ДОМАШНЕЕ ЗАДАНИЕ "ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА" 1к, 2 сем., ф-т ИУ, РЛ

Вариант 1. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить меньшую из площадей, содержащуюся между линиями: $x^2 + y^2 = 16$; $x^2 = 6y$.

Задача 2. Вычислить объем тела, полученного вращением вокруг оси OY петли кривой $x=at^2$;

Задача 3. Найти длину дуги кривой $\rho = 4(1 - \cos \varphi)$ от точки A(0;0) до точки пересечения с прямой $\varphi = \frac{3}{2}\pi$.

Задача 4. Вычислить площадь поверхности, образованной вращением кривой вокруг оси OY: $4x^2 + y^2 = 4$.

Задача 5. Исследовать на сходимость: $\int_{1}^{+\infty} \frac{\ln \cos \frac{1}{x}}{x^2} dx.$

Задача 6. Исследовать на сходимость: $\int\limits_{-\infty}^{1} \frac{\sqrt{x}\,dx}{\sqrt{1-x^4}}.$

Вариант 2. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь, ограниченную линией: $\rho = a \sin^3 \frac{\varphi}{2}$, лежащую ниже полярной оси.

Задача 2. Вычислить объем тела, образованного вращением вокруг оси OY фигуры, ограниченной осью OX и одной аркой циклоиды: $\begin{cases} x = 7(t-\sin t) \\ y = 7(1-\cos t) \end{cases} .$

Задача 3. Найти длину петли кривой: $x=t^2; \ y=t-\frac{1}{3}t^3.$

 ${f 3}$ адача 4. Вычислить площадь поверхности, образованной вращением вокруг оси OX кривой $y = \frac{x^3}{3}$ для $-2 \le x \le 2$.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{\sin^2 x}{x} dx.$ Задача 6. Исследовать на сходимость: $\int\limits_{2}^{1} \frac{x^2 dx}{\sqrt[3]{(1-x^2)^5}}.$

Вариант 3. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти площадь фигуры, ограниченной кривой $y = \ln x$, касательной к ней в точке x = e и осью OX.

Задача 2. Найти объем тела, полученного от вращения линии $y=\sqrt{x}e^{-x^2}$ вокруг своей асимптоты.

Задача 3. Найти длину дуги всей кривой: $x = 5\cos^3\frac{t}{4}$; $y = 5\sin^3\frac{t}{4}$.

Задача 4. Вычислить площадь поверхности, образованной вращением лемнискаты $\rho^2 = a^2 \sin 2\varphi$ вокруг полярной оси.

Задача 5. Исследовать на сходимость: $\int\limits_{0}^{+\infty} \sqrt{x}e^{-x}dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{0}^{1} \frac{dx}{e^{\sqrt{x}}-1}.$

Задача 1. Вычислить площадь, ограниченную линиями: (x-2)(y+3)=6 и x+y=6.

Задача 2. Определить объем тела, образованного вращением вокруг оси OY фигуры, ограниченной линиями: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1; y = b; y = -b.$

Задача 3. Найти длину дуги кривой $\rho = 5\varphi$, отсекаемую окружностью $\rho = 10\pi$.

Задача 4. Вычислить площадь поверхности, образованной вращением петли кривой $x=t^2$; $y = \frac{t}{2}(t^2 - 3)$ вокруг оси OX.

Задача 5. Исследовать на сходимость: $\int\limits_{2}^{+\infty} \frac{dx}{x^2+\sqrt[3]{x^4+1}}.$ Задача 6. Исследовать на сходимость: $\int\limits_{0}^{1} \frac{\sqrt{x}}{e^{\sin x}-1} dx.$

Вариант 5. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Прямая X=-2 делит площадь, заключенную между кривой $y=xe^{-x^2/2}$ и ее асимптотой, на две части. Найти ту площадь, для которой $x \ge -2$.

Задача 2. Найти объем тела, образованного вращением вокруг оси OY фигуры, ограниченной линиями $x=2, y=\arcsin \frac{x}{2}$ и касательной к этой кривой в начале координат.

