## Dynamic Programming (contd.)

## Interval Scheduling

$$P: J_1, J_2, ..., J_n \leftarrow Jobs$$
  
 $s_1 s_2 \qquad s_n \leftarrow Start times$   
 $f_1 f_2 \qquad f_n \leftarrow End times$   
 $w_1 w_2 \qquad w_n \leftarrow Weightz$ 

Want:

Maximum number of non-overlapping jobs Earliest finish time.



1. Sort the jobs on the basis of their finds h times

$$J_1, \ldots, J_n$$
 $S_1, \ldots, S_n$ 
 $f_1, \ldots, f_n \leftarrow f_1 \leq f_2 \leq \ldots \leq f_n$ 
 $W_1, \ldots, W_n$ 
 $W_n = f_1 \leq f_2 \leq \ldots \leq f_n$ 

Ju e optimal subset 07 Job Jn & optimal subset 0 \

Case-1: Jn ED: -> Pn = Set of all jobs that do not overlap with Jn:

wh of

Find the optimal subset in Pn.

Report wat who optimal subset in Pn. Jn € 0: Heport the wf. of the optimal subset in P\\Jn? Optimal Subset Wt (Ja,..., Jn): 1f n==1: return w. Let h(n) be the Construct Pu by doing a linear scan index of the last non-over lapping job noth In. w = wn+ Optimal Subset Wt (Pn) Pn= { J1, ..., Jun }. ~ = Optimal Subset Wt((J1,...,Jn-1)) Return max { w, w }. Sub problems max {w2+ L[h(2)], w, }. Optimal Subset Wt (I,..., I) for somele  $\in \{1,...,n\}$ . set of  $L[n] = \max \{w_n + L[h(n)], L[n-i]\}.$ max { w, +0,0}

|            | 0-                                                   | -1 Knaps                      | sack.         |                                   |                              |
|------------|------------------------------------------------------|-------------------------------|---------------|-----------------------------------|------------------------------|
| Items      | $I_1, I_2, \dots, I_n$                               | N                             | Knapso        | ick of n                          | ax wf                        |
| Obj:       | $I_1, I_2,, I_n$ $w_1, w_2,, w$ $max$ $sstuy$ is $s$ | wi<br>Zwi<br>ies              | gral<br>whe.  | Sort it  - Pick w  Long as  not e | ls al<br>it does<br>rceed W. |
| Case 1: U  | In<br>on is chosen.                                  |                               |               |                                   | decr. orde                   |
|            | → Max<br>Sc[n-1]                                     | ≥ wi<br>ies                   |               |                                   | 14/12.                       |
|            | SE [n-1] Subj to                                     | ≥wi≤<br>ies                   | $M - m^{N}$ . | max<br>Huse                       | over<br>two cases            |
| Case 2:    | wn 18 not  max  S = [n-1]                            | 0,002                         |               |                                   |                              |
|            |                                                      | ≥wi<br>ies                    | ≤ W           |                                   |                              |
| Optimal Su | bset wt (P, 1                                        | W )                           |               |                                   |                              |
| 1f         | no of items<br>if wto<br>else                        | s = = 1 :<br>f item < V<br>0. |               |                                   |                              |
| €S         | = wn+ Optiw                                          | nal Subset Wi                 | -(P\lite      | m n3, W-                          | $(w_n)$                      |
| ~          | - Optimal Sul                                        | bset Wt (P                    | 12 item       | n3 W)                             |                              |

Return max { w, w }. Ly Sub problem structure Optimal Subset Wt (Subset of item, a weight, bound) # of 80Ws ≤ n+1
 # of cds ≤ W
 =
 =
 \*\* poly (n,W)
unary?
binary?  $W_1, \ldots, W_M$ N \ binany logN = t JN ~ 2 2 ~ 2 t/2