

Group 5 Team Batak (TB)

Meet the Team

Likes: Ice cream

Dislikes: Seafoods

Rosiel Jazmine "ROSE" Villareal

Likes: Sinigang, Sinampalukan; All kinds of seafood

Dislikes: Fatty part in meat

Jericho Carlo "ECHO" Agudo

Likes: Sushi, Curry, Silogs

Dislikes: Grape juice, Cakes

Algorithm 1: Linear Learner

- supervised learning
- classification or regression

- Binary Classification Is this email spam or not? Will the hospital patient survive or not?
- Multi-class Classification Is this animal a dog, horse, or cat? Is the player's position guard, forward, or center?
- Regression What will the temperature be in Manila tomorrow? What will be the price of this diamond?

Linear Learner: Sample Datasets

/ Recovery

Accident & Emergency

Operating Room 0
/ Recovery

dataset.csv (31.41 MiB)						
Detail Compa	Detail Compact Column					
patient_id =	# age =	# bmi =	# elective_s =	▲ gender =	▲ icu_admit =	# hospital_d =
25312	68	22.73	0	М	Floor	0
59342	77	27.42	0	F	Floor	0
50777	25	31.95	0	F	Accident & Emergency	0
46918	81	22.64	1	F	Operating Room / Recovery	0
34377	19		0	м	Accident & Emergency	0
74489	67	27.56	0	М	Accident & Emergency	0
49526	59	57.45	0	F	Accident & Emergency	0
50129	70		0	М	Accident & Emergency	0
10577	45		0	М	Other Hospital	1
90749	50	25.71	0	М	Accident & Emergency	0
125898	72	28.25705249	1	F	Operating Room / Recovery	0
78266	80	27.3828125	1	F	Operating Room / Recovery	0
41311	48		0	М	Accident & Emergency	8
103766	65		1	М	Operating Room	0

	diamonds.csv (3.19 MiB) Detail Compact Column						
# =	# carat =	▲ cut =	▲ color =	▲ clarity =	# depth =	# table =	# price =
1	0.23	Ideal	E	SI2	61.5	55	326
2	0.21	Premium	Е	SI1	59.8	61	326
3	0.23	Good	E	VS1	56.9	65	327
4	0.29	Premium	I	VS2	62.4	58	334
5	0.31	Good	J	SI2	63.3	58	335
6	0.24	Very Good	Ĵ	VVS2	62.8	57	336
7	0.24	Very Good	I	VVS1	62.3	57	336
8	0.26	Very Good	Н	SI1	61.9	55	337
9	θ.22	Fair	E	VS2	65.1	61	337
10	0.23	Very Good	Н	VS1	59.4	61	338
11	0.3	Good	J	SI1	64	55	339
12	0.23	Ideal	J	VS1	62.8	56	340
13	0.22	Premium	F	SI1	60.4	61	342
14	0.31	Ideal	J	SI2	62.2	54	344
15	0.2	Premium	E	SI2	60.2	62	345
16	0.32	Premium	Е	I1	60.9	58	345
17	0.3	Ideal	I	SI2	62	54	348
18	0.3	Good	J	SI1	63.4	54	351
19	0.3	Good	J	SI1	63.8	56	351
20	0.3	Very Good	J	SI1	62.7	59	351
21	0.3	Good	I	SI2	63.3	56	351
22	0.23	Very Good	E	VS2	63.8	55	352

38.18906706

98174

124688

Linear Learner: Hyperparameters

	Parameter Name	Description
1.	predictor_type	 Specifies the type of target variable. Valid values: binary_classifier, multiclass_classifier, or regressor
2.	num_classes	 The number of classes for the response variable. Required when predictor_type is multiclass_classifier. Valid Values: Integers from 3 to 1,000,000
3.	epochs	 The maximum number of passes over the training data. Valid Values: Positive integer Default Value: 15
4.	feature_dim	 The number of features in the input data. Valid Values: auto or positive integer Default Value: auto

Algorithm 2: K-Means

- unsupervised learning
- grouping similar data

- Customer segmentation
- Outlier/Anomaly detection
- Document classification
- Inventory categorization

K Means: Sample Datasets

emails.csv (1.43 GiB)			
Detail Compact Column			
▲ file	▲ message		
allen- p/_sent_mail/1.	Message-ID: *18782981.19758 \$5378110.JavaMa 11.evans@thyme> Date: Mon, 14 May 2001 16:39:00 -0700 (DTL		
allen- p/_sent_mail/10	Message-ID: <pre><15464986.18758</pre> <pre>55378456.JavaMa</pre> <pre>il.evans@thyme></pre> <pre>Date: Fri.4</pre> <pre>May 2001</pre> <pre>13:51:00 -0700</pre> <pre></pre> <pre>(PDT)</pre>		
allen-p/_sent_mail/10 0.	Message-ID: <242/16240.18758 55687451.JavaMa 11.evans@thyme> Date: Wed, 18 Oct 2000 03:00:00 -0700 (PDT		
allen- p/_sent_mail/10 00.	Message-ID: <pre>13508366.18758</pre> <pre>63688222.JavaMa</pre> <pre>11.evans@thyme></pre> <pre>Date: Mon, 23</pre> <pre>0ct 2000</pre> <pre>6e:13:00 -0700</pre> <pre>(PDT</pre>		
allen- p/_sent_mail/10 01.	Message-ID: <pre><30022949.10758</pre> <pre>6368243.JavaMs</pre> <pre>11.evans@thyme></pre> <pre>Date: Thu, 31</pre> <pre>Aug 2000</pre> <pre>65:87:80 - 8780</pre> <pre>(PDT</pre>		

