CONTENTS

CONTENTS

2	微分	1
	2.1	導數和切線
		2.1.1 切線問題
		2.1.2 函數的導函數
		2.1.3 可微與連續 2
	2.2	基本微分規則的變率
		2.2.1 常數規則
		2.2.2 指數規則
		2.2.3 倍數規則
		2.2.4 和差規則
		2.2.5 正弦和餘弦函數的導函數
		2.2.6 變率
	2.3	積和商的規則和高階導數 4
		2.3.1 積的規則
		2.3.2 商的規則
		2.3.3 三角函數的導函數
		2.3.4 高階導函數
	2.4	連鎖規則
		2.4.1 連鎖規則
		2.4.2 廣義指數規則 5
		2.4.3 化簡導數
		2.4.4 三角函數的連鎖規則
	2.5	隱微分法
		2.5.1 隱函數和顯函數
		2.5.2 隱微分法
	2.6	相關變率
		2.6.1 求相關變率 6
		2.6.2 以相關變率解題
Inc	dex	7

LIST OF TABLES ii

LIST OF TABLES

LIST OF FIGURES

LIST OF FIGURES

2.1	當 x 趨近 c 時,割線會趨近切線。	2
2.2	常數規則其實就是說水平直線的斜率是①,斜率與導數的關聯正式如此。	3

LIST OF FIGURES iv

Chapter 2_

	٧.					
(ĊΟ	n	t.e	'n	\mathbf{ts}	

Contents			
2.1	導數和	和切線 2	2
	2.1.1	切線問題	2
	2.1.2	函數的導函數 2	2
	2.1.3	可微與連續 2	2
2.2	基本征	微分規則的變率	3
	2.2.1	常數規則	3
	2.2.2	指數規則	}
	2.2.3	倍數規則	3
	2.2.4	和差規則4	ŀ
	2.2.5	正弦和餘弦函數的導函數4	ŀ
	2.2.6	變率	ŀ
2.3	積和百	商的規則和高階導數 4	Ŀ
	2.3.1	積的規則	ŀ
	2.3.2	商的規則	ŀ
	2.3.3	三角函數的導函數	5
	2.3.4	高階導函數 5	5
2.4	連鎖	規則5	5
	2.4.1	連鎖規則5	5
	2.4.2	廣義指數規則 5	5
	2.4.3	化簡導數	5
	2.4.4	三角函數的連鎖規則5	5
2.5	隱微分	分法	;
	2.5.1	隱函數和顯函數 6	;
	2.5.2	隱微分法6	;
2.6	相關	變率6	;
	2.6.1	求相關變率 6	;
	2.6.2	以相關變率解題	;

2.1. 導數和切線 2

2.1 導數和切線

2.1.1 切線問題

Definition 2.1 (切線斜率爲 m 的定義). 已知 f 定義在含 c 的一個開區間上,並且如果 極限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = m$$

存在,則稱過 (c,f(c)) 斜率爲 m 的這條直線是函數 f 的圖形在 (c,f(c)) 的 $\frac{b}{b}$ \frac{b} $\frac{b}{b}$ $\frac{b}{b}$ $\frac{b}{b}$ $\frac{b}{b}$ $\frac{b}{b}$ $\frac{b}{b}$

2.1.2 函數的導函數

Definition 2.2 (函數的導函數). 如果下列極限

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

存在,我們以符號 f'(x) 表示,稱爲 f 在 x 的 $\frac{i}{y}$ $\frac{i}{y}$ $\frac{derivative}{derivative}$ 。對於上述極限能夠存在的所有 x 而言,f' 是這些 x 的函數,稱爲 f 的導函數。

2.1.3 可微與連續

同時存在並且相等(見圖 2.1).

Figure 2.1: 當 x 趨近 c 時,割線會趨近切線。

Theorem 2.1 (可微必定連續). 如果 f 在 x = c 可微,則 f 在 x = c 連續。

我們總結可微和連續的關係如下:

(a) 如果函數在 x=c 可微,則函數在 x=c 連續,亦即可微的函數一定連續。

CHAPTER 2. 微分

(b) 有的函數在 x=c 連續,但是在 x=c 卻不可微,也就是說,連續的函數不一定可微分。

2.2 基本微分規則的變率

2.2.1 常數規則

Theorem 2.2 ($The\ Constant\ Rule\ (常數規則)$). 常數函數的導函數為 0 , 亦即 , 如果 c 是一個實數 , 那麼

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[c\right] = 0$$

(如圖 2.2.)

