Brain-Inspired Artificial Intelligence 3: Model-Based Reinforcement Learning

Eiji Uchibe

Dept. of Brain Robot Interface

ATR Computational Neuroscience Labs.

Outline

- We have studied Markov Decision Processes (MDPs)
 - Bellman expectation equation and Bellman optimality equation
- We will study model-based approaches to solve MDP problems
- Model-based methods
 - Policy iteration (= policy evaluation + policy improvement)
 - Value iteration

Model-based vs. Model-free Methods

Model-based approach

- $p(s',r \mid s,a)$ is known explicitly
- Policy iteration, value iteration, linear programming

Model learning and model-free approach

- Estimate an environmental model $\hat{p}(s', r \mid s, a)$ from samples
- Apply model-free approach to \hat{p}

Experience replay and model-free approach

- Store experienced samples in the buffer
- Apply model-free approach with samples drawn from the buffer

Model-free approach

- Train V^{π} , Q^{π} , or π directly from samples drawn from p
- Discard experienced samples without reuse

Model-based vs. Model-free Methods

Model-based approach

- $p(s',r \mid s,a)$ is known explicitly
- Policy iteration, value iteration, linear programming

Model learning and model-free approach

- Estimate an environmental model $\hat{p}(s', r \mid s, a)$ from samples
- Apply model-free approach to \hat{p}

Experience replay and model-free approach

- Store experienced samples in the buffer
- Apply model-free approach with samples drawn from the buffer

Model-free approach

- Train V^{π} , Q^{π} , or π directly from samples drawn from p
- Discard experienced samples without reuse

Two Model-based Approaches

- $\bullet \ \ \text{Policy iteration:} \quad \begin{array}{cccc} & \mathsf{E} & \mathsf{I} & \mathsf{E} & \mathsf{I} & \mathsf{E} & \mathsf{I} & \mathsf{E} \\ & \pi_0 \to V^{\pi_0} \to \pi_1 \to V^{\pi^1} \to \pi_2 \to \cdots \to \pi^* \to V^* \end{array}$
 - Policy evaluation and policy improvement
 - 1. Initialize the policy. 2. Evaluate the corresponding value function. 3. Improve the policy.
- Value iteration: $V_0 \to V_1 \to V_2 \to \cdots \to V_\infty \to \pi^*$
 - 1. Initialize the value function. 2. Update the value function. 3. Retrieve the optimal policy.

Policy Evaluation

• For a given **fixed** policy, policy evaluation tries to compute $v_{\pi}(s)$ that satisfies Bellman expectation equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma V^{\pi}(s')]$$

$$= \sum_{a} \sum_{s',r} \pi(a|s) p(s',r|s,a)[r + \gamma V^{\pi}(s')]$$

$$= \sum_{a} \sum_{s',r} r\pi(a|s) p(s',r|s,a) + \gamma \sum_{a} \sum_{s',r} V^{\pi}(s')\pi(a|s) p(s',r|s,a)$$

$$= \bar{r}(s) + \gamma \sum_{s'} V^{\pi}(s') p(s'|s)$$

Closed Solution of Bellman Expectation Equation

• Reminder: Bellman expectation equation

$$V^{\pi}(s) = \bar{r}(s) + \gamma \sum_{s'} V^{\pi}(s') p(s' \mid s) \qquad \text{for all } s$$

matrix-vector representation

$$\begin{bmatrix} V^{\pi}(s_1) \\ \vdots \\ V^{\pi}(s_{|\mathcal{S}|}) \end{bmatrix} = \begin{bmatrix} \bar{r}(s_1) \\ \vdots \\ \bar{r}(s_{|\mathcal{S}|}) \end{bmatrix} + \gamma \begin{bmatrix} p(s_1|s_1) & \cdots & p(s_{|\mathcal{S}|}|s_1) \\ \vdots & \ddots & \vdots \\ p(s_1|s_{|\mathcal{S}|}) & \cdots & p(s_{|\mathcal{S}|}|s_{|\mathcal{S}|}) \end{bmatrix} \begin{bmatrix} V^{\pi}(s_1) \\ \vdots \\ V^{\pi}(s_{|\mathcal{S}|}) \end{bmatrix}$$

• $V^{\pi}(s)$ is obtained by solving a system of $|\mathcal{S}|$ simultaneous **linear** equations

