Examination Control Division

2071 Bhadra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
	1/1	Time	3 hrs.

[5]

[5]

[5]

[5]

Subject: - Engineering Mathematics II (811451)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- State Fuler's theorem for a homogeneous function of two independent variables and verify it for the function $u = x^n . sin\left(\frac{y}{x}\right)$. [144]
- 2. Find the extreme value of $x^2 + y^2 + z^2$ subject to the condition x + y + z = 1 and xyz + 1 = 0. [5]
- 3. Evaluate $\iint xy(x+y)dxdy$ over the area between $y = x^2$ and y = x. [5]
- 4. Evaluate the integral by changing to polar coordinates $\int_0^1 \int_x^{\sqrt{2x-x^2}} (x^2+y^2) dy dx$. [5]

OR

Find by triple integration the volume of sphere $x^2 + y^2 + z^2 + a^2$.

- 5. Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and 4x 3y + 1 = 0 = 5x + 3z + 2 are coplanar.

 Also find their point of intersection.
 - 6. Find the length and equation of the shortest distance between the lines $\frac{x+3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \text{ and } 2x 3y + 27 = 0, 2y z + 20 = 0.$
- If itself the centre and radius of the circle $x^2 + y^2 + z^2 8x + 4y + 8z 45 = 0$, [5]
- 8. Find the equation of right circular cone whose vertex at origin and axis the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ with the vertical angle 30°. [5]

OR

Find the equation of the right circular cylinder having for its base the circle $x^2 + y^2 + z^2 = 9$, x - y + z = 3.

- 9. Solve by the power series method the differential equation $y'' 4xy' + (4x^2 2)y = 0$. [5]
- 10 Test whether the solutions of y''' 2y'' y' + 2y = 0 are linearly independent or dependent. [5]

11. Show that:
$$J_{\left(\frac{5}{2}\right)}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3}{x} \sin x + \frac{3 - x^2}{x^2} \cos x\right)$$
 [5]

- 12. If \vec{a} , \vec{b} , \vec{c} and \vec{a}' , \vec{b}' , \vec{c}' are the reciprocal system of vectors, then prove that $\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{\vec{c} + \vec{c}'}, \ [\vec{a} \ \vec{b} \ \vec{c}] \neq 0.$ [5]
- 13. The necessary and sufficient condition for the function \vec{a} of scalar variable t to have a constant direction is $\vec{a} \times \frac{d\vec{a}}{dt} = 0$. [5]
- 14. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of vector $2\vec{i} \vec{j} 2k$.

OR

- If \hat{a} is a constant vector and \hat{r} be the position vector, then, prove that $\nabla \times (\hat{a} \times \hat{r}) = 2\hat{a}$. [5]
- 15. Determine whether the series is convergent or divergent $\sum_{n=1}^{\infty} \left(\sqrt{n^3 + 1} n \right)$ [5]
- 16. Find the interval and radius of convergence of the power series: $\sum_{n=1}^{\infty} \frac{2^n (x-3)^n}{n+3}$ [5]

Examination Control Division

2070 Bhadra

Exam.	Regular		
Level	BE	Full Marks	80
Programme	Alt (Except B.Arch.)	Pass Marks	32
Year / Part	1/41	Time	3 hrs.

Subject: - Engineering Mathematics II (SH451)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks.
- ✓ Assume suitable data if necessary.

1. If
$$u = \log \frac{x^2 + y^2}{x + y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$.

- 2. Find the extreme value of $x^2 + y^2 + z^2$ connected by the relation ax + by + cz = p.
- 3. Evaluate $\int_{0}^{a} \int_{dx}^{a} \frac{y^2 dy dx}{\sqrt{y^4 a^2 x^2}}$ by changing order of integration.
- 4. Evaluate $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{\kappa + \log y} e^{x + y + z} dz dy dx.$
- 5. Find the length of the perpendicular from the point (3, -1, 11) to the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$. Also obtain the equation of perpendicular.
- 6. Find the magnitude and the equation of S.D. between the lines $\frac{x-3}{3} = \frac{y-8}{+1} = \frac{z-3}{1}$ and 2x-3y+27=0, 2y-z+20=0.
- 7. Find the equation of the sphere through the circle $x^2 + y^2 = 4$, z = 0 and is intersected by the plane x + 2y + 2z = 0 is a circle of radius 3.

