Chapitre 7

Probabilités

I. Variables aléatoires

1) Variable aléatoire

Rappels

Définitions:

- L'ensemble des issues d'une expérience aléatoire s'appelle l'univers de l'expérience.
- Un **événement** de cette expérience est un sous-ensemble de son univers.
- Un **événement élémentaire** de cette expérience est un événement contenant une seule issue.

Exemple:

On lance un dé équilibré à six faces et on observe le résultat affiché sur la face supérieure.

L'univers de l'expérience est l'ensemble $\Omega = \{1; 2; 3; 4; 5; 6\}$.

L'événement A « obtenir un résultat pair » est l'ensemble A={2 ; 4 ; 6}.

L'événement élémentaire B « obtenir un 6 » est l'ensemble B={6}.

Variable aléatoire

Définition:

Soit une expérience aléatoire dont l'univers est l'ensemble Ω .

Une variable aléatoire est une fonction définie sur Ω et à valeurs dans \mathbb{R} . On la note X.

Exemple:

À partir de l'expérience aléatoire de l'exemple précédent, considérons le jeu suivant :

- « Si le résultat obtenu est 1 ou 6, je gagne 2 jetons. »
- « Si le résultat obtenu est 5, je gagne 1 jeton. »
- « Sinon, je perds 1 jeton. »

On peut définir une variable aléatoire X qui décrit les gains de ce jeu.

X est donc la fonction définie sur $\Omega = \{1; 2; 3; 4; 5; 6\}$ par :

$$X:\Omega\to\mathbb{R}$$

avec
$$X(1)=2$$
, $X(2)=-1$, $X(3)=-1$, $X(4)=-1$, $X(5)=1$, $X(6)=2$.

2) Loi de probabilité d'une variable aléatoire

Définition:

Une variable aléatoire X est définie sur l'univers Ω d'une expérience aléatoire.

Notons E={ x_1 , x_2 ,..., x_n } l'ensemble des valeurs prises par X.

La **loi de probabilité** de X est la fonction qui à chaque x_i de E lui associe sa probabilité notée $p(X=x_i)$.

On peut la représenter sous forme d'un tableau de valeurs :

	x_{i}	x_1	x_2	•••	\mathcal{X}_n
p	$(X=x_i)$	$p(X=x_1)$	$p(X=x_2)$		$p(X=x_n)$

Remarques:

- On note « $X = x_i$ » l'événement « X prend la valeur x_i ». Il s'agit de l'ensemble des issues de Ω auxquelles on associe le réel x_i .
- On s'intéresse dans ce chapitre à des variables aléatoires **discrètes**, car elle prend un nombre fini de valeurs.

En mathématique, discret désigne un ensemble dont on pourrait énumérer les éléments.

Exemple:

Dans le jeu de l'exemple, chaque issue du lancer de dé est équiprobable, de probabilité $\frac{1}{6}$.

Le gain est de deux jetons si le résultat obtenu est 1 ou 6. La probabilité correspondante est

$$\frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$
, d'où $p(X=2) = \frac{1}{3}$. On a de même $p(X=1) = \frac{1}{6}$ et $p(X=-1) = \frac{3}{6} = \frac{1}{2}$.

La loi de probabilité est résumée dans le tableau suivant :

x_i	-1	1	2
$p(X=x_i)$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$

Remarque:

La somme des probabilités $p_i = p(X = x_i)$, pour i allant de 1 jusqu'à n, est égale à 1.

On écrit
$$\sum_{i=1}^{n} p_i = 1$$
 ou encore $\sum_{i=1}^{n} p(X = x_i) = 1$.

II. Paramètres d'une loi de probabilité

Définitions:

Une variable aléatoire X est définie sur l'univers Ω d'une expérience aléatoire.

Notons E={ $x_1, x_2, ..., x_n$ } l'ensemble des valeurs prises par X.

La loi de probabilité de X associe à chaque x_i de E sa probabilité $p_i = p(X = x_i)$.

