

Testiranje softvera

ETF BEOGRAD, 2019/2020.

VEŽBE #7, ASISTENT: DR DRAŽEN DRAŠKOVIĆ

Testiranje strategijama bele kutije

WHITE BOX TESTING

Testiranje metodom toka podataka

- Lanac "dodele-upotrebe" (DU lanac)
- ▶ DEF(S1) = { X } kao skup svih promenjivih X za koje postoji dodela vrednosti u iskazu S1.
- ► USE(S2) = { X } kao skup svih promenljivih X za koje postoji upotreba vrednosti u iskazu S2.
- DU lanac: [X, S1, S2]

Zadatak 1 -Trgovinska radnja i čokolade

Za sledeći programski fragment, strategijom pokrivanja svih DU lanaca, odrediti sve test primere. Analizirati samo promenljive cokolade, zalihe i popust. Izostaviti iz razmatranja promenljive broj_cokolada, broj_zaliha i provizija.

```
broj cokolada = 0;
broj zaliha = 0;
S1: read( cokolade );
S2: while cokolade != -1 do
    begin
S3:
       read( zalihe );
S4:
       broj cokolada := broj cokolada + cokolade;
       broj zaliha := broj zaliha + zalihe;
S5:
S6:
       read( cokolade );
     end:
    popust := 45 * broj cokolada + 30 * broj zaliha;
S8: if( popust > 1000.0 ) then
    begin
       provizija := 0.1 * 1000;
S9:
S10:
       provizija := provizija + 0.2 * (popust - 1000);
     end
     else
    begin
S11: provizija := 0.1 * popust;
     end:
```

Zadatak 1 - Trgovinska radnja i čokolade - Rešenje (1)

Za promenljivu cokolade: DEF: S1, S6 USE: S2, S4

Postoje četiri DU lanca za ovu promeljivu:

DU1 = [cokolade, S1, S2]

DU2 = [cokolade, S1, S4]

DU3 = [*cokolade*, S6, S2]

DU4 = [cokolade, \$6, \$4]

Za promenljivu zalihe: DEF: S3 USE: S5

Postoji jedan DU lanac za ovu promenljivu:

DU5 = [*zalihe*, S3, S5]

Zadatak 1 - Trgovinska radnja i čokolade - Rešenje (2)

- Za promenljivu popust: DEF: S7 USE: S8, S10, S11
- Postoje dva DU lanca za ovu promenljivu:

DU6 = [popust, S7, S8]

DU7 = [popust, S7, S10]

DU8 = [popust, S7, S11]

- Dva test primera su dovoljna da pokriju sve navedene DU lance:
- ► TP1: cokolade = 20, zalihe = 20 (i tada je popust = 1500, pa je uslov u S8 True) Sa TP1 pokriveni su DU lanci: du1, du2, du3, du4, du5, du6, du7.
- ► TP2: cokolade = 10, zalihe = 10 (i tada je popust = 750, pa je uslov u S8 False) Sa TP2 pokriveni su DU lanci: du1, du2, du3, du4, du5, du6, du8.

Zadatak 2 - Ocene na predmetu (c- i p- upotrebe)

- Naznačiti koliko ukupno definicija, c-upotreba i p-upotreba po svakoj od navedenih celobrojnih promenljivih domaci, poeni, ukupno, brojac_studenata, ima u sledećem programu, realizovanom u programskom jeziku Java, koji računa ocene na predmetu.
- Napomena: pretpostaviti da su sve metode citajDomaci, citajPoenelspit i citajPoeneProjekat definisane.

