

Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Level In Core Mathematics C34 (WMA02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code WMA02_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = \dots$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. Formula

Attempt to use correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

1(a)	$\tan \alpha = \frac{2}{7} \Rightarrow$ $\tan \alpha = \pm \frac{2}{7} \text{ or } \tan \alpha$ $\sin \alpha = \pm \frac{2}{\sqrt{53}} \text{ or } \sin \alpha = \pm \frac{7}{\sqrt{53}} \text{ or } \cot \alpha$ $\Rightarrow \alpha = 0$ Uses one of these equations	on $\alpha = \pm \frac{7}{2}$ or $\cos \alpha = \pm \frac{7}{\sqrt{53}}$ or $\cos \alpha = \pm \frac{2}{\sqrt{53}}$	B1 M1	
	$\tan \alpha = \frac{2}{7} \Rightarrow$ $\tan \alpha = \pm \frac{2}{7} \text{ or } \tan \alpha$ $\sin \alpha = \pm \frac{2}{\sqrt{53}} \text{ or } \sin \alpha = \pm \frac{7}{\sqrt{53}} \text{ or } \cos \alpha$ $\Rightarrow \alpha = .$	on $\alpha = \pm \frac{7}{2}$ or $\cos \alpha = \pm \frac{7}{\sqrt{53}}$ or $\cos \alpha = \pm \frac{2}{\sqrt{53}}$	M1	
	*	s to find a value for α		
	$\alpha = 15.95^{\circ}$	Awrt 15.95° (Allow awrt 0.28 (rad))	A1	
(b)	$\sqrt{53}\sin(2\theta - 15.95^{\circ}) = 4 \Rightarrow \sin(2\theta - 15.95^{\circ})$	$\frac{ }{2\theta - 15.95^{\circ}}) = \frac{4}{\sqrt{53}}(0.549)$		(3)
	Attempts to use part (a)" $\sqrt{53}$ " sin(2 θ		M1	
	$\sin(2\theta \pm "15.95^{\circ}")$			
<u> </u>	Allow the letter α $2\theta - 15.95^{\circ} = 33.3287 \Rightarrow \theta = 24.6^{\circ}$		A1	
	$2\theta - 15.95^{\circ} = 35.5287 \Rightarrow \theta = 24.0$ $2\theta - 15.95^{\circ} = 180^{\circ} - 33$		AI	
	Correct attempt at a second E.g. $2\theta_2 \mp '15.95^{\circ} '=180^{\circ} - '33.3287^{\circ} ' \Rightarrow$ (May be implied to the implied of the im	solution in the range. $\theta_2 = \frac{180^\circ - '33.3287^\circ '\pm '15.95^\circ '}{2}$ by their θ_2) scored the previous M. ees so if working in radians must be	dM1	
	$\theta = 81.3^{\circ}$	Awrt 81.3° only	A1	
	Ignore extra answers outside range but deduc			
				(4)
(c)	$28\sin\theta\cos\theta = a\sin 2\theta \Rightarrow a = 14$	a = 14	B1	
F	$8\sin^2\theta = b(\pm 1 \pm 2\sin^2\theta) + c \text{ or } 8$ or $8\sin^2\theta = 4\sin^2\theta + 4\sin^2\theta = 4\sin^2\theta$ Attempts to use $a\cos 2\theta$ identity e.g. $\cos 2\theta$	$\theta + 4(1 - \cos^2 \theta) = \pm 4\cos 2\theta \pm 4$ $= \pm 1 \pm 2\sin^2 \theta \text{ or } \sin^2 \theta = \frac{1}{2}(\pm 1 \pm \cos 2\theta)$	M1	
	at some point in their working and ap			
_	$b = -4$, $c = 4$ or $-4\cos 2\theta + 4$	Correct values or correct expression	A1	(2)
(d)	$(28\sin\theta\cos\theta + 8\sin^2\theta)_{\text{max}} = 2'\sqrt{53}' + 4'$	Maximum = $2 \times \text{their}\sqrt{53} + \text{their } c$ May be implied e.g. by their decimal answer.	M1	(3)
	$2\sqrt{53} + 4$	Cao (must be exact not decimals)	A1	
	Attempts to use calculus for the maximum s	should reach $2R + c$ as above for M1.		(2)
			Total	(2) 12

Question Number	Scheme	Notes	Marks
2	$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \equiv A$	$+\frac{B}{x+1}+\frac{C}{x-3}$	
(a)	A = 3	Must be clearly identified as the value of A . (May be implied by their partial fractions)	B1
	$3x^2 + 4x - 7 = A(x+1)(x-3)$	B + B(x-3) + C(x+1)	
	And then expands and compares coefficients or substitutes values of x leading to a value for B or C Or		
	$3x^{2} + 4x - 7 \div (x+1)(x-3) = 3 + \frac{10x+2}{(x+1)(x-3)}$		
	$\Rightarrow 10x + 2 = B(x -$	3)+C(x+1)	
	And then expands and compares coefficient value for B		
	A correct method may be implied by correct values provided no incorrect work is		
-	B = 2 or C = 8	One of B or C correct	A1
	B=2 and $C=8$	Both B and C correct	A1
		1	(4)

(b) Way 1	If correct values for A, B and C are obtained by an incorrect method in part (a), allow a full recovery in (b)		
	$\frac{1}{x+1} = (1+x)^{-1} = (1-x+x^2)$	Attempts to expand $(1+x)^{-1}$. Look for $1 + a$ correct simplified or unsimplified second or third term.	M1
	$\frac{1}{x-3} = -\left(3-x\right)^{-1} = -\frac{1}{3}\left(1-\frac{1}{3}x\right)^{-1}$	$\frac{1}{x-3} = -\frac{1}{3} \left(1 - \frac{1}{3}x \right)^{-1}$. Takes out a correct factor including the minus sign and a correct bracket.	B1
	$\left(1 - \frac{1}{3}x\right)^{-1} = 1 + \frac{1}{3}x + \frac{1}{9}x^{2} \dots$	Attempts to expand $\left(1 \pm \frac{1}{3}x\right)^{-1}$. Look for $1 + a$ correct simplified or unsimplified second or third term.	M1
	Note		
	$-(3-x)^{-1}$ can be expanded as $-(3^{-1}+(-$	$(-1)3^{-2}(-x)+\frac{(-1)(-2)}{2!}3^{-3}(-x)^2+$	
	Score B1 for -3^{-1} as the first term and M1 f	For correct attempt at the 2 nd or 3 rd term	
	$\frac{1}{x-3}$ can be expanded as $(x-3)^{-1}$ =	$=3^{-1}\left(\frac{x}{3}-1\right)^{-1}\left(=3^{-1}\left(-1+\frac{x}{3}\right)^{-1}\right)$	
	$=3^{-1}\left(-1-\left(-1\right)^{-2}\left(\frac{x}{3}\right)+\frac{-1}{3}\right)$	$\frac{\left(-2\right)}{2}\left(-1\right)^{-3}\left(\frac{x}{3}\right)^{2}+\ldots\right)$	
	Score B1 for -3^{-1} as the first term and M1 f	for correct attempt at the 2 nd or 3 rd term	
	$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \approx (3+)2(1-x-3)$	$+x^2$) $-\frac{8}{3}$ $\left(1+\frac{1}{3}x+\frac{1}{9}x^2\right)$	M1
	Combines using their expansions and at least their B and C (so allow if they forget/don't add their A)		
	$=\frac{7}{26}x + \frac{46}{2}x^2$	Any 2 correct terms	A1
	3 9 27 Allow $2\frac{1}{7}$ for $\frac{7}{7}$, $-2\frac{8}{7}$ for	All terms correct $\frac{26}{100}$, $1\frac{19}{100}$ for $\frac{46}{100}$	A1
	Allow $2\frac{1}{3}$ for $\frac{1}{3}$, $-2\frac{1}{9}$ to	$\frac{1}{9}$, $1\frac{3}{27}$ for $\frac{1}{27}$	
			(6) Total 10
<u> </u>			I Utal IU

