A Sound Decision? The Impact of Audio Descriptions on Economic Rationality

Fadong Chen¹ Rui Guan²

¹Zhejiang University

²University of Kent

Asian Meeting of the Econometric Society, 2024

Motivation

Perception

- Costly or imprecise (Woodford, 2020; Frydman and Jin, 2022)
- Shapes economic behavior (Bordalo et al., 2016)

Audio Descriptions

- Social judgements (Lavan, 2023; Aung et al., 2024)
- Financial markets outcomes (Gorodnichenko et al., 2023)
- Inferior auditory capacity (Cohen et al., 2009; Kaiser, 2015)

Question

• Impact of audio descriptions on economic decision-making?

Overview

Laboratory Experiments

Revealed preference setup with decision-making under risk

- 1 Audio vs. Visual treatments
 - Natural human speech

Impacts of Audio Descriptions

- Severe impairment in economic rationality across measures
 - Despite increased decision times

Overview

Laboratory Experiments

Revealed preference setup with decision-making under risk

- 1 Audio vs. Visual treatments
 - Natural human speech
- 2 Calibrated Audio vs. Calibrated Visual treatments
 - Speed fine-tuned
 - Sequential nature controlled

Impacts of Audio Descriptions

- Severe impairment in economic rationality across measures
 - Despite increased decision times
- 2 Mechanisms
- 8 Behavioral implications

Experimental Design

Decision-Making under Risk

- Makes a choice from 11 options in 20 problems (Kim et al., 2018)
- All options and problems are randomly ordered

Example of Decision Problem

Experimental Design

Decision Problem Entry

```
figure/dp.PNG
```

Audio Treatment

Natural speech respecting prosody and pauses:

- Female Mandarin voice
- Moderate speed rate (120 words per minute)
- Audio played for one option at a time:
 - Mean audio duration: 4.2 seconds
 - Example: "34"-"or"-"67" (4.2s)

```
figure/dpa.PNG
```

Visual Treatment

Disp	lay one option at a time:
•	Duration: 4 seconds
1	figures/Screenshot/v1.png

Consistency with Preference Maximization

- Procedure developed by Nishimura et al. (2017)
 - Resembles the Generalized Axiom of Revealed Preference
 - (Weak) Monotonicity
- Consistency: A binary indicator of whether subjects pass the test or not

Houtman-Maks Index (HMI)

- The minimal number of choice observations needed to be removed to achieve consistency (Houtman and Maks, 1985)
- Inferred as choice "mistakes"

figures/Screenshot/optionexample_ppt2.png

figures/Screenshot/optionexample_

- $a \succeq b$ but not $b \succeq a$ (as $d \gg b$)
- $b \succeq a$ but not $a \succeq b$ (as $c \gg a$)

Inconsistency!

Experiment 1: Procedure

Laboratory Experiment

- Adequate distance to minimize noise
- Comprehension tests
- Controls:
 - Cognitive ability
 - Demographics
 - Decision time

Sample

- 110 in total
 - 50% in each treatment
 - Mean age ≈ 22 , female $\approx 47\%$
 - All native in Mandarin

Experiment 1: Economic Rationality

figures/Exp1/Cons.png

figures/Exp1/hmi.png

Audio (vs. Visual):

- Impairs Consistency by 54% (0.436 vs. 0.2)
- Exacerbates HMI by 52% (1.218 vs. 1.855)

Note: Error bars indicate the standard error of means; P-values from the chi-square and the Mann-Whitney U-Test, respectively

Experiment 1: Economic Rationality Dynamics

figures/Exp1/consistency_1_20.png

The gap emerges with a smaller number of choices

Experiment 1: Perceptual Behavior Dynamics

Experiment 2

Calibrated Audio Treatment

Slow speed rate: 60 words per minute (half of Audio treatment)

- Each number's audio duration calibrated around its digit count
- Mean audio duration: 5s
- Example: "34"—"67" (5.1s)

figure/dpa.PNG

Sequential display of each digit:

- Duration of each digit: 1 seconds
- Mean option duration: 4.9s
- Example: "3","4"—"6", "7" (4.5s)

figures/Screenshot/v2_1.png

figures/Screenshot/v2_pause.png

 ${\tt figures/Screenshot/v2_4.png}$

Experiment 2: Procedure

- Same logistics as Experiment 1
- 203 subjects:
 - 51% in the Calibrated Audio Treatment
 - Mean age ≈ 23 , female $\approx 66\%$
 - All native in Mandarin

Experiment 2: Economic Rationality

figures/Exp2/hmi.png figures/Exp2/Cons.png

 $Error \ bars \ indicate \ the \ standard \ error \ of \ means; \ P-values \ from \ the \ chi-square \ and \ the \ Mann-Whitney \ U-Test, \ respectively$

