Artificial Intelligence

4. Classical Search, Part II: Informed Search How to Not Play Stupid When Solving a Problem

Jana Koehler Álvaro Torralba

Summer Term 2019

Thanks to Prof. Hoffmann for slide sources

 Introduction
 Heuristic Functions
 Syst.: Algorithms
 Syst.: Performance
 Local Search
 Conclusion
 References

 00000
 000000000000
 00000000000
 000000
 000000000
 000

Agenda

- Introduction
- Meuristic Functions
- 3 Systematic Search: Algorithms
- Systematic Search: Performance
- 5 Local Search
- 6 Conclusion

(Not) Playing Stupid

→ Problem: Find a route to Moscow.

Informed Search: Basic Idea

Introduction

Recall: Search strategy=how to choose the next node to expand?

- Blind Search: Rigid procedure using the same expansion order no matter which problem it is applied to.
 - \rightarrow Blind search has 0 knowledge of the problem it is solving.
 - \rightarrow It can't "focus on roads that go the right direction", because it has no idea what "the right direction" is.
- Informed Search: Knowledge of the "goodness" of expanding a state s is given in the form of a heuristic function h(s), which estimates the cost of an optimal (cheapest) path from s to the goal.
 - \rightarrow "h(s) larger than where I came from \implies seems s is not the right direction."
- ightarrow Informed search is a way of giving the computer knowledge about the problem it is solving, thereby stopping it from doing stupid things.

References Introduction Heuristic Functions Local Search Conclusion

Informed Search: Basic Idea, ctd.

ightarrow Heuristic function h estimates the cost of an optimal path from a state s to the goal; search prefers to expand states s with small h(s).

Koehler and Torralba

000000

 Introduction
 Heuristic Functions
 Syst.: Algorithms
 Syst.: Performance
 Local Search
 Conclusion
 Reference

 000 ● 00
 0000000000000
 000000000000
 000000000000
 00000000000
 000

Some Applications

Reminder: Our Agenda for This Topic

- ightarrow Our treatment of the topic "Classical Search" consists of Chapters 4 and 5.
 - Chapter 4: Basic definitions and concepts; blind search.
 - \rightarrow Sets up the framework. Blind search is ideal to get our feet wet. It is not wide-spread in practice, but it is among the state of the art in certain applications (e.g., software model checking).
 - This Chapter: Heuristic functions and informed search.
 - → Classical search algorithms exploiting the problem-specific knowledge encoded in a heuristic function. Typically much more efficient in practice.

Heuristic Functions Syst.: Algorithms Syst.: Performance Local Search Conclusion References

Our Agenda for This Chapter

- **Heuristic Functions:** How are heuristic functions *h* defined? What are relevant properties of such functions? How can we obtain them in practice?
 - → Which "problem knowledge" do we wish to give the computer?
- Systematic Search: Algorithms: How to use a heuristic function h while still guaranteeing completeness/optimality of the search.
 - → How to exploit the knowledge in a systematic way?
- Systematic Search: Performance: Empirical and theoretical observations.
 - ightarrow What can we say about the performance of heuristic search? Is it actually better than blind search?
- Local Search: Overview of methods foresaking completeness/optimality, taking decisions based only on the local surroundings.
 - \rightarrow How to exploit the knowledge in a greedy way?

Heuristic Functions

Definition (Heuristic Function, h^* **).** Let Π be a problem with states S. A heuristic function, short heuristic, for Π is a function $h: S \mapsto \mathbb{R}_0^+ \cup \{\infty\}$ so that, for every goal state s, we have h(s) = 0.

The perfect heuristic h^* is the function assigning every $s \in S$ the cost of a cheapest path from s to a goal state, or ∞ if no such path exists.

Notes:

- We also refer to $h^*(s)$ as the goal distance of s.
- h(s)=0 on goal states: If your estimator returns "I think it's still a long way" on a goal state, then its "intelligence" is, um . . .
- Return value ∞ : To indicate dead ends, from which the goal can't be reached anymore.
- The value of h depends only on the state s, not on the search node (i.e., the path we took to reach s). I'll sometimes abuse notation writing "h(n)" instead of "h(n.State)".

Why "Heuristic"?

Introduction

What's the meaning of "heuristic"?

- Heuristik: Ancient Greek $\varepsilon v \rho \iota \sigma \kappa \varepsilon \iota \nu$ (= "I find"); aka: $\varepsilon v \rho \eta \kappa \alpha$!
- Popularized in modern science by George Polya: "How to Solve It" (published 1945).
- Same word often used for: "rule of thumb", "imprecise solution method".
- In classical search (and many other problems studied in Al), it's the mathematical term just explained.

