IE 534/CS 598 Deep Learning

University of Illinois at Urbana-Champaign

Fall 2018

Lecture 8

- Recurrent neural networks are widely used to model sequential or temporal dependence.
- Prominent examples include speech and text recognition.
- Sequence of data $(X_1, Y_1), \ldots, (X_t, Y_t), \ldots$
- The goal is to estimate a model $F_t(X_{s \le t}; \theta)$ to predict Y_t for all times t.
- The model is allowed to depend upon the history of the data sequence X_t .

At a high level, a recurrent neural network is of the form

$$\hat{Y}_t = f_Y(X_t, S_{t-1}; \theta),
S_t = f_S(X_t, S_{t-1}; \theta),$$
(1)

where $X_t \in \mathbb{R}^d$ is the input data at time t, $\hat{Y}_t \in \mathbb{R}^K$ is the prediction for Y_t , $S_t \in \mathbb{R}^{d_S}$ is the "internal state" of the model, $f_Y : \mathbb{R}^d \times \mathbb{R}^{d_S} \times \Theta \to \mathbb{R}^K$, and $f_S : \mathbb{R}^d \times \mathbb{R}^{d_S} \times \Theta \to \mathbb{R}^{d_S}$.

 S_{t-1} is a **nonlinear representation** of the previous data $X_{t-1}, X_{t-2}, \dots, X_1$.

The objective function for estimating θ is

$$\mathcal{L}(\theta) = \sum_{t=1}^{T} \rho(Y_t, \hat{Y}_t), \tag{2}$$

Advantages of recurrent networks:

- A naive implementation $F_t(X_1, ..., X_t; \theta)$ is impractical since the input size changes at each time t.
- For long sequences, it is impractical to include such a long input vector due to computational constraints.
- The size of the model will drastically increase as $t \to \infty$, which could cause the model to overfit during training.

$$\hat{Y}_t = f_Y(X_t, S_{t-1}; \theta),
S_t = f_S(X_t, S_{t-1}; \theta),$$
(3)

- $f_S(\cdot; \theta)$ and $f_Y(\cdot; \theta)$ are neural networks.
- The parameters θ are **shared** across times t = 1, 2, ..., T.
- S_1, \ldots, S_T depend upon θ in a complicated way.
- The backpropagation rule must be carefully derived.

Sharing parameters over time:

- Similar to convolution networks!
- Parsimonious model specification
- Reduces overfitting

$$\mathcal{L}(\theta) = \sum_{t=1}^{T} \rho(Y_t, \hat{Y}_t). \tag{4}$$

- The computational cost of the backpropagation algorithm is $\mathcal{O}(T)$.
- For long sequences, the computational cost is prohibitively large.
- To address this, an *ad hoc* method called "Truncated Backpropagation through Time" is used in practice.

The objective function at the k-th iteration is:

$$\mathcal{L}^{k}(\theta^{(k)}) = \sum_{t=\tau k+1}^{(k+1)\tau} \rho(Y_t, \hat{Y}_t), \tag{5}$$

The truncation length is $\tau \ll T$.

$$\hat{Y}_{t} = f_{Y}(X_{t}, S_{t-1}; \theta^{(k)}), \quad \tau k + 1 \leq t \leq (k+1)\tau,
S_{t} = f_{S}(X_{t}, S_{t-1}; \theta^{(k)}), \quad \tau k + 1 \leq t \leq (k+1)\tau.$$
(6)

Notice that

$$S_{\tau k} = g\left(\theta^{(k-1)}\right). \tag{7}$$

The SGD update is

$$\theta^{(k+1)} = \theta^{(k)} - \alpha^{(k)} \nabla_{\theta^{(k)}} \mathcal{L}^k(\theta^{(k)}). \tag{8}$$

$$\mathcal{L}^{k}(\theta^{(k)}) = \sum_{t=\tau k+1}^{(k+1)\tau} \rho(Y_{t}, \hat{Y}_{t}),$$

$$\theta^{(k+1)} = \theta^{(k)} - \alpha^{(k)} \nabla_{\theta^{(k)}} \mathcal{L}^{k}(\theta^{(k)}). \tag{9}$$

Unlike traditional SGD, "Truncated Backpropagation through Time" is **biased**!

