

Universidade Federal de Goiás Instituto de Matemática e Estatística

1^a Lista de Exercícios de Cálculo I

Questão 1. Resolva as inequações:

(a)
$$3x + 6 < x + 3$$
:

(f)
$$(2x-3)(x+1) > 0$$
;

(b)
$$2x + 1 > 3x$$
;

(g)
$$\frac{x-3}{x^2+1} > 0$$
;

(c)
$$1 - 3x > 0$$
;

(h)
$$x^2 + 5 < 0$$
;

(d)
$$5x + 3 \le 2x - 1$$

(e) $\frac{x-2}{3x+1} < 0$;

(i)
$$\frac{x-1}{2-x} < 1$$
.

Questão 2. Estude o sinal da expressão:

(a)
$$3 - x$$
;

(e)
$$\frac{(x-1)(x+1)}{3-2x}$$

(b)
$$\frac{2-x}{x-5}$$

(f)
$$(x-1)(1+x)(1-2x)$$
;

(c)
$$x(x^2+3)$$
;

(g)
$$ax + b$$
, $a, b \in \mathbb{R}$ e $a > 0$:

(d)
$$\frac{x-3}{x-2};$$

(h)
$$ax + b$$
, $a, b \in \mathbb{R}$ e $a < 0$.

Questão 3. Verifique as identidades:

(a)
$$(x^2 - a^2) = (x - a)(x + a)$$
;

(b)
$$(x^3 - a^3) = (x - a)(x^2 + ax + a^2);$$

(c)
$$(x^4 - a^4) = (x - a)(x^3 + ax^2 + a^2x + a^3);$$

(d)
$$(x^n - a^n) = (x - a)(x^{n-1} + ax^{n-2} + a^2x^{n-3} + \dots + a^{n-2}x + a^{n-1})$$
, onde $n \neq 0$ é um número natural.

Questão 4. Simplifique as expressões:

(a)
$$\frac{x^2-1}{x-1}$$
;

(f)
$$\frac{\frac{1}{x^2} - \frac{1}{9}}{x - 3}$$
;

(b)
$$\frac{x^3 - 8}{x^2 - 4}$$
;

(g)
$$\frac{(x+h)^2-x^2}{h}$$
;

(c)
$$\frac{4x^2-9}{2x+3}$$
;

(d)
$$\frac{\frac{1}{x}-1}{x-1}$$
;

(h)
$$\frac{(x+h)^3 - x^3}{h}$$
;

(e)
$$\frac{x^4-1}{x-1}$$
;

(i)
$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h}.$$

Questão 5. Considere o polinômio do 2^{o} grau ax^{2} + bx + c, onde $a \neq 0$ e b, c são reais dados:

(a) Verifique que:

$$ax^{2} + bx + c = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right]$$

onde
$$\Delta = b^2 - 4ac$$
;

(b) Conclua do item (a) que, se
$$\Delta \geq 0$$
, as raizes de $ax^2 + bx + c$ são dadas por:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

(c) Sejam
$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 e $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$ as raízes de $ax^2 + bx + c$, $\Delta > 0$. Verifique que:

$$x_1 + x_2 = -\frac{b}{a}$$
 e $x_1 x_2 = \frac{c}{a}$.

Questão 6. Considere o polinômio do $2^{\underline{o}}$ grau $ax^2 +$ bx+c e sejam x_1 e x_2 como no exercício anterior. Verifique

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}).$$

Questão 7. Utilizando o exercício acima, fatore o polinômio do 2^{o} grau dado:

(a)
$$x^2 - 3x + 2$$
;

(d)
$$4x^2 - 9$$
;

(b)
$$x^2 - x - 2$$
:

(e)
$$2x^2 - 5x$$
:

(c)
$$2x^2 - 3x + 1$$
;

(f)
$$x^2 - 6x + 9$$
.

Questão 8. Resova as inequações abaixo:

(a)
$$\frac{x^2-9}{x+1} > 2;$$

(d)
$$x^2 > 1$$
;

(a)
$$\frac{1}{x+1} > 2;$$
 (d) $\frac{1}{x+1} > 1;$ (e) $4x^2 - 4x + 1 < 0;$ (f) $x^2 - 5x + 6 \ge 0;$

(e)
$$4x^2 - 4x + 1 < 0$$
:

(b)
$$(2x-1)(x-4) <$$

(f)
$$r^2 - 5r + 6 > 0$$

(c)
$$\frac{x^2-3}{x^2+3} \ge 0;$$

(g)
$$3x^2 - x \le 0$$
.

Questão 9. Considere um polinômio de grau n

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

com coeficientes inteiros, isto é, $a_0 \neq 0, a_1, a_2, \ldots, a_n$ são números inteiros. Seja α um número inteiro. Prove que se α for uma raiz de P(x), então α será um divisor do termo independente a_0 .

