

MoEs, Prompting y evaluación

Docentes:

Esp. Ing Abraham Rodriguez - FIUBA

Esp. Ing Ezequiel Guinsburg - FIUBA

Programa de la materia

- 1. Repaso de Transformers, Arquitectura y Tokenizers.
- 2. Arquitecturas de LLMs, Transformer Decoder.
- 3. Ecosistema actual, APIs, costos, HuggingFace y OpenAI.
- 4. MoEs, técnicas de prompts, evaluación de LLMs.
- 5. Modelos locales y uso de APIs.
- 6. RAG, vector DBs, chatbots y práctica.
- 7. Agentes, fine-tuning y práctica.
- 8. Generación multimodal.

Mixture of Experts (MoE)

MoE es un concepto introducido en el paper "Adaptive Mixture of Experts" en 1991, consiste en un conjunto de redes neuronales donde cada una aprende a manejar **subconjuntos** específicos de información.

Cada experto recibe el mismo input y produce el mismo número de outputs, pero existe un mecanismo de selección que **controla** qué expertos contribuyen a la predicción final.

La probabilidad de que se elija la salida de un experto específico j es denotada como p_i .

Una red neuronal llamada gating network realiza la selección determinando las contribuciones de cada experto. La gating network aprende las **contribuciones** de cada experto basado en el input.

Esparcidad

La esparcidad utiliza la idea de **computación condicional**, en un modelo denso todos los parámetros son utilizados para todos los inputs, en un modelo esparzo utiliza parcialmente los parámetros. La gating network G decide que experto E ejecutar el input.

$$y = \sum_{i=1}^{n} G(x)_i E_i(x) \qquad G_{\sigma}(x) = \operatorname{Softmax}(x \cdot W_g)$$

$$\operatorname{Dense\ Model} \qquad \operatorname{Sparse\ Model}$$

$$\operatorname{Sparse\ Model} \qquad \operatorname{Sparse\ Model}$$

$$\operatorname{Sparse\ FFN\ Layer} \qquad \operatorname{Add\ +\ Normalize} \qquad \operatorname{Add\ +\ Normali$$

Mixture of Experts (MoE) en LLMs

Mixture of Experts (MoE) en LLMs

Una MoE permite **escalar** los parámetros del modelo sin necesidad de incrementar la demanda computacional, debido al mecanismo de selección dinámico, permitiendo al modelo alocar los recursos de manera condicional.

Mixture of Experts (MoE) en LLMs

MoE Explained

Why new LLMS use MoE

A Survey on Mixture of Experts

El <u>Paper</u> es un recurso que proporcione un review sobre MoE, tecnicas y arquitecturas, altamente **Recomendable leer.**

Sparse Transformers

<u>A REVIEW OF SPARSE EXPERT MODELS IN DEEP LEARNING</u> Recomendable leer el paper.

Mixtral

MistralAl lanzó <u>Mixtral8x7B</u> (2023), el cual consiste en la misma arquitectura que <u>Mistral 7B</u>, pero con 8 capas FFN Spare MoE.

Mixtral tiene en total 47B de parámetros pero utiliza solamente 13B en inferencia, Mixtral supera a Llama-2-70B y GPT-3.5 en múltiples benchmarks.

En conjunto se presentó una versión fine-tuned mediante **SFT** de Mixtral-instruct (similar a instructGPT).

Paper

-	11 MA 0 70D	CDT 25	NC 4 10 77
	LLaMA 2 70B	GPT - 3.5	Mixtral 8x71
MMLU (MCQ in 57 subjects)	69.9%	70.0%	70.6%
HellaSwag (10-shot)	87.1%	85.5%	86.7%
ARC Challenge (25-shot)	85.1%	85.2%	85.8%
WinoGrande (5-shot)	83.2%	81.6%	81.2%
MBPP (pass@1)	49.8%	52.2%	60.7%
GSM-8K (5-shot)	53.6%	57.1%	58.4%
MT Bench (for Instruct Models)	6.86	8.32	8.30
(101 Modelet Models)			

Mixtral

Mixtral utiliza un router que permite elegir 2 expertos a por token y combinar el output de manera aditiva.

