T21 Smart Video Application Processor

Data Sheet

Release Date: Aug. 7, 2018

T21 Smart Video Application Processor

Data Sheet

Copyright © 2005-2018 Ingenic Semiconductor Co. Ltd. All rights reserved.

Disclaimer

This documentation is provided for use with Ingenic products. No license to Ingenic property rights is granted. Ingenic assumes no liability, provides no warranty either expressed or implied relating to the usage, or intellectual property right infringement except as provided for by Ingenic Terms and

Conditions of Sale.

Ingenic products are not designed for and should not be used in any medical or life sustaining or

supporting equipment.

All information in this document should be treated as preliminary. Ingenic may make changes to this

document without notice. Anyone relying on this documentation should contact Ingenic for the current

documentation and errata.

Ingenic Semiconductor Co., Ltd.

Ingenic Headquarters, Zhongguancun Software Park,

Dongbeiwang West Road, Haidian District, Beijing, China,

Tel: 86-10-56345000

Fax: 86-10-56345001

Http://www.ingenic.com

CONTENTS

1	Ov	erv	iew	1
	1.1	Bloo	ck Diagram	2
	1.2	Fea	tures	2
	1.2.	1	CPU	2
	1.2.	2	VPU	2
	1.2.	3	ISP	3
	1.2.	4	Image post processor(IPU)	3
	1.2.	5	Display(LCD)	4
	1.2.	6	Video input	4
	1.2.	7	Audio	
	1.2.	8	Memory Interface	
	1.2.	9	System Functions	
	1.2.	10	Peripherals	6
	1.2.		Bootrom	
	1.3	Cha	racteristic	10
2	Pa	cka	ging and Pinout Information	11
	2.1	Ove	rview	11
	2.2	Solo	der Process	11
	2.3	Moi	sture Sensitivity Level	11
	2.4	T21	Package	11
	2.5	Pin	Description	12
	2.5.	1	Static Memory/DVP/I2C0	12
	2.5.	2	SFC	14
	2.5.	3	MSC0/GMAC/PWMx/UARTx/I2C1/JTAG/SLCD	14
	2.5.	4	MSC1/SSI0/PWMx/I2C1/GMAC/UART2/CAMERA/SLCD	16
	2.5.	5	GPIO	17
	2.5.	6	System	18
	2.5.	7	Digital IO/core power/ground	18
	2.5.	8	DDR power/ground	19
	2.5.	9	Analog - USB	19
	2.5.	10	Analog - SARADC	20
	2.5.	11	Analog - CODEC	20
	2.5.	12	Analog - MAC-PHY	20
	2.5.	13	Analog - EFUSE	21
	2.5.	14	Analog - CLOCK/PLL	21
	2.5.	15	Analog - RTC	21
3	Ele	ectri	cal Specifications	23
	3.1	Abs	olute Maximum Ratings	23
	3.2	Rec	commended operating conditions	23

CONTENTS

3.3	Auc	lio codec	25
		Microphone input	
		ALC	
3.3.		Headphone output	
		Microphone bias	
		C PHY	
		ver On, Reset and BOOT	
		Power-On Timing	
3.5.		Reset procedure	
3.5.		BOOT	

1 Overview

T21 is a smart video application processor targeting for video devices like mobile camera, security survey, video talking, video analysis and so on. This SoC introduces a kind of innovative architecture to fulfill both high performance computing and high quality image and video encoding requirements addressed by video devices. T21 provides high-speed CPU computing power, excellent image signal process, fluent 2048x2048 resolution video recording.

The CPU (Central Processing Unit) core, equipped with 16kB instruction and 16kB data L1 cache, and 64kB L2 cache, operating at 800MHz, and full feature MMU function performs OS related tasks. At the heart of the CPU core is XBurst® processor engine. XBurst® is an industry leading microprocessor core which delivers superior high performance and best-in-class low power consumption. A hardware floating-point unit which compatible with IEEE754 is also included.

The VPU (Video Processing Unit) core is powered with another XBurst® processor engine. Together with the on chip video accelerating engine and post processing unit, T21 delivers high video performance. The maximum resolution of 2560x2048 in the format of H.264 are supported in encoding. up to 50Mbit/s, 1080P@40fps.

The ISP (Image signal processor) core supports excellent image process with the image from raw sensors. It supports DVP interface. With the functions, such as 3A, 2D and 3D denoise, WDR/HDR, lens shading, it can supply maximum resolution 2048x2048 resolution image for view or encoding to store or transfer.

For more quickly and easily to use T21, DDR is integrated on chip.

On-chip modules such as audio CODEC, multi-channel SAR-ADC controller and camera interface offer designers a economical suite of peripherals for video application. WLAN, Bluetooth and expansion options are supported through high-speed SPI and MMC/SD/SDIO host controllers. Other peripherals such as USB OTG, MAC, UART and SPI as well as general system resources provide enough computing and connectivity capability for many applications.

1.1 Block Diagram

Figure 1-1 T21 Diagram

1.2 Features

1.2.1 CPU

- XBurst[®]-1 core
 - XBurst[®] FPU instruction set supporting both single and double floating point format which are IEEE754 compatible
 - XBurst[®] 9-stage pipeline micro-architecture, the operating frequency is 800MHz
- MMU
 - 32-entry joint-TLB
 - 8 entry instruction TLB
 - 8 entry data TLB
- L1 Cache
 - 16kB instruction cache
 - 16kB data cache
- Hardware debug support
- 16kB tight coupled memory
- L2 Cache
 - 64kB unify cache

1.2.2 VPU

- Support H264 Encoder(I、P slices)
- Support H264 baseline main high profile encoding up to 50M bit/s, 1080P@40fps
- Support H264 maximum size up to 2560x2048 resolution

• JPEG compressing/decompressing up to 70Mega-pixels per second (baseline)

1.2.3 ISP

- Dynamic/Static Defect Pixel Correction
- Green Equalization
- Black Level Correction
- Lens Shading Correction
- 3A(Auto Exposure/Auto White Balance/Auto Focus)
- Support Statistical Information Output(3A)
- Adaptive Dynamic Range Compression
- Demosaic
- Sharpen
- Bayer Denoise
- 2D/3D Denosie
- Color Noise Suppression
- Lens Distortion Correction
- 2D Color Correction
- 3D Color Correction
- Gamma Correction
- Defog
- 3 Independent Image Scaler and Output
- Crop, Mirror and Flip
- Support Maximum Resolution:2048x2048
- Flash timer

1.2.4 Image post processor(IPU)

- · AXI Bus for data transaction
- Input data format:
 - NV12
- Output data format:
 - ARGB, RGB
 - NV12/NV21
 - HSV
- Color conversion feature: input and output format can be chosen freely from input and output data format.
- Minimum input image size (pixel): 4x4
- Maximum input image size (pixel): 2048x2048
- Minimum output image size (pixel): 4x4
- Maximum output image size (pixel): 2048x2048
- Background channel OSD function:
 - Support 4 layers OSD

- Support whole background picture into OSD process and partial picture into OSD process
- Support 12 port-duff OSD modes
- Support 1 input format in background channel: NV12
- Output picture format must be NV12

1.2.5 Display(LCD)

- Basic Features
 - Display size up to 800x600@60Hz,24BPP
 - SLCD interface 6800(type A) and 8080(type B)
- Colors Supports
 - Support up to 16,777,216 (16M) colors
- Panel Supports
 - transmit 565 by one cycle via SLCD 16bit data interface
 - transmit 666 by two cycle via SLCD 9bit data interface
 - transmit 565 by two cycle via SLCD 8bit data interface
 - transmit 888 by three cycle via SLCD 8bit data interface
 - Supports different size of display panel
 - Supports internal DMA operation and direct write register operation

1.2.6 Video input

- Support 8/10/12 bit RGB Bayer input
- Support maximum: 2688x2048 @20fps, 1080p @60fps,720p @120fps
- Support single-sensor input
- Support DVP/BT1120(serial mode)/BT656/BT601

