Sheet 22: Integrals

Kris, Isaac, Michael, Katya

We want to define a semblance of area for functions on a closed interval. To do this we will create rectangles to approximate the area. Then we will make the approximation more precise. For the purposes of this sheet, a function f is a real function $f:[a;b] \to \mathbb{R}$.

Definition 1 Let a < b. A partition of the interval [a;b] is a finite collection of points in [a,b], one of which is a and one of which is b.

The points of a partition can be numbered t_0, \ldots, t_n so that

$$a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$$

We will always assume that such a numbering has been assigned.

This partition defines the width of each rectangle. To define the height we use lower and upper sums.

Definition 2 Suppose f is bounded on [a;b] and $P = \{t_0, \ldots t_n\}$ is a partition of [a;b]. Let

$$m_i = \inf\{f(x) \mid t_{i-1} \le x \le t_i\}$$

$$M_i = \sup\{f(x) \mid t_{i-1} \le x \le t_i\}.$$

The lower sum of f for P, denoted by L(f, P), is defined as

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}).$$

The upper sum of f for P, denoted by U(f,P), is defined as

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

Theorem 3 Let P_1 and P_2 be partitions of [a;b], and let f be a function which is bounded on [a;b]. Then

$$L(f, P_1) \leq U(f, P_2).$$

What does this imply about the set of lower sums and the set of upper sums for arbitrary partitions on [a; b]? We can define a specific property of functions on a closed interval using lower and upper sums.

Definition 4 A function f which is bounded on [a;b] is integrable on [a;b] if

 $\sup\{L(f,P)\mid P \text{ is a partition of } [a;b]\} = \inf\{U(f,P)\mid P \text{ is a partition of } [a;b]\}.$

In this case, this common number is called the integral of f on [a;b] and is denoted by

$$\int_{a}^{b} f = \int_{a}^{b} f(x) dx.$$

When $f(x) \ge 0$ for all $x \in [a; b]$, the integral is also called the area of the region defined by f, x = a, x = b and f(x) = 0.

Exercise 5 Show that for $c \in \mathbb{R}$, the function f(x) = c is integrable on the interval [a;b].

Exercise 6 Let f be defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1 & \text{if } x \text{ is rational.} \end{cases}$$

Show that f is not integrable on the closed interval [a; b].

Notice that showing non-constant functions are integrable directly from the definition is difficult.

Theorem 7 If f is bounded on [a;b], then f is integrable on [a;b] if and only if for every $\varepsilon > 0$ there exists a partition, P, of [a;b] such that

$$U(f, P) - L(f, P) < \varepsilon$$
.

Exercise 8 Show that y = x is integrable on the closed interval [a; b].

Now we want to show some nice properties about integrable functions.

Theorem 9 If f is continuous on [a; b], then f is integrable on [a; b].

Hint: Remember that continuous functions on closed intervals are uniformly continuous. How does this help us pick a useful partition?

Theorem 10 Let a < c < b for $a, b, c \in \mathbb{R}$. Then f is integrable on [a; b] if and only if f is integrable on [a; c] and on [c; b]. Also, if f is integrable on [a; b], then

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Theorem 11 If f and g are integrable functions on [a;b], then f+g is integrable on [a;b] and

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g.$$

Theorem 12 If f is integrable on [a;b], then for any number c, the function cf is integrable on [a;b] and

$$\int_{a}^{b} cf = c \int_{a}^{b} f.$$

Here is an interesting result.

Exercise 13 If f is integrable on [a; b], then so is |f|.

Exercise 14 If f is integrable on [a; b], then

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

The derivative does not display its full strength, nay display any strength at all, until amalgamated with the integral.

Lemma 15 Suppose f is integrable on [a;b] and that

$$m \le f(x) \le M$$

for all $x \in [a; b]$. Then

$$m(b-a) \le \int_a^b f \le M(b-a).$$

Theorem 16 If f is integrable on [a;b] and F is defined on [a;b] by

$$F(x) = \int_{a}^{x} f,$$

then F is continuous on [a;b].

Theorem 17 (The First Fundamental Theorem of Calculus) Let f be integrable on [a;b], and define F on [a;b] by

$$F(x) = \int_{a}^{x} f.$$

If f is continuous at $c \in [a; b]$, then F is differentiable at c, and

$$F'(c) = f(c).$$

(If c=a or c=b, then F'(c) is understood to mean the right- or left-hand derivative of F.)

Theorem 18 (The Second Fundamental Theorem of Calculus) If f is integrable on [a;b] and f=g' for some function g, then

$$\int_{a}^{b} f = g(b) - g(a).$$