Formes bilinéaires et quadratiques

 $\alpha 11 - MP^*$

1 Généralités

On se place dans un corps $\mathbb K$ de caractéristique différente de 2.

1.1 Formes bilinéaires

E un \mathbb{K} – ev de dimension quelconque. $f: E \times E \longrightarrow \mathbb{K}$ est une forme bilinéaire si pour tout $x \in E, y \longmapsto f(x,y)$ est une forme linéaire et pour tout $y \in E, x \longmapsto f(x,y)$ est une forme linéaire. f est symétrique si $\forall (x,y) \in E^2, f(x,y) = f(y,x)$.

Si E est de dimension finie, soit \mathcal{B} une base de E; si $(x,y) \in E^2$, on note $X = M_{\mathcal{B}}(x)$, $Y = M_{\mathcal{B}}(y)$. Toute forme bilinéaire sur E est alors de la forme $(x,y) \stackrel{f}{\longmapsto} {}^t XMY$, $M \in \mathfrak{M}_n(\mathbb{K})$ fixée. f est symétrique ssi M est symétrique symétrique ssi M est symétrique symét

1.2 Formes bilinéaires symétriques et dualité

Soit f une forme bilinéaire symétrique (fbs) de E, $x \in E$, on définit une application $\varphi : E \longrightarrow \mathcal{L}(E, \mathbb{K}) = E^*$ telle que $\forall x \in E$, $\varphi(x) : y \longmapsto f(x,y)$. φ est une application linéaire de E dans E^* .

Par définition, $\ker f \stackrel{def}{=} \ker \varphi = \{x \in E/\forall y \in E, f(x,y) = 0\}$. f est non dégénérée si $\ker f = \{0\}$. Si de plus E est de dimension finie, on définit $\operatorname{rg}(f) \stackrel{def}{=} \operatorname{rg}(\varphi)$.

1.3 Structure et matrices

L'ensemble des fbs de E est un sev de $\mathbb{K}^{E \times E}$. Si E est de dimension finie et $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E, on définit pour $f \in FBS(E)$ la matrice $M_{\mathcal{B}}(f) = (f(e_i, e_j))_{\substack{1 \le i \le n \\ 1 \le i \le n}} \in \mathfrak{M}_n(\mathbb{K})$. $M_{\mathcal{B}} : f \in FBS(E) \longmapsto M_{\mathcal{B}}(f) \in \mathfrak{M}_n(\mathbb{K})$ est linéaire, $\ker M_{\mathcal{B}} = \{0\}$, $\operatorname{Im}(M_{\mathcal{B}}) = Sym_n(\mathbb{K})$. De plus, $(M_{\mathcal{B}}(f) = 0) \Longrightarrow (f = \underline{0})$.

Corollaire: $\dim FBS(E) = \frac{n(n+1)}{2}$

 $Propriété: M_{\mathcal{B}}(f) = M_{\mathcal{B},\mathcal{B}^*}(\varphi)$ donc $\operatorname{rg}(f) = \operatorname{rg}(M_{\mathcal{B}}(f))$. De plus, f est non dégénérée ssi $M_{\mathcal{B}}(f)$ est inversible.

1.4 Orthogonalité relative à une forme bilinéaire symétrique

E un \mathbb{K} – ev de dimension quelconque, f une fbs ; pour tout $(x,y) \in E^2$, on dit que $x \perp y$ si f(x,y) = 0. Si F est un sev de E, on pose $F^{\perp} = \{y \in E / \forall x \in F, f(x,y) = 0\}$; c'est un sev de E. On a toujours $F \subset F^{\perp \perp}$, $E^{\perp} = \ker f$. En revanche, $F \cap F^{\perp} \neq \{0\}$ en général.

Propriété (hors programme): Si E est de dimension finie, f FBS de E, alors il existe une base orthogonale pour f. Lemme: Soit $f \in FBS(E)$, E de dimension quelconque; si $\forall x \in E$, f(x,x) = 0, alors $f = \underline{0}$.

1.5 Changement de base, matrices congruentes

E un ev de dimension n. Soit f une fbs, \mathcal{B} et \mathcal{C} deux bases de E. $M = M_{\mathcal{B}}(f)$, $M' = M_{\mathcal{C}}(f)$, $P = M_{\mathcal{B}}(\mathcal{C})$. Alors $M' = {}^tPMP$. $(M, M') \in (\mathfrak{M}_n(\mathbb{K}))^2$ sont congruentes si elles sont symétriques et $\exists P \in GL_n(\mathbb{K})/M' = {}^tPMP$. C'est une relation d'équivalence sur $Sym_n(\mathbb{K})$. Si M et M' sont congruentes, alors elles sont équivalentes et ont même rang.

