5.1 Laplace Transform of Derivatives

Before we state the derivative theorem, it should be noted that this results is the key aspect for its application of solving differential equations.

5.1.1 Derivative Theorem

Suppose f is continuous on $[0,\infty)$ and is of exponential order α and that $f^{'}$ is piecewise continuous on $[0,\infty)$. Then

$$L[f'(t)] = sL[f(t)] - f(0), \quad Re(s) > \alpha.$$

Proof: Consider the following integral

$$\int_{0}^{R} f'(t)e^{-st} dt$$

Note that the above integral exist because f' is piece-wise continuous. Integrating by parts, we get

$$\int_0^R f'(t)e^{-st} dt = f(t)e^{-st} \Big|_0^R - \int_0^R f(t)e^{-st}(-s) dt$$

This can be further rewritten as

$$\int_{0}^{R} f'(t)e^{-st} dt = f(R)e^{-sR} - f(0) + s \int_{0}^{R} f(t)e^{-st} dt$$

By the definition of Laplace transform, we have

$$L[f'(t)] = \lim_{R \to \infty} \int_0^R f'(t)e^{-st} dt = \lim_{R \to \infty} \left(f(R)e^{-sR} - f(0) + s \int_0^R f(t)e^{-st} dt \right)$$

Using the fact that f is of exponential order $(\lim_{R\to\infty} f(R)e^{-sR}=0)$, we get

$$L[f'(t)] = -f(0) + sL[f(t)], \quad \text{Re(s)} > \alpha.$$

This completes the proof.

Remark 1: Suppose f(t) is not continuous at t = 0, then the results of the above theorem takes the following form

$$L[f'(t)] = -f(0+0) + sL[f(t)]$$

Remark 2: An interesting feature of the derivative theorem is that L[f'(t)] exists without the requirement of f' to be of exponential order. Recall the existence of Laplace transform of $f(t) = 2te^{t^2}\cos\left(e^{t^2}\right)$ which is obvious now by the derivative theorem because

$$f(t) = \left(\sin\left(e^{t^2}\right)\right)'.$$

Remark 3: The derivative theorem can be generalized as

$$L[f''(t)] = -f'(0) + sL[f'(t)]$$

= $-f'(0) + s\{-f(0) + sL[f(t)]\} = s^2L[f(t)] - sf(0) - f'(0).$

In general, for nth derivative we have

$$L[f^{(n)}(t)] = s^{n}L[f(t)] - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{n-1}(0).$$

5.2 Example Problems

5.2.1 Problem 1

Determine $L[\sin^2 \omega t]$.

Solution: Let us assume that

$$f(t) = \sin^2 \omega t$$

Now we compute the derivative of f as

$$f'(t) = 2\sin\omega t \cos\omega t\omega = \omega \sin 2\omega t.$$

Using the derivative theorem we have

$$L[f'(t)] = -f(0) + sL[f(t)]$$

Substituting the function f(t) and its derivative we find

$$L[\omega \sin 2\omega t] = sL[\sin^2 \omega t] - 0$$

Therefore, we have

$$L[\sin^2 \omega t] = \frac{\omega}{s} \left(\frac{2\omega}{s^2 + 4\omega^2} \right)$$

5.2.2 Problem 2

Using derivative theorem, find $L[t^n]$.

Solution: Let

$$f(t) = t^n$$
.

Then

$$f'(t) = nt^{n-1}, \quad f''(t) = n(n-1)t^{n-2}, \dots, \quad f^n(t) = n!.$$

From derivative theorem we have

$$L[f^{n}(t)] = s^{n}L[f(t)] - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{n-1}(0).$$

Therefore, we find

$$L[n!] = s^n L[t^n] \Rightarrow L[t^n] = \frac{n!}{s^{n+1}}.$$

5.2.3 Problem 3

Using derivative theorem, find $L[\sin kt]$.

