
Email: support@willar.com

TS12864A-3

图形点阵液晶显示模块使用手册

☆☆☆☆ Email: support@willar.com

概述:

点阵格式: 128x64 显示类型: STN

视 角: 6 点 (bottom view)

显示色彩: green

背 光: LED背光, 黄绿色

篇振模式: Positive, Reflective/Transflective

驱动方式: 1/64Duty Cycle, 1/9 Bias Glass to PCB: ZEBRA CONNECTOR

点大小: 0.48x 0.48 mm 点距离: 0.52 x 0.52 mm

极限参数

项目	符号	标准值	单位
电源电压	Vdd	-0.3 ~ +7.0	V
液晶驱动电压	Vlcd	Vdd−19.0 ~ Vdd+0.3	V
输入电压	Vin	-0.3 ~ Vdd+0.3	V
工作温度	Тор	-20 [~] +70	° C
储存温度	Tstg	−30 [~] +80	° C

机械特性

项目	描述	单位
PCB 尺寸	93. 0 x 70. 0 x 1. 6	mm
LCD 尺寸	84.0 x 51.0 x 2.6	mm
视域尺寸	70. 6 x38. 6	mm
外形尺寸	93 x 70.0 x8.0/13.5*	mm

引脚功能

引脚序号	符号	电平	功能
Ct C	VSS	OV	电源地
2	VDD	+5V	电源输入
3	VO		液晶显示对比度调节
4	RS (D/I)	H/L	H: Display Data, L:Display Instruction
5	R/W	H/L	H: 读信号, L: 写信号
6	Е		读写使能
7-14	DBO-DB7	H/L	数据总线
15	PSB	H/L	H:8位或4位并口方式,L:串口方式(见注释1)

☆☆☆☆ Email: support@willar.com

16	NC		
17	/RES	H/L	复位端,低电平有效(见注释2)
18	NC		
19	LED(+)		背光源正端(+5V)
20	LED (-)		背光源负端

*注释1: 如在实际应用中仅使用并口通讯模式,可将PSB接固定高电平

电气特性

直流特性(Ta==25℃ Vdd=5.0V±10%)

参数		符号	条件	最小	典型	最大	単位
电源电压		VDD		4. 5	5. 0	5. 5	V
输入信号	高	Vih	E, R/W, D/I, DB0~DB7	2.0		ODV (V
电压	低	Vil	Terminals	0		0.8	
输出信号	高	Voh	DBO~DB7, Terminal	2.4			V
电压	低	Vo1				0. 4	
工作电流		Idd	显示期间			2750	uA

□装配图

☆☆☆☆ Email: support@willar.com

模块有并行和串行两种连接方法(时序如下):

1、8 位并行连接时序图

☆☆☆☆ Email: support@willar.com

MPU 写资料到模块

MPU 从模块读出资料

2、串行连接时序图

☆☆☆☆ Email: support@willar.com

四、用户指令集

1、指令表1: (RE=0: 基本指令集)备注:

						指令码						执行时
指令	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	说明	间 (540KH Z)
清除显示	0	0	0	0	0	0	0	0	0	1	将 DDRAM 填满 "20H", 并且设定 DDRAM 的地址计数器 (AC) 到 "00H"	4.6ms
地址归位	0	0	0	0	0	0	0	0	1	х	设定 DDRAM 的地址计数器(AC)到 "00H",并且将游标移到开头原点位置; 这个指令并不改变 DDRAM 的内容	4.6ms
进入点 设定	0	0	0	0	0	0	0	1	I/D	s	指定在资料的读取与写入时,设定游标 移动方向及指定显示的移位	72us
显示状态 开/关	0	0	0	0	0	0	1	D	с	В	D=1: 整体显示 ON C=1: 游标 ON B=1: 游标位置 ON	72us
游标或显示 移位控制	0	0	0	0	0	1	S/C	R/L	х	х	设定游标的移动与显示的移位控制位元;这个指令并不改变 DDRAM 的内容	72us
功能设定	0	0	0	0	1	DL	х	0 RE	х	х	DL=1 (必须设为 1) RE=1: 扩充指令集动作 RE=0: 基本指令集动作	72us
设定 CGRAM 地 址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	设定 CGRAM 地址到地址计数器(AC)	72us
设定 DDRAM 地址	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	设定 DDRAM 地址到地址计数器(AC)	72us
读取忙碌标 志(BF)和 地址	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	读取忙碌标志(BF)可以确认内部动作 是否完成,同时可以读出地址计数器 (AC)的值	0us
写资料到 RAM	1	0	D 7	D6	D 5	D4	D3	D2	Dl	D0	写入资料到内部的 RAM (DDRAM/CGRAM/IRAM/GDRAM)	72 u s
读出 RAM 的值	1	1	D 7	D6	D 5	D4	D3	D2	Dl	D0	从 内 部 RAM 读 取 资 料 (DDRAM/CGRAM/RAM/GDRAM)	72 u s