OR

Find the equations of the tangent planes to the sphere $x^2 + y^2 + z^2 + 6x - 2z = 1 = 0$ which passes through the line x + z - 16 = 0, 2y - 3z + 30 = 0.

8. Find the equation of the right circular cone whose vertex at origin and axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ with vertical angle 30°.

OR

Find the equation of the right circular cylinder of radius 2 whose axis is the line $\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{2}$.

- 9. Solve the differential equation $y'' + 4xy' + (4x^2 2)y = 0$ by power series method.
- 10. Express $f(x) = x^3 5x^2 + x + 2$ interms of Legendre polynomials.

- 11. Show that $4J_n^{11}(x) J_{n-2}(x) 2J_n(x) + J_{n+2}(x)$.
- 12. Find a set of vectors reciprocal to the following vectors 2i+3j-k, i-j-2k, -i+2j+2k.
- 13. Prove that the necessary and sufficient condition for the vector function of a scalar variable t to have constant magnitude is $a' \cdot \frac{d}{dt} = 0$.
- 14. A particle moves along the curve $x = 4 \cos t$, $y = t^2$, z = 2t. Find velocity and acceleration at time t = 0 and $t = \frac{\pi}{2}$.
- 15. Test the convergence of the series $1 + \frac{x}{2} + \frac{2!}{3^2} x^2 + \frac{3!}{4^3} x^3 + ...$
- 16. Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-3)^n}{n+1}.$

Examination Control Division

2070 Magh

Exam.	New Back (2066 & Later Butch		
Level	BE	Full Marks	1 K41
Programme	All (Except B Arch)	Pass Marks	32
Year / Part	171	Time	3 hrs.

Subject: - Engineering Mathematics II (811451)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- √ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.

1. Find
$$\frac{du}{dt}$$
 if $u = \sin\left(\frac{x}{y}\right)$, $x = e^{t} & y = t^{2}$

- 2. Find the extreme value of $x^2 + y^2 + z^2$ connected by the relation x + z + 1 and 2y + z = 2.
- 3. Evaluate: $\iint_{\mathbb{R}} xy \, dx.dy$ where R is the region over the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} 1$ in the first quadrant.
- 4. Evaluate the integral by changing to polar coordinates $\int_0^a \int_0^{\sqrt{a^2-x^2}} y^2 . \sqrt{x^3} + y^2 . dy. dx$

OR

Evaluate: $\iiint x^{1+1}.y^{m+1}.z^{m+1}.dx.dy.dz \,, \qquad \text{where} \qquad x,y,z \qquad \text{are} \qquad \text{all} \qquad \text{positive} \qquad \text{but}$ $\left(\frac{x}{a}\right)^{n} + \left(\frac{y}{b}\right)^{n} + \left(\frac{z}{c}\right)^{n} \leq 1$

- 5. Find the equation of the plane through the line 2x/3y-5z 4 and 3x-4y/5z = 6 and parallel to the coordinates axes.
- 6. Show that the lines $\frac{x+5}{4} = \frac{y-7}{4} \frac{z-3}{5} & \frac{x-8}{7} = \frac{y-4}{1} + \frac{z-5}{3}$ are coplanar. Find their point of intersection and equation of plane in which they lie.
- 7. Pind the centre and radius of the circles $x^2 + y^2 + z^2 + 8x + 4y + 8z + 45 = 0$, x-2y+2z-3=0
- 8. Find the equation of a right circular cone with vertex (1,1,1) and axis is the line $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{3}$ and semi-vertical angle 30°.
- 9. Solve by power series method the differential equation y' + xy' + y = 0
- 10. Find the general solution of the Legendre's differential equation.
- 11. Prove Bessel's Function $\frac{d[x^{-n}J_n(x)]-}{dx} = x^{-n}J_{n+1}$
- 12. Prove that: $\left[\overrightarrow{b} \times \overrightarrow{c} : \overrightarrow{c} \times \overrightarrow{a} : \overrightarrow{a} \times \overrightarrow{b} \right] = \left[\overrightarrow{a} : \overrightarrow{b} : \overrightarrow{c} \right]^{-2}$

