Geometria – 2010/2011

PARTE II - Transformações geométricas.

1 Conceitos básicos

Seja A um espao afim associado a um espao vectorial E.

Definição 1.1 Aplicação afim, aplicação linear associada.

Uma aplicação f de um espaço afim $\mathcal A$ associado a um espaço vectorial E, $f:\mathcal A\longrightarrow\mathcal A$, diz-se aplicação afim associada à aplicação linear \overrightarrow{f} , com $\overrightarrow{f}:E\longrightarrow E$, se existe um ponto $A\in\mathcal A$ tal que para todo o ponto $M\in\mathcal A$ se verifica

$$f(M) = f(A) + \overrightarrow{f}(\overrightarrow{AM})$$

Dizemos que a aplicação afim f preserva a orientação se a aplicação linear associada \overrightarrow{f} preserva a orientação (i.e. $\det \overrightarrow{f} > 0$), caso contrário, dizemos que **inverte a orientação**.

Proposição 1.2 Seja $f: \mathcal{A} \to \mathcal{A}$ uma aplicação afim associada à aplicação linear $\overrightarrow{f}: E \to E$

- 1. Para todos os $A', M \in \mathcal{A}$ verifica-se que $f(M) = f(A) + \overrightarrow{f}(\overrightarrow{AM})$.
- 2. (Expressão analítica de uma aplicação afim)

Seja $f: \mathcal{A} \longrightarrow \mathcal{A}$ uma aplicação afim num espaço afim \mathcal{A} munido de um referencial $\mathcal{R} = \{O, \mathcal{B}\}$. Se $M \equiv (x_1, x_2, \dots, x_n)_{\mathcal{R}}$, $f(M) \equiv (y_1, y_2, \dots, y_n)_{\mathcal{R}}$ e $f(O) = (\omega_1, \omega_2, \dots, \omega_n)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \omega_n \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Equivalentemente, usando coordenadas homogéneas:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & \omega_1 \\ a_{21} & a_{22} & \dots & a_{2n} & \omega_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & \omega_n \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{pmatrix}$$

Proposição 1.3 Propriedades das aplicações afins

1. Uma aplicação afim preserva a colinearidade. De facto, se A, B e C verificam que $C = A + \lambda \overrightarrow{AB}$ ento $f(C) = f(A) + \lambda \overline{f(A)} \overline{f(B)}$.

As aplicações afins preservam portanto segmentos e semi-rectas ...

- 2. Uma aplicação afim preserva o paralelismo, isto é, se f é uma aplicação afim e \mathcal{U} e \mathcal{V} são subespaços afins de \mathcal{A} paralelos então $f(\mathcal{U})$ e $f(\mathcal{V})$ são paralelos.
- 3. Uma aplicação afim é injectiva (resp. sobrejectiva, bijectiva) se e só se a aplicação linear associada \overrightarrow{f} é injectiva (resp. sobrejectiva, bijectiva). Se f é uma aplicação afim bijectiva associada ao isomorfismo linear \overrightarrow{f} então f^{-1} é uma aplicação afim associada a \overrightarrow{f}^{-1} .
- 4. Se f e g são aplicações afins associadas, respectivamente, às aplicações lineares \overrightarrow{f} e \overrightarrow{g} , então $f \circ g$ é uma aplicação afim associada à aplicação linear $\overrightarrow{f} \circ \overrightarrow{g}$.
- 5. O conjunto de pontos fixos de f:

$$\chi = \{ M \in \mathcal{A} : f(M) = M \}$$

se não for vazio, é um subespaço afim.

Por exemplo, o conjunto de pontos fixos de uma aplicação afim de um plano afim munido de um referencial é simplesmente o conjunto de soluções de uma equação matricial:

$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & \omega_1 \\ c & d & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Isto, o subespaço afim definido pelas equações cartesianas:

$$\begin{cases} (a-1)x_1 + bx_2 + w_1 = 0\\ cx_1 + (d-1)x_2 + w_2 = 0 \end{cases}$$

A partir de agora $\mathcal A$ designará um espaço euclidiano associado a um espaço vectorial E e d a distância euclidiana definida em $\mathcal A$.

Definição 1.4 Uma aplicação bijectiva $f: \mathcal{A} \longrightarrow \mathcal{A}$ diz-se

- uma colineação se f preserva a colinearidade, isto é, A, B e C são colineares se e só se f(A), f(B) e f(C) são colineares;
- uma semelhança de razão λ ($\lambda > 0$), se

$$d(f(A), f(B)) = \lambda d(A, B), \quad \forall A, B \in \mathcal{A}$$

• uma isometria se

$$d(f(A), f(B)) = d(A, B), \quad \forall A, B \in \mathcal{A}$$

Proposição 1.5

Isometrias ⊂ Semelhanças ⊂ Colineações

Exemplos 1.6 Seja \mathcal{A} um plano afim munido de um referencial ortonormado \mathcal{R} . Os pontos de \mathcal{A} identificam-se com as coordenadas no referencial \mathcal{R} .

- 1. A aplicação definida por $f(x_1, x_2) = (x_1, -x_2)$ é uma isometria de \mathcal{A} ;
- 2. A aplicação definida por $g(x_1, x_2) = (2x_1, 2x_2)$ é uma semelhança de \mathcal{A} mas não é uma isometria;
- 3. A aplicação definida por $g(x_1, x_2) = (2x_1, x_2)$ é uma colineação mas não é uma semelhança (e portanto também não é uma isometria);

4. A aplicação definida por $h(x_1, x_2) = (x_1, x_2^3)$ é bijectiva mas não é uma colineação (não preserva a colinearidade).

Pela primeira propriedade de 1.3 sabemos que as aplicações afins bijectivas são colineações. De facto, no caso real, o recíproco também se verifica:

Teorema 1.7 Teorema fundamental da Geometria Afim

Sejam \mathcal{A} um espaço afim associado a um espaço vectorial real E e f uma aplicação bijectiva de \mathcal{A} , $f:\mathcal{A}\longrightarrow\mathcal{A}$, com dim $\mathcal{A}\geq 2$. A aplicação f preserva a colinearidade se e só se existe uma isomorfismo linear $\overrightarrow{f}:E\longrightarrow E$ tal que, para todos os pontos $A,M\in\mathcal{A}$ se verifica

$$f(M) = f(A) + \overrightarrow{f}(\overrightarrow{AM})$$

Além disso, se \mathcal{A} é um espaço euclidiano, a aplicação f é uma isometria se e só se \overrightarrow{f} é uma aplicação linear ortogonal, isto é, se \overrightarrow{f} preserva o produto escalar de E.

Em particular, num referencial \mathcal{R} , toda a colinação de \mathcal{A} admite uma representação matricial:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & \omega_1 \\ a_{21} & a_{22} & \dots & a_{2n} & \omega_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & \omega_n \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{pmatrix}$$

com a matriz $A = (a_{ij})$ invertível. Além disto, se o referencial \mathcal{R} for um referencial ortonormado, f será uma isometria se e só se $A = (a_{ij})$ é uma matriz ortogonal (isto é $A^{-1} = A^t$).

Exemplos 1.8

Seja \mathcal{A} um plano euclidiano munido de um referencial \mathcal{R} . Se $f: \mathcal{A} \longrightarrow \mathcal{A}$ escrevemos $M \equiv (x_1, x_2)_{\mathcal{R}}$ e $f(M) \equiv (y_1, y_2)_{\mathcal{R}}$

1. As aplicações afins de \mathcal{A} representam-se matricialmente, usando coordenadas homogéneas, por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & \omega_1 \\ c & d & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

ou seja,

$$f(x_1, x_2) = (ax_1 + bx_2 + \omega_1, cx_1 + dx_2 + \omega_2)$$

As colineações de \mathcal{A} (aplicações bijectivas que preservam a colinearidade) verificam

$$ad - bc \neq 0$$

2. Se o referencial $\mathcal R$ for ortonormado as isometrias de $\mathcal A$ representam-se matricialmente, usando coordenadas homogéneas, por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a & -\epsilon b & \omega_1 \\ b & \epsilon a & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

com $\epsilon = \pm 1$ e $a^2 + b^2 = 1$.

As semelhanças são afinidades, em particular são aplicações afins e verificam todas as propriedades enunciadas na proposição 1.3. Também verificam algumas propriedades extra, como se indica na proposição seguinte.

Proposição 1.9 Propriedades das semelhanças.

1. As semelhanças preservam os ângulos não orientados, isto é, se $f:\mathcal{A}\longrightarrow\mathcal{A}$ é uma semelhança do espaço euclidiano de razão λ , então

$$\cos\{\overrightarrow{AB}, \overrightarrow{AC}\} = \cos\{\overrightarrow{f(A)f(B)}, \overrightarrow{f(A)f(C)}\}\$$

As semlhanças que preservam a orientação (chamadas **semelhanças directas**) preservam os ângulos orientados .

- 2. A composta de um semelhança de razão λ e uma semelhança de razão μ é uma semelhança de razão $\lambda \cdot \mu$.
- 3. A inversa de uma semelhança de razão λ é uma semelhança de razão $1/\lambda$.
- 4. A imagem de uma circunferência de centro Ω e raio r através de uma semelhança f de razão λ é uma circunferência de centro $f(\Omega)$ e raio λr .

Recorde-se que uma isometria é uma semelhança de razão 1:

Corolário 1.10 A composta de isometrias é uma isometria e a inversa de uma isometria é uma isometria.

Nota: As proposições anteriores e o corolário implicam que os conjuntos de afinidades, de semelhanças e de isometrias de um espaço euclidiano \mathcal{A} tem estrutura de grupo. Se designarmos estes grupos (exemplos básicos de grupos não comutativos), respectivamente, por $Aff(\mathcal{A})$, $Sem(\mathcal{A})$ e $Iso(\mathcal{A})$, o teorema 1.5 implica

$$Iso(A) \leq Sem(A) \leq Aff(A)$$

(O símbolo \leq significa, neste contexto, subgrupo)

2 Exemplos

2.1 Translações

Seja \overrightarrow{v} um vector fixado de E. Chamamos **translação pelo vector** \overrightarrow{v} e designamos $T_{\overrightarrow{v}}$ à aplicação $T: \mathcal{A} \longrightarrow \mathcal{A}$ definida por $T_{\overrightarrow{v}}(M) = M + \overrightarrow{v}$, para todo o $M \in \mathcal{A}$.

Expressão analítica de uma translação.

1. Seja $\mathcal{R}=\{O,\mathcal{B}\}$ um referencial de \mathcal{A} . Se $T_{\overrightarrow{v}}:\mathcal{A}\longrightarrow\mathcal{A}$ é a translação pelo vector $\overrightarrow{v}\equiv(v_1,v_2)_{\mathcal{B}}$, para cada $M\equiv(x_1,x_2)_{\mathcal{R}}$ tem-se que

$$T_{\overrightarrow{v}}(M) \equiv (x_1 + v_1, x_2 + v_2)_{\mathcal{R}}$$

Matricialmente, se $T_{\overrightarrow{v}}(M) \equiv (y_1, y_2)_{\mathcal{R}}$, tem-se

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{c} v_1 \\ v_2 \end{array}\right) + \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Ou, equivalentemente, usando coordenadas homogéneas, se $T_{\overrightarrow{v}}(M) \equiv (y_1, y_2)_{\mathcal{R}}$, tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & v_1 \\ 0 & 1 & v_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

2. Seja \mathcal{A} um espaço afim euclidiano de dimensão n munido de um referencial.

Se $T_{\overrightarrow{v}}: \mathcal{A} \longrightarrow \mathcal{A}$ é a translação pelo vector $\overrightarrow{v} \equiv (v_1, v_2, \dots, v_n)_{\mathcal{B}}$, para cada $M \equiv (x_1, x_2, \dots, x_n)_{\mathcal{R}}$ tem-se que

$$T_{\overrightarrow{v}}(M) \equiv (x + v_1, x_2 + v_2, \dots, x_n + v_n)_{\mathcal{R}}$$

Propriedades das translações

- 1. As translações são isometrias.
- 2. As translações formam um grupo abeliano para a composição de aplicações, de facto:

$$(T_{\overrightarrow{v}})^{-1} = T_{-\overrightarrow{v}}$$
 e $T_{\overrightarrow{v}} \circ T_{\overrightarrow{w}} = T_{\overrightarrow{v}+\overrightarrow{w}}$

3. As translações transformam subespaços afins em subespaços afins paralelos aos iniciais, isto é, se \mathcal{U} é um subespaço afim de \mathcal{A} então

$$\mathcal{U} /\!\!/ T_{\overrightarrow{v}}(\mathcal{U})$$

2.2 Simetrias centrais

Seja Ω um ponto fixado de \mathcal{A} . Chamamos simetria central com centro Ω e designamos s_{Ω} à aplicação $s_{\Omega}: \mathcal{A} \longrightarrow \mathcal{A}$ definida por

$$s_{\Omega}(M) = \Omega - \overrightarrow{\Omega M}$$

para cada $M \in \mathcal{A}$.

Expressão analítica de uma simetria central

1. Seja \mathcal{A} um plano afim euclidiano munido de um referencial \mathcal{R} . Se $s_{\Omega}: \mathcal{A} \longrightarrow \mathcal{A}$ é a simetria central com centro $\Omega \equiv (\omega_1, \omega_2)_{\mathcal{R}}$, então, para cada $M \equiv (x_1, x_2)_{\mathcal{R}}$, tem-se que

$$s_{\Omega}(M) \equiv (2\omega_1 - x_1, 2\omega_2 - x_2)$$

Matricialmente, se $s_{\Omega}(M) \equiv (y_1, y_2)_{\mathcal{R}}$, tem-se

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 2\omega_1 \\ 2\omega_2 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Ou, equivalentemente, usando coordenadas homogéneas, se $s_{\Omega}(M) \equiv (y_1, y_2)_{\mathcal{R}}$, tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 2\omega_1 \\ 0 & -1 & 2\omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

2. Em geral, seja \mathcal{A} um espaço afim euclidiano munido de um referencial. Se $s_{\Omega}: \mathcal{A} \longrightarrow \mathcal{A}$ é a simetria central com centro $\Omega = (\omega_1, \omega_2, \dots, \omega_n)$, então, para cada $M = (x_1, x_2, \cdots, x_n) \in \mathcal{A}$, tem-se que

$$s_{\Omega}(M) = (2\omega_1 - x_1, 2\omega_2 - x_2, \dots, 2\omega_n - x_n)$$

Propriedades das simetrias centrais

- 1. As simetrias centrais são isometrias.
- 2. As simetrias centrais transformam subespaços afins em subespaços afins paralelos aos iniciais, isto é, se \mathcal{U} é um subespaço afim de \mathcal{A} então

$$\mathcal{U} /\!\!/ s_{\Omega}(\mathcal{U})$$

2.3 Homotetias

Sejam Ω um ponto fixado de \mathcal{A} e λ um número real não nulo. Chamamos homotetia com centro Ω e razão λ à aplicação $h:\mathcal{A}\longrightarrow\mathcal{A}$ definida por

$$h(M) = \Omega + \lambda \Omega M$$

para cada $M \in \mathcal{A}$.

Observe-se que uma simetria central é uma homotetia com razão -1 e a identidade 1 é uma homotetia com razão 1.

Expressão analítica de uma homotetia.

1. Seja \mathcal{A} um plano afim euclidiano munido de um referencial \mathcal{R} . Se $h: \mathcal{A} \longrightarrow \mathcal{A}$ é a homotetia com centro $\Omega \equiv (\omega_1, \omega_2)_{\mathcal{R}}$ e razão λ , então, para cada $M \equiv (x_1, x_2)_{\mathcal{R}}$ tem-se que

$$h(M) \equiv ((1-\lambda)\omega_1 + \lambda x_1, (1-\lambda)\omega_2 + \lambda x_2)_{\mathcal{R}}$$

Matricialmente, se $h(M) \equiv (y_1, y_2)_{\mathcal{R}}$, tem-se

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} (1-\lambda)\omega_1 \\ (1-\lambda)\omega_2 \end{pmatrix} + \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Ou, equivalentemente, usando coordenadas homogéneas, se $h \equiv (y_1, y_2)_{\mathcal{R}}$, tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 & (1-\lambda)\omega_1 \\ 0 & \lambda & (1-\lambda)\omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

2. Em geral, se h é uma homotetia com centro Ω e razão λ num espaço afim de dimensão n munido de um referencial, com $\Omega = (\omega_1, \omega_2, \dots, \omega_n)$ e $M = (x_1, x_2, \dots, x_n)$, então

$$h(M) = ((1 - \lambda)\omega_1 + \lambda x_1, (1 - \lambda)\omega_2 + \lambda x_2, \dots, (1 - \lambda)\omega_n + \lambda x_n)$$

 $^{^1}$ Alguns autores não consideram a identidade uma homotetia, excluindo o caso $\lambda=1$ da definição.

Propriedades das homotetias.

- 1. Uma homotetia de razão λ é uma semelhança de razão $|\lambda|$.
- 2. As únicas homotetias que são isometrias são a identidade e as simetrias centrais.
- 3. A inversa de uma homotetia é uma homotetia com o mesmo centro e razão inversa. A composta de duas homotetias é uma homotetia ou uma translação.
- 4. As homotetias transformam subespaços afins em subespaços afins paralelos aos iniciais, isto é, se $\mathcal U$ é um subespaço afim de $\mathcal A$ então

$$\mathcal{U} /\!\!/ h(\mathcal{U})$$

Nota 2.1 Seja $s:\mathcal{A}\longrightarrow\mathcal{A}$ uma semelhança do plano euclidiano de razão r. Observe-se que, para toda a homotetia $h:\mathcal{A}\longrightarrow\mathcal{A}$ de razão 1/r, as aplicações compostas $h\circ s$ e $s\circ h$ são isometrias de \mathcal{A} . Em particular, se $h\circ s$ é uma isometria f, isto é, se

$$h \circ s = f$$

então

$$s = h^{-1} \circ f$$

com h^{-1} uma homotetia (a inversa de uma homotetia é uma homotetia de razão inversa) de razão r. Assim, toda a semelhança de razão r é composta de uma homotetia de razão r e uma isometria.

Por exemplo, sejam \mathcal{A} é um plano euclidiano munido de um referencial ortonormado e $f: \mathcal{A} \longrightarrow \mathcal{A}$ uma semelhança de \mathcal{A} de razão r. Se $M \equiv (x_1, x_2)_{\mathcal{R}}$ e $f(M) \equiv (y_1, y_2)_{\mathcal{R}}$, a representação matricial de f será do tipo:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} ra & -\epsilon rb & \omega_1 \\ rb & \epsilon ra & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

 $\operatorname{com}\, \epsilon = \pm 1 \,\operatorname{e}\, a^2 + b^2 = 1.$

Proposição 2.2 Caracterização das homotetias e translações

Sejam \mathcal{A} um espaço afim euclidiano e $f: \mathcal{A} \longrightarrow \mathcal{A}$ uma aplicação bijectiva que preserva a colinearidade e tal que, para toda a recta r de \mathcal{A} , as rectas r e f(r) são paralelas. Então f é uma homotetia ou uma translação.

2.4 Projecções ortogonais.

Seja $\mathcal U$ um subespaço afim de um espaço afim euclidiano $\mathcal A$. Para cada ponto M de $\mathcal A$ seja p(M) a projecção ortogonal de M em $\mathcal U$. A aplicação $p:\mathcal A\longrightarrow \mathcal A$ diz-se projecção ortogonal no subespaço $\mathcal U$.

