安徽大学 2011 —2012 学年第 1 学期

》考试试卷 (A卷) 《 离散数学 (上)

时间 120 分钟)

、则位	时间 120 万钟	')
	考场登记表序号	
	=	

考场登记表序号								
题	号 一		三	四	五	六	七	总分
得	分							
阅卷	人							
	·	·	•					
一、单项	[选择题(1	每小题 2 分,	共 20 分	(1	得 分
					" = 55 D	/l/ <u>\</u> /		
		他用功;则" B. <i>P</i>) D. <i>P</i> ∧	. 0
	~	. <i></i> 直与它们的命题	~		~		D. I A	$\forall \neg \mathcal{Q}$
	$(P \rightarrow Q)$ –					$Q \to Q$;		
C. (P -	$\rightarrow Q) \land (Q)$	$\rightarrow R) \rightarrow (P - R)$	$\rightarrow R)$;	I	$P \leftrightarrow$	$Q) \leftrightarrow (P$	$\land Q \leftrightarrow P$	P) 。
		吉论不能从其 2)		
A. $\forall x$	$c(M(x) \to 0$	$G(x)$), $\exists x M(x)$	$(x) \Rightarrow \exists x G($	(x);				
B. <i>∀x</i>	$c(\neg F(x) \rightarrow$	$B(x)$), $\forall x \neg B$	$B(x) \Rightarrow \exists x$	F(x);				
C. ∀x	$c(P(x) \to Q$	$\theta(x)) \Rightarrow \forall x P(x)$	$(x) \to \forall x Q$	Q(x);				
D. $\forall x$	$e(P(x) \vee Q($	$(x)) \Rightarrow \forall x P(x)$	$(x) \lor \forall x Q(x)$	x) 。				
. 对任意氛	集合 A, B, C	$,D$,下列结 $\mathfrak i$	仑不正确的	是()			
A. (A-	(-B)-C=((A-C)-(B-C)	-C);	В	A-(B-	C) = (A	$-B) \cup (A$	$(1 \cap C)$;
C. (A-	$-B)\cap (C-$	$D) = (A \cap C)$	$(B \cup I)$	O); D	$(A \cup B)$	$-(C \cup L)$	(A-C)	$(C) \cup (B-D)$
自然数约	集合 <i>N</i> 上的	二元关系 <i>R</i> =	$\{\langle x,y\rangle $	$\exists k (k \in N)$	$\land y = x^k$	具有()	
A. 自反	性和对称性	; B. 反自反	[性和对称	性; C. 反	对称性和	传递性;	D. 反自反	反性和传递性 。
b. 设 <i>A</i> =	$\{a,b,c\}$, A	上二元关系	$R = \{ < a, a \}$	a>, < a,b>	>,< c,c >}	, 则 <i>R</i> 的]传递闭包	t(R) 是(
A	$R \cup I_A$	E	3. <i>R</i>	C.	$R \cup \{< b,$	<i>b</i> >}	D. <i>R</i> ($\gamma I_{\scriptscriptstyle A}$
	71				•			$c > \stackrel{\wedge}{>} \cup R 为 X$
的等价	关系, <i>R</i> 应	取()						
A	$\{< b, a>$	$, < b, c > \}$		В. {	(< b, a >, <	$\langle c,a \rangle$		
C	$\{< b, a>$	$, < c, b > \}$			< <i>a</i> , <i>c</i> >,<	,		

小

摋 盟 权

> 8. 设 $R_{\rm l}$, $R_{\rm 2}$ 为非空集合 A 上的二元关系,则下列结论不成立的是(A. $st(R_1) = ts(R_1)$; B. $s(R_1 \cap R_2) = s(R_1) \cap s(R_2)$; C. $t(R_1 \cap R_2) = t(R_1) \cap t(R_2)$; D. $rt(R_1) = tr(R_1)$.

