Final project

Ya-Chen Lin (Lisa)

Task 01

```
#combine 5 files and add position
k <- read.csv('proj_k15.csv')</pre>
qb <- read.csv('proj_qb15.csv')</pre>
rb <- read.csv('proj_rb15.csv')</pre>
te <- read.csv('proj_te15.csv')</pre>
wr <- read.csv('proj_wr15.csv')</pre>
cols <- unique(c(names(k), names(qb), names(rb), names(te), names(wr)))</pre>
k[,'pos'] <- 'k'
qb[,'pos'] <- 'qb'
rb[,'pos'] <- 'rb'
te[,'pos'] <- 'te'
wr[,'pos'] <- 'wr'
cols <- c(cols, 'pos')</pre>
k[,setdiff(cols, names(k))] <- 0</pre>
qb[,setdiff(cols, names(qb))] <- 0
rb[,setdiff(cols, names(rb))] <- 0</pre>
te[,setdiff(cols, names(te))] <- 0</pre>
wr[,setdiff(cols, names(wr))] <- 0</pre>
x <- rbind(k[,cols], qb[,cols], rb[,cols], te[,cols], wr[,cols])
newx <- x
#multiply numeric columns with percentage.
for(i in 1:nrow(x)){
  for(k in 3:18){
    if (newx[i,"Team"] == "CLE" | newx[i,"Team"] == "NO" | newx[i,"Team"] == "NYG" | newx[i,"Team"] == "P
      newx[i,k] \leftarrow newx[i,k] * 10/16
    }else{
      newx[i,k] \leftarrow newx[i,k] * 9/16
    }
  }
}
#sort and order data by 'fpts'
attach(newx)
dataorder <- newx[order(-fpts),]</pre>
#Subset the data by keeping the top 20 kickers, top 20 quarterbacks,
#top 40 running backs, top 60 wide recievers, and top 20 tight ends.
#Thus the projection data should only have 160 rows. (final - prodata)
orderk <- subset(dataorder, pos == "k")</pre>
orderqb <- subset(dataorder, pos == "qb")
orderrb <- subset(dataorder, pos == "rb")
orderte <- subset(dataorder, pos == "te")
orderwr <- subset(dataorder, pos == "wr")</pre>
prodata <- rbind(orderk[1:20,], orderqb[1:20,], orderrb[1:40,], orderwr[1:60,], orderte[1:20,])
#Read in the observed data
obs <- read.csv("nfl_current15.csv")</pre>
pros <- prodata[,-6]</pre>
obss \leftarrow obs[,c(1,2,17,16,18,12,11,13,14,15,5,6,7,4,8,9,10,3)]
```

```
newmat <- matrix(NA, nrow=320, ncol=ncol(pros))</pre>
for(i in 1:160) {
  n <- which(obss$Name == as.character(pros[i,1]))</pre>
  for(k in 1:ncol(pros)){
    newmat[(2*i)-1,k] <- as.character(pros[i,k])</pre>
    if(length(n) == 0){
      newmat[2*i,k] \leftarrow 0
    }else{
      newmat[2*i,k] <- as.character(obss[n,k])</pre>
  }
colnames(newmat) <- colnames(pros)</pre>
newmatt <- as.data.frame(newmat)</pre>
finamat <- matrix(NA, ncol=16, nrow=160)</pre>
for(i in 1:160){
  finamat[i,16] <- as.character(newmatt[(2*i)-1,18])</pre>
  for(k in 1:15){
    finamat[i,k] <- as.numeric(newmatt[2*i,k+2]) - as.numeric(newmatt[(2*i)-1,k+2])</pre>
  }
colnames(finamat) <- c("field goals", "field goals attempted", "extra points ",</pre>
                         "passing attempts", "passing completions", "passing yards",
                         "passing touchdowns", "passing interceptions", "rushing attempts",
                         "rushing yards", "rushing touchdowns", "fumbles", "receiving attempts",
                         "receiving yards", "receiving touchdowns", "pos")
difmat <- as.data.frame((finamat))</pre>
kf <- subset(difmat, pos=="k", select= -pos)</pre>
qbf <- subset(difmat, pos=="qb", select= -pos)</pre>
wrf <- subset(difmat, pos=="wr", select= -pos)</pre>
tef <- subset(difmat, pos=="te", select= -pos)</pre>
rbf <- subset(difmat, pos=="rb", select= -pos)</pre>
noise <- list(kicker=kf,quarterback=qbf,wide_receiver=wrf,tight_endse=tef,running_backs=rbf)</pre>
#final list with 15 columns of interest
```

