Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time

Michael Krivelevich and Dan Vilenchik

Tel-Aviv University

Outline

- 1. Introduction
 - (a) Review of 3CNF and 3SAT
 - (b) Random 3CNF
- 2. The Planted 3SAT Distribution
- 3. Expected Polynomial Time
- 4. An Expected Polytime Algorithm for 3SAT
 - (a) Description
 - (b) Notation
 - (c) Write up
 - (d) Correctness
- 5. Runtime Analysis

3CNF

- A formula over the variables x_1, x_2, \ldots, x_n is a conjunction of clauses C_1, C_2, \ldots, C_m where each clause is a disjunction of 3 literals
- Each literal is either a variable or its negation
- A 3CNF is satisfiable if there is a boolean assignment to the variables such that every clause contains at least one literal that evaluates to true
- 3SAT is the language of all satisfiable 3CNF formulas
- Although 2SAT is known to be in P, 3SAT is NP-complete

Random 3SAT

Uniformly random 3CNFs can be generated by selecting

$$m = m(n)$$

clauses over the variables

$$x_1, x_2, \ldots, x_n$$

- Such random 3CNFs have attracted much study recently
- Results show that random 3SAT has a sharp satisfiability threshold, in the clause-to-variable ratio

Random 3SAT Continued

- Below this ratio, a random 3CNF is satisfiable whp
- Above the ratio it is unsatisfiable whp
- ullet However the threshold t is unknown, only that it is

$$3.42 \le t \le 4.5$$

ullet However it is unknown if t is even independent of n

Outline

- 1. Introduction
 - (a) Review of 3CNF and 3SAT
 - (b) Random 3CNF
- 2. The Planted 3SAT Distribution
- 3. Expected Polynomial Time
- 4. An Expected Polytime Algorithm for 3SAT
 - (a) Description
 - (b) Notation
 - (c) Write up
 - (d) Correctness
- 5. Runtime Analysis

Planted 3SAT

- This work concentrates on formulas with a clause-to-variable ratio $\geq t$.
- Most formulas are unsatisfiable, and the analysis of such a distribution seems hard.
- The focus is ultimately then on the planted 3SAT distribution, denoted:

$$\mathbb{P}_{p,n}$$

- A planted instance in $\mathbb{P}_{p,n}$ is generated by:
 - 1. Picking at random a truth assignment φ to the n variables
 - 2. Each clause satisfied by φ is included with probability p

Planted 3SAT Continued

- This work considers $p \ge d/n^2$, where d is a sufficiently large constant
- The analog of this distribution has been studied in planted clique, planted bisection, and planted coloring
- The planted 3SAT has been studied with greedy variable assignment and proven to work **whp** when p is dense $p = \Theta(1/n)$ with indications it will work with sparser inputs.

Outline

- 1. Introduction
 - (a) Review of 3CNF and 3SAT
 - (b) Random 3CNF
- 2. The Planted 3SAT Distribution
- 3. Expected Polynomial Time
- 4. An Expected Polytime Algorithm for 3SAT
 - (a) Description
 - (b) Notation
 - (c) Write up
 - (d) Correctness
- 5. Runtime Analysis

Expected Polynomial Time

- An algorithm that works whp works well on typical instances
- However, on rare instances, it may not produce a solution at all
- An algorithm may be required to provide an answer, and perform well on average.
- An algorithm \mathcal{A} with running time $t_{\mathcal{A}}(I)$ on an input instance I, has an expected polynomial running time over a distribution \mathcal{D} if

$$\sum_{I} t_{\mathcal{A}}(I) \cdot Pr_{\mathcal{D}}[I]$$

is polynomial

Expected Polytime Continued

- To have an expected polytime algorithm, a distinction needs to be made between:
 - Typical instances that are "easy" and run in polynomial time
 - Atypical instances that are rare and run in superpolynomial time
- The amount of work done by the algorithm should be inversely proportional to the likelihood that instance occurs
- To understand the frequency of occurrence of the various instances requires a deep understanding of the problem domain, and can lead to more robust and efficient algorithms

Results

This work sets out to prove the following theorem:

There exists an algorithm SAT that solves 3SAT, and runs in expected polynomial time over the planted SAT distribution with $p \ge d/n^2$, d a sufficiently large constant.

