Low-Rank Matrix Recovery

Yuxin Chen

Princeton University, Spring 2017

Outline

- Low-rank matrix completion and recovery
- Spectral methods
- Nuclear norm minimization
 - o RIP and low-rank matrix recovery
 - Phase retrieval / solving random quadratic systems of equations
 - Matrix completion

Low-rank matrix completion and recovery

Motivation 1: recommendation systems

- Netflix challenge: Netflix provides highly incomplete ratings from 0.5 million users for & 17,770 movies
- How to predict unseen user ratings for movies?

In general, we cannot infer missing ratings

```
      ✓
      ?
      ?
      ✓
      ?

      ?
      ?
      ✓
      ?
      ?

      ✓
      ?
      ?
      ?
      ?

      ?
      ?
      ?
      ?
      ?

      ?
      ?
      ?
      ?
      ?

      ?
      ?
      ✓
      ?
      ?
```

Underdetermined system (more unknowns than observations)

... unless rating matrix has other structure

A few factors explain most of the data

... unless rating matrix has other structure

A few factors explain most of the data \longrightarrow low-rank approximation

How to exploit (approx.) low-rank structure in prediction?

Motivation 2: sensor localization

- n sensors / points $x_j \in \mathbb{R}^3, \ j=1,\cdots,n$
- Observe partial information about pairwise distances

$$D_{i,j} = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2 = \|\boldsymbol{x}_i\|^2 + \|\boldsymbol{x}_j\|^2 - 2\boldsymbol{x}_i^{\top}\boldsymbol{x}_j$$

Want to infer distance between every pair of nodes

Motivation 2: sensor localization

Introduce

$$oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1^{ op} \ oldsymbol{x}_2^{ op} \ dots \ oldsymbol{x}_n^{ op} \end{bmatrix} \in \mathbb{R}^{n imes 3}$$

then distance matrix $oldsymbol{D} = [D_{i,j}]_{1 \leq i,j \leq n}$ can be written as

$$oldsymbol{D} = \underbrace{oldsymbol{d}_2 oldsymbol{e}^ op + oldsymbol{e} oldsymbol{d}_2^ op - 2 oldsymbol{X} oldsymbol{X}^ op}_{ ext{low rank}}$$

where $oldsymbol{d}_2 := [\|oldsymbol{x}_1\|^2, \cdots, \|oldsymbol{x}_n\|^2]^ op$

 $rank(D) \ll n \longrightarrow low-rank matrix completion$

Motivation 3: structure from motion

Given multiple images and a few correspondences between image features, how to estimate locations of 3D points?

Snavely, Seitz, & Szeliski

Structure from motion: reconstruct 3D scene geometry and

structure

camera poses from multiple images

motion

Motivation 3: structure from motion

Tomasi and Kanade's factorization:

- ullet Consider n 3D points in m different 2D frames
- $x_{i,j} \in \mathbb{R}^{2 \times 1}$: locations of j^{th} point in i^{th} frame

$$m{x}_{i,j} = \underbrace{m{M}_i}_{ ext{projection matrix}} \underbrace{m{p}_j}_{ ext{position}} \in \mathbb{R}^3$$

Matrix of all 2D locations

$$m{X} = egin{bmatrix} m{x}_{1,1} & \cdots & m{x}_{1,n} \ dots & \ddots & dots \ m{x}_{m,1} & \cdots & m{x}_{m,n} \end{bmatrix} = egin{bmatrix} m{M}_1 \ dots \ m{M}_m \end{bmatrix} egin{bmatrix} m{p}_1 & \cdots & m{p}_n \end{bmatrix} \in \mathbb{R}^{2m imes n}$$

Goal: fill in missing entries of X given a small number of entries

Motivation 4: missing phase problem

Detectors record intensities of diffracted rays

• electric field $x(t_1, t_2) \longrightarrow \text{Fourier transform } \hat{x}(f_1, f_2)$

Fig credit: Stanford SLAC

intensity of electrical field:
$$\left|\hat{x}(f_1,f_2)\right|^2 = \left|\int x(t_1,t_2)e^{-i2\pi(f_1t_1+f_2t_2)}\mathrm{d}t_1\mathrm{d}t_2\right|^2$$

Phase retrieval: recover signal $x(t_1, t_2)$ from intensity $|\hat{x}(f_1, f_2)|^2$

A discrete-time model: solving quadratic systems

Solve for ${m x} \in {\mathbb C}^n$ in m quadratic equations

$$y_k = |\langle \boldsymbol{a}_k, \boldsymbol{x} \rangle|^2, \qquad k = 1, \dots, m$$
 or $\boldsymbol{y} = |\boldsymbol{A}\boldsymbol{x}|^2$ where $|\boldsymbol{z}|^2 := \{|z_1|^2, \cdots, |z_m|^2\}$

An equivalent view: low-rank factorization

Lifting: introduce $oldsymbol{X} = oldsymbol{x} oldsymbol{x}^*$ to linearize constraints

$$y_k = |\boldsymbol{a}_k^* \boldsymbol{x}|^2 = \boldsymbol{a}_k^* (\boldsymbol{x} \boldsymbol{x}^*) \boldsymbol{a}_k \implies y_k = \boldsymbol{a}_k^* \boldsymbol{X} \boldsymbol{a}_k$$
 (8.1)

find
$$X \succeq 0$$

s.t.
$$y_k = \langle \boldsymbol{a}_k \boldsymbol{a}_k^*, \boldsymbol{X} \rangle, \qquad k = 1, \cdots, m$$
$$\operatorname{rank}(\boldsymbol{X}) = 1$$

Setup

- ullet Consider $M \in \mathbb{S}^{n imes n}$ (symmetric square case for simplicity)
- $\operatorname{rank}(\boldsymbol{M}) = r \ll n$
- Singular value decomposition (SVD) of M:

$$m{M} = \underbrace{m{U}m{\Sigma}m{V}^ op}_{ ext{(2n-r)}r ext{ degrees of freedom}} = \sum_{i=1}^r \sigma_i m{u}_i m{v}_i^T$$

where
$$m{\Sigma} = \left[egin{array}{ccc} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{array}
ight]$$
 contain all singular values $\{\sigma_i\}$; $m{U} := [m{u}_1, \cdots, m{u}_r]$, $m{V} := [m{v}_1, \cdots, m{v}_r]$ consist of singular vectors

Low-rank matrix completion

Observed entries

$$M_{i,j}, \qquad (i,j) \in \underbrace{\Omega}_{\mathsf{sampling set}}$$

Completion via rank minimization

minimize_X rank(X) s.t.
$$X_{i,j} = M_{i,j}$$
, $(i,j) \in \Omega$

s.t.
$$X_{i}$$
 ,

$$(i,j) \in \Omega$$

8-15 Matrix recovery

Low-rank matrix completion

Observed entries

$$M_{i,j}, \qquad (i,j) \in \underbrace{\Omega}_{\mathsf{sampling set}}$$

• An operator \mathcal{P}_{Ω} : orthogonal projection onto subspace of matrices supported on Ω

Completion via rank minimization

$$\mathsf{minimize}_{m{X}} \; \; \mathsf{rank}(m{X}) \qquad \mathsf{s.t.} \; \; \; \mathcal{P}_{\Omega}(m{X}) = \mathcal{P}_{\Omega}(m{M})$$

More general: low-rank matrix recovery

Linear measurements

$$y_i = \langle \boldsymbol{A}_i, \boldsymbol{M} \rangle = \text{Tr}(\boldsymbol{A}_i^{\top} \boldsymbol{M}), \qquad i = 1, \dots m$$

