ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Nombre: Sebastián Alexander Morales Cedeño

Curso: GR1CC

Fecha: 10/06/2025

[Tarea 08] Ejercicios Unidad 03-C mínimos cuadrados

Repositorio:

https://github.com/SebastianMoralesEpn/Github1.0/tree/be04092bf0f2401fe324ae8ceb23a6613 6201fff/Tareas/%5BTarea%2008%5D%20Ejercicios%20Unidad%2003-C%20m%C3%ADnimos%20cuadrados

CONJUNTO DE EJERCICIOS

1. Dados los datos:

x_1	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
y_i	102.56	130.11	113.18	142.05	167.53	195.14	224.87	256.73	299.50	326.72

a. Construya el polinomio de mínimos cuadrados de grado 1 y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - a_1 x_i - a_0)^2$$

$$\frac{\partial E}{\delta a_0} = -2 \sum_{i=1}^{n} (y_i - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_1} = -2 \sum_{i=1}^{n} x_i (y_i - a_1 x_i - a_0)$$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS MÉTODOS NUMÉRICOS A DE COMPUTA CO

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Polinomio de grado 1:

y = 71.6102x + -191.5724

Error cuadrático: 1058.8389

b. Construya el polinomio de mínimos cuadrados de grado 2 y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - a_2 x_i^2 - a_1 x_i - a_0)^2$$

$$\frac{\partial E}{\delta a_0} = -2 \sum_{i=1}^{n} (y_i - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_1} = -2 \sum_{i=1}^{n} x_i (y_i - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_2} = -2 \sum_{i=1}^{n} x_i^2 (y_i - a_2 x_i^2 - a_1 x_i - a_0)$$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Polinomio de grado 2:

 $y = 8.2171x^2 + -19.3086x + 51.0008$

Error cuadrático: 551.6562

c. Construya el polinomio de mínimos cuadrados de grado 3 y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)^2$$

$$\frac{\partial E}{\delta a_0} = -2 \sum_{i=1}^{n} (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_1} = -2 \sum_{i=1}^{n} x_i (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_2} = -2 \sum_{i=1}^{n} x_i^2 (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_3} = -2 \sum_{i=1}^{n} x_i^3 (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Polinomio de grado 3:

$$y = -2.6068x^3 + 51.5608x^2 + -254.8740x + 469.1618$$

Error cuadrático: 518.3831

d. Construya el polinomio de mínimos cuadrados de la forma be^{ax} y calcule el error.

de minimos cuadrados de la forma
$$E = \sum_{i=1}^{n} (y_i - be^{ax_i})^2$$
$$\frac{\partial E}{\delta b} = -2 \sum_{i=1}^{n} e^{ax_i} (y_i - be^{ax_i})$$
$$\frac{\partial E}{\delta a} = -2b \sum_{i=1}^{n} x_i e^{ax_i} (y_i - be^{ax_i})$$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Modelo be $^(ax)$:

 $y = 26.8408e^{(0.3549x)}$

Error cuadrático: 743.6216

e. Construya el polinomio de mínimos cuadrados de la forma bxa y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - bx_i^a)^2$$
$$\frac{\partial E}{\delta b} = -2\sum_{i=1}^{n} x_i^a (y_i - bx_i^a)$$
$$\frac{\partial E}{\delta a} = -2b\sum_{i=1}^{n} x_i^a \ln(x_i) (y_i - bx_i^a)$$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Modelo bx^a:

 $y = 6.2840x^2.0152$

Error cuadrático: 572.5818

2. Repita el ejercicio 5 para los siguientes datos.

x_1	0.2	0.3	0.6	0.9	1.1	1.3	1.4	1.6
y_i	0.050446	0.098426	0.33277	0.72660	1.0972	1.5697	1.8487	2.5015

a. Construya el polinomio de mínimos cuadrados de grado 1 y calcule el error.

