PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-226960

(43)Date of publication of application: 03.09.1996

(51)Int.Cl.

GO1R 33/09 H01L 43/08

(21)Application number: 07-283070

(71)Applicant: INTERNATL BUSINESS MACH CORP (IBM)

(22)Date of filing:

31.10.1995

(72)Inventor: DOVEK MORIS M

FONTANA JR ROBERT E SPERIOSU VIRGIL S SPONG JAQUELIN K

(30)Priority

Priority number: 94 334659

Priority date: 04.11.1994

Priority country: US

(54) MAGNETIC FIELD SENSOR AND ITS FABRICATION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a bridge circuit magnetic

field sensor utilizing an SV sensor.

SOLUTION: This sensor is provided with a substrate, first, second, third, and fourth spin valve elements A to D, and a conductor which is formed on the substrate and is mutually connected with the four elements A to D. The elements A to D are respectively provided with a free ferromagnetic layer 36 that has a proper magnetizing axis when no magnetic field is applied, a non-magnetic spacer layer 37 adjacent to the layer 36, and a pinning ferromagnetic layer 39 adjacent to the layer 37. The magnetizing axis is pinned at a certain angle to the proper magnetizing axis of the layer 36, and four magnetizing axes of four free layers are parallel to each other substantially, the four magnetizing axes of four pinning layers 39 are parallel or inversely parallel to each other substantially.

LEGAL STATUS

[Date of request for examination]

05.11.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3017061

[Date of registration]

24.12.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 特許公 報(B2)

(11)特許番号 特許第3017061号 (P3017061)

(45)発行日 平成12年3月6日(2000.3.6)

(24)登録日 平成11年12月24日(1999.12.24)

(51) Int.Cl.7

酸別配号

G01R 33/09 H01L 43/08 FΙ

G01R 33/06 H01L 43/08 R

Z

請求項の数7(全 10 頁)

(21)出願番号

特願平7-283070

(22)出願日

平成7年10月31日(1995.10.31)

(65)公開番号

特開平8-226960

(43)公開日

平成8年9月3日(1996.9.3) 平成9年11月5日(1997.11.5)

審査請求日 (31)優先権主張番号

3 3 4 6 5 9

(32)優先日

平成6年11月4日(1994.11.4)

(33)優先権主張国

米国(US)

(73)特許権者 390009531

インターナショナル・ビジネス・マシー

ンズ・コーポレイション

INTERNATIONAL BUSI NESS MASCHINES COR

PORATION

アメリカ合衆国10504、ニューヨーク州

アーモンク (番地なし)

モーリス・ムサ・ドベック (72) 発明者

> アメリカ合衆国カリフォルニア州、サ ン・カルロス、パイオレット・レーン

(74) 復代理人 100065455

弁理士 山本 仁朗 (外2名)

審査官 濱野 隆

最終頁に続く

(54) 【発明の名称】 ブリッジ回路磁界センサー

(57) 【特許請求の範囲】

【請求項1】外部磁界に応答して出力電圧を生成するた めのブリッジ回路磁界センサーであって、

基板と、

前記基板上に形成された第1<u>ないし</u>第4のスピンバルブ

前記基板上に形成され且つ前記第1及び第2のスピンバ ルブ素子、前記第2及び第4のスピンバルブ素子、前記 第4及び第3のスピンバルブ素子、並びに前記第3及び 第1のスピンバルブ素子をそれぞれ相互接続する第1の 導電体と、

前記基板上に形成された第2の導電体と、

前記スピンバルブ素子及び前記第2の導電体の間の絶縁 層とを備え、

前記スピンバルブ素子の各々は、(a)磁界が付加され

ないとき好ましい磁化軸を有する自由な強磁性層、

(b) 前記自由な強磁性層に隣接する非磁性スペーサ 層、 (c) 前記スペーサ層に隣接するピン止め強磁性 層、及び(d)前記ピン止め強磁性層の磁化を前記自由 な強磁性層の前記好ましい磁化軸に対し概ね垂直な方向 <u>にピン止めするために、前記ピン止め強磁性層に隣接し</u> <u>且つ接触する反強磁性材料の交換バイアス層をそれぞれ</u> 有し、前記第1ないし第4のスピンバルブ素子内にある 前記自由な強磁性層の前記好ましい磁化軸は、実質的に 互いに平行であり<u></u>前記<u>第1及び第2のスピンバルブ素</u> <u>子内にある前記</u>ピン止め強磁性層<u>の磁</u>化の方向は<u></u>実質 的に互いに逆平行であり、前記<u>第3及び第4のスピンバ</u> <u>ルブ素子内にある</u>前記ピン止め強磁性層の磁化の方向 は、実質的に互いに逆平行であり、

前記第1の導電体は、隣接するスピンバルブ素子の間に

置かれた端子リードを有し、前記第1<u>及び</u>第2のスピンバルブ素子の間<u>の端子リード、並びに</u>前記第3<u>及び</u>第4のスピンバルブ素子の間の端子リードは<u>第1セットの端子リードを形成し</u>前記第1<u>及び</u>第3のスピンバルブ素子の間<u>の端子リード、並びに</u>前記第2<u>及び</u>第4のスピンバルブ素子の間の端子リードは<u>第2セットの端子リードを形成し</u>、第2セットの端子リードを形成し、

前記第2の導電体は<u></u>前記センサーの製作中に前記スピンバルブ素子の前記ピン止め強磁性層の磁化の方向を決める固定電流の伝導のために前記スピンバルブ素子と位置合わせされる<u></u>

