Individual household electric power consumption Data Set

Rajan Kumar

Problem Statement

Regression: https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption)

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption)

Classification: https://archive.ics.uci.edu/ml/datasets/Census+Income (https://archive.ics.uci.edu/ml/datasets/Census+Income)

- 1. Data ingestion
- 2. EDA
- 3. Preprocessing Pickling for the preprocessing object(save the preprocessing model) After preprocessing you have to store data inside MONGODB

You have to load the data from mongo db

4 Mode

Regression:linear regression,ridge regression,lasso regression,elastic net, support vector regression

Classification: logistic regression, SVM(kernel)

Hyperparameter tuning is mandatory(GRID SEARCH CV)

5. Evaluation of the model Regression evaluation matrix: R2 and adjusted R2 Classification confusion matrix, ROC AUC score

Data Set Information:

This archive contains 2075259 measurements gathered in a house located in Sceaux (7km of Paris, France) between December 2006 and November 2010 (47 months). Notes: 1.(global_active_power*1000/60 - sub_metering_1 - sub_metering_2 - sub_metering_3) represents the active energy consumed every minute (in watt hour) in the household by electrical equipment not measured in sub-meterings 1, 2 and 3. 2. The dataset contains some missing values in the measurements (nearly 1,25% of the rows). All calendar timestamps are present in the dataset but for some timestamps, the measurement values are missing: a missing value is represented by the absence of value between two consecutive semi-colon attribute separators. For instance, the dataset shows missing values on April 28, 2007.

Attribute Information:

1.date: Date in format dd/mm/yyyy

2.time: time in format hh:mm:ss

 ${\tt 3.global_active_power: household\ global\ minute-averaged\ active\ power\ (in\ kilowatt)}$

4.global_reactive_power: household global minute-averaged reactive power (in kilowatt)

5.voltage: minute-averaged voltage (in volt)

6.global_intensity: household global minute-averaged current intensity (in ampere)

7.sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered).

8.sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light.

9.sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds to an electric water-heater and an air-conditioner.

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

1. Data Ingesion

```
In [2]:
```

```
df = pd.read_csv(r"C:\Users\Rajan\household_power_consumption.txt",sep=';')

C:\Users\Rajan\AppData\Local\Temp\ipykernel_19848\2095378203.py:1: DtypeWarning: Columns (2,3,4,5,6,7) have mixed types. Sp ecify dtype option on import or set low_memory=False.
```

df = pd.read_csv(r"C:\Users\Rajan\household_power_consumption.txt",sep=';')

Out[10]:

```
12/31/22, 12:05 AM
                                              30th October Individual household electric power consumption Data Set - Jupyter Notebook
  In [3]:
  df.head()
  Out[3]:
           Date
                   Time Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_1 Sub_metering_2 Sub_metering_3
   0 16/12/2006 17:24:00
                                                           0.418 234.840
                                                                                  18.400
                                                                                                  0.000
                                                                                                                  1.000
   1 16/12/2006 17:25:00
                                      5.360
                                                           0.436 233.630
                                                                                  23 000
                                                                                                  0.000
                                                                                                                  1 000
                                                                                                                                  16.0
   2 16/12/2006 17:26:00
                                      5.374
                                                           0.498 233.290
                                                                                  23.000
                                                                                                  0.000
                                                                                                                  2.000
                                                                                                                                  17.0
   3 16/12/2006 17:27:00
                                      5.388
                                                           0.502 233.740
                                                                                  23.000
                                                                                                  0.000
                                                                                                                  1.000
                                                                                                                                  17.0
   4 16/12/2006 17:28:00
                                                           0.528 235.680
                                                                                  15.800
                                      3.666
                                                                                                  0.000
                                                                                                                  1.000
                                                                                                                                  17.0
  In [4]:
  import warnings
  warnings.filterwarnings('ignore')
  In [5]:
  df.shape
  Out[5]:
  (2075259, 9)
  In [6]:
  df.columns
  Out[6]:
  Index(['Date', 'Time', 'Global\_active\_power', 'Global\_reactive\_power']
           'Voltage', 'Global_intensity', 'Sub_metering_1', 'Sub_metering_2',
          'Sub_metering_3'],
         dtype='object')
  In [7]:
  #there are multiple blank? values in the data, need to replace it with np.NaN
  In [8]:
  df[df['Global_active_power']=="?"]
  Out[8]:
                Date
                         Time Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_1 Sub_metering_2 Sub_metering_3
      6839 21/12/2006 11:23:00
                                                                                            ?
                                                                                                                           ?
                                                                                                                                        NaN
      6840 21/12/2006 11:24:00
                                               ?
                                                                    ?
                                                                             ?
                                                                                            ?
                                                                                                           ?
                                                                                                                           ?
                                                                                                                                        NaN
     19724 30/12/2006 10:08:00
                                               ?
                                                                    ?
                                                                             ?
                                                                                            ?
                                                                                                           ?
                                                                                                                           ?
                                                                                                                                        NaN
     19725 30/12/2006 10:09:00
                                                                                                                                        NaN
     41832
            14/1/2007 18:36:00
                                                                                            ?
                                                                                                           ?
                                                                                                                                        NaN
            28/9/2010 19:09:00
                                               ?
                                                                                            ?
                                                                                                           ?
   1990185
                                                                                                                                        NaN
   1990186
            28/9/2010 19:10:00
                                                                                            ?
                                                                                                           ?
                                                                                                                                        NaN
   1990187
            28/9/2010 19:11:00
                                                                                            ?
                                                                                                           ?
                                                                                                                                        NaN
   1990188
            28/9/2010 19:12:00
                                                                             ?
                                                                                            ?
                                                                                                           ?
                                                                                                                           ?
                                                                                                                                        NaN
   2027411 24/10/2010 15:35:00
                                                                                                                                        NaN
  25979 rows × 9 columns
  In [9]:
  #replacing ? with Nan value
  df.replace("?", np.NaN, inplace= True)
  In [10]:
  df[df['Global_active_power']=="?"]
```

localhost:8888/notebooks/30th October Individual household electric power consumption Data Set.ipynb

