

Inhalt

1.	Allgemeine Informationen2
2.	Chemische Zusammensetzung2
3.	Physikalische Eigenschaften2
3.1	Dichte 2
3.2	Solidus- und Liquidustemperatur 2
3.3	Längenausdehnungskoeffizient 2
3.4	Spezifische Wärmekapazität 2
3.5	Wärmeleitfähigkeit2
3.6	Spezifische elektrische Leitfähigkeit 3
3.7	Spezifischer elektrischer Widerstand 3
3.8	Temperaturkoeffizient des elektr. Widerstands 3
3.9	Elastizitätsmodul 3
3.10	Spezifische magnetische Suszeptibilität 3
3.11	Kristallstruktur / Gefüge
4.	Mechanische Eigenschaften 4
4.1	Festigkeitswerte bei Raumtemperatur 4
4.2	Tieftemperaturverhalten6
4.3	Hochtemperaturverhalten6
4.4	Dauerschwingfestigkeit
5.	Normen 7
5.1	Rohre 7
5.2	Stangen 7
5.3	Drähte 7
5.4	Schmiedestücke und Schmiedevormaterial 7

6.	Werkstoffbezeichnungen	7
7.	Bearbeitbarkeit	7
7.1	Umformen und Glühen	7
7.2	Spanbarkeit	8
7.3	Verbindungstechniken	8
7.4	Oberflächenbehandlung	8
8.	Korrosionsbeständigkeit	8
9.	Anwendungen	8
10.	Liefernachweis	9
11.	Literatur	9
12.	Index	9

Stand 2005

Hinweis:

Durch Klicken auf die Überschriften können Sie direkt zu den entsprechenden Inhalten springen.

1. Allgemeine Informationen

Werkstoff-Bezeichnung:

CuZn39Pb3

Werkstoff-Nr.:

CW614N (ehem.: 2.0401)

CuZn39Pb3 ist in Deutschland die Hauptlegierung für Zerspanung. Sie wird vorwiegend dort verwendet, wo es auf eine spanende oder spanabhebende Formgebung ankommt.

CuZn39Pb3 ist insbesondere für die Bearbeitung auf Automaten geeignet. Sie lässt sich außerdem sehr gut warmumformen.

2. Chemische Zusammensetzung - nach DIN EN -

Legierungsbestandteile		
Massenanteil in %		
Cu	Zn	Pb
57,0 bis 59,0	Rest	2,5 bis 3,5

Zulässige Beimengungen bis				
Massenanteil in %				
Ni	Fe	Sn	Al	Sonstige zusammen
0,3	0,5	0,3	0,05	0,2

3. Physikalische Eigenschaften

3.1 Dichte

Temperatur	Dichte
°C	g/cm³
20	8,47

3.2 Solidus- und Liquidustemperatur

Solidustemperatur	Liquidustemperatur
°C	°C
875	890

3.3 Längenausdehnungskoeffizient

Temperatur	Längenausdehnungs- koeffizient
°C	10 ⁻⁶ ·K ⁻¹
von 20 bis 100	19,3
von 20 bis 200	21,0
von 20 bis 300	21,4
von 20 bis 800	24,7

3.4 Spezifische Wärmekapazität

Temperatur	Spezifische Wärmekapazität
°C	J/(g•K)
bei 20	0,377
von 100 bis 300	0,398

3.5 Wärmeleitfähigkeit

Temperatur	Wärmeleitfähigkeit
°C	W/(m·K)
-200	50
20	123

3.6 Spezifische elektrische Leitfähigkeit

Temperatur	Spez. elektr. Leitfähigkeit
°C	MS/m
20	15
200	12

Anmerkung: 1 MS/m entspricht 1 m/($\Omega \cdot mm^2$).

3.7 Spezifischer elektrischer Widerstand

Spez. elektr. Widerstand
(Ω·mm²)/m
0,066
0,083

3.8 Temperaturkoeffizient des elektr. Widerstands

Temperatur	Temperaturkoeffizient des elektr. Widerstands
°C	K ⁻¹
20	0,0017

Gültig von 0 bis 100 °C.

