1 対称群の表現論

1.1 対称群の既約表現

前節までに述べたことは有限群の表現論の一般論であり、具体的な群が与えられたときその表現を求める手法を提供しているわけではない。そこでこの節では対称群を例に取り上げ、既約表現の分類を行う。

 \mathcal{P}_n を大きさ n の Young 図形のなす集合とする。既約表現の種類は共役類の数だけあったが、 $G=\mathfrak{S}_n$ の共役類と \mathcal{P}_n の元は 1 対 1 に対応することが知られている。G の既約表現は \mathcal{P}_n から自然に作ることができる。

定義 1.1.1. $\lambda \in \mathcal{P}_n$ の各箱に 1 から n の各数字を重複なく書き入れた図を形 λ のタブローという。T をタブローとし、T の i 行目の箱に書かれている数字の集合を $H_i(T)$, 同様に T の j 列目の箱に書かれている数字の集合を $V_j(T)$ とする。

定義 1.1.2. T を形 $\lambda = (\lambda_1, \dots, \lambda_s)$ のタブローとする。 $\sigma \in \mathfrak{S}_n$ に対して、 σT を各数字を σ によって置換してできるタブローとする。

- 各 i に対して $H_i(\sigma T)=H_i(T)$ が成り立つなら σ を T の水平置換という。T の水平置換の全体は G の部分群をなす。これを \mathcal{H}_T と書き、T の水平置換群という。 $\mathcal{H}_T=\mathfrak{S}(H_1(T))\times\cdots\times\mathfrak{S}(H_s(T))$ である。
- 各 j に対して $V_j(\sigma T) = V_j(T)$ が成り立つなら σ を T の垂直置換という。T の垂直置換の全体は G の 部分群をなす。これを \mathcal{V}_T と書き、T の垂直置換群という。 $\mathcal{V}_T = \mathfrak{S}(V_1(T)) \times \cdots \times \mathfrak{S}(V_{\lambda_1}(T))$ である。

例 1.1.3. 形 のタブロー
$$T = \begin{bmatrix} 4 & 5 & 1 \\ 3 & 2 \end{bmatrix}$$
 に対して、

$$\mathcal{H}_T = \mathfrak{S}(\{1,4,5\}) \times \mathfrak{S}(\{2,3\}), \qquad \mathcal{V}_T = \mathfrak{S}(\{3,4\}) \times \mathfrak{S}(\{2,5\})$$

である。

例 1.1.4. Young 図形 $\lambda = (\lambda_1, \dots, \lambda_s) \in \mathcal{P}_n$ に対して、 λ の第 1 行に $1, 2, \dots, \lambda_1$ を、 λ の第 2 行に $\lambda_1 + 1, \lambda_1 + 2, \dots, \lambda_1 + \lambda_2$ を、と続けてできるタブローを λ から定まる自然なタブローという。

例 1.1.3 の Young 図形の自然なタブローは
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 \end{bmatrix}$$

水平置換 σ が垂直置換でもあるならば、 σ の引き起こす各 $H_i(T)$ の置換は恒等置換でなければならない。 したがって $\sigma=e$ である。よって $\mathcal{H}_T\cap\mathcal{V}_T=\{e\}$ が成り立つ。また $\mathcal{H}_{gT}=g\mathcal{H}_Tg^{-1}$, $\mathcal{V}_{gT}=g\mathcal{V}_Tg^{-1}$ が成り立つ。実際

$$\sigma \in \mathcal{H}_{gT} \Leftrightarrow \sigma gT = gT$$
$$\Leftrightarrow g^{-1}\sigma gT = T$$
$$\Leftrightarrow \sigma \in g\mathcal{H}_T g^{-1}$$

群環 $\mathbb{C}[G]$ の元 a_T, b_T, c_T を

$$a_T = \sum_{\sigma \in \mathcal{H}_T} \sigma, \qquad b_T = \sum_{\tau \in \mathcal{V}_T} \operatorname{sgn}(\tau)\tau, \qquad c_T = a_T b_T = \sum_{\sigma \in \mathcal{H}_T, \tau \in \mathcal{V}_T} \operatorname{sgn}(\tau)\sigma\tau$$