Heuristic Functions: The Eternal Trade-Off

Distance "estimate"? (h is an arbitrary function in principle!)

- We want h to be accurate (aka: informative), i.e., "close to" the actual goal distance.
- We also want it to be fast, i.e., a small overhead for computing h.
- These two wishes are in contradiction!
 - \rightarrow Extreme cases?

 \rightarrow We need to trade off the accuracy of h against the overhead for computing h(s) on every search state s.

So, how to? \rightarrow Given a problem Π , a heuristic function h for Π can be obtained as goal distance within a simplified (relaxed) problem Π' .

Artificial Intelligence

Artificial Intelligence

References

Heuristic Function Pitfalls: Example Path Planning

 h^* :

Introduction

G

Heuristic Function Pitfalls: Example Path Planning

Manhattan Distance, "accurate h":

G

Heuristic Function Pitfalls: Example Path Planning

Manhattan Distance, "inaccurate h":

Questionnaire

Introduction

- ullet n blocks, 1 hand.
- A single action either takes a block with the hand or puts a block we're holding onto some other block/the table.
- The goal is a set of statements "on(x,y)".

Question!

Consider h := number of goal statements that are not currently true. Is the error relative to h^* bounded by a constant?

(A): Yes.

(B): No.

19/61

Properties of Heuristic Functions

Definition (Admissibility, Consistency). Let Π be a problem with state space Θ and states S, and let h be a heuristic function for Π . We say that h is admissible if, for all $s \in S$, we have $h(s) \leq h^*(s)$. We say that h is consistent if, for all transitions $s \xrightarrow{a} s'$ in Θ , we have $h(s) - h(s') \leq c(a)$.

In other words ...

- Admissibility: lower bound on goal distance.
- Consistency: when applying an action a, the heuristic value cannot decrease by more than the cost of a.

Properties of Heuristic Functions, ctd.

Proposition (Consistency \Longrightarrow **Admissibility).** Let Π be a problem, and let h be a heuristic function for Π . If h is consistent, then h is admissible.

duction Heuristic Functions Syst.: Algorithms Syst.: Performance Local Search Conclusion References

Properties of Heuristic Functions: Examples

Admissibility and consistency:

- Is straight line distance admissible/consistent? Yes. Consistency: If you
 drive 100km, then the straight line distance to Moscow can't decrease by
 more than 100km.
- Is goal distance of the "reduced puzzle" (slide 15) admissible/consistent?
- Can somebody come up with an admissible but inconsistent heuristic?

 \rightarrow In practice, admissible heuristics are typically consistent.

Inadmissible heuristics:

 Inadmissible heuristics typically arise as approximations of admissible heuristics that are too costly to compute. (We'll meet some examples of this in Chapter 15.)

Questionnaire

- 3 missionaries, 3 cannibals.
- Boat that holds ≤ 2 .
- ullet Never leave k missionaries alone with > k cannibals.

Question!

Is h := number of persons at right bank consistent/admissible?

(A): Only consistent. (B): Only admissible.

(C): None. (D): Both.

Before We Begin

Introduction

Systematic search vs. local search:

- Systematic search strategies: No limit on the number of search nodes kept in memory at any point in time.
 - ightarrow Guarantee to consider all options at some point, thus complete.
- Local search strategies: Keep only one (or a few) search nodes at a time.
 - ightarrow No systematic exploration of all options, thus incomplete.

Tree search vs. graph search:

- For the systematic search strategies, we consider graph search algorithms exclusively, i.e., we use duplicate pruning.
- There also are tree search versions of these algorithms. These are easier to understand, but aren't used in practice. (Maintaining a complete open list, the search is memory-intensive anyway.)

```
function Greedy Best-First Search (problem) returns a solution, or failure
  node \leftarrow a \text{ node } n \text{ with } n.state = problem.InitialState
  frontier \leftarrow a priority queue ordered by ascending h, only element n
  explored \leftarrow empty set of states
  loop do
       if Empty?(frontier) then return failure
        n \leftarrow \mathsf{Pop}(\mathsf{frontier})
        if problem.GoalTest(n.State) then return Solution(n)
        explored \leftarrow explored \cup n.\mathsf{State}
        for each action a in problem. Actions (n.State) do
           n' \leftarrow ChildNode(problem, n, a)
           if n'. State \not\in explored \cup States (frontier) then Insert (n', h(n'), frontier)
```

- Frontier ordered by ascending h.
- Duplicates checked at successor generation, against both the frontier and the explored set.

