Reto: Problema del Agente Viajero

Nombre: Sebastián Miramontes Soto A01285296

Nombre: Mateo Zepeda A01722398

Nombre: Diego Armando Mijares A01722421

Instrucciones: Resuelve completa y correctamente cada uno de los siguientes puntos. Se evalúa el procedimiento. Resultado sin procedimiento no tiene puntaje alguno.

1. Diseña 10 redes de 40 nodos (direcciones) de forma aleatoria a partir de la siguiente lista de direcciones. Recuerda que vamos a minimizar la distancia recorrida.

Para este paso, se llevó a cabo un script que generó dichas 10 redes, por cantidad de nodos, subsecuentemente guardándolo en 4 diferentes excels: donde en cada uno hay 10 redes de diferentes cantidad de nodos por excel. El primer excel tiene 40 nodos por red, el segundo excel tiene 100 nodos por red, el tercer excel tiene 150 nodos por red, y el cuarto excel tiene 200 nodos por red.

Se anexa una imagen de ejemplo de estos excels:

4 A	В	С	D	Ε	F	G	н	- 1	J	К	L	М	N	0	Р	Q	R	S	т	U	٧	w	x	Y	Z	AA
	166	34	107	99	240	176	227	132	97	192	232	118	219	25	122	31	72	123	108	209	14	269	278	104	144	150
166	9999.99	12.13789	13.70185	6.0742	8.91392	2.18757	12.20522	8.70839	49.44739	18.75034	12.20522	15.11448	12.20522	10.57317	12.40543	9.59883	9.13349	7.13739	13.91363	12.20522	9.13349	17.37793	1	7.35038	14.94219	8.580
34	12.13789	9999.99	1.56518	6.39009	15.81257	10.06546	19.81038	6.10401	60.30231	29.13638	19.81038	4.12108	19.81038	8.97465	8.67797	7.94475	3.48721	5.6506	6.64687	19.81038	3.48721	8.30424	12.13789	5.32297	3.20824	8.755
107	13.70185	1.56518	9999.99	7.91107	17.16426	11.63033	21.13697	7.29205	61.70957	30.54274	21.13697	3.27929	21.13697	9.8463	9.24843	8.94346	4.96107	7.11672	6.74446	21.13697	4.96107	7.83314	13.70185	6.8331	2.12415	9.96
99	6.0742	6.39009	7.91107	9999.99	12.36018		16.28987				16.28987		16.28987	6.34601	7.59039			1.10974		16.28987	4.27531		6.0742		9.47192	7.604
240	8.91392	15.81257	17.16426	12.36018	9999.99	8.77234											12.36946	13.37655	20.35352	4.02664	12.36946	16.68046	8.91392	10.73733	17.33672	7.401
176		10.06546			8.77234		12.47449															15.21904	2.18757	5.16651		6.755
227		19.81038				12.47449		19.52435				23.82281				21.05996							12.20522			
132					15.60294															19.52435			8.70839	5.96661	9.27874	
97					53.61599																					
192					24.81673															25.7503						
232					4.02664			19.52435				23.82281				21.05996							12.20522			
118		4.12108			19.80598 4.02664											21.05996				23.82281						
219		19.81038 8.97465			18.43784		22.23486	19.52435								1.32353				22.23486			12.20522			
122	12.40543				19.91418						23.79046		23.79046		9999.99			6.67306		23.79046						
31	9.59883						21.05996									9999.99		4.29659		21.05996		16.14968	9.59883		11.01963	
72	9.13349				12.36946		16.38252								9.73795			4.13253		16.38252		8.95777	9.13349	1.89585		
123	7.13739		7.11672		13.37655		17.32957								6.67306			9999.99		17.32957		12.97075	7.13739		8.81512	
108	13.91363	6.64687	6.74446	8.20086	20.35352										3.30667	4.97318	8.78749	7.10373	9999.99	24.34849	8.78749	14.57564	13.91363		8.77246	
