

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Allungamento termico assegnato ϵ su asta BC.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

$$H_A = V_A =$$

$$N_{AB} = N_{BC} =$$

$$N_{CD} =$$

 $N_{FC} =$

 $V_D =$

$$N_{EF} =$$

 $N_{CG} =$

$$N_{FG} = N_{AE} =$$

$$N_{EB} =$$

$$N_{GD} =$$

$$u_F =$$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_D b = -8Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = -8Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FF}b = -6Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = -4Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = -2Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

Soluzione del sistema

$$\begin{bmatrix} V_{D}b \\ H_{BA}b \\ H_{FE}b \\ H_{CB}b \\ H_{GF}b \\ H_{DC}b \end{bmatrix} = \begin{bmatrix} -4/3 \\ 4/3 \\ -2/3 \\ 0 \\ 2/3 \\ -4/3 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = 4/3F$ $V_D = -4/3F$

$$N_{EB} = -2\sqrt{2/3}F$$
 $N_{BF} = 2\sqrt{2/3}F$ $N_{FC} = -2\sqrt{2/3}F$ $N_{CG} = 2\sqrt{2/3}F$ $N_{GD} = 4\sqrt{2/3}F$

 $N_{AB} = 4/3F$ $N_{BC} = 0$ $N_{CD} = -4/3F$ $N_{EF} = -2/3F$ $N_{FG} = 2/3F$ $N_{AE} = -4\sqrt{2}/3F$

SPOSTAMENTI ASSOLUTI

$$u_F = 26/9(Fb/EA)$$

$$V_F = -6(Fb/EA)$$

⊢ 20 Fb/EA

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Allungamento termico assegnato $\boldsymbol{\epsilon}$ su asta BC.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

@ Adolfo Zavelani Rossi, Politecnico di Milano

 $N_{AE} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$_{\rm B}$$
 = $N_{\rm BC}$ = $N_{\rm CD}$ = $N_{\rm EF}$ = $N_{\rm FG}$ =

$$N_{EB} = N_{BF} = N_{FC} = N_{CG} = N_{GD} =$$

$$V_F =$$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_{D}b = 36Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = 24Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FF}b = 15Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 6Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = 3Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

	$[V_Db]$	$H_{BA}b$	$H_{CB}b$	$H_{DC}b$	$H_{FE}b$	$H_{GF}b$		[Fb]	
ϕ_{AE}	6	0	0	0	0	0]	=	[36]	
ϕ_{EB}	5	-1	0	0	0	0		24	
ϕ_{BF}	4	0	0	0	1	0		15	
ϕ_{FC}	3	0	-1	0	0	0		6	
ϕ_{CG}	2	0	0	0	0	1		3	
ϕ_{GD}	1	0	0	-1	0	0		[0]	

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{FE} b \\ H_{CB} b \\ H_{GF} b \\ H_{DC} b \end{bmatrix} = \begin{bmatrix} Fb \\ 6 \\ 6 \\ -9 \\ 12 \\ -9 \\ 6 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = 6F$ $V_D = 6F$

$$N_{AB} = 6F \hspace{1cm} N_{BC} = 12F \hspace{1cm} N_{CD} = 6F \hspace{1cm} N_{EF} = -9F \hspace{1cm} N_{FG} = -9F \hspace{1cm} N_{AE} = -6\sqrt{2}F$$

$$N_{BC} = 12F$$

$$N_{CD} = 6F$$

$$N_{FF} = -9F$$

$$N_{EG} = -9$$

$$N_{AF} = -6\sqrt{2}F$$

$$N_{EB} = 3\sqrt{2}F$$

$$N_{pr} = -3\sqrt{2}I$$

$$N_{EC} = -3\sqrt{21}$$

$$N_{CG} = 3\sqrt{21}$$

$$N_{EB} = 3\sqrt{2}F \hspace{1cm} N_{BF} = -3\sqrt{2}F \hspace{1cm} N_{FC} = -3\sqrt{2}F \hspace{1cm} N_{CG} = 3\sqrt{2}F \hspace{1cm} N_{GD} = -6\sqrt{2}F$$

SPOSTAMENTI ASSOLUTI

$$u_F = 18(Fb/EA)$$

$$V_F = -(66+24\sqrt{2})(Fb/EA)$$

----- 250 Fb/EA

CdSdCBG05 TravaturaReticolare Esempio4

 $EA_{CD} = EA$

 $EA_{FF} = EA$

Es.N.044

Es.N.044

 $EA_{RF} = EA$

 $EA_{FC} = EA$

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica.

