

Volume: 04 Issue: 09 | Sep 2023 ISSN: 2660-5317 https://cajotas.centralasianstudies.org

Усовершенствование Существующих И Разработка Новых Методик Оценки Качества Зерна Пшеницы

А. Б. Абубакиров

Нукуский горный институт при Навоийского государственного горно-технологического университета, г. Нукус

М. Аламинова

Каракалпакский институт сельского хозяйства и агротехнологий, г. Нукус

Received 27th Jul 2023, Accepted 28th Aug 2023, Online 29th Sep 2023

Аннотация: В данной статье рассматривается значение селекционного улучшения сортов сельскохозяйственных культур, особенно пшеницы, в производстве высококачественного зерна, важность своевременного и объективного определения перспективного, разнообразного и качественного в массе селекционного материала при создании новых сортов. Изучены технология производства зерна, методы создания новых сортов, отвечающих требованиям производства в сочетании с высококачественным сырьем и обеспечивающих население соответствующей продукцией.

Ключевые слова: Качество зерна, натура зерна, пшеница, многокамерной, клейковина, сорт, стекловидность.

ВВЕДЕНИЕ

Качество зерна - фактор интенсификации зернового производства, является интегрирующим показателем взаимодействия генотипа сорта, природно-климатических особенностей, агротехнических и организационно- экономических условий возделывания пшеницы.

Селекционное улучшение сортов сельскохозяйственных культур, и прежде всего пшеницы, имеет важное значение для производства высококачественного зерна. При создании новых сортов важно своевременно и объективно в массе селекционного материала идентифицировать перспективный, разносторонне и полно изучить его качество. Создание новых сортов, удовлетворяющих требованиям производства в сочетании с технологией зерно производства, обеспечивает переработку высококачественным сырьем, а население соответствующими продуктами [1].

Повышение качества зерна в современных условиях является важной проблемой сельскохозяйственного производства. Недостаток высококачественного зерна - основного сырья для мукомольной, крупяной, хлебопекарной и макаронной промышленности обуславливает поиск путей его стабильного производства. Основной для этого являются сорта, способные формировать зерно с соответствующими параметрами качества. На базе таких сортов при подборе и отработке

Volume: 04 Issue: 09 | Sep 2023, ISSN: 2660-5317

отдельных традиционных и новых агротехнических элементов создается возможность выращивания качественного зерна. Создание сортов с определенными показателями качества на основе информативных методов и показателей требует изучения таких сортов в разных почвенно-климатических и агротехнических условиях с обязательной проработкой по хлебопекарным и физическим свойствам теста с модификацией режимов и вариантов тестоведения и выпечки. Объективная, достаточно экспрессная, с высокой точностью оценка качества образцов зерна на всех этапах селекции, зависящая от правильного построения системы поэтапного анализа, вносит определенный вклад в решение проблемы создания высококачественных и высокопродуктивных сортов пшеницы. Не менее значимой является проблема правильной и своевременной оценки качества зерна в производстве, от чего зависит эффективность зерно производства [1-3].

МЕТОДЫ И СПОСОБЫ

Создание новых сортов предусматривает изучение их качества с помощью соответствующих методов и показателей на всех этапах селекционного процесса. Поэтому разработка новых и усовершенствование существующих методов и методик для получения информативных и объективных характеристик качества является актуальной и злободневной темой. В наших исследованиях было проведено уточнение (совершенствование) и разработка ряда методик: определение натурной массы при наличии зерна не более 15 г; определение содержания клейковины по ГОСТ и на МОК-1; определение хлебопекарных и макаронных свойств на этапе КСИ и КрП [5].

