Section 8.3: Equivalence Relations

Juan Patricio Carrizales Torres

May 30, 2022

This chapter reviews some properties that we realized and proved in the problems of **Section 8.3**. However, there's something worth noting. Let R be some relation on some nonempty set A. I previously showed that the union of the equivalence classes by R is A and they all are pairwise disjoint. Nevertheless, I didn't ponder on it much to realize what this meant, namely, that the set of these distinct equivalence classes is a partition of A!!!! This was proven by the authors by just showing that each $x \in A$ belongs to exactly one equivalence class by R.

Problem 36. Give an example of an equivalence relation R on the set $A = \{v, w, x, y, z\}$ such that there are exactly three distinct equivalence classes. What are the equivalence classes for your example?

Solution 36. Consider the parition $P = \{\{v\}, \{w\}, \{x, y, z\}\}$ of A. By **Theorem 4**, the relation R definded by a R b if $a, b \in X$ for some $X \in P$ is an equivalence relation. Hence, the distinct equivalence classe are

$$a_1 = \{x, y, z\}$$

$$a_2 = \{w\}$$

$$a_3 = \{v\}$$

Problem 37. A relation R is defined on \mathbb{N} by a R b if $a^2 + b^2$ is even. Prove that R is an equivalence relation. Determine the distinct equivalence classes.

Proof. We first prove that R is an equivalence relation. Consider some positive integer c. Then, $c^2+c^2=2c^2$. Since c^2 is an integer, it follows that $2c^2$ is even and so c R c. Hence, R is reflexive. Let $a,b \in \mathbb{N}$. By the commutative property of sums on real numbers, it follows that if a^2+b^2 is even, then b^2+a^2 is equal to the same even number. Therefore, a R b implies b R a and so R is symmetric. Consider $x,y,z \in \mathbb{Z}$ such that x R y and y R z. Hence, $x^2+y^2=2m$ and $y^2+z^2=2n$ for $m,n\in\mathbb{Z}$. Thus, $x^2=2m-y^2$ and $z^2=2n-y^2$. Therefore,

$$x^{2} + z^{2} = (2m - y^{2}) + (2n - y^{2})$$
$$= 2m + 2n - 2y^{2} = 2(m + n - y^{2}).$$

Because $m+n-y^2 \in \mathbb{Z}$, it follows that x^2+z^2 is even and so x R z, which implies that R is transitive.

Once R is shown to be an equivalence relation, we now determine the dsitinct equivalence classes. Let x be an even positive integer. Then x^2 is even. Consider some $y \in \mathbb{N}$. Note that $y^2 + x^2$ is even if and only if y^2 is even. We also know that y^2 is even if and only if y is even. Therefore,

$$[x] = \{n \in \mathbb{N} : n \text{ is even}\}.$$

Consider positive integers y and z. If y is and odd positive integer, then $z^2 + y^2$ is odd if and only if z^2 is odd. Hence, z must be odd.

$$[y] = \{n \in \mathbb{N} : n \text{ is odd}\}.$$

Since the set of even and odd positive integers is a partition of \mathbb{N} , it follows that there only two distinct equivalence classes.

Problem 38. Let R be a relation defined on the set \mathbb{N} by a R b if either $a \mid 2b$ or $b \mid 2a$. Prove or disprove: R is and equivalence relation.

Solution 38. The relation R on \mathbb{N} is not an equivalence relation. Consider the positive integers 2, 3 and 5. Since $2 \mid (2 \cdot 3)$ and $2 \mid (2 \cdot 5)$, it follows that 3 R 2 and 2 R 5. However, $3 \nmid (2 \cdot 5)$ and $5 \nmid (2 \cdot 3)$. Hence, $3 \not R 5$ and so R is not transitive. This implies that R is not an equivalence relation.

Problem 39. Let S be a nonempty subset of \mathbb{Z} and let R be a relation defined on S by x R y if $3 \mid (x + 2y)$.

(a) Prove that R is an equivalence relation.

Proof. Let S be some nonempty subset of \mathbb{Z} and R some relation on S defined by x R y if $3 \mid (x+2y)$. For some integer $x \in S$, x+2x=3x and so $3 \mid 3x$. Hence, x R x is reflexive.

Let $x, y \in S$ such that x R y. Hence, x + 2y = 3c for some integer c. Then, x = 3c - 2y and so

$$y + 2x = y + 2(3c - 2y)$$

= $y + 6c - 4y$
= $3(2c - y)$.

Since $2c - y \in \mathbb{Z}$, it follows that $3 \mid (y + 2x)$ and so $y \mid R \mid x \mid (R \mid \text{is symmetric})$. Consider some $x, y, z \in S$ such that $x \mid R \mid y$ and $y \mid R \mid z$. Therefore, x + 2y = 3a and y + 2z = 3b for $a, b \in \mathbb{Z}$. Then, x = 3a - 2y and 2z = 3b - y. Note that

$$x + 2z = 3a - 2y + 3b - y$$

= $3(a - y + b)$.

Since $a - y + b \in \mathbb{Z}$, it follows that $3 \mid (x + 2z)$ and so $x \mid R \mid z \mid R$ is transitive).

(b) If $S = \{-7, -6, -2, 0, 1, 4, 5, 7\}$, then what are the distinct equivalence classes in this case?

Solution (b). The distinct equivalence classes are:

$$A_1 = \{-6, 0\} = [-6] = [0]$$

 $A_2 = \{5, -7\} = [-7] = [5]$
 $A_3 = \{-2, 1, 4, 7\} = [-2] = [1] = [4] = [7]$

Problem 40. A relation R is defined on \mathbb{Z} by x R y if 3x - 7y is even. Prove that R is an equivalence relation. Determine the distinct equivalence classes.

Solution 40. First, we show that R is an equivalence relation.

Proof. We show that R is reflexive. Consider some integer x. Then, 3x - 7x = -4(x) = 2(-2x), where $-2x \in \mathbb{Z}$ and so it is even. Hence, x R x.

We prove that R is symmetric. Consider two integers x and y such that x R y. Hence, 3x - 7y = 2c for some integer c. Then, 3y - 7x = 2c + 10y - 10x = 2(c + 5y - 5x). Since $c + 5y - 5x \in \mathbb{Z}$, it follows that 3y - 7x is even and so y R x.

Now, consider three integers x, y, z such that x R y and y R z. Thus, 3x - 7y = 2a and 3y - 7z = 2b for some $a, b \in \mathbb{Z}$. Note that (3x - 7y) + (3y - 7z) = 2a + 2b and so 3x - 7z = 2a + 2b + 4y = 2(a + b + y). Since $a + b + y \in \mathbb{Z}$, it follows that 3x - 7y is even and so x R z.

Now that it has been proven that R is an equivalence relation. We proceed to determine its equivalence classes. We first determine the equivalence class for some even integer, say 0. Then

$$[0] = \{x \in \mathbb{Z} : x R 0\}$$

$$= \{x \in \mathbb{Z} : 3x - 70 \text{ is even}\}$$

$$= \{x \in \mathbb{Z} : 3x \text{ is even}\}$$

$$= \{x \in \mathbb{Z} : x \text{ is even}\}.$$

Now, consider some odd integer, say 1. Then

$$[1] = \{x \in \mathbb{Z} : x R 1\}$$

$$= \{x \in \mathbb{Z} : 3x - 7 \text{ is even}\}$$

$$= \{x \in \mathbb{Z} : 3x \text{ is odd}\}$$

$$= \{x \in \mathbb{Z} : x \text{ is odd}\}.$$

Therefore, there are two distinct equivalence classes, namley, the set of even integers and the set of odd ones.

Problem 41. (a) Prove that the intersection of two equivalence relations on a nonempty set is an equivalence relation.

Proof. Let R_1 and R_2 be two equivalence relations on some nonempty set A. Let their intersection be the set K. Since both R_1 and R_2 are reflexive, it follows that if $x \in A$, then $(x,x) \in R_1, R_2$, and so $(x,x) \in K$. Hence, K is reflexive. Consider some $a,b \in A$ such that $a \ K \ b$ (Recall that $a \ K \ b$ is the same as saying $(a,b) \in K$). Then, $a \ R_1 \ b$ and $a \ R_2 \ b$. Since both are symmetric, $b \ [R_1, R_2] \ a \ (b \ \text{is related to } a \ \text{by both } R_1 \ \text{and } R_2)$ and so $b \ K \ a$, which implies that K is symmetric.

Now consider some $a, b, c \in A$ such that $a \ K \ b$ and $b \ K \ c$. Therefore, $a \ [R_1, R_2] \ b$ and $b \ [R_1, R_2] \ c$. Since both relations are transitive, it follows that $a \ [R_1, R_2] \ c$. Therefore, $a \ K \ c$, which implies that K is transitive. Thus, K, namely, the intersection of two equivalence relations on a nonempty set, is an equivalence relation.

Lemma 8.4.1. Let a, b be integers. $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3}$ is a necessary and sufficient condition for $a \equiv b \pmod{6}$

Proof. Assume that $a \equiv b \pmod{6}$, then a = 6(c) + b = 2(3c) + b = 3(2c) + b for some integer c. Since $2c, 3c \in \mathbb{Z}$, it follows that $a \equiv b \pmod{3}$ and $a \equiv b \pmod{2}$. Suppose that $a \equiv b \pmod{3}$ and $a \equiv b \pmod{2}$. Hence, a = 3x + b = 2y + b and so 3x = 2y for some $x, y \in \mathbb{Z}$. Hence, 3x is even and so $2 \mid x$. Hence $3x = 3 \cdot 2(c)$ for some $c \in \mathbb{Z}$. Therefore, a = 6(c) + b, which implies that $a \equiv b \pmod{6}$.

(b) Consider the equivalence relations R_2 and R_3 defined on \mathbb{Z} by $a R_2 b$ if $a \equiv b \pmod{2}$ and $a R_3 b$ if $a \equiv b \pmod{3}$. By (a), $R_1 = R_2 \cap R_3$ is an equivalence relation on \mathbb{Z} . Determine the distinct equivalence classes in R_1 .

Solution b. Note that R_1 is defined by a R_1 b if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3}$. Since both 2 and 3 are prime, by the prevoius Lemma, $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3} \iff a \equiv b \pmod{6}$. Thus,

$$[a] = \{x \in \mathbb{Z} : x R a\}$$

$$= \{x \in \mathbb{Z} : x \equiv a \pmod{6}\}$$

$$= \{x \in \mathbb{Z} : x = 6m + a, m \in \mathbb{Z}\}.$$

Recall that any integer can be expressed as 6c + b for exactly one (c, b), where $c \in \mathbb{Z}$ and $b \in \{0, 1, 2, 3, 4, 5\}$ by the **Divition Algorithm**. Hence,

$$[0] = \{6x + 0 : x \in \mathbb{Z}\}$$

$$[1] = \{6x + 1 : x \in \mathbb{Z}\}$$

$$[2] = \{6x + 2 : x \in \mathbb{Z}\}$$

$$[3] = \{6x + 3 : x \in \mathbb{Z}\}$$

$$[4] = \{6x + 4 : x \in \mathbb{Z}\}$$

$$[5] = \{6x + 5 : x \in \mathbb{Z}\}$$

Problem 42. Prove or disprove: The union of two equivalence relations on a nonempty set is an equivalence relation.

Solution 42. This is false. Consider the set $A = \{a, b, c\}$ and relations

$$R_1 = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}$$
 and $R_2 = \{(a, a), (b, b), (c, c), (d, d), (b, c), (c, b)\}.$

Hence, both R_1 and R_2 are equivalence relations and their union is

$$K = R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (d, d), (b, c), (c, b), (a, b), (b, a)\}.$$

Note that $(a,b),(b,c) \in K$, however, $(a,c) \notin K$. Thus, K is not transitive and so it is not an equivalence relation.

Problem 43. Let $A = \{u, v, w, x, y, z\}$. The relation

$$R = \{(u, u), (u, v), (u, w), (v, u), (v, v), (v, w), (w, u), (w, v), (w, w), (x, x), (x, y), (y, x), (y, y), (z, z)\}$$

defined on A is an equivalence relation. In particular, $[u] = [v] = [w] = \{u, v, w\}$, $[x] = [y] = \{x, y\}$ and $[z] = \{z\}$; so |[u]| = |[v]| = |[w]| = 3 and |[x]| = |[y]| = 2, while |[z]| = 1. Therefore, |[u]| + |[v]| + |[w]| + |[x]| + |[y]| + |[z]| = 14. Let $A = \{a_1, a_2, \ldots, a_n\}$ be an n-element set and let R be an equivalence relation defined on A. Prove that $\sum_{i=1}^{n} |[a_i]|$ is even if and only if n is even.

Proof. Let $A = \{a_1, a_2, \dots, a_n\}$ be an *n*-element set and let R be an equivalence relation defined on A. Also, let r_1, r_2, \dots, r_k be the distinct equivalence classes by R.

Recall that $\{r_1, r_2, \dots, r_k\}$ is a partition of A, and so

$$\sum_{i=1}^{k} |r_i| = |A|.$$

We know that $[x] = [w] \iff x \in [w]$ for any elements $x, w \in A$. Hence, for any positive integer $i \le k$, r_i contains $|r_i|$ unique elements of A and $|[x]| = |r_i|$ for every $x \in [r_i]$. Hence,

$$\sum_{i=1}^{n} |[a_i]| = \sum_{i=1}^{k} |r_i|^2$$

(check Corollary 8.3.3). Since x^2 is even if and only if x is even, the sum $\sum_{i=1}^k |r_i|^2 = \sum_{i=1}^n |[a_i]|$ has the same parity as $\sum_{i=1}^k |r_i| = |A|$ (same quantity of even and odd numbers being added).