0.1 Konservativa vektorfält (16.3)

Sats 1 (Partiella derivator till vektorfält och konservativa vektorfält). Låt $\vec{F} = \langle P, Q \rangle$ vara ett vektorfält på en enkelt sammanhängande mängd $D \subseteq \mathbb{R}^2$ så att $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$. Då är \vec{F} konservativt.

Bevis. Bevisas med hjälp av Greens sats, vilket vi kommer in på snart. \square

Anmärkning 1. Satsen gäller inte på mängder D som inte är enkelt sammanhängande. Viktigt att dubbelkolla när man räknar!

0.1.1 Metod för att hitta en potential om den existerar

Vi vill lösa ekvationssystemet

$$\begin{cases} f_x = P & \text{(i)} \\ f_y = Q & \text{(ii)} \end{cases}$$

vilket görs genom att först ta en lösning till (i), d.v.s. hittar en primitiv funktion f_0 till P med avseende på x. Den allmänna lösningen till (i) är då $f(x,y) = f_0(x,y) + g(y)$. Den stoppar vi in i (ii) för att bestämma g(y). Alltså är $Q = f_y \frac{\partial}{\partial y} (f_0 + g) = \frac{\partial}{\partial y} (f_0) + g'(y) \iff g'(y) = Q - \frac{\partial}{\partial y} (f_0) \iff g(y)$ är en primitiv funktion till $Q - \frac{\partial}{\partial y} (f_0)$ med avseende på y.

Obs. 1. I detta sista steget måste vi få att $Q - \frac{\partial}{\partial y} f_0$ bara beror på y, annars är något fel. Exempelvis att \vec{F} inte är konservativt eller att man har räknat fel.

0.2 Greens formel (16.4)

Definition 1 (Styckvis glatta kurvor). En kurva C är styckvis glatt om den kan delas in i ett antal glatta kurvor C_1, \ldots, C_n där C_i slutar där C_{i+1} börjar.

Definition 2 (Kurvintegraler över styckvis glatta kurvor). Om en kurva C är styckvis glatt definierar vi $\int_C f ds = \int_{C_1} f ds + \cdots + \int_{C_n} f ds$ och $\int_C \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} + \cdots + \int_{C_n} \vec{F} \cdot d\vec{r}$.

Vi antar i fortsättningen att våra kurvor är styckvis glatta.

Kom ihåg att kurvintegralen av ett vektorfält längs en kurva C som parametriseras av $\vec{r}(t)$ där $a \leq t \leq b$ beror på kurvan sedd som en *orienterad kurva* som består av dess punkter $\{\vec{r}(t) \mid a \leq t \leq b\}$ och riktningen man går längs kurvan.

Definition 3 (Negationen av kurvor). Kurvan -C består av samma punkter som C men går i motsatt riktning. Parametriseras t.ex. som $\vec{s}(t) = \vec{r}(b-t)$ där $0 \le t \le b-a$.

Från definitionen av vektorfält följer då att $\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}$. (Däremot är $\int_{-C} f ds = \int_{C} f ds$.)

Definition 4 (Områden begränsade av en kurva). Låt C vara en enkel sluten kurva. Då begränsar C ett område D, d.v.s. C är randen till D.

Att visa detta är förvånansvärt komplicerat, det visades inte förrän en bit in på 1900-talet.

Definition 5 (Kurvors orientation). En enkel sluten kurva C är positivt orienterad om den går moturs kring området den begränsar. Man kan också säga att området alltid ligger till vänster när man går längs C:s riktning. Annars är den negativt orienterad och då är -C positivt orienterad.

Definition 6 (Notation). Anta att C ges av $\vec{r}(t)$ där $a \leq t \leq b$. Låt också $\vec{F} = \langle P, Q \rangle$ och $\vec{r}(t) = \langle x(t), y(t) \rangle$. Då skrivs $\int_C \vec{F} \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt = \int_a^b P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) dt$ också som $\int_C P dx + Q dy$, d.v.s. dx = x'(t) och dy = y'(t).

 ${\bf Sats}$ 2 (Greens sats). Om C är en enkel sluten positivt orienterad kurva som begränsar området D och P och Q har kontinuerliga partiella derivator är

$$\int_C P \mathrm{d}x + Q \mathrm{d}y = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \mathrm{d}A.$$

Bevis. Den har liknande form som integralkalkylens fundamentalsats, båda formlerna säger att integralen av en derivata på något område kan utryckas m.h.a. värden på randen. Beviset för satsen när D är ett typ I och ett typ II-område följer satsen relativt enkelt från integralkalkylens fundamentalsats och formeln för upprepad integration för typ I och typ II-områden. Bokens 16.4 har mer specifikt bevis.

Greens sats kan alltså användas för att beräkna kurvintegraler som dubbelintegraler och tvärtom.

Sats 3 (Greens formel och areor). Om $\langle P, Q \rangle = \langle -y, 0 \rangle$, $\langle 0, x \rangle$ eller $\langle -\frac{y}{2}, \frac{x}{2} \rangle$ är $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1$ så att area $(D) = \iint_D 1 = \int_C -y dx = \int_C x dy = \frac{1}{2} \int -y dx + x dy$.