ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266836010

Additivity Methods in Molecular Polarizability

DATASET · OCTOBER 2014

READS

47

Additivity Methods in Molecular Polarizability

Kenneth J. Miller

Contribution from the Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3590. Received January 8, 1990

Abstract: Empirical methods to calculate average molecular polarizabilities based on atomic hybrid parameters are reexamined. New sets of optimized atomic hybrid components, $\tau_A(ahc)$, and atomic hybrid polarizabilities, $\alpha_A(ahp)$, are presented. They yield average molecular polarizabilities with complementary empirical formulas, $\alpha(ahc) = (4/N)[\sum_A \tau_A(ahc)]^2$ (N = numberof electrons in the molecule) and $\alpha(ahp) = \sum_{A} \alpha_{A}(ahp)$, which reproduce the experimental polarizabilities to an average error of 2.2% and 2.8% respectively for approximately 400 compounds containing H, C, N, O, S, F, Cl, B, I, and P. Only one parameter, τ_A or α_A , in each formula is required for each atom, A, in a particular atomic hybridization state. Conjugate parameters, $\alpha_A^*(ahp) = (4/N_A)\tau_A(ahc)^2$ and $\tau_A^*(ahp) = [N_A\alpha_A(ahp)/4]^{1/2}$ (N_A = number of electrons in atom A) used as alternate sets in these two empirical formulas, yield average molecular polarizabilities to a root-mean-square standard deviation of 5.6% and 6.4%, respectively. These two partitioning schemes are discussed. The atomic hybrid polarizabilities can be combined to generate bond polarizabilities, bp and two possible sets are discussed. In addition, the atomic polarizabilities are related to group polarizabilities, gp. The atomic hybrid methods require fewer parameters than the bond or group polarizability methods, but the ahc, ahp, bp, and gp methods yield comparable results.

Introduction

The most successful empirical approaches to the calculation of average molecular polarizabilities include the environment through atomic hybridization about the central atom or with the atoms defining a bond or groups. Miller and Savchik1 were the first to propose a method that features atom hybridization (ah) in which each atom is characterized by its state of atomic hybridization. They used a functional form

$$\alpha(ahc) = (4/N) \left[\sum_{A} \tau_{A}(ahc) \right]^{2}$$
 (1)

where τ_A is an atomic hybrid component (ahc) for each atom A in a given state of hybridization, and N is the total number of electrons. This formula was based on a theoretical interpretation of variational perturbation results¹⁻⁴ and interpreted with molecular orbital theory.1 Their optimized atomic hybrid components, $\tau_{\rm A}({\rm ahc})$, reproduce $\alpha({\rm ahc})$ to 1-3% and within experimental error for most of the approximately 240 molecules studied. They wrote the average atomic polarizability as

$$\alpha_{\mathsf{A}}^*(\mathsf{ahc}) = (4/N_{\mathsf{A}})\tau_{\mathsf{A}}^2 \tag{2}$$

using the set of τ_A from the ahc optimization, where N_A is the number of electrons in atom A. α_A^* (ahc) will be referred to as the conjugate (*) ahe polarizability. In this paper it will be useful to compute the conjugate ahc molecular polarizability

$$\alpha^*(ahc) = \sum_{A} \alpha_A^*(ahc)$$
 (3)

to compare the two schemes of partitioning, eqs 1 and 3, and the conjugate relationship through eq 2

Subsequently, Yoffe and Maggiora⁵ used eqs 2 and 3 in a study of London dispersion interaction energies and Kang and Jhon⁶ tabulated values of α^* (ahc) for approximately 100 molecules. α^* (ahc) are consistently larger than α (ahc) by only 1-5% in most cases studied. Kang and Jhon⁶ refined the atomic polarizabilities to obtain an optimum set of atomic hybrid polarizabilities, $\alpha_A(ahp)$, which reproduce the molecular polarizabilities

$$\alpha(ahp) = \sum_{A} \alpha_{A}(ahp)$$
 (4)

to approximately 1-3%. In this paper it will be convenient to

define a conjugate (*) ahc parameter

$$\tau_{\rm A}^*({\rm ahp}) = [N_{\rm A}\alpha_{\rm A}({\rm ahp})/4]^{1/2}$$
 (5)

calculated with the optimum parameters $\alpha_A(ahp)$ from which the conjugate (*) ahp molecular polarizability becomes

$$\alpha^*(ahp) = (4/N)[\sum_{A} \tau_A^*(ahp)]^2$$
 (6)

to relate eqs 4 and 6 through eq 5.

Comparisons between the ahc and ahp methods of eqs 1 and 4 calculated with newly optimized $\tau_A(ahc)$ and $\alpha_A(ahp)$ and the conjugate methods of eqs 3 and 6 will be made to examine the interchangability of parameters, the equivalence of the two methods of partitioning the molecular polarizability, and the atomic size

The simplicity of the ahc and ahp atomic hybrid methods is understood by noting that the molecular polarizability cannot be written as a sum of atomic polarizabilities 7.8 when atoms are defined only by the atomic number. Eisenlohr^{8,9} and more recently Vogel¹⁰ set up an extensive system of atomic refractions¹¹ that have been supplemented by Batsanov12 in which each atom must be assigned a polarizability depending on the atoms to which it is bonded. Silberstein⁷ pointed out that atomic polarizabilities are not additive unless the atomic environment is considered in great detail. The methods that consider atoms in atomic hybrid states eliminate the need to develop an extensive set of rules that consider the specific atoms involved in bonding.

A third method of calculating molecular polarizabilities originated with the early work by von Steiger,13 Smyth,14 and Denbigh, 15 who demonstrated additivity of bond polarizabilities

$$\alpha(bp) = \sum_{B} \alpha_{B}(bp)$$
 (7)

where the sum is over all bonds B in the molecule. Denbigh¹⁵ and Vickery and Denbigh¹⁶ obtained a set of $\alpha_B(bp)$ that reproduce $\alpha(bp)$ to 1-2% for 52 molecules, and Vogel et al. 17 have obtained

⁽¹⁾ Miller, K. J.; Savchik, J. A. J. Am. Chem. Soc. 1979, 101, 7206. (2) Hylleraas, E. Z. Phys. 1930, 65, 209.

⁽³⁾ Hasse, H. R. Proc. Cambridge Philos. Soc. 1930, 26, 542.
(4) Hirshfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1954; pp 942-948.
(5) Yoffe, J. A.; Maggiora, G. M. Theor. Chim. Acta 1980, 56, 191.
(6) Kang, Y. K.; Jhon, M. S. Theor. Chim. Acta 1982, 61, 41.

⁽⁷⁾ Silberstein, L. Philos. Mag. 1917, 33, 92.
(8) Eisenlohr, F. Z. Phys. Chem. (Leipzig) 1911, 75, 585.
(9) Eisenlohr, F. Z. Phys. Chem. (Leipzig) 1912, 79, 129.
(10) Vogel, A. J. Chem. Soc. 1948, 1833.
(11) Molar refraction R (cm³) is related to polarizability through Avogadro's number, L, by $\alpha(\mathring{A}^2) = 3R/(4\pi L) = 0.3964R$.
(12) Batsanov, S. S. Refractometry and Chemical Structure; Consultants Pureau. New York, 1961.

Bureau: New York, 1961.

(13) von Steiger, A. L. Berichte 1921, 54, 1381.

(14) Smyth, C. Phil. Mag. 1925, 50, 361.

(15) Denbigh, K. G. Trans. Faraday Soc. 1940, 36, 936.

(16) Vickery, B.; Denbigh, K. Trans. Faraday Soc. 1949, 45, 61.

Table I. Parameters for Atoms in Hybrid Configurations

symbol ^a	hybrid ^b	group	$\tau_{\mathbf{A}}(\mathbf{a}\mathbf{h}\mathbf{c}),^{d}$ $\mathbf{\mathring{A}}^{3/2}$	$\alpha_{\mathbf{A}}(\mathbf{ahp}),^{\mathbf{d}}$ $\mathbf{\mathring{A}}^{3}$	$\alpha_A^*(ahc)$, A	$\tau_{A}^{\bullet}(ahp), \overset{\epsilon}{A}^{3/2}$	ρ _A (ahc), ^f Å	$ ho_{\mathbf{A}}(ahp),^f$ $\mathring{\mathbf{A}}$	$ ho_{A}(exp)^f$	$\alpha_{A}(\exp),^{g}$ A^{3}
Н	σ	-Н	0.313	0.387	0.392	0.311	1.227	1.223	1.200	0.358
F	σ	-F	1.089	0.296	0.527	0.816	1.322	1.144	1.470	0.807
Cl	σ	-Cl	3.165	2.315	2.357	3.137	1.922	1.913	1.750	1.620
Br	σ	-Br	5.566	3.013	3.541	5.135	2.128	2.044	1.850	2.023
i	σ	-I	8.593	5.415	5.573	8.470	2.383	2.366	1.980	2.655
CTE	tetetete	><	1.294	1.061	1.116	1.262	1.594	1.574	1.700	1.443
CTR	trtrtr#	;;;;-	1.433	1.352	1.369	1.424	1.678	1.673	1.700	1.443
CBR	trtrtr#	>o÷	1.707	1.896	1.943	1.686	1.831	1.820	1.700	1.443
CDI	didiππ	—c≡	1.393	1.283	1.294	1.387	1.654	1.651	1.700	1.443
NTE	te ² tetete	≥ _N :	1.373	0.964	1.077	1.299	1.580	1.537	1.550	0.997
NTR2	tr²trtrπ		1.262	1.030	0.910	1.343	1.515	1.563	1.550	0.997
NPI2	$trtrtr\pi^2$.>n−	1.220	1.090	0.851	1.381	1.490	1.585	1.550	0.997
NDI	$\mathrm{di}^2\mathrm{di}\pi\pi$	=n:	1.304	0.956	0.972	1.293	1.540	1.534	1.550	0.997
OTE	te²te²tete	>o;:	1.249	0.637	0.780	1.129	1.458	1.386	1.520	0.922
OTR4	$tr^2tr^2tr\pi$	=o:	1.216	0.569	0.739	1.067	1.438	1.347	1.520	0.922
OPI2	$tr^2 tr tr \pi^2$;;:o:	1.083	0.274	0.586	0.740	1.357	1.122	1.520	0.922
STE	te²te²tete	s:	3.496	3.000	3.056	3.464	2.051	2.041	1.800	1.813
STR4	$tr^2tr^2tr\pi$	=s:	3.827	3.729	3.661	3.862	2.146	2.156	1.800	1.813
SPI2	$tr^2trtr\pi^2$	∷s:	2.982	2.700	2.223	3.286	1.894	1.988	1.800	1.813
PTE	tetetete		2.485	1.538	1.647	2.402	1.757	1.727	1.800	1.813

Atom A is represented as an atomic hybrid. The first (and sometimes second) letters denote the atom, and the remaining letters denote the atomic hybridization state. Atomic orbitals are hybridized to form molecular orbitals in the states of hybridization: σ, te (tetrahedral), tr (trigonal), di (digonal), and π . Examples from portions of molecules or molecular groups. Optimized parameters: atomic hybrid component, τ_A (ahc), or atomic hybrid polarizability, α_A (ahp). The conjugate (*) set of parameters τ_A *(ahc) or α_A *(ahp) used with eq 3 or 6 indicate the extent of transferability of parameters between the two methods. Theoretical van der Waals radii $\rho_A(ahc)$ and $\rho_A(ahp)$ obtained from the two methods relate $\alpha(ahc)$ and $\alpha(ahp)$ to atomic size with eq 12' and are compared to the experimental van der Waals radii, $\rho_A(exp)$, ref 18. $\alpha(exp) = [\rho_A(exp)/\rho_A(exp)]$ $(1.05\sqrt{3})$ ³/ a_0 provides an estimate of the experimental polarizability.

the most refined set of bond polarizabilities. This method has been used very successfully. It introduces the environment into the parametrization through bonds linking pairs of atoms. Single, double, triplet, aromatic, etc. bonds indirectly incorporate atomic hybridization.

A fourth method of calculating molecular polarizability was developed extensively by Vogel and co-workers and culminated in a set of group polarizabilities, gp. 10 They very cleverly represented different types of bonding with a set of characteristic groups that can be interpreted with atomic hybrids and represented by the present ahp method.