2(b)	(b) Way 2 not requiri	ng part (a) using		
	$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} = (3x^2 + 4x - 7)(x+1)^{-1}(x-3)^{-1}$			
	$(1+n)^{-1}$ $(1-n+n^2)$	Attempts to expand $(1+x)^{-1}$.	N/1	
	$(1+x)^{-1} = (1-x+x^2)$	Look for 1 + a correct simplified or unsimplified second or third term.	M1	
	$\frac{1}{x-3} = -(3-x)^{-1} = -\frac{1}{3}\left(1 - \frac{1}{3}x\right)^{-1}$ $\frac{1}{x-3} = -\frac{1}{3}\left(1 - \frac{1}{3}x\right)^{-1} \text{ or } -3^{-1}\left(1 - \frac{1}{3}x\right)^{-1}$ Takes out a correct factor including the minus sign.			
	$\left(1 - \frac{1}{3}x\right)^{-1} = 1 + \frac{1}{3}x + \frac{1}{9}x^{2}$ Attempts to expand $\left(1 \pm \frac{1}{3}x\right)^{-1}$. Look for $1 + a$ correct simplified or		M1	
	Note	unsimplified second or third term.		
	$-(3-x)^{-1} \text{ can be expanded as } -\left(3^{-1}+(-1)3^{-2}(-x)+\frac{(-1)(-2)}{2!}3^{-3}(-x)^2+\dots\right)$			
	Score B1 for -3^{-1} as the first term and M1 for correct attempt at the 2^{nd} or 3^{rd} term			
	or >=1 (>=1)			
	$\frac{1}{x-3}$ can be expanded as $(x-3)^{-1}$ =	$=3^{-1}\left(\frac{x}{3}-1\right)^{-1}\left(=3^{-1}\left(-1+\frac{x}{3}\right)^{-1}\right)$		
	$=3^{-1}\left(-1-\left(-1\right)^{-2}\left(\frac{x}{3}\right)+\frac{-1}{3}\right)$	$\frac{(-2)}{2}(-1)^{-3}\left(\frac{x}{3}\right)^2+$		
	Score B1 for -3^{-1} as the first term and M1 for correct attempt at the 2^{nd} or 3^{rd} term			
	$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \approx \left(3x^2 + 4x - 7\right)\left(-\frac{1}{3}\right)\left(1 + \frac{1}{3}x + \frac{1}{9}x^2\right)\left(1 - x + x^2\right) = \dots$		M1	
	Attempts to multiply out all 3 brackets			
	$=\frac{7}{2}-\frac{26}{2}x+\frac{46}{27}x^2$	Any 2 correct terms	Al	
	3 9 27	All terms correct	A1 (6)	
			(6)	

Question Number	Scheme	Notes	Marks
3(a)	$f\left(-\frac{3k}{4}\right) = \dots \text{ or } f\left(-4k\right) = \dots$	Attempts $f\left(-\frac{3k}{4}\right)$ or $f\left(-4k\right)$	M1
	Note:	/	
	Candidates who use completion of the square t	o obtain e.g. $a\left(x+\frac{3k}{4}\right)^2+b$ must then	
	identify the "b" as an "end point" if they	(7)	
	$y_{\min} = -\frac{k^2}{8} \text{ or } y > -\frac{k^2}{8} \text{ or } y \ge -\frac{k^2}{8}$ or $y_{\max} = 21k^2 \text{ or } y < 21k^2 \text{ or } y \le 21k^2$	One correct "end" of the range. May be implied by their final answer. Allow strict and non-strict inequality symbols or other indications that values are max or min.	A1
	$f\left(-\frac{3k}{4}\right) = \dots$ and $f\left(-4k\right) = \dots$	Attempts $f\left(-\frac{3k}{4}\right)$ and $f\left(-4k\right)$	M1
	Note:		
	Candidates who use completion of the square t	o obtain e.g. $a\left(x+\frac{3k}{4}\right)^2+b$ must then	
	identify the "b" as an "end point" if they	do not explicitly find $f\left(-\frac{3k}{4}\right)$	
	$-\frac{k^2}{8} \le f(x) \le 21k^2$ $\left[-\frac{k^2}{8}, 21k^2 \right]$ $f(x) \ge -\frac{k^2}{8} \text{ and } f(x) \le 21k^2$ $f(x) \ge -\frac{k^2}{8} \cap f(x) \le 21k^2$	Correct range. Allow alternative notation as shown and allow y or "range" for $f(x)$ but do not allow x for $f(x)$.	A1
(b)			(4)
(0)	$gf(-2) = 2k - 3(2(-2)^{2} + 3k(-2) + k^{2})$ or $gf(x) = 2k - 3(2x^{2} + 3kx + k^{2})$	Correct expression for $gf(-2)$ or $gf(x)$. Award this mark as soon as a correct expression is seen.	B1
	$2k - 3(2(-2)^{2} + 3k(-2) + k^{2}) = -12$	Puts their $gf(-2) = \pm 12$ to obtain an equation in k only. Must be using $x = -2$.	M1
	$3k^2 - 20k + 12 = 0$	Solves a 3TQ – see general guidance. Dependent on the previous M.	dM1
	$\Rightarrow (3k-2)(k-6) = 0 \Rightarrow k = \frac{2}{3}, 6$	Correct values. Allow equivalent fractions for $\frac{2}{3}$ or 0.6 with a clear dot over the 6.	A1
			(4)
			Total 8

Question Number	Scheme	Notes	Marks
4	$81y^3 + 64x^2y + 2$	256x = 0	
(a)	$\frac{d(81y^3)}{dx} = 243y^2 \frac{dy}{dx}$	$\frac{d(81y^3)}{dx} = ky^2 \frac{dy}{dx}$ $\frac{d(64x^2y)}{dx} = \alpha xy + \beta x^2 \frac{dy}{dx}$ Correct differentiation. The "= 0"	M1
	$\frac{d(81y^3)}{dx} = 243y^2 \frac{dy}{dx}$ $\frac{d(64x^2y)}{dx} = 128xy + 64x^2 \frac{dy}{dx}$	$\frac{d(64x^2y)}{dx} = \alpha xy + \beta x^2 \frac{dy}{dx}$	M1
	$243y^{2}\frac{dy}{dx} + 128xy + 64x^{2}\frac{dy}{dx} + 256(=0)$	Correct differentiation. The "= 0" is not required but there should be no extra terms.	A1
	For the first 3 marks you can ignore any	y spurious " $\frac{dy}{dx}$ = " at the start.	
	$243y^{2} \frac{dy}{dx} + 64x^{2} \frac{dy}{dx} = -128xy - 256 \Rightarrow \frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx} = \dots$		
	Makes $\frac{dy}{dx}$ the subject allowing sign errors		M1
	This depends on there being exactly two	$\frac{dy}{dx}$ terms. One coming from the	
	differentiation of $81y^3$ and one coming from the differentiation of $64x^2y$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-128xy - 256}{243y^2 + 64x^2}$	Correct expression (oe)	A1
	Note that the final M1A1 in (a) can	<u>n</u> be recovered in part (b)	
			(5)

