

Өгөгдлийн сангийн үндэс (CSII202 - 3 кр) Database Systems

Lecture 8: Normalisation to BCNF

МУИС, ХШУИС, МКУТ-ийн багш *Маг*. Довдонгийн Энхзол

Хүн мэргэжилдээ үнэнч байвал, мэргэжил нь хүнийг тэжээдэг юм. Хүний их эмч Доржпалам

In This Lecture

- More normalisation
 - Brief review of relational algebra
 - Lossless decomposition
 - Boyce-Codd normal form (BCNF)
 - Higher normal forms
 - Denormalisation
- For more information
 - Connolly and Begg chapter 14
 - Ullman and Widom chapter 3.6

Normalisation so Far

- First normal form
 - All data values are atomic
- Second normal form
 - In 1NF plus no non-key attribute is partially dependent on a candidate key

- Third normal form
 - In 2NF plus no non-key attribute depends transitively on a candidate key

Lossless decomposition

- To normalise a relation, we used projections
- If R(A,B,C) satisfies A→B then we can project it on A,B and A,C without losing information
- Lossless decomposition:

$$R = \pi_{AB}(R) \bowtie \pi_{AC}(R)$$

where $\pi_{AB}(R)$ is projection of
R on AB and \bowtie is natural
join.

Reminder of projection:

R			π_{AB}	(R)
A	В	C	A	В

Relational algebra reminder: selection

R

A	В	C	D
1	X	c	c
2	y	d	e
3	Z	a	a
4	u	b	c
5	W	c	d

$$\sigma_{C=D}(R)$$

A	В	C	D
1 3	X	c	c
	Z	a	a

Relational algebra reminder: product

R1

A	В
1 2	x y

R2

A	C
1	W
2	$\mid \mathbf{v} \mid$
3	u

R1×R2

A	В	A	C
1 1 2 2 2	x x x y y	1 2 3 1 2 3	w v u w v

While I am on the subject...

SELECT A,B FROM R1, R2, R3 WHERE (some property α holds)

translates into relational algebra

$$\pi$$
 A,B σ α (R1×R2×R3)

Relational algebra: natural join R1 \bowtie R2 = $\pi_{R1.A,B,C}$ $\sigma_{R1.A=R2.A}$ (R1 \times R2)

R1

A	В
1 2	x y

R2

A	C
1	w
2	v
3	u

 $R1 \bowtie R2$

A	В	C
1 2	x y	$egin{array}{c} \mathbf{W} \\ \mathbf{V} \end{array}$

When is decomposition lossless: Module → Lecturer

R

Module	Lecturer	Text
DBS	nza	CB
DBS	nza	UW
RDB	nza	UW
APS	rcb	B

 $\pi_{\text{Module,Lecturer}}R$ $\pi_{\text{Module,Text}}R$

Module	Lecturer
DBS	nza
RDB	nza
APS	rcb

Module	Text
DBS	CB
DBS	UW
RDB	UW
APS	B

When is decomposition is not lossless: no fd

S

Last	Age
Smith	20
Brown	30
Smith	20
Brown	10
	Smith Brown Smith

 $\pi_{First,Last}S$

First	Last
John	Smith
John	Brown
Mary	Smith
Tom	Brown

 $\pi_{\text{First,Age}}S$

First	Age
John	20
John	30
Mary	20
Tom	10

When is decomposition is not lossless: no fd

π	First,Last	S	M	π	First,Last	S
-------	------------	---	---	-------	------------	---

First	Last	Age
John	Smith	20
John	Smith	<i>30</i>
John	Brown	20
John	Brown	30
Mary	Smith	20
Tom	Brown	10

$$\pi_{\text{First,Last}}S$$

First	Last
John	Smith
John	Brown
Mary	Smith
Tom	Brown

$\pi_{\text{First,Age}}S$

First	Age
John	20
John	30
Mary	20
Tom	10

Normalisation Example

- We have a table representing orders in an online store
- Each entry in the table represents an item on a particular order

- Columns
 - Order
 - Product
 - Customer
 - Address
 - Quantity
 - UnitPrice
- Primary key is {Order, Product}

Functional Dependencies

- Each order is for a single customer
- Each customer has a single address
- Each product has a single price
- From FDs 1 and 2 and transitivity

```
{Order} →{Customer}
```

```
{Customer}→{Address}
```

```
{Product} →{UnitPrice}
```

