### Predicting Severity of an accident.

#### Predicting severity

- Predicting severity of an accident on a specific road would alert the authorities that this road needs to be fixed.
- Sign could be put at every road to warn drivers to be careful while driving.
- Accidents caused by light or road condition could be reduced by fixing the roads and increasing light stands.
- Accidents caused by natural causes such as rain or storms could be reduced by closing the roads which proved to be more dangerous during this conditions.

### Severity of an accident

- The target of the model is to predict the severity of an accident.
- The value 1 is for a non severe accident.
- The value 2 is for a severe accident.

### Data acquisition and cleaning

- This dataset is offered by ibm cloud.
- This data is collected by seattle police department.
- It contains accidents from 2004 till present.
- It contains 194673 row and 38 Column.
- Duplicate, highly similar or highly correlated features were dropped.
- Cleaned data contains 10 feature.

#### **Feature Selection**

- Features are selected to train the model to predict the severity.
- Features are selected by their correlation with the target (Severity).
- Features selected are X, Y, ADDRTYPE, COLLISIONTYPE, JUNCTIONTYPE, UNDERINFL, WEATHER, ROADCOND, 'LIGHTCOND', HITPARKEDCAR.

# Correlation heat map



### Severity values



From the given data, the severity code values are mostly 1 or 2

## Junction types



Junction type plays a crucial part and it is a feature which will help to predict the severity of an accident.

#### Models

- There are many type of model that could be used such as Regression, Clustering, Classification .... etc.
- For this problem, the more suitable model would be the Classification model.
- The first used machine learning model is the Logistic Regression model.
- The second model is the Decision Tree model.

## Logistic Regression

• For evaluation, Jaccard index and F1-score have been used as metrics for accuracy and score.

|                        | support | f1-score | recall | precision |              |
|------------------------|---------|----------|--------|-----------|--------------|
|                        | 24610   | 0.84     | 0.98   | 0.73      | 1            |
|                        | 11041   | 0.33     | 0.21   | 0.81      | 2            |
| DT Jaccard index: 0.74 | 35651   | 0.74     | 0.74   | 0.74      | micro avg    |
| DT F1-score: 0.68      | 35651   | 0.59     | 0.59   | 0.77      | macro avg    |
| 5 2 5.5. 61 0100       | 35651   | 0.68     | 0.74   | 0.76      | weighted avg |

#### **Decision Tree**

• Same evaluation metrics as Logistic Regression and the results came slightly better than the logistic Regression model

|          |     | precision | recall | f1-score | support |                        |
|----------|-----|-----------|--------|----------|---------|------------------------|
|          | 1   | 0.73      | 0.99   | 0.84     | 24610   |                        |
|          | 2   | 0.88      | 0.19   | 0.31     | 11041   |                        |
| micro    | avg | 0.74      | 0.74   | 0.74     | 35651   | DT Jaccard index: 0.74 |
| macro    | avg | 0.81      | 0.59   | 0.57     | 35651   | DT F1-score: 0.68      |
| weighted | avg | 0.78      | 0.74   | 0.68     | 35651   |                        |

#### Conclusion

- Built useful models to predict the severity of an accident.
- Accuracy of the models has room for improvement.
- The models should be used to help in reducing car accidents.