Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70201

Крупкина Дарья

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Hoc	становка задачи	2
	1.1	Задание	2
2	Teo	рия	2
	2.1	Распределения	2
	2.2	Боксплот Тьюки	3
		2.2.1 Определение	3
		2.2.2 Описание	3
		2.2.3 Построение	3
	2.3	Теоретическая вероятность выбросов	3
3	Pea	лизация	4
4	Рез	ультаты	4
	4.1	Боксплот Тьюки	4
	4.2	Доля выбросов	7
	4.3	Теоретическая доля выбросов	7
5	Обо	суждение	7
6	Прі	иложения	7
C	пис	сок иллюстраций	
	1	Нормальное распределение	4
	2	Распределение Коши	5
	3	Распределение Лапласа	5
	4	Распределение Пуассона	6
	5	Равномерное распределение	6
C	пис	сок таблиц	
	1	Доля выбросов	7
	2	Теоретическая вероятность выбросов	7

1 Постановка задачи

Для 5 распределений:

- 1. N(x,0,1) нормальное распределение
- 2. C(x,0,1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x, -\sqrt{3}, \sqrt{3})$ равномерное распределение

1.1 Задание

Сгенерировать выборки размером 20 и 1000 элементов.

Построить для них боксплот Тьюки.

Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выбросов) и сравнить с результатами, полученными теоретически.

2 Теория

2.1 Распределения

1. Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{1}$$

2. Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

3. Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{3}$$

4. Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

5. Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (5)

2.2 Боксплот Тьюки

2.2.1 Определение

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей[1].

2.2.2 Описание

Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Несколько таких ящиков можно нарисовать бок о бок, что-бы визуально сравнивать одно распределение с другим; их можно располагать как горизонтально, так и вертикально. Расстояния между различными частями ящика позволяют определить степень разброса (дисперсии) и асимметрии данных и выявить выбросы.

2.2.3 Построение

Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длину «усов» определяют разность первого квартиля и полутора межквартильных расстояний и сумма третьего квартиля и полутора межквартильных расстояний. Формула имеет вид

$$X_1 = Q_1 + \frac{3}{2}(Q_3 - Q_1), X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1), \tag{6}$$

где X_1 - нижняя граница уса, X_2 - верхняя граница уса, Q_1 - первый квартиль, Q_3 - третий квартиль.

Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков.

2.3 Теоретическая вероятность выбросов

По формуле (6) можно вычислить теоретические нижнюю и верхнюю границы уса $(X_1^T,\,X_2^T$ соответственно). Выбросами считаются величины x, такие что:

$$\begin{bmatrix}
x & < X_1^T \\
x & > X_2^T
\end{bmatrix}$$
(7)

Теоретическая вероятность выбросов для непрерывных распределений

$$P^{T} = P(x < X_{1}^{T}) + P(x > X_{2}^{T}) = F(X_{1}^{T}) + (1 - F(X_{2}^{T})),$$
(8)

где $F(X) = P(x \le X)$ - функция распределения.

Теоретическая вероятность выбросов для дискретных распределений

$$P^{T} = P(x < X_{1}^{T}) + P(x > X_{2}^{T}) = (F(X_{1}^{T}) - P(x = X_{1}^{T})) + (1 - F(X_{2}^{T})),$$
(9)

где F(X) = P(x < X) - функция распределения.

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Использованы библиотеки питру для генерации выборки, matplotlib для построения боксплотов и tabulate для удобного представления табличных данных. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Боксплот Тьюки

Для каждого распределения представлен боксплот Тьюки.

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Доля выбросов

Выборка	Доля выбросов
Norm, $n = 20$	0.02
Norm, $n = 100$	0.01
Cauchy, $n = 20$	0.15
Cauchy, $n = 100$	0.16
Laplace, $n = 20$	0.07
Laplace, $n = 100$	0.06
Poisson, $n = 20$	0.02
Poisson, $n = 100$	0.01
Uniform, $n = 20$	0
Uniform, $n = 100$	0

Таблица 1: Доля выбросов

4.3 Теоретическая доля выбросов

Распределение	Q_1^t	Q_2^T	X_1^T	X_2^T	P^T
Нормальное распределение	-0.674	0.674	-2.698	2.698	0.007
Распределение Коши	-1	1	-4	4	0.156
Распределение Лапласа	-0.490	0.490	-1.961	1.961	0.063
Распределение Пуассона	8	12	2	18	0.008
Равномерное распределение	-0.866	0.866	-3.464	3.464	0

Таблица 2: Теоретическая вероятность выбросов

5 Обсуждение

По полученным результатам можно сделать вывод, что доля выбросов, полученная на практике, и теоретическая вероятность выбросов совпадают для равномерного распределения - выбросы в этом распределении не наблюдаются и вероятность соответственно равна 0. Доли выбросов для нормального распределения и распределения Пуассона оказались ниже теоретической вероятности, в то время как результаты для распределений Коши и Лапласа оказались близки к теоретическим.

При этом для всех распределений результаты, полученные для выборки из 100 элементов, ближе к теоретическим.

6 Приложения

Код программы на GitHub, URL: https://github.com/DariaKrup/Statistics

Список литературы

[1] Box plot. URL: $https://en.wikipedia.org/wiki/Box_plot$