{Order} → {Address}

Normalisation to 2NF

- Second normal form means no partial dependencies on candidate keys
 - {Order} →{Customer, Address}
 - {Product} → {UnitPrice}

```
    To remove the first
FD we project over
{Order, Customer,
Address} (R1)
```

```
and
{Order, Product, Quantity,
    UnitPrice} (R2)
```

Normalisation to 2NF

 R1 is now in 2NF, but there is still a partial FD in R2 {Product} → {UnitPrice}

```
    To remove this we project over
    {Product, UnitPrice} (R3) and
    {Order, Product, Quantity} (R4)
```

Normalisation to 3NF

- R has now been split into 3 relations - R1, R3, and R4
 - R3 and R4 are in 3NF
 - R1 has a transitive FD on its key
- To remove
 {Order} → {Customer}
 → {Address}
 - we project R1 over
 - {Order, Customer}
 - {Customer, Address}

Normalisation

- 1NF:
 - {Order, Product, Customer, Address, Quantity, UnitPrice}
- 2NF:
 - {<u>Order</u>, Customer, Address}, {<u>Product</u>, UnitPrice}, and {<u>Order</u>, <u>Product</u>, Quantity}
- 3NF:
 - {<u>Product</u>, UnitPrice}, {<u>Order, Product</u>, Quantity}, {<u>Order</u>, Customer}, and {<u>Customer</u>, Address}

The Stream Relation

- Consider a relation, Stream, which stores information about times for various streams of courses
- For example: labs for first years

- Each course has several streams
- Only one stream (of any course at all) takes place at any given time
- Each student taking a course is assigned to a single stream for it

The Stream Relation

Student	Course	Time
John	Databases	12:00
Mary	Databases	12:00
Richard	Databases	15:00
Richard	Programming	10:00
Mary	Programming	10:00
Rebecca	Programming	13:00

Candidate keys: {Student, Course} and {Student, Time}

FDs in the Stream Relation

- Stream has the following non-trivial FDs
- {Student, Course} → {Time}
- $\{Time\} \rightarrow \{Course\}$
- Since all attributes are key attributes, Stream is in 3NF

Anomalies in Stream

- INSERT anomalies
 - You can't add an empty stream
- UPDATE anomalies
 - Moving the 12:00 class to 9:00 means changing two rows
- DELETE anomalies
 - Deleting Rebecca removes a stream

Student	Course	Time
John	Databases	12:00
Mary	Databases	12:00
Richard	Databases	15:00
Richard	Programming	10:00
Mary	Programming	10:00
Rebecca	Programming	13:00

Boyce-Codd Normal Form

- A relation is in Boyce-Codd normal form (BCNF) if for every FD A
 → B either
 - B is contained in A (the FD is trivial), or
 - A contains a candidate key of the relation,
- In other words: every determinant in a nontrivial dependency is a (super) key.

- The same as 3NF except in 3NF we only worry about non-key Bs
- If there is only one candidate key then 3NF and BCNF are the same

Stream and BCNF

 Stream is not in BCNF as the FD {Time} → {Course} is non-trivial and {Time} does not contain a candidate key

Student	Course	Time
John	Databases	12:00
Mary	Databases	12:00
Richard	Databases	15:00
Richard	Programming	10:00
Mary	Programming	10:00
Rebecca	Programming	13:00

Conversion to BCNF

Student Course Time

Student Course

Stream has been put into BCNF but we have lost the FD {Student, Course} → {Time}

Decomposition Properties

- Lossless: Data should not be lost or created when splitting relations up
- Dependency preservation: It is desirable that FDs are preserved when splitting relations up
- Normalisation to 3NF is always lossless and dependency preserving
- Normalisation to BCNF is lossless, but may not preserve all dependencies

Higher Normal Forms

- BCNF is as far as we can go with FDs
 - Higher normal forms are based on other sorts of dependency
 - Fourth normal form removes multi-valued dependencies
 - Fifth normal form removes join dependencies

Denormalisation

- Normalisation
 - Removes data redundancy
 - Solves INSERT, UPDATE, and DELETE anomalies
 - This makes it easier to maintain the information in the database in a consistent state

- However
 - It leads to more tables in the database
 - Often these need to be joined back together, which is expensive to do
 - So sometimes (not often) it is worth 'denormalising'

Denormalisation

- You might want to denormalise if
 - Database speeds are unacceptable (not just a bit slow)
 - There are going to be very few INSERTs, UPDATEs, or DELETEs
 - There are going to be lots of SELECTs that involve the joining of tables

Address

Number Street City Postcode

Not normalised since $\{Postcode\} \rightarrow \{City\}$

Address1

Number Street Postcode

Address2

Postcode City