$12a_{0655} \ (K12a_{0655})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -8.19819 \times 10^{42} u^{79} - 1.59276 \times 10^{43} u^{78} + \dots + 1.35478 \times 10^{43} b + 6.72467 \times 10^{42},$$

$$3.41285 \times 10^{43} u^{79} + 4.36237 \times 10^{43} u^{78} + \dots + 5.41912 \times 10^{43} a - 1.57980 \times 10^{44}, \ u^{80} + 2u^{79} + \dots - 3u - 1$$

$$I_2^u = \langle b, \ 2a - 1, \ u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 81 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -8.20 \times 10^{42} u^{79} - 1.59 \times 10^{43} u^{78} + \dots + 1.35 \times 10^{43} b + 6.72 \times 10^{42}, \ 3.41 \times 10^{43} u^{79} + 4.36 \times 10^{43} u^{78} + \dots + 5.42 \times 10^{43} a - 1.58 \times 10^{44}, \ u^{80} + 2u^{79} + \dots - 3u - 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.629779u^{79} - 0.804997u^{78} + \cdots - 0.236236u + 2.91523 \\ 0.605131u^{79} + 1.17566u^{78} + \cdots + 0.809601u - 0.496367 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0169796u^{79} + 0.335459u^{78} + \cdots + 5.83903u + 0.475568 \\ 0.312645u^{79} + 0.279259u^{78} + \cdots - 1.22816u - 0.148293 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.02827u^{79} - 0.503727u^{78} + \cdots + 0.572706u + 2.21425 \\ -0.457395u^{79} - 0.709552u^{78} + \cdots + 3.16267u + 0.625862 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.897443u^{79} - 0.306344u^{78} + \cdots + 0.339031u + 3.14474 \\ -0.381766u^{79} - 0.537593u^{78} + \cdots + 3.60157u + 0.702345 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.148293u^{79} + 0.0160589u^{78} + \cdots + 0.773176u - 0.783280 \\ -0.301500u^{79} - 0.639544u^{78} + \cdots - 0.526507u - 0.0169796 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.218530u^{79} 4.58968u^{78} + \cdots 13.4585u + 6.15221$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7	$u^{80} + 18u^{79} + \dots + 9u + 1$
c_2, c_6	$u^{80} - 2u^{79} + \dots + 3u - 1$
c_3	$u^{80} + u^{79} + \dots + 58u + 8$
c_4, c_{12}	$u^{80} + 4u^{79} + \dots + u - 1$
c_{8}, c_{11}	$u^{80} + 2u^{79} + \dots - 23u - 4$
<i>c</i> ₉	$2(2u^{80} + 41u^{79} + \dots - 792u - 121)$
c_{10}	$2(2u^{80} + 23u^{79} + \dots - 1532216u + 259361)$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$y^{80} + 90y^{79} + \dots + 23y + 1$
c_2, c_6	$y^{80} - 18y^{79} + \dots - 9y + 1$
c_3	$y^{80} - 9y^{79} + \dots + 1228y + 64$
c_4, c_{12}	$y^{80} + 46y^{79} + \dots - 9y + 1$
c_8, c_{11}	$y^{80} - 58y^{79} + \dots + 1135y + 16$
<i>c</i> 9	$4(4y^{80} - 1149y^{79} + \dots - 58080y + 14641)$
c_{10}	$4(4y^{80} + 1059y^{79} + \dots - 1.70097 \times 10^{12}y + 6.72681 \times 10^{10})$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.908210 + 0.444035I		
