Ejercicios EBAU (2010-2020)

Geometría e integrales

Ejercicios de geometría analítica

- 1 | Sean A(2,1,0), B(5,5,0) y C(2,1,5) tres vértices de la cara S de EBAU20X | un cubo (cuadrados iguales) y E(-2,4,0) un vértice de la cara opuesta. Se pide:
 - a) El cuarto vértice D de la cara S.
 - b) La ecuación del plano π que contiene la cara opuesta de S.
 - c) ¿Cuál es el vértice de la cara S adyacente a E?
- $\begin{array}{c|c} \mathbf{2} & \text{Dados dos planos} \begin{cases} \pi\colon x+y-2z=3\\ \pi'\colon x-z=5 \end{cases} \text{. Sea } P \text{ un punto de } \pi \\ \text{cuya proyección ortogonal sobre } \pi' \text{ es el punto } A(5,1,0) \end{array}$
 - a) Calcula las ecuaciones implícitas de la recta r que une P y A.
 - b) Calcula el punto P.
- $\left. \begin{array}{c|c} \mathbf{3} & \text{Dados el punto } A(2,1,1) \text{ y la recta } r \colon \begin{cases} x+y=2 \\ y+z=0 \end{cases} \right.$
 - a) Calcula un vector director de la recta r.
 - b) La ecuación del plano π que contiene al punto A y a la recta r.
 - c) La ecuación de la recta s contenida en π que pasa por A y es perpendicular a r.
- 4 | Sea el prisma triangular (triángulos iguales y paralelos) de la EBAU200 | figura, con A(1,0,0), B'(-1,2,2), \$C(0,3,0) y C'(0,4,2). Y los

planos π , al que pertenecen los puntos A, B, C; y π' , al que pertenecen los puntos A', B', C'. Calcula:

- a) Las coordenadas de los puntos restantes: A', B.
- b) La distancia entre los planos π y π' .
- c) El volumen del prisma triangular.

5 | Dados el plano π : x + y = 1 y la recta r que pasa por el punto EBAU19X-B | A(1,1,1) con vector director $\vec{v}_r = (0,1,1)$, calcula:

- a) El punto P intersección del plano π y la recta r.
- b) El punto A' simétrico de A respecto al plano π .

6 | Sean
$$A(3,1,0)$$
 y $B(1,3,0)$ los vértices opuestos de un rombo situado en el plano $\pi\colon z=0$.

- a) Calcula un vector director \vec{v}_r y la ecuación de la recta r a la que pertenecen los otros dos vértices del rombo C y D.
- b) Determina dichos vértices C y D sabiendo que están a una distancia de $\sqrt{2}$ unidades del punto medio M.

Características de un rombo: Lados iguales paralelos dos a dos. Diagonales perpendiculares que se cortan en el centro de ambas.

EBAU19O-B

Sean los puntos A(1,1,1), B(1,-1,-1). Calcula:

- a) La ecuación del plano π que hace que los puntos A y Bsean simétricos respecto a él.
- b) Los puntos C y D que dividen el segmento AB en tres partes iguales.

8 | Sean los planos π_1 : x+y+z=0 y π_2 . Sabiendo que su intersección es la recta r: $\begin{cases} x+y+z=0\\ x+z=0 \end{cases}$, calcula:

- a) La ecuación del plano π_2 sabiendo que $A(1,1,1) \in \pi_2$.
- b) La ecuación de un plano π'_1 paralelo a π_1 y que esté a una distancia de $\sqrt{3}$ unidades de la recta r.

9 Dados la recta
$$r$$
:
$$\begin{cases} y=1 \\ z=0 \end{cases}$$
, el punto $Q(1,1,1)$ y un plano π .

- a) Calcula el punto P de la recta r que verifica d(P,Q) = 1 u.
- b) Se sabe que $Q \in \pi$ y que $d(P,Q) = d(P,\pi)$. Determina la ecuación del plano π .

10 | Dados los puntos
$$A(2,1,0)$$
 y $B(1,0,-1)$ y r la recta que determinan. Y sea s la recta definida por s :
$$\begin{cases} x+y=2\\ y+z=0 \end{cases}$$

- a) Estudia la posición relativa de las rectas.
- b) Determina el punto C de la recta s tal que los vectores \overrightarrow{CA} y \overrightarrow{CB} sean perpendiculares.
- 11 | Los puntos A(0,1,0) y B(-1,1,1) son los vértices de un triángulo. El tercero C pertenece a la recta r: $\begin{cases} x=4\\ z=1 \end{cases}$. Además la recta que une A y C es perpendicular a la recta r.
 - a) Determina el punto C
 - b) Calcula el área del triángulo.
- 12 | Sean r y s dos rectas perpendiculares que se cortan. La recta r EBAU180-A | viene dada por las ecuaciones r: $\frac{x-1}{2} = y+1 = -z+2$. Calcula:
 - a) Un vector director \vec{v}_1 de r.
 - b) Un vector director \vec{v}_2 de s sabiendo que $\vec{v}_1 \times \vec{v}_2$ es proporcional al vector (1,0,2).
 - c) Las ecuaciones del plano π que contiene ambas rectas.

