

Principi di funzionamento delle fibre ottiche

Carlo Giacomo Someda Filippo Pigozzo

La fibra ottica: richiami

- Solo un modo, quello che viene chiamato di ordine zero, attraversa la fibra senza riflessioni ai bordi ed è il primo che arriva alla fine della fibra.
- Il numero di modi che si propagano in una fibra è determinato da:
 - La lunghezza d'onda della radiazione.
 - II diametro del core.
 - Gli indici di rifrazione di core e cladding.

La fibra ottica: dimensioni

Diametro nucleo	Diametro mantello	
[µ m]	[µm]	
50	125	
62,5	125	
50	125	
100	140	
FIBRE MULTIMODO PLASTICA		
Diametro nucleo	Diametro mantello	
[µ m]	[µm]	
980	1000	

FIBRE MONOMODO SiO ₂		
Diametro nucleo	Diametro mantello	
[µm]	[µm]	
9	125	

- Il core delle fibre multimodo
 è molto più grande di quelle
 monomodo.
- Esistono fibre di diametro diverso in commercio

Dai raggi ai modi (1/5)

- Si è detto che i raggi in condizioni di riflessione totale possano propagarsi lungo la fibra, ma che questi sono un numero finito e discreto perché devono sommarsi costruttivamente.
- Questo significa che solo un insieme discreto di angoli maggiori dell'angolo critico consentono propagazione modale.

Dai raggi ai modi (2/5)

- Affinché ci sia propagazione modale occorre che le fasi in A e in C siano uguali: interferenza costruttiva tra onda diretta e onda associata al raggio riflesso.
- Questo significa che nel cammino ABC la fase accumulata dal raggio deve essere un multiplo di 2π radianti.
- Conseguenza: DISCRETIZZAZIONE delle soluzioni (modi)

Dai raggi ai modi (3/5)

- SCHEMA CONCETTUALE DELLA DERIVAZIONE DEI MODI:
- a. Ipotesi di lavoro: dipendenza esponenziale da z.
- b. Si ricavano le componenti longitudinali di E e di H (nel core e nel cladding).
- c. Si ricavano le componenti trasverse di E e di H.
- d. Si impongono all'interfaccia core-cladding le condizioni di continuità di tutte le componenti tangenti di E e di H.
- e. LE COSTANTI ARBITRARIE SONO PIU' NUMEROSE DELLE CONDIZIONI DI CONTINUITA': il sistema è indeterminato.
- f. SI SCARTANO PARTE DELLE SOLUZIONI IN BASE A IPOTESI DI LAVORO DI NATURA FISICA.

Dai raggi ai modi (4/5)

- g. In seguito a tali scelte, il numero di equazioni diviene uguale al numero delle incognite.
- h. Si ha quindi una EQUAZIONE CARATTERISTICA, la quale coinvolge la frequenza f e la costante di propagazione lungo z.
- i. Per ogni valore finito di f, l'e.c. ammette UN NUMERO FINITO DI SOLUZIONI: sono I MODI GUIDATI della struttura guidante.
- j. L'insieme delle soluzioni delle equazioni di Maxwell comprende anche UN'INFINITA' CONTINUA DI MODI IRRADIANTI (I raggi che non sono soggetti a riflessione totale non sono tenuti a rispettare relazioni sulle fasi).

Dai raggi ai modi (5/5)

$$\beta_{cl} = \frac{2\pi f}{c_0} n_{cl}$$

Forma dei modi della fibra cilindrica (1/2)

Se il salto d'indice è molto basso (guida lieve o weakly guiding) queste famiglie sono approssimate da una famiglia di modi detti LP_{n,m} (polarizzati linearmente) dove i pedici n,m rendono conto della periodicità del campo nella direzione azimutale e del numero di massimi nella direzione radiale.

Forma dei modi della fibra cilindrica(2/2)

Condizione di monomodalità (1/2)

- Ci si chiede se è possibile determinare delle condizioni affinché la fibra ottica sia monomodale.
- La soluzione delle equazioni di Maxwell, oltre alla forma dei modi permette di determinarne anche l'andamento della fase (che in questa trattazione non verrà analizzata) e la frequenza normalizzata v:

$$v = \frac{2\pi a}{\lambda} \sqrt{n_{core}^2 - n_{cladding}^2}$$

con a raggio della fibra.

• Attraverso le equazioni di Maxwell si può dimostrare che se $v < v_{cutoff} = 2.405$ allora la fibra risulta monomodo e l'unico modo supportato è l' LP_{01} .