によって定める。 c_T を Young 対称子という。ここで c_T は 0 でないことに注意しておく。実際 c_T の和に現れる $\sigma \tau$ はすべて異なる元である。なぜならもし $\sigma \tau = \sigma' \tau', \, \sigma, \sigma' \in \mathcal{H}_T, \, \tau, \tau' \in \mathcal{V}_T$ ならば、 $\mathcal{H}_T \cap \mathcal{V}_T = e$ より $\sigma = \sigma', \, \tau = \tau'$ である。

定理 1.1.5. $\mathbb{C}[G]$ の左イデアル $\mathbb{C}[G]c_T$ は極小である。

定理 1.1.5 を証明しよう。ポイントになるのは次の補題である。

補題 1.1.6. $\alpha \in \mathbb{C}[G]$ が

- 任意の $\sigma \in \mathcal{H}_T$ に対して $\sigma \alpha = \alpha$
- 任意の $\tau \in \mathcal{V}_T$ に対して $\alpha \tau = \operatorname{sgn}(\tau) \alpha$

を満たすならば、 α は c_T のスカラー倍である。

Proof. $\alpha = \sum_{g \in G} a_g g$ を仮定を満たす元とする。仮定より $\sigma \in \mathcal{H}_T$ に対して

$$\alpha = \sigma^{-1}\alpha = \sum_{g \in G} a_g \sigma^{-1}g = \sum_{g \in G} a_{\sigma g}g$$

よって

$$a_{\sigma g} = a_g \tag{1}$$

が成り立つ。また $\tau \in \mathcal{V}_T$ に対しては

$$\alpha = \operatorname{sgn}(\tau)\alpha\tau^{-1} = \sum_{g \in G} \operatorname{sgn}(\tau)a_g g \tau^{-1} = \sum_{g \in G} \operatorname{sgn}(\tau)a_{g\tau}g$$

より

$$a_{q\tau} = \operatorname{sgn}(\tau)a_q \tag{2}$$

が成り立つ。(1),(2) より $\sigma\tau \in \mathcal{H}_T \mathcal{V}_T$ に対して

$$a_{\sigma\tau} = \operatorname{sgn}(\tau)a_e$$

であることがわかる。よって

$$g \notin \mathcal{H}_T \mathcal{V}_T \implies a_g = 0$$
 (3)

を示せば $\alpha=a_ec_T$ となって証明が完了する。g に関する条件 $g\notin\mathcal{H}_T\mathcal{V}_T$ について次の補題を示す。

補題 1.1.7. $g \in \mathfrak{S}_n$ について、T の同じ行にある任意の数字 i,j(ただし $i \neq j$) が gT では異なる列にあるならば $g \in \mathcal{H}_T \mathcal{V}_T$ が成り立つ。

 $Proof.\ T$ の Young 図形 $\lambda=(\lambda_1,\cdots,\lambda_r)$ の高さ r に関する帰納法で示す。r=1 ならば $\mathcal{H}_T=\mathfrak{S}_n$ なので明らか。r>1 とする。T の第 1 行にある数字に注目する。仮定から、これらは gT でそれぞれ異なる列に入っているので、適当に gT に垂直置換 $\nu\in\mathcal{V}_{gT}$ を施すことで νgT においても第 1 行に入っているようにできる。

