TA201A Design Project

T1G4: Final Turn Presentation

Sept 21, 2021

Project Info

Title: Dog and Dog Wheelchair

Instructor: Dr. Shashank Shekhar

Tutor: **Dr. Kantesh Balani**

Lab Incharge: Mr. Anil Kumar Verma & Mr. IP Singh

TAs: Mr. Arijit Samaddar & Ms. Shalini Kushwaha

Duration: 6 Weeks

Team

200174	ANUSHKA PANDA	200433	HARSHIT RAJ
200533	KUMAR SAURAV	200783	RICK GHOSH
200841	SAIRAM NAYAK KUNSOTH	200895	SATYAM KUMAR ROY
201097	VATSALYA ROY	201140	YASH DAHIYA

Dog and Dog wheelchair

The idea is to create a mechanical dog whose hind leg is physically challenged. To support the same dog a wheelchair is added to the model and the tail of the above mentioned dog would wag when wheelchair moves.

Main Features

Mechanical dog

Wagging tail (Moving part)

Wheelchair

Length of wheelchair is adjustable.

Side View

Side View

Front View

Top View

Isometric View

Isometric View

Component 1-5

Ears x 2 [P4 Ear]

Height: 40.1mm

Inner Diameter: 21mm

Material: Mild Steel Sheet (0.5 mm)

Manufacturing Process: Sheet forming

and cutting

Joining Process: Metal Brazing

Total Mass: 10.83 g Cost: INR 0.45

Diameter: 80 mm Material: Aluminium

Mass: 0.724 kg Cost: INR 152

Manufacturing Process: Casting

Open Cone: [P5 Snout]

Length: 60 mm,

Circumference: 150 mm Angle: 144*,

Height: 75 mm

Material: Mild Steel Sheet (0.5 mm)

Manufacturing Process: Sheet forming and cutting

Joining Process: Metal Brazing

Mass: 300 g Cost: INR 12.6

Eyeballs x 2: [P1]

Sphere Diameter: 10 mm

Total Mass: 2.8 g Cost: INR 0.6

Material: Alumunium

Manufacturing Process: Casting Joining Process: Brazing

Nostrils x 2: [P2]

Sphere Diameter: 10 mm

Total Mass: 2.8 g Cost: INR 0.6

Material: Alumunium

Manufacturing Process: Casting

Joining Process: Brazing

Height: 40.1mm

Inner Diameter: 21mm

Material: Mild Steel Sheet (0.5 mm)

Manufacturing Process: Sheet forming

and cutting

Joining Process: Metal Brazing

Total Mass: 10.83 g Cost: INR 0.45

Neck of Dog

Curved Frustum: [P6 Neck]

Material: Mild steel sheet(1mm)

Manufacturing Process: sheet metal forming

Mass = 123 g

Cost = INR 24

Neck of Dog

Hemisphere(phi 151.5, thickness 5): [P7 Chest]

Material: Aluminium

Manufacturing Process: Sand mould casting

Mass: 281

Assuming rate = Rs. 191/kg

Cost: 61 rupees

Torso and rear [P7-8]

Torso and rear [P7-8]

Torso and rear [P7-8]

Torso and rear

Frustum: [P7-8]

Material- Mild steel sheet(1 mm)

Manufacturing process- Sheet metal forming

Large diameter- 150 mm Slant height- 150.75 mm Small diameter- 120 mm

Mass- 0.510 kg

Cost-Rs 26 (Rs 50 per kg)

Lower body: [P8]

Hemisphere:

Material- Aluminium (3 mm)

Manufacturing process- Sheet metal forming

Diameter- 120 mm

Mass- 0.183 kg

Cost- Rs 39 (Rs 210 per kg)

Rod:

Material- Mild steel round rod(10mm)

Length- 115mm

Mass- 0.0722 kg

Cost- Rs 3.61 (Rs 50 per kg)

Hind leg

Frusturn: [P23]

Material: Aluminium

Manufacturing Process: sand mould casting

Slant height: 105.43 mm Larger diameter: 72mm Smaller diameter: 13.16mm

Sheet metal metal working (shearing and

bending)

Mass: 47 g

Cost: 10 rupees

Hind leg

Rod: [P24]

Material: Steel rod

Manufacturing Process: cutting

Length: 60 mm Diameter: 10 mm

Mass: 46 g

Cost = 8 rupees

Paws

Paws [P13 & P18]

Frustum:

Material- Mild steel sheet(1 mm)

Manufacturing process- Sheet metal forming

Height- 10 mm 15° taper Small diameter- 25 mm Wedges at 60° Cut by planes at angle 30° to the center of wedges

Mass- 0.007 kg

Cost- Rs 0.365 (Rs 50 per kg)

Tail [P9]

76.01

Materials required Aluminium item

Process involved

- Casting to get desired shape
- Hinging the tail with the rod in the

rear

Cost analysis

Volume of tail = 21cm³ Mass = 56.7 g Cost = 12 rupees

Front legs [P12]

Front legs 07

Materials used-

- 1. Two cylindrical Aluminium Rods (length 100mm, diameter 10mm).
- 2. Two cylindrical Aluminium wheels (diameter 70mm, width 10mm).
- 3. An aluminium axle (in the form of cylindrical rod of length 30mm)
- 4. Two thin cylinders (of width 5mm) and diameter 30mm.

