A quantile-based approach for hyperparameter transfer learning

David Salinas² Huibin Shen¹ Valerio Perrone¹

 $^{1}{\rm Amazon}$ Research $^{2}{\rm NAVER}$ LABS Europe, work done at Amazon

December 11, 2019

Transfer learning setting

- Assume many HP evaluations $\{x_i^l, y_i^l\}_{i=0}^{n_l}$ available for n_l datasets
- $x_i^l \in \mathbb{R}^d$ hyperparameter, $y_i^l \in \mathbb{R}$ objective to be minimized
- Can we use it to speed up the tuning of a new dataset?

Transfer learning

Difficulties:

- Scales of objectives y_i^I may vary significantly across tasks
- Noise may not be Gaussian
- Many observations: hard to apply (approximate) GP

Gaussian Copula transform

If only every y^I was Gaussian...

- Apply change of variable $\psi = \Phi^{-1} \, \circ \, {\sf F}$
- Φ Gaussian CDF, F is the marginal CDFs (approximated with empirical CDF)
- $z^I = \psi(y^I)$
- All z^I becomes centered Gaussian! $z^I \in \mathcal{N}(0,1)$

Transfer learning

Parametric Prior

- Regress $z(x) \approx \mathcal{N}(\mu_{\theta}(x), \sigma_{\theta}(x))$
- ullet Parameters heta are learned with MLE on evaluations
- Joint-learning as θ tied across tasks (only possible because z have comparable scales across tasks I)

Two HPO strategies

- Thompson sampling with $\mathcal{N}(\mu_{\theta}(x), \sigma_{\theta}(x))$
- Gaussian Copula Process with the prior $\mathcal{N}(\mu_{\theta}(x), \sigma_{\theta}(x))$

Results

 Evaluate on 3 blackboxes with precomputed evaluations (MLP [Klein 18], DeepAR [Salinas 17], XGboost)

blackbox	# datasets	# hyperparameters	# evaluations	objectives
DeepAR	11	6	~ 220 62208 5000	quantile loss, time
FCNET	4	9		MSE, time
XGBoost	9	9		1-AUC

Results

Results

- Because every objectives are Gaussian centered, we can easily combined them!
- Multi-objective: optimize accuracy/time trade-off with $z^{\text{error}}(x) + z^{\text{runtime}}(x)$
- More at our poster!

