2017, 2018 Ozone in North Carolina

https://github.com/xqy1012/ENV872
project Qianyi~Xia

Abstract

Experimental overview. This section should be no longer than 250 words.

Contents

1	Research Question and Rationale	5
2	Dataset Information	6
3	Exploratory Data Analysis and Wrangling	7
4	Analysis	17
5	Summary and Conclusions	30

List of Tables

1 Summary of Ozone AQI/Concentration in year 2017 and 2018 by counties $\,$. $\,$ 11

List of Figures

1	QQ plots for 2017 and 2018 with/without log transform	13
2	Correlation Between AQI and 8-hour Max Ozone Concentration	14
3	Monthly Box Plot of 2017 and 2018 Ozone AQI	15
4	2017 and 2018 ozone AQI change through out year	16
5	2017 and 2018 ozone compare by year and by month	22
6	2018 ozone trend	29

1 Research Question and Rationale

According to American Lung Association, the 2018 "State of the Air" report reveals that unhealthful levels of pollution put the citizens at risk. Compare to 2017 repost, North Carolina Ozone Pollution worsened in 2018 compare to 2017 because there are more unhealthy days of high ozone in 2018's year report, especially in some cities. The report indicated that more work needs to be done to protect the health of residents from harms of ozone pollution. However, the EPA website showed that in Charlotte, NC, the number of days reaching unhealthy for sensitive groups for ozone pollution has been continue decreasing to 2017. There is no analysis report for ozone pollution in 2018 from EPA yet. Therefore, the interest for this project is to verify the accuracy of the news report by American Lung Association and analyze the ozone pollution in 2017 and 2018 in North Carolina.

It is important to study ozone because human ozone exposure may result in adverse health effects including reduced lung function, respiratory symptoms, asthma, and other premature mortality from respiratory causes. For the nature, ozone damages vegetation, decreasing crop yields, and even may alter ecosystem structure. Ozone is also a greenhouse gas that contribute to global warming.

There will be three main research questions for the report: 1. Does year 2018 has a worsened ozone pollution than 2017? 2. Are there any trend /fluctuation of ozone pollution among different months within a year? Is it true in this data that ozone level is higher when it is hot, dry and sunny in the summer? Does the trend similar in year 2017 and year 2018? 3. Does Ozone pollution level related to population size/ household income/ population density of a county? I will use the raw data that downloaded from EPA our door air quality dataset for 2017 and 2018, combining with demographic data obtained from United States Census Bureau website.

2 Dataset Information

3 Exploratory Data Analysis and Wrangling

First, display the data summary to get information of the data on: the dimension of data, how many different counties/ Ozone monitoring sites are there in North Carolina, where does the county located (e.g. Raleigh, Charlotte, etc.), which columns of the raw data are useful in this report analysis, filter the useful column and save as new files. Also check the format of concentration, AQI, and date, check on if these value needs reformat to numeric or dates. Combine the 2017, 2018 data together and save in another file.

```
dim(EPA Ozone 2017.data)
## [1] 10219
                 20
colnames(EPA_Ozone_2017.data)
    [1] "Date"
##
##
    [2] "Source"
##
    [3] "Site.ID"
    [4] "POC"
##
##
    [5] "Daily.Max.8.hour.Ozone.Concentration"
    [6] "UNITS"
##
##
    [7] "DAILY_AQI_VALUE"
##
    [8] "Site.Name"
##
    [9] "DAILY OBS COUNT"
   [10] "PERCENT COMPLETE"
   [11] "AQS PARAMETER CODE"
##
  [12] "AQS PARAMETER DESC"
  [13] "CBSA CODE"
##
  [14] "CBSA NAME"
## [15] "STATE CODE"
  [16] "STATE"
## [17] "COUNTY_CODE"
  [18] "COUNTY"
## [19] "SITE LATITUDE"
  [20] "SITE LONGITUDE"
summary(EPA Ozone 2017.data$Site.Name)
##
##
                                                                    206
##
                                                              Beaufort
##
                                                                    338
##
                                                            Bent Creek
##
##
                                                          Bethany sch.
##
                                                                    240
```

