This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

(B) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

© Offenlegungsschrift

_® DE 196 45 129 A 1

(5) Int. Cl.⁶: **F 04 D 9/00** F 04 D 15/00

(1) Aktenzeichen:

196 45 129.9

2 Anmeldetag:

4. 11. 96

43 Offenlegungstag:

7. 5.98

(1) Anmelder:

ABB Patent GmbH, 68309 Mannheim, DE

(72) Erfinder:

Waese, Volker, 68239 Mannheim, DE

(5) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 35 09 072 A1 DD 2 26 937 EP 01 71 094 A1

BIENIEK,K.,GRÖNING,N.: Die Regelung der Förderleistung von Kreiselpumpen mittels elektronischer Drehzahlverstellung. In: KSB Technische Berichte 22, 1987, S.16-31;

(A) Verfahren zum kavitiationsfreien Betrieb einer drehzahlgeregelten Pumpe

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kavitationsschutz einer drehzahlgeregelten Pumpe, deren auf eine nach ISO 2548 definierte Bezugsebene bezogene erforderliche pumpenspezifische Nettoenergiehöhe (NPSHert) aus betrieblichen Messungen abgeschätzt wird, wobei ein Überschreiten dieser erforderlichen pumpenspezifischen Nettoenergiehöhe (NPSHerf) gegenüber der in der Anlage vorhandenen Nettoenergiehöhe (NPSH_{vorh}), bezogen auf die gleiche Bezugsebene, Kavitation hervorruft. Dabei werden die Strömungsverhältnisse bei Betriebsdrehzahl im Betriebspunkt der Pumpe unter Verwendung der Ähnlichkeitsgesetze mit den Strömungsverhältnissen eines für die Auslegung bezüglich des NPSH-Wertes relevanten Punktes verglichen. Auf diese Weise wird ermittelt, ob die erforderliche pumpenspezifische Nettoenergiehöhe (NPSH_{erf}) die in der Anlage vorhandene Nettoenergiehöhe (NPSH_{vorh}) übersteigt. Um einen Betriebszustand zu erreichen, der nicht kavitationsgefährdet ist, muß die Pumpe in einem Betriebspunkt gefahren werden, bei dem eine der beiden folgen-

den Bedingungen eingehalten wird: $\frac{H_{power}}{H_{power}} > \frac{H_{power}}{H_{power}}$ mit

oder

Beschreibung

Die Erfindung betrifft ein Verfahren zum kavitationsfreien Betrieb einer drehzahlgeregelten Pumpe, deren auf eine nach ISO 2548 definierte Bezugsebene bezogene pumpenspezifische Nettoenergiehöhe (NPSH_{erf}) aus betrieblichen Messungen abgeleitet wird, wobei ein Überschreiten dieser pumpenspezifischen Nettoenergiehöhe (NPSH_{erf}) gegenüber der in der Anlage vorhandenen Nettoenergiehöhe (NPSII_{vorh}), bezogen auf die gleiche Bezugsebene, Kavitation hervorruft.

Es ist allgemein bekannt, daß in strömenden Flüssigkeiten bei Absinken des statischen Druckes auf den zu der Temperatur der Flüssigkeit gehörenden Dampfdruck, beispielsweise durch Vergrößerung der Absolutgeschwindigkeit der Strömung oder durch Änderung der geodätischen Zulaufhöhe, sich im Inneren der Flüssigkeit an dieser Stelle Dampfblasen bilden. Diese Dampfblasen werden von der Strömung mitgerissen und zerfallen implosionsartig, sobald der statische Druck auf dem weiteren Strömungsweg über den Dampfdruck ansteigt. Das Entstehen und schlagartige Zusammenfallen von Dampfblasen wird als Kavitation bezeichnet.

Bei beginnender "Implosion" der Dampfblasen in Wandnähe bilden sich Einbeulungen auf der der Wand abgewandten Seite. Mit zunehmender Einbuchtung bildet sich ein Mikrostrahl der Flüssigkeit, der, gegen die Wand gerichtet, auf der Wandoberfläche mit hoher Geschwindigkeit auftrifft und sie hierdurch örtlich zerstört.

