Self-Updating Map Robot

P1

::: 실내 매장의 변화를 검출하여 지도를 업데이트하는 인공지능

팀원 소개

CONTENTS

- 01 주제 선정 배경
- **02** Project Overview
- O3 P1 Spec
- 04 데이터 수집
- **O5** POI Change Detection
- **06** Mapping
- **07** Conclusions

01 주제 선정 배경

What is Point-of-Interest (POI)?

사용자에게 유용한 정보인 관심 지점

지도 최신성 유지의 중요성

- 국내 공간 정보는 해마다 30% 이상 변화
- POI 변화는 빠르고 비정기적으로 발생
- 지속적으로 업데이트되지 않은 지도는 사용자의 혼란 야기

01 주제 선정 배경

부평지하상가 쇼핑몰 내부

실내 지도의 필요성

- GPS, Wi-Fi 문제로 실내에서 위치 정보 알기 어려움
- 실외 지도처럼 실내 공간 정보를 얻을 수 있는 플랫폼 필요

POI 변화가 잦은 쇼핑몰

- 실내 공간 중 특히 쇼핑몰의 변화 주기 빠름
- POI 변화가 잦은 쇼핑몰의 공간 정보를 업데이트하는 기술 필요

02 Project Overview

프로젝트 개요

- 대상 공간을 쇼핑몰로 지정하고 POI를 쇼핑몰 내 개별 매장으로 정의
- 시간 간격을 두고 촬영한 매장 이미지를 비교하여 매장의 변화 여부 판단
- 변화가 발생했을 경우 지도 업데이트

Process

- 로봇이 쇼핑몰을 주행하며 매장 영상 촬영하고 동시에 라이다 센서를 통해 맵을 생성한다
- 매장 정보와 맵을 결합하여 실내 지도를 만든다
- 몇 개의 매장이 변화한 후 로봇이 동일한 공간을 재촬영한다
- 현재 매장과 과거 매장 이미지를 비교하여 변화가 있는지 판별한다
- 변화가 검출된 경우 변화된 매장 정보를 지도에 업데이트한다

02 Project Overview Project Flow

03 P1 Spec

P1 구동 및 센서 구조

이미지 정보 수집

04 데이터 수집 영상

04 데이터 수집 수집방법

Distance Total : 11.5 m Duration : 2분 38초

Camera: Logitech C922 webcam

Image size : 224 x 224 pixel Collected : 400~500 장

04 데이터 수집 수집결과

• 학습에 적절하지 않은 이미지 삭제

분류하기 애매한 경우

여러 POI를 포함하고 있는 경우

POI가 없는 경우

Data augmentation

Original image

Augmented image

• 최종 데이터셋

• 총매장수: 30개

• 바뀐매장수: 2개

• 총데이터셋: 13,000장

Naive Approach

Keypoint matching based

실내 공간에서 keypoint 정확도 보장 어려움

POI 변화 검출 실패

Object detection based

간판 검출의 성능에 크게 의존, 간판 오분류 가능성

POI 변화 검출 실패

Related work

Distance metric learning

- 1. Extract image signatures
 - = Points in high-dim space

2. Decision

= Measuring the distance

Related work

Triplet network

- The loss wants to
 - pull relevant images closer
 - push apart non-relevant images

$$Loss = max (0, (\underline{d(d_a, d_b)} + m) - \underline{d(d_a, d_c)})$$

Related work

Triplet sampling

• **Hard Negative Sampling**Anchor와 같은 클래스 내에서 가장 먼 Positive
다른 클래스에서 가장 가까운 Negative 선택

Semi-hard Negative Sampling Random과 Hard Negative Sampling 중간

Random Negative Sampling
Anchor와 다른 클래스에서 Negative 랜덤하게 선택

• Sampling 방법 평가

Semi-hard Negative Sampling 선정

• 모델 평가 : 최종 선정 모델 ResNet18

모델평가 기준 Parameters

• learning rate: 2e-4

weight_decay: 1e-5

• n_epoch : 20

• n_classes : 10

• n_samples: 16

• sampling method : SemihardNegativeTripletSelector

Self-Updating Map Robot

변화 검출

06 Mapping

• 맵과 매장정보 결합 방법

07 Conclusions

개선점

- 자율 주행 시 학습 가능한 일관된 이미지 데이터를 수집하는 데 어려움이 있어 키보드 제어 방식 사용함
- LiDAR와 함께 6 DoF camera를 사용하면 보다 정밀한 공간 정보 mapping 가능함

• IoU를 활용하여 과거와 현재 두 영상의 pair를 맞추는 방식을 적용하면 환경이 달라져도 적절한 pair 구성 가능함

07 Conclusions

• 활용 분야

- 매장 상호 외에도 세일 정보, 현재 매장 방문고객 수 등을 비롯한 다양한 정보를 실시간으로 반영하여 쇼핑몰 공간 내의 모든 유용한 정보를 제공하는 서비스를 생각해볼 수 있음
- 실외의 스트릿 뷰 서비스와 같이 실내 공간에서도 AR 인터페이스와 네비게이션을 결합하여 AR을 활용한 길 안내 서비스를 생각해볼 수 있음
- 변화가 자주 일어나지만 공간 정보를 알기 어려운 터널과 같은 실내 산업 현장에 적용하는 방안을 생각해볼 수 있음

