MTH211A: Theory of Statistics

Problem set 5

Methods of Interval Estimation

- 1. Find a pivotal quantity based on a random sample of size n from a normal(θ , θ) distribution, where $\theta > 0$. Use the pivotal quantity to set up a 1α confidence interval for θ .
- 2. Let X be a single observation from a $beta(\theta, 1)$ distribution.
 - (a) Let $Y = -(\log X)^{-1}$. Evaluate the confidence coefficient, β , of the test [y/2, y].
 - (b) Find a pivotal quantity and use it to set up a confidence interval for θ with confidence coefficient β , where β is as in part (a).
 - (c) Compare the two confidence intervals.
- 3. Consider the problem of finding a confidence set for the parameters (μ, σ^2) given a random sample of size n from $\mathtt{normal}(\mu, \sigma^2)$ distribution. Use an appropriate function of the sufficient statistics (\bar{X}_n, S_n^2) as a pivot, and hence find a confidence set $U_{\mathbf{X}}$ with confidence coefficient at least 1α .
- 4. Find a 1α confidence interval for θ , given X_1, \dots, X_n iid with pdf
 - (a) $f(x \mid \theta) = 1, \theta 1/2 < x < \theta + 1/2,$
 - (b) $f(x \mid \theta) = 2x/\theta^2, \ 0 < x < \theta.$
- 5. Let X_1, \dots, X_n be a random sample from $Poisson(\lambda)$ distribution. Find the smallest possible interval of the form $[L(\mathbf{X}), U(\mathbf{X})]$, where both L and U are functions of $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$, and $[L(\mathbf{X}), U(\mathbf{X})]$ satisfies $P_{\lambda}(L(\mathbf{X}) < \lambda < U(\mathbf{X})) \ge 1 \alpha$.

[Hint: You may use the following fact:

Let X is distributed as $Gamma(\alpha, \beta)$, then for any x > 0

$$P(X \le x) = P(Y \ge \alpha)$$

where Y is distributed as $Poisson(x/\beta)$.

6. A confidence interval $[L(\mathbf{X}), U(\mathbf{X})]$ for the parameter θ with confidence coefficient at least $1 - \alpha$ is called *unbiased* if $P_{\theta}(L(\mathbf{X}) < \theta < U(\mathbf{X})) \ge 1 - \alpha$, and $P_{\theta}(L(\mathbf{X}) < \theta' < U(\mathbf{X})) \le 1 - \alpha$ for all $\theta' \ne \theta$. Based on a random sample of size n from $uniform(0, \theta)$, find an unbiased confidence interval of θ , with the pivot $X_{(n)}/\theta$.