

#### **Neural Networks**



Awni Hannun

#### Outline

- 1. Overview: Neural Networks
- 2. Feed forward calculation
- 3. Training: Backpropagation
- 4. Applications and Extensions

#### Outline

- 1. Overview: Neural Networks
- 2. Feed forward calculation
- 3. Training: Backpropagation
- 4. Applications and Extensions

#### What is a Neural Network?

Logistic regression as a "neuron"



#### What is a Neural Network?

Stack many logistic units to create a Neural Network



## Why Neural Networks?

Too many reasons, here are a few –

- 1. Highly expressive (universal approximators)
- 2. Deep learning, hierarchical representations
- 3. Supervised learning
  - -Binary classification
  - -Multiclass Classification
  - -Regression
- 4. Unsupervised Learning
  - -Feature learning
  - -Dimensionality reduction
  - -Generative models

#### **Notation**

$$l = 1, ..., L$$
 -  $l$ -th layer

$$W^{(l)} \in \mathbb{R}^{mxn}$$
 - weights for layer  $l$ 

$$b^{(l)} \in \mathbb{R}^m$$
 - bias for layer  $l$ 

 $\sigma(z)$  - activation function (for the following  $\sigma$  is the sigmoid function)

$$z^{(l+1)} = W^{(l)} a^{(l)} + b^{(l)} \quad \text{ - input to } (l+1)\text{-st layer}$$

$$a^{(l+1)} = \sigma(z^{(l+1)})$$
 - activation of  $(l+1)$ -st layer, let  $a^{(1)} = x$ 

#### Outline

- 1. Overview: Neural Networks
- 2. Feed forward calculation
- 3. Training: Backpropagation
- 4. Applications and Extensions









Summary: Feed forward pass is just function composition + cost calculation

$$f(x) = \sigma \left( W^{(2)} \sigma \left( W^{(1)} x + b^{(1)} \right) + b^{(2)} \right)$$

$$Loss(x, y; W, z) = \frac{1}{2} ||f(x) - y||_2^2$$

#### Outline

- 1. Overview: Neural Networks
- 2. Feed forward calculation
- 3. Training: Backpropagation
- 4. Applications and Extensions

## **Training**

Use gradient based updates to learn parameters for Network

$$Loss(x, y; W, z) = \frac{1}{2} ||a^{(L)} - y||_2^2$$

$$W \leftarrow W - \eta \nabla_W \text{Loss}(x, y; W, b)$$

$$b \leftarrow b - \eta \nabla_b \text{Loss}(x, y; W, b)$$

## Training: Backpropagation

#### Backpropagation

Algorithm to compute the derivative of the Loss function with respect to the parameters of the Network

$$\nabla_W \mathrm{Loss}(x, y; W, b)$$

$$\nabla_b \mathrm{Loss}(x,y;W,b)$$

#### Chain Rule



#### Chain Rule



#### Chain Rule



Idea: apply chain rule recursively

$$f(x) = f_3(w_3 f_2(w_2 f_1(w_1 x)))$$



$$\frac{df}{dx} = f_3'(w_3 f_2(w_2 f_1(w_1 x))) \frac{d}{dx}(w_3 f_2(w_2 f_1(w_1 x)))$$

$$\frac{df}{dx} = w_3 f_3'(w_3 f_2(w_2 f_1(w_1 x))) f_2'(w_2 f_1(w_1 x)) \frac{d}{dx}(w_2 f_1(w_1 x))$$





Derivative of sigmoid

$$\sigma(z) = \boxed{ } = \frac{1}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$
$$= \sigma(z)(1 - \sigma(z))$$





Recursively compute delta at each hidden layer



$$\delta^{(l)} = (w^{(l)})^T \delta^{(l+1)} \circ (a^{(l)})(1 - a^{(l)})$$

Compute gradient of Loss w.r.t. weights

$$\frac{\partial \text{Loss}}{\partial w_{ij}^{(l)}} = \frac{\partial \text{Loss}}{\partial z_i^{(l+1)}} \frac{\partial z_i^{(l+1)}}{\partial w_{ij}^{(l)}}$$

$$= \frac{\partial \text{Loss}}{\partial z_i^{(l+1)}} \frac{\partial (W^{(l)}a^{(l)} + b^{(l)})_i}{\partial w_{ij}^{(l)}}$$

$$= \delta_i^{(l+1)} a_j^{(l)}$$

$$\nabla_{W^{(l)}} \text{Loss} = \delta^{(l+1)} \left( a^{(l)} \right)^T$$

$$\nabla_{b^{(l)}} \text{Loss} = \delta^{(l)}$$

#### **Backpropagation Algorithm**

- 1. Feed forward input (x, y), computing activation for layers l = 2, ..., L
- 2. For the output layer, L set:

