(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 January 2001 (11.01.2001)

PCT

(10) International Publication Number WO 01/02430 A2

(51) International Patent Classification⁷: C07K 14/00

(21) International Application Number: PCT/EP00/06401

(22) International Filing Date: 5 July 2000 (05.07.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 99202214.5

, 5 July 1999 (05.07.1999) EP

- (71) Applicants (for all designated States except US): CROPDESIGN N.V. [BE/BE]; Technologiepark 3, B-9052 Gent (BE). UNIVERSIDADE FEDERAL DO RIO DE JANEIRO [BR/BR]; CEP-21941-590 Rio de Janeiro, RJ (BR).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HEMERLY, Adriana, Silva [BR/BR]; Rua Padre Achotegui, 60-1004, Leblon, CEP-22430-090 Rio de Janeiro, RJ (BR). FERREIRA, Paulo, Cavalcanti, Gomes [BR/BR]; Rua Padre Achotegui, 60/1004, Leblon, CEP-22430-090 Rio de Janeiro, RJ (BR). ROMBAUTS, Stephane [BE/BE]; Nederpolder 23, B-9000 Gent (BE).

- (74) Agent: WITTOP KONING, T., H.; Exter Polak & Charlouis B.V., P.O. Box 3241, NL-2280 GE Rijswijk (NL).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PLANT PROTEINS

CDC7 Gene Structure

(57) Abstract: The present invention relates to at least partially purified protein, capable of modulating the DNA replication in plants, muteins thereof, DNA coding therefor and to a method to confer to one ormore plant cells the capacity to provide such a protein or mutein. The invention also relates to plants, comprising the said DNA and the progeny thereof.

WO 01/02430 PCT/EP00/06401

Title: Plant proteins.

5

The present invention relates to at least partially purified protein, capable of modulating the DNA replication in plants, muteins thereof, DNA coding therefor and to a method to confer to one or more plant cells the capacity to provide such a protein or mutein. The invention also relates to plants, comprising the said DNA and the progeny thereof.

The regulation of the cell cycle in plants is poorly understood. Most of the knowledge regarding the regulation of 15 DNA replication, also known as the S-phase of the cell cycle regulation originates from experimental data obtained in yeast and mammalian cells. However, the importance to understand the cell cycle regulation in plant cells has become increasingly important in agriculture, e.g. to control growth of plants at 20 stress conditions, to obtain resistance against parasites that block or modulate the cell cycle regulation, or to improve the yield of agriculturally important crops. Further, one might be interested to intervene in the cell cycle regulation by allowing further rounds of DNA replication, but simultaneously 25 preventing further cell cycle progress by blocking the subsequent mitosis. In this way, cells may be obtained having multiple sets of their genetic material, so that plants with a high rate of endoreduplication may be generated. The term "endoreduplication" means recurrent DNA replication without consequent mitosis and cytokinesis.

From experiments in yeast, it is known that DNA replication and mitosis are coupled events in the cell cycle. Paulovich et al., 1997; Cell 88, 315-321. Genetic studies in yeast for example suggest that the CDC7 serine-threonine kinase plays a role in the initiation of DNA synthesis. Evidence has been presented that CDC7 is apparently directly involved in the activation of individual early- as well as late replication origins during S-phase (Bousset and Diffley, 1998, Genes Dev 12, 480-490; Donaldson et al., 1998, Genes Dev 12, 491-501).

40 The protein levels of CDC7 are constant during the cell cycle. Activation of CDC7 as a kinase occurs at the G1/S transition of the cell cycle and is dependent on the binding with another

factor, DBF4, at the G1/S transition of the cell cycle,

probably by phosphorylating proteins at the origins (Kitada et al, 1992; Genetics 131: 21-29, Lei et al; Genes and Development 11, 3365-3374, 1997). In order to function as a kinase, the CDC7 kinase may be a substrate for one or more 5 phosphorylation events. Overexpressed kinase-negative mutants of CDC7 arrest yeast cells in the G1 to S transition and Further experiments showed that growth. inhibit inactivation of wild-type CDC7 function probably can be explained through titration of DBF4 by the inactive cdc7 mutant 10 proteins (Ohtoshi et al., 1997, Mol Gen Genet 254, 562-570). In addition to mechanisms to control the onset of DNA replication, other mechanisms contribute to restrict DNA replication to occur only once during the cell cycle. For example, the CDC16, CDC23 and CDC27 proteins are part of a high 15 molecular weight complex, known as the anaphase promoting complex (APC) or cyclosome, (see Romanowski and Madine, Trends in Cell Biology 6, 184-188, 1996, and Wuarin and Nurse, Cell 85, 785-787 (1996), both incorporated herein by reference). The complex in yeast is composed of at least 8 proteins, the TPR 20 (tetratricopeptide repeat) containing proteins CDC16, CDC23 and CDC27, and five other subunits named APC1, APC2, APC4, APC5 and APC7 (Peters et al. 1996, Science 274, 1199-1201). degradation its substrates for proteolytic catalyzing the ligation of ubiquitin molecules to these APC-dependent proteolysis is required for the substrates. separation of the sister chromatids at meta- to anaphase transition and for the final exit from mitosis. Among the APCsubstrates are the anaphase inhibitor protein Pdslp and mitotic cyclins such as cyclin B, respectively (Ciosk et al. 1998, Cell 30 93, 1067-1076; Cohen-Fix et al. 1996, Genes Dev 10, 3081-3093; Sudakin et al. 1995, Mol Biol Cell 6, 185-198; Jorgensen et al. 1998, Mol Cell Biol 18, 468-476; Townsley and Ruderman 1998, Trends Cell Biol 8, 238-244). To become active as a ubiquitin-CDC16, CDC23 and CDC27 need least ligase, at 35 phosphorylated in the M-phase (Ollendorf and Donoghue 1997, J Biol Chem 272, 32011-32018). Activated APC persists throughout G1 of the subsequent cell cycle to prevent premature appearance of B-type cyclins which would result in an uncontrolled entry into S-phase (Irniger and Nasmyth 1997, J Cell Sci 110, 1523-1531). It has been demonstrated in yeast that mutations in 40

either of at least two of the APC components, CDC16 and CDC27, can result in DNA overreplication without intervening passages through M-phases (Heichman and Roberts 1996, Cell 85, 39-48). CDC16, CDC23 and CDC27 all are tetratricopeptide repeat (TPR) 5 containing proteins. A suggested minimal consensus sequence of the TPR motif is as follows: $X_3-W-X_2-L-G-X_2-Y-X_8-A-X_3-F-X_2-A-X_4 P-X_2$ (Lamb et al. 1994, EMBO J 13, 4321-4328; X denotes amino acid, X_n a stretch of n of such amino acids). However, the consensus residues can exhibit significant degeneracy and 10 little or no homology is present in non-consensus residues. The hydrophobicity and size of the consensus residues, rather than their identity, seems to be important. TPR motifs are present in a wide variety of proteins functional in yeast and higher eukaryotes in mitosis (including the APC protein 15 components CDC16, CDC23 and CDC27), transcription, splicing, protein import and neurogenesis (Goebl and Yanagida 1991, The TPR forms a α -helical Trends Biochem Sci 16, 173-177). tandem repeats organize into a superhelical structure, structure ideally suited as interfaces for protein recognition 20 (Groves and Barford 1999, Curr Opin Struct Biol 9, 383-389). Within the lpha-helix, two amphipathic domains are usually present, one at the NH2-terminus and the other near the COOHterminus (Sikorski et al. 1990, Cell 60 ,307-317).

In order to understand the mechanisms playing a role in plant cell cycle regulation, in particular the DNA replication, and to understand endoreduplication in plants, the present inventors isolated several novel plant DNA sequences, coding for novel proteins, or novel amino acid sequences thereof involved in the modulation of DNA replication, using degenerated PCR primers based on known genomic or cDNA sequences, e.g. of yeast, mammals and insects.

"Capable of modulating the DNA replication in plants" is to be understood as the capacity of a protein to alter the natural DNA replication mechanism in the said plant, e.g. by up- or down-regulation of the DNA replication in a way, different from the natural situation, or to a higher or lower extent with respect to the natural situation. The natural situation is to be understood as the situation wherein DNA replication takes place in plants, in which the DNA replication 40 machinery is not affected by the introduction of foreign

genetic material. Such altering includes mediating e.g. the onset of DNA replication, the rate and extent of DNA replication, the timing of DNA replication in the cell cycle, coupling or uncoupling DNA replication with/from actual subsequent cell division etcetera.

Proteins

25

30

By using degenerated oligonucleotides as amplification primers, based on conserved sequence regions of the CDC7

10 homologue gene of Saccharomyces cerevisiae and Schizosaccharomyces pombe and on conserved sequence regions of the CDC27 homologue genes of Schizosaccharomyces pombe and from Aspergillus Nidulans, drosophila and human, the present inventors surprisingly found such novel proteins and amino acid sequences. Reference is made to the examples.

Thus, novel cDNAs and proteins comprising one or more novel amino acid sequences were found. The present invention therefore relates in the first place to an at least partially purified protein, capable of modulating DNA replication in plants, at least comprising in the amino acid sequence

- a) one or more of the amino acid sequences chosen from the group consisting of those, given by SEQ ID NOS 2, 3 and 4,
- b) one or more of the amino acid sequences chosen from the group consisting of those, given by SEQ ID NOS 6, 7, 10 and 12.
 - c) one or more amino acid sequences having at least 50% amino acid identity with those of a), or
- d) one or more amino acid sequences having at least 50% amino acid identity with those of b).

By using degenerated CDC7 oligonucleotides to amplify a PCR fragment as is indicated above and will be further detailed in the examples, a novel Arabidopsis cDNA comprising coding sequence of an novel Arabidopsis CDC7 homologue gene was found (SEQ ID NO 8). By comparison of the said sequences with sequences of the EMBL and EMBLnew databanks, a genomic Arabidopsis thaliana sequence was found (accession number Z97342). In this known genomic sequence however, only 11 exons were identified. The novel DNA according to the present invention however clearly indicated the presence of 3

additional coding sequences coding for novel amino acid sequences (SEQ ID NO 2, 3, 4) being part of a DNA replication modulating plant protein, homologous to yeast CDC7.

acid sequence SEQ ID novel amino is located in two highly conserved 5 (GYGIVYKATRKTDGTEFAIK) domains in protein kinases, Domain I and II (Hawks et al., 1988, Science 241, 42-52). The sequence GYGIV is part of the nucleotide (ATP) binding domain, also known as Domain I in protein kinases. Domain I is part of the catalytic domain of 10 protein kinases. The Glycines (G) are believed to form an elbow around the nucleotide, and the Valine (V) is believed to contribute to positioning of the Glycines. The first Glycine and the Valine are invariant in all protein kinases. The second Glycine is almost invariant.

The sequence AIK in the same peptide is also highly conserved and it is located in Domain II, which is also part of the catalytic domain. The Alanine (A) and the Lysine (K) are invariant in all kinases, and the Isoleucine is highly conserved. The Lysine residue appears to be involved in 20 mediating the phosphotransfer reaction (Hawks et al, 1988).

15

35

This exon is responsible for the kinase activity of CDC 7. This implies that the CDC 7 coding sequence from the state of the art is not functional.

The novel exon encoded by amino acid sequence SEQ ID No 25 3 (DVIEKKDGPCSGTKGFRAPE) is part of Domain VIII of protein kinases. Mutagenesis has implicated a role of this domain in the catalytic activity (Hawks et al., 1988). In the sequence TKGFRAPE, the amino acids Threonine (T), Phenylalanine and Alanine (A) are highly conserved, and the Glutamic Acid (E) is corresponding substitution the Moreover, of 30 invariant. threonine in the yeast CDC7 homologue (position 281 of the yeast CDC7; position 722 in SEQ ID No 1) to a glutamate resulted in a dominant-negative CDC7mutant (Ohtoshi et al. 1997, Mol Gen Genet 254, 562-570).

The novel exon, encoded by amino acid sequences SEQ ID No 4 (NIKDIAQLRGSEELWEVAKLHNRESSFPK) is located in Domain XI of protein kinases, and that in the peptide, the first Leucine (L), and the second Lysine (K) are highly conserved and therefore are believed to be quite important for the correct 40 activity of the protein.

In addition, using degenerated CDC27 oligonucleotides, an Arabidopsis thaliana cDNA sequence termed CDC27Al was found, which upon comparison in the above mentioned databanks, showed high homology with an Arabidopsis thaliana genomic DNA sequence (accession number AC 001645). Again, the coding sequence of CDC27Al (SEQ ID NO 9), found by the present inventors, indicated the presence of two additional coding regions in the Arabidopsis CDC27, the gene, corresponding with the amino acid sequences given by SEQ ID NOS 6 and 7. Thus, novel DNA replication modulating proteins in plants were found, comprising one or more of the above mentioned novel amino acid sequences.

The novel exon encoded by amino acid sequence SEQ ID No 6 (VNLQLLARCYLSNQAYSAYYILK) is part of a unique NH2-terminal 15 domain conserved in CDC27 homologues of different origin. The unique domain is located upstream of the NH2-terminal TPR unit of CDC27 (Tugendreich et al. 1993, Proc Natl Acad Sci USA 90, 10031-10035). The role of this domain is currently not known, but its conservation suggests that it is indispensable for 20 CDC27 function. The NH2-terminal TPR of CDC27 is not tandemly repeated and spans the amino acid residues 174 to 202 in SEQ No 5. Proteins, comprising this novel exon sequence according to the invention may therefore promote APC-substrate action and therewith allowing DNA-replication. On the other 25 hand, a peptide comprising the novel exon sequence may be used to occupy the binding region of the substrates for the APC and therewith inhibiting the complex-substrate complex, inactivation of APC and interactions, resulting in polyploiddization/endoreduplication.

SEQ ID 30 amino acid sequence The novel (AYMERLILPDELVTEENL) is located just after the last (10th) TPR of CDC27 spanning the amino acid residues 670-703 in SEQ ID No 5. Carboxy-terminal extensions downstream from this 10th TPR and variable in length and sequence are common in all known 35 CDC27 proteins. However, the sequence SEQ ID No 7 shows 50 and 55% homology to the corresponding regions of the CDC27 Aspergillus Schizosaccaromyces pombe and homologues of and previously nidulans, respectively. Moreover, recognized, the 25 carboxy-terminal amino acids (ending with 40 SEQ ID No 7) immediately downstream of the 10th TPR compose

aids exists in the SKI3 antiviral protein of Saccharomyces cerevisiae (Rhee et al. 1989, Yeast 5, 149-158). Remarkably, three consecutive core amino acids of this TPR, RLI, are also present in SEQ ID No 7 and, although very limited, some further 5 homology can be discovered. Thus, although circumstancial, these data may suggest that SEQ ID No 7 is part of a truncated TPR. If so, the block of tandemly repeated TPRs in CDC27 should be extended from 9 (spanning amino acids 406 to 703 in SEQ ID No 5) to 10 (amino acids 704 to 728 in SEQ ID No 5).

10 Interestingly, it has been suggested that a dimer of the basic 34 amino acid TPR repeat is the more common evolutionary unit (Sikorski et al. 1990, Cell 60, 307-317).

By analyzing patterns of CDC27A1 expression, the present inventors furthermore identified the existence of a second isoform of the CDC27A1 gene. Said isoform, termed CDC27A2 is characterized in that a fragment of 33 nucleotides present in CDC27A1 (nucleotides 1029-1061 of SEQ ID NO 9) is missing in CDC27A2. The nucleotide sequence of the CDC27A2 cDNA is given in SEQ ID NO 14, the corresponding amino acid sequence of the CDC27A2 protein is defined in SEQ ID NO 11. SEQ ID NO 11 is different from SEQ ID NO 5 in that the amino acid sequence 'AIPDTVTLNDP' (SEQ ID NO 12) present in CDC27A1 is absent in CDC27A2.

Another CDC27-like gene from Arabidopsis thaliana was identified by the present inventors via in silico cloning. The gene, termed CDC27B has GenBank accession number AC006081 and is annotated as CDC27. However, upon isolation and characterization of the corresponding cDNA, the present inventors noticed that the amino acid sequence predicted and presented in GenBank is lacking the stretch of 161 NH₂-terminal amino acids as given in SEQ ID NO 10.

The cDNA sequence of CDC27B is defined in SEQ ID NO 15 and the derived amino acid sequence of the CDC27B protein is given in SEQ ID NO 13. The full-length CDC27B protein comprises a peptide 75% identical to the peptide as defined in SEQ ID NO 6. As discussed supra, SEQ ID NO 6, and thus also SEQ ID NO 10, are part of a unique NH₂-terminal domain conserved in CDC27 homologues of different origin.

The effect of mutations in one out of the tandem series 40 of TPRs can be very specific. For instance, a point mutation

in the most highly conserved 7th TPR domain of yeast CDC27 results in a greatly reduced affinity for interaction with yeast CDC23, but not for interaction with yeast CDC16 or wildtype CDC27. A single amino acid insertion in the same domain 5 destroys the α -helix and abolishes interaction with wild-type CDC27 as well as CDC16 (Lamb et al. 1994, EMBO J 13, 4321-Moreover, detailed experiments with the human TPRcontaining CDC16 and CDC27 homologues and another TPRcontaining protein regulating the APC-activity, PP5, revealed 10 that TPR proteins display discriminate binding to other TPR proteins. More specifically for CDC27, deletion of the first TPR domain in this protein abolishes CDC16 binding, but not PP5 binding (Ollendorf and Donoghue 1997, J Biol Chem 272, 32011-32018). Mutagenesis studies with the yeast CDC23 showed that 15 only a few residues in or near the most canonical 6th TPR unit result in temperature-sensitive defects (Sikorski et al. 1993, Mol Cell Biol 13, 1212-1221). Separate TPR domains thus seem to be involved in specific interactions with other proteins and only very limited alterations in these domains seem to be 20 tolerated.

Any erroneous modulation of APC activity, e.g. mutations in SEQ ID No 6 as part of a conserved sequence in CDC27 proteins and/or SEQ ID No 7 being a putative novel truncated TPR motif in CDC27, will likely result in loss of 25 control over normal DNA replication cycles via the mechanisms described above. Mutations in CDC27 can indeed trigger DNA overreplication and thus the generation of polyploid cells (Heichmann Roberts 1996, Cell 85, 39-48). and endoreduplication might be related to cell expansion (Traas et 30 al. 1998, Curr Opin Plant Biol 1, 498-503) and, thus, a higher storage capacity in such polyploid cells. This advantageous property is highly desired in crop plants or parts of plants such as seeds, roots, tubers and fruits.

Modulating the said amino acid sequence would impair the formation of functional APC, whereas cdc27 comprising such a mutation would still be able to interact with the substrate and therewith titrating the substrate out, leading to the abolishment of APC-function in the plant cell, resulting in polyploid cells.

40

It is to be understood, that DNA replication modulating

proteins according to the present invention, comprising one or more of the above mentioned amino acid sequences, or having 80% amino acid identity therewith, may originate from plant species as well as from other species as long as the said proteins are capable of modulating DNA replication in one or more plant species.

The term "protein" is to be understood as any amino acid sequence having a biological function, optionally modified by e.g. glycosylation. The protein according to the present invention preferably comprises one or more of the amino acid sequences according to c) or d), the respective amino acid identity preferably being at least 50%.

The term "protein" includes single-chain polypeptide molecules as well as multiple-polypeptide complexes where individual constituent polypeptides are linked by covalent or non-covalent means. The term "polypeptide" includes peptides of two or more amino acids in length, typically having more than 5, 10 or 20 amino acids.

It will be understood that amino acid sequences of the invention are not limited to the sequences obtained from the particular protein but also include homologous sequences obtained from any source, for example related plant proteins, cellular homologues and synthetic peptides, as well as variants or derivatives thereof.

Thus, the present invention covers variants, homologues or derivatives of the amino acid sequences of the present invention, as well as variants, homologues or derivatives of the nucleotide sequence coding for the amino acid sequences of the present invention.

In the context of the present invention, a homologous sequence is taken to include an amino acid sequence which is at least 50, 60, 70, 80 or 90% identical, preferably at least 95 or 98% identical at the amino acid level over at least 18, preferably all amino acids within the sequences as shown in SEQ ID Nos 2, 3, 4, 6 and 7 in the sequence listing herein. In particular, homology should typically be considered with respect to those regions of the sequence known to be essential for the above discussed functions of the novel amino acid sequences rather than non-essential neighbouring sequences.

Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

% Homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues (for example less than 50 contiguous amino acids).

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or 20 deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

complex methods assign these more However, penalties" to each gap that occurs in the alignment so that, 30 for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the 35 existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use 40 the default values when using such software for sequence

comparisons. For example when using the GCG Wisconsin Bestfit package (see below) the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

Calculation of maximum % homology therefore firstly 5 requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other 10 software than can perform sequence comparisons include, but are package the BLAST not limited to, http://www.ncbi.nih.gov/BLAST/), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410; FASTA is available for online searching example, http://www.2.ebi.ac.uk.fasta3) and the 15 GENEWORKS suite of comparison tools. However it is preferred to use the GCG Bestfit program.

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). It is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.

Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

Polypeptide Variants and Derivatives

35

The terms "variant" or "derivative" in relation to the amino acid sequences of the present invention includes any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acids from or to the sequence providing the resultant amino acid sequence has

WO 01/02430 12 PCT/EP00/06401

similar activity as the polypeptides presented in the sequence listings.

