Digital Image Processing Using MATLAB

Malay S. Bhatt
Department of Computer Engineering
Faculty of Technology
Dharmsinh Desai University
Nadiad

IMAGE RESTORATION

The main objective of restoration is to improve the quality of a digital image which has been degraded due to Various phenomena like:

- Motion
- Improper focusing of Camera during image acquisition.
- Atmospheric turbulence
- Noise

Enhancement versus Restoration

- Both processes try to improve an image in some predefined sense
- Image enhancement is largely a subjective process, while image restoration is for the most part an objective process

Enhancement:

- (1)Manipulating an image in order to take advantage of the psychophysics of the human visual system.
- (2) Techniques are usually "heuristic."
- (3)Example: Contrast stretching, histogram equalization.

· Restoration:

- (1)A process that attempts to reconstruct or recover an image that has been degraded by using some prior knowledge of the degradation phenomenon.
- (2) Involves modeling the degradation process and applying the inverse process to recover the original image.
- (3)A criterion for "goodness" is required that will recover the image in an optimal fashion with respect to that criterion.
- (4) Example: removal of blur by applying a deblurring function.

Problem: • You want to know some image X. • But you only have a corrupted version Y . • How do you determine X from Y ?

If H is a linear, position-invariant process, then the degraded image is given in the spatial domain by $g(x,y) = h(x,y) \quad f(x,y) + \eta(x,y)$

2-D Convolution (Spatial)

Rotate the convolution kernel 180 degrees about its center element.

$$\Rightarrow p = rot90(H)$$

$$H = \begin{bmatrix} 8 & 1 & 6 & & 6 & 7 & 2 & & \\ 3 & 5 & 7 & & 1 & 5 & 9 & \\ 4 & 9 & 2 \end{bmatrix}$$

$$\Rightarrow q = rot90(p)$$

$$2 & 9 & 4 & \\ 7 & 5 & 3 & \\ 6 & 1 & 8 & \\ \end{bmatrix}$$

2-D Convolution (Spatial)

Multiply each weight in the rotated convolution kernel by the pixel of A underneath.

Sum the individual products from step 3.

Noise Sources

- > The principal sources of noise in digital images arise during **image** acquisition and/or transmission
- Image acquisitione.g., light levels, sensor temperature, etc.
- Transmissione.g., lightning or other atmospheric disturbance in wireless network

Noise probability density functions Noises are taken as random variables Random variables Probability density function (PDF)

Noise Probability Distribution (Salt & Pepper Noise)

The PDF of (bipolar) impulse noise is given by

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

if b > a, gray-level b will appear as a light dot, while level a will appear like a dark dot.

If either P_a or P_b is zero, the impulse noise is called *unipolar*

Noise Probability Distribution (Salt & Pepper Noise)

The PDF of (bipolar) impulse noise is given by

$$p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$$

The CDF of (bipolar) impulse noise is given by

F(z) =
$$\begin{cases}
Pa & \text{for } a <= Z < b \\
Pa + Pb & \text{for } Z >= b \\
0 & \text{Otherwise}
\end{cases}$$

```
Salt & Pepper Noise

> a = imread('C:\lake2.bmp');
> a = double(a);
> a = mat2gray(a);
> imhist(a);
> b = imnoise(a, 'Salt & Pepper');
> figure, imshow (b);
> figure, imhist(b)
```

```
Implementation: Salt & Pepper

function i= saltpepper(img1,a,b)
  [m,n]=size(img1);
  img1=mat2gray(double(img1));
  r= rand(m,n);
  x=find(r <= a);
  img1(x)=0;
  x=find(r >a & r <= (a+b));
  img1(x)=255;
  figure,imhist(img1);
  figure,imshow(img1);
  imwrite(img1,'C:\board_salt.tif');
  return i;</pre>
```



```
Test for noise behavior

a1=(imread('Fig0503 (original_pattern).tif'));
[m,n]=size(a1);
z=uint8(randi([10,40],m,n));

noisy_a=double(a1)+ double(z);
noisy=imhist(mat2gray(noizy_a));
original=imhist((a1));
```

```
Test for noise behavior

figure(1), bar(0:255,noisy)
figure(2), bar(0:255,original)
figure (3)
subplot(2,1,1)
imshow(a1)
title('original image')
subplot(2,1,2)
imshow(mat2gray(noisy_a))
title('noisy image-uniform noise')
```


Noise Probability Distribution (Uniform Noise)

The PDF of uniform noise is given by

$$p(z) = \begin{cases} \frac{1}{b-a} & \text{for a } \le z \le b \\ 0 & \text{otherwise} \end{cases}$$

The mean and variance of this density are given by

$$\overline{z} = (a+b)/2$$

$$\sigma^2 = (b-a)^2 / 12$$

Noise Probability Distribution (Exponential Noise)

The PDF of exponential noise is given by

$$p(z) = \begin{cases} ae^{-az} & \text{for } z \ge 0\\ 0 & \text{for } z < 0 \end{cases}$$

The mean and variance of this density are given by

$$\overline{z} = 1/a$$

$$\sigma^2 = 1/a^2$$

Noise Probability Distribution (Exponential Noise)

A continuous random variable X is said to have an *exponential* distribution with parameter $\lambda>0$, shown as $X\sim Exponential(\lambda)$, if its PDF is given by

$$f_X(x) = \left\{ egin{array}{ll} \lambda e^{-\lambda x} & & x>0 \ 0 & & ext{otherwise} \end{array}
ight.$$

Figure 4.5 shows the PDF of exponential distribution for several values of $\lambda.$

Noise Probability Distribution (Exponential Noise)

Let us find its CDF, mean and variance. For x>0, we have

$$F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}.$$

So we can express the CDF as

$$F_X(x) = (1 - e^{-\lambda x})u(x).$$

Let $X \sim Exponential(\lambda)$. We can find its expected value as follows, using integration by parts

$$\begin{split} EX &= \int_0^\infty x \lambda e^{-\lambda x} dx \\ &= \frac{1}{\lambda} \int_0^\infty y e^{-y} dy \quad \text{choosing } y = \lambda x \\ &= \frac{1}{\lambda} \left[-e^{-y} - y e^{-y} \right]_0^\infty \\ &= \frac{1}{\lambda}. \end{split}$$

Noise Probability Distribution (Exponential Noise)

Now let's find Var(X). We have

$$egin{aligned} EX^2 &= \int_0^\infty x^2 \lambda e^{-\lambda x} dx \ &= rac{1}{\lambda^2} \int_0^\infty y^2 e^{-y} dy \ &= rac{1}{\lambda^2} igg[-2e^{-y} -2ye^{-y} -y^2 e^{-y} igg]_0^\infty \ &= rac{2}{\lambda^2}. \end{aligned}$$

Thus, we obtain

$$\mathrm{Var}(X)=EX^2-(EX)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}.$$

If
$$X \sim Exponential(\lambda)$$
, then $EX = \frac{1}{\lambda}$ and $\operatorname{Var}(X) = \frac{1}{\lambda^2}$.

English (United States) English (India) keyboa