ВВЕДЕНИЕ В машиностроении созданы и освоены новые системы современных, надежных и современных машин для комплексной автоматизации производства, что позволяет выпускать продукцию высокого качества с наименьшими затратами труда; увеличивается выпуск автоматических линий, новых видов машин, приборов, аппаратов, отвечающих современным требованиям. Увеличивается доля изделий высшей категории качества в общем объеме их производства. Большое значение для развития машиностроения имеет организация производства машин и других изделий на основе взаимозаменяемости, создание и применении надежных средств технических измерений и контроля. Одной из основных задач конструктора в процессе проектирования новых и усовершенствования устаревших изделий, является подготовка чертежной документации, способствующей обеспечение необходимой технологичности и высокого качества изделий. Повышение эффективности труда и качества выпускаемой продукции связано с выбором необходимой точности изготовления изделий, расчетом размерных цепей, выбором шероховатости поверхностей, а также выбором отклонения от геометрической формы и расположения поверхностей. Целью курсовой работы по НТТИ является закрепление теоретических знаний, приобретение практических навыков по расчету и выбору посадок типовых соединений, по решению размерных цепей, простановки на чертежах обозначений посадок, предельных отклонений размеров и требований к точности формы и расположения поверхностей. Πιις KP.HTUTU.06.00.00 Nº ∂OKVM

1 РАСЧЕТ ПОСАДОК ГЛАДКИХ ЦИЛИНДРИЧЕСКИХ СОЕДИНЕНИЙ

1.1 Расчет посадки с натягом

Рисунок 1- Эскиз соединения вала со втулкой

Таблица 1 – Исходные данные

				8		I	Зал	В	Втулка
д, мм	d ₁ , мм	d ₂ , мм	1, MM	Осевая сила Roc, кН	Крутящий момент М _{кр} , Н*м	Материал	$\begin{array}{c} \text{III} \text{epoxobat} \\ \text{octb, } R_{zd}, \\ \text{mkm} \end{array}$	Материал	Шероховат ость, R _{zd} , мкм
90	20	150	100	_	600	Сталь 35	2,5	Сталь 45	2,5

Определяем требуемое минимальное удельное давление на контактных поверхностях соединения

$$[P_{min}] = \frac{2M_{K}}{\pi d_{H.C.}^2 lf'} \tag{1.1}$$

где $M_{\mbox{\tiny K}}$ – крутящий момент, стремящийся повернуть одну деталь относительно другой, $M_{\mbox{\tiny K}}=185\mbox{ H}\cdot\mbox{\scriptsize M};$

l – длина контакта сопрягаемых поверхностей, l=0,1;

f — коэффициент трения при установившемся процессе распрессовки или поворачивания, f = 0.1 [1, с. 334, таблица 1.104];

 $d_{ ext{h.c}}$ – номинальный диаметр соединения, $d_{ ext{h.c}} = 0$,09 м. Тогда

ΙΛοιπ	Пис	№ докум	Под-	Ла

Перв. примен.	$[P_{min}]=rac{2\cdot 600}{\pi\cdot 0,09^2\cdot 0,1\cdot 0,1}=4.7\cdot 10^6rac{ m H}{ m m^2}.$ Определяем необходимую величину наименьшего расчетного натяга $N'_{min}=[P_{min}]d_{ m H.c.}\left(rac{c_1}{ m E_1}+rac{c_2}{ m E_2} ight),$	(1.2)
Cnpae. Nº	где E_1 и E_2 — модули упругости материалов соответственно охватываемой (важ и охватывающей (отверстия) деталей, $E_1=E_2=2\cdot 10^{11}$ Н/м²; c_1,c_2 — коэффициенты Ламе, определяемые по формулам $c_1=\frac{1+\left(\frac{d_1}{d_{\mathrm{H.C.}}}\right)^2}{1-\left(\frac{d_1}{d_{\mathrm{H.C.}}}\right)^2}-\mu_1;$	(1.3)
Инв. № Подпись и дата	$c_2 = \frac{1 + \left(\frac{d_{\text{н.с.}}}{d_2}\right)^2}{1 - \left(\frac{d_{\text{н.с.}}}{d_2}\right)^2} + \mu_2,$ где μ_1 – коэффициент Пуассона для охватываемой детали, $\mu_1 = 0,3;$ μ_2 – коэффициент Пуассона для охватывающей детали, $\mu_2 = 0,3.$ Тогда для сплошного вала $(d_1 = 0)$ $c_1 = 1 - \mu_1.$	(1.4)
\vdash	Для массивного корпуса $(d_2 o \infty)$	
Взам. инв.	$c_2 = 1 + \mu_2;$ $1 + \left(\frac{0.02}{0.09}\right)^2$	
Инв. Nº Подпись и дата Взам. инв.	$c_1 = \frac{1 + \left(\frac{0,02}{0,09}\right)^2}{1 - \left(\frac{0,02}{0,09}\right)^2} - 0.3 = 0.8;$	
Инв. №	КР.НТИТИ.06.00.00 Иэм Пис № докум Под- Ла	<u>Лис</u> 6

$$c_2 = \frac{1 + \left(\frac{0.09}{0.15}\right)^2}{1 - \left(\frac{0.09}{0.15}\right)^2} + 0.3 = 2.425.$$

Тогда

$$N'_{min} = 4.7 \cdot 10^6 \cdot 0.09 \cdot \left(\frac{0.8}{2 \cdot 10^{11}} + \frac{2.425}{2 \cdot 10^{11}}\right) = 6.8 \cdot 10^{-6} \text{ m} = 6.8 \text{ mkm}.$$

Определяем минимальный допустимый натяг по формуле

$$[N_{min}] = N'_{min} + \gamma_{III} + \gamma_t + \gamma_{II} + \gamma_{II}, \qquad (1.5)$$

где $\gamma_{\text{ш}}$ – поправка, учитывающая снятие неровностей контактных поверхностей деталей при образовании соединения

$$\gamma_{III} = 5(Ra_D + Ra_d) = 1.2 \cdot (Rz_D + Rz_d); \tag{1.6}$$

 γ_t – поправка, учитывающая различие рабочей температуры деталей (t_D и t_d) и температуры сборки (t_{c6}), различие коэффициентов линейного расширения материалов соединяемых деталей (α_D и α_d)

$$\gamma_t = -\Delta_t^N; \tag{1.7}$$

$$\Delta_t^N = d_{\text{H.C.}} \left(\alpha_d \Delta_{td} - \alpha_D \Delta_{td} \right); \tag{1.8}$$

где α_d и α_D — коэффициенты линейного расширения материалов детали с отверстием и вала.

Разность между рабочей температурой детали с отверстием и номинальной температурой

$$\Delta_{tD} = t_D - 20C^{\circ}. \tag{1.9}$$

Разность между рабочей температурой вала и номинальной температурой

$$\Delta_{td} = t_d - 20C^{\circ}; \tag{1.10}$$

 $\gamma_{\text{ц}}$ – поправка, учитывающая ослабление натяга под действием центробежных сил;

ΙΛοιπ	Пис	№ докум	Под-	Ла	

для сплошного вала

$$\gamma_{\rm II} = \frac{\vartheta^2 d_{\rm H.c} \rho}{64} \left(\frac{3+\mu}{\rm E}\right),\tag{1.11}$$

где ϑ – окружная скорость на наружной поверхности втулки, м/с;

ρ – плотность материала;

 γ_{π} — добавка компенсирующая уменьшение натяга при повторных запрессовках.

Тогда

$$\gamma_{III} = 1.2 \cdot (2.5 + 2.5) = 6 \text{ MKM};$$

$$\gamma_t = 0$$
, так как температура $t_D = t_d = t_{c6} = 20$ °C;

 $\gamma_{\rm u} = 0$, так как детали не вращаются;

 $\gamma_{\pi}=0$ мкм (неразборное соединение).

Тогда

$$[N_{min}] = 6.8 + 6 = 12.8 \text{ MKM}.$$

На основании теории наибольших касательных напряжений определяется максимальное допустимое удельное давление $[P_{max}]$, при котором отсутствует пластическая деформация на контактных поверхностях деталей.

В качестве максимального допустимого удельного давления берется наименьшее из двух значений

$$P_1 = 0.58\delta_{\rm T1} \left[1 - \left(\frac{d_1}{d_{\rm H.C}} \right)^2 \right]; \tag{1.12}$$

$$P_2 = 0.58\delta_{\rm T2} \left[1 - \left(\frac{d_{\rm H.C}}{d_2} \right)^2 \right],\tag{1.13}$$

где $\delta_{{ t T}1}$ и $\delta_{{ t T}2}$ — предел текучести материалов охватываемой и охватывающей детали.

