Lecture 16 Bottom Up and Top Down Proof Procedure (Ch 5.2.2)

Lecture Overview

- Recap Lecture 15
 - Bottom-Up Proof Procedure
 - Soundness
 - Completeness
 - Top-Down (TD) Proof Procedure

- TD as Search
- Datalog (time permitting)

Where Are We?

Representation

Environment

Problem Type

Deterministic Arc Stochastic Reasoning Technique

Consistency

Constraint Satisfaction VarsConstraints+ Search

- When we represent a domain about which we have only partial (but certain) information, we need to represent....
- Objects, properties, sets, groups, actions, events, time, space, ...
- All these can be represented as
- Objects
- Relationships between objects
- Logic is the language to express knowledge about the world this way

We will start with a simple logic

Primitive elements are propositions: Boolean variables that can be {true, false}

Two kinds of statements:

that a proposition is true if one or more other propositions are true

To Define a Logic, We Need

- Syntax: specifies the symbols used, and how they can be combined to form legal sentences
- Knowledge base is a set of sentences in the language

- Semantics: specifies the meaning of symbols and sentences
- Reasoning theory or proof procedure: a specification of how an answer can be produced.
- Sound: only generates correct answers with respect to the semantics
- Complete: Guaranteed to find an answer if it exists

Propositional Definite Clauses: Syntax

Definition (atom)

An **atom** is a symbol starting with a lower case letter

Examples: p₁; live_l₁

Definition (body)

A **body** is an atom or is of the form $b_1 \land b_2$ where b_1 and b_2 are bodies.

Examples: $p_1 \wedge p_2$; ok_ $w_1 \wedge live_w_0$

Definition (definite clause)

A definite clause is

- an atom or
- a rule of the form *h*←*b* where *h* is an atom ("head") and *b* is a body. (Read this as "*h* if *b*".)

Examples: $p_1 \leftarrow p_2$; live_ $w_0 \leftarrow$ live_ w_1 $\wedge up_s_2$

Definition (KB)

A knowledge base (KB) is a set of definite clauses

atoms

definite clauses, KB

live_l1 ←live_wo. live_wo ←live_w1 ∧up_52. live_wo ←live_w2 ∧down_52. live_w1 ←live_w3 ∧up_51. live_w2 ←live_w3 ∧down_51. live 12 ←live W4. live_w4 ←live_w3 ∧up_53. live_p1 ←live_w3. live_w₃ \leftarrow live_w₅ \wedge ok_cb₁. live_p2 ←live_w6. live_w6 \leftarrow live_w5 \wedge ok_cb2. live_w5 ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_{l2} \leftarrow light_{l2} \land live_{l2} \land ok_{l2}$.

rules

Propositional Definite Clauses: Semantics

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)

- A body b₁∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

PDC Semantics: Knowledge Base (KB)

 A knowledge base KB is true in I if and only if every clause in KB is true in I.

Only KB_2 above is True in I_1

Propositional Definite Clauses: Semantics

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)

- A body b₁∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

Definition (model)

A **model** of a knowledge base KB is an interpretation in which KB is true.

Similar to CSPs: a model of a set of clauses is an interpretation that makes all of the clauses true

PDC Semantics: Example for models

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

$$KB = \begin{cases} q \end{cases}$$

Which of the interpretations below are models of KB? All interpretations where KB is true: I_1 , I_3 , and I_4

	p	q	r	S	p _→ q	q	r _← s	KB
I ₁	Т	Т	Т	Т	Т	Т	Т	Т
l ₂	F	F	F	F	Т	F	Т	F
I_3	Т	Т	F	F	Т	Т	ı	Т
I ₄	Т	Т	Т	F	Т	Т	J	Т
I ₅	F	Т	F	Т	F	Т	F	F
p ←a								

r ←s

What We Want to Do with Logic

- 1) Tell the system knowledge about a task domain.
 - This is your KB
 - which expresses true statements about the world

- 2) Ask the system whether new statements about the domain are true or false.
 - We want the system responses to be
 - Sound: only generates correct answers with respect to the semantics
 - Complete: Guaranteed to find an answer if it exists

For Instance

1) Tell the system knowledge about a task domain.

live I₁ ←live wo. light_l1. live_wo ←live_w1 ∧up_52. light_l2. live wo ←live w2 ∧down 52. ok 11. live_w1 ←live_w3 ∧up_51. ok 12. live_w2 ←live_w3 ∧down_51. ok cbi. live 12 ←live W4. ok cb2. live_w4 ←live_w3 ∧up_53. live outsic live_p1 ←live_w3. live_w3 ←live_w5 ∧ok_cb1. live_p2 ←live_w6. live_w6 ←live_w5 ∧ok_cb2. live ws ←live outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_{l2} \leftarrow light_{l2} \land live_{l2} \land ok_{l2}$.

