EI1024/MT1024 "Programación Concurrente y Paralela" 2022–23	Entregable
Nombre y apellidos (1):	para Laboratorio
Nombre y apellidos (2):	
Tiempo empleado para tareas en casa en formato h:mm (obligatorio):	la02_g

Tema 02. Diseño de Algoritmos Paralelos

Tema 04. Conceptos Básicos de Concurrencia en Java

1 Este ejercicio constituye una primera aproximación al ejercicio siguiente.

Se desea mostrar en pantalla todos los números comprendidos entre 0 y n-1 (incluyendo ambos extremos), donde n es un dato recibido en la línea de argumentos. El orden en el que se muestran los datos no es importante y se desea emplear varias hebras.

En la línea de comandos, el primer argumento será el número de hebras y el número n será el segundo. Si el número de argumentos de la línea de argumentos no es correcto, el programa debe avisar y terminar. Asimismo, si algún argumento no es correcto (por ejemplo, se esperaba un argumento numérico y no lo es), el programa también debe avisar y terminar.

Seguidamente se muestra la versión inicial de los códigos a implementar.

```
class EjemploMuestraNumeros {
 public static void main( String args[] ) {
   int n, numHebras;
   // Comprobacion y extraccion de los argumentos de entrada.
   if (args.length!= 2) {
     System.err.println("Uso: java programa <numHebras> <n>");
     System. exit (-1);
   try {
     numHebras = Integer.parseInt( args[ 0 ] );
               = Integer.parseInt( args[ 1 ] );
   } catch( NumberFormatException ex ) {
     numHebras = -1;
               = -1;
      System.out.println("ERROR: Argumentos numericos incorrectos.");
      System. exit (-1);
      Implementacion paralela con distribucion ciclica o por bloques.
   // Crea y arranca el vector de hebras.
   // Espera a que terminen las hebras.
   // ...
```

1.1)	Implementa una versión paralela mediante el uso de hebras con una distribución cíclica. Realiza varias comprobaciones variando tanto el número de hebras como n , centrándote en los casos en los que n no es un múltiplo del número de hebras, por ejemplo $n=13$ y $nH=4$. Comprueba que aparecen todos los números deseados y que no hay repetidos. Escribe a continuación la definición de la clase y el código a incluir en el programa principal.

a varias comprobaciones variando tanto el número de hebras como n , centrándo casos en los que n no es un múltiplo del número de hebras, por ejemplo $n=13$ 4. Comprueba que aparecen todos los números deseados y que no hay repetidos.
e a continuación la definición de la clase y el código a incluir en el programa principa
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••

2 Evaluación de una función en múltiples puntos.

Se dispone de un programa secuencial que evalúa una función en varios puntos. Para almacenar datos y resultados, el código emplea dos vectores de la misma dimensión: vectorX y vectorY. El código evalúa la función para cada elemento de vectorX dejando el resultado calculado en el correspondiente elemento de vectorY. Este tipo de cálculo es muy habitual y se puede realizar por ejemplo para visualizar una función en pantalla.

Tras realizar los cálculos, en lugar de visualizar los resultados en pantalla, el programa realiza y muestra en pantalla la suma de los elementos de ambos vectores para que después se puedan comprobar fácilmente los resultados con las versiones paralelas.

El programa secuencial declara e inicializa una variable con el número de hebras, pero no la emplea para nada. Dicho valor deberá ser aprovechado en las implementaciones paralelas.

El código es el siguiente:

```
class EjemploFuncionCostosa {
// =
 public static void main( String args[] ) {
    int
           n, numHebras;
           t1, t2;
    long
    double sumaX, sumaY, ts, tc, tb;
    // Comprobacion y extraccion de los argumentos de entrada.
    if (args.length! = 2) {
     System.err.println("Uso: java programa <numHebras> <tamanyo>");
     System. exit (-1);
    try {
     numHebras = Integer.parseInt( args[ 0 ] );
              = Integer.parseInt( args[ 1 ] );
    } catch( NumberFormatException ex ) {
     numHebras = -1;
               = -1;
      System.out.println("ERROR: Argumentos numericos incorrectos.");
     System. exit (-1);
    }
    // Crea los vectores.
    double vectorX[] = new double[ n ];
    double vectorY[] = new double[ n ];
    // Implementacion secuencial (sin temporizar).
    inicializaVectorX( vectorX );
    inicializaVectorY ( vectorY );
    for ( int i = 0; i < n; i+++ ) {
     vectorY[ i ] = evaluaFuncion( vectorX[ i ] );
    // Implementacion secuencial.
    inicializaVectorX ( vectorX );
    inicializaVectorY( vectorY );
    t1 = System.nanoTime();
```

```
for (int i = 0; i < n; i++) {
     vectorY[ i ] = evaluaFuncion( vectorX[ i ] );
    t2 = System.nanoTime();
    ts = ( ( double ) ( t2 - t1 ) ) / 1.0e9;
    System.out.println("Tiempo secuencial (seg.):
                                                                      " + ts );
    //// imprimeResultado(vectorX, vectorY);
    // Comprueba el resultado.
   sumaX = sumaVector( vectorX );
   sumaY = sumaVector( vectorY );
                                                  " + sumo..." + sumaY );
    System.out.println("Suma del vector X:
    System.out.println("Suma del vector Y:
/*
    // Implementacion paralela ciclica.
    inicializa\ Vector X\ (\ vector X\ );
    inicializa Vector Y ( vector Y );
    t1 = System.nanoTime();
    // Gestion de hebras para la implementación paralela ciclica
    // ....
    t2 = System.nanoTime();
    tc = ((double)(t2 - t1)) / 1.0e9;
    System.out.\ println \ (\ "Tiempo\ paralela\ ciclica\ (seg.):
                                                                       " + tc );
    System.out.println("Incremento paralela ciclica:
                                                                       " + \dots );
    //// imprimeResultado(vectorX, vectorY);
    // Comprueba el resultado.
   sumaX = sumaVector(vectorX);
    sumaY = sumaVector(vectorY);
    System.out.println("Suma del vector X:
                                                     " + sumaX );
    System.out.println("Suma del vector Y:
                                                     " + sumaY);
    // Implementacion paralela por bloques.
    System.out.println("Fin del programa.");
 static void inicializaVectorX( double vectorX[] ) {
    if(vectorX.length == 1) {
     vectorX[0] = 0.0;
    } else {
      for ( int i = 0; i < vector X.length; i++) {
        vectorX[i] = 10.0 * (double) i / ((double) vectorX.length - 1);
   }
 }
  static void inicializaVectorY( double vectorY[] ) {
   for(int i = 0; i < vectorY.length; i++) {
     vectorY[i] = 0.0;
   }
 }
 static double sumaVector( double vector[] ) {
```

```
double suma = 0.0;
   for(int i = 0; i < vector.length; i++) {
    suma += vector[ i ];
   return suma;
 }
 static double evaluaFuncion( double x ) {
   return Math.\sin(Math.exp(-x) + Math.log1p(x));
 // -
 static void imprimeVector( double vector[] ) {
   }
 static void imprimeResultado ( double vector X [], double vector Y [] ) {
   for( int i = 0; i < Math.min( vectorX.length , vectorY.length ); i++ ) {</pre>
     System.out.println(" i: " + i + 
" x: " + vectorX[ i ] +
                       " y: " + vectorY [ i ] );
   }
 }
}
```

