2014 年全国硕士研究生招生考试试题

要求,把所选项前的	字母填在题后的括号内.	. 在每小题给出的四个选 ^ɪ)	项中,只有一项符合题目	
(1)下列曲线中有渐近线	总的是()			
$(A)y = x + \sin x.$	$(B)y = x^2 + \sin x.$	$(C)y = x + \sin\frac{1}{x}.$	$(D)y = x^2 + \sin\frac{1}{x}.$	
(2)设函数 f(x) 具有 2 🕅		(x) + f(1)x, 则在区间[0,1]]上()	
(A)			$\forall f, f(x) \leq g(x).$	
(C) 当 $f''(x) \ge 0$ 时, $f(x) \ge g(x)$. (D) 当 $f''(x) \ge 0$ 时, $f(x) \le g(x)$.			时, $f(x) \leq g(x)$.	
(3)设 $f(x,y)$ 是连续函数				
(A) $\int_0^1 dx \int_0^{x-1} f(x,y)$	$dy + \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dx$	ly.		
(B) $\int_0^1 dx \int_0^{1-x} f(x,y)$	$dy + \int_{-1}^{0} dx \int_{-\sqrt{1-x^2}}^{0} f(x,y)$	$\mathrm{d}y$.		
$(C) \int_0^{\frac{\pi}{2}} \mathrm{d} heta \int_0^{\frac{1}{\cos \theta + \sin \theta}} f(r e^{-r e^{-r e}})$	$\cos \theta, r \sin \theta) dr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{1}$	$f(r\cos\theta,r\sin\theta)\mathrm{d}r.$		
(D) $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(ret)$	$\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{\pi} d\theta$	$f(r\cos\theta,r\sin\theta)r\mathrm{d}r.$		
	-	$-a\cos x - b\sin x)^2 dx$ $\}$,则 d	$a_1 \cos x + b_1 \sin x = ($	
$(A) 2\sin x$.	$(B)2\cos x$.	$(C)2\pi\sin x$.	$(D)2\pi\cos x$.	
$\begin{bmatrix} 0 & a & b & 0 \end{bmatrix}$				
(5)行列式 0 a b 0 a 0 0 b 0 c d 0 c 0 0 d	= ()			
		$(C)a^2d^2-b^2c^2.$	(D) $h^2c^2 - a^2d^2$	
		l ,向量组 $\boldsymbol{\alpha}_1 + k\boldsymbol{\alpha}_3$, $\boldsymbol{\alpha}_2 + l\boldsymbol{\alpha}_3$		
$\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关的(*,14====================================	3 17 (1227 0) (7 (2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1	
(A)必要非充分条件.		(B)充分非必要条	(B)充分非必要条件.	
(C)充分必要条件.		(D)既非充分也非必要条件.		
, ,	7) 设随机事件 A 与 B 相互独立,且 $P(B) = 0.5$, $P(A - B) = 0.3$,则 $P(B - A) = ($			
			(D)0.4.	
(8)设连续型随机变量 X		均存在, X_1 与 X_2 概率密度	度分别为 $f_1(x)$ 与 $f_2(x)$,	
随机变量 Y ₁ 的概率	密度为 $f_{Y_1}(y) = \frac{1}{2} [f_1(y)]$) +f ₂ (y)],随机变量 Y ₂ =	$\frac{1}{2}(X_1 + X_2), $	
$(A)E(Y_1) > E(Y_2), D(Y_1) > D(Y_2).$ $(B)E(Y_1) = E(Y_2)$		$(D, D(Y_1) = D(Y_2).$		
$(C)E(Y_1) = E(Y_2), D(Y_1) < D(Y_2).$		$(D)E(Y_1) = E(Y_2)$	$(D)E(Y_1) = E(Y_2), D(Y_1) > D(Y_2).$	

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

- (9) 曲面 $z = x^2(1 \sin y) + y^2(1 \sin x)$ 在点(1,0,1)处的切平面方程为
- (10)设 f(x) 是周期为 4 的可导奇函数,且 $f'(x) = 2(x-1), x \in [0,2], 则 <math>f(7) = 1$.
- (11) 微分方程 $xy' + y(\ln x \ln y) = 0$ 满足条件 $y(1) = e^3$ 的解为 $y = ____.$
- (12)设 L 是柱面 $x^2 + y^2 = 1$ 与平面 y + z = 0 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则 曲线积分 $\oint z dx + y dz =$ _____.
- (13)设二次型 $f(x_1,x_2,x_3) = x_1^2 x_2^2 + 2ax_1x_3 + 4x_2x_3$ 的负惯性指数为 1,则 a 的取值范围是_____.
- (14) 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2}, & \theta < x < 2\theta, \\ 0, & \text{其中 } \theta \text{ 是未知参数}, X_1, X_2, \cdots, X_n \text{ 为来自} \end{cases}$ 总体 X 的简单随机样本,若 $c\sum_{i=1}^n X_i^2 \stackrel{}{=} \theta^2$ 的无偏估计,则 $c = \underline{\hspace{1cm}}$.

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

求极限
$$\lim_{x \to +\infty} \frac{\int_{1}^{x} \left[t^{2} \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^{2} \ln \left(1 + \frac{1}{x} \right)}.$$

(16)(本题满分10分)

设函数 y = f(x) 由方程 $y^3 + xy^2 + x^2y + 6 = 0$ 确定,求 f(x) 的极值.

(17)(本题满分10分)

设函数f(u)具有二阶连续导数, $z = f(e^x \cos y)$ 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$. 若f(0) = 0, f'(0) = 0,求 f(u)的表达式.

(18)(本题满分10分)

设 ∑ 为曲面 $z = x^2 + y^2 (z \le 1)$ 的上侧,计算曲面积分

$$I = \iint_{\Sigma} (x-1)^{3} dydz + (y-1)^{3} dzdx + (z-1) dxdy.$$

(19)(本题满分10分)

设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}$, $0 < b_n < \frac{\pi}{2}$, $\cos a_n - a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛.

- (I)证明 $\lim_{n\to\infty}a_n=0$;
- (\mathbb{I})证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

(20)(本题满分11分)

设
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$
, E 为 3 阶单位矩阵.

- (I)求方程组 Ax = 0 的一个基础解系;
- (Ⅱ)求满足AB = E的所有矩阵B.

(21)(本题满分11分)

证明
$$n$$
 阶矩阵 $\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{pmatrix}$ 相似.

(22)(本题满分11分)

设随机变量 X 的概率分布为 $P\{X=1\}=P\{X=2\}=\frac{1}{2}$. 在给定 X=i 的条件下,随机变量 Y 服 从均匀分布 U(0,i) (i=1,2).

(I)求 Y的分布函数 $F_{\gamma}(\gamma)$;

(23)(本题满分11分)

设总体 X 的分布函数为 $F(x;\theta) = \begin{cases} 1-\mathrm{e}^{-\frac{x^2}{\theta}}, & x \geq 0, \\ 0, & x < 0, \end{cases}$ 其中 θ 是未知参数且大于零. X_1, X_2, \cdots, X_n

为来自总体 X 的简单随机样本.

- (I)求E(X)与 $E(X^2)$;
- (\mathbb{I})求 θ 的最大似然估计量 $\hat{\theta}_n$;
- (Ⅲ)是否存在实数 a,使得对任何 $\varepsilon > 0$,都有 $\lim_{n \to \infty} P\{\mid \widehat{\theta_n} a \mid \ge \varepsilon\} = 0$?