Outline

- 1. Introduction
 - (a) Review of 3CNF and 3SAT
 - (b) Random 3CNF
- 2. The Planted 3SAT Distribution
- 3. Expected Polynomial Time
- 4. An Expected Polytime Algorithm for 3SAT
 - (a) Description
 - (b) Notation
 - (c) Write up
 - (d) Correctness
- 5. Runtime Analysis

An Expected Polytime Algorithm

- The algorithm searches for the planted assignment (assuming an input sampled from $\mathbb{P}_{d/n^2,n}$) but may find another satisfying assignment along the way
- The first step is to count the number of occurrences of a literal and its negation and assign the variable according to the majority
- whp this is already a satisfying assignment reconstructed from the planted assignment when $p \ge d \log n / n^2$
- However when $p = d/n^2$, this assignment is wrong on a fraction of the variables $\exp \{-\Theta(n^2p)\}$ (constant in this work)

An Expected Polytime Algorithm

- Next, variables suspected to be incorrectly assigned are peeled off leaving a partial assignment
- Finally, exhaustive search is done over the $O(\log n)$ variables remaining at this point

Notation

- $V = \{x_1, x_2, \dots, x_3\}$ the set of all variables
- G(U,E) the residual graph with $U\subseteq V$ vertices whose edges are induced by a clause in I containing both endpoints
- ψ , partial truth assignment a vector of length n over $\{0,1,*\}$ where * means not assigned
- x supports a clause C when it is the only variable to satisfy C and the other 2 variables in the clause are also assigned in ψ
- $I|_{\psi}$ the 3CNF I simplified according to ψ
- $\pi(Y)$ is all possible assignments of Y

Algorithm 1: SAT

In the first part of the algorithm, the majority vote is taken, and assignments that are suspected of being wrong are removed.

- 1. MAJ ← the majority vote assignment
- 2. Set i = 0 and $\psi_0 \leftarrow MAJ$
- 3. **while** there exists a variable x whose support is less than $(1-\epsilon)d/2$ w.r.t. ψ_i do
- 4. $\psi_{i+1} \leftarrow \psi_i$ with the variable x unassigned
- 5. $i \leftarrow i+1$
- 6. end while

 ϵ is a small constant independent of d, say $\epsilon = 10^{-5}$

Algorithm 1: SAT Continued

- 7. Let ψ be the final partial assignment, and U be the set of unassigned variables in ψ
- 8. Construct the residual graph G(U, E) and find the set of connected components $\{\Gamma_i\}$
- 9. for y = 0 to $|V \setminus U|$ do
- 10. **for all** $Y \subseteq V \setminus U$, |Y| = y and every assignment $\pi(Y)$ to the variables of Y **do**
- 11. Let $\psi \circ \pi(Y)$ be $\pi(x)$ if $x \in Y$, and $\psi(x)$ otherwise.
- 12. **if** $I|_{\psi \circ \pi(Y)}$ doesn't induce an empty clause **then**
- 13. Independently in every Γ_i , using exhaustive search try to satisfy $I|_{\psi \circ \pi(Y)}[\Gamma_i]$
- 14. **if** the search succeeded **return** the satisfying assignment **end if**
- 15. **end if**
- 16. **end for**
- 17. end for
- 18. **return** *I* is not satisfiable.

Correctness

- If the algorithm returns an assignment (line 14), it satisfies I
- If I is satisfiable, in the worst case exhaustive search is done over all possible assignments of the variables
- If I is unsatisfiable, one of the conditions on lines 12 and 14 will always fail, and not satisfiable is returned by line 18

Outline

- 1. Introduction
 - (a) Review of 3CNF and 3SAT
 - (b) Random 3CNF
- 2. The Planted 3SAT Distribution
- 3. Expected Polynomial Time
- 4. An Expected Polytime Algorithm for 3SAT
 - (a) Description
 - (b) Notation
 - (c) Write up
 - (d) Correctness
- 5. Runtime Analysis

