

www.sites.google.com/site/faresfergani

السنة الدراسية : 2015/2014

لمحتوى المفاهيمي :

المتابعة الزمنية لتحول كيميائي

التحولات الكيميائية السريعة و البطيئة

<u>● التحول الكيميائي السريع :</u>

- يكون التحول الكيميائي لحظيا أو سريعا إذا كان تطور الجملة الكيميائية يصل إلى حالته النهائية مباشرة عند التلامس بين المتفاعلات

مثال:

ءُ نلاحظ زوال اللون البنفسجي لمحلول برمنغنات البوتاسيوم و المميز لشوارد البرمنغنات MnO_4 بعد مزج المحلولين مباشرة ، هذا يدل على حدوث و انتهاء التفاعل الكيميائي الحادث بين شوارد البرمنغنات MnO_4 و شوارد الحديد الثنائي Fe^{2+} مباشرة بعد تلاقي هذه المتفاعلين (الشكل) ، نستنتج أن التحول الكيميائي الحادث هو تحول كيميائي سريع .

- معادلة التفاعل:

$$\begin{array}{l} 5\times \left|Fe^{2^{+}}_{\;\;(aq)}=Fe^{3^{+}}_{\;\;(aq)}+e^{-}\right. \\ 1\times \left|MnO_{4\;\;(aq)}^{-}+8H_{\;\;(aq)}^{+}+5e^{-}=Mn_{\;\;\;(aq)}^{2^{+}}+4H_{2}O_{(\ell)} \right. \\ \overline{5Fe^{2^{+}}_{\;\;(aq)}+MnO_{4\;\;(aq)}^{-}+8H_{\;\;(aq)}^{+}=5Fe^{3^{+}}_{\;\;\;(aq)}+Mn_{\;\;\;(aq)}^{2^{+}}+4H_{2}O_{(\ell)}} \end{array}$$

التحول الكيهيائي البطيء:

- يكون التحول الكيميائي بطيئا إذا كان تطور الجملة الكيميائية يصل إلى حالته النهائية بعد عدة ثواني أو عدة دقائق أو عدة ساعات كأقصى حد .

مثا<u>ل :</u>

نمزج $C_1 = 0.40 \, \text{mol/L}$ من محلول يود البوتاسيوم ($K^+ + I^-$) تركيزه المولي $C_1 = 0.40 \, \text{mol/L}$ من محلول بير وكسوديكبريتات البوتاسيوم ($2K^+ + S_2O_8^2^-$) تركيزه المولي $C_2 = 0.036 \, \text{mol/L}$. مما يدل على - نلاحظ تغير تدريجي في اللون البني للمميز للشوارد I^- إلى اللون الأسمر المميز لثنائي اليود I^- 0 مما يدل على حدوث تحول كيميائي بطيء .

- معادلة التفاعل:

$$\begin{array}{l} 1 \times \left| 2I^{\text{-}}_{(aq)} = I_{2\;(aq)} + 2e^{\text{-}} \right. \\ 1 \times \left| S_{2}O_{8}^{\text{-}2\text{-}}_{(aq)} + 2e^{\text{-}} = 2SO_{4}^{\text{-}2\text{-}}_{(aq)} \right. \\ 2I^{\text{-}}_{(aq)} + S_{2}O_{8}^{\text{-}2\text{-}}_{(aq)} = I_{2(aq)} + 2SO_{4}^{\text{-}2\text{-}}_{(aq)} \end{array}$$

• التحول الكيهبائي البطيء جدا :

- يكون التحول الكيميائي بطيئا جدا إذا كانت تطور الجملة الكيميائية يصل إلى حالته النهائية بعد عدة أيام أو أشهر أو حتى بعد سنوات .

مثال:

 $\frac{-}{}$ نذيب بضع بلورات من برمنغنات البوتاسيوم $\mathrm{KMnO_4}$ في الماء المقطر ثم نضع المحلول في قارورة

- بعد عدة أيام نلاحظ أن اللون البنفسجي للمحلول الناتج يبقى مستقراً دلالة على أن شوراً د البرمنغنات أصل هذا اللون لم يحدث لها أي تفاعل تقريبا (ظاهريا) (الشكل).
- بعد عدة أشهر نلاحظ تشكل راسب على جدر ان القارورة (الشكل) ، يتمثل هذا الراسب في ثنائي أكسيد المنغنيز MnO_2 الذي ينتج عن إرجاع الشوراد MnO_2 .

- معادلة التفاعل:

$$\begin{array}{l} 3 \times \left| 2H_2O_{(\ell)} = O_{2\;(g)} + 4H^+_{\;(aq)} + 4e^- \right. \\ 4 \times \left| MnO_4^-_{\;(aq)} + 4H^+_{\;(aq)} + 3e^- = MnO_{2(s)} + 2H_2O_{(\ell)} \right. \\ \overline{6H_2O_{(\ell)} + 4MnO_4^-_{\;(aq)} + 4H^+_{\;(aq)} = 3O_{2(g)} + 4MnO_{2\;(s)} + 8H_2O_{(\ell)}} \end{array}$$

سرعة التفاعل

<u>• تذكير بخواص المشتقة :</u>

- في مادة الرياضيات ، نتعامل مع متغير واحد هو x ، لذلك تشتق الدوال فقط بالنسبة لهذا المتغير ، و نرمز للمشتقة اختصارا بـ (') ، بينما في الفيزياء نتعامل مع عدة متغيرات ، قد يكون زمن أو مسافة أو سرعة ، لذلك نرمز للمشتقة بالرمز التالي $\left(\frac{d}{dx}\right)$ الذي نبين من خلاله نوع المتغير ، و في الجدول التالي ئذكر ببعض خواص المشتقة بالكتابة الجديدة (غير المختصرة) :

خواص المشتقة بالكتابة المختصرة	خواص المشتقة بالكتابة غير المختصرة
(f+g)' = f'+g'	$\frac{d(f+g)}{dx} = \frac{df}{dx} + \frac{dg}{dx}$
$(\alpha f)' = \alpha f'$	$\frac{d(\alpha f)}{dx} = \alpha \frac{df}{dx}$
$(\alpha + \beta f)' = \beta f'$	$\frac{d(\alpha + \beta f)}{dx} = \beta \frac{df}{dx}$
$(\alpha - \beta f)' = -\beta f'$	$\frac{d(\alpha - \beta f)}{dx} = -\beta \frac{df}{dx}$

 $x=x_0$ على الطريقة الهندسية ، أين تساوي قيمة المشتقة من أجل الفاصلة $\frac{\mathrm{d}y}{\mathrm{d}x}$ على الطريقة الهندسية ، ميل مماس المنحنى y=f(x) عند هذه الفاصلة كما مبين فيما يلي :

ميث نكتب :

$$(\frac{\mathrm{d}y}{\mathrm{d}x})_{x=x_0} = ($$
ميل المماس $_{x=x_0}$

- يعبر عن ميل المماس هذا المنحنى في نقطة معينة بالكتابة :

ميل المماس
$$=\frac{\mathrm{d}y}{\mathrm{d}t}$$

أمثلة أخرى:

- . $\frac{dn_{C}}{dt}$: يعبر عن ميل المماس بالعبارة $n_{C}=f(t)$
- . $\frac{\mathrm{dn_{A}}}{\mathrm{dt}}$: يعبر عن ميل المماس بالعبارة $n_{\mathrm{A}}=f(t)$

. $\frac{\mathrm{d}x}{\mathrm{d}t}$: يعبر عن ميل المماس بالعبارة x=f(t)

- في المنحنى [A] = f(t) يعبر عن ميل المماس بالعبارة : [A] = f(t)

سرعة التفاعل و السرعة الحجوية للتفاعل:

- نعتبر التحول الكيميائي المنمذج بمعادلة التفاعل التالية :

$$\alpha A + \beta B = \delta C + \lambda D$$

سرعة تشكل نوع كيميائي (اللحظية):
 تعرف سرعة تشكل نوع كيميائي و ليكن C عند لحظة t بالعلاقة التالية:

$$v_{C} = \frac{dn_{C}}{dt}$$

السرعة الحجمية لتشكل نوع كيميائي (اللحظية) : C عند لحظة t في وسط تفاعلي حجمه V بالعلاقة : t عند لحظة t في وسط تفاعلي حجمه t بالعلاقة :

$$v'_{C} = \frac{1}{V} \frac{dn_{C}}{dt} = \frac{d[C]}{dt}$$

■ سرعة اختفاء نوع كيميائي (اللحظية) : - تعرف سرعة اختفاء نوع كيميائي و ليكن A عند لحظة t بالعلاقة :

$$v_{A} = -\frac{dn_{A}}{dt}$$

ملاحظة : الدالة $n_{\rm A}(t)$ متناقصة تماما ، و بالتالي إشارتها سالبة في كل لحظة ، لذلك سبقت العلاقة بالإشارة $n_{
m A}(t)$.

السرعة الحجمية لاختفاء نوع كيميائي (اللحظية) : A عند لحظة A في وسط تفاعلي حجمه A بالعلاقة : A عند لحظة A عند ل

$$v = -\frac{1}{V} \frac{dn_A}{dt} = -\frac{d[A]}{dt}$$

سرعة التفاعل (اللحظية) :
 تعرف سرعة التفاعل عند لحظة t بالعلاقة التالية :

$$v = \frac{dx}{dt}$$

حيث x هو تقدم التفاعل .

- السرعة الحجمية للتفاعل (اللحظية):
- تعرف السرعة الحجمية للتفاعل في وسط تفاعلي حجمه V بالعلاقة:

$$v = \frac{1}{V} \frac{dx}{dt}$$

السرعة المتوسطة (تشكل، اختفاء، تفاعل):

- يمكن كتابة عبارة السرعة المتوسطة أو السرعة الحجمية المتوسطة (تشكل ، اختفاء ، التفاعل) بين لحظتين زمنيتين $t_2 \cdot t_1$ ، بتعويض المشتقة $t_2 \cdot t_2$ في عبارات السرعة السابقة ، فمثلا : يعبر عن السرعة المتوسطة لتشكل نوع كيميائي و ليكن C بين لحظتين t_1 و t_2 بالعلاقة :

$$v_{mC} = \frac{\Delta n_C}{\Delta t} = \frac{n_{2C} - n_{1C}}{t_2 - t_1}$$

- حيث n_2 ، n_1 على الترتيب المتشكل n_2 عند اللحظتين n_2 ، n_1 على الترتيب

ملاحظة-1: في التفاعل الكيميائي المنمذج بالمعادلة التالية:

$$\alpha A + \beta B = \delta C + \lambda D$$

يمكن إيجاد علاقة بين السرعات اللحظية و السرعات الحجمية اللحظية (تشكل أو اختفاء أو تفاعل) كما يلي :

$$\frac{dx}{dt} = v = \frac{v_A}{\alpha} = \frac{v_B}{\beta} = \frac{v_C}{\delta} = \frac{v_D}{\lambda}$$

حيث : V_D ، V_C ، V_B ، V_A : سرعة تشكل V_D ، سرعة اختفاء V_D ، سرعة تشكل V_D ، سرعة اختفاء V_D تشكل D ، أما إذا كانت V'_D ، V'_D ، V'_D ، V'_D ، V'_D ، V'_B ، V'_A) أما إذا كانت D ، السرعة الحجمية لاختفاء B ، السرعة الحجمية لتشكل C ، السرعة الحجمية لتشكل D يمكن كذلك كتابة العلاقة التالية :

$$v' = \frac{v}{V} = \frac{v'_A}{\alpha} = \frac{v'_B}{\beta} = \frac{v'_C}{\delta} = \frac{v'_D}{\lambda}$$

علما أن ٧ هو حجم الوسط التفاعلي .

