

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 ÁLGEBRA LINEAL PARA INGENIERÍA Prueba Parcial II

Martes 14 de Mayo de 2013

Alumno(a):	 Grupo	Sala

- Debe responder una pregunta por hoja. 1.-(2,5 pts.)
- Conteste en forma ordenada identificando la pregunta e item que corresponde. 2.-(1,5 pts.)
- Cada solución debe llevar desarrollo y respuesta **justificando** de forma adecuada. 3.-(2,0 pts.)
- Tiempo: 90 minutos.

1) Sean
$$W_1 = \langle \{(1,0,-2),(2,-1,-5)\} \rangle \leq \mathbb{R}^3$$
 y $W_2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 0\}$

- a) Caracterice W_1 (o sea, expréselo por comprensión)
- b) Pruebe que W_2 no es un subespacio vectorial de \mathbb{R}^3 (muestre un contraejemplo).
- c) Sea $u=(1,-2,k)\in\mathbb{R}^3$. Determine el (los) valor(es) de $k\in\mathbb{R}$ de modo que:
 - i) ||u|| = 5.
 - ii) u sea ortogonal con v = (1, 1, 7).
- 2) En \mathbb{R}^2 , para $u=(x_1,x_2)$ y $v=(y_1,y_2)$ se define el siguiente producto interno:

$$\langle u, v \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2$$

- a) Pruebe que $\langle u, u \rangle \geq 0$ y $\langle u, u \rangle = 0 \Leftrightarrow u = (0, 0)$
- b) Calcule el ángulo entre u = (1, -3) y v = (-5, 2)
- 3) Sea $W = \left\langle \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -5 \\ -2 & 3 \end{bmatrix} \right\} \right\rangle$ un subespacio de las matrices cuadradas de orden 2.
 - a) Encuentre una base y dimensión de W.
 - b) Obtenga W^{\perp} , halle una base y dimensión de él.
 - c) Verifique que $W \oplus W^{\perp} = M_2(\mathbb{R})$.