

Scientific Computation Using SciPy

SciPy 数学运算

插值、积分、线性代数、优化、统计...

无限!没有其他问题能如此深刻地触动人类的精神。

The infinite! No other question has ever moved so profoundly the spirit of man.

—— 大卫·希尔伯特 (David Hilbert) | 德国数学家 | 1862 ~ 1943

- ◀ scipy.cluster.vq.kmeans() k 均值聚类
- ◀ scipy.constants.pi 圆周率
- ✓ scipy.constants.golden 黄金分割比
- ✓ scipy.constants.c 真空中光速
- ✓ scipy.fft.fft() 一维傅里叶变换
- ✓ scipy.integrate.quad() 定积分
- ✓ scipy.interpolate.interp1d() 一元插值
- ▼ scipy.interpolate.griddata()在不规则数据点上进行数据插值
- ◀ scipy.io.loadmat() 导入 MATLAB 文件
- ✓ scipy.io.savemat() 保存 MATLAB 文件
- ✓ scipy.linalg.inv() 矩阵逆
- ◀ scipy.linalg.det() 行列式
- ◀ scipy.linalg.pinv() Moore-Penrose 伪逆
- ◀ scipy.linalg.eig() EVD 特征值分解
- ✓ scipy.linalg.cholesky() Cholesky 分解
- ◀ scipy.linalg.qr() QR分解
- ✓ scipy.linalg.svd() SVD 奇异值分解
- ◀ scipy.ndimage.gaussian_filter() 高斯滤波
- ◀ scipy.ndimage.convolve() 多维卷积
- ✓ scipy.optimize.root() 求根
- ◀ scipy.optimize.minimize() 最小化
- ✓ scipy.signal.convolve() 卷积
- ✓ scipy.sparse.linalg.inv() 稀疏矩阵的逆
- ✓ scipy.sparse.linalg.norm() 稀疏矩阵范数
- ◀ scipy.spatial.distance.euclidean() 欧氏距离
- ◀ scipy.spatial.distance_matrix() 距离矩阵
- ✓ scipy.special.factorial() 阶乘
- ◀ scipy.special.gamma() Gamma 函数
- ◀ scipy.special.beta() Beta 函数
- ◀ scipy.special.erf() 误差函数
- ◀ scipy.special.comb() 组合数
- ◀ scipy.stats.norm() 一元高斯分布
- ◀ scipy.stats.multivariate normal() 多元高斯分布
- ✓ scipy.stats.gaussian kde() 高斯核密度估计

26.1 什么是 SciPy?

SciPy 是一个 Python 的开源科学计算库, SciPy 构建在 NumPy 之上, 并提供了许多有用的功能, 用于数值计算、优化、统计和信号处理等科学与工程领域。一些具体的用途包括:

- ▶ 数据预处理和特征工程: SciPy 提供了丰富的工具用于数据的插值、滤波、变换等,这些在数据预处理和特征工程中很有用。
- ▶ 优化问题: SciPy 中的 optimize 模块包含了各种常用的优化算法,可用于解决机器学习中的参数优化问题,例如模型训练中的参数调整。
- ▶ 数值计算: SciPy 提供了高效的数值计算工具,例如求解线性代数问题、解微分方程、积分等,在数值计算密集型的机器学习任务中很有帮助。
- ▶ 统计分析: SciPy 中的 stats 模块提供了许多常用的统计分析函数,例如概率分布函数、假设检验等,可以用于数据分析和模型评估。
- ► 信号处理: SciPy 中的 signal 模块提供了信号处理的工具,例如滤波、傅里叶变换等,这些在处理时间序列数据或图像数据时非常有用。
- ▶ SciPy 强大且灵活,因此在机器学习领域也有广泛的应用。在机器学习领域,SciPy 主要用于数据预处理、特征工程、优化问题、数值计算、统计分析以及信号处理等方面。

