Dynamic Programming: Longest Subsequence

DP Part 1

The LCS problem and naïve solution

Principles of Dynamic Programming

- Optimal substructure
- Recursion
- Avoiding solving the same instance multiple times
- Construct an optimal solution

Example and Summary

Longest Common Subsequence

Problem: Given two sequences X and Y, Compute a longest common subsequence (LCS) of X and Y.

Example:

X=<A,B,C,B,D,A,B>, Y=<B,D,C,A,B,A>.

Z=<B,C,B,A> is a longest common subsequence of X and Y

Z is a subsequence of X=<A,B,C,B,D,A,B>.

Z is a subsequence of Y=<B,D,C,A,B,A>.

Hence Z is a common subsequence of X and Y.

Is it the longest?

Longest Common Subsequence

- What is an LCS of X and Y?
- 1st, it should be a common subsequence of X and Y.
- 2nd, it should have the maximum length among all common subsequences of X and Y.
- We need to define related concepts precisely.

Subsequence

Let
$$X = \langle x_1, x_2, ..., x_m \rangle$$
 and $Z = \langle z_1, z_2, ..., z_k \rangle$.

Z is said to be a subsequence of X if there exists a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that

$$\mathbf{z_{j}} = x_{i_{j}} \text{ for } j = 1, 2, ..., k.$$

Example: Z=<B,C,B,A> is a subsequence of X=<A,B,C,B,D,A,B>.

The index sequence is <2,3,4,6>.

 is a subsequence of X.

The index sequence can be <2>, <4> or <7>

Common Subsequence

Given sequences X and Y, a sequence Z is a common subsequence of X and Y if Z is a subsequence of X and a subsequence of Y.

Example:

Examples for common subsequences of X and Y are:

```
<>>
<A>, <B>, <C>, <D>
<A,B>, <B,A>, <B,C>, <B,D>
<B,B,A>, <B,C,A>, <B,C,B>
<B,C,B,A>
```

Length of a sequence

- Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, the length of X is m, which is the number of symbols in X.
- The length of an empty sequence <> is 0
- The length of the sequence X=<a,b,c> is 3
- We denote the length of sequence X by |X|

Prefix

Let $X=\langle x_1, x_2, ..., x_m \rangle$ be a sequence.

We define the *i*-th prefix of X, for i=0, 1, 2, ..., m, as

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$

Longest Common Subsequence (LCS)

Let X and Y be two sequences. A sequence Z is a longest common subsequence (LCS) of X and Y, if

- (1) Z is a common subsequence of X and Y;
- (2) Z is longest among all common subsequences of X and Y.

Computing LCS: naive approach

```
Exhaustive-LCS(X, Y)

01: Find the set of symbols in X and Y

02: Generate S: all sequences with length≤min(|X|, |Y|)

03: Sorted S by decreasing length

04: for all s∈S do

05: if (s is a common subsequence of X and Y){

06: return s

07: }
```

Bad News: Exponential running time!

Arizona State University

DP Part 2

The LCS problem and naïve solution

Principles of Dynamic Programming

- Optimal substructure
- Recursion
- Avoiding solving the same instance multiple times
- Construct an optimal solution

Example and Summary

Steps in Dynamic Programming

- Characterize the structure of an optimal solution
 - Most important part of DP
- Define the value of an optimal solution
 - May lead to exponential running time
- Compute the value of an optimal solution bottom-up
 - Do not solve the same instance multiple times
- Construct an optimal solution from computed information
- We will use an example to illustrate these steps.

Theorem 14.1: Optimal Substructure of An LCS

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

Theorem 14.1: Optimal Substructure of An LCS

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

Proof. Case 1.

If $z_k \neq x_m$ then we could append x_m to Z to obtain a common subsequence of X and Y with length k+1. This is a contradiction.

Therefore $z_k = x_m = y_n$. Now Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} with length k-1. We need to prove that Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} . If not, Z will have length larger than k, another contradiction. Therefore Case 1 is proved.

Theorem 14.1: Optimal Substructure of An LCS

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

Proof. Case 2.

If $z_k \neq x_m$ then Z is a common subsequence of X_{m-1} and Y.

If Z is not an LCS of X_{m-1} and Y, we will have a longer common subsequence of X_{m-1} and Y, which is also a common subsequence of X and Y, a contradiction. This proves Case 2.

Theorem 14.1: Optimal Substructure of An LCS

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

Proof. Case 3.

Similar to Case 2.

