Script (Filters on frequencies) Low

Pass Filters

1. Ideal low-pass filters (implemented)

- Observe the ideal high-pass filter according to:

$$H(u,v) = \begin{cases} 1 \to D(u,v) \ge D_0 \\ 0 \to D(u,v) < D_0 \end{cases}$$

Being

$$D(u,v) = \sqrt{u^2 + v^2}$$

and D_{θ} the cutoff frequency.

- Apply the ideal filter in fourier.tif and lena.tif, with the following cutting frequencies: $\pi/2$, $\pi/4$, $\pi/8$, $\pi/16$.
- To apply the filters, multiply the magnitude of the Fourier transform of the image, and apply the inverse transform. Preserve the phase information of the image.
- For each resulting image give the histogram, write down the mean and standard deviation values of the and comment on the result.

2. Butterworth Low-Pass Filters

- Implement the Butterworth high-pass filter according to:

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^2}$$

Being

$$D(u,v) = \sqrt{u^2 + v^2}$$

and $D\theta$ the cutoff frequency.

- Apply the Butterworth filter on fourier.tif and lena.tif, with the following cutting frequencies: $\pi/2$, $\pi/4$, $\pi/8$, $\pi/16$.
- To apply the filters, multiply the magnitude of the Fourier transform of the image, and apply the inverse transform. Preserve the phase information of the image.
- For each resulting image give the histogram, write down the mean and standard deviation values of the and comment on the result.

High-Pass Filters

3. Ideal high-pass filters

- Implement the ideal high-pass filter according to:

$$H(u,v) = \begin{cases} 0 \to D(u,v) \ge D_0 \\ 1 \to D(u,v) < D_0 \end{cases}$$

Being

$$D(u,v) = \sqrt{u^2 + v^2}$$

and D_{θ} the cutoff frequency.

- Apply the ideal filter in fourier.tif and lena.tif, with the following cutting frequencies: $\pi/2$, $\pi/4$, $\pi/8$, $\pi/16$.
- To apply the filters, multiply the magnitude of the Fourier transform of the image, and apply the inverse transform. Preserve the phase information of the image.
- For each resulting image give the histogram, write down the mean and standard deviation values of the and comment on the result.

4. Butterworth High Pass Filters

- Implement the Butterworth high-pass filter according to:

$$H(u,v) = \frac{1}{1 + (D_0/D(u,v))^2}$$

Being

$$D(u,v) = \sqrt{u^2 + v^2}$$

and D_{θ} the cutoff frequency.

- Apply the Butterworth filter on fourier.tif and lena.tif, with the following cutting frequencies: $\pi/2$, $\pi/4$, $\pi/8$, $\pi/16$.
- To apply the filters, multiply the magnitude of the Fourier transform of the image, and apply the inverse transform. Preserve the phase information of the image.
- For each resulting image give the histogram, write down the mean and standard deviation values of the and comment on the result.