Robot Teknolojisine Giriş BLM4830

Öğr. Grv. Furkan ÇAKMAK

Ders Tanıtım Formu ve Konular

BLM4830 Robot Teknolojisine Giriş Hafta 2

Hafta	Tarih	Konular
1	2.03.2022	Ders Tanıtımı, ROS ve Platform Tanıtımı, Robot Çeşitleri ve Robotik Konuları Başlangıcı
2	9.03.2022	Kinematik - Genel Tanımlar - Diferansiyel Sürüşlü Robot İçin Hesaplama Örnekleri
3	16.03.2022	Sensörler - Çeşitleri ve Çalışma Sistematikleri ve Uygulamaları
4	23.03.2022	Odometri ve Lokalizasyon Kavramları
5	30.03.2022	Uygulama 1 (Laboratuvar)
6	6.04.2022	Haritalama Yöntemleri ve Uygulamaları
7	13.04.2022	Navigasyon ve Keşif Yaklaşımları ve Uygulamaları (Ödev Teslimi)
8	20.04.2022	Ara Sınav
9	27.04.2022	Uygulama 2 (Laboratuvar)
10	4.05.2022	Tatil - Ramazan Bayramı Arifesi
11	11.05.2022	Robot Üzerinden Görüntü İşleme Teknikleri
12	18.05.2022	Robot Üzerinden Görüntü İşleme Teknikleri (Devam)
13	25.05.2022	3B Haritalama Yöntemleri
14	1.06.2022	Proje Sunumları

Wheeled Mobile Robots

BLM4830 Robot Teknolojisine Giriş Hafta 2

- Combination of various physical (hardware) and computational (software) components
- A collection of subsystems:
 - Locomotion: How the robot moves through its environment.
 - Sensing: How the robot measures properties of itself and its environment.
 - Control: How the robot generate physical actions.
 - Reasoning: How the robot maps measurements into actions.
 - **Communication**: How the robots communicate with each other or with an outside operator.

Öğr. Grv. Furkan ÇAKMAK

Wheeled Mobile Robots Wheeled Mobile Robots

Wheeled Mobile Robots

1

Contents

- Introduction
- Classification of wheels
 - Fixed wheel
 - Centered orientable wheel
 - Off-centered orientable wheel
 - Swedish wheel
- Mobile Robot Locomotion
 - Differential Drive
 - Tricycle
 - Synchronous Drive
 - Omni-directional
 - Ackerman Steering
- Kinematics models of WMR
- Summary

Locomotion

- Locomotion is the process of causing an autonomous robot to move
 - In order to produce motion, forces must be applied to the vehicle

Wheeled Mobile Robots (WMR)

Yamabico

MagellanPro

Sojourner

ATRV-2

Hilare 2-Bis

Koy

3

Wheeled Mobile Robots

- Combination of various physical (hardware) and computational (software) components
- A collection of subsystems:
 - Locomotion: how the robot moves through its environment
 - Sensing: how the robot measures properties of itself and its environment
 - Control: how the robot generate physical actions
 - Reasoning: how the robot maps measurements into actions
 - Communication: how the robots communicate with each other or with an outside operator

5

Wheeled Mobile Robots

- Locomotion the process of causing an robot to move.
 - In order to produce motion, forces must be applied to the robot
 - Motor output, payload
- Kinematics study of the mathematics of motion without considering the forces that affect the motion.
 - Deals with the geometric relationships that govern the system
 - Deals with the relationship between control parameters and the behavior of a system.
- Dynamics study of motion in which these forces are modeled
 - Deals with the relationship between force and motions.

Notation

Pose/Posture: position(x, y) and orientation θ

- $\{X_m, Y_m\}$ moving frame
- {X_b, Y_b} base frame

$$q = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 robot posture in base frame

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation matrix expressing the orientation of the base frame with respect to the moving frame

7

Wheels

Rolling motion

Lateral slip

Steered Wheel

Steered wheel

- The orientation of the rotation axis can be controlled

9

Idealized Rolling Wheel

Assumptions

Non-slipping and pure rolling

- 1. The robot is built from rigid mechanisms.
- 2. No slip occurs in the orthogonal direction of rolling (non-slipping).
- 3. No translational slip occurs between the wheel and the floor (pure rolling).
- 4. The robot contains at most one steering link per wheel.
- 5. All steering axes are perpendicular to the floor.

