BÀI ÔN TẬP CHƯƠNG IV

A. LÝ THUYẾT

1. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ

+) Ta nói dãy số (u_n) có giới hạn là 0 khi n dần tới dương vô cực, nếu $|u_n|$ có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.

Kí hiệu: $\lim_{n\to +\infty} u_n = 0 \ \mbox{hay} \ u_n \to 0 \ \mbox{khi} \ n \to +\infty.$

+) Ta nói dãy số (v_n) có giới hạn là a (hay v_n dần tới a) khi n \rightarrow + ∞ nếu $\lim_{n \rightarrow +\infty} \ v_n - a = 0$

Kí hiệu: $\lim_{n \to +\infty} v_n = a \text{ hay } v_n \to a \text{ khi } n \to +\infty.$

Một vài giới hạn đặc biệt

- a) $\lim_{n\to +\infty}\frac{1}{n}=0, \lim_{n\to +\infty}\frac{1}{n^k}=0$ với k nguyên dương;
- $b) \ \underset{n \rightarrow +\infty}{lim} q^n \ n\acute{e}u \ |q| \leq 1;$
- c) Nếu u_n = c (c là hằng số) thì $\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} c = c$.

Chú ý: Từ nay về sau thay cho $\lim_{n\to +\infty} u_n = a$ ta viết tắt là $\lim u_n = a$.

II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN

+) Định lí 1

a) Nếu lim $u_n = a$ và lim $v_n = b$ thì

$$lim (u_n + v_n) = a + b$$

$$\lim (u_n - v_n) = a - b$$

$$\lim (u_n.v_n) = a.b$$

$$\lim \frac{u_n}{v_n} = \frac{a}{b} (\text{n\'eu } b \neq 0)$$

Nếu $u_{_{n}}\!\ge\!0$ với mọi n và limu_{_{n}}\!=\!a thì:

$$lim \sqrt{u_{_n}} = \sqrt{a} \ va \ a \ge 0.$$

III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN

Cấp số nhân vô hạn (u_n) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn:

$$S\!=\!u_{\scriptscriptstyle 1}\!+\!u_{\scriptscriptstyle 2}\!+\!u_{\scriptscriptstyle 3}\!+\!...\!+\!u_{\scriptscriptstyle n}+\!...\!=\!\frac{u_{\scriptscriptstyle 1}}{1\!-\!q}\,\left|q\right|\!<\!1\ .$$

IV. GIỚI HẠN VÔ CỰC

1. Định nghĩa

- Ta nói dãy số (u_n) có giới hạn là $+\infty$ khi n $\to +\infty$, nếu u_n có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Kí hiệu: $\lim u_n = +\infty$ hay $u_n \to +\infty$ khi $n \to +\infty$.

- Dãy số (u_n) có giới hạn là $-\infty$ khi $n \to +\infty$, nếu lim $(-u_n) = +\infty$.

Kí hiệu: lim $u_n = -\infty$ hay $u_n \to -\infty$ khi $n \to +\infty$.

Nhận xét: $u_n = +\infty \Leftrightarrow lim(-u_n) = -\infty$

2. Một vài giới hạn đặc biệt

Ta thừa nhận các kết quả sau

- a) $\lim n^k = +\infty$ với k nguyên dương;
- b) $\lim q^n = +\infty \text{ n\'eu } q > 1.$

3. Định lí 2

a) Nếu lim
$$u_n=a$$
 và lim $v_n=\pm\infty$ thì $lim\frac{u_n}{v_n}=0$

b) Nếu lim
$$u_n=a>0,$$
 lim $v_n=0$ và $v_n>0,$ V $n>0$ thì $lim \frac{u_n}{v_n}=+\infty$

c) Nếu lim $u_n = +\infty$ và lim $v_n = a > 0$ thì $lim u_n.v_n = +\infty$.

V. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM

1. Định nghĩa

Cho khoảng K chứa điểm x_0 và hàm số y = f(x) xác định trên K hoặc trên $K \setminus \{x_0\}$.

Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới x_0 nếu với dãy số (x_n) bất kì, $x_n \in K \setminus \{x_0\}$ và $x_n \to x_0$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x\to\infty} f(x) = L \text{ hay } f(x) \to L \text{ khi } x \to x_0.$$

Nhận xét: $\lim_{x\to\infty} x = x_0, \lim_{x\to\infty} c = c$ với c là hằng số.

