

$$I(J^P) = \frac{1}{2}(0^-)$$

A REVIEW GOES HERE - Check our WWW List of Reviews

K[±] MASS

VALUE (MeV)	DOCUMENT ID		TECN	CHG	COMMENT
493.677±0.016 OUR FIT	Error includes scale	facto	r of 2.8.		
493.677±0.013 OUR AVER	AGE Error include	es scal	e factor o	f 2.4.	See the ideogram
below.					
493.696 ± 0.007	¹ DENISOV	91	CNTR	_	Kaonic atoms
493.636 ± 0.011	² GALL	88	CNTR	_	Kaonic atoms
493.640 ± 0.054	LUM	81	CNTR	_	Kaonic atoms
493.670 ± 0.029	BARKOV	79	EMUL	\pm	$e^+e^- ightarrow K^+K^-$
493.657 ± 0.020	² CHENG	75	CNTR	_	Kaonic atoms
493.691 ± 0.040	BACKENSTO	73	CNTR	_	Kaonic atoms
• • • We do not use the fo	llowing data for ave	erages,	fits, limit	s, etc	. • • •
$493.631\!\pm\!0.007$	GALL	88	CNTR	_	K^- Pb (9 \rightarrow 8)
493.675 ± 0.026	GALL	88	CNTR	_	K^- Pb $(11 \rightarrow 10)$
493.709 ± 0.073	GALL	88	CNTR	_	$K^- W (9 \rightarrow 8)$
493.806 ± 0.095	GALL	88	CNTR	_	$K^-W(11{ o}10)$
$493.640 \pm 0.022 \pm 0.008$	³ CHENG	75	CNTR	_	K [−] Pb (9→ 8)
$493.658 \!\pm\! 0.019 \!\pm\! 0.012$	³ CHENG	75	CNTR	_	K^- Pb $(10 \rightarrow 9)$
$493.638 \pm 0.035 \pm 0.016$	³ CHENG	75	CNTR	_	K^- Pb $(11 \rightarrow 10)$
$493.753\!\pm\!0.042\!\pm\!0.021$	³ CHENG	75	CNTR	_	K^- Pb (12 $ ightarrow$ 11)
$493.742 \pm 0.081 \pm 0.027$	³ CHENG	75	CNTR	_	K^- Pb (13 \rightarrow 12)
WEIGHTED AVEDA	ACE.				

WEIGHTED AVERAGE 493.677±0.013 (Error scaled by 2.4)

HTTP://PDG.LBL.GOV

Page 1

$$m_{K^+} - m_{K^-}$$

Test of CPT.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG
-0.032 ± 0.090	1.5M	$^{ m 1}$ FORD	72	ASPK	\pm
1 FORD 72 uses m_{π^+}	$_{+}$ $ m_{\pi^{-}}$	$_{\mathrm{c}}=+28\pm70\;\mathrm{keV}.$			

K[±] MEAN LIFE

$VALUE (10^{-8} \text{ s})$	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1.2380 ± 0.0020 C	UR FIT E	ror includes scale t	factor	of 1.8.	
1.2379 ± 0.0021 C	UR AVERA	GE Error includes	scale	factor of 1.9.	See the ideogram
below.					
1.2347 ± 0.0030	15M	¹ AMBROSINO	80	KLOE \pm	$\phi \rightarrow K^+K^-$
$1.2451\!\pm\!0.0030$	250k	KOPTEV	95	CNTR	K at rest, U target
1.2368 ± 0.0041	150k	KOPTEV	95	CNTR	K at rest, Cu target
1.2380 ± 0.0016	3M	OTT	71	CNTR +	K at rest
1.2272 ± 0.0036		LOBKOWICZ	69	CNTR +	K in flight
1.2443 ± 0.0038		FITCH	65 B	CNTR +	K at rest
ullet $ullet$ We do not	use the follo	wing data for avera	ages,	fits, limits, etc	2. ● ● ●
1.2415 ± 0.0024	400k	² KOPTEV	95	CNTR	K at rest
$1.221\ \pm0.011$		FORD	67	CNTR \pm	
1.231 ± 0.011		BOYARSKI	62	CNTR +	

WEIGHTED AVERAGE 1.2379±0.0021 (Error scaled by 1.9)

HTTP://PDG.LBL.GOV

Page 2

 $^{^{}m 1}$ Error increased from 0.0059 based on the error analysis in IVANOV 92.

² This value is the authors' combination of all of the separate transitions listed for this paper.

 $^{^3}$ The CHENG 75 values for separate transitions were calculated from their Table 7 transition energies. The first error includes a 20% systematic error in the noncircular contaminant shift. The second error is due to a ± 5 eV uncertainty in the theoretical transition energies.

$(\tau_{K^+} - \tau_{K^-}) / \tau_{\text{average}}$

This quantity is a measure of CPT invariance in weak interactions.

DOCUMENT ID		TECN
Error includes sca	le fact	or of 1.2.
AMBROSINO	80	KLOE
LOBKOWICZ	69	CNTR
FORD	67	CNTR
	Error includes sca AMBROSINO LOBKOWICZ	Error includes scale fact AMBROSINO 08 LOBKOWICZ 69

A REVIEW GOES HERE - Check our WWW List of Reviews

K+ DECAY MODES

 K^- modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
	Leptonic and s	semileptonic modes	
	$e^+ u_e$	$(1.582\pm0.007) \times$	10^{-5}
	$\mu^+ u_{\mu}$	(63.56 ± 0.11) %	S=1.2
Γ_3	$\pi^0 e^{\dot{+}} \nu_e$	$(5.07 \pm 0.04)\%$	S=2.1
	Called K_{e3}^+ .		
Γ_4	$\pi^0 \mu^+ u_\mu$	$(3.352\pm0.033)\%$	S=1.9
	Called K_{u3}^+ .		
Ге	$\pi^{0}\pi^{0}e^{+\nu_{e}}$	(2.55 ±0.04)×	10^{-5} S=1.1
Γ ₆	$\pi^+\pi^-e^+\nu_e$	$(4.247\pm0.024) \times$	
Γ ₇	$\pi^+\pi^-\mu^+\nu_\mu$	$(1.4 \pm 0.9) \times$	
Γ ₈	$\pi^{0}\pi^{0}\pi^{0}e^{+\nu_{e}}$	< 3.5 ×	
	Hadro	onic modes	
Γ ₉	$\pi^{+}\pi^{0}$	(20.67 ± 0.08) %	S=1.2
Γ_{10}	$\pi + \pi^0 \pi^0$	$(1.760\pm0.023)\%$	6 S=1.1
Γ_{11}	$\pi^+\pi^+\pi^-$	$(5.583\pm0.024)\%$	ó
	Leptonic and semilep	tonic modes with photon	S
Γ_{12}	$\mu^+ \nu_\mu \gamma$	[a,b] (6.2 \pm 0.8) \times	10^{-3}
		[c,d] (1.33 ± 0.22) ×	10^{-5}
		[c,d] < 2.7 ×	
	$\mu^+ \nu_\mu^{\mu} \gamma (SD^- + SD^- INT)$		

¹ Result obtained by averaging the decay length and decay time analyses taking correlations into account.

² KOPTEV 95 report this weighted average of their U-target and Cu-target results, where they have weighted by $1/\sigma$ rather than $1/\sigma^2$.

Hadronic modes with photons or $\ell \overline{\ell}$ pairs

	_	-		•	
Γ_{21}	$\pi^+\pi^0\gamma(INT)$	(-	4.2	± 0.9) $\times 10^{-6}$	
Γ_{22}	$\pi^+\pi^0\gamma(DE)$	[a,e] (6.0	± 0.4) $\times 10^{-6}$	
Γ_{23}	$\pi^+\pi^0\pi^0\gamma$	[a,b] (7.6	$^{+6.0}_{-3.0}$) \times 10 ⁻⁶	
Γ_{24}	$\pi^+\pi^+\pi^-\gamma$	[a,b] (1.04	$\pm 0.31\) \times 10^{-4}$	
	$\pi^+ \gamma \gamma$	[a] (1.01	± 0.06) $\times 10^{-6}$	
Γ_{26}	π^+ 3 γ	[a] <	1.0	$\times 10^{-4}$	CL=90%
Γ_{27}	$\pi^+e^+e^-\gamma$	(1.19	$\pm 0.13\) \times 10^{-8}$	

Leptonic modes with $\ell \overline{\ell}$ pairs

Γ ₂₈	$e^+ u_e u_{\overline{ u}}$	<	6	$\times10^{-5}$	CL=90%
Γ ₂₉	$\mu^+ u_{\mu} u \overline{ u}$	<	2.4	$\times 10^{-6}$	CL=90%
Γ ₃₀	$e^{+} \stackrel{\cdot}{\nu_{e}} e^{+} e^{-}$	(2.48 ± 0.20	$) \times 10^{-8}$	
Γ ₃₁	$\mu^{+} \nu_{\mu} e^{+} e^{-}$	(7.06 ± 0.31	$) \times 10^{-8}$	
Γ_{32}	$e^+ \stackrel{\cdot}{ u_e} \mu^+ \mu^-$	(1.7 ± 0.5	$) \times 10^{-8}$	
	$\mu^+ \nu_\mu \mu^+ \mu^-$	<	4.1	$\times10^{-7}$	CL=90%

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

		-			(-)	_
Γ_{34}	$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%
Γ ₃₅	$\pi^+\pi^+\mu^-\overline{\nu}_{\mu}$	SQ	<	3.0	\times 10 ⁻⁶	CL=95%
Γ ₃₆	$\pi^{+} e^{+} e^{-}$	<i>S</i> 1	(3.00	$\pm 0.09\) \times 10^{-7}$	
Γ ₃₇	$\pi^{+} \mu^{+} \mu^{-}$	<i>S</i> 1	(9.4	± 0.6) $\times 10^{-8}$	S=2.6
Γ ₃₈	$\pi^+ \nu \overline{\nu}$	<i>S</i> 1	(1.7	± 1.1) × 10 ⁻¹⁰	
Γ ₃₉	$\pi^+\pi^0 u\overline{ u}$	<i>S</i> 1	<	4.3	$\times10^{-5}$	CL=90%
Γ_{40}	$\mu^- u e^+ e^+$	LF	<	2.1	\times 10 ⁻⁸	CL=90%
Γ_{41}	$\mu^+ u_e$	LF	[f]	4	\times 10 ⁻³	CL=90%
Γ_{42}	$\pi^+\mu^+e^-$	LF	<	1.3	imes 10 ⁻¹¹	CL=90%
Γ_{43}	$\pi^+\mu^-e^+$	LF	<	5.2	$\times10^{-10}$	CL=90%
Γ_{44}	$\pi^-\mu^+e^+$	L	<	5.0	$\times10^{-10}$	CL=90%
Γ_{45}	$\pi^{-} e^{+} e^{+}$	L	<	6.4	$\times10^{-10}$	CL=90%
Γ_{46}	$\pi^{-}\mu^{+}\mu^{+}$	L	[f]	1.1	\times 10 ⁻⁹	CL=90%
Γ_{47}	$\mu^+ \overline{\nu}_e$	L	[f]	3.3	\times 10 ⁻³	CL=90%
Γ ₄₈	$\pi^0 e^+ \overline{ u}_e$	L	<	3	\times 10 ⁻³	CL=90%
Γ_{49}	$\pi^+\gamma$		[g]	2.3	$ imes 10^{-9}$	CL=90%

- [a] See the Particle Listings below for the energy limits used in this measurement.
- [b] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [c] Structure-dependent part.
- [d] See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm Particle Listings for definitions and details.
- [e] Direct-emission branching fraction.
- [f] Derived from an analysis of neutrino-oscillation experiments.
- [g] Violates angular-momentum conservation.

CONSTRAINED FIT INFORMATION

An overall fit to the mean life, a decay rate, and 15 branching ratios uses 35 measurements and one constraint to determine 8 parameters. The overall fit has a $\chi^2=53.4$ for 28 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (10^8 s^{-1})	Scale factor
Γ ₂	$\mu^+ \nu_{\mu}$	$0.5134\ \pm0.0012$	1.5
Γ_3	$\pi^0e^+ u_e$	$0.0410\ \pm0.0004$	2.1
	Called K_{e3}^+ .		
Γ_4	$\pi^0 \mu^+ u_\mu$	0.02707 ± 0.00027	1.9
	Called $K_{\mu 3}^+$.		
Γ_5	$\pi^{0}\pi^{0}e^{+}\nu_{e}$ $\pi^{+}\pi^{0}$	$(2.059 \pm 0.029) \times 10^{-5}$	1.1
Γ_9	$\pi^+\pi^0$	0.1670 ± 0.0007	1.3
Γ_{10}	$\pi^{+}\pi^{0}\pi^{0}$	0.01421 ± 0.00018	1.1
Γ ₁₁	$\pi^+\pi^+\pi^-$	0.04510 ± 0.00019	

K[±] DECAY RATES

$\Gamma(\mu^+ u_\mu)$					Γ_2
$VALUE (10^6 \text{ s}^{-1})$		DOCUMENT ID		TECN CHG	
51.34±0.12 OUR FIT	Error inclu	des scale factor c	of 1.5.	· ——	
• • • We do not use the	following	data for averages	s, fits,	limits, etc. • • •	
51.2 ±0.8		FORD	67	CNTR \pm	
$\Gamma(\pi^+\pi^+\pi^-)$					Γ ₁₁
$VALUE (10^6 \text{ s}^{-1})$	EVTS	DOCUMENT ID		TECN CHG	
4.510±0.019 OUR FIT		·		· 	
4.511 ± 0.024		¹ FORD	70	ASPK	
• • • We do not use the	following	data for averages	s, fits,	limits, etc. • • •	
$4.529 \pm 0.032 \\ 4.496 \pm 0.030$	3.2M	¹ FORD ¹ FORD	70 67	ASPK CNTR ±	
$^{ m 1}$ First FORD 70 value	is second	FORD 70 combin	ned w	ith FORD 67.	

K⁺ BRANCHING RATIOS

——— Leptonic and semileptonic modes ———

 $\Gamma(e^+
u_e)/\Gamma(\mu^+
u_\mu)$

See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings.

 Γ_1/Γ_2

Created: 5/30/2017 17:22

VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	CHG
2.488 ± 0.009 OUR AV	ERAGE				
$2.488 \pm 0.007 \pm 0.007$	150k	¹ LAZZERONI	13	NA62	\pm
$2.493 \pm 0.025 \pm 0.019$	13.8K	² AMBROSINO	09E	KLOE	\pm
• • • We do not use t	he followin	g data for averages	, fits,	limits, e	etc. • • •
$2.487 \pm 0.011 \pm 0.007$	60k	³ LAZZERONI	11	NA62	+
2.51 ± 0.15	404	HEINTZE	76	SPEC	+
2.37 ± 0.17	534	HEARD	75 B	SPEC	+
2.42 + 0.42	112	CLARK	72	OSPK	+

¹LAZZERONI 13 uses full data sample collected from 2007 to 2008. This ratio is defined to be fully inclusive, including internal-bremsstrahlung.

 $\Gamma(\mu^+
u_\mu)/\Gamma_{\mathsf{total}}$ Γ_2/Γ

See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings.

 VALUE (units 10^{-2})
 EVTS
 DOCUMENT ID
 TECN
 CHG
 COMMENT

 63.56 \pm 0.11 OUR FIT Error includes scale factor of 1.2.

 63.60 \pm 0.16 OUR AVERAGE
 $63.66 \pm 0.09 \pm 0.15$ 865k
 1 AMBROSINO 06A KLOE +

 63.24 ± 0.44 62k
 CHIANG
 72 OSPK +
 1.84 GeV/c K+

Page 6

HTTP://PDG.LBL.GOV

² The ratio is defined to include internal-bremsstrahlung, ignoring direct-emission contributions. AMBROSINO 09E determined the ratio from the measurement of $\Gamma(K \to e \nu(\gamma), E_{\gamma} < 10 \text{ MeV}) \ / \ \Gamma(K \to \mu \nu(\gamma))$. 89.8% of $K \to e \nu(\gamma)$ events had $E_{\gamma} < 10 \text{ MeV}$.

³This ratio is defined to be fully inclusive, including internal-bremsstrahlung.

¹ Fully inclusive. Used tagged kaons from ϕ decays.

 $\Gamma(\pi^0 e^+ \nu_e)/\Gamma_{\text{total}}$ VALUE (units 10⁻²)

EVTS

DOCUMENT ID

TECN

CHG

COMMENT

TO STATE THE PROPERTY OF THE PRO

4.94 ± 0.05 OUR AVERAGE

 $4.965\pm0.038\pm0.037$ AMBROSINO 08A KLOE \pm

4.86 ± 0.10 3516 CHIANG 72 OSPK + 1.84 GeV/c K⁺

• • We do not use the following data for averages, fits, limits, etc.

 4.7 ± 0.3 429 SHAKLEE 64 HLBC + 5.0 ± 0.5 ROE 61 HLBC +

 $\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\mu^+ \nu_\mu) \qquad \qquad \Gamma_3 / \Gamma_2$

<u>VALUE</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CHG</u> **0.0798±0.0008 OUR FIT** Error includes scale factor of 1.9.

• • We do not use the following data for averages, fits, limits, etc.

 0.069 ± 0.006 350 **ZELLER** ASPK + 0.0775 ± 0.0033 960 BOTTERILL 68C ASPK + **GARLAND** 0.069 ± 0.006 561 OSPK + 68 ¹ AUERBACH 295 67 OSPK + 0.0791 ± 0.0054

$\Gamma(\pi^0 e^+ \nu_e) / \left[\Gamma(\mu^+ \nu_\mu) + \Gamma(\pi^+ \pi^0) \right] \qquad \qquad \Gamma_3 / (\Gamma_2 + \Gamma_9)$

/ALUE (units 10^{-2}) EVTS DOCUMENT ID TECN CHG

6.02±0.06 OUR FIT Error includes scale factor of 2.1.

6.02 ± 0.15 OUR AVERAGE

 6.16 ± 0.22 ~5110 ESCHSTRUTH 68 OSPK + 5.89 ± 0.21 1679 CESTER 66 OSPK +

• • • We do not use the following data for averages, fits, limits, etc. • • •

1 WEISSENBE... 76 SPEC +

$$\frac{\Gamma(\pi^0 e^+ \nu_e)}{\Gamma(\pi^0 \mu^+ \nu_\mu)} + \frac{\Gamma(\pi^+ \pi^0)}{\Gamma(\pi^+ \pi^0)} + \frac{\Gamma(\pi^+ \pi^0 \pi^0)}{\Gamma(\pi^+ \pi^0 \pi^0)} = \frac{\Gamma_3}{\Gamma_4 + \Gamma_9 + \Gamma_{10}}$$

0.1967±0.0016 OUR FIT Error includes scale factor of 2.5.

0.1962±0.0008±0.0035 71k SHER 03 B865 -

¹ Depends on K^+ lifetime τ . AMBROSINO 08A uses PDG 06 value of $\tau=(1.2385\pm0.0024)\times10^{-8}$ sec. The correlation between K^+_{e3} and $K^+_{\mu3}$ branching fraction measurements is 62.7%.

 $^{^1}$ AUERBACH 67 changed from 0.0797 \pm 0.0054. See comment with ratio $\Gamma(\pi^0\,\mu^+\,\nu_\mu)/\Gamma(\mu^+\,\nu_\mu)$. The value 0.0785 \pm 0.0025 given in AUERBACH 67 is an average of AUERBACH 67 $\Gamma(\pi^0\,e^+\,\nu_e)/\Gamma(\mu^+\,\nu_\mu)$ and CESTER 66 $\Gamma(\pi^0\,e^+\,\nu_e)/\left[\Gamma(\mu^+\,\nu_\mu) + \Gamma(\pi^+\,\pi^0)\right]$.