##	Blackstone
##	355
##	Bryson City
##	223
##	Bushy Fork
##	241
##	Butner
##	243
##	Candor
##	325
##	Castle Hayne
##	239
##	Cherry Grove
##	232
##	Clemmons Middle
##	240
##	Coweeta
##	344
##	Cranberry
##	307
##	Crouse
##	237
##	Durham Armory
##	245
##	Frying Pan Mountain
##	229
##	Garinger High School
##	358
##	Hattie Avenue
##	242
##	Honeycutt School
##	219
##	Jamesville School
##	244
##	Joanna Bald
##	227
##	Leggett
##	236
##	Lenoir (city)
##	239
##	Lenoir Co. Comm. Coll.
##	244
##	Linville Falls
##	234
##	Mendenhall School

```
##
                                                                      239
##
                                                       Millbrook School
##
                                                                      339
                                                          Monroe School
##
##
                                                                      236
##
                                                            Mt. Mitchell
   OZONE MONITOR ON SW SIDE OF TOWER/MET EQUIPMENT 10FT ABOVE TOWER
##
##
                                                      Pitt Agri. Center
##
##
                                                           Purchase Knob
                                                                      234
##
##
                                                                Rockwell
##
                                                                      354
##
                                                  Taylorsville Liledoun
##
##
                                                             Union Cross
##
                                                                      243
##
                                                     University Meadows
##
                                                                      243
##
                                                                    Wade
##
                                                                      245
##
                                                     Waynesville School
##
                                                                      237
##
                                                      West Johnston Co.
##
                                                                      245
summary(EPA Ozone 2017.data$COUNTY)
##
     Alexander
                                Buncombe
                                             Caldwell
                                                          Carteret
                                                                         Caswell
                      Avery
##
            234
                                      240
                                                   239
                                                                338
                                                                             232
                         541
##
    Cumberland
                     Durham
                               Edgecombe
                                              Forsyth
                                                             Graham
                                                                       Granville
            464
##
                         245
                                      236
                                                   725
                                                                227
                                                                             243
##
      Guilford
                    Haywood
                                  Jackson
                                              Johnston
                                                                          Lenoir
                                                                Lee
##
            239
                         700
                                      199
                                                   245
                                                                355
                                                                             244
##
       Lincoln
                      Macon
                                  Martin Mecklenburg
                                                        Montgomery New Hanover
                                                   601
##
            237
                         344
                                      244
                                                                325
                                                                             239
##
        Person
                        Pitt
                              Rockingham
                                                 Rowan
                                                              Swain
                                                                           Union
##
            241
                         245
                                      240
                                                   354
                                                                429
                                                                             236
```

[1] "numeric"

Wake

339

Yancey

199

class(EPA_Ozone_2017.data\$Daily.Max.8.hour.Ozone.Concentration)

##

##

```
class(EPA_Ozone_2017.data$DAILY_AQI_VALUE)

## [1] "integer"

class(EPA_Ozone_2017.data$Date)

## [1] "factor"
```

The summary table include the information of ozone mean, \min , \max AQI, and \max concentration grouped by year and counties.

Table 1: Summary of Ozone AQI/Concentration in year 2017 and 2018 by counties $\,$