Date Time Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_1 Sub_metering_2 Sub_metering_3

```
In [11]:
#Checking null values
df.isna().sum()
#Here we have replaced Nan for '?' for all 25979 rows for all the columns where null values were found
Out[11]:
Date
                              0
Time
                              a
{\tt Global\_active\_power}
                          25979
{\tt Global\_reactive\_power}
                          25979
Voltage
                          25979
Global_intensity
                          25979
Sub_metering_1
                          25979
Sub_metering_2
                          25979
Sub_metering_3
                          25979
dtype: int64
In [12]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2075259 entries, 0 to 2075258
Data columns (total 9 columns):
    Column
                             Dtype
0
     Date
                             object
1
     Time
                             object
     Global_active_power
                             object
     Global_reactive_power
                             object
    Voltage
                             object
    Global_intensity
                             object
    Sub_metering_1
                             object
    Sub_metering_2
                             object
    Sub_metering_3
```

In [13]:

dtypes: float64(1), object(8) memory usage: 142.5+ MB

```
#selecting 40000 sample data
df1 = df.sample(40000)
```

In [14]:

df1.head()

Out[14]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
1413467	24/8/2009	07:11:00	1.600	0.262	243.170	6.600	0.000	1.000	19.0
406388	24/9/2007	22:32:00	0.238	0.000	242.520	1.000	0.000	0.000	0.0
155665	3/4/2007	19:49:00	4.530	0.000	233.660	19.400	37.000	1.000	0.0
1003973	12/11/2008	22:17:00	1.564	0.000	241.730	6.400	1.000	0.000	18.0
2014931	15/10/2010	23:35:00	1.076	0.550	244.440	4.800	0.000	1.000	11.0

In [15]:

df1.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 40000 entries, 1413467 to 17460
Data columns (total 9 columns):
    Column
                           Non-Null Count Dtype
0
    Date
                           40000 non-null object
    Time
                           40000 non-null object
    Global_active_power
                           39524 non-null
                                           object
                           39524 non-null
    Global_reactive_power
                                           obiect
    Voltage
                           39524 non-null
                                           object
    Global_intensity
                           39524 non-null
5
                                           object
    Sub_metering_1
                           39524 non-null
6
                                           object
    Sub_metering_2
                           39524 non-null
                                           obiect
    Sub_metering_3
                           39524 non-null float64
dtypes: float64(1), object(8)
memory usage: 3.1+ MB
```

float64

```
In [16]:
```

```
df1['Date'] = pd.to_datetime(df1['Date'])
df1['date'] = df1['Date'].dt.day
df1['month'] = df1['Date'].dt.month
df1['year'] = df1['Date'].dt.year
df1.head()
```

Out[16]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3	date
1413467	2009- 08-24	07:11:00	1.600	0.262	243.170	6.600	0.000	1.000	19.0	24
406388	2007- 09-24	22:32:00	0.238	0.000	242.520	1.000	0.000	0.000	0.0	24
155665	2007- 03-04	19:49:00	4.530	0.000	233.660	19.400	37.000	1.000	0.0	4
1003973	2008- 12-11	22:17:00	1.564	0.000	241.730	6.400	1.000	0.000	18.0	11
2014931	2010- 10-15	23:35:00	1.076	0.550	244.440	4.800	0.000	1.000	11.0	15
4										>

In [17]:

```
df1['hour'] = pd.to_datetime(df1['Time'],format = '%H:%M:%S').dt.hour
df1['minute'] = pd.to_datetime(df1['Time'],format = '%H:%M:%S').dt.minute
df1.head()
```

Out[17]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3	date
1413467	2009- 08-24	07:11:00	1.600	0.262	243.170	6.600	0.000	1.000	19.0	24
406388	2007- 09-24	22:32:00	0.238	0.000	242.520	1.000	0.000	0.000	0.0	24
155665	2007- 03-04	19:49:00	4.530	0.000	233.660	19.400	37.000	1.000	0.0	4
1003973	2008- 12-11	22:17:00	1.564	0.000	241.730	6.400	1.000	0.000	18.0	11
2014931	2010- 10-15	23:35:00	1.076	0.550	244.440	4.800	0.000	1.000	11.0	15
4										

In [18]:

```
df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 40000 entries, 1413467 to 17460
Data columns (total 14 columns):
                           Non-Null Count Dtype
# Column
                            -----
                                           datetime64[ns]
0
    Date
                           40000 non-null
                           40000 non-null
1
    Time
                                           object
2
    Global active power
                           39524 non-null
                                           object
     Global_reactive_power
                           39524 non-null
3
                                           object
                            39524 non-null
    Voltage
                                           object
    Global_intensity
5
                            39524 non-null
                                           object
6
     Sub_metering_1
                           39524 non-null
                                           object
     Sub_metering_2
                            39524 non-null
                                           object
8
    Sub_metering_3
                           39524 non-null
                                           float64
9
     date
                           40000 non-null
                                           int64
10
    month
                           40000 non-null
                                           int64
11 year
                           40000 non-null
                                           int64
12
     hour
                           40000 non-null
                                           int64
13 minute
                           40000 non-null int64
dtypes: datetime64[ns](1), float64(1), int64(5), object(7)
memory usage: 4.6+ MB
```

In [19]:

```
#converting the data types
df1['Global_active_power']= df1['Global_active_power'].astype(float)
df1['Global_reactive_power']= df1['Global_reactive_power'].astype(float)
df1['Voltage']= df1['Voltage'].astype(float)
df1['Global_intensity']= df1['Global_intensity'].astype(float)
df1['Sub_metering_1']= df1['Sub_metering_1'].astype(float)
df1['Sub_metering_2']= df1['Sub_metering_2'].astype(float)
```