Bei Pumpen mit stationärer Drehzahl können die Strömungsverhältnisse so eingestellt werden, daß die von Vordruck, Temperatur und Stoffgrößen des Fördermediums, Strömungsgeschwindigkeit und der Geometrie der Pumpe abhängigen Eintrittsbedingungen für Kavitation zu deren Vermeidung berücksichtigt werden. Hierzu wird üblicherweise eine Druck- beziehungsweise Differenzdruckmessung oder eine Durchflußmessung zur Bestimmung des kritischen Betriebszustandes installiert.

Demgegenüber ist eine einfache Bestimmung des Betriebszustandes durch eine Druck- oder Durchflußmessung 40 bei drehzahlgeregelten Pumpen, insbesondere bei drehzahlgeregelten Kreiselpumpen, bei denen Kavitation vorzugsweise im Schaufelkanaleintritt auftreten kann, zur Ermittlung des Kavitationszustandes nicht ausreichend. Bei Verminderung des Fördervolumens fällt bei drehzahlgeregelten 45 Pumpen die Drehzahl unter die Auslegungsdrehzahl, so daß aufgrund der einhergehenden Veränderung der Strömungsverhältnisse örtliche Druckabfälle auftreten können, die schon bei relativ niedrigen Förderströmen Kavitation hervorrufen. Zwar ist bekannt, daß zur Vermeidung bezie- 50 hungsweise Einschränkung möglicher Kavitation in Kreiselpumpen am Laufrad ein statischer Überdruck über den Dampfdruck herrschen muß, doch ist es sehr aufwendig oder unmöglich, bei drehzahlgeregelten Pumpen über den gesamten Betriebsbereich derartige Betriebsbedingungen 55 einzuhalten.

Als Kenngröße für den erforderlichen Drucküberschuß wird üblicherweise die Nettoenergiehöhe entsprechend dem pumpenspezifischen NPSH (Net Positive Suction Head)-Wert herangezogen, welcher ein Maß dafür ist, um wieviel 60 die gesamte Druckhöhe in der Bezugsebene für den NPSH-Wert mindestens über der Dampfdruckhöhe des Förderfluids liegen muß, um eine einwandfreie Funktion der Pumpe mit den vorgegebenen Nenndaten für Drehzahl Druck oder Förderstrom zu gewährleisten. Die erforderliche Nettoenergiehöhe der Pumpe wird mit NPSH_{erf} und die vorhandene Nettoenergiehöhe der Anlage mit NPSH_{vorh} bezeichnet.

Ausgehend von diesem Stand der Technik ist es Aufgabe

der Erfindung, ein Verfahren der eingangs genannten Art anzugeben, welches mit möglichst geringem Aufwand erlaubt, eine drehzahlgeregelte Pumpe kavitationsfrei zu betreiben. Ferner soll eine Vorrichtung zu Durchführung des erfindungsgemäßen Verfahrens angegeben werden.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen und Verbesserungen der Erfindung sind in den Unteransprüchen angegeben.

Entsprechend der Erfindung ist es daher vorgeschen, daß aufgrund von ähnlichen Strömungsverhältnissen in der Pumpe unter Anwendung der Ähnlichkeitsgesetze affine Betriebspunkte für unterschiedliche Drehzahlen bestimmt werden, welche zu einem in Bezug auf die NPSH-Auslegung relevanten Betriebspunkt affin sind. Der NPSH-Wert der Anlage dieses Referenzpunktes entspricht oder übersteigt den erforderlichen NPSH-Wert der Pumpe. Hieraus ergibt sich eine für den Eintritt von Kavitation maßgebliche Grenzkurve. Dabei liegt ein Betriebspunkt entsprechend nachfolgender Bedingungen nicht im kavitationsgefährdeten Bereich bei:

