TOSHIBA

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T6963C

DOT MATRIX LCD CONTROL LSI

The T6963C is an LCD controller designed to be used with LCD control driver LSIs and data display memories. The device has an 8-bit parallel data bus and control lines for reading or writing through an MPU interface. It can be directly connected to a TMPZ-80.

It has a 128-word character generator ROM which can control an external display RAM of up to 64 Kbytes. Allocation of text, graphics and external character generator RAM can be made easily and the display window can be moved freely within the allocated memory range.

The device supports a very broad range of LCD formats by allowing selection of different combinations via a set of programmable inputs. It can be used in text, graphic and combination text—and—graphic modes, and includes various attribute functions.

T6963C

Weight: 1.2 g (typ.)

Features

• Display format (pin-selectable)

Columns : 32, 40, 64, 80

Lines : 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32

The combination of number of columns and number of lines must not cause the frequency to exceed 5.5 MHz. (See Fig. 2)

Character font (pinselectable)

Horizontal dots : 5, 6, 7, 8 Vertical dots : 8 (fixed)

It is necessary to set a character font in Graphic mode just as in Text mode. The oscillation frequency does not change with the font selection.

• Display duty : 1 / 16 to 1 / 128

- A 128-word character generator ROM (code 0101) T6963C-0101 is built in as standard.
- External display memory: 64 KB Max

The addresses in display memory of the text area, graphic area and external character generator area are determined by software.

Read or Write operations from the CPU do not disturb the display.

000707EBA

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the
buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and
to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or
damage to property.

damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal

• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

• A crystal oscillator circuit is built in. The oscillation frequency is adjusted according to the display size. If using an external clock, use the XI pin as the clock input. (XO open.)

External capacitors Crystal oscillation \div 20 to 30 pF

 $\label{eq:Ceramic oscillation: 30 to 100 pF} Ceramic oscillation: 30 to 100 pF \\ Built—in feedback resistor: 900 kQ (typ.)$

- Toshiba LCD driver LSIs (other than these with a built-in RAM) can be connected to the device.
- External display RAM must be static RAM. The T6963C cannot refresh D-RAM.
- The attribute functions can only be used in Text mode. They cannot be used in Graphic or Combination Character mode.

Block Diagram

Pin Assignment

Pin Functions

Pin Name	1/0		Functions															
		Pins for selection of LCD size																
		DUAL	Н	Н	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L
		MDS	L	L	L	L	Н	Н	Н	Н	L	L	L	L	Н	Н	Н	Н
MDS MD0	Input	MD1	Н	Н	L	L	Н	Н	L	L	Н	Н	L	L	Н	Н	L	L
MD1	IIIput	MD0	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L
		LINES	2	4	6	8	10	12	14	16	4	8	12	16	20	24	28	32
		V-DOTS	16	32	48	64	80	96	112	128	32	64	96	128	160	192	224	256
						1 SCI	REEN				2 SCREENS							
											MD2		Н	L	Н	ı		
MD2 MD3	Input	Pins for sele	ection	of nur	nber (of colu	ımns				MD3		Н	Н	L	ı		
IVID3	·										Colu	mns	32	40	64	1 8	0	
											F00			Ι.	<u> </u>		<u> </u>	
FS0											FS0		H 	L	H	_		
FS1	Input	Pins for sele	ection	of fon	t						FS1		H	Н	L 2	-		
			Font 5 × 8 6 × 8 7 × 8 8 × 8															
D0 to D7	1/0	Data I / O pi	ns be	tween	CPU	and 7	Г6963	C (D7	is M	SB)								
WR	Input	Data Write. Write data into T6963C when \overline{WR} = L.																
RD	Input	Data Read.	Data Read. Read data fromT6963C when RD = L.															
CE	Input	Chip Enable	for T	69630	C. CE	mus	t be L	wher	CPU	com	munic	ates \	vith Te	6963C).			

Pin Name	1/0	Functions				
C/D	Input	WR = L ······ C / D = H: Command Write C / D = L: Data Write RD = L ····· C / D = H: Status Read C / D = L: Data Read				
HALT	Input	H ······ Normal, L ····· Stops the oscillation of the clock				
RESET	Input	H ······ Normal (T6963C has internal pull-up resistor) L ····· Initialize T6963C. Text and graphic have addresses and text and graphic area settings are retained.				
DSPON	Output	Control pin for external DC / DC. DSPON is L when HALT is L or RESET is L. (When DSPON goes H, the column drivers are cleared.)				
DUAL	Input	H ····· Single-Scan L ···· Dual-Scan DUAL H H L L SDSEL H L H L				
SDSEL	Input	H ······ Sending data by odd / even separation L ····· Sending data by simple serial method Upper screen HOD, ED ED HOD, ED ED Lower screen — LOD, ED ED				
ce0 (LOD)	Output	ce0 at DUAL = H Chip enable pin for display memory in the address range 0000H to 07FFH LOD at DUAL = L Serial data output for odd columns in lower area of LCD				
ce1 (LSCP)	Output	ce1 at DUAL = H Chip enable pin for display memory in the address range 0800H to 0FFFH LSCP at DUAL = L Shift clock pulse output for column drivers in lower area of LCD				
ce	Output	Chip enable pin for display memory of any address				
d0 to d7	1/0	Data I / O pins for display memory				
ad0 to ad15	Output	Address outputs for display memory (ad15 = L: for upper area of LCD, ad15 = H: for lower area of LCD)				
R/W	Output	Read / Write signal for display memory				
ED	Output	SDSEL				
HOD	Output	Data output for odd columns in upper area of LCD				
CDATA	Output	Synchronous signal for row driver				
HSCP	Output	Shift clock pulse for column driver of upper area of LCD				
LP	Output	Latch pulse for column driver. Shift clock pulse for row driver				
FR	Output	Frame signal				
XI	Input	Crystal oscillator input				
ХО	Output	Crystal oscillator output				
CH1, CH2	Output	Check signal				
T1, T2	Input	Test input. Usually open				
V_{DD}	-	Power supply (5.0 V)				
V _{SS}	_	Power supply (0 V)				

