AMENDMENTS TO THE CLAIMS

- 1. (Canceled)
- 2. (Currently amended) A compound method of claim [[1]] 21 wherein Z is CH, and Q and X are each N.
- 3. (Currently amended) A compound method of claim [[1]] $\underline{21}$ wherein R¹ is R⁹-aryl(C₁-C₆)alkyl-, R⁹-heteroaryl-(C₁-C₆)alkyl-, (C₁-C₆)alkyl-SO₂-, (C₃-C₆)cycloalkyl-SO₂-, fluoro-(C₁-C₆)-alkyl-SO₂-, R⁹-aryl-SO₂-, or R⁹-aryl-NH-C(O)-.
- 4. (Currently amended) A compound method of claim [[1]] $\underline{21}$ wherein R^2 is hydrogen and R^3 is (C₁-C₆)alkyl, R^9 -aryl, R^9 -aryl, R^9 -aryl, R^9 -heteroaryl, or R^9 -heteroaryl, R^9 -heteroaryl, or R^9 -heteroaryl, or
- 5. (Currently amended) A compound method of claim [[1]] $\underline{21}$ wherein R, R⁵ and R⁷ are each hydrogen and R⁶ is -CH₃.
- 6. (Currently amended) A compound method of claim [[1]] $\underline{21}$ wherein X is N and \mathbb{R}^4 is methyl.
- 7. (Currently amended) A compound method of claim [[1]] 21 wherein X is CH and R4 is H.
- 8. (Currently amended) A compound method of claim [[1]] $\underline{21}$ wherein R^9 is H, halogen, (C_1-C_6) alkyl or (C_1-C_6) alkoxy.
- 9. (Currently amended) A compound method of claim [[1]] <u>21</u> wherein R⁸ is (R¹⁴, R¹⁵, R¹⁶)-phenyl; (R¹⁴, R¹⁵, R¹⁶)-pyridyl or an N-oxide thereof; or (R¹⁴, R¹⁵, R¹⁶)-pyrimidyl.
- 10. (Currently amended) A compound method of claim 8 wherein R⁸ is

$$R^{14}$$
 R^{15} R^{15} R^{16} R^{16} R^{16} R^{16} R^{16} R^{16} R^{16} R^{16} R^{16}

- 11. (Currently amended) A compound method of claim 10 wherein R^{14} and R^{15} are independently selected from the group consisting of (C₁-C₆)alkyl, halogen and NH₂, and R^{16} is H.
- 12. (Currently amended) A compound method of claim [[1]] 21 selected from the group consisting of compounds of the formula

$$\mathbb{R}^{1}$$
, \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N} \mathbb{N}

wherein R¹, R³ and R⁶ are as defined in the following table:

R¹	R³	R ⁶
4-CH ₃ OC ₆ H ₄ CH ₂	C ₆ H ₅	CH ₃
CH₃SO₂	C ₆ H ₅	CH ₃
4-CH ₃ OC ₆ H ₄ CH ₂	CH ₂ C ₆ H ₅	CH ₃
CH₃SO₂	CH₂CH₂CH₃	CH ₃
4-CH₃C ₆ H₄SO₂	CH₂CH₂CH₃	CH ₃
4-CH ₃ C ₆ H ₄ SO ₂	C ₆ H ₅	CH ₃
C ₆ H ₅ NHC(O)	C ₆ H ₅	CH ₃
4-CH ₃ OC ₆ H ₄ CH ₂	C ₆ H ₅	Н
4-CH ₃ OC ₆ H ₄ SO ₂	C ₆ H ₅	CH ₃
3-CI-C ₆ H ₄ SO ₂	C ₆ H ₅	CH ₃
CH₃SO₂	CH ₂ C ₆ H ₅	CH ₃
3-CI-C ₆ H ₄ SO ₂	CH₂C ₆ H ₅	CH₃
CH₃CH₂SO₂	CH₂C ₆ H ₅	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	4-F-C ₆ H ₄	CH ₃
CH₃SO₂	4-F-C ₆ H ₄	CH₃
3-CI-C ₆ H ₄ SO ₂	4-F-C ₆ H ₄	CH₃
CF₃C(O)	4-F-C ₆ H ₄ CH ₂	CH ₃
CH₃SO₂	3-F-C ₆ H₄	CH₃
3-CI-C ₆ H ₄ SO ₂	3-F-C ₆ H₄	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	3-F-C ₆ H₄	CH ₃
CH ₃ SO ₂	4-F-C ₆ H₄CH₂	CH ₃
3-CI-C ₆ H ₄ SO ₂	4-F-C ₆ H ₄ CH ₂	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	4-F-C ₆ H ₄ CH ₂	CH ₃
4-CH₃OC ₆ H₄CH₂	2-thienyl	CH ₃

