

# Vibronic structure of the emission spectra from single vibronic levels of the S 1 manifold in naphthalene: Theoretical simulation

Fabrizia Negri and Marek Z. Zgierski

Citation: The Journal of Chemical Physics 104, 3486 (1996); doi: 10.1063/1.471054

View online: http://dx.doi.org/10.1063/1.471054

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/104/10?ver=pdfcov

Published by the AIP Publishing

## Articles you may be interested in

Theoretical analysis of the vibronic structure of the zero-kinetic-energy photoelectron spectra from single vibronic levels of the S 1 -state manifold of naphthalene

J. Chem. Phys. 107, 4827 (1997); 10.1063/1.474846

Ab initio study of NO2. V. Nonadiabatic vibronic states and levels of the X 2 A 1/Ã 2 B 2 conical intersection J. Chem. Phys. **105**, 9051 (1996); 10.1063/1.472762

Correlation effects and vibronic coupling features in the interaction of H- ions with N2 molecules

J. Chem. Phys. 105, 156 (1996); 10.1063/1.471861

Vibronic and electronic states of doubly charged H2S studied by Auger and charge transfer spectroscopy and by a b i n i t i o calculations

J. Chem. Phys. 93, 918 (1990); 10.1063/1.459118

Direct observation of highly excited single vibronic level relaxation in condensed media

AIP Conf. Proc. 146, 612 (1986); 10.1063/1.35911



# Vibronic structure of the emission spectra from single vibronic levels of the $S_1$ manifold in naphthalene: Theoretical simulation

Fabrizia Negri

Dipartimento di Chimica "G. Ciamician," Università di Bologna, 40126 Bologna, Italy

Marek Z. Zgierski

Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, K1A 0R6 Canada

(Received 16 June 1995; accepted 27 September 1995)

The vibrational structure of electronic spectra of naphthalene is simulated by means of a perturbative calculation of the intensities, based on the vibronic basis set. The formalism is implemented to include the contribution of Herzberg–Teller induced activity for totally symmetric modes and to describe the interference between the latter and the allowed Franck–Condon intensity. Geometries, vibrational normal modes, and vibronic coupling parameters required to model the spectra are obtained by means of *ab initio* and semiempirical calculations. The structure of absorption and single vibronic level fluorescence spectra is reproduced in detail and consistently for all the spectra examined. It is shown that the intensity of modes  $v_{8a}$  and  $v_{5a}$  is strongly affected by interference effects, and that Dushinsky mode mixing of totally symmetric modes plays a major role in redistributing the intensity among the vibronic bands of the spectra. © 1996 American Institute of Physics. [S0021-9606(96)02309-3]

## I. INTRODUCTION

Vibronic structure of the  $S_0 \rightarrow S_1$  electronic transitions in naphthalene belongs to more interesting cases occurring in aromatic hydrocarbons. The four lowest excited states of these molecules correspond, according to the perimeter model, 1-3 to the promotion of an electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Both these orbitals are doubly degenerate in this model, and as a result, the lower  $L_a$ and  $L_b$  states do not couple with the ground state via electric dipole moment, while the higher, degenerate B state is strongly coupled to the ground state by this interaction. This is the situation in benzene where the  $L_a$  state becomes  $B_{1u}(S_2)$ , the  $L_b$  state becomes  $B_{2u}(S_1)$  and the B state becomes  $E_{1u}$ . When crosslinks are introduced between carbon atoms, the degeneracies of the HOMO and LUMO are lifted. In consequence, the  $S_0 \rightarrow L$  transitions become weakly allowed, that to the  $L_b$  state being much less intense than the transition to  $L_a$  state, while the B state splits into  $B_a$  and  $B_b$ components. The energy ordering of the  $L_a$  and  $L_b$  states in naphthalene is the same as in benzene ( $L_b$  being the lowest excited singlet), however, the gap between the L states becomes much smaller. In anthracene, the ordering becomes inverted, and, as a result, the  $L_b$  state is hidden in the absorption under much more intense transition to the  $L_a$  state. The very small oscillator strength of the  $S_0 \rightarrow S_1$  transition in naphthalene makes vibronic interactions with higher electronic states a very important source of intensity for this transition. The interactions of the  $L_b(1B_{2u})$  state with the  $B_b(2B_{2u})$  state occur via totally symmetric (TS)  $a_g$  modes, and with the  $L_a(1B_{1u})$  and the  $B_a(2B_{1u})$  states occur via nontotally symmetric (NTS)  $b_{3g}$  modes. Thus the  $S_0 {
ightharpoonup} S_1$ transition is a prime example of manifestation of both Franck-Condon and vibronic effects in the absorption and emission spectra of a large polyatomic molecule. It is also an interesting example of the interference between Franck—Condon (FC) and Herzberg—Teller (HT) mechanism and its effect on intensities of individual vibronic lines.

The experimental ground state vibrational frequencies of naphthalene in solid and gas phases as well as for solution have been reported and discussed on the basis of scaled quantum mechanical (SOM) force field by Sellers et al.4 Well resolved single vibronic level (SVL) emission spectra from individual vibronic levels of the  $S_1$  manifold of naphthalene were studied in the gas phase by Stockburger, Gatterman and Klusman (SGK).5 Some aspects connected with the intensities of lines associated with the  $\nu_{8a}(a_g)$  and  $\nu_{8b}(b_{3g})$  modes were subsequently studied by us in a model fashion.<sup>6</sup> The  $S_1$  state frequencies of the in-plane modes were discussed in a number of papers.<sup>7-9</sup> Fluorescence excitation spectra of naphthalene in a supersonic jet have been subsequently reported by Beck et al. 10 They provided the well resolved absorption spectrum up to 6000 cm<sup>-1</sup> above the origin of the  $S_0 \rightarrow S_1$  transition. Compared with the  $O_0^0$  level emission they show strong breakdown of the mirror symmetry between absorption and emission which is not surprising for a weak transition where most of the intensity is vibronically induced. Single vibronic level emission spectra in a supersonic jet were then reported by Beck et al. 11 and by Behlen et al. 12 They complement the spectra of SGK giving emission from new vibronic levels, in particular the  $(\nu_{4a})_0^1$ level of  $S_1$ .

We have demonstrated by model simulations<sup>6</sup> that nonadiabatic and non-Condon effects have to be taken into account if one wants to understand distributions of vibronic intensities in SVL emission spectra. The simulation of these spectra requires input parameters which can be obtained from quantum-chemical calculations. These are displacement parameters describing geometry differences between elec-

TABLE I. The calculated bond lengths (in Å) and bond angles (in deg) of the carbon skeleton of naphthalene in the  $S_0$ ,  $S_1$ , and  $S_2$  states.

| Parameter <sup>a</sup> | Expt.              | QCFF/PI+CIS | QCFF/PI+CISD   | CIS/6-31G* | CIS/6-31+G | CASSCF/DZV <sup>b</sup> |
|------------------------|--------------------|-------------|----------------|------------|------------|-------------------------|
|                        |                    |             | $S_0(1A_g)$    |            |            |                         |
| $C_1C_2$               | 1.425 <sup>c</sup> | 1.4367      | 1.4368         | 1.4205     |            | 1.433                   |
| $C_1C_6$               | 1.424              | 1.4407      | 1.4424         | 1.4092     |            | 1.422                   |
| $C_2C_3$               | 1.377              | 1.3856      | 1.3882         | 1.3583     |            | 1.383                   |
| $C_3C_4$               | 1.417              | 1.4247      | 1.4267         | 1.4166     |            | 1.430                   |
| $C_6C_1C_2$            |                    | 119.14      | 119.16         | 118.97     |            |                         |
| $C_1C_2C_3$            |                    | 120.21      | 120.18         | 120.78     |            |                         |
| $C_2C_3C_4$            |                    | 120.65      | 120.66         | 120.25     |            |                         |
|                        |                    |             | $S_1(1B_{2u})$ |            |            |                         |
| $C_1C_2$               | 1.425 <sup>d</sup> | 1.4305      | 1.4243         | 1.4031     | 1.4062     | 1.420                   |
| $C_1C_6$               | 1.478              | 1.4897      | 1.5018         | 1.4911     | 1.4908     | 1.509                   |
| $C_2C_3$               | 1.422              | 1.4060      | 1.4124         | 1.3910     | 1.3944     | 1.422                   |
| $C_3C_4$               | 1.417              | 1.4331      | 1.4327         | 1.4103     | 1.4137     | 1.434                   |
| $C_6C_1C_2$            |                    | 118.93      | 118.89         | 118.19     | 118.24     |                         |
| $C_1C_2C_3$            |                    | 120.26      | 120.33         | 121.43     | 121.48     |                         |
| $C_2C_3C_4$            |                    | 120.81      | 120.78         | 120.37     | 120.29     |                         |
|                        |                    |             | $S_2(1B_{1u})$ |            |            |                         |
| $C_1C_2$               |                    |             | 1.4230         | 1.4013     |            |                         |
| $C_1C_6$               |                    |             | 1.4648         | 1.4493     |            |                         |
| $C_2C_3$               |                    |             | 1.4392         | 1.4170     |            |                         |
| $C_3C_4$               |                    |             | 1.3892         | 1.3710     |            |                         |
| $C_6C_1C_2$            |                    |             | 119.16         | 118.41     |            |                         |
| $C_1C_2C_3$            |                    |             | 120.30         | 121.71     |            |                         |
| $C_2C_3C_4$            |                    |             | 120.54         | 119.88     |            |                         |

<sup>&</sup>lt;sup>a</sup>Carbon atoms are numbered clockwise, C<sub>1</sub> and C<sub>6</sub> atoms belong to both aromatic rings.

tronic states coupled either by electric dipole or vibronically, vibronic coupling parameters and mode mixing matrices which map normal modes of one state onto those of another state. Robey *et al.*<sup>13</sup> were the first to present semiempirical (CNDO/S) calculations of vibronically induced transition dipole moments for the  $S_0 \rightarrow S_1$  transition by the  $a_g$  and  $b_{3g}$  modes. No attempt to understand detailed vibronic structure of various SVL spectra was undertaken however in that paper. The present paper closes the gap between those two papers by bringing quantum-chemical calculations and modeling together to reproduce detailed vibronic structure of the observed absorption and SVL emission spectra of naphtha-

lene. To this end we use semiempirical [QCFF/PI (Refs. 14, 15) and CNDO/S (Ref. 16)] and *ab initio*<sup>17</sup> methods to calculate all parameters needed for simulation of the spectra and the perturbation theory based on vibronic basis set<sup>18</sup> to calculate intensities of individual vibronic transitions.

In Sec. II we discuss the results of the quantum-chemical calculations in which parameters pertinent for the simulation of SVL spectra are obtained. Section III presents the general perturbation scheme adopted to simulate the intensities of individual vibronic transitions based on the vibronic basis set of wave functions. <sup>18</sup> Section IV reports the results of the simulations and discussion.

TABLE II. Vertical excitation energies (eV) of the electronic valence singlet states of naphthalene evaluated at the corresponding optimized  $S_0$  state geometries and computed oscillator strengths of the  $S_0 \rightarrow S_n$  transitions.

| State                                                                                                                      | QCFF/PI+CIS                             | QCFF/PI+CISD  | CNDO/S+CIS    | CIS/6-31G*    | CIS/6-31+G    |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|---------------|---------------|---------------|
| $ \begin{array}{c} S_1, 1B_{2u} \\ S_2, 1B_{1u} \\ S_3, 2A_g \\ S_4, 1B_{3g} \\ S_5, 2B_{2u} \\ S_6, 2B_{1u} \end{array} $ | 4.11 <sup>a</sup> (0.0032) <sup>b</sup> | 3.88 (0.0032) | 4.07 (0.0009) | 5.54 (0.0003) | 5.55 (0.0001) |
|                                                                                                                            | 4.47 (0.2408)                           | 4.81 (0.1645) | 4.28 (0.0690) | 5.43 (0.0738) | 5.44 (0.0925) |
|                                                                                                                            | 5.35 (0.0000)                           | 5.67 (0.0000) | 5.68 (0.0000) | 7.67 (0.0000) | 7.41 (0.0000) |
|                                                                                                                            | 5.56 (0.0000)                           | 5.72 (0.0000) | 5.41 (0.0000) | 7.27 (0.0000) | 6.67 (0.0000) |
|                                                                                                                            | 5.84 (1.4113)                           | 5.62 (1.9868) | 6.07 (2.1959) | 7.47 (2.3652) | 7.16 (2.1411) |
|                                                                                                                            | 5.96 (0.7343)                           | 6.23 (0.4320) | 6.18 (0.8480) | 7.63 (0.6896) | 7.50 (0.7838) |

<sup>&</sup>lt;sup>a</sup>Excitation energy.