3.9 Elastizitätsmodul

Temperatur	Elastizitätsmodul
°C	kN/mm²
20	97

Anmerkung: 1 kN/mm² entspricht 1 GPa.

3.10 Spezifische magnetische Suszeptibilität - bei 20 °C -

CuZn39Pb3 ist diamagnetisch, solange kein Eisen in freier Form vorhanden ist. Die Suszeptibilität X liegt bei $-0,173 \cdot 10^{-6}$ cm³/g, sie steigt bei 0,15 % Fe auf $139 \cdot 10^{-6} \text{ cm}^3/\text{g}$.

Anmerkung: $X = \chi/\rho$ (Massensuszeptibilität)

3.11 Kristallstruktur / Gefüge

CuZn39Pb3 weist ein heterogenes Gefüge aus (α + β)-Mischkristallen auf, wobei die α -Phase in einem kubischflächenzentrierten und die β -Phase in einem kubischraumzentrierten Gitter kristallisieren.

Blei ist in dieser Legierung unlöslich und scheidet sich in fein verteilter Form meist an den Korngrenzen ab. Es wirkt kornfeinend auf das Gefüge und verbessert die Spanbarkeit.

CuZn39Pb3

4. Mechanische Eigenschaften

4.1 Festigkeitswerte bei Raumtemperatur

4.1.1 Bänder und Bleche

Bänder und Bleche aus CuZn39Pb3 sind nach DIN EN nicht genormt.

4.1.2 Rohre - nach DIN EN 12449 -

Zustand	Wand- dicke	Zug- festigkeit	0,2 %-Dehngrenze		Bruch- dehnung		Hä	rte	
	t	R _m	Rp	0,2	Α	Н	V	НВ	
	mm	N/mm²	N/m	ım²	%				
	max.	min.	min.	max.	min.	min.	max.	min.	max.
М	20	-	-	-	-	-	-	-	-
R360 1)	10	360	-	250	25	-	-	-	-
H085 1)	10	-	-	-	-	85	120	80	115
R430	10	430	250	-	12	-	-	-	-
H115	10	-	-	-	-	115	150	110	145
R500	5	500	370	-	8	-	-	-	-
H140	5	-	-	-	-	140	-	135	-

¹⁾ geglühter Zustand

Anmerkung: 1 N/mm² entspricht 1 MPa.

4.1.3 Stangen - nach DIN EN 12164 -

Zustand	Querschnittsmaße				Zug- festigkeit	0,2 %- Dehn- grenze	Br	uchdehnung	5 ¹⁾	Härte			
	Durch	messe	er	Sch	lüss	elwei	te	R _m	R _{p0,2}	A ₁₀₀	A _{11,3}	Α	HB / HV
	n	nm			m	m		N/mm²	N/mm ²	%	%	%	
								min.	ungefähr	min.	min.	min.	ungefähr
М	von 2	bis	80	von	2	bis	60			wie ge	efertigt		
R400	von 6	bis	14	von	5	bis	10	400	(160)	-	12	15	(90)
R380	über 14	bis	40	über	10	bis	35	380	(160)	-	-	18	(90)
R360	über 40	bis	80	über	35	bis	60	360	(150)	-	-	20	(90)
R430	von 2	bis	40	von	2	bis	35	430	(250)	6	8	10	(120)
R500	von 2	bis	14	von	2	bis	10	500	(390)	(4)	6	8	(150)
R550	von 2	bis	6	von	2	bis	5	550	(420)	-	-	-	(150)

¹⁾ Die Proben müssen DIN EN 10002–1 entsprechen, außer dass eine Messlänge von 200 mm nicht zulässig ist. Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben. Anmerkung 2: 1 N/mm² entspricht 1 MPa.

