $0 < |x - x_0| < \delta$.

Exemple 4.5.

- (1) Pour tout intervalle ouvert D = (a, b) où a < b, l'ensemble des points d'accumulation de D est le segment D = [a, b].
- (2) Plus généralement, si D est une union d'un nombre fini d'intervalles de longueur positive ou infinie, alors l'ensemble des points d'accumulation de D est l'union de D et des bornes des intervalles le constituant (excluant $\pm \infty$). Par exemple, si $D = [-1, 0) \cup (0, 1) \cup (3, \infty)$, alors l'ensemble des points d'accumulation de D est $[-1, 1] \cup [3, \infty)$.
- (3) En généralisant l'Example 4.3(2), on voit que tout ensemble fini n'a aucun point d'accumulation.
- (4) L'ensemble N des entiers naturels n'a aucun point d'accumulation.
- (5) Soit $D = \{1/n : n \in \mathbb{N}\}$. Alors 0 est un point d'accumulation de D. En effet, la suite $(1/n)_{n=1}^{\infty}$ satisfait $1/n \in D$, $1/n \neq 0$ pour tout $n \in \mathbb{N}$ et $\lim_{n\to\infty} 1/n = 0$, donc 0 est un point d'accumulation par le Théorème 4.4.
- (6) Soit $D = [0,1] \cap \mathbb{Q} = \{x \in \mathbb{Q} : 0 \le x \le 1\}$. Par la densité des nombres rationnels (Proposition 2.41) et le Théorème 4.4, l'ensemble des points d'accumulation de D est [0,1].

4.2 Limite

Ayant défini les points d'accumulation, on peut maintenant introduire la notion de la limite d'une fonction.

Définition 4.6. Soit $f: D \to \mathbb{R}$ une fonction et x_0 un point d'accumulation de D. Un nombre $L \in \mathbb{R}$ est la *limite* de f au point x_0 si pour tout $\varepsilon > 0$ il existe un nombre $\delta > 0$ tel que pour tout $x \in D$ satisfaisant $0 < |x - x_0| < \delta$, on a $|f(x) - L| < \varepsilon$. Dans ce cas, on écrit

$$\lim_{x \to x_0} f(x) = L.$$

Proposition 4.7 (Unicité de la limite). Soit $f: D \to \mathbb{R}$ une fonction et $x_0 \in \mathbb{R}$ un point d'accumulation de D. Alors f peut avoir au plus une limite au point x_0 . C'est-à-dire, si L et M sont des limites de f au point x_0 , alors L = M.

Démonstration. Soit L et M des limites de f au point x_0 . Il suffit de montrer que $|L-M| < \varepsilon$ pour tout $\varepsilon > 0$ (Proposition 1.26). Soit $\varepsilon > 0$. Puisque $\lim_{x \to x_0} f(x) = L$, il existe $\delta_1 > 0$ tel que pour tout $x \in D$ satisfaisant $0 < |x - x_0| < \delta_1$, on a $|f(x) - L| < \varepsilon/2$. De même, puisque $\lim_{x \to x_0} f(x) = M$, il existe $\delta_2 > 0$ tel que pour tout $x \in D$ satisfaisant $0 < |x - x_0| < \delta_2$, on a $|f(x) - L| < \varepsilon/2$. Soit $\delta := \min(\delta_1, \delta_2)$. Puisque x_0 est un point d'accumulation de D, il existe $x \in D$ tel que $0 < |x - x_0| < \delta$. Il s'ensuit que $0 < |x - x_0| < \delta_1$ et $0 < |x - x_0| < \delta_2$, donc

$$|L - M| = |(L - f(x)) + (f(x) - M)| \le |f(x) - L| + |f(x) - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Puisque $\varepsilon > 0$ est arbitraire, on conclut que L = M.

On peut donc parler de la limite de f au point x_0 .

Exemple 4.8. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction donnée par f(x) = x pour tout $x \in \mathbb{R}$. Montrer que

$$\lim_{x \to x_0} f(x) = x_0$$

pour tout $x_0 \in \mathbb{R}$.

Solution. Soit $\varepsilon > 0$. On doit trouver un nombre $\delta > 0$ tel que pour tout $x \in \mathbb{R}$ satisfaisant $0 < |x - x_0| < \delta$, on a $|f(x) - f(x_0)| < \varepsilon$. Puisque $|f(x) - f(x_0)| = |x - x_0|$, on peut prendre $\delta := \varepsilon$.

Exemple 4.9. Montrer que

$$\lim_{x \to x_0} x^2 = x_0^2$$

pour tout $x_0 \in \mathbb{R}$.

Solution. Soit $\varepsilon > 0$. On doit trouver un nombre $\delta > 0$ tel que pour tout $x \in \mathbb{R}$ satisfaisant $0 < |x - x_0| < \delta$, on a $|x^2 - x_0^2| < \varepsilon$. Si $|x - x_0| < \delta$, on a

$$|x^{2} - x_{0}^{2}| = |(x + x_{0})(x - x_{0})|$$

$$= |x + x_{0}||x - x_{0}|$$

$$= |(x - x_{0}) + 2x_{0}||x - x_{0}|$$

$$\leq (|x - x_{0}| + 2|x_{0}|)|x - x_{0}|$$
(par l'inégalité triangulaire)
$$< (\delta + 2|x_{0}|)\delta.$$

Par conséquent, il suffit de trouver un nombre $\delta > 0$ tel que $(\delta + 2|x_0|)\delta \leq \varepsilon$. Si $\delta \leq 1$ et $\delta \leq \frac{\varepsilon}{1+2|x_0|}$, alors $(\delta + 2|x_0|)\delta \leq (1+2|x_0|)\delta \leq \varepsilon$. Il suffit alors de prendre

$$\delta := \min\left(1, \frac{\varepsilon}{1 + 2|x_0|}\right). \quad \Box$$

Le prochain résultat relie la notion de limite d'une fonction avec la notion de limite d'une suite telle que vue au Chapitre 2.

Théorème 4.10 (Critère séquentiel de la limite). Soit $f: D \to \mathbb{R}$ une fonction et x_0 un point d'accumulation de D. Alors,

$$\lim_{x \to x_0} f(x) = L$$

si et seulement si pour toute suite $(a_n)_{n=1}^{\infty}$ qui converge vers x_0 telle que $a_n \in D$ et $a_n \neq x_0$ pour tout $n \in \mathbb{N}$, on $a \lim_{n \to \infty} f(a_n) = L$.

Démonstration. (\Longrightarrow) Supposons que $\lim_{x\to x_0} f(x) = L$. Soit $(a_n)_{n=1}^{\infty}$ une suite qui converge vers x_0 telle que $a_n \in D$ et $a_n \neq x_0$ pour tout $n \in \mathbb{N}$. On doit montrer que $\lim_{n\to\infty} f(a_n) = L$. Soit $\varepsilon > 0$. Par la définition de $\lim_{x\to x_0} f(x) = L$, il existe $\delta > 0$ tel que $|f(x) - L| < \varepsilon$ pour tout $x \in D$ tel que $0 < |x - x_0| < \delta$. Puisque $\lim_{n\to\infty} a_n = x_0$, il existe $N \in \mathbb{N}$ tel que $|a_n - x_0| < \delta$ pour tout $n \geq N$. Il s'ensuit que si $n \geq N$, alors $0 < |a_n - x_0| < \delta$, et donc $|f(a_n) - L| < \varepsilon$. Par conséquent, $\lim_{n\to\infty} f(a_n) = L$.

 (\Leftarrow) Supposons que pour toute suite $(a_n)_{n=1}^{\infty}$ qui converge vers x_0 telle que $a_n \in D$ et $a_n \neq x_0$ pour tout $n \in \mathbb{N}$, on a $\lim_{n\to\infty} f(a_n) = L$. On doit montrer que $\lim_{x\to x_0} f(x) = L$. Supposons le contraire, c'est-à-dire que L n'est pas la limite de f au point x_0 . Donc, il existe $\varepsilon > 0$ tel que pour tout $\delta > 0$, il existe $x \in D$ tel que $0 < |x - x_0| < \delta$ et $|f(x) - L| \geq \varepsilon$. En prenant $\delta = \frac{1}{n}$, où $n \in \mathbb{N}$, on obtient un nombre $a_n \in D$ tel que $0 < |a_n - x_0| < \frac{1}{n}$ et $|f(a_n) - L| \geq \varepsilon$. Ces nombres forment une suite $(a_n)_{n=1}^{\infty}$ telle que

$$a_n \in D$$
 et $a_n \neq x_0$ pour tout $n \in \mathbb{N}$,

$$|a_n - x_0| < \frac{1}{n}$$
 pour tout $n \in \mathbb{N}$, (4.2)

et

$$|f(a_n) - L| \ge \varepsilon$$
 pour tout $n \in \mathbb{N}$. (4.3)

L'inégalité (4.2) montre que $\lim_{n\to\infty} a_n = x_0$ (comme dans la démonstration du Théorème 4.4 ou par l'Exercice (2.16)), mais l'inégalité 4.3 montre que $(f(a_n))_{n=1}^{\infty}$ ne converge pas vers L, contredisant l'hypothèse. On a donc $\lim_{x\to x_0} f(x) = L$.

Cette relation est utile pour démontrer certains théorèmes sur les limites de fonctions à partir de résultats déjà établis sur les suites, sans utiliser directement la définition avec ε et δ . Par exemple, on peut facilement obtenir le prochain théorème à partir du théorème analogue sur les suites (Théorème 2.18).

Théorème 4.11. Soient $f: D \to \mathbb{R}$ et $g: D \to \mathbb{R}$ deux fonctions de domaine commun D et x_0 un point d'accumulation de D. Supposons que les limites

$$\lim_{x \to x_0} f(x) \quad et \quad \lim_{x \to x_0} g(x)$$

existent.

(a) On a

$$\lim_{x \to x_0} (f(x) + g(x)) = \left(\lim_{x \to x_0} f(x)\right) + \left(\lim_{x \to x_0} g(x)\right).$$

(b) Pour tout $c \in \mathbb{R}$, on a

$$\lim_{x \to x_0} cf(x) = c \lim_{x \to x_0} f(x).$$

(c) On a

$$\lim_{x \to x_0} f(x)g(x) = \left(\lim_{x \to x_0} f(x)\right) \left(\lim_{x \to x_0} g(x)\right).$$

(d) Si $g(x) \neq 0$ pour tout $x \in D$ et $\lim_{x \to x_0} g(x) \neq 0$, alors

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

Démonstration. (a) Soit $\lim_{x\to x_0} f(x) = L$ et $\lim_{x\to x_0} g(x) = M$. Montrons que $\lim_{x\to x_0} (f(x)+g(x)) = L+M$ par le critère séquentiel de la limite (Théorème 4.10). Soit $(a_n)_{n=1}^{\infty}$ une suite qui converge vers x_0 telle que $a_n \in D$ et $a_n \neq x_0$ pour tout $n \in \mathbb{N}$. Puisque $\lim_{x\to x_0} f(x) = L$ et $\lim_{x\to x_0} g(x) = M$, le critère séquentiel de la limite implique que $\lim_{n\to\infty} f(a_n) = L$ et $\lim_{n\to\infty} g(a_n) = M$. Par le Théorème 2.18(a), on a $\lim_{n\to\infty} (f(a_n)+g(a_n)) = L+M$. Il s'ensuit par une autre application du critère séquentiel de la limite que $\lim_{x\to x_0} (f(x)+g(x)) = L+M$. Les démonstrations de (b), (c) et (d) sont similaires.

De même, le critère séquentiel de la limite et le théorème du sandwich pour les suites (Théorème 2.10) impliquent directement le prochain résultat.

Théorème 4.12 (Théorème du sandwich). Soient $f, g, h : D \to \mathbb{R}$ des fonctions et x_0 un point d'accumulation de D. Supposons que

$$f(x) \le g(x) \le h(x)$$
 pour tout $x \in D, x \ne x_0$

et

$$\lim_{x \to x_0} f(x) = L = \lim_{x \to x_0} h(x).$$

Alors,

$$\lim_{x \to x_0} g(x) = L.$$

Démonstration. Montrons que $\lim_{x\to x_0} g(x) = L$ par le critère séquentiel de la limite (Théorème 4.10). Soit $(a_n)_{n=1}^{\infty}$ une suite qui converge vers x_0 telle que $a_n \in D$ et $a_n \neq x_0$ pour tout $n \in \mathbb{N}$. Puisque $\lim_{x\to x_0} f(x) = L$ et $\lim_{x\to x_0} h(x) = L$, le critère séquentiel de la limite implique que $\lim_{n\to\infty} f(a_n) = L$ et $\lim_{n\to\infty} h(a_n) = L$. Puisque $f(a_n) \leq g(a_n) \leq h(a_n)$ pour tout $n \in \mathbb{N}$, le théorème du sandwich pour les suites (Théorème 2.10) montre que $\lim_{n\to\infty} g(a_n) = L$. Par le critère séquentiel de la limite, $\lim_{x\to x_0} g(x) = L$.

Exemple 4.13. Montrer que

$$\lim_{x \to 0} x^2 \sin(\frac{1}{x}) = 0.$$

Solution. On a $-1 \le \sin(y) \le 1$ pour tout $y \in \mathbb{R}$, donc

$$-x^2 \le x^2 \sin(\frac{1}{x}) \le x^2$$
, pour tout $x \in \mathbb{R}, x \ne 0$.

On a $\lim_{x\to 0} x^2 = 0$ par l'Exemple 4.9, et aussi $\lim_{x\to 0} -x^2 = 0$ par le Théorème 4.11(b). Par le théorème du sandwich (Théorème 4.12), on a $\lim_{x\to 0} x^2 \sin(\frac{1}{x}) = 0$.

Le critère séquentiel de la limite donne aussi un bon critère pour déterminer si une limite n'existe pas :

Proposition 4.14. Soit $f: D \to \mathbb{R}$ une fonction et x_0 un point d'accumulation de D. S'il existe deux suites $(a_n)_{n=1}^{\infty}$ et $(b_n)_{n=1}^{\infty}$ telles que $a_n, b_n \in D$, $a_n \neq x_0$, $b_n \neq x_0$ pour tout $n \in \mathbb{N}$ et $\lim_{n \to \infty} f(a_n) \neq \lim_{n \to \infty} f(b_n)$, alors la limite $\lim_{x \to x_0} f(x)$ n'existe pas.

Démonstration. Si, par contradiction, la limite $\lim_{x\to x_0} f(x) = L$ existe, alors

$$\lim_{n \to \infty} f(a_n) = L = \lim_{n \to \infty} f(b_n)$$

par le critère séquentiel de la limite (Théorème 4.10).

Exemple 4.15. La fonction signe est définie par

$$\operatorname{sgn}: \mathbb{R} \longrightarrow \mathbb{R}, \quad \operatorname{sgn}(x) = \begin{cases} -1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 & \text{si } x > 0. \end{cases}$$

Montrer que la limite

$$\lim_{x \to 0} \operatorname{sgn}(x)$$

n'existe pas.

Solution. On a deux suites $(1/n)_{n=1}^{\infty}$ et $(-1/n)_{n=1}^{\infty}$ qui convergent vers 0 et $1/n \neq 0, -1/n \neq 0$ pour tout $n \in \mathbb{N}$, mais $\lim_{n\to\infty} \operatorname{sgn}(1/n) = 1$ et $\lim_{n\to\infty} \operatorname{sgn}(-1/n) = -1$. La Proposition 4.14 implique alors que la limite n'existe pas.

4.3 Limite à gauche, à droite et à l'infini

Définition 4.16. Soit $f: D \to \mathbb{R}$ une fonction.

(a) Si $x_0 \in \mathbb{R}$ est un point d'accumulation de $D \cap (x_0, \infty) = \{x \in D : x > x_0\}$, on dit qu'un nombre $L \in \mathbb{R}$ est une *limite* à *droite* de f au point x_0 si pour tout $\varepsilon > 0$, il existe un nombre $\delta > 0$ tel que pour tout $x \in D$ satisfaisant $x_0 < x < x_0 + \delta$, on a $|f(x) - L| < \varepsilon$. Dans ce cas, on écrit

$$\lim_{x \to x_0 +} f(x) = L.$$

(b) Si $x_0 \in \mathbb{R}$ est un point d'accumulation de $D \cap (-\infty, x_0) = \{x \in D : x < x_0\}$, on dit qu'un nombre $L \in \mathbb{R}$ est une *limite* à *gauche* de f au point x_0 si pour tout $\varepsilon > 0$, il existe un nombre $\delta > 0$ tel que pour tout $x \in D$ satisfaisant $x_0 - \delta < x < x_0$, on a $|f(x) - L| < \varepsilon$. Dans ce cas, on écrit

$$\lim_{x \to x_0 -} f(x) = L.$$

Exemple 4.17. On a vu que $\lim_{x\to 0} \operatorname{sgn}(x)$ n'existe pas (Exemple 4.15). En revanche, les limites à gauche et à droite existent :

$$\lim_{x \to 0-} \operatorname{sgn}(x) = -1, \quad \lim_{x \to 0+} \operatorname{sgn}(x) = 1.$$

Montrons la deuxième limite. Soit $\varepsilon > 0$. On doit trouver un nombre $\delta > 0$ tel que si $0 < x < \delta$, alors $|\operatorname{sgn}(x) - 1| < \varepsilon$. Puisque $|\operatorname{sgn}(x) - 1| = |1 - 1| = 0 < \varepsilon$ pour tout x > 0, on peut prendre $\delta > 0$ arbitraire.

Il est parfoit utile d'étendre la définition de la limite $\lim_{x\to x_0} f(x)$ au cas où $x_0=\infty$.

Définition 4.18. Soit $f: D \to \mathbb{R}$ une fonction.

(a) Si le domaine D contient (a, ∞) pour un certain $a \in \mathbb{R}$, on dit qu'un nombre $L \in \mathbb{R}$ est une *limite de* f *quand* x *tend vers l'infini* si pour tout $\varepsilon > 0$ il existe un nombre N > a tel que pour tout x > N, on a $|f(x) - L| < \varepsilon$. Dans ce cas, on écrit

$$\lim_{x \to \infty} f(x) = L.$$

(b) Si le domaine D contient $(-\infty, a)$ pour un certain $a \in \mathbb{R}$, on dit qu'un nombre $L \in \mathbb{R}$ est une *limite de* f *quand* x *tend vers moins l'infini* si pour tout $\varepsilon > 0$ il existe un nombre N < a tel que pour tout x < N, on a $|f(x) - L| < \varepsilon$. Dans ce cas, on écrit

$$\lim_{x \to -\infty} f(x) = L.$$

Exemple 4.19. Montrer que

$$\lim_{x \to \infty} \frac{1}{x} = 0.$$

Solution. Soit $\varepsilon > 0$. Posons $N > \frac{1}{\varepsilon}$. Alors, pour tout x > N, on a $\left| \frac{1}{x} - 0 \right| = \frac{1}{x} < \frac{1}{N} < \varepsilon$. \square

4.4 Continuité

La prochaine définition est une des plus importantes en mathématiques.

Définition 4.20. Soit $f: D \to \mathbb{R}$ une fonction et $x_0 \in D$. La fonction f est **continue au point** x_0 si pour tout $\varepsilon > 0$ il existe un nombre $\delta > 0$ tel que pour tout $x \in D$ satisfaisant $|x-x_0| < \delta$, on a $|f(x)-f(x_0)| < \varepsilon$. Sinon, f est **discontinue au point** x_0 . Si f est continue en tout point de D, on dit que f est **continue**, et si non, on dit que f est **discontinue**.

La continuité est intimement liée à la notion de limite.

Proposition 4.21. Une fonction $f: D \to \mathbb{R}$ est continue au point $x_0 \in D$ si et seulement si

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Démonstration. Dans la Définition 4.20, la seule différence avec la définition de la limite $\lim_{x\to x_0} f(x) = f(x_0)$ est qu'on ne requiert pas que $0 < |x-x_0|$, c'est-à-dire que $x \neq x_0$. Mais si $x = x_0$, alors $|f(x) - f(x_0)| = 0 < \varepsilon$, donc les énoncés sont équivalents.

Exemple 4.22. L'Exemple 4.8 montre que la fonction $f : \mathbb{R} \to \mathbb{R}$, f(x) = x est continue. L'Exemple 4.9 montre que la fonction $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ est continue.

Exemple 4.23. Parfois, une fonction f est discontinue en x_0 car la limite $\lim_{x\to x_0} f(x)$ n'existe pas. Par exemple, la fonction signe (Exemple 4.15) est discontinue en $x_0 = 0$ car la limite $\lim_{x\to 0} \operatorname{sgn}(x)$ n'existe pas.

Exemple 4.24. Parfois, la limite $\lim_{x\to x_0} f(x)$ existe, mais la fonction est tout de même discontinue en x_0 . Par exemple, soit

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} x^2 & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

Par l'Exemple 4.9, on a $\lim_{x\to x_0} x^2 = x_0^2$ pour tout $x_0 \in \mathbb{R}$. Ainsi, $\lim_{x\to 0} f(x) = \lim_{x\to 0} x^2 = 0^2 = 0 \neq 1 = f(0)$, donc f est discontinue $x_0 = 0$. En revanche, pour tout $x_0 \neq 0$, on a $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} x^2 = x_0^2 = f(x_0)$. Ainsi, la fonction est continue en tout point $x_0 \neq 0$ et discontinue en $x_0 = 0$.

La Proposition 4.21 et le Théorème 4.11 impliquent immédiatement le prochain théorème.

Théorème 4.25. Soient $f, g: D \to \mathbb{R}$ des fonctions de domaine commun D qui sont continues au point $x_0 \in D$. Alors,

- (a) f + g est continue au point x_0 ,
- (b) pour tout $c \in \mathbb{R}$, cf est continue au point x_0 ,
- (c) fg est continue au point x_0 , et
- (d) $si\ g(x) \neq 0$ pour tout $x \in D$, alors f/g est continue au point x_0 .

Exemple 4.26. Montrer que toute fonction rationnelle

$$f(x) = \frac{p(x)}{q(x)}$$
, où p et q sont des polynômes et $q \neq 0$

est continue sur son domaine $D = \{x \in \mathbb{R} : q(x) \neq 0\}.$

Solution. On a vu dans l'Exemple 4.22 que la fonction f(x) = x est continue. En appliquant la partie (c) du Théorème 4.25 avec f et g = f, on obtient que x^2 est continue. En continuant de la sorte, on a que x^n est continue pour tout $n \in \mathbb{N}$. En appliquant (a) et (b), on a que tout polynôme $p(x) = a_0 + a_1x + \cdots + a_nx^n$, où $a_i \in \mathbb{R}$, est continue. Finalement, par (d), toute fonction rationnelle est continue sur son domaine.

Par exemple, la fonction

$$f(x) = \frac{x}{x^2 - 1}$$

est continue sur $D = \{x \in \mathbb{R} : x \neq \pm 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty).$

Une légère modification de la démonstration du critère séquentiel de la limite (Théorème 4.10) donne le prochain théorème.

Théorème 4.27 (Critère séquentiel de la continuité). Soit $f: D \to \mathbb{R}$ une fonction et $x_0 \in D$. Alors f est continue au point x_0 si et seulement si pour toute suite $(a_n)_{n=1}^{\infty}$ telle que $a_n \in D$ pour tout $n \in \mathbb{N}$ et $\lim_{n \to \infty} a_n = x_0$, on a $\lim_{n \to \infty} f(a_n) = f(x_0)$.

Remarque 4.28. Contrairement au critère séquentiel de la limite, on n'a pas besoin d'imposer que $a_n \neq x_0$ pour tout $n \in \mathbb{N}$.

Exemple 4.29. Soit

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Montrer que f est discontinue en tout point.

Solution. Soit $x_0 \in \mathbb{R}$. Supposons d'abord que $x_0 \in \mathbb{Q}$. Par la densité des nombres irrationnels, il existe une suite $(a_n)_{n=1}^{\infty}$ telle que $a_n \notin \mathbb{Q}$ pour tout $n \in \mathbb{N}$ et $\lim_{n\to\infty} a_n = x_0$ (Corollaire 2.41). On a alors $\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} 0 = 0 \neq f(x_0) = 1$. Par le critère séquentiel de la continuité (Théorème 4.27), f n'est pas continue en x_0 . De même, si $x_0 \notin \mathbb{Q}$, alors il existe une suite $(b_n)_{n=1}^{\infty}$ telle que $b_n \in \mathbb{Q}$ pour tout $n \in \mathbb{N}$ et $\lim_{n\to\infty} b_n = x_0$ (Corollaire 2.41). On a $\lim_{n\to\infty} f(b_n) = \lim_{n\to\infty} 1 = 1 \neq f(x_0) = 0$, donc f n'est pas continue en x_0 .

Remarque 4.30. Il est possible de construire une fonction $f : \mathbb{R} \to \mathbb{R}$ qui est continue en tout point irrationnel et discontinue en tout point rationnel. Elle est définie en posant f(x) = 0 si x est irrationnel et $f(x) = \frac{1}{b}$ si $x = \frac{a}{b}$ où $a \in \mathbb{Z}$ et $b \in \mathbb{N}$ sont relativement premiers. Nous ne couvrons pas cette fonction dans ce cours, mais l'étudiante ou l'étudiant intéressé peut consulter [1, p. 103].

Tout comme le critère séquentiel de la continuité, le critère séquentiel de la limite est très utile pour simplifier les démonstrations. Par exemple :

Théorème 4.31. Soient $f: D \to \mathbb{R}$ et $g: E \to \mathbb{R}$ des fonctions telles que $f(x) \in E$ pour tout $x \in D$, et soit

$$g \circ f : D \longrightarrow \mathbb{R}$$

 $x \longmapsto g(f(x))$

leur composition. Si f est continue au point $x_0 \in D$ et g est continue au point $f(x_0) \in E$, alors $g \circ f$ est continue au point x_0 . En particulier, si f et g sont continues, alors $g \circ f$ l'est aussi.

Démonstration. On utilise le critère séquentiel de la continuité (Théorème 4.27). Soit $(a_n)_{n=1}^{\infty}$ une suite telle que $a_n \in D$ pour tout $n \in \mathbb{N}$ et $\lim_{n \to \infty} a_n = x_0$. Puisque f est continue en x_0 , on a $\lim_{n \to \infty} f(a_n) = f(x_0)$. Puisque g est continue en $f(x_0)$, le critère séquentiel appliqué à la suite $(f(a_n))_{n=1}^{\infty}$ montre que $\lim_{n \to \infty} g(f(a_n)) = g(f(x_0))$, c'est-à-dire $\lim_{n \to \infty} (g \circ f)(a_n) = (g \circ f)(x_0)$. Par le critère séquentiel de la continuité, $g \circ f$ est continue en x_0 .

Exemple 4.32. La fonction $g(x) = \sqrt{x}$ est continue sur $[0, \infty)$ (Exercice **(4.13)**) et la fonction $f(x) = 1 + x^2$ est continue sur \mathbb{R} (Exemple 4.26). Puisque $f(x) \in [0, \infty)$ pour tout $x \in \mathbb{R}$, le Théorème 4.31 montre que la fonction $g(f(x)) = \sqrt{1 + x^2}$ est continue.

Définition 4.33. Soit $f: D \to \mathbb{R}$ une fonction. L'*image* de f est l'ensemble

$$f(D) := \{ f(x) : x \in D \}.$$

On dit que la fonction est **bornée** si l'ensemble f(D) est borné, c'est-à-dire, s'il existe $m, M \in \mathbb{R}$ tels que

$$m \le f(x) \le M$$
 pour tout $x \in D$.

Notons que f est bornée si et seulement si il existe B > 0 tel que $|f(x)| \le B$ pour tout $x \in D$ (voir la démonstration du Lemme 2.16).

Théorème 4.34. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment [a,b]. Alors, f est bornée.

Démonstration. Supposons, au contraire, que f n'est pas bornée. Alors, pour tout $n \in \mathbb{N}$, il existe $a_n \in [a,b]$ tel que $|f(a_n)| > n$. Puisque $a \le a_n \le b$ pour tout $n \in \mathbb{N}$, la suite $(a_n)_{n=1}^{\infty}$ est bornée. Par le théorème de Bolzano-Weierstrass (Théorème 2.46), il existe une sous-suite $(a_{n_k})_{k=1}^{\infty}$ telle que

$$\lim_{k \to \infty} a_{n_k} = L$$

existe. Puisque $a \leq a_{n_k} \leq b$ pour tout $n \in \mathbb{N}$, on a $a \leq L \leq b$ (Proposition 2.22), c'est-à-dire $L \in [a,b]$. Puisque f est continue en L, on a $\lim_{k\to\infty} f(a_{n_k}) = f(L)$ (Théorème 4.27). On obtient une contradiction car $|f(a_{n_k})| > n_k \geq k$ pour tout $k \in \mathbb{N}$, donc la suite $(f(a_{n_k}))_{k=1}^{\infty}$ n'est pas bornée et donc ne peut converger.

Définition 4.35. Soit $f: D \to \mathbb{R}$ une fonction. On dit que f atteint un maximum si son image f(D) a un maximum, c'est-à-dire, s'il existe $x_{\max} \in D$ tel que $f(x) \leq f(x_{\max})$ pour tout $x \in D$. De même, on dit que f atteint un minimum si f(D) a un minimum, c'est-à-dire, s'il existe $x_{\min} \in D$ tel que $f(x_{\min}) \leq f(x)$ pour tout $x \in D$.

Les deux prochains résultats sont parmi les propriétés les plus importantes des fonctions continues. Nous allons les utiliser à maintes reprises dans les prochains chapitres.

Théorème 4.36 (Théorème des valeurs extrêmes). Soit $f : [a, b] \to \mathbb{R}$ une fonction continue sur un segment [a, b]. Alors, f atteint un minimum et un maximum.

Démonstration. Par le Théorème 4.34, l'ensemble E := f([a,b]) est borné. Par le principe de complétude, $\inf(E)$ et $\sup(E)$ existent. On doit montrer que $\inf(E) \in E$ et $\sup(E) \in E$. Soit $M := \sup(E)$. Montrons que $M \in E$. Pour tout $n \in \mathbb{N}$, le nombre $M - \frac{1}{n}$ n'est pas une borne supérieure de E = f([a,b]), donc il existe $x_n \in [a,b]$ tel que $M - \frac{1}{n} < f(x_n)$. Par le théorème de Bolzano-Weierstrass (Théorème 2.46), il existe une sous-suite $(x_{n_k})_{k=1}^{\infty}$ telle que $\lim_{k\to\infty} x_{n_k} = L$ existe. Puisque $a \le x_{n_k} \le b$ pour tout k, on a aussi $a \le L \le b$ (Proposition 2.22). Par la continuité de f et le critère séquentiel de la continuité (Théorème 4.27), on a $\lim_{k\to\infty} f(x_{n_k}) = f(L)$. On a

$$M - \frac{1}{n_k} < f(x_{n_k}) \le \sup(E) = M,$$

pour tout $k \in \mathbb{N}$, donc f(L) = M par le théorème du sandwich (Théorème 2.10). Il s'ensuit que $M \in f([a,b]) = E$. La démonstration que $\inf(E) \in E$ est similaire et est laissée en exercice (Exercice (4.10)).

Exemple 4.37. Il est important que la fonction f soit continue sur un segment [a, b], et non un intervalle ouvert (a, b) ou semi-ouvert comme (a, b] ou [a, b). Par exemple, la fonction $f:(0,1)\to\mathbb{R}, f(x)=\frac{1}{x}$ est continue, mais n'atteint ni de maximum ni de minimum.

Théorème 4.38 (Théorème des valeurs intermédiaires). Soit $f : [a, b] \to \mathbb{R}$ une fonction continue sur un segment [a, b] telle que $f(a) \neq f(b)$, et soit y un nombre compris entre f(a) et f(b). Alors, il existe $c \in (a, b)$ tel que f(c) = y.

Démonstration. Montrons le cas où f(a) < y < f(b) (le cas où f(b) < y < f(a) est similaire). Soit $E = \{x \in [a,b] : f(x) < y\}$. Alors, E est non vide (car E) et borné (par E), donc E0 existe. Soit E1 est sup(E2). Montrons que E3 que E4 pour tout E5 en a E6 que E7 on a E8 existe alore E9. Pour tout E9 existe alore E9 est pas une borne supérieure de E9, donc il existe E9 tel que E9. Pour tout E9 existe alore E9 est pas une borne supérieure de E9, donc il existe E9 tel que E9. Pour tout E9 existe alore E9 est pas une borne supérieure de E9, donc il existe E9 tel que E9. Pour tout E9 existe alore E9 est pas une borne supérieure de E9 existe alore E9 existe alore E9 existe alore E9.

(Théorème 2.10), on a $\lim_{n\to\infty} x_n = c$. Par la continuité de f en c et le critère séquentiel de la continuité (Théorème 4.27), on a $f(c) = \lim_{n\to\infty} f(x_n)$. Puisque $f(x_n) < y$ pour tout n, on a $f(c) \le y$ (Proposition 2.22). Comme f(b) > y, on a $c \ne b$, et donc c < b. Soit $(b_n)_{n=1}^{\infty}$ une suite telle que $c < b_n \le b$ pour tout $n \in \mathbb{N}$ et $c = \lim_{n\to\infty} b_n$. Puisque c est une borne supérieure de E, on a $b_n \notin E$ pour tout $n \in \mathbb{N}$, et donc $f(b_n) \ge y$ pour tout $n \in \mathbb{N}$. Par conséquent, $f(c) = \lim_{n\to\infty} f(b_n) \ge y$. On a donc $f(c) \ge y$ et $f(c) \le y$, ce qui implique que f(c) = y.

Exemple 4.39. Montrer que le polynôme $x^5 + 2x + 1$ a une racine dans l'intervalle (-1,0).

Solution. Soit

$$f: [-1,0] \longrightarrow \mathbb{R}, \quad f(x) = x^5 + 2x + 1.$$

La fonction f est continue car tout polynôme est continu (Exemple 4.26). On a f(-1) = -1 - 2 + 1 = -2 et f(0) = 1, donc f(-1) < 0 < f(0). Par le théorème des valeurs intermédiaires (Théorème 4.38), il existe $c \in (-1,0)$ tel que f(c) = 0.

Proposition 4.40. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment [a,b]. Alors, f([a,b]) est un segment.

Démonstration. Par le théorème des valeurs extrêmes (Théorème 4.36), l'ensemble f([a,b]) a un minimum $m = f(x_{\min})$ et un maximum $M = f(x_{\max})$. Montrons que f([a,b]) = [m,M]. On a $f([a,b]) \subseteq [m,M]$ car $m = f(x_{\min}) \le f(x) \le f(x_{\max}) = M$ pour tout $x \in [a,b]$. Pour montrer que $[m,M] \subseteq f([a,b])$, soit $y \in [m,M]$. Si y = m alors $y = f(x_{\min}) \in f([a,b])$, et si y = M alors $y = f(x_{\max}) \in f([a,b])$. On peut donc supposer que m < y < M, c'est-à-dire $f(x_{\min}) < y < f(x_{\max})$. Par le théorème des valeurs intermédiaires (Théorème 4.38), il existe c entre x_{\min} et x_{\max} tel que f(c) = y. Donc $y \in f([a,b])$.

4.5 Continuité uniforme

Soit $f: D \to \mathbb{R}$ une fonction continue. Par définition, pour chaque $x_0 \in D$ et $\varepsilon > 0$, il existe $\delta > 0$ tel que $|f(x) - f(x_0)| < \varepsilon$ pour tout $x \in D$ satisfaisant $|x - x_0| < \delta$. Notez que, a priori, le nombre δ peut dépendre à la fois de ε et de x_0 . Par exemple, dans l'Exemple 4.9 avec $f(x) = x^2$, on a pris $\delta = \min(1, \frac{\varepsilon}{1+2|x_0|})$. Il est parfois utile de pouvoir choisir un δ uniformément, indépendamment du point x_0 , c'est-à-dire:

Définition 4.41. Une fonction $f: D \to \mathbb{R}$ est *uniformément continue* si pour tout $\varepsilon > 0$ il existe un nombre $\delta > 0$ tel que pour tous $x, y \in D$ satisfaisant $|x - y| < \delta$, on a $|f(x) - f(y)| < \varepsilon$.

Il est clair qu'une fonction uniformément continue est continue.

Exemple 4.42. Montrons que la fonction $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ n'est pas uniformément continue. Intuitivement, cela correspond au fait que f croit de plus en plus vite quand $x \to \infty$, et donc plus x est grand, plus il faut choisir un petit δ . Pour le démontrer, supposons, au contraire, que f est uniformément continue. En posant $\varepsilon = 1$, il existe $\delta > 0$ tel que si $|x-y| < \delta$, alors $|x^2-y^2| < 1$. Pour tout $x \in \mathbb{R}$, en posant $y = x + \frac{\delta}{2}$ on trouve $|x-y| = \frac{\delta}{2} < \delta$

et donc $|x^2 - y^2| < 1$. C'est-à-dire, $|x^2 - (x + \frac{\delta}{2})^2| < 1$ pour tout $x \in \mathbb{R}$. En simplifiant, on a que $\delta |x + \frac{\delta}{4}| < 1$ pour tout $x \in \mathbb{R}$, ce qui est absurde. Par exemple, on obtient une contradiction avec $x = \frac{2}{\delta} - \frac{\delta}{4}$ car $\delta |x + \frac{\delta}{4}| = \delta |\frac{2}{\delta}| = 2 > 1$.

La prochaine définition donne un critère important pour démontrer qu'une fonction est uniformément continue.

Définition 4.43. Une fonction $f: D \to \mathbb{R}$ est *lipschitzienne* s'il existe une constante c > 0 telle que

$$|f(x) - f(y)| \le c|x - y|$$
 pour tous $x, y \in D$.

Proposition 4.44. Toute fonction lipschitzienne est uniformément continue.

Démonstration. Soit $f: D \to \mathbb{R}$ une fonction lipschitzienne de constante c > 0. Soit $\varepsilon > 0$. Posons $\delta = \frac{\varepsilon}{c}$. Alors, pour tous $x, y \in D$ tels que $|x - y| < \delta$, on a $|f(x) - f(y)| \le c|x - y| < c\delta = \varepsilon$.

Dans la prochaine section, on montre que les fonctions trigonométriques sont lipschitziennes.

La propriété d'être uniformément continue dépend grandement du domaine de la fonction. Par exemple bien que la fonction $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ n'est pas uniformément continue, sa restriction

$$f: [0,1] \longrightarrow \mathbb{R}, \quad f(x) = x^2$$

est uniformément continue. En effet, pour tous $x, y \in [0, 1]$, on a

$$|f(x) - f(y)| = |x^2 - y^2| = |(x+y)(x-y)| = |x+y||x-y| \le (|x|+|y|)|x-y| \le 2|x-y|$$

donc $f:[0,1]\to\mathbb{R}$ est lipschitzienne. Plus généralement :

Proposition 4.45. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment [a,b]. Alors, f est uniformément continue.

Démonstration. Supposons, au contraire, que f n'est pas uniformément continue. Alors, il existe $\varepsilon > 0$ tel que pour tout $\delta > 0$ il existe $x,y \in [a,b]$ tels que $|x-y| < \delta$ et $|f(x)-f(y)| \ge \varepsilon$. En prenant $\delta = \frac{1}{n}$ où $n \in \mathbb{N}$, on obtient deux suites $(x_n)_{n=1}^{\infty}$ et $(y_n)_{n=1}^{\infty}$ dans [a,b] telles que $|x_n-y_n| < \frac{1}{n}$ et $|f(x_n)-f(y_n)| \ge \varepsilon$ pour tout $n \in \mathbb{N}$. Par le théorème de Bolzano-Weierstrass (Théorème 2.46), il existe une sous-suite $(x_{n_k})_{k=1}^{\infty}$ telle que $\lim_{k\to\infty} x_{n_k} = L$ existe. Puisque $|x_{n_k}-y_{n_k}| < \frac{1}{n_k} \le \frac{1}{k}$ pour tout $k \in \mathbb{N}$, la suite $(y_{n_k})_{k=1}^{\infty}$ converge aussi vers L (Exercice (2.16)). Par la continuité de f en L et le critère séquentiel de la continuité (Théorème 4.27), on a $\lim_{k\to\infty} f(x_{n_k}) = f(L) = \lim_{k\to\infty} f(y_{n_k})$. Par conséquent, $\lim_{k\to\infty} (f(x_{n_k}) - f(y_{n_k})) = 0$, contredisant que $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$ pour tout $k \in \mathbb{N}$.

Exemple 4.46. La fonction $f:[0,1] \to \mathbb{R}$, $f(x) = \sqrt{x}$ est continue (Exercice **(4.13)**) et donc uniformément continue. En revanche, cette fonction n'est pas lipschitzienne (Exercice **(4.19)**).

