Lecture 4: Point Groups

Filipp Furche

Chem 150/250 Fall 2023

10/09/2023

http://ffgroup.chem.uci.edu

Definition

Point groups are groups of symmetry operations that keep at least one point in Euclidean space fixed.

Symmetry element of point groups:

- (i) Identity E
- (ii) n-fold rotation or symmetry axes C_n
- (iii) Reflection or symmetry or mirror planes σ
- (iv) *n*-fold rotation-reflection axis S_n (includes $i \equiv S_2$)
 - All point groups are subroups of orthogonal group O(N) (N is dimension)
 - Molecular point groups: N = 3
 - ▶ 7 axial group families: C_n , S_{2n} , C_{nh} , C_{nv} , D_n , D_{nd} , D_{nh}
 - ▶ 7 polyhedradal group families: T, T_d , T_h , O, O_h , I, I_h

Determining Point Group Symmetry

- 1. Visualize the molecule (e.g. using a simple web-based renderer)
- 2. Determine all symmetry elements
- 3. Follow the flow chart:

Water Molecule

- Symmetry elements of water: $\{E, C_2, \sigma_v, \sigma_{v'}\}$
- Point group C_{2v}

Group Multiplication Table

- Product of two symmetry operations $c = a \cdot b$: Apply b followed by a
- $C_{2\nu}$ group (multiplication) table:

a	Ε	C_2	$\sigma_{\sf v}$	$\sigma_{v'}$
b				
Ε	Ε	C_2 E $\sigma_{v'}$ σ_{v}	$\sigma_{\sf v}$	$\sigma_{v'}$
C_2	C_2	Ε	$\sigma_{v'}$	$\sigma_{\sf v}$
$\sigma_{\sf v}$ $\sigma_{\sf v'}$	$\sigma_{\sf v}$	$\sigma_{v'}$	Ε	C_2
$\sigma_{v'}$	$\sigma_{v'}$	$\sigma_{\sf v}$	C_2	Ε

Web Resources

- Otterbein Symmetry: Visualize symmetry operations in 3D
- Achim Gelessus' Website: Character tables for chemically important point groups