• An operator form

$$oldsymbol{y} = \mathcal{A}(oldsymbol{M}) := \left[egin{array}{c} \langle oldsymbol{A}_1, oldsymbol{M}
angle \ \langle oldsymbol{A}_m, oldsymbol{M}
angle \end{array}
ight]$$

Recovery via rank minimization

$$\mathsf{minimize}_{oldsymbol{X}} \;\; \mathsf{rank}(oldsymbol{X}) \;\;\;\; \mathsf{s.t.} \;\; oldsymbol{y} = \mathcal{A}(oldsymbol{X})$$

Spectral methods

Signal + noise

$$(i,j)\in\Omega$$
 independently with prob. p

One can write observation $\mathcal{P}_{\Omega}(m{M})$ as

$$\frac{1}{p}\mathcal{P}_{\Omega}(\boldsymbol{M}) = \underbrace{\boldsymbol{M}}_{\text{signal}} + \underbrace{\frac{1}{p}\mathcal{P}_{\Omega}(\boldsymbol{M}) - \boldsymbol{M}}_{\text{noise}}$$

ullet Noise has mean zero: $\mathbb{E}\left[rac{1}{p}\mathcal{P}_{\Omega}(oldsymbol{M})
ight]=oldsymbol{M}$

Low-rank denoising

$$\frac{1}{p}\mathcal{P}_{\Omega}(\boldsymbol{M}) = \underbrace{\boldsymbol{M}}_{\text{low-rank signal}} + \underbrace{\frac{1}{p}\mathcal{P}_{\Omega}(\boldsymbol{M}) - \boldsymbol{M}}_{:=\boldsymbol{E} \text{ (zero-mean noise)}}$$

Algorithm 8.1 Spectral method

 $\hat{m{M}} \longleftarrow \mathsf{best} \; \mathsf{rank}\text{-}r \; \mathsf{approximation} \; \mathsf{of} \; rac{1}{p} \mathcal{P}_{\Omega}(m{M})$

Histograms of singular values of $\mathcal{P}_{\Omega}(\boldsymbol{M})$

A $10^4 \times 10^4$ random rank-3 matrix ${m M}$ with p=0.003

Fig. credit: Keshavan, Montanari, Oh '10

Performance of spectral methods

Theorem 8.1 (Keshavan, Montanari, Oh '10)

Suppose number of observed entries m obeys $m \gtrsim n \log n$. Then

$$\frac{\|\hat{\boldsymbol{M}} - \boldsymbol{M}\|_{\mathrm{F}}}{\|\boldsymbol{M}\|_{\mathrm{F}}} \lesssim \underbrace{\frac{\max_{i,j} |M_{i,j}|}{\frac{1}{n} \|\boldsymbol{M}\|_{\mathrm{F}}}}_{:=\nu} \cdot \sqrt{\frac{nr \log^2 n}{m}},$$

- ullet u reflects whether energy of M is spread out
- When $m\gg \nu^2 n\log^2 n$, estimate \hat{M} is very close to truth¹
- Degrees of freedom $\approx rn$
 - → nearly-optimal sample complexity for incoherent matrices

¹The logarithmic factor can be improved.

Perturbation bounds

To ensure \hat{M} is good estimate, it suffices to control noise E

Lemma 8.2

Suppose
$$\mathit{rank}(m{M}) = r$$
. For any perturbation $m{E}$,
$$\|\mathcal{P}_r(m{M} + m{E}) - m{M}\| \quad \leq 2\|m{E}\|$$

$$\|\mathcal{P}_r(m{M} + m{E}) - m{M}\|_{\mathrm{F}} \quad \leq 2\sqrt{2r}\|m{E}\|$$

where $\mathcal{P}_r(\boldsymbol{X})$ is best rank-r approximation of \boldsymbol{X}

Proof of Lemma 8.2

By matrix perturbation theory,

$$\begin{split} \|\mathcal{P}_r(\boldsymbol{M} + \boldsymbol{E}) - \boldsymbol{M}\| \\ & \leq \quad \|\mathcal{P}_r(\boldsymbol{M} + \boldsymbol{E}) - (\boldsymbol{M} + \boldsymbol{E})\| + \|(\boldsymbol{M} + \boldsymbol{E}) - \boldsymbol{M}\| \\ & \leq \quad \sigma_{r+1}(\boldsymbol{M} + \boldsymbol{E}) + \|\boldsymbol{E}\| \\ & \leq \quad \sigma_{r+1}(\boldsymbol{M} + \boldsymbol{E}) + \|\boldsymbol{E}\| \\ & \leq \quad \underbrace{\sigma_{r+1}(\boldsymbol{M})}_{=\boldsymbol{0}} + \|\boldsymbol{E}\| + \|\boldsymbol{E}\| \ = \ 2\|\boldsymbol{E}\| \end{split}$$

The 2nd inequality of Lemma 8.2 follows since both $\mathcal{P}_r(M+E)$ and M are rank-r, and hence

$$\|\mathcal{P}_r(\boldsymbol{M} + \boldsymbol{E}) - \boldsymbol{M}\|_{\mathrm{F}} \le \sqrt{2r} \|\mathcal{P}_r(\boldsymbol{M} + \boldsymbol{E}) - \boldsymbol{M}\|$$

Controlling the noise

Recall that entries of $m{E}=\frac{1}{p}\mathcal{P}_{\Omega}(m{M})-m{M}$ are zero-mean and independent

A bit of random matrix theory ...

Lemma 8.3 (Chapter 2.3, Tao '12)

Suppose $oldsymbol{X} \in \mathbb{R}^{n imes n}$ is a random symmetric matrix obeying

- $\{X_{i,j} : i < j\}$ are independent
- $\mathbb{E}[X_{i,j}] = 0$ and $\mathsf{Var}[X_{i,j}] \lesssim 1$
- $\max_{i,j} |X_{i,j}| \lesssim \sqrt{n}$

Then
$$\|\boldsymbol{X}\| \lesssim \sqrt{n} \log n$$

Proof of Theorem 8.1

Let $M_{\max} := \max_{i,j} |M_{i,j}|.$ The zero-mean matrix $ilde{m{E}} = rac{\sqrt{p}}{M_{\max}} m{E}$ obeys

$$\begin{split} \operatorname{Var}\left[\tilde{E}_{i,j}\right] &= p(1-p) \cdot \left(\frac{\sqrt{p}}{M_{\max}} \cdot \frac{1}{p} M_{i,j}\right)^2 \leq \left(\frac{M_{i,j}}{M_{\max}}\right)^2 \lesssim 1, \\ |\tilde{E}_{i,j}| &\leq \frac{|M_{i,j}|}{\sqrt{p} M_{\max}} \lesssim \frac{1}{\sqrt{p}}. \end{split}$$

Lemma 8.3 tells us that if $p \gtrsim \frac{1}{n}$, then

$$\|\tilde{E}\| \lesssim \sqrt{n} \log n \iff \|E\| \lesssim \frac{M_{\max} \sqrt{n}}{\sqrt{p}} \log n$$

This together with Lemma 8.2 and the fact $m \asymp pn^2$ establishes Theorem 8.1

Nuclear norm minimization

Convex relaxation

$$\mathsf{minimize}_{\boldsymbol{X}} \qquad \underbrace{\mathsf{rank}(\boldsymbol{X})}_{\mathsf{nonconvex}}$$

$$\mathsf{s.t.} \qquad \mathcal{P}_{\Omega}(\boldsymbol{X}) = \mathcal{P}_{\Omega}(\boldsymbol{M})$$

$$\mathsf{minimize}_{\boldsymbol{X}} \qquad \underbrace{\mathsf{rank}(\boldsymbol{X})}_{\mathsf{nonconvex}}$$

$$\mathsf{s.t.} \qquad \mathcal{A}(\boldsymbol{X}) = \mathcal{A}(\boldsymbol{M})$$

s.t.

