Hoja de Trabajo 7 Diferenciación Numerica

Sergio Vasquez, Ing. Mecatronica, Métodos, Sección, 40

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, template.

I. Introducción

Resuelva los siguientes problemas con las herramientas vistas en clase. En su reporte debe incluir las tablas generadas y la respuesta a cada inciso. No olvide subir la hoja de cálculo o el código fuente en Python.

September 16, 2023

II. PROBLEMAS

1) Problema 1: Utilice las fórmulas de diferenciación numérica de alta precisión (con error de orden $(O(h^4))$ para determinar los extremos locales, puntos de inflexión, intervalos de crecimiento y decrecimiento e intervalos de concavidad de la función.

$$f(x)x^2cosx$$

en el intervalo $[-3\pi/2, 3\pi/2]$

Utilizando el programa realizado en clase de Diferenciación Numerica se realizó la siguiente grafica donde se muestran las 2 derivadas de la función anterior.

Figura 1: Grafica de Diferenciación Numerica con Oh^4

Por medio de la grafia anterior, se realizó un cambio en el programa donde se marco los **Puntos de Inflexión y Extremos Locales** y a cotinuación se mostraron numericamente y de igual forma los **Intervalos de Crecimiento y Decrecimiento**.

Intervalos de Extremos Locales:

$$(-3.6324, -11.6372),$$

 $(-1.0624, 0.5497),$
 $(0.0176, 0.0000),$
 $(1.0876, 0.5496),$
 $(3.6576, -11.6375)$

Intervalos de Puntos de Inflexión:

$$(-2.6724, -6.5298),$$

 $(-0.5824, 0.2990),$
 $(0.6176, 0.2952),$
 $(2.7076, -6.4916)$

Intervalos de Intervalos de Crecimiento:

$$(-3.6524, -3.6324),$$

 $(-0.0024, 0.0176),$
 $(3.6376, 3.6576)$

Intervalos de Intervalos de Decrecimiento:

$$(-1.0824, -1.0624),$$

 $(1.0676, 1.0876)$

2) Problema 2: La posición de un objeto está descrita por los datos de la siguiente tabla:

Utilice diferenciación numérica para obtener los gráficos de la velocidad y la aceleración en función del tiempo. Luego, calcule la velocidad y la aceleración en t = 20 s.

Teniendo las grafica anterior, ahora evaluamos con t = 20 en las funciones de Velocidad (Primera Derivada), Aceleracion (Segunda Derivada) y se obtuvieron los siguientes datos,

- a) 1era Derivada o Velocidad evaluada en 20 = 2.2124
- b) 2da Derivada o Aceleración evaluada en 20 = -0.1312

Figura 2: Grafica de Diferenciación Numerica

x	1	1.5	1.6	2.5	3.5
у	0.6767	0.3734	0.3261	0.08422	0.01596

3) Problema 3: Los datos de la tabla que se presenta a continuación no están regularmente espaciados. Utilice algún método de interpolación visto en clase que le permita calcular la primera y segunda derivadas. Obtenga esos gráficos

Por medio de nuestra programacion de Trazadores de Interpolacion se obtuvieron las sigientes graficas con los datos de la Tabla anterior.

Figura 3: Grafica de Trazadores de Interpolacion

4) Problema 4: Los datos descritos en el inciso anterior siguen una tendencia de la forma $f(x)=^{\beta}x$. Haga una linealización de esta expresión y obtenga una regresión de mínimos cuadrados para estimar los valores de y. Luego, derive la expresión de forma analítica y compare sus resultados con los que obtuvo de la interpolación del inciso anterior. Para ello, obtenga f(1.6)yf(1.6) con ambos métodos y calcule el porcentaje de error.

