Material Teórico - Módulo de Introdução ao Cálculo - Funções - Parte 2

Injetividade e Sobrejetividade

Tópicos Adicionais

Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

10 de dezembro de 2019

1 Funções injetivas

Uma função $f: A \to B$ é chamada **injetiva** se sempre ocorrer que elementos diferentes do domínio de f têm imagens diferentes. De outra forma, f é injetiva se, dados dois elementos quaisquer $a_1 \in a_2$ de A, sempre ocorrer que $a_1 \neq a_2$ implica $f(a_1) \neq f(a_2)$.

A contrapositiva dessa afirmação é: se dois elementos do domínio de f têm a mesma imagem por f, então esses elementos têm que ser iguais, ou seja, se a_1 e a_2 pertencem a A e são tais que $f(a_1) = f(a_2)$, então $a_1 = a_2$.

Temos o seguinte resultado importante sobre funções injetivas.

Teorema 1. Seja $I \subset \mathbb{R}$ um intervalo. Se $f: I \to \mathbb{R}$ é uma função monótona, então f é injetiva.

Prova. Lembremos que uma função é dita monótona se for crescente ou se for decrescente. Sejam x_1 e x_2 elementos distintos do intervalo I e consideremos dois casos:

- f é crescente: Se tivermos $x_1 < x_2$, então o fato de f ser crescente garante que $f(x_1) < f(x_2)$. Se, por outro lado, ocorrer que $x_2 < x_1$, então, novamente pelo fato de f ser crescente, teremos $f(x_2) < f(x_1)$. Em qualquer caso, $x_1 \neq x_2$ implica $f(x_1) \neq f(x_2)$, ou seja, f é injetiva.
- f é decrescente. Então, $x_1 < x_2$ implica $f(x_1) > f(x_2)$ e $x_2 < x_1$ implica $f(x_2) > f(x_1)$. Em qualquer um dos casos, $x_1 \neq x_2$ implica $f(x_1) \neq f(x_2)$, e a função f também é injetiva neste caso.

Exemplo 2. O teorema anterior nos fornece vários exemplos de funções injetivas. Por exemplo, se $f: \mathbb{R} \to \mathbb{R}$ é dada por f(x) = ax + b, com $a \neq 0$, então já sabemos que f é crescente se a > 0 e decrescente se a < 0. Portanto, em qualquer um desses casos, f é injetiva. Para outra classe de exemplos, para $n \in \mathbb{N}$ a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^{2n+1}$ também é injetiva, pois é crescente.

O próximo resultado nos diz que a injetividade é estável por composições.

Teorema 3. A composta de duas funções injetivas é uma função injetiva.

Prova. Suponhamos que $f:A\to B$ e $g:B\to C$ sejam funções injetivas. Como sabemos, aomposta de f e g é a função $g\circ f:A\to C$, dada por $(f\circ g)(a)=f(g(a))$.

Se $a_1, a_2 \in A$ são tais que $(g \circ f)(a_1) = (g \circ f)(a_2)$, então $g(f(a_1)) = g(f(a_2))$. Como g é injetiva, essa última igualdade implica que $f(a_1) = f(a_2)$. Mas, como f também é injetiva, essa última igualdade implica que $a_1 = a_2$. Portanto, a função $g \circ f$ é injetiva.

A recíproca do Teorema 3 não é verdadeira. De fato, duas funções podem ter uma composta injetiva sem que sejam ambas injetivas, como mostra o exemplo a seguir.

Exemplo 4. Se $f:(0,1) \to \mathbb{R}$ é a função dada por f(x) = x, então f é injetiva. Seja, agora, $g: \mathbb{R} \to (0,1)$ dada por

$$g(y) = \begin{cases} y, & se \quad y \in (0,1) \\ 1/2, & se \quad y \notin (0,1) \end{cases}.$$

A função $g \circ f: (0,1) \to (0,1)$ é dada por $(g \circ f)(x) = g(f(x))$. Mas, como $x \in (0,1)$ implica $f(x) \in (0,1)$ (pois f(x) = x), temos (fazendo y = f(x) na definição de g) que g(f(x)) = f(x) = x. Assim, a função composta $g \circ f$ é injetiva.

Contudo, note que a função g não é injetiva, pois g(y) é igual a 1/2 para qualquer elemento y fora do intervalo (0,1) (além de também para y=1/2).

Apesar de não termos uma recíproca do Teorema 3, podemos garantir que, se a composta de duas funções é injetiva, a função que aparece à direita é injetiva:

Teorema 5. Se $f: A \to B$ e $g: B \to C$ são funções tais que a função $g \circ f: A \to C$ é injetiva, então a função f também é injetiva.

