Natural Language Processing

Nuri Cingillioglu https://www.doc.ic.ac.uk/~nuric/

Many thanks to Lucia Specia

About

- Neuro-symbolic research
- Guest lecturer
- Used to teach Intro2ML
- Founder of NLP AI startup
 Semafind

About

POS tagging

Introduction

I saw the boy on the hill with a telescope.

	I	saw	the	boy	on	the	hill	with	а	telesc ope	•
F	PRON	VERB	DET	NOUN	ADP	DET	NOUN	ADP	DET	NOUN	PUNCT

POS tagging - tagset

I	saw	the	boy	on	the	hill	with	а	telesc ope	•
PRON	VERB	DET	NOUN	ADP	DET	NOUN	ADP	DET	NOUN	PUNCT

Open class tags

Closed class tags

PREP

AUX

CCONJ

DET

NUM

PART

PRON

SCONJ

Other tags

PUNCT

SYM

X

ADJ
ADV
INTJ
NOUN
PROPN
VERB

Tagset: Universal POS tags:

https://universaldependencies.org/u/pos/all.html

POS tagging - tagset

- ADJ (adjective): old, beautiful, smarter, clean...
- ADV (adverb): slowly, there, quite, gently, ...
- INTJ (interjection): psst, ouch, hello, ow
- NOUN (noun): person, cat, mat, baby, desk, play
- PROPN (proper noun): UK, Jack, London
- VERB (verb): enter, clean, play
- PUNCT (punctuation): . , ()
- SYM (symbol): \$, %, §, ©, +, −, ×, ÷, =, <, >, :),
- X (other): ? (code switching)

POS tagging - tagset

- PREP (preposition): in, on, to, with
- AUX (auxiliary verb): can, shall, must
- CCONJ (coordinating conjunction): and, or
- DET (determiner): a, the, this, which, my, an
- NUM (numeral): one, 2, 300, one hundred
- PART (particle): off, up, 's, not
- PRON (pronouns): he, myself, yourself, nobody
- SCONJ (subordinating conjunction): that, if, while

Discussion

- Why do we need POS tagging?
 - For NER: entities are nouns I
 - Pre-processing can be based on POS
 - E.g. select **adjectives** for sentiment analysis
 - For neural syntactic and semantic parsing

POS tagging libraries: Spacy, NLTK, Stanza

POS tagging - baseline method

- Naive approach
 - Assign each word its most frequent POS tag
 - Assign all unknown words the tag NOUN
- ~90% accuracy!
- There are exceptions....
- But frequency still plays a role
 - Probabilistic POS taggers

POS ambiguities

back

The back/ADJ door

On my back/NOUN

Win the voters <u>back/ADV</u>

Promised to back/VERB the bill

POS ambiguities

Flies like a flower

Flies/VERB/NOUN

like/PREP/ADV/CONJ/NOUN/VERB

a/DET

flower/NOUN/VERB

- Use frequencies but take context into account
- ullet Given a **sequence** of words $W=w_1,w_2,\ldots,w_n$
 - \circ Estimate the **sequence** of POS tags $T=t_1,t_2,\ldots,t_n$
 - \circ Compute P(T|W)

Instance of *many-to-many* classification

Generative approach (Bayes):

$$P(T|W) = rac{P(W|T)P(T)}{P(W)} \ = P(W|T)P(T)$$

• Chain rule + markov assumption (e.g. bigram):

$$P(T) \approx P(t_1)P(t_2|t_1)P(t_3|t_2)\dots P(t_n|t_{n-1})$$

Each word depends only on its tag (not on previous words)

$$P(W|T) \approx P(w_1|t_1)P(w_2|t_2)\dots P(w_n|t_n)$$

Generative approach (Bayes):

$$P(T|W) = rac{P(W|T)P(T)}{P(W)} = P(W|T)P(T)$$

Chain rule + markov assumption (e.g. bigram):

$$P(T) pprox P(t_1) P(t_2|t_1) P(t_3|t_2) \ldots P(t_n|t_{n-1})$$

LM of

tags!