Figure 2.2: 常數規則其實就是說水平直線的斜率是 (),斜率與導數的關聯正式如此。

2.2.2 指數規則

Theorem 2.3 (幂法則 (The Power Rule)). 如果 n 是有理數,則 $f(x) = x^n$ 可微,並且

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[x^n\right] = nx^{n-1}$$

如果 x^{n-1} 在包含 0 的一個開區間上都有定義, $f(x)=x^n$ 也會在 x=0 可微, $f'(x)=nx^{n-1}$ 。

2.2.3 倍數規則

Theorem 2.4 (常數乘積法則 (The Constant Multiple Rule)). 如果 f 可微,而 c 是 一個實數,則 cf 也可微並且

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[cf(x)\right] = cf'(x)$$

2.2.4 和差規則

Theorem 2.5 ($\frac{n \pm k \parallel}{n}$). 兩個可微函數的和(或 \pm)仍然可微,微分的結果是分別微分的和(或 \pm)。

$$\frac{\mathrm{d}}{\mathrm{d}x} [f(x) + g(x)] = f'(x) + g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} [f(x) - g(x)] = f'(x) - g'(x)$$
Sum Rule

Difference Rule

2.2.5 正弦和餘弦函數的導函數

Theorem 2.6 (正弦和餘弦函數的導數 (Derivatives of the sine and cosine functions)).

$$\frac{\mathrm{d}}{\mathrm{d}x} [\sin x] = \cos x$$
 $\frac{\mathrm{d}}{\mathrm{d}x} [\cos x] = -\sin x$

2.2.6 變率

2.3 積和商的規則和高階導數

2.3.1 積的規則

Theorem 2.7 (\underline{f} 法則 ($\underline{The\ Product\ Rule}$)). 兩個可微函數 f 和 g 的乘積仍然可微。 乘積 fg 的導函數是 f 和 g' 的乘積再加上 g 和 f' 的乘積。

$$\frac{\mathrm{d}}{\mathrm{d}x}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

 \odot 設 f, g, h 爲可微分的 x 函數,則

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[f(x)g(x)h(x)\right] = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$$

 $(f_1 f_2 f_3 \cdots f_n)' = f_1' f_2 \cdots f_{n-1} f_n + f_1 f_2' \cdots f_{n-1} f_n + \cdots + f_1 f_2 \cdots f_{n-1}' f_n + f_1 f_2 \cdots f_{n-1} f_n'$

2.3.2 商的規則

Theorem 2.8 (商法則 (The Quotient Rule)). 兩個可微函數 f 和 g 的商 f/g 在所有的 x (只要 $g(x) \neq 0$) 都可微分,f/g 的導函數公式如下:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0$$

CHAPTER 2. 微分

2.3.3 三角函數的導函數

Theorem 2.9 (三角函數的導數 (Derivatives of trigonometric functions)).

5

$$\frac{d}{dx} [\tan x] = \sec^2 x \qquad \qquad \frac{d}{dx} [\cot x] = -\csc^2 x$$

$$\frac{d}{dx} [\sec x] = \sec x \tan x \qquad \frac{d}{dx} [\csc x] = -\csc x \cot x$$

2.3.4 高階導函數

2.4 連鎖規則

2.4.1 連鎖規則

Theorem 2.10 (連鎖律 (The Chain Rule)). 假設 y=f(u) 是 u 的可微函數,u=g(x) 是 x 的可微函數,則 y=f(g(x)) 也是 x 的可微函數,並且有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$$

亦即

$$\frac{\mathrm{d}}{\mathrm{d}x} [f(g(x))] = f'(g(x))g'(x)$$

2.4.2 廣義指數規則

Theorem 2.11 (廣義幂法則 (The General Power Rule)). 如果 u 是 x 的可微函數,n 是有理數,並且 $y=[u(x)]^n$,則

$$\frac{\mathrm{d}y}{\mathrm{d}x} = n[u(x)]^{n-1} \frac{\mathrm{d}u}{\mathrm{d}x}$$