- 2) Ask the system whether new statements about the domain are true or false
 - live w₄?

lit_l₂?

PDCL Semantics: Logical Consequence

Definition (logical consequence)

If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written KB ⊧ g, if g is true in every model of KB

In other words, KB ⊧ g if there is no interpretation in which KB is true and g is false

- We want a reasoning procedure that can find all and only the logical consequences of a knowledge base
 - mechanically derivable demonstration that a formula logically follows from a knowledge base.

Must be sound and complete

Recap: proofs, soundness, completeness

 A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

Definition (derivability with a proof procedure)

Given a proof procedure P, KB FP g means g can be derived from knowledge base KB with proof procedure P.

Definition (soundness)

A proof procedure P is sound if KB ⊢Pg implies KB ⊨ g.

sound: every atom g that P derives follows logically from KB

Definition (completeness)

Simple proof procedure S

- Enumerate all interpretations
- For each interpretation I, check whether it is a model of KB
 √i.e., check whether all clauses in KB are true in I
- KB ⊢s g if g holds in all such models

A proof procedure P is complete if KB | g implies KB | p g.

complete: every atom g that logically follows from KB is derived by P

Simple Proof Procedure

problem with this approach?

 If there are n propositions in the KB, must check all the 2ⁿ interpretations!

Goal of proof theory

 find sound and complete proof procedures that allow us to prove that a logical formula follows from a KB avoiding to do the above

Bottom-up proof procedure

 One rule of derivation, a generalized form of modus ponens: If "h← b₁ ∧ ... ∧ b_m" is a clause in the knowledge base, and each b_i has been derived,
 then h can be derived.

This rule also covers the case when m = 0.

Bottom-up (BU) proof procedure

```
    C :={};
    repeat
    select clause "h ←b<sub>1</sub>∧... ∧b<sub>m</sub>" in KBsuch that b<sub>i</sub>∈Cfor all i, and h ∉C;
    C:= C ∪{ h } until no more clauses can be selected.
```

KB_{BU} G if G⊆Cat the end of this procedure

The C at the end of BU procedure is a fixed point:

 Further applications of the rule of derivation will not change C!

Bottom-up proof procedure: example

```
C := \{\}; repeat select \ clause \ h \leftarrow b_1 \wedge ... \wedge b_m \ in \ KB \ such that \ b_i \in C \ for \ all \ i, \ and \ h \notin C; C := C \cup \{h\} \ until \ no \ more clauses \ can \ be \ selected.
```


Bottom-up proof procedure: Example

```
KB z \leftarrow f \land e
                            C := \{\};
q \leftarrow r \land g \land e
                            repeat
e \leftarrow a \land b a b
                                     select clause h \leftarrow b_1 \land ... \land b_m in KB
                                            such that b_i \in C for all i, and h \notin C;
             Which
                                    C := C \cup \{h\} until no more
             of the
                            clauses can be selected.
             following is true?
r f
           A. KB_{BU}\{z, q, a\}
                                 KB_{BU}\{r, z, b\}
```

KB⊦_{B∪}{q,a}

Bottom-up proof procedure: Example

```
KBz \leftarrow f \land e
                                  C := \{\};
  q \leftarrow r \land g \land e
                                  repeat
  e \leftarrow a \land b a b
                                            select clause h \leftarrow b_1 \wedge ... \wedge b_m in KB
                                                    such that b_i \in C for all i, and h \notin C;
                            {a}
                                           C := C \cup \{h\} until no more
          KB⊦<sub>B</sub>∪{z, q
                                  clauses can be selected.
, a}
                            {a,b}
                                                                KB_{BU}\{r, z, b\}
                            {a, b, r}
                            {a, b, r, f}
```

{a, b, r, f, e} {a, b, C.
$$KB \vdash_{BU} \{q,a\}$$
 r, f, e, z}

Done.

