Llevando el ML a producción.

Arquitectura de Contenedores.

Qué vamos a ver.

- Proyectos de Machine Learning.
- ¿Qué es el MLOps?.
- Diseño de Código.
- Arquitectura de Contenedores.
- Diseño de Pipelines.

Autores y contactos.

Ángel Delgado.

Machine Learning Engineer

adelgado@paradigmadigital.com

Título presentación proyecto.

Proyectos de Machine Learning.

• • • Título presentación proyecto. — Título sección.

¿Qué es el Machine Learning?

¿Qué es Machine Learning?

El Machine Learning es el área de la **Inteligencia Artificial**, que permite a las máquinas "aprender" a partir del procesamiento de datos.

Los procesos de cómputo que permiten realizar este aprendizaje se denominan **entrenamiento**, mientras que los que usan ese aprendizaje para inferir resultados, se denominan **predicción**.

Componentes.

¿Qué es lo que caracteriza un proyecto de Machine Learning?

Desarrollo de Software

Desarrollo de Machine Learning

Procesos

Los componente que definen el Machine Learning se relacionan con una serie de procesos:

- Transformación: Proceso que prepara los datos.
- Entrenamiento: Proceso que genera un modelo.
- **Predicción:** Proceso que genera predicciones.

• • Título presentación proyecto. — Título sección.

Dificultades.

Hay muchos más procesos!!!

Además de los procesos anteriores, es común que también existan **otros muchos procesos** que complementen a los anteriores. Existe gran diversidad de ellos, pero alguno son:

Testeo FeatureStore AutoML

Cross-Validation A/B Testing Explicabilidad

Problemas comunes.

- Diferentes **versiones** de procesos
- Concordancia entre código y modelos
- Trazabilidad entre datos y modelos
- Dificultad de automatización.

• • Título presentación proyecto.

¿Qué es el MLOps?

¿Qué es el MLOps?

MLOps es un conjunto de **buenas prácticas y herramientas** que nos permiten automatizar todos los procesos de un proyecto de ML, así como versionar y gobernar todas sus componentes.

¿He dicho ya que también son buenas prácticas?

MLOPS OU BARBARIE

Buenas prácticas.

Herramientas.

Diseño.

• • Título presentación proyecto. — Título sección.

Herramientas.

MLOps: Servicios y Productos.

- Alto nivel de mantenimiento
- Bajo nivel de locking

- Bajo nivel de mantenimiento
- Alto nivel de locking

• • • Título presentación proyecto. — Título sección.

Buenas prácticas.

Buenas prácticas.

¿Cómo las aplicamos? Teniendo conciencia de los elementos que componen el Machine Learning.

Naming y versionado.

Diseño de código: El telón de acero.

Separación entre la lógica de automatización de procesos y del código de Machine Learning.

Desarrolla el **código** de Machine Learning sin preocuparse de los flujos.

Desarrolla los **flujos** de Machine Learning sin preocuparse del algoritmo.

• • Título presentación proyecto.

Desarrollo de código de ML.

• • • Título presentación proyecto. — Título sección.

Diseño de código.

Interfaz de modelo.

- Interfaz homogéneo para todos los modelos
- Separación de la lógica de ML: código de modelo vs código de procesos.
- Congruencia entre procesos: entrenamiento, predicción, ...

Interfaz de modelo.

- Interfaz homogéneo para todos los modelos.
- Separación de la lógica de ML: código de modelo vs código de procesos.
- Congruencia entre procesos: entrenamiento, predicción, ...

```
import pandas as pd
from .model_logic import ModelLogic
class ModelLogic():
  def __init__(self, **parameters):
    self.parameters = parameters
  def fit(self, X, y):
    return self
  def predict(self, X):
    return prediction
  def save_model(self, model_path):
    return self
  def load_model(self, model_path):
    return self
                                   Paradigma
```

import argparse

• • • Título presentación proyecto. ——— Título sección.

Diseño de comandos.

Diseño de comandos.

- Parámetros de ejecución: Para facilitar el proceso de experimentación es necesario que sea parametrizable.
- Lógica de ejecución: Lectura de datos, entrenamiento, guardado del modelo entrenado, lectura del modelo entrenado...

Diseño de comandos.

- Parámetros de ejecución: Para facilitar el proceso de experimentación es necesario que sea parametrizable.
- Lógica de ejecución: Lectura de datos, entrenamiento, guardado del modelo entrenado, lectura del modelo entrenado...

```
import argparse
import pandas as pd
from .model import ModelLogic
def train(args):
  df_train = pd.read_csv(args.data_path)
  X_train = df_train.drop(["Species"],axis=1)
  y_train = df_train["Species"]
  ModelLogic(learning_rate=args.lr
    ).fit(X_train, y_train
    )save(args.model_path)
if __name__ == "__main__" :
  parser = argparse.ArgumentParser()
  parser.add_argument("--|r", type=int)
  parser.add_argument("--data_path", type=str)
  parser.add_argument("--model_path", type=str)
  args = parser.parse_args()
  train(args)
```


• • Título presentación proyecto. — Título sección.

Servicio de predicción.

Servicio de predicción.

- Predicción online vs batch: Predicciones sobre un archivo o predicciones bajo demanda.
- Unificación del proceso de predicción: Para que no existan dos lógicas distintas de predicción.

Servicio de predicción.

