

门磁传感器 DEMO 软件设计说明书

V1.0.0

版本号	修订说明	修订人	审批人	日期
V1.0.0	初版	Arien		2021-9-15

1. DP 点与 cluster 属性介绍

DPID	DP 含义	数据传输类型	数据类型	是否标准指令
1	门磁状态	只上报(ro)	布尔型(Bool)	是
2	电池电量	只上报 (ro)	布尔型(Bool)	是
4	防拆报警	只上报 (ro)	布尔型(Bool)	是

cluster name	cluster id	client	server	attribute name	attribute id
				Mains Voltage	0x0000
Power Config	0x0001		$\sqrt{}$	Battery Voltage	0x0020
				Battery Percentage Remain	0x0021
				Zone State	0x0000
				Zone Type	0x0001
IAS Zone	0x0500		$\sqrt{}$	Zone Status	0x0002
				IAS CIE Address	0x0010
				Zone ID	0x0011
	nde 0x0019			Upgrade Server ID	0x0000
				File Offset	0x0001
OTA Upgrade				Current File Version	0x0002
		√		Image Upgrade Status	0x0006
			Manufacturer ID	0x0007	
				Image Type ID	0x0008
				Min Block Request Period	0x0009

1.1 DP1 门磁状态

指令方向	指令方向 CLUSTER ID ATTR I		VALUE
上报	0x0500	0x0002 Zone Status	Bit0:0 not alarmed 1 alarmed

1.2 DP2 电池电量

指令方向	CLUSTER ID	ATTR ID	VALUE
上报	0x0001	0x0020 Battery Voltage	0x00-0xff
		0x0021 Battery Percentage Remain	

1.3 DP4 防拆报警

指令方向	CLUSTER ID	ATTR ID	VALUE	
上报	0x0500	0x0500 0x0002 Zone Status Bit0 :0 not tampered 1 ta		

2. 硬件电路

外设		IO	有效电平状态
UART	uart0_rx	PA6	NULL
	uart0_tx	PA5	NULL
	led0	PB1	LOW
LED	led1	PC2	LOW
	led2	PD0	LOW
KEY	key0	PB0	LOW
ALARM1	alarm1	PA3	LOW
TAMPER	tamper	PA4	LOW

传感器设备为低功耗设备,因此 Z3SL 模块的 PC00、PC02、PD00、PD01 为非唤醒源不能作为唤醒引脚,不能作为外部中断的输入引脚。

图 1 ZS3L 模组图

文档中心: https://developer.tuya.com/cn/docs/iot/zs31?id=K97r37j19f496

3. 系统流程图

3.1 Demo 主流程图

图 2 应用层主流程图

3.2 Demo 子流程图

3.2.1 设备外设初始化流程图

图 3 外设初始化流程图

3.2.2 中断处理流程图

图 4 中断处理流程图

3.2.3 网络状态回调流程图

图 5 网络状态回调流程图

- a. 上电后先进行 Zigbee 设备初始化、IO 外设初始化、打印初始化等操作。
- b. 协议栈初始化后进入 system on 之后初始化传感器,设备常亮 3s 表示上电状态。
- c. 电池电量初始化,按照 demo 代码可按需修改参数。
- d. 等待按键中断与传感器中断触发。
- e. 长按按键 3s 后松手可触发设备配网,开始配网时指示闪烁,配网超时后(30s) 指示灯熄灭。配网成功后,指示灯常亮 3s 表示配网成功;短按按键可更新当前传感器的状态。配网成功后若再长按触发配网,设备会先本地离网后自动触发配网。
- f. 传感器触发后,指示灯闪烁一次并上报当前传感器状态。
- g. 设备 4h 会上报一次心跳,如果超过 12h 网关未收到心跳等信息会报离线。

4. 函数说明

4.1 ias sensor init()

重置存取 IAS ZONE STATUS 的变量 ias zone status bits。

往 IAS ZONE CLUSTER 相应 attr 写入 IAS ZONE TYPE 参数。

写入传感器 ALARM1 极性, ALARM1 初始化的输入状态, 注册 ALARM1 的中断函数。

写入传感器 TAMPER 极性,TAMPER 初始化的输入状态,注册 TAMPER 的中断函数。

4.2 gpio_sensor_xxxx_interrupt_handler()

函数内部先调用 gpio sensor debounce handler 进行滤波处理。

滤波后,执行 gpio_sensor_debounce_handler 中的触发中断的闪灯操作。执行状态上报 函数 ias zone status update,将新的状态上报到网关。

4.3 ias_zone_status_update()

判断网络状态是否为 NET_JOIN_OK 或 NET_REJOIN_OK, 如果是再判断当前的设备的 IAS_ZONE_STATE 状态是否为 enroll。如果不是则执行 enroll 注册函数, 否则跳过执行, 执行 sdk 中的消息发送函数 dev zigbee send data。

4.5 battery sampling evt callback()

根据当前电量调整合适的采样周期和电量上报心跳周期。

4.6 ias sensor status sync()

根据极性读取电平,并换算成当前 ALARM1 和 TAMPER 输入状态,并写入 IAS ZONE CLUSTER的 IAS ZONE STATUS attr。

4.7 ias zone off net status reset()

