mimclib

Abdul-Lateef Haji-Ali

King Abdullah University of Science and Technology (KAUST), Saudi Arabia. stochastic_numerics.kaust.edu.sa

October 19, 2016

Outline

Library Overview

Primer

Problem

Monte Carlo (MC)

Multilevel Monte Carlo (MLMC)

Installation

GBM Example

Vision (the ambitious version)

- Provide an easy to use, customizable and extendable open source library for UQ problems, both forward and inverse.
- Multilevel and Multi-index versions of Monte Carlo, Quasi Monte Carlo, Stochastic collocation, Least square projection among others.
- Support parallel computation whenever possible.
- Provide easy to use storage facility.
- Provide easy to customize plotting facility (for common plots).
- Provide easy to run test cases.
- Use Python for easier implementation of most parts of code and use object code (C++ or FORTRAN) for computationally expensive parts.

What has been done, mimclib 0.2.0.dev0

- Multilevel and Multi-index versions of Monte Carlo.
- Provide easy to use storage facility in MySQL.
- Provide easy to customize plotting facility (for common plots).
- Provide easy to run test cases.
- Documentation is still in progress (these slides are part of it).
- Interface is written with the other features in mind.

Why?

Python

- Open source. No need for licensing
- An easy to use programming language. Familiar to MATLAB users (Especially with numpy and matplotlib)
- Can call object code for computationally expensive parts, e.g., samplers.

MySQL

- Relatively easy data modifications and querying.
- Allows asynchronous access which is ideal for parallel computation.
- Allows remote access.
- Optimal storage and data querying.

The central question

Given an \mathbb{R}^n -valued random variable, \boldsymbol{X} with PDF $f(\boldsymbol{x}): \mathbb{R}^n \to [0,\infty)$ and a function, $g: \mathbb{R}^n \to \mathbb{R}$, assume that we are interested in computing the quantity

$$\mathrm{E}[g(\boldsymbol{X})] = \int_{\mathbb{R}^n} g(\boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}.$$

The central question

Given an \mathbb{R}^n -valued random variable, X with PDF $f(x): \mathbb{R}^n \to [0,\infty)$ and a function, $g: \mathbb{R}^n \to \mathbb{R}$, assume that we are interested in computing the quantity

$$\mathrm{E}[g(\boldsymbol{X})] = \int_{\mathbb{R}^n} g(\boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}.$$

Possible difficulties:

- PDF, f, is inaccessible, only (approximate) samples of X can be generated.
 - E.g., **X** is the solution of an SDE.
- Dimension, *n*, is large or even infinite, hence the integral is expensive to approximate.
 - E.g., expansion of a random field.

Setup

Our objective is to build an estimator $\mathcal{A} \approx \mathrm{E}[g(\boldsymbol{X})]$ with minimal work where

$$P(|\mathcal{A} - \mathrm{E}[g(\mathbf{X})]| \leq \mathrm{TOL}) \geq \epsilon$$

for a given accuracy TOL and a given confidence level determined by $0<\epsilon<1$.

Setup

Our objective is to build an estimator $\mathcal{A} \approx \mathrm{E}[g(\boldsymbol{X})]$ with minimal work where

$$P(|\mathcal{A} - \mathrm{E}[g(\mathbf{X})]| \leq \mathrm{TOL}) \geq \epsilon$$

for a given accuracy TOL and a given confidence level determined by $0 < \epsilon < 1$.

Instead, we impose the following, more restrictive, two constraints:

Bias constraint:
$$|E[A - g(X)]| \le (1 - \theta)TOL$$
,

Statistical constraint:
$$P(|A - E[A]| \le \theta TOL) \ge \epsilon$$
.

For some tolerance splitting, $\theta \in (0, 1)$.

Setup

Our objective is to build an estimator $\mathcal{A} \approx \mathrm{E}[g(\boldsymbol{X})]$ with minimal work where

$$P(|\mathcal{A} - \mathrm{E}[g(\mathbf{X})]| \leq \mathrm{TOL}) \geq \epsilon$$

for a given accuracy TOL and a given confidence level determined by $0 < \epsilon < 1$.

