18.404/6.840 Lecture 10

Last time:

- The Reducibility Method for proving undecidability and T-unrecognizability
- General reducibility
- Mapping reducibility

Today:

- The Computation History Method for proving undecidability
- The Post Correspondence Problem is undecidable
- Linearly bounded automata
- Undecidable problems about LBAs and CFGs

Remember

To prove some language B is undecidable, show that $A_{\rm TM}$ (or any known undecidable language) is reducible to B.

Revisit Hilbert's 10th Problem

Recall $D = \{\langle p \rangle | \text{ polynomial } p(x_1, x_2, ..., x_k) = 0 \text{ has integer solution} \}$

Hilbert's 10th problem (1900): Is *D* decidable?

Theorem (1971): No

Proof: Show A_{TM} is reducible to D. [would take entire semester]

Do toy problem instead which has a similar proof method.

Toy problem: The Post Correspondence Problem.

Method: The Computation History Method.

Post Correspondence Problem

Given a collection of pairs of strings as dominoes:

$$P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$

a <u>match</u> is a finite sequence of dominos in P (repeats allowed) where the concatenation of the t's = the concatenation of the b's.

Match =
$$\begin{bmatrix} t_{i_1} \\ b_{i_1} \end{bmatrix} \begin{bmatrix} t_{i_2} \\ b_{i_2} \end{bmatrix}$$
 ... $\begin{bmatrix} t_{i_l} \\ b_{i_l} \end{bmatrix}$ where $t_{i_1}t_{i_2}\cdots t_{i_l} = b_{i_1}b_{i_2}\cdots b_{i_l}$

Example:
$$P = \left\{ \begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix} \right\}$$

Match:

Check-in 10.1

Let
$$P_1 = \left\{ \begin{bmatrix} aa \\ aaba \end{bmatrix}, \begin{bmatrix} ba \\ ab \end{bmatrix}, \begin{bmatrix} ab \\ ba \end{bmatrix} \right\}$$

Does P_1 have a match?

- (a) Yes.
- (b) No.

TM Configurations

Defn: A configuration of a TM is a triple (q, p, t) where

q =the state,

p =the head position,

t =tape contents

representing a snapshot of the TM at a point in time.

Configuration: $(q_3, 6, aaaaaabbbbb)$

Encoding as a string: aaaaa q_3 abbbbb

Encode configuration (q, p, t) as the string t_1qt_2 where $t = t_1t_2$ and the head position is on the first symbol of t_2 .

TM Computation Histories

Defn: An (accepting) computation history for TM M on input w is a sequence of configurations $C_1, C_2, ..., C_{\text{accept}}$ that M enters until it accepts.

Encode a computation history $C_1, C_2, ..., C_{\text{accept}}$ as the string $C_1 \# C_2 \# \cdots \# C_{\text{accept}}$ where each configuration C_i is encoded as a string.

A computation history for M on $w=w_1w_2\cdots w_n$. Here say $\delta(q_0,w_1)=(q_7,\mathsf{a},\mathsf{R})$ and $\delta(q_7,w_2)=(q_8,\mathsf{c},R)$.

$$C_1$$
 C_2 C_3 C_{accept} $q_0w_1w_2\cdots w_n$ # $aq_7w_2\cdots w_n$ # $acq_8w_3\cdots w_n$ # ... # \cdots $q_{\text{accept}}\cdots$

Linearly Bounded Automata

Defn: A linearly bounded automaton (LBA) is a 1-tape TM that cannot move its head off the input portion of the tape.

Let
$$A_{LBA} = \{\langle B, w \rangle | LBA B \text{ accepts } w \}$$

Theorem: A_{LBA} is decidable

Proof: (idea) If B on w runs for long, it must be cycling.

Claim: For inputs of length n, an LBA can have only $|Q| \times n \times |\Gamma|^n$ different configurations.

Therefore, if an LBA runs for longer, it must repeat some configuration and thus will never halt.

Decider for A_{LBA} :

$$D_{A-LBA} =$$
 "On input $\langle B, w \rangle$

- 1. Let n = |w|.
- 2. Run B on w for $|Q| \times n \times |\Gamma|^n$ steps.
- 3. If has accepted, accept.
- 4. If it has rejected or <u>is still running</u>, *reject*." must be looping

$E_{\rm LBA}$ is undecidable

Let $\overline{E_{LBA}} = \{\langle B \rangle | B \text{ is an LBA and } L(B) = \emptyset \}$

Theorem: E_{LBA} is undecidable

Proof: Show $A_{\rm TM}$ is reducible to $E_{\rm LBA}$. Uses the computation history method.

Assume that TM R decides E_{LBA}

Construct TM S deciding A_{TM}

S = "on input $\langle M, w \rangle$

- 1. Construct LBA $B_{M,w}$ which tests whether its input x is an accepting computation history for M on w, and only accepts x if it is.
- 2. Use R to determine whether $L(B_{M,w}) = \emptyset$.
- 3. Accept if no. Reject if yes."

Check-in 10.2

What do you think of the Computation History Method? Check all that apply.

- (a) Cool!
- (b) Just another theorem.
- (c) I'm baffled.
- (d) I wish I was in 6.046.