¹ Value calculated from WEISSENBERG 76 $(\pi^0 e \nu)$, $(\mu \nu)$, and $(\pi \pi^0)$ values to eliminate dependence on our 1974 $(\pi 2\pi^0)$ and $(\pi \pi^+ \pi^-)$ fractions.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\pi^+ \pi^0)$ <u>TECN CHG COMMENT</u> 0.2454 ± 0.0023 OUR FIT Error includes scale factor of 2.6. **0.2467 \pm 0.0011 OUR AVERAGE** Error includes scale factor of 1.1. **UVAROV** $0.2423 \pm 0.0015 \pm 0.0037$ 31k 14 ISTR ISTRA+ $0.2470 \pm 0.0009 \pm 0.0004$ 87k **BATLEY** 07A NA48 • • We do not use the following data for averages, fits, limits, etc. • ¹ LUCAS 73B HBC 0.221 ± 0.012 Dalitz pairs only ¹ LUCAS 73B gives $N(K_{e3}) = 786 \pm 3.1\%$, $N(2\pi) = 3564 \pm 3.1\%$. We use these values to obtain quoted result. $\Gamma(\pi^0 e^+ \nu_e) / \Gamma(\pi^+ \pi^+ \pi^-)$ Γ_3/Γ_{11} **0.908 ± 0.009 OUR FIT** Error includes scale factor of 1.6. • We do not use the following data for averages, fits, limits, etc. 0.867 ± 0.027 2768 BARMIN XEBC + 0.856 ± 0.040 2827 **BRAUN** 75 HLBC ¹ HAIDT 0.850 ± 0.019 4385 **HLBC** ¹ EICHTEN 0.846 ± 0.021 4385 0.94 ± 0.09 854 **BELLOTTI** 67B HLBC 0.90 ± 0.06 230 **BORREANI HBC** $^{
m 1}$ HAIDT 71 is a reanalysis of EICHTEN 68. Not included in average because of large discrepancy in $\Gamma(\pi^0 \mu^+ \nu)/\Gamma(\pi^0 e^+ \nu)$ with more precise results. $\Gamma(\pi^0\mu^+\nu_\mu)/\Gamma_{\rm total}$ Γ_4/Γ VALUE (units 10^{-2}) **EVTS** TECN CHG Error includes scale factor of 1.9. 3.352±0.033 OUR FIT 3.24 ± 0.04 OUR AVERAGE 1 AMBROSINO 08A KLOE \pm $3.233 \pm 0.029 \pm 0.026$ **CHIANG** OSPK + 1.84 GeV/ $c K^{+}$ 3.33 ± 0.16 72 • • We do not use the following data for averages, fits, limits, etc. • • ² TAYLOR 2.8 ± 0.4 EMUL + 1 Depends on K^{+} lifetime au. AMBROSINO 08A uses PDG 06 value of au= (1.2385 \pm $(0.0024) \times 10^{-8}$ sec. The correlation between K_{e3}^+ and K_{u3}^+ branching fraction mea-

$\Gamma(\pi^0 \mu^+ \nu_\mu)/\Gamma(\mu^+ \nu_\mu)$

 Γ_4/Γ_2

Created: 5/30/2017 17:22

0.0527\pm0.0006 OUR FIT Error includes scale factor of 1.8.

• • • We do not use the following data for averages, fits, limits, etc. • • •

 0.054 ± 0.009 240 ¹ GARLAND 424 0.0480 ± 0.0037 ² AUERBACH 0.0486 ± 0.0040 307 OSPK

surements is 62.7%.

² Earlier experiments not averaged.

 $^{^{1}}$ GARLAND 68 changed from 0.055 \pm 0.004 in agreement with μ -spectrum calculation of GAILLARD 70 appendix B. L.G.Pondrom, (private communication 73).

 $^{^2}$ AUERBACH 67 changed from 0.0602 \pm 0.0046 by erratum which brings the μ -spectrum calculation into agreement with GAILLARD 70 appendix B.

$\Gamma(\pi^0\mu^+ u_\mu)/\Gamma(\pi^0e^-$	$^+ u_e)$					Γ_4/Γ_3	
VALUE	<u>EVTS</u>	DOCUMENT ID			<u>CHG</u>	COMMENT	
0.6608±0.0029 OUR FIT Error includes scale factor of 1.1. 0.6618±0.0027 OUR AVERAGE							
$0.663 \pm 0.003 \pm 0.001$	77k	BATLEY	07۸	NA48	±		
$0.671 \pm 0.007 \pm 0.008$	24k	HORIE	01A	SPEC			
$0.670 \pm 0.007 \pm 0.000$	ZTK	¹ HEINTZE	77	SPEC	+		
0.667 ± 0.017	5601	BOTTERILL	68B		+		
• • • We use the follow		_					
0.6511 ± 0.0064	Ü	² AMBROSINO					
• • • We do not use th	e followin			_		• •	
0.608 ± 0.014	1585	³ BRAUN	75	HLBC	+		
0.705 ± 0.063	554	⁴ LUCAS		HBC	_	Dalitz pairs only	
0.698 ± 0.025	3480	⁵ CHIANG	72	OSPK	+	1.84 GeV/c K^{+}	
0.596 ± 0.025	3400	6 HAIDT	71	HLBC	+	1.0+ GCV/C /	
0.604 ± 0.022	1398	⁶ EICHTEN	68	HLBC	'		
0.703 ± 0.056	1509	CALLAHAN	66B	HLBC			
_		_		_			
¹ HEINTZE 77 value					· //+		
² Not used in the fit.						and K $\mu3$ branching	
fraction measurements 3 BRAUN 75 value is	nts of AM	BROSINO 08A.	.05 11 6	univers	ality		
⁴ LUCAS 73B gives N	$(K_{a}) =$	Figure 11. Assuming $\pm 7.6\%$ N/ K	μ -es μ -e	786 ± 3	anty. R 1%	We divide	
⁵ CHIANG 72 $\Gamma(\pi^0)$, ,		itistica	illy inde	pendei	nt of CHIANG 72	
$\Gamma(\pi^0 \mu^+ u_\mu)/\Gamma_{total}$	and $\Gamma(\pi^0)$	$(\Gamma_{ m total}^{ m P})/\Gamma_{ m total}^{ m T}$					
⁶ HAIDT 71 is a rear	nalysis of	EICHTEN 68. No	ot incl	luded in	averag	ge because of large	
discrepancy with mo	ore precise	results.					
	two mod	total es for experiments f separating them			em in >	$(\Gamma_4+\Gamma_9)/\Gamma$ cenon bubble cham-	
VALUE (units 10^{-2})	EVTS	DOCUMENT ID	tileie.		CHC		
24.02±0.08 OUR FIT			of 1.2	TECN	CHG		
• • • We do not use th					etc. •	• •	
	886	SHAKLEE					
25.4 ± 0.9 23.4 ± 1.1	000	ROE	64 61	HLBC HLBC	+		
23.4 ±1.1		NOL	01	HLBC	+		
$\Gamma(\pi^0\mu^+\nu_\mu)/\Gamma(\pi^+\pi^-)$		DOCUMENT ID		TECN	CUC	Γ_4/Γ_9	
VALUE 0.1637±0.0006±0.0003				NA48		_	
0.103/ ±0.0000 ±0.000	5 //K	BATLEY	UTA	NA48	±		
$\Gamma(\pi^0\mu^+\nu_\mu)/\Gamma(\pi^+\pi^0)$		DOCUMENT ID		TECN	CUC	Γ_4/Γ_{11}	
<u>VALUE</u> 0.600±0.007 OUR FIT	Error in	DOCUMENT ID	of 1 6	1 <u>1 E C IV</u>	CHG	COMMENT	
• • • We do not use th					etc •	• •	
		¹ HAIDT					
0.503 ± 0.019	1505		71	HLBC	+		
0.510 ± 0.017	1505	¹ EICHTEN ² BISI	68 650	HLBC	+	LIDC + LIL DC	
0.63 ± 0.07	2845			BC	+	HBC+HLBC	
1 HAIDT 71 is a rear discrepancy in $\Gamma(\pi^{0}$ 2 Error enlarged for ba	$\mu^+ \nu)/\Gamma(\tau$	$\pi^0e^+ u$) with mor	e prec	ise resul	avera ts.	ge because of large	

HTTP://PDG.LBL.GOV

$\Gamma(\pi^0\pi^0e^+ u_e)/\Gamma_{ m to}$	tal				Γ ₅ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	•
2.55±0.04 OUR FIT					<u> </u>
2.54±0.89	10	BARMIN	88 B	HLBC	+
$\Gamma(\pi^0\pi^0e^+\nu_e)/\Gamma(\tau_e)$	$\pi^{+}\pi^{0}\pi^{0}$				Γ_5/Γ_{10}
VALUE (units 10^{-3})	,	DOCUMENT ID		TECN	CHG
1.449±0.008 OUR FI 1.449±0.006±0.006	Т			NA48	±
1 Data collected in 6.079 \pm 0.012 \pm 0. uncertainty.	2003-2004. 027 \pm 0.046 \times	This leads to the where the last error	e sca or is d	lar form lue to th	factor (1+ δ_{EM}) ${\it f_s} =$ e normalizing decay mode
$\Gamma(\pi^0\pi^0e^+ u_e)/\Gamma(\tau)$	$ au^0 e^+ u_e)$				Γ_5/Γ_3
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	<u>CHG</u>
VALUE (units 10 ⁻⁴) 5.03±0.09 OUR FIT	Error includ	es scale factor of	1.2.		
4.1 $^{+1.0}_{-0.7}$ OUR AVE	RAGE				
$\begin{array}{cc} 4.2 & +1.0 \\ -0.9 \end{array}$	25	BOLOTOV	86 B	CALO	_
$3.8 \begin{array}{l} +5.0 \\ -1.2 \end{array}$	2	LJUNG	73	HLBC	+
$\Gamma(\pi^+\pi^-e^+\nu_e)/\Gamma($	$(\pi^{+}\pi^{+}\pi^{-})$	1			Γ_6/Γ_{11}
VALUE (units 10 ⁻⁴) 7.606 ± 0.029 OUR AV		DOCUMENT ID		TECN	<u>CHG</u>
$7.615\pm0.008\pm0.028$	1.1M	¹ BATLEY	12	NA48	±
$7.35 \pm 0.01 \pm 0.19$	388k	² PISLAK	01	B865	
7.21 ± 0.32	30k	ROSSELET	77		+
• • • We do not use	the following	data for averages	s, fits,	limits, e	etc. • • •
7.36 ± 0.68		BOURQUIN		ASPK	
7.0 ± 0.9 5.83 ± 0.63		SCHWEINB ELY			
				HLBC	
$\pi^+\pi^-e^\pm\nu\gamma$ deca BATLEY 12 obtain error is dominated ² PISLAK 01 reports PDG 00 value $\Gamma(\tau)$ value and unfold in additional details of	ays. Using PD as B($\pi^+\pi^-e^+$ by the error σ $\Gamma(\pi^+\pi^-e^+$ $\sigma^+\pi^+\pi^-)/\Gamma$ ts error from on the branch	OG 12 value for $\Gamma(e\nu)=(4.257\pm0)$ on the normalization $\Gamma(e\nu)=(4.257\pm0)$ $\Gamma(e\nu)=(4.259\pm0)$ the systematic ening ratio measur	$\pi^+\pi^-$ 0.004 tion n 109 \pm 0.05) rror.	π^+)/I \pm 0.035 node. π^+ 0.008 \pm \times 10 $^{-2}$ PISLAK t and given	t is inclusive of $K^{\pm} \rightarrow (5.59 \pm 0.04) \times 10^{-2}$. $\times 10^{-5}$ where the syst. $\times 10^{-5} \times 10^{-5}$ using the . We divide by the PDG 03 and PISLAK 10A give we improved errors on the -0.0410 ± 0.0027 .
$\Gamma(\pi^+\pi^-\mu^+ u_\mu)/\Gamma$		•		J	Γ ₇ /Γ
	<u>EVTS</u>	DOCUMENT ID		TECN	-,
• • • We do not use					
$0.77^{+0.54}_{-0.50}$	1	CLINE	65	FBC	+

```
\Gamma(\pi^+\pi^-\mu^+\nu_\mu)/\Gamma(\pi^+\pi^+\pi^-)
                                                                                             \Gamma_7/\Gamma_{11}
VALUE (units 10^{-4})
  2.57 \pm 1.55
                                          BISI
                                                            67
                                                                  DBC
• • We do not use the following data for averages, fits, limits, etc. • •
                                          GREINER
                                                                  EMUL +
\Gamma(\pi^0\pi^0\pi^0e^+\nu_e)/\Gamma_{\text{total}}
                                                                                                \Gamma_8/\Gamma
VALUE (units 10^{-6})
                     CL%
                                          DOCUMENT ID
                                                                  TECN
                                0
                                                                  SPEC
 <3.5
                     90
                                          BOLOTOV
                                                            88
• • We do not use the following data for averages, fits, limits, etc. •
                     90
                                0
                                          BARMIN
                                                                  XEBC +
                                        Hadronic modes
\Gamma(\pi^+\pi^0)/\Gamma_{\rm total}
                                                                                                \Gamma_9/\Gamma
VALUE (units 10^{-2})
                             EVTS
                                          DOCUMENT ID
                                                                  TECN CHG COMMENT
20.67 ± 0.08 OUR FIT
                            Error includes scale factor of 1.2.
20.70±0.16 OUR AVERAGE
                                   Error includes scale factor of 1.8.
                                        <sup>1</sup> AMBROSINO 08E KLOE +
                                                                                   \phi \rightarrow K^+K^-
20.65 \pm 0.05 \pm 0.08
                            1.4M
                                                            72
                                                                  OSPK +
                                                                                   1.84 GeV/c K^{+}
21.18 \pm 0.28
                              16k
                                          CHIANG
• • • We do not use the following data for averages, fits, limits, etc. •
                                          CALLAHAN
                                                                  HLBC
                                                                                   See \Gamma_9/\Gamma_{11}
  <sup>1</sup> Fully inclusive of final-state radiation. The branching ratio is evaluated using K^+ lifetime,
    \tau = 12.385 \text{ ns.}
\Gamma(\pi^+\pi^0)/\Gamma(\pi^+\pi^+\pi^-)
                                                                                             \Gamma_9/\Gamma_{11}
3.702 \pm 0.022 OUR FIT Error includes scale factor of 1.1.
• • We do not use the following data for averages, fits, limits, etc. •
3.96 \pm 0.15
                            1045
                                          CALLAHAN
                                                                  FBC
\Gamma(\pi^+\pi^0)/\Gamma(\mu^+\nu_\mu)
                                                                                              \Gamma_{0}/\Gamma_{2}
                                                                 TECN CHG
                            EVTS
0.3252±0.0016 OUR FIT Error includes scale factor of 1.2.
0.3325 ± 0.0032 OUR AVERAGE
0.3329 \pm 0.0047 \pm 0.0010 45k
                                         USHER
                                                                 SPEC
                                                                                  p\overline{p} at rest
                                       <sup>1</sup> WEISSENBE... 76
0.3355 \pm 0.0057
                                                                 SPEC
                                       <sup>2</sup> AUERBACH
0.3277 \pm 0.0065
                           4517
                                                           67
                                                                 OSPK +
• • We do not use the following data for averages, fits, limits, etc.
                                       <sup>1</sup> WEISSENBE... 74
0.328 \pm 0.005
                             25k
                                                                 STRC
0.305 \pm 0.018
                           1600
                                         ZELLER
                                                           69
                                                                 ASPK
  <sup>1</sup>WEISSENBERG 76 revises WEISSENBERG 74.
  ^2 AUERBACH 67 changed from 0.3253 \pm 0.0065. See comment with ratio \Gamma(\pi^0\mu^+\nu_\mu)/
    \Gamma(\mu^+\nu_{\mu}).
```

$\Gamma(\pi^+\pi^0\pi^0)/\Gamma_{ m total}$						Γ ₁₀ /Γ
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.760±0.023 OUR FIT	Error incl					
1.775 ± 0.028 OUR AVE	RAGE Er	ror includes scale	facto	r of 1.2.		
$1.763\!\pm\!0.013\!\pm\!0.022$		ALOISIO	04A	KLOE	\pm	
1.84 ± 0.06	1307	CHIANG	72	OSPK	+	1.84 GeV/ $c\ K^+$
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. •	• •
1.53 ± 0.11	198	¹ PANDOULAS	70	EMUL	+	
1.8 ± 0.2	108	SHAKLEE	64	HLBC	+	
1.7 ± 0.2		ROE		HLBC		
1.5 ± 0.2		² TAYLOR	59	EMUL	+	
1 Includes events of T 2 Earlier experiments 2						
$\Gamma(\pi^+\pi^0\pi^0)/\Gamma(\pi^+\pi^0)$	o)					Γ_{10}/Γ_{9}
VALUE	<u>EVTS</u>	DOCUMENT ID			CHG	COMMENT
0.0851±0.0012 OUR FI	T Error in	ncludes scale fact	or of	1.1.		
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. •	• •
$0.081\ \pm0.005$	574	¹ LUCAS	73 B	HBC	_	Dalitz pairs only
¹ LUCAS 73B gives	$N(\pi 2\pi^{0}) =$	= 574 ± 5.9%.	Ν(2π) = 35	64 ±	3.1%. We quote
$0.5N(\pi 2\pi^0)/N(2\pi)$	where 0.5	is because only D	alitz _l	pair π^{0} 's	were	used.
$\Gamma(\pi^+\pi^0\pi^0)/\Gamma(\pi^+\pi^0)$	$^{+}\pi^{-}$)					Γ_{10}/Γ_{11}
, , ,	*	DOCUMENT ID		TECN	CHG	,
<u>VALUE</u> 0.315±0.004 OUR FIT	Error incl	udes scale factor	of 1.1			
0.303 ± 0.009	2027	BISI	65	BC	+	HBC+HLBC
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. •	• •
$0.393\!\pm\!0.099$	17	YOUNG	65	EMUL	+	
$\Gamma(\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$						Г ₁₁ /Г
VALUE (units 10^{-2})	FVTS	DOCUMENT ID		TECN	CHG	COMMENT
5.583±0.024 OUR FIT					-	
$5.565 \pm 0.031 \pm 0.025$	68K	¹ BABUSCI	14 B	KLOE	+	
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. •	• •
5.56 ±0.20	2330	² CHIANG	72	OSPK	+	1.84 GeV/ $c~K^+$
5.34 ± 0.21	693	³ PANDOULAS	70	EMUL		,
5.71 ± 0.15		DEMARCO	65	HBC		
6.0 ± 0.4	44	YOUNG	65	EMUL		
5.54 ± 0.12	2332	CALLAHAN	64	HLBC		
5.1 ± 0.2	540	SHAKLEE	64	HLBC		
5.7 ± 0.3		ROE	61	HLBC		
¹ Inclusive of final-stage one from a sample v						
tagging.						
2 Value is not inde $\Gamma(\pi^+\pi^0\pi^0)/\Gamma_{ m total}$	pendent of $\Gamma(\pi^0+.$	of CHIANG 72	$\Gamma(\mu^{-1})$	$^+ u_\mu)/\Gamma$	total [,]	$\Gamma(\pi^+\pi^0)/\Gamma_{\text{total}}$
³ Includes events of Ta			(" 6	νe)/1	total.	
includes events of Ti	41 LUK 39.					

Leptonic and semileptonic modes with photons

 $\Gamma(\mu^+
u_\mu\gamma)/\Gamma_{
m total}$ $\Gamma_{
m 12}/\Gamma$

VALUE (units 10 ⁻³) EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
6.2±0.8 OUR AVERAGE					
6.6 ± 1.5	1,2 DEMIDOV	90	XEBC		$P(\mu) < 231.5 \; MeV/c$
6.0 ± 0.9	BARMIN	88	HLBC	+	$P(\mu) < 231.5 \text{ MeV}/c$

• • • We do not use the following data for averages, fits, limits, etc. • • •

3.5 ± 0.8		^{2,3} DEMIDOV	90	XEBC	Е	$(\gamma) > 20 \; MeV$
3.2 ± 0.5	57	⁴ BARMIN	88	HLBC -	- <i>E</i>	$(\gamma)>$ 20 MeV
5.4 ± 0.3		⁵ AKIBA	85	SPEC	Р	(μ) <231.5 MeV/ c

¹ P(μ) cut given in DEMIDOV 90 paper, 235.1 MeV/c, is a misprint according to authors (private communication).

$\Gamma(\mu^+\nu_\mu\gamma(SD^+))/\Gamma_{total}$

 Γ_{13}/Γ

Structure-dependent part with $+\gamma$ helicity (SD⁺ term). See the "Note on $\pi^{\pm} \to \ell^{\pm} \nu \gamma$ and $K^{\pm} \to \ell^{\pm} \nu \gamma$ Form Factors" in the π^{\pm} section of the Particle Data Listings above.