前記磁界センサー。

【請求項2】前記第1及び第4のスピンバルブ素子は、 それぞれのピン止め強磁性層の磁化方向が互いに平行に 揃えられ、さらに前記第1セットの端子リードの間に接 続された電源を備え、前記第2セットの端子リードの間 の出力電圧が、実質的に前記基板の平面内にある外部磁 界成分の測定値を表すようにした、請求項1に記載の磁 界センサー。

【請求項3】前記第1及び第3のスピンバルブ素子は、それぞれのピン止め強磁性層の磁化方向が互いに平行に揃えられ、さらに前記第1セットの端子リードの間に接続された電源を備え、前記第2セットの端子リードの間の出力電圧が、実質的に前記基板の平面内にあり且つ前記スピンバルブ素子の長さ方向に概ね垂直な方向にある外部磁界成分の勾配の測定値を表すようにした、請求項1に記載の磁界センサー。

【請求項4】前記スピンバルブ素子は、長さ及び幅を持つ概ね四辺形の形状を有し、前記第2の導電体は、前記 絶縁層の厚さの3倍よりも大きい距離だけ、前記スピン バルブ素子の各側のスピンバルブ素子の幅とオーバラッ プする、請求項1に記載の磁界センサー。

【請求項5】前記第2の導電体は、前記センサーの製作後に測定<u>すべき</u>電流を受取る<u>ように前記基板上に形成された</u>電流ストラップであり、前記電流ストラップを流れる電流に関連<u>する</u>磁界を前記磁界センサーでセンスすることにより、前記電流ストラップを流れる電流が測定される、請求項1に記載の磁界センサー。

【請求項6】<u>前記交換バイアス層は、鉄ーマンガン又は</u> ニッケルー鉄から成る、請求項1に記載の磁界センサ

【請求項7】<u>外部磁界に応答して出力電圧を生成するためのブリッジ回路磁界センサーであって、</u>

基板と、

各々が長さ及び幅を持つ概ね四辺形の形状を有するよう に前記基板上に形成され且つそれぞれの長さ方向が概ね 平行に揃えられた第1ないし第4のスピンバルブ素子 と、

前記基板上に形成され且つ前記第1及び第2のスピンバルブ素子、前記第2及び第4のスピンバルブ素子、前記

第4及び第3のスピンバルブ素子、並びに前記第3及び 第1のスピンバルブ素子をそれぞれ相互接続する第1の 導電体と、

前記基板上に形成された第2の導電体と、

<u>前記スピンバルブ素子及び前記第2の導電体の間の絶縁</u> 層と、

電源とを備え、

行であり、

前記スピンバルブ素子の各々は、(a) 磁界が付加されないとき当該スピンバルブ素子の長さ方向に対し概ね平行な好ましい磁化軸を有する自由な強磁性層、(b) 前記自由な強磁性層に隣接する非磁性スペーサ層、(c) 前記スペーサ層に隣接するピン止め強磁性層、及び(d) 前記ピン止め強磁性層の磁化を当該スピンバルブ素子の幅方向に対し概ね平行な方向にピン止めするために、前記ピン止め強磁性層に隣接し且つ接触する反強磁性材料の交換バイアス層をそれぞれ有し、前記第1及び第4のスピンバルブ素子内にある前記ピン止め強磁性層の磁化の方向は、実質的に互いに平行であり且つ他の2

前記第1の導電体は、隣接するスピンバルブ素子の間に 置かれた端子リードを有し、前記第1及び第2のスピン バルブ素子の間の端子リード、並びに前記第3及び第4 のスピンバルブ素子の間の端子リードは、前記電源を接 続するための前記センサーの入力リードを形成し、前記 第1及び第3のスピンバルブ素子の間の端子リード、並 びに前記第2及び第4のスピンバルブ素子の間の端子リ ードは、前記センサーの出力リードを形成し、

つの前記ピン止め強磁性層の磁化の方向と実質的に逆平

前記第2の導電体は、前記センサーの製作中に前記スピンバルブ素子の前記ピン止め強磁性層の磁化の方向を決める固定電流の伝導のために前記スピンバルブ素子と位置合わせされ、

前記出力リードの間の出力電圧が、実質的に前記基板の 平面内にあり且つ前記スピンバルブ素子の長さ方向に実 質的に垂直な方向にある外部磁界成分の測定値を表すよ うにした、

前記磁界センサー。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は磁界センサー、特に ブリッジ回路の磁気抵抗(MR)センサー素子を用いる磁界 センサーに関する。

[0002]

【発明が解決しようとする課題】磁界センサーはリニア及びロータリ符号化器、近接検出器及び地磁気磁力計として市販され広く使用されている。1つの一般的な磁界センサーはホール効果に基づいて100~1000エルステッド(Oe)の範囲内の磁界のセンスに用いられる。もう1つの一般的な磁界センサーは半導体又は強磁性体材料における磁気抵抗(MR)効果に基づいて小さな磁界及びホー

ル効果センサーよりも大きい距離の磁界のセンスに用いられる。MR磁界センサーは、磁界信号を磁性体でつくられたセンス素子の抵抗変化により、該センス素子によりセンスされる磁束の大きさ及び方向の関数として検出する。

【0003】通常のMRセンサーは、センス素子抵抗の成分がセンス素子の磁化の方向とセンス素子を通過するセンス電流の方向の間の角度の余弦の二乗として変化する、異方性磁気抵抗(AMR)効果に基づいて動作する。センスされる外部磁界はセンス素子の磁化の方向に変化を生じさせ、更にセンス素子の抵抗の変化及び対応するセンス電流又は電圧の変化を生じさせる。

