数学分析 III 课件

叶胥达

2022 年 10 月 13 日

1 知识回顾

高阶偏导数

高阶偏导数描述函数在局部的高阶可导性. 对于二元函数 f(x,y),假设其混合偏导数 $f''_{xy}(x,y)$ 和 $f''_{yx}(x,y)$ 在 (x_0,y_0) 的邻域内存在. 只要 $f''_{xy}(x,y)$ 和 $f''_{yx}(x,y)$ 之一在 (x_0,y_0) 处连续, 就可以得到 $f''_{xy}(x_0,y_0) = f''_{yx}(x_0,y_0)$. (谢惠民 命题 19.1.2)

命题 设 f(x,y) 在 (x_0,y_0) 的邻域内存在混合偏导数 $f''_{xy}(x,y)$ 和 $f''_{yx}(x,y)$. 若 $f''_{xy}(x,y)$ 在 (x_0,y_0) 处连续,则 $f''_{xy}(x_0,y_0) = f''_{yx}(x_0,y_0)$.

证明 不妨设 $(x_0, y_0) = (0, 0)$. 则由一元微分中值定理, 存在 $\theta_1, \theta_2 \in (0, 1)$ 使得

$$f(x,y) - f(x,0) - f(0,y) + f(0,0) = f''_{xy}(\theta_1 x, \theta_2 y) xy.$$

由于 $f_{xy}''(x,y)$ 在 (0,0) 处连续,故对任意 $\varepsilon>0$,存在 $\delta>0$,使得当 $x,y\in[-\delta,\delta]$ 且 $x,y\neq0$ 时,

$$\left|\frac{1}{x}\left(\frac{f(x,y)-f(x,0)}{y}-\frac{f(0,y)-f(0,0)}{y}\right)-f_{xy}''(0,0)\right|\leqslant \varepsilon.$$

令 $y \to 0$, 则得到对任意 $x \in [-\delta, \delta]$ 且 $x \neq 0$,

$$\left| \frac{1}{x} \left(f_y'(x,0) - f_y'(0,0) \right) - f_{xy}''(0,0) \right| \leqslant \varepsilon.$$

根据导数的定义可知在 $f_{yx}''(0,0) = f_{xy}''(0,0)$.

高阶可微性

高阶可微性用于定性描述函数 f(x,y) 在 (x_0,y_0) 附近的光滑性. f(x,y) 在 (x_0,y_0) 处 k 阶可微, 是指 f(x,y) 的直到 k-1 阶偏导数都在 (x_0,y_0) 处可微. f(x,y) 在 (x_0,y_0) 的邻域内 k 阶连续可微, 是指 f(x,y) 的直到 k 阶偏导数都在 (x_0,y_0) 的邻域内光滑.

多元 Taylor 展开

Taylor 展开提供了逼近多元函数的手段, 本质上还是一元的 Taylor 展开. 若 f(x) 在 x^0 的邻域内具有 k+1 阶连续偏导数, 则存在 $\theta \in (0,1)$ 使得

$$f(\boldsymbol{x}^0 + \boldsymbol{h}) = f(\boldsymbol{x}^0) + \sum_{k=1}^K \frac{1}{k!} \left(\sum_{i=1}^n h_i \frac{\partial}{\partial x_i} \right)^k f(\boldsymbol{x}^0) + \frac{1}{(K+1)!} \left(\sum_{i=1}^n h_i \frac{\partial}{\partial x_i} \right)^{K+1} f(\boldsymbol{x}^0 + \boldsymbol{\theta} \boldsymbol{h})$$

与一维的情形相同, Taylor 展开在局部存在不意味着 Taylor 级数收敛, 即不能得到

$$f(\boldsymbol{x}^0 + \boldsymbol{h}) = f(\boldsymbol{x}^0) + \sum_{k=1}^{+\infty} \frac{1}{k!} \left(\sum_{i=1}^n h_i \frac{\partial}{\partial x_i} \right)^k f(\boldsymbol{x}^0).$$

注意到, 对于满足 $k = k_1 + \cdots + k_n$ 的非负整数 k_1, \cdots, k_n , 上述表达式当中的偏导数

$$\frac{\partial^k f}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}}(\boldsymbol{x}^0)$$

的系数为

$$\frac{1}{k!} \binom{k}{k_1 \cdots k_n} = \frac{1}{k_1! \cdots k_n!}.$$

因此, 我们也可以把 Taylor 展开写为

$$f(\boldsymbol{x}^0 + \boldsymbol{h}) = \sum_{\substack{k_1, \dots, k_n \geqslant 0 \\ k_1 + \dots + k_n \leqslant K}} \frac{1}{k_1! \cdots k_n!} \frac{\partial^{k_1 + \dots + k_n} f}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}} (\boldsymbol{x}^0) h_1^{k_1} \cdots h_n^{k_n} + o(|\boldsymbol{h}|^K).$$

上面的表达式有时候比微分算子形式的 Taylor 展开更加好用.

