EE6367: Topics in Data Storage and Communications

2023

Lecture 12: 5 October 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

12.1 Distributed Stochastic Gradient Descent

Note that if $\mathbf{h_1}(\mathbf{x})$ and $\mathbf{h_2}(\mathbf{x})$ are independent stochastic graidents, then $\frac{1}{2}(\mathbf{h_1}(\mathbf{x}) + \mathbf{h_2}(\mathbf{x}))$ is also a stochastic gradient.

Definition 12.1. The **variance** of a stochastic gradient h(x) is defined as

$$\operatorname{Var}\left(\mathbf{h}\left(\mathbf{x}\right)\right) \triangleq \mathbb{E}\left[\left\|\mathbf{h}\left(\mathbf{x}\right) - \nabla f\left(\mathbf{x}\right)\right\|_{2}^{2}\right].$$
(12.1)

Suppose that $\mathbf{h_i}$, $1 \leq i \leq k$ are iid stochastic gradients and $Var(\mathbf{h_i}) \leq \sigma^2$. Then,

$$\bar{\mathbf{h}} \triangleq \frac{1}{k} \sum_{i=1}^{k} \mathbf{h_i} \tag{12.2}$$

is also a stochastic gradient where $\operatorname{Var}\left(\overline{\mathbf{h}}\right) \leqslant \frac{\sigma^2}{k}$. We can reduce communication costs by quantizing the stochastic gradients. If an unbiased quantizer is used, then the quantized gradients will also be stochastic.

Theorem 12.2 (Averaged SGD). Suppose that $\mathcal{X} \subset \mathbb{R}^d$ is a convex set and $f : \mathcal{X} \to \mathbb{R}$ is a convex L-smooth function, where for some L > 0 and $\forall x, y$,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_{2} \le L \|\mathbf{x} - \mathbf{y}\|_{2}.$$
 (12.3)

Consider an SGD with initial point $\mathbf{x_0}$. Then, let

$$\sup_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} - \mathbf{x_0}\|_2 \leqslant R \tag{12.4}$$

and let T be the number of iterations in the SGD, with learning rate

$$\eta_t = \frac{1}{L + \frac{1}{\gamma}}, \quad \gamma = \frac{R}{\sigma} \sqrt{\frac{2}{T}}$$
(12.5)

where σ is the variance of the stochastic gradient. Suppose the SGD generates points $\mathbf{x_i}$, $1 \leq i \leq T$. Then,

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{i=1}^{T}\mathbf{x_{i}}\right)\right] - \min_{\mathbf{x} \in \mathcal{X}}f\left(\mathbf{x}\right) \leqslant R\sqrt{\frac{2\sigma^{2}}{T}} + \frac{LR^{2}}{T}$$
(12.6)

Notice that for large T and $\sigma^2 = 0$, the averaged SGD converges to the true minimum.

Note also that the speed of SGD depends on

- 1. Time to compute unquantized stochastic gradients $\mathbf{h_i}$.
- 2. Time complexity of quantization for the gradients.
- 3. Number of GPUs used and resources available.
- 4. Total communication time.

In these settings, the preferred quantization method is k-bit randomized rounding, since it is unbiased, and also

$$\mathbb{E}\left[\left\|Q\left(\mathbf{x}\right)\right\|_{0}\right] \leqslant 2^{k} \left(2^{k} + \sqrt{d}\right). \tag{12.7}$$

That is, the quantized \mathbf{x} is sparse. Hence, we can send the values and locations. The total number of bits needed is thus

$$B \leqslant k\sqrt{d} + \log\binom{d}{k\sqrt{d}} \leqslant k\sqrt{d} + \mathcal{O}\left(\sqrt{d}\log d\right) \leqslant \mathcal{O}\left(\sqrt{d}\log d\right). \tag{12.8}$$