$$\frac{H_{Betrieb}}{n_{Betrieb}^2} \ge \frac{H_{Re\ ferenz}}{n_{Re\ ferenz}^2}$$

mit

H_{Betrieb} = Förderhöhe bei Betriebsdrehzahl

H_{Referenz} = Förderhöhe bei der Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

n_{Betrieb} = Betriebsdrehzahl

n_{Referenz} = Drehzahl, bei welcher im Referenzpunkt Kavita-35 tion beginnt

oder

$$\frac{Q_{Betrieb}}{N_{Betrieb}} \leq \frac{Q_{\text{Re ferenz}}}{N_{\text{Re ferenz}}}$$

mil

Q_{Betrieb} = Fördermenge bei Betriebsdrehzahl

Q_{Referenz} = Fördermenge bei der Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

 $n_{Betrieb} = Betriebsdrehzahl$

n_{Referenz} = Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

Werden die obigen Bedingungen eingehalten, befindet sich die Pumpe außerhalb des kavitationsgefährdeten Bereichs. Dies wird erfindungsgemäß dadurch erreicht, daß man bei drehzahlgeregelten Pumpen anhand von betrieblichen Messungen ermittelt, ob der bei unterschiedlichen Drehzahlen erforderliche NPSII-Wert (Net Positive Suction Head) der Pumpe den vorhandenen NPSII-Wert der Anlage überschreitet.

Erfindungsgemäß werden hierbei ähnliche Strömungsverhältnisse in der Pumpe unter Anwendung der Ähnlichkeitsgesetze miteinander verglichen und durch Vergleich dieser affinen Betriebspunkte ermittelt, ob eine Pumpe im kavitationsgefährdeten Bereich läuft. Das bedeutet, daß man zunächst affine Betriebspunkte und deren Parameter ermittelt, diese dann mit einem für den erforderlichen NPSII-Wert der Pumpe relevanten Auslegungspunkt hinsichtlich des kavitationsgefährdeten Bereichs vergleicht und, wenn man fest-

3

stellt, daß sich die Pumpe im kavitationsgefährdeten Bereich befindet, die Anlagenkennlinie verändert und die Betriebsparameter dabei so festlegt, daß sich die Betriebspunkte stets außerhalb des kavitationsgefährdeten Bereichs befinden

In weiterer Ausgestaltung des Verfahrens kann vorgesehen sein, daß man zur Bestimmung der betrieblichen Förderhöhe HBetrieb die Druckdifferenz des Pumpenvordrucks zum Druck nach der Pumpe zugrundelegt.

Eine weitere vorteilhafte Abwandlung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, daß zur Bestimmung der betrieblichen Förderhöhe H_{Betrieb} der Druck nach der Pumpe gemessen wird oder daß man die Durchflußmenge mittels einer strömungsmäßig nach der Pumpe vorgesehenen Durchflußmessung bestimmt.

Eine Vorrichtung zur Durchführung des vorstehend beschriebenen Verfahrens ist mit einer in eine Rohrleitung eingebundenen drehzahlgeregelten Pumpe, ausgerüstet mit einem Drehzahlmesser und mit einem zugeordneten Regelorgan für das Fluid, insbesondere einem Regelventil, ausgestattet. Entsprechend der zu dem Verfahren zugrundeliegenden Aufgabe soll die Vorrichtung möglichst einfach gestaltet und unproblematisch in der Handhabung sein.

Diese Aufgabe wird erfindungsgemäß nach einer ersten Lösungsvariante durch die Merkmale des Patentanspruchs 5–25 gelöst, indem der Pumpe eine Meßstelle zugeordnet ist, welche zur Druckmessung des geförderten Fluids dient und strömungsmäßig vor dem Regelorgan in der Rohrleitung angeordnet ist.

Nach einer zweiten Lösungsvariante wird diese Aufgabe 30 durch die Merkmale des Patentanspruchs 6 gelöst, indem der Pumpe eine Meßstelle zugeordnet ist, welche zur Durchflußmessung des geförderten Mediums dient und strömungsmäßig vor dem Regelorgan in der Rohrleitung angeordnet ist.