1.2.7 Audio

- Integrated Audio codec.
 - 24 bits DAC with 93dB SNR
 - 24 bits ADC with 92dB SNR
 - Support signal-ended and differential microphone input and line input
 - Automatic Level Control (ALC) for smooth audio recording
 - Pure logic process: no need for mixed signal layers and less mask cost
 - Programmable input and output analog gains
 - Digital interpolation and decimation filter integrated
 - Sampling rate 8K/12K/16K/24K/32/44.1K/48K/96K

1.2.8 Memory Interface

Integrated DDR on chip

- Static memory interface
 - Support 6 external chip selection CS6~1#. Each bank can be configured separately
 - The size and base address of static memory banks are programmable
 - Direct interface to 8-bit bus width external memory interface devices or external static memory to each bank. Read/Write strobe setup time and hold time periods can be programmed and inserted in an access cycle to enable connection to low-speed memory
 - Wait insertion by WAIT pin
 - Automatic wait cycle insertion to prevent data bus collisions in case of consecutive memory accesses to different banks, or a read access followed by a write access to the same bank

1.2.9 System Functions

- Clock generation and power management
 - On-chip 12/24/48MHZ oscillator circuit
 - External 32.768KHZ input
 - One three-chip phase-locked loops (PLL) with programmable multiplier
 - CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR_CLK, VPU_CLK frequency can be changed separately for software by setting registers
 - SSI clock supports 50M clock
 - MSC clock supports 100M clock
 - Functional-unit clock gating
 - Shut down power supply for P0, ISP, VPU, IPU
- Timer and counter unit with PWM output and/or input edge counter
 - Provide eight separate channels, six of them have input signal transition edge counter
 - 16-bit A counter and 16-bit B counter with auto-reload function every channel
 - Support interrupt generation when the A counter underflows
 - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected
 - Every channel has PWM output

OS timer

- 64-bit counter and 32-bit compare register
- Support interrupt generation when the counter matches the compare register
- Two clock sources: RTCLK (real time clock), HCLK (system bus clock) selected with 1, 4,
 16, 64, 256 and 1024 clock dividing selected
- Interrupt controller
 - Total 64 interrupt sources
 - Each interrupt source can be independently enabled
 - Priority mechanism to indicate highest priority interrupt
 - All the registers are accessed by CPU
 - Unmasked interrupts can wake up the chip in sleep mode
 - Another set of source, mask and pending registers to serve for PDMA
- Watchdog timer

- Generates WDT reset
- A 16-bit Data register and a 16-bit counter
- Counter clock uses the input clock selected by software
- PCLK, EXTAL and RTCCLK can be used as the clock for counter
- The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software
- Direct memory access controllers
 - Support up to 32 independent DMA channels
 - Descriptor or No-Descriptor Transfer mode compatible with previous JZ SoC
 - Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte
 - Transfer number of data unit: 1 ~ 2²⁴ 1
 - Independent source and destination port width: 8-bit, 16-bit, 32-bit
 - Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest
 - An extra INTC IRQ can be bound to one programmable DMA channel
- SAR A/D Controller
 - 2 Channels
 - Resolution: 10-bit
 - Integral nonlinearity: ±1 LSB
 - Differential nonlinearity: ±0.5 LSB
 - Resolution/speed: up to 2MSPS
 - Max Frequency: 24MHz
 - Low power dissipation: 1.5mW(worst)
 - Support multi-touch detect
 - Support write control command by software
 - Single-end and Differential Conversion Mode
 - Support external touch screen controller
 - Pin Description
- RTC (Real Time Clock)
 - Need external 32768Hz oscillator for 32k clock generation
 - 32-bits second counter
 - Programmable and adjustable counter to generate accurate 1 Hz clock
 - Alarm interrupt, 1Hz interrupt
 - Stand alone power supply, work in hibernating mode
 - Power down controller
 - Alarm wakeup
 - External pin wakeup with up to 2s glitch filter
- OTP Slave Interface
 - Total 2048 bits. Lower 192bits are read only, other higher bits are read-able and write-able

1.2.10 Peripherals

- General-Purpose I/O ports
 - Each port can be configured as an input, an output or an alternate function port

- Each port can be configured as an interrupt source of low/high level or rising/falling edge triggering. Every interrupt source can be masked independently
- Each port has an internal pull-up or pull-down resistor connected. The pull-up/down resistor can be disabled
- GPIO output 3 interrupts, each interrupt corresponds to the group, to INTC

SMB Controller

- Two-wire SMB serial interface consists of a serial data line (SDA) and a serial clock (SCL)
- Two speeds
 - Standard mode (100 Kb/s)
 - Fast mode (400 Kb/s)
- Device clock is identical with pclk
- Programmable SCL generator
- Master or slave SMB operation
- 7-bit addressing/10-bit addressing
- 16-level transmit and receive FIFOs
- Interrupt operation
- The number of devices that you can connect to the same SMB-bus is limited only by the maximum bus capacitance of 400pF
- APB interface
- 2 independent SMB channels (SMB0, SMB1)
- One High Speed Synchronous serial interfaces (SFC)
 - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI
 - transmit-only or receive-only operation
 - MSB first for command and data transfer, and LSB first for address transfer
 - 64 entries x 32 bits wide data FIFO
 - one device select
 - Configurable sampling point for reception
 - Configurable timing parameters: tSLCH, tCHSH and tSHSL
 - Configurable flash address wide are supported
 - 7 transfer formats: Standard SPI, Dual-Output/Dual-Input SPI, Quad-Output/Quad-Input
 SPI, Dual-I/O SPI, Quad-I/O SPI, Full Dual-I/O SPI, Full Quad-I/O SPI
 - two data transfer mode: slave mode and DMA mode
 - Configurable 6 phases for software flow
- Two Normal Speed Synchronous serial interfaces (SSI0, SSI1)
 - 3 protocols support: National's Microwire, Tl's SSP, and Motorola's SPI
 - Full-duplex or transmit-only or receive-only operation
 - Programmable transfer order: MSB first or LSB first
 - 128 entries deep x 32 bits wide transmit and receive data FIFOs
 - Configurable normal transfer mode or Interval transfer mode

- Programmable clock phase and polarity for Motorola's SSI format
- Two slave select signal (SSI_CE_ / SSI_CE2_) supporting up to 2 slave devices
- Back-to-back character transmission/reception mode
- Loop back mode for testing

• Three UARTs (UART0, UART1, UART2)

- Full-duplex operation
- 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½, or 2 stop bits
- 64x8 bit transmit FIFO and 64x11bit receive FIFO
- Independently controlled transmit, receive (data ready or timeout), line status interrupts
- Internal diagnostic capability Loopback control and break, parity, overrun and framing-error is provided
- Separate DMA requests for transmit and receive data services in FIFO mode
- Supports modem flow control by software or hardware
- Slow infrared asynchronous interface that conforms to IrDA specification

• Two MMC/SD/SDIO controllers (MSC0, MSC1)

- Fully compatible with the MMC System Specification version 4.2
- Support SD Specification 3.0
- Support SD I/O Specification 1.0 with 1 command channel and 4 data channels
- Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1)
- Maximum data rate is 50MBps
- Support MMC data width 1bit ,4bit and 8bit
- Built-in programmable frequency divider for MMC/SD bus
- Built-in Special Descriptor DMA
- Maskable hardware interrupt for SDIO interrupt, internal status and FIFO status
- 128 x 32 built-in data FIFO
- Multi-SD function support including multiple I/O and combined I/O and memory
- IRQ supported enable card to interrupt MMC/SD controller
- Single or multi block access to the card including erase operation
- Stream access to the MMC card
- Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access
- Supports CE-ATA digital protocol commands
- Support Command Completion Signal and interrupt to CPU
- Command Completion Signal disable feature
- The maximum block length is 4096bytes