<u>VALUE (units 10⁻⁵)</u> <u>CL% EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> **1.33±0.12±0.18** 2588 ¹ ADLER 00B B787

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<3.0 90 AKIBA 85 SPEC

$\Gamma\big(\mu^+\nu_\mu\gamma(\mathsf{SD^+INT})\big)/\Gamma_{\mathsf{total}}$

l ₁₄/l

Interference term between internal Bremsstrahlung and SD $^+$ term. See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm section of the Particle Data Listings above.

$\Gamma(\mu^+\nu_{\mu}\gamma(SD^-+SD^-INT))/\Gamma_{total}$

 Γ_{15}/Γ

Created: 5/30/2017 17:22

Sum of structure-dependent part with $-\gamma$ helicity (SD $^-$ term) and interference term between internal Bremsstrahlung and SD $^-$ term. See the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm section of the Particle Data Listings above.

²DEMIDOV 90 quotes only inner bremsstrahlung (IB) part.

³ Not independent of above DEMIDOV 90 value. Cuts differ.

⁴ Not independent of above BARMIN 88 value. Cuts differ.

⁵ Assumes μ -e universality and uses constraints from $K \rightarrow e \nu \gamma$.

 $^{^1}$ ADLER 00B obtains the branching ratio by extrapolating the measurement in the kinematic region E $_{\mu}>$ 137 MeV, E $_{\gamma}>$ 90 MeV to the full SD $^+$ phase-space. Also reports $|{\rm F}_V+{\rm F}_A|=0.165\pm0.007\pm0.011$ and -0.04 $<{\rm F}_V-{\rm F}_A<0.24$ at 90% CL.

¹ Assumes μ -e universality and uses constraints from $K \rightarrow e \nu \gamma$.

$\Gamma(e^+\nu_e\gamma)/\Gamma(\mu^+\nu_\mu)$

 Γ_{16}/Γ_{2}

$\Gamma(\pi^0 e^+ \nu_e \gamma) / \Gamma(\pi^0 e^+ \nu_e)$

 Γ_{17}/Γ_3

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN (CHG	COMMENT
0.505±0.032 OUR	WERAGE	Error includes	scale	factor of	1.3.	See the ideogram below.
$0.47\ \pm0.02\ \pm0.03$	4476	$^{ m 1}$ AKIMENKO	07	ISTR -	_	$E_{\gamma} >$ 10 MeV, 0.6 $<$
		_				$\cos(heta_{f e\gamma}) < 0.9$
0.46 ± 0.08	82	² BARMIN	91	XEBC		$E_{\gamma} >$ 10 MeV, 0.6 $<$
		_				$\cos(heta_{f e\gamma}) < 0.9$
0.56 ± 0.04	192	³ BOLOTOV	86 B	CALO -	_	$E_{\gamma}~>10~{ m MeV}$
● ● ● We do not use	e the follo	owing data for av	erage	s, fits, limi	ts, e	etc. • • •
$1.81 \pm 0.03 \pm 0.07$	4476	$^{ m 1}$ AKIMENKO	07	ISTR -	_	$E_{\gamma}{>}10$ MeV, $\theta_{e\gamma}>{10}^{\circ}$
$0.63 \pm 0.02 \pm 0.03$	4476	$^{ m 1}$ AKIMENKO	07	ISTR -	_	E_{γ} >30 MeV, $\theta_{e\gamma}$ >20°
1.51 ± 0.25	82	² BARMIN	91			E_{γ} > 10 MeV, $\cos(\theta_{e\gamma})$
		4				['] < 0.98
0.48 ± 0.20	16	⁴ LJUNG	73	HLBC -	+	$E_{\gamma}~>$ 30 MeV
$0.22 \begin{array}{c} +0.15 \\ -0.10 \end{array}$		⁴ LJUNG	73	HLBC -	+	$E_{\gamma}~>$ 30 MeV
0.76 ± 0.28	13	⁵ ROMANO	71	HLBC		$E_{\gamma}~>10~{ m MeV}$
0.53 ± 0.22		⁵ ROMANO	71	HLBC -		$E_{\gamma}^{'} > 30 \; \text{MeV}$
1.2 ± 0.8		BELLOTTI	67	HLBC		$E_{\gamma}^{'} >$ 30 MeV

WEIGHTED AVERAGE 0.505±0.032 (Error scaled by 1.3)

HTTP://PDG.LBL.GOV

Page 14

Created: 5/30/2017 17:22

 $^{^1}$ AMBROSINO 09E measured the differential width dR $_{\gamma}/\text{d}E_{\gamma}=(1/\Gamma(K\to\mu\nu))$ (dΓ($K\to e\nu\gamma)/\text{d}E_{\gamma}$). Result obtained by integrating the differential width over E_{γ} from 10 to 250 MeV.

$\Gamma(\pi^0 e^+ \nu_e \gamma(SD)) / \Gamma_{\text{total}}$

 Γ_{18}/Γ

Structure-dependent part.

VALUE (units 10^{-5})	CL%	DOCUMENT ID	TECN	CHG	
<5.3	90	BOLOTOV	86 B	CALO	_

$\Gamma(\pi^0 \mu^+ \nu_\mu \gamma) / \Gamma_{\text{total}}$

VALUE (units 10^{-5}) CL% EVTS

 Γ_{19}/Γ

TECN CHG COMMENT

1.25±0.25 OUR AVERAGE									
$1.10\!\pm\!0.32\!\pm\!0.05$	23	$^{ m 1}$ ADLER	10	B787	$30 < E_{\gamma} < 60 \; \mathrm{MeV}$				
$1.46 \pm 0.22 \pm 0.32$	153	² TCHIKILEV	07	ISTR -	$30 < E_{2}^{'} < 60 \text{ MeV}$				

• • We do not use the following data for averages, fits, limits, etc. • •

DOCUMENT ID

2.4
$$\pm 0.5$$
 ± 0.6 125 SHIMIZU 06 K470 + $E_{\gamma} >$ 30 MeV; $\Theta_{\rm trace} > 20^{\circ}$

$$<$$
6.1 90 0 LJUNG 73 HLBC $+$ $E(\gamma)$ $>$ 30 MeV

$\Gamma \big(\pi^0\pi^0e^+\nu_e\gamma\big)/\Gamma_{\rm total}$

 Γ_{20}/Γ

$VALUE$ (units 10^{-6})	CL%	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
<5	90	0	BARMIN	92	XEBC	+	$\overline{\it E_{\gamma}} > 10 \; { m MeV}$

Hadronic modes with photons —

$\Gamma(\pi^+\pi^0\gamma(INT))/\Gamma_{total}$

 Γ_{21}/Γ

Created: 5/30/2017 17:22

The $K^+ \to \pi^+ \pi^0 \gamma$ differential decay rate can be described in terms of T_{π^+} , the charged pion kinetic energy, and $W^2 = (P_K \cdot P_\gamma) (P_{\pi^+} \cdot P_\gamma) / (m_K m_{\pi^+})^2$; then we can write $d^2\Gamma(K^+ \to \pi^+ \pi^0 \gamma) / (dT_{\pi^+} dW^2) = d^2\Gamma(K^+ \to \pi^+ \pi^0 \gamma)_{IB} / (dT_{\pi^+} dW^2) [1 + 2\cos(\pm\phi + \delta_1^1 - \delta_0^2) m_\pi^2 m_K^2 W^2 X_E + m_\pi^4 m_K^4 (X_E^2 + X_M^2) W^4]$. The IB differential and total branching ratios are expressed in terms of the non-radiative experimental width $\Gamma(K^+ \to \pi^+ \pi^0)$ by Low's theorem. Using

 $^{^1}$ AKIMENKO 07 provides values for three kinematic regions. For averaging, we use value with $E_{\gamma}>10$ MeV and 0.6 $<\cos(\theta_{e\gamma})<0.9.$

² BARMIN 91 quotes branching ratio $\Gamma(K \to e \pi^0 \nu \gamma)/\Gamma_{all}$. The measured normalization is $[\Gamma(K \to e \pi^0 \nu) + \Gamma(K \to \pi^+ \pi^+ \pi^-)]$. For comparison with other experiments we used $\Gamma(K \to e \pi^0 \nu)/\Gamma_{all} = 0.0482$ to calculate the values quoted here.

 $^{^{3}\}cos(\theta_{e\gamma})$ between 0.6 and 0.9.

⁴ First LJUNG 73 value is for $\cos(\theta_{e\gamma})$ <0.9, second value is for $\cos(\theta_{e\gamma})$ between 0.6 and 0.9 for comparison with ROMANO 71.

 $^{^5}$ Both ROMANO 71 values are for $\cos(\theta_{e\gamma})$ between 0.6 and 0.9. Second value is for comparison with second LJUNG 73 value. We use lowest E_{γ} cut for Summary Table value. See ROMANO 71 for E_{γ} dependence.

 $^{^1}$ Value obtained from B(K+ \to $\pi^0 \, \mu^+ \, \nu_\mu \, \gamma) = (2.51 \pm 0.74 \pm 0.12) \times 10^{-5}$ obtained in the kinematic region $E_\gamma >$ 20 MeV, and then theoretical $K_{\mu 3\gamma}$ spectrum has been used. Also B(K+ \to $\pi^0 \, \mu^+ \, \nu_\mu \, \gamma) = (1.58 \pm 0.46 \pm 0.08) \times 10^{-5}$, for $E_\gamma >$ 30 MeV and $\theta_{\mu \gamma} \, > 20^{\rm o}$, was determined.

² Obtained from measuring B($K_{\mu3\gamma}$) / B($K_{\mu3}$) and using PDG 02 value B($K_{\mu3}$) = 3.27%. B($K_{\mu3\gamma}$) = (8.82 ± 0.94 ± 0.86) × 10⁻⁵ is obtained for 5 MeV < E_{γ} < 30 MeV.

PDG 10 B($K^+ \to \pi^+ \pi^0$) = 0.2066 \pm 0.0008, one obtains respectively B($K^+ \to \pi^+ \pi^0 \gamma$) $_{IB}$ (55 < T $_{\pi^+}$ < 90 MeV)= 2.55 \times 10⁻⁴ and B($K^+ \to \pi^+ \pi^0 \gamma$) $_{IB}$ (0 < T $_{\pi^+}$ < 80 MeV)= 1.80 \times 10⁻⁴. Fitting respectively the piece proportional to W² and the piece proportional to W⁴, the interference contribution (INT), proportional to X $_E$, and the direct contribution (DE) proportional to X $_E^2$ + X $_M^2$ are extracted.

VALUE (units
$$10^{-6}$$
)EVTSDOCUMENT IDTECNCHGCOMMENT-4.24 \pm 0.63 \pm 0.70600k1 BATLEY10ANA48 \pm T_{π^+} 0-80 MeV

$\Gamma(\pi^+\pi^0\gamma(DE))/\Gamma_{total}$

 Γ_{22}/Γ

Direct emission (DE) part of $\Gamma(\pi^+\pi^0\gamma)/\Gamma_{\text{total}}$, assuming that interference (INT) component is zero.

VALUE (units 10 ⁻⁰)	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
$5.99 \pm 0.27 \pm 0.25$	600k	¹ BATLEY	10A	NA48	\pm	T_{π^+} 0–80 MeV
• • • We do not use th	e followii	ng data for averages	s, fits,	limits, e	etc. •	• •
$3.8 \pm 0.8 \pm 0.7$	10k	ALIEV	06	K470	+	T_{π^+} 55–90 MeV
$3.7 \pm 3.9 \pm 1.0$	930	UVAROV	06	ISTR	_	$T_{\pi^-}^{''}$ 55–90 MeV
$3.2 \pm 1.3 \pm 1.0$	4k	ALIEV	03	K470	+	$T_{\pi^+}^{}$ 55–90 MeV
$6.1 \pm 2.5 \pm 1.9$	4k	ALIEV	03	K470	+	$T_{\pi^+}^{}$ full range
$4.7 \pm 0.8 \pm 0.3$	20k	² ADLER	00 C	B787	+	$T_{\pi^+}^{}$ 55–90 MeV
$20.5 \ \pm 4.6 \ \begin{array}{c} +3.9 \\ -2.3 \end{array}$		BOLOTOV	87	WIRE	_	${\rm T}_{\pi^-}$ 55–90 MeV
156 + 35 + 50		ABRAMS	72	ASPK	+	T 55-90 MeV

 $^{^1}$ The cut on the photon energy implies W $^2>$ 0.2. BATLEY 10A obtains the INT and DE fractional branchings with respect to IB from a simultaneous kinematical fit of INT and DE and then we use the PDG 10 value for B(K $^+\to\pi^+\pi^0)=20.66\pm0.08$ to determine the IB. The INT and DE correlation coefficients -0.93. Assuming constant electric and magnetic amplitudes, X $_E$ and X $_M$, these INTand DE values imply X $_E=-24\pm6~{\rm GeV}^{-4}$ and X $_M=-254\pm9~{\rm GeV}^{-4}$.

 $^{^2}$ ADLER 00C measures the INT component to be $(-0.4\pm1.6)\%$ of the inner bremsstrahlung (IB) component.

$\Gamma(\pi^+\pi^0\pi^0\gamma)/\Gamma(\pi^0)$	$^{+}\pi^{0}\pi^{0})$					Γ_{23}/Γ_{10}	
<i>VALUE</i> (units 10^{-4})		DOCUMENT ID		TECN	CHG	COMMENT	
$4.3^{+3.2}_{-1.7}$		BOLOTOV	85	SPEC	_	$\textit{E}(\gamma) > 10 \; MeV$	
$\Gamma(\pi^{+}\pi^{+}\pi^{-}\gamma)/\Gamma_{total}$							
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT	
1.04±0.31 OUR AVERAGE							
1.10 ± 0.48	7	BARMIN	89	XEBC		$\textit{E}(\gamma) > 5 \; MeV$	
1.0 ± 0.4		STAMER	65	EMUL	+	$\textit{E}(\gamma) > 11 \; MeV$	

 $^{^1}$ The cut on the photon energy implies W $^2>$ 0.2. BATLEY 10A obtains the INT and DE fractional branchings with respect to IB from a simultaneous kinematical fit of INT and DE and then we use the PDG 10 value for B($K^+\to\pi^+\pi^0$) = 20.66 \pm 0.08 to determine the IB. The INT and DE correlation coefficients -0.83. Assuming a constant electric amplitude, X $_E$, this INT value implies X $_E=-24\pm6$ GeV $^{-4}$.

 $\Gamma(\pi^+ \gamma \gamma)/\Gamma_{\text{total}}$ Γ_{25}/Γ

VALUE (units 10^{-7}) CL% EVTS10.1 \pm 0.6 OUR AVERAGE

 $10.03 \pm 0.51 \pm 0.24$ ± 3 ± 1

² KITCHING 31

• • We do not use the following data for averages, fits, limits, etc. • •

9.10±0.72±0	0.22	149			NA48		
< 0.083	90		⁴ ARTAMONOV	05	B949	+	$P_\pi >$ 213 MeV/c
< 10	90	0	ATIYA	90 B	B787	+	$T\pi$ 117–127 MeV
< 84	90	0	ASANO	82	CNTR	+	$T\pi$ 117–127 MeV
-420 ± 520		0	ABRAMS	77	SPEC	+	$T\pi$ $<$ 92 MeV
< 350	90	0	LJUNG	73	HLBC	+	6-102, 114-127 MeV
< 500	90	0	KLEMS	71			$T\pi~<$ 117 MeV
-100 ± 600			CHEN	68	OSPK	+	$T\pi$ 60–90 MeV

¹LAZZERONI 14 combines NA62 and NA48/2 results. The result for the full kinematic range is extrapolated from the model-independent branching fraction (9.65 \pm 0.61 \pm $(0.14) \times 10^{-7}$ for $(m_{\gamma\gamma}/m_K)^2 > 0.2$. The measured ChPT parameter $\hat{c} = 1.86 \pm 0.25$.

 Γ_{26}/Γ

 $\Gamma(\pi^+ 3\gamma)/\Gamma_{\text{total}}$

Values given here assume a phase space pion energy spectrum.

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	CHG	COMMENT
<1.0	90	ASANO	82	CNTR	+	T(π) 117–127 MeV

• • • We do not use the following data for averages, fits, limits, etc. • •

OSPK + < 3.0 $T(\pi) > 117 \text{ MeV}$ KLEMS

$$\Gamma(\pi^+e^+e^-\gamma)/\Gamma_{\text{total}}$$
 $\Gamma_{27}/\Gamma_{\text{total}}$ $\Gamma_{27}/\Gamma_{27}/\Gamma_{\text{total}}$ $\Gamma_{27}/\Gamma_{27}/\Gamma_{27}/\Gamma_{27}/\Gamma_{27}$

- Leptonic modes with $\ell \overline{\ell}$ pairs

$$\Gamma(e^+\nu_e\nu\overline{\nu})/\Gamma(e^+\nu_e)$$
 $VALUE$
 $CL\%$
 $EVTS$
 $ODOCUMENT ID$
 $ODOCUMENT ID$

 $^{^2}$ KITCHING 97 is extrapolated from their model-independent branching fraction (6.0 \pm $1.5\pm0.7)\times10^{-7}$ for 100 MeV/c<P $_{\pi^+}<$ 180 MeV/c using Chiral Perturbation Theory.

 $^{^3}$ BATLEY 14 uses data collected in 2003 and 2004. Branching ratio is obtained by determining the parameter $\hat{c}=1.41\pm0.38\pm0.11$ and integrating the $\mathcal{O}(p^6)$ chiral spectrum. A model independent value for the branching ratio is also obtained (8.77 \pm 0.87 \pm 0.17) \times 10⁻⁷ for kinematic range $(m_{\gamma\gamma}/m_K)^2>$ 0.2.

 $^{^4}$ ARTAMONOV 05 limit assumes ChPT with $\hat{c} = 1.8$ with unitarity corrections. With $\hat{c} =$ 1.6 and no unitarity corrections they obtain $<2.3\times10^{-8}$ at 90% CL. This partial branching ratio is predicted to be 6.10×10^{-9} and 0.49×10^{-9} for the cases with and without unitarity correction.

 $^{^{1}}$ BATLEY 08 also reports the Chiral Perturbation Theory parameter $\hat{c}=0.9\pm0.45$ obtained using the shape of the $e^+e^-\gamma$ invariant mass spectrum. By extrapolating the theoretical amplitude to $m_{e\,e\,\gamma}~<$ 260 MeV, it obtains the inclusive B(K $^+$ \to $\pi^+e^+e^-\gamma$) = (1.29 \pm 0.13 \pm 0.03) \times 10⁻⁸, where the first error is the combined statistical and systematic errors and the second error is from the uncertainty in \hat{c} .