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

- (1) If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- (2) If $x_m \neq y_n$, and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y
- (3) If $x_m \neq y_n$, and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1}

$$X = \langle A, B, C, B, D, A \rangle, Y = \langle B, D, C, A, B, A \rangle$$

$$Z = \langle B, C, B, A \rangle$$

Observations from the optimal substructure

Observation: Finding an LCS of X and Y can be reduce to finding

- (1) LCS X_{m-1} and Y_{n-1}
- (2) LCS X and Y_{n-1}
- (3) LCS X_{m-1} and Y

Each of these are smaller instances of the same problem.

Define the value of an optimal solution

Define the value: Let c[i, j] be the length of an LCS of X_i and Y_j .

Obviously, if i = 0 or j = 0, then c[i, j] = 0.

In general, we have

$$c[i,j] = \begin{cases} 0 & i = 0 & or & j = 0 \\ c[i-1,j-1]+1 & i,j > 0 & and & x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & i,j > 0 & and & x_i \neq y_j \end{cases}$$

Computing the optimal values top-down

Computing the optimal values bottom-up

```
LCS-Length (X_m, Y_n)
1. for i := 0 to m do c[i, 0] := 0
2. for j := 1 to n do c[0, j] := 0
3. for i := 1 to m do
4. for i := 1 to m do
4. for j := 1 to m do
5. if x<sub>i</sub> == y<sub>j</sub>
6. c[i, j] := c[i-1, j-1] + 1
7. b[i, j] := "\"
8. else if c[i-1, j] ≥ c[i, j-1]
9. c[i, j] := c[i-1, j]
10. b[i, j] := "\"
11. else
12. c[i, j] := c[i, j-1]
13. b[i, j] := "\leftarrow"
14. return matrices c and b
```

Time complexity: O(mn)

Construct an optimal solution

```
Print-LCS(b, X, i, j)
1. if i == 0 or j == 0
2. return
3. if b[i, j] == " " "
4. Print-LCS(b, X, i-1, j-1)
5. print x;
6. else if b[i, j] == "\uparrow"
7. Print-LCS(b, X, i-1, j)
8. else
9. Print-LCS(b, X, i, j-1)
Time complexity: O(m+n)
```


Arizona State University

DP Part 3

The LCS problem and naïve solution

Principles of Dynamic Programming

- Optimal substructure
- Recursion
- Avoiding solving the same instance multiple times
- Construct an optimal solution

Example and Summary

	j	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{X_i}{X_i}$	<mark>0</mark>	0	0	0	0	O	0
1	$\stackrel{\mid \mid}{A}$	0	1 0	1 0	1 0	1	← 1	1
2	В	0	^ 1	← 1	← 1	1	^ 2	← 2
3	C	O	1	1 1	^ 2	← 2	† 2	1 2
4	В	O	1	<u>†</u> 1	† ₂	1 ¹ 2	3	← 3
5	D	0	1	^ 2	1 2	1 2	1 3	1 3
6	A	<mark>0</mark>	1	1 2	1 2	* 3	1 3	^ 4
7	B	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
i	e[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	O O	O	0	O	O	O	0
1	$\stackrel{\mid \mid}{A}$	0	† <mark>O</mark>	1 0	1 0	1	← 1	1
2	В	0	^ 1	← 1	← 1	† 1	^ 2	← 2
3	C	0	† 1	1	^ 2	← 2	<u>† 2</u>	1 2
4	В	0	1	1 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	► 2	1 2	1 2	† 3	1 3
6	A	0	1	1 2	1 2	* 3	1 3	^ 4
7	В	0	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
i	ofi il	$y_j =$	В	D	C	A	В	A
$0^{-\frac{1}{c}}$	$\frac{e[i,j]}{x_i}$	O O	0	O	0	0	<mark>O</mark>	0
1	$\stackrel{\mid \mid}{A}$	0	† <mark>0</mark>	1 <mark>0</mark>	1 0	1	← 1	1
2	В	O	1	← 1	← 1	1	2	← 2
3	C	O	1 1	1 1	^ 2	← 2	† 2	1 2
4	В	O	1	<u>† 1</u>	[†] 2	1 ¹ 2	3	← 3
5	D	O	1	~ 2	1 2	1 2	1 3	1 3
6	A	O	1	1 2	1 2	* 3	1 3	× 4
7	B	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
i	e[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	O O	O	0	O	O	O	0
1	$\stackrel{\mid \mid}{A}$	0	1 <mark>0</mark>	<u>0</u>	1 O	1	← 1	1
2	В	0	^ 1	← 1	← 1	† 1	2	← 2
3	C	0	† ₁	1	^ 2	← 2	↑ ₂	1 2
4	В	<mark>O</mark>	1	1 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	► 2	1 2	1 2	† 3	1 3
6	A	0	1	1 2	1 2	* 3	1 3	^ 4
7	В	0	^ 1	1 2	1 2	1 3	^ 4	1 4

