Filter Summary Report: CG,TIA,simple,Z1,Z4

Generated by MacAnalog-Symbolix

December 18, 2024

Contents

1 Examined H(z) for CG TIA simple Z1 Z4: $\frac{Z_1Z_4g_m}{2Z_1g_m+2}$

$$H(z) = \frac{Z_1 Z_4 g_m}{2Z_1 g_m + 2}$$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(R_1, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

$H(s) = \frac{L_4 R_1 R_4 g_m s}{2 R_1 R_4 g_m + 2 R_4 + s^2 \left(2 C_4 L_4 R_1 R_4 g_m + 2 C_4 L_4 R_4\right) + s \left(2 L_4 R_1 g_m + 2 L_4\right)}$

Parameters:

Q:
$$C_4 R_4 \sqrt{\frac{1}{C_4 L_4}}$$

wo: $\sqrt{\frac{1}{C_4 L_4}}$
bandwidth: $\frac{1}{C_4 R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_1 R_4 g_m}{2(R_1 g_m + 1)}$
Qz: 0
Wz: None

3.2 BP-2 $Z(s) = \left(L_1 s, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_4L_1R_4g_m\sqrt{\frac{1}{C_4L_1R_4g_m}}}{C_4R_4+L_1g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_1R_4g_m}} \\ \text{bandwidth:} \ \frac{C_4R_4+L_1g_m}{C_4L_1R_4g_m} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{L_1R_4g_m}{2(C_4R_4+L_1g_m)} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.3 BP-3 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, R_4, \infty, \infty\right)$

$H(s) = \frac{L_1 R_4 g_m s}{2C_1 L_1 s^2 + 2L_1 g_m s + 2}$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{g_m}{C_1}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0

3.4 BP-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, R_4, \infty, \infty\right)$$

Q: $\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$ wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{R_1g_m+1}{C_1R_1}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_1R_4g_m}{2(R_1g_m+1)}$ Qz: 0 Wz: None

4 LP

4.1 LP-1
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

Parameters:

Q: $\frac{C_1C_4R_4\sqrt{\frac{g_m}{C_1C_4R_4}}}{C_1+C_4R_4g_m}$ wo: $\sqrt{\frac{g_m}{C_1C_4R_4}}$ bandwidth: $\frac{C_1+C_4R_4g_m}{C_1C_4R_4}$ K-LP: $\frac{R_4}{2}$ K-HP: 0 K-BP: 0 Qz: None Wz: None

4.2 LP-2 $Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

Parameters:

Q: $\frac{C_1C_4R_1R_4\sqrt{\frac{R_1g_m+1}{C_1C_4R_1R_4}}}{C_1R_1+C_4R_1R_4g_m+C_4R_4}$ wo: $\sqrt{\frac{R_1g_m+1}{C_1C_4R_1R_4}}$ bandwidth: $\frac{C_1R_1+C_4R_1R_4g_m+C_4R_4}{C_1C_4R_1R_4}$ K-LP: $\frac{R_1R_4g_m}{2(R_1g_m+1)}$ K-HP: 0 K-BP: 0 Qz: None Wz: None

$$H(s) = \frac{L_1 R_1 R_4 g_m s}{2C_1 L_1 R_1 s^2 + 2R_1 + s (2L_1 R_1 g_m + 2L_1)}$$

$$H(s) = \frac{R_4 g_m}{2C_1 C_4 R_4 s^2 + 2q_m + s \left(2C_1 + 2C_4 R_4 q_m\right)}$$

$$H(s) = \frac{R_1 R_4 g_m}{2 C_1 C_4 R_1 R_4 s^2 + 2 R_1 g_m + s \left(2 C_1 R_1 + 2 C_4 R_1 R_4 g_m + 2 C_4 R_4\right) + 2}$$

4.3 LP-3
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo:
$$\sqrt{\frac{1}{C_1L_1}}$$
 bandwidth:
$$\frac{g_m}{C_1}$$
 K-LP:
$$\frac{L_1g_m}{2C_4}$$
 K-HP: 0 K-BP: 0 Qz: None Wz: None

4.4 LP-4
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{R_1g_m+1}{C_1R_1}$ K-LP: $\frac{L_1g_m}{2C_4}$ K-HP: 0 K-BP: 0 Qz: None Wz: None

5 BS

5.1 BS-1
$$Z(s) = \left(R_1, \infty, \infty, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{R_4}{L_4} \\ \text{K-LP:} \ \frac{R_1R_4g_m}{2(R_1g_m+1)} \\ \text{K-HP:} \ \frac{R_1R_4g_m}{2(R_1g_m+1)} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

$$H(s) = \frac{L_1 g_m}{2C_1 C_4 L_1 s^2 + 2C_4 L_1 g_m s + 2C_4}$$

$$H(s) = \frac{L_1 R_1 g_m}{2C_1 C_4 L_1 R_1 s^2 + 2C_4 R_1 + s \left(2C_4 L_1 R_1 g_m + 2C_4 L_1\right)}$$

$$H(s) = \frac{C_4 L_4 R_1 R_4 g_m s^2 + R_1 R_4 g_m}{2 R_1 g_m + s^2 \left(2 C_4 L_4 R_1 g_m + 2 C_4 L_4\right) + s \left(2 C_4 R_1 R_4 g_m + 2 C_4 R_4\right) + 2}$$

5.2 BS-2
$$Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, R_4, \infty, \infty\right)$$

Q:
$$L_1g_m\sqrt{\frac{1}{C_1L_1}}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{1}{L_1g_m}$
K-LP: $\frac{R_4}{2}$
K-HP: $\frac{R_4}{2}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_1L_1}}$