Questão 10. Caso Existam, determine as raízes inteiras da equação:

(a)
$$r^3 + 2r^2 + r - 4 = 0$$

(a)
$$x^3 + 2x^2 + x - 4 = 0$$
; (c) $x^4 - 3x^3 + x^2 + 3x = 2$;

(b)
$$2x^3 - x^2 - 1 = 0$$
:

(b)
$$2x^3 - x^2 - 1 = 0$$
; (d) $x^3 + x^2 + x - 14 = 0$.

- **Questão 11.** Seja P(x) um polinômio de grau n. Prove que α é raiz de P(x) se, e somente se, P(x) é divisível por $x - \alpha$. (Sugestão: Divida P(x) por $x - \alpha$, obtendo um quociente Q(x) e um resto R, R constante, tal que $P(x) = (x - \alpha)Q(x) + R.$
- Questão 12. Fatore o polinômio dado utilizando o exercício acima:
- (a) $x^3 + 2x^2 x 2$; (c) $x^3 1$;
- (b) $x^4 3x^3 + 3x 2$; (d) $x^3 + 6x^2 + 11x + 6$.
- **Questão 13.** Reescreva a espressão sem usar o símbolo de valor absoluto
- (a) |5-23|;
- (d) $|x^2+1|$;
- (b) |5| |-23|;
- (e) |2x-1|;
- (c) |x-2|;
- (f) $|1 2x^2|$.
- Questão 14. Resolva as equações:
- (a) |2x+3|=0;
- (d) |3x+2| = |x+1|;
- (b) $|x^2 3x 1| = 3$;
- (e) |3x-2|=3x-2;
- (c) |x| = 4x + 2;
- (f) |4 3x| = 3x 4.
- **Questão 15.** Resolver as inequações modulares abaixo:
- (a) |3x-1| < -2;
- (f) |4x-7| > -1;
- (b) $|3x-1| < \frac{1}{3}$;
- (g) $\left| \frac{2x-1}{4-x} \right| > 2;$
- (c) |2x-1| < x;
- (d) $|3x-2|+2x-3 \le 0$; (h) ||x|-2| > 1;
- (e) $|x^2 4| < 3x$;
- (i) |x+2| + |2x-3| < 10.
- **Questão 16.** Ache uma equação da reta que satisfaça as condições dadas:
- (a) Que passe pelo ponto (2, -3) e tenha inclinação 6;
- (b) Que passe pelo ponto (-3, -5) e tenha inclinação $-\frac{7}{2}$;
- (c) Que passe pelos positos (2,1) e (1,6);
- (d) Com inclinação 3 e intersecção com o eixo y igual a 4;
- (e) Intersecção com o eixo x igual a -8 e intersecção com o eixo y igual a 6;

- (f) Que passe pelo ponto (4,5) e paralela ao eixo x;
- (g) Que passe pelo ponto (4,5) e paralela ao eixo y;
- **Questão 17.** A reta r intercepta os eixos coordenados nos pontos A e B. Determine a distância entre A e B, sabenso-se que r passa pelos pontos (1,2) e (3,1).
- **Questão 18.** Determine a equação de reta que passa pelo ponto dado e que seja paralela a reta dada
- (a) y = 2x + 3 e(1,3);
- (b) x y = 2 e(-1, 2);
- (c) 2x + 3y = 1 e (0, 1).
- **Questão 19.** Determine a equação de reta que passa pelo ponto dado e que seja perpendicular a reta dada
- (a) y = -3x + 1 e (-1, 1);
- (b) 3x 2y = 0 e (0, 0);
- (c) 2x + 3y = 1 e (1, 1).
- **Questão 20.** Expresse a área A de um triângulo equilátero em função do lado l.
- **Questão 21.** Determine uma equação da parábola com vértice (1, -1) que passa pelos pontos (-1, 3) e (3, 3).
- **Questão 22.** Determine uma equação da elipse com centro na origem que passe pelos pontos $(1,-10\sqrt{2/3})$ e $(-2, 5\sqrt{5/3}).$
- **Questão 23.** (Completar quadrados) Coloque na forma: $(x-a)^2 + (y-b)^2 = r^2$.
- (a) $x^2 + y^2 2x = 0$
- (b) $x^2 + y^2 x y = 0$
- (c) $x^2 + y^2 + 3x y = 2$
- **Questão 24.** Identifique o tipo de curva (cônica) e esboce o gráfico.
- (a) $y = x^2 + 2x$;
- (b) $x^2 y^2 4x + 3 = 0$;
- (c) $4x^2 + 9y^2 16x + 54y + 61 = 0$;
- (d) $x^2 + y^2 + 6y + 2 = 0$:
- (e) $x = 4 y^2$:
- (f) $y^2 2x + 6y + 5 = 0$

Referências:

GUIDORIZZI, H. L. Um Curso de Cálculo. V. 1. Rio de Janeiro: LTC, 2006. STEWART, J. Cálculo. 5. ed. V. 1. São Paulo: Cengage, 2006.