Probability Review Notes

1 Axioms of Probability (Kolmogorov)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space where Ω is the sample space, \mathcal{F} a σ -algebra, and $\mathbb{P} : \mathcal{F} \to [0, 1]$ a probability measure. For all events $A, B \in \mathcal{F}$:

(a) Nonnegativity: $\mathbb{P}(A) \geq 0$.

(b) Normalization: $\mathbb{P}(\Omega) = 1$.

(c) σ -additivity: If A_1, A_2, \ldots are pairwise disjoint, then $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.

Consequences: $\mathbb{P}(\emptyset) = 0$; $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$; if $A \subseteq B$ then $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$; inclusion–exclusion: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

2 Conditional Probability and Bayes' Theorem

Definition 1 (Conditional Probability). For $\mathbb{P}(B) > 0$,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Law of Total Probability: If $\{B_i\}_{i\in I}$ is a partition with $\mathbb{P}(B_i) > 0$,

$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i).$$

Bayes' Theorem:

$$\mathbb{P}(B_j \mid A) = \frac{\mathbb{P}(A \mid B_j)\mathbb{P}(B_j)}{\sum_i \mathbb{P}(A \mid B_i)\mathbb{P}(B_i)}.$$

Odds form: Prior odds \times likelihood ratio = posterior odds.

3 Independence

Definition 2 (Events). Events A, B are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. A family $\{A_i\}_{i \in I}$ is mutually (jointly) independent if for every finite distinct i_1, \ldots, i_k ,

$$\mathbb{P}\left(\bigcap_{\ell=1}^{k} A_{i_{\ell}}\right) = \prod_{\ell=1}^{k} \mathbb{P}(A_{i_{\ell}}).$$

They are pairwise independent if $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$ for all $i \neq j$.

Important: Joint (mutual) independence \Rightarrow pairwise independence, but not conversely. \Rightarrow

4 r.v.

Definition 3 (Random Variables). A random variable (r.v.) $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})$ is a measurable function: $\{\omega : X(\omega) \leq x\} \in \mathcal{F}$ for all $x \in \mathbb{R}$.

Distribution of X: $F_X(x) = \mathbb{P}(X \leq x)$; for discrete X, pmf $p_X(x) = \mathbb{P}(X = x)$; for continuous X, pdf $f_X = \frac{d}{dx}F_X$ (where it exists).

5 Important Discrete Random Variables

Below $k \in \{0, 1, 2, \dots\}$ unless stated.

Bernoulli(p)

$$\mathbb{P}(X=1) = p, \ \mathbb{P}(X=0) = 1 - p.$$

$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$, $M_X(t) = 1 - p + pe^t$.

Binomial(n, p)

Sum of n i.i.d. Bernoulli(p):

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \quad \mathbb{E}[X] = np, \quad \text{Var}(X) = np(1 - p).$$

Geometric(p) (number of trials to first success)

Support $\{1, 2, \dots\}$:

$$\mathbb{P}(X = k) = (1 - p)^{k-1}p, \quad \mathbb{E}[X] = \frac{1}{p}, \quad \text{Var}(X) = \frac{1 - p}{p^2}.$$

Memoryless: $\mathbb{P}(X > m + n \mid X > m) = (1 - p)^n$.

$Poisson(\lambda)$

$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad \mathbb{E}[X] = \text{Var}(X) = \lambda.$$

Poisson thinning/superposition; Poisson limit of Binomial: if $n \to \infty$, $p \to 0$, $np \to \lambda$.

Discrete Uniform on $\{a, \ldots, b\}$

$$p_X(k) = 1/(b-a+1).$$

$$\mathbb{E}[X] = \frac{a+b}{2}, \quad \text{Var}(X) = \frac{(b-a+1)^2 - 1}{12}.$$

6 Continuous Random Variables

Uniform(a, b)

$$f(x) = \frac{1}{b-a}$$
 on (a,b) .

$$\mathbb{E}[X] = \frac{a+b}{2}, \quad \text{Var}(X) = \frac{(b-a)^2}{12}.$$

Exponential(λ)

$$f(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0$.

$$\mathbb{E}[X] = \frac{1}{\lambda}, \quad \text{Var}(X) = \frac{1}{\lambda^2}.$$

Memoryless: $\mathbb{P}(X > t + s \mid X > s) = e^{-\lambda t}$.

Gaussian / Normal $\mathcal{N}(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad \mathbb{E}[X] = \mu, \text{ Var}(X) = \sigma^2.$$

If $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ independent, then $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. Standardization: $Z = (X - \mu)/\sigma \sim \mathcal{N}(0, 1)$.

Gamma(α, β) (shape α , rate β)

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \ x \ge 0; \quad \mathbb{E}[X] = \frac{\alpha}{\beta}, \ \operatorname{Var}(X) = \frac{\alpha}{\beta^2}.$$

Sum of independent $Gamma(\alpha_i, \beta)$ with common rate is $Gamma(\sum \alpha_i, \beta)$. Exponential is $Gamma(1, \lambda)$.