 Introduction
 Heuristic Functions
 Syst.: Algorithms
 Syst.: Performance
 Local Search
 Conclusion
 References

 00000
 000000000000
 000000
 000000
 000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Greedy Best-First Search: Route to Bucharest

Greedy Best-First Search: Guarantees

- Completeness: Yes, thanks to duplicate elimination and our assumption that the state space is finite.
- Optimality?

Introduction

Can we do better than this?

Introduction

```
function A* (problem) returns a solution, or failure
  node \leftarrow a \text{ node } n \text{ with } n.State = problem.InitialState
  frontier \leftarrow a priority queue ordered by ascending q + h, only element n
  explored \leftarrow empty set of states
  loop do
       if Empty?(frontier) then return failure
       n \leftarrow \mathsf{Pop}(\mathsf{frontier})
       if problem.GoalTest(n.State) then return Solution(n)
       explored \leftarrow explored \cup n.State
       for each action a in problem. Actions (n.State) do
           n' \leftarrow ChildNode(problem, n, a)
           if n'.State\notin explored \cup States(frontier) then
             Insert(n', q(n') + h(n'), frontier)
           else if ex. n'' \in frontier s.t. n''. State = n'. State and q(n') < q(n'') then
               replace n'' in frontier with n'
```

- Frontier ordered by ascending g + h.
- Duplicates handled exactly as in uniform-cost search.

References

A*: Route to Bucharest

Artificial Intelligence

Questionnaire

Question!

Introduction

If we set h(s) := 0 for all states s, what does greedy best-first search become?

(A): Breadth-first search (B): Depth-first search

(C): Uniform-cost search (D): Depth-limited search

Question!

If we set h(s) := 0 for all states s, what does A^* become?

(A): Breadth-first search (B): Depth-first search

(C): Uniform-cost search (D): Depth-limited search

Optimality of A^* : Proof, Step 1

Idea: The proof is via a correspondence to uniform-cost search.

 \rightarrow Step 1: Capture the heuristic function in terms of action costs.

Definition. Let Π be a problem with state space $\Theta = (S, A, c, T, I, S^G)$, and let h be a consistent heuristic function for Π . We define the h-weighted state space as $\Theta^h = (S, A^h, c^h, T^h, I, S^G)$ where:

- $A^h := \{a[s, s'] \mid a \in A, s \in S, s' \in S, (s, a, s') \in T\}.$
- $c^h: A^h \to \mathbb{R}_0^+$ is defined by $c^h(a[s,s']) := c(a) [h(s) h(s')].$
- $T^h = \{(s, a[s, s'], s') \mid (s, a, s') \in T\}.$
- → Subtract, from each action cost, the "gain in heuristic value".

Lemma. Θ^h is well-defined, i.e., c(a) - [h(s) - h(s')] > 0. Proof.

Optimality of A*: Proof – Illustration

Optimality of A*: Proof, Step 2

→ Step 2: Identify the correspondence.

Lemma (A). Θ and Θ^h have the same optimal solutions.

Lemma (B). The search space of A^* on Θ is isomorphic to that of uniform-cost search on Θ^h .

Optimality of A*: Proof – Illustration

Optimality of A*: Proof, Step 3

 \rightarrow Step 3: Put the pieces together.

Theorem (Optimality of A*). Let Π be a problem, and let h be a heuristic function for Π . If h is consistent, then the solution returned by A^* (if any) is optimal.

Proof. Denote by Θ the state space of Π . Let $\vec{s}(A^*,\Theta)$ be the solution returned by A^* run on Θ . Denote by $\vec{S}(UCS,\Theta^h)$ the set of solutions that could in principle be returned by uniform-cost search run on Θ^h .

Optimality of A*: Different Variants

- Our variant of A* does duplicate elimination but not re-opening.
- Re-opening: check, when generating a node n containing state s that is already in the explored set, whether (*) the new path to s is cheaper. If so, remove s from the explored set and insert n into the frontier.
- With a consistent heuristic, (*) can't happen so we don't need re-opening for optimality.
- Given admissible but inconsistent h, if we either don't use duplicate elimination at all, or use duplicate elimination with re-opening, then A^* is optimal as well. Hence the well-known statement " A^* is optimal if h is admissible".
 - \rightarrow But for our variant (as per slide 29), being admissible is NOT enough for optimality! Frequent implementation bug!
- \rightarrow Recall: In practice, admissible heuristics are typically consistent. That's why I chose to present this variant.

