FISEVIER

Contents lists available at SciVerse ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS[®]) Society recommendations[☆]

Kristoffer Lassen ^{a,b,*}, Marielle M.E. Coolsen ^c, Karem Slim ^d, Francesco Carli ^e, José E. de Aguilar-Nascimento ^f, Markus Schäfer ^g, Rowan W. Parks ^b, Kenneth C.H. Fearon ^b, Dileep N. Lobo ^h, Nicolas Demartines ^g, Marco Braga ⁱ, Olle Ljungqvist ^{j,k}, Cornelis H.C. Dejong ^c on behalf of the ERAS[®] Society, the European Society for Clinical Nutrition and Metabolism and the International Association for Surgical Metabolism and Nutrition

ARTICLE INFO

Article history: Received 7 August 2012 Accepted 19 August 2012

Keywords:
Enhanced Recovery After Surgery (ERAS)
Pancreatoduodenectomy
Whipple
Fast track
Critical pathway
Guidelines
Pancreas

SUMMARY

Background & aims: Protocols for enhanced recovery provide comprehensive and evidence-based guidelines for best perioperative care. Protocol implementation may reduce complication rates and enhance functional recovery and, as a result of this, also reduce length-of-stay in hospital. There is no comprehensive framework available for pancreaticoduodenectomy.

Methods: An international working group constructed within the Enhanced Recovery After Surgery (ERAS®) Society constructed a comprehensive and evidence-based framework for best perioperative care for pancreaticoduodenectomy patients. Data were retrieved from standard databases and personal archives. Evidence and recommendations were classified according to the GRADE system and reached through consensus in the group. The quality of evidence was rated "high", "moderate", "low" or "very low". Recommendations were graded as "strong" or "weak".

Results: Comprehensive guidelines are presented. Available evidence is summarised and recommendations given for 27 care items. The quality of evidence varies substantially and further research is needed for many issues to improve the strength of evidence and grade of recommendations.

Conclusions: The present evidence-based guidelines provide the necessary platform upon which to base a unified protocol for perioperative care for pancreaticoduodenectomy. A unified protocol allows for comparison between centres and across national borders. It facilitates multi-institutional prospective cohort registries and adequately powered randomised trials.

© 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

^a Department of GI and HPB Surgery, University Hospital Northern Norway, Tromsø and Institute of Clinical Medicine, University of Tromsø, Norway

^b Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, United Kingdom

^c Department of Surgery, University Hospital Maastricht and NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht, The Netherlands

^d Department of Digestive Surgery, Hospital CHU Estaing, Clermont-Ferrand, France

^e Department of Anesthesia, McGill University Health Centre, Montreal, Quebec, Canada

^f Department of Surgery, Federal University of Mato Grosso, Cuiaba, Brazil

^g Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Switzerland

h Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre National Institute for Health Research, Biomedical Research Unit, Nottingham University Hospitals, Queen's Medical Centre, Nottingham, United Kingdom

ⁱSan Raffaele University, Milan, Italy

^j Department of Surgery, Örebro University Hospital, Örebro, Sweden

k Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

[†] The guidelines are published as a joint effort between the Enhanced Recovery After Surgery (ERAS) Society, for Perioperative Care, The European Society for Clinical Nutrition and Metabolism (ESPEN) and The International Association for Surgical Metabolism and Nutrition (IASMEN) and copyrights for this publication is shared between the three societies. The guidelines are published jointly in World Journal of Surgery (IASMEN) and Clinical Nutrition (ESPEN), and will also be available on the ESPEN (http://www.espen.org) and ERAS Society websites (http://www.erassociety.org).

^{*} Corresponding author. Department of Gl and HPB Surgery, University Hospital Northern Norway, 9038 UNN-Tromsø, Norway. Tel.: +47 47616906; fax: +47 776 26605. E-mail addresses: lassen@unn.no, xtofero@gmail.com (K. Lassen).

1. Introduction

Enhanced Recovery After Surgery (ERAS), Fast-Track or Clinical Pathway programmes are multimodal strategies that aim to attenuate the loss of, and improve the restoration of, functional capacity after surgery. Morbidity is reduced¹ and recovery enhanced by reducing surgical stress, by optimal control of pain. early oral diet and early mobilisation. As a consequence, length-ofstay in hospital (LOSH) and costs are also reduced. The ERAS group has published evidence-based consensus recommendations for colorectal surgery.^{2,3} Beneficial experiences with clinical pathway programmes after pancreaticoduodenectomy (PD, Whipple's procedure) have been published, 4–9 but the reported series employed different protocols, or no prospective protocol at all.⁶ A comprehensive consensus framework is presented on which to base a future protocol for optimal perioperative care after PD. Such a recommendation will allow for a unified protocol to be developed and validated prospectively across different institutions and healthcare systems. This guideline framework has been formulated and endorsed by the ERAS Society, European Society for Clinical Nutrition and Metabolism (ESPEN) and the International Association for Surgical Metabolism and Nutrition (IASMEN).

2. Methods

2.1. Literature search

The authors met in April 2011 and the topics to be included were agreed and allocated. A principal literature search up to June 2011 was undertaken. Comprehensive drafts were circulated for discussion and reviewed in a group conference in November 2011. Additional relevant literature published after June 2011 was considered by members of the group at meetings in November 2011 and May 2012.

2.2. Study selection

All co-authors screened web-based databases and personal archives for relevant articles. Non-systematic emphasis was given to more recent publications and publications of better quality (moderate- and high-quality randomised controlled trials and high-quality, large cohort studies; and systematic reviews and meta-analyses of these). Retrospective series were considered only if data of better quality could not be identified.

2.3. Quality assessment and grading

The strength of evidence and conclusive recommendations were assessed and agreed by all authors in May 2012. Quality of evidence and recommendations were evaluated according to the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system. 10–12 Quoting from the GRADE guidelines, 12 the recommendations are: "Strong recommendations indicate that the panel is confident that the desirable effects of adherence to a recommendation outweigh the undesirable effects". "Weak recommendations indicate that the desirable effects of adherence to a recommendation probably outweigh the undesirable effects, but the panel is less confident". Recommendations are based on quality of evidence (high, moderate, low, very low) but also on the balance between desirable and undesirable effects; and on values and preferences. 12 The latter implies that, in some cases, strong recommendations may be reached from low-quality data and *vice versa*. A summary of the guidelines is shown in Table 1.

3. Evidence and recommendations

3.1. Preoperative counselling

Preoperative counselling targeting expectations about surgical and anaesthetic procedures may diminish fear and anxiety and enhance postoperative recovery and discharge. 13–15 Personal counselling, leaflets or multimedia information containing explanations of the procedure along with tasks that the patient should be encouraged to fulfil may improve perioperative feeding, early postoperative mobilisation, pain control, and respiratory physiotherapy; and hence reduce the risk of complications. 16–18 Ideally, the patient should meet with the surgeon, anaesthetist and nurse.

Summary and recommendation: Patients should receive dedicated preoperative counselling routinely.

Evidence level: Low.

Recommendation grade: Strong.

3.2. Preoperative biliary drainage

Five meta-analyses, $^{19-23}$ and two articles from a randomized controlled trial (RCT) not included in the meta-analyses, 24,25 assessed the role of biliary drainage before PD. The first metaanalysis from 2002, 19 included randomized (n = 5) and nonrandomized trials (n = 18). A Cochrane review²¹ included 5 randomized trials, but considered all 5 trials to have a risk of bias. thereby weakening the conclusions reached. Of the trials included, 4 evaluated percutaneous drainage and 1 evaluated endoscopic drainage. The Cochrane review concluded that preoperative biliary drainage did not decrease mortality in patients with obstructive jaundice. Although there was a trend towards decreased postoperative morbidity, the increased risk of procedure-related complications counterbalanced this possible benefit (especially for percutaneous drainage). The findings of the Cochrane review were in accordance with those of the other meta-analyses, suggesting that preoperative drainage confers neither benefit nor harm. One recent RCT not included in the meta-analyses²⁴ (and which included patients with serum bilirubin concentrations <250 µmol/l) showed increased morbidity in patients undergoing preoperative biliary drainage (endoscopic primarily; percutaneous as rescue option), but the delay in surgery did not affect overall survival.²⁵

Summary and recommendation: Preoperative endoscopic biliary drainage should not be carried out routinely in patients with a serum bilirubin concentration <250 μ mol/l.

Evidence level: Moderate. Recommendation grade: Weak.

G

3.3. Preoperative smoking and alcohol consumption

Overall postoperative morbidity is increased by two- to three-fold in alcohol abusers. ²⁶ Also, 1 month of preoperative abstinence has been shown to significantly improve outcome in a group who took "five or more drinks (60 g of ethanol) a day without clinical or historical evidence of alcohol related illness". ²⁷

Daily smokers (>2 cigarettes daily for \geq 1 year) have an increased risk of pulmonary and wound complications. ^{28,29} RCTs have demonstrated reductions in the rates of both types of complications 1 month after cessation of smoking. ^{29,30}

Summary and recommendation: For alcohol abusers, 1 month of abstinence before surgery is beneficial and should be attempted.

(continued on next page)

Table 1
Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS®) Society recommendations.

