Lógica - INET

Soluciones Práctico 2 - Definición inductiva de conjuntos

Ejercicio 1

- 1. Conjuntos que satisfecen las clausulas: N (naturales), Z (enteros), Q (racionales), R (reales).
 - 2. Mínimo conjunto : N
 - 3. (a) por (a) $0 \in N$
 - (b) por (b) $1 \in N$
 - (c) por (b) $2 \in N$
- 1. Conjuntos que satisfecen las clausulas: Par (naturales pares mayores que 0), N (naturales), Z (enteros), Q (racionales), R (reales).
 - 2. Mínimo conjunto : Par
 - 3. (a) por (a) $2 \in Par$
 - (b) por (b) $4 \in Par$
 - (c) por (b) $6 \in Par$
- 1. Conjuntos que satisfecen las clausulas: Z (enteros), Q (racionales), R (reales).
 - 2. Mínimo conjunto : Z
 - 3. (a) por (a) $3 \in Z$
 - (b) por (b) $4 \in \mathbb{Z}$
 - (c) por (c) aplicada dos veces $2 \in \mathbb{Z}$

- 1. naturales múltiplos de 3. Llamamos Mult al conjunto.
 - (a) $0 \in Mult$
 - (b) Si $n \in Mult$ entonces $n + 3 \in Mult$
- 2. enteros múltiplos de 3. Llamamos $Mult_Z$ al conjunto.
 - (a) $0 \in Mult_Z$
 - (b) Si $n \in Mult_Z$ entonces $n + 3 \in Mult_Z$
 - (c) Si $n \in Mult_Z$ entonces $n 3 \in Mult_Z$

- 3. naturales potencias de 2. LlamamosPot2 al conjunto.
 - (a) $1 \in Pot2$
 - (b) Si $n \in Pot2$ entonces $2.n \in Pot2$

Ejercicio 3

- 1. $\epsilon \in \Sigma^*$
- 2. Si $\alpha \in \Sigma^*$ entonces $a\alpha \in \Sigma^*$
- 3. Si $\alpha \in \Sigma^*$ entonces $b\alpha \in \Sigma^*$
- 4. Si $\alpha \in \Sigma^*$ entonces $c\alpha \in \Sigma^*$

Ejercicio 4

- 1. Palabras en Δ :
 - (a) por 1) $\epsilon \in \Delta$
 - (b) por 2) $bbc \in \Delta$ tomando $\alpha = \epsilon$
 - (c) por 3) $bba \in \Delta$ tomando $\alpha = \epsilon$
- 2. Palabras no en Δ :

Como excepto ϵ que no tiene letras, las palabras empiezan en b, no puedo formar palabras que empiecen en a o en c. Luego las siguientes palabras no pertenecen a Δ :

- (a) $a \notin \Delta$
- (b) $c \notin \Delta$
- (c) $ab \notin \Delta$

- 1. Por clausula 3 tomando $\alpha=\epsilon$ y $\beta=\epsilon$ tenemos que $bcb\in\Gamma.$
- 2. Por clausula 2 $a \in \Gamma$. Por clausula 3 tomando $\alpha = a$ y $\beta = a$ tenemos que $bacab \in \Gamma$.

3. Para formar bccb tiene que ser:

(a)
$$\alpha = c y \beta = \epsilon$$
 o

(b)
$$\alpha = \epsilon \ y \ \beta = c$$

Observar que si tomo α y β ambos distintos de ϵ la palabra tendría largo mayor a 4. Entonces tiene que ser uno de ellos ϵ y el otro igual a c. Pero c no pertenece al lenguaje luego no puedo construir bccb.

4. Tomo $\alpha = a$ y $\beta = bcb$ y obtengo $bacbcbb \in \Gamma$

Ejercicio 6

- 1. $\epsilon \in A$
 - 2. si $w \in A$ entonces $wa \in A$
- 1. $\epsilon \in B$
 - 2. si $w \in B$ entonces $wb \in B$
- 1. $\epsilon \in AB$
 - 2. si $w \in AB$ entonces $awb \in AB$
- 1. $\epsilon \in Cap$
 - $2. 1 \in Cap$
 - 3. $2 \in Cap$
 - 4. $3 \in Cap$
 - 5. si $w \in Cap$ entonces $1w1 \in AB$
 - 6. si $w \in Cap$ entonces $2w2 \in AB$
 - 7. si $w \in Cap$ entonces $3w3 \in AB$

- a) 1. Por clausula 2 tomando $\alpha = \epsilon$ tenemos que $b \in \Delta$.
 - 2. Por clausula 3 tomando $\alpha = \epsilon$ tenemos que $a \in \Delta$.
 - 3. c no pertenece al lenguaje. No hay ninguna clausula que introduzca c en una palabra.

