Problem 1.

Solution.

Let A be an $n \times n$ tridiagonal system. To reduce Ax = b to upper triangular form, the equivalent pseudocode (using MATLAB index notation) is

for
$$k = 2:n$$

 $Ab(k, :) = Ab(k, :) - (Ab(k, k) / Ab(k - 1, k)) * Ab(k, :);$

By hand, this yields

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 2 & 1 & & & & 5 \\ -2 & 2 & -2 & & 4 \\ & -6 & 5 & 3 & -8 \\ & & 1 & 7 & 36 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & & & 5 \\ & 3 & -2 & & 9 \\ & -6 & 5 & 3 & -8 \\ & & 1 & 7 & 36 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & & & 5 \\ 3 & -2 & & 9 \\ & & 1 & 3 & 10 \\ & & & 1 & 7 & 36 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & & & 5 \\ 3 & -2 & & 9 \\ & & 1 & 3 & 10 \\ & & & 4 & 26 \end{bmatrix}.$$

This takes (4-1)(3M+2A) flops. That is, 9M+6A flops are used to obtain the upper triangular form

The upper triangular system can then be solved using back substitution, starting from the last row:

$$x_4 = \frac{26}{4} = 6.5$$

$$x_3 = \frac{10 - 3x_4}{1} = -9.5$$

$$x_2 = \frac{9 - (-2)x_3}{3} \approx 9.33$$

$$x_1 = \frac{5 - 1x_2}{1} \approx 4.33.$$

This takes 1M + (4-1)(2M+1A) = 7M + 3A flops.

[Some operations above may be elided because of the value of operands (e.g. multiplication/division by 1); discounting is correct but not required; this also applies to Problem 2]

Other implementations of back substitutions are valid, but complexity should not exceed $\mathcal{O}(n)$

Problem 2.

Solution. The system is 6×6 and tridiagonal. Following the formulas in Problem 1, we expect [(6-1)(3M+2A)] + [1M+(6-1)(2M+1A)] = 26M+15A to solve this problem.

¹LU decomposition without pivoting

Problem 3.

Solution. We begin by verify that $f(a_0) = 0.5$, and $f(b_0) = -3.485$, and we see that a_0, b_0 straddle the root.

We can pre-compute the number of iterations: $\log_2(\frac{b_0-a_0}{2\epsilon})=17.6$, which rounds up to 18.

[If indexed from 1, then 19 iterations.]

Bisection yields

#	a	b	error bound	c	f(c)
0	0.000000	4.000000	2.000000	2.000000	0.114389
1	2.000000	4.000000	1.000000	3.000000	-1.631026
2	2.000000	3.000000	0.500000	2.500000	-0.739482
3	2.000000	2.500000	0.250000	2.250000	-0.306995
4	2.000000	2.250000	0.125000	2.125000	-0.094809
5	2.000000	2.125000	0.062500	2.062500	0.010176
6	2.062500	2.125000	0.031250	2.093750	-0.042221
7	2.062500	2.093750	0.015625	2.078125	-0.015999
8	2.062500	2.078125	0.007812	2.070312	-0.002905
9	2.062500	2.070312	0.003906	2.066406	0.003637
10	2.066406	2.070312	0.001953	2.068359	0.000366
11	2.068359	2.070312	0.000977	2.069336	-0.001269
12	2.068359	2.069336	0.000488	2.068848	-0.000451
13	2.068359	2.068848	0.000244	2.068604	-0.000043
14	2.068359	2.068604	0.000122	2.068481	0.000162
15	2.068481	2.068604	0.000061	2.068542	0.000060
16	2.068542	2.068604	0.000031	2.068573	0.000009
17	2.068573	2.068604	0.000015	2.068588	-0.000017
18	2.068573	2.068588	0.000008	2.068581	-0.000004

[Students need not to include the table.]

The estimate of root is the last c, which is 2.068581.

Problem 4.