Item	Summary and recommendations	Evidence level	Recommendation grade
Preoperative counselling Perioperative biliary drainage	Patients should receive dedicated preoperative counselling routinely. Preoperative endoscopic biliary drainage should not be undertaken routinely in patients with a serum bilirubin concentration $<250~\mu mol/l$.	Low Moderate	Strong Weak
Preoperative smoking and alcohol consumption	For alcohol abusers, 1 month of abstinence before surgery is beneficial and should be attempted. For daily smokers, 1 month of abstinence before surgery is beneficial. For appropriate groups, both should be attempted.	Alcohol abstention: Low Smoking cessation: Moderate	Strong
Preoperative nutrition	Routine use of preoperative artificial nutrition is not warranted, but significantly malnourished patients should be optimized with oral supplements or enteral nutrition preoperatively.	Very low	Weak
Perioperative oral immunonutrition (IN)	The balance of evidence suggests that IN for 5–7 days perioperatively should be considered because it may reduce the rate of infectious complications in patients undergoing major open abdominal surgery.	Moderate	Weak
Oral bowel preparation	Extrapolation of data from studies on colonic surgery and retrospective studies in PD show that MBP has no proven benefit. MBP should not be used.	Moderate	Strong
Preoperative fasting and preoperative treatment with carbohydrates	Intake of clear fluids up to 2 h before anaesthesia does not increase gastric residual volume and is recommended before elective surgery. Intake of solids should be withheld 6 h before anaesthesia. Data extrapolation from studies in major surgery suggests that preoperative oral carbohydrate treatment should be given in patients without diabetes.	Fluid intake: High Solid intake: Low Carbohydrate loading: Low	Fasting: Strong Carbohydrate loading: Strong
Preanaesthetic medication	Data from studies on abdominal surgery show no evidence of clinical benefit from pre-operative use of long-acting sedatives, and they should not be used routinely. Short-acting anxiolytics may be used for procedures such as insertion of epidural catheters.	No long-acting sedatives: Moderate	Weak
Anti-thrombotic prophylaxis	LMWH reduces the risk of thromboembolic complications, and administration should be continued for 4 weeks after hospital discharge. Concomitant use of epidural analgesia necessitates close adherence to safety guidelines. Mechanical measures should probably be added for patients at high risk.	High	Strong
Antimicrobial prophylaxis and skin preparation	Antimicrobial prophylaxis prevents surgical-site infections, and should be used in a single-dose manner initiated 30–60 min before skin incision. Repeated intraoperative doses may be necessary depending on the half-life of the drug and duration of procedure.	High	Strong
Epidural analgesia	Mid-thoracic epidurals are recommended based on data from studies on major open abdominal surgery showing superior pain relief and fewer respiratory complications compared with intravenous opioids.	Pain: High Reduced respiratory complications: Moderate Overall Morbidity: Low	Weak
Intravenous analgesia	Some evidence supports the use of PCA or intravenous lidocaine analgesic methods. There is insufficient information on outcome after PD.	PCA: Very Low I.V. Lidocaine: Moderate	Weak
Wound catheters and transversus abdominis plane block	Some evidence supports the use of wound catheters or TAP blocks in abdominal surgery. Results are conflicting and variable, and mostly from studies on lower gastrointestinal surgery.	Wound catheters: Moderate TAP blocks: Moderate	Weak
Postoperative nausea and vomiting (PONV)	Data from the literature on gastrointestinal surgery in patients at risk of PONV show the benefits of using different pharmacological agents depending on the patient's PONV history, type of surgery and type of anaesthesia. Multimodal intervention during and after surgery is indicated.	Low	Strong
Incision	The choice of incision is at the surgeon's discretion, and should be of a length sufficient to ensure good exposure.	Very low	Strong
Avoiding hypothermia	Intraoperative hypothermia should be avoided by using cutaneous warming, i.e., forced-air or circulating-water garment systems.	High	Strong
Postoperative glycaemic control	Insulin resistance and hyperglycaemia are strongly associated with postoperative morbidity and mortality. Treatment of hyperglycaemia with intravenous insulin in the ICU setting improves outcomes but hypoglycaemia remains a risk. Several ERAS protocol items attenuate insulin resistance and facilitate glycaemic control without the risk of hypoglycaemia. Hyperglycaemia should be avoided as far as possible without introducing the risk of hypoglycaemia.	Low	Strong
Nasogastric intubation	Pre-emptive use of nasogastric tubes postoperatively does not improve outcomes, and their use is not warranted routinely.	Moderate	Strong
Fluid balance	Near-zero fluid balance, avoiding overload of salt and water results in improved outcomes. Perioperative monitoring of stroke volume with transoesophageal Doppler to optimize cardiac output with fluid boluses improves outcomes. Balanced crystalloids should be preferred to 0.9% saline	Fluid balance: High Oesophageal Doppler: Moderate Balanced crystalloids vs. 0.9% saline: Moderate	Strong
Perianastomotic drain	Early removal of drains after 72 h may be advisable in patients at low risk (i.e., amylase content in drain <5000 U/L) for developing a pancreatic fistula. There is insufficient evidence to recommend routine use of drains, but their use is based only on low-level evidence.	Early removal: High	Early removal: Strong
Somatostatin analogues	Somatostatin and its analogues have no beneficial effects on outcome after PD. In general, their use is not warranted. Subgroup analyses for variability in the texture and duct size of the pancreas are not available.	Moderate	Strong
Urinary drainage	Suprapubic catheterisation is superior to transurethral catheterisation if used for >4 days. Transurethral catheters can be removed safely on postoperative day 1 or 2 unless otherwise indicated.	High	For suprapubic: Weak Transurethral catheter out POD 1–2: Strong

Table 1 (continued)

Item	Summary and recommendations	Evidence level	Recommendation grade
Delayed gastric emptying (DGE)	There are no acknowledged strategies to avoid DGE. Artificial nutrition should be considered selectively in patients with DGE of long duration.	Very low	Strong
Stimulation of bowel movement	A multimodal approach with epidural and near-zero fluid balance is recommended. Oral laxatives and chewing gum given postoperatively are safe, and may accelerate gastrointestinal transit.	Laxatives: Very low Chewing gum: Low	Weak
Postoperative artificial nutrition	Patients should be allowed a normal diet after surgery without restrictions. They should be cautioned to begin carefully and increase intake according to tolerance over 3–4 days. Enteral tube feeding should be given only on specific indications and parenteral nutrition should not be employed routinely.	Early diet at will: Moderate	Strong
Early and scheduled mobilisation	Patients should be mobilized actively from the morning of the first postoperative day and encouraged to meet daily targets for mobilisation.	Very low	Strong
Audit	Systematic improves compliance and clinical outcomes.	Low	Strong

For daily smokers, 1 month of abstinence before surgery is beneficial. For appropriate groups, both should be attempted. Evidence level.

Alcohol abstention: Low. Smoking cessation: Moderate. Recommendation grade: Strong.

3.4. Preoperative nutrition

In western countries, patients scheduled for PD are, in general, not malnourished, and usually present with <7% weight loss.³¹ In such cases, preoperative artificial nutrition is not warranted. The situation may be different in other regions. It is widely accepted that significantly malnourished patients suffer increased postoperative morbidity after major surgery.^{32–34} Preoperative supplements with oral sip feeds or enteral tube feeds are usually administered in these cases, but scientific evidence to support this routine (as opposed to no nutritional support) is lacking. Extrapolating data from studies in the postoperative setting suggests that parenteral nutrition should be used only if the enteral route is inaccessible.

Summary and recommendation: Routine use of preoperative artificial nutrition is not warranted, but significantly malnourished patients should be optimized with oral supplements or enteral nutrition preoperatively.

Evidence level: Very low. Recommendation grade: Weak.

3.5. Perioperative oral immunonutrition (IN)

The role of IN has been investigated thoroughly over many years. Few studies specifically address IN for PD patients, and the variation in active immune-modulating nutrients administered makes interpretation difficult. A reduction in the prevalence of infectious complications is a consistent finding in patients with gastrointestinal cancer, as are beneficial effects on surrogate endpoints (levels of interleukins and C-reactive protein (CRP)) or LOSH. A reduction in mortality has not been shown. Several recently published reviews and meta-analyses^{35–41} conclude that there is a benefit from perioperative and postoperative IN in patients undergoing major gastrointestinal surgery, but results remain inconsistent. 42–44 Beneficial outcomes have been shown in a systematic review of 35 trials in patients undergoing elective surgery, in which arginine-supplemented diets were associated with a significantly reduced prevalence of infectious complications and LOSH. 45 There is also evidence to suggest that immunemodulating nutrition may be more beneficial in undernourished rather than in normally nourished patients. However, IN could be detrimental in patients with sepsis. ⁴⁶ There are no trials investigating IN within ERAS care pathways.

Summary and recommendation: The balance of evidence suggests that IN for 5–7 days perioperatively should be considered because it may reduce the prevalence of infectious complications in patients undergoing major open abdominal surgery.

Evidence level: Moderate. Recommendation grade: Weak.

3.6. Oral bowel preparation

Mechanical bowel preparation (MBP) may lead to dehydration and offset fluid and electrolyte balance, particularly in the elderly. Heta-analyses from colonic surgery have not shown clinical benefit from MBP. He Alarge and recent retrospective analysis of 200 consecutive patients undergoing PD did not find any benefit of MBP to a clear liquid diet the day before surgery. No trial has compared MBP to a regimen without MBP and an unrestricted diet until midnight before surgery.

Summary and recommendation: Extrapolation of data from colonic surgery and retrospective studies in PD show that MBP has no proven benefit. MBP should not be used.

Evidence level: Moderate. Recommendation grade: Strong.

3.7. Preoperative fasting and preoperative treatment with carbohydrates

Fasting from midnight has been standard practice in elective surgery, but is not supported by evidence.⁵¹ Overnight fasting increases insulin resistance and discomfort after abdominal surgery. 52,53 Guidelines recommend the intake of clear fluids \leq 2 h before the induction of anaesthesia as well as a fasting period of 6 h for solids.⁵⁴ The latter recommendation has a weak scientific basis. 55 Intake of a complex clear carbohydrate-rich drink designed for preoperative use ≤ 2 h before the induction of anaesthesia has been shown to reduce hunger, thirst and anxiety, and to decrease postoperative insulin resistance.^{56–58} Earlier resumption of gut function after colorectal surgery has also been suggested, 59 and an RCT including some PD patients concluded that oral carbohydrate treatment may preserve skeletal muscle mass.⁶⁰ An RCT conducted in patients undergoing cholecystectomy did not show any benefit.⁶¹ Data on the safety and clinical benefit of preoperative carbohydrate in patients with diabetes are sparse, ^{62,63} and further research is warranted in this group.

Summary and recommendation: Intake of clear fluids up to 2 h before anaesthesia does not increase gastric residual volume and is recommended before elective surgery. Intake of solids should be withheld 6 h before anaesthesia. Data extrapolation from studies in major surgery suggests that preoperative oral carbohydrate treatment should be given in patients without diabetes.

Evidence level. Fluid intake: High. Solid intake: Low.

Carbohydrate loading: Low.

Recommendation grade. Fasting: Strong.

Carbohydrate loading: Strong.

3.8. Pre-anaesthetic medication

Anxiety makes postoperative pain more difficult to control. Preemptive treatment of anxiety could lower pain scores and reduce the demand for opiates. ⁶⁴ However, pre-induction anxiolytic medication increases postoperative sedation, ⁶⁵ and a meta-analysis did not demonstrate reduced postoperative pain with pre-emptive use of analgesics. ⁶⁶ Short-acting anxiolytics may be helpful in some patients during placement of an epidural catheter, and experiences from day surgery suggest that cognitive function is not significantly impaired. ⁶⁷ Additionally, oral fluids and a carbohydrate-rich beverage have been shown to reduce preoperative anxiety. ⁵⁷ Medications for chronic pain need to be continued on the morning of surgery, and should be prescribed in the postoperative period.

Summary and recommendation: Data from studies on abdominal surgery show no evidence of clinical benefit from preoperative use of long-acting sedatives, and they should not be used routinely. Short- acting anxiolytics may be used for procedures such as insertion of epidural catheters.

Evidence level:

No long-acting sedatives: Moderate. Recommendation grade: Weak.

3.9. Anti-thrombotic prophylaxis

Malignant disease and major surgery increase the risk of venous thromboembolism (VTE). 68 Unfractionated and fractionated low-dose heparins are effective at preventing VTE. 69 Fractionated low-molecular-weight heparin (LMWH) is preferable in view of compliance (once-daily administration). 70 Treatment is usually initiated 2–12 h before surgery and continued until patients are fully mobile. A meta-analysis supports continued treatment for 4 weeks after hospital discharge. 71 Concomitant use of LMWH and epidural catheters is controversial. $^{72-75}$ It has, therefore, been recommended that the catheter be inserted \geq 12 h after a dose of LMWH, and removed \geq 12 h after administration of LMWH. 76 The risk of an epidural or spinal haematoma is increased in patients who are also on anti-platelet drugs or oral anticoagulants. 73 Combined prophylactic modalities have been shown to be superior to pharmacological measures only in preventing VTE. 77 Mechanical intermittent pneumatic leg compression, 77 and elastic stockings may be used as adjuncts in patients who are at moderate or high risk for VTE. 78

Summary and recommendation: LMWH reduces the risk of thromboembolic complications. Administration should be

continued for 4 weeks after hospital discharge. Concomitant use of epidural analgesia necessitates close adherence to safety guidelines. Mechanical measures should probably be added for patients at high risk.

Evidence level: High.

Recommendation grade: Strong.