Solution: Let $f(t) = \sin kt$ and therefore we have

$$f'(t) = k \cos kt$$
 and $f''(t) = -k^2 \sin kt$

Substituting in the derivative theorem

$$L[f''(t)] = s^2 L[f(t)] - sf(0) - f'(0)$$

yields

$$L[-k^2\sin kt] = s^2L[\sin kt] - 0 - k$$

On simplifications we get

$$L[\sin kt] = \frac{k}{s^2 + k^2}$$

5.2.4 Problem 4

Using $L[t^2] = 2/s^3$ and derivative theorem, find $L[t^5]$.

Solution: Let $f(t) = t^5$ so that $f'(t) = 5t^4$, $f''(t) = 20t^3$ $f'''(t) = 60t^2$. The derivative theorem for third derivative reads as

$$L[f'''(t)] = s^3 L[f(t)] - s^2 f(0) - sf'(0) - f''(0)$$

This implies

$$L[60t^2] = s^3 L[f(t)] \implies L[f(t)] = \frac{120}{s^6}.$$

5.2.5 Problem 5

Using the Laplace transform of $L\left[\sin \sqrt{t}\right]$ and applying the derivative theorem, find the Laplace transform of the function

$$\frac{\cos\sqrt{t}}{\sqrt{t}}$$

Solution: We know that

$$L\left[\sin\sqrt{t}\right] = \frac{1}{2s}\sqrt{\frac{\pi}{s}}\,e^{-\frac{1}{4s}}$$

Let $f(t) = \sin \sqrt{t}$, then we have

$$f(0) = 0$$
 and $f'(t) = \frac{\cos\sqrt{t}}{2\sqrt{t}}$

Substitution of f(t) in the derivative theorem

$$L[f'(t)] = sL[f(t)] - f(0)$$

yields

$$L\left[\frac{\cos\sqrt{t}}{2\sqrt{t}}\right] = s\frac{1}{2s}\sqrt{\frac{\pi}{s}}\,e^{-\frac{1}{4s}}$$

Thus, we get

$$L\left[\frac{\cos\sqrt{t}}{\sqrt{t}}\right] = \sqrt{\frac{\pi}{s}} e^{-\frac{1}{4s}}$$

5.3 Laplace Transform of Integrals

5.3.1 Theorem

Suppose f(t) is piecewise continuous on $[0, \infty)$ and the function

$$g(t) = \int_0^t f(u) \, \mathrm{d}u$$

is of exponential order. Then

$$L[g(t)] = \frac{1}{s}F(s).$$

Proof: Clearly g(0) = 0 and g'(t) = f(t). Note that g(t) is piecewise continuous and is of exponential order as well as g'(t) = f(t) is piecewise continuous. Then, we get using the derivative theorem

$$L[g'(t)] = sL[g(t)] - g(0)$$

Since g(0) = 0 we obtain the desired result as

$$L[g(t)] = \frac{1}{s}L[f(t)]$$

This completes the proof.

5.4 Example Problems

5.4.1 Problem 1

Given that

$$L\left[\frac{\sin t}{t}\right] = \int_{s}^{\infty} \frac{1}{1+s^2} \, \mathrm{d}s.$$

Find the Laplace transform of the integral

$$\int_0^t \frac{\sin u}{u} \, \mathrm{d}u.$$

Solution: Direct application of the above result gives

$$L\left[\int_0^t \frac{\sin u}{u} du\right] = \frac{1}{s} L\left[\frac{\sin t}{t}\right]$$
$$= \frac{1}{s} \int_s^\infty \frac{1}{1+s^2} ds = \frac{1}{s} \left[\frac{\pi}{2} - \tan^{-1} s\right]$$

Thus, we have

$$L\left[\int_0^t \frac{\sin u}{u} \, \mathrm{d}u\right] = \frac{1}{s} \cot^{-1} s$$

5.4.2 Problem 2

Find Laplace transform of the following integral

$$\int_0^t u^n e^{-au} du$$

Solution: With the application of the first shifting theorem we know that

$$L[t^n e^{-at}] = \frac{n!}{(s+a)^{n+1}}$$

It follows from the above result on Laplace transform of integrals

$$L\left[\int_{0}^{t} u^{n} e^{-au} du\right] = \frac{1}{s} L[t^{n} e^{-at}] = \frac{n!}{s(s+a)^{n+1}}.$$

