Programowanie matematyczne c.d.

Algorytm transponowania macierzy

Translokację macierzy rozumiemy jako zamianę miejscami poszczególnych wierszy tej macierzy z jej kolumnami. Oznacza to, że wiersz staje się kolumna a kolumna wierszem. Operacja taka ma bardzo często miejsce w różnych procedurach i algorytmach, jest np. stosowana w odwracaniu macierzy czy rozwiązywaniu układów równań. Algorytm odwracania macierzy jest jednym z podstawowych algorytmów metod macierzowych i różne jego odmiany można znaleźć w literaturze [6-7, 12, 17-18, 26, 35, 43, 68, 93, 110].

Zastanówmy się teraz w wspólnie nad transpozycją macierzy. Jeśli będziemy mieli daną macierz *A* o *m* wierszach i *n* kolumnach zapisana wzorem:

$$A^{m \times n} = \begin{bmatrix} a_{11} & a_{12} & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{i1} & a_{i2} & a_{ij} & \cdots & a_{in} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & a_{mj} & & a_{mn} \end{bmatrix}, i = 1, \dots, m, j = 1, \dots, n,$$

to transpozycja A^T takiej macierzy będzie wyglądać według wzoru:

$$\left(A^{m \times n}\right)^{T} = \begin{bmatrix} a_{11} & a_{i1} & \cdots & a_{m1} \\ \vdots & & \vdots \\ a_{1j} & a_{ij} & \cdots & a_{mj} \\ \vdots & & \vdots \\ a_{1n} & a_{in} & a_{mn} \end{bmatrix}, i = 1, \dots, m, j = 1, \dots, n.$$

Przykład 56

Napisać program, który wczytuje wymiar macierzy prostokątnej i elementy macierzy $A \in R^{n \times m}$ z pliku macierz.txt. Wymiar macierzy transponowanej i elementy macierzy transponowanej $A^T \in R^{m \times n}$ zapisuje do pliku wynik.txt.

Program realizujący algorytm transponowania macierzy matematycznie wydaje się mało skomplikowany, ponieważ jego realizacja polega na zamianie miejscami elementów w kolumnach i wierszach transponowanej macierzy. Ponieważ jest to jednak jeden z ważniejszych algorytmów nie tylko dla metod macierzowych został przedstawiony w niniejszej książce.

```
#include <stdio.h>
                                                       // Deklaracja bibliotek.
#include <stdlib.h>
#include<conio.h>
                                                       // Funkcja główna programu.
int main()
   int i, j, n, m;
                                                       // Deklaracja plików.
   FILE *p, *q;
  if((p = fopen( "macierz.txt", "r" )) == NULL)
                                                       /* Otwarcie pliku do odczytania
                                                       danych. */
      printf("Nie moge otworzyc pliku macierz.txt\n");
      _getch();
  if((q = fopen( "wynik.txt", "w" )) == NULL)
                                                       /* Otwarcie pliku do zapisu danych. */
      printf("Nie moge otworzyc pliku wynik.txt\n");
      _getch();
                                                       // Czytanie wymiaru zadania.
   fscanf(p, "%d %d", &n, &m);
   double **a=new double*[n];
                                                       // Deklaracja macierzy.
    for(i = 0; i < m; i++)
         a[i] = new double[m];
```

```
for(i = 0; i < n; i++)
   for(j = 0; j < m; j++)
                                                // Czytanie macierzy.
      fscanf(p, "%lf", a[i] + j);
                                                  /* Zapis do pliku wymiaru macierzy
fprintf(q, "%d %d\n", m, n);
                                                transponowanej.*/
for(j = 0; j < m; j++)
    for(i = 0; i < n; i++)
       fprintf(q,"%g ", a[i][j]);
                                                               do pliku
                                                       Zapis
                                                                                  macierzy
    fprintf(q, "\n");
                                                transponowanej. */
fclose(p);
                                                // Zamknięcie plików.
fclose(q);
```

Dla obliczeń została przyjęta pokazana macierz A, natomiast program wyznaczył transpozycję A^T , co zostało pokazane na poniższej ilustracji

Realizacja takiej procedury w kodzie programu wymaga odpowiedniego połączenia ze sobą procedury pobierania danych z pliku z procedurą transponowania macierzy i zapisania jej w takiej postaci do pliku wynikowego. Czytelnik zechce prześledzić wykonanie tych operacji na poniższym kolejnym blokowym opisującym przebieg całego programu.

