AMENDMENTS TO THE SPECIFICATION

For the Examiner's convenience, all pending locations in the Specification are set forth below and have been amended where noted:

Please amend the heading preceding paragraph [0010] as follows:

BRIEF DESCRIPTION OF THE DRAWING[[S]]

Please amend paragraph [0010] as follows:

[0010] The Figure FIG. 1 is a simplified schematic process flow diagram of the ATR-reforming exchanger process according to one embodiment of the invention.

Please amend paragraph [0011] as follows:

One embodiment of a process according to the present invention has the general configuration shown in the Figure FIG. 1. Desulfurized natural gas or other hydrocarbon supplied from line 2 is mixed with process steam from line 4 and the mixture is preheated in a feed preheat exchanger 6. The steam to carbon ratio of the mixture is desirably from 2.0 to 4.0, e.g. about 3. A first portion of the preheated steam-hydrocarbon mixture is fed via line 8 to the burner in autothermal reformer (ATR) 10, and a second portion is supplied via line 12 to the tube-side inlet of reforming exchanger 14. If desired, additional steam can be added via line 36 to line 8.

Please amend paragraph [0016] and Table 1 as follows:

[0016] The present invention is illustrated by way of an example. A reforming exchanger installed with an ATR as in the Figure FIG. I where air is used in place of oxygen for 50 MMSCFD hydrogen production has a total absorbed duty in the fired process heater of 38.94 Gcal/hr, and has the associated parameters shown in Table 1 below:

Table 1. ATR-Reforming Exchanger Process with Excess Air

Stream ID:	Catalyst	ATR feed,	ATR	Shell-side	Air-steam
	tube inlet,	line 8	effluent,	outlet, line	to ATR,
	line 12		line 22	26	line 20
		Dry Mole	Fraction		
H2	0.0200	0.0200	0.3578	0.4492	<u>-</u>
N2	0.0190	0.0190	0.4628	0.3561	0.7804
CH4	0.9118	0.9118	0.0013	0.0036	
AR	0.0000	0.0000	0.0055	0.0042	0.9400
CO	0.0000	0.0000	0.0835	0.1026	
CO2	0.0000	0.0000	. 0.0891	0.0843	0.0300
O2	0.0000	0.0000	0.0000	0.0000	0.2099
С2Н6	0.0490	0.0490	0.0000	0.0000	
C3H8	0.0002	0.0002	0.0000	0.0000	
Total Flow	312.6	713.9	4154.2	5414.7	2446.2
KMOL/HR					
(dry)	}				
H2O	947.7	2164.0	2827.0	3380.6	728.9

12-26-2006

KMOL/HR					
Total Flow KMOL/HR	1260.3	2878.0	6981.2	8795.3	3175.1
Total Flow KG/HR	22288	50896	134887	156700	83990
Pressure (kg/cm2 abs)	25.9	25.9	22.4	22.1	24.0
Temperatur e (°C)	601	601	1011	747	621

Please amend paragraph [0018] and Table 2 as follows:

As another example, a reforming exchanger is installed with an ATR as shown in the Figure FIG. I wherein air is used as the oxygen source, for a 50 MMSCFD hydrogen production. Typical pressures and temperatures are indicated in the Figure FIG. I for this example, and other associated parameters are shown in Table 2 below:

Table 2. ATR-Reforming Exchanger Process with Excess Air Oxidant

Stream ID:	Catalyst tube inlet 12	ATR feed line 8	ATR effluent, line 22	Shell-side outlet, line 26	Air-steam to ATR, line 20
		Dry Mole	Fraction		
H2	0.0200	0.0200	0.4115	0.4792	
N2	0.0023	0.0023	0.4020	0.3089	0.7804
CH4	0.9612	0.9612	0.0026	0.0227	· · · ·

AR	0.0000	0.0000	0.0048	0.0037	0.0094
СО	0.0000	0.0000	0.0803	0.0875	
CO2	0.0150	0.0150	0.0987	0.0980	0.0003
O2	0.0000	0.0000	0.0000	0.0000	0.2099
C2H6	0.0013	0.0013	0.0000	0.0000	, ·
C3H8	0.0002	0.0002	0.0000	0.0000	Ī
Total Flow KMOL/HR (dry)	371.5	754.3	4069.7	5299.5	2094.1
H2O KMOL/HR	1074.8	2182.2	2610.9	3325.1	656.2
Total Flow KMOL/HR	1446.3	2936.5	6680.5	8624.6	2750.3
Total Flow KG/HR	25395	51557	124039	149434	72482
Pressure (kg/cm2 abs)	25.5	23.6	22.8	22.5	23.6
Temperatur e (°C)	601	601	884	659	621

Please amend paragraph [0019] as follows:

[0019] The data in Table 2 are also for an example that represents low capital cost, low energy consumption, easy operation, and reduced NOx and CO2 emissions. The effluent recovered from the reforming exchanger includes 47.9% H2, 30.9% N2, 8.8% CO, and 9.9% CO2. The reforming exchanger effluent undergoes shift conversion, as shown in the Figure FIG. 1, resulting in an effluent having a composition of 51.9% H2, 28.6% N2, 0.5% CO, and 16.6% CO2. Purification by PSA results in a purified product having a composition of 98.0% H2, 0.80% N2, and 1.0% CH4.

Applicant believes that no new matter has been added with these amendments.