MATHEMATICAL METH-ODS OF THEORETICAL PHYSICS

EDITION FUNZL

Copyright © 2013 Karl Svozil

PUBLISHED BY EDITION FUNZL

First Edition, October 2011

Second Edition, October 2013

Contents

List of Figures

List of Tables

For the sake of an example, consider again the matrix

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \tag{1}$$

and the associated Eigensystem

The projectors associated with the eigenvalues, and, in particular, \mathbf{E}_1 , can be obtained from the set of eigenvalues $\{0,1,2\}$ by

$$p_{1}(A) = \left(\frac{A - \lambda_{2} \mathbb{I}}{\lambda_{1} - \lambda_{2}}\right) \left(\frac{A - \lambda_{3} \mathbb{I}}{\lambda_{1} - \lambda_{3}}\right)$$

$$= \frac{\left(\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - 1 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right)}{(0 - 1)} \cdot \frac{\left(\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right)}{(0 - 2)}$$

$$= \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \mathbf{E}_{1}.$$

$$(3)$$

For the sake of another, degenerate example, consider again the matrix

$$B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \tag{4}$$

Again, the projectors $\textbf{E}_1,\textbf{E}_2$ can be obtained from the set of eigenvalues $\{0,2\}$ by

$$p_{1}(A) = \frac{A - \lambda_{2} \mathbb{I}}{\lambda_{1} - \lambda_{2}} = \frac{\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} - 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}{(0 - 2)} = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \mathbf{E}_{1},$$

$$p_{2}(A) = \frac{A - \lambda_{1} \mathbb{I}}{\lambda_{2} - \lambda_{1}} = \frac{\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} - 0 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}{(2 - 0)} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \mathbf{E}_{2}.$$
(5)

Note that, in accordance with the spectral theorem, $\mathbf{E}_1 + \mathbf{E}_2 = \mathbb{I}$ and $0 \cdot \mathbf{E}_1 + 2 \cdot \mathbf{E}_2 = B$.