Task 02

```
x <- newx#to compile. x is the projection data.
league <- function(stats=x,nTeams=10,cap=200,posReq=pos,points=pnts){
    setup <- list(stats, nTeams=nTeams, cap=cap, posReq=posReq, points=points)
    class(setup) <- "league"
    return(setup)
}
#calculate points
calculate points
calculate roints
calculate points <- function(x){
    a <- data.frame(x[1])
    pts <- data.frame(x$points)
    a[,'p_fg'] <- a[,'fg']*pnts$fg
    a[,'p_xpt'] <- a[,'xpt']*pnts$xpt
    a[,'p_pass_yds'] <- a[,'pass_yds']*pnts$pass_yds
    a[,'p_pass_tds'] <- a[,'pass_tds']*pnts$pass_tds</pre>
```

```
a[,'p_pass_ints'] <- a[,'pass_ints']*pnts$pass_ints</pre>
  a[,'p_rush_yds'] <- a[,'rush_yds']*pnts$rush_yds</pre>
  a[,'p_rush_tds'] <- a[,'rush_tds']*pnts$rush_tds</pre>
  a[,'p_fumbles'] <- a[,'fumbles']*pnts$fumbles</pre>
  a[,'p_rec_yds'] <- a[,'rec_yds']*pnts$rec_yds</pre>
  a[,'p_rec_tds'] <- a[,'rec_tds']*pnts$rec_tds</pre>
  a[,'points'] <- rowSums(a[,grep("^p_", names(a))])</pre>
  return(a[,c("PlayerName", "points", "pos")])
}
#build values
buildValues <- function(obj){</pre>
  posReq <- unlist(obj$posReq)</pre>
  nTeams <- unlist(obj$nTeams)</pre>
  cap <- unlist(obj$cap)</pre>
  x <- calcpoints(obj)</pre>
  x2 <- x[order(x[,'points'], decreasing=TRUE),]</pre>
  k.ix <- which(x2[,'pos']=='k')
  qb.ix <- which(x2[,'pos']=='qb')
  rb.ix <- which(x2[,'pos']=='rb')
  te.ix <- which(x2[,'pos']=='te')
  wr.ix <- which(x2[,'pos']=='wr')</pre>
  if(posReq['k'] == 0) {
    x2[k.ix, 'marg'] <- 0</pre>
  }else{
    x2[k.ix, 'marg'] <- x2[k.ix,'points'] - x2[k.ix[nTeams*posReq['k']],'points']</pre>
  if(posReq['qb'] == 0) {
    x2[qb.ix, 'marg'] <- 0
  }else{
    x2[qb.ix, 'marg'] <- x2[qb.ix,'points'] - x2[qb.ix[nTeams*posReq['qb']],'points']</pre>
  if(posReq['rb'] == 0){
    x2[rb.ix, 'marg'] <- 0</pre>
    x2[rb.ix, 'marg'] <- x2[rb.ix,'points'] - x2[rb.ix[nTeams*posReq['rb']],'points']</pre>
  if(posReq['te'] == 0){
    x2[te.ix, 'marg'] <- 0</pre>
  }else{
    x2[te.ix, 'marg'] <- x2[te.ix,'points'] - x2[te.ix[nTeams*posReq['te']],'points']</pre>
  if(posReq['wr'] == 0){
    x2[wr.ix, 'marg'] <- 0
  }else{
    x2[wr.ix, 'marg'] <- x2[wr.ix,'points'] - x2[wr.ix[nTeams*posReq['wr']],'points']</pre>
  x3 \leftarrow x2[x2[,'marg'] >= 0,]
  x3 <- x3[order(x3[,'marg'], decreasing=TRUE),]</pre>
  x3[,'value'] \leftarrow x3[,'marg']*(nTeams*cap-nrow(x3))/sum(x3[,'marg']) + 1
  for ( i in 1:length(posReq)){
    if (posReq[i] == 0){
      x3 <- x3[!x3[,'pos'] == names(posReq[i]),]</pre>
```

```
x4 \leftarrow x2[x2[,'marg'] < 0,]
  x4[,'value'] <- 0
  x5 \leftarrow rbind(x3, x4)
  x6 <- x5[,c('PlayerName','value','pos')]
  return(x6)
}
#method for print
print.league <- function(obj){</pre>
  b <- buildValues(obj)</pre>
  greaterzero <- subset(b, value > 0)
  return(data.frame(greaterzero))
plot.league <- function(obj){</pre>
  a <- print(obj)
  plot(1:nrow(a), a[,"value"], xlab="Ranking", ylab="Dollar Value", main="Scatterplot of Dollar Value b
       cex.lab=1.5,pch="0", cex.main=1.7, cex.axis=1.2)
#boxplot
boxplot.league <- function(obj){</pre>
  a <- print(obj)
  boxplot(a[,'value'] ~ a[,'pos'], xlab="Position", ylab='Dollar Value', cex.lab=1.5,
          main="Boxplot of Player's position and Dollar Value", cex.main=1.7, cex.axis=1.2)
#histogram
hist.league <- function(obj){
  a <- print(obj)
  hist(a[,'value'], xlab='Dollar Value', main="Player's Dollar Value Distribution",
       cex.lab=1.5, cex.main=1.7, cex.axis=1.2)
```