(b)	Note that full marks are available in (b) follow	ing an incorrect <u>denominator</u> in (a)	
	-128xy - 256 = 0	Sets their numerator = 0. Note that this may appear from putting $\frac{dy}{dx} = 0$ into their differentiation in part (a) before making $\frac{dy}{dx}$ the subject.	M1
	$81y^{3} + 64y\left(-\frac{2}{y}\right)^{2} + 256\left(-\frac{2}{y}\right) = 0$ or $81\left(-\frac{2}{x}\right)^{3} + 64x^{2}\left(-\frac{2}{x}\right) + 256x = 0$	Substitutes to obtain an equation in one variable. Dependent on the first M.	d M1
	$y^{4} = \frac{256}{81} \Rightarrow y = \dots$ or $x^{4} = \frac{81}{16} \Rightarrow x = \dots$	Solves an equation of the form $y^4 = p$ or $x^4 = q$ $(p, q > 0)$ Depends on the previous M.	d M1
	$y = \pm \frac{4}{3}$ or $x = \pm \frac{3}{2}$	2 Correct values for <i>x</i> or 2 correct values for <i>y</i> . Allow unsimplified for this mark.	A1
	$y = (\pm) "\frac{4}{3}" \Rightarrow x = \dots \text{ or } x = (\pm) "\frac{3}{2}" \Rightarrow y = \dots$	Attempts at least one value of the other variable having previously found and solved an equation in one variable.	M1
	Examples: $\left(\pm \frac{3}{2}, \mp \frac{4}{3}\right)$ or $x = \pm \frac{3}{2}, y = \mp \frac{4}{3}$ or $x = \frac{3}{2}, y = -\frac{4}{3}$ and $x = -\frac{3}{2}, y = \frac{4}{3}$ or $\left(\frac{3}{2}, -\frac{4}{3}\right), \left(-\frac{3}{2}, \frac{4}{3}\right)$	Correct values which must now be simplified and paired correctly. Do not isw and mark their final answer.	A1
			(6)
			Total 11

Question Number	Scheme	Notes	Marks
5	$\tan x = m \text{and} 4\tan y = 8m + 5$		
(a)	Examples: $\sec^2 x = 1 + m^2$ or $\sec^2 y = 1 + \left(\frac{8m + 5}{4}\right)^2$ or $16\sec^2 y = 16 + 16(8m + 5)^2$	Attempts to express $\sec^2 x$ or $\sec^2 y$ in terms of m using a correct identity.	M1
	$16(\sec^2 x + \sec^2 y) = 16\left(1 + x^2\right)$ Uses their expressions in <i>m</i> and 537 to obwhich may be the	otain a quadratic equation in terms of m	M1
	2	Solves their 3TQ as far as $m =$	M1
	$m^2 + m - 6 = 0 \Longrightarrow m = 2, -3$	Correct values	A1
			(4)
(b)	$\tan x = 2 \Rightarrow \sin x$ Correct method for the value of $\sin x$. Must work but m does not need to be exact. So Can be for using either	be from an appropriate identity or exact e.g. $\sin(\tan^{-1} 2) = 0.8944$ scores M0	M1
	$=\frac{2}{\sqrt{5}}$	cao (oe) and no other values	A1
(c)	$\tan y = \frac{21}{4} \Rightarrow \cot y = \frac{4}{21}$	Correct method to obtain a value for cot y. So uses $4 \tan y = 8m + 5$ and their m to find a value for tan y and finds reciprocal. Can be for using either of their values of m. cao (oe) and no other values	M1 A1
		the (50) and no other values	(2)
			Total 8

Question Number	Scheme	Notes	Marks
6(a)	$\pm \overrightarrow{AB} = \pm \begin{pmatrix} 5 \\ 2 \\ 7 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} \end{pmatrix}$	Correct attempt at direction. May be implied by at least 2 correct components if no method seen.	M1
	$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ or $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 9\mathbf{k} + \lambda (3\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	Accept equivalents but it must be an equation and it must be "r =" or $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$	A1
	Equivalent correct	answers include:	
	$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ -1 \\ 2 \end{pmatrix} \mathbf{r} = \begin{pmatrix} 5 \\ 2 \\ 7 \end{pmatrix} + \lambda$	(2) () (2)	
	Do not allow e.g. $\mathbf{r} = \begin{pmatrix} 2\mathbf{i} \\ \mathbf{j} \\ 9\mathbf{k} \end{pmatrix} + \lambda \begin{pmatrix} 3\mathbf{i} \\ \mathbf{j} \\ -2\mathbf{k} \end{pmatrix}$ unless	ess a correct form is seen earlier then isw	
			(2)

(b) Way 1	$\overrightarrow{AC} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix}$	Attempts $\pm \overrightarrow{AC}$. May be implied by at least 2 correct components if no method seen.	M1
	$\pm \overrightarrow{AB}. \pm \overrightarrow{AC} = AB AC \cos\theta =$		
	$\Rightarrow \cos \theta \Rightarrow \frac{1}{\sqrt{14}}$	$\frac{4}{\sqrt{56}} \Rightarrow \theta = \dots$	dM1
	Attempt the scalar product of $\pm \overrightarrow{AB}$ or thei $\pm \overrightarrow{AC}$ and proce	± , ,	
	$\theta = 60^{\circ}$	Cao (Must be degrees not radians)	A1 (3)
	(b) Way 2 (cosine rul	e on triangle <i>ARC</i>)	(3)
	$AB = \sqrt{14}, AC = 2\sqrt{14}, BC = \sqrt{42}$	Attempts the lengths of all 3 sides	M1
	$42 = 14 + 56 - 2\sqrt{14}\sqrt{56}\cos\theta$ $\Rightarrow \cos\theta = \frac{28}{2\sqrt{14}\sqrt{56}} \Rightarrow \theta = \dots$	Attempt cosine rule and proceeds to $\theta = \dots$	dM1
	$\theta = 60^{\circ}$	Cao (Must be degrees not radians)	A1
			(3)
	(b) Way 3 using	vector product	
	$\overrightarrow{AC} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix}$	Attempts $\pm \overrightarrow{AC}$	M1
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & -6 \\ 3 & 1 & -2 \end{vmatrix} = \begin{pmatrix} 14 \\ -14 \\ 14 \end{pmatrix} \Rightarrow \mathbf{k}$ Attempt the vector product of $+\overrightarrow{AB}$ or the		M1
	Attempt the vector product of $\pm \overrightarrow{AB}$ or their direction vector from part (a) and their $\pm \overrightarrow{AC}$ and proceeds to $\theta = \dots$		
	$\theta = 60^{\circ}$	Cao (Must be degrees not radians)	A1
			(3)

(c) Way 1	$ \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix} $	Attempts \overrightarrow{CD} by finding: (a general point on \overrightarrow{AB}) – \overrightarrow{OC} or (their part (a)) – \overrightarrow{OC}	M1
	$\begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix} \bullet \begin{cases} \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} -4 \\ -4 \end{pmatrix} - \begin{pmatrix}$	$+12\lambda = 0 \Rightarrow \lambda = \dots$	M1
	Attempts $AC \cdot CD = 0$ and solves for λ . I AC and a correct attempt at CD or what identified	they think is CD as long as it is clearly	
	$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	Uses their value of λ to find D. Dependent on both previous M's	dd M1
	(14, 5, 1) or $14\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 14 \\ 5 \\ 1 \end{pmatrix}$	Correct coordinates or vector and no other points or vectors.	A1
		2	(4)
	(c) Wa	ny 2:	
	$AC = 2\sqrt{14} \Rightarrow AD = \frac{2\sqrt{14}}{\cos 60^{\circ}} \left(= 4\sqrt{14}\right)$	Correct attempt at the length of AD	M1
	$AB = \sqrt{14} \Rightarrow AD = 4AB$ or $(3\lambda)^{2} + \lambda^{2} + (2\lambda)^{2} = (4\sqrt{14})^{2} \Rightarrow \lambda = \dots$	Uses ratio of AB to AD to find a value for " λ " or uses the length of AD and applies Pythagoras to " λ "×their	M1
	$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	direction of l to find a value for " λ " Uses their value of " λ " to find D . Dependent on both previous M's	dd M1
	$D(14, 5, 1)$ or $14\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ etc.	Correct coordinates or vector and no other points or vectors	A1
	(c) W:	ay 3	
	$ \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix} $	Attempts \overrightarrow{CD} by finding: (a general point on \overrightarrow{AB}) – \overrightarrow{OC} or (their part (a)) – \overrightarrow{OC}	M1
	$(3\lambda - 2)^2 + (\lambda + 4)^2 + (6\lambda $	$0 \Rightarrow \lambda = \dots$	M1
	Attempts $(CD)^2 = (AC^2)^2$	$(\tan 60)^2$ and solves for λ	
	$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	Uses their value of λ to find D. Dependent on both previous M's	dd M1
	(14, 5, 1) or $14\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 14 \\ 5 \\ 1 \end{pmatrix}$	Correct coordinates or vector and no other points or vectors.	A1