- 13. Find n so that r^n is solonoidal.
- 14. Prove that the necessary and sufficient condition for a function \vec{a} of scalar variable to have a constant direction is $\vec{a} \times \frac{d \vec{a}}{dt} = 0$
- 15. Test the series for convergence or divergence

$$x + \frac{3}{5}x^2 + \frac{8}{10}x^3 + \frac{15}{17}x^4 + \dots + \frac{n^2 - 1}{n^2 + 1}x^n + \dots + (x > 0)$$

16. Find the radius of convergence and interval of convergence of the power series $\sum_{n=1}^{\infty}\frac{(-1)^n\,x^n}{n.2^n}$

Examination Control Division, 2069 Bhadra

Ехяш.	Regular (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	All	Pass Marks	32
Year / Part	1/11	Time	3 hrs,

Subject: - Engineering Mathematics II (SH451)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ <u>All</u> questions carry equal marks.
- ✓ Assume suitable data if necessary.

1. If
$$\sin u = \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$$
, show that $x \frac{\delta u}{\delta x} + y \frac{\delta x}{\delta y} = 0$.

- 2. Obtain the maximum value of xyz such that x + y + z = 24.
- 3. Evaluate: $\iint xy(x+y)dxdy$ over the area between $y = x^2$ and y = x.
- 4. Evaluate $\iiint x^2 dx dy dz$ over the region V bounded by the planes x = 0, y = 0, z = 0 and
- x + y + z = a.
- 5. Find the image of the point (2, -1, 3) in the plane 3x-2y-z-9=0.
- 6. Find the S.D. between the line $\frac{x-6}{3} = \frac{7-y}{1} = \frac{z-4}{1}$ and $\frac{x}{-3} = \frac{y+9}{2} = \frac{2-z}{-4}$. Find also equation of S.D.
- 7. Obtain the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, x 2y + 2z = 5 as a great circle.
- 8. Find the equation of cone with vertex (3, 1, 2) and base $2x^2 + 3y^2 = 1$, z = 1.

OF

Find the equation of right circular cylinder whose axis is the line $\frac{x-\alpha}{\ell} = \frac{y-\beta}{m} = \frac{z-r}{n}$ and whose radius 'r'

- 9. Solve the initial value problem y'' + 2y' + 5y = 0, given y(0) = 1, y'(0) = 5.
- 10. Define power series. Solve by power series method of differential equation, y' + 2xy = 0
- 11. Prove the Bessell's function $\frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$.
- 12. Prove if ℓ , m, n be three non-coplanar vectors then

$$\begin{bmatrix} \overrightarrow{\ell} & \overrightarrow{m} & \overrightarrow{n} \end{bmatrix} \begin{pmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{pmatrix} = \begin{bmatrix} \overrightarrow{\ell} & \overrightarrow{a} & \overrightarrow{\ell} & \overrightarrow{b} & \overrightarrow{\ell} \\ \overrightarrow{\ell} & \overrightarrow{a} & \cancel{\ell} & \overrightarrow{b} & \overrightarrow{\ell} \\ \overrightarrow{m} & \overrightarrow{a} & \overrightarrow{m} & \overrightarrow{b} & \overrightarrow{m} \\ \overrightarrow{m} & \overrightarrow{a} & \overrightarrow{m} & \overrightarrow{b} & \overrightarrow{m} \end{bmatrix}$$

