Cours : Commande des systèmes linéaires

Compte rendu TP1 : Modélisation d'un moteur à courant continu

Identification des paramètres K_s et K_g

Ks: Gain du potentiomètre en V/rad.

Kg: Gain du tachymètre en V.s/rad.

Données expérimentales de potentiomètre (tab_pos) et du tachymètre (tab_speed) :

		tab_speed =	tab_speed =	
		(rpm)	(Volatge)	
		0	0	
		50.0000	0.7500	
		75.0000	1.1100	
tab_pos =		100.0000	1.5100	
(angle °)	(Voltage)	125.0000	1.8900	
300.0000	0.1500	150.0000	2.2700	
330.0000	1.0000	175.0000	2.6600	
0	1.8800	200.0000	3.0500	
30.0000	2.8400	225.0000	3.4400	
60.0000	3.6800	250.0000	3.8100	
90.0000	4.5400	275.0000	4.1700	
110.0000	4.9500	300.0000	4.5600	

On trace les deux courbes :

On remarque bien une proportionalité en les deux grandeur de ces deux coeficient Kg et Ks. On peut donc linéarisé pour avoir un modèle simple, on obtient les deux droite en rouge.

Code Matlab permetent de linéarizé :

On utilise la fonction "polyfit" de Matlab pour linéariser des données sous forme X Y.

On obtient les coefficients suivants :

Ks = 4.9055e-04 V/rad

Kg = 0.0153 V/rpm

Identification du moteur dans le domaine temporel

On considère le modèle par cette fonction de transfère :

$$G(s) = \frac{1}{1 + Ts}$$

La réponse temporelle est donc :

$$y = \left(1 - e^{-\frac{t}{T}}\right)\Gamma\left(t\right)$$

En appliquant une entrée Ve en échelon d'une amplitude de **5V**, on relève la réponse en tension Vg du système :

On en déduit donc les valeur **Km** et **Tm** du système :

- **Km** -> Ve*Kg*Km = Vs donc Km = Vs / (Ve * Kg) = 4.59 / (5 * 0.0153) = 60
- **Tm** -> 0.84/3 = 0.2800