Mikroişlemciler Laboratuvarı Analog Dijital Çevirimi

E.POLAT H.AYDİLEK

ANALOG DİJİTAL DÖNÜŞTÜRÜCÜ (ADC)

- ADC: Analog sinyalleri (gerilim/akım), dijital sinyallere dönüştüren elektronik donanımdır:
 - Ses sinyallerinin (analog) ADC aracılığı ile dijital ortama alınması.
 - Sensörden okunan analog gerilim değerlerinin ADC ile dijital ortama alınması.
- DAC: Dijital sinyalleri, analog sinyallere (gerilim/akım) çeviren elektronik donanımdır.

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

E. POLAT KKÜ-EE

2

Bazı Tanımlar:

- Örnekleme Periyodu (ADC için): Analog sinyalden alınan herhangi iki örnek arasındaki zaman.
- Referans Gerilim (Vref): Analog sinyal 0 ile +Vref arasında veya –Vref ile +Vref arasında değişir.
- Hassasiyet (Resolution): Dönüşüm için kullanılan bit sayısı (8, 10, 16 bit).
- Dönüşüm zamanı: Dönüşüm için geçen zaman (ADC CLK periyodu).

E. POLAT KKÜ-EE

PIC 18Fxx2 ADC

- PIC18F242 içerisindeki ADC:
 - 10 bit hassasiyetlidir,
 - Referans voltaj Vdd veya başka bir değer olabilir. Referans voltajın kararlı olması yüksek, doğrulukta dönüşüm yapabilmek için önemlidir.
 - Çok giriş kanallıdır,
 - ADC CLK sinyali için , Fosc'ün bölünmüş değerleri veya PIC içerisinden oluşturulan CLK sinyalleri kullanılabilir. ADC CLK sinyalinin periyodu 1.6 mikro saniyeden küçük olmamalıdır.

E. POLAT KKÜ-EE 4

Input Pins

Analog input channels (AN0,AN1, AN4)

^{*}RB3 is the alternate pin for the CCP2 pin multiplexing

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

E. POLAT KKÜ-EE

Vref+/Vref- select

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

E. POLAT KKÜ-EE

6

Figure redrawn by author from PIC18Fxx2 datasheet (DS39564B), Microchip Technology Inc.

PIC18Fxx2 ADC Kaydedicileri

- ADCON0 ve ADCON1 : Konfigurasyon kaydedicileridir.
 - ADCON1: Analog/dijital girişler ile referans voltajı (Vref) için Port A'yı ayarlamak için kullanılan kaydedicidir.
 - ADCON0 : CLK seçimi, analog input seçimi, dönüşümün başlaması/bitmesi durum gösterimi için kullanılan kaydedicidir.
- ADRESH ve ADRESL: 10 bit sonucun saklandığı kaydedicilerdir.
 - 10 bit sonuç sağa veya sola dayalı olabilir:

Sağa dayalı sonuç

ADRESH : ADRESL

DD	DDDDDDDD
00000098	76543210

Sola dayalı sonuç

ADRESH : ADRESL

DDDDDDDD	DD
	10000000
30/03432	10000000

E. POLAT KKÜ-EE

PIC18Fxx2 ADC Konfigurasyon Bitleri

PCFG[3:0]	AN4	AN3	AN2	AN1	AN0	V _{ref+}	$\mathbf{v}_{_{\text{ref-}}}$
00x0	A	A	A	A	A	Vdd	Vss
00 x 1	A	$\mathbf{v}_{_{_{\mathrm{REF}+}}}$	A	A	A	AN3	Vss
0100	D	A	D	A	A	Vdd	Vss
0101	D	V _{ref+}	D	A	A	AN3	Vss
011x	D	D	D	D	D		
1x00	A	$\mathbf{v}_{_{\scriptscriptstyle{\mathrm{REF+}}}}$	$V_{_{\mathrm{REF}-}}$	A	A	AN3	AN2
1001	A	A	A	A	A	Vdd	Vss
1010	A	$\mathbf{v}_{_{\scriptscriptstyle{\mathrm{REF}}+}}$	A	A	A	AN3	Vss
1011	A	$V_{_{\mathrm{REF}+}}$	$V_{_{\mathrm{REF}-}}$	A	A	AN3	AN2
1101	D	$V_{_{\mathrm{REF}+}}$	V _{ref-}	A	A	AN3	AN2
1110	D	D	D	D	A	Vdd	Vss
1111	D	$V_{_{\rm REF+}}$	$V_{_{\mathrm{REF}^{-}}}$	D	A	AN3	AN2

