Mathematical Workflow of the ML Prefetcher

1 What the Model is Solving

At every L2C access t, you build a small feature vector $x_t \in \mathbb{R}^d$ (bias, PC bucket, page-offset bucket, last hit/miss, access type, tiny stride memory). You have a small set of actions $\mathcal{A} = \text{candidate strides}$ in cache lines (e.g., $\{\pm 1, \pm 2, \pm 4, \pm 8\}$).

For each action $a \in \mathcal{A}$ you keep weights $w_a \in \mathbb{R}^d$ and compute a usefulness probability

$$p_t(a) = \sigma(w_a^{\top} x_t) = \frac{1}{1 + e^{-w_a^{\top} x_t}},$$

interpreted as the probability a prefetch with stride a will be useful later.

This is an **online**, **multi-class classification** with **delayed feedback** (a contextual bandit problem).

2 Why Logistic Regression (Derivation)

We want $p(y = 1 \mid x, a)$, the probability a prefetch is useful.

For label $y \in \{0, 1\}$:

$$\Pr(y = 1 \mid x, a) = \sigma(w_a^{\top} x).$$

Negative log-likelihood with L2 penalty:

$$\mathcal{L}(w_a) = - \left[y \log \sigma(z) + (1 - y) \log(1 - \sigma(z)) \right] + \frac{\lambda}{2} ||w_a||^2, \quad z = w_a^\top x.$$

Gradient:

$$\nabla_{w_a} \mathcal{L} = (\hat{y} - y)x + \lambda w_a.$$

Update with learning rate η :

$$w_a \leftarrow (1 - \eta \lambda) w_a + \eta (y - \hat{y}) x$$
.

3 Decision Rule: Threshold thr

Each prefetch has benefit B (cycles saved) and cost C (bandwidth, pollution). Expected net gain:

$$\mathbb{E}[\Delta] = pB - (1-p)C.$$

We issue if

$$p \geq \frac{C}{B+C} \equiv \mathtt{thr}.$$

4 Cap max_out

Limit how many prefetches are issued per access to avoid PQ/MSHR flooding:

$$\max_{\text{out}} \leq Q_{\text{free}} - m.$$

5 Timeout

A prefetch becomes useless if its age \geq TIMEOUT:

$$\text{if age} \geq \mathtt{TIMEOUT} \quad \Rightarrow \quad y = 0.$$

6 Weight Decay λ

Weights decay geometrically:

$$||w|| \approx (1 - \eta \lambda)^k ||w_0|| \approx e^{-\eta \lambda k} ||w_0||.$$

Half-life:

$$k_{1/2} = \frac{\ln 2}{\eta \lambda}.$$

7 Learning Rate η

For logistic regression stability:

$$\eta \lesssim \frac{1}{\frac{1}{4}||x||^2 + \lambda}.$$

8 ε -Greedy Exploration

With probability ε_t , try an alternate stride:

$$\varepsilon_t = \varepsilon_{\rm start} + \left(\varepsilon_{\rm end} - \varepsilon_{\rm start}\right) \min \Bigl(1, \tfrac{t}{T_{\rm decay}}\Bigr).$$

9 Windowed Controller

Every W accesses:

$$\alpha = \frac{U}{\max(1, I)}, \quad \kappa = \frac{U}{\max(1, M)},$$

where I = issued, U = useful, M = demand misses.

Rules:

- If $\kappa < \kappa_{\min}$ and $\alpha \ge \alpha_{hi}$: lower thr, raise max_out.
- If $\alpha < \alpha_{lo}$: raise thr, set max_out=1.

10 Full Workflow

- 1. Initialize: $w_a = 0$, knobs set, pending list empty.
- 2. On each access:
 - Build x_t , compute $p_t(a)$.
 - Apply ε -greedy.
 - Issue prefetches if $p_t(a) \ge \text{thr up to max_out}$.
- 3. Track pending prefetches; mark useful (y = 1) or timeout (y = 0).
- 4. Update weights via SGD.
- 5. Every W accesses: recompute α, κ , adapt knobs.
- 6. Report IPC, accuracy, coverage.

11 Why It Works

- Logistic regression gives calibrated probabilities.
- Threshold balances benefit vs cost.
- Timeout enforces timeliness.
- Decay forgets stale phases.
- Exploration prevents getting stuck.
- \bullet Windowed control stabilizes accuracy and coverage.