Diskrete Strukturen

Phillip Blum

1. Semester

Inhaltsverzeichnis

1	Log	ik	5
	1.1	Logische Operatoren	5
	1.2	Venn Diagramme	5
	1.3	Quantoren, Gültigkeit und Erfüllbarkeit	5
		1.3.1 Quantoren	5
		1.3.2 Gültigkeit und Erfüllbarkeit	5
	1.4	Übersicht: Junktoren und Quantoren	6
2	Syll	ogismen	7
	2.1	Beschränkte Quantoren und Mengendiagramme	7
	2.2	Hinreichend vs. notwendig, A "impliziert" B	7
		2.2.1 If A then $B = (allgemein)$ gültig. Dann:	7
		2.2.2 $A \text{ gdw } B = \text{allgemeing\"{u}ltig. Dann: } \dots \dots$	7
3	Bev	veise	8
	3.1	Theorem, Lemma, Korollar, Definition,	8
		3.1.1 Begriffe	8
		3.1.2 Theorem-Beweiser Isabelle	8
	3.2	Wie schreibe ich einen Beweis?	9
		3.2.1 Anfang	9
		3.2.2 Anmerkungen	9
		3.2.3 Lange Beweise	9
		3.2.4 Ende	9
	3.3		10
			10
			10
		1	11
4	Mei	ngen 1	12
_	4.1		12
	4.2		12
	4.3		13
	4.4	-	13

	4.5	Karnaugh-Veitch-Diagramme	4
	4.6	Übersicht: Symbole und Anwendung: Mengen	õ
		4.6.1 Mengenterme	õ
5	Tun	el, Sequenzen, Folgen und Wörter	ß
•	5.1	Tupel	
	0.1	5.1.1 Unterschied zu Mengen	
		5.1.2 Länge von Tupeln	
	5.2	Sequenzen/Folgen	
	5.3	Kartesisches Produkt	
	5.4	Wörter und Sprache	
	5.5	Übersicht: Symbole für Tupel etc	
	0.0	5.5.1 Tupel- und Wörterterme	
		5.5.1 Tuper- und Worterterine	,
6	Ind	uktion 19)
7	Rela	ationen 1	9
•	7.1	Grundbegriffe	
	7.2	Join und Projektion	
	7.3	Binäre Relationen	
		7.3.1 Graphen	
	7.4	Relationals Produkt	
	7.5	Binäre Relationen auf einer Menge	
	7.6	Eigenschaften von Binären Relationen	_
	7.7	Übersicht Relationen	
		7.7.1 Relationsterme	
_	×		_
8	_	ivalenzrelationen und Ordnungsrelationen 25	
	8.1	Grundverständnis Äquivalenzrelationen	
	8.2	Äquivalenzrelationen als Partitionen	
	8.3	Grundverständnis Ordnungsrelationen	
	8.4	Hasse-Diagramm	
	8.5	Standardbegriffe für Ordnungsrelationen	(
9	Fun	ktionen 28	3
	9.1	Grundverständnis Funktionen	3
	9.2	Konventionen	3
	9.3	Komposition	
	9.4	Multimengen	9
	9.5	Injektiv, Surjektiv, Bijektiv)
	9.6	Umkehrfunktion)
	9.7	Eigenschaften)
10	Kar	dinalität von Mengen 3	1
_		Grundlage für Vergleich von unendlichen Mengen	

11	Digraphen	32
	11.1 Teilgraphen	32
	11.2 Zusammenhang	32
	11.3 Kreise	32
	11.4 Isomorphie	32
	11.5 Graphautomorphismen	33
19	Ungerichtete und einfache Graphen	33
14	12.1 Grundverständnis	33
	12.2 Kreise	33
		34
	12.3 Spezielle (einfache) Graphen	$\frac{34}{34}$
	12.4 Kantenanzahl	34
13	Bäume	34
	13.1 Definition	34
	13.2 Eigenschaften	35
	13.3 Algorithmen	35
	13.4 Äquivalenzsaussagen	36
	13.5 Wurzelbäume	36
14	Gradfolgen	36
	14.1 Grundverständnis	36
	14.2 Realisierbarkeit	37
15	Euler und Hamilton	38
10	15.1 Definition Eulerkreise und Hamiltonkreise	38
	15.2 Existenz Eulertour	38
	15.3 Existenz Hamiltonkreise	39
16	Planarität	39
	16.1 Eulersche Polyederformel	39
17	Minoren und Satz von Kuratowski	39
	17.1 Kantenkontraktionen	39
	17.2 Minoren	40
	17.3 Satz von Kuratowski	40
18	Knotenfärbungen	40
	18.1 Grundverständnis	40
	18.2 Chromatische Zahl	40
10	Matrizen	41
19	19.1 Grundverständnis	41
	19.2 Summe	41
	19.3 Multiplikation	41
	19.4 Adjazenzmatrix, Pfade zählen	41

20	Matchings	42
	20.1 Grundverständnis	42
	20.2 Hall's marriage theorem	42
	20.3 Matchings mit Präferenzen	43
	20.4 Gale-Shapley-Algorithmus	44
21	Gesamtübersicht fürs Wichtiges	4 4
	21.1 Beweise	44
	21.2 Äquivalenzterme	45
	21.3 Symbole und Anwendung	45
	21.4 Wichtige Sätze, Lemmata, etc.	45

1 Logik

1.1 Logische Operatoren

Junktoren		_	\wedge	V	\rightarrow	\leftrightarrow	\oplus
Situation		nicht	A	A	Falls A	A	Entweder A
		A	und	oder	dann B	gdw (iff)	oder B
A	B		B	B		B	
falsch	falsch	wahr	falsch	falsch	wahr	wahr	falsch
falsch	wahr	wahr	falsch	wahr	wahr	falsch	wahr
wahr	falsch	falsch	falsch	wahr	falsch	falsch	wahr
wahr	wahr	falsch	wahr	wahr	wahr	wahr	falsch

1.2 Venn Diagramme

1.3 Quantoren, Gültigkeit und Erfüllbarkeit

1.3.1 Quantoren

Alle: $\forall x$

Einige/es gib ein: $\exists x$ Kein/es gibt kein: $\nexists x$

1.3.2 Gültigkeit und Erfüllbarkeit

Eine Aussage ist erfüllbar , falls es eine Situation gibt, in der sie wahr ist.

Eine Aussage ist (allgemein-)gültig, falls es keine Situation gibt, in der sie falsch ist.

Eine Aussage ist ungültig, falls es eine Situation gibt, in der sie falsch ist.

1.4 Übersicht: Junktoren und Quantoren

	formale Logik		C/Java
wahr	(triviale Tautologie)	wahr	true
falsch	(triviale Kontradiction)	falsch	false
nicht	Negation	$\neg A$! A
oder	Disjunction	$(A \vee B)$	(A B)
und	Konjunction	$(A \wedge B)$	(A&&B)
falls/wenn-dann	Konditional, Subjunction	$(A \to B)$	(!A B)
genau-dann-wenn	Biconditional	$(A \leftrightarrow B)$	(A==B)
entweder-oder	exklusives Oder, XOR	$(A \oplus B)$	(A!=B)
alle	Allquantor	$\forall xF$	
einige	Existenzquantor	$\exists x F$	
keine	Nichtexistenz	$\nexists xF$	

2 Syllogismen

2.1 Beschränkte Quantoren und Mengendiagramme

Alle x mit R(x) sind P(x) SYN Für alle $x, R(x) \to P(x)$

Einige x mit R(x) sind P(x) SYN Es gibt x, $R(x) \wedge P(x)$

Nicht alle x mit R(x) sind P(x) SYN Es gibt x, $R(x) \land \neg P(x)$

Kein x mit R(x) ist P(x), Für alle x, $R(x) \to \neg P(x)$

2.2 Hinreichend vs. notwendig, A "impliziert"B

2.2.1 If A then $B = (allgemein)g\"{u}ltig$. Dann:

B ist notwendig für A

Weil: Wenn B falsch dann muss A falsch

A ist hinreichend für B

Weil: Wenn A wahr dann muss B wahr

2.2.2 $A \text{ gdw } B = \text{allgemeing\"{u}ltig. Dann:}$

A hinreichend und notwendig für B

3 Beweise

3.1 Theorem, Lemma, Korollar, Definition, ...

3.1.1 Begriffe

Mit

- Proposition
- \bullet Lemma
- \bullet Theorem
- Satz
- Korollar
- und manchmal Fakt

weist man auf bewiesene Aussagen hin die wichtig für später sind.

3.1.2 Theorem-Beweiser Isabelle

- T: Theorem (Satz): wichtig, häufig verwendet und/oder nicht offensichtliches Resultat
- L: Lemma: weniger wichtig oder Hilfsresultat für Theorem
- C: Korollar: einfach zu beweisende Abwandlung von Theorem/Lemmata
- F: Fakt: offensichtliches Ergebnis
- D: Definition: eindeutige Begriffsabgrenzung/erklärung

3.2 Wie schreibe ich einen Beweis?

3.2.1 Anfang

- Beweistechnik und Strategie
- \bullet Übersicht über die Struktur \to "Wir benutzen einen Widerspruchsbeweis", "Der Beweis ist per Induktion"

3.2.2 Anmerkungen

- Roten Faden behalten (lineare Aufeinanderfolgungen)
- Beweis = Aufsatz
 - \to keine pure Berechnung, keine Rechenschritte ohne Erklärung, fliessender Text mit Gleichungen/Rechenschritte. Ganze Sätze benutzen
- Symbole nur wenn nötig, aber nicht mehr. Immer Text dazu
- Nachher verbessern und vereinfachen
- \bullet Offensichtlich für Autor \neq Offensichtlich für Leser

3.2.3 Lange Beweise

- Unterschriften
- Wiederholung von Argumenten: Als Lemma hinschreiben (und beweisen) und darauf verweisen

3.2.4 Ende

- Wie folgt aus den Beweisteilen die Aussage
 - \rightarrow Schlussfolgerung nicht immer offensichtlich

3.3 Beweisstrategien

3.3.1 Direkter Beweis

Für $A \to B$: Nimm A an, zeige mit Regeln der logischen Folgerung dass dann immer B wahr ist.