And now, let's relax a bit ...

http://movingai.com/flrta.html

More videos: http://movingai.com/

ightarrow Illustrations of various issues in heuristic search/ A^* that go deeper than our introductory material here.

Provable Performance Bounds: Extreme Case

Let's consider an extreme case: What happens if $h = h^*$?

Greedy Best-First Search:

 \mathbf{A}^* :

Provable Performance Bounds: More Interesting Cases?

"Almost perfect" heuristics:

$$|h^*(n) - h(n)| \le c$$
 for a constant c

- Basically the only thing that lead to <u>some</u> interesting results.
- If the state space is a tree (only one path to every state), and there is only one goal state: linear in the length of the solution [Gaschnig (1977)].
- But if these additional restrictions do not hold: exponential even for very simple problems and for c=1 [Helmert and Röger (2008)]!
- \rightarrow Systematically analyzing the practical behavior of heuristic search remains one of the biggest research challenges.
- ightarrow There is little hope to prove practical sub-exponential-search bounds. (But there are some interesting insights one can gain ightarrow FAI.)

Empirical Performance: A* in the 8-Puzzle

Without Duplicate Elimination; d = length of solution:

	Number of search nodes generated		
	Iterative	A^* with	
d	Deepening Search	misplaced tiles h	Manhattan distance h
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	3644035	227	73
14	-	539	113
16	-	1301	211
18	-	3056	363
20	-	7276	676
22	-	18094	1219
24	-	39135	1641

Empirical Performance: A* in Path Planning

Live Demo vs. Breadth-First Search:

http://qiao.github.io/PathFinding.js/visual/

Greedy Best-First vs. A*: Illustration Path Planning

 $\mathbf{A}^*(g+h)$, "accurate h":

Introduction

- \rightarrow In A^* with a consistent heuristic, g+h always increases monotonically (h cannot decrease by more than g increases).
- ightarrow We need more search, in the "right upper half". This is typical: Greedy best-first search tends to be faster than A^* .

Koehler and Torralba

Greedy Best-First vs. A*: Illustration Path Planning

Greedy best-first search, "inaccurate h":

ightarrow Search will be mis-guided into the "dead-end street".

Koehler and Torralba

Greedy Best-First vs. A*: Illustration Path Planning

 $\mathbf{A}^*(g+h)$, "inaccurate h":

Introduction

 \to We will search less of the "dead-end street". For very "bad heuristics", g+h gives better search guidance than h, and A^* is faster.

Koehler and Torralba

Greedy Best-First vs. A*: Illustration Path Planning

$\mathbf{A}^*(g+h)$ using h^* :

Introduction

 \rightarrow With $h=h^*$, g+h remains constant on optimal paths.

G

Questionnaire

Question!

1. Is A^* always at least as fast as uniform-cost search? 2. Does it always expand at most as many states?

(A): No and no. (B): Yes and no.

(C): No and Yes. (D): Yes and yes.

Local Search

Introduction

Do you "think through all possible options" before choosing your path to the Mensa?

ightarrow Sometimes, "going where your nose leads you" works quite well.

What is the computer's "nose"?

ightarrow Local search takes decisions based on the h values of immediate neighbor states.

Hill Climbing

- → Hill-Climbing keeps choosing actions leading to a direct successor state with best heuristic value. It stops when no more immediate improvements can be made.
 - Alternative name (more fitting, here): Gradient-Descent.
 - Often used in optimization problems where all "states" are feasible solutions, and we can choose the search neighborhood ("child nodes") freely. (Return just n.State, rather than the path to n)

Local Search: Guarantees and Complexity

Guarantees:

Introduction

- Completeness: No. Search ends when no more immediate improvements can be made (= local minimum, up next). This is not guaranteed to be a solution.
- Optimality: No, for the same reason.

Complexity:

- Time: We stop once the value doesn't strictly increase, so the state space size is a bound.
 - \rightarrow Note: This bound is (a) huge, and (b) applies to a single run of Hill-Climbing, which typically does not find a solution.
- Memory: Basically no consumption: O(b) states at any moment in time.

Hill Climbing: Example 8-Queens Problem

Problem: Place the queens so that they don't attack each other.

Heuristic: Number of pairs attacking each other.

Neighborhood: Move any queen within its column.

 \rightarrow Starting from random initialization, solves only 14% of cases.

A Local Minimum in the 8-Queens Problem

 \rightarrow Current h value is?

Local Search: Difficulties

Difficulties:

Introduction

- Local minima: All neighbors look worse (have a worse h value) than the current state (e.g.: previous slide).
 - \rightarrow If we stop, the solution may be sub-optimal (or not even feasible). If we don't stop, where to go next?
- ullet Plateaus: All neighbors have the same h value as the current state.
 - → Moves will be chosen completely at random.