Тогда

$$P_1 = 0.58 \cdot 31.4 \cdot 10^7 \left[1 - \left(\frac{0.02}{0.09} \right)^2 \right] = 17.31 \cdot 10^7 \frac{\text{H}}{\text{m}^2};$$

ΙΛοιπ	Пис	Nº ∂okvm	Под-	Ла	

$P_2 = 0,58 \cdot 35,3 \cdot 10^7$	1 –	$\left(\frac{0,09}{0,15}\right)^2$	$= 13.1 \cdot 10^7 \frac{H}{M^2}.$
------------------------------------	-----	------------------------------------	------------------------------------

Следовательно $[P_{max}] = 13,1 \cdot 10^7 \text{ H/m}^2$.

Определяем величину наибольшего расчетного натяга

$$N'_{max} = [P_{\text{Max}}]d_{\text{H.C}}\left(\frac{c_1}{E_1} + \frac{c_2}{E_2}\right) = 13.1 \cdot 10^7 \cdot 0.09 \left(\frac{0.8}{2 \cdot 10^{11}} + \frac{2.425}{2 \cdot 10^{11}}\right) = 190 \text{ MKM}.$$
 (1.14)

Определяем с учетом поправок к величине наибольшего расчетного натяга величину максимально допустимого натяга

$$[N_{max}] = N'_{max}\gamma_{VA} + \gamma_{III} - \gamma_t, \qquad (1.15)$$

где $\gamma_{yд}$ – коэффициент увеличения удельного давления у торцов охватывающей детали, $\gamma_{yд} = [1, c. 336, рисунок 1.68].$

Поправку γ_t – следует учитывать, если при рабочей температуре натяг увеличивается $\gamma_{v\pi}=1$.

Тогда

NO DOKU

$$[N_{max}] = 190 \cdot 1 + 6 = 196 \text{ MKM}.$$

Выбираем посадку из таблицы системы допусков и посадок [1, с. 153, таблица 1.49].

Условия подбора посадки следующие:

максимальный натяг N_{max} в подобранной посадке должен быть не больше $[N_{max}]$

$$N_{max} \le [N_{max}]; \tag{1.16}$$

минимальный натяг N_{min} в подобранной посадке с учетом возможных колебаний действующей нагрузки и других факторов должен быть

$$N_{min} > [N_{min}]. \tag{1.17}$$

KP.HTUTU.06.00.00

Πιις

9

имен.	Согласно [1, с. 153, таблица 1.49] выбираем посадку $\emptyset 90 \frac{H7}{s6} \begin{pmatrix} +0,035 \\ 0 \\ +0,093 \\ +0,071 \end{pmatrix}$, для
Терв. примен	которой $N_{max}^T = 93 < [N_{max}] = 196; N_{min}^T = 36 > [N_{min}] = 12,8.$
Пе	Рассчитываем необходимое (максимальное) усилие при запрессовке собираемых деталей
\mathbb{H}	$R_{\Pi} = f_{\Pi} P_{\text{Max}} \pi d_{\text{H.c}} l, \qquad (1.1)$
	где f_{Π} – коэффициент трения при запрессовке
Înbae. Nº	$f_{\pi} = (1,15 \dots 1,2)f = 1,2 \cdot 0,1 = 0,12.$ (1.1)
Cnb	Тогда $R_{\Pi} = 0,12 \cdot 13,1 \cdot 10^7 \cdot \pi \cdot 0,09 \cdot 0,15 = 212 \cdot 10^3 \text{ H}.$
Ш	Удельное давление $P_{\text{мах}}$ при максимальном натяге N_{max} в посадке определяется
	$P_{max} = \frac{N_{max} - \gamma_{III}}{d_{H.C}(\frac{C_1}{E_1} + \frac{C_1}{E_2})} = \frac{(78 - 6) \cdot 10^{-6}}{0.09(\frac{0.8}{3.1011} + \frac{2.425}{3.1011})} = 4.96 \cdot 10^7 \frac{H}{M^2}.$ (1.2)
Зата	$d_{\text{H.C}}(\frac{c_1}{E_1} + \frac{c_1}{E_2}) = 0.09\left(\frac{0.8}{2 \cdot 10^{11}} + \frac{2.425}{2 \cdot 10^{11}}\right)$
Тодпись и дата	Строим схему расположения полей допусков (рисунок 1.1).
Подг	56
Инв. №	N _{min} =0,036
Взам. инв.	H7
Подпись и дата	$D_{max} = 90,035$ $D_{min} = 90,035$ $D_{min} = 90,071$ $D_{max} = 90,093$
Ħ	Рисунок 1.1 — Схема расположения полей допусков
Инв. №	КР.НТИТИ.06.00.00
Ш	Nam Unc No gokam 100- 10

(1.18)

(1.19)

(1.20)

Πιις 10

1.2 Расчет посадки с зазором

Подобрать посадку для подшипника скольжения, работающего в условиях жидкостного трения при следующих исходных данных:

Таблица 2 – Исходные данные

		ла	грузка	вращения , об/мин	Шерох поверхн м	ратура,	
д, мм	1, мм	Марка масла индустриальноі	Радиальная наі R, H	Частота вращени вала n, об/мин	Вала	Ступицы	Рабочая температура °C
90	100	50	1500	2200	0,8	2,0	50

Оптимальный зазор, обеспечивающий максимальную толщину масляного слоя

$$S_{\text{опт}} = \psi_{\text{опт}} d, \tag{1.21}$$

где $\psi_{\text{опт}}$ – оптимальный относительный зазор;

d – номинальный диаметр соединения, мм.

Оптимальный относительный зазор

$$\psi_{\text{опт}} = 0.293 K_{fe} \sqrt{\frac{\mu n}{P}},\tag{1.22}$$

где K_{fe} — коэффициент, учитывающий угол обхвата и отношение длины к диаметру, $K_{fe}=$ 1,05 [12, с. 11, таблица 3.4];

 μ – динамическая вязкость при $t_{\rm n}$ = 30 °C;

n – часто та вращения, n = 2200 об/мин;

P – среднее удельное давление.

Динамическая вязкость

$$\mu = \mu_{50} \left(\frac{50}{t}\right)^m, \tag{1.23}$$

ΙΛοιπ	Пис	Nº gokvw	Под-	Ла	

Перв. примен.	где μ_{50} — динамическая вязкость при t_{π} = 50 °C, [1, c. 291, таблица 1.99]; m — показатель степени, зависящий от кинематической вязкости масла, m = 2,68 [12, c. 12, таблица 3.5]; Тогда $\mu = 45 \cdot 10^{-3} \left(\frac{50}{50}\right)^{2,7} = 0,045 \; \Pi \text{a} \cdot \text{c};$	
	Определяем среднее удельное давление	
ōN	$P = \frac{R}{ld'} \tag{1.2}$	24)
Cnbae. Nº	где R — радиальная нагрузка, $R=1500$ H; l — длина подшипника, $l=0.1$ м; T огда $P=\frac{1500}{0.1\cdot0.09}=1.6\cdot10^6~ \Pi a.$	
	$r = 0.1 \cdot 0.09 = 1.0^{-10^{-10^{-110}}}$	
	$\psi_{\text{опт}} = 0.293 \cdot 1.05 \sqrt{\frac{0.045 \cdot 2200}{1.66 \cdot 10^6}} = 0.0075;$	
сь и дата	$\sqrt{1,66\cdot10^{\circ}}$	
nuce L	$S_{\text{опт}} = 0.0075 \cdot 0.09 = 0.000675 \text{ м} = 0.675 \text{ мкм}.$	
Подпис	Максимально возможная толщина масляного слоя между трущимися по-	
Инв. №	верхностями $[h_{max}] = H_{max}d, \tag{1.2}$	25)
Инв		
HB.	где H_{max} — максимально возможная для данного режима относительная толщина масляного слоя	
Взам. инв.	$H_{max} = 0.252\psi_{\text{опт}} = 0.252 \cdot 0.0075 = 0.00189.$ (1.2)	26)
ama	Тогда	
сь и д	$[h_{max}] = 0,00189 \cdot 0,09 = 170$ мкм.	
Подпись и дата	Средний зазор при нормальной температуре (20 °C)	
Инв. №	KP.HTVTV.06.00.00	Лис
7	Иэм Лис № докум Под- Ла	12

$$S_{\rm cp} = S_{\rm out} - S_t; \tag{1.27}$$

$$S_t = (\alpha_a - \alpha_b)(t_{\Pi} - 20)d, \tag{1.28}$$

где α_a , α_b — коэффициенты линейного расширения материалов соответственно вкладыша и вала [1, с. 187, таблица 1.62].

