

Three Problems with activation functions.

o Non zero-centered: (5(600 m in converge)

the problem of not having zero-centered activation function is slow convergence, the gradient will move in a zig-zag path. To illustrate the problem more let us see this picture:

The blue line is the optimal path, but the non zero-center will move like the red path (zig-zag, always move vertical or horizontal) which lead to slow convergence.

o Saturation: (no learning)

the problem with saturation is that the gradient will be zero and this kill the gradient since if the gradient is zero (dW = 0) then the update will be:

$$W = W - \alpha * dw = W - \alpha * 0 = W$$

We can see that the value of W does not change, this lead to make the network stop learning.

Computational Cost:

the computational time for some activation function is more than other. For example, calculating the value of ReLU function is faster than sigmoid and tanh since both of them contain exponential calculation (e^x).

 $6(z) = \frac{1}{1 + e^{-z}}$ problem with signoidsno not zero centered values (0,13 all positive (0.5 centered) + graident Saturate easily - D exposintal computation desirative= o(x) (1-o(x)) Relu: R(x)=max(o, x) + less computation derivative (gradient) not zero centered - gradiant not all saturate just negatives -Tanh . - r zero centered Not zero-centered Zero-centred Not zero-centered gastert saturated easily Dose not saturated saturated saturated efficient slow slow Why we go deep to avoid overfitting being more efficient (less & of neurons in each layer) DL VS ML :having more data = DL having more feature =2 DL there is no spesific features (images.) => DL

	Size of the data	Could works on small or medium data	Required huge amount of data
	Training time	Less training time	Large training time
	Feature Extraction	Need to understand the features	Don't have to understand the feature it could learn the features by itself
	Accuracy	Less accuracy than deep	Higher accuracy than machine learning
		icariiiig	icarining
* binary loss cross-entropy	for binary	(Ly15tic	
•		•	
X Multidoss			
Data:			
	. D.a.		
convert y sone-hot-en	coding	. 1	
		wider	layers = over hitti
Architecture:		Deepe	s Loyers les overfi
* * revious in output lager = * of	classes	, ,	
		dasses	
- applay Softmax	K		
poloss => cateragal cross-entr		.g(ŷ))	
,	اول ٥		
	TARGET PREDICTION	•	12 () 1
		ء 'ا	
Cor i	1 0.5		multi-label classification:
for i	0 0.3	•	classification:
	0 0.3	•	classification:
What we change	0 0.3	•	classification:
What we change	0 0.3	61	classification: apples * of classes signaid
What we change Six of output layer activation of output layer	0 0.3	61	classification: apples * of classes signaid
What we change	0 0.3	•	classification: apples * of classes signaid

Prosperity

Data structure

Structure data

Unstructured data

Structured Jata => ML

	Underfitting (Bia	us)	
A more complex moTrain longerMore features	odel: More neurons, layers.		
Dealing With C	Overfitting (Varia	nce)	
■ More data			
L _p regularization			
DropoutDecide dropout rate {			
Set some activations toOnly during training	o be 0 and rescale all the remainir	g activations	
 Data augmentation 			
Early stopping			