Solution. Given $f(x) = xe^x - (x^2 + 1)$, $f'(x) = (x + 1)e^x - 2x$. Newton's method is given by

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Given $x_0 = 0$, we have

$$x_1 = 1$$

 $x_2 = 0.790\,988\,353\,434\,663$

 $x_3 = 0.740771897507255$

 $x_4 = 0.738437121204896.$

Problem 5.

Solution. One can convert this problem into many different forms.

[We list a few here. Students only need to provide two, one of which converges, the other does not.]

#1:
$$f(x) = \arctan(x + 2x^3/3) - 0.7$$
, $f'(x) = \frac{1 + 2x^2}{1 + (x + 2x^3/3)^2}$.

Newton iterations from starting point $x_0 = 0, 1, 2$ are shown below.

0	1	2
0.7	0.583969922154570	-2.47515340882756
0.654446680862477	0.654282057391443	23.8776908882084
0.654971666666263	0.654971624780980	-63147.4575387981
0.654971724522525	0.654971724522524	$8.02396725595925 \times 10^{18}$
0.654971724522526	0.654971724522526	$-8.02159378916146\times10^{74}$

We see that iterations starting from $x_0 = 0, 1$ converge, whereas the iteration starting from $x_0 = 2$ diverges.

#2:
$$f(x) = x + 2x^3/3 - \tan(0.7), f'(x) = 1 + 2x^2.$$

0	1	2
0.842288380463079	0.725207237932138	1.27877278301442
0.677596056795344	0.658346214941770	0.850120443065757
0.655329311226069	0.654979742246570	0.679423965394953
0.654971814661839	0.654971724567848	0.655389107326869
0.654971724522532	0.654971724522526	0.654971847325937

#3:
$$f(x) = x + \sqrt[3]{\frac{3}{2}(x - \tan(0.7))}$$
, $f'(x) = 1 + \frac{1}{\sqrt[3]{18}\sqrt[3]{x - \tan(0.7)^2}}$.

0	1	2
0.757137869616088	0.298505614839043	-0.378745467694460
0.671815830160573	0.702790496433078	0.822335503029322
0.655263126999129	0.657677973400205	0.739602817767492
0.654971805947435	0.654978816080601	0.665313385543077
0.654971724522532	0.654971724570694	0.655078589202672

We see that iterations starting from $x_0 = 0, 1, 2$ all converge.

Based on the results, we see that the true solution $\hat{x} \approx 0.654\,971\,724\,522\,53$. Consider #1 with $x_0 = 0$ for an example, we see that, in the first iteration $x_1 = 0.7$, there are no correct digits (or 1 if rounding is considered); in the second iteration, there are 3 correct digits; in the third, 6; in the fourth, 13; in the fifth, the digit-doubling trend is capped by machine precision.

Problem 6.

The secand rule requires two starting positions, and further iterations are given by

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}.$$

In this problem, $x_0 = 3, x_1 = 2$.

#	x	f(x)
0	3	1.891120008059867
1	2	1.409297426825682
2	-0.924930216462200	-3.954741533685033
3	1.231531191691345	0.482413468521703
4	0.997077802724052	0.086235777776127
5	0.946044463840698	-0.006336141352894
6	0.949537471784331	0.000068212679983
7	0.949500267808440	0.000000052228887
8	0.949500239300380	-0.000000000000432

[Students need not to include the table.]

The thick black curve is the function f. The first "secant" is the blue line, which connects $(x_0, f(x_0))$ and $(x_1, f(x_1))$; it is extended and its intersection with x-axis is the new estimate x_2 . The second "secant" is the orange line, which connects $(x_1, f(x_1))$ and $(x_2, f(x_2))$, whose intersection with x-axis is the new estimate x_3 .

Looking at x column of the table above, using x_8 as the estimate for true solution we see that x_4 has 1 correct digit (after decimal point); for x_5 2; x_6 4; x_7 7. We almost have the digit doubling as in Newton's method.

Problem 7.

