תורת הקבוצות ⁻ תרגול מספר 4 יחסים

תזכורת - הגדרות

. יהיו A,B קבוצות

- $A imes B riangleq \{(a,b) \mid a \in A \land b \in B\}: B$ המכפלה הקרטזית של A,B היא אוסף הזוגות הסדורים של איבר מ־A ואיבר מ־A
 - $A \subseteq A \times B$: יחס בינארי $A \subseteq A \times B$ הוא תת־קבוצה כלשהי של המכפלה הקרטזית שלהן $A \subseteq A \times B$
- זוהי הגדרה **יותר כללית** מאשר תיאור של יחס בצורה מילולית ולכן המתמטיקאים מעדיפים אותה; היא מאפשרת לדבר גם על יחסים שקשה לתאר במפורש בצורה מילולית.
 - A אם A=B אם A=B לרוב אומרים ש־
 - דוגמאות:
 - $\{(1,1),(1,2),(2,2),(2,3),\dots\}$ מעל "b' מעל "a") $a \leq b$
 - $\exists c \in \mathbb{Z} \, (ac=b) \} : \mathbb{Z}$ מעל ("b) מחלק מחלק מ"ו a|b
 - $\{(a,b)\mid n|a-b\}:\mathbb{Z}$ מעל מודולו a") מעל מודולו a") $a\equiv b\ (\mathrm{mod}\ \mathrm{n})$
 - $R \subseteq A \times A$, תכונות של קבוצה בינאריים בינאריים,
 - $a\in A$ לכל $(a,a)\in R$ רפלקסיבי אם R
 - $(a,b)\in R o (b,a)\in R$ סימטרי אם R –
 - $.((a,b)\in R\wedge (b,c)\in R) o (a,c)\in R$ טרנזיטיבי אם R -
 - $.((a,b)\in R\wedge (b,a)\in R) o a=b$ אנטיסימטרי אם R -
 - יחס שקילות E מעל A הוא הוא יחס רפלקסיבי, סימטרי וטרנזיטיבי. ullet
 - $[a]_E \triangleq \{b \in A \mid (a,b) \in E\}$:a אם a יחס שקילות מעל $a \in A$ ו" $a \in A$ אז מגדירים את מחלקת השקילות של $a \in A$
 - A אוסף האיחודן האיחודן הוא לתת־קבוצות אוסף האסילות של הוא הוא E הוא האיחודן הוא כל האוסף אוסף האסילות של
 - $A/E \triangleq \{[a]_E \mid a \in A\} : E$ אוסף מחלקות השקילות מסומן ב־A/E ונקרא קבוצת המנה של היחס •

יחס שקילות על נוסחאות לוגיות

תהא A קבוצת הנוסחאות הלוגיות שבנויות ממשתנים ומהקשרים $\sim, \lor, \land, \to, \leftrightarrow$. נסמן $z(\psi)=0$ אחרת למשתנים. אם ψ נוסחה, נסמן $z(\psi)=1$ אם ההשמה מספקת את הנוסחה, ואחרת $z(\psi)=z(\psi)=0$ גגדיר יחס על $z(\psi)=z(\psi)=0$ אם לכל השמה $z(\psi)=z(\psi)=z(\psi)$ מתקיים במילים אחרות, שתי נוסחאות הן ביחס אם הן מסתפקות על ידי אותן השמות.

נוכיח כי ב הוא יחס שקילות:

. רפלקסיביות: לכל $\psi \in A$ ולכל , בוודאי בוודאי $z\left(\psi\right)=z\left(\psi\right)$ ולכל שווה לעצמו.

