

PgDay – PostGIS ou comment stocker et manipuler l'information géographique

Nicolas Ribot - Olivier Courtin - Licence GNU FDL

Qui sommes-nous

- Société Camptocamp: spécialiste des solutions géomatiques Opensource
- Orateurs/rédacteurs
 - Olivier Courtin olivier.courtin@camptocamp.com
 - Nicolas Ribot nicolas.ribot@camptocamp.com

Contexte

- Utilisation de PostGIS comme SGBD spatial depuis plusieurs années
- Participation à la communauté PostGIS
- Position dominante de PostGIS dans le monde des SGBD Spatiaux libres

Plan

- Historique de PostGIS
- Rappel sur les normes et standards: OGC SFSQL, ISO SQL/MM
- Principaux SGBD spatiaux
- Objets géographiques supportés
 - Hiérarchie d'objets géographique
 - Définition mathématiques
 - Représentation interne, binaire et textuelles des objets
- Index spatiaux
 - Intérêt des index
 - Mode de fonctionnement
 - Mise en oeuvre, utilisation dans des requêtes
 - Limitations

- Fonctions et opérateurs spatiaux
 - Présentation de GEOS, bibliothèques géographique
 - Différence entre fonctions et opérateurs
 - Principales fonctions spatiales
 - Utilisation des fonctions et opérateurs pour des traitements complexes
 - Agrégation, fusion
 - Analyses spatiales

Plan (suite)

- Formats d'export géographiques
 - GML
 - KML
 - SVG
 - GeoJson
 - Utilitaire d'import/export de shapefiles: shp2pgsql, pgsql2shp
- Outil SIG OpenSource
 - Bureautique

- Serveur d'application
 - MapServer
 - GeoServer
- Futur de PostGIS
 - Roadmap court terme
 - Roadmap long terme
- Conclusion

Historique de PostGIS

SGBD spatial, concepts et enjeux

- Stockage de l'information géographique et de ses attributs
- Récupération de tout ou partie de l'information sur requêtes géographiques ou non
- Gestion d'index optimisés pour les requêtes spatiales
- Respect des standards existants (OGC SFS ou ISO SQL/MM)
- Permet de faire tourner de très gros volumes de données (plusieurs To)

Présentation de PostGIS

- Site Web officiel: http://postgis.refractions.net/
- Site français (non officiel): http://postgis.fr/
- Version actuelle 1.3.4
- Cycle de sortie de nouvelle versions rapide
- Développé en C
 - Sous forme de plugin pour PostgreSQL
 - Lisibilité et concision remarquable du code
- Société éditrice Canadienne : Refractions
- Utilisé dans de très nombreux projets
 - Références prestigieuses (IGN, SwissTopo, IRSN, etc.)
 - Communauté large et technique
- Respect du standard OGC SFS (Simple Feature for SQL).
- Nombreuses fonctionnalités additionnelles à SFS

PostGIS Architecture et librairies

- PostGIS comme plugin PostgreSQL
- Couplable (optionnel) à Proj4
 - pour gestion de très nombreux systèmes de projections
- Couplable (optionnel) à GEOS
 - pour gestion d'opérateurs spatiaux

Historique de PostGIS

- Version publique initiale (2001)
- Version 0.8 (2004)
 - Version déjà utilisable en production, nombreuses fonctionnalités avancés également présentes
- Version 1.0 (2005)
 - Validation OGC SFS 1.0
 - Gestion de data en 4D
 - Réécriture de toute la sous couche de sérialisation des géométries en base (passage de WKT à HEWKB pour le stockage natif)
- Version 1.1.x et 1.2.x (2006 et 2007)
 - Nombreuses fonctionnalités additionnelles
 - Débug et optimisations diverses
 - Connecteur JDBC, ARCSDE
- Version 1.3.x (2007)
 - Préfixe ST_ pour compatibilité SQL/MM