	j	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{X_i}{X_i}$	<u>0</u>	0	0	<mark>0</mark>	<mark>0</mark>	O	0
1	$\stackrel{\mid \mid}{A}$	0	† <mark>0</mark>	<u>0</u>	1 0	1	← 1	1
2	В	0	1	← 1	← 1	† 1	2	← 2
3	C	0	1 1	1 1	^ 2	← 2	† 2	1 2 l
4	В	O	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	^ 2	1 2	1 2	1 3	1 3
6	A	<mark>0</mark>	1	1 2	1 2	* 3	1 3	^ 4
7	B	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	0	0	0	0	O	O	0
1	$\stackrel{ert}{A}$	0	1 <mark>0</mark>	1 0	1 0	1	← 1	1
2	В	O	1	← 1	← 1	† 1	2	← 2
3	C	O	1 1	1 1	^ 2	← 2	† 2	1 2
4	В	O	1	1	[†] 2	1 ¹ 2	3	← 3
5	D	O	1	~ 2	1 2	1 2	1 3	1 3
6	A	O	1	1 2	1 2	* 3	1 3	^ 4
7	B	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	\boldsymbol{j}	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	X_i	o O	O	0	O	O	O	0
1	$\stackrel{ert}{A}$	O	1 <mark>0</mark>	1 0	1 O	1	← 1	1
2	B	O	^ 1	← 1	← 1	† 1	2	← 2
3	C	O	† ₁	[†] 1	^ 2	← 2	[†] 2	1 ₂
4	B	O	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	O	† 1	► 2	1 2	1 2	1 3	1 3
6	A	O	† 1	1 2	1 2	* 3	1 3	^ 4
7	В	O	^ 1	1 2	1 2	† 3	^ 4	1 4

	\dot{j}	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	0	O	0	O	O	O	0
1	$\stackrel{\mid\mid}{A} \Big $	0	1 O	1 <mark>0</mark>	1 O	1	← 1	1
2	В	0	1	← 1	← 1	† 1	2	← 2
3	C	0	† ₁	1	^ 2	← 2	[†] 2	1 2
4	В	0	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	O	† 1	* 2	1 2	1 2	1 3	1 3
6	A	O	† 1	1 2	1 2	* 3	1 3	^ 4
7	B	0	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
$i \lceil c \rceil$	c[i,j]	$y_j =$	В	D	C	A	В	A
0	X_i	O O	O	0	O	O	O	0
1	$\stackrel{\mid \mid}{A}$	O	1 <mark>0</mark>	<u>0</u>	1 O	<u> </u>	← 1	1
2	B	O	× <mark>1</mark>	← 1	← 1	† 1	2	← 2
3	C	O	† ₁	1	^ 2	← 2	† ₂	1 ₂
4	В	O	1	1 1	[†] 2	1 ¹ 2	3	← 3
5	D	O	† 1	* 2	1 2	1 2	1 3	1 3
6	A	O	† 1	1 2	1 2	* 3	1 3	^ 4
7	В	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	\boldsymbol{j}	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	X_i	o O	0	0	O	O	O	0
1	$\stackrel{\mid \mid}{A}$	O	1 <mark>0</mark>	<u>0</u>	1 O	<u> </u>	← 1	1
2	B	O	1	← 1	← 1	† 1	2	← 2
3	C	O	† ₁	1	^ 2	← 2	[†] 2	1 ₂
4	B	O	1	↑ 1	[†] 2	1 ¹ 2	3	← 3
5	D	O	1	* 2	1 2	1 2	1 3	1 3
6	A	O	† 1	1 2	1 2	* 3	1 3	^ 4
7	В	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	j	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	0	O	0	O	O	O	0
1	$\stackrel{ert}{A}$	0	1 O	<u>0</u>	1 O	<u> </u>	← 1	1
2	В	0	1	← 1	← 1	1	2	← 2
3	C	0	† ₁	1	^ 2	← 2	† 2	1 2
4	В	0	1	1 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	► 2	1 2	1 2	1 3	1 3
6	A	0	† 1	1 2	1 2	* 3	1 3	^ 4
7	B	0	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
$i \mid c$	e[i,j]	$y_j =$	В	D	C	A	В	A
0	X_i	O O	0	0	O	O	O	0
1	$\stackrel{\mid \mid}{A}$	0	1 0	<u>0</u>	1 0	1	← 1	1
2	B	O	1	← 1	← 1	↑ <u>1</u>	× 2	← 2
3	C	O	† ₁	1	^ 2	← 2	[†] 2	1 2
4	В	O	1	↑ 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	► 2	1 2	1 2	1 3	1 3
6	A	O	† 1	1 2	1 2	* 3	1 3	^ 4
7	В	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	<mark>0</mark>	0	0	O	O	O	0
1	$\stackrel{\mid \mid}{A}$	O	1 <mark>0</mark>	<u>0</u>	1 O	1	← 1	1
2	B	O	1	← 1	← 1	1	2	← 2
3	C	O	† ₁	1	^ 2	← 2	[†] 2	1 2
4	В	O	1	↑ 1	[†] 2	1 ¹ 2	3	← 3
5	D	O	1	* 2	1 2	1 2	1 3	1 3
6	A	O	1	1 2	1 2	* 3	1 3	^ 4
7	В	O	^ 1	1 2	1 2	1 3	^ 4	1 4

