Dział 3 — Rachunek Różniczkowy i Całkowy: Zadania

Poniżej znajdują się przykładowe zadania do samodzielnego rozwiązania. Dla każdego podrozdziału przygotowano 5 zadań o zróżnicowanym stopniu trudności. Niektóre zadania zawierają podpowiedzi lub sugestie metod rozwiązania.

Funkcje

- 1. Rozważ funkcję $f:\mathbb{R}\to\mathbb{R}$ dana wzorem $f(x)=\frac{x^2-1}{x-1}$ dla $x\neq 1$ i f(1)=2. Zbadaj, czy f jest dobrze określona w x=1
- 2. Zdefiniuj funkcję $g: \mathbb{N} \to \mathbb{R}$ przez $g(n) = \sum_{k=1}^{n} \frac{1}{k}$. Oblicz g(1), g(2), g(3) i opisz, czy ciąg g(n) jest zbieżny.
- 3. Dla funkcji $h(x) = |x^2 4|$ podaj dziedzinę, zbiór wartości oraz narysuj szkic kształtu funkcji (wystarczy opisać punkty charakterystyczne).
- 4. \star Zbadaj, czy funkcja $p(x) = \ln(x^2 + 1)$ jest parzysta, nieparzysta czy żadna z nich.
- 5. Zaproponuj przykład funkcji wielowymiarowej $F: \mathbb{R}^4 \to \mathbb{R}$ i podaj jej interpretację (np. w kontekście pola skalarnego lub wyznacznika macierzy 2x2 jako funkcji macierzy).

Granice

- 1. Oblicz granicę $\lim_{x\to 0} \frac{\sin x}{x}$.
- 2. Oblicz $\lim_{x\to\infty} \frac{2x^3+3x}{x^3-1}$.
- 3. Oblicz $\lim_{x\to 0} \frac{e^{2x}-1}{x}$.
- 4. Dla ciągu $a_n = \frac{n+1}{2n+3}$ oblicz $\lim_{n\to\infty} a_n$.
- 5. * Zbadaj granicę jednostronną $\lim_{x\to 0^+} x^{\alpha} \ln x$ w zależności od parametru $\alpha \in \mathbb{R}$.

Pochodne

- 1. Oblicz pochodną funkcji $f(x) = x^3 5x^2 + 2x 1$ i znajdź miejsca zerowe pochodnej. Zinterpretuj je jako kandydatów na ekstrema.
- 2. Dla $f(x) = \sin x \cdot e^x$ oblicz f'(x).
- 3. * Zastosuj regułę łańcuchową do funkcji $F(x) = \ln(\cos(x^2))$ i oblicz F'(x) (tam gdzie istnieje).
- 4. Znajdź pochodną funkcji $f(x) = x^{\alpha}$ dla $\alpha \in \mathbb{R}$ i omów definicję dla x > 0.
- 5. * Dla funkcji dwóch zmiennych $F(x,y) = x^2y + \sin(xy)$ oblicz pochodne cząstkowe $\frac{\partial F}{\partial x}$ i $\frac{\partial F}{\partial y}$.

Całki

- 1. Oblicz całkę nieoznaczoną $\int (3x^2 2x + 1) dx$.
- 2. Oblicz całkę oznaczoną $\int_0^1 (2x+1) dx$.
- 3. Oblicz $\int xe^x dx$ (całkowanie przez części).
- 4. Oblicz $\int \frac{1}{x^2+1} dx$ oraz wyjaśnij związek z funkcją arctan.
- 5. * Oblicz objętość bryły otrzymanej przez obrót wykresu $y = \sqrt{x}$ dla $x \in [0, 1]$ wokół osi OX (metoda pierścieni).

Równania różniczkowe

- 1. Rozwiąż równanie różniczkowe zwyczajne pierwszego rzędu o rozdzielnych zmiennych: $\frac{dy}{dx}=\frac{2x}{1+y^2},$ y(0)=0.
- 2. Znajdź ogólne rozwiązanie równania liniowego pierwszego rzędu $\frac{dy}{dx}+y=e^{2x}.$
- 3. Rozwiąż równanie różniczkowe drugiego rzędu o stałych współczynnikach: y'' 3y' + 2y = 0.
- 4. Dla równania $y'' + y = \sin x$ znajdź szczególne rozwiązanie metodą operatorów lub wariacji stałych.
- 5. ★ Omów warunki istnienia i jednoznaczności rozwiązania dla równań zwyczajnych (twierdzenie Picarda-Lindelöfa) w skrócie i podaj przykład układu, gdzie warunek Lipschitza jest istotny.

Plik przygotowany jako przykładowy zestaw zadań. Jeżeli chcesz, mogę dodać rozwiązania krok po kroku lub sformatować go jako arkusz egzaminacyjny (punktacja, czas).