【0004】AMR 材料でつくられた電気ブリッジ回路は、およそ50 Oe未満の磁界をセンスする磁界センサーとして用いられる。ホィートストンブリッジ回路でAMR素子を用いる磁界センサーの例が米国特許第5,247,278号明細書に記述されている。電流センサーとして動作する電流ストラップとともに用いられたAMRホィートストンブリッジ回路のもう1つの例は、IEEE transactions on Magnetics, Vol. MAG-6, November 1976, pp. 813-815に記述されている。

【0005】巨大磁気抵抗(GMR)と呼ばれる、更にすぐ れた別の磁気抵抗が種々の磁気多層構造で観測されてい る。GMR の重要な特性は、非強磁性金属層により分離さ れた少なくとも2つの強磁性金属層があることである。 このGMR 効果は、強磁性層の強力な反強磁性結合を表わ す種々のシステム、例えば Fe/Cr、Co/Cu 又はCo/Ru多 重層で、ならびに2つの強磁性層の1つの磁化方向が固 定される、即ちピン止めされる本質的には非結合の層化 構造で見つかっている。物理的な起点は外部磁界の付加 で隣接強磁性層の相対的な方向に変化が生じるGMR 構造 の全てのタイプで同じである。これは順次に伝導電子の スピン依存散乱と、従って該構造の電気抵抗に変化を生 じさせる。このように、該構造の抵抗は強磁性層の磁化 の相対的配列が変化するにつれて変化する。特に有用な GMR の用法は非磁性金属スペーサ層で分離された2つの 非結合の強磁性層を含むサンドイッチ構造である。この 構造では、該強磁性層の1つの磁化がピン止めされる。 ピン止めは、ピン止めされる強磁性層を鉄-マンガン(F e-Mn) 層に付着させて2つの層を交換結合することによ り達成できる。その結果、外部磁界が存在するとき、ピ ン止めされない、即ち自由な強磁性層のみが自由に回転 するスピンバルブ(SV)センサーが得られる。米国特許第 5,206,590 号明細書は基本的なSVセンサーを開示してい る。米国特許第5,159,513 号明細書は、強磁性層の少な くとも1つがコバルト又はコバルト合金であり、そして ピン止め強磁性層を反強磁性層に交換することにより外 部から磁界が加えられない状態で2つの強磁性層の磁化 方向が互いに概ね垂直に維持される、SVセンサーを開示 している。米国特許第5,341,261 号明細書は磁気抵抗を 増すために金属スペーサ層に隣接してコバルトの薄膜を有するSVセンサーを開示している。最も直線的なレスポンス及び最も広い動的有効距離を有するSVセンサーは、ピン止め強磁性層の磁化の方向が信号フィールドに平行であり且つ自由な強磁性層の磁化の方向が信号フィールドに垂直であるセンサーである。SVセンサーの設計及び動作は Heim et al, "Design and Operation of Spin-Valve Sensors", IEEE Transactions on Magnetics, Vol. 30, No. 2, March 1994, pp. 316-321 に記述されている。

【0006】磁界センサーのブリッジ回路でのGMR 素子の使用は Daughton etal, "GMR Materials for Low Field Applications", IEEE Transactions on Magnetics, Vol. 29, No. 6, November 1993, pp. 2705-2710 に示唆されている。当該参照文献は、ピン止めされたGMR 構造(即ち、SV素子)を用いるブリッジ回路はありうることを示唆するが、その装置は未だ開示されていないと述べている。

【0007】本発明の目的は従来のAMR センサーよりもすぐれたSVセンサーの性能を利用するブリッジ回路磁界センサーを提供することにある。

[0008]

【課題を解決するための手段】本発明はブリッジ回路に 電気的に結合された4個のスピンバルブ(SV)素子を用い る磁界センサーである。SV素子は同じ基板上にリソグラ フィックに形成され、それらの自由な層の磁化軸は互い に平行にされる。導電体固定層は基板上に形成される が、SV素子からは絶縁される。磁界センサーの製作中に 導電体固定層に電流が流される間のセンサーの適切な加 熱及び冷却により、SV素子内のピン止め層の磁化の方向 は、2つのSV素子内のピン止め層の磁化の方向が他の2 つのSV素子内のピン止め層の磁化の方向と逆平行になる ように固定される。ブリッジ回路出力電圧はセンサーの 平面内の外部磁界に反応する。センサー製作中、ピン止 め層の磁化の方向を適切に固定することにより、ブリッ ジ回路出力電圧は磁界又は磁界の勾配のどちらかの測定 値である。センサーは磁界又は磁界勾配の大きさ及び符 号の両者の測定をする。導電体固定層、又は基板上に形 成された別個の電流ストラップはセンサーを通じて未知 の電流を流すのに使用できる。この場合、ブリッジ回路 出力電圧は未知の電流の測定値である。

[0009]

【発明の実施の形態】図1は4つの別々のSV素子A,B,C及びDがホィートストンブリッジ回路に配列されたSVブリッジ回路磁界センサー10の概要図を示す。各SV素子A~Dを含む個々の層を説明するために、SV素子は透視図で示される。実際には、それらは図の平面に形成される。各SV素子A~Dは長さL及び幅Wを有する。SV素子は、前記平面で、それらの長さLの全てが互いに平行になるように配列される。図面で、センスされる磁界は矢

