

本科毕业设计报告

题目: 在线交互式神经元重建的服务器系统

姓 名:______ 曲衡 3130000569

学 号:_____ 曲衡 3130000569

指导教师:______曲衡 3130000569

专业: 2013 级 计算机科学与技术

学院: 计算机科学与技术学院

A Dissertation Submitted to Zhejiang University for the Degree of Bachelor of Engineering

TITLE: <u>High-performance Server System for Online Interactive N</u>

Author:		Heng Qu 3130000569
StudentID	:	Heng Qu 3130000569
Mentor:		Heng Qu 3130000569
College:	Colle	ge of Computer Science and Technology
Submitted	Date:	

浙江大学本科生毕业论文(设计)诚信承诺书

- 1. 本人郑重地承诺所呈交的毕业论文(设计),是在指导教师的指导下 严格按照学校和学院有关规定完成的。
- 2. 本人在毕业论文(设计)中引用他人的观点和参考资料均加以注释和说明。
- 3. 本人承诺在毕业论文(设计)选题和研究内容过程中没有抄袭他人 研究成果和伪造相关数据等行为。
- 4. 在毕业论文(设计)中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。

毕业论文(设计)作者签名:

年月日

摘 要

原始神经图像信息的神经元追踪与数字重建是神经科学界热门方向。神经元 的形态反应出它的功能,相同结构的神经元通常具有类似的功能。神经科学家通过 结构脑图谱的重建,可以反推大脑是如何运作的,对理解智慧的产生有重要的帮助。 由于神经元拓扑结构的复杂性,在一些自动化重建结果的细节上仍然需要研究人员 对数字重建的结果进行人工纠正和修改,以确保数字重建工作的准确性。另外研究 人员需要对数字重建结果进行编辑,比如添加或删除一些网络分支等。现有的用于 原始神经图像信息的神经元追踪和数字重建软件大多是运行在单机之上,无法满足 多用户协同编辑与修改的需求,也不利于结构脑图谱的交流。计算机性能和网络速 度的提升使得在线实时编辑神经网络结构成为了可能。在这样的背景下,设计并实 现了在线多用户的神经元网络结构编辑分享平台,利用互联网便于数据共享与交流 的特点,使得神经科学家可以便捷地进行异地,多用户协同编辑神经元网络结构,并 能分享完成重建的结构脑图谱,探索神经元结构下的奥秘。项目中使用了 DVID 数 据库储存神经元信息,PostgreSQL 储存用户信息并使用 Node.js 与 Express 完成了网 络服务器的搭建,为前端可视化操作提供了有力的支持。实验与测试报告表明,该平 台足以支撑至少数千名用户同时编辑的需求,并能在毫秒级别的时间内给出做出相 应,达到了实时操作的要求,为神经科学家在神经元追踪以及数字重建方面提供了便 利。

关键词: 生物图像信息神经元重建 DVID 实时编辑平台

Abstract

Neuron tracing and digital reconstruction from original neural image information is a hot direction of neural science. The morphology of neurons reflects its function, the neurons with same morphology usually have similar function. By the reconstruction of brain connectome, neuroscientists can speculate how the brain works which is helpful to understand the intelligence. Because of the complexity of the topological structure of neurons, and in some details on the results of automation reconstruction researchers still need to manually correct and modify the results of digital reconstruction, in order to ensure the accuracy of the digital reconstruction. In addition, researchers need to edit the result of the digital reconstruction such as add or delete some branches, etc. Existing neurons tracking for original neural image and digital reconstruction softwares are mostly run on stand-alone, unable to meet the requirements of multi-user collaborative editing and modification, but also not conducive to the exchange of brain connectom. Improvements in computer performance and network speed make it possible for online real-time editing of neural network structures. In such a background, We have designed and implemented a neural network structure of online multi-user edit sharing platform, using the Internet which can facilitate data sharing and exchange can easily carry out off-site, edit neural network structure with multi-user cooperation, and share brain connectome, explore the mystery of neuronal structure. Project uses DVID database to store neural information, PostgreSQL to store user information and Node.Js, Express to build web server which provides the powerful support for the front-end visualization. Experiments and test reports show that the platform is sufficient to support the needs of at least thousands of users editing at the same time, response in milliseconds, meets the real-time operation requirements which provides convenience for neurologists in neuronal tracking and digital reconstruction.