5.3 BS-3
$$Z(s) = \left(\frac{R_1(C_1L_1s^2+1)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_1\sqrt{\frac{1}{C_1L_1}}(R_1g_m+1)}{R_1} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{R_1}{L_1(R_1g_m+1)} \\ \text{K-LP:} \ \frac{R_1R_4g_m}{2(R_1g_m+1)} \\ \text{K-HP:} \ \frac{R_1R_4g_m}{2(R_1g_m+1)} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{array}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, R_4, \infty, \infty\right)$$

$$\begin{aligned} &\text{Q: } \frac{L_{1}g_{m}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}g_{m}+1} \\ &\text{wo: } \sqrt{\frac{1}{C_{1}L_{1}}} \\ &\text{bandwidth: } \frac{R_{1}g_{m}+1}{L_{1}g_{m}} \\ &\text{K-LP: } \frac{R_{2}}{2} \\ &\text{K-HP: } \frac{R_{4}}{2} \\ &\text{K-BP: } \frac{R_{1}R_{4}g_{m}}{2(R_{1}g_{m}+1)} \\ &\text{Qz: } \frac{L_{1}\sqrt{\frac{1}{C_{1}L_{1}}}}{R_{1}} \\ &\text{Wz: } \sqrt{\frac{1}{C_{1}L_{1}}} \end{aligned}$$

$$I(s) = \frac{C_1 L_1 R_4 g_m s^2 + R_4 g_m}{2C_1 L_1 q_m s^2 + 2C_1 s + 2q_m}$$

$$H(s) = \frac{C_1 L_1 R_1 R_4 g_m s^2 + R_1 R_4 g_m}{2C_1 R_1 s + 2R_1 g_m + s^2 \left(2C_1 L_1 R_1 g_m + 2C_1 L_1\right) + 2}$$

$$H(s) = \frac{C_1 L_1 R_4 g_m s^2 + C_1 R_1 R_4 g_m s + R_4 g_m}{2C_1 L_1 g_m s^2 + 2g_m + s \left(2C_1 R_1 g_m + 2C_1\right)}$$

6.2 GE-2
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_1 R_1 R_4 g_m s^2 + L_1 R_4 g_m s + R_1 R_4 g_m}{2L_1 g_m s + 2R_1 g_m + s^2 \left(2C_1 L_1 R_1 g_m + 2C_1 L_1\right) + 2}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_1\sqrt{\frac{1}{C_1L_1}}(R_1g_m+1)}{g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ &\text{bandwidth:} \ \frac{g_m}{C_1(R_1g_m+1)} \\ &\text{K-LP:} \ \frac{R_1R_4g_m}{2(R_1g_m+1)} \\ &\text{K-HP:} \ \frac{R_1R_4g_m}{2(R_1g_m+1)} \\ &\text{K-BP:} \ \frac{R_4}{2} \\ &\text{Qz:} \ C_1R_1\sqrt{\frac{1}{C_1L_1}} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_1L_1}} \end{aligned}$$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{C_1 R_1 R_4 g_m s + R_4 g_m}{2g_m + s^2 \left(2C_1 C_4 R_1 R_4 g_m + 2C_1 C_4 R_4\right) + s \left(2C_1 R_1 g_m + 2C_1 + 2C_4 R_4 g_m\right)}$$

Parameters:

$$\begin{aligned} & \text{Q:} \ \frac{C_1C_4R_4\sqrt{\frac{g_m}{C_1C_4R_4(R_1g_m+1)}}(R_1g_m+1)}{C_1R_1g_m+C_1+C_4R_4g_m} \\ & \text{wo:} \ \sqrt{\frac{g_m}{C_1C_4R_4(R_1g_m+1)}} \\ & \text{bandwidth:} \ \frac{C_1R_1g_m+C_1+C_4R_4g_m}{C_1C_4R_4(R_1g_m+1)} \\ & \text{K-LP:} \ \frac{R_4}{2} \\ & \text{K-HP:} \ 0 \\ & \text{K-BP:} \ \frac{C_1R_1R_4g_m}{2(C_1R_1g_m+C_1+C_4R_4g_m)} \\ & \text{Qz:} \ 0 \\ & \text{Wz:} \ \text{None} \end{aligned}$$

8.2 INVALID-NUMER-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_1 R_4 g_m s + L_1 g_m}{2C_1 C_4 L_1 s^2 + 2C_4 L_1 g_m s + 2C_4}$$

Q:
$$\frac{C_1\sqrt{\frac{1}{C_1L_1}}}{g_m}$$
 wo: $\sqrt{\frac{1}{C_1L_1}}$ bandwidth: $\frac{g_m}{C_1}$ K-LP: $\frac{L_1g_m}{2C_4}$ K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

8.3 INVALID-NUMER-3
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 R_1 R_4 g_m s + L_1 R_1 g_m}{2C_1 C_4 L_1 R_1 s^2 + 2C_4 R_1 + s \left(2C_4 L_1 R_1 g_m + 2C_4 L_1\right)}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1} \\ \text{wo:} \ \sqrt{\frac{1}{C_1L_1}} \\ \text{bandwidth:} \ \frac{R_1g_m+1}{C_1R_1} \\ \text{K-LP:} \ \frac{L_1g_m}{2C_4} \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_1R_4g_m}{2(R_1g_m+1)} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

9 INVALID-WZ

9.1 INVALID-WZ-1
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 L_4 g_m s^2 + L_1 g_m}{2C_1 C_4 L_1 s^2 + 2C_4 L_1 g_m s + 2C_4}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_1 \sqrt{\frac{1}{C_1 L_1}}}{g_m} \\ \text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ \text{bandwidth:} \ \frac{g_m}{C_1} \\ \text{K-LP:} \ \frac{L_1 g_m}{2 C_4} \\ \text{K-HP:} \ \frac{L_4 g_m}{2 C_1} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4 L_4}} \end{array}$$

9.2 INVALID-WZ-2 $Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_1 L_4 g_m s^2 + C_4 L_1 R_4 g_m s + L_1 g_m}{2C_1 C_4 L_1 s^2 + 2C_4 L_1 g_m s + 2C_4}$$

$$\begin{aligned} &\text{Q:} \ \frac{C_1 \sqrt{\frac{1}{C_1 L_1}}}{g_m} \\ &\text{wo:} \ \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth:} \ \frac{g_m}{C_1} \\ &\text{K-LP:} \ \frac{L_1 g_m}{2C_4} \\ &\text{K-HP:} \ \frac{L_4 g_m}{2C_1} \\ &\text{K-BP:} \ \frac{R_4}{2} \\ &\text{Qz:} \ \frac{L_4 \sqrt{\frac{1}{C_1 L_1}}}{R_4} \\ &\text{Wz:} \ \sqrt{\frac{1}{C_4 L_4}} \end{aligned}$$