Задача 3. Найти длину дуги кривой $\rho=a\sec^3\frac{\varphi}{3}$ от $\varphi=0$ до $\varphi=\pi.$

Задача 4. Вычислить площадь поверхности, образованной вращением вокруг оси OX дуги кривой $x = t^3/3$; $y = 4 - (t^2/2)$, между точками ее пересечения с осями координат.

Задача 5. Исследовать на сходимость: $\int\limits_0^{+\infty} \frac{x \arctan x}{\sqrt[3]{1+x^4}} dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_0^1 \frac{dx}{e^x-\cos x}.$

Вариант 6. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь, заключенную между линиями: $x^2 + y^2 = 4$; $y^2 = 4(1+x)$, x = 2.

Задача 2. Фигура, ограниченная линиями $y=\frac{x+6}{x+3};\,y=2-x$ вращается вокруг оси OX. Найти объем тела вращения.

Задача 3. Найти длину дуги кривой $\rho = -4\varphi$, отсекаемую окружностью $\rho = 8\pi$.

Задача 4. Вычислить площадь поверхности, образованной вращением астроиды $x = a\cos^3 t$, $y = a\sin^3 t$ вокруг оси OY.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{1+\arctan\frac{1}{x}}{x+2}\,dx.$

Задача 6. Исследовать на сходимость: $\int\limits_{\hat{x}}^{\frac{1}{\pi/2}} \frac{\ln(1+\sin x)}{\sqrt{x^3}} \, dx.$

Задача 1. Вычислить площадь фигуры, расположенной внутри окружности $\rho = \sin \varphi$ и вне окружности $\rho = \cos \varphi$.

Задача 2. Найти объем тела, образованного вращением вокруг оси OY фигуры, ограниченной линиями: $y = e^x + 1$; $y = e^{2x} - 1$; x = 0.

Задача 3. Найти периметр фигуры, ограниченной параболой $y = x^2 - 4x + 3$, касательной к ней в т. x=4 и осью OY.

Задача 4. Вычислить площадь поверхности, образованной вращением вокруг оси OY дуги кривой $x=t^2$; $y=\frac{1}{3}t(t^2-3)$, заключенной между точками ее пересечения с осью OX.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{2 + \arcsin\frac{1}{x}}{1 + \sqrt{x}} dx.$ Задача 6. Исследовать на сходимость: $\int\limits_{0}^{\pi} \frac{dx}{\sin^8 x}.$

Вариант 8. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти большую из площадей, ограниченных циклоидой $\left\{ \begin{array}{l} x=2(t-\sin t) \\ y=2(1-\cos t) \end{array} \right.$, осью OXи параболой $y^2 = -\frac{16}{\pi} (x - 3\pi).$

Задача 2. Найти объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной кривой $y = 3x^2 - 12x$ и прямой y = -6.

Задача 3. Найти длину дуги кривой $\rho=a\sin^4\frac{\varphi}{\varLambda}$ от $\varphi=0$ до $\varphi=2\pi.$

Задача 4. Вычислить площадь поверхности, образованной вращением вокруг оси OX кривой $y=e^{-x/2}$ для $x\geq 0.$

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{\arctan \frac{1}{x} \, dx}{x + \sqrt{x^2 + 5}}.$ Задача 6. Исследовать на сходимость: $\int\limits_{0}^{\pi} \frac{dx}{\sin^5 x}.$

Вариант 9. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти всю площадь, ограниченную кривой $x = a\cos^3 t; \ y = b\sin^3 t.$

Задача 2. Фигура, ограниченная линиями x = 0, $y = e^x$; $y = 1 + 2e^{-x}$ вращается вокруг оси OX. Вычислить объем тела вращения.

Задача 3. Найти длину спирали $\rho = e^{a\varphi}$, находящейся внутри круга $\rho = 1$.

Задача 4. Вычислить площадь поверхности, образованной вращением кривой $4x^2+y^2=4$ вокруг оси OX.

Задача 5. Исследовать на сходимость: $\int\limits_{-\infty}^{+\infty} \frac{\cos 2x}{\sqrt{x^5 + 5x + 2}} dx$.

