Theorem 1. Assume T is of degree $\leq k$, $A \in Ob(\mathcal{C})$ is of projective dimension $\leq r$, then $L_qT(A,n) = 0$ for q > k(r+n).

Lemma 2. Let T be as above and $X \in sC$ such that $(NX)_i = 0$ for i > m. Then $N(TX)_i = 0$ for i > km.

Definition 3 (suspension). $SA = \operatorname{coker}(A \to CA)$, or $(SA)_q = A_{q-1}$ and $d^{SA} = -d^A$.

Corollary 4. We have an exact sequence $0 \to A \xrightarrow{\kappa} CA \xrightarrow{\pi} SA \to 0$.

Definition 5. Let $X \in sC$. Define cone and suspension of X by the formulas CX = KCNX, SX = KSNX.

Remark 6. We have an exact sequence (exact on each level) $0 \to X \xrightarrow{\kappa} CX \xrightarrow{\pi} SX \to 0$. Applying T we get (not necessarily exact) $0 \to TX \xrightarrow{T(\kappa)} T(CX) \xrightarrow{T(\pi)} T(SX) \to 0$.

Remark 7. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be a sequence in $C_*(\mathcal{C})$ such that $g \circ f = 0$ and B is contractible, i.e. we have $s_q : B_q \to B_{q+1}$ such that $d^B s + s d^B = \text{id}$. Then $g \circ f : A \to C$ gives a chain map $SA \to C$ and hence a map $H_q(A) \to H_{q+1}(C)$.

Theorem 8. H(gsf) does not depend on the choice of s.

Definition 9 (suspension homomorphism). The map $\sigma: H_q(TX) \to H_{q+1}(TSX)$ induced by κ and π is called a suspension homomorphism.

Proposition 10. σ defines a natural transformation of functors.

Proposition 11. Assume T additive, then $0 \to T(X) \to T(CX) \to T(SX) \to 0$ exact and we have a long exact sequence of homology groups: $\ldots \to 0 \to H_{q+1}(TSX) \to H_q(TX) \to 0 \to \ldots$, and σ is the inverse of the map in the middle.

Definition 12. Let $T_p^d(A) = T_p(A, ..., A)$ (d means diagonal).

Definition 13. Define $d_i = \rho \circ T(\alpha'_i) \circ \lambda : T_p^d(A) \to T_{p-1}^d(A)$, where λ monomorphism $T_p^d(A) \to T(A \oplus \ldots \oplus A)$, ρ epimorphism $T(A \oplus \ldots \oplus A) \to T_{p-1}^d(A)$, and $d'_i : \bigoplus_{i=1}^p A \to \bigoplus_{i=1}^{p-1} A$, equal to $(\mathrm{id}, \ldots, \mathrm{id}, (\mathrm{id} + \mathrm{id})_j, \mathrm{id}, \ldots, \mathrm{id})$.

Definition 14. Let $X \in sC$. Define a sequence of simplicial objects in C':

$$\mathcal{T}X = \left(T_1^d(X) \stackrel{\partial'}{\leftarrow} T_2^d(X) \leftarrow T_3^d(X) \leftarrow \ldots\right), \qquad \partial' = \sum_{i=1}^{p-1} (-1)^i d_i.$$

Remark 15. $\partial' \circ \partial' = 0$.

Corollary 16. Therefore TX gives a bicomplex

$$(\mathcal{T}X)_{p,q} = T_p^d(X_q)$$

with horizontal differentials ∂' and vertical differentials from kX.

Proposition 17. We have an embedding $i: kTX = (\mathcal{T}X)_{1,*} \hookrightarrow \text{Tot}(\mathcal{T}X)$ and it is a chain map of degree 1.

Theorem 18. There is a natural isomorphism $\omega : Htot(TSX) \simeq H(TSX)$ such that for

$$H_{q}TX \downarrow_{u}^{\sigma} \downarrow$$

$$H_{q}(TX)$$

$$H_{q}(TX)$$

any q the diagram commutes:

Definition 19 (bar construction). TX is called the bar construction for T.

Corollary 20. If T is additive, then σ is an isomorphism.

Corollary 21. If T is of degree 2, then there exists a morphism β such that the sequence is exact: ... $\rightarrow H_qT_2(X,X) \xrightarrow{\alpha} H_q(TX) \xrightarrow{\sigma} H_{q+1}(TSX) \rightarrow H_{q+1}T_2(X,X) \rightarrow H_{q+1}(TX) \rightarrow ...$

Corollary 22. There exists a spectral sequence which converges to H_*TSX and which satisfies

- E'_{pq} is equal to the complex $H_qTX \stackrel{H_q(\partial')}{\longleftarrow} H_qT_2(X,X) \stackrel{H_q(\partial')}{\longleftarrow} H_qT_3(X,X,X) \leftarrow \ldots$
- the homomorphism $H_qTX = E'_{pq} \to H_{q+1}TSX$ is the same as σ .

Definition 23. We say that $X \in s\mathcal{C}$ is trivial below n if there exists $X' \in s\mathcal{C}$ which is homotopy equivalent to X and satisfies $X'_i = 0$ for i < n.

Lemma 24. If X is projective and $H_q(X) = 0$ for q < n, then X is trivial below n.

Remark 25 (digression). A bisimplicial object is $X_{p,q}$ with $X_{p,q} \to X_{r,s}$ for any $\alpha : [r] \to [p], \beta : [s] \to [q]$, which satisfy simplicial identities in both directions. Every bisimplicial object gives us a bicomplex kX.

If X is bisimplicial, then it comes with a diagonal simplicial object $X_{k,k} \xrightarrow{(\alpha,\alpha)} X_{l,l}$ (where $\alpha : [l] \to [k]$).

Theorem 26 (Eilenberg-Zilber(-Cantier)). There is a chain homotopy equivalence $k(X_{p,p}) \simeq \text{tot}(kX_{p,q})$.

Remark 27. Observe that $X_{p,p}$ is in degree p to the left and p+p to the right.

Proposition 28. Let $T: \mathcal{C}^l \to \mathcal{C}'$ be such that $T(\ldots, 0_j, \ldots) = 0$. Let, for $j = 1, \ldots, l$, $X^j \in s\mathcal{C}$ be trivial below n_j . Then $T(X^1, \ldots, X^l)$ is trivial below $n_1 + \ldots + n_l = n$ (therefore $H_qT(X^1, \ldots, X^l) = 0$ for q < n).

Corollary 29. If X is trivial below n, then the suspension homomorphism $\sigma: H_q(TX) \to H_{q+1}(TSX)$ is an isomorphism for q < 2n and epimorphism for q = 2n.

Remark 30. Observe that if X is a projective resolution of (A, n), then SX is a projective resolution of (A, n + 1).

Definition 31 (stable derived functors). $L_{q+n}(T \bullet, n)$ for n > q is called the q-th stable derived functor of T, denoted $L_q^s T(\bullet)$.