MAT1320 LINEAR ALGEBRA EXERCISES VII

1911	
Name Surname:	Group No:
Student No:	Duration:
Source 110.	Daration.
Department:	Date:
Lecturer: Dr. Mustafa SARI	Signature:

- 1. If $A = \begin{bmatrix} 2 & 323 & -1 \\ 1 & 466 & 1 \\ 2 & 889 & 1 \end{bmatrix}$ and det(A) = -480, then which of the followings is the solution of x_2 for the linear system of equations $A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$?

equations
$$A\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

a) 0 b) $480 \stackrel{?}{\downarrow} c$) -1 d) -480 Q 240

Since by $A = -40 \stackrel{?}{\downarrow} c$, the system has a solution by Garrer's method Then,

 $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ -40 & 240 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & -1 \\ 240 & -480 \end{bmatrix}$

$$\begin{vmatrix}
 2 & 1 & -1 \\
 1 & 0 & 1
\end{vmatrix} = 1 - 3 = -2$$

$$\begin{vmatrix}
 2 & 1 & -1 \\
 2 & 1 & -1 \\
 2 & 0 & 1
\end{vmatrix} = 1 - 3 = -2$$

2) $A^{T} \times b \Rightarrow (A^{T})^{-1} \cdot A^{T} \times = (A^{T})^{-1} \cdot b \Rightarrow (A^{-1})^{T} \cdot b$

- 2. (A points) Let A be an invertible matrix and A^{-1} $\begin{bmatrix} 0 & 1 \\ 1 & -4 \end{bmatrix}. \text{ If } b = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \text{ then which of the followings}$ is the solution of the linear system of equation $A^T x \stackrel{\text{\tiny{def}}}{=} b$?
 - (a) $x = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ b) $x = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ c) $x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
- d) $x = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ e) $x = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$

- 3. (B points) Let $A = \begin{bmatrix} \clubsuit & \diamondsuit & \heartsuit \\ \spadesuit & \bigstar & \square \\ \triangle & \bullet & \blacksquare \end{bmatrix}$ with $det(A) \neq 0$. Which of the followings is the value $x_1 + x_2 + x_3$ for the solution of the linear system of equations $A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \diamondsuit \\ \bigstar \\ \bullet \end{bmatrix}$?

a) 0 b)
$$486 \times 10^{\circ} \text{ c}$$
 c) -1 d) -480 6 240 a) 0 c) 2 d) 3

Since $M(A) = -400 \pm 0$, the system has a solution by Gamer's method. Then,

$$\begin{vmatrix}
2 & 1 & -1 \\
1 & 1 & 1
\end{vmatrix} = -\frac{2}{-400} = \frac{1}{240}$$
The system is inconsistent.

The system can be solved by Gamer's rule.

$$\begin{vmatrix}
2 & 1 & -1 \\
1 & 1 & 1
\end{vmatrix} = -\frac{2}{-400} = \frac{1}{240}$$
The system is inconsistent.

$$\begin{vmatrix}
0 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = -1$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1 & 1 & 1
\end{vmatrix} = 0$$

$$\begin{vmatrix}
1 & 0 & 0 \\
1$$

$$A^{T} \times 1 = b = 1 \qquad (A^{T})^{-1} \cdot A^{T} \cdot X = (A^{T})^{-1} \cdot b$$

$$= \begin{pmatrix} 1 & -5 \\ -3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & -5 \\ -3 & 4 \end{pmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{pmatrix} 12 & -10 \\ -9 & +8 \end{pmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

4. (C points) Let A be an invertible matrix and A^{-1} = $\begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix}. \text{ If } b = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \text{ then which of the followings}$

a)
$$x = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$$

b)
$$x = \begin{bmatrix} 6 \\ -7 \end{bmatrix}$$

a)
$$x = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$$
 b) $x = \begin{bmatrix} 6 \\ -7 \end{bmatrix}$ c) $x = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

d)
$$x = \begin{bmatrix} 22\\17 \end{bmatrix}$$
 e) $x = \begin{bmatrix} 18\\23 \end{bmatrix}$

e)
$$x = \begin{bmatrix} 18 \\ 28 \end{bmatrix}$$