Zadatak 2 - Ocene na predmetu (nastavak)

```
package ispit;
                                                                  int poeni = citajPoeneIspit(args[brojac studenata]);
                                                            (16)
public class Ocena {
                                                                  if (poeni < 0)</pre>
                                                            (17)
public static void main(String args[]) {
                                                                    System.out.println("Nekorektan unos");
                                                            (18)
(1) int ukupno studenata = args.length;
                                                                  else if (poeni >= 31 && poeni <= 50)
                                                            (19)
   int brojac studenata = 0;
                                                                    ukupno += poeni;
                                                            (20)
(3) while (brojac studenata < ukupno studenata) {
                                                                  poeni = citajPoeneProjekat(args[brojac studenata]);
                                                            (21)
(4)
      System.out.println(args[brojac studenata]);
                                                                  if (poeni >= 10 && poeni <= 30)
                                                            (22)
      int broj domacih = 4;
(5)
                                                                    ukupno += poeni;
                                                            (23)
      int domaci = 0, ukupno = 0;
(6)
                                                            (24)
                                                                  System.out.println("Ukupno poena " + ukupno);
      while (domaci < broj domacih) {</pre>
(7)
                                                                  if (ukupno >= 91)
                                                            (25)
        int poeni =
(8)
                                                                    System.out.println("Ocena 10");
                                                            (26)
            citajDomaci(args[brojac studenata],domaci);
                                                                  else if(ukupno >= 81)
                                                            (27)
        if (poeni < 0)</pre>
(9)
                                                            (28)
                                                                    System.out.println("Ocena 9");
(10)
            System.out.println("Nekorektan unos");
        else {
                                                            (29)
                                                                  else if(ukupno >= 71)
(11)
(12)
            ukupno += poeni;
                                                            (30)
                                                                    System.out.println("Ocena 8");
(13)
            domaci++;
                                                                  brojac studenata++;
(14)
                                                            (32) }
(15)
                                                            (33) } //main
 resuranje sortvera, elektrotennicki rakurtet Oniverziteta u peogradu
                                                            (34)} //class
```

Zadatak 2 - Ocene na predmetu - Rešenje (1)

- Da se podsetimo sa predavanja:
 - ▶ Upotreba se naziva <u>predikatskom</u> (eng. *predicate use*, skraćeno *p-use*) ako se pojavljuje u predikatskom izrazu naredbi kontrole toka (IF, WHILE, SWITCH itd.).
 - ▶ Upotreba se naziva <u>računskom</u> (eng. *computational use*, skraćeno *c-use*), ako nije predikatska.

Zadatak 2 - Ocene na predmetu - Rešenje (2)

Naziv promenljive	definicija	c-upotreba	p-upotreba
domaci	(6), (13)	(8), (13)	(7)
poeni	(8), (16), (21)	(12), (20), (23)	(9), (17), (19), (22)
ukupno	(6), (12), (20), (23)	(12), (20), (23), (24)	(25), (27), (29)
brojac_studenata	(2), (31)	(4), (8), (16), (21), (31)	(3)

Zadatak 2 - Ocene na predmetu - Rešenje (3)

- Kada je promeljiva ukupno_studenata = 0, može se realizovati samo: [brojac_studenata, 2, 3]
- ► Kada je promenljiva ukupno_studenata ≥ 1, analiziramo svaku promenljivu i njene DU lance:

```
[domaci, 6, 7] [poeni, 8, 9]

[domaci, 6, 8] [poeni, 8, 12]

[domaci, 6, 13] [poeni, 16, 17]

[domaci, 13, 7] [poeni, 16, 19]

[domaci, 13, 8] [poeni, 16, 20] uz uslov da su ispitni poeni \geq 31 i \leq 50

[domaci, 13, 13] [poeni, 21, 22]

[poeni, 21, 23] uz uslov da su projektni poeni \geq 10 i \leq 30
```

Zadatak 2 - Ocene na predmetu - Rešenje (4)

DU lanci za promenljivu *ukupno*:

[ukupno, 6, 12] uz uslov da broj poena na domaćem N bude ≥ 0			
[ukupno, 12, 12] uz uslov da broj poena na domaćem M > N, bude ≥ 0			
[ukupno, 12, 20]			
[ukupno, 6, 20] samo ako nijedan domaći nema korektan unos			
[ukupno, 12, 23] uz uslov da su korektni poeni za bar 1 domaći zadatak,			
ispitni poeni ≥ 0 i moraju da budu < 30 ili > 50			
[ukupno, 20, 23] samo ako su ispitni poeni u korektnim granicama			
[ukupno, 6, 23] samo ako su nekorektni poeni i sa domaćih i sa ispita			
[ukupno, 6, 24] - ne smemo da redefinišemo u linijama 12, 20 i 23,			
sve do upotrebe u 24. liniji			

[ukupno, 12, 24]	[ukupno, 20, 25]
[ukupno, 20, 24]	[ukupno, 20, 27]
[ukupno, 23, 24]	[ukupno, 20, 29]
[ukupno, 6, 25]	[ukupno, 23, 25]
[ukupno, 6, 27]	[ukupno, 23, 27]
[ukupno, 6, 29]	[ukupno, 23, 29]
[ukupno, 12, 25]	
[ukupno, 12, 27]	
[ukupno, 12, 29]	

Zadatak 2 - Ocene na predmetu - Rešenje (5)

DU lanci za promenljivu *brojac studenata*:

