

A) a non ionic additive having a fluoropolyether structure with a fluorinated T end group containing one chlorine atom, having the following formula:

wherein

wherein:

with $R'' = H; C_{1-3}$ alkyl,

T is a fluorinated radical selected from $CICF_2CF(CF_3)-$, $CF_3CFCICF_2-$, $CICF_2CF_2-$, $CICF_2-$,

Y = CF_3 or F,

- R_f is a perfluoropolyether or fluoropolyether radical;
- the number average molecular weight of the fluoroether part $T-OR_f-$ is in the range 400 - 2,000,

- a ratio by weight (K) between the fluorinated part and an L part of the additive is in the range 1.50 - 4.00; n in formula (Ia) is such as the ratio (K) is in the range 1.50 - 4.00;

B) a perfluoropolyether having number average molecular weight in the range 300 - 900, provided that a ratio (K^l) between the number average molecular weight of the fluoropolyether part $T-OR_f-$ of the additive A) and the number average molecular weight of component B) is higher than 1.60.

B1
2. (Amended) A method according to claim 1, wherein the number average molecular weight of the fluoroether part T-OR_f of the compounds of formula (I) component A) is in the range 500 - 1,200.

B2
3. (Twice Amended) A method according to claim 1, wherein the perfluoropolyether component B) has number average molecular weight in the range of 300-650.

B2
4. (Twice Amended) A method according to claim 1, wherein the radical R_f comprises repeating units statistically distributed along the polymer chain selected from: 1) (CF₂CF₂O), 2) (CFYO) wherein Y is equal to F or CF₃, 3) (C₃F₆O); 4) (CF₂(CF₂)_zO) wherein z is an integer equal to 2 or 3; 5) (CF₂CF(OR_f)O) or (CF(OR_f)O) wherein R_f is equal to -CF₃, -C₂F₅, -C₃F₇; 6) CR₄R₅CF₂CF₂O wherein R₄ and R₅ are equal to or different from each other and selected between Cl or perfluoroalkyl having 1-4 carbon atoms.

B3
5. (Amended) A method according to claim 4, wherein the group R_f comprises the following repeating units:

(a) -(CF₂CF(CF₃)O)_a(CFYO)_b-
wherein Y is F or CF₃; a and b are integers such that the molecular weight of T-OR_f is in the range 400 - 2,000; a/b is in the range 10 -100;
(b) -(CF₂CF₂O)_c(CF₂O)_d(CF₂(CF₂)_zO_h)-

wherein c, d and h are integers such that the molecular weight of T-OR_f is within the range 400-2,000; c/d is in the range 0.1 - 10; h/(c+d) is in the range 0 - 0.5, z = 2 or 3, h can be equal to 0;

(c) -(CF₂CF(CF₃)O)_e(CF₂CF₂O)_f(CFYO)_g-

wherein Y is F or CF₃; e, f, g are integers such that the molecular weight of T-OR_f is within the range 400 - 2,000; e/(f+g) is in the range 0.1 - 10, f/g is in the range 2 - 10;

(d) -(CF₂O)_j(CF₂CF(OR_f)O)_k(CF(Or_f)O)_l-

wherein: R_f is -CF₃, -C₂C₅, -C₃F₇; j, k, l are integers such that the molecular weight of T-OR_f is within the range 400 - 2,000; k+l and j+k+l are at least equal to 2, k/(j+l) is in the range 0.01 - 1,000, l/j is in the range 0.01 - 100;

(e) -(CF₂(CF₂)_zO)_s-

wherein s is an integer such as to give the molecular weight of T-OR_f in the range 400 - 2,000, z = 2 or 3;

(f) -(CR₄R₅CF₂CF₂O)_{j'}-

wherein R₄ and R₅ are equal to or different from each other and selected from H, Cl or perfluoroalkyl, having 1-4 carbon atoms, j' being an integer such that the molecular weight of T-OR_f is in the range 400 - 2,000;

(g) -(CF(CF₃)CF₂O)_{j''}-

j'' being an integer such to give the molecular weight of T-OR_f in the range 400 - 2,000.

6. (Twice Amended) A method according to claim 1, wherein the value K^l is

higher than 2.00.

B4
7. (Twice Amended) A method according to claim 1, wherein the perfluoropolyether component B) has the following structure:

wherein:

R_f is the perfluoropolyether radical according to claim 1;

T' and T'', equal to or different, are selected from -CF₃, -C₂F₅, -C₃F₇.

8. (Amended) A method according to claim 7, wherein the perfluoropolyether component B) has a structure selected from the following:

wherein Y = F or CF₃, a'' and b'' are integers such that the molecular weight of B) is within the range 300 - 900 with a''/b'' in the range 1-40; T' and T'' are as above defined.

wherein p and q are integers such that the molecular weight of B) is within the [indicated] range 300 - 900 with p/q in the range 0.6 - 1.2; T' and T'' are as above defined.

wherein s' is an integer such that the molecular weight of B) is within the range 300 - 900; T' and T'' are as above defined.

B5

9. (Twice Amended) A method according to claim 1, wherein the amount of additive A) in the compositions is lower than or equal to 0.1% by weight, with respect to the total weight of the composition.

10. (Twice Amended) A composition consisting essentially of component A) and component B) according to claim 1.

Please add new claims 12-14 as follows.

--12. (New) A method according to claim 2, wherein the number average molecular weight of the fluoroether part T-OR_f of the compounds of formula (I) component A) is in the range 600 - 1,000.

B6

13. (New) A method according to claim 6, wherein the value K^l is in the range 2.00-3.00.

14. (New) A method according to claim 9, wherein the amount of additive A) in the compositions is lower than 0.05% by weight, with respect to the total weight of the composition.--