印Hで示され、前記平面にあり、そしてSV素子の長さL に垂直である。

【0010】センサー10は第1、第2のSV素子A、B及び第3、第4のSV素子C、Dの間にそれぞれ置かれた端子リード20、22からなる第1のセットの端子リードを有する。これらはセンサー10の入力リードとして動作する。定電圧電源(図示せず)が入力リード20及び22の間に結合される。更に、センサー10はSV素子A、C及びSV素子B、Dの間にそれぞれ置かれた端子リード24、26からなる第2のセットの端子リードを有する。これらはセンサー10の出力リードとして動作する。センスされる外部磁界Hは各SV素子の抵抗の変化を生じさせる。

【0011】センサー10の動作は典型的なSV素子を形成 する個々の層を示す図1のSV素子Bにより理解できる。 SV素子Bは自由な強磁性層36、非磁性スペーサ層37、ピ ン止め強磁性層39、及び隣接する前記の層39をピン止め する反強磁性層41を含む。センサー10の動作の核心はSV 素子A~D<u>の各々における</u>相対的に自由な層とピン止め 層の磁化の方向である。図1に示すように、磁界が付加 されないとき、4個のSV素子内の自由な層の全ての<u>好ま</u> <u>しい</u>磁化軸<u>の方</u>向はSV素子の長さLに沿っている。この 方向は、典型的なSV素子B内の自由な層36について、矢 印32で示されている。従って、SV素子A~D内の自由な 層の磁化軸は互いに平行に置かれる。しかしながら、ピ ン止め層の各々の磁化軸は、(典型的なSV素子B内のピ ン止め層39について矢印38で示されているように) その SV素子を流れる電流の方向に垂直に、且つそのSV素子の 幅Wに平行に方向付けられる。しかしながら、SV素子B 及びC内のピン止め層の磁化の方向は、SV素子A及びD 内のピン止め層の磁化の方向と反対である。典型的なSV 素子Bについて云えば、ピン止め層39の磁化軸38と、磁 界が付加されないときの自由な層36の好ましい磁化軸32 との間の垂直な角度は、SV素子の最も直線的なレスポン スを与える。SV素子の信号能力の推定に一般的に用いる 評価値は、(センサー磁化軸に平行な電流及び垂直な電 流に対する)抵抗値の変化を平均抵抗値で割った、固有 の磁気抵抗ΔR/Rである。

【0012】SV素子A~Dが共通基板上に同時に形成され、そして同時にリソグラフィック寸法を形成されてい

 $Vout = Vin \times RC/(RA + RC) - Vin \times RD/(RB + RD)$ (3)

【0016】この式にRA、RB、RC、RDの値を代入すると、出力電圧は次のようになる。

【数4】

Vout = - Vin x (Δ R/2Ro) x H/Hk(eff) (4) 【0017】式(4) に示すように、センサー10の電圧レスポンスは、完全にセンサー基板の平面内にあり且つSV素子の長さ方向に垂直な付加磁界の振幅(即ち大きさ及び符号)の測定値である。付加磁界が該基板の平面内にあり且つSV素子の長さ方向に垂直な成分以外の成分を有する場合、式(4) は、該基板の平面内にあり且つ前記SV

るので、センサー10のブリッジ回路は端子リード24及び26の間の差動出力電圧Voutが概ね0になるように平衡される。センサー10が均一な磁界Hにさらされると、ピン止め層は影響を受けないが、自由な層は角度 d だけ回転し、各SV素子A~Dの抵抗が変化する。図1に示すように、Hは完全に基板の平面内の付加された磁界であり且つSV素子の長さLに垂直な方向にある。しかしながら、付加された磁界が基板の平面の外部にあり且つ(又は)SV素子の長さLに完全に垂直ではない場合、センサー10は付加された磁界の、基板の平面内にあり且つSV素子の長さLに垂直な方向にある成分の振幅(即ち、大きさ及び符号)を測定する。

【0013】図2は付加される磁界Hに対する単一のSV素子の抵抗レスポンスを示す。出力端子リード24及び26の間に現われる電圧に関して、素子A及びDのレスポンス(それぞれの抵抗RA及びRB)は素子B及びCのレスポンスに等しいが反対方向でなければならない。前記He imの参照文献に記述されているように、この関係は次のようになる。この式で、Roは磁界が付加されないSV素子の抵抗であり、Hk(eff)はSV素子の有効な異方性磁界であり、そして Δ RはSV素子の抵抗の最大変化である。

【数1】

 $RA = RD = Ro + \Delta R/2 \times H/Hk(eff)$ (1)

【0014】この式は、素子B及びCの場合のように、ピン止め層がSV素子の長さLに垂直であり且つSV素子が正の磁界Hの方向に置かれる場合に有効である。SV素子A及びDは、それらが同じ結合構造を有するから、均一に付加された磁界に対して等しい抵抗を有する。SV素子B及びCのピン止め層はSV素子A及びDのピン止め層と逆平行に置かれるので、付加された磁界に対するレスポンスは符号が反対であるが大きさは等しい。その関係は次のようになる。

【数2】

 $RB = RC = Ro - \Delta R/2 \times H/Hk(eff)$ (2)

【0015】ブリッジのVoutレスポンスは次のようになる。この式で、Vinは入力端子リード20及び22の間に付加された電源電圧である。

【数3】

素子の長さ方向に垂直な付加磁界の成分の近似値を与える。

【0018】Hk(eff)は、長さLの割合に長い素子に関して次の式で近似的に与えられる、付加された磁界Hに対するブリッジ回路磁界センサーの感度に関連し、そして $2\sim5$ Oe の範囲内の固有の結晶体の異方性及び形状異方性を含む。この式で、WはSV素子の幅であり、そして t は自由な層の厚さである。

