

DEFINIÇÃO

Limite de uma função real, conceitos e propriedades.

PROPÓSITO

Descrever o conceito de Limite de uma função real, através de uma abordagem intuitiva e analítica, bem como aplicar a definição na continuidade e na obtenção das retas assíntotas.

OBJETIVOS

MÓDULO 1

Aplicar a abordagem intuitiva, simbólica e analítica do Limite de uma função real

MÓDULO 2

Calcular o Limite de uma função real

MÓDULO 3

Aplicar o cálculo do Limite na verificação da continuidade da função e na obtenção das assíntotas.

MÓDULO 1

• Aplicar a abordagem intuitiva, simbólica e analítica do Limite de uma função real

INTRODUÇÃO

Em muitas aplicações da Matemática, torna-se necessário conhecer o comportamento de uma função quando a variável independente se aproximar de um determinado valor. Em outras palavras, importa saber para que valor esta função tende (ou se aproxima), quando o valor do seu domínio tender (ou se aproximar) de um número dado.

Esta análise do comportamento de uma função real de variável real é obtida através da operação matemática denominada de **Limite de uma função**.

O VOCÊ SABIA

A variável de **entrada** é denominada de variável **independente**, representada pela variável **x**, compondo o **domínio** da função.

A variável da **saída** (valor da função) será denominada de variável **dependente**, representada por **f(x)** ou por **y**, compondo o **contradomínio** da função.

O Limite de uma função pode ser abordado de uma forma intuitiva ou com uma formalidade matemática maior, utilizando uma simbologia e uma definição formal.

NOÇÃO INTUITIVA DE LIMITE DE UMA FUNÇÃO REAL

A aplicação desta abordagem irá permitir que você descubra o valor do Limite da função quando a variável de seu domínio tender a um número real. Você pode descobrir observando o comportamento da função através de seu gráfico ou de uma tabela contendo seus valores.

Seja a função f(x) = 2x + 4, com domínio no conjunto dos números reais, cujo gráfico se encontra a seguir.

Foque no comportamento da função quando os valores de \mathbf{x} se aproximam do número real 1.

Observe que esta aproximação pode ocorrer através de dois sentidos opostos.

PRIMEIRO SENTIDO SEGUNDO SENTIDO

O primeiro sentido é através dos valores **superiores** ao número 1, ou valores à **direita** de 1, vide a tabela. Representamos esta aproximação por $\mathbf{x} \to \mathbf{1}_+$

Aproximação por valores superiores ao 1 (à direita de 1)									
1,2	1,1	1,05	1,02	1,01	1,005	1,001	1,0001	1,00001	1,000001

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

O segundo sentido é através dos valores inferiores ao número 1, ou valores à esquerda de 1.

Representamos esta aproximação por x → 1_

Aproximação por valores inferiores ao 1 (à esquerda de 1)									
0,8	0,9	0,95	0,98	0,99	0,995	0,999	0,9999	0,99999	0,999999

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Esta aproximação terá, como consequência, uma variação no valor da função f(x).

As tabelas apresentam os valores obtidos pela função ao ocorrer as aproximações descritas

X	f(x) = 2x + 4
1,2	6,4
1,1	6,2
1,05	6,1
1,02	6,04
1,01	6,02
1,005	6,01
1,001	6,002
1,0001	6,0002
1,00001	6,00002
1,000001	6,000002

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

х	f(x) = 2x + 4
0,8	5,6
0,9	5,8
0,95	5,9
0,98	5,96
0,99	5,98
0,995	5,99
0,999	5,998
0,9999	5,9998
0,99999	5,99998
0,999999	5,99998

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

Conforme o valor de \mathbf{x} se aproxima do número 1, tanto pelos valores à direita quanto pelos valores à esquerda, a função f(x) se aproxima do número 6.

Em outras palavras, quanto mais o valor de \mathbf{x} se aproxima de 1 ($\mathbf{x} \to \mathbf{1}$), mais o valor de $\mathbf{f}(\mathbf{x})$ se aproxima de 6 ($\mathbf{f}(\mathbf{x}) \to \mathbf{6}$). Dizemos, então, que o **limite de f(x) é igual a 6 quando x tende a 1**.

Ao retornar e observar novamente o gráfico, você verá como f(x) se aproxima do número 6, conforme x se aproxima do número 1.

Agora, vamos analisar a função $g(x) = \frac{x^2 - x - 2}{x - 2}$ e tentar aplicar o conceito intuitivo para descobrir o comportamento de g(x) quando **x** tende para o número 2.

Uma dica: para traçar o gráfico de g(x), verifica-se que $x^2 - x - 2 = (x - 2)(x + 1)$, portanto,

$$rac{x^2 - x - 2}{x - 2} = rac{(x - 2)(x + 1)}{(x - 2)} = \left(x + 1\right)$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim, o gráfico de g(x) é o mesmo da função (x + 1), com exceção para x = 2, em que g(x) não é definido.

Quando a variável independente \mathbf{x} se aproxima do número 2, tanto pela direita quanto pela esquerda, o valor de $\mathbf{g}(\mathbf{x})$ se aproxima do valor de 3. Olhe o gráfico!

O interessante é que o **limite de g(x)** é igual a 3 quando \mathbf{x} tende para 2, mesmo com o número real 2 não pertencendo ao domínio da função $\mathbf{g}(\mathbf{x})$.

₹ ATENÇÃO

Podemos obter o Limite de uma função quando \mathbf{x} tende a um número real \mathbf{p} , mesmo que este número \mathbf{p} não pertença ao domínio da função.

Quanto a esta afirmação, o ponto não necessita pertencer ao domínio de f(x), mas deve ser um **ponto de acumulação** deste domínio. De uma forma simples, ponto de acumulação de um conjunto é um ponto que pode ser acessado através de um caminho de aproximação que passa pelos pontos do conjunto.

Em outras palavras, o caminho traçado para aproximar a variável independente x do ponto p deve obrigatoriamente pertencer ao domínio. Desta forma, o ponto p deve estar "colado" ao conjunto que define o domínio da função, para permitir se chegar a ele seguindo um caminho totalmente dentro do domínio da função.

Mas g(x) não estava definido para o x = 2. Se agora definíssemos g(x) para x = 2, por exemplo, fazendo g(2) = 4, mesmo assim, o valor do limite de g(x) quando x tende para 2 se manteria igual a 3, sendo um valor diferente do valor de g(2).

O valor do Limite de uma função quando \mathbf{x} tende a um número real \mathbf{p} não é necessariamente o valor da função no ponto \mathbf{p} .

Este aspecto vai estar associado à continuidade de uma função em um ponto. Este conceito será analisado em um próximo módulo. Será visto que quando a função for contínua, o valor da função no ponto será igual ao valor do Limite no ponto.

Vamos agora analisar outra função h(x) representada no gráfico a seguir.

A diferença das anteriores é que esta função tem uma descontinuidade no ponto x = 1,5.

QUAL SERÁ O LIMITE DE H(X) QUANDO X TENDE A 1,5?

Quando \mathbf{x} se aproxima do número 1,5 pela direita ($\mathbf{x} \to \mathbf{1},\mathbf{5}_+$), o valor de h(x) se aproxima do número 7, porém quando a variável independente \mathbf{x} se aproxima do número 1,5 pela esquerda ($\mathbf{x} \to \mathbf{1},\mathbf{5}_-$), a função h(x) se aproxima do número 4. Dois valores diferentes, e agora?

QUAL SERÁ PORTANTO O LIMITE DE H(X) QUANDO X TENDE A 1,5?

Neste caso, o Limite de f(x) quando x tende a 1,5 **não existirá.** Não conseguiremos achar nenhum valor real, único, que representa o comportamento de f(x) para quando o domínio se aproxima do número 1,5.

₹ ATENÇÃO

Apesar de não existir o Limite da função quando **x** tende ao número 1,5, pode-se dizer que o Limite à direita de h(x), quando x tende a 1,5, é igual a 7 e o Limite à esquerda de h(x), quando x tende a 1,5, é igual a 4. Os Limites à direita e à esquerda são denominados de **Limites Laterais** e serão posteriormente definidos.

EXEMPLO 1

Aplicando o conceito intuitivo de Limite, determine, caso exista, o valor do Limite de

$$f(x){=}igg\{rac{(x^2-9)}{x-3},\ x
eq 3$$
 , para quando a variável independente ${f x}$ tende para 2 e para quando ${f x}$ $12,\ x=3$

tende para 3.

RESOLUÇÃO

Verifica-se que $(x^2 - 9) = (x - 3)(x + 3)$

Assim,

$$f(x) = rac{\left(x^2 - 9
ight)}{\left(x - 3
ight)} = rac{\left(x - 3
ight)\left(x + 3
ight)}{x - 3} = x + 3 \,\, ext{para} \,\, x
eq 3$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Esboçando o gráfico de f(x) se tem:

Assim, quando \mathbf{x} tende para o número 2, a função f(x) tende para o número 5, que neste caso é o valor de f(2). Logo, o Limite de f(x) é igual a 5 para quando \mathbf{x} tende a 2.

Quando \mathbf{x} tende para o número 3, a função f(x) tende para o número 6, que é diferente de f(3). Assim, o Limite de f(x) é igual a 6 para quando \mathbf{x} tende a 3.

EXEMPLO 2

Seja g(x), cujo gráfico é dado a seguir. Utilizando o conceito intuitivo de Limite, determine, caso exista:

O valor do Limite de g(x) quando x tende a -1, por valores inferiores.

O valor do Limite de g(x) quando x tende a -1, por valores superiores.

O valor do Limite de g(x) quando x tende a -1.

RESOLUÇÃO

Pelo gráfico, verifica-se que:

Quando \mathbf{x} tende à esquerda para -1, isto é, $x \to -1_{-}$, a função f(x) se aproxima de 5,5, assim, o Limite de f(x) quando \mathbf{x} tende a -1 por valores inferiores é igual a 5,5.

Quando \mathbf{x} tende à direita para -1, isto é, $\mathbf{x} \to -1_{+}$, a função $f(\mathbf{x})$ se aproxima de 3, assim, o Limite de $f(\mathbf{x})$ quando \mathbf{x} tende a -1 por valores superiores é igual a 3.

Não existe Limite de f(x) quando x tende a-1, pois para cada sentido de aproximação da variável independente ao número -1, o valor de f(x) tende a valores diferentes, 5,5 ou 3.

ABORDAGEM SIMBÓLICA DO LIMITE - NOTAÇÃO

Você já aprendeu que se a função f(x) se aproximar de um número real L quando a variável independente \mathbf{x} se aproximar de um número real \mathbf{p} , em ambos os sentidos, então o Limite de f(x) será igual a L quando \mathbf{x} tender ao número real \mathbf{p} .