5.5 Multiplication by t^n

5.5.1 Theorem

If F(s) is the Laplace transform of f(t), i.e., L[f(t)] = F(s) then,

$$L[tf(t)] = -\frac{d}{ds}F(s)$$

and in general the following result holds

$$L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s).$$

Proof: By definition we know

$$F(s) = \int_0^\infty e^{-st} f(t) \, \mathrm{d}t$$

Using Leibnitz rule for differentiation under integral sign we obtain

$$\frac{dF(s)}{ds} = \int_0^\infty (-t)e^{-st}f(t)\,\mathrm{d}t$$

Thus we get

$$\frac{dF(s)}{ds} = -L[tf(t)]$$

Repeated differentiation under integral sign gives the general rule.

Applicability of the above result will now be demonstrated by some examples.

5.6 Example Problems

5.6.1 Problem 1

Find Laplace transform of the function $t^2 \cos at$.

Solution: We know from Laplace transform of elementary functions that

$$L[\cos at] = \frac{s}{s^2 + a^2}$$

Direct application of the above rule gives

$$L\left[t^{2}\cos at\right] = \frac{d^{2}}{ds^{2}}\left(\frac{s}{s^{2} + a^{2}}\right) = \frac{d}{ds}\left(\frac{s^{2} + a^{2} - 2s^{2}}{\left(s^{2} + a^{2}\right)^{2}}\right) = \frac{d}{ds}\left(\frac{a^{2} - s^{2}}{\left(s^{2} + a^{2}\right)^{2}}\right)$$

On simplifications we find

$$L[t^2 \cos at] = \frac{2s(s^2 - 3a^2)}{(s^2 + a^2)^3}$$

5.6.2 **Problem 2**

Evaluate (i) $L[te^{-t}]$ (ii) $L[t^2e^{-t}]$ (iii) $L[t^ke^{-t}]$

Solution: (i) We know that

$$L[e^{-t}] = \frac{1}{s+1}$$

Using the above mentioned rule we find

$$L[te^{-t}] = -\frac{d}{ds}\frac{1}{s+1} = \frac{1}{(s+1)^2}$$

(ii) Applying the same idea once again, we obtain

$$L[t^2e^{-t}] = -\frac{d}{ds}\frac{1}{(s+1)^2} = \frac{2}{(s+1)^3}$$

(iii) Similarly, we can further generalize this result as

$$L[t^k e^{-t}] = \frac{k!}{(s+1)^{k+1}}$$

5.6.3 Problem 3

Find the Laplace transform of $f(t) = (t^2 - 3t + 2) \sin t$

Solution: Using linearity of the Laplace transform we have

$$L[f(t)] = L[t^2 \sin t] - 3L[t \sin t] + 2L[\sin t]$$
(5.1)

Since we know

$$L[\sin t] = \frac{1}{1+s^2}$$

then

$$L[t\sin t] = -\frac{d}{ds}\frac{1}{1+s^2} = \frac{2s}{(1+s^2)^2}$$

and

$$L[t^2 \sin t] = -\frac{d}{ds} \frac{2s}{(1+s^2)^2} = \frac{2(1+s^2)^2 - 8s^2(1+s^2)}{(1+s^2)^4} = \frac{6s^2 - 2}{(1+s^2)^3}$$

Substituting the above values in the equation (5.1), we find

$$L[f(t)] = \frac{6s^2 - 2}{(1+s^2)^3} - \frac{6s}{(1+s^2)^2} + \frac{2}{1+s^2}$$

Further simplifications lead to

$$L[f(t)] = \frac{6s^2 - 2 - 6s(1+s^2) + 2(1+s^2)^2}{(1+s^2)^3}$$

Finally, we obtain

$$L[f(t)] = \frac{(2s^4 - 6s^3 + 10s^2 - 6s)}{(s^6 + 3s^4 + 3s^2 + 1)}$$

5.7 Division by t

5.7.1 Theorem

If f is piecewise continuous on $[0,\infty)$ and is of exponential order α such that

$$\lim_{t \to 0+} \frac{f(t)}{t}$$

exists, then,

$$L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(u) du, \quad [s > \alpha]$$

Proof: This can easily be proved by letting $g(t) = \frac{f(t)}{t}$ so that f(t) = tg(t).

