

Advanced Machine Learning

7. Time Series Analytics

Part la - Introduction and Data Preparation

Prof. Dr. Volker Herbort

Contents

Introduction to Time Series

Data Preparation for Time Series

Introduction to Time Series

Definition

- A time series is a series of data points y indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time *t*. Thus it is a sequence of discrete-time data.¹
- A time series can be defined as

$$Y = \{y_t : t \in T\}$$

where T can be of any time intervall like seconds, days or years.

Time Series Examples

Beer Sales

Timeseries of Beer Sales

Time Series Examples ctd.

Product Prices

Time Series Examples ctd.

Speech recognition

Time Series Characteristics

- Special kind of datasets
 - X is always time related
 - Discrete set of values (often discritized from countinous values by recording interval)
 - Univariate: One variable measured over time.
 - Multivariate: Multiple variables measured over time.
 - Can be analysed locally or globally

Stationarity (weak)

- Describes the characteristics of the underlying process. A time series (process) is stationary if
 - the mean (µ) is constant
 - \blacksquare the standard deviation (σ) is constant

The auto covariance is independent from time t

Why is this time series non- stationary?

Time Series Components

- A time series can be decomposed into:
 - **■** Trend (*T*)
 - Constant increase or decrease
 - Cyclical Component (C)
 - Recurring but non-periodic fluctuations
 - Seasonality (S)
 - Recurring periodic increase or decrease over time e.g. yearly ups and downs
 - Residuals (R)
 - Noise component for random, irregular influences.

Which components can you spot?

Source: Forecasting: Principles and Practice, Rob J Hyndman and George Athanasopoulos, Monash University, Australia

Time Series Components

- Decomposed time series (multiplicative)
 - $Y_t = t_t * s_t * r_t * c_t$

Time Series Components

- Decomposed time series (additive)
 - $Y_t = t_t + S_t + r_t + C_t$

Contents

Introduction to Time Series

Data Preparation for Time Series

Data Preparation for Time Series

- Idea
 - Transform the series data to a simpler form
 - Easier to predict => simpler models may be used
 - Common Preparations
 - Calendar adjustments
 - Affects the granularity of the data
 - Depends on the type of prediction
 - Population adjustments
 - Normalizes data
 - Inflation adjustments
 - Only applicable for money related data

Adjustments in Time Series

- Calendar adjustments
 - E.g. monthly data is affected by days in month

Adjustments in Time Series

- Population adjustments
 - Total data may be affected by the population size
 - Use relative data whenever suitable
 - e.g. average, sum or count per capita
- Inflation adjustments
 - Data related to money should usually be adjusted
 - Choose a reference year and adjust the series
 - E.g. Consumer Price Index (CPI)

Transformations

- Data shows in- or decreasing variation with level
 - Log transformation

$$w_t = \log(y_t)$$

- Power transformations
 - e.g. Square or Square Root

$$w_t = y_t^p$$

Transformations

- More sophisticated...
 - Box-Cox transformation

$$w_t = egin{cases} \log(y_t) & ext{if } \lambda = 0; \ (y_t^\lambda - 1)/\lambda & ext{otherwise.} \end{cases}$$

- log is always In (natural logarithm)
- λ has to be configured according to visual shape
 - if $\lambda=1$ then $w_t=y_t-1=>$ no change in shape
 - else shape will change
- Revert transformation

$$y_t = \left\{ egin{array}{ll} \exp(w_t) & ext{if } \lambda = 0; \ (\lambda w_t + 1)^{1/\lambda} & ext{otherwise.} \end{array}
ight.$$

Choosing λ (lambda)

- λ has to be configured according to visual shape
 - λ = -1. is a reciprocal transform.
 - λ = -0.5 is a reciprocal square root transform.
 - $\lambda = 0.0$ is a log transform.
 - λ = 0.5 is a square root transform.
 - $\lambda = 1.0$ is no transform.

Box-Cox: Electricity production

 $\lambda = 0.3$

Rolling/Sliding Window

- Combination of values of n time stamps per time step
 - E.g. n = 5

Compute aggregates like sum, min, max, average.

Moving Average (MA)

Simple Moving Average (SMA): Compute the average of the **preceeding** window to t.

Weighted MA (WMA)

Moving Average Smoothing

Centered Moving Average of order n

$$\widehat{T}_t = \frac{1}{n} \sum_{j=-k}^k y_{t+j}, \ n = 2k+1$$

- Computes the average of preceeding and following values to t
- E.g. $m_{MA}^{(3)} = \frac{1}{3}(y_{t-1} + y_t + y_{t+1})$

Smoothing using SMA

■ e.g. m = 12

Advanced Machine Learning

7. Time Series Analytics

Part Ib - Basic Models for Forecasting

Prof. Dr. Volker Herbort

Basic Models for Time Series

Time Series Analytics

- Prediction/Forecasting
 - e.g. infections, share price or sales figures
- Classification
 - e.g. speech recognition, event detection or malfunction
- Clustering
 - e.g. energy consumption behavior

Predicting Time Series Values

How can you predict how many people use a plane in January 1962?