Instead, we impose the following, more restrictive, two constraints:

Bias constraint:
$$|E[A - g(X)]| \le (1 - \theta)TOL$$
,

Statistical constraint:
$$\operatorname{Var}[\mathcal{A}] \leq \left(\frac{\theta \operatorname{TOL}}{\Phi^{-1}\left(\frac{\epsilon+1}{2}\right)}\right)^2$$
.

For some tolerance splitting, $\theta \in (0,1)$. Assuming (at least asymptotic) normality of the estimator, \mathcal{A} . Here, Φ^{-1} is the inverse of the standard normal CDF.

Numerical approximation

Notation: g_{ℓ} for $\ell \in \mathbb{N}$ is the approximation of g calculated based on discretization parameters $\boldsymbol{h}_{\ell} = (h_{\ell,i})_{i=1}^d$.

KAUST

Monte Carlo

The simplest (and most popular) estimator is the Monte Carlo estimator

$$\mathcal{A}_{\mathsf{MC}}[g_L; M] = \frac{1}{M} \sum_{m=1}^{M} g_L(\boldsymbol{X}^{(m)}),$$

for a given level, L, and number of samples, M, that we can choose to satisfy the error constraints and minimize the work.

└─Primer - Monte Carlo (MC)

MLMC main idea: Variance reduction

Multilevel Monte Carlo (MLMC)

(Heinrich, 1998) and (Giles, 2008)

Observe the telescopic identity

$$\mathrm{E}[g]pprox\mathrm{E}[g_L]=\mathrm{E}[g_0]+\sum_{\ell=1}^L\mathrm{E}[g_\ell-g_{\ell-1}]$$

Multilevel Monte Carlo (MLMC)

(Heinrich, 1998) and (Giles, 2008)

Observe the telescopic identity

$$\mathrm{E}[g] pprox \mathrm{E}[g_L] = \mathrm{E}[g_0] + \sum_{\ell=1}^L \mathrm{E}[g_\ell - g_{\ell-1}] = \sum_{\ell=0}^L \mathrm{E}[\Delta_\ell g],$$

where

$$\Delta_\ell g = \begin{cases} g_0 & \text{if } \ell = 0, \\ g_\ell - g_{\ell-1} & \text{if } \ell > 0. \end{cases}$$

Multilevel Monte Carlo (MLMC)

(Heinrich, 1998) and (Giles, 2008)

Observe the telescopic identity

$$\mathrm{E}[g] \approx \mathrm{E}[g_L] = \mathrm{E}[g_0] + \sum_{\ell=1}^L \mathrm{E}[g_\ell - g_{\ell-1}] = \sum_{\ell=0}^L \mathrm{E}[\Delta_\ell g],$$

where

$$\Delta_\ell g = egin{cases} g_0 & ext{if } \ell = 0, \ g_\ell - g_{\ell-1} & ext{if } \ell > 0. \end{cases}$$

Then, using Monte Carlo to approximate each difference independently, the MLMC estimator can be written as

$$\mathcal{A}_{\mathsf{MLMC}}[g;L] = \sum_{\ell=0}^{L} \mathcal{A}_{\mathsf{MC}}[\Delta g_{\ell}; M_{\ell}].$$

Main idea: variance reduction using cheaper approximations.

Optimal number of samples

Given the following estimates

$$V_\ell = egin{cases} \operatorname{Var}[g_0] & \ell = 0, \ \operatorname{Var}[g_\ell - g_{\ell-1}] & \ell \geq 1, \end{cases}$$

$$W_\ell = egin{cases} ext{Work of a single sample of } g_0 & \ell = 0, \ ext{Work of a single sample of } (g_\ell - g_{\ell-1}) & \ell \geq 1. \end{cases}$$

