Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 770 615 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 02.05.1997 Bulletin 1997/18

(51) Int Cl.⁶: **C07D 487/04**// (C07D487/04, 249:00, 239:00)

(21) Application number: 96307528.8

(22) Date of filing: 16.10.1996

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
PT SE

Designated Extension States: AL LT LV RO SI

(30) Priority: 27.10.1995 US 8022

(71) Applicant: American Cyanamid Company Madison, New Jersey 07940-0874 (US)

(72) Inventors:

Krummel, Günther
 55578 Vendersheim (DE)

• Stumm, Karl-Otto 55459 Aspisheim (DE)

Pees, Klaus-Jürgen
 55129 Mainz (DE)

Liers, Peter Heinz Rudi
 55424 Münster-Sarmsheim (DE)

(74) Representative: Wileman, David Francis, Dr. et al c/o Wyeth Laboratories Huntercombe Lane South Taplow Maidenhead Berkshire SL6 OPH (GB)

(54) Process for the preparation of dihaloazolopyrimidines

(57) An effective and efficient process for the preparation of a dihaloazolopyrimidine having the structural formula

(I).

a heterocyclylamine to form an intermediate salt, which optionally may be acidified to form a dihydroxyazolopyrimidine; the salt or the dihydroxyazolopyrimidine is then halogenated.

In this process, a malonic acid ester is reacted with

P 0 770 615 A1

Description

5

10

15

20

25

30

35

40

45

50

55

BACKGROUND OF THE INVENTION

Dihaloazolopyrimidines are useful as intermediates in the preparation of a variety of agrochemical and pharmaceutical compounds. In particular, 5,7-dihalo-6-aryl-1,2,4-triazolo[1,5-a]pyrimidines are key intermediates in the preparation of fungicidal triazolopyrimidine derivatives which are described in EP-A2-550113.

EP-A2-550113 describes a method for the preparation of 5,7-dihalo-6-aryl-1,2,4-triazolo[1,5-a]pyrimidines from malonic acid esters and 3-amino-1,2,4-triazole. However, that method is not entirely satisfactory because those pyrimidine compounds are obtained in low yield.

G. Fischer (Advances in Heterocyclic Chemistry, 1993, <u>57</u>, 81-138) describes the formation of triazolopyrimidines from 1,3-dicarbonyl compounds and 3-amino-1,2,4-triazole, and states that refluxing in glacial acetic acid is "standard conditions". Y. Makisumi (Chem. Pharm. Bull., 1961, <u>9</u>, 801-808) reports that under those conditions the condensation of diethyl malonate with 3-amino-1,2,4-triazole does not proceed. Makisumi discloses that the reaction could be carried out in the presence of sodium ethoxide in ethanol, and that the product dihydroxytriazolopyrimidine could be converted to the corresponding dichlorotriazolopyrimidine using a large excess of phosphorus oxychloride. However, Makisumi's method is not entirely satisfactory for the preparation of dihaloazolopyrimidines because a large excess of phosphorus oxychloride is required and the overall yield of the reactions starting from diethyl malonate is often low.

SUMMARY OF THE INVENTION

The present invention provides an effective and efficient process for the preparation of a dihaloazolopyrimidine having the structural formula I

 $X \longrightarrow X \longrightarrow X$ $Y \longrightarrow X$ $Y \longrightarrow X$

(I)

wherein

X₁ is chlorine or bromine;

R is phenyl optionally substituted with one or more halogen, nitro, cyano, C₁-C₆alkyl, C₁-C₆-haloalkyl,

C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₄alkoxycarbonyl, phenyl, phenoxy or benzyloxy groups,

naphthyl optionally substituted with one or more halogen, nitro, cyano, C_1 - C_6 alkyl, C_1 - C_6 haloalkoxy, C_1 - C_4 -alkoxycarbonyl, phenoxy or benzyloxy groups,

hydrogen,

C1-C6alkyl optionally substituted with one or more halogen, nitro, cyano, C1-C4alkyl, C1-C4haloalkyl,

