

Junghwan Yim JunWon Sung

Contents

- One-Shot Learning
 - Siamese Network
- UBOL(User Based One-Shot Learning)
 - Motivation
 - Approach
 - Comparison
- Conclusion & Discussion

One-Shot Learning

One-Shot Learning

Is the task of learning information about object categories from a single training example.

Low Distance

Control of the contro

Large Distance

Similarity (Distance) of Images

Point:

How to get embedding of image with the optimized distance in each categories

One-Shot Learning: Example

Siamese Network

If $x^{(i)}$, $x^{(j)}$ are the same person, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is small.

If $x^{(i)}$, $x^{(j)}$ are different persons, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is large.

encoding $f(x^{(i)})$

Triplet Loss

During training, if A,P,N are chosen randomly, $d(A,P) + \alpha \le d(A,N)$ is easily satisfied.

But, many data is required for robust performance.

Anchor

Positive

Negative

UBOL (User Based One-Shot Learning)

Motivation

- Needs massive manually annotated database to train the perception system for safe autonomous system
- User behavior plays pivotal role as the users can better adapt their driving to different driving conditions compared to the deep learning

Approach

- Making generalization model to data augmentation with the traffic sign data and user behaviors following the sign

Approach

N: number of traffic sign class

M: number of objects in a sample

$$\Omega = [\sigma_1, \sigma_2, \cdots, \sigma_n]$$
 probabilities of each label
$$T(\Omega, \cdot) = [t_1(\sigma_1, \cdot), t_2(\sigma_2, \cdot), \cdots, t_n(\sigma_n, \cdot)]$$

$$t(\theta, \cdot)$$
 transformation function from label and other parameters to synthesis image

 $E_{1\cdots M}(\cdot) = [E_1(\cdot), E_2(\cdot), \cdots, E_M(\cdot)]$

Comparison

TABLE I
ACCURACY RESULTS OF RECOGNITION OF STATE-OF-THE-ART SUPERVISED OBJECT RECOGNITION SYSTEMS WITH RESPECT TO UBOL AFTER
TRAINING ON ALL TRAINING DATA FROM GTSRB

	Speed Limits (%)	Unique (%)	Danger (%)	Mandatory (%)	Other Prohibitions (%)	Derestriction (%)
Multi-Scale CNN [30]	98.21	97.87	98.32	96.88	97.09	97.81
Human (best individual) [31]	98.63	97.89	99.21	96.72	98.45	97.14
Random Forests [32]	95.45	92.78	90.76	88.92	93.87	97.82
Committee CNN [33]	99.11	99.32	99.18	99.46	98.76	98.82
LDA baseline [34]	97.61	92.86	88.92	96.84	86.72	90.91
UBOL (AlexNet)	98.91	99.71	99.32	99.19	99.74	99.22
UBOL (GoogleNet)	99.53	99.34	99.62	99.15	99.23	99.86
UBOL (LeNet)	99.49	99.92	99.87	99.72	99.61	99.44

TABLE II
ACCURACY RESULTS OF RECOGNITION ON GTSRB, FOR UBOL AFTER TRAINING ONE-SHOT TRAFFIC SIGN TEMPLATES

	Speed Limits (%)	Unique (%)	Danger (%)	Mandatory (%)	Other Prohibitions (%)	Derestriction (%)
UBOL (AlexNet)	92.65	89.76	91.98	91.93	90.72	88.54
UBOL (GoogleNet)	93.78	92.40	88.63	90.91	89.22	91.54
UBOL (LeNet)	91.23	87.67	88.61	82.90	84.92	87.92

Discussion

- Pros:

- By adopting the user behavior and generalization model, free of the need for a massive manually annotated database to train the perception system for a safe autonomous system.
- Offered the way to overcome to hard to train generative model with other feature such as user-behavior.
- The user experience features play a key role in boosting the recognizing the traffic signs.

Limits:

- New labeled traffic sign have to be manually updated. (it is not zero-shot learning.)
- Based on generative model, needs large computational cost to train.
- Required collecting user-behavior data with the image.
- Cannot reach to level-5 autonomous driving system.

Discussion - What we can do next?

- Data augmentation using GAN was effective to improve the performance of the perception model.
- Try to find other features to overcome the limited data and helps generation of data

So,

- Consider the perception model or architecture with telemetry system.
 - Developing CAN-BUS scanning and networking module
 - Studying the Collective Perception Systems such as, Sensor Fusion, Zero-shot Learning, and Swarm Intelligence

Thank You

Em psum dolor sit amet, consectetur adipiscing elit. Mauris vehicula dui in neque dignissim, in aliquet nisl varius. Sed a erat ut magna vulputate feugiat. Quisque varius libero placerat erat lobortis congue. Integer a arcu vel ante bibendum scelerisque. Class aptent taciti sociosqu <u>ad litora torquent</u>.

