Practice problems for Continuous Probability Distributions, Cumulative Distributions and Bivariate Distributions.

Problem 1. The proportion of people who respond to a certain mailorder solicitation is a continuous random variable X that has the density function

$$f(x) = \begin{cases} \frac{2(x+2)}{5}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Show that P(0 < X < 1) = 1.
- (b) Find the probability that more than 1/4 but fewer than 1/2 of the people contacted will respond to this type of solicitation.

Problem 2. Consider the density function

$$f(x) = \begin{cases} k \sqrt{x}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Find the value of k.
- (b) Find F(x) and use it to calculate P(0.3 < X < 0.6).

Problem 3. The probability distribution of X, the number of imperfections per 10 meters of synthetic fabric in continuous rolls of uniform width, is given by

Construct the cumulative distribution of X.

Problem 4. If the joint probability distribution of X and Y is given by

$$f(x,y) = \frac{x+y}{30}$$
, for x=0,1,2,3 and y=0,1,2

find

- (a) $P(X \le 2, Y = 1)$.
- (b) P(X > 2, Y < 1).
- (c) P(X > Y).
- (d) P(X + Y = 4).

Problem 5. A privately owned liquor store operates both a drive-in facility and a walk-in facility. On a randomly selected day, let X and Y, respectively, be the proportions of the time that the drive-in and walk-in facilities are in use, and suppose that the joint density function of these random variables is

$$f(x,y) = \begin{cases} \frac{2}{3} (x+2y), & 0 \le x \le 1 \text{ and } 0 \le y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Find the marginal density of X.
- (b) Find the marginal density of Y.
- (c) Find the probability that the drive-in facility is busy less than one-half of the time.

Problem 6. A candy company distributes boxes of chocolates with a mixture of creams, toffees, and cordials. Suppose that the weight of each box is 1 kilogram, but the individual weights of the creams, toffees, and cordials vary from box to box. For a randomly selected box, let X and Y represent the weights of the creams and the toffees, respectively, and suppose that the joint density function of these variables is

$$f(x,y) = \begin{cases} 24 & xy, & 0 \le x \le 1, \ 0 \le y \le 1 \text{ and } x + y \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Find the probability that in a given box the cordials account for more than 1/2 of the weight.
- (b) Find the marginal density for the weight of the creams.

Problem 7. Let X denote the number of times a certain numerical control machine will malfunction: 1, 2, or 3 times on any given day. Let Y denote the number of times a technician is called on an emergency call. Their joint probability distribution is given as

			\mathbf{x}	
	f(x,y)	1	2	3
	1	0.05	0.05 0.1	0.1
\mathbf{y}	2	0.05	0.1	0.35
	3	0	0.2	0.1

- (a) Evaluate the marginal distribution of X.
- (b) Evaluate the marginal distribution of Y.
- (c) Find P(Y = 3|X = 2). [Note: this is a problem for the next chapter: Conditional Distributions].
- (d) Determine if the two random variables X and Y are dependent or independent.