Zespół nr: 1

Skład zespołu wraz z funkcjami:

1. Paweł Szczepankiewicz: koordynator, programista, autor dokumentacji

2. Kamil Nalewajski: programista, tester, strona graficzna

3. Konrad Zdziarski: programista, tester, strona graficzna

L.p.	Specyfikacja problemu (dane i wyniki)	Do jakich treści w zadaniu odnosi się algorytm	Zastosowane struktury danych	Informacje o zastosowanym algorytmie
1	 Dane: Średnia ilość jęczmienia na polu Produkcja w browarach Przepustowości dróg Ilość w karczmach Wynik: reprezentacja danych w postaci struktur 	"Zaproponuj jak informacje o polach, browarach, karczmach i drogach reprezentować w komputerze"	 Lista Macierz sąsiedztwa Kolejka Stos 	 Brak zastosowanych algorytmów, użyto struktur.

2	 Dane: Średnia ilość jęczmienia na polu Produkcja w browarach Przepustowości dróg Ilość w karczmach Wynik: Maksimum piwa przewożonego do karczm Maksymalny przepływ w sieci 	"Opracuj sposób znalezienia maksymalnej ilości piwa, która można dostarczyć do karczm w Shire"	 Graf skierowany z wagami 	 Algorytm Edmondsa- Karpa [maksymalny przepływ O(V·E²)] DFS/BFS
3	 Noszty odbudowy dróg Wynik: Optymalna droga bez strat zasobów Przepływ o najmniejszym koszcie Zachowaniu maksymalnego przepływu 	"Zmodyfikujcie swoje rozwiązanie tak, żeby przy zachowaniu ilości przewożonego towaru, koszt naprawy dróg, po których poruszają się transporty był możliwie najmniejszy"	 Graf skierowany z wagami oraz kosztami 	 Algorytm Successive Shortest Path SSP [O(F·(V + E·log V))] Algorytm Dijkstry z potencjałami [O(E·log V) na iterację]

Dane: • Ilość jęczmienia produkowanego na danej ćwiartce, • współrzędne ćwiartek Wynik: → Całkowita ilość produkowanego jęczmienia → Maksymalny przepływ	"Samwise kazał zebrać współrzędne punktów granicznych każdej ćwiartki (każda z ćwiartek okazała się być wielokątem wypukłym, rozłącznym z pozostałymi ćwiartkami). Wie też ile jęczmienia wyrasta na polu w poszczególnych ćwiartkach. Zmodyfikujcie swoje rozwiązanie uwzględniając te nowe informacje zebrane przez burmistrza Sama"	 Stosy Wypukła otoczka Sortowanie harmoniczne 	 Algorytm Grahama [wypukła otoczka O(n·log n)]
---	--	--	--

5	 Dane: Plik tekstowy poszukiwane słowa Wynik: Pozycje poszukiwanych słów w tekście 	"Burmistrz Marzy o tym, żeby szybko wyszukiwać w tych rozwiązaniach słów: "piwo", "jęczmień", "browar" oraz innych, które przyjdą mu kiedyś do głowy. Chciałby przetestować kilka sposobów wyszukiwania słów. Zaproponujcie odpowiednie rozwiązania"	ListaSłownikStos	 Algorytm Naiwny [O(n·m)] Algorytm KMP Knutha-Morrisa-Pratta [O(n + m)] Algorytm Rabina-Karpa [średnio O(n + m)] Algorytm Trie [O(n + k), gdzie k to liczba dopasowań]
6	Dane:• Plik tekstowyWynik:→ Skompresowany plik	"Komputer ma ograniczone zasoby"	Drzewo binarneKolejka priorytetowa	o Algorytm Huffmana [O(n·log n), n − liczba symboli]

	 Wymagania do użycia danego algorytmu Wynik: → Reprezentacja graficzna projektu przy użyciu bibliotek 	Wizualizacja projektu	■ Obiekty ■ biblioteki graficzne	o Brak algorytmu – użycie bibliotek do wizualizacji
--	--	-----------------------	-------------------------------------	--