

Reinforcement Learning Algorithms and Applications

Prof. Joongheon Kim

Korea University, School of Electrical Engineering Artificial Intelligence and Mobility Laboratory https://joongheon.github.io joongheon@korea.ac.kr

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

Introduction and Applications

- Q-Learning
- Dynamic Programming
- Markov Decision Process

Introduction to RL

- Brief History and Successes
 - Minsky's PhD thesis (1954): Stochastic Neural-Analog Reinforcement Computer
 - Analogies with animal learning and psychology
 - Job-shop scheduling for NASA space missions (Zhang and Dietterich, 1997)
 - Robotic soccer (Stone and Veloso, 1998) part of the world-champion approach
- When RL can be used?
 - Find the (approximated) optimal action sequence for expected reward maximization (not for single optimal solution)
 - Define <u>actions</u> and <u>rewards</u>. These are all we need to do.

Action Sequence (also called **Policy**, later in this presentation)!

RL Setting

- The general RL problem is formalized as a discrete time stochastic control process where an agent interacts with its environment as follows:
 - 1. The agent starts in a given state within its environment $s_0 \in S$ by gathering an initial observation $\omega_0 \in \Omega$.
 - 2. At each time step t, The agent has to take an action $a_t \in A$. It follows three consequences:
 - 1) Obtains a reward $r_t \in R$
 - 2) State transitions to $s_{t+1} \in S$
 - 3) Obtains an observation $\omega_{t+1} \in \Omega$

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

- Introduction and Applications
- **Q-Learning**
- Dynamic Programming
- Markov Decision Process

Q-Function (State-action value)

Q (state, action)

Optimal Policy π and Max Q

- Max Q = $\max_{a'} Q(s, a')$
- $\pi^*(s) = \arg\max_a Q(s, a)$

- My condition
 - I am now in state s
 - When I do action a, I will go to s'.
 - When I do action a, I will get reward r
 - Q in s', it means Q(s', a') exists.
- How can we express Q(s, a) using Q(s', a')?

$$Q(s,a) = r + \max_{a'} Q(s',a')$$


```
Recurrence (e.g., factorial)

F(x){

    if (x != 1){ x * F(x-1) }
    if (x == 1){ F(x) = 1 }
    }
}
```

Q-Learning

16 states and 4 actions (U, D, L, R)

- Initial Status
 - All 64 Q values are 0,
 - Reward are all zero except $r_{s_{15},L} = 1$
- For (1), from s_0 to s_1

•
$$Q(s_0, a_R) = r + \max_{a} Q(s_1, a) = 0 + \max\{0, 0, 0, 0\} = 0$$

- For (2), from s_{14} to s_{15} (goal)
 - $Q(s_{14}, a_R) = r + \max_{a} Q(s_{15}, a) = 1 + \max\{0,0,0,0\} = 1$
- For (3), from s_{13} to s_{14}
 - $Q(s_{13}, a_R) = r + \max_{a} Q(s_{14}, a) = 0 + \max\{0, 0, 1, 0\} = 1$

• 16 states and 4 actions (U, D, L, R)

• 16 states and 4 actions (U, D, L, R)

Learning Q(s, a) with Discounted Reward

$$Q(s,a) = r + \gamma \cdot arg \max_{a} Q(s',a')$$
$$0 < \gamma \le 1$$

- For each s, a, initialize table entry $Q(s, a) \leftarrow 0$
- Observe current state s
- Do forever
 - Select an action a and execute it
 - Receive immediate reward r
 - Observe the new state s'
 - Update the table entry for Q(s, a) as follows:

$$Q(s,a) \leftarrow r + \max_{a'} Q(s',a')$$

•
$$s \leftarrow s'$$

Q-Learning with Exploit and Exploration: ε -Greedy

Finding the Best Restaurant

- Try the best one during weekdays.
- Try new ones during weekends.


```
ε-Greedy

e=0.1

IF (random < e)

a = random;

ELSE

a = argmax(Q(s,a));
```

```
Decaying \varepsilon-Greedy
```

Q-Learning with Exploit and Exploration: Add Random Noise

Add Random Noise a = argmax(Q(s,a) + random_values);

```
Add Decaying Random Noise

for i in range (1000);
a = argmax(Q(s,a) + random/(i+1));
```

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

- Introduction and Applications
- Q-Learning
- Dynamic Programming
- Markov Decision Process

