Самостоятельная работа. Оценка прочости бетона с помощью ML LinearRegression

Состав типового домашнего задания дисциплине Математические методы обработки больших данных:

Содержание работы:

- 1. Провести первичный анализ данных concrete_data.csv
- 2. Выявить наличие ошибочных данных.
- 3. Выявить наличие выбросов.
- 4. Отфильтровать данные.
- 5. Определить характеристики для построения модели.
- 6. На освнове состава и сорках твердения бетона построить модель прочности бетона.
- 7. Оценить ее качество.
- 8. Представить полученные результаты.

Создать модель, которая будет предсказывать прочности бетона по его характеристикам файл concrete_data.csv

Состав:

- 1. Цемент
- 2. Доменный шлак
- 3. Зола уноса
- 4. Вода
- 5. Суперпластификатор
- 6. Крупный заполнитель
- 7. Песок
- 8. Возраст
- 9. Прочность целевая переменная

```
In [1]:

import pandas as pd #6υδρινοπεκα для работы с наборми данных import numpy as np #πο же для выполнения математических операций import seaborn as sns # графическое изображение данных import matplotlib.pyplot as plt # тоже

from sklearn.model_selection import train_test_split # δυδρινοπεκα для тренировки выборки from sklearn.linear_model import LinearRegression # создание регрессионной линеной модели

from sklearn.metrics import r2_score, mean_squared_error # использование метрик для оценки достоверности модели import warnings
warnings.filterwarnings("ignore")

df = pd.read_csv('../concrete_data.csv') # набор данных загружаемый с файла CSV
df
```

Out[1]:

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.28
1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.18
1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.70
1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.77
1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.40

1030 rows × 9 columns

In [2]: 1 df.info() # информация о фрейме данных <class 'pandas.core.frame.DataFrame'>

RangeIndex: 1030 entries, 0 to 1029 Data columns (total 9 columns): Non-Null Count Dtype Column 0 Cement 1030 non-null float64 Blast Furnace Slag 1030 non-null float64 Fly Ash 1030 non-null float64 Water 1030 non-null float64 Superplasticizer 1030 non-null float64 Coarse Aggregate 1030 non-null float64 Fine Aggregate 6 1030 non-null float64 1030 non-null Age int64 Strength 1030 non-null float64 dtypes: float64(8), int64(1) memory usage: 72.5 KB

\sim	٠.	+	Г-	٠-	١.

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000
mean	281.167864	73.895825	54.188350	181.567282	6.204660	972.918932	773.580485	45.662136	35.817961
std	104.506364	86.279342	63.997004	21.354219	5.973841	77.753954	80.175980	63.169912	16.705742
min	102.000000	0.000000	0.000000	121.800000	0.000000	801.000000	594.000000	1.000000	2.330000
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.950000	7.000000	23.710000
50%	272.900000	22.000000	0.000000	185.000000	6.400000	968.000000	779.500000	28.000000	34.445000
75%	350.000000	142.950000	118.300000	192.000000	10.200000	1029.400000	824.000000	56.000000	46.135000
max	540.000000	359.400000	200.100000	247.000000	32.200000	1145.000000	992.600000	365.000000	82.600000

In [5]:

- 1 sns.set()
 2 pic = sns.pairplot(df, kind='reg')
 3 pic.savefig("pairplot.png")


```
In [8]: 1 corr = df.corr() # корреляционная таблица для получения сведений о взаимной корреляции между столбцами фрейма 2 corr
```

