Theoretical Foundations of Buffer Stock Saving

Chris Carroll

Johns Hopkins University

September 12, 2019

Powered By

Econ ARK

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

A Black Box

- Can Construct Solution to Model Without Really Understanding It
- Hard Even To Be Sure Your Numerical Solution Is Right
- Little Intuition for How Results Might Change With
 - Calibration
 - Structure
- Very Hard To Teach!

- Have Done A Good Deal Of Work With Them Myself
- But As A Result, Have Felt All These Drawbacks Keenly

The Gap This Paper Fills

Foundations For Microeconomic Household's Problem With

- Uncertain Labor Income
- No Liquidity Constraints
- CRRA Utility
- (Problem with Liquidity Constraints Is A Limiting Case)

The Gap This Paper Fills

Foundations For Microeconomic Household's Problem With

- Uncertain Labor Income
- No Liquidity Constraints
- CRRA Utility
- (Problem with Liquidity Constraints Is A Limiting Case)

Key Result

Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - $\Rightarrow \exists$ A Unique Consumption Function c(m)
- There Is A 'Target' Ratio Of Assets to Permanent Income
 - Requires A Key 'Impatience' Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed

Key Result

Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - $\Rightarrow \exists$ A Unique Consumption Function c(m)
- There Is A 'Target' Ratio Of Assets to Permanent Income
 - Requires A Key 'Impatience' Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed

Key Result

Restrictions On Parameter Values Such That

- Problem Defines A Contraction Mapping
 - \Rightarrow \exists A Unique Consumption Function c(m)
- There Is A 'Target' Ratio Of Assets to Permanent Income
 - Requires A Key 'Impatience' Condition To Hold
 - Good News
 - Condition Is Weaker (Easier To Satisfy) Than Previous Papers Imposed

Limit as horizon T goes to infinity of

$$\begin{aligned} \mathbf{v}_{T-n} &= \max \ \mathbb{E}_t \left[\sum_{i=0}^n \beta^i \mathbf{u}(\mathbf{c}_{t+i}) \right] \\ \mathbf{a}_t &= \mathbf{m}_t - \mathbf{c}_t \\ \mathbf{k}_{t+1} &= \mathbf{a}_t \\ \mathbf{b}_{t+1} &= \mathbf{k}_{t+1} \mathbf{R} \\ \mathbf{p}_{t+1} &= \mathbf{p}_t \underbrace{\mathbf{\Phi} \Psi_{t+1}}_{\equiv \mathbf{\Phi}_{t+1}} \\ \mathbf{m}_{t+1} &= \mathbf{b}_{t+1} + \mathbf{p}_{t+1} \boldsymbol{\xi}_{t+1}, \end{aligned}$$

$$\boldsymbol{\xi}_{t+n} = \begin{cases} 0 & \text{with probability } \wp > 0 \\ \boldsymbol{\theta}_{t+n}/(1-\wp) & \text{with probability } (1-\wp) \end{cases}$$
 (1)

•
$$u(\bullet) = \bullet^{1-\rho}/(1-\rho)$$
; $\mathbb{E}_t[\Psi_{t+n}] = \mathbb{E}_t[\xi_{t+n}] = 1 \ \forall n > 0$; $\beta < 1, \rho > 1$

Surely This Problem Has Been Solved?

No

- Can't Use Stokey et. al. theorems because CRRA utility
- Lit thru Matkowski and Nowak (2011) Can't Handle Permanent Shocks
- Must Use Boyd's 'Weighted' Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!

Surely This Problem Has Been Solved?

No.

- Can't Use Stokey et. al. theorems because CRRA utility
- Lit thru Matkowski and Nowak (2011) Can't Handle Permanent Shocks
- Must Use Boyd's 'Weighted' Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!

Surely This Problem Has Been Solved?

No.

- Can't Use Stokey et. al. theorems because CRRA utility
- Lit thru Matkowski and Nowak (2011) Can't Handle Permanent Shocks
- Must Use Boyd's 'Weighted' Contraction Mapping Theorem
- Surprisingly Subtle

Fortunately, the Conclusions Are Simple!

Benchmark: Perfect Foresight Model

Definitions:

Absolute Patience Factor	Þ	=	$(R\beta)^{1/\beta}$
Return Patience Factor	\mathbf{p}_R	=	⊅ /R
Perfect Foresight Growth Patience Factor	$\mathbf{p}_{\mathbf{\Phi}}$	=	$\mathbf{p}/\mathbf{\Phi}$

Name	Condition		n	Implication	
(AIC) Absolute Impatience Condition				,	
(RIC) Return Impatience Condition	\mathbf{p}_R	<	1	c/a ↓ over time	
$\left(\mathrm{GIC} \right)$ Growth Impatience Condition	\mathbf{p}_{Φ}	<	1	c/p ↓ over time	

When Does A Useful Limiting Solution Exist?

Finite Human Wealth (FHWC) condition:

$$\mathbf{\Phi} \quad \langle \quad \mathsf{R} \tag{2}$$

Return Impatience Condition:

$$\Phi_{\mathsf{R}} < \mathsf{R} \tag{3}$$

When Does A Useful Limiting Solution Exist?

Finite Human Wealth (FHWC) condition:

$$\Phi$$
 < R (2)

Return Impatience Condition:

$$\mathbf{\hat{p}}_{\mathsf{R}} \ < \ \mathsf{R} \tag{3}$$

What If There Are Liquidity Constraints?

- FHWC is not necessary for solution to exist
- Other Key Condition For Useful Solution is 'Perfect Foresight Finite Value of Autarky Condition (PF-FVAC)':

$$\beta \mathbf{\Phi}^{1-\rho} \quad < \quad 1 \tag{4}$$

- Without RIC, Constraints Are Irrelevant
 - Because Wealth Always Wants To Rise, So Constraint Never Binds

What If There Are Liquidity Constraints?