209	12.20522	19.81038	21.13697		4.02664			19.52435				23.82281								9999.99				14.76379	21.21221	11.260
14	9.13349	3,48721	4.96107	4.27531	12.36946	6.96918	16.38252	5.83385	58.11742	27.04338	16.38252	7,44185	16.38252	9.27263	9.73795	7.99625	1	4.13253	8.78749	16.38252	9999.99	8.95777	9.13349	1.89585	5.84105	5.573
269	17.37793	8.30424	7.83314	13.2319	16.68046	15.21904	20.03831	14.14843	66.79484	35.85516	20.03831	10.71612	20.03831	17.24638	16.95806	16.14968	8.95777	12.97075	14.57564	20.03831	8.95777	9999.99	17.37793	10.27914	5.84886	9.814
278	1	12.13789	13.70185	6.0742	8.91392	2.18757	12.20522	8.70839	49.44739	18.75034	12.20522	15.11448	12.20522	10.57317	12.40543	9.59883	9.13349	7.13739	13.91363	12.20522	9.13349	17.37793	9999.99	7.35038	14.94219	8.580
104	7.35038	5.32297	6.8331	3.4373	10.73733	5.16651	14.76379	5.96661	56.56685	25.57762	14.76379	9.11915	14.76379	9.39434	10.23448	8.07237	1.89585	3.8044	9.86198	14.76379	1.89585	10.27914	7.35038	9999.99	7.7151	4.547
144	14.94219	3.20824	2.12415	9.47192	17.33672	12.79591	21.21221	9.27874	63.47565	32.31464	21.21221	4.88941	21.21221	11.95489	11.36816	11.01963	5.84105	8.81512	8.77246	21.21221	5.84105	5.84886	14.94219	7.7151	9999.99	9.954
150	8.58031	8.75557	9.9648	7.60464	7.40154	6.75587	11.26036	10.47546	57.72288	27.29376	11.26036	12.86532	11.26036	13.855	14.77872	12.53225	5.57341	8.23595	14.28843	11.26036	5.57341	9.81481	8.58031	4.54799	9.95438	9999
155	16.20884	8.84405	8.7763	12.75981	14.62806	14.11371	17.8568	14.19251	65.64024	34.88996	17.8568	11.92503	17.8568	17.4847	17.46715	16.2963	8.56257	12.69397	15.42466	17.8568	8.56257	2.32827	16.20884	9.51822	7.08197	8.12
109	10.34919	4.85508	5.89729	6.57419	11.50747	8.17831	15.39971	8.43431	59.74421	28.82346	15.39971	8.95904	15.39971	11.87405	12.28706	10.5974	2.60171	6.6355	11.06656	15.39971	2.60171	7.05106	10.34919	3.30158	5.82954	4.14
201	5.75266		8.96131		12.99971		16.83283									4.22939			8.16354			14.64041		4.86394	10.65819	8.851
1	7.13739		7.11672		13.37655										6.67306				7.10373			12.97075	7.13739	3.8044	8.81512	8.23
160	20.43723				20.33018																					13.3
174		10.06546					12.47449															15.21904	2.18757	5.16651		6.75
183		7.01387			13.64012																					6.660
193		12.32008			3.52001	6.5855				25.37211		16.34606				14.43095			17.13718		8.90446		7.53782		13.82475	
224	4.01685		12.32674		6.05312	2.90088					9.93387					11.17255			14.48939			14.32163	4.01685		13.05584	
116	9.59883	7.94475 3.20824			17.2256		21.05996								2.80875		7.99625	4.29659		21.05996		16.14968 5.84886	9.59883	7.7151	11.01963	9.95
116	14.94219				11.26985													12.09199	8.77246	14.38174			14.94219		9.09241	
195	10.57317				18.43784											1.32353							10.57317	9.39434		13.1
256					3.17527																	13.5948	20101021	7.94931		4.241
250	8.2002	12.01303	14.11124	10.10703	3.17327	7.30079	7.03302	13.30937	33.46041	23.00093	7.03302	10.00703	7.03302	10.4045	17.0049	13.12633	9,4344	11.02230	17.70312	7.03302	5.4344	13.3546	8.2002	7.54931	14.19307	4.24
	Rede 1	Red	e 2	Rede 3	Rede	9.4	Rede 5	Rede	6	Rede 7	Rede	8	Rede 9	Rede	10 -	+										

