Laboratorium napędu elektrycznego

Modelowanie prostownika sieciowego niesterowanego, układu wytracającego energię hamowania i implementacja układu sterowania w języku C w programie Plecs

1. Zbudować układ sieciowego prostownika niesterowanego zasilającego układ napędowy z tranzystorowym mostkiem H i obcowzbudną maszyną prądu stałego.

2. Wyznaczyć wartość indukcyjności filtrujących L_{1-3} po stronie napięcia przemiennego prostownika i pojemność w obwodzie pośredniczącym prądu stałego C_{dc} .

Wartość indukcyjności filtrującej L_{1-3} można wyznaczyć na podstawie dopuszczalnego spadku napięcia przy znamionowym obciążeniu:

$$U_{\%} = X_1 I_{1N}$$

Wartość dopuszczalnego spadku napięcia można przyjąć jako 3 lub 5% napięcia sieci, co przy pominięciu strat w procesie prostowania napięcia daje:

$$0.05U_S = X_1 \frac{U_{aN}I_{aN}}{3U_S}$$

gdzie U_S to wartość skuteczna napięcia fazowego sieci elektroenergetycznej. Ostatecznie indukcyjność filtrującą możemy obliczyć na podstawie zależności:

$$L_1 = \frac{0.15 V_S^2}{2\pi f_S U_{aN} I_{aN}} = \frac{0.15 \cdot 230^2 \text{ V}^2 \text{s}}{2\pi \cdot 50 \cdot 420 \cdot 90 \text{ VA}} = 0.000668 \text{ H}$$

gdzie f_S to częstotliwość napięcia sieci.

Pojemność kondensatora obwodu pośredniczącego prądu stałego C_{dc} dobieramy eksperymentalnie, aby tętnienia napięcia U_{dc} nie przekraczały 5% wartości średniej U_{dc}^{av} . Rezystor R_{dc} powinien przyjmować bardzo małą wartość, która symuluje straty w kondensatorze C_{dc} .

3. Zaobserwować prąd sieci i napięcie obwodu pośredniczącego prądu stałego w czasie dynamicznego nawrotu silnika bez zewnętrznego momentu obciążenia.

4. Zbudować układ wytracający energię hamowania w obwodzie pośredniczącym prądu stałego z dwupołożeniowym regulatorem napięcia U_{dc} .

W czasie hamowania dynamicznego układu napędowego, w związku z zastosowaniem jednokierunkowego przekształtnika AC/DC (prostownik diodowy), energię należy rozproszyć w rezystorze mocy. Rozpraszana moc jest kontrolowana przy zastosowaniu regulatora dwupołożeniowy (dwustawny, histerezowy), który steruje pracą tranzystora T_{br} dołączającego rezystor mocy R_{br} do obwodu pośredniczącego prądu stałego. Dioda zwrotna D_{tr} służy do zabezpieczenia układu wytracania mocy przed przepięciami, które pojawiłyby się wskutek przerywania przepływu prądu przez indukcyjność pasożytniczą L_r rezystora mocy. Dobór wartości górnego progu regulatora dwupołożeniowego (przekroczenie której powoduje włączenie tranzystora T_{br}) powinien zabezpieczyć elementy przekształtnika AC/DC/DC przed uszkodzeniem wskutek wysokiego napięcia U_{dc} . Wartość dolnego progu regulatora dwupołożeniowego powinna zapewnić wyłączenie tranzystora T_{br} po obniżeniu wartości napięcia U_{dc} , przy czym wartość dolnego progu nie powinna być mniejsza niż wartość średnia napięcia wyprostowanego przy braku obciążenia przekształtnika AC/DC.

5. Wyznaczyć wartość rezystancji rezystora R_{br} w układzie wytracającym energię hamowania.

Wartość rezystancji R_{br} powinna zapewnić możliwość wytracenia maksymalnej mocy hamowania przy maksymalnym dopuszczalnym napięciu w obwodzie pośredniczącym prądu stałego (założonej wartości górnego progu regulatora dwupołożeniowego), czyli powinna spełnić nierówność.

$$R_{br} < \frac{U_{dc_h}^2}{P_{br}}$$

gdzie U_{dc_h} jest maksymalnym dopuszczalnym napięciem w obwodzie pośredniczącym prądu stałego, a P_{br} jest maksymalną wartością mocy hamowania generatorowego. Moc hamowania możemy przybliżyć zależnością:

$$P_{br} = U_{aN}I_{a\ max}$$

gdzie I_{a_max} jest wartością ograniczenia prądu referencyjnego obwodu twornika (sygnału wyjściowego układu regulacji prędkości).

