Bases de Données 1 #5 - Algèbre relationnelle

Matthieu Nicolas
Polytech S5 - II
Slides réalisées à partir de celles de Claude Godart et Malika Smaïl

Langage de manipulation de données

- Jusqu'à maintenant, on a vu comment représenter nos données grâce à un langage de description de données (LDD)...
 - Dans notre cas, il s'agit du schéma relationnel
- ... il est grand temps de voir **comment** on peut ensuite **les manipuler**
- Se fait à l'aide d'un langage de manipulation de données (LMD)
 - Dans notre cas, il s'agit de l'algèbre relationnelle

Algèbre relationnelle

- Ensemble d'opérateurs sur des relations produisant en résultat de nouvelles relations
- Objectif : élaborer de nouvelles informations à partir des relations de départ et d'une composition séquentielle d'opérateurs

Types d'opérateurs

- Opérateurs unaires
 - Projection, Restriction
- Opérateurs binaires sur schémas différents
 - Produit cartésien, Jointure, Division
- Opérateurs binaires sur mêmes schémas
 - Union, Intersection, Différence

Plan

- Opérateurs unaires
- Opérateurs binaires sur schémas différents
- Opérateurs binaires sur mêmes schémas
- Requêtes algébriques
- Algèbre relationnelle et SQL

Opérateurs unaires

Base de Données 1 #5 - Algèbre relationnelle

Projection - 1

Sélectionne les attributs à récupérer d'une relation

Vins(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
110	Mecurey	1978
120	Mâcon	1977
200	Sancerre	1977

Res(cru, millesime)

cru	millesime
Chablis	1974
Mecurey	1978
Mâcon	1977
Sancerre	1977

Projection - 2

- La projection est un opérateur permettant de générer une nouvelle relation R'(A') composée d'un sousensemble des attributs de la relation initiale R(A)
- Les tuples de cette nouvelle relation sont obtenus en éliminant des tuples de R les attributs de A n'appartenant pas à A' et en supprimant les tuples en double

Projection - 3

- **Signature**: relation x liste d'attributs → relation
- Notation : R' = PROJECT(R, A')
 - avec R(A) une relation
 - A' un attribut ou ensemble d'attributs de A

Restriction - 1

 Sélectionne les tuples à récupérer d'une relation à l'aide d'une condition booléenne

Vins(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
110	Mecurey	1978
120	Mâcon	1977
200	Sancerre	1977

RESTRICT(Vins, millesime = 1977)

num	cru	millesime
120	Mâcon	1977
200	Sancerre	1977

Restriction - 2

- La restriction (ou sélection) est un opérateur permettant de générer une nouvelle relation R'(A) composée d'un sous-ensemble des tuples de la relation initiale R(A)
- Les tuples de cette nouvelle relation sont obtenus en ne conservant de R que les tuples pour lesquels la condition booléenne est vraie

Restriction - 3

- Signature : relation x condition booléenne → relation
- Notation : Res = RESTRICT(R, C)
 - avec R une relation
 - C une condition booléenne, simple ou composée

Condition booléenne

- La condition booléenne peut être une expression logique simple qui compare la valeur d'un attribut avec une constante de son domaine à l'aide d'un opérateur (=, <, >, ≠, >=, <=)
 - cru = "Chablis"
 - *millesime* > 1977
- ou composée avec des connecteurs ET (∧) et OU (∨)
 - (cru = "Chablis" ∨ cru = "Mâcon") ∧ millesime < 1988

Opérateurs binaires sur mêmes schémas

Base de Données 1 #5 - Algèbre relationnelle

Union - 1

Regroupe les tuples de 2 relations identiques

Vins-1(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
110	Mecurey	1978

Vins-2(num, cru, millesime)

num	cru	millesime
120	Mâcon	1977
200	Sancerre	1977

UNION(Vins-1, Vins-2)

Res(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
110	Mecurey	1978
120	Mâcon	1977
200	Sancerre	1977

Union - 2

- Signature : relation x relation → relation
- Notation : Res = UNION(R1, R2)
 - avec R1(A) et R2(A) des relations avec un schéma identique

Intersection - 1

 Répertorie les tuples appartenant simultanément aux 2 relations initiales

Vins-1(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
110	Mecurey	1978

Vins-2(num, cru, millesime)

num	cru	millesime
110	Mecurey	1978
200	Sancerre	1977

INTERSECT(Vins-1, Vins-2)

