1.

Determine whether the following vectors are linearly independent in P_3 :

(a)
$$x^2, 1, x^2 - 1$$

(b)
$$3, x, x^2, x - 2$$

(c)
$$x+1, x^2, x-1$$

(d)
$$x^2 + 2x, x + 1$$

2.

Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a spanning set for the vector space V, and let \mathbf{v} be any other vector in V. Show that $\mathbf{v}, \mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent.

3.

Let

$$\mathbf{x}_1 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix}$$

- (a) Show that x_1, x_2 , and x_3 are linearly dependent.
- (b) Show that x_1 and x_2 are linearly independent.
- (c) What is the dimension of $Span(x_1, x_2, x_3)$?
- (d) Give a geometric description of Span (x_1, x_2, x_3) .

4.

The vectors

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix},$$

$$\mathbf{x}_3 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad \mathbf{x}_4 = \begin{bmatrix} 2 \\ 0 \\ 6 \end{bmatrix}, \quad \mathbf{x}_5 = \begin{bmatrix} 0 \\ 4 \\ 5 \end{bmatrix}$$

span \mathbb{R}^3 . Pare down the set $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5\}$ to form a basis for \mathbb{R}^3 .

5.

For each of the following, find the transition matrix corresponding to the change of basis from $\{u_1, u_2\}$ to $\{e_1, e_2\}$:

- (a) $\mathbf{u}_1 = (1, -1)^T$, $\mathbf{u}_2 = (1, 2)^T$
- **(b)** $\mathbf{u}_1 = (2,3)^T$, $\mathbf{u}_2 = (4,7)^T$
- (c) $\mathbf{u}_1 = (1,0)^T$, $\mathbf{u}_2 = (0,1)^T$

6.

Let $\mathbf{u}_1 = (1, 1, 1)^T$, $\mathbf{u}_2 = (1, 2, 2)^T$, and $\mathbf{u}_3 = (2, 3, 4)^T$.

- (a) Find the transition matrix corresponding to the change of basis from {e₁, e₂, e₃} to {u₁, u₂, u₃}.
- (b) Find the coordinates of each of the following vectors with respect to the ordered basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$:
 - (i) $(3,2,5)^T$ (ii) $(1,1,2)^T$ (iii) $(2,3,2)^T$

7.

Given

$$\mathbf{v}_1 = \left(\begin{array}{c} 3 \\ 1 \end{array} \right), \quad \mathbf{v}_2 = \left(\begin{array}{c} 4 \\ 2 \end{array} \right), \quad S = \left(\begin{array}{cc} 2 & -5 \\ -1 & 3 \end{array} \right)$$

find vectors \mathbf{w}_1 and \mathbf{w}_2 so that S will be the transition matrix from $\{\mathbf{w}_1, \mathbf{w}_2\}$ to $\{\mathbf{v}_1, \mathbf{v}_2\}$.

8.

Let [x, 1] and [2x - 1, 2x + 1] be ordered bases for P_2 .

- (a) Find the transition matrix representing the change in coordinates from [2x 1, 2x + 1] to [x, 1].
- (b) Find the transition matrix representing the change in coordinates from [x, 1] to [2x 1, 2x + 1].

9.

For each of the following matrices, find a basis for the row space, a basis for the column space, and a basis for the null space:

(a)
$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 4 \\ 4 & 7 & 8 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -3 & 1 & 3 & 4 \\ 1 & 2 & -1 & -2 \\ -3 & 8 & 4 & 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 3 & -2 & 1 \\ 2 & 1 & 3 & 2 \\ 3 & 4 & 5 & 6 \end{bmatrix}$$

10.

Let A be a 4×4 matrix with reduced row echelon form given by

$$U = \left[\begin{array}{cccc} 1 & 0 & -1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

If

$$\mathbf{a}_1 = \begin{bmatrix} 3 \\ 2 \\ -1 \\ 2 \end{bmatrix} \quad \text{and} \quad \mathbf{a}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 3 \end{bmatrix}$$

find a3 and a4.