3.10. Antimicrobial prophylaxis and skin preparation

There is ample evidence favouring the prescription of antimicrobial prophylaxis for major abdominal procedures. 79,80 Trials specifically targeting patients undergoing PD were not identified. Recently published studies reported or recommended prescription in a single-dose manner.80 However, an extra dose should be provided every 3–4 h during the procedure if drugs with a short half-life are chosen.⁸¹ Initial administration should be as near as possible to the skin incision and ≤ 1 h before the incision.^{79,82} The choice of antibiotic is dependent upon local guidelines, and should be different from the drug of choice for treatment of established infections. Skin preparation with a scrub of chlorhexidine-alcohol has recently been claimed to be superior to povidone-iodine in preventing surgical-site infections.⁸³ However, the difference is likely to be very small because excellent results are obtained with povidone-iodine.⁸⁴ Alcohol-based scrubs have been reported to be used in fire-based and burn injuries.85

Summary and recommendation: Antimicrobial prophylaxis prevents surgical-site infections and should be used in a single-dose manner initiated 30—60 min before skin incision. Repeated intraoperative doses may be necessary depending on the half-life of the drug and duration of the procedure.

Evidence level: High.

Recommendation grade: Strong.

3.11. Epidural analgesia

A meta-analysis showed that continuous epidural analgesia with or without opioids provided significant improvement in postoperative pain control compared with parenteral opioids in open abdominal surgery.86 Moreover, a Cochrane review demonstrated that continuous epidural analgesia is superior to patientcontrolled intravenous opioid analgesia in relieving pain <72 h after open abdominal surgery.⁸⁷ A decreased prevalence of ileus was found for epidural administration of local anaesthetic after laparotomy compared with systemic or epidural opioids in one Cochrane review.⁸⁸ With respect to complications after abdominal or thoracic surgery, a meta-analysis⁸⁹ concluded that epidural analgesia was associated with a significantly decreased risk of postoperative pneumonia, as well as an improvement in pulmonary function and arterial oxygenation. Also, the use of epidurals has been shown to reduce insulin resistance. 90 Despite the widespread use of epidural analgesia after pancreatic surgery, 91 RCTs that specifically examine the outcomes of epidural analgesia after pancreatic surgery are lacking. A retrospective study comparing epidural analgesia with intravenous analgesia after PD found that patients with epidural analgesia had lower pain scores but significantly higher rates of major complications. 92 It has been suggested that thoracic epidural analgesia after PD is associated with haemodynamic instability, which might compromise enteric anastomoses, intestinal perfusion and recovery of gastrointestinal function.⁹² In experimental acute pancreatitis and in sepsis, however, thoracic epidurals improved perfusion in gastrointestinal mucosal capillaries. 93 The adverse perfusion effects of epidural

analgesia appear to be related to the prolonged and extended sympathetic block. This would imply that the beneficial effects of epidural analgesia can be preserved as long as the haemodynamic consequences are adequately controlled with vasopressors. ⁹⁴ Concerns about anastomoses have been raised after colorectal surgery, but one meta-analysis did not detect differences in rates of anastomotic leaks between patients receiving postoperative local anaesthetic epidurals and those receiving systemic or epidural opioids. ⁹⁵

A potential drawback with epidurals is that as many as one-third of epidurals may not function satisfactorily in some centres. 96,97 Possible reasons may be that: catheters are not located in the epidural space; the insertion level does not cover the surgical incision; the dosage of local anaesthetic and opioid are insufficient; or pump failure. For upper transverse incisions, epidural catheters should be inserted between T5 and T8 root levels. Sensory block should be tested (cold and pinprick) before induction of general anaesthesia. Efforts should be made to check the sensory block on a daily (or more frequent) basis, and the infusion should be adjusted to provide sufficient analgesia to allow mobilisation out of bed. It has been suggested that epidural analgesia should continue for >48 h and, after a successful stop-test, oral multimodal analgesia with paracetamol and non-steroidal anti-inflammatory drugs (NSAIDS)/ cyclooxygenase (COX)-2 inhibitors should be commenced together with oral opioids as required. Functioning epidural catheters may be used for a longer duration if needed. Further studies are warranted to evaluate specifically the potential risks and benefits of epidural analgesia after pancreatic surgery. The use of epidurals has not been investigated for laparoscopic pancreatic resections.

Summary and recommendation: Mid-thoracic epidurals are recommended based on data from studies on major open abdominal surgery showing superior pain relief and fewer respiratory complications compared with intravenous opioids. Evidence level.

Pain: High.

Reduced respiratory complications: Moderate.

Overall Morbidity: Low. Recommendation grade: Weak.

3.12. Intravenous analgesia

Thoracic epidural anaesthesia remains the 'gold standard' method for major open abdominal surgery, but there are situations in which it cannot be employed. Patient-controlled analgesia (PCA) with opioids is the most common modality used as an alternative to an epidural. In a clinical trial on the implementation of a critical pathway for distal pancreatic surgery, PCA was the only analgesic modality used, but no comments were made on the impact of systemic analgesia on accelerating recovery. ⁹⁸

Intravenous infusion of lidocaine has analgesic, antiinflammatory and antihyperalgesic properties, and has been evaluated as an analgesic modality for abdominal surgery. A systematic review of 8 trials (161 patients) in which the continuous infusion of lidocaine was compared with PCA morphine for abdominal surgery, showed a decrease in the duration of ileus, LOSH, postoperative pain intensity and side effects. ⁹⁹ A recent RCT in patients undergoing laparoscopic colorectal resection using the ERAS programme showed no difference in return of gastrointestinal function and LOSH between continuous infusion of lidocaine and thoracic epidural anaesthesia. ¹⁰⁰

Summary and recommendation: Some evidence supports the use of PCA or intravenous lidocaine analgesic methods. There is insufficient information on outcome after PD.

Evidence level. PCA: Very Low.

I.V. Lidocaine: Moderate. Recommendation grade: Weak.

3.13. Wound catheters and transversus abdominis plane (TAP)

The efficacy of wound infusion with local anaesthetic agents as a postoperative analgesic method has been proven in a metaanalysis of different surgical procedures. 101 Conversely, a more recent meta-analysis showed that wound catheters provided no significant reduction in pain intensity (at rest or with activity) or in morphine consumption at any time after laparotomy. 102 No significant differences in the prevalence of infectious complications were found. These inconsistent results might be due to factors such as the type, concentration and dose of local anaesthetic, type of catheter, mode of delivery, or catheter location (subcutaneous or subfascial). 103 In patients undergoing colorectal surgery, a significant opioid-sparing effect and reduction of LOSH were demonstrated when local anaesthetic was infused through a catheter positioned between the fascia and the peritoneum. 104 No significant increase in wound infections was found with the insertion of a catheter and infusion of local anaesthetics. No comparison has been made with other modalities (e.g., epidural analgesia) or in enhanced recovery programmes.

TAP blocks anaesthetise the thoracolumbar nerves (intercostal, subcostal and first lumbar), which provide sensory innervation to the anterolateral abdominal wall. The ultrasonography-guided technique for TAP blocks has been used for postoperative analgesia after abdominal surgery. A systematic analysis of 7 studies (360 patients) showed significant opioid-sparing in the postoperative period. The postoperative period. The postoperative period to a meta-analysis of 5 RCTs (176 patients) confirmed previous results showing improved pain relief and reduced opioid-associated side effects. The However, no studies have compared TAP block with other analgesic methods such as epidural analgesia or infiltration of local anaesthetic into the abdominal wound. Furthermore, no studies have used an enhanced recovery programme and no studies have been conducted in patients undergoing pancreatic surgery.

The marked heterogeneity observed between studies included in the meta-analyses mentioned above would imply that further trials are needed to evaluate the potential use of wound catheters and TAP blocks in pancreatic surgery.

Summary and recommendation: Some evidence supports the use of wound catheters or TAP blocks in abdominal surgery. Results are conflicting and variable and mostly from studies in lower gastrointestinal surgery. Evidence level.

Wound catheters: Moderate. TAP blocks: Moderate. Recommendation grade: Weak.

3.14. Postoperative nausea and vomiting (PONV)

Data specifically addressing PONV after PD specifically have not been identified. One comparative (non-randomized) study⁷ showed that an ERAS protocol with early mobilisation, metoclopramide and removal of nasogastric tube on day 1 or day 2 decreased the rate of postoperative nausea and vomiting. Until further documentation becomes available, the suggestions for patients undergoing colorectal surgery³ should be applicable to those undergoing PD:

Patients with two risk factors (female sex, non-smoking status, history of motion sickness (or PONV) and postoperative administration of opioids ^{108,109}) should receive prophylaxis with dexamethasone at induction or a serotonin receptor antagonist (e.g., ondansetron, tropisetron) at the end of surgery. ¹¹⁰ High-risk individuals (three factors) should receive general anaesthesia with propofol and remifentanil and no volatile anaesthetics; and dexamethasone 4–8 mg at the beginning of surgery, supplemented with serotonin receptor antagonists or droperidol, ¹¹⁰ or 25–50 mg metoclopramide 30–60 min before the end of surgery. ¹¹¹ Ondansetron can be used for prophylaxis and treatment. A possible risk of impaired anastomotic healing caused by single-dose dexamethasone or other steroids perioperatively has been addressed clinically and experimentally, but remains unclear. ^{112–115}

Summary and recommendation: Data from the literature on gastrointestinal surgery in patients at risk of PONV show the benefits of using different pharmacological agents depending on the patient's PONV history, type of surgery and type of anaesthesia. Multimodal intervention, during and after surgery is indicated. Evidence level: Low.

Recommendation grade: Strong.

3.15. Incision

There are no data comparing the types of incisions for patients undergoing PD. The authors of these recommendations are comfortable with straight transverse, curved transverse and chevron incisions, indicating that all are practical. Laparoscopic resection of the pancreatic head has been reported to be feasible, ¹¹⁶ but its future role is uncertain.

Summary and recommendation: The choice of incision is at the surgeon's discretion, and should be of a length sufficient to ensure good exposure.

Evidence level: Very Low. Recommendation grade: Strong.

3.16. Avoiding hypothermia

Several meta-analyses and RCTs have demonstrated that preventing inadvertent hypothermia during major abdominal surgery (such as PD) reduces the prevalence of wound infections, \$^{117,118}\$ cardiac complications, \$^{118-120}\$ bleeding and transfusion requirements, \$^{118-121}\$ as well as the duration of post-anaesthetic recovery. Furthermore, extending systemic warming in the perioperative period (2 h before and after surgery) has additional benefits. \$^{123}\$ Hence, the use of active cutaneous warming is highly recommended to reduce post-operative morbidity and enhance recovery. There is even evidence to suggest that circulating-water garments offer better temperature control than forced-air warming systems. $^{124-126}$

Summary and recommendation: Intraoperative hypothermia should be avoided by using cutaneous warming, i.e., forced-air or circulating-water garment systems.

Evidence level: High.

Recommendation grade: Strong.

3.17. Postoperative glycaemic control

Postoperative hyperglycaemia in patients without diabetes is a result of acquired insulin resistance. Morbidity and mortality after major abdominal surgery have been associated with increasing levels of insulin resistance¹²⁷ and plasma glucose.¹²⁸ Such an association has also been demonstrated in pancreatic surgery.¹²⁹ Data from patients subjected to colorectal surgery within an ERAS regimen indicate that higher preoperative levels of glycated haemoglobin (HBA1c) and higher postoperative levels of glucose also predict postoperative morbidity.¹³⁰

Core elements of ERAS protocols attenuate postoperative insulin resistance and thus also lower glucose levels. ^{131,132} The most obvious (of several) protocols are avoidance of preoperative fasting and oral bowel preparation; use of oral carbohydrate treatment and stimulation of early resumption of gut function by optimal fluid balance and avoidance of systemic opioids; and the reduction of the stress response by use of epidural anaesthesia.