Ostatecznie wartość rezystancji R_{br} powinna być mniejsza niż:

$$R_{br} < \frac{U_{dc_h}^2}{U_{aN}I_{a_max}} = \frac{600^2 \text{ V}^2}{420 \cdot 1,5 \cdot 90 \text{ VA}} = 6,35 \Omega$$

Indukcyjność pasożytnicza L_r jest elementem niepożądanym, a jej wartość jest bardzo mała.

6. Implementacja układu sterowania w języku C.

Ostatnim krokiem przed implementacją opracowanego układu sterowania napędem na mikrokontrolerze jest opracowanie modelu symulacyjnego SIL (software in the loop), w którym układ sterowania jest napisany w języku C. W tym celu zastosowany zostanie blok C-script.

Przykładowy program będzie obejmował wyłącznie implementację regulatora proporcjonalnocałkującego bez ograniczenia sygnału wyjściowego z czasem próbkowania $T_p = h = 100 \,\mu s$.

W zakładce *Code* znajduje się miejsce na kod źródłowy programu sterującego, który jest podzielony na następujące bloki:

- Code declarations- definiowania zmiennych zastosowanych w programie;
- *Start function code* inicjalizowania wartości stałych, wykonujący się jednokrotnie na początku symulacji;
- *Output function code* przypisywania wartości wejść i wyjść bloku C-script do zmiennych zastosowanych w programie;
- *Update function code* cyklicznego wykonywania programu sterującego z czasem próbkowania h.

Każdy człon dynamiczny opisany transmitancją możemy przekształcić w układ dyskretny, który możemy wykorzystać w implementacji sprzętowej w programie sterującym. Do najczęściej wykorzystywanych przybliżeń należa:

- Backward Euler

$$s = \frac{z - 1}{zh}$$

- Forward Euler

$$s = \frac{z - 1}{h}$$

- Trapezoidal Tustin

$$s = \frac{2(z-1)}{h(z+1)}$$

gdzie h oznacza okres próbkowania sygnału dyskretnego.

Wówczas człon całkujący opisany w dziedzinie ciągłej transmitancją:

$$G(s) = \frac{1}{s}$$

przekształcony do dziedziny dyskretnej przy zastosowaniu przybliżenia Backward Euler przybiera postać:

$$G(z) = \frac{Y(z)}{X(z)} = \frac{zh}{z - 1}$$

która po przemnożeniu stronami przyjmuje postać:

$$Yz - Y = Xzh$$

gdzie Y oznacza obecną dyskretną wartość wyjścia, Xz oznacza przyszłą dyskretną wartość wejścia, Yz oznacza przyszłą dyskretną wartość wyjścia członu całkującego.

W związku z brakiem informacji o przyszłych wartościach wejścia i wyjścia, równanie obustronnie mnożymy przez czynnik z^{-1} , dzięki czemu otrzymujemy postać dyskretną członu całkującego:

$$Y = Yz^{-1} + Xh$$

gdzie Yz^{-1} jest poprzednią dyskretną wartością wyjścia, a Y i X są obecnymi dyskretnymi wartościami wyjścia i wejścia członu całkującego.

Tak opisaną postać dyskretnego członu całkującego możemy z powodzeniem zastosować w programie zaimplementowanym na mikrokontrolerze.

Zaimplementowaną postać regulatora proporcjonalno-całkującego bez ograniczenia wyjścia regulatora w bloku C-script przedstawiono poniżej:

$$G(s) = k\left(1 + \frac{1}{sT}\right)$$

Ostatnim etapem modelowania układu napędowego jest zaimplementowanie układu regulacji prądu i prędkości napędu w C-script, i uwzględniającego ograniczenia sygnałów wyjściowych regulatorów proporcjonalno-całkujących.