(c) Wa	ay 4	
$\begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}$	Attempts \overrightarrow{CD} by finding: (a general point on \overrightarrow{AB}) – \overrightarrow{OC} or (their part (a)) – \overrightarrow{OC}	M1
$(3\lambda - 2)^2 + (\lambda + 4)^2 + (6 - 2\lambda)^2 + AC^2 = (3\lambda)^2 + \lambda^2 + (2\lambda)^2$ $28\lambda - 112 = 0 \Rightarrow \lambda = \dots$ Attempts $AC^2 + CD^2 = AD^2$ and solves for λ		M1
$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	Uses their value of λ to find D. Dependent on both previous M's	ddM1
(14, 5, 1) or $14\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 14 \\ 5 \\ 1 \end{pmatrix}$	Correct coordinates or vector and no other points or vectors.	A1

(d)	Area ADC = $\frac{1}{2}AC \times CD = \frac{1}{2}\sqrt{56}\sqrt{168}$	Correct triangle area method	M1	
	$=28\sqrt{3}$	cao	A1	
				(2)
	Alternative	es for (d)		
	$\frac{1}{2}AC \times AD\sin 60^{\circ} = \frac{1}{2}\sqrt{56}\sqrt{224}\frac{\sqrt{3}}{2},$	$\frac{1}{2}AD \times DC\sin 30^{\circ} = \frac{1}{2}\sqrt{168}\sqrt{224}\frac{1}{2}$		
	$\frac{1}{2}AC \times AC \tan 60^{\circ}$	$=\frac{1}{2}\sqrt{56}\sqrt{56}\sqrt{3}$		
			Total	11

Question Number	Scheme	Notes	Marks
7(a)	Strip width = 0.5	Correct value stated or used within the formula.	B1
	$\frac{11\sqrt{5}}{5} + \frac{13}{3} + 2\left(\frac{23\sqrt{6}}{12} + \frac{1}{12}\right)$	$\frac{2\sqrt{7}}{7} + \frac{25\sqrt{2}}{8}$	
	or (4.91+4.33+2(4.69+	,	M1
	Correct structure for their y values (if their v Must have y values starting at x =	<u> </u>	
	Area $\approx \frac{1}{2} \times \frac{1}{2} \left(\frac{11\sqrt{5}}{5} + \frac{13}{3} + 2 \left(\frac{23}{1} \right) \right)$	$\left(\frac{\sqrt{6}}{2} + \frac{12\sqrt{7}}{7} + \frac{25\sqrt{2}}{8}\right)$	
	or Area $\approx \frac{1}{2} \times \frac{1}{2} (4.91 + 4.33 + 2(4.91 + 4.33 + 4.91 + 4.33 + 4.91.$	4.69+4.53+4.41))	A1
	Correct numerical expression for the area (all implied by their ar		
	9.14	9.14 only	A1
(b)	du	Correct derivative. Accept any	(4)
(~)	$u = 2x - 3 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2$	correct equivalents e.g. $du = 2dx$	B1
	$\int \frac{x+7}{\sqrt{2x-3}} \mathrm{d}x = \int \frac{\frac{u+3}{2}+7}{\sqrt{u}} \frac{1}{2} \mathrm{d}u$	M1: Fully substitutes. <u>Just</u> replacing "dx" with "du" with no evidence of where the "du" has come from is M0 but allow slips e.g. omission of "+7"	M1A1
		A1: Fully correct expression.	
	$\frac{1}{4} \left(\frac{2}{3} u^{\frac{3}{2}} + 34 u^{\frac{1}{2}} \right) (+c)$	Fully correct integration in any form (+ c not required)	A1
	Note: Integration by	•	
	$\frac{1}{4} \int (u+17)u^{-\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int u^{\frac{1}{2}} du$	$2u^{-\frac{1}{2}} du = \frac{1}{2}u^{\frac{3}{2}} + \frac{17}{2}u^{\frac{1}{2}} - \frac{1}{3}u^{\frac{3}{2}}(+c)$	
	x = 4, u = 5 $x = 6, u = 9$	Correct <i>u</i> limits seen anywhere.	B1
	If they return to x then this B1 is for replacing u with $2x-3$		
	$\frac{1}{4} \left[\frac{2}{3} u^{\frac{3}{2}} + 34 u^{\frac{1}{2}} \right]_{5}^{9} = \frac{1}{4} \left\{ \left(\frac{2}{3} (9)^{\frac{3}{2}} + 34 (9)^{\frac{3}{2}} \right) \right\} = \frac{1}{4} \left\{ \left(\frac{2}{3} (9)^{\frac{3}{2}} + 34 (9)^{\frac{3}{2}} \right) \right\}$	$9)^{\frac{1}{2}} - \left(\frac{2}{3}(5)^{\frac{3}{2}} + 34(5)^{\frac{1}{2}}\right)$	
	Substitutes their (changed) <i>u</i> limits into a change round or substitutes <i>x</i> limits if they undo the stround		M1
	$=30-\frac{28}{3}\sqrt{5}$	cao	A1
			(7)
			Total 11

	Note that 7(b) is hence or otherwise so other	substitutions will be seen. The mark	
	scheme will follow the same structure as in the example below:		
7(b)		Correct derivative. Accept correct	
	$u^2 = 2x - 3 \Rightarrow 2u \frac{\mathrm{d}u}{\mathrm{d}x} = 2$	equivalents e.g. $2u = 2\frac{\mathrm{d}x}{\mathrm{d}u}$,	B1
	<u> </u>	dx = u du	
	$\int \frac{x+7}{\sqrt{2x-3}} \mathrm{d}x = \int \frac{\frac{u^2+3}{2}+7}{u} u \mathrm{d}u$	M1: Fully substitutes. Allow slips e.g. omission of " + 7"	M1A1
	$\int \sqrt{2x-3}$ $\int u$	A1: Fully correct expression.	
	$\frac{u^3}{6} + \frac{17}{2}u(+c)$	Fully correct integration in any form (+ c not required)	A1
	$x = 4, u = \sqrt{5}$ $x = 6, u = 3$	Correct <i>u</i> limits seen anywhere.	B1
	If they return to x then this B1 is for replacing u with $\sqrt{2x-3}$		
	$\left[\frac{1}{6}u^3 + \frac{17}{2}u\right]_{\sqrt{5}}^3 = \left\{ \left(\frac{27}{6} + \frac{17}{2}(3)\right) \right\}$	$-\left(\frac{1}{6}\left(\sqrt{5}\right)^3 + \frac{17}{2}\left(\sqrt{5}\right)\right)\right\}$	
	Substitutes their (changed) <i>u</i> limits into a change round or substitutes <i>x</i> limits if they undo the stronger	=	M1
	round	1	
	$=30-\frac{28}{3}\sqrt{5}$	cao	A1
			(7)

