Multi-Criteria Dimensionality Reduction with Applications to Fairness

Uthaipon (Tao) Tantipongpipat

Georgia Institute of Technology

Joint work with

Samira Samadi, Mohit Singh, Jamie Morgernstern, and Santosh Vempala

PCA can be unfair!

Standard PCA on face data LFW of male and female.

Average reconstruction error (RE) of PCA on LFW

Unfair PCA

Standard PCA on face data LFW of male and female.

Average reconstruction error (RE) of PCA on LFW

Equalizing male and female weight before PCA

Average reconstruction error (RE) of PCA on LFW (resampled)

Main Contributions

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Main Contributions

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Main Contributions

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Algorithms and Performance Guarantee

On linear f_i in PP^T and concave g:

Main Contributions

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

NSW:
$$\max_{P} \quad \prod_{i=1}^{k} ||A_{i}P||_{F}^{2}$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Main Contributions

Algorithms and Performance Guarantee

- Polynomial-time algorithm for MCDR with optimal utility and small rank violation $s = \sqrt{2k + 1/4} 3/2$
- Approximation ratio 1 s/d on utility when no rank violation

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Main Contributions

Multiplicative Weight (MW) method for scalable up to ≈ 1000 dimensions

Algorithms and Performance Guarantee

- Polynomial-time algorithm for MCDR with optimal utility and small rank violation $s = \sqrt{2k + 1/4} 3/2$
- Approximation ratio 1 s/d on utility when no rank violation

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Main Contributions Multiplicative Weight (MW) method for scalable up to ≈ 1000 dimensions

Algorithms and Performance Guarantee

- Polynomial-time algorithm for MCDR with optimal utility and small rank violation $s = \sqrt{2k + 1/4} 3/2$
- Approximation ratio 1 s/d on utility when no rank violation

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Theory: low-rank property in semi-definite program (SDP)

- Every extreme point of the SDP-Relaxation of MCDR has low rank.
- Optimization result + ML application

Main Contributions

Multiplicative Weight (MW) method for scalable up to ≈ 1000 dimensions

Algorithms and Performance Guarantee

- Polynomial-time algorithm for MCDR with optimal utility and small rank violation $s = \sqrt{2k + 1/4} 3/2$
- Approximation ratio 1-s/d on utility when no rank violation

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Theory: low-rank property in semi-definite program (SDP)

- Every extreme point of the SDP-Relaxation of MCDR has low rank.
- Optimization result + ML application

Multiplicative Weight (MW) method for scalable up to ≈ 1000 dimensions

Algorithms and Performance Guarantee

On linear f_i in PP^T and concave g:

- Polynomial-time algorithm for MCDR with optimal utility and small rank violation $s = \sqrt{2k + 1/4} 3/2$
- Approximation ratio 1 s/d on utility when no rank violation

Main Contributions

Complexity of MCDR

NP-hard for general k

Reduction to MAX-CUT

Polynomial-time for fixed k

Algorithmic theory of quadratic maps.

Mar-Loss:
$$\min_{P} \max_{i \in \{1,...,k\}} \left(\max_{Q} ||A_i Q||_F^2 - ||A_i P||_F^2 \right)$$

Problem Formulation

Multi-criteria dimensionality reduction (MCDR):

$$\max_{\text{projection } P} g(f_1(P), f_2(P), \dots, f_k(P))$$

Utility criterion f_i 's and social welfare g

Theory: low-rank property in semi-definite program (SDP)

- Every extreme point of the SDP-Relaxation of MCDR has low rank.
- Optimization result + ML application

Multiplicative Weight (MW) method for scalable up to ≈ 1000 dimensions

Algorithms and Performance Guarantee

On linear f_i in PP^T and concave g:

- Polynomial-time algorithm for MCDR with optimal utility and small rank violation $s = \sqrt{2k + 1/4} 3/2$
- Approximation ratio 1-s/d on utility when no rank violation

Main Contributions

Complexity of MCDR

NP-hard for general k

· Reduction to MAX-CUT

Polynomial-time for fixed *k*

Algorithmic theory of quadratic maps.

Code: github.com/SDPforAll/multiCriteriaDimReduction
Web: sites.google.com/site/ssamadi/fair-pca-homepage