The Safe λ -Calculus

William Blum

Joint work with C.-H. Luke Ong

Oxford University Computing Laboratory

BCTCS, 2-5 April 2007

Overview

- ► Safety: a restriction for higher-order grammars.
- ▶ Transposed to the λ -calculus, it gives rise to the Safe λ -calculus.
- ► Safety has nice algorithmic properties, automata-theoretic and game-semantic characterisations.

- ▶ Simple types $A := o \mid A \rightarrow A$.
- The order of a type is given by $\operatorname{order}(o) = 0$, $\operatorname{order}(A \to B) = \max(\operatorname{order}(A) + 1, \operatorname{order}(B))$.
- ▶ Jugdements of the form $\Gamma \vdash M : T$ where Γ is the context, M is the term and T is the type:

$$(var) \frac{}{x:A \vdash x:A} \qquad (wk) \frac{1 \vdash M:A}{\Delta \vdash M:A} \Gamma \subset \Delta$$

$$(app) \frac{\Gamma \vdash M:A \to B \quad \Gamma \vdash N:A}{\Gamma \vdash MN:B} \qquad (abs) \frac{\Gamma,x:A \vdash M:B}{\Gamma \vdash \lambda x^A.M:A \to B}$$

- ► Example: $f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^o. \varphi x)(f x)$
- ▶ A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

- ▶ Simple types $A := o \mid A \rightarrow A$.
- ► The order of a type is given by order(o) = 0, $order(A \rightarrow B) = max(order(A) + 1, order(B))$.
- ▶ Jugdements of the form $\Gamma \vdash M : T$ where Γ is the context, M is the term and T is the type:

$$(var) \frac{}{x:A \vdash x:A} \qquad (wk) \frac{1 \vdash M:A}{\Delta \vdash M:A} \Gamma \subset \Delta$$

$$(app) \frac{\Gamma \vdash M:A \to B \quad \Gamma \vdash N:A}{\Gamma \vdash MN:B} \quad (abs) \frac{\Gamma,x:A \vdash M:B}{\Gamma \vdash \lambda x^A.M:A \to B}$$

- ► Example: $f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^o. \varphi x)(f x)$
- ▶ A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

- ▶ Simple types $A := o \mid A \rightarrow A$.
- ► The order of a type is given by order(o) = 0, $order(A \rightarrow B) = max(order(A) + 1, order(B))$.
- ▶ Jugdements of the form $\Gamma \vdash M : T$ where Γ is the context, M is the term and T is the type:

- ► Example: $f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^{o}. \varphi x)(f x)$
- ▶ A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

- ▶ Simple types $A := o \mid A \rightarrow A$.
- ► The order of a type is given by order(o) = 0, $order(A \rightarrow B) = max(order(A) + 1, order(B))$.
- ▶ Jugdements of the form $\Gamma \vdash M : T$ where Γ is the context, M is the term and T is the type:

- ► Example: $f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^o. \varphi \ x)(f \ x)$
- ▶ A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

- ▶ Simple types $A := o \mid A \rightarrow A$.
- ► The order of a type is given by order(o) = 0, $order(A \rightarrow B) = max(order(A) + 1, order(B))$.
- ▶ Jugdements of the form $\Gamma \vdash M : T$ where Γ is the context, M is the term and T is the type:

- ► Example: $f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^o. \varphi \ x)(f \ x)$
- ▶ A single rule: β -reduction. e.g. $(\lambda x.M)N \rightarrow_{\beta} M[N/x]$

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda \underline{y}.x)[\underline{y}/x] \neq \lambda y.y$

- 1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$
 - Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.
- 2. Another solution: switch to the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary. Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

- 1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$
 - Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.
- 2. Another solution: switch to the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary. Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

- 1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$ Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.
- 2. Another solution: switch to the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary.

 Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

- 1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$ Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.
- 2. Another solution: switch to the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary. Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda y.x)[y/x] \neq \lambda y.y$

- 1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$ Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.
- 2. Another solution: switch to the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary. Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

The usual "problem" in λ -calculus: avoid variable capture when performing substitution: $(\lambda x.(\lambda y.x))y \rightarrow_{\beta} (\lambda \underline{y}.x)[\underline{y}/x] \neq \lambda y.y$

- 1. Standard solution: Barendregt's convention. Variables are renamed so that free variables and bound variables have different names. Eg. $(\lambda x.(\lambda y.x))y$ becomes $(\lambda x.(\lambda z.x))y$ which reduces to $(\lambda z.x)[y/x] = \lambda z.y$ Drawback: requires to have access to an unbounded supply of names to perform a given sequence of β -reductions.
- 2. Another solution: switch to the λ -calculus à la de Brujin where variable binding is specified by an index instead of a name. Variable renaming then becomes unnecessary. Drawback: the conversion to nameless de Brujin λ -terms requires an unbounded supply of indices.