$\Gamma(\mu^+ u_\mu u\overline{ u})/\Gamma_1$	total					Γ_{29}/Γ
		DOCUMENT II)	TECN C	HG	
$< 2.4 \times 10^{-6}$	90	¹ ARTAMONO				
• • • We do not	use the followin	g data for averag	ges, fits,	limits, etc	. • • •	
$< 6.0 \times 10^{-6}$	90	² PANG	73	CNTR +	-	
muon moment	um region betv	candard model μ ween 130 and 175 in from $ u ext{-} u$ intera	MeV/c			med in the
$\Gamma(e^+ u_ee^+e^-)$	/Γ _{total}					Γ ₃₀ /Γ
VALUE (units 10^{-8})	EVTS	DOCUMENT ID	TE	ECN CHG	COMMENT	
2.48± 0.14±0.1		POBLAGUEV			$m_{ee} > 150$	MeV
• • • We do not					~ ~	
20 ±20	4	DIAMANT	76 SF	PEC +	$m_{e^+e^-} >$	-140 MeV
$\Gamma(\mu^+ u_\mu e^+ e^-)$						Γ ₃₁ /Γ
VALUE (units 10 ⁻⁸)		DOCUMENT ID				
$7.06 \pm 0.16 \pm 0$		POBLAGUEV			C C	MeV
• • • We do not	use the followin	g data for averag	ges, fits,	limits, etc	. • • •	
100 ±30	14	DIAMANT	76 S	PEC +	$m_{e^{+}e^{-}} >$	140 MeV
$\Gamma(e^+ u_e\mu^+\mu^-)$						Γ ₃₂ /Γ
$VALUE$ (units 10^{-8})	CL%	DOCUMENT II)	TECN		
1.72 ± 0.45		MA	06	B865		
• • • We do not	use the followin	g data for averag	ges, fits,	limits, etc	. • • •	
<50	90	ADLER	98	B787		
$\Gamma(\mu^+ u_\mu\mu^+\mu^-)$)/F _{total}					Γ ₃₃ /Γ
$VALUE$ (units 10^{-7})	CL%	DOCUMENT II)	TECN C	HG_	
<4.1	90	ATIYA	89	B787 +	-	
—— Lenton Fa	mily number	(LF), Lepton	numhe	r (1) A	$S = \Lambda \Omega (S)$	(0)
		$\Delta S = 1 \text{ weak}$				
$\Gamma(\pi^+\pi^+e^-\overline{\nu}_e)$ Test of ΔS	$=\Delta Q$ rule.					Γ ₃₄ /Γ
$VALUE$ (units 10^{-7})	CL% EVTS	DOCUMENT IL)	TECN C	HG_	
• • • We do not	use the followin	g data for averag	ges, fits,	limits, etc	. • • •	
< 9.0	95 0	SCHWEINB.	71	HLBC +	-	
< 6.9	95 0	ELY	69	HLBC +		
<20.	95	BIRGE	65	FBC +	-	

 $\Gamma(\pi^+\pi^+e^-\overline{\nu}_e)/\Gamma(\pi^+\pi^-e^+\nu_e)$

 Γ_{34}/Γ_{6}

Test of $\Delta S = \Delta Q$ rule

VALUE (units 10^{-4}) _ CL% _ EVTSTECN 90 3

• • • We do not use the following data for averages, fits, limits, etc. • •

<130. **BOURQUIN**

 $\Gamma(\pi^+\pi^+\mu^-\overline{\nu}_{\mu})/\Gamma_{\text{total}}$ Test of $\Delta S = \Delta Q$ rule.

 Γ_{35}/Γ

VALUE (units 10^{-6}) CL% EVTS<3.0

 $\Gamma(\pi^+e^+e^-)/\Gamma_{\text{total}}$

 Γ_{36}/Γ

Test for $\Delta S=1$ weak neutral current. Allowed by combined first-order weak and electromagnetic interactions.

$VALUE$ (units 10^{-7})	EVTS	DOCUMENT ID		TECN	CHG
3.00 ± 0.09 OUR AVE	ERAGE				
$3.11\!\pm\!0.04\!\pm\!0.12$	7253	$^{ m 1}$ BATLEY	09	NA48	\pm
$2.94 \!\pm\! 0.05 \!\pm\! 0.14$	10300	² APPEL	99	SPEC	+
$2.75\!\pm\!0.23\!\pm\!0.13$	500	³ ALLIEGRO	92	SPEC	+
2.7 ± 0.5	41	⁴ BLOCH	75	SPEC	+

 $^{^1}$ Value extrapolated from a measurement in the region z = $(m_{ee}/m_{K})^2 > \! 0.08.$ BATLEY 09 also evaluated the shape of the form factor using four different theoretical models.

 $\Gamma(\pi^+\mu^+\mu^-)/\Gamma_{\rm total}$

 Γ_{37}/Γ

Created: 5/30/2017 17:22

Test for $\Delta S = 1$ weak neutral current. Allowed by higher-order electroweak interac-

tions.						
<i>VALUE</i> (units 10^{-8})	CL% EVTS	DOCUMENT I	D	TECN	CHG	COMMENT
9.4 ±0.6 OUR	AVERAGE Erro	r includes scale	factor o	f 2.6. Se	ee the	ideogram
below.						
$9.62\!\pm\!0.21\!\pm\!0.13$	3120	¹ BATLEY	11A	NA48	\pm	2003-04 data
$9.8\ \pm 1.0\ \pm 0.5$	110	² PARK	02	HYCP	\pm	
$9.22\pm0.60\pm0.49$	402	³ MA	00	B865	+	
$5.0 \pm 0.4 \pm 0.9$	207	⁴ ADLER	97 C	B787	+	
ullet $ullet$ $ullet$ We do not use	the following da	ta for averages,	fits, lim	its, etc.	• • •	
$9.7\ \pm 1.2\ \pm 0.4$	65	PARK	02	HYCP	+	
$10.0 \pm 1.9 \pm 0.7$	35	PARK	02	HYCP	_	
/23	۵n	ΔΤΙΥΔ	80	R787		

 $^{^{1}}$ BLOCH 76 quotes 3.6×10^{-4} at CL = 95%, we convert.

²APPEL 99 establishes vector nature of this decay and determines form factor f(Z)= $f_0(1+\delta Z)$, $Z=M_{ee}^2/m_K^2$, $\delta=2.14\pm0.13\pm0.15$.

 $^{^3}$ ALLIEGRO 92 assumes a vector interaction with a form factor given by $\lambda =$ 0.105 \pm 0.035 ± 0.015 and a correlation coefficient of -0.82.

⁴BLOCH 75 assumes a vector interaction.

² PARK 02 "±" result comes from combining $K^+ \to \pi^+ \mu^+ \mu^-$ and $K^- \to \pi^- \mu^+ \mu^-$, assuming *CP* is conserved.

³ MA 00 establishes vector nature of this decay and determines form factor $f(z) = f_0$ (1 + δ z), $z = (M_{\mu\mu}/m_K)^2$, $\delta = 2.45^{+1.30}_{-0.95}$.

 4 ADLER 97C gives systematic error 0.7 \times 10 $^{-8}$ and theoretical uncertainty 0.6 \times 10 $^{-8}$, which we combine in quadrature to obtain our second error.

 $\Gamma(\pi^+
u\overline{
u})/\Gamma_{ ext{total}}$

Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interactions. Branching ratio values are extrapolated from the momentum or energy regions shown in the comments assuming Standard Model phase space except for those labeled "Scalar" or "Tensor" to indicate the assumed non-Standard-Model interaction.

¹ BATLEY 11A also studies the form factor f(z) dependence of the decay, described via single photon exchange: i) assuming a linear form factor, $f(z) = f_0 \ (1+\delta \ z \)$, $z = (M_{\mu\mu}/m_K)^2$, finding $f_0 = 0.470 \pm 0.040$ and $\delta = 3.11 \pm 0.57$ and ii) assuming a linear form factor including π - π rescattering , $W_{\pi\pi}$, as in DAMBROSIO 98A, finding $f(z) = G_F \ m_K^2 \ (a_+ + b_+ z) + W_{\pi\pi}(z)$, $a_+ = -0.575 \pm 0.039$, $b_+ = -0.813 \pm 0.145$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

	$0.789^{+0.926}_{-0.510}$		3	² ARTAMONOV	80	B949	+	140 <p<math>_{\pi} <199 MeV</p<math>
<	2.2	90	1	³ ADLER	04	B787	+	$211 < P_{\pi} < 229 \; { m MeV}$
<	2.7	90		ADLER	04	B787	+	Scalar
<	1.8	90		ADLER	04	B787	+	Tensor
	$0.147 ^{\color{red}+0.130}_{-0.089}$		3	⁴ ANISIMOVSK.	.04	B949	+	211< P_{π} <229 MeV
	$0.157 ^{\color{red}+0.175}_{-0.082}$		2	ADLER	02	B787	+	$P_{\pi}>$ 211 MeV/ c
<	4.2	90	1	ADLER	02C	B787	+	140 $<$ P_{π} $<$ 195 MeV
<	4.7	90		⁵ ADLER	02 C	B787	+	Scalar
<	2.5	90		⁵ ADLER	02 C	B787	+	Tensor
	$0.15 \begin{array}{l} +0.34 \\ -0.12 \end{array}$		1	ADLER	00	B787		In ADLER 02
	$0.42 \begin{array}{l} +0.97 \\ -0.35 \end{array}$		1	ADLER	97	B787		
<	2.4	90		ADLER	96	B787		
<	7.5	90		ATIYA	93	B787	+	$T(\pi)$ 115–127 MeV
<	5.2	90		⁶ ATIYA	93	B787	+	
< 1	17	90	0	ATIYA	93 B	B787	+	$T(\pi)$ 60–100 MeV
< 3	34	90		ATIYA	90	B787	+	
<1	40	90		ASANO	81 B	CNTR	+	$T(\pi)$ 116–127 MeV

¹ Value obtained combining ANISIMOVSKY 04, ADLER 04, and the present ARTA-MONOV 08 results.

$\Gamma(\pi^+\pi^0 u\overline{ u})/\Gamma_{\mathsf{total}}$

 Γ_{39}/Γ

Test for $\Delta S=1$ weak neutral current. Allowed by higher-order electroweak interactions.

$\Gamma(\mu^-\nu e^+e^+)/\Gamma(\pi^+\pi^-e^+\nu_e)$

 Γ_{40}/Γ_{6}

Created: 5/30/2017 17:22

Test of lepton family number conservation.

VALUE (units
$$10^{-3}$$
)CL%EVTSDOCUMENT IDTECNCHG $<$ 0.59001 DIAMANT-...76SPEC+

²Observed 3 events with an estimated background of $0.93 \pm 0.17^{+0.32}_{-0.24}$. Signal-to-background ratio for each of these 3 events is 0.20, 0.42, and 0.47.

 $^{^3}$ Value obtained combining the previous result ADLER 02C with 1 event and the present result with 0 events to obtain an expected background 1.22 \pm 0.24 events and 1 event observed.

⁴ Value obtained combining the previous E787 result ADLER 02 with 2 events and the present E949 with 1 event. The additional event has a signal-to-background ratio 0.9. Superseded by ARTAMONOV 08.

⁵ Superseded by ADLER 04.

⁶ Combining ATIYA 93 and ATIYA 93B results. Superseded by ADLER 96.

 $^{^{1}\,\}mathrm{Search}$ region defined by 90 MeV/c<P $_{\pi^{+}}$ <188 MeV/c and 135 MeV<E $_{\pi^{0}}$ <180 MeV.

¹ DIAMANT-BERGER 76 quotes this result times our 1975 $\pi^+\pi^-e\nu$ BR ratio.

 $\Gamma(\mu^+\nu_e)/\Gamma_{\rm total}$ Γ_{41}/Γ Forbidden by lepton family number conservation. DOCUMENT ID CL% EVTS TECN COMMENT $^{
m 1}$ LYONS < 0.004 90 0 HLBC 200 GeV K^+ narrow band ν beam • • We do not use the following data for averages, fits, limits, etc. ¹ COOPER < 0.012 82 HLBC Wideband ν beam 1 COOPER 82 and LYONS 81 limits on u_e observation are here interpreted as limits on lepton family number violation in the absence of mixing. $\Gamma(\pi^+\mu^+e^-)/\Gamma_{\rm total}$ Γ_{42}/Γ Test of lepton family number conservation. *VALUE* (units 10^{-10}) CL% DOCUMENT ID TECN CHG ¹ SHER < 0.13 90 05 RVUE + • • We do not use the following data for averages, fits, limits, etc. 90 **SHER** < 0.21B865 < 0.39 90 **APPEL** 00 B865 90 LEE SPEC < 2.1 $^\mathrm{1}$ This result combines SHER 05 1998 data, APPEL 00 1996 data, and data from BERGMAN 97 and PISLAK 97 theses, all from BNL-E865, with LEE 90 BNL-E777 data. $\Gamma(\pi^+\mu^-e^+)/\Gamma_{\text{total}}$ Γ_{43}/Γ Test of lepton family number conservation. VALUE (units 10^{-10}) CL% EVTSDOCUMENT ID TECN CHG **APPEL** 00B B865 • • • We do not use the following data for averages, fits, limits, etc. • • • 1 DIAMANT-... 76 SPEC +<70 ¹ Measurement actually applies to the sum of the $\pi^+\mu^-e^+$ and $\pi^-\mu^+e^+$ modes. $\Gamma(\pi^-\mu^+e^+)/\Gamma_{\text{total}}$ Γ_{44}/Γ Test of total lepton number conservation. VALUE (units 10^{-10}) CL% EVTSTECN CHG DOCUMENT ID 90 **APPEL** 00B B865 • • • We do not use the following data for averages, fits, limits, etc. • • • 1 DIAMANT-... 76 SPEC +90 ¹ Measurement actually applies to the sum of the $\pi^+\mu^-e^+$ and $\pi^-\mu^+e^+$ modes. $\Gamma(\pi^-e^+e^+)/\Gamma_{\rm total}$ Γ_{45}/Γ Test of total lepton number conservation. CL% EVTS **DOCUMENT ID** TECN CHG $<6.4 \times 10^{-10}$ 90 **APPEL** 00B B865 • • • We do not use the following data for averages, fits, limits, etc. • $< 9.2 \times 10^{-9}$ DIAMANT-... 76 SPEC $< 1.5 \times 10^{-5}$ **CHANG** 68 **HBC**

 Γ_{46}/Γ

 $\Gamma(\pi^-\mu^+\mu^+)/\Gamma_{\text{total}}$ Forbidden by total lepton number conservation.

<i>J</i>					
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	<u>CHG</u>
$< 1.1 \times 10^{-9}$	90	BATLEY	11A	NA48	±
\bullet \bullet We do not use the	following d	lata for averages	, fits,	limits,	etc. • • •
$< 3.0 \times 10^{-9}$	90			B865	+
$< 1.5 \times 10^{-4}$	90 1	LITTENBERG	92	HBC	

 $^{^{}m 1}$ LITTENBERG 92 is from retroactive data analysis of CHANG 68 bubble chamber data.

$\Gamma(\mu^+ \overline{\nu}_e) / \Gamma_{\text{total}}$

 Γ_{47}/Γ

Forbidden by total lepton number conservation.

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
<3.3	90	¹ COOPER	82	HLBC	Wideband $ u$ beam

 $^{^1}$ COOPER 82 limit on $\overline{
u}_e$ observation is here interpreted as a limit on lepton number violation in the absence of mixing.

 $\Gamma(\pi^0 e^+ \overline{\nu}_e)/\Gamma_{\rm total}$

 Γ_{48}/Γ

Forbidden by total lepton number conservation.

<u>VALUE</u>	,	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.003		90	$^{ m 1}$ COOPER	82	HLBC	Wideband $ u$ beam

 $^{^1}$ COOPER 82 limit on $\overline{
u}_e$ observation is here interpreted as a limit on lepton number violation in the absence of mixing.

 $\Gamma(\pi^+\gamma)/\Gamma_{\text{total}}$

 Γ_{49}/Γ

Created: 5/30/2017 17:22

Violates angular momentum conservation and gauge invariance. Current interest in this decay is as a search for non-commutative space-time effects as discussed in AR-TAMONOV 05 and for exotic physics such as a vacuum expectation value of a new vector field, non-local Superstring effects, or departures from Lorentz invariance, as discussed in ADLER 02B.

VALUE (units 10^{-9})	CL%	DOCUMENT ID		TECN	CHG
< 2.3	90	ARTAMONOV	05	B949	+
• • • We do not use the	following d	ata for averages	, fits,	limits, e	etc. • • •
< 360	90	ADLER	02в	B787	+
<1400	90	ASANO	82	CNTR	+
<4000	90 1	KLEMS	71	OSPK	+
a					

¹ Test of model of Selleri, Nuovo Cimento **60A** 291 (1969).

CPT VIOLATION TESTS IN K^{\pm} DECAYS

$$\Delta = (\Gamma(K^+) - \Gamma(K^-)) \ / \ (\Gamma(K^+) + \Gamma(K^-))$$

$\Delta (K^{\pm} ightarrow \ \mu^{\pm} u_{\mu})$ RATE DIFFERENCE/SUM

VALUE (%)	DOCUMENT IL	TECN	
-0.27±0.21	FORD	67	CNTR

$\Delta(K^{\pm} \rightarrow \pi^{\pm}\pi^{0})$ RATE DIFFERENCE/SUM

VALUE (%)	DOCUMENT IE	DOCUMENT ID		
0.4±0.6	HERZO	69	OSPK	

CP VIOLATION TESTS IN K^{\pm} DECAYS

$$\Delta = (\Gamma(K^{+}) - \Gamma(K^{-})) / (\Gamma(K^{+}) + \Gamma(K^{-}))$$

$\Delta(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-})$ RATE DIFFERENCE/SUM

VALUE (units 10^{-2})	DOCUMENT ID	TECN	
$-2.2\pm1.5\pm0.6$	1 BATLEY	09	NA48

¹ This implies an upper limit of 2.1×10^{-2} at 90% CL.

$\Delta(K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-})$ RATE DIFFERENCE/SUM

VALUE	DOCUMENT ID		TECN
0.010 ± 0.023 OUR AVERAGE			
0.011 ± 0.023	$^{ m 1}$ BATLEY	11A	NA48
$-0.02 \pm 0.11 \pm 0.04$	PARK	02	HYCP

 $^{^{1}}$ This corresponds to the asymmetry upper limit of $< 2.9 \times 10^{-2}$ at 90% CL.

$\Delta(K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma)$ RATE DIFFERENCE/SUM

<i>VALUE</i> (units 10 ⁻³)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT	
0.0± 1.2 OUR AVERA	IGE					
$0.0 \pm 1.0 \pm 0.6$	1M	$^{ m 1}$ BATLEY	10A	NA48		
4 ± 29	2461	SMITH	76	WIRE	\pm	E_{π} 55–90 MeV
5 ±20	4000	ABRAMS	73 B	ASPK	\pm	$\mathrm{E}_{\pi}^{''}$ 51–100 MeV

 $^{^{1}}$ This value implies the upper bound for this asymmetry 1.5×10^{-3} at 90% CL.

$\Delta(K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-})$ RATE DIFFERENCE/SUM

VALUE (%)	EVTS	DOCUMENT ID		<u>TECN</u> <u>CHG</u>
0.04 ± 0.06		¹ FORD	70	ASPK
• • • We do not use the	e following	data for averages	, fits,	limits, etc. • • •
$-0.01\!\pm\!0.08$		² SMITH	73	ASPK ±
0.05 ± 0.07	3.2M	¹ FORD	70	ASPK
-0.25 ± 0.45		FLETCHER	67	OSPK

¹ FORD

CNTR

$\Delta(K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0})$ RATE DIFFERENCE/SUM

VALUE (%)	EVTS	DOCUMENT I	D	TECN	CHG
-0.02±0.28 OUR A	/ERAGE				
0.04 ± 0.29		SMITH	73	ASPK	\pm
-0.6 ± 0.9	1802	HERZO	69	OSPK	

T VIOLATION TESTS IN K^+ AND K^- DECAYS

 $-0.02 \!\pm\! 0.11$

 P_T in $K^+ o \pi^0 \mu^+
u_\mu$ T-violating muon polarization. Sensitive to new sources of *CP* violation beyond the Standard Model.

$VALUE$ (units 10^{-3})	EVTS	DOCUME	NT ID	TECN	CHG	
$-1.7\pm2.3\pm1.1$		$^{ m 1}$ ABE	04F	K246	+	
\bullet \bullet We do not use t	he following	data for a	verages, fits,	limits,	etc. ●	• •
$-4.2\!\pm\!4.9\!\pm\!0.9$	3.9M	ABE	99 s	K246	+	

HTTP://PDG.LBL.GOV Page 24 Created: 5/30/2017 17:22

 $^{^1}$ First FORD 70 value is second FORD 70 combined with FORD 67. 2 SMITH 73 value of $K^\pm\to~\pi^\pm\pi^+\pi^-$ rate difference is derived from SMITH 73 value of $K^\pm\to~\pi^\pm2\pi^0$ rate difference.

P_T in $K^+ \rightarrow \mu^+ \nu_\mu \gamma$

T-violating muon polarization. Sensitive to new sources of *CP* violation beyond the Standard Model.

