Facebook Marketplace Data Analysis

Assignment Summary & Insights

Dataset Overview

- Facebook Live Sellers data from Thailand
- Data includes reactions, comments, shares, types of posts, etc.

CONCEPT OF CORRELATION AND STEPS TO FIND CORRELATION MATRICES

- First, I converted the 'Status Published' column from text format to datetime format and created separate columns for date, hour, and year using methods from the datetime library
- Next, I removed all unnecessary and null columns to make the dataset more concise and suitable for modeling and analysis. I then checked whether any null values were still present in the remaining columns. Then correlation matrix between different columns is shown in the following slides.

Following this, a correlation matrix between different columns is presented in the subsequent slides.

The concept behind the correlation values is as follows: a correlation value between 0 and 1 indicates a positive correlation, a value between -1 and 0 indicates a negative correlation, and a value of 0 indicates no correlation.

• The correlation between time of upload (status_published) and the num_reaction: 0.017016 (It reprents small positive correlation).

Hours num_reactions

Hours 1.000000 0.017016 num_reactions 0.017016 1.000000

• correlation between the number of reactions (num_reactions) and other engagement metrics such as comments (num_comments) and shares (num_shares) are:

	num_reactions	num_comments	num_shares	num_likes	num_loves	num_wows	num_hahas	num_sads	num_angrys	year	Hours
num_reactions	1.000000	0.150843	0.250723	0.994923	0.305003	0.267752	0.176028	0.075138	0.124326	-0.042703	0.017016
num_comments	0.150843	1.000000	0.640637	0.101687	0.521223	0.162394	0.325048	0.236453	0.225184	0.132399	0.002515
num_shares	0.250723	0.640637	1.000000	0.172492	0.820000	0.407628	0.399826	0.199970	0.312513	0.189782	-0.050917
num_likes	0.994923	0.101687	0.172492	1.000000	0.209308	0.207800	0.120784	0.052169	0.087431	-0.065528	0.021375
num_loves	0.305003	0.521223	0.820000	0.209308	1.000000	0.508798	0.507830	0.207600	0.371001	0.204702	-0.042705
num_wows	0.267752	0.162394	0.407628	0.207800	0.508798	1.000000	0.287756	0.086503	0.183087	0.101530	-0.002816
num_hahas	0.176028	0.325048	0.399826	0.120784	0.507830	0.287756	1.000000	0.141421	0.211910	0.113236	-0.006964
num_sads	0.075138	0.236453	0.199970	0.052169	0.207600	0.086503	0.141421	1.000000	0.142072	0.067446	0.020918
num_angrys	0.124326	0.225184	0.312513	0.087431	0.371001	0.183087	0.211910	0.142072	1.000000	0.100654	-0.012327
year	-0.042703	0.132399	0.189782	-0.065528	0.204702	0.101530	0.113236	0.067446	0.100654	1.000000	-0.030198
Hours	0.017016	0.002515	-0.050917	0.021375	-0.042705	-0.002816	-0.006964	0.020918	-0.012327	-0.030198	1.000000

HEATMAP OF CORRELATION MATRICES

Correlation value close to I represents higher positive correlation. The diagonal value of the matrix always I because of same column in x and y axis.

And the colour bar represents the weightage of the correlation in the heatmap representation.

Count of different types of post and average of the required columns

The count of different types of posts in the dataset are:

	count
status_type	
photo	4288
video	2334
status	365

The average value of num_reaction, num_comments, num_shares for each post type are
 230.11716312056737, 224.3560283687943 and
 40.022553191489365 respectively.

DATA PREPROCESSING FOR THE K MEANS CLUSTERING MODEL

- Since categorical values cannot be directly used in machine learning models, all categorical
 columns must be converted into numerical representations that the models can interpret.
 To achieve this, I used the OneHotEncoder from the sklearn library to transfer the status
 type categorical variable to numerical variable.
- Next, I applied feature scaling using the MinMaxScaler class, which normalizes the feature values to a common scale. This step is crucial to eliminate bias caused by features with larger ranges dominating the learning process.
- Important: Do not include the columns generated by OneHotEncoder in the feature scaling process."

Steps to find elbow curve

- The Elbow Method is used to determine the optimal number of clusters (K) for clustering analysis. It relies on the Within-Cluster Sum of Squares (WCSS), which measures the compactness of the clusters. A lower WCSS value indicates more accurate and well-defined clustering.
 Choosing the right value of K is important
- If K is too small, distinct clusters may be grouped together, leading to poor classification.
- If K is too large, it may overfit the data by assigning each point to its own cluster, increasing computational cost unnecessarily.
 - To identify the optimal K, I ran a loop for K ranging from I to I0. Based on the WCSS vs. number of clusters graph, the 'elbow point' suggests that K = 5 is the most suitable number of clusters for this dataset

RESULTS OF CLUSTERING AND GRAPHICAL REPRESENTATION

- After selecting K = 5, the dataset was successfully classified into five distinct clusters based on the selected features.
- I used random_state = 42 to ensure that the clustering process produces consistent results each time it is run, while still introducing randomization to avoid any bias. The cluster labels were stored in a new column named y_means.
- To visualize the clustering results, I plotted three different curves using selected feature columns. These visualizations are shown in the following slide.

Fig. I)num_loves vs num_wows
Fig. 2)num_reactions vs num_comments
Fig .3) num shares vs num_likes

