Lec 11/30

Wednesday, November 30, 2016 9:08 AM

Theorem If
$$2f_n = 3$$
 are integrable over $[a_1b]$ and $2f_n = 3$ s.t.

I) $|f_n(x)| \leq |M_n|$ for $x \in [a_1b]$

2) $\lim_{h \to \infty} |M_h| = 0$

Then $\lim_{h \to \infty} \int_{a}^{b} f_n(x) dx = 0 = \int_{a}^{b} \left(\lim_{h \to \infty} f_n(x)\right) dx$

Remark: Also true if b La.

Theorem
$$|f| \sum_{n=1}^{\infty} C_n(x-\alpha)^n$$
 has nonzero radios of convergence R and $|x-\alpha| < R$ then
$$\int_{a}^{\infty} \sum_{n=0}^{\infty} C_n(t-\alpha)^n dt = \sum_{n=0}^{\infty} \frac{C_n}{n+1} (t-\alpha)^{n+1}$$

First wed another theorem:

Theorem 2 the function defined by a power series is continuous everywhere on its interval Of convergence.

Proof postponed)

$$\sum_{j=n+1}^{\infty} c_j(t-a)^n = \sum_{j=0}^{\infty} c_j(t-a)^n + R_n(t)$$
Proof of first thm:
$$\sum_{j=0}^{\infty} c_j(t-a)^j dt = \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} (c_j(t-a)^n) dt + \int_{a}^{\infty} R_n(t) dt$$

$$= \sum_{j=0}^{\infty} \sum_{j=1}^{\infty} (t-a)^{j+1} + \int_{a}^{\infty} R_n(t) dt$$

$$\sum_{j=0}^{\infty} c_j(t-a)^j = \lim_{n\to\infty} \left(\sum_{n\to\infty} (1-1)^{n+1} \right) = \sum_{j=0}^{\infty} c_j(t-a)^n + \sum_{n\to\infty} (1-1)^{n+1} = \sum_{n$$

$$\leq \sum_{j=n+1}^{j=n+1} |C_j| |x-\alpha|^2 = M_n$$

And lin
$$M_n = \lim_{n \to \infty} \frac{\alpha}{2} |ij| |x-\alpha|^2 = 0$$
 since $\sum_{j=0}^{\infty} c_j (x-\alpha)^j$

theorem 3 If
$$\sum_{n=0}^{\infty} c_n(x-\alpha)^n = f(x)$$
 has radius of convergence $R>0$, and $|x-\alpha| \leq R$ then $f'(x) = \sum_{n=1}^{\infty} n(n(x-\alpha)^{n-1})$.

Proof: Let
$$g(x) = \sum_{n=1}^{\infty} nC_n(x-a)^{n-1}$$
 We have shown that $g(x)$ has same R.C. as $f(x)$.

So by Thu 2,
$$\int_{\alpha}^{x} \sum_{n=1}^{\infty} n \left(n(x-\alpha)^{n-1} \right) dx = \sum_{n=1}^{\infty} \frac{n c_n}{n-1+1} \left(x-\alpha \right)^{n-1+1} = \sum_{n=1}^{\infty} c_n \left(x-\alpha \right)^n = f(x) - C.$$

by
$$FTC$$
, $f'(x) = g(x)$

Examples:

xamples:

$$\frac{2}{t^n} = \frac{1}{1-t}$$
 for $|t| \ge 1$. (geometric series).

$$\sum_{n=0}^{\infty} \frac{f(n^n(t))^n}{(-t)^n} = \frac{1}{1+t} \quad \text{for } |t| < 1.$$

$$|V(z)| \int_{-\infty}^{\infty} \sum_{n=0}^{\infty} (-1)^n t^n dt = \int_{0}^{\infty} \frac{1}{1+t} dt$$

$$\sum_{n=0}^{\infty} (-i)^n \frac{x^{n+1}}{n+1} = \ln(1+x) \cdot \operatorname{raindexim} \cdot \sum_{j=1}^{\infty} (-i)^{j-1} \frac{x^j}{j} = \ln(1+x)$$

$$|n(1+x)| = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

thin 2 not good enough for X=1.

Theorem (Abel) A power series is continuous over its interval of convergence.

So
$$|n(2)| = \lim_{x \to 1^{-}} |n(1+x)| = \lim_{x \to 1^{-}} \frac{\sum_{j=1}^{\infty} (-1)^{j-1}}{\sum_{j=1}^{\infty} (-1)^{j-1}} = \frac{1}{j} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

$$\lim_{x \to \infty} \left(\frac{1-x}{1+x} \right) = \lim_{x \to \infty} \left(1-x \right) - \ln(1+x) \qquad x \in (-1,1).$$

and $\frac{1-x}{1+x}$ can be any positive real as x varies.

$$\frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}} = \frac{1+\frac{x-1+x}{1+x}}{1+x+1-x} = \frac{2x}{2} = x.$$

$$\sum_{n=0}^{\infty} t^n = \frac{1}{1-t} \quad \text{for } |t| \leq 1. \quad \text{Replace } t \neq y = t^2$$

$$\sum_{n=0}^{\infty} \left(-\frac{1}{t}\right)^{2n} = \frac{1}{1+t^2} \qquad |t| < |t|$$

$$\int_{\lambda=0}^{\infty} (-t^2)^h dt = \arctan(\chi)$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^n}{2^{n+1}} \chi^{2n+1} \qquad \text{for } \chi \in (-1,1).$$

int. of convergence: (-1, 1].

(glow convergence)

So by abel, wroten (1) =
$$\frac{2}{2} \frac{(-1)^4}{2^{11}} = T_4 = \left[-\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots \right]$$

better: $\pi = 16 \arctan \left(\frac{1}{3}\right) - 4 \arctan \left(\frac{1}{239}\right)$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = f(x) \quad \text{ratio test: interval of Convergence} = \mathbb{R}.$$

$$f'(x) = f(x), \quad f(x) = 1, \quad so \quad f(x) = e^{x}$$

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \cdot \frac{x^{2n+1}}{(2n+1)!} \cdot g''(x) + g(x) = 0, \quad g(x) = 0, \quad g'(x) = 1 \Rightarrow g(x) = \sin(x).$$

$$\cos(x) = g'(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} \cdot \text{ when is of convergence: } \mathbb{R}.$$