Nonetheless, it works well in practice.

The computational cost is $\mathcal{O}(\tau)$.

How do we implement mini-batch Truncated Backpropagation through Time?

- Truncated Backpropagation through Time does not fully optimize over the full sequence of the data.
- However, information does flow forward from time t to **all** future times t' > t via the internal state $S_{t'}$.
- Recurrent neural networks (RNN) can be viewed as very deep networks, where the number of layers is T (or τ).
- Vanishing gradient problem

PyTorch

 $model.hidden = (\ model.hidden[0].detach(),\ model.hidden[1].detach())$

"Z.Detach()" breaks the computational chain, i.e. it treats Z as a constant.

PyTorch, with its define-by-run framework, allows for breaking computational graph at any time during training.

Backpropagation.

$$\hat{Y}_{t} = f_{Y}(X_{t}, S_{t-1}; \theta),$$

$$S_{t} = f_{S}(X_{t}, S_{t-1}; \theta),$$

$$\mathcal{L}(\theta) = \sum_{t=1}^{T} \rho(Y_{t}, \hat{Y}_{t}).$$
(11)

The parameters θ are **shared** across times $t=1,2,\ldots,T$. In particular, S_1,\ldots,S_T depend upon θ in a complicated way.

Let us begin by considering a generic function $G: \Theta^T \to \mathbb{R}$. That is, G is a function T inputs, each taking values in Θ . Then,

$$G(\theta, \dots, \theta) = G(\theta_1, \dots, \theta_T),$$

$$\theta_t = g(\theta), \quad t = 1, 2, \dots, T,$$
(12)

where g is the identity function g(z) = z. Then, from chain rule, we have that

$$\nabla_{\theta} G(\theta, \dots, \theta) = \sum_{t=1}^{T} \nabla_{\theta_{t}} G(\theta_{1}, \dots, \theta_{T}) \frac{dg}{d\theta}(\theta)$$
$$= \sum_{t=1}^{T} \nabla_{\theta_{t}} G(\theta_{1}, \dots, \theta_{T}). \tag{13}$$

Therefore, it is equivalent to derive the backpropagation rule for

$$\hat{Y}_{t} = f_{Y}(X_{t}, S_{t-1}; \theta_{t}),$$

$$S_{t} = f_{S}(X_{t}, S_{t-1}; \theta_{t}),$$

$$\tilde{\mathcal{L}}(\theta_{1}, \dots, \theta_{T}) = \sum_{t=1}^{T} \rho(Y_{t}, \hat{Y}_{t}),$$

$$\theta_{t} = g(\theta).$$
(14)

This can be viewed as a multi-layer network where θ_t is the parameter vector for the t-th layer!

We therefore have that

$$\nabla_{\theta} \mathcal{L}(\theta) = \nabla_{\theta} \sum_{t=1}^{I} \rho \left(Y_{t}, f_{Y}(X_{t}, S_{t-1}; \theta_{t}) \right)$$

$$= \sum_{t=1}^{T} \nabla_{\theta_{t}} \tilde{\mathcal{L}}(\theta_{1}, \dots, \theta_{T}). \tag{15}$$

Let's begin by considering $\nabla_{\theta_{\tau}} \tilde{\mathcal{L}}(\theta_1, \dots, \theta_T)$. If $\tau = T$,

$$\nabla_{\theta_{\tau}} \tilde{\mathcal{L}}(\theta_{1}, \dots, \theta_{T}) = \nabla_{\theta_{\tau}} \sum_{t=1}^{r} \rho(Y_{t}, \hat{Y}_{t})$$

$$= \nabla_{\theta_{\tau}} \rho(Y_{T}, \hat{Y}_{T})$$

$$= \frac{\partial \rho}{\partial \hat{Y}} (Y_{T}, \hat{Y}_{T}) \frac{\partial f_{Y}}{\partial \theta} (X_{T}, S_{T-1}; \theta_{T}).$$

(16)

If $\tau < T$.

