**P2.7. Strategize:** We want to indicate position relative to the ground on the vertical axis of one plot, and time on the horizontal axis.

**Prepare:** We assume the speed is roughly constant when the elevator is moving. We start with the position plot, and then we can determine the components of the velocity from the slope.

**Solve:** The entire trip takes 24 s and 10 s are spent stopped. So the motion takes a total of 14 s. If we assume the elevator has the same speed when going upward as it does downward, then the total distance of 7 floors (5 up and then 2 down) corresponds to 2 s per floor. Thus, we expect it took 10 s to get up to the fifth floor, and then 4 s to go back down to the third floor. Clearly, the slope of this plot is either  $\pm 2$  m/s or 0 m/s. This allows us to complete the velocity vs. time plot as well.



**Assess:** Note that the sign of the velocity is accurately reflected in the slope of the position vs. time plot.

**P2.19. Strategize:** Displacement is given by the area under the a velocity vs. time graph.

**Prepare:** In this case, the displacement is equal to the area under the velocity graph between  $t_i$  and  $t_f$ . We can find the car's final position from its initial position and the area.

**Solve:** (a) Using the equation  $x_f = x_i + \text{area of the velocity graph between } t_i \text{ and } t_f$ ,

$$x_{2s} = 10 \text{ m} + \text{area of trapezoid between } 0 \text{ s and } 2 \text{ s}$$
  
=  $10 \text{ m} + \frac{1}{2} (12 \text{ m/s} + 4 \text{ m/s})(2 \text{ s}) = 26 \text{ m}$   
 $x_{3s} = 10 \text{ m} + \text{area of triangle between } 0 \text{ s and } 3 \text{ s}$ 

= 10 m + 
$$\frac{1}{2}$$
(12 m/s)(3 s) = 28 m  
 $x_{4s} = x_{3s}$  + area between 3 s and 4 s

$$= 28 \text{ m} + \frac{1}{2}(-4 \text{ m/s})(1 \text{ s}) = 26 \text{ m}$$

**(b)** The car reverses direction at t = 3 s, because its velocity becomes negative. **Assess:** The car starts at  $x_i = 10$  m at  $t_i = 0$ . Its velocity decreases as time increases, is zero at t = 3 s, and then becomes negative. The slope of the velocity-versus-time graph is negative which means the car's acceleration is negative and a constant. From the acceleration thus obtained and given velocities on the graph, we can also use kinematic equations to find the car's position at various times.

**Prepare:** We can calculate acceleration from Equation 2.8:

 $(a_x) = \left(\frac{\Delta v_x}{\Delta t}\right) = \frac{9.5 \text{ m/s}}{1.0 \text{ s}} = 9.5 \text{ m/s}^2$ 

For the lion:

**Solve:** For the gazelle:

 $(a_x) = \left(\frac{\Delta v_x}{\Delta t}\right) = \frac{13 \text{ m/s}}{3.0 \text{ s}} = 4.3 \text{ m/s}^2$