【数5】 $Hk(shape) = 4\pi Ms(t/W)$ (5)

【0019】Hk(eff)は水晶体及び形状異方性によるエ

ネルギに打克つことにより自由な層をそのゆるやかな軸に垂直に方向付けるために付加する必要がある磁界である。50Åの厚さのNi-Fe の自由な層の場合、Hk(shape)は、幅10ミクロンのSV素子では5 Oeであり、そして幅3.3 ミクロンのSV素子では15 Oeである。その結果、Hk(off)は、幅10ミクロンのSV素子では10 Oeであり、そして幅3.3 ミクロンのSV素子では20 Oeである。

【0020】6%の Δ R/R、15オームのシート抵抗、3.3 ミクロンの幅W及び500 ミクロンの長さLを有するSV 素子を用いて、付加された磁界Hを -Hk(eff)から +Hk(eff)に掃引すると、磁界センサー抵抗は136 オームだけ変化する。電源電圧Vinが5 Vの場合、これは -150 mV から +150 mV までの範囲内にある磁界センサー出力Vout を生ずる。これは測定された磁界センサーレスポンスとして図3に示される。20 OeのHk(eff)と5 VのVinでは、これは7.5 mV/Oe のレスポンスに対応する。この値は現在の市販のAMR センサーの1.5 mV/Oe に匹敵する。

【0021】入力電源が定電圧電源として記述された図示の良好な実施例では、センサー10は入力電源が定電流電源である場合にも動作する。

【0022】図4及び図5はSVブリッジ磁界センサー10の良好な実施例を示す。図4はシリコン(Si)基板50上にパターン化されたブリッジ回路を形成する特定の層を示す。図5は基板50上のこれらの層のそれぞれの方向を明示する分解組立図を示す。

【0023】図5で、最初にバッファ層51がSi基板に付 着される。そして各SV素子A~Dが後述のようにバッフ ァ層51上に形成された後、パッド52、54、56及び58の形 式の導電体が各SV素子A~Dの端にパターン化され、4 つのSV素子の各々を電気的に接続する。導電体パッド5 2、56はそれぞれSV素子A及びB、SV素子C及びDを相 互接続し、センサー10の入力端子リード20、22を備え る。導電体パッド54、58はそれぞれSV素子A及びC、SV 素子B及びDを相互接続し、センサー10の出力端子リー ド24、26を備える。そして絶縁層60は導電体パッド52、 54、56、58及びSV素子の上に形成される。次に、導電性 のSV素子固定層70が絶縁体60の上にパターン化される。 この固定層はSV素子A~Dの全てに被せられるが、絶縁 層60があるため電気的にはそれらと接続されない。完成 したセンサー10の動作中はSV素子固定層70は必ずしも動 作しないが、センサー10の製作中はSV素子のピン止め層 の各々を後述のように恒久的にピン止めするのに用いら れる。

【0024】センサー10を製作するプロセスは図6により説明する。図6は図4の断面X-Xにより描かれた断面図である。センサー10は通常の薄膜付着リソグラフィック及びエッチングプロセスを用いて製作される。基板50として単結晶半導体等級Siウェーハが用いられる。そしておよそ1000~2000Åの厚さのスパッタリングによりSi

基板50にアルミナ($A1_2O_3$) のバッファ層51が付着される。バッファ層51の目的はSi基板50に電気的な絶縁層を設けることである。そして個々のSV素子A~Dがバッファ層51に形成される。図 6 にはSV素子A及びBが示される。

【0025】図7~図10により、典型的なSV素子Bの 製作について説明する。50Åの厚さのタンタル(Ta)の下 層55がバッファ層51に付着される。図7に示すように、 第1の強磁性層36がバッファ層51に付着される。層36は SV素子内の自由な強磁性層であり、できればNig0Fe20か らNi₈₅Fe₁₅までの混合範囲のNi-Fe で構成され且つ10~ 100Å の厚さであることが望ましい。薄い非磁性金属ス ペーサ層37、第2の薄い強磁性層39、割合に高い抵抗を 有し且つ強磁性層39と直に接触する薄い材料の交換バイ アス層41及びTaキャップ層44が強磁性層36の上に付着さ れる。第2の強磁性層39はピン止め層になり、そして層 39もNi-Fe で10~100Å の厚さに形成される。非磁性金 属スペーサ層37はできれば銅(Cu)で構成され且つ厚さ20 ~40Åに形成することが望ましい。交換バイアス層41は できれば適切な反強磁性材料、例えば鉄-マンガン(Fe-Mn) 又はニッケルーマンガン (Ni-Mn) で構成され、そし て100~400Åの厚さに形成されることが望ましい。

【0026】図7~図10には図示されていないけれども、各SV素子の良好な実施例では、自由な強磁性層36及びピン止め強磁性層39の各々は、それぞれ、前記米国特許第5,341,261 号明細書に示されたように、Cuスペーサ層37に隣接するCoの薄膜(厚さ5~15Å)及びNi-Feの薄膜(厚さ10~100Å)を構成する。これはより大きい Δ R/R及び出力電圧を生成する。図3のデータは前記SV素子でつくられた磁界センサーに対応する。

【0027】強磁性層36は、外部から付加された磁界(図1に示された磁界H)に応答してその磁化軸32が自由に回転するので"自由な"強磁性層と呼ばれる。強磁性層39は、磁化軸38の矢印で示すように、良好な方向に固定される、即ちピン止めされるので、外部から付加された磁界が存在しても回転できないから"ピン止め"強磁性層と呼ばれる。