よってこのとき νg は T の第 1 行への水平置換 σ_1 と、T の第 2 行以下を取り出したタブロー T' への置換 g' との積

$$\nu g = \sigma_1 g'$$

で表される。g' は T' への置換とみなせば主張の条件をみたすから、帰納法の仮定により

$$g' \in \mathcal{H}_{T'}\mathcal{V}_{T'}$$

である。 $\mathcal{H}_{T'} \subset \mathcal{H}_T, \mathcal{V}_{T'} \subset \mathcal{V}_T$ だから

$$g' = \sigma_2 \tau_2 \in \mathcal{H}_T \mathcal{V}_T$$

と書ける。ここで $\nu \in \mathcal{V}_{qT} = g\mathcal{V}_T g^{-1}$ だから

$$\nu = g\tau_3 g^{-1}, \qquad \tau_3 \in \mathcal{V}_T$$

よって

$$g = \sigma_1 g' \tau_3^{-1} = \sigma_1 \sigma_2 \tau_2 \tau_3^{-1}$$

となるので示せた。

補題 1.1.6 の証明に戻ろう。 (3) を示せばよいのであった。 $g \notin \mathcal{H}_T \mathcal{V}_T$ であるのなら、上記の補題から T の同じ行になる異なる数字 i,j であって gT では同じ列にあるものが存在する。よって $\sigma=(i,j)$ とすれば $\sigma \in \mathcal{H}_T \cap \mathcal{V}_{gT}$ である。 $\mathcal{V}_{gT} = g\mathcal{V}_T g^{-1}$ より $\sigma=g\tau g^{-1}$ とおけば (1),(2) より

$$a_g = a_{\sigma g} = a_{g\tau} = \operatorname{sgn}(\tau)a_g = -a_g$$

命題 1.1.8.

$$c_T^2 = \frac{n!}{\dim_{\mathbb{C}}(\mathbb{C}[G]c_T)} c_T$$

が成り立つ。

Proof. $\sigma \in \mathcal{H}_T$, $\tau \in \mathcal{V}_T$ に対して

$$\sigma a_T = \sigma \sum_{g \in \mathcal{H}_T} g = \sum_{g \in \mathcal{H}_T} \sigma g = a_T$$

であり、

$$b_T \tau = \sum_{g \in \mathcal{V}_T} \operatorname{sgn}(g) g \tau = \operatorname{sgn} \tau b_T$$

だから、補題 1.1.6 よりある $n_T \in \mathbb{C}$ で

$$c_T^2 = n_T c_T$$

となることはわかる。 n_T を求めよう。準同型 $\phi: \mathbb{C}[G] \to \mathbb{C}[G]$ を

$$\phi(\alpha) = \alpha c_T$$

によって定める。任意の $g \in G$ に対して、

$$gc_T = g + \sum_{hk \in \mathcal{H}_T \mathcal{V}_T \setminus \{e\}} \operatorname{sgn}(k)ghk$$

となるから、 ϕ の対角成分はすべて1である。よって

$$\operatorname{tr} \phi = \dim_{\mathbb{C}} \mathbb{C}[G] = n!$$

である。 $\mathbb{C}[G]$ は半単純だから、

$$\mathbb{C}[G] = \mathbb{C}[G]c_T \oplus W$$

となる左イデアルWをとる。すると

$$\mathbb{C}[G]c_T = \mathbb{C}[G]c_T^2 \oplus Wc_T = \mathbb{C}[G]c_T \oplus Wc_T$$

より $Wc_T = 0$ である。したがって、

$$\phi(\mathbb{C}[G]c_T) \subset \mathbb{C}[G]c_T$$
$$\phi(W) = 0$$

となることがわかる。よって

$$\operatorname{tr} \phi = \operatorname{tr} \phi|_{\mathbb{C}[G]_{CT}}$$

である。 $\alpha \in \mathbb{C}[G]$ に対して

$$\phi(\alpha c_T) = \alpha \phi(c_T) = n_T \alpha c_T$$

だから、 $\mathbb{C}[G]c_T$ は ϕ の固有値 n_T の固有空間の部分空間である。

$$\operatorname{tr} \phi|_{\mathbb{C}[G]c_T} = n_T \dim_{\mathbb{C}} \mathbb{C}[G]c_T$$