Hence,

$$F(s) = L[f(t)] = L[tg(t)] = -\frac{d}{ds}L[g(t)]$$

Integrating with respect to s we get,

$$-L[g(t)]\Big|_s^{\infty} = \int_s^{\infty} F(s) \, \mathrm{d}s.$$

Since g(t) is piecewise continuous and of exponential order, it follows that $\lim_{s\to\infty} L[g(t)] \to 0$. Thus we have

$$L[g(t)] = \int_{s}^{\infty} F(s) \, \mathrm{d}s.$$

This completes the proof.

Remark: It should be noted that the condition $\lim_{t\to 0+} [f(t)/t]$ is very important because without this condition the function g(t) may not be piecewise continuous on $[0,\infty)$. Thus without this condition we can not use the fact $\lim_{s\to\infty} L[g(t)]\to 0$.

5.7.2 Corollary

If L[f(t)] = F(s) then $\int_0^\infty \frac{f(t)}{t} dt = \int_0^\infty F(s) ds$, provided that the integrals converge.

Proof: We know that

$$L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(u) \, \mathrm{d}u$$

Using the definition of Laplace transform we get

$$\int_0^\infty e^{-st} \frac{f(t)}{t} \, \mathrm{d}t = \int_s^\infty F(u) \, \mathrm{d}u$$

Taking limit $s \to 0$ in above two integrals we obtain

$$\int_0^\infty \frac{f(t)}{t} \, \mathrm{d}t = \int_0^\infty F(u) \, \mathrm{d}u$$

This completes the proof.

5.8 Example Problems

5.8.1 Problem 1

Find the Laplace transform of the function

$$f(t) = \frac{\sin at}{t}$$

Solution: We know,

$$L[\sin at] = \frac{a}{s^2 + a^2}$$
 and $L\left[\frac{f(t)}{t}\right] = \int_s^\infty F(s) \, ds$

On integrating we get,

$$L\left[\frac{\sin at}{t}\right] = \int_{s}^{\infty} \frac{a}{s^2 + a^2} \, \mathrm{d}s = \tan^{-1}\left(\frac{s}{a}\right)\Big|_{s}^{\infty}$$

Thus we have

$$L\left[\frac{\sin at}{t}\right] = \frac{\pi}{2} - \tan^{-1}\left(\frac{s}{a}\right)$$

5.8.2 Problem 2

Find the Laplace transform of the function

$$f(t) = \frac{2\sin t \sinh t}{t}$$

Solution: Using Division by t property of the Laplace transform we get

$$L[f(t)] = \int_{s}^{\infty} L\left[\sin t\left(e^{t} - e^{-t}\right)\right] ds$$
 (5.2)

Now we evaluate $L\left[\sin t\left(e^{t}-e^{-t}\right)\right]$ using linearity of the Laplace transform as

$$L\left[\sin t\left(e^{t}-e^{-t}\right)\right] = L\left[e^{t}\sin t\right] - L\left[e^{-t}\sin t\right]$$

Applying the first shifting theorem we obtain

$$L\left[\sin t \left(e^{t}-e^{-t}\right)\right] = \frac{1}{1+(s-1)^{2}} - \frac{1}{1+(s+1)^{2}}$$

Substituting this value in the equation (5.2) we find

$$L[f(t)] = \int_{s}^{\infty} \left[\frac{1}{1 + (s-1)^2} - \frac{1}{1 + (s+1)^2} \right] ds$$

On integrating, we have

$$L[f(t)] = \tan^{-1}(s-1)\Big|_{s}^{\infty} - \tan^{-1}(s+1)\Big|_{s}^{\infty}$$
$$= \frac{\pi}{2} - \tan^{-1}(s-1) - \frac{\pi}{2} + \tan^{-1}(s+1)$$

On cancellation of $\pi/2$ we get

$$L[f(t)] = \tan^{-1}(s+1) - \tan^{-1}(s-1)$$

This can be further simplified to obtain

$$L[f(t)] = \tan^{-1}\left(\frac{2}{s^2}\right)$$