Functional Definition

- After power on, it is necessary to reset. RESET is kept L between 5 clocks up (oscillation clock).
- When $\overline{HALT} = L$, the oscillation stops. The power supply for the LCD must now be turned off, to protect the LCD from DC bias.
- The HALT function includes the RESET function.
- The column / line counter and display register are cleared by RESET. (Other registers are not cleared.) Disable the display using the clear-display register.
- The status must be checked before data or commands are sent. The MSB = 0 status check must be done in particular. There is a possibility of erroneous operation due to a hard interrupt.
- STA0 and STA1 must be checked at the same time. When a command is executed, data transmission errors may occur.
- The T6963C can only handle one byte per machine cycle (16 clocks). It is impossible to send more than two data in a machine cycle.
- When using a command with operand data, it important to send the data first, and then execute the command
- The character codes used by the T6963C are different from ASCII codes.

• State after RESET / HALT (Fig. 1)

Terminal	Halt	Reset
D0 to D7	F	F
d0 to d7	F	F
r/w	Н	Н
ce	H (Note 1)	H (Note 1)
ad0 to ad15	H (Note 2)	H (Note 2)
ce0 , ce1	H (Note 1)	H (Note 1)
ED, HOD	Final data	Final data
HSCP	L	L
LP	L	L
CDATA	Н	Н
FR	Н	Н
CH1	L	K0
CH2	L	VEND
DSPON	L	L
XO	Н	OSC clock

H : Level H L : Level L

F : Floating (high impedance)

K0 : Test signal VEND: Test signal

Note 1: In Attribute mode, H or L according to state of graphic pointer

Note 2: In Attribute mode, data of graphic pointer

• The relationship between number of row / column and oscillation clock (Fig. 2)

The frequency of the crystal oscillator is adjusted by the following formula.

fosc: Frequency of oscillation

fSCP: Frequency of shift clock (fSCP = fOSC / 2)

fR : Frequency of Frame

M : Number of characters on one line (number of dots on one line 8 M)

For all font sizes (e.g. 7×8 , 6×8 , 5×8) the oscillation frequency remains constant.

N : Number of rows (duty = 1 / 8N)

$$\frac{8M}{f_{SCP}} {\times} 8N = \frac{1}{f_R}$$

$$f_{\rm OSC} = f_{\rm R} \times 64 \times 2 \times M \times N$$

 $(f_R = 60 \text{ Hz})$

Unit: [MHz]

					Ome [willz
M N	32	40	64	80	Duty
2	0.492	0.614	0.983	1.229	1 / 16
2	0.983	1.229	1.966	2.458	1710
4	0.983	1.229	1.966	2.458	1 / 32
4	1.966	2.458	3.932	4.915	1732
6	1.475	1.843	2.949	3.686	1 / 48
O	2.949	3.686	5.898	7.372	1 / 40
8	1.966	2.458	3.932	4.915	1 / 64
Ö	3.932	4.915	7.864	9.830	
10	2.458	3.072	4.915	6.144	1 / 80
10	4.915	6.144	9.830	12.288	1700
12	2.949	3.686	5.898	7.373	1 / 96
12	5.898	7.373	11.776	14.746	17 30
14	3.440	4.300	6.881	8.602	1 / 112
17	6.881	8.601	13.763	17.203	
16	3.932	4.915	7.864	9.830	1 / 128
10	7.864	9.830	15.729	19.660	

Note 1: Upper ··· Single-Scan, lower ··· Dual-Scan at f_R = 60 Hz

Upper Lower

RAM Interface

The external RAM is used to store display data (text, graphic and external CG data). With single-scan, text data, graphic data and external CG data can be freely allocated to the memory area (at KB).

With dual—scan, LCD I is allocated to 0000H to 7FFFH (32 KB max), LCD II is allocated to 8000H to FFFFH (32 KB max). Text data, graphic data and external CG data can be freely allocated in LCD I. In LCDII, the same addresses must be allocated as in LCD I, except ad15. ad15 determines selection of LCD I or LCD II. It can be use the address decoded signals $\overline{\text{ce0}}$ (0000 to 07FFH), $\overline{\text{ce1}}$ (0800 to 0FFFH) within 4 KB. $\overline{\text{ce0}}$ and $\overline{\text{ce1}}$ allow decoding of addresses in the ranges (0000 to 07FFH) and (0800 to 0FFFH) respectively within a 4–KB memory space.

(Example)

(1) Single-Scan

(2) Dual-Scan

CG: Character Generator

• Flowchart of communications with MPU

(1) Status Read

A status check must be performed before data is read or written.

Status check

The Status of T6963C can be read from the data lines.

 $\begin{array}{ccc} \overline{RD} & L \\ \overline{WR} & H \\ \overline{CE} & L \\ C \, / \, D & H \end{array}$

D0 to D7 Status word

The T6963C status word format is as follows:

MSB							LSB
STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
D7	D6	D5	D4	D3	D2	D1	D0

STA0	Check command execution capability	0: Disable 1: Enable
STA1	Check data read / write capability	0: Disable 1: Enable
STA2	Check Auto mode data read capability	0: Disable 1: Enable
STA3	Check Auto mode data write capability	0: Disable 1: Enable
STA4	Not used	
STA5	Check controller operation capability	0: Disable 1: Enable
STA6	Error flag. Used for Screen Peek and Screen copy commands.	0: No error 1: Error
STA7	Check the blink condition	0: Display off 1: Normal display

Note 1: It is necessary to check STA0 and STA1 at the same time.