 $\varepsilon_{BC} = 2\alpha T = 2F/EA$

 $u_{\scriptscriptstyle E} = ?$

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Allungamento termico assegnato $\boldsymbol{\epsilon}$ su asta BC.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} = N_{CD} = N_{EF} = N_{FG} = N_{AE} =$$

$$N_{EB} = \qquad \qquad N_{BF} = \qquad \qquad N_{FC} = \qquad \qquad N_{CG} = \qquad \qquad N_{GD} = \qquad \qquad \qquad N_{CG} = \qquad N_{CG} = \qquad N_{CG} = \qquad N_{CG} = \qquad \qquad N_{CG} = \qquad \qquad N_{CG} = \qquad N_{CG} = \qquad \qquad N_{CG}$$

$$V_F =$$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_{D}b = -18Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_{D}b - H_{BA}b = -12Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FE}b = -3Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 6Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = 3Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

Soluzione del sistema

$$\begin{bmatrix} V_{D}b \\ H_{BA}b \\ H_{FE}b \\ H_{CB}b \\ H_{GF}b \\ H_{DC}b \end{bmatrix} = \begin{bmatrix} Fb \\ -3 \\ 9 \\ -15 \\ 9 \\ -3 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -3F$ $V_D = -3F$

$$N_{AB} = -3F \hspace{1cm} N_{BC} = -15F \hspace{1cm} N_{CD} = -3F \hspace{1cm} N_{EF} = 9F \hspace{1cm} N_{FG} = 9F \hspace{1cm} N_{AE} = 3\sqrt{2}F$$

$$N_{CD} = -3F$$

$$N_{\rm FF} = 9F$$

$$N_{FG} = 9F$$

$$N_{AF} = 3\sqrt{2}F$$

$$N_{EB} = -6\sqrt{2}F \hspace{1cm} N_{BF} = 6\sqrt{2}F \hspace{1cm} N_{FC} = 6\sqrt{2}F \hspace{1cm} N_{CG} = -6\sqrt{2}F \hspace{1cm} N_{GD} = 3\sqrt{2}F$$

$$N_{EC} = 6\sqrt{2}$$

$$N_{CG} = -6\sqrt{2}$$

$$N_{GD} = 3\sqrt{2}F$$

$$u_F = -31/4(Fb/EA)$$

$$v_F = (189+120\sqrt{2})/4(Fb/EA)$$

----- 200 Fb/EA

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Allungamento termico assegnato $\boldsymbol{\epsilon}$ su asta BC.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

 $N_{AE} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{BC} = N_{CD} = 0$$

$$N_{EB} = N_{BF} = N_{FC} = N_{CG} = N_{GD} =$$

 $N_{EF} =$

 $N_{FG} =$

$$V_F =$$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_{D}b = 12Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = 12Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FE}b = 9Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 6Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = 3Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

	$V_D b$	$H_{BA}b$	$H_{CB}b$	$H_{DC}b$	$H_{FE}b$	$H_{GF}b$		[Fb]	
ϕ_{AE}	6	0	0	0	0	0		12	
ϕ_{EB}	5	-1	0	0	0	0		12	
ϕ_{BF}	4	0	0 -1	0	1	0		9	
ϕ_{FC}	3	0	-1	0	0	0	=	6	
ϕ_{CG}	2	0	0	0	0	1		3	
ϕ_{GD}	1	0	0	-1	0	0		0	

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{FE} b \\ H_{GB} b \\ H_{GF} b \\ H_{DC} b \end{bmatrix} = \begin{bmatrix} Fb \\ 2 \\ -2 \\ 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -2F$ $V_D = 2F$

$$N_{AB} = \text{-}2F \hspace{1cm} N_{BC} = 0 \hspace{1cm} N_{CD} = 2F \hspace{1cm} N_{EF} = F \hspace{1cm} N_{FG} = \text{-}F \hspace{1cm} N_{AE} = 2\sqrt{2}F$$

$$N_{CD} =$$

$$N_{EE} = F$$

$$N_{EG} = -F$$

$$N_{AE} = 2\sqrt{2}F$$

$$N_{FR} = \sqrt{2F}$$

$$N_{ro} = \sqrt{21}$$

$$N_{CG} = -\sqrt{2F}$$

$$N_{EB} = \sqrt{2}F$$
 $N_{BF} = -\sqrt{2}F$ $N_{FC} = \sqrt{2}F$ $N_{CG} = -\sqrt{2}F$ $N_{GD} = -2\sqrt{2}F$