Imagen de ejemplo

Esto simplemente es un fragmento de la primera red para 40 nodos. Subsecuentemente se tienen 9 redes más, y tres Excels más para las otras cantidades de nodos. Los índices son las matrículas por ubicación del Excel, y las distancias son kilómetros, que se consiguieron encontrando la latitud y longitud de cada ubicación con un *scrapper* que entra a Google Maps y da la longitud y latitud. En algunos casos específicos, se utilizó el 1 kilómetro, como una diferencia significativa para distancias que el algoritmo marcó como 0, esto debido a que el algoritmo que generaba estas coordenadas, hizo que fueran muy similares o incluso iguales.

2. Modelo Matemático

Conjuntos:

Sea
$$I = \{1, 2, \dots, 40\}$$
 (Índice para filas y columnas)

$$x_{ij} \in \{0,1\}$$
 para todo $i,j \in I$ (Variable binaria de decisión)

$$u_i \ge 0$$
 para todo $i \in I$ (Variable positiva)

Parámetros:

 C_{ij} (Costo o distancia para cada par (i,j))

Función Objetivo:

Minimizar z, que es el costo total:

$$Minimizar z = \sum_{i \in I} \sum_{j \in I} c_{ij} \cdot x_{ij}$$

Restricciones:

- Restricción de filas: Cada fila tiene exactamente una asignación saliente.

$$\sum_{j \in I} x_{ij} = 1 \quad \text{para todo } i \in I$$

- Restricción de columnas: Cada columna tiene exactamente una asignación entrante.

$$\sum_{i \in I} x_{ij} = 1 \quad \text{para todo } j \in I$$

- Restricción de eliminación de subcircuitos: Evita subcircuitos asegurando que no se

formen ciclos, excepto el recorrido completo.

$$u_i - u_j + |I| \cdot x_{ij} \le |I| - 1 \quad \forall i, j \in I \quad (i \ne j \ y \ i > 1 \ y \ j > 1)$$

3. Obtén la solución óptima usando GAMS.

La distancia recorrida óptima ponderada de 10 redes de 40 nodos, da un total de: 151.34 km

El fitness ponderada da 0.00684388

El mejor recorrido sugiere este orden: 111.739082 - Caso 8

El tiempo de cómputo ponderado fue de 1.58 segundos.

Se anexa imágenes de un ejemplo del código, los códigos completos se encuentran en anexos finales:

```
\mid--- Returning a primal only solution to GAMS (marginals all set to NA).--- Fixing integer variables and solving final LP...
                                                                              Real time
                                                                                                                                                                                                                                                      = 719.11 sec. (14311
                                                               Total (root+branch&cut) = 719.50 sec. (14317
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           -- Fixed MIP status (1): optimal
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 --- Cplex Time: 0.02sec (det. 3.84 ticks)
                                                                --- MIP status (113): aborted.
                                                               --- Cplex Time: 719.50sec (det. 1431728.01 ti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Problem aborted
MIP Solution:
Final Solve:
                                                                --- Returning a primal only solution to GAMS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            120.468560
120.468560
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (4.18579e+06 iterations, 588890 nodes)
                                                               --- Fixing integer variables and solving fina
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (38 iterations)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Best possible:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            111.606920
                                                               Version identifier: 22.1.1.0 | 2022-11-27 | 9
                                                             CPXPARAM_Advance
CPXPARAM_Threads
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Absolute gap:
Relative gap:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8.861640
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.073560
                                                             CPAPARAM MIP_Display
CPXPARAM MIP_Pool_Capacity
CPXPARAM MIP_Tolerances_AbsMIPGap
CPXPARAM MIP_Tolerances_MIPGap
Tried_aggregator_1_time.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              LEVEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   UPPER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    MARGINAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ---- EQU obj
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.0000
                                                               LP Presolve eliminated 80 rows and 1601 colum
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ---- EQU r1
                                                               Reduced LP has 1482 rows, 39 columns, and 296 Presolve time = 0.00 sec. (1.67 ticks)
                                                             --- Fixed MIP status (1): optimal.
                                                                --- Cplex Time: 0.00sec (det. 3.84 ticks)
                                                               Problem aborted
                                                                                                                                                                                                                                             120.468560
                                                               MIP Solution:
                                                                                                                                                                                                                                                                                                                                                           (4.72407
                                                             Best possible:
Absolute gap:
                                                                                                                                                                                                                                             111.739082
                                                                                                                                                                                                                                                           8.729478
0.072463
                                                               Relative gap:
                                                               --- Reading solution for model problemaf
*** Status: Normal completion
--- Job MODELO 8.gms Stop 09/08/24 20:25:58 e
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EPS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 - INF 
-INF
-INF
-INF
-INF
-INF
                                                                                      23.0000
16.0000
4.0000
17.0000
30.0000
11.0000
-4.0000
3.0000
12.0000
28.0000
24.0000
                                                                                                                                                                                  39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
39.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     - INP
                                                                                                                                                                                                                                                                                                                                                             - INF 
                                                                                                                                                                                   39.0000
```