隐函数定理

给 F(x,y) 加以适当的光滑性条件,可以从方程 F(x,y)=0 确定隐函数 y=y(x). 并且, y(x) 的导数 y'(x) 可以由

$$y'(x) = -\left(\frac{\partial F}{\partial y}\right)^{-1} \frac{\partial F}{\partial x} \tag{1}$$

给出. 因此, y(x) 与 F(x,y) 有相同阶的光滑性, 即如果 F(x,y) 有 k 阶的连续偏导数, 则 y(x) 有 k 阶连续导数.

2 习题解答

30. (2) 容易看出, $\ln x$ 的 m 阶导数形如

$$\frac{\mathrm{d}^m}{\mathrm{d}x^m} \ln x = (-1)^{m-1} \frac{(m-1)!}{x^m},$$

因此可以猜测 $\ln(\sum_i a_i x_i)$ 的阶偏导数 $(m = m_1 + \cdots + m_n)$ 形如

$$\frac{\partial^m f}{\partial x_1^{m_1} \cdots \partial x_n^{m_n}} = (-1)^{m-1} \frac{(m-1)!}{(\sum_i a_i x_i)^m} a_1^{m_1} \cdots a_n^{m_n}. \tag{1}$$

(1) 可以通过对m 归纳来得到. 当m=1时,结果显然成立.

假设 (1) 对某个 m 成立,考虑 m+1 的情形,即存在 m_1, \dots, m_n 使得 $m_1 + \dots + m_n = m+1$. 不妨设 $m_i > 0$,则由

$$m_1 + \cdots + m_{i-1} + (m_i - 1) + m_{i+1} + \cdots + m_n = m$$

可得

$$\frac{\partial^m f}{\partial x_1^{m_1} \cdots \partial x_i^{m_i-1} \cdots \partial x_n^{m_n}} = (-1)^{m-1} \frac{(m-1)!}{(\sum_i a_i x_i)^m} a_1^{m_1} \cdots a_i^{m_i-1} \cdots a_n^{m_n}. \tag{2}$$

在(2)的两端对 x_i 求导即可得到

$$\frac{\partial^{m+1} f}{\partial x_1^{m_1} \cdots \partial x_i^{m_i} \cdots \partial x_n^{m_n}} = (-1)^m \frac{m!}{(\sum_i a_i x_i)^{m+1}} a_1^{m_1} \cdots a_i^{m_i} \cdots a_n^{m_n}.$$

因此(1)对m+1的情形成立.

35. 注意, 从 (x,y) 坐标下的 Laplace 方程到 (r,θ) 坐标下的 Laplace 方程有一定的信息损失, 因 为后者要求 $r \neq 0$. 例如, $u(r,\theta) = \log r$ 满足 (r,θ) 意义下的 Laplace 方程, 但是在 (x,y) 坐标的意义下它有奇异点 (0,0). 再例如, $u(r,\theta) = \theta$ 也满足 (r,θ) 意义下的 Laplace 方程, 但它关于 θ 不是以 2π 为周期的.

由于 (r,θ) 可以唯一确定一组(x,y)坐标,因此在全局意义下有

$$\frac{\partial x}{\partial r} = \cos \theta, \quad \frac{\partial x}{\partial \theta} = -r \sin \theta, \quad \frac{\partial y}{\partial r} = \sin \theta, \quad \frac{\partial y}{\partial \theta} = r \cos \theta.$$

换句话说, 变换 $(r,\theta) \mapsto (x,y)$ 的 Jacobi 矩阵为

$$J_{(r,\theta)}(x,y) = \begin{bmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{bmatrix}.$$

但是反过来的情形不太一样. 即便 $(x,y) \neq (0,0)$, 从同一组 (x,y) 出发也会有多组 (r,θ) 与之对应. 但是, 从<mark>局部</mark>的角度看, (x,y) 和 (r,θ) 之间存在一一对应. 因此此时变换 $(x,y) \mapsto (r,\theta)$ 的 Jacobi 矩阵是 $J_{(r,\theta)}(x,y)$ 的逆矩阵, 即

$$J_{(x,y)}(r,\theta) = \frac{1}{r} \begin{bmatrix} r\cos\theta & -\sin\theta \\ r\sin\theta & \cos\theta \end{bmatrix}.$$

但无论如何,从 (x,y) 映射到 (r,θ) 丢失了 (x,y) 坐标中的全局信息. 这也就是为什么在 (r,θ) 下,需要人为地添加关于 θ 的周期边界条件.