13 | Dada la recta
$$r$$
:
$$\begin{cases} x-y+2z=1 \\ 2x+y-5z=2 \end{cases}$$
 el plano π : $ax-y+z+1=0$

- a) Halla el valor de a para que sean paralelos.
- b) Para a=2, calcula la ecuación del plano π' que contiene a r y es perpendicular a π .
- $oxed{14}$ Sea el punto 0A(1,2,0) perteneciente a un plano π . Calcula:
 - a) La ecuación del plano π sabiendo que P(0,0,-2) pertenece a la recta perpendicular a π que pasa por el punto A.
 - b) La ecuación de un plano paralelo a π y que esté a distancia 3 unidades del mismo.
 - c) Un punto B perteneciente a π y al plano π' : 2x y = 0 y que está a distancia $\sqrt{45}$ de A. (Observación: $A \in \pi'$)
- **15** Dados los puntos A(1,2,0), B(-1,1,1), C(0,0,1), D(4,1,3). De-EBAU17O-B termina:

- a) Si los cuatro puntos son coplanarios.
- b) La recta r que pasa por D y es perpendicular al plano π que contiene los puntos A, B, C.
- c) El punto de corte de la recta r con el plano π .
- 16 Dadas las rectas r: $\begin{cases} x + 2y = -1 \\ z = 1 \end{cases}$ y s: $x + 1 = \frac{y-1}{2} = z$.
 - a) Un vector director de cada recta.
 - b) El ángulo que forman las rectas.

EBAU10Xs-B

- c) El plano paralelo a las dos rectas y que pasa por el punto A(1,2,1).
- **17** | Considere los puntos A(1,0,1), B(0,1,1) y C(0,0,-1).
 - a) Dé las ecuaciones de la recta r que pasa por B y C.
 - b) Calcule el plano π que pasa por A y es perpendicular a r.
 - c) Halle el punto de corte entre r y π .
 - d) Obtenga el punto simétrico de A respecto de r.
- 18 | Se consideran el plano π_1 que pasa por los puntos A(1,0,0), EBAU10Xs-A | B(0,2,0) y C(0,0,-1), y el plano π_2 que pasa por los puntos P(3,0,0), Q(0,6,0) y R(0,0,-3). Calcule:
 - a) Las ecuaciones generales o implícitas de π_1 y π_2 .
 - b) La posición relativa de π_1 y π_2 .
 - c) La distancia entre π_1 y π_2 .
- 19 | En el espacio se consideran las rectas: r, que pasa por el punto EBAU10Xg-B | P(1,2,1) y tiene como vector director v = (1, -1,1); y s que pasa por los puntos A(2,3,2) y B(3,2,3).
 - a) Obtenga las ecuaciones de r y de s.
 - b) Dé la posición relativa de r y s.
- **20** | Sea el punto A(1, -2,0) y la recta $r \equiv \begin{cases} x 2y + z + 3 = 0 \\ y + 2z 4 = 0 \end{cases}$. Halle la ecuación del plano que pasa por el punto A y contiene a la recta r.
- 21 | Considere las rectas $r \equiv \frac{x-1}{2} = \frac{y-2}{3} = z$ y $s \equiv \frac{x+1}{3} = \frac{y-1}{2} = z$.

 a) Dé su posición relativa.

- b) Obtenga, si es posible, un plano paralelo a s que contenga a r.
- **22** | Se consideran la recta r que pasa por los puntos P(1,2,3) y EBAU100s-A | Q(1,-1,3), y el plano π que contiene a los puntos A(1,0,1), B(2,-1,3) y C(4,1,0). Calcule:
 - a) Las ecuaciones implícitas de r y π .
 - b) La posición relativa de r y π .
 - **23** | Dado el punto A(0,1,2) y el plano $\pi \colon x-y+z=0$

EBAU10Og-B

- a) Calcule la recta r perpendicular al plano π que pasa por el punto A.
- b) Halle el punto intersección entre r y π .
- c) Halle el punto simétrico de A respecto de π .
- 24 | Sean el punto P(-1,2,0) y la recta $r\equiv \frac{x-1}{x}=\frac{y}{2}=z.$ Calcule:
 - a) La ecuación del plano π perpendicular a r pasando por P.
 - b) El punto intersección entre r y π .
 - c) La distancia del punto P la recta r.