The sequences of the invention may be modified for use in the present invention. Typically, modifications are made that 5 maintain the activity of the sequence. Amino acid substitutions may be made, for example from 1, 2 or 3 to 10, 20 or 30 substitutions provided that the modified sequence retains the relevant activity. E.g. the kinase activity should be maintained in such a variant of a peptide according to the 10 invention comprising SEQ ID NO 2. Amino acid substitutions may include the use of non-naturally occurring analogues, for example to increase blood plasma half-life of a therapeutically administered polypeptide.

Conservative substitutions may be made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

5

ALIPHATIC	Non-polar	GAP
	* .	ILV
	Polar - uncharged	CSTM
	W	N Q
	Polar - charged	DE
		KR
AROMATIC		HFWY

typically made invention are 10 Proteins of the recombinant means. However they may also be made by synthetic means using techniques well known to skilled persons such as solid phase synthesis. Proteins of the invention may also be produced as fusion proteins, for example to aid in extraction 15 and purification. Examples of fusion protein partners include glutathione-S-transferase (GST), 6xHis, GAL4 (DNA binding and/or transcriptional activation domains) and β -galactosidase. It may also be convenient to include a proteolytic cleavage site between the fusion protein partner and the protein 20 sequence of interest to allow removal of fusion protein sequences. Preferably the fusion protein will not hinder the function of the protein of interest sequence.

Proteins of the invention may be in a substantially isolated form. It will be understood that the protein may be mixed with carriers or diluents which will not interfere with the intended purpose of the protein and still be regarded as substantially isolated. A protein of the invention may also be in a substantially purified form, in which case it will generally comprise the protein in a preparation in which more than 90%, e.g. 95%, 98% or 99% of the protein in the preparation is a protein of the invention.

In a special embodiment, the protein according to the present invention comprises the amino acid sequence as given in SEQ ID NO 1 or NO 5 or NO 11 or NO 13, or has at least 50%, preferably at least 60%, more preferably at least 70, still more preferably 80% and most preferably at least 90% amino acid identity with one of the said sequences. SEQ ID NO 1 relates to the complete amino acid sequence (889 AA) of the novel CDC7 protein according to the present invention comprising SEQ ID

NOS 2, 3 and 4 (AA 411-430, 710-729, 767-795). SEQ ID NO 5 is the complete amino acid sequence (727 AA) of the novel plant CDC27A1 comprising SEQ ID NOS 6 and 7 and 12 (AA 37-60 and AA 711-727 and AA 344-354 respectively). SEQ ID NO 11 is the 5 complete amino acid sequence (716 AA) of the novel plant CDC27A2 comprising SEQ ID NOS 6 and 7 (AA 37-60 and AA 700-716, respectively) but lacking SEQ ID NO 12.

SEQ ID NO 13 is the complete amino acid sequence (739 AA) of the novel plant CDC27B comprising SEQ ID NO 10 (AA-1-161) which itself comprises a peptide 75% identical to SEQ ID NO 6 (AA 36-59).

Although the proteins according to the present invention may be of non-plant origin, as is indicated above, the protein according to the present invention is preferably a plant protein, more preferably a CDC7 or CDC27 protein, or a functional analogue thereof. A functional analogue is to be understood as any protein or peptide having similar biological effects as a plant CDC7 protein or a CDC27 protein, irrespectively of the origin thereof.

20

Mutein

In another embodiment, the present invention relates to a mutein of the protein according to the present invention, said mutein comprising at least one amino acid substitution, 25 deletion or addition, affecting the DNA replicative effect of the said protein.

As is already indicated above, the proteins according to the present invention are of high interest for an improvement of e.g. agricultural crops or parasite resistance. By substituting, deleting or adding amino acids to the protein according to the present invention, the modulating effect thereof can be affected, which may lead to desirable or improved properties of the protein.

In particular, DNA replication modulating proteins according to the invention may be activated or deions or additions may be situated within or flanking the amino acid sequence, as given by SEQ ID NOS 2, 3, 4, 6, 7, 10 or 12 (or having at least 50% amino acid identity therewith).

DNA replicating modulating proteins according to the 40 invention may also comprise one or more tetratricopeptide

repeat (TPR) domains. Such domains have been identified in CDC27 (amino acid regions 174-202, 403-431, 432-465, 466-499, 500-533, 534-567, 568-601, 602-635, 636-669, 670-703 in SEQ ID No 5; delineation of regions based on the yeast CDC27 5 homologue; Lamb et al. 1994, EMBO J 13, 4321-4328) as well as in CDC16, CDC23 and many other proteins (Goebl and Yanagida 1991, Trends Biochem Sci 16, 173-177). The function of these TPR domains is to enable the protein to interact with other proteins in the anaphase promoting complex (APC). 10 CDC27 protein according to the present invention, a novel TPR or TPR-like domain has been identified which includes SEQ ID No 7. Mutation analysis in TPR domains of yeast CDC27 has revealed that intact TPRs are necessary for CDC27 function (Lamb et al. 1984, EMBO J 13, 4321-4328) and, thus, also for In the absence of CDC27 function, DNA 15 a functional APC. synthesis becomes uncoupled from cell cycle progression resulting in the establishment of polyploid cells (Heichman and Roberts 1996, Cell 85, 39-48).

20 Peptides

25

30

Further, the present invention relates to a peptide, comprising

- a) one or more of the amino acid sequences chosen from the group consisting of those given by SEQ ID NOS 2, 3 and 4,
 - b) one or more of the amino acid sequences chosen from the group consisting of those, given by SEQ ID NOS 6 and 7,
- c) one or more amino acid sequences having at least 50 % amino acid identity with those of a), or
 - d) one or more amino acid sequences having at least 50% amino acid identity with those of b).

These peptides, firstly identified by the present inventors, are or maybe part of important regulatory sites for binding cellular factors or being a substrate for activating/deactivating mechanisms, such as phosphorylation.

Antibodies

Furthermore, the present invention relates to antibodies 40 specifically recognizing a cell cycle interacting protein

according to the invention or parts, i.e. specific fragments or epitopes, of such a protein. The antibodies of the invention can be used to identify and isolate other cell cycle interacting proteins and genes in any organism, preferably antibodies can be monoclonal antibodies, These polyclonal antibodies or synthetic antibodies as well fragments of antibodies, such as Fab, Fv or scFv fragments etc. Monoclonal antibodies can be prepared, for example, by the techniques as originally described in Köhler and Milstein, 10 Nature 256 (1975), 495, and Galfré, J. Meth. Enzymol. (1981), 3, which comprise the fusion of mouse myeloma cells to spleen cells derived from immunized mammals. Furthermore, antibodies or fragments thereof to the aforementioned peptides can be obtained by using methods which are described, e.g., in 15 Harlow and Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, 1988. These antibodies can be used, for example, for the immunoprecipitation and immunolocalization of proteins according to the invention as well as for the monitoring of the synthesis of such proteins, for example, in 20 recombinant organisms, and for the identification of compounds interacting with the protein according to the invention. For example, surface plasmon resonance as employed in the BIAcore system can be used to increase the efficiency of phage antibodies selections, yielding a high increment of affinity 25 from a single library of phage antibodies which bind to an epitope of the protein of the invention (Schier, Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13). In many cases, the binding phenomena of antibodies to antigens is equivalent to other ligand/anti-30 ligand binding.

DNA sequences

Further, the present invention relates to a non-genomic DNA sequence, coding for a protein or mutein or peptide according to the present invention, or a DNA sequence having a sequence homology of at least 75% with the said sequence, or to the complementary sequence thereof. Also DNA sequences having at least 75% homology with the above mentioned DNA sequences are encompassed within the invention. These sequences are particularly useful in the generation of DNA vectors to

multiply the DNA sequence or to introduce the said sequence in a host organism, in order to obtain the encoded protein. Further said sequences or parts thereof are advantageously used to identify and isolate homologous sequences from other 5 biological species.

The DNA sequence is preferably substantially free of sequences intervening the coding sequence, and is preferably cDNA.

DNA-sequences of the invention comprise nucleic acid 10 sequences encoding the amino acid sequences of the invention. It will be understood by a skilled person that numerous different polynucleotides can encode the same polypeptide as a result of the degeneracy of the genetic code. In addition, it is to be understood that skilled persons may, using routine 15 techniques, make nucleotide substitutions that do not affect the polypeptide sequence encoded by the polynucleotides of the invention to reflect the codon usage of any particular host organism in which the polypeptides of the invention are to be expressed.

20

Polynucleotides of the invention may comprise DNA or RNA. They may be single-stranded or double-stranded. They may also be polynucleotides which include within them synthetic or modified nucleotides. A number of different modification to oligonucleotides are known in the art. These 25 include methylphosphonate and phosphorothicate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the polynucleotides described herein may be modified by any method available in the 30 art. Such modifications may be carried out in order to enhance the in vivo activity or life span of polynucleotides of the invention.

The terms "variant", "homologue" or "derivative" relation to the nucleotide sequence of the present invention 35 include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence providing the resultant nucleotide sequence codes for a polypeptide, preferably having at least the same activity as sequences presented in the 40 sequence listings.

As indicated above, with respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to the sequences shown in the sequence listing herein. More preferably there is at least 95%, more preferably at least 98%, homology. Nucleotide homology comparisons may be conducted as described above. A preferred sequence comparison program is the GCG Winsconsin Bestfit program described above. The default scoring matrix has a match value of 10 for each identical nucleotide and -9 for each mismatch. The default gap creation penalty is -50 and the default gap extension penalty is -3 for each nucleotide.

The present invention also encompasses nucleotide sequences that are capable of hybridising selectively to the sequences presented herein, or any variant, fragment or derivative thereof, or to the complement of any of the above. Nucleotide sequences are preferably at least 15 nucleotides in length, more preferably at least 20, 30, 40 or 50 nucleotides in length.

The term "hybridization" as used herein shall include "the 20 process by which a strand of nucleic acid joins with a complementary strand through base pairing" as well as the process of amplification as carried out in polymerase chain reaction technologies.

30, for instance at least 40, 60 or 100 or more contiguous nucleotides. Preferred polynucleotides of the invention will comprise regions preferably at least 80 or 90% and more preferably at least 95% homologous to nucleotides (1229-1291), (2126-2187) or (2298-2385) of SEQ ID No 8 or (109-181) or (2125-2181) or (1029-1061) of SEQ ID No 9; or (109-181) or (2092-2148) of SEQ ID NO 14; or (1-483) of SEQ ID NO 15. Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex, as taught in Berger and Kimmel (1987, Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol 152, Academic Press, San Diego CA),

and confer a defined "stringency" as explained below.

Maximum stringency typically occurs at about Tm-5°C (5°C below the Tm of the probe); high stringency at about 5°C to 10°C below Tm; intermediate stringency at about 10°C to 20°C below Tm; and low stringency at about 20°C to 25°C below Tm. As will be understood by those of skill in the art, a maximum

stringency hybridization can be used to identify or detect identical polynucleotide sequences while an intermediate (or low) stringency hybridization can be used to identify or detect similar or related polynucleotide sequences.

- 5 In a preferred aspect, the present invention covers nucleotide sequences that can hybridise to the nucleotide sequence of the present invention under stringent conditions (e.g. 65°C and 0.1xSSC {1xSSC = 0.15 M NaCl, 0.015 M Na₃ Citrate pH 7.0).
 - Where the polynucleotide of the invention is double-stranded,
- 10 both strands of the duplex, either individually or combination, are encompassed by the present invention. Where the polynucleotide is single-stranded, it is to be understood that the complementary sequence of that polynucleotide is also included within the scope of the present invention.
- 15 Polynucleotides which are not 100% homologous to the sequences of the present invention but fall within the scope of the invention can be obtained in a number of ways. Other variants of the sequences described herein may be obtained for example by probing DNA libraries made from a range of individuals, for
- 20 example individuals from different populations. In addition, other viral/bacterial, or cellular homologues particularly cellular homologues found in plant cells, may be obtained and such homologues and fragments thereof in general will be capable of selectively hybridising to the sequences shown in
- 25 the sequence listing herein. Such sequences may be obtained by probing cDNA libraries made from or genomic DNA libraries from other animal species, and probing such libraries with probes comprising all or part of SEQ ID Nos 8 or 9 or 14 or 15. This
- may be useful where for example under conditions of medium to
- 30 high stringency. Similar considerations apply to obtaining species homologues and allelic variants of the polypeptide or nucleotide sequences of the invention.

Variants and strain/species homologues may also be obtained using degenerate PCR which will use primers designed to target 35 sequences within the variants and homologues encoding conserved amino acid sequences within the sequences of the present invention. Conserved sequences can be predicted, for example, amino acid sequences from the aligning variants/homologues. Sequence alignments can be performed using

40 computer software known in the art. For example the GCG

Wisconsin PileUp program is widely used.

The primers used in degenerate PCR will contain one or more degenerate positions and will be used at stringency conditions lower than those used for cloning sequences with single 5 sequence primers against known sequences.

Alternatively, such polynucleotides may be obtained by site directed mutagenesis of characterised sequences, such as SEQ ID No 8 or 9. This may be useful where for example silent codon changes are required to sequences to optimise codon preferences for a particular host cell in which the polynucleotide sequences are being expressed. Other sequence changes may be desired in order to introduce restriction enzyme recognition sites, or to alter the property or function of the polypeptides encoded by the polynucleotides.

15 Polynucleotides of the invention may be used to produce a primer, e.g. a PCR primer, a primer for an alternative amplification reaction, a probe e.g. labelled with a revealing label by conventional means using radioactive or non-radioactive labels, or the polynucleotides may be cloned into vectors. Such primers, probes and other fragments will be at least 15, preferably at least 20, for example at least 25, 30 or 40 nucleotides in length, and are also encompassed by the term polynucleotides of the invention as used herein.

Polynucleotides such as a DNA polynucleotides and probes according to the invention may be produced recombinantly, synthetically, or by any means available to those of skill in the art. They may also be cloned by standard techniques.

In general, primers will be produced by synthetic means, involving a step wise manufacture of the desired nucleic acid sequence one nucleotide at a time. Techniques for accomplishing this using automated techniques are readily available in the art.

Longer polynucleotides will generally be produced using recombinant means, for example using a PCR (polymerase chain reaction) cloning techniques. This will involve making a pair of primers (e.g. of about 15 to 30 nucleotides) flanking a region of the lipid targeting sequence which it is desired to clone, bringing the primers into contact with mRNA or cDNA obtained from an animal or human cell, performing a polymerase chain reaction under conditions which bring about amplification

of the desired region, isolating the amplified fragment (e.g. by purifying the reaction mixture on an agarose gel) and recovering the amplified DNA. The primers may be designed to contain suitable restriction enzyme recognition sites so that the amplified DNA can be cloned into a suitable cloning vector. For expression of the DNA sequence according to the invention it may in some instances be advantageous to incorporate one or more intervening sequences (introns) in the sequence coding for the protein to be expressed, as in some expression systems, one or more splicing events must take place in order to obtain high expression rates (e.g. for expression of a barley thionin in transgenic tobacco; Carmona et al. 1993, Plant J 3, 457-462). However, in most cases, the coding sequence (i.e. the cDNA), accompanied by the proper regulatory elements, such as promotor and terminator sequences, are sufficient for proper expression.

In a special embodiment (referring to figs 1 and 2), the invention relates to a cDNA sequence, comprising the DNA sequence as given by SEQ ID NO 8 or SEQ ID NO 9 or SEQ ID NO 14 or SEQ ID NO 15, or having a sequence homology with SEQ ID NO 8 or SEQ ID NO 9 or SEQ ID NO 14 or SEQ ID NO 15 of at least 75% or is the complementary sequence thereof. SEQ ID NO 8 is the cDNA sequence of CDC7 of Arabidopsis thaliana, comprising the coding sequence for the newly identified amino acid sequences (SEQ ID NOS 2, 3 and 4) as are discussed above. SEQ ID NO 9, is the cDNA sequence of CDC27 of Arabidopsis thaliana, includes the sequences coding for the newly identified amino acid sequences (SEQ ID NOS 6 and 7 and 12) as discussed above. SEQ ID NO 14 is the cDNA sequence of CDC27A2 of Arabidopsis 30 thaliana and includes the sequences coding for the newly identified amino acid sequences (SEQ ID Nos 6 and 7) discussed above but lacks the sequence coding for the newly identified amino acid sequence (SEQ ID NO 12).

SEQ ID NO 15 is the cDNA sequence of CDC27B of Arabidopsis thaliana and includes the sequences coding for the newly identified amino acid sequence (SEQ ID NO 10) as discussed above.

The presence of the amino acid sequences according to the present invention in DNA replication modulating proteins, in particular in CDC7 and CDC27 respectively, may play an

important role in the biological function of the said proteins. Also, the sequences according to SEQ ID NOS 8 and 9 and 14 and 15, or parts thereof, can advantageously be used to isolate and identify homologntary sequence thereof. Such a DNA sequence 5 codes for an amino acid sequence that till now was not known to be part of DNA replication modulating proteins, particular of CDC7 and CDC27. It was now found, that DNA sequences, corresponding to the nucleotides 1229-1291, 2126-2187 and 2298-2385 of SEQ ID NO 8 code for new amino acid 10 sequences of plant CDC7. The DNA sequence, corresponding to nucleotides 109-181 and 2125-2148 of SEQ ID NO 9 code for novel amino acid sequences of plant CDC27A1, of Arabidopsis thaliana. The DNA sequence, corresponding to nucleotides 109-181 and 2092-2148 of SEQ ID NO 14 code for novel amino acid sequences 15 of plant CDC27A2 of Arabidopsis thaliana. The DNA sequence, corresponding to nucleotides 1-483 of SEQ ID NO 15 codes for novel amino acid sequence of plant CDC27B of Arabidopsis thaliana. Said DNA sequences may therefore in particular be used to identify and isolate genes or gene fragments from other 20 plants or organisms that are homologous to the CDC7 or CDC27 sequence discussed above.

Probes and primers

In a further embodiment, the DNA sequences according to the 25 invention may be used as primers for use in a nucleic acid amplification technique. Said primers can be used in particular amplification technique to identify and isolate substantially homologous nucleic acid molecules from other plant species. The design and use of said primers is known by 30 the person skilled in the art. Preferably such amplification sequence of at primers comprise a contiguous nucleotides, in particular 13 nucleotides, preferably 15 to 25 identical or complementary to the nucleotides or more, nucleotide sequence encoding the amino acid sequence of SEQ ID 35 Nos 1-7 and 10-13. Another application is the use as a hybridization probe to identify nucleic acid molecules hybridizing with a nucleic acid molecule of the invention by libraries. homology screening of DNA or cDNA genomic Furthermore, the person skilled in the art is well aware that 40 it is also possible to label such a nucleic acid probe with an

appropriate marker for specific applications, such as for the detection of the presence of a nucleic acid molecule of the invention in a sample derived from an organism, in particular plants. A number of companies such as Pharmacia Biotech (Piscataway NJ), Promega (Madison WI), and US Biochemical Corp (Cleveland OH) supply commercial kits and protocols for these procedures. Suitable reporter molecules or labels include those radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors,

10 inhibitors, magnetic particles and the like. The nucleic acid sequence for a protein of the invention can also be used to generate hybridization probes for mapping the naturally occurring genomic sequence. The sequence may be mapped to a particular chromosome or to a specific region of 15 the chromosome using well known techniques. These include in spreads, situ hybridization to chromosomal flow-sorted artificial preparations, or chromosomal constructions such as yeast artificial chromosomes, bacterial artificial chromosomes, bacterial P1 constructions or single 20 chromosome cDNA libraries as reviewed in Price (Blood Rev. 7 (1993), 127-134) and Trask (Trends Genet. 7 (1991), 149-154).

Vectors

Polynucleotides of the invention can be incorporated into a 25 recombinant replicable vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus in a further embodiment, the invention provides a method of making introducing invention by polynucleotides of the polynucleotide of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector. The vector may be recovered from the host cell. Suitable host cells include bacteria such as E. coli, yeast, mammalian cell lines and other eukaryotic cell lines, for 35 example insect Sf9 cells.

Preferably, a polynucleotide of the invention in a vector is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector. The term "operably linked" means that the components described are in

a relationship permitting them to function in their intended manner. A regulatory sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under condition compatible with the 5 control sequences.

The control sequences may be modified, for example by the addition of further transcriptional regulatory elements to make the level of transcription directed by the control sequences more responsive to transcriptional modulators.

10 Vectors of the invention may be transformed or transfected into a suitable host cell as described below to provide for expression of a protein of the invention. This process may comprise culturing a host cell transformed with an expression vector as described above under conditions to provide for expression by the vector of a coding sequence encoding the protein, and optionally recovering the expressed protein.

The vectors may be for example, plasmid or virus vectors provided with an origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally

a regulator of the promoter. The vectors may contain one or more selectable marker genes, for example an ampicillin resistance gene in the case of a bacterial plasmid or a neomycin resistance gene for a mammalian vector. Vectors may be used, for example, to transfect or transform a host cell.

25 Control sequences operably linked to sequences encoding the protein of the invention include promoters/enhancers and other expression regulation signals. These control sequences may be selected to be compatible with the host cell for which the expression vector is designed to be used in. The term promoter

30 is well-known in the art and encompasses nucleic acid regions ranging in size and complexity from minimal promoters to promoters including upstream elements and enhancers.