Натура зерна пшеницы - наиболее важный показатель, характеризующий мукомольные свойства и учитываемый при расчетах выхода муки. Определенный уровень натуры регламентируется нормативными документами для сильной, ценной и твердой (высококлассной) пшеницы. За пониженную натуру зерна (ниже базисной) применяются скидки с цены. Натура может служить важным показателем устойчивости сорта к неблагоприятным условиям выращивания - атмосферной и почвенной засухе, похолоданию или избыточному увлажнению в период налива и созревания, которые характерны для Запада. Натура зерна пшеницы в значительной степени является наследственным признаком. Именно поэтому в Запада необходимо оценивать по натуре коллекцию и новый материал пшеницы уже на ранних этапах селекционного процесса. Определенный интерес может представлять изучение наследуемости натуры зерна отдельных растений. Исследования в этом направлении сдерживались из- за отсутствия нужных микропурок. Распространенная четверть литровая пурка не может быть использована для этих целей из-за больших навесок зерна (160 и более грамм).

При изучении характера наследования натуры по отдельным растениям и микроделянкам, измерения натуры в вегетационных опытах и в ряде других случаев у исследователя имеются значительно меньшие навески зерна. В связи с этим нами на базе упомянутой микропурки разработана конструкция многокамерной с четырьмя прорезями для ножа ограничивающими объемы камер 10; 5; 2,5 и 1,25 см³ (рисунок 1).

Для проведения анализа натуры необходимы: лабораторный штатив для закрепления воронки, весы с точностью взвешивания 0,01 г; в специальных случаях уплотнитель. В качестве уплотнителя используют плоскодонную пробирку массой 10-12 г (пустая или с добавленным грузом внутри) свободно, но без излишнего зазора входящая в полость микропурки. Воронка крепится в штативе так, чтобы узкая часть ее находилась от дна пурки на расстоянии 25 см [2-4].

Рисунок 1 - Схема многокамерной микропурки на 10; 5; 2,5 и 1,25 см³

Примерно одинаковую навеску зерна из бюкса или тигля равномерно высыпают на середину внутреннего конуса воронки по ее окружности. Излишки зерна, отсеченные ножом, высыпают. Вынув нож, пересыпают зерна на весы и взвешивают. Работа с уплотнителем связана с дополнительными операциями. Высыпав зерно через воронку, осторожно отводят ее и, не снимая патрубка в его канал вставляют уплотнитель примерно на 0,5 см в вертикальном положении. Отпускают уплотнитель, давая ему упасть по каналу на зерно. Ножом отсекают излишки зерна, взвешивают оставшееся под ножом в камере зерно. Уплотнитель позволяет снизить массу навески до 5; 2,5-2,7 и 1,3-1,5 г соответственно камерам микропурки 5; 2,5 и 1,25 см. В ходе работы без уплотнителя на камерах емкостью 5; 2,5 и 1,25 см ³ удовлетворительный результат достигается на навесках зерна 10; 5 и 2,5 г.

По каждому образцу рекомендуется проводить не менее трех определений. При достаточном навыке работы максимальное расхождение между параллельными определениями может быть установлено: с камерой 10 и 5 см ³ - 0,1 г; 2,5 см ³ - 0,07 г и 1,25 см ³ - 0,05 г. Окончательный результат взвешивания умножают на пересчетный коэффициент для перевода в грамм на литр. За рабочий день по этому показателю оценивается 100 и более образцов [5-9].

Испытание камер микропурки было проведено на зерне 15 сортообразцов яровой пшеницы урожаев двух лет. Максимальное различие сортов по натуре, определенной на литровой пурке

составило 195 г/л. Испытание проведено в двух вариантах - без уплотнителя и с уплотнителем без дополнительного его утяжеления, т.е. с пробиркой массой около 11 г [5]. Коэффициенты корреляции по натуре представлены в таблице 1.