4.6 Fonctions trigonométriques

Les fonctions $\sin(\theta)$ et $\cos(\theta)$ sont définis géométriquement par les coordononnées d'un point d'arc θ sur le cercle unitaire :

Montrons que sin et cos sont des fonctions continues. Par leur définition géométrique, il est clair que

$$|\sin(\theta)| \le 1, \quad |\cos(\theta)| \le 1, \quad \text{pour tout } \theta \in \mathbb{R}.$$
 (4.4)

De plus, l'arc de cercle de longueur θ est plus long que la droite de longueur $\sin(\theta)$, donc $\sin(\theta) \le \theta$ pour $\theta \ge 0$. Il s'ensuit que

$$|\sin(\theta)| \le |\theta|$$
, pour tout $\theta \in \mathbb{R}$. (4.5)

On peut aussi déduire géométriquement les identités trigonométriques

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \tag{4.6}$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta). \tag{4.7}$$

L'étudiante ou l'étudiant intéressé peut se convaincre de la validité de ces identités en examinant la figure suivante. (Ces identités peuvent aussi être obtenus par la formule d'Euler, sachant que $e^{i\alpha}e^{i\beta}=e^{i(\alpha+\beta)}$.)

De là, en posant $\alpha = \frac{x-y}{2}$ et $\beta = \frac{x+y}{2}$ dans (4.6), on obtient

$$\sin(x) = \sin(\frac{x-y}{2})\cos(\frac{x+y}{2}) + \cos(\frac{x-y}{2})\sin(\frac{x+y}{2}). \tag{4.8}$$

De même, en posant $\alpha = \frac{x+y}{2}$ et $\beta = \frac{y-x}{2}$ dans (4.6), on a

$$\sin(y) = \sin(\frac{x+y}{2})\cos(\frac{x-y}{2}) - \cos(\frac{x+y}{2})\sin(\frac{x-y}{2}). \tag{4.9}$$

En soustrayant (4.9) à (4.8), on a

$$\sin(x) - \sin(y) = 2\sin(\frac{x-y}{2})\cos(\frac{x+y}{2}).$$

Par conséquent,

$$|\sin(x) - \sin(y)| = 2|\sin(\frac{x-y}{2})||\cos(\frac{x+y}{2})| \le 2|\frac{x-y}{2}| = |x-y|,$$

pour tous $x, y \in \mathbb{R}$. Il s'ensuit que la fonction sin est lipschitzienne de constante c = 1, et donc uniformément continue (Proposition 4.44).

Une analyse similaire avec l'identité

$$\cos(x) - \cos(y) = -2\sin(\frac{x+y}{2})\sin(\frac{x-y}{2})$$

montre que cos(x) est aussi lipschitzienne de constante c=1.

On a donc:

Théorème 4.47. Les fonctions trigonométriques

$$\sin: \mathbb{R} \longrightarrow \mathbb{R} \quad et \quad \cos: \mathbb{R} \longrightarrow \mathbb{R}$$

sont uniformément continues.

Continuons de déduire quelques propriétés utiles des fonctions trigonométriques. On définit la fonction tangente

$$\tan(\theta) \coloneqq \frac{\sin(\theta)}{\cos(\theta)},$$

si $cos(\theta) \neq 0$. La figure suivante montre que

$$|\theta| \le |\tan(\theta)|$$
, pour tout $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

En effet, l'aire du triangle aux sommets (0,0), (1,0), et $(1,\tan(\theta))$ est $\frac{\tan(\theta)}{2}$, tandis que l'aire de la portion du disque d'arc θ est $\frac{\theta}{2}$.

Il sera utile plus tard de connaître les limites suivantes.

Exemple 4.48. Montrer que

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

Solution. Par (4.5), on a $|\sin(x)| \le |x|$ pour tout $x \in \mathbb{R}$, donc $\frac{\sin(x)}{x} \le 1$ pour tout $x \ne 0$. Puisque $|x| \le |\tan(x)| = |\frac{\sin(x)}{\cos(x)}|$, on a

$$\cos(x) \le \frac{\sin(x)}{x} \le 1$$
, pour tout $x \ne 0$ tel que $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

Puisque $\cos(x)$ est continue, on a $\lim_{x\to 0}\cos(x)=\cos(0)=1$. Par le théorème du sandwich (Théorème 4.12), $\lim_{x\to 0}\frac{\sin(x)}{x}=1$.

Exemple 4.49. Montrer que

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0.$$

Solution. Puisque $\sin^2(x) + \cos^2(x) = 1$, on a

$$(1 - \cos(x))(1 + \cos(x)) = 1 - \cos^2(x) = \sin^2(x),$$

 donc

$$\frac{1 - \cos(x)}{x} = \frac{\sin^2(x)}{x(1 + \cos(x))} = \frac{\sin(x)}{x} \cdot \frac{\sin(x)}{1 + \cos(x)}.$$

Puisque sin et cos sont continues, la fonction $\frac{\sin(x)}{1+\cos(x)}$ est continue au point x=0, et donc $\lim_{x\to 0}\frac{\sin(x)}{1+\cos(x)}=\frac{\sin(0)}{1+\cos(0)}=0$. Puisque $\lim_{x\to 0}\frac{\sin(x)}{x}=1$, on a $\lim_{x\to 0}\frac{1-\cos(x)}{x}=1\cdot 0=0$.

4.7 Exercices

- (4.1) (a) Montrer que pour tout $c \in \mathbb{R}$, l'ensemble $D = \{c\}$ n'a aucun point d'accumulation.
 - (b) Montrer que $D = \{1, 2\}$ n'a aucun point d'accumulation.
- (4.2) Soit $D = (-1,0) \cup (0,1]$. Montrer que l'ensemble des points d'accumulation de D est [-1,1].
- (4.3) Montrer que

$$\lim_{x \to x_0} \frac{1}{x} = \frac{1}{x_0}$$

pour tout $x_0 > 0$ directement selon la Définition 4.6.

(4.4) Montrer que la limite

$$\lim_{x\to 0}\cos(\frac{1}{x})$$

n'existe pas.

- (4.5) Démontrer les parties (b), (c) et (d) du Théorème 4.11.
- (4.6) Montrer que la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = |x|$$

est continue.

(4.7) Montrer que la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} x^2 & \text{si } x > 0\\ 1 - x^2 & \text{si } x \le 0 \end{cases}$$

est discontinue.

(4.8) Montrer que la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} x \cos(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

est continue.

(4.9) Soit $f:(a,b)\to\mathbb{R}$ une fonction continue telle que $\lim_{x\to b}f(x)=L$. Montrer que la fonction

$$g:(a,b] \longrightarrow \mathbb{R}, \quad g(x) = \begin{cases} f(x) & \text{si } x \in (a,b) \\ L & \text{si } x = b \end{cases}$$

est continue.

- (4.10) Compléter la démonstration du Théorème 4.36.
- (4.11) Soit $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions continues. Montrer que

$$h: \mathbb{R} \longrightarrow \mathbb{R}, \quad h(x) = \max(f(x), g(x))$$

est continue.

- (4.12) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction *périodique*, c'est-à-dire, il existe T > 0 tel que f(x) = f(x+T) pour tout $x \in \mathbb{R}$. Montrer que si f est continue, alors elle atteint un minimum et un maximum.
- **(4.13)** Montrer que la fonction $f:[0,\infty)\to\mathbb{R},\ f(x)=\sqrt{x}$ est continue. (Indice: $\sqrt{x}-\sqrt{x_0}=\frac{x-x_0}{\sqrt{x}+\sqrt{x_0}}$.)
- (4.14) Soit $f:(a,b) \to \mathbb{R}$ une fonction sur un intervalle ouvert (a,b) et soit $x_0 \in (a,b)$ tel que $\lim_{x\to x_0} f(x) = L > 0$. Montrer qu'il existe un intervalle ouvert (c,d) inclus dans (a,b) tel que $x_0 \in (c,d)$ et f(x) > 0 pour tout $x \in (c,d)$ tel que $x \neq x_0$.
- (4.15) Soient $f:[a,b] \to \mathbb{R}$ et $g:[b,c] \to \mathbb{R}$ des fonctions continues telles que f(b)=g(b). Montrer que la fonction

$$h: [a, c] \longrightarrow \mathbb{R}, \quad h(x) = \begin{cases} f(x) & \text{si } x \in [a, b] \\ g(x) & \text{si } x \in [b, c] \end{cases}$$

est continue.

- (4.16) Soit $f:[0,1] \to \mathbb{R}$ une fonction continue telle que f(0) = f(1). Montrer qu'il existe $a,b \in [0,1]$ tels que $|a-b| = \frac{1}{2}$ et f(a) = f(b). (Indice: Soit $g:[0,\frac{1}{2}] \to \mathbb{R}$, $g(x) = f(x) f(\frac{1}{2} + x)$. Utiliser le théorème des valeurs intermédiaires.)
- (4.17) Montrer que le polynôme $x^4 2x^3 + 3x^2 2x 1$ a une racine dans l'intervalle (1, 2).
- (4.18) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction périodique (voir Exercice (4.12)) et continue. Montrer que f est uniformément continue.
- (4.19) Montrer que la fonction $f:[0,1]\to\mathbb{R}, f(x)=\sqrt{x}$ n'est pas lipschitzienne.
- (4.20) Montrer que la fonction $f:[1,\infty), f(x)=\sqrt{x}$ est uniformément continue.
- (4.21) Soit a < b < c et $f:(a,c) \to \mathbb{R}$ une fonction telle que les restriction $f|_{(a,b]}:(a,b] \to \mathbb{R}$ et $f|_{[b,c)}:[b,c) \to \mathbb{R}$ sont uniformément continue. Montrer que f est uniformément continue.
- (4.22) Soit $f:[0,1)\to\mathbb{R}$ une fonction continue telle que $\lim_{x\to 1} f(x)$ existe. Montrer que f est uniformément continue.
- (4.23) Soient $f, g: D \to \mathbb{R}$ deux fonctions uniformément continues. Montrer que f + g est uniformément continue.
- (4.24) Montrer qu'un polynôme de degré trois a au moins une racine.

Chapitre 5

Dérivation

5.1 Définition de la dérivée

Intuitivement, la dérivée d'une fonction f au point x_0 peut être vue comme la pente de la droite tangente au graphe de f au point $(x_0, f(x_0))$.

Cette définition géométrique donne une bonne intuition à ce concept, mais elle n'est pas satisfaisante en analyse réelle, car elle n'est pas assez précise. On doit la définir plus formellement pour établir une théorie solide et rigoureuse de la dérivée. Pour y arriver, observons d'abord que si x est un autre point près de x_0 , alors la pente de la droite passant par $(x_0, f(x_0))$ et (x, f(x)) s'approche de la droite tangente plus x est près de x_0 .

Contrairement à la pente de la droite tangente, que nous cherchons à définir, la pente de la droite passant par $(x_0, f(x_0))$ et (x, f(x)) peut être calculée explicitement par une formule simple :

$$\frac{f(x) - f(x_0)}{x - x_0}.$$

Puisqu'on s'attend à ce que cette pente soit une bonne approximation de la pente de la droite tangente quand x est près de x_0 , il est naturel de définir la dérivée comme la limite de ces pentes quand x tend vers x_0 :

Définition 5.1. Soit $f: D \to \mathbb{R}$ et $x_0 \in D$ un point d'accumulation de D. On dit que f est différentiable au point $x_0 \in D$ si la limite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existe. Dans ce cas, la limite est notée $f'(x_0)$, ou $\frac{df}{dx}(x_0)$, et est appelée la **dérivée** de f au point x_0 . La fonction est **différentiable** si elle est différentiable en tout point $x_0 \in D$. On écrit $f^{(2)} = f''$, $f^{(3)} = f'''$, etc., si ces dérivées existent. On dit que f est **infiniment différentiable** si $f^{(k)}$ existe pour tout $k \in \mathbb{N}$.

Remarque 5.2. On a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Il est parfois utile d'exprimer la dérivée avec le côté droit.

Exemple 5.3. Montrer que toute droite

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = ax + b$$

est différentiable et que f'(x) = a.

Solution. Soit $x_0 \in \mathbb{R}$. On a

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{(ax + b) - (ax_0 + b)}{x - x_0} = \frac{a(x - x_0)}{x - x_0} = a,$$

donc

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a,$$

c'est-à-dire, $f'(x_0) = a$.

Exemple 5.4. Montrer que la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = x^2$$

est différentiable et trouver sa dérivée.

Solution. Soit $x_0 \in \mathbb{R}$. On a

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{x^2 - x_0^2}{x - x_0} = \frac{(x - x_0)(x + x_0)}{x - x_0} = x + x_0.$$

Donc

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0,$$

c'est-à-dire, $f'(x_0) = 2x_0$.

Exemple 5.5. Montrer que les fonctions trigonométriques

$$\sin: \mathbb{R} \longrightarrow \mathbb{R} \quad \text{et} \quad \cos: \mathbb{R} \longrightarrow \mathbb{R}$$

sont différentiables et que

$$\sin'(x) = \cos(x)$$
 et $\cos'(x) = -\sin(x)$.

Démonstration. Soit $x_0 \in \mathbb{R}$. On a

$$\lim_{x \to x_0} \frac{\sin(x) - \sin(x_0)}{x - x_0} = \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x_0) \cos(h) + \cos(x_0) \sin(h) - \sin(x_0)}{h} \qquad (par (4.6))$$

$$= \lim_{h \to 0} \left(\sin(x_0) \frac{\cos(h) - 1}{h} + \cos(x_0) \frac{\sin(h)}{h}\right)$$

$$= \sin(x_0) \cdot 0 + \cos(x_0) \cdot 1 \qquad (Exemples 4.48 et 4.49)$$

$$= \cos(x_0).$$

Donc sin est différentiable en x_0 et $\sin'(x_0) = \cos(x_0)$. Un argument similaire montre que $\cos'(x_0) = -\sin(x_0)$ (Exercice (5.1)).

5.2 Propriétés de la dérivée

Proposition 5.6. Si une fonction $f: D \to \mathbb{R}$ est différentiable au point $x_0 \in D$, alors elle est continue au point x_0 . En particulier, toute fonction différentiable est continue.

Démonstration. On a

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} (x - x_0) + f(x_0) \right) = f'(x) \cdot 0 + f(x_0) = f(x_0),$$

donc f est continue en x_0 par la Proposition 4.21.

En revanche, une fonction continue n'est pas nécessairement différentiable :

Exemple 5.7. Soit $f : \mathbb{R} \to \mathbb{R}$, f(x) = |x|. Cette fonction est continue (Exercice (4.6)). Montrer qu'elle n'est pas différentiable au point 0.

Solution. Pour tout $x \neq 0$, on a

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \operatorname{sgn}(x).$$

La limite de sgn(x) au point 0 n'existe pas (voir la solution de l'Exemple 4.23), donc f n'est pas différentiable au point 0.

Soit $f: D \to \mathbb{R}$ une fonction différentiable au point $x_0 \in D$. La **tangente** de f au point x_0 est la droite de pente $f'(x_0)$ passant par $(x_0, f(x_0))$, c'est-à-dire,

$$T: \mathbb{R} \longrightarrow \mathbb{R}, \quad T(x) = f(x_0) + f'(x_0)(x - x_0).$$

La propriété fondamentale de la dérivée est que cette tangente est une bonne approximation de f près de x_0 :

Théorème 5.8. Soit $f: D \to \mathbb{R}$ une fonction différentiable au point $x_0 \in D$. Alors, il existe une fonction $\varepsilon: D \to \mathbb{R}$ continue au point x_0 telle que $\varepsilon(x_0) = 0$ et

$$f(x) = T(x) + \varepsilon(x)(x - x_0), \quad pour \ tout \ x \in D,$$
 (5.1)

où $T(x) = f(x_0) + f'(x_0)(x - x_0)$ est la tangente de f au point x_0 . Par conséquent, il existe une fonction $\varphi : D \to \mathbb{R}$ telle que φ est continue en x_0 , $\varphi(x_0) = f'(x_0)$, et

$$f(x) = f(x_0) + \varphi(x)(x - x_0).$$

De plus, si f est continue sur D, alors ε et φ le sont aussi.

Démonstration. Soit

$$\varepsilon: D \longrightarrow \mathbb{R}, \quad \varepsilon(x) = \begin{cases} \frac{f(x) - T(x)}{x - x_0} & \text{si } x \neq x_0 \\ 0 & \text{si } x = x_0. \end{cases}$$

La fonction ε satisfait (5.1) et est continue au point x_0 si et seulement si $\lim_{x\to x_0} \varepsilon(x) = \varepsilon(x_0)$ (Proposition 4.21). Pour tout $x \neq x_0$, on a

$$\varepsilon(x) = \frac{f(x) - T(x)}{x - x_0} = \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0),$$

donc

$$\lim_{x \to x_0} \varepsilon(x) = f'(x_0) - f'(x_0) = 0 = \varepsilon(x_0),$$

et ε est continue en x_0 . On définit alors $\varphi(x) = f'(x_0) + \varepsilon(x)$.

Remarque 5.9. L'interprétation de ce théorème est que, puisque la fonction ε est continue au point x_0 et que $\varepsilon(x_0) = 0$, on a que $\varepsilon(x)$ est très petit près de x_0 , et donc $f(x) \approx T(x)$ près de x_0 .

En plus de donner une intuition géométrique de la dérivée, le précédent théorème est utile pour de nombreuses démonstrations. Entre autres :

Théorème 5.10 (Théorème de dérivation des fonctions composées). Soient $f: D \to \mathbb{R}$ et $g: E \to \mathbb{R}$ des fonctions telles que $f(x) \in E$ pour tout $x \in D$. Si f est différentiable en $x_0 \in D$ et g est différentiable en $f(x_0) \in E$, alors la composition $g \circ f: D \to \mathbb{R}$ est différentiable en x_0 , et

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Démonstration. Grace au Théorème 5.8, on peut écrire $f(x) = f(x_0) + \varphi(x)(x - x_0)$, où $\varphi : D \to \mathbb{R}$ est continue en x_0 et $\varphi(x_0) = f'(x_0)$. De même, soit $y_0 = f(x_0)$, on a $g(y) = g(y_0) + \psi(y)(y - y_0)$, où $\psi : E \to \mathbb{R}$ est continue en y_0 et $\psi(y_0) = g'(y_0)$. Il s'ensuit que

$$g(f(x)) = g(y_0) + \psi(f(x))(f(x) - y_0)$$

= $g(f(x_0)) + \psi(f(x))(f(x) - f(x_0))$
= $g(f(x_0)) + \psi(f(x))\varphi(x)(x - x_0),$

et donc

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \psi(f(x))\varphi(x)$$

pour tout $x \in D$. Puisqu'une composition et un produit de fonctions continues sont continues (théorèmes 4.31 et 4.25), on a que $\psi(f(x))\varphi(x)$ est continue en x_0 . Par conséquent,

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} \psi(f(x))\varphi(x) = \psi(f(x_0))\varphi(x_0) = g'(f(x_0))f'(x_0). \quad \Box$$

Théorème 5.11. Soient $f, g: D \to \mathbb{R}$ des fonctions différentiables en x_0 .

- (a) f + g est différentiable en x_0 et $(f + g)'(x_0) = f'(x_0) + g'(x_0)$.
- (b) Pour tout $c \in \mathbb{R}$, cf est différentiable en x_0 et $(cf)'(x_0) = cf'(x_0)$.
- (c) fg est différentiable en x_0 , et

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

(d) Si $g(x) \neq 0$ pour tout $x \in D$, alors $\frac{f}{g}$ est différentiable en x_0 et

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Démonstration. (a) On a

$$\lim_{x \to x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} + \frac{g(x) - g(x_0)}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= f'(x_0) + g'(x_0)$$

puisque la limite d'une somme est la somme des limites (Théorème 4.11(a)).

(b) Grace au Théorème 4.11(b), on a

$$\lim_{x \to x_0} \frac{(cf)(x) - (cf)(x_0)}{x - x_0} = \lim_{x \to x_0} c \frac{f(x) - f(x_0)}{x - x_0}$$
$$= c \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$= cf'(x_0).$$

(c) Par le Théorème 5.8, il existe des fonctions $\varphi, \psi : D \to \mathbb{R}$ continues au point x_0 telles que $\varphi(x_0) = f'(x_0), \ \psi(x_0) = g'(x_0)$, et

$$f(x) = f(x_0) + \varphi(x)(x - x_0),$$
 pour tout $x \in D$
 $g(x) = g(x_0) + \psi(x)(x - x_0),$ pour tout $x \in D$.

Par conséquent, pour tout $x \in D$ tel que $x \neq x_0$, on a

$$\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{(f(x_0) + \varphi(x)(x - x_0))(g(x_0) + \psi(x)(x - x_0)) - f(x_0)g(x_0)}{x - x_0}$$
$$= f(x_0)\psi(x) + \varphi(x)g(x_0) + \varphi(x)\psi(x)(x - x_0).$$

Puisque φ et ψ sont continues en x_0 , on a $\lim_{x\to x_0} \varphi(x) = \varphi(x_0) = f'(x_0)$ et $\lim_{x\to x_0} \psi(x) = \psi(x_0) = g'(x_0)$. Ainsi,

$$\lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = f(x_0)g'(x_0) + f'(x_0)g(x_0) + f'(x_0)g'(x_0) \cdot 0,$$

et donc $(fg)'(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0)$.

(d) Soit φ et ψ tels qu'en (c). On a

$$\frac{(f/g)(x) - (f/g)(x_0)}{x - x_0} = \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)}
= \frac{(f(x_0) + \varphi(x)(x - x_0))g(x_0) - f(x_0)(g(x_0) + \psi(x)(x - x_0))}{g(x)g(x_0)(x - x_0)}
= \frac{\varphi(x)g(x_0) - f(x_0)\psi(x)}{g(x)g(x_0)}$$

donc, par continuité de φ , ψ et g en x_0 ,

$$\lim_{x \to x_0} \frac{(f/g)(x) - (f/g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\varphi(x)g(x_0) - f(x_0)\psi(x)}{g(x)g(x_0)}$$

$$= \frac{\varphi(x_0)g(x_0) - f(x_0)\psi(x_0)}{g(x_0)^2}$$

$$= \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Exemple 5.12. La fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} x \cos(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

est continue (Exercice (4.8)). Calculer sa dérivée pour $x \neq 0$ et montrer qu'elle n'est pas différentiable en x = 0.

Solution. Pour $x \neq 0$, on utilise, d'une part, la règle du produit (Théorème 5.11(c)) avec x et $\cos(\frac{1}{x})$, et d'autre part le théorème de dérivation des fonctions composées (Théorème 5.10) pour $\cos(\frac{1}{x})$. On obtient,

$$f'(x) = \frac{d}{dx} \left(x \cos(\frac{1}{x}) \right)$$

$$= \left(\frac{d}{dx} x \right) \cos(\frac{1}{x}) + x \left(\frac{d}{dx} \cos(\frac{1}{x}) \right)$$

$$= 1 \cdot \cos(\frac{1}{x}) + x \left(-\sin(\frac{1}{x}) \frac{d}{dx} \left(\frac{1}{x} \right) \right)$$

$$= \cos(\frac{1}{x}) + x \left(-\sin(\frac{1}{x}) \left(-\frac{1}{x^2} \right) \right)$$

$$= \cos(\frac{1}{x}) + \frac{1}{x} \sin(\frac{1}{x}).$$

Ce calcul n'est pas valide pour x = 0. On a

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \cos(\frac{1}{x}),$$

et cette limite n'existe pas (Exercice (4.4)). Par conséquent, f n'est pas différentiable en x=0.

5.3 Théorème de la moyenne

Le prochain résultat est un des fondements du calcul différentiel : la dérivée permet de localiser les points extrêmes d'une fonction.

Théorème 5.13 (Théorème de Fermat). Soit $f:(a,b) \to \mathbb{R}$ une fonction atteignant un minimum ou un maximum à un point $x_0 \in (a,b)$. Si f est différentiable en x_0 , alors $f'(x_0) = 0$.

Démonstration. Démontrons le cas où x_0 est un maximum; le cas où x_0 est un minimum est démontré de manière semblable. On doit montrer que $f'(x_0) = 0$. Si $f'(x_0) > 0$, alors

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0.$$

Donc, soit $\varepsilon = f'(x_0)$, par la définition de la limite, il existe $\delta > 0$ tel que

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \right| < \varepsilon = f'(x_0) \quad \text{pour tout } x \in (a, b) \text{ tel que } 0 < |x - x_0| < \delta.$$

Il s'ensuit que

$$0 < \frac{f(x) - f(x_0)}{x - x_0} < 2f'(x_0)$$
 pour tout $x \in (a, b)$ tel que $0 < |x - x_0| < \delta$.

En particulier, pour tout $x \in (a, b)$ tel que $x_0 < x < x_0 + \delta$, on a

$$f(x) - f(x_0) = (x - x_0) \frac{f(x) - f(x_0)}{x - x_0} > 0 \implies f(x) > f(x_0),$$

contredisant que $f(x_0)$ est un maximum de f. De même, si $f'(x_0) < 0$, alors il existe $\delta > 0$ tel que

$$\frac{f(x) - f(x_0)}{x - x_0} < 0$$
 pour tout $x \in (a, b)$ tel que $0 < |x - x_0| < \delta$.

Il s'ensuit que si $x \in (a, b)$ est tel que $x_0 - \delta < x < x_0$, alors

$$f(x) - f(x_0) = (x - x_0) \frac{f(x) - f(x_0)}{x - x_0} > 0 \implies f(x) > f(x_0),$$

contredisant que $f(x_0)$ est un maximum de f. Par conséquent, $f'(x_0) = 0$.

Théorème 5.14 (Théorème de Rolle). Soit f une fonction continue sur [a,b] telle que f(a) = f(b) = 0. Si f est différentiable sur (a,b), alors il existe un nombre $c \in (a,b)$ tel que f'(c) = 0.

Démonstration. Par le théorème des valeurs extrêmes (Théorème 4.36), f atteint un minimum $f(x_{\min})$ et un maximum $f(x_{\max})$. Si $f(x_{\min}) = f(x_{\min}) = 0$, alors f est constante et l'on peut prendre n'importe quel point $c \in (a,b)$. Si non, soit $f(x_{\min}) < 0$, ou $f(x_{\max}) > 0$. Si $f(x_{\min}) < 0$, alors $x_{\min} \in (a,b)$ et donc $f'(x_{\min}) = 0$ par le théorème de Fermat (Théorème 5.13). Dans ce cas, on peut donc prendre $c = x_{\min}$. De même, si $f(x_{\max}) > 0$, on a $x_{\max} \in (a,b)$ et $f'(x_{\max}) = 0$, donc on prend $c = x_{\max}$.

Le prochain théorème est un outil indispensable de l'analyse réelle.

Théorème 5.15 (Théorème de la moyenne). Soit $f : [a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et différentiable sur (a,b). Alors, il existe un nombre $c \in (a,b)$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Démonstration. Soit $L: \mathbb{R} \to \mathbb{R}$ la droite passant par (a, f(a)) et (b, f(b)), c'est-à-dire

$$L(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

La fonction g(x) = f(x) - L(x) satisfait alors les hypothèses du théorème de Rolle (Théorème 5.14), donc il existe $c \in (a,b)$ tel que g'(c) = 0. Puisque $L'(x) = \frac{f(b) - f(a)}{b - a}$, on a $g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$.

Exemple 5.16. Dans l'Exemple 4.39, on a montré que le polynôme $x^5 + 2x + 1$ a une racine dans l'intervalle (-1,0). Montrer que cette racine est unique.

Solution. Soit $f:[-1,0] \to \mathbb{R}$, $f(x)=x^5+2x+1$. Supposons qu'il existe deux nombres $a,b\in(-1,0)$ tels que a< b et f(a)=0 et f(b)=0. Par le théorème de la moyenne (Théorème 5.15), il existe $c\in(a,b)$ tel que $f'(c)=\frac{f(b)-f(a)}{b-a}=0$. Mais $f'(x)=5x^4+2\geq 2$ pour tout x, donc f' n'a pas de racine, contredisant que f'(c)=0. Par conséquent, la racine est unique.

Montrons deux applications du théorème de la moyenne.

Théorème 5.17. Si $f:[a,b] \to \mathbb{R}$ est différentiable et $f':[a,b] \to \mathbb{R}$ est bornée, alors f est lipschitzienne (Définition 4.43).

Démonstration. Puisque f' est bornée, il existe M>0 tel que $|f'(x)|\leq M$ pour tout $x\in [a,b]$. Soit $x,y\in [a,b]$ tels que x< y. Alors f est différentiable sur [x,y], donc, par théorème de la moyenne (Théorème 5.15), il existe $c\in (x,y)$ tel que $f'(c)=\frac{f(y)-f(x)}{y-x}$. Il s'ensuit que $|f(x)-f(y)|=|f'(c)||x-y|\leq M|x-y|$.

Exemple 5.18. Montrer que la fonction $f:[0,\frac{\pi}{3}]\to\mathbb{R},\, f(x)=\frac{1}{\cos(x)}$ est lipschitzienne.

Solution. La dérivé $f'(x) = \frac{\sin(x)}{\cos^2(x)}$ est continue sur $[0, \frac{\pi}{3}]$ et donc bornée (Théorème 4.34). Par le Théorème 5.17, f est lipschitzienne.

Définition 5.19. Une fonction $f: D \to \mathbb{R}$ est *croissante* si $f(x) \leq f(y)$ pour tous x < y, *strictement croissante* si f(x) < f(y) pour tous x < y, *décroissante* si $f(x) \geq f(y)$ pour tous x < y, et *strictement décroissante* si f(x) > f(y) pour tous x < y. Une fonction est *monotone* si elle est croissante ou décroissante.

Théorème 5.20. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et différentiable sur (a,b).

- (1) Si $f'(x) \ge 0$ pour tout $x \in (a, b)$, alors f est croissante.
- (2) Si f'(x) > 0 pour tout $x \in (a,b)$, alors f est strictement croissante.
- (3) Si $f'(x) \leq 0$ pour tout $x \in (a, b)$, alors f est décroissante.
- (4) Si f'(x) < 0 pour tout $x \in (a,b)$, alors f est strictement décroissante.
- (5) Si f'(x) = 0 pour tout $x \in (a, b)$, alors f est constante.

Démonstration. Montrons (1) ; les autres parties sont laissées en exercice. Soient $x,y\in[a,b]$ tels que x< y. Par le théorème de la moyenne (Théorème 5.15) appliqué à la restriction de f sur [x,y], il existe $c\in(x,y)$ tel que $f'(c)=\frac{f(y)-f(x)}{y-x}$. Puisque y-x>0 et $f'(c)\geq 0$, on a $f(y)-f(x)=f'(c)(y-x)\geq 0$, donc $f(x)\leq f(y)$.

Le théorème de le moyenne est aussi utile pour obtenir des approximations de fonctions.

Exemple 5.21. Soit la fonction

$$f: [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}, \quad f(x) = \sin(x).$$

Pour tout $x \in (0, \frac{\pi}{2}]$, le théorème de la moyenne (Théorème 5.15) appliqué à [0, x] donne un point $c \in (0, x)$ tel que

$$\frac{f(x) - f(0)}{x - 0} = \frac{\sin(x)}{x} = f'(c) = \cos c < 1.$$

On retrouve donc l'inégalité

$$\sin x < x$$
 pour tout $0 < x \le \frac{\pi}{2}$.

Soit $g(x) = 1 - \frac{x^2}{2} - \cos(x)$, pour $x \in [0, \frac{\pi}{2}]$. Par le théorème de la moyenne, pour tout $x \in (0, \frac{\pi}{2}]$, on a un point $c \in (0, x)$ tel que

$$\frac{g(x) - g(0)}{x - 0} = \frac{1 - \frac{x^2}{2} - \cos(x)}{x} = g'(c) = \sin(c) - c < 0.$$

Donc

$$1 - \frac{x^2}{2} < \cos(x)$$
, pour tout $0 < x \le \frac{\pi}{2}$.

Maintenant, soit $h(x) = \sin(x) - x + \frac{x^3}{6}$. Par le théorème de la moyenne, on a un point $c \in (0, x)$ tel que

$$\frac{h(x) - h(0)}{x - 0} = \frac{\sin(x) - x + \frac{x^3}{6}}{x} = h'(c) = \cos(c) - 1 + \frac{c^2}{2} > 0.$$

Il s'ensuit que

$$x - \frac{x^3}{6} < \sin(x) < x$$
, pour tout $x \in (0, \frac{\pi}{2}]$.

5.4 Règle de l'Hôpital

Une des premières techniques apprises dans un cours de calcul différentiel pour calculer des limites est la célèbre « règle de l'Hôpital ». Elle permet de calculer des limites de la forme $\frac{0}{0}$ ou $\frac{\infty}{\infty}$ en dérivant le numérateur et le dénominateur. Pour démontrer cette règle, nous aurons besoin de la généralisation du théorème de la moyenne suivante.

Théorème 5.22 (Théorème de Cauchy). Soient f et g des fonctions continues sur [a,b] et différentiables sur (a,b) telles que $g'(x) \neq 0$ pour tout $x \in (a,b)$. Alors, il existe un point $c \in (a,b)$ tel que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$
 (5.2)

Démonstration. Puisque $g'(x) \neq 0$ pour tout $x \in (a,b)$, le Théorème de la moyenne (Théorème 5.15) implique que $g(a) \neq g(b)$. On peut donc définir la fonction

$$h: [a,b] \longrightarrow \mathbb{R}, \quad h(x) = \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)) - (f(x) - f(a)).$$

On note que h est continue sur [a, b], différentiable sur (a, b), et que h(a) = h(b) = 0. Par le Théorème de Rolle (Théorème 5.14), il existe $c \in (a, b)$ tel que h'(c) = 0. Il s'ensuit que

$$0 = h'(c) = \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) - f'(c),$$

ce qui implique (5.2).

Remarque 5.23. On retrouve le Théorème de la moyenne (Théorème 5.15) comme cas particulier du Théorème de Cauchy en posant g(x) = x pour tout $x \in [a, b]$. Le Théorème de Cauchy a aussi une interprétation géométrique semblable à celle du Théorème de la moyenne. En effet, en pensant à f et g comme paramétrant une courbe planaire $[a, b] \to \mathbb{R}^2$, $t \mapsto (f(t), g(t))$, le théorème dit qu'il existe un temps $c \in (a, b)$ tel que la droite tangente

au temps c est parallèle à la droite passant par (f(a), g(a)) et (f(b), g(b)):

On peut formuler la version $\frac{0}{0}$ de la règle de l'Hôpital de la façon suivante.

Théorème 5.24 (Règle de l'Hôpital $\frac{0}{0}$). Soient f et g des fonctions différentiables sur un intervalle (a,b) telles que

$$\lim_{x \to a} f(x) = 0 \quad et \quad \lim_{x \to a} g(x) = 0.$$

Si $g(x) \neq 0$ et $g'(x) \neq 0$ pour tout $x \in (a,b)$ et la limite

$$\lim_{x \to a} \frac{f'(x)}{q'(x)}$$

existe, alors

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

 $D\acute{e}monstration$. Soit $\varepsilon>0$. Puisque $\lim_{x\to a}\frac{f'(x)}{g'(x)}=L$ existe, il existe un nombre $\delta>0$ tel que si $0<|x-a|<\delta$ alors

$$\left| \frac{f'(x)}{g'(x)} - L \right| < \frac{\varepsilon}{2}$$

Soit $x \in (a, b)$ tel que $0 < |x - a| < \delta$. On veut montrer que

$$\left| \frac{f(x)}{g(x)} - L \right| < \varepsilon.$$

Puisque $\lim_{y\to a} f(y) = 0$ et $\lim_{y\to a} g(y) = 0$, on a

$$\lim_{y \to a} \frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f(x)}{g(x)}.$$

Ainsi, il existe un nombre $\delta_1>0$ tel que si $0<|y-a|<\delta_1$ alors

$$\left| \frac{f(x) - f(y)}{g(x) - g(y)} - \frac{f(x)}{g(x)} \right| < \frac{\varepsilon}{2}.$$

Posons $y \in (a,b)$ quelconque satisfaisant $a < y < a + \delta_1$ et a < y < x. Par le Théorème de Cauchy, il existe $c \in (y,x)$ tel que

$$\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(c)}{g'(c)}.$$

Puisque $a < c < x < a + \delta$, on a $0 < |c - a| < \delta$, donc $\left| \frac{f'(c)}{g'(c)} - L \right| < \frac{\varepsilon}{2}$. Il s'ensuit que

$$\left| \frac{f(x)}{g(x)} - L \right| = \left| \left(\frac{f(x)}{g(x)} - \frac{f(x) - f(y)}{g(x) - g(y)} \right) + \left(\frac{f'(c)}{g'(c)} - L \right) \right|$$

$$\leq \left| \frac{f(x)}{g(x)} - \frac{f(x) - f(y)}{g(x) - g(y)} \right| + \left| \frac{f'(c)}{g'(c)} - L \right|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Exemple 5.25. Montrons que

$$\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x} = 2.$$

Les fonctions $f, g: (0, \pi) \to \mathbb{R}$ définies par $f(x) = \sin^2 x$ et $g(x) = 1 - \cos x$ sont différentiables. On a $\lim_{x\to 0} f(x) = 0$ et $\lim_{x\to 0} g(x) = 0$. De plus, $g(x) = 1 - \cos x \neq 0$ et $g'(x) = \sin x \neq 0$ pour tout $x \in (0, \pi)$. On a

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{2\sin x \cos x}{\sin x} = \lim_{x \to 0} 2\cos x = 2,$$

car cos est continue et $\cos 0 = 1$. Par la règle de l'Hôpital (Théorème 5.24), on trouve alors

$$\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 2.$$

Pour formuler la version $\frac{\infty}{\infty}$, il faut d'abord une définition de la limite vers l'infini :

Définition 5.26. Soit $f: D \to \mathbb{R}$ une fonction et x_0 un point d'accumulation de D. On dit que f tend vers l'infini quand x tend vers x_0 , noté

$$\lim_{x \to x_0} f(x) = \infty,$$

si pour tout $y \in \mathbb{R}$ il existe $\delta > 0$ tel que pour tout $x \in D$ satisfaisant $0 < |x - x_0| < \delta$, on a f(x) > y.

Théorème 5.27 (Règle de l'Hôpital $\frac{\infty}{\infty}$). Soient f et g des fonctions différentiables sur un intervalle (a,b) telles que

$$\lim_{x \to a} f(x) = \infty \quad et \quad \lim_{x \to a} g(x) = \infty.$$

Si $g(x) \neq 0$ et $g'(x) \neq 0$ pour tout $x \in (a,b)$ et la limite

$$\lim_{x \to a} \frac{f'(x)}{g'(x)}$$

existe, alors

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

La démonstration est semblable à celle du Théorème 5.24 et est omise. L'étudiante ou l'étudiant intéressé peut consulter [1, Théorème 5.28] pour voir la démonstration.

5.5 Théorème de Taylor

Soit $f:[a,b]\to\mathbb{R}$ une fonction différentiable et soit $x_0\in(a,b)$. On a vu que la droite tangente

$$T: \mathbb{R} \longrightarrow \mathbb{R}, \quad T(x) = f(x_0) + f'(x_0)(x - x_0)$$

est une bonne approximation de f près de x_0 (Théorème 5.8) :

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$
, pour $x \approx x_0$.

Si l'on veut améliorer cette approximation, on peut essayer de trouver, par exemple, la fonction quadratique qui approxime le mieux f(x) près de x_0 :

Mais comment trouver la meilleure fonction quadratique? Et la meilleure fonction cubique, etc.?

Le but de cette section est de répondre à ces questions.

Définition 5.28. Soit $f: D \to \mathbb{R}$ une fonction et $x_0 \in D$ tel que $f'(x_0), f''(x_0), \dots, f^{(n)}(x_0)$ existent. Le **polynôme de Taylor d'ordre** n **au point** x_0 est le polynôme

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

On note que $P_n(x_0) = f(x_0)$, $P'_n(x_0) = f'(x_0)$, et plus généralement, $P_n^{(k)}(x_0) = f^{(k)}(x_0)$ pour tout k = 0, 1, 2, ..., n. C'est-à-dire, le polynôme $P_n(x)$ a les mêmes n premières dérivées que f au point x_0 . En fait, $P_n(x)$ est l'unique polynôme de degré n avec cette propriété :

Proposition 5.29. Soit $f: D \to \mathbb{R}$ une fonction et $x_0 \in D$ tel que $f'(x_0), f''(x_0), \dots, f^{(n)}(x_0)$ existent. Alors, le polynôme de Taylor d'ordre n au point x_0 est l'unique polynôme de degré n tel que

$$P^{(k)}(x_0) = f^{(k)}(x_0)$$

pour tout k = 0, 1, 2, ..., n.