There is a possibility of erroneous operation due to a hardware interrupt.

Note 2: For most modes STA0 / STA1 are used as a status check.

Note 3: STA2 and STA3 are valid in Auto mode; STA0 and STA1 are invalid.

Status checking flow

a)

b)

Note 4: When using the MSB = 0 command, a Status Read must be performed.

If a status check is not carried out, the T6963C cannot operate normally, even after a delay time. The hardware interrupt occurs during the address calculation period (at the end of each line).

If a MSB = 0 command is sent to the T6963C during this period, the T6963C enters Wait status. If a status check is not carried out in this state before the next command is sent, there is the possibility that the command or data will not be received.

(2) Setting data

When using the T6963C, first set the data, then set the command.

Procedure for sending a command

a) The case of 1 data

b) The case of 2 data

Note: When sending more than two data, the last datum (or last two data) is valid.

Command Definitions

Command	Code	D1	D2	Function
REGISTERS SETTING	00100001 00100010 00100100	X address Data Low address	Y address 00H High address	Set Cursor Pointer Set Offset Register Set Address Pointer
SET CONTROL WORD	01000000 01000001 01000010 01000011	Low address Columns Low address Columns	High address 00H High address 00H	Set Text Home Address Set Text Area Set Graphic Home Address Set Graphic Area
MODE SET	1000X000 1000X001 1000X011 1000X100 10000XXX 10001XXX	11111		OR mode EXOR mode AND mode Text Attribute mode Internal CG ROM mode External CG RAM mode
DISPLAY MODE	10010000 1001XX10 1001XX11 100101XX 100110XX 100111XX	- - - - -		Display off Cursor on, blink off Cursor on, blink on Text on, graphic off Text off, graphic on Text on, graphic on
CURSOR PATTERN SELECT	10100000 10100001 10100010 10100011 1010010	 - - - - -	- - - - - - -	1-line cursor 2-line cursor 3-line cursor 4-line cursor 5-line cursor 6-line cursor 7-line cursor 8-line cursor
DATA AUTO READ / WRITE	10110000 10110001 10110010		_ _ _	Set Data Auto Write Set Data Auto Read Auto Reset
DATA READ / WRITE	11000000 11000001 11000010 11000011 11000100 11000101	Data — Data — Data —	_ _ _ _ _ _	Data Write and Increment ADP Data Read and Increment ADP Data Write and Decrement ADP Data Read and Decrement ADP Data Write and Nonvariable ADP Data Read and Nonvariable ADP
SCREEN PEEK	11100000	_	_	Screen Peek
SCREEN COPY	11101000			Screen Copy

X: invalid

Command	Code	D1	D2	Function
BIT SET / RESET	11110XXX 11111XXX 1111X000 1111X001 1111X010 1111X011 1111X100 1111X101 1111X110 1111X111	- - - - - - - -	- - - - - - - -	Bit Reset Bit Set Bit 0 (LSB) Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 (MSB)

X: invalid

Setting registers

Code	Hex.	Function	D1	D2
00100001	21H	SET CURSOR POINTER	X ADRS	Y ADRS
00100010	22H	SET OFFSET REGISTER	DATA	00H
00100100	24H	SET ADDRESS POINTER	LOW ADRS	HIGH ADRS

(1) Set Cursor Pointer

The position of the cursor is specified by X ADRS and Y ADRS. The cursor position can only be moved by this command. Data read / write from the MPU never changes the cursor pointer. X ADRS and Y ADRS are specified as follows.

X ADRS 00H to 4FH (lower 7 bits are valid) Y ADRS 00H to 1FH (lower 5 bits are valid)

a) Single- Scan

X ADRS 00 to 4FH

Y ADRS 00H to 0FH

b) Dual- Scan

X ADRS 00H to 4FH

Y ADRS 00H to 0FH Upper screen

Y ADRS 10H to 1FH Lower screen

(2) Set Offset Register

The offset register is used to determine the external character generator RAM area. The T6963C has a 16-bit address bus as follows:

MSB LSB ad9 ad15 ad14 ad13 ad12 ad11 ad10 ad8 ad7 ad6 ad5 ad4 ad3 ad2 ad1 ad0

Offset Register Data Character Code Line Scan

T6963C assign External character generator, when character code set 80H to FFH in using internal character generator. Character code 00H to 80H assign External character generator, when External generator mode.

The senior five bits define the start address in external memory of the CG RAM area. The next eight bits represent the character code of the character. In internal CG ROM mode, character codes 00H to 7FH represent the predefined "internal" CG ROM characters, and codes 80H to FFH represent the user's own "external" characters. In external CG RAM mode, all 256 codes from 00H to FFH can be used to represent the user's own characters. The three least significant bits indicate one of the eight rows of eight dots that define the character's shape.

The relationship between display RAM address and offset register

Offset register data 00000 00001 00010	CG RAM hex. address (start to end) 0000 to 07FFH 0800 to 0FFFH 1000 to 17FFH
11100	E000 to E7FFH
11101	E800 to EFFFH
11110	F000 to F7FFH
11111	F800 to FFFFH
(Example 1) Offset register Character code Character generator RAM start addre	02H 80H ess 0001 0100 0000 0000 1 4 0 0 H
	(address) (data)
	1400Н 00Н
	1401H 1FH
	1402H 04H
	1403H 04H 1404H 04H
	1405H 04H
	1406H 04H
	1407Н 00Н

(Example 2) The relationship between display RAM data and display characters

 γ and ζ are displayed by character generator RAM.

(3) Set Address Pointer

The Set Address Pointer command is used to indicate the start address for writing to (or reading from) external RAM.

The Flowchart for Set Address Pointer command

Set Control Word

Code	Hex.	Function	D1	D2
01000000	40H	Set Text Home Address	Low address	High address
01000001	41H	Set Text Area	Columns	00H
01000010	42H	Set Graphic Home Address	Low address	High address
01000011	43H	Set Graphic Area	Columns	00H

The home address and column size are defined by this command.

