Al-Baath University ICPC Team Notebook (2018)

Contents

1	Con	nbinatorial optimization	1	
	1.1	Sparse max-flow	1	
	1.2	Min-cost max-flow	2	
	1.3	Push-relabel max-flow	2	
	1.4	Min-cost matching	3	
	1.5	Max bipartite matchine	4	
	1.6	Global min-cut	4	
2	Geometry 5			
	2.1	Convex hull	5	
	2.2	Miscellaneous geometry	5	
3	Numerical algorithms 7			
	3.1	Number theory (modular, Chinese remainder, linear Diophantine)	7	
	3.2	Systems of linear equations, matrix inverse, determinant	8	
	3.3	Reduced row echelon form, matrix rank	8	
4	Graph algorithms			
	4.1	. 9	9	
5	Dat	a structures)	
	5.1		9	
6	Mis	cellaneous)	
	6.1	Dates	9	
	6.2	Prime numbers	О	
	6.3	C++ input/output	О	
	6.4	Knuth-Morris-Pratt	О	
	6.5	Latitude/longitude	1	
	6.6	Dates (Java)	1	
7	Hussain 11			
	7.1	Adaptive Simpson	1	
	7.2	Binomial Coeff (constant N)	1	
	7.3	Generate (x,y) pairs s.t. x & y=y	1	

1 Combinatorial optimization

1.1 Sparse max-flow

```
// Adjacency list implementation of Dinic's blocking flow algorithm.
//\ {\it This} is very fast in practice, and only loses to push-relabel flow.
// Running time:
      O(|V|^2 |E|)
      - graph, constructed using AddEdge()
      - source and sink
       - To obtain actual flow values, look at edges with capacity > 0
         (zero capacity edges are residual edges).
#include < cstdio >
#include<vector>
#include<gueue>
using namespace std:
typedef long long LL;
struct Edge {
  int u, v;
  LL cap, flow;
```

```
Edge() {}
  Edge(int u, int v, LL cap): u(u), v(v), cap(cap), flow(0) {}
  vector<Edge> E;
  vector<vector<int>> g;
  vector<int> d, pt;
  Dinic(int N): N(N), E(0), g(N), d(N), pt(N) {}
  void AddEdge(int u, int v, LL cap) {
    if (u != v) {
      E.emplace_back(Edge(u, v, cap));
g[u].emplace_back(E.size() - 1);
       E.emplace_back(Edge(v, u, 0));
      g[v].emplace_back(E.size() - 1);
  bool BFS(int S, int T) {
    queue<int> q({S});
    fill(d.begin(), d.end(), N + 1);
    d[S] = 0;
while(!q.empty()) {
      int u = q.front(); q.pop();
if (u == T) break;
       for (int k: g[u]) {
         Edge &e = E[k];
         if (e.flow < e.cap && d[e.v] > d[e.u] + 1) {
          d[e.v] = d[e.u] + 1;
           q.emplace(e.v);
    return d[T] != N + 1;
  LL DFS(int u, int T, LL flow = -1) {
    if (u == T || flow == 0) return flow;
    for (int &i = pt[u]; i < g[u].size(); ++i) {
      Edge &e = E[g[u][i]];

Edge &oe = E[g[u][i]];

if (d[e.v] == d[e.u] + 1)

LL amt = e.cap - e.flow;
         if (flow != -1 && amt > flow) amt = flow;
         if (LL pushed = DFS(e.v, T, amt)) {
           e flow += pushed;
           oe.flow -= pushed;
           return pushed;
    return 0:
  LL MaxFlow(int S, int T) {
    LL total = 0;
    while (BFS(S, T)) {
       fill(pt.begin(), pt.end(), 0);
       while (LL flow = DFS(S, T))
         total += flow;
    return total;
};
// The following code solves SPOJ problem #4110: Fast Maximum Flow (FASTFLOW)
  scanf("%d%d", &N, &E);
  Dinic dinic(N);
  for (int i = 0; i < E; i++)
    LL cap;
    scanf("%d%d%lld", &u, &v, &cap);
    dinic AddEdge(u - 1, v - 1, cap);
dinic AddEdge(v - 1, u - 1, cap);
  printf("%lld\n", dinic.MaxFlow(0, N - 1));
  return 0:
// END CUT
```

