

Outline

- 1. Quantum Materials
- 2. Quantum Computing
- 3. Quantum Computing ↔ Quantum Materials Yb_{2-x}Lu_{2x}Ti₂O₇
- Quantum Materials → Quantum Computing Sr₂/Ba₂CaWO_{6-δ}

Quantum materials

Quantum materials

Quantum materials have properties which rely on quantum mechanical phenomena such as:

- Quantization
- Entanglement
- Superposition & collapse

The lifetime of a quantum mechanical state is measured by its *coherence time*.

Conventional magnetic order

Ferromagnetism

Antiferromagnetism

Paramagnetism

Zero magnetic moment $\Sigma S = 0$ Small magnetic moment, if any **can order with a magnetic field

Strong magnetic field

Unconventional dis-order

Spin glass

Random spin orientations from frustrated interactions

Spin liquid

Like a paramagnet, but not "frozen"

Quantum computing

[Quantum] Computers

- Computers perform series of logical or arithmetic operations to solve problems.
- Classical computers do so with logical bits – binary digits – with 2 total states.

Bit fully off

Voltage in transition

Bit fully on

[Quantum] Computers

Quantum computers (cont.)

Quantum computers consist of:

- Qubits
- Couplers
- Operators

Other benefits

- May be faster than conventional computation for certain types of problems.
- Uses less memory than classical computers when describing entangled systems.
 - Can offer similar improvement for other quantum mechanical behaviors, such as tunneling.

Modern computer modalities

Digital (aka "Universal")

- A combination of gates (operators) is used to evolve the system.
- Any algorithm input with gates will work.
- The system studied is represented as variables.

Smartphones, Laptops

Analog

- Uses changes in continuous variables to compute.
- The computer can only model systems which obey the same physics as itself.

Slide rules, wristwatches

Quantum Computing ↔ Quantum Materials

D-Wave simulation of Yb_{2-x}Lu_{2x}Ti₂O₇

Project design

Goal: Use near-term quantum computing hardware to explore a quantum materials problem.

- 1. Simulate an interesting lattice on a quantum computer.
- 2. Make a real material with the same lattice [and physics].
- 3. Measure the same observable on both.

Feedback for both computers and materials researchers.

D-Wave quantum annealers

Annealer physics

- Ising model <u>only</u>: one spin alignment axis and only one unpaired spin per site
- Every spin has the same susceptibility to the field
 - "Interesting" here thus means geometrical frustration, rather than competing interactions

Aside: Geometric frustration

Annealer physics (cont.)

- Ising model <u>only</u>: one spin alignment axis and only one unpaired spin per site
- Every spin has the same susceptibility to the field
 - "Interesting" here thus means geometrical frustration, rather than competing interactions
- The annealer's temperature must be ~12 mK
- h_i and J_{ii} are unitless
- Broken physical qubits → missing logical qubits → gaps in the magnetic lattice

Pyrochlore embedding

Candidate material: Yb_{2-x}Lu_{2x}Ti₂O₇

- Yb³+ has a single unpaired spin.
 - Lu³⁺ and Ti⁴⁺ are nonmagnetic.
- Yb³⁺ and Lu³⁺ occupy a geometrically-frustrated pyrochlore lattice.
- The crystal field around the 3+ metal site is the same everywhere.
- Under <100> applied field, there is a single Ising axis.

D-Wave results

- deleted 0% of sites
- deleted 1% of sites
- deleted 2% of sites
- deleted 4% of sites
- deleted 8% of sites
- deleted 12% of sites
- deleted 16% of sites
- deleted 20% of sites
- deleted 30% of sites
- deleted 40% of sites

MagLab data

MPMS data as anchor

0-Lu small MagLab high temperature data

0-Lu small MPMS AC data

Temperature variation at 219 Hz, AC drive field = 1 Oe

Thermal broadening

0-Lu small MPMS AC data

Temperature variation at 219 Hz, AC drive field = 1 Oe

Real material results (cont.)

Courtesy of R. D'Ortenzio (without solvent)

Courtesy of K. Ross (without solvent)

Courtesy of K. Arpino

Courtesy of D. Prabhakaran

Bernier 2023 (without solvent)

Bernier 2025 (with solvent)

Bernier 2021 (with solvent)

Yb₂Ti₂O₇

There is a noticeable discontinuity in: Ga, V, Co, Ni, Y, La, and Sm Max

Disordering transformations?

