

Probabilistische Prognosen (mit künstlichen neuronalen Netzen)

André Gensler

Dienstag, 24. Oktober 2017

PROGNOSE

Idee:

- Vorhersage einer Zielgröße auf Basis
 - bekannter Ausgangslage
 - Kenntnis des Vorhersageprozesses

PROGNOSE

- Traditionelle Methode: Design eines expliziten Modells (Design von Domänenexperten)
 - z. B. Modellierung des physikalischen Zusammenhangs
 - **Problem**: Explizite Modelle oftmals sehr **komplex**, Datenerhebung **kostenintensiv** oder Zusammenhänge **unbekannt**
- Machine Learning (ML): Nutzung eines selbstlernenden Modells (z. B. künstliches neuronales Netz) zur Modellierung des **Zusammenhangs** von Eingangsvariablen und Vorhersagegröße auf Basis **historischer Daten**

PROGNOSE

Expertendesign	Machine Learning
 + Nachvollziehbarkeit (für Experten) + keine Datengrundlage erforderlich – Anfällig für systematische Fehler – Nicht immer erstellbar 	+ Vorhersagequalität + einfacher Einsatz — Historische Daten erforderlich — Oftmals "Grey Box" Verfahren

ML TECHNIKEN

- Es existieren viele ML Verfahren, z.B. Künstliche Neuronale Netze, Support Vector Machines, ...
- Erzeugen eine Vorhersage:
 - Vorhersagefunktion $y = f(x|\theta)$
 - mit erklärender Variable x
 - und Vorhersage y

VORHERSAGE BEISPIEL

VORHERSAGE BEISPIEL

Probabilistische Prognosen erfassen situationsadaptiv

die Höhe und Richtung der Unsicherheit

einer Vorhersage.

PROBABILISTISCHE VORHERSAGEN

- Vorhersage der Wahrscheinlichkeit der Werte der Zielgröße
- sinnvolle Repräsentation als **Dichtefunktion**, z.B. Normalverteilung $p(y) = \mathcal{N}(y|\mu,\sigma)$

PROBABILISTISCHE VORHERSAGEN

PROBABILISTISCHE VORHERSAGEN

VORHERSAGE BEISPIEL

WARUM PROBABILISTISCHE VORHERSAGEN?

- Quantifizierung der Unsicherheit
- Worst Case & Best Case Schätzungen möglich
- Definition optimaler Entscheidungsfunktionen möglich

WARUM PROBABILISTISCHE VORHERSAGEN?

WARUM PROBABILISTISCHE VORHERSAGEN?

- CDF P(y) spezifiziert Wahrscheinlichkeit für $y_{Real} < y$
- Inverse Funktion $P^{-1}(\tau)$
- Beispiele:
 - unterer Extremwert (99% Wahrscheinlichkeit)
 - Wahrscheinlichkeit für Leistung größer als 40%
 - Wahrscheinlichste Leistungsgenerierung
 - 60% Intervall um den Erwartungswert

ÖKONOMISCHE OPTIMIERUNG

- Beispiel: Gebot für Verkauf von Strom auf dem Strom-Markt verkaufen
- Vergütung von $0.25 \in /KWh$, Überschätzung $c_+ = 0.20 \in /KWh$, Unterschätzung $c_- = 0.10 \in /KWh$
- deterministische Vorhersage: y = 1000KWh
- probabilistische Vorhersage: $p(y) = \mathcal{N}(y|\mu = 1000KWh, \sigma = 100KWh)$
- Deterministisches Gebot: $y_{Gebot} = 1000KWh$
- Probabilistisches Gebot:

$$y_{\text{Gebot}} = P^{-1} \left(\frac{c_{-}}{c_{+} + c_{-}} \right) = P^{-1} \left(\frac{0,10}{0,20 + 0,10} \right) = P^{-1}(0,33) \approx 956 \, KWh$$

EIGENSCHAFTEN

- Schärfe: Die Wahrscheinlichkeitsmasse sollte um das tatsächliche Ereignis y_{Real} konzentriert sein
- Verlässlichkeit: Die Unsicherheit (Breite der Dichtefunktion) sollte der tatsächlichen Streuung entsprechen

VORHERSAGE BEISPIEL

VERLÄSSLICHKEIT

SCHÄRFE

EIGENSCHAFTEN

Intervallfarben: P(0.001 ... 0.999)

EIGENSCHAFTEN

• Verlässlichkeit ist PRIMÄRE Anforderung. Schärfe ist "nice to have".

EVALUATION

Continuous Ranked Probability Score (CRPS)

CRPS =
$$\int_{-\infty}^{+\infty} (P(y) - H(y - y_{Real}))^{2} dy$$

MODELLTYPEN PROB. VORHERSAGEN

ZUSAMMENFASSUNG

- Probabilistische Vorhersagen erlauben Einschätzung von Höhe und Richtung der Unsicherheit einer Vorhersage
- Nutzung erlaubt bessere Optimierung auf ökonomische Zielfunktionen
- Probabilistische Vorhersagen müssen scharf und verlässlich sein
- Evaluation mit Maßen wie dem CRPS

Fragen?

26