Support et documentation PostGIS

- Documentation
 - http://postgis.refractions.net/doc/
 - http://www.postgis.fr/book
- Mailing list officielles:
 - postgis-users
 - postgis-devel
- Autre sites francophones
 - postgis.fr
 - Georezo
 - forumsig.org
- Support commercial
 - Camptocamp
 - Refractions

Standards internationaux OGC et ISO

Le concept de 'feature'

- Une 'feature' comme abstraction géographique de la réalité,
 - Géopositionnée
 - Peut être doté d'attributs

Le concept d'API spatiale standardisé

- Permet de définir pour un SGBD existant (SQL92 ou SQL99)
 - La liste des types géométriques possibles
 - La manière de représenter les données spatiales
 - WKT
 - WKB
 - Les méthodes spatiales disponibles
 - Prototype
 - Comportement
 - Les contraintes d'intégrité spatiales
 - Typage géométrique
 - Système de projection

Standards existants: OGC SFS 1.1

- Disponible depuis 99
- http://www.opengeospatial.org/standards/sfs
- Logique 2D (X Y)
- Types géométrique définis
 - POINT
 - POLYGON
 - LINESTRING
 - (+ Logique de MULTI et d'aggrégat)
- Environ 80 fonctions d'accès et de manipulation des données spatiales
- Schéma d'intégrité référentielle spatiale
 - geometry_columns
 - spatial_ref_sys

Standards existants: ISO SQL/MM

- Standard ISO
- Logique de stockage X Y [Z] [M]
- Types spatial additionel:
 - Curve
- Logique additionnelle
 - Network et routing
 - Représentation topologique
 - Fonctions géocentriques
- Nombreuses fonctionnalités spatiales additionnelles à OGC SFS

Principaux SGBD spatiaux

- PostGIS
- Oracle Spatial
- Arc SDE
- Oracle Locator
- MySQL Spatial

- Etude mandaté par le CNES sur un comparatif fonctionnel entre les principaux SGBD spatiaux:
 - cct.cnes.fr/cct05/public/2007/documents/Etude_comp_bases_don nees_spatialisees/rapport_etude_spatiale_final.pdf

Objets géographiques supportés

Modèle Objet PostGIS

Représentation WKT

POINT (10 10)

WKT: MULTIPOINT

```
MULTIPOINT
(
55,515,107,1030,1417)
```


WKT: LINESTRING

```
LINESTRING
(
0 5, 5 1, 9 4, 2 14, 14 13, 4 4
)
```


WKT: MULTILINESTRING

```
MULTILINESTRING
(
    (1 5, 3 9, 14 3, 3 2, 10 8),
    (1 13, 8 13, 14 9, 7 9)
)
```


WKT: POLYGON

Ring externe

```
POLYGON
(
(9 13,13 9,13 3,4 2,1 4,1 12, 9 13),
(5 11,5 6,1 9,5 11),
(10 7, 10 4, 6 4, 8 8, 10 7)
)
```


Coordonnées fermantes

WKT: MULTIPOLYGON

```
MULTIPOLYGON
(
((10 14,1 8, 1 13,10 14)),
(
(12 9, 13 3, 5 5, 7 10, 12 9),
(13 7, 12 8, 11 7, 13 7)
)
```


WKT: GEOMETRYCOLLECTION

```
GEOMETRYCOLLECTION
(
MULTIPOINT(4 10, 12 9, 14 4),
LINESTRING(8 2, 2 3, 4 7, 2 9),
POLYGON
(
(10 9, 11 3, 5 5, 6 10, 10 9),
(9 7, 8 6, 7 7, 9 7)
)
```


Limites du modèle objet SFS

Objets non représentables par des polygones

Format binaire et natif

- Besoin format binaire pour optimiser stockage et accès aux données:
 - Pour WKT: WKB
 - Pour EWKT: EWKB
- En natif PostGIS utilise pour le stockage
 - Un encodage Héxa de EWKB: HEWKB
 - Depuis la version 1.0