Robot wheel parameters

- For low velocities, rolling is a reasonable wheel model.
 - This is the model that will be considered in the kinematics models of WMR
- · Wheel parameters:
 - -r =wheel radius
 - v = wheel linear velocity
 - w = wheel angular velocity
 - t = steering velocity

11

Wheel Types

Fixed wheel

Off-centered orientable wheel (Castor wheel)

Centered orientable wheel

Swedish wheel:omnidirectional property

Fixed wheel

- Velocity of point **P**

$$V = (r \times w)a_x$$

where, ax : A unit vector to X axis

Restriction to the robot mobility

Point **P** cannot move to the direction perpendicular to plane of the wheel.

13

Centered orientable wheels

- Velocity of point P

$$V = (r \times w)a_x$$

where,

ax: A unit vector of x axis

ay: A unit vector of y axis

Restriction to the robot mobility

Off-Centered Orientable Wheels

Velocity of point P

$$v = (r \times w)a_x + (d \times t)a_y$$

where, a_x : A unit vector of x axis

ay: A unit vector of y axis

Restriction to the robot mobility

15

Swedish wheel

Velocity of point P

$$v = (r \times w)a_x + Ua_s$$

where,

ax: A unit vector of x axis

as: A unit vector to the motion of roller

Omnidirectional property

Examples of WMR

Example

- Smooth motion
- Risk of slipping
- Some times use roller-ball to make balance
- Exact straight motion
- Robust to slipping
- Inexact modeling of turning
- Free motion
- Complex structure
- Weakness of the frame

17

Mobile Robot Locomotion

- Instantaneous center of rotation (ICR) or Instantaneous center of curvature (ICC)
 - A cross point of all axes of the wheels

We talk about the instantaneous center, because we'll analyze this at each instant- the curve may, and probably will, change in the next moment.

Degree of Mobility

Degree of mobility

The degree of freedom of the robot motion

Fixed arc motion (Only one ICR)

Degree of mobility: 0

Fully free motion

(ICR can be located at any position)

Degree of mobility: 2

Degree of mobility: 3

19

Degree of Steerability

Degree of steerability

The number of centered orientable wheels that can be steered independently in order to steer the robot

No centered orientable wheels

Degree of steerability: 0

One centered orientable wheel

Two mutually dependent centered orientable wheels

Two mutually independent centered orientable wheels

Degree of steerability: 1

Degree of steerability: 2

Degree of Maneuverability

• The overall degrees of freedom that a robot can manipulate:

$\delta_{M} = \delta_{m} + \delta_{s}$								
Degree of Mobility	3	2	2	1	1			
Degree of Steerability	0	0	1	1	2			

• Examples of robot types (degree of mobility, degree of steerability)

21

Degree of Maneuverability

$$\delta_{\scriptscriptstyle M} = \delta_{\scriptscriptstyle m} + \delta_{\scriptscriptstyle S}$$

Omnidirectional $\delta_{M} = 3$ $\delta_{m} = 3$ $\delta_{m} = 0$

Differential $\delta_{M} = 2$ $\delta_{m} = 2$ $\delta_{s} = 0$

Omni-Steer $\delta_{M} = 3$ $\delta_{m} = 2$ $\delta_{s} = 1$

Tricycle $\delta_{M} = 2$ $\delta_{m} = 1$ $\delta_{s} = 1$

Two-Steer $\delta_{M} = 3$ $\delta_{m} = 1$ $\delta_{s} = 2$

Non-holonomic constraint

A non-holonomic constraint is a constraint on the feasible velocities of a body

So what does that mean?

Your robot can move in some directions (forward and backward), but not others (sideward).