42. 将函数 $f(x,y) = e^{xy}$ 以 xy 为变元作 Taylor 展开可得

$$f(x,y) = \sum_{k=0}^{\infty} \frac{1}{k!} x^k y^k.$$

另一方面, f(x,y) 在 (0,0) 的 K 阶 Taylor 展开公式为

$$f(x,y) = \sum_{k+l \le K} \frac{1}{k!l!} \frac{\partial^{k+l} f}{\partial x^k \partial y^l} (0,0) x^k y^l + o((|x| + |y|)^K).$$
 (2)

比较 (1)(2) 中 $x^k y^l$ 的系数有

$$\frac{1}{k!l!} \frac{\partial^{k+l} f}{\partial x^k \partial y^l} (0,0) = \frac{1}{k!} \delta_{k,l}.$$

因此

$$\frac{\partial^{k+l} f}{\partial x^k \partial y^l}(0,0) = \begin{cases} k!, & k = l \\ 0, & k \neq l \end{cases}$$

52. 由条件存在一一映射 $f: \mathbb{R}^n \to \mathbb{R}^m$ 使得 f 和 f^{-1} 都连续可微. 任取点 $x_0 \in \mathbb{R}^n$,令 $y_0 = f(x_0) \in \mathbb{R}^m$. 令 $J_1 = \nabla f(x_0) \in \mathbb{R}^{m \times n}$ 为 f(x) 在 x_0 处的 Jacobi 矩阵, $J_2 = (\nabla f^{-1})(y_0) \in \mathbb{R}^{n \times m}$ 在 y_0 处的 Jacobi 矩阵,在等式

$$f^{-1}(f(x)) = x$$

两端对 x 求梯度可得

$$(\nabla f^{-1})(f(x))\nabla f(x) = I_n,$$

其中 $I_n \in \mathbb{R}^{n \times n}$ 为 n 阶单位方阵. 令 $x = x_0$, 则可以得到

$$J_2J_1=I_n.$$

但 $n = \operatorname{rank} I_n = \operatorname{rank} J_2 J_1 \leqslant \operatorname{rank} J_1 \leqslant m$, 矛盾!

3 补充习题

1. (周民强 2.2.16) 设 f(x,y) 在原点的邻域 $U_0(\delta)$ 内存在一阶偏导数 $f'_x(x,y)$ 和 $f'_y(x,y)$. 若 $f'_x(x,y)$ 和 $f'_y(x,y)$ 均在 (0,0) 处可微, 证明 $f''_{xy}(0,0) = f''_{yx}(0,0)$.

思路 关于不同的变元的偏导数何时可交换是一个基本的问题. 本题说明了在较弱的条件下也

可以保证偏导数可交换. 主要的步骤是对 f(x,y) - f(x,0) - f(0,y) + f(0,0) 进行估计.

解答 记 S(x,y) = f(x,y) - f(x,0) - f(0,y) + f(0,0). 由微分中值定理, 存在 $\theta \in (0,1)$ 使得

$$S(x,y) = x \left[f_x'(\theta x, y) - f_y'(\theta x, 0) \right]. \tag{1}$$

由于 $f'_x(x,y)$ 在 (0,0) 处可微, 故

$$f_x'(x,y) = f_{xx}''(0,0)x + f_{xy}''(0,0)y + o(\rho),$$

其中 $\rho = \sqrt{x^2 + y^2}$. 特别的, 我们有

$$f'_x(\theta x, y) = f''_{xx}(0, 0)\theta x + f''_{xy}(0, 0)y + o(\rho),$$

$$f'_x(0, y) = f''_{xx}(0, 0)\theta x + o(\rho).$$

故

$$f'_x(\theta x, y) - f'_x(0, y) = f''_{xy}(0, 0)y + o(\rho).$$

将其代入(1)中可以得到

$$S(x,y) = f_{xy}''(0,0)xy + o(\rho^2).$$
(2)

同理有

$$S(x,y) = f_{yx}''(0,0)xy + o(\rho^2).$$
(3)

由(2)(3)可以得到

$$\lim_{x,y\to 0}\frac{\left[f_{xy}''(0,0)-f_{yx}''(0,0)\right]xy}{x^2+y^2}=0.$$

特别的, 在直线 x=y 上可以得到 $f''_{xy}(0,0)=f''_{yx}(0,0)$.

