2N7000/2N7002/NDF7000A/NDS7002A N-Channel Enhancement Mode Field Effect Transiston

2N7000/2N7002/NDF7000A/NDS7002A N-Channel Enhancement Mode Field Effect Transistor

General Description

These n-channel enhancement mode field effect transistors are produced using National's very high cell density third generation DMOS technology. These products have been designed to minimize on-state resistance provide rugged and reliable performance and fast switching. They can be used, with a minimum of effort, in most applications requiring up to 400 mA DC and can deliver pulsed currents up to 2A. This product is particularly suited to low voltage, low current applications, such as small servo motor controls, power MOSFET gate drivers, and other switching applications

Features

- Efficient high density cell design approaching (3 million/in²)
- Voltage controlled small signal switch
- Rugged
- High saturation current
- Low R_{DS} (ON)

Absolute Maximum Ratings

Symbol	Parameter	2N7000	2N7002	NDF7000A	NDS7002A	Units
V_{DSS}	Drain-Source Voltage	60				V
V_{DGR}	Drain-Gate Voltage (RGS \leq 1 M Ω)	60				V
V_{GSS}	Gate-Source Voltage	±40				V
I _D	Drain Current—Continuous	200	115	400	280	mA
	—Pulsed	500	800	2000	1500	mA
P_{D}	Total Power Dissipation @ T _A = 25°C	400	200	625	300	mW
	Derating above 25°C	3.2	1.6	5	2.4	mW/°C
T_J, T_{STG}	Operating and Storage Temperature Range	-55 to 150		-65	°C	
TL	Maximum Lead Temperature for Soldering Purposes, 1/16* from Case for 10 Seconds	300				°C

2N7000

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
OFF CHARACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 10 \mu A$	60			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48V, V _{GS} = 0V			1	μΑ	
		$T_{C} = 125^{\circ}C$			1	mA	
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = -15V, V_{DS} = 0V$			-10	nA	
ON CHARA	CTERISTICS*						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1$ mA	0.8	2.1	3	V	
r _{DS(ON)}	Static Drain-Source	V _{GS} = 10V, I _D = 0.5A		1.2	5	Ω	
	On-Resistance	$T_{C} = 125^{\circ}C$		1.9	9	Ω	
V _{DS(ON)}	Drain-Source On-Voltage	$V_{GS} = 10V, I_D = 0.5A$		0.6	2.5	V	
		$V_{GS} = 4.5V, I_D = 75 \text{ mA}$		0.14	0.4	V	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5V, V_{DS} = 10V$	75	600		mA	
9FS	Forward Transconductance	$V_{DS} = 10V, I_{D} = 200 \text{ mA}$	100	320		ms	
DYNAMIC (CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0 \text{ MHz}$		20	60	pF	
C _{oss}	Output Capacitance			11	25	pF	
C _{rss}	Reverse Transfer Capacitance			4	5	pF	
SWITCHING	G CHARACTERISTICS*						
t _{on}	Turn-On Time	$V_{DD} = 15V, I_D = 0.5V, V_{GS} = 10V,$			10	ns	
t _{off}	Turn-Off Time	$R_{G} = 25\Omega, R_{L} = 25\Omega$			10	ns	
BODY-DRA	IN DIODE RATINGS						
Is	Maximum Continuous Drain-Source Diode Forward Current				200	mA	
I _{SM*}	Maximum Pulsed Drain-Source Diode Forward Current				500	mA	
V _{SD*}	Drain-Source Diode Forward Voltage	$V_{GS} = 0V$, $I_S = 200 \text{ mA}$			1.5	V	
THERMAL	CHARACTERISTICS						
$R_{\theta JA}$	Thermal Resistance, Junction to Ambie	ent			312.5	°C/W	
$R_{\theta JC}$	Thermal Resistance, Junction to Case				40	°C/W	

^{*}Pulse Test: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2.0%.

