Due Monday, March 24.

1. Use the algorithm we discussed in class (see the notes from Wed, March 5) to convert the following context-free grammar to Chomsky normal form:

$$\begin{split} S &\to ASA \mid A \mid \epsilon \\ A &\to aa \mid \epsilon \end{split}$$

2. Give a detailed written description (but not a state diagram) of a Turing machine that accepts the following language.

 $L = \{w \in \{a, b\}^* : w \text{ has an equal number of } a$'s and b's $\}$.

3. A binary-incrementer is a function that reads a binary number from a tape, and replaces it with the binary number that is one greater. So 111 becomes 1000, for example. Draw a state diagram for a Turing machine that evaluates the binary-incrementer function. Hint: You should only need four or five states.

4.	If you have a Turing machine that computes the binary-incrementer function, explain how you could create a Turing machine that reads a string of n 1's, and replaces it with the binary integer that represents n . For example 1111 would become 100 since 100 represents $n=4$ in binary. You don't need to draw a state diagram, but explain in detail how you would incorporate the binary-incrementer machine into your new Turing machine.
5.	Let Σ be an alphabet, and let $L \subset \Sigma^*$ be a language. If L is decidable, prove that its complement \overline{L} is also decidable.
	is also decidable.
c	When do now it the course an arranged about the course and of an accountable law areas in accountable?
0.	Why doesn't the same argument show that the complement of an acceptable language is acceptable?