6 Axis Robotic Arm Technicus Award '22

GitHub: https://github.com/Lemme-lab/Robotic-Arm

NAME Luc	cas-Elias Lenarcic		STUNDEN	GEFEH	LT
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER Pro	of. Grabner Burkhard		SEITE	GEPRÜ	-T

Inhaltsangabe

1.0 Einleitung

- 1.1 Konzept
- 1.2 Features
- 1.3 Planned Code
- 1.3.1 General
- 1.3.2 Website
- 1.3.3 Desktop Client
- 1.3.4 Mobile Client
- 1.3.5 Self-Test

2.0 Preislisten

- 2.1 Robotic Arm
- 2.2 Robotic Arm Main Controller
- 2.3 Nema 17 Stepper Motor
- 2.4 Nema 11 Stepper Motor

3.0 3D-Modell

- 3.1 Robotic Arm
- 3.2 Motors Nema 17 / Nema 11
- 3.3 Elektronik
- 3.3.1 Main Controller
- 3.3.2 Nema 17 Motor Controller
- 3.3.3 Nema 11 Motor Controller

4.0 Elektronik

- 4.1 Robotic Arm Main Controller
- 4.2 Stepper Motor Nema 17
- 4.3 Stepper Motor Nema 11

5.0 Förderung

- 5.1 Zusammenfasssung
- 5.2 Einwilligungen (Weitergabe, Konto)
- 5.3 Veröffentlichung in der Zeitung

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard		SEITE	GEPRÜFT

1.0 Einleitung

1.1 Konzept

Für den Technicus Award der HTL, haben wir (Lucas Lenarcic und Matteo Müller) uns, im Zuge des Werkstättenunterrichts bei Herrn Prof. Grabner Burkhard, überlegt einen 6-Achsen Roboterarm zu bauen.

Der Roboterarm wurde/wird mithilfe von Fusion entworfen. Die einzelnen mechanischen Komponenten des Armgehäuses werden mithilfe eines 3D-Druckers gefertigt. Elektronische Komponenten, wie Motortreiber, Stromversorgung, Steuerung via App oder Web wurden/werden mit der PCB-Design Software Altium entworfen. Für die Herstellung dieser Platinen wird entweder die schulinterne Leiterplattenfertigung hinzugezogen oder ein externer Hersteller.

Es ist geplant mit dem Greifer des Roboterarms Objekte aufzuheben und diese an einem beliebigen, in der Reichweite des Armes gelegenen, Punkt wieder abzulegen. Die Steuerung soll wie in den folgenden Punkten noch genauer beschrieben über mehrere Varianten möglich gemacht werden.

So soll man den Roboter mithilfe einer Webapplikation, also über eine selbst designte HTML-Website (virtueller Joystick, ...) und folglich mit dem ESP32 und dessen eingebautem WLAN-Modul steuern können.

Die andere Variante wäre bzw. ist eine App, die wir mithilfe von Flutter designen werden.

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER	Prof. Grabner Burkhard	1	SEITE	GEPRÜFT	

1.2 Features

- Self Designed Stepper Motor Controller (A4988)
- Self designed Main Controller with a small footprint
- Compact Size Factor
- Esthetic
- Many other little Features

1.3 Planned Code:

1.3.1 General:

A few bullet points and explanations for the code part. Different technologies and programming languages such as C++, WEB-Dev, and Flutter will be used. It will go from Basic C and register manipulation to UI-Development on Cross-Platform Mobile Apps.

- Controlling Axis 1-5
- Save Control sequence
- Remote Connection
- Desktop Application
- Website
- Mobile App
- PHP Database
- C++, HTML, CSS, JS, FLUTTER, JAVA, Python
- Tensorflow, Keras

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER	Prof. Grabner Burkhard		SEITE	GEPRÜFT	

1.3.2 Website:

A HTML Website that must be functional and appealing to use. Features will be send via a ESP32 and the included Wireless module. Cross-platform Data will mean that we will have to save the current data and inputs on a small database. UI and other Features will mean that we have to use JS with or without an additional framework.