Projecção ortogonal num hiperplano afim

Sejam $\mathcal{H}=A+H$ um hiperplano de \mathcal{A} e \overrightarrow{n} um vector **unitário** normal ao hiperplano. Se $M\in\mathcal{A}$ e $p:\mathcal{A}\longrightarrow\mathcal{A}$ é a projecção no hiperplano \mathcal{H} tem-se

$$p(M) = M - (\overrightarrow{AM} \cdot \overrightarrow{n})\overrightarrow{n}$$

Projecção ortogonal numa recta afim

Seja $r=A+<\overrightarrow{u}>$ uma recta de \mathcal{A} , com \overrightarrow{u} um vector **unitário**. Se $M\in\mathcal{A}$ e $p:\mathcal{A}\longrightarrow\mathcal{A}$ é a projecção na recta r tem-se:

$$p(M) = A + (\overrightarrow{AM} \cdot \overrightarrow{u})\overrightarrow{u}$$

Atenção : As projeções **NÃO** são aplicações bijectivas mas preservam a colinearidade e o paralelismo.

2.5 Simetrias ortogonais e reflexões.

Seja $\mathcal U$ um subespaço afim de um espaço afim euclidiano $\mathcal A$. Para cada ponto M de $\mathcal A$ sejam p(M) a projecção ortogonal de M em $\mathcal U$ e s(M) o único ponto de $\mathcal A$ tal que p(M) é o ponto médio entre M e s(M). A aplicação $s:\mathcal A\longrightarrow \mathcal A$ diz-se simetria ortogonal com base $\mathcal U$. Se $\mathcal U$ é um hiperplano, a simetria ortogonal é também chamada reflexão no hiperplano $\mathcal U$.

(O desenho corresponde à aplicação definida por $s(x_1, x_2) = (x_2, x_1)$. Observe-se que os pontos A e s(A) são simétricos em relação à recta $r \equiv y - x = 0$.)

Expressão analítica da reflexão num hiperplano afim

Sejam $\mathcal A$ um espaço afim euclidiano, $\mathcal H=A+H$ um hiperplano de $\mathcal A$ e $\overrightarrow n$ um vector **unitário** normal ao hiperplano. Se $M\in\mathcal A$ e $s:\mathcal A\longrightarrow\mathcal A$ é a reflexão no hiperplano $\mathcal H$ tem-se

$$s(M) = M - 2(\overrightarrow{AM} \cdot \overrightarrow{n})\overrightarrow{n}$$

Propriedades das simetrias ortogonais

As simetrias ortogonais são isometrias, em particular, preservam a colinearidade, a medida dos ângulos e o paralelismo.

Reflexões no plano euclidiano

Suponha-se que $\mathcal A$ é um plano euclidiano munido de um referencial ortonormado e que $\sigma:\mathcal A\to\mathcal A$ é a reflexão numa recta r.

Reflexão numa recta r que passa pela origem O do referencial.

Seja r_O uma recta que passa pela origem O do referencial e $\overrightarrow{u}=(c,d)$ um vector director **unitário** (i.e. $c^2+d^2=1$) de r_O . Podemos considerar A=O e tem-se

$$\sigma_O(M) = M - 2(\overrightarrow{OM} \cdot \overrightarrow{n})\overrightarrow{n}$$

com \overrightarrow{n} um vector normal unitário da recta.

Tem-se que $\overrightarrow{n}=(-d,c)$ e, se M=(x,y), então $\overrightarrow{OM}=(x,y)$. Assim

$$\overrightarrow{OM} \cdot \overrightarrow{n} = (x, y) \cdot (-d, c) = dx + cy$$

e

$$\sigma_O(x,y) = (x,y) - 2(-dx + cy)(-d,c) = ((1-2d^2)x + 2dcy, 2dcx + (1-2c^2)y)$$

Note-se que, como $c^2+d^2=1$, tem-se $1-2c^2=2d^2-1$ e portanto a expressão matricial de σ_O é

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 2d^2 & 2cd & 0 \\ 2cd & 2d^2 - 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Notas:

• Se a recta r_O é dada através de uma equação vectorial, para obter o vector unitário $\overrightarrow{u}=(c,d)$ basta normalizar o vector director dado. Se a recta r_O é dada através de uma equação cartesiana.

$$ax + by = 0$$

ao trabalharmos num referencial ortonormado, podemos considerar como vector director de r_O o vector (-b,a) e depois normalizar para obter \overrightarrow{u} .

• Recorde-se que um vector unitário $\overrightarrow{u}=(c,d)$ verifica $c^2+d^2=1$. Existe então $\theta\in[0,2\pi[$ tal que $c=\cos\theta$ e $d=\sin\theta$, ou seja, podemos supor que o vector director unitário de r é da forma:

$$\overrightarrow{u} = (\cos \theta, \sin \theta)$$

Usando as fórmulas do ângulo duplo, a expressão matricial anterior pode escrever-se do modo seguinte, mais simples de recordar:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta & 0 \\ \sin 2\theta & -\cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Reflexão numa recta r qualquer.

Seja r uma recta que passa por um ponto $A=(a_1,a_2)$ e está dirigida por um vector **unitário** $\overrightarrow{u}=(c,d)$ (i.e. $c^2+d^2=1$). A reflexão σ na recta r pode obter-se como a composta:

$$\sigma = t^{-1} \circ \sigma_O \circ t$$

onde t é a translação que transforma o ponto A no origem do referencial O. Assim, a matriz que representa σ obtém-se como o produto:

$$\begin{pmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - 2d^2 & 2cd & 0 \\ 2cd & 2d^2 - 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Assim, se $\overrightarrow{u} = (\cos \theta, \sin \theta)$, σ é definida pelo produto:

$$\begin{pmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos 2\theta & \sin 2\theta & 0 \\ \sin 2\theta & -\cos 2\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -a_1 \\ 0 & 1 & -a_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Reflexões no espaço euclidiano tridimensional

Suponha-se que \mathcal{A} é um espaço euclidiano tridimensional munido de um referencial ortonormado e que $\sigma: \mathcal{A} \to \mathcal{A}$ é a reflexão num plano π .

Reflexão num plano π_O que passa pela origem O do referencial.

Seja π_O um plano que passa pela origem O do referencial definido pela equação cartesiana:

$$Ax_1 + Bx_2 + Cx_3 = 0$$

onde $\overrightarrow{n}=(A,B,C)$ é um vector **unitário** (i.e. $A^2+B^2+C^2=1$).

Seja M um ponto genérico do espaço tridimensional. Recorde-se que

$$\sigma_O(M) = M - 2(\overrightarrow{OM} \cdot \overrightarrow{n})$$

Note-se que, se $M=(x_1,x_2,x_3)$, então $\overrightarrow{OM}\cdot\overrightarrow{n}=Ax_1+Bx_2+Cx_3$ donde

$$(\overrightarrow{OM} \cdot \overrightarrow{n})\overrightarrow{n} = (A^2x_1 + ABx_2 + ACx_3, ABx_1 + B^2x_2 + BCx_3, ACx_1 + BCx_2 + C^2x_3)$$

Se $\sigma_O(x_1, x_2, x_3) = (y_1, y_2, y_3)$, usando a representação matricial em coordenadas homogéneas obtemos:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 2A^2 & -2AB & -2AC & 0 \\ -2AB & 1 - 2B^2 & -2BC & 0 \\ -2AC & -2BC & 1 - 2C^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

Reflexão num plano qualquer.

Seja π um plano que passa por um ponto $A=(a_1,a_2,a_3)$ e é perpendicular ao vector unitário $\overrightarrow{n}=(A,B,C)$. A reflexão no plano π pode obter-se como a composta:

$$\sigma = t^{-1} \circ \sigma_O \circ t$$

onde t é a translação que transforma o ponto A no origem do referencial O e σ_O é a reflexão no plano π_0 que passa pela origem de coordenadas e é paralelo a π . Assim, a matriz que representa σ obtém-se como o produto:

$$\begin{pmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & a_2 \\ 0 & 0 & 1 & a_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - 2A^2 & -2AB & -2AC & 0 \\ -2AB & 1 - 2B^2 & -2BC & 0 \\ -2AC & -2BC & 1 - 2C^2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -a_1 \\ 0 & 1 & 0 & -a_2 \\ 0 & 0 & 1 & -a_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2.6 As reflexões deslizantes

Sejam $\mathcal A$ um espaço afim euclidiano, $\mathcal H$ um hiperplano de $\mathcal A$ e \overrightarrow{v} um vector **não nulo** paralelo ao hiperplano $\mathcal H$. A translação pelo vector \overrightarrow{v} e a reflexão s no hiperplano $\mathcal H$ comutam, isto é:

$$T_{\overrightarrow{v}} \circ s = s \circ T_{\overrightarrow{v}}$$

A aplicação composta $T_{\overrightarrow{v}} \circ s$ diz-se **reflexão deslizante no hiperplano** $\mathcal H$ **pelo vector** \overrightarrow{v} .

Expressão analítica de uma reflexão deslizante num plano afim.

Seja r uma recta dirigida por um vector **unitário** $\overrightarrow{u}=(c,d)$ (i.e. $c^2+d^2=1$) e $\overrightarrow{v}=(v_1,v_2)$ um vector paralelo à recta r. A reflexão deslizante f composta da reflexão σ em r e a translação pelo vector \overrightarrow{v} representa-se matricialmente por:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 2d^2 & 2cd & A_1 + v_1 \\ 2cd & 2d^2 - 1 & A_2 + v_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

onde a matriz

$$\begin{pmatrix} 1 - 2d^2 & 2cd & A_1 \\ 2cd & 2d^2 - 1 & A_2 \\ 0 & 0 & 1 \end{pmatrix}$$

é a matriz na reflexão σ obtida na secção anterior.

Propriedades das reflexões deslizantes: As reflexões deslizantes são isometrias, em particular, as reflexões deslizantes preservam a colinearidade, a medida dos ângulos e o paralelismo.

2.7 Projecções e simetrias paralelas.

Seja $\mathcal A$ um espaço afim euclidiano associado a um espaço vectorial E. Considerem-se $\mathcal U$ e $\mathcal V$ subespaços afins de $\mathcal A$ associados aos subespaços vectoriais U e V verificando

$$U \cap V = \{0\}$$
 e $U + V = E$.

Nestas condições, para cada ponto $P \in \mathcal{A}$ o subespaço afim paralelo a $\mathcal V$ passando por P

$$\mathcal{V}_P = P + V$$

intersecta $\mathcal U$ num único ponto Q_P chamado **projecção de** P **em** $\mathcal U$ **paralelamente a** $\mathcal V$. O ponto

$$S_P = P + 2\overrightarrow{PQ_P}$$

é chamado simétrico de P sobre \mathcal{U} paralelamente a \mathcal{V} .

(Projeccção num plano $\mathcal U$ paralelamente a uma recta $\mathcal V$)

(Projeccção numa recta $\mathcal U$ paralelamente a um plano $\mathcal V$)

As transformações do espaço euclidiano definidas por

$$P \to Q_P$$
 e $P \to S_P$

são chamadas respectivamente, **projecção em** \mathcal{U} **paralelalmente a** \mathcal{V} (em inglês "parallel projection") e **simetria sobre** \mathcal{U} **paralelalmente a** \mathcal{V} . São aplicações afins, mas, em geral, não são isometrias (nem semelhanças).

NOTA: A projecção paralela e a simetria paralela onde \mathcal{U} e \mathcal{V} são ortogonais é de facto a projecção ortogonal em \mathcal{U} (em inglês "orthographic projection") e a simetria ortogonal (que é uma isometria).

Projecção e simetria num hiperplano afim paralelas a um vector.

Sejam π um hiperplano afim e \overrightarrow{v} um vector do espaço **não** paralelo ao hiperplano π . Para cada ponto M, a recta que passa por M e está dirigida por \overrightarrow{v} intersecta o hiperplano π na **projecção paralela** ao vector \overrightarrow{v} no hiperplano π do ponto M, que designamos par(M). Se designarmos por sim a simetria paralela a \overrightarrow{v} sobre π , o ponto sim(M) será então:

$$sim(M) = M + 2\overline{Mpar(M)}$$
 \downarrow^{M}
 \downarrow^{N}
 $\downarrow^{par(M)}$
 $\downarrow^{par(N)}$

Seja \overrightarrow{n} um vector normal **unitário** ao hiperplano π :

Note-se que par(M) pertence ao hiperplano π e à recta que passa por M e está dirigida por \overrightarrow{v} , portanto existe λ tal que

$$par(M) = M + \lambda \overrightarrow{v}$$

equivalentemente, existe λ tal que $\overrightarrow{Mpar(M)} = \lambda \overrightarrow{v}$. Note-se que

$$\overrightarrow{p(M)par(M)} = \overrightarrow{p(M)M} + \overrightarrow{Mpar(M)}$$

onde p(M) designa a projecção ortogonal de M no plano π . Recorde-se que

$$\overrightarrow{p(M)M} = (\overrightarrow{AM} \cdot \overrightarrow{n})\overrightarrow{n}$$

com A um ponto qualquer do hiperplano π . Tem-se então

$$\overrightarrow{p(M)par(M)} = (\overrightarrow{AM} \cdot \overrightarrow{n})\overrightarrow{n} + \lambda \overrightarrow{v}$$

Como \overrightarrow{n} é ortogonal ao vector $\overrightarrow{p(M)par(M)}$, obtemos $\lambda = -\frac{(\overrightarrow{AM} \cdot \overrightarrow{n})}{\overrightarrow{v} \cdot \overrightarrow{n}}$ donde

$$par(M) = M - \frac{(\overrightarrow{AM} \cdot \overrightarrow{n})}{\overrightarrow{v} \cdot \overrightarrow{n}} \overrightarrow{v}$$

e também

$$sim(M) = M + 2\overline{Mpar(M)} = M - 2\frac{(\overrightarrow{AM} \cdot \overrightarrow{n})}{\overrightarrow{v} \cdot \overrightarrow{n}} \overrightarrow{v}$$

Projecções e simetrias paralelas no espaço tridimensional.

Seja \mathcal{A} um espaço euclidiano tridimensional munido de um referencial ortonormado.

Projecção e simetria paralela a um vector \overrightarrow{v} num plano π_O que passa pela origem.

Seja π_O um plano que passa pela origem O de coordenadas definido pela equação cartesiana

$$Ax + By + Cz = \mathbf{0}$$

com $A^2+B^2+C^2=1$, (isto é, o vector normal $\overrightarrow{n}=(A,B,C)$ é unitário). Sejam par e sim respectivamente a projecção paralela e a simetria paralela na direcção de um vector $\overrightarrow{v}=(v_1,v_2,v_3)$ no plano π_O .

Recordemos que, como o plano π_O passa pela origem de coordenadas, podemos considerar A=O e obtemos:

$$par(M) = M - \frac{(\overrightarrow{OM} \cdot \overrightarrow{n})}{\overrightarrow{v} \cdot \overrightarrow{n}} \overrightarrow{v}$$
 e $sim(M) = M - 2\frac{(\overrightarrow{OM} \cdot \overrightarrow{n})}{\overrightarrow{v} \cdot \overrightarrow{n}} \overrightarrow{v}$

Para simplificar, considere $d = \overrightarrow{v} \cdot \overrightarrow{n} = Av_1 + Bv_2 + Cv_3$. Se $M = (x_1, x_2, x_3)$, como $\overrightarrow{OM} = (x_1, x_2, x_3)$, tem-se

$$par(M) = (x_1, x_2, x_3) - \frac{1}{d}(Ax_1 + Bx_2 + Cx_3)(v_1, v_2, v_3)$$

donde

$$par(M) = ((1 - \frac{Av_1}{d})x_1 - \frac{Bv_1}{d}x_2 - \frac{Cv_1}{d}x_3, -\frac{Av_2}{d}x_1 + (1 - \frac{Bv_2}{d})x_2 - \frac{Cv_2}{d}x_3, -\frac{Av_3}{d}x_1 - \frac{Bv_3}{d}x_2 + (1 - \frac{Cv_3}{d})x_3)$$

Se $par(M) = (y_1, y_2, y_3)$, matricialmente tem-se:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{Av_1}{d} & -\frac{Bv_1}{d} & -\frac{Cv_1}{d} & 0 \\ -\frac{Av_2}{d} & (1 - \frac{Bv_2}{d}) & -\frac{Cv_2}{d} & 0 \\ -\frac{Av_3}{d} & -\frac{Bv_3}{d} & (1 - \frac{Cv_3}{d}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

Analogamente, como

$$sim(M) = M - 2 \frac{(\overrightarrow{OM} \cdot \overrightarrow{n})}{\overrightarrow{v} \cdot \overrightarrow{n}} \overrightarrow{v}$$

considerando $d=\overrightarrow{v}\cdot\overrightarrow{n}=Av_1+Bv_2+Cv_3$. Se $M=(x_1,x_2,x_3)$, como $\overrightarrow{OM}=(x_1,x_2,x_3)$, tem-se

$$sim(M) = (x_1, x_2, x_3) - \frac{2}{d}(Ax_1 + Bx_2 + Cx_3)(v_1, v_2, v_3)$$

donde

$$sim(M) = ((1 - \frac{2Av_1}{d})x_1 - \frac{2Bv_1}{d}x_2 - \frac{2Cv_1}{d}x_3, -\frac{2Av_2}{d}x_1 + (1 - \frac{2Bv_2}{d})x_2 - \frac{2Cv_2}{d}x_3, -\frac{2Av_3}{d}x_1 - \frac{2Bv_3}{d}x_2 + (1 - \frac{2Cv_3}{d})x_3)$$

Se $sim(M) = (y_1, y_2, y_3)$, matricialmente tem-se:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{2Av_1}{d} & -\frac{2Bv_1}{d} & -\frac{2Cv_1}{d} & 0 \\ -\frac{2Av_2}{d} & (1 - \frac{2Bv_2}{d}) & -\frac{2Cv_2}{d} & 0 \\ -\frac{2Av_3}{d} & -\frac{2Bv_3}{d} & (1 - \frac{2Cv_3}{d}) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

Projecção e simetria paralela a um vector \overrightarrow{v} num plano π qualquer.

Como é usual, a projecção paralela ao vector \overrightarrow{v} num plano π pode obter-se como a composta:

$$par = t^{-1} \circ par_O \circ t$$

onde t é a translação que transforma um ponto A do plano π no origem do referencial O e par_O é a projecção paralela ao vector \overrightarrow{v} no plano π_O paralelo a π que passa pela origem de coordenadas. Analogamente, a simetria paralela ao vector \overrightarrow{v} num plano π pode obter-se como a composta:

$$sim = t^{-1} \circ sim_O \circ t$$

onde t é a translação que transforma um ponto A do plano π no origem do referencial O e sim_O é a simetria paralela ao vector \overrightarrow{v} no plano π_O paralelo a π que passa pela origem de coordenadas.

Propriedades das projecções e simetrias paralelas: São aplicações afins mas, em geral, não são isometrias nem semelhanças. As simetrias paralelas são aplicações bijectivas.

2.8 Re-dimensionamentos (transformações "scaling")

Seja $\mathcal A$ um espaço euclidiano de dimensão n munido de um referencial $\mathcal R=\{O; (\overrightarrow{e}_1,\dots,\overrightarrow{e}_n)\}$. São chamadas transformações tipo "scaling" ou re-dimensionamentos centrados na origem e de parâmetros $\alpha_1,\alpha_2,\dots,\alpha_n$ nas direcções principais, às afinidades representadas matricialmente no referencial $\mathcal R$ por:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 & 0 \\ 0 & \alpha_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \alpha_n & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{pmatrix}$$

Observe-se que, se $\alpha_k = \lambda$, para todo o $k = 1, \ldots, n$, a re-dimensionamento obtido é, de facto, uma homotetia com centro a origem de coordenadas O e razão λ . Este tipo de re-dimensionamentos (homotetias) são também chamadodos re-dimensionamentos uniformes ("uniform scaling").