Reducing the rate of hyperglycaemia in surgical patients in intensive-care settings has been documented to reduce the rate of complications. Similar trials in ward settings in patients treated with modern care regimens are wanting. The target concentration for plasma glucose is controversial, to advocate that hyperglycaemia should be avoided and that this will improve outcome irrespective of the baseline level. Achieving tight glycaemic control with intravenous insulin is challenging in the ward setting because of the risk of hypoglycaemia. Glucosuria with the risk of hypovolaemia will ensue when the renal threshold is passed at >12 mmol/l. This level has been used as the control regimen in seminal trials 33,138 and should probably be regarded as a limit irrespective of settings to avoid additional disturbances in fluid balance.

Summary and recommendation: Insulin resistance and hyperglycaemia are strongly associated with postoperative morbidity and mortality. Treatment of hyperglycaemia with intravenous insulin in the intensive-care setting improves outcomes but hypoglycaemia remains a risk. Several ERAS protocol items attenuate insulin resistance and facilitate glycaemic control without the risk of hypoglycaemia. Hyperglycaemia should be avoided as far as possible without introducing the risk of hypoglycaemia.

Evidence level: Low.

Recommendation grade: Strong.

3.18. Nasogastric intubation

There is strong evidence that routine nasogastric decompression after elective laparotomy should be avoided.¹³⁹ Fever, atelectasis and pneumonia occur more frequently in patients with a nasogastric tube than in those without. Bowel function returns earlier in patients if nasogastric decompression is avoided. 139 Gastro-oesophageal reflux is increased during laparotomy if nasogastric tubes are inserted. 141 The role of nasogastric tubes has not been investigated prospectively in pancreatic surgery. However, the abundant high-level evidence in other fields of abdominal surgery, including gastroduodenal surgery, 139 should allow for an extrapolation to patients undergoing PD and justify a 'no decompressive nasogastric tube' policy. This is also supported by some series with historic controls. A large Norwegian RCT in patients after upper gastrointestinal and hepatopancreaticobiliary surgery (and including >80 patients who had undergone PD and were treated without routine use of a nasogastric tube) found that early oral feeding was safe and feasible. 144 This has also been corroborated by other non-randomized, fast-track implementation series in this field.^{5–7,9} In keeping with data in other areas of gastrointestinal surgery, nasogastric decompression tubes had to be replaced in \leq 15% of patients. ^{6,7,9} Nasogastric tubes placed during surgery (to evacuate air) should be removed before the reversal of anaesthesia. Delayed gastric emptying is a specific problem in $\approx 10-25\%$ of patients after PD^{6,7,9} and it may be necessary to insert a decompression tube in a minority of patients postoperatively.

Summary and recommendation: Pre-emptive use of nasogastric tubes postoperatively does not improve outcomes and their use is not warranted routinely.

Evidence level: Moderate.
Recommendation grade: Strong.

3.19. Fluid balance

Patients undergoing abdominal surgery often receive excessive volumes of intravenous fluids during and in the days after surgery. This frequently exceeds actual fluid losses, resulting in a weight gain of 3-6 kg. 145,146 Excessive overload of salt and water in the perioperative period increases postoperative complication rates and delays the return of gastrointestinal function. 146-149 This strongly suggests that near-zero fluid balance must be achieved perioperatively. Identifying the correct amount needed is a challenge that is also complicated by the use of epidural analgesia, which causes vasodilatation and intravascular hypovolaemia with hypotension, which is often interpreted and treated as fluid depletion. The result is copious volumes of fluid administration when a vasopressor would be preferable. 150 In a meta-analysis of elective colorectal patients, intraoperative flow-guided fluid therapy with transoesophageal Doppler (TOD) ultrasonography to accurately assess and monitor fluid status in relation to cardiac output reduced complications and LOSH. 151 Other methods, such as lithium dilution (LiDCO) are evolving and may prove to be equivalent to TOD.

Hyperchloraemic acidosis results from infusion of 0.9% saline. Recent studies have shown that excessive use of 0.9% saline leads to renal oedema, reduced flow velocity in the renal artery, renal cortical tissue perfusion, ¹⁵² and an overall increase in postoperative complications when compared with balanced crystalloids. ¹⁵³ A recent meta-analysis ¹⁵⁴ has suggested that postoperative complications and LOSH are significantly reduced if patients undergoing major abdominal surgery are maintained in fluid balance rather than fluid imbalance. The meta-analysis concluded that too much and too little fluid is detrimental to outcome. Although colloids produce better blood volume expansion and less interstitial space overload than crystalloids, ¹⁵⁵ there is no evidence from clinical trials and meta-analyses that colloids result in better clinical outcome than crystalloids. ¹⁵⁶ To avoid unnecessary fluid overload, vasopressors should be considered for intra- and postoperative management of epidural-induced hypotension.

Summary and recommendation: Near-zero fluid balance as well as avoiding overload of salt and water results in improved outcomes. Perioperative monitoring of stroke volume with trans-oesophageal Doppler to optimize cardiac output with fluid boluses improves outcomes. Balanced crystalloids should be preferred to 0.9% saline.

Evidence level.

Fluid balance: High.

Oesophageal Doppler: Moderate.

Balanced crystalloids vs. 0.9 % saline: Moderate.

Recommendation grade: Strong.

3.20. Perianastomotic drains

Perianastomotic drains are believed to ameliorate the consequences of minor leaks and allow them to be treated as controlled

fistulas. One RCT comparing suction drain to no drain after pancreatic cancer resection did not show significant differences in terms of mortality or overall complication rate.¹⁵⁷ Moreover, patients who used these drains had a significantly greater incidence of intra-abdominal collections or fistulas (pancreatic and entero-cutaneous).¹⁵⁷ A series with historic controls failed to identify any increased risk after a no-drain regimen, but this design is prone to selection bias.¹⁵⁸ Evaluation of early (postoperative day 3) versus late (postoperative day 5 and beyond) drain removal has been examined in an RCT. 159 Early removal of the drain in patients at low risk of pancreatic fistula (amylase value in drains <5000 U/L at postoperative day 3) was associated with a significantly decreased rate of pancreatic fistula, abdominal and pulmonary complications. Until further data are available, a conservative approach with systematic postoperative drainage and early removal in patients at low risk of pancreatic fistula (firm pancreas, wide pancreatic duct^{159–161}) is recommended. In accordance with this notion, it would seem wise to place a drain in patients with a soft pancreas and narrow duct, and leave this drain in situ slightly longer.

Summary and recommendation: Early drain removal after 72 h may be advisable in patients at low risk (i.e., amylase content in drain <5000 U/L) for developing a pancreatic fistula. There is insufficient evidence to recommend no routine use of drains routinely, but their use is based only on low-level evidence.

Evidence level.

Early removal: High. Recommendation grade. Early removal: Strong.

3.21. Somatostatin analogues

Somatostatin and its synthetic analogues (e.g., octreotide) reduce splanchnic blood flow and the release of pancreatic exocrine secretion.¹⁶² The rationale for its use is to reduce the risk of pancreatic anastomotic fistulas by decreasing the volume of pancreatic exocrine secretions. Several RCTs have resulted in four systemic reviews and meta-analyses that assessed the possible role of a protective effect in pancreatic surgery. ^{163–166} The most recent meta-analysis involved 17 trials with 1457 patients undergoing PD and 686 undergoing distal or other resections. 166 The authors concluded that the use of somatostatin analogues reduced the crude rate of pancreatic fistulas, but that the rate of clinically significant fistulas as well as the overall major morbidity and mortality remained unchanged. 166 Subgroup analyses of the PD patients showed no significant effect of somatostatin/octreotide on any of the reported outcomes. 166 The beneficial effect of somatostatin commonly believed to be present in cases with acknowledged risk factors (soft pancreas, small pancreatic duct) is not substantiated by the available evidence.

Summary and recommendation: Somatostatin and its analogues have no beneficial effects on outcome after PD. In general, their use is not warranted. Subgroup analyses for the variability in the texture and duct size of the pancreas are not available.

Evidence level: Moderate. Recommendation grade: Strong.

3.22. Urinary drainage

A meta-analysis of RCTs on urinary drainage after surgery showed that suprapubic catheterisation was superior to

transurethral catheterisation.¹⁶⁷ Patients found suprapubic catheters more acceptable, and morbidity was reduced.¹⁶⁷ Most trials in the meta-analysis evaluated urinary drainage for 4–7 days. The only trial in the meta-analysis focusing specifically on hepatopancreaticobiliary surgery¹⁶⁸ included 82 such patients out of a total of 146. The number of patients undergoing PD was not stated. The authors found no difference in outcomes, but argued that suprapubic catheterisation is probably superior; however, the difference is likely to be small. A recent RCT with a large number of patients undergoing major surgery with thoracic epidurals found removal of transurethral catheter on postoperative day 1 to be superior in terms of infection rates and did not lead to an increased rate of re-catheterisation when compared with removal on day 3–5.¹⁶⁹

Summary and recommendation: Suprapubic catheterisation is superior to transurethral catheterisation if used for >4 days. Transurethral catheters can be removed safely on postoperative day 1 or 2 unless otherwise indicated.

Evidence level: High. Recommendation grade. For suprapubic: Weak.

Transurethral catheter out postoperative day 1–2: Strong.

3.23. Delayed gastric emptying (DGE)

DGE is a specific problem after PD occurring in $\approx 10-25\%$ of patients. 6,7,9,170 It may be necessary to insert a nasojejunal feeding tube in a minority of patients. DGE is as common after pylorus-preserving PD as after a classic Whipple's procedure. 171 In this context, DGE was less common in a fast-track group compared with a traditional care group in one study. For pylorus-preserving PDs, it has been shown that constructing the duodenojejunostomy in an ante-colic (as opposed to a retro-colic) fashion results in less DGE. Occasionally, DGE persists and may necessitate enteral feeding delivered beyond the gastrojejunostomy (or even parenteral nutrition). The available definition of DGE 170 is based on the assessed need for nasogastric tubes. The entity is susceptible to being overdiagnosed, and care should be taken to ensure that it does not encourage the insertion of nasogastric tubes as routine practice.

Summary and recommendation: There are no acknowledged strategies to avoid DGE. Artificial nutrition should be considered selectively in patients with DGE of long duration.

Evidence level: Very low. Recommendation grade: Strong.

3.24. Stimulation of bowel movement

There is no high-level evidence to support a specific motility-enhancing drug. A multimodal approach involving the use of oral laxatives such as magnesium sulphate or bisacodyl may induce early gastrointestinal transit after colonic resections. ¹⁷³,1⁷⁴ Some protocols for fast-track pancreatic surgery have recommended the use of laxatives postoperatively. ¹⁷⁵ In a series of 255 pancreatic resections (almost 60% PDs), oral administration of magnesium (200 mg/day) and lactulose in addition to metoclopramide on postoperative day 1 to support early start of normal bowel function was advocated. Along with other multimodal prescriptions, the authors concluded that this protocol was associated with a low prevalence of readmission to hospital, mortality, and morbidity rates. However, no randomized trial has investigated the use of oral laxatives, so further studies are necessary. As noted above, the appropriate use of

epidurals and maintaining a near-zero fluid balance are associated with an enhanced return of bowel activity after abdominal surgery. 88,146 Chewing gum has been shown to be safe and beneficial in restoring gut activity after colorectal surgery. $^{176-178}$

Summary and recommendation: A multimodal approach with epidural and near-zero fluid balance is recommended. Oral laxatives and chewing gum given postoperatively are safe and may accelerate gastrointestinal transit.

