1 Consider the problem

$$\min f(\mathbf{x})$$
 subject to $\mathbf{x} \in \Omega$,

where $f(\mathbf{x}) = 2x_1 + 3$ and $\Omega = {\mathbf{x} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \ge 1}$.

- a. Find all point(s) satisfying the FONC.
- b. Which of the point(s) in part (a) satisfy the SONC?
- c. Which of the point(s) in part (a) are local minimizers?

Solution a. We need to consider the points on the interior of Ω and the boundary separately.

First, note that

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
 and $H_f(\mathbf{x}) = 0$

Boundary of Ω :

We want the points such that $\nabla f(\mathbf{x}) \cdot \mathbf{d} \geq 0$ for all feasible **d**. If we take **d** to be a unit vector, we can write $\mathbf{d} = (\cos \theta, \sin \theta)^{\top}$. The inner product is

$$\nabla f(\mathbf{x}) \cdot \mathbf{d} = 2\cos\theta$$

which is greater than or equal to 0 whenever $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Since the boundary is a circle, the only point whose feasible directions satisfy that condition is $(1,0)^{\top}$.

Interior of Ω

We want the points such that $\nabla f(\mathbf{x}) \cdot \mathbf{d} = 0$. Taking \mathbf{d} to be a unit vector as above gives the inner product $2\cos\theta$, which is 0 if $\theta \in \{\frac{\pi}{2}, -\frac{\pi}{2}\}$. But in the interior, all \mathbf{d} are feasible directions, so the FONC cannot be satisfied in the interior of Ω .

- b. The only point we need to consider is $(1,0)^{\top}$. $H_f(\mathbf{x}) = 0 \succeq 0$, so the SONC is satisfied.
- c. $(1,0)^{\top}$ is not a local minimizer. If we take any neighborhood centered at $(1,0)^{\top}$, it would include a point that's above and to the left of it. Points to the left (i.e., points with $x_1 < 1$) will have a smaller value of f since $\frac{\partial f}{\partial x_1} = 2 > 0$. Thus, $(0,1)^{\top}$ cannot be a local minimizer.

2 Consider the unconstrained optimization problem

$$\min f(\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} - \mathbf{b}||^2,$$

where $A \in \mathbb{R}^{n \times n}$, $m \ge n$, and $\mathbf{b} \in \mathbb{R}^n$.

- a. Show that $f(\mathbf{x})$ is a quadratic function of the form $\frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x} \mathbf{p}^{\top}\mathbf{x} + c$ by specifying Q, \mathbf{p} , and c.
- b. Find the gradient $\nabla f(\mathbf{x})$ and Hessian matrix $H_f(\mathbf{x})$.
- c. Suppose $A = \begin{pmatrix} 5 & 4 \\ 0 & 3 \end{pmatrix}$. Find the upper bound for α such that gradient descent with the fixed step size α converges to the solution.

Solution a. By the definition of an inner product, $||A\mathbf{x} - \mathbf{b}||^2 = (A\mathbf{x} - \mathbf{b}) \cdot (A\mathbf{x} - \mathbf{b})$. Thus,

$$f(\mathbf{x}) = \frac{1}{2} (A\mathbf{x} - \mathbf{b}) \cdot (A\mathbf{x} - \mathbf{b})$$
$$= \frac{1}{2} (\mathbf{x}^{\top} A^{\top} A \mathbf{x} - 2 \mathbf{b}^{\top} A \mathbf{x} + \|\mathbf{b}\|)^{2}$$
$$= \frac{1}{2} \mathbf{x}^{\top} (A^{\top} A) \mathbf{x} - (A^{\top} \mathbf{b})^{\top} \mathbf{x} + \frac{1}{2} \|\mathbf{b}\|^{2}.$$

Comparing with a quadratic form, we see that

$$Q = A^{\top} A$$
$$\mathbf{p} = A^{\top} \mathbf{b}$$
$$c = \frac{1}{2} ||\mathbf{b}||^{2}$$

b. Note that Q is symmetric, so

$$\nabla f(\mathbf{x}) = Q\mathbf{x} - \mathbf{p} = A^{\top}A\mathbf{x} - A^{\top}\mathbf{b} = A^{\top}(A\mathbf{x} - \mathbf{b})$$
$$H_f(\mathbf{x}) = Q\mathbf{x} = A^{\top}A$$

