Cálculo Avanzado

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Práctica: Unidad 9.

Tema: Aproximación discreta por mínimos cuadrados.

Profesor Titular: Manuel Carlevaro. **Ayudante de Primera** Christian Molina.

Ejercicio 1.

El costo total de producción en función del número de horas de máquina se proporciona para una muestra de nueve procesos de producción. Estime los costos fijos y variables asociados con este proceso.

Horas de máquina	22	23	19	12	12	9	7	11	14
Costo total (en miles \$)	23	25	20	20	20	15	14	14	16

Ejercicio 2.

La resistividad del platino como función de la temperatura se da en la tabla siguiente. Estime los parámetros de un ajuste lineal de los datos y prediga la resistividad cuando la temperatura es $365~\rm K$.

Temperatura (K)	100	200	300	400	500
Resistividad (Ω cm, $\times 10^6$)	4.1	8.0	12.6	16.3	19.4

Ejercicio 3.

La tabla siguiente muestra el tiempo (en segundos) requerido para descargar un tanque de agua a través de un orificio en su fondo, como función de la altura de llenado (en cm) del tanque.

Altura (cm)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Tiempo (s)	65.99	120.28	166.69	207.85	245.41	279.95	313.04	344.24

- a) Construir un gráfico de estos datos. ¿Cuál es la forma funcional más apropiada para ajustar los datos?
- b) Ajuste los datos para la función indicada en la parte a).

Ejercicio 4.

La presión barométrica, como función de la altura sobre el nivel del mar, h, se modela con la relación $P=\alpha e^{-\beta h}$. Use los datos de la tabla siguiente para estimar los parámtros del model y predecir la presión barométrica a una altura de

Presión barométrica (mmHg)	29.9	29.4	29.0	28.4	27.7
Altura (m)	0.0	12.7	25.4	38.1	50.8

Ejercicio 5.

Encuentre la aproximación lineal por mínimos cuadrados para f(x) en el intervalo indicado si:

a)
$$f(x) = x^2 + 3x + 2$$
, en $[0, 1]$

b)
$$f(x) = x^3 \text{ en } [0, 2]$$

c)
$$f(x) = e^x$$
, en $[0, 2]$

d)
$$f(x) = \frac{1}{2}\cos x + \frac{1}{3}\sin x$$
, en [0, 1]

Ejercicio 6.

Encuentre la aproximación polinomial por mínimos cuadrados de grado 2 para las funciones e intervalos del Ejercicio 1.

Ejercicio 7.

Encuentre la aproximación polinomial por mínimos cuadrados de grado 2 para las funciones del Ejercicio 1 en el intervalo [-1,1].

Ejercicio 8.

Construya una aproximación de mínimos cuadrados de cuarto grado a la función exponencial

$$f(x) = e^x$$

sobre el intervalo [-1,1] usando polinomios de Legedre.

Ejercicio 9.

Determinar la mejor aproximación a x^3 con un polinomio de segundo grado usando polinomios de Chebishev.

Ejercicio 10.

Hallar la recta que mejor aproxima la gráfica de la función

$$f(x) = \frac{1}{1+x^2}$$

con la norma inducida por el producto interno:

$$\langle f, g \rangle = \int_0^5 f(x)g(x) \, dx$$

usando una base de polinomios ortogonales.