Res(num, cru, millesime)

num	cru	millesime
110	Mecurey	1978

Intersection - 2

- Signature : relation x relation → relation
- Notation : Res = INTERSECT(R1, R2)
 - avec R1(A) et R2(A) des relations avec un schéma identique

Différence - 1

 Liste les tuples apparaissant dans la première relation mais pas dans la seconde

Vins-1(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
110	Mecurey	1978
120	Mâcon	1977

Vins-2(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
200	Sancerre	1977

MINUS(Vins-1, Vins-2)

Res(num, cru, millesime)

num	cru	millesime
110	Mecurey	1978
120	Mâcon	1977

Différence - 2

- La différence est un opérateur permettant de générer une nouvelle relation R'(A) composée d'un sousensemble des tuples de la relation initiale R1(A)
- Les tuples de cette nouvelle relation sont obtenus en retirant des tuples de R1 les tuples apparaissant aussi dans la R2

Différence - 3

- Signature : relation x relation → relation
- Notation : Res = MINUS(R1, R2)
 - avec R1(A) et R2(A) des relations avec un schéma identique

Opérateurs binaires sur schémas différents

Base de Données 1 #5 - Algèbre relationnelle

Produit cartésien - 1

 Effectue toutes les combinaisons possibles entre les tuples des relations initiales

Vins(num, cru, millesime)

num	cru	millesime
100	Chablis	1974
200	Sancerre	1979

Viticulteurs(nom, ville, region)

nom	ville	region
Nicolas	Pouilly	Bourgogne
Martin	Bordeaux	Bordelais

PRODUCT(Vins, Viticulteurs)

num	cru	millesime	nom	ville	region
100	Chabils	1974	Nicolas	Pouilly	Bourgogne
100	Chabils	1974	Martin	Bordeaux	Bordelais
200	Sancerre	1979	Nicolas	Pouilly	Bourgogne
200	Sancerre	1979	Martin	Bordeaux	Bordelais

Produit cartésien - 2

- Le produit cartésien est un opérateur permettant de générer une nouvelle relation R'(A1 + A2) à partir des relations initiales R1(A1) et R2(A2)
- Les tuples de cette nouvelle relation sont obtenus en combinant chaque tuple de R1 avec chaque tuple de R2

Produit cartésien - 3

- Signature: relation x relation → relation
- Notation : Res = PRODUCT(R1, R2)
 - avec R1(A1) et R2(A2) des relations

Jointure - 1

 Fusionne les tuples issus des 2 relations initiales pour lesquelles la condition de jointure est vraie

Vins(num, cru, millesime)

num	cru	millesime
150	Riesling	1984
110	Mecurey	1978
120	Mâcon	1977

Viticulteurs(nom, numVin, region)

nom	numVin	region
Nicolas	150	Alsace
Martin	120	Bourgogne

JOIN(Vins, Viticulteurs, Vins.num = Viticulteurs.numVin)

num	cru	millesime	nom	region
150	Riesling	1984	Nicolas	Alsace
120	Mâcon	1977	Martin	Bourgogne

Jointure - 2

- La jointure est un opérateur permettant de générer une nouvelle relation R'(A1 + A2) regroupant les informations provenant de différentes relations à partir de leur(s) attribut(s) commun(s)
- Les tuples de cette nouvelle relation sont obtenus en fusionnant les couples de tuples de R1 et de R2 pour lesquels la condition de jointure est vraie

Jointure - 3

- Signature : relation x relation x condition booléenne → relation
- Notation : Res = JOIN(R1, R2, C)
 - avec R1 et R2 des relations
 - C porte sur les attributs de R1 <u>et</u> de R2, appelés attributs de jointure
- Une jointure est équivalente à un produit cartésien suivi d'une opération de restriction
 - JOIN(R1, R2, C) = RESTRICT(PRODUCT(R1, R2), C)

Jointures externes - 1

- Il existe d'autres types de jointures
- Les jointures externes permettent, en plus du résultat de la jointure, d'inclure les tuples d'une relation (ou des 2) n'ayant aucune correspondance dans l'autre relation

Jointures externes - 2

- Jointure externe à gauche : jointure de R1 et de R2
 + le reste des tuples de R1
 - LEFT-JOIN(R1, R2, C)
- Jointure externe à droite : jointure de R1 et de R2 + le reste des tuples de R2
 - RIGHT-JOIN(R1, R2, C)
- Jointure externe pleine: jointure de R1 et de R2 + le reste des tuples de R1
 - LEFT-JOIN(R1, R2, C)