a = -1.095210 - 0.465911I	-3.55883 - 7.04654I	0
b = 0.438874 + 0.850544I		
u = 0.908210 - 0.444035I		
a = -1.095210 + 0.465911I	-3.55883 + 7.04654I	0
b = 0.438874 - 0.850544I		
u = 0.865717 + 0.552851I		
a = 0.875688 - 0.614993I	-2.62897 - 2.01090I	0
b = -0.389676 + 0.621158I		
u = 0.865717 - 0.552851I		
a = 0.875688 + 0.614993I	-2.62897 + 2.01090I	0
b = -0.389676 - 0.621158I		
u = -1.029480 + 0.054908I		
a = -0.086104 + 0.140911I	-3.03805 + 7.01781I	0
b = -0.611613 - 0.895210I		
u = -1.029480 - 0.054908I		
a = -0.086104 - 0.140911I	-3.03805 - 7.01781I	0
b = -0.611613 + 0.895210I		
u = -0.862150 + 0.411938I		
a = -0.765239 + 0.717847I	-0.10150 + 3.54359I	0 7.68142I
b = 0.355988 - 0.594647I		
u = -0.862150 - 0.411938I		
a = -0.765239 - 0.717847I	-0.10150 - 3.54359I	0. + 7.68142I
b = 0.355988 + 0.594647I		
u = -0.805506 + 0.494428I		
a = -1.054990 + 0.759347I	1.50560 + 5.11913I	5.17837 - 10.30158I
b = -0.414849 + 0.172313I		
u = -0.805506 - 0.494428I		
a = -1.054990 - 0.759347I	1.50560 - 5.11913I	5.17837 + 10.30158I
b = -0.414849 - 0.172313I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.900523 + 0.041367I		
a = -0.305993 - 0.178109I	-5.73822 - 2.28735I	-7.12415 + 1.62116I
b = 0.720582 - 1.129830I		
u = -0.900523 - 0.041367I		
a = -0.305993 + 0.178109I	-5.73822 + 2.28735I	-7.12415 - 1.62116I
b = 0.720582 + 1.129830I		
u = -0.376173 + 0.818414I		
a = -0.757603 + 0.029800I	5.96762 - 1.94537I	12.19550 + 3.06031I
b = 0.455373 - 0.302854I		
u = -0.376173 - 0.818414I		
a = -0.757603 - 0.029800I	5.96762 + 1.94537I	12.19550 - 3.06031I
b = 0.455373 + 0.302854I		
u = 0.997813 + 0.498144I		
a = 1.059100 + 0.742760I	0.21830 - 12.90460I	0
b = -0.668142 - 0.394736I		
u = 0.997813 - 0.498144I		
a = 1.059100 - 0.742760I	0.21830 + 12.90460I	0
b = -0.668142 + 0.394736I		
u = 0.736410 + 0.485024I		
a = -0.962764 - 0.238510I	2.76606 - 1.97173I	7.71264 + 2.63546I
b = -0.258198 - 1.145200I		
u = 0.736410 - 0.485024I		
a = -0.962764 + 0.238510I	2.76606 + 1.97173I	7.71264 - 2.63546I
b = -0.258198 + 1.145200I		
u = 1.065740 + 0.394552I		
a = -0.227830 + 0.296596I	-1.036590 + 0.614054I	0
b = 0.262901 + 0.085388I		
u = 1.065740 - 0.394552I	4 000 000 000 000 000 000	_
a = -0.227830 - 0.296596I	-1.036590 - 0.614054I	0
b = 0.262901 - 0.085388I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.393317 + 0.768055I		
a = -1.219110 - 0.511536I	2.20503 + 8.30381I	6.33496 - 5.30249I
b = 0.585050 + 0.524028I		
u = 0.393317 - 0.768055I		
a = -1.219110 + 0.511536I	2.20503 - 8.30381I	6.33496 + 5.30249I
b = 0.585050 - 0.524028I		