Таблица 1 - Сопряженность натуры, определенной литровой пуркой *и разными камерами микропурки*

Вариант определения,	Емкость камеры, см ³					
показатель	10	5	2,5	1,25		
Без уплотнителя Масса	15	10	5	2,5		
навески, г						
Коэффициент корреляции	0,966	0,972	0,965	0,836		
С уплотнителем Масса навески,		5	2,7	1,5		
Γ	-					
Коэффициент корреляции		0,992	0,959	0,969		

Данные таблицы показывают, что при работе на микропурке без уплотнителя с применением навесок зерна, вдвое превышающих по массе объем используемой камеры, можно получить высокую корреляцию микроанализов с показаниями литровой пурки. В первую очередь это относится к камерам емкостью 5 и 2,5 см³, где корреляция практически одинакова с корреляцией для камеры на 10 см. При работе же с камерой 1,25 см корреляция заметно снижается. Уменьшение навесок против указанных для камер 5 и 2,5 см³ также снижает корреляцию. С применением уплотнителя без утяжеления достигаются высокие коэффициенты корреляции при значительно меньших навесках зерна, в том числе и для самой малой камеры - 1,25 см³.

Начиная с урожая 1975 года многокамерная микропурка применяется при оценке селекционного материала яровой мягкой и твердой, озимой пшеницы СибНИИСХоза из селекционных питомников (СП-1, СП-2), питомников мутантов (ПМ), а также в микроделяночных генетических опытах.

В ОКБ СибНИИСХоза были изготовлены 15 четырехкамерных микропурок, которые были испытаны и разосланы, согласно заявок в разные селекционные учреждения страны для использования [5].

В 1728 году итальянский ученый Беккари выделил из пшеничного теста путем отмывания водой от крахмала и отрубей связную, эластичную и упругую массу белковой природы, получившую название клейковины. Клейковина представляет в основном белковое вещество с некоторым примесей небелкового характера. количеством Белки клейковины обладают способностью поглощать воду и набухать, образуя гидратированный упругий, эластичный и связный студень, который носит название «сырой клейковины» или просто «клейковины» в отличие от «сухой клейковины», полученной при обезвоживании этого студня чаще всего путем обычного высушивания (А.Б. Вакар, 1961). Клейковина играет ведущую роль в формировании теста. При замешивании муки с водой в процессе приготовления теста отдельные частицы клейковины, набухая, слипаются друг с другом и образуют непрерывную фазу гидратированного белка, которая наподобие сетки охватывает все крахмальные зерна, в результате образуется компактная, упругая масса связного теста. От количества и качества клейковины зависят физические свойства теста. Поэтому определение количества и качества клейковины является обязательным при оценке новых селекционных сортов пшеницы. Общепринятая в настоящее время у нас в стране методика определения клейковины по ГОСТ 13586.1-68 предусматривает ручной анализ, результаты которого значительно зависят от ряда факторов, в том числе от

Volume: 04 Issue: 09 | Sep 2023, ISSN: 2660-5317

исполнителя. На субъективизм данной методики указывают ученые и производственники. К наиболее типичным высказываниям относятся следующие: «Давно пора ликвидировать такой анахронизм, как ручной замес и ручное отмывание клейковины» (Н.И. Мельников, 1969); «Существующая методика определения количества и качества клейковины несовершенна и зависит от умения лаборантов» (В. Кудинов, 1969); «Отсутствие надежной экспрессной методики определения клейковины лишает этот признак достоверности» (Н.П. Козьмина и Л,Н. Любарский, 1970); «Методика определения клейковины пшеницы очень несовершенна, в результате чего могут быть допущены грубые ошибки» (М.М. Самсонов, 1970) и т.д [1-3].

Ненадежную и низкую точность методики анализа клейковины можно подтвердить примерами из нашей исследовательской и внедренческой работы (С.С. Синицын и др., 1983). Три квалифицированных лаборанта проводили отмывание клейковины высокобелкового (18 %) образца зерна пшеницы Новосибирская 67 в трех режимах - слабом, среднем и жестком (интенсивном) без отступления от действующего ГОСТа. При нормальном режиме получили в среднем по трем аналитикам 35,1 % клейковины первой группы (58 ед.) по качеству. Интенсивное, жесткое отмывание резко снизило количество и качество клейковины (на 2,6 % и 17 ед.) - она перешла во вторую крепкую группу. Недомывание клейковины (слабый режим) дал большое количество клейковины второй слабой группы качества [5].