Interfaces entre (E)WKT et Geometry

 Les interfaces suivantes permettent de manipuler les données WKT et EWKT :

```
Text WKT = ST_AsText(geometry);
Text EWKT = ST_AsEwkt(geometry);

Geometry = ST_GeomFromText(text WKT, SRID);
Geometry = ST_GeomFromEWKT(text EWKT);
```


Index Spatiaux

Index Spatiaux - Bbox

- Rectangle englobant = bounding box = bbox
- Surface rectangulaire recouvrant un objet
- Utilisé comme approximation de la géométrie (index, opérateurs primaires, etc)

Index Spatiaux - Principes

Principe du R-Tree: regroupement des rectangles englobants des objets dans des régions de l'index

Index Spatiaux - Utilisation

Cas d'utilisation

spatiale

- SELECT avec des clauses WHERE sur colonne spatiale
- A évaluer précisément dans le cas de table avec des requêtes en RW importantes
- Création d'un index spatial:

Index Spatiaux - Limitations

- Mise à jour est gourmande: Ils ralentissent de fait les tâches d'écriture en base (INSERT / UPDATE)
- Pas toujours utilisés par le moteur de requête (exemple de peu d'objets géographiques volumineux)
- Vérifier leur utilisation avec la commande EXPLAIN:

EXPLAIN SELECT c1.nom FROM com.communes c1, com.communes c2
WHERE c2.nom = 'Toulouse' and st_touches(c1.the_geom,
c2.the geom);

Sans index: scan séquentiel des tables

Avec index: filtre géographique sur la table indexée

Index – exemple

• Trouver les communes qui touchent Toulouse:

SELECT cl.nom FROM communes cl, communes c2 WHERE c2.nom = 'Toulouse' AND st touches(cl.the geom, c2.the geom);

Sans index: temps = 150 ms

Avec index: temps = 30 ms

Meme résultat, mais gain de temps important grâce aux index

Fonctions et opérateurs spatiaux

Opération 'Topologique'

- Ensemble des calculs réalisés par PostGIS et GEOS
- GEOS
 - Portage en C++ de JTS
 - geos.refractions.net
- Permet de réaliser des opérations complexes: buffer, union, découpage, etc.

Opérateurs ou fonctions ?

- Les opérateurs fonctionnent à partir des rectangles englobants minimums des géométries (bounding box)
- Les fonctions utilisent la géométrie exacte.
- Les opérateurs mettent également à profit les index spatiaux basés sur les bbox.

Bbox vs objets

Rivières intersectant une zone d'intérêt

select * from rivieres where the_geom **&&** 'BOX(476309 1823131, 508515 1849654)')

select * from rivieres where **st_intersects**(the_geom , 'BOX(476309 1823131, 508515 1849654)')

Fonctions et Opérateurs spatiaux

- Opérations booléennes de localisation des objets entre eux: (touches, intersects, overlaps, relate, etc.)
- Calcul sur les objets (distance, area, distance_sphere, etc.)
- Construction de nouveaux objets (buffer, intersection, union, difference, symmetric difference, etc.)

Exemple de Fonctions: agrégation

- But: unir des objets géographiques liés par un même attribut
- Equivalent du « dissolve » d'ESRI
- Ex: construire les départements de France a partir des communes
- select st_union(the_geom) from communes group by code dep;

Les communes de France

Les communes de France fusionnées par département

Exemple de Fonctions: analyse spatiale

- But: Trouver toutes les communes de la Haute-Garonne dont la densité de population est supérieure à 600 habitants/km2
- select nom, pop_tot / (st_area (the_geom) /
 1000000) as densite, the_geom from com.communes
 where code_dep = '31' and pop_tot / (st_area
 (the geom) / 1000000) > 600 order by densite;

Import et Export de données

Formats d'export

 GML (Geography Markup Language): référence OGC, utilisé pour le WFS par exemple

Select st_asgml(the_geom) from communes;

KML (Format Google Earth pour les objets géographiques)

Select st askml(the geom from communes where nom =

'Toulouse';

Formats d'export

- GeoJson (format compact d'echange de données géographiques, essentiellement utilisé dans des applications Web)
 - Select st_asgeojson(the_geom) from communes;

Vector Formats Example

Shows the wide variety of vector formats that open layers supports.

