

Test report

393152TRFEMC

Date of issue: February 20, 2020

Applicant:

Texas Instruments Incorporated

Product:

Evaluation Board

Model:

IWR6843AOPEVM

Specifications:

EN 301 489-1 V2.2.3 (2019-11)

Electromagnetic Compatibility (EMC) standard for radio equipment and services;

Part 1: Common technical requirements;

Harmonized Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU

EN 301 489-3 V2.1.1 (2019-03)

Electromagnetic compatibility and Radio spectrum Matters (ERM)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services;

Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz

Lab and test locations

Company name	Nemko USA, Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
Province	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
Site number	FCC: US5058; IC: 2040B

Tested by	Lan Sayasane, Sr. EMC Test Engineer
Tested by	Enrique Hernández, EMC Test Engineer
Reviewed by	Mark Phillips, Sr. EMC Test Engineer
Review date	February 20, 2020
Reviewer signature	Mark Pelly

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko USA Inc.

Table of Contents

Table of (Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	4
1.4	Test report revision history	4
Section 2	Summary of test results	5
2.1	Equipment classification	5
2.2	Results	(
Section 3	Equipment under test (EUT) details	٤
3.1	Applicant	8
3.2	Manufacturer	8
3.3	Sample information	8
3.4	EUT information	8
3.5	EUT exercise and monitoring details	8
3.6	EUT setup details	9
Section 4	Engineering considerations	10
4.1	Modifications incorporated in the EUT	10
4.2	Technical judgment	10
4.3	Deviations from laboratory tests procedures	10
Section 5	Test conditions	11
5.1	Atmospheric conditions	11
5.2	Power supply range	11
Section 6	Measurement uncertainty	12
6.1	Uncertainty of measurement	12
Section 7	Terms and definitions	13
7.1	Performance criterion	13
7.2	General definitions	13
Section 8	Testing data	16
8.1	Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis	16
8.2	Clause 8.4 – AC mains power input/output ports	25
8.3	Clause 8.5 – Harmonic current emissions (AC mains input port)	29
8.4	Clause 8.6 – Voltage fluctuations and flicker (AC mains input port)	34
8.5	Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz)	37
8.6	Clause 9.3 – Electrostatic discharge	40
8.7	Clause 9.4 – Fast transients, common mode	44
8.8	Clause 9.5 – Radio frequency, common mode	46
8.9	Clause 9.7 – Voltage dips and interruptions	48
8.10	Clause 9.8 – Surges	51
Section 9	EUT photos	54
9.1	External photos	54

Section 1 Report summary

1.1 Test specifications

EN 301 489-1 V2.2.3 (2019-11)	Electromagnetic compatibility and Radio spectrum Matters (ERM); ElectroMagnetic Compatibility (EMC) standard for
	radio equipment and services;
	Part 1: Common technical requirements
EN 301 489-3 V2.1.1 (2019-03)	Electromagnetic compatibility and Radio spectrum Matters (ERM); ElectroMagnetic Compatibility (EMC) standard for
	radio equipment and services;
	Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz

Note: Accreditation pending for latest versions of ETSI EN 301 489 standards listed.

1.2 Exclusions

None

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Test report revision history

Table 1.4-1: Test report revision history

Revision #	Details of changes made to test report
393152TRFEMC	Original report issued
Notos: Nono	

Report reference ID: 393152TRFEMC Page 4 of 58

Section 2 Summary of test results

2.1 Equipment classification

Table 2.1-1: Equipment classification (EN 301 489-1 V2.1.1 – Clause 5.5)

Equipment classification ☐ Radio and ancillary equipment for fixed use (e.g. base stations equipment) ☐ Radio and ancillary equipment for vehicular use (e.g. mobile equipment) ☐ Radio and ancillary equipment for portable use (portable equipment) Notes: For the purpose of the EMC performance assessment, the radio equipment and/or associated ancillary equipment under test shall be classified into one of the

For the purpose of the EMC performance assessment, the radio equipment and/or associated ancillary equipment under test shall be classified into one of the following three classes

This classification determines the extent of applicable EMC tests. However, the following instructions shall also apply to multiple use radio and/or ancillary equipment:

- Radio and/or ancillary equipment for portable use or combinations thereof declared as capable of being powered for intended use by the main battery of a
 vehicle shall additionally be considered as equipment for vehicular use;
- Radio and/or ancillary equipment for portable or vehicular use or combinations thereof declared as capable of being powered for intended use by an AC mains or DC network shall additionally be considered as equipment for fixed use.

Table 2.1-2: Technical nature of the primary function (EN 301 489-3 V2.1.1 – Clause 4.1)

Primary function type	Technical nature of the primary function	Applicable
I	Transfer of messages (digital or analogue signals)	
II	Transfer of audio (speech or music)	
III	Others	

Notes:

For the purpose of the present document Short Range Devices are divided into three types of primary function, based on the technical nature of the primary function.

Table 2.1-3: Classification of SRD equipment (EN 301 489-3 V2.1.1 - Clause 6.1)

Device type	ce type Risk assessment of communication link performance	
1	Highly reliable SRD communication media; e.g. serving human life inherent systems (may result in a physical risk to a person)	
2	Medium reliable SRD communication media; e.g. causing inconvenience to persons, which cannot simply be overcome by other means	
3	Standard reliable SRD communication media; e.g. inconvenience to persons, which can simply be overcome by other means (e.g. manual)	

Notes: The product family of Short Range Devices is divided by device type, each having its own set of performance criteria. This classification is based upon the impact on persons and/or goods in case the equipment does not operate above the specified performance level under EMC stress.

Report reference ID: 393152TRFEMC Page 5 of 58

2.2 Results

Table 2.2-1: Clause 8 of EN 301 489-1 – Methods of measurement and limits for EMC emissions results