- Checking Power Status
- Check Wireless Connection
- Current Voltage/Power Levels
- Slider Controlls for Motors
- Test Motor func
- Switch Mode (Normal Control, Train ,Al)
- Cam Live Stream implementation
- Stop/Start/hold -->pan> Slide buttons
- Speed
- Axis coordinates

1.3.3 Desktop Client

A C++ or Java desktop client to be used when wired up to the robot arm. From the User ready interface to debbuging, testing and programming features will be included. This is one of the most important interface to the robot arm and as such it will be programmed first.

- Checking Power Status
- Check Wireless Connection
- Current Voltage/Power Levels
- Slider Controlls for Motors
- Test Motor func
- Switch Mode (Normal Control,AI)
- Cam
- Debug Features / Console
- Test Features
- Stop/Start/Hold --> slidebuttons
- Speed

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard		SEITE	GEPRÜFT

1.3.4 Mobile Client

Last we will do a Mobile Client app for controlling and checking the robot arm on the go. It will be programmed in Flutter or another Mobile Cross Platform Developer Kit.

- Checking Power Status
- Check Wireless Connection
- Current-Voltage/Power Levels
- Settings
- Live Cam

1.4.5 Self-Test

Testclasses to exclude code-mistakes. Motors are working in the corract way and also the remote connection and controlling from the web applicatio, if so then we can put everything together and test the whole thing

- Motor
- Remote Connection
- Connections Seriell/Connectors

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER	Prof. Grabner Burkhard		SEITE	GEPRÜFT	

2.0 Preislisten

2.1 Robotic Arm

Object	Description	Quantity	Price	Links
ilament:				
LA Filament	Filament for whole Robot Arm Build	1651g / +400g Test prints	47,98	
	_			
Motoren:			407.00	
lema 17 Steppermotor 100:1 Getriebe	Getriebeübersetzung 100:1 Hohe Präzision Planetengetriebe	2	107,98	
lema 11 Schrittmotore 51:1 Getriebe	Getriebeübersetzung 51:1 Planetengetriebe	3	95,82	
lema 11 Schrittmotore	12Ncm 0.67A 6.2V	1	14,85	
lektronik:				
Main Controller Robot Arm	Main Controller ATMEGA/ESP32	1	47,4	
Vema 17 Stepper Motor Controller	Stepper Motor Controller for Nema 17 with A4988 IC	2	49,668	
lema 11 Stepper Motor Controller	Stepper Motor Controller for Nema 11 with A4988 IC	3	58,05	
Anderes:				
Timing Belt Set	Belt + 8x Teeth Pulley	1	9,96	
Metall Rod 5mm	Connectors for all axis	1	6,99	
Screw Set	Scews M3,M6	1	26,21	
DC Jack	24V 1.5A Power Input Connector	1	9,56	
ower Button	Power On/Off Button	1	2,4	
			476.0	
		Gesamtpreis (Alles)	476,9	€
		Gesamtpreis (Selbst bezahlt)	74,19	€
		Gesamtpreis	402,7	€

