FINAL EXAMINATION

June 2018

Duration: 90 minutes

SUBJECT: REAL ANALYSIS	
Deputy Head of Dept. of Mathematics:	Lecturer:
Dr. Tran Vinh Linh	Aggor Drof Nguyan Ngor Hai
Dr. Iran vinn Linn	Assoc. Prof. Nguyen Ngoc Hai

INSTRUCTIONS: Each student is allowed a scientific calculator and a maximum of two double-sided sheets of reference material (size A4 or similar), stapled together and marked with their name and ID. All other documents and electronic devices are forbidden.

Question 1 (25 marks) Let μ^* be an outer measure on X, and let $\emptyset \neq Y \subset X$. Define $\nu(A) = \mu^*(Y \cap A)$, $A \subset X$. Is ν an outer measure on X?

Question 2 (a) (15 marks) Let

$$F(x) = \begin{cases} x^3 & \text{if } x < 0, \\ x^2 + 1 & \text{if } x \ge 0. \end{cases}$$

If μ_F is the Lebesgue-Stieltjes measure corresponding to F, compute $\mu_F((-1,0])$ and $\mu_F(\{0\})$.

(b) (10 marks) Let

$$X = \{1, 2, 3, 4, 5, 6\}, \quad \mathcal{M} = \{\emptyset, X, \{1, 3, 5\}, \{2, 4, 6\}\},\$$

and let f, g be functions on X defined by

$$f(x) = x, g(x) = \begin{cases} 1 & \text{if } x \in \{1, 3, 5\}, \\ 0 & \text{if } x \in \{2, 4, 6\}. \end{cases}$$

Determine which of f, g is measurable.

-----please turn over-----

Question 3 Let (X, \mathcal{M}, μ) be a measure space and let f be a nonnegative integrable function on X.

(a) (10 marks) Let

$$A = \{x \in X : f(x) > 0\} \text{ and } A_n = \left\{x \in X : f(x) \ge \frac{1}{n}\right\}, \ n = 1, 2, \dots$$

Show that A, A_n are measurable and $\bigcup_{n=1}^{\infty} A_n = A$.

- (b) (10 marks) Show that $\lim_{n\to\infty} \int_{A_n} f d\mu = \int_X f d\mu$.
- (c) (10 marks) Show that for each $\epsilon > 0$, there exists a measurable set E such that $\mu(E) < \infty$ and $\int_E f d\mu > \int_X f d\mu \epsilon$.

Question 4

(a) (10 marks) Let (X, \mathcal{M}, μ) be a measure space and $A, B \in \mathcal{M}$ with $\mu(A \cap B) = 0$. Define ν_1 and ν_2 by

$$\nu_1(E) = \mu(E \cap A)$$
 and $\nu_2(E) = \nu(E \cap B)$, $E \in \mathcal{M}$.

Show that $\nu_1 \perp \nu_2$.

- (b) (10 marks) Let $f: \mathbb{R} \to \mathbb{R}$ define by $f(x) = x^2 2x$ and let $\nu(E) = \int_E f(x) dx$, $E \in \mathcal{L}$. Determine f^- and evaluate $\nu^-([-5,1])$.
 - *** END OF QUESTION PAPER ***

SOLUTIONS

Subject: REAL ANALYSIS

June 2018

Duration: 90 minutes

Question 1 Obviously, $\nu \geq 0$ on $\mathcal{P}(X)$ and $\nu(\emptyset) = 0$. If $A \subset B \subset X$, then $(Y \cap A) \subset (Y \cap B)$, so $\nu(A) = \mu^*(Y \cap A) \leq \mu^*(Y \cap B) = \nu(B)$. Finally, if $\{A_n\} \subset \mathcal{P}(X)$, then by σ -subadditivity of μ^* ,

$$\nu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu^*\left(Y \cap \bigcup_{n=1}^{\infty} A_n\right) = \mu^*\left(\bigcup_{n=1}^{\infty} (Y \cap A_n)\right)$$

$$\leq \sum_{n=1}^{\infty} \mu^*(Y \cap A_n) = \sum_{n=1}^{\infty} \nu(A_n).$$

Thus ν is σ -subadditive and therefore ν is an outer measure on X.