- $\nabla_{\theta_{\tau}} \tilde{\mathcal{L}}(\theta_1, \dots, \theta_T) = \nabla_{\theta_{\tau}} \sum_{t}^{t} \rho(Y_t, \hat{Y}_t)$

 $= \nabla_{\theta_{\tau}} \sum_{t}^{T} \rho(Y_{t}, \hat{Y}_{t})$

 $= \frac{\partial \rho}{\partial \hat{\mathbf{v}}}(Y_{\tau}, \hat{Y}_{\tau}) \frac{\partial f_{Y}}{\partial \theta}(X_{\tau}, S_{\tau-1}; \theta_{\tau}) + \nabla_{\theta_{\tau}} \sum_{t} \rho(Y_{t}, \hat{Y}_{t})$

 $= \frac{\partial \rho}{\partial \hat{\mathbf{y}}}(Y_{\tau}, \hat{Y}_{\tau}) \frac{\partial f_{Y}}{\partial \theta}(X_{\tau}, S_{\tau-1}; \theta_{\tau}) + \nabla_{S_{\tau}} \tilde{\mathcal{L}}(\theta_{1}, \dots, \theta_{T}) \frac{\partial S_{\tau}}{\partial \theta_{\tau}}.$

(17)

Combining results yields

$$abla_{ heta}\mathcal{L}(heta) \;\; = \;\; \sum_{ heta}^{ au}
abla_{ heta_{ au}} ilde{\mathcal{L}}(heta_1,\ldots, heta_{ au})$$

 $= \sum_{\tau=1}^{T} \frac{\partial \rho}{\partial \hat{Y}} (Y_{\tau}, \hat{Y}_{\tau}) \frac{\partial f_{Y}}{\partial \theta} (X_{\tau}, S_{\tau-1}; \theta_{\tau})$

(18)

 $+ \sum_{r=1}^{r-1} \nabla_{S_{\tau}} \tilde{\mathcal{L}}(\theta_1, \dots, \theta_T) \frac{\partial S_{\tau}}{\partial \theta_{\tau}}.$

Define

Recall that $\hat{Y}_t = f_{\mathcal{Y}}(X_t, S_{t-1}; \theta_t),$ $S_t = f_S(X_t, S_{t-1}; \theta_t).$

(19)

(20)

(21)

 $\delta^t = \nabla_{S} \tilde{\mathcal{L}}(\theta_1, \dots, \theta_T).$

 $\tilde{\mathcal{L}}(\theta_1,\ldots,\theta_T) = \sum_{t=0}^{T} \rho(Y_t,\hat{Y}_t),$

$$\theta_t \ = \ g(\theta).$$
 By chain rule, for $t=1,\ldots,T-1$,

 $\delta^t = \frac{\partial f_S}{\partial S}(X_{t+1}, S_t; \theta_{t+1}) \delta^{t+1}$ + $\frac{\partial f_Y}{\partial S}(X_{t+1}, S_t; \theta_{t+1}) \frac{\partial \rho}{\partial \hat{V}}(Y_{t+1}, \hat{Y}_{t+1}),$

and
$$\delta^T = 0$$
.

Therefore,

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{t=1}^{T} \frac{\partial \rho}{\partial \hat{Y}} (Y_{t}, \hat{Y}_{t}) \frac{\partial f_{Y}}{\partial \theta} (X_{t}, S_{t-1}; \theta_{t}) + \sum_{t=1}^{T-1} \delta^{t} \frac{\partial S_{t}}{\partial \theta_{t}},$$

$$+ \sum_{t=1}^{T-1} \delta^t \frac{\partial \mathcal{S}_t}{\partial \theta_t},$$
 where

$$+ \sum_{t=1}^{\infty} \delta^t \frac{\partial \mathcal{J}_t}{\partial \theta_t},$$

(22)

(23)

and $\delta^T = 0$

$$+\sum_{t=1}^{t} \delta^{t} \frac{\partial}{\partial \theta_{t}},$$

$$\delta^{t} = \frac{\partial f_{S}}{\partial S}(X_{t+1}, S_{t}; \theta_{t+1}) \delta^{t+1}$$

