SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA PRIMIJENJENU MATEMATIKU

NUMERIČKA MATEMATIKA

Zadaci za vježbu

Zagreb, 2003.

Sadržaj

1	Interpolacija i aproksimacija funkcija	3
	1.1 Interpolacijski polinom	3
	1.2 Interpolacijski splajn	4
	1.3 Polinom najmanjih kvadrata	5
2	Numeričko integriranje	7
3	Sustavi linearnih jednadžbi	8
	3.1 Direktne metode	8
	3.2 Iteracijske metode	10
4	Svojstvene vrijednosti i svojstveni vektori matrice	15
5	Nelinearne jednadžbe	18
6	Nelinearni sustavi jednadžbi	22

1 Interpolacija i aproksimacija funkcija

1.1 Interpolacijski polinom

- 1. Jednadžba $x^3-15x+4=0$ ima korijen u okolini 0.3. Koristeći interpolaciju odredite taj korijen s točnošću $\varepsilon=10^{-3}$.
- 2. Jednadžba $x^3+12x-1=0$ ima korijen u okolini 0.1. Koristeći interpolaciju odredite taj korijen s točnošću $\varepsilon=10^{-3}$.
- 3. Dana je tablica vrijednosti vjerojatnosnog integrala

$$y = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

$\int x$	0.45	0.46	0.47	0.48	0.49	0.50
y	0.4754818	0.4846555	0.4937452	0.5027498	0.5116683	0.5204999

Za koju vrijednost od x je vrijednost integrala $\frac{1}{2}$?

4. Dana je tablica vrijednosti vjerojatnosnog integrala $y = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$

x	1.2	1.3	1.4	1.5	1.6	1.7
y	0.9103	0.9340	0.9523	0.9661	0.9763	0.9838

Koristeći dane podatke izračunajte vrijednost integrala za x=1.43 i ocijenite grešku aproksimacije.

5. Dana je tablica vrijednosti funkcije

$$y = \int_{x}^{\infty} \frac{e^{-t}}{t} dt,$$

x	0.02	0.03	0.04	0.05	
y	3.3547	2.9591	2.6813	2.4679] .

Izračunajte y za x=0.0378. Ocijenite grešku aproksimacije. Zašto je procijenjena greška velika?

6. Koristeći vrijednosti funkcije

$$f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

u točkama x_1 i x_2 $\left(0 < x_1 < \frac{1}{2}, x_2 > 1\right)$ konstruiran je Lagrangeov interpolacijski polinom prvog stupnja $P_1(x)$. Dokažite da za grešku aproksimacije vrijedi ocjena

$$|f(x) - P_1(x)| < \frac{(x_2 - x_1)^2}{2\sqrt{2\pi e}}.$$

7. Zadana je tablica vrijednosti polinoma trećeg stupnja

x	-1	0	2	3	5	6
f(x)	9	3	-3	-15	-177	-327

Poznato je da u njoj postoji jedna greška. Pronađite i ispravite grešku.

8. Zadana je tablica vrijednosti polinoma trećeg stupnja

x	-1	0	2	3	5	6
f(x)	-16	-1	113	381	1754	3029

Poznato je da u njoj postoji jedna greška. Pronađite i ispravite grešku.

9. Dana je tablica vrijednosti vjerojatnosnog integrala $y = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$

x	1.3	1.4	1.5	1.6
y	0.9340	0.9523	0.9661	0.9763

Koristeći dane podatke izračunajte vrijednost integrala za x=1.45 i ocijenite grešku aproksimacije.

1.2 Interpolacijski splajn

1. Provjerite je li funkcija

$$s(x) = \begin{cases} 2(x+1) + (x+1)^3, & x \in [-1,0] \\ 3 + 5x + 3x^2, & x \in [0,1] \\ 11 + 11(x-1) + 3(x-1)^2 - (x-1)^3, & x \in [1,2] \end{cases}$$

kubični splajn na intervalu [-1, 2].

2. Postoje li a i b takvi da funkcija

$$s(x) = \begin{cases} (x-2)^3 + a(x-1)^2, & x \in (-\infty, 2] \\ (x-2)^3 - (x-3)^2, & x \in [2, 3] \\ (x-3)^3 + b(x-2)^2, & x \in [3, \infty) \end{cases}$$

bude kubični splajn?

3. Je li funkcija

$$s(x) = \begin{cases} x^3 - 1, & x \in [-1, \frac{1}{2}] \\ 3x^3 - 1, & x \in [\frac{1}{2}, 1] \end{cases}$$

kubični splajn?

4. Odredite parametre a, b, c i d tako da funkcija

$$s(x) = \begin{cases} 1 - 2x, & x \in (-\infty, -3] \\ a + bx + cx^2 + dx^3, & x \in [-3, 4] \\ 157 - 32x, & x \in [4, \infty) \end{cases}$$

bude kubični splajn.

5. Provjerite je li funkcija

$$s(x) = \begin{cases} (x-1)^3, & x \in [0,1] \\ 2(x-1)^3, & x \in [1,2] \end{cases}$$

kubični splajn na intervalu [0, 2].