In this paper optimum sets of ahc and ahp parameters will be presented and the bp and gp methods will be related to the ahp method. Unlike the atomic hybrid methods in which one parameter is required for each of M atoms or types, the bond method requires M(M-1)/2 bond parameters, and a distinction for carbon atoms in aromatic, naphthalenic, etc. bonds is generally made. The group method requires parameters for each unique group. However, a relationship between the bp, gp, and ahp methods will be shown.

Optimized ahc and ahp Parameters

Atomic parameters are characterized according to atomic hybridization and listed in Table I. Molecular polarizabilities

⁽¹⁷⁾ Vogel, A.; Cresswell, W.; Jeffery, G.; Leicester, I. Chem. Industry 1950, 358.

⁽¹⁸⁾ Bondi, A. J. Phys. Chem. 1964, 68, 441.

 ⁽¹⁹⁾ Landolt-Bornstein, Atom und Molekularphysik; Springer-Verlag:
 West Berlin, 1951; Vol. 1, Part 3, pp 511-513.
 (20) Applequist, J.; Carl, J. R.; Fung, K.-K. J. Am. Chem. Soc. 1972, 94,

²⁹⁵³

⁽²¹⁾ LeFevre, C. G.; LeFevre, R. J. W.; Rao, B. P.; Smith, M. R. J. Chem. Soc. 1959, 1188.
(22) Jeffery, G.; Leicester, I.; Macey, W.; Vogel, A. Chem. Industry 1954,

^{1045.}

⁽²³⁾ Sanyal, N. K.; Ahmad, P.; Dixit, L. J. Phys. Chem. 1973, 77, 2552.
(24) Bramley, R.; LeFevre, C. G.; LeFevre, R. J. W.; Rao, B. P. J. Chem. Soc. 1959, Pt. I, 1183.

⁽²⁵⁾ Schuyler, J.; Blom, L.; van Krevelen, D. W. Trans. Faraday Soc. 1953, 49, 1391.

⁽²⁶⁾ LeFevre, R. J. W.; Radom, L. J. Chem. Soc. B 1967, 1295

⁽²⁷⁾ Aroney, M. J.; Cleaver, G.; Pierens, R. K.; LeFevre, R. J. W. J. Chem. Soc., Perkin Trans. II 1974, 2, 3.
(28) LeFevre, R. J. W.; Sundaram, K. M. S. J. Chem. Soc. 1963, 4442.
(29) LeFevre, R. J. W.; Radom, L.; Ritchie, G. L. D. J. Chem. Soc. B

⁽³⁰⁾ Adams, S.; Nir, S; Rein, R. Int. J. Quantum Chem. 1975, 9, 701.
(31) Hurley, J.; LeFevre, R. J. W. J. Chem. Soc. B 1967, 824.

⁽³²⁾ Aroney, M. J.; Fisher, L. R.; LeFevre, R. J. W. J. Chem. Soc. 1963,

⁽³³⁾ Bottcher, C. F. J. Theory of Electric Polarization; Elsevier Publishing

Co.: Amsterdam, 1952, p 289. (34) Aroney, M. J.; LeFevre, R. J. W.; Saxby, J. J. Chem. Soc. 1963,

are presented for approximately 400 compounds in Table II for the ahc and ahp methods. The compounds are arranged to introduce new atomic hybrids. In order they are as follows: (1) alkanes and halogenated alkanes, (2) alkenes and halogenated alkenes, (3) alkynes, (4) benzene and its derivatives, (5) condensed ring systems and their derivatives, (6) amines, aniline, pyrrole, and nitriles, (7) heterocycles containing nitrogen, (8) alcohols and ethers, (9) ketones, (10) acids and esters, (11) amides, etc., (12) molecules containing sulfur, (13) isomers of $C_{10}H_{18}O$, (14) molecules of biological interest, and (15) molecules containing phosphate. Atomic hybridization is introduced in the approximate order H, F, Cl, Br, I, CTE, CTR, CBR, CDI, NTE, NTR2, NDI2, NDI, OTE, OTR4, OPI2, STE, STR4, SPI2, and PTE. This notation denotes the atomic hybridization listed in Table I.

The optimization of parameters $\tau_A(ahc)$ and $\alpha_A(ahp)$ separately for the ahc and ahp methods, eqs 1 and 4, was performed by increasing the number of molecules with various types of hybridization. In Table II $\alpha(\exp)$, $\alpha(ahc)$, and $\alpha(ahp)$ are presented along with the percent error $\delta\alpha(ahc)$, $\delta\alpha(ahp)$, $\delta\alpha^*(ahc)$, and $\delta\alpha^*(ahp)$ for each molecule calculated with the optimized ahc and ahp and their conjugate (*) methods as

$$\delta \alpha_{M}(\text{calc}) = 100[\alpha_{M}(\text{calc}) - \alpha_{M}(\text{exp})]/\alpha_{M}(\text{exp}) \%$$
 (8)

where calc refers to the ahc and ahp methods, and the subscript is introduced to denote molecule M. The parameters $\tau_A(ahc)$ and $\alpha_A(ahp)$ are obtained by minimizing the root-mean-square deviation

$$\sigma(\text{calc}) = \{ [\sum_{M} \delta \alpha_{M} (\text{calc})^{2}] / (T - 1) \}^{1/2}$$
 (9)

for a sum over all molecules M = 1, 2, 3, ..., T. $\sigma(ahc) = 5.6\%$ and $\sigma(ahp) = 6.4\%$, and calculation of the average magnitude error yields $\sigma(ahc) = 2.2\%$ and $\sigma(ahp) = 2.8\%$ where

$$a(\text{calc}) = \{ \sum_{M} |\delta \alpha_{M}(\text{calc})| \} / (T - 1)$$
 (10)

for approximately 400 molecules studied. Optimization of the parameters $\tau_A(ahc)$ and $\alpha_A(ahp)$ yielded a smaller standard deviation for the ahc method. As one scans through classes of compounds in Table II, several trends appear. For the alkanes both methods yield uniform errors of approximately 1%. In the fluorinated hydrocarbons, the ahp method is about 1% better except for $C_1H_xF_y$ (x+y=4) in the series for which the ahp gives poor results. The brominated alkanes yield a uniform error of approximately 1% for the ahc method but a uniform increase from -5.3% for CH₃Br to 1.4% for $C_{18}H_{37}$ Br in the ahp method. Once again results for $C_1H_xBr_y$ (x+y=4) yield larger errors with the ahp than the ahc method. Several cases contrast the two methods: For HCl, O_2 , CO_2 , and guanine, the ahc results are significantly better than the ahp method. Results for 2,3:4,5-dibenzophenazine, ethyl nitrite, $(CN)_2$, $CH_2(CN)_2$, N_2 , and formaldehyde are equally poor for both methods.

The experimental polarizabilities were included in the data set without evaluation. They were obtained in the gas phase and the liquid phase or by considering the molecule as a solute in an inert solvent such as CCl_4 , CH_3Cl , or C_6H_6 by determining the refraction at infinite dilution with the sodium D line. Three or more experimental measurements on benzene, toluene, o- and p-xylene, naphthalene, anthracene, aniline, pyridine, quinoline, isoquinoline, methanol, acetone, and formamide and two measurements on many additional compounds yield differences in the experimental results ranging between 0 and 4% in most cases and as high as 8%. This simple interpretation of the errors in the reported experimental results suggests that the average errors associated with the empirical formulas, a(ahc) = 2.2% and a(ahp) = 2.8%, and the standard deviations, a(ahc) = 5.6% and a(ahp) = 6.4%, are competitive with those expected from experimental results.

It is interesting to note that errors in the conjugate calculations $\delta\alpha^*(ahc)$ and $\delta\alpha^*(ahp)$ are usually approximately of the same magnitude but opposite in sign. The parameters $\tau_A(ahc)$ and $\alpha_A(ahp)$ and the conjugate parameters $\tau_A^*(ahp)$ and $\alpha_A^*(ahc)$ are in reasonable agreement as seen from results listed in Table I. Those for fluorine and oxygen in the OPI2 (tr²trtr π^2) exhibit

the greatest deviation because they are small and affect $\alpha(ahc)$ and $\alpha(ahp)$ the least. These values can be influenced the most by eliminating the fluorinated benzenes and fused ring systems from the optimization process. Although $\tau_{\rm H}$ and $\alpha_{\rm H}$ are small, adjustment of these parameters was biased because the aliphatic systems were optimized first and in addition because data on the aliphatic hydrocarbons from several experimental sets is consistently within 1.0%. Although a complete optimization was performed, the standard deviation is somewhat insensitive to small adjustments. A change in $\tau_{\rm H}$ or $\alpha_{\rm H}$ can be offset by a comparable change in $\tau_{\rm CTE}$ and $\tau_{\rm CTE}$ a

Theoretical van der Waals Radii

Classically, the polarizability may be interpreted as the volume of the system. The Slater-Kirkwood approximation³⁵ relates the polarizability to the atomic size with

$$\alpha_{A} = (4/a_0)[r_A^2/3]^2 \tag{11}$$

which can be combined with α_A^* (ahc) from eq 2 or the optimum values α_A (ahp) to yield an approximation to the van der Waals radius of atom A with

$$\rho_{\rm A} = 1.05\sqrt{2}[r_{\rm A}^2]^{1/2} \tag{12}$$

$$\rho_{\rm A} = 1.05\sqrt{3}[a_0\alpha_{\rm A}]^{1/4} \tag{12'}$$

where $a_0=0.529177$ Å is the Bohr radius and $1.05\sqrt{2}$ is a correction to adjust the theoretical radii of each atom A, $[r_A^2]^{1/2}$, to approximate the experimental van der Waals radii ¹⁸ listed in Table I. The experimental van der Waals radii agree well with the empirical values except for ρ_F because $\alpha_F(\text{ahp})$ and $\tau_F(\text{ahc})$ are small and more insensitive than other atomic parameters to the fit of the empirical molecular polarizability to the experimental values.

An Update of an ahp Method

The following corrections to the molecular polarizabilities calculated by Kang and Jhon with the atomic polarizabilities taken from Table I of ref 6 should be noted: aniline (11.17 ų), N-methylaniline (13.01 ų), N,N-dimethylaniline (14.84 ų), N-ethylaniline (14.84 ų), N,N-diethylaniline (18.52 ų), quinoline (15.40 ų), HCN (2.52 ų), p-cyanotoluene (13.28 ų), p-nitrotoluene (13.56 ų), nitrobenzene (11.73 ų), furan (7.53 ų), benzamide (12.86 ų), and anthraquinone (25.41 ų). Corrections to all but quinoline lead to a larger deviation from experimental results. For this reason too, the $\alpha_A(ahp)$ parameters are reoptimized and the results presented in an extended list of molecules in Table II.