Démonstration. Soit Q(x) un polynôme de degré n tel que $Q^{(k)}(x_0) = f^{(k)}(x_0)$ pour tout $k = 0, 1, 2, \ldots, n$. Puisque Q(x) est de degré n, on peut l'écrire de la forme $Q(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + a_n(x - x_0)^n$, où $a_i \in \mathbb{R}$. On a alors $Q(x_0) = a_0$, $Q'(x_0) = a_1$, $Q''(x_0) = 2a_2$, ..., $Q^{(k)}(x_0) = k!a_k$, pour tout $k = 0, 1, 2, \ldots, n$. Il s'ensuit que $a_k = \frac{1}{k!}Q^{(k)}(x_0) = \frac{1}{k!}f^{(k)}(x_0)$ pour tout $k = 0, 1, \ldots, n$, donc $Q(x) = P_n(x)$.

Il est alors intuitivement clair que $P_n(x)$ est une bonne approximation de f près de x_0 . Plus précisément, on a :

Théorème 5.30 (Théorème de Taylor). Soit $f:[a,b] \to \mathbb{R}$ une fonction telle que $f', f'', \ldots, f^{(n+1)}$ existent sur [a,b]. Soit $x_0 \in [a,b]$ et soit P_n le polynôme de Taylor d'ordre n au point x_0 . Pour tout $x \in [a,b]$, il existe un point c compris entre x_0 et x tel que

$$f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$
 (5.3)

Démonstration. Soit $x \in [a, b]$. Si $x = x_0$, alors (5.3) est valide pour tout c. On peut donc supposer que $x \neq x_0$. Soit $M \in \mathbb{R}$ tel que

$$f(x) = P_n(x) + M(x - x_0)^{n+1}$$
(5.4)

(c'est-à-dire, $M = \frac{f(x) - P_n(x)}{(x - x_0)^{n+1}}$.) On doit montrer qu'il existe c entre x_0 et x tel que $M = \frac{f^{(n+1)}(c)}{(n+1)!}$. Soit

$$g:[a,b]\longrightarrow \mathbb{R}, \quad g(y)=f(y)-P_n(y)-M(y-x_0)^{n+1}$$

On a

$$q^{(n+1)}(y) = f^{(n+1)}(y) - (n+1)!M.$$

Il suffit alors de montrer que $g^{(n+1)}(c) = 0$ pour un point c entre x_0 et x. Puisque $P_n^{(k)}(x_0) = f^{(k)}(x_0)$ pour tout k = 0, 1, 2, ..., n, on a

$$g(x_0) = 0$$
, $g'(x_0) = 0$, $g''(x_0) = 0$, ..., $g^{(n)}(x_0) = 0$.

On a aussi $g(x) = f(x) - P_n(x) - M(x - x_0)^{n+1} = 0$ par (5.4). Puisque $g(x_0) = g(x) = 0$, le théorème de Rolle (Théorème 5.14) implique qu'il existe c_1 entre x_0 et x tel que $g'(c_1) = 0$. De même, puisque $g'(x_0) = g'(c_1) = 0$, il existe c_2 entre x_0 et c_1 tel que $g''(c_2) = 0$. En continuant de la sorte, on obtient un nombre c_{n+1} entre x_0 et x tel que $g^{(n+1)}(c_{n+1}) = 0$. \square

En particulier, le théorème de Taylor implique que si $f^{(n+1)}$ est bornée par une constante $M \geq 0$, alors

$$f(x) = P_n(x) + R_n(x)$$
, pour tout $x \in [a, b]$,

où $R_n:[a,b]\to\mathbb{R}$ est une fonction telle que

$$|R_n(x)| \le \frac{M|x - x_0|^{n+1}}{(n+1)!}, \quad \text{pour tout } x \in [a, b].$$

Notons que $\lim_{n\to\infty} \frac{M|x-x_0|^{n+1}}{(n+1)!} = 0$ car la série $\sum_{n=0}^{\infty} \frac{M|x-x_0|^n}{n!}$ converge par le test du rapport. Donc la fonction R_n est petite quand n est grand. La condition que $f^{(n+1)}$ soit bornée est

valide, par exemple, si $f^{(n+2)}$ existe car toute fonction différentiable est continue (Proposition 5.6) et toute fonction continue est bornée (Théorème 4.34). Ainsi, le théorème de Taylor est utile pour trouver des approximations de fonctions et quantifier précisément la différence entre la fonction et l'approximation.

Exemple 5.31. Trouvons une approximation quintique (d'ordre 5) de la fonction $\sin x$ près de 0. Le polynôme de Taylor est de la forme

$$P_5(x) = \sin(0) + \sin'(0)x + \sin''(0)\frac{x^2}{2} + \sin^{(3)}(0)\frac{x^3}{6} + \sin^{(4)}(0)\frac{x^4}{24} + \sin^{(5)}(0)\frac{x^5}{120}.$$

On a

$$\sin''(x) = -\sin(x)$$
$$\cos''(x) = -\cos(x),$$

donc

$$\sin(0) = 0$$

$$\sin''(0) = -\sin(0) = 0$$

$$\sin^{(4)}(0) = -\sin''(0) = 0,$$

 et

$$\sin'(0) = \cos(0) = 1$$

$$\sin^{(3)}(0) = -\sin'(0) = -1$$

$$\sin^{(5)}(0) = -\sin^{(3)}(0) = 1.$$

Il s'ensuit que

$$P_5(x) = x - \frac{x^3}{6} + \frac{x^5}{120}.$$

Par le théorème de Taylor (Théorème 5.30), pour tout $x \in \mathbb{R}$, il existe un point c entre 0 et x tel que

$$|\sin(x) - P_5(x)| = \left|\frac{\sin^{(6)}(c)}{6!}x^6\right| = \left|\frac{-\sin(c)}{6!}x^6\right| \le \frac{x^6}{6!}.$$

Par exemple, si $-1 \le x \le 1$, la difference entre $\sin(x)$ et $x - \frac{x^3}{3!} + \frac{x^5}{5!}$ est d'au plus $\frac{|x|}{6!} \le \frac{1}{6!} < 0.002$.

Plus généralement, on trouve

$$P_{2n+1}(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1}.$$

Par le théorème de Taylor, pour tout $x \in \mathbb{R}$ il existe un point c entre 0 et x tel que

$$|\sin(x) - P_{2n+1}(x)| = \left| \frac{\sin^{(2n+2)}(c)}{(2n+2)!} x^{2n+2} \right| = \left| \frac{\sin(c)}{(2n+2)!} x^{2n+2} \right| \le \frac{x^{2n+2}}{(2n+2)!}.$$

Par exemple, si l'on veut une approximation de $\sin(x)$ sur $[0, \pi/2]$ avec une précision d'au plus ± 0.0001 , il suffit de prendre $n \in \mathbb{N}$ assez grand pour que $\frac{(\pi/2)^{2n+2}}{(2n+2)!} \leq 0.0001$. Il est possible de calculer $\frac{(\pi/2)^{2n+2}}{(2n+2)!}$ à la main (bien que laborieux), et l'on trouve

n	$\frac{(\pi/2)^{2n+2}}{(2n+2)!}$
1	0.25367
2	$0.0208635\dots$
3	$0.00091926\dots$
4	$0.000025202\dots$

Ainsi, n=4 est suffisant. C'est-à-dire, nous avons la certitude que le polynôme

$$P_9(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880}$$

est suffisant pour calculer $\sin(x)$ sur $[0, \pi/2]$ à la quatrième décimale près.

Une autre application du théorème de Taylor est de trouver des minimums et des maximums relatifs d'une fonction.

Définition 5.32. Soit $f:[a,b] \to \mathbb{R}$ une fonction. Un point $x_0 \in [a,b]$ est un **maximum relatif** de f s'il existe $\delta > 0$ tel que $f(x_0) \ge f(x)$ pour tout $x \in (x_0 - \delta, x_0 + \delta)$. De même, x_0 est un **minimum relatif** s'il existe $\delta > 0$ tel que $f(x_0) \le f(x)$ pour tout $x \in (x_0 - \delta, x_0 + \delta)$.

Théorème 5.33. Soit $f:[a,b] \to \mathbb{R}$ une fonction telle que $f', f'', \ldots, f^{(2n)}$ existent et sont continues sur [a,b] pour un certain $n \in \mathbb{N}$ et $x_0 \in [a,b]$ tel que

$$f'(x_0) = 0$$
, $f''(x_0) = 0$, ..., $f^{(2n-1)}(x_0) = 0$.

- (a) Si $f^{(2n)}(x_0) > 0$, alors x_0 est un minimum relatif de f.
- (b) Si $f^{(2n)}(x_0) < 0$, alors x_0 est un maximum relatif de f.

Démonstration. Soit $P_{2n-1}(x)$ le polynôme de Taylor d'ordre 2n-1 au point x_0 . Par le théorème de Taylor (Théorème 5.30), pour tout $x \in [a, b]$, il existe un point c entre x_0 et x tel que

$$f(x) = P_{2n-1}(x) + \frac{f^{(2n)}(c)}{(2n)!}(x - x_0)^{2n}.$$

Puisque $f^{(k)}(x_0) = 0$ pour tout k = 1, 2, ..., 2n - 1, on a $P_{2n-1}(x) = f(x_0)$. C'est-à-dire,

$$f(x) = f(x_0) + \frac{f^{(2n)}(c)}{(2n)!}(x - x_0)^{2n}.$$

Montrons (a). Puisque $f^{(2n)}$ est continue et $f^{(2n)}(x_0) > 0$, il existe $\delta > 0$ tel que $f^{(2n)}(x_0) > 0$ pour tout $x \in (x_0 - \delta, x_0 + \delta)$ (Exercice (4.14)). Comme c est entre x_0 et x, il s'ensuit que $f^{(2n)}(c) > 0$ et donc $f(x) = f(x_0) + \frac{f^{(2n)}(c)}{(2n)!}(x - x_0)^{2n} \ge f(x_0)$ pour tout $x \in (x_0 - \delta, x_0 + \delta)$.

Montrons (b). Puisque $f^{(2n)}$ est continue et $f^{(2n)}(x_0) < 0$, il existe $\delta > 0$ tel que $f^{(2n)}(x_0) < 0$ pour tout $x \in (x_0 - \delta, x_0 + \delta)$. Comme c est entre x_0 et x, il s'ensuit que $f^{(2n)}(c) < 0$ et donc $f(x) = f(x_0) + \frac{f^{(2n)}(c)}{(2n)!}(x - x_0)^{2n} \le f(x_0)$ pour tout $x \in (x_0 - \delta, x_0 + \delta)$. \square

Corollaire 5.34 (Test de la dérivée seconde). Soit $f : [a, b] \to \mathbb{R}$ une function telle que f' et f'' existent et sont continues et soit $x_0 \in [a, b]$ tel que $f'(x_0) = 0$.

- (a) Si $f''(x_0) > 0$, alors x_0 est un minimum relatif de f.
- (b) Si $f''(x_0) < 0$, alors x_0 est un maximum relatif de f.

Exemple 5.35. La fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = (1+x^2)\cos x$$

a un minimum relatif au point $x_0 = 0$ car

$$f'(x) = 2x \cos x - (1 + x^2) \sin x$$

$$f''(x) = 2 \cos x - 4x \sin x - (1 + x^2) \cos x$$

donc f'(0) = 0 et f''(0) = 1 > 0.

5.6 La méthode de Newton

La méthode de Newton est une méthode numérique visant à approximer les racines d'une fonction $f:[a,b] \to \mathbb{R}$. L'idée est de construire une suite $(x_n)_{n=1}^{\infty}$ telle que la limite $\lim_{n\to\infty} x_n = r$ est une racine de f. La suite $(x_n)_{n=1}^{\infty}$ est obtenue géométriquement de la manière suivante. Pour un point arbitraire $x_0 \in [a,b]$ près de r, on note $T(x) = f(x_0) + f'(x_0)(x-x_0)$ la droite tangente de f au point x_0 . Cette droite T coupe l'axe des x en un point x_1 . Explicitement, pour trouver x_1 on doit résoudre l'équation

$$T(x_1) = f(x_0) + f'(x_0)(x_1 - x_0) = 0,$$

ce qui donne

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

On remarque ensuite que le nouveau point x_1 est plus près de la racine :

On peut alors répéter le processus à partir x_1 , ce qui nous donne un autre point

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

encore plus près de la racine. En continuant de la sorte, on obtient une suite $(x_n)_{n=1}^{\infty}$ qui converge vers r. Pour que cela fonctionne, on a besoin de certaines hypothèses sur la fonction. Par exemple, sur le graphique ci-haut, on a supposé implicitement que f est croissante. Plus précisément, la méthode peut s'exprimer ainsi :

Théorème 5.36 (Méthode de Newton). Soit $f:[a,b] \to \mathbb{R}$ une fonction telle que f' et f'' existent sur [a,b] et f'' est bornée. Supposons que f(a) < 0 < f(b) et f'(x) > 0 pour tout $x \in [a,b]$, ou que f(a) > 0 > f(b) et f'(x) < 0 pour tout $x \in [a,b]$. Alors, il existe un segment $[c,d] \subseteq [a,b]$ contenant une racine r de f tel que pour tout $x_0 \in [c,d]$, la suite $(x_n)_{n=1}^{\infty}$ définie par la relation de récurrence

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, \quad pour \ tout \ n \in \mathbb{N}$$

$$(5.5)$$

converge vers r.

Démonstration. Montrons le cas où f(a) < 0 < f(b) et f'(x) > 0 pour tout $x \in [a, b]$; l'autre cas est semblable. Puisque f'' est bornée, il existe M > 0 tel que

$$|f''(x)| \le M$$
, pour tout $x \in [a, b]$.

De plus, puisque f'' existe, la fonction $f':[a,b]\to\mathbb{R}$ est continue (Proposition 5.6). Par le théorème des valeurs extrêmes (Théorème 4.36), la fonction f' atteint un minimum $m=f'(x_{\min})>0$.

Puisque f(a) < 0 < f(b), le théorème des valeurs intermédiaires (Théorème 4.38) implique qu'il existe un point $r \in (a, b)$ tel que f(r) = 0.

Considérons le segment

$$I := [r - \delta, r + \delta],$$

où $\delta > 0$ est suffisament petit pour que $\delta < 2m/M$ et $I \subseteq [a, b]$.

Soit $x_0 \in I$ et soit $(x_n)_{n=1}^{\infty}$ la suite définie par (5.5).

Montrons par récurrence que $x_n \in I$ pour tout n. Le cas où n = 0 est donné. Supposons que $x_n \in I$. Par le théorème de Taylor (Théorème 5.30) appliqué au point x_n , il existe un point c entre r et x_n tel que

$$0 = f(r) = f(x_n) + f'(x_n)(r - x_n) + \frac{f''(c)}{2}(r - x_n)^2.$$

En divisant par $f'(x_n)$, on trouve

$$\frac{f(x_n)}{f'(x_n)} + r - x_n + \frac{(r - x_n)^2}{2} \frac{f''(c)}{f'(x_n)} = 0.$$

On a alors,

$$x_{n+1} - r = x_n - \frac{f(x_n)}{f'(x_n)} - r = \frac{f''(c)}{f'(x_n)} \frac{(r - x_n)^2}{2}.$$
 (5.6)

Il s'ensuit que

$$|x_{n+1} - r| = \frac{|f''(c)|}{|f'(x_n)|} \frac{|r - x_n|^2}{2} \le \frac{M}{m} \frac{\delta^2}{2} < \delta.$$

Ainsi, $x_n \in I$ pour tout n. De plus, par (5.6), on a

$$|x_{n+1} - r| = \frac{|f''(c)|}{|f'(x_n)|} \frac{|r - x_n|^2}{2} \le \frac{M\delta}{2m} |x_n - r|.$$

Ainsi,

$$|x_{n+1} - r| \le \frac{M\delta}{2m} |x_n - r|$$

$$\le \left(\frac{M\delta}{2m}\right)^2 |x_{n-1} - r|$$

$$\vdots$$

$$\le \left(\frac{M\delta}{2m}\right)^n |x_1 - r|.$$

Puisque $0 < \frac{M\delta}{2m} < 1$, on a $\lim_{n\to\infty} \left(\frac{M\delta}{2m}\right)^n |x_1 - r| = 0$ (Exemple 2.28), et donc $\lim_{n\to\infty} x_n = r$ par le théorème du sandwich (Théorème 2.10).

Exemple 5.37. Soit $f: [1,2] \to \mathbb{R}$, $f(x) = x^2 - 2$. On a f(1) = -1 < 0 < 2 = f(2) et f'(x) = 2x > 0 pour tout $x \in [1,2]$. Le théorème de Newton montre alors que la suite définie par

$$x_n = x_{n-1} - \frac{x_{n-1}^2 - 2}{2x_{n-1}} = \frac{x_{n-1}}{2} + \frac{1}{x_{n-1}}$$

converge vers $\sqrt{2}$ pour x_0 suffisament près de $\sqrt{2}$. On retrouve ainsi la suite de l'Exemple 2.29.

5.7 Exercices

- (5.1) Montrer que la fonction cos est différentiable et que $\cos'(x) = -\sin(x)$ pour tout $x \in \mathbb{R}$.
- (5.2) Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue au point x = 0. Montrer que la fonction f(x) = xg(x) est différentiable au point x = 0.
- (5.3) Montrer que la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} x^2 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

est différentiable au point x = 0, et n'est pas différentiable en tout autre point.

- (5.4) Montrer que tout polynôme est différentiable et trouver sa dérivée.
- (5.5) Compléter la démonstration du Théorème 5.20.
- (5.6) Montrer que le polynôme $1 2x x^3 x^5$ a exactement une racine réelle.
- (5.7) Montrer que la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

est différentiable sur \mathbb{R} et trouver f'.

- (5.8) Soient f et g des fonctions différentiables sur (a,b) telles que $f(x) \leq g(x)$ pour tout $x \in (a,b)$. Soit $x_0 \in (a,b)$ un point tel que $f(x_0) = g(x_0)$. Montrer que $f'(x_0) = g'(x_0)$.
- (5.9) Montrer qu'il existe un unique nombre réel x tel que $\cos(x) = 2x$.
- (5.10) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique, c'est-à-dire, il existe T > 0 tel que f(x) = f(x+T) pour tout $x \in \mathbb{R}$ (Exercice (4.12)). Montrer que si f est différentiable, alors f' est aussi périodique. [Indice : Utiliser le théorème de dérivation des fonctions composées.]
- (5.11) Soit $f:(a,b)\to\mathbb{R}$ une fonction telle que f',f'', et f''' existent. Montrer que si f a quatre racines distinctes, alors f''' au moins une racine.
- (5.12) Soient f et g des fonctions différentiables sur [a,b] telles que f'(x) = g'(x) pour tout $x \in (a,b)$. Utiliser le théorème de la moyenne pour montrer que g(x) = f(x) + c pour une constante $c \in \mathbb{R}$.
- (5.13) Montrer que la fonction

$$f: [-1,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

est lipschitzienne.

(5.14) Montrer que $1 - \frac{x^2}{2} < \cos(x) < 1 - \frac{x^2}{2} + \frac{x^4}{24}$ pour tout $x \in (0, \frac{\pi}{2}]$.

(5.15) Soient

$$f:(0,1)\longrightarrow \mathbb{R}, \quad f(x)=x^2\sin\frac{1}{x}$$

et

$$g:(0,1)\longrightarrow \mathbb{R}, \quad g(x)=\sin x.$$

Par la Question (5.7) et l'Exemple 5.5, f et g sont différentiables. Montrer que

$$\lim_{x \to 0} f(x) = 0$$
 et $\lim_{x \to 0} g(x) = 0$.

De plus, montrer que

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = 0$$

mais que la limite

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

n'existe pas. Ce problème illustre que les formes $\frac{0}{0}$ ne peuvent pas toujours être calculées à l'aide de la règle de l'Hôpital.

(5.16) Trouver les extremums relatifs de la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \cos x - 1 + x^2/2$$

- (5.17) L'Exercice (5.6) montre que le polynôme $1 2x x^3 x^5$ a exactement une racine réelle. Approximer cette racine grace au premier terme de la méthode de Newton en partant de $x_0 = 1/2$.
- (5.18) Utiliser le théorème de Taylor pour trouver une approximation rationnelle de $\sqrt{101}$ précise à la sixième décimale près. C'est-à-dire, trouver un nombre rationnel $r \in \mathbb{Q}$ tel que

$$|r - \sqrt{101}| < 0.000\,001.$$

Chapitre 6

Intégration

Le but de ce chapitre est de définir l'intégrale

$$\int_{a}^{b} f(x)dx$$

d'une fonction $f:[a,b]\to\mathbb{R}$ et de démontrer certaines propriétés. Plus précisément, nous décrirons *l'intégrale de Riemann*, qui donne un sens précis à la notion « d'aire sous la courbe ». On démontrera ensuite le théorème fondamental du calcul différentiel et intégral, reliant les notions d'intégration et de différentiation. Ce théorème permet de calculer des intégrales avec la formule

$$\int_{a}^{b} f(x)dx = F(b) - F(a), \quad \text{où } F' = f$$

et d'établir certaines techniques d'intégration.

6.1 Fonctions bornées sur un segment

Dans ce chapitre, sauf indication contraire, on travaillera exclusivement avec des fonctions bornées de la forme $f:[a,b] \to \mathbb{R}$. C'est-à-dire, on supposera que

- (1) le domaine de la fonction f est un segment $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ et
- (2) la fonction f est bornée au sens de la Définition 4.33, c'est-à-dire, il existe $m, M \in \mathbb{R}$ tels que

$$m \le f(x) \le M$$
 pour tout $x \in [a, b]$.

Rappelons que pour un segment [a,b], on suppose implicitement que $a,b \in \mathbb{R}$ et a < b. En particulier, [a,b] est un ensemble borné. Par exemple, [0,1] est un segment, mais ni \mathbb{R} ni $[0,\infty)$ n'en est un.

Par le Théorème 4.34, toute fonction continue sur un segment est bornée et est donc une fonction valide pour ce chapitre. On peut alors considérer des fonctions élémentaires (telles que sin, cos et des polynômes) restreintes sur un segment, ainsi que leurs sommes, produits,

quotients (Théorème 4.25) et compositions (Théorème 4.31). Par exemple,

$$f: [0,1] \longrightarrow \mathbb{R}, \quad f(x) = x^5 + \sin(x + 3x^2),$$

 $f: [3,8] \longrightarrow \mathbb{R}, \quad f(x) = \frac{x^3}{1+x}$

sont des fonctions valides pour ce chapitre. Les fonctions continues sur un segment ne sont cependant que des cas spéciaux de fonctions bornées sur un segment. Il existe de nombreuses fonctions bornées sur un segment qui sont discontinues, comme par exemple

$$f: [-1,1] \longrightarrow \mathbb{R}, \quad f(x) = \operatorname{sgn}(x) = \begin{cases} -1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 & \text{si } x > 0 \end{cases}$$

(voir Exemple 4.15). Nous n'imposerons donc généralement pas la restriction que les fonctions soient continues, sauf indication contraire.

6.2 Définition de l'intégrale

La définition de l'intégrale vise à rendre rigoureuse l'idée « d'aire sous la courbe » d'une fonction. Cependant, puisqu'une fonction générale n'est habituellement pas définie de manière géométrique, il nous faut une définition plus précise qui s'applique à toute fonction bornée sur un segment, sans avoir besoin d'arguments géométriques. La première étape est de définir des sommes finis qui approximent l'aire sous la courbe, tel que dans la définition suivante. On se servira ensuite de ces approximations pour obtenir la définition de l'intégrale grâce à une certaine notion de limite.

Définition 6.1. Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée. Une **partition** du segment [a,b] est un ensemble fini $P = \{x_0, x_1, x_2, \dots, x_n\}$, où

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

Pour chaque $i = 1, \ldots, n$, on note

$$M_i(f, P) := \sup\{f(x) : x \in [x_{i-1}, x_i]\}\$$

 $m_i(f, P) := \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$

La somme de Riemann supérieure est

$$\overline{S}(f,P) := \sum_{i=1}^{n} M_i(f,P)(x_i - x_{i-1})$$

et la somme de Riemman inférieure est

$$\underline{S}(f,P) := \sum_{i=1}^{n} m_i(f,P)(x_i - x_{i-1}).$$

Puisque $m_i(f, P) \leq M_i(f, P)$ pour tout i, on a

$$\underline{S}(f, P) \le \overline{S}(f, P).$$

On note l'ensemble de toutes les partitions de [a, b] par

 $Part_{[a,b]} := \{P : P \text{ est une partition du segment } [a,b]\}.$

On dit qu'une partition $Q \in \operatorname{Part}_{[a,b]}$ est un *raffinement* de P si $P \subseteq Q$.

Le fait suivant apparaîtra fréquemment dans les calculs de sommes de Riemann.

Lemme 6.2. Soit $P = \{x_0, x_1, \dots, x_n\}$ une partition de [a, b]. Alors

$$\sum_{i=1}^{n} (x_i - x_{i-1}) = b - a.$$

Démonstration. En écrivant la somme explicitement, c'est-à-dire,

$$\sum_{i=1}^{n} (x_i - x_{i-1}) = (x_1 - x_0) + (x_2 - x_1) + (x_3 - x_2) + \dots + (x_{n-1} - x_{n-2}) + (x_n - x_{n-1}),$$

on voit que le x_1 du premier terme $(x_1 - x_0)$ s'annule avec le x_1 du deuxième terme $(x_2 - x_1)$. De même, le x_2 du deuxième terme s'annule avec celui du troisième terme, et ainsi de suite. Il ne reste alors que le $-x_0$ du premier terme et le x_n du dernier terme, donc

$$\sum_{i=1}^{n} (x_i - x_{i-1}) = -x_0 + x_n = -a + b = b - a.$$

Proposition 6.3. Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée, soit $P \in \operatorname{Part}_{[a,b]}$, et soit $Q \in \operatorname{Part}_{[a,b]}$ un raffinement de P. Alors,

$$\underline{S}(f,P) \le \underline{S}(f,Q)$$
 et $\overline{S}(f,Q) \le \overline{S}(f,P)$.

Démonstration. Chaque intervalle $[x_{i-1}, x_i]$ de P est subdivisé par Q en sous-intervalles

$$[t_k, t_{k+1}], [t_{k+1}, t_{k+2}], \dots, [t_{l-1}, t_l],$$

où $x_{i-1} = t_k < \cdots < t_l = x_i$. Donc, pour chaque j tel que $k+1 \le j \le l$, on a

$$m_i(f, P) = \inf\{f(x) : x \in [x_{i-1}, x_i]\} \le \inf\{f(t) : t \in [t_{j-1}, t_j]\} = m_j(f, Q).$$

Par conséquent,

$$m_i(f, P)(x_i - x_{i-1}) = m_i(f, P) \sum_{j=k+1}^l (t_j - t_{j-1})$$

$$= \sum_{j=k+1}^l m_i(f, P)(t_j - t_{j-1})$$

$$\leq \sum_{j=k+1}^l m_j(f, Q)(t_j - t_{j-1}).$$

En sommant sur chaque intervalle de P, on a alors $\underline{S}(f,P) \leq \underline{S}(f,Q)$. Un argument similaire montre que $\overline{S}(f,Q) \leq \overline{S}(f,P)$.

Proposition 6.4. Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée et soient $P,Q \in \operatorname{Part}_{[a,b]}$. On a

$$\underline{S}(f, P) \le \overline{S}(f, Q).$$

 $D\acute{e}monstration.$ La partition $R=P\cup Q$ est un raffinement commun de P et Q, donc par la Proposition 6.3, on a

$$\underline{S}(f,P) \le \underline{S}(f,R) \le \overline{S}(f,R) \le \overline{S}(f,Q).$$

Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée, soit

$$A := \{ \underline{S}(f, P) : P \in \text{Part}_{[a,b]} \}$$
(6.1)

l'ensemble de toutes les sommes de Riemann inférieures de f, et soit

$$B := \{ \overline{S}(f, P) : P \in \text{Part}_{[a,b]} \}$$
(6.2)

l'ensemble de toutes les sommes de Riemann supérieure de f. La Proposition 6.4 implique que $a \leq b$ pour tout $a \in A$ et $b \in B$. En particulier, par la Proposition 1.25, A est borné supérieurement, B est borné inférieurement, et

$$\sup(A) \le \inf(B). \tag{6.3}$$

On peut alors définir

$$\int_{a}^{b} f(x)dx := \sup\{\underline{S}(f, P) : P \in \operatorname{Part}_{[a,b]}\}\$$

et

$$\overline{\int_a^b} f(x)dx := \inf\{\overline{S}(f, P) : P \in \operatorname{Part}_{[a,b]}\},\$$

appelées respectivement intégrale inférieure et intégrale supérieure de f. Par (6.3), on a

$$\int_{a}^{b} f(x)dx \le \overline{\int_{a}^{b}} f(x)dx.$$

Définition 6.5. Une fonction bornée $f:[a,b]\to\mathbb{R}$ est *intégrable* si

$$\underline{\int_{a}^{b}} f(x)dx = \overline{\int_{a}^{b}} f(x)dx.$$

Dans ce cas, on note cette valeur commune par

$$\int_{a}^{b} f(x)dx := \underbrace{\int_{a}^{b}}_{a} f(x)dx = \overline{\int_{a}^{b}}_{a} f(x)dx,$$

appelée *intégrale* de f, ou plus précisément *intégrale de Riemann* de f. On défini aussi

$$\int_{b}^{a} f(x)dx := -\int_{a}^{b} f(x)dx$$

et

$$\int_{c}^{c} f(x)dx := 0, \quad \text{pour tout } c \in [a, b].$$

Exemple 6.6. Montrer que la fonction constante

$$f: [a,b] \longrightarrow \mathbb{R}, \quad f(x) = c$$

est intégrable et que

$$\int_{a}^{b} f(x)dx = c(b-a).$$

Solution. Soit $P = \{x_0, x_1, \dots, x_n\}$ une partition de [a, b]. On a

$$M_i(f, P) = \sup\{f(x) : x \in [x_{i-1}, x_i]\} = c$$

 et

$$m_i(f, P) = \inf\{f(x) : x \in [x_{i-1}, x_i]\} = c$$

pour tout i. Donc

$$\overline{S}(f,P) = \sum_{i=1}^{n} M_i(f,P)(x_i - x_{i-1}) = \sum_{i=1}^{n} c(x_i - x_{i-1}) = c(b-a)$$

et

$$\underline{S}(f,P) = \sum_{i=1}^{n} m_i(f,P)(x_i - x_{i-1}) = \sum_{i=1}^{n} c(x_i - x_{i-1}) = c(b-a).$$

Il s'ensuit que $\underline{\int_a^b} f(x) dx = c(b-a) = \overline{\int_a^b} f(x) dx$, donc f est intégrable et $\int_a^b f(x) dx = c(b-a)$.

Exemple 6.7. Montrer que pour tous $a, b \in \mathbb{R}$ tels que a < b, la fonction

$$f:[a,b] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q}. \end{cases}$$

(voir Exemple 4.29) n'est pas intégrable.

Solution. Soit $P = \{x_0, x_1, \dots, x_n\}$ une partition de [a, b]. Par la densité des nombres rationnels et irrationnels (Théorème 1.14), tout intervalle $[x_{i-1}, x_i]$ contient un nombre rationnel et irrationnel. Par conséquent, $M_i(f, P) = 1$ et $m_i(f, P) = 0$ pour tout i. Il s'ensuit que $\overline{S}(f, P) = \sum_{i=1}^n (x_i - x_{i-1}) = b - a$ et $\underline{S}(f, P) = \sum_{i=1}^n 0 \cdot (x_i - x_{i-1}) = 0$. Donc $\overline{\int_a^b} f(x) dx = b - a$ et $\int_a^b f(x) dx = 0$. Puisque $\overline{\int_a^b} f(x) dx \neq \underline{\int_a^b} f(x) dx$, la fonction f n'est pas intégrable. \Box

Remarque 6.8. Il existe un bon nombre d'autres approches pour définir l'intégrale, telles que l'intégrale de Lebesgue, de Darboux, de Cauchy, de Riemann-Stieltjes, et bien d'autres. Elles comportent toutes leurs avantages et leurs inconvénients. La définition donnée ici, soit l'intégrale de Riemann, est généralement la première donnée dans un cours d'analyse. Elle a l'avantage d'avoir une bonne interprétation géométrique (l'aire sous la courbe) et il est facile d'obtenir des méthodes de calcul, comme le théorème fondamental du calcul différentiel et intégral. Son principal désavantage est qu'elle n'est définie que pour les fonctions bornées sur un segment. Cette restriction n'est cependant généralement pas un problème à ce niveau, surtout lorsqu'on prend le temps de définir les intégrales impropres comme nous le ferons à la fin de ce chapitre. L'intégrale de Lebesgue est beaucoup plus générale, mais énormément plus abstraite, et nécessite une grande quantité de matériel préparatoire (la théorie de la mesure). Elle est généralement enseignée dans un cours d'analyse avancé.

6.3 Critères d'intégrabilité

Théorème 6.9 (Critère de Riemann). Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée. Alors, f est intégrable si et seulement si pour tout $\varepsilon > 0$ il existe une partition P de [a,b] telle que $\overline{S}(f,P) - \underline{S}(f,P) < \varepsilon$.

Démonstration. (\Longrightarrow) Supposons que f est intégrable. Soit $\varepsilon > 0$. Soit

$$S := \int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx = \overline{\int_{a}^{b}} f(x)dx.$$

On a $S - \frac{\varepsilon}{2} < \int_{\underline{a}}^{b} f(x) dx$, et $\int_{\underline{a}}^{b} f(x) dx$ est la plus petite borne supérieure de l'ensemble (6.1), donc $S - \frac{\varepsilon}{2}$ n'est pas une borne supérieure (6.1). Il existe alors une partition P_1 telle que $S - \frac{\varepsilon}{2} < \underline{S}(f, P_1)$. De même, $S + \frac{\varepsilon}{2}$ n'est pas une borne inférieure de l'ensemble (6.2), donc il existe une partition P_2 telle que $S + \frac{\varepsilon}{2} > \overline{S}(f, P_2)$. Soit $P = P_1 \cup P_2$. Alors P est un raffinement commun de P_1 et P_2 , donc par la Proposition 6.3, on a

$$\overline{S}(f,P) - \underline{S}(f,P) \le \overline{S}(f,P_2) - \underline{S}(f,P_1) < (S + \frac{\varepsilon}{2}) - (S - \frac{\varepsilon}{2}) = \varepsilon.$$

(\iff) Supposons que pour tout $\varepsilon > 0$, il existe une partition P telle que $\overline{S}(f,P) - \underline{S}(f,P) < \varepsilon$. Puisque $\underline{S}(f,P) \leq \underline{\int_a^b f(x) dx}$ et $\overline{S}(f,P) \geq \overline{\int_a^b f(x) dx}$, on a

$$0 \le \overline{\int_a^b} f(x) dx - \int_a^b f(x) dx \le \overline{S}(f, P) - \underline{S}(f, P) < \varepsilon.$$

On a alors $0 \le \overline{\int_a^b} f(x) dx - \underline{\int_a^b} f(x) dx < \varepsilon$ pour tout $\varepsilon > 0$, et donc $\overline{\int_a^b} f(x) dx - \underline{\int_a^b} f(x) dx = 0$. C'est-à-dire, f est intégrable.

Exemple 6.10. Montrer que la fonction

$$f:[0,1]\longrightarrow \mathbb{R}, \quad f(x)=x$$

est intégrable et que

$$\int_0^1 f(x)dx = \frac{1}{2}.$$

Solution. Avant de présenter la solution, il est utile de se rappeler la formule

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2},\tag{6.4}$$

valide pour tout $n \in \mathbb{N}$. On peut la démontrer aisément par récurrence, ce que nous laissons en exercice.

Pour chaque $n \in \mathbb{N}$, considérons la partition

$$P_n := \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\},\$$

c'est-à-dire, $x_i := \frac{i}{n}$ pour $i = 0, 1, \dots, n$. On a

$$M_i(f, P_n) = \sup\{x : x \in \left[\frac{i-1}{n}, \frac{i}{n}\right]\} = \frac{i}{n}$$

 $m_i(f, P_n) = \inf\{x : x \in \left[\frac{i-1}{n}, \frac{i}{n}\right]\} = \frac{i-1}{n}$

Ainsi, par (6.4), on trouve

$$\overline{S}(f, P_n) = \sum_{i=1}^n \frac{i}{n} \left(\frac{i}{n} - \frac{i-1}{n} \right) = \frac{1}{n^2} \sum_{i=1}^n i = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{1}{2} + \frac{1}{2n}$$

$$\underline{S}(f, P_n) = \sum_{i=1}^n \frac{i-1}{n} \left(\frac{i}{n} - \frac{i-1}{n} \right) = \frac{1}{n^2} \sum_{i=1}^n (i-1) = \frac{1}{n^2} \sum_{i=1}^{n-1} i = \frac{1}{n^2} \frac{(n-1)n}{2} = \frac{1}{2} - \frac{1}{2n}.$$

On a alors

$$\overline{S}(f, P_n) - \underline{S}(f, P_n) = \frac{1}{n}$$

pour tout $n \in \mathbb{N}$. Le critère de Riemann est alors facilement démontrable : soit $\varepsilon > 0$, en posant $n \in \mathbb{N}$ tel que $n > 1/\varepsilon$ (par la propriété d'Archimède 1.10), on a que la partition P_n satisfait $\overline{S}(f, P_n) - \underline{S}(f, P_n) = \frac{1}{n} < \varepsilon$. Par le critère de Riemann (Théorème 6.9), f est intégrable. De plus,

$$\int_{0}^{1} f(x)dx = \overline{\int_{0}^{1}} f(x)dx \le \overline{S}(f, P_{n}) = \frac{1}{2} + \frac{1}{2n}$$

pour tout $n \in \mathbb{N}$. De même,

$$\int_{0}^{1} f(x)dx = \int_{0}^{1} f(x)dx \ge \underline{S}(f, P_n) = \frac{1}{2} - \frac{1}{2n}$$

pour tout $n \in \mathbb{N}$. Ainsi,

$$\frac{1}{2} - \frac{1}{2n} \le \int_0^1 f(x) dx \le \frac{1}{2} + \frac{1}{2n}$$

pour tout $n \in \mathbb{N}$. En prenant la limite quand $n \to \infty$, on obtient (par la Proposition 2.22)

$$\frac{1}{2} \le \int_0^1 f(x) dx \le \frac{1}{2}$$

ce qui implique que $\int_0^1 f(x)dx = \frac{1}{2}$.

Théorème 6.11. Toute fonction continue sur un segment [a, b] est intégrable.

Démonstration. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Par le Théorème 4.34, f est bornée. Montrons que f est intégrable par le critère de Riemann (Théorème 6.9). Soit $\varepsilon>0$. Puisque toute fonction continue sur un segment est uniformément continue (Proposition 4.45), il existe $\delta>0$ tel que $|f(x)-f(y)|<\frac{\varepsilon}{b-a}$ pour tous $x,y\in[a,b]$ tels que $|x-y|<\delta$. Soit $P=\{x_0,x_1,\ldots,x_n\}$ une partition de [a,b] telle que $x_i-x_{i-1}<\delta$ pour tout i. Il s'ensuit que pour tous points x et y dans un intervalle commun $[x_{i-1},x_i]$ de P, on a $|f(x)-f(y)|<\frac{\varepsilon}{b-a}$. Puisque

f est continue sur $[x_{i-1}, x_i]$, le théorème des valeurs extrêmes (Théorème 4.36) implique qu'il existe $c_i \in [x_{i-1}, x_i]$ tel que $f(c_i) = M_i(f, P)$ et $d_i \in [x_{i-1}, x_i]$ tel que $f(d_i) = m_i(f, P)$. On a donc $M_i(f, P) - m_i(f, P) = f(c_i) - f(d_i) < \frac{\varepsilon}{b-a}$. Par conséquent,

$$\overline{S}(f,P) - \underline{S}(f,P) = \sum_{i=1}^{n} (M_i(f,P) - m_i(f,P))(x_i - x_{i-1}) < \sum_{i=1}^{n} \frac{\varepsilon}{b-a}(x_i - x_{i-1}) = \frac{\varepsilon}{b-a}(b-a) = \varepsilon.$$

Par le critère de Riemann (Théorème 6.9), f est intégrable.

