7-transfer-functions

[AMV2 Ch 9]

goal: frequency-domain tools and concepts for analysis & control

1°. freguercy-demain modeling

1. transfer function of on LTI system

12 block diagrams

13. poles & zeros

14. Bode plot

1°. frequercy domain modeling

· Key idea: represent LTI system by how it responds (at steady-state) to pure sinusoidal signals

- particularly convenient / powerful to analyze complex feedback

1! transfer function of LTI system

consider the response of LTI system

$$\dot{x} = Ax + Bu$$
, $\dot{y} = Cx + Du$

to input signal $u(t)$

Pact: $x(t) = e^{4t}x(0) + \int_{e}^{t} A(t-e)Bu(z)dz$

consolution equation

intuition: input $u(z)$ applied at time z

contributes response $e^{A(t-z)}Bu(z)$

to "initial condition" $\tilde{x}(z) = Bu(z)$

thus: $\dot{y}(t) = Cx(t) + Du(t)$
 $= Ce^{At}x(0) + \int_{e}^{t} Ce^{A(t-z)}Bu(z)dz + Du(t)$

Ganogeneus porticular response response response response $(u(t) = \frac{1}{2}(e^{iut} + e^{iut}))$
 $\dot{y}(u(t) = \frac{1}{2}(e^{iut} - e^{iut})$

so e^{st} is a mathematical convenience that

lec-fa19 Page

so est is a mathematical convenience that enables us to easily betermine response to actual inputs $cos(\omega t)$, $sin(\omega t)$

-> what expression has e(sI-A) = as its derivative?

(what restriction do you need to place on SEC?)

$$y(t) = Ce^{At}(x(0) - (sI-A)^{-1}B)$$

 $+ [C(sI-A)^{-1}B + D]e^{st}$

 \rightarrow what choice of initial state x(0) ensures y = G(s)u?

$$- \chi(o) = (SI - A)^{-1}B$$

· * Gyu is the transfer function from input u to output y (aside: the transfer function idea extends to (some) northneas systems, systems w/ delay, and partial differential equations) · this formula gives a procedure for determining the transfer function Gya fran the matrices A, B, C, D - since input & output spaces have been specified, there is a unique Gyu corresponding to A,B,C,D;

the reverse is not true!

· since the state space is not specified for a given Gyu, there are many possible state space realizations:

- suppose $G(s) = C(sI-A)^{-1}B+D$

-let z=Tx, Timetible -> determine A, B, C, D S.t. 3=A3+Bu y= Cz+ Du $-\widetilde{A} = TAT-1$, $\widetilde{B} = TB$, $\widetilde{C} = CT^{-1}$, $\widehat{D} = D$ \rightarrow compute $\widetilde{G}(s) = \widetilde{C}(sI - \widetilde{A})^{-1}\widetilde{B} + \widetilde{D}$ $-\widetilde{G}(s) = \widetilde{C}(sI - \widetilde{A})^{-1}\widetilde{B} + \widetilde{D}$ $=CT^{-1}(STT^{-1}-TAT^{-1})^{-1}TB+D$ $= C(sI-A)^{-1}B+D$ = G(s)* conclude that transfer functions don't depend on the choice of state space

13. block diagrams

• we've seen examples of block diagram

representations & algebra

(a)
$$G_{yu}(s) =$$

(b)
$$G_{yu}(s) =$$

(c)
$$G_{yu}(s) =$$

-> derive expressions for Gyu in terms of G, & G2

· now consider the general feedback diagram

-> derive an expression for e interms of r, v, w, i.e. find Ger, Gev, Gew s.t. e = Gerr + Gev N + Gew W

- well investigate each of these transfer functions

& how they influence performance in caming weeks

13. poles & zeros · consider the transfer function $G(S) = \frac{b(S)}{a}$ - G is a rational function, that is, a ratio of polynamials a, b -roots of a are termed poles, roots of 6 are termed zeros - difference between order of a & that of b termed relative degree; G is proper if >0, strictly proper if >0 · let's relate these cancepts to ITI system x=Ax+Bu, y=Cx+Du - poles = $\lambda(A)$, i.e. eigenvalues of A - zeros ove complex numbers SEC s.t. $u(t) = u_0 e^{st}$ yields y(t) = 0, -> substitute this input/autput pair into LTI DE with x(t) = x, est

to find candition that gives a zero * if state is fully actuated (B square) or fully measured (C square) then there are no zeros o since poles à zeros govern system behavior, ofter visualize them with a gole-zero Liagram

Figure 9.9: A pole zero diagram for a transfer function with zeros at -5 and -1 and poles at -3 and $-2 \pm 2j$. The circles represent the locations of the zeros, and the crosses the locations of the poles. A complete characterization requires we also specify the gain of the system.

14. Bode plot

• since a camplex expanential

input eint yields

atput $G(s) = |G(jw)| = |\omega(t + \zeta G(jw))|$ it's useful to visualize

gain | q(jw)| and phase < q(jw) as functions of frequency w:

Figure 9.17: Bode plots for low-pass, band-pass, and high-pass filters. The upper plots are the gain curves and the lower plots are the phase curves. Each system passes frequencies in a different range and attenuates frequencies outside of that range.