4. Implementa un algoritmo genético para el TSP.

La distancia recorrida óptima ponderada de 10 redes de 40 nodos, da un total de: 407.26592 km

El mejor recorrido sugiere este orden: [73, 67, 34, 59, 74, 266, 219, 165, 19, 149, 53, 139, 171, 203, 185, 155, 94, 95, 85, 157, 49, 117, 90, 29, 150, 31, 15, 129, 106, 33, 78, 54, 215, 224, 228, 5, 17, 114, 41, 216, 73], con distancia de 407.26592km

El tiempo de cómputo ponderado fue de 4.84 segundos.

Se anexa imagenes del código, los códigos completos se encuentran en anexos finales:

```
import pandas as pd
import random as rand
import numpy as np
import time
from geopy.distance import geodesic
                         Generar Cromosona
              Crear Poblacion Inicial
               In [19]: 1 def generar_poblacion_inicial(n, casas):
                                   for i in range(n):
    poblacion.append(generar_cromosona(casas))
                         8 return poblacion
                         Funcion Fitness
               In [65]: 1 def calcular_fitness(cromosona, comienzo, red):
                                  cromosona_con_fin = [comienzo] + cromosona + [comienzo]
                         7 for idx in range(len(cromosona_con_fin) - 1):
actual = cromosona_con_fin[idx]
                        siguiente = cromosona_con_fin[idx + 1]
                        \label{eq:distancia} \mbox{distancia = red.loc[red[red.columns[0]] == actual, siguiente].values[0]}
                        distancias.append(distancia)
                    distancia_total = sum(distancias)
fitness = 1 / distancia_total if distancia_total != 0 else float('inf')
                    return fitness, distancia_total
In [21]: 1 def fitness_poblacional(poblacion, comienzo, red):
                    lista_fitness = []
lista_distancia = []
                    for cromosona in poblacion:
   fitness_crom, distancia_crom = calcular_fitness(cromosona, comienzo, red)
   lista_fitness.append(fitness_crom)
   lista_distancia.append(distancia_crom)
                    total_fit = np.sum(lista_fitness) # Use NumPy for summation
                    return lista_fitness, lista_distancia, total_fit
```

Mutacion

Forzar factibilidad de hijos

Checar Fitness Max

```
15 crom_min_sin_comienzo = poblacion[max_fit_index]
16 17 crom_min = [comienzo] + crom_min_sin_comienzo + [comienzo]
18 #print(f"Generacion: {generacion}\nFitness: {max_fitness}\nDistancia: {min_distancia}\nCromosona:{crom_min}\n\n')
20 return max_fitness, min_distancia, crom_min
```

Parametros

```
In [27]: 1 | max generaciones = 100

2 | max fitness = 0

3 | min distancia = 999999

4 | tamanio_poblacional = 4

5

6 | probabildad_cruce = 0.9

7 | probabilidad_mutacion = 0.05
```