Beispiel: Wenn $0 \le x \le 2$, dann $-x^3 + 4x + 1 > 0$

- Wir nehmen an dass $0 \le x \le 2$
- Dann sind x, (2-x), (2+x) alle nichtnegativ.
- Dann ist das Produkt $x(2-x)(2+x) \ge 0$
- Wenn man zu einer nichtnegativen Zahl 1 addiert, ist die Summe positiv. Deswegen x(2-x)(2+x)+1>0
- Ausmultiplizieren zeigt $x(2-x)(2+x) + 1 = -x^3 + 4x + 1 > 0$

3.3.2 Kontraposition

Man zeigt $A \to B$ indem man $\neg B \to \neg A$ zeigt "Alle x mit P(x) sind Q(x)" SYN "Alle x mit nicht Q(x) sind nicht P(x)"

Beispiel: Wenn n eine ganze Zahl ist und 3n+2 ungerade ist, dann ist n ungerade

- Für jede gerade Zahl m gibt es eine ganze Zahl k sodass m = 2k
- Wir nehmen an dass n gerade ist. $(\neg B)$
- Dann gilt (einsetzen) 3n + 2 = 6k + 2 = 2(3k + 1)
- Das heisst 3n + 2 ist eine gerade Zahl $(\neg A)$

3.3.3 Widerspruch

Man zeigt A, indem man $\neg A \rightarrow \text{falsch}$ zeigt In anderen Worten:

- Wir nehmen an dass $\neg A$ gilt
- Dann Aussage die offensichtlich falsch ist $(B \wedge \neg B)$. Also Widerspruch.
- Widerspruch, also ist A wahr

Beispiel: $\sqrt{2}$ ist nicht rational

- Wir nehmen an: $\sqrt{2}$ ist rational
- Dann gibt es Zahlen m, n mit $\sqrt{2} = \frac{m}{n}$
- Wir dürfen annehmen, dass m,n keine gemeinsamer Teiler mehr haben. Also 1 der einzige positive gemeinsame Teiler von m,n
- Daher gilt $m^2 = 2n^2$
- $\bullet\,$ Daher ist 2 ein Teiler von m^2
- Daher ist 2 ein Teiler von m (Lemma von Euklid)
- Daher gilt m = 2k und damit auch $2k^2 = n^2$
- \bullet Daher ist 2 ein Teiler von n^2 und somit auch von n
- Da 2 auch ein Teiler von m ist, ist folglich 1 nicht der einzige positive gemeinsame Teiler von m, n. Das ist ein Widerspruch

4 Mengen

4.1 Basisvokabular

 $x \in M$: Objekt x ist in der Menge M enthalten (x (ist) Element von M) $x \notin M$: Objekt x ist nicht in der Menge M enthalten (x (ist) kein Element von M)

explizierte Definition: $M := \{1, 2, 3\}$ implizierte Definition: $M := \{x \mid x \text{ gerade}\}$

Häufige Abkürzungen:

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, 3, ...\}$
- $\mathbb{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{N} \}$

 $\emptyset \text{: leere Menge}$

Russelsche Antinomie (Widerspruch): $R \in R$ und $R \notin R$

4.2 Vergleiche von Mengen

 $M_1\subseteq M_2\colon M_1$ ist Teilmenge von M_2 (Jedes Element von M_1 auch Element von $M_2)$

 $M_1 \not\subseteq M_2$: M_1 ist keine Teilmenge von M_2 (Mindesten ein Element von M_1 kein Element von $M_2)$

 $M_1 \subsetneq M_2$: $M_1 \subseteq M_2$, aber auch $M_2 \backslash M_1$ hat mindestens ein Objekt

 $M_2\backslash M_1$: Differenz: M_2 ohne M_1 (Elemente von M_2 aber nicht von $M_1)$ $M_1\Delta M_2$: Symmetrische Differenz: $M_1\backslash M_2$ und $M_2\backslash M_1$

Beispiele:

- Jedes $M: \emptyset \subseteq M$
- Für $M: M \subseteq \emptyset$ wenn $M = \emptyset$
- $M_1 \subseteq M_2 \leftrightarrow M_1 \backslash M_2 = \emptyset$

 $\begin{aligned} M_1 &= M_2 \text{: } M_1 \subseteq M_2 \leftrightarrow M_2 \subseteq M_1 \\ M_1 &\neq M_2 \text{: } M_1 \subseteq M_2 \nleftrightarrow M_2 \subseteq M_1 \end{aligned}$

Kardinalität: $|{\cal M}|$: Anzahl der unterschiedlichen Elemente in ${\cal M}$

Endliche Menge: $|M| < \infty$: $n \in \mathbb{N} \to M = \{x_1, x_2, ..., x_n\}$

Unendliche Menge: $|M| = \infty$

4.3 Operation auf Mengen

 $M_1\cap M_2 \text{: Schnitt: } x \in M_1 \leftrightarrow x \in M_2$

 $M_1 \cup M_2$: Vereinigung: $x \subseteq \{M_1, M_2\}$

Disjunkt: $M_1 \cap M_2 = \emptyset$

Menge S, deren Elemente Mengen sind:

 $\cap S: \cap_{M \in S} M \{x \mid \forall M \in S(x \in M)\}\$

 $\cup S: \cup_{M \in S} M \{x \mid \exists M \in S(x \in M)\}\$

Damit gilt: $M_1 \cap M_2 = \cap \{M_1, M_2\}$ und $M_1 \cup M_2 = \cup \{M_1, M_2\}$

Gilt $S=\{M_1,...,M_k\}$ für ein $k\in\mathbb{N}$ dann:

$$\bigcup_{i=1}^k M_i := \cup S \bigcap_{i=1}^k M_i := \cap S$$

 $\Omega \text{:}\ Universum$

Ist Ω fixiert: Für $A \subseteq \Omega$ statt $\Omega \backslash A$ kurz \overline{A}

 \overline{A} ist das Komplement von A

4.4 Potenzmengen und Partitionen

Potenzmenge von $M: 2^M$ oder $\mathcal{P}(M)$

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\}$$

Die Potenzmenge mit k Elementen hat die Kardinalität 2^k

Partition von M: Menge $P \subseteq \mathcal{P}(M)$ von disjunkten, nicht leeren Teilmengen von M, deren Vereinigung genau M ergibt: $M = \cup P$

Partitionen von $\{1, 2\}$:

 $\{1,2\}$ und $\{\{1\},\{2\}\}$

4.5 Karnaugh-Veitch-Diagramme

Allgemeines Verhalten der KV-Diagramme:

Bei 2 Mengen: Eine Menge bildet die Spalten und eine Die Zeilen.

Bei 3 Mengen: Die dritte Menge wird zur Spalte (oder Zeile) und sie selbst und die andere Spalte (oder Zeile) werden in der Breite verdoppelt.

Bei 4 Mengen: Die vierte Menge wird zur Zeile (oder Spalte) und sie selbst und die andere Zeile (oder Spalte) werden in der Breite verdoppelt.

Bei 5 Mengen: Die fünfte Menge wird wieder zur Spalte \dots in der Breite verdoppelt.

...

4.6 Übersicht: Symbole und Anwendung: Mengen

Symbol	Formale Schreibweise	Bedeutung	Anwendung
z.B x	Element		$x \in M$
z.B M	Menge		$x \in M$
\in	in	Element ist in Menge enthalten	$x \in M$
∉	nicht in	Element ist NICHT in Menge enthalten	$x \notin M$
	expliziete Definition	Ausgeschriebene Definition	$M := \{1, 2, 3\}$
	implizierte Definition	Definition durch Regeln	$M := \{x \mid x \text{ gerade }\}$
Ø	leere Menge	quasi "Nichts"	$\forall M(\emptyset \subseteq M)$
\subseteq	Teilmenge	Menge 1 ist Teilmenge von Menge 2	$M_1 \subseteq M_2$
⊈	keine Teilmenge	Menge 1 ist keine Teilmenge von Menge 2	$M_1 \nsubseteq M_2$
⊆ ⊈ Ç,	Teilmenge aber nicht gleich	$M_1 \subseteq M_2$ aber auch $M_2 \backslash M_1$ hat min. ein Objekt	$M_1 \subsetneq M_2$
\	Differenz	Menge 2 ohne Menge 1	$M_2 \backslash M_1$
Δ	Symmetrische Differenz	$M_1 \backslash M_2$ und $M_2 \backslash M_1$	$M_1\Delta M_2$
=	Gleich	Menge 1 gleich Menge 2	$M_1 = M_2$
\neq	Ungleich	Menge 1 ungleich Menge 2	$M_1 \neq M_2$
z.B M	Kardinalität	Anzahl der unterschiedlichen Elemente in M	M
	Endliche Menge	$ M < \infty$	
	Unendliche Menge	$ M = \infty$	
\cap	Schnitt	Menge mit Objekten die in Menge 1 und Menge 2 sind	$M_1 \cap M_2$
U	Vereinigung	Menge mit Objekten die in Menge 1 und oder Menge 2 sind	$M_1 \cup M_2$
	Disjunkt	Zwei Mengen haben keine gemeinsamen Elemente	$M_1 \cap M_2 = \emptyset$
$\cap S$	Mengenschnitt	Alle Objekte die in allen Mengen sind	$\bigcap_{M \in S} M \{ x \mid \forall M \in S(x \in M) \}$
$\cup S$	Mengenvereinigung	Alle Objekte die in einer der Mengen sind	$\bigcup_{M \in S} M \{ x \mid \exists M \in S(x \in M) \}$
Ω	Universum	Grundmenge	$A\subseteq\Omega$
z.B \overline{A}	Komplement	Das Gegenteil von z.B A	$\overline{A} = \Omega \backslash A$
$\mathcal{P}()$	Potenzmenge	Alle Teilmengen als Elemente	$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$
z.B $M = \cup P$	Partition	disjunkte, nicht leeren Teilmengen einer Menge	$P(\{1,2\}): \{\{1\},\{2\}\},\{1,2\}$

4.6.1 Mengenterme

Standardäquivalenz für Mengenvariablen A, B, C:

$$A = A \cup A \qquad A = A \cap A \qquad A = A \cup \emptyset \qquad \emptyset = A \cap \emptyset$$

$$A \cup B = B \cup A \qquad A \cap B = B \cap A \qquad A = A \cup (A \cap B) \qquad A = A \cap (A \cup B)$$

$$A \cup (B \cup C) = (A \cup B) \cup C \qquad A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C) \qquad A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

$$A \cup (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

$$A \cap \overline{A} = \emptyset \qquad \overline{A} = A$$

$$A \cup \overline{A} = \emptyset \qquad \overline{A} = A$$

$$A \cup \overline{A} = \emptyset \qquad \overline{A} = A$$

$$A \cup \overline{A} = A \cap \overline{B}$$

$$A \cup \overline{A} = A \cap \overline{B}$$

5 Tupel, Sequenzen, Folgen und Wörter

5.1 Tupel

5.1.1 Unterschied zu Mengen

Mengen {}: Zusammenfassung von Objekten ohne Beachtung der Anordnung oder Vielfachheiten von beliebig vielen Objekten.

$${a,b,\emptyset,\{b,a\},a\} = \{\emptyset,\{a,b\},a,b\}}$$

Tupel (): Zusammenfassung einer festen, endlichen Anzahl von Objekten unter Beachtung der Anordnung/Auflistung der Objekte und Beachtung von Vielfachheiten.

$$(a, b, \emptyset, \{b, a\}, a) \neq (\emptyset, \{a, b\}, a, b)$$

5.1.2 Länge von Tupeln

Länge |t| eines Tupels t oder auch Anzahl $\sharp t$ der Komponenten/Einträge eines Tuples ist die Anzahl der zusammengefassten Objekte einschließlich Vielfachheiten.

$$|(a,(b,c))| = 2$$

k-Tupel für ein Tupel der Länge k.

