Ingeniería de software l

Tema III – Actividades del proceso de desarrollo

Inicio del proyecto Razones para iniciarlo

- Mayor velocidad de procesamiento
- Mayor exactitud y consistencia
- Consulta más rápida a la información
- Integración de las áreas de la organización
- Reducción de costos
- Mayor seguridad

Inicio del proyecto Origen de solicitudes de proyectos

- Directores, Gerentes, Jefes de alto rango
- Altos ejecutivos, Autoridades con cargos políticos (para las reparticiones públicas)
- Analistas de Sistemas, Sectoriales de Informática, Direcciones de Informática
- Entes externos (normalmente estatales)

Internos de la organización

Inicio del proyecto Revisión y selección de proyectos

• Grupo multidisciplinario:

- Grupo directivo: personal jerárquico de la organización (eventualmente autoridades políticas),
- Grupo de usuarios: personal especialista en el tema tocado por la solicitud de sistemas y que se verían afectados directamente por la solución adoptada,
- Grupo de sistemas de información: personal especialista en sistemas de información.

Actividades del proceso de desarrollo

- Especificación del software. En donde se define tanto la funcionalidad del software como las restricciones de su operación.
- Diseño e implementación. Debe desarrollarse el software para cumplir con las especificaciones.
- Validación del software. Verificación de que el software cumple con lo que el cliente quiere.
- 4. Evolución del software. El software tiene que evolucionar para satisfacer las necesidades cambiantes del cliente.

1. Requerimientos y Especificación del software

La especificación del software o la ingeniería de requerimiento, consiste en el proceso de comprender y definir qué servicios se requieren del sistema así como la identificación de restricciones sobre la operación y el desarrollo. Es una etapa particularmente crítica del proceso de software ya que los errores aquí, conducen de manera inevitable a problemas posteriores tanto en el diseño como en la implementación del sistema y pueden concluir con el fracaso del proyecto.

1. Requerimientos y Especificación del software

- Requiere mucha interacción con el usuario. Los tipos de usuarios son:
 - Usuarios directos: los que realmente interactúan con el sistema. Ingresan datos o reciben salidas (consultas).
 - Usuarios indirectos: se benefician de los resultados o informes producidos por el sistema, pero no interactúan directamente con el hardware o software.
 - Usuarios administrativos: administran los sistemas de aplicación. Tienen la autoridad para aprobar o desaprobar la inversión en el desarrollo de aplicaciones. Tienen además la responsabilidad de la organización para la efectividad de los sistemas. Estos usuarios participan activamente en el desarrollo del sistema.

1. Requerimientos y Especificación del software Actividades

- Investigación preliminar
- Estudio de factibilidad
 - Operativa
 - Técnica
 - Económico financiera
- Obtención y análisis de requerimientos
 - Entrevistas
 - Cuestionarios
 - Revisión de registros
 - Observación
- Especificación de requerimientos
- Validación de requerimientos

1. Requerimientos y Especificación del software Modelos Aspectos:

- Perspectiva externa (modelo de contexto o entorno del sistema)
- Perspectiva de interacción donde se modela la interacción entre un sistema y su entorno o entre los componentes de un sistema
- Perspectiva estructural donde se modela la organización de un sistema o la estructura de datos que procese el sistema
- Perspectiva de comportamiento donde se modela el comportamiento dinámico del sistema y cómo responde ante ciertos eventos.

1. Requerimientos y Especificación del software Modelos Objetivos:

 Facilitar la discusión sobre un sistema existente o propuesto.

Documentar el sistema (planos del sistema)

 Descripción detallada del sistema que sirve para generar una implementación del sistema.

2. Diseño e implementación del software

- Objetivo: Convertir una especificación del sistema en un artefacto ejecutable
- Un diseño de software es una descripción de la estructura del software que se va a implementar, los modelos y las estructuras de datos, las interfaces entre componentes y los algoritmos usados.