Mas, agora, vamos representar, simbolicamente, este Limite. Para representá-lo, você deve utilizar a seguinte simbologia:

$$\lim_{x o p} f(x) = L$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Em que **L** e **p** são número reais.

Caso se deseje calcular apenas o Limite de f(x) para quando a variável x se aproximar do número p, por apenas um dos sentidos, isto é, determinar o Limite para quando x tende a p por valores à esquerda ($x \rightarrow p_{+}$) ou por valores à direita ($x \rightarrow p_{+}$), você deve utilizar as seguintes simbologias, para estes Limites laterais:

$$\lim_{x \to p_{-}} f(x) = L_{I} \quad \text{ou} \quad \lim_{x \to p_{+}} f(x) = L_{S}$$
são números reais.

EXEMPLO 3

Represente, simbolicamente, a seguinte afirmativa: "O Limite de f(x) quando x tende ao número -2 é igual a zero".

RESOLUÇÃO

$$\lim_{x o -2}f(x) = 0$$

EXEMPLO 4

Represente, simbolicamente, a seguinte afirmativa: "O Limite de g(y) quando y tende ao número 3 por valores superiores é igual a dez".

RESOLUÇÃO

$$\lim_{y o 3+}g(y){=10}$$

ABORDAGEM ANALÍTICA DO LIMITE - DEFINIÇÃO FORMAL

Até aqui, foi utilizada uma definição apenas intuitiva de Limite, apesar de já termos visto a representação simbólica. Afirmativas do tipo "se aproxima de" ou "tende a" são bastante vagas e necessitam de uma definição matemática mais rigorosa. É necessário, portanto, determinar formalmente o Limite de uma função real guando a variável independente tende a um número real.

No entanto, antes de determinar o Limite, é necessário definir a vizinhança de um número real.

Sejam r e δ números reais.

Define vizinhança completa de r, ou simplesmente vizinhança, com a notação V(r), todo intervalo aberto centrado em r, isto é, $(r-\delta, r+\delta)$, com $\delta>0$. δ está relacionado ao tamanho (raio) da vizinhança.

Se for considerado apenas um lado da vizinhança, esta será denominada de **vizinhança à esquerda**, $V(r_+)$, para o intervalo de $(r_-\delta, r)$, e **vizinhança à direita**, $V(r_+)$, para o intervalo de $(r_-\delta, r)$, e **vizinhança à direita**, $V(r_+)$, para o intervalo de $(r_-\delta, r)$.

DEFINIÇÃO DE LIMITE DE F(X) QUANDO X TENDE A UM NÚMERO REAL:

Seja uma função \mathbf{f} real definida sobre um intervalo aberto que contém o número real \mathbf{p} , exceto possivelmente no próprio ponto \mathbf{p} .

Então, diz-se que o **Limite de f(x) quando x tende a p** é um número real L, se para todo número $\varepsilon > 0$, existe um número correspondente $\delta > 0$, dependente de ε , tal que para todo **x** do domínio de f(x), se tem:

 ϵ e δ são números reais positivos infinitesimais, isto é, tão pequenos como você quiser.

Assim, se existir o Limite de f(x), representado pelo número L, ao se escolher um valor de $\epsilon > 0$, tão pequeno como você queira, representando a distância máxima entre f(x) e L, vai existir um valor de δ , que representa a distância entre a variável independente \mathbf{x} e \mathbf{p} , também suficientemente pequeno, de forma que sempre que \mathbf{x} estiver na vizinhança de \mathbf{p} de raio δ , f(x) estará na vizinhança de L de raio ϵ . Vide o esquema a seguir.

Em outras palavras, ao existir o Limite de f(x), representado pelo número L, quando x tende a p, significa que para toda vizinhança de L vai existir uma vizinhança em p tal que, toda vez que x estiver nesta vizinhança de p, f(x) estará na vizinhança de L.

Q VOCÊ SABIA

A demonstração do teorema da Unicidade pode ser realizada através da definição formal do Limite.

O Teorema da Unicidade nos diz que se existe o Limite de f(x) quando x tende a um número p, este Limite será único. Isto é, só pode existir um valor que represente o Limite de f(x), desde que ele exista.

A demonstração formal do Limite tem uma aplicação prática. Você pode usá-la para se verificar se um determinado número é ou não o valor do Limite de uma função.

Vide o exemplo apresentado na Teoria na prática que demonstrará a sua utilização

TEORIA NA PRÁTICA

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

MÃO NA MASSA

1. QUAL A REPRESENTAÇÃO SIMBÓLICA CORRETA PARA REPRESENTAR O LIMITE DA FUNÇÃO H(Z) QUANDO Z TENDE A UM VALOR K, POR VALORES INFERIORES?

A)
$$\lim_{z o k-}h(z)$$

B)
$$\lim_{z o k+}h(z)$$

c)
$$\lim_{z o k}h(z)$$

D)
$$\lim_{h(z)} k$$

2. APLICANDO O CONCEITO INTUITIVO DE LIMITE, DETERMINE, CASO EXISTA, O

VALOR DO LIMITE DE $f(x) = \left\{ egin{array}{c} \frac{(x^2-16)}{x-4} \ , \ x
eq 4 \end{array}
ight.$, respectivamente, para $10 \ , \ x=4$

QUANDO A VARIÁVEL INDEPENDENTE X TENDE PARA 3 E PARA QUANDO X TENDE PARA 4.

- **A)** 5 e 6
- **B)** 7 e 8
- **C)** 4 e 5
- **D)** 2 e 3
- 3. SEJA H(X), CUJO GRÁFICO É DADO A SEGUIR. UTILIZANDO O CONCEITO INTUITIVO DE LIMITE, DETERMINE, CASO EXISTA, O VALOR DO LIMITE DE H(X) QUANDO X TENDE A 2.

- **A)** 7,5
- **B)** 4
- **C)** 2,5
- D) Não existe

4. UTILIZANDO O CONCEITO INTUITIVO DE LIMITE, DETERMINE, CASO EXISTA, O

LIMITE DE
$$m(x) = \left\{ egin{array}{ll} 3x-1,\; para\; x < 0 \\ 12,\; para\; x = 0 \\ 2+e^x,\; para\; x > 0 \end{array}
ight.$$
 , RESPECTIVAMENTE, PARA QUANDO X

TENDE A 0 POR VALORES SUPERIORES E POR VALORES INFERIORES.

- **A)** 1 e 3
- **B)** 12 e 12
- **C)** 3 e 1
- **D)** 12 e 1

5. UTILIZANDO O CONCEITO INTUITIVO DE LIMITE, DETERMINE O VALOR DE K

REAL PARA QUE EXISTA O LIMITE DE
$$p(z) = \left\{egin{array}{ll} 2z+k,\;para\;z < 1 \\ 9,\;para\;z = 1 \\ 1+2\;\ln\;z,\;para\;z > 1 \end{array}
ight.$$

QUANDO Z TENDE AO VALOR 1.

- **A)** 2
- **B)** -1
- **C)** 1
- **D)** 2

6. AO SE DESEJAR PROVAR QUE $\lim_{x \to 4} 8-x=4$, ATRAVÉS DA DEFINIÇÃO FORMAL, CHEGOU-SE À CONCLUSÃO DE QUE $|f(x)-4|<\varepsilon$ SEMPRE QUE $|x-4|<\delta$. NESTA DEMONSTRAÇÃO, QUAL O VALOR DE Δ EM FUNÇÃO DE E?

- **Α)** ε
- **B)** ε/2
- **C)** ε/4
- **D)** 2ε

1. Qual a representação simbólica correta para representar o Limite da função h(z) quando z tende a um valor k, por valores inferiores?

A alternativa "A " está correta.

Como se deseja apenas ${f z}$ tendendo a ${f k}$ por valores inferiores (à esquerda), a representação correta será $\lim_{z o k-} h(z)$

Complementando, se fosse pedido o Limite de h(z) para quando a variável ${\bf z}$ se aproximar do número ${\bf k}$ por valores superiores (à direita), a simbologia seria $\lim_{z \to k+} h(z)$

Por fim, para o Limite de h(z) para quando **z** tende a **k**, adota-se os dois sentidos, assim, a simbologia é $\lim_{z \to k} h(z)$

2. Aplicando o conceito intuitivo de Limite, determine, caso exista, o valor do Limite de

$$f(x){=}igg\{rac{(x^2-16)}{x-4}\;,\;x
eq 4$$
 , respectivamente, para quando a variável independente x tende para $10\;,\;x=4$

3 e para quando x tende para 4.

A alternativa "B " está correta.

Verifica-se que $(x^2 - 16) = (x - 4)(x + 4)$.

Assim

$$f(x) = rac{\left(x^2 - 16
ight)}{x - 4} = rac{(x - 4)(x + 4)}{(x - 4)} = x + 4, \; para \; x
eq 4$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Esboçando o gráfico de f(x), se tem:

Desta forma, quando \mathbf{x} tende para o número 3, a função f(x) tende para o número 7, que neste caso é o valor de f(3). Assim, o Limite de f(x) é igual a 7 para quando \mathbf{x} tende a 3. Quando \mathbf{x} tende para o número 4, a função f(x) tende para o número 8, que é diferente de f(4). Logo, o Limite de f(x) é igual a 8 para quando \mathbf{x} tende a 4.

3. Seja h(x), cujo gráfico é dado a seguir. Utilizando o conceito intuitivo de limite, determine, caso exista, o valor do limite de h(x) quando x tende a -2.

A alternativa "D " está correta.

Confira a solução no vídeo abaixo:

4. Utilizando o conceito intuitivo de Limite, determine, caso exista, o Limite de

$$m(x){=}egin{cases} 3x-1,\;para\;x<0\ 12,\;para\;x=0\ 2+e^x,\;para\;x>0 \end{cases}$$
 , respectivamente, para quando x tende a 0 por valores

superiores e por valores inferiores.

A alternativa "C " está correta.

Quando \mathbf{x} tem valores maiores (superiores) do que 0, a função m(x) tem equação $2 + e^x$. Se lembramos do gráfico da função e^x , esta tenderá a $e^0 = 1$ quando \mathbf{x} tende a zero. Assim, m(x) tenderá a $2 + e^0 = 2 + 1 = 3$.

Quando \mathbf{x} tem valores menores (inferiores) do que 0, a função m(x) tem equação 3x - 1, que é a equação de uma reta. Fazendo o gráfico desta reta, verifica—se que, quando se aproxima do valor 0 por valores inferiores, a função m(x) tenderá a 3.0 - 1 = -1.

Não foi perguntado, mas esta função, apesar de ter Limites à esquerda, valendo -1, e à direita, valendo 3, não tem Limite, pois os Limites laterais são diferentes.

Outro cuidado, o valor de **m** para **x** igual a zero vale 12, não tendo nada a ver com os valores.