Keywords: 此处填入英文关键词

目 录

摘要]
Abstract		[]
目录		[[]
第1章	概论	1
1.1	神经元重建的意义	1
第2章	项目实施方案	3
2.1	第一节	3
第3章	在项目中负责的具体工作	4
3.1	第一节	4
第4章	项目成果	5
4.1	第一节	5
参考文献	R	6
致谢		7
附录		8

第1章 概论

1.1 神经元重建的意义

原始神经元图像信息的神经元追踪和数字重建是神经科学界热门方向。神经元的形态反应出它的功能,相同功能的神经元通常具有类似的功能。神经科学家通过结构脑图谱的重建,可以反推大脑是如何运作,对理解智慧的产生有重要的帮助。十九世纪以来,神经科学家们开始推测记忆,甚至个性与智力都储存大脑神经元之间的连接里。图 1.1 展示了秀丽隐杆线虫的神经结构的神经结构,图中每一个节点均代表一个神经元,每一条线代表一个连接。它仅仅由 300 个神经元组成,之间的连接也仅有 7000 个。

White, John G 与 Southgate 等人在 1986 年时已经利用一系列局部原始电子显微照片对秀丽隐杆线虫的神经系统的进行了完整重建^[3]。经过了 30 多年的发展,Yunkyu Sohn, Myung-Kyu Choi 与 Yong-Yeol Ahn 等人于 2011 年利用基于模块化的群态检测算法发现秀丽隐杆线虫中有 5 个解剖簇及其对应的实验可识别功能电路,进一步揭示了生物电路如何产生更高阶的复杂行为^[2]。即使如此,由于神经网络复杂的拓扑结构,神经科学家们仍旧未能充分探索通过突触交织的神经网络结构。而人类大脑由一千亿个神经元组成,神经元之间的连接的数量又是神经元数量的一万倍,比秀丽隐杆线虫的神经结构要复杂的多。设计并实现出自动神经元重建算法便成了探索神经结构的重要步骤之一。

Druckmann, Shaul 与 Feng 等人开发的神经元重建算法提供了准确的中线,直径,表面,体积和分支点位置,支持沿着神经元表面分析标记过的分子分布,还可以直接导出到建模软件。图 1.2 展示了这种神经元重建算法的样例结果。Brown, Kerry M 与 Barrionuevo 等人收集了来自不同动物,脑区,神经元类型和可视化方法的六个数据集,为自动化软件所需的测试提供了基准,提高了重建的质量,同时最大限度地减少了人工的参与,极大的促进了神经元重建领域的发展^[1]。

图 1.1 秀丽隐杆线虫的神经结构

图 1.2 Druckmann 等人的神经元重建算法的样例结果

第2章 项目实施方案

2.1 第一节

填入正文内容

第3章 在项目中负责的具体工作

3.1 第一节

填入正文内容

第4章 项目成果

4.1 第一节

填入正文内容

参考文献

- [1] Kerry M Brown, Germán Barrionuevo, Alison J Canty, Vincenzo De Paola, Judith A Hirsch, Gregory SXE Jefferis, Ju Lu, Marjolein Snippe, Izumi Sugihara, and Giorgio A Ascoli. The diadem data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. *Neuroinformatics*, 9(2-3): 143–157, 2011.
- [2] Lav R Varshney, Beth L Chen, Eric Paniagua, David H Hall, and Dmitri B Chklovskii. Structural properties of the caenorhabditis elegans neuronal network. *PLoS Comput Biol*, 7(2):e1001066, 2011.
- [3] John G White, Eileen Southgate, J Nichol Thomson, and Sydney Brenner. The structure of the nervous system of the nematode caenorhabditis elegans. *Philos Trans R Soc Lond B Biol Sci*, 314(1165):1–340, 1986.

致 谢

附 录

一、题目:							
二、指导教师对毕业论文((设计)的进度安	排及作	任务里	要求:			
	起讫日期 200	年	月	日至 200	年	月	日
	指导教	师(签	名)_		职称		
三、系或研究所审核意见:	:						
				负责人(名	签名)		
					年	月	日

毕业论文(设计)考核

一、指导教师对毕业论文(设计)的评语:

指导教师(签名)

年 月 日

二、答辩小组对毕业论文(设计)的答辩评语及总评成绩:

成绩比例		外文翻译 占 (10%)	毕业论文 (设计) 质量及答辩 占 (60%)	总评成绩
分值				

答辩小组负责人(签名)_____

年 月 日