本章介绍如何使用 SciPy 中几个常见函数。

表 1. SciPy 常用模块以及示例函数

模块名称	描述	举例
scipy.cluster	聚类	scipy.cluster.vq.kmeans() k 均值聚类
scipy.constants	数学和物理常数	scipy.constants.pi 圆周率 scipy.constants.golden 黄金分割比
		scipy.constants.c 真空中光速
scipy.fft	快速傅里叶变换	scipy.fft.fft() 一维傅里叶变换
scipy.integrate	积分	scipy.integrate.quad() 定积分
scipy.interpolate	插值和拟合	scipy.interpolate.interp1d() 一元插值 scipy.interpolate.griddata()在不规则数据点上进行数据插值
scipy.io	数据输入输出	scipy.io.loadmat() 导入 MATLAB 文件
		scipy.io.savemat() 保存 MATLAB 文件
	线性代数	scipy.linalg.inv() 矩阵逆
scipy.linalg		scipy.linalg.det() 行列式
		scipy.linalg.pinv() Moore-Penrose 伪逆
		scipy.linalg.eig() EVD 特征值分解
		scipy.linalg.cholesky() Cholesky 分解
		scipy.linalg.qr() QR 分解
		scipy.linalg.svd() SVD 奇异值分解
scipy.ndimage	n 维图像处理	scipy.ndimage.gaussian_filter() 高斯滤波
		scipy.ndimage.convolve() 多维卷积
scipy.odr	正交回归 (正交距离回归)	
scipy.optimize	优化算法	scipy.optimize.root() 求根
		scipy.optimize.minimize() 最小化
		scipy.optimize.curve_fit() 拟合
scipy.signal	信号处理	scipy.signal.convolve() 卷积
scipy.sparse	稀疏矩阵工具	scipy.sparse.linalg.inv() 稀疏矩阵的逆
		scipy.sparse.linalg.norm() 稀疏矩阵范数

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

scipy.spatial	空间数据结构和算法	scipy.spatial.distance.euclidean() 欧氏距离 scipy.spatial.distance_matrix() 距离矩阵
scipy.special	特殊数学函数	scipy.special.factorial() 阶乘 scipy.special.gamma() Gamma 函数 scipy.special.beta() Beta 函数 scipy.special.erf() 误差函数 scipy.special.comb() 组合数
scipy.stats	统计	scipy.stats.norm() 一元高斯分布 scipy.stats.multivariate_normal() 多元高斯分布 scipy.stats.gaussian_kde() 高斯核密度估计

26.2 **ES**

图 1 所示的平面上两点, (8, 8) 和 (2, 0), 之间的欧氏距离为 $\sqrt{(8-2)^2+(8-0)^2}=10$ 。利用 SciPy 函数 scipy.spatial.distance.euclidean([8,8],[2,0]), 我们可以得到同样结果。

图 1. 平面上两点之间的欧氏距离

图 2 所示为利用随机数发生器生成的 26 个平面坐标,对应 26 个字母;其中 B 和 S 重叠,D 和 O重叠。图中彩色线为两两成对坐标连线,距离远的用暖色系颜色渲染,距离近的用冷色系颜色渲染。图 3 所示为成对距离矩阵。

图 2. 平面上 26 个点之间的两两欧氏距离

图 3. 成对欧氏距离矩阵

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 4 所示为绘制图 2 和图 3 代码。下面我们分析其中一些关键语句。

```
import matplotlib.pyplot as plt
   import itertools
   import numpy as np
   import matplotlib as mpl
   import seaborn as sns
  import string
  from scipy.spatial import distance_matrix
  from scipy.spatial.distance import euclidean
   import os
   # 如果文件夹不存在, 创建文件夹
   if not os.path.isdir("Figures"):
        os.makedirs("Figures")
   # 产生随机数
   num = 26
d np.random.seed(∅)
o data = np.random.randint(10 + 1, size=(num, 2))
1 labels = list(string.ascii_uppercase)
g cmap = mpl.cm.get_cmap('RdY1Bu_r')
   fig, ax = plt.subplots()
# 绘制成对线段
   for i, d in enumerate(itertools.combinations(data, 2)):
    d_idx = euclidean(d[0],d[1])
    plt.plot([d[0][0],d[1][0]],
        [d[0][1],d[1][1]],
                   color = cmap(d_idx/np.sqrt(2)/10), lw = 1)
   ax.scatter(data[:,0],data[:,1],
marker = 'x',color = 'k',s = 50,zorder=100)
   #添加标签
   for i, txt in enumerate(labels):
        ax.annotate(txt, (data[i,0]' + 0.2, data[i,1] + 0.2))
   ax.set_xlim(0, 10); ax.set_ylim(0, 10)
   ax.set_xticks(np.arange(11))
   ax.set_yticks(np.arange(11)
   plt.xlabel('x'); plt.ylabel('y')
ax.grid(ls='--',lw=0.25,color=[0.5,0.5,0.5])
ax.set_aspect('equal', adjustable='box')
fig.savefig('Figures/成对距离连线.svg', format='svg')
   # 计算成对距离矩阵
pairwise_distances = distance_matrix(data, data)
   fig, ax = plt.subplots()
n sns.heatmap(pairwise_distances,
                  cmap = 'RdYlBu_r', square = True,
                  xticklabels = labels,yticklabels = labels,
                  ax = ax
   fig.savefig('Figures/成对距离矩阵热图.svg', format='svg')
```

