

UNIVERSIDADE FEDERAL DE MATO GROSSO ENGENHARIA FLORESTAL

Motores, Máquinas e Implementos Florestais (40219930)

Lastros, bitola, pneus, lubrificantes

Prof. Dr. Gabriel Agostini Orso

1. Tópicos da aula

2.1 HISTÓRICO

- A primeira patente encontrada em relação aos pneus foi em 1845, sob o nome de Thomsson;
- A descoberta da vulcanização da borracha, por Goodyear em 1848;

Processo de aquecimento da borracha + enxofre

- No mesmo período, o processo de emborrachamento do tecido para tornálo impermeável a água e ao ar;
- Em 1889, a Dunlop fabrica o primeiro pneu real, e um pouco mais tarde a Michelin inventa o primeiro pneu desmontável através do emprego da câmara de ar;

2. PNEUS2.1 HISTÓRICO

Figura 1 – Primeiro pneu experimental de John Boyd Dunlop. Fonte: Pinheiro (2001).

 Os primeiros tratores agrícolas utilizaram rodas metálicas com garras como elemento de locomoção, e isso ocasionou a impossibilidade para circular nas estradas, o dano sobre o trajeto e seu afundamento em solo macio;

2. PNEUS2.1 HISTÓRICO

Figura 2 – Trator agrícola com rodas metálicas. Fonte: https://www.waymarking.com/waymarks/WMHHA8_Case_Steel_Wheel_Tract or

A substituição pelo pneus ocorreu em 1930;

2. PNEUS2.2 Função

- Todo rodado apresenta como principal função:
- Apoio;
- *Assegurar equilíbrio estável e vão livre compatível com as condições de trabalho agrícola;
- Possibilitar o direcionamento;
- ❖ Desenvolver esforço de tração;
- Auto-locomoção.
- De uma forma mais prática, todo rodado baseia-se na transformação da rotação e do torque do motor em movimento;

2. PNEUS2.2 Função

 A roda com pneu converte a roda em algo mais adequado para propulsão de qualquer veículo, além de proporcionar fazer: o aumento da área de contato rodado/solo e a melhoria no amortecimento das imperfeições que são encontradas no solo.

2. PNEUS2.3 Constituição do pneu

- Revestimento interno: Uma camada de borracha sintética hermética ao ar;
- Carcaça: É uma estrutura flexível formada por fios têxteis embutidos em borracha, que formam arcos retos e se enrolam no aro do talão do pneu;
- **Zona baixa**: Seu papel é transmitir a potência do motor do veículo na aceleração e na frenagem, desde a roda até a área de contato com solo;
- Aro do talão: É a parte do pneu que conecta e se ajusta à roda. O aro do talão é formado por um cabo de aço inextensível de onde se enrola a lona da carcaça;

2.3 Constituição do pneu

- Flanco externo: O flanco é a região compreendida entre a banda de rodagem e os talões dos pneus;
- Lonas de topo: O revestimento, feito de cordas de aço conectadas à borracha, posicionam-se sobre a carcaça formando um cinturão que garante a resistência mecânica do pneu à velocidade e a força centrífuga;
- Lona zero graus: São revestidas de borracha, e tem como principal função manter o formato dos pneus durante o deslocamento e atribuir uma maior resistência aos mesmos;
- Banda de rodagem: É a parte do pneu que fica em contato com o solo, sendo constituída de borracha que apresenta ranhuras que dão origem ao desenho do pneu.

2. PNEUS2.3 Constituição do pneu

Figura 3 – Composição dos pneus. Fonte: Michellin (2018) apud Fiedler e Oliveira (2018).

2.3 Constituição do pneu (Câmara de ar)

· Característico em pneus mais antigos.

