Nombre y apellido:

Número de libreta:

1	2	3	4	Calificación
				1

Álgebra Lineal Computacional

Examen Final - 5 de marzo de 2024

Ejercicio 1: (2.5 pts) Ejercicio 1: (2.5 pts) Dada la base $B = \{(1, 2, 0); (0, 1, 1); (0, 0, 1)\}$ de \mathbb{R}^3 y la transformación lineal $f : \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$|f|_{BB} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

a) Dar una base de Nu(f) y de Im(f).

b) Decidir si $\mathbb{R}^3 = Nu(f) \oplus Im(f)$.

c) Definir $P: \mathbb{R}^3 \to \mathbb{R}^3$ proyector ortogonal tal que Im(P) = Im(f).

Ejercicio 2: (2.5 pts) Sea $A \in \mathbb{R}^{n \times n}$ una matriz inversible, de la cual se conoce su descomposición en valores singulares $A = U \Sigma V^t$ y su descomposición A = QR.

a) Probar que A y R tienen los mismos valores singulares.

b) Probar que toda matriz ortogonal y triangular resulta ser diagonal con ±1's en su diagonal.

Deducir que si U=Q entonces V y R son matrices diagonales.

c) Sea n=3, $Q=(q_1,q_2,q_3)$ una matriz ortogonal con columnas q_1,q_2,q_3 , y R una matriz diagonal con $r_{11}=2$, $r_{22}=1$, $r_{33}=-2$. Hallar la matriz singular (en términos de las columnas q_i de Q y los r_{ii}) que mejor aproxima a A en norma 2.

Ejercicio 3: (2.5 pts)

- a) Probar que si los elementos de las filas de una matriz suman λ entonces λ es autovalor de la matriz. Concluir que si los elementos de las columnas de una matriz suman λ entonces λ también es autovalor de la matriz y que por lo tanto 1 es siempre autovalor de una matriz de Markov.
- b) Un grupo de mariposas polinizan tres flores diferentes (A, B y C). Cada minuto cambian de flor. Como las flores A y C están lejos, ninguna que esté en A va a C y ninguna va de C a A. Además, cada minuto la mitad de las mariposas que están en C van a B, la mitad de las que están en B van a C y la mitad de las que están en A van a B. Ninguna se queda en B.

Hallar la matriz de transición P y si existe, P^{∞} . Además decidir cuántas mariposas habrá a largo plazo en cada flor si inicialmente hay 4 en A, 8 en B y ninguna en C.

Ejercicio 4: (2.5 pts) Sean α y β los parámetros obtenidos por cuadrados mínimos para la aproximación por una recta $y = \alpha x + \beta$ al conjunto de mediciones $\{(x_i, y_i)\}_{i=1,\dots,n}$.

- a) Probar que si se multiplican los valores x_i por una constante c, entonces α se multiplica por 1/c y β no se modifica.
- b) Sea n=3. Para i=1,2,3 se define $x_i=i-2,y_i=|i-2|$. Calcular los valores de α y β y el error cometido en la aproximación.
- c) Volver a calcular los valores de α y β si los valores de x_i se multiplican por 3. Interpretar geométricamente. ¿Se modifica el error cometido?

Justifique todas sus respuestas

(a)
$$A = 2R \quad con \quad 22 = I$$

$$A^{L}A = (2R^{L}) 2R = R^{L}2 + 2R$$

$$= R^{L} + R = R^{L}R = R^{$$

P050 a Constas; PB: (2100) F3 () = () PB (1) = (3) 1 PB (0) = (2) NU(J) = < (0, 1, 1) > In(J) = < (1, 3, 2), (0, 1, 2) >