Paar für 2-Tupel.

Zwei Tupel sind identisch, wenn die Länge und Einträge an den Positionen übereinstimmen.

5.2 Sequenzen/Folgen

Eine Sequenz/Folge ist ein unendliches Tupel welches seine Objekte nach aufsteigendem Index auflistet.

Es muss allerdings für jede kommende Position in der Folge auch einen Eintrag geben.

```
Notation: (Folge)<sub>Regel</sub> oder Folge := Regel
Für Index k \in \mathbb{N} definiert man [k] := \{1, 2, ..., k\} mit [0] = \emptyset
z.B: (i)_{i \in [k]} = (1, 2, 3, ..., k) oder a_i := cq^i für feste c, q \in \mathbb{R} = ...
```

5.3 Kartesisches Produkt

Wenn A,B Mengen, $A\times B$: Mengen aller Paare, wo erste Komponente ein Element aus A und zweite Komponente ein Element aus B ist. $A^k=A\times ...\times A$

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

$$A \times B \neq B \times A$$

$$A \times B \times C \neq (A \times B) \times C \neq A \times (B \times C)$$

Graphische Veranschaulichung für A^2 mit $A = \{a, b\}$, also $A \times A$

Eigenschaften:

Distributiv für:
$$\diamond \in \{ \cap, \cup, \setminus \}$$
:
 $A \times (B \diamond C) \equiv (A \times B) \diamond (A \times C)$ $(A \diamond B) \times C \equiv (A \times C) \diamond (B \times C)$

Nicht kommutativ für: $A \neq B$: $A \times B \neq B \times A$

Nicht assoziativ: $(A \times B) \times C \neq A \times B \times C \neq A \times (B \times C)$:

- $A \times B \times C = \{(a, b, c) \mid \ldots\}$
- $(A \times B) \times C = \{((a,b),c) \mid ...\}$
- $A \times (B \times C) = \{(a, (b, c)) \mid ...\}$

$$\begin{array}{l} A_1 \times B_1 \subseteq A_2 \times B_2 \leftrightarrow A_1 \subseteq A_2 \wedge B_1 \subseteq B_2 \\ A_1 \times B_1 = A_2 \times B_2 \leftrightarrow A_1 = A_2 \wedge B_1 = B_2 \\ A, B \subseteq \Omega \colon \Omega \times \Omega \backslash A \times B = (A \times \overline{B}) \cup (\overline{A} \times B) \cup (\overline{A} \times \overline{B}) \end{array}$$

5.4 Wörter und Sprache

Tupel = Grundlage für Strings Üblich ist ein Menge von Grundzeichen (Alphabet(Häufig Σ oder Γ)) vorgegeben (z.B ASCII, UTF-8, ...)

D Wort: $(a_1, ..., a_k) \in \Sigma^k$ Menge der Wörter mit Länge $k: \Sigma^k$ Menge aller endlichen Wörter: Σ^* Also:

$$\Sigma^k := \begin{cases} \{a_1...a_k \mid a_i \in \Sigma \text{ für alle } i \in [k]\} & \text{für } k \geq 1 \\ \{\epsilon\} & \text{für } k = 0 \end{cases} \qquad \Sigma^* = \bigcup_{k \in \mathbb{N}_0} \Sigma^k$$

D Sprache (über Σ): $L \subseteq \Sigma^*$

Solange keine Missverständnisse: $a_1a_2...a_k$ kurz für $(a_1, a_2, ..., a_k)$ Leeres Wort: Für leere Tupel (): ϵ (empty Word) oder λ (leeres Wort) Konkatenation (Verkettung):

- Konkatenation xy für $(x_i, y_j \in \Sigma)$: $xy := x_1...x_iy_1...y_j$
- $x\epsilon = \epsilon x = x$ und |xy| = |x| + |y|
- Konkatenation zweier Tupel $(x_1,...x_k)$ und $(y_1,...,y_l)$ neues Tupel $(x_1,...,x_k,y_1,...,y_l)$

5.5 Übersicht: Symbole für Tupel etc.

Symbol	Formale Schreibweise	Bedeutung	Anwendung
{}	Mengen	Mengen werden durch geschweifte Klammern dargestellt	$M := \{1, 2, 3\}$
()	Tupel	Tupel werden durch runde Klammern dargestellt	T := (a, b)
t	Länge	Länge eines Tupels	(a,b) = 2
#t	Anzahl	Anzahl der Komponenten eines Tupels	#(a,b) = 2
	k-Tupel	Tupel der Länge k	
	Paar	2-Tupel	(a,b)
$z.B (Folge)_{Regel}$	Sequenz/Folge	Unendliches Tupel	$(i)_{i\in\mathbb{N}} = (1,2,,\infty)$
z.B Folge := Regel	Sequenz/Folge	Unendliches Tupel	$a_i := cq^i$ für feste $c, q \in \mathbb{R} = \dots$
z.B[k]	Index	Aufsteigender Index für eine Folge	$k \in \mathbb{N} \text{ mit } [0] = \emptyset$
×	Kartesisches Produkt	alle Paare mit gewissen Kombinationen	$A \times B\{(a,b) \mid a \in A, b \in B\}$
z.B A^k	k-Tupel mit Komponenten aus A	$A \times \times A \ (k\text{-mal})$	$A^0 := \{()\} \text{ und } A^1 := \{(a) \mid a \in A\} \neq A$
Häufig Σ oder Γ	Alphabet	Menge von Grundzeichen	
Σ^*	Menge aller endlichen Wörter		
Σ^k	Menge der Wörter mit Länge k		
	Wort	Tupel bestehend aus Grundzeichen aus einem Alphabet	$(a_1,, a_k) \in \Sigma^k$ $L \subseteq \Sigma^*$
	Sprache	Teilmenge eines Alphabets	$L\subseteq \Sigma^*$
z.B $a_1 a_2 a_k$		Abkürzung solange kein Missverständnis entsteht	
()	leeres Tupel		
ϵ oder λ	leeres Wort		
z.B xy	Konkatenation	Verkettung zweier Wörter/Tupel	$xy := x_1 x_k y_1 y_l$

5.5.1 Tupel- und Wörterterme

$$(a, b, \emptyset, \{b, a\}, a) \neq (\emptyset, \{a, b\}, a, b)$$

$$\begin{array}{ll} A\times B=\{(a,b)\mid a\in A,b\in B\} & A^0:=\{()\} & A^1:=\{(a)\mid a\in A\}\neq A\\ A\times B\neq B\times A & A\times B\times C\neq (A\times B)\times C\neq A\times (B\times C) \end{array}$$

Distributiv für:
$$\diamond \in \{\cap, \cup, \setminus\}$$
: $A \times (B \diamond C) \equiv (A \times B) \diamond (A \times C)$ $(A \diamond B) \times C \equiv (A \times C) \diamond (B \times C)$

Nicht kommutativ für: $A \neq B$: $A \times B \neq B \times A$

Nicht assoziativ: $(A \times B) \times C \neq A \times B \times C \neq A \times (B \times C)$:

- $\bullet \ \ A\times B\times C=\{(a,b,c)\mid \ldots\}$
- $(A \times B) \times C = \{((a, b), c) \mid ...\}$
- $A \times (B \times C) = \{(a, (b, c)) \mid ...\}$

$$\begin{array}{l} A_1 \times B_1 \subseteq A_2 \times B_2 \leftrightarrow A_1 \subseteq A_2 \wedge B_1 \subseteq B_2 \\ A_1 \times B_1 = A_2 \times B_2 \leftrightarrow A_1 = A_2 \wedge B_1 = B_2 \\ A, B \subseteq \Omega \colon \Omega \times \Omega \backslash A \times B = (A \times \overline{B}) \cup (\overline{A} \times B) \cup (\overline{A} \times \overline{B}) \end{array}$$

- $x\epsilon = \epsilon x = x$ und |xy| = |x| + |y|
- Konkatenation zweier Tupel $(x_1,...x_k)$ und $(y_1,...,y_l)$ neues Tupel $(x_1,...,x_k,y_1,...,y_l)$

6 Induktion

Um "für alle $m \in \mathbb{N}_0 : P(m)$ " mittels Induktion nach n zu zeigen:

- Induktionsbasis (I.B.): Beweise P(0)
- Induktionsschritt (I.S.): Fixiere ein beliebiges $n \in \mathbb{N}_0$
- Induktionsannahme (I.A.): P(n) gilt für das fixierte n (starke Induktion: P(0), P(1), ..., P(n) gelten für das fixierte n)
- Induktionsbehauptung (I.Beh.): P(n+1) gilt für das fixierte n
- Induktionsbeweis (I.Bew.): Beweise P(n+1) unter den getroffenen Annahmen und der AnnahmeP(n) für das fixierte n

7 Relationen

7.1 Grundbegriffe

Mengen $A_1, A_2, ..., A_k$: $R \subseteq A_1 \times A_2 \times ... \times A_k$ eine (k-stellige) Relation oder Relation der Stelligkeit/Arität k.

 $(a_1, a_2, ..., a_k) \in \mathbb{R} \to \text{Die Objekte } a_1, a_2, ..., a_k \text{ stehen bzgl. } R \text{ in Relation.}$

(Vereinfacht) Grundlage für Datenbanken: Jede (klassische) Datenbank ist eine Menge von Datenbanktabellen, wo jede Tabelle eine Relation abspeichert.

A_{id}	$A_{Nachname}$	$A_{ m Vorname}$	$A_{ m id}$	$A_{\text{Matrikelnummer}}$	A_{id}	$A_{\text{Geschlecht}}$
1	Man	Spider	1	3141	1	m
2	Brot	Bernd	2	271828	2	b
3	Woman	Wonder	3	1701	3	W
4	Gaga	Lady	4	3694	4	w

7.2 Join und Projektion

Wichtigsten Datenbankoperatoren Join und Projektion:

Join: $R \bowtie_{i=j} S$ konkateniert (verkettet) jedes Tupel $(r_1, ..., r_k) \in R$ mit jedem Tupel $(s_1, ..., s_k) \in S$, soweit $r_i = s_j$:

$$R \bowtie_{i=j} S = \left\{ (r_1, ..., r_k, s_1, ..., s_l) \mid (s_1, ..., s_l) \in S, \\ r_i = s_j \right\}$$

Projektion: $\pi_{i_1,i_2,...,i_j}$ reduziert jedes Tupel $(r_1,...,r_k) \in \mathbb{R}$ auf die Einträge an den Positionen $1 \leq i_1,i_2,...,i_j \leq k$:

$$\pi_{i_1,i_2,...,i_j}(R) = \{(r_{i_1},r_{i_2},...,r_{i_j}) \mid (r_1,...,r_k) \in R\}$$

Damit kann man Datenbanktabellen verknüpfen und filtern, um damit Datenbankabfragen zu beantworten.

