Anomaly Detection and Application to Intrusion Detection

Introduction

- ◆ We are drowning in the deluge of data that are being collected world-wide, while starving for knowledge at the same time*
- Anomalous events occur relatively infrequently
- ◆ However, when they do occur, their consequences can be quite dramatic and quite often in a negative sense

What are Anomalies?

- Anomaly is a pattern in the data that does not conform to the expected behavior
- Also referred to as outliers, exceptions, peculiarities, surprises, etc.
- Anomalies translate to significant (often critical) real life entities
 - Cyber intrusions
 - Credit card fraud
 - Faults in mechanical systems

Real World Anomalies

- Credit Card Fraud
 - An abnormally high purchase made on a credit card

- Cyber Intrusions
 - A web server involved in *ftp* traffic

Simple Examples

- N₁ and N₂ are regions of normal behavior
- Points o₁ and o₂ are anomalies
- Points in region O₃ are also anomalies

Type of Anomalies

- Point Anomalies: An individual data instance is anomalous w.r.t. the data
- Contextual Anomalies: An individual data instance is anomalous within a context. Requires a notion of context Also referred to as conditional anomalies
- Collective Anomalies: A collection of related data instances is anomalous The individual instances within a collective anomaly are not anomalous by themselves. Requires a relationship among data instances
 - Sequential Data
 - Spatial Data
 - Graph Data

Key Challenges of Anomaly Detection

- Defining a representative normal region is challenging
- The boundary between normal and outlying behavior is often not precise
- Availability of labeled data for training/validation
- The exact notion of an outlier is different for different application domains
- Data might contain noise
- Normal behavior keeps evolving
- Appropriate selection of relevant features

Input Data

- Most common form of data handled by anomaly detection techniques is Record Data
 - Univariate
 - Multivariate

Univariate

Multivariate

Tid	SrcIP	time	Dest IP	Dest Port	of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

Data Labels

- Supervised Anomaly Detection
 - Labels available for both normal data and anomalies
 - Similar to rare class mining
 - Machine learning models: Naïve Bayes, Neural Network
- Semi-supervised Anomaly Detection
 - Labels available only for normal data
- Unsupervised Anomaly Detection
 - No labels assumed
 - Based on the assumption that anomalies are very rare compared to normal data
 - Machine learning: clustering

Output of Anomaly Detection

Label

- Each test instance is given a *normal* or *anomaly* label
- This is especially true of classification-based approaches

Score

- Each test instance is assigned an anomaly score
 - Allows the output to be ranked
 - Requires an additional threshold parameter

Evaluation of Anomaly Detection – F-value

- Accuracy is not sufficient metric for evaluation
 - Example: network traffic data set with 99.9% of normal data and 0.1% of intrusions
 - Trivial classifier that labels everything with the normal class can achieve 99.9% accuracy !!!!!

Confus matr		Predicted class		
		NC	C	
Actual	NC	TN	FP	
class	C	FN	TP	

anomaly class - C normal class - NC

- Focus on both recall and precision
 - Recall (R) = TP/(TP + FN)
 - Precision (P) = TP/(TP + FP)
- F measure = 2*R*P/(R+P)

Applications of Anomaly Detection

- Network intrusion detection
- Insurance / Credit card fraud detection
- Healthcare Informatics / Medical diagnostics
- Industrial Damage Detection
- Image Processing / Video surveillance
- Novel Topic Detection in Text Mining

Intrusion Detection

Intrusion Detection:

 Process of monitoring the events occurring in a computer system or network and analyzing them for intrusions

• Intrusions are defined as attempts to bypass the security mechanisms of a computer or

network

Challenges

- Traditional signature-based intrusion detection systems are based on signatures of known attacks and cannot detect emerging cyber threats
- Substantial latency in deployment of newly created signatures across the computer system
- Anomaly detection can alleviate these limitations

Fraud Detection

- Fraud detection refers to detection of criminal activities occurring in commercial organizations
 - Malicious users might be the actual customers of the organization or might be posing as a customer (also known as identity theft).
- Types of fraud
 - Credit card fraud
 - Insurance claim fraud
 - Mobile / cell phone fraud
 - Insider trading
- Challenges
 - Fast and accurate real-time detection
 - Misclassification cost is very high

Healthcare Informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key Challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

Industrial Damage Detection

- Industrial damage detection refers to detection of different faults and failures in complex industrial systems, structural damages, intrusions in electronic security systems, abnormal energy consumption, etc.
 - Example: Aircraft Safety
 - Anomalous Aircraft (Engine) / Fleet Usage
 - Anomalies in engine combustion data
 - Total aircraft health and usage management

Key Challenges

- Data is extremely huge, noisy and unlabelled
- Most of applications exhibit temporal behavior
- Detecting anomalous events typically require immediate intervention

Computer Vision

- Detecting outliers in a image or video monitored over time
- Detecting anomalous regions within an image
- Used in
 - mammography image analysis
 - video surveillance
 - satellite image analysis
- Key Challenges
 - Detecting collective anomalies
 - Data sets are very large

Taxonomy

Classification Based Techniques

- Main idea: build a classification model for normal (and anomalous (rare)) events based on labeled training data, and use it to classify each new unseen event
- Classification models must be able to handle skewed (imbalanced) class distributions
- Categories:
 - Supervised classification techniques
 - Require knowledge of both normal and anomaly class
 - Build classifier to distinguish between normal and known anomalies