Entsprechend einer dritten Lösungsvariante wird diese Aufgabe durch Merkmale des Patentanspruchs 7 gelöst, indem der Pumpe eine Meßstelle zugeordnet ist, welche zur Differenzdruckmessung des Förderdrucks vor und nach der Pumpe dient und strömungsmäßig vor dem Regelorgan in 40 der Rohrleitung angeordnet ist.

Das Entscheidende bei der vorliegenden Erfindung ist darin zu sehen, daß mit an sich bekannten und in jeder herkömmlichen Anlage vorhandenen oder zumindest nachrüstbaren Meßeinrichtungen die erforderlichen Kennwerte ermittelt werden können, anhand derer eine sichere Beurteilung des Anlagenverhaltens möglich und ein störungsfreier Pumpenbetrieb zu gewährleisten ist.

Dies und weitere vorteilhafte Ausgestaltungen und Verbesserungen der Erfindung sind Gegenstand der Unteransprüche.

Anhand eines in der schematischen Zeichnung dargestellten Ausführungsbeispiels sollen die Erfindung, vorteilhafte Ausgestaltungen und Verbesserungen sowie besondere Vorteile der Erfindung näher erläutert und beschrieben werden. 55

Es zeigen:

Fig. 1 eine erste Variante einer erfindungsgemäßen Schaltungsanordnung;

Fig. 2 eine zweite Variante einer erfindungsgemäßen Schaltungsanordnung:

Fig. 3 eine dritte Variante einer erfindungsgemäßen Schaltungsanordnung:

Fig. 4 ein erstes Diagramm mit der Darstellung der Förderhöhe H über dem Förderstrom Q sowie den anlagenspezitischen und pumpenspezitischen NPSII-Werten

Fig. 5 ein weiteres Diagramm mit einem Beispiel einer Pumpe mit der Förderhöhe II über dem Förderstrom Q. einzelnen Betriebspunkten bei unterschiedlicher Drehzahl so4

wie dem NPSH-Wert über dem Förderstrom Q und

Fig. 6 ein drittes Diagramm mit der Förderhöhe H über dem Förderstrom Q sowie einzelnen Betriebspunkten bei unterschiedlicher Drehzahl über dem Förderstrom und der Kennlinie affiner Betriebspunkte (KAB).

In Fig. 1 ist ein Leitungsstrang 10 mit einer darin angeordneten drehzahlgeregelten Pumpe 12 dargestellt; der Pumpe 12 ist ein Regelventil 14 nachgeschaltet. Mit Hilfe dieses Regelventils 14 kann das durchströmende Fluidvolumen eingestellt werden. Die Drehzahl der Pumpe 12 wird mittels eines hierzu vorgeschenen Meßfühlers 16 erfaßt. Zur Ermittlung der für das erfindungsgemäße Verfahren benötigten Kennwerte ist die Pumpe 12 mit einem Bypass 18 versehen, der eine Meßstelle 20 zur Messung des Differenzdrukkes aufnimmt. Anhand des ermittelten Differenzdruckes läßt sich mit Hilfe der Kennlinie der Pumpe unter Einbeziehung nachstehend angegebener Bedingungen.

$$\frac{H_{Betrieb}}{n_{Betrieb}^2} \ge \frac{H_{Re\ ferenz}}{n_{Re\ ferenz}^2}$$

mit

H_{Betrieb} = Förderhöhe bei Betriebsdrehzahl

H_{Referenz} = Förderhöhe bei der Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

n_{Betrieb} = Betriebsdrehzahl

n_{Referenz} = Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

oder

$$\frac{Q_{Betneb}}{n_{Betneb}} \leq \frac{Q_{\text{Re ferenz}}}{n_{\text{Re ferenz}}}$$

mit

Q_{Betrieb} = Fördermenge bei Betriebsdrehzahl

QReferenz = Fördermenge bei der Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

 $n_{\text{Betrieb}} = \text{Betriebsdrehzahl}$

n_{Referenz} = Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

feststellen, ob der jeweilige Betriebspunkt im kavitationsgefährdeten Bereich der Kennlinie liegt oder nicht.