year	COUNTY	MeanOzoneAQI	MeanOzoneConc	Units	${\rm minOzone AQI}$	maxOzoneAQI
2017	Alexander	40.19231	0.0426239	ppm	14	93
2017	Avery	39.42884	0.0419316	ppm	16	93
2017	Buncombe	38.90833	0.0414750	ppm	12	84
2017	Caldwell	42.23431	0.0442427	ppm	15	90
2017	Carteret	35.25148	0.0379497	ppm	13	64
2017	Caswell	38.68103	0.0414009	ppm	13	71
2017	Cumberland	40.98922	0.0432220	ppm	10	100
2017	Durham	40.04898	0.0423306	ppm	6	100
2017	Edgecombe	38.77966	0.0413347	ppm	11	80
2017	Forsyth	44.03034	0.0456745	ppm	15	100
2017	Graham	41.14978	0.0436432	ppm	12	87
2017	Granville	42.16872	0.0441893	ppm	19	93
2017	Guilford	44.06276	0.0454812	ppm	16	112
2017	Haywood	42.37714	0.0448114	ppm	13	84
2017	Jackson	45.34171	0.0467889	ppm	16	100
2017	Johnston	38.42449	0.0408857	ppm	11	93
2017	Lee	37.66479	0.0402225	ppm	8	97
2017	Lenoir	38.97541	0.0412254	ppm	11	90
2017	Lincoln	41.55696	0.0437764	ppm	14	93
2017	Macon	33.51744	0.0359070	ppm	8	74
2017	Martin	37.67213	0.0402910	ppm	16	74
2017	Mecklenburg	41.10815	0.0425757	ppm	7	115
2017	Montgomery	36.59077	0.0392338	ppm	10	71
2017	New Hanover	35.50628	0.0380837	ppm	5	67
2017	Person	40.46888	0.0429793	ppm	12	74
2017	Pitt	39.38776	0.0417469	ppm	16	87
2017	Rockingham	41.43750	0.0436375	ppm	15	84
2017	Rowan	37.71469	0.0400876	ppm	11	80
2017	Swain	35.13054	0.0378228	ppm	8	71
2017	Union	42.52119	0.0441441	ppm	15	115
2017	Wake	37.95870	0.0399204	ppm	7	100
2017	Yancey	45.37688	0.0472161	ppm	18	93
2018	Alexander	38.74737	0.0405193	ppm	16	100
2018	Avery	38.35237	0.0404780	ppm	0	87
2018	Buncombe	37.46786	0.0395464	ppm	12	93
2018	Caldwell	39.22300	0.0409233	ppm	10	93
2018	Carteret	37.96861	0.0404081	ppm	17	77
2018	Caswell	39.30980	0.0409216	ppm	10	97

year	COUNTY	MeanOzoneAQI	MeanOzoneConc	Units	${\rm minOzone AQI}$	maxOzoneAQI
2018	Cumberland	41.69593	0.0433640	ppm	17	100
2018	Durham	38.05155	0.0400241	ppm	9	100
2018	Edgecombe	38.57708	0.0406680	ppm	15	84
2018	Forsyth	43.70955	0.0446578	ppm	12	101
2018	Graham	42.35599	0.0440162	ppm	19	97
2018	Granville	40.03833	0.0416585	ppm	10	93
2018	Guilford	43.80989	0.0444867	ppm	13	105
2018	Haywood	41.40159	0.0432514	ppm	0	105
2018	Johnston	37.75839	0.0397114	ppm	15	90
2018	Lee	39.83256	0.0420884	ppm	17	77
2018	Lenoir	39.94902	0.0419373	ppm	16	108
2018	Lincoln	39.78113	0.0417849	ppm	13	90
2018	Macon	32.52647	0.0346029	ppm	12	93
2018	Martin	38.86192	0.0409707	ppm	6	80
2018	Mecklenburg	40.81804	0.0415633	ppm	13	108
2018	Montgomery	34.46291	0.0369110	ppm	0	71
2018	New Hanover	37.72199	0.0398423	ppm	16	77
2018	Person	38.85091	0.0408655	ppm	10	97
2018	Pitt	39.36585	0.0413031	ppm	16	87
2018	Rockingham	38.50904	0.0404187	ppm	10	90
2018	Rowan	36.34277	0.0389057	ppm	14	74
2018	Swain	36.08725	0.0383870	ppm	5	80
2018	Union	42.85433	0.0435591	ppm	16	122
2018	Wake	38.01183	0.0398136	ppm	6	90
2018	Yancey	42.90076	0.0447786	ppm	4	84

Figure 1: QQ plots for 2017 and 2018 with/without log transform

Then for exploratory graphs, normality is visualized first by QQ norm plots in Figure 1.The sample size is larger than 5,000, so Kolmogorov-Smirnov test is applied together to test normality for ozone daily AQI value. The result shows that both original data and log-transformed data are not normally distributed.

