SECUNDA TAREA INTRODUCCIÓN A SISTEMAS DINÁMICOS

MAURO ARTIGIANI

Los ejercicios valen todos 1 punto. La tarea se puede escribir en inglés o en español, o en una mezcla de idiomas. Se puede entregar en físico en mi buzón (H-100) o en pdf a mi correo (m.artigiani@uniandes.edu.co). La colaboración en equipos pequeños está incentivado. Cada uno tiene que entregar su tarea, escribiendo claramente con quien trabajó.

La fecha limite para la entrega es viernes 8 de marzo a las 5pm (17.00). Cada día de retraso causa una penalidad del 15% en la nota.

1. Un punto x de un sistema dinámico topológico $f: X \to X$ es non errante (non wandering) si para cualquiera vecindad U de x existe $n \in \mathbb{N}$ tal que $f^n(U) \cap U \neq \emptyset$.

Sea f invertible. Demuestre que el conjunto NW = NW(f) de los puntos non errantes por f es cerrado, f-invariante (i.e.: f(NW) = NW) y que contiene $\omega(x)$ y $\alpha(x)$ para todos los $x \in X$, donde:

$$\omega(x) = \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{i \geq n} f^i(x)}, \qquad \mathbf{y} \qquad \alpha(x) = \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{i \geq n} f^{-i}(x)}$$

son los puntos limites de la órbita completa del punto x.

- 2. Demuestre que el mapeo de duplicación es topológicamente mezclante. Sugerencia: trate de adaptar la demostración que hemos visto para el mapeo del panadero.
- 3. Sea $F \colon [0,1]^2 \to [0,1]^2$ el mapeo del panadero. Sea

$$D_n(y) = \left\{ \left(\frac{i}{2^n}, y \right), 0 \le i \le 2^n - 1 \right\},$$

para $y \in [0, 1]$. Fijamos $1/2^{k+1} < \varepsilon \le 1/2^k$.

a) Demuestre que, para todos los $y \in [0,1]$ fijados, $D_{n-1+k}(y)$ es (n,ε) -separado para F.

Sugerencia: Si identificamos $D_n(0)$ con el conjunto de puntos diadicos en [0,1], $D_n(0)$ es (n,ε) -separado para el mapeo de duplicación.

b) Demuestre que

$$D = \bigcup_{j=0}^{2^{k}-1} D_{n-1+k} \left(\frac{j}{2^{k}} \right)$$

es (n, ε) -generador para F.

Sugerencia: demuestre y utilize que, si $x_1 = x_2$ hay

$$d(F(x_1, y_1), F(x_2, y_2)) = \frac{1}{2}d((x_1, y_1), (x_2, y_2)) = \frac{|y_1 - y_2|}{2}.$$

c) Calcule $h_{\text{top}}(F)$.

Date: 1 de marzo de 2019.

- 4. Demuestre que si $f: X \to X$ es un sistema dinámico topológico expansivo, el conjunto $\operatorname{Per}_n(f)$ de los punto periódicos de périodo n es finito. Sugerencia: acuérdese que un conjunto compacto es compacto por sucesiones.
- 5. Sea $\sigma\colon \Sigma_N^+ \to \Sigma_N^+$ el shift unilaterál completo sobre N símbolos.
 - a) Describa el conjunto $\operatorname{Per}_n(\sigma)$ y calcule su cardinalidad. Demuestre que $\operatorname{Per}(\sigma) = \cup_{n \in \mathbb{N}} \operatorname{Per}_n(\sigma)$ es denso.
 - b) Fije un natural n y sea $0 < \varepsilon < 1/\rho$. Demuestre que $\mathrm{Per}_n(\sigma)$ es un conjunto (n,ε) -separado.
 - c) Fije dos natural n y k. Demuestre que, para $\varepsilon>1/\rho^{k-1}$, hay que $\operatorname{Per}_{n+k+1}(\sigma)$ es un conjunto (n,ε) -generador.
 - d) Calcule $h_{\text{top}}(\sigma)$.