注意, 从 (2) 出发不能得到 $\lim_{x,y\to 0} \frac{S(x,y)}{xy} = f_{xy}''(0,0)$.

2. (周民强 2.2.8) (1) 设 u(x,y) 有连续二阶偏导数, 且满足 $\Delta u = 0$. 证明:

$$v(x,y) = u\left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

满足 $\Delta v = 0$.

(2) 设 $f(x_1, \dots, x_n)$ 三阶连续可微, 且满足 $\Delta u = 0$, 则

$$v = \sum_{i=1}^{n} x_i \frac{\partial u}{\partial x_i}$$

满足 $\Delta v = 0$.

(3) 设 $u(x_1,\dots,x_n)$ 三阶连续可微, 且满足 $\Delta u=0$, 则

$$v(x_1, \dots, x_n) = \left(\sum_{i=1}^n x_i^2\right) u(x_1, \dots, x_n)$$

满足 $\Delta(\Delta v) = 0$.

思路 这些题目主要考察高阶偏导数的计算. 如何用最简单的方式表示出偏导数是解题的关键.

解答 (1) 如果不使用复变函数的技巧的话,本题并无简便方法,仅仅要求仔细计算 v(x,y) 的各阶偏导数. 设函数 u 关于其两个分量的偏导数分别为 $\partial_1 u$ 和 $\partial_2 u$,则由

$$\partial_x v = \partial_1 u \, \partial_x \left(\frac{x}{x^2 + y^2} \right) + \partial_2 u \, \partial_x \left(\frac{y}{x^2 + y^2} \right)$$

可以得到

$$\partial_{xx}v = \partial_{11}u \left[\frac{\partial_x \left(\frac{x}{x^2 + y^2} \right) \right]^2 + 2\partial_{12}u \,\partial_x \left(\frac{x}{x^2 + y^2} \right) \partial_x \left(\frac{y}{x^2 + y^2} \right) + \partial_{22}u \left[\partial_x \left(\frac{y}{x^2 + y^2} \right) \right]^2 + \partial_1u \,\partial_{xx} \left(\frac{x}{x^2 + y^2} \right) + \partial_2u \,\partial_{xx} \left(\frac{y}{x^2 + y^2} \right).$$

类似地有

$$\partial_{yy}v = \partial_{11}u \left[\partial_y \left(\frac{x}{x^2 + y^2} \right) \right]^2 + 2\partial_{12}u \, \partial_y \left(\frac{x}{x^2 + y^2} \right) \partial_y \left(\frac{y}{x^2 + y^2} \right) + \partial_{22}u \left[\partial_y \left(\frac{y}{x^2 + y^2} \right) \right]^2 + \partial_1u \, \partial_{yy} \left(\frac{x}{x^2 + y^2} \right) + \partial_2u \, \partial_{yy} \left(\frac{y}{x^2 + y^2} \right).$$

注意到,由于

$$\left[\partial_x \left(\frac{x}{x^2+y^2}\right)\right]^2 = \left[\partial_y \left(\frac{y}{x^2+y^2}\right)\right]^2, \quad \left[\partial_x \left(\frac{y}{x^2+y^2}\right)\right]^2 = \left[\partial_y \left(\frac{x}{x^2+y^2}\right)\right]^2,$$

并且 $\frac{x}{x^2+u^2}$ 和 $\frac{y}{x^2+u^2}$ 在除 (0,0) 外的区域上均为调和函数, 因此可得

$$\partial_{xx}v + \partial_{yy}v = 2\partial_{12}u \left[\partial_x \left(\frac{x}{x^2 + y^2} \right) \partial_x \left(\frac{y}{x^2 + y^2} \right) + \partial_y \left(\frac{x}{x^2 + y^2} \right) \partial_y \left(\frac{y}{x^2 + y^2} \right) \right].$$

最后,由于

$$\partial_x \left(\frac{x}{x^2 + y^2} \right) \partial_x \left(\frac{y}{x^2 + y^2} \right) = \frac{y^2 - x^2}{x^2 + y^2} \cdot \frac{-2xy}{x^2 + y^2} = -\partial_y \left(\frac{x}{x^2 + y^2} \right) \partial_y \left(\frac{y}{x^2 + y^2} \right),$$

我们得到 $\partial_{xx}v + \partial_{yy}v = 0$.