 $c_T \neq 0$ だから $\dim_{\mathbb{C}} \mathbb{C}[G]c_T \neq 0$, よって

$$n_T = \frac{n!}{\dim_{\mathbb{C}} \mathbb{C}[G]c_T}$$

定理 1.1.5 の証明を述べる

Proof. 定理??より

$$\dim_{\mathbb{C}} \operatorname{Hom}(\mathbb{C}[G]c_T, \mathbb{C}[G]c_T) = 1$$

を示せばよい。命題 1.1.6 より c_T は適当にスカラー倍してべき等元になる。よって命題??より

$$\operatorname{Hom}(\mathbb{C}[G]c_T, \mathbb{C}[G]c_T) = c_T \mathbb{C}[G]c_T$$

である。任意の $c_T \alpha c_T \in c_T \mathbb{C}[G] c_T$ は補題 1.1.6 の仮定をみたすので

$$c_T \alpha c_T = \mu c_T, \qquad \mu \in \mathbb{C}$$

と書ける。よって $\dim_{\mathbb{C}} c_T \mathbb{C}[G]c_T = 1$ である。

命題 1.1.9. $b_Ta_T=\tilde{c_T}$ とおくと、 $\mathbb{C}[G]\tilde{c_T}\simeq\mathbb{C}[G]c_T$ が成り立つ。

Proof. $\phi: \mathbb{C}[G]a_Tb_T \to \mathbb{C}[G]b_Ta_T \ \mathcal{E}$

$$\phi(xa_Tb_T) = xa_Tb_Ta_T$$

 $\psi: \mathbb{C}[G]b_Ta_T \to \mathbb{C}[G]a_Tb_T$ &

$$\psi(xb_Ta_T) = xb_Ta_Tb_T$$

とすれば

$$\psi(\phi(xa_Tb_T)) = \psi(xa_Tb_Ta_T) = xa_Tb_Ta_Tb_T = n_Txa_Tb_T$$

よって $\psi \circ \phi$ は 0 でないスカラー倍写像なので ϕ は単射、 ψ は全射である。命題 1.1.8 とまったく同様に $\tilde{c_T}^2 = \tilde{n_T}\tilde{c_T}$ となる 0 でないスカラー $\tilde{n_T}$ が存在することがわかる。よって ϕ は同型である。

命題 1.1.10. $\lambda \in \mathcal{P}_n$ とする。T,U を λ に書かれたタブローとすると $\mathbb{C}[G]c_T \simeq \mathbb{C}[G]c_U$ である。

Proof. このときある $g \in G$ が存在して U = gT となるから、

$$\mathcal{H}_U = g\mathcal{H}_T g^{-1}, \qquad \mathcal{V}_U = g\mathcal{V}_T g^{-1}$$

よって

$$c_U = a_U b_U = g a_T g^{-1} g b_T g^{-1} = g c_T g^{-1}$$

である。

$$\mathbb{C}[G]c_U = \mathbb{C}[G]gc_Tg^{-1} = \mathbb{C}[G]c_Tg^{-1}$$

だから、

$$\mathbb{C}[G]c_T \simeq \mathbb{C}[G]c_Tg^{-1}$$

を示せばよい。 $\phi: \mathbb{C}[G]c_T \to \mathbb{C}[G]c_Tg^{-1}$ を

$$\phi(\alpha c_T) = \alpha c_T g^{-1}$$

と置けば ϕ は左 $\mathbb{C}[G]$ 加群の準同型で、g を右から書ける準同型が逆写像を与えるので、同型である。 \square

したがって、同じ Young 図形に対しては $\mathbb{C}[G]c_T$ はタブロー T の取り方によらず同型である。そこで $\lambda \in \mathcal{P}_n$ に対して、 λ の自然なタブロー (例 1.1.4) から定まる Young 対称子を c_λ とし、 $V_\lambda = \mathbb{C}[G]c_\lambda$ とおく。 次の定理を証明することで、既約表現の分類は完成する。

