ОТ ЭКСПЕРТОВ ОХОМ

СОРЕВНОВАНИЯ

ЗАДАЧИ ОТОСЛАТЬ МОИ ПОСЫЛКИ СТАТУС ПОЛОЖЕНИЕ ЗАПУСК

І. Планировщик задач (30 баллов)

ограничение по времени на тест: 3 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Представьте, вы собрали собственный сервер из n разнородных процессоров и теперь решили создать для него простейший планировщик задач.

Ваш сервер состоит из n процессоров. Но так как процессоры разные, то и достигают они одинаковой скорости работы при разном энергопотреблении. А именно, i-й процессор в нагрузке тратит a_i энергии за одну секунду.

Вашему серверу в качестве тестовой нагрузки придет m задач. Про каждую задачу вам известны два значения: t_j и l_j — момент времени, когда задача j придет и время выполнения задачи в секундах.

Для начала вы решили реализовать простейший планировщик, ведущий себя следующим образом: в момент t_j прихода задачи, вы выбираете свободный процессор с минимальным энергопотреблением и выполняете данную задачу на выбранном процессоре все заданное время. Если к моменту прихода задачи свободных процессоров нет, то вы просто отбрасываете задачу.

Процессор, на котором запущена задача j будет занят ровно l_j секунд, то есть освободится ровно в момент t_j+l_j и в этот же момент уже может быть назначен для выполнения какой-то другой задачи.

Определите суммарное энергопотребление вашего сервера при обработке m заданных задач (будем считать, что процессоры в простое не потребляют энергию).

Неполные решения этой задачи (например, недостаточно эффективные) могут быть оценены частичным баллом.

Входные данные

В первой строке заданы два целых числа n и m ($1 \leq n, m \leq 3 \cdot 10^5$) — количество процессоров и задач соответственно.

Во второй строке заданы n целых чисел a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^6$) — энергопотребление соответствующих процессоров под нагрузкой **в секунду**. Все энергопотребления различны.

В следующих m строках заданы описания задач: по одному в строке. В j-й строке заданы два целых числа t_j и l_j ($1 \le t_j \le 10^9$; $1 \le l_j \le 10^6$) — момент прихода j-й задачи и время ее выполнения.

Все времена прихода t_{j} различны, и задачи заданы в порядке времени прихода.

Выходные данные

Выведите единственное число — суммарное энергопотребление сервера, если потреблением энергии в простое можно пренебречь.

Пример

входные данные	Скопировать
4 7	
3 2 6 4	
1 3	
2 5	
3 7	
4 10	
5 5	
6 100	
9 2	

Route 256

Участник

<u>Дорешивание</u>

Соревнование идет

6 дней

Участник

→ Пересчёт ограничений по времени

Это соревнование использует политику пересчёта ограничений по времени по языкам программирования. Система автоматически увеличивает ограничения по времени для некоторых языков в соответствии с множителями. Независимо от множителя языка, ограничение по времени не может превысить 30 секунд. Прочтите детали по ссылке.

→ Последние посылки		
Посылка	Время	Вердикт
<u>162675929</u>	03.07.2022 22:22	Полное решение: 30 баллов

→ Набранные баллы	
Баллы	
В	
С	
D	10

выходные данные	Скопировать
105	

Примечание

Рассмотрим работу планировщика по секундно:

- t=1: приходит первая задача, все процессоры свободны. Задача занимает второй процессор на 3 секунды.
- t=2: приходит вторая задача. Второй процессор занят, а потому задача занимает первый процессор на 5 секунд.
- t=3: приходит третья задача и занимает четвертый процессор на 7 секунд.
- t=4: приходит четвертая задача. Второй процессор освободился в данный момент, а потому его и занимает задача на 10 секунд.
- t=5: приходит пятая задача и занимает последний свободный на данный момент процессор (третий) на 5 секунд.
- t=6: приходит шестая задача. Все процессоры еще заняты, а потому задача отбрасывается.
- t=7: освобождается первый процессор.
- t=9: приходит седьмая задача и занимает первый процессор на 2 секунды.
- t=10: освобождаются третий и четвертый процессоры.
- t=11: освобождается первый процессор.
- t=14: освобождается второй процессор.

Общее энергопотребление равно $3 \cdot 2 + 5 \cdot 3 + 7 \cdot 4 + 10 \cdot 2 + 5 \cdot 6 + 2 \cdot 3 = 6 + 15 + 28 + 20 + 30 + 6 = 105.$

E	
F	
G	
Н	
I	30
J	
Всего	40

→ Материалы соревнования

- problem-b-tests.zip
- problem-c-tests.zip
- problem-d-tests.zip
- · problem-e-tests.zip
- problem-f-tests.zip
- · problem-g-tests.zip
- · problem-h-tests.zip
- · problem-i-tests.zip
- · problem-j-tests.zip

Codeforces (c) Copyright 2010-2022 Михаил Мирзаянов Соревнования по программированию 2.0 Время на сервере: 04.07.2022 23:06:00 (i2). Десктопная версия, переключиться на мобильную. Privacy Policy

На платформе

