UNIVERSALITY

UNIVERSAL SET

Is it possible to implement ALL the possible Boolean functions using NOT, AND, OR, NAND, NOR? Yes!

UNIVERSAL SET

What if we are not given some!
What if some are very costly! E.g., NOT
Can we reduce this set? E.g., building NOT by NAND/ NOR

SET	UNIVERSAL SET
{NOT, AND, OR, NAND, NOR}	Yes! (a Full Set)
{NOT, AND, OR}	Yes, (a Full Set) NAND = AND-NOT NOR = OR-NOT
{NOT, AND}	If we could design OR
{NOT, OR}	If we could design AND
{NOT}	If we could design AND, OR
{AND}	If we could design NOT, OR
{OR}	If we could design NOT, AND
{NAND}	If we could design NOT, AND, OR

If we could design NOT, AND, OR

SET	UNIVERSAL SET
{NOT, AND, OR, NAND, NOR}	Yes! (a Full Set)
{NOT, AND, OR}	Yes, (a Full Set) NAND = AND-NOT NOR = OR-NOT
(NOT, AND)	If we could design OR (a Complete Set)
{NOT, OR}	If we could design AND (a Complete Set)
{NOT}	If we could design AND, OR
{AND}	If we could design NOT, OR
{OR}	If we could design NOT, AND
{NAND}	If we could design NOT, AND, OR

If we could design NOT, AND, OR

UNIVERSAL SET {NOT, AND}

Augustus De Morgan (1806–1871) Mathematician Logician

DE MORGAN'S LAWS

$$(Y+X)' = Y'X' ((Y+X)')' = (Y'X')' Y+X = (Y'X')'$$

OR

SET	UNIVERSAL SET
{NOT, AND, OR, NAND, NOR}	Yes! (a Full Set)
(NOT, AND, OR)	Yes, (a Full Set) NAND = AND-NOT NOR = OR-NOT
{NOT, AND}	If we could design OR (a Complete Set)
{NOT, OR}	If we could design AND (a Complete Set)
{NOT}	If we could design AND, OR
{AND}	If we could design NOT, OR
{OR}	If we could design NOT, AND
{NAND}	If we could design NOT, AND, OR

If we could design NOT, AND, OR

UNIVERSAL SET {NOT, OR}

Augustus De Morgan (1806–1871) Mathematician Logician

DE MORGAN'S LAWS

$$Y' + X' = (YX)'$$

$$(Y' + X')' = ((YX)')'$$

$$(Y' + X')' = YX$$

AND

SET	UNIVERSAL SET
{NOT, AND, OR, NAND, NOR}	Yes! (a Full Set)
{NOT, AND, OR}	Yes, (a Full Set) NAND = AND-NOT NOR = OR-NOT
{NOT, AND}	If we could design OR (a Complete Set)
{NOT, OR}	If we could design AND (a Complete Set)
{NOT}	If we could design AND, OR
{AND}	If we could design NOT, OR
{OR}	If we could design NOT, AND
{NAND}	If we could design NOT, AND, OR
{NOR}	If we could design NOT, AND, OR

UNIVERSAL GATE {NAND}

NOT
$$\blacktriangleright$$
 (XX)' = (X\(^1X\)) = X'

AND NOT (NAND) = $((Y^{\uparrow}X))' = YX$

$$\begin{array}{c|c} X & & & \\ Y & & \\ Y & & & \\ Y & &$$

OR > DE MORGAN'S LAW

$$(Y+X)' = Y'X'$$

 $((Y+X)')' = (Y'X')'$
 $Y + X = (Y'X')'$
 $Y + X = Y' \uparrow X'$

OR: DE MORGAN'S LAW

7400 Quad 2-input NAND Gates

https://commons.wikimedia.org/wiki/7400_series_overview

7400 Quad 2-input NAND Gates

SET	UNIVERSAL SET
{NOT, AND, OR, NAND, NOR}	Yes! (a Full Set)
{NOT, AND, OR}	Yes, (a Full Set) NAND = AND-NOT NOR = OR-NOT
{NOT, AND}	If we could design OR (a Complete Set)
{NOT, OR}	If we could design AND (a Complete Set)
{NOT}	If we could design AND, OR
{AND}	If we could design NOT, OR
{OR}	If we could design NOT, AND
{NAND}	If we could design NOT, AND, OR
{NOR}	If we could design NOT, AND, OR

UNIVERSAL GATE {NOR}

NOT
$$\blacktriangleright$$
 $(X+X)' = (XX) = X'$

AND
$$\triangleright$$
 DE MORGAN'S LAW $(Y'+X')'=YX=(Y'\downarrow X')$

X NOT (Y+X)=Y+XNOR COR X - D $(Y + X') = Y \setminus X'$ Y - D Y - DAND

7402 Quad 2-input NOR Gates

https://commons.wikimedia.org/wiki/7400_series_overview

7402 Quad 2-input NOR Gates

UNIVERSAL GATE SoP \(\rightarrow\) \(\rightarrow\)

$$F_2 = m_4 + m_5$$

= $((F_2)')'$

$$F_2 = m_4 + m_5$$

= $((F_2)')'$
= $((m_4 + m_5)')'$

$$F_2 = m_4 + m_5$$

= $((F_2)')'$
= $((m_4 + m_5)')'$
= $(m'_4 m'_5)'$

$$F_2 = m_4 + m_5$$
= $((F_2)')'$
= $((m_4 + m_5)')'$
= $(m'_4 m'_5)'$
= $((ZY'X')' (ZY'X)')'$

$$F_{2} = m_{4} + m_{5}$$

$$= ((F_{2})')'$$

$$= ((m_{4} + m_{5})')'$$

$$= (m'_{4}m'_{5})'$$

$$= ((ZY'X')' (ZY'X)')'$$

$$= ((Z^{\uparrow}Y'^{\uparrow}X') (Z^{\uparrow}Y'^{\uparrow}X))'$$

$$F_{2} = m_{4} + m_{5}$$

$$= ((F_{2})')'$$

$$= ((m_{4} + m_{5})')'$$

$$= (m'_{4}m'_{5})'$$

$$= ((ZY'X')' (ZY'X)')'$$

$$= ((Z\uparrow Y'\uparrow X') (Z\uparrow Y'\uparrow X))'$$

$$= ((Z\uparrow Y'\uparrow X') \uparrow (Z\uparrow Y'\uparrow X))$$

UNIVERSAL GATE {NAND} F=(F')'=(SoP')'

UNIVERSAL GATE {NOR}

UNIVERSAL GATE PoS \(\rightarrow\) \(\rightarrow\) \(\rightarrow\)

$$F_{PoS} = (F')'$$

Lecture Assignment

RECAP

Any Boolean Function F:

- Sum (OR) of Products (ANDs)
- Sum of minterms for Entries with 1
 - ANDs-OR
 - NAND via (F')'
- Product (AND) of Sums (ORs)
- Product of MAXTERMS (NOT minterms) for Entries with 0
 - ORs-AND
 - NOR via (F')'

UNIVERSAL GATE

 $SoP \rightarrow \{NAND\}$

 $SoP \rightarrow \{NOR\}$?

 $PoS \rightarrow \{NOR\}$

 $PoS \rightarrow \{NAND\}$?

Lecture Assignment