	\dot{J}	0	1	2	3	4	5	6
i	e[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	0	0	0	0	0	0	0
1	$\stackrel{ert}{A}$	0	1 0	1 0	1 0	` 1	← 1	1
2	В	0	^ 1	← 1	← 1	† 1	× 2	← 2
3	C	0	† ₁	[†] 1	^ 2	← 2	[†] 2	1 2
4	В	0	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	► 2	1 2	1 2	1 3	1 3
6	A	0	† 1	1 2	1 2	* 3	1 3	^ 4
7	B	0	^ 1	1 2	1 2	1 3	^ 4	1 4

j		0	1	2	3	4	5	6
$i \mid_{C[]}$	$[i,j]_{\vdash}$	$y_j =$	В	D	C	A	В	A
$0 \frac{\nabla x}{x}$		0	0	0	0	0	0	0
$1 \stackrel{ }{\mathcal{L}}$	1	0	1 0	1 0	1 O	` 1	← 1	1
2 F	3	0	^ 1	← 1	← 1	<u>† 1</u>	^ 2	← 2
3 (0	† ₁	† ₁	2	← 2	[†] 2	† ₂
4 F	3	0	1	1 1	↑ ₂	† ₂	3	← 3
5 <i>I</i>)	0	† 1	^ 2	1 2	† 2	1 3	1 3
6 A	1	0	1	1 2	1 2	* 3	1 3	* 4
7 E	3	0	^ 1	1 2	1 2	1 3	* 4	1 <mark>4</mark>

	j	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{C[i,j]}{x_i}$	0	0	0	0	0	0	0
1	$\stackrel{\mid \mid}{A}$	0	1 O	1 0	1 0	` 1	← 1	1
2	B	0	^ 1	← 1	← 1	1	* 2	← 2
3	C	0	† ₁	1	^ 2	← 2	† 2	† ₂
4	B	0	1	† 1	1 2	1 ¹ 2	3	← 3
5	D	0	† 1	► 2	1 2	1 2	1 3	1 3
6	A	0	† 1	1 2	1 2	* 3	1 3	^ 4
7	В	0	^ 1	1 2	1 2	1 3	^ 4	1 <mark>4</mark>

	j	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	0	0	0	0	0	0	0
1	$\stackrel{\mid \mid}{A}$	0	† ₀	1 0	1 0	` 1	← 1	1
2	В	0	^ 1	← 1	← 1	† 1	2	← 2
3	C	0	† ₁	[†] 1	^ 2	← 2	† ₂	1 ₂
4	В	0	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	^ 2	1 2	1 2	1 <mark>3</mark>	1 3
6	A	0	† 1	1 2	1 2	* 3	1 3	^ 4
7	В	0	^ 1	1 2	1 2	1 3	^ 4	1 <mark>4</mark>

	j	0	1	2	3	4	5	6
$i \mid $	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	0	0	0	0	0	0	0
1	$\stackrel{\mid}{A}$	0	1 0	1 0	1 0	` 1	← 1	1
2	В	0	^ 1	← 1	← 1	† 1	^ 2	← 2
3	C	0	† ₁	[†] 1	^ 2	← 2	[†] 2	1 2
4	В	0	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	× 2	1 2	1 2	† <mark>3</mark>	1 3
6	A	0	1	1 2	1 2	* 3	1 3	^ 4
7	B	0	^ 1	1 2	1 2	1 3	^ 4	1 <mark>4</mark>

