PRACTICE SET 3

EARLY CINEMA

The cinema did not emerge as a form of mass consumption until its technology evolved from the initial "peepshow" format to the point where images were projected on a screen in a darkened theater. In the peepshow format, a film was viewed through a small opening in a machine that was created for that purpose. Thomas Edison's peepshow device, the Kinetoscope, was introduced to the public in 1894. It was designed for use in Kinetoscope parlors, or arcades, which contained only a few individual machines and permitted only one customer to view a short, 50-foot film at any one time. The first Kinetoscope parlors contained five machines. For the price of 25 cents (or 5 cents per machine), customers moved from machine to machine to watch five different films (or, in the case of famous prizefights, successive rounds of a single fight).

These Kinetoscope arcades were modeled on phonograph parlors, which had proven successful for Edison several years earlier. In the phonograph parlors, customers listened to recordings through individual ear tubes, moving from one machine to the next to hear different recorded speeches or pieces of music. The Kinetoscope parlors functioned in a similar way. Edison was more interested in the sale of Kinetoscopes (for roughly \$1,000 apiece) to these parlors than in the films that would be run in them (which cost approximately \$10 to \$15 each). He refused to develop projection technology, reasoning that if he made and sold projectors, then exhibitors would purchase only one machine—a projector—from him instead of several.

Exhibitors, however, wanted to maximize their profits, which they could do more readily by projecting a handful of films to hundreds of customers at a time (rather than one at a time) and by charging 25 to 50 cents admission. About a year after the opening of the first Kinetoscope parlor in 1894, showmen such as Louis and Auguste Lumière, Thomas Armat and Charles Francis Jenkins, and Orville and Woodville Latham (with the assistance of Edison's former assistant, William Dickson) perfected projection devices. These early projection devices were used in vaudeville theaters, legitimate theaters, local town halls, makeshift storefront theaters, fairgrounds, and amusement parks to show films to a mass audience.

With the advent of projection in 1895–1896, motion pictures became the ultimate form of mass consumption. Previously, large audiences had viewed spectacles at the theater, where vaudeville, popular dramas, musical and minstrel shows, classical plays, lectures, and slide-and-lantern shows had been presented to several hundred spectators at a time. But the movies differed significantly from these other forms of entertainment, which depended on either live performance or (in the case of the slide-and-lantern shows) the active involvement of a master of ceremonies who assembled the final program.

Although early exhibitors regularly accompanied movies with live acts, the substance of the movies themselves is mass-produced, prerecorded material that can easily be reproduced by theaters with little or no active participation by the exhibitor. Even though early exhibitors shaped their film programs by mixing films and other entertainments together in whichever way they thought would be most attractive to

audiences or by accompanying them with lectures, their creative control remained limited. What audiences came to see was the technological marvel of the movies; the lifelike reproduction of the commonplace motion of trains, of waves striking the shore, and of people walking in the street; and the magic made possible by trick photography and the manipulation of the camera.

With the advent of projection, the viewer's relationship with the image was no longer private, as it had been with earlier peepshow devices such as the Kinetoscope and the Mutoscope, which was a similar machine that reproduced motion by means of successive images on individual photographic cards instead of on strips of celluloid. It suddenly became public—an experience that the viewer shared with dozens, scores, and even hundreds of others. At the same time, the image that the spectator looked at expanded from the minuscule peepshow dimensions of 1 or 2 inches (in height) to the life-size proportions of 6 or 9 feet.

The cinema did not emerge as a form of mass consumption until its technology evolved from the initial "peepshow" format to the point where images were projected on a screen in a darkened theater. In the peepshow format, a film was viewed through a small opening in a machine that was created for that purpose. Thomas Edison's peepshow device, the Kinetoscope, was introduced to the public in 1894. It was designed for use in Kinetoscope parlors, or arcades, which contained only a few individual machines and permitted only one customer to view a short, 50-foot film at any one time. The first Kinetoscope parlors contained five machines. For the price of 25 cents (or 5 cents per machine), customers moved from machine to machine to watch five different films (or, in the case of famous prizefights, successive rounds of a single fight).

Directions: Mark your answer by filling in the oval next to your choice.

1.	According to paragraph 1, all of the following were true of viewing films in
	Kinetoscope parlors EXCEPT:

- One individual at a time viewed a film.
- Customers could view one film after another.
- Prizefights were the most popular subjects for films.
- Each film was short.