4.1.4 Drähte - nach DIN EN 12166 -

Zustand	Durch	ımesser	Zugfes	tigkeit	0,2 %- Dehn- grenze	Br	uchdehnunş	g ²⁾	Hä	rte	Frühere Zustands- bezeich-
	(Nen	nmaß)	F	Q _m	R _{p0,2}	A ₁₀₀	A _{11,3}	A	Н	IV	nung 1)
	n	nm	N/r	nm²	N/mm ²	%	%	%			
			min.	max.	ungefähr	min.	min.	min.	min.	max.	
М	alle	Maße					wie gefertigt				
R450	von 0,	1 bis 1,5	450	-	(200)	-	-	-	-	-	
R430	über 1,	5 bis 4,0	430	-	(200)	6	-	-	-	-	
H130	von 1,	5 bis 4,0	-	-	-	-	-	-	130	165	
R420	über 4,	0 bis 8,0	420	-	(200)	-	8	-	-	-	halb-
H120	über 4,	0 bis 8,0	-	-	-	-	-	-	120	155	hart
R410	über 8,	0 bis 14,0	410	-	(200)	-	-	10	-	-	
R400	über 14,	0 bis 20,0	400	-	(200)	-	-	10	-	-	
H110	über 8,	0 bis 20,0	-	-	-	-	-	-	110	145	
R520	von 0,	5 bis 1,5	520	-	(400)	-	-	-	-	-	
R510	über 1,	5 bis 4,0	510	-	(400)	(4)	-	-	-	-	
H155	von 1,	5 bis 4,0	-	-	-	-	-	-	155	185	hart
R500	über 4,	0 bis 8,0	500	-	(390)	-	6	-	-	-	ilait
R490	über 8,	0 bis 14,0	490	-	(390)	-	-	8	-	-	
H145	über 4,	0 bis 14,0	-	-	-	-	-	-	145	175	
R570	von 1,	5 bis 4,0	570	-	(520)	-	-	-	-	-	feder-
H170	von 1,	5 bis 4,0	-	-	-	-	-	-	170	-	hart

¹⁾ nur zur Information.

Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben. Anmerkung 2: 1 N/mm² entspricht 1 MPa.

4.1.5 Strangpressprofile

Strangpressprofile aus CuZn39Pb3 sind in DIN EN 12167 genormt.

4.1.6 Schmiedestücke - nach DIN EN 12420 -

Zustand	Dicke in Sci	Нä	Härte		0,2 %- Dehn- grenze	Bruch- dehnung	
	Gesenk- und Freiform- Schmiedestücke	Freiform-Schmiedestücke	НВ	HV	R _m	R _{p0,2}	A
					N/mm²	N/mm ²	%
	bis 80 mm	über 80 mm	min.	min.	min.	min.	min.
М	X	Х	wie gefe	rtigt, ohne fes	tgelegte mech	anische Eige	nschaften
H075	-	X	75	80	(340)	(110)	(20)
H080	Х	-	80	85	(360)	(120)	(20)

Anmerkung 1: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben. Anmerkung 2: 1 N/mm² entspricht 1 MPa.

CuZn39Pb3

4.2 Tieftemperaturverhalten

4.2.1 Festigkeitswerte

Quellen: [1, 2]

4.2.2 Kerbschlagzähigkeit - Tieftemperatur -

Temperatur	Kerbschlagzähigkeit
	(Richtwerte)
°C	Nm/cm ²
-196	26
-100	23
20	20

Quelle: [3]

4.3 Hochtemperaturverhalten

4.3.1 Warmfestigkeit

Quelle: [4]

4.3.2 Zeitstandwerte

Quelle: [4]

4.3.3 Kerbschlagzähigkeit - Hochtemperatur -

Quelle: [2]

4.4 Dauerschwingfestigkeit

4.4.1 Stangen

Lastwechsel	Dauerschwingfestigkeit
	(Umlaufbiegeversuch)
	N/mm²
5 · 10 ⁷	135 bis 160

Form: Stangen, ohne Angaben zur Materialbehandlung

Quelle: [4]

Anmerkung: 1 N/mm² entspricht 1 MPa.