+ $\frac{\partial f_{\mathbf{Y}}}{\partial S}(X_{t+1}, S_t; \theta_{t+1}) \frac{\partial \rho}{\partial \hat{\mathbf{Y}}}(Y_{t+1}, \hat{Y}_{t+1}),$

$$\nabla_{\theta} \mathcal{L}(\theta) = \sum_{t=1}^{T} \frac{\partial \rho}{\partial \hat{Y}} (Y_{t}, \hat{Y}_{t}) \frac{\partial f_{Y}}{\partial \theta} (X_{t}, S_{t-1}; \theta_{t}) + \sum_{t=1}^{T-1} \delta^{t} \frac{\partial f_{S}}{\partial \theta} (X_{t}, S_{t-1}; \theta_{t}),$$
(24)

 $\frac{\partial S_t}{\partial \theta} = \frac{\partial f_S}{\partial \theta}(X_t, S_{t-1}; \theta_t).$

(25)

since

Therefore, the backpropagation algorithm is:

- For t = 1, 2, ..., T:
 - Calculate (\hat{Y}_t, S_t)
- $\delta^T = 0$ and set

$$G = \frac{\partial \rho}{\partial \hat{Y}} (Y_T, \hat{Y}_T) \frac{\partial f_Y}{\partial \theta} (X_T, S_{T-1}; \theta_T).$$
 (26)

- For t = T 1, T 2, ..., 1:
 - Calculate

$$\delta^{t} = \frac{\partial f_{S}}{\partial S}(X_{t+1}, S_{t}; \theta_{t+1})\delta^{t+1} + \frac{\partial f_{Y}}{\partial S}(X_{t+1}, S_{t}; \theta_{t+1})\frac{\partial \rho}{\partial \hat{Y}}(Y_{t+1}, \hat{Y}_{t+1}).$$
(27)

Calculate

$$G \to G + \frac{\partial \rho}{\partial \hat{\mathbf{v}}}(Y_t, \hat{Y}_t) \frac{\partial f_Y}{\partial \theta}(X_t, S_{t-1}; \theta_t) + \delta^t \frac{\partial f_S}{\partial \theta}(X_t, S_{t-1}; \theta_t).$$
 (28)

ullet Take a gradient descent step in the direction -G.

The computational cost of the backpropagation through time

(BPTT) algorithm is $\mathcal{O}(T)$.

Long short-term memory (LSTM) networks.

 $Source: \ https://colah.github.io/posts/2015-08-Understanding-LSTMs/$

• LSTM networks	
 Gated Recurrent Unit (GRU) networks 	

- Mini-batch version of Truncated Backpropagation through Time.
- Skip/shortcut connections
- Gradient clipping

$$\tilde{G} = \max\left(-c, \min(G, c)\right),$$
 (29)

where c > 0.

Residual Networks.

- Deep networks more challenging to train.
- Vanishing gradient problem
- Introduce skip/shortcut connections to facilitate the "flow of information" from lower layers to higher layers.

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- If dimensions match, no extra parameters involved in the residual connection.
- \bullet If dimensions do not match, can use a linear connection with parameter $W^{s,\ell}.$
- Lower computational complexity than VGG network: 3.6 versus 19.6 billion FLOPs.
- Capable of building very deep networks (e.g., 150 layers).

Figure 2. Residual learning: a building block.

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

top-1 err.	top-5 err.
-	8.43 [†]
-	7.89
24.4	7.1
21.59	5.71
21.99	5.81
21.84	5.71
21.53	5.60
20.74	5.25
19.87	4.60
19.38	4.49
	24.4 21.59 21.99 21.84 21.53 20.74 19.87

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

Homework 4.

- CIFAR100 (60,000 images and 100 classes)
- Train a Residual Network from scratch
- Fine-tune a pre-trained residual network on CIFAR100
- Residual network is pre-trained on ImageNet (14 million images)

- "Densely Connected Networks" by Huang et al. (2016)
- Concatenate hidden layers $\ell-\tau,\ldots,\ell-1$ as inputs to hidden layer $\ell.$
- Memory intensive
- Small number of channels

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Source: "Densely Connected Networks" by Huang et al. (2016)

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [31]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [33]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [41]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Source: "Densely Connected Networks" by Huang et al. (2016)