(2) 由于 $v = \sum_{j} x_{j} \partial_{j} u$, 我们有

$$\partial_i v = \sum_j \partial_i (x_j \partial_j u) = \sum_j (\delta_{ij} \partial_j u + \partial_{ij} u) = \partial_i u + \sum_j \partial_{ij} u,$$

因此

$$\partial_{ii}v = \partial_{ii}u + \sum_{i} \partial_{iij}u.$$

故

$$\Delta v = \sum_{i} \partial_{ii} v = \Delta u + \sum_{j} \partial_{j} (\Delta u) = 0.$$

(3) 使用和(2)类似的计算,由

$$\partial_i v = \partial_i \left(\sum_j x_j^2 u \right) = 2x_i u + \sum_j x_j^2 \partial_i u$$

可以得到

$$\partial_{ii}v = 2u + 4x_i\partial_i u + \sum_i x_j^2 \partial_{ii}u.$$

对 i 求和以后得到

$$\Delta v = \sum_{i} \partial_{ii} v = 2nu + 4 \sum_{i} x_i \partial_i u.$$

因此

$$\partial_i(\Delta v) = 2n\partial_i u + 4\sum_j \left(\delta_{ij}\partial_j u + \partial_{ij}u\right) = (2n+4)\partial_i u + 4\sum_j \partial_{ij}u.$$

故对 x_i 求导之后得到

$$\partial_{ii}(\Delta v) = (2n+4)\partial_{ii}u + 4\sum_{i}\partial_{iij}u.$$

对 n 求和以后得到

$$\Delta(\Delta v) = (2n+4)\Delta u + 4\sum_{j} \partial_{j}(\Delta u) = 0.$$

3*. 证明: 对任意 M > 0, 存在 \mathbb{R}^2 上二阶连续可微的函数 u(x,y), 使得

- 1. 当 $x^2 + y^2 \ge 1$ 时, u(x, y) = 0;
- 2. $\max\{|u_{xx}''(x,y)|, |u_{yy}''(x,y)|\} \leqslant 1$ 对所有 $x, y \in \mathbb{R}$ 成立;
- 3. $|u''_{xy}(0,0)| \ge M$.

思路 在二阶椭圆方程的理论中, 有以下著名的 L^p 估计: 对任何 $1 , 存在 <math>C_p > 0$ 使得

$$||u||_{W^{2,p}(B_1)} \le C_p ||\Delta u||_{L^p(B_1)}, \quad \forall u \in W_0^{2,p}(B_1).$$

换言之,Laplace 算子的 L^p 范数可以控制混合偏导数的 L^p 范数. 本题的结果说明了 L^p 估计在 $p=+\infty$ 时不成立: u''_{xx} 和 u''_{yy} 的 L^∞ 范数不足以控制 u''_{xy} 的 L^∞ 范数. 另外,本题的构造可以看作调和分析中 Riesz 变换的一种特例.

解答 首先, 我们证明下面的引理:

引理 存在函数 $\xi \in C^2(\mathbb{R})$, 使得

1.
$$\exists t \leq 0 \exists t \in (t) = 1$$
, $\exists t \geq 1 \exists t \in (t) = 0$, $\exists 0 < t < 1 \exists t < 0 \in (t) < 1$;

2.
$$|\xi'(t)| \leq 2$$
和 $|\xi''(t)| \leq 5$ 对一切 $t \in \mathbb{R}$ 成立.

引理的证明 将 $\xi(t)$ 显式地取为 $\xi(t) = 1 - 10t^3 + 15t^4 - 6t^5 (0 < t < 1)$ 即证.

