坐标形式下的椭圆焦半径及应用

1. 基本结论:

坐标形式焦半径(已知圆锥曲线上一点 $P(x_0,y_0)$)

$$|PF_1| = a + ex_0, |PF_2| = a - ex_0$$

左加右减.

推导:根据两点间距离公式: $|PF_1| = \sqrt{(x_0 + c)^2 + y_0^2}$,由于

$$\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1, (a > b > 0)$$
 代入两点间距离公式可得 $|PF_1| = \sqrt{(x_0 + c)^2 + b^2(1 - \frac{x_0^2}{a^2})}$,整

理化简即可得 $|PF_1| = a + ex_0$. 同理可证得 $|PF_1| = a - ex_0$.

2. 常见应用

例 1. (2019 全国 1 卷)已知椭圆 C 的焦点为 $F_1(-1,0)$, $F_2(1,0)$, 过 F_2 的直线与 C 交于 A, B 两点.若 $|AF_2|=2|F_2B|$, $|AB|=|BF_1|$, 则 C 的方程为

A.
$$\frac{x^2}{2} + y^2 = 1$$

B.
$$\frac{x^2}{3} + \frac{y^2}{2} =$$

A.
$$\frac{x^2}{2} + y^2 = 1$$
 B. $\frac{x^2}{3} + \frac{y^2}{2} = 1$ **C.** $\frac{x^2}{4} + \frac{y^2}{3} = 1$ **D.** $\frac{x^2}{5} + \frac{y^2}{4} = 1$

D.
$$\frac{x^2}{5} + \frac{y^2}{4} = 1$$

设 $A(x_1,y_1)$, $B(x_2,y_2)$,由 $|AF_2|$ = $2|F_2B|$, |AB| = $|BF_1|$ ⇒ $|BF_1|$ = $3|BF_2|$,代入焦半径公 式到 $|BF_1|=3|BF_2|$ 可得: $a+ex_2=3(a-ex_2)\Rightarrow x_2=\frac{1}{2}a^2.(1)$.再由 $|AF_2|=3|BF_2|\Rightarrow$ $a-ex_1=2(a-ex_2)$ ⇒ $2x_2-x_1=a^2$.(2).结合(1),(2)式可得, $x_1=0$,故| AF_1 |=| AF_2 |=a $|BF_1| = \frac{3}{2}a$, $|BF_2| = \frac{a}{2}$, 这样在三角形 ABF_1 与三角形 AF_1F_2 中分别使用余弦定理可得: $a = \sqrt{3}$... $b^2 = a^2 - c^2 = 3 - 1 = 2$.

小结: 通过坐标表示出焦半径的关系,进而解出椭圆上点的坐标是解题的关键.

例 2. (2019 全国三卷)

设 F_1 , F_2 为椭圆 $C: \frac{x^2}{36} + \frac{y^2}{20} = 1$ 的两个焦点,M 为C 上一点且在第一象限.若 $\triangle MF_1F_2$ 为

等腰三角形,则M的坐标为 .

解: 由己知可得 $a^2 = 36$, $b^2 = 20$, $\therefore c^2 = a^2 - b^2 = 16$, $\therefore c = 4$,

$$\therefore |MF_1| = |F_1F_2| = 2c = 8$$
. $\therefore |MF_2| = 4$. 由焦半径公式可知

设
$$M(x_0, y_0)$$
,由焦半径公式可知 $|MF_2| = a - ex_0 = 6 - \frac{2}{3}x_0 = 4 \Rightarrow x_0 = 3$

再代入椭圆方程可解得:M 的坐标为 $(3,\sqrt{15})$.

例 3. (2018 全国三卷)

已知斜率为k的直线l与椭圆C: $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 交于A, B 两点,线段AB 的中点为M(1, m)(m > 0).

(1) 证明:
$$k < -\frac{1}{2}$$
;

(2) 设F为C的右焦点,P为C上一点,且 $\overline{FP}+\overline{FA}+\overline{FB}=0$. 证明: $\left|\overline{FA}\right|$, $\left|\overline{FP}\right|$, $\left|\overline{FB}\right|$ 成等差数列,并求该数列的公差.