1.3 Polinom najmanjih kvadrata

- 1. Zadane su točke (1,5.2), (2,4.3), (3,3.5), (4,3.2) i funkcija oblika $y=a+\frac{b}{x}$ koja predstavlja najbolju aproksimaciju tih čvorova u smislu metode najmanjih kvadrata. Odredite vrijednost od a i b.
- 2. Za funkciju zadanu tablicom polinom najmanjih kvadrata prvog stupnja x=q(y) za kojeg je

$$\sum_{i=0}^{4} (q(y_i) - x_i)^2$$

minimalna ima jednadžbu 20x-27y+21=0. Izračunajte vrijednost od a i b ako je tablica dana s

x_i	0	1	a	b	8
y_i	0	2	3	4	6

- 3. Zadane su točke $T_0(1,1)$, $T_1(2,3)$, $T_2(4,2)$ i $T_3(6,4)$. Nađite točku u kojoj se pravac najmanjih kvadrata $p_1(x)$ za kojeg je $\sum_{i=0}^3 (p_1(x_i) y_i)^2 \longrightarrow \min$, podudara s pravcem najmanjih kvadrata $q_1(y)$ za kojeg je $\sum_{i=0}^3 (q_1(y_i) x_i)^2 \longrightarrow \min$.
- 4. Odredite kvadratičnu funkciju za koju je izraz

$$\sum_{k=1}^{5} |f(2k) - k^2|^2$$

minimalan.

- 5. Zadane su točke (1,5), (2,4), (3,3.5), (4,3.2) i funkcija oblika $y=a+\frac{b}{x}$ koja predstavlja najbolju aproksimaciju tih čvorova u smislu metode najmanjih kvadrata. Odredite vrijednost od a i b.
- 6. Eksperimenti u nekom periodičkom procesu dali su slijedeće rezultate

t_j	0	50	100	150	200	250	300	350
$f(t_j)$	0.754	1.762	2.041	1.412	0.303	-0.484	-0.380	0.520

(vrijednosti t_j su dane u stupnjevima). Odredite parametre a i b u modelu $\Phi(t) = a + b \sin t$ korištenjem metode najmanjih kvadrata.

7. Neka su rezultati mjerenja veličina x i y dani u tablici

1 1	4.48					
y	4.15	1.95	1.31	1.03	0.74	0.63

Odredite parametre a i b u modelu $y=\frac{1}{a+bx}$ korištenjem metode najmanjih kvadrata.

- 8. Zadane su točke $T_0(-1,1)$, $T_1(2,4)$, $T_2(4,5)$ i $T_3(6,4)$. Nađite točku u kojoj se pravac najmanjih kvadrata $p_1(x)$ za kojeg je $\sum_{i=0}^3 (p_1(x_i) y_i)^2 \longrightarrow \min$, podudara s pravcem najmanjih kvadrata $q_1(y)$ za kojeg je $\sum_{i=0}^3 (q_1(y_i) x_i)^2 \longrightarrow \min$.
- 9. Zadane su točke (1,5), (2,4), (3,3), (4,4) i funkcija oblika $y=ax^2+\frac{b}{x}$ koja predstavlja najbolju aproksimaciju tih čvorova u smislu metode najmanjih kvadrata. Odredite vrijednost od a i b.
- 10. Za funkciju y=f(x) zadanu tablicom, pravac najmanjih kvadrata ima jednadžbu y=3x+4. Izračunajte vrijednosti od a i b ako je tablica dana s

x_i	0	1	2	4	7	9
$f(x_i)$	0	4	3	a	30	b

- 11. Funkciju $f(x) = \frac{10}{x^2+10}$ aproksimirajte na segmentu [-1,1]
 - a) interpolacijskim polinomom u točkama $-1, -\frac{1}{2}, 0, \frac{1}{2}, 1,$
 - b) polinomom najmanjih kvadrata drugog stupnja.
- 12. Za funkciju zadanu tablicom polinom najmanjih kvadrata prvog stupnja x=q(y) za kojeg je $\sum_{i=0}^4 (q(y_i)-x_i)^2$ minimalna ima jednadžbu 10x-17y+11=0. Izračunajte vrijednost od a i b ako je tablica dana s

x_i	į	0	1	a	b	8
y_i		0	2	3	4	6

- 7
- 13. Za funkciju zadanu tablicom polinom najmanjih kvadrata prvog stupnja x=q(y) za kojeg je

$$\sum_{i=0}^{4} (q(y_i) - x_i)^2$$

minimalna ima jednadžbu 22x-28y+21=0. Izračunajte vrijednost od a i bako je tablica dana s

x_i	0	1	a	b	8
y_i	0	2	3	4	6

- 14. Točkama $T_0(-1,0)$, $T_1(0,1)$, $T_2(1,-1)$, $T_3(2,3)$ povucite parabolu najmanjih kvadrata $x=p_2(y)$ za koju je $\sum_{i=0}^3 (p_2(y_i)-x_i)^2 \longrightarrow \min$.
- 15. Funkciju $f(x) = x^4$ aproksimirajte polinomom drugog stupnja na intervalu [0,2]
 - a) metodom najmanjih kvadrata,
 - b) Lagrangeovim polinomom.
- 16. Funkciju f definiranu s

$$f(x) = \frac{451}{10x^2 + 1}$$

aproksimirajte na segmentu [-1,2]

- a) interpolacijskim polinomom u točkama -1, 0, 1, 2,
- b) polinomom najmanjih kvadrata prvog stupnja.

