Exam 1

$$F_g = \frac{mMG}{r^2}$$

Description	Symbol	Quantity
Gravitational Constant	G	$6.67 \times 10^{-11} \text{N} \cdot \text{m}^2/\text{kg}^2$
Mass of Earth	m_{earth}	$5.98 \times 10^{24} \text{kg}$
Mass of Moon	m_{moon}	$7.36 \times 10^{22} \text{kg}$
Radius of Earth	R_{earth}	$6.38 \times 10^{6} \text{m}$
Radius of Moon	R_{moon}	$1.74 \times 10^{6} \text{m}$
Orbital Radius of Earth	r_{earth}	$1.50 \times 10^{11} \text{m}$
Orbital Radius of Moon	r_{moon}	$3.84 \times 10^8 \mathrm{m}$
Period of Earth's Orbit	T_{earth}	365.24 days
Period of Moon's Orbit	T_{moon}	27.3 days

Table 1: A list of physical quantities.

The first question of the exam is worth 30 points. The above table is required.

- 1) Consider the earth moving around the sun.
- a. Determine the orbital angular velocity of the earth.

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{2*3.14}{365.24*24*60*60}$$

$$\omega = 1.99 \times 10^{-7} \frac{\text{rad}}{\text{sec}}$$

b. Determine the speed of the earth relative to the sun.

$$V = \omega r$$

$$V = 1.99 \times 10^{-7} * 1.50 \times 10^{11}$$

$$V = 29850$$

c. Determine centripetal acceleration of the earth relative to the sun.

$$a = \frac{V^2}{r}$$

$$a = \frac{29850^2}{1.5 * 10^1 1}$$

$$a = 5.94 \times 10^- 3$$

d. Determine the net force on the earth considering this acceleration.

$$F = ma$$

$$F = 5.94 \times 10^{-}3 * 5.98 \times 10^{24}$$

$$F = 3.55 \times 10^{22}$$

e. Determine the mass of the sun from the above.

$$F_g = \frac{mMG}{r^2}$$

$$M = \frac{3.55 \times 10^{22} * (1.5 \times 10^{11})^2}{5.98 \times 10^{24} * 6.67 \times 10^{-11}} = 2.00 \times 10^{30}$$

The second question is worth 30 points. The table is required.

- 2) Consider gravitation at the surface of the moon.
- a. Determine the acceleration due to gravity on the surface of the moon.

$$a = \frac{MG}{r^2}$$

$$a = \frac{6.67 \times 10^{-11} * 7.36 \times 10^{22}}{(1.74 \times 10^6)^2} = 1.62$$

b. Determine the launch velocity for circular orbit.

$$v_1 = \sqrt{aR}$$

$$v_1 = \sqrt{1.62 * 1.74 \times 10^6} = 1678.92$$

c. Determine the launch velocity for escape from the moon's gravity.

$$v_3 = \sqrt{\frac{2MG}{r}}$$

$$v_3 = \sqrt{\frac{2*7.36\times10^{22}*6.67\times10^{-11}}{1.74\times10^6}} = 2375$$

d. Determine the result of launching an object at 2000 m/s into the moon's horizon.

It goes back because the velocity is insufficient for escape

Question three is worth 40 points.

- 3) Consider a capacitor. Two very large parallel conducting plates are connected to the leads of a 9 Volt battery.
- a. Determine the separation between the plates to generate a 30.0 $\frac{N}{C}$ electric field.

$$-\Delta x = \frac{\Delta v}{E}$$

$$-\Delta x = \frac{-9}{0.3}$$

$$\Delta x = 30$$

b. Determine the force of this electric field on a 0.012 Coulomb charge.

$$F = Eq$$

$$F = 30 \times 0.012$$

$$F = 0.36$$

c. Determine the change in potential energy for the 0.012 C charge moving from the 9V plate to the 0V plate.

$$PE = Vq$$

$$PE = 9 \times 0.012$$

$$PE=0.108$$

$$PE = 0 - 0.108 = -0.108$$

d. Draw the parallel plates and the electric field between them.