ملاحظة _2:

- سرعة التفاعل تكون دوما موجبة .
- وحدة سرعة التفاعل و كذا سرعة اختفاء أو تشكل نوع كيميائي هي : mol/s إذا كان الزمن مقدر بالثانية s ، و إذا كان الزمن مقدر بالدقيقة min تكون الوحدة mol/min و هكذا
- وحدة سرعة الحجمية للتفاعل و كذا السرعة الحجمية لاختفاء أو تشكل نوع كيميائي هي : mol/L.s إذا كان الزمن مقدر بالثانية s ، و إذا كان الزمن مقدر بالدقيقة min تكون الوحدة mol/L.min و هكذا

زمن نصف التفاعل

• <u>زهن نصف التفاعل ±1/2</u>

- نعتبر التحول الكيميائي المنمذج بمعادلة التفاعل التالية :

$$\alpha A + \beta B = \delta C + \lambda D$$

: $x=\frac{x_f}{2}$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي أي $t_{1/2}$ هو الزمن اللازم لبلوغ التفاعل عندمه النهائي أي المنافع المناف

$$t = t_{1/2} \quad \rightarrow \quad x_{1/2} = \frac{x_f}{2}$$

بيانيا يكون:

- بالنسبة للمنحنيات الأخرى ، و لحساب قيمة زمن نصف التفاعل ، $t_{1/2}$ ، نحسب اعتمادا على قيمة $x_{1/2}$ عند زمن نصف التفاعل ، أي نحسب : نصف التفاعل المساوي لـ $\frac{X_f}{2}$ و جدول التقدم ، المقدار المتغير بدلالة الزمن عند زمن نصف التفاعل ، أي نحسب : x ، x

- يمكن توضيح ذلك بالمندنيات التالية:

<u>• حالات خاصة :</u>

- في حالة منحنى موافق لنوع كيميائي ناتج و ليكن C ، يكون فيه للمنحنى قيمة حدية ، يمكن استنتاج قيمة زمن نصف التفاعل $t_{1/2}$ نصف القيمة نصف التفاعل من المنحنى مباشرة دون اللجوء إلى الحساب ، حيث يوافق زمن نصف التفاعل $t_{1/2}$ نصف القيمة

الحدية (كمية مادة ، تركيز) (البيان-1) ، و في حالة نوع كيميائي متفاعل و ليكن A يوافق زمن نصف التفاعل $t_{1/2}$ نصف القيمة الابتدائية (كمية مادة ، تركيز) (البيان-2) .

اذا كان أحد النوعين الكيميائيين المتفاعلين A أو B محدا ، أو في حالة تفاعل تام يكون فيه متفاعل واحد A مثل : A = B + C ، فإنه يمكن استنتاج زمن نصف التفاعل A بإسقاط نصف القيمة الأعظمية (كمية المادة ، تركيز) ، حتى لو لم يكن للمنحنى قيمة حدية ، كما مبين فيما المنحنى التالي :

<u>التمرين (1) :</u>

نعتبر التحول الكيميائي المنمذج بالمعادلة الكيميائية التالية:

$$\alpha \ A + \beta \ B = \delta \ C + \lambda \ D$$

1- عرف سرعة التفاعل و السرعة الحجمية للتفاعل.

 $^{-}$ مثل جدول التقدم ثم أثبت أن سرعة اختفاء النوع الكيميائي $^{-}$ يعبر عنها بدلالة سرعة تشكل $^{-}$ بالعلاقة $^{-}$

$$\frac{v(A)}{\alpha} = \frac{v(C)}{\delta}$$

<u>الأجوبة :</u>

1- تعريف سرعة التفاعل و السرعة الحجمية للتفاعل:

- سرعة التفاعل الكيميائي هي تغير تقدم التفاعل بالنسبة للزمن .

- السرعة الحجمية للتفاعل هي تغير تقدم التفاعل بالنسبة للزمن في وحدة الحجم (1L) ، أو هي سرعة التفاعل في وحدة الحجم (1L) من الوسط التفاعلي .

حالة الجملة	التقدم	αA +	- βB =	= δC -	+ λD
ابتدائية	$\mathbf{x} = 0$	n_{0A}	n_{0B}	0	0
انتقالية	X	$n_{0A} - \alpha x$	$n_{0B} - \beta x$	δx	λx
نهائية	x_f	$n_{0B} - \alpha x_f$	$n_{0B} - \beta x_f$	δx_f	λx_f

لدينا:

•
$$v(A) = -\frac{dn_A}{dt}$$

•
$$v(C) = -\frac{dn_B}{dt}$$

من جدول التقدم:

$$\begin{aligned} n_A &= n_{0A} - \alpha x \\ n_C &= \delta x \end{aligned}$$

و منه يصبح لدينا:

•
$$v(A) = -\frac{d(n_{0A} - \alpha x)}{dt} = -(0 - (\alpha \frac{dx}{dt}))$$

$$v(A) = \alpha \frac{dx}{dt} \rightarrow \frac{dx}{dt} = \frac{v(A)}{\alpha} \dots (1)$$

•
$$v(C) = \frac{dn_C}{dt} = \frac{d(\sigma x)}{dt}$$

$$v(C) = \sigma \frac{dx}{dt} \rightarrow \frac{dx}{dt} = \frac{v(C)}{\sigma}$$
(2)

$$\frac{v(A)}{\alpha} = \frac{v(C)}{\delta}$$
 : من (1) یکون (2) در

<u>التمرين (2) :</u>

نعتبر التحول الكيميائي المنمذج بالمعادلة الكيميائية التالية

$$3A + B = 2C + D$$

- . V=0.25~L : هو الوسط التفاعلي هو
- البيانين (1) ، (2) يمثلان على الترتيب تغيرات كمية مادة C ، و تركيز A بدلالة الزمن خلال التحول الكيميائي .

- 1- مثل جدول تقدم التفاعل.
- وجد $\left(\frac{dn_{C}}{dt}=0.2\right)$ هو t=5 min غند اللحظة $n_{C}=f(t)$ أوجد $n_{C}=t$

اعتمادا عليه عند هذه اللحظة:

أ- سرعة تشكل النوع الكيميائي C.

ب- السرعة الحجمية لتشكل النوع الكيميائي C.

جـ سرعة التفاعل .

. د- سرعة اختفاء النوع الكيميائي A .

وجد $(\frac{d[A]}{dt} = -1.2)$ هو t=5 min عند اللحظة (2-البيان) $[A] = f_2(t)$ أوجد (3-1.2)

اعتمادا عليه عند هذه اللحظة:

أ- سرعة التفاعل .

ب- سرعة تشكل النوع الكيميائي (C).

<u>الأجوبة :</u>

1- جدول التقدم:

حالة الجملة	التقدم	3A +	- B =	= 2C -	+ D
ابتدائية	$\mathbf{x} = 0$	n_{0A}	n_{0B}	0	0
انتقالية	X	$n_{0A} - 3x$	n _{0B} -x	2x	X
نهائية	x_f	$n_{0B} - 3x_f$	$n_{0B} - x_f$	$2x_{\rm f}$	$\mathbf{x}_{\mathbf{f}}$

2- أ- سرعة تشكل النوع الكيميائي C:

- . $\frac{dn_C}{dt}$ سرعة تشكل C بدلالة ميل المماس نكتب عبارة سرعة تشكل
 - لدينا حسب تعريف سرعة تشكل : С

$$v_{C} = \frac{dn_{C}}{dt}$$

الصفحة: 11

من البيان:

$$\frac{dn_{C}}{dt} = 0.2$$

إذن :

 $v_C = 0.2 \text{ mol/min}$

ب- السرعة الحجمية لتشكل النوع الكيميائي <u>C</u>:

 $\frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$ بدلالة ميل المماس - نكتب عبارة السرعة الحجمية لتشكل النوع الكيميائي C

- لدينا حسب تعريف السرعة الحجمية لتشكل : C

$$v'_{C} = \frac{1}{V} \frac{dn_{C}}{dt}$$

من البيان:

$$\frac{dn_C}{dt} = 0.2$$

إذن :

 $v'_{C} = \frac{1}{0.25}$. 0.2 = 0.8 mol/L.min

3- سرعة التفاعل:

. $\frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$ عبارة سرعة التفاعل بدلالة ميل المماس

- لدينا حسب تعريف سرعة التفاعل:

$$v = \frac{dx}{dt}$$

اعتمادا على جدول التقدم:

$$\begin{aligned} &n_{C} = 2x \\ &\frac{dn_{C}}{dt} = 2\frac{dx}{dt} & \rightarrow & \frac{dx}{dt} = \frac{1}{2}\frac{dn_{C}}{dt} \end{aligned}$$

و منه تصبح عبارة سرعة التفاعل:

$$v = \frac{1}{2} \frac{dn_C}{dt}$$

من البيان:

$$\frac{dn_{C}}{dt} = 0.2$$

إذن:

$$v = \frac{1}{2}.0.2 = 0.1 \text{ mol/min}$$

 $\frac{dn_{C}}{dt}$ عبارة سرعة اختفاء A بدلالة ميل المماس - نكتب عبارة سرعة اختفاء

- لدينا حسب تعريف سرعة اختفاء A :

$$v_A = -\frac{dn_A}{dt}$$

من جدول التقدم:

$$v_A = -\frac{dn_A}{dt}$$

 $n_A = n_{0A} - 3x$ (1) $n_C = 2 x$ (2)

 $x = \frac{n_C}{2}$: (2) من

$$n_A = n_{0A} - \frac{3}{2}n_C \rightarrow \frac{dn_A}{dt} = -\frac{3}{2}\frac{dn_C}{dt}$$

بالتعويض في عبارة سرعة اختفاء (A):

$$v_A = -(-\frac{3}{2}\frac{dn_C}{dt}) \rightarrow v_A = \frac{3}{2}\frac{dn_C}{dt}$$

من السان

$$\frac{dn_{C}}{dt} = 0.2$$

إذن:

 $v_A = \frac{3}{2}.0.2 = 0.3 \text{ mol/min}$

II-1- سرعة التفاعل:

 $\frac{d[A]}{dt}$ عبارة سرعة التفاعل بدلالة ميل المماس - نكتب عبارة سرعة التفاعل بدلالة ميل المماس

- لدبنا حسب تعربف سرعة التفاعل:

$$v = \frac{dx}{dt}$$

من جدول التقدم:

$$n_{A} = n_{0A} - 3x$$

$$[A] \cdot V = n_{0A} - 3x$$

$$V \frac{d[A]}{dt} = -3 \frac{dx}{dt} \rightarrow \frac{dx}{dt} = -\frac{V}{3} \frac{d[A]}{dt}$$

بالتعويض في عبارة سرعة التفاعل:

$$v = -\frac{V}{3} \frac{d[A]}{dt}$$

الصفحة : 13

$$\frac{d[A]}{dt} = -1.2$$

إذن:

$$v = \frac{0.25}{3}.1.2 = 2.4 \text{ mol/L}$$

<u>2</u>- سرعة تشكل <u>C</u>

. $\frac{d[A]}{dt}$ سرعة تشكل C بدلالة ميل المماس - نكتب عبارة سرعة C

- لدينا حسب تعريف سرعة تشكل : С

$$v_{C} = \frac{dn_{C}}{dt}$$

من جدول التقدم:

$$n_A = n_{0A} - 3x$$
 (1)
 $n_C = 2 x$ (2)

 $x = \frac{n_C}{2}$: (2) من (1) يالتعويض في

$$n_{A} = n_{0A} - \frac{3}{2}n_{C}$$

$$[A]V = n_{0A} - \frac{3}{2}n_{C}$$

$$V\frac{d[A]}{dt} = -\frac{3}{2}\frac{dn_{C}}{dt} \rightarrow \frac{dn_{C}}{dt} = -\frac{2V}{3}\frac{d[A]}{dt}$$

بالتعويض في عبارة سرعة تشكل : د

$$v_C = -\frac{2V}{3} \frac{d[A]}{dt}$$

من البيان:

$$\frac{d[A]}{dt} = -1.2$$

إذن :

$$v_C = -\frac{2.0.25}{3}(-1.2) = 0.2 \text{ mol/L}$$

التمرين (3):

لدراسة تطور التفاعل بين شوارد اليود ${
m I}^{-1}$ و شوارد البروكسوديكبريتات ${
m S}_2{
m O}_8^{2-}$ ، نضيف عند اللحظة ${
m t}=0$ حجما قدره $V_1 = 150 \; \mathrm{mol/L}$ من محلول $V_1 = 0.06 \; \mathrm{mol/L}$ تركيزه المولى $V_1 = 150 \; \mathrm{mL}$ قدره قدره $V_2 = 100 \, \mathrm{mL}$ قدره $V_2 = 100 \, \mathrm{mL}$ قدره کینو البوتاسیوم ($V_2 = 100 \, \mathrm{mL}$) قدره $. C_2 = 0.1 \text{ mol/L}$