- 4. Tomo $\alpha = \epsilon$ en 3) tengo que $a \in \Delta$. Considero clausula 2) con $\alpha = a$ obtengo $ab \in \Delta$. Considero clausula 3) con $\alpha = ab$ obtengo $aba \in \Delta$.
- 5. Tomo $\alpha = \epsilon$ en 2) tengo que $b \in \Delta$. Considero clausula 3) con $\alpha = b$ obtengo $ba \in \Delta$. Considero clausula 2) con $\alpha = ba$ obtengo $bab \in \Delta$. Considero clausula 3) con $\alpha = bab$ obtengo $baba \in \Delta$. Considero clausula 2) con $\alpha = baba$ obtengo $babab \in \Delta$.
- 6. Tomo $\alpha = \epsilon$ en 3) tengo que $a \in \Delta$. Considero clausula 3) con $\alpha = a$ obtengo $aa \in \Delta$. Considero clausula 3) con $\alpha = aa$ obtengo $aaa \in \Delta$. Considero clausula 3) con $\alpha = aaa$ obtengo $aaaa \in \Delta$.
- b) 1. Por clausula 2 tomando $\alpha = \epsilon$ tenemos que $b \in \Gamma$.
 - 2. Por clausula 3 tomando $\alpha = \epsilon$ tenemos que $a \in \Gamma$.
 - 3. c no pertenece al lenguaje. No hay ninguna clausula que introduzca c en una palabra.
 - 4. Tomo $\alpha = \epsilon$ en 3) tengo que $a \in \Gamma$. Considero clausula 2) con $\alpha = a$ obtengo $ba \in \Gamma$. Considero clausula 3) con $\alpha = ba$ obtengo $aba \in \Gamma$.
 - 5. Tomo $\alpha = \epsilon$ en 2) tengo que $b \in \Gamma$. Considero clausula 3) con $\alpha = b$ obtengo $ab \in \Gamma$. Considero clausula 2) con $\alpha = ab$ obtengo $bab \in \Gamma$. Considero clausula 3) con $\alpha = bab$ obtengo $abab \in \Gamma$. Considero clausula 2) con $\alpha = abab$ obtengo $babab \in \Gamma$.
 - 6. Tomo $\alpha = \epsilon$ en 3) tengo que $a \in \Gamma$. Considero clausula 3) con $\alpha = a$ obtengo $aa \in \Gamma$. Considero clausula 3) con $\alpha = aa$ obtengo $aaa \in \Gamma$. Considero clausula 3) con $\alpha = aaa$ obtengo $aaaa \in \Gamma$.
- c) son el mismo conjunto por lo cual se cumplen los tres:

$$\Delta \subseteq \Gamma \quad \Gamma \subseteq \Delta \quad \Delta = \Gamma$$

- a) 1. Por clausula 1 tomando n=0 tenemos que $(0,0) \in S$.
 - 2. Los elementos en S son pares de naturales, luego $0 \notin S$.
 - 3. Los elementos en S son pares de naturales luego $(\pi,\pi) \notin S$
 - 4. Por clausula 1 tomando n=2 tenemos que $(2,2) \in S$. Por clausula 2 aplicada a (n,m)=(2,2) tenemos $(2,3) \in S$.
 - 5. Por aplicación de clausula 1) pertenecen los objetos de la forma (n,n). Entonces, como 3>2 para formar este elemento tengo que aplicar la clausula 2). Supongamos (3,2) fue formado aplicando la clausula 2), entonces tiene que ser (n,m)=(3,1). Por igual razonamiento tratemos de formar el elemento (3,1) aplicando la clausula 2), tiene que ser (n,m)=(3,0). Como la conclusión de la clausula 2) es de la forma (n,m+1) y no es posible tomar un m tal que m+1=0 no tengo como construir el elemento (3,0) aplicando las clausulas.

b) Definición por comprensión de S:

$$S = \{(n, m) \in (N \times N)/n \le m\}$$

- a) 1. Por clausula 1 tomando n = 0 tenemos que $(0,0) \in Q$.
 - 2. Los elementos en Q son pares de naturales, luego $0 \notin Q$.
 - 3. Los elementos en Q son pares de naturales luego $(\pi,\pi) \notin Q$
 - 4. Por clausula 1 tomando n=1 tenemos que $(0,1)\in Q$. Por clausula 2 aplicada a (n,m)=(0,1) tenemos $(1,2)\in Q$. Por clausula 2 aplicada a (n,m)=(1,2) tenemos $(2,3)\in Q$.
 - 5. Por aplicación de clausula 1) pertenecen los objetos de la forma (0, n). Entonces, como $3 \neq 0$ para formar este elemento tengo que aplicar la clausula 2). Supongamos (3, 2) fue formado aplicando la clausula 2), entonces tiene que ser (n, m) = (2, 1). Por igual razonamiento tratemos de formar el elemento (2, 1) aplicando la clausula 2), tiene que ser (n, m) = (1, 0). Como la conclusión de la clausula 2) es de la forma (n + 1, m + 1) y no es posible tomar un m talque m + 1 = 0 no tengo como construir el elemento (1, 0) aplicando las clausulas.
- b) Definición por comprensión de Q:

$$Q = \{(n, m) \in (N \times N)/n \le m\}$$