Тогда

$$S_t = (18 \cdot 10^{-6} - 12 \cdot 10^{-6})(50 - 20)0,09 = 16,2 \text{ MKM};$$

$$S_{\rm cp} = 675 - 16.2 = 659 \,\mathrm{MKM}.$$

По таблицам ГОСТ 25347-2013 подбираем посадку наиболее приемлемая посадка $\emptyset 90 \frac{H11}{a11} \binom{+0,220}{0}{-0,600}$ с минимальным зазором $S_{min}=380$ мкм, максимальным

зазором $S_{max} = 820$ мкм, средним зазором $S_c = 600$ мкм [1, с. 153, таблица 1.49].

Определяем коэффициент относительной точности

$$t = \frac{S_{\rm cp}}{T_s} = \frac{600}{440} = 1,36. \tag{1.29}$$

Минимальное и максимальное значения зазора с учетом шероховатости сопрягаемых поверхностей и их температурных деформаций

$$S_{\mu min} = S_{min} + S_t + 8(R_{aD} + R_{ad}) = 380 + 16.2 + 8(0.8 + 2) = 418.6 \text{ MKM}$$
: (1.30)

$$S_{\mu max} = S_{max} + S_t + 8(R_{aD} + R_{ad}) = 820 + 16.2 + 8(0.8 + 2) =$$

= 858.6 mkm; (1.31)

Толщина масляного слоя с учетом формул (1.34) и (1.35)

$$h_{\mu min} = \frac{S_{\mu min}}{2} (1 - \varepsilon'); \qquad (1.32)$$

$$h_{\mu max} = \frac{S_{\mu max}}{2} (1 - \varepsilon''); \qquad (1.33)$$

КР.НТИТИ.06.00.00

Πιις

13

имен.	где ε' и ε" – значение относительного эксцентриситета [12, с. 13, таблица 3.6]. Коэффициент нагруженности подшипника
Перв. примен	$C_{R}' = 9.4 \frac{P\psi_{\mu min}^2}{\mu n};$ (1.34)
\parallel	$C_R'' = 9,4 \frac{P\psi_{\mu max}^2}{\mu n},$ (1.35)
οN	$\psi_{\text{d}min} = \frac{S_{\text{d}min}}{d} = \frac{0,4186}{90} = 0,00465; \tag{1.36}$
Cnpae. Nº	$\psi_{\text{д}max} = \frac{S_{\text{д}max}}{d} = \frac{0.8586}{90} = 0.00954.$ (1.37)
	$C_R' = 9.4 \frac{0.166 \cdot 10^6 \cdot 0.00465^2}{0.045 \cdot 2200} = 0.34;$
дата	$C_R^{"}=9,4\frac{0,166\cdot 10^6\cdot 0,00954^2}{0,045\cdot 2200}=1,44.$
Подпись и дс	Это значит $h_{\mathrm{\textit{J}}min} = \frac{418,6}{2}(1-0,3) = 146,51\ \mathrm{MKM};$
Инв. №	$h_{ m \mumax} = rac{858,6}{2}(1-0,61) = 167,43$ мкм.
\mathbb{H}	Условие наличия жидкостного трения
Взам. инв.	$K_{\text{\tiny M.T.}} = \frac{h_{\text{\tiny A}min}}{(R_{aD} + R_{ad}) + \Delta_{\text{\tiny A}}},$ (1.38)
Подпись и дата	где $\Delta_{\rm д}$ – добавка, учитывающая влияние прогиба вала и другие неучтенные факторы, $\Delta_{\rm д}=2$ мкм.
Подпис	Тогда $K_{\scriptscriptstyle \mathrm{Ж.T.}} = \frac{146,\!51}{4(0,\!8+2)+2} = 11 > 2.$
Инв. Nº	КР.НТИТИ.06.00.00 14
	Иэм Лис № докум Под- Ла

2 ВЫБОР УНИВЕРСАЛЬНЫЙХ СРЕДСТВ ИЗМЕРЕНИЙ ДЛЯ КОНТРОЛЯ СОЕДИНЕНИЯ

Посадка Ø90
$$\frac{H7}{s6}$$
 $\left(\begin{array}{c} +0,035\\ 0\\ +0,093\\ +0.071 \end{array}\right)$

Выбор измерительного инструмента для контроля размера отверстия $\emptyset 90H7$ и размера вала $\emptyset 90s6$ производится в соответствии со следующим условием:

$$\delta_{\rm np} \leq [\delta_{{\scriptscriptstyle {
m M3M}}}]$$
,

где $\delta_{\rm np}$ - погрешность прибора;

 $[\delta_{\scriptscriptstyle{\mathsf{ИЗM}}}]$ - допуск погрешности инструмента.

Для отверстия Ø90*H*7: IT=35, $\delta=10$ мкм. Выбираем по ГОСТ 8.051-81

Учитывая условие $\delta_{\rm пp} \leq [\delta_{\rm изм}]$ определяем $\delta = 5,5$ мкм. Таким образом, это индикаторный нутрометр НИ.

Для вала \emptyset 90s6: IT=22, δ = 6 мкм.

Учитывая условие $\delta_{\rm пp} \leq [\delta_{\rm изм}]$ определяем $\delta = 6$ мкм. Таким образом, это вертикальный оптиметр с окуляром OBO–1.

Характеристики инструмента сведём в таблицу 2.1.

Таблица 2.1-Характеристики инструмента

Таблица 2.1 – Результаты выбора универсальных средств измерения

тиемици 2.11 тезунити и измерения						
	Предел изм	Предел измерений,		целения	Допускаемая	
Наименование	MM	_	основно	й шкалы,	погрешность,	
	IVIIVI	<u> </u>	N	ИМ	MM	
Нутрометр ГОСТ 9244-75	501	50100		001	±0,004	
Наименование	Предел измерений, мм		ия пока- і́, мкм	Цена деления основной шкалы, мкм	Допускаемая погрешность, мм	
Оптиметр верти- кальный с окуля- ром ОВО-1	180	0,1		1	±0,01	

ΙΛοιπ	Пис	№ докум	Под-	Ла

3 РАСЧЕТ И КОНСТРУИРОВАНИЕ ПРЕДЕЛЬНЫХ КАЛИБРОВ ДЛЯ КОНТРОЛЯ СОЕДИНЕНИЯ С НАТЯГОМ

3.1 Расчет калибра-пробки

Расчет производится для калибра-пробки, рассчитанного в п. 1.1.

$$\emptyset 90H7$$
 ES = + 0,035 mm; EI = 0.

Максимальный диаметр

$$D_{max} = d_{H,c} + ES = 90 + 0.035 = 90.035 \text{ MM}.$$
 (3.1)

Минимальный диаметр

$$D_{min} = d_{HC} + EI = 90 + 0 = 90,0 \text{ MM}. \tag{3.2}$$

Для квалитета 7 и интервала размеров «св. 50 до 80 мм» отклонение и допуск калибров [3, с. 6, таблица 2]:

z = 8 MKM = 0.008 MM;

Y = 6 MKM = 0,006 MM;

H = 6 MKM = 0.006 MM.

Предельные отклонения калибров

$$\Pi P_{max} = D_{min} + z + \frac{H}{2} = 90.0 + 0.008 + \frac{0.006}{2} = 90.011 \text{ mm};$$
 (3.3)

$$\Pi P_{min} = D_{min} + z - \frac{H}{2} = 90.0 + 0.008 - \frac{0.006}{2} = 90.005 \text{ mm};$$
 (3.4)

$$\Pi P_{\text{M3M}} = D_{min} - Y = 90.0 - 0.006 = 89.994 \text{ MM};$$
 (3.5)

$$\text{HE}_{max} = D_{max} + \frac{H}{2} = 90,035 + \frac{0,006}{2} = 90,038 \text{ mm};$$
 (3.6)

$$HE_{min} = D_{max} - \frac{H}{2} = 90.035 - \frac{0,006}{2} = 90,032 \text{ mm}. \tag{3.7}$$

Исполнительные размеры калибров (проставление на чертеже)

ΙΛοιπ	Пис	№ докум	Под-	Ла	

3.2 Расчет калибра-скобы

Ø90s6 es = 0.093 mm;ei = 0.071 MM.

