Scribed By: Eunjung KIM Introduction, MSO logic, regular language Week 1: 25, 27 February 2025

Contents

1	MSO	and FO logic	-
	1.1	Logic and relational structure	
	1.2	Graphs and strings as relational structures	2
2	2 Regular language and DFA		4

1 MSO and FO logic

We mostly following the notations from the textbook by Libkin [1].

1.1 Logic and relational structure

Monadic Second Order Logic, MSO-expressible property. A *vocabulary* τ is a set of relation names, or *predicates*, and *constant symbols*. Each predicate $R \in \tau$ is associated with a number $\operatorname{ar}(R) \in \mathbb{N}$, called the *arity* of R.

Let τ be a vocabulary. We assume that there is an infinite supply of symbols, all distinct from symbols in τ , for *individual variables* and for *unary relation variables* (a.k.a. *set variables*). We typically use a lowercase to denote an individual variable and an uppercase letter for a set variable.

A formula in monadic second-order logic, simply put mso-formula, over a vocabulary τ , is a string that can be built recursively using the logical connectives $\neg, \wedge, \vee, \rightarrow$, the quantifiers \forall, \exists as well as the predicates in τ . A string in the form x=y, X(x) for some set variable X or $R(x_1,\ldots,x_{\operatorname{ar}(R)})$ for some predicate $R\in \tau$ is an atomic formula. For two formulae ψ and ϕ , the strings $\neg\psi, \psi\wedge\phi, \psi\vee\phi$ and $\psi\to\phi$ are formulae. For a formula ψ , and for an individual variable x and a set variable $X, \forall x\psi, \exists x\psi, \forall X\psi$ and $\exists X\psi$ are all formulae. A variable in a formula ψ is free if it does not appear next to a quantifier. We often write the free variables of a formula ψ inside a parenthesis, e.g., $\psi(x,y,Z)$, to highlight the free variables of ψ . A formula without a free variable is called a sentence and a formula without a quantifier is said to be quantifier-free. A formula is in prenex normal form if it is in the form $Q_1x_1\cdots Q_\ell x_\ell \psi$ such that Q_i is either the universal quantifier \forall or the existential quantifier \exists, x_i is an individual or a set variable, and ψ is quantifier-free.

Relational structure. Let τ be a vocabulary. For a set U, called a *universe of discourse* or simply a *universe*, an *interpretation of a predicate* $R \in \tau$ *in the universe* U *of discourse* is a subset of $U^{ar}(R)$. In general, an interpretation of a symbol (it may be a predicate, a constant in the vocabulary, a variable be it a set or individual variable...) is to give a meaning to the symbol in the universe of discourse by associating with the symbol a suitable tuple of elements from the universe.

 $^{^{1}}$ The free variables of ψ is a subset of those in the parenthesis.

A relational structure over τ , or τ -structure, is a tuple $\mathbb{A}=(A,(R^{\mathbb{A}})_{R\in\tau})$ consisting of

- a universe A,
- an interpretation $R^{\mathbb{A}} \subseteq A^{\operatorname{ar}(R)}$ for each predicate $R \in \tau,$ and
- an interpretation $c^{\mathbb{A}} \in A$ for each constant symbol $c \in \tau$.

Evaluating a formula. Fix a vocabulary τ and let $\mathbb A$ be a τ -structure on the universe U. An interpretation of an mso-formula $\psi(x_1,\dots,x_k,X_1,\dots,X_\ell)$ in $\mathbb A$ is an assignment s of variables in ψ (free variables and quantified variables) to an element of A, in the case of an individual variable, or to a subset of A in the case of a set variable. For a k-tuple $\vec{v}=(v_1,\dots,v_k)\in A^k$ of elements and an ℓ -tuple $\vec{V}=(V_1,\dots,V_\ell)\in (2^A)^\ell$ of sets, we write

$$\mathbb{A} \models \psi(v_1, \dots, v_k, V_1, \dots, V_\ell) \text{ or } \mathbb{A} \models \psi(\vec{v}, \vec{V})$$

if $\psi(\vec{x}, \vec{X})$ evaluates to TRUE (" $\psi(\vec{x}, \vec{X})$ holds on \mathbb{A} ") when the variables x_i 's are interpreted as v_i 's and X_j 's interpreted as V_j 's. The value $\psi(\vec{v}, \vec{V})$ of a formula $\psi(x_1, \dots, x_k, X_1, \dots, X_\ell)$ under an interpretation s of its free variables as (\vec{v}, \vec{V}) is defined as follows.

