Modern Modeling and Pricing of Interest Rates Derivatives Day 1 - Session 2: Yield Curve Model

Vladimir Sankovich ¹ Qinghua Zhu ²

London, June 6-7, 2018

¹vsankovich@drwholdings.com

²qzhu@drwholdings.com

Yield Curve Construction

Pricing a derivative:

$$\begin{aligned} V(t) &= \mathbb{E}_{t}^{Q} \left[e^{-\int_{t}^{T} r(s) ds} V(T) \right] \\ &= P(t, T) \mathbb{E}_{t}^{T} \left[V(T) \right], \text{where } P(t, T) = \mathbb{E}_{t}^{Q} \left[e^{-\int_{t}^{T} r(s) ds} \right] \\ &= \mathsf{DiscountFactor} * \mathsf{ForwardValue} \end{aligned}$$

- ▶ What is a Yield Curve Model? It provides
 - Discount factors (Fed Fund, EONIA, etc.)
 - Forward rates (Libor, OIS, FX forward, etc.)
- What is a Yield Curve Model used for?
 - Price linear products (Fixed-floating basis swaps, tenor basis swaps, cross currency basis swaps, OIS swaps, Libor-OIS basis swaps, FRAs, Futures, etc)
 - Foundation of upstream models.

Pre-OIS, Libor Discounting, Single Curve

- Historically, Libor rates are used to approximate risk-free rates.
- ▶ Build curve with Libor swaps:

$$C \sum P(t, T_i)\delta_i = \sum P(t, T_i)\tau_i L_i,$$

$$L_i = \mathbb{E}_t^{T_i}[L(T_{i-1}, T_i)]$$

$$= \frac{1}{\tau_i} \left(\frac{P(t, T_{i-1})}{P(t, T_i)} - 1 \right)$$

$$\implies C \sum P(t, T_i)\delta_i = P(t, T_0) - P(t, T_n)$$

▶ One set of unknowns $\{P(t, T_i)\}$, single curve for both discounting and Libor forwards.

OIS Discounting

OIS Discounting

$$D(t, T) = \mathbb{E}_{t}^{Q} \left[e^{-\int_{t}^{T} c(s) ds} \right]$$
$$V(t) = D(t, T) \mathbb{E}_{t}^{T_{c}} \left[V(T) \right]$$

► E.g., Libor Swaps:

$$PV = C \sum_{t} D(t, T_i) \delta_i - \sum_{t} D(t, T_i) \tau_i L_i$$
$$L_i = \mathbb{E}_t^{T_{i,c}} [L(T_{i-1}, T_i)]$$

- Need two curves
 - ▶ OIS curve, to calculate discount factors $D(t, T_i)$.
 - Libor curve, to calculate Libor forwards L_i .
- ▶ Two sets of unknowns $\{D(t, T_i), L_i\}$; separate forward and discounting curves.

A Wrong Approach

- Build OIS curve with OIS swaps:
- OIS Swaps:

$$C\sum D(t,T_i)\delta_i=D(t,T_0)-D(t,T_n)$$

Build Libor curve in the same way as before:

$$C\sum P(t,T_i)\delta_i=P(t,T_0)-P(t,T_n)$$

- To price collateralized trades, calculate discount factors and Libor forwards from the two curves respectively.
- Assumption with this approach? Libor swaps are self-funded.
- Not a valid assumption anymore! Most swaps traded in the market are cleared, market quotes are OIS-discounted swap rates.

Right Approach

- ▶ Build OIS curve with OIS swaps.
- Build Libor curve using DFs from OIS curve:

$$C\sum D(t,T_i)\delta_i=\sum D(t,T_i)\tau_iL_i,$$

i.e, knowing $D(t, T_i)$, solve for L_i .

▶ In reality, long term OIS swaps are not liquid; Libor-OIS basis swaps are.

$$\sum D(t, T_i)\delta_i(\textit{OIS}_i + \textit{S}) = \sum D(t, T_i)\tau_i L_i, \text{where } \textit{OIS}_i = \frac{D(t, T_{i-1})}{D(t, T_i)}.$$

▶ Dual curve construction, Libor and OIS united, solve for $D(t, T_i)$ and L_i together.