Максимальный диаметр

$$d_{max} = d_{H,C} + es = 90 + 0.093 = 90.093 \text{ MM}.$$
 (3.8)

Минимальный диаметр

$$d_{min} = d_{H.C} + ei = 90 + 0.071 = 90.071 \text{ MM}. \tag{3.9}$$

Для квалитета 6 и интервала размеров «св. 50 до 80 мм» отклонение и допуск калибров [3, с. 6, таблица 2]:

 $z_1 = 8 \text{ MKM} = 0.008 \text{ MM};$

 $Y_1 = 6 \text{ MKM} = 0,006 \text{ MM};$

 $H_1 = 10 \text{ MKM} = 0.010 \text{ MM}.$

Предельные отклонения калибров

$$\Pi P_{max} = d_{max} - z_1 + \frac{H_1}{2} = 90,093 - 0,008 + \frac{0,010}{2} = 90,090 \text{ mm}; \tag{3.10}$$

$$\Pi P_{min} = d_{max} - z_1 - \frac{H_1}{2} = 90,071 - 0,008 - \frac{0,010}{2} = 90,080 \text{ mm}; \tag{3.11}$$

$$\Pi P_{\text{M3M}} = d_{max} + Y_1 = 90,093 + 0,006 = 90,099 \text{ MM};$$
 (3.12)

$$HE_{max} = d_{min} + \frac{H_1}{2} = 90,071 + \frac{0,010}{2} = 90,076 \text{ mm}; \tag{3.13}$$

$$HE_{min} = d_{min} - \frac{H_1}{2} = 90,071 + \frac{0,010}{2} = 90,066 \text{ mm}.$$
 (3.14)

Исполнительные размеры калибров (проставление на чертеже) $\Pi P = \emptyset 90,080^{+0,010}, HE = \emptyset 90,066^{+0,010}.$

Схема расположения полей допусков приведена на рисунке 3.3.

4 ВЫБОР ПОСАДОК ДЛЯ КОЛЕЦ ПОДШИПНИКОВ КАЧЕНИЯ

Исходные данные и размеры:

тип подшипника -6-208 [4];

нагрузка –2100 Н;

режим работы подшипника – легкий;

$$d = 40 \text{ mm}$$
; $D = 80 \text{ mm}$; $B = 18 \text{ mm}$; $r = 2 \text{ mm}$.

Так как

Nº ∂OKVA

$$\frac{P}{C_p} = \frac{2100}{32000} = 0,065 < 0,07$$

то режим работы легкий.

Задаёмся видами нагружения колёс:

1. Внутреннее – местное нагружение

Выбираем посадку Ø40
$$\frac{L6}{js6}$$
 $\begin{pmatrix} 0\\ -0.01\\ +0.008\\ -0.008 \end{pmatrix}$

$$d_{max} = d + es = 40 + 0,008 = 40,008$$
 mm;

$$d_{min} = d + ei = 40 - 0.008 = 39,992$$
 мм.

$$D_{max} = D + ES = 40 \text{ MM};$$

$$D_{min} = D + EI = 35 - 0.01 = 39.99$$
 MM.

$$N_{max} = es - EI = 0.008 + 0.01 = 0.018$$
 mm;

$$N_{min} = ei - ES = -0.008 - 0 = 0.008$$
 MM.

$$T_n = (ES - EI) + (es - ei) = (0 + 0.01) + (0.008 + 0.008) = 0.026 \text{ MM}.$$

Перв. примен.	применима. 2. Наружное — местное нагружение Применим посадку $\emptyset 80 \frac{H7}{l6} \begin{pmatrix} +0.035 \\ \hline 0 \\ -0.011 \end{pmatrix}$.	
Cnɒaß. №	$d_{max} = d + es = 80 \text{ мм;}$ $d_{min} = d + ei = 80 - 0,011 = 79,989 \text{ мм.}$ $D_{max} = D + ES = 80 + 0,035 = 80,035 \text{ мм;}$ $D_{min} = D + EI = 80 - 0 = 80 \text{ мм;}$ $S_{max} = ES - ei = 0.035 + 0.011 = 0.046 \text{ мм;}$ $N_{max} = es - EI = 0 - 0 = 0 \text{ мм.}$ $S_{cp} = \frac{S_{max} - N_{max}}{2} = \frac{0.046 - 0}{2} = 0.023 \text{ мм.}$	
ıº Подпись и дата Взам. инв. Инв. № Подпись и дата	$D_{min} = 80,035$ $D_{min} = 80$ $S_{max} = 0,046$ $T_{\sigma} = 0,011$ $d_{max} = 80$	
Инв. Nº	КР.НТИТИ.06.00.00 Изм Лис № докум Под- Ла	<u>Лис</u> 25

	1
Перв. примен.	Рисунок 13 – Схема расположения полей допусков для циркуляционно нагруженного кольца $T_D = ES - EI = 0.035 + 0 = 0.035 \text{ мм;}$ $T_d = es - ei = 0 + 0.011 = 0.011 \text{ мм}$ Определим среднеквадратичное отклонение зазора $\sigma_N = \frac{1}{6} \sqrt{T_D^2 + T_d^2} = \frac{1}{6} \sqrt{35^2 + 11^2} = 6.11$
Справ. №	Пределы интегрирования $z = \frac{S_{\rm cp}}{\sigma_N} = \frac{23}{6,11} = 3,7$ Функция $\Phi(Z)$ при $Z=3,7$ (табл. 1, с.12): $\Phi(Z)\approx 0,4993$. Так как $z>0$, то вероятность натяга $P_N' = 0,5 + \Phi(z) = 0,5 + 0,4993 = 0,9993. \tag{4.2}$ Процент натяга составляет более 95%, поэтому данная посадка применима.
<u></u>	применима. Рассчитываем величину радиального посадочного зазора $g = g_{\scriptscriptstyle H} - \Delta d_{1{\scriptscriptstyle H}\tilde{o}}$ где $g_{\scriptscriptstyle H}$ – начальный радиальный зазор
Подпись и дата	$g_{{\scriptscriptstyle H.Cp.}}=rac{g_{{\scriptscriptstyle H.H\delta}}+g_{{\scriptscriptstyle H.HM}}}{2}=rac{12+29}{2}=20,5$ мкм $\Delta d_{1{\scriptscriptstyle H\delta}}$ -величина деформации $\Delta d_{1{\scriptscriptstyle H\delta}}=0.85Nrac{d}{d_0}=0,85\cdot 6\cdot rac{40}{50}=4,1$ мкм
Инв. №	D_0 - приведенный наружный диаметр внутреннего кольца $d_0 = d + \frac{D-d}{4} = 40 + \frac{80-40}{4} = 50 \ \mathit{мм}$ Тогда,
Взам. инв.	$g=20.5-4.1=16.4~\mathit{мкм}$ Величина осевого зазора достаточна
Инв. Nº Подпись и дата	
Инв. №	

5 НАЗНАЧЕНИЕ И ВЫБОР ПОСАДОК ШЛИЦЕВОГО СОЕДИНЕНИЯ

Согласно [7, с. 2, таблица 2] выбираем шлицевое соединение

$$d - 8 \times 32 \frac{H7}{f7} \times 36 \frac{H12}{a11} \times 6 \frac{H8}{h7},$$

По заданному шлицевому соединению дать расшифровку заданного шлицевого соединения и выписать номинальные размеры его элементов с их расшифровкой.

Соединение шлицевое, с центрированием по наружному диаметру с посадкой по диаметру центрирования $\frac{H7}{f7}$ по нецентрирующему диаметру $\frac{H12}{a11}$ и по размеру $\frac{H8}{h7}$. Число зубьев Z=8; внутренним диаметром d=32 мм; наружным диаметром D=36 мм; шириной шлица b=6 мм.

Предельные отклонения для центрирующих и нецентрирующих элементов шлицевого соединения [7].

$$\emptyset 36 \frac{H12}{a11};$$

ES = +0.25 mm;

es = -0.31 mm;

EI = 0 MM;

ei = -0.47 mm.