Im(ξ) in $K^+ \to \pi^0 \mu^+ \nu_\mu$ DECAY (from transverse μ pol.)

lest of 1 reversal	invariance.					
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
-0.006 ± 0.008 OUR	AVERAGE					
$-0.0053\pm0.0071\pm0.00$	36	¹ ABE	04F	K246	+	
-0.016 ± 0.025	20M	CAMPBELL	81	CNTR	+	Pol.
• • • We do not use th	e following da	ata for averages,	fits,	limits, et	.c. • •	•
$-0.013\ \pm0.016\ \pm0.00$	3 3.9M	ABE	99 S	CNTR	+	$p_T K^+$ at rest
¹ Includes three sets of the ABE 99S data sa						

A REVIEW GOES HERE – Check our WWW List of Reviews

ENERGY DEPENDENCE OF K^{\pm} DALITZ PLOT

|matrix element|^2 = 1 + gu + hu^2 + kv^2
where
$$u=(s_3-s_0)$$
 / m_π^2 and $v=(s_2-s_1)$ / m_π^2

LINEAR COEFFICIENT g FOR $K^\pm \to ~\pi^\pm \pi^+ \pi^-$

Some experiments use Dalitz variables x and y. In the comments we give $a_y=$ coefficient of y term. See note above on "Dalitz Plot Parameters for $K\to 3\pi$ Decays." For discussion of the conversion of a_y to g, see the earlier version of the same note in the *Review* published in Physics Letters **111B** 70 (1982).

VALUE		<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
-0.21134	± 0.00017	471M	$^{ m 1}$ BATLEY	07 B	NA48	\pm	
• • • We	e do not use t	he followi	ng data for averages	s, fits,	limits, e	etc. •	• •
-0.2221	± 0.0065	225k	DEVAUX	77	SPEC	+	$a_V = .2814 \pm .0082$
-0.199	± 0.008	81k	² LUCAS	73	HBC	_	$a_V = 0.252 \pm 0.011$
-0.2157	± 0.0028	750k	FORD	72	ASPK	+	$a_V = .2734 \pm .0035$
-0.2186	± 0.0028	750k	FORD	72	ASPK	_	$a_y = .2770 \pm .0035$
-0.200	±0.009	39819	³ HOFFMASTEI	R72	HLBC	+	•
-0.196	±0.012	17898	⁴ GRAUMAN	70	HLBC	+	$a_{V} = 0.228 \pm 0.030$
-0.193	± 0.010	50919	MAST	69	HBC	_	$a_y = 0.244 \pm 0.013$
-0.218	± 0.016	9994	⁵ BUTLER	68	HBC	+	$a_y = 0.277 \pm 0.020$
-0.190	± 0.023	5778	^{5,6} MOSCOSO	68	HBC	_	$a_V = 0.242 \pm 0.029$
-0.22	± 0.024	5428	^{5,6} ZINCHENKO	67	HBC	+	a_{y}^{\prime} =0.28 ± 0.03
-0.220	± 0.035	1347	⁷ FERRO-LUZZI	61	HBC	_	$a_y = 0.28 \pm 0.045$

 $^{^1}$ Includes three sets of data: 96-97 (ABE 99S), 98, and 99-00 totaling about three times the ABE 99S data sample. Corresponds to P $_T~<~5.0\times10^{-3}$ at 90% CL.

¹ Muons stopped and polarization measured from decay to positrons.

QUADRATIC COEFFICIENT h FOR $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG
1.848 ± 0.040	471M	$^{ m 1}$ BATLEY	07 B	NA48	\pm
• • • We do not use the	ne following	data for averages	s, fits,	limits, e	etc. • • •
-0.06 ± 1.43	225k	DEVAUX	77	SPEC	+
1.87 ± 0.62	750k	FORD	72	ASPK	+
1.25 ± 0.62	750k	FORD	72	ASPK	_
-0.9 ± 1.4	39819	HOFFMASTE	R72	HLBC	+
-0.1 ± 1.2	50919	MAST	69	HBC	_

¹ Final state strong interaction and radiative corrections not included in the fit.

QUADRATIC COEFFICIENT k FOR $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

-					
<i>VALUE</i> (units 10^{-3})	<u>EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>
$-$ 4.63 \pm 0.14	471M	¹ BATLEY	07 B	NA48	\pm
• • • We do not use the	ne following o	data for averages	s, fits,	limits, e	etc. • • •
-20.5 ± 3.9	225k	DEVAUX	77	SPEC	+
$-$ 7.5 \pm 1.9	750k	FORD	72	ASPK	+
$-$ 8.3 \pm 1.9	750k	FORD	72	ASPK	_
$-10.5~\pm~4.5$	39819	HOFFMASTE	R72	HLBC	+
-14 ± 12	50919	MAST	69	HBC	_

¹ Final state strong interaction and radiative corrections not included in the fit.

$(\mathbf{g}_+ - \mathbf{g}_-) / (\mathbf{g}_+ + \mathbf{g}_-) \text{ FOR } K^\pm \rightarrow \pi^\pm \pi^+ \pi^-$

This is a *CP* violating asymmetry between linear coefficients g_+ for $K^+ \to \pi^+ \pi^+ \pi^-$ decay and g_- for $K^- \to \pi^- \pi^+ \pi^-$ decay.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$1.7\pm\ 2.1\pm2.0$$
 $1.7G$ ² BATLEY 06 NA48 -70.0 ± 53 3.2M FORD 70 ASPK

¹ Final state strong interaction and radiative corrections not included in the fit.

² Quadratic dependence is required by K_I^0 experiments.

³ HOFFMASTER 72 includes GRAUMAN 70 data.

⁴ Emulsion data added — all events included by HOFFMASTER 72.

⁵ Experiments with large errors not included in average.

⁶ Also includes DBC events.

⁷ No radiative corrections included.

 $^{^1}$ BATLEY 07E includes data from BATLEY 06. Uses quadratic parametrization and value $g_+ + g_- = 2g$ from BATLEY 07B. This measurement neglects any possible charge asymmetries in higher order slope parameters h or k.

²This measurement neglects any possible charge asymmetries in higher order slope parameters *h* or *k*.

LINEAR COEFFICIENT g FOR $K^\pm \to ~\pi^\pm \pi^0 \pi^0$

Unless otherwise stated, all experiments include terms quadratic in (s_3-s_0) / $m_{\pi^+}^2$. See note above on "Dalitz Plot Parameters for $K\to 3\pi$ Decays."

See BATUSOV 98 for a discussion of the discrepancy between their result and others, especially BOLOTOV 86. At this time we have no way to resolve the discrepancy so we depend on the large scale factor as a warning.

VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.626 ±0.007 OUR AVI	ERAGE					
$0.6259 \pm 0.0043 \pm 0.0093$	493k	AKOPDZHAN0)5 B	TNF	\pm	
$0.627\ \pm0.004\ \pm0.010$	252k	^{1,2} AJINENKO 0	3 B	ISTR	_	
ullet $ullet$ We do not use the	following	data for averages, fit	s, lii	mits, etc	c. • •	•
$0.736 \pm 0.014 \pm 0.012$	33k	BATUSOV 9	98	SPEC	+	
0.582 ± 0.021	43k	BOLOTOV 8	36	CALO	_	
0.670 ± 0.054	3263	BRAUN 7	′6 B	HLBC	+	
0.630 ± 0.038	5635	SHEAFF 7	7 5	HLBC	+	
0.510 ± 0.060	27k	SMITH 7	7 5	WIRE	+	
0.67 ± 0.06	1365	AUBERT 7	72	HLBC	+	
0.544 ± 0.048	4048	DAVISON 6	59	HLBC	+	Also emulsion

¹ Measured using in-flight decays of the 25 GeV negative secondary beam.

QUADRATIC COEFFICIENT h FOR $K^\pm ightarrow \ \pi^\pm \pi^0 \pi^0$

VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.052 ± 0.008 OUR AV	ERAGE					
$0.0551 \pm 0.0044 \pm 0.0086$	493k	AKOPDZHAN0)5 B	TNF	\pm	
$0.046\ \pm0.004\ \pm0.012$	252k	¹ AJINENKO ()3 B	ISTR	_	
• • • We do not use the fo	ollowing	data for averages, fits	, lim	its, etc.	• • •	
$0.128\ \pm0.015\ \pm0.024$	33k	BATUSOV 9	98	SPEC	+	
$0.037\ \pm0.024$	43k	BOLOTOV 8	36	CALO	_	
0.152 ± 0.082	3263	BRAUN 7	76 B	HLBC	+	
0.041 ± 0.030	5635	SHEAFF 7	75	HLBC	+	
0.009 ± 0.040	27k	SMITH 7	75	WIRE	+	
-0.01 ± 0.08	1365	AUBERT 7	72	HLBC	+	
0.026 ± 0.050	4048	DAVISON 6	59	HLBC	+	Also emulsion

 $^{^{}m 1}$ Measured using in-flight decays of the 25 GeV negative secondary beam.

QUADRATIC COEFFICIENT k FOR $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$

VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>
0.0054±0.0035 OUR AVER	RAGE	Error includes scale	factor	of 2.5.	
$0.0082\!\pm\!0.0011\!\pm\!0.0014$	493k				\pm
$0.001\ \pm0.001\ \pm0.002$	252k	¹ AJINENKO	03 B	ISTR	_
• • • We do not use the fo	llowing	data for averages, f	fits, lim	its, etc.	• • •
$0.0197 \pm 0.0045 \pm 0.0029$	33k	BATUSOV	98	SPEC	+

¹ Measured using in-flight decays of the 25 GeV negative secondary beam.

 $^{^2}$ They form new world averages $g_-=(0.617\pm0.018)$ and $g_+=(0.684\pm0.033)$ which give $\Delta g_{\tau'}=0.051\pm0.028.$

$(g_+-g_-) \,/\, (g_++g_-) \; { m FOR} \; {\it K}^\pm ightarrow \; \pi^\pm \pi^0 \pi^0$

A nonzero value for this quantity indicates CP violation.

VALUE (units 10^{-4}) **EVTS** DOCUMENT ID 1.8 ± 1.8 OUR AVERAGE ¹ BATLEY 07E NA48 $1.8 \pm \ 1.7 \pm 0.6$ 91.3M ² AKOPDZHAN..05 619k TNF $2 \pm 18 \pm 5$ We do not use the following data for averages, fits, limits, etc. ³ BATI FY 47M $1.8 \pm 2.2 \pm 1.3$ 06A NA48

ALTERNATIVE PARAMETRIZATIONS OF $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ DALITZ PLOT

The following functional form for the matrix element suggested by $\pi\pi$ rescattering in $K^+\to \pi^+ ``\pi^+\pi^-"\to \pi^+\pi^0\pi^0$ is used for this fit (CABIBBO 04A, CABIBBO 05): Matrix element $=M_0+M_1$ where $M_0=1+(1/2)g_0~u+(1/2)~h'~u^2+(1/2)k_0~v^2$ with $u=(s_3-s_0)/(m_{\pi^+})^2$, $v=(s_2-s_1)/(m_{\pi^+})^2$ and where M_1 takes into account the non-analytic piece due to pi pi rescattering amplitudes a_0 and a_2 ; The parameters g_0 and h' are related to the parameters g and h of the matrix element squared given in the previous section by the approximations $g_0\sim g^{PDG}$ and $h'\sim h^{PDG}-(g/2)^2$ and $k_0\sim k^{PDG}$.

In addition, we also consider the effective field theory framework of COLANGELO 06A and BISSEGGER 09 to extract g_{BB} and h_{BB}^{\prime} .

LINEAR COEFFICIENT g_0 FOR $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$

 $0.645 \pm 0.004 \pm 0.009$ 23M ² BATLEY 06B NA48 ±

 $^{^1}$ BATLEY 07E includes data from BATLEY 06A. Uses quadratic parametrization and PDG 06 value $g=0.626\pm0.007$ to obtain $g_+-g_-=(2.2\pm2.1\pm0.7)\times10^{-4}.$ Neglects any possible charge asymmetries in higher order slope parameters h or k.

² Asymmetry obtained assuming that $g_{+}+g_{-}=2\times0.652$ (PDG 02) and that asymmetries in h and k are zero.

³ Linear and quadratic slopes from PDG 04 are used. Any possible charge asymmetries in higher order slope parameters h or k are neglected.

 $^{^1}$ This fit is obtained with the CABIBBO 05 matrix element in the $2\pi^0$ invariant mass squared range 0.074094 $< m_{2\pi^0}^2 <$ 0.104244 GeV 2 . Electromagnetic corrections and CHPT constraints for $\pi\pi$ phase shifts (a_0 and a_2) have been used. Also measured (a_0-a_2) $m_{\pi^+}=0.2646\pm0.0021\pm0.0023$, where k_0 was kept fixed in the fit at -0.0099.

² Superseded by BATLEY 09A. This fit is obtained with the CABIBBO 05 matrix element in the $2\pi^0$ invariant mass squared range 0.074 GeV 2 < $m_{2\pi^0}^2$ < 0.097 GeV 2 , assuming k=0 (no term proportional to $(s_2-s_1)^2$) and excluding the kinematic region around the cusp $(m_{2\pi^0}^2=(2m_{\pi^+})^2\pm 0.000525~{\rm GeV}^2)$. Also π - π phase shifts a_0 and a_2 are measured: $(a_0-a_2)m_{\pi^+}=0.268\pm 0.010\pm 0.004\pm 0.013$ (external) and a_2 $m_{\pi^+}=-0.041\pm 0.022\pm 0.014$.

QUADRATIC COEFFICIENT h' FOR $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.047 \pm 0.012 \pm 0.011$ 23M ² BATLEY 06B NA48 \pm

² Superseded by BATLEY 09A. This fit is obtained with the CABIBBO 05 matrix element in the $2\pi^0$ invariant mass squared range 0.074 GeV² $< m_{2\pi^0}^2 < 0.097$ GeV², assuming k=0 (no term proportional to $(s_2-s_1)^2$) and excluding the kinematic region around the cusp $(m_{2\pi^0}^2=(2m_{\pi^+})^2\pm 0.000525$ GeV²). Also π - π phase shifts a_0 and a_2 are measured: $(a_0-a_2)m_{\pi^+}=0.268\pm 0.010\pm 0.004\pm 0.013$ (external) and a_2 $m_{\pi^+}=-0.041\pm 0.022\pm 0.014$.

QUADRATIC COEFFICIENT \emph{k}_0 FOR $\emph{K}^\pm \to \ \pi^\pm \pi^0 \pi^0$

VALUE	EVTS	DOCUMENT ID		TECN	CHG
$0.0095 \pm 0.00017 \pm 0.00048$	60M	$^{ m 1}$ BATLEY	09A	NA48	\pm

¹ Assumed $a_2 m_{\pi^+} = -0.0044$ in the fit.

LINEAR COEFFICIENT g_{BB} FOR $K^{\pm} ightarrow \, \pi^{\pm} \pi^{0} \pi^{0}$

VALUE	EVTS	DOCUMENT ID		TECN	<u>CHG</u>
$0.6219 \pm 0.0009 \pm 0.0033$	60M	$^{ m 1}$ BATLEY	09A	NA48	\pm

 $^{^1}$ This fit is obtained using parametrizations of COLANGELO 06A and BISSEGGER 09 in the $2\pi^0$ invariant mass squared range 0.074094 $< m_{2\pi^0}^2 <$ 0.104244 GeV 2 . Electromagnetic corrections and CHPT constraints for $\pi\pi$ phase shifts (a_0 and a_2) have been used. Also measured (a_0-a_2) $m_{\pi^+}=0.2633\pm0.0024\pm0.0024$, where k_0 was kept fixed in the fit at 0.0085.

QUADRATIC COEFFICIENT h_{BB}' FOR $K^\pm ightarrow \ \pi^\pm \pi^0 \pi^0$

<u>VALUE</u>	EVTS	DOCUMENT ID	TECN	<u>CHG</u>
$-0.0520\pm0.0009\pm0.0026$	60M	¹ BATLEY 09	A NA48	\pm

¹ This fit is obtained using parametrizations of COLANGELO 06A and BISSEGGER 09 in the $2\pi^0$ invariant mass squared range 0.074094 $< m_{2\pi^0}^2 < 0.104244 \text{ GeV}^2$. Electromagnetic corrections and CHPT constraints for $\pi\pi$ phase shifts (a_0 and a_2) have been used. Also measured (a_0-a_2) $m_{\pi^+}=0.2633\pm0.0024\pm0.0024$, where k_0 was kept fixed in the fit at 0.0085.

A REVIEW GOES HERE - Check our WWW List of Reviews

 $^{^1}$ This fit is obtained with the CABIBBO 05 matrix element in the $2\pi^0$ invariant mass squared range 0.074094 $< m_{2\pi^0}^2 <$ 0.104244 GeV 2 . Electromagnetic corrections and CHPT constraints for $\pi\pi$ phase shifts (a_0 and a_2) have been used. Also measured (a_0-a_2) $m_{\pi^+}=0.2646\pm0.0021\pm0.0023$, where k_0 was kept fixed in the fit at -0.0099.

$K_{\ell 3}^{\pm}$ FORM FACTORS

In the form factor comments, the following symbols are used.

 f_{\perp} and f_{\perp} are form factors for the vector matrix element.

 $f_{\mathcal{S}}$ and $f_{\mathcal{T}}$ refer to the scalar and tensor term.

$$f_0 = f_+ + f_- t/(m_{K^+}^2 - m_{\pi^0}^2).$$

t= momentum transfer to the $\pi.$

 λ_{+} and λ_{0} are the linear expansion coefficients of f_{+} and f_{0} :

$$f_{+}(t) = f_{+}(0) \left(1 + \lambda_{+} t / m_{\pi^{+}}^{2}\right)$$

For quadratic expansion

$$f_{+}(t) = f_{+}(0) \left(1 + \lambda'_{+} t / m_{\pi^{+}}^{2} + \frac{\lambda''_{+}}{2} t^{2} / m_{\pi^{+}}^{4}\right)$$

as used by KTeV. If there is a non-vanishing quadratic term, then λ_{\perp} represents an average slope, which is then different from λ'_{+} .

NA48 and ISTRA quadratic expansion coefficients are converted with

$$\lambda'_{+}{}^{PDG} = \lambda_{+}{}^{NA48} \text{ and } \lambda''_{+}{}^{PDG} = 2 \ \lambda'_{+}{}^{NA48}$$

$$\lambda'_{+}{}^{PDG} = (\frac{m_{\pi^{+}}}{m_{\pi^{0}}})^{2} \ \lambda_{+}{}^{ISTRA} \text{ and}$$

$$\lambda''_{+}{}^{PDG} = 2 \ (\frac{m_{\pi^{+}}}{m_{\pi^{0}}})^{4} \ \lambda'_{+}{}^{ISTRA}$$

ISTRA linear expansion coefficients are converted with
$$\lambda_+{}^{PDG}=(\frac{m_{\pi^+}}{m_{\pi^0}})^2~\lambda_+{}^{ISTRA}$$
 and $\lambda_0{}^{PDG}=(\frac{m_{\pi^+}}{m_{\pi^0}})^2~\lambda_0{}^{ISTRA}$

The pole parametrization is

$$f_{+}(t) = f_{+}(0) \left(\frac{M_{V}^{2}}{M_{V}^{2} - t} \right)$$

$$f_{0}(t) = f_{0}(0) \left(\frac{M_{S}^{2}}{M_{S}^{2} - t} \right)$$

where M_V and M_S are the vector and scalar pole masses.

The following abbreviations are used:

DP = Dalitz plot analysis.

 $PI = \pi$ spectrum analysis.

 $\mathsf{MU} = \mu$ spectrum analysis.

POL= μ polarization analysis.

BR = $K_{u3}^{\pm}/K_{e3}^{\pm}$ branching ratio analysis.

E = positron or electron spectrum analysis.

RC = radiative corrections.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN K_{e3}^{\pm} DECAY) These results are for a linear expansion only. See the next section for fits including a

quadratic term. For radiative correction of the K_{e3}^{\pm} Dalitz plot, see GINSBERG 67, BECHERRAWY 70, CIRIGLIANO 02, CIRIGLIANO 04, and ANDRE 07. Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^\pm$ and $K_{\ell 3}^0$ Form Factors" above. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters **B592** 1 (2004).

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
2.97 ±0.05 OUR FIT	- Assun	ning μ - e universality				
2.98 ± 0.05 OUR AV	ERAGE					
$3.044 \pm 0.083 \pm 0.074$	1.1M	AKOPDZANOV	09	TNF	\pm	
$2.966 \pm 0.050 \pm 0.034$	919k	¹ YUSHCHENKO	04 B	ISTR	_	DP
$2.78 \pm 0.26 \pm 0.30$	41k		00	SPEC	+	DP
$2.84 \pm 0.27 \pm 0.20$	32k		91	SPEC		PI, no RC
2.9 ± 0.4	62k	³ BOLOTOV	88	SPEC		PI, no RC
• • • We do not use t	he follow	ing data for averages, fit	ts, lin	nits, etc.	. • • •	•
$3.06 \pm 0.09 \pm 0.06$	550k	^{1,4} AJINENKO	03 C	ISTR	_	DP
$2.93 \pm 0.15 \pm 0.2$	130k	⁴ AJINENKO	02	SPEC		DP
1						

¹Rescaled to agree with our conventions as noted above.

