西安邮电大学课程考试试题(A卷)

(2020——2021 学年第一学期)

课程名称: 概率论与数理统计 B

考试专业、年级:通工(含卓越,拔尖班),信工,广电,电科,物联网工程,电信工程及管理 19 级 考核方式:(闭卷) 可使用计算器(是)

题号	_	 =	四	五.	六	七	八	九	总分
得分									
评卷人									

得分: 一、判断题(共3题,每题2分,共6分)

- 1. 对于任一事件A, 其发生的概率满足 $0 \le P(A) \le 1$ 。

得分: _____ 二、填空题(共8题,每题3分,共24分)

- 1. 随机变量所取的可能值是有限多个或无限多个(可列个),则称该变量为____型随机变量
- 2. 二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} cx^2y, x^2 \le y \le 1 \\ 0, 其他 \end{cases}$,则常数c为_____。
- 3. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} e^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$,则 Y = 2X 的数学期望为______。

4. 设总体 X 和 Y 相互独立,且都服从 N(0,1), $X_1, X_2, \cdots X_9$ 是来自总体 X 的样本, $Y_1, Y_2, \cdots Y_9$

是来自总体Y的样本,则统计量 $U = \frac{X_1 + \dots + X_9}{\sqrt{Y_1^2 + \dots + Y_9^2}}$ 服从_____分布(要求给出自由度)。

- 5. 设某种清漆干燥时间 $X \sim N(\mu, \sigma^2)$ (单位:小时),取容量为 n 的样本,其样本均值和方差分别为 \bar{X}, S^2 ,则 μ 的置信度为 1- α 的单侧置信上限为:
- 6. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为来自总体 X 样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,在显著性水平 α

下,假设 $H_0: \sigma^2 \leq \sigma_0^2$, $H_1: \sigma^2 > \sigma_0^2$ (σ_0^2 为已知数), $\chi^2 = \frac{\sum\limits_{i=1}^n (X_i - X)^2}{\sigma_0^2}$ 则当_____,接受 H_0

7. 设随机变量 X 有有限的期望 E(X) 及方差 $D(X) = \sigma^2$,则

 $P\{E(X) - 3\sigma < X < E(X) + 3\sigma\} \ge \underline{\hspace{1cm}}.$

8. 设 X_1, X_2, \dots 是相互独立的随机变量序列,且 X_i ($i=1,2,\dots$) 服从参数为 λ 的泊松分布,则

 $\lim_{n\to\infty} P\{\frac{1}{\sqrt{n\lambda}}(\sum_{i=1}^n X_i - n\lambda) \le x\} = \underline{\hspace{1cm}}$

得分: _____ 三、计算题(共 6 题, 1-3 每题 11 分, 4-6 每题 9 分, 共 60 分) **得分:** _____ 1. 有一批考生的报名表来自 A、B、C 三个地区,分别有 10、6、16 份,其中

男生的分别为 6 份、3 份、12 份。现随机地选取一个地区,再无放回地先后任取两份报名表,请问。

- (1) 若已知选到的是 C 地区, 求第一次选到男生报名表且第二次选到女生报名表的概率; (3分)
- (2) 若选到的地区未知,求第一次选到男生的报名表的概率;(4分)
- (3) 若已知第二次选到的是女生的报名表,求第一次选到男生的报名表的概率。(4分)

	7		
			得分: 3. 设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服
			从均匀分布,求 $Cov(X,Y)$, $ ho_{xy}$
-1-			
沙山			
		 得分: 2. 设随机变量(X,Y)的概率密度为	
		$f(x,y) = \begin{cases} be^{-(x+y)}, 0 < x < 1, 0 < y < +\infty \\ 0, $	
		` `	
		(1) 试确定常数 b. (2分)	得分: 4. 根据以往经验,某种灯泡的寿命服从均值为 110 小时的指数分布。现随机的
W		(2) 求边缘概率密度 $f_X(x), f_Y(y)$ (4分)	取 18 只,设它们的寿命是相互独立的。求这 18 只灯泡的寿命总和大于 2498 小时的概率。
本		(3) 判断 X 和 Y 是否独立,并求函数 Z=max{X,Y}的分布函数(5分)	$(\Phi(1.11) = 0.8665, \Phi(1.8) = 0.964)$
			(\Psi(1.11) = 0.0003, \Psi(1.0) = 0.704 /
XX			
专业班级			
4			

孙	得分 : 5. 在总体 $X \sim N(10,3^2)$ 中随机的抽取一个容量为 36 的样本,求样本均值 \overline{X} 在 9 到 11 之间取值的概率。($\Phi(2)=0.9772$)	得分 : 四、分析计算题(共 1 题,10 分) 某食品厂用自动装罐机装罐头食品,规定标准重量为 250 克时机器工作为正常,每天定时检验机器情况,现抽取 16 罐,测得平均重量 \overline{X} = 252 克,样本标准差 S =4 克,假定罐头重量服从正态分布,问在显著性水平 α = 0.05 下,是否可以认为该机器工作正常(即均值为 250 克)?并给出检验过程(已知: $z_{0.025}$ =1.96, $z_{0.05}$ =1.65, $t_{0.025}$ (15)=2.1314, $t_{0.05}$ (15)=1.7531)
姓名	得分: 6. 设总体 X 具有分布律 $X \sim \begin{pmatrix} 1 & 2 & 3 \\ \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{pmatrix}$,其中 $0 < \theta < 1$ 为未知参数. $X_1, X_2,, X_n$ 是取自总体 X 的一组样本,对应的一组样本值为 $x_1 = 1, x_2 = 2, x_3 = 1$,求 θ 的矩估计和最大似然估计.	
专业班级		