Then, using simple Lagrangian optimization of the total work subject to the variance constraint then, we can obtain the optimal number of samples

$$M_{\ell} pprox \left(rac{ heta ext{TOL}}{\Phi^{-1}\left(rac{\epsilon+1}{2}
ight)}
ight)^{-2} \sqrt{rac{V_{\ell}}{W_{\ell}}} \left(\sum_{i=0}^{L} \sqrt{V_{i}W_{i}}
ight), \quad \text{for } 0 \leq \ell \leq L.$$

Assumptions

Assumption MC1 (Bias): $|E[g-g_\ell]| \lesssim \exp(-w\ell)$, Assumption MC2 (Work): $\operatorname{Work}[g_\ell] \lesssim \exp(d\gamma\ell)$, Assumption MLMC3 (Variance): $\operatorname{Var}[g_\ell-g_{\ell-1}] \lesssim \exp(-s\ell)$

for all $\ell \in \mathbb{N}$ and positive constants γ, w, s .

Assumptions

Assumption MC1 (Bias): $|E[g-g_\ell]| \lesssim \exp(-w\ell)$, Assumption MC2 (Work): $\operatorname{Work}[g_\ell] \lesssim \exp(d\gamma\ell)$, Assumption MLMC3 (Variance): $\operatorname{Var}[g_\ell-g_{\ell-1}] \lesssim \exp(-s\ell)$

for all $\ell \in \mathbb{N}$ and positive constants γ, w, s .

The optimal work of MLMC is

$$\begin{cases} \mathcal{O}\left(\mathrm{TOL^{-2}}\right) & s > d\gamma \\ \mathcal{O}\left(\mathrm{TOL^{-2}}\right)\left(\log\left(\mathrm{TOL^{-1}}\right)\right)^2 & s = d\gamma \\ \mathcal{O}\left(\mathrm{TOL^{-2-\frac{d\gamma-s}{w}}}\right) & s < d\gamma \end{cases}$$

Assumptions

Assumption MC1 (Bias): $|E[g-g_\ell]| \lesssim \exp(-w\ell)$, Assumption MC2 (Work): $\operatorname{Work}[g_\ell] \lesssim \exp(\frac{d}{\gamma}\ell)$, Assumption MLMC3 (Variance): $\operatorname{Var}[g_\ell-g_{\ell-1}] \lesssim \exp(-s\ell)$

for all $\ell \in \mathbb{N}$ and positive constants γ, w, s .

Recall: Optimal cost of Monte Carlo is $\mathcal{O}\left(\mathrm{TOL}^{-2-\frac{d\gamma}{w}}\right)$

The optimal work of MLMC is

$$\begin{cases} \mathcal{O}\left(\mathrm{TOL^{-2}}\right) & s > d\gamma \\ \mathcal{O}\left(\mathrm{TOL^{-2}}\right)\left(\log\left(\mathrm{TOL^{-1}}\right)\right)^2 & s = d\gamma \\ \mathcal{O}\left(\mathrm{TOL^{-2}} - \frac{d\gamma - s}{w}\right) & s < d\gamma \end{cases}$$

Notice: the cost exponentially increases with increasing d.

Continuation MLMC

• To compute M_ℓ we need to find L and find estimates of V_ℓ .

Continuation MLMC

- To compute M_{ℓ} we need to find L and find estimates of V_{ℓ} .
- Instead of running for the small required TOL, CMLMC runs a sequence of MLMC realizations, for decreasing tolerances, ending with the required TOL.
- In each step, estimates of V_{ℓ} are generated using a Bayesian setting which uses **Assumption MLMC3** coupled with the generated samples to produce good estimates even with a small number of samples.
- The value of L is also chosen in each step to minimize the work. This allows choosing a better splitting parameter, θ.
- CMLMC does not have to reuse samples between iterations, ensuring an unbiased estimator for level *L* approximation.

KAUST

mimclib showcase

- Code required for basic MLMC run.
- Show single run of mimclib.
- Show plots in pdf.
- Show database in mysql.