C₁-C₄alkoxy or C₁-C₄haloalkoxy groups,

C3-C8cycloalkyl optionally substituted with one or more halogen, nitro, cyano, C1-C4alkyl, C1-C4-

haloalkyl, C1-C4alkoxy or C1-C4haloalkoxy groups, or

C2-C6alkenyl optionally substituted with one or more halogen, nitro, cyano, C1-C4alkyl, C1-

C4haloalkyl, C1-C4alkoxy or C1-C4haloalkoxy groups;

X is CR_1 or N; Y is CR_2 or N;

Z is CR₃ or N;

R₁, R₂ and R₃ are each independently hydrogen or

C1-C6alkyl optionally substituted with one or more halogen, nitro, cyano, C1-C4alkyl, C1-C4haloalkyl,

C1-C4alkoxy, C1-C4haloalkoxy, amino, C1-C4alkylamino or di(C1-C4alkyl)amino groups, and

when R_1 and R_2 are taken together with the atoms to which they are attached, they may form a ring in which R_1R_2 is represented by the structure:

- CR_4 = CR_5 - CR_6 = CR_7 - where R_4 , R_5 , R_6 and R_7 are each independently hydrogen, nitro, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkoxy, which process comprises: (a) reacting (1) a malonic acid ester having the structural formula II

5

10

15

20

30

35

40

45

50

55

 $R \stackrel{CO_2R_8}{\longleftarrow}$

wherein R_8 and R_9 are each independently C_1 - C_6 alkyl, and R is as described above with (2) a heterocyclylamine having the structural formula III

X—N Y Z NH₂

wherein X, Y and Z are as described above at a temperature of at least about 100°C to form an intermediate salt; (b) optionally acidifying the intermediate salt with aqueous acid to form a dihydroxyazolopyrimidine having the structural formula IV

X N N OH

(IV)

wherein R, X, Y and Z are as described above; and (c) halogenating the intermediate salt or dihydroxyazolopyrimidine with at least about two molar equivalents of a halogenating agent, e.g., phosphorus oxychloride, phosphorus oxybromide, phosphorus pentachloride or phosphorus pentabromide or a suitable mixture thereof at a temperature of at least about 100°C.

The present invention also provides an effective and efficient process for the preparation of a dihydroxyazolopy-rimidine having the structural formula IV

wherein R, X, Y and Z are as described above. This product (IV) is produced by the above-described procedure wherein the intermediate salt is acidified; the product (IV) then may be isolated, if desired.

It is, therefore, an object of the present invention to provide an efficient new process for the preparation of dihaloa-

zolopyrimidines.

5

10

15

20

25

30

35

40

45

50

55

It is another object of the present invention to provide a novel process for preparing dihydroxyazolopyrimidines. Other objects and advantages of the present invention will be apparent to those skilled in the art from the following description and the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

In one preferred embodiment of the present invention, a malonic acid ester represented by formula II is reacted with at least about one molar equivalent of a heterocyclylamine represented by formula III, preferably in a temperature range of about 120°C to 200°C, more preferably about 150°C to 180°C, and optionally in the presence of a base and/ or solvent to form an intermediate salt. The intermediate salt is halogenated with at least about two molar equivalents of phosphorus oxychloride, phosphorus oxybromide, phosphorus pentachloride or phosphorus pentabromide, or a suitable mixture thereof, preferably in a temperature range of about 120°C to 150°C.

Advantageously, it has now been found that dihaloazolopyrimidines may be obtained in high yield and good purity by the effective and efficient process of the present invention. In contrast, dihaloazolopyrimidines are obtained in comparatively low yield when prepared according to art methods.

A further advantage of the present invention is that the inventive process may be conducted in one pot when the intermediate salt is not acidified. A one pot reaction sequence is highly desirable because it avoids the isolation of intermediate compounds and significantly reduces the amount of chemical waste produced.