<sup>&</sup>lt;sup>b</sup>Reference 19.

<sup>&</sup>lt;sup>c</sup>Reference 31.

dReference 32.

<sup>&</sup>lt;sup>b</sup>Oscillator strength.

TABLE III. Vibrational frequencies (in cm<sup>-1</sup>) of the in-plane normal modes (excluding CH stretches) in the  $S_0(1A_g)$  state of naphthalene. Displacement parameters of the  $a_g$  modes for the  $S_1 \rightarrow S_0$  and  $S_2 \rightarrow S_0$  transitions are also listed. Calculated HF frequencies are scaled by 0.9.

|                       |                                              |                                                                  | $b_{3g}$           |                      | $b_{1u}$ |                    |      | $b_{2u}$ |                    |      |      |        |
|-----------------------|----------------------------------------------|------------------------------------------------------------------|--------------------|----------------------|----------|--------------------|------|----------|--------------------|------|------|--------|
|                       | QCCF/PI<br>+CISD                             | HF/6-31G*                                                        | Expt. <sup>a</sup> | QCFF/PI              | HF       | Expt. <sup>a</sup> | QCFF | HF       | Expt. <sup>a</sup> | QCFF | HF   | Expt.a |
| $\overline{\nu_{3a}}$ | 1590 (0.19) <sup>b</sup> [0.65] <sup>c</sup> | 1605 (0.08) <sup>d</sup> [0.92] <sup>e</sup> (0.01) <sup>f</sup> | 1578               | ν <sub>3b</sub> 1633 | 1660     | 1624               | 1573 | 1625     | 1595               | 1507 | 1515 | 1509   |
| $\nu_{4a}$            | 1467 (0.16) [0.02]                           | 1463 (0.22) [0.24] (0.28)                                        | 1460               | $\nu_{4b}$ 1481      | 1461     | 1445               | 1412 | 1389     | 1389               | 1329 | 1328 | 1361   |
| $\nu_{5a}$            | 1336 (0.89) [1.44]                           | 1338 (1.44) [1.74] (1.46)                                        | 1380               | $\nu_{5h}$ 1296      | 1235     | 1240               | 1324 | 1251     | 1265               | 1169 | 1180 | 1209   |
| $\nu_{6a}$            | 1156 (0.12) [0.11]                           | 1158 (0.01) [0.48] (0.05)                                        | 1163               | $\nu_{6b}$ 1125      | 1146     | 1145               | 1135 | 1121     | 1125               | 1147 | 1074 | 1144   |
| $\nu_{7a}$            | 1005 (0.35) [0.11]                           | 1035 (0.21) [0.01] (0.33)                                        | 1020               | $\nu_{7h}$ 991       | 920      | 939                | 827  | 773      | 810                | 1030 | 968  | 1008   |
| $\nu_{8a}$            | 802 (0.72) [0.14]                            | 748 (0.79) [0.09] (0.91)                                         | 761                | $\nu_{8b}$ 548       | 499      | 508                | 413  | 350      | 359                | 699  | 607  | 619    |
| $\nu_{9a}$            | 516 (0.04) [0.56]                            | 496 (0.24) [0.89] (0.42)                                         | 514                | ***                  |          |                    |      |          |                    |      |      |        |

<sup>&</sup>lt;sup>a</sup>Reference 4.

## **II. QUANTUM-CHEMICAL CALCULATIONS**

The first ab initio study of the vibrational force field of the  $S_1$  state of naphthalene molecule has been reported by Swiderek et al. 19 Multiconfiguration self-consistent field (MCSCF) method which includes all  $\pi$ -orbitals in its complete active space (CAS) formulation, was used with minimal and double-zed basis sets (STO-3G and DZV). The obtained force-field was then scaled according to the Pulay's procedure<sup>20</sup> in the same way as the corresponding force field of the ground electronic state. In the present paper, we use HF/6-31G\* method for the ground state force field calculation and a configuration interaction including single excitations (CIS) in conjunction with 6-31G\* and 6-31+G basis sets for extracting the force field of the excited states. The CIS procedure<sup>21</sup> proved to be very successful to describe the low-excited states dominated by single excitations of molecules such as benzene,<sup>22</sup> cyclopentadiene,<sup>23</sup> norbornadiene,<sup>24</sup> B state of polyenes,<sup>25</sup> imidazolium cation,<sup>26</sup> and oligomers of thiophene.<sup>27</sup> Semiempirical calculations indicate that also the  $S_1$  and  $S_2$  states of naphthalene belong to the group of excited molecular states which are well described by singly excited electronic configurations only. Thus we expect that the geometry changes of the states  $S_1$  and  $S_2$  with respect to  $S_0$ , which define the displacement parameters for the  $S_0 \leftrightarrow S_1$  and  $S_0 \leftrightarrow S_2$  transitions, are well described by the CIS procedure. Only when doubly excited configurations play a role in description of the electronic excited state, the use of CASSCF (MCSCF) method is called for to obtain reliable geometrical parameters, like in the  $S_1$  states of azulene<sup>28</sup> and fulvene.<sup>29</sup> In addition to *ab initio* results, we present here the results of QCFF/PI+CIS(D) (Refs. 14, 15) calculations of the force fields and also use the CNDO/S +CIS Hamiltonian<sup>16</sup> in combination with the floating atomic orbitals method<sup>30</sup> to obtain vibronic coupling parameters which are pertinent to intensities of vibronic transition observed in the SVL fluorescence and excitation spectra of naphthalene.

Table I collects equilibrium geometries for the ground and lowest two excited singlet electronic states of naphtha-

lene obtained with semiempirical and *ab initio* methods. These are compared with the experimental data (when available)<sup>31,32</sup> and with the results of recent CASSCF calculations.<sup>19</sup> It is seen that the electronic excitation to  $S_1$  leads to a marked increase of the  $C_1C_6$  and  $C_2C_3$  bonds. QCFF/PI method underestimates somewhat these changes. Comparison with the CASSCF results<sup>19</sup> shows that very similar  $S_0-S_1$  geometry changes are predicted by the latter and the CIS methods, in agreement with the fact that the  $S_1$  wave function is dominated by single excitations. Upon excitation to  $S_2$  the changes of individual geometrical parameters are smaller but since every bond length is subject to non-negligible changes the overall geometry change upon excitation to  $S_2$  is larger than that of the  $S_1$  state.

The calculated vertical electronic excitation energies are presented in Table II. The semiempirical energies are in close agreement with the experimentally observed origins of the  $S_0 \rightarrow S_1(S_2)$  transitions -3.97(4.45) eV.<sup>10</sup> The numbering of the excited states is according to their order obtained in QCFF/PI+CIS calculations. The ab initio CIS excitation energies are  $\sim 1$  eV too high which is a normal feature of CIS calculations especially when moderate basis sets are employed. In addition, the ordering of the closely lying  $S_1$  and S<sub>2</sub> states is reversed, at variance with recent CASSCF calculations of excitation energies that predicted the correct order.<sup>33</sup> The inversion of states obtained by CIS calculations is probably indicative of the fact that, although the wave functions of these states are dominated by single excitations, the contribution of double excitations is somewhat larger for  $S_1$ , 33 which explains the correct result obtained at the CASSCF level. These two states form the  $L_b$  and  $L_a$  states of the perimeter model. The  $B_b$  and  $B_a$  states are  $S_5$  and  $S_6$ , respectively. The calculated gap between the L and B states is roughly the same for semiempirical and ab initio methods and agrees quite well with the experiment.

The relevant feature of the  $S_1$  state is its very weak transition dipole moment to  $S_0$ , a result of negative interference between the transition dipole moments of the two individual configurations that dominate its wave function. The sign of

 $<sup>{}^{\</sup>mathrm{b}}\mathrm{QCFF/PI} + \mathrm{CISD}\ S_1 {\longrightarrow} S_0$  displacement parameter.

<sup>&</sup>lt;sup>c</sup>QCFF/PI+CISD  $S_2 \rightarrow S_0$  displacement parameter.

<sup>&</sup>lt;sup>d</sup>HF/6-31G\*-CIS/6-31G\*  $S_1 \rightarrow S_0$  displacement parameter.

 $<sup>^{\</sup>mathrm{e}}$ HF/6-31G\*-CIS/6-31G\*  $S_{2}$   $\rightarrow$   $S_{0}$  displacement parameter.

<sup>&</sup>lt;sup>f</sup>HF/6-31G\*-CIS/6-31+G  $S_1 \rightarrow S_0$  displacement parameter.

TABLE IV. Vibrational frequencies (in cm<sup>-1</sup>) of the in-plane normal modes (excluding CH stretches) in the  $S_1(1B_{2u})$  state of naphthalene. Displacement parameters of the  $a_g$  modes for the  $S_0 \rightarrow S_1$  transitions are also listed. Calculated CIS frequencies are scaled by 0.9.

|                       | $a_g$                    |                   |                          |        | $b_{3g}$             |      |      | $b_{1u}$ |      |      | $b_{2u}$ |       |      |      |      |       |
|-----------------------|--------------------------|-------------------|--------------------------|--------|----------------------|------|------|----------|------|------|----------|-------|------|------|------|-------|
|                       | QCFF                     | CIS1 <sup>a</sup> | CIS2 <sup>b</sup>        | Expt.c | QCFF                 | CIS1 | CIS2 | Expt.    | QCFF | CIS1 | CIS2     | Expt. | QCFF | CIS1 | CIS2 | Expt. |
| $\overline{\nu_{3a}}$ | 1552 (0.12) <sup>d</sup> | 1562 (0.30)e      | 1542 (0.32) <sup>f</sup> | ??     | ν <sub>3b</sub> 1631 | 1669 | 1661 | 1617     | 1480 | 1529 | 1516     | 1435  | 1445 | 1491 | 1482 | ??    |
| $\nu_{4a}$            | 1446 (0.12)              | 1452 (0.69)       | 1452 (0.59)              | 1434   | $\nu_{4b}$ 1450      | 1442 | 1445 | 1365     | 1402 | 1384 | 1399     | ??    | 1225 | 1228 | 1239 | 1210  |
| $\nu_{5a}$            | 1397 (0.83)              | 1395 (1.10)       | 1394 (1.15)              | 1389   | $\nu_{5b}$ 1281      | 1239 | 1261 | 1203     | 1316 | 1236 | 1252     | 1140  | 1148 | 1149 | 1167 | ??    |
| $\nu_{6a}$            | 1153 (0.11)              | 1146 (0.10)       | 1165 (0.13)              | 1150   | $\nu_{6b}$ 1106      | 1110 | 1120 | 1166     | 1113 | 1095 | 1108     | 1088  | 1523 | 1615 | 1588 | 1555  |
| $\nu_{7a}$            | 1015 (0.45)              | 991 (0.34)        | 992 (0.47)               | 989    | $\nu_{7b}$ 978       | 917  | 945  | 907      | 816  | 762  | 779      | 733   | 966  | 917  | 957  | 939   |
| $\nu_{8a}$            | 763 (0.73)               | 692 (0.87)        | 779 (0.97)               | 704    | $\nu_{8b}$ 541       | 522  | 532  | 435      | 412  | 356  | 356      | 357   | 694  | 591  | 610  | 593   |
| $\nu_{9a}$            | 515(0.05)                | 493 (0.21)        | 503 (0.42)               | 503    |                      |      |      |          |      |      |          |       |      |      |      |       |

a6-31G\* basis set.

the  $S_0 \leftrightarrow S_1$  dipole moment is of crucial importance to predict correctly the interference between contributions of HT and FC mechanisms to the intensity of TS vibronic bands. It has recently been shown that, although CNDO/S calculations give energies and state ordering in very good agreement with experimental data, they predict incorrectly the sign of the  $S_0 \leftrightarrow S_1$  transition dipole moment.<sup>34</sup> Ab initio CIS calculations do better, and correctly predict the sign of the transition dipole moment. The calculated CIS/6-31+G ratio of transition dipole moments for the  $S_0 \rightarrow S_i$  transitions is 1:37.5:157.4:90.3 for the  $L_b:L_a:B_b:B_a$  states, respectively. Beside the sign, these ratios are important for assessing the relative importance of vibronically induced components of the vibronic transition dipole moments with respect to those produced by the  $S_0 \rightarrow S_1$  transition dipole moment (vide infra).