1.6 Formes quadratiques

E un \mathbb{K} -ev de dimension quelconque. $q: E \longrightarrow \mathbb{K}$ est une forme quadratique si il existe une fbs f telle que $\forall x \in E, q(x) = f(x, x)$ $Caractérisation: q: E \longrightarrow \mathbb{K}$ est une forme quadratique ssi:

- 1. $\forall \lambda \in \mathbb{K}, \forall x \in E, q(\lambda x) = \lambda^2 q(x)$
- 2. $f:(x,y) \in E^2 \longrightarrow \frac{1}{2}(q(x+y) q(x) q(y))$ est une fbs

dans ce cas f est l'unique fbs telle que q(x) = f(x,x). On l'appelle forme polaire de q.

On définit ker $q \stackrel{def}{=} \ker f$; en général, ker $q \neq q^{-1}(\{0\})$. On dit que q est non dégénérée si f l'est. Si de plus E est de dimension finie, on pose $\operatorname{rg}(q) \stackrel{def}{=} \operatorname{rg}(f)$, et si \mathcal{B} est une base de E, $M_{\mathcal{B}}(q) \stackrel{def}{=} M_{\mathcal{B}}(f)$. Si $\mathbb{K} = \mathbb{R}$, q est positive si $\forall x \in E$, $q(x) \geqslant 0$, et q est définie positive si $\forall x \in E \setminus \{0\}$, q(x) > 0. On parle de même de f fbs positive, définie positive.

2 Formes quadratiques positives, définies positives

2.1 Inégalité de Cauchy-Schwarz

Soit E un \mathbb{R} – ev, f une fbs positive, q la forme quadratique associée. On a : $\forall x, y \in E$, $|f(x,y)| \leq \sqrt{q(x)q(y)}$ Corollaire : si q est positive, $\ker q = q^{-1}(\{0\})$ (hors programme). Conséquence : on pose $||x|| = \sqrt{q(x)}$, $||\cdot||$ est une semi-norme car :

- $\forall x \in E, ||x|| \ge 0$
- ||0|| = 0
- $\bullet \ \|\lambda x\| = |\lambda| \|x\|$
- $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$

2.2 Espaces préhilbertiens

Un ev réel E muni d'une fbs définie positive est dit *préhilbertien* (réel). La fbs est alors appelée *produit scalaire*, souvent noté $(x \mid y)$ ou $< x \mid y > .$ $x \longmapsto ||x||$ est réellement une *norme*, car on a de plus $(||x|| = 0) \Longrightarrow (x = 0)$. On a les cas d'égalité suivants dans les inégalités précédentes :

- Cauchy-Schwarz : égalité ssi (x,y) liée
- Inéqulité triangulaire : égalité ssi (x,y) positivement liée, c'est à dire x=0 ou $\exists \lambda \geq 0/x = \lambda y$

2.3 Espaces euclidiens

Un espace euclidien est un espace préhilbertien réel de dimension finie. On a alors le procédé de Gram-Schmidt, toute famille orthonormale peut être complétée en une base orthonormale, et si F est un sev, $E = F \oplus F^{\perp}$. On peut encore définir le produit mixte : si E est orienté, soit \mathcal{B}_0 une base orthonormale directe. Si \mathcal{B} est une base orthonormale de E, $M_{\mathcal{B}_0}(\mathcal{B}) \in \mathcal{O}_n(\mathbb{R})$ et donc $\det_{\mathcal{B}_0}(\mathcal{B}) = \pm 1$. On dit alors que \mathcal{B} est directe si $\det_{\mathcal{B}_0}(\mathcal{B}) = +1$. Dans ce cas, $\det_{\mathcal{B}_0} = \det_{\mathcal{B}}$ est appelé produit mixte.

3 Adjoints d'un endomorphisme

K un corps de caractéristique différente de 2.

3.1 Généralités

E un \mathbb{K} – ev de dimension quelconque, f une fbs, q la fq associée. $u,v\in\mathcal{L}(E)$ sont adjoints si $\forall x,y\in E, f(u(x),y)=f(x,v(y))$. Dans ce cas v et u sont adjoints. u est autoadjoint (ou symétrique) si u est son propre adjoint. u est antiautoadjoint (ou antisymétrique) si u est adjoint de u. Si $u\in GL(E)$, u est orthogonal si u^{-1} est adjoint de u.