SPOSTAMENTI ASSOLUTI

$$u_F = 2/3(Fb/EA)$$

$$V_F = -6(Fb/EA)$$

----- 25 Fb/EA

 $\leftarrow \bot \rightarrow$

 $\uparrow \downarrow \downarrow$

Calcolare reazioni vincolari della struttura e delle aste. Tracciare i diagrammi delle azioni interne nelle aste. $A_{YZ} - x_{YZ} - \theta_{YZ} \quad \text{riferimento locale asta YZ con origine in Y.}$ Allungamento termico assegnato ϵ su asta BC. Calcolare lo spostamento orizzont. del nodo F

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare lo spostamento verticale del nodo F

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

 $N_{AE} =$

 $N_{GD} =$

 $N_{CG} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{AB} = N_{BC} = N_{CD} = N_{EF} = N_{FG} = N_{CD} = N_{CG} = N_{CG} = N_{CD} = N$$

$$u_F =$$

 $N_{EB} =$

$$V_F =$$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_{D}b = 48Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = 32Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FF}b = 20Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 8Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = 4Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

	$[V_D b]$	$H_{BA}b$	$H_{CB}b$	$H_{DC}b$	$H_{\text{FE}}b$	$H_{GF}b$		[Fb]	
ϕ_{AE}	6	0	0	0	0	0]		48	
ϕ_{EB}	l _	-1	0	0	0	0		32	
ϕ_{BF}	4	0	0	0 0	1	0	=	20	
ϕ_{FC}	3	0	-1	0	0	0		8	
ϕ_{CG}	2	0	0		0	1		4	
ϕ_{GD}	1	0	0	-1	0	0]		[0]	

Soluzione del sistema

$$\begin{bmatrix} V_{D}b \\ H_{BA}b \\ H_{FE}b \\ H_{CB}b \\ H_{GF}b \\ H_{DC}b \end{bmatrix} = \begin{bmatrix} Fb \\ 8 \\ 8 \\ -12 \\ 16 \\ -12 \\ 8 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = 8F$ $V_D = 8F$

$$N_{AB} = 8F \hspace{1cm} N_{BC} = 16F \hspace{1cm} N_{CD} = 8F \hspace{1cm} N_{EF} = -12F \hspace{1cm} N_{FG} = -12F \hspace{1cm} N_{AE} = -8\sqrt{2}F$$

$$N_{CD} = 8F$$

$$N_{EF} = -12F$$

$$N_{EG} = -12F$$

$$N_{FR} = 4\sqrt{2}F$$

$$N_{EB} = 4\sqrt{2}F \hspace{1cm} N_{BF} = -4\sqrt{2}F \hspace{1cm} N_{FC} = -4\sqrt{2}F \hspace{1cm} N_{CG} = 4\sqrt{2}F \hspace{1cm} N_{GD} = -8\sqrt{2}F$$

$$N_{EC} = -4\sqrt{2}$$

$$N_{CG} = 4\sqrt{2}F$$

$$N_{GD} = -8\sqrt{2}F$$

SPOSTAMENTI ASSOLUTI

$$u_F = 66(Fb/EA)$$

$$V_F = -(214+32\sqrt{2})(Fb/EA)$$

----- 600 Fb/EA

CdSdCBG05 TravaturaReticolare Esempio4

 $EA_{FF} = EA$

Es.N.047

SUPPORTO DIAGRAMMI Allievo:

Es.N.047

 $EA_{FC} = EA$

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica.

 $u_{\scriptscriptstyle E} = ?$

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Allungamento termico assegnato $\boldsymbol{\epsilon}$ su asta BC.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

@ Adolfo Zavelani Rossi, Politecnico di Milano

 $N_{AE} =$

 $N_{FG} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$= \qquad \qquad \mathsf{N}_{\mathsf{BC}} = \qquad \qquad \mathsf{N}_{\mathsf{CD}} = \qquad \qquad \mathsf{N}_{\mathsf{EF}} =$$

$$N_{EB} =$$
 $N_{BF} =$ $N_{FC} =$ $N_{CG} =$ $N_{GD} =$

$$V_F =$$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_Db = -24Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_{D}b - H_{BA}b = -16Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FE}b = -4Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 8Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = 4Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