Environmental phenomenon		Verdict	
	Ancillary equipment	Dogo	
	Class B limits given in EN 55032	Pass	
	Ancillary equipment	D	
Enclosure of ancillary equipment measured on a	Radiated disturbance above 1 GHz at a measurement distance of 3 m	Pass	
stand alone basis – Clause 8.2	Ancillary equipment intended to be used in telecommunication centers only	Not applicable	
	Class A limits given in EN 55032	Not applicable	
	Ancillary equipment intended to be used in telecommunication centers only	Not applicable	
	Radiated disturbance above 1 GHz at a measurement distance of 3 m	Not applicable	
DC nower input/output parts1 Clause 9.3	Class B limits according to EN 55032	Not applicable	
DC power input/output ports¹ – Clause 8.3	Equipment intended to be used in telecommunication centers only	Not applicable	
	Class B limits given in EN 55032	Pass	
AC mains power input/output ports ² – Clause 8.4	Equipment intended to be used in telecommunication centers only	Not applicable	
	Class A limits given in EN 55032	Not applicable	
Harmonic current emissions (AC mains input port) ²	The appropriate requirements of EN 61000-3-2/A1 for harmonic current emission apply for		
– Clause 8.5	equipment with an input current up to and including 16 A per phase. For equipment with an input	Pass	
- Clause 8.5	current of greater than 16 A per phase EN 61000-3-12 applies.		
Voltage fluctuations and flicker (AC mains input	The appropriate requirements of EN 61000-3-3 for voltage fluctuations and flicker apply for		
port) ² – Clause 8.6	equipment with an input current up to and including 16 A per phase. For equipment with an input	Pass	
portj- – Clause 8.6	current of greater than 16 A per phase EN 61000-3-11 [13] applies.		
	Class B limits given in EN 55032	Not applicable	
Telecommunication ports – Clause 8.7	Equipment intended to be used in telecommunication centers only	Not applicable	
	Class A limits given in EN 55032		

Notes:

 $^{^{\}rm 1}\,{\rm Not}$ applicable for radio and ancillary equipment for portable use (portable equipment)

² Applicable only for radio and ancillary equipment for fixed use (e.g. base station equipment)

2.2 Test results, continued

Table 2.2-2: Clause 9 of EN 301 489-1 Test methods and levels for immunity tests results

Environmental phenomenon	Test port	Basic standard	Verdict
Radio frequency electromagnetic field			
(80 MHz to 6000 MHz)	Enclosure	EN 61000-4-3	Pass
- Clause 9.2			
Electrostatic discharge ¹ – Clause 9.3	Enclosure	EN 61000-4-2	Pass
	AC mains power port		Pass
Fast transients, common mode ² – Clause 9.4	Signal ports, telecommunication ports, control ports	EN 61000-4-4	Not applicable
	DC power ports		Not applicable
Radio frequency, common mode ³ (0.15 MHz to 80	AC mains power port		Pass
MHz) – Clause 9.5	Signal ports, telecommunication ports, control ports	EN 61000-4-6	Not applicable
MHZ) = Clause 9.5	DC power ports		Not applicable
Transients and surges ⁴ – Clause 9.6	12 V and 24 V DC supply voltage input ports of mobile radio and ancillary	ISO 7637-2	Not applicable
Transients and surges — Clause 3.0	equipment, which are also intended for mobile use in vehicles.	130 7037-2	Not applicable
Voltage dips and interruptions ² – Clause 9.7	AC mains power port	EN 61000-4-11	Pass
Surges line to line and line to ground ² – Clause 9.8	AC mains power port	EN 61000-4-5	Pass
Jurges line to line and line to ground - Clause 9.8	Telecommunication ports	LIV 01000-4-5	Not applicable

Notes:

¹ Not applicable for radio and ancillary equipment for vehicular use (e.g. mobile equipment)

 $^{^{\}rm 2}$ Applicable only for radio and ancillary equipment for fixed use (e.g. base station equipment)

³ Not applicable for radio and ancillary equipment for portable use (portable equipment)

⁴ Applicable only for radio and ancillary equipment for vehicular use (e.g. mobile equipment)

Section 3 Equipment under test (EUT) details

3.1 Applicant

Company name	Texas Instruments Incorporated
Address	12500 TI Boulevard
City	Dallas
Province/State	TX
Postal/Zip code	75243
Country	USA

3.2 Manufacturer

Company name	Texas Instruments Incorporated
Address	
Address	12500 TI Boulevard
City	Dallas
Province/State	TX
Postal/Zip code	75243
Country	USA

3.3 Sample information

F	eceipt date	February 14, 2020
1	lemko sample ID number	393152

3.4 EUT information

Product name	Evaluation Board
Model	IWR6843AOPEVM
Serial Number	5119910017
Power requirements	AC/DC Adapter: 100-240Vac; 50/60Hz; Output 5 VDC
Description/theory of operation	IWR6843AOPEVM is an easy-to-use mmWave sensor evaluation module with integrated, short-range, wide field of view antenna-on-package technology enabling direct connectivity to mmWave Carrier Platform (MMWAVEICBOOST) and standalone use. The evaluation module enables access to point-cloud data through USB interface and raw ADC data through 60-pin high-speed connector.
Operational frequencies	Crystal – 40 MHz, VCO – 14.4 GHz
Software details	mmWave Demo Visualizer 1.0.0
Intended Use	Base Station equipment
Intended environment	Fixed location

3.5 EUT exercise and monitoring details

EUT was exercised with Software mmWave Demo Visualizer 1.0.0 with testing file "profile_iwr6843_aop_3d.cfg". Stable active "Range Profile for Zero Doppler" was captured on supporting PC monitor screen. "3D Scatter Plot" displayed stable measured active points.

Report reference ID: 393152TRFEMC Page 8 of 58

3.6 EUT setup details

Table 3.6-1: EUT sub assemblies

Description	Brand name	Model/Part number	Serial number	Rev.
Evaluation Board	Texas Instruments Inc.	IWR6843AOPEVM	5119910017	
Switch-Mode Power Supply Adapter	CUI, Inc.	EMSA050300	N/A	

Table 3.6-2: EUT interface ports

Description	Qty.
USB port (XDS110_USB)	1

Table 3.6-3: Support equipment

Description	Brand name	Model/Part number	Serial number	Rev.
Support Laptop	DELL	Latitude E6420	H1J8DS1	
Support Laptop AC/DC Adapter	DELL	HA65NS0-00	CN-0DF261-47890-72N-A3AE	A02

Table 3.6-4: Inter-connection cables

Cable description	From	То	Length (m)
USB cable	EUT	Support Laptop	0.9
DC cable	EUT	Switch-Mode Power Supply Adapter	1.5

Report reference ID: 393152TRFEMC Page 9 of 58

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC measurements; as well as described in UKAS LAB34: The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Test name	Measurement uncertainty, dB
Radiated spurious emissions	3.78
AC power line conducted emissions	1.38

Report reference ID: 393152TRFEMC Page 12 of 58

Section 7 Terms and definitions

7.1 Performance criterion

Performance criteria: Reference clause 6 of EN 301 489-3 V2.1.1 (2019-03)

7.2 General definitions

7.2.1 EN 61000-3-2 (Harmonic emissions)

For the purpose of harmonic current limitation, equipment is classified as follows:

Class A	 Balanced three-phase equipment; Household appliances excluding equipment identified as Class D; Tools excluding portable tools; Dimmers for incandescent lamps; Audio equipment.
Class B	Equipment not specified in one of the three other classes shall be considered as Class A equipment. - Portable tools; - Arc welding equipment, which is not professional equipment.
Class C	– Lighting equipment.
Class D	Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types: - Personal computers and personal computer monitors; - Television receivers.