Experiment 2: Economic Rationality Dynamics

Experiment 2: Perceptual Behavior Dynamics

figures/Exp2/otime_1_20.png figures/Exp2/osearch_1_20.png

Calibrated Audio vs. Audio

figures/Exp1vs2/cons.png

figures/Exp1vs2/hmi.png

Calibrated Audio (vs. Audio):

- Improves consistency by 72% (0.2 vs. 0.352)
- Mitigates HMI by 35% (1.855 vs. 1.371)

Discussion

Highlight

Impaired rationality in decisions made with audio descriptions:

- Sequential nature of audio information acquisition
- Severity linked to speed—slower may help

Future Avenues

- Explore other choice domains with audio descriptions
- Integrated audiovisual information

Thank You!

Any Question?

GARP

For any two menus A, B and choices c(A) = x, c(B) = y:

- xR^Dy if there exists some $z \in A$ such that $z \ge y$
- $ullet xR^Sy$ if there exists some $z\in A$ such that $z\gg y$
- xRy if there exists some sequence $\{x,z_1,z_2\ldots,z_k,y\}$ such that xR^Dz_1 , $z_1R^Dz_2$,..., z_kR^Dy .

GARP requires:

• xRy implies that yR^Sx does not hold.

Graphical Representation of Decision Problems

figure/example/optionexample.png

Graphical Representation of GARP Violation

```
figure/example/garpexample.png
```

- Strictly prefers a to bStrictly prefers b to a

Control Variables

Cognitive Ability

- Main: International Cognitive Ability Resource (Condon and Revelle, 2014)
- Selective attention (Stroop, 1935) and working memory capacity (Sternberg, 1966)

Additional Information

- Demographics: age, gender, education
- Response time

International Cognitive Ability Resource

figure/example/icar1.png

International Cognitive Ability Resource

figure/example/icar2.png	3	

Stroop Task

figure/example/stroop.PNG

Sternberg Task figure/example/sternberg.PNG

Experiment 1: Economic Rationality Dynamics

figures/Exp1/hmi_1_20.png

Measuring Economic Rationality

First-Order Stochastic Dominance (FSD)

- FSD-Consistency
- FSD-HMI

Experiment 1: Economic Rationality (FSD)

figures/Exp1/fcons.png

figures/Exp1/fhmi.png

Audio (vs. Visual):

- ↓ FSD-consistency by 60%
- ↑ FSD-HMI by 34%

Note: Error bars indicate the standard error of means; P-values from the chi-square and the mann whitney u test.

Experiment 1: Economic Rationality (FSD) Dynamics

figures/Exp1/fconsistency_1_20.png

figures/Exp1/fhmi_1_20.png

figures/Screenshot/v2_pause.png

Experiment 2: Economic Rationality (FSD)

Experiment 2: Economic Rationality (FSD) Dynamics

figures/Exp2/fconsistency_1_20.png

figures/Exp2/hmi_1_20.png

Calibrated Audio vs. Audio (FSD)

figures/Exp1vs2/fcons.png figures/Exp1vs2/fhmi.png

Estimating Risk Preferences

- Nonlinear least squares estimation method (Choi et al., 2007)
- Constant Relative Risk Aversion utility function:

$$\min_{\rho} \sum_{i=1}^{20} \left\| (x_1^i, x_2^i) - \arg\max_{x^i \in M^i} \left(0.5u(x_1^i; \rho) + 0.5u(x_2^i; \rho) \right) \right\|;$$

$$u(x_s^i;\rho) = \begin{cases} \frac{x_s^i(^{1-\rho)}}{1-\rho} & \text{, } \rho \geq 0\\ ln(x_s^i) & \text{, } \rho = 1 \end{cases} \text{, for } s = 1,2;$$

ullet where ho is the CRRA utility index

Estimated Risk Preferences Across Treatments

Sample with HMI (with first order stochastic dominance) ≤ 1 : figures/risk/rho_all_filter.png

ullet Risk aversion of females \downarrow

Regressions on Risk Preferences

• Results based on the sample with FSD-HMI≤ 1:

	CRRA Utility Index			
	Calibrated Visual vs. Visual		Calibrated Audio vs. Visual	
	(1)	(2)	(3)	(4)
Female	1.101*** (0.352)	2.452*** (0.658)	1.096*** (0.309)	2.412*** (0.680)
Sequential Treatment	-1.080** (0.491)	0.348 (0.301)	-0.711 (0.582)	0.508 (0.410)
$Female \times Sequential \; Treatment$, ,	-2.449*** (0.769)	, ,	-1.982** (0.757)
Controls	Yes	Yes	Yes	Yes
Observations	73	73	87	87

Note: Controls include cognitive ability, demographics, and decision time; Robust standard errors in parentheses; *** p < 0.01, ** p < 0.5