(Re-dimensionamento de parâmetros 3 e 2 nas direcções principais)

Em geral, se $\mathcal{R}'=\{O',(\overrightarrow{v}_1,\ldots,\overrightarrow{v}_n)\}$ é um outro referencial do espaço euclidiano, podemos definir o re-dimensionamento no referencial \mathcal{R}' de parâmetros α_1,\ldots,α_n de modo análogo. A representação matricial deste re-dimensionamento no referencial original \mathcal{R} obtém-se simplesmente como uma mudança de coordenadas.

Nota 2.3 Propriedades geométricas dos re-dimensionamentos

- Os re-dimensionamentos s\u00e3o aplica\u00f3\u00f3es afins bijectivas, portanto preservam a colinearidade e o paralelismo.
- Em geral, os re-dimensionamentos não são semelhanças, ou seja, **não** preservam ângulos. Os únicos re-dimensionamentos que são semelhanças são os re-dimensionamentos uniformes (i.e. as homotetias)
- Em geral, os re-dimensionamentos não são isometrias, ou seja **não** preservam distâncias. Os únicos re-dimensionamentos que são isometrias são os "re-dimensionamentos uniformes de parâmetros 1 ou -1", ou seja as homotetias de razão 1 ou -1, ou seja, a identidade ou as simetrias centrais!

Exemplo 1: Re-dimensionamentos no plano euclidiano

Seja $\mathcal{R}'=\{O',(\overrightarrow{v}_1,\overrightarrow{v}_2))\}$ um referencial do plano euclidiano. O re-dimensionamento f de parâmetros α e β centrado em O nas direcções definidas por \overrightarrow{v}_1 e \overrightarrow{v}_2 , representa-se, no referencial $\mathcal{R}'=\{O',(\overrightarrow{v}_1,\overrightarrow{v}_2)\}$ por:

$$\begin{pmatrix} y_1' \\ y_2' \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix}$$

se $M \equiv (x_1', x_2')_{\mathcal{R}}$ e $f(M) \equiv (y_1', y_2')_{\mathcal{R}'}$. Assim, o re-dimensionamento f, no **referencial inicial**, $\mathcal{R} = \{O, (\overrightarrow{e}_1, \overrightarrow{e}_2)\}$ pode obter-se realizando a mudança de coordenadas de M e f(M). Por outras palavras, se

• $O' \equiv (\omega_1, \omega_2)_{\mathcal{R}}$;

$$\bullet \left\{ \begin{array}{rcl} \overrightarrow{v}_1 &=& \alpha_{11} \overrightarrow{e}_1 &+& \alpha_{21} \overrightarrow{e}_2 \\ \overrightarrow{v}_2 &=& \alpha_{12} \overrightarrow{e}_1 &+& \alpha_{22} \overrightarrow{e}_2 \end{array} \right.$$

tem-se

$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \omega_1 \\ \alpha_{21} & \alpha_{22} & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix}$$

е

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \omega_1 \\ \alpha_{21} & \alpha_{22} & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1' \\ y_2' \\ 1 \end{pmatrix}$$

Assim

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \omega_1 \\ \alpha_{21} & \alpha_{22} & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha'_{11} & \alpha'_{12} & \omega'_1 \\ \alpha'_{21} & \alpha_{22} & \omega'_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

onde

$$\begin{pmatrix}
\alpha'_{11} & \alpha'_{12} & \omega'_{1} \\
\alpha'_{21} & \alpha_{22} & \omega'_{2} \\
0 & 0 & 1
\end{pmatrix}$$

é a matriz inversa (mudança de coordenadas inversa) de

$$\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \omega_1 \\
\alpha_{21} & \alpha_{22} & \omega_2 \\
0 & 0 & 1
\end{array}\right)$$

Em geral, são feitos re-dimensionamentos em direcções ortogonais definidas por vectores unitários. Neste caso, o referencial \mathcal{R}' é um referencial ortonormado e a mudança de coordenadas é uma mudança de referenciais ortonormados, com a consequente simplificação de operações):

$$\begin{pmatrix} \alpha'_{11} & \alpha'_{12} & \omega'_{1} \\ \alpha'_{21} & \alpha_{22} & \omega'_{2} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{21} & -\omega_{1}\alpha_{11} - \omega_{2}\alpha_{21} \\ \alpha_{12} & \alpha_{22} & -\omega_{1}\alpha_{12} - \omega_{2}\alpha_{22} \\ 0 & 0 & 1 \end{pmatrix}$$

Exemplo 2: Re-dimensionamentos no espaço euclidiano tridimensional

Os re-dimensionamentos em espaços tridimensionais funcionam exactamente igual que no plano. Assim, são chamadas transformações tipo "scaling" ou re-dimensionamentos centrados na origem e de parâmetros α , β e γ nas direcções principais, às afinidades representadas matricialmente por:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

O caso $\alpha=\beta=\gamma$ corresponde às homotetias (re-dimensionamentos uniformes ou "uniform scaling"). Para obter re-dimensionamentos em direcções diferentes das direcções principais efectua-se simplesmente uma mudança de referencial (exactamente igual que no plano).

2.9 Homologias: transvecções e afinidades

Seja \mathcal{A} um espao afim de dimensão n e \mathcal{H} um hiperplano de \mathcal{A} . Uma **homologia de base** \mathcal{H} é uma transformação afim bijectiva de \mathcal{A} , $f: \mathcal{A} \to \mathcal{A}$, cujo conjunto de pontos fixos é \mathcal{H} .

Propriedade Se $f: \mathcal{A} \to \mathcal{A}$ é uma homologia de base um hiperplano \mathcal{H} então:

- 1. todo o hiperplano paralelo a \mathcal{H} é enviado a um hiperplano paralelo a \mathcal{H} ;
- 2. existe uma direcção tal que toda a recta nessa direcção é globalmente invariante.

De facto, é possível provar também que f verifica uma e uma só das seguintes propriedades:

- 1. Todo o hiperplano \mathcal{H}_1 paralelo e distinto de \mathcal{H} é globalmente invariante $(f(\mathcal{H}_1) = \mathcal{H}_1)$ e a restrição de f a \mathcal{H}_1 é uma translação por um vector paralelo à direcção globalmente invariante (neste caso as rectas globalmente invariantes são paralelas ao hiperplano \mathcal{H});
 - Globalmente invariante significa que se $A \in \mathcal{H}_1$ então $f(A) \in \mathcal{H}_1$, NÃO significa que os pontos de \mathcal{H}_1 sejam pontos fixos.
- 2. Todo o hiperplano \mathcal{H}_1 paralelo e distinto de \mathcal{H} é enviado a um hiperplano paralelo e distinto \mathcal{H}_1' , as rectas globalmente invariantes não são paralelas ao hiperplano \mathcal{H} e a restrição de f a essas rectas é uma homotetia de razão fixa k (em particular, a distância de \mathcal{H}_1' a \mathcal{H} é kd, com d a distância de \mathcal{H} a \mathcal{H}_1).

O primeiro tipo de homologia é chamado **transvecção**, o segundo tipo é chamado **afinidade de razão** k. Num referencial ortonormado escolhido "adequadamente" as representações matriciais de uma transvecção e uma afinidade de razão k são respectivamente:

$$\begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & r & 0 \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 & k & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

Se usarmos referenciais não necessariamente ortonomados podemos considerar, no caso da transvecção, r=1.

Exemplo A aplicação afim definida num plano euclidiano munido num referencial ortonormado por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & r & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

isto é, a aplicação definida no referencial por

$$f(x_1, x_2) = (x_1 + rx_2, x_1)$$

é uma transvecção.

A transvecção indicada

$$f(x_1, x_2) = (x_1 + rx_2, x_1)$$

fixa os pontos da recta $x_2 = 0$ (base da transvecção) e as rectas paralelas, $x_2 = b$ são globalmente invariantes:

Este tipo de transformação costuma chamar-se, em inglês, "shear about the point O of factor r in the direction \overrightarrow{e}_1 ". É usada frequentemente para desenhar letras em itálica:

Em geral, a *shear* sobre um ponto Ω , de factor r na direcção de um vector unitário \overrightarrow{u} define-se de modo análgo. Salienta-se que esta terminologia assume o plano orientado o que permite determinar de modo único um vector unitário \overrightarrow{v} ortogonal a \overrightarrow{u} .

Expressão analítica de uma transvecção num ponto Ω de factor r na direcção de um vector unitário \overrightarrow{u}_1 .

Método:

1. Calcula-se a expressão matricial da transvecção f_O na origem do referencial, com parâmetro r e dirigida pelo vector unitário $\overrightarrow{e}_1 = (1,0)$, isto é, $f_O(x_1,x_2) = (x_1,rx_1+x_2)$ (ver exemplo anterior).

2. Calcula-se a expressão da transvecção $f_{O,\overrightarrow{u}_1}$ na origem do referencial, com parâmetro r e dirigida por um vector unitário $\overrightarrow{u}_1 = (v_1, v_2)$.

Se $\overrightarrow{u}_1=(v_1,v_2)$ é unitário, o vector unitário perpendicular no sentido directo é $\overrightarrow{u}_2=(-v_2,v_1)$. A transvecção $f_{O,\overrightarrow{u}_1}$ pode obter-se como a composta

$$\rho^{-1} \circ f_O \circ \rho$$

com ρ a rotação que verifica $\rho(\overrightarrow{u}_i) = \overrightarrow{e}_i$, para i=1,2. A representação matricial de $f_{O,\overrightarrow{u}_1}$ é portanto o producto:

$$\begin{pmatrix} v_1 & v_2 & 0 \\ -v_2 & v_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & r & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 & -v_2 & 0 \\ v_2 & v_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 + rv_1v_2 & rv_1^2 & 0 \\ -rv_2^2 & 1 - rv_1v_2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

visto que $\overrightarrow{u}_1 = (v_1, v_2)$ é unitário e portanto $v_1^2 + v_2^2 = 1$

3. Se f é uma transvecção com origem $\Omega=(\omega_1,\omega_2)$, parâmetro r e dirigida pelo vector \overrightarrow{u}_1 , tem-se

$$f = t^{-1} \circ f_{O, \overrightarrow{u}_1} \circ t$$

onde $f_{O,\overrightarrow{u}_1}$ é transvecção na origem de parâmetro r e dirigida pelo vector \overrightarrow{v} (caso anterior) e t é a translação que leva o ponto Ω à origem de coordenadas, i.e. , t está definida matricialmente por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -w_1 \\ 0 & 1 & -w_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

3 Isometrias do plano euclidiano e do espaço euclidiano tridimensional

3.1 Isometrias do plano

As translações, as reflexões em rectas e as reflexões deslizantes são isometrias do plano.

Propriedade 3.1 Seja f uma isometria de um plano euclidiano distinta da identidade.

- 1. Se f possui uma recta r de pontos fixos então f é a reflexão na recta r;
- 2. Se f preserva a orientação e não possui pontos fixos então f é uma translação;
- 3. Se f não preserva a orientação e não possui pontos fixos então f é uma reflexão deslizante.

O único caso não contemplado seria uma isometria do plano que possua um único ponto fixo.

Propriedade 3.2 Se f é uma isometria do plano com um único ponto fixo Ω então f preserva a orientao e para todos os pontos M e N do plano tem-se que

$$\angle(\overrightarrow{\Omega M}, \overrightarrow{\Omega f(M)}) = \angle(\overrightarrow{\Omega N}, \overrightarrow{\Omega f(N)})$$

e f diz-se rotação de centro Ω e ângulo orientado θ , com θ a medida de $\angle(\overrightarrow{\Omega M}, \overrightarrow{\Omega f(M)})$.

Rotação centrada na origem de ângulo orientado θ

A rotação centrada na origem de ângulo θ representa-se matricialmente, num referencial ortonormado, como:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Rotação centrada num ponto Ω de ângulo orientado θ

Seja $\Omega=(q_1,q_2)$ um ponto do plano euclidiano. A rotação ρ de ângulo θ com centro Ω pode obter-se como a aplicação composta:

$$\rho = t^{-1} \circ \rho_O \circ t$$

onde ρ_O é a rotação na origem de ângulo θ e t é a translação do ponto Ω ao origem, isto é, a translação pelo vector $(-q_1, q_2)$. Assim, a matriz que representa ρ obtém-se como o produto:

$$\begin{pmatrix} 1 & 0 & q_1 \\ 0 & 1 & q_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -q_1 \\ 0 & 1 & -q_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Classificação das isometrias do plano

As isometrias do plano só podem ser um dos quatro tipos de transformações indicados anteriormente: translações, rotações, reflexões e reflexões deslizantes. Ora bem, uma isometria qualquer admite uma representação matricial do tipo:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a & -\epsilon b & \omega_1 \\ b & \epsilon a & \omega_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

com $a^2 + b^2 = 1$ e $\epsilon = \pm 1$.

E uma nova questão seria ...

como identificar o tipo de isometria do plano a partir da representação analítica?

O tipo de isometria pode obter-se atendendo a dois elementos geométricos:

- o conjunto de pontos fixos²;
- se a transformação preserva ou não a orientação.

Obtemos a seguinte classificação:

Determinante	Outras características	Tipo de isometria
$\epsilon=1$	$a=1\ {\sf e}\ (q_1,q_2)=(0,0)$	Identidade
(Preservam	$a=1$ e $(q_1,q_2) \neq (0,0)$	Translação
a orientação)	a eq 1	Rotação (*)
$\epsilon = -1$ (Invertem	Tem pontos fixos	Reflexão
a orientação)	Não tem pontos fixos	Reflexão deslizante

(*) Se $\epsilon=1$ e a=-1 a rotação é uma simetria central

 $^{^2}$ O conjunto de pontos fixos de uma isometria do plano, distinta da identidade,por tratar-se de uma aplicação afim, só pode ser \emptyset , ou um ponto ou uma recta

3.2 Isometrias do espaço tridimensional

No espaço tridimensional existem só 6 tipos diferentes de isometrias: *Translações, Rotações em torno a um eixo, Reflexões num plano, Reflexões deslizantes, Reflexões rotatórias e "twist", ou transformação do sacarolhas.* As três últimas isometrias são compostas dos três primeiros tipos:

- Reflexões deslizantes: composta de uma reflexão e uma translação por um vector paralelo ao plano da reflexão;
- Reflexões rotatórias: composta de uma reflexão e uma rotação em torno a um eixo perpendicular ao plano da reflexão (se o ângulo é π é uma simetria central);
- O "twist" o transformação sacarolhas: composta de uma rotação em torno a um eixo e uma translação por um vector paralelo a esse eixo.

Assim, para descrever matricialmente as isometrias do plano só se precisa das matrices das translações, das rotações em torno a um eixo e das reflexões num plano.

Rotação em torno de um eixo de ângulo θ

Sejam \overrightarrow{u} um vector **unitário** do espaço e r uma recta dirigida por \overrightarrow{u} . Se $\theta \neq \pi$, existem duas rotações distintas de ângulo θ em torno à recta r, mas só numa delas o sentido da rotação é coerente (usando a orientação do espaço) com o vector \overrightarrow{u} fixado. Esta rotação designar-se-á por $Rot_r(\theta, \overrightarrow{u})$. Note-se que a outra rotação é simplesmente $Rot_r(-\theta, \overrightarrow{u})$ ou ainda, $Rot_r(\theta, -\overrightarrow{u})$.

Os casos mais simples são as rotações en torno dos eixos coordenados, representados respectivamente pelas matrices:

$$Rot(\theta, \overrightarrow{e}_{3}) : \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$Rot(\theta, \overrightarrow{e}_{2}) : \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$Rot(\theta, \overrightarrow{e}_{1}) : \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotação em torno de um eixo que passa pela origem.

Seja \overrightarrow{u} um vector **unitário** do espaço e r_O a recta que passa pela origem e está dirigida por \overrightarrow{u} . Designamos por $Rot_O(\theta, \overrightarrow{u})$ a rotação em torno deste eixo. Recorde-se que, se M é um ponto do

espaço, tem-se

$$M = O + \overrightarrow{OM} = O + (proj_{<\overrightarrow{u}>}(\overrightarrow{OM}) + proj_{<\overrightarrow{u}>^{\perp}}(\overrightarrow{OM}))$$

com $proj_{<\overrightarrow{u}>}$ a projecção ortogonal na recta $<\overrightarrow{u}>$ e $proj_{<\overrightarrow{u}>^{\perp}}$ a projecção ortogonal no plano perpendicular a esta recta. Recorde-se que:

$$proj_{<\overrightarrow{u}>}(\overrightarrow{OM}) = (\overrightarrow{OM} \cdot \overrightarrow{u})\overrightarrow{u}$$

е

$$proj_{<\overrightarrow{u}>^{\perp}}(\overrightarrow{OM}) = \overrightarrow{OM} - (\overrightarrow{OM} \cdot \overrightarrow{u})\overrightarrow{u}$$

A rotação do ponto M em torno do eixo definido por \overrightarrow{u} obtém-se mantendo o primeiro vector desta decomposição fixo e rodando o segundo, no plano perpendicular a \overrightarrow{u} .

O produto vectorial $\overrightarrow{u} \wedge \overrightarrow{OM}$ é perpendicular a \overrightarrow{u} e forma com $proj_{<\overrightarrow{u}>^{\perp}}(\overrightarrow{OM})$ uma base ortogonal deste plano. Este dois vectores tem o mesmo comprimento e portanto a rotação de $proj_{<\overrightarrow{u}>^{\perp}}(\overrightarrow{OM})$ é o vector

$$(\cos\theta)(proj_{<\overrightarrow{u}>^{\perp}})(\overrightarrow{OM}) + (\sin\theta)(\overrightarrow{u}\wedge\overrightarrow{OM})$$

Em resumo, se M' é o ponto obtido pela rotação de M em torno do eixo dirigido por \overrightarrow{u} , tem-se

$$M' = O + (\overrightarrow{OM} \cdot \overrightarrow{u})\overrightarrow{u} + \cos\theta(\overrightarrow{OM} - (\overrightarrow{OM} \cdot \overrightarrow{u})\overrightarrow{u}) + \sin\theta(\overrightarrow{u} \wedge \overrightarrow{OM})$$

Suponha-se que $\overrightarrow{u}=(A,B,C)$ (com $A^2+B^2+C^2=1$, visto que \overrightarrow{u} é unitário). Desenvolvendo a igualdade anterior, obtemos que

$$Rot_O(heta, \overrightarrow{u}): \left(egin{array}{cccc} c+(1-c)A^2 & (1-c)AB-sC & (1-c)AC+sB & 0 \ (1-c)AB+sC & c+(1-c)B^2 & (1-c)BC-sA & 0 \ (1-c)AC-sB & (1-c)BC+sA & c+(1-c)C^2 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

 $\operatorname{com} c = \cos \theta \in s = \sin \theta.$

Rotação em torno a um eixo qualquer.

Seja r uma recta que passa por um ponto A e está dirigida por um vector \overrightarrow{u} . A rotação em torno de r dirigida por \overrightarrow{u} pode obter-se como a composta

$$Rot_r(\theta, \overrightarrow{u}) = t^{-1} \circ Rot_O(\theta, \overrightarrow{u}) \circ t$$

onde t é a translação que transforma o ponto A no origem do referencial O e $Rot_O(\theta, \overrightarrow{u})$ é a rotação no eixo que passa pela origem e é paralelo à recta r.

