



# MODEL NO.: G260JJE SUFFIX: L07

| Customer:                                             |                            |
|-------------------------------------------------------|----------------------------|
| APPROVED BY                                           | SIGNATURE                  |
| Name / Title Note                                     |                            |
| Please return 1 copy for your signature and comments. | our confirmation with your |

| Approved By | Checked By | Prepared By |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |
|             |            |             |

Version 0.0 JUN 10, 2013 1/27



## - CONTENTS -

| REVISION HISTORY                                                                                                                          | <br>3  |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 GENERAL SPECIFICATIONS 1.3 MECHANICAL SPECIFICATIONS                                              | <br>4  |
| 2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT | <br>5  |
| 3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT                                                                       | <br>7  |
| 4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT                                                                                    | <br>11 |
| 5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT                                    | <br>12 |
| 6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 VDD Power DIP Condition                          | <br>15 |
| 7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS                                                                 | <br>17 |
| 8. Reliability Test Criteria                                                                                                              | <br>21 |
| 9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD 9.3 UN-PACKING METHOD                                                          | <br>22 |
| 10. DEFINITION OF LABELS  10.1 Innolux MODULE LABEL                                                                                       | <br>24 |
| 11. PRECAUTIONS  11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS                                                           | <br>25 |
| 12. MECHANICAL CHARACTERISTICS                                                                                                            | <br>26 |





## **REVISION HISTORY**

| Version | Date         | Section | Description                                   |  |
|---------|--------------|---------|-----------------------------------------------|--|
| 0.0     | JUN 10, 2013 | All     | G260JJE-L07 Tentative Spec. was first issued. |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |
|         |              |         |                                               |  |

Version 0.0 JUN 10, 2013 3/27





#### 1. GENERAL DESCRIPTION

#### 1.1 OVERVIEW

G260JJE-L06 model is a 25.54" MVA TFT-LCD module with a white LED Backlight Unit and a 30 pins 2 channels LVDS interface. This module supports 1920 x 1200 WUXGA mode and can display up to 16.7 millions colors. The converter for the Backlight Unit is built in.

#### 1.2 GENERAL SPECIFICATIONS

| Item               | Specification                            | Unit  | Note |
|--------------------|------------------------------------------|-------|------|
| Active Area        | 550.08 (H) x 343.8 (V) (25.54" diagonal) | mm    | (1)  |
| Bezel Opening Area | 554.1 (H) x 347.8 (V)                    | mm    | (1)  |
| Driver Element     | a-Si TFT active matrix                   | -     | -    |
| Pixel Number       | 1920 x R.G.B. x 1200                     | pixel | -    |
| Pixel Pitch        | 0.2865 (H) x 0.2865 (V)                  | mm    | -    |
| Pixel Arrangement  | RGB vertical stripe                      | -     | -    |
| Display Colors     | 16.7M                                    | color | -    |
| Transmissive Mode  | Normally black                           | -     | -    |
| Surface Treatment  | AG type, 3H hard coating,                | -     | -    |

#### 1.3 MECHANICAL SPECIFICATIONS

| Ite         | em            | Min.    | Тур.    | Max.    | Unit | Note |
|-------------|---------------|---------|---------|---------|------|------|
|             | Horizontal(H) | (581.5) | (582.0) | (582.5) | mm   |      |
| Module Size | Vertical(V)   | (375.1) | (375.6) | (376.1) | mm   | (1)  |
|             | Depth(D)      | (29.6)  | (30.1)  | (30.6)  | mm   |      |
| We          | ight          | -       | (3770)  | -       | g    | -    |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.



#### 2. ABSOLUTE MAXIMUM RATINGS

#### 2.1 ABSOLUTE RATINGS OF ENVIRONMENT

| Item                          | Symbol           | Va    | lue   | Unit  | Note     |
|-------------------------------|------------------|-------|-------|-------|----------|
| item                          | Symbol           | Min.  | Max.  | Offic | Note     |
| Storage Temperature           | T <sub>ST</sub>  | (-20) | (60)  | °C    | (1)      |
| Operating Ambient Temperature | T <sub>OP</sub>  | (0)   | (50)  | °C    | (1), (2) |
| Shock (Non-Operating)         | S <sub>NOP</sub> | -     | (40)  | G     | (3), (5) |
| Vibration (Non-Operating)     | $V_{NOP}$        | -     | (1.5) | G     | (4), (5) |

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta  $\leq$  40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max



Note (3) 1 time for  $\pm X$ ,  $\pm Y$ ,  $\pm Z$ . for Condition (25G / 6ms) is half Sine Wave,.