Condizione di monomodalità (2/2)

$$v = \frac{2\pi a}{\lambda} \sqrt{n_{core}^2 - n_{cladding}^2}$$

- Si vede come, assegnata la lunghezza d'onda, si possa agire sulla dimensione del raggio del nucleo e sul salto d'indice.
- Con valori di salto d'indice:

$$\Delta = \frac{n_{core} - n_{cladding}}{n_{core}} \approx 0.01$$

il nucleo deve avere un diametro inferiore a 10 µm per garantire la monomodalità.

• La condizione di monomodalità $v < v_{cutoff} = 2.405$ può essere espressa in termini di lunghezza d'onda e questo porta a scrivere che:

$$\lambda > \lambda_{cutoff} = 2.6a\sqrt{n_{core}^2 - n_{cladding}^2}$$

Apertura numerica (1/2)

- In figura viene evidenziato un problema: ci si chiede qual'è il massimo angolo al quale un raggio può entrare per poter essere guidato per riflessione totale.
- Si può dimostrare che quest'angolo deve essere tale per cui:

$$\theta < \theta_c = \arcsin\left(\sqrt{n_{core}^2 - n_{cladding}^2}\right)$$

La quantità

$$NA = \sqrt{n_{core}^2 - n_{cladding}^2} = \sin(\theta_c)$$

prende il nome di apertura numerica e quantifica la capacità della fibra di catturare luce.

Apertura numerica (2/2)

- Esempio: In una fibra con n_1 =1.46 e Δ =0.01, NA=0.206 e l'angolo di accettabilità risulta θ_c = 8.1°; se non ci fosse il mantello (n_2 = 1) allora θ_c = 90°.
- L' NA delle fibre ottiche monomodali è circa 0.1 e quindi è molto difficile accoppiarci potenza.
- Si vede che allora le equazioni della frequenza normalizzata e delle lunghezze d'onda che soddisfano la condizione di monomodalità si possono esprimere anche nella forma:

$$v = \frac{2\pi a}{\lambda} \sqrt{n_{core}^2 - n_{cladding}^2} = \frac{2\pi a}{\lambda} NA$$

$$\lambda > \lambda_{cutoff} = 2.6a\sqrt{n_{core}^2 - n_{cladding}^2} = 2.6aNA$$

Attenuazione (1/11)

- Si osserva sempre che nel propagarsi attraverso un mezzo trasmissivo un segnale perde potenza. Questo fenomeno è chiamato attenuazione.
- L'attenuazione di una fibra ottica è misurata in decibel secondo la relazione (il logaritmo è in base 10):

$$A_{dB} = 10 \log \left(\frac{P_{in}}{P_{out}} \right)$$

dove P_{in} è la potenza in ingresso e P_{out} quella in uscita.

Attenuation (dB)	Power Loss (%)	
10.0	90	
3.0	50	
0.1	2	
Power loss as a function of attenuation		

 L'attenuazione di una fibra ottica dipende dalla lunghezza d'onda.

Attenuazione (2/11)

- In generale i data-sheets contenenti i parametri caratteristici di una fibra tabulano le perdite in dB/km ad una specifica lunghezza d'onda.
- Esempio: Nel propagarsi in una fibra la potenza si dimezza ogni 27 km. Determinare le perdite.
 - Se la potenza si dimezza significa che le perdite totali sono di 3 dB.
 - -3 dB / 27 km = 0.11 dB/km.

Attenuazione (3/11)

FIBRA	N.A.=sin(<u>θ</u>)	ATTENUAZIONE
62.5/125	0.27	0.7dB/km (1300nm)
50/125	0.21	0.5 dB/km (1300nm)
100/140	0.2-0.3	5 dB/km (850nm)
980/1000	0.5	0.2dB/m)(660nm) (POF)
9/125	0.1 ovvero sin(6°)	0.35dB/km (1300nm) 0.2 dB/km (1550nm)

Attenuazione (4/11)

- La cause dell'attenuazione in una fibra ottica si dividono in:
 - Intrinseche: dovute alle caratteristiche del materiale che compone la fibra (la silice o la plastica).
 - Estrinseche: dovute alla presenza di impurità nella fibra.
- Tutte queste perdite dipendono dalla lunghezza d'onda.

Attenuazione (fibre in silice) (5/11)

- Le perdite intrinseche nelle fibre in silice sono dovute a 3 cause:
 - Assorbimento all'ultravioletto: la radiazione porta ad uno stato eccitato gli atomi della silice e la potenza viene convertita in calore.
 - Assorbimento all'infrarosso: la radiazione viene assorbita dagli stati vibrazionali della silice.
 - Diffusione di Rayleigh: la silice è un materiale amorfo e quindi localmente (su scala microscopica) l'indice di rifrazione è disomogeneo. Le disomogeneità provocano la diffusione di una parte della luce in tutte le direzioni che quindi non viene più guidata. L'attenuazione varia come 1/λ⁴ ed è la causa di circa il 90% delle perdite delle moderne fibre ottiche.