Ejercicios de integrales

- 25 | Calcula una primitiva de la función $f(x) = x \cos(x) e^{-x}$ cuya EBAU20X | gráfica pase por el punto (0,3).
 - **26** | Sea la función $f(x) = 4 x^2$

EBAU20O

- a) Su gráfica determina con el eje de abscisas un recinto limitado D. Calcula su área.
- b) La gráfica de la función $g(x) = 3x^2$ divide D en tres partes D_1 , D_2 y D_3 . Haz un dibujo de los tres recintos.
- c) Calcula el área del recinto D_2 que contiene al punto P(0,1).
- 27 | Dadas las curvas $y = \frac{x^2}{2}$ e $y = \frac{4}{x}$.

EBAU19X-B

- a) Calcula sus puntos de corte.
- b) Esboza una gráfica de las curvas en el intervalo [1,3].
- c) Calcula el área que delimitan entre ellas en el intervalo [1,3].

28

EBAU19O-A **29** EBAU18X-A Mediante el cambio de variable $t = e^x$, calcula $\int \frac{2}{2 + e^x} dx$.

Se tiene un abrevadero de longitud 6 m y de altura 1 m. Su sección es la descrita en la figura formada por la función $y=x^2$. Por h indicamos la altura del nivel del líquido.

- a) Comprueba que el área de la región S, sombreada en la figura, en función de h se puede expresar como $S(h)=\frac{4h\sqrt{h}}{3}$.
- b) Determina la altura h donde se alcanza la mitad del volumen total del abrevadero. (Nota: $Volumen = S \times longitud$).

- 30 | Dada la función $f(x) = \frac{1}{x^2 + x 6}$, calcula una primitiva de la función.
- **31** | Sea la gráfica de la parábola $y = 3x^2$ en el intervalo [1,2] y m EBAU17X-A | un valor de dicho intervalo.
 - a) Halla, en función de m, el área de cada una de las partes sombreadas A y B.
 - b) ¿Cuál es el valor de m que hace mínima la suma de esas áreas?

- **32** | Sean las funciones $f: \mathbb{R} \longrightarrow \mathbb{R} \text{ y } g: [0, +\infty) \longrightarrow \mathbb{R}$ definidas EBAU170-A | por $f(x) = x^2/4$ y $g(x) = 2\sqrt{x}$.
 - a) Halla los puntos de corte de las gráficas de f y g.
 - b) Realiza un esbozo del recinto que queda limitado por las gráficas de las funciones entre esos puntos y calcula su área.
- **33** | Se considera la función $f(x) = \begin{cases} 2x 2 & \text{si } x < 2 \\ e^{x-2} + k^2 & \text{si } x \ge 2 \end{cases}$
 - a) Determine el valor de k para que la función sea continua en el intervalo [0,4].
 - b) Suponiendo que k=1 halle la recta tangente x=3.
 - c) Suponiendo que k=1 halle el área que la función determina con el eje OX, para $x \in [0,4]$.
 - **34** | Se considera la parábola $y = 6x x^2$.

EBAU10Xs-A

- a) Calcule la ecuación de las rectas tangentes a la gráfica de la parábola en los puntos de corte con el eje OX.
- b) Dibuje un esquema del recinto limitado por la gráfica de la parábola y las rectas halladas anteriormente.
- c) Calcule el área de ese recinto.
- 35 | La curva $y = x^2 + 3$ y la recta y = 2x + 3 limitan un recinto EBAU10Xg-B | finito en el plano.
 - a) Dibuje un esquema del recinto.
 - b) Calcule su área.

36 Resuelva por partes
$$\int e^x \cos 3x \, dx$$
.

EBAU10Xg-A

37 | La gráfica de la curva
$$f(x) = \frac{4}{2-x}$$
 y las rectas $y = 4$ y $x = 0$ encierran un recinto plano.

- a) Dibuje aproximadamente dicho recinto.
- b) Calcule el área de ese recinto.
- La gráfica de la parábola $y^2 = 8x$ la recta x = 2 encierran un recinto plano. EBAU10Os-A
 - a) Dibuje aproximadamente dicho recinto.
 - b) Calcule el área de ese recinto.

39 Resuelva por cambio de variable
$$\int \frac{e^x - 4e^{2x}}{1 + e^x} dx.$$

EBAU10Og-B

EBAU10Og-A

- a) Resuelva por partes la siguiente integral: $\int x(1 \ln x) dx$.
 - b) De todas las primitivas de $f(x) = x(1 \ln x)$ calcule la que pasa por el punto (1,3).

Soluciones a los ejercicios

S1 | a)
$$D = (5,5,5)$$

- b) $\pi: 4x 3y + 20 = 0$
- c) A es el vértice adyacente.

