

Родина Т.В., Трифанова Е.С., Бойцев А.А.

ТИПОВОЙ РАСЧЕТ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

для направления "Прикладная математика и информатика"

2 модуль

Санкт-Петербург 2016 Родина Т.В., Трифанова Е.С., Бойцев А.А. Типовой расчет по математическому анализу для направления "Прикладная математика и информатика". 2 модуль. Учебно-методическое пособие. – СПб: Университет ИТМО, 2016. – 53 с.

Предлагаемое пособие предназначено для студентов бакалавриата первого курса по направлению подготовки 01.03.02 "Прикладная математика и информатика".

Рекомендовано к печати Ученым советом естественнонаучного факультета, 27 .04 .2016, протокол №2.

Университет ИТМО – ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научнообразовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

© Университет ИТМО, 2016

© Родина Т.В., Трифанова Е.С., Бойцев А.А., 2016

Содержание

ЧАСТЬ 1. Методические указания	4
Задание 1. Элементарные функции и их графики	4
Задание 2. Определение предела функции по Коши	8
Задание 3. Определение предела функции по Гейне	9
Задание 4. Вычисление пределов	10
Задание 5. Исследование функций и построение графиков	15
Задание 6. Задача на наибольшее или наименьшее значение	23
Задание 7. Формула Тейлора	25
Задание 8. Равномерная непрерывность	28
ЧАСТЬ 2. Индивидуальные задания	31
Задание 1. Элементарные функции и их графики	31
Задание 2. Определение предела функции по Коши	33
Задание 3. Определение предела функции по Гейне	34
Задание 4. Вычисление пределов	35
Задание 5. Исследование функций и построение графиков	41
Задание 6. Задача на наибольшее или наименьшее значение	44
Задание 7. Формула Тейлора	47
Задание 8. Равномерная непрерывность	50
Список литературы	52

ЧАСТЬ 1. Методические указания

В данном пособии прелагаются методические указания и задания типовых расчетов для студентов первого курса, обучающихся по направлению "Прикладная математика и информатика".

Перед решением каждого задания студенту рекомендуется изучить соответствующие разделы литературы [1], [2]. В конце каждого задания приведены вопросы для самоконтроля, на которые студент должен знать ответ при защите типовых расчетов.

Задание 1. Элементарные функции и их графики

В первом задании нужно, используя только элементарные методы, построить эскизы графиков функций. Рекомендуется изучить [2: пп. 2.1-2.4].

Пример 1. Построить эскиз графика функции $y = 1 - 2\sin\left(2x - \frac{\pi}{3}\right)$. Указать область определения и область значений функции.

© Введем новые координаты (x',y'): y'=y-1, $x'=x-\frac{\pi}{6}$. Тогда зависимость $y=1-2\sin\left(2x-\frac{\pi}{3}\right)$ в новых координатах будет иметь вид $y'=-2\sin\left(2x'\right)$.

Теперь на одной координатной плоскости строим системы координат XOY и X'O'Y', и относительно системы X'O'Y' строим график функции $y'=\sin x'$.

Сжимая его в два раза относительно оси O'Y', получим график функции $y'=\sin 2x'.$

И, наконец, увеличивая каждую ординату y' в два раза и отображая полученный график относительно оси O'X', приходим к графику функции $y' = -2\sin{(2x')}$.

Функция определена на всей вещественной оси, область ее значений – отрезок [-1,3]. ullet

Пример 2. Построить эскиз графика функции $y = \left| \frac{2x}{|x+1|-1} \right|$. Указать область определения и область значений функции.

© Построим сначала график функции $y = \frac{2x}{|x+1|-1}$. Для этого уберем модуль в данном выражении:

$$\frac{2x}{|x+1|-1} = \begin{cases} 2, & x \geqslant -1; \\ \frac{2x}{-x-2}, & x < -1. \end{cases}$$

Прямая x=-1 разделит координатную плоскость на две полуплоскости. На правой полуплоскости построим прямую y=2, на левой – гиперболу $y=\frac{2x}{-x-2}=-2+\frac{4}{x+2}$. Для построения гиперболы введем новую систему координат: $y'=y+2, \ x'=x+2$. В новых координатах функциональная зависимость примет вид: $y'=\frac{4}{x'}$.

На старой координатной плоскости строим сначала новую систему координат и затем относительно новой системы – гиперболу $y'=\frac{4}{x'}$. Следует отметить, что, так как $\frac{2x}{-x-2}\Big|_{x=-1}=2$, то линия, построенная в правой полуплоскости, соединяется с линией, построенной в левой

Мы построили график функции $y=\dfrac{2x}{|x+1|-1}$. Для построения графика искомой функции нужно часть построенной линии, находящуюся под осью OX, отобразить симметрично относительно этой оси.

Функция определена для всех вещественных чисел, кроме числа x=-2. Множеством ее значений будет луч $[2,+\infty)$. lacktriangle

Пример 3. Построить эскиз графика функции $y=e^{1/\left(x^2-1\right)}$. Указать область определения и область значений функции.

© График этой функции построим, изучив предварительно ее свойства.

Функция определена для любого вещественного числа, кроме x=-1 и x=1.

Функция четна, поэтому ее поведение можно изучать только для $x\geqslant 0$. Рассмотрим монотонность функции на этом луче. На промежутке [0,1) функция x^2-1 возрастает от -1 до 0 (оставаясь отрицательной), следовательно, дробь $\frac{1}{x^2-1}$ убывает от -1 до $-\infty$. Тогда данная функция $e^{1/\left(x^2-1\right)}$ также убывает от e^{-1} до нуля.

Аналогично, на промежутке $(1,+\infty)$ функция x^2-1 возрастает от 0 до $+\infty$, поэтому дробь $\frac{1}{x^2-1}$ убывает от $+\infty$ до 0 и данная функция $e^{1/\left(x^2-1\right)}$ убывает от $+\infty$ до 1.

Строим график функции $y = \frac{1}{x^2 - 1}$ (пунктирная линия), а затем график

 $y = e^{1/(x^2-1)}$ (сплошная линия).

Множество значений функции: $\left(0,e^{-1}\right]\cup(1,+\infty)$. ullet

Задание 2. Определение предела функции по Коши

В этом пункте требуется, используя определение предела функции, доказать, что данное число является пределом функции. Перед выполнением задания рекомендуется изучить [1: гл. 3 п. 2.1; 2: п. 4.1].

Пример. Доказать, что
$$\lim_{x\to 1/2} \frac{6x^2 + 7x - 5}{2x - 1} = \frac{13}{2}$$
.

© Эту задачу решим, используя определение предела функции по Коши.

Чтобы доказать, что число A является пределом функции f(x) при $x \to a$, нужно показать, что, взяв произвольное положительное число ε , можно найти $\delta > 0$, такое что для всех значений x, удовлетворяющих неравенству $0 < |x-a| < \delta$, соответствующие значения функции будут удовлетворять неравенству $|f(x)-A| < \varepsilon$.

Возьмем $\varepsilon > 0$ и попытаемся найти решения неравенства

$$\left| \frac{6x^2 + 7x - 5}{2x - 1} - \frac{13}{2} \right| < \varepsilon.$$

При $x \neq \frac{1}{2}$ преобразуем дробь:

$$\frac{6x^2 + 7x - 5}{2x - 1} = \frac{(2x - 1)(3x + 5)}{2x - 1} = 3x + 5,$$

поэтому наше неравенство равносильно неравенству $\left|3x+5-\frac{13}{2}\right|<\varepsilon$ или $\left|x-\frac{1}{2}\right|<\frac{\varepsilon}{3}$. Отсюда следует, что, если положить $\delta=\frac{\varepsilon}{3}$, то из неравенства $0<\left|x-\frac{1}{2}\right|<\frac{\varepsilon}{3}$ следует неравенство $\left|\frac{6x^2+7x-5}{2x-1}-\frac{13}{2}\right|<\varepsilon$, что означает, что число $\frac{13}{2}$ является пределом функции $f\left(x\right)=\frac{6x^2+7x-5}{2x-1}$ при $x\to\frac{1}{2}$.

Задание 3. Определение предела функции по Гейне

В этом задании требуется доказать, что функция не имеет предела. Рекомендуется ознакомиться с материалами [1: гл. 3 п. 2.2; 2: п. 4.1].

Пример. Доказать, что $\lim_{x\to 1} \left(1-\cos\frac{\pi}{x-1}\right)$ не существует.

© Для доказательства того, что предела функции не существует, воспользуемся определением по Гейне, т.е. определением на языке последовательностей.

Если найти две последовательности $\{x_n'\}$ и $\{x_n''\}$, сходящиеся к числу 1 при $n \to \infty$ и такие, что $\lim_{n \to \infty} f\left(x_n'\right) \neq \lim_{n \to \infty} f\left(x_n''\right)$, то это будет означать, что $\lim_{x \to 1} f\left(x\right)$ не существует.

Возьмем последовательности $x_n' = 1 + \frac{2}{2n+1}$ и $x_n'' = 1 + \frac{1}{2n}$. Тогда

$$1 - \cos\frac{\pi}{x_n' - 1} = 1 - \cos\frac{\pi(2n+1)}{2} = 1,$$

следовательно,

$$\lim_{n \to \infty} \left(1 - \cos \frac{\pi}{x_n' - 1} \right) = 1$$

И

$$1 - \cos\frac{\pi}{x_n'' - 1} = 1 - \cos 2\pi n = 0,$$

следовательно,

$$\lim_{n \to \infty} \left(1 - \cos \frac{\pi}{x_n'' - 1} \right) = 0.$$

Так как эти пределы не совпадают, то общего предела $\lim_{x\to 1}\left(1-\cos\frac{\pi}{x-1}\right)$ не существует. $m{\Theta}$

Задание 4. Вычисление пределов

В этом пункте нужно вычислить 8 пределов функций, используя арифметические свойства пределов, замечательные пределы, а также свойства эквивалентных бесконечно малых.

Прежде чем приступать к выполнению заданий, рекомендуется изучить [2: пп. 4.3 – 4.5]. Приведем пример решения подобного варианта.

Пример 1. Вычислить
$$\lim_{x\to 2} \frac{\left(2x^2-3x-2\right)^2}{x^3-3x^2+4}$$
.

©Если подставить значение x=2 в дробь, предел которой мы вычисляем, то получим, что числитель данной дроби равен нулю, и ее знаменатель тоже равен нулю, т.е. мы имеем неопределенность вида $\frac{0}{0}$. Многочлены, стоящие в числителе и знаменателе дроби, имеют корень x=2. Разложим их на множители:

$$2x^{2} - 3x - 2 = (x - 2)(2x + 1),$$
$$x^{3} - 3x^{2} + 4 = (x - 2)^{2}(x + 1).$$

Отсюда

$$\lim_{x \to 2} \frac{\left(2x^2 - 3x - 2\right)^2}{x^3 - 3x^2 + 4} = \lim_{x \to 2} \frac{(x - 2)^2 (2x + 1)^2}{(x - 2)^2 (x + 1)} = \lim_{x \to 2} \frac{(2x + 1)^2}{(x + 1)} = \frac{25}{3}.$$

Пример 2.
$$\lim_{x\to 3} \frac{\sqrt{4x-3}-\sqrt{2x+3}}{\sqrt[5]{x^3-27}}$$
.

© Данное выражение в точке x=3 является неопределенностью вида $\frac{0}{0}$. Умножим числитель и знаменатель данной дроби на выражение, сопряженное с числителем, т.е. на сумму $\sqrt{4x-3}+\sqrt{2x+3}$. Получим

$$\lim_{x \to 3} \frac{\sqrt{4x - 3} - \sqrt{2x + 3}}{\sqrt[5]{x^3 - 27}} = \lim_{x \to 3} \frac{(4x - 3) - (2x + 3)}{\sqrt[5]{x^3 - 27} \left(\sqrt{4x - 3} + \sqrt{2x + 3}\right)} = \lim_{x \to 3} \frac{2(x - 3)}{\sqrt[5]{x - 3} \sqrt[5]{x^2 + 3x + 9} \left(\sqrt{4x - 3} + \sqrt{2x + 3}\right)} = \lim_{x \to 3} \frac{2\sqrt[5]{(x - 3)^4}}{\sqrt[5]{x^2 + 3x + 9} \left(\sqrt{4x - 3} + \sqrt{2x + 3}\right)} = 0.$$

Пример 3. Вычислить $\lim_{x\to 32} \frac{\sqrt[5]{x}-2}{\log_2 x - 5}$.