2. Định lí về giới hạn hữu hạn

Định lí 1

a) Giả sử $\lim_{x \to x_0} f \ x = L và \lim_{x \to x_0} g \ x = M$. Khi đó:

$$\lim_{x \to x_0} \! \big[f \ x \ + g \ x \ \big] \! = \! L \! + \! M;$$

$$\lim_{x \to x_0} [f \ x \ -g \ x \] = L - M;$$

$$\lim_{x \to x_0} f \ x \ .g \ x = L.M;$$

$$\lim_{x\to x_0} \frac{f\ x}{g\ x} = \frac{L}{M}\ M \neq 0 \ ;$$

b) Nếu f
$$x \geq 0$$
 và $\lim_{x \rightarrow x_0} f \ x = L$ thì $L \geq 0$ và $\lim_{x \rightarrow x_0} \sqrt{f \ x} = \sqrt{L}.$

(Dấu của f(x) được xét trên khoảng đang tìm giới hạn với $x \neq x_0$).

3. Giới hạn một bên

Định nghĩa 2

- Cho hàm số y = f(x) xác định trên $(x_0; b)$.

Số L được gọi là giới hạn bên phải của hàm số y = f(x) khi $x \to x_0$ nếu với dãy số (x_n) bất kì, $x_0 < x_n < b$ và $x_n \to x_0$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x \to x_0^+} f x = L$$
.

- Cho hàm số y = f(x) xác định trên (a; x_0).

Số L được gọi là giới hạn bên trái của hàm số y = f(x) khi $x \to x_0$ nếu với dãy số (x_n) bất kì, $a < x_n < x_0$ và $x_n \to x_0$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x \to x_0^-} f x = L$$
.

Định lí 2

$$\lim_{x \to x_0} f \ x \ = L \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f \ x \ = L$$

VI. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI VÔ CỰC

Định nghĩa 3

a) Cho hàm số y = f(x) xác định trên $(a; +\infty)$.

Ta nói hàm số y=f(x) có giới hạn là số L khi $x\to +\infty$ nếu với dãy số (x_n) bất kì, $x_n>a$ và $x_n\to +\infty$, ta có $f(x_n)\to L$.

Kí hiệu:
$$\lim_{x\to +\infty} f(x) = L$$

b) Cho hàm số y = f(x) xác định trên $(-\infty; a)$.

Ta nói hàm số y = f(x) có giới hạn là số L khi $x \to -\infty$ nếu với dãy số (x_n) bất kì, $x_n < a$ và $x_n \to -\infty$, ta có $f(x_n) \to L$.

Kí hiệu:
$$\lim_{x \to -\infty} f(x) = L$$

Chú ý:

a) Với c, k là hằng số và k nguyên dương, ta luôn có:

$$\lim_{x\to +\infty}c=c; \lim_{x\to -\infty}c=c; \lim_{x\to +\infty}\frac{c}{x^k}=0; \lim_{x\to -\infty}\frac{c}{x^k}=0.$$

b) Định lí 1 về giới hạn hữu hạn của hàm số khi $x\to x_0$ vẫn còn đúng khi $x_n\to +\infty$ hoặc $x\to -\infty$

VII. GIỚI HẠN VÔ CỰC CỦA HÀM SỐ

1. Giới hạn vô cực

Định nghĩa 4

Cho hàm số y = f(x) xác định trên $(a; +\infty)$.

Ta nói hàm số y=f(x) có giới hạn là $-\infty$ khi $x \to +\infty$ nếu với dãy số (x_n) bất kì, $x_n > a$ và $x_n \to +\infty$, ta có $f(x_n) \to -\infty$

Kí hiệu:
$$\lim_{x\to\infty} f(x) = -\infty$$

Nhận xét:
$$\lim_{x \to +\infty} f \ x = +\infty \Leftrightarrow \lim_{x \to +\infty} -f \ x = -\infty$$
.

2. Một vài giới hạn đặc biệt

a) $\lim_{x \to +\infty} x^k = +\infty$ với k nguyên dương.

b) Nếu k chẵn thì
$$\lim_{x \to -\infty} x^k = +\infty$$
 ;

Nếu k lẻ thì
$$\lim_{x\to -\infty} x^k = -\infty$$
 .