USB 2.0 OTG interface

- Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification
- Operates either as the function controller of a high- /full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions

- Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP)
- UTMI+ Level 3 Transceiver Interface
- Soft connect/disconnect
- 16 Endpoints
- Dedicate FIFO
- Supports control, interrupt, ISO and bulk transfer
- Ethernet Media Access controller and interface
 - 10, 100Mbps data transfer rates with the following PHY interfaces:
 - RMII interface to communicate with an external Fast Ethernet PHY
 - RMII PHY integrated
 - Full-duplex operation:
 - IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input de-assertion
 - forwarding of received Pause frames to the user application
 - Half-duplex operation:
 - CSMA/CD Protocol support
 - Frame bursting and frame extension in 100 Mbps half-duplex operation
 - Preamble and start of frame data (SFD) insertion in Transmit path
 - Preamble and SFD deletion in the Receive path
 - Automatic CRC and pad generation controllable on a per-frame basis
 - Automatic Pad and CRC Stripping options for receive frames
 - Flexible address filtering modes, such as:
 - Up to 31 additional 48-bit perfect (DA) address filters with masks for each byte
 - 64-bit Hash filter for multicast and unicast (DA) addresses
 - Option to pass all multicast addressed frames
 - Promiscuous mode to pass all frames without any filtering for network monitoring
 - Pass all incoming packets (as per filter) with a status report
 - Support Standard or Jumbo Ethernet frames with up to 2 KB of size
 - IEEE 802.1Q VLAN tag detection for reception frames
 - MDIO master interface for PHY device configuration and management
 - CRC replacement, Source Address field insertion or replacement, and VLAN insertion,
 replacement, and deletion in transmitted frames with per-frame control
 - Programmable watchdog timeout limit in the receive path
 - Detect remote wake-up frames and AMD magic packets
- Digital True Random Number Generator (DTRNG)
 - Pure digital logic circuits
 - True random number
 - Interrupt mode and no interrupt mode

1.2.11 **Bootrom**

32kB Boot ROM memory

1.3 Characteristic

Item	Characteristic
Process Technology	28nm CMOS low power
Power supply voltage	General purpose I/O: 1.5~3.6V
	DDR I/O: DDR2 ± 0.1V
	RTC I/O: 1.5V~3.6V
	EFUSE programming: 1.5V ± 10%
	Analog power supply 1: 1.8V ± 10%
	Analog power supply 2: 3.3V ± 10%
	Core: 1.0V ± 0.1V
Package	BGA152 9mm x 9mm x 1.22mm, 0.65mm pitch
Operating frequency	800MHz

2 Packaging and Pinout Information

2.1 Overview

T21 processor is offered in 152-pin BGA package, which is 9mm x 9mm x 1.22mm outline, 10 x 10 matrix ball grid array and 0.65mm ball pitch, show in Figure 2-1. The T21 pin to ball assignment is show in Figure 2-2. The detailed pin description is listed in Table 2-1 \sim Table 2-16.

2.2 Solder Process

T21 package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in J-STD-020C.

2.3 Moisture Sensitivity Level

T21 package moisture sensitivity is level 3.

2.4 T21 Package

Figure 2-1 T21 package outline drawing

Г						T21 Rall	l Assignmen	t Verl 4						_
					BGA152,		X1. 22mm, 0		op view					Т
0	1	2	3	4	5	6	7	8	9	10	11	12	13	T
A	1	MSC0_D0_P B00		1			DDR_PLLVC CD	SSI0_CE0_P	SSI0_CE1_U ART2_RXD_ SMB1_SCK_ SLCD_CS_P C09	10	MSC1_D3_ MAC_LED_ RX_SLCD_D 5_PC07	MSC1_CLK_ MAC_LED_S	MSC1_D1_ MAC_LED_ DUPLEX_SL	
В	MSC0_D3_P B03	MSC0_CLK_ PB04	MSC0_D1_P B01	UARTO_CTS _PB20	UART1_TXD _TCK_PB23	SMB1_SCK_ PB26	DDR_PLLVC CA	SSI0_CLK_P WM4_UART 2_TXD_PC1 3	SSI0_DR_P WM2_UART 2_CTS_PC1 1	SSI0_GPC_ UART2_TXD _SMB1_SDA _SLCD_DC_ PC08	MSC1_CMD _MAC_LED_ TX_SLCD_D 1_PC03	SFC_GPC_P A25	SFC_CLK_P A27	В
С	BOOT_SEL1 _PC01	MSC0_D2_P B02	MSC0_CMD _PB05	UART0_TXD _TDO_PB22	UARTO_RTS _PB21		VREF		SSIO_DT_P WM3_UART 2_RTS_PC1 2	MSC1_D2_ MAC_LED_L INK_SLCD_ D4_PC06	MSC1_D0_ MAC_LED_S PEED10_SL CD_D2_PC0 4	SFC_DT_PA 23	SFC_CE1_P A26	c
D		PLL_VDDA	BOOT_SEL0 _PC00	TRST	VDDMEM	VDDMEM	VDDMEM	VDDMEM	CLK32K_OU T_PWM7_SL CD_TE_PC1 6	PWM6_SLC D_WR_PC1 5	SFC_DR_PA 24	SFC_CE0_P A28		D
Е	EXCLK_XI	EXCLK_XO	RTC_VDD	RST_DELAY	DDRVDD	DDRVDD	DDRVDD	DDRVDD	PWM1_FLA SH_OUT_U ART2_RTS_ SLCD_D7_P C18	PWM0_FLA SH_STORB E_IN_UART 2_CTS_SLC D_D6_PC17	WAIT_PA22	GPIO_PA18	RD_SMB0_S CK_PA13	E
F	OSC32_XI	OSC32_XO		AVDEFUSE	VSSMEM	VSSMEM	VSSMEM	VSSMEM	VSSMEM	VDDIO2		CS2_SMB0_ SDA_PA12	DVP_VSYN C_PA17	F
G	RTC_VDDIO	PPRST_	AUX0	TEST_TE	DDRVSS	DDRVSS	DDRVSS	DDRVSS	DDRVSS	VDDIO2	DVP_MCLK_ PA15	DVP_HSYN C_PA16	DVP_PCLK_ PA14	G
Н	AUX1	SADC_VREF P		WKUP_PA30	VSS	VSS	VSS	VSS	VSS	VDDIO0		SA2_DVP_D 10_PA10	CS1_DVP_D 11_PA11	Н
J	SADC_AVD D	USB0PN	USB0PP	VSS	VSS	VDD	VDD	VDD	VDD	VDDIO0	SD7_DVP_D 7_PA07	SA0_DVP_D 8_PA08	SA1_DVP_D 9_PA09	J
K		USB_VCC33	USB_VCC18	VSS	VDD	VDD	VDD	VDD	VDDIO1	VDDIO1	SD5_DVP_D 5_PA05	SD6_DVP_D 6_PA06		K
L	USB_VCC10	MICN	MICBIAS	GMAC_MDC K_SSI1_CLK _SLCD_D4_ PB10			SLCD_RDY_ PB28		MAC_TXN	MAC_RXN	MAC_VDDA	SD3_DVP_D 3_PA03	SD4_DVP_D 4_PA04	L
М	MICP	VCM	DRV_VBUS_ PB27	GMAC_RXD V_SSI1_DR_ SLCD_D3_P B09	1_MAC_LED _RX_SLCD_ _TE_PB16	_CLK_MAC_ LED_TX_SL CD_D1_PB0 7	GMAC_TXD 1_SSI1_CE1 _MAC_LED_ DUPLEX_SL CD_D7_PB1	PWM0_SLC D_CS_PB17	MAC_TXP	MAC_RXP	MAC_EXTR ES	SD1_DVP_D 1_PA01	SD2_DVP_D 2_PA02	M
N	HPOUT	CODEC_AV DD	GMAC_MDI O_SSI1_CE0 _SLCD_D5_ PB11		GMAC_TXC LK_MAC_LE D_SPEED10 0_SLCD_D0 _PB06	GMAC_TXD 0_SSI1_GPC _MAC_LED_ SPEED10_S LCD_D6_PB	GMAC_TXE N_SSI1_DT_ SLCD_D2_P B08	PWM1_SLC D_DC_PB18	GPIO_PB31		MAC_TEST_ ATP	MAC_VDDH V	SD0_DVP_D 0_PA00	N
Ι	1	2	3	4	5	6	7	8	9	10	11	12	13	1