考察 $u(x,y) = xyg(x^2 + y^2)$, 其中 g(t) 为二次可微的标量函数. 直接计算易得

$$\begin{split} u_{xx}'' &= 6xyg'(x^2+y^2) + 4x^3yg''(x^2+y^2), \\ u_{yy}'' &= 6xyg'(x^2+y^2) + 4xy^3g''(x^2+y^2), \\ u_{xy}'' &= g(x^2+y^2) + 2(x^2+y^2)g'(x^2+y^2) + 4x^2y^2g''(x^2+y^2). \end{split}$$

令 $t = x^2 + y^2$, 则由 $|2xy| \le t$ 容易验证

$$\max \left\{ |u_{xx}''|, |u_{yy}''| \right\} \leqslant 3t|g'(t)| + 2t^2|g''(t)|,$$
$$|u_{xy}''| \geqslant |g(t)| - 2t|g'(t)| - t^2|g''(t)|.$$

 $\Diamond g(t) = \ln(\varepsilon + t)\xi(t)$, 其中 $\varepsilon \in (0,1)$ 为待定常数, 而函数 $\xi(t)$ 按照引理定义. 于是

$$g'(t) = \frac{1}{\varepsilon + t} \xi(t) + \ln(\varepsilon + t) \xi'(t),$$

$$g''(t) = -\frac{1}{(\varepsilon + t)^2} \xi(t) + \frac{2}{\varepsilon + t} \xi'(t) + \ln(\varepsilon + t) \xi''(t).$$

注意到对任意 $t \ge 0$, 有

$$t|\ln(\varepsilon+t)|1_{\{t\leqslant 1\}}\leqslant (\varepsilon+t)|\ln(\varepsilon+t)|1_{\{t\leqslant 1\}}\leqslant \sup_{x\in (0,e)}x|\ln x|\leqslant 3,$$

我们可以得到 t|g'(t)| 和 $t^2|g''(t)|$ 的估计: 对任意 $t \ge 0$, 有

$$t|g'(t)| \leqslant t \left(\frac{1}{t} + 2|\ln(\varepsilon + t)|1_{\{t \leqslant 1\}}\right) \leqslant 1 + 2t|\ln(\varepsilon + t)|1_{\{t \leqslant 1\}} \leqslant 7,$$

$$t^{2}|g''(t)| \leqslant t^{2} \left(\frac{1}{t^{2}} + \frac{4}{t}1_{\{t \leqslant 1\}} + 5|\ln(\varepsilon + t)|1_{\{t \leqslant 1\}}\right) \leqslant 5 + 5t|\ln(\varepsilon + t)|1_{\{t \leqslant 1\}} \leqslant 20.$$

综合以上结果,有

$$\begin{split} \max\left\{|u_{xx}''(x,y)|,|u_{yy}''(x,y)|\right\} &\leqslant 61,\\ |u_{xy}''(0,0)|\geqslant |\ln\varepsilon|-34. \end{split}$$

由于 ε 可以任意小, $|u''_{xy}(0,0)|$ 可以任意大.

4. (1) (周民强 2.2.3) 设函数 u = u(x,y) 由 $u = y + x\varphi(u)$ 确定, 其中 φ 任意次可导. 证明:

$$\frac{\partial^n u}{\partial x^n} = \frac{\partial^{n-1}}{\partial y^{n-1}} \bigg(\varphi^n(u) \frac{\partial u}{\partial y} \bigg).$$

(2) 设隐函数 u = u(x) 由 $u = 1 + x \sin u$ 确定. 证明: u(x) 在 x = 0 处的任意阶导数为

$$u^{(n)}(0) = \frac{\mathrm{d}^{n-1}}{\mathrm{d}t^{n-1}} (\sin^n t) \Big|_{t=1}, \quad n \in \mathbb{N}.$$

思路 本题主要考察隐函数中的偏导数计算.

解答 (1) 对 n 用数学归纳法. 当 n=1 时, 在 $u=y+x\varphi(u)$ 两端对 x,y 分别求导可得

$$\begin{cases} \frac{\partial u}{\partial x} = \varphi(u) + x\varphi'(u) \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} = 1 + x\varphi'(u) \frac{\partial u}{\partial y} \end{cases} \Longrightarrow \begin{cases} \frac{\partial u}{\partial x} \Big(1 - x\varphi'(u) \Big) = \varphi(u) \\ \frac{\partial u}{\partial y} \Big(1 - x\varphi'(u) \Big) = 1 \end{cases}$$

将以上两式相除可得 $\frac{\partial u}{\partial x} = \varphi(u) \frac{\partial u}{\partial y}$.