1.2 Min-cost max-flow

```
// Implementation of min cost max flow algorithm using adjacency
// matrix (Edmonds and Karp 1972). This implementation keeps track of
// forward and reverse edges separately (so you can set cap[i][j] !=
// cap[j][i]). For a regular max flow, set all edge costs to 0.
// Running time, O(|V|^2) cost per augmentation
      max flow:
                            O(|V|^3) augmentations
       min cost max flow: O(|V|^4 * MAX_EDGE_COST) augmentations
// INPIIT ·
       - graph, constructed using AddEdge()
       - source
       - sink
// OUTPUT:
       - (maximum flow value, minimum cost value)
       - To obtain the actual flow, look at positive values only.
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long L;
typedef vector<L> VL;
typedef vector<VL> VVL;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
const L INF = numeric_limits<L>::max() / 4;
struct MinCostMaxFlow {
  int N;
  VVL cap, flow, cost;
  VI found;
  VL dist, pi, width;
  VPII dad:
  MinCostMaxFlow(int N) :
    N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)),
    found(N), dist(N), pi(N), width(N), dad(N) {}
  void AddEdge(int from, int to, L cap, L cost) {
    this->cap[from][to] = cap;
this->cost[from][to] = cost;
  void Relax(int s, int k, L cap, L cost, int dir) {
  L val = dist[s] + pi[s] - pi[k] + cost;
  if (cap && val < dist[k]) {</pre>
      dist[k] = val;
dad[k] = make_pair(s, dir);
      width[k] = min(cap, width[s]);
  L Dijkstra(int s, int t) {
    fill(found.begin(), found.end(), false);
    fill(dist.begin(), dist.end(), INF);
    fill(width.begin(), width.end(), 0);
    dist[s] = 0;
width[s] = INF;
    while (s != -1) {
      int best = -1:
       found[s] = true;
      for (int k = 0; k < N; k++) {
        if (found[k]) continue;
Relax(s, k, cap[s][k] - flow[s][k], cost[s][k], 1);
         Relax(s, k, flow[k][s], -cost[k][s], -1);
         if (best == -1 || dist[k] < dist[best]) best = k;</pre>
        = best;
    for (int k = 0; k < N; k++)
      pi[k] = min(pi[k] + dist[k], INF);
    return width[t];
  pair<L, L> GetMaxFlow(int s, int t) {
    L totflow = 0, totcost = 0;
while (L amt = Dijkstra(s, t)) {
      totflow += amt;
```

```
for (int x = t; x != s; x = dad[x].first) {
        if (dad[x].second == 1) {
          flow[dad[x].first][x] += amt;
           totcost += amt * cost[dad[x].first][x];
          flow[x][dad[x].first] -= amt;
          totcost -= amt * cost[x][dad[x].first];
    return make_pair(totflow, totcost);
};
// BEGIN CUT
// The following code solves UVA problem #10594: Data Flow
  int N, M;
  while (scanf("%d%d", &N, &M) == 2) {
    VVL v(M, VL(3));
    for (int i = 0; i < M; i++)
      scanf("%Ld%Ld%Ld", &v[i][0], &v[i][1], &v[i][2]);
    L D, K;
    scanf("%Ld%Ld", &D, &K);
    MinCostMaxFlow mcmf(N+1):
    for (int i = 0; i < M; i++) {
    mcmf.AddEdge(int(v[i][0]), int(v[i][1]), K, v[i][2]);</pre>
      mcmf.AddEdge(int(v[i][1]), int(v[i][0]), K, v[i][2]);
    mcmf.AddEdge(0, 1, D, 0);
    pair<L, L> res = mcmf.GetMaxFlow(0, N);
    if (res.first == D) {
      printf("%Ld\n", res.second);
    | else |
      printf("Impossible.\n");
  return 0;
// END CUT
```

1.3 Push-relabel max-flow

```
// Adjacency list implementation of FIFO push relabel maximum flow
// with the gap relabeling heuristic. This implementation is significantly faster than straight Ford-Fulkerson. It solves // random problems with 10000 vertices and 1000000 edges in a few
// seconds, though it is possible to construct test cases that
// achieve the worst-case.
// Running time:
       0(|V|^3)
// INPUT:
       - graph, constructed using AddEdge()
        - source
       - sink
        - maximum flow value
        - To obtain the actual flow values, look at all edges with
          capacity > 0 (zero capacity edges are residual edges).
#include <cmath>
#include <vector>
#include <iostream>
#include <queue>
using namespace std;
typedef long long LL;
  int from, to, cap, flow, index;
  Edge(int from, int to, int cap, int flow, int index) :
     from(from), to(to), cap(cap), flow(flow), index(index) {}
1:
struct PushRelabel {
  int N;
  vector<vector<Edge> > G;
```

```
vector<LL> excess;
  vector<int> dist, active, count;
  queue<int> Q;
  PushRelabel(int N) : N(N), G(N), excess(N), dist(N), active(N), count(2*N) {}
  void AddEdge(int from, int to, int cap) {
    G[from].push\_back(Edge(from, to, cap, 0, G[to].size()));
    if (from == to) G[from].back().index++;
    G[to].push\_back(Edge(to, from, 0, 0, G[from].size() - 1));
  void Enqueue(int v) {
    if (!active[v] && excess[v] > 0) { active[v] = true; Q.push(v); }
    int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
    if (dist[e.from] <= dist[e.to] || amt == 0) return;</pre>
    e.flow += amt;
    G[e.to][e.index].flow -= amt;
    excess[e.to] += amt;
    excess[e.from] -= amt;
    Enqueue(e.to);
  void Gap(int k) {
    for (int v = 0; v < N; v++) {
     if (dist[v] < k) continue;</pre>
      count[dist[v]]--:
      dist[v] = max(dist[v], N+1);
      count [dist[v]]++;
      Enqueue (v);
  void Relabel(int v) {
    count[dist[v]]--;
    dist[v] = 2*N;
    for (int i = 0; i < G[v].size(); i++)
if (G[v][i].cap - G[v][i].flow > 0)
        dist[v] = min(dist[v], dist[G[v][i].to] + 1);
    count[dist[v]]++;
    Enqueue (v);
  void Discharge(int v) {
    for (int i = 0; excess[v] > 0 && i < G[v].size(); i++) Push(G[v][i]);</pre>
    if (excess[v] > 0) {
     if (count[dist[v]] == 1)
        Gap(dist[v]);
      else
        Relabel(v):
  LL GetMaxFlow(int s, int t) {
    count[0] = N-1;
    count[N] = 1;
    dist[s] = N;
    active[s] = active[t] = true;
    for (int i = 0; i < G[s].size(); i++) {</pre>
      excess[s] += G[s][i].cap;
     Push(G[s][i]);
    while (!Q.empty()) {
     int v = Q.front();
      Q.pop();
      active[v] = false;
     Discharge(v);
    LL totflow = 0;
    for (int i = 0; i < G[s].size(); i++) totflow += G[s][i].flow;</pre>
    return totflow;
// The following code solves SPOJ problem #4110: Fast Maximum Flow (FASTFLOW)
int main() {
  int n. m:
  scanf("%d%d", &n, &m);
  PushRelabel pr(n);
  for (int i = 0; i < m; i++) {
   int a, b, c;
    scanf("%d%d%d", &a, &b, &c);
    if (a == b) continue;
    pr.AddEdge(a-1, b-1, c);
```

```
pr.AddEdge(b-1, a-1, c);
}
printf("%Ld\n", pr.GetMaxFlow(0, n-1));
return 0;
}
// END CUT
```

