Guarda

Audit de sécurité

RSX 101

Dorian Tamburrini – Jérôme Boyer - Kacper Karcz 5-20-2022

Sommaire

Configuration en place	2
Equipements physiques utilisés dans l'infrastructure	2
Récapitulatif de toutes les machines présentes dans l'infrastructure	2
Configuration serveur web	2
Fonctionnalités mise en place sur les machines	3
Serveurs web :	3
Borne wifi	4
Routeur	4
Pare-feu / pfSense	4
Résultats OpenVAS & Nessus	5
OpenVAS	5
Nessus	

Configuration en place

Equipements physiques utilisés dans l'infrastructure

- Linksys WRT54GL utilisé en tant qu'access point
- PC Portable n°1 utilisé en tant que pare-feu pfSense
- PC Portable n°2 utilisé afin d'héberger le routeur, ainsi que les machines virtuelles

Récapitulatif de toutes les machines présentes dans l'infrastructure

- Borne wifi
- Machine pare-feu / pfSense dédiée
- Routeur Kali permettant de connecter les machines virtuelles au pare-feu
- Deux serveurs Web tournants avec une redondance Heartbeat
- Un serveur Active Directory
- Poste client Windows

Configuration serveur web

- OS utilisé : Kali

- Logiciel HTTP: Apache HTTP Server

- Langage site : PHP

- Système de gestion BDD SQL : PostgreSQL

Fonctionnalités mise en place sur les machines

Serveurs web:

Au niveau du site web :

- Code non visible via l'inspecteur
- Informations serveur caché au niveau de l'inspecteur
- Index désactivé
- Liens symboliques désactivés
- Ignore les requêtes http
- Ecoute seulement les requêtes HTTPS sur le port 443
- Certification TLS 1.3 et clés à 4096 bits
- Première authentification avec htpasswd
- Seconde authentification au niveau PHP
- Base de données Postresql avec mot de passe crypté
- Limitation du traffic sur le site réduit à 1 mo/s pour tous les utilisateurs
- Curl bloqué par l'authentification htpasswd

Au niveau des machines :

- Libapache2-mod-security2 actif (firewall contre les attaques en brute force)
- Libapache2-mod-evasive actif (détection et protection contre les DDOS et les attaques HTTP brute)
- TRACE HTTP Request désactivé
- Port SSH changé
- Suppression des logiciels utilisant des protocoles non sécurisés (FTP, telnet, rlogin/rsh...)
- Mise en place d'une politique de mots de passe à 32 caractères

Pare-feu des machines :

- Règles IPTABLES à jour bloquant toutes les requêtes extérieur en dehors du port HTTPS pour le site, port SSH ouvert seulement aux machines aptes
- PSAD (Port Scan Attack Detector) mis en place, bloque les IP des machines qui scannent un nombre anormal de ports sur les machines web par le biais de règles IPTABLES.

Redondance:

- Mise en place de Heartbeat, passage de l'IP virtuel du site sur la machine secondaire quand la première n'est plus détectée

Sauvegarde:

- Sauvegarde de la base de données SQL via les outils PostgreSQL sur les deux machines
- Réalisation de la sauvegarde toutes les 6 heures à l'aide de Cron sur les deux machines
- Envoi sécurisé via Rsync de la base de données sur l'autre machine

Borne wifi

- Séparation des employés et des invités via la création de 2 réseaux wifi
- Masquage du SSID du réseau dédié pour les employés
- Blocage de l'accès à la page status sans l'insertion des identifiants
- Mise en place d'un relais DHCP

Routeur

- Application de règles de pare-feu
- Port forwarding et NAT en place

Pare-feu / pfSense

- Mise en place d'un serveur DHCP distribuant les IP dans le réseau Wifi
- Application de règles de pare-feu bloquant les requêtes anormales
- Port forwarding jusqu'au serveur web

Résultats OpenVAS & Nessus

OpenVAS

Dans l'ordre, serveur web 1, serveur web placé sur l'IP virtuelle de Heartbeat, le PC physique de Kacper équipé de Windows 10, serveur web 2.

Nessus

Liste des vulnérabilités recensées après un scan Nessus sur la machine AD. Il n'y a rien d'alarmant à part une vulnérabilité sur SAMBA.

Détail de la vulnérabilité en question :