• L'espérance mathématique de la loi de probabilité de X est la moyenne de la série des x_i pondérés par p_i ; on la note E(X):

$$E(X) = p_1 x_1 + p_2 x_2 + ... + p_n x_n$$
 ou $E(X) = \sum_{i=1}^{n} p_i x_i$

• La **variance** de la loi de probabilité de X est la variance de la série des x_i pondérés par p_i ; on la note V(X):

$$V(X) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + \dots + p_n(x_n - E(X))^2$$

$$V(X) = \sum_{i=1}^n p_i(x_i - E(X))^2$$

• L'écart-type de la loi de probabilité de X est l'écart-type de la série des x_i pondérés par p_i on la note $\sigma(X)$:

$$\sigma(X) = \sqrt{V(X)}$$

Remarques:

• Le calcul de l'espérance est un calcul de moyenne :

$$E(X) = \frac{p_1 x_1 + p_2 x_2 + \dots + p_n x_n}{p_1 + p_2 + \dots + p_n}$$

car la somme des probabilités $p_1 + p_2 + ... + p_n$ vaut 1.

Donc l'espérance est bien la moyenne de la série des valeurs x_i pondérées par les probabilités p_i .

• E(X) et $\sigma(X)$ ont la même unité que celle des valeurs des x_i

Exemple:

Reprenons le jeu de l'exemple précédent.

On a:

$$E(X) = \frac{1}{2} \times (-1) + \frac{1}{6} \times 1 + \frac{1}{3} \times 2 = -\frac{3}{6} + \frac{1}{6} + \frac{4}{6} = \frac{2}{6} = \frac{1}{3}$$

$$V(X) = \frac{1}{2} \left(-1 - \frac{1}{3} \right)^2 + \frac{1}{3} \left(1 - \frac{1}{3} \right)^2 + \frac{1}{3} \left(2 - \frac{1}{3} \right)^2 = \frac{1}{2} \times \frac{16}{9} + \frac{1}{6} \times \frac{4}{9} + \frac{1}{3} \times \frac{25}{9} = \frac{17}{9}$$

$$\sigma(X) = \sqrt{\frac{17}{9}} = \frac{\sqrt{17}}{3} \approx 1,37$$

Remarque:

La **loi des grands nombres** nous permet d'interpréter l'espérance et l'écart-type de la loi de probabilité de *X*.

En répétant un grand nombre de fois l'expérience, les fréquences observées se rapprochent de la probabilité théorique.

- La moyenne des résultats obtenus se rapproche de l'espérance de la loi de probabilité de *X*. L'espérance est donc la moyenne que l'on peut espérer en répétant l'expérience un grand nombre de fois.
- De même pour l'écart-type, qui est un paramètre de dispersion pour une série statistique, il peut être interprété comme un paramètre de dispersion « espérée » ou « crainte » pour la loi de probabilité de X.

Pour le jeu proposé en exemple, l'espérance de $\frac{1}{3}$ signifie que l'on peut espérer gagner en moyenne $\frac{1}{3}$ de jeton par partie (ou 1 jeton toutes les 3 parties). Mais avec une moyenne proche de 0,33,

l'écart-type d'environ 1,37 exprime le fait que le risque d'obtenir un gain négatif (une perte) est important.

Remarque:

Lorsque les valeurs prises par X représentent les gains (ou les pertes) à un jeu, alors E(X) représente le gain moyen par partie.

- Si E(X) > 0 alors le jeu est **favorable** au joueur.
- Si E(X) < 0 alors le jeu est **défavorable** au joueur.
- Si E(X)=0 alors le jeu est **équitable**.

Propriété (théorème de Koenig-Huygens) :

La variance est également donnée par $V(X) = \sum_{i=1}^{n} x_i^2 p_i - (E(X))^2$.

