Interactive Online Learning for Obstacle Classification on a Mobile Robot

Viktor Losing^{1,2}, Barbara Hammer² and Heiko Wersing¹

¹University of Bielefeld Bielefeld, Germany

²Honda Research Institute Europe GmbH Offenbach, Germany

Online Learning

Motivation:

- Adaptation to user habits & environment
- Current methods rather simple¹

Benefits:

- Incremental learning
- Incorporation of new classes
- Control of model complexity
- Handling of drift

Challenges:

Stability - Plasticity

¹ R. Yang, M. Newman "Learning from a learning thermostat: Lessons for intelligent systems for the home", 2013

Contributions

- I. Realization of a new interactive Learning Scenario on a Mobile Robot
 - Outdoor object recognition in a garden environment
 - Interaction via iPad
 - Recording of a challenging outdoor benchmark image dataset for learning
- 2. Application of prototype based learning to online scenarios
 - Extensive evalualtion of different prototype placement strategies

Interactive Scenario

- Random exploration
- Grass-segmentation for detection
- Labeling via iPad
- Object specific actions
 - Comment
 - Drive around/over
- Confidence estimation
 - Unknown objects

Video

Feature Representation

- Color based: simple & robust
- rg-Chromaticity histogram
- Intensity invariant
- ▶ 21 dimensions
- Hist.-normalization for size invariance

Processing Pipeline

Outdoor Benchmark Image Dataset

- ▶ 40 objects
- 5 sequences in cloudy/sunny conditions
- ▶ 10 images per sequence

Sequences

All objects

Challenges

GLVQ¹

- Supervised, prototype—based
- $E(X) = \sum_{i=1}^{n} \Phi[(d_{i}^{+} d_{i}^{-})/(d_{i}^{+} + d_{i}^{-})]$
- Minimized in stochastic gradient descent scheme

- Intuitive & powerful²
- Complexity control

¹ A.Sato, K.Yamada "Generalized Learning Vector Quantization", 1995

² T. Kietzmann, S. Lange "Incremental GRLVQ: Learning relevant features for 3D object recognition", 2008

Short-term Memory

 $\Psi := \langle (x_i, y_i, d_i^+, d_i^-) \mid i \in 1, ..., t \rangle$, window of recent t samples

Ψ

 x_0, y_0 d^+_0, d^-_0

$$x_{n-t+1}, y_{n-t+1}$$

 $d^{+}_{n-t+1}, d^{-}_{n-t+1}$

 $\bullet \bullet \bullet \begin{vmatrix} x_{n-1}, \\ d^+_{n-1} \end{vmatrix}$

 $\begin{bmatrix} x_{n-1}, y_{n-1} & x_n, y_n \\ d^+_{n-1}, d^-_{n-1} & d^+_n, d^-_n \end{bmatrix}$

0

n-t+1

n-1

n sample idx.

Current Placement Strategies

- Based on class-local heuristics
- Use misclassifications only

¹ S.Kirstein, H.Wersing "Rapid Online Learning of objects in a biologically motivated architecture", 2005

² M.Grbovic, S. Vucetic "Learning Vector Quantization with adaptive prototype addition and removal", 2009

³ S. Bermejo, J. Cabestany "A new dynamic lvq-based classifier and its application to handwritten digits", 1998

Proposed Strategy - SamplingCost

- $-\widehat{\Psi} \subseteq \Psi, |\widehat{\Psi}| = \widehat{t}$
- $\forall (x_i, y_i) \in \widehat{\Psi}$:
 - $\widehat{W_i} \coloneqq \{W \cup (x_i, y_i)\}$
 - $-\dot{\Psi}_{i} = update \Psi$
 - Calculate cost-function value $E(\dot{\Psi}_i, \widehat{W}_i)$
- Choose \widehat{W}_i s.t. $E(\dot{\Psi}_i, \widehat{W}_i)$ is minimized

Artificial Dataset Border

Border-DS	Acc.	Nodes
SamplingCost	93.51	38.2
Closest	90.17	58.2
Cluster	91.93	42.9
Voronoi	91.71	46.4

Artificial Dataset Overlap

Overlap-DS	Acc.	Nodes
SamplingCost	78.74	21.3
Closest	65.76	29.8
Cluster	74.85	25.6
Voronoi	74.08	26.4

Outdoor Dataset

Random-order	Test acc.	Train acc.	Nodes	Sequence-order	Test acc.	Train acc.	Nodes
SamplingCost	81.58	85.94	234.8	SamplingCost	61.38	91.04	232.0
Closest	78.03	83.23	253.4	Closest	59.58	88.04	245.8
Cluster	78.55	83.06	247.0	Cluster	59.18	88.96	235.6
Voronoi	81.18	85.62	236.6	Voronoi	58.81	89.22	231.3

Sequence-order	Acc. / Nodes	Acc. / Nodes	Acc. / Nodes
	500 samples	1500 samples	2800 samples
SamplingCost-GLVQ	42.9 / 116.4	58.6 / 446.2	64.3 / 948.8
SamplingCost-GMLVQ	44.1 / 100.4	59.3 / 376.6	67.1 / 773.5
iSVM ¹	40.6 / 363.3	57.5 / 777.0	65.2 / 1347

¹ C.P. Diehl, G. Cauwenberghs "SVM incremental learning, adaptation and optimization", 2005

Easy/Difficult Objects

Easy Difficult Object Mostly confused with

Summary

- New interactive real-time learning scenario
- Outdoor benchmark image dataset for learning
- Proposal of cost-function based placement strategy
- SamplingCost performs superior, especially for Overlaps
- Representation not robust enough, could be extended by shape based features

Thank you for your attention!