(1) Set Text Home Address

The starting address in the external display RAM for text display is defined by this command. The text home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

TH	TH + CL
TH +TA	TH + TA + CL
(TH + TA) + TA	TH + 2TA + CL
(TH + 2TA) +TA	TH + 3TA + CL
TH + (n - 1) TA	TH + (n - 1) TA + CL

TH: Text home address

TA: Text area number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

Text home address : 0000H

Text area : 0020H MD2 = H, MD3 = H : 32 columns $\overline{DUAL} = H$, MDS = L, MD0 = L, MD1 = H: 4 lines

0000H	0001H	001EH	001FH
0020H	0021H	003EH	002FH
0040H	0041H	005EH	005FH
0060H	0061H	007EH	007FH

(2) Set Graphic Home Address

The starting address of the external display RAM used for graphic display is defined by this command. The graphic home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

GH	GH + CL
GH + GA	GH + GA + CL
(GH + GA) + GA	GH + 2GA + CL
(GH + 2GA) + GA	GH + 3GA + CL
GH + (n - 1) GA	GH + (n - 1) GA + CL

GH: Graphic home address

GA: Graphic area number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

Graphic home address : 0000H Graphic area : 0020H $\underline{MD2} = H$, $\underline{MD3} = H$: 32 columns $\underline{\overline{DUAL}} = H$, $\underline{MDS} = L$, $\underline{MD0} = H$, $\underline{MD1} = H$: 2 lines

0000H	0001H	001EH	001FH
0020H	0021H	003EH	003FH
0040H	0041H	005EH	005FH
0060H	0061H	007EH	007FH
0080H	0081H	009EH	009FH
00A0H	00A1H	00BEH	00BFH
00C0H	00C1H	00DEH	00DFH
00E0H	00E1H	00FEH	00FFH
0100H	0101H	011EH	011FH
0120H	0121H	013EH	013FH
0140H	0141H	015EH	015FH
0160H	0161H	017EH	017FH
0180H	0181H	019EH	019FH
01A0H	01A1H	01BEH	01BFH
01C0H	01C1H	01DEH	01DFH
01E0H	01E1H	01FEH	01FFH

(3) Set Text Area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the display.

(Example)

LCD size : 20 columns, 4 lines

Text home address : 0000H

Text area : 0014H MD2 = H, MD3 = H : 32 columns $\overline{DUAL} = H$, MDS = L, MD0 = L, MD1 = H : 4 lines

0000	0001	 0013	0014	 001F
0014	0015	 0027	0028	 0033
0028	0029	 003B	003C	 0047
003C	003D	 004F	0050	 005B

(4) Set Graphic Area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the graphic display.

(Example)

LCD size : 20 columns, 2 lines

Graphic home address : 0000H Graphic area : 0014H MD2 = H, MD3 = H : 32 columns $\overline{DUAL} = H$, MDS = L, MD0 = H, MD1 = H : 2 lines

				•	_
0000	0001		0013	0014	 001F
0014	0015		0027	0028	 0033
0028	0029		003B	003C	 0047
003C	003D		004F	0050	 005B
0050	0051		0063	0064	 006F
0064	0065		0077	0078	 0083
0078	0079		008B	008C	 0097
008C	008D		009F	00A0	 00AB
00A0	00A1		00B3	00B4	 00BF
00B4	00B5		00C7	00C8	 00D3
00C8	00C9		00DB	00DC	 00E7
00DC	00DD		00EF	00F0	 00FD
00F0	00F1		0103	0104	 011F
0104	0105		0127	0128	 0123
0128	0129		013B	013C	 0147
013C	013D		014F	0150	 015B
		LCD ◀			•

If the graphic area setting is set to match the desired number of columns on the LCD, the addressing scheme will be automatically modified so that the start address of each line equals the end address of the previous line + 1.

Mode set

Code	Function	Operand
1000X000	OR Mode	_
1000X001	EXOR Mode	_
1000X011	AND Mode	_
1000X100	TEXT ATTRIBUTE Mode	_
10000XXX	Internal Character Generator Mode	_
10001XXX	External Character Generator Mode	_

X: invalid

The display mode is defined by this command. The display mode does not change until the next command is sent. The logical OR, EXOR, AND of text or graphic display can be displayed.

In Internal Character Generator mode, character codes 00H to 7FH are assigned to the built–in character generator ROM. The character codes 80H to FFH are automatically assigned to the external character generator RAM.

(Example)

Note: Attribute functions can only be applied to text display, since the attribute data is placed in the graphic RAM area.

Attribute function

The attribute operations are Reverse display, Character blink and Inhibit. The attribute data is written into the graphic area which was defined by the Set Control Word command. Only text display is possible in Attribute Function mode; graphic display is automatically disabled. However, the Display Mode command must be used to turn both Text and Graphic on in order for the Attribute function to be available. The attribute data for each character in the text area is written to the same address in the graphic area. The Attribute function is defined as follows.

Attribu	ute RAM	1byte	Х	Х	Х	Χ	d3	d2	d1	d0	
d3	d2	d1	d0			Fun	ction				
0	0	0	0	Norma	display						
0	1	0	1	Revers	e displa	у					
0	0	1	1	Inhibit (display						
1	0	0	0	Blink o	f normal	display					
1	1	0	1	Blink o	f reverse	display	,			X: inval	id
1	0	1	1	Blink o	f inhibit (display					

Display mode

Code	Function	Operand	
10010000	Display off	_	
1001XX10	Cursor on, blink off	_	
1001XX11	Cursor on, blink on	_	
100101XX	Text on, graphic off	_	
100110XX	Text off, graphic on	>	X: inva
100111XX	Text on, graphic on	_	

Note: It is necessary to turn on "Text display" and "Graphic display" in the following cases.

