Lynn Nguyen

Dr. Wright

STA402-A

13 May 2024

Term Project Update

I. Original Statement of Your Assigned Task

Write a SAS macro that accepts a genre and presents the relationships among the budget, revenue, and size of the cast. Your macro should also allows users to specify a list of genre that they'd like to compare.

Data Description

There are 2 datasets in csv file file tmdb 5000 credits.csv tmdb 5000 movies.csv.

tmdb_5000_movies.csv : has columns budget, genres, homepage, id, keywords,
orignial_language, original_title, overview, popularity,
productions_companies,production_countries, release_date, revenue,
runtime, spoken_languages, status, tagline, title, vote_average,
vote count with 4803 observations

tmdb_5000_credits.csv: has columns movie_id, title, cast, crew.

II. Progress Report

1. Project Description

I have to merge these 2 movies and credits csv datasets by movie id and movie title. Then, from the merged dataset, I extracted column title, genre, budget, revenue, and cast_size. Finally, write a macro to analyze relationship among budget, revenue, and size of the cast by genre.

2. Explain SAS steps

a. Import Movies and Credits datasets into SAS

- Use proc import to import 2 datasets: movies and credits into SAS
- Specify datafile in proc import and declare the path for getting csv files
- Specify output file to use within in SAS
- Use dbms to SAS the format of the file
- Create dataset name extracted_movies and extracted_credits

b. Merge extracted movies and extracted credits

- Use proc sql to merge 2 datasets extracted_movies and extracted_credits by tile and movie_id
- Named the new dataset as merged_data

c. Create genre dataset

- Extract column genre
- Loops through each "{" of genres column and take information as genre_names
- Loops through genre_names and the the information in the 6th position

- Contains the information extracted in column name genre
- Only keep column title and genre
- Use proc sort to sort the genre dataset by title named new dataset as genre_sorted

d. Create cast dataset

- Count the occurrences of "cast id" in the cast column
- Store the output the column named cast size

e. Create Budget dataset

- From the merged_data, keep column title and budget
- Use proc sort to sort budget by title and named new dataset as budget sorted

f. Create Revenue dataset

- From the merged_data, keep column title and revenue
- Use proc sort to sort revenue by title and named new dataset as revenue_sorted

g. Merge Genre sorted, Cast sorted, Budget sorted, and Revenue sorted

- Merged genre_sorted, cast_sorted, budget_sorted, and revenue_sorted by title named new dataset as combine
- Use proc sort to sort combine by genre named new dataset and combine_sorted
- Remove all the observations that do not have genre

h. Build macro to analyze relationship among revenue, budget, cast size by genre

- Create a filtered_data by Genre desired
- Use proc means to summary mean of budget, revenue, cast_size by genre desired
- Use proc print to print out the summary stats
- Use proc sgplot to plot the scatter plot between revenue and budget, revenue and cast_size, and budget and cast_size
- It is a user-specified macro with user-specified genre

III. Code and Output related to II.2

a. Import Movies and Credits datasets into SAS

```
%let movies = M:\TermProject\tmdb_5000_movies.csv;

libname myfiles 'M:\TermProject';
/*Import tmdb_5000_movies.csv and create permanent file*/
proc import
    datafile= "&movies"
    out=myfiles.extracted_movies
    replace
    dbms=csv;
    getnames=yes; /* Assumes the first row contains variable names */
    guessingrows=max;

run;
/*Print first 5 observations for myfiles.extracted.movies */
```

```
proc print data=myfiles.extracted movies (obs=5);
run;
/*Import tmdb 5000 credits.csv from a ZIP folder*/
FILENAME ZIPFILE ZIP "&folder\tmdb 5000 credits.csv.zip"
member="tmdb 5000 credits.csv";
data myfiles.extracted credits;
      %let EFIERR = \overline{0}; /* set the ERROR detection macro variable */
      infile zipfile delimiter = ',' MISSOVER DSD lrecl=32767 firstobs=2 ;
         informat movie id best32.;
         informat title $43.;
         informat cast $28776.;
        informat crew $22344.;
        format movie id best12. ;
        format title $43.;
        format cast $28776.;
        format crew $22344.;
      input
                  movie id
                  title $
                  cast $
                  crew $
      if ERROR then call symputx(' EFIERR ',1); /* set ERROR detection
macro variable ^{+}/
      run;
/*Print first 5 observations for myfiles.extracted.credits */
proc print data=myfiles.extracted credits (obs=5);
run;
               b. Merge extracted_movies and extracted_credits
/* Merge datasets using PROC SQL */
proc sql;
    create table merged data as
    select *
    from myfiles.extracted movies as m
    inner join myfiles.extracted credits as c
    on m.original title = c.title
      and m.id = c.movie id;
quit;
               c. Create genre dataset
/* Create Genres data set*/
data genres;
    set merged data;
    /* Extract genre names from genres column */
    do i = 1 to countw(genres, '}'); /* Loop through each set of curly braces
in the genres column */
        /* Extract individual genre entry */
        genre entry = scan(genres, i,'}'); /* Extracting each individual set
of curly braces */
```