9. 关于 $X = \{1,2,3\}$ 到 $Y = \{a,b,c\}$ 的函数 $f = \{<1,b>,<2,a>,<3,b>\}$,下列结论错误的是(
A. $f(\{1,3\}) = \{b\}$; B. $f(\{1\}) = b$; C. $f^{-1}(\{b\}) = \{1,3\}$; D. $f(2) = a$.
10. 设 N 和 R 分别为自然数和实数集合,则下列集合中与其他集合的基数不同的集合是()
A. $ ho(N)$; B. N^N ; C. $N imes N$; D. R \circ
二、判断题(每小题 2 分,共 10 分)
1. 命题联结词集合 $\{\neg, \land, \lor\}$ 是最小的全功能联结词集。() 2. 对任意集合 A,B,C ,若 $A \in B$ 及 $B \in C$,则也可以有 $A \in C$ 。()
3. 设 R 是集合 A 上的二元关系, R 有传递性的充要条件是 $R^2 \subseteq R$ 。()
4. 如果合成函数 fg 是双射的,则函数 f 必是单射的而 g 是满射的。()
5. 有理数集合的基数是最小的无限集基数。()
三、填空题(每小空 2 分,共 20 分)
一
1. 设 $E(x)$: x 是偶数, $P(x)$: x 是质数, $I(x)$: x 是整数, $N(x)$: x 是负数,则在全总个体域下
"两个偶数之和是偶数"符号化为:;
"如果一个整数平方的是奇数,则它是奇数"符号化。
2. 设 $A = \{a,b\}$, $B = \{a,b,c\}$, 则 $\rho(A) =$; $\rho(B) - \rho(A) =$
3. 设 I 为整数集合,则集合 $A = \{0,1,2,3,4\}$ 上的二元关系 $R = \{\langle x,y \rangle \exists k (k \in I \land y = x^k)\}$
(v,y,z,=,(v,z,-,v,)) — (v,y, z,=,(v,z,-,y, w,z,))
的关系矩阵为 $M_{\scriptscriptstyle R}$ =; R 传递闭包的关系矩阵为 $M_{_{\iota(R)}}$ =
4. 设 $U = [0,1]$, $A = (0.2, 0.6]$, $B = [0, 0.5)$, 则特征函数 $\psi_{A-B}(x) = $
$\psi_{A \oplus B}(x) = \underline{\hspace{1cm}}$
5 况 N 头白砂粉 徒 I 头南粉 徒 D 头京粉 徒 $\mathbb{D} \ N \setminus I \ = \ D \ N \ + \ a(I) \ = \ N^N \ + \ a(I) \ $
5. 设 N 为自然数集, I 为整数集, R 为实数集,则 $N \times I$ $R - N$, $\rho(I)$ N^N (填=,>,<)。
V.
四、解答题(每小题 10 分, 共 20 分)
1. 设集合 $A = \{2,4,6,\cdots,20\}$,定义 A 上的偏序关系 D 为整除关系,
(1) 给出偏序集合 $< A, D >$ 的哈斯图;
(2) 求出 $B = \{4,6,12\}$ 的最大元、最小元、极大元和极小元,并填入下表;
(3)求出 $C=\{8,10,20\}$ 的上界、下界、最小上界和最大下界,并填入下表。

集合	最大元	最小元	极大元	极小元
$B = \{4,6,12\}$				
集合	上界	下界	最小上界	最大下界
$C = \{8,10,20\}$				

2. 先化简含 $P \times Q \times R$ 三个命题变元的命题公式 $G: ((P \rightarrow Q) \wedge (P \rightarrow R)) \rightarrow P$,然后求 G 的主析取范式和主 合取范式。

冫 摋 盟 权 曧

五、证明题(每小题10分,共30分)

得分

1. 用推理规则证明:

 $\exists x P(x) \to \forall x (P(x) \lor Q(x) \to R(x)), \exists x P(x), \exists x Q(x) \Rightarrow \exists x \exists y (R(x) \land R(y)).$

 $(P \vee \neg Q \to R) \vee (\neg P \vee Q \to \neg R)$

2. 设F 是非空集合 A 上的所有划分组成的集合簇,试证关系细分是 F 上的偏序。

3. 设R为实数集合,N为自然数集合,证明: |R-N|=|R|。