5. Utilizando o conceito intuitivo de Limite, determine o valor de k real para que exista o limite de

$$p(z){=}egin{cases} 2z+k,\;para\;z<1\ 9,\;para\;z=1\ 1+2\;\ln\;z,\;para\;z>1 \end{cases}$$
 , para quando z tende ao valor 1.

A alternativa "B " está correta.

Confira a solução no vídeo abaixo:

6. Ao se desejar provar que $\lim_{x \to 4} 8 - x = 4$, através da definição formal, chegou-se à conclusão de que $|f(x) - 4| < \varepsilon$ sempre que $|x - 4| < \delta$. Nesta demonstração, qual o valor de δ em função de ϵ ?

A alternativa "A " está correta.

Parabéns! Você entendeu o conceito da definição formal do Limite.

Dado um valor $\varepsilon > 0$.

Então queremos obter |f(x)-4|<arepsilon sempre que $\ |x-4|<\delta.$

Mas

$$|f(x)-4|=|8-x-4|=|4-x|=|x-4|$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Então, fazendo $\delta = \epsilon$, vamos conseguir provar o enunciado.

Pois, dado $\varepsilon > 0$, obtém-se $\delta = \varepsilon$

$$|x-4|<\delta
ightarrow |4-x|<\delta
ightarrow |8-x-4|<\delta$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal Então

$$|8-x-4| = |(8-x)-4| < arepsilon$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal provando que o Limite vale 4.

Repare que, com qualquer valor de ϵ escolhido é sempre possível definir o δ

VERIFICANDO O APRENDIZADO

1. SEJA f(x)= $\begin{cases} x+2,\ x<2 \ x^2,\ x\geq 2 \end{cases}$. APLICANDO O CONCEITO INTUITIVO DE LIMITE, MARQUE A ALTERNATIVA QUE APRESENTA O DO $\lim_{x\to 2} f(x)$.

- **A)** 1
- **B)** 3
- **C)** 4
- D) O Limite não existe

2. QUAL DAS ALTERNATIVAS ABAIXO REPRESENTA, SIMBOLICAMENTE, O LIMITE DE G(X) QUANDO X TENDE PARA M APENAS POR VALORES SUPERIORES?

A)
$$\displaystyle \lim_{x o m-} g(x)$$

B)
$$\displaystyle \lim_{x o m+} g(x)$$

C)
$$\displaystyle \lim_{x o m} g(x)$$

D)
$$\lim_{x o g\left(x
ight.)} p$$

GABARITO

1. Seja f(x)= $\begin{cases} x+2,\ x<2 \\ x^2,\ x\geq 2 \end{cases}$. Aplicando o conceito intuitivo de Limite, marque a alternativa que apresenta o do $\displaystyle\lim_{x\to 2} f(x)$.

A alternativa "C " está correta.

Quando x se aproxima de 2 por valores inferiores, f(x) é definida por x + 2. Assim, f(x) vai tender para 4. Quando x se aproxima de 2 por valores superiores, f(x) é definida por x². Logo, f(x) vai tender para 4 também. Portanto, o Limite de f(x) tende para 4 quando x tende para 2. Pode ser feita uma análise gráfica para solucionar também esta questão.

2. Qual das alternativas abaixo representa, simbolicamente, o Limite de g(x) quando x tende para m apenas por valores superiores?

A alternativa "B " está correta.

Como se deseja apenas **x** tendendo a **m** por valores à direita (superiores), representamos por $\lim_{x \to m+} g(x)$.

Caso se deseje o Limite de f(x) para quando a variável ${\bf x}$ se aproximar do número ${\bf m}$ por valores à esquerda (inferiores), a simbologia é $\lim_{x \to m-} g(x)$.

Para o Limite de g(x) para quando **x** tende a **m**, adota-se os dois sentidos, assim, a simbologia é $\lim_{x \to m} g(x)$.

MÓDULO 2

• Calcular o Limite de uma função real.

INTRODUÇÃO

O conceito de Limite lateral, comentado no módulo anterior, é uma alternativa através da qual podemos verificar a existência ou não do Limite e até mesmo estimar o seu valor.

Além desta alternativa e da determinação do Limite pela aplicação da abordagem intuitiva, podemos usar algumas propriedades e teoremas para calcular de uma forma analítica o Limite de f(x) para quando x tende a um número real p.

Por fim, o conceito de Limite pode ser extrapolado para se analisar o comportamento da função no infinito ou quando tende ao infinito.

Limite no Infinito

quando seu domínio tende para mais ou menos infinito.

Limite Infinito

Quando o valor da função tende a mais ou a menos infinito.

LIMITES LATERAIS

Os Limites Laterais de f(x) quando x tende a um número real p são representados por

$$\lim_{x \to p_{-}} f(x) = L_{I} \quad \text{ou} \quad \lim_{x \to p_{+}} f(x) = L_{S}$$
são números reais.

Limite Inferior

O Limite Inferior ou Limite à **Esquerda**, L_I , existirá se quando x tender ao número p, pelos valores inferiores (menores) ao p, a função real f(x) tender ao valor de L_I

Limite Superior

O Limite Superior ou Limite à **Direita**, L_S , existirá se quando x tender ao número p pelos valores superiores (maiores) ao p, a função real f(x) tender ao valor de L_S

Limites Laterais

Os Limites Laterais podem ser **iguais**, como na função h(x) representada a seguir. Você pode perceber que quando x tende a 3 por valores inferiores e superiores a 3 , a função h(x) tenderá ao número 14.

$$\lim_{x o 3-} h(x) \ = \lim_{x o 3+} h(x) \ = 14$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Os Limites Laterais também podem ser diferentes entre si, como na função p(x) representada a seguir. Verifique que quando x tende a 2, por valores inferiores, a função p(x) tende a 10, e quando x tende a 2, por valores superiores, a função p(x) tende a 6.

$$\lim_{x \to 2-} p(x) = 10 \ e \ \lim_{x \to 2+} p(x) = 6$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Da mesma forma que o Limite, existe a necessidade de uma definição formal para os Limites Laterais.

Definição de Limites Laterais à Esquerda de f(x) quando x tende a um número real:

$$\lim_{x o p_-}\!f(x)\!\!=L_I$$

se para todo número $\varepsilon > 0$, existe um número correspondente $\delta > 0$, dependente de ε , tal que para todo \mathbf{x} do domínio de $f(\mathbf{x})$,

$$p - \delta < x < p
ightarrow |f(x) - L_I| < arepsilon$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Definição de Limites Laterais à Direita de f(x) quando x tende a um número real:

$$\lim_{x o p_+}\!f(x)\!\!=L_S$$

se para todo número $\epsilon > 0$, existe um número correspondente $\delta > 0$, dependente de ϵ , tal que para todo \mathbf{x} do domínio de $f(\mathbf{x})$,

$$p < x < p + \delta
ightarrow |f(x) - L_s| < arepsilon$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

A importância dos Limites Laterais recai na possibilidade de se verificar a existência ou não do limite da função no ponto e, além disso, obter o valor do Limite.

₹ ATENÇÃO

O Limite de f(x) quando x tende ao número real p, vai existir e será igual a L, se e somente se:

Existem os dois Limites Laterais de f(x) quando x tende a p;

Os Limites Laterais são iguais a L.

$$\lim_{x o p}f(x){=}\;L\;\leftrightarrow egin{cases} \exists \lim_{x o p-}f(x)\ \exists \lim_{x o p+}f(x)\ \lim_{x o p-}f(x){=}\;\lim_{x o p+}f(x){=}\;L \end{cases}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Retomando os gráficos anteriores, você pode perceber que o Limite de h(x) existe, pois, para quando ${\bf x}$ tende a 3, os Limites Laterais vão existir e serão iguais $\displaystyle \lim_{x \to 3-} h(x) = \displaystyle \lim_{x \to 3+} h(x) = 14$.

Além disso, você pode calcular o $\displaystyle \lim_{x o 3} h(x) = 14$.

Para o caso de p(x), o Limite não existirá, pois, apesar dos Limites Laterais existirem, eles são diferentes. Portanto, $ot = \lim_{x \to 2} p(x)$.

EXEMPLO 5

Calcule os dois Limites Laterais da função f(x) = 2|x|/x quando x tende para zero.

RESOLUÇÃO

Para valores de ${\bf x}$ positivos, e f(x), então vai assumir o valor de $\frac{2x}{x}=2$.

Para valores de **x** negativos, e f(x), então vai assumir o valor de $\frac{-2x}{x}=-2$.

Quando, portanto, \mathbf{x} se aproxima de zero por valores superiores (à direita), então x > 0, desta forma

$$\lim_{x o 0+} rac{2 \, |x|}{x} = \lim_{x o 0+} rac{2x}{x} = \lim_{x o 0+} 2 = 2$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Quando **x** tende a zero por valores inferiores (à esquerda), então x < 0 e |x| = -x, logo

$$\lim_{x \to 0-} \frac{2|x|}{x} = \lim_{x \to 0+} \frac{-2x}{x} = \lim_{x \to 0+} -2 = -2$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

EXEMPLO 6

Determine o Limite da função f(x) = 2|x|/x quando x tende para zero.

RESOLUÇÃO

Como calculado no exemplo anterior:

$$\lim_{x o 0-}rac{2\,|\,x\,|}{x}=-2$$
 e $\lim_{x o 0+}rac{2\,|\,x\,|}{x}=2$

Assim, como $\lim_{x o 0+} f(x) \
eq \lim_{x o 0-} f(x)$, logo, não existe $\lim_{x o 0} f(x)$.

TEOREMAS PARA CÁLCULO DOS LIMITES DE F(X)

Agora podemos conhecer alguns teoremas que nos permitirão calcular o Limite de uma função real quando ${\bf x}$ tende a um número real ${\bf p}$ de uma forma analítica e não apenas intuitiva.

As demonstrações destes teoremas podem ser feitas através da definição formal de Limite.

TEOREMA DA SUBSTITUIÇÃO DIRETA:

Sejam m(x) e n(x) funções polinomiais, e $\frac{m(x)}{n(x)}$ uma função racional, então

$$\lim_{x\to p} m(x) {= m(p)}$$

$$\lim_{x o p}rac{m\,(\,x\,)}{n(x)}=rac{m(p)}{n(p)}\;,\;se\;n\Big(p\Big)
eq 0$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Na verdade, o teorema acima vale para qualquer função que é contínua no ponto **p** do seu domínio. A definição de função contínua será feita no próximo módulo, mas já podemos adiantar que, além das funções polinomiais e racionais, as funções trigonométricas, exponenciais, trigonométricas inversas e logarítmicas também são contínuas em seus domínios.

Em outras palavras, podemos estender o teorema acima para o cálculo do Limite de qualquer uma da lista destas funções quando ${\bf x}$ tende a um ponto ${\bf p}$ do seu domínio.