- FHWC is not necessary for solution to exist
- Other Key Condition For Useful Solution is 'Perfect Foresight Finite Value of Autarky Condition (PF-FVAC)':

$$\beta \mathbf{\Phi}^{1-\rho} \quad < \quad 1 \tag{4}$$

- Without RIC, Constraints Are Irrelevant
 - Because Wealth Always Wants To Rise, So Constraint Never Binds

Liquidity Constraints and Uncertainty

- Introduce permanent shocks to income
- Finite Value of Autarky Condition Becomes

FVAC:
$$0 < \overbrace{\beta \underline{\Phi}^{1-\rho}}^{\text{VAF}} < 1$$
 (5) $0 < \beta < \underline{\Phi}^{\rho-1},$

Contraction Mapping Requirements

Finite Value of Autarky Condition: Same As In Liq Constr Problem!

FVAC:
$$0 < \overbrace{\beta \underline{\Phi}^{1-\rho}}^{\text{EVAF}} < 1$$
 (6)
 $0 < \beta < \underline{\underline{\Phi}}^{\rho-1},$

'Weak Return Impatience Condition' (WRIC)

$$0 \le \wp^{1/\rho} \mathbf{P}_{\mathsf{R}} < 1 \tag{7}$$

Requirement For Existence Of A Target

Definitions: 'Uncertainty-Adjusted' Growth:

$$\underline{\Phi} \equiv \Phi \underline{\Psi} < \Phi$$

Adjusted Growth Patience Factor:

GPF-Mod:
$$\mathbf{p}_{\underline{\Phi}} = \mathbf{p}/\underline{\Phi} = \mathbb{E}[\mathbf{p}/(\Phi\Psi)]$$
 (8)

Growth Impatience Condition:

GIC-Mod:
$$\mathbf{p}_{\underline{\phi}} < 1$$
, (9)

Why? Because it can be shown that

$$\lim_{m_t \to \infty} \mathbb{E}_t \left[\frac{m_{t+1}}{m_t} \right] = \mathbf{p}_{\underline{\Phi}} \tag{10}$$

Five Propositions

$$\mathbf{0} \ \lim_{m_t \to \infty} \mathbb{E}_t[\mathsf{c}_{t+1}/\mathsf{c}_t] = \mathbf{P}$$

③ \exists a unique target value of m, called \check{m}

The Target Saving Figure

Bounds On the Consumption Function

The Marginal Propensity to Consume

The Consumption Function and Target Wealth

Convergence To The Invariant Distribution

Szeidl (2013) Proves Existence of an Invariant Distribution of m, c, a, etc.

Carroll

Balanced Growth Equilibrium

Achieved When Cross Section Distribution Reaches Invariance

$$\mathsf{Y}_{t+1}/\mathsf{Y}_t = \mathsf{C}_{t+1}/\mathsf{C}_t = \mathbf{\Phi} \tag{11}$$

Fisherian Separation Fails, Even Without Liquidity Constraints!

Insight:

- Precautionary Saving ≈ Liquidity Constraints
- If c(m) is solution for constrained consumer,

$$\lim_{\wp \downarrow 0} c(m; \wp) = \dot{c}(m) \tag{12}$$

Balanced Growth Equilibrium

Achieved When Cross Section Distribution Reaches Invariance

$$Y_{t+1}/Y_t = C_{t+1}/C_t = \mathbf{\Phi} \tag{11}$$

Fisherian Separation Fails, Even Without Liquidity Constraints!

Insight:

- Precautionary Saving ≈ Liquidity Constraints
- If c(m) is solution for constrained consumer,

$$\lim_{\wp \downarrow 0} c(m;\wp) = \dot{c}(m) \tag{12}$$

Balanced Growth Equilibrium

Achieved When Cross Section Distribution Reaches Invariance

$$\mathsf{Y}_{t+1}/\mathsf{Y}_t = \mathsf{C}_{t+1}/\mathsf{C}_t \quad = \quad \mathbf{\Phi} \tag{11}$$

Fisherian Separation Fails, Even Without Liquidity Constraints!

Insight:

- Precautionary Saving ≈ Liquidity Constraints
- If c(m) is solution for constrained consumer,

$$\lim_{\wp \downarrow 0} c(m;\wp) = \dot{c}(m) \tag{12}$$

The MPC Out Of Permanent Shocks

https://www.econ2.jhu.edu/people/ccarroll/papers/MPCPerm.pdf

Lots of Recent Papers Trying to Measure the MPCP

Paper Proves:

- MPCP < 1
- But not a lot less:
 - 0.75 to 0.95 (annual rate) for wide range of parameter values

- Defined Conditions Under Which Widely Used Problem Has Solution
 - Finite Value of Autarky Condition Guarantees Contraction (with WRIC)
 - Growth Impatience Condition Prevents $m \to \infty$
- Economy Of Buffer Stock Consumers Exhibits Balanced Growth
 - Even In Absence of General Equilibrium Adj of Interest Rate

Introduction
The Problem
Features Of the Solution
A Small Open Buffer Stock Economy
Conclusions

MATKOWSKI, JANUSZ, AND ANDRZEJ S. NOWAK (2011): "On Discounted Dynamic Programming With Unbounded Returns," Economic Theory, 46, 455–474.

SZEIDL, ADAM (2013): "Stable Invariant Distribution in Buffer-Stock Saving and Stochastic Growth Models," Manuscript, Central European University, Available at http://www.personal.ceu.hu/staff/Adam_Szeidl/papers/invariant_revision.pdf.