Lecture Overview

- Recap
- Bottom-Up Proof Procedure
- Soundness
- Completeness
- Top-Down Proof Procedure

- TD as Search
- Datalog (time permitting)

Definition (soundness)

A proof procedure P is sound if KB ⊦pg implies KB ⊧g.

sound: every atom g that P derives follows logically from KB

```
C := \{\}; repeat select \ clause \ h \leftarrow b_1 \wedge ... \wedge b_m \ in \ KB such \ that \ b_i \in C \ for \ all \ i, \ and \ h \notin C; C := C \cup \{h\} \ until \ no \ more clauses \ can \ be \ selected.
```

What do we need to prove to show that BU is sound?

```
Definition (soundness)

A proof procedure P is sound if KB ⊦pg implies KB ⊧ g.
```

30

sound: every atom g that P derives follows logically from KB

```
C := \{\}; repeat select\ clause\ h \leftarrow b_1 \wedge ... \wedge b_m\ in\ KB such\ that\ b_i \in C\ for\ all\ i,\ and\ h\notin C; C := C \cup \{h\}\ until\ no\ more clauses\ can\ be\ selected.
```

What do we need to prove to show that BU is sound?

If g ∈ C at the end of BU procedure, then g is true in all models of KB (KB ⊧ g) If g ∈ C at the end of BU procedure, then g is true in all models of KB (KB ⊧ g)

Proof by contradiction: Suppose there is a hsuch that KB

F BU h but not KB ⊧h.

- 1. Let h be the first atom added to C that is not true in every model of KB.
 - In particular, suppose I is a model of KB in which h isn't true
- 2. Since hwas added to C, there must be a clause in KB of form

$$h \leftarrow b_1 \wedge ... \wedge b_n$$

where each b_iis already in C and thus true in every model

- of KB, including I.
- 3. Because h is false in I, $h \leftarrow b_1 \land ... \land b_n$ is false in I.

4. Therefore I is not a model of KB=> Contradiction with

Lecture Overview

- Recap
- Bottom-Up Proof Procedure
- Soundness
- completeness
- Top-Down Proof Procedure
- TD as Search

Completeness of BU: general idea

Datalog (time permitting)

Completeness of BU: general idea

Generic completeness of proof procedure:

If g is logically entailed by the KB (KB⊧g) then g can be proved by the procedure (KB ⊦_{BU}g)

Sketch of our proof for BU:

Suppose KB ⊧g. Then g is true in all models of KB.

- 2. Thus g is true in any particular model of KB
- 3. We will define a model (called minimal model) so that if g is true in that model, g is proved by the bottom up algorithm.
- 4. Thus KB ⊢_{BU} g.

We define a specific interpretation of our KB, in which

- every atom in C at the end of BU is true
- every other atom is false

This is called minimal model

Completeness of BU: general idea

EXAMPLE

```
All atoms = {a, b, c, d,e, f, g}
C = ?
```

Completeness of BU: general idea

We define a specific interpretation of our KB, in which

- every atom in C at the end of BU is true
- every other atom is false

Completeness of BU: general idea KB a ←

This is called minimal model

We define a specific interpretation of our KB, in which

- every atom in C at the end of BU is true
- every other atom is false

```
KB a ← e

//g.
b ← f //g
. c ←
← c
e.
d.
```

Completeness of BU: general

idea

This is called minimal model

KB a ← e

//g.
b ← f //g
. c ←
← c
e.
d.

We define a specific interpretation of our KB, in which

- every atom in C at the end of BU is true
- every other atom is false

Completeness of BU: general idea

This is called minimal model

 Using this interpretation, we'll then show that, if

KB ⊧ G, then G must be in C, that is

If g is true in all models of KB (KB \models g) then g \in C at the end of BU procedure (KB \models BU g)

Definition

The minimal model MM is the interpretation in which

- every element of BU's fixed point C is true
- every other atom is false.

First, we prove that: MM is a model of KB

Proof by contradiction: assume that MM is not a model of KB.

Then there must exist some clause in KB which is false in MM

✓ Like every clause in KB, it is of the form $h \leftarrow b_1 \wedge ... \wedge b_m$ (with $m \ge 0$).

h← b₁ ∧... ∧ b_m can only be false in MM if each b_i is true in MM and h is false in MM.

✓ Since each b_i is true in MM, each b_i must be in C as well.

✓BU would add h to C, so h would be true in MM. Contradiction!