Properties of Random Instances

- A truth assignment φ is picked uniformly at random from $\mathbb{P}_{d/n^2,n}$
- Every clause satisfied by φ is included in the formula with probability $p=d/n^2$, with I clearly being satisfied
- There are $(2^3-1)\cdot \binom{n}{3}$ clauses satisfied by φ
- $\mathbf{E}[I] = p \cdot 7 \cdot \binom{n}{3} = 7dn/6 + o(n)$
- ullet Every variable x supports $\binom{n-1}{2}$ clauses w.r.t. arphi
- **●** E[support of x in I] = $p \cdot \binom{n-1}{2} = d/2 + o(1)$ which explains the choice in line 3

Majority Vote

- We want to bound the number of variables in I that the majority vote disagrees with the planted assignment
- We can apply the Chernoff bound if we treat the number of clauses x appears in positively and negatively as two binomially distributed rv
- Thus the probability that the majority vote on x disagrees with the planted assignment (F_x) is:

$$Pr[F_x] \le exp\{-\Theta(d)\}$$

Majority Vote

• Applying the union bound we get the probability of the number of disagreed upon variable assignments being greater than αn is:

$$\leq \binom{n}{\alpha n} Pr[F_{x_1} \wedge F_{x_2} \wedge \dots F_{x_{\alpha n}}]$$

- ullet However this is difficult to estimate since the F_x 's are not independent
- The proof involves showing that the influence of a certain assignment does not affect overly many clauses, and can be bounded by counting all such variables. The complete proof is shown in the paper in Appendix A

Support and Dense Subformulas

- The bounds for the number of supported clauses of a variable x is computed similarly to Majority Vote, but each event here is in fact independent.
- This yields the bound:

$$\leq exp\{-\epsilon^2d/16\}$$

- We also need to prove whp a random graph does not contain a small induced subgraph with a large average degree.
- This bound is straightforward when we count the number of clauses containing at least 2 variables from a subset of the possible variables

Expanding Set of Variables

- Let H be a subset of the variables such that every variable in H supports at least $(1 \epsilon)d/2$ clauses in I[H] w.r.t. both the planted assignment and the majority vote
- The probability that \bar{H} is large ($\geq \alpha n$) can be bounded by:

$$\leq exp\{-\epsilon^2d/100 \cdot \alpha n\}$$

Construction of H

- ${\color{red} \bullet}$ Let W be the set of variables whose majority vote disagrees with φ
- Let B be the set of variables whose support w.r.t. φ is less than $(1 \epsilon/2)d/2$
- Let $H \subset V$ be constructed as follows:
 - 1. Let $H_0 = V \setminus (B \cup W)$
 - 2. While there exists a variable $a_i \in H_i$ which supports less than $(1 \epsilon)d/2$ clauses in $I[H_i]$, define $H_{i+1} = H_i \setminus \{a_i\}$
 - 3. Let a_m be the last variable removed at step 2. Define $H = H_{m+1}$

Analysis of the Expected Running Time

- The majority vote sets H correctly due to the construction of H
- H survives the reassignment step due to its expansion properties w.r.t. MAJ
- Therefore, by step 7, I[H] is satisfied by ϕ
- ullet It remains to satisfy (if not satisfied so far) Iackslash I[H]
- ▶ Therefore **whp** $I \setminus I[H]$ breaks down to small-size mutually-disjoint subformulas allowing exhaustive search to run in expected polynomial time

Analysis of the Expected Running Time

The expected running time of the algorithm A is bounded by:

$$\mathbf{E}[R_{MAIN}] + \mathbf{E}[R_{REC} \cdot R_{EXH}] + \mathbf{E}[R_{REC}] \cdot \mathbf{E}[R_{SIMPLIFY}]$$

- $\mathbf{E}[R_{MAIN}]$ and $\mathbf{E}[R_{SIMPLIFY}]$ are O(dn)
- $\mathbf{E}[R_{REC}] \le O(1)$
- Therefore, $\mathbf{E}[R(\mathcal{A})] \leq n^{1+\Theta(1/d)}$

Conclusion

- A general expected polytime algorithm for 3SAT obviously is unreasonable to expect
- ullet However over the planted assignment $\mathbb{P}_{d/n^2,n}$ it is possible to limit the amount of exhaustive search that must be done so that on average the algorithm runs in polynomial time