Question: what is convex surrogate for rank(\cdot)?

8-27 Matrix recovery

Nuclear norm

Definition 8.4

The nuclear norm of X is

$$\|X\|_* := \sum_{i=1}^n \underbrace{\sigma_i(X)}_{i^{ ext{th}} ext{ largest singular value}}$$

- Nuclear norm is a counterpart of ℓ_1 norm for rank function
- Equivalence among different norms

$$\|X\| \le \|X\|_{\mathsf{F}} \le \|X\|_{*} \le \sqrt{r} \|X\|_{\mathsf{F}} \le r \|X\|.$$

• (Tightness) $\{X: \|X\|_* \le 1\}$ is convex hull of rank-1 matrices obeying $\|uv^\top\| \le 1$ (Fazel '02)

Additivity of nuclear norm

Fact 8.5

Let A and B be matrices of the same dimensions. If $AB^{\top}=0$ and $A^{\top}B=0$, then $\|A+B\|_*=\|A\|_*+\|B\|_*$.

- ullet If row (resp. column) spaces of A and B are orthogonal, then $\|A+B\|_*=\|A\|_*+\|B\|_*$
- Similar to ℓ_1 norm: when $m{x}$ and $m{y}$ have disjoint support,

$$\|oldsymbol{x}+oldsymbol{y}\|_1=\|oldsymbol{x}\|_1+\|oldsymbol{y}\|_1$$
 (a key to study ℓ_1 -min under RIP)

Proof of Fact 8.5

Suppose $\pmb{A} = \pmb{U}_A \pmb{\Sigma}_A \pmb{V}_A^ op$ and $\pmb{B} = \pmb{U}_B \pmb{\Sigma}_B \pmb{V}_B^ op$, which gives

$$egin{array}{lll} AB^ op &= 0 & & & & V_A^ op V_B &= 0 \ A^ op B &= 0 & & & & U_A^ op U_B &= 0 \end{array}$$

Thus, one can write

and hence
$$\|m{A} + m{B}\|_* = \left\| [m{U}_A, m{U}_B] \left[egin{array}{cc} m{\Sigma}_A & \ & \ & m{\Sigma}_B \end{array}
ight] [m{V}_A, m{V}_B]^ op
ight\|_* = \|m{A}\|_* + \|m{B}\|_*$$

Dual norm

Definition 8.6 (Dual norm)

For a given norm $\|\cdot\|_{\mathcal{A}}$, the dual norm is defined as

$$\|\boldsymbol{X}\|_{\mathcal{A}}^{\star} := \max\{\langle \boldsymbol{X}, \boldsymbol{Y} \rangle : \|\boldsymbol{Y}\|_{\mathcal{A}} \leq 1\}$$

- $\bullet \ \ell_1 \ \mathsf{norm} \qquad \stackrel{\mathsf{dual}}{\longleftrightarrow} \ \ell_\infty \ \mathsf{norm}$
- nuclear norm $\stackrel{\text{dual}}{\longleftrightarrow}$ spectral norm
- ullet ℓ_2 norm $\stackrel{\mathsf{dual}}{\longleftrightarrow}$ ℓ_2 norm
- Frobenius norm $\stackrel{\text{dual}}{\longleftrightarrow}$ Frobenius norm

Representing nuclear norm via SDP

Since spectral norm is dual norm of nuclear norm,

$$\|\boldsymbol{X}\|_* = \max\{\langle \boldsymbol{X}, \boldsymbol{Y} \rangle : \|\boldsymbol{Y}\| \le 1\}$$

The constraint is equivalent to

$$\| \boldsymbol{Y} \| \leq 1 \quad \Longleftrightarrow \quad \boldsymbol{Y} \boldsymbol{Y}^{ op} \preceq \boldsymbol{I} \quad \stackrel{\mathsf{Schur} \; \mathsf{complement}}{\Longleftrightarrow} \quad \left[\begin{array}{cc} \boldsymbol{I} & \boldsymbol{Y} \\ \boldsymbol{Y}^{ op} & \boldsymbol{I} \end{array} \right] \succeq \mathbf{0}$$

Fact 8.7

$$\|oldsymbol{X}\|_* = \max_{oldsymbol{Y}} \left\{ \langle oldsymbol{X}, oldsymbol{Y}
angle \ egin{bmatrix} oldsymbol{I} & oldsymbol{Y} \ oldsymbol{Y}^ op & oldsymbol{I} \end{bmatrix} \succeq oldsymbol{0}
ight\}$$

Representing nuclear norm via SDP

Since spectral norm is dual norm of nuclear norm,

$$\|\boldsymbol{X}\|_* = \max\{\langle \boldsymbol{X}, \boldsymbol{Y} \rangle : \|\boldsymbol{Y}\| \le 1\}$$

The constraint is equivalent to

$$\|\boldsymbol{Y}\| \leq 1 \quad \Longleftrightarrow \quad \boldsymbol{Y}\boldsymbol{Y}^{\top} \leq \boldsymbol{I} \quad \overset{\mathsf{Schur}}{\Longleftrightarrow} \quad \left[\begin{array}{cc} \boldsymbol{I} & \boldsymbol{Y} \\ \boldsymbol{Y}^{\top} & \boldsymbol{I} \end{array} \right] \succeq \boldsymbol{0}$$

Fact 8.8 (Dual characterization)

$$\|\boldsymbol{X}\|_* = \min_{\boldsymbol{W}_1, \boldsymbol{W}_2} \left\{ \frac{1}{2} \mathrm{Tr}(\boldsymbol{W}_1) + \frac{1}{2} \mathrm{Tr}(\boldsymbol{W}_2) \; \middle| \; \begin{bmatrix} \boldsymbol{W}_1 & \boldsymbol{X} \\ \boldsymbol{X}^\top & \boldsymbol{W}_2 \end{bmatrix} \succeq \boldsymbol{0} \right\}$$

ullet Optimal point: $m{W}_1 = m{U}m{\Sigma}m{U}^ op$, $m{W}_2 = m{V}m{\Sigma}m{V}^ op$ (where $m{X} = m{U}m{\Sigma}m{V}^ op$)

Aside: dual of semidefinite program

$$\begin{array}{ll} (\mathsf{primal}) & \mathsf{minimize}_{\boldsymbol{X}} & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ & \mathsf{s.t.} & \langle \boldsymbol{A}_i, \boldsymbol{X} \rangle = b_i, \quad 1 \leq i \leq m \\ & \boldsymbol{X} \succeq \boldsymbol{0} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ &$$

Exercise: use this to verify Fact 8.8

Nuclear norm minimization via SDP

Convex relaxation of rank minimization

$$\hat{M} = \mathsf{argmin}_{oldsymbol{X}} \|oldsymbol{X}\|_* \quad \mathsf{s.t.} \quad oldsymbol{y} = \mathcal{A}(oldsymbol{X})$$

This is solvable via SDP

$$\begin{split} \mathsf{minimize}_{\boldsymbol{X},\boldsymbol{W}_1,\boldsymbol{W}_2} \quad & \frac{1}{2}\mathsf{Tr}(\boldsymbol{W}_1) + \frac{1}{2}\mathsf{Tr}(\boldsymbol{W}_2) \\ \mathsf{s.t.} \quad & \boldsymbol{y} = \mathcal{A}(\boldsymbol{X}), \quad \begin{bmatrix} \boldsymbol{W}_1 & \boldsymbol{X} \\ \boldsymbol{X}^\top & \boldsymbol{W}_2 \end{bmatrix} \succeq \boldsymbol{0} \end{split}$$