Each word depends only on its tag (not on previous words)

$$P(W|T) pprox P(w_1|t_1)P(w_2|t_2)\dots P(w_n|t_n)$$

Putting both together:

$$P(T|W) pprox P(t_1)P(t_2|t_1)\dots P(t_n|t_{n-1}) P(w_1|t_1)P(w_2|t_2)\dots P(w_n|t_n) \ pprox P(t_1)P(w_1|t_1)P(t_2|t_1)P(w_2|t_2)\dots P(t_n|t_{n-1})P(w_n|t_n)$$

where, as before
$$P(t_i|t_{i-1})=rac{C(t_{i-1},t_i)}{C(t_{i-1})}$$
 and $P(w_i|t_i)=rac{C(w_i,t_i)}{C(t_i)}$

For example, given a training corpus:

John/PROPN is/VERB expected/VERB to/PART race/VERB

This/DET is/VERB the/DET race/NOUN I/PRON wanted/VERB

Bring/VERB this/DET to/PART the/DET race/NOUN

Compute the necessary probabilities

 $P(oldsymbol{t_i}oldsymbol{t_{i-1}}$

 $P(oldsymbol{t_i}{t_i}oldsymbol{t_{i-1}}) \qquad P(t_i|t_{i-1}) = rac{C(t_{i-1},t_i)}{C(t_{i-1})}$

	PROPN	VERB	PART	NOUN	PRON	DET
<s>(3)</s>	1/3	1/3	0	0	0	1/3
PROPN (1)	0	1/1	0	0	0	0
VERB (6)	0	1/6	1/6	0	0	2/6
PART (2)	0	1/2	0	0	0	1/2
NOUN (2)	0	0	0	0	1/2	0
PRON (1)	0	1/1	0	0	0	0
DET (4)	0	1/4	1/4	2/4	0	0

 $P(oldsymbol{t_i}oldsymbol{t_{i-1}}$

 $egin{pmatrix} igl(m{t_i}m{t_{i-1}}igr) & P(t_i|t_{i-1}) = rac{C(t_{i-1},t_i)}{C(t_{i-1})} \end{pmatrix}$

	PROPN	VERB	PART	NOUN	PRON	DET
<s>(3)</s>	1/3	1/3	0	0	0	1/3
PROPN (1)	0	1/1	0	0	0	0
VERB (6)	0	1/6	1/6	0	0	2/6
PART (2)	0	1/2	0	0	0	1/2
NOUN (2)	0	0	0	0	1/2	0
PRON (1)	0	1/1	0	0	0	0
DET (4)	0	1/4	1/4	2/4	0	0

How to make the sum of each row **equal 1**?

 $P(oldsymbol{t_i} oldsymbol{t_{i-1}}$

 $P(oldsymbol{t_i}{t_i}oldsymbol{t_{i-1}}) \qquad P(t_i|t_{i-1}) = rac{C(t_{i-1},t_i)}{C(t_{i-1})}$

	PROPN	VERB	PART	NOUN	PRON	DET	
<s> (3)</s>	1/3	1/3	0	0	0	1/3	0
PROPN (1)	0	1/1	0	0	0	0	0
VERB (6)	0	1/6	1/6	0	0	2/6	2/6
PART (2)	0	1/2	0	0	0	1/2	0
NOUN (2)	0	0	0	0	1/2	0	1/2
PRON (1)	0	1/1	0	0	0	0	0
DET (4)	0	1/4	1/4	2/4	0	0	0

$$P(oldsymbol{w_i}|oldsymbol{t_i}) \hspace{0.5cm} P(w_i|t_i) = rac{C(w_i,t_i)}{C(t_i)}$$

	john	is	expect	to	race	this	the	I	want	bring
PROPN (1)	1/1	0	0	0	0	0	0	0	0	0
VERB (6)	0	2/6	1/6	0	1/6	0	0	0	1/6	1/6
PART (2)	0	0	0	2/2	0	0	0	0	0	0
NOUN (2)	0	0	0	0	2/2	0	0	0	0	0
PRON (1)	0	0	0	0	0	0	0	1/1	0	0
DET (4)	0	0	0	0	0	2/4	2/4	0	0	0