Другой пример определения клейковины по контрольным образцам опытными аналитиками - начальниками ПТЛ предприятий заготовки. Различия между данными этих исполнителей по одним образцам пшеницы урожая 2001 года, выполненным в условиях лаборатории СибНИИСХоза составили: низкоклейковинный образец (21,4-50) на -1,0 -+1,6 % и на -15 - +10 ед.; высококлейковинный образец (27,4-80) на-3,0 - +1,0 % и на-20-+0 ед [8-11].

Таким образом, в зависимости от режима отмывания клейковины (исполнителя), который ГОСТ не регламентирует, одно и то же зерно может быть оценено по-разному.

Согласно ГОСТ 13586.1-68 при контрольных и арбитражных анализах, расхождения в определении количества сырой клейковины не должно превышать \pm 2,0 %, а по качеству \pm 5 единиц шкалы прибора ИДК. В нашем опыте эти различия составили от 0,4 до 2,9 % и от 6 до 13 единиц прибора.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Применение устройства механизированного отмывания клейковины (МОК-1) значительно повышает производительность анализа клейковины, что является предпосылкой для использования его на ранних этапах селекции. Дефицит зерна по образцам яровой пшеницы в ранних питомниках и отсутствие данных работы МОК-1 на малых (не стандартных) навесках шрота послужили поводом для изучения возможностей этого устройства.

В опыте на 13 контрастных сортах пшеницы с содержанием белка от 15,31 до 18,33 % урожая 1977 года нами проверена возможность отмывания клейковины на МОК-1 из малых навесок вплоть до 5 г шрота. Одновременно в этом же опыте изучались варианты с увеличенными до 50 г навесками шрота с целью уменьшения ошибок за счет снижения переводного коэффициента. В опыте при двукратном определении изучались следующие варианты по массе навески шрота на анализ: 50, 35, 30, 25, 20, 10, 5 г. Во всех вариантах применялся один режим общей продолжительностью отмывания клейковины 18 минут. Замешанное в месилке тесто перед отмыванием отлеживалось в течение 20 минут (последние 2 минуты в воде в виде тонко раскатанной пластинки). Перед оценкой качества отмытой клейковины на ИДК образец в виде сформированного шарика проходил 15-минутную отлежку в воде. Масса шарика: 4 г для навесок 50-20 г, 2 г для навески 10 г и 1 г для

навески шрота 5 г. Показания ИДК по навескам отмытой клейковины 2 и 1 г с помощью поправочных коэффициентов 1,6 и 2,5 соответственно переводили на стандартную массу 4 г (Методы оценки..., 1971). Температура воды в ходе всего опыта поддерживалась на уровне $18^{\,0}$ С. Полученные результаты по количеству и качеству клейковины приведены в таблице 4.4, а более наглядно в виде кривой на рисунке 2. Контрольным вариантом в опыте был вариант отмывания клейковины из 25 г [5,10,11].

Снижение навески шрота до 20 г практически не сказывается на качестве клейковины (71 и 69 единиц) и приводит к небольшому увеличению количества (на 0,6 %). Дальнейшее уменьшение навески шрота до 10 г не изменило в среднем по выборке количества клейковины в сравнении со стандартной навеской (25 г), но привело к ее расслаблению на 19 единиц прибора ИДК. Это расслабление клейковины было довольно равномерным по всем образцам, о чем можно судить по достаточно высокой положительной корреляции на уровне 0,88 между качеством клейковины при отмывании ее из навесок 25 и 10 г шрота.

Сопряженность количества клейковины, отмытой из 25 г и 10 г шрота по выборке из 15-ти контрастных сортов мягкой пшеницы в среднем за три года, была на уровне 0,75, а качества клейковины еще более высокой 0,90. Теснота корреляционной связи количества клейковины с содержанием белка в зерне достигала величины 0,79 (по 25 г шрота) и 0,77 (по 10 г шрота) [5].

