

Figure 1:

Figure 2

ATGCAAAACCACGTTATCAGCTTAGCTTCCGCCGCAGAACGCAGGGCGCACATTGCCGAT
 1 TACGTTTGGTGAATAGTCAAATCGAAGGCGGCGTCTTGCGTCCCGCGTGTAAACGGCTA 60
 M Q N H V I S L A S A A E R R A H I A D -

 ACCTTCGGCAGGCACGGCATCCCGTTCAGTTTGCAGCAGCACTGATGCCGCTTGAAAGG
 61 TGGAAAGCCGTCGGCTAGGGCAAAGTCAAAAAGCTCGGTGACTACGGCAGACTTCC 120
 T F G R H G I P F Q F F D A L M P S E R -

 CTGGAACAGGCAATGGCGGAACCGTCCCCGGTTGCGCGCACCCCTATTGAGCGGA
 121 GACCTTGTCCGTTACCGCCTTGAGCAGGGCGAACAGCCGCGTGGGATAAAACTCGCCT 180
 L E Q A M A E L V P G L S A H P Y L S G -

 GTGGAAAAAGCCTGTTATGAGCCACGCCGTATTGAGGAAAGCAGGCATTGGACGAAGGT
 181 CACCTTTTCGGACGAAATACTCGGTGCGGCATAACACCTTCGTCGTAACCTGCTTCCA 240
 V E K A C F M S H A V L W K Q A L D E G -

 CTGCCGTATATCACCGTATTGAGGACGACGTTTACTCGCGAACGGTGAGGAAAAATTG
 241 GACGGCATATACTGGCATAAAACCTCTGCTGCAAAATGAGCCGCTTCACTCCTTTAAG 300
 L P Y I T V F E D D V L L G E G E E K F -

 CTTGCCGAAGACGCTTGGCTGCAAGAACGCTTGACCCGGATACGCCCTTATCGTCCGC
 301 GAACGGCTTCTGCGAACCGACGTTCTGCGAAACTGGGCCTATGGCGGAATAGCAGGGC 360
 L A E D A W L Q E R F D P D T A F I V R -

 TTGGAAACGATGTTATGCACGTCTGACCTCGCCCTCCGGTGGCGGATTACTGCGGG
 361 AACCTTTGCTACAAATACTGCACTGGAGACTGGAGCGGGAGGCCGACCGCCTAATGACGCC 420
 L E T M F M H V L T S P S G V A D Y C G -

 CGGCCCTTCCGCTGTTGGAAAGCGAACACTGGGGACGGCGGCTATATCATTCCCGA
 421 GCGCGAAAGGCACAACCTTCGCTTGACCCCCCTGCCGCCGATATAGTAAAGGGCT 480
 R A F P L L E S E H W G T A G Y I I S R -

 AAAGCGATGCGGTTTCTGGACAGGTTGCGCCCTGCCGCCGAAGGGCTGCACCCC
 481 TTTCGCTACGCAAAGGACTGTCAAACGGCGGACGGCGGCTCCGACGTGGGG 540
 K A M R F F L D R F A A L P P E G L H P -

 GTCGATCTGATGATGTTACCGATTTTCGACAGGGAAGGAATGCCGTTGCCAGCTC
 541 CAGCTAGACTACTACAAGTCGCTAAAAAGCTGTCCCAAACGGCGGACGGCGGCTCCGACGTGGGG 600
 V D L M M F S D F F D R E G M P V C Q L -

 AATCCCGCCTTGTGCCAACAGAGCTGCATTATGCCAAGTTTACGACCAAAACAGCGCA
 601 TTAGGGCGGAACACGCCGGTTCTGACGTAATACGGTCAAAGTGTGGTTTGTCGCGT 660
 N P A L C A Q E L H Y A K F H D Q N S A -

 TTGGGCAGCCTGATCGAACACGCCGCTCTGAACCGAACAGCAAAGGGCGGATTCC
 661 AACCCGTCGGACTAGTTGTGCTGGCGGAGGACTTGGCGTTGTGCTTCCGCGCTAAGG 720
 L G S L I E H D R L L N R K Q Q R R D S -

 CCCGCCAACACATTCAAACACCGCCTGATCCGCGCCTTGACCAAAATCAGCAGGGAAAGG
 721 GGGCGGTTGTGTAAGTTGTGCGGACTAGGCGCGAACCTGGTTTAGTCGCTCCCTTCC 780
 P A N T F K H R L I R A L T K I S R E R -

 GAAAAACGCCGCAAAGCGCGAACAGTCATTGTGCCCTTCCAATAA
 781 CTTTTTGCAGGCCGTTCCGCGCTTGTCAAGTAACACGGAAAGGTTATT 828
 E K R R Q R R E Q F I V P F Q * -

Figure 3

Figure 4

- A. 5' primer for amplification of *galE* for insertion into pCW at the BamHI site

5' GGACAGGATCCATCGATGCTAGGAGGTATGGCAATTAGTATTAGGTGGAGC 3'
BamHI Met

- B. 3' primer for amplification of *galE* for fusion with *lgtB* insertion into pCW**

5' GGGGGGG**G****T****A****G****C****G****C****G****C****T****C****C****T****G****A****T****C****G****T****A****C****C****T****T****T****G** 3'
 NheI **Gly** **Gly**

- C. 5' primer for amplification of *lgtB* for fusion with the 3' end of *galE*.

5' GGGGGG**GCTAGCGTGCAAAAC**ACGTTATCAGCTTAGC
 NheI **Val**

- D. 3' primer for amplification of *lgtB* for fusion with *galE* and insertion into pCW

5' GGGGGGG**T****C****G****A****C****T****A****T****T****G****G****A****A****G****G****C****A****C****A****A****T****G****A****A****C****T****G****T****C****G****C****G**
Sall

- ## E. Junction region of the *galE-lgtB* fusion

gale NheI *lgtB*
 5' CCA AAA GGG TAC GAT GAT CGA GGA GGC GGA **GCT AGC** GTG CAA AAC CAC GTT ATC AGC TTA GCT 3'
 3' GGT TTT CCC ATG CTA CTA GCT CCT CCG CCT **CGA TCG** CAC GTT TTG GTG CAA TAG TCG AAT CGA 5'
 P K G Y D R G G G A S V O N H V I S L A