

Общее описание

Жидкокристаллический модуль МТ-12864А, состоит из БИС контроллера управления и ЖК панели. Внешний вид модуля приведен на рис. 1. Контроллер управления К145ВГ10, производства ОАО «АНГСТРЕМ» (www.angstrem.ru), аналогичен KS0108 фирмы SAMSUNG.

Каждой светящейся точке на ЖКИ соответствует логическая "1" в ячейке ОЗУ модуля. Габаритные размеры модуля приведены на рис. 5.

Индикаторы МТ-12864А выпускаются с напряжением питания ЗВ и 5В.

Внимание! Недопустимо воздействие статического электричества больше 30 вольт.

Рис. 1

Модуль позволяет

- принимать команды с шины DB7-DB0 (перечень команд приведен в таблице 3);
- записывать данные в ОЗУ по 8-ми разрядной шине данных DB7-DB0;
- читать данные из ОЗУ на шину DB7-DB0;
- читать статус состояния на шину DB7-DB0 (см. табл. 3);
- управлять контрастностью и подсветкой.

Временные диаграммы протокола обмена с модулем показаны на рис. 3. Назначение внешних выводов приведено в таблице 4.

Таблица 1. Динамические характеристики модуля.

Название	Обозначение	Мин.	Макс.	Единицы измерения
Время цикла чтения/записи	t _{cycE}	1000	_	нс
Длительность импульса разрешения чтения/записи	PW _{EH}	450	_	нс
Время нарастания и спада	t _{Er} , t _{Ef}	_	25	нс
Время предустановки адреса	t _{AS}	140	_	нс
Время удержания адреса	t _{AH}	10	_	нс
Время выдачи данных	t _{DDR}	_	320	нс
Время задержки данных	t _{DHR}	20	-	нс
Время предустановки данных	t _{DSW}	200	-	нс
Время удержания данных	t _H	10	_	нс
Минимальная пауза между подачей команд или данных	t _W	8	_	мкс

Управление контрастностью

Для MT-12864A

Для MT-12864A-...-Т (со встроенной термокомпенсацией)

Рис. 2

Характеристики модуля по постоянному току

Таблица 2. Характеристики модуля по постоянному току.

Название	Обозна-		U _{CC} =3E	3	U _{cc} =5B			Единицы измере-	
	чение	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.	ния	
Напряжение питания	U _{CC}	2,8	3,0	3,3	4,5	5,0	5,5	В	
Ток потребления	I _{CC}	-	4	-	-	4	-	мА	
Ток потреоления	I _{CC} **	_	3	_	-	1,5	_	мА	
Входное напряжение	U _{IH}	2,0	_	U _{CC}	2,0	-	U _{CC}	В	
высокого уровня	U _{IH_RES} *	0,7*U _{CC}	_	U _{CC}	0,7*U _{CC}	-	U _{CC}	В	
Входное напряжение	U _{IL}	0	_	0,8	0	-	0,8	В	
низкого уровня	U _{IL_RES} *	0		0,3*U _{CC}	0		0,3*U _{CC}	В	
Выходное напряжение высокого уровня при I _{OH} =0,2мА	U _{OH}	2,4	_	-	2,4	-	-	В	
Выходное напряжение низкого уровня при I _{OL} =1,6мА	U _{OL}	_	_	0,4	-	-	0,4	В	
Ток подсветки при напряжении питания подсветки = 5В для янтарной и желто-зеленой	I _{LED}	_	150	_	_	150	_	мА	

^{*} входные напряжения для вывода RES

Примечание. В индикаторах с напряжением питания 3В подсветка должна запитываться от источника напряжения 5В.

^{**} для МТ-12864А-...-Т (со встроенной термокомпенсацией)

Блок схема

Временные диаграммы

Рис. 3. Временные диаграммы протокола обмена

Распределение ОЗУ

Рис 4. Соответствие между адресами ОЗУ модуля и отображаемыми точками на ЖКИ.

Для левой половины отображаемого поля точек (1-й кристалл, E1=1)

Для правой половины отображаемого поля точек (2-й кристалл, E2=1)

Начальная установка модуля

Для начальной установки модуля необходимо подать сигнал RES равный логическому «0» длительностью не менее 1 мкс. При этом модуль выполняет команды установки Display Start Line в 0, DisplayOff. После деактивации сигнала RES (переключения в логическую «1» с временем фронта не более 200 нс) необходимо дождаться сброса битов BUSY и RESET в регистре состояния обоих кристаллов или выдержать паузу не менее 10 мкс. После этого модуль нормально функционирует. Чтение статуса можно выполнять даже при активном сигнале RES (равном логическому «0»).

Распределение ОЗУ

Модуль содержит ОЗУ для хранения данных, выводимых на ЖКИ, размером 64х64х2 бит (по 64х64 бит на каждый кристалл). Для выбора нужного кристалла используются выводы E1,E2. ОЗУ разбито на 8 страниц размером по 64х8 бит каждая. Каждой светящейся точке на ЖКИ соответствует логическая «1» в ячейке ОЗУ модуля. Соответствие между адресами в ОЗУ и отображаемыми точками на ЖКИ приведено на рис.4.