Bien que les fonctions continues forment une grande classe de fonctions intégrables, il n'est pas nécessaire d'être continu pour être intégrable :

Exemple 6.12. On a vu que la fonction

$$f: [-1,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} -1 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ 1 & \text{si } x > 0 \end{cases}$$

est discontinue en x=0 (Exemble 4.23). Montrons qu'elle est malgré tout intégrable en utilisant le critère de Riemann. Soit $\varepsilon > 0$. Soit P la partition de [-1,1] donnée par

$$P = \{-1, -\frac{\varepsilon}{6}, \frac{\varepsilon}{6}, 1\}.$$

On a

$$\overline{S}(f,P) = \left(\sup_{x \in [-1, -\frac{\varepsilon}{6}]} f(x)\right) \left(-\frac{\varepsilon}{6} - (-1)\right) + \left(\sup_{x \in [-\frac{\varepsilon}{6}, \frac{\varepsilon}{6}]} f(x)\right) \left(\frac{\varepsilon}{6} - \frac{-\varepsilon}{6}\right) + \left(\sup_{x \in [\frac{\varepsilon}{6}, 1]} f(x)\right) \left(1 - \frac{\varepsilon}{6}\right)$$

$$= -1\left(-\frac{\varepsilon}{6} + 1\right) + 2\frac{\varepsilon}{6} + \left(1 - \frac{\varepsilon}{6}\right)$$

$$= \frac{\varepsilon}{3}.$$

De même,

$$\underline{S}(f,P) = \left(\inf_{x \in [-1, -\frac{\varepsilon}{6}]} f(x)\right) \left(-\frac{\varepsilon}{6} - (-1)\right) + \left(\inf_{x \in [-\frac{\varepsilon}{6}, \frac{\varepsilon}{6}]} f(x)\right) \left(\frac{\varepsilon}{6} - \frac{-\varepsilon}{6}\right) + \left(\inf_{x \in [\frac{\varepsilon}{6}, 1]} f(x)\right) \left(1 - \frac{\varepsilon}{6}\right)$$

$$= -1\left(-\frac{\varepsilon}{6} + 1\right) - 2\frac{\varepsilon}{6} + \left(1 - \frac{\varepsilon}{6}\right)$$

$$= -\frac{\varepsilon}{2}.$$

Il s'ensuit que

$$\overline{S}(f,P) - \underline{S}(f,P) = \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} < \varepsilon.$$

Par le critère de Riemann (Théorème 6.9), f est intégrable. De plus, les calculs ci-haut montrent que

$$-\varepsilon < -\frac{\varepsilon}{3} \le \underline{S}(f, P) \le \int_{-1}^{1} f(x) dx \le \overline{S}(f, P) < \frac{\varepsilon}{3} < \varepsilon,$$

donc

$$\left| \int_{-1}^{1} f(x) dx \right| < \varepsilon$$

pour tout $\varepsilon > 0$. Il s'ensuit que

$$\int_{-1}^{1} f(x)dx = 0.$$

Proposition 6.13. Soit $f:[a,b]\to\mathbb{R}$ une fonction bornée. Si f est continue sur (a,b), alors f est intégrable.

Démonstration. Utilisons le critère de Riemann (Thérème 6.9). Soit $\varepsilon > 0$. Puisque f est bornée, il existe M > 0 tel que $|f(x)| \leq M$ pour tout $x \in [a,b]$. La fonction f est continue sur $[a+\frac{\varepsilon}{8M},b-\frac{\varepsilon}{8M}]$ et donc intégrable sur ce segment (Théorème 6.11). Par le critère de Riemann (Théorème 6.9), il existe une partition Q de $[a+\frac{\varepsilon}{8M},b-\frac{\varepsilon}{8M}]$ telle que $\overline{S}(f,Q)-\underline{S}(f,Q)<\frac{\varepsilon}{2}$. Soit $P=\{a\}\cup Q\cup\{b\}$ la partition de [a,b] obtenue en ajoutant a et b à Q. On a

$$\begin{split} \overline{S}(f,P) &= \sup\{f(x): x \in [a,a+\frac{\varepsilon}{8M}]\} \frac{\varepsilon}{8M} + \overline{S}(f,Q) + \sup\{f(x): x \in [b-\frac{\varepsilon}{8M},b]\} \frac{\varepsilon}{8M} \\ &\leq M \frac{\varepsilon}{8M} + \overline{S}(f,Q) + M \frac{\varepsilon}{8M} \\ &= \overline{S}(f,Q) + \frac{\varepsilon}{4} \end{split}$$

et

$$\begin{split} \underline{S}(f,P) &= \inf\{f(x): x \in [a,a+\frac{\varepsilon}{8M}]\} \frac{\varepsilon}{8M} + \underline{S}(f,Q) + \inf\{f(x): x \in [b-\frac{\varepsilon}{8M},b]\} \frac{\varepsilon}{8M} \\ &\geq -M \frac{\varepsilon}{8M} + \underline{S}(f,Q) - M \frac{\varepsilon}{8M} \\ &= \underline{S}(f,Q) - \frac{\varepsilon}{4}. \end{split}$$

Donc

$$\overline{S}(f,P) - \underline{S}(f,P) \le \overline{S}(f,Q) - \underline{S}(f,Q) + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Par le critère de Riemann, f est intégrable sur [a, b].

Exemple 6.14. Montrer que la fonction

$$f: [0,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} \sin(\frac{1}{x}) & \text{si } x \in (0,1] \\ 0 & \text{si } x = 0 \end{cases}$$

est intégrable.

Solution. La fonction est continue sur (0,1] et bornée sur [0,1] car $|\sin(\frac{1}{x})| \le 1$ pour tout x. Elle est donc intégrable par la Proposition 6.13.

Plus généralement, on a :

Théorème 6.15. Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée avec un nombre fini de discontinuités. Alors f est intégrable.

Démonstration. Exercice (6.7).

Il est alors naturel de se demander si cette condition est nécessaire à l'intégrabilité. La réponse est non :

Exemple 6.16. Soit

$$f:[0,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 1 & \text{si } x = 1/n \text{ pour un certain } n \in \mathbb{N} \\ 0 & \text{pour tout autre } x. \end{cases}$$

Alors, f est discontinue en tout point de l'ensemble $\{1/n : n \in \mathbb{N}\}$. En revanche, f est intégrable et $\int_0^1 f(x)dx = 0$ (Exercice (6.9)).

Il existe alors des fonctions intégrables avec un nombre infini de discontinuités. Il existe même une fonction intégrable qui est discontinue en chaque point rationnel, ce qui est le sujet de la prochaine section.

6.4 La fonction de Thomae

Rappelons qu'une fraction $\frac{m}{n}$, où $m \in \mathbb{Z}$ et $n \in \mathbb{N}$, est dite irréductible si m et n n'ont aucun diviseur commun. Par exemple, $\frac{4}{6}$ n'est pas irréductible, car 2 divise 4 et 6, mais $\frac{2}{3}$ est irréductible. Autrement dit, une fraction $\frac{m}{n}$ est irréductible si elle ne peut pas être simplifiée. Tout nombre rationnel $x \in \mathbb{Q}$ peut être exprimé comme une fraction irréductible. Par exemple, la fraction irréductible de $x = \frac{9}{12}$ est $\frac{3}{4}$. On obtient la fraction irréductible simplement en divisant le numérateur et le dénominateur par tous leurs diviseurs communs.

La fonction de Thomae est définie par

$$f: [0,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q} \\ \frac{1}{n} & \text{si } x = \frac{m}{n} \in \mathbb{Q} \text{ où } \frac{m}{n} \text{ est irréductible.} \end{cases}$$

Le graphe de cette fonction ressemble à la figure suivante.

Le sommet du triangle correspond au point f(1/2) = 1/2 et le côté gauche aux points f(1/n) = 1/n pour tout $n \in \mathbb{N}$. Le côté droit correspond aux points $f(\frac{n-1}{n}) = \frac{1}{n}$ pour tout $n \in \mathbb{N}$. La base du triangle correspond aux points f(x) = 0 pour tout $x \notin \mathbb{Q}$.

Cette fonction a été introduite par Carl Johannes Thomae en 1875. Elle a de nombreuses propriétés surprenantes, dont la suivante.

Proposition 6.17. La fonction de Thomae est discontinue en tout point rationnel et continue en tout point irrationnel.

Démonstration. Soit $x_0 \in [0, 1]$ un nombre rationnel. Montrons que f est discontinue en x_0 . Par la densité des nombres irrationnels (Proposition 2.41), il existe une suite de nombres irrationnels $(a_n)_{n=1}^{\infty}$ telle que $\lim_{n\to\infty} a_n = x_0$. Il s'ensuit que $\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} 0 = 0 \neq f(x_0)$, car $f(x_0) > 0$ pour un nombre rationnel $x_0 \in \mathbb{Q}$. Par le critère séquentiel de la continuité (Théorème 4.27), f est discontinue en x_0 .

Maintenant, soit $x_0 \in [0,1]$ un nombre irrationnel. Montrons que f est continue en x_0 directement selon la définition de la continuité (Définition 4.20). Soit $\varepsilon > 0$. Par la propriété d'Archimède (Théorème 1.10), il existe un nombre $n \in \mathbb{N}$ tel que $n > 1/\varepsilon$. Puisqu'il y a seulement un nombre fini de nombres rationnels dans $(x_0 - 1, x_0 + 1)$ dont le dénominateur est plus petit où égale à n, on peut choisir δ suffisamment petit pour que $(x_0 - \delta, x_0 + \delta)$ ne contienne aucun nombre rationnel ayant cette propriété. C'est-à-dire, si $\frac{a}{b} \in (x_0 - \delta, x_0 + \delta)$, où $a \in \mathbb{Z}$ et $b \in \mathbb{N}$, alors b > n. Soit $x \in [0,1]$ tel que $|x - x_0| < \delta$. Si $x \notin \mathbb{Q}$, alors $|f(x) - f(x_0)| = |0 - 0| = 0 < \varepsilon$. Si $x = \frac{a}{b} \in \mathbb{Q}$, alors $|f(x) - f(x_0)| = \frac{1}{b} \le \frac{1}{n} < \varepsilon$.

La deuxième propriété surprenante de la fonction de Thomae est que, malgré son aspect pathologique, son intégrale est parfaitement bien définie.

Proposition 6.18. La fonction de Thomae $f:[0,1] \to \mathbb{R}$ est intégrable et

$$\int_0^1 f(x)dx = 0.$$

Démonstration. Appliquons le critère de Riemann (Théorème 6.9). Soit $\varepsilon > 0$. Considérons l'ensemble

$$E = \{x \in [0,1] : f(x) \ge \varepsilon/2\}.$$

Si $x \in E$, alors f(x) > 0 et donc $x \in \mathbb{Q}$. Notons qu'il y a seulement un nombre fini de fractions irréductibles $\frac{m}{n}$ telles que $n \leq \frac{2}{\varepsilon}$. Ainsi, il y a un nombre fini de nombres rationnels $\frac{m}{n} \in [0, 1]$ tels que $f(\frac{m}{n}) = \frac{1}{n} \geq \frac{\varepsilon}{2}$. C'est-à-dire, l'ensemble E contient un nombre fini d'éléments. Soit $N \in \mathbb{N}$ le nombre d'éléments de E. Soit $P \in \operatorname{Part}_{[0,1]}$ une partition telle que $x_i - x_{i-1} < \frac{\varepsilon}{4N}$ pour tout i. Si $[x_{i-1}, x_i]$ ne contient aucun élément de E, c'est-à-dire $[x_{i-1}, x_i] \cap E = \emptyset$, alors $f(x) < \varepsilon/2$ pour tout $x \in [x_{i-1}, x_i]$ et donc

$$M_i(f, P) = \sup\{f(x) : x \in [x_{i-1}, x_i]\} \le \varepsilon/2.$$

De plus, puisque E contient N éléments, il y a au plus 2N segments $[x_{i-1}, x_i]$ qui contiennent un élément de E, c'est-à-dire, tels que $[x_{i-1}, x_i] \cap E \neq \emptyset$. Pour chacun de ces segments, on a

$$M_i(f, P) \le 1,$$

car $f(x) \leq 1$ pour tout $x \in [0, 1]$. On a ainsi,

$$\overline{S}(f,P) = \sum_{i=1}^{n} M_i(f,P)(x_i - x_{i-1})$$

$$= \sum_{i:[x_{i-1},x_i] \cap E = \emptyset} M_i(f,P)(x_i - x_{i-1}) + \sum_{i:[x_{i-1},x_i] \cap E \neq \emptyset} M_i(f,P)(x_i - x_{i-1})$$

$$\leq \sum_{i:[x_{i-1},x_i] \cap E = \emptyset} \frac{\varepsilon}{2} (x_i - x_{i-1}) + \sum_{i:[x_{i-1},x_i] \cap E \neq \emptyset} (x_i - x_{i-1})$$

$$< \frac{\varepsilon}{2} \sum_{i:[x_{i-1},x_i] \cap E = \emptyset} (x_i - x_{i-1}) + \sum_{i:[x_{i-1},x_i] \cap E \neq \emptyset} \frac{\varepsilon}{4N}$$

$$\leq \frac{\varepsilon}{2} + 2N \frac{\varepsilon}{4N}$$

$$= \varepsilon.$$

De plus, par la densité des nombres irrationnels, $m_i(f, P) = \inf\{f(x) : x \in [x_{i-1}, x_i]\} = 0$ pour tout i. Il s'ensuit que $\underline{S}(f, P) = 0$ et donc

$$\overline{S}(f,P) - \underline{S}(f,P) < \varepsilon.$$

Par le critère de Riemann (Théorème 6.9), f est intégrable. De plus,

$$0 = \underline{S}(f, P) \le \int_0^1 f(x) dx \le \overline{S}(f, P) < \varepsilon$$

pour tout $\varepsilon > 0$, et donc $\int_0^1 f(x) dx = 0$ (Proposition 1.26).

On conclut qu'il existe une fonction discontinue en chaque point rationnel mais qui est néanmoins intégrable.

6.5 Critère de Lebesgue

On a vu que toute fonction continue est intégrable (Théorème 6.11) et même que toute fonction bornée avec un nombre fini de discontinuités est intégrable (Théorème 6.15). On a ensuite vu des exemples de fonctions intégrables avec une infinité dénombrable (Section 2.5) de discontinuités (Exemple 6.16 et Section 6.4). Avec un peu plus de travail, on peut même montrer que toute fonction bornée avec un ensemble dénombrable de discontinuités est intégrable. En revanche, l'Exemple 6.7 montre un exemple de fonction discontinue en tout point qui n'est pas intégrable. Il est alors naturel de se demander s'il existe une caractérisation de l'intégrabilité en termes de l'ensemble des points de discontinuités. On pourrait se poser la question, par exemple, si une fonction est intégrable si et seulement si l'ensemble des discontinuités est dénombrable. La réponse est non :

Exemple 6.19. L'*ensemble de Cantor* $C \subseteq [0,1]$ est défini comme suit. On commence avec le segment $C_1 = [0,1]$. Ensuite, on sépare C_1 en trois segments égaux et on enlève celui du

milieu pour obtenir $C_2 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. On sépare ensuite chacun des deux segments de C_2 en trois segments égaux et enlève ceux des milieux, pour obtenir $C_3 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$. En continuant de la sorte, on obtient une suite d'ensembles $\{C_n\}_{n=1}^{\infty}$ tels qu'illustrés dans la figure suivante.

L'ensemble de Cantor C est obtenu en répétant ce processus à l'infini, c'est-à-dire, $C := \bigcap_{n=1}^{\infty} C_n$. Nous n'en ferons pas la démonstration, mais on peut montrer que C est un ensemble non dénombrable. Considérons maintenant la fonction

$$f:[0,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 1 & \text{si } x \in C \\ 0 & \text{si } x \notin C. \end{cases}$$
 (6.5)

La fonction f est alors discontinue en tout point $x \in C$ et continue en tout point $x \notin C$. C'està-dire, f a une quantité non dénombrable de discontinuité. En revanche, on peut montrer (ce que nous omettons) que f est intégrable et que $\int_0^1 f(x) dx = 0$.

Qu'est-ce qui caractérise alors les fonctions intégrables? Dans tous les exemples vus plus haut, ce qui semble commun aux fonctions intégrables est que l'ensemble E des points de discontinuités est « négligable ». C'est-à-dire, E semble très, très petit, voir indétectable, ou plus précisément :

Définition 6.20. Un ensemble $E \subseteq \mathbb{R}$ est **de mesure zéro** si pour tout $\varepsilon > 0$ il existe une suite d'intervalles $\{(a_n, b_n)\}_{n=1}^{\infty}$ telle que

$$E \subseteq \bigcup_{n=1}^{\infty} (a_n, b_n)$$
 et $\sum_{n=1}^{\infty} (b_n - a_n) < \varepsilon$.

On dit qu'une fonction $f:[a,b] \to \mathbb{R}$ est **continue presque partout** si l'ensemble de ses discontinuités est de mesure zéro.

Exemple 6.21. Soit $E = \{x_n : n \in \mathbb{N}\}$ un ensemble dénombrable. Alors E est de mesure zéro. En effet, soit $\varepsilon > 0$. Considérons les intervalles $(a_n, b_n) = (x_n - \frac{\varepsilon}{2^{n+2}}, x_n + \frac{\varepsilon}{2^{n+2}})$. On a $E \subseteq \bigcup_{n=1}^{\infty} (a_n, b_n)$ car tout $x_n \in E$ est contenu dans (a_n, b_n) . De plus (par l'Example 3.2), on a

$$\sum_{n=1}^{\infty} (b_n - a_n) = \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \frac{\varepsilon}{2} < \varepsilon.$$

Puisque l'ensemble \mathbb{Q} des nombres rationnels est dénombrable (Proposition 2.37), la fonction de Thomae est continue presque partout (Proposition 6.17). On peut aussi montrer que l'ensemble de Cantor C est de mesure zéro, et donc la fonction (6.5) est continue presque partout. C'est en fait la caractérisation des fonctions intégrables.

Théorème 6.22 (Critère de Lebesgue). Une fonction bornée $f : [a, b] \to \mathbb{R}$ est intégrable si et seulement si elle est continue presque partout.

Nous omettons la démonstration.

6.6 Propriétés

La proposition suivante, dont la démonstration a été donnée en exercices dans le cours d'Analyse I (Exercices (1.19) et (1.23)), sera utile pour démontrer certaines propriétés de l'intégrale.

Proposition 6.23. Soient $A \subseteq \mathbb{R}$ et $B \subseteq \mathbb{R}$ des ensembles non vides et soit

$$A + B := \{a + b : a \in A \text{ et } b \in B\}.$$

(1) Si $A \subseteq B$ et B est borné supérieurement, alors A l'est aussi et

$$\sup A \le \sup B.$$

(2) Si $A \subseteq B$ et B est borné inférieurement, alors A l'est aussi et

$$\inf A > \inf B$$
.

(3) Si A et B sont bornés supérieurement, alors A + B l'est aussi et

$$\sup(A+B) \le \sup(A) + \sup(B).$$

(4) Si A et B sont bornés inférieurement, alors A + B l'est aussi et

$$\inf(A+B) \ge \inf(A) + \inf(B).$$

Un autre résultat similaire qui sera utile pour cette section est le suivant.

Proposition 6.24. Soit $A \subseteq \mathbb{R}$ un ensemble non vide et borné. Alors,

$$\sup\{|a-b|: a, b \in A\} = \sup A - \inf A.$$

En particulier, si $f:[a,b] \to \mathbb{R}$ est une fonction bornée et $P = \{x_0,\ldots,x_n\} \in \operatorname{Part}_{[a,b]}$, alors

$$\sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\} = M_i(f, P) - m_i(f, P)$$
(6.6)

pour tout $i \in \{1, \ldots, n\}$.

Démonstration. Soit $E := \{|a-b| : a, b \in A\}$. Par la définition du supremum, nous devons montrer que

- (1) $\sup A \inf A$ est une borne supérieure de E, et
- (2) si M est une borne supérieure de E, alors sup $A \inf A \leq M$.

Montrons (1). Soit $a, b \in A$. Si $a \ge b$, alors $|a - b| = a - b \le \sup(A) - \inf(B)$. De même, si $a \le b$, alors $|a - b| = b - a \le \sup(A) - \inf(B)$. Montrons (2). Soit $M \in \mathbb{R}$ tel que que $|a - b| \le M$ pour tous $a, b \in A$. Pour tous $a, b \in A$, on a $a - b \le |a - b| \le M$ et donc $a \le M + b$. Il s'ensuit que M + b est une borne supérieure de A. Puisque $\sup(A)$ est la plus petite borne supérieure de A, on a $\sup(A) \le M + b$. On a alors $\sup(A) - M \le b$ pour tout $b \in A$, c'est-à-dire, $\sup(A) - M$ est une borne inférieure de A, et donc $\sup(A) - M \le \inf(A)$. Il s'ensuit que $\sup(A) - \inf(A) \le M$.

On obtient (6.6) en appliquant cette identité à l'ensemble $A := \{f(x) : x \in [x_{i-1}, x_i]\}$. \square

Le prochain résultat montre que l'intégrale est une application linéaire sur l'espace des fonctions.

Théorème 6.25. Soient $f, g : [a, b] \to \mathbb{R}$ des fonctions intégrables.

(1) La fonction f + g est intégrable et

$$\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx.$$

(2) Pour tout $c \in \mathbb{R}$, la fonction cf est intégrable et

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

Démonstration. Montrons (1). Soit P une partition de [a,b]. On a

$$M_{i}(f+g,P) = \sup\{f(x) + g(x) : x \in [x_{i-1}, x_{i}]\}$$

$$\leq \sup\{f(x) + g(y) : x, y \in [x_{i-1}, x_{i}]\}$$
 (Proposition 6.23(1))
$$\leq \sup\{f(x) : x \in [x_{i-1}, x_{i}]\} + \sup\{g(y) : y \in [x_{i-1}, x_{i}]\}$$
 (Proposition 6.23(3))
$$= M_{i}(f,P) + M_{i}(g,P).$$

De même, on a

$$m_{i}(f+g,P) = \inf\{f(x) + g(x) : x \in [x_{i-1}, x_{i}]\}$$

$$\geq \inf\{f(x) + g(y) : x, y \in [x_{i-1}, x_{i}]\} \qquad (Proposition 6.23(2))$$

$$\geq \inf\{f(x) : x \in [x_{i-1}, x_{i}]\} + \inf\{g(x) : x \in [x_{i-1}, x_{i}]\} \qquad (Proposition 6.23(4))$$

$$= m_{i}(f,P) + m_{i}(g,P).$$

Il s'ensuit que

$$\overline{S}(f+g,P) \le \overline{S}(f,P) + \overline{S}(g,P)$$
 et $\underline{S}(f+g,P) \ge \underline{S}(f,P) + \underline{S}(g,P)$. (6.7)

On a donc

$$\overline{S}(f+g,P) - \underline{S}(f+g,P) \le \left(\overline{S}(f,P) - \underline{S}(f,P)\right) + \left(\overline{S}(g,P) - \underline{S}(g,P)\right) \tag{6.8}$$

pour toute partition P de [a, b].

Soit $\varepsilon > 0$. Puisque f et g sont intégrables, le critère de Riemann (Théorème 6.9) implique qu'il existe des partitions P_1 et P_2 telles que $\overline{S}(f,P_1) - \underline{S}(f,P_1) < \frac{\varepsilon}{2}$ et $\overline{S}(g,P_2) - \underline{S}(g,P_2) < \frac{\varepsilon}{2}$. Soit $P = P_1 \cup P_2$. La partition P est un raffinement de P_1 et de P_2 , donc on a

$$\overline{S}(f,P) - \underline{S}(f,P) < \frac{\varepsilon}{2} \quad \text{et} \quad \overline{S}(g,P) - \underline{S}(g,P) < \frac{\varepsilon}{2}.$$
 (6.9)

par la Proposition 6.3. Par (6.8), on a

$$\overline{S}(f+g,P) - \underline{S}(f+g,P) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Par le critère de Riemann (Théorème 6.9), f + g est intégrable. De plus, par (6.7) et (6.9), on a

$$\int_{a}^{b} (f(x) + g(x))dx \leq \overline{S}(f + g, P)$$

$$\leq \overline{S}(f, P) + \overline{S}(g, P)$$

$$\leq \underline{S}(f, P) + \frac{\varepsilon}{2} + \underline{S}(g, P) + \frac{\varepsilon}{2}$$

$$\leq \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx + \varepsilon.$$

Ceci est valide pour tout $\varepsilon > 0$, donc (voir Proposition 1.27) on a

$$\int_{a}^{b} (f(x) + g(x))dx \le \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

Un argument similaire montre que

$$\int_{a}^{b} (f(x) + g(x))dx \ge \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

ce qui prouve (1).

La démonstration de (2) est laissée en exercice (Exercice (6.11)).

Théorème 6.26. Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable et $g:[c,d] \to \mathbb{R}$ une fonction continue telle que $f(x) \in [c,d]$ pour tout $x \in [a,b]$. Alors, la composition $g \circ f:[a,b] \to \mathbb{R}$ est intégrable.

Démonstration. Montrons que le critère de Riemann (Théorème 6.9) est satisfait. Soit $\varepsilon > 0$. Puisque toute fonction continue est bornée (Théorème 4.34), il exite M > 0 tel que

$$|g(x)| \le M$$
 pour tout $x \in [c, d]$.

Toute fonction continue sur un segment [c,d] est uniformément continue (Proposition 4.45), donc il existe un nombre δ tel que

$$0 < \delta < \frac{\varepsilon}{4M} \tag{6.10}$$

et

$$|g(x) - g(y)| < \frac{\varepsilon}{2(b-a)}, \quad \text{pour tous } x, y \in [c, d] \text{ tels que } |x-y| < \delta.$$
 (6.11)

Par l'intégrabilité de f et le critère de Riemann (Théorème 6.9), il existe une partition $P = \{x_0, x_1, \dots, x_n\}$ de [a, b] telle que

$$\overline{S}(f,P) - \underline{S}(f,P) < \delta^2. \tag{6.12}$$

Soit

$$A := \{i : M_i(f, P) - m_i(f, P) < \delta\}$$

$$B := \{i : M_i(f, P) - m_i(f, P) \ge \delta\}.$$

Si $i \in A$ et $x, y \in [x_{i-1}, x_i]$, alors la Proposition 6.24 montre que

$$|f(x) - f(y)| \le M_i(f, P) - m_i(f, P) < \delta.$$

Par (6.11), on a alors

$$|g(f(x)) - g(f(y))| < \frac{\varepsilon}{2(b-a)},$$
 pour tout $i \in A$ et $x, y \in [x_{i-1}, x_i].$

Le nombre $\frac{\varepsilon}{2(b-a)}$ est alors une borne supérieure de l'ensemble $\{|g(f(x)) - g(f(y))| : x, y \in [x_{i-1}, x_i]\}$. Par la Proposition 6.24, la plus petite borne supérieure de cet ensemble est $M_i(g \circ f, P) - m_i(g \circ f, P)$, donc

$$M_i(g \circ f, P) - m_i(g \circ f, P) \le \frac{\varepsilon}{2(b-a)}, \quad \text{pour tout } i \in A.$$
 (6.13)

Si $i \in B$, alors $\delta \leq M_i(f, P) - m_i(f, P)$, donc

$$\delta \sum_{i \in B} (x_i - x_{i-1}) = \sum_{i \in B} \delta(x_i - x_{i-1})$$

$$\leq \sum_{i \in B} (M_i(f, P) - m_i(f, P))(x_i - x_{i-1})$$

$$\leq \overline{S}(f, P) - \underline{S}(f, P)$$

$$< \delta^2,$$

par (6.12). Il s'ensuit que

$$\sum_{i \in B} (x_i - x_{i-1}) < \delta. \tag{6.14}$$

Notons aussi par la Proposition 6.23 que, puisque $-M \le g(x) \le M$ pour tout $x \in [c,d]$, on a

$$M_i(g \circ f, P) \le \sup\{g(x) : x \in [c, d]\} \le M$$

et

$$m_i(g \circ f, P) \ge \inf\{g(x) : x \in [c, d]\} \ge -M.$$

Il s'ensuit que

$$M_i(g \circ f, P) - m_i(g \circ f, P) \le 2M. \tag{6.15}$$

En combinant (6.13), (6.15), (6.14) et (6.10) on a alors

$$\overline{S}(g \circ f, P) - \underline{S}(g \circ f, P) = \sum_{i=1}^{n} (M_{i}(g \circ f, P) - m_{i}(g \circ f, P))(x_{i} - x_{i-1})$$

$$= \sum_{i \in A} (M_{i}(g \circ f, P) - m_{i}(g \circ f, P))(x_{i} - x_{i-1})$$

$$+ \sum_{i \in B} (M_{i}(g \circ f, P) - m_{i}(g \circ f, P))(x_{i} - x_{i-1})$$

$$\leq \frac{\varepsilon}{2(b-a)} \sum_{i \in A} (x_{i} - x_{i-1}) + 2M \sum_{i \in B} (x_{i} - x_{i-1})$$

$$(par (6.13) \text{ et } (6.15))$$

$$< \frac{\varepsilon}{2(b-a)} (b-a) + 2M\delta \qquad (par (6.14))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \qquad (par (6.10))$$

Par le critère de Riemann (Théorème 6.9), $g \circ f$ est intégrable.

Théorème 6.27. Si $f, g : [a, b] \to \mathbb{R}$ sont intégrables, alors $fg : [a, b] \to \mathbb{R}$ est intégrable.

Démonstration. On a $fg = \frac{1}{4}(f+g)^2 - \frac{1}{4}(f-g)^2$. Il suffit donc de montrer que si une fonction h est intégrable, alors h^2 l'est aussi. Ceci découle du Théorème 6.26 car h^2 est la composition de h avec la fonction $x \mapsto x^2$ qui est continue.

Il est intéressant de remarquer que l'hypothèse que g soit continue dans le Théorème 6.26 ne peut pas être remplacé l'hypothèse que g soit simplement intégrable. Il est possible que deux fonctions $f:[a,b]\to\mathbb{R}$ et $g:[c,d]\to\mathbb{R}$ soient intégrables, mais que $g\circ f:[a,b]\to\mathbb{R}$ ne l'est pas.

Exemple 6.28. Soit $f:[0,1]\to\mathbb{R}$ la fonction de Thomae (Section 6.4) et soit

$$g: [0,1] \longrightarrow \mathbb{R}, \quad g(x) = \begin{cases} 0 & \text{si } x = 0 \\ 1 & \text{si } 0 < x \le 1. \end{cases}$$

On a vu que f est intégrable (Proposition 6.18). La fonction g est aussi intégrable car elle est bornée et continue sur (0,1) (Proposition 6.13). En revanche, la composition

$$g \circ f : [0,1] \longrightarrow \mathbb{R}$$
$$x \longmapsto g(f(x)) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

n'est pas intégrable (Exemple 6.7).

Théorème 6.29. Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable et $c \in [a,b]$. Alors, les restrictions $f|_{[a,c]}:[a,c] \to \mathbb{R}$ et $f|_{[c,b]}:[c,b] \to \mathbb{R}$ sont intégrables et

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Démonstration. Soit $\varepsilon > 0$. Par le critère de Riemann, il existe une partition Q de [a,b] telle que $\overline{S}(f,Q) - \underline{S}(f,Q) < \frac{\varepsilon}{2}$. Soit $P = Q \cup \{c\}$. Alors P est un raffinement de Q, donc

$$\overline{S}(f,P) - \underline{S}(f,P) \le \overline{S}(f,Q) - \underline{S}(f,Q) < \frac{\varepsilon}{2}.$$

Soient $P_1 = P \cap [a, c]$ et $P_2 = P \cap [c, b]$. Alors P_1 et P_2 sont des partitions de [a, c] et [c, b], respectivement, telles que

$$\underline{S}(f,P) = \underline{S}(f|_{[a,c]}, P_1) + \underline{S}(f|_{[c,b]}, P_2) \quad \text{et} \quad \overline{S}(f,P) = \overline{S}(f|_{[a,c]}, P_1) + \overline{S}(f|_{[c,b]}, P_2).$$

Il s'ensuit que

$$0 \le \left(\overline{S}(f|_{[a,c]}, P_1) - \underline{S}(f|_{[a,c]}, P_1)\right) + \left(\overline{S}(f|_{[c,b]}, P_2) - \underline{S}(f|_{[c,b]}, P_2)\right) = \overline{S}(f, P) - \underline{S}(f, P) < \frac{\varepsilon}{2},$$

donc

$$\overline{S}(f|_{[a,c]}, P_1) - \underline{S}(f|_{[a,c]}, P_1) < \frac{\varepsilon}{2}$$

$$\overline{S}(f|_{[c,b]}, P_2) - \underline{S}(f|_{[c,b]}, P_2) < \frac{\varepsilon}{2}$$

Par le critère de Riemann (Théorème 6.9), $f|_{[a,c]}$ et $f|_{[c,b]}$ sont intégrables. De plus,

$$\int_{a}^{b} f(x)dx \leq \overline{S}(f, P)
= \overline{S}(f|_{[a,c]}, P_{1}) + \overline{S}(f|_{[c,b]}, P_{2})
< \left(\underline{S}(f|_{[c,b]}, P_{1}) + \frac{\varepsilon}{2}\right) + \left(\underline{S}(f|_{[c,b]}, P_{2}) + \frac{\varepsilon}{2}\right)
\leq \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx + \varepsilon$$

pour tout $\varepsilon > 0$, donc

$$\int_{a}^{b} f(x)dx \le \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

De même,

$$\int_{a}^{b} f(x)dx \ge \underline{S}(f, P)$$

$$= \underline{S}(f|_{[a,c]}, P_1) + \underline{S}(f|_{[c,b]}, P_2)$$

$$> \left(\overline{S}(f|_{[c,b]}, P_1) - \frac{\varepsilon}{2}\right) + \left(\overline{S}(f|_{[c,b]}, P_2) - \frac{\varepsilon}{2}\right)$$

$$\ge \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx - \varepsilon$$

pour tout $\varepsilon > 0$, donc

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Il s'ensuit que $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

Proposition 6.30. Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable telle que

$$m \le f(x) \le M$$
, pour tout $x \in [a, b]$.

Alors,

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a).$$

En particulier, si $|f(x)| \leq M$ pour tout $x \in [a, b]$, alors

$$\left| \int_{a}^{b} f(x) dx \right| \le M(b-a).$$

Démonstration. L'ensemble $P = \{a, b\}$ est une partition de [a, b] telle que

$$\overline{S}(f,P) \le M(b-a)$$

et

$$\underline{S}(f,P) \ge m(b-a).$$

Puisque $\underline{S}(f,P) \leq \int_a^b f(x)dx \leq \overline{S}(f,P)$ pour toute partition P, le résultat suit.

6.7 Théorème fondamental du calcul différentiel et intégral

Soit $f:[a,b]\to\mathbb{R}$ une fonction intégrable. Par le Théorème 6.29, pour tout $x\in[a,b]$, la restriction de f sur [a,x] est aussi intégrable. En particulier, on peut définir une fonction

$$F:[a,b] \longrightarrow \mathbb{R}, \quad F(x) = \int_{a}^{x} f(t)dt.$$
 (6.16)

Théorème 6.31 (Théorème fondamental du calcul différentiel et intégral – Partie 1). Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable et soit $F:[a,b] \to \mathbb{R}$ la fonction définie par (6.16). Si f est continue en x_0 , alors F est différentiable en x_0 et $F'(x_0) = f(x_0)$.

Démonstration. On doit montrer que

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0). \tag{6.17}$$

Pour tout $x \in [a, b]$ tel que $x \ge x_0$, on a

$$F(x) - F(x_0) = \int_a^x f(t)dt - \int_a^{x_0} f(t)dt = \int_a^{x_0} f(t)dt + \int_{x_0}^x f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^x f(t)dt$$

par le Théorème 6.29. La même formule est valide si $x \le x_0$, car $F(x) - F(x_0) = -(F(x_0) - F(x)) = -\int_x^{x_0} f(t)dt = \int_{x_0}^x f(t)dt$. Il s'ensuit que

$$F(x) - F(x_0) = \int_{x_0}^x f(t)dt$$
, pour tout $x \in [a, b]$. (6.18)

Pour montrer (6.17), soit $\varepsilon > 0$. Puisque f est continue en x_0 , il existe $\delta > 0$ tel que si $|x - x_0| < \delta$ alors $|f(x) - f(x_0)| < \frac{\varepsilon}{2}$. Pour tout $x \in [a, b]$ tel que $|x - x_0| < \delta$, on a

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x f(t)dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0)dt \right|$$
(par (6.18) et l'Exemple 6.6)
$$= \left| \frac{1}{x - x_0} \int_{x_0}^x (f(t) - f(x_0))dt \right|$$
(Théorème 6.25(1))
$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0))dt \right|.$$

Puisque $|f(t)-f(x_0)|<\frac{\varepsilon}{2}$ pour tout $t\in[x_0,x]$, la Proposition 6.30 implique que

$$\left| \int_{x_0}^x (f(t) - f(x_0)) dt \right| \le \frac{\varepsilon}{2} |x - x_0|.$$

On a donc

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| \le \frac{1}{|x - x_0|} \frac{\varepsilon}{2} |x - x_0| = \frac{\varepsilon}{2} < \varepsilon$$

pour tout $x \in [a, b]$ tel que $|x - x_0| < \delta$. Il s'ensuit que $\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$, c'est-à-dire F est différentiable en x_0 et $F'(x_0) = f(x_0)$.

Théorème 6.32 (Théorème fondamental du calcul différentiel et intégral – Partie 2). Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable et $F:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et différentiable sur (a,b) telle que F'(x) = f(x) pour tout $x \in (a,b)$. Alors,

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Démonstration. Soit $P = \{x_0, x_1, \dots, x_n\}$ une partition de [a, b]. Par le théorème de la moyenne (Théorème 5.15), il existe $c_i \in (x_{i-1}, x_i)$ tel que

$$f(c_i) = F'(c_i) = \frac{F(x_i) - F(x_{i-1})}{x_i - x_{i-1}},$$

et donc

$$F(x_i) - F(x_{i-1}) = f(c_i)(x_i - x_{i-1}).$$

Il s'ensuit que

$$\sum_{i=1}^{n} f(c_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} (F(x_i) - F(x_{i-1})) = F(b) - F(a).$$

Puisque

$$m_i(f, P) \le f(c_i) \le M_i(f, P)$$

pour tout i, on a

$$\underline{S}(f,P) \le F(b) - F(a) \le \overline{S}(f,P). \tag{6.19}$$

Puisque la partition P est arbitraire, (6.19) montre que

$$\int_{a}^{b} f(x)dx = \sup\{\underline{S}(f, P) : P \in Part_{[a,b]}\} \le F(b) - F(a)$$

et

$$\int_{a}^{b} f(x)dx = \inf\{\overline{S}(f, P) : P \in \operatorname{Part}_{[a,b]}\} \ge F(b) - F(a).$$

Ces deux inégalités impliquent que $\int_a^b f(x)dx = F(b) - F(a)$.

Les deux théorèmes combinés montrent que toute fonction continue $f:[a,b] \to \mathbb{R}$ est la dérivée d'une fonction $F:[a,b] \to \mathbb{R}$, et que l'intégrale $\int_a^b f(x)dx$ est égale à F(b) - F(a). Il s'ensuit que l'intégrale de toute fonction continue f peut être calculée en trouvant une fonction F telle que F' = f.

Exemple 6.33. Calculer $\int_0^{\pi/2} \cos(x) dx$.

Solution. On a $\sin' x = \cos x$ pour tout x, donc par la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32), on a

$$\int_0^{\pi/2} \cos(x) dx = \sin(\pi/2) - \sin(0) = 1.$$

6.8 Techniques d'intégration

Le but de cette section est de démontrer rigoureusement deux techniques d'intégration qui sont couramment enseignées dans un cours de calcul intégral.

Théorème 6.34 (Intégration par substitution). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue et $\varphi:[c,d] \to \mathbb{R}$ une fonction continûment différentiable (c'est-à-dire φ' existe et est continue) telle que $\varphi([c,d]) \subseteq [a,b]$, $\varphi(c) = a$ et $\varphi(d) = b$. Alors

$$\int_{a}^{b} f(x)dx = \int_{c}^{d} f(\varphi(t))\varphi'(t)dt. \tag{6.20}$$

Démonstration. Par la première partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.31), la fonction

$$h: [a,b] \longrightarrow \mathbb{R}, \quad h(x) = \int_a^x f(t)dt$$

est différentiable et h' = f. La fonction

$$F := h \circ \varphi : [c, d] \longrightarrow \mathbb{R}, \quad F(t) = h(\varphi(t))$$

est alors aussi différentiable et $F'(t) = h'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$ pour tout $t \in [c, d]$ (Théorème 5.10). Par la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32), on a alors

$$\int_{c}^{d} f(\varphi(t))\varphi'(t)dt = \int_{c}^{d} F'(t)dt$$

$$= F(d) - F(c)$$

$$= h(\varphi(d)) - h(\varphi(c))$$

$$= h(b) - h(a)$$

$$= \int_{a}^{b} f(x)dx.$$

La formule (6.20) peut servir à calculer des intégrales explicitement à l'aide de la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32) appliquée à un des deux côtés. Il est intéressant de noter que cette approche peut servir dans deux cas : parfois c'est l'intégrale de gauche qui nous intéresse mais celle de droite est plus facile à calculer, et parfois c'est l'inverse. Ces deux cas sont illustrés dans les exemples suivants.