Anstelle der Differenzdruckmessung gemäß Fig. 1 kann auch entsprechend Fig. 2 eine Messung des strömungsmäßig hinter der Pumpe herrschenden Druckes vorgesehen sein, wobei prinzipiell die gleiche Vorgehensweise – wie zuvor für Fig. 1 beschrieben anzuwenden ist.

In **Fig.** 3 schließlich ist eine dritte Lösungsvariante einer erfindungsgemäßen Vorrichtung dargestellt, bei welcher an Stelle einer Druckmessung der durchströmende Volumenstrom mittels Durchflußmessung ermittelt wird. Die übrigen Komponenten sind, wie auch bei der Variante gemäß **Fig.** 2, mit der in **Fig.** 1 gezeigten und erläuterten Anordnung identisch.

In Fig. 4 sind in einem ersten Diagramm die Förderhöhe II über dem Förderstrom Q sowie anlagenspezifische und pumpenspezifische NPSII-Werte für eine bestimmte Anlage 10 mit einer bestimmten drehzahlgeregelten Pumpe 12 für eine Drehzahl grafisch dargestellt. Aus dieser empirisch ge-

wonnenen Darstellung kann für den Betrieb der betreffenden Anlage die Kavitationsgefährdung der Pumpe beziehungsweise können die Grenzen deren kavitationsgefährdeten Betrich abgelesen werden. Zur Ermittlung, oh eine Pumpe im kavitationsgefährdeten Bereich betrieben wird, ist zunächst die Q-II-Kennlinie für eine bestimmte Drehzahl aufgetragen. Zusätzlich werden die NPSH-Werte der Anlage für die Förderströme ermittelt und in das Diagramm eingetragen sowie die entsprechenden erforderlichen Werte der Pumpe. Hieraus ergibt sich das in Fig. 4 gezeigte Diagramm. Die Darstellung zeigt, daß alle Betriebspunkte ab einem bestimmten Förderstrom, der durch den Schnittpunkt der Kennlinie des in der Anlage vorhandenen NPSH-Wertes mit der Kennlinie der pumpenspezifischen NPSH-Werte definiert ist, kavitationsgefährdet sind. Im Betrieb kann durch 15 Messen der Förderhöhe oder Fördermenge bestimmt werden (siehe Q-H-Kennlinie), ob die Pumpe im kavitationsgefährdeten Bereich betrieben wird.

In Fig. 5 ist ein Diagramm für Q-II- sowie mit NPSH-Kennlinien dargestellt. Dabei ist zunächst je eine Q-H- 20 Kennlinie für zwei Pumpendrehzahlen $n_1 = 1500 \text{ min}^{-1}$ und $n_2 = 1000 \text{ min}^{-1}$ aufgetragen sowie je eine den Drehzahlen entsprechenden Kennlinie für die pumpenspezifischen NPSII-Werte. Ferner ist eine Kennlinie des in der betreffenden Anlage vorhandenen NPSII-Wertes vereinfacht als horizontal verlaufende Gerade aufgetragen, so daß man anhand dieser für eine konkrete Anlage gültigen Werte eine verläßliche Aussage zum Kavitationsverhalten machen kann. Mißt man beispielsweise bei der Drehzahl $n_2 = 1000 \text{ min}^{-1}$ einen Durchfluß von 40 m³/h (entsprechend Punkt as in Fig. 5 und 6), so ist der alfine Betriebspunkt bei $n_1 = 1500 \text{ min}^{-1}$ bei 60 m³/h (entsprechend Punkt a₁ in Fig. 5 und 6). Beide Punkte befinden sich nicht im kavitationsgefährdeten Bereich

Mißt man hingegen bei der Drehzahl $n_2 = 1000 \text{ min}^{-1}$ ei- 35 nen Durchfluß von 65 m³/h (entsprechend Punkt b_2 in **Fig.** 5 und 6), so ist der affine Betriebspunkt bei $n_1 = 1500 \text{ min}^{-1}$ bei 97,5 m³/h (entsprechend Punkt b_1 in **Fig.** 5 und 6).

