Note: Hybrid Type I & Type II improper integrals

Example:
$$\int_0^\infty \frac{1}{\sqrt{x}(1+x)} \, \mathrm{d}x =$$

3 Mathematical Induction (Appendix E)

Let S_n a statement involving the positive integer n.

Assume that

- 1. S_1 is true and
- 2. if S_k is true, then S_{k+1} is true.

Then, S_n is true for all positive integers.

For example: If you know that

- 1. the first domino falls and
- 2. if any specific domino falls, then the next domino falls, then you can conclude that **all** dominos fall.

Example: Show that $1+2+\ldots+n=\frac{n(n+1)}{2}$ for all $n\in\{1,2,3,\ldots\}$.

The statement to check is: $S_n =$

1. Let us check that S_1 is true, i.e.,

2. Suppose that S_k is true, i.e.,

show that S_{k+1} is true, i.e.,

Then, the induction axiom implies that

Example:	Show that	t $3n \le 3^n$	for all	$n \in \{$	$\{0, 1, 2, 3, \dots$	}
	.0 0	· · · · · · · · · · · · · · · · · · ·			(٠,

The statement to check is: $S_n =$

1. Let us check that S_1 is true, i.e.,

2. Suppose that S_k is true, i.e.,

show that S_{k+1} is true, i.e.,

Then, the induction axiom implies that

.

Example: Decide if $2 + 3n < 2^n$ for all $n \in \{3, 4, 5, \ldots\}$.

The statement to check is: $S_n =$

1. Let us check that S_1 is true, i.e.,

2. Suppose that S_k is true, i.e.,

show that S_{k+1} is true, i.e.,

Then, the induction axiom implies that

4 Infinite Sequences and Series (Chapter 11)

A **sequence** is an ______ of real numbers written in a particular order, e.g.

 $a_1, a_2, a_3, \ldots, a_n, \ldots$, denoted by _____, or short ____.

 a_n is the ____ term of the sequence and n is called _____.

Typically, a sequence is given by a formula.

Write down the first couple of terms of this sequence

- $a_n = (-1)^{n+1}$
- $a_n = \frac{n}{n+1}$
- $a_n = \sqrt{n-5}$, for _____

• $a_n = a_{n-1} + a_{n-2}$ with $a_1 = a_2 = 1$.

If we can make a_n as close as possible to L as we like by taking n sufficiently large, then we write _______. We say that $\{a_n\}$ converges if _______, else, we say that $\{a_n\}$

Examples: Find

- $\lim_{n\to\infty} (-1)^n$
- $\bullet \lim_{n \to \infty} \frac{n}{n+1}$
- $\bullet \lim_{n \to \infty} \frac{1}{n^k}$
- $\lim_{n\to\infty}\ln(n)$