Задача 6. Исследовать на сходимость: $\int_{-5}^{1} \frac{x^5 + 3x + 1}{\sqrt[5]{(x^3 - 1)^2}} dx.$

Задача 1. Найти меньшую из площадей, ограниченных линиями: $x^2 + y^2 - 10x + 8y + 16 = 0$; $2x^2 - 20x - 3y + 32 = 0.$

Задача 2. Вычислить объем тела, образованного вращением вокруг оси OY петли кривой $x = t - \frac{t^3}{3}, y = t^2.$

Задача 3. Найти длину всей кривой $\rho = 9(1 + \cos \varphi)$.

Задача 4. Вычислить площадь, образованную вращением параболы $y^2 = \frac{R^2}{H} x$ вокруг оси OX, отсекаемой прямой x = H.

Задача 5. Исследовать на сходимость: $\int_{1}^{+\infty} \frac{\sin 3x}{\sqrt[3]{x^5 + 2x + 4}} \, dx.$

Задача 6. Исследовать на сходимость: $\int_{-\pi/2}^{\pi/2} \frac{1-\cos x}{x^3} \, dx$.

Вариант 11. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти меньшую из площадей, ограниченных линиями: $ho=1+\cosarphi;\,x+2y=2.$

Задача 2. Фигура, ограниченная линиями: $y = \frac{1}{2}(x-2)^2$ и $y = \frac{1}{4}(x-2)^2 + 1$ вращается вокруг оси ОҮ. Вычислить объем получающегося тела вращения.

Задача 3. Найти периметр большей из фигур, ограниченных циклоидой $\left\{ \begin{array}{l} x=2(t-\sin t) \\ y=2(1-\cos t) \end{array} \right.$, осью OX и параболой $y^2 = -\frac{16}{\pi}(x - 3\pi)$.

Задача 4. Вычислить площадь поверхности, образованной вращением одной полуволны синусоиды $y = \sin \frac{x}{2}$, вокруг оси OX.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{x-\arctan x}{x^3(x+\arctan x)}\,dx.$

Задача 6. Исследовать на сходимость: $\int_{-\frac{\pi}{\sqrt[5]{1+x^4}-1}}^{1} \frac{\operatorname{ch} x-1}{\sqrt[5]{1+x^4}-1} \, dx.$

Вариант 12. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти площадь, ограниченную линиями: $\left\{ \begin{array}{l} x = a \cos^3 t \\ y = a \sin^3 t. \end{array} \right.$ и $x^2 = -a(y-a)$.

Задача 2. Найти объем тела, образованного вращением вокруг оси OY фигуры, ограниченной линиями: $y = e^x$, $y = 1 + 2e^{-x}$, x = 0.

Задача 3. Найти длину дуги кривой $x^2 + 2x - y = 0$, отсекаемую от нее осью абсцисс.

Задача 4. Вычислить площадь поверхности, образованной вращением кардиоиды $\rho = a(1 - \cos \varphi)$ вокруг полярной оси.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{x + \sin x}{x^3 (x - \sin x)} dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{e}^{1} \frac{x \ln x}{(x - e)^2} dx.$

Задача 1. Найти площадь фигуры, ограниченной кривыми $\rho = \sqrt{6}\cos\varphi$ и $\rho^2 = 9\cos 2\varphi$ и расположенной внутри каждой из них.

Задача 2. Вычислить объем тела, полученного от вращения фигуры, ограниченной параболой $y = 2x - x^2$ и осью OX, вокруг OY.

Задача 3. Найти длину дуги кривой $x^2 + y^2 = 4$, отсекаемую кривой xy = 1.

Задача 4. Вычислить площадь поверхности, полученную вращением кривой $x^2 + y^2 - 8y + 15 = 0$ вокруг оси OX.

Задача 5. Исследовать на сходимость: $\int\limits_{0}^{+\infty} \frac{e^{3/x}-1}{\sqrt{x^2+4}} dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{0}^{2} \frac{\sin x}{x\sqrt{x}} dx.$

Вариант 14. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти площадь фигуры, ограниченной параболой $y = x^2 - 4x + 3$, касательной к ней в точке x = 4 и осью OY.