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

	John	wants	to	race	this	race
PROPN						
VERB						
PART						
NOUN						
PRON						
DET						

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

	John	wants	to	race	this	race
PROPN	1/3*1/1					
VERB	1/3*0					
PART	0*0					
NOUN	0*0					
PRON	0*0					
DET	1/3*0					

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

 Tag the following test sentence (consider lemmas), left to right, taking the max at every step to be the POS for that word

	John	wants	to	race	this	race
PROPN	1/3*1/1	0*0				
VERB		1/1*1/6				
PART		0*0				
NOUN		0*0				
PRON		0*0				
DET		0*0				

PROPN

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

 Tag the following test sentence (consider lemmas), left to right, taking the max at every step to be the POS for that word

	John	wants	to	race	this	race
PROPN	1/3*1/1		0*0			
VERB		1/1*1/6	1/6*0			
PART			1/6*2/2			
NOUN			0*0			
PRON			0*0			
DET			2/6*0			

PROPN VERB

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

 Tag the following test sentence (consider lemmas), left to right, taking the max at every step to be the POS for that word

	John	wants	to	race	this	race
PROPN	1/3*1/1			0*0		
VERB		1/1*1/6		1/2*1/6		
PART			1/6*2/2	0*0		
NOUN				0*2/2		
PRON				0*0		
DET				1/2*0		

PROPN VERB PART

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

	John	wants	to	race	this	race
PROPN	1/3*1/1				0*0	
VERB		1/1*1/6		1/2*1/6	1/6*0	
PART			1/6*2/2		1/6*0	
NOUN					0*0	
PRON					0*0	
DET					2/6*2/4	
	PROPN	VFRR	PΔRT	VFRR		

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

	John	wants	to	race	this	race
PROPN	1/3*1/1					0*0
VERB		1/1*1/6		1/2*1/6		1/4*1/6
PART			1/6*2/2			1/4*0
NOUN						2/4*2/2
PRON						0*0
DET					2/6*2/4	0*0
	PROPN	VERB	PART	VERB	DET	

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

	John	wants	to	race	this	race
PROPN	1/3*1/1					
VERB		1/1*1/6		1/2*1/6		
PART			1/6*2/2			
NOUN						2/4*2/2
PRON						
DET					2/6*2/4	
	PROPN	VERB	PART	VERB	DET	NOUN

PROPN VERR

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

"John wants to race this, race fast"; P(fast|ADV) = 1; P(ADV|VERB) = 1/6

VFRR

 $D\Lambda RT$

	FROFIN	VLND	FARI	VLND	DLI	INOON	:
	John	wants	to	race	this	race	fast
PROPN							*0
VERB							*0
PART							*0
NOUN						2/4*2/2	*0
PRON							*0
DET							*0
ADV							0*1/1

P(ADV|NOUN) =

DRODN VERR

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

NOUN //EDD

"John wants to race this, race fast"; P(fast|ADV) = 1; P(ADV|VERB) = 1/6

VFRR

DΛRT

	FROFIN VERD		FART VERD		DLI NOUN/VERB		KB
	John	wants	to	race	this	race	fast
PROPN						0*0	
VERB						1/4*1/6	
PART						1/4*0	
NOUN						2/4*2/2	
PRON						0*0	
DET						0*0	
ADV						0*0	

VFRB

PROPN

$$P(t_i|t_{i-1}) * P(w_i|t_i)$$

"John wants to race this, race fast"; P(fast|ADV) = 1; P(ADV|VERB) = 1/6

VFRR

PART

	1 1101 11	V LIND	1 / 1/1	V LIND		V LIND	ADV
	John	wants	to	race	this	race	fast
PROPN						0*0	*0
VERB						1/4*1/6	*0
PART						1/4*0	*0
NOUN						2/4*2/2	*0
PRON						0*0	*0
DET						0*0	*0
ADV						0*0	1/6*1/1

P(ADV|VERB)