Thus, MM is a model of KB

Completeness of bottom-up procedure

If g is true in all models of KB (KB \models g) then g \in C at the end of BU procedure (KB \models BU g)

Direct proof based on minimal model:

- Suppose KB ⊧ g. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g ∈ C at the end of BU procedure.
- Thus KB ⊢_{BU} g. Done. KB ⊧ g implies KB ⊢_{BU} g

Summary for bottom-up proof procedure BU

- BU is sound: it derives only atoms that logically follow from KB
- BU is complete: it derives all atoms that logically follow from KB
- Together: it derives exactly the atoms that logically follow from KB
- And, it is efficient!
- Linear in the number of clauses in KB

✓ Each clause is used maximally once by BU

Let's consider these two alternative proof

procedures for PDCL....

X.
$$C_X = \{All clauses in KB with empty bodies\}$$

Y.
$$C_Y = \{All atoms in the knowledge base\}$$

A. Both X and Y are sound and complete

B. Both Y and X are neither sound nor complete

- C X is sound only and Y is complete only
- D. X is complete only and Y is sound only Let's consider these two alternative proof

procedures for PDCL....

X. $C_X = \{All clauses in KB with empty bodies\}$

Returns atoms that are indeed logical consequences (sound), but misses all those derived from the application of rules with nonempty bodies (not complete)

Y. $C_Y = \{All atoms in the knowledge base\}$

Returns all the logical consequences (complete), but also returns atoms that are not (not sound),

X is sound only and Y is complete only

Bottom-up vs. Top-down

Let g be the query

g is proved if $g \in C$

When does BU use the information that G is the query?

Bottom-up vs. Top-down

 Key Idea of top-down: search backward from a query G to determine if it can be derived from KB.

Bottom-up

Query g is proven if g ∈ C answer

When does BU uses the info that g is the query?

- Only at the end
- It derives the same C regardless of the query

TD performs a backward search starting at g

Lecture Overview

- Recap
- Bottom-Up Proof Procedure
- Soundness
- Completeness
- Top-Down (TD) Proof Procedure
 - TD as Search
 - Datalog (time permitting)

Top-down Proof Procedure for PDCL

- Idea: search backward from a query to determine if it is a logical consequence of KB.
- An answer clause is of the form

yes
$$\leftarrow a_1 \land ... \land a_{i-1} \land a_i \land a_{i+1} ... \land a_m$$

We express a query q₁/lq₂ ... /lq_mas an answer clause

Basic operation: SLD Resolution of an answer clause

atom ai with the clause:

$$a_i \leftarrow b_1 \wedge ... \wedge b_p$$
 yields the clause yes $\leftarrow a_1 \wedge ... \wedge a_{i-1} \wedge b_1 \wedge ... \wedge b_p$
$$\wedge a_{i+1} ... \wedge a_m$$

Example

Rule of derivation: the SLD Resolution of clause

on atom a_i with the clause:

$$a_i \leftarrow b_1 \wedge ... \wedge b_p$$

is the answer clause yes $\leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land ... \land b_p$

$$\Lambda a_{i+1} \dots \Lambda a_{m}$$

Example

Rule of derivation: the SLD Resolution of clause

on atom a with the clause:

$$a_i \leftarrow b_1 \wedge ... \wedge b_p$$

is the answer clause yes $\leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land ... \land b_p$

$$\Lambda a_{i+1} \dots \Lambda a_{m}$$

- An answer is an answer clause with m = 0. yes ←.
- A successful derivation from KB of query

?
$$q_1 \wedge ... \wedge q_k$$

is a sequence of answer clauses γ_0, γ_1 , ..., γ_n such that

- γ₀ is the answer clause yes ←q₁∧... ∧q_k.
 γ_i is obtained by resolving γ_{i-1}with a clause in KB, and
 - γ_n is an answer. yes \leftarrow .
- An unsuccessful derivation from KB of query?
 q₁∧... ∧ q_k We get to something like yes
 ←b₁∧... ∧ b_k.
 - There is no clause in KB with any of the b_i as its head