Exemple 6.35. Montrer que

$$\int_0^1 \sqrt{1 - x^2} dx = \frac{\pi}{4}.$$

Solution. Soit

$$f:[0,1]\longrightarrow \mathbb{R}, \quad f(x)=\sqrt{1-x^2}$$

et

$$\varphi: [0, \pi/2] \longrightarrow \mathbb{R}, \quad \varphi(t) = \sin t.$$

Alors f est continue, φ est continûment différentiable, $\varphi([0,\pi/2])=[0,1], \varphi(0)=0, \varphi(\pi/2)=1,$ et

$$f(\varphi(t))\varphi'(t) = \sqrt{1-\sin^2 t}\cos t = \cos^2 t$$

pour tout $t \in [0, \pi/2]$. Le Théorème 6.34 implique alors que

$$\int_0^1 \sqrt{1 - x^2} dx = \int_0^{\pi/2} \cos^2 t \ dt.$$

Pour évaluer le côté droit, commençons par observer qu'en appliquant l'identité trigonométrique (4.7) à $\alpha = t$ et $\beta = t$, on obtient $\cos(2t) = \cos^2 t - \sin^2 t$. Puisque $\sin^2 t + \cos^2 t = 1$, on déduit que $\cos(2t) = \cos^2 t - \sin^2 t = \cos^2 t - (1 - \cos^2 t) = 2\cos^2 t - 1$, et donc que $\cos^2 t = \frac{1}{2}(1 + \cos 2t)$. Il s'ensuit que $\cos^2 t = F'(t)$, où $F(t) = \frac{t}{2} + \frac{1}{4}\sin 2t$. On conclut alors par la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32) que

$$\int_0^1 \sqrt{1 - x^2} dx = F(\pi/2) - F(0) = \frac{\pi}{4}.$$

Exemple 6.36. Calculer $\int_1^4 \frac{\sin \sqrt{t}}{\sqrt{t}} dt$.

Solution. Soit

$$\varphi: [1,4] \longrightarrow \mathbb{R}, \quad \varphi(t) = \sqrt{t}$$

et

$$f: [1,2] \longrightarrow \mathbb{R}, \quad f(x) = \sin x.$$

Alors f est continue, φ est continument différentiable, $\varphi([1,4]) = [1,2], \varphi(1) = 1$, et $\varphi(4) = 2$. De plus, $f(\varphi(t))\varphi'(t) = \frac{\sin\sqrt{t}}{2\sqrt{t}}$. On a donc $\int_1^4 \frac{\sin\sqrt{t}}{2\sqrt{t}}dt = \int_1^2 \sin x \ dx = -\cos(2) + \cos(1)$. Il s'ensuit que $\int_1^4 \frac{\sin\sqrt{t}}{\sqrt{t}}dt = 2(\cos(1) - \cos(2))$.

Théorème 6.37 (Intégration par parties). Soient $u:[a,b] \to \mathbb{R}$ et $v:[a,b] \to \mathbb{R}$ des fonctions différentiables telles que les dérivées u' et v' sont intégrables. Alors, uv' et u'v sont intégrables et

$$\int_{a}^{b} u(x)v'(x)dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x)dx.$$
 (6.21)

Démonstration. Une fonction différentiable est continue (Proposition 5.6) et donc intégrable (Proposition 6.11). Ainsi, u et v sont intégrables. Par le Théorème 6.27, uv' et u'v sont également intégrables. Par la règle de dérivation d'un produit (Théorème 5.11(c)), la fonction uv est différentiable et

$$(uv)' = u'v + uv'.$$

Puisqu'une somme de fonctions intégrables est intégrable (Théorème 6.25(1)), u'v + uv' est intégrable. Ainsi, la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32) implique que

$$\int_{a}^{b} (u'(x)v(x) + u(x)v'(x))dx = \int_{a}^{b} (uv)'(x)dx = u(b)v(b) - u(a)v(a).$$

Par l'additivité de l'intégrale (Théorème 6.25(1)), on a

$$\int_{a}^{b} u'(x)v(x)dx + \int_{a}^{b} u(x)v'(x)dx = u(b)v(b) - u(a)v(a),$$

ce qui implique (6.21).

Exemple 6.38. Calculer $\int_0^{\pi} x^2 \sin x \ dx$.

Solution. Soient $u(x) = x^2$ et $v(x) = -\cos(x)$. On a $x^2 \sin x = u(x)v'(x)$, donc le Théorème 6.37 implique que

$$\int_0^\pi x^2 \sin x \, dx = u(\pi)v(\pi) - u(0)v(0) - \int_0^\pi u'(x)v(x) \, dx = \pi^2 + 2\int_0^\pi x \cos x \, dx.$$

On peut ensuite appliquer une nouvelle fois l'intégration par parties à $\int_0^{\pi} x \cos x \ dx$ avec u(x) = x et $v(x) = \sin x$, ce qui donne

$$\int_0^\pi x \cos x \, dx = 0 - 0 - \int_0^\pi \sin x \, dx = \cos(\pi) - \cos(0) = -2.$$

On trouve alors que

$$\int_0^{\pi} x^2 \sin x \, dx = \pi^2 - 4.$$

6.9 Intégrales impropres et test de l'intégrale

Bien que la définition de l'intégrale d'une fonction f repose sur l'hypothèse que son domaine est un segment [a,b] et que la fonction f soit bornée, on peut aisément retirer ces hypothèses à l'aide de limites.

Définition 6.39. Soit $f:[a,\infty)\to\mathbb{R}$ une fonction. On dit que f est intégrable si la restriction $f|_{[a,b]}:[a,b]\to\mathbb{R}$ est intégrable pour tout b>a et la limite

$$\int_{a}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

existe. (Par définition, cela suppose que la limite est un nombre réel fini, et non $\pm \infty$; voir la Définition 4.18.) De même, une fonction $f:(-\infty,b]\to\mathbb{R}$ est *intégrable* si $f|_{[a,b]}$ est intégrable pour tout a< b et la limite

$$\int_{-\infty}^{b} f(x)dx := \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

existe. Finalement, une fonction $f: \mathbb{R} \to \mathbb{R}$ est *intégrable* si $f|_{[a,0]}$ et $f|_{[0,b]}$ sont intégrables pour tout a < 0 et b > 0 et la limite

$$\int_{-\infty}^{\infty} f(x)dx := \lim_{a \to -\infty} \int_{a}^{0} f(x)dx + \lim_{b \to \infty} \int_{0}^{b} f(x)dx$$

existe.

Remarque 6.40. Dans le cas d'une fonction $f: \mathbb{R} \to \mathbb{R}$, il n'est pas nécessairement vrai que

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to \infty} \int_{-a}^{a} f(x)dx.$$

Par exemple, si $f(x) = \sin x$, alors

$$\lim_{a \to \infty} \int_{-a}^{a} \sin x \, dx = \lim_{a \to \infty} (-\cos a - (-\cos a)) = 0$$

bien que

$$\lim_{b \to \infty} \int_0^b \sin x \, dx = \lim_{b \to \infty} (1 - \cos b)$$

n'existe pas, donc $\int_{-\infty}^{\infty} \sin x \, dx$ n'existe pas.

Théorème 6.41 (Test de l'intégrale). Soit $\sum_{n=1}^{\infty} a_n$ une série de nombres réels $a_n \in \mathbb{R}$ (telle que dans le Chapitre 3). Supposons qu'il existe une fonction $f:[1,\infty)\to\mathbb{R}$ positive (c'est-à-dire f(x)>0 pour tout x) et décroissante telle que $f(n)=a_n$ pour tout $n\in\mathbb{N}$. Alors, $\sum_{n=1}^{\infty} a_n$ converge si et seulement si f est intégrable.

Démonstration. Puisque f est décroissante, les restrictions $f|_{[1,b]}$ sont intégrables pour tout b > 1 (Exercice (6.2)). De plus, pour tout $k \in \mathbb{N}$ tel que $k \ge 2$ et $x \in [k-1,k]$, on a

$$a_k = f(k) \le f(x) \le f(k-1) = a_{k-1}$$

car f est décroissante. Par la Proposition 6.30,

$$a_k \le \int_{k-1}^k f(x)dx \le a_{k-1}.$$
 (6.22)

Soit $s_n = a_1 + a_2 + \cdots + a_n$ la suite des sommes partielles. En sommant (6.22) pour $k = 2, 3, \ldots, n$, obtient

$$s_n - a_1 \le \int_1^n f(x)dx \le s_{n-1}$$
 (6.23)

pour tout $n \in \mathbb{N}$.

Supposons que $\int_1^\infty f(x)dx$ existe. Alors, la première inégalité dans (6.23) montre que $(s_n)_{n=1}^\infty$ est bornée. Puisque $a_n = f(n) > 0$ pour tout n, la série $\sum_{n=1}^\infty a_n$ converge par le Théorème 3.10.

Inversement, supposons que $\sum_{n=1}^{\infty} a_n$ converge. En particulier, $(s_n)_{n=1}^{\infty}$ est bornée et la deuxième inégalité dans (6.23) montre que la suite $(\int_1^n f(x)dx)_{n=1}^{\infty}$ est bornée. Puisque f est positive, on a que $\int_1^{n+1} f(x)dx = \int_1^n f(x)dx + \int_n^{n+1} f(x)dx \ge \int_1^n f(x)dx$, donc $(\int_1^n f(x)dx)_{n=1}^{\infty}$ est croissante. Par le Théorème de convergence monotone (Théorème 2.25), $\lim_{n\to\infty} \int_1^n f(x)dx = L$ existe. Montrons que $\lim_{b\to\infty} \int_1^b f(x)dx = L$, où $b \in \mathbb{R}$. Soit $\varepsilon > 0$. Puisque $\lim_{n\to\infty} \int_1^n f(x)dx = L$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \ge N_1$ $(n \in \mathbb{N})$, on a $|\int_1^n f(x)dx - L| < \frac{\varepsilon}{2}$. Puisque $\sum_{n=1}^{\infty} a_n$ converge, on a que $\lim_{n\to\infty} a_n = 0$ (Théorème 3.4), donc il existe $N_2 \in \mathbb{N}$ tel que pour tout $n \ge N_2$, on a $a_n < \frac{\varepsilon}{2}$. Soit $N := \max(N_1, N_2) + 1$. Soit $b \in \mathbb{R}$ tel que b > N et soit $n \in \mathbb{N}$ le plus grand entier naturel tel que n < b. Alors

$$\left| \int_{1}^{b} f(x)dx - L \right| = \left| \int_{1}^{n} f(x)dx + \int_{n}^{b} f(x)dx - L \right|$$

$$\leq \left| \int_{1}^{n} f(x)dx - L \right| + \left| \int_{n}^{b} f(x)dx \right|$$

$$< \frac{\varepsilon}{2} + f(n)(b - n)$$

$$\leq \frac{\varepsilon}{2} + a_{n}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Il s'ensuit que la limite $\lim_{b\to\infty}\int_1^b f(x)dx$ existe, donc f est intégrable.

Exemple 6.42. Montrons que la série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge pour tout p > 1. Remarquons que le test du rapport (Théorème 3.13) ne permet pas de conclure la convergence, car

$$\lim_{n \to \infty} \frac{1/(n+1)^p}{1/n^p} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^p = 1.$$

De même, le test de la racine (Exercice (3.8)) ne donne aucune information. En revanche, le test de l'intégrale (Théorème 6.41) permet de montrer la convergence. En effet, soit $f:[1,\infty)\to\mathbb{R}$ la fonction $f(x)=1/x^p$. On a f(x)=F'(x) où $F(x)=-\frac{1}{(p-1)x^{p-1}}$. Alors, $\int_1^b f(x)dx=\int_1^b \frac{dx}{x^p}=F(b)-F(1)=\frac{1}{p-1}\left(1-\frac{1}{b^{p-1}}\right)$ pour tout b>1. Il s'ensuit que $\int_1^\infty f(x)dx=\lim_{b\to\infty}\frac{1}{p-1}(1-\frac{1}{b^{p-1}})=\frac{1}{p-1}$ existe. Par le Théorème 6.41, $\sum_{n=1}^\infty \frac{1}{n^p}$ converge.

Pour finir, on peut définir l'intégrale d'une fonction sur des intervalles finis, mais non fermés de la façon suivante.

Définition 6.43. Soient $a, b \in \mathbb{R}$ tels que a < b.

• Une fonction $f:(a,b] \to \mathbb{R}$ est intégrable si la restriction $f|_{[\alpha,b]}$ est intégrable pour tout $\alpha \in (a,b]$ et la limite

$$\int_{a}^{b} f(x)dx := \lim_{\alpha \to a+} \int_{\alpha}^{b} f(x)dx \tag{6.24}$$

existe (voir la Définition 4.16 pour les notions de limites à gauche et à droite).

• Une fonction $f:[a,b)\to\mathbb{R}$ est *intégrable* si la restriction $f|_{[a,\beta]}$ est intégrable pour tout $\beta\in[a,b)$ et la limite

$$\int_{a}^{b} f(x)dx := \lim_{\beta \to b^{-}} \int_{a}^{\beta} f(x)dx \tag{6.25}$$

existe.

• Une fonction $f:(a,b)\to\mathbb{R}$ est *intégrable* si la restriction $f|_{[\alpha,\beta]}$ est intégrable pour tous $\alpha,\beta\in(a,b)$ tels que $\alpha<\beta$ et il existe $c\in(a,b)$ tel que la limite

$$\int_{a}^{b} f(x)dx := \lim_{\alpha \to a+} \int_{\alpha}^{c} f(x)dx + \lim_{\beta \to b-} \int_{c}^{\beta} f(x)dx$$
 (6.26)

existe.

Remarquons que si $f:[a,b]\to\mathbb{R}$ est intégrable, alors nous avons plusieurs définitions possibles de l'intégrale $\int_a^b f(x)dx$, c'est-à-dire, la définition originale (Définition 6.5) ainsi que les limites (6.24), (6.25), et (6.26). Pour nous assurer que ces définitions concordent, nous avons besoin de la proposition suivante.

Proposition 6.44. Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable. Alors

$$\int_{a}^{b} f(x)dx = \lim_{\alpha \to a+} \int_{\alpha}^{b} f(x)dx = \lim_{\beta \to b-} \int_{a}^{\beta} f(x)dx, \tag{6.27}$$

où toutes les intégrales sont définis par la Définition 6.5.

Démonstration. Démontrons la première égalité seulement; l'autre est semblable. Soit $\varepsilon > 0$. Puisque la fonction f est intégrable, elle est bornée. Il existe alors un nombre M > 0 tel que

 $|f(x)| \leq M$ pour tout $x \in [a, b]$. Soit $\delta = \frac{\varepsilon}{M}$. Soit $\alpha \in [a, b]$ tel que $a < \alpha < a + \delta$. Par le Théorème 6.29 et la Proposition 6.30, on a

$$\left| \int_{\alpha}^{b} f(x)dx - \int_{a}^{b} f(x)dx \right| = \left| \int_{a}^{\alpha} f(x)dx \right|$$

$$\leq M(\alpha - a)$$

$$< M\delta$$

$$= \varepsilon.$$

Par la définition de la limite à droite (Définition 4.16), on obtient (6.27).

Il est aussi possible de définir l'intégrale de fonctions $f:(a,\infty)\to\mathbb{R}$ et $f:(-\infty,b)\to\mathbb{R}$ en combinant deux limites. On laisse le soin au lecteur d'écrire les détails.

Exemple 6.45. Montrer que $f(x) = \frac{1}{\sqrt{x}}$ est intégrable sur (0,1] et calculer $\int_0^1 \frac{1}{\sqrt{x}} dx$.

Solution. Soit $\alpha \in (0,1]$. La restriction

$$f|_{[\alpha,1]}: [\alpha,1] \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{1}{\sqrt{x}}$

est continue, donc intégrable. De plus, $f|_{[\alpha,1]} = F'$, où $F(x) = 2\sqrt{x}$. Il s'ensuit que

$$\int_{0}^{1} \frac{1}{x^{2}} dx = F(1) - F(\alpha) = 2 - 2\sqrt{\alpha}.$$

On a donc

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \lim_{\alpha \to 0+} (2 - 2\sqrt{\alpha}) = 2.$$
 (6.28)

Puisque la limite existe, la fonction est intégrable et son intégrale est donnée par (6.28).

6.10 Exercices

- (6.1) Soit $f:[0,3]\to\mathbb{R}$, $f(x)=x^2-4$. Calculer $\overline{S}(f,P)$ et $\underline{S}(f,P)$ pour la partition $P=\{0,1/2,1,2,5/2,3\}$.
- (6.2) Soit $f:[a,b] \to \mathbb{R}$ une fonction croissante. Soit $P = \{x_0, x_1, \dots, x_n\}$ la partition de [a,b] donnée par $x_i = a + i \frac{b-a}{n}, \ i = 0,1,2,\dots,n$. Montrer que

$$\overline{S}(f,P) - \underline{S}(f,P) = (f(b) - f(a)) \frac{b-a}{n}.$$

Déduire que f est intégrable. De même, montrer que toute fonction décroissante est intégrable.

- (6.3) Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée. Montrer que s'il existe une partition P de [a,b] telle que $\overline{S}(f,P) = \underline{S}(f,P)$, alors f est intégrable et $\int_a^b f(x)dx = \overline{S}(f,P) = \underline{S}(f,P)$.
- (6.4) Montrer que la fonction

$$f: [0,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x \in \mathbb{Q} \\ x & \text{si } x \notin \mathbb{Q} \end{cases}$$

n'est pas intégrable. (Indice : Soit $P = \{x_0, x_1, \dots, x_n\}$ une partition, on a $\sum_{i=1}^n x_i(x_i - x_{i-1}) = \frac{1}{2}(x_n^2 - x_0^2 + \sum_{i=1}^n (x_i - x_{i-1})^2) \ge \frac{1}{2}(x_n^2 - x_0^2)$.)

(6.5) Soit $f:[0,1]\to\mathbb{R}$ une fonction intégrable et soit $c\in\mathbb{R}$ tel que $c\neq f(0)$. Montrer que la fonction

$$g: [0,1] \longrightarrow \mathbb{R}, \quad g(x) = \begin{cases} c & \text{si } x = 0\\ f(x) & \text{si } 0 < x \le 1 \end{cases}$$

est intégrable.

- **(6.6)** Soit $f:[a,b] \to \mathbb{R}$ une fonction continue telle que $f(x) \ge 0$ pour tout $x \in [a,b]$ et $\int_a^b f(x) dx = 0$. Montrer que f(x) = 0 pour tout $x \in [a,b]$.
- (6.7) Soit $f:[a,b] \to \mathbb{R}$ une fonction bornée avec un nombre fini de discontinuités, c'est-à-dire, il existe $c_1, c_2, \ldots, c_n \in (a,b)$ tels que f est continue sur $(a,c_1), (c_1,c_2), (c_2,c_3), \ldots, (c_n,b)$. Montrer que f est intégrable. (Indice: Utiliser la Proposition 6.10 sur chaque intervalle $[a,c_1], [c_1,c_2], \ldots, [c_n,b]$, et appliquer le critère de Riemann sur chaque intervalle.)
- (6.8) Soit $f:[a,b]\to\mathbb{R}$ une fonction intégrable telle que $f(x)\geq 0$ pour tout $x\in[a,b]$. Montrer que $\int_a^b f(x)dx\geq 0$.
- (6.9) Montrer que la fonction $f:[0,1] \to \mathbb{R}$ de l'Exemple 6.16 est discontinue en chaque point de l'ensemble $\{1/n : n \in \mathbb{N}\}$ mais est intégrable et $\int_0^1 f(x)dx = 0$.
- (6.10) Montrer que l'ensemble de Cantor est de mesure zéro.
- (6.11) Démontrer la partie (2) du Théorème 6.25. (Indice : considérer les cas c > 0, c = 0, et c < 0 séparément.)

(6.12) Montrer que si $f:[a,b]\to\mathbb{R}$ est intégrable, alors |f| est aussi intégrable et

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

(6.13) Soit $f:[a,b]\to\mathbb{R}$ une fonction intégrable et soit $c\in\mathbb{R}$. Montrer que la fonction

$$g: [a+c,b+c] \longrightarrow \mathbb{R}, \quad g(x) = f(x-c)$$

est intégrable et que

$$\int_{a+c}^{b+c} f(x-c)dx = \int_{a}^{b} f(x)dx.$$

(6.14) Soit $f:[a,b] \to \mathbb{R}$ une fonction lipschitzienne de constante c>0, c'est-à-dire, $|f(x)-f(y)| \le c|x-y|$ pour tous $x,y \in [a,b]$. Montrer que pour toute partition $P=\{x_0,x_1,\ldots,x_n\}$ de [a,b], on a

$$\overline{S}(f, P) - \underline{S}(f, P) \le c(b - a)|P|,$$

οù

$$|P| \coloneqq \max\{x_i - x_{i-1} : i \in \{1, \dots, n\}\}.$$

(6.15) Soit $f:[0,1]\to\mathbb{R}$ une fonction lipschitzienne. Montrer que

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(i/n) = \int_{0}^{1} f(x) dx.$$

(Indice: Utiliser la question (6.14).)

(6.16) Trouver une fonction $f:[0,1]\to\mathbb{R}$ telle que

$$f(x)^2 = 2\int_0^x f(t)dt + 1$$

pour tout $x \in [0, 1]$.

(6.17) Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Montrer qu'il existe $c\in(a,b)$ tel que

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = f(c).$$

(Indice : Combiner le théorème de la moyenne et le théorème fondamental du calcul différentiel et intégral.)

(6.18) Soit $f:[a,b]\to\mathbb{R}$ une fonction intégrable. Montrer que la fonction

$$F:[a,b]\longrightarrow \mathbb{R}, \quad F(x)=\int_a^x f(t)dt$$

est lipschitzienne et donc uniformément continue.

(6.19) Soient $a, b \in \mathbb{R}$ tels que a < b. Montrer que $\int_a^b |x| dx = F(b) - F(a)$, où

$$F: [a, b] \longrightarrow \mathbb{R}, \quad F(x) = \begin{cases} \frac{1}{2}x^2 & \text{si } x \ge 0\\ -\frac{1}{2}x^2 & \text{si } x < 0. \end{cases}$$

- **(6.20)** Calculer $\int_0^1 t \sqrt{1+t^2} dt$.
- **(6.21)** Calculer $\int_0^2 \frac{t^2}{\sqrt{1+t^3}} dt$.
- (6.22) Calculer $\int_0^1 \arcsin(x) dx$ où $\arcsin: [0,1] \to \mathbb{R}$ est l'inverse de $\sin: [0,\pi/2] \to \mathbb{R}$.

Chapitre 7

Suites de fonctions

Il y a plusieurs façons de définir la limite d'une suite de fonctions $f_n: D \to \mathbb{R}$. Dans chacune de ces définitions, l'idée est que la fonction limite $f: D \to \mathbb{R}$ doit être approximée de plus en plus précisément par la fonction f_n plus n est grand. Différentes façons de comparer f_n et f donnent différentes définitions de convergence. Dans ce chapitre, on définit deux de ces notions de convergence, soit la convergence ponctuelle et uniforme, et on montre que la deuxième notion est la plus appropriée dans de nombreuses situations.

7.1 Convergence ponctuelle et uniforme

Définition 7.1. Une *suite de fonctions* est une suite $(f_n)_{n=1}^{\infty}$ où $f_n: D \to \mathbb{R}$ sont des fonctions de domaine commun D. On dit que $(f_n)_{n=1}^{\infty}$ converge ponctuellement vers une fonction $f: D \to \mathbb{R}$ si pour tout $x \in D$ la suite $(f_n(x))_{n=1}^{\infty}$ converge vers f(x) au sens usuel de la Définition 2.4, c'est-à-dire,

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \text{pour tout } x \in D.$$
 (7.1)

Explicitement, cela consiste à demander à ce que pour tout $x \in D$ et tout $\varepsilon > 0$, il existe un nombre $N \in \mathbb{N}$ tel que pour tout $n \geq N$ on a que $|f_n(x) - f(x)| < \varepsilon$.

Remarque 7.2. Il est important de distinguer une fonction f d'une valeur f(x) de cette fonction. La notation f(x) ne représente pas une fonction, mais plutôt l'évaluation de la fonction f au point x. Donc f(x) est un nombre réel et non la fonction f. La limite (7.1) représente alors bien une limite de nombres réels telle qu'au Chapitre 2.

Bien que cette notion de convergence soit la plus simple à énoncer, elle comporte de nombreux problèmes. Entre autres, si toutes les fonctions $f_n : [a,b] \to \mathbb{R}$ sont continues et la suite $(f_n)_{n=1}^{\infty}$ converge ponctuellement vers f, alors f n'est pas nécessairement continue :

Exemple 7.3. Soit $f_n: [0,1] \to \mathbb{R}$, $f_n(x) = x^n$. Par l'Exemple 2.28, on a $\lim_{n\to\infty} f_n(x) = 0$ si $0 \le x < 1$ et $\lim_{n\to\infty} f_n(1) = 1$. Il s'ensuit que la suite $(f_n)_{n=1}^{\infty}$ converge ponctuellement vers la fonction

$$f: [0,1] \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } 0 \le x < 1 \\ 1 & \text{si } x = 1 \end{cases}$$

qui n'est pas continue.

Un autre problème avec la convergence ponctuelle survient lorsqu'on essaie d'interchanger la limite avec l'intégrale. C'est-à-dire que si les fonctions $f_n:[a,b]\to\mathbb{R}$ sont intégrables et convergent ponctuellement, alors il n'est pas nécessairement vrai que

$$\lim_{n \to \infty} \int_a^b f(x) dx = \int_a^b \left(\lim_{n \to \infty} f_n(x) \right) dx.$$

Le prochain exemple illustre ce problème.

Exemple 7.4. Soit $f_n: [0,1] \to \mathbb{R}$ la fonction définie en reliant (0,0), $(\frac{1}{n},n)$, $(\frac{2}{n},0)$, et (1,0) par des droites, c'est-à-dire:

$$f_n(x) = \begin{cases} n^2 x & \text{si } 0 \le x \le \frac{1}{n} \\ n^2 (\frac{2}{n} - x) & \text{si } \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & \text{si } \frac{2}{n} \le x \le 1. \end{cases}$$

On a $\lim_{n\to\infty} f_n(x) = 0$ pour tout $x \in [0,1]$, car si $0 < x \le 1$, il existe $N \in \mathbb{N}$ tel que $\frac{2}{n} \le x$ pour tout $n \ge N$, et donc $f_n(x) = 0$ pour tout $n \ge N$. La suite $(f_n)_{n=1}^{\infty}$ converge donc ponctuellement vers la fonction constante f(x) = 0. L'intégrale $\int_0^1 f_n(x) dx$ est l'aire du triangle dont les sommets sont (0,0), $(\frac{1}{n},n)$, et $(\frac{2}{n},0)$, donc $\int_0^1 f_n(x) dx = 1$ pour tout n. Or, $\int_0^1 f(x) dx = \int_0^1 0 dx = 0 \ne 1 = \lim_{n\to\infty} \int_0^1 f_n(x) dx$.

Pour remédier à ces problèmes, et bien d'autres, on définit une autre notion de convergence :

Définition 7.5. Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions $f_n: D \to \mathbb{R}$. On dit que $(f_n)_{n=1}^{\infty}$ converge uniformément vers une fonction $f: D \to \mathbb{R}$ si pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$ tel que pour tout $x \in D$ et tout $n \geq N$, on a $|f_n(x) - f(x)| < \varepsilon$.

On montre facilement que la converge uniforme implique la convergence ponctuelle.

Proposition 7.6. Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions qui converge uniformément vers une fonction $f: D \to \mathbb{R}$. Alors $(f_n)_{n=1}^{\infty}$ converge aussi ponctuellement vers f.

Démonstration. Soit $x_0 \in D$. On doit montrer que $\lim_{n\to\infty} f_n(x_0) = f(x_0)$. Soit $\varepsilon > 0$. Puisque $(f_n)_{n=1}^{\infty}$ converge uniformément vers f, il existe $N \in \mathbb{N}$ tel que pour tout $x \in D$ et tout $n \geq N$, on a $|f_n(x) - f(x)| < \varepsilon$. En particulier, $|f_n(x_0) - f(x_0)| < \varepsilon$ pour tout $n \geq N$. Puisque $\varepsilon > 0$ est arbitraire, on conclut que $\lim_{n\to\infty} f_n(x_0) = f(x_0)$.

La distinction entre les deux notions de convergence est que pour la convergence uniforme, le nombre $N \in \mathbb{N}$ ne dépend que de ε , et est indépendant de x.

Voici une première propriété préservée par la convergence uniforme :

Proposition 7.7. Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions bornées $f_n: D \to \mathbb{R}$ qui converge uniformément vers une fonction $f: D \to \mathbb{R}$. Alors, f est bornée.

Démonstration. Par la définition de convergence uniforme appliquée à $\varepsilon = 1$, il existe $N \in \mathbb{N}$ tel que $|f_n(x) - f(x)| < 1$ pour tout $x \in D$ et tout $n \geq N$. Puisque f_N est bornée, il existe M > 0 tel que $|f_N(x)| \leq M$ pour tout $x \in D$. Il s'ensuit que pour tout $x \in D$, on a

$$|f(x)| = |(f(x) - f_N(x)) + f_N(x)| \le |f(x) - f_N(x)| + |f_N(x)| \le 1 + M,$$

donc f est bornée.

Définition 7.8. Soit $f:D\to\mathbb{R}$ une fonction bornée. La **norme sup** de f est le nombre réel

$$||f|| = \sup\{|f(x)| : x \in D\}.$$

Si f et g sont deux fonctions bornées, alors f-g est aussi bornée, et on peut considérer ||f-g||. Le nombre $||f-g|| \ge 0$ est donc une façon de comparer f et g. C'est-à-dire que ||f-g|| = 0 si et seulement si f = g, et en général, ||f-g|| est une mesure de la différence entre ces deux fonctions. Le prochain résultat montre que la convergence uniforme est précisément la notion de convergence provenant de cette façon de comparer des fonctions.

Théorème 7.9. Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions bornées $f_n: D \to \mathbb{R}$ et $f: D \to \mathbb{R}$ une fonction. Alors $(f_n)_{n=1}^{\infty}$ converge uniformément vers f si et seulement si f est bornée et

$$\lim_{n \to \infty} ||f_n - f|| = 0.$$

 $D\'{e}monstration.$ (\Longrightarrow) Supposons que $(f_n)_{n=1}^{\infty}$ converge uniformément vers f. Par la Proposition 7.7, f est bornée, et donc $||f-f_n||$ est défini pour tout $n \in \mathbb{N}$. Montrons que $\lim_{n\to\infty}||f_n-f||=0$. Soit $\varepsilon>0$. Par la définition de la convergence uniforme, il existe $N\in\mathbb{N}$ tel que pour tout $x\in D$ et tout $n\geq N$, on a $|f_n(x)-f(x)|<\frac{\varepsilon}{2}$. Il s'ensuit que $||f_n-f||=\sup\{|f_n(x)-f(x)|:x\in D\}\leq \frac{\varepsilon}{2}<\varepsilon$ pour tout $n\geq N$, c'est-à-dire, $\lim_{n\to\infty}||f_n-f||=0$.

(\iff) Supposons que f est bornée et que $\lim_{n\to\infty} \|f_n - f\| = 0$. Soit $\varepsilon > 0$. Par la définition de cette limite, il existe $N \in \mathbb{N}$ tel que $\|f_n - f\| < \varepsilon$ pour tout $n \ge N$. Il s'ensuit que si $x \in D$ et $n \ge N$, alors $|f_n(x) - f(x)| \le \sup\{|f_n(y) - f(y)| : y \in D\} = \|f_n - f\| < \varepsilon$. On conclut alors que $(f_n)_{n=1}^{\infty}$ converge uniformément vers f.

Le prochain résultat est semblable au Théorème 2.52 disant qu'une suite de nombres réels converge si et seulement si elle est une suite de Cauchy. L'utilité de ce théorème venait du fait qu'on peut montrer qu'une suite converge sans connaître a priori la valeur vers laquelle elle converge. C'est ce qu'on appelle un théorème d'existence. C'est-à-dire, on montre qu'une limite existe sans nécessairement pouvoir la déterminer explicitement. Le théorème suivant est un analogue pour les fonctions : il donne une façon de montrer qu'une suite de fonctions converge uniformément sans nécessairement connaître d'expression explicite pour la limite.

Théorème 7.10 (Critère de Cauchy pour la convergence uniforme). Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions $f_n: D \to \mathbb{R}$. Alors $(f_n)_{n=1}^{\infty}$ converge uniformémement vers une fonction si et seulement si pour tout $\varepsilon > 0$ il existe un nombre $N \in \mathbb{N}$ tel que pour tout $x \in D$ et tous $m > n \geq N$, on a

$$|f_m(x) - f_n(x)| < \varepsilon.$$

Démonstration. (\Longrightarrow) Supposons que $(f_n)_{n=1}^{\infty}$ converge uniformément vers une fonction $f: D \to \mathbb{R}$. Soit $\varepsilon > 0$. Par la définition de la convergence uniforme (Définition 7.5), il existe un nombre $N \in \mathbb{N}$ tel que pour tout $n \geq N$ et tout $x \in D$, on a $|f_n(x) - f(x)| < \varepsilon/2$. Il s'ensuit que pour tous $m > n \geq N$ et tout $x \in D$, on a

$$|f_m(x) - f_n(x)| = |(f_m(x) - f(x)) - (f_n(x) - f(x))| \le |f_m(x) - f(x)| + |f_n(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 (\Leftarrow) Soit $(f_n)_{n=1}^{\infty}$ une suite telle que pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $x \in D$ et $m > n \ge N$, on a $|f_m(x) - f_n(x)| < \varepsilon$. Il s'ensuit que pour tout $x \in D$, la suite de nombres réels $(f_n(x))_{n=1}^{\infty}$ est une suite de Cauchy (Définition 2.48). Par le Théorème 2.52, la suite $(f_n(x))_{n=1}^{\infty}$ est convergente, c'est-à-dire, la limite $\lim_{n\to\infty} f_n(x)$ existe. Définissons la fonction

$$f: D \longrightarrow \mathbb{R}, \quad f(x) = \lim_{n \to \infty} f_n(x).$$

Montrons que $(f_n)_{n=1}^{\infty}$ converge uniformément vers f. Soit $\varepsilon > 0$. Par hypothèse, il existe $N \in \mathbb{N}$ tel que

$$|f_m(x) - f_n(x)| < \frac{\varepsilon}{2}$$
 pour tout $x \in D$ et $m > n \ge N$. (7.2)

Pour chaque $x \in D$ et $n \geq N$, la continuité de la valeur absolue (Exercice (4.6)) implique que

$$\lim_{m \to \infty} |f_m(x) - f_n(x)| = |f(x) - f_n(x)|. \tag{7.3}$$

Par (7.2) et (7.3),

$$|f(x) - f_n(x)| \le \frac{\varepsilon}{2} < \varepsilon$$

pour tout $n \geq N$ et $x \in D$ (par la Proposition 2.22). Il s'ensuit que $(f_n)_{n=1}^{\infty}$ converge uniformément vers f.

7.2 Propriétés de la convergence uniforme

Montrons d'abord que la convergence uniforme préserve la continuité, contrairement à la convergence ponctuelle (Exemple 7.3).

Théorème 7.11. Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions continues $f_n: D \to \mathbb{R}$ qui converge uniformément vers une fonction $f: D \to \mathbb{R}$. Alors, f est continue.

Démonstration. Soit $x_0 \in D$. Montrons que f est continue en x_0 . Soit $\varepsilon > 0$. Puisque $(f_n)_{n=1}^{\infty}$ converge uniformément vers f, il existe $N \in \mathbb{N}$ tel que pour tout $x \in D$ et $n \geq N$ on a $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$. Par la continuité de f_N en x_0 , il existe $\delta > 0$ tel que $|f_N(x) - f_N(x_0)| < \frac{\varepsilon}{3}$ pour tout $x \in D$ tel que $|x - x_0| < \delta$. Il s'ensuit que si $x \in D$ et $|x - x_0| < \delta$, alors

$$|f(x) - f(x_0)| = |(f(x) - f_N(x)) + (f_N(x) - f_N(x_0)) + (f_N(x_0) - f(x_0))|$$

$$\leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$

Donc f est continue en x_0 .

Exemple 7.12. La suite de fonctions $f_n(x) = x^n$ dans l'Exemple 7.3 ne converge pas uniformément, car la limite n'est pas continue.

On peut aussi montrer que la convergence uniforme est compatible avec l'intégration :

Théorème 7.13. Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions continues sur un segment [a,b] qui converge uniformément vers une fonction $f:[a,b] \to \mathbb{R}$. Alors, la suite de fonctions $(F_n)_{n=1}^{\infty}$ définie par

$$F_n: [a,b] \longrightarrow \mathbb{R}, \quad F_n(x) := \int_a^x f_n(t) dt$$

converge uniformément vers la fonction

$$F: [a, b] \longrightarrow \mathbb{R}, \quad F(x) := \int_{a}^{x} f(t)dt.$$

En particulier,

$$\lim_{n \to \infty} \int_a^b f_n(t)dt = \int_a^b \left(\lim_{n \to \infty} f_n(t)\right) dt.$$

Démonstration. Puisque $(f_n)_{n=1}^{\infty}$ converge uniformément vers f et que chaque fonction f_n est continue, la limite f est aussi continue (Théorème 7.11) et donc intégrable (Théorème 6.11). Pour tout $x \in [a, b]$, on a

$$|F_{n}(x) - F(x)| = \left| \int_{a}^{x} f_{n}(t)dt - \int_{a}^{x} f(t)dt \right|$$

$$= \left| \int_{a}^{x} (f_{n}(t) - f(t))dt \right|$$

$$\leq (x - a) \sup\{|f_{n}(t) - f(t)| : t \in [a, x]\}$$
 (Proposition 6.30)
$$\leq (b - a)||f_{n} - f||.$$

Par conséquent,

$$0 \le ||F_n - F|| \le |b - a|||f_n - f||. \tag{7.4}$$

Puisque $(f_n)_{n=1}^{\infty}$ converge uniformément vers f, on a $\lim_{n\to\infty} ||f_n-f|| = 0$ (Théorème 7.9). Par le théorème du sandwich (Théorème 2.10), les inégalités (7.4) impliquent que $\lim_{n\to\infty} ||F_n-F|| = 0$, donc $(F_n)_{n=1}^{\infty}$ converge uniformément vers F. Puisque la convergence uniforme implique la convergence ponctuelle (Proposition 7.6), on a

$$\lim_{n \to \infty} \int_a^b f_n(t)dt = \lim_{n \to \infty} F_n(b) = F(b) = \int_a^b f(x)dx = \int_a^b \left(\lim_{n \to \infty} f_n(x)\right) dx. \quad \Box$$

Exemple 7.14. La suite de fonctions dans l'Exemple 7.4 ne converge pas ponctuellement, car l'intégrale de la limite n'est pas égale à la limite des intégrales.

Exemple 7.15. Montrer que

$$\lim_{n \to \infty} \int_0^{\pi} \frac{nx + \sin x}{2n + \cos x} dx = \frac{\pi^2}{4}.$$

Solution. Montrons que la suite de fonctions $f_n:[0,\pi]\to\mathbb{R}, f_n(x)=\frac{nx+\sin x}{2n+\cos x}$ converge uniformément vers la fonction $f:[0,\pi]\to\mathbb{R}, f(x)=\frac{x}{2}$. Pour tout $x\in[0,\pi]$ et $n\in\mathbb{N}$, on a

$$|f_n(x) - f(x)| = \left| \frac{nx + \sin x}{2n + \cos x} - \frac{x}{2} \right|$$

$$= \left| \frac{2(nx + \sin x) - x(2n + \cos x)}{2(2n + \cos x)} \right|$$

$$= \left| \frac{2\sin x - x\cos x}{4n + 2\cos x} \right|$$

$$\leq \frac{2|\sin x| + |x||\cos x|}{4n - 2}$$

$$\leq \frac{2 + \pi}{4n - 2}.$$

Il s'ensuit que

$$||f_n - f|| \le \frac{2+\pi}{4n-2}$$

pour tout $n \in \mathbb{N}$. Puisque $\lim_{n\to\infty} \frac{2+\pi}{4n-2} = 0$, la suite $(f_n)_{n=1}^{\infty}$ converge uniformément vers f par le Théorème 7.9. Par le Théorème 7.13,

$$\lim_{n \to \infty} \int_0^{\pi} \frac{nx + \sin x}{2n + \cos x} = \int_0^{\pi} \frac{x}{2} dx = \frac{\pi^2}{4}.$$

On a aussi la compatibilité avec la dérivée :

Théorème 7.16. Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions sur un segment [a,b] qui converge ponctuellement vers une fonction $f:[a,b] \to \mathbb{R}$. Supposons que chaque $f_n:[a,b] \to \mathbb{R}$ est différentiable, que la dérivée $f'_n:[a,b] \to \mathbb{R}$ est continue, et que la suite $(f'_n)_{n=1}^{\infty}$ converge uniformément vers une fonction $g:[a,b] \to \mathbb{R}$. Alors, f est différentiable et f'(x) = g(x) pour tout $x \in [a,b]$. En particulier,

$$\frac{d}{dx}\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}\frac{d}{dx}f_n(x), \quad pour \ tout \ x\in[a,b].$$

Démonstration. Puisque $(f'_n)_{n=1}^{\infty}$ est une suite de fonctions continues qui converge uniformément vers g, la suite de fonctions

$$F_n: [a,b] \longrightarrow \mathbb{R}, \quad F_n(x) = \int_a^x f'_n(t)dt$$

converge uniformément vers la fonction

$$F:[a,b]\longrightarrow \mathbb{R}, \quad F(x)=\int_a^x g(t)dt$$

(Théorème 7.13). Par la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32), on a

$$F_n(x) = f_n(x) - f_n(a)$$

pour tout $n \in \mathbb{N}$ et $x \in [a, b]$. Il s'ensuit que

$$\int_{a}^{x} g(t)dt = \lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} (f_n(x) - f_n(a)) = f(x) - f(a),$$

et donc

$$f(x) = f(a) + \int_{a}^{x} g(t)dt, \qquad (7.5)$$

pour tout $x \in [a, b]$. Puisque chaque dérivée f'_n est continue et que $(f'_n)_{n=1}^{\infty}$ converge uniformément vers g, la fonction g est continue (Théorème 7.11). Par la première partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.31), la fonction $G(x) = \int_a^x g(t)dt$ est différentiable et G'(x) = g(x) pour tout $x \in [a, b]$. Par (7.5), f est différentiable et f'(x) = g(x) pour tout $x \in [a, b]$.