2.2 Robotic Arm Main Controller

Comment	Description	Designator	Footprint	LibRef	Quantity	Price	
5362-0450	CONN HEADER VERT 4		FP-35362-0450-MFG	CMP-04776-000310-1	6	Male Ping Headers	
Nolex 90142-0010	2.54mm Pitch C-Grid I	II Crimp Housing Dual	Molex 90142-0006-Foo	CMP-a2626b6ccecb7da	1	Male Ping Headers	
exas Instruments L	M 1.5-A, Wide VIN Fixed	Voltage Regulators 4-	PCB-4j8pz0fvsyjao2wd	CMP-00afcdd7e6a1df6	1	1,327	
mphenol ICC / FCI	58 connector; 1x2 low pro	1	Amphenol ICC _ FCI 68	CMP-3e4bf223796ce18	1	0,44	
ISMD-C190	LED Uni-Color Orange	3v3V Power, 5V Power	AVAG-HSMX-C190_V	CMP-1744-00006-1	8	2,96	
,1uF	0603 0.1 uF 35 V ±10 %	C1, C2	PCB-ygfjbn9s2h0hdffg	CMP-230febb915d7fcc	2	0,48	
0pF	Multilayer Ceramic Ca	C3, C6	CAPC1608X92X38ML157	CMP-3554665-2	2	1,128	
000uF	1000uF 6.3 V Aluminiu	C4, C5	PCB-6nlarhmhqnsp8h	CMP-ee612768d29831a	2		
00nF	1206 100000 pF 50V ±1	C7	CAPC3216X09L	CMP-7716bc466958a8c	1	0,19	
.00 nf	Ceramic capacitor SM	C9	CAPC1608X87X35LL15T	CMP-1af8d38ac64bc53	1	0,09	
AP 10uF 0603	C Series 0603 10 uF 25	C10	CC0603_OV	CMP-121611-5	1	0,348	
nF	Multilayer Ceramic Ca	C11	CAPC3216X88X50NL20T	CMP-8261919-2	1	0,16	
N4007	1N4007 Series 1000 V	D1	PCBComponent_1	CMP-9114309-20	1	0,02	
AE Electronics DX07	S Vertical Mount Type (J1	PCB-c92dq56pmj9hhsl	CMP-100bdd7e1ee2cfd	1	3,18	
NPUT_Power	Conn Terminal Block	J2	PCB-6ccby9ci1emhqvh	CMP-751491-6	1	2,15	
2k	Res Thick Film 2512 1	R1	RESC6432X07N	CMP-ad5c66e3363d729	1	0,74	
200hm	Thick Film Resistors (R2, R11, R12, R13, R14,	RESC1608X55X30LL15T	CMP-3654704-2	8	5,04	
,2k	Thick Film Resistors -	R3, R6, R8, R10	RESC1005X37X25LL05T	CMP-7833842-2	4	1,44	
,3k	RES SMD 2.2K OHM 1%	R4, R5, R7, R9	RESC1608X55X25LL10T	CMP-1872096-2	4	1,44	
umper	connector; 1x2 low pre	ofile jumper assembly	Amphenol ICC _ FCI 68	CMP-3e4bf223796ce18	4		
TDI FT232RL	Usb Interface Ics Usb	U1	PCB-uwrbgvod66r8ixu	CMP-1159378-22	1	4,7	
Nicrochip ATMEGA3	28 ATmega Series 32 kB	U2	PCB-pmhtxxix7sripjdh	CMP-973185-51	1	7,2	
D1117DT33TR	Fixed Low Drop Positi	U3	TO-252_N	CMP-1248216-2	1	4,17	
spressif Systems E	SFWiFi Modules (802.11	U4	PCB-s9cahnfxwmssy5l	CMP-ba1676706f1765d	1	Esp32	
6.000MHZ	CRYSTAL, THT, 16.000N	X1	PCB-m5wiadh0ra6h79	CMP-fc9f355d6cd42358	1	1,08	
Main-Controller-Pcb	JLCPCB - 2 Layer - Blac	k PCB + SMD Stencil			1 /buy. 5	9,12	
							_
						47 4	£
						T, 7	-

MERKSTÄTTE	
WERKSTÄTTE HTLL MÖSSINGERSTRASSE KAL. WOCHE	
TIL I MUSSINGERSIKASSE	
LEHRER Prof. Grabner Burkhard SEITE GEPRÜFT	