Démonstration :

$$\begin{split} V(X) &= \sum_{i=1}^{n} \left(x_{i} - E(X) \right)^{2} p_{i} = \sum_{i=1}^{n} \left[x_{i}^{2} - 2 x_{i} E(X) + (E(X))^{2} \right] p_{i} \\ V(X) &= \sum_{i=1}^{n} \left[x_{i}^{2} p_{i} - 2 x_{i} E(X) p_{i} + (E(X))^{2} p_{i} \right] = \sum_{i=1}^{n} x_{i}^{2} p_{i} - \sum_{i=1}^{n} 2 x_{i} E(X) p_{i} + \sum_{i=1}^{n} (E(X))^{2} p_{i} \\ V(X) &= \sum_{i=1}^{n} x_{i}^{2} p_{i} - 2 E(X) \sum_{i=1}^{n} x_{i} p_{i} + (E(X))^{2} \sum_{i=1}^{n} p_{i} \text{ avec } E(X) = \sum_{i=1}^{n} p_{i} x_{i} \text{ et } \sum_{i=1}^{n} p_{i} = 1 \\ V(X) &= \sum_{i=1}^{n} x_{i}^{2} p_{i} - 2 E(X) \times E(X) + (E(X))^{2} = V(X) = \sum_{i=1}^{n} x_{i}^{2} p_{i} - 2 (E(X))^{2} + (E(X))^{2} \\ V(X) &= \sum_{i=1}^{n} x_{i}^{2} p_{i} - (E(X))^{2} \end{split}$$

Remarque:

On écrit aussi $V(X)=E(X^2)-(E(X))^2$.

Transformation affine d'une variable aléatoire

Propriétés:

Une variable aléatoire X est définie sur l'univers Ω d'une expérience aléatoire.

Soit a et b deux nombres réels.

Considérons la variable aléatoire Y définie par Y = aX + b.

On a alors:

•
$$E(Y)=aE(X)+b$$
 • $V(Y)=a^2V(X)$ • $\sigma(Y)=|a|\sigma(X)$

Démonstration :

Soit une variable aléatoire X dont la loi de probabilité est décrite dans le tableau suivant :

\boldsymbol{x}_{i}	x_1	x_2	•••	x_n
$p(X=x_i)$	p_1	p_2	•••	p_n

Alors la loi de probabilité de la variable aléatoire Y = aX + b est :

y_i	$y_1 = ax_1 + b$	$y_2 = ax_2 + b$	•••	$y_n = ax_n + b$
$p(Y=y_i)$	p_1	p_2	•••	p_n

•
$$E(Y) = \sum_{i=1}^{n} p_{i} y_{i} = \sum_{i=1}^{n} p_{i} (ax_{i} + b) = \sum_{i=1}^{n} (a p_{i} x_{i} + b p_{i}) = a \sum_{i=1}^{n} p_{i} x_{i} + b \sum_{i=1}^{n} p_{i}$$

avec $\sum_{i=1}^{n} p_{i} x_{i} = E(X)$ et $\sum_{i=1}^{n} p_{i} = 1$
Donc $E(Y) = aE(X) + b$
• $V(Y) = \sum_{i=1}^{n} p_{i} (y_{i} - E(Y))^{2} = \sum_{i=1}^{n} p_{i} (a x_{i} + b - (a E(X) + b))^{2} = \sum_{i=1}^{n} p_{i} (a x_{i} - a E(X))^{2}$
 $V(Y) = \sum_{i=1}^{n} p_{i} a^{2} (x_{i} - E(X))^{2} = a^{2} \sum_{i=1}^{n} p_{i} (x_{i} - E(X))^{2} = a^{2} V(X)$

Exemple:

Une usine fabrique des tiges métalliques de longueur théorique 2,40 mètres. Une étude a montré que ces mesures sont légèrement erronées. On extrait au hasard une tige de la production et on considère la variable aléatoire *X* qui associe à chaque tige sa taille au millimètre près.

La loi de probabilité de X est donnée par le tableau suivant :

x_i	2,399	2,4	2,401	2,402	2,403
$p(X=x_i)$	0,3	0,1	0,1	0,3	0,2

Pour simplifier les calculs, on définit la variable aléatoire Y = 1000 X - 2400.

La variable *Y* ainsi définie décrit alors en millimètres la différence entre la tige mesurée et 2,40 mètres.