Определяем предельные размеры вала и отверстия

$$d_{max} = d + es = 36 + (-0.31) = 35.69 \text{ mm};$$
 (5.1)

$$d_{min} = d + ei = 36 + (-0.47) = 35.53$$
 mm; (5.2)

$$D_{max} = d + ES = 36 + 0.25 = 36.25 \text{ mm};$$
 (5.3)

$$D_{min} = d + EI = 36 + 0 = 36 \text{ MM}. \tag{5.4}$$

Допуск размера вала и допуск размера отверстия

$$T_d = d_{max} - d_{min} = 35,69 - 35,53 = 0,16 \text{ MM};$$
 (5.5)

$$T_D = D_{max} - D_{min} = 36,25 - 36 = 0,25 \text{ MM}.$$
 (5.6)

					ı
					l
					ı
ΙΛοιπ	Пис	№ докум	Под-	Ла	

Нд		C	Определяем	пределі	ьные	зазор	Ы				
Пепв примен			S_{max}	$= D_{ma}$	x - d	l _{min} =	= 36,25 –	35,53 = 0	,72 мм;		(5.7)
Пепе			S_{mi}	$D_m = D_m$	in –	d_{max}	= 36 - 3	35,69 = 0,3	1 мм;		(5.8)
_			S_c	$=\frac{S_{max}}{}$	$\frac{1}{2} + S_n$	<u>nin</u> =	$\frac{0.72 + 0}{2}$,31 = 0,515	5 мм.		(5.9)
		Д	Д опуск поса,	цки							
Chnab Nº				$T_s = T_I$	$_{0}+T_{0}$	$_d=0$,16 + 0,2	5 = 0,41 м	М.		(5.10)
ChnC		C	Схема распо.	ложени	я пол	ей до	пусков п	редставлен	а на рису	унке 5.1.	
			725								
			7. =0.025	, O							
u dama			-		_				91		
			Ť			H12	†		T _d =0,		
Подпись								33			
ØN αΗΝ			D _{max} =36,025 =36				7.72	S _{min} = 0,31			
\vdash		'	32=31 =36	3			S _{max} =0,72		1	4	
Взам инв		1	$D_{max} = 3,$ $D_{max} = 3,$ $D_{max} = 3,$ $D_{max} = 3,$	шах			~ <u>↓</u>	<i>a11</i>		2,69	
\vdash	-								$d_{min} = 35,53$	d _{max} = 35,69	
u dam									dmin	9	
Подпись и дата		-	Pi	исунок 5	.1 − C	хема р	расположе	ния полей д	опусков		
Г											
Инв Nº		., -	1/0.2					КР.НТИТИ.	06.00.00		<u>Пис</u> 28
		NOM THE	№ ∂οκνΜ	Под-	Ла						

Перв. примен.	$\emptyset 32 \frac{\text{H7}}{f7};$ $\text{ES} = +0.025 \text{ мм}; \qquad \text{es} = -0.025 \text{ мм};$ $\text{EI} = 0 \text{ мм}; \qquad \text{ei} = -0.05 \text{ мм}.$ Определяем предельные размеры вала и отверстия $d_{max} = d + es = 32 + (-0.025) = 31,975 \text{ мм};$	(5.11)
ōħ	$d_{min}=d+ei=32+(-0.05)=31,950$ мм; $D_{max}=d+ES=32+0.025=32,025$ мм; $D_{min}=d+EI=32+0=32$ мм.	(5.12) (5.13)
Cnɒaв. №	Допуск размера вала и допуск размера отверстия	(5.14)
	$T_d = d_{max} - d_{min} = 31,975 - 31,950 = 0,025$ мм; $T_D = D_{max} - D_{min} = 32,025 - 32 = 0,025$ мм.	(5.15)
a	Определяем предельные зазоры	
Подпись и дата	$S_{max}=D_{max}-d_{min}=32{,}025-31{,}950=0{,}075$ мм; $S_{min}=D_{min}-d_{max}=32-31{,}975=0{,}025$ мм;	(5.17) (5.18)
Инв. №	$S_c = rac{S_{max} + S_{min}}{2} = rac{0,075 + 0,025}{2} = 0,05$ мм. Допуск посадки	(5.19)
Взам. инв.	$T_s = T_D + T_d = 0.025 + 0.025 = 0.05$ мм. Схема расположения полей допусков представлена на рисунке 5.2.	(5.20)
Подпись и дата	energy parameters in the property of the prope	
Инв. Nº		<u>Лис</u> 29

Терв. примен.	6 РАСЧЕТ ПРЕДЕЛЬНЫХ КАЛИБРОВ ДЛЯ КОНТРО ШЛИЦЕВОГО СОЕДИНЕНИЯ	R(
Перв. 1	Расчет производится для шлицевого соединения, рассчитанного в разде 5. Привести эскизы калибров для контроля шлицевого вала и шлицевой втулк указанием точности изготовления размеров, шероховатостей, допусков форм расположение поверхностей.	ис
ōN	Шлицевое соединение $d-8\times 32\frac{H7}{f7}\times 36\frac{H12}{a11}\times 6\frac{H8}{h7}$. Расчет комплексного калибра-пробки. Размеры калибра-пробки согласно [8, с. 3, таблица 1]	
Cnpae. Nº	$d_{\kappa} = d_{min} - Z_d \pm \frac{H_d}{2};$	(6.1
	$D_k = (D_{min} - Z_D') \pm \frac{H_d'}{2};$	(6.2
	$b_k = b_{min} - Z_D \pm \frac{H_b}{2};$	(6.3
лись и дата	$b_{k-W} = b_{min} - Y_b;$	(6.4
Тодпис	$d_{k-W} = d_{min} - Y_d,$	(6.5
Инв. №	где d_{κ} — номинальный внутренний диаметр калибра-пробки; d — номинальный внутренний диаметр втулки и вала; D_k — номинальный наружный диаметр калибра-пробки; D_{min} — наименьший диаметр втулки; Z_D, Z_b — расстояние от середины поля допуска на изготовление калибра-проб до соответствующего наименьшего предельного размера втулки;	ōки
л Взам. инв.	H_D — допуск на изготовление калибра-пробки по центрирующему диаметр b_k — номинальный толщина зуба калибра-пробки;	y;
Подпись и дата	b_{min} — наименьшая ширина паза; H_b — допуск на изготовление калибра-пробки по толщине зубов; b_{k-W} — предельные размеры изношенного внутреннего диаметра калибра-пр ки; Y_b , Y_D — допустимый выход размера изношенного калибра-пробки за грани	
Инв. Nº	поля допуска вала;	
$Z_{\rm T}$	Mэм Лис № докум Под- Ла KP.HTИТИ.06.00.00	

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

Πιις 33

Перв. примен.	D_{k-W} — предельные размеры изношенных наружных диаметров калибра-пробки. $D_{min}=35{,}53$ мм; $b_{min}=6$ мм; $d_{min}=32$ мм Отклонения и допуск диаметра калибра-пробки [8, с. 5, таблица 2] $Z_d=8{,}5$ мкм; $H_d=7$ мкм; $Y_d=19$ мкм. Отклонения и допуск размера $b_{\rm K}$ калибр-пробки [8, с. 5, таблица 3] $Z_b=10$ мкм; $H_b=4$ мкм; $Y_b=16$ мкм. Для нецентрирующего диаметра [8, с. 10, таблица 6]
Cnpae. Nº	$Z_D'=80$ мкм; $H_D'=25$ мкм. Тогда $D_{max}=(35{,}53-0{,}08)+\frac{0{,}025}{2}=35{,}4625 \text{ мм};$
Cnc	$D_{min}=(35,53-0,08)-rac{0,025}{2}=35,4375$ мм; $d_{kmax}=32-0,0085+rac{0,007}{2}=31,995$ мм;
	$d_{kmin}=32-0,0085-rac{0,007}{2}=31,988$ мм;
сь и дата	$D_{k-W} = 35,53 - 0,019 = 35,511$ мм;
Подпи	$b_{kmax} = 6 - 0.010 + \frac{0.004}{2} = 5.992$ mm;
Инв. №	$b_{kmin}=6-0.010-rac{0.004}{2}=5.988$ mm;
48.	$b_{k-W} = 6.01 - 0.016 = 5.994$ мм.
Взам. инв	Накопленная погрешность шага не должна превышать 5 мкм [8, с. 10, таблица 7]. Допуск симметричности зуба калибра-пробки относительно оси поверх-
Подпись и дата	ности d_{κ} равен 8 мм [8, с. 11, таблица 8]. Допуск параллельности боковых сторон зуба калибра-пробки относительно оси поверхности D_{κ} равен 4 мкм [8, с. 11, таблица 8]. На рисунке 6.1 приведена схема расположения поля допуска центрирующего диаметра D пробки.
∕1нв. №	VDUTUTUOV 20.22
$Z_{\rm H}$	КР.НТИТИ.06.00.00

№ докум

34

Рисунок 6.1 – Схема расположения поля допуска центрирующего диаметра пробки: 1 – поле допуска центрирующего диаметра втулки; 2 – поле допуска на изготовление калибра-пробки; 3 – поле износа калибра-пробки

На рисунке 6.2 приведена схема расположения поля допуска размера b_{κ} калибра-пробки.

Рисунок 6.2 – Схема расположения поля допуска размера b_{κ} калибра-пробки:

1 – поле допуска размера в втулки; 2 – поле допуска на изготовление калибра-пробки; 3 – поле износа калибра-пробки

Схема расположения поля допуска нецентрирующего диаметра втулки приведена на рисунке 6.3.