التحول الكيميائي الحادث منمذج بمعادلة التفاعل الكيميائي التالية : $2I_{(aq)}^-+S_2O_8^{2-}$ و التحول الكيميائي الحادث منمذج بمعادلة التفاعل الكيميائي التالية : $2I_{(aq)}^-+S_2O_8^{2-}$

$$2I_{(aq)}^{-} + S_2O_8^{2-}_{(aq)} = I_{2(aq)} + 2SO_4^{2-}_{(aq)}$$

المخطط البياني التالي يمثل تغير ات تركيز $S_2O_8^{2-}$ في الوسط التفاعلي (S) بدلالة الزمن

- 1- أحسب كمبات المادة الابتدائية للمتفاعلات
- x_{f} و المتفاعل و حدد من خلاله التقدم النهائي x_{f} و المتفاعل المحد x_{f}
 - 3- استنتج من البيان:

أ- سرعة التفاعل عند اللحظة t = 40 min

 $t_{1/2}$ ب زمن نصف التفاعل

الأجوبة :

1- كميات المادة الابتدائية للمتفاعلات:

- \bullet $n_0(\Gamma) = C_1 V_1 = 0.06 \cdot 0.15 = 9 \cdot 10^{-3} \text{ mol}$
- $n_0(S_2O_8^{2-}) = C_2 V_2 = 0.1 \cdot 0.1 = 10^{-2} \text{ mol/L}$

2- **جدول التقدم**:

حالة الجملة	التقدم	$2I_{(aq)} + S_2O_8^{2-}_{(aq)} = I_{2(aq)} + 2SO_4^{2-}_{(aq)}$						
ابتدائية	$\mathbf{x} = 0$	9.10 ⁻³	10^{-2}	0	0			
انتقالية	X	$9.10^{-3} - 2x$	$10^{-2} - x$	X	2x			
نهائية	X_{f}	$9.10^{-3} - 2x_f$	$10^{-2} - x_f$	x_f	$2x_{\rm f}$			

- التقدم النهائي : - إذا اختفى آ كليا :

$$9.10^{-3} - 2 \text{ x} = 0 \rightarrow \text{ x} = 4.5.10^{-3} \text{ mol}$$

- إذا اختفى ⁻² كليا :

$$10^{-2} - x = 0 \rightarrow x = 10^{-2} \text{ mol}$$

. I^- هو المتفاعل المحد هو $x_{max}=x_f=4.5$. $10^{-3}~mol$

4- أ- سرعة التفاعل عند t = 40 min

- $\frac{d[S_2O_8^{-2}]}{dt}$ عبارة سرعة التفاعل بدلالة ميل المماس عبارة سرعة التفاعل بدلالة ميل المماس
 - لدينا حسب تعريف سرعة التفاعل:

$$v = \frac{dx}{dt}$$

من جدول التقدم:

$$\begin{split} &n(S_2O_8^{-2}) = 10^{-2} - x \\ &[S_2O_8^{-2}]V = 10^{2-} - x \\ &V\frac{d[S_2O_8^{-2}]}{dt} = -\frac{dx}{dt} \longrightarrow \frac{dx}{dt} = -V\frac{d[S_2O_8^{-2}]}{dt} \end{split}$$

بالتعويض في عبارة سرعة التفاعل:

$$v = -V \frac{d[S_2O_8^{-2}]}{dt}$$

من البيان عند اللحظة t = 40 min

$$\frac{d[S_2O_8^{-2}]}{dt} = -\frac{2.5 \times 4.10^{-3}}{40} = -2.5.10^{-4}$$

إذن :

 $v = -(0.15 + 0.1)(-2.5 \cdot 10^{-4}) = 6.25 \cdot 10^{-5} \text{ mol/min}$

ب- زمن نصف التفاعل:

. $t_{1/2}$ نحسب التفاعل عند زمن نصف التفاعل $\left[S_2O_8^{\ 2-}\right]_{1/2}$

حسب تعريف زمن نصف التفاعل:

$$t = t_{1/2} \rightarrow x_{1/2} = \frac{x_f}{2} = \frac{4.5 \cdot 10^{-3}}{2} = 2.25 \cdot 10^{-3} \text{ mol}$$

و من جدول التقدم:

 $n_{1/2}(S_2O_8^{2-}) = 10^{-2} - 2.25 \cdot 10^{-3} = 7.75 \cdot 10^{-3} \text{ mol}$

و منه:

$$\left[S_2 O_8^{2-}\right]_{1/2} = \frac{n_{1/2} (S_2 O_8^{2-})}{V_1 + V_2} \rightarrow \left[S_2 O_8^{2-}\right]_{1/2} = \frac{7.75 \cdot 10^{-3}}{0.25} = 3.1 \cdot 10^{-2} \text{ mol/L}$$

. 7.75 cm : بالقسمة على سلم الرسم ($^{-3}$) نجد

. $t_{1/2} = 5 \; \mathrm{min}$: و بالاستعانة بسلم الزمن يكون $t_{1/2} = 5 \; \mathrm{min}$. الاسقاط في البيان نجد أن $t_{1/2} = 5 \; \mathrm{min}$

المتابعة الزمنية لتحول كيميائي

من أجل المتابعة الزمنية لتحول كيميائي يجب دراسة تطور تقدم التفاعل المنمذج للتحول الكيميائي الحادث ، و كون أجل المتابعة الزمنية لتحول كيميائي يجب دراسة تطور مقدار فيزيائي ، شرط أن يكون هذا المقدار قابل للقياس بتجهيز معين ، كما يجب أن يكون متعلق بالمقدار x ، على سبيل المثال نذكر مقدار الناقلية هذا المقدار قابل للقياس بتجهيز معين ، كما يجب أن يكون متعلق بالمعايرة ، حجم غاز ، الضغط P لغاز ، فهذه المقادير يمكن قياسها بتجهيز ات خاصة ، كما يمكن إيجاد علاقة بينها و بين تقدم التفاعل x ، و من هذه العلاقة نتمكن من در اسة تطور التقدم x من خلال تطور المقدار الفيزيائي الذي قمنا بقياسه ، و من خلال تطور التقدم x ، يمكن أيضا استنتاج تطور مقادير أخرى لا يمكن قياسها مثل تركيز الأفراد الكيميائية الناتجة أو المتبقة في الجملة الكيميائية .

التمرين (4):

النوع الكيميائي: 2- كلور 2- مثيل بروبان يتميه حسب المعادلة التالية:

 $(CH_3)_3C-Cl + 2 H_2O = (CH_3)_3C-OH + H_3O^+_{(aq)} + Cl^-_{(aq)}$

نتابع النطور الزُّمْني لهذا الْتُحول بطريقة قياس الناقلية النوعية . لذا ندخل في بيشر $V_1=20~\text{mL}$ من محلول دول دول الزُّمْني لهذا التُحول بطريقة قياس الناقلية النوعية . لذا ندخل في بيشر $V_1=20~\text{mL}$ من محلول على المولي : $V_1=20~\text{mL}$ و مزيج يتكون من (ماء + coetone على المعلى) حجمه $V_2=80~\text{mL}$ د خوصل جهاز الناقلية بشكل مناسب و بعد القياس و إجراء الحساب نحصل على النتائج التالية :

t(s)	0	30	60	80	100	120	150	200
σ(S/m)	0	0,246	0,412	0,502	0,577	0,627	0,688	0,760
x (mmol)								

1- اشرح لماذا يمكن متابعة هذا التحول عن طريق قياس الناقلية النوعية .

2- شكل جدول تقدم التفاعل .

 $\sigma = 426~{
m x}$. للتفاعل هي σ بدلالة التقدم للتفاعل هي σ الناقلية النوعية σ

 $_{\star}$ 4- شكل جدول يعطي قيمة التقدم $_{\star}$ للتفاعل بدلالة الزمن

ح. هل انتهى التفاعل عند اللحظة $t=200~{
m s}$. بين ذلك .

. x = f(t) أ رسم البيان -6

x = f(t) : x = f(t) : x = f(t) : x = f(t)

. t = 50 s سرعة التفاعل عند اللحظة

قيمة زمن نصف التفاعل .

 $_{\rm X}$ من دون $_{\rm X}$ بين أنه بمعرفة قيمة م $_{\rm X}$ من دون $_{\rm X}$

<u>يعطى :</u>

 $\lambda(\text{Cl}^-) = 7.6 \cdot 10^{-3} \text{ S.m}^2 \cdot \text{mol}^{-1} \cdot \lambda(\text{H}_3\text{O}^+) = 35.0 \cdot 10^{-3} \text{ S.m}^2 \cdot \overline{\text{mol}^{-1}}$

<u>الأجوبة :</u>

1- يمكن متابعة التحول عن طريق الناقلية لأن في المزيج (الوسط التفاعلي) توجد الشوارد $^+$ $^ ^ ^ ^-$ ونحن نعلم أن الشوارد الموجبة و السالبة هي المسؤولة عن الناقلية الكهربائية في المحاليل .

<u>2- جدول التقدم :</u>

. R-OH ب (CH₃)₃-COH و لـ (R-Cl) ب (CH₃)₃-CCl نرمز اختصارا لـ

حالة الجملة	التقدم	R-Cl +	$R-C1 + 2H_2O = R-OH + H_3O^+ + C1^-$					
ابتدائية	$\mathbf{x} = 0$	2.10^{-3}	بزيادة	0	0	0		
انتقالية	X	$2.10^{-3} - x$	بزيادة	X	X	X		
نهائية	X_{f}	$2.10^{-3} - x_f$	بزيادة	X_{f}	X_f	$\mathbf{x}_{\mathbf{f}}$		

 $n_0(R-C1) = CV = 0.1 \cdot 0.02 = 2 \cdot 10^{-3} \text{ mol}$

: $\sigma = 426 \text{ x}$ استنتاج العلاقة

 $\sigma = \lambda(H_3O^+)\left[H_3O^+\right] + \lambda(Cl^-)\left[Cl^-\right]$

$$\sigma = \lambda(H_3O^+) \frac{n(H_3O^+)}{V_S} + \lambda(Cl^-) \frac{n(Cl^-)}{V_S}$$

من جدول التقدم:

$$n(H_3O^+) = x$$
$$n(Cl^-) = x$$

ومنه يصبح:

$$\sigma = \lambda(H_3O^+) \frac{x}{V_S} + \lambda(Cl^-) \frac{x}{V_S}$$

$$\sigma = \frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S} x$$

$$\sigma = \frac{35.0 \cdot 10^{-3} + 7.6 \cdot 10^{-3}}{(20 + 80) \cdot 10^{-6}} x$$

$$\sigma = 426 x$$

نذكر أنه في حساب الناقلية يقدر الحجم بـ m^3 . 4- جدول لقيم x بدلالة الزمن x

من العلاقة السابقة $\frac{\sigma}{426}$ $x=\frac{\sigma}{426}$ و اعتمادا على هذه العلاقة نملأ الجدول :

t(s)	0	30	60	80	100	120	150	200
σ(S/m)	0	0,246	0,412	0,502	0,577	0,627	0,688	0,760
x (mmol)	0	0.577	0.967	1.178	1.354	1.471	1.615	1.784

- عند نهایة التفاعل تتقاعل كل كمیة (R-Cl) (الماء بزیادة) و علیه :

$$2 \cdot 10^{-3} - x_f = 0 \rightarrow x_f = 2 \cdot 10^{-3} \text{ mol}$$

: من العلاقة $\sigma_{(200s)} = 426x_{(200s)}$: من العلاقة $\sigma = 426$ نكتب

$$x_{(200s)} = \frac{\sigma_{(200s)}}{426} = \frac{0.760}{426} = 1.784.10^{-3} \text{ mol}$$

. t = 200 s و منه التفاعل لم ينته عند اللحظ $x_{(200s)} < x_f$ نلاحظ

: x = f(t) المنحنى البيانى -6

t = 50 s عند اللحظة t = 50 s . - الدينا حسب تعريف سرعة التفاعل :

$$v = \frac{dx}{dt}$$

و من المنحنى x(t) تمثل قيمة $\frac{dx}{dt}$ عند اللحظة $t=50~{
m s}$ ، ميل مماس هذا المنحنى عند هذه اللحظة و عليه يكون :

$$\frac{dx}{xt} = \frac{1.44.10^{-3} - 0.28.10^{-3}}{100 - 0} = 1.16.10^{-5}$$

إذن:

 $v = 1.16.10^{-5} \text{ mol/s}$

زمن نصف التفاعل : زمن نصف التفاعل هو الزمن اللازم لبلوغ نصف التقدم النهائي :

$$t = t_{1/2} \rightarrow x = \frac{x_f}{2} = \frac{2.10^{-3}}{2} = 10^{-3} \text{ mol}$$

