In the Claims:

UT04 Rec'd PCT/PTO 1 5 OCT 2004

Please cancel claims 1-31, and add new claims as follows:

1-31. (cancelled)

32 (new): A method of upregulating telomerase expression in a eukaryotic cell, tissue, or organ derived from a mammal in need thereof, comprising contacting the eukaryotic cell, tissue, or organ with an effective amount of at least one peptide compound wherein the peptide compound contains fewer than 20 amino acids and more than 1 amino acids.

33. (new): The method of claim 32, wherein the peptide compound contains fewer than 9 amino acids.

34. (new): The method of claim 32, wherein the peptide compound contains two amino acids.

35. (new): The method of claim 32, wherein the peptide compound comprises an amino terminal capping group.

36. (new): The method of claim 32, wherein the peptide compound comprises a carboxy terminal capping group.

37. (new): The method of claim 32, wherein the peptide compound is selected from the group consisting of:

R₁ Gln Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gln R₂ (SEQ ID NO:1),

R₁ Gln Thr Leu Gln Phe Arg R₂ (SEQ ID NO:2),

wherein R_1 is absent or is an amino terminal capping group and R_2 is absent or is a carboxy terminal capping group of the peptide compound.

38. (new): The method of claim 32, wherein the peptide compound having the formula:

R₁ Xaa₁ Gly Xaa₃ Xaa₄ Xaa₅ Xaa₆ Xaa₇ R₂ (SEQ ID NO:3),

wherein Xaa₁ and Xaa₃ are, independently, aspartic acid or asparagine; R₁ is absent or is an amino terminal capping group of the peptide compound; Xaa₄ is absent or Gly; Xaa₅ is absent, Asp, or Phe; Xaa₆ is absent, Ala, or Phe; Xaa₇ is absent or Ala; R₂ is absent or is a carboxy terminal capping group of the peptide compound.

39. (new): The method of claim 32, wherein the peptide compound is selected from the group consisting of

Asp Gly Asp,

Asp Gly Asn,

Asn Gly Asn,

Asn Gly Asp,

Asp Gly Asp Gly Asp (SEQ ID NO:4),

Asp Gly Asp Gly Phe Ala (SEQ ID NO:5),

Asp Gly Asp Gly Asp Phe Ala (SEQ ID NO:6),

Asp Gly Asn Gly Asp Phe Ala (SEQ ID NO:7),

Asn Gly Asn Gly Asp Phe Ala (SEQ ID NO:8), and

Asn Gly Asp Gly Asp Phe Ala (SEQ ID NO:9).

40 (new): The method of claim 32, wherein the peptide compound is represented by the following formula:

R₁ Asn Ser Thr R₂,

wherein R_1 is absent or is an amino terminal capping group; R_2 is absent or is a carboxy terminal capping group.

41 (new): The method of claim 32, wherein the peptide compound is represented by the following formula:

 R_1 Phe Asp Gln R_2 ,

wherein R_1 is absent or is an amino terminal capping group; R_2 is absent or is a carboxy terminal capping group.

42 (new): The method of claim 32, wherein the peptide compound is represented by the following formula:

R₁ Xaa₁ Xaa₂ Met Thr Leu Thr Gln Pro R₂ (SEQ ID NO:10), wherein Xaa₁ is absent or Ser; Xaa₂ is absent or Lys; R₁ is absent or is an amino terminal capping group; R₂ is absent or is a carboxy terminal capping group.

43 (new): The method of claim 32, wherein the peptide compound is selected from the group consisting of

Met Thr Leu Thr Gln Pro (SEQ ID NO:11) and Ser Lys Met Thr Leu Thr Gln Pro (SEQ ID NO:12).

44 (new): The method of claim 32, wherein the peptide compound is represented by the following formula:

R₁ Asp Gly Xaa₃ Xaa₄ Xaa₅ R₂ (SEQ ID NO:13), wherein R₁ is absent or is an amino terminal capping group; Xaa₃ is Glu or Leu; Xaa₄ is Ala or Glu; Xaa₅ is absent, Leu, or Ala; and R₂ is absent or is a carboxy terminal capping group of the peptide compound.

45 (new): The method of claim 32, wherein the peptide compound is selected from the group consisting of:

R₁ Asp Gly Glu Ala R₂ (SEQ ID NO:14),

R₁ Asp Gly Glu Ala Leu R₂ (SEQ ID NO:16), and

R₁ Asp Gly Leu Glu Ala R₂ (SEQ ID NO:17),

wherein R_1 is absent or is an amino terminal capping group of the peptide compound and R_2 is absent or is a carboxy terminal capping group of the peptide compound.

46 (new): The method of claim 45, wherein the peptide compound is represented by the following formula:

[Ac] Asp Gly Glu Ala,

wherein [Ac] is an acetyl amino terminal capping group.