- a) Combination of text / graphic display
- b) Attribute function

• Cursor pattern select

Code	Function	Operand
10100000	1-line cursor	_
10100001	2-line cursor	
10100010	3-line cursor	_
10100011	4-line cursor	_
10100100	5-line cursor	_
10100101	6-line cursor	_
10100110	7-line cursor	
10100111	8-line cursor	_

When cursor display is ON, this command selects the cursor pattern in the range 1 line to 8 lines. The cursor address is defined by the Cursor Pointer Set command.

1-line cursor

2-line cursor

8-line cursor

• Data Auto Read / Write

Code	Hex. Function		Operand
10110000	В0Н	Set Data Auto Write	_
10110001	B1H	Set Data Auto Read	_
10110010	B2H	Auto Reset	_

This command is convenient for sending a full screen of data from the external display RAM. After setting Auto mode, a Data Write (or Read) command is need not be sent between each datum. A Data Auto Write (or Read) command must be sent after a Set Address Pointer command. After this command, the address pointer is automatically incremented by 1 after each datum. In Auto mode, the T6963C cannot accept any other commands.

The Auto Reset command must be sent to the T6963C after all data has been sent, to clear Auto mode.

Note: A Status check for Auto mode

(STA2, STA3 should be checked between sending of each datum. Auto Reset should be performed after checking STA3 = 1 (STA2 = 1). Refer to the following flowchart.

• Data Read / Write

Code	Hex.	Function	Operand
11000000	C0H	Data Write and Increment ADP	Data
11000001	C1H	Data Read and Increment ADP	_
11000010	C2H	Data Write and Decrement ADP	Data
11000011	СЗН	Data Read and Decrement ADP	_
11000100	C4H	Data Write and Nonvariable ADP	Data
11000101	C5H	Data Read and Nonvariable ADP	_

This command is used for writing data from the MPU to external display RAM, and reading data from external display RAM to the MPU. Data Write / Data Read should be executed after setting address using Set Address Pointer command. The address pointer can be automatically incremented or decremented using this command.

Note: This command is necessary for each 1-byte datum. Refer to the following flowchart.

Screen Peek

Code	Hex.	Function	Operand
11100000	E0H	Screen Peek	_

This command is used to transfer 1 byte of displayed data to the data stack; this byte can then be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by this command.

The status (STA6) should be checked just after the Screen Peek command. If the address determined by the Set Address Pointer command is not in the graphic area, this command is ignored and a status flag (STA6) is set.

Refer to the following flowchart.

Note: This command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting.

Software column number is related to Set Text Area and Set Graphic Area command.

• Screen Copy

Code	Hex.	Function	Operand
11101000	E8H	Screen Copy	_

This command copies a single raster line of data to the graphic area.

The start point must be set using the Set Address Pointer command.

Note 1: If the attribute function is being used, this command is not available. (With Attribute data is graphic area data.)

Note 2: With Dual-Scan, this command cannot be used (because the T6963C cannot separate the upper screen data and lower screen data).

Refer to the following flowchart.

Note: This command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting.

Software column number is related to Set Text Area and Set Graphic Area command.

• Bit Set / Reset

Code	Function	Operand	
11110XXX	Bit Reset	_	
11111XXX	Bit Set	_	
1111X000	Bit 0 (LSB)	_	
1111X001	Bit 1	_	
1111X010	Bit 2	_	
1111X011	Bit 3	_	
1111X100	Bit 4	_	
1111X101	Bit 5	_	
1111X110	Bit 6	_	X: invalid
1111X111	Bit 7 (MSB)	_	

This command use to set or reset a bit of the byte specified by the address pointer. Only one bit can be set / reset at a time.

Refer to the following flowchart.

Character Code Map

The relation between character codes and character pattern (CG ROM TYPE 0101)

ш								
Ш								
٥								
U								
8								
⋖								
6								
∞								
7								
9								
2								
4								
ж								
2								
1								
0								
LSB MSB	0	-	2	3	4	5	9	7
							l	

ட Δ ⋖ δ / 9 LSB 0 2 m 4 9

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit
Supply Voltage	V _{DD} (Note)	-0.3 to 7.0	٧
Input Voltage	V _{IN} (Note)	-0.3 to V _{DD} + 0.3	٧
Operating Temperature	T _{opr}	-20 to 70	°C
Storage Temperature	T _{stg}	-55 to 125	°C

Note: Referenced to $V_{SS} = 0 \text{ V}$.

Electrical Characteristics Dc Characteristics

Test Conditions (Unless Otherwise Noted, $V_{SS} = 0 \text{ V}$, $V_{DD} = 5.0 \text{ V} \pm 10\%$, Ta = -20 to 75°C)

Iter	m	Symbol	Test Circuit	Test Condition		Min	Тур.	Max	Unit	Pin Name
Operating V	oltage	V_{DD}	_	_		4.5	5.0	5.5	V	V_{DD}
Input	H Level	V _{IH}		_		V _{DD} - 2.2	_	V _{DD}	٧	Input pins
трас	L Level	V _{IL}		_		0	_	0.8	V	Input pins
Output	H Level	V _{OH}		_	_		_	V _{DD}	V	Output pins
Voltage	L Level	V _{OL}		_		0	_	0.3	V	Output pins
Output	H Level	R _{OH}	_	V _{OUT} = V _{DD} - 0.5 V		_	-	400	Ω	Output pins
Resistance	L Level	R _{OL}	_	V _{OUT} = 0.5 V		_	_	400	Ω	Output pins
Input Pull-u Resistance	ıp	RPU	_	_		50	100	200	kΩ	(Note 1)
Operating F	requency	fosc	_	_		0.4	_	5.5	MHz	
Current Cor (Operating)		I _{DD (1)}	_	$V_{DD} = 5.0 V$ (1 $f_{OSC} = 3.0 MHz$	Note 2)	-	3.3	6	mA	V _{DD}
Current Cor (Halt)	nsumption	I _{DD (2)}	_	V _{DD} = 5.0 V		_	_	3	μΑ	V _{DD}

