Задание 13. Т-сводимость и Т-скачок.

- 1. Докажите, что множество $A\subseteq\mathbb{N}$ рекурсивно перечислимо тогда и только тогда, когда A есть область определения подходящей одноместной рекурсивной частичной функции.
- 2. Пусть $W_n = dom(\varphi_n)$, тогда $\{W_n\}$ нумерация всех РПМ. Докажите, что:
 - W есть главная вычислимая нумерация РПМ;
 - множество $C = \{n \mid n \in W_n\}$ РП, но не рекурсивно;
 - любое РПМ m-сводится к C;
- 3. Пусть \leq_T отношение Тьюринговой сводимости на $P(\mathbb{N})$. Докажите, что:
- \leq_T есть предпорядок, являющийся собственным расширением предпорядка \leq_m ;
- фактор-множество $P(\mathbb{N})/\equiv_T$ по индуцированному отношению эквивалентности континуально;
- любые два элемента $P(\mathbb{N})$ имеют супремум по обоим отношениям \leq_T и \leq_m .
- 4. Определим Тьюрингов скачок множества $A \subseteq \mathbb{N}$ соотношением $A' = \{n \mid n \in W_n^A\}$. Докажите, что A' РП но не рекурсивно относительно $A, A' \not\leq_T A$, и $A \leq_T B \implies A' \leq_T B'$.
- 5. Докажите, что существуют Т-эквивалентные множества, не сравнимые по отношению *m*-сводимости.