7.2.2 EN 61000-3-3 (Flicker)

Voltage fluctuation	Series of changes of r.m.s voltage evaluated as a single value for each successive half-period between zero-crossings of the source voltage.
Flicker	Impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution fluctuates with time.
Short-term flicker indicator, Pst	The flicker severity evaluated over a short period (in minutes); Pst = 1 is the conventional threshold of irritability.
Long-term flicker indicator, Plt	The flicker severity evaluated over a long period (a few hours) using successive Pst values.

Report reference ID: 393152TRFEMC Page 13 of 58

7.2 General definitions, continued

7.2.3 EN 61000-4-2 (Electrostatic discharge)

Electrostatic discharge; ESD	A transfer of electric charge between bodies of different electrostatic potential in proximity or through direct contact.
Contact discharge method	A method of testing, in which the electrode of the test generator is held in contact with the EUT, and the discharge
	actuated by the discharge switch within the generator.
Air discharge method	A method of testing, in which the charged electrode of the test generator is brought close to the EUT, and the
	discharge actuated by a spark to the EUT.
Direct application	Application of the discharge directly to the EUT.
Indirect application	Application of the discharge to a coupling plane in the vicinity of the EUT, and simulation of personnel discharge to
	objects, which are adjacent to the EUT.
Coupling plane	A metal sheet or plate, to which discharges are applied to simulate electrostatic discharge to objects adjacent to the
	EUT. HCP: Horizontal Coupling Plane; VCP: Vertical Coupling Plane.

7.2.4 EN 61000-4-6 (Immunity to conducted disturbances, induced by radio-frequency fields)

Clamp injection	Clamp injection is obtained by means of a clamp-on "current" injecting device on the cable.
Coupling/decoupling network CDN	Electrical circuit incorporating the functions of both the coupling and decoupling networks.
Sweep	Continuous or incremental traverse over a range of frequencies.

7.2.5 EN 61000-4-3: (Radiated, radio-frequency, electromagnetic field)

Continuous waves (CW)	Electromagnetic waves, the successive oscillations of which are identical under steady-state conditions, which can be interrupted or modulated to convey information.
Electromagnetic (EM) wave	Radiant energy produced by the oscillation of an electric charge characterized by oscillation of the electric and magnetic fields.
Field strength	The term "field strength" is applied only to measurements made in the far field. The measurement may be of either the electric or the magnetic component of the field and may be expressed as V/m, A/m or W/m2; any one of these may be converted into the others.
Sweep	Continuous or incremental traverse over a range of frequencies.

Report reference ID: 393152TRFEMC Page 14 of 58

7.2 General definitions, continued

7.2.6 EN 61000-4-5 (Surge)

Surge	Transient wave of electrical current, voltage, or power propagating along a line or a circuit and characterized by a rapid increase followed by a slower decrease.
Ground (reference)	Part of the Earth considered as conductive, the electrical potential of which is conventionally taken as zero, being outside the zone of influence of any earthing (grounding) arrangement.

7.2.7 EN 61000-4-4 (Electrical fast transient/burst)

Burst	Sequence of a limited number of distinct pulses or an oscillation of limited duration.
Common mode (coupling)	Simultaneous coupling to all lines versus the ground reference plane.
Ground reference plane	Flat conductive surface whose potential is used as a common reference.
Coupling clamp	Device of defined dimensions and characteristics for common mode coupling of the disturbance signal to the circuit under test without any galvanic connection to it.
Transient	Pertaining to or designating a phenomenon or a quantity which varies between two consecutive steady states during a time interval which is short compared with the time-scale of interest.

7.2.8 EN 61000-4-11 (Voltage dips, short interruptions and voltage variations)

Voltage dip	A sudden reduction of the voltage at a particular point of an electricity supply system below a specified dip threshold
	followed by its recovery after a brief interval.
Short interruption	A sudden reduction of the voltage on all phases at a particular point of an electric supply system below a specified
	interruption threshold followed by its restoration after a brief interval.

Report reference ID: 393152TRFEMC Page 15 of 58

Section 8 Test name Specification Testing data

Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

Section 8 Testing data

8.1 Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis

8.1.1 References

EN 55032: 2015 +AC: 2016

8.1.2 Test summary

Verdict	Pass						
Test date	February 19, 2020	Temperature	22 °C				
Test engineer	Enrique Hernández, EMC Test Engineer	Air pressure	1005 mbar				
Test location	10m semi anechoic chamber	Relative humidity	55 %				

8.1.3 Observations/special notes

AC adapter powered at 230Vac/50Hz

8.1.4 Setup details

EUT setup configuration	Table top
Test facility	10 m Semi anechoic chamber
Measuring distance	10 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated
	and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-
	measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver/spectrum analyzer settings for frequencies below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (preview measurement); Quasi-peak (final measurement)
Trace mode	Max Hold
Measurement time	100 ms (preview measurement); 1000 ms (final measurement)

Receiver/spectrum analyzer settings for frequencies above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak (preview); Peak and Average (final)
Trace mode	Max Hold
Measurement time	100 ms (preview); 1000 ms (final)

Report reference ID: 393152TRFEMC Page 16 of 58

Section 8 Testing data

Test name Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis Specification

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.1.4 Setup details, continued

Table 8.1-1: Clause 8.2-Enclosure of ancillary equipment measured on a stand alone basis equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESU 40	E1121	2 years	5/25/2020
System Controller	Sunol Sciences	SC104V	E1191	NCR	NCR
Antenna, Bilog	Schaffner-Chase	CBL6111C	1480	1 year	4/18/2020
Antenna, DRG Horn	ETS-Lindgren	3117-PA	E1139	1 year	3/21/2020
Pre Amp as part of DRG Horn	ETS-Lindgren	3117-PA	Part of E1139	1 year	3/21/2020

Notes: NCR - no calibration required

Table 8.1-2: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC 32 V10.0.00

Notes: None

8.1.5 Test data

Full Spectrum

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators.

An inverse proportionality factor of 20 dB per decade (20 log (10/3) = 10.5 dB) has been used to normalize the specification limit to a measurement distance of 3 meters

Figure 8.1-1: Clause 8.2 - Enclosure of ancillary equipment measured on a stand alone basis spectral plot (30 to 1000 MHz)

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.317000	22.97	30.00	7.03	5000.0	120.000	158.2	٧	176.0	20.1
41.839000	27.35	30.00	2.65	5000.0	120.000	117.8	٧	270.0	19.2
42.199000	17.27	30.00	12.73	5000.0	120.000	164.5	V	17.0	19.0
43.222667	17.54	30.00	12.46	5000.0	120.000	241.3	V	174.0	18.4
43.852333	18.19	30.00	11.81	5000.0	120.000	160.1	V	294.0	18.1
48.057333	24.42	30.00	5.58	5000.0	120.000	144.1	V	177.0	15.9

Table 8.1-3: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis (Quasi-Peak) results

Notes:

Report reference ID: 393152TRFEMC Page 18 of 58

 $^{^{1}}$ Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factor = antenna factor ACF (dB) + cable loss (dB)

³ An inverse proportionality factor of 20 dB per decade (20 log (10/3) = 10.5 dB) has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

8.1.5 Test data

Full Spectrum

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators.

