exercise 6.8. Using Quine's method, simplify the following Boolean functions given in DCF (disjunction of minterms):

fx (X,, Xx, X3) = Mov mx v mx v my v my v ms v m6

 $f_8(X_1, X_2, X_3) = m_0 \vee m_2 \vee m_3 \vee m_4 \vee m_5 \vee m_6$ $f_8(x_{11}x_{21}x_3) = X_1^6 X_2^6 X_3^6 \vee X_1^6 X_2^4 X_3^6 \vee X_1^6 X_2^4 X_3^4 \vee X_1^4 X_2^6 X_3^6 \vee X_1^4 X_2^6 X_3^4 \vee X_1^4 X_2^6 X_3^6 \vee X_1^4 X_2^6 X_3^6 \vee X_1^4 X_2^6 X_3^6 \vee X_1^4 X_2^6 X_3^6 \vee X_1^6 X_2^6 X_2^6 \times X_1^6 X_2^6 X_2$ $f_{\epsilon}(x_1,x_2,x_3) = \overline{X_1}\overline{X_2}\overline{X_3} \vee \overline{X_1}\overline{X_2}\overline{X_2} \vee \overline{X_1}\overline$ $2^{t} = \{(0,0,0), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0)\}$

 $S_f = \{(0,0,0),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0)\}$ - the support set of f sorted in ascending order (with respect to the number of "4")

	group		X ₄	X ₂	X 3	representation/factorization
	1	J	0	0	0	m _o
		J	0	٨	0	M ₂
	11	1	1	0	0	My
factorization		J	0	1	1	m_3
	Ш	J	1	0	1	m_5
		J	1	1	0	m ₆
	1V=1+11 J		0	_	0	mov m2
			_	0	0	mov my
	V=11+111 A V=1V+V		0	1	-	$m_2 \vee m_3 = \overline{X}_1 X_2 = max_1$
			-	1	0	mav me
			4	0	-	$m_4 \vee m_6 = X_1 \overline{X_2} = \max_2$
_			4	-	0	muv me
uble ization			-	-	0	movmavmuvmg= X3=max
double			c, max	a, max	-	$x_{2_1} \overline{x_1} \overline{x_2} \overline{x_3} - 2$ Simple chara

all those which are unchecked will be in the set of maximal monoms

 $M(f) = \int \max_{x_1, x_2, x_3} \max_{x_3} \int \int x_1 x_2 x_2 x_3 x_3 - x$ simple characterizations, I double factorization

max. monoms	max,	maxe	max ₃
mo			®
M ₂	*		*
m ₃	*		
m ₄		*	*
W ²		*	
m ₆			*

M(f) = { max, max, max, max, } C(f) = { max, max, max, max, }

all the columns have a *, thus all the maximal monoms are central monoms \Rightarrow M(f) = C(f) by the first case of simplification algorithm, we have an unique disjunctive simplified form:

 $f_8^S(x_1,x_2,x_3) = \max_i \vee \max_2 \vee \max_3 = \overline{x_1}x_2 \vee x_1\overline{x_2} \vee \overline{x_3}$