La loi de probabilité de Y est alors définie par :

\boldsymbol{y}_i	-1	0	1	2	3
$p(Y=y_i)$	0,3	0,1	0,1	0,3	0,2

$$E(Y) = 0.3 \times (-1) + 0.1 \times 0 + 0.1 \times 1 + 0.3 \times 2 + 0.2 \times 3 = 1$$

On en déduit
$$E(X)$$
 car $E(Y)=1000 E(X)-2400$ d'où $E(X)=\frac{E(Y)+2400}{1000}=2,401$.

$$V(Y) = 0.3 \times (-1-1)^2 + 0.1 \times (0-1)^2 + 0.1 \times (1-1)^2 + 0.3 \times (2-1)^2 + 0.2 \times (3-1)^2 = 2.4$$

 $\sigma(Y) = \sqrt{2.4} \approx 1.55$

On en déduit
$$\sigma(X) = \sigma \frac{(Y)}{1000} \approx 0,00155$$

III. Répétition d'expériences identiques et indépendantes

Définition:

Deux expériences aléatoires sont considérées comme **identiques et indépendantes** si elles ont les mêmes issues et les mêmes probabilités pour chaque issue, et si la réalisation de l'une ne modifie pas les probabilités des issues de l'autre.

Exemples:

- Lorsqu'on lance un dé équilibré et que l'on observe la face supérieure, puis que l'on lance un second dé équilibré, ces deux expériences sont indépendantes.
- Si le professeur fait deux jours de suite un contrôle surprise à ses élèves, ces deux expériences sont identiques, mais la probabilité que les élèves aient révisé le second jour est plus forte que le premier. Ces expériences ne sont pas indépendantes.

Propriété (admise) :

Si A et B sont deux issues d'une expérience aléatoire, avec pour probabilités respectives p(A) et p(B), alors, si l'on peut répéter l'expérience de façon indépendante, la probabilité d'obtenir A puis B est le produit de leurs probabilités :

$$p(A) \times p(B)$$

On peut représenter toutes les issues de l'expérience avec un arbre pondéré de probabilité. Sur chaque branche, on indique la probabilité de l'issue correspondante.

La probabilité d'un événement correspondant à plusieurs chemins est obtenue en ajoutant les probabilités des événements correspondants à chaque chemin, puisque ceux-ci sont incompatibles.

Exemple:

On lance deux fois de suite un dé équilibré à six faces et on note A l'évènement « obtenir un 6 » et B l'événement « obtenir un nombre inférieur ou égal à 2 ».

On a
$$p(A) = \frac{1}{6}$$
 et $p(B) = \frac{2}{6} = \frac{1}{3}$.

La probabilité d'obtenir la suite d'événement (A;B) est $p_2 = \frac{1}{6} \times \frac{1}{3} = \frac{1}{18}$.

Propriété:

Lorsqu'on répète n fois de façon indépendante une expérience aléatoire dont les issues A_1 , A_2 , ..., A_n ont pour probabilités respectives $p(A_1)$, $p(A_2)$, ..., $p(A_n)$, alors la probabilité d'obtenir la suite d'issues (A_1 ; A_2 ; ...; A_n) est le produit de leurs probabilités :

$$p(A_1) \times p(A_2) \times ... \times p(A_n)$$

Exemple:

On lance cinq fois de suite un dé équilibré à six faces et on note A l'événement « obtenir un 6 » et B l'événement « ne pas obtenir un 6 ». On a donc $p(A) = \frac{1}{6}$ et $p(B) = \frac{5}{6}$.

La suite d'événement (A;A;B;A;B) a pour probabilité $\frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{1}{6} \times \frac{5}{6} = \frac{25}{6^5}$.

Annexe: Loi des grands nombres

Inégalité de Markov:

Soit X une variable aléatoire suivant une loi de probabilité P et ne prenant que des valeurs positives :

 $\forall \epsilon > 0, \ P(X \geqslant \epsilon) \leqslant \frac{E(X)}{\epsilon}.$

Démonstration :

Dans le cas d'une variable aléatoire discrète ne prenant qu'un nombre fini de valeurs positives.

