## Searching for Solutions to Puzzles & Riddles Part 2: Neural Networks

Ellis Fitzgerald

COS 470

November 18 2024

### Introduction

### Models Chosen:

SBERT BiEncoder: msmarco-distilbert-base-v4
 SBERT CrossEncoder: ms-marco-MiniLM-L-6-v2

### Document Set:

- Puzzling Stack Exchange snapshot: 63,997 documents.
- answers.json
- topics\_1.json w/ respective qrel\_1.tsv
- topics\_2.json

### Dependencies/Citations:

- NLTK
- BeautifulSoup4
- SBERT
- Ranx
- Pandas
- Numpy
- Torch
- MS (Microsoft) Marco

### Implementation

- Preprocessing / Text
  - Clean HTML, code, unicode, punctuation
  - Topics = Title + Body + Tags
  - Answer = Text
- Justification for Models:
  - Both models are trained on MS Marco.
  - MS Marco: <u>Dataset from Microsoft</u> of 500k real queries matched with relevant passages.
- Training Arguments
  - Bi-Encoder & Cross-Encoder Epochs: 1 and 4 respectively
  - Bi-Encoder Loss: CoSENTLoss
  - Bi-Encoder & Cross-Encoder Evaluators: InformationRetrievalEvaluator and CERerankingEvaluator respectively

### Initial Concerns & Assumptions

### Concerns:

- Overfitting with qrel split (train, evaluation, and test)
- PyTerrier's BM25 = solid
- <u>BERT-based models are 512 tokens, which corresponds to about 300-400 words (for English)</u>
- Text longer than that will be truncated... It might not work well for longer text.
- The longest Answer len: 26028.
- Does having both models pretrained on MS Marco have any benefit?

### Assumptions:

Cross-Encoder will perform better

# Experimental Analysis













### Good Results

### Pretrained Bi-Encoder

**Q**: 38250

I'm generous if you like me, but greedy if you hate me

A: 38276

"You are a king"

Score: 1.0

### Fine-tuned Bi-Encoder

**Q**: 55216

Batman vs 4 villains

**A**: 55235

(Riddler, Penguin, Joker, Two-Face...)

Score: 1.0

### Pretrained Cross-Encoder

**Q**: 57370

Who killed Jeremy? (Peter, Tom, John, Ralph...)

A: 57385

(Peter, Tom, John, Ralph...)

Score: 1.0

### Fine-tuned Cross-Encoder

Q: 10231

Don't be Sexist - What am I?

**A**: 10307

"The answer may be a human ovary"

Score: 1.0

### Uniform Bad Result

Q: 99184

All wrapped in functions...(math containers)

A: 109108

Unrelated algebraic proof...

Score: 0.0

**Table 5.** Overall effectiveness of the models. The best results are highlighted in boldface. Superscripts denote significant differences in paired Student's t-test with  $p \le 0.01$ .

| # | Model              | NDCG@5    | NDCG@10     | P@5         | P@10      | MAP         | BPref | MRR     |
|---|--------------------|-----------|-------------|-------------|-----------|-------------|-------|---------|
| a | results_bi_test    | 0.236     | 0.240       | 0.225       | 0.147     | 0.189       | nan   | 0.463   |
| b | results_ce_test    | $0.335^a$ | $0.337^{a}$ | $0.308^{a}$ | $0.203^a$ | $0.268^{a}$ | nan   | 0.566   |
| c | results_bi_ft_test | 0.271     | 0.285       | 0.239       | 0.169     | 0.228       | nan   | 0.474   |
| d | results_ce_ft_test | 0.428abc  | 0.435abc    | 0.414abc    | 0.268abc  | 0.366abc    | nan   | 0.641ac |

**Table 5.** Overall effectiveness of the models. The best results are highlighted in boldface. Superscripts denote significant differences in paired Student's t-test with  $p \le 0.01$ .

| # | Model              | NDCG@5    | NDCG@10            | P@5         | P@10      | MAP         | BPref | MRR     |
|---|--------------------|-----------|--------------------|-------------|-----------|-------------|-------|---------|
| a | results_bi_test    | 0.236     | 0.240              | 0.225       | 0.147     | 0.189       | nan   | 0.463   |
| b | results_ce_test    | $0.335^a$ | 0.337 <sup>a</sup> | $0.308^{a}$ | $0.203^a$ | $0.268^{a}$ | nan   | 0.566   |
| c | results_bi_ft_test | 0.271     | 0.285              | 0.239       | 0.169     | 0.228       | nan   | 0.474   |
| d | results_ce_ft_test | 0.428abc  | 0.435abc           | 0.414abc    | 0.268abc  | 0.366abc    | nan   | 0.641ac |

| name   | map     | ndcg    | bpref   | recip_rank | mrt      | P@1     | P@5     | P@10    | P@100   |
|--------|---------|---------|---------|------------|----------|---------|---------|---------|---------|
| BM25   | 0.45917 | 0.54013 | 0.52513 | 0.68828    | 13.44275 | 0.61003 | 0.47047 | 0.31365 | 0.04139 |
| TF-IDF | 0.45419 | 0.53544 | 0.5208  | 0.68659    | 13.90481 | 0.60864 | 0.46546 | 0.30926 | 0.04107 |

### BM25 is still superior (and/or my implementation is just not up to par)

**Table 5.** Overall effectiveness of the models. The best results are highlighted in boldface. Superscripts denote significant differences in paired Student's t-test with  $p \le 0.01$ .

| # | Model              | NDCG@5               | NDCG@10     | P@5                  | P@10      | MAP         | BPref | MRR     |
|---|--------------------|----------------------|-------------|----------------------|-----------|-------------|-------|---------|
| a | results_bi_test    | 0.236                | 0.240       | 0.225                | 0.147     | 0.189       | nan   | 0.463   |
| b | results_ce_test    | $0.335^a$            | $0.337^{a}$ | $0.308^{a}$          | $0.203^a$ | $0.268^{a}$ | nan   | 0.566   |
| c | results_bi_ft_test | 0.271                | 0.285       | 0.239                | 0.169     | 0.228       | nan   | 0.474   |
| d | results_ce_ft_test | 0.428 <sup>abc</sup> | 0.435abc    | 0.414 <sup>abc</sup> | 0.268abc  | 0.366abc    | nan   | 0.641ac |

| name   | map     | ndcg    | bpref   | recip_rank | mrt      | P@1     | P@5     | P@10    | P@100   |
|--------|---------|---------|---------|------------|----------|---------|---------|---------|---------|
| BM25   | 0.45917 | 0.54013 | 0.52513 | 0.68828    | 13.44275 | 0.61003 | 0.47047 | 0.31365 | 0.04139 |
| TF-IDF | 0.45419 | 0.53544 | 0.5208  | 0.68659    | 13.90481 | 0.60864 | 0.46546 | 0.30926 | 0.04107 |

### Conclusion

### Observations:

- Different top results for each of the models
- Maybe fusing those results would be beneficial?

### Suggestions for next time:

- Approximate Nearest Neighbor (ANN)
   Search (not as exact, but faster and interesting concept) <u>FAISS</u>, <u>Annoy</u>
- Explore other NN not in the SBERT family: <u>Gensim FastText</u>

### Showcase

### Github

User: EllisFitzUSM

Repo: PuzzlesNeuralNetworkIR

https://github.com/EllisFitzUSM/PuzzlesNeuralNetworkIF