

Lecture 6: Introduction to Probability

Dr. A. Ramesh

Department of Management Studies

Lecture objectives

- Comprehend the different ways of assigning probability
- Understand and apply marginal, union, joint, and conditional probabilities
- Solve problems using the laws of probability including the laws of addition, multiplication and conditional probability
- Revise probabilities using Bayes' rule

Probability

- Probability is the numerical measure of the likelihood that an event will occur.
- The probability of any event must be between 0 and 1, inclusively
 - $-0 \le P(A) \le 1$ for any event A.
- The sum of the probabilities of all mutually exclusive and collectively exhaustive events is 1.
 - P(A) + P(B) + P(C) = 1
 - A, B, and C are mutually exclusive and collectively exhaustive

Range of Probability

Methods of Assigning Probabilities

- Classical method of assigning probability (rules and laws)
- Relative frequency of occurrence (cumulated historical data)
- Subjective Probability (personal intuition or reasoning)

Classical Probability

- Number of outcomes leading to the <u>event</u> divided by the total number of outcomes possible
- Each outcome is <u>equally likely</u>
- Determined *a priori* -- before performing the experiment
- Applicable to games of chance
- Objective -- everyone correctly using the method assigns an identical probability

Classical Probability

$$P(E) = \frac{n_e}{N}$$

Where:

N = total number of outcomes

 n_e = number of outcomes in E

Relative Frequency Probability

- Based on historical data
- Computed after performing the experiment
- Number of times an event occurred divided by the number of trials
- Objective -- everyone correctly using the method assigns an identical probability

Relative Frequency Probability

$$P(E) = \frac{n_e}{N}$$
Where:

N = total number of trials

 η_e = number of outcomes

producing E

Subjective Probability

- Comes from a person's intuition or reasoning
- Subjective -- different individuals may (correctly) assign different numeric probabilities to the same event
- Degree of belief
- Useful for unique (single-trial) experiments
 - New product introduction
 - Initial public offering of common stock
 - Site selection decisions
 - Sporting events

Probability - Terminology

- Experiment
- Event
- Elementary Events
- Sample Space
- Unions and Intersections
- Mutually Exclusive Events
- Independent Events
- Collectively Exhaustive Events
- Complementary Events

Experiment, Trial, Elementary Event, Event

- Experiment: a process that produces outcomes
 - More than one possible outcome
 - Only one outcome per trial
- Trial: one repetition of the process
- Elementary Event: cannot be decomposed or broken down into other events
- Event: an outcome of an experiment
 - may be an elementary event, or
 - may be an aggregate of elementary events
 - usually represented by an uppercase letter, e.g., A, E1

An Example Experiment

- Experiment: randomly select, without replacement, two families from the residents of Tiny Town
- Elementary Event: the sample includes families A and C
- Event: each family in the sample has children in the household
- Event: the sample families own a total of four automobiles

Tiny Town Population					
Family	ly Children in Number o Household Automobile				
A B C D	Yes Yes No Yes	3 2 1 2			

Sample Space

- The set of all elementary events for an experiment
- Methods for describing a sample space
 - roster or listing
 - tree diagram
 - set builder notation
 - Venn diagram

Sample Space: Roster Example

 Experiment: randomly select, without replacement, two families from the residents of Tiny Town

Each ordered pair in the sample space is an elementary event, for example

-- (D,C)

Family	Children in Household	Number of Automobiles
A	Yes	3
B	Yes	2
C	No	1
D	Yes	2

Listing of Sample Space
(A,B), (A,C), (A,D), (B,A), (B,C), (B,D), (C,A), (C,B), (C,D), (D,A), (D,B), (D,C)

Sample Space: Tree Diagram for Random Sample of Two Families

Sample Space: Set Notation for Random Sample of Two **Families**

- $S = \{(x,y) \mid x \text{ is the family selected on the first draw, and y is the family } \}$ selected on the second draw}
- Concise description of large sample spaces

Sample Space

Useful for discussion of general principles and concepts

Listing of Sample Space

Union of Sets

 The union of two sets contains an instance of each element of the two sets.

$$X = \{1,4,7,9\}$$

$$Y = \{2,3,4,5,6\}$$

$$X \cup Y = \{1,2,3,4,5,6,7,9\}$$

$$C = \{IBM, DEC, Apple\}$$
 $F = \{Apple, Grape, Lime\}$
 $C \cup F = \{IBM, DEC, Apple, Grape, Lime\}$

Intersection of Sets

The intersection of two sets contains only those element common to the

$$X = \{1,4,7,9\}$$
$$Y = \{2,3,4,5,6\}$$
$$X \cap Y = \{4\}$$

$$C = \{IBM, DEC, Apple\}$$
 $F = \{Apple, Grape, Lime\}$
 $C \cap F = \{Apple\}$

