Fundação Universidade Federal de Rondônia

CIÊNCIA DA COMPUTAÇÃO - 2º Período - 2º Sem. / 2021 - Geometria Analítica

Lista de Exercícios nº 4 - ELIPSE, HIPÉRBOLE e PARÁBOLA (Revisão do Terceirão)

ELIPSE

1 – Determine a equação da elipse com focos em F_1 (-2, 0) e F_2 (2, 0), sendo que o eixo maior é 12.

Resposta: a = 6

$$F_1F_2 = 4$$

$$c = 2$$

$$b = \sqrt{32}$$

 $b = \sqrt{32}$ Equação da elipse: $\frac{x^2}{36} + \frac{y^2}{32} = 1$.

2 – Determine a equação da elipse sabendo que os focos são $F_1(0, -3)$ e $F_2(0, 3)$ e o eixo maior é 8.

Resposta: a = 4

$$F_1F_2 = 6$$

$$c = 3$$

$$b = \sqrt{2}$$

 $F_1F_2=6$ c=3 $b=\sqrt{7}$ Equação da elipse: $\frac{x^2}{7}+\frac{y^2}{16}=1$.

3 – Determine a equação da elipse, sabendo-se que o eixo maior está contido em Ox, o eixo menor é igual a 6 e a distância focal é 10.

Resposta: b = 3

$$c = 5$$

$$a = \sqrt{34}$$

Equação da elipse: $\frac{x^2}{34} + \frac{y^2}{9} = 1$.

4 – Determine as coordenadas dos focos da elipse de equação $4x^2 + 9y^2 = 36$. Faça o gráfico.

Resposta: Equação: $\frac{x^2}{9} + \frac{y^2}{4} = 1$ a = 3

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 $a =$

$$b = 2$$

$$c = \sqrt{5}$$

b = 2 $c = \sqrt{5}$ $F_1(-\sqrt{5},0)$ e $F_2(\sqrt{5},0)$

 $\mathbf{5}$ – Determine as coordenadas dos focos da elipse de equação $25x^2 + 4y^2 = 100$. Faça o gráfico.

Resposta: Equação: $\frac{x^2}{4} + \frac{y^2}{25} = 1$ a = 5

$$b = 2$$

$$c = \sqrt{21}$$

b = 2 $c = \sqrt{21}$ $F_1(0, -\sqrt{21}) e F_2(0, \sqrt{21})$

6 – Determine a equação da elipse que passa pelos pontos P(2, 0) e $Q(\sqrt{2}, 1)$, sabendo que o eixo maior está contido em Ox.

Resposta: a = 2

$$b = \sqrt{2}$$

Equação da elipse: $\frac{x^2}{4} + \frac{y^2}{2} = 1$.

7 – Determine as medidas do eixo maior, do eixo menor e a distância focal das elipses:

a) $\frac{x^2}{144} + \frac{y^2}{81} = 1$

Resposta: 2a = 24

$$2b = 18$$

$$2c = 2\sqrt{7}$$

b)
$$x^2 + 3y^2 = 3$$

Resposta:
$$2a = 2\sqrt{3}$$

$$2b = 2$$

$$2c = 2\sqrt{2}$$

8 – Determine a excentricidade das elipses de equações:

a) $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Resposta: $a = \sqrt{3}$ $b = \sqrt{2}$

c = 1 $e = \frac{\sqrt{3}}{3}$

b) $9x^2 + 16y^2 = 144$

HIPÉRBOLE

9 – Determine a equação da hipérbole de eixo real 6 e cujos focos são os pontos F₁ (-4, 0) e F₂ (4, 0).

$$F_1F_2 = 8$$

$$c = 4$$

$$b = \sqrt{7}$$

Resposta: a = 3 $F_1F_2 = 8$ c = 4 $b = \sqrt{7}$ Equação da hipérbole: $\frac{x^2}{9} - \frac{y^2}{7} = 1$.

10 – Determine a equação da hipérbole de eixo imaginário 8 e cujos focos são os pontos F₁ (0, -6) e F₂ (0, 6).

$$F_1F_2=12$$

$$c = 6$$

$$a=\sqrt{20}$$

Resposta: b=4 $F_1F_2=12$ c=6 a $=\sqrt{20}$ Equação da hipérbole: $\frac{y^2}{20}-\frac{x^2}{16}=1$.

11 – Determine as coordenadas dos focos da hipérbole de equação $9x^2 - 16y^2 = 144$. Faça o gráfico da hipérbole.

Resposta: Equação: $\frac{x^2}{16} - \frac{y^2}{9} = 1$ a = 4 b = 3 c = 5 F_1 (-5,0) e F_2 (5,0)

12 - Determine as coordenadas dos focos da hipérbole de equação $y^2 - x^2 = 4$. Faça o gráfico da hipérbole.

Resposta: Equação: $\frac{y^2}{4} - \frac{x^2}{4} = 1$ a = 2 b = 2 $c = 2\sqrt{2}$ $F_1(0, -2\sqrt{2})$ e $F_2(0, 2\sqrt{2})$

13 – Determine a equação da hipérbole que passa pelo ponto $P(\sqrt{5}, 2)$, tem eixo real (ou transverso) contido em Ox e distância focal igual a 6.

Resposta: c = 3 $b = \sqrt{6}$ Equação da hipérbole: $\frac{x^2}{3} - \frac{y^2}{6} = 1$.

14 - Determine a equação da hipérbole cujos focos são os pontos F_1 ($-\sqrt{13}$, 0) e F_2 ($\sqrt{13}$, 0) e que passa pelo ponto P (1, 0).

Resposta: a = 1 $c = \sqrt{13}$ $b = \sqrt{12}$ Equação da hipérbole: $x^2 - \frac{y^2}{12} = 1$.

PARÁBOLA

- **15** Determine a equação da parábola cujo foco é o ponto F (0, 3) e cuja diretriz é a reta y + 3 = 0. **Resposta:** p = 6 Equação da parábola: $x^2 = 12y$ ou $x^2 - 12y = 0$.
- **16** Determine as coordenadas do foco, a equação da diretriz e faça o gráfico da parábola $y^2 + 6x = 0$. **Resposta:** F $(-\frac{3}{2}, 0)$ Equação da diretriz da parábola: $x - \frac{3}{2} = 0$.
- 17 Determine o parâmetro (p) da parábola de equação $x^2 + 16y = 0$. Resposta: p = 8.
- **18** Determine os pontos de ordenada 4 na parábola $x^2 4y = 0$. **Resposta:** $P_1(4, 4)$ e $P_2(-4, 4)$
- 19 Determine os pontos de abscissa 9 na parábola $y^2 4x = 0$. Resposta: $P_1(9, 6)$ e $P_2(9, -6)$
- 20 Determine a equação da parábola que tem vértice (0, 0), o eixo de simetria é o eixo x e passa pelo ponto P (4, 2).
 Resposta: Equação da parábola: y² = x ou y² x = 0.
- 21 Determine a equação da parábola que tem vértice (0, 0), o eixo de simetria é o eixo y e o parâmetro é 3.
 Resposta: Equação da parábola: x² = 6y ou x² 6y = 0.