

Drahtloskommunikation (Auswahl)

Mobiltelefonie

Generationen mobiler Telefonie und Kommunikation

Erste: Analog, leitungsvermittelt, *AMPS*

Zweite: Übergang zu Digitaltechnik, *GSM*

10 Kbps

Erweiterte zweite:

Internetzugang, WAP

10 Kbps

2.5te: Paketvermittlung bei Datenübertragung, *GPRS*,

EDGE, 40-384 Kbps

Dritte: Eigene Zellverwaltung, kleine Zellen, *UMTS*

HSPA, HSPA+, 0.4 – 42 Mbps

Vierte: Weiterentwicklung von UMTS, *LTE-Advanced*

Global System for Mobile Communications – GSM

- GSM besitzt eine zelluläre Struktur, d.h. es findet Multiplexing über den Raum statt.
- In jeder Zelle findet statt:
 - Frequenzmultiplexing: Die physikalisch verfügbare
 Bandbreite wird in Kanäle zu je 200 kHz unterteilt.
 - Zeitmultiplexing: 8 Zeitschlitze je Periode von 4,62 ms.
- Durch zusätzliches Springen zwischen Frequenzen (frequency-hopping) kann die Störanfälligkeit der Funkkanäle weiter reduziert werden.

Space Division Multiple Access (SDMA)

Honigwabenstruktur:

Viele Zellen können **dasselbe Spektrum** nutzen, da sie räumlich getrennt sind

Benachbarte Zellen müssen unterschiedliche Frequenzen nutzen, d.h. in einer Zelle kann im Regelfall nicht das volle dem Provider zugeordnete Spektrum verwendet werden.

Zellcluster

Aktuelle Überdeckung durch Zelle 3

- Zelle 1 besitzt einen sich mit 6 weiteren Zellen überlappenden Sende- und Empfangsbereich.
- Diese 6 Zellen müssen andere Frequenzbereiche nutzen als Zelle 1.
- Auch kleinere Cluster (bspw. aus 3 oder 4 Zellen) sind in Abhängigkeit von lokalen Gegebenheiten möglich.

Aktuelle Überdeckung durch Zelle 1

Zellplanung (Praxis)

- Hexagonale Anordnung stark idealisiert, nur auf dem flachen Land mit gleichmäßiger Verteilung von Teilnehmern umsetzbar.
- ▶ Größe und Ausdehnung der Zellen in der Praxis hängt von vielen Faktoren ab.
 - Anzahl der Teilnehmer
 - Leistung der Antennen
 - ▶ Terrain
- Daher ist (rechnergestützte) Zellplanung unabdingbar.

Quelle: Siemens TORNADO D Cellular

Frequenzzuordnungen

- Es wird unterschieden zwischen GSM 900, GSM 1800 und GSM 1900 (nur USA)
 - GSM 900 (D-Netz) nutzt das Spektrum 890 MHz bis 915
 MHz für die Kommunikation vom Mobilgerät zur Basisstation (Uplink) und den Bereich von 935 MHz bis 960
 MHz für die umgekehrte Richtung (Downlink).
 - GSM 1800 (E-Netz) nutzt den Bereich von 1710 MHz bis 1785 MHz (Uplink) und 1805 MHz bis 1880 MHz (Downlink).
 - GSM 1900 nutzt den Bereich von 1850 MHz bis 1910 MHz
 (Uplink) und 1930 MHz bis 1990 MHz (Downlink).
- GSM 900 hat im Vergleich die größte Reichweite.

Frequenzzuordnungen

- D-Netze wurden klassischerweise von der deutschen
 Telekom (D1) und Vodafone (D2) betrieben.
- E-Netze wurden von E-Plus und O2 (mittlerweile fusioniert) betrieben.
- 2006 wurde in Europa das Spektrum von GSM 900 (zivil) um jeweils 10 MHz im Uplink und Downlink nach unten erweitert. Auf diesem Wege erhielten u.a. auch O2 und E-Plus Frequenzen im begehrten GSM 900-Band.
- Umgekehrt nutzen Telekom und Vodafone auch Frequenzen von GSM 1800.