Diseño e implementación del software Actividades y productos de diseño

Diseño e implementación del software Actividades y productos de diseño

Diseño e implementación del software Actividades y productos de diseño

2. Diseño e implementación del software

Actividades y productos de diseño de

Diseño e implementación del software

Actividades y productos de diseño Se toma cada componente del sistema y se diseña

Productos del diseño

Diseño e implementación del software Actividades y productos de diseño

Diseño e implementación del software Actividades y productos de diseño

Diseño e implementación del software

2. Diseño e implementación del software Actividades y productos de diseño PROGRAMACIÓN

- No hay proceso general, es una actividad personal
- Comenzar con los componentes que se entienden.
- Desarrollar a lo último los que se entienden
- Comenzar con la definición de los datos de prueba
- Prueba: establece la existencia de defectos
- Depuración: localiza defectos y los corrige

- La verificación y validación del software se crea para mostrar que un sistema cumple tanto con sus especificaciones como las expectativas del cliente.
- Las pruebas con datos simulados son la principal técnica de validación.
- No se prueban unidades monolíticas.

- La verificación y validación del software se crea para mostrar que un sistema cumple tanto con sus especificaciones como las expectativas del cliente.
- Las pruebas con datos simulados son la principal técnica de validación.
- No se prueban unidades monolíticas sino:

- La verificación y validación del software se crea para mostrar que un sistema cumple tanto con sus especificaciones como las expectativas del cliente.
- Las pruebas con datos simulados son la principal técnica de validación.
- No se prueban unidades monolíticas sino:

- La verificación y validación del software se crea para mostrar que un sistema cumple tanto con sus especificaciones como las expectativas del cliente.
- Las pruebas con datos simulados son la principal técnica de validación.
- No se prueban unidades monolíticas sino:

- La verificación y validación del software se crea para mostrar que un sistema cumple tanto con sus especificaciones como las expectativas del cliente.
- Las pruebas con datos simulados son la principal técnica de validación.
- No se prueban unidades monolíticas sino:

3. Validación del software Prueba de desarrollo

- Las personas que desarrollan el sistema ponen a prueba los componentes que lo constituyen.
- Cada componente se prueba de manera independiente. Éstos pueden ser simples entidades como funciones o clases de objeto o agrupamientos coherentes de dichas entidades.
- Se suelen utilizar herramientas de automatización de pruebas como JUnit, que pueden volver a correr pruebas de componentes cuando se crean nuevas versiones.

3. Validación del software Prueba del sistema

- Los componentes del sistema se integran para crear un sistema completo.
- Se intenta descubrir errores que resulten de interacciones no anticipadas entre componentes y problemas de interfaz entre ellos, así como de mostrar que el sistema cubre sus requerimientos.
- Para sistemas grandes, se hace por etapas, donde los componentes se juntan para formar subsistemas que se ponen a prueba de manera individual antes de que se integren para establecer el sistema final.

3. Validación del software Prueba de aceptación

- Ésta es la etapa final en el proceso de pruebas, antes de que el sistema se acepte para uso operacional.
- El sistema se pone a prueba con datos suministrados por el cliente ya que los datos reales ejercitan el sistema de distinta manera que los de prueba.
- · Revelan errores y omisiones en la definición de requerimientos.
- Revelan problemas de requerimientos cuando las instalaciones del sistema no cumplen las necesidades del usuario o cuando sea inaceptable el rendimiento.

- Si es utiliza un <u>enfoque incremental</u>, cada incremento debe ponerse a prueba conforme se diseña y tales pruebas se basan en los requerimientos para dicho incremento.
- Si se sigue un plan, las pruebas se realizan mediante un conjunto de planes de prueba.
- Un equipo independiente de examinadores trabaja con los planes desarrollados a partir de la especificación y diseño de sistemas.

4. Evolución del software

- Paradoja de "desarrollo de software" vs. "proceso de evolución".
- Los sistemas no son totalmente nuevos → el mantenimiento es un <u>continuo</u>.
- En vez de procesos separados, el desarrollo y el mantenimiento conforman un solo proceso evolutivo donde el software cambia continuamente

