

8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs

High-Performance Silicon-Gate CMOS

MC74HC595A, MC74HCT595A

The MC74HC595A/MC74HCT595A consists of an 8-bit shift register and an 8-bit D-type latch with three-state parallel outputs. The shift register accepts serial data and provides a serial output. The shift register also provides parallel data to the 8-bit latch. The shift register and latch have independent clock inputs. This device also has an asynchronous reset for the shift register.

The device directly interfaces with the SPI serial data port on CMOS MPUs and MCUs. The MC74HC595A device inputs are compatible Standard CMOS outputs; with pullup resistors, they are compatible with TTL outputs. The MC74HCT595A device inputs are compatible Standard CMOS or TTL outputs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V (HC), 4.5 to 5.5 V (HCT)
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 328 FETs or 82 Equivalent Gates
- Improvements over HC595/HCT595
 - Improved Propagation Delays
 - ♦ 50% Lower Quiescent Power
 - Improved Input Noise and Latchup Immunity
- –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

1

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

MARKING DIAGRAMS

TSSOP-16

QFN16

A = Assembly Location

WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G, = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

Figure 1. Pin Assignments

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to V _{CC} + 0.5	V
V _{OUT}	DC Output Voltage		-0.5 to V _{CC} + 0.5	V
I _{IN}	DC Input Current, per Pin		±20	mA
I _{OUT}	DC Output Current, per Pin		±35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±75	mA
I _{IK}	Input Clamp Current (V _{IN} < 0 or V _{IN} > V _{CC})		±20	mA
I _{OK}	Output Clamp Current (V _{OUT} < 0 or V _{OUT} > V _{CC})		±20	mA
T _{STG}	Storage Temperature		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		±150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 1)	SOIC-16 QFN16 TSSOP-16	126 118 159	°C/W
P _D	Power Dissipation in Still Air at 25°C	SOIC-16 QFN16 TSSOP-16	995 1062 787	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	_
V _{ESD}	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	>3000 >1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Measured with minimum pad spacing on an FR4 board, using 76mm-by-114mm, 2-ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
MC74HC				
V _{CC}	DC Supply Voltage	2.0	6.0	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Note 3)	0	V _{CC}	V
T _A	Operating Free-Air Temperature	-55	+125	°C
t _r , t _f	Input Rise or Fall Time $ \begin{array}{c} V_{CC} = 2.0 \ V \\ V_{CC} = 4.5 \ V \\ V_{CC} = 6.0 \ V \\ \end{array} $	0 0 0	1000 500 400	ns
МС74НСТ				
V _{CC}	DC Supply Voltage	4.5	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, DC Output Voltage (Note 3)	0	V _{CC}	V
T _A	Operating Free–Air Temperature	-55	+125	°C
t _r , t _f	Input Rise or Fall Time	0	500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

3. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (MC74HC595A)