u = -1.024360 + 0.515111I		
a = 0.624975 - 0.528092I	3.83148 + 6.74819I	0
b = -0.311319 + 0.219577I		
u = -1.024360 - 0.515111I		
a = 0.624975 + 0.528092I	3.83148 - 6.74819I	0
b = -0.311319 - 0.219577I		
u = 0.687160 + 0.501005I		
a = -0.282184 - 0.064378I	2.92099 - 1.83327I	8.18864 + 5.75972I
b = -0.51019 - 1.36518I		
u = 0.687160 - 0.501005I		
a = -0.282184 + 0.064378I	2.92099 + 1.83327I	8.18864 - 5.75972I
b = -0.51019 + 1.36518I		
u = -0.769360 + 0.358403I		
a = -2.31120 + 5.45588I	-0.280690 + 1.300660I	18.3751 - 32.3353I
b = 3.99649 - 1.94508I		
u = -0.769360 - 0.358403I		
a = -2.31120 - 5.45588I	-0.280690 - 1.300660I	18.3751 + 32.3353I
b = 3.99649 + 1.94508I		
u = 0.819942 + 0.191250I		
a = 0.078129 - 0.134282I	-1.40523 - 0.61914I	-4.60800 + 0.82851I
b = 0.356444 + 0.554305I		
u = 0.819942 - 0.191250I		
a = 0.078129 + 0.134282I	-1.40523 + 0.61914I	-4.60800 - 0.82851I
b = 0.356444 - 0.554305I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
-	u = 1.16108		
	a = -0.0517082	0.324488	0
	b = -0.378668		
_	u = 0.276198 + 0.789141I		
	a = -0.201775 + 0.641459I	1.64531 - 4.95419I	7.71109 + 7.25315I
_	b = 0.394592 - 0.012771I		
	u = 0.276198 - 0.789141I		
	a = -0.201775 - 0.641459I	1.64531 + 4.95419I	7.71109 - 7.25315I
_	b = 0.394592 + 0.012771I		
	u = -0.594052 + 0.518671I		
	a = 0.926803 + 0.177997I	2.16348 - 1.21726I	8.19465 + 1.97536I
_	b = -0.441308 + 1.081290I		
	u = -0.594052 - 0.518671I		
	a = 0.926803 - 0.177997I	2.16348 + 1.21726I	8.19465 - 1.97536I
_	b = -0.441308 - 1.081290I		
	u = -0.888871 + 0.850062I		
	a = -1.031000 + 0.156735I	5.01781 + 2.94177I	0
_	b = 0.81250 + 1.39597I		
	u = -0.888871 - 0.850062I		
	a = -1.031000 - 0.156735I	5.01781 - 2.94177I	0
_	b = 0.81250 - 1.39597I		
	u = 0.884877 + 0.875922I		
	a = -1.64030 - 1.54748I	7.91819 - 0.07865I	0
_	b = 3.03145 - 0.58809I		
	u = 0.884877 - 0.875922I	F 01010 : 0 0F0855	
	a = -1.64030 + 1.54748I	7.91819 + 0.07865I	0
-	b = 3.03145 + 0.58809I		
	u = -0.926943 + 0.832833I	4 005 45 + 0 000055	
	a = 0.286660 - 0.815402I	4.89547 + 3.32207I	0
_	b = -1.52828 + 0.64200I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.926943 - 0.832833I		
a = 0.286660 + 0.815402I	4.89547 - 3.32207I	0
b = -1.52828 - 0.64200I		
u = -0.875865 + 0.887015I		
a = -1.21431 + 2.34469I	4.89656 - 3.73236I	0
b = 3.30413 - 0.59349I		
u = -0.875865 - 0.887015I		
a = -1.21431 - 2.34469I	4.89656 + 3.73236I	0
b = 3.30413 + 0.59349I		
u = 0.913469 + 0.855850I		
a = 7.90543 - 5.83238I	6.83434 - 3.17732I	0
b = 2.1500 + 17.7012I		
u = 0.913469 - 0.855850I		
a = 7.90543 + 5.83238I	6.83434 + 3.17732I	0
b = 2.1500 - 17.7012I		
u = -0.858554 + 0.925077I		