Задача 2. Фигура, ограниченная линиями $y = \frac{x+1}{x-3}$, x = 4, x = 6, y = 1 вращается вокруг оси OY. Вычислить объем тела вращения.

Задача 3. Найти длину дуги кривой $x=\frac{t^6}{6},\ y=2-\frac{t^4}{4}$ между точками ее пересечения с осями координат.

Задача 4. Вычислить площадь поверхности, образованной вращением лемнискаты $\rho^2 = 9\cos 2\varphi$ вокруг полярной оси.

Задача 5. Исследовать на сходимость: $\int\limits_{2}^{+\infty} \frac{x dx}{\sqrt{x^4+1}}.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{0}^{1} \frac{dx}{\sqrt[3]{x(e^x-e^{-x})}}.$

Вариант 15. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти площадь одного лепестка кривой $ho = 4 \sin^2 arphi$.

Задача 2. Фигура, ограниченная линиями y=x и $y=x+\sin^2 x$ $(0 \le x \le \pi)$, вращается вокруг оси OY. Вычислить объем тела вращения.

Задача 3. Найти длину дуги кривой $y^2 = \frac{2}{3}(x-1)^3$, расположенной внутри параболы $y^2 = \frac{x}{3}$.

Задача 4. Вычислить площадь поверхности, полученную вращением той части астроиды $\left\{\begin{array}{l} x=8\cos^3t\\ y=8\sin^3t \end{array}\right.,$ для которой $x\leqslant -1,$ вокруг оси OX.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{\ln x \, dx}{\sqrt[3]{x^3+1}}.$ Задача 6. Исследовать на сходимость: $\int\limits_{0.1}^{1} \frac{\sin(1/x)}{\sqrt{1-x}} dx.$

Задача 1. Вычислить площадь фигуры, ограниченной линиями: $y = \frac{1}{1+x^2}$, $y = \frac{x^2}{2}$ и осью OX.

Задача 2. Вычислить объем тела, образованного вращением вокруг оси OY фигуры, ограниченной линиями $y = x^3$ и $y = \sqrt[3]{x}$.

Задача 3. Найти длину всей кривой $\rho = a(1 - \sin \varphi)$.

Задача 4. Вычислить площадь поверхности, образованной вращением кривой $x = e^t \sin t, y =$ $e^t \cos t$ вокруг оси $OX \ (0 \le t \le \pi/2)$.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{x^{13}}{(x^5+x^3+1)^3} dx.$ Задача 6. Исследовать на сходимость: $\int\limits_{0}^{3} \frac{x dx}{\sqrt[3]{1+x^2}-1}.$

Вариант 17. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь фигуры, ограниченной лемнискатой $\rho^2 = 2\cos 2\varphi$ и окружностью $\rho = 1$, и расположенной вне окружности.

Задача 2. Вычислить объем тела, образованного вращением вокруг оси OY фигуры, ограниченной линиями $y = \ln x$, $y = 2 - \ln x$ и осью OX.

Задача 3. Вычислить длину дуги линии $y=\frac{(3-x)\sqrt{x}}{3}$ между точками, ординаты которых равны нулю.

Задача 4. Найти площадь поверхности, образованной вращением вокруг оси OX той части

Задача 4. Паити площадь поверхности, образованной астроиды $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$, для которой $y \geqslant \frac{3\sqrt{3}}{8}$. Задача 5. Исследовать на сходимость: $\int\limits_1^{+\infty} \frac{\ln \cos(1/x)}{x} dx$. Задача 6. Исследовать на сходимость: $\int\limits_2^3 \frac{\sin 3x dx}{\sqrt[3]{x^5(x-2)}}$.

Вариант 18. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти площадь петли кривой: $x=2t-t^2;\,y=2t^2-t^3.$

Задача 2. Вычислить объем тела, образованного вращением вокруг оси OX фигуры, ограниченной линиями y=0 и $y=1+\sin x$ (между двумя соседними точками касания этой линии с осью OX).