				Guaranteed Limit		mit	
			V _{CC}	–55 to			
Symbol	Parameter	Test Conditions	V	25°C	≤ 85°C	≤ 125°C	Unit
V_{IH}	Minimum High-Level Input Voltage	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	2.0	1.5	1.5	1.5	V
		I _{OUT} ≤ 20 μA	3.0 4.5	2.1 3.15	2.1 3.15	2.1 3.15	
			6.0	4.2	4.2	4.2	
V _{IL}	Maximum Low-Level Input Voltage	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	2.0	0.5	0.5	0.5	V
۷IL	Maximum Low=Level Input Voltage	V _{OUT} = 0.1 V 01 V _{CC} = 0.1 V I _{OUT} ≤ 20 μA	3.0	0.5	0.5	0.5	V
		1.0011 = 20 16.1	4.5	1.35	1.35	1.35	
			6.0	1.8	1.8	1.8	
V _{OH}	Minimum High-Level Output	V _{IN} = V _{IH} or V _{IL}					V
	Voltage, Q _A - Q _H	I _{OUT} ≤ 20 μA	2.0	1.9	1.9	1.9	
		10011	4.5	4.4	4.4	4.4	
			6.0	5.9	5.9	5.9	
		$ I_{OUT} \le 2.4 \text{ mA}$	3.0	2.48	2.34	2.2	
		$ I_{OUT} \leq 6.0 \text{ mA}$	4.5	3.98	3.84	3.7	
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0	5.48	5.34	5.2	
V_{OL}	Minimum Low-Level Output	$V_{IN} = V_{IH}$ or V_{IL}					V
	Voltage, Q _A – Q _H	I _{OUT} ≤ 20 μA	2.0	0.1	0.1	0.1	
			4.5	0.1	0.1	0.1	
			6.0	0.1	0.1	0.1	
		$ I_{OUT} \le 2.4 \text{ mA}$	3.0	0.26	0.33	0.4	
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5	0.26	0.33	0.4	
		I _{OUT} ≤ 7.8 mA	6.0	0.26	0.33	0.4	
V_{OH}	Minimum High-Level Output	$V_{IN} = V_{IH}$ or V_{IL}					V
	Voltage, SQ _H	I _{OUT} ≤ 20 μA	2.0	1.9	1.9	1.9	
			4.5	4.4	4.4	4.4	
			6.0	5.9	5.9	5.9	
		$ I_{OUT} \le 2.4 \text{ mA}$	3.0	2.48	2.34	2.2	
		$ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5 6.0	3.98 5.48	3.84 5.34	3.7 5.2	
V _{OL}	Minimum Low–Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$	0.0	3.40	3.04	5.2	V
VOL	Voltage, SQ _H		0.0	0.1	0.1	0.1	V
	3 7 11	I _{OUT} ≤ 20 μA	2.0 4.5	0.1 0.1	0.1 0.1	0.1 0.1	
			6.0	0.1	0.1	0.1	
		I _{OUT} ≤ 2.4 mA	3.0	0.26	0.33	0.4	
		$ I_{OUT} \le 2.4 \text{ mA}$ $ I_{OUT} \le 4.0 \text{ mA}$	4.5	0.26	0.33	0.4	
		I _{OUT} ≤ 5.2 mA	6.0	0.26	0.33	0.4	
I _{IN}	Maximum Input Leakage Current	V _{IN} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
l _{OZ}	Maximum Three-State Leakage	Output in High-Impedance State	6.0	±0.5	±5.0	±10	μA
02	Current	$V_{IN} = V_{II}$ or V_{IH}					
		$V_{OUT} = V_{CC}$ or GND					
I _{CC}	Maximum Quiescent Supply	V _{IN} = V _{CC} or GND	6.0	4.0	40	160	μΑ
	Current (per Package)						

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (MC74HC595A)

		V _{cc}	Guar	anteed Lim	it	
Symbol	Parameter	v	–55 to 25°C	≤ 85 ° C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 7)	2.0 3.0 4.5 6.0	6.0 15 30 35	4.8 10 24 28	4.0 8.0 20 24	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Shift Clock to SQ _H (Figures 1 and 7)	2.0 3.0 4.5 6.0	140 100 28 24	175 125 35 30	210 150 42 36	ns
t _{PHL}	Maximum Propagation Delay, Reset to SQ _H (Figures 2 and 7)	2.0 3.0 4.5 6.0	145 100 29 25	180 125 36 31	220 150 44 38	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Latch Clock to Q _A – Q _H (Figures 3 and 7)	2.0 3.0 4.5 6.0	140 100 28 24	175 125 35 30	210 150 42 36	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	2.0 3.0 4.5 6.0	135 90 27 23	170 110 34 29	205 130 41 35	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Q _A – Q _H (Figures 3 and 7)	2.0 3.0 4.5 6.0	60 23 12 10	75 27 15 13	90 31 18 15	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, SQ _H (Figures 1 and 7)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State), Q _A – Q _H	-	15	15	15	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)*	300	pF

TIMING REQUIREMENTS (MC74HC595A)

		v _{cc}	Guara	anteed Limi	t		
Symbol	Parameter	VCC	25°C to –55°C	≤ 85 °C	≤ 125°C	Unit	
t _{su}	Minimum Setup Time, Serial Data Input A to Shift Clock	2.0	50	65	75	ns	
	(Figure 5)	3.0	40	50	60		
		4.5	10	13	15		
		6.0	9.0	11	13		
t _{su}	Minimum Setup Time, Shift Clock to Latch Clock	2.0	75	95	110	ns	
	(Figure 6)	3.0	60	70	80		
		4.5	15	19	22		
		6.0	13	16	19		
t _h	Minimum Hold Time, Shift Clock to Serial Data Input A	2.0	5.0	5.0	5.0	ns	
	(Figure 5)	3.0	5.0	5.0	5.0		
		4.5	5.0	5.0	5.0		
		6.0	5.0	5.0	5.0		
t _{rec}	Minimum Recovery Time, Reset Inactive to Shift Clock	2.0	50	65	75	ns	
	(Figure 2)	3.0	40	50	60		
		4.5	10	13	15		
		6.0	9.0	11	13		
t _w	Minimum Pulse Width, Reset	2.0	60	75	90	ns	
	(Figure 2)	3.0	45	60	70		
		4.5	12	15	18		
		6.0	10	13	15		
t _w	Minimum Pulse Width, Shift Clock	2.0	50	65	75	ns	
	(Figure 1)	3.0	40	50	60		
		4.5	10	13	15		
		6.0	9.0	11	13		
t _w	Minimum Pulse Width, Latch Clock	2.0	50	65	75	ns	
	(Figure 6)	3.0	40	50	60		
		4.5	10	13	15		
		6.0	9.0	11	13		
t _r , t _f	Maximum Input Rise and Fall Times	2.0	1000	1000	1000	ns	
	(Figure 1)	3.0	800	800	800		
		4.5	500	500	500		
		6.0	400	400	400		