de minimos cuadrados de grado
$$E = \sum_{i=1}^{n} (y_i - a_1 x_i - a_0)^2$$
$$\frac{\partial E}{\delta a_0} = -2 \sum_{i=1}^{n} (y_i - a_1 x_i - a_0)$$
$$\frac{\partial E}{\delta a_1} = -2 \sum_{i=1}^{n} x_i (y_i - a_1 x_i - a_0)$$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Polinomio de grado 1: y = 1.6655x + -0.5125Error cuadrático: 0.335590

b. Construya el polinomio de mínimos cuadrados de grado 2 y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - a_2 x_i^2 - a_1 x_i - a_0)^2$$

$$\frac{\partial E}{\delta a_0} = -2 \sum_{i=1}^{n} (y_i - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_1} = -2 \sum_{i=1}^{n} x_i (y_i - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_2} = -2 \sum_{i=1}^{n} x_i^2 (y_i - a_2 x_i^2 - a_1 x_i - a_0)$$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Polinomio de grado 2:

 $y = 1.1294x^2 + -0.3114x + 0.0851$

Error cuadrático: 0.002420

c. Construya el polinomio de mínimos cuadrados de grado 3 y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)^2$$

$$\frac{\partial E}{\delta a_0} = -2 \sum_{i=1}^{n} (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_1} = -2 \sum_{i=1}^{n} x_i (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_2} = -2 \sum_{i=1}^{n} x_i^2 (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

$$\frac{\partial E}{\delta a_3} = -2 \sum_{i=1}^{n} x_i^3 (y_i - a_3 x_i^3 - a_2 x_i^2 - a_1 x_i - a_0)$$

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Polinomio de grado 3:

 $y = 0.2662x^3 + 0.4029x^2 + 0.2484x + -0.0184$

Error cuadrático: 0.000005

d. Construya el polinomio de mínimos cuadrados de la forma be^{ax} y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - be^{ax_i})^2$$

$$\frac{\partial E}{\partial b} = -2\sum_{i=1}^{n} e^{ax_i} (y_i - be^{ax_i})$$

$$\frac{\partial E}{\partial a} = -2b\sum_{i=1}^{n} x_i e^{ax_i} (y_i - be^{ax_i})$$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS **MÉTODOS NUMÉRICOS** INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Modelo be^(ax):

 $y = 0.1326e^{(1.8583x)}$

Error cuadrático: 0.067988

e. Construya el polinomio de mínimos cuadrados de la forma bxa y calcule el error.

$$E = \sum_{i=1}^{n} (y_i - bx_i^a)^2$$

$$\frac{\partial E}{\partial b} = -2\sum_{i=1}^{n} x_i^a (y_i - bx_i^a)$$

$$\frac{\partial E}{\partial a} = -2b\sum_{i=1}^{n} x_i^a \ln(x_i) (y_i - bx_i^a)$$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Resultado:

Modelo bx^a:

 $y = 0.9055x^2.1428$

Error cuadrático: 0.003488

3. La siguiente tabla muestra los promedios de puntos del colegio de 20 especialistas en matemáticas y ciencias computacionales, junto con las calificaciones que recibieron estos estudiantes en la parte de matemáticas de la prueba ACT (Programa de Pruebas de Colegios Americanos) mientras estaban en secundaria. Grafique estos datos y encuentre la ecuación de la recta por mínimos cuadrados para estos datos.

Puntuación ACT	Promedio de puntos	Puntuación ACT	Promedio de puntos
28	3.84	29	3.75
25	3.21	28	3.65
28	3.23	27	3.87
27	3.63	29	3.75
28	3.75	21	1.66
33	3.20	28	3.12

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

28	3.41	28	2.96
29	3.38	26	2.92
23	3.53	30	3.10
27	2.03	24	2.81

Gráfica:

Resultado:

Ecuación: y = 0.1009x + 0.4866

Error: 0.0468

4. El siguiente conjunto de datos, presentando el Subcomité Antimonopolio del Senado, muestra las características comparativas de supervivencia durante un choque de automóviles de diferentes clases. Encuentre la recta por mínimos cuadrados que aproxima estos datos (la tabla muestra el porcentaje de vehículos que participaron en un accidente en los que la lesión más grave fue fatal o seria)

Tipo	Peso promedio	Porcentaje de presentación
------	---------------	----------------------------

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

Regular lujoso doméstico	4800 lb	3.1
Regular intermediario doméstico	3700 lb	4.0
3. Regular económico doméstico	3400 lb	5.2
4. Compacto doméstico	2800 lb	6.4
5. Compacto extranjero	1900 lb	9.6

Gráfica:

Resultado:

Ecuación de la recta: y = -0.002255x + 13.15

Error estándar: 0.0004