Evidence level.

Laxatives: Very low. Chewing gum: Low. Recommendation grade: Weak.

3.25. Postoperative artificial nutrition

Most patients tolerate normal oral intake soon after elective PD. Early oral intake in this patient group has been shown to be feasible and safe. 6,144 A recent large multicentre RCT in patients undergoing only major upper gastrointestinal and hepatopancreaticobiliary surgery (including >80 patients undergoing PD) investigated this issue and concluded that allowing early diet is safe for these patients and that enteral tube feeding did not confer benefit.¹⁴⁴ This is in keeping with other reports,¹⁷⁹ including enteral tube feeding after other major abdominal surgery.¹⁸⁰ There are no data to support the idea that a surgeon-controlled stepwise increase from spoonfuls of water to a normal diet is safer than a patient-controlled routine as long as patients are informed about the potential of impaired gut function in the early postoperative period. Enteral or parenteral nutritional support will often be necessary if major complications develop. Parenteral nutrition is indicated only in those patients who cannot eat and drink normally, and who in addition cannot tolerate enteral nutrition. 181 Parenteral nutrition should be reduced as the tolerance of enteral nutritional intake increases.

Enteral tube feeding delivers artificial nutrients, but is a non-volitional intervention that bypasses the cephalic-vagal digestive reflex and carries significant risks. ^{182,183} Traditionally, benefit has been shown compared with parenteral nutrition and is based on an assumption that an early- or patient-controlled oral diet is unacceptable. ³¹ The superiority of enteral tube feeding over an early oral diet after major abdominal surgery (including after PD), has not been documented and the opposite might well be the case (as outlined above). Oral nutritional supplementation post-hospital discharge seems appealing in a patient group known to struggle to achieve dietary goals, but evidence for a benefit is lacking. ¹⁸⁴

Summary and recommendation: Patients should be allowed a normal diet after surgery without restrictions. They should be cautioned to begin carefully and increase intake according to tolerance over 3–4 days. Enteral tube feeding should be given only on specific indications and parenteral nutrition should not be employed routinely.

Evidence level.

Early diet at will: Moderate. Recommendation grade: Strong.

3.26. Early and scheduled mobilisation

The relatively slow resumption of function in the stomach and gut together with significant surgical trauma leads to a prolonged recovery period in PD patients compared with many other laparotomy patients even in the absence of major complications. Extended bed rest is associated with several unwanted effects. ^{185,186} Scientific data are lacking, but the authors have

observed the feasibility of written instructions for patients with detailed day-to-day targets postoperatively. This ensures autonomy and cooperation from patients. Daily progress can be monitored with diaries or with simple monitoring devices for patient activity. Analgesia must be adequate not only for rest, but also for early mobilisation.

Summary and recommendation: Patients should be mobilized actively from the morning of the first postoperative day and encouraged to meet the daily targets for mobilisation.

Evidence level: Very low.

Recommendation grade: Strong.

3.27. Audit

Systematic audit is essential to determine clinical outcome and to establish the successful implementation and continued use of a care protocol. There are also indications that audit *per se* improves clinical results through feedback.¹⁸⁷ It is vital to distinguish between unsuccessful implementation and lack of desired effect from an implemented protocol if results are short of the desired quality standards. Comparison with other centres using similar protocols *via* identical tools of registration and identical definitions of key factors is needed.

Summary and recommendation: Systematic audit improves compliance and clinical outcomes.

Evidence level: Low.

Recommendation grade: Strong.

4. Conclusion

ERAS® programmes have been strongly associated with reduced LOSH but this may not be the best indicator of the quality of functional recovery. An awareness of goals that improve safety and clinical outcomes is of greater importance. Emphasis must be placed on reducing morbidity with the introduction of standardised and appropriate enhanced recovery programmes based on best available scientific evidence.

Multimodal ERAS programmes are complex interventions that pose significant challenges to evaluation by conventional RCTs. 175,188 The most obvious of these challenges are standardisation of the intervention and a rapidly closing window of opportunity from ethical and practical concerns.¹⁸⁹ This may, to some extent, explain the relative paucity of RCTs evaluating ERAS programmes and the somewhat limited effect that has been shown on endpoints other than LOSH. In addition, interventions like these pathways are prone to show significant Hawthorne or Trial effects. 190,191 This implies that the collateral effect on the infrastructure and management culture to implement such a comprehensive programme will have beneficial consequences in addition to those caused by the protocol items themselves or their synergistic effect. As has also been pointed out for this patient group, 175 this is nevertheless a benefit related to the use of these programmes. For these reasons it may be argued that a randomised evaluation of an evidence-based ERAS protocol against traditional care may not be the way forward. Furthermore, it seems reasonable to propose that, if RCTs have proven the benefit (item by item) of two wheels, two pedals, a frame, a chain and a handle bar, then a bicycle is highly likely to be a valuable tool. Feasibility, however, must be ensured. Hence, multicentre and multinational prospective validation of a unified and comprehensive perioperative care protocol in consecutive cohorts of patients undergoing PD is warranted.

Statement of authorship

Scientific input, literature search, writing of the manuscript, critical revision and final approval of manuscript: All authors.

KL coordinated writing and revision process and edited the paper.

DNL, KCHF and OL acted as an editing group for three simultaneous ERAS®-group articles to ensure homogeneity in methodology and layout.

Conflicts of interest

The ERAS Society $^{\otimes}$ receives an unrestricted grant from Nutricia Clinical Care.

KL, MMEC, KS, FC, MS, RWP, KCHF, ND, MB, CHCD: Declare no conflicts of interests.

JEdA-N has received travel support for lectures and meetings from Nestle and Fresenius-Kabi.

DNL has received unrestricted research funding, travel grants and speaker's honoraria from Baxter Healthcare, Fresenius Kabi and BBraun.

OL has served as an external Advisor to Nutricia Clinical Care, and received travel and lecture honoraria from Nutricia, Fresenius-Kabi, BBraun, Baxter and Nestle. OL previously held a patent for a preoperative carbohydrate drink formerly licensed to Nutricia.

References

- Varadhan KK, Neal KR, Dejong CH, Fearon KC, Ljungqvist O, Lobo DN. The enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. *Clin Nutr* 2010;29:434–40.
- Fearon KC, Ljungqvist O, Von Meyenfeldt M, Revhaug A, Dejong CH, Lassen K, et al. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin Nutr 2005;24:466–77.
- Lassen K, Soop M, Nygren J, Cox PBW, Hendry PO, Spies C, et al. Consensus review of optimal perioperative care in colorectal surgery. Arch Surg 2009;144:961–9.
- Wichmann MW, Roth M, Jauch KW, Bruns CJ. A prospective clinical feasibility study for multimodal "fast track" rehabilitation in elective pancreatic cancer surgery. *Rozhl Chir* 2006;85:169–75.
- Kennedy EP, Rosato EL, Sauter PK, Rosenberg LM, Doria C, Marino IR, et al. Initiation of a critical pathway for pancreaticoduodenectomy at an academic institution – the first step in multidisciplinary team building. J Am Coll Surg 2007;204:917–23.
- Berberat PO, Ingold H, Gulbinas A, Kleeff J, Muller MW, Gutt C, et al. Fast track

 different implications in pancreatic surgery. J Gastrointest Surg 2007;11: 880–7.
- Balzano G, Zerbi A, Braga M, Rocchetti S, Beneduce AA, Di C, et al. Fast-track recovery programme after pancreaticoduodenectomy reduces delayed gastric emptying. Br I Surg 2008:95:1387–93.
- Montiel Casado MC, Pardo SF, Rotellar SF, Marti CP, Alvarez Cienfuegos FJ. Experience of a cephalic pancreatoduodenectomy fast-track program. Cir Esp 2010;87:378–84.
- di Sebastiano P, Festa L, De Bonis A, Ciuffreda A, Valvano MR, Andriulli A, et al. A modified fast-track program for pancreatic surgery: a prospective single-center experience. *Langenbecks Arch Surg* 2011;396:345–51.
- Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, onso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMI 2008;336:924–6.
- Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schunemann HJ. What is "quality of evidence" and why is it important to clinicians? *BMJ* 2008;336: 995–8.
- 12. Guyatt GH, Oxman AD, Kunz R, Falck-Ytter Y, Vist GE, Liberati A, et al. Going from evidence to recommendations. *BMJ* 2008;**336**:1049–51.
- Halaszynski TM, Juda R, Silverman DG. Optimizing postoperative outcomes with efficient preoperative assessment and management. Crit Care Med 2004;32:S76–86.
- 14. Carli F, Charlebois P, Baldini G, Cachero O, Stein B. An integrated multidisciplinary approach to implementation of a fast-track program for laparoscopic colorectal surgery. *Can J Anaesth* 2009;**56**:837–42.
- Stergiopoulou A, Birbas K, Katostaras T, Mantas J. The effect of interactive multimedia on preoperative knowledge and postoperative recovery of patients undergoing laparoscopic cholecystectomy. *Methods Inf Med* 2007;46: 406–9.