设命题对n成立,考察n+1的情形.在原等式的两端对x取偏导数,得到

$$\frac{\partial^{n+1} u}{\partial x^{n+1}} = \frac{\partial^{n-1}}{\partial y^{n-1}} \left[\frac{\partial}{\partial x} \left(\varphi^n(u) \frac{\partial u}{\partial y} \right) \right]$$

为了证明命题对n+1的情形成立,只需验证

$$\frac{\partial}{\partial x} \left(\varphi^n(u) \frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial y} \left(\varphi^{n+1}(u) \frac{\partial u}{\partial y} \right). \tag{*}$$

为了证明 (*), 注意到 $\frac{\partial u}{\partial x} = \varphi(u) \frac{\partial u}{\partial y}$, 我们有

$$\begin{split} \mathrm{LHS} &= n\varphi'(u)\frac{\partial u}{\partial x}\frac{\partial u}{\partial y} + \varphi^n(u)\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right) \\ &= n\varphi'(u)\varphi(u)\left(\frac{\partial u}{\partial y}\right)^2 + \varphi^n(u)\frac{\partial}{\partial y}\left(\varphi(u)\frac{\partial u}{\partial y}\right) \\ &= n\varphi'(u)\varphi(u)\left(\frac{\partial u}{\partial y}\right)^2 + \varphi^n(u)\left(\varphi'(u)\left(\frac{\partial u}{\partial y}\right)^2 + \varphi(u)\frac{\partial^2 u}{\partial y^2}\right) \\ &= (n+1)\varphi'(u)\varphi(u)\left(\frac{\partial u}{\partial y}\right)^2 + \varphi^{n+1}(u)\frac{\partial^2 u}{\partial y^2} \\ &= \mathrm{RHS}. \end{split}$$

因此原命题对n+1的情形成立.

(2) 一般地, 考察由 $v = y + x \sin v$ 确定的隐函数 v(x, y). 由 (1) 的结果,

$$\frac{\partial^n v}{\partial x^n} = \frac{\partial^{n-1}}{\partial y^{n-1}} \left(\sin^n v \frac{\partial v}{\partial y} \right).$$

特别的, 当x = 0时, v = y, 因此有

$$\frac{\partial^n v}{\partial x^n}(0,y) = \frac{\partial^{n-1}}{\partial y^{n-1}}(\sin^n y)$$

$$u^{(n)}(0) = \frac{\partial^n v}{\partial x^n}(0,1) = \frac{\mathrm{d}^{n-1}}{\mathrm{d}t^{n-1}}(\sin^n t)\Big|_{t=1}.$$

5. 设 Hermite 多项式由

$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2}, \quad n \geqslant 0.$$

给出. 证明: 对任何 $t \in \mathbb{R}$, 有

$$e^{2xt-t^2} = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{n!}.$$

解答 首先证明, Hermite 多项式 $H_n(x)$ 满足三项递推公式

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x), \quad n \ge 1.$$

事实上,利用乘积的高阶导数公式可以得到

$$\frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}}(e^{-x^2}) = \frac{\mathrm{d}^n}{\mathrm{d}x^n}(-2xe^{-x^2}) = -2x\frac{\mathrm{d}^n}{\mathrm{d}x^n}(e^{-x^2}) - 2n\frac{\mathrm{d}^{n-1}}{\mathrm{d}x^{n-1}}(e^{-x^2}).$$

因此可以得到 $H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$.

另一方面, 在 e^{2xt-t^2} 中对 t 作 Taylor 展开可以得到存在多项式 $P_n(x)$ 使得

$$e^{2xt-t^2} = \sum_{n=0}^{\infty} P_n(x) \frac{t^n}{n!}.$$
 (*)

直接验算可得 $P_0(x) = 1$, $P_1(x) = 2x$. 因此只需证明 $P_n(x)$ 和 $H_n(x)$ 满足相同的三项递推公式. 在 (*) 的两端对 t 取偏导数可得

$$e^{2xt-t^2}(2x-2t) = \sum_{n=1}^{\infty} P_n(x) \frac{t^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} P_{n+1}(x) \frac{t^n}{n!}.$$

即

$$\sum_{n=0}^{\infty} P_n(x) \frac{t^n}{n!} (2x - 2t) = \sum_{n=0}^{\infty} P_{n+1}(x) \frac{t^n}{n!}.$$

比较两端 tn 的系数可以得到

$$P_n(x)\frac{2x}{n!} - P_{n-1}(x)\frac{2}{(n-1)!} = P_{n+1}(x)\frac{1}{n!} \Longrightarrow P_{n+1}(x) = 2xP_n(x) - 2nP_{n-1}(x).$$

由于 $P_n(x)$ 和 $H_n(x)$ 满足相同的初始值和相同的三项递推公式, 我们有 $P_n(x) \equiv H_n(x)$.