1.4 Min-cost matching

```
// Min cost bipartite matching via shortest augmenting paths
// This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense
// graphs. In practice, it solves 1000x1000 problems in around 1
     cost[i][j] = cost for pairing left node i with right node j
     Lmate[i] = index of right node that left node i pairs with
     Rmate[j] = index of left node that right node j pairs with
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
  int n = int(cost.size());
  // construct dual feasible solution
  VD u(n);
  VD v(n);
  for (int i = 0; i < n; i++) {
    u[i] = cost[i][0];
    for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);</pre>
  for (int j = 0; j < n; j++) {
     v[j] = cost[0][j] - u[0];
    for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);</pre>
  // construct primal solution satisfying complementary slackness
  Lmate = VI(n, -1);
Rmate = VI(n, -1);
  int mate = v(i, -1);
int mated = 0;
for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++) {
      if (Rmate[j] != -1) continue;
}</pre>
      if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {</pre>
        Lmate[i] = j;
        Rmate[j] = i;
        mated++;
        break;
  VD dist(n):
  VI dad(n);
  VI seen(n):
     repeat until primal solution is feasible
  while (mated < n) {
     // find an unmatched left node
    while (Lmate[s] !=-1) s++;
    // initialize Dijkstra
    fill(dad.begin(), dad.end(), -1);
    fill(seen.begin(), seen.end(), 0);
for (int k = 0; k < n; k++)</pre>
      dist[k] = cost[s][k] - u[s] - v[k];
    int j = 0;
    while (true) {
```

```
// find closest
     for (int k = 0; k < n; k++) {
      if (seen[k]) continue;
      if (j == -1 || dist[k] < dist[j]) j = k;</pre>
     seen[j] = 1;
     // termination condition
    if (Rmate[j] == -1) break;
     // relax neighbors
    const int i = Rmate[j];
for (int k = 0; k < n; k++) {</pre>
       if (seen[k]) continue;
      const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
      if (dist[k] > new_dist) {
         dist[k] = new_dist;
         dad[k] = j;
  // update dual variables
 for (int k = 0; k < n; k++) {
   if (k == j || !seen[k]) continue;
   const int i = Rmate[k];</pre>
    v[k] += dist[k] - dist[j];
u[i] -= dist[k] - dist[j];
  u[s] += dist[j];
  // augment along path
  while (dad[j] >= 0) {
  const int d = dad[j];
    Rmate[j] = Rmate[d];
    Lmate[Rmate[j]] = j;
    j = d;
  Rmate[j] = s;
  Lmate[s] = j;
  mated++;
double value = 0;
for (int i = 0; i < n; i++)
  value += cost[i][Lmate[i]];
return value:
```

1.5 Max bipartite matchine

```
// This code performs maximum bipartite matching.
// Running time: O(|E| |V|) -- often much faster in practice
     INPUT: w[i][j] = edge between row node i and column node j
     OUTPUT: mr[i] = assignment for row node i, -1 if unassigned
              mc[j] = assignment for column node j, -1 if unassigned
              function returns number of matches made
#include <vector>
using namespace std:
typedef vector<int> VI:
typedef vector<VI> VVI:
bool FindMatch(int i, const VVI &w, VI &mr, VI &mc, VI &seen) {
  for (int j = 0; j < w[i].size(); j++) {
   if (w[i][j] && !seen[j]) {</pre>
      seen[j] = true;
      if (mc[j] < 0 \mid \mid FindMatch(mc[j], w, mr, mc, seen)) {
        mr[i] = j;
mc[j] = i;
        return true;
  return false:
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
 mr = VI(w.size(), -1);
```

```
mc = VI(w[0].size(), -1);
int ct = 0;
for (int i = 0; i < w.size(); i++) {
    VI sen(w[0].size());
    if (FindMatch(i, w, mr, mc, seen)) ct++;
}
return ct;</pre>
```

1.6 Global min-cut

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
// Running time:
// INPUT:
       - graph, constructed using AddEdge()
// OUTPUT:
       - (min cut value, nodes in half of min cut)
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
const int INF = 1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
  int N = weights.size();
  VI used(N), cut, best_cut;
  int best_weight = -1;
  for (int phase = N-1; phase >= 0; phase--) {
    VI w = weights[0];
    VI added = used;
    int prev, last = 0;
    for (int i = 0; i < phase; i++) {</pre>
      prev = last;
       last = -1;
      for (int j = 1; j < N; j++)
  if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
      if (i == phase-1) {
        for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j];
for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];
used[last] = true;</pre>
        cut.push_back(last);
        if (best_weight == -1 || w[last] < best_weight) {</pre>
          best cut = cut;
          best_weight = w[last];
        for (int j = 0; j < N; j++)
         added[last] = true;
  return make_pair(best_weight, best_cut);
// The following code solves UVA problem #10989: Bomb, Divide and Conquer
int main() {
  for (int i = 0; i < N; i++) {
    int n, m;
    cin >> n >> m;
    VVI weights(n, VI(n));
    for (int j = 0; j < m; j++) {
      int a, b, c;
      cin >> a >> b >> c;
      weights[a-1][b-1] = weights[b-1][a-1] = c;
    pair<int, VI> res = GetMinCut(weights);
    cout << "Case #" << i+1 << ": " << res.first << endl;
// END CUT
```

2 Geometry

2.1 Convex hull