- ADCON1 kaydedicisinin ilk dört biti konfigurasyon bitidir. (PCFG[3:0])
- Yukarıdaki tablo PIC18F2x2 içindir.
- Genellikle kullanılan konfigurasyon 1110 dır. (ANO: Analog input, diğer A port bitleri dijital input, Vref+ = Vdd, Vref- = Vss)

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

E. POLAT KKÜ-EE

,

PIC18Fxx2 ADC Konfigurasyon Kaydedicileri

Name	SFR (bit)	Comments
ADON	ADCON0[0]	0 = ADC is powered off 1 = ADC is powered up
GO/DONE#	ADCON0[2]	0 = A/D conversion not in progress 1 = conversion in progress (set this bit to start ADC conversion)
CHS[2:0]	ADCON0 [5:3]	ADC channel select bits 000 = AN0 001 = AN1 Selects which ADC 010 = AN2 011 = AN3 input is being converted 100 = AN4
ADCS[2:0]	ADCON1[6]:ADCON0[7:6]	ADC conversion clock select bits (selects clock source for ADC successive approximation cycles)
PCFG[3:0]	ADCON1[3:0]	ADC port configuration control bits (selects number of analog channels and ADC references)
ADFM	ADCON1[7]	<pre>0 = left justified in ADRESH:ADRESL 1 = right justified in ADRESH:ADRESL</pre>
ADIE	PIE1[6]	ADC interrupt enable
ADIP	IPR1[6]	ADC interrupt priority select
ADIF	PIR1[6]	ADC interrupt interrupt flag

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

E. POLAT KKÜ-EE

9

PIC18Fxx2 ADC CLK Seçimi

ADCON1[6]	ADCON0[7:6]	
ADCS2	ADCS[1:0]	A/D Clock
0	00	F _{osc} /2
0	01	F _{osc} /8
0	10	F _{osc} /32
x	11	F _{ADC RC} (internal ADC oscillator)
1	00	$F_{osc}/4$
1	01	F _{osc} /16
1	10	F _{osc} /64

- ADC CLK periyodu 1.6 mikro saniyeden büyük olmalı (Diğer PIC çeşitleri için farklı olabilir).
- Internal ADC osilatoru bu şartı sağlamaktadır.
- Başka bir CLK kaynağı seçilirse periyot mutlaka 1.6 mikro saniyeden büyük olmalı aksi halde yanlış dönüşüm gerçekleşir.

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

E. POLAT KKÜ-EE

10

Örnek Program:

(MPLAB C18 C Derleyicisi için tekrar düzenlenmeli)

```
void main(void)

{
    int sonuc;
    TRISA = 0xFF; //Port A'nın tüm pinlerini input olarak ayarla
    // ADCON1 = 0x8E, ADCON0 = 0x80
    ADFM = 1; //Sonuç sağa dayalı
    // A0 analog, diğerleri dijital, Vref+=Vdd, Vref- = Vss olarak ayarla:
    PCFG3 = 1; PCFG2 = 1; PCFG1 = 1; PCFG0 = 0;
    // ADC CLK Fosc/32 olarak seç:
    ADCS2 = 0; ADCS1 = 1; ADCS0 = 0;
    // Kanal 0 seç
    CHS2 = 0; CHS1 = 0; CHS0 = 0;
    // ADC'yi aktif tap.
    ADON = 1;
```

E. POLAT KKÜ-EE

Örnek Program (Devamı)

E. POLAT KKÜ-EE 12

MPLAB C18 C Derleyicisinin ADC Komutları

TABLE 2-1: A/D CONVERTER FUNCTIONS

Function	Description
BusyADC	Is A/D converter currently performing a conversion?
CloseADC	Disable the A/D converter.
ConvertADC	Start an A/D conversion.
OpenADC	Configure the A/D convertor.
ReadADC	Read the results of an A/D conversion.
SetChanADC	Select A/D channel to be used.

E. POLAT KKÜ-EE

Örnek Kod (MPLAB C18 C Derleyicisi için):

```
#include <p18C452.h>
        #include <adc.h>
        #include <stdlib.h>
                                           10 bit sonuç sağa dayalı
        #include <delays.h>
                              Fosc/32 kullan
        int result;
                                                    Tüm input kanallar analog,
                                                    Vref+ = Vdd, Vref- = Vss
        void main( void )
          // configure A/D convertor
          OpenADC( ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_8ANA_0REF,
             ADC_CHO & ADC_INT_OFF );
Kanal 0 seç _
                               // Delay for 50TCY
          Delay10TCYx(5);
          ConvertADC();
                               // Start conversion
                               // Wait for completion
          while( BusyADC() );
                               // Read result
          result = ReadADC();
          CloseADC();
                                // Disable A/D converter
```

E. POLAT KKÜ-EE 1