Pick Ur Plate

TEAM PANDA

SATYANARAYANA VINAY ACHANTA (A02395874)

VENKATA SHIVA SAI DHEERAJ KOTTE (A02394047)

HARI CHANDANA KOTNANI (A02395874)

Introduction

- ▶ Pick Ur Plate database was developed to provide the facilities for ordering food online that can be delivered to their place from nearby restaurants.
- We will organize the data of our own exclusive fleet of delivery personnel to pick up orders from restaurants and deliver them to customers.
- The main objective of this project is to store the details of the customers, orders, chefs, restaurants, admin, menu, food details, food delivery employees, and payment.

Requirements Analysis

Data Requirements:

- ▶ Below is some of the important information which our online food ordering system needs to store
 - **Customer**(identified by the unique Customer Id, First Name, Last Name, Phone number, Email, and Address).
 - The customer can provide **reviews** to the restaurant and can contact **customer support** if any issue with the order occurs.
 - **Restaurant** (identified by a unique Restaurant Id, Name, Email, Phone, and Address) has **Chefs** (identified by a unique Chef Id).
 - > Order(identified by the unique Order Id, Order Date, and the total price of the order customer bought from the restaurant)

Requirements Analysis

Functional Requirements:

- Customer support should only have access to the details of the order placed by the customer.
- ▶ The chef can only have the details of the order not any other information about the customer.
- A customer can place one order from one restaurant at a time.
- ▶ Delivery employees should have details of the customer's name, phone, location, and order id only.
- Rating must be in the range of 1 to 5 which implies bad to great!
- ▶ The username and password entered by the admin should match the data stored in the database.
- ▶ Ratings should be reviewed by the admin to consider the changes required to satisfy the customer.
- ▶ All food types should be present in the food details table.

Data

▶ We did not use any dataset to fill in tables. Instead, we filled out tables manually to test the functionalities based on common operations.

	customer_id	first_name	last_name	phone_no	full_address	email_id
•	c1	vinay	A	2234567890	597 university pines	vinay@gmail.com
	c2	chandana	K	2234567899	697 university pines	chandana@gmail.com
	c3	ashwiniakka	Al	3234567889	789 university pines	ashwini@gmail.com
	c4	nithya	N	3234567787	778 kampus corner	nithya@gmail.com
	c5	dheeraj	D	9423456666	899 university pines	dheeraj@gmail.com
	c6	saichand	S	3255567890	122 university pines	saichand@gmail.com
	c7	vamsi	٧	4235557890	344 mountainview	vamsi@gmail.com

order_id	food_id	total_pri	order_date	number_of_ite	admin_id	customer_id
01	f1	23	2020-10-10	3	kate12	c1
02	f2	19	2021-09-12	4	kate12	c2
о3	f3	27	2019-07-15	5	kate12	c3
04	f4	35	2018-06-18	1	tommy12	c4
05	f5	13	2017-11-19	1	tony12	c5
06	f6	19	2015-11-20	9	canberry12	с6
07	f7	12	2021-02-28	3	canberry12	с7

restaurant_id	restaurant_name	phone_number	restaurant_email	admin_id
r1	annapurna mess	1234567890	annapurnamess@gmail.com	a1
r2	flechazo	2234567190	flechazo@gmail.com	a2
r3	barbecue	3234567890	barbecue@gmail.com	a3
r4	marine	5234566890	marine@gmail.com	a4
r5	warensberg	2234667890	warensberg@gmail.com	a5
r6	manaruchulu	7234557890	manaruchulu@gmail.com	a6
r7	pizzahut	9234567890	pizzahut@gmail.com	a7

ER Diagram

Relational Model

Relational Model

- ▶ Most of the tables are already in Normal Form.
- **▶** Challenged by Normal forms:

The primary key is defined by the combination of OrderId and Food_Id. We see that a customer can order multiple food items and if we keep that with the order entity it will violate the rule for 1st NF and if somebody tells that he wants only one food item to make it to 1st NF(which is wrong) but he will face another problem, which is violating the rule for 2nd NF.

Functionalities

- Get the highest-rated restaurant out of all.
- ▶ Get the most sold food item in each of the restaurants.
- A trigger is used for automatic updates in my project basically when a user enters the food item(in the food table) he wants the total price will be automatically updated in the order table.

```
delimiter //
create trigger on_food_insert after insert on fooddetails
for each row

begin
    update orderr
    set new.food_price = new.food_price + new.price * new.quantity
    where order_id=orderr.orderid;
    update orderr
    set new.number_of_items = new.number_of_items+1
    where order_id = orderr.order_id;
end
//
delimiter;
```

Summary and Conclusion

Key Findings

- > Clear client requirements will make the modeling and implementation easy.
- > Normalization will reduce data redundancy and simplify the query process.

Challenges

- 3NF Normalization.
- There are many considerations while choosing tables and relations between them.

Significance

- > This system will help to generate more profits and organize the restaurant better.
- It also allows restaurant owners to save on labor costs and restaurant space needed to serve such customers.

Questions?