2 Numeričko integriranje

1. Primjenom trapezne formule izračunajte s točnošću $\varepsilon=10^{-3}$ integral

$$\int\limits_{0}^{1}e^{-x^{2}}dx.$$

2. Primjenom Simpsonove formule izračunajte s točnošću $\varepsilon = 10^{-3}$ integral

$$\int_{1}^{2} \frac{dx}{1+x}.$$

3. Primjenom Simpsonove formule izračunajte

$$\int\limits_{0}^{\pi} \sqrt{1 - \frac{1}{2}\sin^2 x} dx$$

s točnošću 10^{-2} .

4. Primjenom Simpsonove formule izračunajte integral

$$\int_{\pi/4}^{\pi/2} \frac{\sin x}{x} dx$$

s točnošću 10^{-3} . Prethodno iz ocjene pogreške odredite korak h.

- 5. Do na točnost $\varepsilon=10^{-4}$ izračunajte duljinu luka elipse $x^2+y^2/4=1$
- 6. Trapeznom formulom izračunajte s točnošću $\varepsilon=10^{-2}$ integral

$$\int_{0}^{\pi/2} \frac{\sin x}{1+x} dx.$$

7. Izračunajte

$$\int_{0}^{1} e^{-e^{-x}} dx$$

s točnošću $\varepsilon = 10^{-3}$.

8. S točnošću $\varepsilon=10^{-4}$ izračunajte

$$\int_{0}^{\pi/2} e^{\sin x} dx.$$

9. S točnošću $\varepsilon=10^{-5}$ izračunajte površinu izmedju krivulja $y=\cos x$ i $y=e^{-x}$ $(0\leq x<\pi/2).$

3 Sustavi linearnih jednadžbi

3.1 Direktne metode

1. Gaussovom metodom izračunajte inverznu matricu matrice

$$A = \left[\begin{array}{rrrr} 1 & -1 & 0 & 3 \\ 0 & 4 & 0 & 2 \\ 1 & -1 & 1 & 0 \\ 3 & 5 & 2 & 4 \end{array} \right].$$

2. Gaussovom metodom eliminacije nađite rješenje sustava Ax = b, ako je

$$A = \begin{bmatrix} 10 & 1 & 4 & 0 \\ 1 & 10 & 5 & -1 \\ 4 & 5 & 10 & 7 \\ 0 & -1 & 7 & 9 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}.$$

Može li se sustav riješiti metodom Choleskog? Obrazložite.

3. Gaussovom metodom eliminacije nađite rješenje sustava Ax = b, ako je

$$A = \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 4 & 0 & 2 \\ 1 & -1 & 1 & 0 \\ 3 & 5 & 2 & 4 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}.$$

Može li se sustav riješiti metodom Choleskog? Obrazložite.

4. Metodom Choleskog riješite sustav Ax = b, ako je

$$A = \begin{bmatrix} 10 & 1 & 4 & 0 \\ 1 & 10 & 5 & -1 \\ 4 & 5 & 10 & 7 \\ 0 & -1 & 7 & 9 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ 6 \\ 4 \\ 2 \end{bmatrix}.$$

5. Metodom Choleskog riješite sustav Ax = b, ako je

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 5 & -2 \\ 1 & -4 & 10 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}.$$

6. Metodom Choleskog riješite sustav Ax = b, ako je

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}.$$

Izračunajte $||A||_2$.

7. Metodom Choleskog riješite sustav Ax = b, ako je

$$A = \begin{bmatrix} 10 & 1 & 4 & 0 \\ 1 & 10 & 5 & -1 \\ 4 & 5 & 10 & 7 \\ 0 & -1 & 7 & 9 \end{bmatrix}, \qquad b = \begin{bmatrix} 2 \\ 1 \\ 4 \\ 0 \end{bmatrix}.$$

8. Metodom Choleskog riješite sustav $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},$ ako je

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}.$$

9. Nađite inverz simetrične pozitivno definitne matrice

$$R = \begin{bmatrix} 10 & 1 & 4 & 0 \\ 1 & 10 & 5 & -1 \\ 4 & 5 & 10 & 7 \\ 0 & -1 & 7 & 9 \end{bmatrix}.$$

10. Gaussovom metodom eliminacije riješite sustav Ax = b, ako je

$$A = \begin{bmatrix} 10 & -7 & 3 & 5 \\ -6 & 8 & -1 & -4 \\ 3 & 1 & 4 & 11 \\ 5 & -9 & -2 & 4 \end{bmatrix}, \qquad b = \begin{bmatrix} 6 \\ 5 \\ 2 \\ 7 \end{bmatrix}.$$

Izračunajte operatorsku normu $||A||_1$.