Installation

- Prerequisites: gcc (supporting c++11), python2.7, pip, mysql-server, mysql-client.
- First step:
 - > git clone \
 https://github.com/StochasticNumerics/mimclib.git
 - > cd mimclib
 - > make pip
- Note: to update to latest version
 - > git pull
- Done! Sort of.

Setting up the database

- Make sure mysql-server, mysql-client, and libmysqlclient-dev are installed on your data server.
- Create mimclib database on data server

Create database user for mimclib (hint: you can use local username)

Other useful MySQL commands

Change password

MIMC Database

tbl_runs		
run_id	int	[PK]
creation_date	DATETIME	
TOL	REAL	
done_flag	int	
dim	int	
tag	VARCHAR(128)	
params	mediumblob	
comment	TEXT	

	tbl_data		
	data_id	int	[PK] —
4	run_id	int	[U, FK]
	TOL	REAL	
	bias	REAL	
	stat_error	REAL	
	creation_date	DATETIME	
	totalTime	REAL	
	Qparams	mediumblob	
	userdata	mediumblob	
	iteration_idx	int	[U]

tbl_lvls		
data_id	int	[U, FK]
lvl	text	
lvl_hash	varchar(35)	[U]
El	REAL	
V1	REAL	
Wl	REAL	
Tl	REAL	
Ml	int	
psums_delta	mediumblob	
psums_fine	mediumblob	

Legend [FK] Foreign Key [PK] Primary key [U] Unique constraint

Created by SQL::Translator 0.11021

Installation for Debian/Ubuntu

- > git clone \
 https://github.com/StochasticNumerics/mimclib.git
 - > cd mimclib
 - > ./mimc_install.sh
- Updates all packages on the system
- Installs all prerequisites
- Clones and installs the library
- Creates a database with the current user and no password.
- Standard GBM Example is ready to run.

Problem setup: Geometric Brownian Motion

Given S(0), μ and σ , define

$$dS(t) = \mu S(t)dt + \sigma S(t)dW(t)$$

Euler-Maruyama discretization

$$S_{n+1} = S_n + \mu S_n \Delta t + \sigma S_n \Delta W_n$$

= $S_n (1 + \mu \Delta t + \sigma \Delta W_n)$

We can find (using Itô integral and a log transformation)

$$\mathrm{E}[S(t)] = S(0)e^{\mu t}$$
 $\mathrm{Var}[S(t)] = (S(0))^2 e^{2\mu t} \left(e^{\sigma^2 t} - 1\right)$

Numerical ex.: PDE with random coeffs., [H-ANTT, 2015]

We solve a 3D elliptic PDE with random coefficient and forcing term

$$-\nabla \cdot (e^{\kappa(\mathbf{x},\mathbf{y})} \nabla u(\mathbf{x},\mathbf{y})) = 1 \quad \text{in} \quad \mathcal{D} = [0,1]^3$$
$$u(\mathbf{x},\mathbf{y}) = 0 \quad \text{on} \quad \partial \mathcal{D},$$

where

$$\kappa(\mathbf{x}, \mathbf{y}) = \sum_{k=0}^{n} \mathbf{y}_{k} \sqrt{3} \exp(-k) \Psi_{k}(\mathbf{x}).$$

Here $\{y_k\}_{k=1}^n$ are i.i.d. $\mathcal{U}[-1,1]$. Moreover, Ψ_k is a tensorizable cosine/sine basis. Quantity of interest is:

$$g = \left(2\pi\sigma^2\right)^{-\frac{3}{2}} \int_{\mathcal{D}} \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_0\|_2^2}{2\sigma^2}\right) u(\mathbf{x}) d\mathbf{x},$$

for $\mathbf{x}_0 \in \mathcal{D}$ and $\sigma > 0$.

Using $2^{\rm nd}$ order Finite Difference Method with GMRES linear solver, for this problem we have $\gamma \approx 1$, w=2 (isotropic case).

The end

- Slides can be found on GitHub under "docs" https://github.com/StochasticNumerics/mimclib.
- You can post questions in the "Issues" page.
- Next time
 - Next, next time: Multi-index Monte Carlo applied on PDEs in 3D.