图 4. 计算、可视化成对距离, 代码

¹ 导入 Python 标准库中的 string 模块。Python 中的 string 模块提供了许多字符串处理相关的函数和常量,可以方便地进行字符串操作。比如,string.ascii_uppercase:包含所有大写 ASCII 字母 (A-Z) 的字符串,string.digits:包含所有数字 (0-9) 的字符串。

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

- ¹ 从 scipy.spatial 中导入 distance_matrix 函数,用于计算多个点之间的成对距离矩阵。它接受点坐标的数组或列表,然后计算每两个点之间的距离,并返回一个矩阵,其中的每个元素表示两个点之间的距离。
 - ⓒ从 scipy.spatial.distance 模块中导入了 euclidean 函数,用来计算两点欧氏距离。
- ⓓ 设置随机数生成器的种子 seed 为 ➋,从而使随机数的生成具有确定性,保证实验结果可重复性。
 - 😉 在 [0, 10] 区间之内生成随机整数,形状为 26 行、2 列。
 - ●生成 A-Z 大写字母字符串,并将其转换为列表。
- ①从 matplotlib 通过 cm.get_cmap() 函数来获取一个名为 'RdYlBu_r' 的颜色映射对象。'RdYlBu_r' 是一个预定义的颜色映射名称,它表示一种从红色 Rd 到黄色 Yl 再到蓝色 Bu 的颜色渐变,且颜色映射反向(末尾带 _r 表示反向)。鸢尾花书也管颜色映射叫色谱。

颜色映射对象通常被用于将数据的数值范围 [0, 1] 映射到一系列颜色中的某个位置。这个数值范围一般默认为 [0, 1],其中 0 对应着颜色映射的起始位置,1 对应着颜色映射的结束位置。颜色映射会将 [0, 1] 区间内的数据值线性地映射到预定义的颜色序列上。在使用 Matplotlib 中的颜色映射对象时,可以使用 matplotlib.colors.Normalize() 函数将数据规范化到 [0, 1] 区间,然后再将规范化后的数据传递给颜色映射对象来获取对应的颜色。《可视之美》还会进一步介绍非线性映射,以及如何构造颜色映射。

图 5. 颜色映射

- 使用了 Python 中的 enumerate 函数和 itertools.combinations 函数,用于在数据 data 的所有两两组合之间进行循环迭代,并在每次迭代中获取索引和组合数据。
 - ●利用 scipy.spatial.distance.euclidean() 计算两个点之间的欧氏距离。
 - lacktriangle 把图 3 欧氏距离转化为 lacktriangle 0, 1] 之间的数。显然在图 3 平面上,最大的距离为 $10 imes \sqrt{2}$ 。
 - ●通过 for 循环利用 annotate() 给每个散点添加字母标签。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

⑪ 计算 26 个散点的成对距离矩阵,这个矩阵的大小为 26 × 26。这个矩阵的主对角线(图 3 虚线)的元素代表某个点到自身的距离,即 0。我们容易发现,图 3 这个矩阵沿着主对角线对称;因此这个距离矩阵也叫对称矩阵 (symmetric matrix)。换个角度来看,我们只需要这个 26 × 26 矩阵中除主对角线以外,下三角 (图 6)或上三角矩阵的元素信息。

●利用 seaborn.heatmap() 绘制成对距离热图。

图 6. 剔除主对角线元素的下三角矩阵

图 7 代码绘制图 6。和图 4 代码不同的是,在生成成对距离矩阵之后,我们还生成了一个 (剔除主对角线) 下三角矩阵的面具 (mask)。在鸢尾花书中,mask 一般被直译为面具,也常被翻译做蒙皮、掩码、遮罩等等。

a用了 NumPy 库中的函数来创建一个面具"mask",用于过滤计算得到的"pairwise_ds"数组。numpy.ones_like() 创建了一个与"pairwise_ds"数组形状相同的全为 1 的布尔类型数组。"dtype=bool"指定数组元素的数据类型为布尔类型 (True 或 False),所有元素都被设置为True。numpy.triu() 函数的"triu"代表"triangle upper",它是"numpy"库中的函数,用于获取矩阵的上三角部分(包括对角线),而将下三角部分设置为 0。