© Выражение, предел которого мы ищем, в точке x=32 является неопределенностью вида $\frac{0}{0}.$

Способ 1. Сделаем подстановку $x=t^5$. Тогда

$$\lim_{x \to 32} \frac{\sqrt[5]{x} - 2}{\log_2 x - 5} = \lim_{t \to 2} \frac{t - 2}{5(\log_2 t - 1)} = \lim_{t \to 2} \frac{t - 2}{5(\log_2 t - \log_2 2)} = \lim_{t \to 2} \frac{t - 2}{5\log_2 \frac{t}{2}} = \lim_{t \to 2} \frac{t - 2}{5\log_2 \left(1 + \frac{t - 2}{2}\right)} = \lim_{t \to 2} \frac{t - 2}{5 \cdot \frac{t - 2}{2\ln 2}} = \frac{2\ln 2}{5}.$$

 ${\it Cnocof}\ 2$. Сделаем подстановку t=x-32 или x=t+32. Тогда

$$\lim_{x \to 32} \frac{\sqrt[5]{x} - 2}{\log_2 x - 5} = \lim_{t \to 0} \frac{\sqrt[5]{t + 32} - 2}{\log_2 (t + 32) - 5 \log_2 2} = \lim_{t \to 0} \frac{2\left(\left(1 + \frac{t}{32}\right)^{\frac{1}{5}} - 1\right)}{\log_2 \left(1 + \frac{t}{32}\right)} = \lim_{t \to 0} \frac{2 \cdot \frac{1}{5} \cdot \frac{t}{32}}{\frac{t}{32 \ln 2}} = \frac{2 \ln 2}{5}.$$

При вычислениях мы воспользовались заменой некоторых функций на эквивалентные при $t \to 0$: $\left(1+\frac{t}{32}\right)^{1/5}-1 \sim \frac{1}{5} \cdot \frac{t}{32}, \ \log_2\left(1+\frac{t}{32}\right) \sim \frac{t}{32 \ln 2}.$

8

Пример 4. Вычислить $\lim_{x\to 1} \frac{e^{\sin(\pi x/2)} - e}{\sqrt[3]{\cos 2\pi x} - 1}$.

© Отметим, что данное выражение в точке x=1 является неопределенностью вида $\frac{0}{0}$. Сначала сделаем замену x=t+1. Тогда

$$\lim_{x \to 1} \frac{e^{\sin(\pi x/2)} - e}{\sqrt[3]{\cos 2\pi x} - 1} = \lim_{t \to 0} \frac{e^{\sin(\frac{\pi t}{2} + \frac{\pi}{2})} - e}{\sqrt[3]{\cos(2\pi + 2\pi t)} - 1} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos 2\pi t} - 1} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos 2\pi t} - 1} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos 2\pi t} - 1} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos 2\pi t} - 1} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos 2\pi t} - 1} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(2\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)} - e} = \lim_{t \to 0} \frac{e^{\cos(\pi t/2)} - e}{\sqrt[3]{\cos(\pi t/2)$$

$$= \lim_{t \to 0} \frac{e\left(e^{\cos(\pi t/2) - 1} - 1\right)}{\left(1 + (\cos 2\pi t - 1)\right)^{1/3} - 1} = \lim_{t \to 0} \frac{e\left(\cos(\pi t/2) - 1\right)}{\frac{1}{3} \cdot (\cos 2\pi t - 1)} = \lim_{t \to 0} \frac{3e\left(-\frac{(\pi t)^2}{4 \cdot 2}\right)}{-\frac{(2\pi t)^2}{2}} = \frac{3e}{16}.$$

При вычислении мы воспользовались соотнощениями, справедливыми при $t \to 0$:

$$e^{\cos\frac{\pi t}{2} - 1} - 1 \sim \cos\frac{\pi t}{2} - 1 \sim -\frac{1}{2} \left(\frac{\pi t}{2}\right)^2,$$

$$(1 + (\cos 2\pi t - 1))^{1/3} - 1 \sim \frac{1}{3} \cdot (\cos 2\pi t - 1) \sim -\frac{1}{3} \cdot \frac{(2\pi t)^2}{2}.$$

Пример 5. Вычислить $\lim_{x\to 1} (4+3\cos\pi x)^{\frac{1}{4x^2+2-x^3-5x}}$.

© При $x \to 1$ основание степени $4 + 3\cos(\pi x)$ стремится к единице, а показатель является бесконечно большой величиной, поэтому мы говорим, что данное выражение является неопределенностью вида 1^{∞} .

Сначала сделаем подстановку x = t + 1. Получим

$$(4+3\cos\pi x)^{\frac{1}{4x^2+2-x^3-5x}} = (4-3\cos\pi t)^{\frac{1}{t^2-t^3}}$$

Дальше можно действовать одним из двух способов.

Способ 1. Преобразуем данное выражение так, чтобы получить функцию $(1+\alpha)^{1/\alpha}$, которая стремится к числу e при условии $\alpha \to 0$:

$$(4 - 3\cos\pi t)^{\frac{1}{t^2 - t^3}} = \left[(1 + 3(1 - \cos\pi t))^{\frac{1}{3(1 - \cos\pi t)}} \right]^{\frac{3(1 - \cos\pi t)}{t^2 - t^3}}.$$

Тогда

$$\lim_{x \to 1} (4 + 3\cos \pi x)^{\frac{1}{4x^2 + 2 - x^3 - 5x}} = \lim_{t \to 0} (4 - 3\cos \pi t)^{\frac{1}{t^2 - t^3}} =$$

$$= \left[\lim_{t \to 0} (1 + 3(1 - \cos \pi t))^{\frac{1}{3(1 - \cos \pi t)}} \right]^{\lim_{t \to 0} \frac{3(1 - \cos \pi t)}{t^2 - t^3}} = e^{\lim_{t \to 0} \frac{3(\pi t)^2}{2t^2}} = e^{3\pi^2/2}.$$

При вычислении были использованы эквиваленты $1-\cos \pi t \sim \frac{(\pi t)^2}{2}$ и $t^2-t^3\sim t^2$ при $t\to 0$.

Способ 2. Используя основное логарифмическое тождество, получим

$$(4 - 3\cos\pi t)^{\frac{1}{t^2 - t^3}} = e^{\frac{\ln(4 - 3\cos\pi t)}{t^2 - t^3}}.$$

Тогда

$$\lim_{t \to 0} (4 - 3\cos \pi t)^{\frac{1}{t^2 - t^3}} = e^{\lim_{t \to 0} \frac{\ln(4 - 3\cos \pi t)}{t^2 - t^3}}.$$

Вычислим предел в последнем выражении:

$$\lim_{t \to 0} \frac{\ln (4 - 3\cos \pi t)}{t^2 - t^3} = \lim_{t \to 0} \frac{\ln (1 + 3(1 - \cos \pi t))}{t^2 - t^3} = \lim_{t \to 0} \frac{3(1 - \cos \pi t)}{t^2} = \lim_{t \to 0} \frac{3(\pi t)^2}{2t^2} = \frac{3\pi^2}{2}.$$

Таким образом, ответ $e^{3\pi^2/2}$. ullet

Пример 6. Вычислить $\lim_{x \to 1 \pm 0} \left(\operatorname{tg} \frac{\pi x}{3} \right)^{\operatorname{tg} \frac{\pi x}{2}}$.

 \odot Сначала исследуем поведение данного выражения в окрестности предельной точки. В точке x=1 тангенс непрерывен, поэтому

$$\lim_{x \to 1} \lg \frac{\pi x}{3} = \lg \frac{\pi}{3} = \sqrt{3} > 1.$$

Показатель степени в точке x=1 не существует, причем

$$\lim_{x\to 1-0}\operatorname{tg}\frac{\pi x}{2}=+\infty\quad \text{и}\quad \lim_{x\to 1+0}\operatorname{tg}\frac{\pi x}{2}=-\infty.$$

Отсюда

$$\lim_{x\to 1-0} \left(\operatorname{tg}\frac{\pi x}{3}\right)^{\operatorname{tg}\frac{\pi x}{2}} = +\infty \quad \text{и} \quad \lim_{x\to 1+0} \left(\operatorname{tg}\frac{\pi x}{3}\right)^{\operatorname{tg}\frac{\pi x}{2}} = 0.$$

Пример 7. Вычислить $\lim_{x \to \pi} \left(\sin \frac{1}{x - \pi} \operatorname{arcctg} \frac{1}{(x - \pi)^2} + \frac{\cos 2x}{\operatorname{tg} \frac{3x}{4}} \right)$.

© Рассмотрим каждое слагаемое в отдельности. В первом слагаемом при $x \to \pi$ функция $\sin \frac{1}{x-\pi}$ предела не имеет, но является ограниченной, функция $\arctan \frac{1}{(x-\pi)^2}$ стремится к нулю. Значит, их произведение стремится к нулю, как произведение бесконечно малой на ограниченную.

Второе слагаемое $\frac{\cos 2x}{\operatorname{tg} \frac{3x}{4}}$ непрерывно в точке $x=\pi$, поэтому

$$\lim_{x \to \pi} \left(\sin \frac{1}{x - \pi} \operatorname{arcctg} \frac{1}{(x - \pi)^2} + \frac{\cos 2x}{\operatorname{tg} \frac{3x}{4}} \right) = \lim_{x \to \pi} \frac{\cos 2x}{\operatorname{tg} \frac{3x}{4}} = \frac{\cos 2\pi}{\operatorname{tg} \frac{3\pi}{4}} = -1.$$

Пример 8. Вычислить $\lim_{x \to +\infty} \frac{\ln \left(3^{2x} - 2 \cdot 3^x + \cos x\right)}{\ln \left(2^{3x} + 5 \cdot 2^{2x} - \sin x\right)}.$

 \odot Данное выражение является неопределенностью вида $\frac{\infty}{\infty}$. Преобразуем его следующим образом:

$$\frac{\ln\left(3^{2x} - 2 \cdot 3^x + \cos x\right)}{\ln\left(2^{3x} + 5 \cdot 2^{2x} - \sin x\right)} = \frac{\ln\left[3^{2x}\left(1 - \frac{2}{3^x} + \frac{\cos x}{3^{2x}}\right)\right]}{\ln\left[2^{3x}\left(1 + \frac{5}{2^x} - \frac{\sin x}{2^{3x}}\right)\right]} =$$

$$= \frac{2x\ln 3 + \ln\left(1 - \frac{2}{3^x} + \frac{\cos x}{3^{2x}}\right)}{3x\ln 2 + \ln\left(1 + \frac{5}{2^x} - \frac{\sin x}{2^{3x}}\right)}.$$

Тогда

$$\lim_{x \to +\infty} \frac{\ln\left(3^{2x} - 2 \cdot 3^x + \cos x\right)}{\ln\left(2^{3x} + 5 \cdot 2^{2x} - \sin x\right)} = \lim_{x \to +\infty} \frac{2x \ln 3 + \ln\left(1 - \frac{2}{3^x} + \frac{\cos x}{3^{2x}}\right)}{3x \ln 2 + \ln\left(1 + \frac{5}{2^x} - \frac{\sin x}{2^{3x}}\right)} = \frac{2\ln 3}{3\ln 2} = \frac{\ln 9}{\ln 8}.$$

Здесь мы пользовались тем, что $\frac{2}{3^x}$ и $\frac{5}{2^x}$ – бесконечно малые при $x \to +\infty$, и $\frac{\cos x}{3^{2x}}$ и $\frac{\sin x}{2^{3x}}$ – бесконечно малые при $x \to +\infty$, как произведения бесконечно малых на ограниченные. \blacksquare

Пример 9. Вычислить
$$\lim_{x \to -\infty} \left(\sqrt{\frac{x^3 - 2x^2}{x - 3}} + x \right)$$
.

 \odot Данное выражение является неопределенностью вида $\infty - \infty$. Учитывая, что нас интересуют x < 0, выполним простейшие преобразования:

$$\sqrt{\frac{x^3 - 2x^2}{x - 3}} + x = |x| \sqrt{\frac{x - 2}{x - 3}} + x = x \left(1 - \sqrt{\frac{x - 2}{x - 3}} \right).$$

Тогда

$$\lim_{x \to -\infty} \left(\sqrt{\frac{x^3 - 2x^2}{x - 3}} + x \right) = \lim_{x \to -\infty} x \left(1 - \sqrt{\frac{x - 2}{x - 3}} \right) = \lim_{x \to -\infty} \frac{x \left(1 - \frac{x - 2}{x - 3} \right)}{1 + \sqrt{\frac{x - 2}{x - 3}}} = \lim_{x \to -\infty} \frac{-x}{x - 3} : \left(1 + \sqrt{\frac{x - 2}{x - 3}} \right).$$
Так как $\lim_{x \to -\infty} \frac{-x}{x - 3} = -1$ и $\lim_{x \to -\infty} \left(1 + \sqrt{\frac{x - 2}{x - 3}} \right) = 2$, то $\lim_{x \to -\infty} \left(\sqrt{\frac{x^3 - 2x^2}{x - 3}} + x \right) = -\frac{1}{2}$.

