

Факультет программной инженерии и компьютерной техники Системы искусственного интеллекта

Лабораторная работа №5

Преподаватель: Болдырева Елена Александровна

Выполнил: Кульбако Артемий Юрьевич Р33112

Задание

Цель: решить задачу многоклассовой классификации, используя в качестве тренировочного набора данных - набор данных MNIST, содержащий образы рукописных цифр.

- 1. Используйте метод главных компонент для набора данных MNIST (train dataset объемом 60000). Определите, какое минимальное количество главных компонент необходимо использовать, чтобы доля объясненной дисперсии превышала 0.80 + номер_в_списке % 10. Построить график зависимости доли объясненной дисперсии от количества используемых ГК.
- 2. Введите количество верно классифицированных объектов класса номер_в_списке%9 для тестовых данных.
- 4. Определите Accuracy, Precision, Recall или F1 для обученной модели.
- 5. Сделайте вывод про обученную модель.

Выполнение

Немного дополним код, чтобы было легче подбирать количество компонент – напишем функцию, которая будет выводить, достигла ли доля объяснённой дисперсии необходимого значения:

```
from sklearn.decomposition import PCA
gold_disp = 0.8 + 265570 % 10 # необходимая долю объясненной дисперсии
pca = PCA(n_components=50, svd_solver='full') # перебираем n_components, пока один из элементов exp
lained_variance не станет больше gold_disp
modelPCA = pca.fit(X_train)
X_train = modelPCA.transform(X_train)
explained_variance = np.round(np.cumsum(pca.explained_variance_ratio_),3)
print(any(i >= gold_disp for i in explained_variance)) # функция, которая выведет True если Д.О.С.
достигла нужного значения
print(explained_variance)
plt.plot(np.arange(50), explained_variance, ls = '-')
```

Минимально необходимое количество компонент = 50.

Определим число объектов, отнесённых к нужному классу:

```
var_class = 265570 % 9
CM[var_class][var_class]
```

Результат = 1362

Выведем остальные параметры модели с помощью средств библиотеки sklearn:

from sklearn.metrics import classification_report					
<pre>print(classification_report(y_test, y_pred))</pre>					
	precision	recall	f1-score	support	
0	0.79	0.81	0.80	1693	
1	0.91	0.86	0.89	2075	
2	0.40	0.55	0.46	1763	
3	0.65	0.80	0.72	1873	
4	0.66	0.74	0.70	1756	
5	0.40	0.37	0.39	1591	
6	0.41	0.34	0.37	1766	
7	0.75	0.72	0.74	1886	
8	0.35	0.31	0.33	1773	
9	0.64	0.49	0.55	1824	
accuracy			0.61	18000	
macro avg	0.60	0.60	0.59	18000	
weighted avg	0.61	0.61	0.60	18000	

Вывод

В лабораторной работе я реализовал многоклассовую классификацию с помощью методы опорных векторов для набора данных, состоящих из рукописных цифр, научился просматривать параметры обученной модели — это базовые навыки, необходимые для развития в сфере ML.