OVERVIEW OF THE FINAL PROCESS

BUSINESS PROBLEM

Classification of tickets and assignment to their appropriate resolver groups based on available ticket data and features

OUR APPROACH

Division of data into two groups, one for groups with low number of records and the other for groups with high number of records

SELECTED STRATEGY ELEMENTS

Features of Data:

- Ticket descriptions are Multilanguage
- Data is highly imbalanced
- · Data has text as well as numeric features

Translation used:

- G-translate loops with backout
- Translation runs before and after data cleaning

Our preprocessing steps:

- Extract numeric features
- Cleaning data, encodings using FTFY
- · Translating records, Augmenting the data

Augmentation used:

- Random augmentation of upto 10 words in a record
- Random word dropping at ~15%

Algorithms used:

- Logistic Regression, SVM, XGB
- Random Forest, LightGBM, CatBoost
- GRU, LSTM, Bidirectional LST

Techniques used:

- Skip connections in GRU
- Joining LSTM text and Numeric models
- Running data through multiple models to maximize precision and recall

SOLUTION ROADMAP: STEP BY STEP

	ACTION	FINDING	DETERMINATION
Step 1	Perform EDA on data to discover data challenges	Imbalanced target group distribution, garbage words & multilanguage source data	Need for Data, cleaning translation & augmentation
Step 2	Perform Data cleaning on the dataset to remove fluff words and garbage	Data encoded in UTF-8	Requires conversion into corresponding language codes through FTFY
Step 3	Initiate Language Translation through google translate libraries	Partial translations on first attempt	 Greater translation requires removal of additional markers such as <chinese text="">,34323</chinese> → detected as English

SOLUTION ROADMAP: STEP BY STEP

ACTION		FINDING	DETERMINATION	
Step 4	Augment data to create a larger dataset	Standard augmentation with synonyms fails to capture latent relationships	Inclusion of drop words augmentation	
Step 5	Demarcate datasets into rule-based and Al-based and perform vectorization	 Increasing features increases accuracy for TFIDF, additionally, some feature engineering also helps 	Improved feature extraction required, and further combination of models needed	
Step 6	Perform machine learning and deep learning on data	Accuracy lacking in some target groups	Improve feature extraction, translation and data cleaning	

MODEL EVALUATION

FINAL MODEL

✓ Random Forest

BEST PARAMETERS

- √ 'criterion': 'entropy'
- √ 'max_depth': None
- √ 'max features': 'log2'
- √ 'n_estimators': 50

PROMINENT PARAMETERS

✓ Increasing n_estimators directly reduces overfitting of the model and increases test accuracy

- High overall accuracy on test set
- High individual accuracy on target classes
- > Strong balance between precision and recall

Evaluation of Success

- > Performance on test data
- > Performance on validation data
- > Performance on re-augmented test set
- Individual class-wise accuracy/precision/recall above threshold

INTERIM PERFORMANCE OF MODELS

Logistic Regression

Fast training and scales well

Performance

- >84% (Single Model)
- ≥90% (Tuned Model)

GRU

Fast training and scales well

Performance

≥91% (Base Model)

XGB

Known for accuracy and stability of results

Performance

- > 84% (Single Model)
- > 80% (Tuned Model)

LSTM

- Offers increased accuracy over GRU
- ➤ Marginally slower

Performance

➤ 89.3% (Base Model)

SVC

Works well with text data

Performance

>84% (Single Model)

Bidirectional LSTM

- ➤ Has not shown significant gain over LSTM
- ➤ Much slower

Performance

>85% (Base Model)

We were unable to hyperparameterize XGB and SVC due to the significant time they were consuming. For deep learning, we will start the tuning in the next phase. The low performance of LSTM and Bidirectional LSTM is solely due to the need for greater training time.

OUR INTERIM PLAN ON FUTURE OPTIMIZATIONS

Improving our outcomes can be done with 4 broad themes

OUR FINAL MODELS	

Classifica
Olassilica
Logistic
ogistic Regression using Rand
Logistic Gr
XGBoos
XGBoos
XGBoost Classifier
Support Vector Cl
upport Vector Classification (C
Random Fore
Random Forest Classifier (C
LightGBM (C
CatBoo
CatBoo
CatBoo CatBoost Cla
CatBoo CatBoost Cla CatBoost Cla
CatBoo CatBoost Cla CatBoost Cla LSTM Me
CatBoo CatBoost Cla CatBoost Cla LSTM Me Bi Direc
CatBoo CatBoost Cla CatBoost Cla LSTM Me
CatBoo CatBoost Cla CatBoost Cla LSTM Me Bi Direc
CatBoo CatBoost Cla CatBoost Cla LSTM Me Bi Direc GRU Skip
CatBoo CatBoost Cla CatBoost Cla LSTM Me Bi Direc GRU Skip (Random Forest Classifie