9.3 INVALID-WZ-3 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_1 L_4 R_1 g_m s^2 + L_1 R_1 g_m}{2C_1 C_4 L_1 R_1 s^2 + 2C_4 R_1 + s \left(2C_4 L_1 R_1 g_m + 2C_4 L_1\right)}$$

Parameters:

Q:
$$\frac{C_1R_1\sqrt{\frac{1}{C_1L_1}}}{R_1g_m+1}$$

wo: $\sqrt{\frac{1}{C_1L_1}}$
bandwidth: $\frac{R_1g_m+1}{C_1R_1}$
K-LP: $\frac{L_1g_m}{2C_4}$
K-HP: $\frac{L_4g_m}{2C_1}$
K-BP: 0
Qz: None
Wz: $\sqrt{\frac{1}{C_4L_4}}$

9.4 INVALID-WZ-4 $Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_1 L_4 R_1 g_m s^2 + C_4 L_1 R_1 R_4 g_m s + L_1 R_1 g_m}{2C_1 C_4 L_1 R_1 s^2 + 2C_4 R_1 + s \left(2C_4 L_1 R_1 g_m + 2C_4 L_1\right)}$$

Parameters:

$$\begin{aligned} &\text{Q: } \frac{C_1 R_1 \sqrt{\frac{1}{C_1 L_1}}}{R_1 g_m + 1} \\ &\text{wo: } \sqrt{\frac{1}{C_1 L_1}} \\ &\text{bandwidth: } \frac{R_1 g_m + 1}{C_1 R_1} \\ &\text{K-LP: } \frac{L_1 g_m}{2 C_4} \\ &\text{K-HP: } \frac{L_4 g_m}{2 C_1} \\ &\text{K-BP: } \frac{R_1 R_4 g_m}{2 (R_1 g_m + 1)} \\ &\text{Qz: } \frac{L_4 \sqrt{\frac{1}{C_1 L_1}}}{R_4} \\ &\text{Wz: } \sqrt{\frac{1}{C_4 L_4}} \end{aligned}$$

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (R_1, \infty, \infty, R_4, \infty, \infty)$

$$H(s) = \frac{R_1 R_4 g_m}{2R_1 g_m + 2}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(R_1, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_1 g_m}{s (2C_4 R_1 g_m + 2C_4)}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(R_1, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_1 R_4 g_m}{2 R_1 g_m + s \left(2 C_4 R_1 R_4 g_m + 2 C_4 R_4 \right) + 2}$$

8

10.4 INVALID-ORDER-4
$$Z(s) = \left(R_1, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_1 R_4 g_m s + R_1 g_m}{s \left(2 C_4 R_1 g_m + 2 C_4\right)}$$

10.5 INVALID-ORDER-5
$$Z(s) = \left(R_1, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_1 g_m s^2 + R_1 g_m}{s \left(2 C_4 R_1 g_m + 2 C_4\right)}$$

10.6 INVALID-ORDER-6
$$Z(s) = \left(R_1, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_1 g_m s}{2R_1 g_m + s^2 \left(2C_4 L_4 R_1 g_m + 2C_4 L_4\right) + 2}$$

10.7 INVALID-ORDER-7
$$Z(s) = \left(R_1, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_1 g_m s^2 + C_4 R_1 R_4 g_m s + R_1 g_m}{s \left(2 C_4 R_1 q_m + 2 C_4\right)}$$

10.8 INVALID-ORDER-8
$$Z(s) = \left(R_1, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_1 R_4 g_m s^2 + L_4 R_1 g_m s + R_1 R_4 g_m}{2R_1 g_m + s^2 \left(2C_4 L_4 R_1 g_m + 2C_4 L_4\right) + 2}$$