Closed Solution of Bellman Expectation Equation

Matrix/Vector representation

$$\boldsymbol{V} = \boldsymbol{r} + \gamma \boldsymbol{P} \boldsymbol{v}$$

$$\boldsymbol{V} = \begin{bmatrix} V^{\pi}(s_1) \\ \vdots \\ V^{\pi}(s_{|\mathcal{S}|}) \end{bmatrix}, \quad \boldsymbol{r} = \begin{bmatrix} \bar{r}(s_1) \\ \vdots \\ \bar{r}(s_{|\mathcal{S}|}) \end{bmatrix}, \quad \boldsymbol{P} = \begin{bmatrix} P(s_1|s_1) & \cdots & P(s_{|\mathcal{S}|}|s_1) \\ \vdots & \ddots & \vdots \\ P(s_1|s_{|\mathcal{S}|}) & \cdots & P(s_{|\mathcal{S}|}|s_{|\mathcal{S}|}) \end{bmatrix}$$

- If $\gamma < 1$, v is uniquely determined by $V = (I \gamma P)^{-1}r$ where I is an identity matrix
- When |S| is too large, the matrix inversion is not tractable
 - iteration method

Iterative Policy Evaluation

• Introduce Bellman expectation operator B_{π}

$$B_{\pi}V(s) \triangleq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

- B_{π} is linear, but dependent on π
- Initialize V(s) arbitrary (except that the terminal state must be 0)
- Compute $V_{k+1}(s)$ by the following rule

$$V_{k+1}(s) = B_{\pi}V_k(s)$$
 for all s

Iterative Policy Evaluation

ullet V_k converges to the value function that satisfies the Bellman equation

$$\lim_{k\to\infty} V_k(s) = V^{\pi}(s) \qquad \text{for all } s$$

• In particular, π need not be stochastic

Policy Improvement

• After V^π is computed by policy evaluation, we wanto find an improved policy π' based on V^π

$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$

$$= \arg \max_{a} \mathbb{E}[R_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_{t} = s]$$

$$= \arg \max_{a} \sum_{s',r} p(s', r | s, a)[r + \gamma V^{\pi}(s')]$$

- We do not need to maintain a stochastic policy
- After policy improvement, it is proved that

$$V^{\pi'}(s) \geq V^{\pi}(s)$$

Policy Iteration

Policy iteration is the algorithm that utilizes policy evaluation and policy improvement

$$\pi_0 \xrightarrow{\mathsf{E}} V^{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} V^{\pi^1} \xrightarrow{\mathsf{I}} \pi_2 \xrightarrow{\mathsf{E}} \cdots \xrightarrow{\mathsf{I}} \pi^* \xrightarrow{\mathsf{E}} V^*$$

 It is proved that the value function converges to the optimal value function by policy iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

policy- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Value Iteration

- One drawback to policy iteration is that each of its iteration involves policy evaluation which is computationally expensive
- What happen if we truncate policy evaluation?
- Value iteration directly updates the value function

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_{\infty} \rightarrow \pi^*$$

• It is proved that the value function converges to the optimal value function by value iteration.

Value Iteration

• Introduce Bellman optimality operator B_*

$$B_*V(s) \triangleq \max_a \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')]$$

- B_* is nonlinear, but independent of π
- Initialize $V_0(s)$ arbitrary (except that the terminal state must be 0)
- Compute V_{k+1} by the following rule

$$V_{k+1}(s) = B_* V_k(s)$$
 for all s

Value Iteration

ullet V_k converges to the optimal value function that satisfies the Bellman optimality equation

$$\lim_{k\to\infty} V_k(s) = V^*(s) \qquad \text{for all } s$$

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
 \begin{array}{c|c} & \Delta \leftarrow 0 \\ & \text{Loop for each } s \in \mathbb{S} \text{:} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \\ & \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ & \text{until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Simulation: FrozenLake task

Open in Colab

- Discrete-state and discrete-action MDP task provided by OpenAI gym
 - Simplify the task by considering deterministic MDP
- Positive reward (+1) for entering the goal from left 🤌

- 0 otherwise
- Episode ends when entering a hole

Summary

- Which is faster?
 - It depends on the problem
- VI takes more iterations than PI, but PI requires more time on each iteration
- PI must perform policy evaluation on each iteration which involves iteration
- VI is easier to implement since it does not require the policy evaluation step