Three Factors Influencing Minima in SGD

Stanisław Jastrzębski*¹, Zachary Kenton*², Devansh Arpit², Nicolas Ballas³, Asja Fischer⁴, Yoshua Bengio², Amos Storkey⁵

*First two authors contributed equally

¹ Jagiellonian University

²MILA. Université de Montréal

³Facebook Al Research

⁴University of Bonn

⁵University of Edinburgh

17/11/17

Introduction

Theory

 ${\sf Experiments}$

Introduction

Theory

Experiments

Width and nSimultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$ Memorization and nCyclic schedules Breaking down of theory

Motivation

- ▶ Why does SGD work so well?
- Originally stochastic part was for computational reasons
- Now view stochastic part as implicit regularization
- Stochastic part essential for good generalization
- Parallelization
- ▶ Generalization?

Introduction

- We study the properties of the endpoint of SGD
- ► Approximate SGD as a stochastic differential equation
- ▶ 3 factors control the trade-off between the depth and width of endpoint regions targeted by SGD:
 - Learning rate, η
 - ▶ Batch size, *S*
 - Variance of the loss gradients

Introduction

- ▶ Only ratio η/S appears:
 - Higher η/S leads to wider regions
 - ightharpoonup Endpoint invariant under rescaling of η and S by same amount
- Experiments are consistent with this

Introduction

Theory

Experiments

Width and nSimultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$ Memorization and nCyclic schedules Breaking down of theory

Stochastic gradient, assume by CLT

$$\mathbf{g}^{(S)}(m{ heta}) = \mathbf{g}(m{ heta}) + rac{1}{\sqrt{S}}\Delta\mathbf{g}(m{ heta}), ext{ where } \Delta\mathbf{g}(m{ heta}) \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(m{ heta}))$$

Stochastic gradient, assume by CLT

$$\mathbf{g}^{(S)}(\theta) = \mathbf{g}(\theta) + \frac{1}{\sqrt{S}}\Delta\mathbf{g}(\theta), \text{ where } \Delta\mathbf{g}(\theta) \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(\theta))$$

Note symmetric positive-semidefinite $\mathbf{C}(\theta) = \mathbf{B}(\theta)\mathbf{B}^{ op}(\theta)$.

Stochastic gradient, assume by CLT

$$\mathbf{g}^{(S)}(\boldsymbol{\theta}) = \mathbf{g}(\boldsymbol{\theta}) + \frac{1}{\sqrt{S}}\Delta\mathbf{g}(\boldsymbol{\theta}), \text{ where } \Delta\mathbf{g}(\boldsymbol{\theta}) \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(\boldsymbol{\theta}))$$

Note symmetric positive-semidefinite $\mathsf{C}(\theta) = \mathsf{B}(\theta)\mathsf{B}^{ op}(\theta)$.

SGD update:

$$\theta(t+1) = \theta(t) - \eta \boldsymbol{g}^{(S)}(\theta)$$

Stochastic gradient, assume by CLT

$$\mathbf{g}^{(S)}(oldsymbol{ heta}) = \mathbf{g}(oldsymbol{ heta}) + rac{1}{\sqrt{S}}\Delta\mathbf{g}(oldsymbol{ heta}), ext{ where } \Delta\mathbf{g}(oldsymbol{ heta}) \sim \mathcal{N}(\mathbf{0}, \mathbf{C}(oldsymbol{ heta}))$$

Note symmetric positive-semidefinite $\mathsf{C}(\theta) = \mathsf{B}(\theta)\mathsf{B}^{ op}(\theta)$.

SGD update:

$$\theta(t+1) = \theta(t) - \eta \boldsymbol{g}^{(S)}(\theta)$$

Approximate SGD by Stochastic Differential Equation (SDE):

$$\frac{d\theta}{dt} = -\eta \mathbf{g}(\theta) + \frac{\eta}{\sqrt{S}} \mathsf{B}(\theta) \mathsf{f}(t)$$

where f(t) is a normalized Gaussian time-dependent stochastic term.