- 13. Prove that the necessary and sufficient condition for the vector function of a scalar variable t have a constant magnitude is $\frac{d}{dt} = 0$.
- 14. Find the angle between the normal to the surfaces $x \log z = y^2 1$ and $x^2y + z = 2$ at the point (1, 1, 1).
- 15. Test the convergence of the series $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$
- 16. Find the interval of cgt, radius of cgt and centre of cgt of power series $\sum \frac{2^n x^n}{n!}$

Examination Control Division

2069 Poush

Exam.	New Back	Batch)	
Level	BE	Full Marks	' 80
Programme	All except B.Arch.	Pass Marks	32
Year / Part	1/11	Time	+ 3 hrs.

Subject: - Engineering Mathematics II (SH451)

- Candidates are required to give their answers in their own words as far as practicable.
- √ Attempt All questions.
- ✓ All questions carry equal marks.
- Assume suitable data if necessary.
 - 1. State Euler's theorem on homogeneous functions of two independent variables. And if Sin $\mathbf{u} = \frac{\sqrt{\mathbf{x}} \sqrt{\mathbf{y}}}{\sqrt{\mathbf{x}} + \sqrt{\mathbf{y}}}$ then prove $\mathbf{x} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{y} \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = 0$
 - 2. Find the minimum value of the function $F(x,y,z) = x^2 + y^2 + z^2$ when $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$
 - 3. Evaluate: $\iint r^3 dr d\theta$ over the area included between the circles $r=2 \sin \theta$ and $r = 4 \sin \theta$
 - 4. Evaluate $\int_{1}^{z} \int_{1}^{\log y} \int_{1}^{cx} \log z \, dz \, dx \, dy$

OR

Find the volume of sphere $x^2+y^2+z^2=a^2$ using Diritchlet's integral.

5. Prove that the lines

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$$
 and $x = \frac{y-7}{-3} = \frac{z+7}{2}$ are coplanar and find the equation of plane in which they lie.

Show that the shortest distance between two skew lines

$$\frac{x-1}{2} = \frac{y-2}{3} - \frac{z-3}{4}$$
 and $\frac{x-2}{3} - \frac{y-4}{4} = \frac{z-5}{5}$ is $1/\sqrt{6}$

- 7. A variable plane is parallel to the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and meets the exes in A, B, C.

 Prove that the circle ABC lies on the cone $\left\{\frac{b}{c} + \frac{c}{b}\right\} yz + \left(\frac{c}{a} + \frac{a}{c}\right)zx + \left(\frac{a}{b} + \frac{b}{a}\right)xy = 0$
- 8. Find the equation of the right circular cylinder of radius 4 and axis the line x = 2y = -x.

9. Show that the solutions of $x^2y^m - 3xy^m + 3y = 0$, (x > 0) are linearly independent.

- Solve the equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 4)y = 0$ in series form.
- 10. Prove that $4J_n(x) = J_{n-2}(x) 2J_n(x) + J_{n+2}(x)$ where the symbols have their usual meanings.
- 1). Apply the power series method to the following differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$

ÓR

Find the general solution of Legendre's differential equation.

- 12. Show that $(b \times c) \times (c \times a) = \begin{bmatrix} a & b & c \end{bmatrix} \stackrel{\rightarrow}{c}$ and deduce $\begin{bmatrix} \stackrel{\rightarrow}{b} \times c & \stackrel{\rightarrow}{c} \times a & a \times b \end{bmatrix} = \begin{bmatrix} \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} \end{bmatrix}^2$
- 13. Prove that the necessary and sufficient condition for the function a of scalar variable to have a constant direction is $\overrightarrow{a} \times \frac{\overrightarrow{da}}{dt} = 0$
- 14. Find the angle between the surface $\hat{x}^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2,-1,2)
- 15. Test the convergence of the series $\sum \frac{(n+1)^n |x|^n}{n^{n+1}}$
- 16. Find the radius of convergence and the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^2}{\sqrt{n}}$$

Examination Control Division

2069 Poush

Exam.	New Back (2066 & Later Batch)		
Level	BE	Full Marks	80
Programme	All except B.Arch.	Pass Marks	32
	: I / IJ	Time	3 hes.