On peut caractériser les endomorphismes orthogonaux : u est orthogonal ssi $u \in GL(E)$ et $\forall x, y \in E$, f(u(x), u(y)) = f(x, y) ssi $u \in GL(E)$ et $\forall x \in E$, g(u(x)) = g(x).

Exercice : l'adjoint, s'il existe, est unique lorsque la fbs de référence est non dégénérée.

3.2 Cas d'un espace euclidien

Si E est euclidien, tout $f \in \mathcal{L}(E)$ admet un unique adjoint, noté f^* ; de plus, si \mathcal{B} est une base orthonormale, $M_{\mathcal{B}}(f^*) = {}^tM_{\mathcal{B}}(f)$.

3.3 Propriétés de l'adjonction

E ev euclidien. $f \in \mathcal{L}(E) \longrightarrow f^*$ est linéaire involutive ; c'est en particulier un automorphisme. On a les propriétés suivantes $\forall f, g \in \mathcal{L}(E), \ (g \circ f)^* = f^* \circ g^*; \ \forall f \in GL(E), \ (f^{-1})^* = (f^*)^{-1}; \ \forall f \in \mathcal{L}(E), \ \det f = \det f^*, \ \operatorname{tr}(f) = \operatorname{tr}(f^*), \ \chi_f = \chi_{f^*}, \ \ker f^* = (\operatorname{Im}(f))^{\perp}, \operatorname{Im}(f^*) = (\ker f)^{\perp}, \operatorname{rg}(f^*) = \operatorname{rg}(f).$

Soient F, G deux sous-espaces de E tels que $E = F \oplus G$, p le projecteur sur F parallèlement à G. Alors p^* est le projecteur sur G parallèlement à F. Si de plus $E = F \stackrel{.}{\oplus} G$, alors p est autoadjoint : un projecteur orthogonal est autoadjoint. Soit $f \in \mathcal{L}(E)$, si F est un sev stable par F, alors F^{\perp} est stable par f^* .

4 Théorèmes de réduction et applications

4.1 Réduction des endomorphismes symétriques

Si E est un ev euclidien et $u \in \mathcal{L}(E)$ symétrique, alors :

- 1. u est scindé
- 2. si $\lambda \neq \mu \in \mathbb{R}$, alors $\ker(u \lambda Id) \perp \ker(u \mu Id)$
- 3. u est diagonalisable ; plus précisément, il existe une base orthonormale \mathcal{B} telle que $M_{\mathcal{B}}(u)$ soit diagonale

4.2 Endomorphismes symétriques positif

E euclidien, $u \in \mathcal{L}(E)$. $(x,y) \longmapsto (u(x) \mid y)$ est une forme bilinéaire. C'est une fbs ssi $u^* = u$. Dans ce cas, on dit que u est positif si $\forall x \in E$, $(u(x) \mid x) \ge 0$. On dit que u est défini positif si $\forall x \ne 0$, $(u(x) \mid x) > 0$.

Propriétés: Soit u tel que $u^* = u$.

- 1. u est positif ssi $Sp(u) \subset \mathbb{R}^+$
- 2. u est défini positif ssi $Sp(u) \subset \mathbb{R}^{+*}$

Lemme: Soit $\lambda_1 \leq \ldots \leq \lambda_n$ la liste des valeurs propres de u. Alors $\forall x \in E$, $\lambda_1 ||x||^2 \leq (u(x) | x) \leq \lambda_n ||x||^2$. De plus, cet encadrement est optimal car les valeurs extrèmes sont atteintes.

On note souvent $S^+ = \{u \in \mathcal{L}(E) \text{ symétrique positif}\}, S^{++} = \{u \in \mathcal{L}(E) \text{ symétrique défini positif}\}.$

 \mathcal{S}^+ a une structure de $cone: 0 \in \mathcal{S}^+$, \mathcal{S}^+ est stable par +, et si $\lambda \in \mathbb{R}^+$, $u \in \mathcal{S}^+$, $\lambda u \in \mathcal{S}^+$.

