Grizzly Bear Covid Analysis

Clayton T. Lamb, Liber Ero Postdoctoral Fellow, University of British Columbia 26 August, 2020

Prepare Data for Analysis

Load Data, Functions and Cleanup Data

Add Spatial Attributes

```
##make bear data spatial
reloc <- st_as_sf(reloc,</pre>
                  coords = c("X","Y"),
                  crs = 4326)\%
  st_transform("+proj=aea +lat_1=50 +lat_2=58.5 +lat_0=45 +lon_0=-126 +x_0=1000000 +y_0=0 +ellps=GRS80
## HUMAN INFLUENCE INDEX
hii <- raster(here::here("data", "spatial", "hii.tif"))
##make velox (faster)
hiiv <- velox(hii)
##extract hii to reloc
reloc <- reloc%>%mutate(hii=hiiv$extract_points(sp = reloc))
rm(hii)
## NDVI
##make smaller
ndvi<- raster(here::here("data", "spatial", "ndvi.tif"))</pre>
##make velox (faster)
ndviv <- velox(ndvi)</pre>
##extract hii to reloc
reloc <- reloc%>%mutate(ndvi=ndviv$extract points(sp = reloc))
rm(ndvi)
```

```
###make Tibble
reloc <- reloc%>%
  as_tibble()
```

Add Temporal Attributes

Add Individual Attributes

```
reloc <- reloc%>%
  left_join(cap%>%dplyr::select(Name,Sex,Age,EndReason,Born), by="Name")%>%
  mutate(Age=year-Born)
```

Reclassify factors

Prep Monthly Survival Data

```
##summarize live locs by month
reloc.m <- reloc%>%
  mutate(d=day(DateTimeLocal))%>%
  group_by(Name, year, m, Sex, Age, EndReason, covid, COVID)%>%
  summarize(hii=mean(hii,na.rm=TRUE),
               ndvi=mean(ndvi,na.rm=TRUE),
               d=max(d,na.rm=TRUE))%>%
  as_tibble()%>%
  ungroup()
##bind and join last month with live and dead if needed
reloc.m <- reloc.m%>%
  filter(EndReason%in%"Mortality")%>%
  mutate(m=as.numeric(m))%>%
  arrange(Name, -year, -m)%>%
  group_by(Name)%>%
  slice(1)%>%
  mutate(dead=1)%>%
    ungroup()%>%
  dplyr::select(Name, year, m, dead)%>%
```

```
mutate(m=as.factor(m))%>%
right_join(reloc.m, by=c("Name", "year", "m"))%>%
arrange(Name, year, m)%>%
mutate(dead=case_when(is.na(dead)~0, TRUE~dead))
```

Run Models

Habitat Use

Characteristic	Beta	95% CI
COVID		
control		
covid	-2.2	-2.6, -1.9
ndvi	-1.4	-2.0, -0.76
Age * Sex		
Age * F	-0.14	-0.32, 0.04
Age * M	2.6	2.2, 3.0

summary(m1)

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: hii ~ Age:Sex + COVID + ndvi + (1 | m) + (1 | Name)
##
     Data: reloc
##
##
        AIC
                  BIC
                         logLik deviance
                                           df.resid
   327347.3 327417.3 -163665.6 327331.3
                                              47038
##
##
## Scaled residuals:
               1Q Median
##
      Min
                               3Q
                                      Max
## -3.3755 -0.6938 -0.0872 0.4746 4.2377
##
## Random effects:
## Groups
                        Variance Std.Dev.
            Name
## Name
             (Intercept) 383.961 19.595
## m
             (Intercept)
                          2.412
                                 1.553
## Residual
                         60.946
                                 7.807
## Number of obs: 47046, groups: Name, 55; m, 7
##
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 5.60255
                          2.92289
                                   1.917
## COVIDcovid -2.24585
                          0.17418 -12.894
              -1.40618
                          0.32823 -4.284
## ndvi
## Age:SexF
              -0.14447
                          0.09204 -1.570
```