Note (4) 5- 9Hz: 3,5mm amplitude 9- 500Hz: 1g- each 10 cycles / axis (X,Y,Z); 1 octave / min.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 0.0 JUN 10, 2013 5/27



The fixing condition is shown as below:



**X Direction** 



**Y Direction** 

### 2.2 ELECTRICAL ABSOLUTE RATINGS

#### 2.2.1 TFT LCD MODULE

| Item                 | Symbol Value Max. |        | Symbol |       | Symbol Value Un |  | Value |  | Note |
|----------------------|-------------------|--------|--------|-------|-----------------|--|-------|--|------|
| Item                 |                   |        | Offic  | 14010 |                 |  |       |  |      |
| Power Supply Voltage | Vcc               | (-0.3) | (+6.0) | V     | (1)             |  |       |  |      |

### 2.2.2 BACKLIGHT UNIT

| ltem                        |     | Value  | Unit   | Note     |          |
|-----------------------------|-----|--------|--------|----------|----------|
| nem                         | Min | Тур.   | Max.   | Offic    | Note     |
| LED Light Bar Input voltage | -   | (37.2) | (40.8) | $V_{DC}$ | (1), (2) |
| LED Light Bar Input Current | -   | (720)  | (780)  | $A_{DC}$ | (1), (2) |

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to Section 3.2 for further information).

Version 0.0 JUN 10, 2013 6/27



### 3. ELECTRICAL CHARACTERISTICS

#### 3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

| Paramet                               | or.                                    | Symbol            |        | Value  |        | Unit  | Note     |
|---------------------------------------|----------------------------------------|-------------------|--------|--------|--------|-------|----------|
| i didilietei                          |                                        | Cyrribor          | Min.   | Тур.   | Max.   | Offic | Note     |
| Power Supply Voltage                  |                                        | Vcc               | (4.5)  | (5.0)  | (5.50) | V     | -        |
| Ripple Voltage                        |                                        | $V_{RP}$          | -      | -      | (100)  | mV    | -        |
| Rush Current                          |                                        | I <sub>RUSH</sub> | ı      | 1      | (3.8)  | Α     | (2)      |
|                                       | White                                  |                   | ı      | (1.36) | (1.9)  | Α     | (3)a     |
| Power Supply Current                  | Black                                  | -                 | ı      | (0.9)  | (1.26) | Α     | (3)b     |
|                                       | Vertical Stripe                        | -                 | -      | (1.4)  | (1.96) | Α     | (3)c     |
| LVDS Differential Input H             | LVDS Differential Input High Threshold |                   | -      | -      | +100   | mV    | Vic=1.2V |
| LVDS Differential Input Low Threshold |                                        | VTL(LVDS)         | (-100) | -      | -      | mV    | Vic=1.2V |
| LVDS differential input voltage       |                                        | Vid               | (100)  | -      | (600)  | mV    |          |
| LVDS common input voltage             |                                        | Vic               | -      | (1.2)  | -      | V     |          |
| Logic "L" input voltage               |                                        | Vil               | Vss    | -      | (8.0)  | V     |          |

Note (1) The assembly should be always operated within above ranges.

### Note (2) Measurement Conditions:



### Vcc rising time is 470μs



Version 0.0 JUN 10, 2013 7/27



Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta =  $25 \pm 2$  °C,  $f_v = 60$  Hz, whereas a power dissipation check pattern below is displayed.



#### c. Vertical Stripe Pattern





#### 3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, ^{\circ}C$ 

| Parameter              |                | Symbol           |          | Value  | Unit   | Note  |                               |
|------------------------|----------------|------------------|----------|--------|--------|-------|-------------------------------|
| r ai ailletei          |                | Syllibol         | Min.     | Тур.   | Max.   | O III | Note                          |
| Converter Power Supp   | ly Voltage     | Vi               | (21.6)   | (24.0) | (26.4) | V     | (Duty 100%)                   |
| Converter Power Supp   | ly Current     | I <sub>i</sub>   |          | (1.2)  | (1.5)  | Α     | @ Vi = 24V<br>(Duty 100%)     |
| LED Power Consumption  |                | Po               |          | (30)   | (35)   | W     | @ Vi = 24V<br>(Duty 100%),(3) |
| EN Control Lovel       | Backlight on   | EN1,<br>EN2      | (2)      | (3.3)  | (5.0)  | V     |                               |
| EN Control Level       | Backlight off  |                  | (0)      | (0)    | (8.0)  | V     |                               |
| PWM Control Level      | PWM High Level | PWM1,            | (2.0)    | (3.3)  | (5.0)  | V     |                               |
| PWW Control Level      | PWM Low Level  | PWM2             | (0)      | (0)    | (8.0)  | V     |                               |
| PWM Control Duty Ratio |                |                  | (1)      |        | (100)  | %     |                               |
| PWM Control Frequency  |                | f <sub>PWM</sub> | (100)    | (200)  | (210)  | Hz    |                               |
| LED Life Time          |                | L <sub>L</sub>   | (50,000) |        |        | Hrs   | (1), (2)                      |

