

Physics Lab Department of MPS

Course Name : Engineering Physics -1

Course Code : PHY 109 LAB

Section No :04

Group No :01

Experiment No : 01

Name of the Experiment: spring constant and effective mass of a spring.

Date of allocation : 20-10-2020

Date of submission: 23-10-2020

Submitted To : Dr. Gurudas Mandal

Student's ID : 2018-3-60-063

Student's Name: Apurba Roy

Physics Lab PHY-109 LAB Experiment No: 01

Name of the Experiment:

Determination of **spring constant** and **effective mass** of a given spiral spring.

Theory:

If a spring be clamped vertically at one end point, and loaded with a mass at the other end, then, the **time period of vibration** of the spring along a vertical line is given by

$$T = 2\pi \sqrt{\frac{m+m'}{k}} = 2\pi \sqrt{\frac{M}{k}} \dots (1)$$

Where

M(=m+m') is the **effective mass** of the **oscillating system**(load and spring), m = mass of loads suspended from the spring, m' = effective mass of the spring k = spring constant = F/x = mg/x

How the mass of the spring contributes to the **effective mass** of the vibrating system(load and spring) can be shown as follows.

Consider the **kinetic energy** of a spring and its load undergoing simple harmonic oscillation. At the instant under consideration let the **load**m be moving upwards with **velocity** v_o as shown in the figure.

At this same instant an element of dm of the total mass m_0 of the spring will also be moving up but with a **velocity** ν which is less than ν_0 .

It is evident that the ratio between v and v_o is just the ratio between y and y_o . (in figure -1)

Hence
$$\frac{v}{v_o} = \frac{y}{y_o}$$
,

So, $v = \frac{y \times v_o}{y_o}$. (2)

Kineticenergy of small **part of mass** dm of the **spring** will be $=\frac{1}{2}dm v^2$

Therefore**kinetic energy** of full part of the **springalone** will be = $\int_{0}^{m} \frac{1}{2} v^{2} dm$

From similarity we can write, $\frac{dm}{m_o} = \frac{dy}{y_o}$, (in figure -1) hence, $dm = \frac{m_o}{y_o} dy$(3)

Where m_0 = mass of the spring, dm = mass of an element of the spring y_0 = length of the spring, dy = length of an element of the spring

Thus the integral becomes (using equation 2 and 3)

$$\int_{0}^{m} \frac{1}{2} v^{2} dm = \int_{0}^{y_{o}} \frac{1}{2} \left(\frac{y \times v_{o}}{y_{o}} \right)^{2} \frac{m_{o}}{y_{o}} dy = \frac{m_{o} v_{o}^{2}}{2 y_{o}^{3}} \int_{0}^{y_{o}} y^{2} dy = \frac{m_{o} v_{o}^{2}}{2 y_{o}^{3}} \times \frac{y_{o}^{3}}{3} = \frac{1}{2} \left(\frac{m_{o}}{3} \right) v_{o}^{2}$$

Therefore.

Total **kinetic energy** (**K.E.**)of the system will be

= K.E. of the **load** (suspended mass) +K.E. of the **spring**

$$= \frac{1}{2}mv_o^2 + \frac{1}{2}\left(\frac{m_o}{3}\right)v_o^2 = \frac{1}{2}\left(m + \frac{m_o}{3}\right)v_o^2$$

Hence the effective mass of the vibrating system (load and spring)= $M = m + \frac{m_o}{3}$.

Comparing with equation (1) M(=m+m'); hence $m' = \frac{m_o}{3}$; where,

m' =effective mass of the spring, $m_o =$ mass of the spring.

So, the effective mass (m') of the spring is one third mass $(m_0/3)$ of the spring.

Spring Constant:

The **applied force** (weight of the load), F(=mg) on the spring is **proportional** to the **extension**x of the spring within the elastic limit. Therefore

$$F \propto X \text{ Or}, \quad F = k x \quad \text{or}, \quad mg = k x \quad \dots (4),$$
 where k is spring constant.

Apparatus:

(1)A spiral spring, (2) convenient masses with hanging arrangement, (3) top pan balance, (4) a rigid framework of heavymetal rods, (5) stop watch, (6) meterscale.

Data Sheet:

Table: Data for extensions and time periods for different loads

No. of obs.	Load m <i>Kg</i>	Reading of bottom end of the spring on the vertical scale l $meter$	Extension X meter	Total time for 20 oscillations	Time period $T = (t/20)$ sec	${f T}^2$ sec^2
1	0 (No load)	l_o =.48	$(l_o - l_o) = 0$	t/sec	sec	sec
2	0.05	l ₁ =.60	$(l_1 - l_o) = .12$	13.98	0.699	0.488
3	0.1	l ₂ =.72	$(l_2 - l_o) = .24$	20.58	1.029	1.05
4	0.15	l ₃ =.84	$(l_3 - l_o) = .36$	24.30	1.21	1.46
5	0.2	l ₄ =.97	$(l_4 - l_o) = .49$	28.70	1.435	2.059
6	0.25	<i>l</i> ₅ =1.09	$(l_5 - l_o) = .61$	32.32	1.616	2.611
7	0.3	l ₆ =1.21	$(l_6 - l_o) = .73$	35.32	1.766	3.11

Calculation:

alculation:
$$Spring\ Constant, K = \frac{mg}{x} = \frac{g}{\frac{x}{m}} = \frac{9.8 \frac{m}{s^2}}{SLOPE\ of\ Extension\ vs\ Load\ graph} = \frac{9.8}{2.44} = 4.016N/m$$

Graphs:

1. Extension (x) vs Load (m) Graph:

Spring constant, K = 4.016N/m

Discussions:

- 1. A large number of oscillations should be counted for determining the period of oscillation.
- 2. The support from which the spring is suspended should be fixed.

Conclusion:

I think if we could do this same experiment in the lab, the measure value would change a little bit and most importantly we could learn how to use these elements.