In another preferred embodiment of the present invention, the intermediate salt is prepared in the presence of added base. The base is preferably pres in an amount of at least about one molar equivalent relative to the malonic acid ester. Bases suitat use in the process of the present invention int tertiary amines such as tri(C2-C6alkyl)amines substituted pyridines, quinoline, substituted quinolines, and ureas; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide; alkali metal C1-C6alkoxides such as sodium ethoxide and potassium tert-butoxide; alkaline earth metal C1-C6alkoxides such as magnesium ethoxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; and alkaline earth metal carbonates such as calcium carbonate. Preferred bases include $tri(C_2-C_6$ alkyl) amines such as triethylamine and tributylamine, pyridine, 4-(N,N-dimethylamino)pyridine, quinoline, and N,N,N',N'-tetramethylurea with triethylamine and tributylamine being more preferred.

The intermediate salt of this invention is represented by structural formula V when prepared in the absence of added base, and structural formula VI when prepared in the presence of added base:

wherein R, X, Y and Z are as described above and "Base" represents the added base.

In a further preferred embodiment of the present invention, a solvent is present. Solvents suitable for use in the process of the present invention have a boiling point of at least about 80°C and include aromatic hydrocarbons such as mesitylene, toluene, xylenes and mixtures thereof; chlorinated aromatic hydrocarbons such as mono- and dihalobenzenes and mixtures thereof; polynuclear aromatic hydroarbons such as naphthalene, alkylnaphthalenes and mixtures thereof; alcohols such as butanol; and mixtures thereof. The solvent of the present invention preferably has a boiling point range of about 80°C to 220°C, more preferably about 120°C to 180°C. Mesitylene is one of the preferred solvents

of the present invention.

5

10

25

30

35

40

45

The reaction between the malonic acid ester and the hetercyclylamine is preferably performed at a pressure of about one atmosphere or higher. If the reaction includes a solvent having a boiling point (defined at normal atmospheric pressure) lower than the reaction temperature, the reaction pressure must be elevated so that the solvent boiling point is elevated to at least the reaction temperature.

In some embodiments of the inventive process, an aqueous acid is used to acidify the intermediate salt. Aqueous acids suitable for use include aqueous mineral acids such as hydro-chloric acid, hydrobromic acid and sulfuric acid, and aqueous organic acids such as trifluoroacetic acid with hydrochloric acid, hydrobromic acid, and sulfuric acid being preferred.

The halogenation reaction may comprise reacting the intermediate salt or the dihydroxyazolopyrimidine with a suitable halogenating agent under conditions that produce the desired dihaloazolopyrimidine. Any halogenating agent and conditions known in the art may be used. Preferably, the halogenating agent and conditions are those described herein for the preferred embodiments of the present invention. Advantageously, the halogenation reaction may be conducted at atmospheric pressure or at a pressure greater than atmospheric pressure. The term "a suitable mixture thereof", as used in the specification and claims with regard to the halogenating agents described herein, is defined as a phosphorus oxychloride and phosphorus pentachloride mixture or a phosphorus oxybromide and phosphorus pentabromide mixture.

The process of the present invention is especially useful for the preparation of dihaloazolopyrimidines wherein

20 X₁ is chlorine;

R is phenyl optionally substituted with one or more halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄-alkoxy, C₁-

C4haloalkoxy, phenyl, phenoxy or benzyloxy groups, or

naphthyl;

X is CR₁ or N;

Y is CR₂;

Z is N; and

 R_1 and R_2 are each independently hydrogen, and when R_1 and R_2 are taken together with the atoms to which they are attached, they may form a ring in which R_1R_2 is represented by the structure: -CH=CH-CH=CH-.

Advantageously, the present invention is particularly useful for the preparation of 5,7-dihalo-6-aryl-1,2,4-triazolo [1,5-a]pyrimidines of formula I wherein

X₁ is chlorine;

Phis phenyl optionally substituted with one or more halogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄-alkoxy or C₁-

Cahaloalkoxy groups;

X and Z are N; and

Y is CH.