The promoter is typically selected from promoters which are functional in mammalian, cells, although prokaryotic promoters and promoters functional in other eukaryotic cells may be used.

The promoter is typically derived from promoter sequences of viral or eukaryotic genes. For example, it may be a promoter derived from the genome of a cell in which expression is to occur. With respect to eukaryotic promoters, they may be

40 promoters that function in a ubiquitous manner (such as

promoters of a-actin, b-actin, tubulin) or, alternatively, a tissue-specific manner (such as promoters of the genes for pyruvate kinase). Tissue-specific promoters specific for selected plant tissue cells are particularly preferred, see below in section "transgenic plants".

It may also be advantageous for the promoters to be inducible so that the levels of expression of the heterologous gene can be regulated during the life-time of the cell. Inducible means that the levels of expression obtained using the promoter can be regulated.

In addition, any of these promoters may be modified by the addition of further regulatory sequences, for example enhancer sequences. Chimeric promoters may also be used comprising sequence elements from two or more different promoters described above.

Therefore, the invention relates to DNA vectors, particularly plasmids, cosmids, viruses, bacteriophages and other vectors used conventionally in genetic engineering that comprise a DNA sequence according to the invention. Methods which are well known to those skilled in the art can be used to construct various plasmids and vectors: see for example, the techniques described in Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Habor Laboratory (1989) N.Y. and Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. (1989), (1994). Said vector further preferably comprises a promoter, functional in plant cells, operably linked to the DNA sequence, according to the invention. With such a vector, the DNA sequence according to the invention can be expressed in plant cells and may modulate the DNA replication in the said cells.

Identifying derivatives, variants and homologs of the cell cycle interacting proteins of the invention

In another embodiment, the present invention relates to a method for identifying and/or obtaining proteins capable of modulating the DNA repliction in plants, comprising a two-hybrid screening assay, using CDC27 or CDC7 polynucleotide sequences as a bait and a cDNA library of a cell suspension culture as prey.

The yeast two-hybrid assay is a genetic strategy developed to identify proteins (encoded by the cDNAs, the 'preys') able to known protein (the vivo with а are detected through between proteins Interactions 5 reconstitution of the activity of a transcription activator and the subsequent expression of a reporter gene. The cell culture may be from any organism possessing cell cycle interacting proteins such as animals, preferably mammals. Particularly preferred are plant cell suspension cultures such as from 10 Arabidopsis. The nucleic acid molecules encoding proteins or peptides identified to interact with CDC7 or CDC27 in the above mentioned assay can be easily obtained and sequenced by methods known in the art. Therefore, the present invention also relates to a DNA sequence encoding a cell cycle interacting protein 15 obtainable by the method of the invention.

Transgenic plants

To analyse the industrial applicabilities of the invention, transformed plants can be made using the nucleotide sequences according to the invention. Such a transformation of the new gene(s), proteins or inactivated variants/muteins thereof will either positively or negatively have an effect on cell division. Methods to modify the expression levels and/or the activity are known to persons skilled in the art and include for instance overexpression, co-suppression, the use of ribozymes, sense and anti-sense strategies, gene silencing approaches. "Sense strand" refers to the strand of a double-stranded DNA molecule that is homologous to a mRNA transcript thereof. The "anti-sense strand" contains an inverted sequence which is complementary to that of the "sense strand".

Hence, the nucleic acid molecules according to the invention

Hence, the nucleic acid molecules according to the invention are in particular useful for the genetic manipulation of plant cells in order to modify the characteristics of plants and to obtain plants with modified, preferably with improved or useful phenotypes. Similarly, the invention can also be used to modulate the cell division and the growth of cells, preferentially plant cells, in in vitro cultures. A transformed plant can thus be obtained by transforming a plant cell with a gene encoding a polypeptide concerned or fragment thereof alone or in combination. For this purpose tissue specific

promoters, in one construct or being present as a separate construct in addition to the sequence concerned, can be used. Thus, the present invention relates to a method for the production of transgenic plants, plant cells or plant tissue comprising the introduction of a nucleic acid molecule or vector of the invention into the genome of said plant, plant cell or plant tissue.

The invention further relates to a method for modulating DNA replication in plant cells, plant parts or plants by conferring to one or more plant cells the capacity to provide a protein, or a mutein thereof according to the invention, in an amount sufficient to modulate DNA replication and/or to block mitosis of the said cells.

In particular, the said capacity is conferred to one or more 15 plant cells, by

- a) transforming one or more plant cells with DNA according to the invention or with a vector according to the invention,
- b) maintain or culture the plant cells in order to 20 regenerate plant parts or plants from the transformed cells
- c) incubating the cells, plant parts or plants at conditions, allowing expression of the DNA according to claim 11 or 12, to produce a protein according to the invention or a mutein thereof according to the invention. For the expression 25 of the nucleic acid molecules according to the invention in sense or antisense orientation in plant cells, the molecules are placed under the control of regulatory elements which ensure the expression in plant cells. These regulatory elements may be heterologous or homologous with respect to the nucleic 30 acid molecule to be expressed as well with respect to the plant species to be transformed. In general, such regulatory elements comprise a promoter active in plant cells. To obtain expression in all tissues of a transgenic plant, preferably constitutive promoters are used, such as the 35 S promoter of CaMV (Odell, 35 Nature 313 (1985), 810-812) or promoters of the polyubiquitin genes of maize (Christensen, Plant Mol. Biol. 18 (1982), 675-689). In order to achieve expression in specific tissues of a transgenic plant it is possible to use tissue promoters (see, e.g., Stockhaus, EMBO J. 8 (1989), 2245-2251). 40 Known are also promoters which are specifically active in

tubers of potatoes or in seeds of different plants species, such as maize, Vicia, wheat, barley etc. Inducible promoters may be used in order to be able to exactly control expression. An example for inducible promoters are the promoters of genes heat shock proteins. Also microspore-specific regulatory elements and their uses have been described (WO96/16182). Furthermore, the chemically inducible Tet-system may be employed (Gatz, Mol. Gen. Genet. 227 (1991); 229-237). Further suitable promoters are known to the person skilled in 10 the art and are described, e.g., in Ward (Plant Mol. Biol. 22 (1993), 361-366). The regulatory elements may further comprise transcriptional and/or translational enhancers functional in plants cells. Furthermore, the regulatory elements may include transcription termination signals, such as a poly-A signal, 15 which lead to the addition of a poly A tail to the transcript which may improve its stability.

Methods for the introduction of foreign DNA into plants are also well known in the art. These include, for example, the transformation of plant cells or tissues with T-DNA using 20 Agrobacterium tumefaciens or Agrobacterium rhizogenes, the fusion of protoplasts, direct gene transfer (see, e.g., EP-A 164 575), injection, electroporation, biolistic methods like particle bombardment, pollen-mediated transformation, plant RNA virus-mediated transformation, liposome-mediated transformation, transformation using wounded or enzyme-degraded immature embryos, or wounded or enzyme-degraded embryogenic callus and other methods known in the art.

In general, the plants which can be modified according to the invention and which either show overexpression of a protein according to the invention or a reduction of the synthesis of such a protein can be derived from any desired plant species. They can be monocotyledonous plants or dicotyledonous plants, preferably they belong to plant species of interest in agriculture, wood culture or horticulture interest, such as crop plants (e.g. maize, rice, barley, wheat, rye, oats etc.), potatoes, oil producing plants (e.g. oilseed rape, sunflower, pea nut, soy bean, etc.), cotton, sugar beet, sugar cane, leguminous plants (e.g. beans, peas etc.), wood producing plants, preferably trees, etc. The invention further relates to progeny of such plants and to plant material such as roots,

flowers, fruit, leaves, pollen, seeds, seedlings or tubers, obtainable from the plant according to the invention.

The invention further relates to a plant cell, transformed with a vector according to the present invention, or comprising DNA according to the present invention. The invention also relates to plants, obtainable by the method according to the present invention and to progeny of such a plant and to plant material, such as roots, flowers, fruit, leaves, pollen, seeds, seedlings or tubers, obtainable from the plant according to the invention.

Mutants

In further embodiments of the invention, expression of dominant negative mutants of CDC7 or CDC27 are used to modulate DNA 15 replication in plant cells, plant tissues, plant organs and/or whole plants. These embodiments involve the overexpression of a mutein or mutant gene according to the present invention which will inhibit the function of a wild-type allele when expressed in the same cell, thereby the phenotype of a 20 transgenic plant, plant organ or plant cell expressing the mutant will be that of a blocked cell cycle progression. 329: 219-222 Herskowitz, Nature (1987), reviews inactivation of genes by interference at the protein level, which is achieved through the expression of specific genetic 25 elements encoding a polypeptide comprising both intact, functional domains of the wild type protein as well as nonfunctional domains of the same wild type protein. Such peptides are known as dominant negative mutant proteins. Examples of dominant negative mutants are given below.

30

CDC7 dominant negative mutant - Nematode resistance

In a special embodiment of the present invention, a DNA vector comprises DNA, coding for a mutein according to the present invention, that is operably linked to a nematode-induced promoter, said promoter functional in plant cells. Nematode infection of plants may cause severe problems to plant growth and crop generation. After penetrating the roots of their hosts, nematodes induce, at the infection sites, the development of feeding cells, specialised in the uptake of solutes from the vascular system of the plant. These infection

sites are of crucial importance for the development for the this way, root-knot nematodes In multinucleated giant cells in the infected plant with highly elevated DNA contents. By specifically blocking the DNA 5 synthesis in the feeding cells, the formation of the said multinucleated giant cells may be blocked, so that the nematodes may not further develop. One can contemplate that a CDC7 mutein, which is not further capable to induce the onset synthesis, e.g. by loss of one DNA 10 phosphorylation sites or loss of binding function to a plant homolog of yeast DBF4 (Jackson et al 1993 Mol Cell Biol 13, 2899-2908) could, when present in sufficient amounts, block the onset of the DNA synthesis. When DNA, coding for such a mutein, and under the control of a promoter, functional in plant cells 15 and inducible by the presence of nematodes in or in the vicinity of the plant cells, is comprised in the plant cells, the mutein can be expressed in the presence or vicinity of nematodes. This may lead to a DNA synthesis block, therewith avoiding further nematode development. The advantage of such 20 a system is the fact that the plant is not producing any heterologous nematocide, that may be harmful for the plant itself. Such a system is not restricted to CDC7. The person, skilled in the art, aware of this application, will be well aware of the possibilities to take other DNA replication 25 modulating proteins, such as CDC27 for developing an analogous anti-nematode system.

CDC27 mutant - Endoreduplication

A further embodiment of the invention involves the down regulation of CDC27. A further embodiment of the invention involves the downregulation of CDC27 resulting in suppression of the APC complex, modulation of DNA replication and/or blocking mitosis. This can be achieved by expression of CDC27 point mutants. An alternative strategy can be envisaged involving a CDC27 mutein consisting of a block of TPR tandem repeats. Such a mutein is still likely to interact with other TPR-containing proteins from the APC such as CDC16 and CDC23 or APC regulator proteins such as PP5. As such, APC component proteins or APC regulator proteins would probably be titrated out and normal APC function be prevented. Based on results

already obtained from experiments designed to delineate TPR domains involved in the interaction between two TPR proteins (Lamb et al. 1984, EMBO J 13, 4321-4328; Ollendorf and Donoghue 1997, J Biol Chem 272, 32011-32018), this strategy might indeed 5 would prove valuable. Overexpression of CDC27 muteins, via the effect on the APC, can be used to enhance endoreduplication in plant cells, plant tissues, plant organs, or whole plants. For example, as is described above, a CDC27 mutein wherein the SEQ ID No 7 has been mutated, leading to the 10 incapability of this mutein to bind with other factors of the APC can be mentioned. The mutated protein would be still able to interact with the substrate, therewith titrating out the APC, abolishing or at least seriously reducing the APCfunction, leading to the formation of polyploid cells. Also, 15 mutations in SEQ ID No 6 or 10 could render the mutein incapable of interacting with the substrate but still capable of binding with the other factors of the APCcomplex. The result is the generation of a dominant negative, as the complex will not be able to drive the

By manipulating the level of endoreduplication one can increase the storage capacity of, for example, endosperm

25 cells. Thus, another aspect of the current invention is that one or more DNA sequences, vectors or proteins, regulatory sequences or recombinant DNA molecules of the invention can be used to modulate, for instance, endoreduplication in storage cells, storage tissues and/or storage organs of plants or parts thereof.

20 destruction of key components of the cell cycle machinery,

responsible to control the number of DNA-replication cycles.

Preferred target storage organs and parts thereof for the modulation of endoreduplication are, for instance, seeds (such as from cereals, als, oilseed crops), roots (such as in sugar beet), tubers (such as in potato) and fruits (such as in vegetables and fruit species). Furthermore it is expected that increased endoreduplication in storage organs and parts thereof correlates with enhanced storage capacity and as such with improved yield. In yet another embodiment of the invention, a plant with modulated endoreduplication in the

plant cell by transforming the cell, in a manner known to the skilled person, with the above-described means.

CDC27 and CDC7 mutants - Sterile plants

5 Another embodiment of the invention relates to a method for modulating DNA replication and the resultant generation of male or female sterile plants. This would be achieved by the expression of dominant negative mutants of either cdc7 or cdc27 under the control of very specific promoters - either from male or female gametophytes - to block cell division and disrupt meiosis. The resulting plants would be naturally sterile.

Overexpression of CDC7 and DBF4 activate DNA synthesis

15 Another embodiment of the invention relates to a method for the generation of plant cells, plant tissues, plant organs, or whole plants with the capacity for the overexpression of CDC7 in combination with a plant homolog of Dbf4 thereby modulating DNA replication. Results in yeast indicate that

the association of Dbf4 with CDC7 is essential for the G1 to S transition, namely DNA synthesis (Ohtoshi A, Miyake T, Arai K, Masai H; Mol Gen Genet 254(5): 562-70 1997 May 20). Therefore in the present invention, by overexpressing both CDC7 and Dbf4 proteins, one can activate, stimulate or

initiate DNA synthesis in cells where DNA synthesis does not normally take place, such as cells that have already gone through the cell cycle. As a consequence the amount of DNA is increased in the cell therewith manipulating the level of endoreduplication as is outlined above.

30

Polyploid plants

Another embodiment of the invention relates to the generation of polyploid plant cells, plant parts or plants.

35

If for example, plant cells are transformed with a vector, comprising the coding sequence of plant CDC27, according to the present invention, under the control of a suitable promotor and optionally other expression controlling elements, these plant cells may produce CDC27. When the said

plant cells produce CDC27 protein in a sufficient amount, extra rounds of DNA replication may take place before mitosis, leading to polyploid cells.

5 Characterisation of CDC7 and CD27 genes

The architecture of the CDC7 and CDC27 genes are illustrated in figures 1 and 2 and 5. Figure 1 illustrates the genomic architecture of the *Arabidopsis* CDC7 gene, wherein the exons are boxed. The numbers above the box indicate the length of

- 10 the exon, the number below and between two boxes indicates the length of the intron.
 - The total length of the coding sequence is 2667 nucleotides, coding for 889 amino acids. The fifth, eleventh and thirteenth exons comprise novel coding sequence; in figure
- 15 1, the corresponding boxes are black. It is to be understood, and obvious to a skilled person, that the first and the last triplet of the coding sequence of an exon, may partially be encoded by the last two or one nucleotide(s) from the adjacent downstream exon, and, accordingly, by the
- first two or one nucleotide(s) of the adjacent upstream exon. In figure 2 and 5, the genomic architecture of the CDC27A1 and CDC27B genes, respectively, of Arabidopsis thaliana are depicted as explained for figure 1. The second and the sixteenth (last) exon (black in figure 2) comprise
- 25 novel coding sequences and were not identified in the known genomic CDC27A1 sequence of Arabidopsis thaliana (see text). The entire sequence comprises 2184 nucleotides, corresponding to 727 amino acids.
- The first 5 exons (black in figure 5) and part of the 6th

 30 exon (black in figure 5) comprise novel coding sequences and were not identified in the known genomic CDC27B sequence of Arabidopsis thaliana (see text). The entire sequence comprises 2151 nucleotides, corresponding to 716 amino acids.
- In figures 3 and 4, the complete cDNA sequence of CDC7 and CDC27A1, respectively, according to the present invention are depicted, with the respective encoded amino acid sequence therebelow. Vertical lines in the nucleotide sequence indicate the exon boundaries, i.e. ²|³ is the
- 40 boundary between exons 2 and 3. The exon boundaries are

derived from genomic CDC7 and CDC27A1 sequences (see examples 1 and 2 respectively). Such lines are also drawn in the amino acid sequence, although, as is indicated above, the amino acids, flanking such a vertical line, may be partially encoded by the adjacent exon. Exact positioning of the vertical line is in such a case not possible and is set at the left or the right of such an amino acid in an arbitrary manner. See examples 1 and 2 for further details. An alignment of the CDC27A1 (SEQ ID NO 5) and CDC27B (SEQ ID NO 13) amino acid sequences is given in Figure 6 with indication of SEQ ID NOS 6, 7, 10 and 12. Said CDC27A1 and CDC27B sequences are 49% identical when gaps are introduced in the sequences to ensure optimal alignment and maximal

15 In Figures 7 and 8, the expression of CDC27A and CDC27B genes is illustrated. Figure 7A shows expression of CDC27A genes (both CDC27A1 and CDC27A2 are detected; indicated by the arrows) in several Arabidopsis thaliana tissues: 1-etiolated seedlings; 2-flowers; 3-buds; 4-stems; 5-leaves;

identity.

- 20 6-roots; siliques; negative control. Figure 7B shows the expression of CDC27A genes in Arabidopsis thaliana root cultures treated with different substances: 1-abscisic acid (ABA); 2-2,4-dichlorophenoxyacetic acid (2,4-D); 3-hydroxyurea; 4-kinetin; 5-kinetin + 1-naphthaleneacetic acid
- 25 (NAA); 6-NAA; 7-oryzalin; 8-starvation; 9-untreated control roots; -negative control. Figure 8A shows the expression of the CDC27B gene in several Arabidopsis thaliana tissues as outlined in Figure 7A. Figure 7B illustrates the expression of the CDC27B gene in Arabidopsis root cultures treated with
- 30 different substances as outlined in Figure 7B.

 The invention will now be further illustrated by the following examples, that are not intended to limit the scope of the invention.

EXAMPLES

Although in general the techniques mentioned herein are well known in the art, reference may be made in particular to 5 Sambrook et al., Molecular Cloning, A Laboratory Manual (1989) and Ausubel et al., Current Protocols in Molecular Biology (1995), John Wiley & Sons, Inc. Further, scientific explanations and reasonings in the examples are given for illustrative reasons only, without however being bound 10 thereto.

Example 1.

ISOLATION OF AN ARABIDOPSIS CDC7 HOMOLOGUE

15

Conserved regions of the Saccharomyces cerevisae and Schizosaccharomyces pombe CDC7 homologue genes were used to synthesize degenerated oligonucleotides to amplify an Arabidopsis CDC7 homologue cDNA fragment. These

- 20 oligonucleotides were as follows:
 - 1 (sense):

5'AAA/G ATA/C/T GGA/C/G/T GAA/G GGA/C/G/T ACA/C/G/T TT

2 (sense):

3'

- 25 5' ATA/C/T ATA/C/T CAC/T AGA/G GAA/G ATA/C/T AA 3'
 - 3 (antisense)
 - 5' AG C/TTC A/C/G/TGG A/C/G/TGC C/TCT A/GAA A/C/G/TCC 3'
 - 4 (antisense)
 - 5' AC A/C/G/TCC A/C/G/TA/GC A/GCT CCA A/C/G/TAT A/GTC 3'

30

First strand cDNA prepared from whole Arabidopsis
plants using the Superscript Preamplification System from
Life Technologies was used as template in nested PCR

35 reactions. The first reaction was carried using the pair of
oligos 1 and 4, and the second reaction used oligos 2 and 3.
PCR conditions were essentially as described (Ferreira et
al. 1991). A fragment of approximately 650 bp was eluted
from an agarose gel, cloned in pGEM-T and sequenced.

40 Sequencing comparison using the GCG-package version 9.1

showed that the deduced amino acid sequence of the PCR fragment has approximately 40% homology to the published yeast CDC7 sequences. This fragment was then used to screen a lambda gt10 cDNA library prepared from total Arabidopsis 5 plants. The largest cDNA isolated, approximately 1,2 kb, was completely sequenced by the dideoxy method. This Arabidopsis cDNA contains an open reading frame encoded encoding a polypeptide of 384 amino acids (amino acid 473 to amino acid 856 in figure 3). With the SRS search program the EMBL and 10 EMBLnew databanks were screened for gene sequences designated or annotated with the term cdc7. One genomic sequence from Arabidopsis thaliana was found (accession number Z97342). This submitted genomic sequence comprised a predicted gene, indicated as "having similarity to protein 15 kinase HSK of fission yeast", having 11 exons and coding for a protein having 829 amino acids.

With the GCG-package version 9.1, the said genomic sequence was compared with the identified partial cDNA sequence, using the "best-fit program". The identified cDNA-sequence covered nucleotides 119827 to 121978 of the genomic sequence of Z97342.