3. Một vài quy tắc về giới hạn vô cực

a) Quy tắc tìm giới hạn của tích f(x).g(x)

$\lim_{\mathrm{x} o \mathrm{x}_0} \mathrm{f} \ \ \mathrm{x}$	$\lim_{x \to x_0} g x$	$\lim_{x\to x_0} f \ x \ .g \ x$
L > 0	$+\infty$	$+\infty$
	$-\infty$	$-\infty$
L < 0	$+\infty$	$-\infty$
	$-\infty$	$+\infty$

b) Quy tắc tìm giới hạn của thương $\frac{f}{g} \frac{x}{x}$

$\lim_{x \to x_0} f x$	$\lim_{x \to x_0} g x$	Dấu của g(x)	$\lim_{x \to x_0} \frac{f}{g} \frac{x}{x}$
L	$\pm \infty$	Tùy ý	0
L>0 0	+	+∞	
		_	$-\infty$

L < 0	+	$+\infty$
	_	$-\infty$

(Dấu của g(x) xét trên một khoảng K nào đó đang tính giới hạn, với $x \neq x_0$)

Chú ý: Các quy tắc trên vẫn đúng cho các trường hợp:

$$\mathbf{x} \to \mathbf{x}_0^+, \mathbf{x} \to \mathbf{x}_0^-; \mathbf{x} \to +\infty; \mathbf{x} \to -\infty.$$

B. BÀI TẬP

Bài 1. Chứng minh rằng phương trình $x^5 - 3x^4 + 5x - 2 = 0$ có ít nhất ba nghiệm nằm trong khoảng (-2; 5)

Lời giải

$$\text{Dặt } f(x) = x^5 - 3x^4 + 5x - 2$$

f(x) là hàm đa thức nên liên tục trên R.

Ta có: f(0) = -2 < 0

$$f(1) = 1 > 0$$

$$f(2) = -8 < 0$$

$$f(3) = 13 > 0$$

$$\Rightarrow$$
 f(0).f(1) < 0; f(1).f(2) < 0; f(2).f(3) < 0

 \Rightarrow Phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (0; 1); 1 nghiệm thuộc khoảng (1; 2); 1 nghiệm thuộc khoảng (2; 3)

 \Rightarrow f(x) = 0 có ít nhất 3 nghiệm thuộc (0; 3) hay f(x) = 0 có ít nhất 3 nghiệm thuộc (-2; 5).

Bài 2. Giới hạn của các dãy số sau:

a)
$$u_n = \frac{3n^3 + 2n - 1}{2n^2 - n}$$
;

b)
$$u_n = 5^n - 2^n$$
;

c)
$$u_n = \sqrt{n^2 + n + 1} - \sqrt[3]{n^3 + 3n + 2}$$

Lời giải

a)
$$\lim u_n = \lim \frac{3 + \frac{2}{n^2} - \frac{1}{n^3}}{\frac{2}{n} - \frac{1}{n^2}}$$
.

Vì $\lim \left(3 + \frac{2}{n^2} - \frac{1}{n^3}\right) = 3 > 0$, $\lim \left(\frac{2}{n} - \frac{1}{n^2}\right) = 0$ và $\frac{2}{n} - \frac{1}{n^2} > 0$ với mọi n nên theo quy tắc 3, $\lim_{n \to +\infty} 1 = +\infty$.

b) Ta có
$$5^n - 2^n = 5^n \left(1 - \left(\frac{2}{5} \right)^n \right)$$

Vì $\lim 5^n = +\infty$ và $\lim \left(1 - \left(\frac{2}{5}\right)^n\right) = 1 > 0$ nên theo quy tắc 2, $\lim 5^n - 2^n = +\infty$

c) lim
$$\sqrt{n^2 + n + 1} - \sqrt[3]{n^3 + 3n + 2} = \lim_{n \to \infty} \left[\sqrt{n^2 + n + 1} - n + n - \sqrt[3]{n^3 + 3n + 2} \right]$$

$$= lim \frac{n^2 + n + 1 - n^2}{\sqrt{n^2 + n + 1} + n} + lim \frac{n^3 - n^3 - 3n - 2}{n^2 - n\sqrt[3]{n^3 + 3n + 2} + \sqrt[3]{n^3 + 3n + 2}}$$

$$= \lim \frac{n+1}{\sqrt{n^2+n+1}+n} + \lim \frac{-3n-2}{n^2-n\sqrt[3]{n^3+3n+2}+\sqrt[3]{n^3+3n+2}}$$

$$= \lim \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2} + 1}} + \lim \frac{-\frac{3}{n} - \frac{2}{n^2}}{1 - \sqrt[3]{1 + \frac{3}{n^2} + \frac{2}{n^3}} + \sqrt[3]{\left(1 + \frac{3}{n^2} + \frac{2}{n^3}\right)^2}}$$

$$=\frac{1}{2}+0=\frac{1}{2}.$$

Bài 3. a) Xét tính liên tục trên
$$\mathbb R$$
 của hàm số: $g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{khi } x > 2 \\ 5 - x & \text{khi } x \leq 2. \end{cases}$

b) Tìm a để các hàm số sau liên tục tại các điểm đã chỉ ra: f $x = \begin{cases} x + 2a \text{ khi } x < 0 \\ x^2 + x + 1 \text{ khi } x \ge 0 \end{cases}$