Table III, collects the calculated vibrational frequencies of the in-plane normal modes of the ground electronic state. They are compared with the experimental values reported in Ref. 4. We have decided just to scale down the HF/6-31G\* frequencies uniformly by a factor of 0.9 instead of scaling the force field by Pulay's procedure, <sup>20</sup> since previous calculations on other molecular systems indicated that scaling of the force-field affects little displacement parameters for an

electronic transition.<sup>29</sup> The agreement between the calculated and experimental frequencies is satisfactory. We also list the displacement parameters of the  $a_g$  modes for the  $S_1 \rightarrow S_0$  and  $S_2 \rightarrow S_0$  transitions. These will be needed for the simulation of intensities of vibronic bands in the SVL spectra. It is seen that it is the  $v_{5a}$  vibration, which is the CC stretching motion with a large amplitude on the C<sub>1</sub>C<sub>6</sub> bond, that has the largest displacement parameter for both transitions, in accordance with the geometry change of both  $S_1$  and  $S_2$  states with respect to  $S_0$ . The second most Franck-Condon active mode for the  $S_1 \rightarrow S_0$  transition is the  $\nu_{8a}$  vibration which can be described as the ring breathing mode in which there is also a large participation of the  $C_1C_6$  bond stretch. The  $\nu_{9a}$  and  $\nu_{3a}$ modes are instead the next most active vibrations for the  $S_2 \rightarrow S_0$  transition. All other TS modes are only very weakly Franck-Condon active.

Tables IV, V, and VI contain the summary of the force field and displacement parameter calculations for the  $S_1$  and  $S_2$  states of naphthalene. The correlation of the excited state normal modes with those of ground state was established upon inspection of the Dushinsky matrices which give projections of one set of modes onto the other. QCFF/CI+CISD, CIS/6-31G\*, and CIS/6-31+G frequencies of the in-plane modes and the corresponding displacement parameters of the

TABLE V. Vibrational frequencies (in cm<sup>-1</sup>) of the in-plane normal modes (excluding CH stretches) in the  $S_2(1B_{1u})$  state of naphthalene. Displacement parameters of the  $a_g$  modes for the  $S_0 \rightarrow S_2$  transitions are also listed. Calculated CIS frequencies are scaled by 0.9.

|                       | $a_g$                    |                  | $b_{3g}$             |      | $b_{1u}$ |      | $b_{2u}$ |      |
|-----------------------|--------------------------|------------------|----------------------|------|----------|------|----------|------|
|                       | QCFF                     | CIS <sup>a</sup> | QCFF                 | CIS  | QCFF     | CIS  | QCFF     | CIS  |
| $\overline{\nu_{3a}}$ | 1589 (0.66) <sup>b</sup> | 1533 (0.37)°     | ν <sub>3h</sub> 1402 | 1370 | 1447     | 1466 | 1534     | 1524 |
| $\nu_{4a}$            | 1483 (0.20)              | 1444 (0.01)      | $\nu_{4h}$ 1490      | 1415 | 1412     | 1387 | 1402     | 1314 |
| $\nu_{5a}$            | 1365 (1.33)              | 1302 (1.66)      | $\nu_{5h}$ 1277      | 1197 | 1337     | 1253 | 1148     | 1131 |
| $\nu_{6a}$            | 1154 (0.12)              | 1137 (0.58)      | $\nu_{6h}$ 1053      | 993  | 1092     | 1057 | 1207     | 1158 |
| $\nu_{7a}$            | 1053 (0.38)              | 1020 (0.50)      | $v_{7h} = 965$       | 890  | 831      | 781  | 1004     | 959  |
| $\nu_{8a}$            | 788 (0.21)               | 716 (0.24)       | $\nu_{8b}$ 532       | 455  | 404      | 347  | 692      | 572  |
| $\nu_{9a}$            | 514 (0.58)               | 485 (0.94)       | ου                   |      |          |      |          |      |

a6-31G\* basis set.

<sup>&</sup>lt;sup>b</sup>6-31+G basis set.

<sup>&</sup>lt;sup>c</sup>Experiment, Ref. 9.

 $<sup>{}^{\</sup>mathrm{d}}\mathrm{QCFF/PI}\!+\!\mathrm{CISD}\ S_0\!\!\to\!\!S_1$  displacement parameter.

eHF/6-31G\*-CIS/6-31G\*  $S_0 \rightarrow S_1$  displacement parameter.

<sup>&</sup>lt;sup>f</sup>HF/6-31G\*-CIS/6-31+G  $S_0 \rightarrow S_1$  displacement parameter.

<sup>&</sup>lt;sup>b</sup>QCFF/PI+CISD  $S_0 \rightarrow S_2$  displacement parameter.

<sup>&</sup>lt;sup>c</sup>HF/6-31G\*-CIS/6-31G\*  $S_0 \rightarrow S_2$  displacement parameter.

TABLE VI. Displacement parameters of the  $a_g$  modes for the  $S_1 {\to} S_2$  and  $S_2 {\to} S_1$  transitions.

|                       | $S_2$ -                               | $\rightarrow S_1$         | $S_1 \rightarrow S_2$ |                           |  |  |  |
|-----------------------|---------------------------------------|---------------------------|-----------------------|---------------------------|--|--|--|
| $\overline{\nu_{3a}}$ | 1552 <sup>a</sup> (0.84) <sup>b</sup> | 1562° (0.99) <sup>d</sup> | 1589e (0.88)f         | 1533g (0.70) <sup>h</sup> |  |  |  |
| $\nu_{4a}$            | 1446 (0.02)                           | 1452 (0.22)               | 1483 (0.08)           | 1444 (0.32)               |  |  |  |
| $\nu_{5a}$            | 1397 (0.55)                           | 1395 (0.11)               | 1365 (0.56)           | 1302 (0.47)               |  |  |  |
| $\nu_{6a}$            | 1153 (0.23)                           | 1146 (0.46)               | 1154 (0.24)           | 1137 (0.55)               |  |  |  |
| $\nu_{7a}$            | 1015 (0.23)                           | 991 (0.13)                | 1053 (0.12)           | 1020 (0.07)               |  |  |  |
| $\nu_{8a}$            | 763 (0.48)                            | 692 (0.62)                | 788 (0.49)            | 716 (0.62)                |  |  |  |
| $\nu_{9a}$            | 515 (0.65)                            | 493 (0.71)                | 514 (0.64)            | 485 (0.73)                |  |  |  |

<sup>&</sup>lt;sup>a</sup>S<sub>1</sub> frequency computed with the QCFF/PI+CISD method.

 $a_g$  modes for the  $S_0 \rightarrow S_1$ ,  $S_0 \rightarrow S_2$ , and  $S_1 \leftrightarrow S_2$  transitions, that will be used in the simulations of the spectra, are given. The experimental frequencies of  $S_1$  were taken from Ref. 9. The ab initio frequencies are again scaled uniformly by a factor of 0.9. As for the emission, the most Franck-Condon active modes in  $S_0 \rightarrow S_1$  absorption are again the  $\nu_{5a}$  and  $\nu_{8a}$ modes. However, there is some modest mode mixing among the CC stretching modes as evidenced by increased displacement parameters of the  $v_{3a}$  and  $v_{4a}$  modes. Mode mixing is stronger upon excitation to  $S_2$ , and thus the largest activity in the  $S_0 \rightarrow S_2$  absorption is computed, according to the ab initio calculations, not only for  $v_{5a}$  and  $v_{9a}$ , but also for the  $v_{6a}$  and  $v_{7a}$  modes. The size of this mixing is made evident by the Dushinsky matrices of the  $a_g$  modes for the  $S_2$ and  $S_1$  states with respect to  $S_0$ , presented in Table VII. The frequencies of the  $b_{3g}$  modes in the  $S_1$  state are well reproduced by the calculation with the exception of the  $\nu_{8b}$  mode, which deviates from the experimental value by ~90 cm<sup>-1</sup>. This is the largest discrepancy among the frequencies of the in-plane modes for the  $L_b$  state. There is a simple explanation for the computed deviation; the  $\nu_{8b}$  mode couples quite strongly the  $S_1$  with the  $S_2$  state (see below), and because of the incorrect order of the  $S_1$  state as predicted by the CIS method, the coupling leads to an increase of such frequency instead of a decrease, as compared to the ground state frequency. This discrepancy diminishes somewhat for the MC-SCF method<sup>19</sup> since the order of states is correct at this level of theory.

Table VIII shows the Dushinsky matrix for the  $b_{3g}$ modes indicating excellent preservation of the identities of the individual modes upon excitation to the  $S_1$  state. Much stronger mixing characterizes the  $b_{3g}$  modes of  $S_2$ ; in particular, the frequency of the  $v_{3b}$  mode is computed to be smaller than that of the  $\nu_{4h}$  mode. This frequency inversion is probably an artifact of the CIS calculation which results from the reversed order of  $S_1$  and  $S_2$ , since the latter mode also couples considerably the two states. Among in-plane modes of other symmetries it is interesting to notice that the  $b_{2u}$  mode with the frequency of 1144 cm<sup>-1</sup> in the  $S_0$  state correlates with the  $b_{2u}$  mode with the frequency of 1555 cm $^{-1}$  in the  $S_1$  state. This dramatic increase of the frequency of this vibration results from its strong vibronic activity in coupling the  $S_0$  and  $S_1$  states. In this respect this mode is an analog of the  $\nu_{14}$  mode of benzene.