Figure 2-2 T21 pin to ball assignment

2.5 Pin Description

2.5.1 Static Memory/DVP/I2C0

Table 2-1 Static Memory/DVP/I2C0 Pins(19)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SD0 DVP_D0 PA00	0-0	N13		SD0: Static memory data bus bit 0 DVP_D0:DVP data bit 0 PA00: GPIO group A bit 00	VDDIO0

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SD1 DVP_D1 PA01	10 1 10	M12	8mA	SD1: Static memory data bus bit 1 DVP_D1:DVP data bit 1 PA01: GPIO group A bit 01	VDDIO0
SD2 DVP_D2 PA02	10 1 10	M13	8mA	SD2: Static memory data bus bit 2 DVP_D2:DVP data bit 2 PA02: GPIO group A bit 02	VDDIO0
SD3 DVP_D3 PA03	10 1 10	L12	8mA	SD3: Static memory data bus bit 3 DVP_D3:DVP data bit 3 PA03: GPIO group A bit 03	VDDIO0
SD4 DVP_D4 PA04	10 1 10	L13	8mA	SD4: Static memory data bus bit 4 DVP_D4:DVP data bit 4 PA04: GPIO group A bit 04	VDDIO0
SD5 DVP_D5 PA05	10 1 10	K11	8mA	SD5: Static memory data bus bit 5 DVP_D5:DVP data bit 5 PA05: GPIO group A bit 05	VDDIO0
SD6 DVP_D6 PA06	10 1 10	K12	8mA	SD6: Static memory data bus bit 6 DVP_D6:DVP data bit 6 PA06: GPIO group A bit 06	VDDIO0
SD7 DVP_D7 PA07	10 1 10	J11	8mA	SD7: Static memory data bus bit 7 DVP_D7:DVP data bit 7 PA07: GPIO group A bit 07	VDDIO0
SA0 DVP_D8 PA08	0 0	J12	8mA	SA0: Static memory address bus bit 0 DVP_D8:DVP data bit 8 PA08: GPIO group A bit 08	VDDIO0
SA1 DVP_D9 PA09	0 	J13	8mA	SA1: Static memory address bus bit 1 DVP_D9: DVP data bit 9 PA09: GPIO group A bit 09	VDDIO0
SA2 DVP_D10 PA10	0 0	H12	8mA	SA2: Static memory address bus bit 2 DVP_D10: DVP data bit 10 PA10: GPIO group A bit 10	VDDIO0
CS1 DVP_D11 PA11	0 0	H13	8mA Pullup-rst	CS1: Static memory chip 1 select DVP_D11: DVP data bit 11 PA11: GPIO group A bit 11	VDDIO0
CS2 SMB0_SDA PA12	0 10 10	F12	8mA Pullup-rst	CS2: Static memory chip 2 select SMB0_SDA: I2C 0 serial data PA12: GPIO group A bit 12	VDDIO0
RD SMB0_SCK PA13	0 10 10	E13	8mA Pullup-rst	RD: Static memory read signal SMB0_SCK: I2C 0 serial clock PA13: GPIO group A bit 13	VDDIO0
DVP_PCLK PA14	I IO	G13	8mA	DVP_PCLK: camera sensor pixel clock input PA14: GPIO group A bit 14	VDDIO0
DVP_MCLK PA15	0 10	G11	8mA Slew-rate-rst	DVP_MCLK: DVP main clock output PA15: GPIO group A bit 15	VDDIO0
DVP_HSYNC PA16	I IO	G12	8mA	DVP_HSYNC: DVP horizontal sync PA16: GPIO group A bit 16	VDDIO0
DVP_VSYNC PA17	I IO	F13	8mA	DVP_VSYNC: DVP vertical sync PA17: GPIO group A bit 17	VDDIO0
WAIT PA22	0 IO	E11	8mA Pullup-rst Schmitt-rst	WAIT: Slow static memory/device wait signal PA22: GPIO group A bit 22	VDDIO0

2.5.2 SFC

Table 2-2 SFC Pins(6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SFC_DT PA23	10 10	C12	8mA Pullup-rst	SFC_DT: high speed ssi transmit data PA23: GPIO group A bit 23	VDDIO1
SFC_DR PA24	10 10	D11	8mA Pullup-rst	SFC_DR: high speed ssi receive data PA24: GPIO group A bit 24	VDDIO1
SFC_GPC PA25	10 10	B12	8mA Pullup-rst	SFC_GPC: high speed ssi general-purpose control PA25: GPIO group A bit 25	VDDIO1
SFC_CE1 PA26	10 10	C13	8mA Pullup-rst	SFC_CE1: high speed ssi chip 1 select PA26: GPIO group A bit 26	VDDIO1
SFC_CLK PA27	0 0	B13	8mA Pullup-rst	SFC_CLK: high speed ssi clock PA27: GPIO group A bit 27	VDDIO1
SFC_CE0 PA28	0 10	D12	8mA Pullup-rst	SFC_CE0: high speed ssi chip 0 select PA28: GPIO group A bit 28	VDDIO1

2.5.3 MSC0/GMAC/PWMx/UARTx/I2C1/JTAG/SLCD

Table 2-3 MSC0/GMAC/PWMx/UARTx/I2C1/JTAG/SLCD (28)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC0_D0 PB00	IO IO	A2	8mA	MSC0_D0: MSC (MMC/SD) 0 data bit 0 PB00: GPIO group B bit 00	VDDIO1
MSC0_D1 PB01	00	В3	8mA	MSC0_D1: MSC (MMC/SD) 0 data bit 1 PB01: GPIO group B bit 01	VDDIO1
MSC0_D2 PB02	99	C2	8mA	MSC0_D2: MSC (MMC/SD) 0 data bit 2 PB02: GPIO group B bit 02	VDDIO1
MSC0_D3 PB03	99	B1	8mA	MSC0_D3: MSC (MMC/SD) 0 data bit 3 PB03: GPIO group B bit 03	VDDIO1
MSC0_CLK PB04	00	B2	8mA	MSC0_CLK: MSC (MMC/SD) 0 clock output PB04: GPIO group B bit 04	VDDIO1
MSC0_CMD PB05	99	C3	8mA	MSC0_CMD: MSC (MMC/SD) 0 command PB05: GPIO group B bit 05	VDDIO1
GMAC_TXCLK MAC_LED_SPEE D100 SLCD_D0 PB06	-0 00	N5	8mA	GMAC_TXCLK: gmac transmitting clock MAC_LED_SPEED100: speed100 indication SLCD_D0: smart lcd data output bit 0 PB06: GPIO group B bit 06	VDDIO1
GMAC_PHY_CLK MAC_LED_TX SLCD_D1 PB07	0000	M6	8mA	GMAC_PHY_CLK: gmac phy clock MAC_LED_TX: TX activity indication SLCD_D1: smart lcd data output bit 1 PB07: GPIO group B bit 07	VDDIO1
GMAC_TXEN SSI1_DT SLCD_D2 PB08	0000	N7	8mA	GMAC_TXEN: gmac transmitting enable SSI1_DT: normal speed ssi 1 transmit data SLCD_D2: smart lcd data output bit 2 PB08: GPIO group B bit 08	VDDIO1
GMAC_RXDV SSI1_DR	I	M4	8mA	GMAC_RXDV: gmac receive data valid SSI1_DR: normal speed ssi 1 receive data	VDDIO1

