Homework 4 Mohit Galvankar mgalvank

5.23 What are the minimum and maximum number of elements in a heap of height h?

Since a heap is an almost-complete binary tree (complete at all levels except possibly the lowest), it has at most $1+2+2^2+2^3+...+2^h=2^h+1-1$ elements (if it is complete) and at least 2^h+1-2^h elements (if the lowest level has just 1 element and the other levels are complete).

5.25 Show the max-heap that results from running buildHeap on the following values stored in an array: 10 5 12 3 2 1 8 7 9 4

5.26 (a) Show the heap that results from deleting the maximum value from the max-heap of Figure 5.20b.

(b) Show the heap that results from deleting the element with value 5 from the max-heap of Figure 5.20b.

5.28 Build the Huffman coding tree and determine the codes for the following set of letters and weights:

Letter A B C D E F G H I J K L

Frequency 2 3 5 7 11 13 17 19 23 31 37 41

What is the expected length in bits of a message containing n characters for this frequency distribution?

\sim

H 010

I 011

E 1000

F 1001

J 101

D 11000

A 1100100

B 1100101

C 110011

G 1101

K 111

The average code length of a word of length n is 3.23445n.

9.13 Assume that you are hashing key K to a hash table of n slots (indexed from 0 to n \square 1). For each of the following functions h(K), is the function acceptable as a hash function (i.e., would the hash program work correctly for both insertions and searches), and if so, is it a good hash function? Function Random(n) returns a random integer between 0 and n \square 1, inclusive.

- (a) h(k) = k=n where k and n are integers. No : hash value will be greater than largest index in HT when $k > n^2$.
- (b) h(k) = 1. Yes: It would work correctly, but it is a very bad hash function because any two

items will have a collision.

- (c) $h(k) = (k + Random(n)) \mod n$. No : A hash function must return the same value each time.
- (d) $h(k) = k \mod n$ where n is a prime number. Yes: In fact, this is often used in practice if not much is known about the distribution of key values.

9.16 Assume that you have a ten-slot closed hash table (the slots are numbered 0 through 9). Show the final hash table that would result if you used the hash function $h(k) = k \mod 10$ and pseudo-random probing on this list of numbers: 3, 12, 9, 2, 79, 44. The permutation of offsets to be used by the pseudo-random probing will be: 5, 9, 2, 1, 4, 8, 6, 3, 7. After inserting the record with key value 44, list for each empty slot the probability that it will be the next one filled.

12.5			- 13,12,9,2,79,44
	- psenow -	angun	n publing list > 5,9,2,1,4,8,6,3,7
	Hash Run	chien	h(k) = k mod 10.
			lisa i i i i i i i i i i i i i i i i i i
	1		010000
	2		01100
	3		11000
	4		20000
	5		2800
	6	110	25 01100
	7	2	
	8		(9.5)
	9	9	
	Steps		
	3 mod 10	-) 3	insect at index 3
			insect at index 2.
			insert at index 9.
	2 mod 10		collision anadorto (2+5) modio
	79 mod 10	→ 9	collision (79+4) mod 10 -> 3
			collision
	44 mod 10-	74	(79+6) mod 10 → 5 imput at index s. imput at index 4.
5		The later of	is the man of the

9.19 Write an algorithm for a deletion function for hash tables that replaces the record with a special value indicating a tombstone. Modify the functions hashInsert and hashSearch to work correctly with tombstones.

9.19]
Hash-delete (T,K)?
L = 0
lepeat
j= h(k,i)
j = h(k, i) $if(TCjJ == k)$
T[j] = Tombstone.
letun
i=i+1
until T[j] == NIL or i==m
eitiun.
Hash_insert (T, k) ?
i = 0
lepeat
if (TG) == NIL OL TG] == Tombstone)
if (TCi) == NIL ON TOT - Tomber
TGJ=k
etun j
else $i = i + 1$
$ until _{i=m}$
euer "hesh table overflow".

Hash-search (τ, κ) ? i=0 i=0

13.1 Show the binary trie (as illustrated by Figure 13.1) for the following collection of values: 42, 12, 100, 10, 50, 31, 7, 11, 99.