Schemat blokowy algorytmu transponow ania macierzy.

Macierz odwrotna

Twierdzenie

Jeśli wyznacznik macierzy $|A| \neq 0$, to istnieje macierz odwrotna A^{-1} do macierzy A taka, że

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

Do wyznaczenia macierzy odwrotnej i dowodu twierdzenia należy rozwiązać równanie macierzowe postaci:

$$AX = I$$
, $gdzie A, X, I \in R^{n \times n}$

Nietrudno zauważyć, że znalezienie macierzy X sprowadza się do rozwiązania n układów równań liniowych postaci:

$$Ax_j = i_j \ dla \ j = 1, ..., n$$

Wektor kolumnowy x_i jest j – tą kolumną macierzy X, a wektor i_i jest j – tą kolumną macierzy jednostkowe I. W celu rozwiązania nrównań liniowych jednocześnie za pomocą eliminacji Gaussa z wyborem elementu głównego wygodnie jest dokonać zapisu samej macierzy A i wektorów prawych stron w macierzy stopnia $R^{n \times 2n}$ w następujący sposób:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Za pomocą eliminacji niewiadomych pod i nad górną przekątną i dzieląc kolejne wiersze przez elementy znajdujące się na głównej przekątnej otrzymujemy rozwiązania n układów równań liniowych. W zapisie macierzowym wygląda to następująco:

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & i_{11}^n & i_{12}^n & \cdots & i_{n1}^n \\ 0 & 1 & \cdots & 0 & i_{21}^n & i_{22}^n & \cdots & i_{2n}^n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & i_{n1}^n & i_{n2}^n & \cdots & i_{nn}^n \end{bmatrix}$$

W przykładzie pokazano znalezienie macierzy odwrotnej do macierzy:

```
\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}
```

```
file:///D:/Automatyka/Programy/odwrotna1/odwrotna1/...
Eliminacja Gauss'a
          1.00
                         1.00
                                         0.00
  1.00
                  1.00
                                 0,00
                                         0,00
  1.00
          1,00
                 2,00
                         0,00
                                 1,00
  1,00
          2,00
                  3,00
                         0,00
                                 0,00
                                         1,00
                  1,00
                         1,00
                                 0.00
                                         0,00
  1,00
          1,00
          0,00
                  1.00
                        -1,00
                                 1.00
                                         0,00
  0.00
  0,00
          1,00
                 2,00
                        -1,00
                                 0,00
                                         1,00
  1,00
          0,00
                -1,00
                         2,00
                                 0,00
                                        -1,00
  0,00
          1,00
                 2,00
                        -1,00
                                 0,00
                                         1,00
  0,00
          0,00
                  1,00
                        -1,00
                                 1,00
                                         0,00
          0,00
                 0,00
  1,00
                         1,00
                                 1,00
                                        -1,00
                                -2,00
  0,00
          1,00
                 0,00
                         1,00
                                         1,00
  0,00
          0,00
                  1,00
                        -1.00
                                 1,00
                                         0,00
Macierz odwrotna n=3
          1,00
                 -1,00
  1.00
         -2,00
  1,00
                  1,00
 -1,00
          1,00
                 0,00
```

Algorytm Gaussa – Jordana znajdowania macierzy odwrotnej

Za pomocą metody Gaussa – Jordana można obliczyć macierz odwrotną A^{-1} do macierzy A. Metoda ta jest bardziej zwarta algorytmicznie i nie wymaga dodatkowych zasobów pamięciowych. Algorytm Gaussa – Jordana dokonuje odwrócenia macierzy w deklarowanej macierzy A. Przedstawmy najpierw algorytm obliczania macierzy odwrotnej dla $A \in R^{2\times 2}$, który polega na znalezieniu odwzorowania odwracającego układ równań liniowych postaci:

$$x \rightarrow Ax = y$$
, $gdzie A \in R^{2 \times 2} x, y \in R^2$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = y_1 \\ a_{21}x_1 + a_{22}x_2 = y_2 \end{cases}$$

