

PIZZA \$ALES ANALYSIS

USING SQL

By: Daipayan Maitra

TABLE OF CONTENTS

01

INTRODUCTION

Dataset description and business problems

04

ORDERING PATTERNS & TRENDS

Analysis of hourly and daily ordering trends

02

SALES PERFORMANCE

Analysis of total orders, revenue, and average order value

05

CUSTOMER BEHAVIOUR AND PREFERENCES

Insights into pizza category distribution and customer preferences

03

MENU-ITEM PERFORMANCE

Examination of top-selling and worst-selling pizzas

06

CONCLUSION & RECOMMENDATIONS

Summary of key findings and recommendations for business growth

INTRODUCTION

DATASET DESCRIPTION

We have 4 tables: orders, order_details, pizzas and pizza_types

BUSINESS OBJECTIVE

Plato's Pizza Restaurant aims to improve sales performance, customer satisfaction, and operational efficiency by analyzing sales data and identifying areas for improvement.

- Identify peak ordering periods and optimize staffing and inventory accordingly
- Determine top-selling menu items and opportunities for growth
- Understand customer ordering trends and preferences
- Enhance customer experience and drive business growth

BUSINESS QUESTIONS

- The total number of orders placed
- The total revenue generated from pizza sales
- The highest priced pizza.
- The most common pizza size ordered.
- The top 5 most ordered pizza types along their quantities.
- The quantity of each pizza categories ordered.
- The distribution of orders by hours of the day.
- The category-wise distribution of pizzas.
- The average number of pizzas ordered per day.
- Top 3 most ordered pizza type base on revenue.
- The percentage contribution of each pizza type to revenue.
- The cumulative revenue generated over time.
- The top 3 most ordered pizza type based on revenue for each pizza category.

SALES PERFORMANCE

THE BIG PICTURE

48,620

Total Orders

SELECT COUNT(DISTINCT order_id) AS
Total_orders_placed
FROM order_details;

\$817,860

Total Revenue

SELECT ROUND(SUM(p.price * o.quantity),0) AS
Total_revenue
FROM order_details o
JOIN pizzas p ON o.pizza_id = p.pizza_id;

\$17

Average Order Value

MONTHLY ORDER TREND

In spite of same order values, revenue falls in second quarter

MONTHLY REVENUE TREND

Revenue is higher in the first quarter of the year and lower in the subsequent quarters

Revenue is relatively flat suggests that the restaurant may be struggling to grow

MENU-ITEM PERFORMANCE

BEST SELLING PIZZAS

Top 5 Pizzas by Revenue

SELECT pt.name, SUM(p.price * o.quantity) AS
Total_revenue
FROM order_details o
JOIN pizzas p ON o.pizza_id = p.pizza_id
JOIN pizza_type pt ON p.pizza_type_id = pt.pizza_type_id
GROUP BY pt.name
ORDER BY Total_revenue DESC
LIMIT 3:

WORST SELLING PIZZAS

Bottom 5 Pizzas by Revenue

SELECT pt.name, SUM(p.price * o.quantity) AS
Total_revenue
FROM order_details o
JOIN pizzas p ON o.pizza_id = p.pizza_id
JOIN pizza_type pt ON p.pizza_type_id = pt.pizza_type_id
GROUP BY pt.name
ORDER BY Total_revenue ASC
LIMIT 3;

PIZZA DISTRIBUTION

Category wise No of Pizzas

SELECT pt.category, COUNT(*) AS pizza_count FROM pizzas p JOIN pizza_type pt ON p.pizza_type_id = pt.pizza_type_id GROUP BY pt.category ORDER BY pizza_count DESC;

REVENUE DISTRIBUTION

SELECT pt.category, SUM(p.price * o.quantity)
AS Total_revenue
FROM order_details o
JOIN pizzas p ON o.pizza_id = p.pizza_id
JOIN pizza_type pt ON p.pizza_type_id =
pt.pizza_type_id
GROUP BY pt.category
ORDER BY Total_revenue DESC;

ORDER DISTRIBUTION

Category wise Total Orders

SELECT pt.category, Count(o.order_id) AS
total_orders
FROM pizza_type pt
JOIN pizzas p ON pt.pizza_type_id =
p.pizza_type_id
JOIN order_details o ON p.pizza_id = o.pizza_id
GROUP BY pt.category
ORDER BY total_orders DESC;

ORDERING PATTERNS AND TRENDS

HOURLY ORDERS

Orders by Hour of Day

Peak hours: **12 pm - 2 pm** (6,543 and 6,203 orders)
Off-peak hours: **9 pm - 11 pm** (1,370 and 68 orders)

