Discrete Mathematics

Chapter 2, Basic Structures: Sets, Functions, Sequences, Sums, and Matrices Part 1

Sets

Section 2.1

Introduction

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

- Important for counting.
- Programming languages have set operations.

Set theory is an important branch of mathematics.

- Many different systems of axioms have been used to develop set theory.
- Here we are not concerned with a formal set of axioms for set theory. Instead, we will use what is called naïve set theory.

Sets

A *set* is an unordered collection of objects.

- the students in this class
- the chairs in this room

The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.

The notation $a \in A$ denotes that a is an element of the set A.

If a is not a member of A, write $a \notin A$

Describing a Set: Roster Method

$$S = \{a, b, c, d\}$$

Order not important

$$S = \{a,b,c,d\} = \{b,c,a,d\}$$

Each distinct object is either a member or not; listing more than once does not change the set.

$$S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$$

Or 'Elipses (...)' may be used to describe a set without listing all of the members when the pattern is clear.

$$S = \{a,b,c,d,....,z\}$$

Some Important Sets

```
N = natural\ numbers = \{0,1,2,3....\}
```

$$Z = integers = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

R = set of *real numbers*

R⁺ = set of *positive real numbers*

C = set of *complex numbers*.

Q = set of rational numbers

Numbers

Set-Builder Notation

Specify the property or properties that all members must satisfy:

 $S = \{x \mid x \text{ is a positive integer less than } 100\}$

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\}$

 $O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10\}$

A predicate may be used:

$$S = \{x \mid P(x)\}$$

Example: $S = \{x \mid Prime(x)\}$

Positive rational numbers:

 $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p,q\}$

Interval Notation

$$[a,b] = \{x | a \le x \le b\}$$

$$[a,b) = \{x | a \le x < b\}$$

$$(a,b] = \{x | a < x \le b\}$$

$$(a,b) = \{x | a < x < b\}$$

closed interval [a,b]
open interval (a,b)

Universal Set and Empty Set

The *universal set U* is the set containing everything currently under consideration.

- Sometimes implicit
- Sometimes explicitly stated.
- Contents depend on the context.

The *empty set* is the set with no elements. Symbolized \emptyset , but $\{\}$ also used.

John Venn (1834-1923) Cambridge, UK

Some things to remember

Sets can be elements of sets.

The empty set is different from a set containing the empty set.

$$\emptyset \neq \{\emptyset\}$$

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if $\forall x (x \in A \leftrightarrow x \in B)$
- We write A = B if A and B are equal sets.

$$\{1,3,5\} = \{3,5,1\}$$

 $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if every element of *A* is also an element of *B*.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - 1. Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Another look at Equality of Sets

Recall that two sets A and B are equal, denoted by A = B, iff

$$\forall x \big(x \in A \longleftrightarrow x \in B \big)$$

Using logical equivalences we have that A = B iff

$$\forall x \Big[\big(x \in A \to x \in B \big) \land \big(x \in B \to x \in A \big) \Big]$$

This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$. If $A \subset B$, then

$$\forall x(x \in A \to x \in B) \land \exists x(x \in B \land x \notin A)$$

is true.

Venn Diagram

Set Cardinality

Definition: If there are exactly *n* distinct elements in *S* where *n* is a nonnegative integer, we say that *S* is *finite*. Otherwise it is *infinite*.

Definition: The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.

Examples:

- 1. $|\phi| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3. $|\{1,2,3\}| = 3$
- 4. $|\{\emptyset\}| = 1$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set A, denoted P(A), is called the *power set* of A.

Example: If $A = \{a,b\}$ then

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

If a set has n elements, then the cardinality of the power set is 2^n . (In Chapters 5 and 6, we will discuss different ways to show this.)

Tuples

The ordered n-tuple $(a_1, a_2,, a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.

Two n-tuples are equal if and only if their corresponding elements are equal.

2-tuples are called *ordered pairs*.

The ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d.

Cartesian Product₁

Definition: The *Cartesian Product* of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$. $A \times B = \{(a,b) | a \in A \land b \in B\}$

René Descartes (1596-1650)

Example:

$$A = \{a,b\}$$
 $B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Definition: A subset R of the Cartesian product $A \times B$ is called a *relation* from the set A to the set B. (Relations will be covered in depth in Chapter 9.)

Cartesian Product₂

Definition: The Cartesian products of the sets

 $A_1,A_2,....,A_n$, denoted by $A_1 \times A_2 \times \times A_n$, is the set of ordered n-tuples $(a_1,a_2,....,a_n)$ where a_i belongs to A_i for i=1,...n.

$$A_1 \times A_2 \times \mathbb{L} \times A_n =$$

$$\left\{ \left(a_1, a_2 \mathbb{L}, a_n \right) | a_i \in A_i \text{ for } i = 1, 2, \mathbb{K} \ n \right\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}, B = \{1,2\}$ and $C = \{0,1,2\}$

Solution: $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$

Truth Sets of Quantifiers

Given a predicate P and a domain D, we define the *truth set* of P to be the set of elements in D for which P(x) is true. The truth set of P(x) is denoted by

$$\left\{ x \in D \mid P(x) \right\}$$

Example: The truth set of P(x) where the domain is the integers and P(x) is "|x| = 1" is the set $\{-1,1\}$

Set Operations

Section 2.2

Union

Definition: Let A and B be sets. The *union* of the sets A and B, denoted by $A \cup B$, is the set:

$$\{x \mid x \in A \lor x \in B\}$$

Example: What is $\{1,2,3\} \cup \{3,4,5\}$?