6*. 设函数 $V(x) \in C^2(\mathbb{R}^n)$, 并且存在 $\lambda, \Lambda > 0$ 使得

$$\lambda I \leqslant \nabla^2 V(x) \leqslant \Lambda I, \quad \forall x \in \mathbb{R}^n.$$

给定常数 $a\in(0,\frac{2\lambda}{\Lambda^2})$ 和 $x_0\in\mathbb{R}^n$,考察在 \mathbb{R}^n 上由递推公式

$$x_{k+1} = x_k - a\nabla V(x_k), \quad k \geqslant 0.$$

定义的点列 $\{x_k\}_{k=1}^{\infty}$. 证明: 存在 $x^* \in \mathbb{R}^n$ 使得 $\lim_{k \to \infty} x_k = x^*$, 且 x^* 是 V(x) 的唯一极小点.

(注: 矩阵 $A \ge B$ 意味着 A - B 非负定)

思路 本题中出现的递推公式是数值最优化中著名的梯度下降 (gradient descent) 算法. 势能函数的强凸性保证了该算法必然以指数速度收敛.

解答 设 $y_k = x_k - x_{k-1}, k \ge 1$. 将 $x_{k+1} = x_k - a\nabla V(x_k)$ 和 $x_k = x_{k-1} - a\nabla V(x_{k-1})$ 相减得到

$$y_{k+1} = y_k - a(\nabla V(x_k) - \nabla V(x_{k-1})). \tag{1}$$

注意到, 由定积分的定义可以得到

$$\nabla V(x_k) - \nabla V(x_{k-1}) = \nabla V(x_{k-1} + t(x_k - x_{k-1})) \Big|_{t=0}^{t=1}$$
$$= \int_0^1 \nabla^2 V(x_{k-1} + t(x_k - x_{k-1}))(x_k - x_{k-1}) dt.$$

故有

$$(x_k - x_{k-1}) \cdot (\nabla V(x_k) - \nabla V(x_{k-1})) = \int_0^1 (x_k - x_{k-1})^{\mathrm{T}} \nabla^2 V(x_{k-1} + t(x_k - x_{k-1}))(x_k - x_{k-1}) dt$$

$$\geqslant \lambda \int_0^1 |x_k - x_{k-1}|^2 dt = \lambda |x_k - x_{k-1}|^2,$$

即

$$y_k \cdot (\nabla V(x_k) - \nabla V(x_{k-1})) \geqslant \lambda |y_k|^2.$$
 (2)

并且, 在矩阵 2 范数的意义下, 由 $\|\nabla^2 V\| \leq \Lambda$ 可以得到

$$|\nabla V(x_k) - \nabla V(x_{k-1})| \le \int_0^1 \|\nabla^2 V(x_{k-1} + t(x_k - x_{k-1}))\| |x_k - x_{k-1}| dt \le \Lambda |x_k - x_{k-1}|,$$

即

$$|\nabla V(x_k) - \nabla V(x_{k-1})| \leqslant \Lambda |y_k|. \tag{3}$$

由(2)(3)的估计,将(1)两边取2范数后得到

$$|y_{k+1}|^2 = |y_k - a(\nabla V(x_k) - \nabla V(x_{k-1}))|$$

$$= |y_k|^2 - 2ay_k \cdot (\nabla V(x_k) - \nabla V(x_{k-1})) + |\nabla V(x_k) - \nabla V(x_{k-1})|^2$$

$$\leq |y_k|^2 - 2a\lambda |y_k|^2 + a^2\Lambda^2 |y_k|^2$$

$$= (1 - 2a\lambda + a^2\Lambda^2)|y_k|^2.$$

当 $a<\frac{2\lambda}{\Lambda^2}$ 时, $q=\sqrt{1-2a\lambda+a^2\Lambda^2}<1$. 因此由

$$|x_{k+1} - x_k| = q|x_k - x_{k-1}|$$

可以得到 $\{x_k\}_{k=1}^{\infty}$ 是 Cauchy 列. 假设此点列的极限是 $x^* \in \mathbb{R}^n$, 则在 $x_{k+1} = x_k - a\nabla V(x_k)$ 中令 $k \to \infty$ 可得 $\nabla V(x^*) = 0$, 即 x^* 是 V(x) 的一个极小点. V(x) 的极小点的唯一性可以从强凸性直接得到.