What is claimed is:

1. A compound of formula

$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

wherein

n is 0 or 1;

A-B is -CH=CH- or -CH₂-CH₂-;

R₁ is C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl or C₂-C₁₂-alkenyl;

is C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl, C_2 - C_{12} -alkinyl; or C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl or C2-C12-alkinyl, which are substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-cycloalkyl which is optionally substituted with one to three C1-C6-alkyl-groups, C3-C8-cycloalkenyl which is optionally substituted with one to three C₁-C₆-alkyl-groups, norbornylenyl-, C₃-C₈-halocycloalkyl, C₁-C₁₂-alkoxy, C₁-C₆-alkoxy-C₁-C₆-alkoxy, C₃-C₈-cycloalkoxy, C₁-C₁₂-haloalkoxy, C₁-C₁₂-alkylthio, C₃-C₈-cycloalkoxy loalkylthio, C₁-C₁₂-haloalkylthio, C₁-C₁₂-alkylsulfinyl, C₃-C₈-cycloalkylsulfinyl, C₁-C₁₂-haloalkylsulfinyl, C3-C8-halocycloalkylsulfinyl, C1-C12-alkylsulfonyl, C3-C8-cycloalkylsulfonyl, C_1 - C_{12} -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, -NR₄R₆, -X-C(=Y)-R₄, -X-C(=Y)-Z-R₄, -P(=O)(OC1-C6-alkyl)2, aryl, heterocyclyl, aryloxy, arylthio and heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy, arylthio and heterocyclyloxy groups are optionally - depending on the substitution possibilities on the ring - substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO₂, C₁-C₁₂-alkyl, C₃-C₈-Cycloalkyl, $C_1-C_{12}-Haloalkyl,\ C_1-C_{12}-alkoxy,\ C_1-C_{12}-Haloalkoxy,\ C_1-C_{12}-alkylthio,\ C_1-C_{12}-haloalkylthio,$ C_1-C_6 -alkoxy- C_1-C_6 -alkyl, C_2-C_8 -alkenyl, C_2-C_8 -alkinyl, $Si(C_1-C_{12}-alkyl)_3$, -X-C(=Y)-R₄, -X-C(=Y)-Z-R4, aryl, aryloxy, heterocyclyl and heterocyclyloxy; or

R₂ is aryl, heterocyclyl C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkenyl; or aryl, heterocyclyl

 C_3 - C_8 -Cycloalkyl or C_3 - C_8 -Cycloalkenyl, which are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected from the group consisting of OH, halogen, CN, NO₂, C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_1 -alkylthio, C_1 - C_1 -haloalkylthio, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, methylendioxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

 R_3 is H, C_1 - C_{12} -alkyl or C_1 - C_{12} -alkyl which is substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-Cycloalkyl which is optionally substituted with one to three C_1 - C_6 -alkyl groups, norbornylenyl-, C_3 - C_8 -Cycloalkenyl which is optionally substituted with one to three methyl groups; C_3 - C_8 -halocycloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy, C_3 - C_8 -cycloalkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -haloalkylthio, C_1 - C_{12} -haloalkylthio, C_1 - C_{12} -haloalkylsulfinyl, C_3 - C_8 -cycloalkylsulfinyl, C_3 - C_8 -cycloalkylsulfinyl, C_1 - C_{12} -haloalkylsulfinyl, C_3 - C_8 -halocycloalkylsulfinyl, C_1 - C_{12} -alkylsulfonyl, C_3 - C_8 -cycloalkylsulfonyl, C_1 - C_1 -haloalkylsulfonyl, C_3 - C_8 -halocycloalkylsulfonyl, -NR₄R₆, -X-C(=Y)-R₄, -X-C(=Y)-Z-R₄, -P(=O)(OC₁- C_6 -alkyl)₂, aryl, heterocyclyl, aryloxy, arylthio and heterocyclyloxy; wherein the aryl, heterocyclyl, aryloxy, arylthio and heterocyclyloxy groups are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO₂, C_1 - C_{12} -alkyl,, C_3 - C_8 -Cycloalkyl, C_1 - C_{12} -Haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_1 -alkylthio, C_1 - C_1 -alkoxy- C_1 - C_1 -alkoxy, C_1 - C_1 -alkenyl, C_2 - C_8 -alkinyl, Si(C_1 - C_1 -alkyl)₃, -X-C(=Y)-R₄, -X-C(=Y)-Z-R₄, aryl, aryloxy, heterocyclyl and heterocyclyloxy; or

 R_2 and R_3 together are a three- to seven-membered alkylen- or a four - to seven-membered alkenylenbridge, wherein one or two CH₂-groups may independently of each other be replaced by a group -C(=O)-, -C(=S)-, O, S, -NR₅, -OC(=O)-O, -OC(=O)S-, -OC(=O)N(R₅)-, -C(=O)O-, -C(=O)S, -C(=O)N(R₅)-, -N(R₅)C(=O)S-, -N(R₅)C(=O)N(R₅)-, and wherein the alkylene or alkenylenbridge may be independently of each other substituted with one or two substituents selected from the group consisting of C₁-C₄-alkyl, C₁-C₄-alkoxy and C₁-C₄-halogenalkyl;

- X is O, NR₅ or a bond;
- Y is O or S;
- Z is O, S or NR₅

 R_4 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl or heterocyclyl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

 R_5 is H, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, benzyl or -C(=O)- C_1 - C_{12} -alkyl;

 R_6 is H, C_1 - C_{12} -alkyl which is optionally substituted with halogen, C_1 - C_6 -alkoxy, CN, C_2 - C_8 -alkenyl, C_2 - C_8 -haloalkenyl, C_2 - C_8 -alkinyl, C_1 - C_{12} -Haloalkenyl, -X-C(=Y)- R_9 , -X-C(=Y)-Z- R_9 , aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl or heterocyclyl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl or C_1 - C_6 -haloalkoxy; or

 R_4 and R_6 together are a three- to five membered alkylene bridge, wherein one of the methylene groups may be replaced by O, S or SO_2 ; and

 R_9 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, which are — depending on the substitution possibilities — optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

and, where applicable, to E/Z isomers, mixtures of E/Z isomers and/or tautomers, in each case in free form or in salt form;

- 2. A compound according to claim 1 of the formula (I) in the free form.
- 3. A compound according to any one of claims 1 or 2 of the formula (I), wherein wherein R_3 is methyl.

- 4. A compound according to any one of claims 1 or 2 of the formula (I), wherein wherein R_3 is C_3 - C_8 -alkyl.
- 5. A compound according to any one of claims 1 or 2 of the formula (I), wherein wherein R_3 is C_1 - C_8 -alkyl which is substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-cycloalkyl which is optionally substituted with one to three C_1 - C_6 -alkyl groups, norbornylenyl-, C_3 - C_8 -Cycloalkenyl which is optionally substituted with one to three methyl groups; C_3 - C_8 -halocycloalkyl, C_3 - C_8 -cycloalkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -alkylthio, aryl, heterocyclyl, arylthio or heterocyclyloxy; wherein the aryl, heterocyclyl, arylthio and heterocyclyloxy groups are optionally depending on the substitution possibilities on the ring substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO₂, C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -haloalkylthio, C_1 - C_1 -alkoxy- C_1 - C_1 -alkoxy, C_1 - C_2 -alkenyl, C_2 - C_8 -alkinyl, C_1 - C_1 -alkyl)₃, -X-C(=Y)- C_1 -Aloxyl, aryloxy, heterocyclyl and heterocyclyloxy.
- 6. A pesticide which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 7. A method for controlling pests wherein a composition as described in claim 6 is applied to the pests or their habitat.