SELECT LEFT(o.time, 2) AS hour_of_day, COUNT(*) AS total_orders
FROM orders o
JOIN order_details od ON o.order_id = od.order_id
GROUP BY LEFT(o.time, 2);

DAILY AVERAGES

Orders per Day of Week

Highest average orders: Friday (70.76) Lowest average orders: Sunday (50.46)

```
WITH day_names AS (
 SELECT 1 AS day_num, 'Sunday' AS day_name
 UNION SELECT 2, 'Monday'
 UNION SELECT 3, 'Tuesday'
 UNION SELECT 4, 'Wednesday'
 UNION SELECT 5, 'Thursday'
 UNION SELECT 6, 'Friday'
 UNION SELECT 7, 'Saturday'
SELECT
 dn.day_num,
 dn.day_name,
 AVG(daily_orders.orders_per_day) AS
avg_orders_per_day
FROM (
 SELECT
   DAYOFWEEK(date) AS day_of_week,
   COUNT(*) AS orders_per_day
 FROM orders
 GROUP BY date
) daily_orders
JOIN day_names dn ON daily_orders.day_of_week =
dn.day_num
GROUP BY dn.day_num, dn.day_name
ORDER BY dn.day_num;
```

PEAK PERIOD ANALYSIS

time	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
09:00:00			1				
10:00:00	1	1		2	3		1
11:00:00	95	226	188	231	214	192	85
12:00:00	210	398	421	420	434	415	222
13:00:00	261	331	371	381		413	260
14:00:00	214	182	196	201	233	221	225
15:00:00	222	192	191	210	228	190	235
16:00:00	278	247	295	259	289	258	294
17:00:00	322	317	309	343	376	344	325
18:00:00	324	303	301	335	361	387	388
19:00:00	281	235	274	238	270	340	371
20:00:00	197	174	214	193	217	319	328
21:00:00	147	134	131	139	114	268	265
22:00:00	70	53	81	72	60	180	147
23:00:00	2	1			2	11	12

Peak periods: Everyday lunch (12 pm - 2 pm) and weekend dinner (5 pm - 7 pm)

Off-peak periods: Monday and Wednesday evenings

CUSTOMER BEHAVIOUR & PREFERENCES

BEST PERFORMING PIZZAS BY CATEGORY


```
WITH ranked_pizzas AS (
 SELECT
   pt.category,
   pt.name,
   SUM(p.price * o.quantity) AS Total_revenue,
   ROW_NUMBER() OVER (PARTITION BY
pt.category ORDER BY SUM(p.price * o.quantity)
DESC) AS rank1
 FROM
   order_details o
   JOIN pizzas p ON o.pizza_id = p.pizza_id
   JOIN pizza_type pt ON p.pizza_type_id =
pt.pizza_type_id
 GROUP BY
   pt.category, pt.name
SELECT
 category,
 name AS pizza_type,
 Total_revenue
FROM
 ranked_pizzas
WHERE
 rank1 <= 3
ORDER BY
 category, Total_revenue DESC;
```


WORST PERFORMING PIZZAS BY CATEGORY


```
WITH ranked_pizzas AS (
 SELECT
   pt.category,
   pt.name,
   SUM(p.price * o.quantity) AS Total_revenue,
   ROW_NUMBER() OVER (PARTITION BY
pt.category ORDER BY SUM(p.price * o.quantity)
ASC) AS rank1
 FROM
   order_details o
   JOIN pizzas p ON o.pizza_id = p.pizza_id
   JOIN pizza_type pt ON p.pizza_type_id =
pt.pizza_type_id
 GROUP BY
   pt.category, pt.name
SELECT
 category,
 name AS pizza type,
 Total_revenue
FROM
 ranked_pizzas
WHERE
 rank1 <= 3
ORDER BY
 category, Total_revenue ASC;
```


INSIGHTS& RECOMMENDATIONS

INSIGHTS AND ANALYSIS

The data suggests that there is a mismatch between menu offerings and customer preferences. Veggie pizzas, despite being a large portion of the menu, are underperforming, while chicken pizzas drive a significant portion of orders.

Opportunity to upsell/cross-sell: With an average order value of \$17, there's an opportunity to increase revenue by offering upsells or cross-sells, such as drinks, sides, or desserts.

Popular pizzas might be hurting sales of other items: Think about changing prices or promotions to help other menu items sell better

RECOMMENDATIONS FOR BUSINESS GROWTH AND IMPROVEMENT

Optimize menu engineering:

Consider removing or modifying underperforming veggie pizzas Add more chicken pizza options to capitalize on demand

Enhance marketing efforts:

Target promotions and ads towards peak ordering periods (Fridays and lunch hours) Highlight top-selling pizzas and new menu items

Improve operational efficiency:

Adjust staffing and inventory accordingly during peak periods Streamline order processing and delivery times