λ_+ (LINEAR ENERGY DEPENDENCE OF f_+ IN $K_{\mu3}^\pm$ DECAY)

Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{\pm}$ and $K_{\ell 3}^{0}$ Form Factors" above. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters **B592** 1 (2004).

<i>VALUE</i> (units 10 ⁻²)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT			
2.97 \pm 0.05 OUR FIT Assuming μ - e universality									
2.96 \pm 0.17 OUR FIT Not assuming μ - e universality									
$2.96\!\pm\!0.14\!\pm\!0.10$	540k	¹ YUSHCHENK	O04	ISTR	_	DP			
 • • We do not use the following data for averages, fits, limits, etc. 									
$3.21 \!\pm\! 0.45$	112k	² AJINENKO	03	ISTR	_	DP			
4									

¹Rescaled to agree with our conventions as noted above.

λ_0 (LINEAR ENERGY DEPENDENCE OF f_0 IN $K_{\mu3}^\pm$ DECAY)

Results labeled OUR FIT are discussed in the review " $K_{\ell 3}^{\pm}$ and $K_{\ell 3}^{0}$ Form Factors" above. For earlier, lower statistics results, see the 2004 edition of this review, Physics Letters **B592** 1 (2004).

$VALUE$ (units 10^{-2})	$d\lambda_0/d\lambda_{\pm}$	EVTS	DOCUMENT ID		TECN	CHG	COMMENT			
1.95±0.12 OUR FI	T Assum	ing μ - e un	iversality							
1.96 \pm 0.13 OUR FIT Not assuming μ - e universality										
$+1.96\pm0.12\pm0.06$	-0.348	540k	¹ YUSHCHENK	O04	ISTR	_	DP			
• • • We do not use	the followi	ng data fo	r averages, fits, li	mits,	etc. • •	•				
$+2.09\pm0.45$	-0.46	112k	² AJINENKO	03	ISTR	_	DP			
$+1.9 \pm 0.64$		24k	³ HORIE	01	SPEC	+	BR			
+1.9 +1.0	+0.03	55k	⁴ HEINTZE	77	SPEC	+	BR			

¹Rescaled to agree with our conventions as noted above.

 $^{^2}$ AKIMENKO 91 state that radiative corrections would raise λ_+ by 0.0013.

 $^{^3}$ BOLOTOV 88 state radiative corrections of GINSBERG 67 would raise λ_+ by 0.002.

⁴ Superseded by YUSHCHENKO 04B.

²Superseded by YUSHCHENKO 04.

² Superseded by YUSHCHENKO 04.

 $^{^3}$ HORIE 01 assumes $\mu\text{-}e$ universality in $K_{\ell 3}^+$ decay and uses SHIMIZU 00 value $\lambda = 0.0278 \pm 0.0040$ from K_{e3}^\pm decay.

 $^{^4\,{\}rm HEINTZE}$ 77 uses $\lambda_+=0.029\pm0.003.~d\lambda_0/d\lambda_+$ estimated by us.

λ'_{+} (LINEAR K_{e3}^{\pm} FORM FACTOR FROM QUADRATIC FIT)

VALUE (units 10^{-2}) DOCUMENT ID 1,2 YUSHCHENKO04B ISTR $2.485 \pm 0.163 \pm 0.034$ 919k DΡ • • • We do not use the following data for averages, fits, limits, etc. • • • 1,3 AJINENKO 550k 03C ISTR -

¹Rescaled to agree with our conventions as noted above.

 2 YUSHCHENKO 04B λ'_+ and λ''_+ are strongly correlated with coefficient $ho(\lambda'_+, \lambda''_+)$

 $_{3}^{-0.95}$. Superseded by YUSHCHENKO 04B.

λ''_{+} (QUADRATIC K_{e3}^{\pm} FORM FACTOR)

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN CHG COMMENT ^{1,2} YUSHCHENKO04B ISTR **0.192±0.062±0.071** 919k • • • We do not use the following data for averages, fits, limits, etc. • • 550k 1,3 AJINENKO 03C ISTR -0.5 ± 0.7 ± 1.5

¹Rescaled to agree with our conventions as noted above.

²YUSHCHENKO 04B λ'_{+} and λ''_{+} are strongly correlated with coefficient $\rho(\lambda'_{+}, \lambda''_{+})$ 3 = -0.95. Superseded by YUSHCHENKO 04B.

$|f_S/f_+|$ FOR K_{e3}^{\pm} DECAY Ratio of scalar to f_+ couplings.

VALUE (units 10^{-2}) CL% EVTSDOCUMENT ID TECN CHG COMMENT

$-0.3 \begin{array}{c} +0.8 \\ -0.7 \end{array}$ OUR AVERAGE

 $-0.37 {+0.66\atop -0.56} \pm 0.41$ YUSHCHENKO04B ISTR $-\lambda'_{\perp}, \lambda''_{\perp}, f_{S}$ fit 919k SPEC + λ_+ , f_S , f_T fit $0.2 \pm 2.6 \pm 1.4$ **SHIMIZU** 41k

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.2 \ ^{+2.0}_{-2.2} \ \pm 0.3$		550k	¹ AJINENKO	03 C	ISTR	_	λ_+ , f_S , f_T fit
$-1.9 \begin{array}{l} +2.5 \\ -1.6 \end{array}$		130k	¹ AJINENKO	02	SPEC		λ_+ , f_S fit
$7.0\ \pm 1.6\ \pm 1.6$		32k	AKIMENKO	91	SPEC		λ_+ , f_S , f_T , ϕ fit
0 ± 10		2827	² BRAUN	75	HLBC	+	·
< 13	90	4017	CHIANG	72	OSPK	+	
14^{+3}_{-4}		2707	² STEINER	71	HLBC	+	λ_+ , f_S , f_T , ϕ fit
< 23	90		BOTTERILL	68 C	ASPK		
< 18	90		BELLOTTI	67 B	HLBC		
< 30	95		KALMUS	67	HLBC	+	

¹Superseded by YUSHCHENKO 04B.

$|f_T/f_+|$ FOR K_{e3}^{\pm} DECAY Ratio of tensor to f_+ couplings.

VALUE (units 10^{-2}) CL	.% <u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT			
- 1.2± 2.3 OUR AVERAGE									
$-\ 1.2\pm\ 2.1\pm\ 1.1$	919k	YUSHCHENK	О04в	ISTR	_	$\lambda'_{+}, \lambda''_{+}, f_{T}$ fit			
1 ± 14 ± 9	41k	SHIMIZU	00	SPEC	+	λ_+ , f_S , f_T fit			
						, , ,			
HTTP://PDG.LBL.	.GOV	Page 32		Create	ed: 5	/30/2017 17:22			

² Statistical errors only.

• • • We do not use the following data for averages, fits, limits, etc. • • •

f_S/f_+ FOR $K_{\mu 3}^{\pm}$ DECAY Ratio of scalar to f_+ couplings.

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID	TECN	CHG	COMMENT	
$0.17 \pm 0.14 \pm 0.54$	540k	¹ YUSHCHENKO	D04 ISTR	_	DP	
ullet $ullet$ We do not use	the followin	g data for averages	s, fits, limits,	etc. •	• •	
0.4 + 0.5 + 0.5	112k	² AJINENKO	03 ISTR	_	DP	

 $^{^{}m 1}$ The second error is the theoretical error from the uncertainty in the chiral perturbation theory prediction for λ_0 , ± 0.0053 , combined in quadrature with the systematic error

f_T/f_+ FOR $K_{\mu 3}^\pm$ DECAY Ratio of tensor to f_+ couplings.

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
$-0.07 \pm 0.71 \pm 0.20$	540k	YUSHCHENK	O04	ISTR	_	DP
\bullet \bullet We do not use t	he followin	g data for average	s, fits	, limits, (etc. •	• •
$-2.1 \pm 2.8 \pm 1.4$	112k	$^{ m 1}$ AJINENKO	03	ISTR	_	DP
2 ± 12	1585	BRAUN	75	HLBC		

 $^{^{}m 1}$ The second error is the theoretical error from the uncertainty in the chiral perturbation theory prediction for λ_0 . Superseded by YUSHCHENKO 04.

K_{IA}^{\pm} FORM FACTORS

Based on the parametrizations of AMOROS 99, the $K_{\ell 4}^{\pm}$ form factors can

$$\begin{aligned} F_s &= f_s + f_s' \, \mathbf{q}^2 + f_s'' \, \mathbf{q}^4 + f_e' \, \mathbf{S}_e \, / \, 4m_\pi^2 \\ F_p &= f_p \\ G_p &= g_p + g_p' \, \mathbf{q}^2 \\ H_p &= h_p \end{aligned}$$

where q² = $(S_{\pi}^{P}/4m_{\pi}^{2}) - 1$, S_{π} is the invariant mass squared of the dipion, and S_{e} is the invariant mass squared of the dilepton.

¹Superseded by YUSHCHENKO 04B.

² Statistical errors only.

 $^{^2\}text{The second error}$ is the theoretical error from the uncertainty in the chiral perturbation theory prediction for λ_0 . Superseded by YUSHCHENKO 04.

f_s FOR $K^{\pm} \rightarrow \pi^+\pi^-e^{\pm}\nu$ DECAY

١	/ALUE	EVTS	DOCUMENT ID	DOCUMENT ID				
Ę	5.712±0.032 OUR AVE	RAGE						
5	$5.705\pm0.003\pm0.035$	1.1M	¹ BATLEY	12	NA48	\pm		
5	$5.75 \pm 0.02 \pm 0.08$	400k	² PISLAK	03	B865	+		

¹ BATLEY 12 uses data collected in 2003–2004. The result is obtained from a measurement of $\Gamma(\pi^+\pi^-e\nu)/\Gamma(\pi^+\pi^-\pi^+)$ and assumed PDG 12 value of $\Gamma(\pi^+\pi^-\pi^+)/\Gamma=(5.59\pm0.04)\times10^{-2}$.

f_s'/f_s FOR $K^{\pm} \rightarrow \pi^+\pi^-e^{\pm}\nu$ DECAY

15.2±0.7±0.5	1.13M	1 BATLEY	10 C	NA48	<u>+</u>
<i>VALUE</i> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG

• • • We do not use the following data for averages, fits, limits, etc. • •

 $17.2 \pm 0.9 \pm 0.6$ 670k ² BATLEY 08A NA48 \pm

f_s''/f_s FOR $K^{\pm} \rightarrow \pi^+\pi^-e^{\pm}\nu$ DECAY

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG
$-7.3\pm0.7\pm0.6$	1.13M	1 BATLEY	10 C	NA48	±

• • We do not use the following data for averages, fits, limits, etc.

 $-9.0\pm0.9\pm0.7$ 670k ² BATLEY 08A NA48 \pm

f_e'/f_s FOR $K^{\pm} \rightarrow \pi^+\pi^-e^{\pm}\nu$ DECAY

VALUE (units 10^{-2})	EVTS	DOCUMENT ID)	TECN	CHG	
$6.8 \pm 0.6 \pm 0.7$	1.13M	$^{ m 1}$ BATLEY	10 C	NA48	\pm	
• • • We do not use the	ne followin	g data for averag	es, fits,	limits,	etc. • •	•
$8.1 \pm 0.8 \pm 0.9$	670k	² BATLEY	08A	NA48	\pm	

² Radiative corrections included. Using Roy equations and not including isospin breaking, PISLAK 03 obtains the following $\pi\pi$ scattering lengths $a_0^0=0.228\pm0.012\pm0.004^{+0.012}_{-0.016}$ (theor.) and $a_0^2=-0.0365\pm0.0023\pm0.0008^{+0.0031}_{-0.0026}$ (theor.).

¹ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_0^0=0.2220\pm0.0128\pm0.0050\pm0.0037$ (theor.), $a_0^2=-0.0432\pm0.0086\pm0.0034\pm0.0028$ (theor.). The correlation with $f_s''/f_s=-0.954$ and with $f_e'/f_s=0.080$. Supersedes BATLEY 08A.

² Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi\pi$ scattering length $a_0^0=0.233\pm0.016\pm0.007$ $a_0^2=-0.0471\pm0.011\pm0.004$.

 $^{^1}$ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_0^0=0.2220\pm0.0128\pm0.0050\pm0.0037$ (theor.), $a_0^2=-0.0432\pm0.0086\pm0.0034\pm0.0028$ (theor.). The correlation with $f_S'/f_S=-0.954$ and with $f_e'/f_S=0.019$. Supersedes BATLEY 08A.

² Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi\pi$ scattering length $a_0^0=0.233\pm0.016\pm0.007$ $a_0^2=-0.0471\pm0.011\pm0.004$.

- ¹ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_0^0=0.2220\pm0.0128\pm0.0050\pm0.0037$ (theor.), $a_0^2=-0.0432\pm0.0086\pm0.0034\pm0.0028$ (theor.). The correlation with $f_s'/f_s=0.080$ and with $f_s''/f_s=0.019$. Supersedes BATLEY 08A.
- ² Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi\pi$ scattering length $a_0^0=0.233\pm0.016\pm0.007$ $a_0^2=-0.0471\pm0.011\pm0.004$.

f_p/f_s FOR $K^{\pm} \rightarrow \pi^+\pi^-e^{\pm}\nu$ DECAY

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG
$-4.8\pm0.3\pm0.4$	1.13M	¹ BATLEY	10 C	NA48	\pm

- • We do not use the following data for averages, fits, limits, etc. •
- $-4.8 \pm 0.4 \pm 0.4$ 670k ² BATLEY 08A NA48 ±
 - ¹ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_0^0=0.2220\pm0.0128\pm0.0050\pm0.0037$ (theor.), $a_0^2=-0.0432\pm0.0086\pm0.0034\pm0.0028$ (theor.). Supersedes BATLEY 084
 - ²Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi\pi$ scattering length $a_0^0=0.233\pm0.016\pm0.007$ $a_0^2=-0.0471\pm0.011\pm0.004$.

g_p/f_s FOR $K^{\pm} \rightarrow \pi^+\pi^-e^{\pm}\nu$ DECAY

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG
$86.8 \pm 1.0 \pm 1.0$	1.13M	$^{ m 1}$ BATLEY	10 C	NA48	\pm

• • • We do not use the following data for averages, fits, limits, etc. • •

 $87.3\pm1.3\pm1.2$ 670k 2 BATLEY 08A NA48 \pm $80.9\pm0.9\pm1.2$ 400k 3 PISLAK 03 B865 \pm

- ¹ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_0^0=0.2220\pm0.0128\pm0.0050\pm0.0037$ (theor.), $a_0^2=-0.0432\pm0.0086\pm0.0034\pm0.0028$ (theor.). Supersedes BATLEY 08A. The correlation with $g_D'/f_S=-0.914$. Supersedes BATLEY 08A.
- ² Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi\pi$ scattering length $a_0^0=0.233\pm0.016\pm0.007$ $a_0^2=-0.0471\pm0.011\pm0.004$.
- ³ Radiative corrections included. Using Roy equations PISLAK 03 obtains the following scattering lengths $a_0^0=0.203\pm0.003\pm0.004,\ a_0^2=-0.055\pm0.023\pm0.003.$

g_p'/f_s FOR $K^\pm o \pi^+\pi^-e^\pm u$ DECAY

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	<u>CHG</u>
$8.9 \pm 1.7 \pm 1.3$	1.13M	$^{ m 1}$ BATLEY	10 C	NA48	\pm
\bullet \bullet We do not use the	ne following	data for averages	s, fits,	limits,	etc. • • •
$8.1 \pm 2.2 \pm 1.5$	670k	² BATLEY	08A	NA48	\pm
$12.0\!\pm\!1.9\!\pm\!0.7$	400k	³ PISLAK	03	B865	\pm

- ¹ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_0^0=0.2220\pm0.0128\pm0.0050\pm0.0037$ (theor.), $a_0^2=-0.0432\pm0.0086\pm0.0034\pm0.0028$ (theor.). The correlation with $g_D/f_S=-0.914$. Supersedes BATLEY 08A.
- ² Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi\pi$ scattering length $a_0^0=0.233\pm0.016\pm0.007$ $a_0^2=-0.0471\pm0.011\pm0.004$.
- ³ Radiative corrections included. Using Roy equations PISLAK 03 obtains the following scattering lengths $a_0^0 = 0.203 \pm 0.033 \pm 0.004$, $a_0^2 = -0.055 \pm 0.023 \pm 0.003$.

h_p/f_s FOR $K^{\pm} \rightarrow \pi^+\pi^-e^{\pm}\nu$ DECAY

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	CHG
$-39.8 \pm 1.5 \pm 0.8$	1.13M	$^{ m 1}$ BATLEY	10 C	NA48	\pm

• • • We do not use the following data for averages, fits, limits, etc. • • •

- $-41.1\pm1.9\pm0.8$ 670k 2 BATLEY 08A NA48 \pm $-51.3\pm3.3\pm3.5$ 400k 3 PISLAK 03 B865 \pm
 - ¹ Radiative corrections included. Using Roy equations and including isospin breaking, BATLEY 10C obtains the following scattering lengths $a_0^0=0.2220\pm0.0128\pm0.0050\pm0.0037$ (theor.), $a_0^2=-0.0432\pm0.0086\pm0.0034\pm0.0028$ (theor.). Supersedes BATLEY 08A
 - ² Radiative corrections included. Using Roy equations and not including isospin breaking, BATLEY 08A obtains the following $\pi\pi$ scattering length $a_0^0=0.233\pm0.016\pm0.007$ $a_0^2=-0.0471\pm0.011\pm0.004$.
 - ³ Radiative corrections included. Using Roy equations PISLAK 03 obtains the following scattering lengths $a_0^0=0.203\pm0.003, a_0^2=-0.055\pm0.023\pm0.003$.

DECAY FORM FACTOR FOR $\mathit{K}^{\pm} \rightarrow \ \pi^0 \pi^0 \mathit{e}^{\pm} \nu$

Given in BOLOTOV 86B, BARMIN 88B, and SHIMIZU 04.

$K^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ FORM FACTORS

For definitions of the axial-vector F_A and vector F_V form factor, see the "Note on $\pi^\pm \to \ell^\pm \nu \gamma$ and $K^\pm \to \ell^\pm \nu \gamma$ Form Factors" in the π^\pm section. In the kaon literature, often different definitions $a_K = F_A/m_K$ and $v_K = F_V/m_K$ are used.

$F_A + F_V$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \to e \nu_e \gamma$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
					See the ideogram below.
$0.125\!\pm\!0.007\!\pm\!0.001$	1.4K	¹ AMBROSINO	09E	KLOE	E_{γ} in 10–250 MeV,
					$p_{e} > 200 \; \mathrm{MeV/c}$
0.147 ± 0.011	51	² HEINTZE	79	SPEC	•
$0.150 ^{+ 0.018}_{- 0.023}$	56	³ HEARD	75	SPEC	

 $^{^3}$ HEARD 75 quotes absolute value of $|F_A+F_V|\sin \theta_c$. We use $\sin \theta_c=V_{us}=0.2205$.

 $\mathit{F_A} + \mathit{F_V}$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $\mathit{K} \rightarrow \mathit{e}\,\nu_{\scriptscriptstyle{P}}\,\gamma$

$F_A + F_V$, SUM OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K ightarrow ~\mu u_\mu \gamma$

<u>VALUE</u>	<u>CL% EVTS</u>	DOCUMENT ID		TECN	<u>CHG</u>
$0.165 \pm 0.007 \pm 0.011$	2588	¹ ADLER	00 B	B787	+
• • • We do not use the fo	llowing data for	averages, fits, lim	its, etc	c. • • •	
-1.2 to 1.1	90	DEMIDOV	90	XEBC	
< 0.23	90	$^{ m 1}$ AKIBA	85	SPEC	

¹Quotes absolute value. Sign not determined.

F_A-F_V , DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FACTOR FOR $K \to e \nu_e \gamma$

 $^{^1}$ Vector form factor fitted with a linear function, V(x) = F_V (1 + $\lambda(1-x)$), x = 2E_{\gamma}/m_K. The fitted value of $\lambda = 0.38 \pm 0.20 \pm 0.02$ with a correlation of -0.93 between (F_V + F_A) and λ .