```
// Compute the 2D convex hull of a set of points using the monotone chain
// algorithm. Eliminate redundant points from the hull if REMOVE_REDUNDANT is
// Running time: O(n log n)
     INPUT: a vector of input points, unordered.
    OUTPUT: a vector of points in the convex hull, counterclockwise, starting
              with bottommost/leftmost point
#include <cstdio>
#include <cassert>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
// END CUT
using namespace std;
#define REMOVE REDUNDANT
typedef double T;
const T EPS = 1e-7;
struct PT {
  PT() {}
  PT(T x, T y) : x(x), y(y) {}
  bool operator<(const PT &rhs) const { return make_pair(y,x) < make_pair(rhs.y,rhs.x); }</pre>
 bool operator==(const PT &rhs) const { return make_pair(y,x) == make_pair(rhs.y,rhs.x); }
T cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
T area2(PT a, PT b, PT c) { return cross(a,b) + cross(b,c) + cross(c,a); }
#ifdef REMOVE_REDUNDANT
bool between (const PT &a, const PT &b, const PT &c) {
 return (fabs(area2(a,b,c)) < EPS && (a.x-b.x)*(c.x-b.x) <= 0 && (a.y-b.y)*(c.y-b.y) <= 0);
void ConvexHull(vector<PT> &pts) {
  sort(pts.begin(), pts.end());
  pts.erase(unique(pts.begin(), pts.end()), pts.end());
  vector<PT> up, dn;
  for (int i = 0; i < pts.size(); i++) {</pre>
    while (up.size() > 1 && area2(up[up.size()-2], up.back(), pts[i]) >= 0) up.pop_back();
while (dn.size() > 1 && area2(dn[dn.size()-2], dn.back(), pts[i]) <= 0) dn.pop_back();</pre>
    up.push_back(pts[i]);
    dn.push back(pts[i]);
  for (int i = (int) up.size() - 2; i >= 1; i--) pts.push_back(up[i]);
#ifdef REMOVE_REDUNDANT
  if (pts.size() <= 2) return;</pre>
  dn.clear();
  dn.push_back(pts[0]);
  dn.push_back(pts[1]);
  for (int i = 2; i < pts.size(); i++) {
   if (between(dn[dn.size()-2], dn[dn.size()-1], pts[i])) dn.pop_back();</pre>
    dn.push back(pts[i]);
  if (dn.size() >= 3 && between(dn.back(), dn[0], dn[1])) {
    dn[0] = dn.back();
    dn.pop_back();
#endif
// The following code solves SPOJ problem #26: Build the Fence (BSHEEP)
  int t;
scanf("%d", &t);
  for (int caseno = 0; caseno < t; caseno++) {</pre>
    int n;
    scanf("%d", &n);
    vector<PT> v(n);
```

```
for (int i = 0; i < n; i++) scanf("%lf%lf", &v[i].x, &v[i].y);
    vector<PT> h(v);
    map<PT,int> index;
    for (int i = n-1; i >= 0; i--) index[v[i]] = i+1;
    ConvexHull(h);

    double len = 0;
    for (int i = 0; i < h.size(); i++) {
        double dx = h[i].x - h[(i+1)%h.size()].x;
        double dy = h[i].y - h[(i+1)%h.size()].y;
        len += sqrt (dx*dx*dy*dy);
    }

    if (caseno > 0) printf("\n");
    printf("%.2f\n", len);
    for (int i = 0; i < h.size(); i++) {
        if (i > 0) printf(" ");
        printf("%d", index[h[i]]);
    }
    printf("\n");
}
```

2.2 Miscellaneous geometry

```
// C++ routines for computational geometry.
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>
using namespace std:
double INF = 1e100:
double EPS = 1e-12:
struct PT {
  double x, y;
  PT() {}
  PT(double x, double y) : x(x), y(y) {}
  PT(const PT &p) : x(p.x), y(p.y)
  PT operator + (const PT &p) const { return PT(x+p.x, y+p.y);
  PT operator - (const PT &p) const { return PT(x-p.x, y-p.y);
  PT operator * (double c)
                                  const { return PT(x*c, y*c );
  PT operator / (double c)
                                  const { return PT(x/c, y/c ); ]
double dot(PT p, PT q)
                             { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x+q.y-p.y*q.x; }
ostream & operator << (ostream & os, const PT & p) {
    return os << "(" << p.x << "," << p.y << ")";
// rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y,p.x); }
PT RotateCW90(PT p) { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
// assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
 return a + (b-a) *dot(c-a, b-a) /dot(b-a, b-a);
// project point c onto line segment through a and b
PT ProjectPointSegment (PT a, PT b, PT c) {
  double r = dot(b-a, b-a);
  if (fabs(r) < EPS) return a;
   r = dot(c-a, b-a)/r;
  if (r < 0) return a;</pre>
  if (r > 1) return b;
  return a + (b-a) *r;
// compute distance from c to segment between a and b
double DistancePointSegment(PT a, PT b, PT c) {
  return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
// compute distance between point (x,y,z) and plane ax+by+cz=d
double DistancePointPlane(double x, double y, double z,
```

```
double a, double b, double c, double d)
  return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
// determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
  return fabs(cross(b-a, c-d)) < EPS;</pre>
bool LinesCollinear(PT a, PT b, PT c, PT d) {
  return LinesParallel(a, b, c, d)
      && fabs(cross(a-b, a-c)) < EPS
      && fabs(cross(c-d, c-a)) < EPS;
// determine if line segment from a to b intersects with
 // line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
  if (LinesCollinear(a, b, c, d)) {
    if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
      dist2(b, c) < EPS || dist2(b, d) < EPS) return true;</pre>
    if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
     return false:
    return true:
  if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
  if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
  return true:
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
 b=b-a; d=c-d; c=c-a;
  assert (dot (b, b) > EPS && dot (d, d) > EPS);
  return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
 b = (a+b)/2;
  c = (a+c)/2;
  return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
\ensuremath{//} strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
// (making sure to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
  bool c = 0:
  for (int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1)%p.size();
    if ((p[i].y <= q.y && q.y < p[j].y ||
  p[j].y <= q.y && q.y < p[i].y) &&</pre>
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
  return c;
\ensuremath{//} determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
  for (int i = 0; i < p.size(); i++)
   if (dist2(ProjectPointSegment(p[i], p[(i+1)*p.size()], q), q) < EPS)</pre>
      return true;
    return false;
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ret;
  b = b-a;
  a = a-c;
  double A = dot(b, b);
double B = dot(a, b);
  double C = dot(a, a) - r*r;
  double D = B*B - A*C;
  if (D < -EPS) return ret;</pre>
  ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
    ret.push_back(c+a+b*(-B-sqrt(D))/A);
  return ret:
```