3.2 Iteracijske metode

1. Neka je $x = (x_1, ..., x_n) \in \mathbf{R}^n$. Dokažite da je formulom

$$||x|| = (\sum_{i=1}^{n} \sum_{i=1}^{j} |x_i|^2)^{1/2}$$

definirana norma na \mathbb{R}^n .

2. Skicirajte krivulju $x^{2/3} + y^{2/3} = 1$. Je li za dvodimenzionalne realne vektore $x = (x_1, x_2)$ formulom

$$||x|| = (|x_1|^{2/3} + |x_2|^{2/3})^{3/2}$$

zadana vektorska norma?

3. Pokažite da se sustav Ax = b može riješiti Jacobijevom metodom, ako je

$$A = \begin{bmatrix} 5 & 8 & 1 \\ 1 & 2 & 10 \\ 10 & 1 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Nađite onu aproksimaciju za koju je greška manja od $\varepsilon = 0.005$. Izračunajte za tu aproksimaciju grešku u normama $\|.\|_1$ i $\|.\|_2$.

4. Dokažite da se Jacobijeva metoda ne može primijeniti na jednadžbe

u danom poretku. Promijenite poredak jednadžbi tako da Jacobijeva metoda daje konvergentno rješenje i nađite to rješenje.

5. Zadana je matrica

$$A = \left[\begin{array}{cc} p & q \\ -q & p \end{array} \right].$$

Odredite realne brojeve p i q tako da Jacobijeva metoda konvergira za sustav

- a) Ax = b
- b) x = Ax + b

uz proizvoljan izbor početne iteracije.

6. Pokažite da se sustav Ax = b može riješiti Jacobijevom metodom, ako je

$$A = \begin{bmatrix} 5 & 8 & 1 \\ 1 & 2 & 10 \\ 10 & 1 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

Nađite onu aproksimaciju za koju je greška manja od $\varepsilon = 0.005$. Izračunajte za tu aproksimaciju grešku u normama $\|.\|_1$ i $\|.\|_2$.

7. Zadana je matrica

$$A = \left[\begin{array}{cc} 1 & a \\ 2 & 4 \end{array} \right].$$

Za koje realne brojeve a će Gauss–Seidelova matoda za sustav Ax = b konvergirati uz proizvoljan izbor početne iteracije?

8. Gauss-Seidelovom metodom riješite sustav Ax = b, gdje je

$$A = \begin{bmatrix} 3 & 0.5 & 1 \\ 2 & 4 & 4 \\ 1 & 1 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix},$$

s točnošću $\varepsilon=10^{-3}$. Obrazložite konvergenciju metode.

9. Gauss-Seidelovom metodom riješite sustav Ax = b, gdje je

$$A = \begin{bmatrix} 9.9 & -1.5 & 2.6 \\ 0.4 & 13.6 & -4.2 \\ 0.7 & 0.4 & 7.1 \end{bmatrix}, \qquad b = \begin{bmatrix} 2.1 \\ 3.2 \\ -0.3 \end{bmatrix},$$

s točnošću $\varepsilon=10^{-3}$. Obrazložite konvergenciju metode.

10. Ispitajte konvergenciju Jacobijeve i Gauss–Seidelove metode primijenjene na sustav linearnih jednadžbi Ax = b, ako je

$$A = \left[\begin{array}{rrr} 1 & 0.5 & -0.5 \\ -1 & 1 & -1 \\ -0.5 & 0.5 & 1 \end{array} \right].$$

11. Pokažite da za sustav Ax = b, gdje je

$$A = \begin{bmatrix} 1 & -1 & 0 \\ -0.25 & 1 & -0.5 \\ 0 & -0.5 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 0.7 \\ 0.8 \\ 0.9 \end{bmatrix},$$

Gauss-Seidelova metoda konvergira brže od Jacobijeve. Gauss-Siedelovom metodom izračunajte prve tri iteracije.

12. Dokažite konvergenciju Gauss–Seidelove metode za rješavanje sustava

Izračunajte prve četiri iteracije i ocijenite grešku metode.

13. Diskutirajte konvergenciju Jacobijeve i Gauss–Siedelove metode za rješavanje sustava Ax = b ako je

a)
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -1 & 1 & -1 \\ -2 & -2 & 1 \end{bmatrix}$$
, b) $A = \begin{bmatrix} 1 & 1/2 & -1/2 \\ -1 & 1 & -1 \\ 1/2 & 1/2 & 1 \end{bmatrix}$.

14. Linearni sustav Ax = b ima matricu

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

Napišite matrice iteracije za pripadni Jacobijev i Gauss-Seidelov postupak. Pokažite da će obje metode konvergirati ili divergirati.