Задание 5. Исследование функций и построение графиков

В этом пункте предлагается исследовать с помощью производной и построить графики трех функций. Перед выполнением задания рекомендуется изучить [1: гл. 4, §7] и [2: §6].

Для кривой, заданной параметрически, исследование направления выпуклости проводить не требуется.

Пример 1. Построить график кривой, заданной параметрически:

$$x = \frac{t^2 + 1}{t}, \qquad y = \frac{t^2 + 3}{t - 1}.$$

 \odot Заметим, что $|x| = \left| t + \frac{1}{t} \right| \geqslant 2$. Это означает, что кривая лежит в полуплоскостях $x \leqslant -2$ и $x \geqslant 2$.

Найдем сначала асимптоты кривой. Будем искать наклонные асимптоты в виде y=kx+b. Переменная x стремится к бесконечности, когда $t\to\pm\infty$ и когда $t\to0$.

При $t \to \pm \infty$ переменная y тоже будет стремиться к бесконечности, при этом

$$k = \lim_{t \to \infty} \frac{y(t)}{x(t)} = \lim_{t \to \infty} \frac{\left(t^2 + 3\right)t}{\left(t - 1\right)\left(t^2 + 1\right)} = 1$$

И

$$b = \lim_{t \to \infty} (y(t) - kx(t)) = \lim_{t \to \infty} \left(\frac{t^2 + 3}{t - 1} - \frac{t^2 + 1}{t} \right) = \lim_{t \to \infty} \frac{t^2 + 2t + 1}{t(t - 1)} = 1,$$

поэтому прямая y = x + 1 будет наклонной асимптотой кривой.

При $t \to 0$ получим $\lim_{t \to 0} y(t) = -3$, что означает, что прямая y = -3 является горизонтальной асимптотой кривой.

Наконец, при $t \to 1$ переменная y будет стремиться к бесконечности, при том, что $x \to +2$. Это означает, что прямая x=2 является вертикальной, правосторонней асимптотой кривой.

Теперь изучим характеры зависимостей $x\left(t\right)$ и $y\left(t\right)$. Для этого найдем производные этих функций:

$$x'(t) = \frac{t^2 - 1}{t^2} = \frac{(t - 1)(t + 1)}{t^2},$$

$$y'(t) = \frac{t^2 - 2t - 3}{(t - 1)^2} = \frac{(t - 3)(t + 1)}{(t - 1)^2},$$

и с помощью знаков производных исследуем эти функции на монотонность при возрастании t.

Полученные данные соединим в таблицу:

t	x(t)	y(t)
$(-\infty, -1)$	возрастает от $-\infty$ до -2	возрастает от $-\infty$ до -2
(-1,0)	убывает от -2 до $-\infty$	убывает от -2 до -3
(0,1)	убывает от $+\infty$ до 2	убывает от -3 до $-\infty$
(1,3)	возрастает от 2 до $10/3$	убывает от $+\infty$ до 6
$(3,+\infty)$	возрастает от $10/3$ до $+\infty$	возрастает от 6 до $+\infty$

Следовательно, кривая состоит из трех веток – первая соответствует изменению параметра t от $-\infty$ до 0, вторая – от 0 до 1 и третья – от 1 до $+\infty$.

Для уточнения найдем производную от y по переменной x:

$$y'_x = \frac{y'_t}{x'_t} = \frac{(t-3)(t+1)t^2}{(t-1)^2(t^2-1)} = \frac{(t-3)t^2}{(t-1)^3}.$$

Полученное равенство справедливо при $t \neq -1$. При t = -1 этой производной не существует, но существует ее предел при $t \to -1$:

$$\lim_{t \to -1} y_x' = \lim_{t \to -1} \frac{(t-3)t^2}{(t-1)^3} = \frac{1}{2}.$$

Это значит, что прямая, проходящая через точку x(-1) = -2, y(-1) = -2 под углом, тангенс которого равен 1/2, является касательной к кривой.

Кроме того, из выражения для y_x' следует, что при t=3 кривая имеет гладкий экстремум, а именно минимум.

Теперь посмотрим, как расположены точки кривой по отношению к наклонной и горизонтальной асимптотам.

Найдем разность

$$y(t) - (-3) = \frac{t^2 + 3}{t - 1} + 3 = \frac{t^2 + 3t}{t - 1}.$$

На промежутке (-1,0), где кривая имеет асимптоту y=-3, эта разность положительна, значит, точки кривой лежат «выше» асимптоты.

Теперь найдем разность

$$y(t) - (x+1) = \frac{t^2+3}{t-1} - \frac{t^2+1}{t} - 1 = \frac{3t+1}{t(t-1)}.$$

0

Эта разность отрицательна при t<-1 и положительна при t>1. Таким образом, точки кривой при t<-1 будут лежать «ниже» асимптоты y=x+1, а при t>1 – «выше» ее.

Построим кривую. Сначала построим первую ветку кривой, которая соответствует изменению параметра t от $-\infty$ до 0. При этом при t=-1 кривая имеет точку возврата (-2,-2) и лежит в третьей четверти.

Строим следующую ветку, соответствующую изменению параметра от 0 до 1. Получаем ветвь кривой, лежащую в первой четверти.

И, наконец, достраивая третью ветку (в четвертой четверти), получаем всю кривую.

Пример 2. Исследовать функцию $y = \arcsin \frac{4(x-1)}{x^2 - 2x + 5}$ и построить ее график.

© Функция y(x) определена для тех значений аргумента x, для которых выполняется неравенство $\left|\frac{4(x-1)}{x^2-2x+5}\right|\leqslant 1$. Решая это неравенство, получим,

что $D(f) = \mathbb{R}$ (Заметим, что $x^2 - 2x + 5 > 0$ при любом x).

Очевидно, что функция не является ни четной, ни нечетной, а также не является периодичной.

Исследуем ее на монотонность и экстремумы. Для этого найдем производную:

$$y' = \frac{1}{\sqrt{1 - \left(\frac{4(x-1)}{x^2 - 2x + 5}\right)^2}} \cdot \frac{4(x^2 - 2x + 5) - 4(x-1)(2x-2)}{(x^2 - 2x + 5)^2} = \frac{-4(x-3)(x+1)}{|(x-3)(x+1)|(x^2 - 2x + 5)} = \begin{cases} \frac{-4}{x^2 - 2x + 5}, & x < -1, x > 3; \\ \frac{4}{x^2 - 2x + 5}, & -1 < x < 3. \end{cases}$$

Получаем две критические точки: x=-1 и x=3, причем в этих точках производная не существует, но функция определена и непрерывна.

Находим промежутки монотонности:

$$y' = -1 + 3 -$$

$$y = min + 3 -$$

$$x$$

Вычислим экстремальные значения функции: $y_{\min} = f(-1) = -\pi/2$ и $y_{\max} = f(3) = \pi/2$.

Так как функция имеет «острые» экстремумы, найдем правосторонние и левосторонние пределы производных в экстремальных точках. Они дадут нам углы наклона односторонних касательных к графику функции в экстремальных точках справа и слева.

$$\lim_{x \to -1-0} y' = \lim_{x \to -1-0} \frac{-4}{(x^2 - 2x + 5)} = -\frac{1}{2};$$

$$\lim_{x \to -1+0} y' = \lim_{x \to -1+0} \frac{4}{(x^2 - 2x + 5)} = \frac{1}{2};$$

$$\lim_{x \to 3-0} y' = \lim_{x \to 3-0} \frac{4}{(x^2 - 2x + 5)} = \frac{1}{2}; \quad \lim_{x \to 3+0} y' = \lim_{x \to 3+0} \frac{-4}{(x^2 - 2x + 5)} = -\frac{1}{2}.$$

Исследуем направление выпуклости функции. Для этого найдем вторую производную:

$$y'' = \begin{cases} \frac{8(x-1)}{(x^2 - 2x + 5)^2}, & x < -1, \ x > 3; \\ -\frac{8(x-1)}{(x^2 - 2x + 5)^2}, & -1 < x < 3. \end{cases}$$

Обозначим направления выпуклости на оси:

Отметим, что точкой перегиба является только точка x=1, так как в точках x=-1 и x=3 направление выпуклости меняется, но касательных в этих точках не существует.

Найдем асимптоты графика функции. Очевидно, что вертикальных асимптот график не имеет. Кроме того, можно заметить, что $\lim_{x\to\infty}\arcsin\frac{4\,(x-1)}{x^2-2x+5}\,=\,0, \text{ откуда следует, что ось абсцисс является горизонтальной асимптотой графика функции.}$

Построим график

Пример 3. Исследовать функцию и построить график

$$y = \frac{x^2 - 2}{x - 1}e^{\frac{1}{x - 1}}.$$

 \odot Областью определения функции является множество $D=(-\infty,1)\cup (1,+\infty).$

Функция не является ни четной, ни нечетной, а также не является периодичной.

Найдем промежутки монотонности и экстремумы. Для этого вычислим производную:

$$y' = \frac{2x(x-1) - (x^2 - 2)}{(x-1)^2} e^{\frac{1}{x-1}} + \frac{x^2 - 2}{x-1} e^{\frac{1}{x-1}} \left(-\frac{1}{(x-1)^2} \right) = \frac{x(x-2)^2}{(x-1)^3} e^{\frac{1}{x-1}}.$$

Получим две критические точки x = 0 и x = 2.

Получаем следующую картину монотонности

$$y' + 0 - 1 + 2 +$$

$$y \xrightarrow{\text{max}} x$$

Таким образом, функция имеет один экстремум: максимум в точке x=0, причем $y_{\mathrm{max}}=y\left(0\right)=2/e$.

Исследуем направление выпуклости.

Вычислим вторую производную:

$$y'' = \left(\frac{x(x-2)^2}{(x-1)^3}\right)' e^{\frac{1}{x-1}} + \frac{x(x-2)^2}{(x-1)^3} e^{\frac{1}{x-1}} \left(-\frac{1}{(x-1)^2}\right) = \frac{(x-2)(3x-2)}{(x-1)^5} e^{\frac{1}{x-1}}.$$

Вторая производная обращается в ноль в точках x=2 и x=2/3.

Знаки второй производной:

Отсюда видно, что график функции имеет две точки перегиба x=2 и x=2/3.

Найдем асимптоты графика. Для этого сначала исследуем поведение функции в окрестности точки разрыва x=1:

$$\lim_{x \to 1-0} \frac{x^2 - 2}{x - 1} e^{\frac{1}{x - 1}} = \lim_{x \to 1-0} \left(x^2 - 2 \right) \cdot \lim_{x \to 1-0} \frac{e^{\frac{1}{x - 1}}}{x - 1} = 0,$$

так как

$$\lim_{x \to 1-0} \frac{e^{\frac{1}{x-1}}}{x-1} = \lim_{t \to -\infty} te^t = 0$$

И

$$\lim_{x \to 1+0} \frac{x^2 - 2}{x - 1} e^{\frac{1}{x - 1}} = \lim_{x \to 1+0} \left(x^2 - 2 \right) \cdot \lim_{x \to 1+0} \frac{e^{\frac{1}{x - 1}}}{x - 1} = -1 \cdot \lim_{t \to +\infty} t e^t = -\infty.$$

(Здесь обозначено $t=\frac{1}{x-1}$, а последние пределы легко вычислить по правилу Лопиталя.)

Таким образом, мы получили, что прямая x=1 является правосторонней вертикальной асимптотой графика функции, а $\lim_{x\to 1-0}y(x)=0$.

Чтобы найти наклонные асимптоты, выделим целую часть в дроби

$$\frac{x^2 - 2}{x - 1} = x + 1 - \frac{1}{x - 1}$$

и разложим множитель $e^{\frac{1}{x-1}}$ по формуле Маклорена (при $x \to \infty$):

$$e^{\frac{1}{x-1}} = 1 + \frac{1}{x-1} + o\left(\frac{1}{x-1}\right).$$

Тогда

$$\frac{x^2 - 2}{x - 1}e^{\frac{1}{x - 1}} = \left(x + 1 - \frac{1}{x - 1}\right)\left(1 + \frac{1}{x - 1} + o\left(\frac{1}{x - 1}\right)\right) =$$

$$= x + 1 + \frac{x + 1}{x - 1} + o\left(\frac{1}{x - 1}\right) = x + 2 + o(1).$$

Отсюда следует, что прямая y = x + 2 является наклонной асимптотой.

Задание 6. Задача на наибольшее или наименьшее значение

В этом задании предлагается текстовая задача на нахождение экстремального значения функции, для решения которой требуется составить функцию и методами дифференциального исчисления найти требуемый экстремум. [1: гл.4, §7, п.7.3; 2: §6, п.6.3].

Пример. Полоса жести шириной *а*, имеющая прямоугольную форму, должна быть свернута в виде открытого кругового цилиндрического желоба так, чтобы его сечение имело форму сегмента. Каким должен быть центральный угол, опирающийся на дугу этого сегмента, чтобы вместимость желоба была наибольшей?