Рисунок 2- Зависимость количества (%) и качества (ИДК) клейковины от массы навески шрота при анализе на МОК-1 (среднее по 13 сортам)

Volume: 04 Issue: 09 | Sep 2023, ISSN: 2660-5317

Таким образом, отмывание клейковины из навесок 10 г шрота на МОК-1 можно применять при оценке номеров КрП и СП-2 по предложенному нами режиму. Применение навески шрота 5 г привело к недомыванию клейковины при одинаковом режиме и продолжительности отмывания с контрольным вариантом. По сравнению с навеской 25 г (контроль) получено увеличение массы (недомывание) клейковины в среднем по опыту на 1,7 % и по качеству на 21 единицу прибора ИДК. Это несоответствие результатов отмывания клейковины не исключает использование устройства МОК-1, а предполагает подбор соответствующего режима применительно к малым навескам.

В целом при работе на МОК-1 по малым (10 и 5 г) навескам шрота без изменения режима отмывания происходит увеличение определяемого количества клейковины и расслабление ее качества. Аналогичная тенденция выявлена и по мере увеличения навесок шрота до 50 г (рисунок 2). Из всех изученных в опыте навесок шрота зерна пшеницы минимальное количество отмываемой клейковины при более крепком ее качестве получено по варианту анализа из 20-ти граммовых навесок шрота [9-11].

При работе на навесках шрота 30..50 г качество клейковины меньше изменяется, чем ее количество. По малым навескам 10 и 5 г наоборот, качество в большей степени изменяется, чем количество клейковины.

Наши предварительные опыты показывают возможность введения пересчетного коэффициента для окончательного установления качества отмытой клейковины на MOK-1. Так, для навесок 10 г этот коэффициент будет равен 0,8.

В целом устройство МОК-1 может быть успешно применено в ходе экспрессной оценки селекционного материала пшеницы по 10 и 5 граммовым навескам, но предварительно необходим подбор режима работы и поправочного коэффициента по качеству клейковины.

Одним из нескольких факторов, обуславливающих крайне малые посевные площади под твердой пшеницей, являются жесткие требования ранее действовавшего (ГОСТ 9353-85) и нового ГОСТ 9353-90 по примеси белозерной мягкой пшеницы. Дифференцированные ограничения доли белозерной мягкой в партиях классной твердой (1...4 классы) довольно высоки (2... 10 %) из-за которых значительно обесценивается товарное зерно этой культуры. Для уточнения значимости на качестве зерна примеси белозерной мягкой пшеницы в твердой мы в течение двух лет (1993-1994 гг.) проводили изучение этого вопроса. В таблице 3 приведены результаты оценки качества зерна и макарон твердой пшеницы (примесь 0 %), мягкой пшеницы (примесь 100 %) и их смеси с долей мягкой от 2 до 50 %. По большинству показателей качества зерна образцы твердой и мягкой пшеницы достоверно различались. Зерно мягкой белозерной пшеницы в нашем опыте было низкобелковым (14,28 %), с меньшей массой 1000 зерен, с худшими чем у твердой пшеницы макаронами и достаточно высоконатурное (792 г/л). Анализируя качество зерна в вариантах с долей белозерной мягкой в твердой 2,4,8 и 10 % (как допускает в соответствии с классами ГОСТ 9353-90) можно констатировать отсутствие даже малейшего влияния примеси белозерной пшеницы. Лишь при 30 % примеси мягкой пшеницы в твердой происходит изменение массы 1000 зерен, натуры, содержания белка [5,8].

Результаты изучения смесей пшеницы на урожаях двух лет приведены в таблице 4.

