APPLIED FUNCTIONAL ANALYSIS HOMEWORK 7

TOMMENIX YU
ID: 12370130
STAT 31210
DUE FRI FEB 24, 2023, 11PM

Discussed with classmates.

Exercise 1. (8.12) in book

Proof.

By a priori estimate (proposition 5.30) we know that if a bounded operator has norm expression also bounded from below, then it has closed range and trivial kernel. Thus, we already know offhand that the operator A is invertible on it's range Ran A, i.e. the equation Ax = y has a unique solution for $y \in \text{Ran } A$.

So it suffices us to use the self adjoint condition to prove Ran $A = \mathcal{H}$, the whole space.

But we know $\mathcal{H} = \overline{\operatorname{Ran} A} \oplus \ker A^* = \overline{\operatorname{Ran} A} \oplus \{0\}$ since A is self adjoint, thus above implies $\overline{\operatorname{Ran} A} = \mathcal{H}$, and using the fact that it's closed we're done.

Exercise 2. (8.13) in book.

Proof.

By definition, $(u_{\alpha} \otimes u_{\alpha})(x) = \langle u_{\alpha}, x \rangle u_{\alpha}$. Moreover, we know that the set is orthogonal.

⇒:

If u_{α} are orthonormal basis, then by definition 6.27 and theorem 6.26 we have that

$$x = \sum_{\alpha \in \mathcal{A}} \langle u_\alpha, x \rangle u_\alpha = \sum_{\alpha \in \mathcal{A}} (u_\alpha \otimes u_\alpha)(x)$$

for any x, and hence

$$\sum_{\alpha \in A} u_{\alpha} \otimes u_{\alpha} = I.$$

<u>**⇐:**</u>

Again, if we know that $\sum_{\alpha \in \mathcal{A}} u_{\alpha} \otimes u_{\alpha} = I$ holds, then by theorem 6.26 again we know that u_{α} is a complete orthonormal set, hence an orthonormal basis.

Exercise 3. (8.14) in book. (Discussed with Tim)

Proof.

By sesqui-linearity we get

$$\langle x, Ay \rangle - \langle x, By \rangle = 0 \Rightarrow \langle x, (A - B)y \rangle = 0$$

which is arbitrary in x so (A - B)y = 0. But y is also arbitrary, so A - B = 0, hence A = B. Now, if (after shifting terms and combining using sesqui linearity)

$$\langle x, (A - B)x \rangle = 0$$

which means if we compute directly the inner product as in lemma 8.26, we get

$$\langle y, (A - B)x \rangle$$

$$= \frac{1}{4} (\langle x + y, (A - B)(x + y) \rangle - \langle x - y, (A - B)(x - y) \rangle$$

$$-i \langle x + iy, (A - B)(x + iy) \rangle + i \langle x - iy, (A - B)(x - iy) \rangle)$$

where since all terms of $\langle x, (A - B)x \rangle$ and for y are cancelled we get

$$\langle y, (A - B)x \rangle = 0$$

which by above means A = B.

For real space we just take
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$ then we note $\langle x, Ax \rangle = \langle x, Bx \rangle = 0$

yet $A \neq B$.

Exercise 4. (8.17) in book.

Proof.

Let $\langle \cdot, \cdot \rangle_D$ denote the dual product (if space is Hilbert it's just inner product, but no such assumption here). Then we have

$$||x_n - x||_X \le \delta \Rightarrow |\langle x_n, y \rangle_D - \langle x, y \rangle_D| \le ||x_n - x||_X \cdot ||y||_{X^*} \le c\delta$$

for any $y \in X^*$. Thus strong convergence implies weak convergence.