15. Usporedite brzine konvergencije Jacobijeve i Gauss–Seidelove primijenjene na sustavAx=b,ako je

$$A = \begin{bmatrix} 1 & -0.5 & 0 \\ -0.4 & 1 & -0.5 \\ 0 & -0.5 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \end{bmatrix}.$$

16. Iterativnom metodom s točnošću $\varepsilon = 10^{-3}$ riješite sustav Ax = b, ako je

$$A = \begin{bmatrix} 1 & 10 & 1 & 0 & 0 & 0 \\ 2 & 0 & 20 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 30 & 3 \\ 10 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 2 & -2 & 20 \\ 0 & 0 & 1 & 10 & -1 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 10 \\ 10 \\ 0 \\ 5 \\ 5 \\ 0 \end{bmatrix}.$$

17. Dokažite da se za rješavanje sustava linearnih jednadžbi

može primijeniti Gauss–Seidelov postupak. Uzimajući za $x^{(0)}=[1,1.5,-1.5]$ izračunajte $x^{(2)}$. Odredite broj iteracija k tako da vrijedi ocjena

$$||x^{(k)} - x||_1 \le 10^{-3} ||x^{(0)} - x||_1$$

gdje je x točno rješenje sustava.

13

18. Gauss–Seidelovom metodom s točnošću $\varepsilon=10^{-2}$ riješite sustav linearnih jednadžbi

19. Gauss-Seidelovom metodom riješite sustav

$$3x - 2y + 2z = -1$$

 $-x + 4y - 3z = 7$
 $2x + 3y - 6z = 8$

s točnošću $\varepsilon = 10^{-3}$. Dokažite konvergenciju metode.

20. Jacobijevom i Gauss-Seidelovom metodom riješite sustav

$$6.1x + 2.2y + 1.2z = 16.55$$

 $2.2x + 5.5y - 1.5z = 10.55$
 $1.2x - 1.5y + 7.2z = 16.80$

s točnošću $\varepsilon = 10^{-3}$. Usporedite brzine konvergencije metoda.

21. Ispitajte konvergenciju Jacobijeve i Gauss-Seidelove metode za sustav

$$x = \frac{3}{4}x + \frac{5}{4}y - 4$$
$$y = -\frac{5}{4}x + \frac{3}{4}y + 6.$$

22. Ispitajte konvergenciju Gauss-Seidelove metode primijenjene na sustav x=Bx+b,gdje je

$$B = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/4 \\ 1/2 & 1/4 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} -1/2 \\ -1 \\ 11/4 \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

23. Gauss-Seidelovom metodom s točnošću 10^{-3} riješite sustav Ax=b, ako je

$$A = \begin{bmatrix} -1 & 4 & 2 \\ 2 & -3 & 10 \\ 5 & 2 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 20 \\ 3 \\ -12 \end{bmatrix}.$$

24. Dan je sustav jednakosti

$$x = 2x - y - 6$$
, $y = \frac{22}{9}x - \frac{4}{3}y - 15$

za čije rješavanje se primijenjuju

- a) Jacobijeva metoda,
- b) Gauss–Seidelova metoda.

Ispitajte konvergencije tih metoda.

25. Gauss-Seidelovom metodom riješite sustav Ax = b, gdje je

$$A = \begin{bmatrix} 9.9 & -1.5 & 2.6 \\ 0.4 & 13.6 & -4.2 \\ 0.7 & 0.4 & 7.1 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 8.2 \\ -0.3 \end{bmatrix},$$

s točnošću $\varepsilon = 10^{-3}$. Obrazložite konvergenciju metode.

26. Ispitajte konvergenciju Jacobijeve i Gauss–Seidelove metode primijenjene na sustav linearnih jednadžbi Ax = b, ako je

$$A = \left[\begin{array}{rrr} 1 & 0.5 & -0.5 \\ -1 & 1 & -1 \\ -0.5 & 0.5 & 1 \end{array} \right].$$

27. Gauss–Seidelovom metodom izračunajte prve tri iteracije za sustav

$$5x_1 - x_2 + 2x_3 = 0$$

 $x_1 + 10x_2 - x_3 = 5$
 $2x_1 - x_2 + 5x_3 = 8$.

Obrazložite konvergenciju metode i izračunajte broj iteracija dovoljan da se postigne točnost 10^{-4} .

28. U ovisnosti o parametru $a \in \mathbf{R}$ ispitajte konvergenciju Gauss-Seidelove metode primijenjene na sustav x = Bx + b, gdje je

$$B = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & a \\ 1/2 & 1/4 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} -1/2 \\ -1 \\ 11/4 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

29. Gauss–Seidelovom metodom s točnošću $\varepsilon=10^{-3}$ riješite sustav linearnih jednadžbi

30. Ispitajte konvergenciju Gauss-Seidelove metode primijenjene na sustav Ax=b, ako je

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}.$$

31. Matrica
$$X = X_0 = \begin{bmatrix} -3.9 & 4.1 & -0.9 \\ 4.1 & -5.1 & 1.9 \\ -0.9 & 1.9 & -1.1 \end{bmatrix}$$
 je aproksimativni inverz matrice $A = \begin{bmatrix} -3.9 & 4.1 & -0.9 \\ 4.1 & -5.1 & 1.9 \\ -0.9 & 1.9 & -1.1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 4 \end{bmatrix}.$$
 Inverz matrice $A, A^{-1} = \begin{bmatrix} -4 & 4 & -1 \\ 4 & -5 & 2 \\ -1 & 2 & -1 \end{bmatrix}$. Izračunajte $X_1, X_2, X_3,$ gdie ie

$$X_{n+1} = X_n(2I - AX_n), \quad n > 0.$$

Izračunajte i $||I - AX_n||_1$ i $||A^{-1} - X_n||_1$ za n = 0, 1, 2, 3.