2N7002

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1	1 500 100 -100 2.5	V μA μA nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		500 100 -100	μA μA nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		500 100 -100	μA nA
$\begin{array}{ c c c c c }\hline I_{GSSF} & Gate-Body Leakage, Forward & V_{GS} = 20V \\ \hline I_{GSSR} & Gate-Body Leakage, Reverse & V_{GS} = -20V \\ \hline \textbf{ON CHARACTERISTICS*} \\ \hline V_{GS(th)} & Gate Threshold Voltage & V_{DS} = V_{GS}, I_D = 250 \mu A & 1 \\ \hline r_{DS(ON)} & Static Drain-Source & V_{GS} = 10V, I_D = 0.5A \\ \hline On-Resistance & V_{GS} = 5V, I_D = 50 \text{mA} \\ \hline \end{array}$		100 -100	nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T	nA
$\begin{array}{c ccccc} V_{GS(th)} & \text{Gate Threshold Voltage} & V_{DS} = V_{GS}, I_D = 250 \ \mu\text{A} & 1 \\ \hline \\ r_{DS(ON)} & \text{Static Drain-Source} & V_{GS} = 10 \text{V}, I_D = 0.5 \text{A} \\ \hline \\ On-Resistance & T_C = 125^{\circ}\text{C} \\ \hline \\ V_{GS} = 5 \text{V}, I_D = 50 \ \text{mA} \\ \hline \end{array}$		2.5	
$ \begin{array}{c c} r_{DS(ON)} & \text{Static Drain-Source} \\ \text{On-Resistance} & V_{GS} = 10 \text{V}, I_D = 0.5 \text{A} \\ \hline & T_C = 125^{\circ}\text{C} \\ \hline & V_{GS} = 5 \text{V}, I_D = 50 \text{ mA} \\ \end{array} $		2.5	
On-Resistance	1.2		V
$V_{GS} = 5V, I_D = 50 \text{ mA}$		7.5	Ω
	2	13.5	Ω
	1.7	7.5	Ω
$T_{\rm C} = 125^{\circ}{\rm C}$	2.8	13.5	Ω
$V_{DS(ON)}$ Drain-Source On-Voltage $V_{GS} = 10V, I_D = 0.5A$	0.6	3.75	V
$V_{GS} = 5V$, $I_D = 50$ mA	0.09	1.5	V
$I_{D(ON)}$ On-State Drain Current $V_{GS} = 10V, V_{DS} \ge 2 V_{DS(ON)}$ 500	2700		mA
	320		ms
DYNAMIC CHARACTERISTICS			
C _{iss} Input Capacitance V _{DS} = 25V, V _{GS} = 0V, f = 1.0 MHz	20	50	pF
C _{oss} Output Capacitance	11	25	pF
C _{rss} Reverse Transfer Capacitance	4	5	pF
SWITCHING CHARACTERISTICS*			
t _{ON} Turn-On Time V _{DD} = 30V, I _D = 200 mA, V _{GS} = 10V,		20	ns
t_{OFF} Turn-Off Time $R_{GEN} = 25\Omega, R_L = 150\Omega$	T	20	ns
BODY-DRAIN DIODE RATINGS			
Is Maximum Continuous Drain-Source Diode Forward Current		115	mA
I _{SM} Maximum Pulsed Drain-Source Diode Forward Current		800	mA
V _{SD} * Drain-Source Diode Forward Voltage V _{GS} = 0V, I _S = 115 mA	<u>T</u>	1.5	V
THERMAL CHARACTERISTICS			
R _{θJA} Thermal Resistance, Junction to Ambient		625	°C/W

*Pulse Test: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2.0%.

