Polyglot programming for single-cell analysis

Louise Deconinck Benjamin Rombaut Robrecht Cannoodt

2024-09-12

Introduction

- 1. How do you interact with a package in another language?
- 2. How do you make you package useable for developers in other languages?

We will be focusing on R & Python

Summary

Interoperability between languages allows analysts to take advantage of the strengths of different ecosystems

On-disk interoperability uses standard file formats to transfer data and is typically more reliable

In-memory interoperability transfers data directly between parallel sessions and is convenient for interactive analysis

While interoperability is currently possible developers continue to improve the experience

Single-cell best practices: Interoperability

How do you interact with a package in another language?

- 1. In-memory interoperability
- 2. Disk-based interoperability

How do you make your package useable for developers in other languages?

- 1. Package-based interoperability
- 2. Best practices

Package-based interoperability

or: the question of reimplementation.

Consider the pros:

- 1. Discoverability
- 2. Can your package be useful in other domains?
- 3. Very user friendly

Consider the cons:

- 1. Think twice: is it worth it?
- 2. It's a lot of work
- 3. How will you keep it up to date?
- 4. How will you ensure parity?

Package-based interoperability

Please learn both R & Python

Best practices

- 1. Work with the standards
- 2. Work with matrices, arrays and dataframes
- 3. Provide vignettes on interoperability

In-memory interoperability

A Python user with an anndata object can use rpy2 to run the DESeq2 method in R

An R user with an anndata object can use reticulate to run scanpy functions in Python

Overview

- 1. Advantages & disadvantages
- 2. Pitfalls when using Python & R
- 3. Rpy2
- 4. Reticulate

in-memory interoperability advantages

no need to write & read results

useful when you need a limited amount of functions in another language

in-memory interoperability drawbacks

not always access to all classes

data duplication

you need to manage the environments

Pitfalls when using Python and R

Column major vs row major matrices In R: every dense matrix is stored as column major

one matrix

1	2	3	
4	5	6	
7	8	9	
10	11	12	

in-memory: row major

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

1	2	3
4	5	6
7	8	9
10	11	12

in-memory: column major

1	4	7	10	2	5	8	11	3	6	9	12
---	---	---	----	---	---	---	----	---	---	---	----

Pitfalls when using Python and R Indexing

Pitfalls when using Python and R

dots and underscores

mapping in rpy2

Pitfalls when using Python and R

Integers

```
1 library(reticulate)
2 bi <- reticulate::import_builtins()
3
4 bi$list(bi$range(0, 5))
5 # TypeError: 'float' object cannot be interpreted as an integer

1 library(reticulate)
2 bi <- reticulate::import_builtins()
3
4 bi$list(bi$range(OL, 5L))
5 # [1] O 1 2 3 4</pre>
```

Rpy2: basics

Accessing R from Python

- rpy2.rinterface, the low-level interface
- rpy2.robjects, the high-level interface

```
import rpy2
import rpy2.robjects as robjects

vector = robjects.IntVector([1,2,3])
rsum = robjects.r['sum']

rsum(vector)
```

IntVector with 1 elements.

Rpy2: basics

```
1 str_vector = robjects.StrVector(['abc', 'def', 'ghi'])
2 flt_vector = robjects.FloatVector([0.3, 0.8, 0.7])
3 int_vector = robjects.IntVector([1, 2, 3])
4 mtx = robjects.r.matrix(robjects.IntVector(range(10)), nrow=5)
5 print(mtx)

[,1] [,2]
[1,] 0 5
[2,] 1 6
[3,] 2 7
[4,] 3 8
[5,] 4 9
```

Rpy2: numpy

Rpy2: pandas

Rpy2: sparse matrices

Rpy2: anndata

```
import anndata as ad
import scanpy.datasets as scd

import anndata2ri

adata_paul = scd.paul15()

with anndata2ri.converter.context():
    sce = anndata2ri.py2rpy(adata_paul)
    ad2 = anndata2ri.rpy2py(sce)
```

Rpy2: interactivity

Reticulate

R	Python	Examples		
Single-element vector	Scalar	1, 1L, TRUE, "foo"		
Multi-element vector	List	c(1.0, 2.0, 3.0), c(1L, 2L, 3L)		
List of multiple types	Tuple	<pre>list(1L, TRUE, "foo")</pre>		
Named list	Dict	list(a = 1L, b = 2.0), $dict(x = x_data)$		
Matrix/Array	NumPy ndarray	matrix(c(1,2,3,4), nrow = 2, ncol = 2)		
Data Frame	Pandas DataFrame	data.frame(x = c(1,2,3), y = c("a", "b", "c"))		
Function	Python function	function(x) x + 1		
Raw	Python bytearray	as.raw(c(1:10))		
NULL, TRUE, FALSE	None, True, False	NULL, TRUE, FALSE		

Reticulate

```
1 library(reticulate)
2
3 bi <- reticulate::import_builtins()
4 rd <- reticulate::import("random")
5
6 example <- c(1,2,3)
7 bi$max(example)
8 # [1] 3
9 rd$choice(example)
10 # [1] 2
11 cat(bi$list(bi$reversed(example)))
12 # [1] 3 2 1</pre>
```

Reticulate numpy

Reticulate conversion

You can explicitly convert data types:

```
1 result <- np$concatenate(tuple(a, b), axis=0L)
2
3 py_to_r(result)
4 # [,1] [,2]
5 # [1,] 1 2
6 # [2,] 3 4
7 # [3,] 5 6
8
9 result_r <- py_to_r(result)
10 r_to_py(result_r)
11 # array([[1., 2.],
12 # [3., 4.],
13 # [5., 6.]])</pre>
```