5. Normen

5.1 Rohre

DIN EN 12449 Kupfer und Kupferlegierungen -

Nahtlose Rundrohre zur allgemeinen

Verwendung

5.2 Stangen

DIN EN 12164 Kupfer und Kupferlegierungen -

Stangen für die spanende Bearbeitung

DIN EN 12167 Kupfer und Kupferlegierungen -

Profile und Rechteckstangen zur allgemei-

nen Verwendung

DIN EN 12168 Kupfer und Kupferlegierungen -

Hohlstangen für die spanende Bearbeitung

5.3 Drähte

DIN EN 12166 Kupfer und Kupferlegierungen -

Drähte zur allgemeinen Verwendung

5.4 Schmiedestücke und Schmiedevormaterial

DIN EN 12165 Kupfer und Kupferlegierungen -

Vormaterial für Schmiedestücke

DIN EN 12420 Kupfer und Kupferlegierungen -

Schmiedestücke

6. Werkstoffbezeichnungen

Vergleich der Werkstoffbezeichnungen in verschiedenen Ländern (einschließlich ISO) *)

Land	Bezeichnung der Normung	Werkstoffbezeich- nung / -nummer
Europa	EN	CuZn39Pb3 CW614N
USA	ASTM (UNS)	C38500
Japan	JIS	C3603
Internationale Normung	ISO	CuZn38Pb3

Vormalige nationale Bezeichnungen						
Deutschland	DIN	CuZn39Pb3 2.0401				
Frankreich	NF	CuZn40Pb3				
Großbritannien	BS	CZ 121-Pb3				
Italien	UNI	P-CuZn40Pb2				
Schweden	SS	CuZn39Pb3, 5170				
Schweiz	SNV	CuZn39Pb3				
Spanien	UNE	CuZn39Pb3 C-6440				

^{*)} Die Toleranzbereiche der Zusammensetzung der in außereuropäischen Ländern genormten Legierungen sind nicht in allen Fällen gleich mit der Festlegung nach DIN EN.

7. Bearbeitbarkeit

7.1 Umformen und Glühen

Umformen				
Kaltumformung	begrenzt			
Kaltumformgrad zwischen den Glühungen	max. 20 %			
Warmumformung Temperaturbereich	gut 625 bis 725 °C			

Glühen					
Weichglühen, Temp-Bereich	450 bis 600 °C				
Entspannungsglühen, Temp-Bereich	250 bis 350 °C				

7.2 Spanbarkeit

Zerspanbarkeitsindex: 100

(CuZn39Pb3 = 100)

(Die angegebenen Zahlen sind keine festen Messwerte, sondern stellen relative Einstufungen dar. Angaben anderer Quellen können daher geringfügig nach oben oder unten abweichen.)

Bei der groben Unterteilung der Kupferwerkstoffe hinsichtlich ihrer Spanbarkeit in drei Hauptgruppen wird CuZn39Pb3 der Gruppe I (sehr gut spanbar) zugeordnet. Für eine weitere Abstufung innerhalb dieser Gruppe ist der Festigkeitszustand maßgebend, so hat CuZn39Pb3 im Zustand R 550 eine relativ bessere Spanbarkeit als im Zustand R 400. Die Spanform ist sehr günstig. Es treten kurzbrechende Nadelspäne auf [5].

7.3 Verbindungstechniken

Schweißen				
Gasschweißen	weniger empfehlenswert			
Lichtbogenhandschweißen	weniger empfehlenswert			
WIG-Schweißen	weniger empfehlenswert			
MIG-Schweißen	weniger empfehlenswert			
Widerstandsschweißen	mittel			

Löten	
Weichlöten	sehr gut
Hartlöten	mittel

Kleben	
	geeignet

Wenn das Schweißen nicht fachmännisch durchgeführt wird, kann eine hohe Zinkausdampfung wegen der niedrigen Verdampfungstemperatur (906 °C) auftreten. Das Schweißen von CuZn39Pb3 bereitet aufgrund des Bleigehaltes zusätzliche Schwierigkeiten, wegen der auftretenden Schrumpfspannungen wird die Schmelzschweißeignung ungünstig beeinflusst.

7.4 Oberflächenbehandlung

Polieren		
mechanisch	sehr gut	
elektrolytisch / chemisch	weniger empfehlenswert	
Galvanisierbarkeit		
	sehr gut	
Eignung für Tauchverzinnung		
	sehr gut	

8. Korrosionsbeständigkeit

CuZn39Pb3 erreicht gegenüber Wasser, verschiedenen Salzlösungen und organischen Flüssigkeiten nicht die hohe Beständigkeit eines homogenen α -Messings, da die zinkreiche β-Phase im heterogenen Gefüge bevorzugt angegriffen wird.