	Note that 7(b) can also be	e done by parts:	
7(b)	$\int \frac{x+7}{\sqrt{2x-3}} dx = \int (x+7)(2x-3)^{-\frac{1}{2}} dx$	Uses $\frac{x+7}{\sqrt{2x-3}}$ as $(x+7)(2x-3)^{-\frac{1}{2}}$ and makes some progress with attempting to integrate even if it is incorrect.	B1
	$\int (x+7)(2x-3)^{-\frac{1}{2}} dx = (x+7)(2x+7$	he correct direction	M1A1
	$\int (2x-3)^{\frac{1}{2}} dx = \frac{1}{3} (2x-3)^{\frac{3}{2}}$	$\int (2x-3)^{\frac{1}{2}} dx = k(2x-3)^{\frac{3}{2}}$	M1
		$\int (2x-3)^{\frac{1}{2}} dx = \frac{1}{3} (2x-3)^{\frac{3}{2}}$	A1
	$\left[(x+7)(2x-3)^{\frac{1}{2}} - \frac{1}{3}(2x-3)^{\frac{3}{2}} \right]_{4}^{6} = \left\{ \left(11(9) \right)^{\frac{3}{2}} \right\}_{4}^{6} = \left\{ \left$		M1
	$=30-\frac{28}{3}\sqrt{5}$	cao	A1
			(7)

Question Number	Scheme	Notes	Marks
8(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t - 1$	Correct derivative	B1
	Quotient rule $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{(1-t)\times (1-t)}{(1-t)^2}$	$\frac{4-4t\times(-1)}{1-t)^2}$	
	Obtains $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\alpha(1-t) \pm \beta t}{(1-t)^2}$,	$\alpha > 0, \ \beta > 0$	
	or product rule	2	M1
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 4t \left(1 - t\right)^{-2} + 4\left(1 - t\right)^{-2}$	$(1-t)^{-1}$	
	Obtains $\frac{\mathrm{d}y}{\mathrm{d}t} = p(1-t)^{-1} \pm qt(1-t)$		
	If an incorrect formula is quote		
	NB: May see $\frac{4t}{1-t} = -4 + \frac{4}{1-t} \Longrightarrow \frac{d}{dt}$	$\iota\iota$	
	Allow M1 for $\frac{4t}{1-t} = A + \frac{B}{1-t} \Rightarrow \frac{dy}{dt} = k(1-t)^{-2}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{(1-t)\times 4 - 4t \times (-1)}{(1-t)^2} \times \frac{1}{2t-1}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{(1-t)\times 4 - 4t\times(-1)}{(1-t)^2} \times \frac{1}{2t-1}$		
	Correct application of the chain rule using their derivatives. This is an independent method mark.		M1
	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{(2t-1)(1-t)}$		
	$dx^{-}(2t-1)(1-t)^{2}$		
	Allow e.g. $\frac{4}{(2t-1)(1-2t+t^2)}$, $\frac{4}{2t^3-5t^2+4t-1}$ but not $\frac{1}{(2t-1)} \times \frac{4}{(1-t)^2}$		A1
	But isw once a correct answer is seen		
			(4)
(b)	$t = -1 \rightarrow (2, -2)$ or $x = 2, y = -2$	Correct coordinates for P	B1
	$t = -1 \Rightarrow \frac{dy}{dx} = \frac{4}{(2(-1)-1)(1-(-1))^2} \left(=-\frac{1}{3}\right)$	Attempts gradient. May be implied by their value for the gradient.	M1
	$y+2=-\frac{1}{3}(x-2)$	Correct straight line method for the tangent not the normal . If using $y = mx + c$ must reach as far as finding a value for c .	M1
	x + 3y + 4 = 0	Any integer multiple.	A1
			(4)

(c) Way 1	$t^2 - t + 3\left(\frac{4t}{1-t}\right) + 4 = 0$	Substitutes to obtain an equation in <i>t</i> only.	M1
	$t^3 - 2t^2 - 7t - 4 = 0$	Correct cubic	A1
	$(t+1)(t^2-3t-4)=0$ or	$(t+1)^2(t-4)=0$	
	Attempt to factorise using $(t \pm 1)$ of		
	Look for $(t\pm 1)(at^2+)$ or $(t\pm 1)^2(at+)$ or m		
	corresponding expressions for the quoti-	ent e.g. $at^2 + \dots$ or $at + \dots$	M1
	This mark is dependent on having obtained a cubi	ic equation that has a constant term	
	This mark is not for just solving their cubic e.g. t have a correct cubic equation and the root $t = 4$ is		
	t = 4	Correct value of <i>t</i>	A1
	$\left(12, -\frac{16}{3}\right)$	Correct coordinates	A1
			(5)
			Total 13
(c) Way 2	$y = \frac{4t}{1-t} \Rightarrow t = \frac{y}{4+y} \Rightarrow x = \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y}$ $\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$	Finds x in terms of y by eliminating t and substitutes to obtain an equation in y only. When eliminating t using y, the algebra must be correct so allow sign errors only for making t the subject from y.	M1
	$3y^3 + 28y^2 + 76y + 64 = 0$	Correct cubic	A1
	$(y+2)(3y^2+22y+32)=0 mtext{ or}$ Attempt to factorise using $(y\pm 2)$ of Look for $(y\pm ''-2'')(ay^2+)$ or $(y\pm ''-2'')^2(ay^2+)$ look for the corresponding expressions for the This mark is dependent on having obtained a cub. This mark is not for just solving their cubic e.g. using have a correct cubic equation and the root $y=-16/3$	or $(y \pm 2)^2$ as a factor. y +) or may use long division so quotient e.g. $ay^2 +$ or $ay +$ ic equation that has a constant term ng a calculator. However, if they	M1
	$y = -\frac{16}{3}$	Correct value of y	A1
	$\left(12, -\frac{16}{3}\right)$	Correct coordinates	A1
			(5)

Question Number	Scheme	Notes	Marks
9(a)	$\int x \sin 2x dx = -x \cdot \frac{1}{2} \cos 2x + \frac{1}{2} \int \cos 2x \left(dx \right)$	$\int x \sin 2x dx = \pm px \cdot \cos 2x \pm q \int \cos 2x (dx)$	M1
	$\int x \sin 2x dx = \frac{1}{4} \sin 2x - \frac{1}{2} x \cos 2x (+c)$	Correct expression (dx not required) Correct integration in any form – does not need to be simplified but is cso so e.g. any double sign errors should be penalised here. Condone poor notation e.g. cos2x.x rather than xcos2x. The constant of integration is not required.	A1 cso
a >			(3)
(b)	$(x + \sin 2x)^2 = x^2 + 2x \sin 2x + \sin^2 2x$	Correct (possibly unsimplified) expansion. Condone poor notation so allow e.g. $2\sin 2x \cdot x$ for $2x\sin 2x$ and $\sin 2x^2$ for $\sin^2 2x$	B1
	$\int \sin^2 2x \mathrm{d}x = \frac{1}{2} \int (1 - \cos 4x) \mathrm{d}x$	Uses $\cos 4x = \pm 1 \pm 2\sin^2 2x$	M1
	$\int \sin^2 2x dx = \frac{1}{2}x - \frac{1}{8}\sin 4x (+c)$	Correct integration	A1
	$\int (x + \sin 2x)^2 dx = \frac{x^3}{3} + \frac{1}{2}\sin 2x$ Allow in any correct possibly unsimplified (a) so all $\int (x + \sin 2x)^2 dx = \frac{x^3}{3} + 2 \times \text{the}$ The constant of integ	form. Follow through their answer to part ow for: ir part (a) $+\frac{1}{2}x - \frac{1}{8}\sin 4x(+c)$	A1ft
	In part (b) allow mixed variables for the first 3 marks but for the final mark the expression must be in terms of x only.		
	CAPI ession must be	li terms or a omy.	(4)
(c)		States or implies that the volume	
()	$(\text{Volume} =) \pi \int (x + \sin 2x)^2 dx$	required is $\pi \int (x + \sin 2x)^2$	M1
	J .	Note that the π is required but may appear later in their working.	
	$= \left(\pi\right) \left(\frac{\pi^3}{24} + 0 + \frac{\pi}{2}\right)$	/	
	Applies at least the limit $\frac{\pi}{2}$ to		M1
	$\alpha x^3 + \beta x + (\text{at least})$,	
	The substitution of $x = 0$ of Must be exact work as	nd not just decimals.	
	$= \frac{\pi^4 + 18\pi^2}{24} \text{ or } \frac{\pi^2 \left(\pi^2 + 18\right)}{24}$	Cso. Allow any equivalent exact single fraction but come from correct integration. Note that incorrect coefficients of sin will fortuitously give the correct answer.	A1 cso
	Note: Condone	mixing x with θ	
			(3)
			Total 10