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Strength
Cement	1.000000	-0.275216	-0.397467	-0.081587	0.092386	-0.109349	-0.222718	0.081946	0.497832
Blast Furnace Slag	-0.275216	1.000000	-0.323580	0.107252	0.043270	-0.283999	-0.281603	-0.044246	0.134829
Fly Ash	-0.397467	-0.323580	1.000000	-0.256984	0.377503	-0.009961	0.079108	-0.154371	-0.105755
Water	-0.081587	0.107252	-0.256984	1.000000	-0.657533	-0.182294	-0.450661	0.277618	-0.289633
Superplasticizer	0.092386	0.043270	0.377503	-0.657533	1.000000	-0.265999	0.222691	-0.192700	0.366079
Coarse Aggregate	-0.109349	-0.283999	-0.009961	-0.182294	-0.265999	1.000000	-0.178481	-0.003016	-0.164935
Fine Aggregate	-0.222718	-0.281603	0.079108	-0.450661	0.222691	-0.178481	1.000000	-0.156095	-0.167241
Age	0.081946	-0.044246	-0.154371	0.277618	-0.192700	-0.003016	-0.156095	1.000000	0.328873
Strength	0.497832	0.134829	-0.105755	-0.289633	0.366079	-0.164935	-0.167241	0.328873	1.000000

По полученным графикам и таблицам анализируем взимозависимость данных друг от друга

Видно что каждый из параметров не сильно влияет на другой, в то же время нет параметра незначительно влияющего на целевую функцию, следовательно принимаем решение оставить все исходные данные для дальнейшего анализа

Пишем функцию для того что бы для каждого столбца удалить выборсы, далее применяем функцию на каждый столбец

```
In [12]:
            1 def remove_outlier(df, col_name):
                   plt.figure(figsize=(20,20))
                   f, axes = plt.subplots(1, 2,figsize=(12,4)) sns.boxplot(df[col_name], ax=axes[0], color='red').set_title("До удаления выбросов: "+col_name)
            3
            4
            5
                   Q1 = df[col_name].quantile(0.25)
            6
                   Q3 = df[col\_name].quantile(0.75)
                   IOR = 03-01
                   df[col\_name] = df[col\_name].apply(lambda \ x \ : \ Q1-1.5*IQR \ if \ x \ < \ (Q1-1.5*IQR) \ else \ (Q3+1.5*IQR \ if \ x > (Q3+1.5*IQR) \ else \ x))
            8
            9
                    sns.boxplot(df[col_name], ax=axes[1], color='purple').set_title("После удаления выбросов: "+col_name)
           10
                   print()
                   plt.show()
           11
           12
                   return df
           13
           14 for col in df.select_dtypes(exclude="object").columns[:-1]:
                   df = remove_outlier(df,col)
```


Отделяем данные от целевой функции

Out[8]:

```
In [13]: 1 X = df.drop("Strength", axis = 1).values
2 Y = df["Strength"]
```

Разбиваем данные на тестировочную выборку и тренировочную

```
In [14]: 1 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 4, test_size = 0.3)
2 print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape) # выводим размеры получившихся матриц после разбития данных
(721, 8) (721,) (309, 8) (309,)
```

Пишем функцию построения модели и проверки её достоверности с помощью метрик

```
In [17]:

def model_train(model, X_train, Y_test, Y_train, Y_test):
    model.fit(X_train, Y_train)

y_pred = model.predict(X_test)

print("Коэфициент детерминации :", r2_score(Y_test, Y_pred))

print("Средняя квадратичная ошибка :", mean_squared_error(Y_test, Y_pred))

print("Средняя ошибка :", mean_squared_error(Y_test, Y_pred))

print("Средняя ошибка :", mean_squared_error(Y_test, Y_pred)**0.5)

sns.regplot(Y_test, Y_pred)
```

In [18]: 1 model_train(LinearRegression(), X_train, X_test, Y_train, Y_test)

Коэффициент детерминации : 0.7169162755604069 Средняя квадратичная ошибка : 83.91953664961635 Средняя ошибка : 9.160760702562662

Вывод

- 1. В данной работе произведена попытка анализа прочности бетона от входящих в его состав ингридиентов: цементирующие материалы, песок, вода, крупный заполнитель, пластификатор, а так же сроки его твердения;
- 2. Получена модель линейной регрессии с коэффициентом детерминации 0.71 что является хорошим результатом
- 3. При анализе было выявлено что выборка яляется качественной отсутствуют NaN значения в всех столбцах, все столбцы нужны для анализа прочности бетона