Задача 3. Найти длину всей кривой: $\rho = a \cos^3 \frac{\varphi}{3}$.

Задача 4. Вычислить площадь поверхности, образованной вращением кривой $9x^2 + y^2 = 9$ вокруг оси OY.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{(2x+1)\sin(1/2x)}{\sqrt[5]{x^6+3x-2}} dx.$ Задача 6. Исследовать на сходимость: $\int\limits_{1}^{2} \frac{dx}{\ln x}.$

Задача 1. Вычислить площадь фигуры, ограниченной окружностью $\rho = \sqrt{3}\sin\varphi$ и кардиоидой $\rho = 1 - \cos \varphi$ и расположенной вне кардиоиды.

Задача 2. Вычислить объем тела, полученного вращением вокруг оси OX петли кривой $x = at^2, y = a(t - (t^3/3)).$

Задача 3. Вычислить длину дуги полукубической параболы $5y^3=x^2$, заключенной внутри окружности $x^2 + y^2 = 6$.

Задача 4. Вычислить площадь поверхности, образованной вращением вокруг оси OX дуги кривой $y^2 = 4 + x$, отсеченной прямой x = 2.

Задача 5. Исследовать на сходимость: $\int\limits_{2}^{+\infty} \frac{dx}{\sqrt[4]{x^4 + 3x + 1} \cdot \ln x}.$

Задача 6. Исследовать на сходимость: $\int_{0}^{1} \frac{dx}{\sqrt[4]{1-x^4}}$.

Вариант 20. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь петли кривой $x=t^2, y=\frac{1}{3}t(3-t^2).$

Задача 2. Вычислить объем тела, образованного вращением вокруг оси OY фигуры, ограниченной линиями $x=4, y=\ln x$ и касательной к этой кривой в точке пересечения ее с осью OX.

Задача 3. Вычислить длину дуги полукубической параболы $y^2 = \frac{2}{3}(x-1)^3$, заключенной внутри параболы $y^2 = \frac{x}{3}$.

Задача 4. Окружность $\rho = 2r \sin \varphi$ вращается вокруг полярной оси. Найти площадь поверхности, которая при этом получается.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \ln \frac{x^2+3}{x^2+2} dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{1}^{2} \frac{\sin^2 x}{(2-x)^2} dx.$

Вариант 21. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь, лежащую в 1-ом квадранте и ограниченную линиями: $y^2 = 4x$; $x^2 = 4y$; $x^2 + y^2 = 5$ (внутри круга).

Задача 2. Фигура, ограниченная линией $y = \arcsin x$ и прямой $y = \frac{\pi}{2}x$ вращается вокруг оси ОУ. Вычислить объем тела вращения.

Задача 3. На циклоиде $x = a(t - \sin t)$, $y = a(1 - \cos t)$ найти точку, которая делит первую арку циклоиды по длине в отношении 1 : 3.

Задача 4. Вычислить площадь поверхности, образованной вращением кривой $9x^2 + y^2 = 9$ вокруг оси OX.

Задача 5. Исследовать на сходимость: $\int\limits_{4}^{+\infty} \frac{2-3\sin x}{x^3+x} dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{0}^{2} \frac{\ln(\sqrt[4]{x}+1)}{e^{\operatorname{tg} x}-1} dx.$

Задача 1. Вычислить площадь кривой $\rho = 2a\cos 3\varphi$, лежащую вне круга $\rho = a$.

Задача 2. Фигура, ограниченная линиями $y = \frac{x+6}{x+3}$ и y = 2-x, вращается вокруг оси OY. Вычислить объем тела, которое при этом получается

Задача 3. Найти длину петли кривой $x = t^2, y = t \cdot (\frac{1}{2} - t^2).$

Задача 4. Фигура, ограниченная параболой $y^2 = 2px$ и прямой x = p/2, вращается вокруг оси OX. Найти площадь поверхности вращения.

Задача 5. Исследовать на сходимость: $\int_{1}^{\infty} \frac{\sin x}{\sqrt[3]{x^2 - 1} + 7x^3} \, dx$.