Prova. Suponha que $a_1, a_2 \in A$ são tais que $f(a_1) = f(a_2)$. Então, $g(f(a_1)) = g(f(a_2))$, ou seja, $(g \circ f)(a_1) = (g \circ f)(a_2)$. Como por hipótese a função $g \circ f$ é injetiva, essa última igualdade implica que $a_1 = a_2$. Portanto, f é injetiva.

Dizemos que uma função $f: A \to B$ admite **inversa à esquerda** se existe $g: B \to A$ tal que $g \circ f = I_A$, onde $I_A: A \to A$, dada por $I_A(a) = a$, $\forall a \in A$, é a função identidade de A.

Em particular, como a função identidade é injetiva, o teorema anterior garante que, se uma função f admite inversa à esquerda, então ela é injetiva. A seguir, vamos mostrar que vale a recíproca deste fato.

Teorema 6. Uma função admite inversa à esquerda se, e somente se, é injetiva.

Prova. Já demonstramos acima que, se f admite inversa à esquerda, então f é injetiva. Vamos, agora, supor que $f:A\to B$ é injetiva e construiremos uma função $g:B\to A$ tal que $g\circ f=I_A$.

O conjunto $\operatorname{Im}(f) = \{b \in B \mid b = f(a)\} \subset B$ é a imagem de f. Como f é injetiva, se $b \in \operatorname{Im}(f)$, então existe um único $a \in A$ tal que f(a) = b. Assim, podemos definir g(b) = a, para todo $b \in \operatorname{Im}(f)$. Por outro lado, se $b \in B$ mas $b \notin \operatorname{Im}(f)$, então podemos escolher qualquer elemento $a_0 \in A$ para ser a imagem de b.

Assim, podemos definir $g: B \to A$ da seguinte maneira:

$$g(b) = \begin{cases} a, & se \quad b \in \operatorname{Im}(f) \\ a_0, & se \quad b \notin \operatorname{Im}(f) \end{cases}.$$

(Note a semelhança entre a função g contruída acima e a função g usada no Exemplo 4.)

A composta $g \circ f : A \to A$ é dada por

$$(g \circ f)(a) = g(f(a)) = g(b) = a,$$

onde $b = f(a) \in \text{Im}(f)$.

Perceba que a escolha do elemento $a_0 \in A$, que é imagem por g dos elementos de B que não pertencem à imagem de f, é arbitrária. Realmente, essa escolha não altera o fato de que a composta $g \circ f$ é a identidade de A.

Então, a função f admite g como inversa à esquerda, e a construção do parágrafo anterior também garante que essa inversa não é única se B - Im(f) tiver mais de um elemento (uma vez que outra escolha de a_0 fornece outra inversa à esquerda de f).

2 Funções sobrejetivas

Uma função $f: A \to B$ é chamada **sobrejetiva** se todo elemento do contradomínio é imagem de algum elemento do domínio, ou seja, se Im(f) = B.

Exemplos típicos de funções sobrejetivas são as proje- $\xi \~{o}es.$

Exemplo 7. O produto cartesiano $A_1 \times \ldots \times A_n$ de n conjuntos A_1, \ldots, A_n , é o conjunto formado pelas listas ordenadas (a_1, \ldots, a_n) , onde $a_i \in A_i$ para cada $i \in \{1, \ldots, n\}$. A **projeção** de $A_1 \times \cdots \times A_n$ sobre A_i é a função p_i : $A_1 \times \cdots \times A_n \rightarrow A_i$, dada por $p_i(a_1, \ldots, a_n) = a_i$. Cada uma dessas funções é sobrejetiva.

Assim como ocorre com a injetividade, a sobrejetividade também é preservada pela composição de funções:

Teorema 8. A composta de duas funções sobrejetivas é uma função sobrejetiva.

Prova. Suponha que $f:A\to B$ e $g:B\to C$ sejam funções sobrejetivas. Vamos mostrar que $g\circ f:A\to C$ também é sobrejetiva. De fato, se $c\in C$, então, como g é sobrejetiva, existe $b\in B$ tal que g(b)=c. Para este $b\in B$, o fato de f ser sobrejetiva garante a existência de $a\in A$ tal que f(a)=b. Assim, $(g\circ f)(a)=g(f(a))=g(b)=c$. \square

Como ocorreu no Teorema 3, a recíproca do teorema anterior também não é válida, como mostra o Exemplo 4. De fato, nesse exemplo, $g\circ f$ é sobrejetiva, mas f não é sobrejetiva.

Por outro lado, da mesma forma que sucedeu no caso da injetividade, temos a validade de uma recíproca parcial, análoga ao Teorema 5:

Teorema 9. Se $f:A\to B$ e $g:B\to C$ são funções tais que $g\circ f:A\to C$ é sobrejetiva, então g também é sobrejetiva.