EXEMPLO 7

Determine, caso exista,
$$\lim_{x o 2} ig(7x^4 + x^2 - 8x + 2ig)$$
.

RESOLUÇÃO

A função $f(x)=7x^4+x^2-8x+2$ é uma função polinomial, contínua em todo seu domínio, portanto, podemos usar o Teorema da Substituição para executar o cálculo.

$$\lim_{x o 2}ig(7x^4+x^2-8x+2ig)=7{(2)}^4+{(2)}^2-8.2+2=7.16+4-16+2=102$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

EXEMPLO 8

Determine, caso exista, $\displaystyle \lim_{x o \pi} sen \ x$

RESOLUÇÃO

A função $f(x) = \text{sen } \mathbf{x}$ é uma função trigonométrica, contínua no ponto $x = \pi$, portanto podemos usar o Teorema da Substituição Direta.

Assim,
$$\lim_{x o \pi} \ sen \ x = sen \ \pi \ = 0$$

TEOREMA DA SUBSTITUIÇÃO DE FUNÇÕES

Sejam f(x) e g(x) duas funções tais que f(x) = g(x) para todos os pontos do domínio, com exceção de x = p. Neste caso, se o Limite de g(x) quando ${\bf x}$ tende a ${\bf p}$ existe, o Limite de f(x) também existe e $\lim_{x\to p} f(x) = \lim_{x\to p} g(x)$

No módulo 1 nós usamos intuitivamente este teorema ao verificar o Limite da função $g(x)=\frac{x^2-x-2}{x-2}$ pois esta função g(x) era igual à função (x+1) para todos os pontos do domínio, com exceção de x = 2. Portanto, $\lim_{x\to 2}\frac{x^2-x-2}{x-2}=\lim_{x\to 2}\,x+1=\,3$.

₹ ATENÇÃO

O Teorema da Substituição Direta, inicialmente, não pode ser usado nas funções racionais no caso em que n(p), que está no denominador, tenha um valor igual a zero.

Porém, em alguns casos em que tanto m(p) e n(p) se anulam simultaneamente, pode-se tentar retirar esta restrição através de um cancelamento de fatores comuns entre o numerador e o denominador.

Assim, se definirá uma nova função que apresenta os mesmos valores da função original com exceção do ponto **p**, podendo usar o Teorema da Substituição de Funções

EXEMPLO 9

Confira o exemplo a seguir para entender melhor.

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

PROPRIEDADES ALGÉBRICAS DO LIMITE

O Limite de f(x) apresenta propriedades algébricas que podem ser utilizadas para calcular o Limite da função quando x tende ao número p. Todas estas propriedades podem ser demonstradas através de sua definição formal do Limite.

Sejam ${f k}$, ${f p}$, L e T números reais. Seja ${f n}$ um número natural diferente de zero. Se $\lim_{x o p}f(x)=L$ e $\lim_{x o p}g(x)=T$, então:

Limite de uma constante

$$\lim_{x o p} k = k \;,\; k \; real$$

Propriedade da soma e da diferença

$$\lim_{x o p}[f(x)\pm g(x)]=\lim_{x o p}f(x)\pm\lim_{x o p}q(x)=L\pm T$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal Propriedade do produto por uma constante

$$\lim_{x o p} [kf(x)] = k \lim_{x o p} f(x) = kL$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal Propriedade de produto

$$\lim_{x o p}[f(x).\,g(x)]\!=\!\left[\lim_{x o p}f(x)
ight]\!.\left[\lim_{x o p}g(x)
ight]\!=L\;T$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal Propriedade do quociente

$$\lim_{x o p} \left[rac{f(x)}{g(x)}
ight] = rac{\lim\limits_{x o p} f(x)}{\lim\limits_{x o p} g(x)} = rac{L}{T} \;,\; se\; \lim_{x o p} g(x) = T
eq 0$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal Propriedade da potenciação

$$\lim_{x o p}\left[f(x)
ight]^n=\left[\lim_{x o p}f(x)
ight]^n=L^n$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal Propriedade da raiz

$$\lim_{x o p}\sqrt[n]{f(x)}=\sqrt[n]{\lim_{x o p}f(x)}=\sqrt[n]{L}\ ,\ para\ o\ caso\ de\ n\ par: L\ \geq 0$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal Propriedade logarítmica

$$\lim_{x o p} ln \lfloor f(x)
floor = lnigg(\lim_{x o p} f(x)igg) = \ln L, \; se \; \lim_{x o p} f(x) = L > 0$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Propriedade exponencial

$$\lim_{x o p} exp \lfloor f(x)
floor = expigg(\lim_{x o p} f(x)igg) = e^L$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

EXEMPLO 10

Determine, caso exista, $\lim_{x o 0} 10 \ln(x+2) \mathrm{cos}\,x^2$

RESOLUÇÃO

Usando a propriedade do produto,

$$\lim_{x
ightarrow 0} 10 \ln(x+2) \mathrm{cos}\, x^2 = 10 \, \lim_{x
ightarrow 0} \ln(x+2) \mathrm{lim}_{x
ightarrow 0} \cos x^2$$
 .

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Mas In (x+2) e cos x^2 são funções que fazem parte de nossa lista de funções contínuas no domínio e x = 0 pertence ao domínio de ambas.

Desta forma, podemos usar o Teorema da Substituição Direta:

$$10 \, \lim_{x o 0} \ln(x+2) \! \lim_{x o 0} cos x^2 \, = 10 \, \lnigg(2igg) \, \cos \, 0 \, = \, 10 \, \lnigg(2igg)$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

EXEMPLO 11

Determine, caso exista, $\lim_{x o 1} ln\Big(\sqrt{rac{2x+14}{3+x^2}}\Big)$

RESOLUÇÃO

Usando a propriedade algébrica

$$\lim_{x o 1} ln\Bigl(\sqrt{rac{2x+14}{3+x^2}}\Bigr) = ln\Bigl(\lim_{x o 1}\sqrt{rac{2x+14}{3+x^2}}\Bigr)$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Esta propriedade pode ser usada, pois caso o Limite da direita exista, ele será positivo.

Como $\sqrt{\frac{2x+14}{3+x^2}}$ está na lista e funções contínuas em seu domínio e x = 1 pertence ao seu domínio, pelo Teorema da Substituição Direta

$$\lim_{x\to 1} \sqrt{\tfrac{2x+14}{3+x^2}} = \sqrt{\lim_{x\to 1} \tfrac{2x+14}{3+x^2}} = \sqrt{\tfrac{2.1+14}{3+1^2}} = \sqrt{\tfrac{16}{4}} = 2$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Portanto,

$$\lim_{x o 1} ln\Bigl(\sqrt{rac{2x+14}{3+x^2}}\Bigr) = ln\Bigl(\lim_{x o 1}\sqrt{rac{2x+14}{3+x^2}}\Bigr) = \lnigg(2igg)$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

LIMITES NO INFINITO E LIMITES INFINITOS

LIMITES NO INFINITO

Até este ponto, definimos e calculamos os Limites de uma função quando a variável independente de seu domínio tende a um número real **p**. Porém, podemos estender este cálculo do Limite para quando **x** tender ao infinito ou ao menos infinito.

Q VOCÊ SABIA

Um número real x tenderá para **infinito**, $x \to \infty$, sempre que $\forall M$ real, x > M.

Um número real x tenderá para **menos infinito**, $x \to -\infty$, sempre que $\forall M$ real, x < -M.

Este tipo de Limite será utilizado para se obter o comportamento da função quando \mathbf{x} assumir valores cada vez maiores, ou seja, crescer sem limitação, representado por $\mathbf{x} \to \infty$ ou para quando \mathbf{x} assumir valores cada vez menores ou decrescer sem limitação, representado por $\mathbf{x} \to -\infty$.

Veja o gráfico da função w(x). Quando x tende para infinito, o gráfico da função w(x) tende para a reta y = 2. Isso quer dizer que o valor de w(x) fica cada vez mais próximo de 2, portanto, o Limite de w(x) quando x tende ao infinito vale 2. De forma análoga, quando x tende para menos infinito, o gráfico da função tende para a reta y = 1.

Assim, o valor de w(x) fica cada vez mais próximo de 1, consequentemente, o Limite de w(x) quando x tende a menos infinito vale 1.

As retas y = 1 e y = 2 no gráfico são denominadas de assíntotas horizontais e serão definidas no próximo módulo.

Utiliza-se, portanto, a simbologia $\lim_{x \to \infty} f(x) = L_1$ para indicar o comportamento de f(x) se aproximando cada vez mais de L₁, sem nunca alcançar, quando **x** tender ao infinito. No gráfico anterior L₁ vale 2.

De forma análoga, a notação $\lim_{x\to -\infty} f(x) = L_2$, para o caso quando ${\bf x}$ tender ao menos infinito. No caso anterior L $_2$ vale 1.

Todos os teoremas e propriedades algébricas vistas neste módulo, para quando \mathbf{x} tende a um número real \mathbf{p} , podem ser usadas também para quando \mathbf{x} tende apenas para os Limites Laterais ou quando \mathbf{x} tende a mais ou menos infinito.

Para cálculo de Limites envolvendo infinito devemos conhecer algumas operações:

Ao se dividir um número real por um número que tende ao infinito, o quociente tende a zero.

$rac{N}{\infty} ightarrow 0_+$, quando N \geq 0	$rac{N}{\infty} ightarrow 0$, quando N \leq 0
$rac{N}{-\infty} ightarrow 0$, quando N \geq 0	$rac{N}{-\infty} ightarrow 0_+$, quando N \leq 0

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

₹ ATENÇÃO

0₊ significa que tende a zero pela direita (valores positivos);

0_ significa que tende a zero pela esquerda (valores negativos).

Ao se dividir um número que tende a mais ou menos infinito por um número real, o quociente tende a mais ou menos infinito. Assim, tem-se as seguintes possibilidades:

$$\frac{\infty}{N} \to \infty, \text{ quando N} \ge 0$$

$$\frac{\infty}{N} \to -\infty, \text{ quando N} \le 0$$

$$\frac{-\infty}{N} \to -\infty, \text{ quando N} \ge 0$$

$$\frac{-\infty}{N} \to \infty, \text{ quando N} \le 0$$

Atenção! Para visualização completa da tabela utilize a rolagem horizontal

EXEMPLO 12

Calcule o valor de $\lim_{u \to \infty} \frac{5}{2e^u}$

RESOLUÇÃO

No cálculo do Limite, deve-se conhecer as funções envolvidas. Neste caso, por exemplo, é preciso conhecer a função e^u usando as propriedades algébricas e a substituição direta, pois as funções envolvidas são contínuas

$$\lim_{u o\infty}rac{5}{2e^u}=rac{\lim\limits_{u o\infty}5}{2\lim\limits_{u o\infty}e^\infty}=rac{5}{2.e^\infty}=rac{5}{\infty}=0$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Portanto, a função tende a 0 quando **u** tende ao infinito.

