Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский университет ИТМО

Мега факультет трансляционных информационных технологий Факультет информационных технологий и программирования

Прикладная математика

Лабораторная работа 4

Выполнили:

Кутузов Михаил (М32001)

Капанин Дмитрий (М32021)

Соколов Денис (М32021)

Преподаватель:

Москаленко Мария Александровна

Ссылка на код:

- 1. Реализовать метод вращения Якоби. Применить его к квадратной матрице, чтобы найти её собственные значения и собственные векторы
- 2. Применить метод вращения Якоби к матрицам Гильберта
- 3. Применить метод вращения Якоби к матрицам, число обусловленности которых регулируется за счёт изменения диагонального преобладания

Про хранение матриц

По условию лабораторной работы мы хранили матрицы в разреженно-строчном формате. Этот формат позволяет экономить память, если большая часть матриц не содержит значений или равна нулю.

У нас есть 3 массива — сами значения, номера столбов для соответствующих значений и количество значений в строке матрицы.

Теория по методу вращения Якоби

Пусть у нас есть квадратная симметричная матрица A, она представима в виде VSV⁻¹, где

V – матрица из собственных векторов матрицы А

S – матрица, на диагонали которой стоят собственные значения матрицы A.

По свойству симметричной матрицы, её собственные вектора образуют ортонормированный базис, значит матрица V – ортогональная, то есть $V^T = V^{-1}$.

По сути, матрица V — матрица поворота A в n-мерном пространстве.

Суть алгоритма такова, что мы, имея матрицу A, предполагаем, что она была получена матрицей S путем поворота A несколько раз в различных двумерных плоскостях.

На каждой итерации мы находим максимальный по модулю недиагональный элемент (на позиции і j), тем самым минимизируя

недиагональность матрицы, и ищем угол, на который повернули матрицу S' в плоскости і j, чтобы получить матрицу A', а затем просто поворачиваем матрицу в обратном порядке.

Итерации выполняются до тех пор, пока:

- 1) Матрица A не станет диагональной, тем самым мы получим матрицу S.
- 2) Диагональные элементы матрицы А будут настолько большими по сравнению с недиагональными, что можно считать, что матрица диагональная (тут задаётся точность).

Тестирование метода

На матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания

Mатрица c n = 50.

k	Число обусловленности	Погрешность на 90-95%	Количество итераций
	ooy estobsteninger in	итераций	птерации
50	55.36526530043485	В 3 раза	3289
		больше	
50	74.7219862523722	В 2.5 раза	3135
		больше	
50	43.42052451301916	В 2.6 раза	3133
		больше	
100	56.172687842208994	В 6.4 раз	2663
		больше	
100	45.941871736049144	В 8.2 раз	2667
		больше	
100	51.41296043089279	В 10 раз	2700
		больше	
1000	2333.575572923434	В 2.5 раза	1875
		больше	

1000	147.30303274773598	В 2 раза	1964
		больше	
1000	29.548407374118028	В 2.5 раза	1866
		больше	

На матрицах Гильберта

Размерность	Число обусловленности	Количество итераций при погрешности 0.01	Погрешность (95% итераций)
10	16024413500363.82	24	В 1.6 раз больше
50	1.0993264246156683e+19	154	В 1.3 раза больше
100	2.107525458476661e+19	306	В 1.1 раз больше
500	1.5590302005283635e+20	1294	В 1.04 раза больше

Выводы:

На матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания, число обусловленности не влияет на количество итераций (находятся в одном диапазоне).

Увеличение числа обусловленности приводит к увеличению числа итераций.