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta =  $50\pm2$  °C and I<sub>LED</sub> =  $60\text{mA}_{DC}$ (LED forward current) until the brightness becomes  $\leq 50\%$  of its original value.

Note (3)  $P_0 = I_0 \times V_0$ 





Power sequence and control signal timing are shown in the following figure



Note : While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence:  $Vi(+24V) \rightarrow EN \rightarrow E_PWM$  signal Turn OFF sequence:  $E_PWM$  signal  $\rightarrow EN \rightarrow Vi(+24V)$ 

#### **INPUT TERMINAL PIN ASSIGNMENT**

| Pin | Name  | Description                     |
|-----|-------|---------------------------------|
| 1   | Vi    | Converter Power Supply(+24V)    |
| 2   | Vi    | Converter Power Supply(+24V)    |
| 3   | Vi    | Converter Power Supply(+24V)    |
| 4   | Vi    | Converter Power Supply(+24V)    |
| 5   | Vi    | Converter Power Supply(+24V)    |
| 6   | GND   | Ground                          |
| 7   | GND   | Ground                          |
| 8   | GND   | Ground                          |
| 9   | GND   | Ground                          |
| 10  | GND   | Ground                          |
| 11  | NC    | No connection                   |
| 12  | EN    | Enable Control (for light Bar)  |
| 13  | NC    | No connection                   |
| 14  | E_PWM | Dimming Control (for light Bar) |

Note (1) Connector Part No.: FCN\_JH2-D4-143N.



#### 4. BLOCK DIAGRAM

#### **4.1 TFT LCD MODULE**





### 5. INPUT TERMINAL PIN ASSIGNMENT

### **5.1 TFT LCD MODULE**

| Pin | Name  | Description                                              |
|-----|-------|----------------------------------------------------------|
| 1   | RXO0- | Negative LVDS differential data input. Channel O0 (odd)  |
| 2   | RXO0+ | Positive LVDS differential data input. Channel O0 (odd)  |
| 3   | RXO1- | Negative LVDS differential data input. Channel O1 (odd)  |
| 4   | RXO1+ | Positive LVDS differential data input. Channel O1 (odd)  |
| 5   | RXO2- | Negative LVDS differential data input. Channel O2 (odd)  |
| 6   | RXO2+ | Positive LVDS differential data input. Channel O2 (odd)  |
| 7   | GND   | Ground                                                   |
| 8   | RXOC- | Negative LVDS differential clock input. (odd)            |
| 9   | RXOC+ | Positive LVDS differential clock input. (odd)            |
| 10  | RXO3- | Negative LVDS differential data input. Channel O3(odd)   |
| 11  | RXO3+ | Positive LVDS differential data input. Channel O3 (odd)  |
| 12  | RXE0- | Negative LVDS differential data input. Channel E0 (even) |
| 13  | RXE0+ | Positive LVDS differential data input. Channel E0 (even) |
| 14  | GND   | Ground                                                   |
| 15  | RXE1- | Negative LVDS differential data input. Channel E1 (even) |
| 16  | RXE1+ | Positive LVDS differential data input. Channel E1 (even) |
| 17  | GND   | Ground                                                   |
| 18  | RXE2- | Negative LVDS differential data input. Channel E2 (even) |
| 19  | RXE2+ | Positive LVDS differential data input. Channel E2 (even) |
| 20  | RXEC- | Negative LVDS differential clock input. (even)           |
| 21  | RXEC+ | Positive LVDS differential clock input. (even)           |
| 22  | RXE3- | Negative LVDS differential data input. Channel E3 (even) |
| 23  | RXE3+ | Positive LVDS differential data input. Channel E3 (even) |
| 24  | GND   | Ground                                                   |
| 25  | NC    | No connection, this pin should be opened.                |
| 26  | NC    | No connection, this pin should be opened.                |
| 27  | VCC   | +5.0V power supply                                       |
| 28  | VCC   | +5.0V power supply                                       |
| 29  | VCC   | +5.0V power supply                                       |
| 30  | VCC   | +5.0V power supply                                       |

Note (1) Connector Part No.: P2 187114-30091.

