Attention

Transformer

- All the sentence processed at the same time
- What is an Attention Map?
 - a grid that tells how much focus a model places on different parts of the input text when processing a specific token
- Example: "flag" → "American"
 - The brightest square (highlighted) shows it's paying extremely high attention to the token "American"
 - Attention allows a model to dynamically create relationships between tokens

Bright squares = Strong connection.Dark squares = Weak connection.

Design: built upon cutting-edge ML methods such as MAE & Vision Transformer

Masked Auto-encoders

Learning with fill in the blanks

The "How":

- Mask: A large portion of the input (e.g., 75% of patches)
- Encode: A deep Encoder processes only the visible patches.
- Reconstruct: A Decoder guess the missing patches.

• The Goal: force Encoder to learn a rich representation of the data, not just surface-level details.

Vision Transformer

Self-attention to access global features

The "How":

- Patchify: An image is broken down into a sequence of patches.
- Embed: Each patch is converted to feature vector + positional info
- Transformer Encoder: <u>self-attention</u> to model the token relation

 The Goal: capture long-range dependencies and global context across the entire input.