

Jun 18, 2024

Nuclei Isolation from Frozen Tissue or Frozen hPCLS

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.eq2lyw6ewvx9/v1

Heidi Monroe¹, Nayra Cardenes², Melanie Königshofff², koenigshoffm², Robert Lafyatis¹

¹University of Pittsburgh;

²Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of Medicine, University of Pittsburgh

TriState SenNet

Cellular Senescence Net...

1 more workspace

Nayra Cardenes

Divisioin of Pulmonary, Allergy, Critical Care and Sleep Med...

DOI: dx.doi.org/10.17504/protocols.io.eq2lyw6ewvx9/v1

Protocol Citation: Heidi Monroe, Nayra Cardenes, Melanie Königshoff, koenigshoffm, Robert Lafyatis 2024. Nuclei Isolation from Frozen Tissue or Frozen hPCLS. **protocols.io** https://dx.doi.org/10.17504/protocols.io.eq2lyw6ewvx9/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: June 12, 2024

Last Modified: June 18, 2024

Protocol Integer ID: 101647

Keywords: Nuclei isolation, Frozen tissue, snRNAseq, PCLS, Chromium, Lung, SenNet, TriState

Funders Acknowledgement: TriState SenNET (Lung and Heart) Tissue Map and Atlas consortium - NIA

Grant ID: U54AG075931

Abstract

This protocol follows the "Chromium Nuclei Isolation Kit" guidelines for the process for isolating Nuclei from frozen tissues and/or PCLS (Precision-Cut Lung Slices) for use in compatible 10x Genomics Single Cell assays.

Attachments

snRNAseq_ProtocolsIO..

66KB

Image Attribution

Nayra Cardenes, PhD

Materials

Buffer preparation:

Lysis Buffer & Debris Removal Buffer:

A	В	С	D
Lysis Buffer (500 µl/rxn) Add reagents in the order listed	1X+10% (μl)	4X+10% (μl)	8X+10% (μl)
Lysis Reagent	550	2,200	4,400
Reducing Agent B	0.55	2.2	4.4
Surfactant A	5.5	22	44
Total	556.05	2,224.20	4,448.40

Calculations for Lysis Buffer Preparation.

Debris Removal Buffer:

A		В	С	D
Debris Removal E reagents in the o	Buffer (500 µl/rxn) Add rder listed	1X+10% (μl)	4X+10% (μl)	8X+10% (μl)
Debris Removal F	Reagent	550	2,200	4,400
Reducing Agent I	В	0.55	2.2	4.4
Total		550.55	2,202.20	4,404.40

Calculations for Removal Buffer Preparation.

Wash and Resuspension Buffer:

A	В	С	D
Wash and Resuspension Buffer (3 ml/rxn) Add reagents in the order listed	1X+10% (µl)	4X+10% (μl)	8X+10% (µI)
1X PBS	2,887.50	11,550	23,100
10% BSA	330	1,320	2,640
RNase Inhibitor	82.5	330	660
Total	3,300	13,200	26,400

Calculations for Wash and Resuspension Buffer Preparation.

Equipments:

Sample Dissociation Tube 10x Genomics Catalog #2000564

- - Nuclei Isolation column 10x Genomics Catalog #2000562
 - Collection Tube 10x Genomics Catalog #2000563
 - Chromium Nuclei Isolation Kit with RNase Inhibitor 10x Genomics Catalog #PN-1000494

Before start

Note

If provided Lysis Reagent and Debris Removal Buffers appear cloudy or contain precipitate, warm the tubes to 40°C and swirl until the buffers become clear again.

- Pre-chill centrifuge to 4 °C
- Thaw Reducing Agent B Thaw to B Room temperature I.
- Vortex Vortex, verify no precipitate, and centrifuge briefly all Lysis and Debris Removal reagents,
- **RNase Inhibitor** Centrifuge briefly.
- Buffer Preparation: Lysis Buffer & Debris Removal Buffer Prepare the following Lysis and Debris Removal Buffers If On ice shortly before starting the Nuclei Isolation protocol. Prepare large volumes in a 15-ml or 50-ml conical tube. Vortex briefly before use.
- Buffer Preparation: Wash and Resuspension Buffer Prepare the following Wash and Resuspension Buffer If On ice shortly before starting the Nuclei Isolation protocol. Prepare large volumes in a 15-ml or 50-ml conical tube. Vortex briefly before use.
- Place reagents and tubes on ice Label tops and sides of tubes, as well as tops of spin columns, before placing On ice and starting protocol.
- Place Tissue and sample dissociation tubes on dry ice Pre-chill on dry ice.

Nuclei Isolation

28m 36s

1 Prepare all buffers in advance.

2

Transfer frozen tissue (~ 4 50 mg); use 2 slices if isolating from PCLS) to pre-chilled Sample Dissociation Tube (2000564) and place on wet ice.

4

Note

Add lysis buffer ($\underline{\bot}$ 300 μ L) and pipette mix 10×. If not homogeneous, continue to dissociate with the pestle until able to pipette mix.

- 5 Incubate 6 On ice for 00:10:00 .
- 6 Pipette dissociated tissue onto assembled and pre-chilled Nuclei Isolation Column and Collection Tube (2000562 & 2000563).
- 7 Centrifuge at 16000 rcf, 4°C, 00:00:20 .

20s

10m

- 8 Discard column.
- 9 Vortex flowthrough in Collection Tube for 3200 rpm, 00:00:10 minimum to resuspend nuclei.
- 10s

10 Centrifuge at \$\infty\$ 500 rcf, 4°C, 00:03:00 .

3m

- 11 Remove supernatant (s/n).
- 12 Resuspend pellet with debris removal buffer (\$\rm 500 \mu L\$).
- 13

- 14 Remove supernatant (s/n).
- 15 Resuspend nuclei in 🚨 1 mL wash and resuspension Buffer.
- 16 Centrifuge at \$\mathref{\math

- 17 Remove supernatant (s/n).
- 18 Repeat 15-17
- 19 Resuspend nuclei pellet in Δ 50 μ L - Δ 500 μ L wash and resuspension Buffer.

20 Vortex nuclei for 00:00:03 and determine final nuclei concentration using AOPI or 3s Ethidium Homodimer-1 fluorescent staining dyes and dilute if necessary for target nuclei load. Adjust nuclei concentration as necessary for intended downstream assay. 21 Vortex nuclei for 00:00:03 and keep samples 00 ice. 3s Note Proceed immediately to 10× Genomics Single GEM Generation and Barcoding.

Protocol references

https://cdn.10xgenomics.com/image/upload/v1660261285/supportdocuments/CG000505_Chromium_Nuclei_Isolation_Kit_UG_RevA.pdf