- Historic values are determined by value of t.
- What are available features for future values???

Lag

- A lag describes the size of the time shift of a timeseries. The kth lag is the time period that happened "k" time points before time t.
- For example:

■
$$lag1(y_2) = y_1 \text{ or } lag4(y_9) = y_5$$

Index	1	2	3	4	5
Time o Comine	440	440	400	400	404
Time Series	112	118	132	129	121
lag1		112	118	132	129
lag2			112	118	132
lag3				112	118
					112

Simple Methods

- Sometimes good prediction can be done by using...
 - Average method

$$\hat{y}_{T+h|T} = \bar{y} = (y_1 + \dots + y_T)/T$$

- Naive method
 - Prediction is equal to preceeding value

$$\hat{y}_{T+h|T} = y_T$$

Digression: Random Walk Model

A.k.a. Naive estimator, next value is last value + error

$$y_t = y_{t-l} + \varepsilon_t$$

- Assumptions:
 - future movements are unpredictable
 - are equally likely to be up or down.

Results for Airline passengers

Simple Methods ctd.

- More sophisticated naive methods
 - Seasonal Naive method
 - Prediction is equal to preceeding value in season

$$\hat{y}_{T+h|T} = y_{T+h-m(k+1)}$$

(m = season, k = complete years (floor))

- Drift method
 - Includes modelling of a change over time (trend)

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$

Digression: Fitted Values

- Results of a one-step forcast model
 - Based on all values $y_1 ... y_{t-1}$ in a time series
 - Denoted as $\hat{y}_{t|t-1} = \hat{y}_t$
- Estimate is based on all the data at hand
 - No real forecast values
 - Usually includes some deviation from the actual values -> Residuals

Evaluate Model Quality

- Actual forecast quality without overfitting
 - Hold-Out Method
 - Test Data $\{y_{T+1}, y_{T+2}, ...\}$ of at least the size of forecast interval
 - Training Data $\{y_1, y_2, ..., y_T\}$ used for fitting the model

Forecast error

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}$$

- Based on Test Data
- Can be computed for multi-step forecast
- Outcome ist much more representative for new data!

Evaluate Forecast Accurracy

- Ways to summarize Forecast Error
 - \blacksquare Scale dependent e_t
 - Mean absolute error: $MAE=mean(|e_t|)$,
 - Root mean squared error: RSME = $\sqrt{\text{mean}(e_t^2)}$
 - Percentage
 - $p_t = 100e_t/y_t$
 - Mean absolute percentage error: MAPE = $mean(|p_t|)$

Advanced Machine Learning

7. Time Series Analytics

Part Ic - Basic Models for Forecasting ctd.

Prof. Dr. Volker Herbort

Auto Regression (AR)

- Estimate a value y_t based on it's predecessor y_{t-1} (lag 1) and the use of a linear function
 - $y_t = AR(1) = a + \beta y_{t-1} + \varepsilon_t$
 - $\blacksquare a = level (e.g. mean)$
 - $\blacksquare \beta = weight$
 - \bullet ϵ_t = white noise => ideal residuals

Degression: White Noise

- A time series is white noise if the variables are independent and identically distributed with a mean of zero. => stationary!
- This means that all variables have the **same** variance (σ^2) and each value has a **zero** correlation with all other values in the series.
- Relevance
 - Predictability: White noise is random.
 - => You cannot reasonably model it and make predictions.
 - Model Diagnostics: Series of errors from a time series forecast model should ideally be white noise.

Auto Regression (AR)

- General Definition AR(p):
 - Use the latest p lags for the model and use a linear function to predict the next value y_t.

$$y_t = AR(p) = a + \sum_{i=1}^p \beta_i y_{t-i} + \varepsilon_t$$

- Parameter estimation for AR Models
 - Mean Squared Errors

MA Model

- MA can also be used as a model
 - $y_t = c + \varepsilon_t + \sum_{i=1}^q \beta_i \varepsilon_{t-i}$
 - q = order (number of previous values)
 - $\epsilon = error$
 - c = constant (often mean)

Similar to AR models but combination of previous prediction errors (no real regression of values).

Auto Correlation Function (ACF)

- Use Case:
 - Find out how dependent values y_t are from their predecessor y_{t-1} (or Y from its lagged series)
 - Auto Correlation Function (ACF) γ for y₁ and y₂

$$\tau(y_1, y_2) = Cov(y_1, y_2) = (y_1 - \mu_1)(y_2 - \mu_2)$$

- $\mu = mean$
- $\sigma = standard deviation$

ACF Ctd.

