SHENDUO ZHANG

October 22, 2020 (GMT+8)

zhangshenduo@gmail.com

Problem 1

Let $f \in L^2[a,b]$, $K(\cdot,\cdot) \in L^2([a,b] \times [a,b])$, prove that

$$x(t) = f(t) + \lambda \int_{a}^{b} K(t, s)x(s)ds$$
(1)

has a unique solution for λ that is small enough.

Solution 1.a Equation of this form is known to be the second type Fredholm equation.

Define $Tx := f(t) + \lambda \int_a^b K(t, s) x(s) ds$ on $x \in L^2[a, b]$.

First, one needs to prove that T maps $L^2[a,b] \mapsto L^2[a,b]$. Use Holder's in equality,

$$\int_{a}^{b} \left| \int_{a}^{b} K(t,s)x(s) ds \right|^{2} dt \le \int_{a}^{b} \left(\int_{a}^{b} K^{2}(t,s) ds \right) \left(\int_{a}^{b} x^{2}(s) ds \right) dt$$
$$= \left(\int_{a}^{b} \int_{a}^{b} K^{2} ds dt \right) \left(\int_{a}^{b} x^{2}(s) ds \right) \le \infty$$

Then, we prove that T is a contraction for λ small enough.

$$\rho(Tx, Ty) = \left(\int_a^b \lambda^2 \left(\int_a^b K(t, s)(x(s) - y(s) ds)\right)^2 dt\right)^{\frac{1}{2}}$$

$$\leq \lambda \left(\int_a^b \int_a^b K(t, s)^2 (x(s) - y(s))^2 ds dt\right)^{\frac{1}{2}}$$

$$\leq \lambda \left(\int_{[a,b]^2} K(t, s)^2\right)^{\frac{1}{2}} \rho(x, y)$$

Since $K \in L^2$, for λ small enough, we have $\rho(Tx, Ty) \leq \alpha \rho(x, y), \alpha \in (0, 1)$, which means T is a contraction. And by Banach's theorem, there exist a unique $x \in L^2[a, b]$ that is the solution to this second type Fredholm equation.

Problem 2

Let (X, ρ) be a complete metric space, and $X \neq \emptyset$. Let $T : X \mapsto X$ satisfy $\rho(Tx, Ty) \leq \alpha \rho(x, y), \alpha \in (0, 1)$. Let $R \geq 0$, define

$$A_R := \{ x \in X, \rho(x, Tx) \le R \} \tag{2}$$

Prove that,

- 1. When R > 0, A_R is a non-empty closed set in X.
- 2. $\forall x, y \in A_R, \ \rho(x, y) \leq 2R + \rho(Tx, Ty) \Rightarrow \operatorname{diam} A_R \leq \frac{2R}{1-\alpha}$.
- 3. A_0 is not empty.
- 4. T has a unique fixed point.

Solution 2.a To prove that it's close, consider a convergent sequence $\{x_n\}_{n\geq 0}\in A_R$, denote $\lim_{m\to\infty}x_n=x$. It suffices to prove $x\in A_R$. We give ourselves an ϵ of room. $\forall \epsilon>0$,

$$\rho(x, Tx) \le \rho(x, x_n) + \rho(x_n, Tx_n) + \rho(Tx_n, Tx) \tag{3}$$

$$\leq \frac{\epsilon}{2} + R + \frac{\epsilon}{2} \tag{4}$$

$$\leq R + \epsilon$$
 (5)

where n is large enough. Let $\epsilon \to 0$, it follows that $\rho(x, Tx) \le R$ which means $x \in A_R$.

We prove this is a non-empty set. Suppose it's not, then there exists R > 0 such that $\forall x \in X, \rho(x, Tx) > R$. Consider a fixed x, then

$$\rho(x, Tx) \ge \frac{1}{\alpha^m} \rho(T^m x, T^{m+1} x) > \frac{1}{\alpha^m} R \quad \forall m \in \mathbb{N}$$
 (6)

Let $m \to \infty$, we have $\rho(x, Tx) = \infty, \forall x \in X$. We get a contradiction.

Solution 2.b Observe that,

$$\rho(x,y) \le \rho(x,Tx) + \rho(y,Ty) + \rho(Tx,Ty) \le 2R + \alpha \rho(x,y) \quad \forall x,y \in A_R$$
 (7)

Then take supremum on $x, y \in A_R$ to claim $A_R \leq \frac{2R}{1-\alpha}$

Solution 2.c First observe that $A_R \subset A_R'$, $\forall 0 \leq R \leq R'$. Take $A_n := A_{\frac{1}{n}}$, we have a monotone decreasing closed non-empty set sequence A_n satisfy

$$\lim_{n \to \infty} \operatorname{diam} A_n = 0 \tag{8}$$

Then $\cap_{n\geq 1}A_n$ is a point by the completeness of (X,ρ) . This point has the property $\rho(x,Tx)=0$. And any fixed point shall be included in $A_R, \forall R$, which will give the uniqueness of fixed point. \square

Problem 3

Let $f \in C[a,b], K(\cdot,\cdot) \in C([a,b] \times [a,b]), such that$

$$\sup_{a \le x \le b} \int_a^b |K(t, s)| \mathrm{d}s < 1. \tag{9}$$

prove that

$$x(t) = f(t) + \lambda \int_{a}^{b} K(t, s) x(s) ds \quad \lambda \in \mathbb{R}$$
(10)

has a unique solution $x_0 \in C[a, b]$.