Introduction

- Applications
 - Fibonacci Number
 - Pascal's Triangle
 - Knapsack Problem

- Dynamic Programming
 - The term "programming" stands for "planning".
 - Usually used for optimization problems
 - In order to solve large-scale problems, (i) divide the problems into several subproblems, (ii) solve the sub-problems, and (iii) obtain the solution of the original problem based on the solutions of the sub-problems, recursively
 - Difference from divide-and-conquer
 - Divide-and-conquer

- Introduction
- Applications
 - · Fibonacci Number
 - Pascal's Triangle
 - Knapsack Problem

- Fibonacci Number
 - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
 - F(N) = F(N-2) + F(N-1) where F(1) = 0 and F(2) = 1 (Recursive!)

- Introduction
- Applications
 - Fibonacci Number
 - Pascal's Triangle
 - Knapsack Problem

Application: Pascal's Triangle

Pascal's Triangle

- The entry in the n-th row and k-th column of Pascal's triangle is denoted C(n,k) where C stands for combination. Note that the unique nonzero entry in the topmost row is C(0,0) = 1.
- General Formulation for any nonnegative integer n and any integer k between 0 and n:

$$C(n,k) = C(n-1,k-1) + C(n-1,k),$$

Recursive!

1

15

35

21

20

3

35

15

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

- Introduction and Applications
- Q-Learning
- Dynamic Programming
- Markov Decision Process

Markov Decision Process (MDP), Generalization of Q-Learning

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - *R*: Reward function
 - *T*: Transition function
 - *γ*: Discount factor

How can we use MDP to model agent in a maze?

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - *R*: Reward function
 - *T*: Transition function
 - *γ*: Discount factor

S: location (x, y) if the maze is a 2D grid

- *s*₀: starting state
- s: current state
- s': next state
- *s_t*: state at time *t*

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - R: Reward function
 - *T*: Transition function
 - *γ*: Discount factor

S: location (x, y) if the maze is a 2D grid

A: move up, down, left, or right

• $s \rightarrow s'$

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - R: Reward function
 - *T*: Transition function
 - *γ*: Discount factor

S: location (x, y) if the maze is a 2D grid A: move up, down, left, or right

R: how good was the chosen action?

- r = R(s, a, s')
- -1 for moving (battery used)
- +1 for jewel? +100 for exit?

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - R: Reward function
 - T: Transition function

• *γ*: Discount factor

Stochastic Transition

S: location (x, y) if the maze is a 2D grid

A: move up, down, left, or right

R: how good was the chosen action?

T: where is the robot's new location?

•
$$T = P(s'|s,a)$$

• Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$

- S: Set of states
- A: Set of actions
- *R*: Reward function
- T: Transition function
- γ : Discount factor

Worth In Two Steps S: location (x, y) if the maze is a 2D grid

A: move up, down, left, or right

R: how good was the chosen action?

T: where is the robot's new location?

 γ : how much does future reward worth?

• $0 \le \gamma \le 1$, $[\gamma \approx 0$: future reward is near 0 (immediate action is preferred)]

- Policy
 - $\pi: S \to A$
 - Maps states to actions
 - Gives an action for every state
- Return

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$

Our goal:

Find π that maximizes expected return!

Action Value Function (Q)

$$Q^{\pi}(s, a) = E_{\pi}(R_t | s_t = s, a_t = a) = E_{\pi}(\sum_{k=0}^{\infty} \gamma^k r_{t+k} | s_t = s, a_t = a)$$

- Expected return of starting at state s, taking action a, and then following policy π
- How much return do I expect starting from state s and taking action a?
- Our goal is to find the optimal policy

$$\pi^*(s) = \max_{\pi} R^{\pi}(s)$$

- If T(s'|s,a) and R(s,a,s') are known, this is a planning problem.
- We can use dynamic programming to find the optimal policy.

Markov Property

- [Definition (Markovian)] A discrete time stochastic control process is Markovian (i.e., it has the Markov property) if
 - $P(\omega_{t+1}|\omega_t, a_t) = P(\omega_{t+1}|\omega_t, a_t, \dots, \omega_0, a_0)$, and
 - $P(r_t|\omega_t, a_t) = P(r_t|\omega_t, a_t, \dots, \omega_0, a_0)$
- The Markov property means that the future of the process only depends on the current observation, and the agent has no interest in looking at the full history.

