Leveraging Synchronous Transmissions for the Design of Real-time Wireless Cyber-Physical Systems

Romain Jacob

Doctoral Examination

December 17, 2019

Emerging Cyber-Physical Systems (CPS) applications have challenging requirements

Fast and reliable

Mobile

Scalable

Representative example Stabilizing an inverted pendulum

Things get more complex when the controller is physically separated from the pendulum

The application sets the requirements

Primary goals

Predictability

Adaptability

Secondary objectives

Efficiency

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility

- Low latency
- Low energy consumption

End-to-end deadline

Existing wireless system designs are either predictable or adaptive

For example

Adaptive

not Predictable

Predictable

not Adaptive

Splash

Staffeta

WirelessHART

TSCH

and

Nothing proposed to provide end-to-end real-time guarantees

Existing wireless system designs are either predictable or adaptive

Adaptive

not Predictable

Predictable

not Adaptive

and

Nothing proposed to provide end-to-end real-time guarantees

For example

Splash

Staffeta

WirelessHART

TSCH

Dissertation objective

Design wireless systems combining end-to-end predictability and adaptability while remaining efficient

Guaranteed Stability over Low-power Multi-hop Network

Synchronous Transmissions are well suited to design real-time wireless CPS.

Real-time System Designs **DRP**

Chapter 4

TTW

Chapter 5

Tools and Methods

Baloo

Chapter 3

TriScale

Chapter 2

Synchronous Transmissions

Networking in General

Chapter 4

DRP: End-to-end Real-time Guarantees in Wireless Cyber-Physical Systems

End-to-End Real-Time Guarantees in Wireless Cyber-Physical Systems R. Jacob, M. Zimmerling, P. Huang, J. Beutel, L. Thiele, 2016

Chapter 5

TTW: A Time-Triggered Design for Wireless Cyber-Physical Systems

TTW: A Time-Triggered Wireless design for CPS
R. Jacob, L. Zhang, M. Zimmerling, J. Beutel, S. Chakraborty, L. Thiele, 2018

Synchronous Transmissions

in a nutshell

Multi-hop broadcast based on flooding Synchronous Transmissions in a nutshell

Synchronous Transmissions realize fast one-to-all communication with predictable timing

Multi-hop broadcast based on flooding

Typical network stack based on Synchronous Transmissions

Primary goals

Predictability

Adaptability

Secondary objectives

Efficiency

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility

- Low latency
- Low energy consumption

Real-time scheduling allows to meet deadlines

In practice

How do you get the message deadlines?

From the execution time of the tasks!

End-to-end guarantees requires coupling between the task and message schedules

End-to-end guarantees requires coupling between the task and message schedules

Chosen TTW statically co-schedules

coupling all tasks and messages

Chosen coupling

TTW statically co-schedules all tasks and messages

- Schedule offline based on a MILP
- Execute at runtime

Inspired by time-triggered wired networks e.g., TTEthernet, FlexRay

Offline scheduling allows to minimize the achievable latency at runtime

Rounds save energy but complexify the synthesis

Messages must be served in a round that finishes before their deadline

16 B Payload
$$\Rightarrow$$
 Reduction of $\sim 30\%$ in radio-on time

$$\begin{cases} 1 & \text{if } m_i \text{ is assigned to } r_j \\ 0 & \text{otherwise} \end{cases}$$

$$m_i. \ d \geq \left(r_j. \ o + T_r\right) * \delta_{ij}$$

$$\text{Non-linear!}$$

Our solution is inspired by network calculus

Count the number of message instances of m_i that

 af_i have been released

 sf_i have been served

 df_i have passed their deadline

Our solution is inspired by network calculus

$$m_i.d \ge (r_j.o + T_r) * \delta_{ij}$$

$$\Leftrightarrow$$
 $sf(r_j,o) \ge df(r_j,o+T_r)$

$$\Leftrightarrow \sum_{k=1}^{J} \delta_{ij} \geq \left[\frac{r_j.o + T_r - m_i.o - m_i.d}{m_i.p} \right]$$

