2-Neighbor Bootstrap Percolation in Graphs

Rayan Ibrahim

Department of Mathematics and Applied Mathematics Virginia Commonwealth University Lafayette College

April 15, 2024

https://raymaths.github.io/Lafayette.pdf

* Acknowledgement: Supported in part by The Thomas F. and Kate Miller Jeffress Memorial Trust, Bank of America, Trustee and by National Science Foundation DMS-2204148.

Assumptions

Graphs

The graphs we are working with today are

- Simple. No loops or multi-edges.
- Connected.

$$\begin{split} V(G) &= \{1,2,3,4,5,6,7\} \\ E(G) &= \\ \{(1,2),(1,4),(2,3),(2,4),(3,4),(4,5),(4,6),(4,7),(5,6),(6,7)\} \end{split}$$

r-Neighbor Bootstrap Percolation

■ Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.

r-Neighbor Bootstrap Percolation

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.

Cellular automaton – Conway's Game of Life

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.
- If $\langle A_0 \rangle = V(G)$, we say A_0 percolates.

r-Neighbor Bootstrap Percolation

- Begin with an initial set of 'infected' vertices, $A_0 \subseteq V(G)$.
- In each round, an uninfected vertex v becomes infected if v is adjacent to at least r infected vertices.
- Once infected, vertices remain infected.
- The process is finite the *closure* of A_0 , denoted $\langle A_0 \rangle$, is the set of infected vertices when the process finishes.
- If $\langle A_0 \rangle = V(G)$, we say A_0 percolates.

Choosing A_0

Early models incorporate randomness; initial infected vertices are selected with probability p.

r-Bootstrap-Good

■ m(G, r): the minimum size of an r-percolating set of G.

r-Bootstrap-Good

- m(G, r): the minimum size of an r-percolating set of G.
 - If |G| > r then $r \le m(G, r) \le n$

r-Bootstrap-Good

- \blacksquare m(G,r) : the minimum size of an r-percolating set of G.
 - If |G| > r then $r \le m(G, r) \le n$
- If m(G,r) = r then we say G is r-Bootstrap-Good, or r-BG.

r-Bootstrap-Good

- m(G, r): the minimum size of an r-percolating set of G.
 - If |G| > r then $r \le m(G, r) \le n$
- If m(G, r) = r then we say G is r-Bootstrap-Good, or r-BG.

Lots of questions!!

■ What is the structure of r-BG graphs?

- What is the structure of r-BG graphs?
 - Necessary and sufficient conditions for when m(G,2) = 2.

- What is the structure of r-BG graphs?
 - Necessary and sufficient conditions for when m(G, 2) = 2.
- Bounds on m(G, r) for particular graph classes.

- What is the structure of r-BG graphs?
 - Necessary and sufficient conditions for when m(G,2) = 2.
- Bounds on m(G, r) for particular graph classes.
 - For some class of graphs \mathcal{G} , is there a constant k such that for all $G \in \mathcal{G}$, we have $m(G, 2) \leq k$?

- What is the structure of r-BG graphs?
 - Necessary and sufficient conditions for when m(G,2) = 2.
- Bounds on m(G, r) for particular graph classes.
 - For some class of graphs \mathcal{G} , is there a constant k such that for all $G \in \mathcal{G}$, we have $m(G, 2) \leq k$?
- What are the minimum and maximum number of rounds to percolate?

- What is the structure of r-BG graphs?
 - Necessary and sufficient conditions for when m(G,2) = 2.
- Bounds on m(G, r) for particular graph classes.
 - For some class of graphs \mathcal{G} , is there a constant k such that for all $G \in \mathcal{G}$, we have $m(G, 2) \leq k$?
- What are the minimum and maximum number of rounds to percolate?
 - Looking at all percolating sets of a fixed size (minimum), which set takes the most rounds to percolate? The fewest?

A Necessary Condition Involving Blocks

Definition (Block)

A block in a graph G is a maximal connected subgraph with no cut-vertex.

Definition (Block)

A block in a graph G is a maximal connected subgraph with no cut-vertex.

Definition (Block)

A block in a graph G is a maximal connected subgraph with no cut-vertex.

Observations

- Blocks intersect in a cut-vertex.
- Blocks are 2-connected, or K_2 .

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Theorem (Bushaw et al. '23)

If a graph is 2-BG, then it has at most two blocks.

Our Graph Class - Diameter

Diameter

The diameter of a graph G is $\max_{u,v \in V(G)} d(u,v)$, where d(u,v) is the length of the shortest path from u to v.

Our Graph Class - Diameter

Diameter

The diameter of a graph G is $\max_{u,v\in V(G)}d(u,v)$, where d(u,v) is the length of the shortest path from u to v.