```
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ret;
  double d = sqrt(dist2(a, b));
  if (d > r+R | | d+min(r, R) < max(r, R)) return ret;</pre>
  double x = (d*d-R*R+r*r)/(2*d);
  double y = sqrt(r*r-x*x);
  PT v = (b-a)/d;
  ret.push_back(a+v*x + RotateCCW90(v)*y);
  if (y > 0)
    ret.push_back(a+v*x - RotateCCW90(v)*y);
  return ret;
// This code computes the area or centroid of a (possibly nonconvex)
// polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as
// the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
 return area / 2.0;
double ComputeArea(const vector<PT> &p) {
 return fabs(ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p) {
  double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++){}
    int j = (i+1) % p.size();
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
  return c / scale;
// tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p) {
 for (int i = 0; i < p.size(); i++) {
  for (int k = i+1; k < p.size(); k++) {</pre>
     int j = (i+1) % p.size();
int l = (k+1) % p.size();
if (i == l || j == k) continue;
      if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
        return false:
  return true:
int main() {
  // expected: (-5,2)
  cerr << RotateCCW90(PT(2,5)) << endl;</pre>
  // expected: (5,-2)
  cerr << RotateCW90(PT(2,5)) << endl;
  // expected: (-5,2)
  cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
  // expected: (5,2)
  cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;</pre>
  // expected: (5.2) (7.5.3) (2.5.1)
  cerr << ProjectPointSegment(PT(-5,-2), PT(10,4), PT(3,7)) << " "</pre>
       << ProjectPointSegment (PT(7.5,3), PT(10,4), PT(3,7)) << " "
       << ProjectPointSegment (PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;
  // expected: 6.78903
  cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;</pre>
  cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
       << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
  // expected: 0 0 1
  cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "</pre>
       << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
       << LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
  cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "</pre>
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " "
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " "
```

```
<< SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
cerr << ComputeLineIntersection(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << endl;</pre>
cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;</pre>
v.push_back(PT(0,0));
v.push_back(PT(5,0));
v.push back(PT(5,5));
v.push back(PT(0,5));
// expected: 1 1 1 0 0
cerr << PointInPolygon(v, PT(2,2)) << " "
      << PointInPolygon(v, PT(2,0)) << " "
      << PointInPolygon(v, PT(0,2)) << " "
      << PointInPolygon(v, PT(5,2)) << " "
      << PointInPolygon(v, PT(2,5)) << endl;
// expected: 0 1 1 1 1
cerr << PointOnPolygon(v, PT(2,2)) << " "</pre>
      << PointOnPolygon(v, PT(2,0)) << " "
      << PointOnPolygon(v, PT(0,2)) << " "
      << PointOnPolygon(v, PT(5,2)) << " "
      << PointOnPolygon(v, PT(2,5)) << endl;
// expected: (1.6)
                (5,4) (4,5)
                blank line
                 (4,5) (5,4)
                (4,5) (5,4)
vector<PT> u = CircleLineIntersection(PT(0,6), PT(2,6), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
for (int i = 0; i < u.size(); i++) cerr << u[i] < r "; cerr << endl;
u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << r "; cerr << endl;
u = CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(4.5, 4.5), 10, sqrt(2.0)/2.0);

for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqrt(2.0)/2.0);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
// area should be 5.0
// centroid should be (1.1666666, 1.166666)
PT pa[] = { PT(0,0), PT(5,0), PT(1,1), PT(0,5) };
vector<PT> p(pa, pa+4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;</pre>
cerr << "Centroid: " << c << endl;
return 0:
```

3 Numerical algorithms

3.1 Number theory (modular, Chinese remainder, linear Diophantine)

```
// This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
// algorithms described here work on nonnegative integers.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

typedef vector<int> VI;
typedef pair<int, int> PII;
// return a % b (positive value)
int mod(int a, int b) {
    return ((a%b) + b) % b;
}
// computes gcd(a,b)
int gcd(int a, int b) {
```

```
while (b) { int t = a%b; a = b; b = t; }
        return a;
// computes lcm(a,b)
int lcm(int a, int b) {
        return a / gcd(a, b) *b;
// (a^b) mod m via successive squaring
int powermod(int a, int b, int m)
        int ret = 1:
        while (b)
                 if (b & 1) ret = mod(ret*a, m);
                 a = mod(a*a, m);
        return ret;
// returns g = gcd(a, b); finds x, y such that d = ax + by
int extended_euclid(int a, int b, int &x, int &y) {
        int xx = y = 0;
int yy = x = 1;
        while (b) {
                 int q = a / b;
int t = b; b = a%b; a = t;
                 t = xx; xx = x - q*xx; x = t;
                 t = yy; yy = y - q*yy; y = t;
        return a;
// finds all solutions to ax = b \pmod{n}
VI modular_linear_equation_solver(int a, int b, int n) {
        int x, y;
        VI ret;
        int g = extended_euclid(a, n, x, y);
        if (!(b%g)) {
                 x = mod(x*(b / g), n);
                 for (int i = 0; i < g; i++)
                          ret.push_back(mod(x + i*(n / g), n));
        return ret;
// computes b such that ab = 1 \pmod{n}, returns -1 on failure
int mod_inverse(int a, int n) {
        int x, y;
        int g = extended_euclid(a, n, x, y);
        if (q > 1) return -1;
        return mod(x, n);
// Chinese remainder theorem (special case): find z such that
// z % m1 = r1, z % m2 = r2. Here, z is unique modulo M = 1 cm (m1, m2).
// Return (z, M). On failure, M = -1.
PII chinese_remainder_theorem(int m1, int r1, int m2, int r2) {
        int s, t;
        int g = extended_euclid(m1, m2, s, t);
        if (r1%g != r2%g) return make_pair(0, -1);
        return make_pair(mod(s*r2*m1 + t*r1*m2, m1*m2) / g, m1*m2 / g);
// Chinese remainder theorem: find z such that
// z \$ m[i] = r[i] for all i. Note that the solution is // unique modulo M = lcm_i (m[i]). Return (z, M). On // failure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese_remainder_theorem(const VI &m, const VI &r) {
        PII ret = make_pair(r[0], m[0]);
        for (int i = 1; i < m.size(); i++) {
                 ret = chinese_remainder_theorem(ret.second, ret.first, m[i], r[i]);
                 if (ret.second == -1) break;
        return ret;
// computes x and y such that ax + by = c
// returns whether the solution exists
bool linear_diophantine(int a, int b, int c, int &x, int &y) {
        if (!a && !b)
                 if (c) return false:
                 x = 0; v = 0;
                 return true;
                 if (c % b) return false;
```