20

The identified cDNA-sequence did not correspond with the complete coding sequence of the predicted gene on the Z97342 sequence. Within the present cDNA sequence, two additional coding sequences (additional exons) were identified, namely nucleotides no 120770-120709 and 120350-120263 of Z97342, coding for the amino acid sequences of SEQ ID NOS 3 and 4 respectively.

Upon comparison with the genomic Arabidopsis sequence,

it however appeared that the present cDNA was not complete.

To complete our cDNA at the 5' side we used the CAP-finder kit (Clontech), using the primers (CTCTCCCATCTGGTCATGTC, #1;

GAACATGCAGTAGCCGTACC, #2) specified for the cDNA, in nested PCR reactions. For the missing 3' end, two nested sequences specific for the cDNA (AAATGGTGCGAACTCAACAC, #2) and (TATGGGAAGTAGCCAAGCTG, #1) and an anchored oligo-dT on the lower strand were used. PCR conditions were essentially as described (Ferreira et al., 1991). The fragments were eluted from agarose gel and cloned using standard techniques and sequenced. The deduced amino acid sequence encoded by

the PCR fragment showed clear homology to the yeast published CDC7 sequences and matched with an the above mentioned Arabidopsis genomic sequence. The DNA-fragment, comprising the missing 5' terminal sequence, comprised an additional coding sequence of 63nt (nrs 122340 to 122278 in Z97342) not identified in Z97342, coding for the amino acid sequence of SEQ ID NO 2.

With the obtained sequences, the complete cDNA for the CDC7 homologue of Arabidopsis thaliana could be reconstructed, which is illustrated in figure 3 and in SEQ ID NO 8.

The presently identified CDC7 cDNA comprises additional novel coding sequences, corresponding to novel exons (nos 5, 11 and 13 in figure 3), that were not identified in Z97342, and codes for a protein of 890 amino acids.

Example 2. ISOLATION OF THE ARABIDOPSIS CDC27A1 GENE AND cDNA

20

Conserved regions of the published CDC27 homologue genes (Sikorski et al., 1991 Cold Spring Harbor Symposia on Quantitative Biology vol LVI, 663-673, 1991) were used to synthesize degenerated oligonucleotides to amplify

- 25 Arabidopsis CDC27 cDNA. The oligonucleotides were as follows:
 - 1 (sense):
 - 5' TGG GTA/C/G/T TTA/G GCA/C/G/T A/CAA/G GG 3'
 - 2 (sense):
- 30 5' ATG GAA/C/G/T G/ATT/C/A TA/TC/T AGA/C/G/T AC 3'
 - 3 (antisense)
 - 5' AGA/G CAT/C TAT/C AAT/C GCA/C/G/T TGG 3'
 - 4 (antisense)
- 5' TA T/A/G AC/T CAT A/C/G/TCC C/TAA A/C/G/CC A/GAA 3'

 First strand cDNA prepared from flower buds was used as template in nested PCR reactions. The first reaction was carried using the pair of oligos 1 and 4, and the second reaction used oligos 2 and 3. PCR conditions were as described (Ferreira et al., 1991, Plant Cell 3, 531-540),
- 40 except that the annealing temperature of the first reaction

was 45 C, and for the second reaction, 37 C was used. A fragment of approximately 300 bp was eluted from agarose gel and cloned in pGEM-T. Out of 16 clones sequenced, two showed high homology to published CDC27 sequences (Sikorski et al., 1991 Cold Spring Harbor Symposia on Quantitative Biology vol LVI, 663-673, 1991). This fragment was then used to screen a lambda gt10 cDNA library prepared from total Arabidopsis plants. The isolated target cDNA, approximately 2,5 kb, was completely sequenced by the dideoxy method and is shown in fig 4 and in SEQ ID nr 9. A combination of restriction enzymes and oligonucleotide subcloning was used to produce the templates for sequencing.

The Arabidopsis CDC27A1 cDNA contains one open reading frame, encoding a polypeptide of 727 amino acids (figure 4).

15 With the SRS search program, the databanks EMBL and EMBL new were screened for gene sequences, homologous to the present CDC27 cDNA sequence. A genomic sequence from Arabidopsis thaliana (accession number AC001645) was found, comprising 14 exons, coding for a protein of 727 AA. With the GCG-20 package version 9.1, the present cDNA-sequence was compared with the said genomic Arabidopsis sequence (1) using the "best fit"-program. It appeared that the present cDNA comprised additional coding information for two novel exons, namely the second and last exon of the Arabidopsis CDC27-25 gene (exons 2 and 16 in fig 4).

The amino acid sequences encoded by the second and last exon are depicted in SEQ ID NOS 6 and 7 respectively.

Example 3 DOMINANT NEGATIVE MUTANTS OF CDC7

30

Dominant negative mutants of CDC7 (CDC7 DN) are constructed by creating substitution mutations including amino acid residues 1(G), 5(V), 18(A) and 20(K) of SEQ ID No2; amino acid residues 13(T), 16(F), 18(A) and 20(E) of SEQ ID No3; amino acid residues 7(L) and 18(K) of SEQ ID No4. Substitutions are not conservative. Expression of a CDC7 DN in a whole plant, a plant tissue, a plant organ or a plant cell results in cell cycle arrest at G1/S. These results are in line with the situation in yeast, wherein one such substitution, threonine 13 of SEQ ID No 3 (position 722 in

SEQ ID No 1) to a glutamate has proven to create a dominant

negative CDC7 in yeast. This CDC7 DN is inactive as a kinase but can still bind DBF4, thus preventing activation of wild-type CDC7 molecules (Ohtoshi et al. 1997, Mol Gen Genet 254, 562-570).

The CDC7 DN mutants can be obtained by site-directed mutagenesis using the ExSite PCR-based site-directed mutagenesis kit (Stratagene, La Jolla, CA). Fidelity of the 10 mutagenesis are confirmed by sequencing.

Example 4 MUTANTS OF CDC27

Several types of CDC27 muteins can be considered:

- Insertion of an amino acid such as proline (P) in the 15 (1) amino acid sequence SEQ ID No 7, e.g. behind the tyrosine (Y) residue leads to a loss-of-function of the APC. It is believed that such an insertion deforms the predicted (α -helix of the novel TPR-like domain of which SEQ ID No 7 is part and causes a disturbance of 20 the overall three-dimensional structure of CDC27, therewith titrating out functional proteins of the APC, such as CDC16 or CDC 23, leading to loss of APC function. In line with these results, altering the α -helix structure in one of the TPR units of yeast 25 CDC27 has been proven, and of any of the TPR units has been hypothesized, to destroy CDC27 function (Lamb et al. 1984, EMBO J. 13, 4321-4328).
- 2) Deletion of the NH2-terminal 100 to 220 or 200 to 220 amino acids of CDC27 also leads to loss of function of the APC by titrating out molecules such as APC substrates or APC regulators. This domain encompasses the conserved amino acid sequence SEQ ID No 6 as well as the first TPR unit of CDC27. Deletion of this sequence in human CDC27 abrogates binding of e.g. CDC16, but not of that of e.g. PP5, an APC regulator protein (Ollendorf and Donoghue 1997, J Biol Chem 272, 32011-32018).
- (3) CDC27 muteins consisting of the conserved NH2-terminal domain (containing SEQ ID No6) and 1, 2 or more of the

downstream TPR units.

(4) CDC27 muteins consisting of the novel TPR-like domain (ending with SEQ ID No7) preceded by 1, 2 or more of the upstream TPR units.

5 Muteins described in (3) and (4) act as those described in (1) or (2).

The point mutants in (1) are obtained by site-directed mutagenesis using the ExSite PCR-based site-directed mutagenesis kit (Stratagene, La Jolla, CA). Fidelity of the 10 mutagenesis are confirmed by sequencing. Deletion mutants in (2), (3) and (4) are obtained by high-fidelity PCR (Expand High Fidelity PCR System, Boehringer, Mannheim) using primers designed to amplify the desired stretches of the CDC27 nucleotide sequence. Primers include extensions recognized by restriction endonucleases to allow easy cloning in a vector such as pUC18. Amplified sequences are checked by nucleotide sequence determination. Expressing such CDC27 muteins in a whole plant, a plant

tissue, a plant organ or a plant cell will cause
20 malfunctioning of the APC and thus repetitive cycles of DNA
synthesis without intervening mitosis. This
endoreduplication results in a polyploid phenotype.

25 Example 5 NEMATODE RESISTANCE - CDC7 DN

In order to obtain nematode resistance, the CDC7 DN coding sequence is operably linked to a plant promoter responsive to nematode infection and to the NOS polyadenylation site.

- The ARM1 or Att0728 promoters can be used (Barthels et al. 1997, Plant Cell 9, 2119-2134). The CDC7 DN expression cassette is subsequently transferred to a binary vector such as pGSC1704 and the resulting vector electroporated into Agrobacterium tumefaciens C58C1RifR (pGV2260). Transformants
- are selected on streptomycin/spectinomycin containing medium and checked for the presence of the integral transformed binary vector. Arabidopsis thaliana Col-0 is transformed with the selected A. tumefaciens strain by the floral dip method (Clough and Bent 1998, Plant J 16, 735-743).
- 40 Transgenic plants are selected after seed germination in the

presence of hygromycin. Selected transgenic lines and untransformed control lines are infected with root knot or cyst nematodes. Successfulness of infection is scored visually two weeks after inoculation (in vitro infection) or 5 six weeks after inoculation (infection of soil-grown plants). Transgenic lines are considered resistant relative to control plants when they display a significant decrease in the number of females or cysts on roots and/or a significantly reduction in nematode feeding sites and/or egg production and/or viable nematodes in the eggs.

Example 6 MALE STERILITY - CDC7 DN and CDC27 muteins

Male sterility in plants are obtained by disrupting normal pollen development. This is achieved by preventing normal cell division of tapetum cells in the anthers. Operably linking CDC7 DN or CDC27 mutein to a tapetum-specific promoter such as Osg6B (Tsuchiya et al. 1995, Plant Cell Physiol 36, 487-494) and to a NOS polyadenylation site will result in a suitable expression cassette. Introduction of this cassette into A. thaliana is done as described in example 5. Selected transformant lines have a reduced and/or abnormal pollen formation/development. This is assessed using microscopic methods.

25

Example 7 ENDOREDUPLICATION - CDC27 muteins

Any of the muteins are operably linked to a constitutive

30 promoter such as the CaMV 35S promoter (Kay et al. 1987,
 Science 236, 1299-1302) or to a seed endosperm-specific
 promoter such as from a 2S albumin seed storage protein
 (Guerche et al. 1990, Plant Cell 2, 469-478) or to the BLZ2
 promoter (Carbonero et al, 1999 in press) and to a

35 polyadenylation signal. Such expression cassettes are
 transferred to A. thaliana as described in example 5.
 Selected transformant lines have a general higher rate of
 endoreduplicating cells (CaMV 35S promoter) and/or produce
 seeds with a higher amount of polyploid endosperm cells (2S

40 albumin promoter). Endoreduplication or polyploidism is

assessed in several ways.

10

CDC27B.

- (1) Confocal microscopy is applied to measure the nuclear diameter. Polyploid cells normally have enlarged nuclei in order to harbor the increased DNA content.
- 5 (2) The DNA content of plant cells is measured by flow cytometry (Galbraith et al. 1991, Plant Physiol 96, 985-989).
 - (3) The cyclin B-degrading activity of the APC is determined as described by King et al. (1995, Cell 91, 279-288).

Example 8 CDC27 GENE EXPRESSION ANALYSIS BY RT-PCR

First-strand cDNA was prepared from RNA isolated from 15 different Arabidopsis thaliana tissues (etiolated seedlings, flowers, flower buds; stems; leaves; roots; siliques) and from Arabidopsis thaliana root cultures treated for 48 h with different chemical substances (10⁻⁶ M abscisic acid; 10⁻⁷ M 2,4-dichlorophenoxyacetic acid; 100 mM hydroxyurea; 10-6 M 20 kinetin; 10-6 M kinetin + 10-6 M 1-naphthaleneacetice acid; 10-6 M 1-naphthaleneacetic acid; 2% (w/v) oryzalin). PCR was performed with these cDNAs using CDC27A-specific primers (sense primer 5' CCG TAG TGC TAG AAT AGC A 3' and antisense primer 5' AGT CAG CGT TGA AGT c3') or CDC27B-specific 25 primers (sense primer 5' TCT CTC GAG GAA GAA AGG CAA CAA 3' and antisense primer 5' GGT TCT TGG AGT AGC TAT GGT TTC 3'). The resulting fragments generated by PCR were seperated in an agarose gel, blotted to a nylon membrane and hybridized with an 32P labeled CDC27A or CDC 27B DNA probe. Results are 30 shown in Figure 7 for CDC27A where the arrows indicate the presence of 2 bands, differing by 30 nucleotides. Sequencing of both fragments showed that they are identical, except for the 30 bp insertion. Figure 8 illustrates the results for

35 The pictures in Figures 7 and 8 are representative of 3 independent experiments. Both genes are expressed in all plant tissues, but at reduced levels in open flowers an siliques. Expression of both genes is not drastically affected by hormone treatments, except for a reduction in 40 expression levels observed when roots were incubated with

2,4-D (2,4-dichlorophenoxyacetic acid).

Ubiquitin specific primers were used in separated RT-PCR reactions, using the same first strand cDNAs and, after hybrization, the ubiquitin signals were used to normalize the experiments with CDC27A and CDC27B (data not shown). While the results of the experiments with hydroxyurea and oryzalin that are shown suggest a reduction in CDC27A expression levels when roots are treated with hydroxyurea. If these experiments are normalized with the results of ubiquitin experiments the difference is not significant. However, a decrease in CDC27B expression is observed in hydroxyurea treated roots, even when the results are normalized with ubiquitin. This result would indicate that CDC27B expression could be cell cycle regulated.

15

30

Example 9 ISOLATION OF AN ARABIDOPSIS CDC27A2 cDNA

The RT-PCR products obtained with the CDC27A-specific primers as defined in Example 8 were cloned. CDC27A clones corresponding to the transcripts of different sizes (see Figure 7) were identified and their nucleotide sequences determined. This revealed that both type of CDC27A clones had identical nucleotide sequences with the exception of a stretch of 33 nucleotides which was absent from the shorter CDC27A cDNA. Hence, the longest CDC27A cDNA is referred to as CDC27A1 (SEQ ID NO 9) whereas the shorter CDC27A cDNA is referred to as CDC27A2 (SEQ ID NO 14).

Example 10 ISOLATION OF AN ARABIDOPSIS CDC27B GENE AND cDNA

By means of in silico cloning a second Arabidopsis thaliana CDC27 homologue was identified with GenBank accession number AC006081. The GeneMark software was used to predict the exon-intron structure of the gene (see Figure 5) and it was observed that the animo acid sequence of the protein derived from the predicted open reading frame comprised an extra 161 amino acids at the NH₂-terminus as compared to the GenBank sequence. Subsequently the coding region was isolated by PCR on cDNA using primer lying immediately outside of the

40 predicted open reading frame. A product of the expected size

WO 01/02430 44 PCT/EP00/06401

was obtained, cloned and its nucleotide sequence determined to confirm the predicted open reading frame. The primers used to clone the open reading frame were: sense primer 5' TCT CTC GAG GAA GAA AGG CAA CAA 3' and antisense primer 5' GGT TCT TGG AGT AGC TAT GGT TTC 3'. The new Arabidopsis CDC27 homologue is referred to as CDC27B.

The CDC27A1 and CDC27B proteins are aligned in Figure 6 and are only 49% identical.

CLAIMS

- At least partially purified protein, capable of modulating DNA replication in plants, at least comprising in the amino acid sequence
 - a) one or more of the amino acid sequences chosen from the group consisting of those, given by SEQ ID NOS 2, 3 and 4,
- b) one or more of the amino acid sequences chosen from
 the group consisting of those, given by SEQ ID NOS
 6, 7, 10 and 12
 - c) one or more amino acid sequences having at least 50% amino acid identity with those of a), or
 - d) one or more amino acid sequences having at least 50% amino acid identity with those of b).
 - 2. Protein according to claim 1, comprising one or more of the amino acid sequences according to c) or d), the respective amino acid identity being at least 90%.

20

15

3. Protein according to claim 1 or 2, having the amino acid sequence as given in SEQ ID NO 1 or NO 5 or NO 11 or NO 13, or having at least 50% amino acid identity with one of the said sequences.

25

- 4. Protein according to one or more of claims 1-3, being a plant CDC7 protein or a functional analogue thereof.
- 30 5. Protein according to one or more claims 1-3, being a plant CDC27 protein or a functional analogue thereof.
- 6. Mutein of a protein according to one or more of the preceding claims, comprising at least one amino acid substitution, deletion or addition, affecting the DNA replicative effect of the said protein.
- 7. Mutein according to claim 6, wherein at least one of the phosphorylatable amino acids are deleted or 40 substituted by one or more non-phosphorylatable amino acids.

8. Peptide, comprising

40

- a) one or more of the amino acid sequences chosen from the group consisting of those given by SEQ ID No 2, 3 and 4,
 - b) one or more of the amino acid sequences chosen from the group consisting of those, given by SEQ ID NOS 6, 7, 10 and 12,
- 10 c) one or more amino acid sequences having at least 50% amino acid identity with those of a), or
 - d) one or more amino acid sequences having at least 50% amino acid identity with those of b).
- 9. Antibody, specifically recognizing a protein according to any of the claims 1-5, a mutein according to any of the claims 6-7 or a peptide according to claim 8.
- 10. Antibody according to claim 9, being at least 20 partially purified.
- 11. Non-genomic DNA sequence coding for a protein according to one or more of claims 1-5, for a mutein according to claim 6 or 7, or for a peptide according to claim 8, or DNA sequence having a sequence homology of at least 75% of the said sequence or the complementary DNA sequence thereof.
- 12. DNA sequence according to claim 11, being 30 substantially free of sequences intervening the coding sequence.
- 13. DNA sequence according to claim 11 or 12, comprising the DNA sequence as given by SEQ ID no 8 or SEQ 35 ID no 9 or SEQ ID NO 14 or SEQ ID NO 15 or having a sequence homology with SEQ ID no 8 or SEQ ID no 9 or SEQ ID NO 14 or SEQ ID NO 15 of at least 75% or the complementary sequence thereof.
 - 14. DNA sequence, coding for a peptide according to

claim 8, corresponding to nucleotides 1229-1291, 2126-2187 or 2298-2385 of SEQ ID No 8, or to nucleotides 109-181 or 2125-2181 or 1029-1061 of SEQ ID No 9, or to nucleotides 109-181 or 2092-2148 of SEQ ID NO 14 or to nucleotides 1-483 of SEQ ID NO 15, or a DNA sequence, having a sequence homology of at least 75% to the said sequence or the complementary sequence thereof.

- 15. DNA vector, at least comprising the DNA sequence 10 according to one of the claims 11-14.
- 16. DNA vector according to claim 15, further comprising a promoter, functional in plant cells, operably linked to the DNA sequence according to one of the claims 15 11-14.
- 17. DNA vector according to claim 15 or 16 comprising DNA coding for a mutein according to claim 6 or 7, operably linked to a nematode-induced promoter, functional in plant 20 cells.
- 18. Method for modulating DNA replication in plant cells, plant parts or plants by conferring to one or more plant cells the capacity to provide a protein according to one or more of claims 1-5, or a mutein thereof according to claim 6 or 7, in an amount sufficient to modulate DNA replication and/or to block mitosis of the said cells.
- 19. Method according to claim 18, wherein the said 30 capacity is conferred to one or more plant cells, by
 - a) transforming one or more plant cells with DNA according to one of the claims 9-12 or with a DNA vector according to one of the claims 13-15,
- b) culturing the plant cells in order to regenerate
 plant parts or plants from the transformed cells,
 or
 - c) incubating the cells, plant parts or plants at conditions allowing expression of the said DNA to produce the said protein or a mutein.

- 20. Method according to claim 18 or 19 for the generation of polyploid plant cells, plant parts or plants.
- 21. Method for identifying and/or obtaining proteins
 5 capable of modulating the DNA replication in plants,
 comprising a two-hybrid screening assay, using CDC27 or CDC7
 polynucleotide sequences as a bait and a cDNA library or of
 a cell suspension culture as a prey.
- 22. Method for the production of transgenic plants, plant cells or plant tissue, comprising the introduction of a nucleic acid molecule according to any of the claims 11-14 or a vector according to claim 15 or 16 into the genome of said plant, plant cell or plant tissue.

15

- 23. Plant cell, transformed with a vector according to one of the claims 15-16, or comprising the DNA according to one of the claims 11-14.
- 24. Plant, obtainable by the method according to one or more of claims 18-19.
 - 25. Progeny of a plant according to claim 24.
- 26. Plant material such as roots, flowers, fruit, leaves, pollen, seeds, seedlings or tubers, obtainable from a plant according to claim 24 or 25.