- Assuming stationarity it is a bit simpler
 - Mean and standard deviation are constant

$$\mu_{y1} = \mu_{y2} = \mu_{y2}$$

$$\sigma_{y1} = \sigma_{y2} = \sigma_{Y}$$

Therfore

$$\mu_Y = \frac{1}{n} \sum_{i=1}^n y_i$$

$$\sigma_Y = \sqrt{\frac{\sum_{i=1}^n (y_i - \mu_Y)^2}{n}}$$

Correlogram Airline Passengers

lacksquare Correlation between y_t and its lag series y_{t-l}

Can you spot the components?

Stationarity and ACF

- ACF plot is useful for identifying non-stationary time series.
 - stationary time series: ACF drops to zero relatively quickly
 - non-stationary: ACF decreases slowly
- Also, for non-stationary data, the value of r₁ is often large and positive.

Auto Correlation Example

■ Correlation between y_t and y_{t-1}

r = 0,96...

Is there even a higher correlation possible? What about y_{t-12} ?

Auto Correlation Example

■ Correlation between y_t and y_{t-12}

r = 0,99...

Partial Autocorrelation Function (PACF)

Influences on current value

■ How does e.g. y_{t-2} directly affect y_t ?

PACF Plot

Basically determined by the Coefficients of AR Model

Lag Plot

Scatterplot for y_t vs y_{t+l}

Quality of Naive Passenger Model

Mean: 2.237762237762238

How about an AR Model?

- Original time series (blue) vs. one step prediction using
 - AR(6)(red) and
 - AR(1) (purple) with lag=12

Advanced Machine Learning

7. Time Series Analytics

Part Id - Basic Models for Forecasting ctd.

Prof. Dr. Volker Herbort

Autoregressive Moving Average (ARMA)

- Combination of both techniques
 - AR: regressing of the series with its own lagged version
 - MA: modeling the value as a linear_combination of previous error terms

$$y_t = c + \varepsilon_t + \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{i=1}^q \beta_i \varepsilon_{t-i}$$

- A.k.a. ARMA(p,q) Models
- Disadvantage=> Only for stationary time series

Autoregressive Integrated Moving Average (ARIMA)

- Used for non-stationary time series with trend
 - Idea: integrate the detrending in the model

By differencing it becomes stationary

Source: Forecasting: Principles and Practice, Rob J Hyndman and George Athanasopoulos, Monash University, Australia

Differencing

Compute the change between series and a lagged series

$$y_t' = y_t - y_{t-l}$$

1st Order

$$y_t' = y_t - y_{t-1}$$

2nd Order

$$y_t^{\prime\prime} = y_t^{\prime} - y_{t-1}^{\prime}$$

Can be used for removal of trend and/or seasonality

Differencing for Trend Removal

Using 1st order with lag=1 differencing on airplane passengers

- Observation:
 - In $y_t^T = y_t'$ trend is gone, but saisonality still remains

Differencing for Season Removal

lacksquare Using 1st order with lag=12 differencing on y_t^T

Observation:

- In $y_t^S = y_t''$ seasonality is gone only white noise remains
- => stationary time series

ARIMA

Non-seasonal ARMA on differenced series

$$y'_t = c + \varepsilon_t + \sum_{i=1}^p \alpha_i y'_{t-i} + \sum_{i=1}^q \beta_i \varepsilon_{t-i}$$

Where y'_t can be differenced more than once...

- This is called an *ARIMA(p,d,q) model* with
 - p = order of AR part
 - d = degree of first differencing
 - q = order of MA part

ARIMA ctd.

Above models can be described using ARIMA

Model	ARIMA(p,d,q)
White noise	(0,0,0)
Random walk	(0,1,0)
Autoregression	(p,0,0)
Moving Average	(0,0,q)

Estimation / Model Order

- Maximum Likelihood Estimation (MLE)
 - Used to find the paramters α_i and β_i
 - Values are computed based on order of model (p, d and q)
 - Idea: How likely is it to obtain the values in series t using this model order and parameters?

$$\sum_{t=1}^{T} \varepsilon_t^2$$

=> Basically a mean squared estimator for regression.

ARIMA Airline Passengers

- ARIMA(1,1,1)
 - Mean Squared Error: 1988,75

- ARIMA(12,1,12)
 - Mean Squared Error: 257,18

Seasonal ARIMA (SARIMA)

- ARIMA Model with seasonal components
 - \blacksquare SARIMA(p,d,q)(**P,D,Q)**_m model with
 - m = number of observations per year
 - P = order of AR part
 - D = degree of first differencing
 - Q = order of MA part
 - Seasonal terms are simply multiplied by the nonseasonal terms.

Seasonal ARIMA (SARIMA)

Seasonal components can be seen in lags of PACF/ACF

- ARIMA(0,0,0)(0,0,1)₁₂
 - a spike at lag 12 in the ACF but no other significant spikes;
 - exponential decay in the seasonal lags of the PACF (i.e., at lags 12, 24, 36, ...).
- ARIMA(0,0,0)(1,0,0)₁₂
 - exponential decay in the seasonal lags of the ACF;
 - a single significant spike at lag 12 in the PACF.

References

[1] https://en.wikipedia.org/wiki/Time_series