☆☆☆☆ Email: support@willar.com

指令表-2: (RE=1: 扩充指令集)

*** 1					/ / 44 11							
指令	RS	RW	DB7	DB6	DB5	指令码 DB4	DB3	DB2	DB1	DB0	说明	执行时间 (540KHZ)
待命模式	0	0	0	0	0	0	0	0	0	1	将 DDRAM 填满 "20H", 并且设定 DDRAM 的地址计数器 (AC) 到 "00H"	72us
卷动地址或 IRAM 地址 选择	0	0	0	0	0	0	0	0	1	SR	SR=1: 允许输入垂直卷动地址 SR=0: 允许输入 IRAM 地址	72us
反白选择	0	0	0	0	0	0	0	1	Rl	R0	选择 4 行中的任一行作反白显示,并可 决定反白与否	72us
睡眠模式	0	0	0	0	0	0	1	SL	х	х	SL=1: 脱离睡眠模式 SL=0: 进入睡眠模式	72us
扩充功能设定	0	0	0	0	1	1	х	l RE	G	0	RE=1: 扩充指令集动作 RE=0: 基本指令集动作 G=1: 绘图显示 ON G=0: 绘图显示 OFF	72us
设定 IRAM 地址或卷动 地址	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	SR=1: AC5—AC0 为垂直卷动地址 SR=0: AC3—AC0 为 ICON IRAM 地址	72us
设定绘图 RAM 地址	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	设定 CGRAM 地址到地址计数器(AC)	72us

- 1、当模块在接受指令前,微处理顺必须先确认模块内部处于非忙碌状态,即读取BF 标志时BF 需为0,方可接受新的指令;如果在送出一个指令前并不检查BF 标志,那么在前一个指令和这个指令中间必须延迟一段较长的时间,即是等待前一个指令确实执行完成,指令执行的时间请参考指令表中的个别指令说明。
- 2、"RE"为基本指令集与扩充指令集的选择控制位元,当变更"RE"位元后,往后的指令集将维持在最后的状态,除非再次变更"RE"位元,否则使用相同指令集时,不需每次重设"RE"位元。

具体指令介绍:

1、清除显示

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	L	L	Н

功能:清除显示屏幕,把DDRAM 位址计数器调整为"00H"

☆☆☆☆ Email: support@willar.com

2、位址归位

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	L	Н	X

功能: 把DDRAM 位址计数器调整为"OOH",游标回原点,该功能不影响显示DDRAM

3、位址归位

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	Н	I/D	S

功能: 把DDRAM 位址计数器调整为"00H",游标回原点,该功能不影响显示DDRAM 功能: 执行该命令后,所设置的行将显示在屏幕的第一行。显示起始行是由Z 地址计数器控制的,该命令自动将A0-A5 位地址送入Z 地址计数器,起始地址可以是0-63 范围内任意一行。Z 地址计数器具有循环计数功能,用于显示行扫描同步,当扫描完一行后自动加一。

4、显示状态开/关

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	Н	D	С	В

功能: D=1 : 整体显示ON C=1: 游标ON B=1 : 游标位置ON

5、游标或显示移位控制

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	Н	S/C	R/L	X	X

功能:设定游标的移动与显示的移位控制位:这个指令并不改变DDRAM 的内容

6、功能设定

 					DB4				
L	L	L	L	Н	DL	X	0 RE	X	X

功能: DL=1(必须设为1) RE=1: 扩充指令集动作 RE=0: 基本指令集动作

7、设定CGRAM 位址

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	Н	AC5	AC4	AC3	AC2	AC1	AC0

功能:设定CGRAM 位址到位址计数器 (AC)

8、设定DDRAM 位址

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	Н	AC6	AC5	AC4	AC3	AC2	AC1	AC0

功能:设定DDRAM 位址到位址计数器 (AC)