- Issues with tagging left to right based on local max?
 - We are ignoring more promising paths overall by sticking to one decision at a step
- ullet Instead, compute best tag ${f sequence} \ \hat{T}$, one that maximizes P(T|W)

$$\hat{T} = argmax_T P(T|W)$$

- Let's improve on the approach using
 - Markov Chains: model probabilities of sequences of random variables (states)
 - Hidden Markov Chains: states are not given, but hidden
 - Words are observed
 - POS are hidden

 A Hidden Markov Model (HMM) allows inferring hidden states from observations:

$Q=q_1q_2\dots q_N$	A set of N states (tags)
$A=a_{11}a_{ij}{\dots}a_{NN}$	A transition probability matrix A , each a_{ij} representing the probability P of moving from state i to state j , s.t. $\sum_{j=1}^N a_{ij} = 1 \ \ \forall i$
$O=o_1o_2\ldots o_T$	a sequence of T observations (words), each one drawn from a vocabulary V = v_1 , v_2 ,, v_V
$B=b_i(o_t)$	a sequence of observation likelihoods (emission probabilities), each expressing the probability of an observation o_t being generated from a state i
$\pi=\pi_1,\ldots,\pi_N$	$\pi_{_{_{f i}}}$ is the probability that the chain will start in state i $\sum_{i=1}^{N}\pi_{i}=1$

- Again: strong assumptions
 - Markov: to predict the future tag in the sequence, all that matters is the current state (bigrams of tags)
 - Can be extended to trigrams
 - Independence: the probability of an output observation (word) o_i depends only on the state that produced the observation q_i
 - Not on previous observations O_{i-1}

HMM tagger

Formulation is same as before:

$$P(T|W) pprox P(t_1)P(t_2|t_1)\dots P(t_n|t_{n-1})P(w_1|t_1)P(w_2|t_2)\dots P(w_n|t_n)$$
 $pprox P(t_1)P(w_1|t_1)P(t_2|t_1)P(w_2|t_2)\dots P(t_n|t_{n-1})P(w_n|t_n)$ Emission probabilities Transition probabilities

Probabilistic POS tagging

$-t_0$	$P(oldsymbol{t_i}oldsymbol{t_{i-1}}) \qquad P(t_i t_{i-1}) = rac{C}{C}$							
	PROPN	VERB	PART	NOUN	PRON	DET		
<s>(3)</s>	1/3	1/3	0	0	0	1/3		
PROPN (1)	0	1/1	0	0	0	0		
VERB (6)	0 _	Transition	on prob	nahilitia	C	2/6		
PART (2)	0		3	1/2				
NOUN (2)	0	0	0	0	1/2	0		
PRON (1)	0	1/1	0	0	0	0		
DET (4)	0	1/4	1/4	2/4	0	0		

Probabilistic POS tagging

$$P(oldsymbol{w_i}|oldsymbol{t_i}) \hspace{0.5cm} P(w_i|t_i) = rac{C(w_i,t_i)}{C(t_i)}$$

	john	is	expect	to	race	this	the	I	want	bring
PROPN (1)	1/1	0	0	0	0	0	0	0	0	0
VERB (6)	0	2/6	1/6	0	1/6	0	0	0	1/6	1/6
PART (2)	0	0	Emiss	ion p	robab	ilities)	0	0	0
NOUN (2)	0	0	U	U	212	U	J	0	0	0
PRON (1)	0	0	0	0	0	0	0	1/1	0	0
DET (4)	0	0	0	0	0	2/4	2/4	0	0	0

These two tables are the **HMM** model

- **Decoding/inference**: task of determining the hidden state sequence corresponding to the sequence of observations
 - Given as input an HMM model λ and a sequence of observations $O = o_1 o_2 \dots o_T$ (test case), find the most probable sequence of states $Q = q_1 q_2 \dots q_T$

$$egin{aligned} \hat{T} &= argmax_T P(T|W) \ &pprox argmax \prod_{i=1}^N P(w_i|t_i) P(t_i|t_{i-1}) \end{aligned}$$

emission transition

Viterbi

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018

POS tag) *q*_1....*q*_*t*-1

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018

Viterbi algorithm:

- Dynamic programming
- First build a lattice/matrix
 - One column per observation and one row per state
 - Each node $v_t(j)$ is the **probability** that the HMM is in state j after seeing the first t observations and passing through the most probable state sequence $q_1, ..., q_{t-1}$

Viterbi algorithm:

• The value of each $v_t(j)$ is computed by **recursively** taking the most probable path that could lead to this node:

$$v_t(j) = max_{q_1,...,q_{t-1}} P(q_1 ... q_{t-1}, o_1 ... o_t, q_t = j)$$

 Probability of being in every state at time t-1 is already computed, so Viterbi probability is simply the most probable of the extensions of the paths that lead to the current cell

probability of being in state *j* after seeing the first *t* observations

Viterbi algorithm:

$$v_t(j) = max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

$v_{t-1}(i)$	the previous Viterbi path probability from the previous time step
a_{ij}	the transition probability from previous state q_i to current state q_j
$b_j(o_t)$	the emission probability of symbol o_t given the current state j

For clarity: $v_t(j) = max_{i=1}^N v_{t-1}(i) P(q_j|q_i) P(o_t|q_j)$

• Example: HMM λ (WSJ) - transition probabilities

	NNP	MD	VB	JJ	NN	RB	DT
< <i>z</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

• Example: HMM λ (WSJ) - emission probabilities

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

HMM

Will

Will

Will

- What sequence of tags is the best?
 - Start from end, trace backwards all the way to beginning
 - Each state only has one incoming edge, so there's a single path to the beginning
 - This gives us the chain of states that generates the observations with the highest probability
 - Most likely tags for this sentence:

function VITERBI(*observations* of len *T,state-graph* of len *N*) **returns** *best-path*, *path-prob*

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                             ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
      backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                             ; recursion step
   for each state s from 1 to N do
      viterbi[s,t] \leftarrow \max_{s',s}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
      backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
\textit{bestpathprob} \leftarrow \max_{s=1}^{N} \ \textit{viterbi}[s, T]  ; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018

- The number of possible paths grows exponentially with the length of the input
 - Viterbi's running time is $O(SN^2)$, where S is the length of the input and N is the number of states in the model
- Some tagsets are very large: 50 or so tags
 - Beam search as alternative decoding algorithm
 - \blacksquare At every step, only expand on top k most promising paths

HMM for POS tagging - beam search (k=2)

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018

- HMM is a generative model, powerful but limited in the features it can use
- Alternative: sequence version of logistic regression classifier - maximum entropy classifier (MEMM), a discriminative model to directly estimate posterior

$$egin{aligned} \hat{T} &= argmax_T P(T|W) \ &= argmax_T \prod P(t_i|w_i,t_{i-1}) \end{aligned}$$

What else could we use?

- What else could we use?
 - All sorts of features

 w_i contains a particular prefix (from all prefixes of length ≤ 4) w_i contains a particular suffix (from all suffixes of length ≤ 4) w_i contains a number w_i contains an upper-case letter

- w_i contains a hyphen
- w_i is all upper case wi's word shape
 - - All sorts of features

HMM vs MEMM

Figure from Jurafsky, D and Martin, J, "Speech and Language Processing," 2018

HMM vs MEMM

$$\hat{T} = argmax_T P(T|W)$$

$$= \boxed{argmax_T \prod_i P(t_i|t_{i-1}, w_i)}$$

$$\begin{split} \hat{T} &= argmax_T P(T|W) & \text{HMM Inference} \\ \hat{T} &= argmax_T P(W|T) P(T) \\ &= \underbrace{argmax_T \prod_i P(w_i|t_i) p(t_i|t_{i-1})} \end{split}$$

HMM vs MEMM

Versus VITERBI for HMM

$$v_t(j) = max_{i=1}^N v_{t-1}(i) P(q_j|q_i) P(o_t|q_j)$$

Viterbi for MEMM

$$v_t(j) = max_{i=1}^N v_{t-1}(i) P(q_j|q_i,o_t)$$

o_t could be any feature, not just words

Other approaches to POS tagging

RNN for POS tagging

- RNN to assign a label from (small) tagset to each word in the sequence
 - Inputs: word embedding per word
 - Outputs: tag probabilities from a softmax layer over tagset
 - RNN: 1 input, 1 output, 1 hidden layer; U, V and W shared

