

Факультет компьютерных наук Департамент программной инженерии Курсовая работа Визуализатор построения классической диаграммы Вороного

Выполнил студент группы БПИ-151

Мариносян Н. А.

Научный руководитель:

Доцент департамента программной инженерии, к.т.н.,

Ахметсафина Р. 3.

ОСНОВНЫЕ ПОНЯТИЯ, ОПРЕДЕЛЕНИЯ, ТЕРМИНЫ

- Арка часть параболы, принадлежащая «береговой линии» вставляется только во время события точки;
- **Береговая линия** кривая, образованная одной или пересечением нескольких парабол, которые, в свою очередь, были созданы во время события точки;
- Контрольные точки точки пересечения парабол на береговой линии;
- Локус область, в которой присутствуют все точки, которые находятся ближе к данной точке, чем ко всем остальным;
- Сайт (англ. site) точка, для которой строится локус;
- Событие круга момент, когда две контрольные точки по одной из разных парабол совмещаются (превращаются в одну). Эта точка и становится вершиной ячейки Вороного, причём в это время та дуга, которая находилась между этими двумя точками «схлопывается» и удаляется из береговой линии;
- Событие точки событие, которое происходит, когда заметающая прямая попадает на очередной сайт и создаётся новая парабола, фокусом которой является данный сайт, а директрисой заметающая прямая.

ПРЕДМЕТНАЯ ОБЛАСТЬ

Задача

Есть почтовые службы, мы хотим знать, какую область плоскости обслуживает каждая. При этом каждую точку на плоскости обслуживает та служба, которая ближе.

Ответ на этот и ряд других вопросов, связанных с близостью на плоскости, дает диаграмма Вороного.

ДИАГРАММА ВОРОНОГО

Решение

Диаграмма Вороного конечного множества точек точек $S = \{s_1, s_2, ..., s_n\}$ на плоскости – такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

- > Существует множество областей ее применения, среди них:
 - Моделирование;
 - Распознавание образов;
 - Разработка игр;
 - Картография;
 - Геолокация;
 - Археология;
 - Биология;
 - Химия;
 - Вычислительная механика;
 - Геология;
 - Геофизика и многие другие.
- > Связь с триангуляцией Делоне

АКТУАЛЬНОСТЬ РАБОТЫ

Востребованность во многих областях

Необходимость изучения способов построения диаграммы

Программа может быть использована преподавателями и обучающимися в учебных заведениях для изучения процесса построения диаграммы Вороного.

АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

- Онлайн построение диаграммы от Алекса Бьютела (Alex Beutel) на WebGL: http://alexbeutel.com/webgl/voronoi.html:
 - Диаграмма строится мгновенно, нет визуализации процесса построения;
 - Неизвестен алгоритм построения диаграммы.
- Онлайн построение диаграммы от Майка Мартина (Mike Martin) и Джона Джунгка (John Jungck): http://math.jccc.net:8180/webMathematica/JSP/mmartin/vorplotrand.jsp
 - Точки генерируются случайно;
 - Нет визуализации процесса построения.
- ▶ Визуализатор построения диаграммы Вороного на языке Ruby от Филиппа Арндта (Phillip Arntd): https://github.com/abscondment/rubyvor
 - Нет интерфейса пользователя, все команды выполняются через консольное приложение;

• Нет визуализации построения.

ВЫБОР АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ

Существующие алгоритмы построения диаграммы Вороного:

- ightharpoonup Алгоритм построения «в лоб» за $O(n^4)$;
- ightharpoonup Метод пересечения полуплоскостей за $O(n^2 * \log(n))$:
 - Проводим серединные перпендикуляры для текущего сайта;
 - Пересекаем полученные полуплоскости (алгоритм О'Рурка) и получаем локус;
- ightharpoonup Рекурсивный алгоритм построения диаграммы за $O(n*\log(n))$:
 - Делим множество сайтов пополам;
 - Рекурсивно строим диаграмму Вороного для каждой половины;
 - Объединяем полученные диаграммы;
- ightharpoonup Алгоритм Форчуна построения диаграммы Вороного на плоскости за O(n*log(n)).

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Цель работы – разработать программу, которая будет иллюстрировать процесс построения классической диаграммы Вороного алгоритмом Форчуна.

