COMSATS Institute of Information Technology, Abbottabad

Course title and code Analytical Techniques

Assignment number 01

Assignment title <u>10 Numericals of Beer–Lambert law</u>

Submitted by Zohaib HUSSAIN

Registration number Sp13-bty-001

Submitted To Dr. Murtazaa SAYED.

Date of submission Sunday, March 13, 2016

1. A solution of Tryptophan has an absorbance at 280 nm of 0.54 in a 0.5 cm length cuvette. Given the absorbance coefficient of trp is 6.4×10^3 LMol⁻¹cm⁻¹. What is the concentration of solution?

Solution:

As
$$\varepsilon = A / 1 c$$

 $l = 0.5 cm$
 $A = 0.54$
 $\varepsilon = 6.4 \times 10^{3} LMol^{-1}cm^{-1}$
 $C = ?$
So $c = A/\varepsilon 1$
 $= 0.54 / 6.4 \times 10^{3} \times 0.5$

Answer = 0.000168 M

2. A solution of thickness 2 cm transmits 40% incident light. Calculate the concentration of the solution, given that $\epsilon=6000$ dm3/mol/cm.

Solution:

A =
$$2 - \log 10$$
 %T = $2 - \log 10$ 40 = $2 - 1.6020$ = 0.398
A = ϵ 1 c
l= 2cm
 ϵ = 6000 dm3/mol/cm
A=0.398
c=?
So c = A/ ϵ 1 = 0.398/6000 × 2
Answer = 3.316 X 10⁻⁵ mol/dm3

3. A solution shows a transmittance of 20%, when taken in a cell of 2.5 cm thickness. Calculate its concentration, if the molar absorption coefficient is 12000 dm3/mol/cm.

Solution:

$$A = 2 - \log 10 \%T = 2 - \log 10 \ 20 = 2 - 1.301 = 0.698$$
 $A = \varepsilon 1 c$
 $l = 2.5 cm$
 $\varepsilon = 12000 \ dm3/mol/cm$
 $A = 0.698$
 $c = ?$
So $c = A/\varepsilon 1$
 $= 0.698/12000 \times 2.5$

4. Calculate the molar absorptivity of a 1×10^{-4} M solution, which has an absorbance of 0.20, when the path length is 2.5 cm.

mol / dm3

Solution:

A =
$$\varepsilon$$
 l c
l= 2.5 cm
A= 0.20
C= 1 x 10⁻⁴ M
 ε =?
So ε = A/1 c

Answer = $2.33 \times 10^{\circ}$

$$= 0.20/2.5 \times 1 \times 10^{-4}$$

Answer = 800 dm3/mol/cm.

- 5. The concentration of yeast t-RNA in an aqueous solution is 10 M. The absorbance is found to be 0.209 when this Solution is placed in a 1.00 cm cuvette and 258 nm radiations are passed through it.
 - a) Calculate the specific absorptivity, including units, of yeast t-RNA.
 - b) What will be the absorbance if the solution is 5 M?
 - c) What will be the absorbance if the path length of the original solution is increased to 5.00 cm?

Solution

5a

$$1 = 1.00 \text{ cm}$$

 $c = 10.00 \text{ M}$
 $A = 0.209$
So $\epsilon = A/1 c$
 $= 0.209/1.00 \text{ cm X } 10 \text{ M}$

Answer = 0.0209 dm3/mol/cm.

5b

$$\varepsilon = 0.0209 \text{ dm}3/\text{mol/cm}.$$
 $1 = 1.00 \text{ cm}$

$$c = 5.00 M$$

$$A=?$$

So
$$A = \varepsilon 1 c$$

A = 0.0209 dm3/mol/cm. X 1.00 cm X 5M

Answer = 0.1045

5c

 $\varepsilon = 0.0209 \text{ dm}3/\text{mol/cm}$.

1 = 5.00 cm

c = 10.00 M

A=?

