```
In [8]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import warnings
warnings.filterwarnings('ignore')
```

#### In [9]:

```
titanic=pd.read_csv('titanic.csv')
```

#### In [10]:

```
titanic.info()
```

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column
              Non-Null Count Dtype
               -----
O PassengerId 891 non-null int64
1 Survived 891 non-null int64
              891 non-null
2 Pclass
                             int64
3
   Name
               891 non-null
                             object
                           object
   Sex
              891 non-null
4
              714 non-null
                           float64
  Age
6 SibSp
              891 non-null int64
  Parch
              891 non-null
7
                             int64
                            object
float64
               891 non-null
   Ticket
   Fare
               891 non-null
9
10 Cabin
              204 non-null
                             object
```

889 non-null

dtypes: float64(2), int64(5), object(5)

object

memory usage: 83.7+ KB

11 Embarked

## In [11]:

titanic

## Out[11]:

|     | Passengerld | Survived | Pclass | Name                                           | Sex    | Age  | SibSp | Parch | Ticket              | Fare    | Cabin | Embarked |
|-----|-------------|----------|--------|------------------------------------------------|--------|------|-------|-------|---------------------|---------|-------|----------|
| 0   | 1           | 0        | 3      | Braund, Mr. Owen Harris                        | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  | NaN   | S        |
| 1   | 2           | 1        | 1      | Cumings, Mrs. John Bradley (Florence Briggs Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 | C85   | С        |
| 2   | 3           | 1        | 3      | Heikkinen, Miss. Laina                         | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | NaN   | S        |
| 3   | 4           | 1        | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.1000 | C123  | S        |
| 4   | 5           | 0        | 3      | Allen, Mr. William Henry                       | male   | 35.0 | 0     | 0     | 373450              | 8.0500  | NaN   | S        |
|     |             |          |        |                                                |        |      |       |       |                     |         |       |          |
| 886 | 887         | 0        | 2      | Montvila, Rev. Juozas                          | male   | 27.0 | 0     | 0     | 211536              | 13.0000 | NaN   | S        |
| 887 | 888         | 1        | 1      | Graham, Miss. Margaret Edith                   | female | 19.0 | 0     | 0     | 112053              | 30.0000 | B42   | S        |
| 888 | 889         | 0        | 3      | Johnston, Miss. Catherine<br>Helen "Carrie"    | female | NaN  | 1     | 2     | W./C. 6607          | 23.4500 | NaN   | S        |

| 889 | Passeng@dd | Survived | Pclas\$ | Behr, Mr. Karl <b>News</b> l | n <b>‱a</b> ĕ | <b>2</b> 99 | SibSp | Parch | 1 <b>Tird@9</b> | 30. <b>5@09</b> | <b>Gaptig</b> | Embarked |
|-----|------------|----------|---------|------------------------------|---------------|-------------|-------|-------|-----------------|-----------------|---------------|----------|
| 890 | 891        | 0        | 3       | Dooley, Mr. Patrick          | male          | 32.0        | 0     | 0     | 370376          | 7.7500          | NaN           | Q        |

## 891 rows × 12 columns

## In [12]:

titanic.describe()

## Out[12]:

|       | Passengerld | Survived   | Pclass     | Age        | SibSp      | Parch      | Fare       |
|-------|-------------|------------|------------|------------|------------|------------|------------|
| count | 891.000000  | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
| mean  | 446.000000  | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |
| std   | 257.353842  | 0.486592   | 0.836071   | 14.526497  | 1.102743   | 0.806057   | 49.693429  |
| min   | 1.000000    | 0.000000   | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 223.500000  | 0.000000   | 2.000000   | 20.125000  | 0.000000   | 0.000000   | 7.910400   |
| 50%   | 446.000000  | 0.000000   | 3.000000   | 28.000000  | 0.000000   | 0.000000   | 14.454200  |
| 75%   | 668.500000  | 1.000000   | 3.000000   | 38.000000  | 1.000000   | 0.000000   | 31.000000  |
| max   | 891.000000  | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |

## In [13]:

titanic.dtypes

## Out[13]:

PassengerId int64 Survived int64 Pclass int64 object Name object Sex float64 Age int64 SibSp int64 Parch object Ticket float64 Fare Cabin object Embarked object dtype: object

## In [14]:

titanic=titanic.drop(['Name','Ticket','Cabin','PassengerId'],axis=1)

## In [15]:

titanic

# Out[15]:

|     | Survived | Pclass | Sex    | Age  | SibSp | Parch | Fare    | Embarked |
|-----|----------|--------|--------|------|-------|-------|---------|----------|
| 0   | 0        | 3      | male   | 22.0 | 1     | 0     | 7.2500  | S        |
| 1   | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | С        |
| 2   | 1        | 3      | female | 26.0 | 0     | 0     | 7.9250  | S        |
| 3   | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | S        |
| 4   | 0        | 3      | male   | 35.0 | 0     | 0     | 8.0500  | S        |
|     |          |        |        |      |       |       |         |          |
| 886 | 0        | 2      | male   | 27.0 | 0     | 0     | 13.0000 | S        |
| 887 | 1        | 1      | female | 19.0 | 0     | 0     | 30.0000 | S        |

| 888 | Survived | Pclas <sub>s</sub> | fen <b>gale</b> | Made | SibSp | Parch | 23. <b>4500</b> | Embarke |
|-----|----------|--------------------|-----------------|------|-------|-------|-----------------|---------|
| 889 | 1        | 1                  | male            | 26.0 | 0     | 0     | 30.0000         | С       |
| 890 | 0        | 3                  | male            | 32.0 | 0     | 0     | 7.7500          | Q       |

891 rows × 8 columns

# In [16]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['Sex','Embarked']
for val in list1:
    titanic[val]=le.fit_transform(titanic[val].astype(str))
```

