Отказоустойчивые вычислительные системы

Майданов Юрий Сергеевичк.т.н., доцент Кафедры ВС

Поиск одиночных отказов

Пусть произведена декомпозиция прикладных задач на множество фрагментов $W = \{w_d\}$. Решение каждого фрагмента задач w_d можно рассматривать как нахождение значения некоторой функции $f_d(x_d)$, где x_d – исходные данные для w_d .

Если машина u_j , решающая фрагмент задачи w_d , исправна, то значение функции $f_d(x)$ находится верно для любого значения x, входящего в M_d , где M_d – область определения функции $f_d(x)$

Допустим, что в случае неисправности машины u_i найденное значение функции $f_d(x)$ будет искажено на всей области определения

 $f_i(x)$ вычисляется дважды разными ЭМ в виде функций $f_i^{(1)}(x)$ и $f_i^{(2)}(x)$. При отсутствии ошибок функции $f_i^{(1)}(x)$ и $f_i^{(2)}(x)$ совпадают

Ошибка вычислений может быть выявлена путем проверки условия $f_i^{(1)}(x) = f_i^{(2)}(x)$. Иначе — ошибка

1-й вариант поиска одиночных отказов

При несовпадении результатов вся пара исключается из вычислительного процесса, а фрагмент решается повторно другой парой

Достоинства: скорость

Недостатки: потеря исправных машин, высокая избыточность

2-й вариант поиска одиночных отказов

Каждый фрагмент задачи w_d решает пара машин u_i и u_j . Текущий фрагмент задачи решает очередная пара u_i и u_j .

При несовпадении результатов из пары u_i и u_j образуют две новые пары, соединяя: u_i с u_k и u_i с u_m .

Вновь образованная пара решает фрагменты задачи w_{d+1} и w_{d+2} . Если результаты u_i с u_k не совпали, то исключают u_i

В случае повторного расхождения образуются новые пары и процесс повторяется

Достоинства: высокая скорость, исключаются только неисправные ЭМ, нет необходимости повторного решения **Недостатки:** высокая избыточность, требуется наличие большого количества независимых фрагментов задач

2-й вариант поиска одиночных отказов

Диагностические модели ВС

Диагностическая модель — (f_1, f_2, f_3, f_4) , где исход элементарной проверки:

```
f_1 – обе ЭМ исправны;
```

 f_2 – контролирующая исправна, а контролируемая неисправна;

 f_3 – контролирующая неисправна, контролируемая – исправна;

 f_{a} – неисправны обе ЭМ

$$f_1 = 0$$
, $f_2 = 1$ — для всех систем

Таким образом, всего можно построить девять диагностических моделей: (0,1,0,0), (0,1,0,1), (0,1,0,X), (0,1,1,0), (0,1,1,1), (0,1,X,X), (0,1,X,0), (0,1,X,1), (0,1,X,X)

Модели (0,1,1,0), (0,1,1,1), (0,1,1,X) называются **симметричными** Модели (0,1,0,0), (0,1,0,1), (0,1,0,X) называются **несимметричными**

Спасибо за внимание!