Question Number	Scheme	Notes	Marks
10(a)	E.g. $\frac{r}{h} = \frac{3}{5}, \frac{3}{r} = \frac{5}{h}, 5r = 3h, r = \frac{3}{5}h, h = \frac{5}{3}r$	Any correct equation connecting r and h	B1
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{3}{5}h\right)^2 h$	Obtains $V = kh^3$ or equivalent using their equation connecting h and r .	M1
	$\left(V = \frac{9}{75}\pi h^3\right)$	$V = \frac{1}{3}\pi \left(\frac{3}{5}h\right)^2 h \text{ is sufficient.}$	1111
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{27}{75}\pi h^2$	Attempts $\frac{dV}{dh}$. Allow for $\frac{dV}{dh} = \alpha h^2$.	d M1
		Dependent on the first M. $dV = dV + dt$	
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}h} \Rightarrow \frac{27}{75}\pi h^2 = -0.02 \frac{\mathrm{d}t}{\mathrm{d}h}$	Uses e.g. $\frac{dV}{dh} = \frac{dV}{dt} \times \frac{dt}{dh}$ or $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ with their $\frac{dV}{dh}$ and $\frac{dV}{dt} = \pm 0.02$ May be implied by their work.	M1
	$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{18\pi} *$	Correct equation or states $k = 18$	A1 cso
			(5)
(a) Way 2	Avoids the need to find $\frac{dV}{dh}$		
·	$\frac{r}{h} = \frac{3}{5}, \frac{3}{r} = \frac{5}{h}, 5r = 3h, r = \frac{3}{5}h, h = \frac{5}{3}r$	Any correct equation connecting r and h	B1
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{3}{5}h\right)^2 h$ $\left(V = \frac{9}{75}\pi h^3\right)$	Obtains $V = kh^3$ (or equivalent) using their equation connecting h and r .	M1
	$V = \frac{9}{75}\pi h^3 \Rightarrow \frac{dV}{dt}$		
	$h^3 = \frac{75V}{9\pi} \Rightarrow 3h$	_	dM1
	The M1 is for differentiating both sides w	with respect to t to obtain $\alpha \frac{dV}{dt} = \beta h^2 \frac{dh}{dt}$	
	$-0.02 = 3 \times \frac{9}{75} \pi h^2 \frac{dh}{dt}$ or $3h^2 \frac{dh}{dt} = \frac{75V}{9\pi} \times -0.02$	Replaces $\frac{dV}{dt}$ with ± 0.02	M1
	$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{18\pi} *$	Correct equation or states $k = 18$	A1
			(5)

(b) Way 1	$\frac{h^3}{3} = -\frac{1}{18\pi}t(+c)$	$ph^3 = qt(+c)$. Note that "+ c" is not required for this mark.	M1
	$t = 0, h = 5 \Rightarrow c = \frac{125}{3}$	Uses $h = 5$ and $t = 0$ to find c . There must be a constant of integration for this mark.	M1
	Note that both M marks are available is obtained a value	_	
	$h = \sqrt[3]{125 - \frac{t}{6\pi}}$	Correct equation (oe)	A1
			(3)
(b) Way 2	$\frac{\mathrm{d}V}{\mathrm{d}t} = -0.02 \Rightarrow V = -0.02t + c$ $15\pi = c \Rightarrow V = 15\pi - 0.02t$	Uses $\frac{dV}{dt} = \pm 0.02$ to obtain $V = \pm 0.02t + c$ and then uses $r = 3$ and $h = 5$ when $t = 0$ to find c . This may be implied by sight of $V = 15\pi - 0.02t$ (but must be $V =$)	M1
	$\frac{9}{75}\pi h^3 = 15\pi - 0.02t$ $h^3 = 125 - \frac{t}{6\pi} \Rightarrow h = \dots$	Replaces V with V in terms of h and rearranges to find h	M1
	$h^{3} = 125 - \frac{t}{6\pi} \Rightarrow h = \dots$ $h = \sqrt[3]{125 - \frac{t}{6\pi}}$	Correct equation (oe)	A1
			(3)
(c) Way 1	$h = 0 \Rightarrow 125 - \frac{t}{6\pi} = 0 \Rightarrow t = \dots$	Puts $h = 0$ and solves for t	M1
	$t = 750\pi$ seconds	Cao. Must be positive. Allow awrt 39	
	39 (minutes)	(minutes) and isw.	A1
			(2)
(c) Way 2	$\left[\frac{h^3}{3}\right]_5^0 = \left[-\frac{1}{18\pi}t\right]_0^T \Rightarrow 0$ Uses the limits 0 and 5 with their ph^3 and (or t). The limits can be either way round be seen. A minimum could be $\frac{125}{3} = \frac{1}{3}$	0 and T or t with their qt and solves for T	M1
	39 (minutes)	Cao. Must be positive. Allow awrt 39 (minutes) and isw.	A1
(c)	1		(2)
Way 3	$\frac{1}{3}\pi (3)^{2} \times 5 \div 0.02 =$ or e.g. solves $15\pi - 0.02t = 0$	Calculates the volume of the cone and divides by 0.02	M1
	39 (minutes)	Cao. Must be positive. Allow awrt 39 (minutes) and isw.	A1
			(2)
			Total 10

Question Number	Scheme	Notes	Marks
11(a)	<i>y</i> • • • • • • • • • • • • • • • • • • •	Correct shape anywhere. Ignore any extra "cycles" or other parts of graphs. The curve should become steeper at each end.	M1
	x	Correct shape in the correct position with no "extra cycles" or other parts of graphs. Ignore any labels on axes, correct or otherwise.	A1
	See next page for e	xample marking	
			(2)
(b)	f(0.9) = 0.4108, f(1.1) = -0.4941	Substitutes both $x = 0.9$ and $x = 1.1$ and obtains at least one answer correct to 1sf or truncated so allow 0.4 and -0.4 or -0.5 .	M1
	Change of sign there Both values correct (to one sig fig or tru Allow equivalent statements e.g. positive, r may be withheld if there are any contradic between f(0.9)	incated), change of sign + conclusion negative therefore root etc. but this mark ctory statements e.g. therefore root lies	Al
			(2)
(c)	$\arctan\left(\arccos\left(1.1-1\right)\right)$	Attempt the given formula with $x = 1.1$ Score for $\arctan(\arccos(1.1-1))$ This may be implied by awrt 0.97 (using radians) or awrt 89 (using degrees) for x_1	M1
		$(x_1 =)$ awrt 0.974, $(x_2 =)$ awrt 1.011	
	$(x_1 =) 0.974, (x_2 =) 1.011$. Ignore any subsequent iterations and ignore labelling if answers are clearly the second and third terms.	A1
			(2)
			Total 6