 Constituí por uma borracha mais fina que se localiza internamente no pneu, com a finalidade de assegurar o regime de confinamento do ar no seu interior;

 Porém, atualmente é cada vez mais frequente a presença na agricultura de pneus sem câmara (Tubeless);

Figura 4 – Diferença entre a carcaça radial e diagonal. Fonte: https://revistarpanews.com.br/especial-pneus-diagonais-x-radiais/

2.3 Constituição do pneu (carcaça)

 Essa diferença na disposição das fibras da carcaça gerou uma menor necessidade de inflação e, consequentemente uma maior área de contato, para uma mesma carga suportada;

- Melhorou o desempenho e menor consumo de combustível. Pelos seguintes motivos:
 - O efeito na rigidez na banda de rodagem;
 - Maior deformação nos flancos;

2. PNEUS2.3 Constituição do pneu (carcaça)

- Características dos pneus radiais:
 - Aumento do coeficiente de tração
 - Superfície de contato em torno de 15 a 20% superior
 - Diminuição da resistência ao rolamento
 - Flancos mais flexíveis. A banda de rodagem se molda às irregularidades do solo;
 - Possibilidade de emprego de pressões menores para uma mesma carga

- Pressão de insuflagem:
 - Ultra baixa: 10 a 20 kPa. Pneus de grande flutuação;
 - Baixa: 50 a 150 kPa;
 - Normal: 100 a 200 kPa. Pneus de tratores e colhedoras;
 - Alta: 300 a 600 kPa. Pneus de reboques de veículos de transporte;
 - OBS: $100 \text{ kPa} = 14,5 \text{ PSI} = 1,5 \text{ bar} = 1 \text{ kg/cm}^2$

2.3 Constituição do pneu (carcaça)

Calibragem: um pneu subinflado em 10% = tem 15% menos de vida útil; se subinflado em 20%, a redução pode chegar a 30%.

Um skidder possui 4 pneus T418 da Trelleborg, com custo de R\$ 19.000,00 a vista cada unidade. Vida útil prevista de 9.000 horas efetivas.

Pergunto:

- 1. Em quanto a vida útil do jogo de pneus está sendo comprometido em cada situação?
- 2. Quanto está sendo gasto em cada situação?

- A deformação no pneu depende da pressão interna, peso e tipo de pneu;
- Pressão Interna:
 - Excesso de pressão:
 - Aumenta patinamento;
 - ❖ Diminui resistência de rolamento;
 - Aumenta compactação

- A deformação no pneu depende da pressão interna, peso e tipo de pneu;
- Pressão Interna:
 - Deficiência de pressão:
 - Aumenta resistência de rolamento;
 - Aumenta interação pneu/superfície;
 - ❖ Diminui patinamento;
 - Aumenta desgaste;
 - Aumento o risco da roda patinar no pneu

<u>Fonte</u>

Figura 5 – Diferença entre a compactação utilizando o pneu radial e o diagonal. Fonte: Trelleborg (2017) apud Fiedler e Oliveira (2018).

2.4 Classificação – Tipo de Serviço

Motrizes (Tração)

Diretrizes (Direção)

Transporte (Carga)

2.4 Classificação – Tipo de Serviço
A partir de grupos técnicos (ALAPA – Associação Latino Americana de Pneus e aros/TRA – Tire and Rim Association) é estabelecido padrões para os fabricantes de pneus e aros códigos para identificar a aplicação específica para a qual o pneu agrícola foi desenvolvido.

Classificação dos Pneus	Desenho da Banda de Rodagem	Características		
F-2	2 ou 3 Raias	Pneus para eixos direcionais não tracionados de tratores e colhedoras. Apresenta 2 ou 3 raias ao longo do seu plano médio.		
F-3	Multi-Raiado (Industria) Leve)	Pneus para eixos direcionais não tracionados de tratores e colhedoras. Multiraiados.		

Figura 6 – Pneus para tratores agrícolas / rodas de direção. Fonte: Fiedler e Oliveira (2018).

2.4 Classificação – Tipo de Serviço

Classificação	Símbolo	Características			
Tração	R-1	Pneus para rodas motrizes de tratores e colhedoras. Indicados para trabalhos em solos com boas características de tração. São os mais utilizados.			
Tração	R-2	Pneus para rodas motrizes de tratores e colhedoras. Indicados para solos inconsistentes, moles e excessivamente úmidos. Largamente utilizados em trabalhos em lavouras de arroz irrigado.			
Tração	R-4	Pneus para rodas motrizes de tratores industriais e outras máquinas para movimentação de terra e florestais.			
Direcional	F-1	Pneus para eixos direcionais não tracionados de tratores e colhedoras. Apresenta um ressalto (raia) ao longo de seu plano médio.			
Direcional	F-2	Pneus para eixos direcionais não tracionados de tratores e colhedoras. Apresenta duas ou três raias ao longo de seu plano médio.			
Direcional	F-3	Pneus para eixos direcionais não tracionados de tratores e colhedoras. Multiraiados.			
Transporte	I-1	Pneus para uso em implementos e carretas.			
Tração/ Motocultivadores	G-1	Pneus especialmente desenvolvidos para rodas motrizes de motocultivadores e microtratores. O desenho de sua banda de rodagem se assemelha ao dos pneus R-1.			

2. PNEUS2.4 Classificação – Pneus Diretrizes

2.4 Classificação – Pneus Motrizes

- R1- Pneu de coxilha;
- R1W- Coxilha + 20% altura da garra;
- R2. Pneu arrozeiro

- R3 Pneu para deslocamento sobre culturas, gramados;
- R4. Máquinas para obras de terra (profundidade 70% de R1 e + de 50% de superfície ocupada pelas garras

2. PNEUS2.4 Classificação – Tipo de Serviço

Classificação dos Pneus	Desenho da Banda de Rodagem	Características Ideal para plantadoras, semeadoras e pulverizadores e colhedoras de café.		
HF-2	Alta Flutuação			
I-1	Multi-Raiado (Eixo Livre)	Pneus para uso em implementos e carretas.		
1-3	Tração	Maior agarre e auto-limpeza para aplicação em plantadoras e semeadoras.		

Figura 9 – Pneus para implementos. Fonte: Fiedler e Oliveira (2018).

2.4 Classificação – Marcação do Pneu (Sistema

Internacional)

>> PNEU 185/60/ R14

2.4 Classificação – Marcacão no nneu

Figura 13 – Marcações nos pneus. Fonte: https://www.pneumar.com.br/Dicas/6.

2.4 Classificação – Quanto a velocidade

Símbolo de velocidade	Velocidade (km h ⁻¹)	Símbolo de velocidade	Velocidade (km h ⁻¹)	
A1	5	A2	10	
А3	15	A4	20	
A5	25	A6	30	
A7	35	A8	40	
В	50	С	60	
D	65	E	70	

Figura 11 – Velocidade máxima por classe de pneu. Fonte: Fiedler e Oliveira (2018).

2. PNEUS2.4 Classificação – Índice de carga

Índice de Carga	Peso em Kg						
123	1.550	143	2.725	163	4.875	183	8.750
124	1.600	144	2.800	164	5.000	184	9.000
125	1.650	145	2.900	165	5.150	185	9.250
126	1.700	146	3.000	166	5.300	186	9.500
127	1.750	147	3.075	167	5.450	187	9.750
128	1.800	148	3.150	168	5.600	188	10.000
129	1.850	149	3.250	169	5.800	189	10.300
130	1.900	150	3.350	170	6.000	190	10.600
131	1.950	151	3.450	171	6.150	191	10.900
132	2.000	152	3.550	172	6.300	192	11.200
133	2.060	153	3.650	173	6.500	193	11.500
134	2.120	154	3.750	174	6.700	194	11.800
135	2.180	155	3.875	175	6.900	195	12.150
136	2.240	156	4.000	176	7.100	196	12.500
137	2.300	157	4.125	177	7.300	197	12.850
138	2.360	158	4.250	178	7.500	198	13.200
139	2.430	159	4.375	179	7.750	199	13.600
140	2.500	160	4.500	180	8.000		
141	2.575	161	4.625	181	8.250		
142	2.650	162	4.750	182	8.500		

Figura 12 – Índice de carga. Fonte: Fiedler e Oliveira (2018).

2.4 Classificação – Marcação no pneu

2.4 Classificação – Marcação no pneu

2.5 Vida útil dos pneus

- Geralmente os pneus tem vida útil entre 6.000 e 9.000 de horas efetivas de trabalho;
- Para proporcionar uma maior vida útil para os pneus alguns cuidados devem ser tomados, como:

- Utilizar e manter a pressão de insuflagem recomendada;
- Utilizar ferramentas adequadas;
- Não exceder a capacidade de carga dos pneus;
- Não trafegar a mais do que a velocidade permitida;
- Preferir lastros metálicos nas rodas ao invés do lastro líquido;
- Sempre que possível, desligar a tração a dianteira.

3. 1 Lastragem

- Lastragem é o processo de aumento do peso trator com a finalidade de aumentar a aderência do pneu ao solo e consequentemente diminui a patinagem das rodas;
- A lastragem desta forma aumenta a capacidade de tração e da estabilidade do conjunto trator-implemento, tornando o trator mais seguro quanto aos riscos de tombamento;
- Com o uso adequado de lastro, pode-se proporcionar aumento da vida útil do pneu e maior rendimento destes, além de reduzir os problemas de perda de tração, de excesso de patinagem e consumo de combustível.

3. 1 Lastragem incorreta - insuficiente

• Quando a l'astragem é insuficiente ocorre problemas como:

- Excessiva patinagem;
- Desgaste acentuado dos pneus;
- Alto consumo do combustível;
- Baixa produtividade.

3. 2 Lastragem incorreta - excessiva

Quando a lastragem é excessiva ocorre problemas como:

- Aumento da carga sobre a transmissão;
- Rompimento das garras dos pneus;
- Compactação do solo;
- Alto consumo de combustível.

3. 3 Fatores que determinam a lastragem

- A lastragem é influenciada por alguns fatores, como:
 - ❖Tipo de tração;
 - Tipo de implemento e serviço;
 - Forma de acoplamento: Montado ou de arrasto;
 - ❖Tipo de rodado;
 - Superfície do solo.

3. 3 Fatores que determinam a lastragem – Determinação do peso ideal do trator

Tabela 1 – Tipo de serviço x Relação peso/potência.

Tipo de implemento e serviço	Relação peso/potência (Kgf/cv)	
Leve	46	
Médio	50	
Pesado	54	

3. 3 Fatores que determinam a lastragem – Determinação da distribuição peso no trator

Tabela 2 – Distribuição ideal do peso em relação à tração.

Tipo de tração	Eixo do trator	Acoplamento arrasto	Acoplamento montado
4x2	Dianteiro	30%	35%
	Traseiro	70%	65%
4x2 - TDA	Dianteiro	35%	40%
	Traseiro	65%	60%

3. 3 Fatores que determinam a lastragem – Exemplo

• Um trator 4x2 TDA, de 125 cv, em serviço pesado, com implemento montado. Calcule o peso ideal do trator e a distribuição ideal nos eixos.

Peso ideal do trator \longrightarrow 54 x 125 = 6750 kgf Peso na parte dianteira \longrightarrow 6750 kgf x 0,4 = 2700 kgf Peso na parte dianteira \longrightarrow 6750 kgf x 0,6 = 4050 kgf

3. 4 Tipos de lastragem - Sólida

3. 4 Tipos de lastragem - Líquida
• É quando se introduz água nos pneus através da válvula de calibragem.

Figura 15 – Procedimento para a lastragem líquida. Fonte: Atilio (SD).

3. 4 Tipos de lastragem - Líquida

Para 25% de água, a válvula de enchimento deve estar posicionada em 6 horas.

Para 40% de água, a válvula de enchimento deve estar em 4 horas.

Para 75% de água, a válvula de enchimento deve estar em 12 horas.

Figura 16 – Procedimento para a lastragem líquida posição do bico. Fonte: Atilio (SD).

3. 5 Peso adequado dos tratores

Figura 17 – Identificação visual se o peso está adequado. Fonte: Atilio (SD).

3. 5 Peso adequado dos tratores

Lastragem Insuficiente

Lastragem Excessiva

3. 5 Peso adequado dos tratores

Lastragem Insuficiente

Lastragem Excessiva

Lastragem Adequada

3. 6 Recomendações

- É preferível utilizar o lastre líquido desde que ele seja o suficiente. Necessita um calibrador especial, que possa ser utilizado em contato com a água;
- O patinamento deve ficar após o lastreamento dentro da faixa dos 10 aos 15% em solo agrícola firme. Pode-se aceitar níveis maiores em solos soltos ou muito úmidos.
- Após detectar a necessidade de lastre metálico, começar com o peso intermediário e depois aumentar ou diminuir as quantidades conforme for necessário.
- Na colocação do lastre deve ser prevista a transferência de peso que acontecerá na condição dinâmica.

3. 6 Recomendações

- Sempre que possível aumentar a velocidade de deslocamento do conjunto para diminuir a quantidade de peso, pois quanto menor a velocidade, maior o requerimento de peso.
- Em solos macios, diminuir a quantidade de peso para diminuir as perdas por resistência ao rolamento. Ajustar a quantidade de peso total do trator lastrado em função da capacidade dos pneus e da sua pressão interna.
- Nunca utilizar peso de lastre desnecessário peso morto provocará consumo de energia.
- Desenvolver macacos, guinchos, etc. que possam facilitar a colocação e a retirada de pesos metálicos em nível de propriedade agrícola.

3. 7 Patinagem

Método de determinação do patinamento

- Métodos simples de cálculo:
 - Base de distância (trena);
 - Número de voltas da roda (sem trena).
- Deve-se considerar:
 - Lugar representativo;
 - Selecionar as marchas em que se quer determinar o patinamento.

3. 7 Patinagem

NÚMERO DE VOLTAS NA RODA:

- fazer uma marca no pneu referência com tinta ou giz;
- percorrer com trator vazio (sem carga) uma distância de 10 voltas na roda motriz, marcando no terreno com balizas as extremidades do trajeto;
- medir a distância (distância sem carga/sem trabalho = d₀);
- percorrer outra vez o mesmo trajeto com o trator em trabalho (com carga);
- medir a distância percorrida com carga (tração) em 10 voltas da roda motriz (distância com carga/com trabalho = d₁);
- calcular o patinamento da seguinte maneira: $P(\%) = \frac{d_0 d_1}{d_0} * 100$

- Bitola: É a distância de centro a centro dos pneus dianteiros e traseiros dos tratores;
- As bitolas apresentam como função de adequar o trator de acordo com ao espaçamento da cultura e ao implemento;

Tipos de bitola:

- Ajustáveis no eixo;
- Pré-fixadas;
- Servo-ajustáveis.

Figura 18 – Bitola dianteira e traseira. Fonte: Silva Junior (SD).

Figura 19 – Bitola ajuste. Fonte: Silva Junior (SD).

4.1 Bitolas ajustáveis no eixo (Eixo traseiro)

- A variação da bitola é feita soltando a presilha e prendendo a roda no eixo;
- Apresenta como vantagem uma grande amplitude de variação.

Figura 20 – Bitola regulável no eixo. Fonte: Silva Junior (SD).

4.2 Bitolas Pré-Fixadas (Eixo traseiro e dianteiro) A variação da bitola é feita alterando a posição no disco e do aro.

Figura 21 – Bitola Pré-fixadas. Fonte: Silva Junior (SD).

4.3 Servo-Ajustáveis (Eixo traseiro)

• A variação da bitola se dá soltando as présilhas que prendem o disco ao aro e girando o eixo traseiro.

Figura 22 – Bitola Servo ajustáveis. Fonte: Silva Junior (SD).

4.3 Servo-Ajustáveis (Eixo traseiro)

4.4 barra telescópica (Eixo dianteiro)

Figura 23 – Bitola Servo ajustáveis. Fonte: Silva Junior (SD).

4.4 barra telescópica (Eixo dianteiro)

https://www.youtube.com/watch?v=0M_s6BUvr-w

4.5 Cálculo do tamanho da bitola

- Quando utilizar implementos como as semeadoras as rodas do trator devem passar entre as fileiras das culturas;
- Para aração com arado de aiveca as rodas do trator de um lado deslocam para dentro do sulco e as do outro lado sobre a porção do solo não arado;
- Para aração com arado de disco as rodas tem que ter uma distância 0,10 a 0,15 m entre cada pneu e o local de ação do arado.

Figura 24 – Bitola na utilização de arado de disco. Fonte: Silva Junior (SD).

5.1 Lubrificação

- É quando se aplica uma substância entre duas superfícies em contato durante o trabalho;
- Favorece um menor esforço, menor atrito, menor desgaste e um menor consumo de energia;
- Outros objetivos são alcançados com a lubrificação:
 - Arrefecer ou esfriar as peças;
 - Reduzir o ruído;
 - Eliminar as impurezas;
 - Aumentar a eficiência na transmissão da potência;
 - Prolongar a vida útil das peças em contato;
 - Reduzir o custo do trabalho.

5. Lubrificantes5.1 Lubrificação

NR 20 Líquidos Combustíveis e Inflamáveis

 Esta NR estabelece a definição para líquidos combustíveis, líquidos inflamáveis e Gás de petróleo liquifeitos, parâmetros para armazenar, como transportar e como devem ser manuseados pelos trabalhadores.

5.1 Lubrificação

- 1. **Teoria hidrodinâmica**: o lubrificante se comporta como um fio ou película que está entre contato;
- 2. **Teoria molecular**: o lubrificante se comporta como pequenas esferas onde as superfícies se movimentam;

3. **Teoria dialética**: o lubrificante funciona fazendo força de repulsão entre a superfície.

5.2 Composição dos óleos lubrificantes

• O óleo lubrificante pode apresentar três ingredientes:

- ❖Óleo básico;
- Aditivos;
- Espessante.

5.3 Requisitos para uma boa lubrificação

- Para um lubrificação eficiente, alguns fatores são levados em conta:
 - Projetar bem a peça;
 - Escolher o lubrificante adequado;
 - *Escolher o método adequado de aplicação do lubrificante.
- Além dos fatores citados, outras características básicas oriundos dos lubrificantes são levadas em consideração:
 - Habilidade de reduzir o atrito;
 - Viscosidade;
 - ❖Fluidez;
 - Durabilidade;
 - ❖ Densidade;

5.3 Requisitos para uma boa lubrificação

- ❖Não deve oxidar e nem provocar oxidação nas peças;
- Consistência suficiente;
- Baixo coeficiente de atrito;
- Elevado ponto de ebulição;
- Deve ser livre de impurezas.

5. Lubrificantes5.4 Classificação – Quanto à origem

Os óleos pode ser:

❖Orgânicos: São substâncias obtidas a partir de vegetais e animais. Ex: Soja, girassol, milho, mamona, banha de porco entre outros;

Sintéticos: São produzidos em indústrias químicas que utilizam substâncias orgânicas e inorgânicas para fabricá-los. Essas substâncias podem ser ésteres, silicones, resinas e glicerinas.

5. Lubrificantes 5.4 Classificação – Quanto ao aspecto físico

Os lubrificantes podem ser:

- Gasoso: Pode-se citar o nitrogênio, o freon, e o ar;
- Líquidos: Óleos em geral;
- Pastosos: As graxas;
- Sólidos: Grafite, talco e a mica.

5. Lubrificantes5.5 graxas

 As graxas são compostas de lubrificantes semi-sólidos constituídos por uma mistura de óleo, aditivos e agentes espessantes chamados sabões metálicos, à base de alumínio, cálcio, sódio, lítio e bário;

 As graxas são utilizadas onde o uso de óleos não são recomendados.

5. Lubrificantes5.6 aditivos

- Aditivos são substâncias que entram na formulação de óleos e graxas para adicionar certas propriedades;
- Os principais objetivos do uso de aditivos são:
 - Melhorar as características de proteção contra o desgaste e de atuação em trabalhos sob condições de pressões severas;
 - Aumentar a resistência à oxidação e corrosão;
 - Aumentar a atividade dispersante e detergente dos lubrificantes;
 - Aumentar a adesividade;
 - Aumentar o índice de viscosidade.

6.Referências

• ATILIO, L. Lastragem do trator agrícola. Notas de aula, SD.

• FIEDLER, N. C.; OLIVEIRA, M. P. **Motores e máquinas florestais**. CAUFES: Alegre-ES, 323p. 2018.

• PINHEIRO, E. G. **Modelos numéricos aplicados à vulcanização de pneus**. 144 f. Dissertação (Mestre em engenharia) USP – São Paulo, 2001.

SILVA JUNIOR, C. L. Lastro, bitola e pneus agrícolas. Notas de aula, SD.