ONII
$$f(x) = 2x^3 + 9x^2 + 12x + 20$$

Diff whix
 $f'(x) = 6x^2 + 18x + 12$
 $f'(x) = 6(x^2 + 3x + 2)$
 $f'(x) = 6(x + 1)(x + 2)$
 $pur f'(x) = 0$
 $x = -1, x = -2$

In Kerah.	519n of 71(1)	Mahun of f(x)		
(-01-2)	(-)(-) = +x f(1)70	f(x) is shirty 1		
(-21-1)	(+)(+)=-~ f'(7)20	f(n) is small		
(-1, ~)	(+)(+) = +4 f'(4) 70	f(n) es shope 1		

: f(n) us shuty 1 in (-w1-2) U(-1, w) and Shuty I in (-2,-1) AM

$$\begin{array}{lll}
& = & f(\pi) = & (\pi+1)^{3}(\pi-3)^{3} \\
& = & f(\pi) = & (\pi+1)^{3}(\pi-3)^{3} \\
& f'(\pi) = & (\pi+1)^{3} \cdot 3(\pi-3)^{2} + (\pi-3)^{3} \cdot 3(\pi+1)^{2} \\
& = & f'(\pi) = & 3(\pi+1)^{2}(\pi-3)^{2}(\pi+1+\pi-3)
\end{array}$$

$$f'(y) = 3(x+1)^{2}(x-3)^{2}(2x-2)$$

$$f'(y) = 6(y+1)^{2}(x-3)^{2}(y-1)$$

$$pur f'(y) = 0 \Rightarrow y = -1, y = 3, y = 1$$

$$-\frac{1}{2} + \frac{1}{3} + \frac{1}{3}$$

Intervals	519n of F1(2)		Nahue of F(y)			
(-0,-1)	(+)(+)(-) = -4	f 1/4120				
(-1,1)	(+)(+)(-)=-ve	f 1(x) 20	*1	,	٠,	4
(1,3)	(+)(+)(+)=+4	f'(4) 70	1.	"	•	1
(3, ~)	(+)(+)(+)=+4	F1(7)>0	•	"	*	1

$$x = 1$$
, $x = 3$, $x = -2$

	-	+		-	
- 2		`	/		00
	_	2	,	5	

Interes	579m of f'(n)	Napule of f(n)
(-w,-2]	$f'(x) \leq 0$	f(4) is
[-2,+1]	11(x) 70	f(n) is 1
[1,3]	$f'(\eta) \leq 0$	f(4) is V
[3,2)	f1/n) >0	f(7) to 1

On
$$Y + f(n) = \frac{yn^2+1}{x}$$
 $f(n) = \frac{yn^2+1}{x}$
 $f(n) = \frac{yn^2+1}{x}$
 $f'(n) = \frac{yn^2-1}{n^2} = \frac{(2n+1)(2n-1)}{x^2}$

(Albital points $x = \frac{1}{2}$, $x = \frac{1}{2}$, $x = 0$

$$-\infty$$
 $\frac{+1}{1/2}$ $\frac{-1}{2}$ $\frac{+1}{2}$ $\frac{+1}{2}$ $\frac{-1}{2}$ $\frac{+1}{2}$ $\frac{-1}{2}$

f(x) is shiff 1 in (-w, -1/2) U (1/2, w) and
Shiff I in (-1/2,0) U (0.1/2) AMI

$$\frac{J'|_{n/=}}{2} \frac{J}{2} \frac{-2}{2}$$

$$= \frac{x^2 + y}{2x^2}$$

$$f'(y) = (x+2)(x-2)$$

$$\frac{J'|_{n/=}}{2x^2}$$

(Ritical purb
$$x = -2$$
, $x = 2$, $x = 0$)

{but we cannot take $x = 0$

as $f(\pi)$ is not dyimed at $x = 0$

Ī	Inturals	519× 1/2)	519m of 1(n)
	(-00,-2]	f1(n) 70	f(n) is 1
	[-2,0)	$f'(m) \leq 0$	7(m) is 4
	(0,2]	f'(n) < 0	f(x) is V
,	[2, ~)	F'(n) 70	7(m) is 1

$$\frac{1}{|A|} = \frac{2}{|A|-2} - 2x + 4y$$

$$f'(x) = \frac{2}{|A|-2} - 2x + 4y$$

$$f'(x) = \frac{2}{|A|-2} + 4x + 4x - 8$$

$$f'(x) = -2x^2 + 8x - 6$$

$$f'(x) = -2(x^2 - 4x + 3)$$

$$f'(x) = -2(x^2 - 4x + 3)$$

Mf with f/4/= 3x2-6x +4 f'(n) = 3(x-1)2+1 for 71 & (-00, a) (~1)2 >0 = 3(x-1)2 >0 -- {: when x = 0 then x+1 > 0 4 73(x-1)2+1 >0

in f(n) a shortly Inauary in R

= 7 (n) > 0

 $04.9 + f(y) = log(1+y) - \frac{\gamma}{1+y}$ 014 + wit x $f'(y) = \frac{1}{1+y} - \left\{ \frac{(1+y)(1) - \gamma(1)}{(1+y)^2} \right\}$

Solution A. ED (W.s 8) f(y) exists only when x+1>0 $\Rightarrow x>-1$ (Riheal points x=0, x=-) f(n) is incually in [o, a) and f(n) is decuary in (-1,0] (-1 cannot be Included as x>-1) ON 10 + f(n1= ca(2x+7/4) -- 1 (Type = 2) 91 cm 71 E (33/8, 77/8) Diff with me han to check 11/1/= -25in (2x+ 7/4) in which quadeont thus organ lies? = Lane 39 - X < 73 37 < 2x < 77 一(32-7) (24-2) (24-2)

$$\frac{3}{4} < 2x < \frac{7}{9}$$

$$\frac{3}{4} + \frac{3}{9} < 2x + \frac{3}{9} < \frac{7}{9} + \frac{3}{9}$$

$$\frac{3}{4} + \frac{3}{9} < 2x + \frac{3}{9} < \frac{7}{9} + \frac{3}{9}$$

$$\frac{3}{4} + \frac{3}{9} < 2x + \frac{3}{9} < \frac{7}{9} + \frac{3}{9}$$

$$\frac{7}{9} < (2x + \frac{3}{9}) < 2x$$

$$\frac{7}{9} = \frac{7}{9}$$

$$\frac{7}{9} = \frac{7}{9} = \frac{7}{9}$$

$$\frac{7}{9} = \frac{7}{9} = \frac{7}{9}$$

$$\frac{7}{9} = \frac{7}{9} = \frac{7}{9} = \frac{7}{9}$$

$$\frac{7}{9} = \frac{7}{9} = \frac{9$$