Strategies addressing these:

- Re-start when reaching a local minimum, or when we have spent a certain amount of time without "making progress".
- Do random walks in the hope that these will lead out of the local minimum/plateau.
- \rightarrow Configuring these strategies requires lots of algorithm parameters. Selecting good values is a big issue in practice. (Cross your fingers . . .)

Hill Climbing With Sideways Moves: Example 8-Queens

Heuristic: Number of pairs attacking each other.

Neighborhood: Move any queen within its column.

Sideways Moves: In contrast to slide 50, allow up to 100 consecutive moves in which the h value does not get better.

- \rightarrow Starting from random initialization, solves 94\% of cases!
- \rightarrow Successful local search procedures often combine randomness (exploration) with following the heuristic (exploitation).

One (Out of Many) Other Local Search Strategies: Simulated Annealing

Idea: Taking inspiration from processes in physics (objects cooling down), inject "noise" systematically: first a lot, then gradually less.

 \rightarrow Used since early 80s for VSLI Layout and other optimization problems.

Questionnaire

Question!

Can local minima occur in route planning with h := straight line distance?

(A): Yes.

(B): No.

Questionnaire, ctd.

Question!

Introduction

What is the maximum size of plateaus in the 15-puzzle with

h := Manhattan distance?

(A): 0 (B): 1

(C): 2 (D): ∞

Summary

- Heuristic functions h map each state to an estimate of its goal distance. This provides the search with knowledge about the problem at hand, thus making it more focussed.
- h is admissible if it lower-bounds goal distance. h is consistent if applying an action cannot reduce its value by more than the action's cost. Consistency implies admissibility. In practice, admissible heuristics are typically consistent.
- Greedy best-first search explores states by increasing h. It is complete but not optimal.
- A^* explores states by increasing g+h. It is complete. If h is consistent, then A^* is optimal. (If h is admissible but not consistent, then we need to use re-opening to guarantee optimality.)
- Local search takes decisions based on its direct neighborhood. It is neither complete nor optimal, and suffers from local minima and plateaus. Nevertheless, it is often successful in practice.

Topics We Didn't Cover Here

- Bounded Sub-optimal Search: Giving a guarantee weaker than "optimal" on the solution, e.g., within a constant factor W of optimal.
- Limited-Memory Heuristic Search: Hybrids of A^* with depth-first search (using linear memory), algorithms allowing to make best use of a given amount M of memory, . . .
- External Memory Search: Store the open/closed list on the hard drive, group states to minimize the number of drive accesses.
- Search on the GPU: How to use the GPU for part of the search work?
- Real-Time Search: What if there is a fixed deadline by which we must return a solution? (Often: fractions of seconds . . .)
- Lifelong Search: When our problem changes, how can we re-use information from previous searches?
- Non-Deterministic Actions: What if there are several possible outcomes?
- Partial Observability: What if parts of the world state are unknown?
- Reinforcement Learning Problems: What if, a priori, the solver does not know anything about the world it is acting in?

Reading

- Chapter 3: Solving Problems by Searching, Sections 3.5 and 3.6 [Russell and Norvig (2010)].
 - Content: Section 3.5: A less formal account of what I cover in "Systematic Search Strategies". My main changes pertain to making precise how Greedy Best-First Search and A^* handle duplcate checking: Imho, with respect to this aspect RN is *much* too vague. For A^* , not getting this right is the primary source of bugs leading to non-optimal solutions.
 - Section 3.6 (and parts of Section 3.5): A less formal account of what I cover in "Heuristic Functions". Gives many complementary explanations, nice as additional background reading.
- Chapter 4: Beyond Classical Search, Section 4.1 [Russell and Norvig (2010)].
 - Content: Similar to what I cover in "Local Search Strategies", except it mistakenly acts as if local search could not be used to solve classical search problems. Discusses also Genetic Algorithms, and is nice as additional background reading.

References I

- John Gaschnig. Exactly how good are heuristics?: Toward a realistic predictive theory of best-first search. In *Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI'77)*, pages 434–441, Cambridge, MA, August 1977. William Kaufmann.
- Malte Helmert and Gabriele Röger. How good is almost perfect? In Dieter Fox and Carla Gomes, editors, *Proceedings of the 23rd National Conference of the American Association for Artificial Intelligence (AAAI'08)*, pages 944–949, Chicago, Illinois, USA, July 2008. AAAI Press.
- Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.