4 Svojstvene vrijednosti i svojstveni vektori matrice

1. Izračunajte najveću svojstvenu vrijednost matrice

$$A = \left[\begin{array}{rrr} 3 & -1 & 2 \\ -1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right]$$

s točnošću 10^{-3} . Obrazložite konvergenciju odabrane metode.

2. Metodom Danielvskog nađite karakteristični polinom matrice

$$A = \left[\begin{array}{cc} 3 & -1 \\ 2 & 1 \end{array} \right].$$

Nađite isti polinom Leverrierovom metodom.

3. Krilovljevom metodom nađite karakteristični polinom matrice

$$A = \left[\begin{array}{rrr} 1 & 2 & 1 \\ -1 & 0 & -3 \\ -3 & 2 & 1 \end{array} \right].$$

4. Leverrierovom metodom nađite karakteristični polinom matrice

$$A = \left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & -3 & 0 \\ 1 & -1 & 6 \end{array} \right].$$

5. Metodom neodređenih koeficijenata nađite karakteristični polinom matrice

$$A = \left[\begin{array}{rrr} 1 & -1 & 3 \\ -2 & 0 & -1 \\ 1 & 4 & 1 \end{array} \right].$$

6. Metodom neodređenih koeficijenata nađite karakteristični polinom matrice

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ -1 & 3 & -1 \\ 2 & 1 & -2 \end{array} \right].$$

7. Krilovljevom metodom nađite karakteristični polinom matrice

$$A = \begin{bmatrix} -1 & 1 & 2 & 3 \\ 1 & -2 & 1 & -3 \\ 3 & 1 & -1 & 2 \\ 0 & -1 & 0 & 1 \end{bmatrix}.$$

8. Metodom Danielvskog nađite karakteristični polinom matrice

$$A = \left[\begin{array}{rr} -1 & -2 \\ -3 & -4 \end{array} \right].$$

Nađite isti polinom Krilovljevom metodom.

9. Metodom Danielvskog nađite karakteristični polinom matrice

$$A = \left[\begin{array}{cc} 1 & 2 \\ 4 & 7 \end{array} \right].$$

Nađite isti polinom Krilovljevom metodom.

10. Metodom Danielvskog nadite karakteristični polinom matrice

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ -1 & 1 & -2 \\ 1 & 1 & 2 \end{array} \right].$$

11. Metodom Danielvskog nadite karakteristični polinom matrice

$$A = \left[\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array} \right].$$

Leverrierovom metodom pronađite parametar $\alpha \in \mathbf{R}$ tako da karakteristični polinom matrice

$$B = \left[\begin{array}{cc} -1 & \alpha \\ 1 & -1 \end{array} \right]$$

bude $k_B(\lambda) = \lambda^2 + 2\lambda$.

12. Metodom neodređenih koeficijenata nađite karakteristični polinom matrice

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array} \right].$$

Nađite isti polinom Krilovljevom metodom.

13. Metodom Danielvskog nađite karakteristični polinom matrice

$$A = \left[\begin{array}{cc} -1 & 4 \\ -2 & 3 \end{array} \right].$$

Leverrierovom metodom pronađite parametar $\alpha \in \mathbf{R}$ tako da karakteristični polinom matrice

$$B = \left[\begin{array}{cc} -1 & \alpha \\ -2 & 3 \end{array} \right]$$

bude $k_B(\lambda) = \lambda^2 - 2\lambda + 5$.

14. Misesovom metodom potencija nađite spektralni radijus matrice

$$A = \left[\begin{array}{cc} 0 & 1 \\ 2 & 1 \end{array} \right].$$

Vektor y_0 odaberite sami! Dovoljno je izračunati dvije iteracije! Nađite karakteristični polinom iste matrice Leverrierovom metodom.

15. Misesovom metodom potencija nađite spektralni radijus matrice

$$A = \begin{bmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{bmatrix},$$

polazeći od vektora $y_0 = [1, 1, -1, -1]$. Dovoljno je izračunati tri iteracije!

16. Metodom neodređenih koeficijenata nađite karakteristični polinom matrice

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 8 \end{array} \right].$$

Nađite isti polinom Krilovljevom metodom.

17. Metodom neodređenih koeficijenata nađite karakteristični polinom matrice

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right].$$

Nađite isti polinom metodom Danielvskog te Krilovljevom metodom.

5 Nelinearne jednadžbe

- 1. Iterativnom metodom $x_{k+1} = a bx_k^2$, računa se pozitivni korijen jednadžbe $x = a bx^2$, (a i b pozitivni). Nađite nuždan uvjet konvergencije!
- 2. Metodom iteracije odredite pozitivnu nultočku funkcije

$$f(x) = x^2 + 4\sin x - 1$$

s točnošću $\varepsilon=10^{-3}$. Obrazložite konvergenciju metode.