Figure 8.1-2: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis spectral plot (1 to 6 GHz).

Section 8 Test name Specification Testing data

 ${\it Clause~8.2-Enclosure~of~ancillary~equipment~measured~on~a~stand~alone~basis}$

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

Frequency (MHz)	MaxPeak (dBμV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1199.800000	39.47		70.00	30.53	5000.0	1000.000	202.3	v	197.0	-13.8
1199.800000		31.38	50.00	18.62	5000.0	1000.000	202.3	v	197.0	-13.8
1379.966667	37.10	-	70.00	32.90	5000.0	1000.000	226.5	v	253.0	-14.3
1379.966667		27.17	50.00	22.83	5000.0	1000.000	226.5	v	253.0	-14.3
1480.200000		27.25	50.00	22.75	5000.0	1000.000	120.5	v	287.0	-14.4
1480.200000	37.20		70.00	32.81	5000.0	1000.000	120.5	V	287.0	-14.4
1995.433333		28.59	50.00	21.41	5000.0	1000.000	112.6	v	126.0	-10.5
1995.433333	49.48	-	70.00	20.52	5000.0	1000.000	112.6	v	126.0	-10.5
1999.733333		27.05	50.00	22.95	5000.0	1000.000	246.9	н	118.0	-10.5
1999.733333	48.69	-	70.00	21.31	5000.0	1000.000	246.9	н	118.0	-10.5
5990.866667		27.43	54.00	26.57	5000.0	1000.000	166.3	v	0.0	-1.2
5990.866667	53.31		74.00	20.69	5000.0	1000.000	166.3	v	0.0	-1.2

Table 8.1-4: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis (Peak and CAverage) results

Notes:

 $^{^{1}}$ Field strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)

² Correction factor = antenna factor ACF (dB) + cable loss (dB) – amplifier gain (dB)

8.1.6 Setup photo

Figure 8.1-3: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis setup photo (30 to 1000 MHz)

Figure 8.1-4: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis setup photo (30 to 1000 MHz)

8.1.6 Setup photo, continued

Figure 8.1-5: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis setup photo (1 to 6 GHz)

Figure 8.1-6: Clause 8.2 – Enclosure of ancillary equipment measured on a stand alone basis setup photo (1 to 6 GHz)

Clause 8.4 – AC mains power input/output ports

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

Clause 8.4 – AC mains power input/output ports 8.2

8.2.1 References

EN 55032: 2015

8.2.2 Test summary

Verdict	Pass		
Test date	February 18, 2020	Temperature	20 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1004 mbar
Test location	Ground Plane	Relative humidity	54 %

8.2.3 Notes

AC adapter powered at 230Vac/50Hz

8.2.4 Setup details

Port under test	AC Mains
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB o
	above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final
	measurement.
Receiver settings:	
Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (preview measurement); Quasi-peak and Average (final measurement)
Trace mode	Max Hold
Measurement time	100 ms (preview measurement); 1000 ms (final measurement)

Table 8.2-1: Clause 8.4 – AC mains power input/output ports equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESCI 7	E1026	2 years	5/29/2021
Transient Limiter	Hewlett Packard	11947A	684	1 year	1/20/2021
Two Line V-Network	Rohde & Schwarz	ENV216	E1019	1 year	7/12/2020
LISN	Solar Electronics	9348-50-R-24-BNC	384	1 year	8/8/2020

Notes: NCR - no calibration required

Table 8.2-2: Clause 8.4 – AC mains power input/output ports software details

Manufac	turer of Software	Details
ETS-Lind	gren	TILE! Version 6.0.4.548
Notes:	None	

Page 25 of 58

Report reference ID: 393152TRFEMC

8.2.5 Test data

Full Spectrum

 $The spectral plot has been corrected with transducer factors. (i.e.\ cable loss,\ LISN\ factors,\ and\ attenuators)$

Figure 8.2-1: Clause 8.4 – AC mains power input/output ports spectral plot on phase and neutral lines

Report reference ID: 393152TRFEMC Page 26 of 58

Section 8 Testing data

Test name Clause 8.4 – AC mains power input/output ports

Specification EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.2.5 Test data, continued

Table 8.2-3: Clause 8.4 – AC mains power input/output ports (Quasi-Peak and CAverage) results

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.150000		29.94	56.00	26.06	5000.0	9.000	L1	ON	19.6
0.150000	54.55		66.00	11.45	5000.0	9.000	L1	ON	19.6
0.166000	-	33.60	55.16	21.55	5000.0	9.000	L1	ON	19.6
0.166000	52.09	-	65.16	13.07	5000.0	9.000	L1	ON	19.6
0.174000		33.41	54.77	21.36	5000.0	9.000	L1	ON	19.6
0.174000	51.02		64.77	13.75	5000.0	9.000	L1	ON	19.6
0.186000		24.26	54.21	29.96	5000.0	9.000	L1	ON	19.5
0.186000	49.10		64.21	15.12	5000.0	9.000	L1	ON	19.5
0.198000	-	32.25	53.69	21.44	5000.0	9.000	L1	ON	19.5
0.198000	48.11		63.69	15.58	5000.0	9.000	L1	ON	19.5
0.214000	-	22.98	53.05	30.07	5000.0	9.000	L1	ON	19.5
0.214000	46.25		63.05	16.79	5000.0	9.000	L1	ON	19.5
0.226000	45.26		62.60	17.33	5000.0	9.000	N	ON	19.5
0.226000		27.08	52.60	25.51	5000.0	9.000	N	ON	19.5
0.270000	I	22.75	51.12	28.36	5000.0	9.000	L1	ON	19.5
0.270000	41.40		61.12	19.72	5000.0	9.000	L1	ON	19.5
0.306000	38.91		60.08	21.17	5000.0	9.000	L1	ON	19.5
0.306000	-	26.07	50.08	24.01	5000.0	9.000	L1	ON	19.5
0.586000	I	32.73	46.00	13.27	5000.0	9.000	Z	ON	19.4
0.586000	40.06		56.00	15.94	5000.0	9.000	N	ON	19.4
2.730000	I	28.67	46.00	17.33	5000.0	9.000	Z	ON	19.4
2.730000	35.12		56.00	20.88	5000.0	9.000	N	ON	19.4
3.238000		27.80	46.00	18.20	5000.0	9.000	N	ON	19.3
3.238000	34.56		56.00	21.44	5000.0	9.000	N	ON	19.3