▶ Trade SDE for a deterministic PDE for the distribution $P(\theta, t)$, called Fokker-Planck equation

$$\begin{split} \frac{\partial P(\boldsymbol{\theta},t)}{\partial t} &= \nabla_{\boldsymbol{\theta}} \cdot \boldsymbol{J} \\ \text{where } \boldsymbol{J} &\equiv \eta \boldsymbol{g}(\boldsymbol{\theta}) P(\boldsymbol{\theta},t) + \frac{\eta^2}{2S} \nabla_{\boldsymbol{\theta}} \cdot (\mathbf{C}(\boldsymbol{\theta}) P(\boldsymbol{\theta},t)) \end{split}$$

▶ Trade SDE for a deterministic PDE for the distribution $P(\theta, t)$, called Fokker-Planck equation

$$rac{\partial P(m{ heta},t)}{\partial t} =
abla_{m{ heta}} \cdot m{J}$$
 where $m{J} \equiv \eta m{g}(m{ heta}) P(m{ heta},t) + rac{\eta^2}{25}
abla_{m{ heta}} \cdot (m{C}(m{ heta}) P(m{ heta},t))$

 Fokker-Planck common in physics, e.g. diffusion under external force

▶ Trade SDE for a deterministic PDE for the distribution $P(\theta, t)$, called Fokker-Planck equation

$$rac{\partial P(m{ heta},t)}{\partial t} =
abla_{m{ heta}} \cdot m{J}$$
 where $m{J} \equiv \eta m{g}(m{ heta}) P(m{ heta},t) + rac{\eta^2}{2S}
abla_{m{ heta}} \cdot (m{C}(m{ heta}) P(m{ heta},t))$

- Fokker-Planck common in physics, e.g. diffusion under external force
- ▶ Hard to solve in general, make some simplifying assumptions:
 - ▶ Endpoint of SGD: Equilibrium/Detailed Balance: J = 0.

▶ Trade SDE for a deterministic PDE for the distribution $P(\theta, t)$, called Fokker-Planck equation

$$egin{aligned} rac{\partial P(m{ heta},t)}{\partial t} &=
abla_{m{ heta}} \cdot m{J} \ \end{aligned}$$
 where $m{J} \equiv \eta m{g}(m{ heta}) P(m{ heta},t) + rac{\eta^2}{2S}
abla_{m{ heta}} \cdot (m{C}(m{ heta}) P(m{ heta},t))$

- Fokker-Planck common in physics, e.g. diffusion under external force
- ▶ Hard to solve in general, make some simplifying assumptions:
 - ▶ Endpoint of SGD: Equilibrium/Detailed Balance: J = 0.
 - ▶ Isotropic variance: $\mathbf{C}(\theta) = \sigma^2 \mathbf{I}$

▶ Trade SDE for a deterministic PDE for the distribution $P(\theta, t)$, called Fokker-Planck equation

$$egin{aligned} rac{\partial P(m{ heta},t)}{\partial t} &=
abla_{m{ heta}} \cdot m{J} \ \end{aligned}$$
 where $m{J} \equiv \eta m{g}(m{ heta}) P(m{ heta},t) + rac{\eta^2}{2S}
abla_{m{ heta}} \cdot (m{C}(m{ heta}) P(m{ heta},t))$

- ► Fokker-Planck common in physics, e.g. diffusion under external force
- ▶ Hard to solve in general, make some simplifying assumptions:
 - ▶ Endpoint of SGD: Equilibrium/Detailed Balance: J = 0.
 - ▶ Isotropic variance: $\mathbf{C}(\boldsymbol{\theta}) = \sigma^2 \mathbf{I}$
- ▶ Then solution is a Boltzmann-Gibbs distribution:

$$P(\theta) = P_0 \exp\left(-\frac{2}{\sigma^2} \frac{1}{n} L(\theta)\right)$$

where $L(\theta)$ is the loss and the noise $n \equiv \eta/S$.

