25th June, 2022 Shift-2

EE24BTECH11063 - Y.Harsha Vardhan Reddy

SINGLE CORRECT

a)
$$A - B = (-1, 1)$$

b)
$$B - A = R - (-3, 1)$$

c)
$$A \cap B = (-3, -1]$$

d)
$$A \cup B = R - [1, 3)$$

2) Let $a, b \in R$ be such that the equation $ax^2 - 2bx + 15 = 0$ has a repeated root α . If α and β are the roots of the equation $x^2 - 2bx + 21 = 0$, then $\alpha^2 + \beta^2$ is equal to:

3) Let z_1 and z_2 be two complex numbers such that $\bar{z_1} = i\bar{z_2}$; and $arg\left(\frac{z_1}{z_2}\right) = \pi$. Then

a)
$$argz_2 = \frac{\pi}{4}$$

b)
$$argz_2 = -\frac{3\pi}{4}$$

c)
$$argz_1 = \frac{\pi}{4}$$

d)
$$argz_1 = -\frac{3\pi}{4}$$

4) The system of equations

$$-kx + 3y - 14z = 25$$
$$-15x + 4y - kz = 3$$
$$-4x + y + 3z = 4$$

is consistent for all k in the set

b)
$$R - \{-11, 13\}$$
 c) $R - \{13\}$

c)
$$R - \{13\}$$

d)
$$R - \{-11, 11\}$$

5)
$$\lim_{x \to 0} \left(\tan^2 x \left(\left(2\sin^2 x + 3\sin x + 4 \right)^{\frac{1}{2}} - \left(\sin^2 x + 6\sin x + 2 \right)^{\frac{1}{2}} \right) \right)$$

a)
$$\frac{1}{12}$$

b)
$$-\frac{1}{18}$$

c)
$$-\frac{1}{12}$$

d)
$$\frac{1}{6}$$

6) The area of the region enclosed between the parabolas $y^2 = 2x - 1$ and $y^2 = 4x - 3$

d) $^{500}C_{101}(5)^{399}$

a) $\frac{1}{3}$	b) $\frac{1}{6}$	c) $\frac{2}{3}$	d) $\frac{3}{4}$
7) The coefficie	ent of x^{101} in the expression		
$(5+x)^{500} + x(5+x)^{499} + x^2(5+x)^{498} + \dots + x^{500}, x > 0$			
is			

8) The sum $1 + 2.3 + 3.3^2 + \cdots + 10.3^9$ is equal to :

a) ${}^{501}C_{101}(5)^{399}$ b) ${}^{501}C_{101}(5)^{400}$

a)
$$\frac{2.3^{12}+10}{4}$$
 b) $\frac{19.3^{10}+1}{4}$ c) $5.3^{10}-2$ d) $\frac{9.3^{10}+1}{2}$

9) Let P be the plane passing through the intersection of the planes $\vec{r} \cdot (\hat{i} + 3\hat{j} - \hat{k}) = 5$ and $\vec{r} \cdot (\hat{i} + 3\hat{j} - \hat{k}) = 5$ $(2\hat{i} - \hat{j} + \hat{k}) = 3$, and the point (2, 1, -2). Let the position vectors of the points X and Y be $\hat{i} - 2\hat{j} + 4\hat{k}$ and $5\hat{i} - \hat{j} + 2\hat{k}$ respectively. Then the points

c) $^{501}C_{100}(5)^{400}$

- a) X and X + Y are on the same side of P
- b) Y and Y X are on the opposite sides of P
- c) X and Y are on the opposite sides of P
- d) X + Y and X Y are the same side of P

10) A circle touches both the y-axis and the line x + y = 0. Then the locus of it's centre is:

a)
$$y = \sqrt{2}x$$

b) $x = \sqrt{2}y$
c) $y^2 - x^2 = 2xy$
d) $x^2 - y^2 = 2xy$

11) Water is being filled at the rate of $1 \text{ } cm^3/sec$ in a right circular conical vessel(vertex downwards) of height 35 cm and diameter 14 cm. When the height of the water level is 10cm, the rate (in cm^2/sec) at which the wet conical surface area of the vessel increase is

a) 5 b)
$$\frac{\sqrt{21}}{5}$$
 c) $\frac{\sqrt{26}}{5}$ d) $\frac{\sqrt{26}}{10}$

- 12) If $b_n = \int_0^{\frac{\pi}{2}} \frac{\cos^2 nx}{\sin x} dx \ n \in \mathbb{N}$, then

 - a) $b_3 b_2, b_4 b_3, b_5 b_4$ are in A.P. with common difference -2 b) $\frac{1}{b_3 b_2}, \frac{1}{b_4 b_3}, \frac{1}{b_5 b_4}$ are in A.P. with common difference 2 c) $b_3 b_2, b_4 b_3, b_5 b_4$ are in G.P. d) $\frac{1}{b_3 b_2}, \frac{1}{b_4 b_3}, \frac{1}{b_5 b_4}$ are in A.P. with common difference -2

13) If y = y(x) is the solution of the differential equation $2x^2 \frac{dy}{dx} - 2xy + 3y^2 = 0$ such that $y(e) = \frac{e}{3}$, then y(1) is equal to

a) $\frac{1}{3}$

b) $\frac{2}{3}$

c) $\frac{3}{2}$

- d) 3
- 14) If the angle made by the tangent at the point (x_0, y_0) on the curve

$$x = 12 (t + \sin t \cos t),$$

$$y = 12 (1 + \sin t)^2, 0 < t < \frac{\pi}{2}$$

with the positive x-axis is $\frac{\pi}{3}$, then y_0 is equal to:

a) $6(3 + 2\sqrt{2})$

b) $3(7+4\sqrt{3})$

c) 27

- d) 48
- 15) The value of $2 \sin (12^{\circ}) \sin (72^{\circ})$ is:
 - a) $\frac{\sqrt{5}(1-\sqrt{3})}{4}$

b) $\frac{1-\sqrt{5}}{8}$

c) $\frac{\sqrt{3}(1-\sqrt{5})}{2}$

d) $\frac{\sqrt{3}(1-\sqrt{5})}{4}$