Mat - 116

lec: 21

The inverse sine, asine and Tangent functions

The Inverse Sine function!

sine y = sinx

Domain: - 00 L X L 00 Range: -1 = y = 1

Restricted domain · 一至公之至 Range: 一位YEI

Inverse

Sinfundim . Interchange x and J.

ス=Siny Domain: -1 < X < 1, Range: -至 < Y < 至

: Y = Sin-1x

						-		. 1		
	0	-72	- 13	-쥬	- <u>Ā</u>	0	<u>A</u>	x	43	2
ę	Sino	-1	-32	古	1-1-2	0	12	世	-13/2	1

Ex: Find the exact value of Sin-1/1.

Ex: Find the exact value of Sin-1色)

since sink and sin'x are inverse functions. So they follow the f(f-1(21)) = x and f-1(f(2)) = x. Presperty

$$\operatorname{Sin}^{-1}\left(\operatorname{Sin}\frac{5\pi}{8}\right) = \operatorname{Sin}^{-1}\left[\operatorname{Sin}\left(\pi - \frac{3\pi}{8}\right)\right] = \operatorname{Sin}^{-1}\left[\operatorname{Sin}\left(\frac{3\pi}{8}\right)\right] = \frac{3\pi}{8}$$

Note: Herre 5/ is not in the interval [- [-]

The inverse cosine function:

Domain: -ox <7200 Range: -12461

Restructed, OEXET

Domain; -12x41 Range: 04 447

34

$$\frac{Sol^{m_1}}{O = cos^{-1}} \left(\frac{\sqrt{2}}{2}\right) = cos^{-1} \left(-\frac{1}{\sqrt{2}}\right)$$

$$7 cno = -\frac{1}{\sqrt{2}}$$

$$0 = \frac{3\pi}{4}.$$

$$f^{-1}(f(x)) = cos^{-1}(cosx) = x$$
 $0 \le x \le x$
 $f(f^{-1}(x)) = cos(cos^{-1}x) = x$ $-1 \le x \le 1$

$cos^{-1} [cos(2\pi)]$; Here the angle $-\frac{2\pi}{3}$ is not in the internal $[0,\pi]$. But cosine is even function, so $cos(-\frac{2\pi}{3}) = cos(\frac{2\pi}{3})$. and 2π lies in the interval $[0,\pi]$.

$$cos^{-1}[cos(-2\frac{\pi}{3})] = cos^{-1}(cos(2\frac{\pi}{3})) = \frac{2\pi}{3}$$
.

Because is not in the interval [-1,1], the domain of costs is not defined, which means cos(costs) is also not defined.

$$7 = \sin(\pi/3) = \frac{\sqrt{3}}{2}$$

The inverse tangent function:

tangent	y=tame	Domola: - as (xco, x not equal to odd multiples of 1/2
		Restricted Range, - 0 < y < 000 damain: - \$ < x < \frac{1}{2}
Inverse	x = tany	
tangent	$=$ $y = tan^{-1}x$	Pomain:-allxlas, Ronge:-幸くなく査
	tan 0 undefined	En Find exact value of tan (-13)
- X 3		$Solm_1$ $Q = tan^1(\sqrt{3})$
- 4		$\Rightarrow \tan \theta = -\sqrt{3} = \tan(-\frac{\pi}{3})$
- 15	-43	$\therefore Q = -\frac{\pi}{3}$
0	0	
7	W3	# tam (tanx) =x) - \(\frac{1}{2} \cox < \frac{1}{2}
夲	1	tan fan's) =x ; -ookx coo
$\frac{\pi}{3}$	√ 3	7 6
7	underines	u thethoux
1	VIBRITA	1 1 The trank

Exi Find the inverse function f' of $f(x) = 2\sin x - 1$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Find the trange of f and the domain and trange of f'.

Solve Given $y = 2\sin x - 1$

to find f-1 let's interchange & and y and solve for y.

 $\chi = 2 \operatorname{slny} - 1$

=> 25iny = x+1

 $\Rightarrow \sin y = \frac{x+1}{2} \quad y = \sin^{-1}\left(\frac{x+1}{2}\right)$

Thus the inverse function is $f^{-1}(x) = \sin^{-1} \frac{x+1}{2}$

To find the Trange of f, solve $y = 2\sin x - 1$ for since and use the fact that $-1 \le \sin x \le 1$.

 $y = 28 \ln x - 1$

=) Sinx = 3+1

· -1 ≤ \frac{\fir}{\fint}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{

D -2 ≤ j+1 ≤ 2

カ -3 とならし

: The trange of f is 271-35451] OR [-3, 1].

Domain of f-1 is the range of f = [3,1]

Range of f^{-1} is the domain of $f = \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$

Ex: Find the exact value of sin (tan't)

Solmi Given Sin (tam-1)

let +am-1/2 = 0

Here x=2, y=1 and $t=\sqrt{5}$

We know Sind = 7

$$\therefore \sin\left(\tan^{-1}\frac{1}{2}\right) = \sin\theta = \frac{y}{\pi} = \frac{1}{\sqrt{6}}$$

$$-\frac{1}{5}\sin\left(\frac{1}{4}\sin\frac{11}{2}\right) = \frac{1}{\sqrt{5}}$$

Ex: Find the exact value of costsin-1(-13)

Solm: Given Cos [sin-[1]]

let $0 = \sin^{-1}\left(-\frac{1}{3}\right)$

Here y=-1 and $\pi z=3$

Now xx+yr= 12x

$$\frac{1}{3}$$
 $\cos \left[\frac{\sin^{-1}(\frac{1}{3})}{3} \right] = \frac{2\sqrt{2}}{3}$

Ex. tan [cos (=3)]

 $\lambda^{2}+y^{2}=\pi^{2}$ $\Rightarrow \pi = \sqrt{x^{2}+y^{2}}$ $= \sqrt{4+1} = \sqrt{5}$