- Predicción online vs batch: Predicciones sobre un archivo o predicciones bajo demanda.
- Unificación del proceso de predicción: Para que no existan dos lógicas distintas de predicción.

```
import argparse
from fastapi import FastAPI
from model_logic import ModelLogic
def run(args):
  model = ModelLogic().load(args.model_path)
  app = FastAPI()
  @app.post("/predict")
  def predict(request: dict):
    predictions = [
    for instance in request["instances"]:
      pred = model.predict(instance)
      predictions.append(pred)
    return {"predictions": predictions}
  return app
if name == ' main ':
  parser = argparse.ArgumentParser()
  parser.add_argument('--port', type=int)
  parser.add_argument('--model_path', type=str)
  args = parser.parse_args()
  uvicorn.run(run(args), host='0.0.0.0', port=args.port)
```

Paradigma

• • • Título presentación proyecto. ——— Título sección.

Testing de código.

Testing de código.

- Test del modelo: El modelo de Machine Learning se puede validar por medios de **test** unitarios.
- comandos: diferentes Los comandos de ejecución se pueden validar por medios de **test funcionales**.

Datos de testeo

Test funcionales

Testing de código.

- Test del modelo: El modelo de Machine Learning se puede validar por medios de test unitarios.
- Test de comandos: Los diferentes comandos de ejecución se pueden validar por medios de test funcionales.

```
import os, tempfile, pytest
from src.model import ModelLogic
class TestModelLogic():
  def test_fit(self, X, y):
    model = ModelLogic().fit(X,y)
  def test_predict(self, X, y):
    y = ModelLogic().fit(X,y).predict(X)
  def test_save(self,):
    with tempfile. Temporary Directory() as tmp:
      ModelLogic().save(f'{tmp}/model.pkl')
  def test_load(self):
    with tempfile. Temporary Directory() as tmp:
      ModelLogic().load(f'{tmp}/model.pkl')
```


Título presentación proyecto.

Arquitectura de contenedores.

• • Título presentación proyecto.

Título sección.

Docker.

Docker en Machine Learning.

Docker es un sistema de **virtualización** de software ligera. En un proyecto de Machine Learning es útil por lo siguiente:

- Multiplataforma: En cualquier SO.
- **Encapsulado:** Software autocontenido.
- Comandos: Permite ejecutar comandos.

• • • Título presentación proyecto.

Título sección.

Airflow.

Airflow.

Airflow es un **orquestador** de procesos. Definir una secuencia de ejecuciones. Sus componentes son:

- DAG: Definición del flujo de ejecuciones.
- Task: Cada uno de los nodos del DAG.
- Operator: Arquetipos de tasks.

Airflow - DockerOperator.

Los componentes que tiene Airflow son los siguientes:

- DAG: Definición del flujo de ejecuciones.
- Task: Cada uno de los nodos de un DAG.
- Operator: Arquetipos de tasks.

DockerOperator: Task que ejecuta un comando Docker.

```
from docker.types import Mount
from plugins.operators import DockerOperator
```

```
t1 = DockerOperator(
  task_id="training_step",
  image="{{ params.image_name }}",
  auto_remove=True,
  entrypoint=["python", "train.py"],
  mount_tmp_dir=True,
  mounts=[
    Mount(type="bind",
      source = input_dir
      target='/input/'),
    Mount(type="bind",
      source = target_dir
      target="/output/')
  environment={
    "LR": "{{ params.param_lr }}",
    "DATA_PATH": "/input/{{ params.dataset }}",
    "MODEL_PATH": "/output/{{ params.model }}"
```


05.

Título presentación proyecto.

Desarrollo de Pipelines.

05.01

• • • Título presentación proyecto. — Título sección.

¿Qué es un Pipeline?

Pipelines de ML.

Los pipelines de sirven para definir las secuencia de procesos que componen una aplicación de Machine Learning:

Pipeline de entrenamiento

- Paso 1: Registro del Dataset.
- Paso 2: Preprocesamiento.
- Paso 3: Entrenamiento.
- Paso 4: Registro de modelo.

Pipelines de ML con Airflow.

Los pipelines se pueden programar de muchas maneras. Una de ellas es por medio de DAGs de Airflow. La ventaja que ofrecen es:

• Configuración: Parametrización.

Experimentos: Metadatos

Métricas: Almacenar resultados

Pipelines de ML con Airflow.

Los pipelines se pueden programar de muchas maneras. Una de ellas es por medio de DAGs de Airflow. La ventaja que ofrecen es:

- Configuración: Parametrización.
- **Experimentos:** Metadatos
- **Métricas:** Almacenar resultados

```
from airflow import DAG
from docker.types import Mount
from plugins.operators import RegisterModel
from plugins.operators import DockerOperator
params = \{\cdots\}
with DAG( 'TrainingPipeline', params=params) as dag:
  t1 = DockerOperator(
    task_id="preprocess_step",
    entrypoint=["python", "tranform.py"],
    • • •)
  t2 = DockerOperator(
    task_id="training_step",
    entrypoint=["python", "train.py"],
    • • •)
  t3 = RegisterModel(
    task_id="register_step",
    • • •
  t1 >> t2 >> t3
                                   Paradigma
```

Experimento.

Se denomina experimento a cada una de las ejecuciones que se realizan, a la hora de registrar resultados y métricas.

Con Airflow podemos ejecutar múltiples experimentos simultáneamente y ver el estado de cada uno de ellos en cada momento.

Paradigma

Cliente / Título presentación proyecto.

Monitorización.

Podemos ver los logs de cada ejecución de cada proceso docker por medio de los logs de Airflow asociados al task donde se ejecutó el proceso.

Título presentación proyecto.

El código es de todos.

Código en el Github de Paradigma.

Todo el código que hemos enseñado hoy y mucho más está en el Github de Paradigma!!

Repositorio: mentoring_mlops_airflow

Título presentación proyecto.

¡Hasta la victoria camaradas!

We are hiring.

Únete a la revolución!!!

paradigmadigital.com/empleo/

Gracias

Preguntas?