W pierwszy kroku dokonujemy zamiany zmiennej x_1 ze zmienną y_1 w następujący sposób:

$$-y_1 + a_{12}x_2 = -a_{11}x_1$$

$$\frac{1}{a_{11}}y_1 - \frac{a_{12}}{a_{11}}x_2 = x_1$$

$$\begin{cases} \frac{1}{a_{11}} y_1 - \frac{a_{12}}{a_{11}} x_2 = x_1 \\ a_{21} \left(\frac{1}{a_{11}} y_1 - \frac{a_{12}}{a_{11}} x_2 \right) + a_{22} x_2 = y_2 \end{cases}$$

$$\begin{cases} \frac{1}{a_{11}} y_1 - \frac{a_{12}}{a_{11}} x_2 = x_1 \\ \frac{a_{21}}{a_{11}} y_1 + \left(a_{22} - a_{21} \frac{a_{12}}{a_{11}} \right) x_2 = y_2 \end{cases}$$

Oznaczmy nasz układ równań następująco:

$$\begin{cases} a_{11}^{1} y_{1} + a_{12}^{1} x_{2} = x_{1} \\ a_{21}^{1} y_{1} + a_{22}^{1} x_{2} = y_{2} \end{cases}$$

$$a_{21}^{1} y_{1} - y_{2} = -a_{22}^{1} x_{2}$$

$$a_{21}^{1} x_{1} - x_{2}^{1} = -a_{22}^{1} x_{2}$$

$$-\frac{a_{21}^1}{a_{22}^1}y_1 + \frac{1}{a_{22}^1}y_2 = x_2$$

$$\begin{cases} a_{11}^{1}y_{1} + a_{12}^{1} \left(-\frac{a_{21}^{1}}{a_{22}^{1}} y_{1} + \frac{1}{a_{22}^{1}} y_{2} \right) = x_{1} \\ -\frac{a_{21}^{1}}{a_{22}^{1}} y_{1} + \frac{1}{a_{22}^{1}} y_{2} = x_{2} \end{cases}$$

$$\begin{cases} \left(a_{11}^{1} - a_{12}^{1} \frac{a_{21}^{1}}{a_{22}^{1}}\right) y_{1} + \frac{a_{12}^{1}}{a_{22}^{1}} y_{2} = x_{1} \\ -\frac{a_{21}^{1}}{a_{22}^{1}} y_{1} + \frac{1}{a_{22}^{1}} y_{2} = x_{2} \end{cases}$$

$$\begin{cases} a_{11}^2 y_1 + a_{12}^2 y_2 = x_1 \\ a_{21}^2 y_1 + a_{22}^2 y_2 = x_2 \end{cases}$$

W wyniku otrzymujemy układ równań, której współczynniki są elementami macierzy odwrotnej A^{-1} .

Kolejne kroki algorytmu możemy przedstawić za pomocą macierzy otrzymywanych podczas przekształceń:

$$A = A^0 \rightarrow A^1 \rightarrow A^2 = A^{-1}$$

Algorytm Gaussa – Jordana dla obliczania macierzy odwrotnej znajduje odwzorowanie odwracające układ równań liniowych postaci:

$$x \to Ax = y, gdzie \ A \in R^{n \times n} \ x, y \in R^{n}$$

$$\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = y_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = y_{2} \\ \dots \\ a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = y_{n} \end{cases}$$

W kroku pierwszym dokonujemy zamiany zmiennej x_1 ze zmienną y_t . Indeks t jest obliczany ze wzoru:

$$|a_{t1}| = \max_{i} |a_{i1}|$$
 $dla i = 1, ..., n$

Następnie zamieniamy równanie t z równaniem pierwszym i otrzymujemy układ równań liniowych:

$$\begin{cases} \bar{a}_{11}_{x_1} + \bar{a}_{12}_{x_2} + \dots + \bar{a}_{1n}_{x_n} = \bar{y_1} \\ \bar{a}_{21}_{x_1} + \bar{a}_{22}_{x_2} + \dots + \bar{a}_{2n}_{x_n} = \bar{y_2} \\ \bar{a}_{n1}_{x_1} + \bar{a}_{n2}_{x_2} + \dots + \bar{a}_{nn}_{x_n} = \bar{y_n} \end{cases}$$