- 16. Edward GM, Naald NV, Oort FJ, de Haes HC, Biervliet JD, Hollmann MW, et al. Information gain in patients using a multimedia website with tailored information on anaesthesia. *Br J Anaesth* 2011;**106**:319–24.
- Haines TP, Hill AM, Hill KD, McPhail S, Oliver D, Brauer S, et al. Patient education to prevent falls among older hospital inpatients: a randomized controlled trial. Arch Intern Med 2011;171:516–24.
- Clarke HD, Timm VL, Goldberg BR, Hattrup SJ. Preoperative patient education reduces in-hospital falls after total knee arthroplasty. Clin Orthop Relat Res 2011:244–9.
- Sewnath ME, Karsten TM, Prins MH, Rauws EJ, Obertop H, Gouma DJ. A metaanalysis on the efficacy of preoperative biliary drainage for tumors causing obstructive jaundice. *Ann Surg* 2002;236:17—27.
- Saleh MM, Norregaard P, Jorgensen HL, Andersen PK, Matzen P. Preoperative endoscopic stent placement before pancreaticoduodenectomy: a metaanalysis of the effect on morbidity and mortality. Gastrointest Endosc 2002:56:529—34.
- Wang Q, Gurusamy KS, Lin H, Xie X, Wang C. Preoperative biliary drainage for obstructive jaundice. Cochrane Database Syst Rev 2008:CD005444.
- Qiu YD, Bai JL, Xu FG, Ding YT. Effect of preoperative biliary drainage on malignant obstructive jaundice: a meta-analysis. World J Gastroenterol 2011:17:391-6.
- Garcea G, Chee W, Ong SL, Maddern GJ. Preoperative biliary drainage for distal obstruction: the case against revisited. *Pancreas* 2010;39:119–26.
- van der Gaag NA, Rauws EA, van Eijck CH, Bruno MJ, van der HE, Kubben FJ, et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl | Med 2010;362:129-37.
- Eshuis WJ, van der Gaag NA, Rauws EA, van Eijck CH, Bruno MJ, Kuipers EJ, et al.
 Therapeutic delay and survival after surgery for cancer of the pancreatic head with or without preoperative biliary drainage. Ann Surg 2010;252:840–9.
- Tonnesen H, Kehlet H. Preoperative alcoholism and postoperative morbidity. Br | Surg 1999;86:869-74.
- Tonnesen H, Rosenberg J, Nielsen HJ, Rasmussen V, Hauge C, Pedersen IK, et al. Effect of preoperative abstinence on poor postoperative outcome in alcohol misusers: randomised controlled trial. BMJ 1999;318:1311–6.
- Bluman LG, Mosca L, Newman N, Simon DG. Preoperative smoking habits and postoperative pulmonary complications. *Chest* 1998;113:883–9.
- Sorensen LT, Karlsmark T, Gottrup F. Abstinence from smoking reduces incisional wound infection: a randomized controlled trial. *Ann Surg* 2003;238: 1–5
- Lindstrom D, Sadr AO, Wladis A, Tonnesen H, Linder S, Nasell H, et al. Effects of a perioperative smoking cessation intervention on postoperative complications: a randomized trial. *Ann Surg* 2008;248:739–45.
- Goonetilleke KS, Siriwardena AK. Systematic review of peri-operative nutritional supplementation in patients undergoing pancreaticoduodenectomy. *IOP* 2006:7:5–13.
- van Stijn MF, Korkic-Halilovic I, Bakker MS, van der PT, van Leeuwen PA, Houdijk AP. Preoperative nutrition status and postoperative outcome in elderly general surgery patients: a systematic review. J Parenter Enteral Nutr 2012 [Epub ahead of print].
- Grotenhuis BA, Wijnhoven BP, Grune F, van BJ, Tilanus HW, van Lanschot JJ. Preoperative risk assessment and prevention of complications in patients with esophageal cancer. J Surg Oncol 2010;101:270–8.
- 34. Heys SD, Schofield AC, Wahle KW, Garcia-Caballero M. Nutrition and the surgical patient: triumphs and challenges. *Surgeon* 2005;**3**:139–44.
- Cerantola Y, Hubner M, Grass F, Demartines N, Schafer M. Immunonutrition in gastrointestinal surgery. Br J Surg 2011;98:37–48.
- Marimuthu K, Varadhan KK, Ljungqvist O, Lobo DN. A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. *Ann Surg* 2012;255: 1060–8.
- Chen B, Zhou Y, Yang P, Wan HW, Wu XT. Safety and efficacy of fish oilenriched parenteral nutrition regimen on postoperative patients undergoing major abdominal surgery: a meta-analysis of randomized controlled trials. J Parenter Enteral Nutr 2010;34:387–94.
- Gustafsson UO, Ljungqvist O. Perioperative nutritional management in digestive tract surgery. Curr Opin Clin Nutr Metab Care 2011;14:504–9.
- 39. Marik PE, Zaloga GP. Immunonutrition in high-risk surgical patients: a systematic review and analysis of the literature. J Parenter Enteral Nutr 2010: 34:378–86
- Wang Y, Jiang ZM, Nolan MT, Jiang H, Han HR, Yu K, et al. The impact of glutamine dipeptide-supplemented parenteral nutrition on outcomes of surgical patients: a meta-analysis of randomized clinical trials. J Parenter Enteral Nutr 2010;34:521–9.
- Wei C, Hua J, Bin C, Klassen K. Impact of lipid emulsion containing fish oil on outcomes of surgical patients: systematic review of randomized controlled trials from Europe and Asia. Nutrition 2010;26:474–81.
- Sultan J, Griffin SM, Di FF, Kirby JA, Shenton BK, Seal CJ, et al. Randomized clinical trial of omega-3 fatty acid-supplemented enteral nutrition versus standard enteral nutrition in patients undergoing oesophagogastric cancer surgery. Br J Surg 2012;99:346–55.
- Fujitani K, Tsujinaka T, Fujita J, Miyashiro I, Imamura H, Kimura Y, et al. Prospective randomized trial of preoperative enteral immunonutrition followed by elective total gastrectomy for gastric cancer. Br J Surg 2012;99:621–9.
- Mudge L, Isenring E, Jamieson GG. Immunonutrition in patients undergoing esophageal cancer resection. Dis Esophagus 2011;24:160–5.

- Drover JW, Dhaliwal R, Weitzel L, Wischmeyer PE, Ochoa JB, Heyland DK. Perioperative use of arginine-supplemented diets: a systematic review of the evidence. J Am Coll Surg 2011;212:385–99.
- 46. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical care Medicine (SCCM) and American Society for parenteral and enteral nutrition (A.S.P.E.N.). J Parenter Enteral Nutr 2009;33:277–316.
- Holte K, Nielsen KG, Madsen JL, Kehlet H. Physiologic effects of bowel preparation. Dis Colon Rectum 2004;47:1397

 –402.
- Guenaga KF, Matos D, Castro AA, Atallah AN, Wille-Jorgensen P. Mechanical bowel preparation for elective colorectal surgery. *Cochrane Database Syst Rev* 2005; CD001544.
- Cao F, Li J, Li F. Mechanical bowel preparation for elective colorectal surgery: updated systematic review and meta-analysis. *Int J Colorectal Dis* 2011;27: 803-10.
- Lavu H, Kennedy EP, Mazo R, Stewart RJ, Greenleaf C, Grenda DR, et al. Preoperative mechanical bowel preparation does not offer a benefit for patients who undergo pancreaticoduodenectomy. Surgery 2010;148:278–84.
- 51. Ljungqvist O, Soreide E. Preoperative fasting. Br J Surg 2003;90:400-6.
- Smith I, Kranke P, Murat I, Smith A, O'Sullivan G, Soreide E, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol 2011;28:556–69.
- 53. Svanfeldt M, Thorell A, Brismar K, Nygren J, Ljungqvist O. Effects of 3 days of "postoperative" low caloric feeding with or without bed rest on insulin sensitivity in healthy subjects. *Clin Nutr* 2003;**22**:31–8.
- 54. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Anesthesiology 2011;114:495–511.
- 55. Miller M, Wishart HY, Nimmo WS. Gastric contents at induction of anaesthesia. Is a 4-hour fast necessary? *Br J Anaesth* 1983;**55**:1185–8.
- Ljungqvist O, Nygren J, Thorell A. Modulation of post-operative insulin resistance by pre-operative carbohydrate loading. *Proc Nutr Soc* 2002;61: 329–36.
- 57. Hausel J, Nygren J, Lagerkranser M, Hellstrom PM, Hammarqvist F, Almstrom C, et al. A carbohydrate-rich drink reduces preoperative discomfort in elective surgery patients. *Anest Analg* 2001;**93**:1344–50.
- Helminen H, Viitanen H, Sajanti J. Effect of preoperative intravenous carbohydrate loading on preoperative discomfort in elective surgery patients. Eur J Anaesthesiol 2009;26:123–7.
- 59. Noblett SE, Watson DS, Huong H, Davison B, Hainsworth PJ, Horgan AF. Preoperative oral carbohydrate loading in colorectal surgery: a randomized controlled trial. *Colorectal Dis* 2006;**8**:563–9.
- 60. Yuill KA, Richardson RA, Davidson HIM, Garden OJ, Parks RW. The administration of an oral carbohydrate-containing fluid prior to major elective upper-gastrointestinal surgery preserves skeletal muscle mass postoperatively—a randomised clinical trial. Clin Nutr 2005;24:32—7.
- Bisgaard T, Kristiansen VB, Hjortso NC, Jacobsen LS, Rosenberg J, Kehlet H. Randomized clinical trial comparing an oral carbohydrate beverage with placebo before laparoscopic cholecystectomy. Br J Surg 2004;91:151–8.
- Gustafsson UO, Nygren J, Thorell A, Soop M, Hellstrom PM, Ljungqvist O, et al. Pre-operative carbohydrate loading may be used in type 2 diabetes patients. Acta Anaesthesiol Scand 2008;52:946–51.
- Breuer JP, von DV, von Heymann C, Griesbach M, von Schickfus M, Mackh E, et al. Preoperative oral carbohydrate administration to ASA III-IV patients undergoing elective cardiac surgery. *Anesth Analg* 2006;103:1099–108.
- 64. Caumo W, Levandovski R, Hidalgo MP. Preoperative anxiolytic effect of melatonin and clonidine on postoperative pain and morphine consumption in patients undergoing abdominal hysterectomy: a double-blind, randomized, placebo-controlled study. *J Pain* 2009;**10**:100–8.
- Caumo W, Hidalgo MP, Schmidt AP, Iwamoto CW, Adamatti LC, Bergmann J, et al. Effect of pre-operative anxiolysis on postoperative pain response in patients undergoing total abdominal hysterectomy. *Anaesthesia* 2002;57: 740–6
- 66. Moiniche S, Kehlet H, Dahl JB. A qualitative and quantitative systematic review of preemptive analgesia for postoperative pain relief: the role of timing of analgesia. *Anesthesiology* 2002;**96**:725–41.
- Walker KJ, Smith AF. Premedication for anxiety in adult day surgery. Cochrane Database Syst Rev 2009:CD002192.
- Spyropoulos AC, Brotman DJ, Amin AN, Deitelzweig SB, Jaffer AK, McKean SC. Prevention of venous thromboembolism in the cancer surgery patient. Cleve Clin J Med 2008;75(Suppl. 3):S17—26.
- Clagett GP, Anderson Jr FA, Geerts W, Heit JA, Knudson M, Lieberman JR, et al. Prevention of venous thromboembolism. Chest 1998;114:531S—60S.
- 70. Koch A, Bouges S, Ziegler S, Dinkel H, Daures JP, Victor N. Low molecular weight heparin and unfractionated heparin in thrombosis prophylaxis after major surgical intervention: update of previous meta-analyses. *Br J Surg* 1997;**84**:750–9.
- Rasmussen MS, Jorgensen LN, Wille-Jorgensen P. Prolonged thromboprophylaxis with low molecular weight heparin for abdominal or pelvic surgery. Cochrane Database Syst Rev 2009:CD004318.
- 72. Horlocker TT, Wedel DJ, Benzon H, Brown DL, Enneking FK, Heit JA, et al. Regional anesthesia in the anticoagulated patient: defining the risks (the

- second ASRA Consensus Conference on Neuraxial Anesthesia and Anticoagulation). Reg Anesth Pain Med 2003;28:172–97.
- Horlocker TT, Wedel DJ, Rowlingson JC, Enneking FK, Kopp SL, Benzon HT, et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med 2010;35:64—101.
- Liu SS, Mulroy MF. Neuraxial anesthesia and analgesia in the presence of standard heparin. Reg Anesth Pain Med 1998;23:157–63.
- 75. Tryba M. European practice guidelines: thromboembolism prophylaxis and regional anesthesia. Reg Anesth Pain Med 1998;23:178–82.
- Breivik H, Bang U, Jalonen J, Vigfusson G, Alahuhta S, Lagerkranser M. Nordic guidelines for neuraxial blocks in disturbed haemostasis from the Scandinavian Society of Anaesthesiology and Intensive Care Medicine. *Acta Anaes*thesiol Scand 2010;54:16–41.
- Kakkos SK, Caprini JA, Geroulakos G, Nicolaides AN, Stansby GP, Reddy DJ. Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism in high-risk patients. Cochrane Database Syst Rev 2008:CD005258.
- Lippi G, Favaloro EJ, Cervellin G. Prevention of venous thromboembolism: focus on mechanical prophylaxis. Semin Thromb Hemost 2011;37:237–51.
- Bratzler DW, Houck PM. Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project. Am J Surg 2005:189:395