	j	0	1	2	3	4	5	6
$i \mid $	c[i,j]	$y_j =$	В	D	C	A	В	A
0	X_i	\bigcup 0	0	0	0	0	0	0
1	$\stackrel{\mid \mid}{A}$	0	1 0	1 0	1 0	` 1	← 1	1
2	В	0	^ 1	← 1	← 1	† 1	^ 2	← 2
3	C	0	† ₁	[†] 1	^ 2	← 2	[†] 2	1 2
4	В	0	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	× 2	1 2	1 2	† <mark>3</mark>	1 3
6	A	0	1	1 2	1 2	* 3	1 3	^ 4
7	B	0	^ 1	1 2	1 2	1 3	^ 4	1 <mark>4</mark>

j	0	1	2	3	4	5	6
i c[i, j]	$y_j =$	В	D	C	A	В	A
$0 \frac{x_i}{x_i}$	0	0	0	0	0	0	0
$1 \stackrel{ }{A}$	0	† 0	1 0	1 0	` 1	← 1	1
2 B	0	^ 1	← 1	← 1	† 1	^ 2	← 2
3 C	0	1	[†] 1	× 2	← 2	[†] 2	1 2
4 B	0	1	† 1	1 2	1 ¹ 2	3	← 3
5 D	0	1	^ 2	1 2	1 2	† <mark>3</mark>	1 3
6 A	0	1	1 2	1 2	* 3	1 3	^ 4
7 B	0	` 1	1 2	1 2	1 3	* 4	1 <mark>4</mark>

	j	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	0	0	0	0	0	0	0
1	$\stackrel{\mid \mid}{A}$	0	† ₀	1 0	1 0	` 1	← 1	1
2	B	0	^ 1	← 1	← 1	1	* 2	← 2
3	C	0	† ₁	1	2	← 2	† 2	1 ₂
4	B	0	1	† 1	[†] 2	1 ¹ 2	3	← 3
5	D	0	† 1	^ 2	1 2	1 2	† <mark>3</mark>	1 3
6	A	0	† 1	1 2	1 2	* 3	1 3	^ 4
7	В	0	^ 1	1 2	1 2	1 3	* 4	1 <mark>4</mark>

	j	0	1	2	3	4	5	6
i	c[i,j]	$y_j =$	В	D	C	A	В	A
0	$\frac{x_i}{x_i}$	\bigcup 0	0	0	0	0	0	0
1	$\stackrel{\mid \mid}{A}$	0	† ₀	1 0	1 0	^ 1	← 1	1
2	B	0	1	← 1	← 1	1	* 2	← 2
3	C	0	† ₁	† 1	× 2	← 2	† ₂	† ₂
4	В	0	1	† 1	† 2	1 ¹ 2	3	← 3
5	D	0	† 1	^ 2	1 2	1 2	† <mark>3</mark>	1 3
6	A	0	† 1	1 2	1 2	* 3	1 3	^ 4
7	B	0	^ 1	1 2	1 2	1 3	^ 4	1 <mark>4</mark>

\dot{J}	0	1	2	3	4	5	6
i $c[i,j]$	$y_j =$	В	D	C	A	В	A
$0 \frac{ \mathcal{C}[i,j] }{x_i}$	0	0	0	0	0	0	0
$1 \stackrel{\mid \mid}{A}$	0	1 0	1 0	1 0	` 1	← 1	1
2 B	0	1	← 1	← 1	† 1	^ 2	← 2
3 C	0	1	1	× 2	← 2	<u>†</u> 2	1 2
4 B	0	1	1 1	† ₂	1 ¹ 2	3	← 3
5 D	0	1	* 2	1 2	1 2	1 3	1 3
6 A	0	1	1 2	1 2	* 3	1 3	^ 4
7 B	0	^ 1	1 2	1 2	1 3	* 4	1 <mark>4</mark>

More Examples?

Given a sequence of n integers. Find its longest monotonically increasing subsequence.

An O(n²) time algorithm.

DP Algorithm for Computing Fibonacci Numbers?

```
Declare array F[1:n].

| F[1] := 1

| F[2] := 1

| For i=3 to n do

| F[i] := F[i-1] + F[i-2]
```

What is the time complexity?

O(n)

EndFor

Summary

- Dynamic programming is an optimal algorithm based on optimal structures of sub-problems.
- We fill up a table to avoid solving the same sub-problem more than once.
- As another example, we have solved the LCS problem.
- Please practice this to make sure you fully understand it.

Arizona State University