7. symbol-based

What is Symbol-Based Logic?

Symbol-based logic uses **symbols** to represent logical statements (propositions) and uses logical operators to connect them. This makes reasoning more clear and systematic.

Basic Symbols in Logic:

- **Propositions:** Usually represented by capital letters like **P**, **Q**, **R**, **S** (Each stands for a statement that can be either true or false)
- Logical Connectives:
 - o $\neg P = NOT P$ (negation)
 - o $P \wedge Q = P \text{ AND } Q \text{ (conjunction)}$
 - o **P v Q** = P OR Q (disjunction)
 - o $P \rightarrow Q = If P then Q (implication)$
 - o $P \leftrightarrow Q = P$ if and only if Q (biconditional)

Example 1: Symbolization and Explanation

Problem:

Consider these statements:

- P: "It is raining."
- Q: "The ground is wet."

Express the statement:

"If it is raining, then the ground is wet."

Symbolization:

- "It is raining" = **P**
- "The ground is wet" = Q
- The statement "If it is raining, then the ground is wet." = $P \rightarrow Q$

Explanation:

- The implication $P \rightarrow Q$ means that if P is true, then Q must be true.
- If it is raining (P is true), then the ground will be wet (Q is true).

• If it is not raining, the statement says nothing about whether the ground is wet or not.

Example 2: Using Logical Connectives

Problem:

Express this statement symbolically:

"It is raining and it is cold."

Symbolization:

- P: "It is raining"
- R: "It is cold"
- Statement: "It is raining AND it is cold." = P Λ R

Explanation:

- PAR means both P and R must be true for the whole statement to be true.
- If either it is not raining or it is not cold, the entire statement is false.

Example 3: More Complex Statement

Problem:

Express this in symbols:

"Either it is not raining or the ground is wet."

Symbolization:

- P: "It is raining."
- Q: "The ground is wet."
- Statement: "Either it is NOT raining OR the ground is wet." = ¬P v Q

Explanation:

- ¬P means "It is NOT raining."
- The disjunction ¬P ∨ Q means at least one of these is true: either it is not raining or the ground is wet.
- The whole statement is false only if both it is raining AND the ground is NOT wet.

Truth Table Example for $P \rightarrow Q$

P (Raining) Q (Ground Wet) $P \rightarrow Q$ (If P then Q)

True	True	True
True	False	False
False	True	True
False	False	True

Explanation:

- The only time $P \rightarrow Q$ is false is when P is true but Q is false.
- If it's raining but the ground is not wet, the implication breaks.

Summary

- Use capital letters for statements.
- Use logical connectives $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$ to connect statements.
- Analyze using truth tables or logical equivalences.