Homework 7 Written

July 8th, 2020 at 11:59pm

1 Bayes' Net: Representation

Assume we are given the following ten Bayes' nets, labeled G_1 to G_{10} :

Assume we are also given the following Bayes' nets, labeled G_1 to G_3 :

1. Assume we know that a joint distribution d_1 (over A,B,C) can be represented by Bayes' net $\mathbf{B_1}$. Mark all of the following Bayes' nets that are guaranteed to be able to represent d_1 .

 $\square \quad G_1 \qquad \quad \square \quad G_2 \qquad \quad \square \quad G_3 \qquad \quad \square \quad G_4 \qquad \quad \square \quad G_5$

 $\square \ \ G_6 \qquad \square \ \ G_7 \qquad \square \ \ G_8 \qquad \square \ \ G_9 \qquad \square \ \ G_{10}$

 \square None of the above.

VE 492 : Written #7 (Due July 8th, 2020 at 11:59pm)

111 011 01 01	ie ic	mowing D	ayes	nets that	t are	guarante	ea to	be able to represent d_2 .
G_1		G_2		G_3		$\mathbf{G_4}$		G_5
G_6		G_7		G_8		G_9		G_{10}
None of	the	above.						
		_						can be represented by Bayes' net $\mathbf{B_3}$. be able to represent d_3 .
G_1		G_2		G_3		${f G_4}$		G_5
G_6		G_7		G_8		G_9		G_{10}
None of	the	above.						
		_					. ,	can be represented by Bayes' net $\mathbf{B_1}\mathbf{B_2}$ canteed to be able to represent d_4 .
G_1		G_2		G_3		G_4		G_5
G_6		G_7		G_8		G_9		G_{10}
None of								

2 Variable Elimination

For the Bayes' net below, we are given the query P(A, E|+c). All variables have binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: B, D, G, F.

Complete the following description of the factors generated in this process:

After inserting evidence, we have the following factors to start out with:

Solution:

$$P(A), P(B \mid A), P(+c), P(D \mid A, B, +c), P(E \mid D), P(F \mid D), P(G \mid +c, F)$$

When eliminating B we generate a new factor f_1 as follows:

Solution:

$$f_1(A, +c, D) = \sum_b P(b \mid A) P(D \mid A, b, +c)$$

This leaves us with the factors:

Solution:

$$P(A), P(+c), P(E \mid D), P(F \mid D), P(G \mid +c, F), f_1(A, +c, D)$$

When eliminating D we generate a new factor f_2 as follows:

Solution: ...

VE 492: Written #7 (Due July 8th, 2020 at 11:59pm)

VE 492: Written #7 (Due July 8th, 2020 at 11:59pm)

(d) Find a variable elimination ordering for the same query, i.e., for P(A, E|+c), for which the maximum size factor generated along the way is smallest. Hint: the maximum size factor generated in your solution should have only 2 variables, for a size of $2^2 = 4$ table. Fill in the variable elimination ordering and the factors generated into the table below.

Variable Eliminated	Factor Generated

For example, in the naive ordering we used earlier, the first row in this table would have had the following two entries: B, $f_1(A, +c, D)$.