Chair of Information Systems and Business Process Management (i17)
Department of Computer Science
TUM School of Computation, Information and Technology
Technical University of Munich



#### **Master's Thesis in Informatics**

Nicolás Mario Arteaga García

# **Cotton Candy Digital Twin: Prescriptive Creation of Digital Twins**



Chair of Information Systems and Business Process Management (i17)
Department of Computer Science
TUM School of Computation, Information and Technology
Technical University of Munich



#### **Master's Thesis in Informatics**

#### Nicolás Mario Arteaga García

## **Cotton Candy Digital Twin: Prescriptive Creation of Digital Twins**

Titel der Abschlussarbeit

Thesis for the Attainment of the Degree **Master of Science** 

at the TUM School of Computation, Information and Technology, Department of Computer Science, Chair of Information Systems and Business Process Management (i17)



Declaration of Academic Integrity

I confirm that this master's thesis is my own work and I have documented all sources and

material used.

I am aware that the thesis in digital form can be examined for the use of unauthorized

aid and in order to determine whether the thesis as a whole or parts incorporated in it

may be deemed as plagiarism. For the comparison of my work with existing sources I

agree that it shall be entered in a database where it shall also remain after examination, to

enable comparison with future theses submitted. Further rights of reproduction and usage,

however, are not granted here.

This thesis was not previously presented to another examination board and has not been

published.

Garching, 01.06.2025

Nicolás Mario Arteaga García

## **Abstract**

150 - 180 words

Keywords: Digital Twin, Cotton Candy, BPTM

Include three to five words, phrases, or acronyms as keywords.

## **Contents**

| 1            | Introduction 5 |                    |   |  |  |
|--------------|----------------|--------------------|---|--|--|
|              | 1.1            | Motivation         | 5 |  |  |
|              | 1.2            | Research Questions | 6 |  |  |
|              | 1.3            | Contribution       | 6 |  |  |
|              | 1.4            | Methodology        | 6 |  |  |
|              | 1.5            | Evaluation         | 6 |  |  |
|              | 1.6            | Structure          | 7 |  |  |
| 2            | Rela           | ated Work          | 7 |  |  |
| 3            | Solu           | ntion Design       | 7 |  |  |
| 4            | Imp            | lementation        | 7 |  |  |
| 5 Evaluation |                |                    |   |  |  |
| 6            | Disc           | eussion            | 7 |  |  |
| 7            | Con            | clusion            | 7 |  |  |
| A            | App            | pendix             | 8 |  |  |
|              |                |                    |   |  |  |
| L            | ist            | of Tables          |   |  |  |
|              | 1              | Your first table   | 8 |  |  |
|              |                |                    |   |  |  |
| T.           | ist            | of Figures         |   |  |  |
|              | 1              | My Figure Caption  | 8 |  |  |
|              | 2              | My Figure Caption  | 9 |  |  |

#### Introduction

For exposes, create this chapter, plus start with chapter 2 (Related Work).

#### Motivation

Why are we doing it? About 1 page.

As industries evolve, the ability to optimize processes while minimizing waste has become increasingly important. Digital twins (virtual models of physical systems) are transforming how we monitor, analyze, and improve these processes. While reactive digital twins respond to events as they occur, providing immediate but limited feedback, predictive digital twins forecast potential outcomes based on historical and real-time data, allowing proactive adjustments. However, the growing focus on prescriptive digital twins introduces a new frontier: systems that not only predict outcomes but also recommend specific actions to achieve goals such as improving efficiency, reducing energy consumption, or enhancing product quality.

This thesis explores the development of prescriptive digital twins using the Cotton Candy Automata, a robotic system developed in the chair to automate cotton candy production, as a practical and measurable test case. This scenario provides an ideal environment for evaluating two distinct approaches to digital twin design—bottom-up and top-down—by analyzing key variables such as heating time, spinning duration, sugar amount, and energy usage. Each approach takes a unique perspective:

Bottom-Up Approach: Focuses on physical measurements and process models, leveraging real-time sensor data to guide system optimization.

Top-Down Approach: Relies on historical data and advanced computational methods, including interpolation, selection of closest historical values, and machine learning models like Recurrent Neural Networks (RNNs), to model and optimize the system.

The goal of this thesis is to provide a comprehensive evaluation of these two approaches, comparing their strengths, limitations, and suitability for different scenarios. By analyzing metrics such as energy savings, time efficiency, and production quality, the research aims to determine which method

offers the greatest value (for this process/for specific process types?). Applying both methodologies to the same scenario enables a deeper understanding of their trade-offs and practical implications, offering insights that can guide future efforts in digital twin development.

Ultimately, this work contributes to the broader understanding of how to design and implement prescriptive digital twins, providing actionable recommendations for selecting the best approach based on system goals, constraints, and operational contexts.

#### **Research Questions**

At least 3 questions. They should not be answerable yes/no. Questions should be questions (1 sentence). But you are allowed to explain them in more detail. In the explanation also tell how you plan to prove that your potential future solution is good.

About 1 page.

Fexamples: (1) How can we design and implement prescriptive digital twins for the Cotton Candy Automata? (2) MMM What are the strengths and limitations of each approach, and how do they impact key metrics such as energy savings, time efficiency, and production quality?

#### Contribution

What will/have I do/done that nobody else has done before. About 1/2 page.

#### Methodology

Design Science in Information System (Hevner). How are we doing research?

- (1) Summary what design science is (it uses stakeholders, artefacts, steps, ...).
- (2) What are the stakeholders, artefacts, steps for MY case. What does it mean for my thesis?

About 1.5 pages.

#### **Evaluation**

How will I evaluate that my proposal is good. This ties into the research questions.

About 1 page.

#### Structure

Which chapters will my thesis have, and what are they all about. About 1/4 page.

#### **Related Work**

Related Work - There is a girl with long dark hair doing a thesis on digital twin as a research analysis. ask her per discord

google scholar in-title digital twin / business processes, search queries that give you less than 20 papers and decide 1 or 2 papers in the end. How many papers did we eliminate? why? bc too

backgorund 1-2 sentences -> Why am I doing something different to this related work

Final max 4-5 papers that really relate to what Im doing

this one looks good :)) https://www.sciencedirect.com/science/article/pii/S0360835224003620

## **Solution Design**

### **Implementation**

#### **Evaluation**

### **Discussion**

#### Conclusion

**Figure 1** *My Figure Caption* 



A note describing the figure

## Appendix

**Table 1** *Your first table* 

| Value 1  | Value 2   | Value 3 |
|----------|-----------|---------|
| $\alpha$ | β         | γ       |
| 1        | 1110.1    | a       |
| 2        | 10.1      | b       |
| 3        | 23.113231 | c       |

A note describing the table.

Figure 2
My Figure Caption



A note describing the figure