Genres sorted by Movie Title

Obs	title	genre
1	#Horror	Drama
2	#Horror	Mystery
3	#Horror	Horror
4	#Horror	Thriller
5	#Horror	
6	(500) Days of Summer	Comedy
7	(500) Days of Summer	Drama
8	(500) Days of Summer	Romance
9	(500) Days of Summer	
10	10 Cloverfield Lane	Thriller

d. Create Cast dataset

```
/*Create Cast data set*/
data cast;
    set merged_data;

    /* Count the occurrences of "cast_id" in the cast column */
    cast_size = countc(cast, 'cast_id');

    /* Output the observation */
    output;
keep title cast_size
run;

proc sort data= cast out=cast_sorted;
```

```
by title;
run;

ods rtf bodytitle file ="M:\TermProject\Cast.rtf";
proc print data=cast_sorted (obs=10);
run;
ods rtf close;
```

Cast sorted by Movie Title

Obs	title	cast_size
1	#Horror	304
2	(500) Days of Summer	765
3	10 Cloverfield Lane	322
4	10 Days in a Madhouse	735
5	10 Things I Hate About You	1488
6	102 Dalmatians	151
7	10th & Wolf	400
8	11:14	428
9	12 Angry Men	558
10	12 Rounds	2347

e. Create Budget dataset

Budget sorted by Movie Title

Obs	budget	title
1	1500000	#Horror

Obs	budget	title
2	7500000	(500) Days of Summer
3	15000000	10 Cloverfield Lane
4	1200000	10 Days in a Madhouse
5	16000000	10 Things I Hate About You
6	85000000	102 Dalmatians
7	8000000	10th & Wolf
8	6000000	11:14
9	350000	12 Angry Men
10	20000000	12 Rounds

f. Create Revenue dataset

```
/*Create Revenue data set*/
data revenue;
    set merged_data;
    output;
keep title revenue;
run;

proc sort data= revenue out=revenue_sorted;
    by title;
run;

ods rtf bodytitle file ="M:\TermProject\Revenue.rtf";
title "Revenue sorted by Movie Title";
proc print data=revenue_sorted (obs=10);
run;
ods rtf close;
```

Revenue sorted by Movie Title

Obs	revenue	title
1	0	#Horror
2	60722734	(500) Days of Summer
3	10828642 1	10 Cloverfield Lane
4	0	10 Days in a Madhouse
5	53478166	10 Things I Hate About You

Obs	revenue	title
6	18361177 1	102 Dalmatians
7	143451	10th & Wolf
8	0	11:14
9	1000000	12 Angry Men
10	17280326	12 Rounds

g. Merge Genre_sorted, Cast_sorted, Budget_sorted, and Revenue_sorted

```
/*Merge genres sorted revenue sorted cast sorted budget sorted*/
data combine;
     merge genres sorted revenue sorted cast sorted budget sorted;
     by title;
run;
proc sort data= combine out=combine sorted;
     by genre;
run;
data combine sorted;
   set combine sorted;
   where not missing(genre);
run;
ods rtf bodytitle file ="M:\TermProject\Combine.rtf";
title "Merge Genre Revenue Budget Cast by Title";
proc print data=combine sorted (obs=10);
run;
ods rtf close;
```

Merge Genre Revenue Budget Cast by Title

Obs	title	genre	revenue	cast_size	budget
1	10th & Wolf	Action	143451	400	8000000
2	12 Rounds	Action	17280326	2347	20000000
3	13 Hours: The Secret Soldiers of Benghazi		69411370	1142	50000000
4	15 Minutes		56359980	3082	60000000
5	16 Blocks		65664721	687	55000000
6	1941	Action	31755742	1162	35000000
7	2 Fast 2 Furious	Action	236350661	1340	76000000
8	2 Guns	Action	131940411	1493	61000000