亦即

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[u^n\right] = nu^{n-1}u'$$

2.4.3 化簡導數

2.4.4 三角函數的連鎖規則

oxdot 下面是六個三角函數和 u(x) 的合成函數,以連鎖規則求出的導函數。

$$\frac{d}{dx} [\sin u] = (\cos u)u'$$

$$\frac{d}{dx} [\tan u] = (\sec^2 u)u'$$

$$\frac{d}{dx} [\sec u] = (\sec u \tan u)u'$$

$$\frac{d}{dx} [\csc u] = -(\csc^2 u)u'$$

$$\frac{d}{dx} [\csc u] = -(\csc u \cot u)u'$$

2.5. 隱微分法 6

2.5 隱微分法

- 2.5.1 隱函數和顯函數
- 2.5.2 隱微分法

隱微分法指導原則

- (a) 將 x, y 的關係式(方程式)左右兩邊同時對 x 微分。
- (b) 將含有 $\mathrm{d}y/\mathrm{d}x$ 的所有項都移到式子左邊,而把其他項都移到式子右邊。
- (c) 左邊提出 dy/dx。
- (d) 把式子左邊不含 $\mathrm{d}y/\mathrm{d}x$ 的項除到右邊,解出 $\mathrm{d}y/\mathrm{d}x$ 。
- 2.6 相關變率
- 2.6.1 求相關變率
- 2.6.2 以相關變率解題

解相關變率問題導引 (Guidelines for solving related-rate problems)

- (a) 先確定已知的量和待決定的量,將這些量一一標出。
- (b) 將這些量之間的關係以方程式表出。
- (c) 利用連鎖規則,以隱微分法將方程式的兩邊同時對 t 微分。
- (d) 以已知變量的值和已知相關的變率代入步驟 3 的結果,解出所求變率。

INDEX

INDEX

algebraic function(s) 代數函數	Simple Power Rule 簡單的幂法則, 3, 5
derivatives of $\mathbf{\cepsilon}$ 數, 5	Sum Rule 和法則 , 4, 5
alternative form 另一型式	derivative 導數
of the derivative 導數 , 2	Constant Rule 常數法則, 3
	Difference Rule 差法則, 4, 5
Chain Rule 連鎖律, 5	differentiability 可微分
and trigonometric functions 三角函數, 5	implies continuity 隱含連續, 2
Constant 常數	differentiation rules 微分法則
Rule 法則, 3	chain 連鎖, 5
constant 常数 	chain 鏈鎖 , 5
Multiple Rule 乘積法則, 3, 5	constant multiple 常數乘積, 3
rule 法則, 5	constant multiple 常數倍, 5
continuity 連續	constant 常數, $3, 5$
differentiability implies 可微分隱含, 2 cosecant function 餘割函數	cosecant function 餘割函數, 5
derivative of 導數, 5	cosine function 餘弦函數, 4, 5
cosine function 餘弦函數	cotangent function 餘切函數, 5
derivative of 導數, 5	difference $ 差, 4, 5 $
cotangent function 餘切函數	general power 廣義幂, 5
derivative of 導數, 5	general 廣義, 5
delivative of \$20, 6	power $\$, 3, 5$
derivative(s) 導數	product 6 , 4, 5
alternative form 另一型式, 2	quotient $\mathbf{\tilde{a}}$, 4, 5
Chain Rule 連鎖律, 5	secant function 正割函數, 5
Constant Multiple Rule 常數乘積法則, 3,	Simple Power 簡單幕, 3, 5
5	sine function 正弦函數, $4, 5$
Constant Rule 常數法則, 5	$\operatorname{sum} $
Difference Rule 差法則, 4, 5	summary of 總結, 5
General Power Rule 廣義幂法則, 5	tangent function 正切函數, 5
of a function 函數, 2	differentiation 微分
of algebraic functions 代數函數, 5	implicit 隱
of cosecant function 餘割函數, 5	guidelines for 導引, 6
of cosine function 餘弦函數, 4, 5	
of cotangent function 餘切函數, 5	function(s) 函數
of secant function 正割函數, 5	derivative of
of sine function 正弦函數, 4, 5	1 1° ம் ம் ம் ¥ கொல்கி உ
of tangent function 正切函數, 5	general differentiation rules 廣義微分法則, 5
of trigonometric functions 三角函數, 5	General Power Rule 廣義幂法則
Power Rule 冪法則, 3, 5	for differentiation 微分, 5
Product Rule 積法則, 4, 5	guidelines 導引
Quotient Rule 商法則 , 4, 5	for implicit differentiation 隱函數微分, 6