 $t_{1/2} = 62 \text{ s}$ بالإسقاط في البيان و بالاستعانة بالسلم نجد

 $\lambda(Cl^-)$ ، $\lambda(H_3O^+)$ ، اثبات أنه بمعرفة قيمة σ_f يمكن كتابة العلاقة بين $\Delta(Cl^-)$ ، $\Delta(H_3O^+)$ ، اثبات أنه بمعرفة قيمة العربة العلاقة بين $\Delta(Cl^-)$ ، العربة العربة العربة العلاقة بين $\Delta(Cl^-)$ ، العربة العرب

$$\sigma = \frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S} x$$

عند نهاية التفاعل:

$$x = x_f \rightarrow \sigma = \sigma_f$$

و عليه يمكن كتابة:

$$\sigma_f = \frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S} \, x_f$$

بقسمة عبارة σ على σ_f نجد :

$$\frac{\sigma}{\sigma_{\rm f}} = \frac{\frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S}x}{\frac{\lambda(H_3O^+) + \lambda(Cl^-)}{V_S}x_{\rm f}} = \frac{x}{x_{\rm f}} \rightarrow \sigma = \frac{\sigma_{\rm f}}{\sigma}x$$

. $\lambda(Cl^-)$ ، $\lambda(H_3O^+)$ بمعرفة من دون الاستعانة ب σ_f من يمكن إيجاد العبارة بدلالة و منه يمكن العبارة و منه يمكن إيجاد العبارة و بدلالة العبارة و منه يمكن إيجاد العبارة و بدلالة العبارة و

<u>التمرين (5) :</u>

نمزج $V_1=100 {\rm mL}$ من محلول يود البوتاسيوم ذو الصيغة ($K^+_{(aq)}+I^-_{(aq)}$) و التركيز $V_1=100 {\rm mL}$ مع $V_1=100 {\rm mL}$ من محلول بيروكسوديكبريتات البوتاسيوم ذو الصيغة ($V_2=100 {\rm mL}$) و التركيز $V_2=100 {\rm mL}$ لنحصل على وسط تفاعلي نعتبره (A) . نلاحظ تغير اللون ببطء فهو يدل على تحول بطيء . التفاعل المنمذج لهذا التحول عبارة عن أكسدة إرجاعية منمذج بالمعادلة الكيميائية التالية :

 $2I_{(aq)}^{-} + S_2O_8^{2}_{(aq)}^{-} = I_{2(aq)} + 2SO_4^{2}_{(aq)}^{-}$

نعاير في لحظات مختلفة عينات من أَلمُحلول (A) حَجْم الواحَدة منها $V_0=20~\text{mL}$ بمحلول ثيوكبريتات الصوديوم (C3 = 0.4 mol/L تركيزه $2Na^+_{(aq)}+S_2O_3^{-2}$)

قبل معايرة كلُّ عينة نضيف في اللحظة المناسبة كمية من الماء البارد ، ثم نضع قطرات من صمغ النشاء حيث يصبح المحلول أزرقا ، و بعدها نضيف تدريجيا محلول ثيوكبريتات الصوديوم حتى بلوغ التكافؤ أين يزول اللون الأزرق دلالة على اختفاء ثنائي اليود كليا . سجلنا قيمة الحجم $V_{\rm E}$ المضاف عند التكافؤ بالنسبة لكل العينات فتحصلنا على النتائج المدونة في الجدول التالى :

t(min)	0	3	6	9	12	16	20	30	40	50	60
$V_{E}(mL)$	0.0	2.5	5.1	6.9	8.4	10.2	11.4	14.1	15.6	16.1	16.4
x(mmoL)											
n(I) (mmol)											

- 1- أ- مثل برسم مخطط المعايرة .
- ب- ما هي الوسيلة التي نستعملها لأخذ 20 mL من المزيج التفاعلي ؟
 - 2- ما هو الغرض من إضافة الماء البارد قبل كل معايرة .
 - 3- ما الغرض من إضافة صمغ النشاء .
- 4- مثل جدول تقدم التفاعل المنمذج للمعايرة علما أن التفاعل المنمذج للمعايرة هو كما يلي :

$$I_{2(aq)} + 2S_2O_3^{2-}(aq) = 2I_{(aq)}^{-} + S_4O_6^{2-}(aq) \dots (2)$$

- 5- ما هي مميزات التحول الكيميائي الحادَّثُ أثناء المعايرة .
 - 6- عرف التكافؤ.
 - 7- مثل جدول تقدم التفاعل المدروس.

8- اعتمادا على جدول التقدم السابقين أثبت أن:

أ- التقدم χ للتفاعل المنمذج للتحول الكيميائي الحادث في الوسط التفاعلي (A) يعبر عنه بدلالة الحجم المضاف عند التكافؤ $V_{\rm E}$ في العينة بالعلاقة التالية ثم أكمل الجدول :

$$x = \frac{C_3 (V_1 + V_2) V_E}{2V_0}$$

ب- التركيز المولي لثنائي I_2 المتشكل في الوسط التفاعلي (A) عند كل لحظة بالعلاقة :

$$\left[I_2\right] = \frac{C_3 \times V_E}{2V_0}$$

9- أكمل الجدول السابق

. $n(I^{-}) = f(t)$ أرسم البيان البيان

. $t=20 \ \text{min}$ المنتج من البيان سرعة التفاعل عند اللحظة

الأجوبة :

1- أ- مخطط المعايرة:

ب- الوسيلة التي نستعملها لأخذ 20 mL من المزيج التفاعلي هي ماصة عيارة بحجم 20 mL مزودة بإجاصة . 2- الغرض من إضافة الماء البارد قبل كل معايرة هو توقيف التفاعل .

 I_2 الغرض من إضافة صمغ النشاء هو الكشف عن بلوغ التكافؤ ، أين تختفي كليا I_2 مع اختفاء اللون الأزرق . I_2 - جدول تقدم التفاعل المنمذج للمعايرة :

الحالة	التقدم	I_2 \dashv	$-2S_2O_3^{2-} =$	= 2I ⁻	$+ S_4O_6^{2-}$
ابتدائية	$\mathbf{x} = 0$	$n_0(I_2)$	$n_0(S_2O_3^{2-})$	0	0
انتقالية	X	$n_0(I_2)$ - x	$n_0(S_2O_3^{2-}) - 2x$	2x	X
تكافؤ	XE	$n_0(I_2)$ - x_E	$n_0(S_2O_3^{2-}) - 2x_E$	$2x_{\rm E}$	x_{E}

5- مميزات التحول الكيميائي أثناء المعايرة (أكسدة إرجاعية) هي: تام و سريع .

6- تعريف التكافؤ:

عند التكافؤ تتفاعل كل كمية مادة المحلول المراد معايرته (الموجود في البشير) مع كل كمية مادة المحلول المعاير (الموجود بالسحاحة) المضافة عند التكافؤ ، بعبارة أخرى عند التكافؤ يكون التفاعل في الشروط الستوكيومترية 7- جدول تقدم التفاعل المدروس:

الحالة	التقدم	2I ⁻ +	$S_2O_8^{2-} =$	I_2 +	$2SO_4^{2-}$
ابتدائية	$\mathbf{x} = 0$	$n_0(\Gamma)$	$n_0(S_2O_8^{2-})$	0	0
انتقالية	X	$n_0(\Gamma)$ - 2x	$n_0(S_2O_8^{2-}) - x$	X	X
نهائية	$\mathbf{x}_{\mathbf{f}}$	$n_0(\Gamma)$ - $2x_f$	$n_0(S_2O_8^{2-}) - x_f$	X_{f}	X_f

$$x = \frac{C_3 (V_1 + V_2)V_E}{2V_0} \cdot \frac{1 - 8}{2V_0}$$
عند التكافؤ

$$n_0(I_2) = \frac{n_0(S_2O_3^{2-})}{2}$$

$$n_0(I_2) = \frac{[S_2O_3^{2-}]V_E}{2} \rightarrow n_0(I_2) = \frac{C_3V_E}{2} \qquad (1)$$

و هي كمية مادة I_2 في العينة .

- من جدول تقدم التفاعل الحادث في الوسط التفاعلي (A):

$$n(I_2) = x (2)$$

و هي كمية مادة I_2 في الوسط التفاعلي (A) . - كمية مادة I_2 في العينة لا تساوي كمية مادة I_2 في الوسط التفاعلي A ، لكن تركيز هما متساوي ، أي : $|I_2| = |I_2|_0$

$$\frac{n(I_2)}{(V_1 + V_2)} = \frac{n_0(I_2)}{V_0}$$

بتعویض (1) ، (2) یصبح:

$$\begin{split} \frac{x}{(V_1 + V_2)} &= \frac{\frac{C_3 V_E}{2}}{V_0} \\ \frac{x}{(V_1 + V_2)} &= \frac{C_3 V_E}{2V_0} \quad \rightarrow \quad x = \frac{C_3 (V_1 + V_2) V_E}{2V_0} \end{split}$$

 $I_2 = \frac{C_3 \times V_E}{2V_0} : \frac{1}{2V_0}$ عند التكافؤ

$$n_0(I_2) = \frac{n_0(S_2O_3^{2-})}{2}$$

$$\begin{split} \left[I_{2}\right]_{0}V_{0} &= \frac{C_{3}V_{E}}{2} \quad \to \\ \left[I_{2}\right]_{0} &= \frac{C_{3}V_{E}}{2V_{0}} \\ &= \left[I_{2}\right]_{0} \quad : \\ \downarrow i_{2} &= \left[I_{2}\right]_{0} \quad : \\ \downarrow i_{2} &= \left[I_{2}\right]_{0} \quad : \\ \downarrow i_{2} &= \left[I_{2}\right]_{0} \quad : \\ \downarrow i_{3} &= \left[I_{2}\right]_{0} \quad : \\ \downarrow i_{4} &= \left[I_{2}\right]_{0} \quad : \\ \downarrow i_{5} &=$$

$$\left[\mathbf{I}_{2}\right] = \frac{\mathbf{C}_{3}\mathbf{V}_{E}}{2\mathbf{V}_{0}}$$

9- إكمال الجدول : مما سبق بمكن كتابة :

$$x = \frac{C_3(V_1 + V_2)V_E}{2V_0} = \frac{0.4(0.1 + 0.1)V_E}{2 \cdot 0.02} \quad \rightarrow \quad x = 2V_E$$

و من جدول تقدم التفاعل الحادث في الوسط التفاعلي A:

$$n(\Gamma) = n_0(\Gamma) - 2x$$

$$n(I^{-}) = C_1V_1 - 2x$$

$$n(\Gamma) = (0.8 . 0.1) - 2x \rightarrow n(\Gamma) = 0.08 - 2x$$

اعتمادا على هاتين العلاقتين نملأ الجدول فيكون:

t (min)	0	3	6	9	12	16	20	30	40	50	60
$V_{E}(mL)$	0	2.5	5.1	6.9	8.4	10.2	11.4	14.1	15.6	16.1	16.4
x(mmol)	0	5.0	10.2	13.8	16.8	20.4	22.8	28.2	31.2	32.2	32.8
n(I ⁻) (mmol)	80	70	59.6	52.4	46.4	39.2	34.4	23.6	17.6	15.6	14.4

: $n(I^{-}) = f(t)$ المنحنى

11- سرعة التفاعل عند اللحظة t = 20 min :

لدىنا ·

$$v = \frac{dx}{dt}$$

من جدول التقدم:

$$n(I^{\text{-}}) = n_0(I^{\text{-}}) - 2x$$

$$2x = n_0(I^{\scriptscriptstyle{-}}) - n(I^{\scriptscriptstyle{-}})$$

$$x = \frac{n_0(I^-) - n(I^-)}{2} \rightarrow \frac{dx}{xt} = \frac{d}{dt}(\frac{n_0(I^-) - n(I^-)}{2}) \rightarrow \frac{dx}{dt} = -\frac{1}{2}\frac{dn(I^-)}{dt}$$

بالتعويض في عبارة السرعة نجد:

$$v = -\frac{1}{2} \frac{dn(I^{-})}{dt}$$

من البيان:

$$\frac{dn(\Gamma)}{dt} = -\frac{2.65 \cdot 10 \cdot 10^{-3}}{20} = -1.32 \cdot 10^{-3}$$

و منه:

$$v = -\frac{1}{2}(-1.32.10^{-3}) = 6.6.10^{-4} \text{ mol/min}$$

<u>التمرين (6) :</u>

ندخل كتلة من معدن المغنزيزم قدرها m_0 في حجم V من محلول حمض الكبريت $(-2H_3O^+ + SO_4^2)$ ذو التركيز المولي C ، نلاحظ انطلاق غاز ثنائي الهيدروجين و تزايد حجمه تدريجيا التفاعل الكيميائي المنمذج للتحول الكيميائي الحادث يعبر عنه بالمعادلة التالية :

$$Mg_{(s)} + 2H_3O^+ = 2H_2O_{(\ell)} + H_{2(g)} + Mg^{2+}_{(aq)}$$

1- على ماذا يدل تزايد حجم غاز ثنائي الهيدروجين تدريجيا .