Markov Property

- [Definition (MDP)] A Markov Decision Process (MDP) is a discrete time stochastic control process defined as follows. An MDP is a 5-tuple (S, A, T, R, γ) where:
 - *S* is the state space,
 - *A* is the action space,
 - $T: S \times A \times S \rightarrow [0,1]$ is the transition function (set of conditional transition probabilities between states),
 - $R: S \times A \times S \to R$ is the reward function, where R is a continuous set of possible rewards in a range $R_{\text{max}} \in R^+$ (e.g., $[0, R_{\text{max}}]$),
 - $\gamma \in [0,1)$ is the discount factor.

Markov Property

- The system in [Definition (MDP)] is fully observable in an MDP, which means that the observation is the same as the state of the environment: $\omega_t = s_t$.
- At each time step t,
 - The probability of moving to s_{t+1} is given by the state transition function $T(s_t, a_t, s_{t+1})$ and the reward is given by a bounded reward function $R(s_t, a_t, s_{t+1}) \in R$.

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

- **Deep Neural Network Summary**
- Deep Q-Network (DQN)

	RL (i.e., MDP)	DRL
Pros	Optimal	Fast Computation
Cons	Pseudo-Polynomial	Non-Optimal

Conventional Deep Neural Network Training and Inference

hidden layer 1 hidden layer 2

Conventional Deep Neural Network Training and Inference

hidden layer 1 hidden layer 2

Conventional Deep Neural Network Training and Inference

hidden layer 1 hidden layer 2

Conventional Deep Neural Network Training and Inference

Interpolation vs. Linear Regression

Interpolation vs. Linear Regression

Interpolation with Polynomials

$$y = a_2 x^2 + a_1 x^1 + a_0$$

where three points are given.

 \rightarrow Unique coefficients (a_0 , a_1 , a_2) can be calculated.

Is this related to **Neural Network Training?**

Interpolation and Neural Network Training

$$Y = a(a(a(X \cdot W_1 + b_1) \cdot W_2 + b_2) \cdot W_0 + b_0)$$

where training data/labels (X: data, Y: labels) are given.

- \rightarrow Find $W_1, b_1, W_2, b_2, W_0, b_0$
- → This is the mathematical meaning of neural network training.
- **→ Function Approximation**
- → The most well-known function approximation with neural network:
 Deep Reinforcement Learning

	RL (i.e., MDP)	DRL
Pros	Optimal	Fast Computation
Cons	Pseudo-Polynomial	Non-Optimal

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

- Deep Neural Network Summary
- Deep Q-Network (DQN)

- Large-Scale Q-Values
 - It is inefficient to make the Q-table for each state-action pair.
 - → ANN is used to approximate the Q-function.

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

Gameplay

Pro-Gamer

Trained Agent

The goal of Imitation Learning is to train a policy to mimic the expert's demonstrations

Problems of RL

1. Reward Shaping

2. Safe Learning

3. Exploration process

Imitation Learning handles with these problems through the demonstration of the experts.

Inverse Reinforcement Learning (IRL)

Reward

Function R

R that explains

Artificial Intelligence and **M**obility Lab

IRL

Reward Function R

Reinforcement Learning $\arg\max_{\pi} \mathrm{E}[\sum_{t} \gamma^{t} R(s_{t}) | \pi]$

Optimal Policy π

Environment Model(MDP)

Behavior Cloning

- Define $P^* = P(s|\pi^*)$ (distribution of states visited by expert)
- Learning objective

$$argmin_{\theta} E_{(s,a_E) \sim P^*} L(a_E, \pi_{\theta}(s))$$
$$L(a_E, \pi_{\theta}(s)) = (a_E - \pi_{\theta}(s))^2$$

Discussion

- Works well when P^* close to the distribution of states visited by π_{θ}
- Minimize 1-step deviation error along the expert trajectories

Imitation Learning Applications: Starcraft2

• Starcraft2

States: s = minimap, screen

Action: a = **select**, **drag**

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

States: S Action: a Policy: π_{θ}

• Policy maps states to actions : $\pi_{\theta}(s) \rightarrow a$

• Distributions over actions : $\pi_{\theta}(s) \rightarrow P(a)$

State Dynamics: P(s'|s,a)

Typically not known to policy

• Essentially the simulator/environment

Rollout: sequentially execute $\pi_{\theta}(s_0)$ on initial state

• Produce trajectories au

 $P(\tau|\pi)$: distribution of trajectories induced by a policy

 $P(s|\pi)$: distribution of states induced by a policy

Imitation Learning Applications: Autonomous Driving

Autonomous Driving Control

States: s = **sensors**

Action: a = steering wheel, brake, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

States: s = **BIS**, **BP**, ...

