CONJUNTION ANALYSIS & VISUALISATION OF EARTH-ORBIT SPACE OBJECTS

AUSTRALIA

MATLAB Space Situational Awareness Visualisation (MASSAV)

Joel Stuart

43203714

Introduction

- Since 1957, the space around our earth has been becoming increasingly congested.
- Over 1300 active satellites in orbit [1]
- 16,000 pieces of catalogued debris larger than 10cm that are being tracked [2].
- In the uncatalogued / (smaller than 10cm) domain there are millions more objects that have yet to be identified.

Why should we care?

 An impact between an active satellite & orbital debris is often critical

(2009 collision between active Iridium 33 and non-active Kosmos 2251 [3])

- Space debris cannot currently be plausibly removed from orbit
- The current overcrowding problem is projected to escalate as additional space missions are launched [4]
- Pre-existing debris collides and shatters, further compounding the problem [4].

Space Situational Awareness/Tracking (SSA/SST)

- SSA concerned with predicting orbital object locations with objective of avoiding collisions
- SST concerned with tracking and surveying threats to orbital satellite systems

SGP4 propagator (Standard General Perturbations model 4)

- Predicts the effect of perturbations on near earth objects, particularly used with Two-line Element (TLE) sets.
- Given input -> predict where object is at certain time
- Uncertainty/error grows as propagate further into future

Proposal

- The aim of this project is to build a program to visualise and analyse orbital object tracking data in an interactive 3D rendered environment.
- It will explore non-Gaussian uncertainty of orbital objects via particle representations to convey collision risks in an intuitive and innovative way.
- MATLAB Space Situational Awareness Visualisation (MASSAV)

Non-Gaussian Conjunction Analysis

- Traditional conjunction analysis assumes the uncertainty of orbital objects will behave via a roughly Gaussian model [5, 9].
- Assumption supresses the true non-Gaussian nature of orbital object position uncertainties [6, 7, 8, 9].
- Using statistically weighted particle generation techniques, can model the non-Gaussian uncertainty of the any orbital object with known elements [9].

The Gaussian mean can be significantly off centre relative to the true probability density function (pdf) [9].

Figure 1 - Gaussian and particle representations of an orbital object's uncertainty (image from [9])

Two-line Element (TLE) Format

Figure 2 – TLE Format Layout [11]

```
NOAA 14
1 23455U 94089A 97320.90946019 .00000140 00000-0 10191-3 0 2621
2 23455 99.0090 272.6745 0008546 223.1686 136.8816 14.11711747148495
```

MASSAV Methodology

- TLE input
- SGP4 propagator to simulate/propagate objects forward in time
- Particle representation of uncertainty (add noise to elements of sgp4 model)
- Collision analysis on bodies that pass within certain distance
- Simulated scenarios for verification/development in reduced scope
- Collision analysis on large TLE catalogue set

Progress?

Figure 4- NASA graphic of orbital debris around earth (image from [12])

Figure 5 MASSAV screenshot on publicly available full space catalogue TLE [13]

(demonstration)

NVIDIA CUDA (GPU) Processing

Large dataset of objects x time (frames) ... x particles (for conjunction analysis)

For example:

Figure 6 – in-series processing (CPU) vs. parallel processing (GPU) (image from [14])

GPU Processing (in short)

MATLAB host process

Send data to GPU (arrays of objects, times, etc.)

Perform operations in parallel GPU environment (CUDA)

Retrieve propagated position results from GPU

Benchmarks

Table 1 – calculation times of MASSAV CPU/GPU routines at different sizes

Benchmark	1 Frame	10 Frames	100 Frames	1,000 Frames
CPU: 15500 objects	1 min 42 s	1 min 54 s	4 min 31 s 3 min 29s (~78 frames)	23 min 42s
GPU: 15500 objects	13.1s	13.3s	15s (~78 frames)	NaN
CPU: 2200 objects	4.3s	5.8s	32 s	2 min 56s
GPU: 2200 objects	1.7s	1.7s	1.7s	3.0s
CPU: 333 objects	0.692s	0.953s	3.154s	26.85s
GPU: 333 objects	0.292s	0.296s	0.304s	0.413s
CPU: 24 objects	0.133s	0.154s	0.301s	1.993s
GPU: 24 objects	0.050s	0.050s	0.054s	0.058s

Current GPU implementation runs out of memory around 15,500 obj x 80 frames = 1,240,000 frames

Bonus GPU: 24 obj x 80,000 frames = 1,920,000 frames ->0.51s

Current limitations of GPU Processing

- Crashes when working with >1,240,000 frames
- Running out of memory on GPU (using 2GB of laptop GPU)
- Solution would be: split up calculations on large datasets into chunks to run in series on GPU. Further optimisation

Future Plan

- Uncertainty volumes / particles
- Conjunction (collision) analysis in closed scenario
- Iterative / reductive analysis on real datasets
- Interactivity, automation and user options
- Explore 3D visualisation methods

Development Plan

Figure 7 – breakdown of development milestones

References

- [1] Union of Concerned Scientists, "Colliding Satellites", Accessed May 19, 2016, URL: http://www.ucsusa.org/nuclear-weapons/space-security/colliding-satellites
- [2] Allianz Global Corporate & Speciality, "Space Risks: A new generation of challenge", (2012)
- [3] T.S. Kelso, "Analysis of the Iridium 33-Cosmos 2251 Collision", Centre for Space Standards & Innovation, (2009)
- [4] U.S. Congress, Office of Technology Assessment, "Orbiting Debris: A Space Environmental Problem-Background Paper", (September 1990), OTA-BP-ISC-72, Washington, DC: U.S. Government Printing Office
- [5] S. Alfano, "Review of Conjunction Probability Methods for Short-term Encounters", (2013), American Institute of Aeronautics and Astronautics
- [6] R.W. Ghrist ,D. Plakalovic, "Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis", (2012), a.i. Solutions, Inc., Colorado Springs, CO 80915
- [7] Y Jianjun, Z Jianqiu, Z Zesen, "Gaussian Sum PHD Filtering Algorithm for Nonlinear Non-Gaussian Model", (2008), Department of Electronic Engineering, Fudan University, Shanghai 200433, China
- [8] G. Terejanu, P. Singlay, T. Singhz, P.D. Scottx, "Uncertainty Propagation for Nonlinear Dynamical Systems using Gaussian Mixture Models, (2008), American Institute of Aeronautics and Astronautics
- [9] T. Hobson, "Sensor Management for Enhanced Catalogue Maintenance of Resident Space Objects", (2014), The University of Queensland, Section 6.2

- [10] X. Xu, Y. Xiong, "A Method for Calculating Collision Probability between Space Objects", (2013)
- [11] NASA, "Definition Two-line Element", Retrieved May 19th, 2016, URL:
- http://spaceflight.nasa.gov/realdata/sightings/SSapplications/Post/JavaSSOP/SSOP_Help/tle_def.html
- [12] NASA Orbital Debris Program Office, "Orbital debris Graphics", (2009, July)., Accessed April 1,
- 2016, URL: http://orbitaldebris.jsc.nasa.gov/photogallery/beehives.html
- [13] Scitor Corporation, "Space Track Data Catalogue", Retrieved April 5th, 2016, URL:
- https://www.space-track.org/
- [14] T. Hobson, "MATLAB + GPU = Efficient Mini Supercomputer", Lecture Slides, Slide 4.

Q & A