解: (1) 设
$$A(x_1, y_1), B(x_2, y_2)$$
, 则 $\frac{{x_1}^2}{4} + \frac{{y_1}^2}{3} = 1, \frac{{x_2}^2}{4} + \frac{{y_2}^2}{3} = 1$.

两式相减,并由
$$\frac{y_1-y_2}{x_1-x_2}=k$$
 得 $\frac{x_1+x_2}{4}+\frac{y_1+y_2}{3}\cdot k=0$.

由题设知
$$\frac{x_1+x_2}{2}=1, \frac{y_1+y_2}{2}=m$$
,于是 $k=-\frac{3}{4m}$.①

由题设得
$$0 < m < \frac{3}{2}$$
,故 $k < -\frac{1}{2}$.

(2) 由题意得F(1,0),设 $P(x_3,y_3)$,则

$$(x_3-1,y_3)+(x_1-1,y_1)+(x_2-1,y_2)=(0,0).$$

由 (1) 及题设得
$$x_3 = 3 - (x_1 + x_2) = 1$$
, $y_3 = -(y_1 + y_2) = -2m < 0$.

又点 P在 C上,所以 $m = \frac{3}{4}$,从而 $P\left(1, -\frac{3}{2}\right)$, $\left|\overline{FP}\right| = \frac{3}{2}$.于是

$$|\overline{FA}| = \sqrt{(x_1 - 1)^2 + y_1^2} = \sqrt{(x_1 - 1)^2 + 3(1 - \frac{x_1^2}{4})} = 2 - \frac{x_1}{2}$$
 (無半径公式)

同理 $|\overline{FB}| = 2 - \frac{x_2}{2}$ (焦半径公式)

所以 $|\overline{FA}|+|\overline{FB}|=4-\frac{1}{2}(x_1+x_2)=3$.

故 $2|\overline{FP}|=|\overline{FA}|+|\overline{FB}|$,即 $|\overline{FA}|,|\overline{FP}|,|\overline{FB}|$ 成等差数列.

设该数列的公差为 d,则

$$2|d| = ||\overline{FB}| - |\overline{FA}|| = \frac{1}{2}|x_1 - x_2| = \frac{1}{2}\sqrt{(x_1 + x_2)^2 - 4x_1x_2}$$
.

将 $m = \frac{3}{4}$ 代入①得 k = -1.

所以 I 的方程为 $y = -x + \frac{7}{4}$,代入 C 的方程,并整理得 $7x^2 - 14x + \frac{1}{4} = 0$.

故
$$x_1 + x_2 = 2$$
, $x_1 x_2 = \frac{1}{28}$,代入②解得 $\left| d \right| = \frac{3\sqrt{21}}{28}$.

所以该数列的公差为 $\frac{3\sqrt{21}}{28}$ 或 $-\frac{3\sqrt{21}}{28}$.

练习

1. 已知椭圆 $\frac{x^2}{a^2} + y^2 = 1$ (a > 1)的两个焦点为 F_1 、 F_2 ,P 为椭圆上一点,且 $\angle F_1 P F_2 = 60^\circ$,

则 $|PF_1| \cdot |PF_2|$ 的值为(

A. 1

B. $\frac{1}{3}$ C. $\frac{4}{3}$

D. $\frac{2}{2}$

2. 已知直线 $l_1: mx - y + m = 0$ 与直线 $l_2: x + my - 1 = 0$ 的交点为 Q ,椭圆 $\frac{x^2}{5} + \frac{y^2}{2} = 1$ 的

焦点为 F_1, F_2 ,则 $\left|QF_1\right|\left|QF_2\right|$ 的取值范围是(

A. $[2,+\infty)$ **B.** $[2\sqrt{3},+\infty)$ **C.** [2,4] **D.** $[2\sqrt{3},4]$

更多优质内容, 敬请关注公众号!

喜洋洋漫谈中学数学

长按识别二维码, 关注我的公众号