 \odot Пусть сечение желоба – сегмент ABC. Обозначим $\angle AOB = \varphi$ (см. рис.). Вместимость желоба определяется площадью его поперечного сечения.

Требуется определить, при каком значении угла φ площадь сегмента ABC будет наибольшей при условии, что длина дуги ACB постоянна и равна a.

Площадь сегмента ABC равна площади сектора AOBC минус площадь треугольника AOB. Так как $S_{\text{сект}}=\frac{1}{2}R^2\cdot \varphi$ и $S_{\triangle}=\frac{1}{2}R^2\cdot \sin \varphi$, то

$$S_{\triangle} = \frac{R^2}{2} \left(\varphi - \sin \varphi \right).$$

Мы получили требуемую площадь, как функцию двух переменных: R и φ . Так как длина дуги АСВ равна $R\varphi$, то $R\varphi=a$, откуда $R=\frac{a}{\varphi}$. Отсюда можно получить площадь сегмента, как функцию аргумента φ :

$$S_{\text{Cerm}} = S\left(\varphi\right) = \frac{a^2}{2} \cdot \frac{\varphi - \sin\varphi}{\varphi^2},$$

которая определена на промежутке $(0, 2\pi]$.

Для нахождения максимума этой функции, вычислим ее производную:

$$S' = \frac{a^2}{2} \cdot \frac{\varphi^2 (1 - \cos \varphi) - 2\varphi (\varphi - \sin \varphi)}{\varphi^4} = \frac{a^2}{2} \cdot \frac{2 \sin \varphi - \varphi (1 + \cos \varphi)}{\varphi^3}$$

и определим критические точки этой функции на указанном промежутке.

Уравнение $2\sin\varphi-\varphi\left(1+\cos\varphi\right)=0$ имеет корень $\varphi=\pi$. При $\varphi\neq\pi$ это уравнение можно упростить следующим образом: $\varphi=\frac{2\sin\varphi}{1+\cos\varphi}$ или $\frac{\varphi}{2}=\operatorname{tg}\frac{\varphi}{2}$. На промежутке $(0,2\pi]$ последнее уравнение корней не имеет, поэтому единственной критической точкой будет значение $\varphi=\pi$.

Найдем значения функции в точках $\varphi=\pi,\, \varphi=2\pi$ и предельное значение при $\varphi\to 0$:

$$S(\pi) = \frac{a^2}{2\pi}, \qquad S(2\pi) = \frac{a^2}{4\pi},$$

$$\lim_{\varphi \to 0} \frac{a^2}{2} \cdot \frac{\varphi - \sin \varphi}{\varphi^2} = \lim_{\varphi \to 0} \frac{a^2}{2} \cdot \frac{\varphi - \left(\varphi - \frac{1}{6}\varphi^3 + o\left(\varphi^3\right)\right)}{\varphi^2} = 0.$$

Отсюда следует, что значение площади сегмента будет наибольшим, если $\varphi=\pi.$ \blacksquare

Задание 7. Формула Тейлора

B этом пункте предлагается вычислить два предела с помощью формулы Тейлора – Mаклорена.

Перед выполнением задания рекомендуется изучить [1: гл.4, \S 5; 2: \S 5, п. 5.6].

Для выполнения работы кроме семи стандартных формул могут потребоваться формулы Маклорена для других элементарных функций, которые следует получить самостоятельно.

Пример 1. Вычислить предел

$$\lim_{x \to 0} \frac{\operatorname{tg}(\ln(1+2x)) - \ln(2x + \cos x) - \frac{x^2}{2}}{\operatorname{sh}(x-x^3) - x}.$$

⊕Используя формулу Маклорена для гиперболического синуса:

$$\sinh x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{6} + o\left(x^3\right),$$

получим разложение знаменателя:

$$sh(x-x^3) - x = (x-x^3) + \frac{1}{6}(x-x^3)^3 + o(x^3) - x = -\frac{5}{6}x^3 + o(x^3).$$

Чтобы получить разложение числителя, рассмотрим каждое слагаемое в отдельности. Имеем

$$\ln\left(1+2x\right) = 2x - \frac{4x^2}{2} + \frac{8x^3}{3} + o\left(x^3\right) = 2x - 2x^2 + \frac{8x^3}{3} + o\left(x^3\right)$$

И

$$\operatorname{tg} x = x + \frac{x^3}{3} + o\left(x^3\right).$$

Отсюда

$$tg(\ln(1+2x)) = tg\left(2x - 2x^2 + \frac{8x^3}{3} + o\left(x^3\right)\right) =$$

$$= \left(2x - 2x^2 + \frac{8x^3}{3} + o\left(x^3\right)\right) + \frac{1}{3}\left(2x - 2x^2 + \frac{8x^3}{3} + o\left(x^3\right)\right)^3 + o\left(x^3\right) =$$

$$= 2x - 2x^2 + \frac{8x^3}{3} + \frac{8x^3}{3} + o\left(x^3\right) = 2x - 2x^2 + \frac{16x^3}{3} + o\left(x^3\right)$$

Далее

$$\cos x = 1 - \frac{x^2}{2} + o\left(x^3\right),$$

поэтому

$$\ln(2x + \cos x) = \ln\left(1 + 2x - \frac{x^2}{2} + o\left(x^3\right)\right) =$$

(Используем формулу Маклорена для натурального логарифма)

$$= \left(2x - \frac{x^2}{2} + o\left(x^3\right)\right) - \frac{1}{2}\left(2x - \frac{x^2}{2} + o\left(x^3\right)\right)^2 + \frac{1}{3}\left(2x - \frac{x^2}{2} + o\left(x^3\right)\right)^3 + o\left(x^3\right) = 2x - \frac{x^2}{2} - 2x^2 + x^3 + \frac{8x^3}{3} + o\left(x^3\right) = 2x - \frac{5x^2}{2} + \frac{11x^3}{3} + o\left(x^3\right).$$

Теперь можно получить окончательное представление числителя:

$$\operatorname{tg}\left(\ln\left(1+2x\right)\right) - \ln\left(2x + \cos x\right) - \frac{x^2}{2} = \left(2x - 2x^2 + \frac{16x^3}{3} + o\left(x^3\right)\right) - \left(2x - \frac{5x^2}{2} + \frac{11x^3}{3} + o\left(x^3\right)\right) - \frac{x^2}{2} = \frac{5x^3}{3} + o\left(x^3\right).$$

Окончательно,

$$\lim_{x \to 0} \frac{\operatorname{tg}(\ln(1+2x)) - \ln(2x + \cos x) - \frac{x^2}{2}}{\operatorname{sh}(x - x^3) - x} = \lim_{x \to 0} \frac{\frac{5x^3}{3} + o\left(x^3\right)}{-\frac{5}{6}x^3 + o\left(x^3\right)} = -2.$$

Пример 2. Вычислить предел

$$\lim_{x \to 0} \left(\frac{1}{x} e^{\frac{x}{x+1}} - \frac{1}{\sin x} \right)^{\operatorname{ctg} x}.$$

© Сначала преобразуем данное выражение:

$$\left(\frac{1}{x}e^{\frac{x}{x+1}} - \frac{1}{\sin x}\right)^{\operatorname{ctg} x} = \exp\left[\operatorname{ctg} x \ln\left(\frac{1}{x}e^{\frac{x}{x+1}} - \frac{1}{\sin x}\right)\right].$$

Тогда, чтобы вычислить требуемый предел, достаточно вычислить предел показателя степени в последнем выражении.

Итак, рассмотрим выражение

$$\operatorname{ctg} x \ln \left(\frac{1}{x} e^{\frac{x}{x+1}} - \frac{1}{\sin x} \right) = \frac{\ln \left(\frac{1}{x} e^{\frac{x}{x+1}} - \frac{1}{\sin x} \right)}{\operatorname{tg} x}.$$

При $x \to 0$ знаменатель дроби $\lg x \sim x$, поэтому при вычислении предела знаменатель можно заменить на x. Отсюда следует, что разложение числителя нужно получить с точностью до первого порядка.

Преобразуем числитель:

$$\frac{1}{x}e^{\frac{x}{x+1}} - \frac{1}{\sin x} = \frac{\sin x \cdot e^{\frac{x}{x+1}} - x}{x \cdot \sin x}.$$

Разложим синус и экспоненту по формулам Маклорена:

$$\sin x = x - \frac{x^3}{6} + o\left(x^3\right),\,$$

$$e^{\frac{x}{x+1}} = e^{x(1+x)^{-1}} = e^{x\left(1-x+x^2+o\left(x^2\right)\right)} = e^{x-x^2+x^3+o\left(x^3\right)} =$$

$$= 1 + \left(x - x^2 + x^3 + o\left(x^3\right)\right) + \frac{1}{2}\left(x - x^2 + x^3 + o\left(x^3\right)\right)^2 +$$

$$+ \frac{1}{6}\left(x - x^2 + x^3 + o\left(x^3\right)\right)^3 + o\left(x^3\right) = 1 + x - x^2 + x^3 + \frac{x^2}{2} - x^3 + \frac{1}{6}x^3 + o\left(x^3\right) =$$

$$= 1 + x - \frac{x^2}{2} + \frac{x^3}{6} + o\left(x^3\right),$$

и для всей дроби получим

$$\frac{\sin x \cdot e^{\frac{x}{x+1}} - x}{x \cdot \sin x} = \frac{\left(x - \frac{1}{6}x^3 + o\left(x^3\right)\right)\left(1 + x - \frac{1}{2}x^2 + \frac{1}{6}x^3 + o\left(x^2\right)\right) - x}{x^2 + o\left(x^3\right)} = \frac{x^2 - \frac{2}{3}x^3 + o\left(x^3\right)}{x^2 + o\left(x^3\right)} = \frac{1 - \frac{2}{3}x + o\left(x\right)}{1 + o\left(x\right)} = \left(1 - \frac{2}{3}x + o\left(x\right)\right)\left(1 + o\left(x\right)\right)^{-1} = \left(1 - \frac{2}{3}x + o\left(x\right)\right)\left(1 + o\left(x\right)\right) = 1 - \frac{2}{3}x + o\left(x\right).$$

Заметим, что для получения формулы Маклорена до первого порядка нам пришлось использовать разложения функций до третьего порядка.

Таким образом,

$$\lim_{x \to 0} \frac{\ln\left(\frac{1}{x}e^{\frac{x}{x+1}} - \frac{1}{\sin x}\right)}{\operatorname{tg} x} = \lim_{x \to 0} \frac{\ln\left(1 - \frac{2}{3}x + o\left(x\right)\right)}{x} = -\frac{2}{3}$$

и, окончательно,

0

$$\lim_{x \to 0} \left(\frac{1}{x} e^{\frac{x}{x+1}} - \frac{1}{\sin x} \right)^{\operatorname{ctg} x} = e^{-2/3}.$$

Задание 8. Равномерная непрерывность

В этом задании нужно сказать, будет ли данная функция равномерно непрерывна на заданном промежутке, и обосновать ответ с помощью определения равномерно непрерывной на промежутке функции. Прежде чем приступать к выполнению задания рекомендуется изучить [1: гл.3, §4, п. 4.5] и [2: § 4, п. 4.9].

Пример. Будет ли функция $f\left(x\right)=2\sqrt{x-1}+\frac{3}{x-2}$ равномерно непрерывной на промежутке

a)
$$[3, +\infty)$$
; 6) $(2, 3)$?

 \odot Напомним, что функция называется равномерно непрерывной на промежутке, если, взяв произвольное число $\varepsilon > 0$, можно найти такое число $\delta > 0$,

что для любых значений аргумента x', x'', взятых на данном промежутке, из неравенства $|x'-x''|<\delta$ следует неравенство $|f\left(x'\right)-f\left(x''\right)|<\varepsilon$.

Поэтому, если мы хотим доказать, что определение равномерной непрерывности выполняется, мы должны найти число $\delta = \delta\left(\varepsilon\right)$ такое, что выполняется следование $\left|x'-x''\right|<\delta \Rightarrow \left|f\left(x'\right)-f\left(x''\right)\right|<\varepsilon$ для произвольных значений x' и x'', взятых на данном промежутке.