LIMITES INFINITOS

Até este ponto, obtivemos valores de Limites da função iguais a um número real L, tanto quanto \mathbf{x} tende a um número real \mathbf{p} ou ao infinito.

Outra extensão que pode ser feita é quando uma determinada função tem um comportamento de tender não a um número, mas ao infinito, quando \mathbf{x} se aproxima de um número real ou até mesmo do infinito. Veja o gráfico da função $I(\mathbf{x})$.

Observe que quando ${\bf x}$ tende a zero, tanto por valores superiores ou inferiores, a função assume valores que tendem para o infinito. O infinito não é um número, mas ao usarmos a notação $\lim_{x \to 0} I(x) = \infty$ estamos representando o comportamento da função assumindo valores tão grandes quanto quisermos, ou seja, crescendo sem limitações.

O conceito de Limites Laterais também pode ser aplicado neste caso. Podemos afirmar que

$$\lim_{x o 0+} I(x) = \lim_{x o 0-} I(x) = \infty \leftrightarrow \lim_{x o 0} I(x) = \infty$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Veja o caso da função k(x). Observe o comportamento da função quando $x \to 1_+$. Veja que, neste caso, a função k(x) assume valores que tendem ao infinito. Agora foque no comportamento da função quando $x \to 1_-$, neste caso, a função K(x) assume valores que tendem ao menos infinito.

Portanto, neste caso, existem os Limites Laterais, mas não existe o Limite no ponto, pois

$$\lim_{x o 1+} k(x) = \infty \; e \; \; \lim_{x o 1-} k(x) = -\infty o
ot \equiv \lim_{x o 1} k(x)$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Quando a função tende para menos ou mais infinito, quando se tende a um ponto, esta função vai tender a uma reta vertical. Esta reta é denominada de assíntota vertical e será estudada no próximo módulo.

Para finalizar as possíveis formas do Limite, analise agora o comportamento de k(x) quando x tende para o infinito, e você observará que a função também tende para o infinito. Desta forma, podemos representar que

$$\lim_{x o \infty} k(x) = \infty$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

? VOCÊ SABIA

Da mesma forma que o Limite de f(x) quando x tende a um número real tem uma definição formal, os Limites no infinito de f(x) bem como os Limites Infinitos também apresentam definições formais.

TEOREMA DE LEIBNIZ

Um teorema que também pode ser usado para calcular Limites de funções polinomiais quando ${\bf x}$ tende a zero ou a $\pm\infty$ é o Teorema de Leibniz.

Todo polinômio é equivalente ao seu termo de **maior grau**, quando a sua variável independente **tende para mais ou menos infinito.**

Todo polinômio é equivalente ao seu termo de **menor grau**, quando a sua variável independente **tende para zero.**

EXEMPLO 13

Calcule o valor de
$$\lim_{x \to \infty} rac{\sqrt{4x^6 - 3x^2 + 8}}{x^3 - x + 1}$$

RESOLUÇÃO

Através do Teorema de Leibniz, como ${\bf x}$ está tendendo ao infinito, tem-se $4x^6-3x^2+8 o 4x^6$ e $x^3-x+1 o x^3$ que são seus termos, respectivamente, de maior grau.

Assim,

$$\lim_{x o \infty} rac{\sqrt{4x^6 - 3x^2 + 8}}{x^3 - x + 1} = \lim_{x o \infty} rac{\sqrt{4x^6}}{x^3} = \lim_{x o \infty} rac{2 \left| x^3 \right|}{x^3}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Como **x** está tendendo para infinito, x > 0, então $|x^3| = x^3$

Assim,
$$\lim_{x \to \infty} \frac{2 |x^3|}{x^3} \lim_{x \to \infty} \frac{2x^3}{x^3} = 2$$

EXEMPLO 14

Calcule o valor de
$$\lim_{x \to -\infty} rac{\sqrt{4x^6 - 3x^2 + 8}}{x^3 - x + 1}$$

RESOLUÇÃO

Solução análoga à anterior pelo Teorema de Leibniz

$$\lim_{x o -\infty} rac{\sqrt{4x^6 - 3x^2 + 8}}{x^3 - x + 1} = \lim_{x o -\infty} rac{\sqrt{4x^6}}{x^3} = \lim_{x o -\infty} rac{2 \, |\, x^3 \, |}{x^3}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

A diferença é que ${f x}$ está tendendo para menos infinito, x < 0, então $\left|x^3\right|=-x^3$

Logo,
$$\lim_{x o -\infty}rac{2\leftert x^{3}
ightert }{x^{3}}\lim_{x o -\infty}rac{-2x^{3}}{x^{3}}=-2$$

EXEMPLO 15

Calcule o valor de
$$\lim_{x \to 0} \ \frac{x^3 + 8}{x^4 + x + 1}$$

RESOLUÇÃO

Através do Teorema de Leibniz, como **x** está tendendo a zero, tem-se que $x^3+8 o 8$ e $x^4+1 o 1$

Assim,
$$\lim_{x \to 0} \frac{x^3 + 8}{x^4 + x + 1} = \lim_{x \to 0} \frac{8}{1} = 8$$

Você pode perceber que este Limite também poderia ter sido resolvido pelo Teorema da Substituição Direta, mostrando que não existe apenas um caminho para resolver o mesmo Limite.

TEOREMA DO CONFRONTO

Além dos teoremas apresentados neste módulo, existem outros que podem ser usados para cálculo dos Limites de uma função real como a equivalência, os Limites Fundamentais, Teorema do Confronto, entre outros.

O Teorema do Confronto será visto agora. Suponha que $g(x) \le f(x) \le h(x)$ para todo x em um intervalo aberto I, contendo o ponto p, exceto possivelmente, no próprio. Suponha também que $\lim_{x\to p} g(x) = \lim_{x\to p} h(x) = L, \text{ então } \lim_{x\to p} f(x) = L.$

Este teorema é chamado de Confronto, pois a função f(x) se encontra sempre entre as duas funções, como que limitada por elas. Assim, se o limite superior e o limite inferior tendem ao mesmo número, obrigatoriamente f(x) terá que tender a este número.

EXEMPLO 16

Aplicando o Teorema do Confronto, calcule o limite de f(x) quando x tende a 2 sabendo que na vizinhança do ponto x = 2 vale a desigualdade

$$-2x^2 + 10x + 5 \le f(x) \le x^2 - 5x + 27$$

RESOLUÇÃO

Usando o Teorema do Confronto na vizinhança de x = 3

$$-2x^2 + 10x + 5 \le f(x) \le x^2 - 5x + 27$$

$$\lim_{x o 2} - x^2 + 10x + 5 \le \lim_{x o 2} f(x) \le \lim_{x o 2} \ x^2 - 5x + 27$$

$$-(2)^2+10.\,2+5 \leq \lim_{x o 2} f(x) \!\! \leq 2^2-5.\,2+27$$

$$21 \leq \lim_{x o 2} f(x) \leq 21$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Então
$$\lim_{x o 2} \ f(x) = 21$$

Existe um teorema que é consequência direta do Teorema do Confronto e pode ser muito útil.

TEOREMA

Sejam f(x) e g(x) duas funções com mesmo domínio S, tais que $\lim_{x \to p} f(x) = 0$ e que $|g(x)| \le M$ para todo x pertencente a S, em que M é um número real > 0. Então, $\lim_{x \to p} f(x)g(x) = 0$

Em outras palavras, se uma função tiver Limite tendendo a zero para quando x tende a um número p e a outra for limitada, então o Limite do produto de f(x)g(x) tenderá a zero.

EXEMPLO 17

Calcule $\lim_{x o 0} x \ sen \left(rac{1}{x}
ight)$

RESOLUÇÃO

Como $\lim_{x \to 0} x = 0$ e $g(x) = sen(\frac{1}{x})$ é uma função limitada, pois a função seno tem imagem no conjunto [- 1, 1]

Desta forma, pelo Teorema do Confronto, $\lim_{x o 0} x \ senig(rac{1}{x}ig) = 0$

₹ ATENÇÃO

Não importa a técnica utilizada para se resolver um Limite de f(x), caso o Limite se transforme em uma indeterminação, nada podemos afirmar. Assim, teremos que introduzir uma nova técnica para tentar resolvê-lo.

Segue a lista das principais indeterminações:

$\infty - \infty$	$\frac{0}{0}$	$\frac{\infty}{\infty}$	$0.\infty$
-------------------	---------------	-------------------------	------------

TEORIA NA PRÁTICA

O valor da pressão de um forno é modelado pela função $f(x)=(2+e^{-x})\frac{x^3+4x+2}{3x^3-2x+1}$ na qual ${\bf x}$ é uma variável de controle. Para que valor a pressão do forno vai tender caso esta variável de controle cresça indefinidamente, isto é, o $\lim_{x\to\infty} f(x)$

RESOLUÇÃO

Seja
$$f(x){=}(2+e^{-x})rac{x^3{+}4x{+}2}{3x^3{-}2x{+}1}=g(x)h(x)$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

$$\displaystyle \lim_{x o\infty} h(x) = \lim_{x o\infty} rac{x^3+4x+2}{3x^3-2x+1} = rac{x^3}{3x^3} = rac{1}{3}$$
, pelo Teorema de Leibniz

Atenção! Para visualização completa da equação utilize a rolagem horizontal

$$\displaystyle \lim_{x o\infty} g(x) = \displaystyle \lim_{x o\infty} \ (2+e^{-x}) = 2+e^{-\infty} = 2+0 = 2$$
, pela Substituição Direta

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim, a pressão vai tender a $2.\,rac{1}{3}=rac{2}{3}$

MÃO NA MASSA

1. DETERMINE, CASO EXISTA,
$$\lim_{x \to 1} \! \left(x^4 + 2 \right) \! \left(\ln(x) \! + \! 1 \right)$$

- **A)** 1
- **B)** 2
- **C)** 3
- **D)** 4

2. CALCULE O VALOR DE
$$\displaystyle \lim_{x o -\infty} rac{\sqrt{x^4-8}}{x^2-1}$$

- **B)** 1
- **C)** 2
- D) ∞

3. CALCULE O VALOR DE $\lim_{x o 0} rac{x^7 + 8x}{x^5 + x + 7}$

- **A)** 0
- **B)** 1
- **C)** 2
- **D)** 3

4. CALCULE O VALOR DE $\displaystyle \lim_{u o -\infty} rac{10}{e^u}$

- **A)** 0
- **B)** 1
- **C)** 2
- D) ∞

5. CALCULE
$$\lim_{z o\pi}rac{\left(z-\pi
ight)^2}{4}cos\Big(rac{1}{\sqrt{z-\pi}}\Big)+2$$

- **A)** 0
- **B)** 1
- **C)** 2
- **D)** 3

6. DETERMINE, CASO EXISTA,
$$\lim_{x \to 2} rac{\left(x^2 - 4
ight)}{x^2 - x - 2}$$

A) $\frac{1}{3}$

- **B)** $\frac{2}{3}$
- C) $\frac{4}{3}$
- **D)** $\frac{5}{3}$

GABARITO

1. Determine, caso exista, $\displaystyle \lim_{x o 1} (x^4 + 2) (\ln(x) + 1)$

A alternativa "C " está correta.