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

Version 0.0 JUN 10, 2013 12/27



## **5.2 The Input Data Format**

| LVDS Channel O0 | LVDS output | D7  | D6  | D4  | D3  | D2  | D1  | D0  |
|-----------------|-------------|-----|-----|-----|-----|-----|-----|-----|
| LVD3 Charmer 00 | Data order  | OG0 | OR5 | OR4 | OR3 | OR2 | OR1 | OR0 |
| LVDS Channel O1 | LVDS output | D18 | D15 | D14 | D13 | D12 | D9  | D8  |
| LVD3 Channel O1 | Data order  | OB1 | OB0 | OG5 | OG4 | OG3 | OG2 | OG1 |
| LVDS Channel O2 | LVDS output | D26 | D25 | D24 | D22 | D21 | D20 | D19 |
| LVD3 Channel 02 | Data order  | DE  | NA  | NA  | OB5 | OB4 | OB3 | OB2 |
| LVDS Channel O3 | LVDS output | D23 | D17 | D16 | D11 | D10 | D5  | D27 |
| LVD3 Channel O3 | Data order  | NA  | OB7 | OB6 | OG7 | OG6 | OR7 | OR6 |
| LVDS Channel E0 | LVDS output | D7  | D6  | D4  | D3  | D2  | D1  | D0  |
| LVD3 Channel E0 | Data order  | EG0 | ER5 | ER4 | ER3 | ER2 | ER1 | ER0 |
| LVDS Channel E1 | LVDS output | D18 | D15 | D14 | D13 | D12 | D9  | D8  |
| LVD3 Channel E1 | Data order  | EB1 | EB0 | EG5 | EG4 | EG3 | EG2 | EG1 |
| LVDS Channel E2 | LVDS output | D26 | D25 | D24 | D22 | D21 | D20 | D19 |
| LVD3 Chaille E2 | Data order  | DE  | NA  | NA  | EB5 | EB4 | EB3 | EB2 |
| LVDS Channel E3 | LVDS output | D23 | D17 | D16 | D11 | D10 | D5  | D27 |
| LVD3 Channel E3 | Data order  | NA  | EB7 | EB6 | EG7 | EG6 | ER7 | ER6 |



### **5.3 COLOR DATA INPUT ASSIGNMENT**

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

|             |                 |    |    |    |    |    |    |    |    |    |    | Da | ata | Sigr | nal |    |    |    |    |    |     |    |    |    |    |
|-------------|-----------------|----|----|----|----|----|----|----|----|----|----|----|-----|------|-----|----|----|----|----|----|-----|----|----|----|----|
|             | Color           |    |    |    | Re |    |    |    |    |    |    |    | G   | reer | า   |    |    |    |    |    | Blu |    |    |    |    |
|             |                 | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | R7 | R6 | G5 | G4  | G3   | G2  | G1 | G0 | R7 | R6 | B5 | B4  | В3 | B2 | B1 | B0 |
|             | Black           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Red             | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Green           | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Basic       | Blue            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
| Colors      | Cyan            | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
|             | Magenta         | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
|             | Yellow          | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | White           | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |
|             | Red(0) / Dark   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Red(1)          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Red(2)          | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Gray        | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Scale       | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Of          | Red(253)        | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Red         | Red(254)        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Red(255)        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Green(0) / Dark | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Green(1)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Cross       | Green(2)        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 1  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Gray        | : ` ´           | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Scale<br>Of | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Green       | Green(253)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 0  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Green       | Green(254)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Green(255)      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 1   | 1    | 1   | 1  | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Blue(0) / Dark  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
|             | Blue(1)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 1  |
| Gray        | Blue(2)         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 0  |
| Scale       | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Of          | :               | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :  | :   | :    | :   | :  | :  | :  | :  | :  | :   | :  | :  | :  | :  |
| Blue        | Blue(253)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 0  | 1  |
| Dide        | Blue(254)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 0  |
|             | Blue(255)       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0    | 0   | 0  | 0  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |

Note (1) 0: Low Level Voltage, 1: High Level Voltage



#### 6. INTERFACE TIMING

#### **6.1 INPUT SIGNAL TIMING SPECIFICATIONS**

The input signal timing specifications are shown as the following table and timing diagram.