定理 1.1.11. $\lambda, \mu \in \mathcal{P}_n$ とする。

$$V_{\lambda} \simeq V_{\mu}$$

となるための必要十分条件は $\lambda = \mu$ である

Proof. 十分性は明らか。必要性を示す。 $\lambda \neq \mu$ であるとする。 V_{λ}, V_{μ} は既約表現なので、Schur の補題 (補題 ??) より、

$$\dim_{\mathbb{C}} \operatorname{Hom}(V_{\lambda}, V_{\mu}) = 0$$

を証明すればよいが、命題??より、

$$\operatorname{Hom}(V_{\lambda}, V_{\mu}) = c_{\lambda} \mathbb{C}[G] c_{\mu}$$

ゆえに、すべての $g \in G$ に対して

$$c_{\lambda}gc_{\mu} = a_{\lambda}b_{\lambda}ga_{\mu}b_{\mu} = 0$$

が成り立つことを示す。次の補題を示す。

補題 1.1.12. \mathcal{P}_n に辞書式順序を入れ、 $\lambda < \mu$ であるとする。 λ, μ でその自然なタブローを表すものとする。 このとき任意の $q \in G$ に対して、 μ の同じ行にある数字 i, j であって $q\lambda$ では同じ列にあるものが存在する。

Proof. $\lambda = (\lambda_1, \dots, \lambda_s), \mu = (\mu_1, \dots, \mu_t)$ とおく。t についての帰納法で示す。

t=1 の場合 $\lambda_1<\mu_1$ となるから、 λ の列数は μ_1 より少ない。よって鳩の巣原理 $1,2,\cdots,\mu_1$ のうち、 $g\lambda$ の同じ列に存在あるペアが必ず存在する。

t>1 とする。 $\lambda_1<\mu_1$ である場合はまったく同様に鳩の巣原理から従う。 $\lambda_1=\mu_1$ かつ、 $1,2,\cdots,\mu_1$ が $g\lambda$ ではすべて異なる列に存在するとする。このとき垂直置換 $\tau\in\mathcal{V}_{g\lambda}$ を施して

$$H_1(\mu) = H_1(\tau g \lambda) = \{1, 2, \cdots, \mu_1\}$$

が成り立つようにできる。そこで、 μ 、 $\tau g \lambda$ の 2 行目以降をとりだしたタブロー μ' 、 $(\tau g \lambda)'$ を考える。すると $(\tau g \lambda)' < \mu'$ であるから帰納法の仮定により μ' の同じ行にある数字 i,j であって $(\tau g \lambda)'$ では同じ列にあるも のが存在する。i,j が $(\tau g \lambda)'$ の第 m 列にあるとする。 τ は垂直置換だから

$$V_m(\tau g\lambda) = V_m(g\lambda)$$

よってi,jは $g\lambda$ の同じ列に存在する。

定理 1.1.11 の証明に戻る。補題から、 $\nu=(i,j)$ であって $\nu\in\mathcal{H}_{\mu}\cap\mathcal{V}_{g^{-1}\lambda}$ となるものが存在する。よって

$$\nu = g^{-1}\pi g, \qquad \pi \in \mathcal{V}_{\lambda}$$

とおけば

$$\begin{split} c_{\lambda}gc_{\mu} &= a_{\lambda}b_{\lambda}ga_{\mu}b_{\mu} \\ &= a_{\lambda}b_{\lambda}\mathrm{sgn}(\pi)\pi ga_{\mu}b_{\mu} \\ &= a_{\lambda}b_{\lambda}\mathrm{sgn}(\pi)g\nu a_{\mu}b_{\mu} \\ &= \mathrm{sgn}(\pi)a_{\lambda}b_{\lambda}ga_{\mu}b_{\mu} \\ &= -c_{\lambda}gc_{\mu} \end{split}$$

