OPTIMIZACIÓN

Primer Cuatrimestre 2025

Ejercicios para pensar

Ejercicio 1 Sea $f(x) = \frac{1}{2}x^tQx - b^tx$ con Q simétrica definida positiva. Sea x_1 un minimizante de f en un subespacio S_1 que contiene al vector d y sea x_2 un minimizante de f en un subespacio S_2 que contiene a d. Mostrar que si $f(x_1) < f(x_2)$ entonces $\overline{x} = x_1 - x_2$ es Q-ortogonal a d.

Esta propiedad sugiere un método de direcciones conjugadas que no evalúa gradientes y solo utiliza minimizaciones lineales.

Proposición 1: (Teorema del Multiplicador de Lagrange – Condiciones Necesarias)

Sea x^* un mínimo local de f sujeto a h(x)=0, y suponga que los gradientes de las restricciones $\nabla h_1(x^*), \ldots, \nabla h_m(x^*)$ son linealmente independientes. Entonces existe un vector único $\lambda^*=(\lambda_1^*,\ldots,\lambda_m^*)$, llamado vector de multiplicadores de Lagrange, tal que

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) = 0.$$

Si además f y h son dos veces continuamente diferenciables, se cumple

$$y'\left(\nabla^2 f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla^2 h_i(x^*)\right) y \ge 0$$
, para todo $y \in V(x^*)$,

donde $V(x^*)$ es el subespacio de variaciones factibles de primer orden:

$$V(x^*) = \{ y \mid \nabla h_i(x^*)'y = 0, i = 1, \dots, m \}.$$

Proposición 2: (Condiciones Suficientes de Segundo Orden) Suponga que f y h son dos veces continuamente diferenciables, y sean $x^* \in \mathbb{R}^n$ y $\lambda^* \in \mathbb{R}^m$ vectores que satisfacen:

$$\nabla_x L(x^*, \lambda^*) = 0, \quad \nabla_\lambda L(x^*, \lambda^*) = 0,$$

$$y'\nabla_{xx}^2 L(x^*, \lambda^*)y > 0$$
, para todo $y \neq 0$ con $\nabla h(x^*)'y = 0$.

Entonces, x^* es un **mínimo local estricto** de f sujeto a h(x)=0. De hecho, existen escalares $\gamma>0$ y $\epsilon>0$ tales que:

$$f(x) \ge f(x^*) + \frac{\gamma}{2} ||x - x^*||^2$$
, $\forall x \text{ con } h(x) = 0 \text{ y } ||x - x^*|| < \epsilon$.

Ejercicio 2 Sea x^* un punto factible que es regular y que, junto con algún λ^* , satisface las condiciones necesarias de primer y segundo orden de la Proposición 1. Demuestrar que x^* y λ^* satisfacen las condiciones suficientes de segundo orden de la Proposición 2 si y solo si la matriz

$$\begin{pmatrix} \nabla_{xx}^2 L(x^*, \lambda^*) & \nabla h(x^*) \\ \nabla h(x^*)' & 0 \end{pmatrix}$$

es no singular.