最优化导论第三次作业题

1. 设 f(x) 为凸函数。证明: f(x) 为凸函数的充要条件是对任意的 $x,y\in\mathbb{R}^n$,一元函数

$$\varphi(\alpha) = f(x + \alpha y)$$

是关于 α 的凸函数。

2. 设 $f:\mathbb{R}^n\to\mathbb{R}$ 为连续函数。 证明: f 是凸函数当且仅当对于任意的 $x,y\in\mathbb{R}^n$,其在连线上取值的平均值不超过两端点函数值的平均值,即:

$$\int_0^1 f(x+\lambda(y-x))\,d\lambda \leq rac{f(x)+f(y)}{2}.$$

3. 设 $f: \mathbb{R} \to \mathbb{R}$ 为凸函数,且 $\mathbb{R}_+ \subseteq \mathrm{dom}\, f$ 。定义其"滑动平均"函数

$$F(x)=rac{1}{x}\int_0^x f(t)\,dt, \qquad \mathrm{dom}\, F=\mathbb{R}_{++}.$$

证明 F 为凸函数。(可假设 f 可微。)

4. 判断下列函数在给定定义域上是否为凸函数:

- (a) $f(x) = e^x 1$,定义域 \mathbb{R} .
- (b) $f(x_1,x_2)=x_1x_2$,定义域 \mathbb{R}^2_{++} .
- (c) $f(x_1,x_2)=1/(x_1x_2)$,定义域 \mathbb{R}^2_{++} .
- (d) $f(x_1,x_2)=x_1/x_2$,定义域 $\mathbb{R}^2_{++}.$
- (e) $f(x_1,x_2)=x_1^2/x_2$,定义域 ${\mathbb R} imes{\mathbb R}_{++}.$
- (f) $f(x_1,x_2)=x_1^{lpha}x_2^{1-lpha}$,其中 $0\leq lpha \leq 1$,定义域 \mathbb{R}^2_{++} .

5. 证明以下函数在其定义域上是凸函数,可以使用复合规则:

(a)
$$f(x) = -\log\Bigl(\sum_{i=1}^m e^{a_i^ op x + b_i}\Bigr), \quad \mathrm{dom} f = \Bigl\{x \mid \sum_{i=1}^m e^{a_i^ op x + b_i} < 1\Bigr\}.$$

(b)
$$f(x,u,v) = -\sqrt{uv} - \frac{x^{\top}x}{u}$$
, $\mathrm{dom} f = \{(x,u,v) \mid u>0, v>0, uv>x^{\top}x\}$.

(c)
$$f(x,u,v) = -\log(uv - x^\top x)$$
, $\operatorname{dom} f = \{(x,u,v) \mid u > 0, v > 0, uv > x^\top x\}$.

$$\text{(d) } f(x,t) = - \big(t^p - \|x\|_p^p \big)^{1/p}, \quad p > 1, \quad \mathrm{dom} f = \{ (x,t) \mid t \geq \|x\|_p \}.$$

(e)
$$f(x,t) = -\log \left(t^p - \|x\|_p^p\right), \quad p>1, \quad \mathrm{dom} f = \{(x,t) \mid t>\|x\|_p\}.$$

6. 设 $f:\mathbb{R}^n \to \mathbb{R}$ 是定义在整个 \mathbb{R}^n 上的凸函数。 若存在一个有限划分

$$\mathbb{R}^n = X_1 \cup X_2 \cup \cdots \cup X_L$$

其中每个 X_i 的内部非空,且 $\operatorname{int} X_i \cap \operatorname{int} X_j = \emptyset$ (当 $i \neq j$ 时), 并且在每个子集 X_i 上, f 都是仿射函数: $f(x) = a_i^\top x + b_i$, $x \in X_i$. 证明: $f(x) = \max_{i=1,\dots,L} (a_i^\top x + b_i)$.

7. 设 $f:\mathbb{R}^n o \mathbb{R}$ 为凸函数,定义其透视函数(perspective function)为

$$g(x,t)=t\,f(x/t),$$
 定义域 $\mathrm{dom}\,g=\{(x,t)\mid x/t\in\mathrm{dom}\,f,\ t>0\}.$

证明:

- (a) dom g 是凸集;
- (b) 对任意 $(x,t),(y,s)\in\mathrm{dom}\,g$,以及 $0\leq\theta\leq1$,成立:

$$g(\theta x + (1-\theta)y, \ \theta t + (1-\theta)s) \le \theta g(x,t) + (1-\theta)g(y,s).$$