RNN for POS tagging

Training

- Cross-entropy loss over the tagset for each word
- Sequence loss is the sum of loss for all words

Inference

- Run forward inference over the input sequence and select the most likely tag from the softmax at each step
- Decision for each word in the sequence is taken independently from decision for other words - not optimising for sequence of tags

SOTA

- Using Universal
 Dependencies (UD) as tagset for various
 languages
- Also used for Named Entity Recognition

played

Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation.

Heinzerling† & Strube, 2019.

SOTA

- Ensemble of subword representations
- Input encoded using
 - Multilingual BERT (yellow, bottom left)
 - LSTM with BPEmb (pink, bottom middle)
 - Character-RNN (blue, bottom right)
- Meta-LSTM (green, center) combines the different encodings before classification (top)
- Horizontal arrows are bidirectional LSTMs.

SOTA for POS tagging - high res langs.

		•		\sim	\neg	. М
$\mathbf{\nu}$	rev	וחו	10	~	11	/\
	I C. V	11 71	1.5		. , .	$\overline{}$

			1	BPEmb		1		BE	RT
Lang.	BiLSTM	Adv.	FastText	BPEmb	+char	+shape	BERT	+char	+char+BPemb
Avg.	96.4	96.6	95.6	95.2	96.4	95.7	95.6	96.3	96.8
bg	98.0	98.5	97.7	97.8	98.5	97.9	98.0	98.5	98.7
CS	98.2	98.8	98.3	98.5	98.9	98.7	98.4	98.8	99.0
da	96.4	96.7	95.3	94.9	96.4	95.9	95.8	96.3	97.2
de	93.4	94.4	90.8	92.7	93.8	93.5	93.7	93.8	94.4
en	95.2	95.8	94.3	94.2	95.5	94.9	95.0	95.5	96.1
es	95.7	96.4	96.3	96.1	96.6	96.0	96.1	96.3	96.8
eu	95.5	94.7	94.6	94.3	96.1	94.8	93.4	95.0	96.0
fa	97.5	97.5	97.1	95.9	97.0	96.0	95.7	96.5	97.3
fi	95.8	95.4	92.8	92.8	94.4	93.5	92.1	93.8	94.3
fr	96.1	96.6	96.0	95.5	96.1	95.8	96.1	96.5	96.5
he	97.0	97.4	97.0	96.3	96.8	96.0	96.5	96.8	97.3
hi	97.1	97.2	97.1	96.9	97.2	96.9	96.3	96.8	97.4
hr	96.8	96.3	95.5	93.6	95.4	94.5	96.2	96.6	96.8
id	93.4	94.0	91.9	90.7	93.4	93.0	92.2	93.0	93.5
it	98.0	98.1	97.4	97.0	97.8	97.3	97.5	97.9	98.0
nl	93.3	93.1	90.0	91.7	93.2	92.5	91.5	92.6	93.3
no	98.0	98.1	97.4	97.0	98.2	97.8	97.5	98.0	98.5
pl	97.6	97.6	96.2	95.8	97.1	96.1	96.5	97.7	97.6
pt	97.9	98.1	97.3	96.3	97.7	97.2	97.5	97.8	98.1
sl	96.8	98.1	97.1	96.2	97.7	96.8	96.3	97.4	97.9
sv	96.7	96.7	96.7	95.3	96.7	95.7	96.2	97.1	97.4

SOTA for POS tagging - low res langs.

Lang.	Adv.	FastText	BPEmb +char	MultiBPEmb +char+finetune
Avg.	91.6	90.4	79.3	92.4
el	98.2	97.2	96.5	97.9
et	91.3	89.5	82.1	92.8
ga	91.1	89.2	81.6	91.0
hu	94.0	92.9	83.1	94.0
ro	91.5	88.6	73.9	89.7
ta	83.2	85.2	58.7	88.7