² HEINTZE 79 quotes absolute value of $|F_A + F_V| \sin \theta_c$. We use $\sin \theta_c = V_{us} = 0.2205$.

$F_A - F_V$, DIFFERENCE OF AXIAL-VECTOR AND VECTOR FORM FAC-TOR FOR $K \rightarrow \mu \nu_{\mu} \gamma$

VALUE	CL%	<u>EVTS</u>	<u>DOCUMENT II</u>	<u> </u>	TECN	<u>CHG</u>
-0.21 ± 0.06		22K	DUK	11	ISTR	_
● ● We do not	use th	ne follow	ing data for averag	ges, fits,	limits,	etc. • • •
-0.24 to 0.04	90	2588	ADLER	00 B	B787	+
-2.2 to 0.6	90		DEMIDOV	90	XEBC	
-2.5 to 0.3	90		AKIBA	85	SPEC	

K[±] CHARGE RADIUS

VALUE (fm)	DOCUMENT ID		COMMENT					
0.560±0.031 OUR AVERAGE								
0.580 ± 0.040	AMENDOLIA	86 B	$Ke \rightarrow Ke$					
0.530 ± 0.050	DALLY	80	$Ke \rightarrow Ke$					
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
0.620 ± 0.037	BLATNIK	79	$VMD + dispersion \ relations$					

K^+ LONGITUDINAL POLARIZATION OF EMITTED μ^+

VALUE	CL%	DOCUMENT ID		TECN	CHG	COMMENT
<-0.990	90	$^{ m 1}$ AOKI	94	SPEC	+	
ullet $ullet$ $ullet$ We do not use	the follow	ing data for averag	es, fit	s, limits,	etc. •	• •
<-0.990	90	IMAZATO		SPEC		Repl. by AOKI 94
-0.970 ± 0.047		² YAMANAKA	86	SPEC	+	
-1.0 ± 0.1		² CUTTS	69	SPRK		
-0.96 ± 0.12		² COOMBES	57	CNTR	+	
-						

 $^{^{1}}$ AOKI 94 measures $\xi P_{\mu} = -$ 0.9996 \pm 0.0030 \pm 0.0048. The above limit is obtained by summing the statistical and systematic errors in quadrature, normalizing to the physically significant region ($|\xi P_{\mu}| < 1$) and assuming that $\xi=1$, its maximum value.

FORWARD-BACKWARD ASYMMETRY IN K^{\pm} DECAYS

$$\mathsf{A}_{FB}(\mathsf{K}_{\pi\mu\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\mu})>0) - \Gamma(\cos(\theta_{K\mu})<0)}{\Gamma(\cos(\theta_{K\mu})>0) + \Gamma(\cos(\theta_{K\mu})<0)}$$

$$\frac{\mathsf{VALUE}}{\mathsf{<2.3}\times10^{-2}} \qquad \frac{\mathsf{CL}\%}{\mathsf{90}} \qquad \frac{\mathsf{DOCUMENT\ ID}}{\mathsf{1}\ \mathsf{BATLEY}} \qquad \frac{\mathsf{TECN}}{\mathsf{11A}} \qquad \mathsf{NA48}$$

² Assumes ξ =1.

 $^{^{1}}$ BATLEY 11A gives a corresponding value of the asymmetry A $_{FB} = (-2.4 \pm 1.8) \times 10^{-2}$.

K[±] REFERENCES

ARTAMONOV	16	PR D94 032012	A.V. Artamonov et al.	(BNL E949 Collab.)
BABUSCI	14B	PL B738 128	D. Babusci et al.	(KLOE, KLOE-2 Collab.)
BATLEY	14	PL B730 141	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
BATLEY	14A	JHEP 1408 159	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
LAZZERONI	14	PL B732 65	C. Lazzeroni et al.	(CERN NA62 Collab.)
UVAROV	14	PAN 77 725	V.A. Uvarov <i>et al.</i>	(ISTRA+ Collab.)
1 4 7 7 E D O N II	10	Translated from YAF 77		(CEDNI MACO C II I)
LAZZERONI	13	PL B719 326	C. Lazzeroni <i>et al.</i>	(CERN NA62 Collab.)
BATLEY	12	PL B715 105	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
PDG BATLEY	12 11A	PR D86 010001 PL B697 107	J. Beringer <i>et al.</i> J.R. Batley <i>et al.</i>	(PDG Collab.) (CERN NA48/2 Collab.)
DUK	117	PL B695 59	V.A. Duk <i>et al.</i>	(ISTRA+ Collab.)
LAZZERONI	11	PL B698 105	C. Lazzeroni <i>et al.</i>	(CERN NA62 Collab.)
ADLER	10	PR D81 092001	S. Adler <i>et al.</i>	(BNL E787 Collab.)
BATLEY	10A	EPJ C68 75	J.R. Batley et al.	(CERN NA48/2 Collab.)
BATLEY	10C	EPJ C70 635	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
PDG	10	JP G37 075021	K. Nakamura <i>et al.</i>	(PDG Collab.)
PISLAK	10A	PRL 105 019901E	S. Pislak <i>et al.</i>	(BNL E865 Collab.)
AKOPDZANOV	/ 09	PAN 71 2074	G.A. Akopdzanov et al.	` (IHEP)
		Translated from YAF 71		,
AMBROSINO	09E	EPJ C64 627	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
Also		EPJ_C65_703_(errat.)	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
BATLEY	09	PL B677 246	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
BATLEY	09A	EPJ C64 589	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
BISSEGGER	09	NP B806 178	M. Bissegger <i>et al.</i>	
AMBROSINO	80	JHEP 0801 073	F. Ambrosino et al.	(KLOE Collab.)
AMBROSINO	08A	JHEP 0802 098	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
AMBROSINO	08E	PL B666 305	F. Ambrosino et al.	(KLOE Collab.)
ARTAMONOV	80	PRL 101 191802	A.V. Artamonov et al.	(BNL E949 Collab.)
Also		PR D79 092004	A.V. Artamonov et al.	(BNL E949 Collab.)
BATLEY	80	PL B659 493	J.R. Batley et al.	(CERN NA48/2 Collab.)
BATLEY	08A	EPJ C54 411	J.R. Batley et al.	(CERN NA48/2 Collab.)
AKIMENKO	07	PAN 70 702	S.A. Akimenko <i>et al.</i>	(ISTRA+ Collab.)
ANDRE	07	Translated from YAF 70 ANP 322 2518	T. Andre	(EFI)
BATLEY	07A	EPJ C50 329	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
Also	UIA	EPJ C52 1021 (errat.)	J.R. Batley et al.	(CERN NA48/2 Collab.)
BATLEY	07B	PL B649 349	J.R. Batley et al.	(CERN NA48/2 Collab.)
BATLEY	07E	EPJ C52 875	J.R. Batley et al.	(CERN NA48/2 Collab.)
TCHIKILEV	07	PAN 70 29	O.G. Tchikilev <i>et al.</i>	(ISTRA+ Collab.)
ALIEV	06	EPJ C46 61	M.A. Aliev <i>et al.</i>	(KEK E470 Collab.)
AMBROSINO	06A	PL B632 76	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
BATLEY	06	PL B634 474	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
BATLEY	06A	PL B638 22	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
Also		PL B640 297 (errat.)	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
BATLEY	06B	PL B633 173	J.R. Batley <i>et al.</i>	(CERN NA48/2 Collab.)
COLANGELO	06A	PL B638 187	G. Colangelo et al.	(
MA	06	PR D73 037101	H. Ma <i>et al.</i>	(BNL E865 Collab.)
PDG	06	JP G33 1	WM. Yao et al.	` (PDG Collab.)
SHIMIZU	06	PL B633 190	S. Shimizu et al.	(KEK E470 Collab.)
UVAROV	06	PAN 69 26	V.A. Uvarov et al.	` (ISTRA+ Collab.)
AKOPDZHAN	05	EPJ C40 343	G.A. Akopdzhanov et al.	(IHEP)
Also		PAN 68 948	G.A. Akopdzhanov et al.	(IHEP)
		Translated from YAF 68		
AKOPDZHAN	05B	JETPL 82 675	G.A. Akopdzhanov <i>et al.</i>	(IHEP)
A DTAMONOV	ΩE	Translated from ZETFP		(BNI E040 Callah)
ARTAMONOV CABIBBO	05 05	PL B623 192 JHEP 0503 021	A.V. Artamonov <i>et al.</i> N. Cabibbo, G. Isidori	(BNL E949 Collab.) (CERN, ROMAI, FRAS)
SHER	05	PR D72 012005	A. Sher <i>et al.</i>	(BNL E865 Collab.)
ABE	03 04F	PRL 93 131601	M. Abe <i>et al.</i>	(KEK E246 Collab.)
Also	041	PR D73 072005	M. Abe et al.	(KEK E246 Collab.)
ADLER	04	PR D70 037102	S. Adler <i>et al.</i>	(BNL E787 Collab.)
ALOISIO	04A	PL B597 139	A. Aloisio <i>et al.</i>	(KLOE Collab.)
ANISIMOVSK		PRL 93 031801	V.V. Anisimovsky et al.	(BNL E949 Collab.)
Also		PR D77 052003	S. Adler <i>et al.</i>	(BNL E949 Collab.)
CABIBBO	04A	PRL 93 121801	N. Cabibbo	(CERN, ROMAI)
CIRIGLIANO	04	EPJ C35 53	V. Cirigliano, H. Neufeld,	
PDG	04	PL B592 1	S. Eidelman et al.	(PDG Collab.)
SHIMIZU	04	PR D70 037101	S. Shimizu et al.	(KEK E470 Collab.)
YUSHCHENKO	04	PL B581 31	O.P. Yushchenko et al.	` (INRM, INRM)
				. ,

YUSHCHENKO	04B	PL B589 111	O.P. Yushchenko et al.	(INRM)
AJINENKO	03	PAN 66 105	I.V. Ajinenko <i>et al.</i>	(IHEP, INRM)
		Translated from YAF 66		(,)
AJINENKO	03B	PL B567 159	I.V. Ajinenko <i>et al.</i>	(IHEP, INRM)
AJINENKO	03C	PL B574 14	I.V. Ajinenko <i>et al.</i>	(IHEP, INRM)
ALIEV	03	PL B554 7	M.A. Aliev et al.	(KEK E470 Collab.)
ANISIMOVSK		PL B562 166	V.V. Anisimovsky <i>et al.</i>	(1.211 2110 001148.)
PISLAK	03	PR D67 072004	S. Pislak <i>et al.</i>	(BNL E865 Collab.)
Also	05	PR D81 119903E	S. Pislak <i>et al.</i>	(BNL E865 Collab.)
SHER	03	PRL 91 261802	A. Sher et al.	(BNL E865 Collab.)
ADLER	03		S. Adler <i>et al.</i>	
		PRL 88 041803		(BNL E787 Collab.)
ADLER	02B	PR D65 052009	S. Adler <i>et al.</i>	(BNL E787 Collab.)
ADLER	02C	PL B537 211	S. Adler <i>et al.</i>	(BNL E787 Collab.)
AJINENKO	02	PAN 65 2064	I.V. Ajinenko <i>et al.</i>	(IHEP, INRM)
CIDICLIANO	00	Translated from YAF 65		() (IEN) (ALE MADC)
CIRIGLIANO	02	EPJ C23 121	V. Cirigliano et al.	(VIEN, VALE, MARS)
PARK	02	PRL 88 111801	H.K. Park et al.	(FNAL HyperCP Collab.)
PDG	02	PR D66 010001	K. Hagiwara <i>et al.</i>	(PDG Collab.)
POBLAGUEV	02	PRL 89 061803	A.A. Poblaguev <i>et al.</i>	(BNL 865 Collab.)
ADLER	01	PR D63 032004	S. Adler <i>et al.</i>	(BNL E787 Collab.)
HORIE	01	PL B513 311	K. Horie <i>et al.</i>	(KEK E426 Collab.)
PISLAK	01	PRL 87 221801	S. Pislak <i>et al.</i>	(BNL E865 Collab.)
Also		PR D67 072004	S. Pislak <i>et al.</i>	(BNL E865 Collab.)
Also		PRL 105 019901E	S. Pislak <i>et al.</i>	(BNL E865 Collab.)
ADLER	00	PRL 84 3768	S. Adler <i>et al.</i>	(BNL E787 Collab.)
	00B	PRL 85 2256	S. Adler <i>et al.</i>	
ADLER				(BNL E787 Collab.)
ADLER	00C	PRL 85 4856	S. Adler <i>et al.</i>	(BNL E787 Collab.)
APPEL	00	PRL 85 2450	R. Appel <i>et al.</i>	(BNL 865 Collab.)
Also		Thesis, Yale Univ.	D.R. Bergman	
Also		Thesis, Univ. Zurich	S. Pislak	
APPEL	00B	PRL 85 2877	R. Appel <i>et al.</i>	(BNL 865 Collab.)
MA	00	PRL 84 2580	H. Ma et al.	(BNL 865 Collab.)
PDG	00	EPJ C15 1	D.E. Groom et al.	` (PDG Collab.)
SHIMIZU	00	PL B495 33	S. Shimizu <i>et al.</i>	(KEK E246 Collab.)
ABE	995	PRL 83 4253	M. Abe <i>et al.</i>	(KEK E246 Collab.)
AMOROS	99	JP G25 1607	G. Amoros, J. Bijnens	(LUND, HELS)
APPEL	99	PRL 83 4482	R. Appel <i>et al.</i>	(BNL 865 Collab.)
ADLER	98	PR D58 012003	S. Adler <i>et al.</i>	(BNL E787 Collab.)
BATUSOV	98	NP B516 3	V.Y. Batusov et al.	
DAMBROSIO	98A	JHEP 9808 004	G. D'Ambrosio <i>et al.</i>	
ADLER	97	PRL 79 2204	S. Adler <i>et al.</i>	(BNL E787 Collab.)
ADLER	97C	PRL 79 4756	S. Adler <i>et al.</i>	(BNL E787 Collab.)
BERGMAN	97	Thesis, Yale Univ.	D.R. Bergman	,
KITCHING	97	PRL 79 4079	P. Kitching et al.	(BNL E787 Collab.)
PISLAK	97	Thesis, Univ. Zurich	S. Pislak	(Bive Eror conds.)
ADLER	96	PRL 76 1421	S. Adler <i>et al.</i>	(DNI E707 Callab.)
	95			(BNL E787 Collab.)
KOPTEV	95	JETPL 61 877 Translated from ZETFP	V.P. Koptev <i>et al.</i>	(PNPI)
AOKI	94	PR D50 69	M. Aoki <i>et al.</i>	(INITIS KEK TOKMS)
ATIYA				(INUS, KEK, TOKMS)
	93	PRL 70 2521	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
Also	000	PRL 71 305 (erratum)	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
ATIYA	93B	PR D48 R1	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
ALLIEGRO	92	PRL 68 278	C. Alliegro <i>et al.</i>	(BNL, FNAL, PSI+)
BARMIN	92	SJNP 55 547	V.V. Barmin <i>et al.</i>	(ITEP)
		Translated from YAF 55		
IMAZATO	92	PRL 69 877	J. Imazato <i>et al.</i>	(KEK, INUS, TOKY+)
IVANOV	92	THESIS	Yu.M. Ivanov	(PNPI)
LITTENBERG	92	PRL 68 443	L.S. Littenberg, R.E. Shroc	k (BNL, ŠTON)
USHER	92	PR D45 3961	T. Usher <i>et al.</i>	(UCI)
AKIMENKO	91	PL B259 225	S.A. Akimenko <i>et al.</i>	(SERP, JINR, $T\dot{B}IL+\dot{1}$
BARMIN	91	SJNP 53 606	V.V. Barmin <i>et al.</i>	(ITEP)
D/ (((VIII)	71	Translated from YAF 53		(1121)
DENISOV	91	JETPL 54 558	A.S. Denisov <i>et al.</i>	(PNPI)
2 E. 1100 V	J.	Translated from ZETFP		(1.41.1)
Also		THESIS	Yu.M. Ivanov	(PNPI)
ATIYA	90	PRL 64 21	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
ATIYA	90B			
		PRL 65 1188	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
DEMIDOV	90	SJNP 52 1006	V.S. Demidov <i>et al.</i>	(ITEP)
1 5 5	00	Translated from YAF 52		(DNI ENAL VIII WACILLY
LEE	90	PRL 64 165	A.M. Lee <i>et al.</i>	(BNL, FNAL, VILL, WASH+)
ATIYA	89	PRL 63 2177	M.S. Atiya <i>et al.</i>	(BNL E787 Collab.)
BARMIN	89		V.V. Barmin <i>et al.</i>	(ITEP)
		translated from VAL b()	D/U	
		Translated from YAF 50	019.	

DADMINI	00	CIND 47 C42	V/V D : /	(ITED)
BARMIN	88	SJNP 47 643 Translated from YAF 47	V.V. Barmin <i>et al.</i>	(ITEP)
BARMIN	88B	SJNP 48 1032	V.V. Barmin et al.	(ITEP)
BOLOTOV	88	Translated from YAF 48 JETPL 47 7	V.N. Bolotov et al.	(ASCI)
GALL	88	Translated from ZETFP PRL 60 186	47 8. K.P. Gall <i>et al.</i>	(ROST MIT WILL CIT.)
BARMIN	87	SJNP 45 62	V.V. Barmin <i>et al.</i>	(BOST, MIT, WILL, CIT+) (ITEP)
BOLOTOV	87	Translated from YAF 45 SJNP 45 1023	97. V.N. Bolotov <i>et al.</i>	(INRM)
		Translated from YAF 45	1652.	`
AMENDOLIA BOLOTOV	86B 86	PL B178 435 SJNP 44 73	S.R. Amendolia <i>et al.</i> V.N. Bolotov <i>et al.</i>	(CERN NA7 Collab.) (INRM)
BOLOTOV	86B	Translated from YAF 44 SJNP 44 68	117.	
		Translated from YAF 44		(INRM)
YAMANAKA Also	86	PR D34 85 PRL 52 329	T. Yamanaka <i>et al.</i> R.S. Hayano <i>et al.</i>	(KEK, TOKY) (TOKY, KEK)
AKIBA	85	PR D32 2911	Y. Akiba <i>et al.</i>	(TOKY, TINT, TSUK, KEK)
BOLOTOV	85	JETPL 42 481	V.N. Bolotov et al.	` (INRM)
ACANO	00	Translated from ZETFP		(KEK TOKY INHE OSAK)
ASANO COOPER	82 82	PL 113B 195 PL 112B 97	Y. Asano <i>et al.</i> A.M. Cooper <i>et al.</i>	(KEK, TOKY, INUS, OSAK) (RL)
PDG	82B	PL 111B 70	M. Roos et al.	(HELS, CIT, CERN)
ASANO	81B	PL 107B 159	Y. Asano et al.	(KEK, TOKY, INUS, OSAK)
CAMPBELL	81	PRL 47 1032	M.K. Campbell <i>et al.</i>	(YALE, BNL)
Also	01	PR D27 1056	S.R. Blatt <i>et al.</i>	(YALE, BNL)
LUM	81	PR D23 2522	G.K. Lum et al.	(LBL, NBS+)
LYONS	81	ZPHY C10 215	L. Lyons, C. Albajar, G. M	
DALLY	80	PRL 45 232	E.B. Dally et al.	(UCLA+)
BARKOV	79	NP B148 53	L.M. Barkov et al.	(NOVO, KIAE)
BLATNIK	79	LNC 24 39	S. Blatnik, J. Stahov, C.B	
HEINTZE	79	NP B149 365	J. Heintze <i>et al.</i>	(HEIDP, CERN)
ABRAMS	77	PR D15 22	R.J. Abrams <i>et al.</i>	(BNL)
DEVAUX	77	NP B126 11	B. Devaux et al.	(SACL, GEVA)
HEINTZE	77	PL 70B 482	J. Heintze <i>et al.</i>	(HEIDP, CERN)
ROSSELET	77 76	PR D15 574	L. Rosselet <i>et al.</i>	(GEVA, SACL)
BLOCH BRAUN	76 76B	PL 60B 393 LNC 17 521	P. Bloch <i>et al.</i> H.M. Braun <i>et al.</i>	(GEVA, SACL) (AACH3, BARI, BELG+)
DIAMANT	76	PL 62B 485	A.M. Diamant-Berger et a	
HEINTZE	76	PL 60B 302	J. Heintze <i>et al.</i>	(HEIDP)
SMITH	76	NP B109 173	K.M. Smith <i>et al.</i>	(GLAS, LIVP, OXF+)
WEISSENBE	76	NP B115 55	A.O. Weissenberg et al.	(ITEP, LEBD)
BLOCH	75	PL 56B 201	P. Bloch <i>et al.</i>	(SACL, GEVA)
BRAUN	75	NP B89 210	H.M. Braun et al.	(AACH3, BARI, BRUX+)
CHENG	75	NP A254 381	S.C. Cheng <i>et al.</i>	(COLU, YALE)
HEARD	75	PL 55B 324	K.S. Heard <i>et al.</i>	(CERN, HEIDH)
HEARD	75B	PL 55B 327	K.S. Heard <i>et al.</i>	(CERN, HEIDH)
SHEAFF SMITH	75 75	PR D12 2570 NP B91 45	M. Sheaff K.M. Smith <i>et al.</i>	(CLAS LIVE OXEL)
WEISSENBE		PL 48B 474	A.O. Weissenberg <i>et al.</i>	(GLAS, LIVP, OXF+) (ITEP, LEBD)
ABRAMS	73B	PRL 30 500	R.J. Abrams et al.	(BNL)
BACKENSTO		PL 43B 431	G. Backenstoss <i>et al.</i>	(CERN, KARLK, KARLE+)
LJUNG	73	PR D8 1307	D. Ljung, D. Cline	(WISC)
Also		PRL 28 523	D. Ljung	(WISC)
Also		PRL 28 1287	D. Cline, D. Ljung	(WISC)
Also		PRL 23 326	U. Camerini <i>et al.</i>	(WISC)
LUCAS	73	PR D8 719	P.W. Lucas, H.D. Taft, W	1 (
LUCAS	73B	PR D8 727	P.W. Lucas, H.D. Taft, W	
PANG	73	PR D8 1989 PL 40B 699	C.Y. Pang et al.	(EFI, ARIZ, LBL)
Also SMITH	73	NP B60 411	G.D. Cable <i>et al.</i> K.M. Smith <i>et al.</i>	(EFI, LBL) (GLAS, LIVP, OXF+)
ABRAMS	72	PRL 29 1118	R.J. Abrams <i>et al.</i>	(GLAS, LIVI, OXI +) (BNL)
AUBERT	72	NC 12A 509	B. Aubert <i>et al.</i>	(ORSAY, BRUX, EPOL)
CHIANG	72	PR D6 1254	I.H. Chiang et al.	(ROCH, WISC)
CLARK	72	PRL 29 1274	A.R. Clark et al.	` (LBL)
FORD	72	PL 38B 335	W.T. Ford et al.	(PRIN)
HOFFMASTER		NP B36 1	S. Hoffmaster <i>et al.</i>	(STEV, SETO, LEHI)
BOURQUIN	71	PL 36B 615	M.H. Bourquin <i>et al.</i>	(GEVA, SACL)
HAIDT	71	PR D3 10	` .	BARI, CERN, EPOL, NIJM+)
Also		PL 29B 691	D. Haidt <i>et al.</i> (AACH, BARI, CERN, EPOL+)