Disena 10 redes de 40 nodos (direcciones) de forma aleatoria a partir de la siguiente lista de direcciones. Recuerda que vamos a minimizar la distancia recordida.

```
def algoritmo genetico(redes):
      for count, red in enumerate(redes):
             inicia_tiempo = time.time()
             comienzo_ruta = int(red.columns[1])
print(f"Red #{count+1}\nComenzando en {comienzo_ruta}\n\n")
             lista_casas = list(red.columns[2:])
             max_generaciones = 100
max fitness = 0
             max_fitness = 0
min_distancia = 99999999
tamanio_poblacional = 4
probabilidad_mutacion = 0.1
probabildad_cruce = 0.9
crom_min = []
             poblacion inicial = generar poblacion inicial(tamanio poblacional, lista casas)
             for generacion in range(max_generaciones):
                   max_fitness, min_distancia, crom_min = checar_fitness_max(
    poblacion_inicial, max_fitness, min_distancia, generacion, comienzo_ruta, red, crom_min
)
                    hijos_finales = []
                   while len(hijos_finales) < tamanio_poblacional:
    lista fitness, lista distancias, fitness_total = fitness_poblacional(poblacion_inicial, comienzo_ruta, red)
    padre1, padre2 = seleccion_rouleta(poblacion_inicial, lista_fitness_fitness_total)
    hijo1, hijo2 = cruce(padre1, padre2, probabildad_cruce)
    hijos = [hijo1, hijo2]</pre>
                                                                             hijos_mutados = mutacion(hijos, probabilidad_mutacion)
hijos_factibles = forzar_factibilidad(hijos_mutados, lista_casas)
hijos_finales.extend(hijos_factibles)
                                                                poblacion_inicial = hijos_finales
                                                           acaba_tiempo = time.time()
tiempo = acaba_tiempo - inicia_tiempo
                                                             tcp_200_df.loc[0, f"Red {count+1}"] = max_fitness
tcp_200_df.loc[1, f"Red {count+1}"] = min_distancia
tcp_200_df.loc[2, f"med {count+1}"] = tiempo
tcp_200_df.loc[3, f"Red {count+1}"] = str(crom_min)
                                                             tcp_200_df.to_excel("TCP200.xlsx", index=False)
                       In [151]: 1 algoritmo_genetico(redes_200)
                                          Red #1
Comenzando en 0
                                          Red #2
Comenzando en 0
```

Imagenes de código completo de algoritmo genético

1		Red 1	Red 2	Red 3	Red 4	Red 5	Red 6	Red 7	Red 8	Red 9	Red 10	Promedio	Mejor
2	Fitness	0.00196	0.00246	0.00224	0.00217	0.00219	0.00236	0.0021	0.00221	0.00235	0.00226	0.00223	0.00246
3	F.O. Min	509.122	407.266	446.8	460.443	457.25	423.341	476.33	451.801	425.288	443.121	450.076	407.266
4	Tiempo Computacional	4.78686	4.83532	4.9896	4.97506	4.91787	4.99541	4.86012	4.97543	5.03374	5.0256	4.9395	4.83532
5	Cromosona	[166, 150,	[73, 67, 34	[96, 263, 7	[167, 176,	[20, 93, 61	[90, 161, 6	[51, 64, 13	[156, 247,	[123, 30, 1	[92, 259, 2		[73, 67, 34

Imagen de resultados completos de algoritmo genético

5. Implementa un algoritmo de colonia de hormigas para obtener una solución al problema. La distancia recorrida óptima ponderada de 10 redes de 40 nodos, da un total de: 162.94 km El fitness ponderada da 0.0063

El mejor recorrido sugiere este orden:

[0, 35, 24, 11, 30, 7, 13, 34, 12, 25, 1, 22, 39, 31, 32, 2, 37, 4, 9, 38, 18, 6, 20, 27, 29, 28, 17, 23, 3, 8, 33, 15, 19, 21, 26, 10, 5, 16, 14, 36, 0] con distancia 125.50 km

El tiempo de cómputo ponderado fue de 2.72 segundos.