DC ELECTRICAL CHARACTERISTICS (MC74HCT595A)

			V _{CC}	Guar	anteed Lim		
Symbol	Parameter	Test Conditions	V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	4.5 to 5.5	2.0	2.0	2.0	V
V _{IL}	Maximum Low-Level Input Voltage	V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$	4.5 to 5.5	0.8	0.8	0.8	V
V _{OH}	$\begin{array}{c} \mbox{Minimum High-Level Output} \\ \mbox{Voltage, } \mbox{Q}_{\mbox{\scriptsize A}} - \mbox{Q}_{\mbox{\scriptsize H}} \end{array}$	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	4.5	4.4	4.4	4.4	٧
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \leq 6.0 \text{ mA}$	4.5	3.98	3.84	3.7	
V _{OL}	$\begin{array}{c} \text{Maximum Low-Level Output} \\ \text{Voltage, } \mathbf{Q_A} - \mathbf{Q_H} \end{array}$	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu A$	4.5	0.1	0.1	0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \leq 6.0 \text{ mA}$	4.5	0.26	0.33	0.4	
V _{OH}	Minimum High-Level Output Voltage, SQ _H	$V_{in} = V_{IH} \text{ or } V_{IL}$ $II_{out}I \leq 20 \ \mu A$	4.5	4.4	4.4	4.4	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $II_{out}I \leq 4.0 \text{ mA}$	4.5	3.98	3.84	3.7	
V _{OL}	Maximum Low-Level Output Voltage, SQ _H	$V_{in} = V_{IH} \text{ or } V_{IL}$ $II_{out}I \leq 20 \ \mu A$	4.5	0.1	0.1	0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $II_{out}I \leq 4.0 \text{ mA}$	4.5	0.26	0.33	0.4	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	5.5	± 0.1	± 1.0	± 1.0	μΑ
I _{OZ}	Maximum Three–State Leakage Current, Q _A – Q _H	Output in High-Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND	5.5	± 0.5	± 5.0	±10	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	5.5	4.0	40	160	μΑ
ΔI_{CC}	Additional Quiescent Supply	V _{in} = 2.4V, Any One Input		≥ -55 °C	25 to	125°C	
	Current	$V_{in} = V_{CC}$ or GND, Other Inputs $I_{out} = 0\mu A$	5.5	2.9	2	.4	mA

AC ELECTRICAL CHARACTERISTICS (MC74HCT595A)

		V _{CC}	Guar	anteed Lim	it	
Symbol	Parameter	v	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 7)	4.5 to 5.5	30	24	20	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Shift Clock to SQ _H (Figures 1 and 7)	4.5 to 5.5	28	35	42	ns
t _{PHL}	Maximum Propagation Delay, Reset to SQ _H (Figures 2 and 7)	4.5 to 5.5	29	36	44	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Latch Clock to Q _A – Q _H (Figures 3 and 7)	4.5 to 5.5	28	35	42	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	4.5 to 5.5	30	38	45	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	4.5 to 5.5	27	34	41	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Q _A – Q _H (Figures 3 and 7)	4.5 to 5.5	12	15	18	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, SQ _H (Figures 1 and 7)	4.5 to 5.5	15	19	22	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State), Q _A - Q _H	_	15	15	15	pF

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Package)*	300	pF

^{*}Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (MC74HCT595A)

		V _{CC}	Guara	nteed Limi	t	
Symbol	Parameter	v	25°C to –55°C	≤ 85°C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	4.5 to 5.5	10	13	15	ns
t _{su}	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	4.5 to 5.5	15	19	22	ns
t _h	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	4.5 to 5.5	5.0	5.0	5.0	ns
t _{rec}	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	4.5 to 5.5	10	13	15	ns
t _w	Minimum Pulse Width, Reset (Figure 2)	4.5 to 5.5	12	15	18	ns
t _w	Minimum Pulse Width, Shift Clock (Figure 1)	4.5 to 5.5	10	13	15	ns
t _w	Minimum Pulse Width, Latch Clock (Figure 6)	4.5 to 5.5	10	13	15	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)		500	500	500	ns