 $\mathbf{Beta}(a,b)$ on (0,1)

$$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, \quad \mathbb{E}[X] = \frac{a}{a+b}, \ \operatorname{Var}(X) = \frac{ab}{(a+b)^2(a+b+1)}.$$

Conjugate prior for Bernoulli/Binomial.

7 Joint Distributions and Independence of r.v.s

For discrete (X,Y): $p_{X,Y}(x,y)$; continuous: $f_{X,Y}(x,y)$. Marginals: $p_X(x) = \sum_y p_{X,Y}(x,y)$ or $f_X(x) = \int f_{X,Y}(x,y) \, dy$.

$$X \perp Y \iff p_{X,Y}(x,y) = p_X(x)p_Y(y) \text{ (discrete)} \quad \text{or} \quad f_{X,Y}(x,y) = f_X(x)f_Y(y) \text{ (continuous)}.$$

Conditional distributions: $p_{X|Y}(x \mid y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$, $f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$ (when denominators > 0).

8 Transforms and Common Tools (Very Short)

Characteristic function $\varphi_X(t) = \mathbb{E}[e^{itX}]$ always exists; independence \Rightarrow product of characteristic functions. CLT: sums of i.i.d. (finite variance) approximate normal. Chebyshev/Markov inequalities bound tails via moments.

3

Exercises

1. Geometric distribution properties Let $X \sim \text{Geom}(p)$ be independent geometric random variables (support $\{1, 2, ...\}$, representing the trial of the first success). Prove the memoryless property: for any integers $m, n \geq 0$,

$$\mathbb{P}(X > m + n \mid X > m) = \mathbb{P}(X > n).$$

2. Exponential distribution properties Let $X \sim \text{Exp}(\lambda)$ be independent exponential random variables. Prove the *memoryless property*: for any $s, t \geq 0$,

$$\mathbb{P}(X > t + s \mid X > s) = \mathbb{P}(X > t).$$

- 3. Closure of the Gaussian distribution Let $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ be independent.
 - (a) Show that $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \ \sigma_1^2 + \sigma_2^2)$.
 - (b) Generalize the result to the sum of n independent Gaussian random variables.
- 4. Relationship between exponential distribution and Poisson process
 - (a) Let $\{N(t), t \geq 0\}$ be a Poisson process with rate λ . Show that $N(t) \sim \text{Poisson}(\lambda t)$.
 - (b) Prove that the interarrival time between two consecutive events follows an exponential distribution $\text{Exp}(\lambda)$.
 - (c) Prove that interarrival times are i.i.d., establishing the link between the exponential distribution and the Poisson process.

Proof Sketches

1. Geometric distribution

(a) $X_1 + X_2$ is the number of trials needed for two successes. For $k \geq 2$:

$$\mathbb{P}(X_1 + X_2 = k) = \binom{k-1}{1} (1-p)^{k-2} p^2,$$

which is a negative binomial NB(r=2,p). In general, the sum of n i.i.d. geometric r.v.s is NB(r=n,p).

(b) For $X \sim \text{Geom}(p)$:

$$\mathbb{P}(X > m + n \mid X > m) = \frac{(1 - p)^{m + n}}{(1 - p)^m} = (1 - p)^n = \mathbb{P}(X > n).$$

2. Exponential distribution

(a) By convolution:

$$f_{X_1+X_2}(s) = \int_0^s \lambda e^{-\lambda x} \, \lambda e^{-\lambda(s-x)} \, dx = \lambda^2 s e^{-\lambda s}, \quad s \ge 0,$$

which is $Gamma(2, \lambda)$.

(b) Memorylessness:

$$\mathbb{P}(X > t + s \mid X > s) = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t} = \mathbb{P}(X > t).$$

3. Gaussian distribution

Characteristic function method:

$$\varphi_X(t) = \exp\left(i\mu_1 t - \frac{1}{2}\sigma_1^2 t^2\right), \quad \varphi_Y(t) = \exp\left(i\mu_2 t - \frac{1}{2}\sigma_2^2 t^2\right).$$

Thus

$$\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t) = \exp\left(i(\mu_1 + \mu_2)t - \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2\right).$$

Hence $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. The generalization to *n* independent Gaussians follows similarly.

4. Exponential distribution and Poisson process

- (a) By definition of Poisson process: $N(t) \sim \text{Poisson}(\lambda t)$.
 - (b) For the first interarrival time T_1 :

$$\mathbb{P}(T_1 > t) = \mathbb{P}(N(t) = 0) = e^{-\lambda t}, \quad t > 0,$$

so $T_1 \sim \text{Exp}(\lambda)$.

(c) By the independent increments property, all interarrival times are i.i.d. exponential with rate λ . Thus the Poisson counting process and the exponential waiting-time distribution are two sides of the same structure.

5