Kang and Jhon⁶ used three types of trigonal carbon atoms with $trtrtr\pi$ hybridization. Treated differently were the double bond in the alkenes and the aromatic bond in benzene (as in the case of the bond polarizability method, ref 14-17) and a branched carbon atom (as at the 9 and 10 positions of naphthalene in the ahc method, ref 1). In the present investigation, the idea that one CTR parameter fits all trigonal carbon atoms attached to at least one hydrogen atom was tested. The alkenes and aromatic systems yielded optimized values of $\alpha_{\rm CTR} = 1.343$ Å³ and $\alpha_{\rm CTR} = 1.352$ Å³, respectively, and of $\tau_{\rm CTR} = 1.444$ Å^{3/2} and 1.433 Å^{3/2}, respectively. The small difference is within experimental error, and consequently, separate parameters for ethylene and benzene type CTR atoms are not needed as found previously. Therefore, only two types of trtrtr π hybridization are used: one for branched trigonal carbon atoms (CBR) in trigonal carbon atoms not bonded to hydrogen atoms, and the other for alkenes and aromatic systems (CTR) in trigonal carbon atoms bonded to at least one hydrogen atom. As discussed by Miller and Savchik, this is the only exception to the rule that atomic hybridization alone characterizes

Table II. Empirical (ahc) and (ahp) and Experimental Polarizabilities (exp) with Empirical Atomic Hybrid Formulas^a

			α, A^3			, %		*, %	_			oirical formula omic hybrids)
molecule	N	exp	ahc	ahp	ahc	ahp	ahc	ahp	ref			
	Alkane 2	s and Ha	liogenated 0.78	i Alkanes: 0.77	CTE ((tetetete). -2.0	, H(σ), l −0.8	F(σ), Cl(α -2.0	r), Br(- 19	σ), Ι(σ) Η <u>ς</u> 2Η	bridizati	ion
ł ₂ nethane	10	2.60	2.59	2.61	-0.8 -0.3	0.3	3.2	-2.0 -3.4	19	1CTE	4H	
thane	18	4.47	4.43	4.44	-0.8	-0.6	2.5	-4.2	19	2CTE	6H	
-propane	26	6.29	6.27	6.28	-0.3	-0.2	3.1	-3.8	19	3CTE	8H	
n-butane	34	8.12	8.12	8.11	0.0	-0.1	3.3	-3.6	19	4CTE	10H	
n-pentane	42	9.95	9.96	9.95	0.1	0.0	3.4	-3.5	19	5CTE	12H	
n-pentane	42	10.02	9.96	9.95	-0.6	-0.7	2.6	-4.2	5	5CTE	12H	
n-hexane	50	11.78	11.80	11.78	0.2	0.0	3.4	-3.4	19	6CTE	14H	
n-hexane	50 58	11.84 13.61	11.80 13.64	11.78 13.62	-0.3 0.3	−0.5 0.1	2.9 3.5	-3.9 -3.4	15 19	6CTE 7CTE	14H 16H	
n-heptane n-heptane	58	13.68	13.64	13.62	-0.3	~0.1	2.9	-3. 4	15	7CTE	16H	
n-octane	66	15.44	15.49	15.45	0.3	0.1	3.5	-3.4	19	8CTE	18H	
n-octane	66	15.51	15.49	15.45	-0.2	-0.4	3.0	-3.8	15	8CTE	18 H	
n-nonane	74	17.36	17.33	17.29	-0.1	-0.4	3.0	-3.8	15	9CTE	20H	
n-nonane	74	17.36	17.33	17.29	-0.1	-0.4	3.0	-3.8	15	9CTE	20H	
n-decane	82	19.10	19.17	19.12	0.4	0.1	3.6	-3.3	19	10CTE	22H	
n-decane	82	19.19	19.17	19.12	-0.1	-0.4	3.1	-3.8	15	10CTE	22H	
n-undecane n-undecane	90 90	21.03 21.03	21.02 21.02	20.96 20.96	−0.1 −0.1	-0.4 -0.4	3.1 3.1	−3.8 −3.8	15 15	11CTE 11CTE	24H 24H	
n-dodecane	98	22.75	22.86	22.79	0.5	0.2	3.7	-3.6	19	12CTE	26H	
n-dodecane	98	22.86	22.86	22.79	0.0	-0.3	3.7	-3.2 -3.7	15	12CTE	26H	
isobutane	34	8.14	8.12	8.11	-0.3	-0.3	3.0	-3.8	19	4CTE	10 H	
neopentane	42	10.20	9.96	9.95	-2.4	-2.5	0.8	-5.9	20	5CTE	12H	
cyclopentane	40	9.09	9.22	9.18	1.4	0.9	4.5	-2.4	15	5CTE	10 H	
cyclopentane	40	9.15	9.22	9.18	0.7	0.3	3.8	-3.1	21	5CTE	10H	
cyclohexane	48	10.99	11.06	11.01	0.6	0.2	3.7	-3.2	15	6CTE	12H	
cyclohexane	48	10.87	11.06	11.01	1.7	1.3	4.9	-2.1	19	6CTE	12H	
3-methylheptane	66 66	15.44 15.44	15.49 15.49	15.45 15.45	0.3 0.3	0.1 0.1	3.5 3.5	−3.4 −3.4	19 19	8CTE 8CTE	18 H 18 H	
2,2,4-trimethylpentane n-CH ₃ F	00 18	2.62	2.45	2.52	-6.4	-3.9	3.3 7.6	-3.4 -23.1	20	1CTE	18H 3H	1 F
n-C ₅ H ₁₁ F	50	9.95	9.68	9.86	-2.7	-3.9 -1.0	4.7	-23.1 -10.6	22	SCTE	11 H	1F
n-C ₆ H ₁₃ F	58	11.80	11.52	11.69	-2.4	-0.9	4.4	-9.7	22	6CTE	13H	iF
n-C ₇ H ₁₅ F	66	13.66	13.35	13.53	-2.2	-0.9	4.1	-9.1	22	7CTE	15 H	1 F
n-C ₈ H ₁₇ F	74	15.46	15.19	15.36	-1.8	-0.6	4.3	-8.3	22	8CTE	17 H	1 F
n-C9H19F	82	17.34	17.03	17.20	-1.8	-0.8	3.9	-8.1	22	9CTE	19 H	1 F
n-C ₁₀ H ₂₁ F	90	19.18	18.86	19.03	-1.7	-0.8	3.8	-7.7	22	10CTE	21H	1 F
n-C ₁₁ H ₂₃ F	98	21.00	20.70	20.87	-1.4	-0.6	3.9	-7.2	22	11CTE	23H	1 F
n-C ₁₂ H ₂₅ F	106	22.83	22.54	22.70	-1.3	-0.6	3.9	-6.9	22	12CTE	25H	1F
n-C ₁₄ H ₃₃ F	122 44	26.57 5.53	26.23 5.53	26.37 5.23	-1.3	-0.7 -5.3	3.6	-6.7	22	14CTE	26H	1F 1Br
n-C₁H₃Br n-C₂H₅Br	52	7.28	3.33 7.27	3.23 7.07	0.0 -0.2	-3.3 -2.9	5.5 6.2	-11.7 -10.3	23 23	1CTE 2CTE	3H 5H	1Br
n-C ₃ H ₇ Br	60	9.07	9.03	8.90	-0.4	-1.8	6.2	-10.5 -9.5	23	3CTE	7H	1Br
n-C₄H ₉ Br	68	10.86	10.81	10.74	-0.4	-1.1	6.2	-8.7	23	4CTE	9H	1Br
n-C ₅ H ₁₁ Br	76	12.65	12.61	12.57	-0.3	-0.6	6.2	-8.1	23	5CTE	11 H	1Br
n-C ₆ H ₁₃ Br	84	14.44	14.42	14.41	-0.2	-0.2	6.2	-7.5	23	6CTE	13 H	1 Br
n-C₁H₁₅Br	92	16.23	16.23	16.24	0.0	0.1	6.2	-7.0	23	7CTE	15 H	1 Br
n-C ₈ H ₁₇ Br	100	18.02	18.04	18.08	0.1	0.3	6.2	-6.6	23	8CTE	17H	1Br
n-C ₉ H ₁₉ Br	108	19.81	19.86	19.91	0.3	0.5	6.2	-6.2	23	9CTE	19H	1Br
n-C ₁₀ H ₂₁ Br	116 132	21.60 25.18	21.69 25.34	21.75	0.4 0.6	0.7	6.2	-5.9 -5.3	23	10CTE	21H	1Br
<i>n</i> -C ₁₂ H ₂₅ Br <i>n</i> -C ₁₆ H ₃₃ Br	164	25.18 32.34	23.34 32.67	25.42 32.76	1.0	1.0 1.3	6.2 6.2	-5.3 -4.5	23 23	12CTE 16CTE	25H 33H	1 Br 1 Br
n-C ₁₈ H ₃₇ Br	180	35.92	36.34	36.43	1.0	1.4	6.2	-4.3 -4.2	23	18CTE	37H	1 Br
CHF ₃	34	2.81	2.79	2.34	-0.5	-16.9	9.9	-32.3	20	ICTE	1 H	3F
CF.	42	2.92	3.04	2.25	4.1	-23.1	10.4	-33.2	20	ICTE	4F	
CH ₃ Br	44	5.61	5.53	5.23	-1.4	-6.7	4.0	-13.0	20	1CTE	3H	1Br
CH ₂ Br ₂	78	8.68	8.74	7.86	0.6	-9.4	3.5	-12.7	20	ICTE	2H	2Br
CHBr ₃	112	11.84	11.97	10.49	1.1	-11.4	2.4	-13.1	20	ICTE	1H	3Br
CH ₃ I	62	7.59	7.56	7.64	-0.4	0.6	3.6	-3.3	20	1CTE	3 H	11
CH ₂ I ₂	114	12.90	12.81	12.66	-0.7	-1.8	1.1	-3.6	20	1CTE	2H	21
CHI,	166	18.04	18.07	17.69	0.2	-1.9 -0.5	1.0	-2.7 -4.1	20	1CTE	1H	3I
CH₃Cl CH₃Cl	26 26	4.56 4.55	4.48 4.48	4.54 4.54	-1.7 -1.5	-0.5 -0.3	1.9 2.2	-4.1 -3.9	19 20	1CTE 1CTE	3H 3H	1 C 1 1 C 1
CH ₂ Cl ₂	42	6.48	6.48	6.46	0.0	-0.3 -0.2	2.2	-3.9 -2.2	19	CTE	2H	2Cl
CH ₂ Cl ₂	42	6.82	6.48	6.46	-5.0	-5.2	-3.0	-7.1	20	ICTE	2H	2C1 2C1
CH ₂ Cl ₂	42	6.56	6.48	6.46	-1.2	-1.5	0.8	-3.4	15	1CTE	2H	2Cl
CHCI ₃	58	8.23	8.50	8.39	3.3	2.0	4.2	1.1	19	ICTE	1 H	3C1
CHCl ₃	58	8.53	8.50	8.39	-0.3	-1.6	0.6	-2.5	20	ICTE	iH	3Cl
CCI ₄	74	10.50	10.53	10.32	0.2	-1.7	0.4	-1.8	19	1CTE	4Cl	
CCI ₄	74	10.51	10.53	10.32	0.1	-1.8	0.3	-1.9	20	1CTE	4C1	
CCI4	74	10.47	10.53	10.32	0.5	-1.5	0.7	-1.6	15	1CTE	4C1	1.01
ethyl chloride	34	6.40	6.30	6.37	-1.6	-0.4	2.3	-4.3	19	2CTE	5 H	1Cl
Cl₂ HF	34 10	4.61 0.80	4.71	4.63	2.3	0.4	2.3	0.4 -36.5	19	2Cl	16	
		2.63	0.79 2.69	0.68 2.70	-1.7 2.2	-14.6 2.7	14.9 4.5	-36.5 0.4	19 19	1H 1H	1 F 1 Cl	
HCl					4.4				17		101	
HCI HBr	18 36	3.61	3.84	3.40	6.4	-5.8	8.9	-8.7	19	1 H	1 Br	

Table II (Continued)

