FYS-MEK1110 - Oblig 4

Ioanna Maria Lazarou

$10~\mathrm{Mars}~2021$

Fange atomer

 \mathbf{a}

Figur 1: En skisse av U(x)

Siden energien skal være bevart vi har at den mekaniske energien er summen av den potentiele og kinetisk energien:

$$E_{MEK} = U + K$$

Vi modellerer potensialet U(x) slik at:

$$U(x) = \begin{cases} U_0 & |x| \ge x_0 \\ U_0 \frac{|x|}{x_0} & 0 < |x| < x_0 \end{cases}$$

Den kinetiske energien er: $K = \frac{1}{2}mv^2$. En integrering $(\frac{\partial K}{\partial v})$ gir oss potential U = mv. Ligningen gir oss deretter en lineær helling i intervallet vi undersøker. Vi vet at skråningen er positiv når $|x| \geq x_0$ og negativt når $|x| < x_0$. Over x_0 det trekkes en rett linje fordi det er et konstant potensial. Det samme kan naturligvis sies for linjen for potensielle verdier under x_0 . I figuren 1 kan vi se en skisse av U(x) med likevektspunktene.

Likevektspunktene er $-x_0$, x_0 , og x=0. Punktene $-x_0$ og x_0 er ustabile. Det er ikke fordi potensialet er lik eller ulik 0, det er om det er et minimum eller maksimum av potensialet. Stabiliteten er lav fordi dersom atomet ikke er i ro det har mulighet til å falle til et lavere punkt.

Punktet x = 0 er stabilt. I x_0 må atomet ha en fart som gir kinetisk energi $K \ge U_0$ (uavhengig av retning) og vi har at den potensielle energeien er lik null.

b

Vi skal finne F(x) som vi vet kan uttrykkes som:

$$F(x) = -\frac{\mathrm{d}U}{\mathrm{d}x}$$

$$F(x) = \begin{cases} 0 & |x| > x_0 \\ -U_0 \frac{x}{|x|x_0} & 0 < |x| < x_0 \end{cases}$$

Dette kan ikke være F i $x = x_0$, da den deriverte ikke eksisterer i dette punktet (diskontinuerlig kurve) og F vil heller ikke være dette i x = 0, av samme grunn. Vi ser at den deriverte eksisterer for $|x| < x_0$ og vi er i en dimensjon, derfor kan vi si at F(x) er konservativ.

 \mathbf{c}

Siden F(x) er konservativ da gjelder bevaring av mekanisk energi så lenge partikkelen bare er påvirket av den kraften. Vi også har at $v_0 = \sqrt{4U_0/m}$ ved x = 0. Hvis $|x| < x_0$:

$$E_0 = E_1$$

$$K_0 + U_0 = K_1 + U_1$$

$$\frac{1}{2}mv_0^2 + 0 = \frac{1}{2}mv_1^2 + U_0\frac{|x|}{x_0}$$

$$\frac{1}{2}m\sqrt{\frac{4U_0}{m}}^2 = \frac{1}{2}mv_1^2 + U_0\frac{|x|}{x_0}$$

$$2U_0 - U_0\frac{|x|}{x_0} = \frac{1}{2}mv_1^2$$

$$\frac{2}{m}(2U_0 - U_0\frac{|x|}{x_0}) = v_1^2$$

$$v_1 = \pm\sqrt{\frac{2}{m}(2U_0 - U_0\frac{|x|}{x_0})}$$

Setter vi inn $x = \frac{x_0}{2}$ og vi får:

$$v_1 = \sqrt{\frac{3U_0}{m}}$$

Hvis $|x| \ge x_0$ vi har:

$$E_0 = E_1$$

$$K_0 + U_0 = K_1 + U_1$$

$$\frac{1}{2}m\sqrt{\frac{4U_0}{m}}^2 + 0 = \frac{1}{2}mv_1^2 + U_0$$

$$2U_0 - U_0 = \frac{1}{2}mv_1^2$$

$$\frac{2U_0}{m} = v_1^2$$

Derfor er hastiheten til atomet(ved $x = 2x_0$):

$$v_1 = \sqrt{\frac{2U_0}{m}}$$

 \mathbf{d}

Vi bruker samme metode som i oppgave c).