Задача 6. Исследовать на сходимость: $\int\limits_{0}^{1} \frac{dx}{\sqrt{x} + 4x^{3}}$.

Вариант 23. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь фигуры, ограниченной окружностями $\rho = a\cos\varphi$ и $\rho = a(\cos\varphi +$ $\sin \varphi$) и расположенной внутри каждой из них.

Задача 2. Фигура, ограниченная линиями $y = \arcsin x; \ y = \frac{\pi}{2} x$ вращается вокруг оси OX. Вычислить объем тела вращения.

Задача 3. Дана астроида $x = a\cos^3 t$, $y = a\sin^3 t$ и точка на ней A(a,0), B(0,a). Найти на дуге AB такую т. M, чтобы длина дуги AM составляла четверть длины дуги AB.

 ${f 3}$ адача 4. Вычислить площадь поверхности, образованной вращением вокруг оси OY кривой $x = y^3/3$ для $-2 \le y \le 2$.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{\arctan x}{x} dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{1}^{2} \frac{\ln(1+\sqrt[5]{x^3})}{e^{\sin x}-1} dx.$

Вариант 24. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь фигуры, ограниченной линиями: $\rho = 2(1 + \cos \varphi)$ и $\rho = 1$ и расположенной внутри каждой из них.

Задача 2. Фигура, ограниченная линиями $y = \frac{16}{x^2 + 4x + 8}$ и y = 2 вращается вокруг оси OY. Вычислить объем тела вращения.

Задача 3. Найти длину петли кривой $x=t-\frac{1}{3}\cdot t^3;\,y=t^2.$

Задача 4. Найти площадь поверхности, образованной вращением части кривой $y^2 = 4 + x$ (при $x \leq 2$) вокруг оси OX.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{\sin x}{x^2 + 2\sqrt{x}} \, dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{0}^{1} \frac{dx}{\sin^2 x}.$

Задача 1. Найти всю площадь, ограниченную кривой: $\rho = a(1 + \sin \varphi)$.

Задача 2. Фигура, ограниченная гиперболой $y = \frac{5-x}{x-1}$ и прямой y = 5-x вращается вокруг оси ОУ. Вычислить объем тела вращения.

Задача 3. Найти длину дуги кривой $x = a(3\cos t - \cos 3t), y = a(3\sin t - \sin 3t)$ от t = 0 до $t = \pi/2$.

Задача 4. Найти площадь поверхности, образованной вращением вокруг оси OX той части кривой $y = e^{-x/2}$, для которой $x \ge 0$.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} \frac{\operatorname{tg}(1/x)}{1+x\sqrt{x}} dx.$ **Задача 6.** Исследовать на сходимость: $\int\limits_{1}^{3} \frac{(3x+4)}{x^{3}\sqrt[3]{\ln x}} dx.$

Вариант 26. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь фигуры, ограниченной окружностями $\rho = 6\cos\varphi$ и $\rho = 3\sqrt{2}$ и расположенной вне второй из них.

Задача 2. Фигура, ограниченная линиями: $y = \frac{x^2}{2} + 2x + 2$ и y = 2, вращается вокруг оси OY. Вычислить объем тела вращения.

Задача 3. Вычислить длину дуги, отсекаемую осью ординат от кривой: $y^2 + 2y - x = 0$.

Задача 4. Вычислить площадь поверхности, образованной вращением петли кривой $x = \frac{t}{3} \cdot (t^2 - 3); y = t^2$ вокруг оси *OY*.

Задача 5. Исследовать на сходимость: $\int\limits_{0}^{+\infty} \frac{2+\cos x}{\sqrt{x}} dx.$ Задача 6. Исследовать на сходимость: $\int\limits_{0}^{1} \frac{\operatorname{tg} x dx}{\sqrt{1-x^2}}.$

Вариант 27. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Вычислить площадь петли кривой: $x = \frac{1}{3}t(3-t^2), y = t^2$.

Задача 2. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями: $2y = x^2$, 2x + 2y - 3 = 0 вокруг оси OX.