	$[V_D b]$	$H_{BA}b$	$H_{CB}b$	$H_{DC}b$	$\boldsymbol{H}_{FE}\boldsymbol{b}$	$H_{GF}b$		[Fb]
ϕ_{AE}	6	0	0	0	0	0	=	-24
ϕ_{EB}	5	-1	0	0	0	0		-16
ϕ_{BF}	4	0	0	0	1	0		-4
ϕ_{FC}	3	0	-1	0	0	0		8
ϕ_{CG}	2	0	0	0	0	1		4
ϕ_{GD}	1	0	0	-1	0	0		[0]

Soluzione del sistema

$$\begin{bmatrix} V_{D}b \\ H_{BA}b \\ H_{FE}b \\ H_{GB}b \\ H_{GF}b \\ H_{DC}b \end{bmatrix} = \begin{bmatrix} Fb \\ -4 \\ -4 \\ 12 \\ -20 \\ 12 \\ -4 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -4F$ $V_D = -4F$

$$N_{AB} = -4F \hspace{1cm} N_{BC} = -20F \hspace{1cm} N_{CD} = -4F \hspace{1cm} N_{EF} = 12F \hspace{1cm} N_{FG} = 12F \hspace{1cm} N_{AE} = 4\sqrt{2}F$$

$$N_{BC} = -20F$$

$$N_{CD} = -4F$$

$$N_{FF} = 12F$$

$$N_{EC} = 12F$$

$$N_{AF} = 4\sqrt{2}F$$

$$N_{EB} = -8\sqrt{2}F \hspace{1cm} N_{BF} = 8\sqrt{2}F \hspace{1cm} N_{FC} = 8\sqrt{2}F \hspace{1cm} N_{CG} = -8\sqrt{2}F \hspace{1cm} N_{GD} = 4\sqrt{2}F$$

$$N_{EC} = 8\sqrt{2}$$

$$N_{CG} = -8\sqrt{2F}$$

$$N_{GD} = 4\sqrt{2}F$$

$$u_F = -46(Fb/EA)$$

$$v_F = (170+40\sqrt{2})(Fb/EA)$$

----- 600 Fb/EA

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \boxed{+} \downarrow$

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Allungamento termico assegnato $\boldsymbol{\epsilon}$ su asta BC.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

 $N_{AE} =$

REAZIONI

$$H_A = V_A =$$

$$N_{AB} = N_{BC} =$$

$$N_{AB} = N_{BC} = N_{CD} = N_{EF} = N_{FG} =$$
 $N_{EB} = N_{BF} = N_{FC} = N_{CG} = N_{CG} =$

 $N_{EF} =$

 $N_{FG} =$

 $V_D =$

$$V_F =$$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_{D}b = 16Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = 16Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FF}b = 12Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 8Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = 4Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

Soluzione del sistema

$$\begin{bmatrix} V_D b \\ H_{BA} b \\ H_{FE} b \\ H_{CB} b \\ H_{DC} b \end{bmatrix} = \begin{bmatrix} Fb \\ 8/3 \\ -8/3 \\ 4/3 \\ 4/3 \\ 0 \\ -4/3 \\ 8/3 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -8/3F$ $V_D = 8/3F$

$$N_{AB} = -8/3F$$
 $N_{BC} = 0$ $N_{CD} = 8/3F$ $N_{EF} = 4/3F$ $N_{FG} = -4/3F$ $N_{AE} = 8\sqrt{2}/3F$

$$N_{EB} = 4\sqrt{2/3}F$$
 $N_{BF} = -4\sqrt{2/3}F$ $N_{FC} = 4\sqrt{2/3}F$ $N_{CG} = -4\sqrt{2/3}F$ $N_{GD} = -8\sqrt{2/3}F$

SPOSTAMENTI ASSOLUTI

$$u_F = 2/9(Fb/EA)$$

$$V_F = -6(Fb/EA)$$

----- 30 Fb/EA

 $EA_{FF} = EA$

 $EA_{FC} = EA$

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

Svolgere l'analisi cinematica.

u₌ = ?

Riportare la soluzione su questo foglio.

Carichi e deformazioni date hanno verso efficace in disegno.

Calcolare reazioni vincolari della struttura e delle aste.

Tracciare i diagrammi delle azioni interne nelle aste.

 A_{YZ} - x_{YZ} - θ_{YZ} riferimento locale asta YZ con origine in Y.

Allungamento termico assegnato ϵ su asta BC.