10.9 INVALID-ORDER-9
$$Z(s) = (L_1 s, \infty, \infty, R_4, \infty, \infty)$$

$$H(s) = \frac{L_1 R_4 g_m s}{2L_1 q_m s + 2}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(L_1 s, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 g_m}{2C_4 L_1 g_m s + 2C_4}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(L_1 s, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 R_4 g_m s + L_1 g_m}{2C_4 L_1 g_m s + 2C_4}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(L_1 s, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 L_4 g_m s^2 + L_1 g_m}{2C_4 L_1 q_m s + 2C_4}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(L_1 s, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_4 g_m s^2}{2C_4 L_1 L_4 g_m s^3 + 2C_4 L_4 s^2 + 2L_1 g_m s + 2}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(L_1 s, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 L_4 g_m s^2 + C_4 L_1 R_4 g_m s + L_1 g_m}{2C_4 L_1 g_m s + 2C_4}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(L_1 s, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_4 R_4 g_m s^2}{2C_4 L_1 L_4 R_4 g_m s^3 + 2R_4 + s^2 \left(2C_4 L_4 R_4 + 2L_1 L_4 g_m\right) + s \left(2L_1 R_4 g_m + 2L_4\right)}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(L_1 s, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 L_4 R_4 g_m s^3 + L_1 L_4 g_m s^2 + L_1 R_4 g_m s}{2C_4 L_1 L_4 g_m s^3 + 2C_4 L_4 s^2 + 2L_1 g_m s + 2}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(L_1 s, \infty, \infty, \frac{R_4(C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 L_4 R_4 g_m s^3 + L_1 R_4 g_m s}{2 C_4 L_1 L_4 g_m s^3 + s^2 \left(2 C_4 L_1 R_4 g_m + 2 C_4 L_4\right) + s \left(2 C_4 R_4 + 2 L_1 g_m\right) + 2}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4 g_m}{2C_1 s + 2q_m}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{g_m}{2C_1C_4s^2 + 2C_4g_ms}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 g_m s + g_m}{2C_1 C_4 s^2 + 2C_4 g_m s}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 g_m s^2 + g_m}{2C_1 C_4 s^2 + 2C_4 q_m s}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 g_m s}{2C_1 C_4 L_4 s^3 + 2C_1 s + 2C_4 L_4 g_m s^2 + 2g_m}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 g_m s^2 + C_4 R_4 g_m s + g_m}{2C_1 C_4 s^2 + 2C_4 g_m s}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_4 g_m s}{2C_1 C_4 L_4 R_4 s^3 + 2R_4 g_m + s^2 \left(2C_1 L_4 + 2C_4 L_4 R_4 g_m\right) + s \left(2C_1 R_4 + 2L_4 g_m\right)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 g_m s^2 + L_4 g_m s + R_4 g_m}{2C_1 C_4 L_4 s^3 + 2C_1 s + 2C_4 L_4 g_m s^2 + 2g_m}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\frac{1}{C_1 s}, \infty, \infty, \frac{R_4(C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 g_m s^2 + R_4 g_m}{2C_1 C_4 L_4 s^3 + 2g_m + s^2 \left(2C_1 C_4 R_4 + 2C_4 L_4 g_m\right) + s \left(2C_1 + 2C_4 R_4 g_m\right)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_1 R_4 g_m}{2C_1 R_1 s + 2R_1 g_m + 2}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_1 g_m}{2C_1 C_4 R_1 s^2 + s (2C_4 R_1 g_m + 2C_4)}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_1 R_4 g_m s + R_1 g_m}{2C_1 C_4 R_1 s^2 + s \left(2C_4 R_1 g_m + 2C_4\right)}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_1 g_m s^2 + R_1 g_m}{2C_1 C_4 R_1 s^2 + s \left(2C_4 R_1 g_m + 2C_4\right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_1 g_m s}{2C_1 C_4 L_4 R_1 s^3 + 2C_1 R_1 s + 2R_1 g_m + s^2 (2C_4 L_4 R_1 g_m + 2C_4 L_4) + 2}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_1 g_m s^2 + C_4 R_1 R_4 g_m s + R_1 g_m}{2C_1 C_4 R_1 s^2 + s \left(2C_4 R_1 g_m + 2C_4\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_1 R_4 g_m s}{2 C_1 C_4 L_4 R_1 R_4 s^3 + 2 R_1 R_4 g_m + 2 R_4 + s^2 \left(2 C_1 L_4 R_1 + 2 C_4 L_4 R_1 R_4 g_m + 2 C_4 L_4 R_4\right) + s \left(2 C_1 R_1 R_4 + 2 L_4 R_1 g_m + 2 L_4\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_1 R_4 g_m s^2 + L_4 R_1 g_m s + R_1 R_4 g_m}{2C_1 C_4 L_4 R_1 s^3 + 2C_1 R_1 s + 2R_1 g_m + s^2 \left(2C_4 L_4 R_1 g_m + 2C_4 L_4\right) + 2}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\frac{R_1}{C_1 R_1 s + 1}, \infty, \infty, \frac{R_4 (C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_1 R_4 g_m s^2 + R_1 R_4 g_m}{2C_1 C_4 L_4 R_1 s^3 + 2R_1 g_m + s^2 \left(2C_1 C_4 R_1 R_4 + 2C_4 L_4 R_1 g_m + 2C_4 L_4\right) + s \left(2C_1 R_1 + 2C_4 R_1 R_4 g_m + 2C_4 R_4\right) + 2C_4 R_1 R_4 g_m}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_1 R_1 R_4 g_m s + R_4 g_m}{2g_m + s \left(2C_1 R_1 g_m + 2C_1\right)}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 R_1 g_m s + g_m}{2C_4 g_m s + s^2 (2C_1 C_4 R_1 g_m + 2C_1 C_4)}$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 R_1 R_4 g_m s^2 + g_m + s \left(C_1 R_1 g_m + C_4 R_4 g_m \right)}{2 C_4 q_m s + s^2 \left(2 C_1 C_4 R_1 q_m + 2 C_1 C_4 \right)}$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_4 R_1 g_m s^3 + C_1 R_1 g_m s + C_4 L_4 g_m s^2 + g_m}{2C_4 g_m s + s^2 (2C_1 C_4 R_1 g_m + 2C_1 C_4)}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_4 R_1 g_m s^2 + L_4 g_m s}{2 C_4 L_4 g_m s^2 + 2 g_m + s^3 \left(2 C_1 C_4 L_4 R_1 g_m + 2 C_1 C_4 L_4\right) + s \left(2 C_1 R_1 g_m + 2 C_1\right)}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_4 R_1 g_m s^3 + g_m + s^2 \left(C_1 C_4 R_1 R_4 g_m + C_4 L_4 g_m \right) + s \left(C_1 R_1 g_m + C_4 R_4 g_m \right)}{2C_4 g_m s + s^2 \left(2C_1 C_4 R_1 g_m + 2C_1 C_4 \right)}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_4R_1R_4g_ms^2 + L_4R_4g_ms}{2R_4g_m + s^3\left(2C_1C_4L_4R_1R_4g_m + 2C_1C_4L_4R_4\right) + s^2\left(2C_1L_4R_1g_m + 2C_1L_4 + 2C_4L_4R_4g_m\right) + s\left(2C_1R_1R_4g_m + 2C_1R_4 + 2L_4g_m\right)}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_4 R_1 R_4 g_m s^3 + R_4 g_m + s^2 \left(C_1 L_4 R_1 g_m + C_4 L_4 R_4 g_m\right) + s \left(C_1 R_1 R_4 g_m + L_4 g_m\right)}{2 C_4 L_4 g_m s^2 + 2 g_m + s^3 \left(2 C_1 C_4 L_4 R_1 g_m + 2 C_1 C_4 L_4\right) + s \left(2 C_1 R_1 g_m + 2 C_1\right)}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_4 R_1 R_4 g_m s^3 + C_1 R_1 R_4 g_m s + C_4 L_4 R_4 g_m s^2 + R_4 g_m}{2g_m + s^3 \left(2C_1 C_4 L_4 R_1 g_m + 2C_1 C_4 L_4\right) + s^2 \left(2C_1 C_4 R_1 R_4 g_m + 2C_1 C_4 R_4 + 2C_4 L_4 g_m\right) + s \left(2C_1 R_1 g_m + 2C_1 + 2C_4 R_4 g_m\right)}$$

