N79-31179 D/3

ADVANCED RESIN MATRICES FOR COMPOSITES

A Presentation Made At THE FIREMEN MEETING SEATTLE, WASHINGTON MARCH 2, 1979

D. A. KOURTIDES
NASA - ARC

SELECTION CRITERIA FOR RESIN MATRICES

- HIGH CHAR YIELD
- HIGH OI, LOW SMOKE & TOXICITY
- GOOD ELEVATED TEMPERATURE MECHANICAL PROPERTIES
- GOOD THERMAL OXIDATIVE STABILITY
- HIGH HUMIDITY RESISTANCE
- **6** CHEMICAL AND RADIATION RESISTANCE
- GOOD FATIGUE AND TOUGHNESS PROPERTIES
- COMPATIBLE PROCESSING, QUALITY CONTROL, AVAILABILITY AND COST TO STATE-OF-THE ART EPOXY RESINS

RESIN MATRICES FOR COMPOSITES

RESIN/CURING AGENT

TYPICAL CHEMICAL STRUCTURE

EPOXY RESIN BASED ON METHYLENE DIANILINE CURED WITH AROMATIC AMINE OR 4,4' DIAMINO DIPHENYL SULPHONE (DDS) (SAMPLE 1)

EPOXY RESIN BASED ON DIGLYCIDYL ETHER OF BISPHENOL A (DGEBA) OR 9,9-BIS-(4-HYDROXYPHENYL) FLUORENE (DGEBF) OR BLENDS CURED WITH TRIMETHOXYBOROXINE (TMB) OR MDA OR DDS (SAMPLE 2)

PHENOLIC NOVOLAC RESIN BASED ON CONDENSATION OF DIMETHOXY-P-XYLENE AND PHENOL CURED WITH HEXAMINE (SAMPLE 3)

226

RESIN MATRICES FOR COMPOSITES

RESIN CURING AGENT

POLYBISMALEIMIDE PREPOLYMER (SAMPLE 4)

BIS(4-GLYCIDYL-2-METHOXYPHENYL)PHENYLPHOSPONATE EPOXY RESIN CURED WITH N,N-DIETHYLAMINOPROPYLAMINE (DEAPA) (SAMPLE 5)

TYPICAL CHEMICAL STRUCTURE O N-O H O C-N-O -CH2-O -NH2 O C-N-O -CH2-O -N-C O CH3O OCH3 H CC-CH2 - CH2 O CH2

PROCESSING CONDITIONS FOR RESINS AND LAMINATES

RESIN	PURE RESIN		
	CATALYST	CURE	POST CURE
EPOXY RESIN (SAMPLE 1)	NMA OR DEAPA OR DDS	DDS, 30 pph, 150°C — 1 hr	190°C – 4 hrs
EPOXY RESIN, DGEBA/DGEBF (SAMPLE 2)	TMB OR DDS	TMB, 30 pph, 135°C — 3 hrs	180°C — 3 hrs 218°C — 3 hrs, N ₂
RESIN/SOLVENT	LAMINATE		
	PREPREG	CURE	POST CURE
(SAMPLE 1)/MEK	AIR DRY, 80°C — 10 min 120°C — 20 min	163°C — 10 min, 340 KN/m ² — 2 hrs	190°C – 4 hrs
(SAMPLE 2)/MEK	AIR DRY, 100°C — 15 min 149°C — 20 min	200°C — 10 min 340 KN/m ² — 2 hrs	218°C — 3 hrs, N ₂

PROCESSING CONDITIONS FOR RESINS AND LAMINATES

AND CAMINATES				
RESIN	PURE RESIN			
	CATALYST	CURE	POST CURE	
PHENOLIC NOVOLAC (SAMPLE 3)		160°C — 1.5 hrs	200°C — 1 hr	
POLYBISMALEIMIDE (SAMPLE 4)		200°C – 3 hrs		
PHOSPHORYLATED EPOXY (SAMPLE 5)	DEAPA	DEAPA/ BAPMP	180°C – 4 hrs	
RESIN/SOLVENT	LAMINATE			
	PREPREG	CURE	POST CURE	
(SAMPLE 3)/MEK	65°C — 15 min 115°C — 20 min	177°C — 1 hr 680 KN/m ²	188°C — 2 hrs	
(SAMPLE 4)/MEK	AIR DRY, 79°C — 15 min 120°C — 20 min	200°C — 3 hrs 680 KN/m ²		
(SAMPLE 5)/MEK	AIR DRY, 80°C — 10 min 120°C — 20 min	180°C — 10 min	200°C – 4 hrs	

EFFECT OF DGEBF MOLE FRACTION IN THE BLEND OF DGEBA/DGEBF ON THE CHAR YIELD OF THE COPOLYMER AT 700°C

DRYING CURVES FOR BISMALEIMIDE/181-PREPREGS

DYNAMIC THERMOGRAVIMETRIC ANALYSES OF RESINS

DYNAMIC THERMOGRAVIMETRIC ANALYSIS OF BISMALEIMIDE RESIN (SAMPLE 5)

SMOKE EVOLUTION OF RESIN/181 GLASS LAMINATES

EFFECT OF CHAR YIELD OF THERMOSET POLYMERS ON OXYGEN INDEX

EFFECT OF TEMPERATURE ON FLEXURAL STRENGTH OF COMPOSITES

CO CONCENTRATION HISTORY

CONCLUSIONS

DGEBA/DGEBF EPOXY CURED WITH TMB EXHIBITED HIGHEST OI AND YC THAN ALL OTHER EPOXY RESINS WITH PROCESSING PARAMETERS COMPARABLE TO CONVENTIONAL EPOXIES.

PHENOLIC-NOVOLAC RESIN EXHIBITED LOWEST DS THAN ALL OTHER RESIN SYSTEMS.

BISMALEIMIDE RESIN EXHIBITED HIGHEST OI AND $^{\rm Y}_{\rm C}$ THAN ALL OTHER RESIN SYSTEMS. PROCESSING PARAMETERS COMPARABLE TO PHENOLICS.

ABOVE RESINS EXCELLENT CANDIDATES FOR RESIN MATRICES FOR GLASS OR GRAPHITE COMPOSITES.