如 ^⑤ 所示,使用 seaborn.heatmap 绘制热图时,mask 中对应位置为 True 的单元格的成对距离矩阵数据将不会被显示。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

```
import matplotlib.pyplot as plt
   import numpy as np
   import seaborn as sns
   import string
   from scipy.spatial import distance_matrix
   # 产生随机数
   num = 26
   np.random.seed(0)
   data = np.random.randint(10 + 1, size=(num, 2))
   labels = list(string.ascii_uppercase)
   # 计算成对距离矩阵
   pairwise_ds = distance_matrix(data, data)
   # 产生蒙皮/面具
a mask = np.triu(np.ones_like(pairwise_ds, dtype=bool))
   fig, ax = plt.subplots()
   sns.heatmap(pairwise_distances,
              mask = mask,
               cmap = 'RdYlBu_r',
               square = True,
               xticklabels = labels,
              yticklabels = labels,
               ax = ax
   fig.savefig('下三角.svg', format='svg')
```

图 7. 可视化成对距离矩阵下三角部分 (不含主对角线元素), 代码

26.3 插值

插值 (interpolation) 是通过已知数据点之间的值来估计未知点的值的方法,它可以用于填补数据缺失或者进行数据平滑处理。

如图 8 所示的蓝色点为已知数据点,插值就是根据这几个离散的数据点估算其他点对应的 y 值。

图 8. 插值的意义

插值可分为**内插**(interpolation)和**外插**(extrapolation)。内插是在已知数据点之间进行插值,估计出未知点的值。而外插则是在已知数据点的范围之外进行插值,从而预测超出已知数据点范围的未知点的值。在进行外插时,需要考虑插值函数是否能够正确地拟合未知数据点,并且需要注意不要过度依赖插值函数来进行预测,以免导致不可靠的预测结果。

图 9 比较六种插值方法,下面结合图 10 逐一介绍。

ⓐ 创建一个 2 行 3 列的图形子图网格,并设置图形的尺寸和共享坐标轴属性。参数 2, 3 指定了 网格的行数 (2) 和列数 (3),即总共有 6 个子图。sharex='col'指定每一列子图将共享相同的 x 轴,而 sharey='row'指定每一行子图将共享相同的 y 轴。这样设置可以使得网格中的子图在 x 轴和 y 轴方向上有一致的刻度和范围。

□中的 flatten() 多维数组转换为一维数组。在这里,函数被应用于"axes"轴对象,将二维的子图网格数组转换成了一维数组。

◎列表列出 6 种插值方法。

¹ 调用 SciPy 库中的 interp1d 函数来进行一维插值。其中,x 这是一个一维数组或列表,表示原始数据点的横坐标,即自变量。y 也是一个一维数组或列表,表示原始数据点的纵坐标,即因变量。

参数 kind 用于指定插值方法。其中,'linear' 为线性插值。在两个相邻数据点之间进行线性插值,即使用直线来连接两个数据点。如图 9 (a) 所示,多点线性插值结果一般为折线。

'quadratic' 是二次插值,相邻点之间通过二次函数连接。如图 9 (b) 所示,二次插值产生的曲线较为平滑。

'cubic' 是三次插值,相邻点之间通过三次次函数连接。如图 9 (c) 所示,三次插值产生的曲线非常平滑,能够更好地逼近数据点之间的曲线。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。

