

2016 HIGHER SCHOOL CERTIFICATE EXAMINATION

REFERENCE SHEET

- Mathematics -
- Mathematics Extension 1 -
- Mathematics Extension 2 -

Factorisation

$$a^{2}-b^{2} = (a+b)(a-b)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

Angle sum of a polygon

$$S = (n-2) \times 180^{\circ}$$

Equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Trigonometric ratios and identities

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}} \qquad \cos \theta = \frac{1}{\sin \theta}$$

$$\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}} \qquad \sec \theta = \frac{1}{\cos \theta}$$

$$\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}} \qquad \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\sin^2 \theta + \cos^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta}$$

Exact ratios

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area of a triangle

Area =
$$\frac{1}{2}ab\sin C$$

Distance between two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Perpendicular distance of a point from a line

$$d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$$

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-gradient form of the equation of a line

$$y - y_1 = m(x - x_1)$$

nth term of an arithmetic series

$$T_n = a + (n-1)d$$

Sum to *n* terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} (a+l)$

nth term of a geometric series

$$T_n = ar^{n-1}$$

Sum to n terms of a geometric series

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 or $S_n = \frac{a(1 - r^n)}{1 - r}$

Limiting sum of a geometric series

$$S = \frac{a}{1 - r}$$

Compound interest

$$A_n = P\bigg(1 + \frac{r}{100}\bigg)^n$$

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x)\sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

Integrals

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Angle measure

$$180^{\circ} = \pi \text{ radians}$$

Length of an arc

$$l = r\epsilon$$

Area of a sector

Area =
$$\frac{1}{2}r^2\theta$$

Mathematics Extension 1

Angle sum identities

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}$$

t formulae

If
$$t = \tan \frac{\theta}{2}$$
, then

$$\sin\theta = \frac{2t}{1+t^2}$$

$$\cos\theta = \frac{1 - t^2}{1 + t^2}$$

$$\tan\theta = \frac{2t}{1-t^2}$$

General solution of trigonometric equations

$$\sin \theta = a, \qquad \theta = n\pi + (-1)^n$$

$$\theta = n\pi + (-1)^n \sin^{-1} a$$

$$\cos\theta = a$$
,

$$\cos \theta = a, \qquad \theta = 2n\pi \pm \cos^{-1} a$$

$$\tan \theta = a$$
,

$$\theta = n\pi + \tan^{-1}a$$

Division of an interval in a given ratio

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

Parametric representation of a parabola

For
$$x^2 = 4ay$$
,

$$x = 2at$$
, $y = at^2$

At
$$(2at, at^2)$$
,

tangent:
$$y = tx - at^2$$

normal:
$$x + ty = at^3 + 2at$$

At
$$(x_1, y_1)$$
,

tangent:
$$xx_1 = 2a(y + y_1)$$

normal:
$$y - y_1 = -\frac{2a}{x_1}(x - x_1)$$

Chord of contact from
$$(x_0, y_0)$$
: $xx_0 = 2a(y + y_0)$

Acceleration

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

Simple harmonic motion

$$x = b + a\cos(nt + \alpha)$$

$$\ddot{x} = -n^2(x-b)$$

Further integrals

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

Sum and product of roots of a cubic equation

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a}$$

$$\alpha\beta\gamma = -\frac{d}{a}$$

Estimation of roots of a polynomial equation

Newton's method

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$