よって

$$c_{\lambda}gc_{\mu}=0$$

例 1.1.13. $\lambda=(n), \mu=(1,1,\cdots,1)\in\mathcal{P}_n$ とする。このとき $\mathcal{H}_{\lambda}=\mathfrak{S}_n,\,\mathcal{V}_{\lambda}=e$ だから、

$$c_{\lambda} = \sum_{\sigma \in \mathfrak{S}_n} \sigma$$

また $\mathcal{H}_{\mu} = e$, $\mathcal{V}_{\mu} = \mathfrak{S}_n$ だから、

$$c_{\mu} = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \sigma$$

したがって λ の定める既約表現は自明な表現 1 であり、 μ の定める既約表現は置換の符号 sgn であるとわかる。

例 1.1.14. $G = \mathfrak{S}_3$ とする。

$$\lambda =$$

に対応する Young 対称子は

$$c_{\lambda} = (e + (1,2))(e - (1,3)) = e + (1,2) - (1,3) - (1,3,2)$$

である。 c_{λ} の定める既約表現が、例 \ref{n} で求めた既約表現 U と一致することをたしかめる。

$$c_{\lambda}^2 = 3c_{\lambda}$$

となるから、命題 1.1.8 より

$$\dim_{\mathbb{C}} \mathbb{C}[G]c_{\lambda} = 2$$

である。

$$v = c_{\lambda},$$
 $u = (1, 2, 3)c_{\lambda} = -e + (1, 3) - (2, 3) + (1, 2, 3)$

とすれば、 $\mathbb{C}[G]c_{\lambda} = \mathbb{C}v \oplus \mathbb{C}v$ であり、

$$(1,2)v = v,$$
 $(1,2)u = -v - u$
 $(1,2,3)v = u,$ $(1,2,3)u = -v - u$

だから、

$$\operatorname{tr} e = \dim_{\mathbb{C}} \mathbb{C}[G]c_{\lambda} = 2$$
$$\operatorname{tr} (1,2) = 0$$
$$\operatorname{tr} (1,2,3) = -1$$

となり、指標が一致している。

補題 1.1.15. $\phi: \mathbb{C}[G] \to \mathbb{C}[G]$ を

$$\phi(g) = \operatorname{sgn}(g)g$$

を線形に拡張して定める。 ϕ は環準同型であり、対合である。 $\varepsilon \in \mathbb{C}[G]$ に対して

$$\mathbb{C}[G]\varepsilon\otimes_{\mathbb{C}}\mathbb{C}_{\operatorname{sgn}}\simeq\mathbb{C}[G]\phi(\varepsilon)$$

が成り立つ。ここで、 \mathbb{C}_{sgn} は $\mathbb{C}_{sgn} = \mathbb{C}$ であり、

$$g \cdot \lambda = \operatorname{sgn}(g)\lambda, \qquad g \in G, \lambda \in \mathbb{C}$$

で定まる $\mathbb{C}[G]$ 加群である(すなわち sgn 表現)。

Proof. $f: \mathbb{C}[G]\phi(\varepsilon) \to \mathbb{C}[G]\varepsilon \otimes_{\mathbb{C}} \mathbb{C}_{sgn} \$

$$f(x) = \phi(x) \otimes 1$$

で定めれば $g \in G$ として

$$gf(x) = g(\phi(x) \otimes 1)$$

$$= g\phi(x) \otimes \operatorname{sgn}(g)$$

$$= \operatorname{sgn}(g)g\phi(x) \otimes 1$$

$$= \phi(gx) \otimes 1$$

$$= f(gx)$$

より $\mathbb{C}[G]$ 加群の準同型である。任意の $y\otimes 1\in\mathbb{C}[G]$ $\varepsilon\otimes_{\mathbb{C}}\mathbb{C}_{\mathrm{sgn}}$ に対して

$$f(\phi(y)) = y \otimes 1$$

となり、 $\mathbb{C}[G] \varepsilon \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}}$ は $y \otimes 1$ の形の元で生成されるから、f は全射である。

$$\dim_{\mathbb{C}} \mathbb{C}[G]\varepsilon \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}} = \dim_{\mathbb{C}} \mathbb{C}[G]\varepsilon \cdot \dim_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}} = \dim_{\mathbb{C}} \mathbb{C}[G]\varepsilon$$

よりfは同型。

例 1.1.16. $\lambda \in \mathcal{P}_n$ に対して、 λ の行と列を反転させたものを双対 Young 図形といい λ^* と書く。