版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

'nearest' 代表最近邻插值。如图 9 (d) 所示, 'nearest'使用与插值点最近的数据点的值作为插值结果。

'previous' 代表前向插值。如图 9 (e) 所示,使用插值点之前的数据点的值作为插值结果。

'next' 代表后向插值。如图 9 (f) 所示,使用插值点之后的数据点的值作为插值结果。

```
import numpy as np
  import matplotlib.pyplot as plt
  from scipy.interpolate import interp1d
  # 生成随数据
  np.random.seed(8)
  x = np.linspace(0, 10, 10)
  y = np.random.rand(10) * 10
  x_fine = np.linspace(0, 10, 1001)
  # 创建一个图形对象,包含六个子图
fig, axes = plt.subplots(2, 3, figsize=(6, 9),
                           sharex = 'col'
                           sharey = 'row')
axes = axes.flatten()
  # 六种插值方法
o methods = ['linear','quadratic','cubic',
             'previous','next','nearest']
  for i, method in enumerate(methods):
      # 创建 interp1d 对象
      f = interp1d(x, y, kind=method)
      # 生成插值后的新数据点
      y_fine = f(x_fine)
      # 绘制子图
      axes[i].plot(x, y, 'o', label='Data',
                   markeredgewidth=1.5,
                   markeredgecolor = 'w',
                   zorder = 100)
      axes[i].plot(x_fine,y_fine,label='Interpolated')
      axes[i].set_title(f'Method: {method}')
      axes[i].legend()
      axes[i].set_xlim(0, 10)
      axes[i].set_ylim(0, 10)
axes[i].set_aspect('equal', adjustable='box')
  plt.tight_layout()
  fig.savefig('不同插值方法.svg', format='svg')
```

图 10. 比较六种插值方法, 代码

大家经常混淆拟合和插值这两种方法。插值和拟合有一个相同之处,它们都是根据已知数据点,构造函数,从而推断得到更多数据点。

插值和回归都是用于对数据进行预测的方法,但两者有明显的区别。插值是用于填补已有数据点之间的空缺,预测未知点的值。回归则是预测自变量和因变量之间的关系。插值通常使用插值函数,如多项式插值;而回归则通过拟合数据点的回归方程来预测因变量的值。插值通常用于数据平滑处理、数据填补等。回归则常用于预测和建模。插值要求原始数据点之间要有一定的连续性和平滑性;而回归则对数据点的分布没有明显要求。插值得到的是精确的函数值,但在超出已有数据范围时可能不准确;而回归得到的是变量之间的大致关系,可以预测未来的趋势。

需要根据具体情况选择合适的方法。当数据缺失或需要平滑处理时,可以使用插值方法;当需要建立模型并预测未来趋势时,可以使用回归方法。

插值一般得到分段函数,分段函数通过所有给定的数据点,如图 11 (a)、(b) 所示。回归拟合得到的函数尽可能靠近样本数据点,如图 11 (c)、(d) 所示。

图 11. 比较一维插值和回归

26.4 高斯分布

高斯分布 (Gaussian Distribution), 也称为正态分布 (Normal Distribution), 是概率论和统计学中最重要且广泛应用的分布之一。高斯分布以数学家卡尔·弗里德里希·高斯 (Carl Friedrich Gauss) 的名字命名。

一元高斯分布

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

一元高斯分布概率密度函数(Probability Density Function, PDF)的特点是钟形曲线,对称分布,均值 μ 和标准差 σ 决定了分布的位置和形状。均值决定了曲线的中心,标准差决定了曲线的宽窄程度。图 12(a)所示均值 μ 对一元高斯分布概率密度函数形状影响。图 12(b)所示标准差 σ 对一元高斯分布概率密度函数形状影响。

(G)

什么是概率密度函数?

概率密度函数是用于描述连续随机变量的概率分布的数学函数。它指定了随机变量落在不同取值范围内的概率密度,而不是具体 的概率值。一元随机变量的 PDF 在整个取值范围内的面积等于 1,因为随机变量必然会在某个取值范围内取值。