The process of the present invention can produce surprisingly high yields of dihydroxyazolopyrimidines and dihaloazolopyrimidines. One key factor is the temperature of the reaction between the malonic acid ester and the heterocyclylamine. The use of a base and/or solvent may also enhance the yield in some embodiments. Those skilled in the art will be able, without undue experimentation, to select a favorable combination of temperature and optional base and/or solvent for any particular embodiment within the scope of this invention, upon consideration of the foregoing description of the preferred embodiments and the Examples that follow.

In order to facilitate a further understanding of the invention, the following illustrative examples are presented. The invention is not limited to the specific embodiments described or illustrated, but encompasses the full scope of the appended claims.

50

EXAMPLE 1

Preparation of 5,7-Dihydroxy-6-(2-chloro-6-fluorophenyl)-1,2,4-triazolo[1,5-a]pyrimidine, 3-amino-1,2,4-triazole salt

A mixture of diethyl (2-chloro-6-fluorophenyl)malonate (29 g, 0.1 mol), 3-amino-1,2,4-triazole (8.4 g, 0.1 mol), and the solvent mesitylene (10 mL) is heated at 160°C for 7 hours and filtered to obtain a solid. The solid is washed with diisopropyl ether and dried to give the title product as a solid (18 g, 50% yield, mp 260-266°C).

Following essentially the same procedure, but using the appropriate solvent and/or base, the 5,7-dihydroxy-6-(2-chloro-6-fluorophenyl)-1,2,4-triazolo[1,5-a]pyrimidine salts shown in Table I are obtained.

TABLE I

Salt	3-amino-1,2,4-triazole	triethylamine	3-amino-1,2,4-triazole	triethylamine	triethylamine	guinoline
% Yield	20	32	48	64	64	20
Temperature °C & Yield	160	160	180	170	160	180
Ваве	no added base	triethylamine	no added base	triethylamine	triethylamine	guinoline
4 nov. Lon	mesitylene	mesitylene	SHELLSOL®	toluene	no added solvent	no added solvent

EXAMPLE 2

5

10

15

20

25

30

Preparation of 5,7-Dichloro-6-(2-chloro-6-fluorophenyl)-1,2,4-triazolo[1,5-a]pyrimidine

A mixture of 5,7-dihydroxy-6-(2-chloro-6-fluorophenyl)-1,2,4-triazolo[1,5-a]pyrimidine, 3-amino-1,2,4-triazole salt (34.8 g, 0.095 mol), and phosphorus oxychloride (100 mL) is heated in an autoclave at 140°C (2.8 bar) for 4 hours and excess phosphorus oxychloride is removed by distillation. The resultant reaction mixture is cooled to room temperature and poured into a water/dichloromethane mixture (300 mL, 1:1) while maintaining the temperature of the mixture below 30°C. The organic phase is separated, dried over anhydrous sodium sulfate, and concentrated in vacuo to obtain an oil which crystallizes overnight to give the title product as a solid (22.4 g, 74% yield, mp 118-120°C).

EXAMPLE 3

Preparation of 5,7-Dichloro-6-(2-chloro-6-fluorophenyl)-1,2,4-triazolo[1,5-alpyrimidine

A mixture of 3-amino-1,2,4-triazole (12.6 g, 0.15 mol), diethyl (2-chloro-6-fluorophenyl)malonate (47.6 g, 0.15 mol), and tributyl amine (27.8 g, 0.15 mol) is heated at 170°C while allowing ethanol generated during the reaction to distill off. After 2 hours, residual ethanol is removed with a slow nitrogen stream for 30 minutes. The reaction mixture is then cooled to 130°C and phosphorus oxychloride (69 g, 0.45 mol) is added dropwise over 20 minutes. The resultant clear, brown solution is refluxed for 6 hours, cooled to room temperature, and slowly added to a toluene/water (5:6) mixture (1,100 mL) with stirring. The organic phase is separated, washed sequentially with dilute hydrochloric acid and water, dried over anhydrous sodium sulfate and concentrated in vacuo to give a brown, viscous oil (44.5 g) which contains 90% of the title product (83% yield).