```
In [20]:
```

```
df1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 40000 entries, 1413467 to 17460
Data columns (total 14 columns):
                            Non-Null Count Dtype
     Column
#
                            40000 non-null datetime64[ns]
0
    Date
                            40000 non-null
1
     Time
                                           object
     Global_active_power
                            39524 non-null
2
                                           float64
 3
     Global_reactive_power
                           39524 non-null
                                            float64
 4
     Voltage
                            39524 non-null
                                           float64
 5
    Global_intensity
                            39524 non-null
                                           float64
 6
     Sub_metering_1
                            39524 non-null
                                            float64
     Sub_metering_2
                            39524 non-null
                                            float64
8
     Sub_metering_3
                            39524 non-null
                                            float64
 9
     date
                            40000 non-null
                                            int64
 10 month
                            40000 non-null
 11
    year
                            40000 non-null
                                            int64
12 hour
                            40000 non-null
                                           int64
 13 minute
                            40000 non-null
                                           int64
dtypes: datetime64[ns](1), float64(7), int64(5), object(1)
memory usage: 4.6+ MB
In [21]:
df1['total_metering'] = df1['Sub_metering_1']+df1['Sub_metering_2']+df1['Sub_metering_3']
df1.head()
```

Out[21]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3	date
1413467	2009- 08-24	07:11:00	1.600	0.262	243.17	6.6	0.0	1.0	19.0	24
406388	2007- 09-24	22:32:00	0.238	0.000	242.52	1.0	0.0	0.0	0.0	24
155665	2007- 03-04	19:49:00	4.530	0.000	233.66	19.4	37.0	1.0	0.0	4
1003973	2008- 12-11	22:17:00	1.564	0.000	241.73	6.4	1.0	0.0	18.0	11
2014931	2010- 10-15	23:35:00	1.076	0.550	244.44	4.8	0.0	1.0	11.0	15
4										+

In [22]:

```
#dropping unnecessary columns
df2 = df1.drop(columns=['Date','Time','Sub_metering_3','Sub_metering_2','Sub_metering_1'])
```

In [23]:

df2.head()

Out[23]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	date	month	year	hour	minute	total_metering
1413467	1.600	0.262	243.17	6.6	24	8	2009	7	11	20.0
406388	0.238	0.000	242.52	1.0	24	9	2007	22	32	0.0
155665	4.530	0.000	233.66	19.4	4	3	2007	19	49	38.0
1003973	1.564	0.000	241.73	6.4	11	12	2008	22	17	19.0
2014931	1 076	0.550	244 44	4.8	15	10	2010	23	35	12 0

In [24]:

```
df2.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 40000 entries, 1413467 to 17460 Data columns (total 10 columns):

Non-Null Count Dtype Column # ${\tt Global_active_power}$ 39524 non-null float64 0 Global_reactive_power 1 39524 non-null float64 39524 non-null 2 Voltage float64 3 Global_intensity 39524 non-null float64 4 date 40000 non-null int64 5 month 40000 non-null int64 6 year 40000 non-null int64 hour 40000 non-null int64

40000 non-null

int64

float64

total_metering 39524 non-null dtypes: float64(5), int64(5)

memory usage: 3.4 MB

minute

In [25]:

8

df2.describe()

Out[25]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	date	month	year	hour	minute
count	39524.000000	39524.000000	39524.000000	39524.000000	40000.000000	40000.000000	40000.000000	40000.000000	40000.000000
mean	1.099516	0.124644	240.798057	4.662423	15.726400	6.509950	2008.433725	11.523050	29.657925
std	1.067506	0.113641	3.237816	4.484632	8.827598	3.437811	1.128290	6.899805	17.301693
min	0.078000	0.000000	225.510000	0.200000	1.000000	1.000000	2006.000000	0.000000	0.000000
25%	0.310000	0.048000	238.950000	1.400000	8.000000	4.000000	2007.000000	6.000000	15.000000
50%	0.608000	0.100000	240.960000	2.600000	16.000000	7.000000	2008.000000	12.000000	30.000000
75%	1.532000	0.196000	242.850000	6.400000	23.000000	9.000000	2009.000000	18.000000	45.000000
max	9.132000	1.190000	253.070000	39.400000	31.000000	12.000000	2010.000000	23.000000	59.000000
4)

In [26]:

df2.describe().T

Out[26]:

	count	mean	std	min	25%	50%	75%	max
Global_active_power	39524.0	1.099516	1.067506	0.078	0.310	0.608	1.532	9.132
Global_reactive_power	39524.0	0.124644	0.113641	0.000	0.048	0.100	0.196	1.190
Voltage	39524.0	240.798057	3.237816	225.510	238.950	240.960	242.850	253.070
Global_intensity	39524.0	4.662423	4.484632	0.200	1.400	2.600	6.400	39.400
date	40000.0	15.726400	8.827598	1.000	8.000	16.000	23.000	31.000
month	40000.0	6.509950	3.437811	1.000	4.000	7.000	9.000	12.000
year	40000.0	2008.433725	1.128290	2006.000	2007.000	2008.000	2009.000	2010.000
hour	40000.0	11.523050	6.899805	0.000	6.000	12.000	18.000	23.000
minute	40000.0	29.657925	17.301693	0.000	15.000	30.000	45.000	59.000
total_metering	39524.0	8.989778	13.011069	0.000	0.000	1.000	18.000	126.000

In [27]:

df2.duplicated()

Out[27]:

1413467 False 406388 False 155665 False 1003973 False 2014931 False 1730198 False 769787 False 1357699 False 740960 False False Length: 40000, dtype: bool

localhost:8888/notebooks/30th October Individual household electric power consumption Data Set.ipynb

```
In [28]:
```

```
df2.skew()
Out[28]:
Global_active_power
Global_reactive_power
                                                    1.786036
                                                    1.287292
Voltage
                                                   -0.325067
                                                    1.844230
Global_intensity
                                                   -0.000432
date
                                                   -0.007051
month
                                                    0.001029
year
hour
                                                   -0.004277
                                                   -0.015207
minute
total_metering
                                                    2.240503
dtype: float64
In [29]:
df2['Global_active_power'] = df2['Global_active_power'].fillna(df2['Global_active_power'].median())
df2['Global_reactive_power'] = df2['Global_reactive_power'].fillna(df2['Global_reactive_power'].median())
df2['Voltage'] = df2['Voltage'].fillna(df2['Voltage'].mean())
df2['Global_intensity'] = df2['Global_intensity'].fillna(df2['Global_intensity'].median())
df2['total_metering'] = df2['total_metering'].fillna(df2['total_metering'].median())
```

In [30]:

df2.head()

Out[30]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	date	month	year	hour	minute	total_metering
1413467	1.600	0.262	243.17	6.6	24	8	2009	7	11	20.0
406388	0.238	0.000	242.52	1.0	24	9	2007	22	32	0.0
155665	4.530	0.000	233.66	19.4	4	3	2007	19	49	38.0
1003973	1.564	0.000	241.73	6.4	11	12	2008	22	17	19.0
2014931	1.076	0.550	244.44	4.8	15	10	2010	23	35	12.0