7.3 Binäre Relationen

Binäre Relation (2-stellige Relation): $R \subseteq A \times B$

Infixnotation: aRb für $(a,b) \in R$

Inverse Relation: $R^{-1} := \{(b, a) \mid (a, b) \in R\}$

7.3.1 Graphen

Gerichteter Graph (kurz: Digraph) G = (V, E) besteht aus:

- \bullet Menge V Knotenmenge, Elemente von V entsprechend Knoten von G
- \bullet Binäre Relation $E\subseteq V\times V$ Kantenrelation/-menge, Elemente von Eentsprechend Kanten von G
- \bullet Digraph G endlich: V endlich, sonst G unendlich
- Digraph G bipartit: $V = A \cup B$ mit $A \cap B = \emptyset$ und $E \subseteq A \times B \cup B \times A$ (nur Kanten zwischen A und B)

Visualisierung eines (endlichen) Digraphen G = (V, E):

- $\bullet\,$ Für jeden Knoten $v\in V$: male einen Knubbel mit Namen v
- Für jede Kante (s,t): male einen Pfeil vom Knubbel s zum Knubbel t $(s=\text{source},\ t=\text{target})$ $s=t\to \text{mal Schleife}$

Falls G unendlich: nur schematische Skizze möglich.

Tupel $(v_0, v_1, ..., v_l)$ von Knoten $v_i \in V$ heißt Weg/Pfad falls $(v_{i-1}, v_i) \in E$ für jedes $i \in [l]$ gilt.

Also: je zwei aufeinanderfolgende Knoten sind durch eine Kante aus ${\cal E}$ verbunden.

- l: Länge eines Pfades $(v_0, v_1, ..., v_l)$: Anzahl der Kanten von v_0 bis v_l
- Einfacher Pfad: Keine Knoten kommen mehrmals in einem Pfad vor

7.4 Relationals Produkt

Sind $R \subseteq A \times B$ sowie $S \subseteq C \times D$ binäre Relationen, dann relationales Produkt von R und S die binäre Relation $RS \subseteq A \times D$ gegeben durch:

$$RS = \{(a,d) \mid \exists x \in B \cap C((a,x) \in R \land (x,d) \in S)\}\$$

oder kurz: $RS = \pi_{1,4}(R \bowtie_{2=1} S)$

 $B\cap C=\emptyset\to RS=\emptyset$

RS: Verkettung von R und S

7.5 Binäre Relationen auf einer Menge

Binäre Relationen $R\subseteq A\times A$, die auf einer Menge A definiert sind: Können mit sich selbst mittels relationalem Produkt mehrfach verknüpft werden: "Zusammenziehen der k-Schritt Pfade"

- $D R^0 := Id_A := \{(a, a) \mid a \in A\}$
- $R^1 := R = R^0 R$
- $R^2 := RR = R1R$
- $R^{k+1} := R^k R = RR^k = \underbrace{RR...R}_{k+\text{Imal}}$ für beliebiges $k \in \mathbb{N}_0$

Bemerkung: Obige Definition: induktive Definition

Die Definition ist (fast) ein Algorithmus, wie man \mathbb{R}^{k+1} mittels \mathbb{R} und \mathbb{R}^k rekursiv "berechnen" kann.

Für eine binäre Relation $R \subseteq A \times A$:

- Transitive Hülle: $R^+ := \bigcup_{k \in \mathbb{N}} R^k$ (alle Pfade, die min. einen Schritt machen)
- Reflexiv-transitive-Hülle: $R^* := \bigcup_{k \in \mathbb{N}_0} R^k = R^0 \cup R^+$
- v ist von u erreichbar, falls uR^*v
- $R^{\leq k} := \bigcup_{i=0}^k R^i$ (Erreichbarkeit in höchstens k Schritten)

Ist A endlich und n=|A| dann gilt $R^*=R^{\leq n-1}$ Jedes Element von R^* gehört zu $R^{\leq n-1}$, d.h. $R^*\subseteq R^{\leq n-1}$

7.6 Eigenschaften von Binären Relationen

$$(R^*)^* = (R^+)^* = (R^*)^+ = R^*$$

 $(R^+)^+ = R^+$

Für $R \subseteq A \times A$ auf einer Menge A

- reflexiv: $\mathrm{Id}_A \subseteq R$ Jeder Knoten hat eine Schleife
- symmetrisch: $(s,t) \in R \to (t,s) \in R$ Zwischen je zwei Knoten entweder beide Kanten oder Keine
- asymmetrisch: $(s,t) \in R \to (t,s) \notin R$ Keine Schleifen und zwischen je zwei verschiedenen Knoten höchstens eine Kante
- antisymmetrisch: $(s,t) \in R \land (t,s) \in R \rightarrow s = t$ Zwischen zwei verschiedenen Knoten existiert höchstens eine Kante
- transitiv: $(s,t) \in R \land (t,u) \in R \rightarrow (s,u) \in R$ Kommt man in genau zwei Schritten von s nach u dann auch mit genau einem

Weitere Beispiele:

- $=_{\mathbb{Z}}$: reflexiv; symmetrisch; transitiv
- $\leq_{\mathbb{Z}}$: reflexiv; antisymmetrisch; transitiv
- $<_{\mathbb{Z}}$: nicht reflexiv; asymmetrisch; transitiv
- $\neq_{\mathbb{Z}}$: nicht reflexiv,; symmetrisch; nicht transitiv
- $|_{\mathbb{Z}} \subseteq \mathbb{Z} \times \mathbb{Z}$ mit a|b definiert durch $\frac{b}{a} \in \mathbb{Z}$: nicht reflexiv; nicht symmetrisch; nicht asymmetrisch; transitiv
- $|_{\mathbb{N}} \subseteq \mathbb{N} \times \mathbb{N}$: reflexiv; antisymmetrisch; transitiv

- $\equiv_m \subseteq \mathbb{Z} \times \mathbb{Z}$ mit $a \equiv_m b$ definiert durch m | (a b) für festes $m \in \mathbb{N}$: reflexiv; symmetrisch; transitiv
- \subseteq auf $\mathcal{P}(\mathbb{Z})$: reflexiv; antisymmetrisch; transitiv
- Kongruenzbegriff auf Dreiecken: reflexiv; symmetrisch; transitiv

Für Wörter $u, v \in \Sigma *$

- u ist ein Präfix von v (kurz. $u \leq_p v$), falls es ein $w \in \Sigma^*$ mit uw = v gibt. \leq_p : reflexiv; antisymmetrisch; transitiv
- u ist ein Suffix von v (kurz. $u \leq_s v$), falls es ein $w \in \Sigma^*$ mit wu = v gibt. \leq_s : reflexiv; antisymmetrisch; transitiv
- u ist ein Infix (Faktor) von v (kurz. $u \leq_i v$), falls es $w, w' \in \Sigma^*$ mit wuw' = v gibt. \leq_i : reflexiv; antisymmetrisch; transitiv
- u und v sind konjugiert (kurz. $u \cong_c v$), falls es $w, w' \in \Sigma^*$ mit u = ww' und v = w'w gibt. \cong_c : reflexiv; symmetrisch; transitiv

Klassifikationen:

- $\leq_{\mathbb{Z}}, |_{\mathbb{N}}, \subseteq, \preceq_p, \preceq_s, \preceq_i$: Partielle Ordnungen: reflexiv, antisymmetrisch, transitiv
- $\bullet=_{\mathbb{Z}},\equiv_m,\cong_c,$ "Kongruenz von Dreiecken": Äquivalenzrelationen: reflexiv, symmetrisch, transitiv

7.7 Übersicht Relationen

Symbol	Formale Schreibweise	Bedeutung	Anwendung
$\overline{z.B}$ R	Relation	Teilmenge eines kartesischen Produktes	$R \subseteq A_1 \times A_2 \times \times A_k$
\bowtie	Join	konkateniert jedes Tupel zweier Relationen miteinander	$R\bowtie_{i=j} S$
π	Projektion	reduziert jedes Tupel auf die Einträge an gewissen Positionen	$\pi_{i_1,i_2,\ldots,i_j}(R)$
ļ	Binäre Relation	2-stellige Relation	$R \subseteq A \times B$
ļ	Infixnotation	kürzere Schreibweise	aRb für $(a,b) \in R$
$z.BR^{-1}$	Inverse Relation	Richtungswechsel aller Kanten	$R^{-1} := \{(b, a) \mid (a, b) \in R\}$
z.B G	Digraph	Gerichteter Graph	G = (V, E)
z.B V	Knotenmenge	Menge der Knoten von G	$V = \{1, 2, 3\}$
z.B E	Kantenrelation	Binäre Relation der Knoten	$E \subseteq V \times V$
ļ	endlicher Digraph	V endlich, sonst G unendlich	
	bipartit	Nur Kanten zwischen A und B	
z.B l	Pfadlänge	Anzahl der Kanten zwischen zwei Knoten	l = (1, a, 1, a, 2)
ļ	Einfacher Pfad	Keine Knoten kommen mehrmals im Pfad vor	l = (1, a, 2)
	Maximale Länge eines einfachen Pfades	V -1	
z.B RS	Relationales Produkt	Verkettung von R und S	$RS \subseteq A \times D$
$z.B \operatorname{Id}_A$	Identitätsrelation	Alle Knoten verweisen nur auf sich selbst	R^0
R^+	Transitive Hülle	Alle Pfade die min. einen Schritt machen	$\bigcup_{\substack{k \in \mathbb{N} \\ R^0 \cup R^+}} R^k$
R^*	Reflexiv-transitive-Hülle	Transitive Hülle und Identitätsrelation	
$\mathrm{Id}_A\subseteq R$	reflexiv	Jeder Knoten hat eine Schleife	$R = \{(a, a), (b, b)\}$
$(s,t) \in R \to (t,s) \in R$	symmetrisch	Zwischen zwei Knoten entweder beide Kanten oder Keine	$R = \{(a, b), (b, a)\}$
$(s,t) \in R \to (t,s) \notin R$	asymmetrisch	Keine Schleifen und zwischen zwei Knoten max. eine Kante	$R = \{(a,b),(b,c)\}$
$((s,t) \land (t,s)) \rightarrow s = t$	antisymmetrisch	Zwischen zwei Knoten max. eine Kante	$R = \{(a, b), (b, b)\}$
$((s,t) \land (t,u)) \to (s,u)$	transitiv	Wenn in 2 Schritten dann auch in 1	$R = \{(a, b), (b, c), (a, c)\}$
$=_{\mathbb{Z}}$	Äquivalenzrelation	reflexiv; symmetrisch; transitiv	
$\leq_{\mathbb{Z}}$	Partielle Ordnung	reflexiv; antisymmetrisch; transitiv	
$<_{\mathbb{Z}}$		reflexiv; asymmetrisch; transitiv	
$ eq_{\mathbb{Z}}$		reflexiv; symmetrisch; ¬ transitiv	
$ _{\mathbb{Z}}\subseteq\mathbb{Z} imes\mathbb{Z}$		¬ reflexiv; ¬ asymmetrisch; ¬ antisymmetrisch; ¬ transitiv	
$ _{\mathbb{N}}\subseteq\mathbb{N} imes\mathbb{N}$	Partielle Ordnung	reflexiv; antisymmetrisch; transitiv	
$\equiv_m \subseteq \mathbb{Z} \times \mathbb{Z}$	Äquivalenzrelation	reflexiv; symmetrisch; transitiv	
$\subseteq \operatorname{auf}\mathcal{P}(\mathbb{Z})$	Partielle Ordnung	reflexiv; antisymmetrisch; transitiv	
≾p ≾s ≾i ≅ _c	Präfix	u Präfix von v falls w mit:	uw = v
\preceq_s	Suffix	u Suffix von v falls w mit:	wu = v
\preceq_i	Infix (Faktor)	u Infix von v falls w, w' mit:	wuw' = v
\cong_c	Konjugation	u und v konjugiert falls w, w' mit:	u = ww' und v = w'w

