CSCI235 – Database Systems Beyond BCNF

sjapit@uow.edu.au

29 September 2019

Beyond BCNF Data Explosion Problem

Considering a relation schema

EMP(employee-number, programming-language, operating-system)

has no valid functional dependencies.

A relational table EMPLOYEE over a relational schema EMP contains information about the programming languages and operating systems known by employees.

Employee-number	Programming-language	Operating-system
200	Python	Linux
200	Java	Linux
200	Scala	Linux

Employee-number	Programming-language	Operating-system
200	Python	Windows 10
200	Java	Windows 10
200	Scala	Windows 10

Employee-number	Programming-language	Operating-system
200	Python	Linux
200	Java	Linux
200	Scala	Linux
200	Python	Windows 10
200	Java	Windows 10
200	Scala	Windows 10

Employee-number	Programming-language	Operating-system
200	Fortran	Linux
200	Fortran	Windows 10

Employee-number	Programming-language	Operating-system
200	Python	Unix
200	Java	Unix
200	Scala	Unix
200	Fortran	Unix

Employee-number	Programming-language	Operating-system
200	Python	Linux
200	Java	Linux
200	Scala	Linux
200	Python	Windows 10
200	Java	Windows 10
200	Scala	Windows 10
200	Fortran	Linux
200	Fortran	Windows 10
200	Python	Unix
200	Java	Unix
200	Scala	Unit
200	Fortran	Unix

Which normal form?

- No valid functional dependencies means that does not exists a functional dependence such that its left hand side is not a superkey.
- The entire row will now be composited to form unique rows in the relation, and these composited attributes form a minimal superkey.
- This means there is no functional dependencies violate BCNF.
- Hence, the table is in BCNF, but the relation still contains a lot of redundancies.

Beyond BCNF Multivalued Dependencies \{ \begin{align*} \text{Multivalued Dependencies } \end{align*}

- Let $R = A_1, ..., A_n$ be a relational schema and let X, Y, Z be nonempty subsets of R.
- We say that a multivalued functional dependency $X \rightarrow Y|Z$ is valid in a relational schema R if ...
 - •for any relational table r created over a relational schema R, if for any two rows v and w in r such that v[X] = w[X], there exist a row t in r such that v[XY] = t[XY] and w[XY] = t[XZ]

Other notation

It means that if a row $XY \square$ is in a relational table and a row $X \square Z$ is in the same table, then a row XY must be in the same relational table.

Examples

An employee knows many programming language and many operating systems.

 $empeNum \rightarrow progLang | OS$

empeNum	progLang	
empeNum		OS
empeNum	progLang	OS

Examples

A person owns many cars and has many skills

fName, $lName \rightarrow regNumber | skill$

fName, IName	regNumber	
fName, IName		skill
fName, lName	regNumber	skill

Examples

A students has many friends and many hobbies

 $stdNum \rightarrow fName$, $lName \mid hobby$

stdNum	fName, lName	
stdNum		hobby
stdNum	fName, lName	hobby

```
\begin{array}{c|cccc} X & Y \\ \hline X & Z \\ \hline X & Y & Z \\ \end{array}
```

```
CREATE VIEW XY AS (SELECT X, Y FROM R);
CREATE VIEW XZ AS (SELECT X, Z FROM R);
```

```
SELECT XY.X, XY.Y, XZ.Z
FROM XY JOIN XZ
ON XY.X=XZ.X
```

The result of SELECT is always equal to R

Beyond BCNF 4NF (4th Normal Form)

A relational schema R is in the Fourth Normal Form (4NF) if for every nontrivial multivalued dependency X o Y | Z a set of attributes X is a superkey in a relational schema R

Alternative definition:

A relational schema *R* is in 4*NF* if no nontrivial multivalued dependencies are valid in a relational schema *R*

For example, a multivalued dependency $empeNum \rightarrow progLang \mid OS$

is valid in a relational schema EMP(empeNum, progLang, OS)

Hence. the relational schema EMP is **NOT** in 4NF because a nontrivial multivalued dependency is valid in EMP.

```
Decomposition into 4NF?

EMP(empeNum, progLang, OS)
```

```
EPL(empeNum, progLang)
PK: (empeNum, progLang)
```

EOS(empeNum, OS)
PK: (empeNum, OS)

Beyond BCNF

Join Dependency

Let $R = (A_1, ..., A_n)$ be a relational schema and let $X, Y_1, ..., Y_n$ be nonempty subsets of R

We say that join dependency $\bowtie (X, Y_1, ..., Y_n)$ is valid in a relational schema R if ...

... for any relational table r with relational schema R, if for any n rows v_1 , ..., v_n in r such that $v_1[X] = ... = v_n[X]$ there exist a row t in r such that ...

... $v_1[XY_1] = t[XY_1]$ and ... and $v_n[XY_n] = t[XY_n]$

Other notation

```
X Y1
X Y2
X Y3
... ... ... ... ... Yn
X Y1 Y2 Y3 ... Yn
```

For example:

An employee knows many programming language, many OS, and has many hobbies.

 \bowtie (empeNum, progLang, OS,hobby)

empeNum	progLang		
empeNum		OS	
empeNum			hobby

Example:

A person owns many cars and has many skills and has many employers

 \bowtie ((fName, lName), regNum, skill, empr)

fName	lName	regnum		
fName	lName		skill	
fName	lName			empr
fName	lName	regnum	skill	empr

```
CREATE VIEW XY1 AS (SELECT X, Y1 FROM R);
CREATE VIEW XY2 AS (SELECT X, Y2 FROM R);
... ... ...
CREATE VIEW Xyn AS (SELECT X, Yn FROM R);

SELECT XY1.X, XY1.Y1, XY2.Y2, ... XYn.Yn
FROM XY1

JOIN XY2 ON XY1.X=XY2.X
JOIN ...
JOIN Xyn ON XY1.X=Xyn.X

equal to R.
```

Beyond BCNF

5NF (5th Normal Form)

A relational schema R is in the **Fifth Normal Form** (SNF) if for every nontrivial join dependency $\bowtie (X, Y_1, ..., Y_n)$ a set of attributes X is a superkey in R

Alternative definition:

A relational schema R is in 5NF if no nontrivial join dependencies are valid in schema R

For example, a join dependency ⋈(empeNum, progLang, OS, hobby) is valid in a relational schema

EMP(empeNum, progLang, OS, hobby)

Hence, the relational schema *EMP* is **NOT** in **5NF** because a nontrivial join dependency is valid in *EMP*.

Decomposition into 5NF?

```
EMP(empeNum, progLang, OS, hobby)
```

```
EPL(empeNum, progLang)
PK: (empeNum, progLang)
```

EOS(empeNum, OS) PK: (empeNum, OS)

EHB(empeNum, hobby)
PK: (empeNum, hobby)

References

 T. Connoly, C. Begg, Database Systems, A Practical Approach to Design, Implementation, and Management, Chapter 15.4 Fourth Normal Form (4NF), Chapter 15.5 Fifth Normal Form (5NF), Pearson Education Ltd, 2015