INDEX 8

for solving related-rate problems 解相關 正切函數 tangent function 變率問題,6 **導數** derivative of, 5 正弦函數 sine function implicit differentiation 隱函數微分 **導數** derivative of, 4, 5 guidelines for 導引, 6 正割函數 secant function 導數 derivative of, 5 line(s) 直線 代數函數 algebraic function(s) tangent 切線, 2 **導數** derivatives of, 5 with slope m 斜率 m, 2 函數 function(s) power rule 幂法則 **導數** derivative of, 2 和 sum(s) for differentiation 微分, 3, 5 Product Rule 積法則, 4, 5 法則 rule, 4, 5 和法則 Sum Rule, 4 Quotient Rule **商法則**, 4, 5 法則 Rule 常數 Constant, 3 related-rate problems, guidelines for solving 相 直線 line(s) 關變率問題,解導引,6 切線 tangent, 2 Rule 法則 斜率 m with slope m, 2Constant 常數, 3 相關變率問題,解導引 related-rate problems, secant function 正割函數 guidelines for solving, 6 derivative of 導數. 5 差法則 Difference Rule, 4, 5 Simple Power Rule 簡單幂法則, 3, 5 商法則 Quotient Rule, 4, 5 sine function 正弦函數 斜率 slope(s) derivative of 導數, 4, 5 切線 of a tangent line, 2 slope(s) 斜率 常數 Constant of a tangent line 切線, 2 法則 Rule, 3 Sum Rule 和法則, 4 常數 constant sum(s)和 法則 rule, 5 rule 法則, 4, 5 乘積法則 Multiple Rule, 3, 5 summary 總結 連鎖律 Chain Rule, 5 of differentiation rules 微分法則, 5 三角函數 and trigonometric functions, 5 連續 continuity tangent function 正切函數 可微分隱含 differentiability implies, 2 derivative of 導數, 5 微分 differentiation tangent line(s) 切線, 2 隱 implicit slope of 斜率, 2 導引 guidelines for, 6 with slope m 斜率 m, 2微分法則 differentiation rules trigonometric function(s) 三角函數 正切函數 tangent function, 5 and the Chain Rule 連鎖律, 5 正弦函數 sine function, 4, 5 derivative of **導數**, 5 正割函數 secant function, 5 和 sum, 4, 5 切線 tangent line(s), 2 差 difference, 4, 5 斜率 m with slope m, 2商 quotient, 4, 5 斜率 slope of, 2 常數 constant, 3, 5 三角函數 trigonometric function(s) 連鎖律 and the Chain Rule, 5 常數乘積 constant multiple, 3 **導數** derivative of, 5 常數倍 constant multiple, 5 連鎖 chain, 5 可微分 differentiability 隱含連續 implies continuity, 2 廣義 general, 5 另一型式 alternative form 廣義幂 general power, 5 導數 of the derivative, 2 餘切函數 cotangent function, 5

餘弦函數 cosine function, 4, 5

餘割函數 cosecant function, 5

幕 power, 3, 5

積 product, 4, 5

總結 summary of, 5

簡單幂 Simple Power, 3, 5

鏈鎖 chain, 5

廣義微分法則 general differentiation rules, 5

廣義幂法則 General Power Rule

微分 for differentiation, 5

餘切函數 cotangent function

導數 derivative of, 5

餘弦函數 cosine function

導數 derivative of, 5

餘割函數 cosecant function

導數 derivative of, 5

幂法則 power rule

微分 for differentiation, 3, 5

導引 guidelines

解相關變率問題 for solving related-rate problems, 6

隱函數微分 for implicit differentiation, 6

導數 derivative

常數法則 Constant Rule, 3

導數 derivative(s)

三角函數 of trigonometric functions, 5

另一型式 alternative form, 2

正切函數 of tangent function, 5

正弦函數 of sine function, 4, 5

正割函數 of secant function, 5

代數函數 of algebraic functions, 5

函數 of a function, 2

和法則 Sum Rule, 4, 5

差法則 Difference Rule, 4, 5

商法則 Quotient Rule, 4, 5

常數法則 Constant Rule, 5

常數乘積法則 Constant Multiple Rule, 3,

5

連鎖律 Chain Rule, 5

廣義幂法則 General Power Rule, 5

餘切函數 of cotangent function, 5

餘弦函數 of cosine function, 4, 5

餘割函數 of cosecant function, 5

幂法則 Power Rule, 3, 5

積法則 Product Rule, 4, 5

簡單的幂法則 Simple Power Rule, 3, 5

積法則 Product Rule, 4, 5

隱函數微分 implicit differentiation

導引 guidelines for, 6

總結 summary

微分法則 of differentiation rules, 5 簡單幂法則 Simple Power Rule, 3, 5