Frequenzzuteilung im Uplink (Downlink analog)

GSM900 max. 32 km Reichweite

Start	Ende	Anbieter	
880,1	885,1	E-Plus	
885,1	890,1	O 2	
890,2	892,4	Vodafone	
892,6	899,8	T-Mobile	
900,0	906,0	Vodafone	
906,2	910,4	T-Mobile	
910,6	914,2	Vodafone	
914,4	914,8	T-Mobile	

GSM1800 max. 16 km Reichweite

Start	Ende	Anbieter	
1.725,2	1.730,0	T-Mobile	
1.730,2	1.752,4	O2	
1.752,8	1.758,0	Vodafone	
1.758,2	1.780,4	E-Plus	
1.805,0	1.820,0	Militär	
1.820,2	1.825,0	T-Mobile	
1.825,0	1.847,4	O 2	
1.847,8	1.853,0	Vodafone	
1.853,2	1.875,4	E-Plus	

GSM – Netzarchitektur

Handover

General Packet Radio Service (GPRS)

- GPRS ermöglichte erstmals paketvermittelte mobile Datenübertragung mit Datenraten bis max. 172,2 kbit/s (Downlink). In der Praxis sind jedoch nur Datenraten bis 21,4 kbit/s üblich, weil durch die notwendige Kanalbündelung die Funkzelle stärker ausgelastet ist.
- Für Mobilfunkanbieter war die Erweiterung auf GPRS mit überschaubaren Kosten verbunden, weil BSS und NSS weiter verwendet werden konnten.
- Durch eine an den BSC bzw. die TRAU angegliederte Packet-Control-Unit können Datenpakete von der Mobiltelefonie unterschieden und in ein eigenes Subsystem geleitet werden.

GSM – Netzarchitektur mit GPRS

Enhanced Data Rates for GSM Evolution (EDGE)

- Durch Verbesserung der "Leitungs"kodierung können auf der vorhandenen GSM/GPRS-Infrastruktur wesentlich höhere Datenraten (bis zu 473 kbit/s) erreicht werden. In der Praxis werden 220 kbit/s (Downlink) unterstützt.
- Auch hier sind die Erweiterungskosten für Mobilfunkanbieter überschaubar, da im Wesentlichen nur Softwareaktualisierungen der BTS notwendig sind.

Universal Mobile Telecommunications System - UMTS

- In der dritten Mobilfunkgeneration erfolgte eine wesentlich stärkere Ausrichtung auf Datenübertragung. Der Funknetzteil von UMTS ist von GSM vollständig unabhängig implementiert und nutzt eigene Frequenzbereiche.
- In der Urfassung (nach Spezifikation von 1999) sind Datenraten von 384 kbit/s möglich, durch Erweiterungen wie HSPA und HSPA+ werden aktuell bis zu 42 Mbit/s erreicht.
- Die Umrüstung auf UMTS ist für Mobilfunkbetreiber mit hohen Kosten verbunden.
 - Eigener Funknetzteil
 - Hohe Lizenzgebühren

UMTS Netzarchitektur

- Obwohl unabhängig von GSM, ist die Netzarchitektur von UMTS der von GSM sehr ähnlich. Das Kernnetz (NSS) wird von beiden Systemen gemeinsam genutzt.
- UMTS Zellen, die wegen der höheren Datenraten kleiner ausfallen als GSM Zellen, werden von sog. Node-B verwaltet (analog zu BTS).
- Mehrere Node-B werden von einem Radio Network Controller (RNC) verwaltet (analog zu BSC).
- Dieses Gesamtsystem wird als UMTS Terrestrial Radio Access Network (UTRAN) bezeichnet.

Long Term Evolution – LTE

- Mobilfunknetze der 4. Generation sind gerade im Aufbau.
- LTE ist eine fließende Weiterentwicklung von UMTS (genauer: von HSPA+), sodass die vorhandene Infrastruktur genutzt und schrittweise aufgerüstet werden kann.
- Datenraten bis zu 300 Mbit/s (LTE Advanced) sind möglich.
- LTE bietet eine Reichweite von maximal 10km (jedoch nur bei 3 Mbit/s), sodass es sich auch als DSL-Alternative in ländlichen Bereichen anbietet.
- In der Praxis: Große Unterschiede in der Qualität der Versorgung zwischen städtischen und ländlichen Gebieten.