- Atomic formula X(x): note that x is an individual variable and X is a set variable here. Evaluates to TRUE if and only if $s(x) \in s(X)$.
- Atomic formula x = y: evaluates to TRUE if and only if s(x) = s(y)
- Atomic formula $R(x_1, \ldots, x_{\mathsf{ar}(R)})$ for some $R \in \tau$: evaluates to TRUE if and only if $(s(x_1), \ldots, s(x_{\mathsf{ar}(R)})) \in R^{\mathbb{A}}$.
- $\psi(\vec{x}, \vec{X}) = \neg \varphi(\vec{x}, \vec{X})$: flips the value of $\varphi(\vec{v}, \vec{V})$
- $\psi(\vec{x}, \vec{X}) = \psi_1(\vec{x}, \vec{X}) \wedge \psi_2(\vec{x}, \vec{X})$: the usual boolean operation on the values of $\psi_1(\vec{x}, \vec{X}) \wedge \psi_2(\vec{x}, \vec{X})$
- $\psi(\vec{x}, \vec{X}) = \exists x \varphi(x, \vec{x}, \vec{X})$: $\mathbb{A} \models \psi(\vec{v}, \vec{V})$ if and only if there exists $v \in A$ (or $X \subseteq A$) such that $\mathbb{A} \models \varphi(v, \vec{v}, \vec{V})$.
- $\psi(\vec{x}, \vec{X}) = \forall x \varphi(x, \vec{x}, \vec{X})$: $\mathbb{A} \models \psi(\vec{v}, \vec{V})$ if and only if for every $v \in A$ (or $X \subseteq A$) it holds that $\mathbb{A} \models \varphi(v, \vec{v}, \vec{V})$.

A τ -structure \mathbb{A} models an mso-sentence ψ (or equivalently satisfies ψ , or ψ holds on \mathbb{A}) if $\mathbb{A} \models \psi$.

First Order logic. First order logic is monadic second order logic without set quantification.

1.2 Graphs and strings as relational structures

Graph as a relational structure. Of special interest is the vocabulary $\{\text{edge}\}$, consisting of a single predicate edge of arity 2. An undirected graph G=(V,E) can be represented as the $\{\text{edge}\}$ -structure $\mathbb{G}=(V,\text{edge}^{\mathbb{G}})$ over $\{\text{edge}\}$, where the vertex set V of G is the universe and for every $(u,v)\in V\times V$, $\text{edge}^{\mathbb{G}}(u,v)$ if and only if uv is an edge of G. Another way to represent a graph G=(V,E) as a relational structure is to represent its incidence graph. We shall denote the associated vocabulary $\tau=\{\text{vtx},\text{edg},\text{inc}\}$, where vtx and edg are unary predicates and inc is a binary predicate. For a graph G=(V,E), we associate the τ -structure $\mathbb{G}=(V\cap E,\text{vtx}^{\mathbb{G}},\text{edg}^{\mathbb{G}},\text{inc}^{\mathbb{G}})$ where vtx G=V0 edg G=V1 and inc G=V2.

v is an endpoint of e in G. Such a τ -structure is a canonical representation of an incidence graph of G as a relational structure.

We say that a graph property \mathcal{F} can be expressed in MSO, or MSO-expressible in short, if there is an mso-sentence ψ over $\{\text{edge}\}$ such that $G \in \mathcal{F}$ if and only if $\mathbb{G} \models \psi$ where \mathbb{G} is a $\{\text{edge}\}$ -structure. An MSO-expressible property is defined similarly, for which we take the vocabulary $\tau = \{\text{vtx}, \text{edg}, \text{inc}\}$ in the place of $\{\text{edge}\}$. A sentence over $\{\text{edge}\}$, respectively over τ , is called an MSO-sentence, respectively an MSO-sentence, on graphs.

In this paper, we are mostly interested in an MSO or MSO-sentence as a graph property. By abusing the notation, we often write $G \models \psi$ for a graph and an MSO-sentence, respectively MSO-sentence, ψ as a shortcut to state the following: $\mathbb{G} \models \psi$ for an τ -structure and a sentence over τ , where $\tau = \{\text{edge}\}$, respectively $\tau = \{\text{vtx}, \text{edg}, \text{inc}\}$.

Definable graph property. We are often interested in graphs or strings (or other relational structures) with specific property. A set of graphs is called a *graph property*. A graph property Π is MSO-definable or MSO-expressible (MSO₂-definable) if there is an MSO-sentence ψ on graphs such that for every graph G

$$G \in \Pi$$
 if and only if $G \models \psi$.

String as a relational structure. An alphabet is a set of symbols. A string (word) over τ is a finite sequence of symbols in τ . The string of length 0 (over any alphabet) is denoted by ϵ . A language L over the alphabet Σ is a set of strings over Σ , i.e. $K \subseteq \Sigma^*$. We restrict ourselves to finite strings over finite alphabet throughout this lecture note.