```
## Age:SexM 2.61347 0.20413 12.803
##
## Correlation of Fixed Effects:
             (Intr) COVIDc ndvi Ag:SxF
## COVIDcovid 0.174
            -0.088 -0.063
## ndvi
## Age:SexF -0.239 -0.547 0.046
## Age:SexM -0.343 -0.328 0.034 0.319
##Plot Results
# plot_model(
  m1,
# sort.est = TRUE,
# title = "",
# axis.title=c("Parameter estimates"))+
# geom_hline(yintercept = 0, linetype="dotted")+
# ggtitle("Coefficents Measuring use of Human Influenced Habitats")+
  theme_ipsum()
##get % change
##mean hii to start
mean(reloc%>%filter(COVID%in%"control")%>%pull(hii))
## [1] 14.75639
#14.75639
##hii dropped by -2.24585 during covid based on glmm, so:
(-2.24585/14.75639)*100
## [1] -15.21951
#15% decline in hii use.
```

Run Cox Proportional Hazard Survival Models

```
##Fit Model
surv <- coxph(Surv(d, dead)~ Age*Sex + COVID + ndvi +</pre>
                cluster(Name), data = reloc.m)
##Test Assumptions
print(cox.zph(surv))
##
                 rho chisq
## Age
               0.622 1.1363 0.2864
## SexM
               0.370 1.5393 0.2147
## COVIDcovid -0.431 2.8698 0.0903
             -0.172 0.0617 0.8039
## Age:SexM -0.619 1.1426 0.2851
## GLOBAL
                  NA 3.3155 0.6515
##Print Output
tbl_regression(surv)
```

${\bf Characteristic}$	$\log(\mathrm{HR})$	95% CI	p-value
Characteristic	$\log(\mathrm{HR})$	95% CI	p-value
Age	-0.50	-0.82, -0.17	0.003
Sex			
F			
M	-0.50	-3.1, 2.1	0.7
COVID			
control			
covid	0.64	-1.2, 2.4	0.5
ndvi	1.6	-2.3, 5.5	0.4
Age * Sex		•	
Age * M	0.21	-0.19, 0.61	0.3

summary(surv)

```
## Call:
## coxph(formula = Surv(d, dead) ~ Age * Sex + COVID + ndvi + cluster(Name),
##
      data = reloc.m)
##
##
    n= 367, number of events= 10
##
##
                 coef exp(coef) se(coef) robust se
                                                        z Pr(>|z|)
                         0.6074
## Age
              -0.4985
                                  0.2366
                                            0.1661 -3.000
                                                            0.0027 **
## SexM
              -0.5036
                         0.6043
                                  1.5619
                                            1.3145 -0.383
                                                            0.7016
## COVIDcovid 0.6361
                         1.8892
                                  0.8682
                                            0.9221 0.690
                                                            0.4903
## ndvi
               1.6109
                         5.0073
                                  3.3200
                                            1.9967 0.807
                                                            0.4198
## Age:SexM
              0.2079
                         1.2311
                                  0.3060
                                            0.2041 1.019
                                                            0.3084
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
              exp(coef) exp(-coef) lower .95 upper .95
## Age
                 0.6074
                            1.6463
                                     0.43861
                                                0.8412
                 0.6043
                            1.6547
                                     0.04596
                                                7.9465
## SexM
## COVIDcovid
                 1.8892
                            0.5293
                                     0.31003
                                               11.5115
## ndvi
                 5.0073
                            0.1997
                                     0.10000
                                             250.7270
## Age:SexM
                 1.2311
                            0.8123
                                     0.82521
                                                1.8366
##
## Concordance= 0.838 (se = 0.093)
## Rsquare= 0.042
                   (max possible= 0.267)
## Likelihood ratio test= 15.6 on 5 df,
                                           p=0.008
## Wald test
                        = 17.4 on 5 df,
                                           p=0.004
## Score (logrank) test = 11.84 on 5 df,
                                           p=0.04,
                                                      Robust = 8.74 p=0.1
##
##
     (Note: the likelihood ratio and score tests assume independence of
##
        observations within a cluster, the Wald and robust score tests do not).
##Plot Results
# plot_model(surv)+
    qqtitle("Mortality Hazard Coefficients")+
#
    geom_hline(yintercept = 1, linetype="dotted")+
    theme_ipsum()
```

Summary

Habitat Use

I show that grizzly bears (Ursus arctos) appeared to shift their habitat use to less human influenced, or "wilder" areas (human influence variable, the response variable, hii) during COVID-19 lockdowns (covid variable). The % decrease in human influenced habitats during covid was 15%. This is likely due to increased human recreation around the valley, which was seen a large spike in local tourism and local use of the landscape. The t-statstic for this effect is -12.894

Survival

There was no detectable change in survival of bears during the COVID-19 lockdowns. The z value for this effect is 0.690. The % change was a 2.3% increase in annual survival.