Scheetz & White Opt. Eng. 22 302-207 (1983)

Potential for spectroscopy

Pyrochlore Ln₂Ti₂O₇

Atom	Wycoff position	Site symmetry
Ln	16 c	D_{3d}
Ti	16 d	D_{3d}
0	8a	T _d
O' (48 f	C_{2v}

Fluorite Ln₂Ti₂O₇

Atom	Wycoff position	Site symmetry
Ln	4 a	O _h
Ti	4 a	O_h
0	8 c	T_d
O'	N/A	N/A

Quantum Materials —> Quantum Computing

Sr₂/Ba₂CaWO_{6-δ} qubit candidates

Electron spin qubit host

Mekhola Sinha

Sr₂/Ba₂CaWO₆ oxidation state

Sinha Sr₂CaWO_{6-δ}

Sinha

 Color changes under reduction indicate at least some W5+ centers.

 The exact concentration is important to interpret T_2 values.

Mekhola Sinha

Abby Neill

Thermogravimetric analysis

Infrared spectroscopy

Infrared spectroscopy (cont.)

Infrared spectroscopy (cont.)

Peak (cm ⁻¹)	Assignment	
500-800	Metal-oxygen bonds	
800, 850	-CO ₃ out-of-plane bending	
1450	C-O bond stretching and M-O-H bending (overlapped)	
1635	H-O-H bending of uncoordinated water	
2280-2380	CO_2	

TGA (reprise)

WO₃ photochromism

Unheated, 18 hr XRD

Heated, 30 min

Sealed tube 500°C → RT

57 min

Light-cooled

Light-

cooled

Dark-

cooled

46

WO₃ photochromism (cont.)

WO₃ +
$$hv \rightarrow WO_3^* + e^- + hole^+$$

 $4hole^+ + 2H_2O \rightarrow 4H^+ + O_2$
 $WO_3 + xe^- + xH^+ \rightarrow H_xWO_3$

$$\begin{split} \text{Ba/Sr}_2\text{CaWO}_6 + \textit{reductant} &\rightarrow \text{Ba/Sr}_2\text{CaW}^{6+}{}_{1-\delta}\text{W}^{5+}{}_{\delta}\text{O}_{6-\delta} \\ \text{M}_3\text{W}^{6+}{}_{1-\delta}\text{W}^{5+}{}_{\delta}\text{O}_{6-\delta} + \text{H}_2\text{O} &\rightarrow \text{M}_3\text{WO}_{6-\delta}\text{H}_{\delta} + \text{O}^{-2} \\ \text{M}_3\text{WO}_{6-\delta}\text{H}_{\delta} + \text{CO}_2 &\rightarrow \text{MWO}_{4-\delta}\text{H}_{\delta} + \text{MCO}_3 \\ &\underline{\textit{or}} \quad \text{M}_3\text{WO}_{6-\delta} + \text{CO}_2 &\rightarrow \text{MWO}_{4-\delta} + \text{MCO}_3 \\ &\text{where M = Sr, Ba, or Ca} \end{split}$$

Results

- Breakdown of Ba/Sr₂CaWO₆ crystals into carbonates and Ba/SrWO₄ is slow but appears related to light and water exposure.
- This should be accelerated by more oxygen vacancies.
- δ was eventually calculated by measuring the Curie-Weiss constant (C).

Sample	C (emu K/mol)	Calculated formula
BSC-23	0.0005739	Ba ₂ CaWO _{5.99}
SSC-23	0.004451	Sr ₂ CaWO _{5.93}

Funding & collaborators

Andrew D. King

Lucas Pressley Satya Kushwaha

Juan Chamorro Brady Mediavilla

Dana Brenner

Brian Schriver

Joe Russell

Summary

- 1. Quantum Materials
- 2. Quantum Computing
- 3. Quantum Computing ↔ Quantum Materials Yb_{2-x}Lu_{2x}Ti₂O₇
- Quantum Materials → Quantum Computing Sr₂/Ba₂CaWO_{6-δ}