このとき

$$\mathbb{C}[G]_{c_{\lambda}} \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}} \simeq \mathbb{C}[G]_{c_{\lambda^*}}$$

となることを示す。定義より、

$$\mathcal{H}_{\lambda^*} = \mathcal{V}_{\lambda}, \qquad \mathcal{V}_{\lambda^*} = \mathcal{H}_{\lambda}$$

であるから、

$$a_{\lambda^*} = \phi(b_{\lambda}), \qquad b_{\lambda^*} = \phi(a_{\lambda})$$

したがって

$$c_{\lambda^*} = \phi(b_{\lambda})\phi(a_{\lambda}) = \phi(b_{\lambda}a_{\lambda}) = \phi(\tilde{c_{\lambda}})$$

である。命題 1.1.9 より、

$$\mathbb{C}[G]c_{\lambda} \simeq \mathbb{C}[G]\tilde{c_{\lambda}}$$

であるから、補題 1.1.15 より、

$$\mathbb{C}[G]c_{\lambda^*} \simeq \mathbb{C}[G]c_{\lambda} \otimes_{\mathbb{C}} \mathbb{C}_{\operatorname{sgn}}$$

1.2 続・対称多項式

1.3 表現環と対称関数環

定義 1.3.1. 可算無限個の変数をもつ形式的べき級数環 $R=\mathbb{C}[[x_1,x_2,\cdots]]$ を考える。

$$\mathfrak{S} = \{ \sigma : \mathbb{N} \to \mathbb{N} \mid f \text{ は全単射で } f(n) \neq n \text{ なる } n \text{ が有限個} \}$$

とする*1。

$$\Lambda = \{ f \in R \mid \sigma f = f, \text{ (for all } \sigma \in \mathfrak{S}), f \text{ の単項式の次数は有界} \}$$

 Λ は R の部分環で対称関数環と呼ばれる。 Λ^k を

$$\Lambda^k = \{ f \in \Lambda \mid f \text{ o 単項式の次数はすべて } k \}$$

で定め、 Λ^k の元を k 次斉次対称関数という。

$$\Lambda = \bigoplus_{k=0}^{\infty} \Lambda^k$$

より Λ は次数付き環の構造をもつ。

例 1.3.2. 任意の Young 図形 $\lambda = (\lambda_1, \dots, \lambda_n)$ に対して

$$m_{\lambda} = \sum_{\alpha \sim \lambda} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

とする。ここで指数 α は、 λ の置換になっているもの全体をわたる。すなわちある $\sigma \in \mathfrak{S}$ が存在して $\alpha = \sigma \lambda$ をみたすもの全体である。 m_{λ} は対称関数である。

例 1.3.3.

$$e_k = m_{1^k} = \sum_{1 \le i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \cdots x_{i_k}$$

$$h_k = \sum_{\lambda \in \mathcal{P}_n} m_{\lambda}$$

をそれぞれ、基本対称関数、完全対称関数という。また、任意の Young 図形 $\lambda=(\lambda_1,\cdots,\lambda_n)$ に対して

$$e_{\lambda} = e_{\lambda_1} \cdots e_{\lambda_n}$$
$$h_{\lambda} = h_{\lambda_1} \cdots h_{\lambda_n}$$

とする。

$$e_1 = x_1 + x_2 + x_3 + \cdots$$
$$e_2 = \sum_{i < j} x_i x_j$$

である。

 $^{^{*1}}$ $^{\circ}$ は対称群 $^{\circ}$ のなす帰納系の帰納極限である。

例 1.3.4. $(k) = (k, 0, \dots, 0)$ に対して

$$p_k = m_{(k)} = x_1^k + x_2^k + \cdots$$

とする。

このように、対称関数はいままでみてきた対称多項式を自然に無限変数に拡張した概念であり、対称多項式で成り立っていた関係式が対称関数においても成立することが多い。このことは対称関数の k 次斉次部分が k 次斉次対称多項式からの射影極限と考えることができることによる。 Λ_n^k を n 変数 k 次斉次対称多項式のなすベクトル空間とする。 $m \le n$ に対して線形写像 $\rho_{m,n}: \Lambda_n^k \to \Lambda_m^k$ を

