Chapter 4

Question G.1

(G1)
$$(x_1, y_1)[(x_2, y_2)(x_3, y_3)] = (x_1, y_1)(x_2x_3, y_2y_3) = (x_1x_2x_3, y_1y_2y_3)$$

 $[(x_1, y_1)(x_2, y_2)](x_3, y_3) = (x_1x_2, y_1y_2)(x_3, y_3) = (x_1x_2x_3, y_1y_2y_3)$
 $(x_1, y_1)[(x_2, y_2)(x_3, y_3)] = [(x_1, y_1)(x_2, y_2)](x_3, y_3)$
(G2) (e_G, e_H) is the identity element. So GXH is a group $(e_G, e_H)(x, y) = (x, y), (x, y)(e_G, e_H) = (x, y)$
(G3) Inverse of (a, b) is (a^{-1}, b^{-1})

Question G.2

Question G.3

$$(x,y) \in G \times H, (x',y') \in G \times H$$

 $(x,y)(x',y') = (xx',yy').$ Since $x,x' \in G$ and $y,y' \in H$,
 $(xx',yy') = (x'x,y'y) = (x',y')(x,y)$

Chapter 5

Question D.3

Let $a, b \in C$, ax = xa and bx = xb. Then axbx = xaxb, then xabx = xxab. Multiply both sides by x^{-1} , we get abx = xab, also (ab)x = x(ab). Thus $ab \in C$. C is closed under multiplication.

Let $a \in C$, ax = xa. Multiply both sides a^{-1} on the left, $a^{-1}ax = a^{-1}xa$, then $x = a^{-1}xa$. Multiply both sides a^{-1} on the right, $xa^{-1} = a^{-1}x$. a^{-1} commutes with x. $a^{-1} \in C$. Thus C is closed under inverses. A

Question E.5

7+7=14 then $14 \in \mathbb{Z}$, then $-14 \in \mathbb{Z}$, -14+5+5+5=1 then $1 \in \mathbb{Z}$, also $-1 \in \mathbb{Z}$. Then if $a \in \mathbb{Z}$, $a-1 \in \mathbb{Z}$, $a+1 \in \mathbb{Z}$ Thus generates the group.

Question E.6

12(1,1) = (0,0)

Start with (1,1), (1,1) + (1,1) = (0,2)(1,1) + (1,1) + (1,1) = (1,0)(1,1) + (1,1) + (1,1) + (1,1) = (0,1)(1,1) + (1,1) + (1,1) + (1,1) + (1,1) = (1,2)(1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) = (0,0) TS it Cyclic? Start with (1,1), (1,1) + (1,1) = (2,2)(1,1) + (1,1) + (1,1) = (0,3)(1,1) + (1,1) + (1,1) + (1,1) = (1,0)(1,1) + (1,1) + (1,1) + (1,1) + (1,1) = (2,1)(1,1) + (1,1) + (1,1) + (1,1) + (1,1) + (1,1) = (0,2)7(1,1) = (1,3)8(1,1) = (2,0)~ is it colic?? 9(1,1)=(0,1)10(1,1) = (1,2)11(1,1) = (2,3)

: All 6 elements are generated by (1,1) : (yelic

Show and element generated all, element

, Z3 × Z4

Consider (1,1)

$$\begin{aligned} & (1,1) = (1,1) \\ & 2(1,1) = (1,1) + (1,1) = (2,2) \\ & 3(1,1) = (1,1) + -- (1,1) = (0,3) \\ & 4(1,1) = (1,1) + -- (1,1) = (1,0) \\ & 5(1,1) = 5 \text{ times} = (2,1) \end{aligned}$$

$$5(11) = 5 \text{ times} = (211)$$

 $6(11) = 1 = (0,2)$
 $7(1,1) = 1 = (1,3)$

generated by (111)

-'- (yclic

F2)
$$G = \{e_1 a_1 b_1 b^2, b^3, ab, ab^2, ab^3\}$$

 $G^2 = \{e_1 b^4 = e_1, ba = ab^3\}$

$a^2 = e$, $b^1 = e$, $ba = ab$									
	le	a	Ь	b 2	b ³	ab	ab ²	ab3	
C	e	a	Ь	b2	b^3	ob	ab^2	ob3	
a	q	ate	ab	ab2	ab3	Ь	b ²	b3.	
h	1	ab^3	b ²	b ³	e	a	ab	ab2	
$\frac{D}{1.2}$	b	ab2	b ³	e	b	ab3	a	ab	
$\frac{b}{b^3}$	13	ab	e	ď. –	b ²	ab2	ab3	q	7
ab	ab	b3 1	ab ²		a	e	Ь	b ²	
ab ²		b ²	ab^3	a	ab	b ³	e	b	
ah3	03	Ь	a	ab	ab2	h2	h3	P	_

Question F.2

*	e	\boldsymbol{a}	b	b^2	b^3	ab	ab^2	ab^3
e	e a b b^2 ab ab^2 ab^3	a	b	b^2	b^3	ab	ab^2	ab^3
\boldsymbol{a}	a	e	ab	ab^2	ab^3	b	b^2	b^3
b	b	ab^3	b^2	b^3	e	a	ab	ab^2
b^2	b^2	ab^2	b^3	e	b	ab^3	a	ab
b^3	b^3	ab	e	b	b^2	ab^2	ab^3	\boldsymbol{a}
ab	ab	b^3	ab^2	ab^3	a	e	b	b^2
ab^2	ab^2	b^2	ab^3	a	ab	b^3	e	b
ab^3	ab^3	b	\boldsymbol{a}	ab	ab^2	b^2	b^3	e

419

Question F.2

*	e	a	b	c	ab	bc	ac	abc
e a b c ab bc ac abc	e	a	b	c	ab	bc	ac	abc
a	a	e	ab	ac	b	abc	c	bc
b	b	ab	e	bc	a	c	abc	ac
c	c	ac	bc	e	abc	b	a	ab
ab	ab	b	a	abc	e	ac	bc	c
bc	bc	abc	c	b	ac	e	ab	a
ac	ac	c	abc	a	bc	ab	e	b
abc	abc	bc	ac	ab	c	\boldsymbol{a}	b	e

Chapter 6

Question B.5

 $f: \mathbb{Z} \to E$ defined by $f(x) = 2 \cdot x$

uestion C.5

$$f(x) = x^{-1}$$

f is injective,

Proof: Suppose f(a) = f(b), i.e. $a^{-1} = b^{-1}$, by uniqueness of inverses, $a = b \blacksquare f$ is surjective,

Proof: Take any element $y \in G$, then $y = (y^{-1})^{-1} = f(y^{-1})$. Thus every y is equal to f(x) for $x = y^{-1}$. \blacksquare Only element has inverse and every element has inverse.

Question D.5

$$f \circ g = \begin{pmatrix} a & b & c & d \\ c & a & c & a \end{pmatrix}, g \circ f = \begin{pmatrix} a & b & c & d \\ b & b & b & b \end{pmatrix}$$