3. Metodom iteracije riješite jednadžbu

$$4 - x^2 - \ln^2 x = 0$$

s točnošću $\varepsilon=10^{-2}$. Obrazložite konvergenciju metode.

- 4. Newtonovom metodom nađite najveću nultočku funkcije $f(x) = 2x 100\cos(x) 1$ s točnošću $\varepsilon = 10^{-3}$. Napravite ocjenu greške.
- 5. Metodom sekante izračunajte pozitivni korijen jednadžbe $x^2=\operatorname{tg}(0.55x+0.1)$ s točnošću $\varepsilon=10^{-3}.$
- 6. Metodom iteracije nađite s točnošću ε najveće rješenje jednadžbe

$$f(x) = \ln(\frac{x}{2}).$$

f(x) je periodička funkcija perioda 2, zadana s $f(x) = \frac{x^2}{2}$ za 0 < x < 2 i $\varepsilon = 10^{-2}$. Obrazložite konvergenciju.

7. Metodom iteracije nađite oba rješenja jednadžbe

$$2x - 4\ln(x) - 3 = 0$$

s točnošću $\varepsilon=10^{-2}$. Obrazložite konvergenciju metode.

8. Metodom iteracije riješite s točnošću ε jednadžbu

$$f(x) = \ln x$$

gdje je f(x) periodička funkcija perioda 3/4, zadana sa f(x) = x, 0 < x < 3/4 i $\varepsilon = 10^{-2}$. Obrazložite konvergenciju.

9. Metodom iteracije riješite jednadžbu

$$\ln(\frac{x}{2}) = |\cos(x)|$$

s točnošću $\varepsilon=10^{-4}$. Obrazložite konvergenciju.

10. Funkcija

$$x \mapsto g(x) = \frac{x^3}{0.05 - \frac{e^{-x}}{1+x}}$$

ima lokalni minimum u točki $a\approx 2.5$. Koristeći metodu iteracije odredite a s točnošću $\varepsilon=10^{-5}$.

- 11. Metodom iteracije riješite jednadžbu $4e^x x 10 = 0$ s točnošću $\varepsilon = 10^{-4}$. Obrazložite konvergenciju metode.
- 12. Metodom iteracije riješite jednadžbu

$$\ln(\frac{x}{2}) = |\cos(x)\sin(x)|$$

s točnošću $\varepsilon = 10^{-4}$. Obrazložite konvergenciju.

13. Metodom iteracije riješite jednadžbu

$$4 - x^3 - \ln^2(x) = 0$$

s točnošću $\varepsilon = 10^{-3}$. Obrazložite konvergenciju metode.

- 14. S točnošću $\varepsilon = 10^{-5}$ nadite najmanju vrijednost od a tako da je $ax^{1/2} \ge \sin x$ za sve pozitivne x. Obrazložite konvergenciju metode.
- 15. Po teoremu o srednjoj vrijednosti za diferencijabilne funkcije, vrijedi

$$f(x) - f(a) = (x - a)f'(a + p(x - a)).$$

Do na točnost $\varepsilon=10^{-3}$ nađite pozitivnu vrijednost x takvu da je $p=\frac{1}{2}$, ako je $f(x)=\operatorname{arctg} x$ i a=0.

16. Metodom iteracije $x_{k+1}=F(x_k)$ (k=0,1,...) rješavamo jednadžbu $xe^{cx}=1$ (c>0). Pomoću koje od danih funkcija F_i (i=1,2,3)

$$F_1(x) = e^{-cx}, \quad F_2(x) = \frac{cx + e^{-cx}}{c+1}, \quad F_3(x) = \frac{cx^2 + e^{-cx}}{cx+1},$$

se jednadžba može riješiti? Koja funkcija je najbolji izbor?

- 17. Nađite apscisu točke infleksije krivulje $y=e^{-x}\ln x$ s točnošću $\varepsilon=10^{-3}$.
- 18. Newtonovom metodom s točnošću $\varepsilon=10^{-3}$ riješite jednadžbu

$$\operatorname{sh}(\ln x - x) - \cos x = 0.$$

Obrazložite konvergenciju metode.

19. Izračunajte $\sqrt{7}$ s točnošću 10^{-5} .

20. Kombiniranom metodom riješite jednadžbu

$$x^2 \arctan(x) - 1 = 0$$

s točnošću $\varepsilon = 10^{-4}$.

21. Metodom iteracije nadite s točnošću $\varepsilon = 10^{-2}$ najmanje pozitivno rješenje jednadžbe

$$f(x) = \ln(x + \sqrt{x^2 + 1}),$$

gdje je f(x) periodička funkcija perioda 2, zadana sf(x) = x, $0 \le x < 1$, f(x) = -x + 2, $1 \le x < 2$. Obrazložite konvergenciju metode.