ΙΛοιπ	Пис	№ докум	Под-	Ла

Рисунок 6.4 – Эскиз калибра-пробки

Расчет комплексного калибра-кольца [8, с. 3, таблица 1].							
					КР.НТИТИ.06.00.00	<u>Лис</u> 36	
ΙΛοιπ	Пис	№ докум	Ποд-	Ла			

 $D_{kmin} = 35,69 + 0,185 - \frac{0,025}{2} = 35,8625$ mm;

$$b_{kmax} = 5,982 + 0.01 + \frac{0.004}{2} = 5,996$$
 mm;

$$b_{kmin} = 5,982 + 0,01 - \frac{0,004}{2} = 5,99$$
 mm;

$$b_{k-W} = 5,982 + 0,016 = 5,998 \text{ MM}.$$

Накопленная погрешность шага не должна превышать 6 мкм [8, с. 10, таблица 7]. Допуск симметричности зуба калибра-пробки относительно оси поверхности D_{κ} равен 8 мм [8, с. 11, таблица 8]. Допуск параллельности боковых сторон зуба калибра-пробки относительно оси поверхности D_{κ} равен 4 мкм [8, с. 11, таблица 8].

Схема расположения поля допуска центрирующего диаметра приведена на рисунке 6.5.

Рисунок 6.5 – Схема расположения поля допуска центрирующего диаметра:

1 — поле допуска размера d вала; 2 — поле допуска изготовления калибра-кольца; 3 — поле износа калибра-кольца

ΙΛοιπ	Пис	№ докум	Под-	Ла

Схема расположения поля допуска размера b_{κ} калибра-кольца приведена на рисунке 6.6. Рисунок 6.6 – Схема расположения поля допуска размера b_{κ} калибра-кольца: 1 – поле допуска размера в вала; 2 – поле допуска изготовления калибра-кольца; 3 – поле износа калибра-кольца расположен на рисунке 6.7.

Схема расположения поля допуска нецентрирующего диаметра втулки

Рисунок 6.7 – Схема расположения поля допуска нецентрирующего диаметра втулки: 1 – поле допуска нецентрирующего диаметра втулки; 2 – поле допуска на изготовление калибра-кольца; H8 – поле допуска d_{κ} калибра-кольца

						_
						Лис
					КР.НТИТИ.06.00.00	20
Νον	Пис	№ ∂οκνΜ	Под-	Ла		39

7 РАСЧЕТ ТОЧНОСТИ РАЗМЕРОВ ДЕТАЛЕЙ, ВХОДЯЩИХ В СБОРОЧНЫЙ УЗЕЛ

7.1 Расчет методом максимума-минимума

Схема размерной цепи приведена в графической части работы.

Определение номинальных размеров составляющих звеньев.

$$A_1 = 2$$
; $A_2 = 8$; $A_3 = 18$; $A_4 = 12$; $A_5 = 52$; $A_6 = 62$; $A_7 = 44$; $A_8 = 57$; $A_9 = 47$; $A_{10} = 15$; $A_{11} = 8$; $A_{12} = 18$; $A_{13} = 2$, $A_{14} = 346$,1.

Определение средней точности размерной цепи или числа единиц допуска. Устанавливаем значение i для составляющих звеньев кроме стандартных A_1 и A_9 [9, с. 20, таблица 2.2]

$$a = \frac{T_{\Delta} - \sum_{i=1}^{H_c} T_{ic}}{\sum_{i=1}^{H-1} i_i} =$$

$$= \frac{700 - (21 + 21)}{0,55 + 0,9 + 1,08 + 1,86 + 1,86 + 1,56 + 1,86 + 1,56 + 1,08 + 0,9 + 0,55 + 3,54} =$$

$$= 38,03 \text{ MKM}.$$

$$(7.2)$$

Найденное число единиц допуска лежит в пределах стандартных значений a = 25 (8 квалитет) и a = 40 (9 квалитет) [9, с. 22, таблица 2.3]. Отсюда следует, что часть звеньев должна изготавливаться по 8 квалитету, а часть – по 9 квалитету. Результаты расчета сводятся в таблицу 7.1.

ΙΛοιπ	Пис	№ докум	Под-	Ла

перв. примен.	Обозначе- ние	Номиналь- ный размер, мм	<i>i</i> ,1 mkm	Обозначе- ние основ- ного откло-	Квалитет	Допуск	Верхнее отклоне- ние В	Нижнее отклоне- ние Н	Середина поля до- пуска
	1	2	3	4	5	6	7 MI	км 8	9
Ш	A_{Δ}	1,1				700	400	-300	50
	$\overrightarrow{A_1}$	2	0,55	Js	9	25	12,5	-12,5	0
	$\overrightarrow{A_2}$	8	0,9	h	8	22	0	-22	-11
Σi 	$\overrightarrow{A_2}$ $\overrightarrow{A_3}$ (станд.)	18	_		_	21	0	-21	-10,5
CHDUB.	$\overrightarrow{A_4}$	12	1,08	h	8	27	0	-27	-13,5
ا ار		52	1,86	h	8	46	0	-46	-23
	$\overrightarrow{A_6}$	62	1,86	h	8	46	0	-46	-23
Щ	$ \overrightarrow{A_5} $ $ \overrightarrow{A_6} $ $ \overrightarrow{A_7} $	44	1,56	h	8	39	0	-39	-19,5
	$\overrightarrow{A_8}$	57	1,86	h	8	46	0	-46	-23
	$\overrightarrow{A_9}$	47	1,56	h	8	39	0	-39	-19,5
	$\overrightarrow{A_{10}}$	15	1,08	h	8	27	0	-27	-13,5
	$\overrightarrow{A_{11}}$	8	0,9	h	8	22	0	-22	-11
וממוומרפ		18				21	0	-21	-10,5
	$\overrightarrow{A_{13}}$	2	0,55	Js	9	25	12,5	-12,5	0
- N	Тан (увяз.)	346,1	3,54	_	89	294	19	-275	-128
DSUM. UHB.	Доі	пуск увяз	ачного з		$\sum_{i=1}^{m-1} \Sigma_i ^r$	Γ_i .			
ממוומרם מ ממוומ	To:		– 22 – 2		<i>t</i> =1		16 – 39 –	27 – 22	(7 - 21 -

Выбор и назначение допусков на составляющие звенья. Считаем, что для размеров звеньев экономически приемлемым является 12-й квалитет. Назначаем по этому квалитету допуски на все размеры, кроме допусков на монтажную высоту подшипников, которые принимаются согласно [10] и на звено $\overleftarrow{A_1}$, которое выбрали в качестве компенсатора.

Наибольшая величина компенсации

$$T_{\Delta p} = \sum_{i=1}^{m-1} |\Sigma_i| T_i = 150 + 21 + 180 + 300 + 300 + 250 + 300 + 250 + (7.7)$$

$$+180 + 120 + 21 + 100 - 570 - 700 + T_1.$$

Тогда

$$T_1 = 700 + 570 - 150 - 21 - 180 - 300 - 300 - 250 - 300 - 250 - 180 - -150 - 21 - 100 = -932$$
 мкм.

Следовательно, при самом неблагополучном сочетании размеров надо с компенсатора снять слой материала толщиной 0,932 мм.

Определение предельных размеров компенсатора.

Вначале определяем координату середины поля допуска звена

$$\Delta_{\stackrel{\leftarrow}{o}_{iy}} = \Delta_{o\Delta} - \sum_{i=1}^{n-1} \Delta_{\stackrel{\rightarrow}{\Delta}_{0i}} - \sum_{n+1}^{m-1} \Delta_{\stackrel{\leftarrow}{oi}} - \Delta_{o\Delta}.$$
 (7.8)

Отсюда

$$\overline{\Delta_1} = 50 - 75 - 10,5 - 90 - 150 - 150 - 125 - 150 - 125 -$$
 $-90 - 75 - 10,5 + 285 = -716$ мкм;

$$\overleftarrow{A_1^{min}} = \overleftarrow{A_1} + \overleftarrow{\Delta_1} - \frac{|T_1|}{2} = 2 + (-0.716) - \frac{0.932}{2} = 0.818 \text{ mm};$$
 (7.9)

$$\overleftarrow{A_1^{max}} = \overleftarrow{A_1} + \overleftarrow{\Delta_1} + \frac{|T_1|}{2} = 2 + (-0.716) + \frac{0.932}{2} = 1.75 \text{ mm}.$$
 (7.10)

В таблице 7.2 приведены результаты расчета.