Notes:

 $^{^{1}}$ Result (dB μ V) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

8.2.6 Setup photos

Figure 8.2-2: Clause 8.4 – AC mains power input/output ports setup photo

Figure 8.2-3: Clause 8.4 – AC mains power input/output ports setup photo

Report reference ID: 393152TRFEMC Page 28 of 58

Section 8 Test name Specification Testing data

Clause 8.5 – Harmonic current emissions (AC mains input port) EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.3 Clause 8.5 – Harmonic current emissions (AC mains input port)

8.3.1 References

EN 61000-3-2: 2014

8.3.2 Test summary

Verdict	Pass		
Test date	February 18, 2020	Temperature	20 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1004 mbar
Test location	Ground Plane	Relative humidity	54 %

8.3.3 Notes

AC adapter powered at 230Vac/50Hz

8.3.4 Setup details

Port under test	AC Mains
Measurement time	20 min

Table 8.3-1: Clause 8.5 – Harmonic current emissions (AC mains input port) equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
AC/DC Power Source Analyzer	Ametek	9003iX	1851	1 year	5/17/2020
Multimeter	Fluke	111	809	1 year	9/17/2020

Notes: NCR - no calibration required

Table 8.3-2: Clause 8.5 – Harmonic current emissions (AC mains input port) test software details

	urer of Software	Details
Notes:	None	

Test data, continued 8.3.5

Measurement data

California Instruments San Diego, California

2/18/2020 4:11 PM

Harmonics - Class-A per Ed. Ed. 5.0 (2018)(Run time)

EUT: Evaluation Board - IWR6843AOPEVM Test
Test category: Class-A per Ed. 5.0 (2018) (European limits) Test
Test date: 2/18/2020 Start time: 3:50:11 PM End
Test duration (min): 20 Data file name: H-000229.cts_data Tested by: L.Sayasane Test Margin: 100 End time: 4:10:21 PM

Test duration (min): 20 Comment: NEx: 393152

Customer: Texas Instruments Inc.

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line **European Limits**

Test result: Pass Worst harmonics H23-6.2% of 150% limit, H23-9.2% of 100% limit

AMETEK Programmable Power CTS 4 V4.23.0

Page 1 of 3

8.3.6 Test data, continued

Measurement data, continued

2/18/2020 California Instruments San Diego, California 4:11 PM

Current Test Result Summary (Run time)

EUT: Evaluation Board - IWR6843AOPEVM
Test category: Class-A per Ed. 5.0 (2018) (European limits)
Test date: 2/18/2020
Test duration (min): 20 Tested by: L.Sayasane Test Margin: 100 End time: 4:10:21 PM

Test duration (min): 20 Comment: NEx: 393152 Data file name: H-000229.cts_data

Customer: Texas Instruments Inc.

Test Result: Pass Source qualification: Normal

I-THD(%): 274.0 POHC Limit(A): 0.251 THC(A): 0.046 POHC(A): 0.021

Highest parameter values during test:

V_RMS (Volts): 229.95

I_Peak (Amps): 0.371

I_Fund (Amps): 0.017

Power (Watts): 3.6 Frequency(Hz): 50.00 I_RMS (Amps): 0.049 Crest Factor: 7.547 Power Factor:

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.002	1,080	N/A	0.003	1.620	N/A	Pass
3	0.015	2,300	0.7	0.015	3,450	0.4	Pass
4	0.002	0.430	N/A	0.003	0.645	N/A	Pass
5	0.015	1.140	1.3	0.015	1.710	0.9	Pass
6	0.002	0.300	N/A	0.003	0.450	N/A	Pass
7	0.014	0.770	1.9	0.015	1,155	1.3	Pass
8	0.002	0.230	N/A	0.003	0.345	N/A	Pass
9	0.014	0.400	3.5	0.014	0.600	2.3	Pass
10	0.002	0.184	N/A	0.003	0.276	N/A	Pass
11	0.014	0.330	4.1	0.014	0.495	2.7	Pass
12	0.002	0.153	N/A	0.003	0.230	N/A	Pass
13	0.013	0.210	6.2	0.013	0.315	4.1	Pass
14	0.002	0.131	N/A	0.003	0.197	N/A	Pass
15	0.012	0.150	8.2	0.012	0.225	5.5	Pass
16	0.002	0.115	N/A	0.003	0.173	N/A	Pass
17	0.011	0.132	8.7	0.012	0.198	5.9	Pass
18	0.002	0.102	N/A	0.002	0.153	N/A	Pass
19	0.011	0.118	9.0	0.011	0.178	6.1	Pass
20	0.002	0.092	N/A	0.002	0.138	N/A	Pass
21	0.010	0.107	9.2	0.010	0.161	6.2	Pass
22	0.002	0.084	N/A	0.002	0.125	N/A	Pass
23	0.009	0.098	9.2	0.009	0.147	6.2	Pass
24	0.002	0.077	N/A	0.002	0.115	N/A	Pass
25	0.008	0.090	9.1	0.008	0.135	6.1	Pass
26	0.002	0.071	N/A	0.002	0.107	N/A	Pass
27	0.007	0.083	8.7	0.007	0.125	6.0	Pass
28	0.002	0.066	N/A	0.002	0.099	N/A	Pass
29	0.006	0.078	8.3	0.007	0.116	5.7	Pass
30	0.002	0.061	N/A	0.002	0.092	N/A	Pass
31	0.006	0.073	7.7	0.006	0.109	5.3	Pass
32	0.001	0.058	N/A	0.002	0.086	N/A	Pass
33	0.005	0.068	N/A	0.005	0.102	N/A	Pass
34	0.001	0.054	N/A	0.002	0.081	N/A	Pass
35	0.004	0.064	N/A	0.004	0.096	N/A	Pass
36	0.001	0.051	N/A	0.002	0.077	N/A	Pass
37	0.003	0.061	N/A	0.003	0.091	N/A	Pass
38	0.001	0.048	N/A	0.001	0.073	N/A	Pass
39	0.003	0.058	N/A	0.003	0.087	N/A	Pass
40	0.001	0.046	N/A	0.001	0.069	N/A	Pass

8.3.7 Test data, continued

Measurement data, continued

2/18/2020 California Instruments San Diego, California 4:11 PM

Voltage Source Verification Data (Run time)

EUT: Evaluation Board - IWR6843AOPEVM
Test category: Class-A per Ed. 5.0 (2018) (European limits)
Test date: 2/18/2020
Start time: 3:50:11 PM
End
Test duration (min): 20
Data file name: H-000229.cts_data Tested by: L.Sayasane Test Margin: 100 End time: 4:10:21 PM

Test duration (min): 20 Comment: NEx: 393152

Customer: Texas Instruments Inc.

