§12.1: Visualising Functions of Several Variables

The simplest type of multivariate function takes a point (x_1, \ldots, x_n) in \mathbb{R}^n and returns a number $f(x_1, \ldots, x_n)$. More generally:

Definition: A function of n variables is a rule that takes each point (x_1, \ldots, x_n) in the domain $\mathcal{D}(f) \subseteq R^n$ and returns a point $f(x_1, \ldots, x_n)$ in \mathbb{R}^m . In other words, this function returns m numbers, which we can call $f_1(x_1, \ldots, x_n), f_2(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)$.

If $\mathcal{D}(f)$ is not explicitly given, then it is assumed to be the largest subset of \mathbb{R}^n where the rule for f makes sense.

Find the domain of the function

$$g(x,y) = \frac{\sqrt{x}}{1+y}.$$

Example: Find the domain of the function

$$F(x,y,z,w) = \left(\frac{x+z}{y^2+1}, \frac{z}{\ln(x+y)}\right).$$

The standard way to visualise a single-variable function $f: \mathbb{R} \to \mathbb{R}$ is through its graph y = f(x). This is a subset of \mathbb{R}^2 .

Example: The graph of $f(x) = x^2$ is the parabola $y = x^2$.

Definition: The *graph* of a function $\mathbb{R}^n \to \mathbb{R}$ is the set of points in \mathbb{R}^{n+1} satisfying $x_{n+1} = f(x_1, \dots, x_n)$.

So the graph of f(x,y) is the surface in \mathbb{R}^3 satisfying z=f(x,y). (Think of z as the height at (x,y).)

Example: The graph of $f(x,y) = x^2 + y^2$ is the paraboloid $z = x^2 + y^2$.

(pictures from Wiktionary and Wikiwand)

Example: Describe the graph of k(x,y) = x - y.

Definition: The *graph* of a function $\mathbb{R}^n \to \mathbb{R}$ is the set of points in \mathbb{R}^{n+1} satisfying $x_{n+1} = f(x_1, \dots, x_n)$.

As shown in the previous example, the graph of a linear function is a plane (or hyperplane).

The graph of some 2-variable functions, such as $g(x,y) = \frac{\sqrt{x}}{1+y}$, can be very complicated.

Even worse: the graph of a 3-variable function f(x, y, z) is in \mathbb{R}^4 , which is not helpful at all.

So here's another way to visualise a multivariate function:

Definition: The *level set* of a function $\mathbb{R}^n \to \mathbb{R}$ is the set of points in \mathbb{R}^n satisfying $C = f(x_1, \dots, x_n)$, for some constant C.

Another view: the level sets are the intersections of the graph with the hyperplanes $x_{n+1} = C$. They are usually n-1 dimensional objects in \mathbb{R}^n (e.g. a 2-variable function has level curves in \mathbb{R}^2).

graph (from KK L on google)

level set (from googlemaps)

Example: Describe and sketch the level curves of h(x,y) = xy, and use this to sketch the graph of h.

Another way to see that z=xy is a hyperbolic paraboloid is by completing the square:

$$z = xy = \frac{1}{4}4xy = \frac{1}{4}(((x+y)^2 - (x-y)^2),$$

which is a difference of two squares.

Example: Describe and sketch the level curves of $g(x,y) = \frac{\sqrt{x}}{1+y}$, and use this to sketch the graph of g. y

For 3-variable functions, the level sets are generally level surfaces.

Example: Describe the level surfaces of

$$G(x, y, z) = e^{-x^2 - y^2 - z^2}.$$

Not every surface in \mathbb{R}^3 is the graph of a (2-variable) function, but most surfaces in \mathbb{R}^3 can be expressed as a level set of a (3-variable) function, and this is often useful.

Example: Express the surface $2x + 2 \ln y = 9 - z^2$ as the level set of a suitable function.