Mutually Exclusive Events

- Events with no common outcomes
- Occurrence of one event precludes the occurrence of the other event

$$C = \{IBM, DEC, Apple\}$$

 $F = \{Grape, Lime\}$
 $C \cap F = \{\}$

$$X = \{1,7,9\}$$

 $Y = \{2,3,4,5,6\}$
 $X \cap Y = \{\}$

$$P(X \cap Y) = 0$$

Independent Events

- Occurrence of one event does not affect the occurrence or nonoccurrence of the other event
- The conditional probability of X given Y is equal to the marginal probability of X.
- The conditional probability of Y given X is equal to the marginal probability of Y.

$$P(X|Y) = P(X)$$
 and $P(Y|X) = P(Y)$

Collectively Exhaustive Events

Contains all elementary events for an experiment

Complementary Events

All elementary events not in the event 'A' are in its complementary event.

$$P(Sample Space) = 1$$

$$P(A') = 1 - P(A)$$

Counting the Possibilities

- mn Rule
- Sampling from a Population with Replacement
- Combinations: Sampling from a Population without Replacement

mn Rule

- If an operation can be done m ways and a second operation can be done n ways, then there are mn ways for the two operations to occur in order.
- This rule is easily extend to k stages, with a number of ways equal to $n_1.n_2.n_3..n_k$
- Example: Toss two coins. The total umber of simple events is 2 x 2 =4

Sampling from a Population with Replacement

- A tray contains 1,000 individual tax returns. If 3 returns are randomly selected with replacement from the tray, how many possible samples are there?
- $(N)^n = (1,000)^3 = 1,000,000,000$

Combinations

 A tray contains 1,000 individual tax returns. If 3 returns are randomly selected without replacement from the tray, how many possible samples are there?

$$\left(\frac{N}{n}\right) = \frac{N!}{n!(N-n)!} = \frac{1000!}{3!(1000-3)!} = 166,167,000$$

Four Types of Probability

Marginal	Union	Joint	Conditional	
P(X)	$P(X \cup Y)$	$P(X \cap Y)$	P(X Y)	
The probability of X occurring	The probability of X or Y occurring	The probability of X and Y occurring	The probability of X occurring given that Y has occurred	
X	XY	XY	Y	

General Law of Addition

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

Design for improving productivity?

Problem

- A company conducted a survey for the American Society of Interior
 Designers in which workers were asked which changes in office design
 would increase productivity.
- Respondents were allowed to answer more than one type of design change.

Reducing noise would increase productivity	70 %
More storage space would increase productivity	67 %

Problem

- If one of the survey respondents was randomly selected and asked what office design changes would increase worker productivity,
 - what is the probability that this person would select reducing noise or more storage space?

Solution

- Let N represent the event "reducing noise."
- Let S represent the event "more storage/ filing space."
- The probability of a person responding with N or S can be symbolized statistically as a union probability by using the law of addition.

 $P(N \cup S)$

General Law of Addition -- Example

$$P(N \cup S) = P(N) + P(S) - P(N \cap S)$$

$$P(N) = .70$$

 $P(S) = .67$
 $P(N \cap S) = .56$
 $P(N \cup S) = .70 + .67 - .56$
 $= 0.81$

Office Design Problem Probability Matrix

Increase Storage Space

Noise Reduction

	Yes	No	Total
Yes	.56	.14	.70
No	.11	.19	.30
Total	.67	.33	1.00

Joint Probability Using a Contingency Table

Office Design Problem - Probability Matrix

Increase Storage Space				
		Yes	No	Total
Noise Reduction	Yes	.56	.14	.70
	No	.11	.19	.30
	Total	.67	.33	1.00

$$P(N \cup S) = P(N) + P(S) - P(N \cap S)$$

=.70+.67-.56
=.81

Law of Conditional Probability

$$P(N) = .70$$

$$P(N \cap S) = .56$$

$$P(S|N) = \frac{P(N \cap S)}{P(N)}$$

$$= \frac{.56}{.70}$$

$$= .80$$

Office Design Problem

Increase Storage Space				
		Yes	No	Total
Noise	Yes	.56	.14	.70
Reduction	No	.11	.19	.30
	Total	.67	.33	1.00

$$P(\overline{N} \mid S) = \frac{P(\overline{N} \cap S)}{P(S)} = \frac{.11}{.67}$$
$$= .164$$

Problem

- A company data reveal that 155 employees worked one of four types of positions.
- Shown here again is the raw values matrix (also called a contingency table)
 with the frequency counts for each category and for subtotals and totals
 containing a breakdown of these employees by type of position and by
 sex.

Contingency Table

COMPANY HUMAN RESOURCE DATA

		S	ex	
		Male	Female	
Type of Position	Managerial	8	3	11
	Professional	31	13	44
	Technical	52	17	69
	Clerical	9	22	31
	,	100	55	155

Solution

• If an employee of the company is selected randomly, what is the probability that the employee is female or a professional worker?

$$P(F \cup P) = P(F) + P(P) - P(F \cap P)$$

$$P(F \cup P) = .355 + .284 - .084 = .555.$$

Problem

- Shown here are the raw values matrix and corresponding probability matrix for the results of a national survey of 200 executives who were asked to identify the geographic locale of their company and their company's industry type.
- The executives were only allowed to select one locale and one industry type.