2- مثل مخطط التجربة ، مع شرح الطريقة التي تسمح للتلاميذ بحجز الغاز المنطلق و قياس حجمه و الكشف عنه .

3- مثل جدول التقدم لهذا التفاعل.

4- أوجد العبارات التالية:

• تقدم التفاعل $_{
m X}$ بدلالة حجم غاز ثنائي الهيدروجين $_{
m V_{
m M}}$ المنطلق في لحظة كيفية و الحجم المولي $_{
m X}$.

• تقدم التفاعل x بدلالة $P(H_2)$ ضغط غاز ثنائي الهيدروجين و حجمه $V(H_2)$ ، ثابت الغاز المثالي R ، درجة الحرارة المطلقة T .

. $V(H_2)$ ، V_M ، V_S ، C : في اللحظة t بدلالة $[H_3O^+]$ في اللحظة والمولي لشوارد الهيدرونيوم

<u>الأجوبة :</u>

1- يدل تزايد حجم غاز ثنائي الهيدروجين تدريجيا على أن التحول الكيميائي الحادث بطيء .

2- مخطط التجربة:

- الطريقة التي تسمح بحجز الغاز المنطلق:
- نملاً أنبوب أختبار مدرج بالماء و ننكسه على حوض مملوء بالماء ، عند انطلاق الغاز يبدأ مستوى الماء بالنزول تدريجيا في الأنبوب و يحل محله الغاز الناتج ، فيحجز هناك .
 - يمكن في كل لحظة قياس حجم الغاز المنطلق مباشرة بقراءة تدريجة مستوى الماء في الأنبوب
 - طريقة الكشف عن الغاز المنطلق:

يمكن الكشف عن الغاز المنطلق بتقريب فوهته لعود ثقاب مشتعل بعد تفريغه من الماء ، حيث تحدث فرقعة تدل على أن الغاز المنطلق هو غاز الهيدروجين.

3- جدول التقدم:

الحالة	التقدم	Mg +	$2H_3O^+ =$	= 2H ₂ O +	$-H_2 +$	Mg^{2+}
ابتدائية	$\mathbf{x} = 0$	$n_0(Mg)$	$n_0(H_3O^+)$	بزيادة	0	0
انتقالية	X	$n_0(Mg)$ - x	$n_0(H_3O^+) - 2x$	بزيادة	X	X
نهائية	X_f	$n_0(Mg)$ - x_f	$n_0(H_3O^+) - 2x_f$	بزيادة	X_f	X_{f}

<u>4- العبارات :</u>
• عبارة x بدلالة (V(H₂) : لدينا من جهة :

$$n(H_2) = \frac{V(H_2)}{V_M}$$
(1)

من جهة أخرى ، و اعتمادا على جدول التقدم:

$$n(H_2) = x \qquad \dots (2)$$

من (1) ، (2) يمكن كتابة:

$$x = \frac{V(H_2)}{V_M}$$

- عبارة تقدم التفاعل x بدلالة (H_2) ، $(P(H_2)$ ، $(P(H_2)$ عبارة تقدم التفاعل $(P(H_2)$.

$$P(H_2).V(H_2) = n(H_2).R.T \rightarrow n(H_2) = \frac{P(H_2).V(H_2)}{R.T}$$

 $n(H_2)=x$: من جهة أخرى و اعتمادا على جدول التقدم

إذن :

$$x = \frac{P(H_2).V(H_2)}{R.T}$$

 $\underline{:}\ V(H_2)$ ، $V_{\underline{M}}$ ، $V_{\underline{S}}$ ، C : في اللحظة \underline{t} اللحظة والمحاوة \underline{t}

- من جدول التقدم :

■
$$n(H_3O^+) = n_0(H_3O^+) - 2x$$
(1)

■
$$n(H_2) = x$$
(2)

: من (2) نجد $x = n(H_2)$ نجد - من

$$n(H_3O^+) = n_0(H_3O^+) - 2n(H_2)$$
(3)

لدينا :

•
$$n(H_3O^+) = [H_3O^+]V_S$$

•
$$n_0(H_3O^+) = [H_3O^+]_0 V_S = 2CV_S$$

 $\left[{{\rm H}_3{
m O}^ + } \right]_0 = 2{
m C}$: نو التركيز المولي يكون ($2{
m H}_3{
m O}^+ + {
m SO_4}^2$ لأن في المحلول

$$\bullet \ n(H_2) = \frac{V(H_2)}{V_M}$$

بالتعويض في العلاقة (3) نجد:

$$[H_3O^+]V_S = 2CV_S - 2\frac{V(H_2)}{V_M}$$

بقسمة الطرفين على $V_{\rm S}$ يكون :

$$[H_3O^+] = 2C - 2\frac{V(H_2)}{V_M.V_S}$$

<u>التمرين (7) :</u>

عندما نمز ج حجما V_1 من محلول بيروكسوديكبريتات البوتاسيوم (V_1^{-1} $S_2O_8^{-1}$) تركيزه المولي V_1 مع حجم V_1 من محلول يود البوتاسيوم (V_1 V_2 V_3) تركيزه المولي V_2 ، يحدث تفاعل كيميائي بين شوارد اليود V_1 و شوارد البيروكسوديكبريتات V_2 .

1- أكتب معادلة تفاعل الأكسدة الأرجاعية الحادث ، علما أن الثنائيات المشاركة في التفاعل هي :

$$(I_2/I^-)$$
 , $(S_2O_8^{2-}/SO_4^{-2})$

2- مثل جدول تقدم التفاعل

 $[I_2]$ عند كل لحظة بدلالة التركيز المولي اليود المتشكل في الوسط التفاعلي (A) عند كل لحظة بدلالة التركيز المولي

 $[I^-]$ لشوراد اليود في الوسط التفاعلي و عند نفس اللحظة يعطى بالعلاقة :

$$[I_2] = \frac{C_2 V_2}{2(V_1 + V_2)} - \frac{[I^-]}{2}$$

4- الدراسة التجريبية لتطور تركيز I أعطت المنحنى البياني التالي:

أ- أثبت أنه عند اللحظة $t = t_{1/2}$ (زمن نصف التفاعل) يكون :

$$n_{1/2}(I^{-}) = \frac{n_{0}(I^{-}) + n_{f}(I^{-})}{2}$$

ب- أحسب اعتمادا على هذه العلاقة زمن نصف التفاعل .

الأجوبة :

1 - معادلة التفاعل:

$$2I^{-} = I_{2} + 2e^{-}$$

$$S_{2}O_{8}^{2-} + 2e^{-} = 2SO_{4}^{2-}$$

$$2I^{-} + S_{2}O_{8}^{2-} = I_{2} + 2SO_{4}^{2-}$$

2- جدول التقدم:

الحالة	التقدم	21 +	$S_2O_8^{2-} =$	I_2 +	$2SO_4^{2-}$
ابتدائية	$\mathbf{x} = 0$	$n_0(\Gamma)$	$n_0(S_2O_8^{2-})$	0	0
انتقالية	X	$n_0(\Gamma)$ - 2x	$n_0(S_2O_8^{2-}) - x$	X	X
نهائية	x_f	$n_0(I^-)$ - $2x_f$	$n_0(S_2O_8^{2-}) - x_f$	$\mathbf{x}_{\mathbf{f}}$	$\mathbf{x}_{\mathbf{f}}$

$$\frac{\left[I_{2}\right] = \frac{C_{1}V_{1}}{2(V_{1} + V_{2})} - \frac{\left[I^{-}\right]}{2} \quad \underline{ : 1 - 3 } }{ \text{ at each of } }$$

•
$$n(I^{-}) = n_0(I^{-}) - 2x$$
(1)

$$\bullet n(I_2) = x \dots (2)$$

$$n(\bar{I}) = n_0(\bar{I}) - 2n(\bar{I}_2)$$

$$[\bar{I}](V_1 + V_1) = C_2V_2 - 2[\bar{I}_2](V_1 + V_2)$$

: (1) من
$$x=n(I_2)$$
 ، بالتعویض في

 $(V_1 + V_2)$ يقسمة الطرفين على

$$\begin{split} & \left[\mathbf{I}^{-} \right] = \frac{\mathbf{C}_{2} \mathbf{V}_{2}}{\mathbf{V}_{1} + \mathbf{V}_{2}} - 2 \left[\mathbf{I}_{2} \right] \\ & 2 \left[\mathbf{I}_{2} \right] = \frac{\mathbf{C}_{2} \mathbf{V}_{2}}{\mathbf{V}_{1} + \mathbf{V}_{2}} - \left[\mathbf{I}^{-} \right] \quad \Rightarrow \quad \left[\mathbf{I}_{2} \right] = \frac{\mathbf{C}_{2} \mathbf{V}_{2}}{2 (\mathbf{V}_{1} + \mathbf{V}_{2})} - \frac{\left[\mathbf{I}^{-} \right]}{2} \end{split}$$

5- المدة الزمنية المستغرقة لإنتاج نصف كمية ثنائي اليود النهائية : $t=0.84~{
m s}$.

- تمثل هذه القيمة زمن نصف التفاعل 11/2 -

$$\underline{\underline{}} n_{1/2}(I^{-}) = \frac{n_{0}(I^{-}) + n_{f}(I^{-})}{2}$$

اعتمادا على جدول التقدم بمكن كتابة:

•
$$n_f(\Gamma) = n_0(\Gamma) - 2x_f$$
(1)

•
$$n_{1/2}(\Gamma) = n_0(\Gamma) - 2x_{1/2}$$

و حسب تعریف _{t1/2}:

$$t = t_{1/2} \ \to \ x_{1/2} = \frac{x_f}{2}$$

$$n_{1/2}(\Gamma) = n_0(\Gamma) - 2\frac{x_f}{2}$$

 $n_{1/2}(\Gamma) = n_0(\Gamma) - x_f$ (2)

من (2):

$$x_f = n_0(\Gamma)$$
 - $n_{1/2}(\Gamma)$

بالتعويض في (1):

$$\begin{split} n_f(\Gamma) &= n_0(\Gamma) - 2(\ n_0(\Gamma) - n_{1/2}(\Gamma)) \\ n_f(\Gamma) &= n_0(\Gamma) - 2n_0(\Gamma) + 2n_{1/2}(\Gamma) \\ n_f(\Gamma) &= -\ n_0(\Gamma) + 2n_{1/2}(\Gamma) \end{split}$$

$$n_0(I^{\scriptscriptstyle -}) + n_{1/2}(I^{\scriptscriptstyle -}) = 2n_{1/2}(I^{\scriptscriptstyle -}) \ \to \ n_{1/2}(I^{\scriptscriptstyle -}) = \frac{n_0(I^{\scriptscriptstyle -}) + n_f(I^{\scriptscriptstyle -})}{2}$$

<u>ب ـ حساب فيمه : t_{1/2} :</u> من السان ·

•
$$n_0(\Gamma) = 3 \cdot 8 \cdot 10^{-3} = 2.4 \cdot 10^{-2} \text{ mol/L}$$

•
$$n_f(I^-) = 0.5 \cdot 8 \cdot 10^{-3} \text{ mol/L} = 4 \cdot 10^{-3} \text{ mol/L}$$

ومنه:

$$n_{1/2}(I^{-}) = \frac{2.4.10^{-2} + 4.10^{-3}}{2} = 1.4.10^{-2} \text{ mol/L}$$

 $t_{1/2} = 1.4 \ \mathrm{min}$: بالأسقاط نجد نام $1.75 \ \mathrm{cm}$: بالأسقاط نجد

تمارين مقترحة

التمرين (8): (بكالوريا 2008 – رياضيات) (الحل المفصل: تمرين مقترح 01 على الموقع)

ننمذج التحول الكيميائي الحاصل بين المغنزيوم Mg و محلول كلور الهيدروجين بتفاعل أكسدة - إرجاع معادلته : $Mg_{(s)} + 2H_3O^+ = 2H_2O_{(\ell)} + H_{2(g)} + Mg^{2+}_{(aq)}$