Prova. Dado $c \in C$, a sobrejetividade de $g \circ f$ garante a existência de $a \in A$ tal que $(g \circ f)(a) = c$, ou seja, g(f(a)) = c. Em particular, denotando $f(a) = b \in B$, temos g(b) = c, e isso mostra que g é sobrejetiva.

Dizemos que uma função $f:A\to B$ admite uma **inversa à direita** se existe $h:B\to A$ tal que $f\circ h=I_B$, onde $I_B:B\to B$, dada por $I_B(b)=b,\,\forall b\in B$, é a função identidade de B.

Em particular, como a função identidade é sobrejetiva, o Teorema 9 garante que, se uma função admite inversa à direita, então ela é sobrejetiva. A seguir, vamos mostrar que também vale a recíproca.

Teorema 10. Uma função admite inversa à direita se, e somente se, é sobrejetiva.

Prova. Já mostramos que, se uma função f admite inversa à direita, então f é sobrejetiva. Agora, supondo que $f:A\to B$ é sobrejetiva, vamos construir uma inversa à direita para ela.

Para cada $b \in B$, seja $f^{-1}(b)$ o conjunto formado por todos os elementos de A cuja imagem é b, ou seja,

$$f^{-1}(b) = \{ a \in A \mid f(a) = b \}.$$

Como f é sobrejetiva, sempre existe algum elemento $a \in f^{-1}(b)$, ou seja, $f^{-1}(b) \neq \emptyset$.

Para cada $b \in B$, defina h(b) como sendo um elemento qualquer escolhido em $f^{-1}(b)$. Denotando tal elemento por a_b , temos uma função $h: B \to A$ tal que $h(b) = a_b \in f^{-1}(b)$. Portanto, $f(a_b) = b$ e, daí,

$$(f \circ h)(b) = f(h(b)) = f(a_b) = b$$

para todo $b \in B$. Mas isso é o mesmo que dizer que $f \circ h = I_B$, mostrando que f admite h como uma inversa à direita.

Observação 11. Nas notações da demonstração acima, a existência de uma função $h: B \to A$ que escolhe um elemento em cada conjunto $f^{-1}(a)$ é garantida por um axioma da Teoria dos Conjuntos, o axioma da escolha. Evidentemente, essa escolha não é única, a menos que cada conjunto $f^{-1}(a)$ tivesse apenas um elemento (o que, por sua vez, corresponderia à função f ser também injetiva).

3 Funções bijetivas

Uma função $f:A\to B$ é chamada **bijetiva** se for simultaneamente injetiva e sobrejetiva.

Dizemos que uma função $f:A\to B$ admite uma **inversa** se existe uma função $g:B\to A$ tal que $f\circ g=I_B$ e $g\circ f=I_A$, ou seja, tal que g é inversa à esquerda e à direita de f.

Exemplo 12. Alguns exemplos de bijeções que aparecem no nosso cotidiano e que nós às vezes nem percebemos: em uma sala de aula, cada aluno tem um número de chamada; assim, há uma bijeção entre o conjunto dos alunos e o conjunto formado pelos números de 1 a n, onde n é o total de

alunos que estarão em sala sempre que nenhum aluno faltar. Como cada aluno tem um número de matrícula, que também é só seu, isso estabelece outra bijeção entre o conjunto dos alunos e o conjunto dos números de matrícula daquela sala. Se o professor resolver contar quantos alunos há na sala, ele pode fazê-lo começando por qualquer aluno. O número final, obtido ao final da contagem, corresponde ao total de alunos na sala, não importando como foi feita a contagem. Por exemplo, digamos que haja 25 alunos na sala. Uma contagem desses 25 alunos é uma função bijetiva entre o conjunto dos alunos e o conjunto $\{1,\ldots,25\}$. Cada uma dessas correspondências é chamada permutação do conjunto dos alunos. Neste caso, sabemos que existem $25! = 25 \cdot 24 \cdot \ldots \cdot 3 \cdot 2 \cdot 1$ permutações do conjunto dos alunos.

A importância das funções bijetivas está contida no resultado a seguir.

Teorema 13. Uma função é bijetiva se, e somente se, admite inversa.

Prova. Suponha que $f:A\to B$ admite inversa, ou seja, que existe $g:B\to A$ tal que $f\circ g=I_B$ e $g\circ f=I_A$. Então, por um lado f admite g como inversa à esquerda, logo, o Teorema 6 garante que f é injetiva; por outro, f também admite g como inversa à direita, logo, f é sobrejetiva pelo Teorema 10. Portanto f é bijetiva.