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SLCD_D3 PB09	0 10			SLCD_D3: smart lcd data output bit 3 PB09: GPIO group B bit 09.	
GMAC_MDCK SSI1_CLK SLCD_D4 PB10	0000	L4	8mA Pulldown-rst	GMAC_MDCK: gmac manage data clock SSI1_CLK: normal speed ssi 1 clock SLCD_D4: smart lcd data output bit 4 PB10: GPIO group B bit 10.	VDDIO1
GMAC_MDIO SSI1_CE0 SLCD_D5 PB11	10 0 0 10	N3	8mA Pullup-rst	GMAC_MDIO: gmac MDIO which is clocked by MDC SSI1_CE0: normal speed ssi 1 chip 0 select SLCD_D5: smart lcd data output bit 5 PB11: GPIO group B bit 11.	VDDIO1
GMAC_TXD0 SSI1_GPC MAC_LED_SPEE D10 SLCD_D6 PB13	0000	N6	8mA	GMAC_TXD0: gmac transmit data bit 0 SSI1_GPC: normal speed ssi 1 general-purpose control MAC_LED_SPEED10: PHY speed10 indication SLCD_D6: smart lcd data output bit 6 PB13: GPIO group B bit 13.	VDDIO1
GMAC_TXD1 SSI1_CE1 MAC_LED_DUPL EX SLCD_D7 PB14	000 00	M7	8mA Pullup-rst	GMAC_TXD1: gmac transmit data bit 1 SSI1_CE1: normal speed ssi 1 chip 1 select MAC_LED_DUPLEX: PHY duplex indication SLCD_D7: smart lcd data output bit 7 PB14: GPIO group B bit 14.	VDDIO1
GMAC_RXD0 MAC_LED_LINK SLCD_WR PB15	- 0 0 O	L5	8mA	GMAC_RXD0: gmac receive data bit 0 MAC_LED_LINK: PHY link ON indication SLCD_WR: smart lcd write data control PB15: GPIO group B bit 15.	VDDIO1
GMAC_RXD1 MAC_LED_RX SLCD_TE PB16	-0-0	M5	8mA	GMAC_RXD1: gmac receive data bit 1 MAC_LED_RX: PHY RX activity indication SLCD_TE: smart lcd crack control PB16: GPIO group B bit 16.	VDDIO1
PWM0 SLCD_CS PB17	0 0 0	M8	8mA Pullup-rst	PWM0: PWM channel 0 output SLCD_CS: smart lcd chip select PB17: GPIO group B bit 17.	VDDIO1
PWM1 SLCD_DC PB18	0 0 0	N8	8mA Pulldown-rst	PWM1: PWM channel 1 output SLCD_DC: smart lcd cmd/data identify PB18: GPIO group B bit 18.	VDDIO1
UARTO_RXD TDI PB19	 - -	А3	8mA Pullup-rst	UART0_RXD: UART 0 receive data TDI: JTAG data input PB19: GPIO group B bit 19	VDDIO1
UARTO_CTS PB20	I IO	B4	8mA	UART0_CTS: UART 0 clear-to-send handshaking PB20: GPIO group B bit 20	VDDIO1
UARTO_RTS PB21	0 10	C5	8mA	UART0_RTS: UART 0 request-to-send handshaking PB21: GPIO group B bit 21	VDDIO1
UARTO_TXD TDO PB22	0 0 10	C4	8mA	UART0_TXD: UART 0 transmit data TDO: JTAG data output PB22: GPIO group B bit 22	VDDIO1
UART1_TXD	0	B5	8mA	UART1_TXD: UART 1 transmit data	VDDIO1

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
TCK PB23	I 10			TCK: JTAG clock input PB23: GPIO group B bit 23	
UART1_RXD TMS PB24	 	A5	8mA Pullup-rst	UART1_RXD: UART 1 receive data TMS: JTAG mode select PB24: GPIO group B bit 24	VDDIO1
SMB1_SDA PB25	10 10	A6	8mA Pullup-rst	SMB1_SDA: I2C 1 serial data PB25: GPIO group B bit 25	VDDIO1
SMB1_SCK PB26	10 10	В6	8mA Pullup-rst	SMB1_SCK: I2C 1 serial clock PB26: GPIO group B bit 26	VDDIO1
DRV_VBUS PB27	0 10	МЗ	8mA Schmitt-rst	DRV_VBUS:USB-5V control PB27: GPIO group B bit 27	VDDIO1
SLCD_RDY PB28	I IO	L7	8mA Schmitt-rst	SLCD_RDY: smart lcd work status PB28: GPIO group B bit 28	VDDIO1

2.5.4 MSC1/SSI0/PWMx/I2C1/GMAC/UART2/CAMERA/SLCD

Table 2-4 MSC1/SSI0/PWMx/I2C1/GMAC/UART2/CAMERA/SLCD Pins (16)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MSC1_CLK MAC_LED_SPE ED100 SLCD_D0 PC02	00 00	A12	8mA	MSC1_CLK: MSC (MMC/SD) 1 clock output MAC_LED_SPEED100: speed100 indication SLCD_D0: smart lcd data output bit 0 PC02: GPIO group C bit 02	VDDIO2
MSC1_CMD MAC_LED_TX SLCD_D1 PC03	9009	B11	8mA	MSC1_CMD: MSC (MMC/SD) 1 command MAC_LED_TX: TX activity indication SLCD_D1: smart lcd data output bit 1 PC03: GPIO group C bit 03	VDDIO2
MSC1_D0 MAC_LED_SPE ED10 SLCD_D2 PC04	0 0 0 0	C11	8mA	MSC1_D0: MSC (MMC/SD) 1 data bit 0 MAC_LED_SPEED10: speed10 indication SLCD_D2: smart lcd data output bit 2 PC04: GPIO group C bit 04	VDDIO2
MSC1_D1 MAC_LED_DUP LEX SLCD_D3 PC05	90 09	A13	8mA	MSC1_D1: MSC (MMC/SD) 1 data bit 1 MAC_LED_DUPLEX: duplex indication SLCD_D3: smart lcd data output bit 3 PC05: GPIO group C bit 05	VDDIO2
MSC1_D2 MAC_LED_LIN K SLCD_D4 PC06	00 00	C10	8mA	MSC1_D2: MSC (MMC/SD) 1 data bit 2 MAC_LED_LINK: link ON indication SLCD_D4: smart lcd data output bit 4 PC06: GPIO group C bit 06	VDDIO2
MSC1_D3 MAC_LED_RX SLCD_D5 PC07	10 0 0 10	A11	8mA	MSC1_D3: MSC (MMC/SD) 1 data bit 3 MAC_LED_RX: RX activity indication SLCD_D5: smart lcd data output bit 5 PC07: GPIO group C bit 07	VDDIO2