Чтение и запись данных

Чтение (запись) информации из (в) модуль осуществляется по страницам (64х8 бит или 64х1 байт). Каждая страница представлена как 64 байта. Для чтения или записи байта данных по произвольному адресу необходимо предварительно установить страницу ОЗУ и установить адрес внутри страницы ОЗУ. Это осуществляется командами «Set Page» и «Set Address» соответственно. После этого можно прочитать или записать байт данных.

В режиме чтения данных после команд «Set Page» и «Set Address» необходимо однократно выполнить «пустую» операцию чтения, результат которой не использовать.

Модуль поддерживает непрерывную последовательность операций чтения или записи: после чтения (записи) одного байта счетчик адреса автоматически увеличивается на 1 и модуль готов к новой операции чтения (записи) по следующему адресу без предварительной установки страницы ОЗУ и адреса. Счетчик адреса считает только внутри одной страницы! При достижении адреса 63 следующим значением счетчика будет 0 и т.д. Между любыми двумя передачами данных или команд, необходимо выдержать паузу не менее 8 мкс. Или ожидать сброса флага BUSY в регистре состояния того кристалла, к которому будет обращение.

Вертикальное смещение отображаемой информации

Модуль поддерживает команду "Display START Line", устанавливающую номер самой верхней отображаемой строки. Номер может быть в интервале от 0 до 63, что соответствует интервалу от первой строки нулевой страницы ОЗУ до последней строки седьмой страницы ОЗУ. Сразу за седьмой страницей отображается снова нулевая страница ОЗУ. Это позволяет реализовать плавный сдвиг информации на ЖКИ по вертикали изменением номера первой отображаемой строки.

Описание команд модуля

Таблица 3.

Команда	A0	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Описание						
Display ON/OFF control	0	0	0	0	1	1	1	1	1	0/1	Включает или выключает ЖКИ, независимо от данных в ОЗУ и внутреннего состояния: 1 – включить дисплей; 0 – выключить дисплей.						
Display Start Line	0	0	1	1	D	isplay	START	Line	(06	3)		Определяет строку ОЗУ , которая будет отображаться в верхней строке ЖКИ.					
Set Page	0	0	1	0	1	1	1	Paç	ge (0	7)	Устанавливает страницу ОЗУ						
Set Address	0	0	0	1		Ad	ddress	(06	3)		Устанавливает адрес ОЗУ для последующих обращений						
											Чтение статуса состояния:						
Status	0	1	BUSY	0	ON/OFF	RESET	SET	0	0	0	0	0	0		BUSY	1	модуль занят внутренней обработкой модуль готов к работе с внешним МП
Read	U	'	BU	U	ON/	RES	0	U			ON/OFF	1	ЖКИ выключен				
											ON/OFF	0	ЖКИ включен				
											RESET	1	Состояние сброса				
							0	Нормальное состояние									
Write Data to RAM	1	0			Write Data						OOJ MOGGIJIII		Эти команды выбирают ОЗУ по ранее заданному				
Read Data from RAM	1	1				Read	Data				Чтение данных из ОЗУ модуля		адресу, после чего адрес инкрементируется				

Таблица 4. Назначение внешних выводов.

Вывод	Обозначение	Назначение вывода
1	GND	Общий вывод (0В)
2	U _{CC}	Питание модуля (цифровая часть)
3	Uo	Вход питания ЖК панели
4	A0	Выбор: Команды/Данные
5	R/W	Выбор: Чтение/Запись
6	E	Стробирование данных
7–14	DB0-DB7	Шина данных
15	E1	Выбор кристалла1
16	E2	Выбор кристалла2
17	RES	Сброс (начальная установка)
18	U _{EE}	Выход DC-DC преобразователя
19	Α	+ питания подсветки
20	К	- питания подсветки

Габаритные размеры модуля МТ-12864А

Рис. 5

История изменений

Версия документа	Дата	Изменения	Страница
1.1	18/06/2007	Исправлены замеченные неточности в тексте и таблицах	
1.2	10/04/2013	Исправлена иформация о подсветке в Таблице 2	2
1.3	13/04/2016	Исправлены значения тока подсветки в Таблице 2	2

Компания МЭЛТ

Наши координаты

🖂 Адрес: Москва, Андроновское шоссе, д. 26, корп. 5

тел./факс: (495) 662–44–14 (многоканальный)

e-mail: sales@melt.com.ru

http://www.melt.com.ru

Авторские права © 2016 МЭЛТ. Все права защищены. Принципиальные схемы и топология печатных плат, описанных в этом документе, не могут быть скопированы или воспроизведены в любой форме или любыми средствами без предварительного письменного разрешения компании МЭЛТ.

Информация, содержащаяся в этом документе, может быть изменена без предварительного уведомления. Компания МЭЛТ не несет ответственности за любые ошибки, которые могут появиться в этом документе, ровно как и за прямые или косвенные убытки, связанные с поставкой или использованием настоящей информации. Самые последние спецификации Вы всегда можете получить на нашем сервере в интернете по адресу http://www.melt.com.ru

Компания МЭЛТ непрерывно работает над улучшением качества и надежности наших изделий. Однако, изделия, содержащие полупроводники, могут частично или полностью потерять свою работоспособность вследствие воздействия статического электричества или механических нагрузок. Поэтому при использовании наших продуктов следует избегать ситуаций, в которых сбой или отказ изделий компании МЭЛТ, могут вызвать потерю человеческой жизни, а также ущерб или повреждение собственности.

Подписано в печать 16 апреля 2016 года. Формат A4. Отпечатано в России.