2.3 Nema 17 Stepper Motor

Comment	Description	Designator	Footprint	LibRef	Quantity	Price	Links
470nF	Cap Ceramic 0.47uF 10\	C1	PCB-ab 16gx9rkhzdcptx	CMP-c29e0abbad7d1d59	1	0,46	
0.33uF	CL31 Series 0.33 uF 50	C2	PCB-w610zufupuummbg	CMP-6acba34cbf0cb50c	1	0,33	
0.1uF	C Series 1206 0.1 uF 50	C3, C5, C6	PCB-lcc7kuvv5qjd2xw4	CMP-915a59dc44ec4e9d	3	0,54	
0,1uF	C Series 1206 0.1 uF 50	C4	PCB-lcc7kuvv5qjd2xw4	CMP-915a59dc44ec4e9c	1	1,68	
0.22uF	Multilayer Ceramic Capa	C8	CAPC2013X140X50LL20	CMP-3551434-4	1	0,56	
Dialight 598-8210-107F	LED Uni-Color Red 2-Pin	D1, D2, D3, D4, D5	PCB-nfeeyiqhjphw6gve	CMP-bfda76ddda44601d	5	1,45	
50mOhm	Thick Film Surface Mnt R	R1, R2	PCB-h38ewjcsmg51leo3	CMP-2fd8e4750972f01f	2	2,8	
ERJ-2RKF2401X		R4	RESC1005X40X25NL05T	CMP-2002-00798-1	1	0,09	
20k		R5	RESC2013X55X40LL15T	CMP-15323555-2	1	0,69	
100K	Res General Purpose Th	R6	PCB-n97kkldbbf5rklmnt7	CMP-86ed4a8b7141592	1	0,09	
2.2k	Res Thin Film 0603 10K (R7, R9, R10, R11, R12	RESC1608X55X30NL20T	CMP-22beeaeef4a5fd79	5	2,55	
10hm No short circuit		R8	RESC1005X40X25ML05	CMP-2002-08342-1	1	0,15	
10k	RES SMD 10K OHM 1%	R13	FP-CRCW0402-e3-IPC_	CMP-2002-08135-2	1	0,92	
100kOhm	Chip Resistor, 100 KOhn	R14	RESC2013X60X35ML107	CMP-2100-03668-1	1	0,09	
A4988	DMOS Microstepping Dri	U1	ALEG-ET-28_V	CMP-966506-24	1	2,17	
onsemi MC78L05ACHT1G	Linear Voltage Regulator	U2	NXP-SOT89_A_M	CMP-4fb3855e828b9074	1/buy. 5	1,144	
Stepper-Motor-Controller-PCB	JLCPCB - 2 Layer - Blac	k PCB + SMD Stencil			1 /buy. 5	9,12	
					Preis pro Stück	24,834	€
					Preis pro 3 Stück (Robot Arm)	56,262	

2.4 Nema 11 Stepper Motor

Comment	Description	Designator	Footprint	LibRef	Quantity	Price	Links
470nF	Cap Ceramic 0.47uF 10V	C1	PCB-ab16gx9rkhzdcptx	CMP-c29e0abbad7d1d5	1	0,46	
0.33uF	CL31 Series 0.33 uF 50	C2	PCB-w610zufupuummbg	CMP-6acba34cbf0cb50c	1	0,33	
0.1uF	C Series 1206 0.1 uF 50	C3, C5, C6	PCB-lcc7kuvv5qjd2xw4y	CMP-915a59dc44ec4e9	3	0,54	
0,1uF	C Series 1206 0.1 uF 50	C4	PCB-lcc7kuvv5qjd2xw4y	CMP-915a59dc44ec4e9	1	1,68	
0.22uF	Multilayer Ceramic Capa	C8	CAPC2013X140X50LL20	CMP-3551434-4	1	0,56	
50mOhm	Thick Film Surface Mnt R	R1, R2	PCB-h38ewjcsmg51leo3	CMP-2fd8e4750972f01f	2	1,156	
Panasonic ERJ-3GEYJ161V	Thick Film Resistors - SM	R4	RESC1608X55X30NL15T	CMP-3677770-2	1	0,25	
20k		R5	RESC2013X55X40LL15T	CMP-15323555-2	1	0,69	
100K	Res General Purpose Thi	R6	PCB-n97kkldbbf5rklmnt7	CMP-86ed4a8b7141592	1	0,09	
10hm No short circuit		R8	RESC1005X40X25ML05T	CMP-2002-08342-1	1	0,15	
10k	RES SMD 10K OHM 1% :	R13	FP-CRCW0402-e3-IPC_	CMP-2002-08135-2	1	0,92	
100kOhm	Chip Resistor, 100 KOhn	R14	RESC2013X60X35ML107	CMP-2100-03668-1	1	0,09	
A4988	DMOS Microstepping Driv	U1	ALEG-ET-28_V	CMP-966506-24	1	2,17	
onsemi MC78L05ACHT1G	Linear Voltage Regulator	U2	NXP-SOT89_A_M	CMP-4fb3855e828b9074	1/buy. 5	1,144	
Stepper-Motor-Controller-PCB	JLCPCB - 2 Layer - Black	k PCB + SMD Stencil			1 /buy. 5	9,12	
					Preis pro Stück	19,35	€
					Preis pro 3 Stück (Robot Arm)	39,81	€