- c. By a theorem, we need $\alpha \in (0, \frac{2}{\lambda_{\max}})$. By inspection, the eigenvalues of $A^{\top}A$ are $\lambda_1 = 25$ and $\lambda_2 = 9$. Hence, the upper bound for α is $\frac{2}{25}$.
- **3** Let $(x_1, y_1)^{\top}, \dots, (x_n, y_n)^{\top}, n \geq 2$ be points on the \mathbb{R}^2 plane. We wish to find the straight line of "best fit" through these points ("best in the sense that the average squared error is minimized); that is, we wish to find $a, b \in \mathbb{R}$ to minimize

$$f(a,b) = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b - y_i)^2.$$

a. Let

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \overline{X^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \qquad \overline{XY} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \overline{Y^2} = \frac{1}{n} \sum_{i=1}^{n} y_i^2$$

Show that f(a,b) can be written in the form $\mathbf{z}^{\top}Q\mathbf{z} - 2\mathbf{x}^{\top}\mathbf{z} + d$, where $\mathbf{z} = (a,b)^{\top}$, $Q = Q^{\top} \in \mathbb{R}^{2 \times 2}$, $\mathbf{x} \in \mathbb{R}^2$ and $d \in \mathbb{R}$, and find expressions for Q, \mathbf{c} , and d in terms of $\overline{X}, \overline{Y}, \overline{X^2}, \overline{Y^2}$, and \overline{XY} .

- b. Assume that the \underline{x}_i , $i=1,\ldots,n$ are not all equal. Find the parameters a^* and b^* for the line of best fit in terms of $\overline{X}, \overline{Y}, \overline{X^2}, \overline{Y^2}$, and \overline{XY} . Show that the point $(a^*, b^*)^{\top}$ is the only local minimizer of f.

 Hint: $\overline{X^2} (\overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (x_i \overline{X})^2$.
- c. Show that if a^* and b^* are the parameters of the line of best fit, then $\overline{Y} = a^* \overline{X} + b^*$ (and hence once we have computed a^* , we can compute b^* using the formula $b^* = \overline{Y} a^* \overline{X}$).

Solution a. Expanding f(a, b),

$$f(a,b) = \frac{1}{n} \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} (a^2 x_i^2 + abx_i - ax_i y_i + abx_i + b^2 - by_i - ax_i y_i - by_i + y_i^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (a^2 x_i^2 + b^2 + 2abx_i - 2ax_i y_i - 2by_i + y_i^2)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{z}^{\top} \begin{pmatrix} x_i^2 & x_i \\ x_i & 1 \end{pmatrix} \mathbf{z} - 2(x_i y_i, y_i)^{\top} \mathbf{z} + y_i^2 \right)$$

$$= \mathbf{z}^{\top} \begin{pmatrix} \overline{X^2} & \overline{X} \\ \overline{X} & 1 \end{pmatrix} \mathbf{z} - 2(\overline{XY}, \overline{Y})^{\top} \mathbf{z} + \overline{Y^2}$$

Thus, by comparison,

$$Q = \begin{pmatrix} \overline{X^2} & \overline{X} \\ \overline{X} & 1 \end{pmatrix}$$
$$\mathbf{x} = (\overline{XY}, \overline{Y})$$
$$d = \overline{Y^2}$$

b. We first find the points that satisfy the FONC. Since our feasible set is \mathbb{R}^2 , we only need to consider the interior case. I.e., we want $\nabla f(\mathbf{z}^*) = 0$.

$$\begin{split} \nabla f(\mathbf{z}^*) &= 2Q\mathbf{z}^* - 2\mathbf{x} \\ &= 2\left(\frac{\overline{X^2}}{\overline{X}} \frac{\overline{X}}{1}\right) \begin{pmatrix} a^* \\ b^* \end{pmatrix} - 2\left(\frac{\overline{XY}}{\overline{Y}}\right) \\ &= \begin{pmatrix} a^*\overline{X^2} + b^*\overline{X} \\ a^*\overline{X} + b^* \end{pmatrix} - \begin{pmatrix} \overline{XY} \\ \overline{Y} \end{pmatrix} = 0 \\ \Longrightarrow \begin{pmatrix} a^* \\ b^* \end{pmatrix} &= \begin{pmatrix} \frac{\overline{XY} - (\overline{X})(\overline{Y})}{\overline{X^2} - (\overline{X})^2} \\ \overline{Y} - a^*\overline{X} \end{pmatrix} \end{split}$$

This is the only point that satisfies the FONC.

Next, we check the SONC. We want $Q \succeq 0$, so it suffices to show that the eigenvalues of Q are non-negative.

$$\lambda_1 + \lambda_2 = \operatorname{tr} Q = \overline{X^2} + 1$$
$$\lambda_1 \lambda_2 = \det Q = \overline{X^2} - (\overline{X})^2$$

 $\operatorname{tr} Q > 0$ since $\overline{X^2}$ involves a sum of non-negative terms. Additionally, $\det Q \geq 0$ since by the hint, it is also a sum of non-negative terms. Moreover, since not all the x_i are equal, there exists x_i such that $x_i \neq \overline{X}$. Otherwise, we would have $x_i = \overline{X}$ for all i, which is a contradiction. Thus, $\det Q > 0$, so the eigenvalues of Q are both positive.