CF ₃ CH ₂ SO ₂	C ₆ H ₅	CH ₃
CF ₃ SO ₂	C ₆ H ₅	CH ₃
4-CH ₃ OC ₆ H ₄ CH ₂	3-thienyl	CH ₃
3-CI-C ₆ H ₄ SO ₂	2-thienyl	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	2-thienyl	CH ₃
CH₃SO₂	2-thienyl	CH ₃
CH₃SO₂	3-thienyl	CH ₃
3-CI-C ₆ H ₄ SO ₂	3-thienyl	CH ₃
4-F-C ₆ H ₄ SO ₂	CH₂C ₆ H ₅	CH ₃
2-thienyl-SO ₂	CH₂C ₆ H ₅	CH₃
C ₆ H ₅ SO ₂	CH₂C ₆ H ₅	CH ₃
CF ₃ SO ₂	CH₂C ₆ H ₅	CH₃
CF₃CH₂SO₂	CH₂C ₆ H ₅	CH ₃
(CH ₃) ₂ NSO ₂	CH₂C ₆ H ₅	CH ₃
cyclopropyl-SO ₂	3-F-C ₆ H ₄	CH ₃
4-F-C ₆ H ₄ SO ₂	3-F-C ₆ H ₄	CH ₃
4-CH ₃ OC ₆ H ₄ CH ₂	n-Butyl	CH ₃
3-CI-C ₆ H ₄ SO ₂	n-Butyl	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	n-Butyl	CH ₃
3-CI-C ₆ H ₄ SO ₂	3-pyridyl	CH ₃
4-CH ₃ OC ₆ H ₄ SO ₂	3-pyridyl	CH ₃
3-CI-C ₆ H ₄ SO ₂	2-pyridyl	CH₃
cyclopropyl-SO ₂	C ₆ H ₅	CH₃
CH₃CH₂SO₂	C ₆ H ₅	CH ₃
CH₃CH₂CH₂SO₂	C ₆ H ₅	CH ₃
i-propyl-SO ₂	C ₆ H ₅	CH₃
CH₃C(O)	C ₆ H ₅	CH ₃
cyclopropyl-C(O)	C ₆ H ₅	CH ₃
CH ₃ CH ₂ C(O)	C ₆ H ₅	CH ₃
i-propyl-C(O)	C ₆ H ₅	CH₃
4-CH ₃ OC ₆ H ₄ CH ₂	3,5-difluorophenyl	CH ₃
cyclopropyl-SO₂	3,5-difluorophenyl	CH₃
CH₃SO₂	cyclohexyl	CH₃

13. (Currently amended) A $\frac{1}{2}$ selected from the group consisting of

14. to 20. (Canceled)

21. (New) A method of treating solid organ transplant rejection, arthritis, rheumatoid arthritis or multiple sclerosis, comprising administering to a mammal in need of such treatment an effective amount of a compound of the formula I

or a diastereomer, enantiomer, atropisomer or pharmaceutically acceptable salt thereof, wherein:

X is N;

Q and Z are independently selected from the group consisting of CH and N, provided that one or both of Q and Z is N;

R, R^5 , R^6 and R^7 are independently selected from the group consisting of H and (C_1-C_6) alkyl;

R⁴ is (C₁-C₆)alkyl;

 R^1 is H, (C_1-C_6) alkyl, fluoro- (C_1-C_6) alkyl-, R^9 -aryl (C_1-C_6) alkyl-, R^9 -heteroaryl- (C_1-C_6) alkyl-, (C_1-C_6) alkyl- SO_2 -, (C_3-C_6) cycloalkyl- SO_2 -, fluoro- (C_1-C_6) alkyl- SO_2 -, R^9 -heteroaryl- SO_2 -, $N(R^{22})(R^{23})$ - SO_2 -, (C_1-C_6) alkyl-C(O)-, (C_3-C_6) cyclo-

alkyl-C(O)-, fluoro-(C₁-C₆)alkyl-C(O)-, R⁹-aryl-C(O)-, NH-(C₁-C₆)alkyl-C(O)- or R⁹-aryl-NH-C(O)-;