Außerdem kann unter bestimmten Bedingungen (Wässer mit hohem CI-Gehalt und niedriger Karbonathärte) eine Korrosion in Form der "Entzinkung" auftreten.

Ferner neigt dieser Werkstoff im kaltverformten Zustand unter äußeren und/oder inneren Zugspannungen bei gleichzeitiger Einwirkung gewisser Angriffsmittel (Ammoniak, Amine, Ammoniumsalze) zur "Spannungsrisskorrosion". Zugspannungen können auch nachträglich durch Einbau bzw. Weiterverarbeitung eingebracht werden.

Durch eine Wärmebehandlung lässt sich eine Spannungsrisskorrosion vermeiden. Bereits Halbzeuge können im entspannten Zustand bezogen werden. Bauteile können einem Entspannungsglühen oder Weichglühen unterzogen werden [6].

9. Anwendungen

- Armaturen, Formdrehteile aller Art, Bauprofile
- Kugellagerkäfige (Reißzeugteile), Schließzylinder
- Steckerstifte, Gewindestangen, Ventilkörper
- Schrauben, Muttern, Wasserhahngriffe
- Uhrenteile, Kabelklemmen, Kugelschreiberspitzen
- Gesenkschmiedestücke, Platinen, Steigräder
- Teile für Elektrotechnik und allgemeinen Maschinenbau

10. Liefernachweis

Nachweise von Herstellern und Händlern für Halbzeug aus CuZn39Pb3 können beim der Quelle [7] entnommen werden.

11. Literatur

- [1] Baron, H. G., Stress/Strain Curves of Some Metals and Alloys at Low Temperatures and High Rates of Strain. J. Iron and Steel Inst. Vol. 182, 1956, S. 354-365.
- [2] Kupfer-Zink-Legierungen, Fachbuch, Deutsches Kupferinstitut, 1966, vergriffen.
- [3] Werkstoff-Kartei Koloc, Kupferlegierungen, Fachbuchverlag GmbH, Leipzig.
- [4] Copper Data Sheet No. E8, CuZn40Pb3, Deutsches Kupferinstitut, 1970.
- [5] Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen (DKI-Informationsdruck i.18). Deutsches Kupferinstitut, 1983.
- [6] Messing ja Spannungsrißkorrosion muß nicht sein. Informationsbroschüre, Deutsches Kupferinstitut, 1999.
- [7] http://www.kupferinstitut.de

12. Index

Allgemeine Informationen 2 Anwendungen 8 Chemische Zusammensetzung 2 Dauerschwingfestigkeit Stangen 6 Dichte 2 Elastizitätsmodul 3 Entspannungsglühen 7 Festigkeitswerte Bänder und Bleche 4 bei tiefen Temperaturen 6 Drähte 5 Rohre 4 Schmiedestücke 5 Stangen 4 Strangpressprofile 5 Galvanisierbarkeit 8 Gasschweißen 8 Gefüge 3 Hartlöten 8 Kaltumformung 7

Kerbschlagzähigkeit 6 Kleben 8 Korrosionsbeständigkeit 8 Kristallstruktur 3 Längenausdehnungskoeffizient 2 Lichtbogenhandschweißen 8 Liefernachweis 9 Liquidustemperatur 2 Literatur 9 Löten 8 MIG-Schweißen 8 Normen Drähte 7 Rohre 7 Schmiedestücke und Schmiedevormaterial 7 Stangen 7 Oberflächenbehandlung 8 Polieren 8 Schweißen 8 Solidustemperatur 2 Spanbarkeit 8 Spez. elektrische Leitfähigkeit 3 Spez. elektrischer Widerstand 3 Spez. magnetische Suszeptibilität 3 Spez. Wärmekapazität 2 Tauchverzinnung 8 Temperaturkoeffizient des elektr. Widerstands 3 Verzinnung 8 Wärmeleitfähigkeit 2 Warmfestigkeit 6 Warmumformung 7 Weichglühen 7 Weichlöten 8 Werkstoffbezeichnungen 7 Widerstandsschweißen 8 WIG-Schweißen 8 Zeitstandwerte 6