Example marking of Q11 part (a)

These sketches score both marks:

These sketches score M1A0:

These sketches score M0A0:

Question Number	Scheme	Notes	Marks	
12(a)	$-\frac{k}{2}$ $-k$ $\frac{k}{2}$			
	V Shape with the vertex anywhere on the <i>y</i> -a symmetrical about the <i>y</i> -axis. Ignore		B1	
	There must be a sketch	for this mark.		
	Intercepts (must be <u>crossing</u>) at $\left(-\frac{k}{2},0\right)$,			
	Allow if the coordinates are the wrong way rou The zeros are not needed as long as the ex Allow if the correct coordinates are seen away right way round in this case and must If there is any ambiguity, the s	expressions are correct (as above). If y from the sketch but they must be the transfer to the sketch.	B1	
			(2)	
(b)	$2x - k = \frac{1}{2}x + \frac{k}{4} \Rightarrow x = \dots \text{ or } -2x - k = \frac{1}{2}x + \frac{k}{4} \Rightarrow x = \dots$			
	Attempt to solve either equation t	1		
	$x = \frac{5k}{6} \text{or} x = -\frac{k}{2}$	One correct value for x. Allow equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1	
	$x = \frac{5k}{6} \text{and} x = -\frac{k}{2}$	Both x values correct for. Allow equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1	
	Note that the $x = -\frac{k}{2}$ must clearly be from v			
	when attempting the sketch unless it is c	learly stated as an answer to (b).		
			(3)	

(b) Alternative by	squaring:	
$2 x - k = \frac{1}{2}x + \frac{k}{4} \Rightarrow 2 x = \frac{1}{2}x + \frac{5k}{4} \Rightarrow 4x^2 = \frac{1}{4}x^2 + \frac{5k}{4}x + \frac{25}{16}k^2$ $\Rightarrow 60x^2 - 20kx - 25k^2 = 0 \Rightarrow x = \dots$ Adds k to both sides, squares and solves to obtain a 3TQ and solves for x		M1
$x = \frac{5k}{6} \text{or} x = -\frac{k}{2}$	One correct value for x. Allow equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1
$x = \frac{5k}{6} \text{and} x = -\frac{k}{2}$	Both x values correct for. Allow equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1 (3)
		Total 5

(b) Special case	
$2x - k = \frac{1}{2}x + \frac{k}{4} \Rightarrow 4x^2 - 4kx + k^2 = \frac{1}{4}x^2 + \frac{k}{4}x + \frac{1}{16}k^2$	
$\Rightarrow 60x^2 - 68kx + 15k^2 = 0 \Rightarrow x = \dots$ Squares both sides to obtain 3 terms each time and solves the resulting 3TQ solves for x	
$x = \frac{5k}{6}$ Correct value for x. Allow equivalent fractions e.g. $\frac{10k}{12}$	A1
If this is all they do, 2 marks will be the maximum	

Question Number	Scheme	Notes	Marks
13	$N = \frac{240}{1 + ke}$		
(a)	$\frac{240}{1+ke^{(0)}} = 50 \Longrightarrow k = \dots$	Substitutes $t = 0$ and $N = 50$ and solves for k	M1
	$k = 3.8 \left(= \frac{19}{5} \right)$	cao	A1
			(2)
(b)	$100 = \frac{240}{1 + 3.8e^{-\frac{t}{16}}} \Longrightarrow 380e^{-\frac{t}{16}} = 140$	Puts $N = 100$ and solves as far as $pe^{-\frac{t}{16}} = q \text{ using correct processing}$ (allow sign/copying/arithmetic slips)	M1
	$e^{-\frac{t}{16}} = \frac{7}{19} \Rightarrow -\frac{t}{16} = \ln\left(\frac{7}{19}\right)$	Takes ln's correctly to reach $\pm \frac{t}{16} = \ln(\alpha), \alpha > 0$ Dependent on the previous M	d M1
	$t = 16\ln\left(\frac{19}{7}\right) \text{ or } -16\ln\left(\frac{7}{19}\right) \text{ or}$ $8\ln\left(\frac{361}{49}\right) \text{ or } 4\ln\left(\frac{130321}{2401}\right) \text{ etc}$	Cao (accept equivalents) or awrt 16	A1
			(3)
	(b) For mis-read $N = \frac{240}{1 + ke^{+\frac{t}{16}}}$ (Max 2/3)		
	$100 = \frac{240}{1 + 3.8e^{\frac{t}{16}}} \Longrightarrow 380e^{\frac{t}{16}} = 140$	Puts $N = 100$ and solves as far as $pe^{\frac{t}{16}} = q \text{ using correct processing}$ (allow sign/copying/arithmetic slips)	M1
	$e^{\frac{t}{16}} = \frac{7}{19} \Rightarrow \frac{t}{16} = \ln\left(\frac{7}{19}\right)$	Takes ln's correctly to reach $\pm \frac{t}{16} = \ln(\alpha), \alpha > 0$ Dependent on the previous M	d M1
	$t = 16 \ln \left(\frac{7}{19} \right) \text{ etc.}$		A0

Part (c) General Guidance for Marking:

M1 is for their attempt at differentiating A1 is for correct differentiation (in terms of k or follow through their k)

M1 is for e^{-k} or ke^{-k} or ke^{-k} in terms of N

M1 is for obtaining $\frac{dN}{dt}$ in terms of N

A1 fully correct

Note that a value of k is not necessary to do part (c)

(c) Way 1	$N = 240 \left(1 + k e^{-\frac{t}{16}} \right)^{-1}$	$\frac{\mathrm{d}N}{\mathrm{d}t} = A\mathrm{e}^{-\frac{t}{16}} \left(1 + B\mathrm{e}^{-\frac{t}{16}} \right)^{-2}$	M1
	$\Rightarrow \frac{dN}{dt} = -240 \left(1 + 3.8 e^{-\frac{t}{16}} \right)^{-2} \times -\frac{3.8}{16} e^{-\frac{t}{16}}$	Correct derivative. Follow through their k or the letter k	A1ft
	May see quotient rule : $\frac{dN}{dt}$ =	$= \frac{(0) - 240 \times -\frac{k}{16} e^{-\frac{t}{16}}}{\left(1 + k e^{-\frac{t}{16}}\right)^2}$	
	But this must satisfy the conditions a	above i.e. they need to obtain	
	$\frac{\mathrm{d}N}{\mathrm{d}N} = \frac{A\mathrm{e}^{2}}{2}$		
	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{A\mathrm{e}^{2}}{\left(1 + B\mathrm{e}^{2}\right)}$	$e^{-\frac{t}{16}}$) ²	
	May see product rule : $\frac{dN}{dt} = 0 + \frac{240ke^{-\frac{t}{16}}}{16} \left(1 + ke^{-\frac{t}{16}}\right)^{-2}$		
	But this must satisfy the conditions above i.e. they need to obtain		
	$\frac{dN}{dt} = Ae^{-\frac{t}{16}} \left(1 + Be^{-\frac{t}{16}} \right)^{-2}$		
	If an incorrect rule is quoted this scores M0		
	$N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow 1 + ke^{-\frac{t}{16}} = \frac{240}{N}$		M1
	Note that this mark may be scored by e.g. replacing $1 + ke^{-\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{57\left(\frac{240 - N}{3.8N}\right)}{\left(\frac{240}{N}\right)^2}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
			(5)

