What Is Claimed Is:

1	1. A method for quantifying a number of identical consecutive digits		
2	starting from a fixed position within a string of n digits, comprising:		
3	converting the string of n digits into a thermometer code, wherein the		
4	thermometer code uses m bits to represent a string of m identical consecutive		
5	digits within the string of <i>n</i> digits;		
6	converting the thermometer code into a one-hot code in which only one bit		
7	has a logical one value; and		
8	converting the one-hot code into a logarithmic code representing the		
9	number of identical consecutive digits.		
1	2. The method of claim 1, wherein converting the string of digits into		
2	the thermometer code involves passing the string of digits through $\lceil \log_2 n \rceil$ layers		
3	of AND gates, wherein a first layer of AND gates produces thermometer codes fo		
4	sub-strings of length two, and wherein each consecutive layer produces		
5	thermometer codes for sub-strings of length $k+1$ to $2k$ by ANDing together		
6	thermometer codes for sub-strings of length 1 to k from preceding layers.		
1	3. The method of claim 1,		
2	wherein converting the thermometer code into the one-hot code involves		
3	passing the thermometer code through a single layer of two-input comparator		
4	gates;		
5	wherein a given comparator gate produces a logical one value when a first		
6	input of the comparator gate receives a logical one value and a second input		
7	receives a logical zero value; and		

1

1

2

8	wherein a comparator gate is coupled between each consecutive pair of
9	thermometer code bits, so that only one comparator gate, covering a boundary
10	between consecutive logical ones and consecutive logical zeros, produces a
11	logical one value.

t i f

- The method of claim 1, wherein converting the one-hot code into 1 4. the logarithmic code involves passing the one-hot code through $\lceil \log_2 n \rceil - 1$ layers 2 of OR gates, wherein a given bit in the logarithmic code is produced by ORing 3 together bits of the one-hot code that cause the given bit in the logarithmic code to 4 5 be asserted.
- The method of claim 1, wherein the string of n digits is a string of 5. 1 2 n binary digits.
- The method of claim 1, wherein the fixed position in the string of n6. digits is the beginning of the string, so that the number of leading identical 2 3 consecutive digits is quantified.
- The method of claim 6, wherein the number of leading zero values 7. 1 2 is quantified.
 - 8. The method of claim 7, further comprising using the logarithmic code to normalize a result of a floating-point arithmetic operation.
- The method of claim 1, further comprising using the logarithmic 9. 1 code to encode or decode a stream of data, wherein the logarithmic code 2 represents a run-length of identical consecutive digits within the stream of data. 3

1	10. The method of claim 1, wherein each digit in the string of n digits			
2	includes one or more binary digits.			
1	11. An apparatus that quantifies a number of identical consecutive			
2	digits starting from a fixed position within a string of n digits, comprising:			
3	a thermometer code circuit that converts the string of n digits into a			
4	thermometer code, wherein the thermometer code uses m bits to represent a string			
5	of m identical consecutive digits within the string of n digits;			
6	a one-hot code circuit that converts the thermometer code into a one-hot			
7	code in which only one bit has a logical one value; and			
8	a logarithmic code circuit that converts the one-hot code into a logarithmic			
9	code representing the number of identical consecutive digits.			
1	12. The apparatus of claim 11, wherein the thermometer code circuit			
2	includes $\lceil \log_2 n \rceil$ layers of AND gates, wherein a first layer of AND gates produces			
3	thermometer codes for sub-strings of length two, and wherein each consecutive			
4	layer produces thermometer codes for sub-strings of length $k+1$ to $2k$ by ANDing			
5	together thermometer codes for sub-strings of length 1 to k from preceding layers.			
1	13. The apparatus of claim 11,			
2	wherein the one-hot-code circuit includes a single layer of two-input			
3	comparator gates;			
4	wherein a given comparator gate produces a logical one value when a first			
5	input of the comparator gate receives a logical one value and a second input			

6

receives a logical zero value; and

7	wherein a comparator gate is coupled between each consecutive pair of
8	thermometer code bits, so that only one comparator gate, covering a boundary
9	between consecutive logical ones and consecutive logical zeros, produces a
10	logical one value.

- 1 14. The apparatus of claim 11, wherein the logarithmic code circuit
 2 includes $\lceil \log_2 n \rceil$ 1 layers of OR gates, wherein a given bit in the logarithmic code
 3 is produced by ORing together bits of the one-hot code that cause the given bit in
 4 the logarithmic code to be asserted.
- 1 15. The apparatus of claim 11, wherein the string of *n* digits is a string 2 of *n* binary digits.
- 1 16. The apparatus of claim 11, wherein the fixed position in the string of *n* digits is the beginning of the string, so that the number of leading identical consecutive digits is quantified.
- 1 17. The apparatus of claim 16, wherein the apparatus quantifies the number of leading zero values.
- 1 18. The apparatus of claim 17, further comprising a floating-point 2 arithmetic unit that is configured to use the logarithmic code to normalize a result 3 of a floating-point arithmetic operation.
- 1 19. The apparatus of claim 11, further comprising an encoder that is configured to use the logarithmic code to encode or decode a stream of data,

1	wherein the logarithmic code represents a run-length of identical consecutive				
2	digits within the stream of data.				
1	20.	The apparatus of claim 11, wherein each digit in the string of n			
2	digits include	es one or more binary digits.			
1	21.	A computer system including a circuit that quantifies a number of			
2	identical consecutive digits, comprising:				
3	a processor;				
4	a memory;				
5	a quantifying circuit that quantifies the number of identical consecutive				
6	digits starting from a fixed position within a string of n digits, wherein the				
7	quantifying circuit includes,				
8		a thermometer code circuit that converts the string of n			
9		digits into a thermometer code, wherein the thermometer code uses			
10		m bits to represent a string of m identical consecutive digits within			
11		the string of n digits;			
12		a one-hot code circuit that converts the thermometer code			
13		into a one-hot code in which only one bit has a logical one value,			
14		and			
15		a logarithmic code circuit that converts the one-hot code			
16		into a logarithmic code representing the number of identical			
17		consecutive digits.			
1	22.	The computer system of claim 21, further comprising:			
2	a flo	ating-point arithmetic unit of within the processor;			

3	wherein the quantifying circuit is located within the floating-point		
4	arithmetic unit and is configured to normalize results of floating-point operations		
1	23. The computer system of claim 21,		
2	wherein the computer system includes an encoding circuit for encoding or		
3	decoding streams of data; and		
4	wherein the quantifying circuit is located within the encoding circuit and is		
5	configured to quantify run-lengths of identical consecutive digits for the encoding		
6	circuit.		