Since the dipole moment of the  $S_0 \rightarrow S_1$  transition is very small, the borrowing of intensity from the  $S_0 \rightarrow S_i$ , i=2,5,6 transitions will play a major role in the vibronic structure of the SVL spectra in naphthalene. This borrowing takes place via  $a_g$  ( $S_1$ - $S_5$  coupling) and  $b_{3g}$  ( $S_1$ - $S_2$  and  $S_1$ - $S_6$  couplings) modes. To calculate the strengths of the relevant couplings we used both the QCFF/PI+CISD and CIS/6-31G\* modes of the  $S_1$  state and the CNDO/S+CIS electronic

TABLE VII. Dushinsky matrices for the rotation of  $a_g$  normal coordinates of  $S_1$  and  $S_2$  with respect to the  $S_0$  state, computed at the HF/6-31G\*( $S_0$ ) and CIS/6-31G\*( $S_1$ ,  $S_2$ ) ab initio level.

|       | $S_1$ | 1562   | 1452   | 1395   | 1146   | 991    | 692    | 493    |
|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| $S_0$ |       |        |        |        |        |        |        |        |
| 1605  |       | 0.934  | -0.087 | -0.326 | 0.052  | 0.090  | -0.054 |        |
| 1463  |       | 0.203  | 0.925  | 0.316  | •••    | •••    | •••    | •••    |
| 1338  |       | 0.277  | -0.363 | 0.875  | -0.101 | 0.061  | 0.107  |        |
| 1158  |       | •••    | •••    | 0.120  | 0.983  | 0.127  | •••    |        |
| 1005  |       | -0.03  | 0.059  | •••    | -0.129 | 0.983  | -0.063 |        |
| 748   |       | •••    |        | -0.113 | •••    | 0.068  | 0.987  | -0.079 |
| 496   |       |        |        |        |        |        | 0.077  | 0.996  |
|       | $S_s$ | 1533   | 1444   | 1302   | 1137   | 1020   | 716    | 485    |
| $S_0$ | -     |        |        |        |        |        |        |        |
| 1605  |       | 0.782  | 0.545  | -0.228 | 0.084  | 0.177  | •••    |        |
| 1463  |       | -0.603 | 0.763  | -0.207 | 0.093  |        | •••    |        |
| 1338  |       | -0.090 | -0.325 | -0.916 | •••    | 0.197  | 0.071  | •••    |
| 1158  |       | •••    | 0.109  | -0.145 | -0.945 | -0.266 | •••    | •••    |
| 1005  |       | -0.118 | •••    | 0.198  | -0.298 | 0.926  |        | •••    |
| 748   |       |        |        | 0.057  |        |        | 0.993  | -0.090 |
| 496   |       |        |        | 0.050  |        |        | 0.088  | 0.994  |

<sup>&</sup>lt;sup>b</sup>QCFF/PI+CISD  $S_2 \rightarrow S_1$  displacement parameter.

<sup>&</sup>lt;sup>c</sup>S<sub>1</sub> frequency (scaled by a factor of 0.9) computed at ab initio CIS/6-31G\* level.

<sup>&</sup>lt;sup>d</sup>Ab initio  $S_2 \rightarrow S_1$  displacement parameter.

 $<sup>{}^{\</sup>mathrm{e}}S_{2}$  frequency computed with the QCFF/PI+CISD method.

 $<sup>^{\</sup>rm f}$ QCFF/PI+CISD  $S_1 \rightarrow S_2$  displacement parameter.

 $<sup>{}^</sup>gS_2$  frequency (scaled by a factor of 0.9) computed at *ab initio* CIS/6-31G\* level.

<sup>&</sup>lt;sup>h</sup>Ab initio  $S_1 \rightarrow S_2$  displacement parameter.

TABLE VIII. Dushinsky matrices for the rotation of  $b_{3g}$  normal coordinates of  $S_1$  and  $S_2$  with respect to the  $S_0$  state, computed at the HF/6-31G\*( $S_0$ ) and CIS/6-31G\*( $S_1$ ,  $S_2$ ) ab initio level.

|       | $S_1$ | 1669   | 1442   | 1239   | 1110   | 917    | 522    |
|-------|-------|--------|--------|--------|--------|--------|--------|
| $S_0$ |       |        |        |        |        |        |        |
| 1660  |       | 0.970  | 0.218  | -0.072 | 0.069  |        | •••    |
| 1461  |       | -0.223 | 0.971  | •••    | 0.082  |        | •••    |
| 1235  |       | 0.078  | •••    | 0.988  | -0.133 | •••    | •••    |
| 1146  |       |        | -0.094 | 0.137  | 0.985  |        | •••    |
| 920   |       |        | •••    | •••    |        | 0.988  |        |
| 499   |       |        | •••    | •••    | •••    | •••    | 0.999  |
|       | $S_2$ | 1370   | 1415   | 1197   | 993    | 890    | 455    |
| $S_0$ |       |        |        |        |        |        |        |
| 1660  |       | -0.877 | -0.083 | 0.176  | 0.428  | 0.099  |        |
| 1461  |       | -0.083 | 0.983  | -0.129 | 0.083  | -0.055 |        |
| 1235  |       | 0.197  | 0.139  | 0.968  | •••    | 0.057  | •••    |
| 1146  |       | 0.424  | •••    | -0.109 | 0.894  | 0.064  |        |
| 920   |       |        | 0.056  | -0.076 | -0.098 | 0.990  | •••    |
| 499   |       | •••    |        | •••    |        |        | -0.998 |

states. 16 The resulting vibronic coupling parameters are collected in Table IX. There is an overall agreement between the two sets of vibronic coupling parameters with the exception of the parameter for the  $v_{ia}$ , i=3,4,5 modes. For the QCFF/PI modes, the coupling is concentrated in the  $v_{3a}$ mode, while it is spread more evenly over the three ab initio modes. It is easy to see at the same time that the overall strength of the coupling is almost the same for the three modes in the two sets of normal coordinates (170 cm<sup>-1</sup> and 165 cm<sup>-1</sup> for the CIS/6-31G\* and QCFF/PI+CISD modes, respectively). Thus the source of the noted redistribution of the coupling strength is the mixing of ab initio normal modes upon excitation to the  $S_1$  state (see Table IV). This mixing is negligible for the QCFF/PI modes. It is evident that the most important couplings for the vibronic structure of the SVL spectra are those between the  $L_b$  state and the two B states. This stems from very large transition dipole moments be-

TABLE IX. The calculated vibronic coupling strengths,  $V_{S_iS_j}$  (in cm<sup>-1</sup>), between the CNDO/S+CIS states for the  $a_g$  and  $b_{3g}$  modes of naphthalene.

|                       | ω                                     | $V_{S_{1}S_{5}}$    | $V_{S_1S_2}$ | $V_{S_1S_6}$ |
|-----------------------|---------------------------------------|---------------------|--------------|--------------|
| $\overline{\nu_{3a}}$ | 1562 <sup>a</sup> (1552) <sup>b</sup> | $-93^{c} (-34)^{d}$ | •••          | •••          |
| $\nu_{4a}$            | 1452 (1446)                           | -90 (-21)           |              | •••          |
| $\nu_{5a}$            | 1395 (1397)                           | -110 (-160)         |              | •••          |
| $\nu_{6a}$            | 1146 (1153)                           | 34 (12)             |              | •••          |
| $\nu_{7a}$            | 991 (1015)                            | 25 (29)             |              | •••          |
| $\nu_{8a}$            | 692 (763)                             | 140 (121)           |              | •••          |
| $\nu_{9a}$            | 493 (515)                             | -161 (-155)         | •••          | •••          |
| $\nu_{3b}$            | 1669 (1631)                           |                     | -75 (-61)    | 80 (70)      |
| $\nu_{4b}$            | 1442 (1450)                           | •••                 | -8 (-14)     | -47 (-45)    |
| $\nu_{5b}$            | 1239 (1281)                           | •••                 | -9 (-2)      | 64 (56)      |
| $\nu_{6b}$            | 1110 (1106)                           | •••                 | -18 (-21)    | 18 (17)      |
| $\nu_{7b}$            | 917 (978)                             | •••                 | -45 (-35)    | -193 (-159)  |
| $\nu_{8b}$            | 522 (541)                             | •••                 | -56 (-44)    | -374 (-352)  |

 $<sup>^{</sup>a}$ CIS/6-31G\* vibrational frequency of the  $S_{1}$  state.

tween the ground state and the B states. From the couplings presented in Table IX it is seen that the two lowest frequency modes of each symmetry species seem to be the most active. The  $v_{9a}$  and  $v_{8a}$  modes describe elongation motions of the rings along the long and short molecular axes, respectively, while the  $\nu_{8h}$  and  $\nu_{7h}$  modes describe the CCC deformations of the rings. The strong vibronic activity of the  $v_{9a}$  mode, coupled with its small displacement, indicates that intensities of the vibronic lines that arise from a change in the vibrational quantum number of this mode will be mostly governed by vibronic coupling, similarly to the lines in which  $b_{3g}$ modes change its quantum number by one. For other TS modes, in particular the  $\nu_{8a}$  and  $\nu_{5a}$ , the interference between the Franck-Condon and vibronic mechanisms will be of the utmost importance in determining vibronic intensities of the SVL lines resulting from a change of vibrational excitation of these modes.

We have determined the induced intensities of the  $b_{3g}$  fundamentals in the  $S_0 \rightarrow S_1$  spectrum by calculating the change of the transition dipole moment as the molecule is distorted along one of the  $b_{3g}$   $S_0$  state normal coordinates. Diabatic QCFF/PI+CISD normal modes and CNDO/S+CIS

TABLE X. Calculated (CNDO/S) induced dipole moments,  $M_i$ , and oscillator strengths,  $f_i$ , by the  $b_{3g}$  modes for the  $S_0 \rightarrow S_1$  transition in naphthalene.

| Mode       | N.                    | $I_i$                 | $f_i \times 10^{-5}$ |                   |      |  |  |
|------------|-----------------------|-----------------------|----------------------|-------------------|------|--|--|
| origin     | 0.051 36 <sup>a</sup> | 0.032 79 <sup>b</sup> | 93.0ª                | 37.0 <sup>b</sup> | c    |  |  |
| $ u_{8b}$  | 0.025 91              | 0.016 85              | 23.8                 | 9.8               | 32.9 |  |  |
| $ u_{7b}$  | 0.014 78              | 0.007 46              | 7.7                  | 1.9               | 10.0 |  |  |
| $\nu_{6b}$ | 0.004 53              | 0.000 23              | 0.7                  | 0.0               | 2.5  |  |  |
| $\nu_{5b}$ | 0.005 31              | 0.002 14              | 1.0                  | 0.2               | 0.1  |  |  |
| $ u_{4b}$  | 0.008 37              | 0.002 82              | 2.5                  | 0.3               | 2.2  |  |  |
| $\nu_{3b}$ | 0.010 84              | 0.001 70              | 4.2                  | 0.1               | 4.2  |  |  |

<sup>&</sup>lt;sup>a</sup>CIS calculation.

<sup>&</sup>lt;sup>b</sup>QCFF/PI+CISD vibrational frequency of the S<sub>1</sub> state.

<sup>&</sup>lt;sup>c</sup>Coupling for the CIS/6-31G\*  $S_1$  state mode.

<sup>&</sup>lt;sup>d</sup>Coupling for the QCFF/PI+CISD S<sub>1</sub> state mode.

<sup>&</sup>lt;sup>b</sup>CISD calculation.

<sup>&</sup>lt;sup>c</sup>Reference 13.

method were used to this purpose. The result is presented in Table X, where it is compared with the calculations of Robey  $et\ al.^{13}$  It is seen that the calculation predict the  $\nu_{8b}$  mode to form the strongest false origin in the absorption spectrum; the false origin induced by the  $\nu_{7b}$  mode being the second strongest. This agrees nicely with the experimental results of SGK.<sup>5</sup> As already pointed out by Robey  $et\ al.$ , <sup>13</sup> when compared to the intensity of the 0–0 transition, the induced activity predicted by CNDO/S calculations appears to be underestimated. Robey  $et\ al.$  concluded that the oscillator strength predicted by CNDO/S for the  $S_0 \rightarrow S_1$  transition was overestimated by at least a factor of 10, as a consequence of the very subtle balance between the transition dipole moments of the two configurations dominating  $S_1$ . These early indications are in keeping with our choice of using, in the

model described in the next sections, *ab initio* transition dipole moments instead of those computed with CNDO/S.

## **III. VIBRONIC INTENSITIES**

To evaluate the intensity of vibronic bands, originated by both FC and HT mechanisms, we adopted the perturbative approach described in Ref. 18. Here, we extend the method to include vibronic coupling effects for TS modes, in order to describe the interference of the vibronically induced (HT) and the allowed (FC) intensity contributions to the TS bands.