$$\rho_{m,n}(f(x_1,\dots,x_m,x_{m+1},\dots,x_n)) = f(x_1,\dots,x_m,0,\dots,0)$$

によって定める。ここで $\rho_{m,n}(f)$ は実際に m 変数の k 次斉次対称多項式である *2 。 $l \leq m \leq n$ に対して

$$\rho_{l,m} \circ \rho_{m,n} = \rho_{l,n}$$

が成り立つから、 $\{\Lambda_n^k, \rho_{m,n}\}$ は射影系をなす。

命題 1.3.5. 上の状況において、

$$\Lambda^k = \lim \Lambda_n^k$$

がなりたつ。

Proof. $\theta_n: \Lambda^k \to \Lambda_n^k$ を n+1 番目以降の変数を 0 にする写像とすれば、

$$\rho_{m,n} \circ \theta_n = \theta_m$$

が成り立つから、射影極限の普遍性から

$$\theta: \Lambda^k \to \lim \Lambda_n^k$$

が誘導される。 $\lim_{\longleftarrow} \Lambda_n^k$ から Λ^k への写像 φ は次のように定義する。 $\lim_{\longleftarrow} \Lambda_n^k$ の元 $(f_n)_{n\in\mathbb{Z}_{>0}}, (f_n\in\Lambda_n^k)$ に対して、 $f_n\neq 0$ となる f_n をとる。 f_n は n 変数 k 次斉次対称多項式だから、大きさ k の n 行 Young 図形 $\mathcal{P}_k(n)$ でパラメトライズされた $\{m_\lambda(x_1,\cdots,x_n)\}_{\lambda\in\mathcal{P}_k(n)}$ で生成される。 すなわち

$$f_n = \sum_{\lambda \in \mathcal{P}_k(n)} c_{\lambda} m_{\lambda}(x_1, \cdots, x_n)$$

と表される。そこで、

$$\varphi((f_n)_{n\in\mathbb{Z}_{>0}}) = \sum_{\lambda\in\mathcal{P}_{h}(n)} c_{\lambda} m_{\lambda}$$

によって定義する。ただし、右辺の m_λ は例 1.3.2 の対称関数である。 φ が f_n の取り方によらないことを示す。 $f_m \neq 0$ かつ $m \geq n$ とする。

$$f_m = \sum_{\mu \in \mathcal{P}_k(m)} d_{\mu} m_{\mu}(x_1, \cdots, x_n, x_{n+1}, \cdots, x_m)$$

^{*2} 変数の置換と 0 を代入する操作が可換であることによる

と表せば、 $\rho_{n,m}(f_m) = f_n$ より

$$\sum_{\lambda \in \mathcal{P}_k(n)} c_{\lambda} m_{\lambda}(x_1, \dots, x_n) = \sum_{\mu \in \mathcal{P}_k(m)} d_{\mu} m_{\mu}(x_1, \dots, x_n, 0, \dots, 0)$$

$$\tag{4}$$

となる。 ここで、 $\mu_{n+1}>0$ となる μ に対しては $m_{\mu}(x_1,\cdots,x_n,0,\cdots,0)=0$ となるから、式 (4) の右辺の和で残るのは、 $\mu_{n+1}=0$ なる μ すなわち $\mu\in\mathcal{P}_k(n)$ である。また、 $\mu\in\mathcal{P}_k(n)$ のとき、

$$m_{\mu}(x_1, \cdots, x_n, 0, \cdots, 0) = m_{\mu}(x_1, \cdots, x_n)$$

であるから、結局式 (4) は

$$\sum_{\lambda \in \mathcal{P}_k(n)} c_{\lambda} m_{\lambda}(x_1, \dots, x_n) = \sum_{\lambda \in \mathcal{P}_k(n)} d_{\lambda} m_{\lambda}(x_1, \dots, x_n)$$
 (5)

となり、 $c_{\lambda}=d_{\lambda}$ が従う。