Note 1: Applied $\overline{T1}$, $\overline{T2}$, \overline{RESET}

Note 2: MDS = L, MD0 = L, MD1 = L, MD2 = H, MD3 = H, FS0 = L, FS1 = L, $\overline{\text{SDSEL}}$ = L, $\overline{\text{DUAL}}$ = H, D7 to D0 = LHLHLHLH

Ac Characteristics

• Switching Characteristics (1)

Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V, Ta = -20 to 70°C)

Item	Symbol	Test Conditions	Min	Max	Unit
Operating Frequency	f _{SCP}	Ta = −10~70°C	_	2.75	MHz
SCP Pulse Width	t _{CWH} , t _{CWL}	_	150	_	ns
SCP Rise / Fall Time	t _r , t _f	_	_	30	ns
LP Set-up Time	t _{LSU}	_	150	290	ns
LP Hold Time	t _{LHD}	_	5	40	ns
Data Set-up Time	t _{DSU}	_	170	_	ns
Data Hold Time	t _{DHD}	_	80	_	ns
FR Delay Time	t _d	_	0	90	ns
CDATA Set-up Time	tcsu	_	450	850	ns
CDATA Hold Time	tCHD	_	450	950	ns

• Switching Characteristics (2)

Bus Timing

Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V, Ta = -20 to 75°C)

Item	Symbol	Test Conditions	Min	Max	Unit
C / D Set-up Time	t _{CDS}	_	100	_	ns
C / D Hold Time	tcDH	_	10	_	ns
CE, RD, WR Pulse Width	t _{CE} , t _{RD} , t _{WR}	_	80	_	ns
Data Set-up Time	t _{DS}	_	80	_	ns
Data Hold Time	t _{DH}	_	40	_	ns
Access Time	tacc	_	_	150	ns
Output Hold Time	toH	_	10	50	ns

• Switching Characteristics (3)

(1) External RAM Read mode

(2) External RAM Write mode

Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V \pm 10%, V_{SS} = 0 V, Ta = -20 to 70°C)

Item	Symbol	Test Conditions	Min	Max	Unit
Address Delay Time	t _{d1}	_	_	250	ns
ce Fall Delay Time (Read)	t _{d2}	_	_	180	ns
ce Rise Delay Time (Read)	t _{d3}	_	_	180	ns
Data Set-up Time	t _{DS}	_	0	_	ns
Data Hold Time	t _{DH}	_	30	_	ns
ce Fall Delay Time (Write)	t _{d4}	_	_	200	ns
ce Rise Delay Time (Write)	t _{d5}	_	_	200	ns
r / w Fall Delay Time	t _{d6}	_	_	180	ns
r / w Rise Delay Time	t _{d7}	_	_	180	ns
Data Stable Time	t _{d8}	_	_	450	ns
Data Hold Time	t _{d9}	_		200	ns

T6963C Example of Application Circuit

The T6963C can be directly connected to a TMPZ84C00A (Z80 Note 1: CMOS). The T6963C can be used with a TMPZ84C00A as shown in the following application circuit.

• MPU memory address mapping

Data is transferred to the T6963C using a memory request signal.

	Address
DATA (I / O)	XXXXH
Command / Status	XXXX + 1H

Note 1: Z80 is a trademark of Zilog Inc.

• MPU I / O addressing

Data is transferred to the T6963C using an I / O request signal.

	I / O Address
DATA	XXH
Command / Status	XX + 1H

• When using PPI LSI (TMP82C55)

The T6963C can be connected to a PPI LSI.

The port A connects to the data bus.

The port C connects to the control bus. (C / D, $\overline{\text{CE}}$, $\overline{\text{WR}}$, $\overline{\text{RD}}$)

Application Circuit (1)

Application Circuit (2)