# In [17]:

titanic

# Out[17]:

|     | Survived | Pclass | Sex | Age  | SibSp | Parch | Fare    | Embarked |
|-----|----------|--------|-----|------|-------|-------|---------|----------|
| 0   | 0        | 3      | 1   | 22.0 | 1     | 0     | 7.2500  | 2        |
| 1   | 1        | 1      | 0   | 38.0 | 1     | 0     | 71.2833 | 0        |
| 2   | 1        | 3      | 0   | 26.0 | 0     | 0     | 7.9250  | 2        |
| 3   | 1        | 1      | 0   | 35.0 | 1     | 0     | 53.1000 | 2        |
| 4   | 0        | 3      | 1   | 35.0 | 0     | 0     | 8.0500  | 2        |
|     |          |        |     |      |       |       |         |          |
| 886 | 0        | 2      | 1   | 27.0 | 0     | 0     | 13.0000 | 2        |
| 887 | 1        | 1      | 0   | 19.0 | 0     | 0     | 30.0000 | 2        |
| 888 | 0        | 3      | 0   | NaN  | 1     | 2     | 23.4500 | 2        |
| 889 | 1        | 1      | 1   | 26.0 | 0     | 0     | 30.0000 | 0        |
| 890 | 0        | 3      | 1   | 32.0 | 0     | 0     | 7.7500  | 1        |

891 rows × 8 columns

# In [18]:

```
titanic.Survived.unique()
```

# Out[18]:

array([0, 1], dtype=int64)

## In [19]:

```
sns.heatmap(titanic.isnull(),annot=True)
```

# Out[19]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1675fb93b80>



```
Survived Age Sex Sex Fare Embarked Embarked
```

#### In [20]:

```
titanic.isnull().sum()
```

## Out[20]:

Survived 0
Pclass 0
Sex 0
Age 177
SibSp 0
Parch 0
Fare 0
Embarked 0
dtype: int64

## In [21]:

```
from sklearn.impute import SimpleImputer
imp=SimpleImputer(strategy='mean')
titanic['Age']=imp.fit_transform(titanic['Age'].values.reshape(-1,1))
```

#### In [22]:

titanic

## Out[22]:

|     | Survived | Pclass | Sex | Age       | SibSp | Parch | Fare    | Embarked |
|-----|----------|--------|-----|-----------|-------|-------|---------|----------|
| 0   | 0        | 3      | 1   | 22.000000 | 1     | 0     | 7.2500  | 2        |
| 1   | 1        | 1      | 0   | 38.000000 | 1     | 0     | 71.2833 | 0        |
| 2   | 1        | 3      | 0   | 26.000000 | 0     | 0     | 7.9250  | 2        |
| 3   | 1        | 1      | 0   | 35.000000 | 1     | 0     | 53.1000 | 2        |
| 4   | 0        | 3      | 1   | 35.000000 | 0     | 0     | 8.0500  | 2        |
|     |          |        |     |           |       |       |         |          |
| 886 | 0        | 2      | 1   | 27.000000 | 0     | 0     | 13.0000 | 2        |
| 887 | 1        | 1      | 0   | 19.000000 | 0     | 0     | 30.0000 | 2        |
| 888 | 0        | 3      | 0   | 29.699118 | 1     | 2     | 23.4500 | 2        |
| 889 | 1        | 1      | 1   | 26.000000 | 0     | 0     | 30.0000 | 0        |
| 890 | 0        | 3      | 1   | 32.000000 | 0     | 0     | 7.7500  | 1        |