(c) Way 1 mis-read $N = \frac{240}{1 + ke^{+\frac{1}{16}}}$ (Max 4/5)		
	$\frac{\mathrm{d}N}{\mathrm{d}t} = A\mathrm{e}^{\frac{t}{16}} \left(1 + B\mathrm{e}^{\frac{t}{16}} \right)^{-2}$	M1
$\Rightarrow \frac{dN}{dt} = -240 \left(1 + 3.8 e^{\frac{t}{16}} \right)^{-2} \times \frac{3.8}{16} e^{\frac{t}{16}}$	Correct derivative. Follow through their k or the letter k	A1ft
May see quotient rule : $\frac{dN}{dt}$	$= \frac{\left(0\right) - 240 \times \frac{k}{16} e^{\frac{t}{16}}}{\left(1 + k e^{\frac{t}{16}}\right)^2}$	
But this must satisfy the conditions a	bove i.e. they need to obtain	
$dN = Ae^{i}$	<u>t</u> 6	
$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{A\mathrm{e}^{\frac{t}{16}}}{\left(1 + B\mathrm{e}^{\frac{t}{16}}\right)^2}$		
May see product rule : $\frac{dN}{dt} = 0 - \frac{240ke^{\frac{t}{16}}}{16} (1 + ke^{\frac{t}{16}})^{-2}$		
But this must satisfy the conditions above i.e. they need to obtain		
$\frac{dN}{dt} = Ae^{\frac{t}{16}} \left(1 + Be^{\frac{t}{16}}\right)^{-2}$		
If an incorrect formula is quoted this scores M0		
$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow 1 + ke^{\frac{t}{16}} = \frac{240}{N}$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N	M1
Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{-57\left(\frac{240 - N}{3.8N}\right)}{\left(\frac{240}{N}\right)^2}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$		A0

	(c) Way 2		
	$\left(N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Longrightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1\right)$		
	$\Rightarrow -\frac{k}{16} e^{-\frac{t}{16}} \frac{dt}{dN} = -\frac{240}{N^2}$ Or	Differentiates to obtain $Ae^{-\frac{t}{16}} \frac{dt}{dN} = \frac{B}{N^2} \text{ or } Ae^{-\frac{t}{16}} = \frac{B}{N^2} \frac{dN}{dt}$	M1
	$\Rightarrow -\frac{k}{16} e^{-\frac{t}{16}} = -\frac{240}{N^2} \frac{dN}{dt}$ $N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1$	Correct differentiation. Follow through their k or the letter k	A1ft
	$N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{-\frac{t}{16}}$ or $ke^{-\frac{t}{16}}$ or $1 + ke^{-\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. repl	acing $1 + ke^{-\frac{t}{16}}$ by $\frac{240}{N}$ in their solution	
	$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\frac{1}{16} \left(\frac{240}{N} - 1\right)}{\frac{240}{N^2}}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
_			(5)
	(c) Way 2 mis-read $N = \frac{240}{1 + ke^{+\frac{t}{16}}}$ (Max 4/5)		
	$\left(N = \frac{240}{1 + ke^{\frac{t}{16}}} \Longrightarrow ke^{\frac{t}{16}}\right)$	$\bar{S} = \frac{240}{N} - 1$	
	$\Rightarrow \frac{k}{16} e^{\frac{t}{16}} \frac{dt}{dN} = -\frac{240}{N^2}$ or	Differentiates to obtain $Ae^{\frac{t}{16}} \frac{dt}{dN} = \frac{B}{N^2} \text{ or } Ae^{\frac{t}{16}} = \frac{B}{N^2} \frac{dN}{dt}$	M1
	$\Rightarrow \frac{k}{16} e^{\frac{t}{16}} = -\frac{240}{N^2} \frac{dN}{dt}$	Correct differentiation. Follow through their k or the letter k	A1ft
	$\Rightarrow \frac{k}{16} e^{\frac{t}{16}} = -\frac{240}{N^2} \frac{dN}{dt}$ $N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
	$\Rightarrow \frac{dN}{dt} = \frac{\frac{1}{16} \left(1 - \frac{240}{N} \right)}{\frac{240}{N^2}}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$		A0

(c) Way 3			
	$\left(N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Longrightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1\right)$		
	$\Rightarrow -\frac{t}{16} = \ln \frac{1}{k} \left(\frac{240}{N} - 1 \right)$ $\Rightarrow t = -16 \ln \frac{1}{k} - 16 \ln \left(\frac{240}{N} - 1 \right)$	Makes <i>t</i> the subject, takes ln's and differentiates using the chain rule.	M1
	$\Rightarrow \frac{dt}{dN} = -16 \left(\frac{N}{240 - N} \right) \left(-\frac{240}{N^2} \right)$	Correct differentiation. Follow through their k or the letter k	A1ft
	$N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{-\frac{t}{16}}$ or $ke^{-\frac{t}{16}}$ or $1 + ke^{-\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. repl	acing $1 + ke^{-\frac{t}{16}}$ by $\frac{240}{N}$ in their solution	
	$= \frac{3840}{N(240 - N)}$ $\Rightarrow \frac{dN}{dt} = \frac{N(240 - N)}{3840}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
	(c) Way 3 mis-read $N=-1$	$\frac{240}{1+ke^{+\frac{t}{16}}}$ (Max 4/5)	
	$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$		
	$\frac{t}{16} = \ln\frac{1}{k} \left(\frac{240}{N} - 1\right)$	Makes <i>t</i> the subject, takes ln's and differentiates using the chain rule.	M1
	$\Rightarrow t = 16 \ln \frac{1}{k} + 16 \ln \left(\frac{240}{N} - 1 \right)$ $\Rightarrow \frac{dt}{dN} = 16 \left(\frac{N}{240 - N} \right) \left(-\frac{240}{N^2} \right)$ $N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$	Correct differentiation. Follow through their k or the letter k	A1ft
	$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Longrightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
	$=\frac{3840}{N(N-240)}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1

$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(N - 240)}{3840}$	
$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$	A0

(c) Way 4		
$\left(1 + ke^{-\frac{t}{16}}\right)N = 240$ $\Rightarrow N \times -\frac{k}{16}e^{-\frac{t}{16}} + \left(1 + ke^{-\frac{t}{16}}\right)\frac{dN}{dt} = 0$	Multiplies by $\left(1 + ke^{-\frac{t}{16}}\right)$ and differentiates with respect to t or N using the product rule	M1
or $\left(1 + ke^{-\frac{t}{16}}\right) + N \times -\frac{k}{16}e^{-\frac{t}{16}}\frac{dt}{dN} = 0$	Correct differentiation. Follow through their k or the letter k	A1ft
$N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{-\frac{t}{16}}$ or $ke^{-\frac{t}{16}}$ or $1 + ke^{-\frac{t}{16}}$ in terms of N .	M1
Note that this mark may be scored by e.g. repla	acing $1 + ke^{-\frac{t}{16}}$ by $\frac{240}{N}$ in their solution	
$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(240 - N)}{3840}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
$\frac{dN}{dt} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
(c) Way 4 mis-read $N = \frac{240}{1 + ke^{\frac{t}{16}}}$ (Max 4/5)		
$\left(1 + ke^{\frac{t}{16}}\right)N = 240$ $\Rightarrow N \times \frac{k}{16}e^{\frac{t}{16}} + \left(1 + ke^{\frac{t}{16}}\right)\frac{dN}{dt} = 0$	Multiplies by $\left(1 + ke^{\frac{t}{16}}\right)$ and differentiates with respect to t or N using the product rule	M1
or $(1+ke^{\frac{t}{16}})+N\times\frac{k}{16}e^{\frac{t}{16}}\frac{dt}{dN}=0$	Correct differentiation. Follow through their k or the letter k	A1ft
$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Longrightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N .	M1
Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(N - 240)}{3840}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$		A0

There may be other methods not covered in the MS but the marking should follow the same pattern.