Process used-

- Welding –
 To join legs with body of dog.
 To join both the rods.
 To join axle with thin cylinders.
- 2. Metal forming
- 3. Casting

Cost Analysis-

- Nods
 Volume = 15.7cm^3
 Weight=42.39 g
 Cost = 9.19
- b) Wheels Volume = 76.93 cm^3 Weight = 207.711 g Cost = 45.07
- c) Thin Cylinders
 Volume = 7.065 cm^3
 Weight = 19.07 g
 Cost = 4.13
- d) Axle Volume = 3.140.50.5*4 cm^3=3.14 cm^3 Weight = 8.478 g Cost = 1.83

Total Weight = 271 g (approx.)

Total cost = 62 Rs (approx.)

Tail wagging Mechanism

- 01 | A rivet to attach to the tail
- 02 | And an steel rod rod of maximum length 259 mm (approximate)
- 03 | Sheet metal shearing
- 04 | Cost accommodate with other parts

Tail wagging Mechanism

Isometric

Flexible wheelchair

max width: 300 mm since its adjustable

height 212 mm (adjustable)

Isometric

Flexible wheelchair

max width: 300 mm since its adjustable

height 212 mm (adjustable)

Processes:

Drilling to make holes in rods and pipes of 4.8 mm

Welding to join various rods

Forging to make rod of 12.5 mm out of 25 mm

Parts:

- 25 mm rod (x13)mild steel disk (70 mm dia, 10 mm thick)
- 5 mm rod
- 2mm thick mild steel sheet

Mass: 4573.945g

Cost: 228.65 Rs

Exploded View

*Only slide with Wheel cap

Assembly

Assembly

Assembly dimension:

283 mm Height

496 mm width [head to tail]

241 mm depth

Approximated Expected weight: 7 KG

Cost analysis

SI	Part Name	Mass (grams)	Material Cost (INR)	Machining cost (INR)
01	Face of Dog	1041	167	43
02	Front Body	433	85	57
03	Rear body	693	65	58
04	Hind legs * 2	190	36	61
05	Paws *4	30	5	99

Cost analysis

SI	Part Name	Mass (grams)	Material Cost (INR)	Machining cost (INR)
06	Tail	57	12	100 (approx)
07	Front leg	500	124	52
08	Tail wagging mechanism			35
09	Wheel Chair	4580	230	250
Total		6905	724	755

Master Cost analysis

SI	Bill Head	Cost (INR)
01	Dog+Wheelchair	1,500
02	Labour Cost: [20-40] man hours (max)	
03	Finishing (smoothening, polishing etc)	250
04	Other expenses	250
7	- otal	2,000

Impact on Environment/Society

Our wish was to, as future engineers, leverage human ingenuity in service of life as opposed to its destruction. This is but a small attempt to alleviate pain and improve the quality of life of our canine friends.

This would make our canine friends, dogs, very happy and make their life so much better and easy.

Work division

Name → Week ↓	200174 ANUSHKA PANDA	200533 KUMAR SAURAV	200841 SAIRAM NAYAK KUNSOTH	201097 VATSALYA ROY
Week 1	Every member contributed to ideas and 4 group idea was presented in Turn 2.			
Week 2	Detailing of Pendulum Clock [Deprecated]	Detailing of Dog + Wheelchair	Detailing of wind mill[Deprecated]	Detailing of Wind mill [Deprecated]
Week 3	Dog's neck and tail wagging mechanism	Overall Isometric and measurement of each part	Tail and internal tail parts	Front legs
Week 4	Front body and animation of wagging mechanism	Isometric, assembly and tail wagging mechanism	Tail of the dog and paws of the dog	Front legs of the dog
Week 5	Animations, video making and minor enhancement	Enhancement of aesthetics and Assembly	Working and isometric part of tail	Report and Manufacturing analysis

Each member were actively involved in discussion of ideas and potential problems and it's supposed solution. Each member continuously worked on enhancing what they've done in previous weeks

Work division (Contd)

Name → Week ↓	200433 HARSHIT RAJ	200783 RICK GHOSH	200895 SATYAM KUMAR ROY	201140 YASH DAHIYA
Week 1	Every member contributed to ideas and 4 group idea was presented in Turn 2.			
Week 2	Detailing of Pendulum Clock [Deprecated]	Detailing of Dog + Wheelchair	Detailing of Dog + Wheelchair	Detailing of Wind mill [Deprecated]
Week 3	Hind legs, presentation and overall coordination	Distributed work, Worked on Dog's Head	Dog's body and tail wagging mechanism	Orthographic of wheelchair
Week 4	Hind legs, cost estimation, presentation, and coordination	Details and aesthetics on Dog's Head	Back half of the Dog's body and Paws	Details of wheelchair and Assembly
Week 5	Report, presentation and Manufacturing analysis	Report and Manufacturing, cost analysis	Report and Manufa- cturing analysis	Assembly, wheelchair and minor enhancements

Each member were actively involved in discussion of ideas and potential problems and it's supposed solution. Each member continuously worked on enhancing what they've done in previous weeks

Acknowledgement

We would like to express our special thanks of gratitude to the course Instructor, **Dr. Shashank Shekhar**, our tutor, **Dr. Kantesh Balani**, the lab in charge, **Mr. Anil Kumar Verma**, and the TAs Mr. Arijit Samaddar & Ms. Shalini Kushwaha for their valuable feedback and constructive criticisms during the planning and development of this project without whom this would not have been possible.

Secondly, we would also like to appreciate our invaluable teamwork which was certainly essential to complete such a beautiful and thoughtful design project within the limited time frame.

Thank you