Now we show that in a finite dimensional space weak convergence implies strong convergence. But for that space we can just find finite orthonormal basis e_1, \ldots, e_n , and every element in the sequence (thus in the space) can be written as

$$x_k = \sum_{i=1}^n a_i^k e_i.$$

Moreover, we denote

$$x = \sum_{i=1}^{n} a_i e_i.$$

Thus, if for all $y \in \mathcal{H}$ we have $\langle x_n, y \rangle \to \langle x, y \rangle$, then in particular taking $y = e_i$ for all $1 \le i \le n$ we have

$$a_i^k \rightarrow a_i$$

as $k \to \infty$. Thus, finding N such that the difference in each dimension is less than δ we get

$$||x_n - x|| \le n \cdot \delta \le \varepsilon$$

if for every ε we pick $\delta = \varepsilon/n$, since *n* is finite.

So we have weak convergence implies strong convergence in finite dimension Hilbert spaces. The other direction follows from the general statement in the beginning.

Exercise 5. (8.18) in book.

Proof.

Theorem in class claims that: Let $\{e_{\alpha}\}$ be a basis of \mathcal{H} (not necessarily orthogonal), then we have that

$$x_n \rightharpoonup x \iff \begin{cases} ||x_n|| \leq M \\ \langle e_\alpha, x_n \rangle \to \langle e_\alpha, x \rangle, \forall \alpha \in I. \end{cases}$$

Thus, since the sequence of orthonormal vectors is bounded (has norm 1), we only need to check for any basis.

We define the basis generated by $\{u_n\}$ by letting $\mathcal{H} = \mathcal{M} \oplus [U]$, and if \mathcal{M} is trivial we use the complete basis $\{u_n\}$; If \mathcal{M} is non trivial we find an orthonormal basis of \mathcal{M} (since it's still Hilbert), then we concatenate all the new basis to $\{u_n\}$.

Using this new basis, we compute

$$\langle u_{\alpha}, u_{n} \rangle \to 0 = \langle u_{\alpha}, 0 \rangle$$

since we'd go past the counting ordinal n eventually, then the rest is 0 due to orthogonality.

Exercise 6. (8.20) in book.

Proof.

First, inf $f(x) > -\infty$ since ϕ is a bounded function and hence

$$f(x) = \frac{1}{2}||x||^2 - \phi(x) \ge \frac{1}{2}||x||^2 - C||x||$$

where the sign is due to negative sign in front of ϕ , and the quadratic equation attains it's minimum.

We now show that the function f is strictly convex, which will imply that if the infimum is attained, it is attained at a unique point (otherwise the line segment between the 2 infimum points contradicts strict convexity).

To see that it's strictly convex, we first note that

$$-\phi(\theta x + (1 - \theta)y) = -\theta\phi(x) - (1 - \theta)\phi(y)$$

since it's linear, so it's convex. So we only have to show that $\frac{1}{2}||x||^2$ is strictly convex. But this is because it is the combination of a strictly convex function $h = x^2$ that is increasing on the domain $[0, \infty)$ and a convex function g = ||x||, reason:

$$g(\theta x + (1 - \theta)y) = ||\theta x + (1 - \theta)y|| \le ||\theta x|| + ||(1 - \theta)y|| \le \theta||x|| + (1 - \theta)||y||$$

so $f = h(g(x)) - \phi(x)$ is strictly convex since $h(g(x))$ is and $-\phi(x)$ is convex.

Now we show that the infimum is attained. Again we use the bound C in the definition of bounded function to get that for large enough R, for $\forall ||x|| \geq R$ we have

$$f(x) \ge \frac{1}{2}||x||^2 - C||x|| \ge \frac{1}{2}R^2 - CR > L$$

for some large L that is the minimum value on the circle of radius R. Hence if a sequence of $f(x_n)$ converges to the infimum, then for all large enough $n > N_1 ||x_n|| \le R$.

But then due to Banach Alaoglu we know that any bounded ball in a Hilbert space is weakly compact, and since f is a functional, there exists subsequence of x_n as defined above such that $x_{\phi(n)} \to x$, but we know that $f(x_{\phi(n)}) \to \inf f(x)$ and thus the limit can only be the infimum point. Thus such a point exists and we are done.