S2 | a)
$$\begin{cases} x + z = 5y = 1 \\ b) P(4,1,1) \end{cases}$$

b)
$$P(4,1,1)$$

S3 | a)
$$\vec{v}_r = (-1,1,-1)$$

b) $\pi: 2x + y - z = 4$

c)
$$s: \begin{cases} x = 2 \\ y - z = 0 \end{cases}$$

S4 | a)
$$A = (1,1,2)$$
 y $B = (-1,1,0)$

b)
$$\pi: z = 0$$
 y $\pi': z = 2$. La distancia es $d(\pi, \pi') = 2$ u.

$$S5$$
 | a) $P(1,0,0)$

b)
$$A'(0,0,1)$$

$$\mathbf{S6} \mid$$
 a) $\vec{v}_r \equiv (1,1,2)$; la recta es r : $\begin{cases} x=y \\ z=0 \end{cases}$.

b)
$$C(3,3,0) \text{ y } D(1,1,0)$$

- $S7 \perp$ a) $\pi: y + z = 0$
 - b) C(1,1/3,1/3) y D(1,-1/3,-1/3)
- $S8 \mid$
- a) π_2 : x 2y + z = 0b) π'_1 : $x + y + z \pm 3 = 0$
- S9 | a) P(1,1,0)
 - b) $\pi: z = 1$
- S10 | a) Al resolver el sistema se obtiene un sistema compatible determinado. Por lo tanto, las rectas se cortan en un punto
 - b) Existen dos soluciones: C(1,1,-1) y C(2,0,0)
- S11a) C(4,1,1)
 - b) $A = 5/2 = 2.5 \text{ u}^2$
- S12a) $\vec{v}_1 = (2,1,-1)$
 - b) $\vec{v_2} = (2, -5, -1)$
 - c) $\pi: x + 2z = 5$
- S13 | a) Para que sean paralelos, a=2
 - b) $\pi': 4x + y 7z 4 = 0$
- S14 | a) $\pi: x + 2y + 2z = 5$
 - b) Dos planos posibles son $\pi_1'': x + 2y + 2z = -4$ o $\pi_2'': x + 2y + 2z = 14$
 - c) Dos soluciones posibles: $\bar{B}_1(-1, -2.5)$ ó $B_2(3.6, -5)$
- S15 | a) No son coplanarios
 - b) $r: x 4 = y 1 = \frac{z 3}{3}$
 - c) C(3,0,0)
- S16 | a) $\vec{v}_r = (-2,1,0), \vec{v}_s = (1,2,1)$
 - b) $\alpha = \pi/2$, es decir, son perpendiculares.
 - c) $\pi: x + 2y 5z = 0$
- a) $\int_{-2}^{2} (4-x^2) dx = \frac{32}{3} = 10,6667 \text{ u}^2$ S26
 - b) A(-1,3) y B(1,3)
 - c) $\int_{-1}^{1} (f(x) g(x)) dx = \frac{16}{3} = 5{,}3333 \text{ u}^2$
- S27 | a) Punto (2,2)
 - b) Esbozo de gráfica
 - c) $A = \int_1^2 \left(\frac{4}{x} \frac{x^2}{2}\right) dx + \int_2^3 \left(\frac{x^2}{2} \frac{4}{x}\right) dx = 3{,}1507 \text{ u}^2$
- **S28** | $F(x) = x \ln(2 + e^x) + C$
- a) $S(h) = \int_{\sqrt{1}}^{\sqrt{h}} (h x^2) dx = \frac{4h\sqrt{h}}{3} \text{ m}^2$ S29 |
 - b) $h = \sqrt[3]{\frac{1}{4}} = 0.63 \text{ m}.$
- **S30** $\mid F(x) = \ln \left(\left| \frac{x-2}{x+3} \right|^{1/5} \right) + C$

- S31
 - a) $A=(m^3-1)$ u². $B=(m^3-12m+16)$ u² b) La suma de las áreas es mínima para $m=\sqrt{2}=1,4142$
- S32 | a) A(0,0) y B(4,4)
 - b) $\text{Área} = \int_0^4 \left(2\sqrt{x} \frac{x^2}{4}\right) dx = \frac{16}{3} \text{ u}^2$
- **S39** $\int 5 \ln |e^x + 1| 4e^x 4 + C$.
- $\begin{array}{c|c} \mathbf{S40} & & \text{a)} & \frac{1}{2}x^2 \left(1 \ln x\right) + \frac{x^2}{4} + C \\ & \text{b)} & \frac{1}{2}x^2 \left(1 \ln x\right) + \frac{x^2}{4} + \frac{9}{4} \end{array}$