Question 2 (a) We first observe that F is increasing on \mathbb{R} . Moreover, x = 0 is the only discontinuity of F and $\lim_{x\to 0^+} F(x) = \lim_{x\to 0^+} (x^2+1) = 1 = F(0)$. Hence F is right continuous at 0 and hence, F is right continuous on \mathbb{R} . By definition, $\mu_F((-1,0]) = F(0) - F(-1) = 1 - (-1) = 2$ and

$$\mu_F(\{0\}) = \mu_F\left(\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 0\right]\right) = \lim_{n \to \infty} \mu_F\left(\left(-\frac{1}{n}, 0\right]\right)$$
$$= \lim_{n \to \infty} \left[F(0) - F\left(-\frac{1}{n}\right)\right] = \lim_{n \to \infty} \left[1 - \left(-\frac{1}{n}\right)^3\right] = 1.$$

(b) Since

$${x \in X : f(x) < 2} = {x \in X : x < 2} = {1} \notin \mathcal{M},$$

f is not measurable. The set $A = \{1, 3, 5\}$ is measurable and $g = \chi_A$, so g is measurable.

Question 3 (a) Since f is measurable, the sets A and A_n are measurable. Furthermore, it is clear that $A_n \subset A_{n+1} \subset A$. Hence $\bigcup_{n=1}^{\infty} A_n \subset A$. Conversely, if $x \in A$ then f(x) > 0 so that there is $k \in \mathbb{N}$ such that $f(x) > \frac{1}{k}$. Thus $x \in A_k$ and therefore, $\bigcup_{n=1}^{\infty} A_n \supset A$. It follows that $\bigcup_{n=1}^{\infty} A_n = A$.

(b) From part (a) we conclude that $\chi_{A_n} \nearrow \chi_A$, hence $0 \le \chi_{A_n} f \nearrow \chi_A f$ (since $f \ge 0$). But $\chi_A f = f = 0$ on A^c . Thus $\chi_A f = f$ on X. Applying the Monotone Convergence Theorem we get

$$\lim_{n \to \infty} \int_{A_n} f d\mu = \lim_{n \to \infty} \int_X \chi_{A_n} f d\mu = \int_X \chi_A f d\mu = \int_X f d\mu.$$

(We can also use the Dominated Convergence Theorem since $\chi_{A_n} f \to f$, $|\chi_{A_n} f| \leq f$, and f is integrable on X.)

Alternative solution. Since $f \geq 0$, the set function $\nu(E) = \int_E f d\mu$ is a measure. By part (a), $A \nearrow A$. Thus $\nu(A_n) \to \nu(A)$ and therefore,

$$\lim_{n\to\infty}\int_{A_n}fd\mu=\lim_{n\to\infty}\nu(A_n)=\nu(A)=\int_Afd\mu=\int_Afd\mu+\int_{A^c}fd\mu=\int_Xfd\mu$$

because f = 0 on A^c .

(c) It follows from part (b) that for every $\epsilon>0$, there exists an N such that $\int_{A_N} f d\mu > \int_X f d\mu - \epsilon$. Moreover, $\int_X f d\mu \geq \int_{A_N} f d\mu \geq \int_{A_N} \frac{1}{N} d\mu = \frac{1}{N} \mu(A_N)$, giving $\mu(A_N) \leq N \int_X f d\mu < \infty$ (Chebychev's Inequality). The set $E=A_N$ satisfies all requirements.

Question 4 (a) Clearly, ν_1 and ν_2 are measures. Furthermore, $\nu_1(B) = \mu(B \cap A) = 0$ and $\nu_2(B^c) = \mu(B^c \cap B) = \mu(\emptyset) = 0$. Thus $\nu_1 \perp \nu_2$.

(b) Since $f(x) \leq 0$ if and only if $0 \leq x \leq 2$,

$$f(x) = \begin{cases} 0 & \text{if } x < 0, \\ -x^2 + 2x & \text{if } 0 \le x \le 2, \\ 0 & \text{if } x > 2. \end{cases}$$

Thus,

$$\nu^{-}([-5,1]) = \int_{-5}^{1} f^{-}(x)dx = \int_{-5}^{0} f^{-}(x)dx + \int_{0}^{1} f^{-}(x)dx = \int_{0}^{1} f^{-}(x)dx$$
$$= \int_{0}^{1} (-x^{2} + 2x)dx = -\frac{1}{3}x^{3} + x^{2}\Big|_{0}^{1} = -\frac{1}{3} + 1 = \frac{2}{3}.$$

Alternative solution. Let $A = \{x \in X : f(x) > 0\}$ and $B = \{x \in X : f(x) \le 0\} = [0, 2]$. Then $\{A, B\}$ is a Hahn decomposition for ν . Thus

$$\nu^{-}([-5,1]) = -\nu([-5,1] \cap B) = -\nu([-5,1] \cap [0,2]) = -\nu([0,1])$$
$$= -\int_{0}^{1} (x^{2} - 2x) dx = -\frac{1}{3}x^{3} + x^{2}\Big|_{0}^{1} = -\frac{1}{3} + 1 = \frac{2}{3}.$$