Se anexa imagenes del código, los códigos completos se encuentran en anexos finales:

```
# Función principal para resolver el problema TSP usando ACO
def solve_tsp_with_aco(distance_matrix, num_ants, num_iterations):
   num_nodes = len(distance_matrix)
    pheromone_matrix = initialize_pheromone_matrix(num_nodes)
   best_path = None
   best_distance = float('inf')
    for _ in range(num_iterations):
       ant_paths = []
        ant_distances = []
        for _ in range(num_ants):
            path, distance = run_ant(num_nodes, pheromone_matrix, distance_matrix)
            ant_paths.append(path)
            ant_distances.append(distance)
            if distance < best_distance:</pre>
                best_distance = distance
                best_path = path
        pheromone_matrix = update_pheromone_matrix(pheromone_matrix, ant_paths, ant_distances)
    return best_path, best_distance
for num_nodes, file_path in file_paths.items():
   excel_data = pd.ExcelFile(file_path)
    fitness_scores = []
    total_distances = []
   best_global_path = None
   best_global_distance = float('inf')
```

```
for sheet_name in excel_data.sheet_names:
    # Cargar la red (distancia) desde el Excel
    distance_matrix = pd.read_excel(excel_data, sheet_name=sheet_name, index_col=0).values

# Medir el tiempo de resolución
    start_time = time.time()  # Iniciar el temporizador
    best_path, best_distance = solve_tsp_with_aco(distance_matrix, num_ants,
    end_time = time.time()  # Detener el temporizador

# Calcular el tiempo de resolución
    elapsed_time = end_time - start_time

# Calcular fitness
fitness = 1 / best_distance
fitness_scores.append(fitness)
total_distances.append(best_distance)

# Guardar la mejor ruta global
if best_distance < best_global_distance:
    best_global_distance = best_distance
best_global_path = best_path

# Calcular fitness ponderada
weighted_fitness = np.mean(fitness_scores) / 10
average_distance = np.mean(total_distances)</pre>
```

```
# Imprimir resultados
print(f"Excel con {num_nodes} nodos:")
print(f"Fitness ponderada: {weighted_fitness:.4f}")
print(f"Distancia promedio: {average_distance:.2f}")
print(f"Mejor ruta: {best_global_path} con distancia {best_global_distance:.2f}")
print(f"Tiempo computacional: {elapsed_time:.2f} segundos") # Imprimir el tiempo computacional
print("\n")
```

Imagenes de código completo de algoritmo genético

```
Excel con 40 nodos:
Fitness ponderada: 0.2528
Distancia promedio: 162.94
Mejor ruta: [0, 35, 24, 11, 30, 7, 13
Tiempo computacional: 2.72 segundos
```

Imagen de resultados completos de algoritmo genético

*La mejor ruta se despliega completa junto a su kilometraje, por la longitud de aquella imagen favor de recurrir al anexo del código al final en caso de querer ver el despliegue completo.

6. Compara el valor exacto con los algoritmos bioinspirados que creaste.

El algoritmo genético, tiene un fitness de 35.88% de lo que es el fitness hecho con el valor exacto que se consiguió con GAMS. El tiempo de computación con genéticos, fue un 306.03% de lo que es para el modelo hecho en GAMS.

El algoritmo de hormigas, tiene un fitness de 92.05% de lo que es el fitness hecho con el valor exacto que se consiguió con GAMS. El tiempo de computación con hormigas, fue un 172.15% de lo que es para el modelo hecho en GAMS.

Para apreciar las diferencias para las 10 redes de 100, 150 y 200 nodos, favor de recurrir al infográfico.

[Anexos finales]:

https://drive.google.com/drive/folders/1BNb5nqIS0jgv2pDuI5PbLDSYJJ6deo3K?usp=sharing

Bibliografía:

Gutin, G., & Punnen, A. P. (2007). The Traveling Salesman Problem and Its Variations. Springer.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT Press.

Liga a infografía:

 $\underline{https://www.canva.com/design/DAGQO23mm40/djKTgPUuRE3P7W9SMJelDA/edit?utm_content=DAGQO23mm40\&utm_campaign=designshare\&utm_medium=link2\&utm_source=sharebutton$