In [32]:

```
plt.figure(figsize=(15,15))
plt.suptitle('Univariate Analysis')

for i in range(0,len(df2.columns)):
    plt.subplot(5,3,i+1)
    sns.kdeplot(x=df2[df2.columns[i]],shade=True, color='b')
    plt.xlabel(df2.columns[i])
    plt.tight_layout()
```


In [36]:

```
plt.figure(figsize=(15,15))
plt.suptitle("Relation Analysis of features and total metering")

for i in range(0,len(df2.columns)):
    plt.subplot(5,3,i+1)
    sns.scatterplot(data = df2, x = df2[df2.columns[i]], y = df2['total_metering'])
    plt.xlabel(df2.columns[i])
    plt.tight_layout()
```


120

In [39]:

```
plt.figure(figsize=(15,15))
for i in range(0,len(df2.columns)):
      plt.subplot(5,3,i+1)
      sns.lineplot(x = df2[df2.columns[i]], y = df2['total_metering'],data = df2)
plt.xlabel(df2.columns[i])
      plt.tight_layout()
    120
    100
 total metering
                                                                      total_metering
                                                                                                                                           total_metering
     80
                                                                           60
                                                                                                                                               60
     60
                                                                           40
                                                                                                                                               40
     40
                                                                          20
      20
                                                                                                                                               20
                                                                                                                                                            230
                                                                                                                                                                                240
                                                                               0.0
                                                                                        0.2
                                                                                                 0.4
                                                                                                          0.6
                                                                                                                   0.8
                                                                                                                            1.0
                                                                                                                                     1.2
                                                                                                                                                   225
                                                                                                                                                                      235
                                                                                                                                               11
                                                                          12
    120
    100
                                                                           10
                                                                       total_metering
 total_metering
     80
                                                                                                                                            total_metering
     60
                                                                           8
     40
      20
                                                                                                                                                                                                          12
                                                                                                10
                               15 20 25
Global_intensity
                                                          35
                                                                 40
                                                                                                                                   30
                                            25
                                                                                                         15
                                                                                                                  20
                                                                                                                          25
                                                                                                          date
                                                                          16
                                                                                                                                               11
     13
                                                                           14
  total_metering
                                                                          12
                                                                       total_metering
                                                                           10
                                                                           8
                                                                           6
        2006.02006.52007.02007.52008.02008.52009.02009.52010.0
                                                                                                                                                                             30
minute
    120
    100
 total_metering
     80
     60
     40
      20
                                                     100
                                                             120
                   20
                               total metering
```

Observations

- 1. Reading increases in the morning and then goes dip during after noon, then again rises in evening then dipping during night
- 2. power consumption gois down till mid year then again rises
- 3. after 2006 power consumption has been decreased and almost same onwards

In [40]:

df2.corr()
#corr() is used to find the pairwise correlation of all columns in the Pandas Dataframe in Python.
#Any NaN values are automatically excluded. Any non-numeric data type or columns in the Dataframe, it is ignored.

Out[40]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	date	month	year	hour	minute	total_
Global_active_power	1.000000	0.246635	-0.398850	0.998909	-0.006595	0.003398	-0.037975	0.277497	0.008199	
Global_reactive_power	0.246635	1.000000	-0.114163	0.265623	0.000050	0.009208	0.045534	0.120002	-0.003875	
Voltage	-0.398850	-0.114163	1.000000	-0.410701	0.000498	0.036481	0.249482	-0.173845	0.002426	
Global_intensity	0.998909	0.265623	-0.410701	1.000000	-0.006777	0.002676	-0.042156	0.278240	0.007846	
date	-0.006595	0.000050	0.000498	-0.006777	1.000000	0.002891	-0.034848	0.001504	-0.004130	
month	0.003398	0.009208	0.036481	0.002676	0.002891	1.000000	-0.072357	0.002984	-0.003686	
year	-0.037975	0.045534	0.249482	-0.042156	-0.034848	-0.072357	1.000000	0.003483	-0.005615	
hour	0.277497	0.120002	-0.173845	0.278240	0.001504	0.002984	0.003483	1.000000	-0.001227	
minute	0.008199	-0.003875	0.002426	0.007846	-0.004130	-0.003686	-0.005615	-0.001227	1.000000	
total_metering	0.847428	0.182504	-0.345242	0.844560	-0.006065	-0.000856	0.008649	0.164001	0.002703	
4										•

In [45]:

```
plt.figure(figsize=(15,15))
sns.heatmap(data = df2.corr(),annot=True)
```

Out[45]:

<AxesSubplot:>

In [46]:

#Handling Multicollinearity

from statsmodels.stats.outliers_influence import variance_inflation_factor

```
In [47]:
vif = pd.DataFrame()
vif['VIF'] = [variance_inflation_factor(df2.values,i) for i in range(len(df2.columns))]
vif['features'] = df2.columns
vif
Out[47]:
            VIF
                             features
0 1272.615633
                  Global_active_power
       2.925383 Global_reactive_power
2 7587.479285
                              Voltage
 3 1293.244501
                      Global_intensity
       4.174021
                                date
       4.595565
                               month
 6 7682.076658
                                year
       4.226138
                                hour
       3.939478
                              minute
       5.368753
 9
                        total_metering
In [ ]:
## 'Global_active_power', 'Voltage', 'Global_intensity', and 'year' has VIF value greater than 5, that means these have multicolinearity.
```

Checking Outliers

In [48]:

```
plt.figure(figsize = (15,15))
plt.suptitle("Outliers Analysis")
for i in range(0,len(df2.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(df2[df2.columns[i]])
    plt.tight_layout()
```


In [53]:

