Efficient and Distributed training with TensorFlow on Piz Daint

Running TensorFlow on Piz Daint

Guilherme Peretti-Pezzi and Rafael Sarmiento ETHZürich / CSCS Lugano, 14th-15th March 2019

- Obtaining TF
 - Generic binaries
 - Containers
 - Build from sources
 - Performance
- Getting started at Piz Daint
 - SSH
 - JupyterLab

TensorFlow binaries

CPU and GPU packages

- CPU-only
 - pip install tensorflow
 - conda install tensorflow
- GPU-enabled
 - pip install tensorflow-gpu
 - conda install tensorflow-gpu

Disclaimer

- MacOS and Ubuntu are officially supported
- Horovod must be installed appart

Containers

Official images from DockerHub

- Using Docker (local workstation)
 - docker pull tensorflow/tensorflow
- Using Shifter-ng
 - module load shifter-ng
 - shifter pull tensorflow/tensorflow

Containers

Image from NVIDIA GPU Cloud (NGC)

- Using Singularity(3+)
 - module load singularity
 - singularity pull docker://nvcr.io/nvidia/tensorflow:19.02-py3
 - https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow

Build from sources

Main requirements

- Python >= 3.4
- Bazel Google's build and test tool (https://bazel.build/)
- protobuf Language-neutral, platform-neutral extensible mechanism for serializing structured data
- cuDNN NVIDIA CUDA Deep Neural Network library
- SWIG Simplified Wrapper and Interface Generator

Manual build from source

Automated build with EasyBuild

```
# Configure and build steps
# Prepare build environment
> module load daint—gpu EasyBuild —custom
# Search for available recipes (CrayGNU = Piz Daint)
> eb ——search Tensorflow
# Build
> eb TensorFlow—1.12.0—CrayGNU—18.08—cuda—9.1—python3.eb —r
# load module
> module load TensorFlow/1.12.0—CrayGNU—18.08—cuda—9.1—python3
```


¹CSCS EasyBuild recipes can also be found on Github https://github.com/eth-cscs/production

Performance of binary packages

Remark

- Always make sure that your build matches your architecture
- Generic builds usually focus on portability and not always performance
- pip TensorFlow packages
 - 'Starting with TensorFlow 1.6, binaries use AVX instructions which may not run on older CPUs'

Getting started: Accessing Piz Daint

Hands On on Piz Daint

```
# login
> ssh ela.cscs.ch —l studXX
> ssh daint
# Load GPU software stack & TF module
> module load daint-qpu TensorFlow/1.12.0-CrayGNU-18.08-cuda-9.1-python3
# MNIST example on a single node
> cd $SCRATCH
> wget https://raw.githubusercontent.com/tensorflow/models/master/tutorials/
       image/mnist/convolutional.pv
> cp -r /apps/daint/UES/mnist/data/ .
> salloc -N 1 -C qpu --res tensor11
> srun pvthon3 convolutional.pv
```


Interactive Supercomputing: JupyterLab interface at CSCS

• Jupyter Notebooks

 Open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text

JupyterLab

New interface for JupyterHub (Windows & Tabs)

JupyterHub

- Multi-user server for Jupyter Notebooks

Steps for running notebooks interactively on Piz Daint

Starting your notebook server

- 1- Log in using the web interface
 - https://jupyter.cscs.ch
- 2- Spawn your notebook server
 - This step will grant you exclusive access to a (single or multi-node) job
- 3- Create/run your notebooks interactively

Steps for running notebooks interactively on Piz Daint

Stopping your server

- Remember to shutdown your notebook server when you are done!
- ullet File o Quit

Importing TensorFlow on JupyterLab

1- Before starting: Create a .jupyterhub.env file on \$HOME module load daint—gpu module load TensorFlow/1.12.0—CrayGNU—18.08—cuda—9.1—python3

- 2- Launching the Jupyter Notebook server
 - https://jupyter.cscs.ch
 - Piz Daint node type: GPU
 - Queue: not needed for the course
 - Training course reservation: **tensor11** (Entering a reservation will override the 'Queue' selection)
 - Number of nodes: 1 & Job duration: 1 hour
 - Start IPyParallel & Dask? No, No
- 3- Open a Terminal from the dashboard and run module list

Thank you for your attention!

