Tools and Techniques for Symbolic Protocol Verification

Muhammad Usama Sardar, Thomas Fossati, and Simon Frost Ack: Nikolaus Thümmel, Ante Derek, Shale Xiong Funding: CPEC, WG3

> Chair of Systems Engineering Technische Universität Dresden

> > February 8, 2023

Outline

- Introduction
- 2 Approach
- Symbolic Security Analysis
- 4 Security Analysis
- Summary

• Program \rightarrow Product/service

- Program \rightarrow Product/service
- $\bullet \ \, \text{Infrastructure management issues} \to \mathsf{Deployed in cloud}$

- Program \rightarrow Product/service
- ullet Infrastructure management issues o Deployed in cloud
- Safety and security interplay

- Program → Product/service
- ullet Infrastructure management issues o Deployed in cloud
- Safety and security interplay
- Additional challenges

- Program → Product/service
- ullet Infrastructure management issues o Deployed in cloud
- Safety and security interplay
- Additional challenges
 - Identity code?

- Program → Product/service
- ullet Infrastructure management issues o Deployed in cloud
- Safety and security interplay
- Additional challenges
 - Identity code?
 - Identity of code?

- Program → Product/service
- ullet Infrastructure management issues o Deployed in cloud
- Safety and security interplay
- Additional challenges
 - Identity code?
 - · Identity of code?
 - Unspecified/not well-understood mechanisms

App. owner

Protection of data in use

- Protection of data in use
- Adversary: root access

- Protection of data in use
- Adversary: root access
- Isolation and attestability

- Protection of data in use
- Adversary: root access
- Isolation and attestability
- Attestation: arguably the most critical but most misunderstood concept in CC

• Trust to app owner: right app in right platform

Secure channel creation

- Secure channel creation
- Provisioning of secrets and config.

Outline

- Introduction
- 2 Approach
- Symbolic Security Analysis
- 4 Security Analysis
- 5 Summary

Outline

- Introduction
 - Confidential Computing
 - Attestation
- Approach
- Symbolic Security Analysis
- Security Analysis
- 5 Summary

Model for Security Analysis¹

- Formal model
- Messages represented by "Terms"
- What attacker can do

¹Barbosa et al., "SoK: Computer-Aided Cryptography", 2021

Model for Security Analysis¹

- Used by cryptographers
- What attacker cannot do

¹Barbosa et al., "SoK: Computer-Aided Cryptography", 2021

Threat Model for Symbolic Analysis

- "Dolev-Yao" ² (symbolic) attacker
- Full control of communication network
- Unbounded number of sessions and messages
- Attacker behavior: Non-deterministic
- Assume cryptographic primitives are perfect

²Dolev and Yao, "On the security of public key protocols", 1983

Security properties³

- Defined on each run of the protocol
 - Confidentiality/Secrecy
 - Authentication

³Blanchet, "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

Security properties³

- Adversary cannot distinguish 2 processes
- e.g., observational equivalence
- Tools: ProVerif, DeepSec (almost the same semantics)

³Blanchet, "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

ProVerif⁴ vs. Tamarin prover⁵

More automation vs. user interaction

⁴Blanchet, "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

 $^{^5\}mbox{Basin}$ et al., "Symbolically analyzing security protocols using Tamarin", 2017

ProVerif⁵ vs. Tamarin prover⁶

More automation vs. user interaction

Computational security analysis on same model (CryptoVerif⁴)

⁴Blanchet, CryptoVerif: A computationally-sound security protocol verifier, 2017

 $^{^5}$ Blanchet, "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

⁶Basin et al., "Symbolically analyzing security protocols using Tamarin", 2017

ProVerif⁶ vs. Tamarin prover⁷

- More automation vs. user interaction
- Computational security analysis on same model (CryptoVerif⁴)
- Faster⁵

⁴Blanchet, CryptoVerif: A computationally-sound security protocol verifier, 2017

⁵Lafourcade and Puys, "Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties". 2016

⁶Blanchet, "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

⁷Basin et al., "Symbolically analyzing security protocols using Tamarin", 2017

ProVerif⁷ vs. Tamarin prover⁸

- More automation vs. user interaction
- Computational security analysis on same model (CryptoVerif⁴)
- Faster⁵
 - esp. recent improvements⁶

⁴Blanchet, CryptoVerif: A computationally-sound security protocol verifier, 2017

 $^{^5}$ Lafourcade and Puys, "Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties", 2016

⁶Blanchet, Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022

 $^{^7}$ Blanchet, "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

 $^{^{8}}$ Basin et al., "Symbolically analyzing security protocols using Tamarin", 2017

ProVerif⁷ vs. Tamarin prover⁸

- More automation vs. user interaction
- Computational security analysis on same model (CryptoVerif⁴)
- Faster⁵
 - esp. recent improvements⁶
- Supports equivalence properties

⁴Blanchet, CryptoVerif: A computationally-sound security protocol verifier, 2017

 $^{^5}$ Lafourcade and Puys, "Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties", 2016

