

书面作业4.1 参考解答或提示

第1部分基础

本次作业均为教材习题.

教材P205-207: 7、8、11、14、15、18、20、21、22、23.

习题7

解 由已知得
$$R = \{\langle 0,1 \rangle, \langle 1,2 \rangle, \langle 2,3 \rangle, \langle 0,0 \rangle, \langle 2,1 \rangle \}, S = \{\langle 2,0 \rangle, \langle 3,1 \rangle \}, \text{于是有}$$

(1) 因为 $M_R = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, M_S = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \text{所以}$

$$M_{R-S} = M_R \circ M_S = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

从而, $R \circ S = \{\langle 1,0 \rangle, \langle 2,1 \rangle \}$.

(2) $R, S, S \circ R$ 的关系图分别见图 7.6.1(a),7.6.1(b)和7.6.1(c),则 $S \circ R = \{\langle 2,0 \rangle, \langle 2,1 \rangle, \langle 3,2 \rangle \}$.

(3) $R \circ S \circ R = \{\langle 1,1 \rangle, \langle 1,0 \rangle, \langle 2,2 \rangle \},$ $R^3 = \{\langle 0,3 \rangle, \langle 0,1 \rangle, \langle 1,2 \rangle, \langle 0,2 \rangle, \langle 0,0 \rangle, \langle 2,3 \rangle, \langle 2,1 \rangle \}$.

习题8

解 (1)
$$R$$
 的关系图见图 7. 6. 2, R 的关系矩阵为:
$$M_{R} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$
(2) $R^{2} = \{\langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle\};$
 $R^{3} = \{\langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle\};$
 $R^{4} = \{\langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle\}.$

习题11

解 (1) $R \circ R = \{\langle x, y \rangle \mid (x, y \in P) \land (x \in Y) \in P\}$ 的祖父) \ ;

- (2) $S^{-1} \circ R = \emptyset$;
- (3) $S \circ R^{-1} = \{\langle x, y \rangle \mid (x, y \in P) \land (x 是 y 的妻子)\}$;
- (4) $|\langle x,y\rangle|$ $|\langle x,y\in P\rangle$ \wedge $(y \in x)$ 的外祖母) | 可表示为= $S \circ S$:
- (5) $|\langle x,y\rangle|$ $|\langle x,y\in P\rangle \wedge (y \in x)$ 的祖母) | 可表示为= $S\circ R$.

习题14

证明 由于A上的不同二元关系共有 $2^{n\times n}$ 个,根据鸽笼原理,由R产生的 $2^{n\times n}$ +1个幂集关系 R^0 , R^1 , R^2 , \cdots , $R^{n\times n}$

中,至少存在相同的关系.因此存在 $0 \le s \le 2^{n \times n}$, $0 \le t \le 2^{n \times n}$, $s \ne t$, 使得 R' = R'.

习题15

证明 (1) 对任意
$$\langle x,z \rangle \in R \circ T(x,z \in A)$$
,由"。"知:存在 $y \in A$,使得 $\langle x,y \rangle \in R, \langle y,z \rangle \in T$.

由"。"知: $\langle x, y \rangle \in S, \langle y, z \rangle \in T \Rightarrow \langle x, z \rangle \in S \circ T.$

所以, $R \circ T \subseteq S \circ T$;

- (2) 对任意 $\langle y, x \rangle \in R^{-1}(x, y \in A)$,有 $\langle x, y \rangle \in R$.由 $R \subseteq S$ 知 $\langle x, y \rangle \in S$,即 $\langle y, x \rangle \in S^{-1}$.所以 $R^{-1} \subseteq S^{-1}$.
- (3) ① 对任意 $\langle y, x \rangle \in (R \cap S)^{-1}(x, y \in A)$,有 $\langle x, y \rangle \in R \cap S$.即 $\langle x, y \rangle \in R$ 且 $\langle x, y \rangle \in S$.从而有 $\langle y, x \rangle \in R^{-1}$, $\langle y, x \rangle \in S^{-1}$, 即 $\langle y, x \rangle \in R^{-1} \cap S^{-1}$.于是得到 $(R \cap S)^{-1} \subseteq R^{-1} \cap S^{-1}.$
- ② 对任意 $\langle y, x \rangle \in R^{-1} \cap S^{-1}(x, y \in A)$,有 $\langle y, x \rangle \in R^{-1}$ 且 $\langle y, x \rangle \in S^{-1}$.从而有 $\langle x, y \rangle \in R$ 且 $\langle x, y \rangle \in S$,即 $\langle x, y \rangle \in R \cap S$.于是 $\langle y, x \rangle \in (R \cap S)^{-1}$.即 $R^{-1} \cap S^{-1} \subseteq (R \cap S)^{-1}.$

由①,②知 $(R\cap S)^{-1}=R^{-1}\cap S^{-1}$.