EXAMPLE 4

10

45

50

55

Preparation of 5,7-Dihydroxy-6-(2-chloro-6-fluorophenyl)-1,2,4-triazolo[1,5-a]pyrimidine -

C1
$$CO_2C_2H_5$$
 $N \longrightarrow NH_2$ + $CO_2C_2H_5$ $N \longrightarrow NH_2$ + $N \longrightarrow NH_2$ 1) $170^{\circ}C$, Mesitylene 2) $10^{\circ}C$ $10^{\circ}C$

A mixture of diethyl (2-chloro-6-fluorophenyl)malonate (7.3 g, 0.025 mol), 3-amino-1,2,4-triazole (2.1 g, 0.025 mol), mesitylene (20 mL), and pyridine (5 mL) is refluxed for 7 hours at 170°C, cooled to room temperature, and decanted to obtain a solid. A solution of the solid in water (50 mL) is acidified with concentrated hydrochloric acid (5 mL), and the resultant precipitate is collected, washed with water, and dried to give the title product as a solid (5 g, 71% yield, mp 220°C).

Following essentially the same procedure, but using the appropriate solvent and/or base, 5,7-dihydroxy-6-(2-chlo-ro-6-fluorophenyl)-1,2,4-triazolo[1,5-a]pyrimidine is obtained in the yields shown in Table II.

5			% Yield	27	28	61	48	52	38	42	20
10	•		Temperature °C	170	170	150	180	170	180	160	170
15			Tem								
20		н		qe	toxide	4-(N, N-dimethylamino)pyridine		de			hylurea
25		TABLE II	Ваве	sodium hydroxide	rert-bu	hylamino	quinoline	sodium ethoxide	pyridine	pyridine	tetramet
30				sodium	potassium <u>tert</u> -butoxide	I,N-dimet	nb	sodiu	G	P.	N,N,N',N'-tetramethylurea
35					<u>Ω</u> ,	4 - (N					Z
40	,		ant	lene	lene	lene,	'lene	'lene	SOL®	solvent	solvent
45	•		Solvent	mesitylene	mesitylene	mesitylene	mesitylene	mesitylene	SHELLSOL®	no added solvent	no added solvent
50			ł							ŭ	ŭ

COMPARATIVE EXAMPLE

5

10

15

20

25

30

35

55

Preparation of 5,7-Dihydroxy-6-(2-chloro-6-fluorophenyi)-1,2,4-triazolo[1,5-a]pyrimidine

$$CO_{2}C_{2}H_{5} + N \longrightarrow N \\ CO_{2}C_{2}H_{5} + N \longrightarrow N \\ NH_{2} + NaOC_{2}H_{5}$$

$$1) C_{2}H_{5}OH , \Delta$$

$$2) HC1/H_{2}O$$

$$OH^{F}$$

$$OH^{C1}$$

Diethyl (2-chloro-6-fluorophenyl)malonate (108 g, 0.37 mol) and 3-amino-1,2,4-triazole (31.2 g, 0.37 mol) are added to a sodium ethoxide solution (previously prepared by dissolving sodium (8.5 g, 0.37 mol) in ethanol (250 mL)). The resultant reaction mixture is refluxed for 50 hours, cooled to room temperature and filtered to obtain a solid which is washed with disopropyl ether. A solution of the washed solid in water is acidified with concentrated hydrochloric acid, and the resultant precipitate is collected, washed with water and dried to give the title product as a solid (15.7 g, 14.5% yield, mp 215°C).