Test Result: Pass Source qualification: Normal

Highest parameter values during test:

Voltage (Vrms): 229.95 I_Peak (Amps): 0.371 I_Fund (Amps): 0.017 Power (Watts): 3.6 Frequency(Hz): I_RMS (Amps): Crest Factor: 50.00 0.049 7.547 Power Factor: 0.318

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.026	0.460	5.67	ok
3	1.037	2.069	50.09	OK
4	0.074	0.460	15.99	OK
5	0.042	0.920	4.60	OK
6	0.058	0.460	12.54	OK
7	0.050	0.690	7.19	OK
8	0.013	0.460	2.77	OK
9	0.093	0.460	20.30	OK
10	0.003	0.460	0.68	OK
11	0.048	0.230	20.69	OK
12	0.011	0.230	4.72	OK
13	0.020	0.230	8.82	OK
14	0.003	0.230	1.42	OK
15	0.022	0.230	9.65	OK
16	0.004	0.230	1.87	OK
17	0.012	0.230	5.14	OK
18	0.014	0.230	6.13	OK
19	0.017	0.230	7.44	OK
20	0.007	0.230	2.99	oĸ
21	0.013	0.230	5.52	OK
22	0.004	0.230	1.84	OK
23	0.012	0.230	5.42	OK
24	0.005	0.230	2.20	OK
25	0.012	0.230	5.09	ok
26	0.004	0.230	1.64	ok
27	0.008	0.230	3.69	ok
28	0.003	0.230	1.14	ok
29	0.009	0.230	3.94	ok
30	0.009	0.230	4.01	ok
31	0.011	0.230	4.61	OK
32	0.003	0.230	1.09	ok
33	0.009	0.230	3.95	ok
34	0.004	0.230	1.93	ok
35	0.007	0.230	3.22	ok
36	0.004	0.230	1.56	OK
37	0.011	0.230	4.73	OK
38	0.003	0.230	1.35	ok
39	0.007	0.230	3.18	OK
40	0.005	0.230	2.04	OK

8.3.8 Setup photos

Figure 8.3-1: Clause 8.5 – Harmonic current emissions (AC mains input port) setup photo

Section 8 Test name Specification Testing data

Clause 8.6 – Voltage fluctuations and flicker (AC mains input port) EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.4 Clause 8.6 – Voltage fluctuations and flicker (AC mains input port)

8.4.1 References

EN 61000-3-3: 2013

8.4.2 Test summary

Verdict	Pass		
Test date	February 18, 2020	Temperature	20 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1004 mbar
Test location	Ground Plane	Relative humidity	54 %

8.4.3 Notes

Tested on AC Mains 230VAC/50Hz

8.4.4 Setup details

Port under test	AC Mains
Measurement time	20 min

${\it Table~8.4-1: Clause~8.6-Voltage~fluctuations~and~flicker~(AC~mains~input~port)~equipment~list}$

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
AC/DC Power Source Analyzer	Ametek	9003iX	1851	1 year	5/17/2020
Multimeter	Fluke	111	809	1 year	9/17/2020

Notes: NCR - no calibration required

Table 8.4-2: Clause 8.6 – Voltage fluctuations and flicker (AC mains input port) test software details

Manufacturer of Software	Details
Notes: None	

8.4.5 Test data, continued

Measurement data

California Instruments 2/18/2020 San Diego, California 4:35 PM

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)

EUT: Evaluation Board - IWR6843AOPEVM Tested by: L.Sayasane Test category: All parameters (European limits)
Test date: 2/18/2020 Start time: 4:12:46
Test duration (min): 20 Data file name: FComment: NEx: 393152
Customer: Texas Instruments Inc. Test Margin: 100 Start time: 4:12:46 PM End time: 4:33:19 PM Data file name: F-000230.cts_data

Test Result: Pass Status: Test Completed

Pst_i and limit line **European Limits** 1.00 0.75 **₹0**.50 0.25

PIt and limit line

Parameter values recorded during the test: Vrms at the end of test (Volt): 229.87 T-max (mS): 0 Test limit (mS): 500.0 Pass 3.30 4.00 Highest dc (%): 0.00 Test limit (%): Pass Highest dmax (%): Highest Pst (10 min. period): Highest Plt (2 hr. period): 0.00 Test limit (%): Pass 1.000 0.650 0.064 Test limit: Pass 0.035 Test limit: Pass

AMETEK Programmable Power CTS 4 V4.23.0

Page 1 of 1

8.4.6 Setup photos

Figure 8.4-1: Clause 8.6 – Voltage fluctuations and flicker (AC mains input port) setup photo

Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz) EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.5 Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz)

8.5.1 References

EN 61000-4-3: 2006 + A1: 2008 + A2: 2010

8.5.2 Test summary

Verdict	Pass		
Test date	February 19, 2020	Temperature	22 °C
Test engineer	Enrique Hernández, EMC Test Engineer	Air pressure	1005 mbar
Test location	RFI Chamber	Relative humidity	55 %

8.5.3 Notes

Tested on AC Mains 230VAC/50Hz

8.5.4 Setup details

Table 8.5-1: Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz) equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal Generator	Agilent	E8254A	836	1 year	10/15/2020
Antenna, High Gain, Log Periodic	Amplifier Research	ATR80M6G	E1227	NCR	NCR
RF Amplifier	Amplifier Research	500W1000M5	740	NCR	NCR
RF Amplifier	Amplifier Research	6051G6	E1176	NCR	NCR
Field Monitor	ETS-Lindgren	HI-6100	1724	NCR	NCR
Field Probe	ETS-Lindgren	HI-6005	1793	1 year	3/28/2020

Notes: NCR - no calibration required

Table 8.5-2: Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz) test software details

Manufacturer of Software	Details
ETS-Lindgren	TILE! Version 6.0.4.548

Notes: None

 Test name
 Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz)

 Specification
 EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.5.5 Test data

Table 8.5-3: Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz) results

Step size increment 1 %

Dwell time¹ 3 s

Antenna polarization Vertical and Horizontal

Modulation CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave

EUT setup configuration Table top

EUT position facing antenna Front side, back side, left side and right side

Frequency	range, MHz²	Test level, V/m	Comments
80	6000	3	No degradation

Notes:

1The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

2The exclusion band for immunity testing shall be calculated as follows:

- Lower limit of exclusion band = lowest allocated band edge frequency -5 %;
- \bullet Upper limit of exclusion band = highest allocated band edge frequency +5 %.

