КОРРЕЛЯЦИЯ МЕЖДУ УГЛАМИ ВЫЛЕТА ЭЛЕКТРОНОВ И ЯДЕР ОТДАЧИ ПРИ β-РАСПАДЕ Р³²

В февральском номере Physical Review опубликованы г результаты экспериментального исследования распределения по углам электронов и ядер отдачи, образующихся при в-распаде Раг, т. е. при реакции

$$P^{32} \rightarrow e^- + v + S^{32}$$
.

Предшествовавшие попытки выяснить угловое распределение электронов и ядер отдачи при в-распаде ядра наталкивались на большие трудности из-за невозможности получения чистого в-активного вещества. Сейчас, как

Рис. 1.

отмечает автор, в связи с получением изотопа фосфора (Рза) эта трудность преодолевается почти полностью. Материал этот настолько чист, что позволяет наносить на определённую поверхность правильный моноатомный слой Р32 и тем самым избежать потерь энергии и рассеяния ядер отдачи в самом в-активном элементе.

Основная идея эксперимента состоит в измерении времени полёта ядер отдачи в свободном от поля пространстве. Если известно расстояние, на протяжении которого ядра отдачи летят свободно, то, измеряя время, в течение которого они проходят это расстояние, можно определить их импульсы. Схема экспериментальной установки изображена на рис. 1.

Тонкая слюдяная пластинка S (от 1 до 1,5 мг/см2), на поверхность которой нанесён моноатомный слой β-активного P32, служила источником электронов и ядер отдачи по следующей реакции

$$^{2}P^{32} \rightarrow S^{32} + e^{-} + v$$
.

Общая β -активность источника составляла от 1 до $3\cdot 10^4$ электронов в секунду. Размер поверхности — $1\cdot 0,6$ см. Давление в измерительной камере порядка 10^{-7} мм Hg.

После изготовления во вспомогательной камере пластинка с β-актив-

ным веществом вводилась в камеру для измерений.

Электроны, прошедшие через окошечки, сделанные из тонкой слюды (9 мг/см²) и расположенные под различным углом к источнику, регистрировались счётчиком Гейгера.

Ядра отдачи, выбрасываемые в одном из направлений внутри маденького конуса с раствором $\sim 6^{\circ}$, регистрировались с помощью электронного умножителя 2 .

Так как скорость электронов много больше, чем скорость ядер отдачи, и близка к скорости света, можно допустить, что электроны достигают

счётчика Гейгера мгновенно, в то время как ядра отдачи регистрируются с определённым запаздыванием. Интервал времени между регистрацией электрона и регистрацией ядра отдачи, очевидно, равен тому промежутку времени, в течение которого ядро отдачи проходит расстояние от источника до электронного умножителя (около 6,5 см). Измерение этого интервала времени, т. е. интервала от появления электрона до появления ядра отдачи, и определяет импульс ядра отдачи.

На рис. 2 приводятся полученные автором спектры ядер отдачи. По ординате отложено число ядер отдачи, наблюдаемых в течение 1/2 микросекунды, по абсимссе — время полёта в микросекундах. Малым временам полёта ядер отдачи соответствуют их высокие импульсы, как это показано на рисунке.

Для каждого отдельного случая даётся общее число электронов, зарегистрированных в течение времени наблюдения. Например, в первом случае, т. е. когда ядра отдачи и электроны выбрасываются в противоположные стороны, общее число наблюдённых электронов равно 2,9·105.

Далее автор сравнивает полученные результаты (рис. 3) с теорией. Как известно 3, в теории β-распада ядра существуют пять варнантов форм взаимодействия: скалярное, векторное, тензорное, псевдотензорное и псевдо-

Каждый из этих вариантов взаимодействия даёт вполне определённую корреляцию между направлениями вылета электрона и нейтрино 4. Например, вероятность распада, в котором направления выхода электрона и нейтрино образуют угол в, в скалярном и псевдоскалярном

вариантах взаимодействия пропорциональна $1 - \beta \cos \theta$, где $\theta =$

Автор приходит к следующему выводу.

Во-первых, экспериментальные данные приводят к выводу, что между электронами и ядрами отдачи при в-распаде Рва закон сохранения импульса не имеет места. Следовательно, для того чтобы удовлетворился закон сохранения импульса, мы должны обязательно предположить наличне нейтрино.

Во-вторых, функция 1 + 3 cos 8 (8 — угол между направлениями электрона и нейтрино), предсказываемая векторным вариантом взаимодействия, очень сильно расходится с экспериментом.

функция В-третьих. 1 — 3 соя в, предсказываемая как скалярным, так и псеввариантами **доскалярным** взаимодействия, в области энергии ядер отдачи выше чем 25 eV, хорошо согла-суется с экспериментальными данными.

Автор полагает, что Р³² → е + у + S³² является разрешённым переходом. Однако первый запрещённый переход, по его мнению, не может быть окончательно исключён.

Как заметил М. А. Марков, произведённое автором сопоставление экспериментальных данных с предсказаниями различных вариантов теории взаимодействия, является не вполне законным. Действительно, известно, что процесс $\mathsf{P}^{32} \to \mathsf{e} + \mathsf{v} + \mathsf{S}^{32}$ дважды запрещённый 3 , поэтому на него нельзя распространять результаты теории, развитой для разрешённых Ж. С. Такибаев переходов.

питированная литература

1. Chalmers W. Sherwin, Phys. Rev., 73, 216 (1948).

2. I. S. Allen, Rev. Sci. Inst., 12, 582 (1941).

3. Бете и Бэчер, Физика ядра; Emil Jan Konopinsky, Reviews of Modern Physics, 15, 209 (1943).

4. D. R. Hamilton, Phys. Rev., 71, 456 (1947).