

UNIVERSITY OF REGINA

DEEP CONVOLUTIONAL SUM-PRODUCT NETWORKS

CORY J. BUTZ

JHONATAN S. **OLIVEIRA**

ANDRÉ E. **DOS SANTOS**

ANDRÉ L. TEIXEIRA

OUTLINE

GENERATIVE MODELS

IN DEEP LEARNING

SUM-PRODUCT NETWORKS (SPNs)

CONVOLUTIONAL
NEURAL NETWORKS
AS SPNs

CONVOLUTIONAL SPNs (CSPNs)

OUTLINE

DEEP CONVOLUTIONAL SPNs (DCSPNs)

STATE-OF-THE-ART RESULTS

AND A FEW NICE SURPRISES

CONCLUSIONS

GENERATIVE MODELS IN DEEP LEARNING

GENERATIVE MODELS ARE OF CURRENT INTEREST

NADE

Larochelle and Murray 2011

VARIATIONAL AUTOENCODERS

Kingma and Welling 2014

GANs

Goodfellow et al. 2014

PIXEL RNN

Oord, Kalchbrenner, and Kavukcuoglu 2016

SUM-PRODUCT NETWORKS

GENERATIVE DEEP LEARNING MODEL

WHEN COMPLETE AND DECOMPOSABLE

LIMITED ATTENTION

RECEIVED FROM THE DEEP LEARNING COMMUNITY

Peharz et al.

CONVOLUTIONAL NEURAL NETWORKS

CONVOLUTIONAL LAYERS

NETWORK PARAMETERS ARE FILTERS

POOLING LAYERS

USES SLIDING WINDOWS

CNNs AS SPNs

CONVOLUTIONAL LAYERS

- FILTERS OF CERTAIN SIZES
- MAINTAINS COMPLETENESS

POOLING LAYERS

- NON-OVERLAPPING WINDOWS
- MAINTAINS **DECOMPOSABILITY**

C*NVOLUTIONAL SPNs

A CHAIN STRUCTURE

CONVOLUTIONAL LAYER

LAYERS (TENSORS) CAN BE AUGMENTED

WHILE MAINTAINING

COMPLETENESS AND DECOMPOSABILITY

CREATING DEEPER STRUCTURES

DEEP CONVOLUTIONAL SPNs

A RICH DAG OF CONVOLUTIONAL AND SUM-POOLING LAYERS

A WINNING STRUCTURE

VECTORIZED MPE

STATE-OF-THE-ART RESULTS IN OLIVETTI FACE

STATE-OF-THE-ART RESULTS IN OLIVETTI FACE

STATE-OF-THE-ART RESULTS IN CALTECH

LEFT COMPLETION	FACE	1815	1657	1334	1178	
	DOLPHIN	3096		4096	2002	
COMPLETION	HELICOPTER	2749	- ON-	3925	1702	
воттом	FACE	1924	1517	1046	1149	
	DOLPHIN	2767	-	4016	2102	
COMPLETION	HELICOPTER	3064	-	3811	2103	
		P&D	D&V	DCGAN	DCSPN	

Dennis and

Ventura

2012

Yeh

et al.

2017

Butz

et al.

2019

Poon and

Domingos

2011

LEFT COMPLETION BOTTOM COMPLETION

ORIGINAL

DCSPN

P&D

GAN

DCSPNs with differentiable MPE

with GANs

with variability

performance on a dataset with 65 images

LEARNING DCSPN WITH DIFFERENTIABLE MPE

MOTIVATED BY FUTURE WORK SUGGESTED IN

(Vergari et al., AAAI 2018)

LEARN DCSPNs USING DIFFERENTIABLE MPE

$$\min_{G} \max_{D} \mathbb{E}[\log D(\mathbf{x})] + \mathbb{E}[\log(1 - D(G(\mathbf{z})))]$$

DCSPNs yields an MSE score of 651

More promising than simply a low MSE score

RELATIONSHIP WITH GANS

IMAGE SAMPLING

Simple modification in MPE Algorithm

DCSPN sampled images exhibit variability

GOOD PERFORMANCE ON A SMALL DATASET

ORIGINAL

DCSPN

P&D

GAN

DCSPNs left-complete well on a small dataset

Caltech Dolphin contain 65 images

ANALYSIS

SMALL HORIZONTAL AND VERTICAL SUM-POOLING WINDOW SIZES CAN

- yield **deeper** structures
- leverage **local structure** in the image data

ALTERNATING SUM-POOLING WINDOW SIZES CAN

- serve as a **regularization** technique
- alleviate vanishing gradient

TWO FILTER SIZE OPTIONS ALLOWS FOR

controlling trade-off between quality and size

FUTURE WORK

CONCLUSION

WE ESTABLISH WHEN
SUBCLASSES OF CNNs
DEFINE SPNs

DCSPNs ARE CNNs WHICH ALSO
CAN TAKE ADVANTAGE OF KNOWN
TECHNIQUES IN PROBABILISTIC
GRAPHICAL MODELS

SEVERAL STATE-OF-THE-ART MSE SCORES IN IMAGE COMPLETION

AND NICE SURPRISES INCLUDING
VARIABILITY IN IMAGE SAMPLING
AND AN INTRIGUING
RELATIONSHIP WITH GAN

UNIVERSITY OF REGINA

DEEP CONVOLUTIONAL SUM-PRODUCT NETWORKS

CORY J. BUTZ

JHONATAN S. **OLIVEIRA**

ANDRÉ E. **DOS SANTOS**

ANDRÉ L. TEIXEIRA

