ТЕХНОЛОГИЧНО УЧИЛИЩЕ ЕЛЕКТРОННИ СИСТЕМИ към ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - СОФИЯ

Тема: Домашна метеостанция

Богдан Яков

СЪДЪРЖАНИЕ

СЪДЪРЖАНИЕ	2
1. УВОД	
2. ТЕОРЕТИЧНА ЧАСТ	4
2.1. BMP280	4
2.2. DHT 11	5
2.3. LCD Screen (ST7920)	5
3. ПРАКТИЧЕСКА ЧАСТ	
4. ЗАКЛЮЧЕНИЕ	10
ИЗПОЛЗВАНА ЛИТЕРАТУРА	11

1. УВОД

Климатът е ключов фактор за качеството на човешкия живот, а по-точно за здравословното състояние на човек. Но както климатът е важен, така и микроклиматът в дома на човек не е по-маловажен. В днешно време хората могат да контролират микроклимата в дома си с помощта на климатици, парно, увлажнители и т.н., но за да го правят, те трябва да могат да следят климатичните показатели. Също така голямо влияние върху човека оказва и атмосферното налягане, като то засяга кръвното налягане. За следенето на климатичните показатели е създадена домашната метеостанция. С нейна помощ потребителят ще може да следи в реално време температурата, влажността и атмосферното налягане. Освен това се води и проста статистика, като устройството показва не само моментните, но и максималните и минималните стойности на климатичните показатели за деня. Това съществено ще подпомогне и контрола на микроклимата за домашни растения, които изискват точно определен диапазон на температура и влажност.

2. ТЕОРЕТИЧНА ЧАСТ

Домашната метеостанция се състои от микроконтролер, в дадения случай Arduino UNO R3, който приема, обработва и извежда информацията от всички сензори на екрана. Използват се сензори за отчитане на атмосферно налягане, температура и влажност, в лицето на ВМР280 и DHT 11. За смяна на страницата с информация се използва ТТР223В, който е сензорен бутон и е необходим само допир до него за смяна на страница. Също така метеостанцията показва дата и време, за да донесе максимална полза на потребителя като му дава максимално количество информация. За часовник се използва модула DS1307. Поради нужда от разклоняване на пинове се използва и breadboard. За извеждането на цялата информация до потребителя се използва LCD екран с контролер ST7920. За реализация на проекта се използва функционалната схема на (фиг. 2.1):

(фиг. 2.1)

2.1. BMP280

Диапазон на измерване (точност на измерване):

Температура: -40°С ... +85°С (±0.01°С)

Налягане: 300 hPa ... 1100 hPa (±0.12hPa)

Работно напрежение: 3.3V

2.2. DHT 11

Диапазон на измерване (точност на измерване):

Влажност: 20% ... 90% (±1%)

Работно напрежение: 3.3V ... 5V

2.3. LCD Screen (ST7920)

Работно напрежение: 5V

Резолюция на дисплея: 128х64

3. ПРАКТИЧЕСКА ЧАСТ

Преди сглабянето на проекта е необходимо закупуването и подготвянето на всички модули и сензори, като подготвянето включва запояване на рейка при необходимост. След като са извършени тези действия, компонентите е препоръчително да се включат първо към breadboard, за по-удобна работа с проекта. Върху breadboard-a (фиг. 3.1) е необходимо да се разклонят следните пинове: земя (GND) - върху ивицата предназначена за земя (синята) на breadboard-a; напрежение 5V (5V) върху ивицата предназначена за захранване (червената); напрежение 3.3V (3.3V) - върху другата ивица за напрежение или всяка друга свободна.

След като breadboard-а е подготвен, е време да се присъедини към Arduino-то. При модулите BMP280 и DS1307 се използват SDA (Serial Data) и SCL (Serial Clock) и поради тази причина аналоговите пинове A4 (SDA) и A5 (SCL) трябва да се разклонят върху breadboard-a. Arduino UNO R3 има по 2 пина за SCL и SDA (фиг. 3.2) и тогава не е необходимо разклоняване.

След като сте включили всички модули и захранващи пинове към breadboard-а, то може да започнете свързването на останалите пинове. Свързването пин по пин е показано на (фиг. 3.3) като всички връзки са представени и в табличен вид на (mab. 3.1).

(таб. 3.1)	GND	5V	3.3V	Others
LCD	PSB BLK GND	VCC	BLA	$RS \rightarrow D10$ $R/W \rightarrow D11$ $E \rightarrow D13$
BMP280	GND	_	VCC	$SDA \rightarrow A4$ $SCL \rightarrow A5$
DS1307	GND	VCC	_	$SDA \rightarrow A4$ $SCL \rightarrow A5$
DHT11	GND	VCC		OUT → D2
TTP223B	GND	VCC	_	$SIG \rightarrow A0$

(фиг. 3.3)

Когато сме убедени, че всичко е свързано правилно е време да се инсталира кода на програмата в Arduino през Arduino IDE. Кода може да намерите в github репозиторито, посочено в използвана литература. За взаимодействие с различните модули се използват библиотеките U8glib, DHT, Adafruit_BMP280, iarduino_RTC и Wire. Важно уточнение, че при Adafruit_BMP280 трябва ръчно да се промени I2C адреса на BMP сензора, който е зададен по подразбиране (най-често 0x56) на 0x77. Данните за климата се пазят като глобални масиви и се обновяват постоянно, докато устройството е включено. Извеждането на данните е показано на (фиг. 3.4).

(фиг. 3.4)

Ако всичко работи коректно, то дисплея ще покаже актуалните дата, време, температура, налягане и влажност. В противен случай ще изведе на дисплея съобщение за конкретна грешка. Страниците се сменят посредством натискането на Touch сензора TTP223B. Статистиката се води само в периода докато устройството е включено и се анулира при всяко негово изключване или при смяна на деня.

4. ЗАКЛЮЧЕНИЕ

Описаните цели и функционалности на дадения проект са реализирани изцяло, като също така са добавени и допълнителни функционалности като водене на статистика за минимални и максимални стойности, показване на дата и време и поддържане на смяна на страниците с бутон. Проектът е достатъчно функционален, за да изпълнява функцията на часовник и да информира потребителите за настоящите климатични условия. Той може да бъде използван за подпомагане на контрола на температура и влага в помещение, като опирайки се на данните, предоставени от него, може да се регулират климатици, парно, увлажнители и т.н. Този проект има възможност да се развие като му се добави функция за будилник и се раздели на два отделни модула, свързани безжично, за да може да се ползва и на открито.

ИЗПОЛЗВАНА ЛИТЕРАТУРА

BMP280 datasheet - https://shorturl.at/bvJU0
DHT11 datasheet - https://shorturl.at/bdy69
Sketch for the project - https://shorturl.at/bkqxC
BMP280 - https://shorturl.at/emxT8
U8glib lcd tutorial - https://shorturl.at/emxT3
DS1307 tutorial - https://shorturl.at/eszD6