#importing winsorizer to handle outliers

from feature_engine.outliers.winsorizer import Winsorizer

!pip install feature-engine

```
In [52]:
```

```
Collecting feature-engine
 Downloading feature_engine-1.5.2-py2.py3-none-any.whl (290 kB)
                    ----- 290.0/290.0 kB 1.5 MB/s eta 0:00:00
Requirement already satisfied: scipy>=1.4.1 in c:\users\rajan\anaconda3\lib\site-packages (from feature-engine) (1.8.1)
Requirement already satisfied: numpy>=1.18.2 in c:\users\rajan\anaconda3\lib\site-packages (from feature-engine) (1.21.5)
Requirement already satisfied: pandas>=1.0.3 in c:\users\rajan\anaconda3\lib\site-packages (from feature-engine) (1.4.4)
Requirement already satisfied: statsmodels>=0.11.1 in c:\users\rajan\anaconda3\lib\site-packages (from feature-engine) (0.1
3.2)
Requirement already satisfied: scikit-learn>=1.0.0 in c:\users\rajan\anaconda3\lib\site-packages (from feature-engine) (1.
0.2)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\rajan\anaconda3\lib\site-packages (from pandas>=1.0.3->fe
ature-engine) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\rajan\anaconda3\lib\site-packages (from pandas>=1.0.3->feature-engi
ne) (2022.1)
Requirement already satisfied: joblib>=0.11 in c:\users\rajan\anaconda3\lib\site-packages (from scikit-learn>=1.0.0->featur
e-engine) (1.1.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\rajan\anaconda3\lib\site-packages (from scikit-learn>=1.0.0
->feature-engine) (2.2.0)
Requirement already satisfied: patsy>=0.5.2 in c:\users\rajan\anaconda3\lib\site-packages (from statsmodels>=0.11.1->featur
e-engine) (0.5.2)
Requirement already satisfied: packaging>=21.3 in c:\users\rajan\anaconda3\lib\site-packages (from statsmodels>=0.11.1->fea
ture-engine) (21.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\users\rajan\anaconda3\lib\site-packages (from packaging>=21.3
->statsmodels>=0.11.1->feature-engine) (3.0.9)
Requirement already satisfied: six in c:\users\rajan\anaconda3\lib\site-packages (from patsy>=0.5.2->statsmodels>=0.11.1->f
eature-engine) (1.16.0)
Installing collected packages: feature-engine
Successfully installed feature-engine-1.5.2
In [59]:
winsorizer = Winsorizer(capping_method = 'iqr', # choose skewed for IQR rule boundaries or g
                       tail = 'both', # cap left, right or both tails
fold = 1.5, # 1.5 times of iqr
                       variables = ['Global_active_power'])
# capping_methods = 'iqr' - 25th quantile & 75th quantile
df2['Global_active_power'] = winsorizer.fit_transform(df2[['Global_active_power']])
In [58]:
winsorizer = Winsorizer(capping_method = 'iqr', # choose skewed for IQR rule boundaries or g
                       tail = 'both', # cap left, right or both tails
fold = 1.5, # 1.5 times of iqr
                       variables = ['Global_reactive_power'])
# capping_methods = 'iqr' - 25th quantile & 75th quantile
df2['Global_reactive_power'] = winsorizer.fit_transform(df2[['Global_reactive_power']])
In [61]:
variables = ['Voltage'])
# capping methods = 'igr' - 25th quantile & 75th quantile
df2['Voltage'] = winsorizer.fit_transform(df2[['Voltage']])
In [62]:
winsorizer = Winsorizer(capping_method = 'iqr', # choose skewed for IQR rule boundaries or g
                       tail = 'both', # cap left, right or both tails
fold = 1.5, # 1.5 times of iqr
                       variables = ['Global_intensity'])
# capping_methods = 'iqr' - 25th quantile & 75th quantile
df2['Global_intensity'] = winsorizer.fit_transform(df2[['Global_intensity']])
In [63]:
\verb|winsorizer = Winsorizer(capping_method = 'iqr', \# choose skewed for IQR rule boundaries or g|
                       tail = 'both', # cap left, right or both tails
                       fold = 1.5, # 1.5 times of iqr
                       variables = ['total_metering'])
# capping_methods = 'iqr' - 25th quantile & 75th quantile
df2['total_metering'] = winsorizer.fit_transform(df2[['total_metering']])
```

In [64]:

```
#Now again checking the outliers
plt.figure(figsize = (15,15))
plt.suptitle("Outliers Analysis")
for i in range(0,len(df2.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(df2[df2.columns[i]])
    plt.tight_layout()
```


In [65]:

```
#Save the clean data
df2.to_csv("Power_consumption_data_cleaned.csv")
```

In [68]:

#Save the data into pymongo Mongodb
import pymongo

In [67]:

```
!pip install pymongo
```

In [69]:

```
client = pymongo.MongoClient("mongodb+srv://root:root@rajancluster0.ub5nt.mongodb.net/?retryWrites=true&w=majority")
db = client.test
```

```
In [70]:
```

database = client["power_consumption"] #creating a database at mongodb client

In [71]:

collection = database["power_consumption_data"]

In [72]:

#need to change this dataframe into dict or json format to store it into mongodb
df2_dict= df2.to_dict(orient= 'records')

In [73]:

#insert the data in mongodb
collection.insert_many(df2_dict)

Out[73]:

<pymongo.results.InsertManyResult at 0x1be213697c0>

In [74]:

#loading the data from mongodb
fetching data from the collection in mongodb{using find will return all the occurences in the collection}
data = pd.DataFrame(list(collection.find()))

In [75]:

data

Out[75]:

	_id	Global_active_power	Global_reactive_power	Voltage	Global_intensity	date	month	year	hour	minute	total_metering
0	63af1365c0e33e5d26de066f	1.600	1.600	243.170	6.6	24	8	2009	7	11	20.0
1	63af1365c0e33e5d26de0670	0.238	0.238	242.520	1.0	24	9	2007	22	32	0.0
2	63af1365c0e33e5d26de0671	3.347	3.347	233.660	13.9	4	3	2007	19	49	38.0
3	63af1365c0e33e5d26de0672	1.564	1.564	241.730	6.4	11	12	2008	22	17	19.0
4	63af1365c0e33e5d26de0673	1.076	1.076	244.440	4.8	15	10	2010	23	35	12.0
39995	63af1365c0e33e5d26dea2aa	0.262	0.262	244.400	1.0	4	1	2010	6	2	1.0
39996	63af1365c0e33e5d26dea2ab	1.606	1.606	233.235	6.8	6	3	2008	7	11	17.0
39997	63af1365c0e33e5d26dea2ac	0.240	0.240	241.180	1.0	16	7	2009	13	43	2.0
39998	63af1365c0e33e5d26dea2ad	1.702	1.702	238.490	7.2	14	5	2008	6	44	19.0
39999	63af1365c0e33e5d26dea2ae	1.600	1.600	241.670	6.6	28	12	2006	20	24	0.0
40000	rows × 11 columns										

4

In [76]:

#dropping id column
data.drop(columns=['_id'],axis=1,inplace=True)

In [77]:

data.head()