Reciprocamente, se f é bijetiva, então, pelo fato de f ser injetiva, o Teorema 6 garante a existência de $g: B \to A$ tal que $g \circ f = I_A$; também, por f ser sobrejetiva, o Teorema 10 assegura a existência de uma função $h: B \to A$ tal que $f \circ h = I_B$. Agora, a associatividade da composição de funções força que tenhamos g = h. De fato,

$$q = q \circ I_B = q \circ (f \circ h) = (q \circ f) \circ h = I_A \circ h = h.$$

Assim, f admite a função g=h como sua invesa à esquerda e à direita.

Se existe uma inversa da função $f:A\to B$, então ela é única. De fato, suponha que $g_1:B\to A$ e $g_2:B\to A$ sejam inversas de f. Então, utilizando novamente a associatividade da composição, obtemos

$$g_1 = g_1 \circ I_B = g_1 \circ (f \circ g_2)$$

= $(g_1 \circ f) \circ g_2 = I_A \circ g_2 = g_2$.

Por conta dessa unicidade da inversa, usamos a notação $f^{-1}: B \to A$ para indicar a inversa da função bijetiva $f: A \to B$. (Observe que a notação f^{-1} não tem nada a ver com $\frac{1}{f}$; serve apenas para lembrar que f^{-1} é a única função que, composta à direita e à esquerda com a bijeção f, dá I_B ou I_A , respectivamente.)

Teorema 14. Sejam A e B conjuntos finitos com um mesmo número de elementos e $f: A \to B$ uma função dada. Então, as condições a seguir são equivalentes:

- (a) f injetiva;
- (b) f é sobrejetiva;
- (c) f é bijetiva.

Prova. Escreva $A = \{a_1, \ldots, a_n\}$ e $B = \{b_1, \ldots, b_n\}$, onde n é o número de elementos de A e de B.

Suponha que f é injetiva. Neste caso, como a_1, \ldots, a_n são dois a dois distintos, o mesmo sucede com os elementos $f(a_1), \ldots, f(a_n)$ também são dois a dois distintos, de forma que a imagem $\text{Im}(f) = \{f(a_1), \ldots, f(a_n)\}$ tem n elementos. Como $\text{Im}(f) \subset B$ e ambos esses conjuntos têm n elementos, temos que Im(f) = B. Logo, f é sobrejetiva.

Reciprocamente, suponha que f $n\tilde{a}o$ fosse injetiva. Neste caso, haveria "perda de informação" por f, na passagem de A para B, ou seja, pelos menos dois elementos distintos de A teriam a mesma imagem. Isso obrigaria Im(f) a ter no máximo n-1 elementos. Logo, f não poderia ser sobrejetiva, porque B tem n elementos. Assim, se f é sobrejetiva, então ela não pode deixar de ser injetiva.

O argumento dos dois parágrafos anteriores demonstra que as afirmações dos itens (a) e (b) são equivalentes. Assim, a validade de (a) ou (b) implica a validade de ambos esses itens e, portanto, a de (c).

Reciprocamente, já temos, pela definição de bijetividade, que a validade do item (c) implica a validade dos itens (a) e (b).

Dicas para o Professor

O material desta aula pode ser coberto em três encontros de 50 minutos cada.

Além das definições de função injetiva, função sobrejetiva e função bijetiva, apresentamos aqui caracterizações envolvendo a ideia de inversas laterais. Isso torna mais direta a verificação de que bijetividade é equivalente à existência de inversa, bem como a verificação de que a inversa é única, caso exista.

A Observação 11 é uma boa oportunidade para você comentar com os seus estudantes algo sobre o "Axioma da Escolha". Uma boa introdução a esse axioma pode ser encontrada na sugestão de leitura complementar 3.

A referência de leitura complementar 2 apresenta as definições que trabalhamos neste texto de modo mais aprofundado e também exibe alguns outros exemplos. A referência 1 discute injetividade e sobrejetividade para várias funções elementares importantes, como as funções afins e quadráticas.

Sugestões de Leitura Complementar

 E. L. Lima et al. A Matemática do Ensino Médio, vol. 1. Coleção do Professor de Matemática, Editora S.B.M., Rio de Janeiro, 1998.

- 2. A. Caminha. *Tópicos de Matemática Elementar*, vol. 3. Coleção do Professor de Matemática, Editora S.B.M., Rio de Janeiro, 2013.
- 3. S. G. da Silva e J. P. Cirineu de Jesus. Cem anos do Axioma da Escolha: boa ordenação, Lema de Zorn e o Teorema de Tychonoff. Revista Matemática Universitária, 42 (2018). Disponível em

https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n42_Artigo02.pdf