а) Докажем, что на промежутке $[3,+\infty)$ функция равномерно непрерывна. Пусть ε – произвольное положительное число. Возьмем два значения аргумента $x',x''\in[3,+\infty)$ и рассмотрим разность

$$|f(x') - f(x'')| = \left| \left(2\sqrt{x' - 1} + \frac{3}{x' - 2} \right) - \left(2\sqrt{x'' - 1} + \frac{3}{x'' - 2} \right) \right| =$$

$$= \left| 2\left(\sqrt{x' - 1} - \sqrt{x'' - 1} \right) + \left(\frac{3}{x' - 2} - \frac{3}{x'' - 2} \right) \right| \le$$

$$\le \left| \frac{2\left(x' - x'' \right)}{\sqrt{x' - 1} + \sqrt{x'' - 1}} \right| + \left| \frac{3\left(x'' - x' \right)}{\left(x' - 2 \right) \left(x'' - 2 \right)} \right|.$$

Так как точки x' и x'' лежат в промежутке $[3,+\infty)$, то выполняются неравенства $x'-1\geqslant 2$ и $x''-1\geqslant 2$, поэтому $\sqrt{x'-1}+\sqrt{x''-1}\geqslant 2\sqrt{2}$ и, следовательно,

$$\left| \frac{2(x' - x'')}{\sqrt{x' - 1} + \sqrt{x'' - 1}} \right| \le \frac{|x' - x''|}{\sqrt{2}} < |x' - x''|.$$

Аналогично, $x' - 2 \geqslant 1$ и $x'' - 2 \geqslant 1$, поэтому

$$\left| \frac{3(x'' - x')}{(x' - 2)(x'' - 2)} \right| \le 3|x' - x''|.$$

Таким образом,

$$|f(x') - f(x'')| \le \left| \frac{2(x' - x'')}{\sqrt{x' - 1} + \sqrt{x'' - 1}} \right| + \left| \frac{3(x'' - x')}{(x' - 2)(x'' - 2)} \right| < 4|x' - x''|.$$

Следовательно, если взять $\delta=\frac{\varepsilon}{4}$, то из условия $\left|x'-x''\right|<\delta$ будет следовать неравенство $\left|f\left(x'\right)-f\left(x''\right)\right|<\varepsilon$. Равномерная непрерывность функции $f\left(x\right)=2\sqrt{x-1}+\frac{3}{x-2}$ на промежутке $[3,+\infty)$ доказана.

б) Докажем, что на промежутке (2,3) данная функция не будет равномерно непрерывной.

Сначала сформулируем отрицание определения равномерной непрерывности: функция f(x) не является равномерно непрерывной на данном промежутке, если можно найти число $\varepsilon > 0$ такое, что какое бы число $\delta > 0$ мы ни взяли, всегда можно найти значения аргумента x' и x'', лежащие на этом промежутке, которые будут удовлетворять неравенству $|x'-x''|<\delta$ и для которых будет выполняться неравенство $|f(x')-f(x'')|\geqslant \varepsilon$.

Возьмем две последовательности $x_n'=2+\frac{1}{n}$ и $x_n''=2+\frac{2}{n}$. Очевидно, что какое бы положительное число δ мы ни взяли, можно найти значение n, для которого будет выполняться неравенство

$$\left|x_n' - x_n''\right| = \frac{1}{n} < \delta.$$

Однако,

$$|f(x'_n) - f(x''_n)| = \left| \frac{2\left(-\frac{1}{n}\right)}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}}} + \frac{\frac{3}{n}}{\frac{1}{n} \cdot \frac{2}{n}} \right| \geqslant$$

$$\geqslant \left| \frac{\frac{3}{n}}{\frac{1}{n} \cdot \frac{2}{n}} \right| - \left| \frac{2\left(-\frac{1}{n}\right)}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 + \frac{2}{n}}} \right| = \frac{3n}{2} - \frac{2}{\sqrt{n^2 + 2n} + \sqrt{n^2 + 2n}}.$$

Если рассматривать $n\geqslant 2$, то будут выполняться неравенства: $\frac{3n}{2}\geqslant 3$ и $\frac{2}{\sqrt{n^2+2n}+\sqrt{n^2+2n}}<1$, следовательно, для этих значений n выполнено $|f\left(x'\right)-f\left(x''\right)|\geqslant 3-1=2$, т.е. нужное значение ε равно двум. Таким образом, функция $f\left(x\right)=2\sqrt{x-1}+\frac{3}{x-2}$ не является равномерно непрерывной на интервале (2,3).

ЧАСТЬ 2. Индивидуальные задания

Задание 1. Элементарные функции и их графики

Построить эскиз графика данной функции, используя преобразования графика соответствующей элементарной функции. Указать область определения и область значений данной функции.

1. a)
$$y = 2 - \frac{1}{2} \operatorname{tg} \left(2x - \frac{\pi}{4} \right)$$
; 6) $y = -\left| \frac{x}{2 - |x - 1|} \right|$; B) $y = \ln \frac{x + 1}{x}$.

2. a)
$$y = 2 \operatorname{ctg} \left(1 + \frac{x}{\pi} \right) - 1$$
; б) $y = \frac{|x| + 1}{|2 - |2x||}$; в) $y = \exp \left(\frac{\pi}{2 + x^2} \right)$.

3. a)
$$y = 1 + 2\sin\left(4x - \frac{\pi}{3}\right)$$
; 6) $y = 1 + \left|\frac{3 \cdot |x - 2|}{2 - |x - 2|}\right|$; B) $y = 2^{1/x^3}$.

4. a)
$$y = \frac{\cos(3x-1)+1}{2}$$
; 6) $y = -\frac{|4-|x+3||}{|2x+6|-1|}$; B) $y = \log_2(16-x^2)$.

5. a)
$$y = 6 + 3 \operatorname{ctg} \left(1 - \frac{x}{\pi} \right)$$
; 6) $y = \sqrt{\left(\frac{2|x - 3| + 1}{x + |x - 3|} \right)^2}$; B) $y = \operatorname{arctg} \frac{x + 1}{x}$.

6. a)
$$y = 2 \operatorname{tg} \left(\frac{\pi}{4} + 3x \right) - 3$$
; 6) $y = \left| \frac{2x - |x|}{2x + |x|} \right|$; B) $y = \log_2 \left(\frac{1 - x^2}{x^2} \right)$.

7. a)
$$y = 2 - 3\sin(1 + 4x)$$
; 6) $y = \left| \frac{2 - |3x + 6|}{x - |x + 2|} \right|$; B) $y = \operatorname{arcctg} \frac{2}{1 + x^2}$.

8. a)
$$y = 0.5\cos(3x+7) - 1$$
; 6) $y = \left| \frac{1 - \sqrt{(4x+1)^2}}{|x+0.25| - 1} \right|$; B) $y = 3^{-1/(1+x^2)}$.

9. a)
$$y = 2 - \operatorname{tg}(2x + \pi/3)$$
; 6) $y = 1 - \left| \frac{2x - |x + 1|}{x + |2x + 2|} \right|$; B) $y = \log_2 \frac{x}{x + 1}$.

10. a)
$$y = 3 - \frac{1}{2}\sin\left(\frac{x}{\pi} + 1\right)$$
; б) $y = -\left|\frac{2x + \sqrt{4x^2}}{|x| - 3}\right|$; в) $y = \exp\left(\frac{2x}{x + 1}\right)$.

11. a)
$$y = 1 - \frac{2 \operatorname{tg} (2x+1)}{\pi}$$
; 6) $y = 2 + \left| \frac{3 - 2 \cdot |x+5|}{2 - |x+5|} \right|$; B) $y = 3^{-\sqrt{x}}$.

12. a)
$$y = 2 \operatorname{ctg}\left(\frac{x}{2\pi} + 1\right) - 3$$
; 6) $y = \left|\frac{2 - |5x + 2|}{\sqrt{(x + 0, 4)^2} - 1}\right|$;
 B) $y = \operatorname{lg}\left(-\frac{1}{1 + x^3}\right)$.

13. a)
$$y = 4 - 2\cos\left(1 - \frac{x}{2\pi}\right)$$
; 6) $y = 5 - \left|\frac{2x - |x + 6|}{x + |x + 6|}\right|$; B) $y = (0, 5)^{1 - 1/x^2}$.

14. a)
$$y = 0, 5\sin(3 - 2x) - 1$$
; 6) $y = -\left|\frac{3 - |x - 1|}{\sqrt{(3 - 3x)^2 - 2}}\right|$;

B)
$$y = \operatorname{arcctg} \frac{x^2}{1 + x^2}$$
.

15. a)
$$y = \frac{1}{2} \operatorname{tg} \left(2 - \frac{3x}{\pi} \right) + 2$$
; 6) $y = \sqrt{\left(\frac{4 \cdot |x+3| - 12}{x - |x+3|} \right)^2}$;
 B) $y = \log_5 \left(8 - x^3 \right)$.

16. a)
$$y = 2 - 3 \operatorname{ctg} \left(1 + \frac{x}{4\pi} \right)$$
; б) $y = -\frac{|9 - |3x + 6||}{|4x + 8| - 8|}$; в) $y = 5^{-1/\sqrt{x}}$.

17. a)
$$y = 3\sin\left(2 + \frac{x}{2\pi}\right) - 5$$
; б) $y = \sqrt{\left(\frac{|6 - 2x| + x}{10 - |5x - 15|}\right)^2}$;
 B) $y = \log_4\left(2 + \sqrt{\frac{1}{x}}\right)$.

18. a)
$$y = 3 - 2 \operatorname{tg} \left(\frac{x}{3\pi} + 1 \right)$$
; 6) $y = 3 - \left| \frac{3x + \sqrt{9x^2}}{2 - |x|} \right|$; B) $y = \exp \left(\frac{2x}{x^2 + 1} \right)$.

19. a)
$$y = 1 - 2\cos\left(\frac{\pi}{3} - 2x\right)$$
; б) $y = -\left|\frac{x + |2x + 1|}{\sqrt{(3 + 6x)^2 - 6}}\right|$; в) $y = \ln\left(1 + \frac{1}{\sqrt{1 + x}}\right)$.

20. a)
$$y = 1 - \frac{1}{3}\sin\left(\frac{\pi}{4} + 3x\right)$$
; б) $y = \left|\frac{3x}{2 - |x + 1|}\right| - 2$; в) $y = \arctan\left(\frac{1}{x^2}\right)$.

Вопросы:

- 1. Пусть дан график функции y=f(x). Как будет выглядеть график функции а) y=f(ax); б) $y=a\cdot f(x)$; в) y=f(x+a)+b; г) y=|f(x)|; д) y=|f(x)|?
- 2. Пусть функции f(x) и g(x) монотонны. Будет ли монотонной их суперпозиция f(g(x))? Рассмотрите различные характеры монотонности.

Задание 2. Определение предела функции по Коши

Доказать по определению предела функции в точке (по Коши):

1.
$$\lim_{x \to -3} \frac{2x^2 + 5x - 3}{x + 3} = -7;$$

2.
$$\lim_{x \to 1} \frac{5x^2 - 4x - 1}{x - 1} = 6;$$

3.
$$\lim_{x \to -2} \frac{3x^2 + 5x - 2}{x + 2} = -7;$$

4.
$$\lim_{x \to 3} \frac{4x^2 - 14x + 6}{x - 3} = 10;$$

5.
$$\lim_{x \to -1/2} \frac{6x^2 + x - 1}{x + 1/2} = -5;$$

6.
$$\lim_{x \to 1/2} \frac{6x^2 - x - 1}{x - 1/2} = 5;$$

7.
$$\lim_{x \to -1/3} \frac{9x^2 - 1}{x + 1/3} = -6;$$

8.
$$\lim_{x \to 2} \frac{3x^2 - 5x - 2}{x - 2} = 7;$$

9.
$$\lim_{x \to -1/3} \frac{3x^2 - 2x - 1}{x + 1/3} = -4;$$

10.
$$\lim_{x \to -1} \frac{7x^2 + 8x + 1}{x + 1} = -6;$$

11.
$$\lim_{x \to 1/3} \frac{6x^2 - 5x + 1}{x - 1/3} = -1;$$

12.
$$\lim_{x \to -7/5} \frac{10x^2 + 9x - 7}{x + 7/5} = -19;$$

13.
$$\lim_{x \to -7/2} \frac{2x^2 + 13x + 21}{2x + 7} = -\frac{1}{2};$$

14.
$$\lim_{x \to 5/2} \frac{2x^2 - 9x + 10}{2x - 5} = \frac{1}{2};$$

15.
$$\lim_{x \to 1/3} \frac{6x^2 + x - 1}{x - 1/3} = 5;$$

16.
$$\lim_{x \to -1/2} \frac{6x^2 - 75x - 39}{3x + 3/2} = -27;$$

17.
$$\lim_{x \to 11} \frac{2x^2 - 21x - 11}{x - 11} = 23;$$

18.
$$\lim_{x \to 5} \frac{5x^2 - 24x - 5}{x - 5} = 26;$$

19.
$$\lim_{x \to -7} \frac{2x^2 + 15x + 7}{x + 7} = -13;$$

20.
$$\lim_{x \to 1/2} \frac{2x^2 - 5x + 2}{2x - 1} = -\frac{3}{2}.$$

Вопросы:

- 1. Сформулируйте определение конечного предела функции в точке по Коши.
- 2. Сформулируйте определение предела функции на бесконечности, а также при $x \to +\infty, \, x \to -\infty.$
- 3. Сформулируйте определение предела функции в точке, равного бесконечности, а также $+\infty$ и $-\infty$.
- 4. Сформулируйте на языке " $\varepsilon \delta$ " тот факт, что данное число не является пределом функции в данной точке.
- 5. Сформулируйте на языке " $\varepsilon \delta$ " тот факт, что в данной точке функция не имеет конечного предела.