PRACTICE SET 4

AGGRESSION

When one animal attacks another, it engages in the most obvious example of aggressive behavior. Psychologists have adopted several approaches to understanding aggressive behavior in people.

The Biological Approach. Numerous biological structures and chemicals appear to be involved in aggression. One is the hypothalamus, a region of the brain. In response to certain stimuli, many animals show instinctive aggressive reactions. The hypothalamus appears to be involved in this inborn reaction pattern: electrical stimulation of part of the hypothalamus triggers stereotypical aggressive behaviors in many animals. In people, however, whose brains are more complex, other brain structures apparently moderate possible instincts.

An offshoot of the biological approach called *sociobiology* suggests that aggression is natural and even desirable for people. Sociobiology views much social behavior, including aggressive behavior, as genetically determined. Consider Darwin's theory of evolution. Darwin held that many more individuals are produced than can find food and survive into adulthood. A struggle for survival follows. Those individuals who possess characteristics that provide them with an advantage in the struggle for existence are more likely to survive and contribute their genes to the next generation. In many species, such characteristics include aggressiveness. Because aggressive individuals are more likely to survive and reproduce, whatever genes are linked to aggressive behavior are more likely to be transmitted to subsequent generations.

The sociobiological view has been attacked on numerous grounds. One is that people's capacity to outwit other species, not their aggressiveness, appears to be the dominant factor in human survival. Another is that there is too much variation among people to believe that they are dominated by, or at the mercy of, aggressive impulses.

The Psychodynamic Approach. Theorists adopting the psychodynamic approach hold that inner conflicts are crucial for understanding human behavior, including aggression. Sigmund Freud, for example, believed that aggressive impulses are inevitable reactions to the frustrations of daily life. Children normally desire to vent aggressive impulses on other people, including their parents, because even the most attentive parents cannot gratify all of their demands immediately. Yet children, also fearing their parents' punishment and the loss of parental love, come to repress most aggressive impulses. The Freudian perspective, in a sense, sees us as "steam engines." By holding in rather than venting "steam," we set the stage for future explosions. Pent-up aggressive impulses demand outlets. They may be expressed toward parents in indirect ways such as destroying furniture, or they may be expressed toward strangers later in life.

According to psychodynamic theory, the best ways to prevent harmful aggression may be to encourage less harmful aggression. In the steam-engine analogy, verbal aggression may vent some of the aggressive steam. So might cheering on one's favorite sports team. Psychoanalysts, therapists adopting a psychodynamic approach, refer to the venting of aggressive impulses as "catharsis." Catharsis is theorized to be a safety valve. But research findings on the usefulness of catharsis are mixed. Some

studies suggest that catharsis leads to reductions in tension and a lowered likelihood of future aggression. Other studies, however, suggest that letting some steam escape actually encourages more aggression later on.

The Cognitive Approach. Cognitive psychologists assert that our behavior is influenced by our values, by the ways in which we interpret our situations, and by choice. For example, people who believe that aggression is necessary and justified—as during wartime—are likely to act aggressively, whereas people who believe that a particular war or act of aggression is unjust, or who think that aggression is never justified, are less likely to behave aggressively.

One cognitive theory suggests that aggravating and painful events trigger unpleasant feelings. These feelings, in turn, can lead to aggressive action, but *not* automatically. Cognitive factors intervene. People *decide* whether they will act aggressively or not on the basis of factors such as their experiences with aggression and their interpretation of other people's motives. Supporting evidence comes from research showing that aggressive people often distort other people's motives. For example, they assume that other people mean them harm when they do not.

1. Catharsis: In psychodynamic theory, the purging of strong emotions or the relieving of tensions

The Biological Approach. Numerous biological structures and chemicals appear to be involved in aggression. One is the hypothalamus, a region of the brain. In response to certain stimuli, many animals show instinctive aggressive reactions. The hypothalamus appears to be involved in this inborn reaction pattern: electrical stimulation of part of the hypothalamus triggers stereotypical aggressive behaviors in many animals. In people, however, whose brains are more complex, other brain structures apparently moderate possible instincts.

Directions: Mark your answer by filling in the oval next to your choice.

- 1. According to paragraph 2, what evidence indicates that aggression in animals is related to the hypothalamus?
- O Some aggressive animal species have a highly developed hypothalamus.
- Electrical stimulation of the hypothalamus delays animals' inborn reaction patterns.
- Animals behaving aggressively show increased activity in the hypothalamus.
- Animals who lack a hypothalamus display few aggressive tendencies.