10.45 INVALID-ORDER-45 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_1 L_1 g_m s^2 + g_m}{2C_1 C_4 L_1 g_m s^3 + 2C_1 C_4 s^2 + 2C_4 g_m s}$$

10.46 INVALID-ORDER-46 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{C_1 L_1 R_4 g_m s^2 + R_4 g_m}{2C_1 C_4 L_1 R_4 g_m s^3 + 2g_m + s^2 \left(2C_1 C_4 R_4 + 2C_1 L_1 g_m\right) + s \left(2C_1 + 2C_4 R_4 g_m\right)}$$

10.47 INVALID-ORDER-47 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_1 C_4 L_1 R_4 g_m s^3 + C_1 L_1 g_m s^2 + C_4 R_4 g_m s + g_m}{2C_1 C_4 L_1 g_m s^3 + 2C_1 C_4 s^2 + 2C_4 g_m s}$$

10.48 INVALID-ORDER-48 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_1 C_4 L_1 L_4 g_m s^4 + g_m + s^2 \left(C_1 L_1 g_m + C_4 L_4 g_m \right)}{2 C_1 C_4 L_1 g_m s^3 + 2 C_1 C_4 s^2 + 2 C_4 g_m s}$$

10.49 INVALID-ORDER-49 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$

$$H(s) = \frac{C_1 L_1 L_4 g_m s^3 + L_4 g_m s}{2C_1 C_4 L_1 L_4 g_m s^4 + 2C_1 C_4 L_4 s^3 + 2C_1 s + 2g_m + s^2 (2C_1 L_1 g_m + 2C_4 L_4 g_m)}$$

10.50 INVALID-ORDER-50 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_1 C_4 L_1 L_4 g_m s^4 + C_1 C_4 L_1 R_4 g_m s^3 + C_4 R_4 g_m s + g_m + s^2 \left(C_1 L_1 g_m + C_4 L_4 g_m \right)}{2 C_1 C_4 L_1 g_m s^3 + 2 C_1 C_4 s^2 + 2 C_4 g_m s}$$

10.51 INVALID-ORDER-51 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

$$H(s) = \frac{C_1L_1L_4R_4g_ms^3 + L_4R_4g_ms}{2C_1C_4L_1L_4R_4g_ms^4 + 2R_4g_m + s^3\left(2C_1C_4L_4R_4 + 2C_1L_1L_4g_m\right) + s^2\left(2C_1L_1R_4g_m + 2C_1L_4 + 2C_4L_4R_4g_m\right) + s\left(2C_1R_4 + 2L_4g_m\right)}$$

10.52 INVALID-ORDER-52 $Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$

$$H(s) = \frac{C_1 C_4 L_1 L_4 R_4 g_m s^4 + C_1 L_1 L_4 g_m s^3 + L_4 g_m s + R_4 g_m + s^2 \left(C_1 L_1 R_4 g_m + C_4 L_4 R_4 g_m\right)}{2 C_1 C_4 L_1 L_4 g_m s^4 + 2 C_1 C_4 L_4 s^3 + 2 C_1 s + 2 g_m + s^2 \left(2 C_1 L_1 g_m + 2 C_4 L_4 g_m\right)}$$

$$\textbf{10.53} \quad \textbf{INVALID-ORDER-53} \ Z(s) = \left(L_1 s + \frac{1}{C_1 s}, \ \infty, \ \infty, \ \frac{R_4 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{C_1 C_4 L_1 L_4 R_4 g_m s^4 + R_4 g_m + s^2 \left(C_1 L_1 R_4 g_m + C_4 L_4 R_4 g_m \right)}{2 C_1 C_4 L_1 L_4 g_m s^4 + 2 g_m + s^3 \left(2 C_1 C_4 L_1 R_4 g_m + 2 C_1 C_4 L_4 \right) + s^2 \left(2 C_1 C_4 R_4 + 2 C_1 L_1 g_m + 2 C_4 L_4 g_m \right) + s \left(2 C_1 + 2 C_4 R_4 g_m \right)}$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 R_4 g_m s}{2C_1 C_4 L_1 R_4 s^3 + s^2 (2C_1 L_1 + 2C_4 L_1 R_4 g_m) + s (2C_4 R_4 + 2L_1 g_m) + 2}$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_4 g_m s^2}{2C_1 C_4 L_1 L_4 s^4 + 2C_4 L_1 L_4 g_m s^3 + 2L_1 g_m s + s^2 (2C_1 L_1 + 2C_4 L_4) + 2}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_4 R_4 g_m s^2}{2 C_1 C_4 L_1 L_4 R_4 s^4 + 2 R_4 + s^3 \left(2 C_1 L_1 L_4 + 2 C_4 L_1 L_4 R_4 g_m\right) + s^2 \left(2 C_1 L_1 R_4 + 2 C_4 L_4 R_4 + 2 L_1 L_4 g_m\right) + s \left(2 L_1 R_4 g_m + 2 L_4\right)}{2 C_1 C_4 L_1 L_4 R_4 s^4 + 2 L_4 L_4 L_4 R_4 s^4 + 2 L_4 L_4 L_4$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_1 L_4 R_4 g_m s^3 + L_1 L_4 g_m s^2 + L_1 R_4 g_m s}{2C_1 C_4 L_1 L_4 s^4 + 2C_4 L_1 L_4 g_m s^3 + 2L_1 g_m s + s^2 (2C_1 L_1 + 2C_4 L_4) + 2}$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\frac{L_{1s}}{C_1 L_1 s^2 + 1}, \infty, \infty, \frac{R_4 (C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_1 g_m s^2 + C_1 R_1 g_m s + g_m}{2C_1 C_4 L_1 g_m s^3 + 2C_4 g_m s + s^2 (2C_1 C_4 R_1 g_m + 2C_1 C_4)}$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1R_4g_ms^2 + C_1R_1R_4g_ms + R_4g_m}{2C_1C_4L_1R_4g_ms^3 + 2g_m + s^2\left(2C_1C_4R_1R_4g_m + 2C_1C_4R_4 + 2C_1L_1g_m\right) + s\left(2C_1R_1g_m + 2C_1 + 2C_4R_4g_m\right)}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_1 R_4 g_m s^3 + g_m + s^2 \left(C_1 C_4 R_1 R_4 g_m + C_1 L_1 g_m \right) + s \left(C_1 R_1 g_m + C_4 R_4 g_m \right)}{2 C_1 C_4 L_1 g_m s^3 + 2 C_4 g_m s + s^2 \left(2 C_1 C_4 R_1 g_m + 2 C_1 C_4 \right)}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_1 L_4 g_m s^4 + C_1 C_4 L_4 R_1 g_m s^3 + C_1 R_1 g_m s + g_m + s^2 \left(C_1 L_1 g_m + C_4 L_4 g_m\right)}{2C_1 C_4 L_1 g_m s^3 + 2C_4 g_m s + s^2 \left(2C_1 C_4 R_1 g_m + 2C_1 C_4\right)}$$
10.63 INVALID-ORDER-63 $Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$