Sample Program

```
T6963C SAMPLE PROGRAM V0.01
1
2
    :
         ;
3
                          SOURCE PROGRAM for TMPZ84C00P
4
                                            1991 - 2 -15
    :
         ;
        ;
5
                   Display Size: 20 Column × 8 Lines
6
7
                   Character Font: 8 Dots Mode
8
   :
                                     40H ; SET TXT HM ADD
9
        TXHOME
                             EOU
   :
        TXAREA
                                     41H ; SET TXT AREA
10
    :
                             EQU
                                          ; SET GR HM ADD
11
        GRHOME
                             EQU
                                     42H
    :
                                          ; SET GR AREA
12
        GRAREA
                            EQU
                                     43H
   :
13
       OFFSET
                            EQU
                                     22H ; SET OFFSET ADD
   :
14
   :
       ADPSET
                            EQU
                                     24H ; SET ADD PTR
15
   :
       AWRON
                            EQU
                                   OBOH ; SET AUTO WRITE MODE
                                    0B2H ; RESET AUTO WRITE MODE
16
       AWROFF
                            EQU
   :
17
        CMDP
                                     01H
                                           ; CMD PORT
                             EQU
                                          ; DATA PORT
18
    :
        DP
                             EQU
                                     00H
19
        STACK
                             EOU
                                  9FFFH ; STACK POINTER BASE ADDRESS
   :
20
   :
                            0000H
21
                   ORG
22
         START:
   :
23
    :
                   LD
                           SP, STACK
24
    :
25
    :
         ;
           SET TEXT HOME ADDRESS
26
    :
27
                            HL, 0000H
                                                   ; TEXT HOME ADDRESS 0000H
                   LD
   :
28
   :
                   CALL
                            DT2
29
   :
                   LD
                            A, TXHOME
30
                   CALL
                            CMD
   :
31
           SET GRAPHIC HOME ADDRESS
32
    :
        ;
33
    :
34
                   LD
                            HL, 0200H
                                                   ; GRAPHIC HOME ADDRESS 0200H
   :
                            DT2
35
   :
                   CALL
36
                   LD
                            A, GRHOME
37
                            CMD
   :
                   CALL
38
   : ;
```

```
39
        ; SET TEXT AREA
40
41
                LD
                      HL, 0014H
                                        ; TEXT AREA 20 Columns
   :
42
                CALL DT2
43
                LD
                      A, TXAREA
   :
44
                CALL
                       CMD
   :
45
   :
       ; SET GRAPHIC AREA
46
   :
47
   :
                                  ; GRAPHIC AREA 20 Columns
48
                LD
                     HL, 0014H
   :
                CALL DT2
49
   :
                      A, GRAREA
50
   :
                LD
51
                CALL
                       CMD
   :
52
   :
53 :
       ; MODE SET (OR MODE, Internal Character Generator MODE)
54
   :
55
   :
                LD
                      A,80H
56
                CALL CMD
   :
57
          SET OFFSET REGISTER (00010 10000000 000 = 1400H CG RAM START ADDRESS)
58
   :
        ;
59
                                          CHARACTER CODE 80H
   :
                      HL, 0002H
60
                LD
   :
                CALL DT2
61
62
                LD
                     A, OFFSET
   :
63
                CALL
                       CMD
   :
64
   :
65
   :
          DISPLAY MODE
        ;
           (TEXT ON, GRAPHICS OFF, CURSOR OFF)
66
   :
67
   :
68
                LD A, 94H
69
                CALL CMD
70
        ;
71
          WRITE TEXT BLANK CODE
72
   :
                                        ; SET Address Pointer 0000H
73
   :
                LD
                      HL, 0000H
                                        ; (TEXT HOME ADDRESS)
74
                CALL DT2
   :
75
   :
                LD
                      A, ADPSET
76
                CALL
                       CMD
77
                                    ; SET DATA AUTO WRITE
78
               LD A, AWRON
```

```
79 :
                  CALL
                         CMD
 80
 81 :
                        BC, 00A0H
                                             ; 20 Columns \times 8Lines (160 = AOH)
                  LD
 82
        TXCR:
 83
                  LD
                         A, 00H
                                             ; WRITE DATA 00H
 84
                  CALL
                         ADT
                                              ; (WRITE BLANK CODE)
    :
 85 :
                         ВC
 86 :
                  DEC
 87 :
                  LD
                         А, В
 88 :
                         С
                  OR
 89 :
                         NZ, TXCR
                  JR
 90
 91
                  LD
                         A, AWROFF
                                     ; AUTO RESET
    :
 92 :
                  CALL
                         CMD
 93 :
 94:
 95 :
            WRITE EXTERNAL CHARACTER GENERATOR DATA
         ;
 96 :
                          DE, EXTCG
 97
                  LD
                                            ; CG data address in Program
 98
                  LD
                         HL, 1400H
                                             ; CG RAM Start Address (1400H)
 99
                  CALL
                         DT2
    :
100 :
                         A, ADPSET
                  LD
                         CMD
101 :
                  CALL
102 :
                         A, AWRON
103 :
                                            ; SET DATA AUTO WRITE
                 LD
104 :
                  CALL
                         CMD
105 :
106 :
                         в, 40н
                                             ; 8 Character \times 8 byte (64 = 40H)
                  LD
107 :
        EXCG:
108 :
                                             ; WRITE DATA TO EXTERNAL RAM
                 LD
                         A, (DE)
109 :
                  CALL
                         ADT
                  INC
110 :
                         _{\rm HL}
111 :
                  INC
                         DE
112
                  DJNZ
                         EXCG
113 :
114 :
                  LD
                        A, AWROFF
                                            ; AUTO RESET
115 :
                  CALL
                         CMD
116 :
         ; WRITE TEXT DISPLAY DATA (INTERNAL CG)
117 :
118 :
```

```
119 :
                 LD
                       HL, 0040H
                                          ; Address Pointer 3 Line, 4 Column
120 :
                 CALL
                      DT2
121 :
                 LD
                        A, ADPSET
122 :
                        CMD
                 CALL
123 :
124 :
                 LD
                       A, AWRON
                                          ; SET DATA AUTO WRITE
125 :
                 CALL
                        CMD
126 :
127 :
                 LD
                       B, ODH
                                          ; 13 Character
128 :