```
x = 0; y = c / b;
                    return true;
          if (!b)
                    if (c % a) return false;
                    x = c / a; y = 0;
                    return true;
          int g = gcd(a, b);
          if (c % g) return false;
          x = c / g * mod_inverse(a / g, b / g);

y = (c - a*x) / b;
          return true:
int main() {
          // expected: 2
          cout << gcd(14, 30) << endl;
          // expected: 2 -2 1
          int x, y;
         int g = extended_euclid(14, 30, x, y);
cout << g << " " << x << " " << y << endl;</pre>
          // expected: 95 451
          VI sols = modular_linear_equation_solver(14, 30, 100);
          for (int i = 0; i < sols.size(); i++) cout << sols[i] << " ";</pre>
          cout << endl:
          // expected: 8
          cout << mod_inverse(8, 9) << endl;</pre>
          // expected: 23 105
         PII ret = chinese_remainder_theorem(VI({ 3, 5, 7 }), VI({ 2, 3, 2 }));
cout << ret.first << " " << ret.second << endl;</pre>
         ret = chinese_remainder_theorem(VI({ 4, 6 }), VI({ 3, 5 }));
cout << ret.first << " " << ret.second << endl;</pre>
         if (!linear_diophantine(7, 2, 5, x, y)) cout << "ERROR" << endl;
cout << x << " " << y << endl;</pre>
          return 0;
```

3.2 Systems of linear equations, matrix inverse, determinant

```
// Gauss-Jordan elimination with full pivoting.
// Uses:
    (1) solving systems of linear equations (AX=B)
    (2) inverting matrices (AX=I)
    (3) computing determinants of square matrices
// Running time: O(n^3)
            a[][] = an nxn matrix
            b[][] = an nxm matrix
// OUTPUT: X
                 = an nxm matrix (stored in b[][])
             A^{-1} = an nxn matrix (stored in a[][])
             returns determinant of a[][]
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double EPS = 1e-10;
typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T GaussJordan (VVT &a, VVT &b) {
  const int n = a.size();
  const int m = b[0].size();
  VI irow(n), icol(n), ipiv(n);
  T \det = 1;
  for (int i = 0; i < n; i++) {</pre>
   int pj = -1, pk = -1;
```

```
for (int j = 0; j < n; j++) if (!ipiv[j])</pre>
        for (int k = 0; k < n; k++) if (!ipiv[k])</pre>
           if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk = k; }
      if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl; exit(0); }</pre>
      swap(a[pj], a[pk]);
      swap(b[pj], b[pk]);
      if (pj != pk) det *= -1;
     irow[i] = pj;
icol[i] = pk;
      \begin{array}{lll} T \ c = 1.0 \ / \ a[pk][pk]; \\ det \ \star = \ a[pk][pk]; \\ a[pk][pk] = 1.0; \\ \text{for (int } p = 0; \ p < n; \ p++) \ a[pk][p] \ \star = c; \\ \text{for (int } p = 0; \ p < m; \ p++) \ b[pk][p] \ \star = c; \\ \text{for (int } p = 0; \ p < n; \ p++) \ if (p != pk) \ \{ \end{array} 
        c = a[p][pk];
         for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;</pre>
         for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
   for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
   for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);</pre>
   return det:
int main() {
   const int n = 4;
   const int m = 2;
   double A[n][n] = \{ \{1,2,3,4\}, \{1,0,1,0\}, \{5,3,2,4\}, \{6,1,4,6\} \}; double B[n][m] = \{ \{1,2\}, \{4,3\}, \{5,6\}, \{8,7\} \};
   VVT a(n), b(n);
   for (int i = 0; i < n; i++) {
   a[i] = VT(A[i], A[i] + n);
   b[i] = VT(B[i], B[i] + m);</pre>
   double det = GaussJordan(a, b);
   // expected: 60
   cout << "Determinant: " << det << endl;</pre>
   // expected: -0.233333 0.166667 0.133333 0.0666667
                      0.166667 0.166667 0.333333 -0.333333
                      0.233333 0.833333 -0.133333 -0.0666667
                      0.05 -0.75 -0.1 0.2
   cout << "Inverse: " << endl;
   for (int i = 0; i < n; i++) {
     for (int j = 0; j < n; j++)
  cout << a[i][j] << ' ';</pre>
      cout << endl:
   // expected: 1.63333 1.3
                  -0.166667 0.5
                      2.36667 1.7
                     -1.85 -1.35
   cout << "Solution: " << endl;</pre>
   for (int i = 0; i < n; i++) {
     for (int j = 0; j < m; j++)
  cout << b[i][j] << ' ';</pre>
      cout << endl;
```

3.3 Reduced row echelon form, matrix rank

```
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
// the rank of a matrix.
//
// Running time: O(n^3)
//
// INPUT: a[][] = an nxm matrix
//
// OUTPUT: rref[][] = an nxm matrix (stored in a[][])
returns rank of a[][]
#include <iostream>
#include <vector>
#include <cemath>
```

```
using namespace std;
const double EPSILON = 1e-10;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
int rref(VVT &a) {
  int n = a.size();
  int m = a[0].size();
  int r = 0;
  for (int c = 0; c < m && r < n; c++) {
    int j = r;
for (int i = r + 1; i < n; i++)
   if (fabs(a[i][c]) > fabs(a[j][c])) j = i;
     if (fabs(a[j][c]) < EPSILON) continue;</pre>
     swap(a[j], a[r]);
     T s = 1.0 / a[r][c];
    for (int j = 0; j < m; j++) a[r][j] *= s;
for (int i = 0; i < n; i++) if (i != r) {</pre>
       T t = a[i][c];
       for (int j = 0; j < m; j++) a[i][j] -= t * a[r][j];</pre>
     r++;
  return r:
int main() {
  const int n = 5, m = 4;
  double A[n][m] = {
     {16, 2, 3, 13},
     { 5, 11, 10, 8},
     { 9, 7, 6, 12},
     { 4, 14, 15, 1},
     {13, 21, 21, 13}};
   VVT a(n);
  for (int i = 0; i < n; i++)
  a[i] = VT(A[i], A[i] + m);</pre>
  int rank = rref(a):
   // expected: 3
  cout << "Rank: " << rank << endl;
   // expected: 1 0 0 1
                  0 0 1 -3
                  0 0 0 3.10862e-15
                  0 0 0 2.22045e-15
  cout << "rref: " << endl;
  for (int i = 0; i < 5; i++) {
  for (int j = 0; j < 4; j++)
    cout << a[i][j] << ' ';</pre>
     cout << endl:
```

4 Graph algorithms

4.1 Eulerian path