图 12. 一元高斯分布 PDF,均值 μ 、标准差 σ 分别影响

图 13 绘制图 12 两幅子图。下面讲解图 13 中代码中最要的语句。

- ⓐ从 scipy.stats 模块导入 norm 子模块,为一元正态分布对象。导入 norm 模块后,可以使用其中提供的函数和方法来进行正态分布相关的操作,比如计算概率密度函数 PDF、累积分布函数 CDF、随机样本的生成等。
- 中 np.linspace(0, 1, len(mu_array)) 返回一个由 0 到 1 之间等间隔的数值构成的数组,数组的长度与 mu_array 的长度相同。mu_array 是之前定义的不同的均值取值。这些 [0, 1] 之间的数用到颜色映射。
- ◎则利用 scipy.stats.norm.pdf(x, loc, scale) 函数; 其中, x 为需要计算概率密度的数值,可以是一个数值或一个数组。loc 为正态分布的均值, loc 是 location 的简写。scale 代表正态分布的标准差。
 - ⓓ设定曲线图例的字符串。其中,'\$\mu\$ = '是一个字符串,表示希腊字母"μ"。
 - ◎ 用于在绘制的图表中添加图例、ncol 是一个整数参数、用于设置图例的列数。

```
import numpy as np
   import matplotlib.pyplot as plt
   from matplotlib import cm
a from scipy.stats import norm
  x_{array} = np.linspace(-6, 6, 200)
  mu_array = np.linspace(-4, 4, 9)
   # 设定均值一系列取值
6 colors = cm.RdYlBu(np.linspace(0,1,len(mu_array)))
   # 均值对一元高斯分布PDF影响
  fig, ax = plt.subplots(figsize = (5,4))
  for idx, mu_idx in enumerate(mu_array):
       pdf_idx = norm.pdf(x_array, scale = 1, loc = mu_idx)
       legend_idx = '\$\mu$ = ' + str(mu_idx)
       plt.plot(x_array, pdf_idx,
                color=colors[idx],
                label = legend_idx)
plt.legend(ncol=3)
   ax.set_xlim(x_array.min(),x_array.max())
   ax.set_ylim(0,1)
  ax.set_xlabel('x')
  ax.set_ylabel('PDF, $f_X(x)$')
  sigma_array = np.linspace(0.5, 5, 10)
  # 设定标准差一系列取值
  colors = cm.RdYlBu(np.linspace(0,1,len(sigma_array)))
  # 标准差对一元高斯分布PDF影响
  fig. ax = plt.subplots(figsize = (5,4))
  for idx, sigma_idx in enumerate(sigma_array):
       pdf_idx = norm.pdf(x_array, scale = sigma_idx)
       legend_idx = '$\sigma$ = ' + str(sigma_idx)
       plt.plot(x_array, pdf_idx,
                color=colors[idx],
                label = legend_idx)
  plt.legend()
  ax.set_xlim(x_array.min(),x_array.max())
  ax.set_ylim(0,1)
  ax.set_xlabel('x')
ax.set_ylabel('PDF, $f_X(x)$')
```

图 13. 可视化一元高斯分布概率密度函数, 代码

二元高斯分布

二元高斯分布是一个包含两个随机变量的联合概率分布。二元高斯分布的概率密度函数本质上是个二元函数。如图 14 所示,当相关性系数取不同值时,我们可以看到这个二元函数曲面形状变化。

