Mathematical Foundations for Machine Learning (S1-24_AIMLCZC416): Lecture 2 Overview

In the second lecture of the course *Mathematical Foundations for Machine Learning*, we delved into several critical concepts that form the backbone of machine learning algorithms and their mathematical principles. Here's a detailed breakdown of the topics covered, including key points, practical examples, and recommendations for further study.

Lecture Objectives

- 1. To understand the basics of solving systems of linear equations.
- 2. To explore concepts of vector spaces, norms, and inner products.
- 3. To examine the relevance of these mathematical tools in machine learning contexts.

Key Topics Covered

1. Systems of Linear Equations

- **Definition**: A set of equations with multiple variables, which are solved to find a common solution.
- Mathematical Representation:

$$A\mathbf{x} = \mathbf{b}$$

where:

- A is a coefficient matrix.
- **x** is a vector of variables.

- **b** is a vector of constants.
- Techniques Discussed:
 - Gaussian Elimination
 - Row Echelon Form (REF) and Reduced Row Echelon Form (RREF)
 - Matrix Inversion Method
- Practical Example: Solve the following system:

$$2x + y - z = 8$$

$$-3x - y + 2z = -11$$

$$-2x + y + 2z = -3$$

Solution steps were demonstrated using Gaussian elimination.

- Applications in Machine Learning:
 - Used in linear regression models.
 - Forms the basis for optimization problems.

2. Vector Spaces

- Key Concepts:
 - Linear Independence: A set of vectors is linearly independent if no vector in the set is a linear combination of the others.
 - Basis and Rank:
 - Basis: A minimal set of linearly independent vectors that span the space.
 - Rank: The dimension of the vector space spanned by the rows or columns of a matrix.
 - Affine Spaces: A geometric structure that generalizes the properties of parallel lines.
- Relevance to Machine Learning:

• Vector spaces are foundational to understanding feature spaces in algorithms like PCA and SVM.

3. Norms and Inner Products

- Norms:
 - Definition: A measure of the "length" or "size" of a vector.
 - Common Types:
 - L^2 -Norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
 - L^1 -Norm: $||x||_1 = \sum_i |x_i|$
- Inner Products:
 - Definition: A generalization of the dot product that defines angles between vectors.
 - Formula:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i$$

- Applications in Machine Learning:
 - Norms are used in regularization techniques like Lasso (L^1) and Ridge (L^2).
 - Inner products are used to calculate similarity between data points.

4. Analytic Geometry

- Geometric Interpretation:
 - Understanding lengths (L^2 -norm), distances, and angles.

- Orthonormal basis: A set of vectors that are orthogonal and of unit length.
- Use in Machine Learning:
 - Feature scaling and transformation.
 - Geometric interpretation of optimization problems.

Highlights and Practical Insights

- 1. Interactive Problem-Solving:
 - The session included solving systems of equations live using Gaussian elimination and discussing the significance of solutions in optimization.
- 2. Conceptual Connections:
 - Explained how vector spaces underpin machine learning models like linear regression and PCA.
- 3. Real-World Applications:
 - Demonstrated the relevance of norms in penalizing large coefficients during regression.

Challenges Addressed

- 1. Difficulty in Understanding RREF:
 - A step-by-step approach was provided to convert matrices into their reduced forms, with examples.
- 2. Linking Theory to Practice:
 - Made connections between abstract mathematical concepts and practical machine learning applications.
- 3. Managing Lecture Pace:

• Slides were used to maintain clarity and speed, ensuring better understanding compared to the previous session.