23

Mobile Robot Locomotion

- Differential Drive
 - two driving wheels (plus roller-ball for balance)
 - simplest drive mechanism
 - sensitive to the relative velocity of the two wheels (small error result in different trajectories, not just speed)
- Steered wheels (tricycle, bicycles, wagon)
 - Steering wheel + rear wheels
 - cannot turn ±90°
 - limited radius of curvature
- Synchronous Drive
- Omni-directional
- Car Drive (Ackerman Steering)

Differential Drive

- Posture of the robot
- $P = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix}$ (x,y) : Position of the robot θ : Orientation of the robot
- Control input

$$U = \left(\begin{array}{c} v \\ w \end{array} \right)$$

 $U = \begin{pmatrix} v \\ w \end{pmatrix}$ v: Linear velocity of the **robot** w: Angular velocity of the **robot** (notice: not for each wheel)

25

Differential Drive

· Two wheels, either side of the robot driven independently

 Steering is achieved by driving the wheels at different speeds

 Two degrees of freedom -> 2 controllable values: (V_l, V_r)

Robot Reference Frame

- The robot's reference frame is three dimensional including position on the plane and the orientation, {X_R, Y_R,θ}
- The axes {X_I, Y_I}, define inertial global reference frame with origin, O
- The angular difference between the global and reference frames is θ
- Point P on the robot chassis in the global reference frame is specified by coordinates (x, y)

$$\xi_I = \begin{bmatrix} x & y & \theta \end{bmatrix}^T$$

27

2D Translation

$$x' = x + t_{x}, \quad y' = y + t_{y}$$

$$\mathbf{P} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{P}' = \begin{bmatrix} x' \\ y' \end{bmatrix}, \quad \mathbf{T} = \begin{bmatrix} t_{x} \\ t_{y} \end{bmatrix}$$

$$\mathbf{P}' = \mathbf{P} + \mathbf{T}$$

2D Rotation

Rotation in angle θ about a pivot (rotation) point (x_r, y_r) .

$$x' = x_r + (x - x_r)\cos\theta - (y - y_r)\sin\theta$$
$$y' = y_r + (x - x_r)\sin\theta + (y - y_r)\cos\theta$$
$$\mathbf{P'} = \mathbf{P}_r + \mathbf{R} \cdot (\mathbf{P} - \mathbf{P}_r)$$

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

29 April 2010

2D Scaling

$$x' = x \cdot s_x, \quad y' = y \cdot s_y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = S \cdot P$$

Scaling about a fixed point (x_f, y_f)

$$x' = x \cdot s_x + x_f \left(1 - s_x \right)$$

$$y' = y \cdot s_y + y_f \left(1 - s_y \right)$$

$$\mathbf{P'} = \mathbf{P} \cdot \mathbf{S} + \mathbf{P}_f \cdot (\mathbf{1} - \mathbf{S})$$

Homogeneous Coordinates

Rotate and then displace a point $P: P' = M_1 \cdot P + M_2$

 \mathbf{M}_1 : 2×2 rotation matrix. \mathbf{M}_2 : 2×1 displacement vector.

Displacement is unfortunately a non linear operation.

Make displacement linear with Homoheneous Coordinates.

 $(x,y) \Rightarrow (x,y,1)$. Transformations turn into 3×3 matrices.

Very big advantage. All transformations are concatenated by matrix multiplication.

31 April 2010

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \quad \mathbf{P}' = \mathbf{T}(t_x, t_y) \cdot \mathbf{P}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \quad \mathbf{P}' = \mathbf{R}(\theta) \cdot \mathbf{P}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, \quad \mathbf{P'} = \mathbf{S}(S_x, S_y) \cdot \mathbf{P}$$

Orthogonal Rotation Matrix

The **orthogonal rotation matrix** is used to map motion in the global reference $\{X_l, Y_l\}$ frame to motion in the robot's local reference frame $\{X_R, Y_R\}$

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The orthogonal rotation matrix is used to convert robot velocity in the global reference frame to components of motion along the robot's local axes $\{X_R, Y_R\}$

$$\dot{\xi}_{R} = R(\theta)\dot{\xi}_{I} = R(\theta) \cdot \begin{bmatrix} \dot{x} & \dot{y} & \dot{\theta} \end{bmatrix}^{T}$$

33

How to convert Degrees to Radians

- One degree is equal 0.01745329252 radians: $1^{\circ} = \pi/180^{\circ} = 0.005555556\pi = 0.01745329252$ rad
- The angle α in radians is equal to the angle α in degrees times pi constant divided by 180 degrees:

$$\alpha$$
(radians) = α (degrees) × π / 180°

• or radians = degrees × π / 180°