During development, neurons undergo axon guidance and soma guidance.
Axon can migrate responding to attractive cues and repulsive cues.
ROBO/SLIT system
ROBO receptors: belongs to the immunoglobulin superfamily.
○ 1 type in C. elegans, 3 in Drosophila and vertebrates, 4 in humans.
Contains immunoglobulin-like domains and fibronectin type III repeats
SLIT ligands: contains 4 leucine rich repeat (LRR) domains
○ 1 type in C. elegans and drosophila, 3 homologs in vertebrates.
○ Contains EGF-like repeats, laminin G-like repeats, and cysteine knot.
EPH/Ephrin system
EPH receptors: two classes A and B, can have different responses in different neurons
○ Cysteine rich domains
○ Fibronectin type III domains
○ Kinase domain
○ PDZ domains
Forward signalling repels growth cone, causes growth cone collapse
Ephrin ligands: two classes A and B
○ Anchored by GPI
○ Contain intracellular PDZ domain (bidirectional signalling)
Reverse signalling promote growth cone survival
Semaphorin - plexin/neuropilin system
Class 3 semaphorin ligands: seven members SEMA3A~SEMA3G
Binding with receptor causes growth cone collapse, repel growth cone
○ Exception SEMA3E, can bind to D-type plexin PLXND1 and repels growth cone.
○ However, SEMA3E can optionally recruit NRP1 and VEGFR2, which promotes growth cone survival
Neuropilin: two classes, NRP1 and NRP2
○ Act as coreceptors with SEMA3 ligands
○ Act as receptor for VEGF, promotes growth cone survival with coreceptor X.
Plexin A type receptors: four classes PLXNA1~4
○ Contain intracellular domains to allow signal transduction.
○ Explant assay shows KO of PLXNA3/4 show lack of repulsion, shows PLXNA4 important for repulsion.
○ KO of PLXNA4 show neuron grow into no neuron zone in WT mice.
VEGF - VEGFR:
All VEGF isoforms bind to VEGFR2
VEGF exon 6 7 important to bind with NRP1
VEGF downstream signalling PI3K - promote growth.
Culturing in vitro and observing growth cone turning can assess promoting/inhibitory effects of signalling
molecules.
Dil labelling can stain the neuron axon, visualise the neuron pathway.