[CSP-S 2022] 假期计划

题目描述

小熊的地图上有 n 个点,其中编号为 1 的是它的家、编号为 $2,3,\ldots,n$ 的都是景点。部分点对之间有双向直达的公交线路。如果点 x 与 z_1 、 z_1 与 z_2 、……、 z_{k-1} 与 z_k 、 z_k 与 y 之间均有直达的线路,那么我们称 x 与 y 之间的行程可转车 k 次通达;特别地,如果点 x 与 y 之间有直达的线路,则称可转车 0 次通达。

很快就要放假了,小熊计划从家出发去 4 个**不同**的景点游玩,完成 5 段行程后回家: 家 \rightarrow 景点 A \rightarrow 景点 B \rightarrow 景点 C \rightarrow 景点 D \rightarrow 家且每段行程最多转车 k 次。转车时经过的点没有任何限制,既可以是家、也可以是景点,还可以重复经过相同的点。例如,在景点 A \rightarrow 景点 B 的这段行程中,转车时经过的点可以是家、也可以是景点 C ,还可以是景点 D \rightarrow 家这段行程转车时经过的点。

假设每个景点都有一个分数,请帮小熊规划一个行程,使得小熊访问的四个**不同**景点的分数之和最大。

输入格式

第一行包含三个正整数 n, m, k,分别表示地图上点的个数、双向直达的点对数量、每段行程最多的转车次数。

第二行包含 n-1 个正整数, 分别表示编号为 $2,3,\ldots,n$ 的景点的分数。

接下来 m 行,每行包含两个正整数 x,y,表示点 x 和 y 之间有道路直接相连,保证 $1 \le x,y \le n$,且没有重边,自环。

输出格式

输出一个正整数,表示小熊经过的4个不同景点的分数之和的最大值。

样例 #1

样例输入#1

```
      8 8 1

      9 7 1 8 2 3 6

      1 2

      2 3

      3 4

      4 5

      5 6

      6 7

      7 8

      8 1
```

样例输出#1

27

样例 #2

样例输入#2

```
7 9 0
1 1 1 2 3 4
1 2
2 3
3 4
1 5
1 6
1 7
5 4
6 4
7 4
```

样例输出#2

7

提示

【样例解释#1】

当计划的行程为 $1\to 2\to 3\to 5\to 7\to 1$ 时,4 个景点的分数之和为 9+7+8+3=27,可以证明其为最大值。

行程 $1 \to 3 \to 5 \to 7 \to 8 \to 1$ 的景点分数之和为 24、行程 $1 \to 3 \to 2 \to 8 \to 7 \to 1$ 的景点分数 之和为 25。它们都符合要求,但分数之和不是最大的。

行程 $1 \to 2 \to 3 \to 5 \to 8 \to 1$ 的景点分数之和为 30,但其中 $5 \to 8$ 至少需要转车 2 次,因此不符合最多转车 k=1 次的要求。

行程 $1 \to 2 \to 3 \to 2 \to 3 \to 1$ 的景点分数之和为 32,但游玩的并非 4 个不同的景点,因此也不符合要求。

【样例 #3】

见附件中的 holiday/holiday3.in 与 holiday/holiday3.ans。

【数据范围】

对于所有数据,保证 $5 \le n \le 2500$, $1 \le m \le 10000$, $0 \le k \le 100$,所有景点的分数 $1 \le s_i \le 10^{18}$ 。保证至少存在一组符合要求的行程。

测试点编号	$n \leq$	$m \leq$	$k \leq$
-------	----------	----------	----------

测试点编号	$n \leq$	$m \leq$	$k \leq$
$1\sim 3$	10	20	0
$4\sim 5$	10	20	5
$6\sim 8$	20	50	100
$9\sim11$	300	1000	0
$12\sim14$	300	1000	100
$15\sim17$	2500	10000	0
$18\sim 20$	2500	10000	100