47 (new): The method of claim 32 wherein the peptide compound is represented by the following formula:

R₁ Xaa₁ Xaa₂ Asp Gly Xaa₅ Xaa₆ Xaa₇ Xaa₈ Xaa₉ Xaa₁₀ Xaa₁₁ R₂ (SEQ ID NO:15), wherein R₁ is absent or is an amino terminal capping group; Xaa₁ is absent or any amino acid; Xaa₂ is absent or any amino acid; Xaa₅ is Glu or Leu; Xaa₆ is Ala or Glu; Xaa₇ is absent, Leu, or Ala; Xaa₈ is absent or is any amino acid; Xaa₉ is absent or is any amino acid; Xaa₁₀ is absent or is any amino acid; Xaa₁₁ is absent or is any amino acid; and R₂ is absent or is a carboxy terminal capping group.

48 (new): The method of claim 32, wherein the peptide compound is represented by the following formula:

wherein Xaa₁ is Asp, Asn, Glu, Gln, Thr, or Tyr; Xaa₂ is absent or any amino acid; Xaa₃ is absent or is Glu, Thr, Ser, Gly, or Leu; R₁ is absent or is an amino terminal capping group and R₂ is absent or is a carboxy terminal capping group of the peptide compound.

49 (new): The method of claim 48, wherein Xaa₂ is selected from the group consisting of Val, Gly, Glu, and Gln.

50 (new): The method of claim 32, wherein the peptide compound is selected from the group consisting of:

 R_1 Asp Gly R_2 ,

 R_1 Asn Gly R_2 ,

R₁ Glu Gly R₂,

R₁ Gln Gly R₂, and

R₁ Thr Val Ser R₂,

wherein R_1 is absent or is an amino terminal capping group and R_2 is absent or is a carboxy terminal capping group of the peptide compound.

51 (new): The method of claim 32, where the peptide compound has the formula: R₁ Asp Gly,

wherein R_1 is a thyronine group.

52 (new): The method according to Claim 51, wherein the thyronine group is selected from the group consisting of a thyronine group having no iodine substitutions, a monoiodothyronine, a diiodothyronine, a triiodothyronine, and a tetraiodothyronine.

53 (new): The method according to Claim 51, wherein the thyronine group is triiodothyronine.

54 (new): The method according to Claim 53, wherein the triiodothyronine is 3,5,3'-triiodothyronine.

The method of claim 32, wherein the peptide compound has the formula: R_1 Leu Xaa₂ Xaa₃ R_2 ,

wherein Xaa₂ is any amino acid; Xaa₃ is Gln or Tyr; R₁ is absent or is an amino terminal capping group; R₂ is absent or is a carboxy terminal capping group of the peptide compound.

The method of claim 32, wherein the peptide compound has the formula: R_1 Met Thr Xaa $_3$ R_2 ,

wherein Xaa_3 is Asn, Asp, Glu, Thr, or Leu; R_1 is absent or is an amino terminal capping group; R_2 is absent or is a carboxy terminal capping group of the peptide compound.

57 (new): The method of claim 35, wherein the amino terminal capping group is selected from the group consisting of a lipoic acid moiety (Lip); a glucose-3-O-glycolic acid moiety (Gga); 1 to 6 lysine residues; 1 to 6 arginine residues; a combination of 2 to 6 lysine and arginine residues; a thyronine group; an acyl group of the formula R₃-CO-, where CO is a carbonyl group and R₃ is a hydrocarbon chain having from 1 to 25 carbon atoms; and combinations thereof.

58 (new): The method of claim 35, wherein the amino terminal capping group is an acyl group of the formula R₃-CO-, where CO is a carbonyl group and R₃ is a hydrocarbon chain

having from 1 to 22 hydrocarbons and wherein the hydrocarbon chain is a saturated, unsaturated, branched, or unbranched hydrocarbon chain.

59 (new): The method of claim 35, wherein the amino terminal capping group is an acyl group.

60 (new): The method of claim 59, wherein the acyl group is a fatty acyl group.

61 (new): The method of claim 59, wherein the acyl group is selected from the group consisting of: acetyl, palmitoyl (Palm), and docosahexaenoly (DHA).

62 (new): The method of claim 57, wherein the thyronine group is selected from the group consisting of a thyronine having no iodine substitutions, a monoiodothyronine, a diiodothyronine, a triiodothyronine, and a tetraiodothyronine.

63 (new): The method of claim 32, wherein the method is an ex vivo method.

64 (new): The method of claim 63, further comprising obtaining cell, tissue or organ from the mammal.

65 (new): A method of treating a disease or condition caused by or relating to telomerase activity in a human patient in need thereof, comprising contacting the cells, tissue or organ derived from the patient with an effective amount of at least one peptide compound wherein the peptide compound contains fewer than 20 amino acids and more than 1 amino acids.

66 (new): The method of claim 65, wherein the disease or condition is liver cirrhosis.

67 (new): The method of claim 65, wherein the disease or condition is organ transplant.

68 (new): The method of claim 65, wherein the method is an ex vivo method.

69 (new): The method of claim 65, wherein the peptide compound is administered through a route selected from the group consisting of an oral route, an intravenous route, an intra-arterial route, an intramuscular route, and a subcutaneous route.