What is the Safety Restriction?

- ► First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- ▶ It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn (2001,2002))

- 1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
- 2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

In an unpublished technical report (2004), Aehlig, de Miranda and Ong were the first to propose a notion of safety adapted to the setting of the λ -calculus.

What is the Safety Restriction?

- ► First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- ▶ It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn (2001,2002))

- 1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
- 2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

In an unpublished technical report (2004), Aehlig, de Miranda and Ong were the first to propose a notion of safety adapted to the setting of the λ -calculus.

What is the Safety Restriction?

- ► First appeared under the name "restriction of derived types" in "IO and OI Hierarchies" by W. Damm, TCS 1982
- ▶ It is a syntactic restriction for higher-order grammars that constrains the occurrences of the variables in the grammar equations according to their orders.

Theorem (Knapik, Niwiński and Urzyczyn (2001,2002))

- 1. The Monadic Second Order (MSO) model checking problem for trees generated by safe higher-order grammars of any order is decidable.
- 2. Automata-theoretic characterisation: Safe grammars of order n are as expressive as pushdown automata of order n.

In an unpublished technical report (2004), Aehlig, de Miranda and Ong were the first to propose a notion of safety adapted to the setting of the λ -calculus.

The Safe λ -Calculus

The formation rules

with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(B)$

(abs)
$$\frac{\Gamma, x_1 : A_1 \dots x_n : A_n \vdash_s M : B}{\Gamma \vdash_s \lambda x_1 : A_1 \dots x_n : A_n M : A_1 \to \dots \to A_n \to B}$$

with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(A_1 \to \ldots \to A_n \to B)$

Property

In the Safe λ -calculus there is no need to rename variables when performing substitution.

The Safe λ -Calculus

The formation rules

with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(B)$

(abs)
$$\frac{\Gamma, x_1 : A_1 \dots x_n : A_n \vdash_s M : B}{\Gamma \vdash_s \lambda x_1 : A_1 \dots x_n : A_n M : A_1 \to \dots \to A_n \to B}$$

with the side-condition $\forall y \in \Gamma : \operatorname{ord}(y) \ge \operatorname{ord}(A_1 \to \ldots \to A_n \to B)$

Property

In the Safe λ -calculus there is no need to rename variables when performing substitution.

Examples

 \blacktriangleright Contracting the β -redex in the following term

$$f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^{o}. \varphi \ x)(f \ x)$$

leads to variable capture:

$$(\lambda \varphi x. \varphi \ x)(f \ x) \not\rightarrow_{\beta} (\lambda x. (f \ x)x).$$

Hence the term is unsafe. Indeed, $\operatorname{ord}(x) = 0 \le 1 = \operatorname{ord}(f \ x)$.

► The term $(\lambda \varphi^{o \to o} x^o. \varphi x)(\lambda y^o. y)$ is safe.

Examples

• Contracting the β -redex in the following term

$$f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^{o}. \varphi \ x)(\underline{f} \ \underline{x})$$

leads to variable capture:

$$(\lambda \varphi x. \varphi \ x)(f \ x) \not\rightarrow_{\beta} (\lambda x. (f \ x)x).$$

Hence the term is unsafe.

Indeed, $\operatorname{ord}(x) = 0 \le 1 = \operatorname{ord}(f \ x)$.

► The term $(\lambda \varphi^{o \to o} x^o. \varphi x)(\lambda y^o. y)$ is safe.

Examples

• Contracting the β -redex in the following term

$$f: o \rightarrow o \rightarrow o, x: o \vdash (\lambda \varphi^{o \rightarrow o} x^{o}. \varphi \ x)(\underline{f \ x})$$

leads to variable capture:

$$(\lambda \varphi x. \varphi \ x)(f \ x) \not\rightarrow_{\beta} (\lambda x. (f \ x)x).$$

Hence the term is unsafe. Indeed, $ord(x) = 0 \le 1 = ord(f \ x)$.

► The term $(\lambda \varphi^{o \to o} x^o. \varphi x)(\lambda y^o. y)$ is safe.

Numerical functions

Church Encoding: for $n \in \mathbb{N}$, $\overline{n} = \lambda sz.s^nz$ of type $I = (o \to o) \to o \to o$.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials extended with the conditional function:

$$cond(t, x, y) = \begin{cases} x, & \text{if } t = 0 \\ y, & \text{if } t = n + 1 \end{cases}$$

cond is represented by the term $C = \lambda FGH\alpha x.H(\lambda y.G\alpha x)(F\alpha x)$.

Theorem

Functions representable by safe λ -expressions of type $I \to \ldots \to I$ are exactly the multivariate polynomials.