RIP and low-rank matrix recovery

RIP for low-rank matrices

Almost parallel results to compressed sensing ... ²

Definition 8.9

The r-restricted isometry constants $\delta^{\mathrm{ub}}_r(\mathcal{A})$ and $\delta^{\mathrm{lb}}_r(\mathcal{A})$ are smallest quantities s.t.

$$(1 - \delta_r^{\mathrm{lb}}) \|\boldsymbol{X}\|_{\mathsf{F}} \leq \|\boldsymbol{\mathcal{A}}(\boldsymbol{X})\|_{\mathsf{F}} \leq (1 + \delta_r^{\mathrm{ub}}) \|\boldsymbol{X}\|_{\mathsf{F}}, \qquad \forall \boldsymbol{X} : \mathsf{rank}(\boldsymbol{X}) \leq r$$

 $^{^2 \}text{One}$ can also define RIP w.r.t. $\|\cdot\|_F^2$ rather than $\|\cdot\|_F.$ $_{\text{Matrix recovery}}$

RIP and low-rank matrix recovery

Theorem 8.10 (Recht, Fazel, Parrilo '10, Candes, Plan '11)

Suppose
$$\operatorname{rank}(\boldsymbol{M}) = r$$
. For any fixed integer $K > 0$, if $\frac{1+\delta^{\mathrm{ub}}_{Kr}}{1-\delta^{\mathrm{lb}}_{(2+K)r}} < \sqrt{\frac{K}{2}}$, then nuclear norm minimization is exact

 Can be easily extended to account for noise and imperfect structural assumption

Geometry of nuclear norm ball

Level set of nuclear norm ball:
$$\left\| \left[\begin{array}{cc} x & y \\ y & z \end{array} \right] \right\|_{*} \leq 1$$

Fig. credit: Candes '14

Some notation

Recall $oldsymbol{M} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op$

• Let T be span of matrices of the form (called *tangent space*)

$$T = \{ \boldsymbol{U} \boldsymbol{X}^{\top} + \boldsymbol{Y} \boldsymbol{V}^{\top} : \boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times r} \}$$

• Let \mathcal{P}_T be orthogonal projection onto T:

$$\mathcal{P}_T(X) = UU^{\top}X + XVV^{\top} - UU^{\top}XVV^{\top}$$

• Its complement $\mathcal{P}_{T^{\perp}} = \mathcal{I} - \mathcal{P}_{T}$:

$$\mathcal{P}_{T^{\perp}}(\boldsymbol{X}) = (\boldsymbol{I} - \boldsymbol{U}\boldsymbol{U}^{\top})\boldsymbol{X}(\boldsymbol{I} - \boldsymbol{V}\boldsymbol{V}^{\top})$$

$$\circ \ \ \boldsymbol{M} \mathcal{P}_{T^{\perp}}^{\top}(\boldsymbol{X}) = \boldsymbol{0} \ \text{and} \ \ \boldsymbol{M}^{\top} \mathcal{P}_{T^{\perp}}(\boldsymbol{X}) = \boldsymbol{0}$$

Suppose X=M+H is feasible and obeys $\|M+H\|_* \leq \|M\|_*$. The goal is to show that H=0 under RIP.

The key is to decompose
$$m{H}$$
 into $m{H}_0 + \underbrace{m{H}_1 + m{H}_2 + \dots}_{m{H}_c}$

- $H_0 = \mathcal{P}_T(H)$ (rank 2r)
- $\bullet \ \, \boldsymbol{H}_{\mathrm{c}} = \mathcal{P}_{T}^{\perp}(\boldsymbol{H}) \quad \text{ (obeying } \boldsymbol{M}\boldsymbol{H}_{\mathrm{c}}^{\top} = \boldsymbol{0} \text{ and } \boldsymbol{M}^{\top}\boldsymbol{H}_{\mathrm{c}} = \boldsymbol{0})$
- H_1 : best rank-(Kr) approximation of H_c (K is const)
- ${m H}_2$: best rank-(Kr) approximation of ${m H}_{
 m c}-{m H}_1$

• ...

Informally, the proof proceeds by showing that

1.
$$oldsymbol{H}_0$$
 dominates $\sum_{i\geq 2} oldsymbol{H}_i$ (by objective function)

2. (converse)
$$\sum_{i\geq 2} m{H}_i$$
 dominates $m{H}_0 + m{H}_1$ (by RIP + feasibility)

These can happen simultaneously only when $oldsymbol{H}=oldsymbol{0}$

Step 1 (which does not rely on RIP). Show that

$$\sum_{i > 2} \|\boldsymbol{H}_j\|_{\mathcal{F}} \le \|\boldsymbol{H}_0\|_* / \sqrt{Kr}. \tag{8.2}$$

This follows immediately by combining the following 2 observations:

(i) Since M+H is assumed to be a better estimate:

$$||M||_{*} \ge ||M + H||_{*} \ge ||M + H_{c}||_{*} - ||H_{0}||_{*}$$

$$\ge \underbrace{||M||_{*} + ||H_{c}||_{*}}_{\text{Fact } 8.5 \ (MH_{c}^{\top} = 0 \text{ and } M^{\top}H_{c} = 0)} - ||H_{0}||_{*}$$
(8.3)

$$\implies \|\boldsymbol{H}_{\mathrm{c}}\|_{*} \leq \|\boldsymbol{H}_{0}\|_{*} \tag{8.4}$$

(ii) Since nonzero singular values of H_{j-1} dominate those of H_j $(j \ge 2)$:

$$\|\boldsymbol{H}_{j}\|_{\mathrm{F}} \leq \sqrt{Kr} \|\boldsymbol{H}_{j}\| \leq \sqrt{Kr} [\|\boldsymbol{H}_{j-1}\|_{*}/(Kr)] \leq \|\boldsymbol{H}_{j-1}\|_{*}/\sqrt{Kr}$$

$$\implies \sum_{j>2} \|\boldsymbol{H}_{j}\|_{F} \leq \frac{1}{\sqrt{Kr}} \sum_{j>2} \|\boldsymbol{H}_{j-1}\|_{*} = \frac{1}{\sqrt{Kr}} \|\boldsymbol{H}_{c}\|_{*}$$
 (8.5)

Step 2 (using feasibility + RIP). Show that $\exists \rho < \sqrt{K/2}$ s.t.

$$\|\boldsymbol{H}_0 + \boldsymbol{H}_1\|_{\mathrm{F}} \le \rho \sum_{j>2} \|\boldsymbol{H}_j\|_{\mathrm{F}}$$
 (8.6)

If this claim holds, then

$$\|\boldsymbol{H}_{0} + \boldsymbol{H}_{1}\|_{F} \leq \rho \sum_{j \geq 2} \|\boldsymbol{H}_{j}\|_{F} \overset{(8.2)}{\leq} \rho \frac{1}{\sqrt{Kr}} \|\boldsymbol{H}_{0}\|_{*}$$

$$\leq \rho \frac{1}{\sqrt{Kr}} \left(\sqrt{2r} \|\boldsymbol{H}_{0}\|_{F}\right) = \rho \sqrt{\frac{2}{K}} \|\boldsymbol{H}_{0}\|_{F}$$

$$\leq \rho \sqrt{\frac{2}{K}} \|\boldsymbol{H}_{0} + \boldsymbol{H}_{1}\|_{F}. \tag{8.7}$$

This cannot hold with $\rho < \sqrt{K/2}$ unless $\underbrace{m{H}_0 + m{H}_1 = m{0}}_{\text{equivalently, } m{H}_0 = m{H}_1 = m{0}}$