Out[77]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	date	month	year	hour	minute	total_metering
0	1.600	1.600	243.17	6.6	24	8	2009	7	11	20.0
1	0.238	0.238	242.52	1.0	24	9	2007	22	32	0.0
2	3.347	3.347	233.66	13.9	4	3	2007	19	49	38.0
3	1.564	1.564	241.73	6.4	11	12	2008	22	17	19.0
4	1.076	1.076	244.44	4.8	15	10	2010	23	35	12.0

In [80]:

#Now splitting the data into dependent and independent features
X = data.drop(["total_metering","Global_active_power"], axis = 1)

```
12/31/22, 12:05 AM
                                              30th October Individual household electric power consumption Data Set - Jupyter Notebook
  In [81]:
  X.head()
  Out[81]:
     Global_reactive_power Voltage Global_intensity date month year hour minute
  0
                     1.600
                            243.17
                                              6.6
                                                    24
                                                               2009
                                                                       7
                                                                              11
   1
                     0.238 242.52
                                              1.0
                                                    24
                                                            9 2007
                                                                      22
                                                                              32
   2
                     3.347
                          233.66
                                             13.9
                                                                       19
                                                                              49
                                                            3 2007
   3
                     1.564
                           241.73
                                              6.4
                                                    11
                                                               2008
                                                                      22
                                                                              17
                     1.076 244.44
                                              4.8
                                                    15
                                                           10 2010
                                                                      23
                                                                              35
   4
  In [82]:
  y= data['total_metering']
  In [84]:
  y.head()
  Out[84]:
  0
        20.0
  1
         0.0
  2
        38.0
  3
        19.0
  4
        12.0
  Name: total_metering, dtype: float64
  In [85]:
  #spliting the data into train and test data
  {\bf from} \  \, {\bf sklearn.model\_selection} \  \, {\bf import} \  \, {\bf train\_test\_split}
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=10)
  In [86]:
  X_train.head()
  Out[86]:
         Global_reactive_power Voltage Global_intensity
                                                      date
                                                           month
                                                                              minute
                               241.67
                                                  5.4
    4512
                                                        21
                                                                                  25
                        1.336
                                                                2 2007
                                                                           15
   39286
                        1.562
                               242.18
                                                  6.6
                                                         3
                                                                6 2009
                                                                           16
                                                                                   3
   13026
                        0.312
                               242.90
                                                  1.4
                                                        25
                                                                2 2007
                                                                           13
                                                                                  35
                        2.040 241.82
                                                        21
   5754
                                                  8.4
                                                                6 2010
                                                                          22
                                                                                  49
   39120
                        0.340
                              243.64
                                                  1.4
                                                                2 2008
                                                                                  48
  In [88]:
  X_train.shape
  Out[88]:
  (30000, 8)
  In [89]:
  X_test.shape
  Out[89]:
  (10000, 8)
  In [90]:
  #Standardising the data
```

```
In [91]:
```

from sklearn.preprocessing import StandardScaler

```
scaler = StandardScaler()
```

```
In [92]:
```

```
X_train = scaler.fit_transform(X_train)
# Using fit transform to standardise train data
```

```
In [93]:
X_train
Out[93]:
array([[ 0.31445042, 0.27150791, 0.25539296, ..., -1.27371682, 0.50351138, -0.27305053],
        [\ 0.56152556,\ 0.43587967,\ 0.57179316,\ \ldots,\ 0.49952113,
          0.64848183, -1.54239105],
       [-0.80504049, 0.66793392, -0.79927435, ..., -1.27371682, 0.21357047, 0.30392243],
        [-0.77880242, 0.26506195, -0.79927435, ..., -0.38709785,
         -1.38110452, 0.7655008 ],
         -0.88156819, 0.07012---,
-0.94619316, 0.53471162],
-0.51208188. -2.44707209, 2.496561 , ..., -1.27371682,
        [-0.88156819, 0.07812936, -0.90474108, ..., 1.38614011,
        [ 2.51298188, -2.44707209,
In [94]:
# using only transform to avoid data leakage
X_test = scaler.transform(X_test)
X_test
Out[94]:
{\sf array}([[-0.60388197,\ -0.10558025,\ -0.64107425,\ \dots,\ \ 1.38614011,
         -1.67104542, 1.40017106],
       [-0.31089021, 0.07812936, -0.32467406, ..., 1.38614011, -1.38110452, 0.99628999],
       [ 0.6927159 , -0.25383713 , 0.67725989 , ..., -0.38709785 , -0.22134089 , -0.56153701] ,
        [-0.74600484, 0.54223786, -0.74654098, ..., 1.38614011,
       -1.23613406, 0.65010621],
[ 1.25027485, -1.30130423, 1.25732691, ..., 0.49952113,
          1.22836365, 1.57326295],
        [ 0.17670056, -0.52779007, 0.14992623, ..., 0.49952113,
         1.51830455, -0.85002349]])
In [95]:
## pickling{saving some preprocessing objects/models}
import pickle
# Writing different model files to file
with open('sandardScalar.sav', 'wb') as f:
    pickle.dump(scaler,f)
## here we have pickled the standard scaler object
Linear Regression
In [96]:
from sklearn.linear_model import LinearRegression
In [97]:
## Creating Linear regression model
linear_reg = LinearRegression()
In [98]:
## training the model
linear_reg.fit(X_train, y_train)
Out[98]:
LinearRegression()
In [100]:
## coefficients and intercept of the best fit hyperplane
print('1. the coefficients of independent features: {}'.format(linear_reg.coef_))
print('2. intercept of the best fit hyperplane: {}'.format(linear_reg.intercept_))
1. the coefficients of independent features: [ 25.0176861
                                                                -0.75772829 -15.65702081 0.03253776 0.02847474
   0.59926564 -0.90306825 -0.0312098 ]
2. intercept of the best fit hyperplane: 8.486766666666647
```

Cost functions

```
In [102]:
```

```
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error
```

```
In [104]:
```

```
print("Mean squared error is {}".format(round(mean_squared_error(y_test, y_pred),2)))
print("Mean squared error is {}".format(round(mean_absolute_error(y_test, y_pred),2)))
print("Root Mean squared error is {}".format(round(np.sqrt(mean_squared_error(y_test, y_pred)),2)))
```

Mean squared error is 37.59 Mean squared error is 4.16 Root Mean squared error is 6.13