Boltzmann-Gibbs distribution

$$P(\theta) = P_0 \exp\left(-\frac{2}{\sigma^2} \frac{1}{n} L(\theta)\right)$$

$$n \equiv \eta/S$$

$$\downarrow \qquad \qquad \searrow W$$

$$P \downarrow \qquad \qquad \searrow W$$

Boltzmann-Gibbs distribution

$$P(\theta) = P_0 \exp\left(-\frac{2}{\sigma^2} \frac{1}{n} L(\theta)\right)$$

 $n \equiv \eta/S$

Probability ending in a region near $oldsymbol{ heta}_A$

Loss has Hessian \mathbf{H}_A and loss L_A at a minimum θ_A . Probability of ending in region near θ_A

$$p_A \propto rac{1}{\sqrt{\det \mathbf{H}_A}} \exp\left(-rac{2}{n\sigma^2} L_A
ight)$$
 $n \equiv \eta/S$

Probability ending in a region near $oldsymbol{ heta}_A$

$$p_A \propto rac{1}{\sqrt{\det \mathbf{H}_A}} \exp\left(-rac{2}{n\sigma^2} L_A
ight)$$
 $n \equiv \eta/S$

Probability ending in a region near $oldsymbol{ heta}_A$

$$p_A \propto \frac{1}{\sqrt{\det \mathbf{H}_A}} \exp\left(-\frac{2}{n\sigma^2} L_A\right)$$
 $n \equiv \eta/S$

- ▶ 3 factors control trade-off between depth and width:
 - \blacktriangleright learning rate η
 - ▶ batch-size *S*
 - covariance of the gradients σ^2

Probability ending in a region near $oldsymbol{ heta}_{\mathcal{A}}$

$$p_A \propto \frac{1}{\sqrt{\det \mathbf{H}_A}} \exp\left(-\frac{2}{n\sigma^2} L_A\right)$$
 $n \equiv \eta/S$

- 3 factors control trade-off between depth and width:
 - ▶ learning rate η
 - ▶ batch-size *S*
 - covariance of the gradients σ^2
- ► The two factors that we directly control only appear in the ratio given by the *noise*, $n = \eta/S$.
 - ▶ higher *n* gives more priority to width and less priority to depth
 - ▶ Invariance under simultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$

Take-Away Theory

- ▶ noise $n = \eta/S$
- ► Higher *n* gives more priority to width and less priority to depth
- ▶ Invariance under simultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$

Introduction

Theory

Experiments

Width and nSimultaneous rescaling $\eta\mapsto c\eta$ and $S\mapsto cS$ Memorization and nCyclic schedules Breaking down of theory

Introduction

Theory

Experiments

Width and n

Simultaneous rescaling $\eta\mapsto c\eta$ and $S\mapsto cS$ Memorization and nCyclic schedules Breaking down of theory

Width and n

4-layer Batch Normalized ReLU MLP trained on Fashion-MNIST. Noise $n=\eta/S$

(a) Correlation of $\frac{\eta}{S}$ with logarithm of norm of Hessian.

(b) Correlation of $\frac{\eta}{S}$ with validation accuracy.

Width and n

20 layer ReLU MLP without Batch Normalization on FashionMNIST

- (a) Good initialization.
- (b) Good initialization.

(c) Bad initialization.

WARNING

- Resnet56 networks on CIFAR10 with different n.
- See there is a peak n for best validation accuracy.
- Higher learning rate to batch-size ratio doesn't necessarily lead to higher validation accuracy

Width and *n*

- ▶ Interpolation of Resnet56 on CIFAR10 for different $n = \frac{\eta}{S}$.
- \triangleright x-axis, α , corresponds to the interpolation coefficient.
- ► Consistent with our theory, lower $\frac{\eta}{S}$ ratio leads to sharper minima.