2.1)	Paraleliza el código anterior mediante el uso de hebras con una distribución cíclica.
	Descomenta el código situado debajo de "Implementacion secuencial". Incluye la gestión de hebras que paraleliza el bucle comprendido entre la lectura de t1 y t2 en la versión secuencial, y la expresión que permite calcular el incremento de velocidad. Verifica en varios casos que el nuevo código devuelve el mismo resultado que el original.
	Escribe a continuación la parte de tu código que realiza tal tarea: la definición de la clase hebra y el código a incluir en el programa principal que permite gestionar los objetos de esta clase, así como la visualización de los resultados y prestaciones.

ATENCIÓN: Los ejercicios anteriores deben realizarse en casa. Los siguientes, en el aula.

2.2)	Paraleliza el anterior código mediante el uso de hebras con una distribución por bloques. Replica el código de la "Implementacion cíclica" y adapta la gestión de hebras. La nueva versión paralela debe ejecutarse tras las anteriores versiones. Verifica en varios casos que el nuevo código devuelve el mismo resultado que el original. Escribe a continuación la parte de tu código que realiza tal tarea: la definición de la clase hebra y el código a incluir en el programa principal que permite gestionar los objetos de esta clase, así como la visualización de los resultados y prestaciones.

2.3) Evalúa los códigos en el ordenador del laboratorio.

Copia los resultados en las siguientes tablas redondeándolos con dos decimales.

Ten en cuenta que, para poder calcular los incrementos de velocidad correctamente, se deben realizar las dos versiones paralelas (cíclica y por bloques) en una misma ejecución, comparando sus prestaciones con las de la versión secuencial.

Incrementos de velocidad para $n=1~000~000$					
Número de hebras	1	2	4		
Distribución cíclica					
Distribución por bloques					

Incrementos de velocidad para $n=10\ 000\ 000$					
Número de hebras	1	2	4		
Distribución cíclica					
Distribución por bloques					

	Examina con detalle y justifica los resultados.
2.4)	Cuando la función evaluaFuncion del apartado anterior se aplica a un vector de números ¿el código resultante está limitado por la CPU, por la memoria central o por la E/S?
2.5)	Si se utilizase la función evaluaFuncion que se muestra y se aplicase a un vector de números entonces ¿el código estaría limitado por la CPU, por la memoria central o por la E/S?
	<pre>static double evaluaFuncion(double x) { return 3.5 * x; }</pre>

2.6) Haz una copia del programa que acabas de completar y dale el nombre de EjemploFuncion Sencilla. java. Modifícalo para que emplee la nueva función evaluaFunción más sencilla. A continuación, calcula con dos decimales los incrementos de velocidad correspondientes para completar las siguientes tablas.

Incrementos de velocidad para $n = 1 000 000$					
Número de hebras	1	2	4		
Distribución cíclica					
Distribución por bloques					

Incrementos de velocidad para $n=10\ 000\ 000$					
Número de hebras	1	2	4		
Distribución cíclica					
Distribución por bloques					

	Examina con o	letalle y justifica los resulta	dos.				
2.7)	-	gos (EjemploFuncionCosto bles? Comenta los resultado		mploFun	cionSen	cilla) o	btienen incre
2.8)	Evalúa los cód	igos en patan.					
	Calcula con de guientes tablas	os decimales los incremento	s de velo	ocidad ne	ecesarios	para cor	npletar las si-
	9	para poder calcular los inc	romonto	s do volo	eidad e	orroctomo	onto so dobor
		s versiones paralelas (cíclica					
	=	taciones con las de la versió		- /	n una m	isina ejec	ucion, compa-
	-			ciai.			
	Examina con c	detalle y justifica los resulta	dos.				
		Resultados para	evaluaFı	uncionCo	stosa		
		Incrementos de veloc	cidad par	n = 10	0 000 00	00	
		Número de hebras	1	4	8	16	
		Distribución cíclica					
		Distribución por bloques					
		Resultados para e					
		Incrementos de veloc					
		Número de hebras	1	4	8	16	
		Distribución cíclica					
		Distribución por bloques					