Indian Institute of Technology Kanpur CS777 Topics in Learning Theory

Scribe: Bhaskar Mukhoty Instructor: Purushottam Kar Date: February 05, 2018

LECTURE

11

VC-Dimension

1 Introduction

In the last class we discussed Massart's finite class lemma, which gives upper bound on Radamacher Complexity $R_n(\mathcal{F})$ when the size of function class \mathcal{F} is finite, i.e. $|\mathcal{F}| < \infty$.

Definition 11.1. (Restriction of \mathcal{F} to S): Let $\mathcal{F} \subseteq \{-1,1\}^{\mathcal{X}}$ be a function class and $S = \{x_1, x_2, ... x_n\} \subset \mathcal{X}$. The restriction of \mathcal{F} to S is the set of possible functions in \mathcal{F} , from S to $\{-1,1\}$. That is,

$$\mathcal{F}_S = \{ (f(x_1), f(x_2), ..., f(x_n)) : f \in \mathcal{F} \}$$

As all $a \in \mathcal{F}_S$ is a vector $\{-1,1\}^n$, we have $|\mathcal{F}_S| \leq 2^n$ and $||a||_2 = \sqrt{n}$

The MFCL lemma states that,

$$R_{S}(\mathcal{F}) = \mathbb{E} \sup_{\hat{\epsilon}_{i}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i}) \right| = \mathbb{E} \sup_{\hat{\epsilon}_{i}} \left| \frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i} a_{i} \right| \leq \frac{c}{n} \sqrt{2 \lg |\mathcal{F}_{S}|}$$
(1)

where, $c = \sup_{a \in \mathcal{F}_S} ||a||_2$.

Since, each function in $f \in \mathcal{F}$, has only one evaluation for the set points S, $f:(x_1, x_2, ..., x_n) \mapsto (f(x_1), f(x_2), ..., f(x_n))$, we have, $|\mathcal{F}_S| \leq |\mathcal{F}|$, and,

$$R_n(\mathcal{F}) = \underset{S}{\mathbb{E}} R(\mathcal{F}) \le \underset{S}{\mathbb{E}} \frac{c}{n} \sqrt{2 \lg |\mathcal{F}_S|} \le \frac{c}{n} \sqrt{2 \lg |\mathcal{F}|}$$
 (2)

Also, for the binary classifier, we can have the trivial bound as,

$$R_n(\mathcal{F}) \le \mathbb{E}_S \frac{c}{n} \sqrt{2 \lg |\mathcal{F}_S|} = \frac{\sqrt{n}}{n} \sqrt{2 \lg 2^n} = \sqrt{2 \lg 2}$$

In the previous lecture note we have proved that, if $\mathcal{F}, \mathcal{C}_{\epsilon}$ be function classes defined over the set \mathcal{X} , where \mathcal{C}_{ϵ} is a ϵ -covered of \mathcal{F} . Then,

$$R_n(\mathcal{F}) \le \epsilon + R_n(\mathcal{C}_{\epsilon})$$

Definition 11.2. (Growth Function:) The growth of a function class \mathcal{F} , denoted by $\Pi_n(\mathcal{F})$: $\mathbb{N} \to \mathbb{N}$, is defined as:

$$\Pi_n(\mathcal{F}) = \max_{\mathcal{S} \subset \mathcal{X}, |\mathcal{S}| = n} |\mathcal{F}_S| \tag{3}$$

An immediate corollary of the above is:

$$R_n(\mathcal{F}) \leq \mathbb{E} \frac{c}{n} \sqrt{2 \lg |\mathcal{F}_S|} \leq \frac{c}{n} \sqrt{2 \lg \Pi_n(\mathcal{F})}$$

Definition 11.3. (Shattering): A function class \mathcal{F} shatters a finite set $S \subset \mathcal{X}$, if the restriction \mathcal{F}_S , has all the possible function from S to $\{-1,1\}$. That is, $|\mathcal{F}_S| = 2^{|S|}$

Definition 11.4. (VC-dimension): VC-dimension of a function class \mathcal{F} is the size of the largest set that \mathcal{F} can shatter.

$$VC(\mathcal{F}) = \max\{n : \exists |S| = n, |\mathcal{F}_S| = 2^n\}$$

$$\tag{4}$$

Let us define a function class, $\mathcal{F}_{threshold} = \{x \mapsto \mathbb{I}\{x > a\} - \mathbb{I}\{x \le a\}, a \in \mathbb{R}\}.$

In order to see the VC-dimension of $\mathcal{F}_{threshold}$, consider two points having features $S = \{x_1, x_2\} \subset \mathbb{R}$, with $x_1 < x_2$, we can never have $f(x_1) = 1$ and $f(x_2) = -1$ for any $f \in \mathcal{F}_{threshold}$. So $(\mathcal{F}_{threshold})_S = 3 < 2^2$. So that, $VC(\mathcal{F}_{threshold}) = 1$

Exercise 11.1. What is $VC(\mathcal{F}_{threshold} \cup -\mathcal{F}_{threshold})$?

Exercise 11.2. $\mathcal{F}_{lin} = \{sgn\langle w, x \rangle\}$ for $w \in \mathbb{R}^d$. Prove that $VC(\mathcal{F}_{lin}) \leq d$.

Exercise 11.3. Show that VC-dimension of convex polygon is infinity.

2 Sauer-Shelah-Parles Lemma

From the definition of VC-dimension it is direct that if $VC(\mathcal{F}) = d$, then for and $n \leq d$ we have $\Pi_n(\mathcal{F}) = 2^n$. The lemma states that $\Pi_n(\mathcal{F}) \leq \sum_{i=0}^d \binom{n}{i} \leq (\frac{en}{d})^d$, which implies that for n > d, the growth function is polynomial over n. Shalev-Shwartz and Ben-David (2014)

As a corollary, suppose $A \subset \{-1,1\}^n$ and $|A| > \sum_{i=0}^d \binom{n}{i}$ then, there exists a set S, s.t. |S| = d + 1, such that A shatters S.

Another useful fact would be:

$$R_n(\mathcal{F}) \le \frac{\sqrt{n}}{n} \sqrt{2 \lg \Pi_n(\mathcal{F})} \le \frac{1}{\sqrt{n}} \sqrt{2 d \lg \frac{en}{d}} \le \sqrt{\frac{2 d \lg n}{n}}$$

for $d \geq e$.

Suppose $\mathcal{F} \subset \{-1,1\}^{\mathcal{X}}$, $VC(\mathcal{F}) \leq d$, then we can give the following bound:

$$\mathbb{P}(\sup_{f \in \mathcal{F}} \left| er_{\mathcal{D}}^{l^{0-1}}[f] - er_{S}^{l^{0-1}}[f] \right| > \frac{1}{2} \sqrt{\frac{2d \log n}{n}} + \epsilon) \le 2 \exp(\frac{-n\epsilon^{2}}{4})$$
 (5)

So that, with high probability,

$$er_{\mathcal{D}}^{l^{0-1}}[\hat{f}_{ERM}] \le er_{\mathcal{D}}^{l^{0-1}}[\hat{f}_{ERM}] + \frac{1}{2}\sqrt{\frac{2d\log n}{n}} + \epsilon$$

References

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.