 \mathcal{S}^{++} a une structure de *cône pointé*: \mathcal{S}^{++} est stable par +, et si $\lambda \in \mathbb{R}^{+*}$, $u \in \mathcal{S}^{++}$, $\lambda u \in \mathcal{S}^{++}$,

Propriétés : Soit E euclidien.

- Si $v \in \mathcal{L}(E)$, alors $u = v^*v \in \mathcal{S}^+(E)$; si de plus $v \in GL(E)$, alors $u \in \mathcal{S}^{++}(E)$.
- inversement, si $u \in \mathcal{S}^+(E)$, alors $\exists v \in \mathcal{L}(E)/u = v^*v$. Si $u \in \mathcal{S}^{++}(E)$, alors $\exists v \in GL(E)/u = v^*v$.
- Plus précisément, $\forall u \in \mathcal{S}^+(E), \exists v \in \mathcal{S}^+(E)/u = v^2, \text{ et } \forall u \in \mathcal{S}^{++}(E), \exists v \in \mathcal{S}^{++}(E)/u = v^2,$

Exercice : dans cette dernière propriété, v est unique

Décomposition $us: \forall u \in GL(E), \exists s \in S^+(E), \exists v \in \mathcal{O}(E) \text{ tels que } u = vs.$

Cas des matrices : On dit que $M \in \mathfrak{M}_n(\mathbb{R})$ est symétrique positive si ${}^tM = M$ et $\forall X \in \mathbb{R}^n$, ${}^tXMX \geqslant 0$. M est définie positive si de plus $\forall X \neq 0$, ${}^tXMX > 0$. On note de même $\mathcal{S}_n^+(\mathbb{R})$, $\mathcal{S}_n^{++}(\mathbb{R})$. Si $A \in \mathfrak{M}_n(\mathbb{R})$, ${}^tAA \in \mathcal{S}_n^+(\mathbb{R})$, et si $A \in GL_n(\mathbb{R})$, alors ${}^tAA \in \mathcal{S}_n^{++}(\mathbb{R})$. De plus, $M \in \mathcal{S}^+$ ssi $\exists T \in \mathfrak{M}_n(\mathbb{R})$ triangulaire supérieure telle que $M = {}^tTT$; $M \in \mathcal{S}^{++}$ ssi $\exists T \in GL_n(\mathbb{R})$ triangulaire supérieure telle que $M = {}^tTT$.

4.3 Réduction des formes quadratiques

E un ev euclidien, $\forall l \in E^*$, $\exists ! a \in E / \forall x \in E$, $l(x) = (a \mid x)$. Si $a \neq 0$, a est un vecteur normal à ker l. Soit f une fbs, $\exists ! u \in \mathcal{L}(E) / u^* = u$ tel que $\forall x, y \in E$, $f(x, y) = (u(x) \mid y)$.

Corollaire: il existe un base \mathcal{B} orthonormale pour le produit scalaire aussi orthogonale pour f.

5 Endomorphismes orthogonaux

E euclidien.

5.1 Généralités

 $u \in \mathcal{L}(E)$ est orthogonal ssi :

- 1. $u \in GL(E)$ et $u^* = u^{-1}$ ssi
- 2. $\forall (x,y) \in E^2$, $(u(x) \mid u(y)) = (x \mid y)$ ssi
- 3. $\forall x \in E, ||u(x)|| = ||x||$

Corollaire : soit \mathcal{B} une base orthonormale, $u \in \mathcal{O}(E)$ ssi $M_{\mathcal{B}}(u) \in \mathcal{O}_n(\mathbb{R})$ On note $SO(E) = \{u \in \mathcal{L}(E) / \det u = +1\}.$

5.2 Génération de $\mathcal{O}(E)$

Soit \mathcal{H} l'ensemble des symétries par rapport à des hyperplans de E, dim E = n. \mathcal{H} engendre $\mathcal{O}(E)$; plus précisément, si $u \in \mathcal{O}(E)$, $\exists k \in \mathbb{N} / 0 \le k \le n$ et $\exists \sigma_1, \ldots, \sigma_k \in \mathcal{H} / u = \sigma_1 \circ \ldots \circ \sigma_k$.

5.3 Classification des éléments de $\mathcal{O}(E)$ lorsque dim E=3

 $u \in \mathcal{O}(E)$; on écrit $u = \sigma_1 \circ \ldots \circ \sigma_k$ avec k minimal.