```
while(adj[v].size() > 0)
{
    int vn = adj[v].front().next_vertex;
    adj[v].erase(adj[v].front().reverse_edge);
    adj[v].topc_front();
    find_path(vn);
}

void add_edge(int a, int b)
{
    adj[a].push_front(Edge(b));
    iter ita = adj[a].begin();
    adj[b].push_front(Edge(a));
    iter itb = adj[b].begin();
    ita>reverse_edge = itb;
    itb>reverse_edge = ita;
}
```

5 Data structures

5.1 Binary Indexed Tree

```
#include <iostream>
using namespace std;
#define LOGSZ 17
int tree[(1<<LOGSZ)+1];</pre>
int N = (1 << LOGSZ);
// add v to value at x
void set(int x, int v) {
 while (x <= N) {
    tree[x] += v;
    x += (x & -x);
// get cumulative sum up to and including x
int get(int x) {
 int res = 0;
  while(x) {
    res += tree[x];
    x -= (x & -x);
  return res;
// get largest value with cumulative sum less than or equal to x;
// for smallest, pass x-1 and add 1 to result
int getind(int x) {
  int idx = 0, mask = N;
  while (mask && idx < N)</pre>
    int t = idx + mask;
    if(x >= tree[t]) {
      idx = t;
      x -= tree[t];
    mask >>= 1;
  return idx:
```

6 Miscellaneous

6.1 Dates

```
// Routines for performing computations on dates. In these routines,
// months are expressed as integers from 1 to 12, days are expressed
// as integers from 1 to 31, and years are expressed as 4-digit
// integers.
#include <iostream>
#include <string>
using namespace std;
```

```
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
// converts Gregorian date to integer (Julian day number)
int dateToInt (int m, int d, int y) {
    1461 * (y + 4800 + (m - 14) / 12) / 4 +
    367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
    3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +
    d - 32075;
//\ {\it converts\ integer\ (Julian\ day\ number)\ to\ Gregorian\ date:\ month/day/year}
void intToDate (int jd, int &m, int &d, int &y) {
 int x, n, i, j;
  x = jd + 68569;
 n = 4 * x / 146097;
  x = (146097 * n + 3) / 4;
  i = (4000 * (x + 1)) / 1461001;

x = 1461 * i / 4 - 31;
  j = 80 * x / 2447;
  d = x - 2447 * j / 80;
  x = j / 11;
  m = \frac{1}{1} + 2 - 12 * x;
  y = 100 * (n - 49) + i + x;
// converts integer (Julian day number) to day of week
string intToDay (int jd) {
 return dayOfWeek[jd % 7];
int main (int argc, char **argv) {
  int jd = dateToInt (3, 24, 2004);
  intToDate (jd, m, d, y);
  string day = intToDay (jd);
  // expected output:
      2453089
       3/24/2004
       Wed
  cout << id << endl
    << m << "/" << d << "/" << v << endl
    << day << endl;
```

6.2 Prime numbers

```
// O(sqrt(x)) Exhaustive Primality Test
#include <cmath>
#define EPS 1e-7
typedef long long LL;
bool IsPrimeSlow (LL x)
  if(x<=1) return false:
  if(x<=3) return true;</pre>
  if (!(x%2) || !(x%3)) return false;
  LL s=(LL) (sqrt((double)(x))+EPS);
  for (LL i=5; i<=s; i+=6)
    if (!(x%i) || !(x%(i+2))) return false;
  return true;
  Primes less than 1000:
                                     13
                               59
                                                 71
            43
                                     61
                                           67
                                                             79
                                                                   83
                        107
                              109
                                    113
                                          127
                                                131
                                                      137
                                                             139
                                                                  149
                  103
                  167
                        173
                              179
                                    181
                                          191
                                                193
                                                      197
                                                            199
            163
                                                                  211
                 233
                        239
                              241
                                    251
                                          257
                                                263
                                                      269
                  307
                        311
                              313
                                    317
                                          331
                                                337
                              389
                                    397
                                          401
                                                409
                        383
                  449
                        457
                                    463
                                          467
                                                479
      509
                  523
                        541
                              547
                                    557
                                          563
                                                569
                                                       571
                                                             577
      599
                  607
                        613
                              617
                                    619
                                          631
                                                641
                                                       643
                                                             647
                                                                   653
            601
      661
            673
                  677
                        683
                              691
                                          709
                                                719
                                                       727
                                                             733
                                                                   739
                                                                         743
                  761
                        769
                                    787
                                          797
                                                809
                                                       811
                                                             821
                                                                  823
                                                                         827
                                          877
      829
           839
                 853
                        857
                              859
                                    863
                                                881
                                                      883
                                                            887
                                                                  907
                                                                         911
      919
           929
                  937
                        941
                             947
                                    953
                                          967
                                                971
                                                      977
                                                            983
// Other primes:
     The largest prime smaller than 10 is 7.
The largest prime smaller than 100 is 97.
      The largest prime smaller than 1000 is 997.
      The largest prime smaller than 10000 is 9973
      The largest prime smaller than 100000 is 99991
      The largest prime smaller than 1000000 is 999983.
```

6.3 C++ input/output