ندخل كتلة من معدن المغنزيزم $m=1.0\ \dot{g}$ في كأس به محلول كلور الهيدر وجين حجمه $V=60\ ml$ و تركيزه المولى C = 5.0 mol/L ، فنلاحظ انطلاق غاز ثنائي الهيدروجين و تزايد حجمه تدريجيا حتى اختفاء كتلة المغنزيوم كليا

نجمع غَاز ثنائي الهيدروجين المنطلق و نقيس حجمه كل دقيقة فنحصل على النتائج المدونة في جدول القياسات أدناه

t(min)	0	1	2	3	4	5	6	7	8
$V(H_2)$ (mL)	0	336	625	810	910	970	985	985	985
x (mol)									

- 1/ أنشئ جدو لا لتقدم التفاعل .
- $_{\rm L}$ أكمل جدول القياسات حيث $_{\rm X}$ يمثل تقدم التفاعل $_{\rm L}$
 - رسم المنحنى البياني x = f(t) بسلم مناسب .
- بالتقدم النهائي x_f للتفاعل الكيميائي و حدد المتفاعل المحد x_f
- ر ($t=3 \, \text{min}$) ، ($t=0 \, \text{min}$) ،
 - ر من نصف التفاعل $t_{1/2}$ عين زمن نصف
- 7 أحسب تركيز شوارد الهيدرونيوم (H_3O^+) في الوسط التفاعلى عند انتهاء التحول الكيميائى .
- . $V_{\rm M} = 24 \; {
 m L/mol}$: ألخذ : $M({
 m Mg}) = 24.3 \; {
 m g/mol}$ ، ألحجم المولي في شروط التجربة

أحوية مختصرة :

1) جدول التقدم:

حالة الجملة	التقدم	Mg +	2H ₃ O ⁺ =	$= 2H_2O +$	H_2 +	$-Mg^{2+}$
ابتدائية	$\mathbf{x} = 0$	0.041	0.3	بزيادة	0	0
انتقالية	X	0.041 - x	0.3 - 2x	بزيادة	X	X
نهائية	X _f	$0.041 - x_f$	$0.3 - 2x_{\rm f}$	بزيادة	X_{f}	X _f

 $\frac{2}{V_{M}}$ إكمال جدول القياسات : $x = \frac{V(H_{2})}{V_{M}} :$ العلاقة التي نعتمد عليها لملأ الجدول :

t(min)	0	1	2	3	4	5	6	7	8
$V(H_2)$ (mL)	0	336	625	810	910	970	985	985	985
x(mol)	0	0.014	0.026	0.034	0.038	0.040	0.041	0.041	0.041

. Mg و المغنزيوم $x_f = x_{max} = 0.041 \text{ mol}$ (4

$$t = 3 \text{ min} \rightarrow v(H_2) = 6 \cdot 10^{-3} \text{ mol/min} \cdot t = 0 \rightarrow v(H_2) = 2 \cdot 10^{-2} \text{ mol/min} \cdot v = \frac{dx}{dt}$$
 (5)

 $[H_3O^+]_f = 3.63 \text{ mol/L}$ (7 · $t_{1/2} = 1.5 \text{ min}$ (6

التمرين (9): (بكالوريا 2008 – علوم تجريبية) (الحل المفصل: تمرين مقترح 03 على الموقع)

في حصة للأعمال المخبرية ، أراد فوج من التلاميذ دراسة التحول الكيميائي الذي يحدث للجملة (مغنزيوم صلب ، محلول حمض كلور الماء) . فوضع أحد التلاميذ شريطا من المغنزيوم $Mg_{(s)}$ كتاته m=36 mg في دورق ، ثم أضاف إليه محلو لا لحمض كلور الماء بزيادة ، حجمه m=30 m ، و سد الدورق بعد أن أوصله بتجهيز يسمح بحجز الغاز المنطلق و قياس حجمه من لحظة لأخرى .

1- مثل مخطط اللتجربة ، مع شرح الطريقة التي تسمح للتلاميذ بحجز الغاز المنطلق ، و قياس حجمه و الكشف عنه .

2- أكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي التام الحادث في الدورق علما أن الثنائيتين المشاركتين هما : ($Mg^{2+}_{(aq)}/Mg_{(s)}$) · ($H^{+}_{(aq)}/H_{2(g)}$) .

3- يمثلُ ٱلْجدولُ الآتي نتائجُ الْقياساتُ التي حصل عليها الفوج:

t(min)	0	2	4	6	8	10	12	14	16	18
$V(H_2)$ (mL)	0	12.0	19.2	25.2	28.8	32.4	34.8	36.0	37.2	37.2
x(mol)										

أ- مثل جدو لا لتقدم التفاعل ، ثم استنتج قيم تقدم التفاعل x في الأزمنة المبينة في الجدول :

ب املأ الجدول ثم مثل البيان x = f(t) بسلم مناسب

t=0 عين سرعة التفاعل في اللحظة الابتدائية

4- للوسط الوسط التفاعلي في الحالة النهائية pH=1 ، استنتج التركيز المولي الابتدائي لمحلول حمض كلور الماء المستعمل

. $V_{\rm M} = 24.0 \; {\rm L.mol}^{-1}$: عطى : - الحجم المولي للغاز في شروط التجربة

 $M(Mg) = 24 \text{ g.mol}^{-1}$. الكتلة المولية الذرية للمغنزيوم

(السؤال 4 خاص بالوحدة 4 و عليه يمكن إعفاء هذا السؤال من التمرين)

<u>أجوبة مختصرة :</u>

1) نملاً انبوب اختبار مدرج بالماء و ننكسه على حوض مملوء بالماء و عند انطلاق الغاز يبدأ مستوى الماء في الأنبوب و بالنزول ، حيث يمكن في كل لحظة قياس حجم

الغاز بقراءة تدريجة مستوى الماء في الأنبوب.

- يمكن الكشف عن الغاز في نهاية التجربة بعد تفريغه من الماء المتبقي فيه و تقريب عود ثقاب مشتعل إلى فوهته حيث تحدث فرقعة تدل على أن الغاز هو غاز الهيدروجين :

$$Mg_{(s)} + 2H^{+}_{(aq)} = Mg^{2+}_{(aq)} + H_{2(g)} (2$$

الصفحة: | 31

3- أ) جدول التقدم و جدول القياسات:

الحالة	التقدم	Mg -	+ 2H ⁺ =	$=$ Mg^{2+}	$+ H_2$
ابتدائية	$\mathbf{x} = 0$	$1.5 \cdot 10^{-3}$	بزيادة	0	0
انتقالية	X	$1.5 \cdot 10^{-3} - x$	بزيادة	X	X
نهائية	X_{f}	$1.5 \cdot 10^{-3} - x_f$	بزيادة	X	X_{f}

t(min)	0	2	4	6	8	10	12	14	16	18
$V(H_2)$ (mL)	0	12.0	19.2	25.2	28.8	32.4	34.8	36.0	37.2	37.2
x(mmol)	0	0.50	0.80	1.05	1.20	1.35	1.45	1.50	1.55	1.55

 $v = \frac{dx}{dt} = 3.10^{-4} \text{ mol/min}$ (=

التمرين (10): (بكالوريا 2009 – علوم تجريبية) (الحل المفصل: تمرين مقترح 06 على الموقع)

بهدف تتبع تطور التحول الكيميائي التام لتأثير حمض كلور الماء ($H^+ + CI^-$) على كربونات الكالسيوم . نضع قطعة كتلتها g من كربونات الكالسيوم $CaCO_3$ داخل mL داخل $CaCO_3$ من كربونات الكالسيوم $. C_1 = 1.0 . 10^{-1} \text{ mol.L}^{-1}$

الطريقة الأولى:

نقيس ضغط غاز ثنائي أكسيد الكربون المنطلق و المحجوز في دورق حجمه لتر واحد (1L) تحت درجة حرارة ثابتة $T = 25^{\circ}C$ ، فكانت النتائج المدونة في الجدول التالي :

t(s)	20	60	100
$P_{(CO_2)}(Pa)$	2280	5560	7170
$n_{(CO_2)}(mol)$			
x(mol)			

المعادلة الكيميائية المعبرة عن التفاعل المنمذج للتحول الكيميائي السابق:

$$CaCO_{3 (s)} + 2H^{+}_{(aq)} = CO_{2 (g)} + Ca^{2+}_{(aq)} + H_{2}O_{(\ell)}$$

1- أنشئ جدو لا لتقدم التفاعل السابق

2- ما العلاقة بين $(n(CO_2))$ كمية مادة الغاز المنطلق و (x) تقدم التفاعل ؟

3- بتطبيق قانون الُغُاّز المثالمي و الذي يعطى بالشكل ($PV = n \hat{R} \hat{T}$) ، أكمل الجدول السابق .

. $1L=10^{-3}~\text{m}^3$ ، $\hat{R}=8.31~\text{SI}$. x=f(t) مثل بيان الدالة . x=f(t)

الطربقة الثانبة:

H- نتبع قيمة تركيز شوارد الهيدروجين H+H) في وسط التفاعل بدلالة الزمن أعطت النتائج المدونة في الجدول التالي :

t(s)	20	60	100
$[H^+](mol L^{-1})$	0,080	0,056	0,040
n _(H*) (mol)			A CONTRACTOR OF THE CONTRACTOR
x(mol)			

ا- أحسب $(n(H^+))$ كمية مادة شوارد الهيدروجين في كل لحظة -1

2- مستعينا بجدول تقدم التفاعل ، أوجد العبارة الحرفية التي تعطي $(n(H^+))$ بدلالة التقدم (x) وكمية المادة الابتدائية (n_0) لشوارد الهيدروجين الموجبة .

3- أحسب قيمة التقدم (x) في كل لحظة .

4- أنشئ البيان $\hat{\mathbf{x}} = \mathbf{f}(t)$ ماذًا تستنتج

5- حدد المتفاعل المحد .

استنتج $t_{1/2}$ زمن نصف التفاعل .

 $t=50~\mathrm{s}$ أحسب السرعة الحجمية للتفاعل في اللحظة $t=50~\mathrm{s}$

 $M(O) = 16 \text{ g/mol} \cdot M(C) = 12 \text{ g/mol} \cdot M(Ca)) 40 \text{ g/mol}$

<u>أجوبة مختصرة :</u>

الطريقة الأولى:

<u>1) جدول التقدم:</u>

الحالة	التقدم	$CaCO_{3(s)}$ +	$2H^{+}_{(aq)} =$	$= CO_{2(g)}$	$+ Ca^{2+}$ _(ac)	$H_2O_{(\ell)}$
ابتدائية	$\mathbf{x} = 0$	$2. 10^{-2}$	10^{-2}	0	0	0
انتقالية	X	2. 10 ⁻² - x	$10^{-2} - 2x$	X	X	X
نهائية	$\mathbf{x}_{\mathbf{f}}$	$2.\ 10^{-2} - x_{\rm f}$	$10^{-2} - 2x_f$	X_f	X_{f}	X_{f}

 $n(CO_2) = x (2$

: $x = \frac{10^{-3}}{8.31.(25 + 273)}$ و من خلال هذه العلاقة نكمل الجدول حيث نحصل على الجدول التالي :

t(s)	20	60	100
P(CO ₂) (Pa)	2280	5560	7170
n(CO ₂) mol	$0.92 \cdot 10^{-3}$	$2.24 \cdot 10^{-3}$	$2.89 \cdot 10^{-3}$
x (mol)	$0.92 \cdot 10^{-3}$	$2.24 \cdot 10^{-3}$	2.89 . 10 ⁻³

الطريقة الثانية

ا ما يلي : $n(H^+) = 0.1[H^+]$ ، و من خلال هذه العلاقة نملاً الجدول حيث نحصل على ما يلي :

t(s)	20	60	100
$\left[\mathrm{H}^{+}\right]$ (mol.L ⁻¹)	0.080	0.056	0.040
$n(H^+) (mol)$	8.0 . 10 ⁻³	5.6 . 10 ⁻³	4.0 . 10 ⁻³

. $n(H^+) = n_0(H^+) - 2x$: من جدول التقدم (2

يا ما يلي : $x = \frac{10^{-2} - n(H^+)}{2}$ و من خلال هذه العلاقة نملاً الجدول حيث نحصل على ما يلي :

t(s)	20	60	100
$\left[H^{+}\right]$ (mol.L ⁻¹)	0.080	0.056	0.040
n(H ⁺) (mol)	$8.0 \cdot 10^{-3}$	$5.6 \cdot 10^{-3}$	$4.0 \cdot 10^{-3}$
x (mol)	$1.0 \cdot 10^{-3}$	$2.2 \cdot 10^{-3}$	$3.0 \cdot 10^{-3}$

الاستنتاج : نحصل تقريبا على نفس مقدار التقدم في كل لحظة .