Task 03

```
valueall <- function(obj,residuals, prodata){</pre>
  ks <- sample(1:nrow(residuals$kicker),1,replace=TRUE)</pre>
  qbs <- sample(1:nrow(residuals$quarterback),1,replace=TRUE)</pre>
  wrs <- sample(1:nrow(residuals$wide receiver),1,replace=TRUE)
  tes <- sample(1:nrow(residuals$tight_endse),1,replace=TRUE)</pre>
  rbs <- sample(1:nrow(residuals$running_backs),1,replace=TRUE)
  for(i in 1:nrow(prodata)){
    for(k in 1:15){
      if(prodata[i,"pos"] == "k"){
        prodata[i, k+1] <-prodata[i, k+1]+ as.numeric(levels(residuals$kicker[ks,k]))[residuals$kicker[</pre>
      }else if(prodata[i,"pos"] == "qb"){
        prodata[i, k+1] <- prodata[i, k+1]+ as.numeric(levels(residuals$quarterback[qbs,k]))[residuals$</pre>
      }else if(prodata[i,"pos"] == "wr"){
        prodata[i, k+1] <- prodata[i, k+1]+ as.numeric(levels(residuals$wide_receiver[wrs,k]))[residual</pre>
      }else if(prodata[i,"pos"] == "te"){
        prodata[i, k+1] <- prodata[i, k+1]+ as.numeric(levels(residuals$tight_endse[tes,k]))[residuals$</pre>
      }else if(prodata[i,"pos"] == "rb"){
```

```
prodata[i, k+1] <- prodata[i, k+1]+ as.numeric(levels(residuals$running_backs[rbs,k]))[residual</pre>
    }
    if(prodata[i,k+1] < 0)
      prodata[i,k+1] \leftarrow 0
  }
a <- prodata
pts <- data.frame(obj$points)</pre>
a[,'p_fg'] <- a[,'fg']*pnts$fg
a[,'p_xpt'] <- a[,'xpt']*pnts$xpt</pre>
a[,'p_pass_yds'] <- a[,'pass_yds']*pnts$pass_yds</pre>
a[,'p_pass_tds'] <- a[,'pass_tds']*pnts$pass_tds</pre>
a[,'p_pass_ints'] <- a[,'pass_ints']*pnts$pass_ints</pre>
a[,'p_rush_yds'] <- a[,'rush_yds']*pnts$rush_yds
a[,'p_rush_tds'] <- a[,'rush_tds']*pnts$rush_tds</pre>
a[,'p_fumbles'] <- a[,'fumbles']*pnts$fumbles</pre>
a[,'p_rec_yds'] <- a[,'rec_yds']*pnts$rec_yds
a[,'p_rec_tds'] <- a[,'rec_tds']*pnts$rec_tds</pre>
a[,'points'] <- rowSums(a[,grep("^p_", names(a))])
x <- a[,c("points","pos")]</pre>
posReq <- unlist(obj$posReq)</pre>
nTeams <- unlist(obj$nTeams)</pre>
cap <- unlist(obj$cap)</pre>
x2 <- x[order(x[,'points'], decreasing=TRUE),]</pre>
k.ix <- which(x2[,'pos']=='k')
qb.ix <- which(x2[,'pos']=='qb')
rb.ix <- which(x2[,'pos']=='rb')
te.ix <- which(x2[,'pos']=='te')</pre>
wr.ix <- which(x2[,'pos']=='wr')</pre>
k.x <- which(x[,'pos']=='k')