So cond is not representable in the Safe λ -calculus and C is unsafe

Numerical functions

Church Encoding: for $n \in \mathbb{N}$, $\overline{n} = \lambda sz.s^nz$ of type $I = (o \to o) \to o \to o$.

Theorem (Schwichtenberg 1976)

The numeric functions representable by simply-typed terms of type $I \rightarrow \ldots \rightarrow I$ are exactly the multivariate polynomials extended with the conditional function:

$$cond(t, x, y) = \begin{cases} x, & \text{if } t = 0 \\ y, & \text{if } t = n + 1 \end{cases}$$

cond is represented by the term $C = \lambda FGH\alpha x.H(\underline{\lambda y}.G\alpha x)(F\alpha x)$.

Theorem

Functions representable by safe λ -expressions of type $I \to \ldots \to I$ are exactly the multivariate polynomials.

So *cond* is not representable in the Safe λ -calculus and C is unsafe.

Game Semantics

Let $\vdash M : T$ be a pure simply typed term.

- ▶ Game-semantics provides a model of λ -calculus. M is denoted by a strategy $[\![M]\!]$ on a 2-player game induced by T.
- ► A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- ► Computation tree = canonical tree representation of a term.
- ▶ Traversals Trav(M) = sequences of nodes with links respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the computation tree:

$$T rav(M) \cong \langle\!\langle M \rangle\!\rangle$$
 $Reduction(T rav(M)) \cong \llbracket M \rrbracket$

where $\langle\!\langle M \rangle\!\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game Semantics

Let $\vdash M : T$ be a pure simply typed term.

- ▶ Game-semantics provides a model of λ -calculus. M is denoted by a strategy $\llbracket M \rrbracket$ on a 2-player game induced by T.
- ► A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- ► Computation tree = canonical tree representation of a term.
- ▶ Traversals Trav(M) = sequences of nodes with links respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the computation tree:

$$\mathcal{T}$$
 rav $(M)\cong\langle\langle M\rangle\rangle$
Reduction $(\mathcal{T}$ rav $(M))\cong\llbracket M \rrbracket$

where $\langle\!\langle M \rangle\!\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game Semantics

Let $\vdash M : T$ be a pure simply typed term.

- ▶ Game-semantics provides a model of λ -calculus. M is denoted by a strategy $[\![M]\!]$ on a 2-player game induced by T.
- ► A strategy is represented by a set of sequences of moves together with links: each move points to a preceding move.
- Computation tree = canonical tree representation of a term.
- ▶ Traversals Trav(M) = sequences of nodes with links respecting some formation rules.

The Correspondence Theorem

The game semantics of a term can be represented on the computation tree:

$$\mathcal{T}$$
 rav $(M) \cong \langle \langle M \rangle \rangle$
Reduction $(\mathcal{T}$ rav $(M)) \cong \llbracket M \rrbracket$

where $\langle\!\langle M \rangle\!\rangle$ is the revealed game-semantic denotion (i.e. internal moves are uncovered).

Game-semantic Characterisation of Safety

- ▶ The computation tree of a safe term is incrementally-bound : each variable x is bound by the first λ -node occurring in the path to the root with order $> \operatorname{ord}(x)$.
- ▶ Using the Correspondence Theorem we can show:

Proposition

Safe terms are denoted by P-incrementally justified strategies: each P-move m points to the last O-move in the P-view with order $> \operatorname{ord}(m)$.

Corollary

Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Game-semantic Characterisation of Safety

- ▶ The computation tree of a safe term is incrementally-bound : each variable x is bound by the first λ -node occurring in the path to the root with order $> \operatorname{ord}(x)$.
- ▶ Using the Correspondence Theorem we can show:

Proposition

Safe terms are denoted by P-incrementally justified strategies: each P-move m points to the last O-move in the P-view with order $> \operatorname{ord}(m)$.

Corollary

Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Game-semantic Characterisation of Safety

- ▶ The computation tree of a safe term is incrementally-bound : each variable x is bound by the first λ -node occurring in the path to the root with order $> \operatorname{ord}(x)$.
- Using the Correspondence Theorem we can show:

Proposition

Safe terms are denoted by P-incrementally justified strategies: each P-move m points to the last O-move in the P-view with order $> \operatorname{ord}(m)$.

Corollary

Justification pointers attached to P-moves are redundant in the game-semantics of safe terms.

Conclusion and Future Works

Conclusion:

Safety is a syntactic constraint with nice algorithmic and game-semantic properties.

Future works:

- ▶ Find a categorical model of Safe PCF.
- ▶ Complexity classes characterised with the Safe λ -calculus?
- Safe Idealized Algol: is contextual equivalence decidable?

Related works:

- Jolie G. de Miranda's thesis on unsafe grammars.
- Ong introduced computation trees in LICS2006 to prove decidability of MSO theory on infinite trees generated by higher-order grammars (whether safe or not).