8.5.6 Setup photo

Figure 8.5-1: Clause 9.2 – Radio frequency electromagnetic field (0.08 to 6 GHz) setup photo

Section 8

Testing data

Test name Specification Clause 9.3 – Electrostatic discharge

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.6 Clause 9.3 – Electrostatic discharge

8.6.1 References

EN 61000-4-2: 2009

8.6.2 Test summary

Verdict	Pass		
Test date	February 20, 2020	Temperature	20 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1008 mbar
Test location	ESD Room	Relative humidity	54 %

8.6.3 Notes

Tested on AC Mains 230VAC/50Hz

8.6.4 Setup details

Table 8.6-1: Clause 9.3 – Electrostatic discharge equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
ESD Test Equipment	HV Technologies, Inc.	ESD3000/ESD300RM32/E	E1303	1 year	12/4/2020

Notes: NCR - no calibration required

Test name Clause 9.3 – Electrostatic discharge

Please refer to "Electrostatic discharge test location points" photos of

Specification EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.6.5 Test data

Table 8.6-2: Clause 9.3 – Electrostatic discharge results

EUT setup configuration:	Table top			
ESD repetition rate:	1 pulse per second			
Discharges:	10 contact discharges and 10 air discharg	es at each polarity		
Contact discharge		Test voltage (±kV)	Comments	
Please refer to "Electrostatic discharge test location points" photos of this section		N/A	Not Applicable	
Indirect discharge		Test voltage (±kV)	Comments	
HCP (all sides)		2, 4	No degradation	
VCP (all sides)		2, 4	No degradation	
Air discharge		Test voltage (±kV)	Comments	

2, 4, 8

No degradation

Notes: None

this section

Test name Clause 9.3 – Electrostatic discharge

Specification EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.6.6 Test data, continued

Figure 8.6-1: Clause 9.3 – Electrostatic discharge location point's photo

Red points = contact discharge Green points = air discharge

8.6.7 Setup photo

Figure 8.6-2: Clause 9.3 – Electrostatic discharge setup photo

Testing data

Clause 9.4 – Fast transients, common mode

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.7 Clause 9.4 – Fast transients, common mode

8.7.1 References

EN 61000-4-4: 2004 + A1: 2010

8.7.2 Test summary

Verdict	Pass		
Test date	February 19, 2020	Temperature	21 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1007 mbar
Test location	Ground Plane	Relative humidity	52 %

8.7.3 Notes

AC adapter powered at 230Vac/50Hz

8.7.4 Setup details

Table 8.7-1: Clause 9.4 – Fast transients, common mode equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Main Frame	Teseq-AG	NSG 3060	E1124	1 year	8/22/2020
CDN	Teseq-AG	CDN 3061	E1125	1 year	8/22/2020
Multimeter	Fluke	111	809	1 year	9/17/2020

Notes: NCR - no calibration required

Table 8.7-2: Clause 9.4 – Fast transients, common mode test software details

Manufact	urer of Software	Details
TESEQ		Advanced Test Solution for EMC, Version 1.3.2
Notes:	None	

Report reference ID: 393152TRFEMC

Test name Clause 9.4 – Fast transients, common mode

Specification EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.7.5 Test data

Table 8.7-3: Clause 9.4 – Fast transients, common mode results

Wave shape (Tr / Td):	5/50 ns (Tr = rise time, Td= duration time)
Repetition frequency:	5 kHz

Burst duration: 15 ms
Burst period: 300 ms
Test duration: 60 s

Port	Test voltage (±kV)	Comments
AC input¹	1.0	See NOTE 6
DC input ^{2 and 4}	N/A	Not Applicable
XDS110_USB port ^{3 and 5}	N/A	Not Applicable
FTDI_USB port ^{3 and 5}	N/A	Not Applicable

Notes:

8.7.6 Setup photos

Figure 8.7-1: Clause 9.4 – Fast transients, common mode setup photo

Report reference ID: 393152TRFEMC Page 45 of 58

¹Transient applied asynchronous (relation to power supply)

²The test voltage was applied simultaneously between a ground reference plane and all of the power supply terminals and the protective or functional earth port on the EUT cabinet

³The test voltage was applied via capacitive coupling clamp

⁴ Applicable to DC ports of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m.

⁵ Applicable to signal, telecommunication and control ports, of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m

⁶ During test, the data images on monitoring PC freeze. After test, the operator needs to reboot the card and reload program to bring the card to prior test condition (active images). According to Texas Instruments Incorporated clarification, "The board is an evaluation platform meant for evaluating the features and capability of the IWR6843AOPEVM and on-board antenna. Therefore, having to reset the board to recover to full functionality after an incidence of fast transient is acceptable."

Testing data

Clause 9.5 – Radio frequency, common mode

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.8 Clause 9.5 – Radio frequency, common mode

8.8.1 References

EN 61000-4-6: 2009

8.8.2 Test summary

Verdict	Pass		
Test date	February 19, 2020	Temperature	21 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1007 mbar
Test location	Ground Plane	Relative humidity	52 %

8.8.3 Notes

Tested on AC Mains 230VAC/50Hz

8.8.4 Setup details

Table 8.8-1: Clause 9.5 – Radio frequency, common mode equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal Generator	Hewlett Packard	8656B	1182	1 year	4/2/2020
RF Amplifier	Ophir	GRF5048	E1255	NCR	NCR
Attenuator, 6dB	Centric RF	C4N1009-6	E1233	NCR	NCR
CDN	FCC	FCC-801-M3-16	E1241	1 year	7/17/2020
CDN	FCC	FCC-801-T2	E1243	1 year	8/9/2020
Multimeter	Fluke	111	809	1 year	9/17/2020

Notes: NCR - no calibration required

Table 8.8-2: Clause 9.5 – Radio frequency, common mode test software details

Manufacturer of Software	Details
ETS-Lindgren	TILE! Version 6.0.4.548

Notes: None

Test name Clause 9.5 – Radio frequency, common mode

Specification EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.8.5 Test data

Table 8.8-3: Clause 9.5 – Radio frequency, common mode results

Frequency range: 0.15–80 MHz
Step size increment: 1 %

Dwell time¹: 3 s Signal level: 3 V_{RMS}

Modulation: CW signal amplitude modulated (AM) with 80 % depth with a 1 kHz sine wave

Ports investigated	Coupling method	50 Ω termination point	Comments
AC Mains ¹	CDN	Auxiliary CDN	No degradation
DC input ^{2 and 4}	N/A	N/A	Not Applicable
XDS110_USB port ^{3 and 5}	N/A	N/A	Not Applicable
FTDI_USB port ^{3 and 5}	N/A	N/A	Not Applicable

Notes:

8.8.6 Setup photo

Figure 8.8-1: Clause 9.5 – Radio frequency, common mode setup photo

Report reference ID: 393152TRFEMC Page 47 of 58

¹The dwell time at each frequency was not less than the time necessary for the EUT to be exercised and to be able to respond. The time to exercise the EUT is not interpreted as a total time of a program or a cycle but related to the reaction time in case of failure of the EUT.