Tenor Swaps

- ▶ Two floating legs which pay Libor with different tenors.
- ► E.g. 3m x 6m basis swaps

$$\sum D(t, T_i)\delta_i(L_i^{3M} + S) = \sum D(t, T_i)\tau_i L_i^{6M}$$

- Given $D(t, T_i)$ and L_i^{3M} , solve for L_i^{6M} .
- Note: standard USD swaps are on 3M Libor; EUR and GBP swaps are on 6M Libor, simultaneously solving for L_i^{3M} and L_i^{6M} is required.

Cross Currency Curve

- ▶ Why are cross currency curves needed?
- Pricing of foreign collateralized trades. E.g. EUR trade collateralized in USD.
- ▶ No liquid Euribor swap market collateralized in USD.
- ▶ What do we have?
 - USD OIS swaps
 - USD Libor swaps collateralized in USD at Fed fund rates
 - ► EUR OIS swaps
 - Euribor swaps collateralized in EUR at EONIA rates
 - ► EUR/USD cross currency swaps collateralized in USD

Cross Currency Curve

 $\begin{array}{l} \text{USD OIS swaps} \\ \text{USD Libor swaps collateralized in USD} \end{array} \} \Longrightarrow \{D^{\$}(t,T_i),L_i^{\$}\} \\ \text{EUR OIS swaps} \\ \text{EUR Libor swaps collateralized in EUR} \Biggr\} \Longrightarrow \{D^{\mathfrak{S}}(t,T_i),L_i^{\mathfrak{S}}\} \end{array}$

► EUR/USD cross currency swaps collateralized in USD:

$$FX(t)\sum \delta_i D^{\S}(t,T)L_i^{\S} = \sum \tau_i P^{\mathfrak{S},\S}(t,T)\mathbb{E}_t^{\mathcal{T}_i^{\mathfrak{S},\S}}[L^{\mathfrak{S}}(T_{i-1},T_i)+s]$$

Note that $L_i^{\epsilon} = \mathbb{E}_t^{T_{i,c}^{\epsilon}}[L^{\epsilon}(T_{i-1}, T_i)]$ Ignore convexity

$$\mathbb{E}_{t}^{T_{i}^{\epsilon,\$}}[L^{\epsilon}(T_{i-1},T_{i})]=L_{i}^{\epsilon}$$

- ▶ Calibrate $P^{\in,\$}(t,T)$ to EUR/USD cross currency swaps collateralized in USD.
- ▶ EUR has two discounting curves: $P^{\in,\$}(t,T)$ and $D^{\in}(t,T)$.

Currency Chain

- ▶ How to calculate FX forwards?
- ► Consider a EUR/USD FX forward contract collateralized in USD:

$$PV = \mathbb{E}^{Q_{\S}} \left[e^{-\int_{t}^{T} c^{\S}(s)ds} (FX(T) - K) \right]$$

Forward FX rate is the par rate:

$$\begin{split} PV &= 0 \Rightarrow \mathbb{E}^{Q_\S} \left[e^{-\int_t^T c^\S(s)ds} \right] K = \mathbb{E}^{Q_\S} \left[e^{-\int_t^T c^\S(s)ds} FX(T) \right] \\ \text{(change measure)} &\Rightarrow \mathbb{E}^{Q_\S} \left[e^{-\int_t^T c^\S(s)ds} \right] K = FX(t) \mathbb{E}^{Q_\S} \left[e^{-\int_t^T [r^\S(s) - r^\S(s) + c^\S(s)]ds} \right] \\ &\Rightarrow K = FX(t) \frac{P^{\S,\S}(t,T)}{D^\S(t,T)} \end{split}$$

- Note that $K \neq FX(t) \frac{D^{\mathfrak{S}}(t,T)}{D^{\mathfrak{S}}(t,T)}$, i.e, cannot use OIS curves of respective currencies to calculate FX forwards.
- FX forwards are implied from cross currency swap market.

Currency Chain

- ▶ Notation: $P^{p,c}$ is the discount factor if the payment currency is p and collateral currency is c.
- Forward FX rate of DOM/FOR collateralized in currency c: $FwdFX(DOM/FOR) = FX(t) \frac{P^{DOM,c}}{P^{FOR,c}}$
- ▶ Problem: price a EUR trade collateralized in GBP.
- Need P^{€,£}.
- No liquid cross currency market of EUR/GBP xccy swaps collateralized in GBP.
- But there are liquid EUR/USD and GBP/USD xccy swaps collateralized in USD.
 - ⇒ Build a EUR-USD-GBP chain!
- Assuming FX forwards are independent of collateral currency,

$$\begin{aligned} \textit{FwdFX}(\textit{EUR}/\textit{GBP}) &= \textit{SpotFX} \frac{P^{\varepsilon, \xi}}{P^{\varepsilon, \xi}} &= \textit{SpotFX} \frac{P^{\varepsilon, \xi}}{P^{\varepsilon, \xi}} \\ \Longrightarrow P^{\varepsilon, \xi} &= \frac{P^{\varepsilon, \xi}}{P^{\varepsilon, \xi}} P^{\varepsilon, \xi} &= \frac{P^{\varepsilon, \xi}}{D^{\varepsilon, \xi}} D^{\varepsilon} \end{aligned}$$

