

In situ mechanical testing of composite materials using 3D X-ray tomography

Eonyeon Jo, Sooyung Lee, Wooseok Ji

Department of Mechanical and Nuclear Engineering Ulsan National Institute of Science and Technology

Oct 17, 2016

Introduction

- Many researches on failure behavior of composite materials
 - Hard to predict failure behavior of composite materials
 - Complex interaction of multiple failure modes, including matrix microcracking, intralaminar cracking, inter-laminar delamination and fiber rupture
- Experiments are still the major tool for characterizing the damage and failure characteristics of composite materials
 - Various tests are required to fully understand the basic mechanical response of composite materials
 - Mechanisms of interactive failure modes is still difficult to be identified by conventional testing methods

Motivation for advanced in situ testing method

- No testing method for investigating crack initiation and propagation under the surface of composite materials
 - Optical Microscope and Scanning Electron Microscope are limited to the surface
- Issues with current Digital Image Correlation(DIC) technique
 - Visualization of real time displacement (or strain) fields obtained from surface
 - DIC gives much more information and new insights
 - Limited to the surface where speckle patterns are applied

<u>Real time strain fields</u> <u>with DIC analysis</u>

Importance of investigating micro-damage

The first failure mode in composite materials

- Microcrack is a local failure which occurs at fiber/matrix scale
- Accumulation and/or growth of microcracks result in degradation of mechanical performance and other failure modes such as delamination

Need for in situ mechanical testing

- Micro-damage cannot be detected by conventional experimental techniques
- Few attempts to study detailed initiation and propagation process of micro-damage

In situ mechanical testing using 3D X-ray CT

- In situ mechanical testing with 3D X-ray computed tomography
 - The interior structures of composite materials can be investigated
 - Micro-scale resolution for microcraks
 - Evolution of microcrack density can be measured
 - Complex and interacting failure modes of composite materials are observed

X-ray CT	Synchrotron
Beam geometry	Parallel beam
Total power	3.9 kW
Resolution	$0.9 \mu m$ (0.45 μm)
FOV*	3.6 mm X 2.4 mm (1.8mm X 1.2mm)

* FOV: Field of view

Pohang Accelerator Laboratory (PAL)

Synchrotron rotation stage

Overview of the in situ mechanical loading device

Purpose

 Obtain 3D tomography images of composite specimens during mechanical testing

Features of the in situ mechanical loading device

- Mounted onto the X-ray synchrotron stage
- PMMA tube for the penetration of the X-ray beam
- Load cell for measuring load and stepper motor with displacement based PID control from encoder

Synchrotron positioning system

 Limitation on the weight, height and inertial moment in the in-plain directions

Measuring tensile/ Load cell Compressive load from the load cell **PMMA** tube Grip Load applied to the specimen Loading Plate Ball screw Coupling Motor

Micro loading device FEM test with ABAQUS

Stability analysis for loading device

Modeling

- Many holes, bolts and threads are removed
- Assume all the contact surfaces are bonded perfectly
- Motor and loading screw are excluded in FEM analysis

Loading condition

 Load is applied in the surface of screw and loading plate by displacement control(U3 = -3 mm)

Boundary conditions

 Bottom surface are defined as encastre (U1=U2=U3=UR1=UR2=UR3=0)

<u>Surface of</u> <u>loading screw</u>

FEM analysis with initial design

- Loading plate made of Al was resulted in compliance issues
 - Due to the weight limitation of synchrotron stage, the first model was made of Al
 - As the displacement was applied to the loading plate, Al loading plate was bended

Revised loading device based on FEA result

- The loading plate material and thickness of the loading plate are changed
 - The material was changed aluminum to steel (SUS304)
 - The thickness of the loading plate was changed from 10mm to 15mm

$[90_2/0_2]_S$ SENT Tests with DIC

• Single Edge Notched Tension test with unidirectional $[90_2/0_2]_s$ specimens

- This is the best specimen configuration to observe interactive multiple failure modes
- First failure mode is the transvers matrix crack on the 90 degree plies
- Delamination is followed after the transverse matrix cracks on the 90 degree plies
- 0 degree fiber directional failure

In situ test plan using SENT

• In situ tension test with SENT [90₂/0₂]_s specimen

- Single-edge notched specimens were manufactured from UD fiber reinforced laminated composite plate (for initial crack propagation in the filed of view)
- Tensile test was performed in the Synchrotron, scanning images for tomography
- Two loading steps were carried out at 30% and 70% of the ultimate tensile strength (σ_f)

Specimen dimension (mm)

Loading steps in stress-strain curve

0.02

0.015

In situ test result and conclusion

- 3D tomography of loaded [90₂/0₂]_s specimen
 - Transverse matrix cracking initiated in 90 degree plies from the initial notched edge
 - The transverse matrix cracks were deeper and longer as the loading increased
 - Delamination at the interfaces were initiated

Conclusion

- In situ mechanical testing has been performed using a synchrotron X-ray beam.
- Special loading device has been designed and manufactured for the in situ mechanical testing at PAL.
 - Fully automated loading control with a PID encoder.
 - Finite element analysis is performed to resolve the compliance issue.
- Fully 3D computed tomography technique gives more information and insight
 - Novel experiment method has a potential for enhancing understanding of composite materials
- Quantification of 3D CT images will help investigation for complex failure modes of composite materials
 - Fully 3D analysis will be done in the future
 - Investigation of crack density and energy release rate
 - Digital Volume Correlation algorithm development

Q & A

