that D(A) is an ideal. Assume that $\inf\{|h|,|f|\}=0$. Denote by P the band projection onto $\{|h|\}^{\text{dd}}$. Then PAf = APf = A0 = 0. Thus Af $\{|h|\}^{\text{d}}$. We have proved that A is local.

Corollary 5.14. A multiplication semigroup $(T(t))_{t\geq 0}$ on a complex Banach lattice E with order continuous norm is positive if and only if its generator A is real; i.e., $f\in D(A)$ implies $\overline{f}\in D(A)$ and $A\overline{f}=\overline{(Af)}$.

<u>Proof.</u> The condition is equivalent to $T(t)E_{\mathbb{R}} \subseteq E_{\mathbb{R}}$ ($t \ge 0$) (cf. Rem. 3.1), so it is clearly necessary. Conversely, if A is real, then denote by $(T_{\mathbb{R}}(t))_{t\ge 0}$ the restriction semigroup on $E_{\mathbb{R}}$ and by $A_{\mathbb{R}}$ its generator. Then $A_{\mathbb{R}}$ is local (since A is local) and $D(A_{\mathbb{R}})$ is a sublattice of $E_{\mathbb{R}}$. Thus $(T_{\mathbb{R}}(t))_{t\ge 0}$ is a lattice semigroup (and so positive) by Cor. 5.9.

The class of bounded operators which generate a lattice semigroup is very restricted.

<u>Proposition</u> 5.15. Let E be a real or complex Banach lattice and A $\in L(E)$. The following assertions are equivalent.

- (i) $A \in Z(E)$.
- (ii) e^{tA} is disjointness preserving for all $t \ge 0$.
- (iii) $e^{tA} \in \mathcal{I}(E)$ for all $t \in \mathbb{R}$.

Moreover, if $A \in \mathcal{I}(E)$ is real, then $e^{tA} \ge 0$ for all $t \in \mathbb{R}$.

<u>Proof.</u> Since $\mathcal{I}(E)$ is a closed subalgebra of $\mathcal{L}(E)$ (see C-I,Sec.9), it is clear that (i) implies (iii). Assertion (ii) follows trivially from (iii). If (ii) holds, then A is local by Prop.5.4. Hence $A \in \mathcal{I}(E)$.

The last assertion follows from the fact that Z(E) is isomorphic to a space C(K) as a Banach lattice and a Banach algebra.

<u>Proposition</u>. 5.16. Let E be a complex Banach lattice. Every strongly continuous group $(T(t))_{t \ge 0}$ of real operators contained in Z(E) has a bounded generator.