Kremer Francois Note: 9/20 (score total : 9/20)

Nom et prénom, lisibles :

+170/1/44+

Identifiant (de haut en bas):

QCM THLR 4

1	
1	
sieur plus pas p incor	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases et que cocher. Renseigner les champs d'identité. Les questions marquées par « ※ » peuvent avoir plus réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est cossible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les rectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +170/1/xx+···+170/2/xx+.
Q.2	Le langage $\{ \sqrt[n]{n}, m \in \mathbb{N} \}$ est
	🛮 rationnel 🝘 fini 🌘 non reconnaissable par automate fini 🧶 vide
Q.3	Le langage $\{0^n1^n \mid \forall n \in \mathbb{N}\}$ est
	☐ rationnel ☐ fini ☐ vide 📓 non reconnaissable par automate fini
	Un langage quelconque □ n'est pas nécessairement dénombrable □ est toujours inclus (⊆) dans un langage rationnel □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ peut avoir une intersection non vide avec son complémentaire □ Quels langages ne vérifient pas le lemme de pompage?
	 □ Tous les langages non reconnus par DFA □ Certains langages reconnus par DFA □ Tous les langages reconnus par DFA □ Tous les langages reconnus par DFA
Q.6	Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :
	\square L_2 est rationnel \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1, L_2 sont rationnels \square L_1 est rationnel
Q.7 dont	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
	n+1
Q.8 dont	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$: la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$) :
	\square Il n'existe pas. \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \boxtimes 2^n \square 4^n
Q.9	Déterminiser cet automate : $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

 \Box $T(Det(T(Det(T(\mathscr{A})))))$

 \Box $T(Det(T(Det(\mathcal{A}))))$

 \square $Det(T(Det(T(\mathcal{A}))))$

Fin de l'épreuve.