NDF7000A

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions		Тур	Max	Units
OFF CHAR	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 10 \mu A$	60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48V, V _{GS} = 0V			1	μΑ
		$T_{C} = 125^{\circ}C$			1	mA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = -15V$			-10	nA
ON CHARA	CTERISTICS*					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.8	2.1	3	V
r _{DS(ON)}	Static Drain-Source	V _{GS} = 10V, I _D = 0.5A		1.2	2	Ω
	On-Resistance	$T_{C} = 125^{\circ}C$		2	3.5	Ω
V _{DS(ON)}	Drain-Source On-Voltage	$V_{GS} = 10V, I_D = 500 \text{ mA}$ $V_{GS} = 4.5V, I_D = 75 \text{ mA}$		0.6	1	٧
				0.14	0.225	V
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5V, V_{DS} \ge 2 V_{DS(ON)}$		600		mA
9FS	Forward Transconductance	$V_{DS} \ge 2 V_{DS(ON)}$, $I_D = 200 \text{ mA}$		320		ms
DYNAMIC (CHARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0 MHz$		20	60	pF
Coss	Output Capacitance			11	25	pF
C _{rss}	Reverse Transfer Capacitance			4	5	pF
SWITCHING	CHARACTERISTICS*					
t _{on}	Turn-On Time	$V_{DD} = 15V$, $I_D = 500$ mA, $V_{GS} = 10V$,			10	ns
t _{off}	Turn-Off Time	$R_G = 25\Omega, R_L = 25\Omega$			10	ns
BODY-DRA	IN DIODE RATINGS					
Is	Maximum Continuous Drain-Source Diode Forward Current				400	mA
I _{SM}	Maximum Pulsed Drain-Source Diode F	orward Current			2000	mA
V _{SD} *	Drain-Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 400 \text{ mA}$		0.88	1.2	V
THERMAL	CHARACTERISTICS					
$R_{\theta JA}$	Thermal Resistance, Junction to Ambie	ent			200	°C/W

^{*}Pulse Test: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2.0%.

NDS7002A

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAR	ACTERISTICS			•	•	•	•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 10 \mu A$		60			٧
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 60V, V_{GS} = 0V$				1	μΑ
			T _C = 125°C			500	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 20V$				100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20V$				-100	nA
ON CHARA	ACTERISTICS*						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		1	2.1	2.5	٧
r _{DS(ON)}	Static Drain-Source	$V_{GS} = 10V, I_D = 0.5A$			1.2	2	Ω
	On-Resistance		T _C = 125°C		2	3.5	Ω
		$V_{GS} = 5V$, $I_D = 50$ mA			1.7	3	Ω
			$T_C = 125^{\circ}C$		2.8	5	Ω
V _{DS(ON)}	Drain-Source On-Voltage	$V_{GS} = 10V, I_D = 500 \text{ mA}$			0.6	1	٧
		$V_{GS} = 5.0V, I_D = 50 \text{ mA}$			0.09	0.15	٧
I _{D(ON)}	On-State Drain Current	$V_{GS} = 10V, V_{DS} \ge 2 V_{DS(ON)}$		500	2700		mA
9FS	Forward Transconductance	$V_{DS} \ge 2 V_{DS(ON)}$, $I_D = 200 \text{ mA}$		80	320		ms
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V, f = 1.0 \text{ MHz}$			20	50	pF
Coss	Output Capacitance				11	25	pF
C _{rss}	Reverse Transfer Capacitance				4	5	pF
SWITCHIN	G CHARACTERISTICS*						
toN	Turn-On Time	$V_{DD}=30V,$ $I_{D}=200$ mA, $V_{GS}=10V,$ $R_{G}=25\Omega,$ $R_{L}=150\Omega$				20	ns
t _{OFF}	Turn-Off Time					20	ns
BODY-DRA	AIN DIODE RATINGS						
IS	Maximum Continuous Drain-Source Diode Forward Current				280	mA	
I _{SM}	Maximum Pulsed Drain-Source Diode	Orain-Source Diode Forward Current				1500	mA
V _{SD} *	Drain-Source Diode Forward Voltage	$V_{GS} = 0V$, $I_{S} = 400 \text{ mA}$			0.88	1.2	٧
THERMAL	CHARACTERISTICS						
$R_{ heta JA}$	Thermal Resistance, Junction to Ambi	ent				417	°C/W

*Pulse Test: Pulse Width $\,\leq\,$ 300 $\,\mu\text{s},$ Duty Cycle $\,\leq\,$ 2.0%.

TO-92

(3.429-3.683)

TL/G/11378-20

10°NOM 10°NOM

Physical Dimensions inches (millimeters) (Continued)

Note 1: Meets all JEDEC dimensional requirements for TO-236AB.

Note 2: Controlling dimension: millimeters

Note 3: Available also in TO-236AA. Contact your local National Semiconductor representative for delivery and ordering information.

Note 4: Tape and reel is the standard packaging method for TO-236.

TO-236AB (SOT-23) (Notes 3, 4)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

TL/G/11378-21