Linear

Piecewise-constent can be handled with common MILP tricks

Count the number of message instances of m_i that

 af_i have been released

 sf_i have been served

 df_i have passed their deadline

Static scheduling is nice but static

Primary goals

Predictability

Adaptability

Secondary objectives

Efficiency

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility

- Low latency
- Low energy consumption

System switches between operation modes at runtime

Well-known approach

- Synthesize schedules for mulitple operation modes
- Switch between modes at runtime

Challenge

Preserve real-time guarantees across mode changes

- Creates dependencies between modes
- Tackled in TTW while aiming to limit the impact on energy consumption

Primary goals

Predictability

Adaptability

Secondary objectives

Efficiency

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility

All great! ... on paper

- Can we implement this?
- Does it really work?

Chapter 3

Synchronous Transmissions Made Easy: Design Your Network Stack with Baloo

Synchronous Transmissions Made Easy: Design Your Network Stack with Baloo R. Jacob, J. Bächli, R. da Forno, L. Thiele, 2019

Baloo facilitates the design of ST-based stacks by decoupling the protocol logic and the radio control

Flexible framework

29

Monolithic stack design

Chapter 2

TriScale: A Framework Supporting Reproducible Networking Experiments

Towards a Methodology for Experimental Evaluation in Low-Power Wireless Networking R. Jacob, C. Boano, U. Raza, M. Zimmerling, L. Thiele, 2019

TriScale: A Framework Supporting Reproducible Networking Evaluations R. Jacob, M. Zimmerling, C. Boano, L. Vanbever, L. Thiele, 2019

What does reproducibility mean?

Reproducibility (unformal)

An experiment is said reproducible if the "same results" are obtained when the experiment is reproduced under the "same conditions".

Reproducibility (unformal)

An experiment is said reproducible if the "same results" are obtained when the experiment is reproduced under the "same conditions".

- Real RF environment cannot be controlled.
- The RF environment affects performance of protocols in ways that are hard to predict.

Reproducibility (unformal)

An experiment is said reproducible if the "same results" are obtained when the experiment is reproduced under the "same conditions".

- Real RF environment cannot be controlled.
- The RF environment affects performance of protocols in ways that are hard to predict.
- → Performance variability is expected.

Performance varies along three different time scales

The four questions of experiment design

How long should a run be?

How many runs in a series?

What time span for a series?

How many series?

The four questions of experiment design

How long should a run be?

How many runs in a series?

What time span for a series?

How many series?

Objective

Find rationale answers to these questions

Quantify the trade-off between

- experiment effort
- confidence in the results

The four questions of experiment design

How long should a run be?

How many runs in a series?

What time span for a series?

How many series?

Objective

The KPI would be the same shall more runs be performed

Based on a few runs, estimates the KPI value of the underlying distribution

We must use confidence intervals (CI)

Informally

Numerical interval
in which lies
the true value
(which you don't known)
of some parameter
with a certain probability,
called the confidence level

[a,b] is a 95% CI for the median of x

which means that

The probability that the true median of x is within [a, b] is larger or equal to 95%.

We must use non-parametric statistics

Makes no assumption on the nature of the distributions

Common KPIs

Tendency Mean

Spread Standard deviation

In computer Experimental data science is almost never

normally distributed

Not normal

The Thompson's methods provides non-parametric CI for distribution percentiles

In TriScale

Key Performance Indicators (KPIs) are percentiles of the distribution of metric values

Compute confidence intervals using Thompson's method

- Define upper- and lower-bounds on the true percentile values for a certain confidence level
- The KPIs are defined as one such bounds

95%-CI for the median

The Thompson's methods provides non-parametric CI for distribution percentiles

Probability of any P_p to be between two consecutive samples follows the binomial distribution

$$P\left\{x_{k} \le P_{p} \le x_{k+1}\right\} = {N \choose k} p^{k} (1-p)^{N-k}$$

Lower-bound

Upper-bound

$$P\{x_m \le P_p\} = P\{x_{N-m+1} \ge P_{1-p}\} = 1 - \sum_{k=0}^{m-1} {N \choose k} p^k (1-p)^{N-k}$$

The Thompson's methods provides non-parametric CI for distribution percentiles

For any confidence cFor any percentile P_p

$$N \ge \frac{\log(1-c)}{\log(1-p)}$$

$$c = 0.95$$

 $p = 0.01$
1-th percentile $N \ge 299$
Minimal number of runs in a series

We might want to rethink our performance claims...