7.7.1 Relationsterme

$$(R^*)^* = (R^+)^* = (R^*)^+ = R^*$$

 $(R^+)^+ = R^+$

8 Äquivalenzrelationen und Ordnungsrelationen

8.1 Grundverständnis Äquivalenzrelationen

Relationen: $=_{\mathbb{Z}}, \equiv_k, \cong_c$

Gemeinsamkeiten: reflexiv, symmetrisch, transitiv

Unterteilen/partionieren die Objekten des Universums nach verschiedenen "Äquivalenzbegriffen"

- $a =_{\mathbb{Z}} b$: a und b dieselbe/identische Zahl "Feinste" Partitionierung: $\{\{x\} \mid x \in \mathbb{Z}\}$
- $a \equiv_m b$: a und b derselbe Rest bei Division durch m Partitionierung: Menge der Restklassen $\{m\mathbb{Z}, m\mathbb{Z}+1, ..., m\mathbb{Z}+(m-1)\}$ mit $m\mathbb{Z} = \{mz \mid z \in \mathbb{Z}\}$ "Gröbste" Partitionierung für $m = 1 : \{\mathbb{Z}\}$ (alles gleich)
- D Binäre Relation $R \subseteq A \times A$ über Menge A heißt Äquivalenzrelation falls:
 - R: reflexiv, symmetrisch und transitiv

Für $R \subseteq A \times A$ eine Äquivalenzrelation definiert man:

- Äquivalenzklasse eines Objekts a bzgl. R: $[a]_R = \{b \in A \mid aRb\}$ aka. ein Objekt a weißt auf eine Äquivalenzklasse $b \in A$
- \mathbf{F} $a \in [a]_R$ und $[a]_R = [b]_R$ für aRb $[a]_R \cap [b]_R = \emptyset$ für $(a,b) \notin R$
- Quotient von A bzgl. R als die Menge aller Äquivalenzklassen: $A/R = \{[a]_R \mid a \in A\}$
- F A/R ist eine Partition von A

8.2 Äquivalenzrelationen als Partitionen

Mögliche Äquivalenzrelationen bzgl. $A = [4] = \{1, 2, 3, 4\}$:

- $A/R = \{\{a\}, \{b\}, \{c\}, \{d\}\}\$ ("Feinste" Partitionierung)
- $A/R = \{\{a\}, \{b\}, \{c, d\}\}\$ $A/R = \{\{a, b\}, \{c\}, \{d\}\}\$
- $A/R = \{\{a\}, \{b, c, d\}\}\$ $A/R = \{\{a, b, c\}, \{d\}\}\$
- $A/R = \{\{a, b\}, \{c, d\}\}\$ $A/R = \{\{a, c\}, \{b, d\}\}\$
- $A/R = \{\{a, b, c, d\}\}\$ ("Gröbste" Partitionierung)

8.3 Grundverständnis Ordnungsrelationen

Beispiele: $\leq_{\mathbb{Z}}, |_{\mathbb{N}}, \subseteq, \preceq_p, \preceq_s, \preceq_i$

Gemeinsamkeiten: reflexiv, antisymmetrisch, transitiv Ordnen Objekte zumindest teilweise (partiell) an

Unterschiede:

- $a, b \in \mathbb{Z}$: $a \leq_{\mathbb{Z}} b \vee b \leq_{\mathbb{Z}} a$ d.h bzgl. $\leq_{\mathbb{Z}}$ sind alle ganzen Zahlen vergleichbar
- $\exists a, b \in \mathbb{N}(\neg(a|_{\mathbb{N}}b) \land \neg(b|_{\mathbb{N}}a))$ d.h bzgl. $|_{\mathbb{N}}$ gibt es unvergleichbare positive ganze Zahlen, z.B. Primzahlen.

Man definiert daher:

- $R \subseteq A \times A$ ist eine partielle Ordnung (Halbordnung) auf A falls
 - R reflexiv, antisymmetrisch und transitiv
- $R \subseteq A \times A$ ist eine totale Ordnung (Totalordnung) auf A falls
 - R eine partielle Ordnung auf A ist, und
 - -a, b stets bzgl. R in Relation: $aRb \lor bRa$

Man definiert strikte/strenge Varianten: Reflexivität durch Irreflexivität ersetzen, wodurch Antisymmetrie zur Asymmetrie wird:

• R ist irreflexiv, falls $\forall a \in A((a, a) \notin R)$ d.h. $R \cap Id_A = \emptyset$

8.4 Hasse-Diagramm

Für eine (partielle) Ordnung $R\subseteq A\times A$: Statt R bzw. G_R , möglichst "kleine" Relation $S\subseteq R$, für die $S^*=R$ gilt G_S wird Hasse-Diagramm von R genannt

Man entfernt die reflexiven und transitiven Pfade.

8.5 Standardbegriffe für Ordnungsrelationen

Für eine Ordnung $R \subseteq A \times A$

 $m \in A$ ist ein maximales Element bzgl. R, falls:

- $\forall a \in A(mRa \rightarrow a = m)$
 - Keine Kanten zu einem anderen Element

 $m \in A$ ist das größte Element bzgl. R, falls:

- $\forall a \in A(aRm)$
 - Keine Kanten zu einem anderen Element, aber von jedem anderen Element eine Kante
 - Ist R total, dann maximales Element = größtes Element

 $m \in A$ ist ein minimales Element bzgl. R, falls:

- $\forall a \in A(aRm \rightarrow a = m)$
 - Keine Kanten von einem anderen Element

 $m \in A$ ist das kleinste Element bzgl. R, falls:

- $\forall a \in A(mRa)$
 - Keine Kanten von einem anderen Element, aber zu jedem anderen Element eine Kante
 - Ist R total, dann minimales Element = kleinstes Element

Erinnerung: für binäre Relation $R \subseteq A \times A$:

- $R^+ := \bigcup_{k \in \mathbb{N}} R^k$: transitive Hülle
- $R^* := \bigcup_{k \in \mathbb{N}_0} R^k$: reflexiv-transitive Hülle

Teilmengenrelation \subseteq ist eine Halbordnung auf der Menge aller binären Relationen auf A

Bzgl. \subseteq lassen sich R^* und R^+ wie folgt charakterisieren:

• R^+ ist das kleinste Element bzgl. \subseteq in

$$\{S\subseteq A\times A\mid R\subseteq S\text{ und }S\text{ ist transitiv}\}$$

d.h ist S transitiv mit $R \subseteq S$, dann gilt $R^+ \subseteq S$

• R^* ist das kleinste Element bzgl. \subseteq in

$$\{S \subseteq A \times A \mid R \subseteq S \text{ und } S \text{ ist reflexiv und transitiv}\}$$

d.h ist S reflexiv und transitiv mit $R \subseteq S$, dann gilt $R^* \subseteq S$

- F Mit R ist auch R^{-1} eine Ordnung (Pfeile umdrehen)
 - minimal und maximal bzw. kleinstes und größtes vertauschen sich

9 Funktionen

9.1 Grundverständnis Funktionen

Eine Relation $R \subseteq A \times A$ ist eine Funktion, falls:

- $\forall a \in A \exists ! b \in B((a,b) \in R)$:
 - $-\exists b \in B(aRb) \land (aRb' \rightarrow b = b')$

9.2 Konventionen

- f, g, h, \dots : Funktionsbezeichner
- $f:A \to B$: $f \subseteq A \times B$: Funktion von A nach B
- f(a): $\exists ! b \in B((a,b) \in f)$:
 - -afb vs. b = f(a)
 - manchmal af praktischer als f(a)
- $B^A := \{f : A \to B\}$: Menge aller Funktionen von A nach B
- $f(a_1,...,a_k)$ statt $f((a_1,...,a_k))$ für $A = \underset{i=1}{\overset{k}{\times}} A_i$
- \bullet k: Stelligkeit oder Arität von f
- k-äre Funktion (bzw. nullär, un
är, binär, tertiär, usw.): $f: \mathop{\textstyle \sum}_{i=1}^k A_i \to B$
- Spezialfall nulläre Funktion: $f:\{()\}\to B$
 - Nur für leere Tupel definiert, ordnet immer denselben Wert zu.
- Urbildmenge: dom(f) einer Funktion $f: A \to B$ ist die Menge A
- Bildmenge: im(f) von f: Menge $\{f(a) \mid a \in A\}$
- Für $X \subseteq A$ und $Y \subseteq B$:
 - $f^{-1}(Y) = \{ a \in A \mid f(a) \in Y \} \subseteq \text{dom}(f)$
 - $f(X) = \{ f(a) \mid a \in X \} \subseteq \operatorname{im}(f)$
- Totale Funktion: jedem $a \in A$ muss ein Bild f(a) zugewiesen werden. (Für $f:A \to B$)
- Partielle Funktion: jedes $a \in A$ steht mit höchstens eiem $b \in B$ in Relation (Für $f \subseteq A \times B$)
 - $-f:A\to B$ (totale) Funktion: $\mathrm{dom}(f)=A$
 - $-\ f:A\hookrightarrow B$ partielle Funkrion: $\mathrm{dom}(f)\subseteq A$

9.3 Komposition

Komposition (Nacheinanderausführung): $(g \circ f)(a) := g(f(a))$ von Funktionen: $f: A \to B$ und $g: B \to C$ Lies $g \circ f$ als "g nach f"

Beachte umgekehrte Lese/Schreibrichtung im Vergleich zu Relationen: Relationales Produkt fg= Komposition $g\circ f$ In beiden Fällen: Erst f, dann g

9.4 Multimengen

Wiederholung:

- Menge: Zusammenfassung, ohne Beachtung von Vielfachheiten und Reihenfolge
- Tupel: Zusammenfassung, mit Beachtung von Vielfachheiten und Reihenfolge

Multimenge: Zusammenfassung, ohne Beachtung von Reihenfolge aber Beachtung von Vielfachheiten

Notation: $\{...\}$ wenn klar ist, dass eine Multimenge gemeint ist, sonst $\{\}_M$

Falls nur Multimengen bzgl. eines festen Universums Ω betrachtet werden: Zählfunktion: $c_M \in \mathbb{N}_0^{\Omega}$:

- $c_M(x)$ gibt an wie oft $x \in \Omega$ in der Multimenge M vorkommt
- z.B. für $\Omega = \{a, b, c, d\}$:

$$\{a, b, c, a\}_M = \{(a, 2), (b, 1), (c, 1), (d, 0)\} \in \mathbb{N}_0^{\Omega}$$

Charakteristische Funktion für Menge $A\subseteq\Omega:\delta_A\in\{0,1\}^\Omega:\delta_A(x)=1\leftrightarrow x\in A$

- **F** Definition von \cup & \cap für zwei Multimengen M, N bzgl. Ω mittels Zählerfunktion:
 - $\bullet \ c_{M \cup N}(x) := c_M(x) + c_N(x)$
 - $c_{M \cap N}(x) := min\{c_M(x), c_N(x)\}$

Für zwei Mengen:

- $\delta_{M \cup N}(x) := max\{\delta_M(x), \delta_N(x)\}$
- $\delta_{M \cap N}(x) := min\{\delta_M(x), \delta_N(x)\}$

9.5 Injektiv, Surjektiv, Bijektiv

Eine totale Funktion $f: A \to B$ ist:

- injektiv: $f(a) = f(a') \rightarrow a = a'$ \leftrightarrow : $\forall b \in B(|f^{-1}(\{b\})| \le 1)$ (Jedes b max. 1 Kante)
- surjektiv: $\forall b \in B \exists a \in A(f(a) = b)$ \leftrightarrow : $\forall b \in B(f(A) = B, im(f) = B, |f^{-1}(\{b\})| \ge 1)$ (Jedes b min. 1 Kante)
- bijektiv: injektiv und surjektiv \leftrightarrow : $\forall b \in B(|f^{-1}(\{b\})| = 1)$ (Jedes b genau eine Kante)

Eine bijektive Funktion $f: A \to A$: Permutation

9.6 Umkehrfunktion

Ist f bijektiv: $f^{-1} = \text{Umkehrfunktion/Inverse von } f$:

$$f^{-1} = \{(b, a) | b \in B, a \in f^{-1}(\{b\})\} \in A^B$$

9.7 Eigenschaften

Ist $f \colon A \to B$ bijektiv, dann auch f^{-1} Sei $f \colon A \to B$ bijektiv:

• Dann f^{-1} die einzige Funktion g auf A^B mit:

$$- (g \circ f) = \mathrm{Id}_A$$
$$- (f \circ g) = \mathrm{Id}_B$$

Sind $f: A \to B$ und $g: B \to C$ bijektiv:

- $(g \circ f): A \to C$ bijektiv
- $(g \circ f)^{-1} = (f^{-1} \circ g^{-1})$

Ist $(g \circ f): A \to C$ bijektiv:

- $f: A \to B$ injektiv
- $g: B \to C$ surjektiv

Weitere Eigenschaften:

- f injektiv $\rightarrow g: A \rightarrow f(A), a \mapsto f(a)$ bijektiv
- $f: A \to A$ injektiv und A endlich $\to f$ bijektiv

- $f \colon A \to A$ surjektiv und A endlich $\to f$ bijektiv
- $f \colon A \to B$ und $g \colon B \to C$ injektiv/surjektiv $\to (g \circ f)$ injektiv/surjektiv
- $(g \circ f)$ surjektiv $\rightarrow g$
- $(g \circ f)$ injektiv $\rightarrow f$
- $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$
- $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$
- $f(X \cup Y) = f(X) \cup f(Y)$
- $f(X \cap Y) \subseteq f(X) \cap f(Y)$

10 Kardinalität von Mengen

10.1 Grundlage für Vergleich von unendlichen Mengen

- Injektion $f: A \to B$: B min. so viele Elemente wie A
 - $-|A| \le |B|$ (B min. so mächtig wie A)
- Bijektion $f \colon A \to B \colon \mathbf{B}$ genauso viele Elemente wie A
 - -|A| = |B| (A, B gleichmächtig)
- Injektion $f: A \to B$ aber keine Bijektion $g: A \to B$
 - -|A| < |B| (echt mächtiger)

|A|: Kardinalzahl (für eine Menge A) Satz von Cantor-Bernstein-Schröder:

- Sind $f: A \to B$ und $g: B \to A$ injektiv, dann gibt es $h: A \to B$ bijektiv
- Daher: $(|A| \le |B| \land |A| \ge |B|) \to |A| = |B|$
- Es folgt: |A| = |B| wenn es injektive Funktionen $f \colon A \to B$ und $g \colon B \to A$ gibt
- Es folgt: |A| < |B| wenn es injektive Funktion $f: A \to B$ aber keine injektive Funktion $g: B \to A$ gibt
- $\bullet \le$ ist auf den Kardinalzahlen antisymmetrisch

Überabzählbare Mengen: Es gilt stets: $|A| < |\mathcal{P}(A)|$

11 Digraphen

Zur Erinnerung und Basiswissen siehe 7.3.1 G = (V, E)

- G: Gerichteter Graph (kurz Digraph)
- V: Knotenmenge
- E: Binäre Relation $E \subseteq V \times V$: Kantenrelation/-menge

11.1 Teilgraphen

Für $U \subseteq V$:

• $G[U] = (U, E \cap (U \times U))$ (Von U induzierter Teilgraph)

 $H=(V_H,E_H)$ ist Teilgraph von $G=V_G,E_G,$ falls $V_H\subseteq V_G$ und $E_H\subseteq E_G$

11.2 Zusammenhang

- zusammenhängend: $\forall u, v \in V(u(E \cup E^{-1})^*v)$
- stark zusammenhängend: $\forall u, v \in V(uE^*v \wedge vE^*u)$
- $U \subseteq V$ (starke) Zusammenhangskomponente: G[U] (stark) zusammenhängend
- U maximale (starke) Zusammenhangskomponente: $\nexists U'(U \subsetneq U' \subseteq V)$

11.3 Kreise

- Kreis (Zyklus): Pfad $v_0, v_1, ..., v_l$ mit $l \ge 1$ und $v_0 = v_l$
- Einfacher Kreis: $|\{v_0, v_1, ..., v_l\}| = l$ (Kreis hat keinen kleineren Kreis)
- Schleife/Schlinge: Selbstkante uEu (Kreis der Länge 1)
- azyklisch (kreisfrei): Digraph ohne Kreise
- DAG: directed acylic graph bsp. Hasse-Diagramm einer partiellen Ordnung
- Nachfolger von u: $uE = \{v \in V \mid uEv\}$
- Vorgänger von v: $Ev = \{u \in V \mid uEv\}$

11.4 Isomorphie

Zwei Digraphen G, H sind isomorph (strukturgleich) kurz $G \cong H$, falls

• $\beta: V_G \to V_H$ Also: $uE_G v \leftrightarrow \beta(u)E_H \beta(v)$

11.5 Graphautomorphismen

- D Graphautomorphismus: Graphisomorphismus eines Graphen mit sich selbst
 - Isomorphismen benennen Knoten um
 - Automorphismen stllen Symmetrien eines (Di)Graphen dar
 - Jede endliche Gruppe kann mit den Automorphismen eines endlichen (gerichteten oder ungerichteten) Graphen identifiziert werden
 - Erstellung durch:
 - Rotation ρ : $\beta_1 = \begin{pmatrix} a & b & c & d \\ 1 & 2 & 3 & 4 \end{pmatrix}, \beta_2 = \begin{pmatrix} a & b & c & d \\ 4 & 1 & 2 & 3 \end{pmatrix}, \beta_1 \circ \beta_2^{-1} \text{ (Verschieben)}$
 - Spiegelung σ : $\beta_1 = \begin{pmatrix} a & b & c & d \\ 1 & 2 & 3 & 4 \end{pmatrix}, \beta_2 = \begin{pmatrix} a & b & c & d \\ 2 & 1 & 4 & 3 \end{pmatrix}, \beta_1 \circ \beta_2^{-1} \text{ (Vertauschen)}$

12 Ungerichtete und einfache Graphen

12.1 Grundverständnis

- \bullet Ungerichtet: E symmetrisch
- einfacher Graph: E symmetrisch und irreflexiv
- Statt $(u, v), (v, u) \in E \subseteq V \times V$ nur noch $\{u, v\} \in E \subseteq \binom{V}{2}$
- $\binom{V}{2} := \{\{u,v\} \subseteq V \mid u \neq v\}$ Menge aller 2-elementigen Teilmengen
- Statt Vorgänger und Nachfolger nur Nachbarschaft: $\Gamma(u) = \{v \in V \mid \{u,v\} \in E\}$
- Knotengrad: $deg(u) := |\Gamma(u)|$ Anzahl an Nachbarschaften
- Darstellung: Anstatt Pfeile in beide Richtungen, eine Kante ohne Kopf

12.2 Kreise

- Definition:
 - $\text{ Pfad } v_0, v_1, ..., v_l \text{ mit } l \ge 3$
 - $\text{ und } |\{v_0,...,v_l\}| = l$
- Also: Einfache Kreise aus min. 3 Kanten
- Triviale Kreise u, v, u ausgeschlossen
- Einfacher Graph bipartit: Keinen Kreis ungerader Länge

12.3 Spezielle (einfache) Graphen

• Vollständiger Graph:

$$K_n := \left([n], \binom{[n]}{2} \right)$$

Alle möglichen Kanten vorhanden

• Kreisgraph:

$$C_n := ([n], \{\{i, (i \mod n) + 1\} \mid i \in [n]\})$$
 für $n \ge 3$

Keine Kanten die nicht im Pfad $v_0, ..., v_n$ mit $v_0 = v_n$ enthalten sind

• Pfadgraph:

$$P_n := ([n], \{\{i, i+1\} \mid i \in [n-1]\})$$

Keine Kanten die nicht im Pfad $v_0, ..., v_n$ enthalten sind

• Vollständiger bipartiter Graph:

$$K_{m,n} := ([m+n], \{\{i,j\} \mid i \in [m], j \in [m+n] \setminus [m]\}) \ (m \le n)$$
 Alle Kanten für $m \to n$

• Gittergraph:

$$M_{m,n} := ([m] \times [n], \{\{(i,j), (k,l)\} \mid |i-k| + |j-l| = 1\}) \ (m \le n)$$

Knoten in einem regelmäßigen Gittermuster, Kanten zwischen benachbarten Knoten

• Hyperwürfel der Dimension n:

$$Q_n := (\{0,1\}^n, \{\{u,v\} \mid \Sigma_{i=1}^n | u_i - v_i | = 1\}) \text{ mit } Q_0 := (\{\epsilon\}, \emptyset)$$

ullet Perfekter Binärbaum der Höhe h:

$$B_h := (\{0,1\}^{\leq h}, \{\{u,ux\} \mid u \in \{0,1\}^{\leq h}, x \in \{0,1\}\})$$

- Auch als vollständiger Binärbaum bezeichnet
- Blatt: Knoten u mit $deg(u) \leq 1$
- Alle anderen Knoten: innere Knoten
- $\forall h \in \mathbb{N}_0(B_h \text{ hat } 2^h \text{ Blätter})$

