Security Ceremony Concertina

Design and Verification of Security Protocols and Security

Ceremonies

Programa de Pós-Graduacão em Ciências da Computação Dr. Jean Everson Martina

August-November 2016

Motivation

Protocols have several automated tools for formal analysis.

Motivation

Lack of symbolic evaluation methods to verify claims embedded in security ceremonies.

UFSC UNIVERSIDADE FEDERAL CATARINA

Why is formalisation important?

Need of standard procedures in order to compare scenarios.

JFSC UNIVERSIDADE FEDERAL DE SANTA CATARINA

Goal

- Pave the way for symbolic evaluation of socio-technical security ceremonies through:
 - The establishment of a standard syntax for messages description.
 - An augmented threat model to encompass the subtleties of security ceremonies.

Contributions

- Security ceremony description syntax;
- Precise threat model which encompass all subtleties of human peers;
- Proposal: Distributed Attacker (DA) model;
- Strategy for mechanisation and formalisation of ceremonies.

Ceremony Concertina methodology

To represent channels DD, HD and HH as layers, we use the Security Ceremony Concertina methodology :

- As noted by them, this model is only fully understandable when put in the context of the threat model it is being used with.
- They believe that a ceremony can be layered and the analysis can be focused on specific sections of the description, trying to describe or

Ceremony Concertina methodology

Attacker types and capabilities

- The Dolev-Yao (DY) attacker is widely known and the most accepted for protocols.
 - Capabilities: Eavesdrop, Initiate, Atomic Break Down, Crypto, Block, Fabricate, Spoof, Re-Order, Modifying and Replaying.
- The Multi-Attacker (MA) attacker is a DY variant.
 - A MA may control more than only one channel .

Threat Models

- To approach the threshold between a realistic and secure ceremony, Carlos et al. proposed a dynamic threat model.
 - Adjusts the Dolev-Yao full set of capabilities to make the attacker more realistic.

Why a DY is not always realistic?

Human peers subject to laws of physics.

Related work

Some works already tried to address ceremony design and verification:

- Carlos et al further pursued these formalisation ideas using Isabelle (Higher-Order Logic, also known as HOL).
- Martina et al further expands Carlos et al by demonstrating how to conduct symbolic evaluation with the adaptive threat model (using FOL and a theorem prover).

Distributed Attacker (DA) approach

Threat Model	Share knowledge	Same abilities	Different chann	
DY	No	Yes	No	
MA	No	Yes	Yes	
DA	Yes*	No*	Yes*	

Ceremony description notation

Dropbox case peers

- Entities: U_C (user computer), U_P (user phone) and D_S (Dropbox server).
- Communication between U_C and D_S :
 - Attacker DA₁ eavesdropping and blocking the user computer;
 - Key-logger (attacker DA₂) on user's computer;
 - DY attacker on Internet.

Dropbox case peers

- Communication between D_S and U_P :
 - Attackers MA₁ and DA₃ controlling the user's phone (e.g. through a virus);
 - *DA*₁ also eavesdropping on user's phone.

Dropbox 2-step verification sign-in ceremony

Dropbox 2-step verification sign-in ceremony

5.1	U_C	$\xrightarrow{L3(E+B)_{DA_1}}$	D_S	:	(email,password)
5.2	U_C	$\xrightarrow{L2(E)_{DA_2}}$	D_S	:	(email,password)
5.3	U_C	$\xrightarrow[L1(DY)_{DY}]{(-7DA_2)}$	D_S	:	{(email,password)}
6.1	D_S	$\xrightarrow[L1(DY)_{DY}]{}$	U_C	:	{2-step verification}
6.2	D_S	$\xrightarrow{L2(E)_{DA_2}}$	U_C	:	2-step verification
6.3	D_S	$\xrightarrow{L3(E+B)_{DA_1}}$	U_C	:	2-step verification
7.1	D_S	$\xrightarrow{L_2(DY)_{MA_1},(DY)_{DA_3}}$	U_P	:	Auth code message
7.2	D_S	$\xrightarrow{L3} \xrightarrow{L3} \xrightarrow{(E+B)_{DA_1}}$	U_P	:	Auth code message
8.1	U_C	$\xrightarrow{L3(E+B)_{DA_1}}$	D_S	:	auth code
8.2	U_C	$\xrightarrow{L^{2}(E)_{DA_{2}}}$	D_S	:	auth code
8.3	U_C	$\xrightarrow[L1(DY)_{DY}]{(L1(DY)_{DY}}$	D_S	:	{auth code}
9.1	D_S	$\xrightarrow[L1(DY)_{DY}]{}$	U_C	:	{User's page}
9.2	D_S	$\xrightarrow[L2(E)DA_2]{}^{L2(E)DA_2}$	U_C	:	User's page UNIVERSIDADE FEDERAL
9.3	D_S		U_C	:	User's page

Capability Formalisation - Example

```
formula(L3_E(sent(a,b,m), DA1)).
formula( forall([xa, xb, xm, xatt],
        implies(
               and(
                       Agent(xa),
                       Agent(xb),
                       Honest(xa),
                       Honest(xb),
                       Attacker(xatt),
                       Knows(xa, xm),
                       L3_E(sent(xa,xb,xm),xatt)
               and(
                       Knows(xb, xm),
                       Knows(xatt, xm),
                       L3\_Sender(xa,xm)
Eavesdrop L3).
```

Steps Formalisation - Example

```
formula(
      and(
             L3 E(sent(uc,ds,dropbox url),da1),
             L3_B(sent(uc,ds,dropbox_url),da1)
step1).
formula(
      implies(
             and(
                    L3_E(sent(uc,ds,dropbox_url),da1),
                   L3_B(sent(uc,ds,dropbox_url),da1)
             L2_E(sent(uc,ds,dropbox_url),da2)
step2)
```

DA Combined Knowledge - Conjecture Example

- formula(Knows(da2, password), da2_knows_password).
- formula(Knows(da3, auth_code_msg), da3_knows_code).

Final remarks

- We proposed a more precise notation for the description of security ceremonies, including threat models and attacker types.
- Our DA attacker can have different capabilities in each layer and may (or not) share his knowledge with other attackers.

Final remarks

- The usage of adaptive and flexible threat models enables:
 - Specification and test of security ceremonies;
 - Analysis of several scenarios for a given ceremony;
 - Classification of properties assured by each scenarios (remains for future work).

Discussion

Questions????

creative commons

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