Multi-curve framework: Pricing workflow

Example: 10Y GBP swap effective Jan 2016, notional £10mm, coupon 2%.

Curve	Collateral Currency	PV	Par Rate
Multi-Curve	GBP	-832,703	1.890%
Multi-Curve	USD	-858,063	1.911%
Multi-Curve	EUR	-829,834	1.904%
Single-Curve	N/A	-823,874	1.890%

	Curve	CollateralCcy	GBP/USD	EUR/USD	GBP Libor	FedFund	EONIA	SONIA
ĺ	Multi-Curve	GBP	0	0	-8,916	0	0	-422
	Multi-Curve	USD	576	0	-8,957	-586	0	150
	Multi-Curve	EUR	555	-565	-8,738	0	-562	145
ĺ	Single-Curve	N/A	0	0	-8,830	0	0	0

Interpolation

► Why?

E.g., price swaps with non-standard tenors; price seasoned swaps.

▶ What?

- ▶ Discount factor: *DF*(*t*, *T*).
- ▶ Time-weighted zero rate: $Z(t, T) = -\ln DF(t, T)$.
- ▶ Zero rate: z(t, T) = Z(t, T)/(T-t).
- Instantaneous forward rate: $f(t,T) = -\frac{d \ln DF(t,T)}{dT} = \frac{dZ(t,T)}{dT}$.

► How?

- Two common interpolation methods: flat forwards and cubic spline.
- ▶ Tradeoff between smoothness and locality.
- Tension spline.
- We can have one curve (e.g, 6m Libor) spread to another (e.g, 3m Libor); interpolators can be applied to spread quantities, e.g.,

 □ F^{5m}/_{5c3m}, Z^{6m} − Z^{3m}, Z^{6m} − Z^{3m}, f^{6m} − f^{3m}.
- Interpolation and curve bootstraping are not two separated processes!
 More cash flow dates than benchmark security prices.

Flat Forwards Interpolation

- ▶ Instantaneous forward rates are piecewise flat: $f(t, T) = c_i$, for $T \in [T_{i-1}, T_i)$.
- ▶ Equivalent to linear on Z(t, T) and log-linear on DF(t, T).
- Easy to implement, often used as a benchmark to compare to more sophisticated methods.
- Local, not smooth.

Cubic Spline Interpolation

- ▶ Often applied on Z(t, T).
- ▶ Z(t, T) is piecewise cubic: $Z(t, T) = a_i + b_i(T T_i) + c_i(T T_i)^2 + d_i(T T_i)^3$ for $T \in [T_i, T_{i+1})$, i = 1, ..., n 1.
- \blacktriangleright 4*n* 4 coefficients.
- ▶ *Natural Cubic Spline*: Requires twice differentiable. Constraints: Reprice n benchmark instruments; Z(t,T), Z'(t,T) and Z''(t,T) continuous at each $T_i, i = 2, ..., n-1$; boundary condition $Z''(t,T_1) = Z''(t,T_n) = 0$.
- Smooth but not local.

Hedging Locality

E.g., curves built from one spot FRA, 8 Eurodollar futures, and 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y, 12y, 15y, 20y, 25y, 30y swaps. Price a 11y swap, coupon 2%.

Swap Tenor	Flat Forward	Cubic Spline
3Y	-5	-6
4Y	-7	-6
5Y	-9	-17
6Y	-11	24
7Y	-13	-169
8Y	-15	652
9Y	-17	-2,838
10Y	4,432	7,397
12Y	5,406	5,334
15Y	0	-716
20Y	0	145
25Y	0	-47
30Y	0	10

Other Interpolation Methods

- ► References:
 - P. Hagan, G. West, Methods for Constructing a Yield Curve, WILMOTT Magazine, 2008
 - L. Andersen, V. Piterbarg, Interest Rate Modeling, 2010
- ▶ Piecewise linear on f(t, T) or z(t, T): zig-zaging behavior.