Lời giải

tai x = 0

a) Tập xác định của hàm số là \mathbb{R}

Với x > 2 thì hàm $g(x) = \frac{x^2 - x - 2}{x - 2}$ là hàm phân thức nên liên tục trên khoảng $2; +\infty$.

Với x < 2 thì hàm g(x) = 5 - x là hàm đa thức nên liên tục trên $-\infty$; 2 .

Tại x = 2, ta có:

$$\lim_{x \to 2^{+}} g(x) = \lim_{x \to 2^{+}} \frac{x^{2} - x - 2}{x - 2} = \lim_{x \to 2^{+}} \frac{x + 1}{x - 2} = \lim_{x \to 2^{+}} x + 1 = 3$$

$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} 5 - x = 3$$

$$\Rightarrow \lim_{x \to 2^{+}} g(x) = \lim_{x \to 2^{-}} g(x) = g(2) = 3$$

Do đó hàm số liên tục tại x = 2.

Vậy hàm số đã cho liên tục trên $\mathbb R$.

b) Ta có:
$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} x + 2a = 2a$$

$$valar \lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x^2 + x + 1 = 1$$

Để hàm số liên tục tại x = 0 thì $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) \Leftrightarrow 2a = 1 \Leftrightarrow a = \frac{1}{2}$.

Vậy $a = \frac{1}{2}$ thì hàm số đã cho liên tục tại x = 0.

Bài 4. Chứng minh phương trình $\sqrt{x^5 + 2x^3 + 15x^2 + 14x + 2} = 3x^2 + x + 1$ có 5 nghiệm phân biệt.

Lời giải

Phương trình đã cho tương đương với

$$x^5 + 2x^3 + 15x^2 + 14x + 2 = 3x^2 + x + 1^2$$

$$\Leftrightarrow x^5 - 9x^4 - 4x^3 + 18x^2 + 12x + 1 = 0$$
 (1)

Hàm số $f(x) = x^5 - 9x^4 - 4x^3 + 18x^2 + 12x + 1$ liên tục trên \mathbb{R}

Ta có:
$$f(-2) = -95 < 0, f(-1) = 1 > 0, f\left(-\frac{1}{2}\right) = -\frac{19}{32} < 0$$

$$f(0) = 1 > 0, f(2) = -47 < 0, f(10) = 7921 > 0$$

Do đó phương trình f(x) = 0 có ít nhất 5 nghiệm thuộc các khoảng

$$-2;-1$$
, $\left(-1;-\frac{1}{2}\right)$, $\left(-\frac{1}{2};0\right)$, $0;2$, $2;10$

Mặt khác f(x) là đa thức bậc 5 nên có tối đa 5 nghiệm.

Vậy phương trình đã cho có đúng 5 nghiệm.

Bài 5. Tìm các giới hạn sau:

a)
$$A = \lim_{x \to +\infty} \frac{(4x+1)^3 (2x+1)^4}{(3+2x)^7}$$
;

b)
$$B = \lim_{x \to -\infty} \frac{\sqrt{3x^2 - 2} + \sqrt{x + 1}}{\sqrt{x^2 + 1} - 1}$$
;

Lời giải

a) Ta có:
$$A = \lim_{x \to +\infty} \frac{\left(4 + \frac{1}{x}\right)^3 \left(2 + \frac{1}{x}\right)^4}{\left(\frac{3}{x} + 2\right)^7} = 8$$

b) Ta có: B =
$$\lim_{x \to -\infty} \frac{|x|\sqrt{3 - \frac{2}{x^2}} + |x|\sqrt{\frac{1}{x} + \frac{1}{x^2}}}{|x|\left(\sqrt{1 + \frac{1}{x^2}} - \frac{1}{|x|}\right)} = \lim_{x \to -\infty} \frac{-\sqrt{3 - \frac{2}{x^2}} - \sqrt{\frac{1}{x} + \frac{1}{x^2}}}{-\left(\sqrt{1 + \frac{1}{x^2}} - \frac{1}{|x|}\right)} = \sqrt{3}$$