PCP is undecidable

Recall $PCP = \{\langle P \rangle | P \text{ has a match } \}$

$$P = \left\{ \begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix} \right\}$$
Match:
$$\begin{bmatrix} a & b & a & a & b & a & a & b & a & b \\ a & b & a & a & a & a & b & a & b \end{bmatrix}$$

Theorem: *PCP* is undecidable

Proof: Show $A_{\rm TM}$ is reducible to PCP. Uses the computation history method.

Technical assumption: Match must start with $\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$. Can fix this assumption.

Assume that TM R decides PCP Construct TM S deciding $A_{\rm TM}$

S ="on input $\langle M, w \rangle$

- 1. Construct PCP instance $P_{M,w}$ where a match corresponds to a computation history for M on w.
- 2. Use R to determine whether $P_{M,w}$ has a match.
- 3. Accept if yes. Reject if no."

Constructing $P_{M,W}$

Make $P_{M,w}$ where a match is a computation history for M on w.

$$\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} \# \\ \# q_0 w_1 \cdots w_n \# \end{bmatrix} \quad \text{(starting domino)}$$

For each $a, b \in \Gamma$ and $q, r \in Q$ where $\delta(q, a) = (r, b, R)$

$$\operatorname{put} \begin{bmatrix} q & a \\ b & r \end{bmatrix} \operatorname{in} P_{M,w}$$

(Handles right moves. Similar for left moves.)

Ending dominos to allow a match if M accepts:

$$\left[egin{array}{c} a & q_{
m accept} \ q_{
m accept} \end{array}
ight] \quad \left[egin{array}{c} q_{
m accept} \ q_{
m accept} \end{array}
ight]$$

Illustration:

$$w = 223$$

 $\delta(q_0, 2) = (q_7, 4, R)$

Check-in 10.3

What else can we now conclude? Choose all that apply.

- (a) *PCP* is T-unrecognizable.
- (b) \overline{PCP} is T-unrecognizable.
- (c) Neither of the above.

Match completed! ... one detail needed.

ALL_{CFG} is undecidable

Let $ALL_{\mathrm{CFG}} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$

Theorem: ALL_{CFG} is undecidable

Proof: Show $A_{\rm TM}$ is reducible to $ALL_{\rm PDA}$ via the computation history method.

Assume TM R decides $ALL_{\rm PDA}$ and construct TM S deciding $A_{\rm TM}$.

S ="On input $\langle M, w \rangle$

- 1. Construct PDA $B_{M,w}$ which tests whether its input x is an accepting computation history for M on w, and only accepts x if it is NOT.
- 2. Use R to determine whether $L(B_{M,w}) = \Sigma^*$.
- 3. Accept if no. Reject if yes."

 $B_{M,w}$ operation: Accept if invalid step of M, or if start wrong, or if end isn't accepting. $B_{M,w}$ w_n w_n

Reverse even-numbered C_i to allow comparing with C_{i+1} via stack.

Nondeterministically push some C_i and pop to compare with C_{i+1} .

Computation History Method - recap

Computation History Method is useful for showing the undecidability of problems involving testing for the existence of some object.

D Is there an integral solution (to the polynomial equation)?

 $E_{\rm LBA}$ Is there some accepted string (for the LBA)?

PCP Is there a match (for the given dominos)?

 ALL_{CFG} Is there some rejected string (for the CFG)?

In each case, the object is the computation history in some form.

Quick review of today

- 1. Defined configurations and computation histories.
- 2. Gave The Computation History Method to prove undecidability.
- 3. A_{LBA} is decidable.
- 4. $E_{\rm LBA}$ is undecidable.
- 5. *PCP* is undecidable.
- 6. ALL_{CFG} is undecidable.

Eliminating the technical assumption

Technical assumption: Match must start with $\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$.

Fix this assumption as follows.

Let
$$P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$
 where we require match to start with $\begin{bmatrix} t_1 \\ b_1 \end{bmatrix}$.

Create new
$$P' = \left\{ \begin{bmatrix} \bar{t}_1 \\ \bar{b}_1 \end{bmatrix}, \begin{bmatrix} \hat{t}_1 \\ \hat{b}_1 \end{bmatrix}, \begin{bmatrix} \hat{t}_2 \\ \hat{b}_2 \end{bmatrix}, \dots, \begin{bmatrix} \hat{t}_k \\ \hat{b}_k \end{bmatrix} \right\}$$

For any string $u = u_1, ..., u_k$, let

$$\star u = * u_1 * u_2 * \dots * u_k$$

$$u \star = u_1 * u_2 * \cdots * u_k *$$

$$\star u \star = \ast u_1 \ast u_2 \ast \cdots \ast u_k \ast$$

Then let
$$P' = \left\{ \begin{bmatrix} \star t_1 \\ \star b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_1 \\ b_1 \star \end{bmatrix}, \begin{bmatrix} \star t_2 \\ b_2 \star \end{bmatrix}, \dots, \begin{bmatrix} \star t_k \\ b_k \star \end{bmatrix}, \begin{bmatrix} *\$ \end{bmatrix} \right\}$$