Calcolare lo spostamento orizzont. del nodo F

Calcolare lo spostamento verticale del nodo F

 $N_{AE} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$N_{BC} = N_{CD} = 0$$

$$N_{EB} =$$
 $N_{BF} =$ $N_{FC} =$ $N_{CG} =$ $N_{GD} =$

 $N_{EF} =$

 $N_{FG} =$

Es.N.049

EQUAZIONI DI EQUILIBRIO

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_{D}b = 12Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = 8Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FF}b = 5Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 2Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

	$[V_D b]$	$H_{BA}b$	$H_{CB}b$	$H_{DC}b$	$H_{\text{FE}}b$	$H_{GF}b$		[Fb]	
ϕ_{AE}	6	0	0	0	0	0		12	
ϕ_{EB}	5	-1	0	0	0	0		8	
ϕ_{BF}	4	0	0	0	1	0		5	
ϕ_{FC}	3	0	-1	0	0	0	=	2	
ϕ_{CG}	2	0	0	0	0	1		1	
ϕ_{GD}	1	0	0	-1	0	0		0	

Soluzione del sistema

$$\begin{bmatrix} V_{D}b \\ H_{BA}b \\ H_{FE}b \\ H_{CB}b \\ H_{GF}b \\ H_{DC}b \end{bmatrix} = \begin{bmatrix} Fb \\ 2 \\ -3 \\ 4 \\ -3 \\ 2 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = 2F$ $V_D = 2F$

$$N_{AB} = 2F \hspace{1cm} N_{BC} = 4F \hspace{1cm} N_{CD} = 2F \hspace{1cm} N_{EF} = -3F \hspace{1cm} N_{FG} = -3F \hspace{1cm} N_{AE} = -2\sqrt{2}F$$

$$N_{BC} = 4F$$

$$N_{CD} = 2F$$

$$N_{FF} = -3F$$

$$N_{EG} = -3F$$

$$N_{1-} = -2\sqrt{2}F$$

$$N_{FB} = \sqrt{2}F$$

$$N_{EC} = -\sqrt{2}$$

$$N_{CC} = \sqrt{2}$$

$$N_{EB} = \sqrt{2}F \hspace{1cm} N_{BF} = -\sqrt{2}F \hspace{1cm} N_{FC} = -\sqrt{2}F \hspace{1cm} N_{CG} = \sqrt{2}F \hspace{1cm} N_{GD} = -2\sqrt{2}F$$

⊢ 80 Fb/EA

$$u_F = 19/3(Fb/EA)$$

$$V_F = -(23+8\sqrt{2})(Fb/EA)$$

 $EA_{EE} = EA$

u₌ = ?

 $EA_{FC} = EA$

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \downarrow \downarrow$

Tracciare i diagrammi delle azioni interne nelle aste. $A_{YZ} - X_{YZ} - \theta_{YZ} \quad \text{riferimento locale asta YZ con origine in Y.} \\ \text{Allungamento termico assegnato } \epsilon \text{ su asta BC.} \\ \text{Calcolare lo spostamento orizzont. del nodo F} \\ \text{Calcolare lo spostamento verticale del nodo F} \\$

@ Adolfo Zavelani Rossi, Politecnico di Milano

Carichi e deformazioni date hanno verso efficace in disegno. Calcolare reazioni vincolari della struttura e delle aste.

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

 $N_{AE} =$

REAZIONI

$$H_A = V_A = V_D =$$

$$= N_{BC} = N_{CD} =$$

$$N_{EB} = N_{BF} = N_{FC} = N_{CG} = N_{GD} =$$

 $N_{FG} =$

 $N_{EF} =$

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_Db = -6Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = -4Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FE}b = -Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = 2Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

	$[V_D b]$	$H_{BA}b$	$H_{CB}b$	$H_{DC}b$	$H_{FE}b$	$H_{GF}b$		[Fb]	
ϕ_{AE}	6	0	0	0	0	0]		[-6]	
ϕ_{EB}	5	-1	0	0	0	0		-4	
ϕ_{BF}	4	0	0	0	1	0		-1	
ϕ_{FC}	3	0	-1	0	0	0	=	2	
ϕ_{CG}	2	0	0	0	0	1		1	
ϕ_{GD}	1	0	0	-1	0	0]		[0]	

$$\begin{bmatrix} V_{D}b \\ H_{BA}b \\ H_{FE}b \\ H_{GB}b \\ H_{DC}b \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 3 \\ -5 \\ 3 \\ -1 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = -F$ $V_D = -F$

