Introduction to Abstract Algebra

UT Knoxville, Fall 2023, MATH 351

David White, Alex Zhang

August 25, 2023

Contents

	Introduction			
	1.1	Relations	2	
	1.2	Induction	2	

Introduction

1.1 Relations

1.2 Induction

Theorem 1.2.1 ▶ Principle of Mathematical Induction

For each $n \in \mathbb{N}$, let P(n) denote a statement. Suppose that:

- 1. P(1) is true, and
- 2. for each n, if P(n) is true, then P(n + 1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.