Parameter	Value
dim	4096
n_layers	32
head_dim	128
hidden_dim	14336
n_heads	32
n_kv_heads	8
context_len	32768
vocab_size	32000
num_experts	8
top_k_experts	2

Mixtral Top-K

El router de Mixtral utiliza Top-K logits de una capa lineal, esta técnica fue presentada en el paper "The Sparsely-Gated MoE Layer".

$$(\operatorname{TopK}(\ell))_i := \ell_i \qquad \qquad \operatorname{TopK}(v,k)_i = egin{cases} v_i & ext{if } v_i ext{ is in the top } k ext{ elements of } v, \ -\infty & ext{otherwise.} \end{cases}$$

$$G(x) := \text{Softmax}(\text{TopK}(x \cdot W_g))$$

Mixture of Experts Layer

 $y = \sum_{i=1}^{n-1} \operatorname{Softmax}(\operatorname{Top2}(x \cdot W_g))_i \cdot \operatorname{SwiGLU}_i(x)$

DeepSeek V2 Transformer Block $\times L$

Feed-Forward Network

RMS Norm

Attention

RMS Norm

<u>DeepSeekV2</u> utiliza la idea de expertos compartidos, para reducir la redundancia entre expertos seleccionados,

 N_s y N_r denotan el # de shared experts y routed experts.

K, denota el número de experts activados.

$$\mathbf{h}_{t}' = \mathbf{u}_{t} + \sum_{i=1}^{N_{s}} \text{FFN}_{i}^{(s)} (\mathbf{u}_{t}) + \sum_{i=1}^{N_{r}} g_{i,t} \text{FFN}_{i}^{(r)} (\mathbf{u}_{t}),$$

$$g_{i,t} = \begin{cases} s_{i,t}, & s_{i,t} \in \text{Topk}(\{s_{j,t}|1 \leq j \leq N_{r}\}, K_{r}), \\ 0, & \text{otherwise}, \end{cases}$$

$$s_{i,t} = \text{Softmax}_{i} (\mathbf{u}_{t}^{T} \mathbf{e}_{i}),$$

 $\{[\mathbf{q}_{t,i}^C;\mathbf{q}_{t,i}^R]\}$

concatenate

 $\{\mathbf{q}_{t,i}^C\}$ $\{\mathbf{q}_{t,i}^R\}$

 $\bigcirc\bigcirc$... $\bigcirc\bigcirc$ Latent \mathbf{c}_t^Q

 $\{[\mathbf{k}_{t,i}^C; \mathbf{k}_t^R]\}$

 \mathbf{k}_t^R

Input Hidden \mathbf{h}_t

concatenate

 $\{\mathbf{k}_{t,i}^{\mathcal{C}}\}$

Latent $\mathbf{c}_t^{KV} \bigcirc \bigcirc \cdots \bigcirc \bigcirc$

13

Grok-1

<u>Grok-1</u> es una LLM MoE de xAI, la cual no tiene un paper oficial pero en el blog se da a conocer el uso de MoE, métricas, tamaño, etc.

Visual guide to MoE

<u>Visual guide to MoE</u> (Recomendable leer)

MoE Implementaciones

MoE GPT-2 Mistral Transformer layers

Prompting

Chain of Thought

Introducido en el paper "<u>Chain-of-Thought prompting Elicits Reasoning in Large Language Models</u>", 2022, introduce el concepto de realizar **pasos intermedios de razonamiento** para habilitar razonamiento complejo de parte de una LLM. Similar al proceso de descomposición que realiza el ahumado sobre problemas de

Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Math Word Problems (GSM8K)

19

considerable sobre el

razonamiento matemático.

