Spotify - All Time Top 2000s Mega Dataset

Dataset Description "Spotify - All Time Top 2000s Mega Dataset"

- The data set Spotify All Time Top 2000 tracks contains 1994 values
- The categorical variables are Title, Artist, and Genre
- All remaining variables are numerical

Index	Title	Artist	Top Genre	Year	врм	Energy	Danceability	Loudness (dB)	Liveness	Valence	Length	Acousticness	Speechiness	Popularity
1	Sunrise	Norah Jones	adult standards	2004	157	30	53	-14	11	68	201	94	3	71
2	Black Night	Deep Purple	album rock	2000	135	79	50	-11	17	81	207	17	7	39
3	Clint Eastwood	Gorillaz	alternative hip hop	2001	168	69	66	-9	7	52	341	2	17	69
4	The Pretender	Foo Fighters	alternative metal	2007	173	96	43	-4	3	37	269	0	4	76
5	Waitin' On A Sunny D	Bruce Springsteen	classic rock	2002	106	82	58	-5	10	87	256	1	3	59
6	The Road Ahead (Mile	City To City	alternative pop rock	2004	99	46	54	-9	14	14	247	0	2	45
7	She Will Be Loved	Maroon 5	рор	2002	102	71	71	-6	13	54	257	6	3	74
8	Knights of Cydonia	Muse	modern rock	2006	137	96	37	-5	12	21	366	0	14	69
9	Mr. Brightside	The Killers	modern rock	2004	148	92	36	-4	10	23	223	0	8	77
10	Without Me	Eminem	detroit hip hop	2002	112	67	91	-3	24	66	290	0	7	82

Data and Categorical variables

Original data set contains 149 unique genres

Numerical variables

Approximately normally distributed, except year which is approximately uniformly distributed

Numerical variables

- Danceability and Valence approximately normally distributed
- Loudness and Liveness are skewed left and right respectively
- Large amount of outliers in Liveness

Numerical variables

- Right skewed
- Duration and Speechiness have a lot of outliers

Heat Map

 Mostly weak correlation between the variables, especially when we look at Popularity as a response variable.

Classification: Full Data vs 50% Data

- Categorical popularity ~ All numerical variables
- Predictors: Year, BPM, Energy,
 Danceability, dB, Liveness,
 Valence, Duration,
 Acousticness, Speechiness
- 50% data accuracies:
 - Log Regression, LDA, &
 QDA similar (~60%)
 - KNN (k=7-10) similar (~80%)

Classification statistics

Classification Methods: Test Error & Run Time

		Full [Data		50% Data					
Method	% Sensitivity	% Specificity	pecificity % Test Error		% Sensitivity	% Specificity	% Test Error	Run Time (s)		
LogReg	56.23	68.24	37.51	0.033	56.39	64.62	39.32	0.027		
LDA	56.34	68.24	37.46	0.028	55.77	64.23	39.82	0.026		
QDA	62.83	62.75	37.21	0.026	64.36	53.27	41.42	0.025		
KNN-7	87.43	89.99	11.23	0.150	79.66	81.54	19.36	0.037		
KNN-8	87.64	88.26	12.04	0.069	78.62	79.04	21.16	0.040		
KNN-9	88.06	89.32	11.28	0.072	81.34	80.96	18.86	0.041		
KNN-10	87.33	89.03	11.79	0.079	80.08	80.00	19.96	0.047		

Best Overall Classification Model

- As expected, a decrease in accuracy was observed for the 50% data model in comparison to the full data model
- 50% data KNN classification models outperformed Log Regression, LDA, & QDA methods
- k = 9 yielded best accuracy, sensitivity, & specificity (81% for each)