We now prove (8.6). To connect $H_0 + H_1$ with $\sum_{j \geq 2} H_j$, we use feasibility:

$$\mathcal{A}(\boldsymbol{H}) = \boldsymbol{0} \quad \Longleftrightarrow \quad \mathcal{A}(\boldsymbol{H}_0 + \boldsymbol{H}_1) = -\sum_{j>2} \mathcal{A}(\boldsymbol{H}_j),$$

which taken collectively with RIP yields

$$(1 - \delta_{(2+K)r}^{\text{lb}}) \| \mathbf{H}_0 + \mathbf{H}_1 \|_{\text{F}} \le \| \mathcal{A}(\mathbf{H}_0 + \mathbf{H}_1) \|_{\text{F}} = \| \sum_{j \ge 2} \mathcal{A}(\mathbf{H}_j) \|_{\text{F}}$$

$$\le \sum_{j \ge 2} \| \mathcal{A}(\mathbf{H}_j) \|_{\text{F}}$$

$$\le \sum_{j \ge 2} (1 + \delta_{Kr}^{\text{ub}}) \| \mathbf{H}_j \|_{\text{F}}$$

This establishes (8.6) as long as $\rho:=\frac{1+\delta_{Kr}^{\mathrm{ub}}}{1-\delta_{(2+K)r}^{\mathrm{lb}}}<\sqrt{\frac{K}{2}}.$

Gaussian sampling operators satisfy RIP

If entries of $\{{m A}_i\}_{i=1}^m$ are i.i.d. $\mathcal{N}(0,1/m)$, then

$$\delta_{5r}(\mathcal{A}) < \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$

with high prob., provided that

$$m \gtrsim nr$$
 (near-optimal sample size)

This satisfies assumption of Theorem 8.10 with K=3

Precise phase transition

Using statistical dimension machienry, we can locate precise phase transition (Amelunxen, Lotz, McCoy & Tropp '13)

$$\begin{array}{ll} \text{nuclear norm min} & \left\{ \begin{array}{ll} \text{works if} & m > \text{stat-dim} \big(\mathcal{D} \left(\| \cdot \|_*, \boldsymbol{X} \right) \big) \\ \text{fails if} & m < \text{stat-dim} \big(\mathcal{D} \left(\| \cdot \|_*, \boldsymbol{X} \right) \big) \end{array} \right. \end{array}$$

where

$$\operatorname{stat-dim} \left(\mathcal{D} \left(\| \cdot \|_*, \boldsymbol{X} \right) \right) \approx n^2 \psi \left(\frac{r}{n} \right)$$

and

$$\psi(\rho) = \inf_{\tau \ge 0} \left\{ \rho + (1 - \rho) \left[\rho(1 + \tau^2) + (1 - \rho) \int_{\tau}^{2} (u - \tau)^2 \frac{\sqrt{4 - u^2}}{\pi} du \right] \right\}$$

Aside: subgradient of nuclear norm

Subdifferential (set of subgradients) of $\|\cdot\|_*$ at M is

$$\partial \|\boldsymbol{M}\|_* = \left\{ \boldsymbol{U} \boldsymbol{V}^\top + \boldsymbol{W} : \quad \mathcal{P}_T(\boldsymbol{W}) = 0, \ \|\boldsymbol{W}\| \le 1 \right\}$$

- ullet Does not depend on singular values of M
- ullet $oldsymbol{Z}\in\partial \|oldsymbol{M}\|_*$ iff

$$\mathcal{P}_T(\boldsymbol{Z}) = \boldsymbol{U}\boldsymbol{V}^\top, \quad \|\mathcal{P}_{T^\perp}(\boldsymbol{Z})\| \leq 1.$$

Derivation of statistical dimension

WLOG, suppose
$$m{X} = \left[egin{array}{ccc} m{I}_r & & \\ & & \mathbf{0} \end{array} \right]$$
, then $\partial \| m{X} \|_* = \left\{ \left[egin{array}{ccc} m{I}_r & & \\ & & m{W} \end{array} \right] \mid \| m{W} \| \leq 1 \right\}$. Let $m{G} = \left[egin{array}{ccc} m{G}_{11} & m{G}_{12} \\ m{G}_{21} & m{G}_{22} \end{array} \right]$ be i.i.d. standard Gaussian.

From last lecture, we know that

$$\begin{split} \mathsf{stat\text{-}dim} \Big(\mathcal{D}(\|\cdot\|_*, \boldsymbol{X}) \Big) \; &\approx \; \inf_{\tau \geq 0} \mathbb{E} \left[\inf_{\boldsymbol{Z} \in \partial \|\boldsymbol{X}\|_*} \|\boldsymbol{G} - \tau \boldsymbol{Z}\|_{\mathrm{F}}^2 \right] \\ &= \inf_{\tau \geq 0} \mathbb{E} \left[\inf_{\boldsymbol{W}: \|\boldsymbol{W}\| \leq 1} \left\| \left[\begin{array}{cc} \boldsymbol{G}_{11} & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{array} \right] - \tau \left[\begin{array}{cc} \boldsymbol{I}_r \\ \boldsymbol{W} \end{array} \right] \right\|_{\mathrm{F}}^2 \right] \end{split}$$

Derivation of statistical dimension

Observe that

$$\mathbb{E}\left[\inf_{\boldsymbol{W}:\|\boldsymbol{W}\|\leq 1} \left\| \begin{bmatrix} \boldsymbol{G}_{11} & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} - \tau \begin{bmatrix} \boldsymbol{I}_{r} \\ \boldsymbol{W} \end{bmatrix} \right\|_{F}^{2} \right]$$

$$= \mathbb{E}\left[\|\boldsymbol{G}_{11} - \tau \boldsymbol{I}_{r}\|_{F}^{2} + \|\boldsymbol{G}_{21}\|_{F}^{2} + \|\boldsymbol{G}_{12}\|_{F}^{2} + \inf_{\|\boldsymbol{W}\|\leq 1} \|\boldsymbol{G}_{22} - \tau \boldsymbol{W}\|_{F}^{2} \right]$$

$$= r\left(2n - r + \tau^{2}\right) + \mathbb{E}\left[\sum_{i=1}^{n-r} \left(\sigma_{i}\left(\boldsymbol{G}_{22}\right) - \tau\right)_{+}^{2}\right].$$

Derivation of statistical dimension

Observe that

$$\mathbb{E}\left[\inf_{\boldsymbol{W}:\|\boldsymbol{W}\|\leq 1}\left\|\begin{bmatrix}\boldsymbol{G}_{11} & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22}\end{bmatrix} - \tau\begin{bmatrix}\boldsymbol{I}_{r} & \\ \boldsymbol{W}\end{bmatrix}\right\|_{F}^{2}\right]$$

$$= \mathbb{E}\left[\|\boldsymbol{G}_{11} - \tau\boldsymbol{I}_{r}\|_{F}^{2} + \|\boldsymbol{G}_{21}\|_{F}^{2} + \|\boldsymbol{G}_{12}\|_{F}^{2} + \inf_{\|\boldsymbol{W}\|\leq 1}\|\boldsymbol{G}_{22} - \tau\boldsymbol{W}\|_{F}^{2}\right]$$

$$= r\left(2n - r + \tau^{2}\right) + \mathbb{E}\left[\sum_{i=1}^{n-r} \left(\sigma_{i}\left(\boldsymbol{G}_{22}\right) - \tau\right)_{+}^{2}\right].$$

Recall from random matrix theory (Marchenko-Pastur law)

$$\frac{1}{n-r} \mathbb{E}\left[\sum_{i=1}^{n-r} \left(\sigma_i\left(\tilde{\mathbf{G}}_{22}\right) - \tau\right)_+^2\right] \to \int_0^2 (u-\tau)_+^2 \frac{\sqrt{4-u^2}}{\pi} du,$$

where $\tilde{G}_{22} \sim \mathcal{N}\left(\mathbf{0}, \frac{1}{n-r}\mathbf{I}\right)$. Taking $\rho = r/n$ and minimizing over τ lead to closed-form expression for phase transition boundary.