Top-down Proof Procedure for PDCL

To solve the query $? q_1 \wedge ... \wedge q_k$:

```
ac:= yes ← body, where body is q<sub>1</sub> ∧ ... ∧
```

qk repeat select qi ∈ body; choose clause Cl

 \in KB, Cl is $q_i \leftarrow b_c$; replace q_i in body by b_c

until ac is an answer (fail if no clause with qias head)

select: any choice will work

choose: have to pick the right one

Example: successful derivation

$$a \leftarrow b \wedge c$$
. 1 $a \leftarrow e \wedge f$. $b \leftarrow f \wedge k$.
 $4 \leftarrow e$. $d \leftarrow k$ 3_5 e .
 $f \leftarrow j \wedge e$. 2 $f \leftarrow c$. $j \leftarrow c$.
Query: ?a γ_0 : yes $\leftarrow c \gamma_4$: yes $\leftarrow e \gamma_5$: $\leftarrow a \gamma_1$: yes $\leftarrow c \gamma_4$: yes $\leftarrow c \gamma_5$: $\leftarrow a \gamma_1$: yes $\leftarrow c \gamma_5$: $\leftarrow c \gamma_5$:

The answer is "Yes, we can"

Example: failing derivation

1
$$a\leftarrow b\land c$$
. $a\leftarrow e\land f$. 2 $b\leftarrow f\land k$. $c\leftarrow e$. 46 $d\leftarrow k$ 57 $f\leftarrow j$ e . $\land e$. 3 $f\leftarrow c$. $j\leftarrow c$.

Query: ?a γ_0 : yes \leftarrow a

```
\gamma_1: yes \leftarrow b \land c \gamma_2:
yes \leftarrow f \wedge k \wedge c
\gamma_3: yes \leftarrow \mathbf{C} \wedge \mathbf{k} \wedge
c \gamma_4: yes \leftarrow e \wedge k
\wedge C
γ5: yes ← k ∧ c
                                    There is no rule
V6: yes ← k ∧ e with k as its head, V7:
yes ← kthus ... fail
```

Rules of derivation in top-down and bottom-up

Top-down:

SLD Resolution

$$yes \leftarrow c_1 \wedge c_i ... \wedge c_m \qquad c_i \leftarrow b_1 \wedge ... \wedge b_p$$

$$yes \leftarrow c_1 \wedge ... \wedge c_{i-1} \wedge b_1 \wedge ... \wedge b_p \wedge c_{i+1} ... \wedge c_m$$

Bottom-up:

Generalized modus ponens

Lecture Overview

- Recap
- Bottom-Up Proof Procedure
- Soundness
- Completeness
- Top-Down (TD) Proof Procedure
- TD as Search
 - Datalog (time permitting)

SLD resolution as search

- SLD resolution can be seen as a search
- from a query stated as an answer clause
- to an answer
- Through the space of all possible answer clauses

Environment

Inference as Standard Search

- Constraint Satisfaction (Problems):
- State: assignments of values to a subset of the variables
- Successor function: assign values to a "free" variable
- Goal test: set of constraints
- Solution: possible world that satisfies the constraints
- Heuristic function: none (all solutions at the same distance from start)
- Planning:
- State: full assignment of values to features
- Successor function: states reachable by applying valid actions
- Goal test: partial assignment of values to features
- Solution: a sequence of actions
- Heuristic function: relaxed problem! E.g. "ignore delete lists"

- Query (Top-down/SLD resolution)
 - State: answer clause of the form yes ← a₁ ∧ ... ∧ a_k
 - Successor function: state resulting from substituting first
 atom a₁ with b₁ ∧... ∧ bm if there is a clause a₁ ← b₁ ∧... ∧ bm
 - Goal test: is the answer clause empty (i.e. yes ←) ?
 - Solution: the proof, i.e. the sequence of SLD resolutions
 - Heuristic function: ?????

KB

Prove: ?← a ∧ d.

Why are these dead ends in the search space?

- the successor function resolves the first atom in the body of the answer clause
- But j and m cannot be resolved ch Graph

KB

Top-down/SLD resolution as Search

State: answer clause of the form yes \leftarrow a₁ \wedge ... \wedge a_k

Successor function: state resulting from substituting first atom

a₁ with b₁ \wedge ... \wedge b_m if there is a clause a₁ \leftarrow b₁ \wedge ... \wedge b_m Goal

test: is the answer clause empty (i.e. yes ←)?