Während der Punkt b₂ wegen NPSII_{vorhanden} > NPSII_{eror-} derlich noch nicht im kavitationsgefährdeten Bereich liegt, ist 40 der Punkt by bereits im Kavitationsbereich, wobei geringe Durchflußerhöhungen beim Punkt b, dazu führen können, daß der erforderliche NPSII-Wert den vorhandenen anlagenspezifischen NPSII-Wert übersteigt und auch der Betriebspunkt be kavitationsbedroht ist. Dies hängt damit zu- 45 sammen, daß der Anstieg der den erforderlichen NPSII-Wert anzeigenden Kennlinie mit zunehmender Fördermenge immer stärker und der Verlauf der Kennlinie immer steiler wird. Diese Veränderung in der Steigung der erforderlichen NPSII- Werte einer Pumpe gilt für alle ihre Betriebspunkte. 50 Will man also ermitteln, ob eine Pumpe in den kavitationsgefährdeten Bereich kommt, so sind lediglich die affinen Betriebspunkte zu ermitteln, bei denen Kavitation beginnt (siehe Fig. 6 Linie KAB). Ermittelt man durch Messungen die Förderhöhe II oder die Fördermenge Q, so läßt sich ein- 55 fach bestimmen, ob der Betriebspunkt links oder rechts vom Schnittpunkt der Q-II-Linie mit der Linie des für den NPSII-Wen relevanten Auslegungspunktes affinen Betriebspunktes liegt. Damit kann eine Aussage getroffen werden, ob der Betriebspunkt kavitationsgefährdet ist (links 60 vom Schnittpunkt entspricht keiner Kavitationsgefährdung siche Fig. 6).

In **Fig.** 6 ist je eine Q-II-Kennlinie für die Pumpendrehzahlen n₁ = 1500 min ¹ und n₂ = 1000 min ¹ aufgetragen sowie eine Kennlinie affiner Betriebspunkte KAB, welche die beiden Drehzahlkennlinien schneidet. Aus dieser Darstellung läßt sich einerseits der zu einer bestimmten Pumpendrehzahl und einer bestimmten Förderhöhe zugehörige För-

derstrom ablesen. Ferner läßt sich mit Hilfe der Kennlinie der für die Auslegung der Pumpe bezüglich des NPSH-Wertes relevanten affinen Betriebspunkte ablesen, ob ein gewählter Betriebspunkt – wie oben beschrieben – im kavitationsgefährdeten Bereich liegt oder nicht.

Ergibt sich aus dem vorstehend erläuterten Vergleich, daß eine Kavitationsgefährdung besteht, so muß der Betriebspunkt, beispielsweise durch Vermindern des Förderstromes durch Androsseln eines Regelventils, so verschoben werden, bis er nicht mehr im kavitationsgefährdeten Bereich liegt.

Patentansprüche

1. Verfahren zum Kavitationsschutz einer drehzahlgeregelten Pumpe, deren auf eine nach ISO 2548 definierte Bezugsebene bezogene erforderliche pumpenspezifische Nettoenergiehöhe (NPSH_{erf}) aus betrieblichen Messungen abgeschätzt wird, wobei ein Überschreiten dieser erforderlichen, pumpenspezifischen Nettoenergiehöhe (NPSH_{erf}) gegenüber der in der Anlage vorhandenen Nettoenergiehöhe (NPSH_{vorh}), bezogen auf die gleiche Bezugsebene, Kavitation hervorruft, dadurch gekennzeichnet, daß die Strömungsverhältnisse bei Betriebsdrehzahl im Betriebspunkt der Pumpe unter Verwendung der Ähnlichkeitsgesetze mit den Strömungsverhältnissen eines für die Auslegung bezüglich des NPSH-Wertes relevanten Punktes verglichen werden, daß ermittelt wird, ob die erforderliche pumpenspezifische Nettoenergiehöhe (NPSH_{erf}) die in der Anlage vorhandene Nettoenergiehöhe (NPSII_{vorh}) übersteigt und daß die Förderhöhe bzw. Fördermenge der Pumpe in Abhängigkeit von der Drehzahl entsprechend einer der beiden nachfolgenden Bedingungen eingestellt wird