Задача 3. Вычислить длину дуги линии $x = \frac{1}{3} \cdot (3-y)\sqrt{y}$ между точками, абсциссы которых равны 0.

Задача 4. Вычислить площадь поверхности, образованной вращением меньшей части кривой $ho=2a\sin\varphi,$ отсекаемой лучами $arphi_1=\frac{\pi}{4}$ и $arphi_2=\frac{3\pi}{4}$ вокруг полярной оси.

Задача 5. Исследовать на сходимость: $\int\limits_{2}^{+\infty} \frac{3 + \arcsin(1/x)}{1 + x\sqrt{x}} dx.$ Задача 6. Исследовать на сходимость: $\int\limits_{0}^{1} \frac{\cos^{2}x}{(1 - x)^{2}} dx.$

Задача 1. Вычислить площадь петли кривой: $x = t^2 - 1$; $y = t^3 - t$.

Задача 2. Фигура, ограниченная линиями $y=\operatorname{tg} x;\,y=\operatorname{ctg} x;\,y=\sqrt{3}$ вращается вокруг оси OX.Вычислить объем тела вращения.

Задача 3. Вычислить длину дуги полукубической параболы $x^2 = \frac{2}{3} \cdot (y-1)^3$, заключенной внутри параболы $x^2 = \frac{y}{3}$.

Задача 4. Вычислить площадь поверхности, образованной вращением лемнискаты $ho^2=a^2\cos2arphi$ вокруг полярной оси.

Задача 5. Исследовать на сходимость: $\int\limits_{2}^{+\infty} \frac{dx}{\sqrt[3]{x^6+3} \arctan(1+x^2)}$.

Задача 6. Исследовать на сходимость: $\int_{0}^{1} \frac{2 + \sin x}{(x-1)^2} dx$.

Вариант 29. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти площадь фигуры, ограниченной кривыми $\rho = \sqrt{3}\sin\varphi$ и $\rho = 1 + \cos\varphi$ и расположенной внутри каждой из них.

Задача 2. Фигура, ограниченная линиями $y=e^{-2x}-1,\,y=e^{-x}+1,\,x=0$ вращается вокруг оси OX. Найти объем тела вращения.

Задача 3. Вычислить длину дуги полукубической параболы $5x^3 = y^2$, заключенной внутри окружности $x^2 + y^2 = 6$.

Задача 4. Вычислить площадь поверхности, образованной вращением вокруг оси ОУ дуги кривой $x^2 = 4 + y$, отсекаемой прямой y = 2.

Задача 5. Исследовать на сходимость: $\int\limits_{1}^{+\infty} (1-\cos\frac{2}{\sqrt[4]{x}})dx.$ Задача 6. Исследовать на сходимость: $\int\limits_{0}^{2} \frac{dx}{\sqrt[3]{(x-2)^2(x^2+4x+3)}\cdot \ln(3-x)}.$

Вариант 30. (1, 2, 4, 5, 6 задачи – 1 балл; 3 задача - 2 балла)

Задача 1. Найти площадь фигуры, ограниченной линиями $\rho = a\cos 3\varphi$.

Задача 2. Фигура, ограниченная линиями $y=2\sin x$ и ветвью тангенсоиды $y=\operatorname{tg} x$, проходящей через начало координат, вращается вокруг оси ОХ. Вычислить объем тела вращения.

Задача 3. Вычислить длину дуги кривой $y = \frac{\sqrt{x}}{3}(x-3)$ между точками, ординаты которых равны нулю.

Задача 4. Вычислить площадь поверхности, образованной вращением вокруг оси OX той части кривой $\left\{ \begin{array}{l} x=a\cos^3t \\ y=a\sin^3t \end{array} \right.$, для которой $x\geqslant \frac{a}{8}.$ Задача 5. Исследовать на сходимость: $\int\limits_1^{+\infty} (1-\cos\frac{3}{\sqrt{x}})dx.$

Задача 6. Исследовать на сходимость: $\int_{0}^{1} \frac{(5x+2)}{\sqrt[3]{(x^2-1)(x^3-1)}} dx.$