²The test voltage was applied simultaneously between a ground reference plane and all of the power supply terminals and the protective or functional earth port on the EUT cabinet

³The test voltage was applied via capacitive coupling clamp

⁴ Applicable to DC ports of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m.

⁵ Applicable to signal, telecommunication and control ports, of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m

Testing data

Clause 9.7 – Voltage dips and interruptions

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.9 Clause 9.7 – Voltage dips and interruptions

8.9.1 References

EN 61000-4-11: 2004

8.9.2 Test summary

Verdict	Pass		
Test date	February 18, 2020	Temperature	21 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1005 mbar
Test location	Ground Plane	Relative humidity	54 %

8.9.3 Notes

Tested on AC Mains 230VAC/50Hz

8.9.4 Setup details

Table 8.9-1: Clause 9.7 - Voltage dips and interruptions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
AC/DC Power Source Analyzer	Ametek	9003iX	1851	1 year	5/17/2020
Multimeter	Fluke	111	809	1 year	9/17/2020

Notes: NCR - no calibration required

Table 8.9-2: Clause 9.7 – Voltage dips and interruptions test software details

Manufacturer of Software	Details
California Instruments	AC Source CIGui SII Version 3.0.0

Notes: None

Test name Clause 9.7 – Voltage dips and interruptions

Specification EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.9.5 Test data

Table 8.9-3: Clause 9.7 – Voltage dips results

Variation/dip repetition:	Sequence of three dips/interruptions with an interval of 10 seconds between each test			
Port	Voltage reduction (%) Periods Comments			
		100	0.5	No degradation
AC Mains		100	1	No degradation
		30	25	No degradation

Notes: Changes occurred at the 0 crossings of the voltage waveform

Table 8.9-4: Clause 9.7 – Voltage interruptions results

Variation/dip repetition:	Sequence of three dips/interruptions with an interval of 10 seconds between each test				
Port	Voltage reduction (%)	Periods	Comments		
			EUT power cycled. EUT		
	100	250	functionality was recover with		
AC Mains			user intervention. EUT		
AC IVIAITIS			complies per performance		
			criteria (EN 301 489-1, clause		
			6.2).		

Notes: Changes occurred at the 0 crossings of the voltage waveform

Testing data

Clause 9.7 – Voltage dips and interruptions

EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.9.6 Setup photo

Figure 8.9-1: Clause 9.7 – Voltage dips and interruptions setup photo

Report reference ID: 393152TRFEMC Page 50 of 58

Testing data Clause 9.8 – Surges

tion EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.10 Clause 9.8 – Surges

8.10.1 References

EN 61000-4-5: 2006

8.10.2 Test summary

Verdict	Pass		
Test date	February 19, 2020	Temperature	20 °C
Test engineer	Lan Sayasane, Sr. EMC Test Engineer	Air pressure	1008 mbar
Test location	Ground Plane	Relative humidity	54 %

8.10.3 Notes

Tested on AC Mains 230VAC/50Hz

8.10.4 Setup details

Table 8.10-1: Clause 9.8 – Surges equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Main Frame	Teseq-AG	NSG 3060	E1124	1 year	8/22/2020
CDN	Teseq-AG	CDN 3061	E1125	1 year	8/22/2020
Multimeter	Fluke	111	809	1 year	9/17/2020

Notes: N

NCR - no calibration required

Table 8.10-2: Clause 9.8 – Surges test software details

Manufac	turer of Software	Details
TESEQ		Advanced Test Solution for EMC, Version 1.3.2
Notes:	None	

Section 8Testing dataTest nameClause 9.8 - Surges

Specification EN 301 489-1 V2.2.3 (2019-11), 301 489-3 V2.1.1 (2019-03)

8.10.5 Test data

Table 8.10-3: Clause 9.8 - Surges at input AC power ports results

Open circuit voltage (T_1 / T_2): 1.2/50 μ s (T_1 = front time, T_2 = time to half value) Short circuit curent (T_1 / T_2): 8/20 μ s (T_1 = front time, T_2 = time to half value)

Surge pulse interval: 30 s

Number of pulses: 5 positive and 5 negative

Test port	Coupling	Test voltage (±kV)	Comments
Enter port	Phase to Neutral	0.5, 1	During each strike, support laptop display for "3D Scatter Plot" and "Range Profile" pauses. EUT continue to operate as intended. EUT complies per performance criteria (EN 301 489-1, clause 6.2).
	Phase to ground	N/A	Not Applicable
	Neutral to ground	N/A	Not Applicable

Notes: — Phase to neutral coupling : Surge applied with generator output impedance set to 2 Ω

Phase/neutral to ground coupling : Surge applied with generator output impedance set to 12 Ω

Surge applied synchronous (relation to power supply): 0, 90, 180, and 270°

Table 8.10-4: Clause 9.8 – Surges at telecommunication ports results

Open circuit voltage (T_1 / T_2): 1.2/50 μ s (T_1 = front time, T_2 = time to half value) Short circuit curent (T_1 / T_2): 8/20 μ s (T_1 = front time, T_2 = time to half value)

Surge pulse interval: 30 s

Number of pulses: 5 positive and 5 negative

I/O signal/control (including functional earth lines)	Coupling	Test voltage (±kV)	Comments
Not Applicable	Line to ground	N/A	Not Applicable

Notes: Surge applied with generator output impedance set to 42 Ω

Shielded Lines: Surge applied with generator output impedance set to 2 $\boldsymbol{\Omega}$

- The test level for telecommunications ports, intended to be directly connected to the telecommunications network via outdoor cables, shall be 1 kV line to ground as given in EN 61000-4-5 [5], however, in telecommunications centres 0,5 kV line to ground shall be used.
- The test level for telecommunication ports, intended to be connected to indoor cables (longer than 10 m) shall be 0,5 kV line to ground.

Report reference ID: 393152TRFEMC Page 52 of 58

8.10.6 Setup photo

Figure 8.10-1: Clause 9.8 – Surges setup photo

Section 9 EUT photos

9.1 External photos

Figure 9.1-1: EUT Board Top view photo

Figure 9.1-2: EUT Board Bottom view photo

Figure 9.1-3: EUT Configuration Top view photo

Figure 9.1-4: EUT Configuration Bottom view photo

Figure 9.1-5: EUT Configuration Side view photo