Przy czym zmienne $\bar{y}_1, ..., \bar{y}_n$ są permutacją zmiennych $y_0, ..., y_n$ tak samo jak odpowiadające tym zmiennym wiersze macierzy A. Element $\bar{a}_{11} \neq 0$, gdyż jeżeli byłby równy zero to macierz byłaby osobliwa i należałoby przerwać obliczenia macierzy odwrotnej. Rozwiązujemy powyższe równanie względem zmiennej x_1 i wstawiamy wynik do pozostałych równań:

$$\begin{cases} a_{11}^{1}\bar{y}_{1} + a_{12}^{1}x_{2} + \dots + a_{1n}^{1}x_{n} = x_{1} \\ a_{21}^{1}\bar{y}_{1} + a_{22}^{1}x_{2} + \dots + a_{2n}^{1}x_{n} = \bar{y}_{2} \\ \dots \\ a_{n1}^{1}\bar{y}_{1} + a_{n2}^{1}x_{2} + \dots + a_{nn}^{1}x_{n} = \bar{y}_{n} \end{cases}$$

gdzie:

$$a_{11}^1 = \frac{1}{\overline{a}_{11}}$$
 , $a_{1j}^1 = -\frac{\overline{a}_{1j}}{\overline{a}_{11}}$, $a_{i1}^1 = \frac{\overline{a}_{i1}}{\overline{a}_{11}}$

$$a_{ij}^1 = \bar{a}_{ij} - \frac{\bar{a}_{i1}\bar{a}_{1j}}{\bar{a}_{11}}$$
 $i, j = 2, ..., n$

W następnych krokach zamieniamy kolejne zmienne x ze zmiennymi y. Kolejne kroki algorytmu możemy zapisać jako przekształcenia dokonywane na całej macierzy i oznaczyć indeksami:

$$A = A^0 \to A^1 \to \cdots \to A^n = A^{-1}$$

Macierz $A^k = \begin{bmatrix} a_{ij}^k \end{bmatrix}$ odpowiada następującym układowi równań:

$$\begin{cases} a_{11}^{k} \bar{y}_{1} + \dots + a_{1k}^{k} x_{k} + \dots + a_{1n}^{k} x_{n} = x_{1} \\ \dots \\ a_{k1}^{k} \bar{y}_{1} + \dots + a_{kk}^{k} x_{k} + \dots + a_{kn}^{k} x_{n} = \bar{y}_{k} \\ \dots \\ a_{n1}^{k} \bar{y}_{1} + \dots + a_{nk}^{k} x_{k} + \dots + a_{nn}^{k} x_{n} = \bar{y}_{n} \end{cases}$$

Przy przejściu $A^k \to A^{k+1}$ zmienna x_k zostanie zamieniona ze zmienną \bar{y}_t za pomocą następującego algorytmu:

Wybór elementu podstawowego w kolumnie:

$$|a_{tk}| = \max_{i \ge k} |a_{ik}| \qquad dla \ i = k, \dots, n$$

Jeśli $a_{tk} = 0$ to macierz jest osobliwa (przerwanie algorytmu).

- \succ Zamieniamy k ty wiersz macierzy A^k z t tym wierszem i wynik oznaczamy $\bar{A} = [\bar{a}_{ij}]$.
- \triangleright Obliczamy macierz A^{k+1} wg następujących podstawień:

$$a_{kk}^k = \frac{1}{\overline{a}_{kk}}$$
 , $a_{kj}^k = -\frac{\overline{a}_{kj}}{\overline{a}_{kk}}$, $a_{ik}^k = \frac{\overline{a}_{ik}}{\overline{a}_{kk}}$

$$a_{ij}^k = \overline{a}_{ij} - \frac{\overline{a}_{ik}\overline{a}_{kj}}{\overline{a}_{kk}} \qquad i, j = 1, \dots, n, \qquad i \neq k, \qquad j \neq k$$

Ponieważ $\bar{y}_1, \dots, \bar{y}_n$ są permutacją zmiennych y_0, \dots, y_n które można określić za pomocą macierzy P dokonywanych zmian wierszy w kolejnych krokach odwracania macierzy A. Co możemy zapisać:

$$(A^n P)y = x$$

Stad

$$A^{-1} = A^n P$$

Przykład odwracania macierzy:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & -2 \\ -1 & 2 & -2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1,5 & 0 & -0,5 \\ 0 & -1 & 1 \\ -0,5 & 1 & -0,5 \end{bmatrix}$$

```
#include<stdio.h>
                                             //Deklaracja bibliotek.
#include<math.h>
#include<conio.h>
                                             /* Konstrukja wektora do przestawiene kolumn
int odw( int n, double **c)
                                             macierzy odwrotnej. */
   double f, h, s;
   int i, j, k, t, t1;
   double *w=new double[n];
                                             /* Konstrukcja i nadanie wartości początkowych
                                             wektora permutacji, */
   int *p=new int[n];
                                                  Kolejne kroki tworzenia
   for(i = 0; i < n; i++)
                                                                                     macierzy
                                             odwrotnej.*/
      p[i] = i;
   for(k = 0; k < n; k++)
      h = fabs(c[k][k]);
                                             // Wybór elementu głównego.
      t = k;
      for(j = k + 1; j < n; j++)
          if(fabs(c[j][k]) > h)
          \{ h = fabs(c[i][k]); \}
                                             // Przerwanie obliczeń na kroku k.
             t = i;
      if(h < 1e-14) return k;
     if(t>k)
                                                        konieczne, przestawienie
                                                 Jeśli
                                                                                      wierszy
        for(j=0;j<n;j++)
                                             macierzy i wektora permutacji. */
              s=c[k][j];
```

```
Jeśli
   c[k][j]=c[t][j];
                                                         konieczne, przestawienie
                                                                                         wierszy
   c[t][j]=s;
                                             macierzy i wektora permutacji. */
  1=p[k]; p[k]=p[t]; p[t]=t1;
                                             // Algorytm odwracania macierzy,
h=c[k][k];
for(j = 0; j < n; j++)
   if(k != j) c[k][j] = -c[k][j]/h;
   c[k][k]=1.0/h;
for(i = 0; i < n; i++)
    if(k!=i)
        f = c[i][k];
                                             // Permutacja macierzy odwrotnej.
         c[i][k] = f/h;
         for(j = 0; j < n; j++)
           if(k != i)c[i][i] += f*c[k][i];
  for(i=0;i<n;i++)
  { for( k=0; k< n; k++) w[p[k]]=c[i][k];
   for(k=0; k<n; k++)c[i][k]=w[k];}
  return n;
```

```
int main()
                                                          // Funkcja główna programu.
  int n, i, j, t;
  double s;
  FILE *f:
  if((f=fopen("we.txt","r"))==NULL)
                                                          // Otwarcie pliku wejściowego.
     printf("Nie moge otworzyc pliku we.txt\n");
    _getch();
    return 0;
  fscanf(f, "%d", &n);
                                                          // Czytanie wymiaru zadania.
  double **a = new double *[n];
  for(i=0;i<n;i++)
                                                          // Konstrukcja macierzy.
    a[i]= new double[ n ];
  printf("Obliczenia prowadzone sa dla n=%d\n",n);
  for(i = 0; i < n; i++)
      for(j = 0; j < n; j++)
      { fscanf(f, "%lf", a[i]+j);
         printf("%g ",a[i][j]);
                                                          // Wydruk przeczytanej macierzy.
       printf("\n");
```

```
printf("\n");
t = odw(n,a);
if(t == n)
   printf("Macierz odwrotna:\n");
   for(i = 0; i < n; i++)
    for(j = 0; j < n; j++)
      if(fabs((s = a[i][j])) < 1e-14) s = 0;
          printf("%g", s);
    printf("\n");
else printf("Macierz osobliwa\n");
_getch();
```

/* Wywołanie funkcji odwracania macierz. Funkcja zwraca wymiar odwróconej macierzy albo krok, na którym nastąpiło przerwanie. */

/* Obcięcie błędu zaokrąglenia przy zerze.*/
// Wydruk macierzy odwrotnej.

Schemat blokowy funkcji przestawienia elementów macierzy w trakcie realizacji algorytmu odwracania macierzy Gaussa-Jordana

Schemat blokowy algorytmu odwracania macierzy Gaussa-Jordana

Przeprowadźmy test działania powyższego programu dla różnych macierzy. Dla macierzy, dla której algorytm nie dokonuje przestawień wierszy

```
Obliczenia prowadzone sa dla n=3
1 1 1
1 1 2
1 2 4

Macierz odwrotna:
0 2 -1
2 -3 1
-1 1 0
```

Dla macierzy, dla której jest konieczne przestawienie wierszy.

Macierzy osobliwej

Z przeprowadzonych testów wynika, że program działa poprawnie.