			α, Å ³			, %		*, %				oirical for	
molecule	N	exp	ahc	ahp	ahc	ahp	ahc	ahp	ref		(at	omic hyb	rius)
ah.daa			kenes an							idization	4**		
thylene -pentene	16 40	4.26 9.65	4.24 9.76	4.25 9.76	-0.5	-0.2	1.1 3.7	-1.7 -1.6	19 15	2CTR 2CTR	4H 3CTE	1011	
-pentene !-pentene	40	9.84	9.76	9.76	1.1 -0.9	1.1 0.9	1.6	-1.6 -3.6	15	2CTR 2CTR	3CTE	10 H 10 H	
,4-pentadiene	46	11.49	11.40	11.40	-0.8	-0.8	1.2	-2.9	15	4CTR	2CTE	10H	
-hexene	48	11.65	11.60	11.59	-0.4	-0.5	2.2	-3.3	15	2CTR	4CTE	12H	
-heptene	56	13.51	13.44	13.43	-0.5	-0.6	2.2	-3.5	15	2CTR	SCTE	14H	
CH ₂ —CCl ₂	48	7.83	8.04	8.11	2.7	3.6	5.2	1.0	24	2CTR	2CI	2H	
rans-dichloroethylene	48	8.15	8.04	8.11	-1.4	-0.5	1.0	-2.9	12	2CTR	2Cl	2H	
is-dichloroethylene	48	8.03	8.04	8.11	0.1	1.0	2.6	-1.4	12	2CTR	2Cl	2H	
is-dichloroethylene	48	7.78	8.04	8.11	3.3	4.2	5.9	1.7	24	2CTR	2Cl	2H	
CHCI=CCI ₂	64	10.03	10.04	10.04	0.1	0.1	1.7	-1.6	24	2CTR	3Cl	1 H	
rans-Chlorobromoethylene	66	9.28	9.05	8.81	-2.4	-5.1	1.5	-9.9	12	2CTR	2H	1Cl	1 Br
is-chlorobromoethylene	66	9.19	9.05	8.81	-1.5	-4.2	2.5	-9.1	12	2CTR	2H	1 C l	l B r
. 1								ridizatio					
cetylene -heptyne	14	3.33	3.33	3.34	-0.1	0.3	1.2	-1.0	19	2CDI	2H		
,5-hexadiyne	54 42	12.87 10.21	12.54 9.60	12.52 9.58	-2.5 -6.0	-2.7 -6.2	0.0 -4.4	-5.5 -7.8	15 15	2CDI 4CDI	5CTE 2CTE	12H	
,5-nexactyne	42	10.21									2C I E	6H	
	40	10.20		and Its									
enzene	42	10.39	10.45	10.43	0.6	0.5	1.7	-0.6	25	6CTR	6H		
enzene enzene	42 42	10.32	10.45	10.43	1.3	1.1	2.4	0.0	19	6CTR	6H		
enzene oluene	42 50	10.42 11.83	10.45 12.29	10.43 12.27	0.3 3.9	0.2 3.7	1.4 5.4	-0.9 2.2	15 23	6CTR	6H 1CTE	QЦ	
oluene	50 50	12.26	12.29	12.27	0.3	0.1	3.4 1.7	2.2 -1.4	23 19	6CTR 6CTR	1CTE	8H 8H	
oluene	50	12.26	12.29	12.27	-0.2	-0.4	1.7	-1.4	15	6CTR	1CTE	8H	
oluene	50	12.26	12.29	12.27	0.2	0.1	1.7	-1.6 -1.4	19	6CTR	1CTE	оп 8Н	
oluene	50	11.83	12.29	12.27	3.9	3.7	5.4	2.2	26	6CTR	ICTE	8H	
,3,5-trimethylbenzene	66	16.14	15.98	15.94	-1.0	-1.3	0.8	-3.1	15	6CTR	3CTE	12H	
,3,5-trimethylbenzene	66	15.38	15.98	15.94	3.9	3.6	5.8	1.7	23	6CTR	3CTE	12H	
,2,4,5-pentamethylbenzene		17.40	17.82	17.77	2.4	2.1	4.4	0.0	23	6CTR	4CTE	14H	
examethylbenzene	90	20.81	21.50	21.44	3.3	3.0	5.6	0.7	23	6CTR	6CTE	18 H	
luorobenzene	50	9.86	10.13	10.34	2.7	4.9	8.5	-3.3	27	6CTR	5H	1 F	
hlorobenzene	58	12.25	12.25	12.36	0.0	0.9	2.3	-1.4	19	6CTR	5H	1C1	
romobenzene	76	13.62	13.02	13.06	-4.4	-4.1	0.7	-10.3	19	6CTR	5H	1Br	
,2-difluorobenzene	58 74	9.80	9.98	10.25	1.8	4.6	10.6	-8.2	27	6CTR	4H	2F	
-dichlorobenzene -dichlorobenzene	74 74	14.17 14.27	14.15 14.15	14.29 14.29	-0.1 -0.8	0.8	2.3	-1.6	19	6CTR	4H	2Cl	
-dichlorobenzene 1-dichlorobenzene	74	14.27	14.15	14.29	-0.8 -0.6	0.2 0.4	1.6 1.9	2.3 2.0	15 19	6CTR 6CTR	4H	2Cl	
1-dichlorobenzene	74	14.23	14.15	14.29	-0.6 -1.1	-0.4 -0.2	1.9	-2.0 -2.6	15	6CTR	4H 4H	2Cl 2Cl	
-dichlorobenzene	74	14.20	14.15	14.29	-0.3	0.6	2.1	-2.6 -1.8	19	6CTR	4H	2C1 2C1	
.4-difluorobenzene	58	9.80	9.98	10.25	1.8	4.6	10.6	-8.2	27	6CTR	4H	2C1 2F	
,3,5-trifluorobenzene	66	9.74	9.94	10.16	2.0	4.3	12.6	-11.5	27	6CTR	3H	3F	
,2,3,4-tetrafluorobenzene	74	9.69	9.97	10.07	2.9	3.9	14.6	-13.8	27	6CTR	2H	4F	
,2,4,5-tetrafluorobenzene	74	9.69	9.97	10.07	2.9	3.9	14.6	-13.8	27	6CTR	2H	4F	
entafluorobenzene	82	9.63	10.05	9.98	4.4	3.6	16.7	-15.2	27	6CTR	1H	5F	
exafluorobenzene	90	9.58	10.18	9.89	6.2	3.2	18.8	-16.2	27	6CTR	6F		
-fluorotoluene	58	11.70	11.97	12.18	2.3	4.1	7.7	-3.4	23	6CTR	ICTE	7H	1 F
-chlorotoluene	66	13.70	14.09	14.20	2.9	3.6	5.3	1.1	23	6CTR	ICTE	7 H	1Cl
-bromotoluene	84	14.80	14.83	14.89	0.2	0.6	5.5	-5.7	23	6CTR	ICTE	7 H	1Br
-iodotoluene	102	17.10	16.76	17.30	-2.0	1.2	3.2	-4.1	23	6CTR	ICTE	7 H	11
-xylene	58	14.10	14.13	14.10	0.2	0.0	1.9	-1.7	19	6CTR	2CTE	10H	
⊢xylene ⊢xylene	58 58	14.17 14.18	14.13 14.13	14.10	-0.3	-0.5 -0.5	1.4	-2.2 -2.2	15	6CTR	2CTE	10H	
-xylene 1-xylene	58	14.18	14.13	14.10 14.10	-0.3 -0.3	-0.5 0.5	1.3 1.3	-2.2 -2.2	12 19	6CTR 6CTR	2CTE 2CTE	10H	
n-xylene	58	14.18	14.13	14.10	-0.3 -0.7	-0.9	0.9	-2.2	15	6CTR	2CTE	10H 10H	
-xylene	58	13.70	14.13	14.10	3.2	2.9	4.9	1.2	23	6CTR	2CTE	10H	
-xylene	58	14.28	14.13	14.10	-1.0	-1.2	0.6	-2.9	12	6CTR	2CTE	10H	
-xylene	58	14.20	14.13	14.10	-0.5	-0.7	1.2	-2.4	19	6CTR	2CTE	10H	
-xylene	58	14.26	14.13	14.10	-0.9	-1.1	0.8	-2.8	15	6CTR	2CTE	10H	
•	Condense	d Rina S	Svetame o	nd Thei-	Darius	tives.	`RP /+-		ra nah-		Hybridizat		
aphthalene	-ondense	16.46	17.77	.nd i neir 17.70	8.0	7.6	9.2	ιτιτ <i>π)</i> Β: 6.4	rancne 23	a Carbon 8CTR	2CBR	ion 8H	
aphthalene	68	17.48	17.77	17.70	1.7	1.3	2.8	0.4	25	8CTR	2CBR 2CBR	8H	
aphthalene	68	17.59	17.77	17.70	1.0	0.7	2.2	-0.4	15	8CTR	2CBR 2CBR	8H	
aphthalene	68	16.57	17.77	17.70	7.3	6.8	8.5	5.7	26	8CTR	2CBR	8H	
nthracene	94	25.36	25.10	24.97	-1.0	-1.5	0.1	-2.6	23	10CTR	4CBR	10 H	
nthracene	94	25.93	25.10	24.97	-3.2	-3.7	-2.1	-4.7	25	10CTR	4CBR	10H	
nthracene	94	25.37	25.10	24.97	-1.1	-1.6	0.0	-2.6	26	10CTR	4CBR	10 H	
henanthrene	94	24.70	25.10	24.97	1.6	1.1	2.8	0.0	25	10CTR	4CBR	1 0H	
aphthacene	120	32.27	32.44	32.24	0.5	-0.1	1.6	-1.1	25	12CTR	6CBR	12H	
,2-benzanthracene	120	32.86	32.44	32.24	-1.3	-1.9	-0.2	-2.9	25	12CTR	6CBR	12H	
hrysene	120	33.06	32.44	32.24	-1.9	-2.5	-0.8	-3.5	25	12CTR	6CBR	12 H	
hrysene	120	32.15	32.44	32.24	0.9	0.3	2.0	-0.7	26	12CTR	6CBR	12H	
,2:5,6-dibenzanthracene	146	41.31	39.77	39.51	-3.7	-4.3	-2.7	-5.3	25	14CTR	8CBR	14H	1011
cenaphthene luoranthene	82 106	20.61 28.34	20.69 27.82	20.60	0.4	-0.1 -2.4	1.8	-1.5	25	8CTR	2CBR	2CTE	10 H
vrene	106	28.34 29.34	27.82 28.96	27.68 28.77	-1.8 -1.3	-2.4 -1.9	-0.8 -0.2	-3.3 -2.9	25 25	12CTR 10CTR	4CBR	10H	
yrene	106	28.22	28.96	28.77	2.6	1.9	-0.2 3.7	-2.9 0.9	25 26	10CTR	6CBR 6CBR	10H 10H	
		29.89	_4.70	30.13	1.5	0.8	3.8	0.7	25	CIR	COL	1011	

Table II (Continued)

