Contents

Ch. 1	Calculus and Basic Algebra	1
1.1	Limits and Continuity	1
	1.1.1 Definition of a Limit	1
	1.1.2 Theorem: Intermediate Value Theorem	1
	1.1.3 Example: Calculating Limits	1
	1.1.4 Proposition: Continuity Implies Limit	2
1.2	Differentiation	2
	1.2.1 Definition: Derivative	2
	1.2.2 Theorem: Power Rule for Derivatives	2
	1.2.3 Corollary: Special Case of Power Rule	2
	1.2.4 Exercise: Differentiation Practice	2
	1.2.5 Python Code Snippet: Differentiation	3
	1.2.6 Example: Derivative Calculation	3
1.3	Applications of Derivatives	3
	1.3.1 Theorem: Critical Points and Extrema	3
1.4	Algebraic Functions and Equations	4
	1.4.1 Axiom: Properties of Real Numbers	4
	1.4.2 Proposition: Solving Quadratic Equations	4
	1.4.3 Example: Solving Quadratic Equations	4
	1.4.4 Python Code Snippet: Quadratic Solver	4
1.5	Trigonometric Limits	5
	1.5.1 Theorem: Sine Limit	5
	1.5.2 C++ Code Snippet: Calculating Sine Limit	5
Ch. 2	Introduction to Algorithms	6
2.1	Basics of Algorithms	6
	2.1.1 Definition of an Algorithm	6
	2.1.2 Theorem: Big-O Notation	6
	2.1.3 Example: Time Complexity of Linear Search $\ \ldots \ \ldots$	6
	2.1.4 Exercise: Analyze Linear Search	7