 –404.
- Nelson RL, Glenny AM, Song F. Antimicrobial prophylaxis for colorectal surgery. Cochrane Database Syst Rev 2009:CD001181.
- 81. Fujita S, Saito N, Yamada T, Takii Y, Kondo K, Ohue M, et al. Randomized, multicenter trial of antibiotic prophylaxis in elective colorectal surgery: single dose vs 3 doses of a second-generation cephalosporin without metronidazole and oral antibiotics. *Arch Surg* 2007;142:657–61.
- 82. Steinberg JP, Braun BI, Hellinger WC, Kusek L, Bozikis MR, Bush AJ, et al. Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the Trial to Reduce Antimicrobial Prophylaxis Errors. *Ann Surg* 2009;**250**:10–6.
- 83. Darouiche RO, Wall Jr MJ, Itani KM, Otterson MF, Webb AL, Carrick MM, et al. Chlorhexidine-Alcohol versus povidone—iodine for surgical-site antisepsis. N Engl J Med 2010;362:18—26.
- 84. Tschudin-Sutter S, Frei R, Egli-Gany D, Eckstein F, Valderrabano V, Dangel M, et al. No risk of surgical site infections from residual bacteria after disinfection with povidone—iodine—alcohol in 1014 cases: a prospective observational study. *Ann Surg* 2012;**255**:565–9.
- 85. Rocos B, Donaldson LJ. Alcohol skin preparation causes surgical fires. *Ann R Coll Surg Engl* 2012;**94**:87–9.
- Block BM, Liu SS, Rowlingson AJ, Cowan AR, Cowan Jr JA, Wu CL. Efficacy of postoperative epidural analgesia: a meta-analysis. JAMA 2003;290:2455–63.
- Werawatganon T, Charuluxanun S. Patient controlled intravenous opioid analgesia versus continuous epidural analgesia for pain after intra-abdominal surgery. Cochrane Database Syst Rev 2005:CD004088.
- 88. Jorgensen H, Wetterslev J, Moiniche S, Dahl JB. Epidural local anaesthetics versus opioid-based analgesic regimens on postoperative gastrointestinal paralysis, PONV and pain after abdominal surgery. *Cochrane Database Syst Rev* 2000:CD001893.
- 89. Popping DM, Elia N, Marret E, Remy C, Tramer MR. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. *Arch Surg* 2008;**143**:990–9.
- 90. Uchida I, Asoh T, Shirasaka C, Tsuji H. Effect of epidural analgesia on postoperative insulin resistance as evaluated by insulin clamp technique. *Br J Surg* 1988;**75**:557–62.
- Bruns H, Rahbari NN, Loffler T, Diener MK, Seiler CM, Glanemann M, et al. Perioperative management in distal pancreatectomy: results of a survey in 23 European participating centres of the DISPACT trial and a review of literature. Trials 2009;10:58.
- Pratt WB, Steinbrook RA, Maithel SK, Vanounou T, Callery MP, Vollmer Jr CM. Epidural analgesia for pancreatoduodenectomy: a critical appraisal. J Gastrointest Surg 2008;12:1207–20.
- 93. Daudel F, Freise H, Westphal M, Stubbe HD, Lauer S, Bone HG, et al. Continuous thoracic epidural anesthesia improves gut mucosal microcirculation in rats with sepsis. *Shock* 2007;**28**:610–4.
- Hiltebrand LB, Koepfli E, Kimberger O, Sigurdsson GH, Brandt S. Hypotension during fluid-restricted abdominal surgery: effects of norepinephrine treatment on regional and microcirculatory blood flow in the intestinal tract. *Anesthesiology* 2011;114:557–64.
- Holte K, Kehlet H. Epidural analgesia and risk of anastomotic leakage. Reg Anesth Pain Med 2001;26:111-7.
- 96. McLeod G, Davies H, Munnoch N, Bannister J, MacRae W. Postoperative pain relief using thoracic epidural analgesia: outstanding success and disappointing failures. *Anaesthesia* 2001;**56**:75–81.
- Burstal R, Wegener F, Hayes C, Lantry G. Epidural analgesia: prospective audit of 1062 patients. Anaesth Intensive Care 1998;26:165–72.
- 98. Kennedy EP, Grenda TR, Sauter PK, Rosato EL, Chojnacki KA, Rosato Jr FE, et al. Implementation of a critical pathway for distal pancreatectomy at an academic institution. *J Gastrointest Surg* 2009;**13**:938–44.
- Marret E, Rolin M, Beaussier M, Bonnet F. Meta-analysis of intravenous lidocaine and postoperative recovery after abdominal surgery. Br J Surg 2008;95:1331–8.

- 100. Wongyingsinn M, Baldini G, Charlebois P, Liberman S, Stein B, Carli F. Intravenous lidocaine versus thoracic epidural analgesia: a randomized controlled trial in patients undergoing laparoscopic colorectal surgery using an enhanced recovery program. *Reg Anesth Pain Med* 2011;36:241–8.
- Liu SS, Richman JM, Thirlby RC, Wu CL. Efficacy of continuous wound catheters delivering local anesthetic for postoperative analgesia: a quantitative and qualitative systematic review of randomized controlled trials. *J Am Coll Surg* 2006;203:914–32.
- Gupta A, Favaios S, Perniola A, Magnuson A, Berggren L. A meta-analysis of the efficacy of wound catheters for post-operative pain management. *Acta Angesthesiol Scand* 2011:55:785

 –96.
- 103. Yndgaard S, Holst P, Bjerre-Jepsen K, Thomsen CB, Struckmann J, Mogensen T. Subcutaneously versus subfascially administered lidocaine in pain treatment after inguinal herniotomy. *Anesth Analg* 1994;79:324–7.
- 104. Beaussier M, El'Ayoubi H, Schiffer E, Rollin M, Parc Y, Mazoit JX, et al. Continuous preperitoneal infusion of ropivacaine provides effective analgesia and accelerates recovery after colorectal surgery: a randomized, double-blind, placebo-controlled study. *Anesthesiology* 2007;107:461–8.
- Petersen PL, Mathiesen O, Torup H, Dahl JB. The transversus abdominis plane block: a valuable option for postoperative analgesia? A topical review. *Acta Anaesthesiol Scand* 2010;54:529

 –35.
- 106. Siddiqui MR, Sajid MS, Uncles DR, Cheek L, Baig MK. A meta-analysis on the clinical effectiveness of transversus abdominis plane block. J Clin Anesth 2011;23:7–14.
- Charlton S, Cyna AM, Middleton P, Griffiths JD. Perioperative transversus abdominis plane (TAP) blocks for analgesia after abdominal surgery. *Cochrane Database Syst Rev* 2010:CD007705.
- Apfel CC, Kranke P, Eberhart LH, Roos A, Roewer N. Comparison of predictive models for postoperative nausea and vomiting. Br J Anaesth 2002;88:234–40.
- Rusch D, Eberhart L, Biedler A, Dethling J, Apfel CC. Prospective application of a simplified risk score to prevent postoperative nausea and vomiting. Can J Anaesth 2005;52:478–84.
- 110. Carlisle JB, Stevenson CA. Drugs for preventing postoperative nausea and vomiting. Cochrane Database Syst Rev 2006:CD004125.
- 111. Wallenborn J, Gelbrich G, Bulst D, Behrends K, Wallenborn H, Rohrbach A, et al. Prevention of postoperative nausea and vomiting by metoclopramide combined with dexamethasone: randomised double blind multicentre trial. BMI 2006:333:324.
- 112. Polat A, Nayci A, Polat G, Aksoyek S. Dexamethasone down-regulates endothelial expression of intercellular adhesion molecule and impairs the healing of bowel anastomoses. *Eur J Surg* 2002;**168**:500–6.
- 113. Engelman E, Maeyens C. Effect of preoperative single-dose corticosteroid administration on postoperative morbidity following esophagectomy. *J Gastrointest Surg* 2010;**14**:788–804.
- 114. De Jr OG, Almeida MD, Benzon HT, McCarthy RJ. Perioperative single dose systemic dexamethasone for postoperative pain: a meta-analysis of randomized controlled trials. *Anesthesiology* 2011;**115**:575–88.
- 115. Eubanks TR, Greenberg JJ, Dobrin PB, Harford FJ, Gamelli RL. The effects of different corticosteroids on the healing colon anastomosis and cecum in a rat model. *Am Surg* 1997;**63**:266–9.
- 116. Zureikat AH, Breaux JA, Steel JL, Hughes SJ. Can laparoscopic pancreaticoduodenectomy be safely implemented? *J Gastrointest Surg* 2011;**15**: 1151–7.
- Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 1996;334:1209–15.
- 118. Scott EM, Buckland R. A systematic review of intraoperative warming to prevent postoperative complications. AORN J 2006;83:1090-113.
- 119. Frank SM, Fleisher LA, Breslow MJ, Higgins MS, Olson KF, Kelly S, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. *JAMA* 1997;**277**:1127–34.
- 120. Nesher N, Zisman E, Wolf T, Sharony R, Bolotin G, David M, et al. Strict thermoregulation attenuates myocardial injury during coronary artery bypass graft surgery as reflected by reduced levels of cardiac-specific troponin I. *Anesth Analg* 2003;**96**:328–35.
- Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. *Anesthesiology* 2008:**108**:71–7.
- Lenhardt R, Marker E, Goll V, Tschernich H, Kurz A, Sessler DI, et al. Mild intraoperative hypothermia prolongs postanesthetic recovery. *Anesthesiology* 1997:87:1318–23.
- Wong PF, Kumar S, Bohra A, Whetter D, Leaper DJ. Randomized clinical trial of perioperative systemic warming in major elective abdominal surgery. Br J Surg 2007;94:421-6.
- 124. Galvao CM, Liang Y, Clark AM. Effectiveness of cutaneous warming systems on temperature control: meta-analysis. *J Adv Nurs* 2010;**66**:1196–206.
- 125. Taguchi A, Ratnaraj J, Kabon B, Sharma N, Lenhardt R, Sessler DI, et al. Effects of a circulating-water garment and forced-air warming on body heat content and core temperature. *Anesthesiology* 2004;**100**:1058–64.
- 126. Perez-Protto S, Sessler DI, Reynolds LF, Bakri MH, Mascha E, Cywinski J, et al. Circulating-water garment or the combination of a circulating-water mattress and forced-air cover to maintain core temperature during major upper-abdominal surgery. *Br J Anaesth* 2010;**105**:466–70.
- Sato H, Carvalho G, Sato T, Lattermann R, Matsukawa T, Schricker T. The association of preoperative glycemic control, intraoperative insulin sensitivity, and outcomes after cardiac surgery. J Clin Endocrinol Metab 2010;95:4338–44.