EXAMPLE 5

Preparation of 5,7-Dihydroxy-6-(2-chloro-6-fluorophenyl)benzimidazopyrimidine, 2-aminobenzimidazole salt

A mixture of diethyl (2-chloro-6-fluorophenyl)malonate (5.8 g, 0.02 mol) and mesitylene is heated to reflux, treated portionwise over 2 hours with 2-aminobenzimidazole (2.7 g, 0.02 mol), refluxed for 4 hours, cooled to room temperature and diluted with acetone. The resultant mixture is filtered to give the title product as white crystals (5.1 g, 55% yield, mp 313-325°C).

Claims

A process for the preparation of a compound having the structural formula

(IA)

wherein

15

20

25

30

35

40

5

10

are both OH or CI or Br.

A and B R is

phenyl optionally substituted with one or more substituents the same or different selected from halogen, nitro, cyano, C1-C6alkyl, C1-C6-haloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-

C4alkoxycarbonyl, phenyl, phenoxy and benzyloxy,

naphthyl optionally substituted with one or more substituents the same or different selected from halogen, nitro, cyano, C₁-C₆alkyl, C₁-C₆haloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₄-

alkoxycarbonyl, phenyl, phenoxy and benzyloxy,

hydrogen,

C1-C6alkyl optionally substituted with one or more substituents the same or different selected from halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄halo-alkyl, C₁-C₄alkoxy and C₁-C₄haloalkoxy, C3-C8cycloalkyl optionally substituted with one or more substituents the same or different selected from halogen, nitro, cyano, C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy and C1-C₄haloalkoxy,

or

 C_2 - C_6 alkenyl optionally substituted with one or more substituents the same or different selected from halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy and C₁-C₄haloalkoxy;

CR₁ or N; X is CR₂ or N; Y is Z is CR₃ or N;

R₁, R₂ and R₃

are each independently hydrogen or

C1-C6alkyl optionally substituted with one or more substituents the same or diffrent selected from halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, amino,

C1-C4alkylamino and di(C1-C4alkyl)amino, and

when R_1 and R_2 are taken together with the atoms to which they are attached, they may form a ring in which R_1R_2 is represented by the structure:

-CR $_4$ =CR $_5$ -CR $_6$ =CR $_7$ - where R $_4$, R $_5$, R $_6$ and R $_7$ are each independently hydrogen, nitro, cyano, C $_1$ -C $_4$ alkyl, C1-C4haloalkyl, C1-C4alkoxy or C1-C4haloalkoxy; which process comprises:

45

50

55

(a) reacting (1) a malonic acid ester having the structural formula

$$R = \begin{pmatrix} CO_2R_8 \\ CO_2R_3 \end{pmatrix}$$

wherein R_8 and R_9 are each independently C_1 - C_6 alkyl, and R is as defined above with (2) a heterocyclylamine having the structural formula

wherein X, Y and Z are as defined above at a temperature of at least 100°C to form a intermediate base salt of a compound of formula IA wherein A and B are both OH, and optionally acidifying with aqueous acid to give the corresponding free hydroxy compound having the structural formula

wherein R, X, Y and Z are as described above, and if desired

5

15

20

40

55

(b) halogenating the intermediate salt or dihydroxyazolopyrimidine from step (a) with at least two molar equivalents of a halogenating agent to give a compound of formula IA wherein A and B are both halogen.