4 As projecções perspectivas

4.1 As coordenadas homogéneas e o plano projectivo.

Recorde-se que, se \mathcal{A} é um plano afim munido de um referencial $\mathcal{R} = \{O, (\overrightarrow{e}_1, \overrightarrow{e}_2)\}$ e A é um ponto do plano tal que $A \equiv (a_1, a_2)_{\mathcal{R}}$, chamávamos coordenadas homogéneas de ponto A a

$$(a_1, a_2, 1)$$

Geometricamente, podemos interpretar as coordenadas homogéneas como as coordenadas obtidas ao "encaixar" o plano afim \mathcal{A} em \mathbf{R}^3 como o plano π de equação z=1:

O ponto $A=(a_1,a_2)$ de \mathcal{A} identifica-se então com o vector $(a_1,a_2,1)$ de \mathbf{R}^3 . Note-se que:

- 1. Se $A=(a_1,a_2,1)$ e $B=(b_1,b_2,1)$ são coordenadas homogéneas de dois pontos, as coordenadas homogéneas do vector \overrightarrow{AB} são precisamente $(b_1-a_1,b_2-a_2,0)$.
- 2. Todo o ponto do plano afim corresponde univocamente com uma recta vectorial de \mathbf{R}^3 passando pela origem de coordenadas. Podemos então identificar o ponto A com a recta r_A do espaço tridimensional que passa pela origem e pelo ponto A.
- 3. Os vectores (não nulos) dessa recta r_A são da forma

$$\lambda(a_1, a_2, 1) = (\lambda a_1, \lambda a_2, \lambda)$$

para $\lambda \in \mathbf{R}$, $\lambda \neq 0$. Equivalentemente, os vectores da recta r_A são da forma

$$(A_1, A_2, A_3)$$

com $a_1 = A_1/A_3$ e $a_2 = A_2/A_3$. Toda tripla (A_1, A_2, A_3) verificando esta condição diz-se **coordenadas homogéneas** de A (no referencial \mathcal{R}).

4. As coordenadas homogéneas assim definidas do ponto A são únicas a menos multiplicação por uma constante não nula.

³O termo matemático usual é mergulhar.

A notação usual das coordenadas homogéneas é

$$A \equiv [A_1 : A_2 : A_3]_{\mathcal{R}}$$

Os parêntesis rectos são usados porque as coordenadas homogéneas não são únicas

$$[A_1:A_2:A_3] = [2A_1:2A_2:2A_3] = [-A_1:-A_2:-A_3] = \dots$$

e correspondem com a notação usual das relações de equivalência.

Considere agora a recta afim s de \mathcal{A} que passa pelos pontos A e B:

No mergulho do plano afim $\mathcal A$ como o plano $\pi:z=1$ no espaço vectorial $\mathbf R^3$, cada ponto dessa recta afim corresponde com uma recta vectorial de $\mathbf R^3$ contida num plano. Em coordenadas homogéneas, se

$$A = [a_1 : a_2 : 1],$$
 e $B = [b_1 : b_2 : 1]$

o plano vectorial definido pelos vectores $(a_1, a_2, 1)$ e $(b_1, b_2, 1)$ é dado em \mathbb{R}^3 pela equação cartesiana:

$$(a_2 - b_2)X + (b_1 - a_1)Y + (a_1b_2 - b_1a_2)Z = 0$$

Note-se que a equação da recta que passa por A e por B é precisamente:

$$(a_2 - b_2)x + (b_1 - a_1)y + (a_1b_2 - b_1a_2) = 0$$

Em geral, se s é uma recta de A definida por uma equação cartesiana

$$\alpha x + \beta y + \gamma = 0$$
,

o plano vectorial definido pela recta s ao encaixar $\mathcal A$ em $\mathbf R^3$ é definido pela equação cartesiana

$$\alpha X + \beta Y + \gamma Z = \mathbf{0}$$

Também, toda a equação do tipo

$$\lambda \alpha x + \lambda \beta y + \lambda \gamma = 0$$

para $\lambda \neq 0$ define a mesma recta de \mathcal{A} , assim, de modo análogo às coordenadas dos pontos, costumam definir-se as coordenadas homogéneas da recta s como

$$[\alpha:\beta:\gamma]_{\mathcal{R}}$$

onde os parênteses rectos significam de novo "coordenadas únicas a menos multiplicação por uma constante".

Observe-se que, na identificação dos pontos da recta s com rectas vectoriais (com raios a sair da origem de coordenadas), há uma recta vectorial que não se identifica a nenhum ponto de s: a recta w_s paralela a s passando pela origem de coordenadas.

A recta w_s é a intersecção do plano $\alpha X + \beta Y + \gamma Z = 0$ com o plano horizontal Z = 0 e está gerada pelo vector $(\beta, -\alpha, 0)$.

Definição 4.1 Chamamos **plano projectivo real** e designamos por ${\bf P}^2{\bf R}$ ao conjunto cujos elementos são as rectas vectoriais de ${\bf R}^3$, ou seja, ao conjunto quociente

$$P^2R = (R^3 - \{0\})/\sim$$

onde \sim é a relação de equivalência definida entre vectores não nulos de ${f R}^3$ por

$$\overrightarrow{v} \sim \overrightarrow{w} \Leftrightarrow \exists \lambda \neq 0, \overrightarrow{v} = \lambda \overrightarrow{w}$$

Se $\overrightarrow{v} = (X, Y, Z)$, a classe de equivalência de \overrightarrow{v} designa-se por [X:Y:Z].

Por definição, um ponto do plano projectivo P^2R é uma recta vectorial de R^3 .

Recordamos que no plano projectivo as coordenadas dos pontos [X:Y:Z] estão definidas a menos multiplicação por uma constante não nula. Assim, para definir subconjuntos do plano projectivo através de coordenadas, é frequente considerar-se equações F=0 onde F é tal que

$$F(\lambda X, \lambda Y, \lambda Z) = \lambda^k F(X, Y, Z)$$

para algum $k \in \mathbb{N}$. Este tipo de funções são chamadas homogéneas de grau k.

Exemplos 4.2

1. Se F é um polinómio homogéneo de grau 1, não nulo, isto é,

$$F(X, Y, Z) = \alpha X + \beta Y + \gamma Z,$$

o conjunto

$$\{[X:Y:Z] \in \mathbf{P}^2\mathbf{R}: F(X,Y,Z) = 0\}$$

diz-se uma recta projectiva.

Observe-se que os pontos do plano projectivo pertencentes a uma recta projectiva são rectas vectoriais contidas num plano.

2. Se F é um polinómio homogéneo de grau 2, não nulo, isto é,

$$F(X,Y,Z) = a_{11}X^2 + a_{12}XY + a_{13}XZ + a_{22}Y^2 + a_{23}YZ + a_{33}Z^2,$$

o conjunto

$${[X:Y:Z] \in \mathbf{P}^2\mathbf{R}: F(X,Y,Z) = 0}$$

diz-se uma cónica projectiva.

Usando o mergulho do plano afim \mathcal{A} em \mathbf{R}^3 observamos que todo o ponto do plano projectivo (i.e. toda a recta vectorial de \mathbf{R}^3) corresponde com um e um só ponto do plano afim \mathcal{A} e que os únicos pontos do plano projectivo que não se identificam com pontos de \mathcal{A} são pontos do tipo [X:Y:0] (rectas vectoriais que não intersectam o plano π). Assim, se designarmos por \mathbf{r}_{∞} a recta projectiva de $\mathbf{P}^2\mathbf{R}$ definida pela equação Z=0, tem-se

$$\mathbf{P}^2\mathbf{R} \equiv \mathcal{A} \cup \mathbf{r}_{\infty}$$

isto é, o plano projectivo é reunião de um plano afim e de uma recta projectiva. E note-se ainda que os pontos desta recta projectiva \mathbf{r}_{∞} são as direcções das rectas afins de \mathcal{A} , por outras palavras o plano projectivo obtém-se a partir de um plano afim adicionando um ponto por cada família de rectas paralelas, que se diz **ponto no infinito** dessas família de rectas. A recta \mathbf{r}_{∞} diz-se **recta no infinito** do plano afim \mathcal{A} .

Na correspondência anterior

$$\mathbf{P}^2\mathbf{R} \equiv \mathcal{A} \cup \mathbf{r}_{\infty}$$

um ponto do plano projectivo [X:Y:Z] não contido na recta \mathbf{r}_{∞} , isto é, tal que $Z\neq 0$, define o ponto afim (X/Z,Y/Z) e um ponto do plano projectivo contido na recta do infinito define a direcção definida pelo vector (X,Y) do plano afim.

4.2 Transformações afins e coordenadas homogéneas.

Sejam \mathcal{A} um plano afim e $f: \mathcal{A} \to \mathcal{A}$ uma transformação afim. Num referencial \mathcal{R} , se $M = (x_1, x_2)$ e $f(M) = (y_1, y_2)$, podemos representar matricialmente:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & v_1 \\ a_{21} & a_{22} & v_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Sejam $[X_1:X_2:W]$ coordenadas homogéneas do ponto M, tem-se

$$(X_1, X_2, W) = (Wx_1, Wx_2, W)$$

com $W \neq 0$, logo

$$\begin{pmatrix} a_{11} & a_{12} & v_1 \\ a_{21} & a_{22} & v_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ W \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & v_1 \\ a_{21} & a_{22} & v_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Wx_1 \\ Wx_2 \\ W \end{pmatrix}$$

$$= W \begin{pmatrix} a_{11} & a_{12} & v_1 \\ a_{21} & a_{22} & v_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = W \begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} Wy_1 \\ Wy_2 \\ W \end{pmatrix}$$

Assim, ao multiplicarmos umas coordenadas homogéneas de um ponto M pela matriz que representa a aplicação afim f obtemos umas coordenadas homogéneas do ponto f(M). Na realidade, obtemos umas coordenadas homogéneas de f(M) multiplicando por qualquer matriz da forma λA , com A a matriz considerada na representação matricial de f. Assim, as matrices da forma:

$$\begin{pmatrix}
\lambda a_{11} & \lambda a_{12} & \lambda v_1 \\
\lambda a_{21} & \lambda a_{22} & \lambda v_2 \\
0 & 0 & \lambda
\end{pmatrix}$$

dizem-se representações matriciais em coordenadas homogéneas de f. De novo, para recuperar a representação matricial usual basta dividir a matriz pelo elemento da última fila e coluna.

Nota: Ao considerarmos \mathcal{A} mergulhado no plano projectivo $\mathbf{P}^2\mathbf{R}$ cada transformação afim bijectiva f de \mathcal{A} induz uma aplicação bijectiva

$$\overline{f}: \mathbf{P}^2\mathbf{R} \to \mathbf{P}^2\mathbf{R}$$

definida por $\overline{f}([v]) = [Av]$, onde A é a representação matricial de f e [v] é um ponto do plano projectivo (a recta vectorial gerada por v).

Observe-se que esta aplicação \overline{f} é a passagem ao quociente de um isomorfismo linear de ${\bf R}^3$ em ${\bf R}^3$ representado matricialmente por A que deixa globalmente invariante o plano vectorial $X_3=0$. Em geral, todo isomorfismo linear de ${\bf R}^3$ define uma aplicação bijectiva no plano projectivo ${\bf P}^2{\bf R}$ chamada **projectividade de Poncelet**. As transformações afins obtém-se a partir das projectividades de Poncelet que deixam globalmente invariante a recta projectiva do infinito.

4.3 Os processos de projecção e secção

Sejam \mathcal{A} um plano afim, Ω um ponto de \mathcal{A} e r uma recta de \mathcal{A} que não passa por Ω .

- Se M é um ponto qualquer de A, chamamos projecção de M desde Ω à recta afim r_M definida por M e Ω ;
- Se s é uma recta qualquer de A, chamamos secção por r ao ponto afim intersecção de s e r;
- A sucessão dos dois processos anteriores diz-se **projecção perspectiva desde** Ω **na recta** r, isto é, a projecção perspectiva desde Ω na recta r do ponto M é o ponto per(M) de intersecção

O ponto Ω diz-se **foco** ou **centro** da projecção perspectiva e r diz-se **recta imagem** da projecção perspectiva. Note-se que existe uma recta, a recta paralela a r que passa por Ω , na qual a projecção perspectiva não está definida. Esta recta é chamada **recta de pontos excepcionais**.

De modo análogo, se \mathcal{A} é um espaço afim tridimensional, Ω um ponto de \mathcal{A} e π um plano afim de \mathcal{A} que não passa por Ω .

- Se M é um ponto qualquer de \mathcal{A} , chamamos projecção de M desde Ω à recta afim r_M definida por M e Ω ;
- Se s é uma recta qualquer de A, chamamos secção por π ao ponto afim intersecção de s e π ;
- A sucessão dos dois processos anteriores diz-se **projecção perspectiva desde** Ω **no plano** π , isto é, a projecção perspectiva desde Ω no plano π do ponto M é o ponto per(M) de intersecção

Costumam chamar-se **propriedades projectivas** as propriedades preservadas pelos processos de projecção e secção anteriores.

Exemplos 4.3

1. Sejam \mathcal{A} um plano afim, Ω um ponto de \mathcal{A} e r e s duas rectas de \mathcal{A} que não passam por Ω . Usando a projecção desde Ω e a secção por r obtemos a restrição da projecção perspectiva:

$$f: s - \{P\} \longrightarrow r - \{Q\}$$

Esta aplicação não é uma aplicação afim, não preserva distâncias, nem proporções entre distâncias no entanto, preserva **duplas proporções**, isto é, se A, B, C e D são quatro pontos de s, distintos de

$$\frac{d(A,C)}{d(C,B)} : \frac{d(A,D)}{d(D,B)} = \frac{d(f(A),f(C))}{d(f(C),f(B))} : \frac{d(f(A),f(D))}{d(f(D),f(B))}$$

Este quociente é chamado razão dupla.

2. Sejam $\mathcal A$ um espaço afim tridimensional, Ω um ponto de $\mathcal A$ e π e π' dois planos de $\mathcal A$ que não passam por Ω . Usando a projecção desde Ω e a secção por π' obtemos a restrição da projecção perspectiva:

$$f:\pi-r\longrightarrow\pi'-s$$

De novo, esta aplicação não preserva distâncias, nem ângulos ... no entanto, preserva colinearidade, razões duplas entre quatro pontos (como no exemplo anterior) e transforma cónicas em cónicas (isto é, uma elipse pode ser transformada numa elipse, numa hipérbole ou numa parábola)

NOTA: Se considerarmos o plano afim $\mathcal A$ mergulhado no plano projectivo $\mathbf P^2\mathbf R$ os processos anteriores correspondem com

- Considerar o plano vectorial definido por dois vectores $a \in \omega$;
- Considerar a recta vectorial intersecção de dois planos vectoriais σ e τ ;
- Realizar os dois processos anteriores.

4.4 Projecções perspectivas no plano.

Sejam \mathcal{A} um plano afim munido de um referencial, r uma recta afim de \mathcal{A} e Ω um ponto de \mathcal{A} exterior à recta r. Seja r_{Ω} a recta paralela a π que passa por Ω .

Recorde-se que a **projecção perspectiva** em r desde o ponto Ω é a transformação geométrica que atribui a cada ponto M do espaço, tal que $M \notin r_{\Omega}$, o ponto per(M) que pertence à recta r e à recta que passa por Ω e por M.

Analiticamente, suponha-se $\mathcal A$ munido de um referencial, com $\Omega=(\omega_1,\omega_2)$ e r uma recta de equação

$$Ax + By + d = \mathbf{0}$$

Sejam M=(x,y) um ponto qualquer de \mathcal{A} (que não pertence à recta de pontos excepcionais) e per(M) a projecção perspectiva desde Ω em r de M. O ponto per(M) pertence à recta que passa por Ω e está dirigida por $\overrightarrow{\Omega M}$, portanto existe λ tal que

$$per(M) = \Omega + \lambda \overrightarrow{\Omega M} = (\omega_1, \omega_2) + \lambda(x - \omega_1, y - \omega_2) = (\omega_1 + \lambda(x - \omega_1), \omega_2 + \lambda(y - \omega_2))$$

Como per(M) pertence à recta r, tem-se que

$$A(\omega_1 + \lambda(x - \omega_1)) + B(\omega_2 + \lambda(y - \omega_2)) + d = 0$$

donde

$$\lambda = -\frac{A\omega_1 + B\omega_2 + d}{A(x - \omega_1) + B(y - \omega_2)}$$

e então

$$per(M) = (\omega_1, \omega_2) - \frac{A\omega_1 + B\omega_2 + d}{A(x - \omega_1) + B(y - \omega_2)}(x - \omega_1, y - \omega_2)$$

Desenvolvendo a expressão anterior obtemos:

$$per(M) = \frac{1}{Ax + By - (A\omega_1 + B\omega_2)} \left(-(B\omega_1 + d)x + B\omega_1 y + d\omega_1, A\omega_2 x - (A\omega_2 + d)y + d\omega_2 \right)$$

Esta transformação geométrica não é uma transformação afim, não admite uma representação matricial do tipo visto no capítulo anterior. No entanto, observe-se que o produto

$$\begin{pmatrix} -(B\omega_1 + d) & B\omega_1 & d\omega_1 \\ A\omega_2 & -(A\omega_2 + d) & d\omega_2 \\ A & B & -(A\omega_1 + B\omega_2) \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

define umas coordenadas homogéneas de per(M).

4.5 Projecções perspectivas no espaço tridimensional.

Sejam \mathcal{A} um espaço tridimensional munido de um referencial, π um plano de \mathcal{A} e Ω um ponto de \mathcal{A} exterior a π . Seja π_{Ω} o plano paralelo a π que passa por Ω .

Recorde-se que a **projecção perspectiva** no plano π desde o ponto Ω é a transformação geométrica que atribui a cada ponto M do espaço, tal que $M \notin \pi_{\Omega}$, o ponto per(M) que pertence ao plano π e a recta que passa por Ω e por M.

O plano π diz-se **plano imagem** da projecção perspectiva e o ponto Ω diz-se **foco**, **olho** ou ainda **câmara** da projecção. Os pontos do plano π_{Ω} são chamados **pontos excepcionais**.

Exemplo: Perspectiva no plano $x_3 = 0$ desde o foco $\Omega = (0, 0, w)$.

Seja $M=(x_1,x_2,x_3)$ um ponto do espaço afim que não pertence ao plano excepcional (neste caso, é o plano definido pela equação $x_3-w=0$). A recta r_M que passa pelos pontos Ω e M é:

$$r_M = C + \langle \overrightarrow{CM} \rangle = \{ (0, 0, w) + t(x_1, x_2, x_3 - w) : t \in \mathbf{R} \}$$

Esta recta intersecta o plano de equação $x_3=0$ quando $0=w+t(x_3-w)$, isto é, quando $t=\frac{w}{w-x_3}$ e portanto

$$per(x_1, x_2, x_3) = (0, 0, w) + \frac{w}{w - x_3}(x_1, x_2, x_3 - w) = (\frac{wx_1}{w - x_3}, \frac{wx_2}{w - x_3}, 0)$$

Observe-se que esta transformação geométrica (que **não é uma transformação afim**) não pode expressar-se do modo habitual usando matrices. Ora bem, se usarmos coordenadas homogéneas, o ponto per(M) pode definir-se pela quádrupla:

$$(wx_1, wx_2, 0, w - x_3)$$

e podemos escrever matricialmente:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ W' \end{pmatrix} = \begin{pmatrix} w & 0 & 0 & 0 \\ 0 & w & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & w \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

com (Y_1, Y_2, Y_3, W') coordenadas homogéneas de per(M)

Projecção perspectiva num plano que passa pela origem.