12.4 Kantenanzahl

- \bullet Jeder einfache zusammenhängender Graph mit $n \geq 1$ Knoten hat min. n-1 Kanten
- Jeder (endliche einfache) zusammenhängender Graph mit $n \geq 3$ Knoten und min. n Kanten besitzt einen Kreis

13 Bäume

13.1 Definition

• einfacher Graph G = (V, E)

- zusammenhängend
- kreisfrei
- Blatt: Knoten u mit $deg(u) \leq 1$
- Alle anderen Knoten: innere Knoten
- Wald: Graph dessen max. Zusammenhangskomponenten Bäume

13.2 Eigenschaften

Für Baum G = (V, E):

- |E| = |V| 1
- $|V| \ge 2 \to \min. 2$ Bätter
- Spannbaum von G: Teilgraph T=(V,E') mit $E'\subseteq E$ der Baum ist
- Jeder zusammenhänge Graph hat min. einen Spannbaum Man entfernt jede Kante, die nicht für den Zusammenhang notwendig ist

13.3 Algorithmen

Erreichabrkeit:

- Wähle bel. Startknoten $s \in V$ und setze $V_1 := \{s\}, E_1 := \emptyset, i := 1$
- Wiederhole bis $V_i = V$
 - Wähle bel. $e = \{u, v\} \in E \text{ mit } u \in V_i \text{ und } v \notin V_i;$
 - Aktualisiere $V_{i+1} := V_i \cup \{v\}, E_{i+1} := E_i \cup \{e\}$
- Für je zwei Knoten genau ein einfacher Pfad in Baum

Unterschiedliche Heuristiken zur Auflösung der nichtdeterministischen Wahl:

- \bullet Sei $u_1,u_2,...,u_n$ die Reihenfolge, in der die Knoten hinzugefügt werden
- Breadth-first (BFS): wähle $\{u_i, v\}$ mit i minimal (FIFO)
- Depth-first (DFS): wähle $\{u_i, v\}$ mit i maximal (LIFO)
- Algorithmus von Tarjan: erweiter DFS zu Bestimmung der starken Zusammenhangskomponenten
- Algorithmus von Dijkstra: wähle $\{u_i, v\}$ so dass v minimal Abstand zu u_1
- $\bullet\,$ Algorithmus von Prim: wähle $\{u_i,v\}$ mit minimalen Kosten

Für gerichtete Graphen bestimmt der Algorithmus der Erreichbarkeit eine gewurzelten Spannbaum der von s erreichbaren Knoten sE^*

13.4 Äquivalenzsaussagen

Sei G = (V, E) ein einfacher Graph sind folgende Aussagen äquivalent:

- \bullet G ist ein Baum
- G ist zusammenhängend und |V| = |E| + 1
- G ist kreisfrei und |V| = |E| + 1
- \bullet Zwei beliebige Knoten u,v sind durch genau einen einfachen Pfad in G verbunden

13.5 Wurzelbäume

Wurzel: Spezieller Start-/Einstiegsknoten

Wurzelbaum: Gerichteter Graph indem alle Kanten von der Wurzel weggerichtet sind Definition:

- Wurzelbaum G = (V, E, r): Baum G = (V, E) mit fest gewählter Wurzel $r \in V$
- Höhe $h_G(v)$: Abstand von v zu r (Länge des kürzestens Pfades)
- Höhe von $G: h(G) = max\{h_G(v) \mid v \in V\}$
- Alle Kanten von der Wurzel weggerichtet:
 - $-uEv \text{ für } \{u,v\} \in E \land h_G(v) = h_G(u) + 1$
 - Gilt uEv: u Vater von v, v Kind von u
 - (E^* ist eine partielle Ordnung auf V mit dem min. Element r)
 - Wenn uE^*v : u Vorfahre von v, v Nachfahre von u
 - Für $u \in V$: u induzierter Teilbaum von $G := (uE^*, E \cap {uE^* \choose 2}, u)$

14 Gradfolgen

14.1 Grundverständnis

 \bullet Jedem (einfachen) Graphen G=(V,E)können wir seine Gradfolge zuordnen:

$$(deg(v_1), deg(v_2), ..., deg(v_n))$$
 für $V = \{v_1, v_2, ..., v_n\}$

- Ohne Einschränkungen dürfen wie die Knoten so umbenennen, dass die Gradfolge aufsteigend sortiert ist
- Graph k-regulär: $\forall v \in V(deg(v) = k)$
- Vollständiger Graph K_n : (n-1)-regulär

- Kreisgraph C_n mit $n \geq 3$: 2-regulär
- Hyperwürfel Q_n : n-regulär
- Zwei nicht isomorphe Graphen können dieselbe Gradfolge besitzen

Exkurs Gradverteilungen und Potenzgesetz: Skalenfreie Graphen: $P(\text{Grad } k) = \frac{1}{k \cdot \alpha} \cdot \text{Konstante}$

Gradfolge:

$$(deg(v_1), deg(v_2), ..., deg(v_n))$$
 für $V = \{v_1, v_2, ..., v_n\}$ mit $deg(v_i) \le deg(v_{i+1})$

Manchmal leicht erkennbar, dass Graph mit dieser Gradolge eine gewisse Eigenschaft (nicht) besitzt Beispiele:

- Gradfolge (0, 2, 2, 2, 2) nicht zusammenhängen
- Gradfolge (1, 1, 1, 1) nicht zusammenhängend

Handschlaglemma:

- $\forall G = (V, E)(2|E| = \sum_{i \in [n]} deg(v_i))$
- Einfacher Graph kann zu gegebenem $(d_1,d_2,...,d_n)$ höchstens dann existieren, falls $\sum_{i\in[n]}d_i$ gerade ist
- Einfacher Graph muss gerade Anzahl an Knoten von ungeradem Grad besitzen
- Einfacher Graph mit $|V|>\frac{1}{2}\sum_{i\in[n]}d_i+1$ kann nicht zusammenhängen sein

14.2 Realisierbarkeit

Einfacher Graph mit n Knoten und Gradfolge $(d_1,...,d_n) \leftrightarrow$ Einfacher Graph mit n-1 Knoten und Gradfolge (sortiert $(d_1,...,d_{n-d_n-1},d_{n-d_n}-1,...,d_{n-1}-1)$) Neue Gradfolge $(d_1,...,d_n)$ wird gewonnen indem man:

- d_n entfernt
- $\bullet\,$ die übrigen Komponenten um 1 verringert
- und diese aufsteigend sortiert

Algorithmus von Havel-Hakimi:

- Eingabe: Aufsteigend sortierte Gradfolge $(d_1, d_2, ..., d_n)$
- $d_1 < 0 \lor d_n > n-1 \to Abbruch$
- $d_n = 0 \to \text{Ausgabe: } ([n], \emptyset)$

- Sonst:
- Setze $(d'_1, ..., d'_{n-1} := (d_1, ..., d_{n-d_n-1}, d_{n-d_n} 1, ..., d_{n-1} 1))$
- Permutation $\pi: [n-1] \to [n-1]$, so dass $(d'_{\pi(1)},...,d'_{\pi(n-1)})$ wieder aufsteigend sortiert ist
- Bestimme rekusriv, soweit möglich, einen Graphen G'=([n-1],E') mit $deg(i)=d'_{\pi(1)}$
- • Rückgabe: G = ([n], E) mit $E = \{\{\pi(u), \pi(v)\} \mid \{u, v\} \in E'\} \cup \{\{n, n-1\}, ..., \{n, n-1d_n\}\}$

15 Euler und Hamilton

15.1 Definition Eulerkreise und Hamiltonkreise

D Sei G=(V,E) ein einfacher Graph Ein (nicht unbedingt einfacher) Kreis $v_0,v_1,...,v_l$ in G mit $\{v_0,v_1,...,v_l\}=V$ heißt:

- Eulerkreis, falls er jede Kante genau einmal besucht: $l = |E| \land \{\{v_0, v_1\}, \{v_1, v_2\}, ..., \{v_{l-1}, v_l\}\} = E$
- Hamiltonkreis, falls er jeden Knoten genau einmal besucht: $l=|V| \wedge \{v_0,v_1,...,v_{l-1}\}=V$

Ohne Anforderung $v_0=v_l$: Euler bzw. Hamiltonpfad Für Eulerkreise kann man Mehrfachkanten durch Hilfsknoten simulieren Eulerkreis auch Eulertour genannt

15.2 Existenz Eulertour

Eulersche Satz: Ein zusammenhängender einfacher Graph G=(V,E) besitzt genau dann eine Eulertour, wenn jeder Knoten geraden (positiven) Knotengrad hat

(Ergänzung) Eulerpfad: Genau 2 Knoten mit ungeradem Grad

Hierholzer Algorithmus:

- Solange noch |V| > 0 gilt:
 - Wähle bel. $v_0 \in V$ mit deg(v) > 0 und mach einen Pfad $v_0, v_1, ..., v_l$, indem man bei v_i stets zu einer bel., aber noch nicht besuchten Kante weitergeht

Dann muss $v_0 = v_l$ gelten, da alle Knoten geraden Grad haben

- Entferne die Kante $\{\{v_{i-1}, v_i\} \mid i \in [l]\}$ aus GEntferne alle Knoten mit Grad 0 aus G $\bullet\,$ Versuche die konstruierten Kreise zu einem Eulerkreis zusammen
zusetzen Möglich wenn Gzusammenhängend

Für Digraph G = (V, E):

• G besitzt Eulerkreis wenn: G ist stark zusammenhängend und $\forall v \in V(|vE| = |Ev|)$ Algorithmus von Hierholzer anwendbar

15.3 Existenz Hamiltonkreise

(!Nur eine hinreichende Bedingung:)

Satz von Dirac: Ein einfacher Graph G=(V,E) mit $|V|\geq 3$ besitzt einen Hamiltonkreis, wenn in G jeder Knoten min. Knotengrad $\frac{|V|}{2}$ hat

16 Planarität

Definition: Ein einfacher Graph G=(V,E) ist planar, falls man ihn in der (zweidimensionalen) Zeichenebene ohne Kantenüberschneidungen zeichnen kann

16.1 Eulersche Polyederformel

Sei G = (V, E) ein zusammenhängender planarer Graph

Sei f die Anzahl der Flächen, in die G bei überschneidungsfreier Darstellung die Zeichenebene zerschneidet

Dann gilt:

$$f - |E| + |V| = 2$$

Achtung: Die umschließende Fläche wird mitgezählt

EPF für planare Graphen mit k max. Zhgskomponenten:

$$f - |E| + |V| = 1 + k$$

17 Minoren und Satz von Kuratowski

17.1 Kantenkontraktionen

Sei G = (V, E) ein einfacher Graph

Fixiere ine beliebige Kante e = uEw

Dann schreibt man G/e für den einfachen Graphen, den man aus G erhält, indem man u mit w identifiziert:

$$G/e = \left(V - \{w\}, \left(E \cap \binom{V - \{w\}}{2}\right) \cup \{\{u, x\} \mid \{w, x\} \in E\}\right)$$

G/eaus Gwird durch die Kantenkontraktion von e gewonnen "Man zieht den einen Knoten auf den anderen"