Solution: $\{1,2,3,4,5\}$ Venn Diagram for $A \cup B$

We assume that all sets are assumed to be subsets of *U* (a universal set)

Intersection

Definition: The *intersection* of sets A and B, denoted by $A \cap B$, is

$${x \mid x \in A \land x \in B}$$

Note if the intersection is empty, then A and B are said to be *disjoint*.

Example: What is? $\{1,2,3\} \cap \{3,4,5\}$?

Solution: {3}

Example: What is?

 $\{1,2,3\} \cap \{4,5,6\}$?

Solution: Ø

Venn Diagram for A ∩B

Complement

Definition: If A is a set, then the *complement* of the A (with respect to U), denoted by \bar{A} is the set U - A $\bar{A} = \{x \in U | x \notin A\}$

(The complement of A is sometimes denoted by A^c .)

Example: If *U* is the positive integers less than 100, what is the complement of $\{x \mid x > 70\}$

Solution: $\{x \mid x \le 70\}$

Venn Diagram for Complement

Difference

Definition: Let A and B be sets. The *difference* of A and B, denoted by A - B, is the set containing the elements of A that are not in B. The difference of A and B is also called the complement of B with respect to A.

$$A-B = \{x | x \in A \land x \notin B\} = A \cap \overline{B}$$

Venn Diagram for A – B

Set Identities

Identity laws

$$A \cup \emptyset = A$$
 $A \cap U = A$

$$A \cap U = A$$

Domination laws

$$A \cup U = U$$

$$A \cup U = U$$
 $A \cap \emptyset = \emptyset$

Idempotent laws

$$A \cup A = A$$
 $A \cap A = A$

$$A \cap A = A$$

Complementation law

$$\left(\overline{\overline{A}}\right) = A$$

Set Identities 2

Commutative laws

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Associative laws

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Set Identities:

De Morgan's laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Absorption laws

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

Complement laws

$$A \cup \overline{A} = U$$
 $A \cap \overline{A} = \emptyset$

$$A \cap A = \emptyset$$

Functions

Section 2.3

Functions₁

Definition: Let A and B be nonempty sets. A *function* f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

 Functions are sometimes called mappings or transformations.

Functions₂

A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$ (a relation, cartesian product). This subset is restricted to be a relation where no two elements of the relation have the same first element.

Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$$\forall x \Big[x \in A \to \exists y \Big[y \in B \land (x, y) \in f \Big] \Big]$$

and

$$\forall x, y_1, y_2 \left[\left[\left(x, y_1 \right) \in f \land \left(x, y_2 \right) \in f \right] \rightarrow y_1 = y_2 \right]$$

Functions₃

Given a function $f: A \rightarrow B$:

- We say f maps A to B or f is a mapping from A to B.
- A is called the domain of f.
- B is called the codomain of f.
- If f(a) = b,

- then b is called the *image* of a under f.
- a is called the preimage of b.
- The range of f is the set of all images of points in \mathbf{A} under f. We denote it by $f(\mathbf{A})$.
- Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

Questions

$$f(a) = ?$$
 z

The image of d is?

The domain of f is?

The codomain of f is?

The preimage of y is? b

$$f(A) = ? {y,z}$$

The preimage(s) of z is (are)? {a,c,d}

Question on Functions and Sets

If $f:A \to B$ and S is a subset of A, then

$$f(S) = \{ f(s) \mid s \in S \}$$

$$f$$
 {a,b,c,} is ? {y,z}

$$f \{c,d\}$$
 is ? $\{z\}$

Injections

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Surjections

Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called a *surjection* if it is *onto*.

Bijections

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

Showing that f is one-to-one or onto 1

Suppose that $f: A \rightarrow B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Inverse Functions 1

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} is the function from B to A defined as $f^{-1}(y) = x$ iff f(x) = y No inverse exists unless f is a bijection. Why?

Inverse Functions₂

Composition₁

Definition: Let $g: A \rightarrow B$ and $f: B \rightarrow C$,

The *composition of f with g*, denoted $f \circ g$ is the function from A to C defined by $f \circ g(x) = f(g(x))$

Composition₂

Composition₃

Example 1: If

$$f(x) = x^{2} \text{ and } g(x) = 2x + 1,$$
then
$$f(g(x)) = (2x + 1)^{2}$$
and
$$g(f(x)) = 2x^{2} + 1$$

Graphs of Functions

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) | a \in A \text{ and } f(a) = b\}$.

Graph of
$$f(x) = x^2$$
 from Z to Z

Some Important Functions

The *floor* function, denoted

$$f(x) = \lfloor x \rfloor$$

is the largest integer less than or equal to x.

The *ceiling* function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x

Floor and Ceiling Functions 1

Graph of Floor function

Graph of Ceiling function

Floor and Ceiling Functions 2

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(*n* is an integer, *x* is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n = x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n-1 < x = n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n = x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x = n < x + 1$

$$(2) x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$$

$$(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$$

$$(3b) \qquad \lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \qquad \lfloor x+n \rfloor = \lfloor x \rfloor + n$$

Factorial Function

Definition: $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first n positive integers when n is a nonnegative integer.

$$f(n) = 1 \cdot 2 \cdots (n-1) \cdot n, f(0) = 0! = 1$$

Examples:

$$f(1) = 1! = 1$$

 $f(2) = 2! = 1 \cdot 2 = 2$
 $f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$
 $f(20) = 2,432,902,008,176,640,000$

Stirling's Formula:

 $n! \sim \sqrt{2\pi n} (n/e)^n$

With the definition of the operator \sim as $f(n) \sim g(n) \doteq \lim_{n \to \infty} f(n)/g(n) = 1$ and Euler's Number e