- (4) 对任意 $\langle x,y \rangle \in \overline{S}$,有 $\langle x,y \rangle \in S$.由 $R \subseteq S$,所以 $\langle x,y \rangle \in R$,即 $\langle x,y \rangle \in \overline{R}$,从而 $\overline{S} \subseteq \overline{R}$.
- (5) ① 首先证明 $(R \cup S) \circ T \subseteq (R \circ T) \cup (S \circ T)$.

对任意 $\langle x,z \rangle \in (R \cup S)$ 。 $T(x,z \in A)$,由"。"知:存在 $y \in A$,使得 $\langle x,y \rangle \in (R \cup S)$ 并且 $\langle y,z \rangle \in T$,从而有 $\langle x,y \rangle \in R$ 或 $\langle x,y \rangle \in S$.

由"。"知:

$$\langle x, y \rangle \in R, \langle y, z \rangle \in T \Rightarrow \langle x, z \rangle \in R \circ T \Rightarrow \langle x, y \rangle \in S, \langle y, z \rangle \in T \Rightarrow \langle x, z \rangle \in S \circ T,$$

所以 $\langle x,z\rangle \in (R \circ T) \cup (S \circ T)$.即

 $(R \cup S) \circ T \subseteq (R \circ T) \cup (S \circ T).$

习题18

- 解 (1) 设 $R = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 4 \rangle\}$,则 R 既不是自反的,又不是反自反的;
- (2) 设 $R = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle\}$,则 R 既是对称的,又是反对称的;
- (3) 设 $R = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 3 \rangle\}$,则 R 既不是对称的,也不是反对称的;
- (4) 设 $R = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle\}$,则 R 是传递的.

- 解 (1) R是反对称的、反自反的、传递的;
- (2) R 是反对称的;
- (3) 1, 是自反的、对称的、反对称的、传递的;
- (4) R是对称的.

习题21

解 (1)
$$r(R) = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle \}$$
;
 $s(R) = R$;
 $t(R) = R$.

r(R),s(R),t(R)的关系图分别见图 7.6.6(a),7.6.6(b)和 7.6.6(c).

(2)
$$r(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle \};$$

 $s(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle \};$

 $t(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle\}.$

r(R),s(R),t(R)的关系图分别见图 7.6.7(a),7.6.7(b)和 7.6.7(c).

(3)
$$r(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle \};$$

 $s(R) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 3, 1 \rangle, \langle 1, 3 \rangle \};$
 $\iota(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle \}.$

 $\tau(R)$, s(R), t(R) 的关系图分别见图 7.6.8(a), 7.6.8(b) 和 7.6.8(c).

(4) $r(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 4 \rangle \};$ $s(R) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 3, 4 \rangle, \langle 4, 3 \rangle \};$ $t(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 2, 4 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle \}.$ r(R), s(R), t(R)的关系图分别见图 7. 6. 9(a), 7. 6. 9(b)和 7. 6. 9(e).

(5) $r(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle, \langle 4, 4 \rangle \};$ $s(R) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 3, 4 \rangle, \langle 4, 3 \rangle, \langle 4, 1 \rangle, \langle 1, 4 \rangle \};$ $t(R) = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 3 \rangle, \langle 3, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 2, 4 \rangle, \langle 4, 2 \rangle, \langle 1, 4 \rangle,$ $\langle 4, 1 \rangle, \langle 3, 4 \rangle, \langle 4, 3 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle \};$ r(R), s(R), t(R)的关系图分别见图 7. 6. 10(a), 7. 6. 10(b)和 7. 6. 10(c).

(6) $r(R) = \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 2,2 \rangle, \langle 2,3 \rangle, \langle 3,2 \rangle, \langle 2,4 \rangle, \langle 3,3 \rangle, \langle 4,4 \rangle \};$ $s(R) = \{\langle 1,2 \rangle, \langle 2,1 \rangle, \langle 2,3 \rangle, \langle 3,2 \rangle, \langle 2,4 \rangle, \langle 4,2 \rangle \};$ $t(R) = \{\langle 1,2 \rangle, \langle 2,2 \rangle, \langle 1,3 \rangle, \langle 1,4 \rangle, \langle 2,3 \rangle, \langle 3,2 \rangle, \langle 2,4 \rangle, \langle 3,4 \rangle, \langle 3,3 \rangle \}.$ r(R), s(R), t(R) 的关系图分别见图 7. 6. 11(a), 7. 6. 11(b) 和 7. 6. 11(e).

解 (1)是正确的.

对任意的 $x \in A$, 因为 R, S 是自反的, 所以 $\langle x,x \rangle \in R$, $\langle x,x \rangle \in S$. 由"。"知: $\langle x,x \rangle \in R \circ S$. 所以, $R \circ S$ 是自反的.

(2) 不一定正确.

如 $R = |\langle a, b \rangle|$, $S = |\langle b, a \rangle|$, 则 R , S 都是反自反的,但 $R \circ S = |\langle a, a \rangle|$ 不是反自反的.

(3) 不一定正确.

如 $R = |\langle a, b \rangle, \langle b, a \rangle|, S = |\langle b, c \rangle, \langle c, b \rangle|$,则 R, S 都是对称的,但 $R \circ S = |\langle a, c \rangle|$ 不是对称的.