a = 1.36360 - 1.87978I	9.7035 - 10.2935I	0
b = -3.18932 + 0.02579I		
u = -0.858554 - 0.925077I		
a = 1.36360 + 1.87978I	9.7035 + 10.2935I	0
b = -3.18932 - 0.02579I		
u = 0.905807 + 0.883629I		
a = -2.49473 - 0.75276I	9.90082 + 0.66319I	0
b = 3.27476 - 1.66368I		
u = 0.905807 - 0.883629I		
a = -2.49473 + 0.75276I	9.90082 - 0.66319I	0
b = 3.27476 + 1.66368I		
u = 0.723920 + 0.124460I		
a = 1.21857 - 1.47110I	-1.21288 - 2.12033I	-2.81970 + 3.07552I
b = 0.780068 + 0.970212I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.723920 - 0.124460I		
a = 1.21857 + 1.47110I	-1.21288 + 2.12033I	-2.81970 - 3.07552I
b = 0.780068 - 0.970212I		
u = 0.857297 + 0.932255I		
a = 1.30613 + 1.32110I	13.5592 + 4.2838I	0
b = -2.54938 + 0.28745I		
u = 0.857297 - 0.932255I		
a = 1.30613 - 1.32110I	13.5592 - 4.2838I	0
b = -2.54938 - 0.28745I		
u = -0.916009 + 0.877875I		
a = -1.376650 - 0.243211I	10.84760 + 2.95253I	0
b = 1.47545 + 1.19753I		
u = -0.916009 - 0.877875I		
a = -1.376650 + 0.243211I	10.84760 - 2.95253I	0
b = 1.47545 - 1.19753I		
u = 0.945271 + 0.851052I		
a = 1.65910 + 1.44872I	7.72695 - 6.32210I	0
b = -3.28901 + 0.49671I		
u = 0.945271 - 0.851052I		
a = 1.65910 - 1.44872I	7.72695 + 6.32210I	0
b = -3.28901 - 0.49671I		
u = -0.926203 + 0.873253I		
a = -0.00593 - 1.47214I	10.81490 + 3.52603I	0
b = -1.146450 + 0.764895I		
u = -0.926203 - 0.873253I		
a = -0.00593 + 1.47214I	10.81490 - 3.52603I	0
b = -1.146450 - 0.764895I		
u = 0.936906 + 0.870026I		
a = 1.02403 + 2.45543I	9.80182 - 7.14932I	0
b = -3.30105 - 0.80227I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.936906 - 0.870026I		
a = 1.02403 - 2.45543I	9.80182 + 7.14932I	0
b = -3.30105 + 0.80227I		
u = -0.847914 + 0.957867I		
a = 0.799931 - 0.479515I	8.58054 + 1.91116I	0
b = -1.283290 - 0.364046I		
u = -0.847914 - 0.957867I		
a = 0.799931 + 0.479515I	8.58054 - 1.91116I	0
b = -1.283290 + 0.364046I		
u = -0.957274 + 0.852492I		
a = 2.41489 - 0.96433I	4.63845 + 10.17100I	0
b = -3.42506 - 1.60897I		
u = -0.957274 - 0.852492I		
a = 2.41489 + 0.96433I	4.63845 - 10.17100I	0
b = -3.42506 + 1.60897I		
u = 0.484225 + 0.490550I		
a = 0.85564 - 1.37009I	-1.75610 - 2.02511I	1.63204 + 3.32753I
b = -0.190985 + 0.748669I		
u = 0.484225 - 0.490550I		
a = 0.85564 + 1.37009I	-1.75610 + 2.02511I	1.63204 - 3.32753I
b = -0.190985 - 0.748669I		
u = -0.989525 + 0.860769I		
a = -1.97327 + 1.20741I	9.2811 + 16.8739I	0
b = 3.46394 + 1.15460I		
u = -0.989525 - 0.860769I		
a = -1.97327 - 1.20741I	9.2811 - 16.8739I	0
b = 3.46394 - 1.15460I		
u = 0.994452 + 0.863666I		
a = -1.45453 - 1.16136I	13.1160 - 10.8953I	0