Задание 3. Определение предела функции по Гейне

Доказать, что данный предел не существует:

1.
$$\lim_{x \to 0} \cos\left(\frac{1}{x}\right)$$
;

2.
$$\lim_{x \to \infty} \operatorname{tg} x$$
;

3.
$$\lim_{x \to 0} \sin\left(\frac{1}{x^2}\right)$$
;

4.
$$\lim_{x\to 0} \cos\left(\frac{1}{x^2}\right)$$
;

5.
$$\lim_{x \to \infty} \sin\left(x^2 + 1\right)$$
;

6.
$$\lim_{x \to +\infty} \cos(\sqrt{x});$$

7.
$$\lim_{x \to +\infty} \sin\left(\sqrt{x+1}\right)$$
;

8.
$$\lim_{x \to \infty} \operatorname{tg}\left(x^2 + 2\right);$$

9.
$$\lim_{x \to \infty} \sin\left(\sqrt{x^2 + 1}\right);$$

10.
$$\lim_{x \to 0} \operatorname{tg}\left(\frac{1}{x^2}\right);$$

11.
$$\lim_{x \to +\infty} \operatorname{tg}\left(\sqrt{x-1}\right);$$

12.
$$\lim_{x \to +0} \cos\left(\frac{1}{\sqrt{x}}\right)$$
;

13.
$$\lim_{x \to 0} \operatorname{ctg}\left(\frac{1}{x}\right);$$

14.
$$\lim_{x\to 0} \operatorname{ctg}\left(\frac{1}{x^2}\right);$$

15.
$$\lim_{x \to +0} \sin\left(\frac{1}{\sqrt{x}}\right);$$

18.
$$\lim_{x \to \infty} \cos\left(x^2 + 2x\right);$$

16.
$$\lim_{x \to +0} \operatorname{tg}\left(\frac{1}{\sqrt{x}}\right);$$

19.
$$\lim_{x \to \infty} \operatorname{tg}\left(x^2 - 2x\right);$$

17.
$$\lim_{x \to \infty} \operatorname{ctg}\left(1 + x^2\right);$$

$$20. \lim_{x \to \infty} \sin\left(x^2 - 4x\right).$$

Вопросы:

- 1. Сформулируйте определение предела функции в точке по Гейне.
- 2. Сформулируйте определение предела функции на бесконечности по Гейне.
- 3. С помощью определения предела функции по Гейне сформулируйте, что означает, что функция не имеет предела в данной точке.
- 4. С помощью определения предела функции по Гейне сформулируйте, что означает, что предел функции в точке не равен данному числу.

Задание 4. Вычисление пределов

Вычислить пределы (8 пределов в каждом варианте):

1. 1)
$$\lim_{x \to -1} \frac{\left(x^2 + 3x + 2\right)^2}{x^3 + 2x^2 - x - 2}$$
; 2) $\lim_{x \to 3} \frac{\sqrt{x + 13} - 2\sqrt{x + 1}}{\sqrt[3]{x^2 - 9}}$; 3) $\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[10]{x} - 1}$; 4) $\lim_{x \to \pi/2} \frac{2^{\cos^2 x} - 1}{\ln \sin x}$; 5) $\lim_{x \to 0} \left(\frac{1 + x^2 \cdot 2^x}{1 + x^2 \cdot 5^x}\right)^{1/\sin^3 x}$;

4)
$$\lim_{x \to \pi/2} \frac{2^{\cos^2 x} - 1}{\ln \sin x}$$
; 5) $\lim_{x \to 0} \left(\frac{1 + x^2 \cdot 2^x}{1 + x^2 \cdot 5^x} \right)^{1/\sin^3 x}$;

6)
$$\lim_{x \to 1 \pm 0} \left(\frac{3x - 1}{x + 2} \right)^{1/\left(\sqrt[3]{x} - 1\right)};$$
 7) $\lim_{x \to +\infty} \frac{\sqrt[4]{2 + x^5} - \sqrt{2x^3 + 3}}{(x + \sin x)\sqrt{7x}};$

8)
$$\lim_{x \to \frac{\pi}{2} - 0} \frac{\ln(1 + \lg x)}{\ln(1 + 3\lg x)}.$$

2. 1)
$$\lim_{x \to 1} \frac{\left(2x^2 - x - 1\right)^2}{x^3 + 2x^2 - x - 2}$$
; 2) $\lim_{x \to -8} \frac{10 - x - 6\sqrt{1 - x}}{2 + \sqrt[3]{x}}$; 3) $\lim_{x \to \pi/4} \frac{\ln \operatorname{tg} x}{\cos 2x}$;

4)
$$\lim_{x \to 2} \frac{\ln\left(x - \sqrt[3]{2x - 3}\right)}{\sin\left(\pi x/2\right) - \sin\left[\left(x - \frac{1}{2}\right)\pi\right]};$$
 5) $\lim_{x \to 0} \left(1 - \sin^2\frac{x}{2}\right)^{1/\ln\left(1 + \log^2 3x\right)};$

6)
$$\lim_{x \to 1 \pm 0} \left(\frac{2x - 1}{x + 1} \right)^{1/\left(\sqrt[3]{x} - 1\right)}; 7) \lim_{x \to \pi/4} \frac{\sqrt[3]{\tan x} + (4x - \pi)\cos\frac{x}{4x - \pi}}{\lg(2 + \lg x)};$$

8)
$$\lim_{x \to +0} \frac{\ln(1 - \ln x)}{\ln(1 - \lg x)}$$

3. 1)
$$\lim_{x \to -3} \frac{\left(x^2 + 2x - 3\right)^2}{x^3 + 4x^2 + 3x}$$
; 2) $\lim_{x \to 4} \frac{\sqrt{x} - 2}{\sqrt[3]{x^2 - 16}}$; 3) $\lim_{x \to 1} \frac{3 - \sqrt{10 - x}}{\sin 3\pi x}$;

4)
$$\lim_{x\to 2} \frac{\operatorname{tg} x - \operatorname{tg} 2}{\sin\ln(x-1)}$$
; 5) $\lim_{x\to 0} (1 - \ln\cos x)^{1/\operatorname{tg}^2 x}$;

4)
$$\lim_{x \to 2} \frac{\sin \ln (x-1)}{\sin \ln (x-1)}$$
; 5) $\lim_{x \to 0} (1 - \ln \cos x) \neq 3$;
6) $\lim_{x \to 2 \pm 0} \left(\frac{\cos x}{\cos 3}\right)^{1/(x-2)}$; 7) $\lim_{x \to \infty} \left(\sin \sqrt{x^2 + 1} \cdot \arctan \frac{x}{x^2 + 1}\right)$;
8) $\lim_{x \to 0} \frac{e^{4x} - e^{-2x}}{2 \arctan x}$.

8)
$$\lim_{x\to 0} \frac{e^{4x} - e^{-2x}}{2 \arctan x - \sin x}$$

4. 1)
$$\lim_{x \to -1} \frac{\left(x^3 - 2x - 1\right)^2}{x^4 + 2x + 1}$$
; 2) $\lim_{x \to 0} \frac{4x}{\operatorname{tg}(\pi(2+x))}$; 3) $\lim_{x \to \pi} \frac{\cos 3x - \cos x}{\operatorname{tg}^2 2x}$;
4) $\lim_{x \to 3} \frac{\sin\left(\sqrt{2x^2 - 3x - 5} - \sqrt{1 + x}\right)}{\ln(x - 1) - \ln(x + 1) + \ln 2}$; 5) $\lim_{x \to 0} \left(1 + \operatorname{tg}^2 x\right)^{1/\ln(1 + 3x^2)}$;

4)
$$\lim_{x \to 3} \frac{\sin\left(\sqrt{2x^2 - 3x - 5} - \sqrt{1 + x}\right)}{\ln(x - 1) - \ln(x + 1) + \ln 2}$$
; 5) $\lim_{x \to 0} \left(1 + \operatorname{tg}^2 x\right)^{1/\ln(1 + 3x^2)}$;

6)
$$\lim_{x \to 8 \pm 0} \left(\frac{2x - 6}{x + 1} \right)^{1/\left(\sqrt[3]{x} - 2\right)}; 7) \lim_{x \to \infty} \frac{(1 - \cos x)\sqrt[3]{x}}{\sqrt{2x + 1} - 1};$$

8)
$$\lim_{x \to 0} \frac{4^{5x} - 9^{-2x}}{\sin x - \tan^3 x}.$$

5. 1)
$$\lim_{x \to -1} \frac{x^3 + 5x^2 + 7x + 3}{x^3 + 4x^2 + 5x + 2}$$
; 2) $\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{\sqrt[3]{(\sqrt{x} - 4)^2}}$;

3)
$$\lim_{x \to 2} \frac{\arctan(x^2 - 2x)}{\sin 3\pi x}$$
; 4) $\lim_{x \to \pi/2} \frac{e^{\operatorname{tg} 2x} - e^{-\sin 2x}}{\sin x - 1}$;

5)
$$\lim_{x \to 0} \left(\frac{1 + x \cdot 3^x}{1 + x \cdot 7^x} \right)^{1/\lg^2 x}$$
; 6) $\lim_{x \to \frac{\pi}{4} \pm 0} (\lg x)^{1/\cos(3\pi/4 - x)}$;

7)
$$\lim_{x\to 0} \ln\left(2+\sqrt{\left|\arctan x\cdot\sin\frac{1}{x}\right|}\right)$$
; 8) $\lim_{x\to 0} \frac{1}{x}\left(\pi-4\arctan\frac{1}{1+x}\right)$.

6. 1)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}$$
; 2) $\lim_{x \to 8} \frac{\sqrt{9 + 2x} - 5}{\sqrt[3]{x} - 2}$; 3) $\lim_{x \to 1} \frac{\cos(\pi x/2)}{1 - \sqrt{x}}$;

4)
$$\lim_{x \to 1} \frac{2^{x-1} - 3^{2x-2}}{1 - \sin(\pi x/2)}$$
; 5) $\lim_{x \to 0} \left(\frac{1 + \lg x \cos 2x}{1 + \lg x \cos 5x} \right)^{1/x^3}$;

6)
$$\lim_{x \to 1 \pm 0} \left(\frac{2x - 1}{x + 1} \right)^{1/\left(\sqrt[5]{x} - 1\right)};$$
 7) $\lim_{x \to -2} \sqrt{\frac{1 + \cos \pi x}{4 + (x + 2)\sin \frac{x}{x + 2}}};$

8)
$$\lim_{x \to +\infty} \left(\pi x - 2x \arcsin \frac{x}{\sqrt{x^2 + 1}} \right)$$
.

7. 1)
$$\lim_{x \to -1} \frac{x^3 + 4x^2 + 5x + 2}{x^3 - 3x - 2}$$
; 2) $\lim_{x \to 0} \frac{\sqrt{1 - 2x + 3x^2} - (1 + x)}{\sqrt[3]{x}}$;

3)
$$\lim_{x \to 2} \frac{\ln(9 - 2x^2)}{\sin 2\pi x}$$
; 4) $\lim_{x \to -2} \frac{\arcsin(1 + x/2)}{3\sqrt{2 + x + x^2} - 9}$;

5)
$$\lim_{x \to +0} \left(1 + \frac{1}{3} \operatorname{arctg}^6 \sqrt{x} \right)^{1/x^3}$$
; 6) $\lim_{x \to a \pm 0} \left(1 + \frac{2x}{a} \right)^{\operatorname{tg}(\pi x/a)}$;

7)
$$\lim_{x \to 0} \frac{\sqrt[3]{\tan x} \cdot \cos(1/x) + 3}{2 - \lg(1 + \sin x)}$$
; 8) $\lim_{x \to 0} \frac{\ln\left(\frac{1+x}{1-x}\right)}{\arctan(1+x) - \arctan(1-x)}$.

8. 1)
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$
; 2) $\lim_{x \to 0} \frac{\sqrt[3]{8 + 3x - x^2} - 2}{\sqrt[3]{x^2 + x^3}}$;

3)
$$\lim_{x \to 2} \frac{1 - 2^{4 - x^2}}{2\left(\sqrt{2x} - \sqrt{3x^2 - 5x + 2}\right)}$$
; 4) $\lim_{x \to 3} \frac{2^{\sin \pi x} - 1}{\ln(x^3 - 6x - 8)}$;

5)
$$\lim_{x\to 0} \left(2 - e^{x^2}\right)^{1/(1-\cos\pi x)}$$
; 6) $\lim_{x\to 2\pi\pm 0} \left(\frac{\cos x}{2}\right)^{\operatorname{ctg}2x/\sin 3x}$;

7)
$$\lim_{x \to \infty} \frac{\sqrt[3]{x^2 + \cos x} + \sqrt{3x^2 + 2}}{\sqrt[5]{x^6 + 1}}$$
; 8) $\lim_{x \to 0} \frac{x^2 \left(\sqrt[3]{1 + 3x} - 1\right) + \sin^3 x}{1 - \sqrt{1 + x^3}}$.

