Beobachtung

- 1. Überprüfe (kurz) die Aussagen im Text bezüglich besonders dominanter Spektrallinien bei verschiedenen Temperaturen an Hand der Normspektren in Abb. 3.1.
- 2. Ordne die unbekannten Spektren in Abb. 3.2 zwischen den Normspektren ein und schätze so die Havard-Spektralklasse ab (mit Zehnteleinteilung).

Auswertung

Für jedes zu klassifizierende Spektrum aus Abb. 3.2 geht man wie folgt vor:

- 1. Bestimme $T_{\rm eff,\star}$ des unbekannten Sterns auf Grundlage der geschätzten Spektralklasse durch Interpolation. Der Temperaturverlauf zwischen den beiden eingrenzenden Normspektren kann linear angenommen werden.
- 2. Aus den in Tab. 3.1 gegebenen Werten kann die Entfernung d in pc (Gl. 3.2) und anschließend mit Gl. 3.6 die absolute Helligkeit M_V des Sterns berechnet werden:

$$M_{\rm V} = m_{\rm V} + 5 - 5\log d$$

- 3. Korrigiere die visuelle Helligkeit $M_{\rm V}$ zur bolometrischen Helligkeit $M_{\rm bol}$ mit Hilfe der in Tab. 3.2 gegebenen BC-Richtwerte (auch hier ist gegebenenfalls eine lineare Interpolation nötig).
- 4. Durch umstellen ergibt sich aus Gl. 3.8:

$$rac{L_{\star}}{L_{\odot}}=10^{-0.4\left(M_{
m bol,\star}-M_{
m bol,\odot}
ight)}$$

Berechne hiermit die Leuchtkraft des Sterns L_{\star} in Sonnenleuchtkräften L_{\odot} . $(M_{\rm bol,\odot}=+4,74)$

5. Zu Letzt soll mit Hilfe der gerade bestimmten L_{\star} und $T_{\rm eff,\star}$ über Gl. 3.11 der Radius des Sterns in Sonnenradien R_{\odot} berechnet werden. ($T_{\rm eff,\odot} = 5800\,{\rm K}$)

Material

Tabelle 3.1.: Jährliche Parallaxe, scheinbare Helligkeit und Leuchtkraftklasse 14 zu untersuchenden Sterne.

Nr.	$\pi/''$	$m_{ m V}$	LK
1	0,182	+3,6	V
2	0,028	+5,4	III
3	0,123	+0,1	V
4	0,292	+5,2	V
5	0,108	+3,5	IV
6	0,056	+2,1	III
7	0,014	+2,8	I

Tabelle 3.2.: Richtwerte für die Bolometrische Korrektur verschiedener Spektraltypen und Leuchtkraftklassen.

Spektraltyp	BC für LK			
	V	III	I	
O5	-4,00	-4,00	-4,00	
B0	-2,80	-2,90	-3,00	
B5	-1,50	-1,50	-1,50	
A0	-0,40	-0,40	-0,50	
A5	-0,12	-0,12	-0,12	
F0	-0,06	-0.08	-0,10	
F5	0,00	0,00	0,00	
G0	-0.03	-0.03	-0,10	
G5	-0.07	-0,20	-0,30	
K0	-0,18	-0,50	-0,70	
K5	-0,60	-0,90	-1,20	
M0	-1,20	-1,60	-1,90	
M5	-2,30	-2,80	-3,20	

Abbildung 3.1.: Normsequenz von Sternspektren: Klassifizierung nach dem Harvard-System. Temperaturen nach Allen, Astrophysical Quantities. 1976

Abbildung 3.2.: Zu klassifizierende Spektren.