Filed: July 16, 1998

Page 3

## Amendments to the claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

## Listing of Claims:

1-208. (Deleted)

209. (Previously presented) The process of claim 284, wherein the specific binding of the compound to the polypeptide is detected by a scintillation proximity assay.

210-213. (Deleted)

2.4. (Previously Presented) The process of claim 2.26, wherein the specific binding of the compound to the polypeptide is detected by a scintillation proximity assay.

215-217. (Deleted)

218. (Previously Presented) The method of claim 228, wherein the cell is a mammalian cell.

219. (Previously Presented) The method of claim 218, wherein the mammalian cell is non-neuronal in origin.

(Previously Presented) The method of claim 219 wherein the non-neuronal cell is a COS-7 cell, a 293 human embryonic kidney cell, an LM(tk-) cell or an NIH-3T3 cell.

Filed: July 16, 1998

Page 4

221. (Deleted)

202. (Previously Presented) A process of obtaining a composition which comprises:

- (a) obtaining a chemical compound;
- (b) determining whether the chemical compound binds to a soluble polypeptide by the process of any of claim 204, 205, 225, 226, 2145 or 227, and
- (c) admixing a carrier and the chemical compound.
- 283. (Previously Presented) The method of claim 222, wherein the composition is a pharmaceutical composition and the carrier is a pharmaceutically acceptable carrier.
- 24. (Currently Amended) A process for determining whether a chemical compound specifically binds to:
  - (a) a soluble polypeptide comprising consecutive amino acids, the amino acid sequence of which is shown in Figure 5 (SEQ ID NO: 10); or
  - (b) a soluble polypeptide having a sequence which varies therefrom by no more than 15 amino acids, such variations:
    - (i) not involving amino acids corresponding to the amino acids at positions 799-804 of the amino acid sequence shown in Figure 5 (SEQ ID NO: 10); and

Filed: July 16, 1998

Page 5

٠.

- (ii) not changing the functional properties of the soluble polypeptide; or
- (c) a soluble polypeptide comprising the soluble polypeptide of (a) or (b) linked to the following consecutive amino acids: [corresponding to] Asp Tyr

  Lys Asp Asp Asp Asp Lys [a FLAG® epitope],

which comprises contacting the soluble polypeptide of (a), (b) or (c) above with the compound under conditions suitable for binding, and detecting specific binding of the chemical compound to the soluble polypeptide.

.3 2 25.

(Previously Presented) The process of claim 224, wherein the soluble polypeptide comprises consecutive amino acids, the amino acid sequence of which is shown in Figure 5 (SEQ ID NO: 10).

226.

(Currently Amended) A process involving competitive binding for determining whether a first chemical compound specifically binds to:

- (a) a soluble polypeptide comprising consecutive amino acids, the amino acid sequence of which is shown in Figure 5 (SEQ ID NO: 10); or
- (b) a soluble polypeptide having a sequence which varies therefrom by no more than 15 amino acids, such variations:
  - (i) not involving amino acids corresponding to the amino acids at positions 799-804 of the amino acid sequence shown in

Filed: July 16, 1998

Page 6

Figure 5 (SEQ ID NO: 10); and

- (ii) not changing the functional properties of the soluble polypeptide; or
- (c) a soluble polypeptide comprising the soluble polypeptide of (a) or (b) linked to the following consecutive amino acids: {corresponding to} Asp Tyr Lys Asp Asp Asp Asp Lys [a FLAG® epitope],

which comprises separately contacting the soluble polypeptide of (a), (b) or (c) above, with both the first chemical compound and a second chemical compound known to bind to the soluble polypeptide, and separately with only the second chemical compound, under conditions suitable for binding of both the first and second compounds, and detecting specific binding of the first chemical compound to the soluble polypeptide, a decrease in the binding of the second chemical compound to the soluble polypeptide in the presence of the first chemical compound indicating that the first chemical compound binds to the soluble polypeptide.

(Previously Presented) The process of claim 226, wherein the soluble polypeptide comprises consecutive amino acids, the amino acid sequence of which is shown in Figure 5 (SEQ ID NO: 10).

3. (Currently Amended) A method of screening a plurality of chemical compounds not known to bind to:

- (a) a soluble polypeptide comprising consecutive amino acids, the amino acid sequence of which is shown in Figure 5 (SEQ ID NO: 10); or
- (b) a soluble polypeptide having a sequence which

Filed: July 16, 1998

Page 7

varies therefrom by no more than 15 amino acids, such variations:

- (i) not involving amino acids corresponding to the amino acids at positions 799-804 of the amino acid sequence shown in Figure 5 (SEQ ID NO: 10); and
- (ii) not changing the functional properties of the soluble polypeptide; or
- (c) a soluble polypeptide comprising the soluble polypeptide of (a) or (b) linked to the following consecutive amino acids: [corresponding to] <u>Asp</u> <u>Tyr Lys Asp Asp Asp Lys</u> [a FLAG<sup>®</sup> epitope],

to determine whether a compound specifically binds to the soluble polypeptide of (a), (b) or (c) which comprises:

- (1) preparing a cell extract or cell supernatant from cells transfected with and expressing DNA encoding the soluble polypeptide and contacting the cell extract or cell supernatant with a compound known to bind specifically to the soluble polypeptide;
- (2) contacting the preparation of step (1) with the plurality of compounds not known to bind specifically to the soluble polypeptide, under conditions permitting binding of compounds known to bind the soluble polypeptide;
- (3) determining whether the binding of the compound known to bind to the soluble polypeptide is reduced in the presence of the compounds, relative

Filed: July 16, 1998

Page 8

to the binding of the compound in the absence of the plurality of compounds; and if so

(4) separately determining the binding to the soluble polypeptide of each compound included in the plurality of compounds, so as to thereby determine whether a compound specifically binds to the soluble polypeptide of (a), (b) or (c).