Quiz 4

Designing Adder, Substracter ve Comparator Circuits with Block Structure ile Tasarımı

A circuit that will be designed which is used to compare two n-bit positive integers, $A=(a_{n-1}a_{n-2}...a_1a_0)_2$ and $B=(b_{n-1}b_{n-2}...b_1b_0)_2$. The circuit has three 1-bit outputs, x,y,z. The definitions and the Boole functions of the outputs are given below.

A = B
$$\rightarrow$$
 (1, 0, 0) = (x, y, z)
A > B \rightarrow (0, 1, 0) = (x, y, z)
A < B \rightarrow (0, 0, 1) = (x, y, z)
 $a_i > b_i \rightarrow$ (1, 0, 0) = (u_i, t_i, v_i)
 $a_i = b_i \rightarrow$ (0, 1, 0) = (u_i, t_i, v_i)
 $a_i < b_i \rightarrow$ (0, 0, 1) = (u_i, t_i, v_i)

$$\begin{split} x &= t_{n\text{-}1}t_{n\text{-}2}\dots t_1t_0\\ y &= u_{n\text{-}1} + t_{n\text{-}1}u_{n\text{-}2} + t_{n\text{-}1}t_{n\text{-}2}u_{n\text{-}3} + \dots + t_{n\text{-}1}t_{n\text{-}2}\dots t_2u_1 + t_{n\text{-}1}t_{n\text{-}2}\dots t_2t_1u_0\\ z &= v_{n\text{-}1} + t_{n\text{-}1}v_{n\text{-}2} + t_{n\text{-}1}t_{n\text{-}2}v_{n\text{-}3} + \dots + t_{n\text{-}1}t_{n\text{-}2}\dots t_2v_1 + t_{n\text{-}1}t_{n\text{-}2}\dots t_2t_1v_0 \end{split}$$

The schematic of the basic block that will be used to design the circuit is shown in Fig. 1.

If the relation between the numbers represented by the bits from (n-1) to i is $(a_{n-1}a_{n-2}...a_{i-1}a_i)_2 > (b_{n-1}b_{n-2}...b_{i-1}b_i)_2$ then $f_i=1$

If the relation between the numbers represented by the bits from (n-1) to i is $(a_{n-1}a_{n-2}...a_{i-1}a_i)_2 < (b_{n-1}b_{n-2}...b_{i-1}b_i)_2$ then $g_i=1$

If the relation between the numbers represented by the bits from (n-1) to i is $(a_{n-1}a_{n-2}...a_{i-1}a_i)_2 = (b_{n-1}b_{n-2}...b_{i-1}b_i)_2$ then $h_i=1$

- 1) Draw the schematic of the 1-bit comparator circuit using the logic gates.
- 2) Draw the schematic of the connector circuit using the logic gates.
- 3) Draw the schematic of the comparator circuit for two 3-bit positive numbers, $A=(a_2a_1a_0)_2$ and $B=(b_2b_1b_0)_2$, by using the circuit shown in Fig. 1 as the basic building block.