FIGURE 1

CDC27A1 Gene Structure

FIGURE 2

Fig. 3

							AT	GTC	AGA	AAA	CIC	GGA	ACC	GCG	TCA	ACT	CGA	caa'		TACA	. .
1 -	TC	raa(GTG:	ICG.	TAA	ACG	T.A	CAG	TCI	TII	GAG	CCI	TGG	CGC	AGT	TGA	GCT	CTT.	AAC	ATGT	
							M.	s	E	Ŋ	S	E	5	R	Q	<u>L</u>	Ε	N	s	T	-
61	GC:	CGG:	AG	AGA	GCI	CAT	TCC ÷	TCT	TAG	TCC	CAC ÷	CAA	TTC	AGA	CGG	CAA	CGA	CGA	cc	TAAC	-20
	CG	300	TTC:	TCT	CGA	GTA	AGG	AGA	ATC	AGG	GTG	GTT	aac	TCT	GCS	GII	GCI	GCI	GGA	ATTG	
	A	G	R.	E	ī	I	Þ	ī	S	ō	Ţ	N	S	ם	G	N	D	ם 	. L	N	-
121	TA	ICA!	CT	GCA'	TGC		TGA:	GTT 	ATC	TCG	TCT	 		 -	TTC	TGG 	ECY.	rcc 	AGA	TAGA	_80
	AT Y	agt H	AGA L	CGT.	ACG:	aaa E	ACT E	هنت ت	S	ac- R	eicei L	G L	ilia I	AAL: S	AAC S			2	E.	S	. .
	÷ GT	H TAT	 AGA	ici		_			_		_	_			-	_		<u> </u>	CAA	ATAT	
181	CA	ATA	TCT	AGA	AAG	AAG	÷ TTT	CAC	ATG	TAT	GAA	GGT	TCC	AAG	AGG	277	AGA	GCA	 GTT	TATA	240
	V	I	D	Ţ.	s	s	ĸ	C	T	Ā	Ξ	Q	G	s	Þ	Ŋ	L	v	ĸ	Y	-
241	CI	TTG	CTC	GAT	CCC	TAA	TTC	TCC	TAT	TTC	CCT	TGC	CGA	AGA	TGG	CII	CAC	TGT 	GAC	TCIC	300
	GA	AAC	GAG	CÏA	.GGG	ATT	AAG	AGG	ATA	AAC	GGA	ACG	GCI	TCI	ACC	GRA	GTG	ACA		AGAG	
	L	C	S 	I	P 	N	s	P	I	S 	ī	A	Ξ	D —	G	F	Ţ	V	T	L Aaat	-
301	TC	GCC	TGA	GTC	AGG					ZTAG										 	360
	S	P	E	S	P	s	A	2	A	s	F	A	C	s	 L	פֿ	·L	Q	E	N	_
		TGI	GII	AGA	ACA	GTT	TAI	GGA	TCC	:GAG	ATC	.TCI	CAC	GCI	AAA	(GCA	TTC	GAG	AGA	GAAT	420
361	CA	ACP	CAA	TCI	TGI	CAA	ATA	CC	AGC	CIC	TAC	AG	GTC	CGA	72.7.1	:CGI	AAG	CTC	TCT	CTTA	420
	v	v	L	E	Q	Ē	M	D	₽	R	S	L	Ţ	L	ĸ	Ħ	S	R	E	N	-
421	GC	:GG?	AC	AG	AGGA	œC.	AGA		CAI	GCC				AAC				TGA		AAAC	480
		3CC:			יבסי		TICI		AGTI M	CGC	TA? L	ACG(P		TTT	rrr S	iag:	N	:ACI	ACE G	TTTG N	
	A	E	Q	Ξ	Ξ	L	Ē	L	[a]	2	ىد	ב	K	R	>	R	1/4	ע	3	TA	-

<u>4</u> 8I		43 1131	GAA						TAC											erge eace	- 540
		3	N.	Y	S	V	Ξ	ם	5	R		Ŋ		I I	airi. R	T	<u>-∺C</u> ∇	_	المتح	G.	_
54I		TAI	GC	.IGG		TAT					 -						CAZ	A T. T.		FIGCA	. 600
•	TG T	ATA M	.cga I	ACE	EEEG	ata I	AAA L	TCG `A	aca T	ACT E	TAC S									ACGI	
•	_				- AAT	- AGA	_		_	_		Q	A. TCP	s .ec:	V IIG	E FECC	n SCI	E. E.	S RTC	a Caat	
601							÷													GTTA	660
	\$	N	R	G	I	E	A	E.	V	Q	D	E	Q	2	Œ	₽	Q	Ţ	s	N	-
661						CAA' GTT					 -									ATCT	720
	A.	s	v	D	v	N N	2	T.	=	alt. R		E	E	s S	<u>г. </u>	N	GCI D	aaa L	.CGG	taga S	_
721	C	ΞCΆ.	GGA	GGA!	TGG	ATA'	ΤΈĄ	CGA	GCG	ACC	TGA	AAT	TGG	a <u>c</u> a	<u> </u>		AAT	TGC	TC3	CAAC	700
	œ	AGT	CC	CCE	ACC	TAT	AAT			IGG	ACT	TTA	ACC	TCT	AAA	GGT	<u> </u>	ACG	ACT	GTTG	780
	P	Q	Ξ	D	G	Ā	Y	E		₽		I	G	D	Ē	Q	I	A	D	N	-
781						aga. Ici														AGAG 	840
	Q	I	Ţ	I	E	Ξ	G	D	ū	K.	N	ĸ	ĸ	ם	ī.	F.	₽	ĸ	·G	E	-
841	ATI	ACA TGT	AAC TIC	TGA! ACT	AAG	ACF(~				IGAG ACTO	900
	I	Q	T	D	S	v	Q	s	ם		Ţ	A	s	i	M	2	Ŧ	Ξ	N	E	-
901																				EGTA	960
																				V V	_
961	CA	CAT	CGT																	CAAT	1020
																				LTTA	
																				n Aaa	-
1021																					1080

	Q	D	K	5	I.	$\mathbf{\nabla}$	Q	K	T	L	D.	Q		K	됴	포	Œ	N.	S	ĸ.	-
	ACG	TAC	AGC																	GAGG	1140
T08T	TGC	ATC	TC:	ac	AGG	GG	احتر (CTA	rii	TGT	GIG	GIC	TII		ATT	TCA	FTA	GGI	CTT		
	T	Y	S	C	S	<u>p</u>	Ē	_	ĸ	Ħ	T		•	S		₩	•		ĸ	R	-
	AAC	CAC	AAT		AAC	AC	GI	TCG	TCI	TAA	AGA	ICA	CAA	GA.	ICA	GGC	AAA	GCA	TAA		1200
1141	TIC	GI		AAZ	VTTC	TG	CA.	AGC	AGA	A	TCI	AGI	CIT	CCI	AGT	CCG	TTI	CGI	ATT	GIGI	
	K	Q	N	F	N	T.	ᢦ		_	ĸ	D	Q	K	ם		415	•		N	T	-
																				÷	1250
1201	TA	Q N F N T V R T R R T D G T E F A T R C P E V 617																			
	I	P	D.	F	D	s	Y	T	I	٧	Ξ	E	E	G	s	G	G 516	, <u>v</u>	G	I	-
1261	GI	LLY.	TAA	GGC	AAC	eag														TGTT	1320
	CA	AAT	ATT	CCG	TTG	CIC	CII	TTE	ACI	CACC	TT.L.C	TC	ICA?	ACE		5	16				
	Δ.	Y				R.			_	_	_				_			-6	17	•	.
	-																				1380
1321	CC	GCG	AGT	CII	CAT	AAT	ACA	CI	AT	LAC:	CL.T.	AGT (<u> </u>	ACGI	rcc.	CGC	TAAZ	AC:	2023 17	CTTT	
	G	A	Q	K	Y	Y	4	N.	N	E	エ	R	M.	L	Ξ	R	F	G	G	K	-
	AA	CIG	TAI	TAAT	AAA	GC	TŒ	AGG	CI	GTC	ICA	AGA	ATG	GAG2	ATT!	CIG	ATT(ECA:	ICY.	rcc <u></u>	1440
1381	-	TCCAGATTTTGATTCTTACACTATTGTACAGGAAGAAGGTTCAGGTGGCTACGGATT AGGTCTAAAACTAAGAATGTGATAACATCTCCTTCTTCCAAGTCCACCGATGCCCTAA P D F D S Y T I V E E E G S G G Y G I TTATAAGGCAACGAGGAAAACTGATGGAACAGAGTTTGCAATTAAATGCCCTCATGTT AAATATTCCGTTGCTCCTTTGACTACCTTGTCTCAAACGTTAATTACGGGAGTACAA Y K A T R K T D G T E F A I K C P E V 617 CGCCTCAGAAGTATTATGTGAATAATGAAATCAGAATGCTGGAGCGT TGGGGGGAAA CGCGAGTCTTCATAATACACTTATTACTTTAGTCTTACGACCTCGCAAAACCCCCCTTT A Q K Y Y V N N E I R M L E R F G G K ACTGTATAATAAAGCATGAAGGCTGTCTCAAGAATGGAGATTCTGATTGCATCATCCT TGACATATTATTTCGTACTTCCGACAGAGTTCTTACCTCTAAGAACTAACGTAGTAGGAA C I I K H E G C L K N G D S D C I I L															L _g .				
	N	Ç	_	_				_	_	_			_	_	_	_	_	_	_		-
	Œ!	Y K A T R K T D G T E F A I K C P E V 617 GCGCTCAGAAGTATTATGTGAATAATGAAATCAGAATGCTGGAGCGTTTGGGGGGAAA CGCGAGTCTTCATAATACACTTATTACTTTAGTCTTACGACCTCGCAAAACCCCCCTTT 617 A Q K Y Y V N N E I R M L E R F G G K ACTGTATAATAAAGCATGAAGGCTGTCTCAAGAATGGAGATTCTGATTGCATCATCCTT TGACATATTATTTCGTACTTCCGACAGAGTTCTTACCTCTAAGACTAACGTAGTAGGAA															AGCTO	± 1500			
144]	L -:	rcg:	rggi	AAC	TG	rac:	rg T	CIG	GAC	TAA	GTA	ACT	TCT	CIC		ATC	TAC	ACA	TAG	TCGA	
	E	H	_	_	H	D	R		_	_				_	_	_	-	2 i 8			141
•																				TTGT	
150	l -	TCA	CCA	TGC	CGA'	TGA	CGI	ACA	AGI	TTTC	GAG	ATA	GCI	CAG	ACC	TAI	TCG	TCC	CAC	AACA	A.
	Q	W	Y	G	Y	· c	M	i F	F		Z I		5 9	S I	F	F. K	C		; V	√ V	-
156	. T	TAI	.CC	TAC	AAT	TCC	GTC	CI	TG	AAG	EAC	AG	AGA:	rcc	erc:	rgg:	TG.	CTTC	CGP	YAGA	- + 1620 G
	E	L F	l I	7	7 K	E	2	3 .1	J 1	F :	<u>.</u> :	?	S 1	R I	ς '	ויי	3T 1	T (3 3	ζ, <u>L</u>	-
		TT	AT.	rrr/	AACC	TTC	بحص	AIG	EAT	TTG		CAG	AAG	TAC	AGA	AGA(GCA(TA	AAA'	CAAA	A

T CO -																					1580
1521	7 Z.L.		AAA	ATT (3GAZ	ACG	GTA(AAA	CET	GIC	<u> </u>	TE	-TC			CI	AT:	::AG	CTTT	
	I	D	E	N	Ľ	A_	M S	1	E.	王	Q	K	Y				3	70 3C	S	ĸ	-
16al				JGG.									 -				+			•	1740
TOOT	CG.	ICG	AAG:	rcc	1GA	agg	AIG	3CG(ETC	3111		[GT	ACT	ATG:	TAA		<u> </u>	<u> </u>	TGA	3	
	A	A.	5	Œ	Ľ	9	T	A.	S	ĸ	K.	H	E	T	됴	∇	ĸ	S	Ľ	ם .	-
1747	-									rrc										-	1800
	CG	CCF	TTT(GGC	ICC:	CIG	GTT(GTT	rgg/	AAG:	AGT(TC	AAA'	rcs:	CGG	<u> ATT</u>	ATC	ATAC	ETTC	
	A.	Δ	N.		Œ	T	N	K	Þ	S	Q	ĸ		L	A	₽	N	S	I	ĸ	<u>-</u>
1801				-+-																-	1860
	TT	TCG	TCG	CCC	<u>T.T.T.</u> (CIG	TTC	TCG	AGC:		4CII(FTA(CIG	FTC	<u>"</u> AC			بالتحا	<u></u> ت	AICG	
	K	A	A	G.	K	T	R	\mathbf{A}_{\cdot}	R	И	ם	M	T	R	W	Ξ	R	L	И	S	-
1861				• _																CAAC	1920
,	GI	TCC	CCG	TCI	TCC	CAG	ACC	CAA'	ITG	AAG.	rce	7.Tr.	TCE	ACA	CIG	GTC	GTG	TTC		GTTG	
	Q	G	A	Œ.	Œ	S	G.	<u> </u>	T	S	A	ĸ	D	V.	T	S	T	R	И	N	-
•															* * ~	9 2 2	200	~~~		سترتى	
	CC	TTTC	AGG	TGA	AAA	<u>G7</u> G	AAG	النجارة									ACC			AGAT 	1980
1921	 										<u> </u>										1980
1921	GG										<u> </u>									ICTA D	1980
1921	GG P	AAC S	TCC G	ACI E	TTT K	CTC	TTC R	E E	CGG	AAA	÷ CGG 2	TAC C	AGI E	ACC G	TTC R	X.	TCG A	CGA L	AAA L	TCTA D	-
1921	GG P	S	G G	ACI E	K	R	TIC R	TCT E	CGG P TCC	AAA L AAT	EGG P TCC	TAC C AAA	AGT E CCA	ACC G TGA	TTC R AGT	K	TCG A ATC	CGA L	AAA L AGC	TCTA D	1980 - 2040
	GG P	S	G G	ACT E	K	R	TIC R	TCT E	E E E E E E E E E E	AAA L AAT	EGG P TCC	TAC C AAA	AGT E CCA	ACC G TGA	TTC R AGT	K	TCG A ATC	CGA L	AAA L AGC	TCTA D TCCT	-
	P TT AF	S S TTCT AAG	G G GCA ACGI	ACI E AGA	K GAC	R R RAT	R GTC	E TGT ACA	TCC AGG	AAA L AAT	EGG P TCC AGG	TAC C PAA TTT	AGT E CCA GGT	ACC TGA ACT	R AGT TCA	X ATC TAG	A A TATO	CAA CAA GTT	AAA L AGC	ICTA D TCCT AGGA	- 2040 -
	P TI Al	S S S S S S S S S S S S S S S S S S S	G G G ACG Q	ACI E AGA	K GAC CTC	R R TAAT M M	R GTC ACAG S	TCT E TGT ACA V	CGG P TCC AGG	AAA L AAT TTA	P TCC	TAC C AAA TIT N AGG	AGT E CCA GGT E	ACC TCA ACT ACC	R AGT TCA V	X ATC TAG S	TCG A ATC TAG	CGA L CAA GTT K	AAA L AGC TCS A	ICTA D TCCT AGGA	-
1981	GG P TT AA F A(S FICT AAGI L CGT(G C C C C C C C C C C C C C C C C C C C	E E E E E E E E E E E E E E E E E E E	K GAC T T AAAA	R R R R AAT M AAC TTGG	R CGTC CAG S GGGT V	E FGT FACA V FAGC ATCS	TCC AGG	AAA L AAT TTA TCT	TCC AGG	TAC AAA N AGG	E CCA E GGT E CTT	ACC TGA ACT ACC	R AGT TCA V	X ATC TAG S LGAA	A ATO TAG S AGGA	E CAA KGTT K ACT	AAA L AGC A TCI AGA	TCTA D TCCT AGGA P TTAT AATA	- 2040 - 2100
1981	P TT AA AC TO T	S S S S S S S S S S S S S S S S S S S	G G G G G G G G G G G G G G G G G G G	E CAA	K GAC	R RAAT	R CGTC S S CGGT V TGTC	E TGT ACA V AGC	TCC AGG P TGC AGG	AAA L AAT TTA TCT AGA L	TCC AGG P TCC AGG	TAC C RAAA N RGG TCC G	AGTI H CCCA GGGT H GGAA CTTI K	ACCT E ACCT TCCC A	R AGT TCA V TTGA ACT E 1011	X ATC TAG S GAA K	A COT	L CAA	AAA L AGC A TCL AGA L	TCTA D TCCT AGGA P TTAT AATA Y GAAG	- 2040 - 2100 -
1981	P TT AA AC TO T	S S S S S S S S S S S S S S S S S S S	G G G G G G G G G G G G G G G G G G G	E CAA	K GAC	R RAAT	R CGTC S S CGGT V TGTC	E TGT ACA V AGC	TCC AGG P TGC AGG	AAA L AAT TTA TCT AGA L	TCC AGG P TCC AGG	TAC C RAAA N RGG TCC G	AGTI H CCCA GGGT H GGAA CTTI K	ACCT E ACCT TCCC A	R AGT TCA V TGA EACT AG	X ATC TAG S GAA K III	A COT	L CAA	AAA L AGC A TCL AGA L	TCTA D TCCT AGGA P TTAT AATA Y GAAG	- 2040 - 2100 -
1981	GG P TT AA A A A A A A A A A A A A A A A A	S S S S S S S S S S S S S S S S S S S	GGGG	E LAGA E CAAA	K GACG	R AACC	R GTC S GGGT V TGTC ACAC	TCT E TGTT ACA V TAGC ATCG A GCTC S	CGG P TCC AGG P TGC ACG A TAA	AAA L AAT TTA I TCT AGA L	P TCC AGG	TAC	AGTI E CCA EGGT H EGAAA K TGA EACT	ACC TGA ACT E AGC TCC A	R AGT TCA V TGA E IOI R G G	X ATC	A CONTROL OF THE CONT	CGA L CAAA KACT L LAAA TTGA	AAAA L AGC A TCT A LAGA L TGA	D TCCT AGGA P TTAT AATA Y GAAG	- 2040 - 2100 - 2160
1981 . 2041 2103	GG P TT AAA TT C C C AAA AAA AAA AAA AAA AAA	S S S S S S S S S S S S S S S S S S S	GGGG	E LAGA E CAAA	K GACG	R AACC	R GTC S GGGT V TGTC ACAC	TCT E TGTT ACA V TAGC ATCG A GCTC S	CGG P TCC AGG P TGC ACG A TAA	AAA L AAT TTA I TCT AGA L	P TCC AGG	TAC	AGTI E CCA EGGT H EGAAA K TGA EACT	ACC TGA ACT E AGC TCC A	R AGT TCA V TGA E IOI R G G	X ATC	A CONTROL OF THE CONT	CGA L CAAA KACT L ACT L ACT TGP	AAAA L AGC A TCG A L TCGA L TCGA	D TCCT AGGA P TTAT AATA Y GAAG	- 2040 - 2100 - 2160
1981	GG P TT AAA TT C C C C C C C C C C C C C C C	EAAG	GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACTOR R CAA'	K GACCTG T K KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	R R R AAT M AACC R CACC GTG	R GTC S S GGGT V TGTC ACAC	TCT E TGT ACA V TAGC ATCG A GCTC GGAG S GGAA	CGG P TCC AGG P TGC ACG A TAA	AAA L AAT TTA L AGA L AGGG G	P TCC AGG P TCC AGG R	TAC C RAAA N TTTT G G GGGG	AGT E CCA GGT H GAA CTT K TGA EACT	ACC G TGA ACT TCC A AGC	R AGT TCA V TGA EACT AGG G G TAGG	X ATC TAG S GAA CCT K III IGGE III III III III III III III II	A ATO	L CAA ACT	AAAA L AGC A ATCT AAGA L TTGA AACTT	D TCCT AGGA P TTAT AATA Y GAAG	- 2040 - 2100 - 2150 -

2221	TIC	GCA C		\GG	icc	TAAC	GAT.	AGA	CGI	FIG	FIC.	IGC	GGG	GI.	AC		GTT	ATA(CATA	2280
	AA	CETO	GT.	בכב	rggi	ATT(CLA'	ICI	GCA		TAG:	ACG	CCC	ICA	ATG	AAA	CAA.	PAT(GGA(GEAT	•
	L	田	Q.	_	E	K	I	ם	•	W	S	A r-	-		T	_	. <u>T.</u> .	_	L	I	-
228I	ATO	3 G G2																			2340
	TA	حح	ric	TG.	rggi	AAA	JTG	ACC	ACT(12	13.					_	rgr -	igai -	
	M.	G	R.	T	Ð	F	T	G 	ם	B	E	Q 		I T		D	I T	A.	Q.	<u>L</u>	
2341		_																		CCCT + GGGA	- 2400
				ACT. E		LAA:	W	E		LCG A		LGA:		JL.L.		aci E	S	S	Ξ	<u> </u>	- .
		G 3 44 G G G A	S.						_		,		-				_		_	ACTC	
2401																				TGAG	2460
	13 K	14	L.	Y	E	s	R	Y	Ŀ	ĸ	G	M	Ē	5	R.	X	พ	C	Ξ.	ī	<u>.</u>
2461	ΑA	CAC	AAA	ACG	CAG	AGA	GTT	TCT	AGA	CGT:	XAT	TCC	ACT	ATC	GCT 	TCT	TGA	CCI	CGT 	TGAT	2520
2501	TT	GTG	TTT	TGC	GTC	TCI	CAA	AGA	ICI	GCŸ.	ΓľΑ	AGG	TGA	TAG	CGA	aga	ACT	GGA	GCA	ACTA	•
	N	_	ĸ		R	E	F	L	D	V	I	Þ	<u>L.</u>	S.	Ŀ	L	D	Ŀ	▼	D	-
2521							+							-÷-						CGAC	- 2500
	TT	TAC	AAA													ACI A	iaca L	GII.	E	GCTG D	· _
	K	Ç	L	T	•	ייט עיי	mes D	R	R	R.·	I aae	.cca	A. TAAT	E E	יר ס					TACA	_
2581											÷									ATGI	- 2540
•	F	F	H H	p	v	H.	E	T	Ŀ	R	N	Q	M	L	L		Q		5	T .	-
•	_	-	TGC	TGA	LCGC	lagi	AAG	بحص:	AAC	TCI	AAA	CTF	YL.L.	AC	AT	GT	IHI YAYA	GTA	AAT	AAG	
2641							·				<u> </u>					/CJ	 [[]]	CAI		TTC	2699
	. 77	77	25	מ	Δ	v	s	0	T	L	N	Ţ	L	0	Ŀ	*					-