$$N_{AB} = -F$$
 $N_{BC} = -5F$ $N_{CD} = -F$ $N_{EF} = 3F$ $N_{FG} = 3F$ $N_{AE} = \sqrt{2}F$

$$N_{BC} = -5F$$

$$N_{CD} = -F$$

$$N_{FF} = 3F$$

$$N_{EC} = 3$$

$$N_{\Lambda E} = \sqrt{2F}$$

$$N_{EB} = -2\sqrt{2}F$$
 $N_{BF} = 2\sqrt{2}F$ $N_{FC} = 2\sqrt{2}F$ $N_{CG} = -2\sqrt{2}F$ $N_{GD} = \sqrt{2}F$

$$N = 2\sqrt{2}F$$

$$N_{EC} = 2\sqrt{21}$$

$$N_{CG} = -2\sqrt{2}F$$

$$N_{GD} = \sqrt{2F}$$

SPOSTAMENTI ASSOLUTI

$$u_F = -10(Fb/EA)$$

$$v_{\rm F} = (38+10\sqrt{2})(Fb/EA)$$

----- 120 Fb/EA

 $EA_{CD} = EA$

 $u_F = ?$

 $EA_{GD} = EA$

 $EA_{FR} = EA$

 $\leftarrow \boxed{+} \rightarrow$

 $\uparrow \boxed{+} \downarrow$

Carichi e deformazioni date hanno verso efficace in disegno. Calcolare reazioni vincolari della struttura e delle aste. Tracciare i diagrammi delle azioni interne nelle aste. $A_{YZ} - x_{YZ} - \theta_{YZ} \ riferimento locale asta YZ con origine in Y.$ Allungamento termico assegnato ϵ su asta BC. Calcolare lo spostamento orizzont. del nodo F Calcolare lo spostamento verticale del nodo F @ Adolfo Zavelani Rossi, Politecnico di Milano

Svolgere l'analisi cinematica.

Riportare la soluzione su questo foglio.

 $V_A =$

 $N_{AE} =$

REAZIONI

$$V_D =$$

$$N_{AB} =$$

$$N_{CD} =$$

$$N_{EF} =$$

 $N_{CG} =$

$$N_{FG} =$$

$$N_{EB} =$$

 $N_{BC} =$

$$N_{FC} =$$

$$N_{GD} =$$

$$u_F =$$

Es.N.051

Rotazione intorno a A: aste AE EF EB BC BF FG FC CD CG GD

 $6V_Db = -4Fb$

Rotazione intorno a E: aste EB BC BF FG FC CD CG GD

 $5V_Db - H_{BA}b = -4Fb$

Rotazione intorno a B: aste BF FG FC CD CG GD

 $4V_Db + H_{FE}b = -3Fb$

Rotazione intorno a F: aste FC CD CG GD

 $3V_Db - H_{CB}b = -2Fb$

Rotazione intorno a C: aste CG GD

 $2V_Db + H_{GF}b = -Fb$

Rotazione intorno a G: aste GD

 $V_D b - H_{DC} b = 0$

Matrice di equilibrio

		•							
	$[V_D b]$	$H_{BA}b$	$H_{CB}b$	$H_{DC}b$	$H_{FE}b$	$H_{GF}b$		[Fb]	
ϕ_{AE}	6	0	0	0	0	0		- 4	
ϕ_{EB}	_	-1	0	0	0	0		-4	
ϕ_{BF}	4	0	0	0	1	0		-3	
ϕ_{FC}	3	0	-1	0	0	0	=	-2	
ϕ_{CG}	2	0	0	0	0	1		-1	
φ _{GD}	1	0	0	-1	0	0		0	

$$\begin{bmatrix} V_{D}b \\ H_{BA}b \\ H_{FE}b \\ H_{GB}b \\ H_{GF}b \\ H_{DC}b \end{bmatrix} = \begin{bmatrix} -2/3 \\ 2/3 \\ -1/3 \\ 0 \\ 1/3 \\ -2/3 \end{bmatrix}$$

$$H_A = 0$$
 $V_A = 2/3F$ $V_D = -2/3F$

$$N_{AB} = 2/3F$$
 $N_{BC} = 0$ $N_{CD} = -2/3F$ $N_{EF} = -1/3F$ $N_{FG} = 1/3F$ $N_{AE} = -2\sqrt{2/3}F$

$$N_{EB} = -\sqrt{2/3}F$$
 $N_{BF} = \sqrt{2/3}F$ $N_{FC} = -\sqrt{2/3}F$ $N_{CG} = \sqrt{2/3}F$ $N_{GD} = 2\sqrt{2/3}F$

SPOSTAMENTI ASSOLUTI

 $u_F = -23/9(Fb/EA)$

$$v_F = 9(Fb/EA)$$

----- 25 Fb/EA