We label  $|L;v_a^L;v_s^L\rangle$  a perturbed, non-BO vibronic eigenfunction of a molecular state resulting from the diabatic  $|L^0\rangle|v_a^L\rangle|v_s^L\rangle$  state.  $|v_{a,s}^L\rangle$  is a shorthand to represent the product of NTS and TS vibrational wave functions  $\Pi_{i_a}^{\rm NTS}|v_{i_a}^L\rangle$ ,  $\Pi_{i_s}^{\rm TS}|v_{i_s}^L\rangle$ , respectively. The expansion of the vibronic state reads

$$|L; v_{a}^{L}; v_{s}^{L}\rangle = |L^{0}\rangle \prod_{i_{a}}^{\text{NTS}} |v_{i_{a}}^{L}\rangle \prod_{i_{s}}^{\text{TS}} |v_{i_{s}}^{L}\rangle + \sum_{j_{a}}^{\text{NTS}} \sum_{N \neq L} \sum_{v_{a}^{N}} \sum_{v_{s}^{N}} \frac{V_{j_{a}}^{L,N}}{\Delta E^{L,N}} (v_{j_{a}}^{N}|Q_{j_{a}}|v_{j_{a}}^{L}) \prod_{i_{a} \neq j_{a}}^{\text{NTS}} (v_{i_{a}}^{N}|v_{i_{s}}^{L}) \prod_{i_{s}}^{\text{TS}} (v_{i_{s}}^{N}|v_{i_{s}}^{L})$$

$$\cdot |N^{0}\rangle |v_{j_{a}}^{N}\rangle \prod_{i_{a} \neq j_{a}}^{\text{NTS}} |v_{i_{a}}^{N}\rangle \prod_{i_{s}}^{\text{TS}} |v_{i_{s}}^{N}\rangle + \sum_{j_{s}}^{\text{TS}} \sum_{P \neq L} \sum_{v_{a}^{P}} \sum_{v_{s}^{P}} \frac{V_{j_{s}}^{L,P}}{\Delta E^{L,P}} (v_{j_{s}}^{P}|Q_{j_{s}}|v_{j_{s}}^{L}) \prod_{i_{a}}^{\text{NTS}} (v_{i_{a}}^{P}|v_{i_{a}}^{L}) \prod_{i_{s} \neq j_{s}}^{\text{TS}} (v_{i_{s}}^{P}|v_{i_{s}}^{L})$$

$$\cdot |P^{0}\rangle |v_{j_{s}}^{P}\rangle \prod_{i_{s}}^{\text{NTS}} |v_{i_{a}}^{P}\rangle \prod_{i_{s} \neq i_{s}}^{\text{TS}} |v_{i_{s}}^{P}\rangle, \tag{1}$$

where

$$\Delta E^{L,N} = E_L^0 - E_N^0 + \sum_{i_s}^{TS} \left( v_{i_s}^L \omega_{i_s}^L - v_{i_s}^N \omega_{i_s}^N \right) + \sum_{i_a}^{NTS} \left( v_{i_a}^L \omega_{i_a}^L - v_{i_a}^N \omega_{i_a}^N \right)$$
(2)

is the energy difference, in  $\hbar$  units, between the two vibronic states interacting through the adiabatic coupling integral

$$V_{i_{s,a}}^{L,N} = \left\langle L^0 \middle| \left( \frac{\partial U}{\partial Q_{i_{s,a}}} \right)_0 \middle| N^0 \right\rangle \tag{3}$$

and

$$\sum_{v_{s,a}^{L}} = \sum_{v_{(1)_{s,a}}} \sum_{v_{(2)_{s,a}}} \cdots \sum_{v_{(TS,NTS)_{s,a}}}$$
(4)

with  $v^L_{(1)_{s,a}} + v^L_{(2)_{s,a}} + \cdots + v^L_{(TS,NTS)_{s,a}} = v^L_{s,a}$ . The adiabatic coupling integrals, or vibronic coupling parameters, were calculated by the quantum-chemical methods as discussed in the previous section, and are given in Table IX.

The general expression of the transition dipole moment between two vibronic states  $|G;v_a^G;v_s^G)$  and  $|L;v_a^L;v_s^L)$  is then

$$\begin{split} (G; \boldsymbol{v}_{a}^{G}; \boldsymbol{v}_{s}^{G} | \boldsymbol{\mu} | L; \boldsymbol{v}_{a}^{L}; \boldsymbol{v}_{s}^{L}) &= \langle G^{0} | \boldsymbol{\mu} | L^{0} \rangle \prod_{i_{a}}^{\text{NTS}} \left( \boldsymbol{v}_{i_{a}}^{G} | \boldsymbol{v}_{i_{a}}^{L} \right) \prod_{i_{s}}^{\text{TS}} \left( \boldsymbol{v}_{i_{s}}^{G} | \boldsymbol{v}_{i_{s}}^{L} \right) + \sum_{j_{a}}^{\text{NTS}} \sum_{N \neq L} \sum_{v_{a}^{N}} \sum_{v_{s}^{N}} \frac{V_{j_{a}}^{LN}}{\Delta E^{LN}} \langle G^{0} | \boldsymbol{\mu} | N^{0} \rangle \langle \boldsymbol{v}_{j_{a}}^{G} | \boldsymbol{v}_{j_{a}}^{N} \right) \\ &\times (\boldsymbol{v}_{j_{a}}^{N} | \boldsymbol{Q}_{j_{a}} | \boldsymbol{v}_{j_{a}}^{L} \right) \cdot \prod_{i_{a} \neq j_{a}}^{\text{NTS}} \left( \boldsymbol{v}_{i_{a}}^{G} | \boldsymbol{v}_{i_{a}}^{N} \right) \left( \boldsymbol{v}_{i_{a}}^{N} | \boldsymbol{v}_{i_{a}}^{L} \right) \prod_{i_{s}}^{\text{TS}} \left( \boldsymbol{v}_{i_{s}}^{G} | \boldsymbol{v}_{i_{s}}^{N} \right) \left( \boldsymbol{v}_{i_{s}}^{N} | \boldsymbol{v}_{i_{s}}^{N} \right) \left( \boldsymbol{v}_{i_{s}}^{N} | \boldsymbol{v}_{i_{s}}^{N} \right) \\ &+ \sum_{j_{s}}^{\text{TS}} \sum_{P \neq L} \sum_{v_{p}^{P}} \sum_{v_{p}^{P}} \frac{V_{j_{s}}^{L.P}}{\Delta E^{L.P}} \left\langle G^{0} | \boldsymbol{\mu} | P^{0} \right\rangle \langle \boldsymbol{v}_{j_{s}}^{G} | \boldsymbol{v}_{j_{s}}^{P} \right) \left( \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_{s}}^{N} \right) v_{i_{s}}^{L} \right) \\ &+ \sum_{j_{s}}^{\text{TS}} \sum_{P \neq L} \sum_{v_{p}^{P}} \sum_{v_{p}^{P}} \frac{V_{j_{s}}^{L.P}}{\Delta E^{L.P}} \left\langle G^{0} | \boldsymbol{\mu} | P^{0} \right\rangle \langle \boldsymbol{v}_{j_{s}}^{G} | \boldsymbol{v}_{j_{s}}^{P} \right) \left( \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_{s}}^{N} \right) v_{i_{s}}^{L} \right) \\ &+ \sum_{j_{s}}^{\text{TS}} \sum_{P \neq L} \sum_{v_{p}^{P}} \sum_{v_{p}^{P}} \frac{V_{j_{s}}^{L.P}}{\Delta E^{L.P}} \left\langle G^{0} | \boldsymbol{\mu} | P^{0} \right\rangle \langle \boldsymbol{v}_{j_{s}}^{G} | \boldsymbol{v}_{j_{s}}^{P} \right) \left( \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_{s}}^{L} \right) \cdot \prod_{i_{s} \neq j_{s}} \left( \boldsymbol{v}_{i_{s}}^{G} | \boldsymbol{v}_{i_{s}}^{P} \right) v_{i_{s}}^{P} \right) \\ &+ \sum_{j_{s}}^{\text{TS}} \sum_{P \neq L} \sum_{v_{p}^{P}} \sum_{v_{p}^{P}} \frac{V_{j_{s}}^{L.P}}{\Delta E^{L.P}} \left\langle G^{0} | \boldsymbol{\mu} | P^{0} \right\rangle \langle \boldsymbol{v}_{j_{s}}^{G} | \boldsymbol{v}_{j_{s}}^{P} \right) \langle \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_{s}}^{P} \right) v_{i_{s}}^{P} \cdot \prod_{i_{s}}^{\text{TS}} \left( \boldsymbol{v}_{i_{s}}^{G} | \boldsymbol{v}_{i_{s}}^{P} \right) v_{i_{s}}^{P} \right) \\ &+ \sum_{j_{s}}^{\text{TS}} \sum_{P \neq L} \sum_{p_{s}}^{P} \sum_{p_{s}}^{P} \sum_{p_{s}}^{P} \sum_{p_{s}}^{P} \sum_{p_{s}}^{P} \sum_{p_{s}}^{P} \sum_{p_{s}}^{P} \sum_{p_{s}}^{P} \left( \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_{s}}^{P} \right) v_{j_{s}}^{P} \left( \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_{s}}^{P} \right) v_{j_{s}}^{P} \left( \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_{s}}^{P} \right) v_{j_{s}}^{P} \left( \boldsymbol{v}_{j_{s}}^{P} | \boldsymbol{v}_{j_$$

The first term in Eq. (5) describes the FC contribution to the intensity. The second and fourth terms represent the HT contribution induced by the coupling mediated by NTS modes, of the final  $|L^0\rangle|v_a^L\rangle|v_s^L\rangle$  and initial  $|G^0\rangle|v_a^G\rangle|v_s^G\rangle$  vibronic states, respectively, with other electronic states. Finally, the third and fifth terms in Eq. (5) describe the analogous contribution induced by the activity of TS modes.

Equation (5) can be used to model vibronic intensities in case of weak vibronic coupling and, in the form presented above, in the absence of Dushinsky rotation. The harmonic approximation, the overlap  $(v_{i_{a,s}}^P|v_{i_{a,s}}^Q)$  between vibrational wave functions of the states P and Q, is computed by using recursion formulas. These require the knowledge of vibrational frequencies  $\omega_i$  in the two electronics states P and Q, and the displacement parameter  $B_i$  for the ith mode, which is defined as

$$B_i = \left(\frac{\omega_i}{\hbar}\right)^{1/2} Q_{iP}^{P,Q} \,. \tag{6}$$

Here  $Q_{iP}^{P,Q}$  is the projection of the expressed in Cartesian coordinates geometry change between the two states onto the P-state normal coordinate  $Q_{iP}^{P}$ , that is

$$Q_{iP}^{P,Q} = [\mathbf{x}_O - \mathbf{x}_P] \mathbf{M}^{1/2} \mathbf{L}_i^P, \tag{7}$$

where  $\mathbf{x}_K$  is the 3N dimensional vector of the equilibrium Cartesian coordinates in the Kth state,  $\mathbf{M}$  is the  $3N \times 3N$  diagonal matrix of the atomic masses, and  $\mathbf{L}_i^P$  is the 3N vector describing the normal coordinate  $Q_i^P$ , in terms of mass-weighted Cartesian coordinates.

As indicated by Eq. (5), to simulate the intensity of a vibronic band, overlap integrals of TS modes for various pairs of electronic states have to be evaluated. In the simplest case, of pure FC mechanism, the displacement parameters for the  $S_1 \rightarrow S_0$  (emission spectrum) and the  $S_0 \rightarrow S_1$  (absorption spectrum) transitions are required. When contributions

from the HT mechanism due to vibronic coupling of  $S_1$  with the  $S_n$  state are included, the displacement parameters for the  $S_0 \rightarrow S_n$  and  $S_n \rightarrow S_1$  transitions are also requested. These displacements were calculated by quantum-chemical methods, as described in the previous section, and are collected in Tables III, IV and V and VI.