9. 1)
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4}$$
; 2) $\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{\sqrt[3]{x^2} + \sqrt[5]{x}}$;

3)
$$\lim_{x \to \pi/2} \frac{\ln 2x - \ln \pi}{\sin(5x/2)\cos x}$$
; 4) $\lim_{x \to 2} \frac{\operatorname{tg} \ln(3x - 5)}{e^{x+3} - e^{x^2+1}}$;

7)
$$\lim_{x \to 0} \sqrt{4\cos x + \sin\frac{1}{x} \cdot \ln(1+x)};$$

8)
$$\lim_{x \to 2} \frac{\arctan \sqrt{x^2 - 1} - \arctan \sqrt{2x - 1}}{\ln(3 - x)}$$

10. 1)
$$\lim_{x \to 2} \frac{x^3 - 5x^2 + 8x - 4}{x^3 - 3x^2 + 4}$$
; 2) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt[7]{x}}$;

3)
$$\lim_{x \to \pi} \frac{e^{\pi} - e^x}{\sin 5x - \sin 3x}$$
; 4) $\lim_{x \to 2\pi} \frac{\ln \cos x}{3^{\sin 2x} - 1}$; 5) $\lim_{x \to 0} \left(3 - \frac{2}{\cos x}\right)^{\csc^2 x}$;

6)
$$\lim_{x \to 3\pm 0} \left(\frac{5-x}{3}\right)^{\operatorname{tg}(\pi x/6)}$$
; 7) $\lim_{x \to 0} \sqrt{2\cos^2 x + (e^x - 1)\sin\frac{2}{x}}$;

8)
$$\lim_{x \to 2} \frac{\arctan(2-x) + \sin(x-2)^2}{x^2 - 4}$$
.

11. 1)
$$\lim_{x \to 2} \frac{x^3 - 6x^2 + 12x - 8}{x^3 - 3x^2 + 4}$$
; 2) $\lim_{x \to 1/4} \frac{\sqrt[3]{x/16} - 1/4}{\sqrt{1/4 + x} - \sqrt{2x}}$;

3)
$$\lim_{x \to 1} \frac{3^{5x-3} - 3^{2x^2}}{\lg \pi x}$$
; 4) $\lim_{x \to 1} \frac{\sqrt[3]{1 + \ln^2 x} - 1}{1 + \cos \pi x}$; 5) $\lim_{x \to 0} \left(6 - \frac{5}{\cos x}\right)^{\operatorname{ctg}^2 x}$;

6)
$$\lim_{x \to 1 \pm 0} (3-x)^{\operatorname{tg}(\pi x/2)}$$
; 7) $\lim_{x \to 0} \frac{2 + \ln\left(e + x \sin\frac{1}{x}\right)}{\cos x + \sin x}$; 8) $\lim_{x \to a} \frac{x^x - a^a}{x - a}$.

12. 1)
$$\lim_{x \to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 7x^2 + 16x + 12}$$
; 2) $\lim_{x \to 1/3} \frac{\sqrt[3]{x/9} - 1/3}{\sqrt{1/3 + x} - \sqrt{2x}}$;

3)
$$\lim_{x \to 4} \frac{2^x - 16}{\sin \pi x}$$
; 4) $\lim_{x \to \pi/3} \frac{e^{\sin^2 6x} - e^{\sin^2 3x}}{\log_3 \cos 6x}$; 5) $\lim_{x \to 0} \frac{x^2 \sqrt{2 - \cos x}}{x^2}$;

6)
$$\lim_{x\to 3\pm 0} \left(\frac{8-2x}{3}\right)^{\operatorname{tg}(\pi x/6)};$$

7)
$$\lim_{x \to 0} \ln \left[\left(e^{x^2} - \cos x \right) \cos \frac{1}{x} + \operatorname{tg} \left(x + \frac{\pi}{3} \right) \right];$$

8)
$$\lim_{x \to 2} \frac{2 \arcsin(x^2 - 3) - \pi}{\sqrt{4 - x^2}}$$
.

13. 1)
$$\lim_{x \to -3} \frac{x^3 + 7x^2 + 15x + 9}{x^3 + 8x^2 + 21x + 18}$$
; 2) $\lim_{x \to 1/2} \frac{\sqrt[3]{x/4} - 1/2}{\sqrt{1/2 + x} - \sqrt{2x}}$;

3)
$$\lim_{x\to 2} \frac{\ln(5-2x)}{\sqrt{10-3x}-2}$$
; 4) $\lim_{x\to \pi} \frac{(x^3-\pi^3)\sin 5x}{e^{\sin^2 x}-1}$;

5)
$$\lim_{x\to 0} \left(2 - 3^{\sin^2 x}\right)^{1/\ln\cos x}$$
; 6) $\lim_{x\to \pi/2\pm 0} \left(\sin\frac{x}{2}\right)^{6 \operatorname{tg} x \cdot \operatorname{tg} 3x}$;

7)
$$\lim_{x\to 0} \frac{\cos x + \ln(1+x)\sqrt{2 + \cos(1/x)}}{2 + e^x}$$
; 8) $\lim_{x\to 0} \frac{\sqrt{\cos 3x} - \sqrt{1 + \lg x}}{(1+x)^{3/7} - \cos^{3/2}x}$

14. 1)
$$\lim_{x \to 3} \frac{x^3 - 4x^2 - 3x + 18}{x^3 - 5x^2 + 3x + 9}$$
; 2) $\lim_{x \to 8} \frac{\sqrt{9 + 2x} - 5}{\sqrt[3]{x^2} - 4}$;

3)
$$\lim_{x \to 1} \frac{\sqrt{x^2 - 3x + 3} - 1}{\sin \pi x}$$
; 4) $\lim_{x \to -1} \frac{\operatorname{tg}(x + 1)}{e^{\sqrt[3]{x^3 - 4x^2 + 6}} - e}$;

5)
$$\lim_{x\to 0} (3-2\cos x)^{-\csc^2 x}$$
; 6) $\lim_{x\to 1\pm 0} \left(3e^{x-1}-1\right)^{x/(x-1)}$;

7)
$$\lim_{x \to 1+0} \frac{\cos 2\pi x}{2 + \left(e^{\sqrt{x-1}} - 1\right) \sin \frac{x+2}{x-1}}$$
; 8) $\lim_{x \to 1} \frac{6 \arcsin(x^2/2) - \pi}{x^2 + 4x - 5}$.

15. 1)
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$
; 2) $\lim_{x \to 4} \frac{\sqrt[3]{16x} - 4}{\sqrt{4 + x} - \sqrt{2x}}$; 3) $\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - 1}{\tan x}$;

4)
$$\lim_{x \to a} \frac{a^{x^2 - a^2} - 1}{\operatorname{tg} \ln(x/a)}$$
; 5) $\lim_{x \to 0} \left(2 - e^{x^2} \right)^{1/\ln\left(1 + \operatorname{tg}^2(\pi x/3)\right)}$;

6)
$$\lim_{x \to \pi/2 \pm 0} \left(\operatorname{tg} \frac{x}{3} \right)^{1/(x - \pi/2)};$$

7)
$$\lim_{x \to 2-0} \sqrt[3]{\lg(x+8) + \sin\sqrt{4-x^2}\cos\frac{x+2}{x-2}}$$
; 8) $\lim_{x \to a} \frac{a^{a^x} - a^{x^a}}{a^x - x^a}$, $a > 0$.

16. 1)
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x^3 + 2x^2 - x - 2}$$
; 2) $\lim_{x \to -2} \frac{\sqrt[3]{x - 6} + 2}{x + 2}$; 3) $\lim_{x \to 2\pi} \frac{\sin 7x - \sin 3x}{e^{x^2} - e^{4\pi^2}}$;

4)
$$\lim_{x \to -3} \frac{\sin(e^{\sqrt[3]{1-x^2}/2} - e^{\sqrt[3]{x+2}})}{\arctan(x+3)};$$
 5) $\lim_{x \to 0} (\cos x)^{1/\ln(1+\sin^2 x)};$ 6) $\lim_{x \to 1 \pm 0} \left(e^{x-1} - 0, 5\right)^{(3x-1)/(x-1)};$ 7) $\lim_{x \to 0} \frac{\cos(1+x)}{(2+\sin(1/x))\ln(1+x) + 2};$

6)
$$\lim_{x \to 1 \pm 0} \left(e^{x-1} - 0.5 \right)^{(3x-1)/(x-1)}$$
; 7) $\lim_{x \to 0} \frac{\cos(1+x)}{(2+\sin(1/x))\ln(1+x) + 2}$;

8)
$$\lim_{x\to 0} \frac{(a^x - b^x)^2}{a^{x^2} - b^{x^2}}$$
, $a > 0$, $b > 0$, $a \neq b$.

17. 1)
$$\lim_{x \to -1} \frac{x^3 - 3x - 2}{(x^2 - x - 2)^2}$$
; 2) $\lim_{x \to 3} \frac{\sqrt[3]{9x} - 3}{\sqrt{3 + x} - \sqrt{2x}}$; 3) $\lim_{x \to 1} \frac{1 + \cos \pi x}{\operatorname{tg}^2 \pi x}$;

4)
$$\lim_{x \to a} \frac{\ln\left(\cos\left(\frac{\pi x}{a}\right) + 2\right)}{a^{\frac{a^2}{2} - \frac{a}{x}} - a^{\frac{a}{x} - 1}}; 5) \lim_{x \to 0} \left(2 - 5^{\arcsin x^3}\right)^{\left(\csc^2 x\right)/x};$$

6)
$$\lim_{x \to \pi/2 \pm 0} (0, 5 + \cos 3x)^{\sec x}; 7) \lim_{x \to \pi/2} \frac{2 + \cos x \sin (2/(2x - \pi))}{3 + 2x \sin x};$$
8)
$$\lim_{x \to 2} \frac{\arctan\left(x^2 - 3\right) + \arctan\left(x^2 - 5\right)}{\ln(x - 1)}.$$

8)
$$\lim_{x \to 2} \frac{\arctan\left(x^2 - 3\right) + \arctan\left(x^2 - 5\right)}{\ln(x - 1)}.$$

18. 1)
$$\lim_{x \to 2} \frac{x^3 - 3x - 2}{3x^3 - x - 22}$$
; 2) $\lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{\sqrt{2 + x} - \sqrt{2x}}$; 3) $\lim_{x \to \pi} \frac{\sin^2 x - \tan^2 x}{(x - \pi)^4}$;

4)
$$\lim_{x \to \pi} \frac{\operatorname{tg}(3^{\pi/x} - 3)}{3^{\cos(3x/2)} - 1}$$
; 5) $\lim_{x \to 0} \left(\operatorname{tg}\left(\frac{\pi}{4} - x\right)\right)^{\operatorname{ctg}x}$;

6)
$$\lim_{x\to 2\pm 0} \left(e^{x-2}+1\right)^{(3x+2)/(x-2)};$$

7)
$$\lim_{x \to 1} \operatorname{tg} \left(\cos x + \sin \frac{x - 1}{x + 1} \cos \frac{x + 1}{x - 1} \right)$$
; 8) $\lim_{x \to +\infty} \frac{\ln (2 + \sqrt{x})}{\ln (6 + \sqrt[6]{x})}$.

