SRM Institute of Science and Technology 18MAB302T – Discrete Mathematics for Engineers ASSIGNMENT-1

DUE DATE: 08.04.2022

Answer ALL Questions

- 1. Prove that $A (B C) = (A B) \cup (A \cap C)$, using the laws of set algebra.
- 2. If R is the relation on the set $A=\{1,2,3,4,5\}$ defined by $(a,b)\in R$ if $a+b\leq 6$, then list the elements of R, R^{-1} and \overline{R} . Find the relational matrix M_R , $M_{R^{-1}}$ and $M_{\overline{R}}$.
- 3. If $f, g : \mathbb{R} \to \mathbb{R}$ where f(x) = ax + b, $g(x) = 1 x + x^2$ and $(g \circ f)(x) = 9x^2 9x + 3$, find the value of a, b.
- 4. Let $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4), (4,5), (5,4), (5,5)\}$ be a relation on the set $A = \{1,2,3,4,5\}$. Find the transitive closure using Warshalls algorithm.
- 5. If M_R is the matrix of a relation R defined on a set A of n elements, then the transitive closure of R is given by $M_{R^\infty} = M_R \vee M_{R^2} \vee \ldots \vee M_{R^n}$.

Find the transitive closure of $R = \{(1,1), (1,3), (2,3), (3,4), (4,1), (4,2)\}$ defined on a set $A = \{1,2,3,4\}$, using above statement.

- 6. Give examples for functions $f: X \to Y$ and $g: Y \to Z$ such that (i) $g \circ f$ is onto, but f is not onto. (ii) $g \circ f$ is one-to-one, but g is not one-to-one.
- 7. Find the relation determined by the following digraph

- 8. Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A, $P = \{\{0, 1, 4\}, \{2\}, \{3\}\}\}$. Find the relation R induced by this partition.
- 9. Let $A = \{1, 2, 3, 4, 5, 6\}$ and define a relation R on A as follows:

$$R = \{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (3,3), (3,6), (4,1), (4,2), (4,4), (5,5), (6,6)\}.$$

Draw the directed graph for R. Show that R is an equivalence relation. Find the distinct equivalence classes of R.

- 10. Let the relation R defined on a set $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}$ is given by $(a, b) \in R$ if a divides b. Show that R is an partial order relation on A. Draw the Hasse diagram for the poset (A, R). Hence find the maximal, minimal, greatest and least elements of A.
- 11. Let $f: \{\mathbb{R}-1\} \to \{\mathbb{R}-1\}$ be a function such that $f(x) = \frac{x+1}{x-1}$. Show that f is bijective.