Information Retrieval 101

Svitlana Vakulenko

Postdoctoral researcher Informatics Institute University of Amsterdam

October 15, 2020

Information Retrieval History

3rd century BC -> library catalogue

- ▶ 1950s -> keyword index + ranked retrieval
- ▶ **1960s** -> vector space model

1990s -> probabilistic relevance model

Sanderson, M., & Croft, W. B. (2012). The history of information retrieval research. *Proceedings of the IEEE*, *100* (Special Centennial Issue), 1444-1451.

Information Retrieval 101: Outline

Search Task

Approach x 2

Results

Search Task

Problem Statement

- query
- document collection

document ranking

$$Q = \langle q_1 \dots q_n \rangle$$

$$C = \{D_1...D_m\}$$

$$F(R|Q,D_i)$$

Information Retrieval: Approach

Index

```
    D1 = {train, zoo, robert}
    D2 = {ana, robert}
    D3 = {train, zoo}
```

Inverted index

- D1 = {train, zoo, robert}
- D2 = {ana, robert}
- D3 = {train, zoo}

- train: <D1, D3>
- \triangleright zoo = < D1, D3 >
- robert = <D1, D2>
- ▷ ana = <D2>

Probabilistic Model: BM25

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot (1-b+b \cdot rac{|D|}{ ext{avgdl}})}$$

where
$$ext{IDF}(q_i) = -\log rac{n(q)}{N} = \log rac{N}{n(q)}$$

Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M., & Gatford, M. (1999). Okapi at TREC-3. Proceedings of the Third Text REtrieval Conference (TREC 1994). In *Gazxithersburg, USA*.

Information Retrieval 101: Outline

Approach x 2

Results

Vector Space Model

$$\cos heta = rac{\mathbf{d_2} \cdot \mathbf{q}}{\|\mathbf{d_2}\| \, \|\mathbf{q}\|}$$

Term vectors

```
    D1 = {train, zoo, robert}
        1110
        D2 = {ana, robert}
        0011
        D3 = {train, zoo}
        1100
```

Dual-encoder Architecture

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1994). Signature verification using a "siamese" time delay neural network. In *Advances in neural information processing systems* (pp. 737-744).

k-Nearest Neighbor Search

k similar out of n documents

similarity function: cosine

> O(n)

4 nearest neighbors

Hierarchical Navigable Small World

- bounded degree m
- Search: O(logn)

- Construction: O(nlogn)
- p ~ Exp(I)
- Space: O(lmn)

Malkov, Y. A., & Yashunin, D. A. (2018). Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. *IEEE transactions on pattern analysis and machine intelligence*.

Passage Retrieval

21M passages of 100 words from English Wikipedia

Training	Retriever	Top-20					Top-100				
		NQ	TriviaQA	WQ	TREC	SQuAD	NQ	TriviaQA	WQ	TREC	SQuAD
None	BM25	59.1	66.9	55.0	70.9	68.8	73.7	76.7	71.1	84.1	80.0
Single	DPR BM25 + DPR	78.4 76.6	79.4 79.8	73.2 71.0	79.8 85.2	63.2 71.5	85.4 83.8	85.0 84.5	81.4 80.5	89.1 92.7	77.2 81.3
Multi	DPR BM25 + DPR	79.4 78.0	78.8 79.9	75.0 74.7	89.1 88.5	51.6 66.2	86.0 83.9	84.7 84.4	82.9 82.3	93.9 94.1	67.6 78.6

Karpukhin, V., Oğuz, B., Min, S., Wu, L., Edunov, S., Chen, D., & Yih, W. T. (2020). Dense Passage Retrieval for Open-Domain Question Answering. *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*

Task Approach x 2 Results

Task Approach x 2 Results

Collection

Query

Ranking

Task Approach x 2 Results Collection Sparse Retrieval Dense Retrieval Query

Ranking

Task Approach x 2 Results

Collection Sparse Retrieval Simple & Efficient

Query Dense Retrieval Flexible

21

Information Retrieval: Overview

Task Approach Results Recommender System Top-k Learning to rank Conversational Search Dialogues Knowledge Graphs

Information Retrieval: Overview

Task Approach Results Recommender System Top-k Learning to rank Conversational Search Dialogues Knowledge Graphs