. H^+ و المتفاعل المحد هو $x_{max}=x_f=5$. 10^{-3} mol (5

.
$$t_{1/2} = 74 \; s$$
 : بالإسقاط في البيان نجد : $x_{1/2} = \frac{x_f}{2} = 2.5 \cdot 10^{-3} \; \text{mol}$: مسب تعريف زمن نصف التفاعل : $x_{1/2} = 2.5 \cdot 10^{-3} \; \text{mol}$

.
$$t = 50 \text{ s}$$
 عند عند عند مماس المنحنى عند $\frac{dx}{dt} = 2.7 \cdot 10^{-5}$ هو ميل مماس المنحنى عند $v' = \frac{1}{V} \frac{dx}{dt} = 2.7 \cdot 10^{-4} \text{ mol/min}$ (7

التمرين (11): (بكالوريا 2010 - علوم تجريبية) (الحل المفصل: تمرين مقترح 07 على الموقع)

لمتابعة التطور الزمني للتحول الكيميائي الحاصل بين محلول حمض كلور الهيدروجين الذي ينمذج بتفاعل كيميائي ذي المعادلة :

$$Zn_{(S)} + 2H^{+}_{(aq)} = Zn^{2+}_{(aq)} + H_{2(g)}$$

ندخل في اللحظة t=0 كتلة t=0 من معدن الزنك في دورق به V=40~mL من محلول حمض كلور الهيدروجين تركيزه المولي C=5,0 . $10^{-1}~mol.L^{-1}$.

نعتبر حجم الوسط التفاعلي ثابتا خلال مده التحول و أن الحجم المولي للغاز في شروط التجربة : $V_{M} = 25 \text{ L.mol}^{-1}$

نقيس حجم غاز ثنائي الهيدروجين $V(H_2)$ المنطلق في نفس الشرطين من الضغط و درجة الحرارة ، ندون النتائج في الجدول التالي :

t(s)	0	50	100	150	200	250	300	400	500	750
$V(H_2)$ (mL)	0	36	64	86	104	120	132	154	170	200
x (mol)										

- $V(H_2)$ أنجز جدو $V(H_2)$ التقدم التفاعل و استنتج العلاقة بين التقدم $V(H_2)$ و حجم غاز ثنائي الهيدروجين المنطلق المنطلق $V(H_2)$.
 - 2- أكمل الجدول أعلاه .
- $1~{\rm cm} \to 1.0~.~10^{-3}~{\rm mol}$ ، $1~{\rm cm} \to 100~{\rm s}$: $1~{\rm cm} \to 1.0~.~10^{-3}~{\rm mol}$. $1~{\rm cm} \to 1.0~.~10^{-3}~{\rm cm}$. $1~{\rm cm} \to 1.0~.~10^{-3}~{\rm$
 - 5- إن التحول الكيميائي السابق تحول تام:
 - أ/ أحسب التقدم الأعظمي Xmax و استنتج المتفاعل المحد .

 $M(Zn) = 65 \text{ g.mol}^{-1}$.. يعطى : $t_{1/2}$ و أوجد قيمته .

<u>أجوبة مختصرة :</u>

1) جدول التقدم:

الحالة	التقدم	$Zn_{(s)}$ +	$2H^{+}_{(aq)} =$	$Zn^{2+}_{(aq)} +$	$H_{2(g)}$
ابتدائية	x = 0	$1,54 \cdot 10^{-2}$	2.10^{-2}	0	0
انتقالية	X	$1,54 \cdot 10^{-2} - x$	$2 \cdot 10^{-2} - 2x$	X	X
نهائية	X_f	$1,54 \cdot 10^{-2} - x_f$	$2.10^{-2} - 2x_{\rm f}$	\mathbf{x}_{f}	X_f

العلاقة بين x و (V(H₂):

$$x = \frac{V(H_2)}{V_M}$$

2- إكمال الجدول:

: $x = \frac{V(H_2)}{V_M}$ in it is in the content of the content of

t(s)	0	50	100	150	200	250	300	400	500	750
$V(H_2)$ (mL)	0	36	64	86	104	120	132	154	170	200
x . 10 ⁻³ (mol)	0	1.44	2.56	3.44	4.16	4.80	5.28	6.16	6.80	8.00

: نجد $t=400~{\rm s}$ ، $t_1=100~{\rm s}$ عند اللحظتين $\frac{dx}{dt}$ عند حساب الميل $v=\frac{1}{V}\frac{dx}{dt}$ (4

 $t_1 = 100 \text{ s} \rightarrow v_1 \approx 4.7 \cdot 10^{-4} \text{ mol/s}$ $t_2 = 400 \text{ s} \rightarrow v_2 \approx 2.0 \cdot 10^{-4} \text{ mol/s}$

- يلاحظ أن قيمة السرعة الحجمية تتناقص بزيادة الزمن بسبب نقص تراكيز المتفاعلات.

ح- أ) $x_{max} = 10^{-2} \text{ mol}$ و المتفاعل المحد هو حمض كلور الهيدروجين .

 $\mathbf{x}_{1/2} = \frac{\mathbf{x}_{\mathrm{f}}}{2} = 5.10^{-3} \, \mathrm{mol}$ ، نصف النفاعل $\mathbf{t}_{1/2} = \mathbf{t}_{1/2}$ هو النرمن السلازم البلوغ نصف النقدم النهائي $\mathbf{t}_{1/2} = 270 \, \mathrm{s}$ بالإسقاط في البيان نجد $\mathbf{t}_{1/2} = 270 \, \mathrm{s}$

التمرين (12): (بكالوريا 2009 – علوم تجريبية) (الحل المفصل: تمرين مقترح 05 على الموقع)

ينمذج التحول الكيميائي الذي يحدث بين شوارد البيروكسوديكبريتات $(S_2O_8^{2-})$ وشوارد اليود (I^-) في الوسط المائي بتفاعل تام معادلته :

$$S_2O_8^{2-}_{(aq)} + 2I_{(aq)}^- = 2SO_4^{2-}_{(aq)} + I_{2(aq)}$$

(t=0) حجما الدراسة تطور هذا التفاعل في درجة حرارة ثابتة (0° 35°C) بدلالة الزمن ، نمزج في اللحظة (0=1 حجما $V_1=100$ mL من محلول مائي لبيروكسوديكبريتات البوتاسيوم (0=100 mL من محلول مائي لبيروكسوديكبريتات البوتاسيوم (0=100 mL من حجم 0=100 mL من حجم 0=100 mL من حجمه 0=100 mL فنحصل على مزيج حجمه 0=100 mL المنابع في ا

أ- أنشئ جدو لا لتقدم التفاعل الحاصل .

ب- أكتب عبارة التركيز المولي $\left[S_2O_8^{-2}\right]$ لشوارد البيروكسوديكبريتات في المزيج خلال التفاعل بدلالة : C_1 ، V_2 ، V_1 و V_2 التركيز المولي لثنائي اليود V_2 في المزيج .

جـ/ أحسب قيمة $\left[S_2O_8^{-2}\right]_0$ التركيز المولي لشوارد البيروكسوديكبريتات في اللحظة $\left[S_2O_8^{-2}\right]_0$ لحظة انطلاق التفاعل بين شوارد $\left[S_2O_8^{-2}\right]_0$ و شوارد $\left[\Gamma\right]$.

t(min)	0	5	10	15	20	30	45	60
V'(mL)	0	4,0	6,7	8,7	10,4	13,1	15,3	16,7
$[I_2](mmol/L)$								

أ- لماذا نبرد العينات مباشرة بعد فصلها عن المزيج

ب في تفاعل المعايرة تتدخل الثنائيتان : $(S_4O_6^{2-}_{(aq)}/S_2O_3^{2-}_{(aq)})$ و $(S_4O_6^{2-}_{(aq)}/S_2O_3^{2-}_{(aq)})$. أكتب المعادلة الإجمالية لتفاعل الأكسدة – إرجاع الحاصل بين الثنائيتين .

ج/ بين مستعيناً بجدول التقدم لتفاعل المعايرة أن التركيز المولي لثنائي اليود في العينة عند التكافؤ يعطى بالعلاقة :

$$\left[I_2\right] = \frac{1}{2} \times \frac{C' \times V'}{V_0}$$

د/ أكمل جدول القباسات

 $|I_2| = f(t)$ أرسم على ورقة مليمترية البيان

t = 20 min) . (t = 20 min) . (t = 20 min

أجوبة مختصرة :

I- أ) جدول التقدم:

الحالة	التقدم	$S_2O_8^{-2}$ -	+ 2I ⁻ :	$= 2S_2O_4^{2-}$	+ I ₂
ابتدائية	$\mathbf{x} = 0$	4.10^{-3}	8.10^{-3}	0	0
انتقالية	X	$4.10^{-3} - x$	$8.10^{-3} - 2x$	X	X
نهائية	X_{f}	$4.10^{-3} - x_f$	$8.10^{-3}-2x_{\rm f}$	X_{f}	X_{f}

$$[S_2O_8^{2-}]_{(t=0)} = \frac{C_1V_1}{V_S} = 2.10^{-2} \text{ mol } (\Rightarrow \cdot [S_2O_8^{2-}] = \frac{C_1V_1}{V_S} - [I_2] (\Rightarrow \cdot$$

II- أ) الغرض من تبريد العينات مباشرة بعد فصلها عن المزيج هو توقيف التفاعل .

. $2S_2O_3^{2-}_{(aq)} + I_{2(aq)} = S_4O_6^{2-}_{(aq)} + 2I_{(aq)}^{-}_{(aq)}$ د) جدول القياسات :

: و منه نملاً الجدول حيث نحصل على النتائج التالية [I_2] - $\frac{1}{2} \frac{C'V'}{V_s}$ = 0.75V'

t(min)	0	5	10	15	20	30	45	60
V(mL)	0	4.0	6.7	8.7	10.4	13.1	15.3	16.7
I_2 . 10^{-3} mol/L	0	3.0	5.0	6.5	7.8	9.8	11.5	12.5

. t = 20 min عند مماس المنحنى عند $\frac{d[I_2]}{dt} = 2.3.10^{-4}$ هو ميل مماس المنحنى عند $v' = \frac{d[I_2]}{dt} = 2.3.10^{-4} \text{ mol/min}$

التمريين (13): (بكالوريا 2010 - رياضيات) (الحل المفصل: تمرين مقترح 08 على الموقع)

نمزج في اللحظة t=0 حجما $V_1=200$ mL من محلول مائي لبيروكسوديكبريتات البوتاسيوم البوتاسيوم $V_1=200$ mL نمزج في اللحظة $V_2=200$ mL مع حجم $V_2=200$ mL مع حجم $V_2=200$ mL من محلول مائي ($V_2=200$ mL مع حجم $V_2=200$ من محلول مائي $C_2 = 4.0 \cdot 10^{-1} \text{ mol.L}^{-1}$: تركيزه المولي ($K^+_{(aq)} + I^-_{(aq)}$) تركيزه 1- إذا علمت أن الثنائيتين (ox/red) الداخلتين في التحول الكيميائي الحاصل هما:

 $(I_{2(aq)}/I_{(aq)})$, $(S_2O_8^{2-}(aq)/SO_4^{2-}(aq))$

أ- أكتب المعادلة المعبرة عن التفاعل أكسدة- إرجاع المنمذج للتحول الكيميائي الحاصل .

ب- أنجز جدول لتقدم التفاعل الحادث . استنتج المتفاعل المحد .

