Prediction	Pattern	Prediction	Pattern
1. Total abundance (N) should be lowest at low τ due to washout and at high τ due to low resource resupply.		2. Productivity (P) should be lowest at low τ due to washout and at high τ due to low resource resupply.	
3. Species richness (S) should be lowest at low τ due to selection to resist washout and at high τ due to selection on persistence.		4. Species evenness (E) should be lowest at intermediate τ , reflecting competition and the constraining influence of N and S .	
5. Species turnover (W) should decrease with τ , reflecting less immigration and greater persistence. W may then increase, due to loss of species at low S .		6. The percent of individuals in a dormant state should increase with greater τ due to insufficient resource resupply.	
7. Low τ should select for high intrinsic rates of growth. This selection pressure should decrease with increasing τ .		8. Low τ should select for high rates of active dispersal τ . At high τ , high rates of dispersal should be energetically wasteful.	
9. Increasing τ should select against high active basal metabolic rate (BMR) and select for greater the ability to grow at a lower BMR.		10. Resource specialization should decrease with τ , where individuals are challenged to use any available resource.	
11. Increasing τ should select for lower rates of resuscitation, as frequent resuscitation may be energetically wasteful.		12. Increasing τ should select for a greater reduction of basal metabolic rate (BMR) in dormancy.	
13. The difference between active BMR and $1/\tau$ represents the match between resource supply and maintenance. N should be greatest when BMR = $1/\tau$.	0	14. The difference between active BMR and $1/\tau$ represents the match between resource supply and maintenance. P should be greatest when BMR = $1/\tau$.	