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
SSI0_GPC UART2_TXD SMB1_SDA SLCD_DC PC08	0-909	B10	8mA Pullup-rst	SSI0_GPC: ssi 0 general-purpose control UART2_TXD: UART 2 transmit data SMB1_SDA: I2C 1 serial data SLCD_DC: smart lcd cmd/data identify PC08: GPIO group C bit 08.	VDDIO2
SSI0_CE1 UART2_RXD SMB1_SCK SLCD_CS PC09	0-909	A9	8mA Pullup-rst	SSI0_CE1: ssi 0 chip 1 select UART2_RXD: UART 2 receive data SMB1_SCK: I2C 1 serial clock SLCD_CS: smart lcd chip select PC09: GPIO group C bit 09.	VDDIO2
SSI0_DR PWM2 UART2_CTS PC11	-0-9	В9	8mA	SSI0_DR: ssi 0 receive data PWM2: PWM channel 2 output UART2_CTS: UART 2 Clear-to-Send handshaking PC11: GPIO group C bit 11.	VDDIO2
SSI0_DT PWM3 UART2_RTS PC12	0009	C9	8mA	SSI0_DT: ssi 0 transmit data PWM3: PWM channel 3 output UART2_RTS: UART 2 Request-to-Send handshaking PC12: GPIO group C bit 12.	VDDIO2
SSI0_CLK PWM4 UART2_TXD PC13	0000	B8	8mA	SSI0_CLK: ssi 0 clock PWM4: PWM channel 4 output UART2_TXD: UART 2 transmit data PC13: GPIO group C bit 13.	VDDIO2
SSI0_CE0 PWM5 UART2_RXD PC14	00-0	A8	8mA Pullup-rst	SSI0_CE0: ssi 0 chip 0 select PWM5: PWM channel 5 output UART2_RXD: UART 2 receive data PC14: GPIO group C bit 14.	VDDIO2
PWM6 SLCD_WR PC15	0 – 0	D10	8mA Pulldown-rst Schmitt-rst	PWM6: PWM channel 6 output SLCD_WR: smart lcd write data control PC15: GPIO group C bit 15.	VDDIO2
CLK32K_OUT PWM7 SLCD_TE PC16	00-0	D9	8mA Pulldown-rst Schmitt-rst	CLK32K_OUT: 32.768K clock output PWM7: PWM channel 7 output SLCD_TE: smart lcd crack control PC16: GPIO group C bit 16.	VDDIO2
PWM0 FLASH_STORB E_IN UART2_CTS SLCD_D6 PC17	009	E10	8mA Pulldown-rst Schmitt-rst	PWM0: PWM channel 0 output FLASH_STORBE_IN: camera flash store input UART2_CTS: UART 2 clear-to-send handshaking SLCD_D6: smart lcd data output bit 6 PC17: GPIO group C bit 17.	VDDIO2
PWM1 FLASH_OUT UART2_RTS SLCD_D7 PC18	00000	E9	8mA Pulldown-rst Schmitt-rst	PWM1: PWM channel 1 output FLASH_OUT: camera flash out UART2_RTS: UART 2 request-to-send handshaking SLCD_D7: smart lcd data output bit 7 PC18: GPIO group C bit 18.	VDDIO2

2.5.5 GPIO

Table 2-5 GPIO Pins (2)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
PA18	Ю	E12	8mA	PA18: GPIO group A bit 18	VDDIO0
PB31	Ю	N9	8mA Pulldown-rst	PB31: GPIO group B bit 31	VDDIO1

2.5.6 **System**

Table 2-6 System Control Pins(6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
TRST	I	D4	8mA Schmitt pull-down	TRST: JTAG reset	VDDIO1
RST_DELAY	I	E4	8mA	RST_DELAY: system reset delay time control	VDDIO1
WKUP_PA30*	I	H4	8mA Schmitt	WKUP_PA30: Wakeup signal after main power down	RTC_VD DIO
PPRST_	I	G2	8mA Schmitt	PPRST_: RTC power on reset and RESET-KEY reset input	RTC_VD DIO
TEST_TE	I	G4	8mA Schmitt pull-down	TEST_TE: Manufacture test enable, program readable	RTC_VD DIO

Table 2-7 Boot Select Pins(2)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
(BOOT_SEL0) PC00	I IO	D2		PC00: GPIO group C bit 00 It is taken as BOOT select bit 0 by Boot ROM code	VDDIO1
(BOOT_SEL1) PC01	I IO	D3		PC01: GPIO group C bit 01 It is taken as BOOT select bit 1 by Boot ROM code	VDDIO1

2.5.7 Digital IO/core power/ground

Table 2-8 IO/Core power supplies Pins (22)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
VDDIO0	Р	H10,J10	-	VDDIO0: IO digital power for DVP power domain, 1.8/3.3V	-
VDDIO1	Р	K9,K10	-	VDDIO1: IO digital power for normal function Pad power domain, 3.3V	-
VDDIO2	Р	F10,G10	-	VDDIO2: IO digital power for low leakage power domain, 1.8/3.3V	-
VDD	Р	J6,J7,J8,J9,K5 ,K6,K7,K8	-	VDD: CORE digital power, 1.0V	-

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
VSS	Р	H5,H6,H7,H8, H9,J4,J5,K4		VSS: IO digital ground for none DRAM and CORE digital ground, 0V	-

2.5.8 DDR power/ground

Table 2-9 DDR power/ground supplies Pins (21)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
VREF	Р	C7	-	VREF: DDR reference voltage, (VREF = VDDMEM/2)	-
VDDMEM	Р	D5,D6,D7,D8	-	VDDMEM: DDR IO supply(1.8V for DDR2)	-
VSSMEM	Р	F5,F6,F7,F8,F 9	-	VSSMEM: DDR IO ground	-
DDRVDD	Р	E5,D6,D7,D8	-	DDRVDD: DDR PHY 1.8V supply	-
DDRVSS	Р	G5,G6,G7,G8, G9	-	DDRVSS: DDR PHY ground	-
DDR_PLLVCCD	Р	A7	-	DDR_PLLVCCD: DDR PLL power supply for digital	-
DDR_PLLVCCA	Р	B7	-	DDR_PLLVCCA: DDR PLL power supply for analog	-

2.5.9 Analog - USB

Table 2-10 USB 2.0 OTG (5)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
USB0PP	AIO	J3	-	USB0PP: USB data-positive	USB_VCC33
USB0PN	AIO	J2	-	USB0PN: USB data-negative	USB_VCC33
USB_VCC33	Р	K2	-	USB_VCC33: This is the analog supply that is used to support 3.3V signaling. This supply has both integrated IO pads and associated ESD. The expectation is that this supply is unique to the USB PHY. The PHY provides two pins for this power supply, but they can often be bonded out to a single package pin if the parasitic are low enough to support the current draw.	-
USB_VCC18	Р	К3	-	USB_VCC18: This is the analog supply that is used to support 1.8V signaling. This supply has both integrated IO pads.	-
USB_VCC10	Р	L1	-	USB_VCC10: This is the analog supply that is used to support 1.0V circuits within the PHY. This supply has both integrated IO pads and associated ESD. As this includes power supplied to the PLL and HS driver, the supply needs to be fairly quiet. The PHY provides	-

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
				two pins for this power supply, but they can often be bonded out to a single pin if the parasitic are low enough to support the current draw.	

2.5.10 Analog - SARADC

Table 2-11 SARADC Pins (4)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
AUX0	ΑI	G3	-	AUX0: SARADC channel 0 input	SADC_AVDD
AUX1	ΑI	H1	-	AUX1: SARADC channel 1 input	SADC_AVDD
SADC_AVDD	Р	J1	-	SADC_AVDD: SARADC analog power, 1.8 V	-
SADC_VREFP	Р	H2	-	SADC_VREFP: Voltage reference input, 0.5* SADC_AVDD~0.99* SADC_AVDD	1

2.5.11 Analog - CODEC

Table 2-12 CODEC Pins (6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MICP	ΑI	M1	-	MICP: differential microphone input	CODEC_AVDD
MICN	ΑI	L2	-	MICN: differential microphone input	CODEC_AVDD
VCM	AO	M2	-	VCM: Reference voltage output	CODEC_AVDD
MICBIAS	АО	L3	-	MICBIAS: Microphone bias output	CODEC_AVDD
HPOUT	AO	N1	-	HPOUT: headphone output	CODEC_AVDD
CODEC_AVDD	Р	N2	-	CODEC_AVDD:1.8V analog supply	-

2.5.12 Analog - MAC-PHY

Table 2-13 MAC-PHY Pins(8)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
MAC_TXN	AO	L9	-	MAC_TXN: PHY transmit data-negative	MAC_VDDA
MAC_TXP	АО	M9	-	MAC_TXP: PHY transmit data-positive	MAC_VDDA
MAC_RXN	ΑI	L10	-	MAC_RXN: PHY receive data-negative	MAC_VDDA
MAC_RXP	ΑI	M10	-	MAC_RXP: PHY receive data-positive	MAC_VDDA
MAC_EXTRE S	AIO	M11	-	MAC_EXTRES: PHY connection to reference resistor NOTES: 6.5KΩ should be connected externally on board.	MAC_VDDA
MAC_TEST_A TP	AIO	N11	-	MAC_TEST_ATP: PHY analog test point NOTES: Resistance < 1Ω;inductance <	-