891 rows × 8 columns

## In [23]:

```
sns.heatmap(titanic.isnull(),annot=True)
```

## Out[23]:

```
<matplotlib.axes._subplots.AxesSubplot at 0x1675fc414f0>
```





## In [24]:

```
titanic.skew()
```

## Out[24]:

Survived 0.478523
Pclass -0.630548
Sex -0.618921
Age 0.434488
SibSp 3.695352
Parch 2.749117
Fare 4.787317
Embarked -1.246689
dtype: float64

#### In [25]:

```
for col in titanic.columns:
    if titanic.skew().loc[col]>0.55:
        titanic[col]=np.log1p(titanic[col])
```

# In [26]:

```
titanic.skew()
```

## Out[26]:

Survived 0.478523
Pclass -0.630548
Sex -0.618921
Age 0.434488
SibSp 1.661245
Parch 1.675439
Fare 0.394928
Embarked -1.246689
dtype: float64

## In [27]:

```
titanic.corr()
```

## Out[27]:

|   |          | Survived  | Pclass    | Sex       | Age       | SibSp     | Parch     | Fare      | Embarked  |
|---|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Ī | Survived | 1.000000  | -0.338481 | -0.543351 | -0.069809 | 0.029430  | 0.114999  | 0.329862  | -0.163517 |
|   | Pclass   | -0.338481 | 1.000000  | 0.131900  | -0.331339 | 0.022021  | -0.002530 | -0.661022 | 0.157112  |
|   | Sex      | -0.543351 | 0.131900  | 1.000000  | 0.084153  | -0.165302 | -0.256638 | -0.263276 | 0.104057  |
|   | Age      | -0.069809 | -0.331339 | 0.084153  | 1.000000  | -0.231168 | -0.231807 | 0.102485  | -0.022239 |
|   | SibSp    | 0.029430  | 0.022021  | -0.165302 | -0.231168 | 1.000000  | 0.473259  | 0.375371  | 0.036131  |
|   | Parch    | 0.114999  | -0.002530 | -0.256638 | -0.231807 | 0.473259  | 1.000000  | 0.363261  | 0.025070  |
|   | Fare     | 0.329862  | -0.661022 | -0.263276 | 0.102485  | 0.375371  | 0.363261  | 1.000000  | -0.197567 |
|   | Embarked | -0.163517 | 0.157112  | 0.104057  | -0.022239 | 0.036131  | 0.025070  | -0.197567 | 1.000000  |

```
plt.figure(figsize=(10,6))
sns.heatmap(titanic.corr(),annot=True)
```

## Out[28]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1676619a070>



## In [29]:

```
col=titanic.columns.values
ncol=5
nrow=5
plt.figure(figsize=(ncol,5*ncol))
for i in range(1,len(col)):
    plt.subplot(nrow,ncol,i+1)
    sns.boxplot(titanic[col[i]],color='yellow',orient='v')
    plt.tight_layout()
```



```
0.50 - 1 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1
```

# In [30]:

```
from scipy.stats import zscore
z_score=abs(zscore(titanic))
print(titanic.shape)
nic=titanic.loc[(z_score<3).all(axis=1)]
print(nic.shape)</pre>
```

(891, 8) (844, 8)

## In [31]:

nic

# Out[31]:

|     | Survived | Pclass | Sex | Age       | SibSp    | Parch    | Fare     | Embarked |
|-----|----------|--------|-----|-----------|----------|----------|----------|----------|
| 0   | 0        | 3      | 1   | 22.000000 | 0.693147 | 0.000000 | 2.110213 | 2        |
| 1   | 1        | 1      | 0   | 38.000000 | 0.693147 | 0.000000 | 4.280593 | 0        |
| 2   | 1        | 3      | 0   | 26.000000 | 0.000000 | 0.000000 | 2.188856 | 2        |
| 3   | 1        | 1      | 0   | 35.000000 | 0.693147 | 0.000000 | 3.990834 | 2        |
| 4   | 0        | 3      | 1   | 35.000000 | 0.000000 | 0.000000 | 2.202765 | 2        |
|     |          |        |     |           |          |          |          |          |
| 886 | 0        | 2      | 1   | 27.000000 | 0.000000 | 0.000000 | 2.639057 | 2        |
| 887 | 1        | 1      | 0   | 19.000000 | 0.000000 | 0.000000 | 3.433987 | 2        |
| 888 | 0        | 3      | 0   | 29.699118 | 0.693147 | 1.098612 | 3.196630 | 2        |
| 889 | 1        | 1      | 1   | 26.000000 | 0.000000 | 0.000000 | 3.433987 | 0        |
| 890 | 0        | 3      | 1   | 32.000000 | 0.000000 | 0.000000 | 2.169054 | 1        |