Since Q is positive definite, this implies that the point satisfying the FONC is the unique strict local minimizer of f(a, b) in \mathbb{R}^2 .

- c. From (b), we have that $b^* = \overline{Y} a^* \overline{X}$ as desired.
- **4** Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{1}{2}(x-c)^2$, $c \in \mathbb{R}$. We are interested in computing the minimizer of f using the iterative algorithm

$$x^{(k+1)} = x^{(k)} - \alpha_k f'(x^{(k)}).$$

where f' is the derivative of f and α_k is a step size satisfying $0 < \alpha_k < 1$.

- a. Derive a formula relating $f(x^{(k+1)})$ with $f(x^{(k)})$, involving α_k .
- b. Show that the algorithm is globally convergent if and only if

$$\sum_{k=0}^{\infty} \alpha_k = \infty.$$

Hint: Use part (a) and the fact that for any sequence $\{a_k\}_{k>1} \subseteq (0,1)$, we have

$$\prod_{k=0}^{\infty} (1 - \alpha_k) = 0 \iff \sum_{k=0}^{\infty} \alpha_k = \infty.$$

Solution a. Note that f'(x) = x - c, so $f'(x^{(k)}) = x^{(k)} - c$. Thus,

$$f(x^{(k+1)}) = \frac{1}{2}(x^{(k+1)} - c)^2$$

$$= \frac{1}{2}(x^{(k)} - \alpha_k(x^{(k)} - c) - c)^2$$

$$= \frac{1}{2}[(x^{(k)} - c)(1 - \alpha_k)]^2$$

$$= f(x^{(k)})(1 - \alpha_k)^2$$

b. First note that the only point satisfying the FONC is x = c. This is because the problem is unconstrained, so we need $f'(x) = 0 \implies x = c$.

Suppose $\prod_{k=0}^{\infty} (1 - \alpha_k) = 0$. Then

$$\prod_{k=0}^{\infty} (1 - \alpha_k) = 0 \implies \sum_{k=0}^{\infty} \log(1 - \alpha_k) = -\infty$$

$$\implies \sum_{k=0}^{\infty} 2\log(1 - \alpha_k) = \sum_{k=0}^{\infty} \log(1 - \alpha_k)^2 = -\infty$$

$$\implies \prod_{k=0}^{\infty} (1 - \alpha_k)^2 = 0$$

Hence,

$$f(x^{(k)}) = \prod_{i=0}^{k} (1 - \alpha_i)^2 \xrightarrow{k \to \infty} 0 \implies x^{(k)} \xrightarrow{k \to \infty} c$$

for all $x^{(0)}$ since f is continuous. So, the algorithm is globally convergent.

· ==> "

Suppose the algorithm is globally convergent, i.e., $x^{(k)} \xrightarrow{k \to \infty} c \implies f(x^{(k)}) \xrightarrow{k \to \infty} 0$. Then

$$\lim_{k \to \infty} f(x^{(k+1)}) = 0 \implies \lim_{k \to \infty} \prod_{i=0}^{k} (1 - \alpha_i)^2 = 0$$

$$\implies \sum_{k=0}^{\infty} 2\log(1 - \alpha_k) = -\infty$$

$$\implies \sum_{k=0}^{\infty} \log(1 - \alpha_k) = -\infty$$

$$\implies \prod_{k=0}^{\infty} (1 - \alpha_k) = 0$$

$$\implies \sum_{k=0}^{\infty} \alpha_k = \infty$$

as desired.

5 Consider a function $f: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ where $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$. Suppose that A is invertible and \mathbf{x}^* is the zero of f (i.e., $f(\mathbf{x}^*) = 0$). We wish to compute \mathbf{x}^* using the iterative algorithm

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha f(\mathbf{x}^{(k)}),$$

where $\alpha \in \mathbb{R}$, $\alpha > 0$. We say that the algorithm is *globally monotone* if for any $\mathbf{x}^{(0)}$, $\|\mathbf{x}^{(k+1)} - \mathbf{x}^*\| \le \|\mathbf{x}^{(k)} - \mathbf{x}^*\|$ for all k.

- a. Assume that all the eigenvalues of A are real. Show that a necessary condition for the algorithm above to be *globally monotone* is that all the eigenvalues of A are nonnegative.