【0028】そして個々の長方形のSV素子A~Dを決めるためにキャップ層44でホトレジストがパターン化され、そして層36、37、39、41及び44の、ホトレジストで保護されない全ての部分が通常の除去方法、例えばイオンエッチングにより、下層55まで、そして僅かにその内部まで取り除かれる。図8に示すように、これはSV素子の各々の長さL及び幅Wを決める明確なエッジを形成する。このように、図7~図10はSV素子、例えば図6の典型的なSV素子Bを形成する方法を示す。次のステップは、SV素子を電気的に接続する導体パッド、例えばパッド54、56の形成するステップである。

【0029】図8で、導電体パッド、例えば(図9の)パッド54、56を形成するために、SV素子上でホトレジスト

45がパターン化される。1つの方法では、順次に付着されたTa、Au及びTaの層の導電体が全体の厚さ1000Åに形成される。SV素子に前記パッドを付着させ、そしてホトレジスト及び金属を取り外してパッドを残すことにより、各SV素子が電気的に接続される。別の方法では、材料を取り除くためにSV素子が最初にイオンエッチングされ、そしてNi-Fe及び交換材料即ち固い材料(CoPtCr)が層57として付着され、続いてTa/Au/Taが付着される。そしてホトレジスト及び金属が除去されて、図10に示すように、パッド54及び56が形成される。

【0030】図7〜図10に示された典型的なSV素子の実施例では、自由な層36がピン止め層39よりも下層51の近くに置かれるが、反対に、即ち、ピン止め層39の方が下層51に近いSV素子を形成することもありうる。当該構成では、層39をピン止めするために反強磁性層41を下層55及び層39の間に配置することがある。

【0031】図6で、パッド54、52及び56のような導体 パッドはSV素子A~Dの全てを相互接続する電気的な経 路を与える。パッドの形成及びホトレジスト除去の後、 できればアルミナ(Al₂O₃)の中間の絶縁層60がパッド5 4、52、56及びSV素子を完全にカバーするシートとして1 500Åの厚さに付着される。そして更にホトレジストが 付加され、アルミナ絶縁層60上に形成されるSV素子固定 層70を決めるようにパターン化される。導電性の固定層 70はできれば金(Au)であり且つおよそ2000Åの厚さに付 着されることが望ましい。センサー10を形成する全ての 膜をカバーするために、更に上部にアルミナ絶縁層80 (図4及び図5には図示せず) が保護膜として付着され る。最後に、固定層70の端子リード(図6に示された端 子リード72)を形成するために上部絶縁層80から固定層7 0にわたり、そして導電体パッドの端子リード(図6に 示された端子リード26)を形成するために絶縁層80から 絶縁層60にわたり、通常の方法でバイアが形成される。 【0032】これらの製作段階の次に、各ピン止め層、 例えばSV素子Bの層39(図1)をピン止めし、それらの磁 化を適切な方向 (SV素子Bのピン止め層39の磁化軸38) に恒久的に固定する必要がある。これは、ピン止め層の 各々の磁化を、それぞれのSV素子を流れる電流の方向に 垂直に、そして図1に示されたそれぞれの方向に、方向 付けるために必要である。4つの異なるピン止め層の磁 化を従来の技術のSV素子製作プロセスを用いて異なる方 向にピン止めすることはできない。なぜなら、固定する ために外部から付加された磁界の使用は磁化の全てを同 じ方向になるように方向付け、センサー10をブリッジ回 路磁界センサーとして使用不可能にするからである。ピ ン止め層をそれぞれの適切な方向に恒久的にピン止めす ることは、導電性の固定層70により可能にされる。

【0033】図4及び図5で、固定電流は導電性の固定層70にあるリード72、74を通して流される(リード76、78は固定プロセスには用いられないが、後述の他の用法

に予約されている)。 この電流の値は、その電流に関連 した磁界がピン止め層の磁化の正しい方向を決めるよう に選択される。固定層70の各レッグを流れる電流の方向 はSV素子A、B、C、Dのそれぞれ矢印91、92、93、94 で示される。SV素子の各々でピン止め層の磁化の方向は 周知の "右手の法則" で決められる。これらのピン止め 層の方向は図1に示されている。SV素子上の固定層70の 幅が10ミクロンである場合、固定層70を流れる230 mAの 電流がおよそ145 Oe の磁界を生成する。この磁界の方 向はブリッジの各レッグの電流の方向により各SV素子内 において"アップ" 又は "ダウン" である。反強磁性ピ ン止め層がFe-Mn である場合、固定電流が付加されてい るあいだ、センサー10はおよそ160~180℃に加熱され る。この温度は、隣接するピン止め層の磁化を揃えるよ うにFe-Mn の下格子磁化をセットするのに必要な温度を 上回る。Fe-Mn の場合、このようにセットされた温度は ブロッキング温度と呼ばれる。自由及びピン止めNi-Fe 層の両者の磁化は固定電流により生成された磁界に揃え られる。ピン止めNi-Fe 層は隣接するFe-Mn 層に交換結 合されるので、それらの磁化はそれらの関連Fe-Mn 反強 磁性層の磁化と平行に揃えられる。そして固定電流が付 加され続けるあいだ、センサー10は冷却される。冷却の 後、Fe-Mn 反強磁性層は恒久的に固定された下格子磁化 方向を有し、更に交換結合のピン止め層の磁化を所望の 方向に恒久的にピン止めする。固定電流が遮断される と、自由な層の磁化の方向は、SV素子の長さLに大体平 行である最初の状態に戻る。異なるピン止め層の磁化の 方向を異なる方向に恒久的に固定するこのプロセスは、 たとえ個々のSV素子が全て同じ基板に形成されても、セ ンスされる外部磁界と反対のセンス方向に各レッグが反 応する平衡ブリッジを生成する。