Reticulate scanpy

```
1 library(anndata)
2 library(reticulate)
3 sc <- import("scanpy")
4
5 adata_path <- "../usecase/data/sc_counts_subset.h5ad"
6 adata <- anndata::read_h5ad(adata_path)</pre>
```

We can preprocess & analyse the data:

```
1 sc$pp$filter_cells(adata, min_genes = 200)
2 sc$pp$filter_genes(adata, min_cells = 3)
3 sc$pp$pca(adata)
4 sc$pp$neighbors(adata)
 5 sc$tl$umap(adata)
7 adata
8 # AnnData object with n_obs \times n_vars = 32727 \times 20542
         obs: 'dose_uM', 'timepoint_hr', 'well', 'row', 'col', 'plate_name', 'cell_id', 'cell_type', 'split', 'd
10 #
         var: 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'n_cells'
         uns: 'cell_type_colors', 'celltypist_celltype_colors', 'donor_id_colors', 'hvg', 'leiden_res1_colors',
11 #
         obsm: 'HTO clr', 'X pca', 'X umap', 'protein counts'
12 #
13 #
         varm: 'PCs'
14 #
         obsp: 'connectivities', 'distances'
```

Disk-based interoperability

Disk-based interoperability is a strategy for achieving interoperability between tools written in different programming languages by **storing intermediate results in standardized**, **language-agnostic file formats**.

Upside:

- Simple, just add reading and witing lines
- Modular scripts

Downside:

- increased disk usage
- less direct interaction, debugging...

Important features of interoperable file formats

Compression

Sparse matrix support

Large images

Lazy chunk loading

Remote storage

General single cell file formats of interest for Python and R

File Format	Python	R	Sparse matrix	Large images	Lazy chunk loading	Remote storage
RDS	\bigcirc		0		\bigcirc	
Pickle		\bigcirc	\bigcirc		\bigcirc	\bigcirc
CSV			\bigcirc	\bigcirc	\bigcirc	\bigcirc
JSON			\bigcirc	\bigcirc		
TIFF			\bigcirc			
.npy		\bigcirc	\bigcirc		\bigcirc	\bigcirc
Parquet			\bigcirc	\bigcirc		
Feather			•	\bigcirc		
Lance	•	\bigcirc		\bigcirc		
HDF5			\bigcirc			
Zarr			\bigcirc			
TileDB						

Specialized single cell file formats of interest for Python and R

File Format	Python	R	Sparse matrix	Large images	Lazy chunk loading	Remote storage
Seurat RDS	\bigcirc		\bigcirc	•	0	\bigcirc
Indexed OME- TIFF						
h5Seurat			\bigcirc	•		•
Loom HDF5				\bigcirc		•
AnnData h5ad				•		•
AnnData Zarr				•		
TileDB-SOMA				•		
TileDB- BioImaging			•			
SpatialData Zarr						

Disk-based pipelines

Script pipeline:

```
#!/bin/bash
bash scripts/1_load_data.sh
python scripts/2_compute_pseudobulk.py
Rscript scripts/3_analysis_de.R
```

Notebook pipeline:

```
1 # Every step can be a new notebook execution with inspectable output
2 jupyter nbconvert --to notebook --execute my_notebook.ipynb --allow-errors --output-dir outputs/
```

Just stay in your language and call scripts

```
import subprocess

subprocess.run("bash scripts/1_load_data.sh", shell=True)

# Alternatively you can run Python code here instead of calling a Python script

subprocess.run("python scripts/2_compute_pseudobulk.py", shell=True)

subprocess.run("Rscript scripts/3_analysis_de.R", shell=True)
```

Pipelines with different environments

- 1. interleave with environment (de)activation functions
- 2. use rvenv
- 3. use Pixi

Pixi to manage different environments

```
pixi run -e bash scripts/1_load_data.sh
pixi run -e scverse scripts/2_compute_pseudobulk.py
pixi run -e rverse scripts/3_analysis_de.R
```

Define tasks in Pixi

```
1 ...
2 [feature.bash.tasks]
3 load_data = "bash book/disk_based/scripts/1_load_data.sh"
4 ...
5 [feature.scverse.tasks]
6 compute_pseudobulk = "python book/disk_based/scripts/2_compute_pseudobulk.py"
7 ...
8 [feature.rverse.tasks]
9 analysis_de = "Rscript --no-init-file book/disk_based/scripts/3_analysis_de.R"
10 ...
11 [tasks]
12 pipeline = { depends-on = ["load_data", "compute_pseudobulk", "analysis_de"] }
```

1 pixi run pipeline

Also possible to use containers

```
docker pull berombau/polygloty-docker:latest docker run -it -v $(pwd)/usecase:/app/usecase -v $(pwd)/book:/app/book berombau/polygloty-docker:latest pixi
```

Another approach is to use multi-package containers to create custom combinations of packages. - Multi-Package BioContainers - Seqera Containers

Workflows

You can go a long way with a folder of notebooks or scripts and the right tools. But as your project grows more bespoke, it can be worth the effort to use a workflow framework like Viash, Nextflow or Snakemake to manage the pipeline for you.

See https://saeyslab.github.io/polygloty/book/workflow_frameworks/

Takeaways