Usando a propriedade algébrica

$$\displaystyle \mathop {lim} \limits_{x o 1} ig({x^4} + 2 ig) (\ln (x) + 1) = \mathop {lim} \limits_{x o 1} ig({x^4} + 2 ig) \mathop {lim} \limits_{x o 1} (\ln (x) + 1)$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

A função $f(x)=(x^4+2)$ é uma função polinomial, contínua em todo seu domínio, portanto podemos usar o Teorema da Substituição para executar o cálculo.

$$\lim_{x o 1}\left(x^4+2
ight)=1+2=3$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

A função $g(x)=(\ln(x)+1)$ é uma função logarítmica, contínua em todo seu domínio, portanto podemos usar o Teorema da Substituição para executar o cálculo.

$$\lim_{x o 1} (\ln(x) + 1) = \ln 1 + 1 = 0 + 1 = 1$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim

$$\lim_{x o 1} ig(x^4 + 2ig) (\ln(x) + 1) = \lim_{x o 1} ig(x^4 + 2ig) \lim_{x o 1} \left(\ln(x) + 1
ight) = 3.\, 1 = 3$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

2. Calcule o valor de
$$\lim_{x \to -\infty} \frac{\sqrt{x^4 - 8}}{x^2 - 1}$$

A alternativa "B " está correta.

Pelo Teorema de Leibniz

$$\lim_{x o -\infty}rac{\sqrt{x^4-8}}{x^2-1}=\lim_{x o -\infty}rac{\sqrt{x^4}}{x^2}=\lim_{x o -\infty}rac{|x^2|}{x^2}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Quando **x** está tendendo para menos infinito, x < 0, então $|x^2| = x^2$

Assim,
$$\displaystyle \lim_{x o -\infty} \frac{|x^2|}{x^2} \lim_{x o -\infty} 1 = 1$$

3. Calcule o valor de $\displaystyle \lim_{x o 0} \, rac{x^7 + 8x}{x^5 + x + 7}$

A alternativa "A " está correta.

Através do Teorema de Leibniz, como ${\bf x}$ está tendendo a zero, tem-se $x^7+8x\to 8x$ e $x^5+x+7\to 7$ que são seus termos, respectivamente, de menor grau

Assim,

$$\lim_{x o 0} rac{x^7 + 8x}{x^5 + x + 7} = \lim_{x o 0} rac{8x}{7} = rac{0}{7} = 0$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Você pode perceber que este Limite também poderia ter sido resolvido pelo Teorema da Substituição Direta.

4. Calcule o valor de $\displaystyle \lim_{u o -\infty} rac{10}{e^u}$

A alternativa "D " está correta.

No cálculo do Limite, é preciso conhecer as funções envolvidas. Neste caso, por exemplo, conhecer a função e^u usando as propriedades algébricas e a Substituição Direta, pois as funções envolvidas são contínuas

$$\lim_{u o-\infty}rac{10}{e^u}=rac{\lim\limits_{u o-\infty}10}{\lim\limits_{u o-\infty}e^u}=rac{10}{e^{-\infty}}$$

Quando ${\bf x}$ tende a menos infinito, a função $e^{-\infty}$ tenderá a zero.

Assim,
$$\lim_{u o -\infty} rac{10}{e^u} = rac{10}{e^{-\infty}} = rac{10}{0} o \infty$$

5. Calcule
$$\lim_{z o\pi}rac{\left(z-\pi
ight)^2}{4}cos\Big(rac{1}{\sqrt{z-\pi}}\Big)+2$$

A alternativa "C " está correta.

Confira a solução no vídeo abaixo:

6. Determine, caso exista, $\lim_{x o 2} rac{(x^2-4)}{x^2-x-2}$

A alternativa "C " está correta.

Confira a solução no vídeo abaixo:

VERIFICANDO O APRENDIZADO

1. CALCULE O LIMITE DE $f(x)=rac{x^3+x^2+5x-3}{x^2-x-1}$ QUANDO X TENDE PARA 1.

- **A)** -1
- **B)** 3
- **C)** -4
- **D)** 2

2. CALCULE
$$\lim_{x \to -\infty} rac{8}{\sqrt[3]{x^3 + x^2 + 8}}$$

- **A)** 0
- B) ∞
- **C)** -1
- **D)** 2

GABARITO

1. Calcule o Limite de $f(x) = rac{x^3 + x^2 + 5x - 3}{x^2 - x - 1}$ quando x tende para 1.

A alternativa "C " está correta.

Você entendeu o cálculo do Limite através dos teoremas.

$$\lim_{x \to 1} \frac{x^3 + x^2 + 5x - 3}{x^2 - x - 1} = \frac{m(1)}{n(1)}$$

Pode-se usar a substituição direta, pois f(x) é uma função racional e para x = 1 seu denominador não se anula.

Assim:

$$\lim_{x \to 1} \frac{x^3 + x^2 + 5x - 3}{x^2 - x - 1} = \frac{m(1)}{n(1)} = \frac{4}{-1} = -4$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

2. Calcule
$$\lim_{x \to -\infty} \frac{8}{\sqrt[3]{x^3 + x^2 + 8}}$$

A alternativa "A" está correta.

Pelo Teorema de Leibniz, como ${\bf x}$ está tendendo a menos infinito, tem-se $x^3+x^2+8\to x^3$ que é seu termo de maior grau

Assim:

$$\lim_{x\to -\infty} \ \tfrac{8}{\sqrt[3]{x^3+x^2+8}} = \lim_{x\to -\infty} \ \tfrac{8}{\sqrt[3]{x^3}} = \lim_{x\to -\infty} \tfrac{8}{x}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Pode-se usar a substituição direta por serem funções contínuas, assim

$$\lim_{x \to -\infty} \frac{8}{\sqrt[3]{x^3 + x^2 + 8}} = \lim_{x \to -\infty} \frac{8}{x} = \frac{8}{-\infty} = 0$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Sendo mais rigorosos, poderíamos dizer tendendo a zero por valores negativos (0-)

MÓDULO 3

Aplicar o cálculo do Limite na verificação da continuidade da função e na obtenção das assíntotas.

INTRODUÇÃO

O Limite de uma função pode ser aplicado para:

Definir a continuidade de uma função em um ponto do seu domínio;

Verificar se uma função é ou não contínua em um ponto **p** através do cálculo dos Limites Laterais;

Obter as equações das retas assíntotas por meio da determinação do Limite nos pontos de descontinuidade da função e no infinito.

CONTINUIDADE DE UMA FUNÇÃO

O conceito de continuidade de uma função em um ponto \mathbf{p} é definido através do seu Limite quando \mathbf{x} tende a \mathbf{p} .

Dizer que uma função f(x) é contínua em um ponto \mathbf{p} , é dizer que seu gráfico não sofre nenhuma interrupção neste ponto.

Por exemplo, nas funções apresentadas no módulo 1, no Item de *Noções Intuitivas de Limite*, a função f(x) é contínua, porém, a função g(x) não é contínua em x = 2 e h(x) não é contínua em x = 1,5.

DEFINIÇÃO DE CONTINUIDADE EM UM PONTO

Seja f(x) uma função com domínio no intervalo Aberto (a , b). Seja **p** um ponto pertencente a este intervalo. Diz-se, portanto, que **p** é um ponto interior do domínio de f(x). A função f(x) será **contínua em p** se as seguintes condições são satisfeitas:

$$\exists f(p)$$
;

$$\exists \lim_{x o p} f(x)$$
;

$$\lim_{x \to p} f(x) = f\left(p\right)$$
.

Dessa forma, para uma função ser contínua em \mathbf{p} , deve ser definida em \mathbf{p} , e deve existir o Limite de $\mathbf{f}(\mathbf{x})$ quando \mathbf{x} tende a \mathbf{p} , assim, existirão os dois Limites Laterais, e, por fim, o valor do Limite deve ser igual ao valor da função em \mathbf{p} .

₹ ATENÇÃO

Para que a função f(x) seja contínua em todo intervalo (a , b), ela deve ser contínua em todos os pontos deste intervalo.

Como já mencionado, as funções polinomiais, racionais, trigonométricas, exponenciais, trigonométricas inversas e logarítmicas são contínuas em seus domínios, pois elas atendem à definição da continuidade em cada ponto onde são definidas.

A definição anterior foi feita para um ponto interior ao domínio de uma função, ou seja, não vale para o caso de pontos extremos do domínio. A função f(x) será contínua em um intervalo fechado [a , b], se for contínua em todos os pontos do intervalo aberto (a , b) e se, para os extremos do domínio:

Define a continuidade de f(x) pela **direita** no ponto **a**.

Define a continuidade de f(x) pela **esquerda** no ponto **b**.

Para o caso de intervalos de domínio [a , ∞), a continuidade da função é garantida pelos pontos nos interiores e pela continuidade pela direita no ponto a.

Para o caso de intervalos de domínio (∞ , b], a continuidade da função é garantida pelos pontos nos interiores e pela continuidade pela esquerda no ponto b.

EXEMPLO 18

Obter o valor das constantes a e b reais, para que a função
$$g(x){=}egin{cases}x^2-a,\ x<2\ b\ ,\ x=2\ \end{cases}$$
 seja $3x-x^2+1\ ,\ x>2$

contínua em todo seu domínio.

RESOLUÇÃO

A função g(x) é definida através de duas funções polinomiais para x < 2 e para x > 2. Assim, por ser função polinomial g(x), será contínua em todos os pontos menores ou maiores do que 2.

O único ponto com o qual devemos nos preocupar é com x = 2.

Assim, inicialmente, devem ser calculados os Limites Laterais.

$$\lim_{x o 2+} g(x) = \lim_{x o 2+} 3x - x^2 + 1 = 2 \;.\; 2 - (2)^2 + 1 = 3 \ \lim_{x o 2-} g(x) = \lim_{x o 2+} x^2 - a = (2)^2 - a = 4 - a$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

A primeira condição para ser contínua em x = 2 é que exista Limite em x = 2, dessa forma, os Limites Laterais devem ser iguais.

Assim,
$$3 = 4 - a \rightarrow a = 1$$
.

A segunda condição é que g(x) seja definido em x = 2: g(2) = b.