Fig_ 4

. 1	CCG	CIG	TAA	 TGT	 GIG	TGI		AGG	CIC	CII	GII	GII	GII	GIA	GCT	AAC	3GA	 GCA	GII	+ AAA	60
	•		••	•	••	•		•	•	•		• .	•	•	٠.	•	•	•	•	•	
6 1		· 					ATC	ATG	GAG	AAT	CIA	.CTG	GCG	AAT +	TGT	GTC	CAG	AAA	AAC	÷ CII	120
	CCA	GTA	GTA	GTA	GTA	GTC	TAC	TAC	CIC	TTA	GAT.	GAC	CGC	TTA	ACA	CÀG	GTC	TTT	TTG	GAA	
	-		•	•	•	•	M	M	E	N	Ŀ	Ľ.	A	N	c	v	Q	K	Ŋ	Ľ	
	AAC	CAT	TTT	ATG	TTC	ACC	TAA	GCI	ATC	TTC	CTT	TGC	GAA	CTT	CII	CTC	GCC	CAA	TTT	CCA	
121	TIG	JTA:	AAA	+	AAG	īGG	TIA	CGA	TAG	 AAG	GAA	ACG	CTT	+ Gaa	GAA	 Gag	-+- CGG	GTT	AAA	GGT	180
	N	H	F	M.	E.	T	N	A	I	F	Ŀ	C	ᡓ	L	L	L	A	Q	F	Đ	
181	TCI	SAG	I GIG	AAC +	CTG	CAA	TTG	TTA	GCC	AGG	TGT	TAC	TTG	agi +	AAC	agt 	CAA	GCT 	TAT	AGT	240
	AGA	CIC	CAC	TTG	GAC	GTT	AAC	'AAT	'CGG	TCC	ACA	ATG	AAC	TCA	TTG	TCA	GIT	CGA	ATA	ICA	
	s	E	V	, N	Ŀ	Q	L 213	Ľ	A	R	C	Y	Ŀ	s	N	S	Q	A	Ā	s	
	GCA'	TAT	TAT	ATC	CTT	AAA									TAT	TTA	TTT	GCA	TTC	TCA	200
241	CGT	ATA	 ATA	TAG	GAA	TTT			TTT						ATA	AAT	-+- AAA	cgt	AAG	agt	300
	A	Y	Y	I	L	z K	3 G	s	ĸ	T	P	Q	s	R	¥	L.	F	A	F	s	
	TGC	TTT.	AAG	TTG	GAT	CIT	CII	'GGA	GAG	GCT	GAA	GCT	GCA	TTG	TTG	CCC	TGI	GAA	GAT	TAT	262
301	ACG	AAA	TTC	'AAC	CIA	GAA	GAA	CCI	crc	+ :CGA	CTT	CGA	CGI	AAC	AAC	GGG	ACA	CTT	CTA	ATA	360
	C	F	K 3	I. Į4	D	L	L	G	E	A	E	A	A	L	Ĺ	P	С	E	D 4 5	Y	
261	GCT	GAA	GAA	GTI	CÇI	GGI	GGI	CCA	GCI	GGG	CAT	TAT	CII	CII	GGI	CIT	ATA			TAT	420
361	CGA	CII		 :C:3.2 !4	\GGA	CCA	CC	CGI	CGA	CCC	GTA	ATA	.GAA	GAA	CCA	GAA	TAT		TCT	-	
	A	E	E	v	P	G	G	A	A	G	H	Y	L	L	G	L	I	Y	R_{j}	Y	

421	TCI	GGG	AGG	AAG	AAC	TGI	TC	ATA		ICAG					TITIC	TCA	TTI	GAI		TTG	480
	AGA	.ccc	TCC	TIC	TTG	ACA	AGI	TAT	GII	GTC	AAA	ICC	TAC	CGI	AAC	AGI	AAA	CTA	.GGT	TAAC	
	5	Œ	R	ĸ	N	C	S	I	Q	Q		2 516	M	A	L.	S	F	ָם.	P	Ľ	
481	TGT	TGG	GAA	GCA +	TAT	GGA	GAA			AGI		•			GAA	GAA	GCC -÷-	TCA	ACA	GII +	540
	ACA	ACC	CII	CGT	ATA	.CCI	CII	GAA	ACA	ICA	AAT	CC3		CGA	CII	Ciri	CGG	AGT	#G1	CAA	
	С	W	E.	A.	Y	G	E	L	C	s	L	G	A	A	E	E	A	S	Ţ	Ψ.	
541		GGG	AAT	GII +	GCI	TCC	CAG	CGI	CII	AAA +	ACT	TGT	GTA	GAA +	CAA	AGA	ATA	AGC	TTC	TCA 	600
	AAG	CCC	TTA	CAA	CGA	AGG	GIC	:GCA	GAA	TTT	TGA	ACA	CAT	CTT	GTI	TCI	TAT	TCG	AAG	AGI	
	F	G	N	Å.	A.	s	Q	R	Ľ	K	T	C	V	E	Q	R	Ξ	s	F	S	
601		GGA		ACC +	ATA			ATT							TTA 					TTA +	660
	CII	CCI	CGI	TGG	TAT	CIG	GIC	TAA	TGT	CTA	AGA	CTA	TTC	CGG	AAT	TIT	CTA	TGT	CCA	AAT	-
	E.	G	A	T	I	D	Q	. I	T	D	S	D.	ĸ	A	L	K	D	T	G	L	
661	TCG	CAA	ACA	GAA +	CAC	ATT	CCA			AAC								CAG	CAG		720
	AGC	GII	TGT	CII	GTG	TAA	.GGT	CCT	CIC	TTG	GTT	GTT	CTA	GAC	TTT	TAA	TAC	GTC	GTC	GGA	
	S	Q	T.	E	H	I	₽ .	G	E	N	Q.	Q,	D	Ŀ	K	I.	M	Q	Q	P	
721				CCA +				GAC										TTG 		ACA +	780
	CCT	CTA	TAA	.GGT	GGT	TTA	TGA.	.CTG	TCC	GTT	GAA	TCA	TGT	TIG	CCI	ACC	CTG	AAC	TTG	TGT	
	G	D	I	P	P	N	T	6	R 7			S	T	N	G	W	D	L	N	T	
781							-+-	GTA		+				+			-+-		AAT 		840
•	GGA							CAT }	7										TTA	TAC	
	P					٠		νl							٠.						
841							-+-			+				+		-,	-+-				900
																				TCT	
	R	R	₽	A	V	E	G	S	L	M	S	V	H	G	V	R	V	R	R	R	

										F	18										
	AAC	TTT	TTT	AGT	GAA	GAA	TTG							GAA	ICI	GGG	CGC	CGC	CGI		960
901	TIG	AAA	AAA	TCA	CII	CIT	AAC			CIC				CIII	AGA	CCC	GCG	GCG	GCA		300
											18	٠		•	s	Œ	묫	R	3.	S	
	N	F	F	S	Ē	E	Ŀ	S	A_	£	I AL	Q	E.	<u> </u>	3	G	æ	К		3	
	GCT	AGA	ATA	GCA	GCA	AGG	AAA	AAG	IAA:	בבם:	ATO	TCG	CAG	TCA	TTT	'GGA	AAA	GAT	TCC		1020
961	CGA	 TCI	TAT	 -	CGI	TCC	TTT	TTC	TTA	GGA	TAC	AGC	GIC	AGI	AAA	CCI	TTT	CIA	AGG		1020
	Δ	P	-	A	A	R.	ĸ	ĸ	Ŋ	P	М	s	0	s	·F	Œ.	K	D	s	н	
															*						
1021	TGG	TTA	CAT	CII																	1080
	ACC	TAE	GTA	GAA																	
	W	I.	н	L.	s	P	s	E	s	N	Y	A	P	s	L	s	s	М	Ξ	G-	•
	AAA	mc c	3 C 3	7 mc	ת אים	א כיכ.	عات. م	מממי	GZ A	819		سب	יייבאיי	ع.ر.ر	سنت	سب تد	د س	ייבע	شتت	כנש	
1081				+- -			-+-							+			-+-			÷	1140
	TTT	ACG	TCT	TAG	GTT	TCG	TCG	TTT	CTI	CGC 81		LGGA	CTA	TGG	CAA	TGA	GAT	TTA	CTA	GGT	
	ĸ	С	R.	I,	Q	s	s	ĸ	E	_	-	P	D	T	v	T.	L	Ŋ	D	P	
	GCA	ACG	ACG	TCA	.GGC	CAG	TCI	GTA	AGI	'GAC	ACI	GGA	AGC	TCT	GII	GAT	GAT	GAG	GAA	AAG	
1141				+		 GTC	•														1200
	CGT	TGU	IGU	WC2 T	ددن	GIC	ACA			٠٠٠٠	110	<u>.</u>	.1.00	nun.							
:	A	T.	T	s	G	Q	S	V.	s	ם	T	G	S	S	V	D	D	E	Ξ	K	
	TCA	AAT	CCI	AGI		TCT															
1201						'AGA															1260
3	s	N	Þ	S	E	S	S	₽	D	R	F	S	Ŀ	I	S	G	I	s	Ξ	∆	
	CTA	GGC	ATI	CIG	AAA	ATT	CTI	'GGA	.GAI	GGC	CAC	1AGG	CAI	TTA	CAI	ATG				CAG	1320
1261	GAI	.ccc	TAA	GAC	TTI	TAA	GAA	CCI	CIA	CCC	GIC	TCC	GTA	AAT	GTA	TAC	•				
		G	ī	L	ĸ	I	Ŀ	G	ם	G	Н	R	н	L	H.	M	Ā	ĸ	c	9	
	L	G	_	14	1	-		3	•	3	44	1.	11		17	7-7	-	**	_	¥ 1	

	GAAC	CII	IGI	TGG	CAI	ATC	AAA	AGC	TAI	cro	AG		CAA:		AAT	ACA	CAC	rgg	TT(1380
1321	CIT	GAA	ACA	ACC	GIA	TAC	TT		ATF	LGA(FIC			•	TEA:	IGI	JIG	ACC	_AAC	EAG	
	10.								_	~	_	T-	_	12	N	T	Ħ	w	τr	L	
	E	A.	_	Ī.	A	Ā	Q	K	L	S	Q	K.	Q	₹	7.4	_	д	M	•		
	AIG	AG	TIG	GAA	AAG	CAI	AT	TTC	AGC	TIAC	ZAAC	AC	TAC'		AAC	GCT(GAC.	ICI:	CC.	CTT	1440
1381	TAC		+				- -	220	тсс	+- :ATC			ATG	+	rig	CGA(crg:	AGA/	igg:	AA	T##O
	TAL	1011 1011						2416													
	M	٥١	A	G	K	A	Y	E	E	Ŀ	Q	D	Y.	F	N	A	D	S	S	F	
	ACT	TTT	CIC	ATC	AAA	\AGT	CATO	CTI	ATO	CI.	rtg	IAA	GGA	ATG	GAT	ACA	IAC	rcci	ACT	FIT	
1441							-+			+-				 -						+	1500
	TGA	CAAE	CGAC	TAG	TI	CIC	YTAC	-GAF	YTAC	_GA	AAC		CCI	TAC	ديني	TGT	47.T (21	MUT.	LGAL		
	T	L	A.	H.	Q	ĸ	Y	Þ	Y	A	L	至	G	M	D	. T	Ā	S	T	Δ	
	~	n j	nl Caco		1 7 7 C	23 A.C	23 <i>(</i> 23	ישיב:	ردحه	بحاسنة	366	ה'דנו	ڪئٽ	GCT	CAG	GAA	CIG	ATT.	<u>rca</u>	GTT	
1501										+				+			-+-			÷	1560
	GAA			AC:	TTT	CTT(TTC:	TAC:	יככי	AAC	CCG	ATA	GAC	CGA	GTC	CIT	GAC	TAA	AGT	CAA	
	Ŀ	Y		L	K	E	E	M	R	L	G	Y	L	A	Q	E	L	I	S	v .	
			CIG!			~~ ~ <i>~ ~</i>	1 100	12113	مىنتىرى	ر الا ت	ابلملت	222	ממכ	ن ن ڪن	···	ي الاحباد	<u> عابدہ</u>	رىلىت.	AAG	GAT	
1561							-+-			+				+			-+-			÷	1620
	CTA	GCG	GACI	AGA	GGT	CTT	AGG			CGT	CAA	CCC	TTG	ACA	ATG	TCA	AAC	GCA'	TTC	CTA	
	D	R	Ŀ	s	P	E	s	12 W		A	. v	G	N	С	¥	s	L	R	ĸ	D	* .
	_						- mc	·	~ X ~	~ ~ ~	س ت	א חייר	יריא א	حسر	יא איי	יכבא א	AGS	ماننسته	בטב	TAT	
1621			ACT	+			-+-			+				·+			-+-			+	1680
	GTA	CTA	TGA(CGA	GAG	TTT	TAC	AAA	GTC	TCI	CGA	TAG	GTI	'GAC	TT	CIT	TCI	AAG	TGI	ATA	
	H.	מ	T	A	L	ĸ	М	F	Q	R	A	I	Q	L	N	E	R	F	T	Y	
•							~ ~	13 14	•		لا ک ب		·~~ 7	7 <u>ال</u> اجب).	ر ملسف	יכאכ	ድድድ	لاتت،	GAG	AGA	
1683				+			-+-			+										÷	1740
, 1001	CGT	GTA	TGG	GAA	ACA	CCG	GTG	CIC	AAA	CGG	CGI	AAC	CT	CT.	CAAC	CTC	CTA	CGI	CTC	TCT	
	Δ	u	T	т.	C	G	Ħ	IS.	I4 F	A	A	L	E	E	F	E	D	A	E	R	
					-																
174														-+-			+-				1800
114	AC	GAT	GC(TT	CG	AGAC	וככנ	TAI	CI	YTG	CTC:	rg T	EAT	ATT	ACG	TAC	CATO	3003	\GAJ	CCI	
	. c	Y	R	ĸ	A	L	G	I	D	T	R	H	Y	N	·A	W	Y	G	L	G	-

1801	ATG	ACC	TAT	CII	CGI	CAG	GAG	AAA	TIC	GAG	TII	GCG	CAG	CAI	CAA	TII	CAA	CIG	GCI	CIC	1860
	TAC	TGG	ATA	GAA	GCA	GIC	crc	TTT	AAG	CIC	AAA	.CGC	GIC	GIA	GII	AAA	GII	GAC	CGA	.GAG	
	M	T	Y	Ľ	R	Q	E	ĸ	F	E	Ē	A.	Q	H	<u>Q</u>	F	Q	E —	A	Ľ	
1861	CAA	ATA	aat 	CCA	AGA	TCT	TCA		ATC						ATT	GCI	TIG	CAT	GAG		1920
,	GTT	TAT	TTA	GGT	TCI	AGA	AGT								TAA	CGA	AAC	GTA	CIC	AGT	
		I 'S	N	P	R	S	S	V	I	M	C	Ā	Y	G	·I	A	L.	H	E	S	
1921	DAA	AGA	AAC	GAT	GAG	GCG	TTG	ATG	ATG	ATG	GAG	AAG	GCI	GTA	CTC	ACT	GAT	GCA	AAG		1980
	TTC	TCT	TTG	CIA	CTC	CGC	AAC	TAC	TAC	TAC	CTC	TTC	CGA	CAT	GAG	TGA	CTA	CGT	TTC	TTA	
	ĸ	-	Ŋ	D	E	A	L.	M	M	M	E	K	A	V	Ľ	T	D	A	ĸ	N	
1981		CTC	حدد 	AAG +	TAC	TAC	AAG -+-	GCT 	CAC						GGT 	GAT	TAT -+-	CAC	AAA		2040
	GGC	GAG	GGG	TTC	ATG	atg	TTC	CGA	GTG	TAT	AAT	TGG'	rcg	GAT	CCA	CTA	ATA	GTG	TŢŢ	CGT	
	P	L ,	Þ	K	Y	Y	ĸ	A.	H	I.	L	T	S	L	G	D	Y	H	K	A	
2041				TTA +	GAA			AAA							AGC 	AGT	GTC -+-	CAT			2100
	GTC	TTT	CAA	AAT	CTT	CTC	GAG	TTT	CTT.	ACA	CGA	GGA	GTT	CTT	TCG	TCA	CAG	GTA	CGT.	AGC	
	Q	K	V	L	E	E	Ľ	ĸ	E	С	A	P	Q	E	S	S	V	H	A	s 	
2101				+			-+-	CTA		+				+		[:] -	-+-			÷	2160
								GAT		-											
	L			I		 N	Q 		,K 		Ţ.		·K			16					
2161				+			-+-			+				+			-+-			+	2220
								.GGT P							15	116			E	TCC R	• •
	A	14	D	L	S	2	5	۲	3	ט	A	٧	K	I	Λ.	A	Y	IAT	-	A.	

																			TAAT	2280
221 -	AAC	[AT	GAI	+	CTG(ACC	AC	rgC:	TTC	<u> </u>	TA	AC	7I.CI	AAA	TAA	CAC	GTC	CATTA	
	_		Ė	-	D	_	Ŀ										مك توسخه		TABLET	
														÷:			•		TAGAT + ATCTA	
ı	TGT	GGI	CIIA	ATA	CAA	AGA	STA.	LAT.		3 L							•	•		•
٠	CAG	·	TGI	:GGA	CIA	ACC	CTAI	AAA	_AA	AAC	IGA'	rta:	TAT.	AAA	CTT2	AGA(GGI	AAT	ATTAC	2400
														÷					TAATG	
		•	•	· •	•	•		•	•	•	. •	•	•	•	•	•	•	•		
2401																	•		TTGTT	
	TCI	CEE.	CAAC	CATA	TCI	'CAA	.CCC	AAA	CII	AAA	AGT	AAA	GAA	AAĢ	411	الممدن			AACAA	
							.AAA	AAA			AAA	AAA	AAA	AAA	AAA	AAA	IAAA	3		
2461							-+- TTI			+				·÷					512	

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

SEQUENCE LISTING

<110> CropDesign N.V.
Universidade Federal do Rio de Janeiro

<120> Plant DNA replication modulating proteins

<130> A0040067

<140>

<141>

<150> EP99202214.5

<151> 1999-07-05

<160> 15

<170> PatentIn Ver. 2.1

<210> 1

<211> 889

<212> PRT

<213> Arabidopsis thaliana

<400> 1

Met Ser Glu Asn Ser Glu Pro Arg Gln Leu Glu Asn Ser Thr Ala Gly
1 5 10 15

Arg Glu Leu Ile Pro Leu Ser Pro Thr Asn Ser Asp Gly Asn Asp Asp 20 25 30

Leu Asn Tyr His Leu His Ala Phe Glu Leu Ser Arg Leu Leu Leu Ser 35 40 45

Ser Gly His Pro Glu Ser Val Ile Asp Leu Ser Ser Lys Cys Thr Tyr 50 55 60

Phe Gln Gly Ser Pro Asn Leu Val Lys Tyr Leu Cys Ser Ile Pro Asn 65 70 75 80

Ser Pro Ile Ser Leu Ala Glu Asp Gly Phe Thr Val Thr Leu Ser Pro 85 90 95

Glu Ser Pro Ser Ala Pro Ala Ser Phe Ala Cys Ser Leu Asp Leu Gln 100 105 110

Glu Asn Val Val Leu Glu Gln Phe Met Asp Pro Arg Ser Leu Thr Leu 115 120 125

Lys	His 130	Ser	Arg	Glu	Asn	Ala 135	Glu	Gln	Glü	Glu	Leu 140	Glu	Leu	Met	Pro
Leu 145	Pro	Lys	Arg	Ser	Arg 150	Asn	Asp	Gly	Asn	Asp 155	Val	Asn	Tyr	Ser	Val 160
Ile	Asp	Ser	Arg	Pro 165	Asn	Asp	Ile	Arg	Thr 170	Val	Ala	Cys	Gly	Thr 175	Met
Leu	Gly	Thr	Ile 180	Leu	Ala	Leu	Glu	Ser 185	Gln	Ala	Ser	Val	Phe 190	Asn	Leu
Ser	Ala	Ser 195	Asn	Arg	Gly	Ile	Glu 200	Ala	Phe	Val	Gln	Asp 205	His	Gln	Pro
Gly	Pro 210		Thr	Ser	Asn	Ala 215	Ser	Val	Asp	Val	Asn 220	Pro	Thr	His	Arg
Leu 225		Glu	Ser	_. Lys	- Asn 230	Asp	Leu	Pro	Ser	Pro 235	Gln	Glu	Asp	Gly	Tyr 240
Tyr	Glu	Arg	Pro	Glu 245		Gly	Asp	Phe	Gln 250	Ile	Ala	Asp	Asn	Gln 255	Ile
Leu	Ile	Glu	Glu 260		Asp	Asp	Lys	Asn 265	Lys	Lys	Asp	Leu	Phe 270	Pro	Lys
Gly	Glu	11e 275		Thr	Asp	Ser	Val 280		Ser	Asp	Pró	Val 285		Ser	Leu
Met	Pro 290		Glu	Asn	Glu	Leu 295		Pro	Val	Gln	Ile 300		Asp	Asp	Thr
Glu 305		Leu	Leu	Val	Asp 310		His	Thr	Val	Asp 315		Val	Ser	Thr	Pro 320
Asp	Arg	Glu	Leu	Pro 325		Lys	Pro	Ser	Ala 330		Glu	Ala	Asn	Gln 335	Asp
Lys	Ser	Leu	Val 340		Lys	Thr	Leu	Asp 345		Cys	Lys	Leu	Pro 350	Gly	Asn
Ser	Lys	355		Ser	: Cys	Ser	Pro 360		Ile	Lys	His	Thr 365		Lys	Ser
Lys	Val		Gln	Lys	arg	Lys 375		Asn	Phe	Asn	Thr 380		Arg	Leu	Lys