$$H(s) = \frac{C_1 L_1 L_4 g_m s^3 + C_1 L_4 R_1 g_m s^2 + L_4 g_m s}{2C_1 C_4 L_4 L_4 g_m s^4 + 2g_m + s^3 \left(2C_1 C_4 L_4 R_1 g_m + 2C_1 C_4 L_4\right) + s^2 \left(2C_1 L_1 g_m + 2C_4 L_4 g_m\right) + s \left(2C_1 R_1 g_m + 2C_1 \right)}$$

$$\infty, \ \infty, \ {}_{C_4L_4s^2+1}, \ \infty, \ \infty)$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4g_ms^4 + g_m + s^3\left(C_1C_4L_1R_4g_m + C_1C_4L_4R_1g_m\right) + s^2\left(C_1C_4R_1R_4g_m + C_1L_1g_m + C_4L_4g_m\right) + s\left(C_1R_1g_m + C_4R_4g_m\right)}{2C_1C_4L_1g_ms^3 + 2C_4g_ms + s^2\left(2C_1C_4R_1g_m + 2C_1C_4\right)}$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_4R_4g_ms^3 + C_1L_4R_1g_ms^2 + L_4R_4g_ms}{2C_1C_4L_1L_4R_4g_ms^4 + 2R_4g_m + s^3\left(2C_1C_4L_4R_1R_4g_m + 2C_1L_4L_4g_m\right) + s^2\left(2C_1L_1R_4g_m + 2C_1L_4R_1g_m + 2C_1L_4 + 2C_4L_4R_4g_m\right) + s\left(2C_1R_1R_4g_m + 2C_1R_4 + 2L_4g_m\right)}{2C_1C_4L_4R_4g_ms^4 + 2R_4g_m + s^3\left(2C_1C_4L_4R_4g_m + 2C_1L_4R_4g_m\right) + s^2\left(2C_1L_4R_4g_m + 2C_1L_4R_4g_m + 2C_1L_4R_4g_m\right) + s^2\left(2C_1L_4R_4g_m + 2C_1L_4R_4g_m + 2C_1L_4R_4g_m\right) + s^2\left(2C_1L_4R_4g_m + 2C_1L_4R_4g_m\right) + s^2\left(2C_1L_4R_4g_m\right) + s^2\left(2C_1L_4R_4g_m\right)$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4R_4g_ms^4 + R_4g_m + s^3\left(C_1C_4L_4R_1R_4g_m + C_1L_1L_4g_m\right) + s^2\left(C_1L_1R_4g_m + C_1L_4R_1g_m + C_4L_4R_4g_m\right) + s\left(C_1R_1R_4g_m + L_4g_m\right)}{2C_1C_4L_1L_4g_ms^4 + 2g_m + s^3\left(2C_1C_4L_4R_1g_m + 2C_1C_4L_4\right) + s^2\left(2C_1L_1g_m + 2C_4L_4g_m\right) + s\left(2C_1R_1g_m + 2C_1\right)}$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(L_1 s + R_1 + \frac{1}{C_1 s}, \infty, \infty, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4R_4g_ms^4 + C_1C_4L_4R_1R_4g_ms^3 + C_1R_1R_4g_ms + R_4g_m + s^2\left(C_1L_1R_4g_m + C_4L_4R_4g_m\right)}{2C_1C_4L_1L_4g_ms^4 + 2g_m + s^3\left(2C_1C_4L_1R_4g_m + 2C_1C_4L_4R_1g_m + 2C_1C_4L_4\right) + s^2\left(2C_1C_4R_1R_4g_m + 2C_1C_4R_4 + 2C_1L_1g_m + 2C_4L_4g_m\right) + s\left(2C_1R_1g_m + 2C_1 + 2C_4R_4g_m\right)}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 R_1 R_4 g_m s}{2C_1 C_4 L_1 R_1 R_4 s^3 + 2R_1 + s^2 \left(2C_1 L_1 R_1 + 2C_4 L_1 R_1 R_4 g_m + 2C_4 L_1 R_4\right) + s \left(2C_4 R_1 R_4 + 2L_1 R_1 g_m + 2L_1\right)}$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_1 L_4 R_1 g_m s^2}{2 C_1 C_4 L_1 L_4 R_1 s^4 + 2 R_1 + s^3 \left(2 C_4 L_1 L_4 R_1 g_m + 2 C_4 L_1 L_4\right) + s^2 \left(2 C_1 L_1 R_1 + 2 C_4 L_4 R_1\right) + s \left(2 L_1 R_1 g_m + 2 L_1\right)}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_1L_4R_1R_4g_ms^2}{2C_1C_4L_1L_4R_1R_4s^4 + 2R_1R_4 + s^3\left(2C_1L_1L_4R_1 + 2C_4L_1L_4R_1R_4g_m + 2C_4L_1L_4R_4\right) + s^2\left(2C_1L_1R_1R_4 + 2C_4L_4R_1R_4 + 2L_1L_4R_1g_m + 2L_1L_4\right) + s\left(2L_1R_1R_4g_m + 2L_1R_4 + 2L_4R_1\right)}{2C_1C_4L_4R_1R_4s^4 + 2R_1R_4 + s^3\left(2C_1L_4R_1R_4g_m + 2C_4L_4R_1R_4g_m + 2C_4L_4R_1R_4 + 2C_4L_4R_1R_4 + 2L_4R_1R_4g_m + 2L_4R_1\right)}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4L_1L_4R_1R_4g_ms^3 + L_1L_4R_1g_ms^2 + L_1R_1R_4g_ms}{2C_1C_4L_1L_4R_1s^4 + 2R_1 + s^3\left(2C_4L_1L_4R_1g_m + 2C_4L_1L_4\right) + s^2\left(2C_1L_1R_1 + 2C_4L_4R_1\right) + s\left(2L_1R_1g_m + 2L_1\right)}$$