An offshoot of the biological approach called *sociobiology* suggests that aggression is natural and even desirable for people. Sociobiology views much social behavior, including aggressive behavior, as genetically determined. Consider Darwin's theory of evolution. Darwin held that many more individuals are produced than can find food and survive into adulthood. A struggle for survival follows. Those individuals who possess characteristics that provide them with an advantage in the struggle for existence are more likely to survive and contribute their genes to the next generation. In many species, such characteristics include aggressiveness. Because aggressive individuals are more likely to survive and reproduce, whatever genes are linked to aggressive behavior are more likely to be transmitted to subsequent generations.

PRACTICE SET 6

SWIMMING MACHINES

Tunas, mackerels, and billfishes (marlins, sailfishes, and swordfish) swim continuously. Feeding, courtship, reproduction, and even "rest" are carried out while in constant motion. As a result, practically every aspect of the body form and function of these swimming "machines" is adapted to enhance their ability to swim.

Many of the adaptations of these fishes serve to reduce water resistance (drag). Interestingly enough, several of these hydrodynamic adaptations resemble features designed to improve the aerodynamics of high-speed aircraft. Though human engineers are new to the game, tunas and their relatives evolved their "high-tech" designs long ago.

Tunas, mackerels, and billfishes have made streamlining into an art form. Their bodies are sleek and compact. The body shapes of tunas, in fact, are nearly ideal from an engineering point of view. Most species lack scales over most of the body, making it smooth and slippery. The eyes lie flush with the body and do not protrude at all. They are also covered with a slick, transparent lid that reduces drag. The fins are stiff, smooth, and narrow, qualities that also help cut drag. When not in use, the fins are tucked into special grooves or depressions so that they lie flush with the body and do not break up its smooth contours. Airplanes retract their landing gear while in flight for the same reason.

Tunas, mackerels, and billfishes have even more sophisticated adaptations than these to improve their hydrodynamics. The long bill of marlins, sailfishes, and swordfish probably helps them slip through the water. Many supersonic aircraft have a similar needle at the nose.

Most tunas and billfishes have a series of keels and finlets near the tail. Although most of their scales have been lost, tunas and mackerels retain a patch of coarse scales near the head called the corselet. The keels, finlets, and corselet help direct the flow of water over the body surface in such a way as to reduce resistance (see the figure). Again, supersonic jets have similar features.

Because they are always swimming, tunas simply have to open their mouths and water is forced in and over their gills. Accordingly, they have lost most of the muscles that other fishes use to suck in water and push it past the gills. In fact, tunas must swim to breathe. They must also keep swimming to keep from sinking, since most have largely or completely lost the swim bladder, the gas-filled sac that helps most other fish remain buoyant.

One potential problem is that opening the mouth to breathe detracts from the streamlining of these fishes and tends to slow them down. Some species of tuna have specialized grooves in their tongue. It is thought that these grooves help to channel water through the mouth and out the gill slits, thereby reducing water resistance.

There are adaptations that increase the amount of forward thrust as well as those that reduce drag. Again, these fishes are the envy of engineers. Their high, narrow tails with swept-back tips are almost perfectly adapted to provide propulsion with the least possible effort. Perhaps most important of all to these and other fast swimmers is their ability to sense and make use of swirls and eddies (circular currents) in the

water. They can glide past eddies that would slow them down and then gain extra thrust by "pushing off" the eddies. Scientists and engineers are beginning to study this ability of fishes in the hope of designing more efficient propulsion systems for ships.

The muscles of these fishes and the mechanism that maintains a warm body temperature are also highly efficient. A bluefin tuna in water of 7°C (45°F) can maintain a core temperature of over 25°C (77°F). This warm body temperature may help not only the muscles to work better, but also the brain and the eyes. The billfishes have gone one step further. They have evolved special "heaters" of modified muscle tissue that warm the eyes and brain, maintaining peak performance of these critical organs.

Tunas, mackerels, and billfishes (marlins, sailfishes, and swordfish) swim continuously. Feeding, courtship, reproduction, and even "rest" are carried out while in constant motion. As a result, practically every aspect of the body form and function of these swimming "machines" is adapted to enhance their ability to swim.

Directions: Mark your answer by filling in the oval next to your choice.

- 1. The word "enhance" in the passage is closest in meaning to
- O use
- improve
- counteract
- balance