Exercice 1

Le résultat est $(101)_2$.

Le résultat est $(10011110)_2$.

3.4.
$$2031$$
 451 $+2001$ $+628$ $\frac{1}{10033}$ $\frac{1}{1181}$

Le résultat est $(33)_4$.

Le résultat est $(181)_9$.

5.6.
$$703$$
 $F42A$ $+612$ $+45E3$ $\frac{1}{1516}$ $\frac{1}{13A0E}$

Le résultat est $(516)_8$.

Le résultat est $(3A0E)_{16}$.

Exercice 2

1. On convertit 121 en base 4: $(1321)_4$. Puis on écrit le résultat sur 6 chiffres: $(001321)_4$.

Finalement on cherche son complément à 4:

$$\begin{array}{c} 333333 \\ -001321 \\ \hline 332012 \\ \hline \hline 1 \\ \hline 332013 \\ \end{array}$$
 Donc la représentation de -121 est $(332013)_4$.

2. On convertit 3893 en base 16: $(F35)_{16}$. Puis on écrit le résultat sur 8 chiffres: $(00000F35)_{16}$.

Finalement on cherche son complément à 16:

Exercice 3

- 1. (a) $200000 = (30D40)_{16}$ et sa représentation sur 8 positions est: $(00030D40)_{16}$.
 - (b) On cherche le complément à 16 de $(00030D40)_{16}$:

$$\begin{array}{r} FFFFFFFF \\ -00030D40 \\ \hline FFFCF2BF \\ \hline 1 \\ \hline FFFCF2C0 \\ \end{array}$$

Donc la représentation de -200000 est $(FFFCF2C0)_{16}$.

(c) $3645 = (E3D)_{16}$ et sa représentation sur 8 positions est: $(00000E3D)_{16}$. On cherche le complément à 16 de $(00000E3D)_{16}$:

$$\begin{array}{r} FFFFFFFF \\ -00000E3D \\ \hline FFFFF1C2 \\ \hline \\ \hline FFFFF1C3 \\ \hline \end{array}$$

Donc la représentation de -3645 est $(FFFFF1C3)_{16}$.

- 2. (a) $(100080AE)_{16} = 268468398$.
 - (b) Comme le nombre FFFFFD90 commence par la lettre F, cela signifie qu'il s'agit d'un nombre négatif. Il faut donc le "décomplémenter":

$$\begin{array}{c} FFFFFD \ 9 \ 0 \\ FFFFFD \ 8 \ F \\ \hline 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 7 \ 0 \end{array}$$

Et
$$(270)_{16} = 624$$
.

Donc le nombre cherché est -624.

(c) Comme le nombre 900001D4 commence par le chiffre 9, cela signifie qu'il s'agit d'un nombre négatif. Il faut donc le "décomplémenter":

$$900001D4$$
 $90001D3$
 $6FFFFE2C$

Et
$$(6FFFFE2C)_{16} = 1879047724$$
.

Donc le nombre cherché est -1879047724.

3. Les entiers positifs vont de $(00000000)_{16}$ à $(7FFFFFFFF)_{16}$. Ceci qui correspond aux nombres: 0 jusqu'à 2 147 483 647.

Les entiers négatifs vont de $(FFFFFFFFF)_{16}$ à $(80000000)_{16}$. Ceci qui correspond aux nombres: -1 jusqu'à $-2\,147\,483\,648$.

Exercice 4

1. Les entiers positifs vont de +00000 à +99999. Autrement dit de 0 jusqu'à $99\,999 = MAXINT$.

Les entiers négatifs vont de -00000 à -99999. Autrement dit de 0 jusqu'à -99999 = MININT.

Il est donc possible en utilisant cette méthode de coder 199 999 (le 0 est codé deux fois).

2. Les entiers positifs vont de 00000 à 499999. Autrement dit de 0 jusqu'à 499999= MAXINT.

Les entiers négatifs vont de 500000 à 999999. Autrement dit de -1jusqu'à $-500\,000 = \mathrm{MININT}.$

En effet,

500000	999999
499999	999998
500000	000001

En utilisant cette méthode on peut donc coder 1 000 000 de nombres.

Exercice 5

Les entiers positifs vont de $(00000000)_4$ à $(13333333)_4$.

Comme $(13333333)_4 = (20000000)_4 - (1)_4 = 2 \cdot 4^7 - 1 = 32767.$

Autrement dit de 0 jusqu'à 32767.

Les entiers négatifs vont de $(20000000)_4$ à $(33333333)_4$. Autrement dit de -1 jusqu'à -32768.

En effet,

20000000	33333333
13333333	33333332
20000000	0000001

Les entiers représentables vont donc de -32768 à 32767.