Seja per a projecção perspectiva em π desde $\Omega=(w_1,w_2,w_3)$, onde π é um plano definido pela equação cartesiana

$$Ax + By + Cz = \mathbf{0}$$

(neste caso, **não** é necessário considerar o vector normal $\overrightarrow{n} = (A, B, C)$ unitário).

Seja M um ponto do espaço que não pertence ao plano π_{Ω} paralelo a π que passa por Ω . O ponto per(M) pertence à recta que passa por Ω e está dirigida por $\overrightarrow{\Omega M}$, portanto existe λ tal que

$$per(M) = \Omega + \lambda \overrightarrow{\Omega M}$$

equivalentemente, existe λ tal que $\overrightarrow{\Omega per(M)} = \lambda \overrightarrow{\Omega M}$. Por outro lado, per(M) pertence ao plano π e como a origem O de coordenadas também pertence a π , tem-se que

$$\overrightarrow{Oper(M)} \cdot \overrightarrow{n} = 0$$

donde

$$0 = (\overrightarrow{O\Omega} + \overrightarrow{\Omega per(M)}) \cdot \overrightarrow{n} = \overrightarrow{O\Omega} \cdot \overrightarrow{n} + \lambda \overrightarrow{\Omega M} \cdot \overrightarrow{n}$$

logo

$$\lambda = -\frac{\overrightarrow{O\Omega} \cdot \overrightarrow{n}}{\overrightarrow{\Omega M} \cdot \overrightarrow{n}}$$

Em conclusão

$$per(M) = \Omega - \frac{\overrightarrow{O\Omega} \cdot \overrightarrow{n}}{\overrightarrow{\Omega M} \cdot \overrightarrow{n}} \overrightarrow{\Omega M}$$

Note-se que, como $M \not\in \pi_\Omega$ e $\Omega \not\in \pi$, então os produtos escalares $\overrightarrow{\Omega M} \cdot \overrightarrow{n}$ e $\overrightarrow{O\Omega} \cdot \overrightarrow{n}$ são não nulos. Para simplificar a escrita, sejam $d = \overrightarrow{O\Omega} \cdot \overrightarrow{n}$ e $k_M = \overrightarrow{OM} \cdot \overrightarrow{n}$. Tem-se

$$\overrightarrow{\Omega M} \cdot \overrightarrow{n} = (\overrightarrow{\Omega O} + \overrightarrow{OM}) \cdot \overrightarrow{n} = k_M - d$$

logo

$$per(M) = \Omega - \frac{d}{k_M - d} \overrightarrow{\Omega M}$$

Salienta-se que o escalar k_M depende do ponto M. Se $M=(x_1,x_2,x_3)$, então

$$per(x_1, x_2, x_3) = (w_1, w_2, w_3) - \frac{d}{k_M - d}(x_1 - w_1, x_2 - w_2, x_3 - w_3)$$

ou, equivalentemente

$$per(x_1, x_2, x_3) = \frac{1}{k_M - d} ((k_M - d)(w_1, w_2, w_3) - d(x_1 - w_1, x_2 - w_2, x_3 - w_3))$$

donde

$$per(x_1, x_2, x_3) = \frac{1}{k_M - d} (k_M w_1 - dx_1, k_M w_2 - dx_2, k_M w_3 - dx_3)$$

Observe-se que, como k_M depende do ponto M, o cálculo de per(M) não pode ser feito através da representação matricial usual de uma aplicação afim. Ora bem, o ponto per(M) admite as seguintes coordenadas homogéneas:

$$(k_M w_1 - dx_1, k_M w_2 - dx_2, k_M w_3 - dx_3, k_M - d)$$

Como

$$d = \overrightarrow{O\Omega} \cdot \overrightarrow{n} = Aw_1 + Bw_2 + Cw_3$$
 e $k_M = \overrightarrow{OM} \cdot \overrightarrow{n} = Ax_1 + Bx_2 + Cx_3$

obtemos a seguinte representação matricial da projecção perspectiva:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ W' \end{pmatrix} = \begin{pmatrix} w_1 A - d & w_1 B & w_1 C & 0 \\ w_2 A & w_2 B - d & w_2 C & 0 \\ w_3 A & w_3 B & w_3 C - d & 0 \\ A & B & C & -d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

onde (Y_1, Y_2, Y_3, W') são umas coordenadas homogéneas do ponto per(M).

Exemplo No exemplo inicial, considerou-se a projecção no plano de equação $x_3 = 0$ desde o ponto $\Omega = (0, 0, w)$. Substituindo na expressão obtida, como

$$\overrightarrow{n} = (0,0,1)$$
 e $\Omega = (0,0,w)$

tem-se d=w e então esta projecção perspectiva representa-se por

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ W' \end{pmatrix} = \begin{pmatrix} -w & 0 & 0 & 0 \\ 0 & -w & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -w \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

Esta representação coincide, a menos multiplicação por -1, com a representação matricial obtida inicialmente.

Projecção perspectiva num plano qualquer.

A projecção perspectiva num plano π desde um ponto Ω pode obter-se como a composta⁴:

$$per = t^{-1} \circ per_O \circ t$$

onde t é a translação que transforma um ponto A do plano π no origem do referencial O e per_O é a projecção perspectiva desde o ponto $t(\Omega)$ no plano π_O paralelo a π e incidente na origem de coordenadas.

 $^{^4}$ Esta aplicação composta **NÃO** está definida em todo o espaço ${\cal A}$

5 Exercícios resolvidos

Para simplificar as notações, num espaço afim munido de um referencial, os pontos e os vectores identificar-se-ão com as suas coordenadas no referencial e na base associada ao referencial, respectivamente.

Transformações do plano

- 1. Seja \mathcal{A} um plano afim euclidiano munido de um referencial ortonormado. Determine a expressão analítica de:
 - (a) a simetria central com centro $\Omega = (13, -2)$;
 - (b) a homotetia com razão -3 e centro $\Omega' = (5, -7)$;
 - (c) a projecção ortogonal na recta r definida pela equação cartesiana

$$4x + 3y + 1 = 0$$
:

(d) a reflexão ortogonal na recta r anterior.

(Resolução)

(a) A simetria central s com centro Ω está definida por $s(M) = \Omega - \overrightarrow{\Omega M}$. Se M = (x,y) e $\Omega = (13,-2)$ tem-se

$$s(x,y) = (13,-2) - (x-13,y-(-2)) = (26-x,-4-y).$$

(b) A homotetia h com razão -3 e centro Ω' está definida por $h(M) = \Omega' + 3\overrightarrow{\Omega'M}$. Se M = (x,y) e $\Omega' = (5,-7)$ tem-se

$$h(x,y) = (5,-7) + 3(x-5,y-(-7)) = (-10+3x,14+3y).$$

(c) Seja r a recta definida pela equação cartesiana

$$4x + 3y + 1 = 0$$

Considere-se um vector normal \overrightarrow{n} à recta r, por exemplo $\overrightarrow{n}=(4,3)$, e A um ponto de r, por exemplo A=(-1,1). Se $M\in\mathcal{A}$ e p(M) é a projecção ortogonal de M em r tem-se

$$\overrightarrow{AM} = \overrightarrow{Ap(M)} + \overrightarrow{p(M)M} = \overrightarrow{Ap(M)} + \lambda \overrightarrow{n}$$

Se M=(x,y), tem-se $\overrightarrow{AM}=(x+1,y-1)$ e, como \overrightarrow{n} é ortogonal ao vector $\overrightarrow{Ap(M)}$,

$$(x+1,y-1)\cdot(4,3)=\lambda(4,3)\cdot(4,3)$$

donde
$$\lambda = \frac{4x+3y+1}{25}$$
 e $\overrightarrow{p(M)M} = \frac{4x+3y+1}{25}\overrightarrow{n}$. Assim

$$p(M) = M + \overrightarrow{Mp(M)} = M - \overrightarrow{p(M)M} = (x,y) - \left(\frac{4x + 3y + 1}{25}\right)(4,3)$$

logo

$$p(x,y) = \left(\frac{9x - 12y - 4}{25}, \frac{-12x + 16y - 3}{25}\right)$$

(d) Usando as notações da alínea anterior, se σ é a reflexão na recta r, tem-se

$$\sigma(M) = M + 2\overrightarrow{Mp(M)} = M - 2\overrightarrow{p(M)M}$$

donde

$$\sigma(x,y) = (x,y) - 2\left(\frac{4x + 3y + 1}{25}\right)(4,3) = \left(\frac{-7x - 24y - 8}{25}, \frac{-24x + 7y - 6}{25}\right)$$

2. Determine a expressão matricial, usando coordenadas homogéneas, das aplicações definidas no exercício anterior. Se s, h, e p designam, respectivamente, a simetria central, a homotetia e a projecção ortogonal do mesmo exercício, calcule as aplicações compostas:

$$s \circ h$$
 $s \circ h \circ p$

(Resolução)

(a) Representação matricial da simetria s:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 26 \\ 0 & -1 & -4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

(b) Representação matricial da homotetia h:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & -10 \\ 0 & 3 & 14 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

(c) Representação matricial da projecção p:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 9/25 & -12/25 & -4/25 \\ -12/25 & 16/25 & -3/25 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

A aplicação composta $s \circ h$ representa-se matricialmente:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 26 \\ 0 & -1 & -4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & -10 \\ 0 & 3 & 14 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 36 \\ 0 & -3 & -18 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

(Observe-se que esta aplicação composta é uma homotetia de razão -3 e centro $\Omega'=(9,-9/2)$).

A aplicação composta $s \circ h \circ p$ representa-se matricialmente por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 & 0 & 36 \\ 0 & -3 & -18 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 9/25 & -12/25 & -4/25 \\ -12/25 & 16/25 & -3/25 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -27/25 & 36/25 & 912/25 \\ 36/25 & -48/25 & -441/25 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

- 3. Seja \mathcal{A} um espaço afim euclidiano tridimensional munido de um referencial ortonormado. Determine a expressão analítica de:
 - (a) a translação pelo vector $\overrightarrow{v} = (10, 15, -8)$;
 - (b) a simetria central com centro $\Omega = (1, -1, 2)$;
 - (c) a homotetia com razão 6 e centro $\Omega' = (0,0,1)$;
 - (d) a reflexão ortogonal no plano definido pela equação cartesiana

$$x + y + z + 1 = 0.$$

(Resolução)

(a) A tranlação T pelo vector $\overrightarrow{v}=(10,15,-8)$ está definida por $T(M)=M+\overrightarrow{v}$. Se M=(x,y,z) tem-se

$$T(x, y, z) = (10 + x, 15 + y, -8 + z)$$

(b) A simetria central s com centro Ω está definida por $s(M) = \Omega - \overrightarrow{\Omega M}$. Se M = (x, y, z) e $\Omega = (1, -1, 2)$ tem-se

$$s(x, y, z) = (1, -1, 2) - (x - 1, y - (-1), z - 2) = (2 - x, -2 - y, 4 - z).$$

(c) A homotetia h com razão 6 e centro Ω' está definida por $h(M) = \Omega' + 6\overline{\Omega'M}$. Se M = (x, y, z) e $\Omega' = (0, 0, 1)$ tem-se

$$h(x, y, z) = (0, 0, 1) + 6(x, y, z - 1) = (6x, 6y, 6z - 5).$$

(d) Seja π o plano definido pela equação cartesiana

$$x + y + z + 1 = 0$$
.

Considere-se um vector normal \overrightarrow{n} ao plano π , por exemplo $\overrightarrow{n}=(1,1,1)$, e A um ponto de π , por exemplo A=(-1,0,0). Se $M\in\mathcal{A}$ e p(M) é a projecção ortogonal de M em π tem-se

$$\overrightarrow{AM} = \overrightarrow{Ap(M)} + \overrightarrow{p(M)M} = \overrightarrow{Ap(M)} + \lambda \overrightarrow{n}$$
 (*)

Se σ é a reflexão no plano π tem-se

$$\sigma(M) = M + 2 \overrightarrow{Mp(M)} = M - 2\lambda \overrightarrow{n}$$

Se M=(x,y,z), tem-se $\overrightarrow{AM}=(x+1,y,z)$ e, como \overrightarrow{n} é ortogonal ao vector $\overrightarrow{Ap(M)}$, a partir de (*) obtemos:

$$(x+1,y,z)\cdot(1,1,1)=\lambda(1,1,1)\cdot(1,1,1)$$

donde $\lambda = \frac{x+y+z+1}{3}$. Assim

$$\sigma(M) = (x, y, z) - 2\left(\frac{x + y + z + 1}{3}\right)(1, 1, 1)$$

logo

$$\sigma(x,y,z) = \left(\frac{x-2y-2z-2}{3}, \frac{-2x+y-2z-2}{3}, \frac{-2x-2y+z-2}{3}\right)$$

- 4. Determine, **justificando pela definição**, se as seguintes aplicações são isometrias de um plano euclidiano (munido de um referencial ortonormado).
 - (a) f(x,y) = (-y + x, y);
 - (b) f(x,y) = (2+y,3-x);
 - (c) f(x,y) = (-y, -x);
 - (d) $f(x,y) = (\sin x, \sin y)$;
 - (e) $f(x,y) = (x,y^3)$;
 - (f) f(x,y) = (+5-y, -7-x);
 - (g) f(x,y) = (ax by, bx + ay + 4), com $a, b \in \mathbb{R}$ tais que $a^2 + b^2 = 1$.

(Resolução)

(a) Consideramos os pontos A=(0,0) e B=(1,1) que verificam f(A)=(0,0) e f(B)=(0,1). Tem-se

$$d(A, B) = \sqrt{2}$$
 e $d(f(A), f(B)) = 1$,

portanto f não é uma isometria.

(b) Sejam A = (x, y) e B = (x', y') tem-se

$$f(A) = (2 + y, 3 - x)$$
 e $f(B) = (2 + y', 3 - x')$

donde

$$d(f(A), f(B)) = \sqrt{((2+y') - (2+y))^2 + ((3-x') - (3-x))^2}$$
$$= \sqrt{(y'-y)^2 + (x'-x)^2}$$
$$= d(A, B)$$

A aplicação f é uma isometria.

(c) Sejam A = (x, y) e B = (x', y') tem-se

$$f(A) = (-y, -x)$$
 e $f(B) = (-y', -x')$

donde

$$d(f(A), f(B)) = \sqrt{(-y'+y)^2 + (-x'+x)^2}$$
$$= \sqrt{(y'-y)^2 + (x'-x)^2}$$
$$= d(A, B)$$

A aplicação f é uma isometria.

(d) Consideramos os pontos A=(0,0) e $B=(0,2\pi)$ que verificam f(A)=(0,0) e f(B)=(0,0). Assim

$$d(A, B) = 2\pi$$
 e $d(f(A), f(B)) = 0$

portanto f não é uma isometria.

(e) Consideramos os pontos A=(0,0) e B=(0,2) que verificam f(A)=(0,0) e f(B)=(0,8). Tem-se

$$d(A, B) = 2$$
 e $d(f(A), f(B)) = 8$

portanto f não é uma isometria.

(f) Sejam A = (x, y) e B = (x', y') tem-se

$$f(A) = (5 - y, -7 - x)$$
 e $f(B) = (5 - y', -7 - x')$

donde

$$d(f(A), f(B)) = \sqrt{((5-y') - (5-y))^2 + ((-7-x') - (-7-x))^2}$$

$$= \sqrt{(y'-y)^2 + (x'-x)^2}$$

$$= d(A, B)$$

A aplicação f é uma isometria.

(g) f(x,y) = (ax - by, bx + ay + 4), com $a,b \in \mathbf{R}$ tais que $a^2 + b^2 = 1$. Sejam A = (x,y) e B = (x',y') tem-se

$$f(A) = (ax - by, bx + ay + 4)$$
 e $f(B) = (ax' - by', bx' + ay' + 4)$

Assim

$$d(f(A), f(B)) = \sqrt{((ax' - by') - (ax - by))^2 + ((bx' + ay' + 4) - (bx + ay + 4))^2}$$

donde

$$= \sqrt{(a(x'-x)+b(y-y'))^2 + (b(x'-x)+a(y'-y))^2}$$

$$= \sqrt{(a^2+b^2)(x'-x)^2 + (a^2+b^2)(y-y')^2 + 2ab((x'-x)(y-y')+(x'-x)(y'-y))}$$

$$= \sqrt{(a^2+b^2)(x'-x)^2 + (a^2+b^2)(y-y')^2} = d(A,B)$$

Portanto, a aplicação f é uma isometria.

- 5. Determine, **justificando pela definição**, se as seguintes aplicações são isometrias de um espaço euclidiano tridimensional (munido de um referencial ortonormado).
 - (a) f(x, y, z) = (-y + x, y, 0);
 - (b) f(x, y, z) = (-x, 2 y, 3 z)

(Resolução)

(a) Não é uma isometria. Tomando A = (0,0,1) e B = (0,0,-1) tem-se f(A) = (0,0,0) e f(B) = (0,0,0), em particular

$$d(A, B) = 2$$
 e $d(f(A), f(B)) = 0$

logo f não é uma isometria.

(b) Sejam A = (x, y, z) e B = (x', y', z'), tem-se

$$f(A) = (-x, 2-y, 3-z)$$
 e $f(B) = (-x', 2-y', 3-z')$

donde

$$d(f(A), f(B)) = \sqrt{((-x'+x)^2 + (2-y'-(2-y))^2 + ((3-z')-(3-z))^2}$$

$$= \sqrt{(x'-x)^2 + (y'-y)^2 + (z'-z)^2}$$

$$= d(A, B)$$

Portanto, f é uma isometria.

- 6. Seja $\mathcal A$ um plano afim euclidiano munido de um referencial ortonormado. Determine a representação matricial de:
 - (a) A simetria central com centro (2, -3);
 - (b) A reflexão na recta x = -3.

(Resolução)

(a) Seja s a simetria central com centro $\Omega=(2,-3)$, se M=(x,y) tem-se

$$s(M) = \Omega - \overrightarrow{\Omega M} = (2, -3) - (x - 2, y - (-3)) = (4 - x, -6 - y)$$

e, se s(M) = (x', y'), obtemos:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 \\ -6 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Em coordenadas homogéneas

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 4 \\ 0 & -1 & -6 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(b) Seja σ a reflexão na recta r definida pela equação x=-3. Considere-se o ponto A=(-3,0) de r e o vector $\overrightarrow{n}=(1,0)$ normal à recta r. Seja p(M) a projecção de M em r, tem-se

$$\overrightarrow{AM} = \overrightarrow{Ap(M)} + \overrightarrow{p(M)M} = \overrightarrow{Ap(M)} + \lambda \overrightarrow{n}$$

Se M=(x,y) então $\overrightarrow{AM}=(x+3,y)$ e como $\overrightarrow{Ap(M)}$ é ortogonal a \overrightarrow{n} obtemos

$$(x+3,y)\cdot(1,0)=\lambda(1,0)\cdot(1,0)$$

donde $\lambda = x + 3$. Recorde-se que

$$\sigma(M) = M + 2\overrightarrow{Mp(M)} = M - 2\overrightarrow{p(M)M} = M - 2\lambda \overrightarrow{n}$$

donde

$$\sigma(x,y) = (x,y) - 2(x+3)(1,0) = (-x-6,y)$$

Se $\sigma(x,y)=(x',y')$ podemos representar matricialmente σ como

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -6 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Em coordenadas homogéneas

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & -6 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

7. Seja \mathcal{A} um espaço euclidiano de dimensão 4 munido de um referencial ortonormado. Determine o centro e a razão das seguintes homotetias de \mathcal{A} . Apresente a representação matricial. Se houver, indique as simetrias centrais.