7.3 Fonction exponentielle et fonction logarithmique

Notons qu'à ce stade-ci, nous n'avons pas encore défini la notion de puissance a^b pour tout a>0 et tout $b\in\mathbb{R}$. On sait, bien sûr, comment définir $a^n=a\cdot a\cdots a$ (n-fois) pour un entier naturel $n\in\mathbb{N}$. On peut aussi définir $a^{-n}=(1/a)^n$ pour tout $n\in\mathbb{N}$, et donc a^n est défini pour tout $n\in\mathbb{Z}$. Ensuite, on définit $a^{1/n}$ comme la n-ième racine de a. En combinant ces définitions, on obtient une définition de la puissance $a^{m/n}=(a^{1/n})^m$ pour tout nombre rationnel $\frac{m}{n}\in\mathbb{Q}$. Mais comment donner du sens, par exemple, à $a^{\sqrt{2}}$?

La première étape consiste à donner une définition rigoureuse de la fonction exponentielle $\exp: \mathbb{R} \to \mathbb{R}$. On définira ensuite son inverse, la fonction logarithmique $\ln: (0, \infty) \to \mathbb{R}$. Nous pourrons ainsi définir $a^b = \exp(b \ln a)$ pour tout a > 0 et $b \in \mathbb{R}$. Notons cependant que nous ne pouvons pas définir la fonction exponentielle comme $\exp(x) = e^x$ où e est le nombre d'Euler (Section 2.4), car nous n'avons pas encore de définition de la puissance e^x pour tout $x \in \mathbb{R}$. La solution est de définir exp à l'aide d'une équation différentielle, grâce au prochain résultat. Nous verrons par la suite que cette définition concorde avec e^x pour tout $x \in \mathbb{Q}$.

Théorème 7.17. Il existe une fonction $E: \mathbb{R} \to \mathbb{R}$ telle que

$$E'(x) = E(x) \tag{7.6}$$

pour tout $x \in \mathbb{R}$ et

$$E(0) = 1. (7.7)$$

Démonstration. Soit $(E_n)_{n=1}^{\infty}$ la suite de fonctions $E_n: \mathbb{R} \to \mathbb{R}$ définie par récurrence par

$$E_1(x) = 1 + x,$$

 $E_{n+1}(x) = 1 + \int_0^x E_n(t)dt, \text{ pour tout } n \ge 1.$

Montrons par récurrence que chaque fonction E_n est différentiable. Le cas où n=1 découle du fait que E_1 est une droite (Exemple 5.3). Supposons que E_n est différentiable pour un certain n. En particulier, E_n est continue. Par la première partie du théorème fondamental du calcul différentiable et intégral (Théorème 6.31), la fonction E_{n+1} est différentiable et

$$E'_{n+1} = E_n.$$

Montrons par récurrence que

$$E_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$
 (7.8)

pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Le cas où n = 1 est donné. Supposons que (7.8) soit vraie pour un certain $n \in \mathbb{N}$. La fonction $F(x) = \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^{n+1}}{(n+1)!}$ satisfait alors $F'(x) = E_n(x)$. Par la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32), on a

$$E_{n+1}(x) = 1 + \int_0^x E_n(t)dt = 1 + F(x) - F(0) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{n+1}}{(n+1)!}$$

ce qu'il fallait démontrer.

Montrons maintenant que la suite $(E_n)_{n=1}^{\infty}$ converge vers une fonction E satisfaisant (7.6) et (7.7). Pour y arriver, nous allons montrer que les restrictions $E_n|_{[-A,A]}$ satisfont le critère de Cauchy (Théorème 7.10) pour tout A > 0.

Soit A > 0. Si $x \in [-A, A]$ et m > n > 2A, on a

$$|E_{m}(x) - E_{n}(x)| = \left| \frac{x^{n+1}}{(n+1)!} + \dots + \frac{x^{m}}{m!} \right|$$

$$\leq \frac{A^{n+1}}{(n+1)!} + \dots + \frac{A^{m}}{m!}$$

$$= \frac{A^{n+1}}{(n+1)!} \left(1 + \frac{A}{n+2} + \frac{A^{2}}{(n+2)(n+3)} + \dots + \frac{A^{m-n-1}}{(n+2)(n+3) \cdots (m-1)m} \right)$$

$$\leq \frac{A^{n+1}}{(n+1)!} \left(1 + \frac{A}{n} + \frac{A^{2}}{n^{2}} + \dots + \frac{A^{m-n-1}}{n^{m-n-1}} \right)$$

$$< \frac{A^{n+1}}{(n+1)!} \left(1 + \frac{1}{2} + \left(\frac{1}{2} \right)^{2} + \dots + \left(\frac{1}{2} \right)^{m-n-1} \right)$$

$$< \frac{A^{n+1}}{(n+1)!} 2. \tag{7.9}$$

Soit $\varepsilon > 0$. Puisque $\lim_{n \to \infty} \frac{2A^{n+1}}{(n+1)!} = 0$ (par l'Exemple 3.15 et le Théorème 3.4), il existe $N \in \mathbb{N}$ tel que N > 2A et $\frac{2A^{n+1}}{(n+1)!} < \varepsilon$ pour tout $n \geq N$. Par (7.9), il s'ensuit que $|E_m(x) - E_n(x)| < \varepsilon$ pour tout $m > n \geq N$ et $x \in [-A, A]$. Le critère de Cauchy (Théorème 7.10) implique alors que les restrictions $E_n|_{[-A,A]}$ convergent uniformément. En particulier, $(E_n(x))_{n=1}^{\infty}$ converge pour tout $x \in [-A, A]$. Puisque chaque $x \in \mathbb{R}$ est contenu dans un segment [-A, A] pour un certain A > 0, on peut poser

$$E: \mathbb{R} \longrightarrow \mathbb{R}, \quad E(x) := \lim_{n \to \infty} E_n(x).$$

On a que chaque $E_n|_{[-A,A]}$ est différentiable, la dérivée $E'_n|_{[-A,A]} = E_{n-1}|_{[-A,A]}$ est continue, et la suite $(E'_n|_{[-A,A]})_{n=1}^{\infty} = (E_{n-1}|_{[-A,A]})_{n=1}^{\infty}$ converge uniformément vers $E|_{[-A,A]}$. Par le Théorème 7.16, $E|_{[-A,A]}$ est différentiable et $E'|_{[-A,A]} = E|_{[-A,A]}$. Puisque A > 0 est arbitraire, on a que E est différentiable et que E' = E. De plus, $E_n(0) = 1$ pour tout $n \in \mathbb{N}$ donc $E(0) = \lim_{n \to \infty} E_n(0) = 1$.

Théorème 7.18. La fonction $E: \mathbb{R} \to \mathbb{R}$ satisfaisant (7.6) et (7.7) est unique.

Démonstration. Soient $E_1: \mathbb{R} \to \mathbb{R}$ et $E_2: \mathbb{R} \to \mathbb{R}$ deux fonctions telles que $E_1' = E_1$, $E_1(0) = 1$, $E_2' = E_2$, et $E_2(0) = 1$. Montrons que $E_1 = E_2$. Soit $F = E_1 - E_2$. On a alors que F' = F et F(0) = 0. On doit montrer que cela implique que F = 0. Soit x > 0. Appliquons le Théorème de Taylor (Théorème 5.30) à la restriction de F sur le segment [0, x]. On a que $F' = F, F'' = F, \ldots, F^{(n+1)} = F$ existent sur [0, x] pour tout $n \in \mathbb{N}$. Par le Théorème de Taylor, il existe un point $c \in (0, x)$ tel que

$$F(x) = F(0) + \frac{F'(0)}{1!}x + \frac{F''(0)}{2!}x^2 + \dots + \frac{F^{(n)}(0)}{n!}x^n + \frac{F^{(n+1)}(c)}{(n+1)!}x^{n+1}$$
$$= \frac{F(c)}{(n+1)!}x^{n+1}.$$

Puisque F est continue sur le segment [0,x], la fonction F est bornée par une constante M>0 sur ce segment (Théorème 4.34). On a alors que $|F(x)| \leq \frac{M}{(n+1)!}|x|^{n+1}$ pour tout $n \in \mathbb{N}$. Puisque $\lim_{n\to\infty} \frac{M}{(n+1)!}|x|^{n+1}=0$, on a que F(x)=0 pour tout x>0. Un argument similaire montre que F(x)=0 pour tout x<0.

Définition 7.19. L'unique fonction E satisfaisant (7.6) et (7.7) est appelée **fonction exponentielle** et est notée

$$\exp: \mathbb{R} \longrightarrow \mathbb{R}$$
.

Nous allons bientôt voir que $\exp(x) = e^x$ pour tout $x \in \mathbb{Q}$, où $e \in \mathbb{R}$ est le nombre d'Euler (Section 2.4). Pour ce faire, observons d'abord les propriétés suivantes.

Lemme 7.20. On a que $\exp(x) \ge 1 + x$ pour tout $x \ge 0$.

Démonstration. Par (7.8), on a que $E_n(x) \ge 1 + x$ pour tout $x \ge 0$. Il s'ensuit que $\exp(x) = \lim_{n \to \infty} E_n(x) \ge 1 + x$ pour tout $x \ge 0$.

Lemme 7.21. On a que $\exp(x) \neq 0$ pour tout $x \in \mathbb{R}$.

Démonstration. Supposons, par contradiction, qu'il existe un point $x_0 \in \mathbb{R}$ tel que $\exp(x_0) = 0$. Soit

$$F: \mathbb{R} \longrightarrow \mathbb{R}, \quad F(x) = \exp(x_0 + x).$$

On a alors que F(0) = 0 et F'(x) = F(x) pour tout $x \in \mathbb{R}$. Comme démontré dans la démonstration du Théorème 7.18, cela implique que F(x) = 0 pour tout $x \in \mathbb{R}$, contredisant que $F(-x_0) = \exp(0) = 1$.

Théorème 7.22. On a que

$$\exp(x+y) = \exp(x)\exp(y)$$

pour tous $x, y \in \mathbb{R}$.

Démonstration. Fixons un nombre $y \in \mathbb{R}$. Puisque $\exp(y) \neq 0$ (Lemme 7.21), on peut définir la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \frac{\exp(x+y)}{\exp(y)}.$$

On doit montrer que $f(x) = \exp(x)$ pour tout $x \in \mathbb{R}$. Par l'unicité de la fonction exponentielle (Théorème 7.18), il suffit de montrer que f(0) = 1 et f'(x) = f(x) pour tout $x \in \mathbb{R}$. On a que $f(0) = \frac{\exp(y)}{\exp(y)} = 1$ et, puisque y est une constante, $f'(x) = \frac{\exp'(x+y)}{\exp(y)} = \frac{\exp(x+y)}{\exp(y)} = f(x)$.

Théorème 7.23. La fonction exponentielle est strictement croissante et son image est $(0, \infty)$.

Démonstration. Par le Lemme 7.21 on a que $\exp(x) \neq 0$ pour tout $x \in \mathbb{R}$. Puisque $\exp(0) = 1 > 0$, le Théorème des valeurs intermédiaires (Théorème 4.38) implique que $\exp(x) > 0$ pour tout $x \in \mathbb{R}$. C'est-à-dire, l'image de exp est contenue dans $(0, \infty)$. En particulier, $\exp'(x) = \exp(x) > 0$ pour tout $x \in \mathbb{R}$, donc exp est strictement croissante (Théorème 5.20). Pour montrer que l'image de exp est $(0, \infty)$, posons un nombre $y \in (0, \infty)$. On doit montrer qu'il existe un nombre $x \in \mathbb{R}$ tel que $\exp(x) = y$. On distingue trois cas:

- (1) Supposons que y > 1. Par le Lemme 7.20, on a que $\exp(0) = 1 < y < 1 + y \le \exp(y)$. Par le Théorème des valeurs intermédiaires (Théorème 4.38), il existe un point x entre 0 et y tel que $\exp(x) = y$.
- (2) Si y = 1, on peut prendre x = 0.
- (3) Finalement, supposons que y < 1. Puisque 1/y > 1, le cas (1) implique qu'il existe un nombre $z \in \mathbb{R}$ tel que $\exp(z) = 1/y$. Par le Théorème 7.22, on a $\exp(-z) = \frac{\exp(0)}{\exp(z)} = y$ et on peut donc poser x = -z.

À l'aide du Théorème 7.23, nous allons conclure que la fonction exponentielle a une fonction inverse

$$\ln:(0,\infty)\longrightarrow\mathbb{R},$$

que l'on appelle la fonction logarithmique, c'est-à-dire, l
n est l'unique fonction sur $(0, \infty)$ telle que

$$\ln(\exp(x)) = x$$
 pour tout $x \in \mathbb{R}$ et $\exp(\ln(y)) = y$ pour tout $y \in (0, \infty)$.

Plus précisément, nous avons besoin du théorème suivant (nous ne couvrons pas la démonstration en classe, car il s'agit de matière plutôt propre au cours d'Analyse I, mais vous êtes encouragé à la lire).

Théorème 7.24. Soit I un intervalle ouvert 1 et $f: I \to \mathbb{R}$ une fonction telle que f'(x) > 0 pour tout $x \in I$. Alors, l'image J := f(I) de f est un intervalle ouvert et il existe une fonction inverse $g: J \to \mathbb{R}$. De plus, g est différentiable et

$$g'(y) = \frac{1}{f'(g(y))}$$

pour tout $y \in J$.

Démonstration (Pas à l'évaluation du cours d'Analyse II). Puisque f'(x) > 0 pour tout $x \in I$, la fonction f est strictement croissante (Théorème 5.20). En particulier, f est injective et il existe une fonction inverse $g: J \to \mathbb{R}$ où J := f(I). De plus, par le théorème des valeurs intermédiaires (Théorème 4.38), J est un intervalle ouvert.

Montrons que g est aussi croissante. Soient $y_1, y_2 \in J$ tels que $y_1 < y_2$ et soient $x_1 = g(y_1)$ et $x_2 = g(y_2)$. On doit montrer que $x_1 < x_2$. Si, au contraire, $x_1 \ge x_2$, alors, puisque f est croissante, on a $f(x_1) \ge f(x_2)$, c'est-à-dire, $y_1 \ge y_2$, contraire à l'hypothèse. Il s'ensuit que $x_1 < x_2$, donc g est croissante.

Montrons que g est continue. Soit $y_0 \in J$ et $x_0 = g(y_0) \in I$. Soit $\varepsilon > 0$. Sans perte de généralité, on peut supposer que ε est assez petit pour que $(x_0 - \varepsilon, x_0 + \varepsilon) \subseteq I$. Puisque f est strictement croissante, on a que $f(x_0 - \varepsilon) < f(x_0) < f(x_0 + \varepsilon)$. Il existe alors un nombre $\delta > 0$ tel que $(f(x_0) - \delta, f(x_0) + \delta) \subseteq (f(x_0 - \varepsilon), f(x_0 + \varepsilon))$. Il s'ensuit que pour tout $y \in J$ tel que $|y - y_0| < \delta$, on a $y \in (f(x_0) - \delta, f(x_0) + \delta)$ et donc $y \in (f(x_0 - \varepsilon), f(x_0 + \varepsilon))$. C'est-à-dire, $f(x_0 - \varepsilon) < y < f(x_0 + \varepsilon)$. Puisque g est aussi croissante, cela implique que $x_0 - \varepsilon < g(y) < x_0 + \varepsilon$, c'est-à-dire, $|g(y) - g(y_0)| < \varepsilon$.

Montrons maintenant que g est différentiable. Soit $y_0 \in J$ et $x_0 = g(y_0)$. Puisque f est différentiable au point $x_0 \in D$, il existe une fonction continue $\varphi: I \to \mathbb{R}$ telle que $\varphi(x_0) = f'(x_0)$ et $f(x) = f(x_0) + \varphi(x)(x - x_0)$ pour tout $x \in I$ (Théorème 5.8). Puisque $\varphi(x_0) = f'(x_0) > 0$ et φ est continue, il existe un nombre $\delta > 0$ tel que $\varphi(x) > 0$ pour tout $x \in (x_0 - \delta, x_0 + \delta)$ (Exercice (4.14)). Il s'ensuit que pour tout $y \in (f(x_0 - \delta), f(x_0 + \delta))$ tel que $y \neq y_0$, on a $g(y) \in (x_0 - \delta, x_0 + \delta)$, donc

$$y - y_0 = f(g(y)) - f(x_0) = \varphi(g(y))(g(y) - g(y_0))$$

et ainsi

$$\frac{g(y) - g(y_0)}{y - y_0} = \frac{1}{\varphi(g(y))}.$$

Puisque φ et g sont continues, on trouve que

$$\lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{1}{\varphi(g(y))} = \frac{1}{\varphi(g(y_0))} = \frac{1}{f'(g(y_0))}.$$

C'est-à-dire, g est différentiable en y_0 et $g'(y_0) = \frac{1}{f'(g(y_0))}$.

Le Théorème 7.24 implique donc que la fonction logarithmique est différentiable et que

$$\ln'(y) = \frac{1}{\exp'(\ln(y))} = \frac{1}{\exp(\ln(y))} = \frac{1}{y}.$$

Résumons cette discussion dans le résultat suivant.

- 1. C'est-à-dire, $I=(a,b), I=(-\infty,b), I=(a,\infty), \text{ ou } I=\mathbb{R}, \text{ pour } a,b\in\mathbb{R}.$
- 2. C'est-à-dire, g(f(x)) = x pour tout $x \in I$ et f(g(y)) = y pour tout $y \in J$.

Théorème 7.25. La fonction exponentielle exp : $\mathbb{R} \to \mathbb{R}$ possède une fonction inverse $\ln: (0, \infty) \to \mathbb{R}$. De plus,

$$\ln'(x) = \frac{1}{x}$$

pour tout $x \in (0, \infty)$ et

$$\ln(xy) = \ln(x) + \ln(y) \tag{7.10}$$

pour tous $x, y \in (0, \infty)$.

Démonstration. Il reste seulement à établir (7.10). Soient $x, y \in (0, \infty)$. Posons $u := \ln(x)$ et $v := \ln(y)$. Par le Théorème 7.22, on a $\exp(u + v) = \exp(u) \exp(v) = xy$ donc $\ln(xy) = \ln(\exp(u + v)) = u + v = \ln(x) + \ln(y)$.

Par (7.10) et un argument de récurrence, on déduit que

$$\ln(x^n) = n \ln x$$

pour tout x > 0 et $n \in \mathbb{N}$. Plus généralement, on peut voir que

$$\ln(x^r) = r \ln x, \quad \text{pour tout } r \in \mathbb{Q} \text{ et } x > 0, \tag{7.11}$$

(Exercice (7.13)).

On peut maintenant établir le lien entre la fonction exponentielle et le nombre d'Euler.

Théorème 7.26. La fonction exponentielle satisfait

$$\exp(x) = e^x, \quad pour \ tout \ x \in \mathbb{Q},$$
 (7.12)

où $e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ est le nombre d'Euler défini à la section 2.4.

 $D\acute{e}monstration$. Montrons d'abord que $\exp(1) = e$. Notons que

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \exp\left(\ln\left(\left(1 + \frac{1}{n}\right)^n\right)\right) = \lim_{n \to \infty} \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right).$$

Puisque la fonction exp est continue, il suffit de montrer que $\lim_{n\to\infty} n \ln(1+\frac{1}{n}) = 1$. Cela découle de la règle de l'Hôpital (Théorème 5.24), puisque

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1/(1+x)}{1} = 1.$$

On a donc que $e = \exp(1)$. Maintenant, en appliquant le Théorème 7.22 n fois, on obtient que

$$\exp(nx) = \exp(x)^n \tag{7.13}$$

pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$. En particulier, pour x = 1/n, on a que

$$e = \exp(1) = \exp(n \cdot 1/n) = \exp(1/n)^n$$

pour tout $n \in \mathbb{N}$. Il s'ensuit que

$$\exp(1/n) = e^{1/n}$$

pour tout $n \in \mathbb{N}$. On a aussi $\exp(-m) = 1/\exp(m) = 1/e^m = e^{-m}$ pour tout $m \in \mathbb{N}$. On conclut alors que pour tout $\frac{m}{n} \in \mathbb{Q}$, où $m \in \mathbb{Z}$ et $n \in \mathbb{N}$, on a que

$$\exp(m/n) = \exp(1/n)^m = (e^{1/n})^m = e^{m/n}.$$

On peut maintenant établir la définition suivante.

Définition 7.27. Soit a > 0 et $b \in \mathbb{R}$. La **puissance** b de a est le nombre

$$a^b := \exp(b \ln(a)).$$

Cette définition coincide avec la notion de puissance usuelle mentionnée dans le premier paragraphe de cette section, c'est-à-dire, $a^{m/n} = (a^{1/n})^m$, où $a^{1/n}$ est la n-ième racine de a. En effet, par (7.11), on a que $a^{m/n} = \exp(\ln(a^{m/n})) = \exp(\frac{m}{n}\ln(a))$. De plus, on peut maintenant étendre l'identité (7.12) pour tous les nombres réels :

$$\exp(x) = e^x$$
, pour tout $x \in \mathbb{R}$.

En effet, $e^x := \exp(x \ln(e)) = \exp(x \ln(\exp(1))) = \exp(x \cdot 1) = \exp(x)$. On peut aussi voir que la puissance satisfait les propriétés arithmétiques habituelles, telles que $a^{b_1+b_2} = a^{b_1}a^{b_2}$, $(a_1a_2)^b = a_1^b a_2^b$, etc (Exercices (7.16) et (7.17)). Finalement, on peut démontrer que sur l'intervalle $(0, \infty)$ la dérivée se calcule par

$$\frac{d}{dx}x^b = bx^{b-1}$$

pour tout $b \in \mathbb{R}$ (Exercice (7.15)).

7.4 Irrationalité du nombre d'Euler

Voyant maintenant une application intéressante de la section précedente : nous allons démontrer que le nombre d'Euler

$$e \coloneqq \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

introduit à la Section 2.4 est irrationnel.

Pour y arriver, commençons par appliquer le théorème de Taylor (Théorème 5.30) à la fonction exponentielle $\exp(x) = e^x$. Puisque $\exp'(x) = \exp(x)$ pour tout x, par récurrence, $\exp^{(k)}(x) = \exp(x)$ pour tout $x \in \mathbb{R}$ et $k \in \mathbb{N}$. Il s'ensuit que $\exp^{(k)}(0) = 1$ pour tout $k \in \mathbb{N}$. Ainsi, le polynôme de Taylor d'ordre n de exp centré au point $x_0 = 0$ est donné par

$$P_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}.$$

Le théorème de Taylor (Théorème 5.30) implique alors que pour tout $x \geq 0$ et $n \in \mathbb{N}$, il existe un point $c_n \in (0, x)$ tel que

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{c_n}x^{n+1}}{(n+1)!}.$$

En particulier, en posant x = 1, on a que pour tout $n \in \mathbb{N}$, il existe $c_n \in (0,1)$ tel que

$$e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right) = \frac{e^{c_n}}{(n+1)!}.$$

Puisque la fonction exponentielle est strictement croissante et son image est $(0, \infty)$, on a $0 < e^{c_n} < e^1 = e$, et donc

$$0 < e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}\right) < \frac{e}{(n+1)!}$$
 (7.14)

pour tout $n \in \mathbb{N}$.

Proposition 7.28. Le nombre d'Euler satisfait

$$2 < e < 3$$
.

En particulier, e n'est pas un entier.

Démonstration. En appliquant (7.14) avec n=2, on obtient

$$0 < e - \left(1 + 1 + \frac{1}{2}\right) < \frac{e}{6},$$

ce qui se simplifie à $2 + \frac{1}{2} < e < 3$.

Théorème 7.29. Le nombre d'Euler e est irrationnel.

Démonstration. Supposons, par contradiction que $e = \frac{m}{n}$, où $m, n \in \mathbb{N}$. Puisque e n'est pas un entier, on a $n \geq 2$. Par (7.14) et puisque e < 3, on a que

$$0 < n!e - \left(\frac{n!}{0!} + \frac{n!}{1!} + \frac{n!}{2!} + \dots + \frac{n!}{n!}\right) < \frac{n!e}{(n+1)!} = \frac{e}{n+1} \le \frac{e}{3} < 1.$$
 (7.15)

Le nombre $n!e = n!\frac{m}{n} = (n-1)!m$ est un entier et donc $N := n!e - \left(\frac{n!}{0!} + \frac{n!}{1!} + \frac{n!}{2!} + \cdots + \frac{n!}{n!}\right)$ est aussi un entier. Par contre, (7.15) montre que 0 < N < 1, ce qui est une contradiction. \square

7.5 La fonction gamma

La fonction gamma est une fonction importante qui apparaît à de nombreux endroits en mathématiques, tels qu'en probabilité, en statistique, et même en théorie des nombres et en combinatoire. Comme nous le verrons dans cette section, cette fonction est intimement reliée au concept de factorielles des nombres entiers. Sa définition est la suivante.

Définition 7.30. La *fonction gamma* est la fonction

$$\Gamma: (0, \infty) \longrightarrow \mathbb{R}, \quad \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$
 (7.16)

Remarquons que cette définition est incomplète pour l'instant, car l'intégrale est impropre et l'on doit donc montrer sa convergence (Section 6.9). En effet, la borne supérieure est l'infini, et la fonction $t \mapsto t^{x-1}e^{-t}$ n'est potentiellement pas définie à la borne inférieure t = 0

car $t^{x-1}e^{-t} = \frac{e^{-t}}{t^{1-x}}$ est une division par zéro lorsque 0 < x < 1 et t = 0. L'intégrale impropre (7.16) est donc composée de deux limites

$$\int_0^\infty t^{x-1} e^{-t} dt := \lim_{\alpha \to 0+} \int_\alpha^1 t^{x-1} e^{-t} dt + \lim_{\beta \to \infty} \int_1^\beta t^{x-1} e^{-t} dt, \tag{7.17}$$

et l'on doit montrer que chacune d'elles existe. Il n'est pas possible de calculer directement ces limites, alors on doit se restreindre à des théorèmes d'existence. Le prochain résultat, qui est l'analogue du théorème de convergence monotone (Théorème 2.25) pour les fonctions, sera suffisant.

Théorème 7.31 (Théorème de convergence monotone pour les fonctions). Soit $f:(a,b) \to \mathbb{R}$ une fonction monotone et bornée, où $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{\infty\}$. Alors $\lim_{x\to a} f(x)$ et $\lim_{x\to b} f(x)$ existent.

Démonstration. Supposons que f est croissante et que $b < \infty$. Montrons que $\lim_{x \to b} f(x) = L$, où $L = \sup\{f(x) : x \in (a,b)\}$. Les autres cas sont semblables et sont laissés en exercice (voir Exercice (7.22)). Soit $\varepsilon > 0$. On a donc que $L - \varepsilon < \sup\{f(x) : x \in (a,b)\}$. Puisque le supremum d'un ensemble est sa plus petite borne supérieure, cela implique que $L - \varepsilon$ n'est pas une borne supérieure de $\{f(x) : x \in (a,b)\}$. C'est-à-dire, il existe un nombre $x_0 \in (a,b)$ tel que $L - \varepsilon < f(x_0)$. Puisque f est croissante, on a que $L - \varepsilon < f(x_0) \le f(x) \le L < L + \varepsilon$ pour tout $x \in (x_0,b)$, c'est-à-dire, $|f(x) - L| < \varepsilon$ pour tout $x \in (x_0,b)$. Soit $\delta > 0$ tel que $\delta < b - x_0$. Alors, pour tout $x \in (a,b)$ tel que $|x-b| < \delta$, on a que $x_0 < b - \delta < x < b$ donc $|f(x) - L| < \varepsilon$.

On peut maintenant montrer que l'intégrale définissant la fonction gamma est finie.

Théorème 7.32. Pour tout $x \in (0, \infty)$, la fonction $f_x : (0, \infty) \to \mathbb{R}$, $f_x(t) = t^{x-1}e^{-t}$ est intégrable. Ainsi, la fonction gamma (7.16) est bien définie.

Démonstration. On doit montrer que les deux limites dans (7.17) existent. Commençons par la première. Si $x \geq 1$, alors $f_x(t) = t^{x-1}e^{-t}$ est continue en tout $t \in [0,1]$, donc l'intégrale $\int_0^1 t^{x-1}e^{-t}dt$ existe (Théorème 6.11) et la limite existe aussi (Proposition 6.44). On peut alors supposer que 0 < x < 1. Puisque $t^{x-1}e^{-t} \geq 0$ pour tout $t \in (0,1]$, la fonction $\alpha \mapsto \int_0^1 t^{x-1}e^{-t}dt$ est décroissante : en effet, si $\alpha_1 < \alpha_2$ alors

$$\int_{\alpha_1}^1 t^{x-1} e^{-t} dt - \int_{\alpha_2}^1 t^{x-1} e^{-t} dt = \int_{\alpha_1}^{\alpha_2} t^{x-1} e^{-t} dt \ge 0$$

par le Théorème 6.29 et la Proposition 6.30. De plus, pour $t \in [0,1]$ on a que $e^{-t} \leq 1$, donc

$$\int_{\alpha}^{1} t^{x-1} e^{-t} dt \le \int_{\alpha}^{1} t^{x-1} dt = \frac{t^{x}}{x} \bigg|_{\alpha}^{1} = \frac{1 - \alpha^{x}}{x} < \frac{1}{x}$$

par la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32). Il s'ensuit que la fonction $\alpha \mapsto \int_{\alpha}^{1} t^{x-1} e^{-t} dt$ est monotone et bornée sur (0,1). Par le théorème de convergence monotone pour les fonctions (Théorème 7.31), la limite $\lim_{\alpha \to 0+} \int_{\alpha}^{1} t^{x-1} e^{-t} dt$ existe.

Montrons maintenant que la deuxième limite dans (7.17) existe. Puisque $t^{x-1}e^{-t} \geq 0$ pour tout $t \in [1, \infty)$, la fonction $\beta \mapsto \int_1^\beta t^{x-1}e^{-t}dt$ est croissante. Il suffit alors de montrer qu'elle est aussi bornée. Montrons qu'il existe $t_0 > 1$ tel que $t^{x-1}e^{-t} \leq \frac{1}{t^2}$ pour tout $t \geq t_0$. Cela est équivalent à montrer que $e^t \geq t^{x+1}$ pour tout $t \geq t_0$. Soit $n \in \mathbb{N}$ tel que $n \geq x+1$. Alors, par (7.8), on a que

$$e^{t} \ge 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n+1}}{(n+1)!} \ge \frac{t^{n+1}}{(n+1)!}.$$

Il s'ensuit que si $t \ge t_0 := (n+1)!$, alors $t^{n+1} \ge t^n(n+1)!$ donc $e^t \ge \frac{t^{n+1}}{(n+1)!} \ge t^n \ge t^{x+1}$. On a alors que

$$\int_{1}^{\beta} t^{x-1}e^{-t}dt = \int_{1}^{t_{0}} t^{x-1}e^{-t}dt + \int_{t_{0}}^{\beta} t^{x-1}e^{-t}dt$$

$$\leq \int_{1}^{t_{0}} t^{x-1}e^{-t}dt + \int_{t_{0}}^{\beta} \frac{dt}{t^{2}}$$

$$= \int_{1}^{t_{0}} t^{x-1}e^{-t}dt + \frac{1}{t_{0}} - \frac{1}{\beta}$$

$$\leq \int_{1}^{t_{0}} t^{x-1}e^{-t}dt + \frac{1}{t_{0}}.$$

La fonction $\beta \mapsto \int_1^\beta t^{x-1} e^{-t} dt$ est donc croissante et bornée, et donc la limite $\lim_{\beta \to \infty} \int_1^\beta t^{x-1} e^{-t} dt$ existe.

La propriété fondamentale de la fonction gamma est la suivante.

Théorème 7.33. La fonction gamma satisfait

$$\Gamma(x+1) = x\Gamma(x) \tag{7.18}$$

pour tout $x \in (0, \infty)$ et

$$\Gamma(1)=1.$$

En particulier,

$$\Gamma(n+1) = n!$$

pour tout $n \in \mathbb{N}$.

Démonstration. Nous allons établir (7.18) à l'aide de l'intégration par partie (Théorème 6.37). Soit $u(t) = t^x$ et $v(t) = -e^{-t}$. Alors

$$\Gamma(x+1) = \int_0^\infty u(t)v'(t)dt$$
$$= \lim_{\alpha \to 0+} \int_\alpha^1 u(t)v'(t)dt + \lim_{\beta \to \infty} \int_1^\beta u(t)v'(t)dt.$$

Pour la première limite, on trouve que

$$\lim_{\alpha \to 0+} \int_{\alpha}^{1} u(t)v'(t)dt = \lim_{\alpha \to 0+} \left(u(1)v(1) - u(\alpha)v(\alpha) - \int_{\alpha}^{1} u'(t)v(t)dt \right)$$
$$= u(1)v(1) + \lim_{\alpha \to 0+} x \int_{\alpha}^{1} t^{x-1}e^{-t}dt$$

car $\lim_{\alpha\to 0+} u(\alpha)v(\alpha) = \lim_{\alpha\to 0+} -\alpha^x e^{-\alpha} = 0$. De même,

$$\lim_{\beta \to \infty} \int_1^\beta u(t)v'(t)dt = \lim_{\beta \to \infty} \left(u(\beta)v(\beta) - u(1)v(1) - \int_1^\beta u'(t)v(t)dt \right)$$
$$= -u(1)v(1) + \lim_{\beta \to \infty} x \int_1^\beta t^{x-1}e^{-t}dt$$

car $\lim_{\beta\to\infty} u(\beta)v(\beta) = \lim_{\beta\to\infty} -\beta^x e^{-\beta} = 0$ (Exercise (7.14)). Il s'ensuit que

$$\Gamma(x+1) = \lim_{\alpha \to 0+} x \int_{\alpha}^{1} t^{x-1} e^{-t} dt + \lim_{\beta \to \infty} x \int_{1}^{\beta} t^{x-1} e^{-t} dt = x \Gamma(x).$$

De plus,

$$\Gamma(1) = \int_0^\infty e^{-t} dt = \lim_{\beta \to \infty} \int_0^\beta e^{-t} dt = \lim_{\beta \to \infty} (1 - e^{-\beta}) = 1.$$

Il s'ensuit que $\Gamma(2) = 1 \cdot \Gamma(1)$, $\Gamma(3) = 2 \cdot \Gamma(2) = 2 \cdot 1$, $\Gamma(4) = 3 \cdot \Gamma(3) = 3 \cdot 2 \cdot 1$, et par récurrence, $\Gamma(n+1) = n \cdot (n-1) \cdot \cdots \cdot 3 \cdot 2 \cdot 1 = n!$.

7.6 Une limite intéressante

Au Club Math du 7 novembre 2024, l'étudiante Cloé Allard a donné une présentation formidable sur l'énigme suivante, appelée énigme des cent prisonniers.

La réponse, qui est surprenente, est qu'il existe bel et bien une stratégie largement plus favorable pour les prisionners, où la probabilité de succès est

$$1 - \sum_{k=51}^{100} \frac{1}{k} \approx 0.31183.$$

L'explication a été donnée lors du Club Math, et nous ne la répéterons pas ici. Il s'agit d'une remarquable application de la théorie des groupes.

Plus généralement, comme l'a expliqué Cloé, si la prison contient 2n prisonniers, la même stratégie donne une probabilité de succès de

$$1 - \sum_{k=n+1}^{2n} \frac{1}{k}.$$

Ce qui est d'autant plus remarquable est que, contrairement à la stratégie aléatoire, où la probabilité $\frac{1}{2^{2n}}$ tend vers 0 quand le nombre de prisonniers tend vers l'infini, ce n'est pas le cas pour cette stratégie. En effet, on a que

$$\lim_{n \to \infty} \left(1 - \sum_{k=n+1}^{2n} \frac{1}{k} \right) = 1 - \ln 2 \tag{7.19}$$

ce qui est approximativement 0.30685. De plus, la suite $(1 - \sum_{k=n+1}^{2n} \frac{1}{k})_{n=1}^{\infty}$ est décroissante, donc chaque terme est supérieur à $1 - \ln 2$. Cloé nous a donné une intuition pour ces derniers faits à l'aide des sommes de Riemann, et le but de cette section est de rendre cet argument rigoureux, ce qui est une merveilleuse application des concepts vus en classe jusqu'ici.

Théorème 7.34. La suite $(\sum_{k=n+1}^{2n} \frac{1}{k})_{n=1}^{\infty}$ est croissante et sa limite est

$$\lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{1}{k} = \ln 2. \tag{7.20}$$

Démonstration. Pour voir que la suite est croissante, il suffit d'observer que

$$\sum_{k=n+2}^{2n+2} \frac{1}{k} - \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}$$

$$= \frac{1/2}{n+1} + \frac{1}{2n+1} - \frac{1}{n+1}$$

$$= \frac{1}{2n+1} - \frac{1/2}{n+1}$$

$$= \frac{1}{(2n+1)(2n+2)}$$
> 0

Montrons (7.20). Puisque $\ln'(x) = \frac{1}{x}$, la deuxième partie du théorème fondamental du calcul différentiel et intégral (Théorème 6.32) implique que

$$\ln 2 = \int_1^2 \frac{dx}{x}.$$

Montrons que (7.20) est une limite de sommes de Riemann inférieures de cette intégrale. Soit

$$f:[a,b]\longrightarrow \mathbb{R}, \quad f(x)=\frac{1}{x},$$

où a=1 et b=2. Donc $\int_a^b f(x)dx=\ln 2$. Considérons la partition $P_n\coloneqq\{x_0,x_1,\ldots,x_n\}\in \operatorname{Part}_{[a,b]},$ où

$$x_i = 1 + \frac{i}{n},$$

pour tout $i = 0, 1, 2, \dots, n$. Alors,

$$\underline{S}(f, P_n) = \sum_{i=1}^n m_i(f, P_n)(x_i - x_{i-1})$$

$$= \sum_{i=1}^n \inf\{\frac{1}{x} : x \in [1 + \frac{i-1}{n}, 1 + \frac{i}{n}]\} \left((1 + \frac{i}{n}) - (1 + \frac{i-1}{n})\right)$$

$$= \sum_{i=1}^n \frac{1}{1 + \frac{i}{n}} \frac{1}{n}$$

$$= \sum_{i=1}^n \frac{1}{n+i}$$

$$= \sum_{k=n+1}^{2n} \frac{1}{k}.$$

De plus, puisque f est décroissante, on a que (voir Exercice (6.2)),

$$\overline{S}(f, P_n) - \underline{S}(f, P_n) = (f(a) - f(b)) \frac{b - a}{n} = \frac{1}{2n}.$$

Il s'ensuit que

$$\int_{a}^{b} f(x)dx \ge \underline{S}(f, P_n) = \overline{S}(f, P_n) - \frac{1}{2n} \ge \int_{a}^{b} f(x)dx - \frac{1}{2n},$$

c'est-à-dire,

$$\ln 2 \ge \sum_{k=n+1}^{2n} \frac{1}{k} \ge \ln 2 - \frac{1}{2n}.$$

Par le théorème du sandwich (Théorème 2.10), on obtient (7.20).

7.7 Exercices

(7.1) Montrer que la suite de fonctions $(f_n)_{n=1}^{\infty}$ définies par

$$f_n: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_n(x) = \frac{x}{n}$$

ne converge pas uniformément.