Under the additional assumption of equal  $\omega_{i_{a,s}}$  frequencies in every electronic state, the value of vibrational overlaps for NTS modes is reduced to the simple expression  $(v_{i_a}^P|v_{i_a}^Q) = \delta_{v_{i_a}^P,v_{i_a}^Q}$ . Integrals of the type  $(v_{i_a,s}^P|Q_{i_a,s}|v_{i_a,s}^Q)$  in Eq. (5) are computed with the help of the recursion formulas for eigenfunctions of the harmonic oscillator, 37

$$(v_{i_{a,s}}^{P}|Q_{i_{a,s}}|v_{i_{a,s}}^{Q}) = \sqrt{\left(\frac{\hbar}{\omega_{i_{a,s}}}\right)} \frac{v_{i_{a,s}}^{Q}}{2} (v_{i_{a,s}}^{P}|v_{i_{a,s}}^{Q} - 1) + \sqrt{\left(\frac{\hbar}{\omega_{i_{a,s}}}\right)} \frac{v_{i_{a,s}}^{Q} + 1}{2} (v_{i_{a,s}}^{P}|v_{i_{a,s}}^{Q} + 1).$$
(8)

For NTS modes the above relation simplifies to

$$(v_{i_{a}}^{P}|Q_{i_{a}}|v_{i_{a}}^{Q}) = \sqrt{\left(\frac{\hbar}{\omega_{i_{a,s}}}\right)} \frac{v_{i_{a}}^{Q}}{2} \delta_{v_{i_{a}}^{P}, v_{i_{a}}^{Q} - 1} + \sqrt{\left(\frac{\hbar}{\omega_{i_{a,s}}}\right)} \frac{v_{i_{a}}^{Q} + 1}{2} \delta_{v_{i_{a}}^{P}, v_{i_{a}}^{Q} + 1}, \tag{9}$$

which reduces sums of the type  $\sum_{v_a^K}^{NTS}$  in Eq. (5) to only two terms.

In the present study we analyze absorption and SVL fluorescence spectra hence, the initial vibronic

states will be of the type  $|S_0; \Pi_{i_a}^{\text{NTS}}|0_{i_a}^{S_0})\Pi_{i_s}^{\text{TS}}|0_{i_s}^{S_0})$ ,  $|S_1; \Pi_{i_a}^{\text{NTS}}|0_{i_a}^{S_1})\Pi_{i_s}^{\text{TS}}|0_{i_s}^{S_1})$ ,  $|S_1; |1_{j_a}^{S_1})\Pi_{i_a\neq j_a}^{\text{NTS}}|0_{i_a}^{S_1})\Pi_{i_s}^{\text{TS}}|0_{i_s}^{S_1})$  or  $|S_1; \Pi_{i_a}^{\text{NTS}}|0_{i_a}^{S_1})1_{j_s}^{S_1}\Pi_{i_s\neq j_s}^{\text{TS}}|0_{i_s}^{S_1})$ .

## IV. SIMULATED SVL FLUORESCENCE AND ABSORPTION SPECTRA

The formalism of Sec. III was used to produce the SVL spectra from vibronic levels of the  $S_1$  manifold as well as the  $S_0 \rightarrow S_1$  absorption spectrum.

The model adopted to simulate the spectra includes, beside the ground state  $S_0$ , the four excited electronic states  $S_1$ ,  $S_2$ ,  $S_5$ , and  $S_6$ . The displacement parameters required to evaluate overlaps among vibrational levels of  $S_0$ ,  $S_1$ , and  $S_2$ , were computed by quantum-chemical methods and are presented in the tables. The displacement parameters necessary to estimate overlaps involving the vibrational levels of  $S_5$ and  $S_6$ , were obtained by assuming the geometry of  $S_5$  equal to the geometry of  $S_1$ , and the geometry of  $S_6$  identical to that of  $S_2$ . The latter assumption is based on the fact that the two pairs of states are described by the same electronic excitations. In addition, since vibronic coupling parameters involving the ground state were computed to be negligible, only couplings of the  $S_1$  state with higher excited states were included in the model. Finally, to simplify the comparison with experimental spectra, the simulations were performed by using experimental vibrational frequencies. The remaining input parameters for the simulations were taken form the quantum-chemical calculations presented in Sec. II. Rather than adjust each parameter separately, we opted for a "global" adjustment of the parameters to correct for the obvious deficiencies of the quantum-chemical calculations and for the approximations adopted in the model. In this way we hoped to obtain a good qualitative agreement with a number of experimental spectra.<sup>5,10,11</sup> We set the ratios of the transition dipole moments to the  $S_1$ ,  $S_2$ ,  $S_5$ , and  $S_6$  states as 1:40:200:130 which is close to the CIS/6-31+G calculated ratios (see Sec. II). We find then that, in order to properly describe the induced intensities of the  $b_{3g}$  fundamentals, we have to scale the calculated vibronic coupling parameters up by a factor of 2.4. In view of the small values of the calculated coupling parameters, this scaling does not seem to be unexpected. This is further supported by the ratio of the induced intensity of the  $\nu_{8b}$  fundamental with the intensity of the origin of the  $S_0 \rightarrow S_1$  transition, computed by using the method described in Sec. II (Table X), which is far too small as compared with the experiment. Such scaling would put the oscillator strength of this false origin at  $\sim$ 0.001 37 which is very close to the observed value of 0.001 32.5 For the false origin induced by the  $\nu_{7b}$  mode the corresponding numbers are then 0.000 44 (computed) vs 0.000 55 (experimental). The intensities presented in Table X were obtained from a CI calculation that included many more excited states beside the  $S_1$ ,  $S_2$ ,  $S_5$ , and  $S_6$  selected for the simulation described here. We have verified that in the case of mode  $\nu_{7b}$ , its intensity is induced not only by the coupling of  $S_1$  with  $S_2$  and  $S_6$ , but also by the coupling with higher  $B_{1u}$  excited states. In fact,

the slight underestimate of the intensity of this false origin computed by the method of Sec. II (see above) can be ascribed to truncation effects due to the incomplete CI space. To account for this in the simulations of the spectra presented below, we have changed  $S_1 - S_6$  coupling strength,  $V_7^{1,6}$ , from  $-192~{\rm cm}^{-1}$  to  $-260~{\rm cm}^{-1}$ , before scaling all coupling parameters of the  $b_{3g}$  modes (Table IX) by 2.4. The calculated coupling parameters of the TS modes were scaled by a factor of 3.

We have performed two sets of simulations. In the first one (set I), we assumed that no mode mixing occurs in the excited states, i.e., all modes retain fully their identity upon electronic excitation. In the second set (set II), we took mode mixing of the TS modes into account, by using the coefficients calculated for the CIS/6-31 G\* vibrational normal coordinates (see Table VII). As Table VIII shows, the mixing is not important for the  $b_{3g}$  modes. The displacement parameters utilized in the calculation have slightly altered values of the HF/6-31G\*-CIS/6-31G\* calculations (Tables III and IV). We decreased the displacement parameter of the  $\nu_{q_a}$ mode, relative to the  $S_0 \leftrightarrow S_1$  transition, by 0.1 (from 0.24 to 0.14) and then scaled all calculated displacement parameters by a factor of 0.9. In set I, which ignores mixing of the  $v_{3a}$ ,  $\nu_{4a}$ , and  $\nu_{5a}$  modes (Table VII), the displacement parameters for the  $S_0 \leftrightarrow S_1$  and  $S_0 \leftrightarrow S_2$  transitions of the last two modes, were increased and decreased by 0.42, respectively. In addition the couplings  $V_4^{1,5}$  and  $V_5^{1,5}$  were changed, before scaling, from  $-90 \text{ to } -129 \text{ cm}^{-1}$  and from  $-110 \text{ to } -70 \text{ cm}^{-1}$ , respectively. These changes reflect two-dimensional rotation of the  $v_{4a}$  and  $v_{5a}$  coordinates upon excitation to the  $S_1$  state. In set II, no modification of the ab initio computed parameters was performed, but the three-coordinate rotation, as given in Table VII, was taken explicitly into account. It was assumed that the same rotation of normal coordinates occurs upon excitation to  $S_1$  and  $S_5$ . In analogy, identical mode mixing was assumed for the  $S_2$  and  $S_6$  pair of states. It was found for both sets that the intensity of the  $(\nu_{9a})_0^1$  and  $(\nu_{9a})_1^0$ fundamentals was much stronger than the experimentally observed value. To bring it into closer agreement with the experiment we scaled the the vibronic coupling for this mode by a factor of 1.1 instead of a factor of 3, as we did for all other TS modes. Due to the lack of space, we present here only the figures of the spectra calculated with set I of parameters. Those corresponding to set II are available via PAPS.<sup>38</sup> We discuss individual spectra separately.

## A. 00 emission spectrum

Figures 1(a) and 1(b) present the calculated (set I) and observed<sup>5</sup> emission spectra. The calculated spectrum for set II of parameters is available via PAPS [Fig. 1(c)]. The dominant line of the spectrum is the fundamental of the  $\nu_{8b}$  mode, which is  $\sim$ 14 (6) times as intense as the origin of the spectrum, for set I(II), respectively. This should be compared to a factor of 10 or 8.2 given by SGK.<sup>5</sup> This ratio is very sensitive to exact nature of mixing among the TS modes, since this mixing affects strongly the (weak) intensity of the origin of the spectrum both via the FC and the HT mechanisms. The calculated intensity of the  $\nu_{9a}$  fundamental which is



# Observed spectrum Emission form the 0° level 0.0 0.500.0 500.0 1500.0 2500.0 3500.0 Relative energy from the origin (cm')

FIG. 1. Calculated (a, set I) and observed (b, after Ref. 5) emission spectrum from the 0<sup>0</sup> level. The linewidth used in simulation is 10 cm<sup>-1</sup>.

quasidegenerate with that of the  $v_{8b}$  mode is found to contribute by a factor of 1/15 to the band at  $\sim 510$  cm<sup>-1</sup> in the emission spectrum. Due to near degeneracy of the frequencies of the  $v_{8b}$  and  $v_{9a}$  modes in the ground electronic state, lines belonging to transitions to the one-quantum level of the  $\nu_{8b}$  mode get small contributions form transitions to the onequantum level of the  $v_{9a}$  vibration. The relative intensity (with respect to the origin) of the  $v_{8a}$  fundamental is 7.7(2.8) for the sets I(II), respectively, while the value reported by SGK is 4.6, e.g., similar agreement as for the  $\nu_{8b}$  fundamental. The calculations predict also considerable intensity for the  $\nu_{7b}$  fundamental (6.1 and 2.7 vs observed 3.4), reproduce the observed small intensity of the  $v_{7a}$  fundamental and the observed intensity of the  $(\nu_{8a})_1^0(\nu_{8b})_1^0$  combination band. The marked difference between the two calculated emission spectra occurs in the region of 1500 cm<sup>-1</sup> below the origin, where there are three closely lying bands belonging to  $\nu_{4a}, \nu_{3a}$  fundamentals and the sum of the  $\nu_{8a}$  overtone plus the  $(\nu_{8b})_1^0(\nu_{7a})_1^0$  combination band. Both sets predict marked intensity for the  $(\nu_{8a})_2^0$  line at 1530 cm<sup>-1</sup> below the origin. With the displacement parameters described above, the intensity of the  $(\nu_{8b})_1^0(\nu_{7a})_1^0$  combination band is predicted to be almost negligible. However, by slightly increasing the  $B_{7a}$  of the  $S_0 \leftrightarrow S_2$  and  $S_1 \leftrightarrow S_2$  transitions by 0.5 and 0.1, respectively, the intensity of the combination band reaches the same magnitude of the  $v_{8a}$  overtone. The contribution of the latter band was previously proposed by us on the basis of simple one-mode calculations.<sup>6</sup> The difference between the spectra resulting from the two sets is evident in quite different intensities of the  $v_{4a}$  and  $v_{3a}$  fundamentals; set I predicts two strong bands for the two fundamentals, while set II shows weak intensities. The experimental spectrum shows a strong  $v_{4a}$  fundamental and a weak  $v_{3a}$  fundamental. The result of the simulations indicates that the intensities of TS fundamentals involved in Dushinsky rotation are very sensitive to the exact amount of mode mixing. Present ab initio methods seems to be not accurate enough to describe this mixing in a quantitative way. Other controlling factors can, however, partially account for the difference between predicted and experimental intensities. It must be recalled that the model includes quite a small number of electronic states and is based on precise approximations on the geometry and vibrational mode mixing of the excited states  $S_5$  and  $S_6$ . The result of the simulations appears to indicate that the assumption of structure and modes of the latter states identical to those of  $S_1$  and  $S_2$  respectively is probably oversimplified to describe quantitatively the details of the spectra. Indeed, small changes in the displacement parameters of  $S_6$ with respect to  $S_2$  may lead to different intensity ratios for the various vibronic bands. The computational effort required to obtain reliable optimized geometries and vibrational force fields for excited states higher than  $S_2$  is beyond the computational resources presently available to us, but we are confident that a deep analysis of the factors governing the vibrational structure of the spectra can be obtained with the model adopted here. The calculations predict short Franck-Condon progression built upon each line by the  $v_{5a}$  mode in agreement with the assignments proposed by SGK. The overall description of the spectrum is closer to experiment with set I of parameters, a fact that tends to support the conclusion that the lack of Dushinsky mixing and the other approximations introduced in the model can be partially overcome by a slight modification of the *ab initio* computed parameters.

