

# Test One

# Semester One 2016 **Year 12 Mathematics Methods** Calculator Free

| <u>Teacher:</u> |  |
|-----------------|--|
| Mr Staffe       |  |
| Mrs. Carter     |  |
| Mr Bertram      |  |
| Mr Roohi        |  |
| Ms Cheng        |  |

Name:

- Complete all questions
- Show all necessary working
- *Total Marks* = 25
- 25 minutes

#### 1. [12 marks]

Find  $\frac{dy}{dx}$  in each of the following, by using the appropriate rule. (a)  $y = (3x^2 - x)(x^3 - 4x^2 - 5x + 3)$  (Do not simplify)

(a) 
$$y = (3x^2 - x)(x^3 - 4x^2 - 5x + 3)$$
 (Do not simplify)

(b) 
$$y = 2x - \sqrt{x} + 3\pi^3 + \frac{4}{x^2}$$
 (Leave with positive indices.) [2]

(c) 
$$y = \frac{2x^3}{(5 - 3x^4)^2}$$
 (Do not simplify) [3]

(d) 
$$v = \sqrt{x^4 - 3x^3 + 2}$$
 [3]

(e) 
$$y = \sqrt{u^2 - 3}$$
 using the chain rule  $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ , where  $u = 2x^3 + 3$  [2]

Perth Modern School

[2]

## 2. [3 marks]

Consider the function  $f(x) = x^3 - 5x^2 - 8x + p$  where p is a constant.

(a) Determine where the local (relative) extrema points occur.

(b) What can we say about value of p given that two of the three roots are negative [1]

### 3. [4 marks]

Draw a sketch below of each of the gradient functions formed by each of the following functions

(a)









#### 4. [6 marks]

Find the turning points, points of inflection and intercepts for the function  $y = x^3 - 3x^2 - 9x + 1$ . Then graph a sketch of the function on the axes provided below, clearly showing these key points.



Perth Modern School 3

**Teacher:** 



# Test One

# Semester One 2016 **Year 12 Mathematics Methods** Calculator Assumed

| Name: |  |  |  |
|-------|--|--|--|
|       |  |  |  |

- Complete all questions
- Show all necessary working
- Total Marks = 25
- 25 minutes

| 1. [ 5 ma | rks ] |
|-----------|-------|
|-----------|-------|

A particle's position along the x-axis, in meters, is given by the function  $s = 3t^3 - 5t + 9$ .

Find the Velocity and Acceleration of this particle when t = 2 seconds (a)

(b) When does the particle stop moving, and how far from the origin is it at this time? [2]

#### 2. [8 marks]

Perth Modern School

Mr Staffe Mrs. Carter Mr Bertram

Mr Roohi

Ms Cheng

[3]

4

The volume of a certain rectangular box is given by the equation  $f(x) = x^3 - 5x^2 - 8x + 48$ .

(a) If the height of the box is (4 - x) units, determine an algebraic expression for the area of the base of the box. [3]

(b) Calculate the value of *x* for which the volume is a maximum. [5]

#### 3. [7 marks]

Perth Modern School 5

(a) If the volume of a cylinder is given by  $V = 2\pi r^3$ , find the appropriate percentage change in V when r changes by  $\frac{1}{2}\%$ 

(b) If the volume of the solid generated by rotating a shaded region is given by  $V = \pi[0.05h^5 + \frac{2}{3}h^3 + 4h], \text{ use the incremental formula, } \delta V \approx \frac{dV}{dh} \delta h,$  to estimate the change in volume when h increases from 3 to 3.01.

[4]

### 4. [5 marks]

Sketch the graph of y = f(x) given the data below:

(i) 
$$f(2) = -9$$
,  $f(-4) = 27$ ,  $f(-1) = 9$ 

(ii) 
$$f'(2) = 0$$
 and  $f''(2) > 0$ 

(iii) 
$$f'(-4) = 0$$
 and  $f''(-4) < 0$ 

(iv) 
$$f''(-1) = 0$$

(v) 
$$f'(x) > 0$$
 for  $x > 2$ ,  $x < -4$ 

(vi) 
$$f'(x) < 0$$
 for  $-4 < x < 2$ 

(vii) 
$$f(0) = 3$$