- 25 2. The process according to Claim 1 wherein said halogenating agent is selected from phosphorus oxychloride, phosphorus oxybromide, phosphorus pentachloride, phosphorus pentabromide and a suitable mixture thereof, and wherein said halogenating step is performed at a temperature of at least 100°C.
- The process according to Claim 1 or Claim 2 wherein said malonic acid ester is reacted with said heterocyclylamine at a temperature of 120°C to 200°C.
 - 4. The process according to any one of Claims 1 to 3 wherein said malonic acid ester is reacted with said heterocyclylamine in the presence of a base.
- 5. The process according to Claim 4 wherein said base is present in an amount of at least one molar equivalent relative to said malonic acid ester.
 - 6. The process according to Claim 4 wherein said base comprises a tertiary amine, an alkali metal hydroxide, an alkaline earth metal hydroxide, an alkali metal C₁-C₆alkoxide, an alkaline earth metal C₁-C₆alkoxide, an alkali metal carbonate.
 - The process according to Claim 6 wherein said tertiary amine comprises tri (C₂-C₆alkyl)amine, pyridine, a substituted pyridine, quinoline, a substituted quinoline, and N,N,N',N'-tetramethylurea.
- 45 8. The process according to any one of Claims 1 to 7 wherein said malonic acid ester is reacted with said heterocyclylamine in the presence of a solvent.
 - The process according to Claim 8 wherein said solvent has a boiling point of 80°C to 220°C.
- 50 10. The process according to Claim 8 wherein said solvent comprises the group consisting of an aromatic hydrocarbon, a chlorinated aromatic hydrocarbon, a polynuclear aromatic hydrocarbon, an alcohol, and mixtures thereof, and the boiling point of the solvent is at least 80°C.
 - 11. The process according to Claim 10 wherein said aromatic hydrocarbon is selected from mesitylene, toluene, a xylene, and mixtures thereof, said polynuclear aromatic hydrocarbon is selected from naphthalene, an alkylnaphthalene, and mixtures thereof, and said alcohol is butanol.
 - 12. The process according to any one of Claims 1 to 11 wherein said heterocyclylamine is present in an amount of at

least one molar equivalent relative to said malonic acid ester.

- 13. The process according to any one of Claims 1 to 12 wherein said aqueous acid is an aqueous mineral acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and sulfuric acid.
- 14. The process according to any one of Claims 1 to 13 wherein said halogenation is conducted at a pressure greater than one atmosphere.
- 15. The process according to any one of Claims 1 to 14 wherein R is phenyl optionally substituted with one or more substituents the same or diffrent selected from halogen, C1-C4-alkyl, C1-C4-alkoxy, C1 10 C4haloalkoxy, phenyl, phenoxy and benzyloxy; or naphthyl;

X is	CR ₁ or N;
Y is	CR ₂ ;

Z is

5

15

20

25

30

35

40

45

50

55

are each independently hydrogen, and when $\rm R_1$ and $\rm R_2$ are taken together with the atoms to which R₁ and R₂ they are attached, they may form a ring in which R₁R₂ is represented by the structure: -CH=CH-CH=CH-.

EUROPEAN SEARCH REPORT

Application Number EP 96 30 7528

Category	Citation of document with it of relevant pa	edication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IntCL6)
Y		LANCO) 27 April 1995	1-15	C07D487/04 //(C07D487/04,
γ, γ	EP-A-0 550 113 (SHE RESEARCH MAATSCHAPP * page 5, line 12 -	IJ B.V.) 7 July 1993	1-15	249:00,239:00)
Y	EP-A-0 322 359 (CIB 1989 * page 4, line 41 -	A-GEIGY AG) 28 June line 51 *	1-15	
ť	EP-A-0 444 747 (DOW 1991 * examples 1-5 *	ELANCO) 4 September	1-15	
Υ .	US-A-3 907 799 (ICN September 1975 * column 3, line 4	PHARMACEUTICALS) 23 - line 32 *	1-15	
Y	DE-A-35 22 463 (BAY * claim 8 *	'ER AG) 2 January 1987	1-15	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
Y	US-A-5 006 656 (DCk * claim 6 *	/ELANCO) 9 April 1991	1-15	C07D
 .	The present search report has	been drawn up for all claims		
	Place of scarch	Date of completies of the search		Examiner
	MUNICH	18 December 1996	He	rz, C
V : 23	CATEGORY OF CITED DOCUME rticularly relevant if taken alone relevant if combined with an element of the same category	NTS T: theory or princip E: earlier patent di after the filing	ple underlying the scument, but pur late	blished no., or

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER: ____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.