So $A = \varepsilon 1 c$

A = 0.0209 dm3/mol/cm X 5.00 cm X 10.00 M

Answer = 1.045

6. Calculate the molar absorptivity of a 0.5×10^{-3} M solution, which has an absorbance of 0.17, when the path length is 1.3 cm.

Solution:

$$A = \varepsilon 1 c$$

l=1.3 cm

A = 0.17

$$C = 0.5 \times 10^{-3} \text{ M}$$

 $\varepsilon = ?$

So
$$\varepsilon = A/1c$$

$$= 0.17/1.3 \times 0.5 \times 10^{-3}$$

Answer = 261.53 dm3/mol/cm.

7. A CaCO3 solution shows a transmittance of 90%, when taken in a cell of 1.9 cm thickness. Calculate its concentration, if the molar absorption coefficient is 9000 dm3/mol/cm.

Solution:

A = 2 -
$$\log 10 \% T$$
 = 2 - $\log 10 90$ = 2 - 1.954 = 0.045
A = ϵ 1 c
l= 1.9 cm
 ϵ = 9000 dm3/mol/cm
A=0.045
c=?
So c = A/ ϵ 1
= 0.045/9000 × 1.9

8. Extinction coefficient of NADH at 340 nm is 6440 L/mol/cm. whereas NAD does not absorb at 340nm. What absorbance will be observed when light at 340nm passes through a 1cm cuvette containing 10uM NADH and 10 uM NAD.

Answer = $2.631 \times 10^{-6} \text{ mol / dm}$

Solution:

$$\epsilon = 6440 \text{ L/mol/cm}.$$
 $l = 1.00 \text{ cm}$
 $c = 10.0 \text{ uM} = 10 \text{ X} \cdot 10^{-6} \text{ M}$
 $A = ?$
So $A = \epsilon \cdot 1 \text{ c}$
 $A = 6440 \text{ L/mol/cm} \times 1.00 \text{ cm} \times 10 \times 10^{-6} \text{ M}$

Answer = 0.0644

Note: this absorbance is only for NADH because NAD do not absorb at 340nm.

9. A 1.00×10^{-4} M solution of an analyte is placed in a sample cell with a path length of 1.00 cm. When measured at a wavelength of 350 nm, the solution's absorbance is 0.139. What is the analyte's molar absorptivity at this wavelength?

$$l = 1.00 \text{ cm}$$

 $c = 1.00 \times 10^{-4} \text{ M}$
 $A = 0.139$
 $\epsilon = ?$
So $\epsilon = A/1 \text{ c}$
 $= 0.139/1.0 \times 1.00 \times 10^{-4}$
Answer = 1390 cm⁻¹ M⁻¹

- 10. The absorbance of a Cu sulphate solution containing 0.500 mg Cu/mL was reported as 0.3500 at 440 nm.
 - a) Calculate the specific absorptivity, including units, of Cu sulphate on the assumption that a 1.00 cm cuvette was used.
 - b) What will be the absorbance if the solution is diluted to twice its original volume

Solution

a)
$$l = 1.00 \text{ cm}$$

$$c = 0.500 \text{ mg/ml}$$

$$A = 0.3500$$

$$\epsilon = ?$$

So
$$\varepsilon = A / 1 c$$

= 0.3500 / 1.0 × 0.500
Answer = 0.7 cm⁻¹ (mg/mL)⁻¹

b)
$$c = 0.250 \text{ mg/ml}$$

 $\epsilon = 0.7 \text{ cm}^{-1} (\text{mg/mL})^{-1}$
 $1 = 1.00 \text{ cm}$
 $A = ?$
So $A = \epsilon 1 \text{ c}$
 $A = 0.7 \text{ cm}^{-1} (\text{mg/mL})^{-1} \text{ X } 1.00 \text{ cm X } 0.250 \text{ mg/ml}$
 $Answer = 0.175$