Classification Model		Training Accuracy Test Acc		
Logistic Regression		90.74	89.62	
ogistic Regression using Random Search		94.32	93.57	
Logistic Grid Classifier		94.41	93.64	
XGBoost Classifier1		91.68	90.08	
XGBoost Classifier2		95.78	94.42	
XGBoost Classifier Grid Search		96.60	95.52	
Support Vector Classification		94.03	93.45	
pport Vector Classification (Grid Search)		96.98	96.91	
Random Forest Classifier		98.41	97.78	
Random Forest Classifier (Grid Search)		98.46	98.31	
LightGBM		98.28	97.52	
LightGBM (Grid Search)		98.35	97.62	
CatBoost Classifier		89.58	88.10	
CatBoost Classifier Grid		82.34	80.54	
CatBoost Classifier Best		92.41	90.96	
LSTM Merged Model		94.99	94.26	
LSTM		94.89	94.42	
GRU		95.34	94.85	
Bi Directional LSTM		95.39	94.84	
GRU Skip Connection		95.63	95.28	
Random Forest Classifier Base Data		98.46	65.61	
LightGBM Base Data		97.89	68.18	
Logistic Regression Base Data		82.18	60.29	
Models selected		Models on base data		

COMPARISON TO BENCHMARK

WE DELIVERED OVER 7% IMPROVEMENT TO OUR 91% BENCHMARK IN THE INTERIM

Leveraging Skip Connections, Merged deep learning models, we were able to improve deep learning accuracy past 95%

Compared to our interim efforts, we extracted multiple new features of value to the classification We improved our augmentation outcomes and variety, increased the degree of translation to almost 100% and reduced the data loss from cleaning

We brought our hyperparameters closer to optimal ranges using coarse and fine gradations from the default values

Our final accuracy was above 98% using random forest models, this is a 30% improvement over the translated data without augmentation

IMPLICATIONS FOR BUSINESS

ASSIGNMENT TO GROUPS

ACCURACY OF ASSIGNMENT

The solution proceeds through the test group (19744 records) in around 10 minutes for 3 models. This means that assignment is being performed at 2000 records per minute. **Compared to human** assignment, this is several hundred times faster

The best model of the lot is random forests, which provides 98.31% accuracy. **Combining this with other** deep learning models, we can move towards nearly 99% accuracy which would be a significant improvement over human assignment

We recommend the below

- 1. Dissolution of groups which have less than 1% records from the total
- 2. Auto resolution of several tickets that relate to SID's or Hosts or batches that have failed. They can be automatically restarted based on detection

Based on the set of values we obtain from our best models; we can estimate the accuracy to be within 96.3% -98.61%. 99% of the times.

LIMITATIONS OF THE MODEL

LIMITATIONS, REAL WORLD DEFICIENCIES, AND FUTURE ENHANCEMENTS

LIMITATION:

CHINESE LANGUAGE

Currently, the caller is a key differentiating factor in the tickets raised in Chinese language. However, as tickets increase, there could be some overlap between the users in different groups causing accuracy reduction.

Additionally, tickets raised automatically in groups 5,6,8,9 are challenging for the algorithm to classify

DEFICIENCY:

LIMITED DATA

Real world data can be vastly different from the data provided. In production scale ticketing systems, organizations can get hundreds of thousands of tickets per year. This means that we would not have captured the entire vocabulary for real time assignment, nor planned for its full impact on performance & future training

ENHANCEMENT:

CONTINUED LEARNING FROM CLOSED TICKETS

We need to configure the solution in a way that allows models to continuously be trained on new data as it arrives

The solution also needs to generate new patterns of language and vocabulary to create a deeper coverage of what a caller may raise in a ticket

OBSERVATION

LEARNING FOR FUTURE

LOW ACCURACY IN 6% OF TARGET GROUPS DISCOVERED POST MODEL BUILDING

GROUP BY GROUP RECORD REVIEW
IN AS PART OF INITIAL EDA

ACCURACY REDUCTION DUE TO DATA LOSS IN CLEANING DATA

DETERMINATION OF VALUE OF EVERY FEATURE/COLUMN PRIOR TO CLEANING

LARGE DEVIATION FROM BASE HYPERPARAMETERS DURING TUNING CAUSING LOSS OF EFFORT GRADUAL GRADATION OF HYPERPARAMETERS FROM DEFAULT SETTINGS

A SINGLE MODEL DOES NOT SUFFICE FOR ALL INFORMATION

STACKING OR MERGING MODELS MAY IMPROVE ACCURACY