17.2 Minoren

D Für zwei gegebene einfache Graphen $H = (V_H, E_H)$ und $G = (V_G, E_G)$: H ist ein Minor von G, falls man aus G durch:

- Entfernen von Kanten,
- Entfernen von Knoten vom Grad 0 und
- Kantenkontraktion

einen zu H isomorphen Graphen erzeugen kann

17.3 Satz von Kuratowski

Ein einfacher Graph G = (V, E) planar $\leftrightarrow K_{3,3} \land K_5 \neq \text{Minor von } G$

18 Knotenfärbungen

18.1 Grundverständnis

Sei G = (V, E) ein einfacher Graph

Knotenfärbung von G: Abbildung $c: V \to \mathbb{N}$, falls $\forall u Ew(c(u) \neq c(w))$

|c(V)|: Anzahl von c verwendeten Farben

Färbungssatz (k-Farben-Satz):

Für jeden einfachen planaren Graphen G = (V, E) gilt $\chi(G) \leq k \ (k \in \mathbb{N}^+)$

18.2 Chromatische Zahl

Chromatische Zahl $\chi(G)$: minimale Anzahl von Farben, für die es eine Knotenfärbung von G gibt

$$\chi(G) := min\{|c(V)| \mid c : V \to \mathbb{N} \text{ Knotenfärbung von } G\}$$

Beobachtungen:

- $\chi(G) \leq |V|$ für jeden einfachen Graphen G = (V, E)
- $\chi(G) \leq 2 \leftrightarrow G$ bipartit
- $\chi(G) > 1$, sobald $E \neq \emptyset$
- $\chi(K_n) = n, \chi(K_{m,n}) = 2, \chi(C_{2k}) = 2, \chi(C_{2k+1}) = 3$
- $\forall G = (V, E)(\chi(G) \le 1 + \max_{v \in V} deg(v))$

L
$$\forall G = (V, E)(\chi(G) \le \frac{1}{2} + \sqrt{2|E| + \frac{1}{4}})$$

19 Matrizen

19.1 Grundverständnis

 $M \in D^{m \times n}$:

- $\bullet\,$ Matrix $m\times n$ über Menge D. Tabelle von Elementen D mit m Zeilen und n Spalten.
- $M_{i,j} \in D$: Eintrag in *i*-ter Zeile und *j*-ter Spalte
- $D^{1 \times n}$: Zeilenvektor
- $D^{m \times 1}$: Spaltenvektor

19.2 Summe

Summe für reelwertige Matrizen $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times n}$:

- Notw.Bed.: Gleiche Anzahl von Zeilen und Spalten
- Summe $C = A + B \in \mathbb{R}^{m \times n}$

$$C_{i,j} := A_{i,j} + B_{i,j}$$

19.3 Multiplikation

Multiplikation für reelwertige Matrizen $A \in \mathbb{R}^{k \times m}, B \in \mathbb{R}^{m \times n}$:

- Notw.Bed.: Spaltenanzahl links = Zeilenanzahl rechts
- Produkt $C = A \cdot B \in \mathbb{R}^{k \times n}$

$$C_{i,j} := \sum_{t \in [m]} A_{i,t} \cdot B_{t,j}$$

• $C_{i,j} = \text{Skalarprodukt } i\text{-ter Zeilenvektor und } j\text{-ter Spaltenvektor}$

19.4 Adjazenzmatrix, Pfade zählen

Gerichteter (endlicher) Graph G = (V, E):

- Fixiere Aufzählung der Knoten $V = \{v_1, v_2, ..., v_n\}$
- Notfalls Knoten umbenennen, Hauptsache n = [V]
- Adjazenzmatrix $A_G = (a_{i,j})_{i,j \in [n]} \in \{0,1\}^{n \times n}$ mit $a_{i,j} = 1 \leftrightarrow v_i E v_j$

 $\mbox{\bf L}$ Für $k\in\mathbb{N}$ ist $(A_G^k)_{i,j}$ die Anzahl der verschiedenen k-Schritt Pfade von v_i nach v_j

20 Matchings

20.1 Grundverständnis

Ein Matching ist eine Menge von Kanten, bei der keine zwei Kanten einen gemeinsamen Knoten haben.

Für einfacher Graph G = (V, E):

- Matching $M: M \subseteq E$, sodass $\forall e, e' \in M(|e \cap e'| \neq 1)$
- perfektes Matching: $\forall v \in V (m \in M)$, also |M| = |V|/2

20.2 Hall's marriage theorem

Sei $G = (A \uplus B, E)$ ein einfacher bipartiter Graph mit $|A| \leq |B|$: Dann gibt es ein Matching $M \subseteq E$ mit $|M| = |A| \leftrightarrow$ jede Knotenteilmenge $X \subseteq A$ min. |X| Nachbarn in B besitzt:

$$|\Gamma(X)| \geq |X|$$
wobe
i $\Gamma(X) = \bigcup_{x \in X} \Gamma(x)$

Aka. Die Anzahl an Nachbarn muss größer sein als die Anzahl an Knoten (in A)

Die Bedingung ist notwendig:

•
$$(M \subseteq E \land |M| = |A|) \rightarrow$$

 $f_M = \{(a,b) \in A \times B \mid \{a,b \in M\}\}$ injektive Funktion
mit $f_M(X) \subseteq \Gamma(X)$
und damit $|X| = |f_M(X)| \le |\Gamma(X)|$

Die Bedingung ist hinreichend:

- $(M \subseteq E \land f_M : A \hookrightarrow B) \rightarrow$ Wir können im Fall |M| < |A| das Matching vergrößern
- $a_0 \in A$ ein ungematchter Knoten \rightarrow $A_0 = \{a_0\}, B_0 = \Gamma(A_0)$
- Annahme: $|B_0| \ge 1$
- Wenn ungematches $b \in B_0 \to M$ um $\{a_0, b\}$ erweiterbar

• Wenn alle Knoten in B_0 bereits gematcht:

$$A_1 = A_0 \cup f_M^{-1}(B_0)$$
 und $B_1 = \Gamma(A_1)$

Hat $a_1 \in A_1$ ungematchten Nachbarn $b \rightarrow$

 a_1 mit b und a_0 mit $f_M(a_1)$ ummatchen um M um a_0 zu erweitern

- Konstruktion $A_{i+1} = A_i \cup f_M^{-1}(B_i), B_{i+1} = \Gamma(A_{i+1})$ wiederholen bis: $a_i \in A_i$ mit ungematchten Nachbar $b \in \Gamma a_i$ wodurch M um a_0 erweiterbar
- (1) Es gilt $|f_M^{-1}(B_i)| = |B_i|$, denn alle Knoten in B_i sind gematcht und f_M ist injektiv
- (2) Es gilt $a_0 \in A_i \setminus f_M^{-1}(B_i)$, denn $a_0 \in A_i$ ist nicht gematcht und alle Knoten in $f_M^{-1}(B_i)$ sind gematcht Daraus folgt:
 - $|A_i| \leq |\Gamma(A_i)|$ (Annahme des Heiratssatzes) = $|B_i|$ (Def. von B_i) = $|f_M^{-1}(B_i)|$ (1) $< |A_i \cup f_M^{-1}(B_i)|$ (2) = $|A_{i+1}|$ (Def. von A_i)

20.3 Matchings mit Präferenzen

Gesucht ist eine bijektive Abbildung $f:A\to B$ (mit |A|=|B|=n)

- $\forall a \in A(\prec_a \subseteq B \times B)$
- $\forall b \in B(\prec_b \subset A \times A)$

Nebenbedingung: f stabil:

- f instabil, falls es $a, a' \in A$ gibt mit:
 - $f(a) \prec_a f(a')$ (a bevorzugt den Partner von a') und $a' \prec_{f(a')} a$ (Partner von a' bevorzugt a)
- a und f(a') würden ihre Partner verlassen

Stabil heißt nicht, dass jeder seinen am meist präferierten Partner bekommt Stabil heißt zwei die sich gegenseitig am meisten präferieren haben keinen anderen Partner

20.4 Gale-Shapley-Algorithmus

Für alle Kombinationen von Präferenzordnungen gibt es immer mind. ein stabiles Matching

Gale-Shapley "Deferred Acceptance "Algorithmus:

- $\bullet\,$ Gegeben: Mengen A,B und zugehörige Präferenzordnungen
- Gesucht: Stabiles Matching $f: A \to B$
- Solange es ungematchtes $b \notin im(f)$ gibt:

b wird probiert mit dem größten Element bzgl. \prec_b welches noch nicht versucht wurde, zu matchen

Wenn a ungematcht $\rightarrow a$ und b werden gematcht

Wenn a bereits gematcht:

Wenn a präferiert $b \to a$ mit b matchen und f(a) ungematcht Sonst für nächstes Element in \prec_b versuchen

Beobachtungen:

- Jede Runde wird neue Kombination probiert
- \bullet Es gibt $n\cdot n$ Kombinationsmöglichkeiten
- \bullet Algorithmus terminiert nach höchstens n^2 Runden
- Keine zwei $a, a' \in A$ mit demselben $b \in B$
- |dom(f)| der gematchten $a \in A$ nimmt nie ab: a wird nie wirklich ungematcht, nur umgematcht
- Am Ende des Algorithmus: im(f) = B
- \bullet Nach Terminierung ist f ein stabiles perfektes Matching
- \bullet Nach Terminierung ist f optimal im folgenden Sinne:

Ist e ein stabiles Matching, dann gilt $\forall b \in B(e^{-1}(b) \leq_b f^{-1}(b))$

D.h. jedes b mit meisten präferierte a, wo stabiles Matching möglich

• Graph nicht bipartit: Existenz eines stabilen Matching nicht garantiert

21 Gesamtübersicht fürs Wichtiges

21.1 Beweise

• Beweisstruktur: Siehe 3

• Induktion: Siehe 6

21.2 Äquivalenzterme

• Mengen: Siehe 4.6.1

• Tupel, Sequenzen, etc.: Siehe 5.5.1

• Relationen: Siehe 7.7.1

21.3 Symbole und Anwendung

• Logische Operatoren: Siehe 1.1

• Junktoren und Quantoren: Siehe 1.4

• Mengen: Siehe 4.6

• Tupel etc.: 5.5

• Relationen: 7.7

21.4 Wichtige Sätze, Lemmata, etc.

• Lemma von Euklid: Siehe 3.3.3

• Satz von Cantor-Bernstein-Schröder: Siehe 10.1

• Algorithmen für Bäume: Siehe 13.3

• Handschlaglemma: Siehe 14.1

• Algorithmus von Havel-Hakimi: Siehe 14.2

• Hierholzer Algorithmus: Siehe 15.2

• Eulersche Satz: Siehe 15.2

• Satz von Dira: Siehe 15.3

• Satz von Kuratowski: Siehe 17.3

• Eulersche Polyederformel: Siehe 16.1

• Hall's marriage theorem: Siehe 20.2

• Gale-Shapley-Algorithmus: Siehe 20.4