Table II (Continued)			α, Å ³		δα,	%	δα*	, %			emp	oirical for	mula	
molecule	N	exp	ahc	ahp	ahc	ahp	ahc	ahp	ref		(at	omic hyb	rids)	
fluorene	88	21.68	21.25	21.15	-2.0	-2.4	-1.0	-3.5	25	12CTR	1CTE	10H 1CTE	12H	
2,3-benzfluorene difluorenyl	114 174	30.21 42.81	28.55 43.92	28.42 43.71	-5.5 2.6	-5.9 2.1	-4.4 3.8	-6.9 0.9	25 25	14CTR 20CTR	2CBR 4CBR	2CTE	12H	
brazan	106	29.89	28.96	28.77	-3.1	-3.8	~2.1	-4.7	25	10CTR	6CBR	10H		
triphenylene	120	31.07	32.44	32.24	4.4	3.8	5.5	2.7	28	12CTR	6CBR	12H		
coronene	156	42.50	44.02	43.62	3.6	2.6	4.6	1.7	25	12CTR	12CBR	12H		
coronene	156	44.77	44.02	43.62	-1.7	-2.6	-0.7	-3.4	28	12CTR	12CBR	12H		
β -truxene	180	45.55	46.11	45.86	1.2	0.7	2.5	-0.6	25	18CTR 8CTR	6CBR	3CTE	18H	
α -methylnaphthalene β -methylnaphthalene	76 76	19.35 19.52	19.61 19.61	19.54 19.54	1.3 0.5	1.0 0.1	2.7 1.8	-0.4 -1.3	12 12	8CTR	1CTE 1CTE	2CBR 2CBR	10H 10H	
α -ethylnaphthalene	84	21.19	21.45	21.37	1.2	0.9	2.7	-0.7	12	8CTR	2CTE	2CBR	12H	
β -ethylnaphthalene	84	21.36	21.45	21.37	0.4	0.1	1.9	-1.5	12	8CTR	2CTE	2CBR	12H	
α-chloronaphthalene	84	19.30	19.50	19.63	1.0	1.7	3.3	-0.5	12	8CTR	2CBR	7H	1Cl	
β -chloronaphthalene	84	19.58	19.50	19.63	-0.4	0.3	1.8	-1.9	12	8CTR	2CBR	7 H	1Cl	
α -bromonaphthalene	102	20.34	19.13	19.24	-6.0	-5.4	-1.8	-10.5	15	10CTR	7H	1Br	.,	
α-iodonaphthalene	120 120	22.41 22.95	21.95 21.95	22.73 22.73	-2.1 -4.3	1.4 0.9	3.3 0.9	-4.0 -6.2	12 12	8CTR 8CTR	8CBR 2CBR	7H 7H	1 I 1 I	
β-iodonaphthalene octafluoronaphthalene	132	17.64	16.86	16.98	-4.4	-3.8	8.0	-22.1	27	8CTR	8F	2CBR	11	
α-naphthalenecarboxaldehyde	82	19.75	20.11	20.17	1.8	2.1	4.6	-1.1	12	8CTR	1OTR4	3CBR	8H	
β -naphthalenecarboxaldehyde	82	20.06	20.11	20.17	0.3	0.6	3.0	-2.6	12	8CTR	1OTR4	3CBR	8H	
lpha-naphthylamine	76	19.50	18.83	19.18	-3.4	-1.6	-1.4	-3.1	12	8CTR	1NPI2	2CBR	9H	
β -naphthylamine	76	19.73	18.83	19.18	-4.6	-2.8	-2.6	-4.3	12	8CTR	1NPI2	2CBR	9H	
α-bromonaphthalene	102	20.34	20.09	20.33	-1.2	-0.1	3.8	-6.0 -0.8	15	8CTR	2CBR	7H	1 B r	
styrene	56 56	14.41 14.41	14.49 13.94	14.46 13.91	0.6 -3.3	0.3 -3.4	1.8 -2.2	-0.8 -4.5	7 7	7CTR 8CTR	1CBR 8H	8H		
styrene α-methylstyrene	64	16.05	16.33	16.29	1.7	1.5	3.2	0.0	7	7CTR	1CBR	1CTE	10H	
α, β, β -trimethylstyrene	80	19.64	20.00	19.96	1.8	1.6	3.7	-0.3	7	7CTR	3CTE	1CBR	14H	
9-chloroanthracene	110	27.35	26.78	26.90	-2.1	-1.6	0.0	-3.6	23	10CTR	4CBR	9H	1Cl	
9-bromoanthracene	128	28.32	27.27	27.60	-3.7	-2.5	0.7	-7.7	23	10CTR	4CBR	9H	1 B r	
				Amines	: NTE	(te²tet	ete) Hy	bridizat	ion					
NH ₃	10	2.26	2.14	2.13	-5.4	-6.0	-Ó.3	-11.8	19	1NTE	3H			
dimethylamine	34	7.21	7.23	7.15	0.3	-0.8	4.4	-5.5	12	2NTE	2CTE	8H		
n-propylamine	34	7.70	7.67	7.63	−0 .5	-0.9	3.2	-5.1	15	INTE	3CTE	9H		
isopropylamine	34	7.77	7.67	7.63	-1.3	-1.8	2.4	-5.9	15	INTE	3CTE	9H		
diethylamine	42 58	9.61 13.29	9.51 13.19	9.46 13.13	-1.0 -0.7	-1.5 -1.2	2.6 2.7	-5.4 -5.0	15 15	1NTE 1NTE	4CTE 6CTE	11H 15H		
di-n-propylamine triethylamine	58	13.29	13.19	13.13	-0.7 -1.4	-1.2	2.1	-5.6	15	INTE	6CTE	15H		
tri-n-propylamine	82	18.87	18.72	18.64	-0.8	-1.2	2.5	-4.9	15	INTE	9CTE	21 H		
aniline	50	11.58	11.54	11.91	s: NP1 -0.4	2 (trtrt 2.8	1.9	/bridizat 1.2	10n	6CTR	1NPI2	7H		
aniline	50	11.53	11.54	11.91	0.1	3.3	2.4	1.6	23	6CTR	INPI2	7H		
aniline	50	12.12	11.54	11.91	-4.8	-1.7	-2.6	-3.3	15	6CTR	1NPI2	7 H		
N-methylaniline	58	13.49	13.38	13.75	-0.8	1.9	1.6	0.0	12	6CTR	1NPI2	1CTE	9H	
N-methylaniline	58	14.14	13.38	13.75	-5.4	-2.8	-3.1	-4.6	15	6CTR	1NPI2	1CTE	9H	
N-ethylaniline	66	15.32	15.22	15.58	-0.6	1.7	1.9	-0.4	12	6CTR	1NPI2	2CTE	11 H	
N,N-dimethylaniline N,N-dimethylaniline	66 66	15.40 15.23	15.22 15.22	15.58 15.58	-1.1 0.0	1.2 2.3	1.4 2.5	-0.9 0.2	12 23	6CTR 6CTR	1NPI2 1NPI2	2CTE 2CTE	11 H 11 H	
N,N-diethylaniline	82	19.01	18.91	19.25	-0.5	1.3	2.1	-1.1	12	6CTR	1NPI2	4CTE	15H	
p-fluoroaniline	58	11.51	11.27	11.82	-2.1	2.7	3.8	-4.8	23	6CTR	1NPI2	6H	1 F	
p-chloroaniline	66	13.50	13.38	13.84	-0.9	2.5	2.0	0.1	23	6CTR	1NPI2	6H	1Cl	
p-bromoaniline	84	14.55	14.19	14.54	-2.5	-0.1	2.8	-6.2	23	6CTR	1NPI2	6H	1 Br	
dichloroaniline	82	15.18	15.30	15.77	0.8	3.9	3.7	1.3	23	6CTR	1NPI2	5H	2C1	
2,6-dimethylaniline 2,6-dimethylaniline	66 66	16.21 16.02	15.22 15.22	15.58 15.58	−6.1 −4.9	-3.9 -2.7	−3.7 −2.5	-5.9 -4.7	29 29	6CTR 6CTR	1NPI2 1NPI2	2CTE 2CTE	11 H 11 H	
3,5-dimethylaniline	66	16.02	15.22	15.58	- 7 .0	-2.7 -4.8	-2.3 - 4.7	-4.7 -6.8	29	6CTR	1NPI2 1NPI2	2CTE	11H	
3,5-dimethylaniline	66	16.25	15.22	15.58	-6.3	-4.1	-4.0	-6 .1	29	6CTR	1NPI2	2CTE	11H	
2,6-dichloroaniline	82	16.41	15.30	15.77	-6.7	-3.9	-4.1	-6.3	29	6CTR	1NPI2	5H	2Cl	
2,6-dichloroaniline	82	15.98	15.30	15.77	-4.2	-1.3	-1.5	-3.8	29	6CTR	1NPI2	5H	2C1	
3,5-dichloroaniline	82	16.69	15.30	15.77	-8.3	-5.5	-5.7	-7.9	29	6CTR	INPI2	5H	2Cl	
3,5-dichloroaniline	82	16.45	15.30	15.77	-7.0	-4.2	-4.3	-6.5	29	6CTR	1NPI2	5H	2Cl	
pyrrole p-toluidine	36 58	7.94 13.47	8.06 13.38	8.43 13.75	1.5 -0.7	6.2 2.0	4.4 1.8	4.3 0.2	21 23	4CTR 6CTR	1 NPI2 1 NPI2	5H 1CTE	9H	
p totalatile	20	13.47									117114	ICIL	/11	
nuridina	43	0.10		leterocyc							1 NITTE O	SLI		
pyridine pyridine	42 42	9.18 9.14	9.51 9.51	9.72 9.72	3.6 4.0	5.9 6.4	5.8 6.3	4.1 4.6	23 30	5CTR 5CTR	1NTR2 1NTR2	5H 5H		
pyridine	42	9.14	9.51	9.72	0.4	2.7	2.6	0.9	19	5CTR	INTR2	5H		
pyridine	42	9.20	9.51	9.72	3.4	5.7	5.6	3.9	21	5CTR	INTR2	5H		
quinoline	68	15.70	16.80	16.99	7.0	8.2	9.1	6.5	21	7CTR	1NTR2	2CBR	7 H	
quinoline	68	16.57	16.80	16.99	1.4	2.6	3.3	0.9	25	7CTR	1NTR2	2CBR	7H	
quinoline	68	16.60	16.80	16.99	1.2	2.4	3.1	0.8	12	7CTR	1NTR2	2CBR	7H	
isoquinoline isoquinoline	68 68	16.43 16.49	16.80 17.35	16.99 17.54	2.2 5.2	3.4 6.4	4.2 7.3	1.8	12 25	7CTR 6CTR	1NTR2	2CBR 3CBR	7H 7H	
isoquinoline	68	15.62	16.80	16.99	7.5	8.8	9.6	4.6 7.1	23	7CTR	1NTR2 1NTR2	2CBR	7H 7H	
l-methylquinoline	74	18.65	17.89	18.06	-4.1	-3.2	-2.2	-4.8	12	7CTR	2CBR	1CTE	1NTR2	7H
1-methylisoquinoline	74	18.28	17.89	18.06	-2.1	-1.2	-0.2	-2.9	12	7CTR	2CBR	1CTE	1NTR2	7H

Table II (Continued)