## **B.** Absorption spectrum

Figure 2(a) shows the calculated (set I) absorption spectrum [set II available from PAPS, Fig. 2(c)] which should be compared with the fluorescence excitation spectrum taken from Ref. 10 and presented in Fig. 2(b). Set II is somewhat superior in reproducing intensities of individual vibronic lines. Both sets underestimate the intensity of the  $(\nu_{8b})_0^1(\nu_{7a})_0^1$  line and overestimate the intensity of the  $(\nu_{5a})_0^1$  and  $(\nu_{4a})_0^1$  bands. The simulation of the intensity of the latter fundamentals is clearly one of the most demanding tasks, since the modes are involved in strong Dushinsky mixing.



FIG. 2. Calculated absorption spectrum (a, set I) and observed (b, after Ref. 10) fluorescence excitation spectrum The linewidth used in simulation is  $10~{\rm cm}^{-1}$ .

FIG. 3. Same as Fig. 1 but for the emission from the  $8_a^1$  level.

Moreover, the intensity of bands that include quanta of mode  $\nu_{5a}$  are affected by the interference between FC and HT contributions of very similar size. The calculations also indicate that the intensity of the 1422 cm<sup>-1</sup> band receives a contribution from the overtone of the  $\nu_{8a}$  mode, and suggest the assignments of the 1613 cm<sup>-1</sup> and 1634 cm<sup>-1</sup> as the  $(\nu_{3a})_0^1$  and  $(\nu_{7b})_0^1(\nu_{8a})_0^1$  bands. The unassigned intense line at 1845 cm<sup>-1</sup> is identified as  $(\nu_{8b})_0^1(\nu_{5a})_0^1$  vibronic band.

# C. SVL emission spectra from the fundamentals of the totally symmetric modes

Figures 3(a) and 3(b) show the calculated (set I) and observed (Ref. 5)  $(\nu_{8a})_0^1$  SVL emission. The calculated spectrum for set II is given as Fig. 3(c) in the PAPS supplement. Set I describes the lower part of the spectrum somewhat better than set II, except for the intensity of the origin. The

calculated intensity of the  $(\nu_{8b})_1^0(\nu_{8a})_0^1$  band with respect to the origin of the spectrum  $[(\nu_{8a})_0^1]$  band is 0.9 and 2.2 for the set I and II, respectively (experimental value given by SGK is 2.7) In agreement with the experiment the  $(\nu_{8a})_2^1$  band is the most intense (3.07 and 6.05 vs 2.93). Similar values for the  $(\nu_{8h})_1^0(\nu_{8a})_1^1$  band are 2.44 and 5.55 (computed) vs 2.64 (experimental). The two lines in between are identified as transitions to the fundamentals of the  $v_{4a}$  and  $v_{5a}$  modes. It is clear from the calculations that the  $(\nu_{8a})_3^1$  band should be quite prominent in the spectrum. We think that the band assigned by SGK as  $(\nu_{8b})_1^0(\nu_{7a})_1^0(\nu_{8a})_1^1$  is in fact a superposition of the overtone of  $\nu_{8a}$  and the combination band. Of some interest is the reproduction of the intensity of combination bands that include quanta of the  $v_{5a}$  mode; the medium band observed at ~1892 cm-1 which corresponds to the  $(\nu_{8b})_1^0(\nu_{5a})_1^0(\nu_{8a})_1^1$  combination, the band at  $\sim 2000$  cm<sup>-1</sup>  $[(\nu_{5a})_2^0(\nu_{8a})_1^0]$  and the band at  $\sim 2147$  cm<sup>-1</sup>





FIG. 4. Same as Fig. 1 but for the emission from the  $9_a^1$  level.

 $[(\nu_{5a})_1^0(\nu_{8a})_2^1]$  are some examples of the good quality of the simulations. All other calculated bands agree reasonably well with the experimental spectrum.

Figures 4(a) and 4(b) show the calculated (set I) and observed (Ref. 5)  $(\nu_{9a})_0^1$  SVL emission spectrum. The calculated spectrum for set II is given as Fig. 4(c) in the PAPS supplement. In agreement with the experiment the strongest  $(\nu_{8b})_1^0(\nu_{9a})_1^1$  band is preceded by the three weak bands identified in the figures. The calculated relative intensity of the strong band with respect to the origin of the spectrum  $[(\nu_{9a})_0^1]$ band] is 12 and 11.3 for the set I and II vs experimentally observed value of 4.7. This intensity depends strongly on the exact value of the vibronic coupling between the  $S_1$  and  $S_5$ states by the  $\nu_{9a}$  mode and probably on the inclusion of higher excited states in the model. This is also substantiated by a rather small calculated intensity of the  $(\nu_{7a})_1^0(\nu_{9a})_1^1$ band. The band identified by SGK as the  $(\nu_{8b})_1^0(\nu_{7a})_1^0(\nu_{9a})_1^1$ receives, according to our calculation, a comparable contribution also from the  $(\nu_{8a})_2^0(\nu_{9a})_1^1$  band.





FIG. 5. Same as Fig. 1 but for the emission from the  $4_a^1$  level. The observed spectrum is taken from Ref. 11.

Figures 5(a) and 5(b) depict the calculated (set I) and observed (Ref. 11)  $(\nu_{4a})^1$  SVL emission spectrum. The calculated spectrum for set II is given as Fig. 5(c) in the PAPS supplement. The quantitative reproduction of this SVL spectrum is more difficult, compared to the previous spectra, because the mode is one of the TS modes strongly involved in a Dushinsky rotation. The intensity of the origin of the spectrum is underestimated by the calculations. As it is seen it depends strongly on the details of mode mixing in the excited states. Also the intensity if the combination band  $(\nu_{8b})^0_1(\nu_{4a})^1_0$  is underestimated. It is possible that the effective displacement parameter for the  $\nu_{4a}$  mode is somewhat too small or that the  $S_1 - S_5$  coupling by this modes is calculated too large. However, the  $(\nu_{8b})^0_1(\nu_{4a})^1_1$  band is predicted to be the strongest in the spectrum, in agreement with the experiment. Also the  $(\nu_{4a})^1_1(\nu_{8a})^0_1, (\nu_{7b})^0_1(\nu_{4a})^1_1, (\nu_{4a})^1_2$  and





FIG. 6. Same as Fig. 1 but for the emission from the  $8_b^1$  level.

 $(\nu_{8b})_1^0(\nu_{4a})_1^1(\nu_{5a})_1^0$  bands figure prominently in the calculated and experimental spectra.

# D. SVL emission spectra from the fundamentals of the $b_{3g}$ modes

Figures 6(a) and 6(b) show the calculated (set I) and observed (Ref. 5)  $(\nu_{8b})_0^1$  SVL emission spectrum. Similar experimental spectrum was obtained by Beck *et al.* in the gas phase. The calculated spectrum for set II is given as Fig. 6(c) in the PAPS supplement. The experimentally observed intensity ratio of the  $(\nu_{8b})_0^1:(\nu_{8b})_1^1:(\nu_{8b})_2^1$  bands is 1:0.19:1.34 according to SGK, and 1:0.26:1.43 according to Beck *et al.* The calculated ratios are 1:0.08:1.7 for set I and 1:0.17:1.7 for set II, in reasonable agreement with the experiment. The intensity ratio of the  $(\nu_{8b})_0^1:(\nu_{8b})_1^1$  bands, discussed in detail in Ref. 6, is, according to SGK, 1.22. This compares very well with the calculated ratios of 1.18 and 1.21 for set I and set II of parameters. The calculations also correctly reproduce marked and almost equal intensities of





FIG. 7. Same as Fig. 1 but for the emission from the  $7_b^1$  level.

the  $(\nu_{8b})_1^1(\nu_{8a})_0^1$  and  $(\nu_{7b})_1^0(\nu_{8b})_1^1$  bands (calculated 0.25 vs the strongest band to compare with the value of 0.26 given by SGK). The intensities of the  $(\nu_{8b})_0^1(\nu_{5a})_1^0$  and  $(\nu_{8b})_0^1(\nu_{5a})_2^0$  bands are, on the other hand, somewhat underestimated [calculated values of 0.20 and 0.35 vs observed 0.48 and 0.48 (Ref. 11)].

Figures 7(a) and 7(b) show the calculated (set I) and observed (Ref. 5)  $(\nu_{7b})_0^1$  SVL emission spectrum. The calculated spectrum for set II is given as Fig. 7(c) in the PAPS supplement. The experimentally observed ratio of intensities of the three transitions:  $(\nu_{7b})_0^1:(\nu_{7b})_1^1:(\nu_{7b})_2^1$  is 5.7:1:7.7. The calculated numbers are 8.9:1:15 for set I and 3.8:1:6 for set II. The calculated intensity of the  $(\nu_{7b})_1^1(\nu_{8a})_1^0$  line is  $\sim$ 0.8 of the intensity of the origin of the spectrum  $[(\nu_{7b})_0^1]$  for both sets in perfect agreement with the experiment.

# E. Emission spectra from combination bands and overtones

In this section we focus on the experimental SVL fluorescence spectrum observed after excitation to the 1422





FIG. 8. Same as Fig. 1 but for the emission from the  $8^{1}_{b}7^{1}_{a}$  level.

cm<sup>-1</sup> band (see Fig. 3 Ref. 11). The band excited in the experiment was assigned to the  $(\nu_{8b})_0^1(\nu_{7a})_0^1$  level, but is is degenerate with the overtone of mode  $\nu_{8a}$  and we have shown in Secs. IV A and IV B that the contribution of the overtone is predicted to be considerable.

