CMPSC 497 Final Project – Manay Lodha

Introduction

Automatic generation of concise "approach" descriptions for research problems can greatly accelerate literature reviews and proposal writing. In this project, we fine-tune an instruction-tuned seq2seq model (Flan-T5) to take as input the combined Abstract + Introduction + Conclusion (AIC) text of a scientific paper and output a short, human-readable "approach" summary. Our goal is to assess how well a medium-sized open-source LLM can learn this extreme summarization task from a domain-specific dataset.

Dataset Construction

We leverage the SciTLDR dataset, which contains 5.4 K TLDR summaries across 3.2 K papers, with an author-written and an expert-derived summary for each entry <u>Hugging</u> Face. We use the "AIC" configuration (Abstract + Introduction + Conclusion) as our prompt and the expert-derived TLDR as the target.

1. Loading & filtering

python

CopyEdit

raw = load_dataset("allenai/scitldr", "AIC", split="train+validation+test")

We concatenate the "source" sentences into one prompt and "target" sentences into one summary, then filter pairs where the prompt has 20–300 words and the target 10–100 words.

2. Size & split

- o Total examples built: ~5 400
- \circ Train/Val/Test split: 80 % / 10 % / 10 % \Rightarrow ~4 320 / 540 / 540 examples

All examples are saved as JSONL (data/train.jsonl, etc.) for downstream processing.

Methodology

Tokenization & Data Pipeline

Tokenizer: AutoTokenizer.from_pretrained("google/flan-t5-base")

- Maximum lengths: prompt = 128 tokens, target = 512 tokens
- We apply HF's .map(...) to tokenize and produce input_ids and labels.

Model Selection & Training

- Base model: google/flan-t5-base (250 M parameters) Hugging Face
- Training framework: 🙆 Transformers Trainer on a single GPU
- Hyperparameters:

Parameter	Value
Batch size	4
Learning rate	5 × 10 ⁻⁵
Epochs	3
FP16	True

Eval & save strategy per-epoch

Evaluation Metrics & Experiments

We evaluate on the held-out test split (~540 examples) with:

- 1. **ROUGE** (1, 2, L, Lsum) to measure n-gram overlap.
- 2. Perplexity (PPL) computed via cross-entropy on references.
- 3. **Qualitative samples** to inspect generation behavior.

Results

Quantitative Results

Metric	Score
ROUGE-1	0.1841
ROUGE-2	0.0753

Metric Score

ROUGE-L 0.1470

ROUGE-Lsum 0.1489

Avg PPL 1,777,852.93

These low overlap scores and extremely high perplexity indicate the model predominantly copies or truncates the prompt rather than generating novel, concise summaries.

Qualitative Analysis

Sample prompt → generated summary → reference:

PROMPT:

We introduce a new procedural dynamic system that can generate a variety of shapes that often appear as curves... (truncated)

GENERATED:

We introduce a new procedural dynamic system that can generate a variety of shapes that often appear as curves... We introduce a new procedural dynamic system...

REFERENCE:

A new, very simple dynamic system is introduced that generates pretty patterns; properties are proved and possibilities are explored.

We observe near-verbatim copying of the prompt and omission of concise paraphrasing.

Discussion

- **Copying behavior:** The model often echoes the input, leading to poor abstractive summarization.
- **High PPL:** Indicates the fine-tuned model assigns very low probability to the reference summaries, suggesting over-reliance on the input distribution.

Possible causes:

- o Insufficient training epochs/dataset size for the model to generalize.
- Learning rate may be too high, causing early convergence to copying.
- o Lack of explicit instruction prompting (simply feeding raw AIC text).

Conclusion & Future Work

We demonstrated an end-to-end fine-tuning pipeline for FLAN-T5 on the SciTLDR AIC summarization task, complete with dataset construction, training, and evaluation. While the current model underperforms (ROUGE < 0.19, PPL \gg 10³), this establishes a baseline.

Next steps:

- **Prompt engineering:** Prepend explicit instructions (e.g. "Summarize the methods in one sentence:") to guide abstraction.
- **Longer training / larger model:** Experiment with google/flan-t5-large or more epochs with a lower learning rate.
- Regularization: Apply label smoothing or dropout to mitigate copying.
- Augmented dataset: Incorporate additional summarization resources (e.g. abstract-to-TLDR pairs) to enrich training.

This project lays the groundwork for improved automated generation of scientific approach summaries.