				·
ΙΛοιλ	Пис	№ докум	Под-	Ла

6H	T_{κ} — допуск на отдельный компенсатор в комплекте					
Терв. примен.	$T_{\kappa} = (0.1 \dots 0.3) T_{\Delta} = 0.2 \cdot 700 = 140$ мкм.	(7.12)				
Перв	Принимаем $T_{\kappa}=140$ мкм (13 квалитет). Тогда					
	$N_{min} = \frac{150 + 21 + 180 + 300 + 300 + 250 + 300 + 250 + 180 + 150 + 21 + 100 - 700 - 140}{700 - 140}$ = 2,91.	570 =				
Chode Nº	Число ступеней компенсации следует всегда округлять в большую рону, так как определяется наименьшее число ступеней. [9, с. 46, формула (Принимаем $N=3$.					
	Величина ступени компенсации					
	$\Delta = \sum_{j=1}^{n-2} Tj =$					
u dama	$= \frac{150 + 21 + 180 + 300 + 300 + 250 + 300 + 250 + 180 + 150 + 21 + 100 - 57}{5}$	$\frac{70}{2}$ (7.13)				
2	= 326,4 мкм.					
Подпи	Размеры компенсаторов в комплекте					
<u>o</u> N 8	$k_1 = \overleftarrow{A_1^{min}} = 0.818_{-0.14} \text{ MM};$	(7.14)				
ZH	$k_2 = \overleftarrow{A_1^{min}} + \Delta = 0.818 + 0.3144 = 1.13_{-0.14}$ мм.	(7.15)				
am. uhe.	$k_3 = \overleftarrow{A_1^{min}} + 2\Delta = 0.818 + 2 \cdot 0.3144 = 1.44_{-0.14} \text{ MM}.$	(7.16)				
na B3	$k_4 = \overleftarrow{A_1^{min}} + 3\Delta = 0.818 + 3 \cdot 0.3144 = 1.76_{-0.14} \text{ MM}.$					
н и дап	$k_5 = \overleftarrow{A_1^{min}} + 4\Delta = 0.818 + 4 \cdot 0.3144 = 2.07_{-0.14}$ мм.	(7.18)				
Инв. № Подпись и дата Взам. инв. Инв. № Подпис						
ōΝ		ı				
Инв	КР.НТИТИ.06.00.00 Изм Лис № докум Под- Ла	<u>Лис</u> 46				

8 РАСЧЕТ И НОРМИРОВАНИЕ ТОЧНОСТИ И ВИДА СОПРЯЖЕНИЯ ЗУБЧАТОЙ ПЕРЕДАЧИ

Исходные данные:

m = 6 MM;

 $Z_1 = 25$;

 $Z_2 = 50$;

n = 360 об/мин;

Рабочая температура передачи 80 °C;

Рабочая температура корпуса 75 °C.

Определяем межосевое расстояние

$$a_w = 0.5(Z_1 + Z_2)m = 0.5(25 + 50) \cdot 6 = 225 \text{ MM}.$$
 (8.1)

Делительный диаметр

$$d_1 = Z_1 m = 25 \cdot 6 = 150 \text{ mm}; \tag{8.2}$$

$$d_2 = Z_2 m = 50 \cdot 6 = 300 \text{ mm}. \tag{8.3}$$

Окружная скорость передачи

$$V = \frac{\pi d_1 n}{60 \cdot 1000} = \frac{\pi \cdot 150 \cdot 360}{60 \cdot 1000} = 2,82 \frac{M}{c}.$$
 (8.4)

Так как окружная скорость передачи меньше 6, то степень точности зубчатой передачи -8; степень точности по нормам плавности работы -8; степень точности по нормам контакта зубьев -8.

Показатели для контроля зубчатого соединения приведены в таблице 8.1. Данные показатели устанавливаются согласно [11].

Таблица 8.1 – Комплексные показатели и допуски для их контроля

Наименование	Цорио	Условное	Величина до-
показателей	Норма	обозначение допуска	пуска, мкм
Колебание измерительного межосевого расстояния за оборот зубчатого колеса	Кинематическая точность	$F_i{}^{\prime\prime}$	100
Радиальное биение зубчатого венца	Кинематическая точность	F_r	71

<u>Пис</u> 17

Продолжение	таблины	R	1
тиооолжение	тиолииы	0.	1

Допуск на местную кинематическую погрешность зубчатого		f_{i}'	50
колеса		, , , , , , , , , , , , , , , , , , ,	
Предельные отклонения шага		f_{Pt}	±28
Предельные отклонения шага	Плавность	f_{Pb}	±26
зацепления	работы	JPb	±20
Допуск на погрешность про-	раооты	f_f	22
филя зуба		J f	22
Колебание измерительного ме-			
жосевого расстояния на одном		$f_i^{"}$	40
зубе			
Суммарное пятно контакта	Контакт зубьев	По длине	40%
Суммарное пятно контакта	KONTAKI SYUBCB	По высоте	50%

Выбор вида сопряжения.

Боковой зазор, соответствующий температурной компенсации

$$j_{n_1} = 0.684a_w \left[\alpha_{p1} (t_1 - 20^\circ) - \alpha_{p2} (t_2 - 20^\circ) \right], \tag{8.5}$$

где a_w – межосевое расстояние, $a_w = 250$ мм.

$$\alpha_{p1}$$
 – ч, $\alpha_{p1}=11$,5 · 10^{-6} с⁻¹ [1, с. 187, таблица 1.62];

 α_{p2} — коэффициент линейного расширения для материалов корпуса, α_{p2} = $10.5 \cdot 10^{-6} \, \text{c}^{-1}$ [1, с. 187, таблица 1.62];

 t_1 — предельная температура зубчатых колес для которых рассчитывается боковой зазор, $t_1 = 80$ °C;

 t_2 — предельная температура корпуса для которого рассчитывается боковой зазор, $t_2 = 75$ °C.

Тогда

$$j_{n_1} = 0,684 \cdot 225 \cdot [11,5 \cdot 10^{-6}(80-20) - 10,5 \cdot 10^{-6}(75-20)] = 17,3$$
 мкм.

Величина бокового зазора, необходимая для размещения слоя смазки

$$j_{n_2} = (10 \dots 30)m = 20 \cdot 6 = 120 \text{ MKM}.$$
 (8.6)

Таким образов гарантированный зазор

$$j_{n \min} \ge j_{n_1} + j_{n_2} = 17.3 + 120 = 137.3 \text{ MKM}.$$
 (8.7)

ΙΛοιλ	Пис	№ докум	Под-	Ла

Допуск на среднюю длину общей нормали $T_{w_m}=100$ мкм [11, с. 26, таблица 18]. Нижнее отклонение длины общей нормали $(E_{w_{ms}} +T_{w_m})=-(198+100)=-298 \text{ мкм}; \tag{8.1}$ Тогда $W_{II}=83,904 ^{-0.198}_{-0.298}.$ Допуск на радиальное биение Fd_a =0,16 d_I +10=0,16·150+10=34 мкм. Принимаем Fd_a =34 мкм.	Перв. примен.	Допуск на среднюю длину общей нормали $T_{w_m}=100$ мкм [11, с. 26, таблица 18]. Нижнее отклонение длины общей нормали $(E_{w_{ms}} +T_{w_m})=-(158+100)=-258 \text{ мкм.} \tag{8.11}$ Тогда $W_I=28,668 ^{-0,158}_{-0,258}.$
лица 18]. Нижнее отклонение длины общей нормали $(E_{w_{ms}} + T_{w_{m}}) = -(198 + 100) = -298 \text{ мкм}; \qquad (8.1 \text{ Тогда})$ $W_{II} = 83,904 \frac{-0.198}{-0.298}.$ Допуск на радиальное биение Fd_{a} =0,16 d_{I} + 10=0,16·150+10=34 мкм. Принимаем Fd_{a} =34 мкм.	ae. Nº	
Тогда $W_{II} = 83,904 ^{-0,198}_{-0,298}.$ Допуск на радиальное биение Fd_a =0,16 d_I + 10=0,16·150+10=34 мкм. Принимаем Fd_a =34 мкм.	Cnp	лица 18].
$W_{II}=83,904^{-0,198}_{-0,298}.$ Допуск на радиальное биение Fd_a =0,16 d_I + 10=0,16·150+10=34 мкм. Принимаем Fd_a =34 мкм.		$(E_{w_{ms}} + T_{w_m}) = -(198 + 100) = -298 \text{ MKM};$ (8.13)
Взам. инв.	Подпись и дата	$W_{II}=83,\!904^{-0,198}_{-0,298}.$ Допуск на радиальное биение Fd_a =0,16 d_I + 10=0,16·150+10=34 мкм. При-
	Инв. №	нимаем $Fa_a = 34$ мкм.
	\vdash	
Подпись и да	2	
ON N2M / Πμς Nº 30κνΜ / Ποд- / Лα ΚΡ.ΗΤИΤИ.06.00.00	Подпись и дата	