1			α, Å ³		δα,			, %				mpirical fo atomic hy		
molecule	N	exp	ahc	ahp	ahc.	ahp	ahc	ahp	ref					
inoxaline E-dimethylquinoxaline	68 84	15.13 18.70	15.85 19.53	16.29 19.96	4.7 4.5	7.6 6.7	7.5 7.3	5.4 4.3	31 31	6CTR 6CTR	2CBR 2CBR	2NTR2	6H 2CTE	1017
i-dimethylquinoxaline enazine	94	23.43	23.14	23.56	-1.2	0.5	1.1	4.3 -1.3	23	8CTR	2CBR 2NTR2	2NTR2 4CBR	2C1E 8H	10 H
enazine	94	23.42	23.14	23.56	-1.2	0.6	1.1	-1.3	31	8CTR	2NTR2	4CBR	8H	
3:4,5-dibenzophenazine	146	33.42	37.77	38.10	13.0	14.0	15.2	12.2	31	12CTR	8CBR	2NTR2	12H	
hyl nitrite	40	7.00	6.21	6.29	-11.3	-10.1	-5.4	-17.1	19	2CTE	IOTE	1NTR2	1OTR4	5H
ON		2.50	2.60		es: NDI	•								
CN CN) ₂	14 26	2.59 5.01	2.59 4.48	2.63 4.48	-0.1 -10.7	1.4 -10.6	2.6 -9.6	-1.3	19 19	1H 2CDI	1CDI 2NDI	INDI		
cetonitrile	22	4.48	4.42	4.46	-1.4	-0.4	1.7	-3.5	20	1CTE	3H	1CDI	1NDI	
H ₃ CH ₂ CN	30	6.24	6.26	6.30	0.3	0.9	3.5	-2.4	20	2CTE	5H	ICDI	INDI	
CH₃)₂CHCN	38	8.05	8.10	8.13	0.6	1.0	3.8	-2.3	20	3CTE	7H	1CDI	INDI	
CH ₃)3CCN H ₂ (CN) ₂	46 34	9.59 5.79	9.94 6.29	9.97 6.31	3.6 8.7	3.9 9.0	7.0 11.1	0.5 6.7	20 20	4CTE 1CTE	9H 2H	1CDI 2CDI	1NDI	
H ₂ CICN	38	6.10	6.37	6.39	4.5	4.7	6.9	2.3	20	1CTE	2H	1Cl	2NDI 1CDI	INDI
CI ₃ CN	70	10.42	10.39	10.24	-0.3	-1.7	0.3	-2.2	20	ICTE	3Cl	1CDI	INDI	
-cyanoanthracene	106	28.32	26.85	26.83	-5.2	-5.3	-3.8	-6.7	23	10CTR	4CBR	1CDI	1NDI	9H
2	14	1.76	1.94	1.91	10.4	8.6	10.4	8.6	19	2NDI				
ydrazine N	Mixed 18	Hybridi 3.46	ization: 3.55	NTE (1 3.48	e²tetete) 2.8	, NPI2 0.6	(trtrtr: 7.7	π²), NT −5.1	R2 (t 12	r²trtrπ) H 2NTE	lybridizati 4H	on		
henylhydrazine	58	12.91	12.93	13.26	0.2	2.7	2.9	0.5	12	1NTE	6CTR	1NPI2	8H	
, l-methylphenylhydrazine	66	14.81	14.78	15.10	-0.2	2.0	2.5	-0.4	12	1NTE	6CTR	1NPI2	10H	ICTE
,1-ethylphenylhydrazine	74	16.62	16.62	16.93	0.0	1.9	2.7	-0.6	12	1NTE	6CTR	1NPI2	12H	2CTE
-aminobutyronitrile -cyanotoluene	46 62	9.17 13.90	9.51 14.09	9.48 14.12	3.6 1.4	3.4 1.6	7.1 3.2	-0.4 -0.2	12	3CTE	1CDI	INDI	INTE	8H
-cyanotoluene -(dimethylamino)butyronitrile	62	13.90	13.19	13.15	2.5	2.2	5.9	0.2 -1.5	23 12	6CTR 5CTE	1CTE 1CDI	ICDI INDI	INDI INTE	7H 12H
yrazole	36	7.23	7.17	7.72	-0.8	6.8	2.8	4.3	12	3CTR	INTR2	1NPI2	4H	1411
-methylpyrazole	44	8.99	9.01	9.56	0.2	6.4	3.9	3.7	12	3CTR	1NTR2	1NPI2	1CTE	6H
,5-dimethylpyrazole	52 60	10.72	10.84	11.39	1.2	6.3	4.8	3.5	12	3CTR	INTR2	1NPI2	2CTE	8H
-ethyl-5-methylpyrazole nidazole	60 36	12.50 7.19	12.68 7.17	13.23 7.72	1.5 -0.2	5.9 7.5	5.1 3.4	2.9 5.0	12 12	3CTR 3CTR	1NTR2 1NTR2	1NPI2 1NPI2	3CTE 4H	1 0H
/-methylimidazole	44	8.86	9.01	9.56	1.6	7.9	5.4	5.2	12	3CTR	INTR2	1NPI2	1CTE	6H
/-n-propylimidazole	60	12.40	12.68	13.23	2.2	6.6	5.9	3.7	12	3CTR	INTR2	1NPI2	3CTE	1 0H
					Ethers:			te) Hyb		_				
ater nethanol	10 18	1.45 3.26	1.41 3.20	1.41 3.25	-3.1 -1.9	2.8 0.5	7.8 6.2	-15.5 -10.0	12 15	1OTE 1CTE	2H 1OTE	4H		
nethanol	18	3.20	3.20	3.25	0.2	1.6	8.4	-8.1	12	ICTE	IOTE	4H		
nethanol	18	3.23	3.20	3.25	-0.9	0.5	7.2	-9.1	19	1CTE	1OTE	4H		
thanol	26	5.07	5.02	5.08	-0.8	0.3	5.9	-7.5	15	2CTE	IOTE	6H		
thanol -propanol	26 34	4.94 6.77	5.02 6.86	5.08 6.92	1.7 1.3	2.9 2.2	8.6 7.3	-5.2 -4.8	12 12	2CTE 3CTE	10TE 10TE	6H 8H		
-propanol	34	6.97	6.86	6.92	-1.6	-0.8	4.2	-7.5	20	3CTE	IOTE	8H		
yclohexanol	56	11.56	11.65	11.65	0.7	0.8	5.4	-4.5	20	6CTE	1OTE	12H		
lycol	34	5.71	5.71	5.72	-0.1	0.2	7.6	-9.0	15	2CTE	2OTE	6H		
imethyl ether iethyl ether	26 42	5.16 8.73	5.02 8.70	5.08 8.75	-2.6 -0.4	-1.5 0.2	4.0 5.0	-9.2 -5.9	19 19	2CTE 4CTE	1OTE 1OTE	6 H 10H		
nethyl propyl ether	42	8.86	8.70	8.75	-0.4 -1.9	~1.2	3.4	-3.9 -7.3	15	4CTE	IOTE	10H 10H		
nethyl propyl ether	42	8.64	8.70	8.75	0.6	1.3	6.0	-5.0	12	4CTE	IOTE	10H		
thyl propyl ether	50	10.49	10.53	10.59	0.5	1.0	5.5	-4.8	12	5CTE	IOTE	12H		
thyl propyl ether ipropyl ether	50 58	10.68 12.55	10.53 12.37	10.59 12.42	-1.4 -1.4	-0.9 -1.0	3.6 3.3	-6.6 -6.4	15 15	5CTE 6CTE	10TE 10TE	12H 14H		
i-n-propyl ether	58	12.53	12.37	12.42	-1.4	-0.9	3.5	-6.4 -6.2	19	6CTE	IOTE	14H 14H		
thylene oxide	24	4.43	4.32	4.31	-2.6	-2.8	3.4	-9.8	20	2CTE	2OTE	4H		
ioxane	48	9.44	8.63	8.61	-8.6	-8.7	-3.0	-15.4	19	4CTE	2OTE	8H		
ioxane	48	8.60	8.63	8.61	0.4	0.2	6.5	-7.1	20	4CTE	2OTE	8H		
)2	16	1.60	1.48	Ketone 1.14	s: OTR	4 (tr²tr² -28.9	trπ) H -7.6	ybridiza -28.9	tion 19	2OTR4				
0	14	1.95	1.94	1.85	-0.3	-5.0	4.3	-26.9	19	1CDI	1OTR4			
CO ₂	22	2.65	2.66	2.42	0.4	-8.6	4.6	-14.9	19	1CDI	2OTR4			
cetone	32	6.40	6.33	6.36	-1.2	-0.6	4.5	-7.6	15	2CTE	1CTR	1OTR4	6H	
cetone cetone	32 32	6.33 6.39	6.33 6.33	6.36 6.36	0.0 -1.0	0.6 -0.4	5.7 4 .7	-6.5 -7.4	19 20	2CTE 2CTE	1CTR 1CTR	1OTR4	6H	
nethyl ethyl ketone	40	8.13	8.16	8.20	0.4	0.4	5.7	-7.4 -5.5	19	3CTE	ICTR	1OTR4 1OTR4	6H 8H	
nethyl ethyl ketone	40	8.19	8.16	8.20	-0.4	0.1	4.9	-6.3	15	3CTE	ICTR	1OTR4	8H	
iethyl ketone	48	9.93	10.00	10.04	0.7	1.1	5.7	-4.9	19	4CTE	1CTR	1OTR4	10H	
-methyl propyl ketone	48 64	9.93	10.00	10.04	0.7	1.1	5.7	-4.9 4.0	19	4CTE	1CTR	1OTR4	10H	
iisopropyl ketone ormaldehyde	64 16	13.53 2.45	13.68 2.68	13.70 2.69	1.1 9.4	1.3	5.6 18.0	-4.0 -1.1	19 20	6CTE 1CTR	1CTR 2H	1OTR4 1OTR4	14 H	
cetaldehyde	24	4.59	4.74	4.82	3.3	5.0	9.9	-3.4	20	2CTR	4H	10TR4		
ropionaldehyde	32	6.35	6.33	6.36	-0.4	0.2	5.4	-6.8	15	2CTE	1CTR	1OTR4	6H	
-butyraldehyde	40 108	8.18	8.16	8.20	-0.2	0.2	5.0	-6.1	15	3CTE	1CTR	1OTR4	8H	
	105	24.46	25.22	25.34	3.1	3.6	6.6	-0.7	25	10CTR	4CBR	2OTR4	8H	
nthraquinone														
ntnraquinone iran	36	7.23	7.23	7.23	PI2 (tr²)	trtr π ²) 0.0	Hybridi 5,5	ization -9.3	21	4CTR	1OPI2	4H		

Table II (Continued)