Satellitensysteme, GPS

Bahngeschwindigkeit und Entfernung der Umlaufbahn eines Sateliten vom Erdmittelpunkt hängen über Gleichsetzung von Erdanziehungskraft und Zentrifugalkraft zusammen:

$$\frac{m_E \cdot G}{r^2} = \frac{v^2}{r} \rightarrow v = \sqrt{\frac{m_E \cdot G}{r}} \qquad G = 6,674 \cdot 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$$

$$m_E = 5,9736 \cdot 10^{24} \text{ kg}$$

- ▶ Auf Höhe des Meeresspiegels (r = 6371 km): $v_1 = 7910 \text{ m/s}$
- ▶ 150km über der Erdoberfläche (r = 6521km): $v_1 = 7819$ m/s
- ▶ Je höher der Orbit, desto mehr Energie ist notwendig, um Sateliten auf diesen Orbit zu bringen
- ▶ Geostationär: Umlaufzeit von 24h bei r = 42.157 km, dies entspricht einer Höhe über der Erdoberfläche von 35.786 km.

Erdorbits – Klassifikation

160 – 2000 km

Geosynchronous Orbit = 35.786 km

> 35.786 km

2000 – 35.785 km

HEO Zone (High Earth Orbit)

Low Earth Orbit (LEO)

- Höhe zwischen ca. 160km und ca. 2000 km über der Erdoberfläche. *)
- Anziehungskraft der Erde noch sehr stark, d.h. entsprechend hohe Bahngeschwindigkeiten sind notwendig.
- Umlaufzeiten von 88 min (160km) bis 127 min (2000km)
- Geringer Energiebedarf, um Satelliten in die Umlaufbahn zu bringen

^{*)} Unter 160km ist der Widerstand durch die Atmosphäre zu groß

HEO Zone (High Earth Orbi

Low Earth Orbit (LEO)

- Geringe Distanz zur Erdoberfläche, also
 - Hohe Auflösung bei bildgebenden Verfahren
 - Geringerer Energiebedarf zur Kommunikation
- Nutzung:
 - Erdbeobachtung, Spionagesatelliten
 - Kommunikation (Satellitentelefonie)
 - International Space Station (ISS) in ca. 410km Höhe

Quelle: Wikipedia

Quelle: isstracker.com

HEO Zone (High Earth Orbit)

384,000 km The Moon

Medium Earth Orbit (MEO)

- Höhe zwischen 2000 km und unter 35.786 km über der Erdoberfläche. *)
- Umlaufzeiten zwischen 2 und < 24 Stunden
- Umlaufzeit von 12 Stunden bei 20.200 km
- Nutzung:
 - Wetterbeobachtung
 - Navigation (z.B. GPS und Gallileo)

HEO Zone (High Earth Orbit

Geosynchronous Orbits

- Höhe exakt 35.786 km über Meeresniveau.
- Umlaufzeit: Genau 1 siderischer Tag (23h 56min 4s), also die Dauer einer Erdumdrehung.

Sonderfall: Geostationäre Orbits

- Umlaufbahn liegt vollständig in der Äquatorialebene
- Für einen Beobachter auf der Erde fixe Position des Satelliten am Himmel

Bildquelle: Marco Langbroek

Bildquelle: Marco Langbroek

Sonderfall: Geostationary Orbit

- Einsatzgebiete:
 - Langfristbeobachtung sowohl militärisch als auch zivil
 - Nachrichtensatelliten

Sonderfall: "Tundra-Orbits"

- Geostationäre Satelliten decken nur bis 81,3° geographischer Breite ab.
- Polregionen können also nur durch Inklination der Umlaufbahn und daher "nur" mit geosynchronen Satelliten abgedeckt werden

HEO Zone (High Earth Orbit)

High Earth Orbit (HEO)