Use the drop-down below to select the input/output format for vector features. New features can be added by using the drawing tools above or by pasting their text representation below.

ormat GeoJSON			+	Pretty print	
Input Projection:		EPSG:4326		•	
Output I	Projection:	EPSG:4326		•	

Shp2pgsql: Présentation

- Commande fournie avec PostGIS
- Conversion Shapefile vers du SQL
- Chargement en deux étapes:
 - Conversion SHP vers SQL
 - Chargement du SQL dans Postgres/PostGIS
- Dispose de multiples options

-s précise le système de projection

-I génére un index spatial

-S utilise des géométries 'simples'

-d
 Drop la table avant de la récréer

-D
 Utilise le format DUMP de PostgreSQL

-W
 Encodage des données attributaires

shp2pgsql -iID -s 27582 commune.shp communes|psql -U user -d ma_base

Pgsql2shp: Présentation

- Commande fourni avec PostGIS
- Pendant de shp2pgsql
- Permet de générer un shapefile à partir de:
 - Table spatiale
 - Requête spatiale
- pgsql2shp -u postgres ma_base communes
- pgsql2shp -u postgres ma_base 'SELECT code_dep, st_union(the_geom) as the_geom FROM communes group by code dep'

Outils SIG OpenSource

Bureautiques

Commerciaux ou libres supportent PostGIS

	Lecture	Écriture I	Requête spatiales ⁽¹⁾
MapInfo	Oui	Non	Non
ArcGIS	Oui	Oui	Non
FME	Oui	Oui	Oui
CadCord SIS	Oui	Oui	Non
Ionic	Oui	Non	Non
•••			
Udig	Oui	Oui	Non
Grass	Oui	Oui	Oui
Jump/openJump	Oui	Oui	Oui ⁽²⁾
GvSig	Oui	Oui	Oui ⁽²⁾
SDI	Oui	Oui	Oui
Qgis	Oui	Oui	Non

. . .

(1) exécution de Requêtes spatiales arbitraires - (2) plugin nécessaire

Serveurs cartographiques

MapServer:

- CGI écrit en C,
- Outil 'historique',
- Très bon support de PostGIS
- Mise en oeuvre simple

GeoServer:

- Servlet Java,
- Implémentation stricte des normes OGC (WMS, WFS, WFS-T)
- Permet l'édition de features stockées dans PostGIS (WFS-T)
- Mise en oeuvre plus délicate

Futur de PostGIS

RoadMap Court Terme

- 1.3.4 est en phase de finalisation
- 1.4.0 est en phase de développement
 - Dissociation entre librairies bas niveau SFS et librairie de fonctions spatiales
 - Travail important de refactoring
 - ...

RoadMap Long Terme

- PostGIS 2.0
- Points marquants
 - Continuer à se rapprocher de SQL/MM
 - Compatible SFS 2.0
 - Logique de Topologie et Routing native
 - •
- Roadmap intégrale :
 - http://docs.google.com/View?docid=dg99qr76_2dgt26j

Conclusion

En guise de conclusion

- PostGIS est la solution de réference en terme de cartouche spatial OpenSource
- Elle s'intégre et enrichie les possibilités d'un SGBDR
- Cette application permet de très nombreux traitements SIG sur des géométries vectorielles
- Elle se couple à de nombreux autres outils SIG existants
- Perspectives sur l'utilisation de Spatial OLAP et/ou de traitements géostatistiques.

Questions

- En direct...
- Par mail:
 - Olivier Courtin olivier.courtin@camptocamp.com
 - Nicolas Ribot nicolas.ribot@camptocamp.com