Subject: - Engineering Mathematics II (SH451)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ All questions carry equal marks:
- ✓ Assume suitable data if necessary.
 - 1. State Euler's theorem on homogeneous functions of two independent variables. And if $\sin u = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}} \text{ then prove } x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$
 - 2. Find the minimum value of the function $F(x,y,z) = x^2 y^2 + z^2$ when $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$
 - 3. Evaluate: $\iint r^3 dr \, d\theta$ over the area included between the circles $r=2\sin\theta$ and $r=4\sin\theta$
 - 4. Evaluate ∫ ∫ log z dz dx dy

OK

Find the volume of sphere $x^2+y^2+z^2=a^2$ using Diritchlet's integral.

5. Prove that the lines

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$$
 and $x = \frac{y-7}{-3} = \frac{z+7}{2}$ are coplanar and find the equation of plane in which they lie.

Show that the shortest distance between two skew lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{y+4}{4} = \frac{z-5}{5}$ is $1/\sqrt{6}$

7. A variable plane is parallel to the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and meets the axes in A, B, C. Prove that the circle ABC lies on the cone $\left(\frac{b}{c} + \frac{c}{b}\right) yz + \left(\frac{c}{a} + \frac{s}{c}\right) zx + \left(\frac{a}{b} + \frac{b}{a}\right) xy = 0$

8. Find the equation of the right circular cylinder of radius 4 and axis the line
$$x = 2$$
 $y = -z$

9. Show that the solutions of $x^2y'''-3xy''+3y'=0$, (x>0) are linearly independent.

Solve the equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 4)y = 0$ in series form.

- 10. Prove that $4J_n(x) = J_{n+2}(x) 2J_n(x) + J_{n+2}(x)$ where the symbols have their usual meanings.
- 11 Apply the power series method to the following differential equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$

OR

Find the general solution of Legendre's differential equation.

12. Show that
$$(\overrightarrow{b} \times \overrightarrow{c}) \times (\overrightarrow{c} \times \overrightarrow{a}) = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{c}$$
 and deduce $\begin{bmatrix} \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} & \overrightarrow{a} \times \overrightarrow{b} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$

- 13. Prove that the necessary and sufficient condition for the function a of scalar variable to have a constant direction is $\frac{1}{a} \times \frac{d}{dt} = 0$
- 14. Find the angle between the surface $x^2+y^2+z^2=9$ and $z=x^2+y^2-3$ at the point (2,-),2)
- 15. Test the convergence of the series $\sum \frac{(n+1)^n x^n}{n^{n+1}}$
- 16. Find the radius of convergence and the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-1)^2}{\sqrt{n}}$$

Examination Control Division

2068 Bhadra

Exam.		Regular	
Level	BE .	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	1711	Time	3 lus.

[5]

Subject: - Engineering Mathematics II

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. State Euler's theorem for homogeneous function of two variables. If $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then prove that $x\frac{\partial u}{\partial y} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\operatorname{Cot} u$.
- 2. Find the minimum value of $x^2 + xy + y^2 + 3z^2$ under the condition x + 2y + 4z = 60. [5]
- 3. Change the order of integration and hence evaluate the same.

$$\int_0^a \int_0^a \frac{\cos y \, dy dx}{\sqrt{(a-x)(a-y)}}$$
 [5]

- 4. Find by double integration, the volume bounded by the plane z = 0, surface $z = x^2 + y^2 + 2$ and the cylinder $x^2 + y^2 = 4$. [5]
- 5. Prove that the plane through the point (α, β, γ) and the line x = py + q = rz + s is given by:

Find the magnitude and equation of the shortest distance between the lines:

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$

7. Find the equation of the sphere through the circle $x^2 + y^2 + z^2 - 3x + 4y - 2z$, 5 = 0, 5x - 2y + 4z + 7 = 0 as a great circle. [5]