Numerical phase transition (n = 30)

Figure credit: Amelunxen, Lotz, McCoy, & Tropp '13

Sampling operators that do NOT satisfy RIP

Unfortunately, many sampling operators fail to satisfy RIP (e.g. none of the 4 motivating examples in this lecture satisfies RIP)

Two important examples:

- Phase retrieval / solving random quadratic systems of equations
- Matrix completion

Phase retrieval / solving random quadratic systems of equations

Rank-one measurements

Measurements: see (8.1)

$$y_i = \boldsymbol{a}_i^{\top} \underbrace{\boldsymbol{x} \boldsymbol{x}^{\top}}_{:=\boldsymbol{M}} \boldsymbol{a}_i = \langle \underbrace{\boldsymbol{a}_i \boldsymbol{a}_i^{\top}}_{:=\boldsymbol{A}_i}, \boldsymbol{M} \rangle, \qquad 1 \leq i \leq m$$

$$egin{aligned} \mathcal{A}\left(oldsymbol{X}
ight) = \left[egin{aligned} \langle oldsymbol{A}_{1}, oldsymbol{X}
angle \ \langle oldsymbol{A}_{2}, oldsymbol{X}
angle \ dots \ \langle oldsymbol{A}_{2} oldsymbol{a}_{2}^{ op}, oldsymbol{X}
angle \ dots \ \langle oldsymbol{a}_{2} oldsymbol{a}_{2}^{ op}, oldsymbol{X}
angle \ & dots \ \langle oldsymbol{a}_{m} oldsymbol{a}_{m}^{ op}, oldsymbol{X}
angle \ \end{array}
ight] \end{aligned}$$

Rank-one measurements

Suppose $a_i \sim \mathcal{N}(\mathbf{0}, I_n)$

• If x is independent of $\{a_i\}$, then

$$ig\langle oldsymbol{a}_i oldsymbol{a}_i^ op, oldsymbol{x} oldsymbol{x}^ op ig
angle = ig|oldsymbol{a}_i^ op oldsymbol{x}ig|^2 symbol{x} \|oldsymbol{x}\|^2 \ \Rightarrow \ \left\| \mathcal{A}(oldsymbol{x} oldsymbol{x}^ op)
ight\|_{ ext{F}} sympto \sqrt{m} \|oldsymbol{x} oldsymbol{x}^ op \|_{ ext{F}}$$

ullet Consider $oldsymbol{A}_i = oldsymbol{a}_i oldsymbol{a}_i^ op$:

$$\langle \boldsymbol{a}_i \boldsymbol{a}_i^{\top}, \boldsymbol{A}_i \rangle = \|\boldsymbol{a}_i\|^4 \approx n \|\boldsymbol{a}_i \boldsymbol{a}_i^{\top}\|_{\mathrm{F}}$$

$$\implies \|\mathcal{A}(\boldsymbol{A}_i)\|_{\mathrm{F}} \ge |\langle \boldsymbol{a}_i \boldsymbol{a}_i^\top, \boldsymbol{A}_i \rangle| \approx n \|\boldsymbol{A}_i\|_{\mathrm{F}}$$

Rank-one measurements

Suppose $a_i \sim \mathcal{N}(\mathbf{0}, I_n)$

• If sample size $m \approx n$ (information limit), then

$$\frac{\max_{\boldsymbol{X}:\; \mathsf{rank}(\boldsymbol{X})=1} \frac{\|\mathcal{A}(\boldsymbol{X})\|_{\mathrm{F}}}{\|\boldsymbol{X}\|_{\mathrm{F}}}}{\min_{\boldsymbol{X}:\; \mathsf{rank}(\boldsymbol{X})=1} \frac{\|\mathcal{A}(\boldsymbol{X})\|_{\mathrm{F}}}{\|\boldsymbol{X}\|_{\mathrm{F}}}} \gtrsim \frac{n}{\sqrt{m}} \gtrsim \sqrt{n}$$

$$\implies \frac{1+\delta_K^{\text{ub}}}{1-\delta_{2+K}^{\text{lb}}} \geq \frac{\max_{\boldsymbol{X}: \ \mathsf{rank}(\boldsymbol{X})=1} \frac{\|\mathcal{A}(\boldsymbol{X})\|_{\text{F}}}{\|\boldsymbol{X}\|_{\text{F}}}}{\min_{\boldsymbol{X}: \ \mathsf{rank}(\boldsymbol{X})=1} \frac{\|\mathcal{A}(\boldsymbol{X})\|_{\text{F}}}{\|\boldsymbol{X}\|_{\text{F}}}} \gtrsim \sqrt{n} \gg \sqrt{K}$$

Violate RIP condition in Theorem 8.10

Why do we lose RIP?

Problem:

- ullet Low-rank matrices $oldsymbol{X}$ (e.g. $oldsymbol{a}_ioldsymbol{a}_i^ op$) might be too aligned with some rank-one measurements
 - o loss of incoherence in some measurements
- Some measurements $\langle A_i, X \rangle$ might have too high of a leverage on $\mathcal{A}(X)$ when measured in $\|\cdot\|_{\mathbf{F}}$
 - \circ Change $\|\cdot\|_F$ to other norms!

Mixed-norm RIP

Solution: modify RIP appropriately ...

Definition 8.11 (RIP- ℓ_2/ℓ_1)

Let $\xi_r^{\mathrm{ub}}(\mathcal{A})$ and $\xi_r^{\mathrm{lb}}(\mathcal{A})$ be smallest quantities s.t.

$$(1-\xi_r^{\mathrm{lb}})\|\boldsymbol{X}\|_{\mathsf{F}} \leq \|\mathcal{A}(\boldsymbol{X})\|_{\mathbf{1}} \leq (1+\xi_r^{\mathrm{ub}})\|\boldsymbol{X}\|_{\mathsf{F}}, \qquad \forall \boldsymbol{X}: \mathsf{rank}(\boldsymbol{X}) \leq r$$

Analyzing phase retrieval via RIP- ℓ_2/ℓ_1

Theorem 8.12 (Chen, Chi, Goldsmith '15)

Theorem 8.10 continues to hold if we replace $\delta_r^{\rm ub}$ and $\delta_r^{\rm lb}$ with $\xi_r^{\rm ub}$ and $\xi_r^{\rm lb}$, respectively.

• Follows same proof as for Theorem 8.10, except that $\|\cdot\|_F$ (highlighted in red) is replaced by $\|\cdot\|_1$ in Slide 8-44

Analyzing phase retrieval via RIP- ℓ_2/ℓ_1

Theorem 8.12 (Chen, Chi, Goldsmith '15)

Theorem 8.10 continues to hold if we replace $\delta_r^{\rm ub}$ and $\delta_r^{\rm lb}$ with $\xi_r^{\rm ub}$ and $\xi_r^{\rm lb}$, respectively.