Fix a finite alphabet Σ . The vocabulary for string over Σ , τ_{Σ} , consists of the following predicates:

- (Linear order) Binary relation <; this predicate is to used to express "position i precedes position j in the string".
- (Symbol $a \in \Sigma$) Unary relation P_a for each $a \in \Sigma$; this predicate is used to express "The *i*-th position in the string carries the symbol a".

A string $w = w_1 \cdots w_n$ over Σ is seen as a τ_{Σ} -structure, obtained by interpreting the predicates in τ_{Σ} in the universe $\{1, \ldots, n\}$ as follows.

- Binary relation <; in the usual way.
- Unary relation P_a for each $a \in \Sigma$; $P_a = \{i \in [n] \mid w_i = a\}$.

Just like graphs, a set of strings (that is, a language) may be expressible in logic. We say that a language $L \subseteq \Sigma^*$ is MSO-definable, or equivalently MSO-expressible, if there is an MSO-sentence ψ on strings such that for every string s over Σ ,

$$s \in \Pi$$
 if and only if $s \models \psi$.

Example 1. One can express the following languages over $\{0,1\}$ in MSO.

• $L_1 = \{w \in \{0,1\}^* \mid w \text{ does not contain the substring } 11\}$ with the MSO-sentence

$$\varphi = \forall x \forall y (x < y) \to ((\exists z \ x < z < y) \lor x = 0 \lor y = 0).$$

• The next formula expresses that " $S \subseteq [n]$ is an interval", i.e. $(w, X) \models \varphi_{consec}$ if and only if X defines an interval in the domain of w.

$$\varphi_{int}(S) = \forall x \forall y \big((x \in S \land y \in S \land x \le y) \to (\forall z \ (x \le z \le y) \to z \in S) \big)$$

• The next formula expresses that "S forms a maximal interval in a set $X \subseteq [n]$ ".

$$\varphi_{within}(X, S) = \forall x (x \in S \to x \in X) \land \varphi_{consec}(S) \land \forall y ((y < S \lor S > y) \to y \notin S)$$

• The next formula expresses that " $S \subseteq [n]$ is an interval with precisely two 1's".

$$\varphi_{two1}(S) = \varphi_{int}(S) \land \exists x \in S \ \exists y \in S \big(P_1(x) \land P_1(y) \land x \neq y \big) \land \forall z \in S \big(P_1(z) \to (z = x \lor z = y) \big)$$

• $L_3 = \{w \in \{0,1\}^* \mid w \text{ contains even number of 1's}\}$ with the MSO-sentence

$$\varphi = \exists X \; \exists Y (\forall S \; (\varphi_{within}(X, S) \vee \varphi_{within}(Y, S)) \rightarrow \varphi_{two1}(S))$$

2 Regular language and DFA

There are a range of excellent textbooks on formal language and automata, see [2] and [3]. Here we give a brief overview of key notations.

Definition 1. A (deterministic) finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$ consisting of

- Q: a finite set called the states,
- Σ : a finite set called the alphabet,
- δ : a function from $Q \times \Sigma$ to Q called the transition function,
- $q_0 \in Q$: the start state,
- $F \subseteq Q$: the set of accept states.

A finite automaton M accepts a string $s=s_1\dots s_n\in \Sigma^*$ of length $n\geq 1$ if there is a sequence r_0,r_1,\dots,r_ℓ such that

- $r_0 = q_0$,
- $r_i = \delta(r_{i-1}, s_i)$ for every $i \in [n]$, and
- $r_n \in F$.

When the length of s is zero, i.e $s = \epsilon$, the automaton M accepts s if $r_0 \in F$.

In general, M changes the states and creates a sequence of states of the above form, except that the last condition $r_n \in F$ may not hold. Such a sequence of states that M goes through upon a string s the run of M on string s. We say that a language $L \subseteq \Sigma^*$ is recognized by an automaton M if L is precisely the set

of strings on which M has an accepting run. A language recognized by some finite automaton is called a regular language.

A regular language is equivalently characterized by the existence of a regular expression generating it. Starting from the atom (single symbol from the alphabet, ϵ and \emptyset), an expression obtained by recursively applying any one of union, concatenation, complementation and Kleene star (*) is again a regular expression. A regular expression defines a language (again recursively), and such a language is a regular language. Moreover, any regular language can be generated by some regular expression.

References

- [1] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
- [2] Michael Sipser. *Introduction to the Theory of Computation*. Course Technology, Boston, MA, third edition, 2013.
- [3] J. E. Hopcroft, R. Motwani, and J. D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Addison Wesley, 3rd edition, 2006.