(a) f(x, y, z, t) = (2x + 1, 2y, 2z - 1, 2t);

(b)
$$f(x, y, z, t) = (2 - x, 3 - y, -z, -10 - t);$$

(c)
$$f(x, y, z, t) = (-1/2x, -1/2y, -1/2z, 4 - 1/2t)$$

(Resolução)

(a) Se f(x, y, z, t) = (x, ', y', z', t'), a representação matricial de f é

$$\begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$

O centro $\Omega = (x_0, y_0, z_0, t_0)$ verifica:

$$(x_0, y_0, z_0, t_0) = f(x_0, y_0, z_0, t_0) = (2x_0 + 1, 2y_0, 2z_0 - 1, 2t_0)$$

donde $x_0 = -1$, $y_0 = 0$, $z_0 = 1$ e $t_0 = 0$. Em resumo, f é a homotetia com centro $\Omega = (-1, 0, 1, 0)$ e razão 2. Não é uma simetria central.

(b) Se f(x, y, z, t) = (x, y, y, z', t'), a representação matricial de f é

$$\begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 0 \\ -10 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$

O centro $\Omega = (x_0, y_0, z_0, t_0)$ verifica:

$$(x_0, y_0, z_0, t_0) = f(x_0, y_0, z_0, t_0) = (2 - x_0, 3 - y_0, -z_0, -10 - t_0)$$

donde $x_0 = 1$, $y_0 = 3/2$, $z_0 = 0$ e $t_0 = -5$. Em resumo, f é a homotetia com centro $\Omega = (1, 3/2, 0, -5)$ e razão -1. f é então a simetria central com centro (1, 3/2, 0, -5).

(c) Se f(x,y,z,t) = (x,',y',z',t'), a representação matricial de f é

$$\begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \end{pmatrix} + \begin{pmatrix} -1/2 & 0 & 0 & 0 \\ 0 & -1/2 & 0 & 0 \\ 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & -1/2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$

O centro $\Omega = (x_0, y_0, z_0, t_0)$ verifica:

$$(x_0, y_0, z_0, t_0) = f(x_0, y_0, z_0, t_0) = (-1/2x_0, -1/2y_0, -1/2z_0, 4 - 1/2t_0)$$

donde $x_0 = 0$, $y_0 = 0$, $z_0 = 0$ e $t_0 = 8/3$. Em resumo, f é a homotetia com centro $\Omega = (0,0,0,8/3)$ e razão -1/2. Não é uma simetria central.

8. Determine as representações matriciais (em coordenadas usuais e em coordenadas homogéneas) das isometrias de um plano euclidiano munido de um referencial ortonormado seguintes:

(a)
$$f(x_1, x_2) = (-5 + x_1, 2 + x_2);$$

(b)
$$f(x_1, x_2) = (\frac{\sqrt{3}}{2}x_1 + \frac{1}{2}x_2, \frac{1}{2}x_1 - \frac{\sqrt{3}}{2}x_2);$$

(c)
$$f(x_1, x_2) = (7 - x_1, 7 - x_2);$$

(d)
$$f(x_1, x_2) = (\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2, -\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2).$$

Determine quais as rotações, as translações e as reflexões.

(Resolução)

(a) Se $f(x_1, x_2) = (y_1, y_2)$, a representação matricial de f é:

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{c} -5 \\ 2 \end{array}\right) + \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

f é a translação pelo vector $\overrightarrow{v} = (-5, 2)$.

Em coordenadas homogéneas

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

(b) Se $f(x_1, x_2) = (y_1, y_2)$, a representação matricial de f é:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

f é uma reflexão.

Em coordenadas homogéneas

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

(c) Se $f(x_1, x_2) = (y_1, y_2)$, a representação matricial de f é:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

f é uma simetria central (com centro $\Omega = (7/2, 7/2)$). Em coordenadas homogéneas

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 7 \\ 0 & -1 & 7 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

(d)
$$f(x_1, x_2) = (\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2, -\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2).$$

Se $f(x_1, x_2) = (y_1, y_2)$, a representação matricial de f é:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix} + \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

f é uma rotação.

Em coordenadas homogéneas

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 7 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 7 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

- 9. Determine a expressão analítica das reflexões nas rectas definidas pelas equações seguintes:
 - (a) -x + y = 0;
 - (b) 2x + y = 0;
 - (c) -x + y = 2;
 - (d) 2x + y = -1.

(Resolução)

(a) Considere-se a recta definida pela equação cartesiana

$$-x + y = 0$$

Um vector director unitário desta recta é $\overrightarrow{u} = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$. Se $\sigma(x, y) = (x', y')$, em coordenadas usuais tem-se

$$\left(\begin{array}{c} x'\\ y' \end{array}\right) = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right)$$

e em coordenadas homogéneas tem-se:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(b) Considere-se a recta definida pela equação cartesiana

$$2x + y = 0$$

Um vector director unitário desta recta é $\overrightarrow{u} = (\frac{\sqrt{5}}{5}, \frac{-2\sqrt{5}}{5})$. Se $\sigma(x, y) = (x', y')$, a reflexão σ nesta recta pode representar-se matricialmente, em coordenadas usuais por:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3/5 & -4/5 \\ -4/5 & 3/5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

e em coordenadas homogéneas por

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -3/5 & -4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(c) Seja σ a reflexão na recta r definida pela equação cartesiana

$$-x + y = 2$$

A recta r'_O paralela a r' que passa pelo ponto O está definida pela equação

$$-x + y = 0$$

Se P=(0,2) é um ponto da recta r e T é a translação pelo vector $\overrightarrow{OP}=(0,2)$, com O=(0,0), verifica-se

$$\sigma = T \circ \sigma_O \circ T^{-1}$$

com σ_O a reflexão na recta r'_O (consultar (a)).

Em coordenadas usuais, se $\sigma(x,y)=(x',y')$, como T(x,y)=(x,y+2) e $T^{-1}(x,y)=(x,y-2)$ obtemos

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \end{array}\right) + \left[\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y - 2 \end{array}\right) \right]$$

donde se deduz a expressão matricial de σ

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Em coordenadas homogéneas tem-se

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(d) Seja σ a reflexão na recta r definida pela equação cartesiana

$$2x + y = -1$$

A recta r_O paralela a r que passa pelo ponto O está definida pela equação

$$2x + y = 0$$

Se P=(0,-1) é um ponto da recta r e T é a translação pelo vector $\overrightarrow{OP}=(0,-1)$, com O=(0,0), verifica-se

$$\sigma = T \circ \sigma_O \circ T^{-1}$$

onde σ_O é a reflexão na recta r_O .

Usando coordeanadas usuais, a reflexão σ_O está representada matricialmente (consultar alinhas anteriores) por

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3/5 & -4/5 \\ -4/5 & 3/5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

 $com \ \sigma_O(x,y) = (x',y')$. Se $\sigma(x,y) = (x',y')$, $como \ T(x,y) = (x,y-1)$ e $T^{-1}(x,y) = (x,y+1)$ obtemos

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \begin{bmatrix} \begin{pmatrix} -3/5 & -4/5 \\ -4/5 & 3/5 \end{pmatrix} \begin{pmatrix} x \\ y+1 \end{pmatrix} \end{bmatrix}$$

donde se deduz a expressão matricial de σ

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -4/5 \\ -2/5 \end{pmatrix} + \begin{pmatrix} -3/5 & -4/5 \\ -4/5 & 3/5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Usando coordenadas homogéneas, tem-se que

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -3/5 & -4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -3/5 & -4/5 & -4/5 \\ -4/5 & 3/5 & -2/5 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

10. Determine a expressão analítica, num referencial ortonormado de um plano euclidiano, da reflexão deslizante com base a recta r pelo vector \overrightarrow{v} se r está definida pela equação

$$-x + y = 2$$

$$\overrightarrow{v}=(1,1).$$

(Resolução)

Seja σ a reflexão na recta r definida pela equação

$$-x + y = 2$$

No exercício anterior determinou-se a expressão matricial desta reflexão:

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} -2 \\ 2 \end{array}\right) + \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right)$$

ou, equivalentemente,

$$\sigma(x,y) = (-2+y, 2+x)$$

A reflexão deslizante δ é a aplicação composta $T \circ \sigma$, com T a translação pelo vector (1,1) e portanto

$$\delta(x,y) = (T \circ \sigma)(x,y) = (-2+y,2+x) + (1,1) = (-1+y,3+x)$$

Em coordenadas homogéneas

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

- 11. Determine a expressão analítica da rotação centrada na origem de coordenadas e de ângulo com medida α , para
 - (a) $\alpha = \frac{\pi}{4}$;
 - (b) $\alpha = -\frac{-\pi}{3}$;
 - (c) $\alpha = \pi$.

(Resolução)

(a) Se ho é a rotação do ângulo com medida $lpha=rac{\pi}{4}$ tem-se

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

com $\rho(x,y)=(x',y')$. Em coordenadas homogéneas:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(b) Se ho é a rotação do ângulo com medida $lpha=-rac{\pi}{3}$ tem-se

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

com $\rho(x,y)=(x',y')$. Em coordenadas homogéneas:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & -1/2 & 0 \\ 1/2 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(c) Se ho é a rotação do ângulo com medida $lpha=\pi$ tem-se

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right)$$

com $\rho(x,y)=(x',y')$. Em coordenadas homogéneas:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

- 12. Determine a expressão analítica, num referencial ortonormado de um plano euclidiano, da rotação com centro $\Omega=(1,-1)$ do ângulo com medida α , para
 - (a) $\alpha = \frac{\pi}{4}$;
 - (b) $\alpha = -\frac{\pi}{3}$

(Resolução)

(a) Esta rotação ρ com centro Ω verifica, para todo o ponto M do plano:

$$\rho(M) = \Omega + \overrightarrow{\rho}(\overrightarrow{\Omega M})$$

com $\overrightarrow{\rho}$ rotação vectorial do ângulo com medida $\frac{\pi}{4}$. Se M=(x,y) tem-se $\overrightarrow{\Omega M}=(x-1,y+1)$ logo, se $\rho(x,y)=(x',y')$, obtemos

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \left[\begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} x-1 \\ y+1 \end{pmatrix} \right]$$

donde

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 - \sqrt{2} \\ -1 \end{pmatrix} + \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Note-se que as rotações vectoriais identificam-se de modo evidente com as rotações centradas na origem. Assim, podemos escrever

$$\rho = T^{-1} \circ \rho_O \circ T$$

onde ρ_O é a rotação do mesmo ângulo orientado centrada na origem O e T é a translação que verifica $T(\Omega) = O$. Usando coordenadas homogéneas:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 1 - \sqrt{2} \\ \sqrt{2}/2 & \sqrt{2}/2 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

(b) Esta rotação ρ com centro Ω verifica, para todo o ponto M do plano:

$$\rho(M) = \Omega + \overrightarrow{\rho}(\overrightarrow{\Omega M})$$

com $\overrightarrow{\rho}$ rotação vectorial do ângulo com medida $\alpha = -\frac{\pi}{3}$. Se M = (x,y) tem-se $\overrightarrow{\Omega M} = (x-1,y+1)$ logo, se $\rho(x,y) = (x',y')$, obtemos

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \left[\begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix} \begin{pmatrix} x-1 \\ y+1 \end{pmatrix} \right]$$

donde

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3/2 - \sqrt{3}/2 \\ -1/2 + \sqrt{3}/2 \end{pmatrix} + \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix} \begin{pmatrix} x \\ y \end{bmatrix}$$

De modo análogo à alinha anterior, podemos escrever

$$\rho = T^{-1} \circ \rho_O \circ T$$

onde ρ_O é a rotação do mesmo ângulo orientado centrada na origem O e T é a translação que verifica $T(\Omega) = O$. Usando coordenadas homogéneas:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & 1/2 & 0 \\ -1/2 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & 1/2 & \frac{(3-\sqrt{3})}{2} \\ -1/2 & \sqrt{3}/2 & \frac{(-1+\sqrt{3})}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

13. Determine a representação matricial do re-dimensionamento centrado na origem e parâmetros 1 e 3 nas direcções principais.

(Resolução)

A representação matricial deste re-dimensionamento, usando coordenadas homogéneas, é

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

14. Determine o re-dimensionamento inverso do re-dimensionamento da alinha anterior. (Resolução)

O re-dimensionamento inverso do anterior está representado pela matriz inversa, ou seja:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

15. Determine a representação matricial do re-dimensionamento centrado na origem e parâmetros 1 e 3 nas direcções definidas pelas bissectrizes do primeiro e segundo quadrante.

(Resolução)

Sejam \overrightarrow{v}_1 , \overrightarrow{v}_2 os vectores directores das bissectrizes indicadas. No referencial $\mathcal{R} = \{O'; \overrightarrow{v}_1, \overrightarrow{v}_2\}$ o re-dimensionamento indicado está representado matricialmente por:

$$\begin{pmatrix} y_1' \\ y_2' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix}$$

As bissectrizes das direcções principais estão dirigidas pelos vectores $\overrightarrow{v}_1=(\sqrt{2}/2,\sqrt{2}/2)$ e $\overrightarrow{v}_2=(-\sqrt{2}/2,\sqrt{2}/2)$. Assim, se (x_1,x_2) são as coordenadas de um ponto no referencial original tem-se que:

$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix}$$

e como a matriz indicada é ortogonal, tem-se:

$$\begin{pmatrix} x_1' \\ x_2' \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ -\sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

A transformação pedida obtém-se então como a composta:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ -\sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

16. Determine a transvecção na origem de factor 2 na direcção de $\overrightarrow{v}=(1,0)$.

(Resolução)

Seja f a transvecção (directa) na origem de factor 2. Se $f(x_1, x_2) = (y_1, y_2)$, então, em coordenadas homogéneas tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

17. Determine a transvecção inversa na origem de factor 2 na direcção de $\overrightarrow{v}=(1,0)$.

(Resolução)

Seja f a transvecção (directa) na origem de factor 2. Se $f(x_1, x_2) = (y_1, y_2)$, então, em coordenadas homogéneas tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

18. Determine a transvecção na origem de factor 3 na direcção do vector $(\sqrt{2}/2, \sqrt{2}/2)$. (Resolução)

Seja f a transvecção (directa) na origem de factor 2 dirigida pelo vector $(\sqrt{2}/2, \sqrt{2}/2)$. Se $f(x_1, x_2) = (y_1, y_2)$, então, em coordenadas homogéneas tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/2 & 3/2 & 0 \\ -3/2 & 5/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

19. Determine a transvecção inversa na origem de factor 3 na direcção do vector $(\sqrt{2}/2, \sqrt{2}/2)$. (Resolução)

Seja f a transvecção inversa na origem de factor 2 dirigida pelo vector $(\sqrt{2}/2, \sqrt{2}/2)$. Se $f(x_1, x_2) = (y_1, y_2)$, então, em coordenadas homogéneas tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 5/2 & -3/2 & 0 \\ 3/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

20. Determine a transvecção no ponto O'=(1,1) de factor 3 na direcção do vector (1,0). (Resolução)

A transvecção (directa) na origem de factor 3 na direcção do vector (1,0) representa-se, em coordenadas homogéneas por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

A transvecção f de factor 3 no ponto O'=(1,1) na direcção do vector (1,0) pode obter-se como a composta:

$$f = T^{-1} \circ f_O \circ T$$

onde T é a translação definida por T(O') = O e f_O é a transvecção na origem anterior. Assim, se $f(x_1, x_2) = (y_1, y_2)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

- 21. Considere o segmento de extremos A=(1,1) e B=(3,1). Determine a imagem deste segmento através das aplicações seguintes:
 - (a) A homotetia h centrada no ponto (-1, -1) e razão 2;
 - (b) O re-dimensionamento f na origem com parâmetros 1 e 3 nas direcções principais;
 - (c) A rotação ρ centrada no ponto (2,0) de ângulo orientado $\pi/3$;
 - (d) A transvecção t na origem de factor 2 e vector $\overrightarrow{w} = (0,1)$;
 - (e) A aplicação composta $t \circ \rho \circ f \circ h$.

(Resolução)

Note-se que todas as aplicações consideradas no exercício são aplicações afins e preservam os segmentos. Isto é, se f é uma aplicação afim e A e B são dois pontos do espaço afim, então

$$f(\overline{AB}) = \overline{f(A)f(B)}$$

Assim, para determinar a imagem de um segmento basta determinar a imagem dos extremos.

(a) A homotetia h indicada representa-se, em coordenadas homogéneas, por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

onde $h(x_1, x_2) = (y_1, y_2)$. Usando a expressão matricial anterior obtemos

$$h(A) = h(1,1) = (3,3)$$
 e $h(B) = h(3,1) = (7,3)$

(b) O re-dimensionamento f indicado representa-se, em coordenadas homogéneas, por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

onde $f(x_1, x_2) = (y_1, y_2)$. Usando a expressão matricial anterior obtemos

$$f(A) = f(1,1) = (1,3)$$
 e $f(B) = f(3,1) = (3,3)$

(c) A rotação ρ indicada é a composta

$$\rho = T^{-1} \circ \rho_O \circ T$$

onde T é a translação definida por $T(\Omega) = O$ e ρ_O é a rotação na origem de ângulo orientado $\pi/3$. Se $\rho(x_1, x_2) = (y_1, y_2)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 & -\sqrt{3}/2 & 1 \\ \sqrt{3}/2 & 1/2 & -\sqrt{3} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Usando a expressão matricial anterior obtemos

$$\rho(A) = \rho(1,1) = 1/2(3-\sqrt{3},1-\sqrt{3})$$

е

$$\rho(B) = \rho(3,1) = 1/2(5 - \sqrt{3}, 1 + \sqrt{3})$$

(d) A transvecção t indicada representa-se, em coordenadas homogéneas, por

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

onde $t(x_1, x_2) = (y_1, y_2)$. Usando a expressão matricial anterior obtemos

$$t(A) = t(1,1) = (1,3)$$

е

$$t(B) = t(3,1) = (3,7)$$

(e) A aplicação indicada, em coordenadas homogéneas, representa-se matricialmente por:

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/2 & -\sqrt{3}/2 & 1 \\ \sqrt{3}/2 & 1/2 & -\sqrt{3} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

donde

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & -3\sqrt{3} & 1/2(3-3\sqrt{3}) \\ 2+\sqrt{3} & 3-6\sqrt{3} & 9/2-\sqrt{3} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

e então

$$(t \circ \rho \circ f \circ h)(A) = (t \circ \rho \circ f \circ h)(1,1) = 1/2(5 - 9\sqrt{3}, 19 - 17\sqrt{3})$$

e

$$(t \circ \rho \circ f \circ h)(B) = (t \circ \rho \circ f \circ h)(3,1) = 1/2(9 - 9\sqrt{3}, 27 - 13\sqrt{3})$$

- 22. Considere a circunferência com centro $\Omega = (2,1)$ e raio 3. Determine a imagem desta circunferência através das aplicações seguintes:
 - (a) A homotetia h centrada no ponto (-1, -1) e razão 2;
 - (b) A rotação ρ centrada na origem de ângulo orientado $\pi/6$;
 - (c) A translação t pelo vector $\overrightarrow{w} = (1,1)$;
 - (d) A aplicação composta $t \circ \rho \circ h$.

(Resolução)

Todas as aplicações indicadas são semelhanças (a rotação e a translação são, de facto, isometrias, isto é, semelhanças de razão 1). Recorde-se que uma circunferência com centro Ω e raio r é definida como

$$\mathcal{C} = \{ M \in \mathcal{A} : d(M, \Omega) = r \}$$

Assim, se f é uma semelhança de razão λ , tem-se que $M \in \mathcal{C}$ se e só se

$$d(f(M), f(\Omega)) = \lambda r$$

e portanto, f(C) é a circunferência com centro $f(\Omega)$ e raio λr .