 R^2 is H or (C_1-C_6) alkyl, and R^3 is H, (C_1-C_6) alkyl, (C_1-C_6) alkoxy (C_1-C_6) alkyl-, (C_3-C_{10}) -cycloalkyl-, (C_3-C_{10}) -cycloalkyl (C_1-C_6) alkyl-, R^9 -aryl, R^9 -aryl, R^9 -aryl, R^9 -aryl, or R^9 -heteroaryl (C_1-C_6) alkyl-, provided that both X and Z are not each N; or R^2 and R^3 together are =0. =NOR 10 , or =N-NR 11 R 12 ;

R⁸ is (R¹⁴,R¹⁵,R¹⁶)-substituted phenyl, (R¹⁴,R¹⁵,R¹⁶)-substituted pyridyl, (R¹⁴,R¹⁵,R¹⁶)-substituted pyridyl N-oxide, or (R¹⁴,R¹⁵,R¹⁶)-substituted pyrimidyl;

 R^9 is 1, 2 or 3 substituents independently selected from the group consisting of H, halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, -CF₃, -OCF₃, CH₃C(O)-, -CN, CH₃SO₂-, CF₃SO₂- and -N(R^{22})(R^{23});

 $R^{10} \text{ is H, } (C_1-C_6)\text{alkyl, fluoro}(C_1-C_6)\text{alkyl-, } (C_3-C_{10})\text{cycloalkyl}(C_1-C_6)\text{alkyl-, } \\ \text{hydroxy}(C_2-C_6)\text{alkyl-, } (C_1-C_6)\text{alkyl-O-}(C_2-C_6)\text{alkyl-, } (C_1-C_6)\text{alkyl-O-C(O)-}(C_1-C_6)\text{alkyl- or } \\ N(R^{22})(R^{23})-C(O)-(C_1-C_6)\text{alkyl-; } \\ \\$

 R^{11} and R^{12} are independently selected from the group consisting of H, (C_1-C_6) alkyl and (C_3-C_{10}) cycloalkyl, or R^{11} and R^{12} together are C_2-C_6 alkylene and form a ring with the nitrogen to which they are attached;

 R^{14} and R^{15} are independently selected from the group consisting of (C₁-C₆)alkyl, halogen, -NR²²R²³, -OH, -CF₃, -OCH₃, -O-acyl and -OCF₃;

 R^{16} is R^{14} , hydrogen, phenyl, -NO₂, -CN, -CH₂F, -CHF₂, -CHO, -CH=NOR²⁴, pyridyl, pyridyl N-oxide, pyrimidinyl, pyrazinyl, -N(R^{24})CONR²⁵R²⁶, -NHCONH(chloro-(C₁-C₆)alkyl), -NHCONH((C₃-C₁₀)cycloalkyl(C₁-C₆)alkyl), -NHCO(C₁-C₆)alkyl,

 $-NHCOCF_3$, $-NHSO_2N(R^{22})(R^{23})$, $-NHSO_2(C_1-C_6)$ alkyl, $-N(SO_2CF_3)_2$, $-NHCO_2-C_2$

 $(C_1-C_6)alkyl,\ C_3-C_{10}\ cycloalkyl,\ -SR^{27},\ -SOR^{27},\ -SO_2R^{27},\ -SO_2NH(R^{22}), \\ -OSO_2(C_1-C_6)alkyl,\ -OSO_2CF_3,\ hydroxy(C_1-C_6)alkyl-,\ -CON\ R^{24}R^{25},$

-CON(CH₂CH₂OCH₃)₂, -OCONH(C₁-C₆)alkyl, -CO₂R²⁴, -Si(CH₃)₃ or -B(OC(CH₃)₂)₂; R^{17} is (C₁-C₆)alkyl, -N(R²²)(R²³) or R^{19} -phenyl;

 R^{18} , R^{22} , R^{23} , R^{24} , R^{25} and R^{26} are independently selected from the group consisting of H and (C₁-C₆)alkyl; and

 R^{27} is (C₁-C₆)alkyl or phenyl; wherein heteroaryl is selected from the group consisting of thienyl, pyridyl and pyrimidyl.