 Hint: Use contraposition.
- b. Suppose that

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}.$$

Find the largest range of values of α for which the algorithm is *globally convergent* (i.e., $\mathbf{x}^{(k)} \to \mathbf{x}^*$ for all $\mathbf{x}^{(0)}$).

Solution a. Since \mathbf{x}^* is a zero of f and A is invertible, we have that $\mathbf{x}^* = -A^{-1}\mathbf{b}$.

Suppose the eigenvalues of A are negative, so that A is negative definite. Choose $\mathbf{x}^{(0)} = \mathbf{x}^* + \mathbf{v}$, where \mathbf{v} is an eigenvector of A with eigenvalue $\lambda < 0$. Then $A\mathbf{v} = \lambda \mathbf{v}$ and $A^{-1}\mathbf{v} = \frac{1}{\lambda}\mathbf{v}$. So,

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\| = \|\mathbf{v}\|$$

$$\|\mathbf{x}^{(1)} - \mathbf{x}^*\| = \|\mathbf{x}^{(0)} - \alpha\lambda\mathbf{v} - \mathbf{x}^*\|$$

$$= \|\mathbf{v} - \alpha\lambda\mathbf{v}\|$$

$$= \|\mathbf{v}(1 - \alpha\lambda)\|$$

Since $\lambda < 0, -\alpha\lambda > 0 \implies 1 - \alpha\lambda > 1$ for all $\alpha > 0$. Hence,

$$\|\mathbf{v}(1 - \alpha\lambda)\| > \|\mathbf{v}\| \implies \|\mathbf{x}^{(0)} - \mathbf{x}^*\| > \|\mathbf{x}^{(0)} - \mathbf{x}^*\|$$

so the algorithm is not globally monotone. Hence, if the algorithm is globally monotone, all of its eigenvalues must be non-negative.

b. Notice that the eigenvalues of A are $\lambda = 1$ and $\lambda = 5$. Thus, by (a), the algorithm is globally monotone. Since we have two distinct eigenvalues in \mathbb{R}^2 , we can form an eigenbasis. In particular, its eigenvectors are $\mathbf{v}_1 = (1,1)^{\top}$ and $\mathbf{v}_2 = (1,-1)^{\top}$.

Fix $\mathbf{x}^{(0)}$. Then there exist $c_1, c_2 \in \mathbb{R}$ such that $\mathbf{x}^{(0)} = \mathbf{x}^* + c_1\mathbf{v}_1 + c_2\mathbf{v}_2 \coloneqq \mathbf{x}^* + \mathbf{v}$. We claim that $\mathbf{x}^{(k)} = \mathbf{x}^* + (I - \alpha A)^k\mathbf{v}$.

Base step:

This is clearly true for k = 0.

Inductive step:

Suppose $\mathbf{x}^{(k)}$ can be written as the above. Then we wish to show that $\mathbf{x}^{(k+1)}$ can be also. By definition,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha(A\mathbf{x}^{(k)} + b)$$

$$= \mathbf{x}^* + (I - \alpha A)^k \mathbf{v} - \alpha(A(\mathbf{x}^* + (I - \alpha A)^k \mathbf{v}) + b)$$

$$= \mathbf{x}^* + (I - \alpha A)^k \mathbf{v} - \alpha \left((A\mathbf{x}^* + b) + A(I - \alpha A)^k \mathbf{v} \right)$$

$$= \mathbf{x}^* + (I - \alpha A)^k \mathbf{v} - \alpha A(I - \alpha A)^k \mathbf{v}$$

$$= \mathbf{x}^* + (I - \alpha A)(I - \alpha A)^k \mathbf{v}$$

$$= \mathbf{x}^* + (I - \alpha A)^{k+1} \mathbf{v}$$

Thus, the formula holds by induction.

Next, we want to find α so that $\|\mathbf{x}^{(k)} - \mathbf{x}^*\| \xrightarrow{k \to \infty} 0$, which implies that $\mathbf{x}^{(k)} \xrightarrow{k \to \infty} \mathbf{x}^*$.

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\| = \|(I - \alpha A)^{k+1} \mathbf{v}\|$$

$$= \|(I - \alpha A)^{k+1} (c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2)\|$$

$$= \|c_1 (1 - \alpha)^{k+1} \mathbf{v}_1 + c_2 (1 - 5\alpha)^{k+1} \mathbf{v}_2\|$$

For this to go to 0, we need $|1-\alpha| < 1$ and $|1-5\alpha| < 1$. The values of α which satisfy this are $0 < \alpha < \frac{2}{5}$. If α steps outside this range, then the sequence of norms will not converge to 0.