Correlation between AQI and Ozone 8-hour concentration is also test with spearman correlation and plotted in Figure 2. In the raw data, there are both AQI and Ozone 8-hour max concentrations, the reason for correlation test is to make sure if using AQI is appropriate to represent Ozone pollution level. The correlation figure shows that there is a correlation coefficient of 1.00 between these two variables, so only AQI will be used in later analysis.

Figure 3 displays a monthly boxplot for year 2017 and 2018, February and September have higher ozone AQI in 2017, it is hard to identify other obvious differences only from this figure.

Figure 4 shows a LOESS trend in 2017 and 2018, it provide a first impression on the potential seasonal trend before conducting statistical analysis in the next section.

There is also a map generated to show different location of the counties, how they distributed in NC.

Figure 2: Correlation Between AQI and 8-hour Max Ozone Concentration

Figure 3: Monthly Box Plot of 2017 and 2018 Ozone AQI

Figure 4: 2017 and 2018 ozone AQI change through out year

4 Analysis

First analysis is the Wilcoxon test to test if ozone AQI in 2017 is lower than 2018. Wilcoxon test is conducted since the data are non-parametric data, which means not normally distributed. T-test or ANOVA test cannot be used here. Both the difference for yearly mean and monthly difference are tested. One interesting finding before conducting the test is that the 2017 AQI mean is actually higher than the 2018 AQI, so the null hypothesis is adjusted as follow:

H0: 2017 and 2018 mean ozone AQI are identical.

Ha: 2017 has a higher mean ozone AQI than 2018.

From the result and the visualization figures we see that, the 2017 has a significantly lower mean AQI than 2018 (p-value <0.001). Among the 12 months, February (p-value <0.001), May (p-value <0.001), August (p-value <0.001), September (p-value <0.001), October (p-value =0.04), November (p-value <0.001), December (p-value <0.001) also have higher mean ozone AQI than 2018.

