ECE 340: Semiconductor Electronics

Chapter 1 to 4 review

Wenjuan Zhu

Outline

- Crystal properties and growth of semiconductors
- Atoms and electrons
- Energy bands and charge carriers in semiconductors
- Excess carriers in semiconductors

Energy band: E-K vs. E-X

Intrinsic and extrinsic materials

		ША	IVA	VA	VIA
		5	6	7	8
		В	С	N	0
		13	14	15	16
	IIB	Al	Si	Р	S
	30	31	32	33	34
	Zn	Ga	Ge	As	Se
	48	49	50	51	52
	Cd	In	Sn	Sb	Те
-1					

Fermi-Dirac distribution and carrier concentration

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$p_0 = n_i e^{(E_i - E_F)/kT}$$

$$n_0 p_0 = n_i^2$$

Space Charge Neutrality

 If there 2 or more different dopants, charge neutrality in the material:

$$p_0 + N_d^+ = n_0 + N_a^-$$

• If all the impurities are ionized $(N_d^+ = N_d, N_a^- = N_a)$:

$$p_0 + N_d = n_0 + N_a$$

• If $|N_d-N_a|$ is comparable with n_i ,

$$n_o = \frac{N_d - N_a}{2} + \sqrt{\left(\frac{N_d - N_a}{2}\right)^2 + n_i^2}$$

$$n_o = \frac{N_d - N_a}{2} + \sqrt{\left(\frac{N_d - N_a}{2}\right)^2 + n_i^2}$$
 $p_o = \frac{N_a - N_d}{2} + \sqrt{\left(\frac{N_a - N_d}{2}\right)^2 + n_i^2}$

Drift current

Conductivity:

$$\sigma = q(n\mu_n + p\mu_p)$$

Resistivity:
$$\rho = \frac{1}{\sigma}$$

Resistance
$$R = \rho \frac{L}{wt}$$

$$\mathbf{mobility} \quad \mu = \frac{q \tau_o}{m^*}$$

Light absorption and photoluminescence

If
$$h\nu < E_g$$
 no light absorption

If
$$hv \ge E_g$$
 $I_t = I_0 e^{-\alpha l}$

Incident photon flux
$$\Phi = \frac{P_{op}}{h\nu}$$

Steady state light illumination

The excess electron-hole pair concentration:

$$\Delta n = \Delta p = g_{op} \tau_n$$

Quasi-Fermi Level

$$n = n_i e^{(F_n - E_i)/kT}$$
$$p = p_i e^{(E_i - F_p)/kT}$$

$$p = p_i e^{(E_i - F_p)/kT}$$

Photoconductivity:

$$\Delta\sigma = qg_{op}(\tau_n\mu_n + \tau_p\mu_p)$$

Light is turned off at t=0:

 Electron and hole concentration as a function of time

$$n(t) = n_0 + \Delta n e^{-t/\tau_n}$$

$$p(t) = p_0 + \Delta p e^{-t/\tau_p}$$

$$\tau_n = \frac{1}{\alpha_r(n_0 + p_0)} \approx \frac{1}{\alpha_r p_0} \qquad \frac{\Delta n}{e} + n_0$$

Drift and diffusion directions for electrons and holes

Diffusion and drift current density

The electron and hole current density:

$$J_n(x) = q\mu_n n(x)\mathcal{E}(x) + qD_n \frac{dn(x)}{dx}$$

drift

diffusion

$$J_p(x) = q\mu_p p(x)\mathcal{E}(x) - qD_p \frac{dp(x)}{dx}$$

The total current density:

$$J(x) = J_n(x) + J_p(x)$$

• Einstein relation

$$\frac{D}{\mu} = \frac{kT}{q}$$

Built-in field

- Non-uniform doping result in carrier diffusion, which generate built-in field.
- At equilibrium, drift current balances diffusion current.

$$\begin{cases} J_n(x) = q\mu_n n(x)\mathcal{E}(x) + qD_n \frac{dn(x)}{dx} = 0\\ \frac{D}{dx} = \frac{kT}{dx} \end{cases}$$

Similarly:
$$\mathcal{E} = \frac{kT}{q} \frac{1}{p} \frac{dp}{dx}$$

Continuity equation for holes and electrons

$$\frac{\partial \delta p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - \frac{\delta p}{\tau_p}$$
 continuity equation for holes

$$\frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$$
 continuity equation for electrons
$$\frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x} = \frac{\partial \delta n}{\partial x} - \frac{\partial \delta n}{\partial x$$

Diffusion current

 If carrier inject from one end, excess carrier concentration:

$$\delta p(x) = \Delta p e^{-x/L_p}$$

 L_p is the average distance a hole diffuses before recombining

Diffusion current:

$$J_p(x) = q \frac{D_p}{L_p} \delta p(x)$$

