Série 7 du jeudi 3 novembre 2016

Exercice 1.

Parmi les formulations suivantes, lesquelles sont équivalentes à "f est continue en x" (justifier les réponses):

1.)
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \epsilon \Longrightarrow |f(x) - f(y)| < \delta$$

2.)
$$\forall \delta > 0 \,\exists \epsilon > 0 \,\forall y : |x - y| < \epsilon \Longrightarrow |f(x) - f(y)| < \delta$$

3.)
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| \le \delta \Longrightarrow |f(x) - f(y)| < \epsilon$$

4.)
$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall y : |x - y| < \delta \Longrightarrow |f(x) - f(y)| \le \epsilon$$

Exercice 2 (* A rendre).

Soit $I =]0, \infty[$ et $f: I \to \mathbb{R}$ définie par $f(x) = x \sin(\frac{1}{x})$. Démontrer que f est uniformément continue sur I.

Indication On utilisera le fait que la fonction sin est continue sur \mathbb{R} avec la propriété: $|\sin(x)| \leq 1, \forall x \in \mathbb{R}$.

Exercice 3.

Soit $f:D\subset\mathbb{R}\to\mathbb{R}$ une fonction définie au voisinage de $a\in\mathbb{R}$. On suppose que f a la propriété suivante: pour tout $\alpha\in\mathbb{R}$, il existe une suite $(a_n)_{n=0}^\infty\subset D$ telle que

$$a_n \neq a, \ f(a_n) \neq \alpha, \ \forall n \in \mathbb{N} \ \text{et} \ \lim_{n \to \infty} a_n = a.$$

Démontrer que s'il existe un nombre réel ℓ et une fonction $\delta: \mathbb{R}_+^* \to \mathbb{R}_+^*$ qui vérifient $\forall x \in D, \forall \epsilon > 0$

$$0 < |x - a| \le \delta(\epsilon) \implies |f(x) - \ell| \le \epsilon,$$

alors nécessairement $\lim_{\epsilon \to 0} \delta(\epsilon) = 0$.

<u>Indication</u>: Supposer par l'absurde que $\delta(\epsilon)$ ne tend pas vers zéro lorsque ϵ tend vers zéro.