(a) A imagem da circunferência indicada será um circunferência com raio 6 e centrada no ponto h(2,1). Usando coordenadas homogéneas, se $h(x_1,x_2)=(y_1,y_2)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

donde h(2,1)=(5,3). Em resumo, $h(\mathcal{C})$ é a circunferência com centro (5,3) e raio 6.

(b) A imagem da circunferência indicada será um circunferência com raio 3 e centrada no ponto $\rho(2,1)$. Usando coordenadas homogéneas, se $\rho(x_1,x_2)=(y_1,y_2)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & -1/2 & 0 \\ 1/2 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

donde $\rho(2,1)=(\sqrt{3}-1/2,1+\sqrt{3}/2)$. Em resumo, $\rho(\mathcal{C})$ é a circunferência com centro $(\sqrt{3}-1/2,1+\sqrt{3}/2)$ e raio 3.

- (c) A imagem da circunferência indicada será um circunferência com raio 3 e centrada no ponto t(2,1)=(3,2).
- (d) A imagem da circunferência indicada será um circunferência com raio 6 e centrada no ponto $(t \circ \rho \circ h)(2,1)$. Usando coordenadas homogéneas, se $(t \circ \rho \circ h)(x_1,x_2) = (y_1,y_2)$, tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & -1/2 & 0 \\ 1/2 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

isto é

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3} & -1 & \frac{1+\sqrt{3}}{2} \\ 1 & \sqrt{3} & \frac{3+\sqrt{3}}{2} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

e portanto

$$(t \circ \rho \circ h)(2,1) = 1/2(-1+5\sqrt{3},7+3\sqrt{3})$$

Transformações do espaço tridimensional

- 23. Num espaço euclidiano tridimensional munido de um referencial ortonormado determine a expressão analítica de:
 - (a) a translação t pelo vector $\overrightarrow{v} = (1, 5, -8)$;
 - (b) a simetria central s com centro $\Omega = (2, -2, 0)$;
 - (c) a homotetia h com razão 3 e centro $\Omega' = (3,0,0)$;

(Resolução)

(a) A tranlação T pelo vector $\overrightarrow{v}=(10,15,-8)$ está definida por $T(M)=M+\overrightarrow{v}$. Se M=(x,y,z) tem-se

$$T(x, y, z) = (1 + x, 5 + y, -8 + z)$$

(b) A simetria central s com centro Ω está definida por $s(M) = \Omega - \overrightarrow{\Omega M}$. Se M = (x, y, z) e $\Omega = (2, -2, 0)$ tem-se

$$s(x, y, z) = (2, -2, 0) - (x - 2, y - (-2), z) = (4 - x, -4 - y, -z)$$

(c) A homotetia h com razão 3 e centro Ω' está definida por $h(M) = \Omega' + 3\overrightarrow{\Omega'M}$. Se M = (x, y, z) e $\Omega' = (3, 0, 0)$ tem-se

$$h(x, y, z) = (3, 0, 0) + 3(x - 3, y, z) = (3x - 6, 3y, 3z).$$

- 24. Determine a representação matricial de:
 - (a) A simetria central com centro (1, 2, -3);
 - (b) A reflexão σ no plano definido pela equação $x_1 = 3$;
 - (c) A aplicação composta $s \circ \sigma$.

(Resolução)

(a) Seja s a simetria central com centro $\Omega=(1,2,-3)$, se $M=(x_1,x_2,x_3)$ tem-se

$$s(M) = \Omega - \overrightarrow{\Omega M} = (1, 2, -3) - (x_1 - 1, x_2 - 2, x_3 - (-3)) = (2 - x_1, 4 - x_2, -6 - x_3)$$

e, se $s(M) = (y_1, y_2, y_3)$, obtemos, em coordenadas homogéneas

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

(b) Seja σ a reflexão no plano definido pela equação $x_1=3$. Tem-se que

$$\sigma = T^{-1} \circ \sigma_0 \circ T$$

onde T é a translação que verifica, por exemplo T(3,0,0)=(0,0,0) e σ_O é a reflexão no plano $x_1=0$. Assim, a representação matricial de σ obtém-se a partir do produto:

$$\begin{pmatrix}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

donde, se $\sigma(x_1, x_2, x_3) = (y_1, y_2, y_3)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

(c) A aplicação composta é definida através do produto:

$$\begin{pmatrix} -1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -4 \\ 0 & -1 & 0 & 4 \\ 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 25. Determine a expressão analítica das reflexões nos planos definidos pelas equações seguintes:
 - (a) -x + y + z = 0;
 - (b) -x + y + z + 1 = 0.

(Resolução)

(a) Um vector normal unitário deste plano é $\overrightarrow{n} = (-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3})$. Assim, se σ_O é a reflexão neste plano, e se $\sigma_O(x_1, x_2, x_3) = (y_1, y_2, y_3)$ então:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 & 2/3 & 2/3 & 0 \\ 2/3 & 1/3 & -2/3 & 0 \\ 2/3 & -2/3 & 1/3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

(b) O plano paralelo ao plano indicado passando pela origem está definido pela equação cartesiana:

$$-x + y + z = 0$$

que é o plano usado na alinha anterior. Assim, a reflexão σ no plano do enunciado pode calcular-se como a aplicação composta:

$$\sigma = T^{-1} \circ \sigma_O \circ T$$

com σ_O a representação matricial obtida na alinha anterior e T a translação que, por exemplo, verifica T(1,0,0)=(0,0,0). A representação matricial de σ é então obtida através do produto:

$$\begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1/3 & 2/3 & 2/3 & 0 \\
2/3 & 1/3 & -2/3 & 0 \\
2/3 & -2/3 & 1/3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Assim, se $\sigma(x_1, x_2, x_3) = (y_1, y_2, y_3)$ então:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 & 2/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 & -2/3 \\ 2/3 & -2/3 & 1/3 & -2/3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

26. Determine a expressão analítica da rotação de ângulo $\theta = \frac{\pi}{3}$ no eixo dirigido pelo vector \overrightarrow{e}_1 . (Resolução)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 & 0 \\ 0 & \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

27. Determine a expressão analítica da rotação de ângulo $\theta=\frac{\pi}{3}$ no eixo dirigido pelo vector \overrightarrow{e}_1 que passa pelo ponto A=(3,2,1).

(Resolução)

A rotação $Rot_A(\pi/3, \overrightarrow{e}_1)$ indicada pode obter-se como a composta:

$$Rot_A(\pi/3, \overrightarrow{e}_1) = T^{-1} \circ Rot_O(\pi/3, \overrightarrow{e}_1) \circ T$$

onde $Rot_O(\pi/3, \overrightarrow{e}_1)$ é a rotação obtida no exercício anterior e T é a translação que verifica, por exemplo, T(A) = O. Assim, a rotação é então obtida através do produto:

$$\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 & 0 \\ 0 & \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assim, se $\sigma(x_1, x_2, x_3) = (y_1, y_2, y_3)$ então:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 & 1 + \sqrt{3}/2 \\ 0 & \sqrt{3}/2 & 1/2 & 1 - \sqrt{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

28. Determine a expressão analítica da rotação de ângulo $\theta = \frac{\pi}{3}$ no eixo dirigido pelo vector \overrightarrow{e}_2 . (Resolução)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & \sqrt{3}/2 & 0 \\ 0 & 1 & 0 & 0 \\ -\sqrt{3}/2 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

29. Determine a expressão analítica da rotação de ângulo $\theta=\frac{\pi}{3}$ no eixo dirigido pelo vector \overrightarrow{e}_2 que passa pelo ponto A=(2,1,0).

(Resolução)

A rotação $Rot_A(\pi/3, \overrightarrow{e}_2)$ indicada pode obter-se como a composta:

$$Rot_A(\pi/3, \overrightarrow{e}_2) = T^{-1} \circ Rot_O(\pi/3, \overrightarrow{e}_2) \circ T$$

onde $Rot_O(\pi/3, \overrightarrow{e}_2)$ é a rotação obtida no exercício anterior e T é a translação que verifica, por exemplo, T(A) = O. Assim, a rotação é então obtida através do produto:

$$\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1/2 & 0 & \sqrt{3}/2 & 0 \\
0 & 1 & 0 & 0 \\
-\sqrt{3}/2 & 0 & 1/2 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Assim, se $\sigma(x_1, x_2, x_3) = (y_1, y_2, y_3)$ então:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & \sqrt{3}/2 & 1 \\ 0 & 1 & 0 & 0 \\ -\sqrt{3}/2 & 0 & 1/2 & \sqrt{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

30. Determine a representação matricial do re-dimensionamento centrado na origem e parâmetros 1, 2 e 3 nas direcções principais.

(Resolução)

A representação matricial deste re-dimensionamento, usando coordenadas homogéneas, é

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

31. Determine o re-dimensionamento inverso do re-dimensionamento da alinha anterior. (Resolução)

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

- 32. Considere a esfera com centro $\Omega = (0, 2, 1)$ e raio 3. Determine a imagem desta esfera através das aplicações seguintes:
 - (a) A homotetia h centrada no ponto (0, -1, -1) e razão 2;
 - (b) A rotação ρ de ângulo $\theta=\pi/6$ no eixo dirigido pelo vector $\overrightarrow{u}=(0,\sqrt{2}/2,\sqrt{2}/2)$ que passa pelo ponto A=(0,0,-2).
 - (c) A aplicação composta $\rho \circ h$.

(Resolução)

Todas as aplicações indicadas são semelhanças (a rotação é, de facto, de facto, uma isometria). Recorde-se que uma esfera com centro Ω e raio r é definida como

$$\mathcal{C} = \{ M \in \mathcal{A} : d(M, \Omega) = r \}$$

Assim, se f é uma semelhança de razão λ , tem-se que $M \in \mathcal{C}$ se e só se

$$d(f(M), f(\Omega)) = \lambda r$$

e portanto, f(C) é a esfera com centro $f(\Omega)$ e raio λr .

(a) A imagem da esfera indicada será um circunferência com raio 6 e centrada no ponto h(0,2,1). Usando coordenadas homogéneas, se $h(x_1,x_2,x_3)=(y_1,y_2,y_3)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

donde h(0,2,1)=(0,5,3). Em resumo, $h(\mathcal{C})$ é a esfera com centro (0,5,3) e raio 6.

(b) A imagem da esfera indicada será uma esfera com raio 3 e centrada no ponto $\rho(0,2,1)$. Recorde-se que a matriz que representa a rotação ρ pode obter-se como o produto:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & -\sqrt{2}/4 & \sqrt{2}/4 & 0 \\ \sqrt{2}/4 & (2+\sqrt{3})/4 & (2-\sqrt{3})/4 & 0 \\ -\sqrt{2}/4 & (2-\sqrt{3})/4 & (2+\sqrt{3})/4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assim, se $\rho(x_1, x_2, x_3) = (y_1, y_2, y_3)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3}/2 & -\sqrt{2}/4 & \sqrt{2}/4 & \sqrt{2}/2 \\ \sqrt{2}/4 & (2+\sqrt{3})/4 & (2-\sqrt{3})/4 & 1-\sqrt{3}/2 \\ -\sqrt{2}/4 & (2-\sqrt{3})/4 & (2+\sqrt{3})/4 & (-2+\sqrt{3})/2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

donde $\rho(0,2,1) = (\sqrt{2}/4, (10-\sqrt{3})/4, (2+\sqrt{3})/4)$. Em resumo, $\rho(\mathcal{C})$ é a circunferência com centro $(\sqrt{2}/4, (10-\sqrt{3})/4, (2+\sqrt{3})/4)$ e raio 3.

(c) A imagem da circunferência indicada será um circunferência com raio 6 e centrada no ponto $(\rho \circ h)(0,2,1)$. A matriz que representa a aplicação composta $\rho \circ h$ é o produto:

$$\begin{pmatrix} \sqrt{3}/2 & -\sqrt{2}/4 & \sqrt{2}/4 & \sqrt{2}/2 \\ \sqrt{2}/4 & (2+\sqrt{3})/4 & (2-\sqrt{3})/4 & 1-\sqrt{3}/2 \\ -\sqrt{2}/4 & (2-\sqrt{3})/4 & (2+\sqrt{3})/4 & (-2+\sqrt{3})/2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assim, se $(\rho \circ h)(x_1, x_2, x_3) = (y_1, y_2, y_3)$, tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{3} & -\sqrt{2}/2 & \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & (2+\sqrt{3})/2 & (2-\sqrt{3})/2 & 2-\sqrt{3}/2 \\ -\sqrt{2}/2 & (2-\sqrt{3})/2 & (2+\sqrt{3})/2 & \sqrt{3}/2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

e portanto

$$(\rho \circ h)(0,2,1) = (0,5,3)$$

33. Determine a representação matricial da projecção paralela ao vector $\overrightarrow{v}=(1,2,0)$ no plano definido pela equação cartesiana:

$$2x - 2y + z = 0$$

(Resolução)

A partir do vector normal ao plano $\overrightarrow{u}=(2,-2,1)$, podemos obter um vector normal unitário:

$$\overrightarrow{n} = (2/3, -2/3, 1/3)$$

como $\overrightarrow{v}=(1,2,0)$, tem-se

$$N = 2/3 - 4/3 = -2/3$$

donde

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1/2 & 0 \\ 2 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

34. Determine a representação matricial da projecção paralela ao vector $\overrightarrow{v}=(1,2,0)$ no plano definido pela equação cartesiana:

$$2x - 2y + z - 2 = 0$$

(Resolução)

Seja A=(1,0,0) um ponto deste plano. A projecção pedida pode calcular-se como a aplicação composta:

$$par = T^{-1} \circ par_O \circ T$$

onde T(A)=O e par_O é a projecção paralela ao vector \overrightarrow{v} no plano definido pela equação cartesiana:

$$2x - 2y + z = 0$$

Esta projecção foi calculada no exercício anterior e portanto a matriz que representa esta projecção é o produto:

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 1/2 & 0 \\ 2 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assim, se $par(x_1, x_2, x_3) = (y_1, y_2, y_3)$ tem-se

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1/2 & -1 \\ 2 & -1 & 1 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix}$$

Coordenadas homogéneas e Projecções perspectivas

35. Determine a representação matricial, em coordenadas homogéneas, da projecção perspectiva no plano de equação $x_2=0$ desde o ponto $\Omega=(0,2,0)$. Qual o plano excepcional desta projecção perspectiva?

(Resolução)

O plano excepcional, isto é, os pontos do espaço que nos quais a projecção perspectiva não está definida, são os pontos do plano paralelo a $x_2=0$ que passa pelo ponto Ω . Assim, o plano excepcional é o plano definido pela equação cartesiana:

$$x_2 - 2 = 0$$

Em coordenadas homogéneas, a representação matricial desta perspectiva é:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ W' \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ W \end{pmatrix}$$

36. Determine o plano excepcional da projecção perspectiva no plano de equação $x_2-4=0$ desde o ponto $\Omega=(1,2,0)$. Indique a representação matricial, em coordenadas homogéneas, desta projecção perspectiva. Qual a imagem do ponto M=(2,1,-3)?

(Resolução)

O plano excepcional, são os pontos do plano paralelo a $x_2 = 0$ que passa pelo ponto Ω . Assim, o plano excepcional é o plano definido pela equação cartesiana:

$$x_2 - 2 = 0$$

O plano imagem não passa pela origem de coordenadas. Considere-se o ponto A=(0,4,0) e seja T a translação que verifica T(A)=O. A projecção perspectiva pedida é a aplicação composta:

$$T^{-1} \circ per_O \circ T$$

onde per_O é a projecção perspectiva desde o ponto $T(\Omega)$ no plano $x_2 = 0$. Como $T(\Omega) = (1, -2, 0)$, a representação matricial de per_O é

$$\left(\begin{array}{ccccc}
2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 2
\end{array}\right)$$

Uma matriz que representa a projecção perspectiva inicial é o produto:

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Assim, em coordenadas homogéneas, a representação matricial desta perspectiva é:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ W' \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 & -4 \\ 0 & 4 & 0 & -8 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ W \end{pmatrix}$$

Seja M = (2, 1, -3), tem-se que $per(M) = (Y_1, Y_2, Y_3, W')$ com

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ W' \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 & -4 \\ 0 & 4 & 0 & -8 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \\ -6 \\ -1 \end{pmatrix}$$

O último vector coluna representa umas coordenadas homogéneas do ponto per(M). Para obter as coordenadas usuais, basta dividir pelo elemento da última fila. Assim, o ponto per(M) é o ponto de coordenadas (1,4,6).

37. Determine o plano excepcional da projecção perspectiva no plano de equação

$$x_1 + x_2 + x_3 + 1 = 0$$

desde o ponto $\Omega=(1,1,1)$. Indique a representação matricial, em coordenadas homogéneas, desta projecção perspectiva.

(Resolução)

O plano excepcional, são os pontos do plano paralelo a $x_1 + x_2 + x_3 + 1 = 0$ que passa pelo ponto Ω . Assim, o plano excepcional é o plano definido pela equação cartesiana:

$$x_1 + x_2 + x_3 - 3 = 0$$

O plano imagem não passa pela origem de coordenadas. Considere-se o ponto A=(-1,0,0) e seja T a translação que verifica T(A)=O. A projecção perspectiva pedida é a aplicação composta:

$$T^{-1} \circ per_O \circ T$$

onde per_O é a projecção perspectiva desde o ponto $T(\Omega)$ no plano $x_1+x_2+x_3=0$. Como $T(\Omega)=(2,1,1)$, e um vector normal ao plano é o vector $\overrightarrow{n}=(1,1,1)$, a representação matricial de per_O é

$$\left(\begin{array}{cccccc}
-2 & 2 & 2 & 0 \\
1 & -3 & 1 & 0 \\
1 & 1 & -3 & 0 \\
1 & 1 & 1 & -4
\end{array}\right)$$

Uma matriz que representa a projecção perspectiva inicial é o produto:

$$\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2 & 2 & 0 \\ 1 & -3 & 1 & 0 \\ 1 & 1 & -3 & 0 \\ 1 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assim, em coordenadas homogéneas, a representação matricial desta perspectiva é:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ W' \end{pmatrix} = \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ W \end{pmatrix}$$

6 Exercícios propostos

Para simplificar as notações, num espaço afim munido de um referencial, os pontos e os vectores identificar-se-ão com as suas coordenadas no referencial e na base associada ao referencial, respectivamente.

- 1. Determine a representação matricial da translação pelo vector \overrightarrow{v} no espaço afim $\mathcal A$ (munido de um referencial):
 - (a) $\overrightarrow{v} = (1, -2);$
 - (b) $\overrightarrow{v} = (3, 0, -4);$
 - (c) $\overrightarrow{v} = (1, 0, 1, 1)$.

Indique também a representação em coordenadas homogéneas.

- 2. Determine a representação matricial da simetria central em Ω no espaço afim $\mathcal A$ (munido de um referencial):
 - (a) $\Omega = (2,3)$;
 - (b) $\Omega = (1, -1, -1);$
 - (c) $\Omega = (2, 2, 3, 1)$.

Indique também a representação em coordenadas homogéneas.

3. Determine a representação matricial da homotetia com centro Ω e razão λ no espaço afim $\mathcal A$ (munido de um referencial):

(a)
$$\Omega = (1,1)$$
, $\lambda = 3$;

(c)
$$\Omega = (1, -1, -1), \lambda = 4;$$

(b)
$$\Omega = (2,3)$$
, $\lambda = -1$;

(d)
$$\Omega = (-2, 2, 0, 1)$$
, $\lambda = -2$.