 $z\left(arphi
ight)=z\left(\psi
ight)$ פימטרי, נקבל נניח כי $z\left(\psi
ight)=z\left(\psi
ight)$. אז מכיוון ששוויון הוא סימטרי, נקבל

טרנזיטיביות ש־ $z\left(\psi_{1}
ight)=z\left(\psi_{3}
ight)$ שבור z כלשהי, אז בוודאי ש־ $z\left(\psi_{1}
ight)=z\left(\psi_{1}
ight)=z\left(\psi_{2}
ight)$ מטרנזיטיביות נניח כי $z\left(\psi_{1}
ight)=z\left(\psi_{2}
ight)$ וגם $z\left(\psi_{2}
ight)=z\left(\psi_{3}
ight)$ עבור z כלשהי, אז בוודאי ש־ $z\left(\psi_{1}
ight)=z\left(\psi_{2}
ight)$ מטרנזיטיביות השוויון.

נראה שההוכחה שלנו הסתמכה בצורה חזקה על כך ש \equiv הוגדר בתור "הפעלת פונקציה מסויימת על ψ ועל ψ נותנת תוצאות שוות" (ואז שימוש בתכונות השוויון הזה). התופעה הזו אינה מקרית ולמעשה כל פונקציה משרה יחס שקילות על התחום שלה בצורה דומה.

דוגמאות למחלקות שקילות:

- $a\wedge b\wedge (a\to\sim b)$ או $a\wedge a\wedge a$ למשל ספיקים, למשל ספיקים שאינם שאינם ספיקים.
- משל (ולא משנה מה נותנות ליתר המשתנים): למשל a, או שנותנות לידי ההשמות על ידי ההשמות שנותנות לידי משנה מה נותנות ליתר המשתנים): למשל a, או a ($a \wedge b$) b ($a \wedge b$).

יחס שקילות על סדרות

נתבונן על פונקציות מהשלמים לשלמים: $\mathbb{Z} \to \mathbb{Z}$. על כל פונקציה כזו ניתן לחשוב בתור סדרה אינסופית "לשני הכיוונים". נגדיר יחס $\mathbb{Z} \to \mathbb{Z}$ על ידי $\{(f,g) \mid \exists k \in \mathbb{Z} \forall x \, (f(x)=g(x+k))\}$ נגדיר יחס

רעיונית, שתי סדרות הן שקולות אם אפשר להזיז אחת מהן ולקבל את השניה.

נוכיח כי ≡ יחס שקילות:

k=0 עבור $f\left(x
ight)=f\left(x+k
ight)$ אז לכל אז סדרה סדרה לשהי. אז לכל עבור

 $f\left(x+k'
ight)=f\left(x-k
ight)=k'=-k$ ונקבל $f\left(x+k'
ight)=f\left(x-k
ight)$ קיים $f\left(x+k'
ight)=f\left(x-k
ight)$ נגדיר $f\left(x+k'
ight)=f\left(x-k
ight)$ קיים $f\left(x+k'
ight)=f\left(x-k'
ight)$ פנדרש. $f\left(x+k'
ight)=f\left(x-k'
ight)$ פנדרש.

טרנזיטיביות: נניח כי עבור f,g קיים f,g כך ש־f,g ועבור f(x)=g עבור f(x)=g כך ש־f(x)=g אז עבור עבור f(x)=g ליים f(x)=g קיים f(x)=g עבור f(x)=g עבור f(x)=g אז עבור f(x)=g עבור

$$f(x) = g(x + k_1) = h((x + k_1) + k_2)$$

= $h(x + (k_1 + k_2)) = h(x + k')$

כנדרש.

נשים לב לכך שאנחנו מסוגלים למצוא מחלקות שקילות מכל גודל סופי שהוא, וגם מחלקת שקילות אינסופית.

f(x)=0 מחלקת שקילות מגודל 1: המחלקה של

 $f\left(x
ight) = egin{cases} 0 & 2|x \ 1 & ext{else} \end{cases}$ מחלקת שקילות מגודל 2: המחלקה של

 $f\left(x
ight) = egin{cases} 0 & n|x \\ 1 & ext{else} \end{cases}$ שלקת שקילות מגודל n: המחלקה של

f(x) = x מחלקת שקילות אינסופית: המחלקה של