Harsh Seksaria

2048011

2 - MDS

Machine Learning Lab - 7 and 8

25 March 2021

```
Support Vector Machine Regression & Classification
```

CHRIST (Deemed to be University)

In [1]:

```
#Import statements
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
```

Reading dataset

In [2]:

```
# Read dataset in dataframe
data = pd.read_csv("../diabetes.csv")

#Dividing dataset into x and y
x = data.drop('Outcome', axis=1)
y = data['Outcome']

#Dividing dataset into training and testing set
X_train, X_test, Y_train, Y_test = train_test_split(x, y, test_size=0.25, random_state=11)
```

SVM Regression

In [9]:

```
#Gaussian Kernel

from sklearn.svm import SVR
svrclassifier = SVR(kernel="rbf")
svrclassifier.fit(X_train, Y_train)

#Prediction
Y_pred_svr = svrclassifier.predict(X_test)

from sklearn.metrics import r2_score
print("R2 score: ", r2_score(Y_test, Y_pred_svr))

from sklearn.metrics import mean_squared_error
print("Mean Squared Error: ", mean_squared_error(Y_test, Y_pred_svr))
```

R2 score: 0.21718928679514748 Mean Squared Error: 0.1765910886233603

In [8]:

```
#Linear Kernel

from sklearn.svm import SVR
svrclassifier = SVR(kernel="linear")
svrclassifier.fit(X_train, Y_train)

#Prediction
Y_pred_svr = svrclassifier.predict(X_test)

from sklearn.metrics import r2_score
print("R2 score: ", r2_score(Y_test, Y_pred_svr))

from sklearn.metrics import mean_squared_error
print("Mean Squared Error: ", mean_squared_error(Y_test, Y_pred_svr))
```

R2 score: 0.24060830364949182 R2 score: 0.17130808775094472

In [10]:

```
#Polynomial Kernel

from sklearn.svm import SVR
svrclassifier = SVR(kernel="poly", degree=8)
svrclassifier.fit(X_train, Y_train)

#Prediction
Y_pred_svr = svrclassifier.predict(X_test)

from sklearn.metrics import r2_score
print("R2 score: ", r2_score(Y_test, Y_pred_svr))

from sklearn.metrics import mean_squared_error
print("Mean Squared Error: ", mean_squared_error(Y_test, Y_pred_svr))
```

R2 score: -6214.2287841745765 Mean Squared Error: 1402.068212055007

In [11]:

```
#Sigmoid Kernel

from sklearn.svm import SVR
svrclassifier = SVR(kernel="sigmoid", degree=8)
svrclassifier.fit(X_train, Y_train)

#Prediction
Y_pred_svr = svrclassifier.predict(X_test)

from sklearn.metrics import r2_score
print("R2 score: ", r2_score(Y_test, Y_pred_svr))

from sklearn.metrics import mean_squared_error
print("Mean Squared Error: ", mean_squared_error(Y_test, Y_pred_svr))
```

R2 score: -153.5318515223614 Mean Squared Error: 34.8602125992827

SVM Classification

In [13]:

```
#Gaussian Kernel
from sklearn.svm import SVC
svcclassifier = SVC(kernel="rbf")
svcclassifier.fit(X_train, Y_train)

#Prediction
Y_pred_svm = svcclassifier.predict(X_test)

#Printing the predictions
Y_pred_svm

#Evaluation
from sklearn.metrics import classification_report, confusion_matrix
print("CLASSIFICATION REPORT:\n\n", classification_report(Y_test, Y_pred_svm))
print("\nCONFUSION MATRIX:\n\n", confusion_matrix(Y_test, Y_pred_svm))
```

CLASSIFICATION REPORT:

	precision	recall	f1-score	support
0	0.74	0.92	0.82	126
1	0.71	0.38	0.50	66
accuracy			0.73	192
macro avg	0.73	0.65	0.66	192
weighted avg	0.73	0.73	0.71	192

CONFUSION MATRIX:

[[116 10] [41 25]]

In [14]:

```
#Polynomial Kernel
from sklearn.svm import SVC
svcclassifier = SVC(kernel="poly", degree=8)
svcclassifier.fit(X_train, Y_train)

#Prediction
Y_pred_svm = svcclassifier.predict(X_test)

#Printing the predictions
Y_pred_svm

#Evaluation
from sklearn.metrics import classification_report, confusion_matrix
print("CLASSIFICATION REPORT:\n\n", classification_report(Y_test, Y_pred_svm))
print("\nCONFUSION MATRIX:\n\n", confusion_matrix(Y_test, Y_pred_svm))
```

CLASSIFICATION REPORT:

	precision	recall	f1-score	support
0	0.72	0.97	0.83	126
1	0.83	0.29	0.43	66
accuracy			0.73	192
macro avg	0.77	0.63	0.63	192
weighted avg	0.76	0.73	0.69	192

CONFUSION MATRIX:

In [15]:

```
#Sigmoid Kernel
from sklearn.svm import SVC
svcclassifier = SVC(kernel="sigmoid")
svcclassifier.fit(X_train, Y_train)

#Prediction
Y_pred_svm = svcclassifier.predict(X_test)

#Printing the predictions
Y_pred_svm

#Evaluation
from sklearn.metrics import classification_report, confusion_matrix
print("CLASSIFICATION REPORT:\n\n", classification_report(Y_test, Y_pred_svm))
print("\nCONFUSION MATRIX:\n\n", confusion_matrix(Y_test, Y_pred_svm))
```

CLASSIFICATION REPORT:

	precision	recall	f1-score	support
0	0.60	0.72	0.65	126
1	0.12	0.08	0.09	66
accuracy			0.50	192
macro avg	0.36	0.40	0.37	192
weighted avg	0.44	0.50	0.46	192

CONFUSION MATRIX:

[[91 35] [61 5]]