Indique também a representação em coordenadas homogéneas.

- 4. Seja ${\mathcal A}$ um plano afim munido de um referencial. Considerem-se:
 - (a) h a homotetia com centro (3,0) e razão -2;
 - (b) s a simetria central com centro (-1, -1);
 - (c) t a translação pelo vector $\overrightarrow{v}=(2,1)$.

Determine as aplicações compostas:

$$h \circ h, \qquad s \circ h, \qquad h \circ s, \qquad s \circ t, \qquad \mathsf{e} \qquad h \circ s \circ t$$

Qual a imagem da recta de equação x+y=0 através das aplicações anteriores? E da circunferência com raio 1 e centro (0,0)?

- 5. Seja \mathcal{A} um plano afim euclidiano munido de um referencial ortonormado. Determine a expressão analítica de:
 - (a) a simetria central no ponto $\Omega = (2,1)$;
 - (b) a homotetia com razão -3 e centro $\Omega = (2,1)$;
 - (c) a projecção ortogonal na recta definida pela equação cartesiana

$$2x - y + 1 = 0$$
;

- (d) a reflexão ortogonal na recta r anterior;
- (e) a reflexão ortogonal nas rectas s e s' definidas, respectivamente, pelas equações x=k e y=b
- 6. Seja A um espaço euclidiano tridimensional munido de um referencial ortonormado. Determine a expressão analítica de:
 - (a) a simetria central no ponto $\Omega = (1, 1, 1)$;
 - (b) a homotetia com razão -5 e centro $\Omega = (0, 2, 1)$;
 - (c) a projecção ortogonal no plano definido pela equação cartesiana

$$2x - y + z + 1 = 0;$$

- (d) a reflexão ortogonal no plano anterior;
- (e) a projecção ortogonal na recta definida pela equação vectorial:

$$s = (1,0,0) + < (1,0,-1) >$$

- (f) a simetria ortogonal na recta definida na alinha anterior.
- 7. Seja \mathcal{A} um espaço afim euclidiano de dimensão 4 munido de um referencial ortonormado. Determine a expressão analítica de:
 - (a) a translação pelo vector $\overrightarrow{v} = (3, 1, 2, 0)$;
 - (b) a simetria central no ponto $\Omega = (0, 1, 2, 1)$;
 - (c) a homotetia com razão 6 e centro $\Omega = (3, 3, 3, 3)$;
 - (d) a reflexão ortogonal no hiperplano definido pela equação cartesiana 2x y + t = 0.
- 8. Determine, **justificando pela definição**, se as seguintes aplicações são isometrias de um plano euclidiano (munido de um referencial ortonormado).
 - (a) $f(x_1, x_2) = (x_1, x_1 + x_2)$;
- (e) $f(x_1, x_2) = (x_1^2, x_2)$;
- (b) $f(x_1, x_2) = (2 x_2, 1 + x_1);$
- (f) $f(x_1, x_2) = (-3 x_2, 1 x_1)$;

(c) $f(x_1, x_2) = (3x_1, 3x_2)$;

- (g) $f(x_1, x_2) = (ax_1 + bx_2 + 3, bx_1 ax_2 + 5),$
- (d) $f(x_1, x_2) = (\cos x_1, \cos x_2)$;

com $a, b \in \mathbf{R}$ tais que $a^2 + b^2 = 1$.

Alguma destas aplicações é uma translação? uma homotetia? uma simetria central?

- 9. Determine as expressões matriciais das homotetias de centro $\Omega=(0,-3)$ e razões $\lambda=-2$ e $\lambda'=15$. Determine também o centro e a razõo da homotetia f(x,y)=(-2x,-2y+4).
- 10. Seja $\mathcal A$ um espaço euclidiano tridimensional munido de um referencial ortonormado. Determine o centro e a razão das seguintes homotetias de $\mathcal A$. Apresente a representação matricial. Se houver, indique as simetrias centrais.
 - (a) f(x,y,z) = (-2x, -2y, -2z + 4, -2t);
 - (b) f(x, y, z) = (13x, 13y, 26 + 13z);
 - (c) f(x, y, z, t) = (-x, -y, -z + 2)
- 11. Determine, **justificando pela definição**, se as seguintes aplicações são isometrias de um espaço euclidiano tridimensional (munido de um referencial ortonormado).
 - (a) $f(x_1, x_2, x_3) = (-x_2 + x_1, x_2, 0);$
 - (b) $f(x_1, x_2, x_3) = (-x_1, 2 x_2, 3 x_3);$
 - (c) $f(x_1, x_2, x_3) = (ax_1 + bx_2, bx_1 ax_2 + 10, x_3)$, com $a, b \in \mathbb{R}$ tais que $a^2 + b^2 = 1$.
- 12. Determine as representações matriciais das isometrias seguintes:
 - (a) $f(x_1, x_2) = (2 + x_1, 3 x_2);$
 - (b) $f(x_1, x_2) = (\frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2, \frac{\sqrt{2}}{2}x_1 \frac{\sqrt{2}}{2}x_2);$
 - (c) $f(x_1, x_2) = (3 x_1, 2 x_2);$
 - (d) $f(x_1, x_2) = (\frac{\sqrt{2}}{2}x_1 \frac{\sqrt{2}}{2}x_2, \frac{\sqrt{2}}{2}x_1 + \frac{\sqrt{2}}{2}x_2);$
 - (e) $f(x_1, x_2) = (1 + \frac{\sqrt{3}}{2}x_1 + \frac{1}{2}x_2, \frac{1}{2}x_1 \frac{\sqrt{3}}{2}x_2).$

Determine quais as rotações, as translações e as reflexões.

- 13. Num plano euclidiano munido de um referencial ortonormado, determine a expressão analítica das reflexões nas rectas definidas pelas equações seguintes:
 - (a) x 3y = 0;

(c) x - 3u = 1:

(b) -3x + 4y = 0:

- (d) -3x + 4y = -8.
- 14. Num plano euclidiano munido de um referencial ortonormado, determine a reflexão deslizante com base a recta r pelo vector \overrightarrow{v} se r está definida pela equação x 3y = 1 e $\overrightarrow{v} = (3, 1)$.
- 15. Num plano euclidiano munido de um referencial ortonormado, determine a expressão analítica
 - (a) da rotação centrada na origem de ângulo orientado de medida $\pi/2$;
 - (b) da rotação centrada no ponto (1,2) de ângulo orientado de medida $-\pi/3$.

Qual a imagem da recta de equação y - 2x = 1 através destas rotações?

16. Determine o centro e a medida do ângulo orientado $\theta \in [0, 2\pi]$ das rotações definidas, num referencial ortonormado de um plano euclidiano, pelas expressões matriciais:

(a)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

(b)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ -\sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Qual a imagem da recta de equação y-2x=1 através destas rotações? E da circunferência de equação $(x-2)^2+(y+1)^3=16$?

- 17. Indique a expressão analítica da reflexão deslizante de base r pelo vector \overrightarrow{v} nos casos seguintes:
 - (a) r é a recta de equação -x + y = 2 e $\overrightarrow{v} = (3,3)$;
 - (b) r é a recta de equação 2x + y = -1 e $\overrightarrow{v} = (2, -4)$.
- 18. Determine a representação matricial do re-dimensionamento centrado na origem e parâmetros 4 e 2 nas direcções principais. Qual o re-dimensionamento inverso?

Considere a circunferência centrada na origem e raio 1. Qual a imagem dessa circunferência através do re-dimensionamento anterior? São os re-dimensionamentos isometrias?

- 19. Determine a representação matricial do re-dimensionamento centrado na origem e parâmetros 2 e 4 nas direcções definidas pelas bissectrizes do primeiro e segundo quadrante.
- 20. Determine a representação matricial do re-dimensionamento centrado no ponto O' = (1,1) e parâmetros 2 e 4 nas direcções definidas pelas bissectrizes do primeiro e segundo quadrante.
- 21. Determine a transvecção na origem de parâmetro 5 na direcção de $\overrightarrow{v}=(0,1)$.
- 22. Determine a transvecção na origem de parâmetro 2 na direcção do vector $(\sqrt{3}/2,1/2)$.
- 23. Determine a transvecção no ponto O'=(1,1) de factor 2 na direcção do vector $(\sqrt{3}/2,1/2)$.

- 24. Considere o segmento de extremos A=(2,0) e B=(1,-3). Determine a imagem deste segmento através das aplicações seguintes:
 - (a) A homotetia h centrada no ponto (1, -3) e razão 4;
 - (b) O re-dimensionamento f na origem com parâmetros 2 e 3 nas direcções principais;
 - (c) A transvecção t na origem de factor 2 e vector $\overrightarrow{w}=(0,1)$;
 - (d) A aplicação composta $t \circ f \circ h$.
- 25. Considere a circunferência com centro $\Omega=(2,1)$ e raio λ . Determine a imagem desta circunferência através das aplicações seguintes:
 - (a) A homotetia h centrada no ponto (-1, -1) e razão 2;
 - (b) A rotação ρ centrada no ponto (2,0) de ângulo orientado $\pi/3$;
 - (c) A translação t pelo vector $\overrightarrow{w} = (1,1)$;
 - (d) A aplicação composta $t \circ \rho \circ h$.

A imagem desta circunferência através da transvecção na origem de factor 2 e direcção $\overrightarrow{v}=(1,0)$ é uma circunferência?

- 26. Determine a expressão analítica de:
 - (a) a translação pelo vector $\overrightarrow{v} = (2, 1, 0)$;
 - (b) a translação t pelo vector $\overrightarrow{v} = (-3, 7, 1)$;
 - (c) a simetria central s com centro $\Omega = (0, 5, -3)$;
 - (d) a homotetia h com razão -5 e centro $\Omega' = (0, 2, 2)$;

Qual a imagem do plano de equação x+y+z=0 através destas aplicações? E da esfera de centro (1,1,1) e raio 2?

- 27. Determine a representação matricial de:
 - (a) A simetria central com centro (3, 3, 3);
 - (b) A reflexão σ no plano definido pela equação $x_3 = -2$;
 - (c) A aplicação composta $s \circ \sigma$.
- 28. Determine a expressão analítica das reflexões nos planos definidos pelas equações seguintes:
 - (a) 2x + 3y z = 0;
 - (b) 2x + 3y z + 2 = 0.
- 29. Determine a expressão analítica da rotação de ângulo $\theta = \frac{\pi}{4}$ no eixo dirigido pelo vector $\overrightarrow{e}_2 = (0, 1, 0)$.
- 30. Determine a expressão analítica da rotação de ângulo $\theta = \frac{\pi}{4}$ no eixo dirigido pelo vector $\overrightarrow{e}_2 = (0, 1, 0)$ que passa pelo ponto A = (2, 1, 0).

- 31. Determine a expressão analítica da rotação de ângulo $\theta=\frac{\pi}{2}$ no eixo dirigido pelo vector $\overrightarrow{u}=(\sqrt{2}/2,\sqrt{2}/2,0).$
- 32. Determine a representação matricial do re-dimensionamento centrado na origem e parâmetros 1, 2 e 4 nas direcções principais.
- 33. Determine a representação matricial das aplicações seguintes:
 - (a) A rotação de ângulo $\pi/4$ em torno ao eixo definido pelo vector v=(1,1,1);
 - (b) O "twist" definido pela rotação anterior e o vector v;
 - (c) O "twist" definido pela rotação anterior e o vector -3v.

Qual a imagem da recta dirigida pelo vector (0,0,2) e que passa pelo ponto (1,0,1) através destas aplicações?

- 34. Considere o segmento de extremos A=(1,0,0) e B=(0,0,-2). Determine a imagem do segmento \overline{AB} através das aplicações seguintes:
 - (a) A homotetia h centrada no ponto (0, -1, -1) e razão 2;
 - (b) A rotação ρ de ângulo $\theta=\pi/6$ no eixo dirigido pelo vector $\overrightarrow{u}=(0,\sqrt{2}/2,\sqrt{2}/2)$ que passa pelo ponto A=(0,0,-2).
 - (c) A aplicação composta $\rho \circ h$.

Qual a imagem da recta r=(1,1,1)+<(2,3,0)> através da homotetia h? e do plano definido pela equação

$$2x - 3y + z + 1 = 0$$
?

Qual a imagem desta recta e deste plano através da composta $\rho \circ h$?

- 35. Determine a expressão matricial da reflexão deslizante num espaço afim tridimensional determinada pelo plano x 2z + 1 = 0 e o vector (0,3,0).
- 36. Determine a expressão matricial da reflexão rotatória no plano x-2z+1 de ângulo $\pi/2$.
- 37. Determine a representação matricial da projecção paralela ao vector $\overrightarrow{v}=(0,1,3)$ no plano definido pela equação cartesiana:

$$x - y + z = \mathbf{0}$$

- 38. Determine a representação matricial da projecção paralela ao vector $\overrightarrow{v}=(1,2,0)$ no plano definido pela equação cartesiana x-y+z-2=0. Calcule a imagem através desta projecção paralela de:
 - (a) a recta que passa pelos pontos A(1,1,0) e B(2,1,0);
 - (b) a recta que passa pelo ponto (2,0,0) e está dirigida pelo vector (1,2,0);
 - (c) o plano definido pela equação y = 0;
 - (d) a circunferência contida no plano anterior com centro (0,0,0) e raio 1.

39. Exercício de exame - 2006/2007

Seja $\mathcal A$ um plano euclidiano munido de um referencial ortonormado. Considere as seguintes transformações geométricas:

- a homotetia h com centro na origem e razão 2;
- a translação t pelo vector $\overrightarrow{v} = (0,2)$;
- a reflexão σ na recta definida pela equação cartesiana: 3x + 4y 1 = 0.

Determine:

- (a) a representação matricial das aplicações indicadas;
- (b) a representação matricial das aplicações compostas $f = \sigma \circ h$ e $g = h \circ t$;
- (c) se as aplicações f e g são isometrias ou semelhanças do plano euclidiano, e, caso sejam isometrias, indique o tipo;
- (d) a imagem através das aplicações h e σ da circunferência centrada na origem e de raio 4 (justifique sucintamente o seu raciocínio).

40. Exercício de exame 2006/2007

Seja $\mathcal A$ um plano euclidiano munido de um referencial ortonormado. Considere as seguintes transformações geométricas:

- a homotetia h com centro na origem e razão 3;
- a translação t pelo vector $\overrightarrow{v} = (-1, 0)$;
- a rotação ρ com centro no ponto $\Omega = (0, -1)$ e ângulo de medida $\pi/4$.

Determine:

- (a) a representação matricial das aplicações indicadas;
- (b) a representação matricial das aplicações compostas $f = \rho \circ h$ e $g = h \circ t$;
- (c) se as aplicações f e g são isometrias ou semelhanças do plano euclidiano, e, caso sejam isometrias, indique o tipo;
- (d) a imagem através das aplicações h e ρ da circunferência centrada na origem e de raio 3 (justifique sucintamente o seu raciocínio).

41. Exercício de exame 2007/2008

Sejam f uma afinidade de um espaço euclidiano tridimensional definida, num referencial ortonormado, por

$$f(x, y, z) = (1 + 2x, 1 + 3y, 4z)$$

e π o plano definido pela equação cartesiana x+y-z+1=0.

- (a) Determine uma equação cartesiana de $f(\pi)$. Indique um vector \overrightarrow{n} normal ao plano π e calcule $\overrightarrow{f}(\overrightarrow{n})$ com \overrightarrow{f} a parte linear da transformação afim f. Verifique que o plano $f(\pi)$ não é ortogonal ao vector $\overrightarrow{f}(\overrightarrow{n})$. É f uma isometria?
- (b) Seja g uma isometria tal que $\overrightarrow{g}(2,2-2)=(0,0,4)$ e g(0,0,1)=(-3,0,1). Determine uma equação cartesiana de $g(\pi)$.

42. Exercício de exame 2007/2008

Seja r uma recta do plano euclidiano definida pela equação cartesiana ax+by=0. Determine a expressão analítica e matricial da transformação geométrica h definida por

$$h(M) = M' + 2\overrightarrow{MM'}$$

com M' a projecção ortogonal de M em r.

Esta transformação geométrica é uma isometria? É uma homotetia?

- 43. Determine a representação matricial, em coordenadas homogéneas, da projecção perspectiva no plano de equação $x_1=0$ desde o ponto $\Omega=(-3,0)$. Qual o plano excepcional desta projecção perspectiva?
- 44. Determine o plano excepcional da projecção perspectiva desde o ponto $\Omega=(1,1,3)$ no plano de equação $x_1=0$. Indique a representação matricial, em coordenadas homogéneas, desta projecção perspectiva.
- 45. Determine o plano excepcional da projecção perspectiva no plano de equação $x_1-2=0$ desde o ponto $\Omega=(1,1,3)$. Indique a representação matricial, em coordenadas homogéneas, desta projecção perspectiva. Calcule a imagem através desta projecção perspectiva de:
 - (a) a recta que passa pelos pontos
 - (b) a recta que passa pelo ponto (2,0,0) e está dirigida pelo vector (1,2,0);
 - (c) o plano definido pela equação $x_3 = 0$;
 - (d) a circunferência contida no plano anterior com centro (0,0,0) e raio 1.

46. Determine o plano excepcional da projecção perspectiva no plano de equação

$$2x_1 + x_2 - x_3 + 1 = 0$$

desde o ponto $\Omega=(0,1,1)$. Indique a representação matricial, em coordenadas homogéneas, desta projecção perspectiva. Calcule a imagem através desta projecção perspectiva de:

- (a) o segmento de extremos A(0,0,0) e B(0,1,0);
- (b) o triângulo de vértices A(0,0,0), B(0,1,0), C=(1,0,0);
- (c) o quadrado de vértices A(0,0,0), B(0,1,0), C=(1,0,0), D=(1,1,0);
- (d) o cubo de vértices A(0,0,0), B(0,1,0), C=(1,0,0), D=(1,1,0), E=(0,0,1), F=(0,1,1), G=(1,0,1) e H=(1,1,1).

Desenhe as projecções obtidas.

47. Exercício Exame 2007/2008

Seja f a projecção perspectiva desde o ponto $\Omega=(0,0,1)$ no plano x+y+z=0. Qual o plano excepcional desta projecção perspectiva? Calcule d(A,B) e d(f(A),f(B)) para A=(2,2,0) e B=(1,1,0). Uma projecção perspectiva é uma isometria?

Conteúdo

I - I	ranstor	mações geométricas.	1
1	Conc	eitos básicos	1
2	Exemplos		
	2.1	Translações	6
	2.2	Simetrias centrais	7
	2.3	Homotetias	8
	2.4	Projecções ortogonais	10
	2.5	Simetrias ortogonais e reflexões	11
	2.6	As reflexões deslizantes	15
	2.7	Projecções e simetrias paralelas	16
	2.8	Re-dimensionamentos (transformações "scaling")	20
	2.9	Homologias: transvecções e afinidades	23
3	Isometrias do plano euclidiano e do espaço euclidiano tridimensional		26
	3.1	Isometrias do plano	26
	3.2	Isometrias do espaço tridimensional	28
4	As projecções perspectivas		30
	4.1	As coordenadas homogéneas e o plano projectivo	30
	4.2	Transformações afins e coordenadas homogéneas	
	4.3	Os processos de projecção e secção	35
	4.4	Projecções perspectivas no plano.	37
	4.5	Projecções perspectivas no espaço tridimensional	38
5	Exercícios resolvidos		41
	Transformações do plano		41
	Transformações do espaço tridimensional		62
	Coordenadas homogéneas e Projecções perspectivas		
6	Exerc	cícios propostos	72