Width and n

- ▶ Interpolation of VGG-11 on CIFAR10 for same $n = \frac{\eta}{S}$.
- ▶ Consistent with theory: approx same *n*, see approx same width

(a) left:
$$\beta = 1$$
, right: $\beta = 4$

(b) left:
$$\beta = 1$$
, right: $\beta = 0.25$

Introduction

Theory

Experiments

Width and nSimultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$ Memorization and nCyclic schedules Breaking down of theory

Simultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$

- VGG-11 architecture on CIFAR10
- ▶ Left: Cyclic learning rate exchanged for cyclic batch size.
- Right: Constant learning rate, batch size.
- Not just endpoint, but also dynamics are approx invariant

Introduction

Theory

Experiments

Width and nSimultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$ Memorization and n

Breaking down of theory

Memorization and n

Memorization: add random labels, see effect on validation accuracy

- MLP, 2-layer, each 256 hidden units, ReLU
- Higher value of $n = \frac{\eta}{S}$ is redder
- ▶ Left two: momentum with parameter 0.9
- ▶ Right two: no momentum
- \triangleright Specific level of memorization, high n better generalization

Introduction

Theory

Experiments

Width and nSimultaneous rescaling $\eta\mapsto c\eta$ and $S\mapsto cS$ Memorization and n

Cyclic schedules

Breaking down of theory

Cyclic Schedules

- ▶ VGG-11 on CIFAR10
- Oscillate between sharp and wide regions
- Cyclic find wider minima than baseline

	Test acc	Valid acc	Loss	H. norm.
Discrete η Discrete S Triangle η	$\begin{array}{c} 90.04\% \pm 0.18\% \\ 90.07\% \pm 0.32\% \\ 90.03\% \pm 0.10\% \end{array}$	$\begin{array}{c} 90.30\% \pm 0.07\% \\ 90.25\% \pm 0.06\% \\ 90.04\% \pm 0.23\% \end{array}$	$\begin{array}{c} 0.048 \pm 0.001 \\ 0.050 \pm 0.002 \\ 0.068 \pm 0.002 \end{array}$	36470 13918 35310
Baseline	$87.70\% \pm 0.56\%$	$88.36\% \pm 0.13\%$	0.033 ± 0.001	57838

Introduction

Theory

Experiments

Simultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$ Memorization and nCyclic schedules Breaking down of theory

Breaking down of theory

- ▶ VGG-11 on CIFAR10
- ► Ratio $\frac{\eta = \beta \times 0.1}{S = \beta \times 50}$ fixed
- ▶ Break down for large β . Earlier for smaller train size.

(a) Train dataset size 45000

(b) Train dataset size 12000

Introduction

Theory

Experiments

Width and nSimultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$ Memorization and nCyclic schedules Breaking down of theory

- SGD endpoint (from theory, experiments) and dynamics (from experiment) depend on learning rate and batch size through noise $n=\eta/S$
- ► Higher *n* gives more priority to width and less priority to depth
- ▶ Invariance under simultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$

Related Work

Discussion

- Isotropic variance
- Dynamics
- Causal links
- Cyclic schedules
- Superconvergence
- Optimality
- CLT assumption is for i.i.d.

- SGD endpoint (from theory, experiments) and dynamics (from experiment) depend on learning rate and batch size through noise $n=\eta/S$
- ► Higher *n* gives more priority to width and less priority to depth
- ▶ Invariance under simultaneous rescaling $\eta \mapsto c\eta$ and $S \mapsto cS$

Ratio of Probabilities

$$\frac{p_A}{p_B} = \sqrt{\frac{\det \mathbf{H}_B}{\det \mathbf{H}_A}} \exp\left(\frac{2}{n\sigma^2} (L_B - L_A)\right)$$

This ratio is invariant to reparametrization

Gradient Descent and Reparametrization

Consider reparametrization of Dinh et al. $(\theta_1, \theta_2) \mapsto (\alpha \theta_1, \alpha^{-1} \theta_2)$

Gradient Descent and Reparametrization

Gradient Descent only samples one of the equivalent reparametrizations

Along these GD paths the flatness from Hessians is meaningful