Solution 3.a We adopt a similar but somehow different approach to problem 1 by defining

$$Tx := f(t) + \lambda \int_{a}^{b} K(t, s)x(s)ds$$

where $x \in C[a, b]$, and claim T^n is contraction for $n \geq N \in \mathbb{N}$ and $\forall \lambda \in \mathbb{R}$.

First, we need to prove that T maps C[a, b] to itself.

Obeserve that,

$$\rho(T^{n}x, T^{n}y) = \sup_{t \in [a,b]} |T^{n}x(t) - T^{n}y(t)|
\leq |\lambda| \sup_{t \in [a,b]} \left| \int_{a}^{b} K(t,s) (T^{n-1}x(s) - T^{n-1}y(s)) ds \right|
\leq |\lambda| \sup_{t \in [a,b]} \int_{a}^{b} |K(t,s) (T^{n-1}x(s) - T^{n-1}y(s))| ds
\leq |\lambda| \sup_{t \in [a,b]} \int_{a}^{b} |K(t,s) \rho(T^{n-1}x, T^{n-1}y)| ds
\leq |\lambda| \rho(T^{n-1}x, T^{n-1}y) \sup_{t \in [a,b]} \int_{a}^{b} |K(t,s)| ds
\leq |\lambda|^{n-1} \left(\sup_{t \in [a,b]} \int_{a}^{b} |K(t,s)| ds \right)^{n} \rho(x,y)$$

Since $\sup_{t\in[a,b]}\int_a^b|K(t,s)|\mathrm{d}s\in(0,1)$, for any given $\lambda\in\mathbb{R}$ there exists an $N\in\mathbb{N}$ such that $\forall n\geq N$, we have $|\lambda|\Big(\sup_{t\in[a,b]}\int_a^b|K(t,s)|\mathrm{d}s\Big)^n\in(0,1)$. Here we have proved that T^n is a contraction in a complete metric space $(C[a,b],\rho)$ for n large enough. Then by a variation of Banach's theorem, the claim follows.

Problem 4

Let f be a twice continuously differentiable function on [a,b] and $\hat{x} \in (a,b)$ such that $f(\hat{x}) = 0$, $f'(\hat{x}) \neq 0$. Prove that there exist a neighbor $U(\hat{x})$ of \hat{x} , such that $\forall x_0 \in U(\hat{x})$, the iteration sequence

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad (n = 0, 1, 2, ...)$$
 (11)

is convergent and

$$\lim_{n \to \infty} x_n = \hat{x}. \tag{12}$$

Solution 4.a Define a mapping $Tx := x - \frac{f(x)}{f'(x)}$.

First, we need to prove T maps the space of twice continuously differentiable function to itself.

Problem 5

Let (X, ρ) be a metric space, a mapping $T: X \mapsto X$ satisfy

$$\rho(Tx, Ty) < \rho(x, y) \quad \forall x \neq y, \tag{13}$$

Assume we know T has a fixed point, prove that such fixed point is unique.

Solution 5.a If there're two fixed points x, y such that $\rho(x, Tx) = 0, \rho(y, Ty) = 0$, then

$$\rho(x,y) \le \rho(x,Tx) + \rho(y,Ty) + \rho(Tx,Ty)$$

$$\le \rho(Tx,Ty)$$

$$< \rho(x,y)$$

which is a contradiction.

Problem 6

Let M be a bounded closed set in (\mathbb{R}^n, ρ) , $T: M \mapsto M$ satisfy $\rho(Tx, Ty) < \rho(x, y), \forall x, y \in M, x \neq y$. Prove that there exists an unique fixed point for T in M.

Solution 6.a This is an easy corallary of problem 7, since bounded closed sets are equivalent to compact sets in \mathbb{R}^n , and sequential compact is equivalent to compact in \mathbb{R}^n too. We will prove it in problem 7.

Problem 7

Let (X, ρ) be a metric space, and M be a sequential compact set in X. Let the mapping $f: X \mapsto M$ satisfy

$$\rho(f(x_1), f(x_2)) < \rho(x_1, x_2), \quad \forall x_1, x_2 \in X, x_1 \neq x_2.$$
(14)

Prove that there exists an unique fixed point of f in X.

Solution 7. a ρ is a continuous functions, so $\rho(\cdot, f(\cdot))$ is continuous, as well as its restriction on M. Consider this restriction, it's a continuous function on a compact set. We claim $\rho(\cdot, f(\cdot))$

has a infinimum of 0. Then this function must be 0 at some point $x \in M \subset X$. This would give the existence of fixed point $x \in X$. Now it only suffices to prove the infinimum is indeed 0.

Since M is sequentially compact, any sequence $\{x_n\}_{n\geq 0}\subset M$ has a convergent subsequence. For brevity of notation, denote this convergent subsequence as $\{x_n\}$.

Now if there's another y such that $\rho(y, Ty) = 0$, then

$$\rho(x,y) \le \rho(x,Tx) + \rho(y,Ty) + \rho(Tx,Ty)$$
$$\le \rho(Tx,Ty)$$
$$< \rho(x,y)$$

which is a contradiction.