(4) 不一定正确.

如 $R = |\langle a, b \rangle, \langle b, c \rangle|$, $S = |\langle b, b \rangle, \langle c, a \rangle|$, 则 R , S 都是反对称的,但 $R \circ S = |\langle b, a \rangle, \langle a, b \rangle|$ 不是反对称的.

(5) 不一定正确.

如 $R = |\langle a, b \rangle, \langle b, c \rangle, \langle a, c \rangle|, S = |\langle b, b \rangle, \langle c, a \rangle|, 则 R, S 都是传递的, 但 <math>R \circ S = |\langle a, b \rangle, \langle b, a \rangle, \langle a, a \rangle|$ 不是传递的.

习题23

证明(1) ① 对任意的 $x \in A$, 因为 R 是自反的, 所以 $\langle x, x \rangle \in R$. 又因为 $R \subseteq s(R)$, 所以 $\langle x, x \rangle$

 $\in s(R)$.即 s(R)是自反的. ② 对任意的 $x \in A$,因为 R 是自反的,所以 $\langle x,x \rangle \in R$.又因为 $R \subseteq t(R)$,所以 $\langle x,x \rangle \in t(R)$.即 t(R)是自反的.

(2) ① 对任意的 $x,y \in A$, 若 $\langle x,y \rangle \in r(R) = R \cup I_A$, 则有 $\langle x,y \rangle \in R$ 或 $\langle x,y \rangle \in I_A$.

若 $\langle x,y \rangle$ ∈ R,则由 R 是对称的,所以 $\langle y,x \rangle$ ∈ R.又因为 $R \subseteq r(R)$,所以 $\langle y,x \rangle$ ∈ r(R).

若 $\langle x,y \rangle \in I_A$,则 x=y,即 $\langle y,x \rangle \in I_A$,又因为 $I_A \subseteq r(R)$,所以 $\langle y,x \rangle \in r(R)$.

无论是哪一种情况,都有 $\langle y,x\rangle \in r(R)$.即 r(R)是对称的.

② 对任意的 $x,y \in A$, 若 $\langle x,y \rangle \in t(R)$, 则存在 $i \in \{1,2,3,\cdots,n,\cdots\}$, 使得 $\langle x,y \rangle \in R'$. 由"。" 的定义知: 存在 $c_1,c_2,c_3,\cdots,c_{i-1}$, 使得 $\langle x,c_1 \rangle \in R$, $\langle c_1,c_2 \rangle \in R$, $\langle c_2,c_3 \rangle \in R$, \cdots , $\langle c_{i-1},y \rangle \in R$. 因为 R 是对称的,所以有 $\langle y,c_{i-1} \rangle \in R$, $\langle c_{i-2},c_{i-3} \rangle \in R$, $\langle c_{i-3},c_{i-4} \rangle \in R$, \cdots , $\langle c_1,x \rangle \in R$. 由"。"的定义知: $\langle y,x \rangle \in R'$, 即有 $\langle y,x \rangle \in t(R)$. 所以 t(R) 是对称的.

(3) ① 对任意 $x, y, z \in A$, 若 $\langle x, y \rangle \in r(R) = R \cup I_A$, $\langle y, z \rangle \in r(R) = R \cup I_A$, 则有 $(\langle x, y \rangle \in R \text{ 或} \langle x, y \rangle \in I_A)$ 并且 $(\langle y, z \rangle \in R \text{ 或} \langle y, z \rangle \in I_A)$.

 $\dot{A}\langle x,y\rangle \in R$ 且 $\langle y,z\rangle \in R$,则由 R 是传递的,所以 $\langle x,z\rangle \in R$.又因为 $R\subseteq r(R)$,所以 $\langle x,z\rangle \in r(R)$.

若 $\langle x,y \rangle \in I_A$ 或 $\langle y,z \rangle \in I_A$,则有 x=y 或 y=z.又因为 $I_A \subseteq r(R)$,则

由 $\langle x, x \rangle \in r(R)$ 及 $\langle x, z \rangle \in r(R)$,有 $\langle x, z \rangle \in r(R)$.

由 $\langle x,z\rangle \in r(R)$ 及 $\langle z,z\rangle \in r(R)$,有 $\langle x,z\rangle \in r(R)$.

所以 $\langle x, z \rangle \in r(R)$.

无论是哪一种情况,都有 $\langle x,z\rangle \in r(R)$.即 r(R)是传递的.

② 结论不一定成立.

如 $R = \{\langle 1, 2 \rangle\}$,则 R 可传递,但 $s(R) = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle\}$ 不可传递.

(4) 结论不一定成立.

若 $R = \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle\}$,则 R 是反对称的,但 $\iota(R) = \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle, \langle 3,3 \rangle, \langle 1,1 \rangle, \langle 2,1 \rangle, \langle 3,2 \rangle, \langle 2,2 \rangle, \langle 1,3 \rangle\}$ 不是反对称的.

第2部分 理论

无

第3部分 综合应用