The four questions of experiment design

How long should a run be?

How many runs in a series?

What time span for a series?

How many series?

Find rationale answers to these questions

Quantify the trade-off between

- experiment effort
- confidence in the results

Example – Performance evaluation of TTW ls the model providing a safe and tight upper-bound?

Metric

Maximum measured

round time T_r

among all nodes

KPI

95th percentile

95% confidence level

Aim to upper-bound the 95^{th} percentile of the maximum round time T_r with 95% confidence

Round model f

- Must be safe
- Should be tight

No overruns

Little wasted time

Metric

Maximum measured round time T_r among all nodes

KPI

95th percentile 95% confidence level

Aim to upper-bound the $95^{\rm th}$ percentile of the maximum round time T_r with 95% confidence

$$c = 0.95$$

$$p = 0.05$$

$$\Rightarrow N \ge 59$$

⇒ Scheduled 60 runs
 per series,
 randomly distributed
 over one week

Slots per round

Slots per round

TriScale is a framework helping to design and analyze networking experiments

Implemented as

Python package

Open source

Includes

- Statistical methods and tests
- Experiment design helpers
- Automated data processing
- Dynamic visualizations

Leveraging Synchronous Transmissions for the Design of Real-time Wireless Cyber-Physical Systems

All documents, software, data are openly available

Links in the respective chapters

github.com/romain-jacob/doctoral-thesis

DOI 10.5281/zenodo.3510184

Thank you all for your support!

Supervisor

Prof. Thiele

My wife My friends My parents Co-authors

Jan Beutel

Reto Da Forno

Marco Zimmerling

Carlo Alberto Boano

Licong Zhang

Pengcheng Huang

Laurent Vanbever

Usman Raza

Samarjit Chakraborty

Jonas Bächli

TECies

Andreas Biri

Yun Cheng

Stefan Draskovic

Tonio Gsell

Xioxi He

Matthias Meyer

Philipp Miedl

Zhongnan Qu

Lukas Sigrist

Naomi Sticker

Roman Trüb

Balz Maag

Andres Gomez

Felix Sutton

Andreas Tretter

Georgia Giannopoulou

Roman Lim

Olga Saukh

Rehan Ahmed

Zimu Zhou

Master students

Jonas Bächli

Alex Dietmüller

Fabian Walter

Andreas Biri

Jonathan Candel

Antonios Koskinas

Jan Müller

Anna-Brit Schaper

Raphael Schnider

Leveraging Synchronous Transmissions for the Design of Real-time Wireless Cyber-Physical Systems

Romain Jacob

ETH Zurich

www.romainjacob.net

@RJacobPartner

The four questions of experiment design

How long should a run be?

such that

the metric would be the same shall the run be longer

How many runs in a series?

What time span for a series?

How many series?

The Theil-Sen estimator performs robust and non-parametric linear regression

Computing a run's metric is a regression problem

Non-parametric regression

Theil-Sen estimator

- Slope is the median of all slopes between pairs of data points
- CI on the slope using the bootstrapping method

Compute the metric on a sliding window of data points

Compute the metric on a sliding window of data points

... zoom in

126

Compute the Theil-Sen slope and its 95%-Cl

Compute the Theil-Sen slope and its 95%-Cl which must fit in the tolerance interval +/-5%

Take median of metric samples as run's metric

The application sets the requirements

Primary goals

Predictability

Adaptability

System must support

End-to-end real-time guarantees

- Change in traffic demand
- Mobility