Test	Switch Position	CL	R_{L}
t _{PLH} / t _{PHL}	Open	50 pF	1 kΩ
t _{PLZ} / t _{PZL}	V _{CC}		
t _{PHZ} / t _{PZH}	GND		

Figure 1. Test Circuit

Figure 2. Switching Waveforms

^{*}C_L Includes probe and jig capacitance

FUNCTION TABLE

			Inputs				Resulting F	unction	
Operation	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Register Contents	Serial Output SQ _H	Parallel Outputs Q _A – Q _H
Reset shift register	L	Х	Х	L, H, ↓	L	L	U	L	U
Shift data into shift register	Н	D	1	L, H, ↓	L	$\begin{array}{c} \text{D} \rightarrow \text{SR}_{A};\\ \text{SR}_{N} \rightarrow \text{SR}_{N+1} \end{array}$	U	$SR_G \rightarrow SR_H$	U
Shift register remains unchanged	Н	Х	L, H, ↓	L, H, ↓	L	U	U	U	U
Transfer shift register contents to latch register	Н	Х	L, H, ↓	1	L	U	$SR_N \rightarrow LR_N$	U	SR _N
Latch register remains unchanged	Х	Х	Х	L, H, ↓	L	*	U	*	U
Enable parallel outputs	Х	Х	Х	Х	L	*	**	*	Enabled
Force outputs into high impedance state	Х	Х	X	X	Н	*	**	*	Z

SR = shift register contents LR = latch register contents D = data (L, H) logic level U = remains unchanged \uparrow = Low-to-High

* = depends on Reset and Shift Clock inputs ** = depends on Latch Clock input

 \downarrow = High-to-Low

PIN DESCRIPTIONS

INPUTS A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTSShift Clock (Pin 11)

Shift Register Clock Input. A low-to-high transition on this input causes the data at the Serial Input pin to be shifted into the 8-bit shift register.

Reset (Pin 10)

Active-low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8-bit latch is not affected.

Latch Clock (Pin 12)

Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active—low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs (Q_A-Q_H) into the high—impedance state. The serial output is not affected by this control unit.

OUTPUTS

Q_A - Q_H (Pins 15, 1, 2, 3, 4, 5, 6, 7)

Noninverted, 3-state, latch outputs.

SQ_H (Pin 9)

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8-bit shift register. This output does not have three-state capability.

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM

ORDERING INFORMATION

Device	Package	Marking	Shipping [†]
MC74HC595ADG	SOIC-16	HC595A	48 Units / Rail
MC74HC595ADR2G	SOIC-16	HC595A	2500 / Tape & Reel
MC74HC595ADR2G-Q*	SOIC-16	HC595A	2500 / Tape & Reel
MC74HC595ADTG	TSSOP-16	HC 595A	96 Units / Rail
MC74HC595ADTR2G	TSSOP-16	HC 595A	2500 / Tape & Reel
MC74HC595ADTR2G-Q*	TSSOP-16	HC 595A	2500 / Tape & Reel
MC74HC595AMN1TWG-Q*	QFN16	V595A	3000 / Tape & Reel (8mm pitch carrier tape)
MC74HCT595ADG	SOIC-16	HCT595A	48 Units / Rail
MC74HCT595ADR2G	SOIC-16	HCT595A	2500 / Tape & Reel
MC74HCT595ADTG	TSSOP-16	HCT 595A	96 Units / Rail
MC74HCT595ADTR2G	TSSOP-16	HCT 595A	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

Capable

DETAIL A

е

e/2

E2

16X b

Ф 0.05 C NOTE 3

0.10 C A B

BOTTOM VIEW

DATE 11 DEC 2008

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSIONS & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED
- PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.80	1.00		
A1	0.00	0.05		
A3	0.20	REF		
b	0.20 0.30			
D	2.50	BSC		
D2	0.85	1.15		
E	3.50	BSC		
E2	1.85	2.15		
е	0.50	0.50 BSC		
K	0.20			
L	0.35	0.45		
L1		0.15		

GENERIC MARKING DIAGRAM*

= Specific Device Code XXXX Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■" may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON36347E	Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	QFN16, 2.5X3.5, 0.5P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M