- Back to example in Slide 8-54:
 - \circ If $oldsymbol{x}$ is independent of $\{oldsymbol{a}_i\}$, then

$$\left\langle oldsymbol{a}_i oldsymbol{a}_i^{ op}, oldsymbol{x} oldsymbol{x}^{ op}
ight
angle = \left|oldsymbol{a}_i^{ op} oldsymbol{x}
ight|^2 symbol{ imes} \left\| oldsymbol{x} \left\| oldsymbol{x} \left(oldsymbol{x} oldsymbol{x}^{ op}
ight)
ight\|_1 symbol{ imes} m \|oldsymbol{x} oldsymbol{x}^{ op} \|_{\mathrm{F}}$$

$$\circ \|\mathcal{A}(\boldsymbol{A}_i)\|_1 = |\langle \boldsymbol{a}_i \boldsymbol{a}_i^\top, \boldsymbol{A}_i \rangle| + \sum_{j:j \neq i} |\langle \boldsymbol{a}_i \boldsymbol{a}_i^\top, \boldsymbol{A}_j \rangle| \approx (n+m) \|\boldsymbol{A}_i\|_{\mathrm{F}}$$

 $\circ~$ For both cases, $\frac{\|\mathcal{A}(\boldsymbol{X})\|_1}{\|\boldsymbol{X}\|_{\mathrm{F}}}$ are of same order

Analyzing phase retrieval via RIP- ℓ_2/ℓ_1

A debiased operator satisfies RIP condition of Theorem 8.12 when $m \gtrsim nr$

$$\mathcal{B}(oldsymbol{X}) := \left[egin{array}{c} \langle oldsymbol{A}_1 - oldsymbol{A}_2, oldsymbol{X}
angle \ \langle oldsymbol{A}_3 - oldsymbol{A}_4, oldsymbol{X}
angle \ dots \end{array}
ight] \in \mathbb{R}^{m/2}$$

- Debiasing is crucial when $r \gg 1$
- A consequence of Hanson-Wright inequality for quadratic form (Hanson & Wright '71, Rudelson & Vershynin '03)

Theoretical guarantee for phase retrieval

$$\begin{array}{ll} (\mathsf{PhaseLift}) & \underset{\boldsymbol{X} \in \mathbb{R}^{n \times n}}{\mathsf{minimize}} & \underbrace{\operatorname{Tr}(\boldsymbol{X})}_{\|\cdot\|_* \; \mathsf{for} \; \mathsf{PSD} \; \mathsf{matrices}} \\ & \mathsf{s.t.} & y_i = \boldsymbol{a}_i^\top \boldsymbol{X} \boldsymbol{a}_i, \quad 1 \leq i \leq m \\ & \boldsymbol{X} \succeq \mathbf{0} \quad (\mathsf{since} \; \boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^\top) \end{array}$$

Theorem 8.13 (Candes, Strohmer, Voroninski '13, Candes, Li '14, ...)

Suppose $a_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I})$. With high prob., PhaseLift recovers xx^{\top} exactly as soon as $m \geq n$

Extension of phase retrieval

$$\begin{array}{ll} (\mathsf{PhaseLift}) & \underset{\boldsymbol{X} \in \mathbb{R}^{n \times n}}{\mathsf{minimize}} & \underbrace{\operatorname{Tr}(\boldsymbol{X})}_{\|\cdot\|_* \text{ for PSD matrices}} \\ & \text{s.t.} & \boldsymbol{a}_i^\top \boldsymbol{X} \boldsymbol{a}_i = \boldsymbol{a}_i^\top \boldsymbol{M} \boldsymbol{a}_i, \quad 1 \leq i \leq m \\ & \boldsymbol{X} \succeq \boldsymbol{0} \end{array}$$

Theorem 8.14 (Chen, Chi, Goldsmith '15, Cai, Zhang '15, Kueng, Rauhut, Terstiege '17)

Suppose $M \succeq \mathbf{0}$, rank(M) = r, and $\mathbf{a}_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(\mathbf{0}, I)$. With high prob., PhaseLift recovers M exactly as soon as $m \geq nr$

Matrix completion

Sampling operators for matrix completion

Observation operator (projection onto matrices supported on Ω)

$$Y = \mathcal{P}_{\Omega}(M)$$

where $(i,j) \in \Omega$ with prob. p (random sampling)

- \mathcal{P}_{Ω} does NOT satisfy RIP when $p \ll 1!$
- For example,

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\qquad
\begin{bmatrix}
? & \checkmark & ? & \checkmark & \checkmark \\
? & \checkmark & ? & \checkmark & ? & \checkmark \\
? & \checkmark & ? & ? & ? & ? \\
\checkmark & ? & ? & \checkmark & ? & ?
\end{bmatrix}$$

$$\|\mathcal{P}_{\Omega}(m{M})\|_{\mathsf{F}}=0$$
, or equivalently, $rac{1+\delta_K^{\mathrm{ub}}}{1-\delta_{2+K}^{\mathrm{ub}}}=\infty$

Which sampling pattern?

Consider the following sampling pattern

• If some rows/columns are not sampled, recovery is impossible.

Which low-rank matrices can we recover?

Compare following rank-1 matrices:

$$\underbrace{ \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} }_{\text{hard}} \quad \text{vs.} \quad \underbrace{ \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} }_{\text{easy}}$$

Column / row spaces cannot be aligned with canonical basis vectors

Coherence

Definition 8.15

Coherence parameter μ of $M = U\Sigma V^{\top}$ is smallest quantity s.t.

$$\max_i \|\boldsymbol{U}^{\top}\boldsymbol{e}_i\|^2 \leq \frac{\mu r}{n} \quad \text{and} \quad \max_i \|\boldsymbol{V}^{\top}\boldsymbol{e}_i\|^2 \leq \frac{\mu r}{n}$$

•
$$\mu \ge 1$$
 (since $\sum_{i=1}^{n} \| \boldsymbol{U}^{\top} \boldsymbol{e}_i \|^2 = \| \boldsymbol{U} \|_{\mathrm{F}}^2 = r$)

•
$$\mu=1$$
 if $\frac{1}{\sqrt{n}}\mathbf{1}=\boldsymbol{U}=\boldsymbol{V}$ (most incoherent

$$ullet \ \mu = rac{n}{r} \ \ ext{if} \ oldsymbol{e}_i \in oldsymbol{U}$$
 (most coherent)

Performance guarantee

Theorem 8.16 (Candes & Recht '09, Candes & Tao '10, Gross '11, ...)

Nuclear norm minimization is exact and unique with high probability, provided that

$$m \gtrsim \mu n r \log^2 n$$

- This result is optimal up to a logarithmic factor
- Established via a RIPless theory

Numerical performance of nuclear-norm minimization

Fig. credit: Candes, Recht '09

KKT condition

Lagrangian:

$$\mathcal{L}\left(\boldsymbol{X},\boldsymbol{\Lambda}\right) = \|\boldsymbol{X}\|_* + \langle \boldsymbol{\Lambda}, \mathcal{P}_{\Omega}(\boldsymbol{X}) - \mathcal{P}_{\Omega}(\boldsymbol{M}) \rangle = \|\boldsymbol{X}\|_* + \langle \mathcal{P}_{\Omega}(\boldsymbol{\Lambda}), \boldsymbol{X} - \boldsymbol{M} \rangle$$

When $oldsymbol{M}$ is minimizer, KKT condition reads

$$\mathbf{0} \in \partial_{\mathbf{X}} \mathcal{L}(\mathbf{X}, \mathbf{\Lambda}) \mid_{\mathbf{X} = \mathbf{M}} \iff \exists \mathbf{\Lambda} \text{ s.t. } -\mathcal{P}_{\Omega}(\mathbf{\Lambda}) \in \partial \|\mathbf{M}\|_{*}$$

$$\iff \ \exists \pmb{W} \text{ s.t.} \qquad \pmb{U}\pmb{V}^\top + \pmb{W} \text{ is supported on } \Omega,$$

$$\mathcal{P}_T(\pmb{W}) = \pmb{0}, \text{ and } \|\pmb{W}\| \leq 1$$

Optimality condition via dual certificate

Slightly stronger condition than KKT guarantees uniqueness:

Lemma 8.17

 $oldsymbol{M}$ is unique minimizer of nuclear norm minimization if

• sampling operator \mathcal{P}_{Ω} restricted to T is injective, i.e.

$$\mathcal{P}_{\Omega}(\boldsymbol{H}) \neq \mathbf{0} \quad \forall \ \textit{nonzero} \ \boldsymbol{H} \in T$$