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER	Prof. Grabner Burkhard		SEITE	GEPRÜFT	

3.0 3D-Modells

3.1 Robotic Arm

KLASSE DATUM WERKSTÄTTE HTL MÖSSINGERSTRASSE KAL. WOCHE	NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
WERKSTÄTTE HTL MÖSSINGERSTRASSE KAL. WOCHE	KLASSE			DATUM		
	WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER Prof. Grabner Burkhard SEITE GEPRÜFT	LEHRER	Prof. Grabner Burkhard	,		GEPRÜFT	

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard	1	SEITE	GEPRÜFT

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard		SEITE	GEPRÜFT

3.2 Motors Nema 17 / Nema 11

KLASSE DATUM WERKSTÄTTE HTL MÖSSINGERSTRASSE KAL. WOCHE	NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
WERKSTÄTTE HTL MÖSSINGERSTRASSE KAL. WOCHE	KLASSE			DATUM		
	WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER Prof. Grabner Burkhard SEITE GEPRÜFT	LEHRER	Prof. Grabner Burkhard	,		GEPRÜFT	

3.3Elektronik

3.3.1 Main Controller:

KLASSE	DATUM		
WERKSTÄTTE HTL MÖSSINGERSTRASSE KAL	AL. WOCHE		
LEHRER Prof. Grabner Burkhard	SEITE	GEPRÜFT	

KLASSE DATUM WERKSTÄTTE HTL MÖSSINGERSTRASSE KAL. WOCHE	NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
WERKSTÄTTE HTL MÖSSINGERSTRASSE KAL. WOCHE	KLASSE			DATUM		
	WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER Prof. Grabner Burkhard SEITE GEPRÜFT	LEHRER	Prof. Grabner Burkhard	,		GEPRÜFT	

3.3.2 Nema 17 Motor Controller

3.3.3 Nema 11 Motor Controller

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER	Prof. Grabner Burkhard	1	SEITE	GEPRÜFT	

4.0 Elektronik

4.1 Robotic Arm Main Controller

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard	1	SEITE	GEPRÜFT
	_			

4.2 Stepper Motor Nema 17

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard		SEITE	GEPRÜFT

4.3 Stepper Motor Nema 12

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER	Prof. Grabner Burkhard	1	SEITE	GEPRÜFT	

5.0 Förderung

5.1 Zusammenfasssung

Für den Technicus Award der HTL, haben wir (Lucas Lenarcic und Matteo Müller) uns, im Zuge des Werkstättenunterrichts bei Herrn Prof. Grabner Burkhard, überlegt einen 6-Achsen Roboterarm zu bauen.

Der Roboterarm wurde/wird mithilfe von Fusion entworfen. Die einzelnen mechanischen Komponenten des Armgehäuses werden mithilfe eines 3D-Druckers gefertigt. Elektronische Komponenten, wie Motortreiber, Stromversorgung, Steuerung via App oder Web wurden/werden mit der PCB-Design Software Altium entworfen. Für die Herstellung dieser Platinen wird entweder die schulinterne Leiterplattenfertigung hinzugezogen oder ein externer Hersteller.

Es ist geplant mit dem Greifer des Roboterarms Objekte aufzuheben und diese an einem beliebigen, in der Reichweite des Armes gelegenen, Punkt wieder abzulegen.

Die Steuerung soll wie in den folgenden Punkten noch genauer beschrieben über mehrere Varianten möglich gemacht werden.

So soll man den Roboter mithilfe einer Webapplikation, also über eine selbst designte HTML-Website (virtueller Joystick, ...) und folglich mit dem ESP32 und dessen eingebautem WLAN-Modul steuern können. Die andere Variante wäre bzw. ist eine App, die wir mithilfe von Flutter designen werden.