DATE 18 OCT 2024

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES.
- 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE.
- 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIMETERS				
DIM	MIN	NOM	MAX	
А	1.35	1.55	1.75	
A1	0.10	0.18	0.25	
A2	1.25	1.37	1.50	
b	0.35	0.42	0.49	
С	0.19	0.22	0.25	
D		9.90 BSC		
E		6.00 BSC		
E1	3.90 BSC			
е		1.27 BSC		
h	0.25		0.50	
L	0.40	0.83	1.25	
L1		1.05 REF		
Θ	0.		7*	
TOLERAN	CE OF FC	RM AND	POSITION	
aaa	0.10			
bbb	0.20			
ccc	0.10			
ddd	0.25			
eee	0.10			

RECOMMENDED MOUNTING FOOTPRINT

*FOR ADDITIONAL INFORMATION ON OUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE onsemi SOLDERING
AND MOUNTING TECHNIQUES REFERENCE
MANUAL, SOLDERRM/D

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	SOIC-16 9.90X3.90X1.37 1.27P		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-16 9.90x3.90x1.37 1.27P CASE 751B

ISSUE M

DATE 18 OCT 2024

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

A = Assembly Location
WL = Wafer Lot

Y = Year
WW = Work Week
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:	S	TYLE 4:	
	COLLECTOR	PIN 1.	CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE #1
	BASE	2.	ANODE	2.	BASE. #1	2.	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER. #1	3.	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	
	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2
14.	COLLECTOR	14.	NO CONNECTION	14.	BASE, #4	14.	
15.	EMITTER	15.	ANODE	15.	EMITTER, #4	15.	
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1
STYLE 5:		STYLE 6:		STYLE 7:			
PIN 1.	DRAIN, DYE #1	PIN 1.	CATHODE	PIN 1.	SOURCE N-CH		
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT)		
3.	DRAIN. #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT)		
	שוויאווי, דב	٥.		٥.			
4.		3. 4.	CATHODE	3. 4.			
4. 5.	DRAIN, #2 DRAIN, #3		CATHODE CATHODE		GATE P-CH COMMON DRAIN (OUTPUT)		
5. 6.	DRAIN, #2 DRAIN, #3 DRAIN, #3	4. 5. 6.	CATHODE CATHODE CATHODE	4. 5. 6.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
5.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4	4. 5. 6. 7.	CATHODE CATHODE CATHODE CATHODE	4. 5. 6. 7.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
5. 6. 7. 8.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4	4. 5. 6. 7.	CATHODE CATHODE CATHODE CATHODE CATHODE	4. 5. 6. 7. 8.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH		
5. 6. 7. 8.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4	4. 5. 6. 7. 8.	CATHODE CATHODE CATHODE CATHODE CATHODE ANODE	4. 5. 6. 7. 8. 9.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH		
5. 6. 7. 8. 9.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4	4. 5. 6. 7. 8. 9.	CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE	4. 5. 6. 7. 8. 9.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT)		
5. 6. 7. 8. 9. 10.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3	4. 5. 6. 7. 8. 9. 10.	CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE	4. 5. 6. 7. 8. 9. 10.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
5. 6. 7. 8. 9. 10. 11.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3	4. 5. 6. 7. 8. 9. 10. 11.	CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE	4. 5. 6. 7. 8. 9. 10. 11.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
5. 6. 7. 8. 9. 10. 11. 12.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2	4. 5. 6. 7. 8. 9. 10. 11. 12.	CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE	4. 5. 6. 7. 8. 9. 10. 11. 12.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURGE P-CH SOURGE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH		
5. 6. 7. 8. 9. 10. 11. 12. 13.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 GATE, #4 GATE, #3 SOURCE, #3 GOURCE, #3 GOURCE, #2 SOURCE, #2	4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE	4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) CATE N-CH COMMON DRAIN (OUTPUT)		
5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1	4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	CATHODE CATHODE CATHODE CATHODE CATHODE ANODE	4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT)		
5. 6. 7. 8. 9. 10. 11. 12. 13.	DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 GATE, #4 GATE, #3 SOURCE, #3 GOURCE, #3 GOURCE, #2 SOURCE, #2	4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE	4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) CATE N-CH COMMON DRAIN (OUTPUT)		

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16 9.90X3.90X1.37 1	SOIC-16 9.90X3.90X1.37 1.27P		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 19 OCT 2006

☐ 0.10 (0.004)

SEATING PLANE

D

TSSOP-16 WB

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- IN TERLEAD FLASH OH PROTHOSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0 °	8°	0°	8 °

RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

DETAIL E

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales