令和4年度4月第1週報告書

2022/4/4 報告書 No.24 M1 来代 勝胤

報告内容

- 1. タイヤモデル後流の撮影
- 2. 今後の予定

進捗状況

ケーシングなし・回転ありのタイヤモデルの後流について撮影を行った.その結果,対象物の後流では流れが減速するため,対応した PTV アルゴリズムが必要であるとわかった.

1 タイヤモデル後流の撮影

1.1 実験条件

Table 1 Correlation coefficient

主流速度		250	[100 10 100 /a]
土爪坯及	u	200	[mnm/s]
LLS 間距離	Δx	3.12	[mm]
画像サイズ	$w \times h$	800×600	[px]
フレームレート		800	[fps]
シャッタースピード		1/1000	[s]

前回の三角翼後流の撮影にならって実験条件を決定した.なお今回は,対応させる枚数の差 Δn が 10 枚 になるようにレーザーシート間距離を $\Delta x=3.12$ に設定した.

$$\Delta x = u \times \frac{\Delta n}{800} = 250 \times \frac{10}{80} = 3.125$$

1.2 実験結果:一様流の計測

Fig.1 時間平均の速度分布 (1000 枚分)

Fig.2 渦度分布

 ${
m Fig.1}$ より,一様流の撮影であるため速度分布は小さいことがわかる.また, ${
m Fig.2}$ の渦度分布についても 0 周辺の値を持っていることがわかる.

1.3 実験結果:タイヤモデル後流

Fig.3 時間平均の速度分布 (1000 枚分)

Fig.4 渦度分布

 ${
m Fig.3}$, ${
m Fig.4}$ はそれぞれ回転タイヤモデルの $50~{
m [mm]}$ 後流における時間平均の速度分布,渦度分布の算出結果である. ${
m Fig.3}$ より,三角翼後流の結果とは異なり定常的な渦構造は見られない.また, ${
m Fig.4}$ の渦度分布を見ても特徴的な渦度場は確認されない.

2 今後の予定

● 粒子に対応した PTV プログラムの作成