Nearest Neighbor Based Techniques

- *Key assumption*: normal points have close neighbors while anomalies are located far from other points
- General two-step approach
 - 1. Compute neighborhood for each data record
 - 2. Analyze the neighborhood to determine whether data record is anomaly or not
- Categories:
 - Distance based methods
 - Anomalies are data points most distant from other points
 - Density based methods
 - Anomalies are data points in low density regions

Nearest Neighbor Based Techniques

Advantage

 Can be used in unsupervised or semi-supervised setting (do not make any assumptions about data distribution)

Drawbacks

- If normal points do not have sufficient number of neighbors the techniques may fail
- Computationally expensive
- In high dimensional spaces, data is sparse and the concept of similarity may not be meaningful anymore. Due to the sparseness, distances between any two data records may become quite similar => Each data record may be considered as potential outlier!

Nearest Neighbor Based Techniques

- Distance based approaches
 - A point O in a dataset is an DB(p, d) outlier if at least fraction p of the points in the data set lies greater than distance d from the point O^*
- Density based approaches
 - Compute local densities of particular regions and declare instances in low density regions as potential anomalies
 - Approaches
 - Local Outlier Factor (LOF)
 - Connectivity Outlier Factor (COF)
 - Multi-Granularity Deviation Factor (MDEF)

Clustering Based Techniques

- Key Assumption: Normal data instances belong to large and dense clusters, while anomalies do not belong to any significant cluster.
- General Approach:
 - Cluster data into a finite number of clusters.
 - Analyze each data instance with respect to its closest cluster.
 - Anomalous Instances
 - Data instances that **do not fit** into any cluster (residuals from clustering).
 - Data instances in small clusters.
 - Data instances in **low density clusters**.
 - Data instances that are **far from other points within the same cluster**.

Clustering Based Techniques

Advantages

- Unsupervised algorithm
- Existing clustering algorithms can be plugged in

Drawbacks

- If the data does not have a natural clustering or the clustering algorithm is not able to detect the natural clusters, the techniques may fail
- Computationally expensive
- In high dimensional spaces, data is sparse and distances between any two data records may become quite similar

What are Intrusions?

- ◆ Intrusions are actions that attempt to bypass security mechanisms of computer systems. They are usually caused by:
 - Attackers accessing the system from Internet
 - Insider attackers authorized users attempting to gain and misuse nonauthorized privileges
- ◆ Typical intrusion scenario

Intrusion Detection

- Intrusion Detection System
 - combination of software and hardware that attempts to perform intrusion detection
 - raises the alarm when possible intrusion happens

- Traditional intrusion detection system IDS tools (e.g. SNORT) are based on signatures of known attacks
 - Example of SNORT rule (MS-SQL "Slammer" worm)
 any -> udp port 1434 (content:"|81 F1 03 01 04 9B 81 F1 01|"; content:"sock"; content:"send")

- Limitations
 - Signature database has to be manually revised for each new type of discovered intrusion
 - They cannot detect emerging cyber threats
 - Substantial latency in deployment of newly created signatures across the computer system

Approaches for Intrusion Detection

- ◆ Increased interest in machine learning based intrusion detection
 - Attacks for which it is difficult to build signatures
 - Attack stealthiness
 - Unforeseen/Unknown/Emerging attacks
 - Distributed/coordinated attacks
- Approaches for intrusion detection
 - Misuse detection (Classification)
 - ◆ Building predictive models from labeled data sets (instances are labeled as "normal" or "intrusive") to identify known intrusions
 - ◆ High accuracy in detecting many kinds of known attacks
 - Cannot detect unknown and emerging attacks
 - Apply Anomaly detection
 - Detect novel attacks as deviations from "normal" behavior
 - ◆ Potential high false alarm rate previously unseen (yet legitimate) system behaviors may also be recognized as anomalies
 - Summarization of network traffic (Rule-based)

Approaches for Intrusion Detection

Tid	SrcIP	Start time	Dest IP	Dest Port	Number of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

Misuse Detection – Building Predictive Models

Set

categorical temporal

Dest IP of bytes time 206.163.37.81 11:17:51 160.94.179.208 150 2 | 206.163.37.99 | 11:18:10 | 160.94.179.235 208 No 3 206.163.37.55 11:34:35 160.94.179.221 Yes 4 206.163.37.37 11:41:37 160.94.179.253 No 199 **Test** 5 206.163.37.41 11:55:19 160.94.179.244 Yes Set Learn **Training**

Summarization of attacks using association rules

Rules Discovered:

{Src IP = 206.163.37.95, Dest Port = 139, Bytes ∈ [150, 200]} --> {ATTACK}

Model

0

Classifier

Feature Extraction

Three groups of features

Basic features of individual TCP connections

- source & destination IP
- source & destination port
- Protocol
- Duration
- Bytes per packets
- number of bytes

Time based features

- For the same source (destination) IP address, number of unique destination (source) IP addresses inside the network *in last T seconds* –
- Number of connections from source (destination) IP to the same destination (source) port in last T seconds

Connection based features

- For the same source (destination) IP address, number of unique destination (source) IP addresses inside the network *in last N connections*
- Number of connections from source (destination) IP to the same destination (source) port in last N connections

Conclusions

- Anomaly detection can detect critical information in data.
- Highly applicable in various application domains.
- Nature of anomaly detection problem is dependent on the application domain.
- Need different approaches to solve a particular problem formulation.