

Trajectories

Charlotte Schenk, M.Sc. Psychology; c.schenk@med.uni-frankfurt.de
Dept. of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Medical Centre Frankfurt

Resilience: Maintenance or quick recovery of mental health during or after stressor exposure. [1, 2, 3]

Figure 1
Commonly observed longitudinal trajectories of response to potential trauma.

Note. Sourced from Galatzer-Levy et al. (2018).^[4, 5]

[1] Kalisch, R., Müller, M. B., & Tüscher, O. (2015). A conceptual framework for the neurobiological study of resilience. Behavioral and brain sciences, 38, e92.

[2] Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. *Child development*, 71(3), 543-562.

[3] Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American psychologist, 56(3), 227.

[4] Bonanno, G. A., Westphal, M., & Mancini, A. D. (2011). Resilience to loss and potential trauma. *Annual review of clinical psychology*, 7(1), 511-535.

[5] Galatzer-Levy, I. R., Huang, S. H., & Bonanno, G. A. (2018). Trajectories of resilience and dysfunction following potential trauma: A review and statistical evaluation. Clinical psychology review, 63, 41-55.

LORA - LOngitudinal Resilience Assessment^[1]

N = 1.191, Initially healthy participants, Sex: 35% male, 65% female, Age: M = 28.59, SD = 7.96

Stressor Lock

Time Ralative to Anchor Life Event

Trajectories - Clustering by k-means for longitudinal data

Time Relative to Anchor LE

Trajectories - Clustering by k-means for longitudinal data

Dr. Kira Ahrens

Prof. Dr. Raffael Kalisch

Prof. Dr. Michael Plichta

Time Relative to Anchor LE

Time Relative to Anchor LE

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
- 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
- 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- \nearrow 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Select cluster centers
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

Total within-cluster variance:

• • •

- 1. Choosing the number of clusters: k = 3
- 2. Initializing centroids
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Initializing centroids
- \rightarrow 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Initializing centroids
- \rightarrow 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Initializing centroids
- \rightarrow 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

- 1. Choosing the number of clusters: k = 3
- 2. Initializing centroids
- 3. Assign data points to the nearest cluster
 - 4. Re-initialize centroids

Data Preparation

clusterLongData (or cld in short) is the constructor for a object of class ClusterLongData.

Arguments:

- traj [matrix(numeric)] or [data.frame]: structure containing the trajectories. Each line is the trajectory of an individual. The columns refer to the time during which measures were made.
- idAll [vector(character)]: single identifier for each trajectory (ie each 'individual).
- timeInData [vector(numeric)]: precise the column containing the trajectories.

- [1] https://cran.r-project.org/web/packages/kml/kml.pdf
- [2] https://cran.r-project.org/web/packages/longitudinalData/longitudinalData.pdf
- [3] https://www.jstatsoft.org/article/view/v065i04

Building partition with kml

kml is a implementation of k-means for longitudinal data (or trajectories).

Arguments:

- object [ClusterLongData] (see above)
- nbClusters [vector(numeric)]: Vector containing the number of clusters with which kml must work. (Default is 2:6 and maximum number of cluster is 26)
- nbRedrawing [numeric] Sets the number of time that k-means must be re-run (with different starting conditions) for each number of clusters.
- toPlot [character]: either 'traj' for plotting trajectories alone, 'criterion' for plotting criterion alone, 'both' for plotting both or 'none' for not display anything

```
kml(object = cldSDQ,
   nbClusters = 2:5,
   nbRedrawing = 100,
   toPlot = "none")
```


- [1] https://cran.r-project.org/web/packages/kml/kml.pdf
- [2] https://cran.r-project.org/web/packages/longitudinalData/longitudinalData.pdf
- [3] https://www.jstatsoft.org/article/view/v065i04

Trajectories - Clustering by k-means for longitudinal data

Time Relative to Anchor LE

Trajectories - Clustering by k-means for longitudinal data

Figure 4.

Commonly observed longitudinal trajectories of response to potential trauma.

Note. Sourced from Galatzer-Levy et al. (2018).^[1]

Figure 5.
Schematically illustrated trajectories of the presented study.

Note. In order to cluster the trajectories, not the raw mental health scores but the stressor reactivity was used to consider the background stressors.

Validity of the Trajectories

Predictive validity:

Cluster membership significantly predicts mental disorders.

Thank you for your attention! Are there any questions?