molecule	N	exp	α, Å ³	ahp	δα, ahc	% ahp	δα*,	% ahp	ref			mpirical for			
molecule	- 14	СХР			sters: O					dization					
formic acid	24	3.32	3.41	3.33	2.8	0.4	10.7	-9.6	12	1CTR	1OTR4	1 OTE	2H		
acetic acid	32	5.15	5.19	5.17	0.8	0.3	8.2	-8.9	15	1CTR	1OTR4	IOTE	1CTE	4H	
acetic acid	32	5.05	5.19	5.17	2.7	2.2	10.2	-7.2	12	1CTR	1OTR4	IOTE	1CTE	4H	
propionic acid propionic acid	40 40	6.96 6.80	7.00 7.00	7.00 7.00	0.5 2.8	0.6 2.9	7.3 9.8	-7.9 -5.7	15 12	1CTR 1CTR	1OTR4 1OTR4	1OTE 1OTE	2CTE 2CTE	6H 6H	
butyric acid	48	8.58	8.81	8.84	2.7	3.0	9.2	-5.0	12	1CTR	1OTR4	IOTE	3CTE	8H	
methyl formate	32	5.05	5.19	5.17	2.7	2.2	10.2	-7.2	12	1CTR	1OTR4	IOTE	ICTE	4H	
ethyl formate	40	6.88	7.00	7.00	1.7	1.8	8.6	-6.7	12	ICTR	1OTR4	1OTE	2CTE	6H	
methyl acetate	40	6.81	7.00	7.00	2.8	2.9	9.8	-5.8	12	1CTR	1OTR4	IOTE	2CTE	6H	
ethyl acetate	48	8.62	8.81	8.84	2.3	2.5	8.7	-5.4	12	1CTR	1OTR4	IOTE	3CTE	8H	
methyl propionate	48	8.79	8.81	8.84 8.84	0.3	0.5	6.6 9.1	-7.2 -5.0	15 12	1CTR 1CTR	1OTR4 1OTR4	1OTE 1OTE	3CTE 3CTE	8H 8H	
methyl propionate ethyl propionate	48 56	8.53 10.41	8,81 10.64	10.67	2.6 2.2	2.9 2.6	8.3	-3.0 -4.8	12	1CTR	1OTR4	IOTE	4CTE	10H	
methyl butyrate	56	10.41	10.64	10.67	2.2	2.5	8.3	-4.8	12	ICTR	1OTR4	IOTE	4CTE	10H	
ethyl butyrate	64	12.23	12.47	12.51	1.9	2.3	7.7	-4.6	12	1CTR	1OTR4	OTE	5CTE	12H	
CH ₂ OHČH ₂ OH	34	5.61	5.71	5.72	1.6	1.9	9.4	-7.4	12	2CTE	2OTE	6H			
CH ₂ OHCH ₂ OCH ₃	42	7.44	7.52	7.55	1.0	1.5	8.1	-6.9	12	3CTE	2OTE	8H			
CH ₂ OHCH ₂ OC ₂ H ₃	50	9.28	9.34	9.39	0.7	1.2	7.2	-6.5	12	4CTE	2OTE	10H			
CH ₂ CICH ₂ OH	42 50	6.88 8.71	6.99 8.80	7.01 8.84	1.6 1.1	1.8 1.6	6.5 6.0	-3.7 -3.9	12 12	2CTE 3CTE	10TE 10TE	5H 7H	1Cl 1Cl		
CH ₂ ClCH ₂ OCH ₃ CH ₂ ClCH ₂ OC ₂ H ₅	58	10.56	10.62	10.68	0.5	1.1	5.4	-4.2	12	4CTE	IOTE	9H	1C1		
CH,CICH,CH,COOH	64	10.45	10.78	10.76	3.2	3.1	8.5	-3.2	12	ICTR	1OTR4	1OTE	3CTE	7H	1CI
CH2CICH2CH2COOCH3	72	12.27	12.59	12.60	2.6	2.7	7.9	-3.5	12	1CTR	1OTR4	1OTE	4CTE	9H	ICI
CH2CICH2CH2COOC2H3	80	14.11	14.41	14.43	2.1	2.3	7.3	~3.7	12	1CTR	1OTR4	1OTE	5CTE	11 H	1Cl
CH3CHCICH2COOH	64	10.54	10.78	10.76	2.3	2.1	7.6	~4.1	12	1CTR	1OTR4	1OTE	3CTE	7H	1Cl
CH ₃ CHClCH ₂ COOCH ₃	72	12.31	12.59	12.60	2.3	2.3	7.5	~3.8	12	1CTR	1OTR4	1OTE	4CTE	9H	1Cl
CH3CHCICH2COOC2H5	80 64	14.13 10.61	14.41 10.78	14.43 10.76	2.0 1.7	2.1 1.5	7.1 6.9	-3.9 -4.7	12 12	1CTR 1CTR	1OTR4 1OTR4	IOTE IOTE	5CTE 3CTE	11 H 7 H	1CI
CH ₃ CH ₂ CHClCOOH CH ₃ CH ₂ CHClCOOCH ₃	72	12.33	12.59	12.60	2.2	2.2	7.4	-3.9	12	ICTR	10TR4	IOTE	4CTE	9H	1CI
CH ₃ CH ₂ CHClCOOC ₂ H ₃	80	14.16	14.41	14.43	1.8	1.9	6.9	~4.0	12	1CTR	1OTR4	IOTE	5CTE	11 H	101
C ₂ H ₃ CHClCH ₂ OH	58	10.70	10.62	10.68	-0.8	-0.2	4.0	-5.5	12	4CTE	1OTE	9H	1Cl		. •
CH ₃ CHClCH ₂ CH ₂ OH	58	10.38	10.62	10.68	2.3	2.9	7.2	~2.5	12	4CTE	1OTE	9H	1Cl		
CH₃CHClCH₂OH	50	8.89	8.80	8.84	-1.0	-0.5	3.8	~5.9	12	3CTE	1OTE	7 H	1Cl		
CH ₂ ClCH ₂ CH ₂ OH	50	8.84	8.80	8.84	-0.5	0.0	4.3	-5.4	12	3CTE	1OTE	7H	1Cl		
CH ₂ CH ₂ CHClCOOH	64	10.87	10.78	10.76	-0.8	-1.0	4.3	-7.0	12	3CTE	1CTR	1OTR4	1OTE	7H	1CI
CH ₂ CHClCH ₂ COOH CH ₂ ClCH ₂ CH ₂ COOH	64 64	10.80 10.69	10.78 10.78	10.76 10.76	-0.2 0.9	-0.3 0.7	4.9 6.0	-6.4 -5.4	12 12	3CTE 3CTE	1CTR 1CTR	10TR4 10TR4	1OTE 1OTE	7H 7H	1CI 1CI
CH ₁ CH ₂ CH ₂ CHClCOOH	72	12.69	12.59	12.60	-0.7	-0.7	4.3	-6.6	12	4CTE	1CTR	1OTR4	OTE	9H	1CI
CH ₃ CH ₂ CHClCH ₂ COOH	72	12.57	12.59	12.60	0.1	0.2	5.3	-5.8	12	4CTE	1CTR	1OTR4	IOTE	9H	iCi
CH3CHCICH2CH2COOH	72	12.53	12.59	12.60	0.5	0.5	5.6	~5.5	12	4CTE	1CTR	1OTR4	1OTE	9H	1C1
ethyl ester, α-naphthoic acid	106	23.97	24.33	24.48	1.5	2.1	5.3	-2.4	12	8CTR	3CBR	2CTE	1OTR4	IOTE	12F
ethyl ester, β -naphthoic acid	106	24.19	24.33	24.48	0.6	1.2	4.3	-3.3	12	8CTR	3CBR	2CTE	1OTR4	IOTE	12F
ethyl ester, α-naphthol	98	22.03	21.97	22.10	-0.3	0.3	3.3	-4.1	12	9CTR	2CBR	1CTE	1OTR4	1OTE	10F
ethyl ester, β -naphthol	98	22.21	21.97	22.10	-1.1	-0.5	2.5	-4.8	12	9CTR	2CBR	1CTE	1OTR4	IOTE	10F
A					tc.: NPI										
formamide	24	4.08	3.85	4.17	-5.6	2.3	1.4	-5.7	12	1CTR	1OTR4	1NPI2	3H		
formamide formamide	24 24	3.88 4.08	3.85 3.85	4.17 4.17	-0.7 -5.6	7.5 2.3	6.6 1.3	-0.8 -5.7	23 20	1CTR 1CTR	1OTR4 1OTR4	1NPI2 1NPI2	3H 3H		
acetamide	32	5.39	5.66	6.01	5.0	11.4	12.0	3.8	23	ICTR	1OTR4	1NPI2	ICTE	5H	
acetamide	32	5.67	5.66	6.01	-0.2	5.9	6.4	-1.4	20	ICTR	1OTR4	1NPI2	ICTE	5H	
N-methylformamide	32	5.89	5.66	6.01	-3.9	2.0	2.5	-5.0	12	1CTR	1OTR4	1NPI2	ICTE	5H	
N-methylformamide	32	5.91	5.66	6.01	-4.3	1.6	2.1	-5.4	20	1CTR	1OTR4	1NPI2	1CTE	5H	
N,N-dimethylformamide	40	7.69	7.48	7.84	-2.8	2.0	3.2	-4.4	12	1CTR	IOTR4	1NPI2	2CTE	7H	
N,N-dimethylformamide	40	7.81	7.48	7.84	-4.2	0.4	1.6	-5.9	20	1CTR	1OTR4	INPI2	2CTE	7H	
N-ethylacetamide N-methylacetamide	48 40	9.45 7.82	9.31 7.48	9.68 7.84	-1.5 -4.4	2.4 0.3	4.1 1.5	-3.6 -6.0	12 20	1CTR 1CTR	1OTR4 1OTR4	1NPI2 1NPI2	3CTE 2CTE	9H 7H	
N,N-diethylacetamide	64	12.96	12.97	13.35	0.1	3.0	5.2	-2.5	12	1CTR	10TR4	1NPI2	5CTE	13H	
benzamide	64	12.75	13.43	13.83	5.3	8.5	9.1	4.4	23	7CTR	1OTR4	1NPI2	7H	1311	
p-nitroaniline	72	13.90	13.20	13.89	-5.0	-0.1	-0.5	-4.8	23	6CTR	2NPI2	2OTE	6H		
NO	15	1.70	1.64	1.60	-3.7	-5.9	-3.0	-8.9		1NTR2	1OTR4				
N ₂ O	22	3.00	2.54	2.61	-15.2	-12.8	-14.6	-15.2		1NPI2	INDI	1OTR4			
<i>p</i> -nitrotoluene	72	14.10	13.87	14.25	-1.6	1.0	2.7	-3.8	23	6CTR	1CTE	1NPI2	2OTE	7H	
nitrobenzene	64	12.92	12.04	12.41	-6.8	-3.9	-2.6	-8.7	19	6CTR	1NPI2	2OTE	5H		
									•	rπ²) Hybr					
H ₂ S	18	3.83	3.78	3.77	-1.4	-1.5	0.2	-3.1	19	2H	ISTE				
C ₂ H ₅ SH	34	7.38	7.46	7.44	1.1	0.9	3.5	-1.6	12	2CTE	6H	ISTE			
(C ₂ H ₅) ₂ S	50	11.00	11.14	11.11	1.3	1.0	4.0	-1.8	12	4CTE	10H	ISTE			
(CH ₃) ₂ S (CH ₃) ₂ SO	34 42	7.53 7.97	7.46 8.08	7.44 8.08	-1.0 1.4	-1.2 1.4	1.4 5.7	−3.7 −3.6	32 32	2CTE 2CTE	6H 6H	ISTE ISTE	IOTE		
(CH ₃) ₂ SO ₂	50	8.40	8.75	8.72	4.1	3.7	9.5	-2.7	32	2CTE	6H	ISTE	2OTE		
$(C_6H_5)_2S$	98	23.79	23.16	23.09	-2.6	-2.9	-1.6	-3.9	32	12CTR	10H	ISTE			
$(C_6H_5)_2SO$	106	24.34	23.72	23.73	-2.6	-2.5	-0.7	-4.7	32	12CTR	10	ISTE	1OTE		
$(C_0H_3)_2SO_2$	114	24.66	24.31	24.37	-1.4	-1.2	1.2	-4.4	32	12CTR	10H	ISTE	2OTE		
thiophene	44	9.00	9.03	9.66	0.3	7.3	3.0	5.6	21	4CTR	4H	1SPI2			
SO ₂	32	3.90	3.71	3.91	-4.9	0.2	-4.0	-3.7	19	1SPI2	1OTR4	1 OTE			
CS ₂ diperinaphthylenethiophene	38 172	8.74 43.25	8.62 45.88	8.74 46.32	-1.4 6.1	0.0 7.1	-1.4 7.9	0.0 5.7	19 25	1CDI	2STR4	15012	12H		
orber mahamistenenmohnene	112	73.43	→ J.00	70.32	0.1	7.1	1.9	3.7	23	12CTR	12CBR	1SPI2	12П		

Table II (Continued)

			α, Å ³		δα	, %	δα¹	, %				empirical i			
molecule	N	exp	ahc	ahp	ahc	ahp	ahc	ahp	ref			(atomic h	ybrids)		
		Isc	mers of	C ₁₀ H ₁₈	O with	OTE	and O	rR4 Hy	bridi	zation					
C ₁₀ H ₁₈ O; acetylenic alcohols	86	18.99	18.64	18.66		-1.7	1.9	-6.0	12	8CTE	2CDI	1OTE	18H		
C ₁₀ H ₁₈ O; acetylenic ethers	86	19.04	18.64	18.66	-2.1	-2.0	1.7	-6.2	12	8CTE	2CDI	IOTE	18H		
C ₁₀ H ₁₈ O; diethylenic alcohols	86	19.41	19.32	19.38	-0.5	-0.2	3.1	-4.2	12	6CTE	4CTR	1OTE	18H		
C ₁₀ H ₁₈ O; diethylenic ethers	86	19.46	19.32	19.38	-0.7	-0.4	2.8	-4.5	12	6CTE	4CTR	IOTE	18H		
C ₁₀ H ₁₈ O; cyclic alcohol, with double bond	86	18.72	18.79	18.80	0.4	0.4	4.2	-3.9	12	8CTE	2CTR	IOTE	18H		
C ₁₀ H ₁₈ O; cyclic ethers, with double bond	86	18.77	18.79	18.80	0.1	0.1	3.9	-4.1	12	8CTE	2CTR	1OTE	18H		
C ₁₀ H ₁₈ O; ethylenic C=O or CHO	86	19.00	18.99	19.02	0.0	0.1	3.8	-4.3	12	7CTE	3CTR	1OTR4	18H		
C ₁₀ H ₁₈ O; cyclic C=O or CHO	86	18.31	18.47	18.44	0.9	0.7	4.9	-4.0	12	9CTE	1CTR	1OTR4	18H		
C ₁₀ H ₁₈ O; bicyclic alcohols	86	18.04	18.28	18.21	1.3	1.0	5.3	-3.5	12	10CTE	1OTE	18H			
C ₁₀ H ₁₈ O; bicyclic ethers	86	18.09	18.28	18.21	1.1	0.7	5.0	-3.8	12	10CTE	1 OTE	18 H			
					Biolog	ical M	olecule	3							
guanine	78	13.60	14.26	15.68	4.9	15.3	10.8	10.2	33	3CTR	2CBR	3NPI2	2NTR2	1OTR4	5
adenine	70	13.10	13.74	15.05	4.9	14.9	9.8	11.5	33	3CTR	2CBR	2NPI2	3NTR2	5H	
cytosine	58	10.30	10.29	11.12	-0.1	8.0	4.7	3.3	33	4CTR	2NPI2	1NTR2	1OTR4	5H	
thymine	66	11.23	11.50	12.11	2.4	7.8	8.0	1.6	33	4CTR	ICTE	2NPI2	2OTR4	6H	
acridine	94	25.49	24.11	24.26	-5.4	-4.8	-3.8	-6.2	25	9CTR	4CBR	1NTR2	9H		
				Pho	sphate	: PTE	(te²tet	ete)							
trimethyl phosphate	74	10.86	10.87	10.75	0.1	-1.0	7.2	-´9.3	34	3CTE	1PTE	4OTE	9H		
(CH ₁),C(CH ₂ O),P	78	13.32	12.35	12.24	-7.3	-8.1	-1.7	-14.6	34	5CTE	3OTE	1 PTE	9H		
(CH ₃) ₃ C(CH ₂ O) ₃ PO	86	12.84	13.08	12.87	1.8	0.3	8.1	-7.0	34	5CTE	4OTE	1PTE	9H		
(CH ₃) ₃ C(CH ₂ O) ₃ PS	94	15.74	15.39	15.24	-2.2	-3.2	2.6	-8.9	34	5CTE	3OTE	1PTE	1STE	9H	

 $^{a}\alpha$ (ahc) is calculated with eq 1, and α (ahp) is calculated with eq 4 using optimum τ_{A} (ahc) and α_{A} (ahp) parameters. An asterisk (*) refers to the conjugate formulas, eqs 3 and 6. The errors, $\delta \alpha$ (ahc), $\delta \alpha$ (ahp), $\delta \alpha^*$ (ahc), and $\delta \alpha^*$ (ahp), are calculated with eq 8 with the appropriate α (ahc), α (ahp), α^* (ahc), and α^* (ahp) from eqs 1, 4, 3, and 6. The empirical formula is presented with the number of each atomic hybrid. N is the total number of electrons in the molecule.