A terceira condição é que o Limite de g(x) quando x tende a 2 deve ser igual a g(2).

Portanto,

$$\lim_{x o 2+} g(x) = \lim_{x o 2+} g(x) = \lim_{x o 2} g(x) = 3 = g(2) = b$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Desta forma, b = 3.

Existem alguns teoremas que podem ser usados para se verificar a continuidade de uma função baseada no conhecimento da continuidade de outra.

O primeiro deles se baseia na operação matemática de funções contínuas

PROPRIEDADES DAS FUNÇÕES CONTÍNUAS

Se as funções f(x) e g(x) são contínuas em x = p, então, a função h(x), definida abaixo, também será contínua em x = p.

Soma ou diferença: $h(x) = f(x) \pm g(x)$.

Multiplicação por uma constante real: h(x) = k f(x), k real.

Produto: h(x) = f(x) g(x).

Quociente: $h(x) = \frac{f(x)}{g(x)}$ desde que g(p) \neq 0.

Potenciação: $h(x) = f^{n}(x)$, sendo n um inteiro positivo.

Raiz: $h(x) = \sqrt[n]{f(x)}$ desde que a raiz seja definida em um intervalo que contenha p.

EXEMPLO 19

Verificar se a função $h(x) = \cos x + (x^2 + 1) \ln x$ é contínua para x > 0

RESOLUÇÃO

As funções $f(x) = \cos x$, $g(x) = x^2 + 1$ e $s(x) = \ln x$ são contínuas para x > 0.

Usando a propriedade das funções contínuas, como h(x) é composta pela soma e produto de funções contínuas, então h(x) é contínua.

O próximo teorema garante a continuidade de uma função caso a função seja uma composição de funções contínuas.

CONTINUIDADE DE FUNÇÃO COMPOSTA

Toda composição de funções contínuas também é uma função contínua.

Se f(x) é contínua em x = p e g(x) é contínua em x = f(p), então g(f(x)) é contínua em x = p.

EXEMPLO 20

Verificar se a função $h(x) = tg\Big(\sqrt{x^2+1}\Big)$ é contínua para todo valor de x

RESOLUÇÃO

Seja f(x)=tg~x e $g\Big(x\Big)=\sqrt{x^2+1}$. Tanto f(x) quanto g(x) são contínuas para todo valor de x.

Como h(x) = f(g(x)), então h(x) também será contínua.

ASSÍNTOTAS

Assíntota é uma reta imaginária, tal que a distância entre a curva que descreve o gráfico da função e essa reta tende para zero, mas sem nunca ser zero. Podemos definir também como sendo uma reta tangente à curva de f(x) no infinito.

Existem três tipos de assíntotas: vertical, horizontal e a inclinada.

ASSÍNTOTA VERTICAL

A assíntota vertical é uma reta vertical do tipo x = p, e que pode ocorrer nos pontos interiores do domínio da função onde existe a descontinuidade.

Para verificar se existe a assíntota vertical, devem ser calculados os dois limites laterais de f(x) quando x tende para p, em que p é um ponto de descontinuidade. Se pelo menos um dos limites tiver um resultado

mais ou menos infinito, existe a assíntota vertical e sua equação é dada por x=p. Basta que um tenha resultado $\pm\infty$.

Assíntota vertical
$$x \ = \ p \ \leftrightarrow \left\{egin{array}{l} \lim\limits_{x o p+} f(x) = \pm \infty \\ ou \ / \ e \\ \lim\limits_{x o p-} f(x) = \pm \infty \end{array}
ight.$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

ASSÍNTOTA HORIZONTAL

A assíntota horizontal é uma reta horizontal do tipo y = L, que pode ocorrer quando x tende a mais infinito e a menos infinito.

Para existir a assíntota horizontal , a função vai tender a um número L quando **x** tender a mais ou menos infinito.

Para verificar se existe a assíntota horizontal para \mathbf{x} tendendo ao infinito, deve ser calculado o limite de $\mathbf{f}(\mathbf{x})$ quando \mathbf{x} tende para ∞ . Se o resultado for um número real L, existirá a assíntota horizontal de equação $\mathbf{y} = \mathbf{L}$.

Para verificar se existe a assíntota horizontal para \mathbf{x} tendendo ao menos infinito, deve ser calculado o limite de $f(\mathbf{x})$ quando \mathbf{x} tende para $-\infty$. Se o resultado for um número real L, existirá a assíntota horizontal de equação $\mathbf{y} = \mathbf{L}$.

Assintota horizontal
$$y = L \leftrightarrow \lim_{x \to +\infty} f(x) = L$$
.

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Lembre-se de que uma função pode ter assíntotas horizontais nos dois lados com a mesma equação, nos dois lados com equações diferentes, em um lado só ou, até mesmo, não ter assíntota horizontal.

ASSÍNTOTA INCLINADA

A Assíntota inclinada é uma reta inclinada do tipo y = mx + q. A assíntota inclinada pode ocorrer quando x tende ao infinito ou ao menos infinito. Na verdade, a assíntota horizontal é um caso particular da assíntota inclinada. Quando m = 0, a reta inclinada vira uma reta horizontal.

Para existir a assíntota inclinada na região onde \mathbf{x} tende para o infinito, devem existir valores de \mathbf{m} e de \mathbf{q} reais que satisfaçam a seguinte propriedade:

$$egin{aligned} \lim_{x o\infty}rac{f(x)}{x}&=\lim_{x o\infty}rac{mx+q}{x}=m\ \lim_{x o\infty}f(x){-}mx&=\lim_{x o\infty}mx+q-mx=q \end{aligned}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Se alguns dos Limites acima não existirem ou não derem, ambos, números reais, não existirá a assíntota inclinada.

Para existir a assíntota inclinada na região onde \mathbf{x} tende para o menos infinito, devem existir valores de \mathbf{m} e de \mathbf{q} reais que satisfaçam a seguinte propriedade:

$$\lim_{x o -\infty}rac{f(x)}{x}=\lim_{x o -\infty}rac{mx+q}{x}=m \ \lim_{x o -\infty}f(x){-}mx=\lim_{x o -\infty}mx+q-mx=q$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Se alguns dos Limites acima não existirem ou não derem, ambos, números reais, não existirá a assíntota inclinada

EXEMPLO 21

Obtenha, caso exista, as assíntotas inclinadas para $f(x)=2arctg\left(e^{-x}
ight)-x$ quando x tende ao infinito.

RESOLUÇÃO

Vamos calcular os Limites necessários:

$$\lim_{x o \infty} \ rac{f(x)}{x} = \lim_{x o \infty} \ rac{2arctg(e^{-x}) - x}{x} = \lim_{x o \infty} \ rac{2arctg(e^{-x})}{x} + \lim_{x o \infty} \ rac{-x}{x}$$
 $\lim_{x o \infty} \ rac{f(x)}{x} = rac{2arctg(e^{-\infty})}{\infty} - 1 = rac{2arctg(0)}{\infty} - 1 = rac{0}{\infty} - 1 = -1$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Portanto m = -1

$$\lim_{x o\infty}\ f(x)-mx=\lim_{x o\infty}\ f(x)-(-1)x=\lim_{x o\infty}\ (2\ arctg(e^{-x})-x)+x=\lim_{x o\infty}\ 2\ arctg(e^{-x})$$
 $\lim_{x o\infty}\ f(x)-mx=\lim_{x o\infty}\ 2\ arctg(e^{-x})=2\ arctg(e^{-\infty})=2\ arctg(0)=0$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim q = 0.

Portanto, como os dois Limites tiveram como resultados números reais, existe uma assíntota inclinada de equação y = -x.

EXEMPLO 22

Obter, caso existam, as assíntotas verticais e horizontais da função $h(x) = \left\{ egin{array}{l} 3e^x, \ x \leq 0 \\ 4 + rac{1}{x}, \ x > 0 \end{array}
ight.$

RESOLUÇÃO

A função h(x) tem uma descontinuidade para x = 0, sendo, portanto, o único ponto possível para se ter uma assíntota vertical.

$$\lim_{x o 0-}figg(xigg)=\lim_{x o 0-}3e^x=3$$
. $e^0=3$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} 4 + \frac{1}{x} = 4 + \infty = \infty$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim, como em pelo menos um dos Limites o resultado foi ∞ , existe uma assíntota vertical em x = 0.

Analisaremos agora $x \to \infty$ e $x \to -\infty$ para verificação das assíntotas horizontais.

$$\lim_{x o -\infty} f(x) = \lim_{x o -\infty} 3$$
 . $e^x = 3$. $e^{-\infty} = 3.0 = 0$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Então, existe uma assíntota horizontal para \mathbf{x} tendendo a menos infinito com a equação $\mathbf{y} = 0$.

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} 4 + \frac{1}{x} = 4 + 0 = 4$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Dessa forma, existe uma assíntota horizontal para \mathbf{x} tendendo a mais infinito com a equação $\mathbf{y} = 4$.

TEORIA NA PRÁTICA

Para assistir a um vídeo sobre o assunto, acesse a versão online deste conteúdo.

MÃO NA MASSA

- 1. SABE-SE QUE A FUNÇÃO F(X) É CONTÍNUA EM TODO SEU DOMÍNIO. SEJA UM PONTO P DO DOMÍNIO DE F(X). MARQUE A ALTERNATIVA CORRETA. OS LIMITES LATERAIS DE F(X) QUANDO X TENDE A P:
- A) Podem ser diferentes entre si, desde que o Limite de f(x) quando x tenda a p, seja igual a f(p).
- B) Devem ser obrigatoriamente iguais, mas podem ter valores diferentes do que f(p).
- C) Devem ser iguais ao Limite de f(x) tendendo a p, mas podem ser diferentes de f(p).
- **D)** Devem ser iguais entre si e obrigatoriamente iguais a f(p).
- 2. SEJA A FUNÇÃO ${
 m h(x)} \left\{ egin{array}{ll} 4-x^2\ ,\ x<3 \\ p\ ,\ x=3 \end{array}
 ight.$, P E K REAIS. DETERMINE O VALOR DE $x+k,\ x>3$

(K + P) PARA QUE A FUNÇÃO H(X) SEJA CONTÍNUA EM X = 3

- **A)** -2
- **B)** -8
- **C)** -5
- **D)** -13

3. OBTENHA A EQUAÇÃO DA ASSÍNTOTA HORIZONTAL, SE EXISTIR, DO GRÁFICO DA FUNÇÃO ${ m g}(x)=rac{3x^2+8}{x^2-1}$ PARA QUANDO X TENDE AO INFINITO

A)
$$y = -8$$

C)
$$y = 0$$

4. OBTENHA, CASO EXISTA, A EQUAÇÃO DA ASSÍNTOTA VERTICAL PARA A

FUNÇÃO
$$\mathrm{g}(x){=}igg\{ egin{array}{ll} x^2, \ x \leq 4 \\ x+4, \ x>4 \end{array} igg\}$$

A)
$$x = 1$$

B)
$$x = 2$$

C)
$$x = 4$$

D) Não existe assíntota vertical

5. SEJA A FUNÇÃO $\mathrm{h}(x) {=} egin{cases} 3e^x, \ x \leq 0 \\ 4 + \frac{1}{x}, \ x > 0 \end{cases}$. MARQUE A ALTERNATIVA CORRETA.