                        DE, TXPRT
                 LD
129 :
         TXLP1:
130 :
                        A, (DE)
                                          ; WRITE DATA
                 LD
131
                 CALL
                        ADT
132 :
                 INC
                        DE
133 :
                 DJNZ
                        TXLP1
134 :
135 :
                 LD
                       A, AWROFF
                                          ; AUTO RESET
136 :
                        CMD
                 CALL
137
        ;
138 :
        ;
           WRITE TEXT DISPLAY DATA (EXTERNAL CG upper part)
139 :
        ;
140 :
                 LD
                       HL, 006CH
                                          ; Address Pointer 5 Line, 8 Column
                 CALL DT2
141 :
142 :
                 LD
                        A, ADPSET
143 :
                 CALL
                        CMD
144 :
145 :
                LD
                        A, AWRON
                                          ; SET DATA AUTO WRITE
146 :
                 CALL
                        CMD
147 :
148 :
                 LD
                       в, 06Н
                                          ; 6 Character
149 :
                       DE, EXPRT1
150 :
        TXLP2:
151 :
                        A, (DE)
                 LD
                                          ; WRITE DATA
                 CALL
152
                        ADT
153 :
                 INC
154 :
                 DJNZ
                        TXLP2
155 :
156 :
                 LD
                       A, AWROFF
                                          ; AUTO RESET
157 :
                        CMD
                 CALL
158 : ;
```

```
159 :
       ; WRITE TEXT DISPLAY DATA (EXTERNAL CG lower part)
160 :
161 :
                      HL, 0080H
               LD
                                       ; Address Pointer 6 Line, 8 Column
162 :
                CALL DT2
163 :
                LD
                      A, ADPSET
164 :
                CALL
                      CMD
165 :
166 :
               LD
                     A, AWRON
                                       ; SET DATA AUTO WRITE
167 :
               CALL
                      CMD
168 :
169 :
               LD
                     в, 06Н
                                       ; 6 Character
170 :
                      DE, EXPRT2
                LD
171 :
       TXLP3:
172 :
                                       ; WRITE DATA
                     A, (DE)
               LD
173 :
                CALL ADT
174 :
               INC
                     DE
175 :
               DJNZ
                      TXLP3
176 :
               LD
                     A, AWROFF
177
                                       ; AUTO RESET
                CALL
178 :
                      CMD
179 :
       PEND:
180 :
               JP PEND
                                       ; PROGRAM END
181 :
182 :
       ; Subroutine start
183 :
184 :
       ; COMMAND WRITE ROUTINE
185 :
186 :
       CMD:
187 :
               PUSH AF
188 :
       CMD1: IN A, (CMDP)
189 :
               AND
                     03H
190 :
                                       ; STATUS CHECK
                CP
                      03H
191 :
                     NZ, CMD1
                JR
192
                POP
                      AF
193 :
                OUT
                      (CMDP), A
                                       ; WRITE COMMAND
194 :
                RET
195 :
196 : ; DATA WRITE (1 byte) ROUTINE
197 :
198 : DT1:
```

```
199 :
                PUSH AF
200 :
       DT11:
               IN
                     A, (CMDP)
201 :
                AND
                      03H
202 :
                                        ; STATUS CHECK
                CP
                       03H
203 :
                JR
                       NZ, DT11
                      AF
204 :
                POP
205 :
                                        ; WRITE DATA
                OUT
                      (DP), A
206 :
                RET
207 :
       ; DATA WRITE (2 byte) ROUTINE
208 :
209 :
210 :
        DT2:
                      A, (CMDP)
211
                IN
212 :
                AND
                       03H
213 :
                CP
                       03H
                                        ; STATUS CHECK
214 :
                JR
                      NZ, DT2
215 :
                LD
                      A, L
216 :
                       (DP), A
                OUT
                                        ; WRITE DATA (D1)
217 :
       DT21:
                       A, (CMDP)
218 :
                IN
219 :
                AND
                       03H
220 :
                CP
                       03H
                                        ; STATUS CHECK
                       NZ, DT21
221 :
                JR
222 :
223 :
                      А, Н
                LD
224 :
                                      ; WRITE DATA (D2)
                OUT
                       (DP), A
225 :
                RET
226 :
       ; AUTO WRITE MODE ROUTINE
227 :
228 :
229 :
       ADT:
230 :
                PUSH
                     AF
231 :
                       A, (CMDP)
       ADT1:
                IN
232
                AND
                       08H
233
   :
                CP
                       08H
                                        ; STATUS CHECK
234 :
                JR
                      NZ, ADT1
235 :
                POP
                      AF
236 :
                OUT
                      (DP), A
                                        ; WRITE DATA
237 :
                RET
238 : ;
```

```
239 :
        ; Subroutine end
240 :
        ; TEXT DISPLAY CHARACTER CODE
241 :
242
243
        TXPRT:
    :
                        34H, 00H, 2FH, 00H, 33H, 00H ; INTERNAL CG CODE
244
   :
                DEFB
245 :
                DEFB
                        28H, 00H, 29H, 00H, 22H, 00H, 21H
246 :
       EXPRT1:
247 :
                DEFB
                       80H, 81H, 00H, 00H, 84H, 85H ; EXTERNAL CG CODE
248 :
       EXPRT2:
249 :
                      82H, 83H, 00H, 00H, 86H, 87H
                DEFB
250 :
       ; EXTERNAL CG FONT DATA
251
   :
252 :
253 :
        EXTCG:
254 :
255 :
         ;「東」 upper / left CHARACTER CODE 80H
256 :
                       01H, 01H, 0FFH, 01H, 3FH, 21H, 3FH, 21H
                DEFB
257
258
   :
        ;「東」 upper / right CHARACTER CODE 81H
259 :
                DEFB
                      00H, 00H, 0FFH, 00H, 0FCH, 04H, 0FCH, 04H
260 :
        ; 「東」 lower/left CHARACTER CODE
261 :
                                        82H
262 :
                DEFB 21H, 3FH, 05H, 0DH, 19H, 31H, 0E1H, 01H
263 :
264 :
        ;「東」 lower/right CHARACTER CODE 83H
265
                DEFB
                     04H, OFCH, 40H, 60H, 30H, 1CH, 07H, 00H
266 :
         ; 「芝」 upper/left CHARACTER CODE
267 :
                                         84H
268 :
               DEFB 08H, 08H, 0FFH, 08H, 09H, 01H, 01H, 7FH
269 :
270 :
        ; 「芝」 upper/right CHARACTER CODE
                                         85H
                DEFB 10H, 10H, 0FFH, 10H, 10H, 00H, 00H, 0FCH
271 :
272
273
   :
        ; 「芝」 lower/left CHARACTER CODE
                                         86H
274 :
                DEFB 00H, 00H, 00H, 01H, 07H, 3CH, 0E7H, 00H
275 :
276 :
         ; 「芝」 lower/right CHARACTER CODE 87H
               DEFB 18H, 30H, 60H, 0COH, 00H, 0COH, 3FH
277 :
278 :
279 :
                END
```

Display Sample

Package Dimensions

Weight: 1.2g (Typ.)