OH

Find the equation which touches the sphere $x^2 + y^2 + z^2 + 2x - 6y + 1 = 0$ at (1, 2, -2) and passes through the point (1, -1, 0). [5]

- 8. Find the equation of the cone with vertex (∞, β, γ) and base $y^2 = 4ax$, z = 0 [5]
- 9. Solve the initial value problem

$$y'' - 4y' + 3y = 10e^{-2x}, y(0) = 1, y'(0) = 3.$$
 [5]

10. Solve by power series method the differential equation $y'' - 4xy' + (4x^2 - 2)y = 0$. [5]

1). Express $f(x) = x^3 - 5x^2 + 6x + 1$ in terms of Legendre's polynomials.

OR

Prove that
$$\frac{d}{dx} [x^{-n} J_n(x)] = -x^{-n} J_{n+1}(x)$$
. [5]

[5]

12. Find a set of vectors reciprocal to the following vectors:

$$-\vec{i}+\vec{j}+\vec{k}, \vec{i}-\vec{j}+\vec{k}, \vec{i}+\vec{j}-\vec{k}$$

13. Prove that $b \times c$, $c \times a$ and $a \times b$ are coplanar or non-coplanar according as a, b, c are coplanar or non-coplanar.

14. Prove that curl
$$(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \operatorname{div} \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{V}) \overrightarrow{b}$$
 [5]

OR

If u = x + y + z, $v = x^2 + y^2 + z^2$ and w = xy + yz + zx, show that $\{gradu\ gradv\ gradew\} = 0$

15. Test the convergence of the series: [5]

$$2x \div \frac{3x^2}{8} + \frac{4x^3}{27} + \dots + \frac{(n+1)}{n^3} x^{n'} + \dots$$

16. Find the radius of convergence and the interval of convergence of the power series: [5]

$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-3)^n}{n+1}$$

Examination Control Division

2067 Mangsir

Exam.	Regular / Back		
Level	BE	Full Marks	80
Programme	All (Except B.Arch.)	Pass Marks	32
Year / Part	I/U	? Time .	3 hes

[5]

Subject: - Engineering Mathematics II

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- State Euler's Theorem for a homogeneous function of two independent variables and verify it for the function: [114]

$$u = \frac{x^{1/4} + y^{1/4}}{x^{1/4} + y^{1/5}} \; .$$

- 2. Find the extreme value of $\phi = x^2 + y^2 + z^2$ connected by the relation ax + by + cz = p [5]
- By aluate: $\iint_{\mathbb{R}} xy dx dy$ where R is the region over the area of the ellipse $\frac{X^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant.
- 1 Transform to polar coordinates and complete the integral $\int_0^{2u} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dy dx$. [5]

OR

Evaluate: $\iiint x^{d-1}.y^{m-1}.z^{n-1}dxdydz$

where x, y, z are all positive but $\left(\frac{x}{a}\right)^p + \left(\frac{y}{b}\right)^q + \left(\frac{z}{c}\right)^r \le 1$.

- 5 Find the length of perpendicular from the point (3, -1, 11) to the line $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$.

 Also obtain the equation of the perpendicular.
- 6 Find the length and equation of the shortest distance between the lines $\frac{x + 3}{3} = \frac{y 8}{-1} = \frac{z 3}{1}; 2x 3y + 27 = 0 = 2y z + 20.$ [5]
- Find the centre and radius of the circle in which the sphere $x^2 + y^2 + z^2 8x + 4y = 8z 45 = 0$ is cut by the plane x 2y + 2z = 3.
- 8. Plane through OX and OY include an angle α . Show that their line of intersection lies on the cone $z^2(x^2 + y^2 + z^2) = x^2y^2 \tan^2 \alpha$. [5]

OK

Find the equation of the right circular cylinder whose guiding curve is the circle $x^2 + y^2 + z^2 - x - y + z = 0$, x + y + z = 1.