	Accuracy (%)	Sensitivity (%)	Specificity (%)
KNN-7	80.64	81.54	79.66
KNN-8	78.84	79.04	78.62
KNN-9	81.14	<mark>80.96</mark>	<mark>81.34</mark>
KNN-10	80.04	80.00	80.08

k-folds Cross Validation

- The overall KNN 5-fold CV outperformed Log Regression, LDA, & QDA CV models
- Accuracy comparisons:
 - Log Reg = 60.98%
 - overall KNN = 79.55%
 - LDA = 60.98%
 - QDA = 61.03%

k-folds Cross Validation Statistics Data

k = 5 CV	%Accuracy	%Sensitivity	%Specificity	Run Time (s)
LogReg	60.98	56.54	65.06	0.083
LDA	60.98	60.32	61.86	0.085
QDA	61.03	59.14	62.84	0.077
overall KNN	79.55	77.57	81.37	0.545
KNN-7	82.15	81.56	82.68	0.092
KNN-8	80.24	79.87	80.57	0.073
KNN-9	80.89	80.27	81.45	0.079
KNN-10 80.94		80.42	81.41	0.113

k-folds Cross Validation Statistics

- Statistical analysis supports findings of KNN dominating CV models
- KNN CV models with specified k-values:
 - Higher accuracy
 - Higher sensitivity
 - Higher specificity
 - Similar results for k-values 7 - 10.
 - CV for KNN, k = 7, shows best fit

All Eight Classification Methods

- Popularity = $\beta_0 + \beta_1$ Year + β_2 BPM + β_3 Energy + β_4 Danceability + β_5 Loudness + β_6 Liveness + β_7 Valence + β_8 Duration + β_9 Acousticness + β_{10} Speechiness + β_{11} Genre
- Model using all numeric predictor
 variables, including genre numbered 1-6
- Bagging and Random Forest have the highest Accuracy, Sensitivity, and Specificity, but the longest run times

	Accuracy	Error Rate	Sensitivity	Specificity	Running Time (in seconds)
Logistic Regression	gistic Regression 0.591		0.409 0.677		0.028
LDA	0.583	0.417	0.698	0.457	0.053
QDA	0.598	0.402	0.760	0.421	0.026
KNN = 1	0.525	0.475	0.531	0.518	0.020
KNN = 3	0.528	0.472	0.562	0.491	0.022
KNN = 5	0.532	0.468	0.556	0.505	0.022
KNN = 8	0.545	0.455	0.590	0.495	0.022
KNN = 10	0.534	0.466	0.573	0.491	0.024
Decision Tree	0.602	0.398	0.563	0.641	0.065
Bagging	0.787	0.213	0.824	0.749	0.284
Random Forest	0.789	0.211	0.818	0.759	1.586
Boosting	0.516	0.484	0.998	0.030	0.285

All Eight Classification Methods

Most Important Variables

- Random Forest and Boosting methods show that Year, Danceability, and Loudness are important variables
- We may also want to consider Genre

	r	wea	nDecre	aseAcc	uracy			J	100.00			seGini		0.
	5		10	15	20	25		0	10	20	30	40	50	60
			10	45	1	05		<u></u>						_
217011000	3		-				Speechiness				0			
Liveness	0						genreNumber	1 1 1 1			()		
Duration							Acousticness	0.000				0		
Energy														
Acousticness	····· c						Liveness							
ВРМ							Loud dB					0		
Valence		0					Energy	1.4					0	
Speechiness			0				Valence						0	
Danceability				0			ВРМ	• • • • • • • • • • • • • • • • • • • •						
genreNumber					0		Duration						0	
Loud_dB					0		0-1701-001-000	50 (515)						
Year						0	Year							0
							Danceability							0

5-fold CV on All Eight Classifications - Accuracy and Test Error

- Same model with all numeric predictors
- QDA and Boosting methods produce the best accuracies
- Since Boosting is more time intensive we should choose the QDA method

5-fold CV on All Eight Classifications - Boxplots of Accuracies

5-fold CV on All Eight Classifications - Sensitivity and Specificity

- Same model with all numeric predictors
- QDA method produces the best Sensitivity
- Decision Tree produces the best Specificity
- Boosting appears the best since Sensitivity and Specificity is about the same, but at increased run time
- May be better to choose LDA

Source

- https://www.kaggle.com/datasets/iamsumat/spotify-top-2000s-mega-dataset
- "This data is extracted from the Spotify playlist Top 2000s on PlaylistMachinery(@plamere) using Selenium with Python. More specifically, it was scraped from http://sortyourmusic.playlistmachinery.com/."