【0034】固定電流の値、固定層の寸法及び固定する手順は、SV素子のできるだけ大きい AR/Rを得るために重要である。固定層70とSV素子の間のオーバラップは、層の位置合わせ及び層の幅の公差ならびに良好な磁界均一性を提供するための製造可能性を容易にするために必要である。このオーバラップは絶縁層60の厚さの少なくとも3倍が必要である。オーバラップは、層70での導体の幅が各SV素子の幅Wをオーバラップすべきであることを意味する。このオーバラップはSV素子の各側でおよそ3ミクロンになることがある。図4に示され、記述された実施例では、SV素子の幅は3.3ミクロンであり、そしてSV素子をオーバラップする固定導体の幅は10ミクロンである。

【0035】固定層70を流れる電流はSV素子に付加された横方向の磁界 Htを次の式により決定する。この式で、IはmA単位であり、Wf はミクロン単位の導体の幅であり、そしてHt はOe 単位の磁界である。

【数6】 $Ht = 2\pi I/Wf$ (6)

【0036】磁界 Htの値は、SV素子が設定温度よりも

高い温度に加熱されたとき自由及びピン止め層の両者の形状異方性磁界を克服することが必要であるので、少なくとも 2 Hk(eff)でなければならない。 Hk(eff)は形状異方性磁界の平均値のみを含むので、ピン止め層のエッジの正しい位置合わせを保証するためには $3\sim1$ 0 Hk(eff)の範囲内のHt の値が用いられねばならない。図4に示された例では、ピン止め層を固定するのにHt = 7 Hk(eff)が用いられた。

【0037】磁界センサー10は固定電流により生成され た熱及び周囲の(一般にオーブンからの)熱の両者によ り加熱され、その温度が上昇する。Fe-Mn が交換バイア ス層として用いられる場合、この温度は一般に160~180 ℃である。これはFe-Mn のブロッキング温度分布の上端 である。温度要求が異なる他の反強磁性材料が交換バイ アス層として選択されることがある。例えば、Ni-Mn は およそ240 ℃の設定温度を有するので、ピン止め層の所 望の方向に交換磁界をセットするために、この温度で1 ~3時間にわたりアニーリングしなければならない。Ni -Mn の温度がこの温度よりも高くなる場合、アニーリン グ時間の短縮が必要になる。Ni-Mn の場合、設定温度は ブロッキング温度ではなく、むしろ四辺形の位相遷移が 起きる温度である。最良の温度はFe-Mn では200 ℃、Ni -Mn では250 ℃であるが、ピン止め層は膜特性の変化に よる ΔR/Rの損失を最小にするために固定されている。

【0038】加熱の一部分は固定電流自体により供給される。温度上昇に対するこの寄与はセンサーの抵抗増加の測定により計算されるが、固定電流が流れている既知のセンサー材料の温度係数を用いている。この温度上昇は30~50℃の範囲内にあるものとして測定される。従って、所望の温度と固定電流により生成された温度上昇との間の差温度のオーブン内にセンサーが置かれる。センサーの断熱の程度により、固定電流のみにより生じた加熱が設定温度を越えることがある。この場合、センサーは冷却することにより所望の温度に保持され、温度が有意に設定温度よりも上昇しないことを保証する。

【0039】Fe-Mn の交換バイアスが形成される場合、センサーはFe-Mn のブロッキング温度よりもかなり低く冷却されるが固定電流は流れているままであり、この時点でピン止め層の全領域が所望の方向に固定される。そして固定電流は遮断される。Fe-Mn の代わりにNi-Mn の交換バイアス層が形成される場合、センサーはおよそ1~3時間にわたりほぼ240 ℃にアニーリングされると同時に、固定電流のセンサーへの供給が続けられる。これは、スパッタされたNi-Mn の反強磁性四辺形位相への変形を、400 ℃を越えるブロッキング温度により保証する。交換バイアスの所望のレベルを得るのに十分な時間にわたりNi-Mn がアニーリングされた後、固定電流を遮断してセンサーを冷却することができる。

【0040】各SV素子の反強磁性層としてFe-Mn を用いるセンサーは最大ほぼ120 ℃の動作温度範囲及び最大ほ

ぼ150 ℃の貯蔵温度を有する。Fe-Mn の代わりにNi-Mn を用いることにより最大動作温度はほぼ180 ℃に拡大できる。Ni-Fe との交換結合のためのNi-Mn の使用は Lin et al, "Improved Exchange Coupling Between Ferroma gnetic Ni-Fe and Antiferromagnetic Ni-Mn-based Fil ms", Applied PhysicsLetters, Vol. 65, No. 9, Augus t 1994, pp. 1183-1185に記述されている。Fe-Mn の代わるNi-Mn の使用はセンサーの動作温度をほぼ60℃増加するが、磁気抵抗 ΔR/R の低下により信号の大きさにも15~20%の損失を生ずる。これはスピンバルブ層内の混じり合いの均一化によるものである。これは Sperios u et al, "Role of Interfacial Mixing in Giant Magne toresistance", Physical ReviewB, Vol. 47, No. 17, May 1, 1993-I, pp. 11579-11582 に記述されている。