Figura 4: Calculo de Alfa y Beta con Excel

Ya teniendo Alfa y Beta podemos obtener las derivadas de la Ecuación $f(x)=xe^{\beta x}$

Cálculo de las derivadas en x = 1.6:

Para la primera derivada f'(x):

$$f'(1.6) = -0.10e^{0.89 \cdot 1.6} - 0.089 \cdot 1.6e^{0.89 \cdot 1.6}$$

Para la segunda derivada f''(x):

$$f''(1.6) = -0.07921e^{0.89 \cdot 1.6} -0.089e^{0.89 \cdot 1.6} -0.07921 \cdot 1.6e^{0.89 \cdot 1.6}$$

Calculando los valores numéricos:

Para la primera derivada f'(1.6):

$$f'(1.6) \approx -0.049769 - 0.093905 \approx -0.143674$$

Para la segunda derivada f''(1.6):

$$f''(1.6) \approx -0.043295 - 0.080069 - 0.133136 \approx -0.2565$$

Y pormedio del programa obtuvimos que las derivadas sustituyendo x = 1.6 eran,

Primera derivada en x = 1.6: **-0.446172889710919** Segunda derivada en x = 1.6: **0.4912834525277424**

Cálculo del factor de error entre los pares de datos: Para el primer par de datos (-0.143674 y 0.446172):

Factor de error =
$$\frac{-0.143674 - 0.446172}{-0.143674} \approx 2.10$$

Para el segundo par de datos (-0.2565 y 0.491283):

Factor de error =
$$\frac{-0.2565 - 0.491283}{-0.2565} \approx \textbf{0.914}$$

5) Problema 5: La ley de viscosidad de Newton está dada por la expresión:

$$\tau = \mu \frac{dv}{dy}$$

en donde τ es el esfuerzo cortante en N/m^2 , v es la velocidad en m/s, y es la distancia medida desde la superficie (en m) y es la viscosidad dinámica en Ns/m^2 . Encuentre el esfuerzo cortante cuando y=0.012 usando los datos de la tabla y sabiendo que $\mu=18\mu Ns/m^2$.

Utilizando los valores de la Tabla, se encontro el esfuerzo por medio de la 1era y 2da Derivada de la Ley de Viscosidad de Newton los cuales resultaron,

Valor de la primera derivada en el índice 0.012: **179.0833**Valor de la segunda derivada en el índice 0.012: **3249.9999**

Para obtener la primera y segunda derivada de la ecuación $\tau=\mu\cdot\frac{dv}{dy}$ y evaluarla en y=0.012 dada una constante $\mu=18\,\mu\mathrm{N}\cdot\mathrm{m}^{-2}$, seguimos los siguientes pasos:

Primero, calculamos la primera derivada $\frac{dv}{dy}$:

$$\frac{d\tau}{du} = \mu \cdot \frac{d^2v}{du^2}$$

Luego, calculamos la segunda derivada $\frac{d^2v}{du^2}$:

$$\frac{d^2v}{dy^2} = \frac{1}{\mu} \cdot \frac{d\tau}{dy}$$

Ahora, evaluamos $\frac{d\tau}{dy}$ en y=0.012 y luego calculamos $\frac{d^2v}{dy^2}$:

$$\left. \frac{d\tau}{dy} \right|_{y=0.012} = \mu \cdot \left. \frac{dv}{dy} \right|_{y=0.012}$$

Sustituimos el valor de $\mu = 18 \,\mu \mathrm{N} \cdot \mathrm{m}^{-2}$:

$$\left. \frac{d\tau}{dy} \right|_{y=0.012} = 18 \cdot \left. \frac{dv}{dy} \right|_{y=0.012}$$

Finalmente, calculamos $\left. \frac{d^2 v}{dy^2} \right.$ usando $\left. \frac{d\tau}{dy} \right|_{y=0.012}$:

$$\left. \frac{d^2 v}{dy^2} \right|_{y=0.012} = \frac{1}{18} \cdot \frac{d\tau}{dy} \right|_{y=0.012}$$

PROGRAMAS Y ARCHIVOS UTILIZADOS EN PYTHON Y EXCEL 'CLICK AQUI'