Asp 385	Gln	Lys	Asp	Gln	Ala 390	Lys	His	Asn	Thr	11e 395	Pro	Asp	Phe	Asp	Ser 400
Tyr	Thr	Ile	Val	Glu 405		Glu	Gly	Ser	Gly 410	Gly	Tyr	Gly	Ile	Val 415	Tyr
Lys	Ala	Thr	Arg 420	Lys	Thr	Asp	Gly	Thr. 425	Glu	Phe	Ala	Ile	Lys 430	Cys	Pro
His	Val	Gly 435	Ala	Gln	Lys	Tyr	Tyr 440	Val	Asn	Asn	Glu	Ile 445	Arg	Met	Leu
	450					455		Ile			460				
465					470			Ile	•	475		•			480
•				485				Ile	490					495	
			500					Leu 505					510		
		515					520	Gly				525			
	530					535	٠	Phe			540				
545					550			Ser		555					560
			•	565				Leu	570				•	575	
			580					Gln 585					590	•	
		595					600	Arg				605			
	610					615		Ala			620				
A1a 625		Asp	val.	ınr	630		Arg	Asn	Noil	635		O _± y	Jiu	_,0	640

•	Arg	Glu	Pro	Leu	Pro 645	Cys	His	Gly	Arg	Lys 650	Ala	Leu	Leu	Asp	Phe 655	Leu
	Gln	Glu	Thr	Met 660	Ser	Val	Pro	Ile	Pro 665	Asn	His	Glu	Val	Ser 670	Ser	Lys
	Ala	Pro	Thr 675	Ser	Met	Arg	Lys	Arg 680	Val	Ala	Ala	Leu	Pro 685	Gly	Lys	Ala
	Glu	Lys 690	Glu	Leu	Leu	Tyr	Leu 695	Thr	Pro	Met	Pro	Leu 700	Суѕ	Ser	Asn	Gly
	Arg 705	Pro	Glu	Ala	Gly	Asp 710	Val	Ile	Glu	Lys	Lys 715	Asp	Gly	Pro	Cys	Ser 720
	Gly	Thr	Lys	Gly	Phe 725	Arg	Ala	Pro	Glu	Val 730	Cys	Phe	Arg	Ser	Leu 735	His
	Gln	Gly	Pro	Lys 740	Ile	Asp	Val	Trp	Ser 745	Ala	Gly	Val	Thr	Leu 750	Leu	Tyr
	Leu	Ile	Met 755		Arg	Thr	Pro	Phe 760	Thr	Gly	Asp	Pro	Glu 765		Asn	Ile
	Lys	Asp 770		Ala	Gln	Leu	Arg 775	Gly	Ser	Glu	Glu	Leu 780	Trp	Glu	Val	Ala
	Lys 785		His	Asn	Arg	Glu 790		Ser	Phe	Pro	Lys 795		Leu	Tyr	Glu	Ser 800
•	Arg	Tyr	Leu	Lys	Gly 805		Glu	Leu	Arg	Lys 810	Trp	Cys	Glu	Leu	Asn 815	Thr
•	Lys	Arg	Arg	Glu 820		Leu	Asp	Val	Ile 825		Leu	Ser	Leu	Leu 830	Asp	Leu
	Val	Asp	Lys 835		Leu	Thr	Val	Asn 840		Arg	Arg	Arg	Ile 845		Ala	Glu
	Asp	Ala 850		Lys	His	Asp	Phe 855		His	Pro	Val	His 860		Thr	Leu	Arg
	Asn 865		Met	. Leu	Leu	Lys 870		Gln	Pro	Thr	Val 875		Ala	Asp	Ala	Val 880
	Ser	Gln	Thr	Leu	Asn 885		Leu	Gln	Leu							

```
<210> 2
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:peptide
<400> 2
Gly Tyr Gly Ile Val Tyr Lys Ala Thr Arg Lys Thr Asp Gly Thr Glu
                                      10
                                                         15
                  5
Phe Ala Ile Lys
             20
<210> 3
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:peptide
<400> 3
Asp Val Ile Glu Lys Lys Asp Gly Pro Cys Ser Gly Thr Lys Gly Phe
Arg Ala Pro Glu
             20
<210> 4
<211> 29
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence:peptide
<400> 4
Asn Ile Lys Asp Ile Ala Gln Leu Arg Gly Ser Glu Glu Leu Trp Glu
                                                           15
                                      10
                . 5
  1
Val Ala Lys Leu His Asn Arg Glu Ser Ser Phe Pro Lys
                                  25
             20
```

<210> 5

<211> 728

<212> PRT

<213> Arabidopsis thaliana

<400> 5

Met Met Glu Asn Leu Leu Ala Asn Cys Val Gln Lys Asn Leu Asn His 1 5 10 15

Phe Met Phe Thr Asn Ala Ile Phe Leu Cys Glu Leu Leu Leu Ala Gln
20 25 30

Phe Pro Ser Glu Val Asn Leu Gln Leu Leu Ala Arg Cys Tyr Leu Ser 35 40 45

Asn Ser Gln Ala Tyr Ser Ala Tyr Tyr Ile Leu Lys Gly Ser Lys Thr 50 55 60

Pro Gln Ser Arg Tyr Leu Phe Ala Phe Ser Cys Phe Lys Leu Asp Leu 65 70 75 80

Leu Gly Glu Ala Glu Ala Ala Leu Leu Pro Cys Glu Asp Tyr Ala Glu 85 90 95

Glu Val Pro Gly Gly Ala Ala Gly His Tyr Leu Leu Gly Leu Ile Tyr 100 105 110

Arg Tyr Ser Gly Arg Lys Asn Cys Ser Ile Gln Gln Phe Arg Met Ala 115 120 125

Leu Ser Phe Asp Pro Leu Cys Trp Glu Ala Tyr Gly Glu Leu Cys Ser 130 135 140

Leu Gly Ala Ala Glu Glu Ala Ser Thr Val Phe Gly Asn Val Ala Ser 145 150 155 160

Gln Arg Leu Gln Lys Thr Cys Val Glu Gln Arg Ile Ser Phe Ser Glu 165 170 175

Gly Ala Thr Ile Asp Gln Ile Thr Asp Ser Asp Lys Ala Leu Lys Asp 180 185 190

Thr Gly Leu Ser Gln Thr Glu His Ile Pro Gly Glu Asn Gln Gln Asp 195 200 205

Leu Lys Ile Met Gln Gln Pro Gly Asp Ile Pro Pro Asn Thr Asp Arg

210	215	2

Gln Leu Ser Thr Asn Gly Trp Asp Leu Asn Thr Pro Ser Pro Val Leu Leu Gln Val Met Asp Ala Leu Pro Pro Leu Leu Lys Asn Met Arg Arg Pro Ala Val Glu Gly Ser Leu Met Ser Val His Gly Val Arg Val Arg Arg Arg Asn Phe Phe Ser Glu Glu Leu Ser Ala Glu Ala Gln Glu Glu Ser Gly Arg Arg Ser Ala Arg Ile Ala Ala Arg Lys Lys Asn Pro Met Ser Gln Ser Phe Gly Lys Asp Ser His Trp Leu His Leu Ser Pro Ser Glu Ser Asn Tyr Ala Pro Ser Leu Ser Ser Met Ile Gly Lys Cys Arg Ile Gln Ser Ser Lys Glu Val Ile Pro Asp Thr Val Thr Leu Asn Asp Pro Ala Thr Thr Ser Gly Gln Ser Val Ser Asp Ile Gly Ser Ser Val Asp Asp Glu Glu Lys Ser Asn Pro Ser Glu Ser Ser Pro Asp -Arg Phe Ser Leu Ile Ser Gly Ile Ser Glu Val Leu Ser Leu Leu Lys Ile Leu Gly Asp Gly His Arg His Leu His Met Tyr Lys Cys Gln Glu Ala Leu Leu Ala Tyr Gln Lys Leu Ser Gln Lys Gln Tyr Asn Thr His Trp Val Leu Met Gln Val Gly Lys Ala Tyr Phe Glu Leu Gln Asp Tyr Phe Asn Ala Asp Ser Ser Phe Thr Leu Ala His Gln Lys Tyr Pro Tyr

Ala Leu Glu Gly Met Asp Thr Tyr Ser Thr Val Leu Tyr His Leu Lys

465	470	475	•	. 480

Glu Glu Met Arg Leu Gly Tyr Leu Ala Gln Glu Leu Ile Ser Val Asp 485 490 495

Arg Leu Ser Pro Glu Ser Trp Cys Ala Val Gly Asn Cys Tyr Ser Leu 500 505 510

Arg Lys Asp His Asp Thr Ala Leu Lys Met Phe Gln Arg Ala Ile Gln 515 520 525

Leu Asn Glu Arg Phe Thr Tyr Ala His Thr Leu Cys Gly His Glu Phe 530 535 540

Ala Ala Leu Glu Glu Phe Glu Asp Ala Glu Arg Cys Tyr Arg Lys Ala 545 550 555 560

Leu Gly Ile Asp Thr Arg His Tyr Asn Ala Trp Tyr Gly Leu Gly Met 565 570 575

Thr Tyr Leu Arg Gln Glu Lys Phe Glu Phe Ala Gln His Gln Phe Gln 580 585 590

Leu Ala Leu Gln Ile Asn Pro Arg Ser Ser Val Ile Met Cys Tyr Tyr 595 600 605

Gly Ile Ala Leu His Glu Ser Lys Arg Asn Asp Glu Ala Leu Met Met 610 620

Met Glu Lys Ala Val Leu Thr Asp Ala Lys Asn Pro Leu Pro Lys Tyr 625 630 635 640

Tyr Lys Ala His Ile Leu Thr Ser Leu Gly Asp Tyr His Lys Ala Gln 645 650 655

Lys Val Leu Glu Glu Leu Lys Glu Cys Ala Pro Gln Glu Ser Ser Val 660 665 670

His Ala Ser Leu Gly Lys Ile Tyr Asn Gln Leu Lys Gln Tyr Asp Lys 675 680 685

Ala Val Leu His Phe Gly Ile Ala Leu Asp Leu Ser Pro Ser Pro Ser 690 695 700

Asp Ala Val Lys Ile Lys Ala Tyr Met Glu Arg Leu Ile Leu Pro Asp 705 710 715 720

Glu Leu Val Thr Glu Glu Asn Leu

725

```
<210> 6
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:peptide
<400> 6
Val Asn Leu Gln Leu Leu Ala Arg Cys Tyr Leu Ser Asn Ser Gln Ala
                                      10
  1
Tyr Ser Ala Tyr Tyr Ile Leu Lys
              20
<210> 7
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:peptide
<400> 7
Ala Tyr Met Glu Arg Leu Ile Leu Pro Asp Glu Leu Val Thr Glu Glu
                                      10
                                                           15
  1
Asn Leu
<210> 8
<211> 2670
<212> DNA
<213> Arabidopsis thaliana
<400> 8
atgtcagaaa actcggaacc gcgtcaactc gagaattcta cagccggaag agagctcatt 60
cctcttagtc ccaccaattc agacggcaac gacgacctta actatcatct gcatgctttt 120
gagttatctc gtctcctact ttcttctggt catccagaat ctgttataga tctttcttca 180
aagtgtacat acttccaagg ttctcctaat ctcgtcaaat atctttgctc gatccctaat 240
tctcctattt cccttgccga agatggcttc actgtgactc tctcgcctga gtctccctcc 300
gctccggcta gtttcgcctg tagtttggat ttgcaggaaa atgttgtgtt agaacagttt 360
```

atggatccga gatctctcac gctaaagcat tcgagagaga atgcggaaca agaggagcta 420

```
gageteatge cattgeecaa aagaagtega aatgatggaa aegatgtgaa ttaetetgta 480
atagatagca gacctaacga catcagaact gttgcctgtg gaactatgct tgggactatt 540
ttagctcttg aatcccaagc ttcggttttc aatttaagtg catctaaccg aggaatagag 600
 gcttttgttc aagatcatca gcctggtccg cagacatcca atgcttcagt ggatgtcaat 660
 cctacacatc ggttagagga aagcaagaac gatttgccat ctcctcagga ggatggatat 720
 tacgagegae etgaaattgg agattteeaa attgetgaea accaaatatt aategaagaa 780
 ggtgatgata aaaataagaa ggatctcttc cctaagggag agatacaaac tgattctgtg 840
 cagtccgatc ccgttgcctc attgatgcca acagaaaatg agttagaacc agtgcagatt 900
 gtggatgaca ctgaagatct acttgtagat gatcacactg tagacatcgt tagcacccct 960
 gacagagage tgeegttgaa geettetget acagaageta atcaagataa atetttggta 1020
 caaaaaactc tggatcaatg caaattgccg ggaaacagca aaacgtacag ctgttcccct 1080
 qaqataaaac acaccagaaa aagtaaagtt atccagaaga ggaagcagaa ttttaacacc 1140
 gttcgtctta aagatcagaa ggatcaggca aagcataaca caattccaga ttttgattct 1200
 tacactattg tagaggaaga aggttcaggt ggctacggga ttgtttataa ggcaacgagg 1260
 aaaactgatg gaacagagtt tgcaattaaa tgccctcatg ttggcgctca gaagtattat 1320
 gtgaataatg aaatcagaat gctggagcgt tttgggggga aaaactgtat aataaagcat 1380
 gaaggctgtc tcaagaatgg agattctgat tgcatcatcc ttgagcacct tgaacatgac 1440
 agacctgatt cattgaagag agaaatagat gtgtatcagc tgcagtggta cggctactgc 1500
 atgttcaaag ctctatcgag tctgcataag cagggtgttg ttcataggga tgttaagcca 1560
 ggaaacttcc tcttctctag gaagaccaac aaaggctatc tcattgattt taaccttgcc 1620
 atggatttgc accagaagta cagaagagca gataaatcaa aagcagcttc aggtcttcct 1680
 accgccagca agaaacatca tacattggtt aaatcactcg atgcggtaaa ccgagggacc 1740
 aacaaacctt ctcagaaaac tttagcgcct aatagtatca agaaagcagc gggaaagaca 1800
 agagetegga atgacatgae cagatgggag agacteaata gecaagggge agaagggtet 1860
 ggcttaactt cagctaaaga tgtgaccagc acaaggaaca acccttcagg tgaaaagaga 1920
 agagageett tgecatgtea tggaagaaaa gegettttag attttetgea agagacaatg 1980
 tctgttccaa ttccaaacca tgaagtatca tccaaagctc ctacgtctat gagaaaacgg 2040
 gtagctgctc ttccagggaa agctgagaag gaacttcttt atctgacccc aatgccactg 2100
 tgctctaacg gtcggcctga agcaggggac gtaattgaga agaaagacgg tccttgctca 2160
 ggaaccaaag gcttccgagc tccagaggtt tgcttcagat ctttgcacca aggacctaag 2220
 atagacgtgt ggtctgcggg agttactttg ttatacctca taatgggaag gacacctttc 2280
actggtgacc ctgaacagaa cataaaggac attgcacaac tacgaggcag tgaagaatta 2340
tgggaagtag ccaagctgca caaccgtgaa tcctctttcc ctaaggaatt atacgagtca 2400
 aggtacttga aggggatgga gttgagaaaa tggtgcgaac tcaacacaaa acgcagagag 2460
 tttctagacg taattccact atcgcttctt gacctcgttg ataaatgttt gaccgttaac 2520
 ccgaggcgac gaatcagcgc agaggatgct ctcaagcacg acttcttcca tccagtacat 2580
 gaaaccetta gaaaccaaat geteettaaa cageageeta cagtggttge tgaegeagta 2640
                                                                   2670
 agccaaactc taaactattt acaattgtaa
```

```
<210> 9
<211> 2434
<212> DNA
<213> Arabidopsis thaliana
```

<400> 9
atgatggaga atctactggc gaattgtgtc cagaaaaacc ttaaccattt tatgttcacc 60
aatgctatct tcctttgcga acttcttctc gcccaatttc catctgaggt gaacctgcaa 120

```
ttgttagcca ggtgttactt gagtaacagt caagcttata gtgcatatta tatccttaaa 180
ggttcaaaaa cgcctcagtc tcggtattta tttgcattct catgctttaa gttggatctt 240
cttggagagg ctgaagctgc attgttgccc tgtgaagatt atgctgaaga agttcctggt 300
ggtgcagctg ggcattatct tcttggtctt atatatagat attctgggag gaagaactgt 360
tcaatacaac agtttaggat ggcattgtca tttgatccat tgtgttggga agcatatgga 420
gaactttgta gtttaggtgc cgctgaagaa gcctcaacag ttttcgggaa tgttgcttcc 480
cagcgtctta aaacttgtgt agaacaaaga ataagcttct cagaaggagc aaccatagac 540
cagattacag attctgataa ggccttaaaa gatacaggtt tatcgcaaac agaacacatt 600
ccaggagaga accaacaaga tctgaaaatt atgcagcagc ctggagatat tccaccaaat 660
actgacagge aacttagtae aaacggatgg gacttgaaca cacettetee agtgetttta 720
caggtaatgg atgctccacc gcctctgctt cttaagaata tgcgtcgtcc agcagtggaa 780
ggatetttga tgtetgtaca tggagtgegt gtgegtegaa gaaaettttt tagtgaagaa 840
ttgtcagcag aggctcaaga agaatctggg cgccgccgta gtgctagaat agcagcaagg 900
aaaaagaatc ctatgtcgca gtcatttgga aaagattccc attggttaca tctttcacct 960
tecgagteaa actatgeace ttetettee tegatgattg gaaaatgeag aatecaaage 1020
agcaaagaag cgattcctga taccgttact ctaaatgatc cagcaacgac gtcaggccag 1080
tctgtaagtg acactggaag ctctgttgat gatgaggaaa agtcaaatcc tagtgaatct 1140
tecceggate gtttcageet tatttetgga atttcagaag tgetaggeat tetgaaaatt 1200
cttggagatg gccacaggca tttacatatg tacaagtgtc aggaagcttt gttggcatat 1260
caaaagctat ctcagaaaca atacaataca cactgggttc tcatgcaggt tggaaaagca 1320
tattttgagc tacaagacta cttcaacgct gactcttcct ttactcttgc tcatcaaaag 1380
tatccttatg ctttggaagg aatggataca tactccactg ttctttatca cctgaaagaa 1440
gagatgaggt tgggctatct ggctcaggaa ctgatttcag ttgatcgcct gtctccagaa 1500
tcctggtgtg cagttgggaa ctgttacagt ttgcgtaagg atcatgatac tgctctcaaa 1560
atgtttcaga gagctatcca actgaatgaa agattcacat atgcacatac cctttgtggc 1620
cacgagtttg ccgcattgga agaattcgag gatgcagaga gatgctaccg gaaggctctg 1680
ggcatagata cgagacacta taatgcatgg tacggtcttg gaatgaccta tcttcgtcag 1740
gagaaatteg agtttgegea geatcaattt caactggete tecaaataaa tecaagatet 1800
tcagtcatca tgtgttacta tggaattgct ttgcatgagt caaagagaaa cgatgaggcg 1860
ttgatgatga tggagaaggc tgtactcact gatgcaaaga atccgctccc caagtactac 1920
aaggeteaca tattaaceag eetaggtgat tateacaaag cacagaaagt tttagaagag 1980
ctcaaagaat gtgctcctca agaaagcagt gtccatgcat cgcttggcaa aatatacaat 2040
cagctaaagc aatacgacaa agccgtgtta catttcggca ttgctttgga tttaagccct 2100
tetecatetg atgetgteaa gataaagget tacatggaga ggttgataet accagacgag 2160
ctggtgacgg aggaaaattt gtagatttat tgtgcaggta atacaccaga ttatgtttct 2220
catataaccc aaagtcatct gtaatttttc tcatctttag atcagtcttg tggactaacc 2280
ctaaaacaaa actgattata taaacttaga gggtaatatt acagaaaatt gtatagagtt 2340
gggtttgaat tttcatttct tttccaagtt ggaacttttg ttcaaaaaaa aaaaaaaaa 2400
                                                                  2434
aaaaaaaaaa aaaaaaaaa aaaaaaaaa aaaa
```

```
<210> 10 <211> 161
```