qb.x \leftarrow which(x[,'pos']=='qb')
rb.x <- which(x[,'pos']=='rb')
te.x <- which(x[,'pos']=='te')</pre>
wr.x <- which(x[,'pos']=='wr')</pre>
if(posReq['k'] == 0) {
  x[k.x, 'marg'] <- 0
}else{
  x[k.x, 'marg'] \leftarrow x[k.x, 'points'] - x2[k.ix[nTeams*posReq['k']], 'points']
if(posReq['qb'] == 0) {
  x[qb.x, 'marg'] <- 0
}else{
  x[qb.x, 'marg'] <- x2[qb.ix,'points'] - x2[qb.ix[nTeams*posReq['qb']],'points']</pre>
if(posReq['rb'] == 0){
  x[rb.x, 'marg'] <- 0
}else{
  x[rb.x, 'marg'] <- x[rb.x, 'points'] - x2[rb.ix[nTeams*posReq['rb']], 'points']</pre>
if(posReq['te'] == 0){
  x[te.x, 'marg'] <- 0
```

```
}else{
    x[te.x, 'marg'] <- x[te.x, 'points'] - x2[te.ix[nTeams*posReq['te']], 'points']</pre>
  if(posReq['wr'] == 0){
    x[wr.x, 'marg'] <- 0
  }else{
    x[wr.x, 'marg'] <- x[wr.x,'points'] - x2[wr.ix[nTeams*posReq['wr']],'points']</pre>
  x3 <- x[x[,'marg'] >= 0,]
  x[,'value'] \leftarrow x[,'marg']*(nTeams*cap-nrow(x3))/sum(x3[,'marg']) + 1
  for ( i in 1:length(posReq)){
    if (posReq[i] == 0){
      x \leftarrow x[!x[,'pos'] == names(posReq[i]),]
    }
  }
  x[which(x[,'value'] < 0), 'value'] < 0
  return(x[,c("value")])
}
#addNoise
addNoise <- function(obj,residuals,simulation,seed){</pre>
  set.seed(seed)
  prodata <- data.frame(obj[1])[,-c(2,6)]</pre>
  result <- replicate(simulation, valueall(obj,residuals,prodata))</pre>
  final <- list(obj,tp=obj$posReq, team=obj$nTeams, s=result,p=prodata[,"pos"], n=prodata[,"PlayerName"]</pre>
  class(final) <- "league"</pre>
  return(final)
}
#quantile
quantile.league <- function(obj,probs=c(0.25,0.5,0.75)){
  want <- unlist(obj$s)</pre>
  name <- unlist(obj$n)</pre>
  pos <- unlist(obj$p)</pre>
  np <- length(probs)</pre>
  mat <- matrix(NA, nrow=nrow(want), ncol=(np+1))</pre>
  for(i in 1:nrow(want)){
    mat[i,(np+1)] <- pos[i]
    for(k in 1:np){
        class(want[i,]) <- "league"</pre>
      mat[i,k] <- quantile(as.numeric(want[i,]), probs[k])</pre>
  attr(mat, "prob") <- probs</pre>
  return(mat)
}
#conf.
conf.interval \leftarrow function(obj,probs=c(0.25,0.5,0.75)){
  position <- obj$p
  numpo <- obj$tp
  nteam <- obj$team
  results <- quantile(obj,probs)
```

```
prob <- attr(results, "prob")</pre>
  np <- length(prob)</pre>