- 128. Jackson RS, Amdur RL, White JC, Macsata RA. Hyperglycemia is associated with increased risk of morbidity and mortality after colectomy for cancer. *J Am Coll Surg* 2012;**214**:68–80.
- 129. Eshuis WJ, Hermanides J, van Dalen JW, van SG, Busch OR, van Gulik TM, et al. Early postoperative hyperglycemia is associated with postoperative complications after pancreatoduodenectomy. *Ann Surg* 2011;**253**:739–44.
- Gustafsson UO, Thorell A, Soop M, Ljungqvist O, Nygren J. Haemoglobin A1c as a predictor of postoperative hyperglycaemia and complications after major colorectal surgery. Br J Surg 2009:96:1358–64.
- Ljungqvist O. Insulin resistance and outcomes in surgery. J Clin Endocrinol Metab 2010:95:4217—9.
- 132. Ljungqvist O, Jonathan E. Rhoads lecture 2011: insulin resistance and enhanced recovery after surgery. J Parenter Enteral Nutr 2012;36:389–98.
- 133. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the critically ill patients. *N Engl J Med* 2001;**345**:1359–67.
- 134. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009;360: 1283–97.
- Furnary AP, Zerr KJ, Grunkemeier GL, Starr A. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. *Ann Thorac Surg* 1999;**67**: 352–60.
- Krinsley JS. Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 2004;79:992–1000.
- 137. van den BG, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, et al. Clinical review: intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab 2009;94:3163-70.
- 138. van den BG, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med 2006; **354**:449–61.
- Nelson R, Edwards S, Tse B. Prophylactic nasogastric decompression after abdominal surgery. Cochrane Database Syst Rev 2007:CD004929.
- Cheatham ML, Chapman WC, Key SP, Sawyers JL. A meta-analysis of selective versus routine nasogastric decompression after elective laparotomy. *Ann Surg* 1995;**221**:469–76.
- Manning BJ, Winter DC, McGreal G, Kirwan WO, Redmond HP. Nasogastric intubation causes gastroesophageal reflux in patients undergoing elective laparotomy. Surgery 2001;130:788–91.
- 142. Fisher WE, Hodges SE, Cruz G, Artinyan A, Silberfein EJ, Ahern CH, et al. Routine nasogastric suction may be unnecessary after a pancreatic resection. HPB (Oxford) 2011;13:792–6.
- Roland CL, Mansour JC, Schwarz RE. Routine nasogastric decompression is unnecessary after pancreatic resections. Arch Surg 2012;147:287–9.
- 144. Lassen K, Kjaeve J, Fetveit T, Trano G, Sigurdsson HK, Horn A, et al. Allowing normal food at will after major upper gastrointestinal surgery does not increase morbidity: a randomized multicenter trial. Ann Surg 2008;247:721–9.
- 145. Tambyraja AL, Sengupta F, MacGregor AB, Bartolo DCC, Fearon KCH. Patterns and clinical outcomes associated with routine intravenous sodium and fluid administration after colorectal resection. World J Surg 2004;28:1046–51.
- 146. Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. *Lancet* 2002;359:1812–8.
- Lobo DN. Fluid overload and surgical outcome: another piece in the jigsaw. Ann Surg 2009;249:186–8.
- Chowdhury AH, Lobo DN. Fluids and gastrointestinal function. Curr Opin Clin Nutr Metab Care 2011;14:469

 –76.
- 149. Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. *Ann Surg* 2003;**238**:641–8.
- Holte K, Foss NB, Svensen C, Lund C, Madsen JL, Kehlet H. Epidural anesthesia, hypotension, and changes in intravascular volume. *Anesthesiology* 2004;**100**: 281–6.
- Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. *Anaesthesia* 2008;63:44–51.
- 152. Chowdhury A, Cox E, Francis S, Lobo D. A randomized, controlled, double-blind crossover study on the effects of 2-liters infusions of 0.9% saline and Plasma-Lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. *Ann Surg* 2012;**256**:18–24.
- 153. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-lyte. *Ann Surg* 2012;**255**:821–9.
- 154. Varadhan KK, Lobo DN. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 2010;69:488–98.
- 155. Lobo DN, Stanga Z, Aloysius MM, Wicks C, Nunes QM, Ingram KL, et al. Effect of volume loading with 1 liter intravenous infusions of 0.9% saline, 4% succinylated gelatine (Gelofusine) and 6% hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med 2010;38:464—70.
- 156. Senagore AJ, Emery T, Luchtefeld M, Kim D, Dujovny N, Hoedema R. Fluid management for laparoscopic colectomy: a prospective, randomized assessment of goal-directed administration of balanced salt solution or hetastarch coupled with an enhanced recovery program. Dis Colon Rectum 2009;52:1935–40.

- 157. Conlon KC, Labow D, Leung D, Smith A, Jarnagin W, Coit DG, et al. Prospective randomized clinical trial of the value of intraperitoneal drainage after pancreatic resection. *Ann Surg* 2001;**234**:487–93.
- Fisher WE, Hodges SE, Silberfein EJ, Artinyan A, Ahern CH, Jo E, et al. Pancreatic resection without routine intraperitoneal drainage. HPB (Oxford) 2011;13:503-10.
- 159. Bassi C, Molinari E, Malleo G, Crippa S, Butturini G, Salvia R, et al. Early versus late drain removal after standard pancreatic resections: results of a prospective randomized trial. *Ann Surg* 2010;**252**:207–14.
- Pratt WB, Callery MP, Vollmer Jr CM. Risk prediction for development of pancreatic fistula using the ISGPF classification scheme. World J Surg 2008;32: 419–28.
- 161. Kawai M, Kondo S, Yamaue H, Wada K, Sano K, Motoi F, et al. Predictive risk factors for clinically relevant pancreatic fistula analyzed in 1,239 patients with pancreaticoduodenectomy: multicenter data collection as a project study of pancreatic surgery by the Japanese Society of Hepato-Biliary-Pancreatic Surgery. J Hepatobiliary Pancreat Sci 2011;18:601–8.
- 162. Suc B, Msika S, Piccinini M, Fourtanier G, Hay JM, Flamant Y, et al. Octreotide in the prevention of intra-abdominal complications following elective pancreatic resection: a prospective, multicenter randomized controlled trial. Arch Surg 2004;139:288–94.
- 163. Li-Ling J, Irving M. Somatostatin and octreotide in the prevention of post-operative pancreatic complications and the treatment of enterocutaneous pancreatic fistulas: a systematic review of randomized controlled trials. Br J Surg 2001:88:190–9.
- 164. Connor S, Alexakis N, Garden OJ, Leandros E, Bramis J, Wigmore SJ. Metaanalysis of the value of somatostatin and its analogues in reducing complications associated with pancreatic surgery. Br J Surg 2005;92:1059–67.
- 165. Alghamdi AA, Jawas AM, Hart RS. Use of octreotide for the prevention of pancreatic fistula after elective pancreatic surgery: a systematic review and meta-analysis. Can J Surg 2007;50:459–66.
- 166. Koti RS, Gurusamy KS, Fusai G, Davidson BR. Meta-analysis of randomized controlled trials on the effectiveness of somatostatin analogues for pancreatic surgery: a Cochrane review. HPB (Oxford) 2010;12:155–65.
- 167. McPhail MJ, Abu-Hilal M, Johnson CD. A meta-analysis comparing suprapubic and transurethral catheterization for bladder drainage after abdominal surgery. Br J Surg 2006;93:1038–44.
- 168. Baan AH, Vermeulen H, van der MJ, Bossuyt P, Olszyna D, Gouma DJ. The effect of suprapubic catheterization versus transurethral catheterization after abdominal surgery on urinary tract infection: a randomized controlled trial. Dig Surg 2003;20:290-5.
- Zaouter C, Kaneva P, Carli F. Less urinary tract infection by earlier removal of bladder catheter in surgical patients receiving thoracic epidural analgesia. Reg Anesth Pain Med 2009;34:542–8.
- 170. Wente MN, Bassi C, Dervenis C, Fingerhut A, Gouma DJ, Izbicki JR, et al. Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007;142:761–8.
- 171. Diener MK, Fitzmaurice C, Schwarzer G, Seiler CM, Antes G, Knaebel HP, et al. Pylorus-preserving pancreaticoduodenectomy (pp Whipple) versus pancreaticoduodenectomy (classic Whipple) for surgical treatment of periampullary and pancreatic carcinoma. *Cochrane Database Syst Rev* 2011:CD006053.
- 172. Tani M, Terasawa H, Kawai M, Ina S, Hirono S, Uchiyama K, et al. Improvement of delayed gastric emptying in pylorus-preserving pancreaticoduodenectomy: results of a prospective, randomized, controlled trial. Ann Surg 2006; 243:316—20.
- Basse L, Madsen JL, Kehlet H. Normal gastrointestinal transit after colonic resection using epidural analgesia, enforced oral nutrition and laxative. Br J Surg 2001;88:1498–500.
- 174. Zingg U, Miskovic D, Pasternak I, Meyer P, Hamel CT, Metzger U. Effect of bisacodyl on postoperative bowel motility in elective colorectal surgery: a prospective, randomized trial. *Int J Colorectal Dis* 2008;23:1175–83.
- 175. Ypsilantis E, Praseedom RK. Current status of fast-track recovery pathways in pancreatic surgery. *JOP* 2009;**10**:646–50.
- 176. Noble EJ, Harris R, Hosie KB, Thomas S, Lewis SJ. Gum chewing reduces postoperative ileus? A systematic review and meta-analysis. Int J Surg 2009;7:100–5.
- Vasquez W, Hernandez AV, Garcia-Sabrido JL. Is gum chewing useful for ileus after elective colorectal surgery? A systematic review and meta-analysis of randomized clinical trials. J Gastrointest Surg 2009;13:649–56.
- 178. de Castro SM, van den Esschert JW, van Heek NT, Dalhuisen S, Koelemay MJ, Busch OR, et al. A systematic review of the efficacy of gum chewing for the amelioration of postoperative ileus. *Dig Surg* 2008;**25**:39–45.
- 179. Yermilov I, Jain S, Sekeris E, Bentrem DJ, Hines OJ, Reber HA, et al. Utilization of parenteral nutrition following pancreaticoduodenectomy: is routine jejunostomy tube placement warranted? *Dig Dis Sci* 2009;54:1582–8.
- 180. Koretz RL. Enteral nutrition: a hard look at some soft evidence. *Nutr Clin Pract* 2009;**24**:316–24.
- 181. Gianotti L, Meier R, Lobo DN, Bassi C, Dejong CH, Ockenga J, et al. ESPEN guidelines on parenteral nutrition: pancreas. *Clin Nutr* 2009;**28**:428–35.
- Han-Geurts IJ, Verhoef C, Tilanus HW. Relaparotomy following complications of feeding jejunostomy in esophageal surgery. Dig Surg 2004;21:192–6.
- 183. Lobo DN, Williams RN, Welch NT, Aloysius MM, Nunes QM, Padmanabhan J, et al. Early postoperative jejunostomy feeding with an immune modulating diet in patients undergoing resectional surgery for upper gastrointestinal cancer: a prospective, randomized, controlled, double-blind study. Clin Nutr 2006;25:716–26.

- 184. Lidder PG, Lewis S, Duxbury M, Thomas S. Systematic review of postdischarge oral nutritional supplementation in patients undergoing GI surgery. *Nutr Clin Pract* 2009;**24**:388–94.
- 185. Kehlet H, Wilmore DW. Multimodal strategies to improve surgical outcome. *Am J Surg* 2002;**183**:630–41.
- 186. Convertino VA. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake. *Med Sci Sports Exerc* 1997;**29**:191–6.
- 187. Jamtvedt G, Young JM, Kristoffersen DT, O'Brien MA, Oxman AD. Audit and feedback: effects on professional practice and health care outcomes. *Cochrane Database Syst Rev* 2006;**19**:CD000259.
- 188. Campbell M, Fitzpatrick R, Haines A, Kinmonth AL, Sandercock P, Spiegelhalter D, et al. Framework for design and evaluation of complex interventions to improve health. *BMJ* 2000;**321**:694–6.
- Lassen K, Høye A, Myrmel T. Randomised trials in surgery: the burden of evidence. Rev Recent Clin Trials 2012;7:244–8.
- 190. Franke RH, Kaul JD. The Hawthorne experiments: first statistical interpretation. *Am Soc Rev* 1978;**43**:623–43.
- 191. McCarney R, Warner J, Iliffe S, van Haselen R, Griffin M, Fisher P. The Hawthorne Effect: a randomised, controlled trial. *BMC Med Res Methodol* 2007;**7**(30):30.