

Módulo 4: Parte I. Introducción al R con RStudio Enunciados de Ejercicios

Autor: Raquel Dormido Canto

Actualizado Enero 2023

Contenido

EJERCICIO 1	3
EJERCICIO 2.	
EJERCICIO 3.	
EJERCICIO 4.	
EJERCICIO 5.	
EJERCICIO 6.	
EJERCICIO 7.	
EJERCICIO 8.	
FIERCICIO 9	6

EJERCICIO 1.

Copia o teclea las líneas de código que aparecen a continuación. Cada una de las líneas en el prompt, una por una, y ejecútalas, pulsando Entrar. Intenta adivinar el resultado de cada operación antes de ejecutar.

```
3+4

13-6

5*4

13/5

13%/%5

13%%5

1/3+1/5

sqrt(9)

sin(pi)

sin(3.14)
```

Guarda un pantallazo de las operaciones realizadas con sus resultados. A la vista de los resultados ¿trabaja R con representación mediante decimales? ¿Puede haber pérdida de precisión en determinadas operaciones de R? Comenta como interpreta R la operación 1/3+1/5. ¿La interpreta como $\frac{1}{3}+\frac{1}{5}$ o como $\frac{1}{\left(\frac{3+1}{5}\right)}$? ¿El valor obtenido para $\sin\left(\text{pi}\right)$ es el esperado? ¿Qué diferencia encuentra entre $\sin\left(\text{pi}\right)$ y $\sin\left(3.14\right)$?

Comentarios al Ejercicio 1: Los operadores %/% y %% representan, respectivamente, el cociente y el resto de la división entera. La interpretación que realiza R de una expresión es debida a la prioridad de operadores que tiene definida el lenguaje. La función sin es la función seno de trigonometría. Por pi R denota la constante matemática $\pi\sim3.141593$.

EJERCICIO 2.

¿Qué se obtiene al ejecutar estos comandos, uno detrás de otro? ¿Cuánto valen las variables a, b y c al final?

```
a = 2
b = 3
c = a + b+
a = b * c
```


 $b = (c - a)^2$ c = a * b

EJERCICIO 3.

Supongamos que tenemos un vector con la población de origen de 15 estudiantes. Este vector debe contener como información la siguiente:

getafe, mostoles, madrid, mostoles, leganes, getafe, leganes, madrid, mostoles, parla, alcorcon, mostoles, getafe, leganes

Además disponemos de las estaturas de cada uno de los estudiantes, que es la siguiente:

1.83, 1.71, 1.79, 1.64, 1.74, 1.81, 1.62, 1.84, 1.68, 1.81, 1.82, 1.74, 1.84, 1.61, 1.84

- a) Mostrar los niveles del factor (las poblaciones de origen), junto con el número de estudiantes correspondientes a tales niveles.
- b) Calcular la estatura promedio de los estudiantes de cada población a partir de la muestra de la que disponemos.

Nota: En el apartado a) hacer uso de la función factor y de la función summary. En el apartado b) hacer uso de la función tapply y de la función mean

EJERCICIO 4.

Construir una matriz de 14×3 donde los nombres de las columnas son las variables peso, altura y edad de 14 personas.

Los datos correspondientes al peso son:

77, 58, 89, 55,47,60,54,58,75,65,82,85,75,65

Los correspondientes a la altura:

1.63,1.63,1.85,1.62,1.60,1.63,1.70,1.65,1.78,1.70,1.77,1.83,1.74,1.65

Y los correspondientes a las edades son:

23,23,26,23,26,26,22,23,26,24,28,42,25,26

Realizar las siguientes acciones sobre esa matriz: Seleccionar la primera columna de dos formas diferentes, seleccionar un elemento, seleccionar una fila. Añadir a la matriz la variable sexo, en la última columna de la matriz, que contenga la siguiente información:

EJERCICIO 5.

Al añadir a la matriz creada en el Ejercicio 4 la variable sexo R la transforma en tipo numérico asignándole el valor 1 para hombre 2 para mujeres.

Convertir la matriz en un data frame y añadirle una variable de tipo carácter que se corresponda con los nombres de los individuos que son los siguientes:

Juan, Inés, Andrés, Felipe, Pablo, Martina, Germán, Celia, Carmen, Santi, Dani, Antonio, Belinda y Sara

EJERCICIO 6.

Utilizando el data frame generado en el ejercicio 5 y utilizando la función subset realizar lo siguiente:

- a) Seleccionar las variables correspondientes a los nombres y su correspondiente sexo.
- b) Seleccionar las variables correspondientes al peso y a la altura.
- c) Seleccionar los hombres con altura mayor que 1.70, peso mayor que 65

EJERCICIO 7.

Escribir una función que devuelva el valor lógico TRUE si la suma de los elementos del vector es menor que 100 y FALSE en caso contrario. Realizar dos llamadas a la función, una con un vector cuyas componentes son los primeros 50 números enteros y otra con un vector cuyas componentes son los primeros 10 números enteros.

EJERCICIO 8.
Instalar el package ggplot siguiendo los pasos explicados en la sección de instalación de packages.

EJERCICIO 9.
Importar desde la siguiente URL un fichero .csv:
http://winterolympicsmedals.com/medals.csv
y obtener un summary de la variable Gender.