- 22. Za funkciju $f(x) = e^x ax(\log x 1)$ postoji jedna vrijednost a = A takva da je f'(x) = f''(x) = 0 za neko x. Odredite A s točnošću 10^{-3} . Obrazložite konvergenciju upotrebljene metode.
- 23. Metodom iteracije odredite najmanju pozitivnu nultočku funkcije

$$f(x) = (x - 0.5)^2 + \operatorname{tg} x - 1$$

s točnošću $\varepsilon=10^{-3}$. Obrazložite konvergenciju metode.

- 24. Newtonovom metodom nađite s točnošću $\varepsilon=10^{-2}$ korijen jednadžbe $\ln|x|=\lg\frac{x}{3}$ koji je najmanje udaljen od nule.
- 25. Newtonovom metodom s točnošću $\varepsilon=10^{-3}$ riješite jednadžbu

$$\operatorname{sh}(\ln|x| - x) - \cos x = 0.$$

Obrazložite konvergenciju metode.

- 26. Odredite s točnošću $\varepsilon=10^{-3}$ konstantu K takvu da je x-os tangenta krivulje $y=Ke^{\frac{x}{10}}-\log x$ u točki x>0.
- 27. Za $0 \leq x \leq 1$ promatramo funkciju

$$y = \frac{1.00158 - 0.40222x}{1 + 0.636257x} - e^{-x}.$$

Nađite maksimum i minimum funkcije (uključujući rubne točke).

- 28. Izračunajte s točnošću $\varepsilon=10^{-3}$ površinu među krivuljama $y=\cos x$ i $y=e^{-x},$ $0\leq x<\pi/2.$ Koristite metodu iteracije.
- 29. Metodom iteracije nađite oba rješenja jednadžbe

$$x - 3\ln(x) - 2 = 0$$

s točnošću $\varepsilon=10^{-2}.$ Obrazložite konvergenciju metode.

30. S točnošću $\varepsilon = 10^{-3}$ nadite najmanju vrijednost od λ tako da je

$$e^{-\lambda x} \le \frac{1}{1+x^2}$$

za sve x > 0.

- 31. Newtonovom metodom s točnošću $\varepsilon=10^{-4}$ odredite najveću nultočku funkcije $f(x)=2^x-100\cos(x)-1$. Napravite ocjenu greške.
- 32. Metodom iteracije riješite jednadžbu

$$4 - x^2 - \ln^2(\frac{x}{2}) = 0$$

s točnošću $\varepsilon=10^{-3}$. Obrazložite konvergenciju metode.

33. Metodom iteracije s točnošću $\varepsilon=10^{-3}$ riješite jednadžbu

$$\operatorname{sh}(\ln x - x) + x = 0.$$

Obrazložite konvergenciju metode.

34. Na intervalu $0 \le x \le \pi$, y je definirano kao funkcija od x relacijom

$$y = -\int_{0}^{x} \ln(2\sin\frac{t}{2})dt.$$

Nađite maksimalnu vrijednost od y s točnošću 10^{-5} .

35. Za a > 1 i $0 < b < \frac{1}{2}$ jednadžba

$$\frac{1}{e^{\frac{x}{a}} - 1} - \frac{a}{e^x - 1} - (a - 1)b = 0$$

ima jedinstven pozitivni korijen. Izračunajte taj korijen s točnošću $\varepsilon=10^{-3}$ ako je $a=5, b=\frac{1}{4}.$

36. Metodom iteracije nađite s točnošću $\varepsilon=10^{-2}$ najmanje pozitivno rješenje jednadžbe

$$f(x) = \ln(x + \sqrt{x^2 + 1}),$$

gdje je f(x) periodička funkcija perioda 2, zadana s

$$f(x) = \begin{cases} x^2, & 0 \le x < 1, \\ -x^2 + 2, & 1 \le x < 2. \end{cases}$$

Obrazložite konvergenciju metode.

37. Jednadžbu $xe^{cx} = 1$ rješavamo metodom iteracije

$$x_{k+1} = \varphi(x_k)$$

gdje je $\varphi(x) = e^{-cx}$. Za koje c > 0 će metoda konvergirati?

38. Metodom iteracije nađite s točnošću $\varepsilon=10^{-3}$ oba korijena jednadžbe $x=4e^x-10.$

6 Nelinearni sustavi jednadžbi

1. Metodom iteracija riješite sustav jednadžbi

$$2x = \sin\left[\frac{1}{2}(x-y)\right], \qquad 2y = \cos\left[\frac{1}{2}(x+y)\right]$$

s točnošću $\varepsilon=10^{-2}.$ Dokažite konvergenciju metode!

2. Newtonovom metodom odredite rješenje sustava

$$2x^3 - y^2 - 1 = 0$$
$$xy^3 - y - 4 = 0$$

uzevši za početnu iteraciju $x_0=1,\ y_0=1.5.$ Postupak prekinite nakon treće iteracije!

3. Metodom iteracija odredite s točnošću $\varepsilon=10^{-3}$ rješenje sustava

$$4y^2 + 20x + 4y - 15 = 0$$
$$4x^2 - 4y^2 + 8x - 20y - 5 = 0$$

koje leži u prvom kvadrantu.