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
				5nH	
MAC_VDDHV	Р	N12		MAC_VDDHV: PHY 1.8V analog power supply for central bias	-
MAC_VDDA	Р	L11		MAC_VDDA: PHY 1.0V analog power supply for RX and TX	-

2.5.13 Analog - EFUSE

Table 2-14 EFUSE Pins (1)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
AVDEFUSE	Р	F4		AVDEFUSE: EFUSE programming power, 0V/1.5V	-

2.5.14 Analog - CLOCK/PLL

Table 2-15 CLOCK/PLL Pins (6)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
EXCLK_XI	AI	E1	Oscillator,	EXCLK_XI: external oscillator clock input or external 24MHz clock input	RTC_VDDIO
EXCLK_XO	АО	E2	OSC on/off	EXCLK_XO: external oscillator clock output	RTC_VDDIO
PLL_VDDA	Р	D2	-	PLL_VDDA: PLL analog power, 1.8V	-

2.5.15 Analog - RTC

Table 2-16 RTC Pins (4)

Pin Names	Ю	Loc	IO Cell Char.	Pin Description	Power
OSC32_XI	ΑI	F1		osc32_XI: 32.768KHz clock input	RTC_VDDIO
OSC32_XO	AO	F2	Oscillator	osc32_XO: Reserved	RTC_VDDIO
RTC_VDD	Р	E3	-	RTC_VDD: 1.0V power for RTC	-
RTC_VDDIO	Р	G1	-	RTC_VDDIO: 3.3V power for RTC	-

NOTES:

- All GPIO are programmable with multi-voltage (1.8V, 2.5V, 2.8V. 3.0V, 3.3V) general purpose, bi-directional I/O buffer with a selectable LVCMOS input or LVCMOS Schmitt trigger input and programmable pull-up / pull-down. In the full-drive mode, this buffer can operate in excess of 100MHz frequency with 15pF external load and 125 MHz with 10pF load, but actual frequency is load and system dependent. A maximum of 200 MHz can be achieved under small capacitive loads.
- 2 The meaning of phases in IO cell characteristics are:
 - 8/16mA out: The IO cell's output driving strength is about 8/16mA.

- Pull-up: The IO cell contains a pull-up resistor and fixed pull up.
- Pull-down: The IO cell contains a pull-down resistor and fixed pull down.
- Pullup-rst: The IO cell during reset and after the pull up function is enabled.
- Pulldown-rst: The IO cell during reset and after the pull down function is enabled.
- Schmitt: The IO cell is Schmitt trigger input and fixed.
- Schmitt-rst: The IO cell during reset and after the Schmitt trigger input function is enabled.
- Slew-rate-rst: The IO cell during reset and after the slew-rate function select fast mode.
- 3 *: This pin has GPIO function as group A bit 30, but only input/interrupt function.

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The absolute maximum ratings for the processors are listed in Table 3-1. Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed.

Table 3-1 Absolute Maximum Ratings

Parameter	Min	Max	Unit
Storage Temperature	-65	150	°C
Operation Temperature	-40	125	°C
VDDMEM power supplies voltage	-0.1	1.98	V
DDRVDD power supplies voltage	-0.1	1.98	V
DDR_PLLVCCD power supplies voltage	-0.1	1.1	V
DDR_PLLVCCA power supplies voltage	-0.1	1.98	V
VDDIO0 power supplies voltage	-0.5	1.98	V
VDDIO1 power supplies voltage	-0.5	3.63	V
VDDIO2 power supplies voltage	-0.5	3.63	V
VDD power supplies voltage	-0.2	1.1	V
PLL_VDDA power supplies voltage	-0.1	1.98	V
AVDEFUSE power supplies voltage	-0.1	1.65	V
RTC_VDD power supplies voltage	-0.5	1.155	V
RTC_VDDIO power supplies voltage	-0.5	3.63	V
USB_VCC33 power supplies voltage	-0.1	3.63	V
USB_VCC18 power supplies voltage	-0.1	1.98	V
USB_VCC10 power supplies voltage	-0.1	1.1	V
SADC_AVDD power supplies voltage	-0.1	1.98	V
CODEC_AVDD power supplies voltage	-0.1	1.98	V
MAC_VDDA power supplies voltage	-0.1	1.1	V
MAC_VDDHV power supplies voltage	-0.1	1.98	V
Maximum ESD stress voltage, Human Body Model; Any pin to any			
supply pin, either polarity, or Any pin to all non-supply pins	-	2000	V
together, either polarity. Three stresses maximum.			

3.2 Recommended operating conditions

Table 3-2 Recommended operating conditions for power supplies

Symbol	Description	Min	Typical	Max	Unit
VDDMEM	VDDMEM voltage for SSTL18 (DDR2)	1.62	1.8	1.98	V

DDRVDD	DDR PHY power supplies voltage	1.62	1.8	1.98	>
DDR_PLLVCCD	DDR PLL power supplies voltage	0.9	1.0	1.1	V
DDR_PLLVCCA	DDR PLL power supplies voltage	1.62	1.8	1.98	V
VDDIO0	GPIO power domain 0 supplies voltage	1.62	1.8	1.98	V
VDDIO1	GPIO power domain 1 supplies voltage	1.5	3.3	3.63	V
VDDIO2	GPIO power domain 2 supplies voltage	1.5	3.3	3.63	V
VDD	VDD core supplies voltage	0.9	1.0	1.1	V
PLL_VDDA	APLL, MPLL and VPLL analog voltage	1.62	1.8	1.98	V
AVDEFUSE	EFUSE program supplies voltage	1.35	1.5	1.65	V
RTC_VDD	RTC core supplies voltage	0.72	1.0	1.155	V
RTC_VDDIO	RTC IO supplies voltage	1.35	3.3	3.63	V
USB_VCC33	USB PHY VCCA3P3 analog voltage	3.0	3.3	3.6	V
USB_VCC18	USB PHY VCC18 analog voltage	1.62	1.8	1.98	V
USB_VCC10	USB PHY VCCCORE1P0 voltage	0.9	1.0	1.1	V
SADC_AVDD	SAR-ADC analog voltage	1.62	1.8	1.98	V
CODEC_AVDD	CODEC analog voltage	1.62	1.8	1.98	V
MAC_VDDA	MAC PHY analog voltage	0.9	1.0	1.1	V
MAC_VDDHV	MAC PHY analog voltage	1.62	1.8	1.98	V

Table 3-3 Recommended operating conditions for VDDIO/VDDIO_D/RTC_VDDIO supplied pins

Symbol	Parameter	Min	Typical	Max	Unit
V _{IH18}	Input high voltage for 1.8V I/O application	*0.65	-	+0.3	V
V _{IL18}	Input low voltage for 1.8V I/O application	-0.3	-	*0.35	V
V _{IH25}	Input high voltage for 2.5V I/O application	1.7	-	+0.3	V
V _{IL25}	Input low voltage for 2.5V I/O application	-0.3	-	0.7	V
V _{IH33}	Input high voltage for 3.3V I/O application	2	-	+0.3	V
V_{IL33}	Input low voltage for 3.3V I/O application	-0.3	-	0.8	V

Table 3-4 Recommended operating conditions for others

Symbol	Description	Min	Typical	Max	Unit
T _A	Ambient temperature	-40	25	+125	°C

3.3 Audio codec

3.3.1 Microphone input

There are two microphone input channels, MICP and MICN. They can be configured as differential inputs by the microphone PGA(MIC).