[brojac_studenata, 2, 3] [brojac_studenata, 31, 3] [brojac_studenata, 2, 4] [brojac_studenata, 31, 4] [brojac_studenata, 2, 8] [brojac_studenata, 31, 8] [brojac_studenata, 2, 16] [brojac_studenata, 31, 16] [brojac_studenata, 2, 21] [brojac_studenata, 31, 21] [brojac_studenata, 2, 31] [brojac_studenata, 31, 31]

Zadatak 3 - Binarno pretraživanje

- Data je funkcija bintr() u programskom jeziku C, za binarno pretraživanje o int bintr (int K, int M[], int N) { po ključu K sadržaja rastuće sortiranog vektora M od N elemenata.
 Rezultat izvršavanja ove funkcije je indeks elementa koji sadrži ključ K, ili vrednost -1, ako pretraživanje nije uspelo.
 0 int bintr (int K, int M[], int N) { int ID = 0; int IG = N 1; ili vrednost -1, ako pretraživanje nije uspelo.
- a) Odrediti sve DU lance po promenljivama ID i IG.
 Formirati test primere koji pokrivaju pronađene DU lance.
- b) Nacrtati graf toka kontrole i odrediti broj ciklomatske kompleksnosti za navedeni programski kod.

Navesti bazični skup putanja i svaku putanju pokriti sa po jednim test primerom.

```
0 int bintr(int K, int M[], int N) {
1    int ID = 0;
2    int IG = N - 1;
3    while (ID <= IG) {
4        IS = (ID + IG) / 2;
5        if (K == M[IS]) return IS;
6        else if (K < M[IS]) IG = IS;
7        else ID = IS;
8    }
9    return -1;
10 }</pre>
```

Zadatak 3 - Binarno pretraživanje - Rešenje (1)

Promenljiva ID DEF: 1, 7 USE: 3, 4

Promenljiva IG DEF: 2, 6 USE: 3, 4

Od datih promenljivih, formiraćemo sledeće DU lance:

▶ Test primer koji bi pokrivao sve DU lance može biti niz M sa 10 elemenata:

$$M = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]$$

$$N = 10$$

$$K = 4$$

Zadatak 3 - Binarno pretraživanje - Rešenje (2)

Graf kontrole toka:

Problem: imamo 2 izlazna čvora!

Zadatak 3 - Binarno pretraživanje - Rešenje (3)

- ▶ Graf kontrole toka spojimo izlazne čvorove (5 i 9) sa ulaznim čvorom (1).
- e = 12 grana, n = 9 čvorova
- Po formuli: V = e n + 1 = 12 9 + 1 = 4 bazične putanje
- { [1, 2, 9], u iskazu 2 uslov (While = F);
 - [1, 2, 3, 4, 5], u iskazu 2 uslov (While = T), u iskazu 4 (IF-1 = T);
 - [1, 2, 3, 4, 6, 8, 2, 9], u iskazu 2 uslov (*While* = T), u iskazu 4 (*IF-1* = F), u iskazu 6 (*IF-2* = F) i opet u iskazu 2 uslov je sada (*While* = F);
 - [1, 2, 3, 4, 6, 7, 2, 9], u iskazu 2 uslov (*While* = T), u iskazu 4 (*IF-1* = F), u iskazu 6 (*IF-2* = T) i opet u iskazu 2 uslov je sada (*While* = F); }

Zadatak 4 - Sportka radnja i popusti (za vežbu)

- U datom programu jedne sportske radnje u Beogradu, koji želimo da testiramo, potrebno je:
 - a) nacrtati graf kontrole toka i izračunati broj ciklomatske kompleksnosti;
 - b) odrediti sve definicije, c-upotrebe i p- upotrebe;
 - c) odrediti sve DU lance i sa koliko minimalno test primera je neophodno da ih testiramo.

```
1. Program Sport()
            var rabat, ukupno, finalnaCena, popust, cena
3.
            rabat = 0.1
            ukupno = 0
            input (cena)
            while (cena !=-1) do
7.
                  ukupno = ukupno + cena
8.
                  input (cena)
9.
            end while
            print ("Ukupna cena: " + ukupno)
10.
            if (ukupno > 15.00) then
11.
                  popust = (rabat * ukupno) + 0.50
12.
13.
            else
                  popust = rabat * ukupno
14.
15.
            end if
16.
            print ("Iznos popusta: " + popust)
17.
            finalnaCena = ukupno - popust
18.
            print ("Finalni iznos: " + finalnaCena)
19. end program
```