Introduction to Genome Scale Metabolic Models

Rui Benfeitas

NBIS - National Bioinformatics Infrastructure Sweden Science for Life Laboratory, Stockholm Stockholm University

Overview

- 1. The problem in characterising fluxes
- 2. Rationale behind metabolic modelling
- 3. Employing GEMs in simulating metabolic fluxes

Moving from genetic to metabolic characterisations

Metabolism provides the energy and building blocks necessary to sustain life.

Moving from genetic to metabolic characterisations

~20,000 genes (protein-coding)

>100,000 metabolites

diversity

Moving from genetic to metabolic characterisations

Quantifying fluxes

We can generally measure metabolite concentrations

...but what is often important is the flow or **flux** of metabolites through the reactions.

Quantifying fluxes

$$\frac{\mathbf{r}_1}{\mathbf{B}}$$

$$\mathbf{flux} = v_1$$

$$\frac{d[A]}{dt} = -v_1$$

$$\frac{d[B]}{dt} = v_1$$

 \downarrow v_1 = production rate of B

 $v: \frac{mmol}{g_{DCW} \cdot h}$

Enzyme kinetics require knowledge of many kinetic parameters

$$\frac{\mathbf{r_1}}{\mathbf{B}}$$

$$\mathbf{flux} = v_1$$

Estimated experimentally

$$\frac{d[A]}{dt} = -v_1 = k_1 \times [A]$$

$$\frac{d[A]}{dt} = -v_1 = \frac{V_{max} \times [A]}{K_M + [A]}$$

Expanding flux simulations globally

Expanding flux simulations globally

Using reaction stoichiometry to describe metabolism

Genome-scale model (GEM)

Chemical formula Charge InChl code Other external IDs **KEGG ID Compartment Name Symbol** r2 r3 r4 r5 C00668 cytosol [c] glucose 6-phosphate G₆P 0 0 0 0 1 C00085 cytosol [c] fructose 6-phosphate -1 0 F6P 0 1 C00354 -1 fructose-1,6-bisphosphate -1 cytosol [c] **FBP** 0 0 0 0 C00111 cytosol [c] **DHAP** 0 -1 dihydroxyacetone phosphate 0 0 0 C00118 cytosol [c] glyceraldehyde 3-phosphate G₃P

Genome-scale model (GEM)

GPR rules

GPR Rules enable more accurate simulation of gene inactivation/knock-out

Knockout	Effect
E1	none
E2	none
E1 + E2	rA inactive
E3	rB rC inactive
E4a	rD inactive
E4b	rD inactive
E4a + E4b	rD inactive

GPR rules

GPR rules can be linked with gene expression

GEMs as an integrative tool

FBA seeks to calculate the reaction **fluxes** (**v**) of a network

Based on the **conservation of mass**: it cannot be created or destroyed

$$\frac{d[A]}{dt} = v_{prod} - v_{cons}$$
$$= S \times v$$

$$\frac{d[G6P]}{dt} = v_{in} - v_1$$

$$\frac{d[G3P]}{dt} = v_4 + v_5 - v_{out}$$

$$\frac{d[A]}{dt} = V_{max} \times [A]$$

A key assumption to FBA is **steady state**: metabolite concentrations are **constant** through time

$$\frac{d[X]}{dt} = v_{prod} - v_{cons} = 0$$

$$\Rightarrow v_{prod} = v_{cons}$$

This assumption allows us to **ignore enzyme kinetics**, thus eliminating **many** unknown parameters

$$S \cdot v = 0$$

Models account for compartments:

- Exchange reactions
- Intracellular compartments

We can further constrain the solution space by limiting reaction fluxes based on their reversibility:

Gene expression:

Others:

Enzyme capacity

Kinetics

Thermodynamic constraints

Metabolic tasks

Since the problem is still under-defined, FBA uses linear optimization to identify a solution that maximizes (or minimizes) some objective

Objective function (i.e. optimisation objective) is often: maximise an artificial "biomass" reaction or ATP production

Approach for analysis

Approach for analysis

NB§S

Approach for analysis

Networks from GEMs

Exercise: COBRApy

COBRApy (COnstraint-Based Reconstruction and Analysis) facilitates the use of GEMs in python

The exercise will walk through the basics of GEM structure, functionality, FBA, and gene knockouts.

Acknowledgements: Jonathan Robinson