The signal of microphone output should be input to AUDIO CODEC through DC-blocking capacitor, as shown in following figure. The capacitance and input resistance form a high pass filter. For example, when the gain of the MIC module is 20dB, the input resistance is $45 \text{K}\,\Omega$ and 0.1 uF DC-blocking capacitor is used, the lower cut-off frequency is:

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 45 \times 10^3 \times 0.1 \times 10^{-6}} = 35.4 Hz$$

The capacitance of the DC-blocking capacitor should be determined by the minimum input impedance and application requirements.

If the output of microphone is single-ended, the AUDIO ADC input should be connected as following figure.

Microphone PGA has four gains to amplify the input signal, that is, 0dB, 20dB, 30dB and 40dB.

3.3.2 ALC

Automatic Level Control (ALC) function is included to adjust the signal level, which is input into ADC. ALC will measure the signal magnitude and compare it to defined threshold. Then it will adjust the ALC

controlled PAG (ALC) gain according to the comparison result.

The programmable gain range of ALC controlled PAG is from -18dB to +28.5dB. The tuning step is 1.5dB.

3.3.3 Headphone output

Audio codec DAC output can drive 16Ω or 32Ω headphone load through DC-blocking capacitor.

In the configuration using DC-blocking capacitor, shown in following figure, the headphone ground is connected to the real ground. The capacitance and the load resistance determine the lower cut-off frequency. For instance, if $16\,\Omega$ headphone and 100uF DC-blocking capacitor are used, the lower cut-off frequency is

$$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 16 \times 100 \times 10^{-6}} = 99.5 Hz$$

The DC-blocking capacitor can be increased to lower the cut-off frequency for better bass response.

The headphone driver chooses DAC output as input. It has a gain rang from -39dB to +6dB with a tuning step of 1.5dB.

3.3.4 Microphone bias

Microphone bias output is used to bias external microphones. The bias voltage can varies from 0.8*CODEC_AVDD to 0.975* CODEC_AVDD with a step of 0.025* CODEC_AVDD.

3.4 MAC PHY

The transmitter is implemented using a Class-A current steering architecture. The transmitter drives a scrambled MLT3 data into the $100 \,\Omega$ impedance. The transmitter implements a 6b DAC.

For the 100BaseT receive function, the MLT-3 from the cable is fed into PHY through a low-pass-filter, and a 6b AD samples the incoming data. A programmable gain is implemented in the ADC. Baseline wander is corrected using a small DAC.

The receiver receives the encoded stream from the cable, and the analog signal is filtered and checked using a squelch circuit. The receiver recovers the clock and data to recreate the NRZI stream

after confirming that the data is valid encoded data. Polarity is identified and corrected as necessary (observable through register interface). Then stream is describilized ascent to the MAC interface at 2.5MHz.

The recommendations board circuit design is as shown below.

Figure 3-1 Typical Product board circuit Design

3.5 Power On, Reset and BOOT

3.5.1 Power-On Timing

The external voltage regulator and other power-on devices must provide the T21 processor with a specific sequence of power and resets to ensure proper operation. Figure 3-2 shows this sequence and Table 3-5 gives the timing parameters. Following are the name of the power.

- VDDRTC: RTC_VDDIO, RTC_VDD
- AVDAUD: CODEC_AVDD
- VDD10: all 1.0V power supplies, include VDD
- VDD: all other digital IO, include DDR power supplies: VDDMEM, VDDIO0, VDDIO1,VDDIO2
- AVD: all other analog power supplies: SADC_AVDD, USB_VCC33, USB_VCC18, USB_VCC10, PLL_VDDA, MAC_VDDA, MAC_VDDHV

Table 3-5 Power-On Timing Parameters

Symbol	Parameter	Min	Max	Unit
t _{R_VDDRTC}	VDDRTC rise time ^[1]	0	5	ms

t _{R_VDD}	VDD rise time ^[1]	0	5	ms
4	Delay between VDDRTC arriving 50% (or 90%) to VDD33	0		mo
t _{D_VDD}	arriving 50% (or 90%)	U	_	ms
t _{R_VDD10}	VDD10 rise time ^[1]	0	5	ms
4	Delay between VDD arriving 50% (or 90%) to VDD10	1	1	mo
t _{D_VDD10}	arriving 50% (or 90%)	– 1	'	ms
t _{R_AVDAUD}	AVDAUD rise time ^[1]	0	5	ms
4	Delay between VDD10 arriving 50% (or 90%) to AVDAUD	0.01	1	mo
t _{D_AVDAUD}	arriving 50% (or 90%)	0.01	ı	ms
t _{R_AVD}	AVD rise time ^[1]	0	5	ms
t _{D_AVDA}	Delay between VDD arriving 50% to AVD arriving 50%	-1	1	ms
t _{D_PPRST_}	Delay between VDDAUD stable and PPRST_ deasserted	TBD ^[3]	_	ms ^[2]

NOTES:

- The power rise time is defined as 10% to 90%.
- The PPRST_ must be kept at least 100us. After PPRST_ is deasserted, the corresponding chip reset will be extended at least 40ms.

Figure 3-2 Power-On Timing Diagram

3.5.2 Reset procedure

There are 3 reset sources: 1. PPRST_ pin reset; 2. WDT timeout reset; and 3. hibernating reset when exiting hibernating mode. After reset, program start from boot.

PPRST_ pin reset.

This reset is trigged when PPRST_ pin is put to logic 0. It happens in power on RTC power and RESET-KEY pressed to reset the chip from unknown dead state. The reset end time is about 1M EXCLK cycles after rising edge of PPRST_.

WDT reset.

This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles.

Hibernating reset.

This reset happens in case of wakeup the main power from power down. The reset keeps for about 1ms ~ 125ms programable, plus 1M EXCLK cycles, start after WKUP_ signal is recognized.

After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see "2.5Pin Description" for details. The PWRON is output 1. The oscillators are on. The USB 2.0 OTG PHY and USB 1.1 PHY, the audio CODEC DAC/ADC, the SAR-ADCs is put in suspend mode.

3.5.3 **BOOT**

The boot sequence of the T21 is controlled by boot_sel[1:0]. The configuration is shown as follow:

 boot_sel[1:0]
 Boot method

 00
 MMC/SD boot @ MSC0 (MMC/SD use GPIO Port B. MSC1 use GPIO Port C)

 01
 SFC boot @ CS4 (SPI boot)

 10
 NOR boot @ CS2 (just for FPGA testing)

 11
 USB boot @ USB 2.0 device, EXTCLK=24MHz

Table 3-6 Boot Configuration of T21

The boot procedure is showed in the following flow chart:

As shown in Figure 3-3, boot sequence Block Diagram. After reset, the boot program on the internal boot ROM executes as follows:

- 1 Disable all interrupts and read boot_sel[1:0] to determine the boot method.
- 2 There 26KB backup reading failed, the 26KB backup at 128th, 256 th, ..., and finally 1024th page will be tried in consecutive order.
- If it is boot from MMC/SD card at MSC0, its function pins MSC0_D0, MSC0_CLK, MSC0_CMD are initialized, the boot program loads the 26KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC0_D0 is used.

- 4 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in cache. Then branch to this area in cache.
- If it is boot from SPI nor/nand at SFC, its function pins SFC_CLK,SFC_CE, SFC_DR,SFC_DT, SFC_WP,SFC_HOLD are initialized,the boot program loads the 12kB code from SPI NAND/NOR flash to cache and jump to it.
- 6 If it is boot from NOR Flash, the boot program jump to nor and run directory.

When SFC boot start failure, the program in bootrom will go into MSC0 boot.

When MSC0 boot start failure, the program in bootrom will go into MSC1 boot, If it is boot from MMC/SD card at MSC1, its function pins MSC1_D0, MSC1_CLK, MSC1_CMD are initialized, the boot program loads the 26KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC1_D0 is used. If MSC1 boot start failure, jump to USB boot.

Figure 3-3 Boot sequence diagram of T21