Iterativne metode za linearne sustave - metoda dekompozicije domene $Petra\ So\check{c}o$

Veljača, 2020.

Želimo numerički riješiti Poissonovu jednadžbu na nepravilnoj domeni oblika slova 'L'.

$$-\Delta u(x,y) = f(x,y) \quad na \ \Omega$$
$$u(x,y) = 0 \quad na \ \Gamma$$

Ovdje smo uzeli Dirichletove rubne uvjete, ali se isto tako mogu uzeti Robinovi ili Neumannovi rubni uvjeti. Pretpostavimo da aproksimiramo druge derivacije centralnim diferencijama i da je na domeni definirana mreža. Pretpostavimo da smo domenu Ω podijelili na s poddomena $\Omega_1,...\Omega_s$ pri čemu se poddomene ne preklapaju.

Nazovimo rub izmedu Ω_i i Ω_j , $i \neq j$ granicom $\Gamma_{i,j}$. Te se granice mogu, ali i ne moraju poklapati sa čvorovima mreže, ali mi ćemo pretpostaviti da čvorovi upadaju u granice poddomena. U vektoru nepoznanica sada grupiramo čvorove mreže tako da prvo poredamo čvorove koji se nalaze unutar poddomene Ω_1 , zatim Ω_2 i tako do Ω_s . Kao rezultat sustav gornjeg problema ima sljedeći oblik:

$$\begin{pmatrix}
B_1 & \dots & E_1 \\
. & B_2 & \dots & E_2 \\
. & . & & & \\
. & . & . & B_s & E_s \\
F_1 & F_2 & \dots & F_s & C
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
. \\
x_s \\
y
\end{pmatrix} = \begin{pmatrix}
f_1 \\
f_2 \\
. \\
f_s \\
g
\end{pmatrix}$$
(1)

gdje x_i predstavlja podvektor nepoznanica koje se odnose na točke u unutrašnjosti poddomene Γ_i , a y predstavlja vektor svih nepoznanica koje se odnose na točke koje pripadaju graničnom području. Blokovi na pozicijama $(i,j), i \neq j$ su jednaki 0 zato što nijedna točka iz unutrašnjosti jedne domene nije direktan susjed nijednoj točki iz unutrašnjosti neke druge domene. Dobiveni sustav možemo napisati i u jednostavnijoj formi, koju ćemo koristiti u daljnoj analizi.

$$A\begin{pmatrix} f \\ g \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} A = \begin{pmatrix} B & E \\ F & C \end{pmatrix}$$
 (2)

Matrice B_i su matrice lokalnih problema na Ω_i pa je za očekivati da su regularne. Tada iz prve jednadžbe možemo izraziti x kao

$$x = B^{-1}(f - Ey)$$

Uvrštavajući u drugu jednadžbu, dobivamo reducirani sustav sa nepoznanicama za granice

$$(C - FB^{-1}E)y = g - FB^{-1}f$$

Matrica $S = C - FB^{-1}E$ zove se matrica Schurovog komplementa sustava. Dobivena matrica A je simetrična, pozitivno definitna pa je i matrica S simetrična, pozitivno definitna. Zbog blok-dijagonalne strukture matrice B, rješavanje linearnog sustava s njom implementiramo kao rješavanje s nezavisnih i manjih sustava. Kako bismo uštedjeli na računanju s matricom B, definiramo sljedeće matrice

$$E' = B^{-1}E$$
, $f' = B^{-1}f$

Iz čega slijedi:

$$x = B^{-1}f - B^{-1}Ey = f' - E'y$$

što nam daje sljedeći algoritam:

Algoritam blok-Gaussovih eliminacija

Riješi BE' = E po E' i Bf' = f po f'

Izračunaj g' = g - Ff'

Izračunaj matricu Schurovog komplementa S = C - FE'

Riješi Sy = q' po y

Izračunaj x = f' - E'y

Konkretno, rješavamo problem na domeni oblika slova L. Podijelimo domenu na s=3 poddomene i poredamo čvorove kako je naznačeno na slici na zadnjoj stranici. $\Gamma_{1,2}$ indeksiramo od dolje prema gore, a $\Gamma_{1,3}$ slijeva na desno. Za rješavanje s sustava s matricama B_i i matricom S koristimo CG metodu $(tol=10^{-9})$.

Rezultati:

Definiramo n_x =broj čvorova po x osi i n_y =broj čvorova po y osi, n =ukupan broj nepoznanica. Za različite vrijednosti prethodna dva parametra mjerimo vrijeme potrebno za izvršavanje gornjeg algoritma.

$$n_x = 7$$
, $n_y = 11$, $n = 45$, T=0.000324

$$n_x = 13, n_y = 17, n = 137, T=0.003653$$

$$n_x = 19, n_y = 20, n = 240, T=0.011372$$

$$n_x = 27, n_y = 32, n = 556, T=0.071688$$

Za iste mreže problem rješavamo i na cijeloj matrici ${\cal A}.$

$$n_x = 7$$
, $n_y = 11$, $n = 45$, T=0.0000253

$$n_x = 13, n_y = 17, n = 137, T=0.001150$$

$$n_x = 19, n_y = 20, n = 240, T=0.003814$$

 $n_x = 27, n_y = 32, n = 556, T=0.020745$

$$n_x = 27, n_y = 32, n = 556, T=0.020745$$

Figure 1: Dekompozicija domene oblika L