X est à valeurs dans $\{x_1, x_2, \dots, x_n\}$, les x_i sont rangés dans l'ordre croissant. Soit ϵ un nombre strictement positif fixé.

On a ainsi, par exemple, $x_1 \le x_2 \le ... \le x_{k-1} < \epsilon \le x_k \le x_n$.

Par définition, $E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$.

Ainsi, on obtient, $E(X) = \sum_{i=1}^{k-1} x_i P(X = x_i) + \sum_{i=k}^{n} x_i P(X = x_i)$.

Comme X est à valeurs positives $\sum_{i=1}^{k-1} x_i P(X=x_i) \ge 0$ et donc $E(X) \ge \sum_{i=k}^n x_i P(X=x_i)$.

Ainsi, on a $E(X) \ge \sum_{i=k}^{n} \epsilon P(X = x_i)$ soit $E(X) \ge \epsilon \sum_{i=k}^{n} P(X = x_i)$.

Or $\epsilon > 0$, et par conséquent, $\frac{\mathbf{E}(\mathbf{X})}{\epsilon} \geqslant \sum_{i=k}^{n} P(\mathbf{X} = x_i)$ et $\sum_{i=k}^{n} P(\mathbf{X} = x_i) = \mathbf{P}(\mathbf{X} \geqslant \epsilon)$.

D'où le résultat $\frac{E(X)}{\epsilon} \geqslant P(X \geqslant \epsilon)$.

Inégalité de Bienaymé-Tchebychev :

Soit X une variable aléatoire suivant une loi de probabilité P, ne prenant que des valeurs positives et possédant une variance V(X):

$$\forall \epsilon > 0, P(|X - E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}.$$

Démonstration:

Par définition, $V(X) = E((X - E(X))^2)$.

Soit ϵ un nombre strictement positif fixé : $|X - E(X)| \ge \epsilon \Leftrightarrow |X - E(X)|^2 \ge \epsilon^2$

On applique donc l'inégalité de Markov à la variable aléatoire $|X-E(X)|^2$:

$$P(|X-E(X)|^2 \ge \epsilon^2) \le \frac{E(|X-E(X)|^2)}{\epsilon^2} \text{ et donc } P(|X-E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}.$$

Théorème de Bernoulli :

On considère une variable aléatoire X_n suivant une loi binomiale $\mathcal{B}(n;p)$. On pose $F_n = \frac{X_n}{n}$.

$$\forall \epsilon > 0$$
, $P(|F_n - p| \ge \epsilon) \le \frac{p(1-p)}{n\epsilon^2}$.

Démonstration:

 X_n suit la loi binomiale $\mathcal{B}(n;p)$ donc $E(X_n) = np$ et $V(X_n) = np(1-p)$.

En appliquant l'inégalité de Bienaymé-Tchebychev à la variable aléatoire $F_n = \frac{X_n}{n}$, on a donc :

$$\forall \, \varepsilon > 0 \text{ , } P(|F_n - E(F_n)| \geqslant \varepsilon) \leqslant \frac{V(F_n)}{\varepsilon^2} \text{ soit } P(|F_n - E(F_n)| \geqslant \varepsilon) \leqslant \frac{V(F_n)}{\varepsilon^2} \text{ et donc,}$$

$$\forall \epsilon > 0, \ P\left(\left|\frac{X_{n}}{n} - E\left(\frac{X_{n}}{n}\right)\right| \ge \epsilon\right) \le \frac{V\left(\frac{X_{n}}{n}\right)}{\epsilon^{2}} \ d'où \ P\left(\left|\frac{X_{n}}{n} - \frac{E\left(X_{n}\right)}{n}\right| \ge \epsilon\right) \le \frac{V\left(X_{n}\right)}{\epsilon^{2}}.$$

D'où le résultat.

$$\forall \epsilon > 0$$
, $P\left(\left|\frac{X_n}{n} - p\right| \ge \epsilon\right) \le \frac{p(1-p)}{n\epsilon^2}$.