Validating the model using assumptions of Linear regression

```
In [105]:
```

```
#Linear relationship
#Test truth data and predicted data should follow linear relationship {this is an indiaction of a good model}
```

In [106]:

```
plt.scatter(x=y_test, y = y_pred)
plt.xlabel("Test truth data")
plt.ylabel("predicted data")
```

Out[106]:

Text(0, 0.5, 'predicted data')

In [107]:

```
#Residual Distribution
#Residuals should follow normal distribution
```

In [108]:

```
residual_linear= y_test-y_pred
residual_linear.head()

Out[108]:

26915   -5.732979
37746   -6.797189
15211   2.611288
8556   -1.877028
17307   -0.438493
Name: total_metering, dtype: float64

In [109]:

sns.displot(x=residual_linear, kind='kde')
```

Out[109]:

#uniform distribution

<seaborn.axisgrid.FacetGrid at 0x1be24f4c5e0>

In [110]:

```
#Residuals vs Predictions follow a uniform dstribution.
plt.scatter(x=y_pred, y=residual_linear)
plt.xlabel('Predictions')
plt.ylabel('Residuals')
```

Out[110]:

Text(0, 0.5, 'Residuals')


```
12/31/22, 12:05 AM
                                         30th October Individual household electric power consumption Data Set - Jupyter Notebook
  In [111]:
  #Accuracy of the model with train data and with test data
  linear_reg.score(X_train,y_train)
  Out[111]:
  0.7044669843350699
  In [112]:
  linear_reg.score(X_test,y_test)
  Out[112]:
  0.7118298627051172
  Performance Matrics
  In [113]:
  #R Square and Adjusted R Square values
  from sklearn.metrics import r2_score
  In [114]:
  r2_score_lr= r2_score(y_test, y_pred)
  print("Linear Regression model has {} % accuracy".format(round(r2_score_lr*100,3)))
  adjr2\_score\_lr=1-((1-r2\_score\_lr)*(len(y\_test)-1)/(len(y\_test)-X\_test.shape[1]-1))
  print("Adjusted R square accuracy is {} percent".format(round(adjr2_score_lr*100,2)))
  Linear Regression model has 71.183 % accuracy
  Adjusted R square accuracy is 71.16 percent
  Ridge Regression
  In [115]:
  from sklearn.linear_model import Ridge
  In [116]:
  ## creating ridge regrssion model
  ridge_reg= Ridge()
  In [117]:
```

```
## training the model
ridge_reg.fit(X_train, y_train)
Out[117]:
Ridge()
In [118]:
# Printing co-efficients and intercept of best fit hyperplane
print("coefficient of independent feature is {}".format(ridge_reg.coef_))
print("Intercept of best fit hyperplane is {}".format(ridge_reg.intercept_))
coefficient of independent feature is [ 24.45310071 -0.75038259 -15.08942304 0.03265248
                                                                                            0.02866776
  0.59959922 -0.9038171 -0.03101933]
Intercept of best fit hyperplane is 8.486766666666647
```

```
In [120]:
# predicting test data
y_pred_r = ridge_reg.predict(X_test)
y_pred_r
Out[120]:
array([ 5.71100448, 7.79078928, 15.37998875, ..., 3.04250823, 20.17912124, 9.93540741])
```

```
In [121]:
print("Mean squared error is {}".format(round(mean_squared_error(y_test, y_pred_r),2)))
print("Mean absolute error is {}".format(round(mean_absolute_error(y_test, y_pred_r),2)))
print("Root Mean squared error is {}".format(round(np.sqrt(mean_squared_error(y_test, y_pred_r)),2)))

Mean squared error is 37.59
Mean absolute error is 4.16
Root Mean squared error is 6.13

In [122]:
ridge_reg.score(X_train,y_train)

Out[122]:
0.7044611502884796

In [123]:
ridge_reg.score(X_test,y_test)

Out[123]:
0.7118269280575819
```

Validating model using performace matrics

```
In [125]:

#R Square and Adjusted R Square values
ridge_r2_score=r2_score(y_test, y_pred_r)
print("Ridge regression model has {} % accuracy".format(round(ridge_r2_score*100,3)))

ridge_adjr2_score=1-((1-ridge_r2_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1))
print("Adjusted R square accuracy is {} percent".format(round(ridge_adjr2_score*100,2)))

Ridge regression model has 71.183 % accuracy
Adjusted R square accuracy is 71.16 percent
```

Lasso Regression

18.98611866, 9.97063351])

```
In [126]:
from sklearn.linear model import Lasso
In [127]:
# creating Lasso regression model
lasso_reg = Lasso()
lasso reg
Out[127]:
Lasso()
In [128]:
# training the model
lasso_reg.fit(X_train, y_train)
Out[128]:
Lasso()
In [129]:
# Printing co-efficients and intercept of best fit hyperplane
print("coefficient of independent feature is {}".format(lasso_reg.coef_))
print("Intercept of best fit hyperplane is {}".format(lasso_reg.intercept_))
coefficient of independent feature is [ 8.39763511 -0.
                                                                                        -0.
                                                                                                     0.
Intercept of best fit hyperplane is 8.486766666666664
In [130]:
# predicting the test data
y_pred_lasso = lasso_reg.predict(X_test)
y_pred_lasso
Out[130]:
array([ 3.41558626, 5.87602416, 14.30394205, ..., 2.22209026,
```

```
In [132]:
print("Mean squared error is {}".format(round(mean_squared_error(y_test, y_pred_lasso),2)))
print("Mean absolute error is {}".format(round(mean_absolute_error(y_test, y_pred_lasso),2)))
print("Root Mean squared error is {}".format(round(np.sqrt(mean_squared_error(y_test, y_pred_lasso)),2)))

Mean squared error is 40.45
Mean absolute error is 4.38
Root Mean squared error is 6.36

In [133]:
lasso_reg.score(X_train,y_train)

Out[133]:
0.6829917229555713

In [134]:
lasso_reg.score(X_test,y_test)

Out[134]:
0.6899163895457995
```

Validating model using performance matrics

```
In [135]:
#R Square and Adjusted R Square values

In [136]:
lasso_r2_score=r2_score(y_test, y_pred_lasso)
print("Lasso regression model has {} % accuracy".format(round(lasso_r2_score*100,3)))
lasso_adjr2_score=1-((1-lasso_r2_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1))
print("Adjusted R square accuracy is {} percent".format(round(lasso_adjr2_score*100,2)))
Lasso regression model has 68.992 % accuracy
Adjusted R square accuracy is 68.97 percent
```