Table III. Classical Bond Polarizabilities (Å³) Obtained from α (ahp)

bond X-Y	Denbigha (ref 15)	Vogela (ref 17)	$\alpha_{X-Y}^+(bp)^b$ (eq 13)	formula ^b
· · · · · · · · · · · · · · · · · · ·		Single Bond Polari	zabilities	
C—H	0.670	0.664	0.652	$(1/4)\alpha_{\text{CTE}} + \alpha_{\text{H}}$
C—F	0.682	0.575	0.555	$(1/4)\alpha_{\rm CTE} + \alpha_{\rm F}$
CCl	2.588	2.580	2.580	$(1/4)\alpha_{\text{CTE}} + \alpha_{\text{Cl}}$
C—Br	3.714	3.722	3.278	$(1/4)\alpha_{\text{CTE}} + \alpha_{\text{Br}}$
C—1	5.768	5.791	5.680	$(1/4)\alpha_{\rm CTE} + \alpha_1$
c—c	0.496	0.514	0.531	$2(1/4)\alpha_{\text{CTE}}$
NH	0.718	0.698	0.708	$(1/3)\alpha_{\text{NTE}} + \alpha_{\text{H}}$
ОН	0.686	0.658 (alcohols)	0.706	$(1/2)\alpha_{OTE} + \alpha_{H}$
		0.713 (acids)		
c—o	0.599	0.610 (ether)	0.584	$(1/4)\alpha_{\text{CTE}} + (1/2)\alpha_{\text{OTE}}$
		0.578 (acetals)		
c—o	0.599		0.769	$(1/3)\alpha_{\rm CTR} + (1/2)\alpha_{\rm OTE}$
C—N	0.611	0.246	0.587	$(1/4)\alpha_{\rm CTE} + (1/3)\alpha_{\rm NTE}$
		Multiple Bond Pola	rizabilities	
C=C	1.649	1.653	1.643	$2[\alpha_{\rm CTR} - 2(1/4)\alpha_{\rm CTE}]$
Car—Car Cna—Cna Cant—Cant	1.082	1.066	1.087	$\alpha_{\rm CTR} - (1/4)\alpha_{\rm CTE}$
$C_{na} - C_{na}$	1.102		1.249	$[\alpha(\text{naph}) - 8\alpha_{\text{C-H}}]/10$
Cant—Cant			1.318	$[\alpha(anth) - 10\alpha_{C-H}]/14$
C≕C	2.537	2.327	2.036	$2[\alpha_{CDI} - (1/4)\alpha_{CTE}]$
C=O	1.340	1.383	1.020	$(1/3)\alpha_{\rm CTR} + \alpha_{\rm OTR4}$

^a Bond polarizabilities, bp, from refs 13 and 15 are calibrated against refractions obtained with the sodium D line. ^bThe nonclassical bond polarizability defined by eq 13 is one partitioning method to relate atomic hybrid polarizabilites to α_{X-Y}^+ (bp). α_{X-Y}^+ (bp) is calculated with eq 13 for single bonds and the indicated formula for multiply bonded atoms.

the parameters and the environment and not the atoms attached to a given atom A. The requirement that bridged nitrogen atoms of the type NPI2 be considered differently could not be tested because the necessary molecular polarizability data were not available.

Bond Polarizability Methods and the ahp Method

In the classical set of bond polarizabilities proposed by von Steiger, Smyth, and Denbigh, each type of bond is assigned a unique value in a heirarchecal procedure. For example,

$$\alpha_{\text{CTE-H}} = (1/4)\alpha(\text{CH}_4) \tag{13}$$

and

$$\alpha(C_n H_{2n+2}) = (n-1)\alpha_{CTE-CTE} + (2n+2)\alpha_{CTE-H} \quad (14)$$

are used to obtain α_{C-H} and α_{C-C} in the alkanes. In addition, all single bond polarizabilities, X-Y, can be fit by formulas given

in (13) and (14) by including the appropriate number of terms α_{X-Y} . These single bond polarizabilities can be defined uniquely if the atoms have tetrahedral or σ hybridization because all bonds are equivalent. They are listed in Table III for atoms involved in this study and compared to results of Denbigh¹⁵ and Vogel.¹⁷

A problem arises for atoms participating in multiple bonding because the bonds are in general not equivalent. For example, the Car-Car and C=C bond polarizabilities depend on the assumption that a C-H bond is independent of the type of hybridization and environment. Its effect is removed from alkenes, benzene, naphthalene, etc., with equations of the type

$$\alpha_{C=C} = \alpha(C_2H_4) - 4\alpha_{CTE-H}$$
 (15)

$$\alpha_{C_{ar}-C_{ar}} = \left[\alpha(C_6H_6) - 6\alpha_{CTE-H}\right]/6 \tag{15'}$$

$$\alpha_{C_{10}-C_{10}} = [\alpha(C_{10}H_8) - 8\alpha_{CTE-H}]/10$$
 (15")

to obtain parameters for the double, aromatic, and naphthalenic bonds. The fact that $\alpha_{C_n-C_n}$ and $\alpha_{C_n-C_n}$ differ suggests that bond polarizabilities will be required for anthracenes and all other fused rings. Some formulas are presented in Table III to relate $\alpha(ahp)$ to the classical results of Denbigh¹⁵ and Vogel.¹⁷ Adjustment of the bond polarizabilities to accurately predict molecular polarizabilities results in a trade-off among the parameters with a small improvement. Optimum bond polarizabilities and special consideration of multiply bonded and fused ring systems has been carefully documented elsewhere (refs 15-17); however, comparisons between the literature values (refs 15 and 17) and a partitioning with formulas of the type in eqs 15-15" demonstrates similarity of results. The purpose of this discussion is to demonstrate a relationship between the $\alpha_A(ahp)$ and $\alpha_{X-Y}^+(bp)$ and to demonstrate that it depends on the method of partitioning the atomic hybrid among the bonds. The atomic hybrid method avoids these difficulties by assigning each atom a unique state of hybridization without regard to the atom to which it is attached.

The Group Polarizability Method and the ahp Method

Vogel¹⁰ has presented a set of atomic and groups refractivities that include atoms H, F, Cl, Br, I, O, N, and S, bonds C=O, OH, NH, SH, C=C, C=C, C=N, etc., and groups CH₂, CH₃, COO (esters), CO₂H, NH₂, etc. These are listed in Table IV. To use these data the molecule must be represented as a sum of groups. For example

$$\alpha(C_nH_{2n+2}) = n\alpha(CH_2) + 2\alpha(H) \text{ (all } n)$$

$$= (n-2)\alpha(CH_2) + 2\alpha(CH_3) \text{ (} n > 1)$$

$$\alpha(\text{acetone}) = 2\alpha(CH_2) + 2\alpha(H) + \alpha(C=O)$$

$$= 2\alpha(CH_3) + \alpha(C=O)$$

$$\alpha(\text{ethylene}) = \alpha(C=C) + 2\alpha(CH_2)$$

$$\alpha(HC=N) = \alpha(C=N) + \alpha(H)$$

Interestingly enough, the methods developed by Vogel¹⁰ implicitly contain hybridization. A formula relating each group to an appropriate sum over ahp's is presented and data from both methods are compared. For example, the H, C, CH₂, and CH₃ aliphatic units are directly related by differential increments of $\alpha(H)$ added to $\alpha(CTE)$. The carbon atom in ketones, esters, and acids is CTR; the oxygen atom in ethers and alcohols and one oxygen atom in esters and acids is OTE, and the other in acids and esters is OTR4; aliphatic nitrogen atoms are NTE in primary, secondary, and tertiary amines; aromatic nitrogen atoms are NPI2 in primary, secondary, and tertiary amines; sulfides and thiols have STE and SPI2 sulfur atoms, respectively; CDI and NDI are used for triple bond contributions in C≡N. The atom, bond, and group polarizabilities are listed in Table XXII of ref 10. Most can be represented as a sum of ahp's. Several are expressed as a differential contribution to one of the other groups. For example, the double bond, C=C, and terminal triple bond, C≡C, are differential contributions added to CH and CH2 groups. Also, 3-, 4-, 5- and 6-carbon-ring contributions are differential corrections to an appropriate sum over aliphatic CH₂ groups.

The gp's may be obtained from sums over appropriate ahp's, and conversely, the gp's may be factored into a set of ahp's because the units represented by Vogel¹⁰ coincidently coincide with atoms in classical states of hybridization. The present empirical ahc and ahp methods may be interpreted as a continuation of the factorization to the atomic hybrid level for all groups.

Table IV. Group Polarizabilities (\mathring{A}^3) as a Sum of Atomic Hybrid Polarizabilities^a

***************************************	Vogel		
	(ref 10)	$\alpha(gp)$	formula
Н	0.408	0.387	α(H)
C (in CH ₂)	1.027	1.061	α(CTE)
CH ₂	1.842	1.835	$\alpha(CTE) + \alpha(H)$
CH ₃	2.241	2.222	$\alpha(CTE) + 3\alpha(H)$
O (ethers)	0.699	0.637	α(OTE)
C=O (ketones)	1.824	1.921	$\alpha(CTR) + \alpha(OTR4)$
COO (esters)	2.458	2.558	$\alpha(CTR) + \alpha(OTR4) +$
			α(OTE)
OH (alcohols)	1.009	1.024	$\alpha(OTE) + \alpha(H)$
CO₂Ĥ	2.864	2.945	$\alpha(COO) + \alpha(H)$
F	0.321	0.296	α(F)
Cl	2.317	2.315	α(Cl)
Br	3.465	3.013	$\alpha(Br)$
I	5.531	5.415	$\alpha(1)$
NH, (primary aliphatic)	1.759	1.738	$\alpha(NTE) + 2\alpha(H)$
NH (secondary aliphatic)	1.431	1.351	$\alpha(NTE) + \alpha(H)$
NH (secondary aromatic)	1.854	1.477	$\alpha(NPI2) + \alpha(H)$
N (tertiary aliphatic)	1.088	0.964	α(NTE)
N (tertiary aromatic)	1.678	1.090	$\alpha(NPI2)$
S (sulfides)	3.140	3.000	$\alpha(STE)$
SH (thiols)	3.471	3.087	$\alpha(SPI2) + \alpha(H)$
C=C (double bond)	0.624	0.582	$2[\alpha(CTR) - \alpha(CTE)]$
C≡C (triple bond)	0.784	0.444	$2[\alpha(CDI) - \alpha(CTE)]$
C≡N (nitrile)	2.164	2.239	

 $^{^{}a}$ Group polarizabilities, $\alpha(gp)$, are calculated with the indicated formula and ahp's in Table I.

Discussion and Conclusion

This study of the empirical approaches to the calculation of molecular polarizability was undertaken for several purposes: (1) to obtain an updated set of parameters $\tau_A(ahc)$ and $\alpha_A(ahp)$ for the calculation of molecular polarizability with the ahc or ahp methods, with eqs 1 and 4; (2) to obtain a set of atomic polarizabilities that can be used in the semiempirical approach in which a 6-n potential

$$U_{ij} = [A_{ij}/\rho_{ij}^{6}][-s_{ij}^{-6} + (6/n)s_{ij}^{-n}]$$
 (16)

is used, where $s_{ij} = r_{ij}/(\rho_i + \rho_j)$ is the reduced distance between atoms i and j and ρ_i and ρ_j are the van der Waals radii of atoms i and j and n = 9 to 14 depends on the repulsive potential, and the London dispersion coefficient³⁶

$$A_{ij} = 1.5\alpha_i \alpha_j I_i I_j / (I_i + I_j)$$
(17)

contains the polarizabilities and ionization potentials of atoms, bonds or groups i and j; (3) to assess the accuracy of the ahc and ahp empirical formulas, eqs 1 and 4, in calculating molecular polarizabilities; (4) to assess the "invariance" of the results to partitioning by comparing the ahc and ahp methods to their conjugate calculations; and (5) to obtain average atomic and molecular polarizabilities as a first step in the calculation of the molecular polarizability tensor and principal axes of polarizability reported in the next paper (ref 37).

Acknowledgment. This work was supported by the National Institutes of Health under grant CA-28924. Appreciation is expressed to Michelle McIntyre for preparation of this manuscript.

⁽³⁶⁾ London, F. Z. Phys. 1930, 63, 245

⁽³⁷⁾ Miller, K. J. J. Am. Chem. Soc., following paper in this issue.