K-Means: Hyperparameters

	Parameter Name	Description
1.	k	 The number of required clusters Valid Values: Positive Integer
2.	extra_center_factor	 The algorithm creates K centers = num_clusters * extra_center_factors as it runs and reduces the number of centers from K to k when finalizing model Valid Values: Either a positive integer or auto Default Value: auto
3.	init_method	 Method by which the algorithm chooses the initial cluster centers The standard k-means approach chooses them at random K-means++ method chooses the first cluster center at random. Then it spreads out the position of the remaining initial clusters by weighting the selection of centers with a probability distribution that is proportional to the square of the distance of the remaining data points from existing centers Valid Values: Either random or kmeans++ Default Value: random

Algorithm 3: Principal Component Analysis (PCA)

- unsupervised machine learning
- reducing dimensionality of a dataset

- Dimensionality reduction/de-noising of dataset for pre-processing or feature engineering
- Image Compression
- Multidimensional data visualization
- General data compression

PCA: Sample Datasets

PCA: Hyperparameters

	Parameter Name	Description
1.	num_components	 The number of principal components to compute Valid Values: Positive integer
2.	algorithm_mode	 Mode for computing the principal components Valid Values: regular or randomized Default Value: regular regular: For datasets with sparse data and a moderate number of observations and features randomized: For datasets with both a large number of observations and features. This mode uses an approximation algorithm
3.	subtract_mean	 Indicates whether the data should be unbiased both during training and at inference Valid Values: One of true or false Default Value: true

Algorithm 4: Random Cut Forest (RCF)

- unsupervised method
- anomaly detection

- Detection of fraudulent transactions on GCash
 - user regular patterns when using GCash
 - users may be grouped based on characteristics and activities
 - anomaly scores assigned to users

Example Decision Tree

RCF: Sample Datasets

Data Description

In this competition you are predicting the probability that an online transaction is fraudulent, as denoted by the binary target isFraud.

The data is broken into two files identity and transaction, which are joined by TransactionID. Not all transactions have corresponding identity information.

Categorical Features - Transaction

- ProductCD
- · card1 card6
- · addr1, addr2
- P_emaildomain
- R_emaildomain
- M1 M9

Categorical Features - Identity

- DeviceType
- DeviceInfo
- id_12 id_38

The TransactionDT feature is a timedelta from a given reference datetime (not an actual timestamp).

You can read more about the data from this post by the competition host.

Files

- · train_{transaction, identity}.csv the training set
- test_(transaction, identity).csv the test set (you must predict the isFraud value for these observations)
- · sample_submission.csv a sample submission file in the correct format

Input

order_brush_order.csv: It contains orders information.

Columns: [orderid, shopid, userid, event_time]

Each orderid represents a distinct transaction on Shopee.

Each unique shopid is a distinct seller on Shopee.

Each unique userid is a distinct buyer on Shopee.

Event Time refers to the exact time that an order was placed on Shopee.

Submission Format

Check each shop and determine whether it is deemed to have conducted order brushing. If a shop conducted order brushing, list the userid(s) that are identified as suspicious for the corresponding shopid.

Two columns required:

- shopid
- userid
- If a shop is not deemed to have conducted order brushing, assign the value 0
- Else, list the userid(s) that are identified as suspicious for the corresponding shopid
- If there is more than 1 userid identified as suspicious, list all the userids separated by "&", with the smaller numerical userid first.

shopid	userid	
162014252	183926374	
321014322	19233237&23421231	
22754767	0	

Your submission should have 18770 rows (excluding the headers), each with 2 columns.

Teams which do not make a successful submission will be considered to have a score of zero for this challenge

IEEE-CIS Fraud Detection on Vesta Card Payment Transactions

Order Brushing on Shopee

RCF: Hyperparameters

	Parameter Name	Description
1.	num_samples_per_tree	 Number of random samples given to each tree from the training data set. Valid values: Positive integer (min: 1, max: 2048) Default value: 256
2.	num_trees	 Number of trees in the forest. Valid values: Positive integer (min: 50, max: 1000) Default value: 100
3.	feature_dim	 The number of features in the data set (calculated by RCF estimator already, no need to specify) Valid values: Positive integer (min: 1, max: 10000)
4.	eval_metrics	 A list of metrics used to score a labeled test data set. The following metrics can be selected for output: accuracy precision_recall_fscore Valid values: a list with possible values taken from accuracy or precision_recall_fscore Default value: Both accuracy, precision_recall_fscore are calculated.

apper_ph