4.1

6.9

6.5

17.8

15.6

49.6

19.7

65.4

17.9

Chain of thought 4.4 (+0.3)

Chain of thought 14.3 (+7.8)

Chain of thought 46.9 (+31.3)

Chain of thought 63.1 (+43.4)

Standard

+ ext. calc

Standard

+ ext. calc

Standard

+ ext. calc

Standard

+ ext. calc

Standard

UL2 20B

LaMDA 137B

GPT-3 175B

Codex

(text-davinci-002)

(code-davinci-002)

PaLM 540B

C	Chain of Thought						
	Prompting	GSM8K	SVAMP	ASDiv	AQuA	MAWPS	En múltiples benchmarks,
Prior best	N/A (finetuning)	55 ^a	57.4 ^b	75.3 ^c	37.9^{d}	88.4^e	CoT trae un aumento

16.0

34.3

40.1

53.4

70.3

71.1

74.0

80.0

72.1

16.9 (+0.9)

46.6 (+6.5)

71.3 (+1.0)

80.4 (+6.4)

20.5

23.6

25.5

20.6

24.8

35.8

29.5

45.3

25.2

23.6 (+3.1)

20.6 (-4.9)

16.6

42.7

43.2

69.3

72.7

87.5

78.7

93.3

79.2

35.8 (+11.0) 87.1 (+14.4)

45.3 (+15.8) 92.6 (+13.9)

19.1 (+2.5)

57.9 (+14.7)

10.1

28.3

29.5

42.1

65.7

70.3

69.9

77.0

69.4

12.5 (+2.4)

37.5 (+8.0)

68.9 (+3.2)

76.4 (+6.5)

Chain of thought 56.9 (+39.0) 79.0 (+9.6) 73.9 (+1.8) 35.8 (+10.6) 93.3 (+14.2)

.UBAfil

17.7

33.7

33.8

78.7

84.8

89.2

90.5

93.0

92.8

25.5

66.1

89.0

10.4

15.6

15.6

40.7

41.3

48.7

51.5

33

55

12.5

43.0

70.1

17.9

56.9

74.4 20

Zero-Shot Chain of Thought

Zero-Shot

Few-Shot (2 samples) Few-Shot (8 samples)

Few-Shot-CoT (2 samples)

Few-Shot-CoT (8 samples)

PaLM 540B: Zero-Shot

PaLM 540B: Zero-Shot-CoT

Few-Shot-CoT (4 samples: First) (*1)

Few-Shot-CoT (4 samples : Second) (*1)

Finetuned GPT-3 175B [Wei et al., 2022]

PaLM 540B: Few-Shot [Wei et al., 2022]

Zero-Plus-Few-Shot-CoT (8 samples) (*2)

Finetuned GPT-3 175B + verifier [Wei et al., 2022]

PaLM 540B: Zero-Shot-CoT + self consistency

PaLM 540B: Few-Shot-CoT + self consistency [Wang et al., 2022]

PaLM 540B: Few-Shot-CoT [Wei et al., 2022]

Zero-Shot-CoT

Original GPT-3 (0.3B / 1.3B / 6.7B / 175B) Las LLMs gozan mucho de ferzero-shot 2.0 / 1.3 / 1.5 / 3.3 Few-shot 5.2 / 5.2 / 4.0 / 8.1 y del razonamiento mediante Zero-shot-CoT Few-shot-CoT 1.7 / 2.2 / 2.3 / **19.0** 4.3 / 1.8 / 6.3 / 44.3

sin embargo, Zero-shot también puede mejorarse mediante CoT y la

frase simple "Let's think step by

Arithmetic

Other Reasoning Tasks

GSM8K

10.4/12.5

40.7/40.5

Shuffled

Objects

31.3/29.7

52,4/52,9

AQUA

22.4/22.4

33.5/31.9

Last Letter

(4 words)

0.2/-

57.6/-

SVAMP

58.8/58.7

62.1/63.7

Coin Flip

(4 times)

12.8/53.8

91.4/87.8

Symbolic Reasoning

MultiArith

17.7/22.7

78,7/79,3

Understand

49.3/33.6

67.5/61.8

Date

step".

zero-shot

zero-shot

zero-shot-cot

zero-shot-cot

SingleEq

74.6/78.7

78.0/78.7

Common

SenseQA

68.8/72.6

64.6/64.0

AddSub

72.2/77.0

69.6/74.7

Strategy

12.7/54.3

54.8/52.3

QA

Common Sense

Instruct GPT-3 (S / M / L / XL-1 / XL-2)

3.7 / 3.8 / 4.3 / 8.0 / 17.7 3.0 / 2.2 / 4.8 / 14.0 / 33.7 2.0 / 3.7 / 3.3 / 47.8 / 78.7

2.5 / 2.5 / 3.8 / 36.8 / 93.0

Zero-Shot Chain of Thought

(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The answer is 8. X

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16/2 = 8 golf balls. Half of the golf balls are blue. So there are 8/2 = 4 blue golf balls. The answer is 4.