Solution: the proof, i.e. the

sequence of SLD resolutions

Prove: $?\leftarrow a \land d$.

$$a \leftarrow b \land c.$$
 $a \leftarrow g. a$
 $\leftarrow h.$ $b \leftarrow j. b \leftarrow k. d$
 $\leftarrow m. d \leftarrow p. f \leftarrow m. f \leftarrow$
 $p.$ $g \leftarrow m. g \leftarrow f. k$
 $\leftarrow m. h \leftarrow m. p.$

can trace the example in the Deduction Applet at http://aispace.org/deduction/ using file *kb-for-topdown-search* available in course schedule

Deduction

Applet

Top-down/SLD resolution as Search

State: answer clause of the form yes \leftarrow a₁ \wedge ... \wedge a_k

Successor function: state resulting from substituting first atom

a₁ with b₁ \wedge ... \wedge b_m if there is a clause a₁ \leftarrow b₁ \wedge ... \wedge b_m Goal

test: is the answer clause empty (i.e. yes ←)?

Solution: the proof, i.e. the

sequence of SLD resolutions

Prove: $?\leftarrow a \land d$.

$$a \leftarrow b \land c.$$
 $a \leftarrow g. a$
 $\leftarrow h.$ $b \leftarrow j. b \leftarrow k. d$
 $\leftarrow m. d \leftarrow p. f \leftarrow m. f \leftarrow$
 $p.$ $g \leftarrow m. g \leftarrow f. k$
 $\leftarrow m. h \leftarrow m.$ $p.$

KB

yes←a^d $yes \leftarrow h \land d$ $yes \leftarrow b \land c \land d$ yes←g^d $yes \leftarrow m \wedge d$ $yes \leftarrow j \land c \land d$ $yes \leftarrow m \land c \land d$ yes←p yes←m yes←

KR

$$a \leftarrow b \land c$$
. $a \leftarrow g$.
 $a \leftarrow h$. $b \leftarrow j$.
 $b \leftarrow k$. $d \leftarrow m$.
 $d \leftarrow p$. $f \leftarrow m$.
 $f \leftarrow p$. $g \leftarrow m$.
 $g \leftarrow f$. $k \leftarrow m$.
 $h \leftarrow m$.

Number of atoms in the answer clause Admissible?

A. Yes

B. No C. It depends

Prove: ?← a ∧ d.

KB

KR

$$a \leftarrow b \land c$$
. $a \leftarrow g$.
 $a \leftarrow h$. $b \leftarrow j$.
 $b \leftarrow k$. $d \leftarrow m$.
 $d \leftarrow p$. $f \leftarrow m$.
 $f \leftarrow p$. $g \leftarrow m$.
 $g \leftarrow f$. $k \leftarrow m$.
 $h \leftarrow m$.

Number of atoms in the answer clause Admissible?

Prove: ?← a ⁄ld.

A. Yes

It takes at least that many steps to reduce all Atoms in the body of the answer clause

KB

KR

$$a \leftarrow b \land c$$
. $a \leftarrow g$.
 $a \leftarrow h$. $b \leftarrow j$.
 $b \leftarrow k$. $d \leftarrow m$.
 $d \leftarrow p$. $f \leftarrow m$.
 $f \leftarrow p$. $g \leftarrow m$.
 $g \leftarrow f$. $k \leftarrow m$.
 $p \leftarrow m$.

Prove: ?← a ∧ d.

Number of atoms in the answer clause

Admissible? Yes Is this a domain-dependent or domain-independent heuristics?

A. Domain dependent B. Domain Independent C. It depends

KB

KR

$$a \leftarrow b \land c$$
. $a \leftarrow g$.
 $a \leftarrow h$. $b \leftarrow j$.
 $b \leftarrow k$. $d \leftarrow m$.
 $d \leftarrow p$. $f \leftarrow m$.
 $f \leftarrow p$. $g \leftarrow m$.
 $g \leftarrow f$. $k \leftarrow m$.
 $h \leftarrow m$.

Number of atoms in the answer clause

Admissible? Yes Is this a domain-dependent or domain-independent heuristics?

B. Domain Independent

Prove: $?\leftarrow a \land d$.

Learning Goals For Logic so Far

- PDCL syntax & semantics Verify whether a logical statement belongs to the language of propositional definite clauses
 - Verify whether an interpretation is a model of a PDCL KB.
 - Verify when a conjunction of atoms is a logical consequence of a KB
- Bottom-up proof procedure
 - Define/read/write/trace/debug the Bottom Up (BU) proof procedure
 - Prove that the BU proof procedure is sound and complete
- Top-down proof procedure

88

- Define/read/write/trace/debug the Top-down (SLD) proof procedure
 - Define it as a search problem