Cálculo Avanzado

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Práctica: 8

Tema: Sistemas de ecuaciones lineales.

Profesor Titular: Manuel Carlevaro **Jefe de Trabajos Prácticos**: Diego Amiconi

Ejercicio 1.

Escriba la matriz aumentada para los siguientes sistemas lineales de ecuaciones, y obtenga la solución usando eliminación gaussiana con sustitución hacia atrás:

$$\begin{cases} 2x_1 - x_2 + x_3 = -1\\ 4x_1 + 2x_2 + x_3 = 4\\ 6x_1 - 4x_2 + 2x_3 = -2 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - x_3 = 1 \\ 2x_1 - x_2 + x_3 = 3 \\ -x_1 + 2x_2 + 3x_3 = 7 \end{cases}$$

c)

$$\begin{cases} x_2 + x_3 + x_4 = 0\\ 3x_1 + 3x_3 - 4x_4 = 7\\ x_1 + x_2 + x_3 + 2x_4 = 6\\ 2x_1 - 3x_2 + x_3 + 3x_4 = 6 \end{cases}$$

Ejercicio 2.

a) Resuelva el sistema:

$$\begin{cases} 3.02x_1 - 1.05x_2 + 2.53x_3 = -1.61 \\ 4.33x_1 + 0.56x_2 - 1.78x_3 = 7.23 \\ -0.83x_1 - 0.54x_2 + 1.47x_3 = -3.38 \end{cases}$$

utilizando eliminación gaussiana con sustitución hacia atrás.

b) Cambie el coeficiente de x_1 en la primera ecuación a 3.01 y resuelva el sistema resultante. ¿En qué porcentaje cambian las componentes del nuevo vector solución?

c) Vuelva el coeficiente de x_1 a su valor original en la primera ecuación, pero cambie el término independiente de la segunda ecuación a 1.99 y resuelva el nuevo sistema. ¿Cuál es el cambio porcentual en las tres componentes de la solución comparados con sus valores de la parte a)?

Ejercicio 3.

Verifique que las matrices triangulares $\mathbb L$ y $\mathbb U$ siguientes:

$$\mathbb{L} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 5 & 12 & 1 \end{bmatrix}, \quad \mathbb{U} = \begin{bmatrix} 1 & 4 & 3 \\ 0 & -1 & 3 \\ 0 & 0 & -53 \end{bmatrix}$$

factorizan la matriz

$$\mathbb{A} = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 7 & 9 \\ 5 & 8 & -2 \end{bmatrix}$$

Ejercicio 4.

Resuelva el sistema $\mathbb{A}x = b$ para cada uno de los siguientes términos independientes:

$$\mathbb{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 1 & 2 & 3 \\ 1 & -1 & 1 & 2 \\ -1 & 1 & -1 & 5 \end{bmatrix}, \ \boldsymbol{b}_1 = \begin{bmatrix} 10 \\ 5 \\ 3 \\ 4 \end{bmatrix}, \ \boldsymbol{b}_2 = \begin{bmatrix} -4 \\ -5 \\ -3 \\ -4 \end{bmatrix}, \ \boldsymbol{b}_3 = \begin{bmatrix} -2 \\ -3 \\ 1 \\ -8 \end{bmatrix}$$

Ejercicio 5.

Resuelva el sistema lineal con aritmética de redondeo de tres dígitos y utilice una estrategia de pivoteo parcial escalado.

$$\begin{cases} 2.11x_1 - 4.21x_2 + 0.921x_3 + 2.01 \\ 4.01x_1 + 10.2x_2 - 1.12x_3 = -3.09 \\ 1.09x_1 + 0.987x_2 + 0.832x_3 = 4.21 \end{cases}$$

Ejercicio 6.

Dado el siguiente sistema de ecuaciones:

$$\begin{cases} 2x_1 + 5x_2 + x_3 + 8x_4 = 78 \\ 7x_1 + 2x_3 + x_4 = 24 \\ x_1 + 4x_2 + x_3 + 4x_4 = 46 \\ 8x_1 + 3x_2 + 2x_3 + 5x_4 = 62 \end{cases}$$

resolver el sistema implementando el método de Jacobi y el de Gauss-Seidel, con relajación, y comparar las velocidades de convergencia de cada método.