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls. ✓

CoT Zero-Shot vs Few-shot

Hoy en día las LLMs pueden procesar 32k+ tokens, por ejemplo: chatGPT-4, LLama-3 alcanzan los 128k. Esto permite brindar prompts muy grandes. No hace mucho en modelos como Mistral 7B, LLama 2, el context length rondaba en 8k.

Few-shot era poco escalable en la época, ya que los prompts consumen gran cantidad de tokens y recursos computacionales. En este caso Zero-shot es superior. En especial cuando ocupan tareas complejas con context length o recursos finitos.

<u>Langchain Few-shot examples</u>

Overcoming Context limit for chatgpt text classification (2023)

The crucial role of context Length in LLM for business applications

Prompt Chaining

Esta técnica es común encontrarla en QA de documentos.

Prompt chaining

QA documents with Langchain

Document chains Langchain

Langchain simple chains

Chain complex prompts for stronger performance

Retrieval Augmented Generation (RAG)

Presentado en el paper "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks" en 2020, lo que implica RAG es introducir al modelo conocimiento externo para completar tareas, esto mitiga la alucinación y mejora la confianza de la respuesta.

Retrieval Augmented Generation (RAG)

Presentado en el paper "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks" en 2020, RAG implica en introducir al modelo contexto nuevo externo para completar tareas, esto mitiga la alucinación y mejora la confianza de la respuesta.

Por ejemplo, documentos privados son desconocidos por la LLM, RAG permite brindar contexto y realizar queries sobre los documentos.

Retrieval Augmented Generation (RAG)

Databricks RAG

Pinecone RAG

Langchain Build a RAG

Evaluación de LLMs

Evaluación de LLMs

En general hay 3 maneras de evaluar LLMs:

- Benchmarks.
- Evaluación Humana.
- Evaluación mediante modelos.

Evaluación de LLMs Benchmarks

Mediante Benchmarks estandarizados es realizable la evaluación medida para múltiples tareas.

LLM Benchmark

Test 1

Prediction Target Label

Test 2

GPT-4: 93%

LLM x: 86%

GPT-4: 93%

CPT-3: 82%

Razonamiento y sentido común: Capacidad para aplicar lógica y resolver problemas.

Comprensión de lenguaje y preguntas/respuestas: Habilidad para interpretar texto y responder preguntas con precisión.

Codificación: Capacidad para interpretar y generar código.

Conversación y chatbots: Capacidad para entablar diálogos y responder de manera coherente y relevante.

Traducción: Habilidad para traducir texto de un idioma a otro con precisión.

Matemáticas: Resolución de problemas matemáticos, desde aritmética básica hasta áreas complejas como cálculo.

Pruebas estandarizadas: Exámenes como el SAT o ACT para evaluar el desempeño del modelo en contextos educativos.

Evaluación de LLMs Benchmarks

,	LLaMA 2 70B	GPT - 3.5	Mixtral 8x7B
MMLU (MCQ in 57 subjects)	69.9%	70.0%	70.6%
HellaSwag (10-shot)	87.1%	85.5%	86.7%
ARC Challenge (25-shot)	85.1%	85.2%	85.8%
WinoGrande (5-shot)	83.2%	81.6%	81.2%
MBPP (pass@1)	49.8%	52.2%	60.7%
GSM-8K (5-shot)	53.6%	57.1%	58.4%
MT Bench (for Instruct Models)	6.86	8.32	8.30

LLM benchmarks explained

Evaluación de LLMs

<u>DeepEval</u>

Documentación DeepEval

Huggingface LLM Eval

<u>List of eval metrics</u>

<u>SuperGLUE</u>

Preguntas?