Elastic-Net Regression

```
In [137]:
from sklearn.linear_model import ElasticNet
In [138]:
# creating Elastic-Net regression model
elastic_reg=ElasticNet()
elastic reg
Out[138]:
ElasticNet()
In [139]:
## training the model
elastic_reg.fit(X_train, y_train)
Out[139]:
ElasticNet()
In [141]:
# Printing co-efficients and intercept of best fit hyperplane
print("Co-efficients of independent features is {}".format(elastic reg.coef ))
print("Intercept of best fit hyper plane is {}".format(elastic_reg.intercept_))
Co-efficients of independent features is [ 3.52941083 -0.45885996 3.42710755 -0.
                                                                                           -0.
                                                                                                        0.00709137
-0.
              0.
```

Intercept of best fit hyper plane is 8.486766666666659

```
In [142]:
elastic\_y\_pred=elastic\_reg.predict(X\_test)
{\tt elastic\_y\_pred}
Out[142]:
array([ 4.21666489, 6.25079368, 13.36641879, ..., 3.05635127,
        17.80915349, 9.86995288])
In [143]:
print("Mean squared error is '{}'".format(round(mean_squared_error(y_test, elastic_y_pred),2)))
print("Mean absolute error is '{}'".format(round(mean_absolute_error(y_test, elastic_y_pred),2)))
print("Root Mean squared error is '{}'".format(round(np.sqrt(mean_squared_error(y_test, elastic_y_pred)),2)))
Mean squared error is '45.37'
Mean absolute error is '4.95'
Root Mean squared error is '6.74'
In [145]:
elastic_reg.score(X_train,y_train)
Out[145]:
0.6488961021055253
In [146]:
elastic_reg.score(X_test,y_test)
Out[146]:
0.6522279435849052
In [147]:
#Validating model using performance matrices
#R Square and Adjusted R Square values
In [148]:
elastic_reg_r2_score=r2_score(y_test, elastic_y_pred)
print("Elastic-Net regression model has {} % accuracy".format(round(elastic_reg_r2_score*100,3)))
elastic\_reg\_adj\_r2\_score=1-((1-elastic\_reg\_r2\_score)*(len(y\_test)-1)/(len(y\_test)-X\_test.shape[1]-1))
print("Adjusted R square accuracy is {} percent".format(round(elastic_reg_adj_r2_score*100,2)))
Elastic-Net regression model has 65.223 % accuracy
Adjusted R square accuracy is 65.19 percent
SVR
In [149]:
from sklearn.svm import SVR
In [150]:
# creating SVR model
svr = SVR()
svr
Out[150]:
SVR()
In [151]:
## training the model
svr.fit(X_train, y_train)
Out[151]:
SVR()
In [152]:
## predicting the dependent feature value w.r.t. test data
svr_y_pred= svr.predict(X_test)
svr_y_pred
Out[152]:
array([ 2.76872985, 6.33201606, 20.90162389, ..., 1.23319072,
        17.61534662,
                       7.588287031)
```

```
In [153]:

print("Mean squared error is '{}'".format(round(mean_squared_error(y_test, svr_y_pred),2)))
print("Mean absolute error is '{}'".format(round(mean_absolute_error(y_test, svr_y_pred),2)))
print("Root Mean squared error is '{}'".format(round(np.sqrt(mean_squared_error(y_test, svr_y_pred)),2)))

Mean squared error is '30.76'
Mean absolute error is '3.12'
Root Mean squared error is '5.55'

In [154]:

svr.score(X_train, y_train)

Out[154]:
0.7747902423493528

In [156]:

svr.score(X_test, y_test)

Out[156]:
0.7641801391093346
```

Performance Matrix SVR

```
In [157]:
#R Square and Adjusted R Square values

In [158]:

svr_r2_score=r2_score(y_test, svr_y_pred)
print("SVR model has {} % accuracy".format(round(svr_r2_score*100,3)))

svr_adj_r2_score=1-((1-svr_r2_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1))
print("Adjusted R square accuracy is {} percent".format(round(svr_adj_r2_score*100,2)))

SVR model has 76.418 % accuracy
Adjusted R square accuracy is 76.4 percent
```

Apply hyperparameter tuning

```
In [159]:
```

```
from sklearn.model_selection import GridSearchCV
```

```
In [160]:
model_params = {
     'Ridge Regression': {
   'model': Ridge(),
   'params': {
              'alpha': [1,5,10,20]
         }
      Lasso Regression': {
         'model': Lasso(),
'params' : {
              'alpha': [1,5,10,20]
     'Elastic-Net Regression' : {
          'model': ElasticNet(),
          'params': {
              'alpha': [1,5,10,20],
              'l1_ratio':[0.5,1,1.5,2]
      SVR':{
          'model': SVR(),
              'kernel': ['linear', 'poly', 'sigmoid', 'rbf'],
              'C':[1,5,10,20]
         }
    }
}
```

```
In [161]:
```

```
model_params.items()

Out[161]:

dict_items([('Ridge Regression', {'model': Ridge(), 'params': {'alpha': [1, 5, 10, 20]}}), ('Lasso Regression', {'model': L
asso(), 'params': {'alpha': [1, 5, 10, 20]}}), ('Elastic-Net Regression', {'model': ElasticNet(), 'params': {'alpha': [1,
5, 10, 20], 'l1_ratio': [0.5, 1, 1.5, 2]}}), ('SVR', {'model': SVR(), 'params': {'kernel': ['linear', 'poly', 'sigmoid', 'r
bf'], 'C': [1, 5, 10, 20]}})])

In [162]:

##scaling the independent features before fitting it inside grid object{to simplify the calculation part}}
X1= scaler.fit_transform(X)
```

```
In [*]:

scores = []

for model_name, mp in model_params.items():
    clf = GridSearchCV(mp['model'], mp['params'], cv=5, n_jobs=-1,return_train_score=False)
    clf.fit(X1, y)
    scores.append({
        'model': model_name,
        'best_score': clf.best_score_,
        'best_params': clf.best_params_
    })

df = pd.DataFrame(scores,columns=['model','best_score','best_params'])

df
```

In [*]:

```
#Conclusion
#The SVR model with 'rbf kernel' is the best model for this household power consumption data
```