☆☆☆☆ Email: support@willar.com

9、读取忙碌状态(BF)和位址

CODE:										
	L	Н	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

功能:读取忙碌状态(BF)可以确认内部动作是否完成,同时可以读出位址计数器(AC)的值

10、写资料到RAM

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Н	L	D7	D6	D5	D4	D3	D2	D1	D0

功能:写入资料到内部的 RAM (DDRAM/CGRAM/TRAM/GDRAM)

11、读出RAM 的值

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	Н	Н	D7	D6	D5	D4	D3	D2	D1	D0

功能: 从内部RAM 读取资料 (DDRAM/CGRAM/TRAM/GDRAM)

12、待命模式(12H)

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	L	L	Н

功能: 进入待命模式, 执行其他命令都可终止待命模式

13、卷动位址或IRAM 位址选择(13H)

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	L	Н	SR

功能: SR=1; 允许输入卷动位址 SR=0; 允许输入IRAM 位址

14、反白选择(14H)

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	L	Н	R1	R0

功能: 选择4 行中的任一行作反白显示,并可决定反白的与否

15、睡眠模式 (015H)

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	L	L	L	Н	SL	X	X

功能: SL=1; 脱离睡眠模式SL=0; 进入睡眠模式

☆☆☆☆ Email: support@willar.com

16、扩充功能设定(016H)

CODE:

RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
L	L	L	L	Н	Н	X	1 RE	G	L

功能: RE=1; 扩充指令集动作 RE=0; 基本指令集动作 G=1; 绘图显示ON G=0; 绘图显示OFF

17、设定IRAM 位址或卷动位址(017H)

CODE:	RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	L	L	L	Н	AC5	AC4	AC3	AC2	Ac1	AC0

功能: SR=1; AC5~AC0 为垂直卷动位址SR=0; AC3~AC0 写ICONRAM 位址

18、设定绘图RAM 位址(018H)

功能:设定GDRAM 位址到位址计数器 (AC)

CODE:

RW	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
L	L	Н	AC6	AC5	AC4	AC3	AC2	AC1	AC0

五、显示坐标关系

1、图形显示坐标

*** Email: support@willar.com

	X 坐标								
Line1	80H	81H	82H	83H	84H	85H	86Н	87Н	
Line2	90Н	91H	92H	93Н	94H	95H	96Н	97H	
Line3	88H	89Н	8AH	8BH	8CH	8DH	8EH	8FH	
Line4	98H	99Н	9AH	9ВН	9СН	9DH	9ЕН	9FH	
3、字符表代码(02H7FH)									

3、字符表代码(02H---7FH)

☆☆☆☆ Email: support@willar.com

六、显示步骤

1、 显示资料RAM(DDRAM)

显示资料RAM 提供64×2 个位元组的空间,最多可以控制4 行16 字(64 个字)的中文字型显示,当写入显示资料RAM 时,可以分别显示CGROM、HCGROM 与CGRAM 的字型; ST7920A 可以显示三种字型,分别是半宽的HCGROM 字型、CGRAM 字型及中文CGROM 字型,三种字型的选择,由在DDRAM 中写入的编码选择,在0000H—0006H 的编码中将自动的结合下一个位元组,组成两个位元组的编码达成中文字型的编码(A140—D75F),各种字型详细编码如下:

- 1、显示半宽字型:将8位元资料写入DDRAM中,范围为02H—7FH的编码。
- 2、显示CGRAM 字型: 将16 位元资料写入DDRAM 中,总共有0000H,0002H,0004H,0006H 四种编码。
- 3、显示中文字形: 将16 位元资料写入DDRAMK , 范围为A1A1H—F7FEH 的编码。

绘图RAM (GDRAM)

绘图显示RAM 提供64×32 个位元组的记忆空间,最多可以控制256×64 点的二维也纳绘图缓冲空间,在更改绘图RAM 时,先连续写入水平与垂直的坐标值,再写入两个8 位元的资料到绘图RAM,而地址计数器(AC)会自动加一;在写入绘图RAM 的期间,绘图显示必须关闭,整个写入绘图RAM 的步骤如下:

- 1、关闭绘图显示功能。
- 2、先将水平的位元组坐标(X)写入绘图RAM 地址;
- 3、再将垂直的坐标(Y)写入绘图RAM 地址:
- 4、将D15——D8 写入到RAM 中:
- 5、将D7——D0 写入到RAM 中;
- 6、打开绘图显示功能。绘图显示

的记忆体对应分布请参考表

2、游标/闪烁控制

ST7920A 提供硬体游标及闪烁控制电路,由地址计数器(address counter)的值来指定DDRAM 中的游标或闪烁位置。