(7.2) Soit

$$f_n: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_n(x) = \frac{x}{1 + nx^2}.$$

Est-ce que la suite $(f_n)_{n=1}^{\infty}$ converge uniformément? (Indice : Trouver le maximum et le minimum.)

(7.3) Soit

$$f_n: [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}, \quad f_n(x) = n \sin(\frac{x}{n}).$$

Montrer que la suite $(f_n)_{n=1}^{\infty}$ converge uniformément vers la fonction

$$f: [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}, \quad f(x) = x.$$

(Indice: Utiliser l'Exemple 5.21.)

- (7.4) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction uniformément continue et soit $f_n(x) = f(x + \frac{1}{n})$. Montrer que la suite $(f_n)_{n=1}^{\infty}$ converge uniformément vers f.
- (7.5) Soient $(f_n)_{n=1}^{\infty}$ et $(g_n)_{n=1}^{\infty}$ des suites de fonctions sur un domaine D qui convergent uniformément vers des fonctions $f, g: D \to \mathbb{R}$. Montrer que $(f_n + g_n)_{n=1}^{\infty}$ converge uniformément vers f + g.
- (7.6) Soit $(f_n)_{n=1}^{\infty}$ une suite de fonctions bornées $f_n: D \to \mathbb{R}$ qui converge uniformément vers une fonction $f: D \to \mathbb{R}$. Montrer que la suite de nombres réels $(||f_n||)_{n=1}^{\infty}$ est bornée. (Indice: Utiliser la Proposition 7.7.)
- (7.7) Soient $(f_n)_{n=1}^{\infty}$ et $(g_n)_{n=1}^{\infty}$ des suites de fonctions bornées sur un domaine D qui convergent uniformément vers des fonctions $f, g : D \to \mathbb{R}$. Montrer que $(f_n g_n)_{n=1}^{\infty}$ converge uniformément vers fg. (Indice : $|f_n(x)g_n(x) f(x)g(x)| = |f_n(x)(g_n(x) g(x)) + (f_n(x) f(x))g(x)|$. Utiliser (7.6).)
- (7.8) Soit $(f_n)_{n=1}^{\infty}$ la suite définie par $f_n: [0, \pi/2] \to \mathbb{R}$, $f_n(x) = (\sin x)^n$. Montrer que la suite $(f'_n)_{n=1}^{\infty}$ ne converge pas uniformément. (Indice: Faire une preuve par contradiction en utilisant le Théorème 7.16).
- **(7.9)** Calculer

$$\lim_{n \to \infty} \int_1^3 \frac{2n + \sin x}{3n + (\cos x)^2} dx.$$

(7.10) Montrer que

$$\lim_{n \to \infty} \int_{a}^{\pi} \frac{\sin nx}{nx} dx = 0,$$

pour tout $0 < a < \pi$.

- (7.11) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction différentiable telle que f'(x) = af(x) pour tout $x \in \mathbb{R}$, où $a \neq 0$ est une constante. Montrer qu'il existe $b \in \mathbb{R}$ tel que $f(x) = be^{ax}$ pour tout $x \in \mathbb{R}$.
- (7.12) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction non nulle et différentiable telle que f(x+y) = f(x)f(y) pour tous $x, y \in \mathbb{R}$. Montrer que $f(x) = e^{ax}$ pour une constante $a \in \mathbb{R}$.
- (7.13) Montrer que $\ln(x^r) = r \ln x$ pour tout $r \in \mathbb{Q}$ et x > 0, où x^r est définit comme dans le premier paragraphe de la Section 7.3. C'est-à-dire, $x^{m/n} = (x^{1/n})^m$, où $x^{1/n}$ est l'unique n-ième racine de x, $a^m = a \cdot a \cdot \cdots \cdot a$ (m-fois) pour $m \in \mathbb{N}$ et $a^{-m} = (1/a) \cdot (1/a) \cdot \cdots \cdot (1/a)$ (m-fois) pour $m \in \mathbb{N}$.
- (7.14) Montrer que $\lim_{x\to\infty} x^b e^{-ax} = 0$ pour tout $b\in\mathbb{R}$ et tout a>0.
- (7.15) Soit $b \in \mathbb{R}$ et $f:(0,\infty) \to \mathbb{R}$, $f(x)=x^b$. Montrer que $f'(x)=bx^{b-1}$ pour tout $x \in (0,\infty)$.
- (7.16) Soient $x, y \in (0, \infty)$ et $b \in \mathbb{R}$. Montrer que
 - (a) $1^b = 1$
 - (b) $x^b > 0$
 - (c) $(xy)^b = x^b y^b$
 - (d) $(x/y)^b = x^b/y^b$.
- (7.17) Soient $b, c \in \mathbb{R}$ et $x \in (0, \infty)$. Montrer que
 - (a) $x^{b+c} = x^b x^c$
 - (b) $(x^b)^c = x^{bc}$
 - (c) $x^{-b} = 1/x^b$
 - (d) si b < c et x > 1 alors $x^b < x^c$
 - (e) si b < c et x < 1 alors $x^b > x^c$.
- (7.18) Montrer que $\lim_{x\to 0} (1+x)^{1/x} = e$.
- (7.19) Montrer que $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$ pour tout $x\in\mathbb{R}$.
- (7.20) Montrer que 2.7 < e < 2.8.
- (7.21) Soient $f, g : [a, \infty) \to \mathbb{R}$ deux fonctions continues. Supposons que g est intégrable (c'est-à-dire l'intégrale impropre $\int_a^\infty g(x)dx$ existe et est finie) et qu'il existe un nombre $x_0 \in [a, \infty)$ tel que $0 \le f(x) \le g(x)$ pour tout $x \ge x_0$. Montrer que f est intégrable.
- (7.22) Soit $f:(-\infty,a)\to\mathbb{R}$ une fonction croissante et bornée. Montrer que la limite $\lim_{x\to-\infty}f(x)$ existe.

Chapitre 8

Séries de fonctions

Ce chapitre présente une généralisation de la notion de séries vue au Chapitre 3, où les termes d'une série $\sum_{n=1}^{\infty} f_n$ sont maintenant des fonctions. En voyant ces séries comme des limites de sommes partielles, les résultats du Chapitre 7 sur les suites de fonctions impliquent des résultats analogues pour les séries de fonctions. Par exemple, nous verrons comment interchanger une série avec une intégrale. Le chapitre poursuivra sur deux classes importantes de séries de fonctions, soit les séries de puissances et les séries de Fourier.

8.1 Séries de fonctions

Définition 8.1. Une *série de fonctions* est une expression de la forme

$$\sum_{n=1}^{\infty} f_n,$$

où $(f_n)_{n=1}^{\infty}$ est une suite de fonctions $f_n: D \to \mathbb{R}$. La **suite des sommes partielles** est la suite de fonctions $(s_n)_{n=1}^{\infty}$ définie par

$$s_n: D \longrightarrow \mathbb{R}, \quad s_n(x) = \sum_{k=1}^n f_k(x).$$

On dit que la série de fonctions $\sum_{n=1}^{\infty} f_n$ converge ponctuellement vers une fonction $f: D \to \mathbb{R}$ si $(s_n)_{n=1}^{\infty}$ converge ponctuellement vers f au sens de la Définition 7.1. De même, on dit que la série $\sum_{n=1}^{\infty} f_n$ converge uniformément vers f si $(s_n)_{n=1}^{\infty}$ converge uniformément vers f au sens de la Définition 7.5.

La plupart des propriétés de la convergence uniforme des suites de fonctions se généralisent immédiatement à la convergence uniforme des séries de fonctions. Par exemple, la continuité d'une limite uniforme (Théorème 7.11), la compatibilité avec l'intégrale (Théorème 7.13), et la compatibilité avec la dérivée (Théorème 7.16), ont des analogues pour les séries de fonctions. On ne démontre que la première de ces trois propriétés, car les démonstrations sont de simples applications des théorèmes correspondants sur les suites de fonctions.

Théorème 8.2. Soit $\sum_{n=1}^{\infty} f_n$ une série de fonctions continues qui converge uniformément vers une fonction f. Alors, f est continue.

Démonstration. Puisqu'une somme de fonctions continues est continue (Théorème 4.25(a)), les sommes partielles $s_n = \sum_{k=1}^n f_k$ sont continues. Par la définition de la convergence uniforme de $\sum_{n=1}^{\infty} f_n$ vers f, la suite $(s_n)_{n=1}^{\infty}$ converge uniformément vers f. Puisque chaque s_n est continue et que $(s_n)_{n=1}^{\infty}$ converge uniformément vers f, la fonction f est aussi continue (Théorème 7.11).

Théorème 8.3. Soit $\sum_{n=1}^{\infty} f_n$ une série de fonctions continues $f_n : [a, b] \to \mathbb{R}$ qui converge uniformément. Alors,

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx.$$

Démonstration. La fonction $f = \sum_{n=1}^{\infty} f_n$ est continue par le Théorème 8.2, et donc intégrable (Théorème 6.11). Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles, $s_n = \sum_{k=1}^n f_k$. Chaque s_n est continue, et $(s_n)_{n=1}^{\infty}$ converge uniformément vers f, donc par le Théorème 7.13,

$$\lim_{n \to \infty} \int_a^b s_n(t)dt = \int_a^b f(t)dt.$$

Or,

$$\lim_{n\to\infty} \int_a^b s_n(t)dt = \lim_{n\to\infty} \int_a^b \sum_{k=1}^n f_k(t)dt = \lim_{n\to\infty} \sum_{k=1}^n \int_a^b f_k(t)dt = \sum_{n=1}^\infty \int_a^b f_k(t)dt$$

par 6.25.

Théorème 8.4. Soit $\sum_{n=1}^{\infty} f_n$ une série de fonctions sur un segment [a,b] qui converge ponctuellement vers une fonction $f:[a,b] \to \mathbb{R}$. Si chaque fonction f_n est différentiable, la dérivée f'_n est continue, et $\sum_{n=1}^{\infty} f'_n$ converge uniformément sur [a,b], alors f est différentiable et $f' = \sum_{n=1}^{\infty} f'_n$, c'est-à-dire

$$\frac{d}{dx}\sum_{n=1}^{\infty}f_n(x) = \sum_{n=1}^{\infty}\frac{d}{dx}f_n(x).$$

Démonstration. La suite des sommes partielles $(s_n)_{n=1}^{\infty}$ de $\sum_{n=1}^{\infty} f_n$ converge ponctuellement vers f. Puisque $(s'_n)_{n=1}^{\infty}$ est la suite des sommes partielles de la série $\sum_{n=1}^{\infty} f'_n(x)$ et que $(s'_n)_{n=1}^{\infty}$ converge uniformément sur [a,b], le résultat découle du Théorème 7.16.

Le prochain résultat est un outil indispensable pour démontrer la convergence uniforme de séries de fonctions.

Théorème 8.5 (Critère de Weierstrass). Soit $\sum_{n=1}^{\infty} f_n$ une série de fonctions $f_n : D \to \mathbb{R}$. S'il existe une série convergente $\sum_{n=1}^{\infty} a_n$ (au sens du Chapitre 3) et un entier $N \in \mathbb{N}$ tels que

$$|f_n(x)| \le a_n \quad pour \ tout \ x \in D \ et \ tout \ n \ge N,$$
 (8.1)

alors $\sum_{n=1}^{\infty} f_n$ converge uniformément.

Démonstration. Montrons que la suite $(s_n)_{n=1}^{\infty}$ des sommes partielles converge uniformément à l'aide du critère de Cauchy pour la convergence uniforme (Théorème 7.10). Par le critère de Cauchy pour les séries (Théorème 3.7), il existe $M \geq N$ tel que

$$\left| \sum_{k=n+1}^{m} a_k \right| < \varepsilon, \quad \text{pour tous } m > n \ge M.$$

Il s'ensuit que pour tous $m > n \ge M$ et tout $x \in D$, on a que

$$|s_m(x) - s_n(x)| = \left| \sum_{k=n+1}^m f_k(x) \right| \le \sum_{k=n+1}^m |f_k(x)| \le \sum_{k=n+1}^m a_k < \varepsilon.$$

Par le critère de Cauchy pour la convergence uniforme (Théorème 7.10), $(s_n)_{n=1}^{\infty}$ converge uniformément.

Exemple 8.6. Montrer que

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$$

est une fonction continue sur \mathbb{R} .

Solution. On a $\left|\frac{\sin(nx)}{n^2}\right| \leq \frac{1}{n^2}$ pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$. Puisque $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge (Exemple 3.12), on conclut par le critère de Weierstrass (Théorème 8.5) que $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ converge uniformément sur \mathbb{R} . Puisque chaque fonction $\frac{\sin(nx)}{n^2}$ est continue, la fonction f est continue par le Théorème 8.2.

Le prochain résultat sera utile pour l'exemple suivant.

Lemme 8.7. Soit $\sum_{n=1}^{\infty} (-1)^n a_n$ une série alternée, c'est-à-dire, $(a_n)_{n=1}^{\infty}$ est décroissante et $\lim_{n\to\infty} a_n = 0$. Alors, $|\sum_{n=1}^{\infty} (-1)^n a_n| \le a_1$.

Démonstration. Cela découle directement de la démonstration du Théorème 3.16 qui montre que $s_1 \leq \sum_{k=1}^{\infty} (-1)^k a_k \leq s_2$. Puisque $s_1 = -a_1$ et $s_2 = -a_1 + a_2 \leq 0 \leq a_1$, cela implique que $|\sum_{k=1}^{\infty} (-1)^k a_k| \leq a_1$.

Exemple 8.8. Montrer que

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \dots = \frac{\pi}{4}.$$

Solution. L'astuce est de montrer que $\arctan t = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{2n+1}$ pour tout $t \in [-1,1]$ et d'évaluer cette identité à t=1. Pour ce faire, notons que la fonction

$$\tan: (-\pi/2, \pi/2) \longrightarrow \mathbb{R}, \quad \tan(x) = \frac{\sin(x)}{\cos(x)}$$

satisfait

$$\tan'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} > 0$$

pour tout $x \in (-\pi/2, \pi/2)$. Puisque $\lim_{x \to -\pi/2+} \tan(x) = -\infty$ et $\lim_{x \to \pi/2-} \tan(x) = \infty$, l'image de la fonction tan sur $(-\pi/2, \pi/2)$ est \mathbb{R} . Par le Théorème 7.24, il existe une fonction inverse, notée

$$\arctan: \mathbb{R} \longrightarrow \mathbb{R}.$$

De plus,

$$\arctan'(x) = \frac{1}{\tan'(\arctan(x))} = \cos(\arctan(x))^2 = \frac{1}{1 + \tan(\arctan(x))^2} = \frac{1}{1 + x^2}$$

où l'on a utilisé l'identité $\tan(y)^2 + 1 = \frac{1}{\cos(y)^2}$ qui découle de $\sin(y)^2 + \cos(y)^2 = 1$. Puisque arctan 0 = 0, il s'ensuit que

$$\int_0^t \frac{dx}{1+x^2} = \arctan t \tag{8.2}$$

pour tout $t \in (-\pi/2, \pi/2)$. Par la série géométrique

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

avec $r = -x^2$, on trouve que

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

pour tout $x \in (-1,1)$. De plus, par le critère de Weierstrass, la série converge uniformément sur [-a,a] pour tout 0 < a < 1, car $|(-1)^n x^{2n}| \le a^{2n}$ pour $x \in [-a,a]$ et $\sum_{n=0}^{\infty} a^{2n} = \frac{1}{1-a^2}$ converge. Par le Théorème 8.3, pour tout $t \in (-1,1)$,

$$\arctan t = \int_0^t \frac{dx}{1+x^2} = \int_0^t \sum_{n=0}^{\infty} (-1)^n x^{2n} dx = \sum_{n=0}^{\infty} (-1)^n \int_0^t x^{2n} dx = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{2n+1}. \quad (8.3)$$

On aimerait évaluer cette expression à t=1, mais nous n'avons pas encore démontré la convergence en t=1. Pour ce faire, montrons que la série au côté droit de (8.3) converge uniformément sur [-1,1]. Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles de cette série de fonctions. Pour tout $t \in [-1,1]$, la série $f(t) := \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{2n+1}$ satisfait au critère des séries alternées et donc converge (Théorème 3.16). Ainsi, pour tout $t \in [-1,1]$ et tout $n \in \mathbb{N}$,

$$|s_n(t) - f(t)| = \left| \sum_{k=n+1}^{\infty} \frac{(-1)^k t^{2k+1}}{2k+1} \right| \le \frac{|t|^{2n+3}}{2n+3} \le \frac{1}{2n+3},$$

où nous avons utilisé le Lemme 8.7 pour la première inégalité. On a donc que $||s_n - f|| \le \frac{1}{2n+3}$ et puisque $\lim_{n\to\infty} \frac{1}{2n+3} = 0$, on a que $(s_n)_{n=1}^{\infty}$ converge uniformément vers f sur [-1,1]. En particulier, f est continue sur [-1,1] (Théorème 8.2). On a donc que les fonction arctan t et

 $f(t) = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{2n+1}$ sont continues sur [-1,1] et $\arctan t = f(t)$ pour tout $t \in (-1,1)$. Il s'ensuit que

$$\frac{\pi}{4} = \arctan 1 = \lim_{t \to 1} \arctan t = \lim_{t \to 1} f(t) = f(1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1},$$

ce qu'il fallait démontrer.

8.2 La fonction de Weierstrass

On sait qu'une fonction différentiable en un point x_0 est continue en ce point (Proposition 5.6). Il en découle qu'une fonction n'est pas différentiable en ses points de discontinuité. Par exemple, la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q} \end{cases}$$

n'est différentiable nulle part, car elle est discontinue partout. En revanche, il est possible qu'une fonction f soit continue en un point x_0 , mais pas différentiable en ce point. Par exemple, la fonction f(x) = |x| est continue en $x_0 = 0$, mais pas différentiable en ce point (Exemple 5.7). (La fonction f(x) = |x| est toutefois différentiable en tout autre point.) Il est ainsi facile de construire des exemples de fonctions continues qui ne sont pas différentiables en un nombre fini de points. Il est alors naturel de se demander s'il existe une fonction continue qui n'est différentiable nulle part. En 1872, le mathématicien Karl Weierstrass a étonné la communauté mathématique en introduisant une telle fonction. Voyons comment il s'y est pris.

Définition 8.9. La fonction de Weierstrass est la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par la série

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos(10^n \pi x)}{2^n}.$$

Cette série de fonctions converge uniformément sur \mathbb{R} par le critère de Weierstrass (Théorème 8.5), car $\left|\frac{\cos(10^n\pi x)}{2^n}\right| \leq \frac{1}{2^n}$ et la série géométrique $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converge (Exemple 3.2). Du plus, puisque chaque fonction $f_n(x) = \frac{\cos(10^n\pi x)}{2^n}$ est continue, on a que f est continue (Théorème 8.3). Son graphe ressemble à la figure suivante.

Notons que le Théorème 8.4 sur la différentiabilité des séries de fonctions ne s'applique pas à cette série. En effet,

$$f'_n(x) = -\frac{10^n \pi \sin(10^n \pi x)}{2^n} = -5^n \pi \sin(10^n \pi x),$$

et la série $\sum_{n=1}^{\infty} f'_n(x) = \sum_{n=1}^{\infty} -5^n \pi \sin(10^n \pi x)$ ne converge pas uniformément, car $-5^n \pi \sin(10^n \pi x)$ ne converge pas vers 0. Cela ne veut pas immédiatement dire que f n'est pas différentiable, car le Théorème 8.4 donne une condition suffisante, mais pas nécessaire à la différentiabilité de la série. Nous avons toutefois le résultat remarquable suivant.

Théorème 8.10. La fonction de Weierstrass est continue partout, mais différentiable nulle part.

Démonstration. Nous avons déjà montré que f est continue. Pour montrer que f n'est pas différentiable en tout point $x_0 \in \mathbb{R}$, rappelons que la dérivée $f'(x_0)$ est la limite

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Si cette limite existe, alors par le critère séquentiel de la limite (Théorème 4.10), pour toute suite $(a_n)_{n=1}^{\infty}$ telle que $\lim_{n\to\infty} a_n = x_0$, la limite

$$\lim_{n \to \infty} \frac{f(a_n) - f(x_0)}{a_n - x_0} \tag{8.4}$$

existe. Il suffit alors de trouver une suite $(a_n)_{n=1}^{\infty}$ qui converge vers x_0 telle que la limite (8.4) n'existe pas. Écrivons x_0 en notation décimale par $x=d_0.d_1d_2d_3...$, où $d_i\in\mathbb{Z}$ pour tout i et $0\leq d_i\leq 9$ pour $i\geq 1$. C'est-à-dire, $x=\sum_{i=0}^{\infty}\frac{d_i}{10^i}$. Soit

$$b_n = d_0.d_1d_2...d_n = \sum_{i=0}^n \frac{d_i}{10^i}$$

et soit

$$c_n = b_n + \frac{1}{10^n}.$$

Les suites $(b_n)_{n=1}^{\infty}$ et $(c_n)_{n=1}^{\infty}$ satisfont ainsi

$$b_n \le x_0 \le c_n$$
 et $\lim_{n \to \infty} b_n = x_0 = \lim_{n \to \infty} c_n$.

Tentons de simplifier l'expression

$$f(b_n) = \sum_{k=1}^{\infty} \frac{\cos(10^k \pi b_n)}{2^k}.$$

Si k > n, alors

$$10^k b_n = \sum_{i=0}^n 10^{k-i} d_i$$

est un entier pair, car $k - i \ge 1$ pour tout i = 0, 1, ..., n. Ainsi,

$$\cos(10^k \pi b_n) = 1, \quad \text{pour } k > n \tag{8.5}$$

Si k=n, alors $10^n b_n=d_n+\sum_{i=0}^{n-1}10^{n-i}d_i$, où la somme est un entier pair. Il s'ensuit que

$$\cos(10^k \pi b_n) = (-1)^{d_n}, \quad \text{pour } k = n.$$
 (8.6)

Par (8.5) et (8.6), on a

$$f(b_n) = \sum_{k=1}^{n-1} \frac{\cos(10^k \pi b_n)}{2^k} + \frac{(-1)^{d_n}}{2^n} + \sum_{k=n+1}^{\infty} \frac{1}{2^k}.$$
 (8.7)

De même, $\cos(10^k \pi c_n) = \cos(10^k \pi a_n + 10^{k-n} \pi) = 1$ pour tout k > n et $\cos(10^n \pi c_n) = \cos(10^n \pi a_n + \pi) = -(-1)^{d_n}$. Ainsi,

$$f(c_n) = \sum_{k=1}^{n-1} \frac{\cos(10^k \pi b_n)}{2^k} - \frac{(-1)^{d_n}}{2^n} + \sum_{k=n+1}^{\infty} \frac{1}{2^k}.$$
 (8.8)

Par (8.7) et (8.8), on trouve

$$f(b_n) - f(c_n) = \sum_{k=1}^{n-1} \frac{\cos(10^k \pi b_n) - \cos(10^k \pi b_n)}{2^k} + \frac{(-1)^{d_n}}{2^{n-1}}.$$

Par l'inégalité du triangle, on a

$$\frac{1}{2^{n-1}} = \left| \frac{(-1)^{d_n}}{2^{n-1}} \right| \le |f(b_n) - f(c_n)| + \sum_{k=1}^{n-1} \frac{|\cos(10^k \pi b_n) - \cos(10^k \pi b_n)|}{2^k}$$
(8.9)

Puisque cos est lipschitzienne de constante 1 (voir Section 4.6), on a que

$$\frac{|\cos(10^k \pi b_n) - \cos(10^k \pi c_n)|}{2^k} \le \frac{|10^k \pi b_n - 10^k \pi c_n|}{2^k} = 5^k \pi |b_n - c_n| = \frac{5^k \pi}{10^n}.$$

Ainsi, par le Théorème 2.33,

$$\sum_{k=1}^{n-1} \frac{|\cos(10^k \pi b_n) - \cos(10^k \pi b_n)|}{2^k} \le \sum_{k=1}^{n-1} \frac{5^k \pi}{10^n} = \frac{5\pi}{10^n} \frac{5^{n-1} - 1}{5 - 1} \le \frac{5^n \pi}{10^n} \frac{1}{4} = \frac{\pi}{2^{n+2}}.$$

En revenant à (8.9), on trouve alors que

$$|f(b_n) - f(c_n)| \ge \frac{1}{2^{n-1}} - \frac{\pi}{2^{n+2}} = \frac{1}{2^n} \left(2 - \frac{\pi}{4}\right) > \frac{1}{2^n},$$

car $\pi < 4$. Ainsi, par l'inégalité du triangle,

$$\frac{1}{2^n} < |f(b_n) - f(c_n)| \le |f(b_n) - f(x_0)| + |f(x_0) - f(c_n)|$$

pour tout n. Il s'ensuit que pour chaque entier $n \in \mathbb{N}$, au moins une des deux inégalités

$$|f(b_n) - f(x_0)| \ge \frac{1}{2^{n+1}}$$
 ou $|f(c_n) - f(x_0)| \ge \frac{1}{2^{n+1}}$

est valide. Posons $a_n = b_n$ ou c_n de sorte que $|f(a_n) - f(x_0)| \ge \frac{1}{2^{n+1}}$ pour tout n. On a que $|a_n - x_0| \le |b_n - c_n| \le \frac{1}{10^n}$, donc $\lim_{n \to \infty} a_n = x_0$. De plus,

$$\left| \frac{f(a_n) - f(x_0)}{a_n - x_0} \right| = \frac{|f(a_n) - f(x_0)|}{|a_n - x_0|} \ge \frac{1/2^{n+1}}{1/10^n} = \frac{5^n}{2}.$$

La suite $(\frac{f(a_n)-f(x_0)}{a_n-x_0})_{n=1}^{\infty}$ n'est donc pas bornée et, par conséquent, la limite (8.4) n'existe pas.

8.3 Séries de puissances

Une des plus importante famille de séries de fonctions est la suivante.

Définition 8.11. Une *série de puissances* est une série de fonctions (Définition 8.1) de la forme

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

où $a_n \in \mathbb{R}$ et $x_0 \in \mathbb{R}$.

Pour simplifier la notation, nous allons considérer dans cette section le cas où $x_0=0$, c'est-à-dire, les séries de puissances de la forme

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

On peut toujours se rammener à ce cas par une translation $x \mapsto x + x_0$ sans changer les propriétés de convergence, de continuité, etc.

Exemple 8.12. La série géométrique est la série de puissances

$$f(x) = \sum_{n=0}^{\infty} ax^n$$

où $a \in \mathbb{R}$. Elle converge ponctuellement vers $\frac{a}{1-x}$ pour tout $x \in (-1,1)$ (Exemple 3.2).

Exemple 8.13. La série exponentielle est la série de puissances

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Par la Section 7.3, elle converge ponctuellement vers la fonction exponentielle, c'est-à-dire,

$$e^x = \exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

pour tout $x \in \mathbb{R}$.

Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ une série de puissances. Notre première tâche est d'étudier l'ensemble des points où la série converge. Il est clair que f(x) converge en x = 0, car $f(0) = a_0 + a_1 \cdot 0 + a_2 \cdot 0^2 + \cdots = a_0$. Certaines séries, comme $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ convergent pour tout $x \in \mathbb{R}$ (Exemple 8.13), alors que d'autres, comme la suivante, convergent seulement pour x = 0.

Exemple 8.14. Montrons que la série $\sum_{n\to\infty} n!x^n$ converge si et seulement si x=0. Soit $x\neq 0$. Il suffit de montrer que la suite $(n!x^n)_{n=1}^\infty$ ne converge pas vers 0 (Théorème 3.4). Soit $N\in\mathbb{N}$ tel que N>1/|x|. Alors, pour tout $n\geq N$ on a que $\frac{n!}{N!}=(N+1)(N+2)\cdots n>N^{N-n}>\frac{1}{|x|^{n-N}}$, donc $|n!x^n|\geq |N!x^N|$. Puisque $|N!x^N|>0$, il s'ensuit que $(n!x^n)_{n=1}^\infty$ ne converge pas vers 0.

Lemme 8.15. Soit $\sum_{n=0}^{\infty} a_n x^n$ une série de puissances. Si la série converge en un point x_0 , alors elle converge absolument en tout point $x \in \mathbb{R}$ tel que $|x| < |x_0|$. Si la série diverge en un point y_0 , alors elle diverge en tout point x tel que $|x| > |y_0|$.

Démonstration. Soit x_0 tel que $\sum_{n=1}^{\infty} a_n x_0^n$ converge et soit $x \in \mathbb{R}$ tel que $|x| < |x_0|$. La suite $(a_n x_0^n)_{n=1}^{\infty}$ converge vers 0 (Théorème 3.4), et est donc bornée (Proposition 2.15). Soit M > 0 tel que $|a_n x_0^n| \le M$ pour tout $n \in \mathbb{N}$. On a

$$|a_n x^n| = |a_n x_0^n| \left| \frac{x^n}{x_0^n} \right| \le M \left| \frac{x^n}{x_0^n} \right| = Mr^n,$$

où $r := \left| \frac{x}{x_0} \right|$. Puisque |r| < 1, la série géométrique $\sum_{n=0}^{\infty} Mr^n$ converge, donc $\sum_{n=1}^{\infty} |a_n x^n|$ converge par le test de comparaison (Théorème 3.11).

Supposons maintenant que la série diverge au point y_0 . Soit $x \in \mathbb{R}$ tel que $|x| > |y_0|$. Si la série converge au point x, alors elle converge aussi au point y_0 par le précédent paragraphe, une contradiction. Donc la série diverge au point x.

Théorème 8.16. Soit $\sum_{n=0}^{\infty} a_n x^n$ une série de puissances. Il existe $R \ge 0$ ou $R = \infty$ tel que $\sum_{n=0}^{\infty} a_n x^n$ converge absolument si |x| < R et diverge si |x| > R.

Démonstration. Soit

$$E = \{ r \in \mathbb{R} : r \ge 0 \text{ et } \sum_{n=0}^{\infty} a_n r^n \text{ converge} \}.$$

On a $0 \in E$, donc E est non vide. Supposons d'abord que E n'est pas borné supérieurement. Montrons que $E = [0, \infty)$. Il est clair que $E \subseteq [0, \infty)$. Inversement, si $x \in [0, \infty)$, alors, x n'est pas une borne supérieure de E. Donc il existe $r \in E$ tel que r > x. Par le Lemme 8.15, la série converge en x, puisque qu'elle converge en r et x < r. Il s'ensuit que $x \in E$, et donc $E = [0, \infty)$. Dans ce cas, on peut prendre $R = \infty$.

Supposons maintenant que E est borné supérieurement. Dans ce cas, le supremum $R := \sup(E)$ existe. Il s'ensuit que si |x| < R, alors |x| n'est pas une borne supérieure de E, donc il existe $r \in E$ tel que |x| < r. Par le Lemme 8.15 la série converge au point x. Soit |x| > R. Si $\sum_{n=0}^{\infty} a_n x^n$ converge, alors la série $\sum_{n=0}^{\infty} a_n r^n$ converge pour tout R < r < |x|, c'est-à-dire, $r \in E$ pour tout R < r < |x|, contredisant que $R = \sup(E)$. Donc $\sum_{n=0}^{\infty} a_n x^n$ diverge. \square

Définition 8.17. Le nombre R dans le Théorème 8.16 est appelé le *rayon de convergence* de la série de puissances $\sum_{n=0}^{\infty} a_n x^n$.

Remarquons que le rayon de convergence R d'une série $\sum_{n=0}^{\infty} a_n x^n$ ne détermine pas la convergence aux bornes $\pm R$ de l'intervalle de convergence. Il se peut que la série diverge ou converge en ces points. Le prochain exemple illustre ce point.

Exemple 8.18. Considérons la série de puissances

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^n.$$

Utilisons le test du rapport (Théorème 3.13) pour déterminer le rayon de convergence. On a que

$$\lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{n+1} / (n+2)}{(-1)^n x^n / (n+1)} \right| = \lim_{n \to \infty} \frac{n+1}{n+2} |x| = \lim_{n \to \infty} \frac{1+1/n}{1+2/n} |x| = |x|.$$

Par le test du rapport, la série converge si |x| < 1 et diverge si |x| > 1. Le rayon de convergence est alors R = 1. Au point x = -1, la série devient $\sum_{n=0}^{\infty} \frac{1}{n+1} = \sum_{n=1}^{\infty} \frac{1}{n}$ ce qui est la série harmonique, et donc diverge (Exemple 3.8). Au point x = 1, la série devient $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$. Cette dernière satisfait au critère des séries alternées, et est donc convergente (Théorème 3.16).

On peut également trouver des séries de puissances qui convergent aux deux bornes (comme $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^2}$; Exercice (8.12)) ou à aucune des bornes (comme $\sum_{n=0}^{\infty} x^n$).

La technique utilisée pour trouver le rayon de convergence du dernier exemple se généralise comme suit.

Théorème 8.19. Soit $\sum_{n=0}^{\infty} a_n x^n$ une série de puissances. Si la limite

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R$$

existe ou est égale à ∞ , alors R est le rayon de convergence.

Démonstration. Supposons que $0 < R < \infty$. On a que

$$\lim_{n \to \infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} = \lim_{n \to \infty} \frac{|x|}{|a_n/a_{n+1}|} = \frac{|x|}{R}.$$

Par le test du rapport (Théorème 3.13), la série $\sum_{n=0}^{\infty} a_n x^n$ converge absolument au point x si $\frac{|x|}{R} < 1$ et diverge si $\frac{|x|}{R} > 1$. C'est-à-dire, la série converge absolument si |x| < R et diverge si |x| > R, donc, par définition, le rayon de convergence est R. Si $R = \infty$, alors $\lim_{n\to\infty} \frac{|a_{n+1}x^{n+1}|}{|a_nx^n|} = 0 < 1$ pour tout $x \in \mathbb{R}$ donc la série converge pour tout $x \in \mathbb{R}$. C'est-à-dire, le rayon de convergence est $R = \infty$. Le cas où R = 0 est laissé en exercice (Exercice (8.8)).

Exemple 8.20. Le rayon de convergence de la série géométrique $\sum_{n=0}^{\infty} ax^n$ (Exemple 8.12) est R=1 car dans ce cas $a_n=a$ pour tout n et donc la limite dans le Théorème 8.19 est égale à 1.

Exemple 8.21. Le rayon de convergence de la série exponentielle $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ est $R = \infty$ car

$$\lim_{n \to \infty} \frac{1/n!}{1/(n+1)!} = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} n + 1 = \infty.$$

Théorème 8.22. Soit $\sum_{n=0}^{\infty} a_n x^n$ une série de puissances. Si la limite

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$$

existe ou est égale à ∞ , alors le rayon de convergence de la série est R=1/L ou plus précisément,

$$R = \begin{cases} 0 & si \ L = \infty \\ \infty & si \ L = 0 \\ 1/L & si \ 0 < L < \infty. \end{cases}$$

Démonstration. Supposons que $L < \infty$. On a que

$$\lim_{n \to \infty} \sqrt[n]{|a_n x^n|} = \lim_{n \to \infty} |x| \sqrt[n]{|a_n|} = |x|L.$$

Par le test de la racine (Exercice (3.8)), la série converge absolument si |x|L < 1 et diverge si |x|L > 1. Il s'ensuit que le rayon de convergence est R = 1/L si L > 0 et $R = \infty$ si L = 0. Le cas où $L = \infty$ est laissé en exercice (Exercice (8.9)).

Exemple 8.23. Trouvons le rayon de convergence de la série de puissances $\sum_{n=0}^{\infty} \pi^{2n+1} x^n$. On a

$$\lim_{n \to \infty} \sqrt[n]{|\pi^{2n+1}|} = \lim_{n \to \infty} \pi^{2+1/n} = \pi^2,$$

donc le rayon est $R = 1/\pi^2$.

Exemple 8.24. Trouver le rayon de convergence de la série $\sum_{n=0}^{\infty} \frac{x^{2n}}{3^n}$.

Solution. On a que $\lim_{n\to\infty} \sqrt[n]{1/3^n} = 1/3$, mais le rayon de convergence n'est pas 3, car $1/3^n$ est le coefficient de x^{2n} et non de x^n . En revanche, cela montre que la série $\sum_{n=0}^{\infty} \frac{y^n}{3^n}$ converge absolument pour |y| < 3 et diverge pour |y| > 3. Cela implique que $\sum_{n=0}^{\infty} \frac{x^{2n}}{3^n}$ converge si $x^2 < 3$ et diverge si $x^2 > 3$. Il s'ensuit que le rayon de convergence est $R = \sqrt{3}$.

Théorème 8.25. Soit $\sum_{n=0}^{\infty} a_n x^n$ une série de puissances de rayon de convergence $R \neq 0$. Soit $a, b \in \mathbb{R}$ tels que -R < a < b < R. Alors, $\sum_{n=0}^{\infty} a_n x^n$ converge uniformément sur [a, b].

Démonstration. Soit $M \in \mathbb{R}$ tel que $-R < -M \le a < b \le M < R$ (par exemple, $M = \max(|a|,|b|)$). Pour tout $x \in [a,b]$, on a $|a_nx^n| \le |a_n|M^n$. Puisque -R < M < R, on a que $\sum_{n=0}^{\infty} a_n M^n$ converge par la définition du rayon de convergence R. Par le critère de Weierstrass (Théorème 8.5), $\sum_{n=0}^{\infty} a_n x^n$ converge uniformément sur [a,b].

Bien que la convergence soit uniforme sur tout segment $[a,b] \subseteq (-R,R)$, elle ne l'est pas nécessairement sur tout l'intervalle de convergence (-R,R). L'exemple suivant illustre ce point.

Exemple 8.26. Le rayon de convergence de la série géométrique $\sum_{n=0}^{\infty} x^n$ est R=1 et converge ponctuellement vers $\frac{1}{1-x}$ sur (-1,1) (Exemple 8.20). Montrons que la convergence n'est pas uniforme sur (-1,1). Soit $(s_n)_{n=1}^{\infty}$ la suite des sommes partielles de la série. Pour tout $n \in \mathbb{N}$, la fonction $s_n : (-1,1) \to \mathbb{R}$, $s_n(x) = 1 + x + x^2 + \cdots + x^n$ est bornée, car $|s_n(x)| \le 1 + |x| + \cdots + |x|^n \le n + 1$. En revanche, la fonction $\frac{1}{1-x}$ n'est pas bornée, car $\lim_{x\to 1+} \frac{1}{1-x} = \infty$. Puisque toute limite uniforme de fonctions bornées est bornée (Proposition 7.7), la convergence n'est pas uniforme.

En revanche, il est parfois possible d'utiliser la convergence uniforme sur les segments $[a,b] \subseteq (-R,R)$ pour déduire certaines propriétés sur tout l'intervalle (-R,R). Le prochain résultat utilise cette approche.

Théorème 8.27. Soit $f(x) = \sum_{n=0}^{\infty} a_n x^n$ une série de puissances de rayon de convergence $R \neq 0$. La fonction f est différentiable sur (-R, R) et

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1},$$

pour tout $x \in (-R, R)$.

Démonstration. Soit $b \in (0, R)$. Montrons que les hypothèses du Théorème 8.4 sont satisfaites sur le segment [-b, b]. On doit d'abord montrer que la série $\sum_{n=1}^{\infty} na_n x^{n-1}$ converge uniformément sur [-b, b]. Soit $y \in \mathbb{R}$ tel que b < y < R. Alors $\sum_{n=0}^{\infty} a_n y^n$ converge, donc la

suite $(a_n y^n)_{n=0}^{\infty}$ converge vers zero. En particulier, cette suite est bornée (Proposition 2.15). Soit M > 0 tel que $|a_n y^n| \leq M$ pour tout $n \geq 0$. Pour tout $x \in [-b, b]$, on a

$$|na_nx^{n-1}| = n|a_n||x|^{n-1} \le n|a_n|b^{n-1} = n|a_ny^n|\frac{b^{n-1}}{y^n} \le nM\frac{b^{n-1}}{y^n} = \frac{M}{y}nr^{n-1},$$

où $r := \frac{b}{y} < 1$. La série $\sum_{n=1}^{\infty} \frac{M}{y} n r^{n-1}$ converge par le test du rapport (Théorème 3.13), car

$$\lim_{n \to \infty} \frac{\frac{M}{y}(n+1)r^n}{\frac{M}{y}nr^{n-1}} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)r = r < 1.$$

Par le critère de Weierstrass (Théorème 8.5), $\sum_{n=1}^{\infty} na_n x^{n-1}$ converge uniformément sur [-b,b]. Le Théorème 8.4 implique alors que f est différentiable et que

$$f'(x) = \sum_{n=0}^{\infty} \frac{d}{dx} a_n x^n = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

pour tout $x \in [-b, b]$. Puisque $b \in (0, R)$ est arbitraire, cette equation est valide pour tout $x \in (-R, R)$.

Le Théorème 8.27 montre que la dérivée d'une série de puissances est aussi une série de puissances. On peut donc réappliquer le théorème sur cette dérivée, et ainsi de suite, pour obtenir le prochain résultat.

