Homework - cp. 2

p. 45 ±1) A group can be constructed by using the rotations and reflections of a pentagon into itself.

a) How many elements are in this group?

Is it an abelian group?

Rotations are through $K = \frac{360}{5}$ KEZ $72^{\circ} \cdot K$ where K = 0,1,2,3,4geometrically algebraically $T_0 = 0^{\circ}$ cw rotation (12345) $T_1 = 72^{\circ}$ rot. (12345) $T_2 = 144^{\circ}$ rot. (12345) $T_3 = 216^{\circ}$ rot. (12345) $T_3 = 216^{\circ}$ rot. (12345) $T_4 = 288^{\circ}$ rot. (5123)

Reflections (or flips)

let di, i=1,... 5 be the flip about vertex i

$$d_{1} = \begin{pmatrix} 12345 \\ 15432345 \end{pmatrix}$$

$$d_{2} = \begin{pmatrix} 32154 \\ 32154 \end{pmatrix}$$

$$d_{3} = \begin{pmatrix} 54321 \\ 54321 \end{pmatrix}$$

$$d_{4} = \begin{pmatrix} 12345 \\ 21543 \end{pmatrix}$$

$$d_{5} = \begin{pmatrix} 12345 \\ 43215 \end{pmatrix}$$

This group contains 10 doments
5 rotations
5 flips.

D5: dihedral group of degree 5

6)	Cons	truc-	+	the	. 01	group			
	O	17	OT.	M	Or.	7-11-4			

		D	To	π	Mz	113	14	di	dz.	d3	d4	45	-
		To	To	77	TZ	The	Ty	di	dz	d3	dy	do	
CO	mposition	CIONS TI	N.	Mz	13	Thy	To	d2	da	44	95		
of	Borman	1/2	1/2	TI3	TH	To	Ti	dz	d4	d5	di	dz	
P	P P P	cond The	T3	714	To	TI,	TZ	dy	ds	d.	dz	dz	
5	P P SE	Th	174	To	TI	172	73		di	dz	93	dy	
		di	d	dy				170					
		dz	dz					l	To				,
		dz	do							To			
		dy						l			710		
		de	ds									To	
			1	1	1	1)		1	

Observe that $d_1 \circ T_1 = d_4$ whereas $T_1 \circ d_1 = d_2$ Nerve D5 is not abelian.

c) · Subgroup with 5 elements:

C5 = < 176, 71, 712, 713, 745 o > the cyclic group

with 5 elements

C5 is a subgroup of D5

e Subgroup with 2 elements: Let G=
No subgroups with 4 elements: [H] [G] Lagrange's Thm.

5.) Show that
$$(Z, -)$$
 is not a agroup

i) closure $\forall x, y \in \mathbb{Z}$, $x-y \in \mathbb{Z}$

ii) associativity $3-(2-1)=(3-2)-1$
 $3-1=1-1$
 $2 \neq 0$
 $N_0!$
 $(Z, -)$ not a group.

8.) Let 6 be an arbitrary group (not necessarily faite) (G,) identity = 1.

g & G with $g^{v}=1$, v minimal $g^{v}=g\cdot g\cdot \cdot \cdot \cdot g$ - v is the order of g.

Prove that $\{1, 9, 9^{2}, 9^{3}, ..., 9^{v-1}, 9^{v}\}$, $\{1, 2\}$ subgroup of G

Call this subset 19,92, ..., g 4 H. We must reinfy:

i) Closure $g' \cdot g' = g(i+j) \mod v$ ii) Associativity: $g' \cdot (g' \cdot g') = g(i+j) \mod v$ $g' \cdot (g(i+k) \mod v) = g(i+j) \mod v$ $g'(i+j+k) \mod v = g(i+j+k) \mod v$ iii) Identity: g' = 1, hence g'' = 1 have g'' = 1.

iv) Inverses: $(g'')^{-1} = g'' - g'' = 1$.

(H, ·) is always akelian: gi · gi · gi = gi · gi = gi · gi = gi · j) mos >