POLYNOMIALE REGRESSION

DAS PROBLEM

- Daten beschreiben die nicht lineare Zusammenhänge haben
- Ähnlich zu Thema letzter Sitzung

DIE LÖSUNG

WAS SIND POLYNOME?

$$\hat{y} = a + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_n x^n$$

VERSCHIEDENE ARTEN VON POLYNOMEN

Problem – welcher Grad soll die Funktion haben?

Annahme von Polynome 2. Ordnung

$$\hat{y} = a + b_1 \cdot x + b_2 \cdot x^2.$$

• Summe der quadrierten Abweichungen minimieren

$$\sum_{i=1}^{n} \left[y_i - (a + b_1 \cdot x_i + b_2 \cdot x_i^2) \right]^2$$

$$\sum_{i} y_{i} = an + b_{1} \sum_{i} x_{i} + b_{2} \sum_{i} x_{i}^{2},$$

$$\sum_{i} x_{i} \cdot y_{i} = a \sum_{i} x_{i} + b_{1} \sum_{i} x_{i}^{2} + b_{2} \sum_{i} x_{i}^{3},$$

$$\sum_{i} x_{i}^{2} \cdot y_{i} = a \sum_{i} x_{i}^{2} + b_{1} \sum_{i} x_{i}^{3} + b_{2} \sum_{i} x_{i}^{4}.$$

Lineares Gleichungssystem

Verweis auf Substitutionsverfahren Oder Gauß

	Objekt-Nr.	x	y	$x \cdot y$	x^2	x^3	x^4	$x^2 \cdot y$	
	1	1,1	1,3	1,43	1,21	1,33	1,46	1,57	
	2	1,3	3,7	4,81	1,69	2,20	2,86	6,25	
	3	1,5	4,4	6,60	2,25	3,38	5,06	9,90	
	4	2,2	5,4	11,88	4,84	10,65	23,43	26,14	
	5	2,5	5,8	14,50	6,25	15,63	39,06	36,25	
	6	3,3	5,5	18,15	10,89	35,94	118,59	59,90	
	7	3,4	5,2	17,68	11,56	39,30	133,63	60,11	
	8	3,7	2,9	10,73	13,69	50,65	187,42	39,70	
	9	3,8	3,7	14,06	14,44	54,87	208,51	53,43	
	10	4,1	2,0	8,20	16,81	68,92	282,58	33,62	
Summen:		26,9	39,9	108,04	83,63	282,87	1002,60	326,87	

$$\sum_{i} y_{i} = an + b_{1} \sum_{i} x_{i} + b_{2} \sum_{i} x_{i}^{2},$$

$$\sum_{i} x_{i} \cdot y_{i} = a \sum_{i} x_{i} + b_{1} \sum_{i} x_{i}^{2} + b_{2} \sum_{i} x_{i}^{3},$$

$$\sum_{i} x_{i}^{2} \cdot y_{i} = a \sum_{i} x_{i}^{2} + b_{1} \sum_{i} x_{i}^{3} + b_{2} \sum_{i} x_{i}^{4}.$$

$$39,9 = 10 \cdot a + 26,9 \cdot b_1 + 83,63 \cdot b_2,$$

 $108,04 = 26,9 \cdot a + 83,63 \cdot b_1 + 282,87 \cdot b_2,$
 $326,87 = 83,63 \cdot a + 282,87 \cdot b_1 + 1002,60 \cdot b_2.$

https://www.arndtbruenner.de/mathe/scripts/gleichung ssysteme.htm

$$\hat{y} = a + b_1 x + b_2 x^2 + b_3 x^3$$

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + b_3 x_3$$

$$x_1 = x_1, x_2 = x^2, x_3 = x^3$$

UMSETZUNG

- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt

UMSETZUNG I - NUMPY

```
import numpy as np
import statsmodels.formula.api as smf

#data
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])

#grad der Funktion
degree = 3

#für die Summary benötigt
df = pd.DataFrame(columns=['y', 'x'])
df['x'] = x
df['y'] = y

weights = np.polyfit(x, y, degree)

model = np.polyld(weights)
results = smf.ols(formula='y ~ model(x)', data=df).fit()
```

#Input as array with 1 dimension

Polyfit

Returns Polynomial coefficients, highest power first.