Corollaire 8.28. Toute série de puissances $f(x) = \sum_{n=0}^{\infty} a_n x^n$ de rayon de convergence $R \neq 0$ est infiniment différentiable sur (-R, R) et

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k}.$$

En particulier,

$$a_n = \frac{f^{(n)}(0)}{n!}$$

pour tout $n \in \mathbb{N}$.

8.4 Séries de Taylor

Dans la Section 5.5, nous avons introduit le Théorème de Taylor (Théorème 5.30), qui dit qu'une fonction f est bien approximée près d'un point x_0 par son polynôme de Taylor

$$P_n(x) := f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Puisque chaque polynôme P_n approxime de mieux en mieux la fonction f plus n est grand, il est naturel de prendre la limite :

Définition 8.29. Soit $f: D \to \mathbb{R}$ une fonction infiniment différentiable et soit $x_0 \in D$. La série de Taylor de f centrée en x_0 est la série de puissances

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = \lim_{n \to \infty} P_n(x).$$

Le prochain résultat donne un critère pour obtenir la convergence de la série de Taylor de f vers f.

Théorème 8.30. Soit $f:[a,b] \to \mathbb{R}$ une fonction infiniment différentiable et soit $x_0 \in [a,b]$. S'il existe un nombre M > 0 tel que $|f^{(n)}(x)| \le M$ pour tout $n \in \mathbb{N}$ et tout $x \in [a,b]$, alors la série de Taylor centrée en x_0 converge uniformément vers f sur [a,b].

Démonstration. La suite des sommes partielles de la série de Taylor est la suite $(P_n)_{n=1}^{\infty}$ des polynômes de Taylor, donc on doit montrer que $(P_n)_{n=1}^{\infty}$ converge uniformémement vers f. Soit $x \in [a,b]$. Par le Théorème de Taylor (Théorème 5.30), pour tout $n \in \mathbb{N}$, il existe $c_n \in (a,b)$ tel que

$$f(x) = P_n(x) + \frac{f^{(n+1)}(c_n)}{(n+1)!}(x-x_0)^{n+1}.$$

Il s'ensuit que

$$|P_n(x) - f(x)| = \left| \frac{f^{(n+1)}(c_n)}{(n+1)!} (x - x_0)^{n+1} \right| \le \frac{M|x - x_0|^{n+1}}{(n+1)!} \le \frac{M|b - a|^{n+1}}{(n+1)!},$$

pour tout $x \in [a, b]$ et tout $n \in \mathbb{N}$. C'est-à-dire,

$$||P_n - f|| \le \frac{M|b - a|^{n+1}}{(n+1)!}$$

pour tout $n \in \mathbb{N}$. Puisque $\lim_{n\to\infty} \frac{M|b-a|^{n+1}}{(n+1)!} = 0$, la suite $(P_n)_{n=1}^{\infty}$ converge uniformément vers f.

Exemple 8.31. Montrer que la série de Taylor de $\sin(x)$ centrée en 0 est donnée par

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

et qu'elle converge vers $\sin(x)$ pour tout $x \in \mathbb{R}$.

Solution. Pour calculer la série de Taylor, il suffit de montrer que

$$\sin^{(2n)}(0) = 0$$
 et $\sin^{(2n+1)}(0) = (-1)^n$ (8.10)

pour tout $n \in \mathbb{N}$. On a

$$\sin^{(2n)}(x) = \cos^{(2n-1)}(x) = -\sin^{(2n-2)}(x) = \dots = (-1)^n \sin(x)$$

$$\sin^{(2n+1)}(x) = \cos^{(2n)}(x) = -\sin^{(2n-1)}(x) = \dots = (-1)^n \sin^{(1)}(x) = (-1)^n \cos(x).$$

et on obtient donc (8.10) en évaluant à x = 0. La série converge vers $\sin(x)$ pour tout $x \in \mathbb{R}$ par le Théorème 8.30, car le dernier calcul montre que $|\sin^{(n)}(x)| \leq 1$ pour tout $x \in \mathbb{R}$. \square

Il n'est pas toujours vrai que la série de Taylor d'une fonction f converge vers f. Un exemple classique est le suivant.

Exemple 8.32. Soit

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \begin{cases} e^{-1/x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
 (8.11)

Nous allons montrer que

$$f^{(n)}(0) = 0$$
, pour tout n . (8.12)

Il s'ensuira que la série de Taylor de f est 0 et donc ne converge pas vers f. Montrons (8.12) par récurrence sur n. Le cas où n=0 est donné par la définition de f. Supposons que $f^{(n)}(0)=0$ pour un certain n. Alors,

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \lim_{x \to 0} \frac{f^{(n)}(x)}{x}.$$

Il suffit ainsi de montrer que

$$\lim_{x \to 0} \frac{f^{(n)}(x)}{x} = 0 \tag{8.13}$$

pour tout n. Pour montrer (8.13), montrons d'abord que pour tout $n \in \mathbb{N}$, il existe un polynôme $p_n(x)$ de degré 3n tel que

$$f^{(n)}(x) = e^{-1/x^2} p_n(1/x)$$
(8.14)

pour tout $x \neq 0$. On procède par récurrence. Le cas où n = 0 est trivial. Supposons que le résultat est vrai pour un certain n. Alors,

$$f^{(n+1)}(x) = \frac{d}{dx} f^{(n)}(x)$$

$$= \frac{d}{dx} \left(e^{-1/x^2} p_n(1/x) \right)$$

$$= e^{-1/x^2} \frac{2}{x^3} p_n(1/x) - e^{-1/x^2} p'_n(1/x) \frac{1}{x^2}$$

$$= e^{-1/x^2} \left(\frac{2p_n(1/x)}{x^3} - \frac{p'_n(1/x)}{x^2} \right)$$

$$= e^{-1/x^2} p_{n+1}(1/x),$$

où $p_{n+1}(y)=2y^3p_n(y)-y^2p_n'(y)$ est un polynôme de degré 3n+3. On a donc démontré (8.14). Il existe ainsi des constantes $c_n>0$ telles que

$$\left| \frac{f^{(n)}(x)}{x} \right| \le \frac{c_n e^{-1/x^2}}{|x|^{3n+1}}$$

pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$ tel que 0 < |x| < 1. Il suffit donc de montrer que $\lim_{x \to 0} \frac{e^{-1/x^2}}{|x|^{3n+1}} = 0$. Cela découle de l'Exercice (7.14). En effet, ce dernier implique que $\lim_{y \to \infty} y^{3n+1}e^{-y^2} = 0$ car $y^{3n+1}e^{-y^2} \le y^{3n+1}e^{-y}$ pour tout $y \ge 0$, et donc $\lim_{x \to 0} (1/|x|)^{3n+1}e^{-1/x^2} = 0$. On a donc (8.13).

Remarque 8.33. Il existe également une fonction telle que sa série de Taylor centrée en 0 diverge pour tout $x \neq 0$. C'est-à-dire que le rayon de convergence d'une série de Taylor peut être zéro. Plus généralement, un résultat connu sous le nom de théorème de Borel dit que toute série de puissances $\sum_{n=0}^{\infty} a_n x^n$ est la série de Taylor d'une fonction. Autrement dit, pour toute suite $(a_n)_{n=0}^{\infty}$ de nombres réels, il existe une fonction infiniment différentiable $f: \mathbb{R} \to \mathbb{R}$ telle que $\frac{f^{(n)}(0)}{n!} = a_n$ pour tout n. En particulier, en posant $a_n = n!$, on obtient une fonction dont sa série de Taylor diverge en tout point $x \neq 0$ (Exemple 8.14).

8.5 Séries de Fourier

Rappelons qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ est **périodique** s'il existe un nombre T > 0 tel que f(x+T) = f(x) pour tout $x \in \mathbb{R}$. Dans ce cas, le nombre T est appelé **période** de la fonction f. Une fonction périodique est donc entièrement déterminée par sa restriction sur un segment [a,b] tel que b-a=T. En effet, toute fonction $f:[a,b] \to \mathbb{R}$ telle que f(a) = f(b) détermine une unique fonction périodique $\tilde{f}: \mathbb{R} \to \mathbb{R}$ de période T telle que $\tilde{f}|_{[a,b]} = f$. La fonction \tilde{f} est obtenue par translation de f, c'est-à-dire,

$$\tilde{f}(x) = f(x - nT)$$

si $x \in [a + nT, b + nT]$ où $n \in \mathbb{Z}$. La fonction \tilde{f} est appelée **extension périodique** de f.

Exemple 8.34. Soit $f: [-\pi, \pi] \to \mathbb{R}$, f(x) = |x|. Puisque $f(-\pi) = \pi = f(\pi)$, la fonction f détermine une extension périodique $\tilde{f}: \mathbb{R} \to \mathbb{R}$ de période 2π . Cette fonction est appelée onde triangulaire:

La classe des fonctions périodiques occupe une place essentielle en mathématiques et en physique, notamment dans des domaines tels que le traitement du signal (ondes sonores, etc.), la théorie des équations différentielles (en particulier l'équation de la chaleur et l'équation des ondes), et bien d'autres.

Bien qu'il soit possible d'étudier les fonctions périodiques à l'aide des séries de Taylor, ces dernières ne sont pas bien adaptées à ce contexte. En effet, déterminer si une série de puissances est périodique est un problème difficile, car aucun des termes de la série n'est lui-même périodique.

Pour surmonter cette limitation, les mathématiciens, et notamment Joseph Fourier, ont développé un autre type de série de fonctions plus adaptées aux fonctions périodiques. L'idée fondamentale est de remplacer les puissances x^n par des fonctions qui sont naturellement périodiques de période T, c'est-à-dire,

$$\cos(\frac{2\pi nx}{T})$$
 et $\sin(\frac{2\pi nx}{T})$ (8.15)

pour $n \in \mathbb{N}$. Une *série de Fourier* est alors une série de fonctions de la forme

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{2\pi nx}{T}) + b_n \sin(\frac{2\pi nx}{T}) \right),$$

où $a_n, b_n \in \mathbb{R}$. Dans cette section, nous associerons à toute fonction périodique et intégrable f une série de Fourier et étudirons la convergence de cette série vers la fonction f.

Un autre avantage de cette approche est que la série de Fourier est définie pour toute fonction intégrable, contrairement à la série de Taylor qui requiert que la fonction soit infiniment différentiable. De plus, la série de Fourier est définie sur l'ensemble des réels, alors que la série de Taylor est généralement définie uniquement sur un intervalle de convergence (-R,R).

Le résultat suivant sera utile dans notre analyse de la convergence des séries de Fourier. Il dit que l'intégrale d'une fonction périodique de période T peut être réalisée sur n'importe quel segment de longueur T sans en changer le résultat.

Proposition 8.35. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction périodique de période T. Si f est intégrable sur [0, T], alors f est intégrable sur tout segment [a, b] de longueur T et

$$\int_{a}^{b} f(x)dx = \int_{0}^{T} f(x)dx.$$

Démonstration. Puisque [a,b] est de longueur T, il existe $n \in \mathbb{Z}$ tel que $nT \in [a,b]$. Il s'ensuit que $a \leq nT \leq b = a + T$ et donc que

$$0 \le a - (n-1)T \le T.$$

Par l'intégration par substitution (Théorème 6.34) avec $\varphi : [nT, a+T] \to \mathbb{R}, \ \varphi(t) = t - nT$ et $\varphi : [a, nT] \to \mathbb{R}, \ \varphi(t) = t - (n-1)T$, respectivement, on trouve que

$$\int_{0}^{T} f(x)dx = \int_{0}^{a-(n-1)T} f(x)dx + \int_{a-(n-1)T}^{T} f(x)dx$$

$$= \int_{nT}^{b} f(t-nT)dt + \int_{a}^{nT} f(t-(n-1)T)dt$$

$$= \int_{nT}^{a+T} f(t)dt + \int_{a}^{nT} f(t)dt$$

$$= \int_{a}^{b} f(t)dt.$$

Pour simplifier la notation, nous allons maintenant nous restreindre au cas où la période est $T = 2\pi$. Les fonctions périodiques élémentaires (8.15) sont donc simplement $\cos(nx)$ et $\sin(nx)$.

Définition 8.36. Un *polynôme trigonométrique* est une fonction de la forme

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(nx) + b_n \sin(nx)),$$
 (8.16)

où $a_0, \ldots, a_N, b_1, \ldots, b_N \in \mathbb{R}$ sont des constantes.

Il est clair que tout polynôme trigonométrique est périodique de période 2π . Pour motiver la définition de la série de Fourier d'une fonction, montrons d'abord comment retrouver les coefficients a_n, b_n d'un polynôme trigonométrique à l'aide d'intégrales. Cela nécessitera les deux lemmes suivants.

Lemme 8.37. Pour tout $n \in \mathbb{Z}$, on a

$$\int_0^{2\pi} \cos(nx)dx = \begin{cases} 2\pi & \text{si } n = 0\\ 0 & \text{si } n \neq 0. \end{cases}$$
$$\int_0^{2\pi} \sin(nx)dx = 0.$$

Démonstration. Cela découle directement du théorème fondamental du calcul différentiel et intégral (Théorème 6.32).

Lemme 8.38. Pour tous $m, n \in \mathbb{N}$, on a

$$\frac{1}{\pi} \int_0^{2\pi} \cos(mx) \cos(nx) dx = \begin{cases} 1 & \text{si } m = n \\ 0 & \text{si } m \neq n \end{cases}$$
$$\frac{1}{\pi} \int_0^{2\pi} \cos(mx) \sin(nx) dx = 0$$
$$\frac{1}{\pi} \int_0^{2\pi} \sin(mx) \sin(nx) dx = \begin{cases} 1 & \text{si } m = n \\ 0 & \text{si } m \neq n \end{cases}$$

Démonstration. Par (4.7), on a

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \tag{8.17}$$

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta), \tag{8.18}$$

donc

$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha+\beta) + \cos(\alpha-\beta)).$$

Par le Lemme 8.37, on a donc que

$$\frac{1}{\pi} \int_0^{2\pi} \cos(mx) \cos(nx) dx = \frac{1}{2\pi} \int_0^{2\pi} (\cos((m+n)x) + \cos((m-n)x)) dx
= \frac{1}{2\pi} \int_0^{2\pi} \cos((m-n)x) dx
= \begin{cases} 1 & \text{si } m = n \\ 0 & \text{si } m \neq n. \end{cases}$$

De même, par (4.6), on a

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$
$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

donc

$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha + \beta) + \sin(\alpha - \beta)). \tag{8.19}$$

Il s'ensuit par le Lemma 8.37 que

$$\frac{1}{\pi} \int_0^{2\pi} \sin(mx) \sin(nx) dx = \frac{1}{2\pi} \int_0^{2\pi} (\sin((m+n)x) + \sin((m-n)x)) dx = 0.$$

Finalement, (8.17) et (8.18) montrent que

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

donc

$$\frac{1}{\pi} \int_0^{2\pi} \sin(mx) \sin(nx) dx = \frac{1}{2\pi} \int_0^{2\pi} (\cos((m-n)x) - \cos((m+n)x)) dx$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \cos((m-n)x) dx$$

$$= \begin{cases} 1 & \text{si } m = n \\ 0 & \text{si } m \neq n. \end{cases} \square$$

Il s'ensuit que si f est un polynôme trigonométrique donné par (8.16), alors

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$
 (8.20)

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx,$$
 (8.21)

pour tout n.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période 2π et intégrable sur $[0, 2\pi]$ (et donc sur tout segment de longueur 2π par la Proposition 8.35). Dans ce cas, les intégrales (8.20) et (8.21) sont bien définies (Théorème 6.27) ce qui amène à la définition suivante.

Définition 8.39. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période 2π et intégrable sur $[0, 2\pi]$. Alors, les nombres a_0, a_1, a_2, \ldots et b_1, b_2, b_3, \ldots donnés par (8.20) et (8.21) sont appelés les **coefficients de Fourier** de f. La série de fonctions

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

est appelée la *série de Fourier* associée à f.

Par le Lemme 8.38, on obtient immédiatement :

Proposition 8.40. La série de Fourier d'un polynôme trigonométrique f est f. C'est-à-dire, si f est donné par (8.16), alors $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$ et $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx$ pour tout n.

Exemple 8.41. Soit $f: \mathbb{R} \to \mathbb{R}$ l'onde triangulaire donnée dans l'Exemple 8.34, c'est-à-dire, l'unique fonction périodique de période 2π telle que f(x) = |x| pour tout $x \in [-\pi, \pi]$. Calculons la série de Fourier de f. Par la Proposition 8.35, on peut calculer les intégrales sur le segment $[-\pi, \pi]$ plutôt que $[0, 2\pi]$. On a donc

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) dx = -\frac{1}{\pi} \int_{-\pi}^{0} x \cos(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} x \cos(nx) dx.$$

Si n=0, on trouve que

$$a_0 = -\frac{1}{\pi} \int_{-\pi}^0 x dx + \frac{1}{\pi} \int_0^{\pi} x dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

Pour $n \neq 0$, on utilise l'intégration par parties (Théorème 6.37) avec u(x) = x et $v(x) = \frac{1}{n}\sin(nx)$. Pour tous $a, b \in \mathbb{R}$ tels que a < b on a

$$\int_{a}^{b} x \cos(nx) dx = \int_{a}^{b} u(x)v'(x) dx$$

$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'(x)v(x) dx$$

$$= \frac{b}{n}\sin(nb) - \frac{a}{n}\sin(na) - \frac{1}{n}\int_{a}^{b}\sin(nx) dx$$

$$= \frac{1}{n}(b\sin(nb) - a\sin(na)) + \frac{1}{n^{2}}(\cos(nb) - \cos(na)).$$

Ainsi, pour $n \geq 1$, on a que

$$a_n = -\frac{1}{\pi} \frac{1}{n^2} (1 - \cos(n\pi)) + \frac{1}{\pi} \frac{1}{n^2} (\cos(n\pi) - 1) = \frac{2((-1)^n - 1)}{n^2 \pi} = \begin{cases} 0 & \text{si } n \text{ est pair } \\ -\frac{4}{n^2 \pi} & \text{si } n \text{ est impair.} \end{cases}$$

De même,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \sin(nx) dx = -\frac{1}{\pi} \int_{-\pi}^{0} x \sin(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} x \sin(nx) dx.$$

Par la substitution t=-x dans la première intégrale, on trouve $\frac{1}{\pi} \int_{\pi}^{0} x \sin(nx) dx = -\frac{1}{\pi} \int_{0}^{\pi} x \sin(nx) dx$, donc $b_{n}=0$ pour tout n. Il s'ensuit que la série de Fourier de l'onde triangulaire est donnée par

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\cos((2n+1)x)}{(2n+1)^2}.$$
 (8.22)

La prochaine figure illustre les sommes partielles pour n = 1, 2, 3, c'est-à-dire, les fonction

$$\frac{\pi}{2} - \frac{4}{\pi}\cos(x), \frac{\pi}{2} - \frac{4}{\pi}(\cos(x) + \frac{\cos(3x)}{9}), \text{ et } \frac{\pi}{2} - \frac{4}{\pi}(\cos(x) + \frac{\cos(3x)}{9} + \frac{\cos(5x)}{25}).$$

Nous verrons plus loin que la série (8.22) converge ponctuellement vers f (Théorème 8.47). De plus, on remarque ici que la série converge uniformément par le critère de Weierstrass car $\left|\frac{\cos((2n+1)x)}{(2n+1)^2}\right| \leq \frac{1}{(2n+1)^2}$ et $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$ converge.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période 2π et intégrable sur $[0, 2\pi]$ et soit

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

sa série de Fourier. Nous allons montrer plus bas (Théorème 8.47) que si f est lipschitzienne (Définition 4.43), alors sa série de Fourier converge ponctuellement vers f. Pour y arriver, nous aurons besoin de quelques résultats préliminaires.

Soit $(s_n)_{n=1}^{\infty}$ la suite des somme partielles de la série de Fourier de f, c'est-à-dire,

$$s_n: [0, 2\pi] \longrightarrow \mathbb{R}, \quad s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx)),$$

pour tout $n \in \mathbb{N}$.

Proposition 8.42. On a

$$\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2) \le \int_0^{2\pi} f(x)^2 dx.$$
 (8.23)

pour tout $n \in \mathbb{N}$. En particulier,

$$\lim_{n \to \infty} a_n = 0 \quad et \quad \lim_{n \to \infty} b_n = 0.$$

Démonstration. Par définition, on a

$$\frac{1}{\pi} \int_0^{2\pi} s_n(x) f(x) dx = \frac{a_0}{2\pi} \int_0^{2\pi} f(x) dx + \sum_{k=1}^n \frac{a_k}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx + \frac{b_k}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx
= \frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2).$$

Puisque s_n est un polynôme trigonométrique, le même calcul en remplacant f par s_n et en utilisant la Proposition 8.40 montre que

$$\frac{1}{\pi} \int_0^{2\pi} s_n(x)^2 dx = \frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2).$$

Il s'ensuit que

$$\frac{1}{\pi} \int_0^{2\pi} (f(x) - s_n(x))^2 dx = \frac{1}{\pi} \int_0^{2\pi} (f(x)^2 - 2f(x)s_n(x) + s_n(x)^2) dx$$

$$= \frac{1}{\pi} \int_0^{2\pi} f(x)^2 dx - \left(\frac{a_0^2}{2} + \sum_{k=1}^n (a_k^2 + b_k^2)\right).$$

Puisque l'intégrale du côté gauche est plus grande ou égale à zéro (Proposition 6.30), on obtient l'inégalité (8.23). En particulier, par la Proposition 3.10, la série $\sum_{n=1}^{\infty}(a_n^2+b_n^2)$ est convergente, car ses termes sont ≥ 0 et (8.23) montre que sa suite des sommes partielles est bornée. Il s'ensuit que $\lim_{n\to\infty}(a_n^2+b_n^2)=0$ (Théorème 3.4). Puisque $0\leq a_n^2\leq a_n^2+b_n^2$ et $0\leq b_n^2\leq a_n^2+b_n^2$ pour tout n, le théorème du sandwich (Théorème 2.10) implique que $\lim_{n\to\infty}a_n^2=0$ et $\lim_{n\to\infty}b_n^2=0$ et donc que $\lim_{n\to\infty}a_n=0$ et $\lim_{n\to\infty}b_n=0$.

Corollaire 8.43. Soit $h : \mathbb{R} \to \mathbb{R}$ une fonction périodique de période 2π et intégrable sur $[0, 2\pi]$. Alors,

$$\lim_{n \to \infty} \int_0^{2\pi} h(x) \cos(nx) dx = 0 \quad et \quad \lim_{n \to \infty} \int_0^{2\pi} h(x) \sin(nx) dx = 0.$$

La prochaine fonction joue un rôle important en analyse de Fourier en raison de la Proposition 8.46.

Définition 8.44. Le noyau de Dirichlet est la fonction

$$D_n: \mathbb{R} \longrightarrow \mathbb{R}, \quad D_n(x) = 1 + 2\cos(x) + 2\cos(2x) + \dots + 2\cos(nx).$$

Lemme 8.45. *On a*

$$D_n(x) = \frac{\sin((n + \frac{1}{2})x)}{\sin(\frac{x}{2})}.$$

Démonstration. Par (8.19), on a que

$$2\sin(\frac{x}{2})\cos(kx) = \sin(\frac{(2k+1)x}{2}) - \sin(\frac{(2k-1)x}{2})$$

pour tout k. Il s'ensuit que

$$\sin(\frac{x}{2})D_n(x) = \sin(\frac{x}{2}) + 2\sin(\frac{x}{2})\cos(x) + 2\sin(\frac{x}{2})\cos(2x) + \dots + 2\sin(\frac{x}{2})\cos(nx)$$

$$= \sin(\frac{x}{2}) + \left(\sin(\frac{3x}{2}) - \sin(\frac{x}{2})\right) + \left(\sin(\frac{5x}{2}) - \sin(\frac{3x}{2})\right) + \dots + \left(\sin(\frac{(2n+1)x}{2}) - \sin(\frac{(2n-1)x}{2})\right)$$

$$= \sin(\frac{(2n+1)x}{2}).$$

Proposition 8.46. On a

$$s_n(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-t) D_n(t) dt.$$

pour tout n et tout x.

 $D\acute{e}monstration$. En applicant la définition des coefficients de Fourier a_n et b_n , on obtient

$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(t)dt + \sum_{k=1}^n \left(\frac{1}{\pi} \int_0^{2\pi} f(t) \cos(kt)dt\right) \cos(kx) + \sum_{k=1}^n \left(\frac{1}{\pi} \int_0^{2\pi} f(t) \sin(kt)dt\right) \sin(kx)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(t)dt + \sum_{k=1}^n \frac{1}{\pi} \int_0^{2\pi} f(t) (\cos(kt) \cos(kx) + \sin(kt) \sin(kx)) dt$$

Par (8.18), on a que

$$\cos(kt)\cos(kx) + \sin(kt)\sin(kx) = \cos(k(x-t))$$

et donc

$$s_n(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt + \sum_{k=1}^n \frac{1}{\pi} \int_0^{2\pi} f(t)\cos(k(x-t))dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(t)D_n(x-t)dt.$$

À l'aide de l'intégration par substitution (Théorème 6.34) avec $\varphi : [0, 2\pi] \to \mathbb{R}, \varphi(t) = x - t$, cette dernière intégrale se réécrit

$$s_n(x) = -\frac{1}{2\pi} \int_0^{2\pi} f(x - \varphi(t)) D_n(\varphi(t)) \varphi'(t) dt$$
$$= \frac{1}{2\pi} \int_{x-2\pi}^x f(x - u) D_n(u) du$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(x - u) D_n(u) du,$$

où la dernière égalité découle de la Proposition 8.35.

Théorème 8.47. Si $f : \mathbb{R} \to \mathbb{R}$ est périodique de période 2π et lipschitzienne (Définition 4.43), alors sa série de Fourier converge ponctuellement vers f.

Démonstration. Remarquons que, par le Lemme 8.37,

$$\frac{1}{2\pi} \int_0^{2\pi} D_n(t)dt = \frac{1}{2\pi} \int_0^{2\pi} dt + \frac{1}{\pi} \int_0^{2\pi} \cos(t)dt + \frac{1}{\pi} \int_0^{2\pi} \cos(2t)dt + \dots + \frac{1}{\pi} \int_0^{2\pi} \cos(nt)dt \\
= \frac{1}{2\pi} 2\pi + 0 + 0 + \dots + 0 \\
= 1.$$

Il s'ensuit que pour tout $x \in \mathbb{R}$,

$$s_n(x) - f(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x - t) D_n(t) dt - \frac{1}{2\pi} \int_0^{2\pi} f(x) D_n(t) dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} (f(x - t) - f(x)) D_n(t) dt$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \frac{f(x - t) - f(x)}{\sin(t/2)} \sin((n + \frac{1}{2})t) dt.$$
(8.24)

Il sera alors utile d'analyser la fonction

$$g: [0, 2\pi] \longrightarrow \mathbb{R}, \quad g(t) = \begin{cases} \frac{f(x-t) - f(x)}{\sin(t/2)} & \text{si } 0 < t < 2\pi\\ 0 & \text{si } t = 0 \text{ ou } t = 2\pi. \end{cases}$$

Montrons que g est bornée. Puisque f est lipschitzienne, il existe un nombre c > 0 tel que

$$|f(x) - f(y)| \le c|x - y|$$

pour tous $x, y \in \mathbb{R}$. Il s'ensuit que pour tout $t \in (0, \pi]$,

$$|g(t)| = \left| \frac{f(x-t) - f(x)}{\sin(t/2)} \right| \le \frac{c|(x-t) - x|}{|\sin(t/2)|} = \frac{c|t|}{|\sin(t/2)|} = \frac{2c}{\left|\frac{\sin(t/2)}{t/2}\right|}.$$

Puisque $\lim_{t\to 0} \frac{\sin(t/2)}{t/2} = 1$ (Exemple 4.48), la fonction g est bornée sur $[0,\pi]$. De même, pour tout $t \in (0,\pi]$ on a que

$$|g(2\pi - t)| = \left| \frac{f(x - (2\pi - t)) - f(x)}{\sin(\frac{2\pi - t}{2})} \right| = \left| \frac{f(x + t) - f(x)}{\sin(t/2)} \right| \le \frac{c|t|}{|\sin(t/2)|} = \frac{2c}{\left| \frac{\sin(t/2)}{t/2} \right|},$$

donc g est aussi bornée sur $[\pi, 2\pi]$. La fonction g est donc bornée sur $[0, 2\pi]$ et continue sur $(0, 2\pi)$. Par la Proposition 6.13, g est intégrable. Par (8.24) et (4.6), on trouve alors que

$$s_n(x) - f(x) = \frac{1}{2\pi} \int_0^{2\pi} g(t) \sin((n + \frac{1}{2})t) dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} g(t) \cos(\frac{t}{2}) \sin(nt) dt + \frac{1}{2\pi} \int_0^{2\pi} g(t) \sin(\frac{t}{2}) \cos(nt) dt.$$

Par le Corollaire 8.43 avec $h(t) = g(t)\cos(\frac{t}{2})$ et $h(t) = g(t)\sin(\frac{t}{2})$, on conclut que

$$\lim_{n \to \infty} (s_n(x) - f(x)) = 0,$$

c'est-à-dire, $(s_n)_{n=1}^{\infty}$ converge ponctuellement vers f.

Exemple 8.48. Montrons que la série de Fourier de l'onde triangulaire $f : \mathbb{R} \to \mathbb{R}$ (Exemple 8.41) converge vers f. La fonction valeur absolue est lipschitzienne de constante c = 1 car

$$||x| - |y|| \le |x - y| \iff -|x - y| \le |x| - |y| \le |x - y|$$

$$\iff -|x - y| \le |x| - |y| \quad \text{et} \quad |x| - |y| \le |x - y|$$

$$\iff |y| \le |x| + |x - y| \quad \text{et} \quad |x| \le |x - y| + |y|.$$

Les deux dernières inégalités découlent de l'inégalité du triangle (Théorème 2.3) car

$$|y| = |x + (y - x)| \le |x| + |y - x| = |x| + |x - y|$$

et

$$|x| = |(x - y) + y| \le |x - y| + |y|.$$

Il s'ensuit que l'onde triangulaire f est lipschitizienne. Par le Théorème 8.47, la série de Fourier trouvée dans l'Exemple 8.41 converge vers f, c'est-à-dire

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{\cos((2n+1)x)}{(2n+1)^2} = |x|$$

pour tout $x \in [-\pi, \pi]$.

Soit [a, b] un segment de longueur 2π et $f : [a, b] \to \mathbb{R}$ une fonction intégrable telle que f(a) = f(b). Par la Proposition 8.35, les coefficients de Fourier de l'extension périodique de f sont donnés par

$$a_n = \frac{1}{\pi} \int_a^b f(x) \cos(nx) dx$$
 et $b_n = \frac{1}{\pi} \int_a^b f(x) \sin(nx) dx$. (8.25)

On définit ainsi la série de Fourier de f comme la série de Fourier de son extension périodique, c'est-à-dire, la série de fonctions

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

où a_n et b_n sont donnés par (8.25).

Théorème 8.49. Soit [a,b] un segment de longueur 2π et $f:[a,b] \to \mathbb{R}$ une fonction telle que f(a) = f(b) et f' et f'' existent et sont continues. Alors, la série de Fourier de f converge uniformément vers l'extension périodique de f.

Démonstration. Puisque f' est continue sur un segment [a,b], la fonction f' est bornée (Théorème 4.34). Il s'ensuit que f est lipschitzienne (Théorème 5.17). On a donc par le Théorème 8.47 que la série de Fourier $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ de f converge ponctuellement vers f. Il reste à montrer que la convergence est uniforme, ce que nous obtiendrons à l'aide du critère de Weierstrass (Théorème 8.5). Par l'intégration par parties (Théorème 6.37) avec u(x) = f(x) et $v(x) = \frac{\sin(nx)}{n}$, on a que

$$a_n = \frac{1}{\pi} \int_a^b f(x) \cos(nx) dx$$

$$= \frac{1}{\pi} \left(\frac{f(b) \sin(nb)}{n} - \frac{f(a) \sin(na)}{n} - \frac{1}{n} \int_a^b f'(x) \sin(nx) dx \right)$$

$$= -\frac{1}{n\pi} \int_a^b f'(x) \sin(nx) dx,$$

où l'on a utilisé pour la dernière égalité que f(b) = f(a) et $\sin(nb) = \sin(na + 2\pi n) = \sin(na)$. Une autre application de l'intégration par parties avec u(x) = f'(x) et $v(x) = \frac{\cos(nx)}{n}$ donne que

$$a_{n} = \frac{1}{n\pi} \left(\frac{f'(b)\cos(nb)}{n} - \frac{f'(a)\cos(na)}{n} - \frac{1}{n} \int_{a}^{b} f''(x)\cos(nx)dx \right)$$

$$= \frac{1}{n^{2}\pi} \left((f'(b) - f'(a))\cos(na) - \int_{a}^{b} f''(x)\cos(nx)dx \right). \tag{8.26}$$

Puisque f'' est continue sur un segment [a, b], elle est bornée (Théorème 5.17). Il existe donc une constante M > 0 telle que $|f''(x)| \le M$ pour tout $x \in [a, b]$. Par la Proposition 6.30,

$$\left| \int_{a}^{b} f''(x) \cos(nx) dx \right| \le 2\pi M.$$

Il s'ensuit que

$$|a_n| \le \frac{1}{n^2 \pi} (|f'(b) - f'(a)| + 2\pi M) = \frac{c}{n^2},$$

où $c := \frac{|f'(b) - f'(a)| + 2\pi M}{\pi}$. Une analyse similaire montre aussi que

$$b_n \le \frac{c}{n^2}$$

pour tout n. Il s'ensuit que

$$|a_n \cos(nx) + b_n \sin(nx)| \le \frac{2c}{n^2}.$$

Puisque $\sum_{n=1}^{\infty} \frac{2c}{n^2}$ converge (Exemple 3.12), le critère de Weierstrass (Théorème 8.5) implique que la série de Fourier converge uniformément. Par le Théorème 8.47, la limite est l'extension périodique de f.

Exemple 8.50. Soit $\tilde{f}: \mathbb{R} \to \mathbb{R}$ l'extension périodique de la fonction

$$f: [-\pi, \pi] \longrightarrow \mathbb{R}, \quad f(x) = x^2$$

telle qu'illustrée ici :

Puisque f'(x) = 2x et f''(x) = 2 existent et sont continues, la série de Fourier de f converge uniformément vers \tilde{f} par le Théorème 8.49. Calculons cette série de Fourier. On a

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{\pi^3 - (-\pi)^3}{3\pi} = \frac{2\pi^2}{3}.$$

Pour $n \ge 1$, par (8.26), on trouve que

$$a_n = \frac{1}{n^2 \pi} \left((2\pi - (-2\pi)) \cos(n\pi) - \int_{-\pi}^{\pi} 2 \cos(nx) dx \right) = \frac{4(-1)^n}{n^2}.$$

Une analyse similaire montre que $b_n=0$ pour tout n. Ainsi, la série de Fourier de f est

$$\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos(nx)}{n^2}$$

et converge uniformément vers l'extension périodique $\tilde{f}.$ En particulier,

$$\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos(nx)}{n^2} = x^2$$
 (8.27)

pour tout $x \in [-\pi, \pi]$. La figure suivante illustre les quatre premières sommes partielles.

Une application intéressante des résultats ci-haut est obtenue en évaluant (8.27) à $x=\pi$. On trouve ainsi que

$$\frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2.$$

Après simplifications, on obtient la célèbre formule trouvée par Euler en 1734

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{6}.$$
 (8.28)

Le problème de trouver une valeur explicite pour la série au côté gauche de (8.28) a été posé pour la première fois en 1650 par Pietro Mengoli et a donc été résolu seulement 84 ans plus tard par Euler. Il s'agissait d'un problème important à l'époque.

8.6 Exercices

- (8.1) Montrer que la série de fonctions $\sum_{n=1}^{\infty} \frac{1}{x^2+n^2}$ converge uniformément sur \mathbb{R} .
- (8.2) Montrer que la série de fonctions $\sum_{n=0}^{\infty} (1-x)x^n$ converge ponctuellement sur [0,1], mais pas uniformément.
- (8.3) Montrer que

$$\frac{d}{dx}\sum_{n=1}^{\infty} \frac{\sin nx}{n^3} = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$

pour tout $x \in \mathbb{R}$.

- (8.4) Trouver tous les nombres a > 0 tels que la série $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converge uniformément sur [-a, a].
- (8.5) Montrer que

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$$

à l'aide d'un raisonnement semblable à celui de l'Exemple 8.8. (Indice : $\ln t = \int_1^t \frac{dx}{x}$ pour tout t>0.)

(8.6) Montrer que

$$\lim_{n \to \infty} n \sum_{k=1}^{n} \frac{1}{n^2 + 3k^2} = \frac{\pi}{3\sqrt{3}}.$$

(Indice: utiliser (8.2) et un argument semblable à celui de la section 7.6).

- (8.7) Trouver le rayon de convergence de la série $\sum_{n=0}^{\infty} 5^n n^2 x^{3n}$.
- (8.8) Terminer la démonstration du Théorème 8.19 dans le cas où R=0. C'est-à-dire, montrer que si $\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=0$, alors la série $\sum_{n=0}^{\infty}a_nx^n$ converge seulement si x=0.
- (8.9) Terminer la démonstration du Théorème 8.22 dans le cas où $L=\infty$.
- (8.10) Trouver le rayon de convergence des séries suivantes.
 - (a) $\sum_{n=0}^{\infty} (2x)^n$
 - (b) $\sum_{n=0}^{\infty} (-1)^n (n+3) x^n$
- (8.11) Soit la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x) = \int_0^x \frac{\sin t}{t} dt.$$

Trouver la série de Taylor de f centrée en 0 et son rayon de convergence.

- (8.12) Soit la série de puissances $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^2}$.
 - (a) Trouver son rayon de convergence R.
 - (b) Montrer que la série converge aux deux bornes $\pm R$ de son intervalle de convergence.
 - (c) Montrer que la série converge uniformément sur [-R, R].

- (8.13) Montrer que la série $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$ ne converge pas uniformément sur son intervalle de convergence.
- (8.14) Soit $\sum_{n=0}^{\infty} a_n x^n$ une série de puissances où $a_n \neq 0$ pour tout n. Le Théorème 8.19 dit que si la limite $\lim_{n\to\infty} \left|\frac{a_n}{a_{n+1}}\right| = R$ existe ou est égale à l'infini, alors R est le rayon de convergence. Donner un exemple où la limite n'existe pas et n'est pas égale à l'infini. Déterminer le rayon de convergence de cet exemple.
- (8.15) Trouver une fonction infiniment différentiable $f : \mathbb{R} \to \mathbb{R}$ telle que sa série de Taylor centrée en 0 converge vers f pour $x \leq 0$, mais pas pour x > 0.
- (8.16) Soit $\sum_{n=0}^{\infty} a_n x^n$ une série de puissances. Supposons qu'une infinité de termes a_n sont des entiers positifs. Montrer que le rayon de convergence satisfait $R \leq 1$.
- (8.17) Soit $f(x) = \sum_{n=0}^{\infty} F_{n+1} x^n$ où $(F_n)_{n=1}^{\infty}$ est la suite de Fibonacci (Exemple 2.2(5)).
 - (a) Trouver le rayon de convergence R de f(x).
 - (b) Montrer que $f(x) = \frac{1}{1-x-x^2}$ pour tout $x \in (-R, R)$.
- (8.18) Soit $f: \mathbb{R} \to \mathbb{R}$ l'extension périodique de la fonction

$$[-\pi, \pi] \longrightarrow \mathbb{R}, \quad x \longmapsto x \sin x.$$

Trouver la série de Fourier de f et montrer qu'elle converge uniformément vers f. Évaluer en $x=\pi/2$ pour déduire que

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} - \frac{1}{7 \cdot 9} + \frac{1}{9 \cdot 11} - \cdots$$

(8.19) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique de période 2π telle que f' et f'' existent et sont continues. Montrer que pour tout $\varepsilon > 0$ il existe un polynôme trigonométrique g tel que $|f(x) - g(x)| < \varepsilon$ pour tout $x \in \mathbb{R}$.

Bibliographie

- [1] Jacques Labelle et Armel Mercier. *Introduction à l'analyse réelle*. Montréal (Québec) : Modulo, 1993.
- [2] Kenneth R. Davidson et Allan P. Donsig. *Real analysis and applications : Theory in practice.* Undergraduate Texts in Mathematics. Springer, New York, 2010.
- [3] Walter Rudin. *Principles of mathematical analysis*. Second edition. McGraw-Hill Book Co., New York, 1964.
- [4] Robert G. Bartle et Donald R. Sherbert. *Introduction to real analysis*. Second edition. John Wiley & Sons, Inc., New York, 1992.