```
#include <iostream>
#include <iomanin>
using namespace std:
int main()
    // Ouput a specific number of digits past the decimal point,
    cout.setf(ios::fixed); cout << setprecision(5);</pre>
    cout << 100.0/7.0 << endl;
    cout.unsetf(ios::fixed);
    // Output the decimal point and trailing zeros
    cout.setf(ios::showpoint);
    cout << 100.0 << endl;
    cout.unsetf(ios::showpoint);
    // Output a '+' before positive values
    cout.setf(ios::showpos);
    cout << 100 << " " << -100 << endl;
    cout.unsetf(ios::showpos);
    // Output numerical values in hexadecimal
    cout << hex << 100 << " " << 1000 << " " << 10000 << dec << endl;
```

6.4 Knuth-Morris-Pratt

```
Finds all occurrences of the pattern string p within the
text string t. Running time is O(n + m), where n and m
are the lengths of p and t, respecitvely.
#include <iostream>
#include <string>
#include <vector>
using namespace std;
typedef vector<int> VI;
void buildPi(string& p, VI& pi)
  pi = VI(p.length());
  int k = -2;
  for(int i = 0; i < p.length(); i++) {</pre>
    while (k \ge -1) && p[k+1] != p[i])

k = (k == -1) ? -2 : pi[k];
    pi[i] = ++k;
int KMP(string& t, string& p)
  buildPi(p, pi);
  int k = -1;
  for(int i = 0; i < t.length(); i++) {</pre>
    while (k \ge -1 \&\& p[k+1] != t[i])
      k = (k == -1) ? -2 : pi[k];
    if(k == p.length() - 1) {
   // p matches t[i-m+1, ..., i]
   cout << "matched at index " << i-k << ": ";</pre>
       cout << t.substr(i-k, p.length()) << endl;</pre>
       k = (k == -1) ? -2 : pi[k];
```

```
} return 0;
}
int main()
{
    string a = "AABAACAADAABAABA", b = "AABA";
    KMP(a, b); // expected matches at: 0, 9, 12
    return 0;
```

6.5 Latitude/longitude

```
Converts from rectangular coordinates to latitude/longitude and vice
versa. Uses degrees (not radians).
#include <iostream>
#include <cmath>
using namespace std;
struct 11
  double r, lat, lon;
};
struct rect
  double x, y, z;
11 convert (rect& P)
 11 Q;
  Q.r = sqrt(P.x*P.x+P.y*P.y+P.z*P.z);
  Q.lat = 180/M_PI*asin(P.z/Q.r);
 Q.lon = 180/M_PI*acos(P.x/sqrt(P.x*P.x+P.y*P.y));
rect convert(11& Q)
  P.x = Q.r*cos(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
  P.y = Q.r*sin(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
 P.z = Q.r*sin(Q.lat*M_PI/180);
  return P;
int main()
  A.x = -1.0; A.y = 2.0; A.z = -3.0;
 B = convert(A);
cout << B.r << " " << B.lat << " " << B.lon << endl;</pre>
  A = convert(B):
  cout << A.x << " " << A.y << " " << A.z << endl;
```

6.6 Dates (Java)

```
// Example of using Java's built-in date calculation routines
import java.text.SimpleDateFormat;
import java.util.*;
public class Dates {
    public static void main(String[] args) {
        Scanner s = new Scanner(System.in);
        SimpleDateFormat sdf = new SimpleDateFormat("M/d/yyyy");
        while (true) {
```

```
int n = s.nextInt();
  if (n == 0) break;
  GregorianCalendar c = new GregorianCalendar(n, Calendar.JANUARY, 1);
  while (c.get(Calendar.DAY_OF_WEEK) != Calendar.SATURDAY)
      c.add(Calendar.DAY_OF_YEAR, 1);
  for (int i = 0; i < 12; i++) {
      System.out.println(sdf.format(c.getTime()));
      while (c.get(Calendar.MONTH) == i) c.add(Calendar.DAY_OF_YEAR, 7);
  }
}</pre>
```

7 Hussain

7.1 Adaptive Simpson

```
// Adaptive Simpson's Rule (Wikipedia Article)
dbl adaptiveSimpsons(dbl (*f)(dbl), // ptr to function dbl a, dbl b, // interval [a,b] dbl epsilon, // error tolerance
                            int maxRecursionDepth) { // recursion cap
  db1 c = (a + b)/2, h = b - a;
  dbl fa = f(a), fb = f(b), fc = f(c);
  db1 S = (h/6)*(fa + 4*fc + fb);
  return adaptiveSimpsonsAux(f, a, b, epsilon, S, fa, fb, fc, maxRecursionDepth);
// Recursive auxiliary function for adaptiveSimpsons() function below
dbl adaptiveSimpsonsAux(dbl (*f)(dbl), dbl a, dbl b, dbl epsilon,
                         dbl S, dbl fa, dbl fb, dbl fc, int bottom) {
  db1 c = (a + b)/2, h = b - a;
  db1 d = (a + c)/2, e = (c + b)/2;
  dbl fd = f(d), fe = f(e);
  dbl Sleft = (h/12)*(fa + 4*fd + fc);
  dbl Sright = (h/12)*(fc + 4*fe + fb);
  dbl S2 = Sleft + Sright;
  if (bottom <= 0 || fabs(S2 - S) <= 15*epsilon) // magic 15 comes from error analysis</pre>
    return S2 + (S2 - S)/15;
  return adaptiveSimpsonsAux(f, a, c, epsilon/2, Sleft, fa, fc, fd, bottom-1) +
         adaptiveSimpsonsAux(f, c, b, epsilon/2, Sright, fc, fb, fe, bottom-1);
 float I = adaptiveSimpsons(sin, 0, 2, 0.001, 100);
                                                              // compute integral of sin(x)
                                                             // from 0 to 2 and store it in
                                                             // the new variable I
 printf("I = %lf\n", I); // print the result
 return 0;
```

7.2 Binomial Coeff (constant N)

```
 C[0] = 1 
for (int k = 0; k < n; ++ k)
 C[k+1] = (C[k] * (n-k)) / (k+1) 
// C[i] = C(n,i)
```

7.3 Generate (x,y) pairs s.t. x AND y=y