UMSETZUNG NUMPY II

```
#Results
print(results.summary())

#Visualisierung
plt.scatter(x, y, color = 'blue')

xModel = np.linspace(min(x), max(x))
yModel = np.polyval(weights, xModel)

plt.plot(xModel, yModel)

plt.title('Polynomial Regression')
plt.xlabel('X')
plt.ylabel('Y')
```

UMSETZUNG II - SKLEARN

UMSETZUNG II – SKLEARN II

```
#results
model = sm.OLS(y, X_poly).fit()
print(model.summary())

#Visualisierung
plt.scatter(x, y)
plt.plot(X_vals, y_vals)
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```

ZUSAMMENFASSUNG UMSETZUNG

	Numpy	SKlearn
Input	Ein-dimensionales Array	Zwei-dimensionales Array
Summary	Über smf import statsmodels.formula.api as smf Braucht deswegen df	Über sm import statsmodels.api as sm
Prinzip	Berechnung der weights Dann Training des Models	Umwandlung in Lineare Regression – dann Training dieser
Predictions für einen Wert von 4-5	pred = 4.5 np.polyval(weights, pred)	<pre>pred = np.array(4.5) pred = pred.reshape(-1, 1) lin2.predict(poly.fit_transform(p red))</pre>

df1 = pd.read_csv(r"https://raw.githubusercontent.com/ck282/statistico812/main/salaries .txt", sep="\t")

FRAGE NACH DEGREE

- Jackson: Grad größer als 3 oder 4 selten
- Gefahr Overfitting

14

```
degrees = [1,2,3,5,9,14]
rsquared = []

for d in degrees:
   model = np.polyld(np.polyfit(x, y, d))
   rsquare = smf.ols(formula='y ~ model(x)', data=df).fit().rsquared
   rsquared.append(rsquare)
```

```
plt.plot(degrees, rmses)

[<matplotlib.lines.Line2D at 0x25281f1df60>]

14 - 12 - 10 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 - 2 - 4 - 6 - 8 - 10 - 12 - 14
```

```
from statsmodels.tools.eval_measures import rmse

degrees = [1,2,3,5,9,14]
rmses = []

for d in degrees:
    weights = np.polyfit(x, y, d)
    ypred = np.polyval(weights, x)

    c_rmse = rmse(y, ypred)

rmses.append(c_rmse)
```

HAUSAUFGABE

- Aufgabe 1: https://raw.githubusercontent.com/ck282/statistic0812/main/salaries.txt
- A) Plotte die Daten mit einer polynomialen Regression mit einem Grad von 3. Benutze dabei entweder numpy oder sklearn.
- B) Was ist die Funktionsgleichung?
- C) Treffe eine Vorhersage für einen x-Wert von 6.5
- D) Wähle eine bereits behandelte Modellierung aus und vergleiche, ob diese besser oder schlechter auf die Daten passt.

Aufgabe 2: https://raw.githubusercontent.com/ck282/statistic0812/main/values.txt

• Lade die Daten ein und finde heraus welcher Grad/Degree für die Daten am besten geeignet ist, begründe deine Antwort.

QUELLEN

- Bortz, Jürgen. *Statistik: Für Human- und Sozialwissenschaftler (Springer Lehrbuch)*. 6., Vollst. überarb. u. aktualisierte, Springer, 2022.
- Jackson, Dr. S. *Chapter 7 Polynomial Regression* | *Machine Learning*. 6. April 2022, bookdown.org/ssjackson300/Machine-Learning-Lecture-Notes/polynomial-regression.html.
- Loong, Joshua. "Fitting Polynomial Regressions in Python". *Joshua Loong*, 3. Oktober 2018, joshualoong.com/2018/10/03/Fitting-Polynomial-Regressions-in-Python.
- *Polynomial Regression which python package to use?* https://zerowithdot.com/polynomial-regression-in-python/
- Python Machine Learning Polynomial Regression. www.w3schools.com/python/python ml polynomial regression.asp.
- · Vorlesung Intelligente Datenanalyse. fuzzy.cs.ovgu.de/studium/ida.