844 rows × 8 columns

# In [32]:

```
nic=pd.DataFrame(data=nic)
```

# In [33]:

```
x=nic.iloc[:,1:-1]
```

# In [34]:

Х

# Out[34]:

|   | Pclass | Sex | Age       | SibSp    | Parch    | Fare     |
|---|--------|-----|-----------|----------|----------|----------|
| 0 | 3      | 1   | 22.000000 | 0.693147 | 0.000000 | 2.110213 |
| 1 | 1      | 0   | 38.000000 | 0.693147 | 0.000000 | 4.280593 |
| 2 | 3      | 0   | 26.000000 | 0.000000 | 0.000000 | 2.188856 |
| 3 | 1      | 0   | 35.000000 | 0.693147 | 0.000000 | 3.990834 |

```
4 Pclass Sext 35.000 Age 0.0 S000 0 0.0 Panel 2.20 Fage 5
886
             1 27.000000 0.000000 0.000000 2.639057
             0 19.000000 0.000000 0.000000 3.433987
887
             0 29.699118 0.693147 1.098612 3.196630
 888
             1 26.000000 0.000000 0.000000 3.433987
 889
             1 32.000000 0.000000 0.000000 2.169054
 890
         3
844 rows × 6 columns
In [35]:
x.shape
Out[35]:
(844, 6)
In [36]:
y=nic.iloc[:,0]
In [37]:
У
Out[37]:
     0
0
       1
3
       1
886
887
       0
888
889
       1
890
       0
Name: Survived, Length: 844, dtype: int64
In [38]:
y.shape
Out[38]:
(844,)
In [39]:
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=.30, random\_state=50)
In [40]:
lr=LogisticRegression()
lr.fit(x train,y train)
lr.score(x_train,y_train)
pred=lr.predict(x_test)
print(accuracy_score(y_test,pred))
print(confusion_matrix(y_test,pred))
print(classification_report(y_test,pred))
0.7913385826771654
[[133 24]
```

[ 29 68]]

```
precision
                      recall f1-score support
                 0.82
          0
                         0.85
                                  0.83
                                             157
                 0.74
                         0.70
                                  0.72
                                              97
                                   0.79
                                             254
   accuracy
                 0.78
                          0.77
  macro avg
                                   0.78
                                             254
                 0.79
                          0.79
                                   0.79
                                             254
weighted avg
```

#### In [41]:

```
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
knn.score(x_train,y_train)
predknn=knn.predict(x_test)
print(accuracy_score(y_test,predknn))
print(confusion matrix(y test,predknn))
print(classification_report(y_test,predknn))
0.7677165354330708
[[135 22]
 [ 37 60]]
                        recall f1-score support
             precision
                        0.86
                  0.78
                                      0.82
                                                 157
                                      0.67
                  0.73
                           0.62
                                                 97
          1
```

254

254

254

0.77

0.75

0.76

#### In [42]:

accuracy

macro avq

weighted avg

```
mnb=MultinomialNB()
mnb.fit(x_train,y_train)
mnb.score(x_train,y_train)
predmnb=mnb.predict(x_test)
print(accuracy_score(y_test,predmnb))
print(confusion_matrix(y_test,predmnb))
print(classification_report(y_test,predmnb))
```

#### 0.7283464566929134 [[140 17] [ 52 45]] recall f1-score support precision Ω 0.73 0.89 0.80 157 0.73 0.46 0.57 97 0.73 254 accuracy 0.73 0.68 0.68 254 macro avq 0.73 0.71 254 weighted avg 0.73

0.85

0.90

0.87

0.76

0.76

0.74

0.77

# In [43]:

157

```
0.83 0.73
                             0.78
                                        97
                              0.84
                                        254
  accuracy
              0.84
                     0.82
                             0.82
                                        254
  macro avg
              0.84
                      0.84
                              0.84
                                        254
weighted avg
```

# In [44]:

```
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
dtc.score(x_train,y_train)
preddtc=dtc.predict(x_test)
print(accuracy score(y test,preddtc))
print(confusion_matrix(y_test,preddtc))
print(classification_report(y_test,preddtc))
0.7519685039370079
[[127 30]
 [ 33 64]]
             precision
                        recall f1-score support
           0
                  0.79
                             0.81
                                       0.80
                                                  157
           1
                  0.68
                            0.66
                                      0.67
                                                  97
   accuracy
                                      0.75
                                                  254
                  0.74
                            0.73
                                      0.74
                                                  2.54
  macro avg
weighted avg
                  0.75
                            0.75
                                       0.75
                                                  254
```

#### In [45]:

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.67<br>0.69 | 0.93<br>0.25 | 0.78<br>0.36         | 157<br>97         |
| accuracy<br>macro avg<br>weighted avg | 0.68<br>0.67 | 0.59<br>0.67 | 0.67<br>0.57<br>0.62 | 254<br>254<br>254 |

#### In [46]:

0

1

0.84

0.78

0.87

0.72

0.85

0.75

157

97