

Lecture # 07 & 08

Secant & False Position Methods

(Regula Falsi or Linear Interpolation Method)

Secant Method:

Secant Method:

To find a solution to f(x) = 0 given initial approximations p_0 and p_1 :

INPUT initial approximations p_0, p_1 ; tolerance TOL; maximum number of iteratic OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 2$$
;
 $q_0 = f(p_0)$;
 $q_1 = f(p_1)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 4 If
$$|p - p_1| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 3 Set $p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$. (Compute p_i .)

Step 5 Set i = i + 1.

Step 6 Set
$$p_0 = p_1$$
; (Update p_0, q_0, p_1, q_1 .)
 $q_0 = q_1$;
 $p_1 = p$;
 $q_1 = f(p)$.

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}.$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Problem Statement. Use the secant method to estimate the root of $f(x) = e^{-x} - x$. Start with initial estimates of $x_{-1} = 0$ and $x_0 = 1.0$.

Solution. Recall that the true root is 0.56714329....

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

First iteration:

$$x_{-1} = 0$$
 $f(x_{-1}) = 1.00000$
 $x_0 = 1$ $f(x_0) = -0.63212$
 $x_1 = 1 - \frac{-0.63212(0-1)}{1 - (-0.63212)} = 0.61270$ $\varepsilon_t = 8.0\%$

Second iteration:

$$x_0 = 1$$
 $f(x_0) = -0.63212$
 $x_1 = 0.61270$ $f(x_1) = -0.07081$

(Note that both estimates are now on the same side of the root.)

$$x_2 = 0.61270 - \frac{-0.07081(1 - 0.61270)}{-0.63212 - (-0.07081)} = 0.56384$$
 $\varepsilon_t = 0.58\%$

Third iteration:

$$x_1 = 0.61270$$
 $f(x_1) = -0.07081$
 $x_2 = 0.56384$ $f(x_2) = 0.00518$
 $x_3 = 0.56384 - \frac{0.00518(0.61270 - 0.56384)}{-0.07081 - (-0.00518)} = 0.56717$ $\varepsilon_t = 0.0048\%$

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

n	p_n				
0	0.7853981635		Newton		
1	0.7071067810	n	p_n		
2	0.7602445972	0	0.7853981635		
3	0.7246674808	1	0.7395361337		
1	0.7487198858	2	0.7390851781		
5	0.7325608446	3	0.7390851332		
6	0.7434642113	4	0.7390851332		
7	0.7361282565				

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Use the Secant method to find a solution to $x = \cos x$, and compare the approximations with those given in Example 1 which applied Newton's method.

n	p_n		Noveton		Secant
0	0.7853981635	n	Newton p_n	n	p_n
1	0.7071067810		T n	0	0.5
2	0.7602445972	0	0.7853981635	1	0.7853981635
3	0.7246674808	1	0.7395361337	2	0.7363841388
4	0.7487198858	2	0.7390851781	_	
5	0.7325608446	3	0.7390851332	3	0.7390581392
6	0.7434642113	4	0.7390851332	4	0.7390851493
7	0.7361282565	_	0.7370031332	5	0.7390851332

Root Finding Methods:

- Bracketing methods. As the name implies, these are based on two initial guesses that "bracket" the root—that is, are on either side of the root.
- Open methods. These methods can involve one or more initial guesses, but there is no need for them to bracket the root.

False Position Method:

The **method of False Position** (also called *Regula Falsi*) generates approximations in the same manner as the Secant method, but it includes a test to ensure that the root is always bracketed between successive iterations

The term Regula Falsi, literally a false rule or false position, refers to a technique that uses results that are known to be false, but in some specific manner, to obtain convergence to a true result. False position problems can be found on the Rhind papyrus, which dates from about 1650 B.C.E.

Working/Iteration Rule:

First choose initial approximations p_0 and p_1 with $f(p_0) \cdot f(p_1) < 0$. The approximation p_2 is chosen in the same manner as in the Secant method, as the x-intercept of the line joining $(p_0, f(p_0))$ and $(p_1, f(p_1))$. To decide which secant line to use to compute p_3 , consider $f(p_2) \cdot f(p_1)$, or more correctly sgn $f(p_2) \cdot \text{sgn } f(p_1)$.

- If sgn $f(p_2) \cdot \text{sgn } f(p_1) < 0$, then p_1 and p_2 bracket a root. Choose p_3 as the x-intercept of the line joining $(p_1, f(p_1))$ and $(p_2, f(p_2))$.
- If not, choose p_3 as the x-intercept of the line joining $(p_0, f(p_0))$ and $(p_2, f(p_2))$, and then interchange the indices on p_0 and p_1 .

Algorithm:

To find a solution to f(x) = 0 given the continuous function f on the interval $[p_0, p_1]$ where $f(p_0)$ and $f(p_1)$ have opposite signs:

INPUT initial approximations p_0, p_1 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 2$$
;
 $q_0 = f(p_0)$;
 $q_1 = f(p_1)$.

Step 2 While $i \le N_0$ do Steps 3-7.

Step 3 Set
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_1| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
;
 $q = f(p)$.

Step 6 If
$$q \cdot q_1 < 0$$
 then set $p_0 = p_1$;
 $q_0 = q_1$.

Step 7 Set
$$p_1 = p$$
;
 $q_1 = q$.

Step 8 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure unsuccessful.) STOP.

Example: Find the solution x = cosx

Solution To make a reasonable comparison we will use the same initial approximations as in the Secant method, that is, $p_0 = 0.5$ and $p_1 = \pi/4$. Table 2.6 shows the results of the method of False Position applied to $f(x) = \cos x - x$ together with those we obtained using the Secant and Newton's methods. Notice that the False Position and Secant approximations agree through p_3 and that the method of False Position requires an additional iteration to obtain the same accuracy as the Secant method.

	False Position	Secant	Newton
n	p_n	p_n	p_n
0	0.5	0.5	0.7853981635
1	0.7853981635	0.7853981635	0.7395361337
2	0.7363841388	0.7363841388	0.7390851781
3	0.7390581392	0.7390581392	0.7390851332
4	0.7390848638	0.7390851493	0.7390851332
5	0.7390851305	0.7390851332	
6	0.7390851332		

Example:

Consider finding the root of $f(x) = x^2 - 3$. Let $\varepsilon = 0.01$, and start with the interval [1, 2].

Example:

Consider finding the root of $f(x) = x^2 - 3$. Let $\varepsilon = 0.01$, and start with the interval [1, 2].

a	b	f(a)	f (b)	c	f (c)	Update	Step Size
1.0	2.0	-2.00	1.00	1.6667	-0.2221	a = c	0.6667
1.6667	2.0	-0.2221	1.0	1.7273	-0.0164	a = c	0.0606
1.7273	2.0	-0.0164	1.0	1.7317	0.0012	a = c	0.0044

Solve:

 x^3 - 2x - 5 = 0, by using regula falsi method ($\varepsilon = 0.0001$)

Root = 2.094547

Step	x0	x1	x2	f (x2)
1	2.000000	3.000000	2.058824	-0.390800
2	2.058824	3.000000	2.081264	-0.147204
3	2.081264	3.000000	2.089639	-0.054677
4	2.089639	3.000000	2.092740	-0.020203
5	2.092740	3.000000	2.093884	-0.007451
6	2.093884	3.000000	2.094305	-0.002746
7	2.094305	3.000000	2.094461	-0.001012
8	2.094461	3.000000	2.094518	-0.000373
9	2.094518	3.000000	2.094539	-0.000137
10	2.094539	3.000000	2.094547	-0.000051

Do Q 1-10 from Ex # 2.3