Mitigation of rocuronium induced residual neuromuscular blockade risk by means of a population PK/PD model

model⁴

TOF ratio: Train of Four ratio, Measurement for neuromuscular function (see Figure 2)

validation

Miriam Happa, Leandro F. Pippab, Gabriela Laurettic, Anthony Gebhartb, Günther Weindla, Francine Azeredo^b, Valvanera Vozmediano^b, Stephan Schmidt^b, Natalia De Moraes^b

- ^a Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, Germany.
- ^b Center for Pharmacometrics and System Pharmacology, Department of Pharmaceutics.
- College of Pharmacy. University of Florida, FL, USA
- ^c School of Medicine of Ribeirao Preto, University of Sao Paulo, SP, Brazil.

Modelling Workflow

Data review

Introduction

High interindividual variability in recovery time of rocuronium¹

Frequent occurrence of residual neuromuscular blockade puts patients at higher risk for postoperative pulmonary complications²

- Identify impacting factors on variability in recovery time
- Reduce risk for residual neuromuscular block
- Inform dose adjustments and risk assessment

Methods

- 32 patients undergoing elective surgeries³
- 395 plasma concentrations
- 242 TOF ratio measurements
- Develop NLME Simulate covariate groups (100 patients Internal model
- per group)⁵ neuromuscular
 - Estimate recovery times and residual

Structural model and residual error model block risk⁵

Pharmacokinetic covariate model (forward inclusion, backward deletion)

Correlation of population parameters and

random effects

Fixed pharmacokinetic parameters for pharmacodynamic model development

Exposure response relationship

Pharmacodynamic covariate model

(forward inclusion, backward deletion)

Correlation of population parameters and

random effects

Joint pharmacokinetic/pharmacodynamic

model for simulations

Pharmacokinetic/Pharmacodynamic Model

Figure 1: Structure of pharmacokinetic (PK, pharmacodynamic (PD, red) joint model.

Figure 2: Measurement of Train of Four (TOF ratio = T4/T1) at the adductor pollicis muscle as quantitative measurement of neuromuscular function. 6

Bootstrap (n = 500) median estimates for joint model		
	Parameter (P5–95)	CV (P5-P95)
V (L/kg)	0.063 (0.055–0.071)	26.4% (21.2%–32.8%)
k (h ⁻¹)	2.26 (2.06–2.50)	18.1% (12.0%–24.3%)
$k_{12} (h^{-1})$	2.51 (1.99–3.09)	48.5% (31.8%–60.7%)
$k_{21} (h^{-1})$	1.33 (1.14–1.54)	41.7% (26.4%–53.3%)
β_k_{12} logtAGE	0.68 (0.46–0.98)	
IC_{50} (mg/L)	0.61 (0.45–0.75)	55.7% (28.6%–76.7%)
γ	12.12 (9.01–15.96)	68.5% (37.2%–99.6%)
$k_{e0} (h^{-1})$	15.34 (11.71–22.06)	
E_0	1.00 (fixed)	
Correlations		
$corr_k_{12}_{12}$	0.87 (0.67–0.93)	
Error Model parameters		

CV: Coefficient of Variation, V: central volume of distribution, k: elimination rate, k_{12} , k_{21} : transfer rates between compartments, β_k_{12} logtAGE: age covariate parameter on k_{12} , lC_{50} : half maximum inhibitory concentration, y: shape factor, ke0: elimination rate from effect compartment, E₀: baseline effect, aTOF: additive residual error, bCONC: proportional residual error.

0.25(0.23-0.27)

2.42(1.94-2.79)

Figure 3: Visual predictive checks of PK (A, blue) and PD (B, red) of the joint model, with observed data (●), empirical 10th, 50th, and 90th percentiles (—), model-predicted 10th, 50th, and 90th percentiles (- -) and prediction intervals.

Clinical Implications

Pre-Surgery:

Dose individualization based on patient age, body weight and anticipated surgery length

bCONC

aTOF

Figure 4: Simulated recovery time (time to TOF ≥ 0.9), groups defined as average age ± 0.1 SD, same individuals across doses. 45, 65, and 85-year-old groups compared to 25-year-old group (—) by Mann-Whitney U test. 7 p < 0.05. (*) p < 0.05; (**) p < 0.01; (***) p < 0.001; (****) p < 0.0001.

During Surgery:

Continuous monitoring and risk assessment before extubation to assess need for reversal agents and state of recovery

Figure 5: Percentage of recovered simulated patients over time (recovered: TOF ≥ 0.9), groups defined as average age ± 0.1 SD, same individuals across doses. Subjects not achieving TOF < 0.9 were excluded.

Post-Surgery:

Safe extubation after full recovery is achieved at TOF ratio ≥ 0.9

Conclusions

- Geriatric patients are at higher risk for residual neuromuscular blockade
 - Model shows promising opportunities for application to Reduce risk of residual neuromuscular block
 - Reduce need for expensive reversal drugs
 - Model informed precision dosing

Future Directions

- External validation and extension to other patient populations
- Bayesian Estimation tool to support multiple dosing
- Incorporating real-time TOF measurements Developing easy to use bedside tool for clinicians

References

- (1) Maybauer et al. Anesthesia 62: 12-17 (2007)
- (2) Murphy et al. Anesth Analg 107: 130-137 (2008) (3) Varrique et al. J Pharm Pharmacol 68: 1351-1358 (2016)
- (4) Monolix 2021R1, Lixoft SAS, a Simulation Plus company (5) Simulx 2023R1, Lixoft SAS, a Simulation Plus company
- (6) Figure was modified from Boon et al. F1000Research 167 (2018) (7) R Statistical Software (4.2.2; R Core Team 2022) Elements of Figure 1, Figure 2 and Icons in this poster were created with