Hvis $|x| < x_0$:

$$v_1 = \pm \sqrt{\frac{2}{m}(2U_0 - U_0 \frac{|x|}{x_0})}$$

Setter vi inn $x = -\frac{x_0}{2}$ og vi får:

$$v_1 = -\sqrt{\frac{3U_0}{m}}$$

Hvis $|x| \ge x_0$:

$$v_1 = \pm \sqrt{\frac{2U_0}{m}}$$

Setter vi inn $x = -2x_0$:

$$v_1 = -\sqrt{\frac{2U_0}{m}}$$

 \mathbf{e}

Ved K=0 i x=0 vi har at W=Fd, hvor $W\to U_0,\, F\to F_0$ og $d\to x_0$.

$$U_0 = W$$

Det gir:

$$U_0 = F_0 x_0 \Rightarrow F_0 = \frac{U_0}{x_0}$$

$$F = -\alpha v$$

Atomet kan bevege seg og og gå tilbake til startposisjonen med lavere energi enn den startet med. F er ikke konservativ fordi det avhenger av atomets kinetiske energi og ikke bare posisjon.

\mathbf{g}

Initialbetignelsene er posisjon og hastighet.

Vi vet at bevegelsen er konstant for $|x| > x_0$ fra skissen i figur 1.

For $0 < |x| < x_0$ har vi uttrykket i oppgave b) pluss hastigheten. Akselerasjonen vil ikke være definert i $-x_0$, 0 og x_0 .

$$F(x) = \begin{cases} a = 0 & |x| > x_0 \\ -\frac{U_0 x}{x_0 |x|} - \alpha v & 0 < |x| < x_0 \end{cases}$$

h

Vi skriver et program som regner ut atomets posisjon x(t) som funksjon av tid, gitt uttrykket for akselerasjonen og initialbetingelsene fra forrige deloppgave. Koden:

```
import numpy as np import matplotlib.pyplot as plt
       #Startverdier
 \begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \end{array}
       00 = 150
       \begin{array}{l} \mathtt{m} \, = \, 23 \\ \mathtt{x0} \, = \, 2 \end{array}
 8
       alpha = 39.48
10
11
       \mathtt{dt} \; = \; 0.01
       n = int(time/dt)
12
13
       \begin{array}{lll} {\tt x} &=& {\tt np.zeros\,(n)} \\ {\tt v} &=& {\tt np.zeros\,(n)} \\ {\tt a} &=& {\tt np.zeros\,(n)} \end{array}
14
15
       t = np.linspace(0, time, n)
18
       U = lambda x: U0 if np.abs(x) >= x0 else U0*(np.abs(x)/x0)
19
20
       F = lambda x : U0/x0 if (x>-x0 and x<0) else (-U0/x0 if (x<x0 and x>0) else 0)
21
       F_{foton} = lambda x, v: -alpha*v if <math>np.abs(x) < x0 else 0
23
24
25
       for i in range(n-1):
    a[i+1] = (F(x[i]) + F_foton(x[i], v[i]))/m
    v[i+1] = v[i] + a[i+1]*dt
    x[i+1] = x[i] + v[i+1]*dt
    v[i+1] = x[i] + v[i+1]*dt
26
27
28
29
30
31
     plt.plot(t,x)
plt.xlabel('Posisjon-x [m]')
32
```

```
34 | plt.ylabel('Tid-t [s]')
35 | plt.title('Posisjon som funksjon av tid')
36 | plt.show()
```

i

Figur 2: Bevegelsen, x(t), til et atom med starthastighet $v_0 = 8$ og startposisjon x = -5

I figuren 2 ser vi bevegelsen, x(t), til et atom med starthastighet $v_0 = 8$ i startposisjon x = -5. Vi har en interaksjon mellom atomet og kraftfeltet, men hastigheten til atomet(og dermed den kinetiske energien til atomet) er ikke stor nok til å unnslippe kraftfeltet. Dermed ser vi at atomet blir fanget i MOT og farten avtar gradvis og ender til slutt på null.

j

I figuren 3 ser vi bevegelsen, x(t), til et atom med starthastighet $v_0 = 10$ i startposisjon x = -5. Initialhastigheten, og dermed den kinetiske energien for atomet, er stor nok til at MOT ikke klarer å fange atomet opp. Atomet ikke blir påvirket før det kommer innenfor $-x_0$, og har dermed konstant hastighet i den første seksjonen. Når atomet kommer innenfor $-x_0$ blir det det påvirket, og vi ser en avbøyning i banen på grunn av kreftene som virker på atomet mellom $-x_0$ og x_0 . Når atomet havner utenfor området med påvirkning, vil igjen akselerasjonen være lik null og hastigheten konstant.

Figur 3: Bevegelsen, x(t), til et atom med starthastighet $v_0=10$ og startposisjon x=-5