  d <- ncol(results)</pre>
  data <- results[,-c(d)]
  result <- matrix(NA, nrow=nrow(data), ncol=ncol(data))</pre>
  for(i in 1:nrow(data)){
    for(k in 1:ncol(data)){
      result[i,k] <- as.numeric(data[i,k])</pre>
    }
  }
  kr <- result[which(position == "k"),]</pre>
  qbr <- result[which(position == "qb"),]</pre>
  wrr <- result[which(position == "wr"),]</pre>
  ter <- result[which(position == "te"),]</pre>
  rbr <- result[which(position == "rb"),]
  kr <- kr[order(kr[,np],decreasing=TRUE),]</pre>
  qbr <- qbr[order(qbr[,np],decreasing=TRUE),]</pre>
  wrr <- wrr[order(wrr[,np],decreasing=TRUE),]</pre>
  ter <- ter[order(ter[,np],decreasing=TRUE),]</pre>
  rbr <- rbr[order(rbr[,np],decreasing=TRUE),]</pre>
  fkr <- kr[1:(numpo$k*nteam),]</pre>
  colnames(fkr) <- prob</pre>
  fqbr <- qbr[1:(numpo$qb*nteam),]</pre>
  colnames(fqbr) <- prob</pre>
  fwrr <- wrr[1:(numpo$wr*nteam),]</pre>
  colnames(fwrr) <- prob</pre>
  fter <- ter[1:(numpo$te*nteam),]</pre>
  colnames(fter) <- prob</pre>
  frbr <- rbr[1:(numpo$rb*nteam),]</pre>
  colnames(frbr) <- prob</pre>
  newlist <- list(k=fkr,qb=fqbr,wr=fwrr, te=fter,rb=frbr)</pre>
  class(newlist) <- "league.conf.interval"</pre>
  return(newlist)
#plot method
plot.league.conf.interval <- function(obj,position){</pre>
  num <- ncol(obj[[position]])</pre>
  plot(unlist(obj[[position]][,num]),type='l',lty= num, ylab="Dollar Value", xlab="Ranking",
        main=paste("Dollar Value interval based on position", position))
  for(i in 1:(num-1)){
    lines(unlist(obj[[position]][,i]),lty=i)
  }
  legend('topright', legend=colnames(obj[[position]]),lty=1:num)
```

Test Q2

Player's Dollar Value Distribution

boxplot(1)

Boxplot of Player's position and Dollar Value

plot(1)

Scatterplot of Dollar Value based on Ranking

Test Q3

```
#hint, running 100 simulations roughly takes about 3 minutes.
11 <- addNoise(1, noise, 500 ,seed=5)
ci <- conf.interval(11)
plot(ci, 'qb')</pre>
```

Dollar Value interval based on position qb

plot(ci, 'rb')

Dollar Value interval based on position rb

plot(ci, 'wr')

Dollar Value interval based on position wr

plot(ci, 'te')

Dollar Value interval based on position te

plot(ci, 'k')

Dollar Value interval based on position k