Other Interpolation Methods

- ▶ Hermite spline on Z(t, T): piecewise cubic; Z''(t, T) not necessarily continuous; $Z'(t, T_i)$ specified through finite difference; sacrifice smoothness for locality; excess convexity; doesn't preserve monotonicity.
- ▶ Monotone convex: Sacrifice smoothness to preserve monotonicity; relatively local.
- ▶ Penalty function:
 - ▶ Minimize $\int_{T_1}^{T_N} [f'(t,T)]^2 dT$ or $\int_{T_1}^{T_N} \sqrt{1 + [f'(t,T)]^2} dT$; similar to cubic spline on Z(t,T).
 - Tension Spline:
 - Minimize $\int_{T_1}^{T_N} \left([Z''(t,T)]^2 + \lambda^2 [Z'(t,T)]^2 \right) dT.$
 - λ is the tension factor.
 - ▶ $\int_{T_1}^{T_N} [Z''(t,T)]^2 dZ$ penalizes high 2nd order derivative of Z to avoid kinks and discontinuities.
 - $\int_{T_1}^{T_N} [Z'(t,T)]^2 dZ$ penalizes oscillations and excess convexity.
 - $\lambda \to 0 \Longrightarrow$ cubic spline; $\lambda \to \infty \Longrightarrow$ flat forwards.
 - lacktriangledown λ represents the tradeoff between smoothness and locality.

Tension Spline

E.g, IFR graph with different tensions. Note that λ has been rescaled to be between 0 and 1.

Tension Spline

Blend tensions. E.g. set tension=1 in future strips; tension=0 in swaps region.

Tension Spline

Hedging locality

Swap Tenor	tension=0	tension=0.1	tension=0.2	tension=1
3Y	-6	-5	-5	-5
4Y	-6	-7	-7	-7
5Y	-17	-11	-9	-9
6 Y	24	-3	-11	-11
7Y	-169	-58	-13	-13
8Y	652	231	-5	-15
9Y	-2,838	-1,370	-240	-17
10Y	7,397	5,791	4,673	4,432
12Y	5,334	5,648	5,494	5,406
15Y	-716	-484	-116	0
20Y	145	31	2	0
25Y	-47	-2	0	0
30Y	10	0	0	0

Incorporating Market Expectations - Turns

- At year end, banks look to bolster their cash reserves. Borrowing rate hikes between last business day of year and first business day of the next year.
- ▶ Fed provides liquidity at year end.
- Overlaid interpolator: $f(t,T) = f^*(t,T) + \epsilon \cdot 1_{T_s \le T \le T_e}$, where $f^*(t,T)$ is the usual interpolator and ϵ is the pre-specified turn amount.

Incorporating Market Expectations - Central Bank Meetings

Central banks set target rates in their meetings. Overnight rate may jump on meeting dates.

Bucketed Risk

- Pricing, risk and hedging in a consistent framework
 - ▶ A yield curve model is built from benchmark securities.
 - When pricing a trade/portfolio with a yield curve, it has direct sensitivities on the benchmark securities.
 - Benchmark securities are also used for hedging.
- ▶ Bucketed risk (par-point delta): $\frac{d PV}{d R_i}$, where R_i are par rates of benchmark securities, e.g., par swap rates.
- ► How to calculate?
 - Bump and re-value: Bump benchmark rates one by one, build new yield curve, and re-value the portfolio.
 - Jacobian approach: build a Jacobian matrix $\frac{d R_i}{d MP_j}$ during curve construction, where MP_j are the *model parameters* (interpolation quantities, i.e, DFs, zero rates, IFRs, etc). Calculate bucketed risk using

$$\frac{d PV}{d R_i} = \left[\frac{d R_i}{d MP_j}\right]^{-1} \frac{d PV}{d MP_j}.$$

More on Risk and Hedging

- Hedging each bucket can be expensive, especially if the interpolation is not local and exhibits oscillating hedging pattern.
- Benchmark instruments do not move independently.
- ▶ PV01: Change of PV when parallel shifting the curve by 1 bp.
- Perturbing forward rate / zero rates: gives detailed exposure to each forward rate and discount factor; does not directly suggest hedging instruments.
- ▶ PCA hedging: choose a subset of benchmark instruments; hedge the portfolio such it's neutral to first 3 principal components.