2- توجد عدة تقنيات لمتابعة تطور تشكل ثنائي اليود I_2 بدلالة الزمن . استخدمت واحدة منها في تقدير كمية ثنائي I_2 اليود و رسم البيان:

أ/ كم يستغرق التفاعل من الوقت لإنتاج نصف كمية ثنائي اليود النهائية ؟

 $t=t_{1/2}$ برا أحسب قيمة السرعة الحجمية لتشكل ثنائي اليود في اللحظة

3- إن الطريقة التي أدت نتائجها إلى رسم البيان (الشكل-1) ، تعتمد في تحديد تركيز ثنائي اليود المتشكل عن طريق المعايرة ، حيث تؤخذ عينات متساوية ، حجم كل منها $V=10~\mathrm{mL}$ من الوسط التفاعلي في أزمنة مختلفة (توضع العينة مباشرة لحظة أخذها في الماء و الجليد) ثم نعاير بمحلول مائي لثيوكبريتات الصوديوم . C' = 1,0 . $10^{-2} \text{ mol.L}^{-1}$ تركيزه المولي $(2Na^{+}_{(aq)} + S_2O_3^{2-}_{(aq)})$

: معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي الحادث هي : معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي المنمذج $I_{2(aq)} + 2S_2O_3^{2-}$

أ- أذكر الخواص الأساسية للتفاعل المُنمذج للتحولُ الكيميائي الحاصل بين ثيوكبريتات الصوديوم و ثنائي اليود ب- أوجد عبارة $[I_2]$ بدلالة كل من V_E ، V_E ، V_E هو حجم محلول ثيوكبريتات الصوديوم اللازم لبلوغ

نقطة التكافؤ E

. t=1.2~min في اللحظة $V_{\rm E}$

أجوبة مختصرة :

 $S_2O_8^{2-}$ _(aq) + $2I_{(aq)}^{-}$ = $I_{2(aq)}$ + $2S_2O_4^{2-}$ _(aq) (1-1)

ب- جدول التقدم:

الحالة	التقدم	$S_2O_8^{2-}$ (aq)	$+$ $2\Gamma_{(aq)} =$	I _{2(aq)} -	$+ 2S_2O_4^{2-}$ (aq)
ابتدائية	$\mathbf{x} = 0$	8.10^{-3}	8.10^{-2}	0	0
انتقالية	X	$8.10^{-3} - x$	$8.10^{-2} - 2x$	X	X
نهائية	$\mathbf{x}_{\mathbf{f}}$	$8.10^{-3} - x_f$	$8.10^{-2} - 2x_{\rm f}$	X_{f}	$\mathbf{x}_{\mathbf{f}}$

المتفاعل المحد هو: ⁻I .

. $t = t_{1/2} = 0.84 \text{ s}$: بالإسقاط في البيان -2

. $t_{1/2}$ عند اللحظة $\frac{d[I_2]}{dt} = 8.3 \cdot 10^{-3}$ هو ميل مماس المنحنى عند اللحظة $v' = \frac{d[I_2]}{dt} = 8.3 \cdot 10^{-3}$ mol/min (ب

3- أ) هذا التفاعل هو تفاعل معايرة يتميز بالخواص التالية: سريع و تام .

$$V_{E} = \frac{2|I_{2}|V}{C'} \quad (\because$$

: منه يكون ، $t=1.2~{\rm min}$ عند اللحظة $[I_2]=3.3\times4=13.2.10^{-3}~{\rm mol/L}$. منه يكون ، $V_{\rm F}=2.64.10^{-2}~{\rm L}=26.4~{\rm mL}$

التمرين (14): (بكالوريا 2013 - رياضيات) (الحل المفصل: تمرين مقترح 12 على الموقع)

. $\operatorname{Cr}_2 \operatorname{O}_7^{2^-}$ مع شوار د ثنائي الكرومات $\operatorname{H}_2 \operatorname{C}_2 \operatorname{O}_4$ مع شوار د ثنائي الكرومات

نمزج في اللحظة t=0 min حجمًا $V_1=50$ mL حجمًا t=0 min نمزج في اللحظة t=0 min حجمًا $V_1=50$ mL من محلول $V_1=50$ mL مع حجم $V_2=50$ mL مع حجم $V_1=12$ mmol/L من محلول ثنائي كرومات البوتاسيوم $V_1=12$ من محلول ثنائي كرومات البوتاسيوم $V_2=12$ من حجم $V_1=12$ من محلول ثنائي كرومات البوتاسيوم $V_2=12$ من حجم $V_1=12$ من حجم $V_2=12$ من حجم الكبريت المركز . ننمذج التفاعل الحاصل بالمعادلة $V_1=12$ التالية $V_1=12$ من حجم المولي المعادلة ألمالية من حجم المولي المولي المولية ألمالية ألمالية

$$3H_2C_2O_{4\,(aq)}+Cr_2O_7^{2-}_{(aq)}+8H^+_{(aq)}=2Cr^{3+}_{(aq)}+6CO_{2(aq)}+7H_2O$$
 . أ- حدد الثنائيتن Ox/Red المشار كتين في النفاعل

ب- أنشئ جدو لا لتقدم التفاعل ، ثم حدد المتفاعل المحد .

2- البيان يمثل تغيرات التركيز المولي لحمض الأكساليك بدلالة الزمن (الشكل-1) .

$|H_2C_2O_4|(mmol/L)$

أ- عرف السرعة الحجمية للتفاعل .

. $v = -\frac{1}{3} \times \frac{d[H_2C_2O_4]}{dt}$: بين أن عبارة السرعة الحجمية للتفاعل في أي لحظة تكتب بالعلاقة :

جـ احسب قيمة السرعة الحجمية للتفاعل في اللحظة t = 12 min .

3- عرف زمن نصف التفاعل ، ثم احسبه .

أجوبة مختصرة :

 $(CO_2/H_2C_2O_4) \cdot (Cr_2O_7^{2-}/Cr^{3+}) (^{1}-1)$

ب- جدول التقدم:

الحالة	$3H_2C_2O_{4 (aq)} +$	$\text{Cr}_2\text{O}_7^{2-}_{(aq)} +$	$8H^{+}_{(aq)} = 2$	$2Cr^{3+}_{(aq)}$	-6CO _{2(aq)} +	$7H_2O$
ابتدائية	$n_0(H_2C_2O_4)$	$n_0(Cr_2O_7^{2-})$	بزيادة	0	0	بزيادة
انتقالية	$n_0(H_2C_2O_4) - 3x$	$n_0(Cr_2O_7^{2-}) - x$	بزيادة	2x	6x	بزيادة
نهائية	$n_0(H_2C_2O_4) - 3x_f$	$n_0(Cr_2O_7^{2-}) - x_f$	بزيادة	$2x_f$	$6x_f$	بزيادة

. $H_2C_2O_4$ و المتفاعل المحد هو $X_{max} = X_f = 2 \cdot 10^{-4} \text{ mol}$

 $v = \frac{1}{V} \frac{dx}{dt}$: يعبر عنها بالعلاقة وحدة الحجم (1L) ، يعبر عنها بالعلاقة $\frac{1}{V} \frac{dx}{dt}$

$$\frac{v}{dt} \frac{dt}{dt} = -1.67.10^{-4}$$
 : حيث $v = -\frac{1}{3} \frac{d[H_2C_2O_4]}{dt} = 5.6.10^{-5} \text{ mol/L.min}$ (ب

نصف التفاعل $t_{1/2}$ هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي ، قيمتة $t_{1/2}$ عند حساب (3 ${
m t}_{1/2}=5.6~{
m min}$: عند للحظة ${
m t}_{1/2}=3.10^{-3}{
m mol/L}$: عند للحظة ${
m t}_{1/2}$ عند للحظة منجد ${
m H}_2{
m C}_2{
m O}_4$ و يمكن أيضا حساب $t_{1/2}$ بإسقاط القيمة $\frac{\left[\mathrm{H_2C_2O_4}\right]_0}{2}$ مباشرة .

التمرين (15): (بكالوريا 2012 - رياضيات) ((الحل المفصل: تمرين مقترح 18 على الموقع)

نسکب فی بیشر حجما $(K^+_{(aq)} + \Gamma_{(aq)})$ نسکب فی بیشر حجما $V_1 = 50 \, \mathrm{mL}$ نرکیزه المولي من محُلُول بيروكُسوديكبريتات البوتاسيوم $m V_2 = 50~mL$ ، ثم نضيف له حجما $m C_1 = 3.2~.~10^{-1}~mol.L^{-1}$ ن المزيج التفاعلي يصفر ، ثم يأخذ لونا . $m C_2 = 0.20~mol.L^{-1}$ تركيزه المولي $(2K^+_{(aq)} + S_2O_8^{2-}_{(aq)})$ $S_2O_8^{2-}$ بنياً نتيجة التشكلُ التدريجي لثنائي اليود I_2 و أن الثنائيتين المشاركتين في التفاعل هما و I_2 هما اليود اليود أبياً نتيجة التشكلُ التدريجي لثنائي اليود أبي التفاعل و أن الثنائيتين المشاركتين أبياً نتيجة التشكلُ التدريجي التفاعل اليود أبي اليود أبي التفاعل و أن الثنائية اليود أبي التفاعل و أن الثنائية التفاعل التفا و $I_{2 \, aq}/I_{(aq)}$. $I_{2 \, aq}/I_{(aq)}$. 1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث .

2- أنشئ جدو لا لتقدم التفاعل ، ثم عين المتفاعل المحد .

3- بين أن التركيز المولي اليود المتشكل $I_{2\,({\rm aq})}$ في كل لحظة t يعطى بالعلاقة

$$V = V_1 + V_2$$
 : حیث $\left[I_{2 \text{ (aq)}}\right] = \frac{C_1 V_1}{2 V} - \frac{\left[\Gamma_{\text{ (aq)}}\right]}{2}$

4- سمحت إحدى طرق متابعة التحول الكيميائي بحساب التركيز المولي لشوراد اليود $I_{2(aa)}$ كل $I_{3(aa)}$ في المزيج التفاعلي و دونت النتائج في الجدول التالي:

t (min)	0	5	10	15	20	25
$[I_{(aq)}](10^{-2} \text{ mol.L}^{-1})$	16.0	12.0	9.6	7.7	6.1	5.1
$I_{2(aq)}$ (10 ⁻² mol.L ⁻¹)						

أ- أكمل الجدول ، ثم أرسم المنحنى البياني f(t) = f(t) على ورقة ميليمترية ترفق مع ورقة الإجابة .

ب- عرف زمن نصف التفاعل $t_{1/2}$ ، ثم عين قيمته أ

جـ احسب سرعة التفاعل في اللّحظة $t=20~\mathrm{min}$ ، ثم استنتج سرعة اختفاء شوارد اليود في نفس اللحظة .

<u>أجوبة مختصرة :</u>

 $S_2O_8^{2-}_{(aq)} + 2I_{(aq)}^- = I_{2(aq)} + 2SO_4^{2-}_{(aq)}$ (1 : جدول النقدم

الحالة	التقدم	$S_2O_8^{-2}$	+ 2I =	$= I_2 +$	$2SO_4^{2-}$
ابتدائية	$\mathbf{x} = 0$	10 ⁻²	1.6 . 10 ⁻²	0	0
انتقالية	X	10 ⁻² - x	$1.6 \cdot 10^{-2} - 2x$	X	X
نهائية	X_{f}	$10^{-2} - x_f$	$1.6 \cdot 10^{-2} - 2x_f$	X_{f}	X_{f}

و المتفاعل المحد هو T (شوارد اليود) . $x_{max}=x_f=8$. 10^{-3} mol

<u>4- أ) إكمال الجدول :</u>

: من العلاقة السابقة $[I_2] = 8.10^{-2} - \frac{[I^-]}{2}$ و من هذه العلاقة نملاً الجدول

t (min)	0	5	10	15	20	25
$[I_{(aq)}](10^{-2} \text{ mol.L}^{-1})$	16.0	12.0	9.6	7.7	6.1	5.1
$I_{2(aq)}$ (10 ⁻² mol.L ⁻¹)	0	2.00	3.20	4.15	4.95	5.45

ب) هو الزمن اللازم لبلوغ نصف التقدم النهائي ،
$$x_{1/2} = \frac{x_f}{2} = 4.10^{-3} \text{ mol}$$
 ، و اعتمادا على جدول التقدم

. ${
m t_{1/2}}=14~{
m min}$: بالإسقاط في البيان نجد ، ${
m [I_2]}_{1/2}=4.10^{-2}~{
m mol/L}$ يمكن إيجاد

،
$$v=6$$
 . 10^{-4} mol/min: يكون $t=20$ min عند اللحظة المماس عند رسم الميان و بعد رسم المماس عند اللحظة $v=0$

.
$$v(I^-) = 2v = 1.2 . 10^{-3} \text{ mol/min}$$
 و منه $\frac{v}{1} = \frac{v(I^-)}{2}$: غادة التفاعل يمكن كتابة :