姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月14日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月14日

目录

第-	一章	一元函数微分学	1
	1.1	导数与微分的概念	1
	1.2	导数与微分的计算	4
	1.3	导数应用-切线与法线	10
	1.4	导数应用-渐近线	12
	1.5	导数应用-曲率	14
	1.6	导数应用-极值与最值	15
	1.7	导数应用-凹凸性与拐点	18
	1.8	导数应用-证明不等式	19
	1.9	导数应用-求方程的根	21
	1.10	微分中值定理证明题	23

第一章 一元函数微分学

1.1 导数与微分的概念

- 1. (2000, 数三) 设函数 f(x) 在点 x = a 处可导,则函数 |f(x)| 在点 x = a 处不可导的充分 条件是

 - A $f(a) = 0 \perp f'(a) = 0$ B $f(a) = 0 \perp f'(a) \neq 0$
 - C $f(a) > 0 \perp f'(a) > 0$ D $f(a) < 0 \perp f'(a) < 0$

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

- (A) $\lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$ 存在 (B) $\lim_{h\to 0} \frac{1}{h} f(1-e^h)$ 存在
- (C) $\lim_{h\to 0} \frac{1}{h^2} f(h-\sin h)$ 存在 (D) $\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在

3. (2016, 数一) 已知函数 $f(x) = \begin{cases} x, & x \leq 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \leq \frac{1}{n}, n = 1, 2, \cdots \end{cases}$ (A) x = 0 是 f(x) 的第一类间断点 (B) x = 0 是 f(x) 的第二类间断点

- (C) f(x) 在 x = 0 处连续但不可导 (D) f(x) 在 x = 0 处可导

1.2 导数与微分的计算

Remark (类型一分段函数求导).

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x=0 处的连续性。

Remark (类型二复合函数求导).

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ y = f(f(x)), \ \vec{x} \frac{dy}{dx} \Big|_{x=e} \end{cases}$$

Remark (类型三隐函数求导).

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0) = 1,函数 y = y(x) 由方程 $y - xe^{y-1} = 1$ 所确定。设 $z = f(\ln y - \sin x)$,求 $\frac{dz}{dx}\Big|_{x=0}$ 和 $\frac{d^2z}{dx^2}\Big|_{x=0}$

Remark (类型四反函数求导).

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数,且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x = x(y) 所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x) \left(\frac{dx}{dy}\right)^3 = 0$ 变换为 y = y(x) 满足的微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Remark (类型五参数方程求导).

Remark (类型五参数万程求导).

8. (2008, 数二) 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$$
 确定, 其中 $x(t)$ 是初值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

Remark (类型六高阶导数).

1.3 导数应用-切线与法线

Remark (类型一直角坐标表示的曲线).

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数,它在 x = 0 的某个邻域内满足关系式 $f(1+\sin x) - 3f(1-\sin x) = 8x + \alpha(x)$,其中 $\alpha(x)$ 是当 $x \to 0$ 时比 x 高阶的无穷小,且 f(x) 在 x = 1 处可导,求曲线 y = f(x) 在点 (6,f(6)) 处的切线方程。

Remark (类型二参数方程表示的曲线).

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为___

Solution. 【详解

Remark (类型三极坐标表示的曲线).

12. (1997, 数一) 对数螺线 $r=e^{\theta}$ 在点 $(e^{\frac{\pi}{2}},\frac{\pi}{2})$ 处切线的直角坐标方程为__

1.4 导数应用-渐近线

- 13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是
 - (A) $y = x + \sin x$ (B) $y = x^2 + \sin x$

 - (C) $y = x + \sin \frac{1}{x}$ (D) $y = x^2 + \sin \frac{1}{x}$

14. (2007, 数一、数二、数三) 曲线 $y=\frac{1}{x}+\ln(1+e^x)$ 渐近线的条数为

- (A) 0 (B) 1 (C) 2
- (D) 3

1.5 导数应用-曲率

1.5 **寻致应用- 四 李**
15. (2014, 数二) 曲线
$$\begin{cases} x = t^2 + 7 & \text{对应于 } t = 1 \text{ 的点处的曲率半径是} \\ y = t^2 + 4t + 1 & \text{(A) } \frac{\sqrt{10}}{50} \text{ (B) } \frac{\sqrt{10}}{100} \text{ (C) } 10\sqrt{10} \text{ (D) } 5\sqrt{10} \end{cases}$$

1.6 导数应用-极值与最值

- 17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值
 - (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
 - (D) f(0) 不是 f(x) 的极值, 点(0, f(0)) 也不是曲线 y = f(x) 的拐点

18. (2010, 数一、数二) 求函数 $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值 **Solution**.

19. (2014, 数二) 已知函数 y=y(x) 满足微分方程 $x^2+y^2y'=1-y',$ 且 y(2)=0, 求 y(x) 的极大值与极小值

1.7 导数应用-凹凸性与拐点

20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是 (A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)

Solution.

1.8 导数应用-证明不等式

21. (2017, 数一、数三) 设函数 f(x) 可导,且 f(x)f'(x) > 0,则 $(A) \ f(1) > f(-1) \quad (B) \ f(1) < f(-1) \quad (C) \ |f(1)| > |f(-1)| \quad (D) \ |f(1)| < |f(-1)|$

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

1.9 导数应用-求方程的根

23. (2003, 数二) 讨论曲线 $y = 4 \ln x + k$ 与 $y = 4x + \ln^4 x$ 的交点个数。

24. (2015, 数二) 已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

1.10 微分中值定理证明题

Remark (类型一证明含有一个 ξ 的等式).

- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 且 f(1)=1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
 - (ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

26. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(1)=0,证明:存在 $\xi\in(0,1)$,使得 $(2\xi+1)f(\xi)+\xi f'(\xi)=0$ 。

Remark (类型二证明含有两个点的等式).

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0,1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Remark (类型三证明含有高阶导数的等式或不等式).

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数, 且 $f(0) = 0, f(1) = 1, \int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$ 。

27