⁶Blanchet, Cheval, and Cortier, "ProVerif with lemmas, induction, fast subsumption, and much more", 2022

 $^{^7}$ Blanchet, "Modeling and verifying security protocols with the applied pi calculus and ProVerif", 2016

 $^{^{8}}$ Basin et al., "Symbolically analyzing security protocols using Tamarin", 2017

Overview of Approach

Confidentiality

Confidentiality

• Formalized as a reachability property

Confidentiality

- Formalized as a reachability property
- Authentication

Confidentiality

- Formalized as a reachability property
- Authentication

Confidentiality

- Formalized as a reachability property
- Authentication

Correspondence assertions

```
query x_1 : t_1, ..., x_n : t_n;
event (msg\_accepted(M_1, ..., M_j)) ==> \text{ event } (msg\_sent(N_1, ..., N_k)).
(1)
```

Confidentiality

- Formalized as a reachability property
- Authentication

Correspondence assertions

```
query x_1 : t_1, ..., x_n : t_n;
event (msg\_accepted(M_1, ..., M_j)) ==> \text{ event } (msg\_sent(N_1, ..., N_k)).
(1)
```

• Additional check: Reachability of msg_accepted

Injective correspondence assertions

```
query x_1: t_1, ..., x_n: t_n;

event (msg\_acc(M_1, ..., M_j)) ==> inj-event (msg\_sent(N_1, ..., N_k)).
(2)
```


Injective correspondence assertions

```
query x_1: t_1, ..., x_n: t_n;
event (msg\_acc(M_1, ..., M_j)) ==> inj-event <math>(msg\_sent(N_1, ..., N_k)).
(2)
```

Additional check: Reachability of msg_accepted

Outline

- Introduction
 - Confidential Computing
 - Attestation
- 2 Approach
- Symbolic Security Analysis
- 4 Security Analysis
- Summary

• Intel TDX: how do we precisely express trust boundaries?

• Intel TDX: how do we precisely express trust boundaries?

SCONE: when do we say that something is attested?

• Intel TDX: how do we precisely express trust boundaries?

- SCONE: when do we say that something is attested?
 - Challenge: closed-source nature of SCONE

• Intel TDX: how do we precisely express trust boundaries?

- SCONE: when do we say that something is attested?
 - Challenge: closed-source nature of SCONE
- Arm CCA: authentication properties

```
query data: bitstring, sig : sign;
event (accepted(data, sig)) ==> inj-event (sent(data, sig)).
(3)
```

Outline

- Introduction
 - Confidential Computing
 - Attestation
- 2 Approach
- Symbolic Security Analysis
- Security Analysis
- Summary

 Towards TEE-agnostic verification infrastructure for transparency and interoperability

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- Lots of work required for precise specification and standardization

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- Lots of work required for precise specification and standardization
 - Formal definitions and semantics associated with the attestation mechanisms

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- Lots of work required for precise specification and standardization
 - Formal definitions and semantics associated with the attestation mechanisms
 - Provisioning protocols not well-understood

- Towards TEE-agnostic verification infrastructure for transparency and interoperability
- Lots of work required for precise specification and standardization
 - Formal definitions and semantics associated with the attestation mechanisms
 - Provisioning protocols not well-understood
 - Analysis and categorization of Claims

Key References

Barbosa, Manuel et al. "SoK: Computer-Aided Cryptography". In: 42nd IEEE Symposium on Security and Privacy. 2021. URL: https://eprint.iacr.org/2019/1393.pdf.

Basin, David et al. "Symbolically analyzing security protocols using Tamarin". In: ACM SIGLOG News 4.4 (Nov. 2017), pp. 19–30. ISSN: 2372-3491. DOI: 10.1145/3157831.3157835.

Blanchet, Bruno. CryptoVerif: A computationally-sound security protocol verifier. Tech. rep. 2017.

— ."Modeling and verifying security protocols with the applied pi calculus and ProVerif". In: Foundations and Trends in Privacy and Security 1.1-2 (Oct. 2016), pp. 1–135.

Blanchet, Bruno, Vincent Cheval, and Véronique Cortier. "ProVerif with lemmas, induction, fast subsumption, and much more". In: *IEEE Symposium on Security and Privacy (S&P'22)*. Los Alamitos, CA, USA: IEEE Computer Society, May 2022, pp. 205–222. DOI: 10.1109/SP46214.2022.00013.

Doley, D. and A. Yao. "On the security of public key protocols". In: *IEEE Transactions on Information Theory* 29.2 (Mar. 1983), pp. 198–208. ISSN: 1557-9654.

Lafourcade, Pascal and Maxime Puys. "Performance Evaluations of Cryptographic Protocols Verification Tools Dealing with Algebraic Properties". In: Foundations and Practice of Security. 2016, pp. 137–155. DOI: 10.1007/978-3-319-30303-1_9.

Contributions/collaborations welcome