$$\delta^{(L)} = a^{(L)}(1 - a^{(L)})(a^{(L)} - y)$$

3. For layers l = 2, ..., L - 1 set:

$$\delta^{(l)} = (W^{(l)})^T \delta^{(l+1)} \circ a^{(l)} (1 - a^{(l)})$$

4. Compute gradient with respect to parameters  $W^{(l)}, b^{(l)}$  as:

$$\nabla_{W^{(l)}} \operatorname{Loss}(x, y; W, b) = \delta^{(l+1)}(a^{(l)})^{T}$$

$$\nabla_{b^{(l)}} \operatorname{Loss}(x, y; W, b) = \delta^{(l+1)}$$

## Training: Backpropagation

#### **SGD** Algorithm

run SGD as usual using backpropagation to compute derivative of Loss w.r.t. params

For each input (x, y) in the training set

$$\nabla_{W,b} \text{Loss}(x, y; W, b) = \text{Backpropagate}(x, y)$$

$$W \leftarrow W - \eta \nabla_W \text{Loss}(x, y; W, b)$$

$$b \leftarrow b - \eta \nabla_b \text{Loss}(x, y; W, b)$$

#### Outline

- 1. Overview: Neural Networks
- 2. Feed forward calculation
- 3. Training: Backpropagation
- 4. Applications and Extensions

# Model: Deep NN



## Applications: Deep NN

#### Speech Recognition



### Applications: Deep NN

#### **Speech Recognition**



Convert output of NN to observation probabilities using Bayes Thm

$$p(o|s) = \frac{p(s|o)p(o)}{p(s)}$$

#### Model: Convolutional NN

#### Ideas:

- -small receptive fields
- -tie weights, re-use features
- -pooling gives translation invariance
- -convolution demo
- -pooling demo



### Model: Convolutional NN



### **Applications: Convolutional NN**

#### **Computer Vision**

ImageNet object recognition of 22k classes (state-of-the-art) - ~37% error rate



beer bottle



water bottle



soda bottle



Egyptian cat



Tabby cat

## **Applications: Convolutional NN**

Computer Vision – feature learning



## Applications: Google Brain

#### Major differences from Conv Net:

- -Unsupervised training on 10 Million images from YouTube
- -Untied weights, i.e. locally connected (1+ Billion parameters)





## Model Type: Auto-encoder



## Applications: Auto-encoder

#### Dimensionality reduction



Images from: Hinton, G. E. and Salakhutdinov, R. R. (2006) *Reducing the dimensionality of data with neural networks*. Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.

## Applications: Auto-encoder

Learn features with sparse auto-encoder



## Model: Restricted Boltzmann Machine (RBM)

Bipartite Markov Random Field

Edges are undirected.

We'll learn about MRFs later!



# Model: Deep Boltzmann Machine (DBN)



## Applications: RBM / DBN

Most common: Pre-training for a DNN

#### **Learning Features**



Generating Samples using MCMC (We'll learn about that later!)

```
796388083889868693376638808388686869337663880838868686933766388083886868693376638808388686833
```

CS221: Artificial Intelligence (Autumn 2013) Images: deeplearning.net

### Model: Recurrent NN



## **Applications: Recurrent NN**

#### Any Sequence-based problem:

- 1. Speech recognition
- 2. Handwriting recognition (state-of-the-art)
- 3. Stock-market prediction
- 4. Vision

RNN handwriting generation demo

A. Graves. Generating Sequences With Recurrent Neural Networks

http://www.cs.toronto.edu/~graves/handwriting.html

### Where to from here?

Online Tutorials:

Stanford Deep Learning Tutorial – <a href="http://ufldl.stanford.edu/tutorial/index.php/UFLDL\_Tutorial">http://ufldl.stanford.edu/tutorial/index.php/UFLDL\_Tutorial</a>

http://deeplearning.net/

Reading:

Chris Bishop - Neural Networks for Pattern Recognition

Raul Rojas – Neural Networks (online)

Much much more online...

## Appendix









$$x \xrightarrow{\text{forward}} f(x) + g(x)$$

$$f'(x) + g'(x) \leftarrow \frac{\text{backward}}{1}$$

Scaling



$$x \xrightarrow{\text{forward}} wx$$

$$w \leftarrow \frac{\text{backward}}{1}$$





backward

$$\delta^{(L)} = a^{(L)}(1 - a^{(L)})(a^{(L)} - y) \blacktriangleleft a^{(L)} - y \blacktriangleleft 1$$



$$\delta^{(l)} = (W^{(l)})^T \delta^{(l+1)} \circ a^{(l)} (1 - a^{(l)})$$



$$\nabla_{W^{(l)}} \text{Loss} = \delta^{(l+1)} \left( a^{(l)} \right)^T$$