$$(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 0$$

$$J_{\frac{1}{2}}(x) = \sqrt{\frac{1}{\pi x}} \left(\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right)$$

$$P_n(x) = \frac{1}{2^n n} \frac{d^n}{dx^n} (x^2 - 1)^n$$

12. Prove that
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c}) = -2 \times [\vec{b} \times \vec{d}] = [5]$$

- 13. Prove that the necessary and sufficient condition for the vector function a of scalar variable λ to have a constant magnitude is $\begin{bmatrix} \frac{1}{2} & \frac{d^2}{dt} \\ a & \frac{d^2}{dt} \end{bmatrix} = 0$. [5]
- 14. Apply the power series method to solve following differential equation [5]: $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2y = 0$

15 Test the convergence of the series
$$\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2x^2 + \left(\frac{4}{5}\right)^3x^3 + \dots$$
 [5]

16. Show that
$$J_4(x) = \left(\frac{48}{x^3} - \frac{3}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$$
. [5]

Examination Control Division

2067 Chaitra

Exam.	New Back (2066 Batch Only)		
Level	BE	, Full Marks	80_
Programme	All (Except B.Arch.).	Pass Marks	32
Year / Part	I/II	Time	3 hrs.

Subject: - Engineering Mathematics II

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓. Assume suitable data if necessary,
- 1. State Euler's theorem of homogeneous equation of two variables. If $u = \sin^{-1} \frac{\sqrt{x} \sqrt{y}}{\sqrt{x} + \sqrt{y}}$.

Show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$$
. [1+4]

- 2. Find the extreme value of $x^2 + y^2 + z^2$ subject to the condition x + y + z = 1. [5]
- 3. Evaluate $\iint_{\mathbb{R}} xy dx dy$ where R is the region over the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant. [5]
- 4. Evaluate the integral by changing to polar co-ordinates. $\int_0^1 \int_{x}^{\sqrt{2}x/x^2} (x^2 + y^2) dy dx$.

OR

Find by triple integral, the volume common to the cylinders
$$x^2 + y^2 = a^2$$
 and $x^2 + z^2 = a^2$. [5]

- 5. Prove that $(b \times c) \times (c \times a) = [a \ b \ c] c$ and deduce that $[b \times c, c \times a, a \times b] = [a \ b \ c]^2$. [5]
- 6. Prove that the necessary and sufficient condition for the vector function of a scalar variable thave constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.
- 7. The position vector of a moving particle at any point is given by $\vec{r} = (t^2 + 1) \vec{i} + (4t 3) \vec{j} + (2t^2 6) \vec{k}$. Find the velocity and acceleration at t = 1. Also obtain the magnitudes.
- 8. Prove that the lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular if aa' + cc' + 1 = 0. [5]
- 9. Prove that the lines $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ and $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ intersect. Find also their point of intersection and plane through them. [5]
- 10. Find the centre and radius of the circle $x^2 + y^2 + z^2 \div x + y + z = 4$, x + y + z = 0.

11. Show that the equation of a cone whose vertex is (α, β, γ) and base the parabola $z^2 = 4ax$, y = 0 is $(\beta_2 - \gamma y)^2 = 4a(\beta - y)$ $(\beta x - \alpha y)$. [5]

OR

Find the equation of the right circular cylinder of radius 4 and axes of the line x = 2y = -z.

- 12. Test the convergence of the series $\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \frac{5}{4^p} + \frac{5}{5^p} + \dots$ [5]
- 13. Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^n (x-3)^n}{(n+1)}.$
- 14. Solve $(x+a)^2 \frac{d^2y}{dx^2} 4(x+a) \frac{dy}{dx} + 6y = x$. [5]
- 15. Solve the initial value problem $y'' + y' 2y = -6\sin 2x 18\cos 2x = 0, \ y(0) = 0, \ y'(0) = 0.$ [5]

[5]

16. Show that $J_{-n}(x) = (-1)^n J_n(x)$.

OR

Find the general solution of Legendre's differential equation.