Em psum dolor sit amet, consectetur adipiscing elit. Mauris vehicula dui in neque dignissim, in aliquet nisl varius. Sed a erat ut magna vulputate feugiat. Quisque varius libero placerat erat lobortis congue. Integer a arcu vel ante bibendum scelerisque. Class aptent taciti sociosqu <u>ad litora torquent</u>.

Em psum dolor sit amet, consectetur adipiscing elit. Mauris vehicula dui in neque dignissim, in aliquet nisl varius. Sed a erat ut magna vulputate feugiat. Quisque varius libero placerat erat lobortis congue. Integer a arcu vel ante bibendum scelerisque. Class aptent taciti sociosqu <u>ad litora torquent</u>.

PRESENTATION TITLE 2

Sub-topic

DIVIDER SLIDE TITLE 1

Sub-topic

DIVIDER SLIDE TITLE 2

Sub-topic

Em psum dolor sit amet, consectetur adipiscing elit. Mauris vehicula dui in neque dignissim, in aliquet nisl varius. Sed a erat ut magna vulputate feugiat. Quisque varius libero placerat erat lobortis congue. Integer a arcu vel ante bibendum scelerisque. Class aptent taciti sociosqu <u>ad litora torquent</u>.

Double Content Slide

Lorem ipsum and dolor sit amet, punit et consectetur adipiscing elit. A mauris and vehicula dui in neque dignissim, in nisl varius. Sed and erat ut magna vulputate feugiat. Quisque varius et placerat erat lobortis congue. Integer a arcu vel aante bibendum scelerisque. aliquet vulputate feugiat. Quisque varius.

Etiam molestie velit vitae dolor and a euismod, sit amet finibus risus mattis. In ornare convallis velit vitae cursus. Integer egestas sit amet mi vehicula sollicitudin. Pellentesque habitant malesuada fames ac libero et turpis.

Bulleted List Slide

- Lorem ipsum dolor sit amet, consectetur adipiscing elit.
- Quisque ac orci in turpis dapibus sagittis.
- Donec vitae justo et neque mollis consectetur.
- Etiam aliquet ex sed bibendum consequat.
- Cras lacinia est ac elit dignissim varius.
- Duis sit amet odio facilisis turpis sodales placerat.
- Justo et neque odio facilisis turpis sodales placerat.

Comparison Slide

COMPARE SECTION

Lorem ipsum dolor sit amet, punit et consectetur adipiscing elit. Mauris and vehicula dui in neque dignissim, in nisl varius. Sed and erat ut magna.

- Lorem ipsum dolor
- Punit et consectetur
 - Lobortis
 - Convallis
 - Egestas

CONTRAST SECTION

Lorem ipsum dolor sit amet, punit et consectetur adipiscing elit. Mauris and vehicula dui in neque dignissim varius. Sed and erat ut magna.

- Lorem ipsum dolor
- Punit et consectetur
 - Lobortis
 - Convallis
 - Egestas

Content and Photo

Em psum dolor sit amet, consectetur adipiscing elit. Mauris vehicula dui in neque dignissim, in aliquet nisl varius. Sed a erat ut magna vulputate feugiat. Quisque varius et libero placerat erat.

Content and Photos

Em psum dolor sit amet, consectetur adipiscing elit. Mauris vehicula dui in neque dignissim, in aliquet nisl varius. Sed a erat ut magna vulputate feugiat.

Quisque varius and libero placerat erat lobortis congue. Integer a arcu vel ante bibendum scelerisque. Class aptent taciti sociosqu ad litora torquent.

NOTE: Remember to update slide title behind full-width image to fulfill accessibility requirements

Content and Graph

Lorem ipsum dolor sit amet, punit et consectetur adipiscing elit. Mauris and vehicula dui in neque dignissim, in nisl varius. Sed and erat magna vulputate.

- Lorem ipsum dolor sit amet
- consectetur adipiscing elit
- Quisque ac orci in turpis
- Donec vitae justo consectetur

Data Analysis

Graphic Elements

Copy and paste these graphic elements to give your presentation a touch of color. Only use the official UB brand color palette. For more information, please visit buffalo.edu/brand/creative/color/color-palette.

