EEEN20060 Communication Systems

Introduction

Brian Mulkeen

UCD School of Electrical,
Electronic and Communications

Scoil na hInnealtóireacht Leictrí, Leictreonaí agus Cumarsáide UCD

Example Communication Systems

- Consider the application
 - what type of information is transferred?
 - for what purpose?
- Consider the system
 - the infrastructure that makes it possible
 - we design a communication system to facilitate the application ?
 - applications develop because the system exists ?

What is a Communication System ?

- Communication ?
 - transfer of information
 - (word has other meanings)
- Telecommunication?
 - communication at a distance
- Our focus

- electronic communication systems
- using electrical signals
- using electromagnetic waves

How to Communicate?

- Angela wants to get a message to François
 - what does she do?
 - what must be decided or known?

- What if no communication systems exist?
 - have to start from zero?

4

Communication **Protocols**

- Protocol = set of rules
 - things that must be agreed so that we can communicate reliably

Many issues, at different levels

- what electrical signals will we use?
 - in digital system, minimum 2, to represent 1 and 0
- what language are we using?
- how do we represent letters of the alphabet?
- how do I know you want to connect?
- and how do you know I accept?

- Developed by ISO in late 1970s
 - International Organisation for Standardization
 - aim: "Open Systems Interconnection" (OSI)
 - connect computers from any manufacturers
- Divides problem into 7 layers
 - each layer has separate, well-defined function
 - uses services provided by layer below
 - provides defined services to layer above
 - allows change to one aspect of system without re-design of other layers...

• Used as a reference model in designs

- ideas adopted in various ways
- not fully used in any popular network...

Standards

Early days – private standards

- one telephone company can use any signals
- one (mainframe) computer manufacturer can interconnect computers any way it wants
- proprietary protocols owned by one company

But soon need to agree standard protocols

- competing telephone companies must interconnect
- connect computers from different manufacturers
- use any mobile phone on any network...

1. Physical Layer

- deals with transfer of bits knows nothing else
- operates on a link directly connected devices
- moves bits from A to B, reasonably reliably

2. (Data) Link Layer

- organises stream of bits, makes link reliable
- on a shared link, arranges sharing...

3. Network Layer

- makes devices and links work as a network
- finds routes from source to destination
- deals with congestion

Layers continued...

4. Transport Layer

- operates end-to-end, across network
 - between communicating devices
- makes network appear reliable

5. Session Layer

- controls dialogue between processes
- authentication, restoration if connection lost...

6. Presentation Layer

- concerned with meaning of data
 - lower layers only carry blocks of bits
- ensures data is understood at each end
- translation, encryption...

Layers continued...

7. Application Layer

- does what is actually wanted
- examples:
 - send e-mail
 - transfer a file to another computer
 - get a web page from a web server

Notes

UCD BUBLIN

- lower layers point-to-point
- higher layers end-to-end
- only network layer knows network topology

- higher layers usually in software

10

ISO model for Open Systems Interconnection APDU Application Application 6 Presentation Session SPDU Transport TPDU Communication subnet boundary Network Data link Data link Physical Physical Physical Physical Host A Network layer host-router protocol image from Data link layer host-router protocol Tanenbaum Physical layer host-router protocol

Module Outline

- Introduction
 - basic concepts
- Physical Layer Introduction
 - just the key issues more later
 - details in Communication Theory modules
- Link Layer providing reliable links
 - problems, possible solutions, examples
 - analysis and design of protocols
- Medium Access Control sub-layer
 - method of sharing the communication path
 - analysis of efficiency

Practical Work

- Lab each week, Eng.329 3 offerings
 - Thursday 11:00 to 13:00
 - Friday 11:00 to 13:00
 - Friday 15:00 to 17:00
 - starting week 1
- Assignments
 - mostly computer-based, using C
 - write software to implement protocols
 - e.g. design & implement a link-layer protocol
 - e.g. communicate over the Internet

- Problem-based learning
 - independent learning will be expected

(sequence may change) Network Layer

Module Outline

- topology, switching methods, routing
- problems, possible solutions, examples
- Physical Layer revisited
 - more details, practical channels, analysis
- Transport Layer (if time permits)
 - problems, possible solutions
 - focus on Internet examples: TCP, UDP

- Application Layer (in passing)
 - some common Internet examples
 - illustrated in lab assignment

Assessment

- Lab work and Assignments 40%
 - some short one day
 - others longer design assignments
 - reports graded and returned with comments
- Open-book Exam 60%
 - bring your lecture notes and one textbook
 - questions on design, problem solving
 - assess your understanding of the topics
 - not your memory!
 - assess your ability to apply your knowledge
 - solve a problem that you have not seen before

16

Books

- Tanenbaum and Wetherall
 - Computer Networks, 5th edition, international
 - Pearson, 2013, ISBN-13: 978-1292024226
 - or e-book, 2014, 978-1292031668
 - bottom-up approach
- Kurose and Ross
 - Computer Networking, 6th edition, international
 - Pearson, 2012, ISBN-13: 978-0273768968
 - or e-book, 2013, 978-0273784876
 - top-down approach

- Many others available
 - but not called "Communication Systems"
 - that usually maps to Communication Theory

Communication System Concepts

Sender, source of information

Information

Receiver, user of information

- One-way communication
 - one sender, one receiver
 - one sender, many receivers (broadcast)
 - many senders, one receiver
- Two-way communication

- users or devices can send and receive
- one way at a time or both ways at same time?
- two users communicate at a time or many?

Connections ? Hello, will you communicate with me? OK, what do you want? Blah Blah OK, Bye

- Some systems use "connection" idea
 - first set up connection with another user
 - communicate as required, then clear connection
 - allows better reliability, security...
- UCD DUBLIN
- Other systems are "connection-less"
 - just send message to desired user
 - simpler, quicker to get started...

UCD DUBLIN

- Arises in systems with many users or devices
 - often communicating one-to-one at any time
- Need some way of identifying users/devices
 - specify who/what you want to connect to
 - or specify destination for message
- Names or numbers

- examples ?

20