Перв. примен.	9 ВЫБОР ПОСАДОК ОТВЕТСТВЕННЫХ СОЕДИНЕНИЙ Выбираем посадку подшипника: внутреннего кольца на вал $\emptyset 40 \frac{L6}{k6}$; наружного кольца в корпусе $\emptyset 80 \frac{H7}{l6}$. Посадка зубчатого колеса на вал $\emptyset 45 \frac{H7}{r6}$.
Cnpaв. №	Шпоночное соединение: шпонка — паз вала $14\frac{N9}{h9}$; шпонка — паз втулки $12\frac{N9}{h9}$. Крышка подшипника в корпус $\emptyset 80\frac{H7}{f9}$. Эскиз вала приведен на рисунке 9.1.
Подпись и дата	A(2:1) A(2:1) B A(2:1) B B B B B B B B B B B B B
Взам. инв. Мив. №	B-B(1:1) = 70.08 A $//0.02 A$ $//0.02 B$ $//0.02$
Подпись и дата	Рисунок 9.1 – Эскиз вала Эскиз зубчатого колеса приведен на рисунке 9.2.
Инв. Nº	

9.1 Вал. Допуск цилиндричности: на размер Ø40k6 - t = 0,016 мм. Тогда

$$T_{O} = 0.5t = 0.5 \cdot 0.016 = 0.008 \text{ MM}.$$
 (9.1)

После округления $T_{/O/}=0,008$ мм; на размер $\emptyset 40r6-t=0,016$ мм. Тогда

$$T_{/O/} = 0.5 \cdot 0.016 = 0.008 \text{ mm}.$$

После округления $T_{/O/}=0,008$ мм. Допуск соосности

$$T_{\odot} = 0.1 L_{vq} T_{Ta6J}, \tag{9.2}$$

где $T_{\text{табл}}$ — табличное значение соосности посадочной поверхности вала и корпуса в диаметральном выражении, $T_{\text{табл}}=4$.

Тогда

$$T_{\odot} = 0.1 \cdot 18 \cdot 4 = 7.2$$
 мкм.

Принимаем $T_{\odot} = 0.008$ мм.

На размер Ø45*r*6:

$$T_{\odot} = 0.1 \cdot 52 \cdot 4 = 20.8$$
 мкм.

Принимаем $T_{\odot}=0.02$ мм.

При 8 степени точности передачи для зубчатого колеса степень точности допуска соосности — 8 [12, с. 340, таблица 22.7]. Допуск перпендикулярности $T_{\perp}=0.05$ мм [12, с. 340, таблица 22.8].

Допуск размера паза 14N9 и 9N9: t = 0.043 мм

$$T_{\parallel} = 0.5t_{\text{min}} = 0.5 \cdot 0.043 = 0.0215 \text{ MM}.$$
 (9.3)

14 7 102 7 7						
Изм Лис № докум Под- Ла	Иэлл	Пис	Νº ∂οκνΜ	Под-	Ла	

Перв. примен.	л
Cnɒaв. №	R п
Подпись и дата	0,
Инв. №	
Взам. инв.	
Подпись и дата	
Инв. Nº	IA ON

Принимаем $T_{\parallel} = 0.02$ мм.

$$T_{\dot{-}} = 2t_{\text{min}} = 2 \cdot 0.043 = 0.086 \text{ mm}.$$
 (9.4)

Принимаем $T_{\div} = 0.07$ мм.

Назначаем шероховатость на цилиндрическую поверхность [12, с. 348, таблица 22.2] $\emptyset 40k6$: Ra = 1,25 мкм; на поверхность $\emptyset 45r6$: Ra = 1,6, $\emptyset 60h9$: Ra = 2,5 мкм.

9.2 Крышка подшипника

допуск перпендикулярности: степень точности допуска при базировании подшипника -8 [12, c. 415, таблица 22.12], то согласно T=0,1 мм [12, c. 340, таблица 22.6];

позиционный допуск

$$T_{\oplus} = 0.4(d_{\text{OTB}} - d_{\text{B}}) = 0.4(9 - 8) = 0.4 \text{ MM}.$$
 (9.5)

9.3 Колесо зубчатое

Допуск перпендикулярности: при степени 8 по нормам контакта; степень точности допуска 6 [12, с. 360, таблица 22.9]; допуск перпендикулярности 0,01 мм [12, с. 360, таблица 22.8].

Допуск цилиндрической поверхности

$$T_{/O/} = 0.5t = 0.5 \cdot 0.025 = 0.0125 \text{ MM}.$$
 (9.6)

Принимаем $T_{/O/} = 0.012$ мм.

Допуск размера паза 12h9 и 8h9 $t_{\text{шп}} = 0.043$ мм

$$T_{\parallel} = 0.5t_{\text{min}} = 0.5 \cdot 0.043 = 0.0215 \text{ MM}.$$
 (9.7)

Принимаем $T_{\parallel}=0.02$ мм.

$$T_{\div} = 2t_{\text{IIII}} = 2 \cdot 0.043 = 0.086 \text{ MM}.$$
 (9.8)

Принимаем $T_{\div} = 0.08$ мм.

NO DOKY

Перв. примен.	ЗАКЛЮЧЕНИЕ В ходе выполнения работы по НТТИ были закреплены теоретические знания, приобретены практические навыки по расчету и выбору посадок типовых соединений, по решению размерных цепей, простановки на чертежах обозначений посадок, предельных отклонений размеров и требований к точности формы и расположения поверхностей.
Справ. №	Качество и эффективность действия выпускаемых машин и приборов находится в прямой зависимости от точности их изготовления и контроля показателей качества с помощью технических измерений. Точность и ее контроль служит исходной предпосылкой важнейшего свойства совокупности изделий — нормирования. При конструировании применение принципа нормирования ведет к повышению качества и снижению себестоимости конструкции.
Подпись и дата	
Инв. №	
Взам. инв.	
Подпись и дата	
Инв. №	— Дис № докум Под- Ла КР.НТИТИ.06.00.00 55

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Допуски и посадки: Справочник: в 2-х ч. / В.Д. Мягков, М.А. Палей, А.Б. Романов, В.А. Брагинский. 6-е изд., перераб. и доп. Л. : Машиностроение. Ленингр. отд-ние, 1982.-4.1.543 с.
- 2 Кирпиченко Ю.Е. Выбор универсальных средств измерений / Ю.Е. Кирпиченко. Гомель : ГГТУ им. П.О. Сухого, 2005. 22 с.
- 3 Калибры гладкие для размеров до 500 мм. Допуски : ГОСТ 24853-81. Введ. 01.01.1983. Минск : Государственный комитет по стандартизации Республики Беларусь, 1991.-12 с.
- 4 Подшипники шариковые радиальные однорядные. Основные размеры : ГОСТ 8338-75. Введ. 01.07.1976. Минск : Государственный комитет по стандартизации Республики Беларусь, 1992. 12 с.
- 5 Подшипники качения. Поля допусков и технические требования к посадочным поверхностям валов и корпусов. Посадки : ГОСТ 3325-85. Введ. 01.01.1987. Минск : Государственный комитет по стандартизации Республики Беларусь, 1992. 104 с.
- 6 Основные нормы взаимозаменяемости. Соединения шлицевые прямобочные. Размеры и допуски : ГОСТ 1139-80. Введ. 01.01.1982. Минск : Государственный комитет по стандартизации Республики Беларусь, 2011. 10 с.
- 7 Основные нормы взаимозаменяемости. Характеристики изделий геометрические. Система допусков на линейные размеры. Основные положения, допуски, отклонения и посадки: ГОСТ 25346-2013. Введ. 01.08.2016. Минск: Государственный комитет по стандартизации Республики Беларусь, 2016. 38 с.
- 8 Калибры для контроля шлицевых прямобочных соединений. Допуски: ГОСТ 7951-80. Введ. 01.01.1981. Минск: Государственный комитет по стандартизации Республики Беларусь, 1993. 38 с.
- 9 Расчет размерных цепей: метод. указания к курсовой работе и практ. занятиям по дисциплине «Нормирование точности и технические измерения» для студентов машиностр. специальностей днв. и заоч. форм обучения / авт.-сост.: Ю.Е. Кирпиченко, Н.В. Акулов. Гомель: ГГТУ им. П.О. Сухого, 2007. 51 с.
- 10 Подшипники качения. Общие технические условия : ГОСТ 520-2011. Введ. 01.07.2013. Минск : Государственный комитет по стандартизации Республики Беларусь, 2013. 69 с.
- 11 Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические. Допуски : ГОСТ 1643-81. Введ. 01.07.1981. Минск : Государственный комитет по стандартизации Республики Беларусь, 2011. 44 с.

Перв. примен.	12 Дунаев П.Ф. Леликов О.П. Конструирование узлов и деталей машин. — М : Высш. Шк., 2000. – 447 с.
Cnpae. Nº	
Подпись и дата	
Инв. №	
Взам. инв.	
Подпись и дата	
Инв. №	