Attenuazione (fibre in silice) (6/11)

- Le perdite estrinseche nelle fibre in silice sono dovute a 2 cause:
 - Assorbimento dello ione ossidrile OH⁻: la radiazione viene assorbita dagli stati vibrazionali dell'ossidrile.
 - Assorbimento dell'idrogeno molecolare H₂: la radiazione viene assorbita dagli stati vibrazionali della molecola di idrogeno H₂ che date le sue piccole dimensioni penetra nella silice.

Attenuazione (fibre in silice) (7/11)

Attenuazione (fibre in plastica) (8/11)

N.B. Qui si parla di dB/m

Attenuazione (9/11)

- Vi sono ulteriori cause di perdita per radiazione che si verificano sempre quando una fibra ottica presenta una curva di raggio finito.
- Ci sono due diversi tipi di curvatura:
 - curve macroscopiche: il raggio di curvatura è grande rispetto al diametro della fibra.
 - curve microscopiche: casuali perturbazioni dell'asse della fibra che danno luogo a curve molto irregolari e con piccolo raggio di curvatura.

Attenuazione (10/11)

 Nelle curve macroscopiche le perdite sono legate al fatto che la luce ha una velocità di propagazione finita.

Attenuazione (11/11)

 Nelle curve microscopiche le perdite sono legate alla radiazione che esce per scattering multiplo.

Dispersione (1/5)

- Nel propagarsi in una fibra un impulso viene allargato nel tempo. Questo fenomeno è dovuto alla dispersione.
- Un paragone per comprendere:
 - Le singole componenti spettrali possono essere rappresentate come corridori che viaggiano con velocità costante ma diversa l'uno dall'altro.

(caso non dispersivo)

- Dopo una distanza percorsa sufficientemente lunga il distacco tra il corridore più veloce e quello più lento diventa rilevante, <u>qualunque sia la posizione di</u> <u>partenza</u>.
- Questo giustifica intuitivamente l'allargamento del segnale.

Dispersione (2/5)

- Esistono due tipi di dispersione:
 - Cromatica (chiamata anche intramodale).
 - Modale (chiamata anche intermodale).

Dispersione (dispersione cromatica) (3/5)

- La dispersione cromatica avviene perché le diverse lunghezze d'onda viaggiano a velocità diversa all'interno della fibra.
- Poiché le sorgenti ottiche forniscono potenza in una banda di lunghezze d'onda piuttosto che in una singola componente spettrale l'impulso nel propagarsi nella fibra si allarga.
- A parità di mezzo trasmissivo gli effetti sono tanto più evidenti quanto maggiore è la larghezza spettrale della sorgente di informazione:
 - Led: 40 nm.
 - Laser: 1nm.
- I laser ad alta velocità usati nelle comunicazioni emettono con bande di frazioni di nanometro per ridurre la dispersione cromatica.
- Riguarda le fibre monomodo e multimodo.

Dispersione (dispersione cromatica) (4/5)

- I contributi alla dispersione cromatica sono due:
 - Dispersione del materiale: è dovuta alla variazione dell'indice di rifrazione con la lunghezza d'onda.
 - Dispersione di guida: è dovuta al fatto che in fibra una parte della potenza ottica è confinata nel nucleo e una parte nel mantello.

Dispersione (dispersione modale) (5/5)La dispersione modale si verifica solo nelle fibre

- La dispersione modale si verifica solo nelle fibre multimodali in cui più modi possono propagarsi alla stessa lunghezza d'onda.
- Modi differenti nella fibra si riflettono a differenti angoli alle sue pareti e compiono al suo interno cammini di diversa lunghezza con la conseguenza che i modi di ordine superiore raggiungono la fine della fibra dopo quelli di ordine più basso.

 Quantitativamente la dispersione intermodale è molto più grande di quella cromatica e limita fortemente la banda delle fibre multimodali.

Larghezza di banda (1/9)

 La dispersione limita la capacità di trasmissione di una fibra.

Larghezza di banda (2/9)

- La capacità di una fibra di trasportare informazione si esprime come il prodotto della larghezza di banda per la distanza.
- Per esempio una fibra con 400 MHz*km di banda può trasmettere dati con una banda di 400 MHz per 1 km o 20 MHz per 20 km.
- La causa primaria della limitazione della larghezza di banda è l'allargamento degli impulsi che avviene per effetto della dispersione modale e cromatica.