While in January, April, June, the p-value is 1, and the mean of AQI in 2018 in these month are higher than 2017.

```
#ANOVA Test Assumption
#Previous tested for normality not met
ks.test(EPA Ozone 2017.data.Processed$DAILY AQI VALUE,pnorm)
## Warning in ks.test(EPA_Ozone_2017.data.Processed$DAILY_AQI_VALUE, pnorm):
## ties should not be present for the Kolmogorov-Smirnov test
##
   One-sample Kolmogorov-Smirnov test
##
##
## data: EPA_Ozone_2017.data.Processed$DAILY_AQI_VALUE
## D = 1, p-value < 2.2e-16
## alternative hypothesis: two-sided
ks.test(log(EPA_Ozone_2017.data.Processed$DAILY_AQI_VALUE),pnorm)
## Warning in ks.test(log(EPA_Ozone_2017.data.Processed$DAILY_AQI_VALUE),
## pnorm): ties should not be present for the Kolmogorov-Smirnov test
##
##
   One-sample Kolmogorov-Smirnov test
##
          log(EPA_Ozone_2017.data.Processed$DAILY_AQI_VALUE)
## D = 0.99173, p-value < 2.2e-16
## alternative hypothesis: two-sided
```

```
ks.test(EPA Ozone 2018.data.Processed$DAILY AQI VALUE,pnorm)
## Warning in ks.test(EPA Ozone 2018.data.Processed$DAILY AQI VALUE, pnorm):
## ties should not be present for the Kolmogorov-Smirnov test
##
##
   One-sample Kolmogorov-Smirnov test
##
## data: EPA_Ozone_2018.data.Processed$DAILY_AQI_VALUE
## D = 0.99821, p-value < 2.2e-16
## alternative hypothesis: two-sided
ks.test(log(EPA Ozone 2018.data.Processed$DAILY AQI VALUE),pnorm)
## Warning in ks.test(log(EPA_Ozone_2018.data.Processed$DAILY_AQI_VALUE),
## pnorm): ties should not be present for the Kolmogorov-Smirnov test
##
  One-sample Kolmogorov-Smirnov test
##
##
## data:
         log(EPA Ozone 2018.data.Processed$DAILY AQI VALUE)
## D = 0.98881, p-value < 2.2e-16
## alternative hypothesis: two-sided
#test for homogenecity of variance met
class(EPA totalOzone.data.processed$year)
## [1] "numeric"
EPA_totalOzone.data.processed$year <- as.factor(EPA_totalOzone.data.processed$year)
sd(EPA Ozone 2017.data.Processed$DAILY AQI VALUE)/
 sd(EPA_Ozone_2018.data.Processed$DAILY_AQI_VALUE)
## [1] 0.87895
\#\ bartlett.test(EPA\_totalOzone.data.processed\$DAILY\_AQI\_VALUE{\sim}
# EPA_totalOzone.data.processed$year, EPA_totalOzone.data.processed)
#T-test Assumption not met, data is not normally distributed.
#So I will conduct Mann-Whitney-Wilcoxon Test.
mean(EPA Ozone 2017.data.Processed$DAILY AQI VALUE)
## [1] 39.86897
mean(EPA Ozone 2018.data.Processed$DAILY AQI VALUE)
## [1] 39.45543
```

```
wilcox.test(EPA Ozone 2017.data.Processed$DAILY AQI VALUE,
            EPA Ozone 2018.data.Processed$DAILY AQI VALUE, alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: EPA Ozone 2017.data.Processed$DAILY AQI VALUE and EPA Ozone 2018.data.Processe
## W = 58178000, p-value = 9.077e-13
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month_1_2017$DAILY_AQI_VALUE,month_1_2018$DAILY_AQI_VALUE,
            alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month 1 2017$DAILY AQI VALUE and month 1 2018$DAILY AQI VALUE
## W = 30854, p-value = 1
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 2 2017$DAILY AQI VALUE, month 2 2018$DAILY AQI VALUE,
            alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month_2_2017$DAILY_AQI_VALUE and month_2_2018$DAILY_AQI_VALUE
## W = 114220, p-value < 2.2e-16
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 3 2017 DAILY AQI VALUE, month 3 2018 DAILY AQI VALUE,
            alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month 3 2017$DAILY AQI VALUE and month 3 2018$DAILY AQI VALUE
## W = 725790, p-value = 0.0865
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 4 2017$DAILY AQI VALUE, month 4 2018$DAILY AQI VALUE,
            alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month_4_2017$DAILY_AQI_VALUE and month_4_2018$DAILY_AQI_VALUE
```

```
## W = 486820, p-value = 1
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month_5_2017$DAILY_AQI_VALUE,month_5_2018$DAILY_AQI_VALUE,
            alternative = "greater")
##
##
  Wilcoxon rank sum test with continuity correction
## data: month 5 2017$DAILY AQI VALUE and month 5 2018$DAILY AQI VALUE
## W = 794380, p-value = 1.553e-07
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month_6_2017$DAILY_AQI_VALUE,month_6_2018$DAILY_AQI_VALUE,
            alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month 6 2017$DAILY AQI VALUE and month 6 2018$DAILY AQI VALUE
## W = 503450, p-value = 1
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 7 2017 DAILY AQI VALUE, month 7 2018 DAILY AQI VALUE,
            alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month_7_2017$DAILY_AQI_VALUE and month_7_2018$DAILY_AQI_VALUE
## W = 689380, p-value = 0.6059
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 8 2017 DAILY AQI VALUE, month 8 2018 DAILY AQI VALUE,
            alternative = "greater")
##
   Wilcoxon rank sum test with continuity correction
## data: month 8 2017$DAILY AQI VALUE and month 8 2018$DAILY AQI VALUE
## W = 767460, p-value = 7.514e-07
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month_9_2017$DAILY_AQI_VALUE,month_9_2018$DAILY_AQI_VALUE,
            alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
```

```
##
## data: month 9 2017$DAILY AQI VALUE and month 9 2018$DAILY AQI VALUE
## W = 618390, p-value < 2.2e-16
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 10 2017$DAILY AQI VALUE,
            month_10_2018$DAILY_AQI_VALUE, alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
##
## data: month 10 2017$DAILY AQI VALUE and month 10 2018$DAILY AQI VALUE
## W = 607880, p-value = 0.03632
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 11 2017$DAILY AQI VALUE,
            month_11_2018$DAILY_AQI_VALUE, alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month_11_2017$DAILY_AQI_VALUE and month_11_2018$DAILY_AQI_VALUE
## W = 89283, p-value = 0.0003441
## alternative hypothesis: true location shift is greater than 0
wilcox.test(month 12 2017$DAILY AQI VALUE,
            month 12 2018$DAILY AQI VALUE, alternative = "greater")
##
## Wilcoxon rank sum test with continuity correction
## data: month 12 2017$DAILY AQI VALUE and month 12 2018$DAILY AQI VALUE
## W = 25216, p-value = 0.0003636
## alternative hypothesis: true location shift is greater than 0
#Mann-Kendall test for trend of Ozone in both 2017 and 2018.
#group by date
Ozonebydate_2017 <- EPA_Ozone_2017.data.Processed %>%
  group_by(Date) %>%
  summarise(MeanOzoneAQI = mean(DAILY AQI VALUE))
Ozonebydate 2018 <- EPA Ozone 2018.data.Processed %>%
  group_by(Date) %>%
 summarise(MeanOzoneAQI = mean(DAILY_AQI_VALUE))
#Non-normal data 2017:
#Test for Change point
```