| Signal                         | Item       | Symbol | Min.   | Тур.   | Max.   | Unit | Note       |
|--------------------------------|------------|--------|--------|--------|--------|------|------------|
|                                | Frequency  | Fc     | (50.0) | (77)   | (83.0) | MHz  | -          |
| LVDS Clock                     | Period     | Tc     | ı      | (13.0) | -      | ns   |            |
| EVD3 Clock                     | High Time  | Tch    | ı      | (4/7)  | -      | Tc   | -          |
|                                | Low Time   | Tcl    | -      | (3/7)  | -      | Тс   | -          |
| LVDS Data                      | Setup Time | Tlvs   | (600)  | -      | -      | ps   | -          |
| LVDS Data                      | Hold Time  | Tlvh   | (600)  | -      | -      | ps   | -          |
|                                | Frame Rate | Fr     | (40)   | (60)   | (63)   | Hz   | Tv=Tvd+Tvb |
| Vertical Active Display Term   | Total      | Tv     | (1209) | (1235) | (1245) | Th   | -          |
| vertical Active Display Term   | Display    | Tvd    | (1200) | (1200) | (1200) | Th   | -          |
|                                | Blank      | Tvb    | (9)    | (35)   | Tv-Tvd | Th   | -          |
|                                | Total      | Th     | (1030) | (1040) | (1060) | Тс   | Th=Thd+Thb |
| Horizontal Active Display Term | Display    | Thd    | (960)  | (960)  | (960)  | Tc   | -          |
|                                | Blank      | Thb    | (70)   | (80)   | Th-Thd | Tc   | -          |

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

### **INPUT SIGNAL TIMING DIAGRAM**



Version 0.0 JUN 10, 2013 15/27



#### **6.2 POWER ON/OFF SEQUENCE**

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.



#### Timing Specifications:

0.5< t1  $\leq$  10 msec

 $0 < t2 \le 50 \text{ msec}$ 

 $0 < t3 \le 50 \text{ msec}$ 

 $t4 \ge 500 \text{ msec}$ 

 $t5 \ge 500 \text{ msec}$ 

 $t6 \ge 90 \text{ msec}$ 

#### **6.3 VDD Power DIP Condition**



Dip condition:  $4.0V \le Vcc \le 4.5V$ ,  $Td \le 20ms$ 



### 7. OPTICAL CHARACTERISTICS

### 7.1 TEST CONDITIONS

| Item                | Symbol                                                        | Value   | Unit |  |  |  |
|---------------------|---------------------------------------------------------------|---------|------|--|--|--|
| Ambient Temperature | Ta                                                            | (25±2)  | °C   |  |  |  |
| Ambient Humidity    | На                                                            | (50±10) | %RH  |  |  |  |
| Supply Voltage      | $V_{CC}$                                                      | (5)     | V    |  |  |  |
| Input Signal        | According to typical value in "3. ELECTRICAL CHARACTERISTICS" |         |      |  |  |  |
| Converter PWM duty  |                                                               | (100%)  |      |  |  |  |

#### 7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

| Ite             | em            | Symbol               | Condition                             | Min.        | Тур.    | Max.          | Unit              | Note        |  |
|-----------------|---------------|----------------------|---------------------------------------|-------------|---------|---------------|-------------------|-------------|--|
| Contrast Ratio  |               | CR                   |                                       | (1000)      | (1500)  | -             | -                 | (2), (5)    |  |
| Resnonse Time   |               | $T_R$                |                                       | -           | (15)    | ı             | ms                | (2)         |  |
| Response fille  | Response Time |                      |                                       | -           | (5)     | •             | ms                | (3)         |  |
| Center Luminan  | ce of White   | L <sub>C</sub>       |                                       | (300)       | (350)   | -             | cd/m <sup>2</sup> | (4), (5)    |  |
| White Variation |               | δW                   |                                       | -           | (1.4)   | (1.5)         | •                 | (5), (6)    |  |
|                 | Red           | Rx                   | θ <sub>x</sub> =0°,θ <sub>Y</sub> =0° |             | (0.638) |               | 1                 |             |  |
|                 | Reu           | Ry                   | Viewing Normal                        | Typ<br>0.05 | (0.342) | Typ.+<br>0.05 | -                 | (1),<br>(5) |  |
|                 | Green         | Gx                   | Angle                                 |             | (0.310) |               | -                 |             |  |
| Color           |               | Gy                   |                                       |             | (0.616) |               | -                 |             |  |
| Chromaticity    | Blue          | Вх                   |                                       |             | (0.153) |               | -                 |             |  |
|                 |               | Ву                   |                                       |             | (0.055) |               | -                 |             |  |
|                 | VA/1-16 -     | Wx                   |                                       |             | (0.298) |               | -                 |             |  |
|                 | White         | Wy                   |                                       |             | (0.308) |               | 1                 |             |  |
|                 | Horizontal    | $\theta_x$ +         |                                       | 80          | 88      | ı             |                   |             |  |
| Viouing Angle   | Honzontai     | $\theta_{x}$ -       | OD: 40                                | 80          | 88      | 1             | Dog               | (1),        |  |
| Viewing Angle   | Vertical      | $\theta_{Y}$ +       | CR≥10                                 | 80          | 88      | -             | Deg.              | (5)         |  |
|                 | vertical      | $\theta_{	ext{Y}}$ - |                                       | 80          | 88      | -             |                   |             |  |