Таблица 3 - Качество зерна твердой пшеницы в зависимости от примеси мягкой белозерной, урожай 2018 года

тип) дой,	% % %		%,	00Н, Г	Цвет макарон, балл			
Доля мягкой (III тип пшеницы в твердой %	Масса 1000 зерен, г	Натура, г/л	Стекловидность,	Белок (Nx5,7),	Выход крупки,	Прочность макарон,	Сухих	вареных
0	31,9	738	76	18,44	37,2	1512	3,2	3,1
2	31,9	734	77	18,58	38,8	1607	3,3	3,2
4	31,9	738	78	18,45	38,6	1595	3,2	3,2
6	32,0	740	76	18,60	37,9	1602	3,2	3,2
8	31,6	738	74	18,31	38,7	1598	3,2	3,2
10	31,6	744	76	18,28	36,6	1612	3,2	3,2
15	31,3	743	78	18,41	36,7	1610	3,2	3,2
20	31,2	746	74	18,44	37,8	1647	3,1	3,2
30	30,0	748	76	17,76	36,8	1587	3,2	3,3
40	30,6	756	70	17,60	37,4	1577	3,1	3,2
50	30,0	764	74	17,15	37,0	1612	2,9	3,2
100	28,1	792	70	14,48	36,2	1537	2,4	3,1
HCP _{0,95}	1,6-1,7	9-11		0,84-0,85	1,9-3,8	158-160	0,16-0,19	0,25-0,30

Таблица 4 - Качество зерна твердой пшеницы в зависимости от примеси мягкой белозерной (среднее за 2018...2019 гг.)

ип) i, %	H .	%	.0	%	н, г	Цвет макарон, балл		
Доля мягкой (III ти пшеницы в твердой,	Масса 1000 зерен, г	Натура, г/л	Стекловидность,	Белок (Nx5,7), %	Выход крупки, %	Прочность макарон,	сухих	вареных
0	34,8	743	76	17,92	39,1	1608	3,15	3,15
2	34,8	743	75	17,90	40,5	1621	3,35	3,30
4	35,0	746	76	17,82	40,9	1636	3,25	3,25
6	34,8	746	76	17,89	40,0	1682	3,30	3,30
8	35,2	747	74	17,69	40,4	1668	3,30	3,30
10	35,1	750	76	17,64	39,5	1687	3,15	3,30
20	35,0	752	74	17,34	39,8	1671	3,20	3,25
100	31,6	790	64	13,36	37,0	1424	2,45	3,00
HCP 0,95	1,0-1,7	2,8-11	_	0,59-0,85	1,9-3,2	158-171	0,15-0,24	0,19-0,30

Volume: 04 Issue: 09 | Sep 2023, ISSN: 2660-5317

Практически 10%-ная примесь мягкой белозерной в твердой не изменила характеристику качества. ГОСТ 9353-90 для 1-го класса допускает лишь 2 % белозерной и 8 % зерна пшеницы других типов, а для 2-го класса соответственно 4 и 11 %. Обоснованность такого жесткого ограничения примеси белозерной вызывает сомнение, исходя из полученных нами экспериментальных данных. Более высокая допустимая стандартом доля зерен других типов (8-11 %) для товарных партий твердой пшеницы 1-2 классов дает основание предполагать, что эта зерновая примесь менее значимо изменяет качество твердой пшеницы, чем примесь белозерной мягкой (III тип) [5].