Figure 5: 2017 and 2018 ozone compare by year and by month

```
pettitt.test(Ozonebydate 2017$MeanOzoneAQI)
##
## Pettitt's test for single change-point detection
## data: Ozonebydate 2017$MeanOzoneAQI
## U* = 14903, p-value = 2.158e-12
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                               218
# 218: 2017-08-06
# Run seperate Mann-Kendall for each change point: possitive trend
 mk.test(Ozonebydate_2017$MeanOzoneAQI[1:218])
##
   Mann-Kendall trend test
##
##
## data: Ozonebydate 2017$MeanOzoneAQI[1:218]
## z = 4.6491, n = 218, p-value = 3.334e-06
## alternative hypothesis: true S is not equal to O
## sample estimates:
##
                        varS
## 5.006000e+03 1.158979e+06 2.117105e-01
 #negative trend
mk.test(Ozonebydate_2017$MeanOzoneAQI[218:364])
##
   Mann-Kendall trend test
##
##
## data: Ozonebydate 2017$MeanOzoneAQI[218:364]
## z = -4.2373, n = 147, p-value = 2.262e-05
## alternative hypothesis: true S is not equal to 0
## sample estimates:
               S
##
                          varS
                                         tau
## -2.531000e+03 3.564963e+05 -2.359687e-01
#Another Change point at 280 : 2017-10-07
pettitt.test(Ozonebydate_2017$MeanOzoneAQI[218:364])
##
   Pettitt's test for single change-point detection
##
         Ozonebydate_2017$MeanOzoneAQI[218:364]
## data:
```

```
## U* = 2666, p-value = 3.236e-06
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                                62
mk.test(Ozonebydate_2017$MeanOzoneAQI[218:280]) #no significant trend
##
   Mann-Kendall trend test
##
##
## data: Ozonebydate 2017$MeanOzoneAQI[218:280]
## z = 1.8031, n = 63, p-value = 0.07138
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
            S
                                tau
## 3.0500e+02 2.8427e+04 1.5617e-01
mk.test(Ozonebydate 2017$MeanOzoneAQI[281:364]) #no significant trend
##
   Mann-Kendall trend test
##
## data: Ozonebydate 2017$MeanOzoneAQI[281:364]
## z = -1.1551, n = 84, p-value = 0.248
## alternative hypothesis: true S is not equal to O
## sample estimates:
               S
##
                          varS
                                         tau
## -3.000000e+02 6.699933e+04 -8.615744e-02
#anythird change point?
pettitt.test(Ozonebydate_2017$MeanOzoneAQI[281:364]) #not significant
##
##
   Pettitt's test for single change-point detection
##
## data: Ozonebydate 2017$MeanOzoneAQI[281:364]
## U* = 566, p-value = 0.08113
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                                59
#Non-normal data 2018:
#Test for Change point
pettitt.test(Ozonebydate_2018$MeanOzoneAQI)
```

```
##
   Pettitt's test for single change-point detection
##
## data: Ozonebydate 2018$MeanOzoneAQI
## U* = 14869, p-value = 1.165e-14
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
##
                               210
# 210: 2018-07-29
# Run seperate Mann-Kendall for each change point: possitive trend
 mk.test(Ozonebydate_2018$MeanOzoneAQI[1:210])
##
##
   Mann-Kendall trend test
##
## data: Ozonebydate 2018$MeanOzoneAQI[1:210]
## z = 5.6612, n = 210, p-value = 1.503e-08
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
                        varS
                                      tau
## 5.764000e+03 1.036289e+06 2.626746e-01
  #negative trend
mk.test(Ozonebydate 2018$MeanOzoneAQI[210:343])
##
##
   Mann-Kendall trend test
##
## data: Ozonebydate_2018$MeanOzoneAQI[210:343]
## z = -3.8546, n = 134, p-value = 0.0001159
## alternative hypothesis: true S is not equal to 0
## sample estimates:
                          varS
## -2.005000e+03 2.702983e+05 -2.250281e-01
#Another Change point at 252 : 2017-09-09
pettitt.test(Ozonebydate_2018$MeanOzoneAQI[210:343])
##
##
   Pettitt's test for single change-point detection
## data: Ozonebydate_2018$MeanOzoneAQI[210:343]
## U* = 1957, p-value = 0.0001528
## alternative hypothesis: two.sided
```

```
## sample estimates:
## probable change point at time K
##
                                42
mk.test(Ozonebydate_2018$MeanOzoneAQI[210:252]) #no significant trend
##
   Mann-Kendall trend test
##
##
## data: Ozonebydate 2018$MeanOzoneAQI[210:252]
## z = 1.3605, n = 43, p-value = 0.1737
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
             S
                      varS
                                   tau
    131.000000 9130.333333
                              0.145072
mk.test(Ozonebydate_2018$MeanOzoneAQI[252:343]) #no significant trend
##
##
   Mann-Kendall trend test
##
## data: Ozonebydate_2018$MeanOzoneAQI[252:343]
## z = -0.74202, n = 92, p-value = 0.4581
## alternative hypothesis: true S is not equal to 0
## sample estimates:
##
               S
                          varS
## -2.210000e+02 8.790500e+04 -5.280134e-02
#anythird change point?
pettitt.test(Ozonebydate 2017$MeanOzoneAQI[252:343]) #At 280, 2018-10-07
##
   Pettitt's test for single change-point detection
##
## data: Ozonebydate_2017$MeanOzoneAQI[252:343]
## U* = 938, p-value = 0.002446
## alternative hypothesis: two.sided
## sample estimates:
## probable change point at time K
                                28
mk.test(Ozonebydate 2018$MeanOzoneAQI[252:280])
##
   Mann-Kendall trend test
##
##
## data: Ozonebydate 2018$MeanOzoneAQI[252:280]
## z = 2.6824, n = 29, p-value = 0.00731
```

```
## alternative hypothesis: true S is not equal to 0 \,
## sample estimates:
##
              S
                        varS
                                      tau
   144.0000000 2842.0000000
                                0.3546798
##
mk.test(Ozonebydate 2018$MeanOzoneAQI[280:343])
##
   Mann-Kendall trend test
##
##
## data: Ozonebydate_2018$MeanOzoneAQI[280:343]
## z = -2.2827, n = 64, p-value = 0.02245
## alternative hypothesis: true S is not equal to O
## sample estimates:
##
               S
                          varS
## -395.0000000 29791.0000000
                                  -0.1959812
```


#Logistic Regression

Figure 6: 2018 ozone trend

5 Summary and Conclusions