Version 0.0 JUN 10, 2013 17/27



Note (1) Definition of Viewing Angle ( $\theta x$ ,  $\theta y$ ):



### Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

### Note (3) Definition of Response Time $(T_R, T_F)$ and measurement method:



Version 0.0 JUN 10, 2013 **18/27** 



#### Note (4) Definition of Luminance of White (L<sub>C</sub>):

 $L_C = L$  (1), where L (X) is corresponding to the luminance of the point X at the figure in Note (6)

#### Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



Version 0.0 JUN 10, 2013 **19/27** 



Note (6) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 255 at 13 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5),L (6),L (7),L (8),L (9),L (10),L (11),L (12),L (13)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5),L (6),L (7),L (8),L (9),L (10),L (11),L (12),L (13)]}}$$



Active Area

Version 0.0 JUN 10, 2013 **20/27** 



### 8. Reliability Test Criteria

| Test Item                                       | Test Condition                                          | Note        |  |
|-------------------------------------------------|---------------------------------------------------------|-------------|--|
| High Temperature Storage Test                   | (60°C,240 hours)                                        |             |  |
| Low Temperature Storage Test                    | (-20°C, 240 hours)                                      |             |  |
| Thermal Shock Storage Test                      | (-20°C, 0.5hour←→60 °C, 0.5hour; 1hour/cycle,100cycles) | (4) (5) (4) |  |
| High Temperature Operation Test                 | (50°C, 240 hours)                                       | (1)(2)(4)   |  |
| Low Temperature Operation Test                  | (-0°C, 240 hours)                                       |             |  |
| High Temperature & High Humidity Operation Test | (50°C,80%RH, 240hours)                                  |             |  |
| Shock (Non-Operating)                           | (40g, half sine, duration: 11ms,1times for ±X, ±Y, ±Z)  | (3)(4)      |  |
| Vibration (Non-Operating)                       | (f=10~300Hz, 1.5G, 10min/cycles,3cycles each X, Y, Z,)  | (3)(4)      |  |

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 70 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.



#### 9. PACKAGING

#### 9.1 PACKING SPECIFICATIONS

(1) 5 LCD modules / 1 Box

(2) Box dimensions: 713(L)x429(W)x453(H)mm

(3) Weight: approximately 21.1Kg (5 modules per box)

#### 9.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

| Test Item     | Test Conditions                                                                                                                                        | Note          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Vibration     | ISTA STANDARD Random, Frequency Range: 1 – 200 Hz Top & Bottom: 30 minutes (+Z), 10 min (-Z), Right & Left: 10 minutes (X) Back & Forth 10 minutes (Y) | Non Operation |
| Dropping Test | 1 Angle, 3 Edge, 6 Face, 60cm                                                                                                                          | Non Operation |



Figure. 9-1 Packing method

Version 0.0 JUN 10, 2013 22/27





Figure. 9-2 Packing method

### 9.3 UN-PACKING METHOD



Version 0.0 JUN 10, 2013 23/27

#### 10. DEFINITION OF LABELS

#### 10.1 Innolux MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



(a) Model Name: G260JJE -L07

(b) Revision: Rev. XX, for example: A1, B1,C1, C2 ...etc.



Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2011~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

# INNOLUX 群創光雷

# PRODUCT SPECIFICATION

#### 11. PRECAUTIONS

#### 11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of backlight will be higher than room temperature.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

#### 11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.



### 12. MECHANICAL CHARACTERISTICS



Version 0.0 JUN 10, 2013 **26/27** 





Version 0.0 JUN 10, 2013 27/27