Our Graph Class - Connectivity

Connectivity

A connected graph G is 2-connected if for every vertex $x \in V(G)$, the graph G - x is connected. (No cut-vertex in G).

Our Graph Class - Connectivity

Connectivity

A connected graph G is 2-connected if for every vertex $x \in V(G)$, the graph G - x is connected. (No cut-vertex in G).

Our Graph Class - Diameter 2 and 2-connected

Graphs of interest: Diameter 2 and 2-connected

Our Graph Class - Diameter 2 and 2-connected

Graphs of interest: Diameter 2 and 2-connected

Diameter 2, 2-connected

Diameter 2, 2-connected

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

If G is locally connected, then G is 2-BG.

G

Theorem (Bushaw et al. '23)

If G is locally connected, then G is 2-BG.

G

Theorem (Bushaw et al. '23)

If G is locally connected, then G is 2-BG.

G

Theorem (Bushaw et al. '23)

Theorem (Bushaw et al. '23)

If G is locally connected, then G is 2-BG. In particular any pair of adjacent vertices percolates.

Theorem (Ibrahim, LaFayette, McCall '24)

Let G be a 2-connected graph with diameter 2. If G is C_5 -free, then G is 2-BG.

Theorem (Ibrahim, LaFayette, McCall '24)

Let G be a 2-connected graph with diameter 2. If G is C_5 -free, then G is 2-BG.

By C_5 -free, we mean...

Theorem (Ibrahim, LaFayette, McCall '24)

Let G be a 2-connected graph with diameter 2. If G is C_5 -free, then G is 2-BG.

By C_5 -free, we mean...

Theorem (Ibrahim, LaFayette, McCall '24)

Let G be a 2-connected graph with diameter 2. If G is C_5 -free, then G is 2-BG.

Proof Overview:

Theorem (Ibrahim, LaFayette, McCall '24)

Let G be a 2-connected graph with diameter 2. If G is C_5 -free, then G is 2-BG.

Proof Overview:

Theorem (Ibrahim, LaFayette, McCall '24)

Let G be a 2-connected graph with diameter 2. If G is C_5 -free, then G is 2-BG.

Proof Overview:

Future Directions

- What is m(G, 2) when G has other properties, e.g. just diameter 2?
- A characterization of 2-BG graphs? $m(G, 2) = 2 \iff ???$
- Open Problem: Is there a constant k such that for all 2-connected graphs G with diameter 2, we have $m(G,2) \leq k$?

Future Directions

- What is m(G, 2) when G has other properties, e.g. just diameter 2?
- A characterization of 2-BG graphs? $m(G, 2) = 2 \iff ???$
- Open Problem: Is there a constant k such that for all 2-connected graphs G with diameter 2, we have $m(G,2) \leq k$?

Thank you!

Extra

The next few slides are extra slides...

A 2-BG Theorem (Generalization)

Theorem (Ibrahim '24)

Let G be a 2-connected graph with diameter 2. If G is C_k -free, then $m(G,2) \leq \lceil (k-3)/2 \rceil$.

Extra Extra

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Question: What is the maximum number of rounds until percolation?

Consider r = 2 and diam(G) = 2.

Number of rounds until infection: 2 + 5 = diam(G) + |Y|

Question: What is the maximum number of rounds until percolation?

For arbitrary r and diameter d. (Example: r = 3, d = 4.)

Number of rounds until infection: diam(G) + |Y|

Definition (Detour Diameter)

The detour diameter of a graph G, denoted $\operatorname{diam}_D(G)$, is the length of the longest path in G.

Definition (Detour Diameter)

The detour diameter of a graph G, denoted $\operatorname{diam}_D(G)$, is the length of the longest path in G.

Theorem (Ibrahim, LaFayette, McCall '23)

If G contains a percolating set which r-percolates in k rounds, then $k \leq \operatorname{diam}_D(G) + 1$.

Definition (Detour Diameter)

The detour diameter of a graph G, denoted $\operatorname{diam}_D(G)$, is the length of the longest path in G.

Theorem (Ibrahim, LaFayette, McCall '23)

If G contains a percolating set which r-percolates in k rounds, then $k \leq \operatorname{diam}_D(G) + 1$.

Proof Idea: Partition V(G) into sets S_i where vertices in S_i are infected in round i.

Theorem (Ibrahim, LaFayette, McCall '23)

If G contains a percolating set which r-percolates in k rounds, then $k \leq \operatorname{diam}_D(G) + 1$.

Proof Idea: Partition V(G) into sets S_i where vertices in S_i are infected in round i.