Fiber Type	Bandwidth
Single-mode	100 GHz-km
Graded index	500 MHz-km at 1300 nm 160 MHz-km at 850 nm
Step index	20 MHz-km

Banda tipica delle fibre ottiche

Larghezza di banda (3/9)

- Allo scopo di aumentare la larghezza di banda negli anni sono state proposte e sperimentate due soluzioni fondamentalmente diverse (ciascuna con varianti):
 - Per le fibre monomodali si sono realizzate le fibre dispersion shifted.
 - Per le fibre multimodali si sono introdotte le fibre graded index.

Larghezza di banda (fibra dispersion shifted) (4/9)

- Se si confrontano le curve di dispersione e di attenuazione spettrale di una guida in silice, si osserva che mentre l'attenuazione raggiunge il suo minimo a λ =1550 nm, la dispersione si annulla a λ =1300 nm.
- Per avere le massime prestazioni sarebbe desiderabile che il minimo di attenuazione coincidesse con lo zero di dispersione.
- Poiché esiste un contributo alla dispersione dovuto alla guida d'onda è chiaro che una accurata progettazione della fibra permette di ottenere lo scopo desiderato.
- Nascono così le fibre a dispersione spostata.
- Per realizzarle si interviene sull'andamento radiale dell'indice di rifrazione.

Larghezza di banda (fibra dispersion shifted) (5/9)

Profili d'indice di fibre a dispersione spostata

Larghezza di banda (fibra dispersion shifted) (6/9)

Profili d'indice di fibre a dispersione spostata

Larghezza di banda (fibra dispersion shifted) (7/9)

- Attualmente le fibre dispersion shifted non vengono più utilizzate come fibre per trasmettere segnali a distanze elevate, quanto piuttosto in applicazioni che richiedono l'assenza di dispersione come l'amplificazione ottica o l'amplificazione Raman o la generazione di nuove frequenze nel caso la fibra sia drogata opportunamente con materiali non lineari.
- Questo per evitare che le elevate potenze dei lasers utilizzati come sorgente diano luogo a fenomeni non lineari che in questo contesto risultano deleteri.

Larghezza di banda (fibra graded index) (8/9)

 Il core di una fibra a gradiente d'indice ha un indice di rifrazione che decresce radialmente continuamente dal centro fino all'interfaccia con il cladding.

- Il risultato è che la velocità della luce aumenta con la distanza dall'asse della fibra (infatti l'indice di rifrazione diminuisce).
- Anche se i raggi con inclinazione maggiore rispetto all'asse della fibra fanno più strada, essi viaggiano piu' veloci, in modo che i tempi di transito di raggi diversi (modi diversi) sono equalizzati e la dispersione modale risulta notevolmente ridotta.

Larghezza di banda (9/9)

Potenza (1/3)

- La potenza che una fibra può trasportare senza subire danneggiamenti è normalmente espressa in termini di massima potenza accettabile.
- La densità di potenza è il rapporto tra la potenza massima che può avere la radiazione laser e l'area del fascio emesso.
- Per esempio un fascio laser di 15 W focalizzato in uno spot con diametro di 150 µm produce una densità di potenza pari a:

$$\frac{P}{A} = \frac{15W}{\pi (0.0075 \, cm)^2} = 85 \, kW / cm^2$$

Potenza (2/3)

- L'uscita di un laser impulsato (che tipicamente viene espressa in mJ per impulso) deve essere prima convertita in potenza.
- Per esempio un laser che produce un impulso di 50 mJ con durata di 10 ns fornisce una potenza di uscita pari a:

$$P = \frac{50 \times 10^{-3} J}{10^{-8} s} = 5000 kW = 5MW$$

 Osservazione: si ricorda che in un impulso gaussiano la potenza di picco è:

$$P_p \approx 0.94 \frac{E_p}{\tau_p} = 4.7 MW$$

tuttavia essendo il valore generico (5 MW) più elevato conviene fare riferimento a quello per determinare la potenza massima trasportabile.

Potenza (3/3)

- Per trasmettere la potenza massima dentro la fibra è necessario che le sue facce siano perfettamente lisce e lucide nonché perfettamente perpendicolari all'asse della fibra e al fascio incidente (è importante anche l'allineamento fascio-fibra).
- Inoltre il diametro del fascio non deve essere più largo di metà del diametro del core. Se il fascio non è focalizzato in questo modo una parte dell'energia si accoppia nel cladding e può danneggiare velocemente le fibre con cladding di plastica. Per questa ragione in applicazioni di potenza è preferibile utilizzare fibre con il cladding in silice.