Open Embedded

Overview

- Description
- Building from Source
 - Reasons
 - Setting up
 - Procedure

Description

- Linux build system created for the Yocto project
- Very easy to customize as we will show later
- Used primarily for cross-compilation
 - Meaning that you can compile for another operating system
- Works on any Linux distribution

Reasons for Building from Source

- Users knowledgeable in OS can modify the source code
- Console-only images, X11 with GPU accelerated hardware support are some examples of possible customizations
- Another reason is to understand the OS
 - A useful skill to learn for many software applications and opportunities

Host Machine

- Our instructions will revolve around a Linux host machine
- One way to set up the host machine is through a Virtual Machine
 - Make sure that the DragonBoard is connected to your Virtual Machine instead of your actual computer
- Another way is to have your Linux computer
- For all the videos in this lesson, my demo will be on Ubuntu 16.04 on VMWare Workstation Pro

Instructions

- Before starting, familiarize yourself with fastboot
 - o Instructions for fastboot is mentioned in a previous video but will be provided again here
- Connect the host computer to DragonBoard
- Set up fastboot mode (steps 1-4)
- 96Boards instruction website will be provided in the readings

Debian

Overview

- Description
- Building from Source
 - Procedure

Description

- Operating system built from free software
- Software licensed under GNU General Public License
- One popular Linux OS based on Debian is Ubuntu
- APT is Debian's way of updating and installing software
 - As mentioned in previous videos, easy to use
- Wide range of support for Debian
 - You will find sudo apt-get install commands for a diverse range of software
- Our choice for most of the Coursera

Building from Source

- Before starting, familiarize yourself with fastboot
 - o Instructions for fastboot is mentioned in a previous video but will be provided again here
- Connect the host computer to DragonBoard
- Set up fastboot mode (steps 1-4)
- 96Boards instruction website will be provided in the readings
- Important things to note:
 - Make sure to have space in your host computer (Surprise! Operating systems are big)
 - "<path to your GCC cross compiler>" is the directory's bin folder
 - o If necessary, transfer the module files to /lib/modules folder of the DB410c

Android

Overview

- Description
- Building from Source
 - Procedure

Description

- Operating system intended for mobile phones and tablets
- One of the two most popular OS's for mobile devices
- Based on a Linux kernel
- Easy app development, which has a large market
- More widely used than Debian or OpenEmbedded
- Interface is intended for touch screen, but still can be used on the DragonBoard

Building from Source

- Before starting, familiarize yourself with fastboot
 - o Instructions for fastboot is mentioned in a previous video but will be provided again here
- Connect the host computer to DragonBoard
- Set up fastboot mode (steps 1-4)
- 96Boards instruction website will be provided in the readings
- Important things to note:
 - Make sure to have space in your host computer (Surprise! Operating systems are big)
 - "<path to your GCC cross compiler>" is the directory's bin folder
 - <KERNEL_TOP> and <ANDROID_TOP> should be substituted with names you can remember

Homework

- Download VMWare Player or Fusion(Mac)
- Read all the instructions for building from source
- Build the images for all three operating systems
- Go on the main websites for Android, OpenEmbedded, and Debian
 - Familiarize yourself with all the operating systems
- Search for BitBake targets

Google Assistant

Overview

- Hardware Requirements
- Description
- Instructions

Hardware Requirements

- DragonBoard with internet access
- Keyboard
- Mouse
- Monitor
- Speakers (eg. HDMI output through monitor)
- Microphone (eg. USB Webcam)

Instructions

- Instructions are provided in the readings
 - Credit to Radhika Paralkar of 96Boards and Google
- Important things to note:
 - When restarting the laptop, type "source venv/bin/activate" again
 - Put the correct path for your .json files
 - Make sure to change audio settings in PulseAudio Volume Control
 - o If there is trouble with the libraries, edit the section of the code that imports
 - The fix for me was in lines 31-36

Homework

- Browse through the Google Assistant website
- Browse through the Google Assistant Github
- Read the 96Boards instructions page
- Follow the instructions and run Google Assistant
 - o Test Google Assistant with simple requests, such as "Hello" and "Thanks"
- Customize the code in pushtotalk.py

Home Surveillance

Introduction

- Created by Manivannan Sadhasivam
- 5 Part in-depth blog about building:
 - https://www.96boards.org/blog/part-1-home-surveillance-project-96boards/
- Can be found in the 96-Boards projects repository:
 - https://github.com/96boards/projects
- Uses AWS S3 for storage and SNS for email notification

Hardware Requirements

- Dragonboard 410c
- Power Supply
- USB Webcam
- Sensors Mezzanine
- Webcam Mount
- Servo X \rightarrow 5
- Servo Y \rightarrow 6
 - Note these are different pins from the blog
 - o This is so they can be directly connected using Grove Connectors instead of wire
 - Code will need to be changed accordingly

Software Requirements

- OpenCV 3.2.0 (Computer Vision)
- Pillow (Image Processing)
- Arduino
- Flask (Web Server)
- Boto3 (AWS SDK)
- AWS Account

Note

- Port forwarding only required for external access
- We are keeping it on a local network

Description

- Allows you to create and deploy your own personal home surveillance system that will notify via email if there an unwanted person detected.
- Additionally, allows you to access a live stream of your home via your browser

Homework

- Home Surveillance Project Tutorial Parts 1-5
 - Walkthrough the tutorial and run the project
- Home Surveillance Project Github Repo
 - Explore the code
- OpenCV Facial Detection
 - Read up on how facial detection works
- OpenCV Facial Recognition
 - Read up on some of the facial recognition classes
- AWS S3 Python API
 - Read up on how to use the API