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:peptide

<400> 10 Met Glu Ala Met Leu Val Asp Cys Val Asn Asn Ser Leu Arg His Phe 10 Val Tyr Lys Asn Ala Ile Phe Met Cys Glu Arg Leu Cys Ala Glu Phe 20 25 Pro Ser Glu Val Asn Leu Gln Leu Leu Ala Thr Ser Tyr Leu Gln Asn 40 Asn Gln Ala Tyr Ser Ala Tyr His Leu Leu Lys Gly Thr Gln Met Ala 55 Gln Ser Arg Tyr Leu Phe Ala Leu Ser Cys Phe Gln Met Asp Leu Leu 75 • 70 65 Asn Glu Ala Glu Ser Ala Leu Cys Pro Val Asn Glu Pro Gly Ala Glu 90 85 Ile Pro Asn Gly Ala Ala Gly His Tyr Leu Leu Gly Leu Ile Tyr Lys 105 100 Lys Asn Ala Ala Gln Gln Phe Lys Gln Ser Leu Thr Ile Asp Pro Leu 120 115 Leu Trp Ala Ala Tyr Glu Glu Leu Cys Ile Leu Gly Ala Ala Glu Glu 140 130 135 Ala Thr Ala Val Phe Gly Glu Thr Ala Ala Leu Ser Ile Gln Lys Gln 160 150 155 145 . Tyr

<210> 11

<211> 716

<212> PRT

<213> Arabidopsis thaliana

<400> 11

Met Met Glu Asn Leu Leu Ala Asn Cys Val Gln Lys Asn Leu Asn His 1 5 10 15

Phe Met Phe Thr Asn Ala Ile Phe Leu Cys Glu Leu Leu Leu Ala Gln 20 25 30

PCT/EP00/06401 WO 01/02430

Phe Pro Ser Glu Val Asn Leu Gln Leu Leu Ala Arg Cys Tyr Leu Ser Asn Ser Gln Ala Tyr Ser Ala Tyr Tyr Ile Leu Lys Gly Ser Lys Thr Pro Gln Ser Arg Tyr Leu Phe Ala Phe Ser Cys Phe Lys Leu Asp Leu Leu Gly Glu Ala Glu Ala Ala Leu Leu Pro Cys Glu Asp Tyr Ala Glu Glu Val Pro Gly Gly Ala Ala Gly His Tyr Leu Leu Gly Leu Ile Tyr Arg Tyr Ser Gly Arg Lys Asn Cys Ser Ile Gln Gln Phe Arg Met Ala Leu Ser Phe Asp Pro Leu Cys Trp Glu Ala Tyr Gly Glu Leu Cys Ser

Leu Gly Ala Ala Glu Glu Ala Ser Thr Val Phe Gly Asn Val Ala Ser

Gln Arg Leu Lys Thr Cys Val Glu Gln Arg Ile Ser Phe Ser Glu Gly

Ala Thr Ile Asp Gln Ile Thr Asp Ser Asp Lys Ala Leu Lys Asp Thr

Gly Leu Ser Gln Thr Glu His Ile Pro Gly Glu Asn Gln Gln Asp Leu

Lys Ile Met Gln Gln Pro Gly Asp Ile Pro Pro Asn Thr Asp Arg Gln

Leu Ser Thr Asn Gly Trp Asp Leu Asn Thr Pro Ser Pro Val Leu Leu

Gln Val Met Asp Ala Pro Pro Pro Leu Leu Lys Asn Met Arg Arg

Pro Ala Val Glu Gly Ser Leu Met Ser Val His Gly Val Arg Val Arg

Arg Arg Asn Phe Phe Ser Glu Glu Leu Ser Ala Glu Ala Gln Glu Glu

WO 01/02430 PCT/EP00/06401

Ser Gly Arg Arg Ser Ala Arg Ile Ala Ala Arg Lys Lys Asn Pro Met Ser Gln Ser Phe Gly Lys Asp Ser His Trp Leu His Leu Ser Pro Ser Glu Ser Asn Tyr Ala Pro Ser Leu Ser Ser Met Ile Gly Lys Cys Arg Ile Gln Ser Ser Lys Glu Ala Thr Thr Ser Gly Gln Ser Val Ser Asp Thr Gly Ser Ser Val Asp Asp Glu Glu Lys Ser Asn Pro Ser Glu Ser Ser Pro Asp Arg Phe Ser Leu Ile Ser Gly Ile Ser Glu Val Leu Ser Ile Leu Lys Ile Leu Gly Asp Gly His Arg His Leu His Met Tyr Lys Cys Gln Glu Ala Leu Leu Ala Tyr Gln Lys Leu Ser Gln Lys Gln Tyr Asn Thr His Trp Val Leu Met Gln Val Gly Lys Ala Tyr Phe Glu Leu Gln Asp Tyr Phe Asn Ala Asp Ser Ser Phe Thr Leu Ala His Gln Lys Tyr Pro Tyr Ala Leu Glu Gly Met Asp Thr Tyr Ser Thr Val Leu Tyr His Leu Lys Glu Glu Met Arg Leu Gly Tyr Leu Ala Gln Glu Leu . 470 Ile Ser Val Asp Arg Leu Ser Pro Glu Ser Trp Cys Ala Val Gly Asn Cys Tyr Ser Leu Arg Lys Asp His Asp Thr Ala Leu Lys Met Phe Gln Arg Ala Ile Gln Leu Asn Glu Arg Phe Thr Tyr Ala His Thr Leu Cys Gly His Glu Phe Ala Ala Leu Glu Glu Phe Glu Asp Ala Glu Arg Cys

WO 01/02430 PCT/EP00/06401

Tyr Arg Lys Ala Leu Gly Ile Asp Thr Arg His Tyr Asn Ala Trp Tyr 545 550 555 Gly Leu Gly Met Thr Tyr Leu Arg Gln Glu Lys Phe Glu Phe Ala Gln 565 570 His Gln Phe Gln Leu Ala Leu Gln Ile Asn Pro Arg Ser Ser Val Ile 580 585 590 Met Cys Tyr Tyr Gly Ile Ala Leu His Glu Ser Lys Arg Asn Asp Glu 595 600 Ala Leu Met Met Glu Lys Ala Val Leu Thr Asp Ala Lys Asn Pro 610 615 620 Leu Pro Lys Tyr Tyr Lys Ala His Ile Leu Thr Ser Leu Gly Asp Tyr 625 630 635 . 640 His Lys Ala Gln Lys Val Leu Glu Glu Leu Lys Glu Cys Ala Pro Gln 645 650. Glu Ser Ser Val His Ala Ser Leu Gly Lys Ile Tyr Asn Gln Leu Lys 660 665 670 Gln Tyr Asp Lys Ala Val Leu His Phe Gly Ile Ala Leu Asp Leu Ser 675 680 685 Pro Ser Pro Ser Asp Ala Val Lys Ile Lys Ala Tyr Met Glu Arg Leu 690 695 Ile Leu Pro Asp Glu Leu Val Thr Glu Glu Asn Leu -705 710 715 ٠. ⁽<210> 12 <211> 12 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence:peptide Ala Ile Pro Asp Thr Val Thr Leu Asn Asp Pro Ala

<210> 13

1

10

<211> 739

<212> PRT

<213> Arabidopsis thaliana

<400> 13

Met Glu Ala Met Leu Val Asp Cys Val Asn Asn Ser Leu Arg His Phe 1 5 10 15

Val Tyr Lys Asn Ala Ile Phe Met Cys Glu Arg Leu Cys Ala Glu Phe 20 25 30

Pro Ser Glu Val Asn Leu Gln Leu Leu Ala Thr Ser Tyr Leu Gln Asn 35 40 45

Asn Gln Ala Tyr Ser Ala Tyr His Leu Leu Lys Gly Thr Gln Met Ala 50 55 60

Gln Ser Arg Tyr Leu Phe Ala Leu Ser Cys Phe Gln Met Asp Leu Leu 65 70 75 80

Asn Glu Ala Glu Ser Ala Leu Cys Pro Val Asn Glu Pro Gly Ala Glu 85 90 95

Ile Pro Asn Gly Ala Ala Gly His Tyr Leu Leu Gly Leu Ile Tyr Lys
100 105 110

Lys Asn Ala Ala Gln Gln Phe Lys Gln Ser Leu Thr Ile Asp Pro Leu 115 120 125

Leu Trp Ala Ala Tyr Glu Glu Leu Cys Ile Leu Gly Ala Ala Glu Glu 130 135 140

Ala Thr Ala Val Phe Gly Glu Thr Ala Ala Leu Ser Ile Gln Lys Gln 145 150 155 160

Tyr Met Gln Gln Leu Ser Thr Ser Leu Gly Leu Asn Thr Tyr Asn Glu 165 170 175

Glu Arg Asn Ser Thr Ser Thr Lys Asn Thr Ser Ser Glu Asp Tyr Ser 180 185 190

Pro Arg Gln Ser Lys His Thr Gln Ser His Gly Leu Lys Asp Ile Ser 195 200 205

Gly Asn Phe His Ser His Gly Val Asn Gly Gly Val Ser Asn Met Ser 210 215 220

Phe Tyr Asn Thr Pro Ser Pro Val Ala Ala Gln Leu Ser Gly Ile Ala

Pro Pro Pro Leu Phe Arg Asn Phe Gln Pro Ala Val Ala Asn Pro Asn Ser Leu Ile Thr Asp Ser Ser Pro Lys Ser Thr Val Asn Ser Thr Leu 270 · • ± Gln Ala Pro Arg Arg Lys Phe Val Asp Glu Gly Lys Leu Arg Lys Ile Ser Gly Arg Leu Phe Ser Asp Ser Gly Pro Arg Arg Ser Ser Arg Leu Ser Ala Asp Ser Gly Ala Asn Ile Asn Ser Ser Val Ala Thr Val Ser Gly Asn Val Asn Asn Ala Ser Lys Tyr Leu Gly Gly Ser Lys Leu Ser Ser Leu Ala Leu Arg Ser Val Thr Leu Arg Lys Gly His Ser Trp Ala Asn Glu Asn Met Asp Glu Gly Val Arg Gly Glu Pro Phe Asp Asp Ser Arg Pro Asn Thr Ala Ser Thr Thr Gly Ser Met Ala Ser Asn Asp Gln Glu Asp Glu Thr Met Ser Ile Gly Gly Ile Ala Met Ser Ser Gln Thr . Ile Thr Ile Gly Val Ser Glu Ile Leu Asn Leu Leu Arg Thr Leu Gly Glu Gly Cys Arg Leu Ser Tyr Met Tyr Arg Cys Gln Glu Ala Leu Asp Thr Tyr Met Lys Leu Pro His Lys His Tyr Asn Thr Gly Trp Val Leu Ser Gln Val Gly Lys Ala Tyr Phe Glu Leu Ile Asp Tyr Leu Glu Ala Glu Lys Ala Phe Arg Leu Ala Arg Leu Ala Ser Pro Tyr Cys Leu Glu Gly Met Asp Ile Tyr Ser Thr Val Leu Tyr His Leu Lys Glu Asp Met Lys Leu Ser Tyr Leu Ala Gln Glu Leu Ile Ser Thr Asp Arg Leu Ala 505 510 Pro Gln Ser Trp Cys Ala Met Gly Asn Cys Tyr Ser Leu Gln Lys Asp His Glu Thr Ala Leu Lys Asn Phe Leu Arg Ala Val Gln Leu Asn Pro Arg Phe Ala Tyr Ala His Thr Leu Cys Gly His Glu Tyr Thr Thr Leu Glu Asp Phe Glu Asn Gly Met Lys Ser Tyr Gln Asn Ala Leu Arg Val Asp Thr Arg His Tyr Asn Ala Trp Tyr Gly Leu Gly Met Ile Tyr Leu Arg Gln Glu Lys Leu Glu Phe Ser Glu His His Phe Arg Met Ala Phe Leu Ile Asn Pro Ser Ser Val Ile Met Ser Tyr Leu Gly Thr Ser Leu His Ala Leu Lys Arg Ser Glu Glu Ala Leu Glu Ile Met Glu Gln Ala Ile Val Ala Asp Arg Lys Asn Pro Leu Pro Met Tyr Gln Lys Ala Asn Ile Leu Val Cys Leu Glu Arg Leu Asp Glu Ala Leu Glu Val Leu Glu Glu Leu Lys Glu Tyr Ala Pro Ser Glu Ser Ser Val Tyr Ala Leu Met Gly Arg Ile Tyr Lys Arg Arg Asn Met His Asp Lys Ala Met Leu His Phe Gly Leu Ala Leu Asp Met Lys Pro Pro Ala Thr Asp Val Ala Ala Ile Lys Ala Ala Met Glu Lys Leu His Val Pro Asp Glu Ile Asp

Glu Ser Pro

<210> 14 <211> 2401 <212> DNA <213> Arabidopsis thaliana

<400> 14

atgatggaga atctactggc gaattgtgtc cagaaaaacc ttaaccattt tatgttcacc 60 aatgctatct teetttgega acttettete geceaattte catetgaggt gaacetgeaa 120 ttgttagcca ggtgttactt gagtaacagt caagcttata gtgcatatta tatccttaaa 180 ggttcaaaaa cgcctcagtc tcggtattta tttgcattct catgctttaa gttggatctt 240 cttggagagg ctgaagctgc attgttgccc tgtgaagatt atgctgaaga agttcctggt 300 ggtgcagctg ggcattatct tcttggtctt atatatagat attctgggag gaagaactgt 360 tcaatacaac agtttaggat ggcattgtca tttgatccat tgtgttggga agcatatgga 420 gaactttgta gtttaggtgc cgctgaagaa gcctcaacag ttttcgggaa tgttgcttcc 480 cagcgtctta aaacttgtgt agaacaaaga ataagcttct cagaaggagc aaccatagac 540 cagattacag attctgataa ggccttaaaa gatacaggtt tatcgcaaac agaacacatt 600 ccaggagaga accaacaaga tctgaaaatt atgcagcagc ctggagatat tccaccaaat 660 actgacagge aacttagtac aaacggatgg gacttgaaca caccttetee agtgetttta 720 caggtaatgg atgctccacc gcctctgctt cttaagaata tgcgtcgtcc agcagtggaa 780 ggatctttga tgtctgtaca tggagtgcgt gtgcgtcgaa gaaacttttt tagtgaagaa 840 ttgtcagcag aggctcaaga agaatctggg cgccgccgta gtgctagaat agcagcaagg 900 aaaaagaatc ctatgtcgca gtcatttgga aaagattccc attggttaca tctttcacct 960 tecgagteaa actatgeace ttetettee tegatgattg gaaaatgeag aateeaaage 1020 agcaaagaag caacgacgtc aggccagtct gtaagtgaca ctggaagctc tgttgatgat 1080 gaggaaaagt caaatcctag tgaatcttcc ccggatcgtt tcagccttat ttctggaatt 1140 tcagaagtgc taagcattct gaaaattctt ggagatggcc acaggcattt acatatgtac 1200 aagtgtcagg aagctttgtt ggcatatcaa aagctatctc agaaacaata caatacacac 1260 tgggttctca tgcaggttgg aaaagcatat tttgagctac aagactactt caacgctgac 1320 tcttccttta ctcttgctca tcaaaagtat ccttatgctt tggaaggaat ggatacatac 1380 tccactgttc tttatcacct gaaagaagag atgaggttgg gctatctggc tcaggaactg 1440 atttcagttg atcgcctgtc tccagaatcc tggtgtgcag ttgggaactg ttacagtttg 1500 cgtaaggatc atgatactgc tctcaaaatg tttcagagag ctatccaact gaatgaaaga 1560 ttcacatatg cacataccct ttgtggccac gagtttgccg cattggaaga attcgaggat 1620 gcagagagat gctaccggaa ggctctgggc atagatacga gacactataa tgcatggtac 1680 ggtcttggaa tgacctatct tcgtcaggag aaattcgagt ttgcgcagca tcaatttcaa 1740 ctggctctcc aaataaatcc aagatcttca gtcatcatgt gttactatgg aattgctttg 1800 catgagtcaa agagaaacga tgaggcgttg atgatgatgg agaaggctgt actcactgat 1860 gcaaagaatc cgctccccaa gtactacaag gctcacatat taaccagcct aggtgattat 1920 cacaaagcac agaaagtttt agaagagctc aaagaatgtg ctcctcaaga aagcagtgtc 1980 catgcatcgc ttggcaaaat atacaatcag ctaaagcaat acgacaaagc cgtgttacat 2040 ttcggcattg ctttggattt aagcccttct ccatctgatg ctgtcaagat aaaggcttac 2100 atggagaggt tgatactacc agacgagctg gtgacggagg aaaatttgta gatttattgt 2160 gcaggtaata caccagatta tgtttctcat ataacccaaa gtcatctgta atttttctca 2220 tetttagate agtettgtgg actaaceeta aaacaaaact gattatataa acttagaggg 2280 taatattaca gaaaattgta tagagttggg tttgaatttt catttctttt ccaagttgga 2340 WO 01/02430 PCT/EP00/06401

<210> 15

<211> 2220

<212> DNA

<213> Arabidopsis thaliana

<400> 15

atggaagcta tgcttgtgga ctgtgtaaac aacagtcttc gtcattttgt ctacaaaaat 60 gctattttca tgtgcgagcg tctctgcgct gagtttcctt ctgaggttaa tttgcagcta 120 ttagccacca gctacctgca gaataatcaa gcttacagtg catatcatct gctaaaggga 180 acacaaatqq ctcaqtcccq atacttqttc gcattatcat gcttccagat ggaccttctc 240 aatgaagetg aatetgeact etgeeetgtt aatgaacetg gtgeggagat eccaaatggt 300 gcagcaggcc attaccttct tggacttatt tacaagaaga atgctgctca acaatttaaa 360 cagtccttga caatagaccc tctactttgg gctgcatatg aggaattatg tatattaggt 420 gctgctgagg aagcaactgc agtttttggt gaaacagctg ctctctccat tcaaaagcag 480 tatatgcaac aactgtcaac ttccctcggc ttaaacactt acaacgagga acgtaattca 540 acttctacta aaaacacgag ttctgaagat tatagtccaa ggcagtctaa acacacacaa 600 agccatggcc ttaaagatat ctccggaaat ttccattctc atggagttaa tggaggtgtt 660 tegaacatgt cattetataa tacgeetteg ecagtggetg cacagetate eggtataget 720 ccaccaccac ttttccggaa ttttcagcca gctgttgcaa acccaaactc ccttattact 780 gacagttctc caaagtccac tgttaactct actcttcaag cacctagaag aaagtttgta 840 gatgaaggaa agttacgtaa gatttctggc agactatttt ctgattctgg tccacgacgg 900 agttcaagac tgtctgctga ttcaggggca aacattaatt caagtgttgc aacagtaagc 960 ggaaatgtga acaacgcttc caagtatttg ggaggttcta aattgagttc tttggcactt 1020 cgttctgtaa cacttcggaa gggacactcc tgggcaaatg aaaacatgga tgaaggggtc 1080 cqtqqqaac cttttqatqa ttcaaggcct aatactgcct caacgactgg ttctatggct 1140 tccaatgatc aagaagacga aacaatgtcg attggtggca tagcaatgag ttctcaaaca 1200 atcacaattg gtgtttcgga aattttaaac ctccttagga cactcggaga agggtgtaga 1260 etttcataca tgtacaggtg tcaggaggca ctggatacgt atatgaaact tccacataag 1320 cattataata caggatgggt tctttcccag gtcgggaaag catactttga actaattgac 1380 tatttagagg ctgaaaaggc attccgtctt gcccgtctgg cttctcctta ttgcttagaa 1440 ggaatggata tatactctac ggtcctctat catttgaagg aagacatgaa gctgagttac 1500 ttggctcagg aactaatatc aaccgatcgc ttagctcctc aatcttggtg tgctatggga 1560 aattgctata gcttgcaaaa ggaccatgag accgcactga agaatttcct acgagctgtt 1620 caactgaatc caagatttgc atatgcacat accttatgtg gccacgaata cacaactctt 1680 gaggattttg agaacggaat gaaaagttac caaaacgcac ttcgtgtaga tacaagacac 1740 tacaacgcat ggtacgggct tggaatgata tatctacgcc aagagaagtt agagttctca 1800 gagcatcact tcagaatggc tttcctaata aacccgagtt cctctgttat aatgtcttat 1860 ttagggacat ctttgcatgc cttgaagaga agtgaggaag cactagagat aatggagcaa 1920 gccatagtag cagatagaaa aaaccctctt ccaatgtacc agaaagctaa catacttgtc 1980 tgcttagaaa gattagatga agctctagaa gttcttgagg agctcaaaga gtatgcgcct 2040 tcagagagca gcgtttacgc tttaatgggc aggatctata agcggcgaaa catgcacgat 2100 aaagccatgc ttcatttcgg tctagcttta gatatgaaac cgcctgcaac tgacgttgct 2160 gcaataaagg ctgcaatgga gaaattgcat gttccagatg agatcgatga gagcccgtga 2220