- > 35.786 km über der Erdoberfläche
- Umlaufzeit > 1 Tag
- Einsatzgebiete:
 - Wissenschaftliche Satelliten z.B. zur Analyse der Strahlungsemissionen der Erde
 - Militärische Nutzung

Global Positioning System – GPS

- Von der USAF betrieben
- Mehr als 24 Satelliten
- ▶ 6 orbitale Ebenen in 20.200 km Höhe
- So positioniert, dass von jeder Position auf der Erde mindestens 4 Satelliten (+1 Backup) immer sichtbar sind

- ▶ Senden sehr präzise Zeitinformationen aus, die u.a. relativistische Effekte berücksichtigen,
- ▶ Empfänger misst Distanz per Zeitdifferenz, kennt Position jedes Sateliten,
- Ortsbestimmung per Triangulation,
- ▶ Genauigkeit: < 10m.

Wireless LAN

Wireless LAN (WLAN)

Idee: Einfach wie ein LAN, aber drahtlos

- Nutzt mit geringer Signalleistung unlizensierte Kanäle
- Größere Netzwerke technisch aufwändig aufgrund beschränkter Signalreichweite
- Modulation: Ursprünglich FHSS (IEEE 802.11), DSSS (IEEE 802.11 b,g), OFDM (IEEE 802.11 a,g)
- Datenübertragung: Ursprünglich 1-2 Mbit/s, dann 54Mbit/s, aktuell bis 600Mbit/s

Wireless LAN (WLAN)

Im Wesentlichen in zwei Frequenzbändern betrieben:

- 2.4 GHz (IEEE 802.11 b/g und auch n)
 - Vorteile: Gebührenfrei, weit verbreitet, kein Spektrum-Management notwendig,
 - Nachteile: Andere Geräte (Bluetooth, Babyfones, etc.), nur 3 nicht überlappende Kanäle am selben Ort störungsfrei einsetzbar
- 5.2 GHz (IEEE 802.11 a/h und auch n)
 - Vorteile: Seltener genutzt, 19 nicht überlappende Kanäle, höhere Reichweite
 - Nachteile: Regulierung, selten Ad-Hoc Modus, Kosten

WLAN Strukturen

Bluetooth

Bluetooth

- Geräte-Verbindungsnetzwerk für
 - Personalcomputer und Notebooks
 - PDAs und Mobiltelefone
 - Drucker und andere LAN-Geräte
 - Headsets, Projektoren, ...
- Ad-Hoc Netzwerk
 - Maximal 255 Teilnehmer
 - Davon maximal 8 gleichzeitig aktiv
- 2,4 GHz (unlizensiert, siehe WLAN) bei
 1-2 mW Leistung, 10m-100m Reichweite
- Paketvermittelt, Bandbreite: 1-2 Mbit/s
- Integrierte Sicherheitsmechanismen mit persönlicher Identifikationsnummer

Blutdruckmessgerät mit Bluetooth

Bluetooth Medienplayer

Bilder: BLUETOOTH.COM

Bluetooth

- Meist integrierter TCP/IP-Stack, daher einfache Integration in existierende LANs
- ▶ Nutzt Frequency Hop Spread Spectrum (FHSS)
 - Frequenzband wird in mehrere Kanäle aufgeteilt
 - Aktives Gerät wechselt 1600 mal pro Sekunde den Kanal, Sequenz mittels Pseudozufallszahlen vorbestimmt

- Hohe Toleranz gegen schmalbandige Störungen
- ▶ Abhörsicherheit (in Grenzen!)
- Aktive Geräte teilen sich einen Kanal per Zeitmultiplexing

Zusammenfassung

- Die Entwicklung mobiler Techniken ist in den letzten Jahren mit erstaunlichem Tempo vorangeschritten.
- ▶ Zellbasierte Systeme brauchen umfangreiche und teure Infrastrukturen im Gegensatz zu WLAN.
- Sicherheit und Privacy sind ein Schlüsselproblem.
- ▶ Bei mobiler Datenversorgung große Unterschiede, sehr gute Versorgung (4G) in Ballungsgebieten, z.T. immer noch nur GSM/EDGE in ländlichen Regionen.