b = 2.82195 - 0.59826I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.994452 - 0.863666I		
a = -1.45453 + 1.16136I	13.1160 + 10.8953I	0
b = 2.82195 + 0.59826I		
u = 0.379240 + 0.558264I		
a = 1.51378 + 0.48363I	-1.97201 + 3.24293I	2.89878 - 3.45469I
b = 0.013302 - 0.381211I		
u = 0.379240 - 0.558264I		
a = 1.51378 - 0.48363I	-1.97201 - 3.24293I	2.89878 + 3.45469I
b = 0.013302 + 0.381211I		
u = -1.013580 + 0.875810I		
a = -0.681351 + 0.629833I	8.04920 + 4.81399I	0
b = 1.370530 + 0.267728I		
u = -1.013580 - 0.875810I		
a = -0.681351 - 0.629833I	8.04920 - 4.81399I	0
b = 1.370530 - 0.267728I		
u = -0.449816 + 0.406846I		
a = 1.48792 - 0.04382I	1.139930 - 0.176228I	8.91211 + 0.28630I
b = -0.402780 + 0.191398I		
u = -0.449816 - 0.406846I		
a = 1.48792 + 0.04382I	1.139930 + 0.176228I	8.91211 - 0.28630I
b = -0.402780 - 0.191398I		
u = -0.436460		
a = 2.21751	1.05778	11.1780
b = -0.515297		
u = -0.126130 + 0.299152I		
a = 3.40879 + 0.64147I	0.958209 + 1.026080I	4.35377 + 0.66475I
b = -1.206450 - 0.292678I		
u = -0.126130 - 0.299152I		
a = 3.40879 - 0.64147I	0.958209 - 1.026080I	4.35377 - 0.66475I
b = -1.206450 + 0.292678I		

II.
$$I_2^u = \langle b, 2a-1, u+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.5 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -0.5 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -2.25

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_{11}, c_{12}	u-1
c_3	u
c_4, c_6, c_7 c_8	u+1
c_9, c_{10}	2(2u+1)

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_7 c_8, c_{11}, c_{12}	y-1
c_3	y
c_9, c_{10}	4(4y-1)

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.500000	0	-2.25000
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5	$(u-1)(u^{80}+18u^{79}+\cdots+9u+1)$
c_2	$(u-1)(u^{80}-2u^{79}+\cdots+3u-1)$
c_3	$u(u^{80} + u^{79} + \dots + 58u + 8)$
c_4	$(u+1)(u^{80}+4u^{79}+\cdots+u-1)$
c_6	$(u+1)(u^{80}-2u^{79}+\cdots+3u-1)$
	$(u+1)(u^{80}+18u^{79}+\cdots+9u+1)$
<i>c</i> ₈	$(u+1)(u^{80}+2u^{79}+\cdots-23u-4)$
<i>c</i> ₉	$4(2u+1)(2u^{80}+41u^{79}+\cdots-792u-121)$
c_{10}	$4(2u+1)(2u^{80}+23u^{79}+\cdots-1532216u+259361)$
c_{11}	$(u-1)(u^{80} + 2u^{79} + \dots - 23u - 4)$
c_{12}	$(u-1)(u^{80} + 4u^{79} + \dots + u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_7	$(y-1)(y^{80} + 90y^{79} + \dots + 23y + 1)$
c_2, c_6	$(y-1)(y^{80}-18y^{79}+\cdots-9y+1)$
c_3	$y(y^{80} - 9y^{79} + \dots + 1228y + 64)$
c_4, c_{12}	$(y-1)(y^{80}+46y^{79}+\cdots-9y+1)$
c_8, c_{11}	$(y-1)(y^{80} - 58y^{79} + \dots + 1135y + 16)$
<i>C</i> 9	$16(4y-1)(4y^{80}-1149y^{79}+\cdots-58080y+14641)$
c_{10}	$16(4y - 1)$ $\cdot (4y^{80} + 1059y^{79} + \dots - 1700965067380y + 67268128321)$