выводы

- 1. Данные сопряженности и точности основных показателей качества, определяемых на зерне выборки контрастных сортов мягкой пшеницы модельного опыта с посевом по типу всех селекционных питомников оказались основополагающими при разработке системы поэтапной оценки качества селекционного материала. Эта система включает перечень целесообразных методов и показателей для каждого этапа и предусматривает двукратное определение качества по независимым размолам и пробам зерна номеров и линий питомников бесповторного посева (СП-2, СП-1). При оценке материала питомников повторного посева (КСИ и КрП) раздельный анализ проб от несмежных полевых повторностей. Предусмотрена допустимая величина разброса.
- 2. Высокой точностью определения характеризовались: стекловидность, натура, масса 1000 зерен, выход муки МЛУ-202, ВПС. По одноименным анализам, различающихся величиной навески и использованным оборудованием, (сила муки, объем хлеба) получена низкая точность в полумикровариантах, что ограничивает их применение при оценке селекционного материала. Рекомендованы допустимые ограничения между повторными определениями.
- 3. Объективность характеристики селекционного материала мягкой и твердой пшеницы по качеству зерна существенно возрастает за счет применения усовершенствованных и разработанных методик:
- ▶ четырехкамерной микропурки по навескам зерна 1,3... 15 г при сопряженности с данными литровой пурки на уровне 0,84...0,97;
- ▶ уточненного режима ручного (из 25 г) и механизированного на МОК-1 (из 5...25 г) отмывания клейковины при сопряженности ее количества из 10 и 25 г шрота на уровне 0,75...0,88;
- ▶ лабораторной выпечки из 200 или 100 г муки с комбинированным замесом теста, получившей предпочтение по комплексу показателей при испытании в 7-ми лабораториях страны;
- ▶ макаронного анализа с расходом 130...300 г зерна и изготовлении за рабочий день 50...55 образцов макарон, вместо 10... 15 по методике Госкомиссии.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Бебякин В.М. Пути и методы интенсификации селекции яровой мягкой пшеницы на качество зерна./В.М. Бебякин, Р.Г. Сайфуллин, //Проблемы увеличения производства и повышения качества зерна в Российской Федерации. Саратов, 1997.-С.22-23.
- 2. Белоглазова М.В. Выявление мукомольных свойств сортов пшеницы./ М.В. Белоглазова, Ю.В. Колмаков, В.М. Распутин.//Проблемы стабилизации и развития сельского хозяйства Казахстана, Сибири и Монголии. Новосибирск.- 2000.- С. 62.
- 3. Васильчук Н.С. Селекция яровой твердой пшеницы./Н.С. Васильчук. Саратов, 2001.-119 с.

Volume: 04 Issue: 09 | Sep 2023, ISSN: 2660-5317

- 4. Дремучева Г.Ф. Исследование свойств сырья и улучшителей в хлебопекарном производстве./Г.Ф. Дремучева.//Хлебопечение России.-2002.- №3.-С. 12-14.
- 5. Колмаков Ю.В. Качество зерна пшеницы и пути его улучшения / Диссертация на соискание ученой степени доктора сельскохозяйственных наук. ОМСК-2004. 360 с.
- 6. А.Б.Абубакиров, А.А.Алламбергенов, Ж.П.Садиков, Б.Д.Алланазаров. «Анализ Повышение Эффективности Процесса Охлаждения Зерна В Вихревом Потоке» //Central asian journal of theoretical and applied sciences. Volume: 03 Issue: 08 | Aug 2022 ISSN: 2660-5317 https://cajotas.centralasianstudies.org
- 7. А.Б.Абубакиров, Т.А.Айтбаев, М.Аламинова, Б.Уразбаев. «Анализ Методов Проверки Качества Зерна Пшеницы» //Central asian journal of theoretical and applied sciences. Volume: 03 Issue: 09 | Sep 2022 ISSN: 2660-5317. https://cajotas.centralasianstudies.org
- 8. Повышение эффективности деятельности предприятий мукомольной промышленности на основе системы управления качеством продукции : монография / И. П. Богомолова, Б. П. Рукин, С. Н. Нечаева [и др.]. Воронеж: Издательство «Истоки», 2007. 204 с.
- 9. Дремучева, Г. Ф. Воздействие ферментного препарата Амилоризин нового поколения на хлебопекарные свойства пшеничной муки / Г. Ф. Дремучева, А. А. Невский, Н. В. Цурикова, // Хлебопродукты. 2017. № 12. С. 46–48.
- 10. Куприянова, Л. М. Лаборатория современных практик / Л. М. Куприянова // Менеджмент. 2015. № 3. С. 75—84.
- 11. Мизанбекова, С. К. Вопросы устойчивого развития зернопродуктового подкомплекса Казахстана / С. К. Мизанбекова,Б. Б. Калыкова, И. Т. Мизанбеков // Проблемы агрорынка. 2018. № 2. С. 139—147.