【0041】図5に示された層の配列は基板上の層の製作の良好なシーケンスである。しかしながら、基板及びSV素子の間に導電体固定層を置き、絶縁層60を導電体固定層70及びSV素子の間に置くことによりセンサーを製作することもできる。

【0042】図示し説明したような磁界センサーは、基板の平面内にある外部磁界の大きさを測定するセンサーとして動作するように設計される。しかしながら、測定される電流を導電体固定層70を通して付加することにもりセンサーは電流センサーとして動作することもできる。そして固定層は電流ストラップの働きもする。電流は上記の式(6)により磁界を生成し、そしてこの磁界はブリッジセンサーにより検出される。図5で、電流はこのような用法の固定層70のリード76及び78の間に流される。あるいは、センスされる電流の経路として用いるために、固定層から分離されたセンサーに別の電流ストラップを形成することができる。

【0043】磁界センサーは、付加された磁界Hの大き さではなく勾配を測定するように製作することもでき る。図1で、製作中に、SV素子A及びCがSV素子B及び Dに等しいが反対の応答を有するように、固定電流が流 される場合、ブリッジは、SV素子B及びD(又は同様に SV素子A及びC)の間に現われる付加された磁界の値の 変化に感応する。この構成は、製作中に、例えば図5の リード76及び78に固定電流入力を付加することにより達 成される。磁界勾配センサーとしての磁界センサーの製 作に続いて、そして磁界振幅センサー (図1)の場合と 同じように接続された入力及び出力リードにより、磁界 勾配センサーは次の式で与えられる応答を有する。この 式で、dH/dX は素子の長さしに垂直な方向の磁界の勾配 であり、Sは同じ方向にある素子の間隙である。SV素子 A及びCの間隙Sは図5に示されている。式(7) の電圧 応答は磁界勾配の符号の測定値も与える。

【数7】

Vout = Vin· ΔR/R·S/4Hk(eff)·dH/dX (7) 【0044】磁界センサー及び磁界勾配センサーの両者 のようなセンサーの良好な実施例では、図1に示すように入力及び出力を接続する(即ち、第1のセットの端子リード20、22の間に入力を、第2のセットの端子リード24、26の間に出力を接続する)が、センサーは入力及び出力接続を切替える(即ち、第2のセットのリード24、26の間に入力を、そして第1のセットのリード20、22の間に出力が接続する)ことによっても動作する。このような構成は動作するけれども、SV素子の自由な層のバイアス点での入力電流の方向の影響のために、最適動作に満たない動作を与える。前述の Heim et al の論文に説明されているように、最適動作に満たないバイアス点により、各SV素子の動的範囲は減少する。

[0045]

【図面の簡単な説明】

【図1】SV素子を構成する種々の層の磁気方向を示すブリッジ回路磁界センサーの概要図である。

【図2】付加された又は外部の磁界の関数としてセンスされる1つのSV素子の抵抗レスポンスのグラフを示す図である。

【図3】磁界の関数としてセンスされるブリッジ回路磁界センサーの測定された電圧レスポンスのグラフを示す図である。

【図4】基板上に形成されたブリッジ回路磁界センサー 構成素子層の平面図である。

【図5】基板上に形成された複数の層を示すブリッジ回路磁界センサーの分解組立図である。

【図6】図4の断面X-X により描かれたブリッジ回路磁界センサーの断面図である。

【図7】ブリッジ回路磁界センサーの構成に用いられる タイプの典型的なSV素子を形成する、種々の製作段階で の層を示す図である。

【図8】ブリッジ回路磁界センサーの構成に用いられる タイプの典型的なSV素子を形成する、種々の製作段階で の層を示す図である。

【図9】ブリッジ回路磁界センサーの構成に用いられる タイプの典型的なSV素子を形成する、種々の製作段階で の層を示す図である。

【図10】ブリッジ回路磁界センサーの構成に用いられるタイプの典型的なSV素子を形成する、種々の製作段階での層を示す図である。

【符号の説明】

10	ブリ	ッジ回路磁界セ	ンサー
----	----	---------	-----

20 端子リード

22 端子リード

24 端子リード

26 端子リード

32 磁化軸

36 強磁性層

37 非磁性スペーサ層

38 磁化軸

39 強磁性層

41 反強磁性層

50 基板

60 絶縁層

70 導電性のSV素子固定層

72 リード

74 リード

76 リード

78 リード

80 絶縁層

【図1】

【図2】

【図4】

[図5]

【図8】

フロントページの続き

(72)発明者 ロバート・エドワード・フォンタナ、ジ

ュニア

アメリカ合衆国カリフォルニア州、サ ン・ノゼ、ノースリッジ・ドライブ

6596

(72) 発明者 バージル・シモン・スペリオス

アメリカ合衆国カリフォルニア州、サ

ン・ノゼ、セント・ジュリー・ドライブ

351

(72) 発明者 ジャクリン・ケトナー・スポング

アメリカ合衆国カリフォルニア州、サ

ン・ノゼ、キュリー・ドライブ 452

(56)参考文献 特開 平4-358310 (JP, A)

特開 平4-369278 (JP, A)

特開 平6-60336 (JP, A)

特開 平6-111252 (JP, A)

特開 平6-203340 (JP, A)

特開 平6-223336 (JP, A)

· 特開 平6-310327 (JP, A)

特開 平6-326374 (JP, A)

(58)調査した分野(Int.Cl.⁷, DB名)

GO1R 33/00 - 33/18

H01L 43/08