Задачи работы:

- Изучить алгоритм Форчуна;
- Разработать функциональные требования к программе;
- Выбрать структуры данных и разработать структуру приложения;
- Разработать пользовательский интерфейс;
- Выбрать средства реализации;
- Реализовать и протестировать программу;
- Разработать техническую документацию.

АЛГОРИТМ ФОРЧУНА

- Предложен в 1987 году Стивом Форчуном (англ. Steve Fortune)
- Основная идея алгоритма моделирование движения заметающей прямой по некоторому множеству сайтов (см. Терминологию).

АЛГОРИТМ ФОРЧУНА

- Процесс построения диаграммы дискретен;
- Существует два типа событий: точки и круга.

Событие точки

Событие круга

СОБЫТИЕ ТОЧКИ

- Наступает в момент, когда координаты заметающей прямой и сайта по оси абсцисс совпадают
- Создается новая парабола геометрическое место точек, равноудаленных от заметающей линии и данного сайта (изначально это прямая линия)

БЕРЕГОВАЯ ЛИНИЯ

- Параболы образуют друг с другом пересечения контрольные точки
- Вместе все дуги парабол от одной точки пересечения их друг с другом до другой (арки) образуют **«береговую линию»**

контрольные точки

- Любые две контрольные точки равноудалены от обоих сайтов которым соответствуют эти параболы, и от заметающей прямой
- Контрольные точки движутся по ребрам диаграммы Вороного

СОБЫТИЕ КРУГА

- Событие круга происходит, когда координаты двух контрольных точек полностью совпадают
- Дуга, которая находилась между ними, пропадает

СОБЫТИЕ КРУГА

- Вершина диаграммы является центром окружности, проходящей через три сайта и расстояние от этой точки до заметающей прямой тоже равно радиусу этой окружности
- Происходит в момент, когда координаты по оси абсцисс заметающей прямой и самой правой точки окружности совпадают

ОБЩИЙ АЛГОРИТМ РАБОТЫ ПРОГРАММЫ

- 1. Создается очередь с приоритетом для событий;
- 2. В очередь для событий добавляются события точки;
- 3. Из очереди берется очередное событие:
 - а) Если это событие точки, то ищем место в двоичном дереве «береговой линии» и добавляем в него новую арку;
 - b) Если это событие круга, то обрабатываем событие круга. Определяем центр и самую правую точку окружности, проходящую через три сайта.

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

- Среда разработки IntelliJ IDEA
- Язык программирования Java

Демонстрация программного продукта

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

- ✓ Подробно изучен алгоритм Форчуна и варианты его программной реализации;
- ✓ Бегло изучены другие алгоритмы построения диаграммы Вороного;
- ✓ Функциональные требования к программе были разработаны и указаны в «Техническом задании»;
- ✓ Выбраны структуры данных и разработана структура приложения (см. «Пояснительную записку»);
- ✓ Разработан дружественный пользовательский интерфейс;
- ✓ Программа реализована и протестирована (см. «Пояснительную записку» и «Программу и методику испытаний»);

✓ Техническая документация разработана согласно ГОСТ.

20

ПУТИ ДАЛЬНЕЙШЕЙ РАБОТЫ

- > Сделать браузерную версию приложения;
- > Добавить возможность ввода/вывода из файла;
- > Добавить примеры «красивых» диаграмм Вороного.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Применения диаграммы Вороного. [Электронный ресурс]// URL: https://www.voronoi.com/wiki/index.php?title=Voronoi_Applications General_applications (Дата обращения: 03.05.2017, режим доступа: свободный).
- 2. Диаграмма Вороного и ее применения. [Электронный ресурс]// URL: https://habrahabr.ru/post/309252 (Дата обращения: 04.05.2017, режим доступа: свободный).
- 3. Статья Стива Форчуна «A sweepline algorithm for Voronoi diagrams». [Электронный ресурс]// URL: http://link.springer.com/article/10.1007%2FBF01840357 (Дата обращения: 04.05.2017, режим доступа: свободный).

Спасибо за внимание!

Мариносян Никита Арамович, nikita.marinosyan@gmail.com

Москва - 2017