- Si k=0, alors u=Id.
- $\bullet\,$ Si $k=1,\,u$ est une symétrie par rapport à un plan.
- Si $k=2, u=\sigma_1\circ\sigma_2$ est une rotation (d'angle différent de 2π). Son axe est $\ker(\sigma_1-Id)\bigcap\ker(\sigma_1-Id)$. Une fois orientés E et l'axe par le choix d'un vecteur unitaire \vec{k} , $M_{\mathcal{B}}(u)$ est de la forme $M_{\mathcal{B}}(u)=\begin{pmatrix}\cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1\end{pmatrix}$ où θ ne dépend plus de la façon de compléter \vec{k} en une BOND $\mathcal{B}=(\vec{i},\vec{j},\vec{k})$ de E. On a de plus : $\sin\theta=[x,u(x),k]_{mixte}$.
- Si $k=3,\ u=\sigma_1\circ\sigma_2\circ\sigma_3$; det u=-1 donc det $-u=1.\ -u$ est donc une rotation d'angle différent de $\pi+2k\pi,\ k\in\mathbb{Z}.$

5.4 Réduction générale des endomorphismes orthogonaux

 $u \in \mathcal{O}(E), \ E_1 = \ker(u - Id), \ E_{-1} = \ker(u + Id).$ Il existe des plans vectoriels H_1, \dots, H_m (avec éventuellement m = 0) stables par u tels que $E = E_1 \stackrel{.}{\oplus} E_{-1} \stackrel{.}{\oplus} H_1 \stackrel{.}{\oplus} \dots \stackrel{.}{\oplus} H_m$. Remarque : $\operatorname{Sp}(u) \subset \{-1, 1\}$. Si $\mathcal B$ est une BON adaptée, $M_{\mathcal B}(u)$ est diagonale par blocs :

$$M_{\mathcal{B}}(u) = \begin{pmatrix} I_{\dim E_1} & & & \\ & -I_{\dim E_{-1}} & & & \\ & & \left(\begin{array}{ccc} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{array} \right) & & \\ & & \ddots & & \\ & & \left(\begin{array}{ccc} \cos \theta_m & -\sin \theta_m \\ \sin \theta_m & \cos \theta_m \end{array} \right) \end{pmatrix}$$

6 Projections orthogonales

Soit E préhilbertien réel

6.1 Projections orthogonales sur un sev de dimension finie

Soit F sev de E de dimension finie ; $\forall x \in E, \exists ! y \in F/y - x \in F^{\perp}$. Cela montre que $E = F \oplus F^{\perp}$. Avec ces notations, $\forall z \in E, \|x - z\| \geqslant \|x - y\|$ avec égalité ssi z = y. Si $\mathcal{B} = (e_1, \dots, e_m)$ BON de $F, \forall x \in E, y = \sum_{i=1}^m (e_i \mid x)e_i$. Corollaire : $(F^{\perp})^{\perp} = F$.

6.2 Propriétés des projecteurs orthogonaux

 (e_1,\ldots,e_m) une famille orthonormale, $F=\mathrm{Vect}(e_1,\ldots,e_n)$. $p:x\in E\longmapsto \sum\limits_{i=1}^m(e_i\mid x)e_i$ est un projecteur, $\ker p=F^\perp$ et $\mathrm{Im}(p)=F$. p est de plus symétrique positif et 1 – lipschitzien, c'est à dire $\forall x,y\in E, \|p(x)-p(y)\|\leqslant \|x-y\|$. Si E est euclidien, tout projecteur autoadjoint est orthogonal et tout projecteur 1 – lipschitzien est orthogonal. Formule de Bessel-Parseval:

- 1. E ev préhilbertien réel, $\mathcal{F}=(e_1,\dots,e_m)$ une famille orthonormale finie. Si $x\in E$, on pose : $x_i=(e_i\mid x)$. Alors $\sum_{i=1}^m x_i^2\leqslant \|x\|^2$ avec égalité ssi $x\in \mathrm{Vect}(\mathcal{F})$.
- 2. E ev préhilbertien réel, $\mathcal{F}=(e_i)_{i\in\mathbb{N}}$ une famille orthonormale infinie. Si $x\in E$ on pose $x_i=(e_i\mid x)$. La série positive $\{x_i^2\}$ est convergente et $\sum_{i=0}^{+\infty}x_i^2\leqslant \|x\|^2$ avec égalité ssi $x\in\overline{\mathrm{Vect}(\mathcal{F})}$ (adhérence de $\mathrm{Vect}(\mathcal{F})$).

5