- Self Designed Stepper Motor Controller (Nema 17, Nema 11) (A4988)
- Self designed Main Controller (ATMEGA, ESP32, USB-C Interface, Display, Power Reg.)
- Different Interfaces (Controlling)
- Compact size factor of Electronics and Modell
- Esthetic appealing Modells, Interfaces and Electronics
- Many other little Features

Website:

A HTML Website that must be functional and appealing to use. Features will be send via a ESP32 and the included Wireless module. Cross-platform Data will mean that we will have to save the current data and inputs on a small database. UI and other Features will mean that we have to use JS with or without an additional framework.

Desktop Client

A C++ or Java desktop client to be used when wired up to the robot arm. From the User ready interface to debbuging, testing and programming features will be included. This is one of the most important interface to the robot arm and as such it will be programmed first.

Mobile Client

Last we will do a Mobile Client app for controlling and checking the robot arm on the go. It will be programmed in Flutter or another Mobile Cross Platform Developer Kit.

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard	1	SEITE	GEPRÜFT

Eine Erklärung des Antragstellers, wie oft bereits Förderungen beim ABSVB beantragt, und und an ihn ausgezahlt wurden.

• Es wurden keine Anträge vor diesem beantragt und es wurden dadurch auch keine Fördergelder ausgezahlt.

Die saldierten Rechnungen der getätigten Ausgaben (als Original), bis zum zu fördernden Betrag sind beizulegen (Motto: Keine Förderung ohne bezahlte Rechnung)!.

 Die Bauteile werden erst bestellt, wenn uns Förderungen zu diesem Projekt zugesagt werden. Die Rechnungen werden dann sofort nachgereicht. Alle Preislisten sind beigelegt.

5.2 Einwilligungen (Weitergabe, Konto)

Die Erklärung, dass sie/er damit einverstanden ist, dass der ABSVB die Arbeit für eigene Zwecke verwendet und verwertet. Die Weitergabe an SchülervertreterInnen zur Vervielfältigungen wird ausdrücklich gestattet.

Bei mehreren VerfasserInnen eine schriftliche Erklärung aller VerfasserInnen, dass sie mit der Überweisung auf das genannte Konto einverstanden sind.

Ich Matteo Müller bin einverstanden das die Überweisung der Fördergelder auf das Bankkonto IBAN: AT76 2070 6045 0053 5861 geht.

Matteo Müller:

5.3 Veröffentlichung in der Zeitung

Bei Förderung von Projekten / Arbeiten, ist für die Veröffentlichung in der Zeitung des ABSVBs ein Projektbericht mit projektbezogenem Bild beizulegen (Jeweils als Datei (*.doc, *.jpg), für die EDV mäßige Weiterverarbeitung)!

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT
KLASSE			DATUM	
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE	
LEHRER	Prof. Grabner Burkhard	,	SEITE	GEPRÜFT

Robotic-Arm Technicus Award

Für den Technicus Award der HTL, haben wir (Lucas Lenarcic und Matteo Müller) uns, im Zuge des Werkstättenunterrichts bei Herrn Prof. Grabner Burkhard, überlegt einen 6-Achsen Roboterarm zu bauen. Das Projekt wurde durch einen beträchtlich Teil vom Absolventenverband der HTL's Klagenfurt gefördert.

Alle Komponenten des Roboterarms werden/wurden von uns selbst entworfen. Mechanische Bauteile wie das Gehäuse werden mittels 3D-Drucker gefertigt und die elektronischen Komponenten, sprich Platinen, mithilfe der Leiterplattenfertigung der Schule oder durch externe Hersteller.

Mit dem Greifer des Roboterarms soll man Objekte aufheben können und diese an einem beliebigen Punkt wieder ablegen.

Die Steuerung soll mithilfe einer Webapplikation, also über eine selbst designte HTML-Website (virtueller Joystick, ...) und folglich mit dem ESP32 und dessen eingebautem WLAN-Modul steuerbar sein, ebenso ist eine Steuer-App geplant.

NAME	Lucas-Elias Lenarcic		STUNDEN	GEFEHLT	
KLASSE			DATUM		
WERKSTÄTTE		HTL I MÖSSINGERSTRASSE	KAL. WOCHE		
LEHRER	Prof. Grabner Burkhard	,	SEITE	GEPRÜFT	