Figure 8(a) presents the calculated spectra (set I) for the SVL emission from the  $(\nu_{8b})_0^1(\nu_{7a})_0^1$  level. The calculated spectrum for set II is given as Fig. 8(c) in the PAPS supplement. The experimental spectrum after Ref. 5 is depicted in Fig. 8(b). It shows two prominent bands assigned to the  $(\nu_{8b})_2^1(\nu_{7a})_0^1$  and  $(\nu_{8b})_2^1(\nu_{7a})_1^1$ . The observed intensity ratio of the two bands, 1:1.1, compares reasonably well with the computed 1:1.4. The simulation indicates that the two bands receive contributions also from emission to levels  $(\nu_{8b})_0^1(\nu_{7a})_1^1$  and  $(\nu_{8b})_0^1(\nu_{7a})_2^1$ , respectively. The intensities of the origin of the spectrum  $[(\nu_{8b})_0^1(\nu_{7a})_0^1]$  and of the next two bands  $[(\nu_{8b})_1^1(\nu_{7a})_0^1]$  and  $(\nu_{8b})_0^1(\nu_{7a})_1^1(\nu_{8a})_1^0]$ , are, however, underestimated by the model. The next experimentally most active mode is the  $\nu_{5a}$ , which builds notable progres-



FIG. 9. Calculated (set I) emission spectrum from the  $8_a^2$  level. The linewidth used in simulation is  $10~{\rm cm}^{-1}$ .

sions on the origin and on the two main bands of the spectrum, a feature which is also reproduced by the simulation, although the intensity of the progression bands appears to be slightly underestimated. Thus, the main features of the experimental spectrum are well reproduced by the simulation of SVL fluorescence from level  $(\nu_{8b})_0^1(\nu_{7a})_0^1$ . Of some interest is the triplet of bands at  $\sim$ 1382 cm<sup>-1</sup>, 1448 cm<sup>-1</sup>, and 1530 cm<sup>-1</sup> from the origin. Although experimentally quite weak, it is nicely reproduced by the calculation. Another relatively weak band, observed ~100 cm<sup>-1</sup> to the left and assigned to the  $(\nu_{8b})_0^1(\nu_{7a})_0^1(\nu_{8a})_1^0$  combination, is predicted to have negligible intensity. The underestimation of the intensity of the latter band might be due to the approximations adopted in the model. A more appealing possibility is that the intensity is due to emission from the overtone of the  $v_{8a}$ mode which is almost degenerate with the  $(\nu_{8b})_0^1(\nu_{7a})_0^1$ level.

In Fig. 9 we present the simulated spectra (set I) for the SVL emission from level  $(\nu_{8a})_0^2$ . The calculated spectrum for set II is given as Fig. 9(b) in the PAPS supplement. The spectrum shows the most prominent bands at 765 cm<sup>-1</sup>  $[(\nu_{8a})_1^2]$ , 1275 cm<sup>-1</sup>  $[(\nu_{8a})_1^2(\nu_{8b})_1^0]$ , 2295 cm<sup>-1</sup>  $[(\nu_{8a})_3^2]$  and 3060 cm<sup>-1</sup>  $[(\nu_{8a})_4^2]$  from the origin  $[(\nu_{8a})_0^2]$ . In addition, a number of medium intensity bands are predicted in the region 2040–2230 cm<sup>-1</sup> above the origin. Most of these bands have frequencies degenerate with bands active in the spectrum of Fig. 7. As a consequence it is difficult to assess, on the basis of these bands, whether the experimental spectrum<sup>11</sup> results from a sum of contributions of the emission from level  $(\nu_{8b})_0^1(\nu_{7a})_0^1$  (dominant) and  $(\nu_{8a})_0^2$  (minor). There are, however, a few bands, namely the already mentioned  $[(\nu_{8a})_1^2]$  and  $[(\nu_{8a})_1^2(\nu_{8b})_1^0]$  together with the  $[(\nu_{8a})_1^2(\nu_{5a})_1^0]$  and  $[(\nu_{8a})_1^2(\nu_{4a})_1^0]$  which fall in regions were there is vibrational activity (experimentally) but the simulation of Fig. 7 shows negligible intensity. Thus, the results of these simulations seem to indicate that some weak detail of the SVL fluorescence spectrum recorded by exciting the 1422 cm<sup>-1</sup> level might be due to emission from the degenerate level  $(\nu_{8a})_0^2$ .

## V. CONCLUDING REMARKS

The vibrational structure of the electronic spectra of naphthalene is simulated by using a perturbative description of the vibronic levels.

The model, which includes four excited electronic states beside the ground state, utilizes input parameters computed by quantum-chemical calculations. Transition dipole moments, structure and vibrational normal modes of the ground and excited electronic states ( $S_1$  and  $S_2$ ) are obtained from *ab initio* calculations and vibronic coupling parameters are estimated by using semiempirical methods. From the analysis of normal coordinates of the three electronic states investigated, considerable Dushinsky rotation of some of the TS modes is evidenced. The size of mode mixing in combination with the interference between FC and HT mechanisms, are the main causes of redistribution of vibronic intensities. In addition, the results of the calculations show that interference effects are very important not only for mode  $\nu_{8a}$  but also for mode  $\nu_{5a}$ .

The details of the vibronic structure of the spectra are reproduced, and the simulations of SVL spectra originated from NTS vibronic levels match particularly well the observed spectra. This indicates a good quality of the relative values of vibronic coupling parameters computed by semi-empirical methods. The necessity to scale the computed coupling parameters by a common factor for modes of a given symmetry most probably results from the difficulty of an accurate calculation of a small (due to cancellation effects) electric dipole moment for the  $S_0 \rightarrow S_1$  transition.

The simulation of the absorption spectrum indicates that the intensity of the band observed at  $1422 \text{ cm}^{-1}$  results from contributions of the  $(\nu_{8a})_0^2$  overtone and  $(\nu_{8b})_0^1(\nu_{7a})_0^1$  combination. On this basis it is suggested that some of the weak bands of the SVL fluorescence spectrum obtained by exciting the  $1422 \text{ cm}^{-1}$  band might be due to fluorescence from the overtone of mode  $\nu_{8a}$  degenerate with the dominant emitting level  $(\nu_{8b})_0^1(\nu_{7a})_0^1$ .

For all the simulated spectra the intensity ratios of vibronic bands agree well with the experiment, although in some cases intensities of individual bands are overestimated or underestimated. The largest discrepancies are computed for fundamentals or combination bands of TS modes strongly involved in Dushinsky rotation, and whose intensity is determined by the interference of FC and HT mechanisms. We ascribe the discrepancies between computed and observed intensities of some of the bands, partly to the quality of the computed parameters and partly to the approximations adopted to model the spectra. Inclusion of additional electronic states and determination of geometries and mode mixing for every excited state considered in the model would improve the quantitative agreement, but is presently beyond our computational capabilities. Nevertheless the simulations

provide a solid basis for a more thorough analysis of individual vibronic bands in the spectra, and are of considerable help in the assignment of doubtful bands.

### **ACKNOWLEDGMENT**

This paper was issued as NRCC No. 39083.

- <sup>1</sup>J. R. Platt, J. Chem. Phys. **17**, 484 (1949).
- <sup>2</sup>W. Moffitt, J. Chem. Phys. 22, 320 (1954).
- <sup>3</sup>M. Gouterman, J. Mol. Spectrosc. **6**, 138 (1961).
- <sup>4</sup>H. Sellers, P. Pulay, and J. E. Boggs, J. Am. Chem. Soc. **107**, 6487 (1985).
- <sup>5</sup> M. Stockburger, H. Gatterman, and W. Klusman, J. Chem. Phys. **63**, 4519, 4529 (1975).
- <sup>6</sup>M. Z. Zgierski, Chem. Phys. Lett. 47, 599 (1977).
- <sup>7</sup>U. Boesl, H. J. Neusser, and E. W. Schlag, Chem Phys. **15**, 167 (1976).
- <sup>8</sup>N. Mikami and H. K. Hong, Bull. Chem. Soc. Jpn. **52**, 3484 (1979).
- <sup>9</sup>M. Gutmann, P. F. Schönzart, and G. Hohlneicher, Chem. Phys. **140**, 107 (1990).
- <sup>10</sup> S. M. Beck, D. E. Powers, J. B. Hopkins, and R. E. Smalley, J. Chem. Phys. **73**, 2019 (1980).
- <sup>11</sup> S. M. Beck, J. B. Hopkins, D. E. Powers, and R. E. Smalley, J. Chem. Phys. **74**, 43 (1981).
- <sup>12</sup> F. M. Behlen, D. B. McDonald, V. Sethuraman, and S. A. Rice, J. Chem. Phys. **75**, 5685 (1981).
- <sup>13</sup> M. J. Robey, I. G. Ross, R. V. Southwood-Jones, and S. J. Strickler, Chem. Phys. **23**, 207 (1977).
- <sup>14</sup> A. Warshel and M. Karplus, J. Am. Chem. Soc. **94**, 5612 (1972).
- <sup>15</sup> F. Zerbetto, M. Z. Zgierski, F. Negri, and G. Orlandi, J. Chem. Phys. 89, 3681 (1988).
- <sup>16</sup> J. Del Bene and H. H. Jaffe, J. Chem. Phys. **48**, 1807 (1968).
- <sup>17</sup> GAUSSIAN 92/DFT, Revision G.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople Gaussian, Inc., Pittsburgh, Pennsylvania, 1993.
- <sup>18</sup>M. Z. Zgierski, J. Chem. Phys. **85**, 109 (1986).
- <sup>19</sup>P. Swiderek, G. Hohlneicher, S. A. Maluendes, and M. Dupuis, J. Chem. Phys. 98, 974 (1993).
- <sup>20</sup>P. Pulay, G. Fogarasi, and J. E. Boggs, J. Chem. Phys. **74**, 3999 (1981).
- <sup>21</sup> J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, J. Chem. Phys. **96**, 135 (1992).
- <sup>22</sup>G. Orlandi, P. Palmieri, R. Tarroni, F. Zerbetto, and M. Z. Zgierski, J. Chem. Phys. **100**, 2458 (1994).
- <sup>23</sup> M. Z. Zgierski and F. Zerbetto, J. Chem. Phys. **99**, 3721 (1993).
- <sup>24</sup>M. Z. Zgierski and F. Zerbetto, J. Chem. Phys. 98, 14 (1993).
- <sup>25</sup> F. Zerbetto and M. Z. Zgierski, J. Chem. Phys. **98**, 4822 (1993); **101**, 1842 (1994).
- <sup>26</sup> L. M. Markham, L. C. Mayne, B. S. Hudson, and M. Z. Zgierski, J. Phys. Chem. **97**, 10 319 (1993).
- <sup>27</sup>F. Negri and M. Z. Zgierski, J. Chem. Phys. **100**, 2571 (1994).
- <sup>28</sup>F. Negri and M. Z. Zgierski, J. Chem. Phys. **99**, 4318 (1993).
- <sup>29</sup> F. Negri and M. Z. Zgierski, J. Chem. Phys. **102**, 5165 (1995).
- <sup>30</sup>G. Orlandi, Chem. Phys. Lett. **44**, 277 (1976).
- <sup>31</sup>C. P. Brock and J. D. Dunitz, Acta Crystallogr. B 38, 2218 (1982).
- <sup>32</sup> K. K. Innes, in *Excited States*, edited by E. Lim (Academic, New York, 1975), Vol. 2.
- <sup>33</sup>J. M. O. Matos and B. O. Roos, Theor. Chim. Acta **74**, 363 (1988).
- <sup>34</sup>G. Hohlneicher and J. Wolf, Ber. Bunsenges. Phys. Chem. **99**, 366 (1995).
- <sup>35</sup>F. Dushinsky, Acta Phisicochim. USSR **7**, 551 (1937).
- <sup>36</sup>C. Manneback, Phys. Utrecht **17**, 1001 (1951).
- <sup>37</sup>E. B. Wilson, J. C. Decius, and P. C. Cross, *Molecular Vibrations* (McGraw–Hill, New York, 1955), p. 290.
- <sup>38</sup> See AIP document No. PAPS JCPSA6-104-3486-9 for 9 pages of figures. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard, Woodbury, NY 11797-2999. Fax: 516-576-2223, e-mail: janis@aip.org. The price is \$1.50 for each microfiche (98 pages) or \$5.00 for photocopies of up to 30 pages, and \$0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.