WATER QUALITY ANALYSIS

CONSIDER EXPLORING ANAMALY DETECTION TECHNIQUES TO IDENTIFY UNUSUAL PATTERNS IN WATER QUALITY PARAMETERS

OBJECTIVES

The water quality prediction problem is classified into five categories based on the size of a water quality dataset. The main objectives of this study are summarized as follows:

Objective-1: A first analysis was conducted on the available data to clean, normalize and perform feature selection on the water quality measures, and therefore, to obtain the minimum relevant subset that allows high precision with low cost. In this way, expensive and cumbersome lab analysis with specific sensors can be avoided in further similar analyses.

Objective-2: A series of representative supervised prediction (prediction, classification and regression) algorithms were tested on the dataset worked here. The complete methodology is proposed in the context of water quality numerical analysis.

TECHNIQUES

The contribution is:

- ➤ To carry out a systematic literature review in order to ascertain the current ML techniques used for the WQAD (Water Quality Anomaly Detection) problem.
- To highlight the shortcomings and limitations of these current methods
- ➤ To propose a hybrid DL-ELM framework in WQAD, which could be investigated further
- > To recommend future research directions T

PROGRAM

```
import numpy as np
import pandas as pd
import seaborn as sns;
import matplotlib.pyplot as plt;
import plotly.express as px;
import missingno as msno;
from sklearn.tree import DecisionTreeClassifier;
from sklearn.ensemble import RandomForestClassifier;
from sklearn.model_selection import RandomizedSearchCV, RepeatedStratifiedKFol
d, train_test_split;
from sklearn.metrics import precision_score, confusion_matrix;
from sklearn import tree;
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

OUTPUT:

	ph	Hardn ess	Solids	Chlora mines	Sulfat e	Condu ctivity	Organic carbon	Trihalom ethanes	Turb idity	Potabili ty
0	NaN	204.89 0455	20791.3 18981	7.30021 2	368.51 6441	564.30 8654	10.37978	86.990970	2.96 3135	0
1	3.71 6080	129.42 2921	18630.0 57858	6.63524 6	NaN	592.88 5359	15.18001 3	56.329076	4.50 0656	0
2	8.09 9124	224.23 6259	19909.5 41732	9.27588 4	NaN	418.60 6213	16.86863 7	66.420093	3.05 5934	0
3	8.31 6766	214.37 3394	22018.4 17441	8.05933 2	356.88 6136	363.26 6516	18.43652 4	100.34167 4	4.62 8771	0
4	9.09 2223	181.10 1509	17978.9 86339	6.54660 0	310.13 5738	398.41 0813	11.55827 9	31.997993	4.07 5075	0