$$\textbf{10.72} \quad \textbf{INVALID-ORDER-72} \ Z(s) = \left(\frac{L_1 R_1 s}{C_1 L_1 R_1 s^2 + L_1 s + R_1}, \ \infty, \ \infty, \ \frac{R_4 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty \right)$$

$$\frac{C_4 L_1 L_4 R_1 R_4 g_m s^3 + L_1 R_1 R_4 g_m s}{2 C_1 C_4 L_1 L_4 R_1 s^4 + 2 R_1 + s^3 \left(2 C_1 C_4 L_1 R_1 R_4 + 2 C_4 L_1 L_4 R_1 g_m + 2 C_4 L_1 L_4 \right) + s^2 \left(2 C_1 L_1 R_1 + 2 C_4 L_1 R_1 R_4 g_m + 2 C_4 L_1 R_4 + 2 C_4 L_4 R_1 \right) + s \left(2 C_4 R_1 R_4 + 2 L_1 R_1 g_m + 2 L_1 \right) }$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 L_1 R_1 g_m s^2 + L_1 g_m s + R_1 g_m}{2C_4 L_1 g_m s^2 + s^3 \left(2C_1 C_4 L_1 R_1 g_m + 2C_1 C_4 L_1\right) + s \left(2C_4 R_1 g_m + 2C_4\right)}$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1R_1R_4g_ms^2 + L_1R_4g_ms + R_1R_4g_m}{2R_1g_m + s^3\left(2C_1C_4L_1R_1R_4g_m + 2C_1C_4L_1R_4\right) + s^2\left(2C_1L_1R_1g_m + 2C_1L_1 + 2C_4L_1R_4g_m\right) + s\left(2C_4R_1R_4g_m + 2C_4R_4 + 2L_1g_m\right) + 2C_4R_4 + 2C_4R$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_1 R_1 R_4 g_m s^3 + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_4 L_1 R_4 g_m \right) + s \left(C_4 R_1 R_4 g_m + L_1 g_m \right)}{2 C_4 L_1 g_m s^2 + s^3 \left(2 C_1 C_4 L_1 R_1 g_m + 2 C_1 C_4 L_1 \right) + s \left(2 C_4 R_1 g_m + 2 C_4 \right)}$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1 C_4 L_1 L_4 R_1 g_m s^4 + C_4 L_1 L_4 g_m s^3 + L_1 g_m s + R_1 g_m + s^2 \left(C_1 L_1 R_1 g_m + C_4 L_4 R_1 g_m \right)}{2 C_4 L_1 g_m s^2 + s^3 \left(2 C_1 C_4 L_1 R_1 g_m + 2 C_1 C_4 L_1 \right) + s \left(2 C_4 R_1 g_m + 2 C_4 \right)}$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_4R_1g_ms^3 + L_1L_4g_ms^2 + L_4R_1g_ms}{2C_4L_1L_4g_ms^3 + 2L_1g_ms + 2R_1g_m + s^4\left(2C_1C_4L_1L_4R_1g_m + 2C_1C_4L_1L_4\right) + s^2\left(2C_1L_1R_1g_m + 2C_1L_1 + 2C_4L_4R_1g_m + 2C_4L_4\right) + 2C_4L_4R_1g_m + 2C_$$

10.78 INVALID-ORDER-78
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4R_1g_ms^4 + R_1g_m + s^3\left(C_1C_4L_1R_1R_4g_m + C_4L_1L_4g_m\right) + s^2\left(C_1L_1R_1g_m + C_4L_1R_4g_m + C_4L_4R_1g_m\right) + s\left(C_4R_1R_4g_m + L_1g_m\right)}{2C_4L_1g_ms^2 + s^3\left(2C_1C_4L_1R_1g_m + 2C_1C_4L_1\right) + s\left(2C_4R_1g_m + 2C_4\right)}$$

10.79 INVALID-ORDER-79
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1L_4R_1R_4g_ms^3 + L_1L_4R_4g_ms^2 + L_4R_1R_4g_ms}{2R_1R_4g_m + 2R_4 + s^4\left(2C_1C_4L_1L_4R_1R_4g_m + 2C_1C_4L_1L_4R_4g_m + 2C_1L_1L_4 + 2C_4L_1L_4R_4g_m\right) + s^2\left(2C_1L_1R_1R_4g_m + 2C_4L_4R_4R_4g_m + 2C_4L_4R_4g_m + 2C_4L_4R_4g_m\right) + s\left(2C_1L_1L_4R_1R_4g_m + 2C_4L_4R_4g_m + 2C_4L_4R_4g_m + 2C_4L_4R_4g_m\right) + s\left(2C_1L_4R_4g_m + 2C_4L_4R_4g_m + 2C_4L_4R_4g_m\right) + s\left(2C_4L_4R_4g_m + 2C_4L_4R_4g_m\right) + s\left(2C_4L_4R_4g_m\right) + s\left(2C_4L$$

