Brain-Computer Interface

Dr. Mitul Kumar Ahirwal
CSE, MANIT Bhopal
ahirwalmitul@gmail.com

- Introduction to BCI
- Brain
- EEG
- Robotics Applications
- Tools
- Current status

Introduction to BCI

• It is a technology that enables humans to control computer through their brain waves.

 Brain waves are Electroencephalogram (EEG Signals).

Introduction to BCI

A system for **controlling a device** like computer, wheelchair or a **neuroprothesis** by human **intention** which does not depend on the brain's normal output pathways of **peripheral nerves and muscles**.

Names given to this concept:

HCI – Human Computer Interface

DBI – Direct Brain Interface

TTD – Thought Translation Device

Neuro-prosthetics

- In medicine, a prosthesis or prosthetic implant is an artificial device that replaces a missing body part, which may be lost through trauma, disease, or a condition present at birth.
- Neuroprosthetics is a discipline related to neuroscience and biomedical engineering concerned with developing neural prosthesis.

Some examples of BCI applications

Brain Computer Interfaces

Principles of operation

Brain Computer Interfaces

Types

Endogenous BCI

Exogenous BCI

Endogenous BCI

Endogenous BCI systems depend on the user's ability to control their electrophysiological activity.

· Motor imaginary (sensorimotor rhythms).

Exogenous BCI

 Exogenous BCI systems depend on the stimulation provided to users and influence their electrophysiological activity.

 P300 BCI, Steady State Visual Evoked Potentials (SSVEP).

Motor Imaginary BCI

Motor Imaginary BCI

P300

- P300 wave: posivite component in the event related potential, 300ms after a stimulus
- Selection of a symbol/character: count/ identify the flashes sequence in columns and rows corresponding to P300 wave

Experimental set-up for P300 BCI

Devanagari script-based P300 speller

31	311	इ	ई	3	35	巫	ß
Ò	ओ	311	Зİ	3 I :	$\overline{\Phi}$	ख	ग
घ	ङ	ব	छ	ज	झ	ञ्	ਟ
ਰ	ड	ढ	ŪΙ	ត	श	द	\mathbf{B}
$\overline{o}I$	Ч	फ्	ब	Æ	म	य	<u> 3</u>
$\overline{\mathrm{c1}}$	$\overline{\omega}$	$\overline{\mathbf{q}}$	9I	\mathbf{q}	स	ह	क्ष
স	হা	o	8	5	3	Я	y
Ş	Ŋ	ሪ	8	#	_	<<	?

Region-Based P300 Speller

Target and Non-target Wave in P300 experiment

TTD Feedback and Communication System

BCI Software - BCI2000

- Research Platform for BCI Systems
- Modular structure: Signal Aquisition, Signal Processing and User Application

BCI2000: Components

- Filters
 - -Spatial, temporal, and spectral
- Online artifact detection and correction
- Classification
 - -Linear Discriminant Analysis (LDA)
 - -Simple Threshold Classification
 - -Support Vector Machine (SVM)
- MATLAB interfaces.

BCI experiments with Monkey

Velliste, M. et al. Nature advance online publication, doi:10.1038/nature06996 (2008).

Paralyzed woman moves robot arm by BCI

People with paralysis control robotic arms using brain-computer interface, May 16, 2012 (https://news.brown.edu/articles/2012/05/braingate2)

Exoskeleton Controlled by BCI

Russian military developing mind-controlled exoskeleton.

(https://www.tweaktown.com/news/44889/russian-military-developing-mind-controlled-exoskeleton/index.html)

Movies in which applications of BCI are shown

IRON MAN

AVENGERS

SPIDER MAN

Refernces

- Ahirwal, Mitul Kumar, and Narendra D. Londhe. "Offline study of brain computer interfacing for hand movement using OpenVIBE." 2011 International Conference on Process Automation, Control and Computing. IEEE, 2011.
- Jonathan R Wolpaw, et. al., Brain-computer interfaces for communication and control, Clinical Neurophysiology, Volume 113, Issue 6, 2002, Pages 767-791.
- http://cibertec.pbworks.com/w/page/111610426/Brain-Computer%20Interfaces%20Something%20New%20Under%20the%20Sun
- Tariq, Madiha, Pavel M. Trivailo, and Milan Simic. "EEG-based BCI control schemes for lower-limb assistive-robots." Frontiers in human neuroscience 12 (2018): 312.
- Rahul Kumar Chaurasiya, Narendra D. Londhe, Subhojit Ghosh, Multi-objective binary DE algorithm for optimizing the performance of Devanagari script-based P300 speller, Biocybernetics and Biomedical Engineering, Volume 37, Issue 3, 2017, Pages 422-431
- R. Fazel-Rezai and K. Abhari, "A region-based P300 speller for brain-computer interface," in Canadian Journal of Electrical and Computer Engineering, vol. 34, no. 3, pp. 81-85, Summer 2009, doi: 10.1109/CJECE.2009.5443854.
- Jeon H, Shin DA. Experimental Set Up of P300 Based Brain Computer Interface Using a Bioamplifier and BCl2000 System for Patients with Spinal Cord Injury. Korean Journal of Spine. 2015 Sep;12(3):119-123. DOI: 10.14245/kjs.2015.12.3.119.
- Fazel-Rezai, Reza, et al. "A Review of P300, SSVEP, and Hybrid P300/SSVEP Brain-Computer Interface Systems." (2013).

