

SLAM and Graphical Models

Robot Localization and Mapping 16-833

Michael Kaess

April 12+14, 2021

Measurement Jacobian Factor Graph

Information Matrix

Markov Random Field

Square Root Inf. Matrix

Measurement Jacobian Factor Graph

Information Matrix

Markov Random Field

Square Root Inf. Matrix

Bayes Tree

Variable Elimination

Courtesy of Daniel Kohlsdorf (Georgia Tech)

iSAM2: Bayes Tree

Inference in tree structure is easy

Idea: Convert factor graph to tree structure

Two stage process:

- Variable elimination converts factor graph to Bayes net
- Discovering cliques provides Bayes tree

"iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree" M. Kaess, H. Johannsson, R. Roberts, V. Ila, J.J. Leonard, and F. Dellaert. IJRR 2012

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

 $\psi(l_1,x_1,x_2) = \psi(l_1|x_1,x_2) \psi(x_1,x_2)$

Variable Elimination

Factorization of the factors connected to I_1 (on the board)

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

 $\psi(l_1,x_1,x_2) = \psi(l_1|x_1,x_2) \psi(x_1,x_2)$

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

 $\psi(l_1,x_1,x_2) = \psi(l_1|x_1,x_2) \psi(x_1,x_2)$

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

- Choose ordering: l_1 , l_2 , x_1 , x_2 , x_3
- Eliminate one node at a time

 $\psi(x_3)$

Variable Elimination – Algorithm

Algorithm 3.1 The Variable Elimination Algorithm

- 1: **function** ELIMINATE($\Phi_{1:n}$) \triangleright given a factor graph on n variables
- 2: **for** j = 1...n **do**

▷ for all variables

- 3: $p(x_j|S_j), \Phi_{j+1:n} \leftarrow \text{EliminateOne}(\Phi_{j:n}, x_j) \quad \triangleright \text{ eliminate } x_j$
- 4: **return** $p(x_1|S_1)p(x_2|S_2)...p(x_n)$

⊳ return Bayes net

Algorithm 3.2 Eliminate variable x_j from a factor graph $\Phi_{j:n}$.

- 1: **function** ELIMINATEONE($\Phi_{j:n}, x_j$) \triangleright given reduced graph $\Phi_{j:n}$
- 2: Remove all factors $\phi_i(X_i)$ that are adjacent to x_j
- 3: $S(x_j) \leftarrow \text{all variables involved excluding } x_j \qquad \triangleright \text{ the separator}$
- 4: $\psi(x_j, S_j) \leftarrow \prod_i \phi_i(X_i)$

 \triangleright create the product factor ψ

5: $p(x_j|S_j)\tau(S_j) \leftarrow \psi(x_j,S_j)$

- \triangleright factorize the product ψ
- 6: Add the new factor $\tau(S_i)$ back into the graph
- 7: return $p(x_j|S_j), \Phi_{j+1:n}$
- ▷ Conditional and reduced graph

Not the same as the original Bayes net!

The Bayes net has a special property: its undirected equivalent is chordal by construction

Chordal: There is no cycle greater than 3 that has no shortcut

Step 2: Find cliques in reverse elimination order:

Step 2: Find cliques in reverse elimination order:

Step 2: Find cliques in reverse elimination order:

Step 2: Find cliques in reverse elimination order:

Step 2: Find cliques in reverse elimination order:

Step 2: Find cliques in reverse elimination order:

Bayes Tree – Algorithm

Alg. 3 Creating a Bayes tree from the chordal Bayes net resulting from elimination (Alg. 2).

For each conditional density $P(\theta_j|S_j)$ of the Bayes net, in *reverse* elimination order:

```
If no parent (S_j = \{\}) start a new root clique F_r containing \theta_j else
```

identify parent clique C_p that contains the first eliminated variable of S_j as a frontal variable

if nodes $F_p \cup S_p$ of parent clique C_p are equal to separator nodes S_j of conditional

```
insert conditional into clique C_p else
```

start new clique C' as child of C_p containing θ_j

Bayes Tree Example

- On the board:
 - Example with 4 nodes, 3 different orderings

Question

• How to do backsubstitution in the graph?

Backsubstitution in the Graph

- Inference is a two-step process:
 - Elimination starts at leaves and proceeds to the root

Solving starts at root and proceeds to the leaves

Question

 In the matrix factorization, which entries correspond to the root in the Bayes tree?

Question

 In the matrix factorization, which entries correspond to the root in the Bayes tree?

The bottom-/right-most entries correspond to the root – they are not conditioned on any other variables

Bayes Tree vs. Junction Tree/Clique Tree

BT = direct(ed) result from elimination

More intuitive, directly encodes square root inform. factor, but also less general: reflects an ordering

Chordal Bayes Net and cliques

Bayes Tree

Junction Tree

iSAM2: Bayes Tree Example

Complexity depends on the size of the largest clique