Action: a = PPF, RFTN, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

- <u>MADRL</u>
- Applications

CTDE (Centralized Training and Distributed Execution)

DQN-based CommNet

 $h_j^i: j$ -th agent's hidden state variable in i-th layer $c_j^i: j$ -th agent's communitive state variable in i-th layer

 $\{s_1, ..., s_J\}$

$$h_j^{i+1} = f^i(h_j^i, c_j^i)$$

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

[3] S. Sukhbaatar et al., Learning Multiagent Communication with Backpropagation, NIPS 2016

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

Step#1. Encoding

Step#2-1. Communication Variable

Step#2-2. Activation Function

CommNet

In Graph Approach.

- 1. Should the agent communicate with all agent?
- 2. Can we transfer only essential information between agents?
- → G2ANet will be the solution to the above problem.

In Graph Approach.

- 1. Should the agent communicate with all agent?
- 2. Can we transfer only essential information

between agents?

G2ANet will be the solution to the above problem.

[4] Y. Liu et al., Multi-Agent Game Abstraction via Graph Attention Neural Network, *Proc. AAAI 2020*

G2ANet Architecture

G2ANet Architecture: Abstraction

G2ANet Architecture: Hard Attention

G2ANet Architecture: Soft Attention

Soft Attention

$$Score = \mathbf{q} \cdot \mathbf{k} = \mathbf{q}^T * \mathbf{k}$$
 $Score_{scaled} = \frac{Score}{\sqrt{n}}$
 $Attention(\mathbf{q}, \mathbf{k}, \mathbf{v}) = Score_{scaled} * \mathbf{v}$

0.11	0.84	0.4		
0.1	0.18	0.72		
0.34	0.38	0.28		
0.16	0.14	0.70		

G2ANet Architecture: Soft Attention & GNN

1	0	0		0.11	0.84	0.4		0.11	0	0
0	0	1	*	0.1	0.18	0.72	_	0	0	0.72
0	0	1		0.34	0.38	0.28	_	0	0	0.28
0	0	0		0.16	0.14	0.70		0	0	0

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning

Autonomous Mobility Applications

- MADRL
- Applications

- Electric Vehicle Charging
 - MyungJae Shin, Dae-Hyun Choi, and Joongheon Kim, "Cooperative Management for PV/ESS-Enabled Electric-Vehicle Charging Stations: A Multiagent Deep Reinforcement Learning Approach," IEEE Transactions on Industrial Informatics, 16(5):3493-3503, May 2020.

Multi-UAV Charging

• Soyi Jung, Won Joon Yun, MyungJae Shin, Joongheon Kim, and Jae-Hyun Kim, "Orchestrated Scheduling and Multi-Agent Deep Reinforcement Learning for Cloud-Assisted Multi-UAV Charging Systems," IEEE Transactions on Vehicular Technology, 70(6):5362-5377, June 2021.

Multi-UAV Surveillance

Won Joon Yun, Soohyun Park, Joongheon Kim, MyungJae Shin, Soyi Jung, David Mohaisen, and Jae-Hyun Kim,
 "Cooperative Multi-Agent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control," IEEE Transactions on Industrial Informatics, (To Appear: October 2022).

Streaming in Connected Vehicles

 Won Joon Yun, Dohyun Kwon, Minseok Choi, Joongheon Kim, Giuseppe Caire, and Andreas F. Molisch, "Quality-Aware Deep Reinforcement Learning for Streaming in Infrastructure-Assisted Connected Vehicles," IEEE Transactions on Vehicular Technology, 71(2):2002-2017, February 2022.

- Drone-Taxi Trajectory Learning
 - Won Joon Yun, Soyi Jung, Joongheon Kim, and Jae-Hyun Kim, "Distributed Deep Reinforcement Learning for Autonomous Aerial eVTOL Mobility in Drone Taxi Applications," ICT Express, 7(1):1-4, March 2021.

Thank you for your attention!

- More questions?
 - joongheon@korea.ac.kr