Jointures externes - 3

Vins(num, cru, millesime)

num	cru	millesime
150	Riesling	1984
110	Mecurey	1978
120	Mâcon	1977

Viticulteurs(nom, numVin, region)

nom	numVin	region
Nicolas	150	Alsace
Martin	120	Bourgogne

LEFT-JOIN(Vins, Viticulteurs, Vins.num = Viticulteurs.numVin)

num	cru	millesime	nom	region
150	Riesling	1984	Nicolas	Alsace
110	Mecurey	1978	NULL	NULL
120	Mâcon	1977	Martin	Bourgogne

Division - 1

 Récupère les tuples de la première table qui sont en relation avec tous les tuples de la seconde table

Produit(numProd, libelle, pu)

numProd	libelle	pu
p1	Parasite	14.99
p2	Mario	54.99

Stock(numProd, numDep, qte)

numProd	numDep	qte
p1	d1	1000
p1	d2	1200
p2	d1	2000

DIV(PROJECT(Stock, numProd, numDep), PROJECT(Produit, numProd))

numDep d1

Res(numDep)

Division - 2

- La division est un opérateur permettant de générer une nouvelle relation R'(A1 - A2) à partir des relations initiales R1(A1) et R2(A2)
- Les tuples de cette nouvelle relation sont obtenus en conservant uniquement les tuples de R1 qui possèdent une liaison avec tous les tuples de R2

Division-3

- Signature: relation x relation → relation
- Notation : Res = DIV(R1, R2)
 - avec R1(A1) et R2(A2) des relations

Requêtes algébriques

Base de Données 1 #5 - Algèbre relationnelle

Requêtes algébriques

- Combiner l'utilisation des opérateurs nous permet de composer des requêtes algébriques
- Ces requêtes nous permettent d'extraire les données existantes de notre BD ou d'en créer de nouvelles

Exemple requête algébrique

- 1

- Étant donné le schéma relationnel suivant
 - Client(numCli, nom, prenom, ddn, rue, CP, ville)
 - Produit(numProd, libelle, pu, numFour)
 - Commande(numCom, numCli, numProd, date, qte)
- Donner les produits commandés en quantité supérieure à 100 lors d'une commande et dont le prix dépasse 1000€
 - On affichera les numéros de produit, leur libellé et leur prix unitaire ainsi que la date de la commande.

Exemple requête algébrique - 2

- R1 = RESTRICT(Produit, pu > 1000)
- R2 = RESTRICT(Commande, qte > 100)
- R3 = JOIN(Produit, Commande, Produit.numProd = Commande.numProd)
- **Res** = PROJECT(R3, numProd, libelle, pu, date)

Algèbre relationnelle et SQL

Base de Données 1 #5 - Algèbre relationnelle

Ensemble minimal d'opérateurs

- Les requêtes SQL dans les SGBD relationnels sont transformées en expressions algébriques
- Cinq opérateurs sont nécessaires (ensemble minimal)
 - union, différence, projection, produit cartésien, sélection
- Les autres opérateurs s'expriment en fonction des précédents

Quelques propriétés des opérateurs

- RESTRICT(R, C1 ^ C2) = RESTRICT (RESTRICT(R, C1), C2)
- RESTRICT(RESTRICT(R, C1), C2) = RESTRICT(RESTRICT(R, C2), C1)
- PROJECT(PROJECT(R, liste1), liste2) = PROJECT(R, liste2)
- JOIN(R1, R2, C) = JOIN(R2, R1, C)
- JOIN(JOIN(R1, R2, C1), R3, C2) = JOIN(R1, JOIN(R2, R3, C2), C1)
 - où R, R1, R2, R3 sont des **relations**, C, C1, C2 des **conditions** et *liste*1 et *liste*2 des **listes d'attributs**
- Ces propriétés sont utilisées pour l'optimisation de requêtes

Bilan

- L'algèbre relationnelle est non-opérationnel
- On exprime dans les requêtes ce qu'on veut obtenir, et non comment l'obtenir
 - Il s'agit d'un langage déclaratif
- Offre donc la liberté au SGBD relationnel pour traiter la requête de la façon qu'il veut
- Lui permet d'optimiser les requêtes en coulisses

Résumé

- L'algèbre relationnelle est le Langage de Manipulation de Données du modèle relationnel
- Met à disposition 8 opérateurs pour manipuler et interroger des relations
- Utiliser séquentiellement ces opérateurs nous permet de créer nos requêtes
- L'aspect déclaratif du langage permet aux SGBD relationnels d'optimiser les requêtes