Tobacco_Analysis

Qizheng Wang

5/7/2020

Tobacco Survey Analysis(Binary Generalized linear models)

```
smokeFile = 'smokeDownload.RData'
if(!file.exists(smokeFile)){
    download.file(
            'https://github.com/Roderickwqz/Tobacco_Analysis/blob/master/smoke.RData',
            smokeFile)
}
(load(smokeFile))
## [1] "smoke"
                      "smokeFormats"
smokeFormats[
  smokeFormats[,'colName'] == 'chewing_tobacco_snuff_or',
  c('colName','label')]
##
                        colName
## 151 chewing_tobacco_snuff_or
## 151 RECODE: Used chewing tobacco, snuff, or dip on 1 or more days in the past 30 days
smokeSub = smoke[which(smoke$Age > 10 & !is.na(smoke$Race)), ]
smokeSub$ageC = smokeSub$Age - 16
smokeModel = glm(chewing_tobacco_snuff_or ~ ageC + RuralUrban + Race + Sex, data=smokeSub, family=binom
knitr::kable(summary(smokeModel)$coef, digits=3)
```

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.700	0.082	-32.843	0.000
ageC	0.341	0.021	16.357	0.000
Rural Urban Rural	0.959	0.088	10.934	0.000
Raceblack	-1.557	0.172	-9.068	0.000
Racehispanic	-0.728	0.104	-6.981	0.000
Raceasian	-1.545	0.342	-4.515	0.000
Racenative	0.112	0.278	0.404	0.687
Racepacific	1.016	0.361	2.814	0.005
SexF	-1.797	0.109	-16.485	0.000

```
logOddsMat = cbind(est=smokeModel$coef, confint(smokeModel, level=0.99))
```

Waiting for profiling to be done...

```
oddsMat = exp(logOddsMat)
oddsMat[1,] = oddsMat[1,] / (1+oddsMat[1,])
rownames(oddsMat)[1] = 'Baseline prob'
knitr::kable(oddsMat, digits=3)
```

	est	0.5~%	99.5 %
Baseline prob	0.063	0.051	0.076
ageC	1.407	1.334	1.485
Rural Urban Rural	2.610	2.088	3.283
Raceblack	0.211	0.132	0.320
Racehispanic	0.483	0.367	0.628
Raceasian	0.213	0.077	0.466
Racenative	1.119	0.509	2.163
Racepacific	2.761	0.985	6.525
SexF	0.166	0.124	0.218

Step 1: establish smokeModel

$$\log(\frac{\mu_i}{1-\mu_i}) = \boldsymbol{X_i}\boldsymbol{\beta}$$

For this GLM, I use logistic regression, where response is proportion of students using chewing tobacco, snuff or dip at least once in the last 30 days. The response is linked to a linear combination of covariates with logit link.

Covariates X_i represents the age parameter (centered at 16), the rural or urban factor, and dummy variables for races, and sex (Malse as the reference level).

Hypothesis based on TV

If American TV is to believed, chewing tobacco is popular among cowboys, and cowboys are white, male and live in rural areas. Thus addressing the hypothesis that rural white males are the group most likely to use chewing tobacco, and there is reasonable certainty that less than half of one percent of ethnic-minority urban women and girls chew tobacco

```
## fit se.fit lower upper
## 1 -1.740164 0.05471340 -1.904304 -1.576024
## 2 -2.699657 0.08219855 -2.946253 -2.453062
```

```
## 3 -3.427371 0.10692198 -3.748137 -3.106605
## 4 -6.053341 0.19800963 -6.647370 -5.459312
## 5 -6.041103 0.35209311 -7.097383 -4.984824

expSmokePred = exp(smokePred[,c('fit','lower','upper')])
knitr::kable(cbind(newData[,-3],1000*expSmokePred/(1+expSmokePred)), digits=1)
```

Sex	Race	RuralUrban	fit	lower	
M	white	Rural	149.3	129.6	
\mathbf{M}	white	Urban	63.0	49.9	
${ m M}$	hispanic	Urban	31.5	23.0	
F	black	Urban	2.3	1.3	
\mathbf{F}	asian	Urban	2.4	0.8	
Based	on the resu	lts, rural, w	hite mal	es have	the highest u
Female	minorites	fit's value a	re 2.3+2	.4 = 4.7,	which divided by 1000 is smaller than the 0.5% . Thus it is reaso