10.80 INVALID-ORDER-80
$$Z(s) = \left(\frac{L_1 s}{C_1 L_1 s^2 + 1} + R_1, \infty, \infty, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4R_1R_4g_ms^4 + R_1R_4g_m + s^3\left(C_1L_1L_4R_1g_m + C_4L_1L_4R_4g_m\right) + s^2\left(C_1L_1R_1R_4g_m + C_4L_4R_1R_4g_m + L_1L_4g_m\right) + s\left(L_1R_4g_m + L_4R_1g_m\right)}{2C_4L_1L_4g_ms^3 + 2L_1g_ms + 2R_1g_m + s^4\left(2C_1C_4L_1L_4R_1g_m + 2C_1C_4L_1L_4\right) + s^2\left(2C_1L_1R_1g_m + 2C_1L_1 + 2C_4L_4R_1g_m + 2C_4L_4\right) + 2C_4L_4R_1g_m + C_4L_4R_1g_m +$$

10.82 INVALID-ORDER-82
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1L_1R_1g_ms^2 + R_1g_m}{2C_1C_4R_1s^2 + s^3\left(2C_1C_4L_1R_1g_m + 2C_1C_4L_1\right) + s\left(2C_4R_1g_m + 2C_4\right)}$$

$$\textbf{10.83} \quad \textbf{INVALID-ORDER-83} \ Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right) \\ H(s) = \frac{C_1L_1R_1R_4g_ms^2 + R_1R_4g_m}{2R_1g_m + s^3\left(2C_1C_4L_1R_1R_4g_m + 2C_1C_4L_1R_4\right) + s^2\left(2C_1C_4R_1R_4 + 2C_1L_1R_1g_m + 2C_1L_1\right) + s\left(2C_1R_1 + 2C_4R_1R_4g_m + 2C_4R_4\right) + 2c_4R_4 + 2c_4R_4$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1C_4L_1R_1R_4g_ms^3 + C_1L_1R_1g_ms^2 + C_4R_1R_4g_ms + R_1g_m}{2C_1C_4R_1s^2 + s^3\left(2C_1C_4L_1R_1g_m + 2C_1C_4L_1\right) + s\left(2C_4R_1g_m + 2C_4\right)}$$

$$\textbf{10.85} \quad \textbf{INVALID-ORDER-85} \ Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4R_1g_ms^4 + R_1g_m + s^2\left(C_1L_1R_1g_m + C_4L_4R_1g_m\right)}{2C_1C_4R_1s^2 + s^3\left(2C_1C_4L_1R_1g_m + 2C_1C_4L_1\right) + s\left(2C_4R_1g_m + 2C_4\right)}$$

$$\textbf{10.86} \quad \textbf{INVALID-ORDER-86} \ Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right) \\ H(s) = \frac{C_1L_1L_4R_1g_ms^3 + L_4R_1g_ms}{2C_1C_4L_4R_1s^3 + 2C_1R_1s + 2R_1g_m + s^4\left(2C_1C_4L_1L_4R_1g_m + 2C_1C_4L_1L_4\right) + s^2\left(2C_1L_1R_1g_m + 2C_1L_1 + 2C_4L_4R_1g_m + 2C_4L_4\right) + 2C_4L_4R_1g_m + 2C_4L_4R_1g_m + 2C_4L_4\right) + 2C_4L_4R_1g_m +$$

10.87 INVALID-ORDER-87
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \infty, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4R_1g_ms^4 + C_1C_4L_1R_1R_4g_ms^3 + C_4R_1R_4g_ms + R_1g_m + s^2\left(C_1L_1R_1g_m + C_4L_4R_1g_m\right)}{2C_1C_4R_1s^2 + s^3\left(2C_1C_4L_1R_1g_m + 2C_1C_4L_1\right) + s\left(2C_4R_1g_m + 2C_4\right)}$$

$$\begin{aligned} \textbf{10.88} \quad \textbf{INVALID-ORDER-88} \ Z(s) &= \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right) \\ & \qquad \qquad \\ H(s) &= \frac{C_1L_1L_4R_1R_4g_ms^3 + L_4R_1R_4g_ms}{2R_1R_4g_m + 2R_4 + s^4\left(2C_1C_4L_1L_4R_1R_4g_m + 2C_1C_4L_1L_4R_1R_4 + 2C_1L_1L_4R_1g_m + 2C_1L_1L_4\right) + s^2\left(2C_1L_1R_1R_4g_m + 2C_1L_1R_4 + 2C_1L_4R_1 + 2C_4L_4R_1R_4g_m + 2C_4L_4R_4\right) + s\left(2C_1R_1R_4 + 2L_4R_1g_m + 2L_4\right)} \end{aligned}$$

10.89 INVALID-ORDER-89
$$Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \infty, \infty, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_1C_4L_1L_4R_1R_4g_ms^4 + C_1L_1L_4R_1g_ms^3 + L_4R_1g_ms + R_1R_4g_m + s^2\left(C_1L_1R_1R_4g_m + C_4L_4R_1R_4g_m\right)}{2C_1C_4L_4R_1s^3 + 2C_1R_1s + 2R_1g_m + s^4\left(2C_1C_4L_1L_4R_1g_m + 2C_1C_4L_1L_4\right) + s^2\left(2C_1L_1R_1g_m + 2C_1L_1 + 2C_4L_4R_1g_m + 2C_4L_4\right) + 2}$$

$$\textbf{10.90} \quad \textbf{INVALID-ORDER-90} \ Z(s) = \left(\frac{R_1\left(C_1L_1s^2+1\right)}{C_1L_1s^2+C_1R_1s+1}, \ \infty, \ \infty, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right) \\ H(s) = \frac{C_1C_4L_1L_4R_1R_4g_ms^4 + R_1R_4g_m + s^2\left(C_1L_1R_1R_4g_m + C_4L_4R_1R_4g_m\right)}{2R_1g_m + s^4\left(2C_1C_4L_1L_4R_1g_m + 2C_1C_4L_1L_4\right) + s^3\left(2C_1C_4L_1R_1R_4g_m + 2C_1C_4L_4R_1\right) + s^2\left(2C_1C_4R_1R_4 + 2C_1L_1R_1g_m + 2C_1L_1 + 2C_4L_4R_1g_m + 2C_4L_4\right) + s\left(2C_1R_1 + 2C_4R_1R_4g_m + 2C_4R_4\right) + s\left(2C_1R_1R_4g_m + 2C_4R_4\right) + s\left(2C_1R_4R_4g_m + 2C_$$

11 PolynomialError