Лабораторная работа №5. Работа со звуком

Цель работы

- 1. Изучить принцип работы пьезоизлучателя
- 2. Написать программу, извлекающую звуки из пьезоизлучателя
- 3. Закрепить навыки программирования таймера

Теоретические сведения

Звук

Звук — это физическое явление, распространение механических колебаний в виде упругих волн в твердой, жидкой и газообразной среде. В вакууме звук не распространяется. Эти колебания воспринимаются органами чувств людей и животных, а также специальной аппаратурой. Человек слышит звук в пределах 16 Гц — 20 кГц, инфразвук и ультразвук не слышит. В идеальной среде звук распространяется со скоростью 340 метров в секунду. Звуки сливаются в гармонию и позволяют нам наслаждаться музыкой.

Пьезоизлучатель

Самым простым вариантом генерации звука является использование пьезоизлучателя (рисунок 1.1).

Рисунок 1.1 Пьезоизлучатель

Пьезокерамические излучатели (пьезоизлучатели) — электроакустические устройства воспроизведения звука, использующие пьезоэлектрический эффект. (эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует и обратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля.

Прямой пьезоэффект:

в пьезозажигалках, для получения высокого напряжения на разряднике; Обратный пьезоэлектрический эффект:

в пьезоизлучателях (эффективны на высоких частотах и имеют небольшие габариты);)

Пьезоизлучатели широко используются в различных электронных устройствах — часах-будильниках, телефонных аппаратах, электронных игрушках, бытовой технике.

Пьезокерамический излучатель состоит из металлической пластины, на которую нанесён слой пьезоэлектрической керамики, имеющий на внешней стороне токопроводящее напыление. Пластина и напыление являются двумя контактами.

Пьезоизлучатель также может использоваться в качестве пьезоэлектрического микрофона или датчика.

Формирование звука

Чтобы пьезокерамический излучатель зазвучал, на его выводы надо подать от МК импульсы с частотой 0.2...5 кГц. Например, выставить НИЗКИЙ уровень, затем пауза 100... 1000 МК с, выставить ВЫСОКИЙ уровень, пауза 100...1000 МК с и т.д. Интересно, что прямоугольные импульсы «звучат» громче, чем синусоидальный сигнал. Изменяя длительность пауз, можно варьировать музыкальную высоту нот в пределах нескольких октав. Изменяя скважность импульсов при постоянной частоте, можно добиться разной тембровой окраски.

Громкость звука напрямую зависит от прилагаемого к излучателю напряжения. Только надо помнить, что длительная работа с предельно высокими напряжениями может привести к механическим деформациям и разрушению пьезокерамики. Другая крайность заключается в слишком низком напряжении, когда приходится прислушиваться к «шёпоту», затаив дыхание. На практике выбирают золотую середину со средней комфортной громкостью.

В таблицах 1.1 и 1.2 приведены частоты различных нот.

Таблица 1.1 Таблица различных тонов

нота	частота	период	тон		
С	261 Гц	3830	1915		
d	294 Гц	3400	1700		
e	329 Гц	3038	1519		
f	349 Гц	2864	1432		
g	392 Гц	2550	1275		
a	440 Гц	2272	1136		
b	493 Гц	2028	1014		
С	523 Гц	1912	956		

Таблица 1.2 Частоты звучания нот

Частота, Гц Нота		Суб- конт- октав а	Контр- октава	Боль шая октав а	Малая октава	1 октава	2 октава	3 октава	4 октава	5 октава
До	C		32.70	65.41	130.82	261.63	523.25	1046.50	2093.00	4186.00
До-диез	C		34.65	69.30	138.59	277.18	554.36	1108.70	2217.40	4434.80
Pe	D		36.95	73.91	147.83	293.66	587.32	1174.60	2349.20	4698.40
Ре-диез	D		38.88	77.78	155.56	311.13	622.26	1244.50	2489.00	4978.00
Ми	Е	20.61	41.21	82.41	164.81	329.63	659.26	1318.50	2637.00	5274.00
Фа	F	21.82	43.65	87.31	174.62	349.23	698.46	1396.90	2793.80	

Фа-диез	F	23.12	46.25	92.50	185.00	369.99	739.98	1480.00	2960.00	
Соль	G	24.50	49.00	98.00	196.00	392.00	784.00	1568.00	3136.00	
Соль- диез	G	25.95	51.90	103.80	207.00	415.30	830.60	1661.20	3332.40	
Ля	A	27.50	55.00	110.00	220.00	440.00	880.00	1720.00	3440.00	
Си- бемоль	В	29.13	58.26	116.54	233.08	466.16	932.32	1864.60	3729.20	
Си	Н	30.87	61.74	123.48	246.96	493.88	987.75	1975.50	3951.00	

Для формирования звука на пьезоизлучатель подаётся сигнал соответствующей частоты на определенное время. Время звучания каждой ноты задаётся темпом.

Расчет тонов производится следующим образом:

```
timeHigh = period / 2 = 1 / (2 * toneFrequency)
где toneFrequency — частота звука;
period — период звука;
timeHigh — тон.
```

На листинге 1.1 показан пример формирования ноты на пьезоизлучателе.

Листинг 1.1 Пример формирования звука

```
for (i=0; i<temp; i++)
{
    P0_0 = 1;
    delay (timeHigh);
    P0_0 = 0;
    delay (timeHigh);
}</pre>
```

Задание на выполнение в лаборатории

- 1. Модифицировать лабораторную работу №2 таким образом, чтобы при нажатии на каждую кнопку клавиатуры воспроизводились звуки различных частот.
- 2. Написать программу, воспроизводящую произвольную мелодию.