判断当前网络状态是否为 NET_LOCAL_LEAVE 或 NET_REMOTE_LEAVE 或 NET_MF_TEST_LEAVE , 若 是 则 调 用 ias_zone_unenroll 函 数 , 函 数 内 将 ATTR_IAS_CIE_ADDRESS_ATTRIBUTE_ID 的 attr 清 0 , 写 入 设 备 匹 配 的 ATTR_ZONE_TYPE_ATTRIBUTE_ID 的 attr, ATTR_ZONE_ID_ATTRIBUTE_ID 的 attr 写入 为非法得到 ZONE_ID, ATTR_ZONE_STATE_ATTRIBUTE_ID 的 attr 写入为 not_enrolled 状态。

4.8 ias zone cluster handler()

执行 dev_zigbee_specific_response_handle 涂鸦 sdk 特有的回调函数。若网关返回的相应 状态为 IAS_ENROLL_RESPONSE_CODE_SUCCESS,写入 IAS_ZONE_STATE 为 enroll 状态,同时写入网关分配的 ZONG_ID 到 ATTR_ZONE_ID_ATTRIBUTE_ID 的 attr。若网管返回 的相应状态为其它,写入 IAS_ZONE_STATE 为 not enrolled 状态,同时写入 ATTR ZONE ID ATTRIBUTE ID 的 attr 为非法 ZONE ID。

4.9 keys_evt_handler()

按键按下触发按键回调函数,同时 sdk 内部会开启定时器中断,如果保持长按状态,每 20ms 按键回调会被定时器中断打断增加 push_time 的值,然后再在定时器回调函数中调用 keys evt handler()。所以不松手,会多次进入按键回调。

5. 注意事项

5.1 低功耗设备特有 rejoin 参数

- a. next_rejoin_time: rejoin 的过程是分组发送 beacon,每组会发送 rejoin_try_times 个 beacon。当上一组 rejoin 失败后再次进行 rejoin 间隔的时间。
- b. wake up time after join: join 成功后,可以进行 poll 的时间间隔。
- c. wake up time after rejoin: rejoin 成功后,可以进行 poll 的时间间隔。
- d. rejoin try times: 每组 rejoin 中 beacon 发送的数量
- e. power on auto rejoin flag: 程序启动后是否自动进行 rejoin 的标志位
- f. auto rejoin send data: 当发送数据失败后是否自动进行 rejoin 的标志位

5.2 低功耗设备特有 poll 参数

- a. poll interval: 两次 poll 之间的间隔 (poll 在抓包中表现为 Data Request 命令)
- b. wait_app_ack_time: 在这段时间包含整个 poll 和接受数据的过程。在 join, rejoin和子设备上报数据存在三种不同的 poll 方式,因此可以通过分析三种类型以及poll_interval 和 wait_app_ack_time 参数计算这三个过程分别的 poll 次数
- c. poll_forever_flag: 是否一直进行 poll, 如果该标志位为 1, 则 wait_app_ack_time 将没有意义。所以默认值为 0, 才可以限定 poll 的次数
- d. poll_failed_times:每次 poll 后,无论网关有无数据都会回应 ack,一旦网关超过 poll_failed_times 次没有回复设备,则设备的网络状态变为父节点丢失 NET_LOST

5.3 低功耗设备特有电池采样配置参数

- a. cap_first_delay_time: 无论剩余电量多少, 默认电池上电电量都为 100%, 当经过 cap first delay time 时间后上报的电量才为当前真实剩余电量。
- b. cap waitting silence time: 这个参数保持默认,用于 sdk。
- c. cap max period time: 电池 ad 采样周期, 一般和心跳周期相同
- d. cap max voltage: 最大采样电压
- e. cap min voltage: 最小采样电压

5.4 低功耗设备特有电池上报配置参数

- a. type: 电池类型为可充电电池还是干电池
- b. level: 低功耗设备默认选择空闲时采集电压
- c. report_no_limits_first: 第一次默认上报 100%电量到第二次准确上报之间的电量百分比差没有限制
- d. limits:每两次电量上报的电量百分比差的限制(例如如果设置 20%的限制,如果电量百分变化为 30%,就会分 20%和 10%两次上报)
- e. ext limits: 外部限制用户自选, 默认为空
- 5.5 电池电量电压映射结构体 battery_table_t
- a. 每 10%电量变化之间默认为线性关系,一般映射表最大电压值与最大采样电压 cap max voltage 一致,最小电压值与最小采样电压 cap min voltage
- b. 低功耗设备采用电池的方式供电,电池电压的 AD 采集可以通过 VDD 也可以通过 GPIO。针对 MG21 平台,有从 GPIO 获取电压不能超过 2.42V 的限制,对于 MG13 和泰凌 8258 平台没有这个限制。因此对于 ZS3L 模组从 GPIO 采集电压,ADC 管脚必须要分压。限位值是 1.0V~2.4V,建议采用 1.2V~2.4V。

5.6 IAS ZONE Enroll 过程

传感器设备的数据上报走 Zigbee 标准的 IAS ZONE 通道, IAS ZONE 收发数据之前,子设备要先进行 Enroll 操作,只有子设备完成向网关的 Enroll 操作,后续才能正常与网关进行收发数据,示意图如下:

图 6 Enroll 过程示意图