• ∃**W** s.t.

$$oldsymbol{U}oldsymbol{V}^{ op} + oldsymbol{W} ext{ is supported on } \Omega, \ \mathcal{P}_T(oldsymbol{W}) = oldsymbol{0}, ext{ and } \|oldsymbol{W}\| < 1$$

Proof of Lemma 8.17

For any ${m W}_0$ obeying $\|{m W}_0\| \leq 1$ and ${\mathcal P}_T({m W}) = {m 0}$, one has

$$\begin{split} \|\boldsymbol{M} + \boldsymbol{H}\|_* &\geq \|\boldsymbol{M}\|_* + \left\langle \boldsymbol{U}\boldsymbol{V}^\top + \boldsymbol{W}_0, \boldsymbol{H} \right\rangle \\ &= \|\boldsymbol{M}\|_* + \left\langle \boldsymbol{U}\boldsymbol{V}^\top + \boldsymbol{W}, \boldsymbol{H} \right\rangle + \left\langle \boldsymbol{W}_0 - \boldsymbol{W}, \boldsymbol{H} \right\rangle \\ &= \|\boldsymbol{M}\|_* + \left\langle \mathcal{P}_\Omega \left(\boldsymbol{U}\boldsymbol{V}^\top + \boldsymbol{W} \right), \boldsymbol{H} \right\rangle + \left\langle \mathcal{P}_{T^\perp}(\boldsymbol{W}_0 - \boldsymbol{W}), \boldsymbol{H} \right\rangle \\ &= \|\boldsymbol{M}\|_* + \left\langle \boldsymbol{U}\boldsymbol{V}^\top + \boldsymbol{W}, \mathcal{P}_\Omega(\boldsymbol{H}) \right\rangle + \left\langle \boldsymbol{W}_0 - \boldsymbol{W}, \mathcal{P}_{T^\perp}(\boldsymbol{H}) \right\rangle \\ &\quad \text{if we take } \boldsymbol{W}_0 \text{ s.t. } \left\langle \boldsymbol{W}_0, \mathcal{P}_{T^\perp}(\boldsymbol{H}) \right\rangle = \|\mathcal{P}_{T^\perp}(\boldsymbol{H})\|_* \\ &\geq \|\boldsymbol{M}\|_* + \|\mathcal{P}_{T^\perp}(\boldsymbol{H})\|_* - \|\boldsymbol{W}\| \cdot \|\mathcal{P}_{T^\perp}(\boldsymbol{H})\|_* \\ &= \|\boldsymbol{M}\|_* + (1 - \|\boldsymbol{W}\|) \|\mathcal{P}_{T^\perp}(\boldsymbol{H})\|_* > \|\boldsymbol{M}\|_* \end{split}$$

unless $\mathcal{P}_{T^{\perp}}(\boldsymbol{H}) = \mathbf{0}$.

But if $\mathcal{P}_{T^{\perp}}(H)=0$, then H=0 by injectivity. Thus, $\|M+H\|_*>\|M\|_*$ for any $H\neq 0$, concluding the proof.

Constructing dual certificates

Use "golfing scheme" to produce approximate dual certificate (Gross '11)

 Think of it as an iterative algorithm (with sample splitting) to solve KKT

Proximal algorithm

In the presence of noise, one needs to solve

$$\hat{\boldsymbol{X}} = \operatorname{argmin}_{\boldsymbol{X}} \frac{1}{2} \|\boldsymbol{y} - \mathcal{A}(\boldsymbol{X})\|_{\operatorname{F}}^2 + \lambda \|\boldsymbol{X}\|_*$$

which can be solved via proximal methods

Proximal operator:

$$\operatorname{prox}_{\lambda\|\cdot\|_*}(\boldsymbol{X}) = \arg\min_{\boldsymbol{Z}} \left\{ \frac{1}{2} \|\boldsymbol{Z} - \boldsymbol{X}\|_{\operatorname{F}}^2 + \lambda \|\boldsymbol{Z}\|_* \right\}$$

$$= \boldsymbol{U} \mathcal{T}_{\lambda}(\boldsymbol{\Sigma}) \boldsymbol{V}^{\top}$$

where SVD of X is $X = U\Sigma V^{\top}$ with $\Sigma = \mathsf{diag}(\{\sigma_i\})$, and

$$\mathcal{T}_{\lambda}(\mathbf{\Sigma}) = \mathsf{diag}(\{(\sigma_i - \lambda)_+\})$$

Proximal algorithm

Algorithm 8.2 Proximal gradient methods

for
$$t = 0, 1, \cdots$$
:

$$\boldsymbol{X}^{t+1} = \mathcal{T}_{\mu_t} \left(\boldsymbol{X}^t - \mu_t \mathcal{A}^* \mathcal{A}(\boldsymbol{X}^t) \right)$$

where μ_t : step size / learning rate

- "Lecture notes, Advanced topics in signal processing (ECE 8201),"
 Y. Chi, 2015.
- [2] "Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization," B. Recht, M. Fazel, P. Parrilo, SIAM Review, 2010.
- [3] "Exact matrix completion via convex optimization," E. Candes, and B. Recht, Foundations of Computational Mathematics, 2009
- [4] "Matrix completion from a few entries," R. Keshavan, A. Montanari,S. Oh, IEEE Transactions on Information Theory, 2010.
- [5] "Matrix rank minimization with applications," M. Fazel, Ph.D. Thesis, 2002.
- [6] "Modeling the world from internet photo collections," N. Snavely, S. Seitz, and R. Szeliski, International Journal of Computer Vision, 2008.

- [7] "Computer vision: algorithms and applications," R. Szeliski, Springer, 2011.
- [8] "Shape and motion from image streams under orthography: a factorization method," C. Tomasi and T. Kanade, International Journal of Computer Vision, 1992.
- [9] "Topics in random matrix theory," T. Tao, American mathematical society, 2012.
- [10] "A singular value thresholding algorithm for matrix completion," J. Cai, E. Candes, Z. Shen, SIAM Journal on Optimization, 2010.
- [11] "Recovering low-rank matrices from few coefficients in any basis,"D. Gross, IEEE Transactions on Information Theory, 2011.
- [12] "Incoherence-optimal matrix completion," Y. Chen, IEEE Transactions on Information Theory, 2015.

- [13] "The power of convex relaxation: Near-optimal matrix completion," E. Candes, and T. Tao, 2010.
- [14] "Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements," E. Candes, and Y. Plan, IEEE Transactions on Information Theory, 2011.
- [15] "PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming," E. Candes, T. Strohmer, and V. Voroninski, Communications on Pure and Applied Mathematics, 2013.
- [16] "Solving quadratic equations via PhaseLift when there are about as many equations as unknowns," E. Candes, X. Li, Foundations of Computational Mathematics, 2014.
- [17] "A bound on tail probabilities for quadratic forms in independent random variables," D. Hanson, F. Wright, Annals of Mathematical Statistics, 1971.

- [18] "Hanson-Wright inequality and sub-Gaussian concentration," M. Rudelson, R. Vershynin, Electronic Communications in Probability, 2013.
- [19] "Exact and stable covariance estimation from quadratic sampling via convex programming," Y. Chen, Y. Chi, and A. Goldsmith, IEEE Transactions on Information Theory, 2015.
- [20] "ROP: Matrix recovery via rank-one projections," T. Cai, and A. Zhang, Annals of Statistics, 2015.
- [21] "Low rank matrix recovery from rank one measurements," R. Kueng, H. Rauhut, and U. Terstiege, Applied and Computational Harmonic Analysis, 2017.
- [22] "Mathematics of sparsity (and a few other things)," E. Candes, International Congress of Mathematicians, 2014.