$$\frac{H_{Betrieb}}{n_{Betrieb}^2} \ge \frac{H_{Re\ ferenz}}{n_{Re\ ferenz}^2}$$

mit

H_{Betrieb} = Förderhöhe bei Betriebsdrehzahl

H_{Referenz} - Förderhöhe bei der Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

 $n_{Betrieb} = Betriebsdrehzahl$

n_{Referenz} = Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

oder

$$\frac{Q_{Betrieb}}{N_{Betrieb}} \le \frac{Q_{Re\ ferenz}}{N_{Re\ ferenz}}$$

mit

Q_{Betrieb} = Fördermenge bei Betriebsdrehzahl

Q_{Referenz} = Fördermenge bei der Drehzahl, bei welcher im Referenzpunkt Kavitation beginnt

n_{Betrieb} = Betriebsdrehzahl

n_{Referenz} = Drehzahl bei welcher im Referenzpunkt Kavitation beginnt.

2. Verlahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Bestimmung der betrieblichen Förderhöhe HBetrieb die Druckdifferenz des Pumpenvordrucks zum

7

Pumpendruck nach der Pumpe bestimmt wird.

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Bestimmung der betrieblichen Förderhöhe H_{Betrieb} der Druck nach der Pumpe gemessen
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Bestimmung der betrieblichen Fördermenge QBetrieb eine Durchflußmessung im Leitungsstrang erfolgt.
- 5. Vorrichtung zur Durchführung des Verfahrens nach 10 einem der vorherigen Ansprüche mit einer in eine Rohrleitung eingebundenen drehzahlgeregelten Pumpe und einem zugeordneten Regelorgan, insbesondere Regelventil, dadurch gekennzeichnet, daß der Pumpe eine Meßstelle zugeordnet ist, welche zur Druckmessung 15 des geförderten Mediums dient.
- 6. Vorrichtung zur Durchtührung des Verfahrens nach einem der vorherigen Ansprüche mit einer in eine Rohrleitung eingebundenen drehzahlgeregelten Pumpe und einem zugeordneten Regelorgan, insbesondere Re- 20 gelventil, dadurch gekennzeichnet, daß der Pumpe eine Meßstelle zugeordnet ist, welche zur Durchflußmessung des geförderten Mediums dient.
- 7. Vorrichtung zur Durchführung des Verfahrens nach einem der vorherigen Ansprüche mit einer in eine 25 Rohrleitung eingebundenen drehzahlgeregelten Pumpe und einem zugeordneten Regelorgan, insbesondere Regelventil, dadurch gekennzeichnet, daß der Pumpe eine Meßstelle zugeordnet ist, welche zur Messung des Differenzdruckes zwischen dem Druck vor der Pumpe und 30 dem Druck nach der Pumpe dient.

Hierzu 4 Seite(n) Zeichnungen

35

40

50

55

60

65

BNSDOCID < DE 19645129A1 1 >

8

45

- Leerseite -

Nummer: int. Cl.⁶; Offenlegungstag: **DE 196 45 129 A1 F 04 D 9/00**7. Mai 1998

f1g. 4

Nummer; Int. Cl.⁶; Offenlegungstag;

DE 196 45 129 A1 F 04 D 9/00 7. Mai 1998

Fig

Nummer: Int. Cl.⁶: Offenlegungstag: DE 196 45 129 A1 F 04 D 9/00 7. Mai 1998