Obs	title	genre	revenue	cast_size	budget
9	2012	Action	769653595	1755	200000000
10	21 Jump Street	Action	201585328	638	42000000

$\frac{\text{h.Write a macro analyze relationship among budget, revenue, cast}}{\text{size by genre}}$

```
/*Write a macro analyze relationship among buget, revenue, cast size
by genre*/
ods rtf file="M:\TermProject\Analyze.rtf";
title "Merge Genre Revenue Budget Cast by Title";
%macro analyze genre(genre);
    /* Filter data by genre */
       data filtered data;
            set combine sorted;
            where genre = "&genre"; /* Use the input parameter genre */
       run;
      /* Calculate statistics */
      title "Summary Statistics for Budget, Revenue, and Cast Size";
      proc means data=filtered data;
            var budget revenue cast size;
            output out=summary stats mean=mean budget mean=mean revenue
            mean=mean cast size;
      run:
      /* Correlation analysis */
      title "Correlation Matrix for Budget, Revenue, and Cast Size for Genre:
      proc corr data=filtered data outp=correlation matrix;
            var budget revenue cast size;
       run;
       /* Create scatter plot Budget vs Revenue */
      proc sgplot data=filtered data;
            title "Relationship between Budget, Revenue for Genre: &genre.";
            scatter x=budget y=revenue / markerattrs=(symbol=circlefilled
            color=blue);
            reg x=budget y=revenue / nomarkers lineattrs=(color=red
            thickness=2);
            xaxis label='Budget ($)';
            yaxis label='Revenue ($)';
       run;
       /* Create scatter plot Revenue vs Cast Size*/
       proc sgplot data=filtered data;
             title "Relationship between Revenue vs Cast Size for Genre:
            &genre.";
            scatter x=cast size y=revenue / markerattrs=(symbol=circlefilled
            color=blue);
            reg x=cast size y=revenue / nomarkers lineattrs=(color=red
            thickness=2);
            xaxis label='Cast Size (people)';
```

```
yaxis label='Revenue ($)';
       run;
       /* Create scatter plot Budget vs Cast Size */
       proc sgplot data=filtered data;
             title "Relationship between Budget vs Cast Size for Genre:
            &genre.";
            scatter x=budget y=cast_size / markerattrs=(symbol=circlefilled
            color=blue);
            reg x=budget y=cast size / nomarkers lineattrs=(color=red
            thickness=2);
            xaxis label='Budget ($)';
             yaxis label='Cast Size (people)';
      run;
       /* Linear Regression Analysis */
     proc reg data=filtered data ;
     model revenue = budget cast size;
     title "Linear Regression Analysis for Revenue with Budget and Cast
Size";
      run;
%mend;
%analyze genre(Action) /* Call the macro with the desired genre */
%analyze genre(genre)
ods rtf close;
```

Summary Statistics for Budget, Revenue, and Cast Size

Variable	N	Mean	Std Dev	Minimum	Maximum
budget revenue	1089 1089		55902078.78 235544802		380000000 2787965087
cast_size		912.4811754		0	6575.00

Correlation Matrix for Budget, Revenue, and Cast Size for Genre: Action

3 Variables: budget revenue cast_size

Simple Statistics							
Variable	Variable N Mean Std Dev Sum Minimum Maximu						
budget	1089	53489482	55902079	5.825E10	0	380000000	
revenue	1089	147168795	235544802	1.60267E11	0	2787965087	
cast_size	1089	912.48118	796.01156	993692	0	6575	

Pearson Correlation Coefficients, N = 1089 Prob > r under H0: Rho=0						
	budget revenue cast_size					
budget	1.00000	0.74990 <.0001	0.39829 <.0001			
revenue	0.74990 <.0001	1.00000	0.46702 <.0001			
cast_size	0.39829 <.0001	0.46702 <.0001	1.00000			

Linear Regression Analysis for Revenue with Budget and Cast Size

Number of Observations Read	1089
Number of Observations Used	1089

Analysis of Variance								
Source	DF	Sum of Squares		F Value	Pr > F			
Model	2	3.597875E19	1.798937E19	801.17	<.0001			
Error	1086	2.438497E19	2.245393E16					
Corrected Total	1088	6.036371E19						

Root MSE	149846348	R-Square	0.5960
Dependent Mean	147168795	Adj R-Sq	0.5953
Coeff Var	101.81938		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	-57906151	7340076	-7.89	<.0001				
budget	1	2.82395	0.08860	31.87	<.0001				
cast_size	1	59205	6221.86718	9.52	<.0001				