Solution. Given fixed-point iteration $x_{k+1} = g(x_k)$, fixed-point method is guaranteed to converge if there exists some $k \in (0,1)$ such that

$$|g(x_2) - g(x_1)| \le k|x_2 - x_1|$$

for all x_1, x_2 . This is equivalent to $\max |g'| < 1$.

Form that is guaranteed to converge: $x = \frac{\arctan(2x + \frac{1}{2})}{4}$. Here,

$$g'(x) = \frac{1}{4} \times \arctan'\left(2x + \frac{1}{2}\right) \times 2.$$

The derivative of arctan is never greater than 1 (or less than -1). Hence $\max |g'| \leq \frac{1}{2} < 1$.

Form that is not guaranteed to converge: $x = \frac{\tan(4x - \frac{1}{2})}{2}$. Here,

$$g'(x) = \frac{1}{2} \tan' \left(4x - \frac{1}{2} \right) \times 4.$$

The derivative of tan is \sec^2 , which is unbounded, and therefore the condition for convergence is not satisfied.

[These two forms are not the only two possible forms for use with fixed-point methods.]

Problem 8.

Solution. Fixed-point iteration $x_{k+1} = g(x_k)$.

With $g(x) = \frac{\arctan(2x + \frac{1}{2})}{4}$, iteration steps starting from $x_0 = 0, 2, 1000$ are listed below

#			
0	0	2	1000
1	0.115911902250202	0.338031845230239	0.392574112951322
2	0.157 941 624 537 384	0.216532888906576	0.227384934598999
3	0.171087773325300	0.187696512614335	0.190565987719255
4	0.174983497600905	0.179763138657429	0.180573110281140
5	0.176 118 725 736 064	0.177499656671370	0.177732383289113
6	0.176 447 896 691 087	0.176847318154673	0.176914524947884
7	0.176 543 205 251 994	0.176658771055815	0.176678207238455
8	0.176 570 789 444 505	0.176604229521598	0.176609852818266
9	0.176 578 771 889 472	0.176588448355056	0.176590075490588
10	0.176 581 081 806 272	0.176583881880776	0.176584352719000

We see that in all cases, the results have stabilized around 0.17658.

With $g(x) = \frac{\tan(4x - \frac{1}{2})}{2}$, iteration steps starting from $x_0 = 0, 2, 1000$ are listed below

#			
0	0	2	1000
1	-0.250000000000000	-3.64985572761019	0.218187301101659
2	-1.02870386232745	0.753488811875833	0.345979158188811
3	-0.984666902528119	-0.314167539792807	2.39429870360611
4	-0.761815294879434	-1.78901508823478	-0.173195907374006
5	-0.202693862917647	-0.846131497188007	-0.665013337501661
6	-0.776043800336549	-0.373913973324557	0.0112844623163376
7	-0.231282537836976	-6.89167889721018	-0.227415735365187
8	-0.913668280570303	0.177697915769342	-0.892737481809577
9	-0.531705000803255	0.180453069141679	-0.478921669772596
10	0.554603619084111	0.190139687435473	1.14179333761811
11	-0.910979740129467	0.225757763293348	3.16891883726251
12	-0.524663461917000	0.384016340394993	-0.195128933922791
13	0.607570230546519	14.1405860590861	-0.745141256151495
14	-0.680906032910047	-0.243161337749428	-0.168782986070569
15	-0.0279309291348774	-0.983755618469951	-0.650320722026874
16	-0.306095450725083	-0.758096862215343	0.0499253852563648
17	-1.63515450187891	-0.195179297690436	-0.148800334381005
18	-0.381637215453758	-0.745340802908329	-0.588557581207010
19	-11.5427068538178	-0.169192556577168	0.251968033438278
20	0.453736176513745	-0.651666721038030	0.542354574874772

We see that for none of the three initial conditions do the iterations converge, as attested by the occasional spikes (#19 for $x_0 = 0$; #13 for $x_0 = 2$; #11 for $x_0 = 1000$) and the oscillatory behavior.