Лекции матан

Александр Титилин

Содержание

1	Второе определение предела	1
	1.1 Примеры	1
	1.1.1 Теорема об односторонних пределах	-
2	Непрерывная функция	2
3	Свойства непрерывных функций	•

1 Второе определение предела

Определение 1 $f:D \to \mathbb{R}$

$$\forall \epsilon > 0 |f(x) - A| < \epsilon.$$

Выполняется вблизи точки a (в пересечении D и проколотой окрестноти точки a).

Тоже самое

Определение 2

$$\forall \epsilon > 0 \exists \delta > 0 \forall x \begin{cases} x \in D \\ x \neq a \\ |x - a| < \delta \end{cases} \implies |f(x) - A| < \epsilon.$$

Равносильность этого определения докажем позже.

1.1 Примеры

1.1.1 Теорема об односторонних пределах

Рассмотрим $f|_{(\infty;a)\cap D}$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a} f|_{(-\infty;a) \cap D}.$$

$$\lim_{x \to a^+} f(x) = \lim_{x \to a} f|_{(a; +\infty) \cap D}.$$

 $orall \epsilon>0|f(a)-A|<\epsilon$ выполняется слева вблизи точки а. $orall \epsilon>0|f(a)-A|<\epsilon$ выполняется справа вблизи точки а.

2 Непрерывная функция

Определение 3 $f:D\to\mathbb{R}, a\in D,\ mor\partial a$

- 1. Если а не является предельной точкой множества D, то f по определению считается непрерывной в точкеа.
- 2. Если а предельная точка D,то f непрерывна, если

$$\lim_{x \to a} f(x) = f(a).$$

Теорема 1 $f: D \to \mathbb{R}, a \in D$. Следущие условия равносильны.

- 1. f непрерывна в точке а.
- 2. $\forall (x_n)x_n \in D \land x_n \to a \implies f(x_n) \to f(a)$
- 3. $\forall \epsilon \exists \delta > 0$

$$\begin{cases} x \in D \\ |x - a| < \delta \end{cases} \implies |f(x) - f(a)| < \epsilon.$$

Доказательство

- $1. 1 \iff 2$
 - (а) Если а не предельная точка.
 - (b) Если а предельная точка. Возьмем $\forall (x_n)$ такую что, $x_n \in D \land x_n \to a$ Если в x_n только конечное число членов равных а,

Определение 4 f непрерывна слева в точке a, если выполняется одно из условий

1. $\forall (x_n)$

$$\begin{cases} x_n \in D \\ x_n \le a \\ x_n \to a \end{cases} \implies f(x_n) \to f(a).$$

2. $\forall \epsilon > 0 \exists \delta \forall x$

$$\begin{cases} x \in D \\ x \le a \\ |x - a| < \delta \end{cases} \implies |f(x) - f(a)| < \epsilon.$$

3. $f|_{(-infty;a]\cap D}$ непрерывна в а.

Теорема 2 Пусть D промежсуток u а внутренняя точка D. Тогда непрерывна точке $a \iff f$ непрерывна слева e точке e u непрерывна справа e точке e u.

3 Свойства непрерывных функций

Теорема 3 (О локальной ограниченности) Пусть $f: D \to \mathbb{R}, a \in D$ Функция f непрерывна в точке a. Тогда существует такая окрестность U точки a, что $f|_{U\cap D}$ ограниченная функция. Коротко f ограничена вблизи точки a.

Упраждение доказать это на языке последовательностей. Так как f непрерывна в точке a, то

$$\forall e > 0 |f(x) - f(a)| < \epsilon.$$

Выполняется вблизи точки а, т.е

Теорема 4 (О локальном сохранении знака.) $f: D \to \mathbb{R}, a \in D.$ f непрерывна в а. Если f(a) > a, то и вблзи а выполняется f(x) > 0. Если f(a) < 0, то вблизи а выполняется f(x) < 0.

Пусть f(a)>0 (f(a)<0) Так как f непрерывна в точке a, то $\forall \epsilon>0|f(x)-f(a)|<\epsilon$ выполняется вблизи a

$$f(a) - \epsilon < f(x) < f(a) + \epsilon$$
.

Возьмем за $\epsilon = \frac{f(a)}{2}.$ Тогда

$$\frac{f(a)}{2} < f(x).$$