图 14. 二元高斯分布 PDF, 曲面

图 15 代码绘制图 14, 下面我们聊聊其中关键语句。

- ①用列表定义了一组相关性系数取值。
- $lackbox{0}$ 定义了两个随机变量各自的标准差—— σ_X 、 σ_Y 。 $lackbox{0}$ 则定义了两个随机变量的期望值—— μ_X 、 μ_Y 。
- ⓓ用 numpy.dstack()将横纵网格坐标数组堆叠,结果为一个三维数组。
- $oldsymbol{oldsymbol{arPhi}}$ 把两个期望值写成质心向量 $[\mu_X,\;\mu_Y]$ 。注意,这个向量是个行向量,而图 15 公式中质心向量 $oldsymbol{\mu}$ 为列向量。
 - $oldsymbol{f}$ 用相关性系数、两个标准差构造协方差矩阵 $\left[egin{array}{cc} \sigma_{X}^{2} &
 ho_{X,Y}\sigma_{X}\sigma_{Y} \
 ho_{X,Y}\sigma_{X}\sigma_{Y} & \sigma_{Y}^{2} \end{array}
 ight]$ 。
- ⑤利用 scipy.stats 中的 multivariate_normal 对象、构造二元高斯分布对象实例 bi_norm。这个函数的输入为刚刚创建的质心向量、协方差矩阵。
- \bullet 利用 bi_norm 的 pdf()方法生成概率密度函数值 $f_{X,Y}(x,y)$ 。这个方法的输入为 \bullet 生成的三维数 组,代表一组网格坐标点。
 - ①在三维轴对象 ax 上用 plot_wireframe()绘制三维网格曲面。
 - ①在三维轴对象 ax 上用 contour()再绘制一个三维等高线。

```
import numpy as np
   import matplotlib.pyplot as plt
   from scipy.stats import multivariate_normal
a rho_array = [-0.9, -0.7, -0.5, -0.3]
                0, 0.3, 0.5, 0.7, 0.9]
  sigma_X = 1; sigma_Y = 1 # 标准差
\bigcirc mu_X = 0;
               mu_Y = 0
                          # 期望
  width = 4
  X = np.linspace(-width, width, 321)
  Y = np.linspace(-width, width, 321)
  XX, YY = np.meshgrid(X, Y)
d XXYY = np.dstack((XX, YY))
  # 曲面
  fig = plt.figure(figsize = (8,8))
  for idx, rho_idx in enumerate(rho_array):
       # 质心
       mu
            = [mu_X, mu_Y] -
       # 协方差
       Sigma = [[sigma_X**2, sigma_X*sigma_Y*rho_idx],
               [sigma_X*sigma_Y*rho_idx, sigma_Y**2]]
       # 二元高斯分布
       bi_norm = multivariate_normal(mu, Sigma)
       f_X_Y_joint = bi_norm.pdf(XXYY)
       ax = fig.add_subplot(3,3,idx+1,projection='3d')
a
       ax.plot_wireframe(XX, YY, f_X_Y_joint,
                         rstride=10, cstride=10,
                         color = [0.3, 0.3, 0.3],
                         linewidth = 0.25)
       ax.contour(XX,YY, f_X_Y_joint,15,
                  cmap = 'RdYlBu_r')
       ax.set_xlabel('$x$'); ax.set_ylabel('$y$')
       ax.set_zlabel('\$f_{X,Y}(x,y)\$')
       ax.view_init(azim=-120, elev=30)
       ax.set_proj_type('ortho')
       ax.set_xlim(-width, width); ax.set_ylim(-width, width)
       ax.set_zlim(f_X_Y_joint.min(),f_X_Y_joint.max())
       # ax.axis('off')
   plt.tight_layout()
   fig.savefig('二元高斯分布, 曲面.svg', format='svg')
   plt.show()
```

图 15. 网格曲面可视化二元高斯分布 PDF, 代码

将图 14 投影到水平面,如图 16 所示,我们惊奇地发现这些曲面的等高线是椭圆!似乎相关系系数 影响着椭圆的旋转角度。

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```


图 16. 二元高斯分布 PDF, 平面填充等高线

图 17 代码绘制图 16, 请大家自行分析其中关键语句, 并写出图 16 中每幅子图对应写协方差矩阵的 具体值。

```
# 平面填充等高线
a fig = plt.figure(figsize = (8,8))
  for idx, rho_idx in enumerate(rho_array):
            = [mu_X, mu_Y]
      Sigma = [[sigma_X**2, sigma_X*sigma_Y*rho_idx],
              [sigma_X*sigma_Y*rho_idx, sigma_Y**2]]
      bi_norm = multivariate_normal(mu, Sigma)
      f_X_Y_{joint} = bi_{norm.pdf}(XXYY)
      ax = fig.add_subplot(3,3,idx+1)
      ax.contourf(XX, YY, f_X_Y_joint,
                   levels = 12, cmap='RdYlBu_r')
      ax.set_xlabel('$x$')
      ax.set_ylabel('$y$')
      ax.set_xlim(-width, width)
      ax.set_ylim(-width, width)
      ax.axis('off')
  plt.tight_layout()
  fig.savefig('二元高斯分布, 等高线.svg', format='svg')
  plt.show()
```

图 17. 平面填充等高线可视化二元高斯分布 PDF, 代码

请大家完成如下题目。

- Q1. 修改图 15 代码中两个随机变量质心位置,并观察概率密度函数曲面和等高线变化。
- Q2. 修改图 15 代码中两个随机变量标准差的值,并观察概率密度函数曲面和等高线变化。
- * 题目很基础,本书不给答案。

本章举了三个例子(距离、插值、高斯分布)介绍如何使用SciPy库函数。

在计算欧氏距离这个例子中,我们要关注如何用矩阵形式保存大量散点之间的成对距离值。

在插值这个例子中,我们要理解几种常见插值算法的基本思想,以及插值和回归的本质区别。

高斯分布可能是整套鸢尾花书最重要的分布,没有之一。对于一元高斯分布,大家需要理解期望值和标准差如何影响概率密度函数形状。对于二元分布,大家一定要搞清楚协方差矩阵和椭圆形态关系。本书后续还会在机器学习算法中用到高斯分布。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com