1: Page 583 #50

Suppose that R and S are reflexive relations on a set A.

Prove or disprove each of these statements.

- (a) $R \cup S$ is reflexive. \top
- **(b)** $R \cap S$ is reflexive. \top
- (c) $R \oplus S$ is irreflexive. \top
- (d) R S is irreflexive. \top
- (e) $S \circ R$ is reflexive.
- a) Let x E A and x Rx since R is reflexive. Thus, x (RUS) x 6/c R = RUS. .. RUS is reflexive.
- b) Let $x \in A$ and x R x since R is reflexive. Also, $x \le x$ since S is reflexive. Thus, $x (R \cap S) \times b \cap (x, x) \in R$ and $(x, x) \in S$.

 R \(\text{R \text{ of } S \text{ is reflexive}.} \)
- Let $x \in A$ and x R x since R is reflexive. Also, x S x since S is reflexive. Let $a(R \oplus S)b$. Then $a \neq b$ because $(a,a) \in R$ and $(a,a) \in S$. $R \oplus S$ is irreflexive.
- d) Let $x \in A$ and $x R \times since R$ is reflexive. Also, $x \le x$ since S is reflexive. Let a(R-S)b. Then $a \ne b$ blc $(a,a) \in S$ so $(a,a) \notin R-S$. \vdots R-S is irreflexive.
- E) Let $x \in A$ and $x \in R$ since R is reflexive. Also, $x \in S$ since S is reflexive. Thus, $x \in S \cap R$ b/c $(x,x) \in S$ and $(x,x) \in R$. .. SoR is reflexive.