- A) Tem uma assíntota vertical e uma assíntota horizontal para x tendendo a mais infinito.
- B) Tem uma assíntota vertical e duas assíntotas horizontais diferentes.
- C) Não tem assíntota vertical, mas tem duas assíntotas horizontais com a mesma equação.
- **D)** Tem uma assíntota vertical e uma assíntota horizontal para x tendendo a menos infinito.

6. OBTENHA, CASO EXISTAM, AS ASSÍNTOTAS INCLINADAS PARA $f(x) = arctg(e^{-x}) + x$ QUANDO X TENDE AO INFINITO.

A)
$$y = x$$

B)
$$y = x + 1$$

C)
$$y = x - 1$$

GABARITO

1. Sabe-se que a função f(x) é contínua em todo seu domínio. Seja um ponto p do domínio de f(x). Marque a alternativa correta. Os Limites Laterais de f(x) quando x tende a p:

A alternativa "D " está correta.

Para uma função ser contínua, o Limite deve existir em **p**, para isso, os Limites Laterais devem existir e ser iguais entre si.

Mas o Limite de f(x) tendendo a \mathbf{p} deve ser igual a f(p) para a função ser contínua, portanto, os Limites Laterais também serão iguais a f(p), obrigatoriamente.

Assim, a alternativa correta é a letra D.

2. Seja a função ${
m h(x)} egin{dcases} 4-x^2\ ,\ x<3 \\ p\ ,\ x=3 \end{cases}$, p e k reais. Determine o valor de (k + p) para que a $x+k,\ x>3$

função h(x) seja contínua em x = 3

A alternativa "D " está correta.

Para ser contínua em 3, os Limites Laterais devem ser iguais, além de terem o mesmo valor que h(3).

$$\lim_{x o 3-} h(x) = \lim_{x o 3-} 4 - x^2 = 4 - 3^2 = -5$$
 $\lim_{x o 3+} h(x) = \lim_{x o 3-} x + k = 3 + k$,

Atenção! Para visualização completa da equação utilize a rolagem horizontal

assim
$$3 + k = -5 \rightarrow k = -8$$

$$\operatorname{E}\operatorname{h}(3)=\operatorname{p}=\lim_{x\to 3}h(x)=-5$$

Desta forma, k + p = -13

3. Obtenha a equação da assíntota horizontal, se existir, do gráfico da função $\mathrm{g}(x)=rac{3x^2+8}{x^2-1}$ para quando x tende ao infinito

A alternativa "B " está correta.

Confira a solução no vídeo abaixo:

4. Obtenha, caso exista, a equação da assíntota vertical para a função $\mathrm{g}(x){=}igg\{x^2,\ x\leq 4\ x+4,\ x>4$

A alternativa "D " está correta.

A função h(x) tem uma descontinuidade para x = 4, sendo, portanto, o único ponto possível para se ter uma assíntota vertical.

$$\lim_{4-} g(x) = \lim_{4-} \; x^2 = 16 \, \mathrm{e} \lim_{4+} \; g(x) = \lim_{4+} \; x+4 = 8$$

Logo, como nenhum dos dois Limites tiveram o resultado $\pm \infty$, não existe uma assíntota vertical em x = 4

5. Seja a função $\mathrm{h}(x){=}igg\{ egin{array}{ll} 3e^x,\; x\leq 0 \\ 4+rac{1}{x},\; x>0 \end{array}$. Marque a alternativa correta.

A alternativa "B " está correta.

Confira a solução no vídeo abaixo:

6. Obtenha, caso existam, as assíntotas inclinadas para $f(x) = arctg(e^{-x}) + x$ quando x tende ao infinito.

A alternativa "A " está correta.

Vamos calcular os Limites necessários:

$$\lim_{x o\infty}rac{f\left(x
ight)}{x}=\lim_{x o\infty}rac{arctg\left(e^{-x}
ight)+x}{x}=\lim_{x o\infty}rac{arctg\left(e^{-x}
ight)}{x}+1=rac{arctg\left(e^{-x}
ight)}{\infty}+1$$
 $\lim_{x o\infty}rac{f\left(x
ight)}{x}=rac{arctg\left(e^{-\infty}
ight)}{\infty}+1=rac{arctg\left(0
ight)}{\infty}+1=rac{0}{\infty}+1=0+1=1$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Portanto, m = 1

$$egin{aligned} &\lim_{x o\infty}f(x)-mx=\lim_{x o\infty}f\Big(x\Big)-x=\lim_{x o\infty}(arctg(e^{-x})+x)-x=\lim_{x o\infty}arctg\left(e^{-x}
ight) \ &\lim_{x o\infty}f(x)-mx=\lim_{x o\infty}arctg(e^{-x})=arctg\left(e^{-\infty}
ight)=arctg\left(0
ight)=0 \end{aligned}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim, q = 0.

Portanto, como os dois Limites tiveram como resultados números reais, existe uma assíntota inclinada de equação y = x.

VERIFICANDO O APRENDIZADO

1. DETERMINE A SOMA A + B + C DE FORMA A GARANTIR QUE A FUNÇÃO

$$f(x) {=} \left\{ egin{array}{l} a \;,\; x = \; 2 \ x^2 - 2x + 10 \;,\; 2 < x < 3 \ x + b,\; 3 \leq x < 5 \ c,\; x = 5 \end{array}
ight.$$

ATENÇÃO! PARA VISUALIZAÇÃO COMPLETA DA EQUAÇÃO UTILIZE A ROLAGEM HORIZONTAL

SEJA CONTÍNUA NO SEU DOMÍNIO [2,5]

- **A)** 20
- **B)** 25
- **C)** 30
- **D)** 35

2. OBTENHA A EQUAÇÃO DA ASSÍNTOTA VERTICAL, SE EXISTIR, DO GRÁFICO DA FUNÇÃO $h(x) = \frac{1}{x-5}$

- **A)** x = 3
- **B)** x = 5
- **C)** x = 7
- D) Não existe

GABARITO

1. Determine a soma a + b + c de forma a garantir que a função

$$f(x) {=} \left\{ egin{array}{l} a \;,\; x = \; 2 \ x^2 - 2x + 10 \;,\; 2 < x < 3 \ x + b,\; 3 \leq x < 5 \ c,\; x = 5 \end{array}
ight.$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

seja contínua no seu domínio [2, 5]

A alternativa "D " está correta.

Parabéns! Você entendeu a definição da continuidade da função

Uma função para ser contínua em [2, 5], deve ser contínua em (2,5) e contínua lateralmente nos extremos 2 e 5.

Para x = 2:

$$\lim_{x o 2+} \ f(x) {=} \ f(2) { o} \lim_{x o 2+} \ x^2 - 2x + 10 = 2^2 - 2 \ . \ 2 + 10 = 10 = f(2) {=} \ a$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Então, a = 10

Para 2 < x < 5, as funções são polinomiais sendo contínuas. O único ponto com o qual temos que nos preocupar é para x = 3

$$egin{aligned} &\lim_{x o 3-} \ f(x) = \lim_{x o 3+} \ f(x) = f(3) \ &\lim_{x o 3-} f(x) = \lim_{x o 3-} x^2 - 2x + 10 = 3^2 - 2 \; . \; 3 + 10 = 13 \ &\lim_{x o 3+} \ f(x) = \lim_{x o 3+} \ x + b = f(3) \end{aligned}$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Assim.
$$13 = 3 + b \rightarrow b = 10$$

Para x = 5:

$$\lim_{x \to 5-} f(x) = f(5) \to \lim_{x \to 5-} x + 10 = 15 = f(5) = c$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Então, c = 15

Portanto, a + b + c = 10 + 10 + 15 = 35

2. Obtenha a equação da assíntota vertical, se existir, do gráfico da função $h(x) = rac{1}{x-5}$

A alternativa "B " está correta.

Você entendeu a obtenção das assíntotas verticais

O ponto de descontinuidade para h(x) é para x-5~=~0
ightarrow x=~5

$$\lim_{x \to 5-} h(x) = \lim_{x \to 3-} \frac{1}{x-5} = \frac{1}{0-} = -\infty$$

$$\lim_{x o 5+} \ h(x) = \lim_{x o 3+} \ rac{1}{x-5} = rac{1}{0+} = \infty$$

Atenção! Para visualização completa da equação utilize a rolagem horizontal

Então, como os resultados dos dois Limites foram $\pm \infty$, existe uma assíntota vertical e vale x = 5.

CONCLUSÃO

CONSIDERAÇÕES FINAIS

Ao longo dos três módulos, foi possível descrever a abordagem do Limite de forma intuitiva, como também com a formalidade matemática necessária. Adicionalmente, também vimos o conceito de Limites Laterais e técnicas para cálculo de Limites da função em pontos reais, bem como no infinito. Por fim, uma aplicação do Limite na verificação da continuidade e na obtenção das assíntotas foi analisada.

Dito isto, esperamos que você tenha entendido os principais conceitos relacionados ao Limite de uma função real e seja capaz de calcular o Limite de uma função real, assim como aplicar este cálculo em problemas matemáticos relacionados à tendência do comportamento de uma função.

Para ouvir um *podcast* sobre o assunto, acesse a versão online deste conteúdo.

REFERÊNCIAS

GUIDORIZZI, H. L. Cálculo, Volume 1. 5. ed. São Paulo: LTC, 2013. cap. 3, p. 54-98.

HALLET, H. et al. Cálculo, a uma e a várias variáveis. 5. ed. São Paulo: LTC, 2011. cap. 1, p. 47-53.

LARSON, R.; EDWARDS, B. H. Cálculo, com aplicações. 6. ed. São Paulo: LTC, 2003. cap. 1, p. 77-91.

STEWART, J. Cálculo, Volume 1. 5. ed. São Paulo: Thomson Learning, 2008. cap. 2, p. 92-148.

THOMAS, G. B. Cálculo, Volume 1. 12. ed. São Paulo: Pearson, 2012. cap. 2, p. 61-110.

EXPLORE+

Para saber mais sobre os assuntos tratados neste tema, pesquise na internet:

Conceito de Vizinhança

Conceito de Ponto de Acumulação

Teorema da Unicidade

Definição de Limites de uma função no Infinito e no menos Infinito

CONTEUDISTA

Jorge Luís Rodrigues Pedreira de Cerqueira

O CURRÍCULO LATTES