KLEMS Also			
Also	71	PR D4 66	J.H. Klems, R.H. Hildebrand, R. Stiening $(CHIC+)$
		PRL 24 1086	J.H. Klems, R.H. Hildebrand, R. Stiening (LRL+)
Also		PRL 25 473	J.H. Klems, R.H. Hildebrand, R. Stiening (LRL+)
	71		
OTT	71	PR D3 52	R.J. Ott, T.W. Pritchard (LOQM)
ROMANO	71	PL 36B 525	F. Romano <i>et al.</i> (BARI, CERN, ORSAY)
SCHWEINB	71	PL 36B 246	W. Schweinberger (AACH, BELG, CERN, NIJM+)
STEINER	71	PL 36B 521	H.J. Steiner (AACH, BARI, CERN, EPOL, ORSAY+)
BARDIN	70		
		PL 32B 121	D.Y. Bardin, S.N. Bilenky, B.M. Pontecorvo (JINR)
BECHERRAWY		PR D1 1452	T. Becherrawy (ROCH)
FORD	70	PRL 25 1370	W.T. Ford et al. (PRIN)
GAILLARD	70	CERN 70-14	J.M. Gaillard, L.M. Chounet (CERN, ORSAY)
GRAUMAN	70	PR D1 1277	J. Grauman <i>et al.</i> (STEV, SETO, LEHI)
	10		
Also		PRL 23 737	J.U. Grauman <i>et al.</i> (STEV, SETO, LEHI)
PANDOULAS	70	PR D2 1205	D. Pandoulas <i>et al.</i> (STEV, SETO)
CUTTS	69	PR 184 1380	D. Cutts et al. (LRL, MIT)
Also		PRL 20 955	D. Cutts et al. (LRL, MIT)
DAVISON	69	PR 180 1333	
ELY	69	PR 180 1319	R.P.J. Ely et al. (LOUC, WISC, LRL)
HERZO	69	PR 186 1403	D. Herzo et al. (ILL)
LOBKOWICZ	69	PR 185 1676	F. Lobkowicz <i>et al.</i> (ROCH, BNL)
Also		PRL 17 548	F. Lobkowicz <i>et al.</i> (ROCH, BNL)
	CO		
MAST	69	PR 183 1200	T.S. Mast <i>et al.</i> (LRL)
SELLERI	69	NC 60A 291	F. Selleri
ZELLER	69	PR 182 1420	M.E. Zeller et al. (UCLA, LRL)
BOTTERILL	68B	PRL 21 766	D.R. Botterill <i>et al.</i> (OXF)
BOTTERILL	68C	PR 174 1661	D.R. Botterill <i>et al.</i> (OXF)
BUTLER	68	UCRL 18420	W.D. Butler <i>et al.</i> (LRL)
CHANG	68	PRL 20 510	C.Y. Chang et al. (UMD, RUTG)
CHEN	68	PRL 20 73	M. Chen et al. (LRL, MIT)
EICHTEN	68	PL 27B 586	
ESCHSTRUTH	68	PR 165 1487	P.T. Eschstruth <i>et al.</i> (PRIN, PENN)
GARLAND	68	PR 167 1225	R. Garland <i>et al.</i> (COLU, RUTG, WISC)
MOSCOSO	68	Thesis	L. Moscoso (ORSAY)
AUERBACH	67	PR 155 1505	L.B. Auerbach <i>et al.</i> (PENN, PRIN)
	01		
Also		PR D9 3216	L.B. Auerbach
Erratum.			
Erratum. BELLOTTI	67	Heidelberg Conf.	E. Bellotti, A. Pullia (MILA)
BELLOTTI		. •	
BELLOTTI BELLOTTI	67 67B	NC 52A 1287	E. Bellotti, E. Fiorini, A. Pullia (MILA)
BELLOTTI BELLOTTI Also	67B	NC 52A 1287 PL 20 690	E. Bellotti, E. Fiorini, A. Pullia (MILA) E. Bellotti <i>et al.</i> (MILA)
BELLOTTI BELLOTTI Also BISI	67B 67	NC 52A 1287 PL 20 690 PL 25B 572	E. Bellotti, E. Fiorini, A. Pullia (MILA) E. Bellotti <i>et al.</i> (MILA) V. Bisi <i>et al.</i> (TORI)
BELLOTTI BELLOTTI Also	67B	NC 52A 1287 PL 20 690	E. Bellotti, E. Fiorini, A. Pullia (MILA) E. Bellotti <i>et al.</i> (MILA)
BELLOTTI BELLOTTI Also BISI FLETCHER	67B 67 67	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98	E. Bellotti, E. Fiorini, A. Pullia (MILA) E. Bellotti et al. (MILA) V. Bisi et al. (TORI) C.R. Fletcher et al. (ILL)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD	67B 67 67 67	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214	E. Bellotti, E. Fiorini, A. Pullia (MILA) E. Bellotti et al. (MILA) V. Bisi et al. (TORI) C.R. Fletcher et al. (ILL) W.T. Ford et al. (PRIN)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG	67B 67 67 67 67	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570	E. Bellotti, E. Fiorini, A. Pullia (MILA) E. Bellotti et al. (MILA) V. Bisi et al. (TORI) C.R. Fletcher et al. (ILL) W.T. Ford et al. (PRIN) E.S. Ginsberg (MASB)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS	67B 67 67 67 67 67	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg (MASB) G.E. Kalmus, A. Kernan (MILA) (MILA) (MILA) (MILA) (TORI) (TORI) (ILL)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG	67B 67 67 67 67	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570	E. Bellotti, E. Fiorini, A. Pullia (MILA) E. Bellotti et al. (MILA) V. Bisi et al. (TORI) C.R. Fletcher et al. (ILL) W.T. Ford et al. (PRIN) E.S. Ginsberg (MASB)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS	67B 67 67 67 67 67	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg (MASB) G.E. Kalmus, A. Kernan (MILA) (MILA) (MILA) (MILA) (TORI) (TORI) (ILL)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN	67B 67 67 67 67 67 67 66	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko (RUTG) A.C. Callahan (MILA) (MILA) (ILL) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (RUTG) (RUTG)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN	67B 67 67 67 67 67 67 66 66B	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko (RUTG) A.C. Callahan (WISC) A.C. Callahan et al. (MILA) (MILA) (ILL) (PRIN) (PRIN) (PRIN) (PRIN) (CRUTG) (MASB) (RUTG) (RUTG) (WISC, LRL, UCR+)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER	67B 67 67 67 67 67 67 66 66 66B	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko (RUTG) A.C. Callahan (MILA) (MILA) (ILL) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (PRIN) (RUTG) (RUTG)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot	67B 67 67 67 67 67 67 66 66 66B	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67.	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan C.C. Callahan
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER	67B 67 67 67 67 67 67 66 66 66B	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan R. Cester et al. (WISC, LRL, UCR+) R. Cester et al. (PENN, PRIN)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot	67B 67 67 67 67 67 66 66 66B 66 e 1 in	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan R. Cester et al. (WISC, LRL, UCR+) R. Cester et al. (PENN, PRIN)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE	67B 67 67 67 67 67 67 66 66B 66 e 1 in	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan et al. R. Cester et al. CHILL WISC, LRL, UCR+ R. Cester et al. CHILL WISC, LRL, UCR+ R. Cester et al. CHILL CWISC, LRL, UCR+
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI	67B 67 67 67 67 67 67 66 66B 66 e 1 in 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan et al. R. Cester et al. CHEL CHICAL (WISC) CHICAL (WISC) CHICAL (PRIN) CHICAL (WISC) CHICAL (WISC) CHICAL (WISC) CHICAL (PENN, PRIN) CHICAL (CICAL (CICAL CICAL CIC
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI	67B 67 67 67 67 67 67 66 66B 66 e 1 in 65 65 65B	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan et al. R. Cester et al. (PENN, PRIN) L.B. Auerbach et al. R.W. Birge et al. V. Bisi et al. (MILA) (ILL) (PRIN) (PRIN) (RUTG) (WISC) (WISC, LRL, UCR+) (PPA) (PPA) (PENN, PRIN) (LRL, WISC) V. Bisi et al. (TORI)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI	67B 67 67 67 67 67 67 66 66B 66 e 1 in 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan et al. R. Cester et al. CPENN, PRIN CEST et al. CPENN, PRIN CIENT (PPA) CIENT (PPA) CIENT (PENN, PRIN) CIENT (PENN, PRIN) CIENT (POR) CIENT (POR) CIENT (POR) CIENT (POR) CIENT (POR) CIENT (TOR) CIENT (
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI	67B 67 67 67 67 67 67 66 66B 66 e 1 in 65 65 65B	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan C.C. Callah
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN	67B 67 67 67 67 67 67 66 66B 66 e 1 in 65 65 65B 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan C.C. Callah
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO	67B 67 67 67 67 67 66 66B 66 e 1 in 65 65 65 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E. Scinsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan C.C. Callaha
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO FITCH	67B 67 67 67 67 67 66 66B 66 61 65 65 65 65 65 65 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1088	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan C.C. Callah
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO FITCH STAMER	67B 67 67 67 67 67 67 66 66B 66 61 65 65 65 65 65 65 65 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1088 PR 138 B440	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan C.C. Callah
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO FITCH	67B 67 67 67 67 67 66 66B 66 61 65 65 65 65 65 65 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1088	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan C.C. Callahan
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO FITCH STAMER	67B 67 67 67 67 67 67 66 66B 66 61 65 65 65 65 65 65 65 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1088 PR 138 B440	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan C.C. Callah
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also	67B 67 67 67 67 66 66 66B 66 e 1 in 65 65 65 65 65 65 65 65 65 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan C.C.
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also BORREANI	67B 67 67 67 67 66 68B 66 e 1 in 65 65B 65 65 65 65 65 65 65 65 65 65	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1430 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464 PL 12 123	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko (RUTG) A.C. Callahan A.C. Callahan C.C. Callah
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also BORREANI CALLAHAN	67B 67 67 67 67 67 66 66B 66 e 1 in 65 65B 65 65 65 65 65 65 65 64 64	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464 PL 12 123 PR 136 B1463	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko (RUTG) A.C. Callahan A.C. Callahan C.R. Cester et al. (WISC, LRL, UCR+) R. Cester et al. (PENN, PRIN) C.R. W. Birge et al. V. Bisi et al. V. Bisi et al. Callahan, D. Cline D. Cline, W.F. Fry A. de Marco, C. Grosso, G. Rinaudo V.L. Fitch, C.A. Quarles, H.C. Wilkins P. Stamer et al. Callahan, R. March, R. Stark (WISC) CTORI) CTORI) CTORI) CTORI) CTORI) CTORI, CERN) CTORI, CERN) CTORI, CERN) CTORI) CTORI) CTORI, CERN) CTORI)
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also BORREANI CALLAHAN GREINER	67B 67 67 67 67 67 66 66B 66 e 1 in 65 65 65 65 65 65 65 65 65 65 64 64 64	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1608 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464 PL 12 123 PR 136 B1463 PRL 13 284	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan et al. R. Cester et al. (WISC, LRL, UCR+) R. Cester et al. (PPA) L.B. Auerbach et al. R.W. Birge et al. V. Bisi et al. V. Bisi et al. V. Bisi et al. A. Callahan, D. Cline D. Cline, W.F. Fry A. de Marco, C. Grosso, G. Rinaudo V.L. Fitch, C.A. Quarles, H.C. Wilkins P. Stamer et al. C. Stark C. Callahan, R. March, R. Stark C. Callahan, C. CRI
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also BORREANI CALLAHAN GREINER SHAKLEE	67B 67 67 67 67 67 66 66B 66 e 1 in 65 65 65 65 65 65 65 65 65 65 64 64 64 64	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464 PL 12 123 PR 136 B1463 PRL 13 284 PR 136 B1423	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E. Sinsberg G.E. Kalmus, A. Kernan A.C. Callahan C.C. Callahan
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also BORREANI CALLAHAN GREINER	67B 67 67 67 67 67 66 66B 66 e 1 in 65 65 65 65 65 65 65 65 65 65 64 64 64	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1608 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464 PL 12 123 PR 136 B1463 PRL 13 284	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. (PRIN) E.S. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan et al. R. Cester et al. (WISC, LRL, UCR+) R. Cester et al. (PPA) L.B. Auerbach et al. R.W. Birge et al. V. Bisi et al. V. Bisi et al. V. Bisi et al. A. Callahan, D. Cline D. Cline, W.F. Fry A. de Marco, C. Grosso, G. Rinaudo V.L. Fitch, C.A. Quarles, H.C. Wilkins P. Stamer et al. C. Stark C. Callahan, R. March, R. Stark C. Callahan, C. CRI
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also BORREANI CALLAHAN GREINER SHAKLEE BOYARSKI	67B 67 67 67 67 67 66 68 66 61 65 65 65 65 65 65 65 64 64 64 64 64	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464 PL 12 123 PR 136 B1463 PRL 13 284 PR 136 B1423	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E. Ginsberg G.E. Kalmus, A. Kernan A.I. Zinchenko A.C. Callahan A.C. Callahan et al. R. Cester et al. C.B. Auerbach et al. W.Bisi et al. V. Bisi et al. C. Callahan C. Cester et al. C. Callahan C. Carosso, G. Rinaudo C. Carosso, G. R
BELLOTTI BELLOTTI Also BISI FLETCHER FORD GINSBERG KALMUS ZINCHENKO CALLAHAN CALLAHAN CESTER See footnot Also BIRGE BISI CALLAHAN CLINE DEMARCO FITCH STAMER YOUNG Also BORREANI CALLAHAN GREINER SHAKLEE	67B 67 67 67 67 67 66 66B 66 e 1 in 65 65 65 65 65 65 65 65 65 65 64 64 64 64	NC 52A 1287 PL 20 690 PL 25B 572 PRL 19 98 PRL 18 1214 PR 162 1570 PR 159 1187 Thesis Rutgers NC 44A 90 PR 150 1153 PL 21 343 AUERBACH 67. PR 155 1505 PR 139 B1600 NC 35 768 PR 139 B1600 NC 35 768 PR 139 B1068 PRL 15 129 PL 15 293 PR 140 B1430 PR 140 B1430 PR 140 B1088 PR 138 B440 Thesis UCRL 16362 PR 156 1464 PL 12 123 PR 136 B1463 PRL 13 284 PR 136 B1423	E. Bellotti, E. Fiorini, A. Pullia E. Bellotti et al. V. Bisi et al. C.R. Fletcher et al. W.T. Ford et al. E. Kalmus, A. Kernan C.R. Kalmus, A. Kernan C.R. Callahan C.R. Callahan C.R. Callahan C.R. Ginsberg C.R. Kalmus, A. Kernan C.R. Callahan C.R. Callahan C.R. Callahan C.R. Callahan C.R. Callahan C.R. Cester et al. C.R. Cester et al. C.R. Cester et al. C.R. Cester et al. C.R. WISC, LRL, UCR+) C.R. Cester et al. C.R. Cince C

TAYLOR 59 PR 114 359 S. Taylor *et al.* (COLU) COOMBES 57 PR 108 1348 C.A. Coombes *et al.* (LBL)

- OTHER RELATED PAPERS -

LITTENBERG		ARNPS 43 729 ve Kaon Decays	L.S. Littenberg, G. Valencia	(BNL, FNAL)		
RITCHIE "Rare K D	93	RMP 65 1149	J.L. Ritchie, S.G. Wojcicki			
BATTISTON	92	PRPL 214 293 ectives of <i>K</i> Decay Physic	R. Battiston <i>et al.</i>	(PGIA, CERN, TRSTT)		
BRYMAN	89	IJMP A4 79	D.A. Bryman	(TRIU)		
"Rare Kaon Decays"						
CHOUNET	72	PRPL 4C 199	L.M. Chounet, J.M. Gaillard, M.	K. Gaillard (ORSAY+)		
FEARING	70	PR D2 542	H.W. Fearing, E. Fischbach, J. S	Smith (STON, BOHR)		
HAIDT	69B	PL 29B 696	D. Haidt et al. (AACH	, BARI, ČERN, EPOL+)		
CRONIN	68B	Vienna Conf. 241	J.W. Cronin	(PRIN)		
Rapporteur talk.						
WILLIS	67	Heidelberg Conf. 273	W.J. Willis	(YALE)		
Rapporteur talk.						
CABIBBO	66	Berkeley Conf. 33	N. Cabibbo	(CERN)		
ADAIR	64	PL 12 67	R.K. Adair, L.B. Leipuner	(YALE, BNL)		
CABIBBO	64	PL 9 352	N. Cabibbo, A. Maksymowicz	(CERN)		
Also		PL 11 360	N. Cabibbo, A. Maksymowicz	(CERN)		
Also		PL 14 72	N. Cabibbo, A. Maksymowicz	(CERN)		
BIRGE	63	PRL 11 35	R.W. Birge et al.	(LRL, WISC, BARI)		
BLOCK	62B	CERN Conf. 371	M.M. Block, L. Lendinara, L. M	onari (NWES, BGNA)		
BRENE	61	NP 22 553	N. Brene, L. Egardt, B. Qvist	` (NORD)		
			-	, ,		