19. 1)
$$\lim_{x \to -1} \frac{x^3 - 2x - 1}{x^4 + 2x + 1}$$
; 2) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt[3]{1 + x} - \sqrt[3]{1 - x}}$; 3) $\lim_{x \to 1} \frac{\sqrt{x^2 - x + 1} - 1}{\ln x}$;

4)
$$\lim_{x \to \pi} \frac{\sin(x^2/\pi)}{2\sqrt{\sin x + 1} - 2}$$
; 5) $\lim_{x \to 0} \left(\frac{1 + \sin x \cos \alpha x}{1 + \sin x \cos \beta x}\right)^{\operatorname{ctg}^3 x}$;

6)
$$\lim_{x \to 1 \pm 0} \left(\frac{\sin(x+1)}{x+1} \right)^{\csc(x-1)};$$
 7) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 3x - 1} + \sqrt[3]{2x^2 + 1}}{x + 2\sin x};$ 8) $\lim_{x \to -1 + 0} \frac{\sqrt{\pi} - \sqrt{\arccos x}}{\sqrt{x+1}}.$

8)
$$\lim_{x \to -1+0} \frac{\sqrt{\pi - \sqrt{\arccos x}}}{\sqrt{x+1}}$$

20. 1)
$$\lim_{x \to -3} \frac{x^4 + 11x - 48}{x^3 + 4x^2 + 3x}$$
; 2) $\lim_{x \to 0} \frac{\sqrt[3]{27 + x} - \sqrt[3]{27 - x}}{x + 2\sqrt[3]{x^4}}$; 3) $\lim_{x \to \pi} \frac{1 + \cos 3x}{\sin^2 7x}$;

4)
$$\lim_{x\to 0} \frac{a^{h+x} + a^{h-x} - 2a^h}{x^2}$$
; 5) $\lim_{x\to +0} \left(2 - 3^{\arctan 2}\sqrt{x}\right)^{2/\sin x}$;

6)
$$\lim_{x \to 1 \pm 0} (x - 0.5)^{1/\ln(2-x)}$$
; 7) $\lim_{x \to 1} \frac{\sin x + \sin \pi x \cdot \sin \frac{1+x}{1-x}}{1 + \cos x}$;

8)
$$\lim_{x \to +0} \frac{\arccos(1-x)}{\sqrt{x}}.$$

- 1. Какие виды неопределенностей Вы знаете?
- 2. Какие замечательные пределы Вы знаете?
- 3. Какой тип неопределенности в каждом замечательном пределе?
- 4. Что такое эквивалентные функции?
- 5. Как звучит правило замены функции на эквивалентную в пределе?

- 6. В каких случаях замена на эквивалент может привести к неверному ответу?
- 7. Пусть функции $f\colon X\to Y,\ g\colon Y\to \mathbb{R}$ имеют пределы $\lim_{x\to x_0}f(x)=y_0,$ $\lim_{y\to y_0}g(y)=A.$ Верно ли, что $\lim_{x\to x_0}g(f(x))=A$? Какие условия достаточно наложить на функции f и g, чтобы это утверждение было верным?

Задание 5. Исследование функций и построение графиков

Провести полное исследование функций и построить их графики (3 функции в каждом варианте). В пункте а) функция y=f(x) задана параметрически.

1. a)
$$x = \frac{1}{t(t+1)}$$
, $y = \frac{(t+1)^2}{t}$; 6) $y = 2 \arctan x + x$;
B) $y = -\arcsin \sqrt{1 - 4x^2} + 2\sqrt{1 - 4x^2}$.

2. a)
$$x = \frac{t^2}{t-1}$$
, $y = \frac{t^2-1}{t}$; 6) $y = 2 + \left(x^2(2-x)\right)^{1/3}$; B) $y = \frac{x}{2} - \arctan x$.

3. a)
$$x = \frac{t^2}{t^2 - 1}$$
, $y = \frac{t^2 + 1}{t + 2}$; 6) $y = 2x - e^{2x}$; B) $y = \frac{x}{2} - \arccos \frac{2x}{1 + x^2}$.

4. a)
$$x = \frac{(t+1)^2}{t}$$
, $y = \frac{(t+1)}{t+2}$; 6) $y = 2 \arctan x + \frac{x^2}{2}$; B) $y = \frac{10\sqrt[3]{(x-2)^2}}{x^2+9}$.

5. a)
$$x = \frac{t^2 + 1}{t}$$
, $y = \frac{t^3 + 1}{t^2}$; 6) $y = 5(x+1) + e^{-5x}$; B) $y = \sqrt[3]{\left(\frac{x+1}{x+2}\right)^2}$.

6. a)
$$x = \frac{t^2 + 6t + 5}{3}$$
, $y = \frac{t^3 - 54}{2t}$; 6) $y = (x + 6) e^{1/x}$;
 B) $y = \sqrt[3]{x (3 - x)^2} - x$.

7. a)
$$x = \frac{t^2}{1 - 2t}$$
, $y = \frac{t^3}{1 - 2t}$; 6) $y = \arcsin \frac{1 - x^2}{1 + x^2}$; B) $y = \frac{x^2 + 2x - 3}{x}e^{1/x}$.

8. a)
$$x = t^3 - 3t$$
, $y = \left(\frac{t-1}{t}\right)^2$; 6) $y = \left(x^3 - 2x^2\right)^{1/3}$;
 B) $y = \frac{3x}{2} - \arccos\frac{1}{x}$.

9. a)
$$x = \frac{1}{1+t^2}$$
, $y = \frac{t\left(1-t^2\right)}{1+t^2}$; 6) $y = \ln\left|\frac{x+1}{x-1}\right|$;
 B) $y = \sqrt[3]{(x+2)^2} + \sqrt[3]{(x-2)^2}$.

10. a)
$$x = \frac{t(1-t^2)}{1+3t^2}$$
, $y = \frac{4t^2}{1+3t^2}$; 6) $y = 5+3(x-3)^{2/3}$; B) $y = \sqrt{\frac{(x+6)^2}{x^2-4}}$.

11. a)
$$x = \frac{1}{1+t^2}$$
, $y = \frac{t(1-t^2)}{1+t^2}$; 6) $y = \arccos \frac{2x}{1+x^2}$; B) $y = \frac{\ln^2 x}{x}$.

12. a)
$$x = \frac{t^2}{t-1}$$
, $y = \frac{t}{t^2-1}$; 6) $y = \frac{2}{3}x + (x+2)^{2/3}$; B) $y = \frac{4x}{\sqrt{x^2+1}} - \frac{x}{2}$.

13. a)
$$x = \frac{1}{\cos t}$$
, $y = \frac{1}{\sin 2t}$; 6) $y = (x+2)e^{1/x}$; B) $y = \sqrt{|3x^2 - x^3|}$.

14. a)
$$x = \frac{2t}{1-t^2}$$
, $y = \frac{t^2}{1-t^2}$; 6) $y = (x+1)^3 x^{2/3}$; B) $y = \frac{x}{2} - \arccos \frac{2x}{1+x^2}$.

15. a)
$$x = \frac{2t^2 + t}{(t+1)^2}$$
, $y = \frac{t}{t+1}$; 6) $y = \left(x^2(6-x)\right)^{1/3}$; B) $y = x - \sqrt{x^2 - 2x}$.

16. a)
$$x = \frac{2t - t^2}{t - 1}$$
, $y = \frac{t^2}{t - 1}$; 6) $y = x - \frac{3}{2}(x - 1)^{2/3}$; B) $y = \sqrt{\frac{x^2}{3} - \frac{2}{3x}}$.

17. a)
$$x = \frac{3t^2 + 1}{3t}$$
, $y = t + \frac{t^2}{3}$; 6) $y = \arccos \frac{2x}{1 + x^2} - \frac{2x}{5}$;
 B) $y = (1 - x)e^{3x + 1}$.

18. a)
$$x = \frac{1}{t^3 - t^2}$$
, $y = \frac{1}{t^2 - t}$; 6) $y = x^{2/3}e^{-x}$; B) $y = \sqrt{\frac{x^3}{x - 2}}$.

19. a)
$$x = \frac{t^2 + 1}{t}$$
, $y = \frac{t - 1}{t}$; 6) $y = x \ln^{2/3} x$; B) $y = \sqrt{x^3 - 3x}$.

20. a)
$$x = \operatorname{ctg} 2t$$
, $y = \frac{2\cos 2t - 1}{2\cos t}$; б) $y = \arcsin \frac{1 - x^2}{1 + x^2} - \frac{2x}{17}$; в) $y = \left(1 + x^2\right)e^{-x^2}$.

- 1. Как вычислить производную функции, заданной параметрически?
- 2. Как вычислить вторую производную параметрически заданной функции?
- 3. Что такое асимптота графика функции?
- 4. Как можно найти асимптоты?
- 5. Что такое монотонная функция?
- 6. Как связаны монотонность функции с ее производной?
- 7. Что такое экстремум функции?
- 8. Как звучит необходимое условие экстремума? Является ли оно достаточным?
- 9. Как звучат достаточные условия экстремума? Какими из них Вы пользовались при решении задач?
- 10. Какие типы экстремумов Вы знаете? Как, зная производную функции, определить тип экстремума?
- 11. Верно ли, что если производная данной функции сохраняет знаки в левосторонней и правосторонней окрестности данной точки, и эти знаки различны, то в этой точке экстремум? А если к тому же функция непрерывна в данной точке?
- 12. Верно ли, что если в данной точке экстремум, то производная сохраняет знаки в левосторонней и правосторонней окрестности данной точки, и эти знаки различны?

- 13. Что такое выпуклая и вогнутая функция (или выпуклая вверх и выпуклая вниз)?
- 14. Что такое точка перегиба графика функции?
- 15. Как определить характер выпуклости?
- 16. Как найти точки перегиба?

Задание 6. Задача на наибольшее или наименьшее значение

- 1. Около полушара радиуса R описан прямой круговой конус так, что их основания лежат в одной плоскости и концентричны. Найти параметры конуса, при которых его объем будем наименьшим.
- 2. В куб с ребром *а* вписан прямой круговой цилиндр так, что его ось совпадает с диагональю куба, а окружности оснований касаются граней куба. При каких размерах цилиндра его объем будет наибольшим?
- 3. Определить размеры ведра без крышки данного объема цилиндрической формы, чтобы на его изготовление ушло наименьшее количество материала?
- 4. Найти размеры конуса наименьшего объема, описанного около шара заданного радиуса.
- 5. На странице книги печатный текст должен занимать S см 2 . Верхние и нижние поля должны быть по a см, левое и правое по b см. Каковы должны быть размеры страницы для того, чтобы ее площадь была наименьшей?
- 6. Найти размеры цилиндра наибольшего объема, который можно вписать в шар заданного радиуса.

- 7. Окно заданного периметра P имеет форму прямоугольника, завершенного полукругом. При каких размерах сторон прямоугольника окно будет пропускать наибольшее количество света?
- 8. Найти основание и высоту равнобочной трапеции, которая при данной площади S имеет наименьший периметр. Угол при большем основании трапеции равен α .
- 9. Полотняный шатер объемом V имеет форму прямого кругового конуса. Каково должно быть отношение высоты конуса к радиусу основания, чтобы на шатер ушло наименьшее количество полотна?
- 10. Какова должна быть сторона основания правильной треугольной призмы данного объема V, чтобы полная поверхность призмы была бы наименьшей?
- 11. На верхнее основание прямого кругового цилиндра поставлен прямой конус с таким же основанием. Высота конуса равна радиусу основания. Сумма площадей боковых поверхностей цилиндра и конуса равна S. При каких размерах объем тела, составленного цилиндром и конусом, будет максимальным?
- 12. Равнобедренный треугольник, вписанный в окружность радиуса R, вращается вокруг прямой, которая проходит через его вершину параллельно основанию. Какова должна быть высота этого треугольника, чтобы тело, полученное в результате его вращения, имело наибольший объем?
- 13. Из круга вырезан сектор с центральным углом α . Из оставшейся части круга свернута воронка. При каком значении угла α вместимость воронки будет наибольшей?

- 14. Какова должна быть высота равнобедренного треугольника, вписанного в окружность диаметра α , чтобы площадь треугольника была наибольшей?
- 15. Резервуар, открытый сверху, имеет форму прямоугольного параллелепипеда с квадратным основанием. Каковы должны быть размеры резервуара, чтобы на его изготовление пошло наименьшее количество материала, если он должен вместить V литров воды?
- 16. Из квадратного листа жести площадью S требуется сделать открытую сверху коробку, вырезая по углам листа равные квадраты и загибая оставшиеся боковые полосы под прямым углом. Каковы должны быть стороны вырезаемых квадратов, чтобы вместимость коробки была наибольшей?
- 17. Из полосы жести шириной a требуется сделать открытый сверху желоб, поперечное сечение которого должно иметь форму равнобочной трапеции. Дно желоба имеет ширину b. Какова должна быть ширина желоба наверху, чтобы он вмещал наибольшее количество воды?
- 18. Тело представляет собой прямой круговой цилиндр, завершенный сверху полушаром. При каких линейных размерах это тело будет иметь наименьшую полную поверхность, если его объем равен V?
- 19. Из круглого бревна диаметром α вытесывается балка с прямоугольным поперечным сечением, основание которого равно b, а высота h. При каких размерах балка будет иметь наибольшую прочность, если прочность пропорциональна bh^2 ?
- 20. Периметр равнобедренного треугольника равен 2p. Каковы должны быть стороны, чтобы объем тела, образованного вращением этого треугольника вокруг его основания, был наибольшим?

- 1. Верно ли, что если в данной точке производная функции равна нулю, то в этой точке функция имеет экстремум?
- 2. Как звучит необходимое условие экстремума функции? Дифференцируемой функции?
- 3. В каких точках может достигаться наибольшее и наименьшее значение функции? Непрерывной функции?

Задание 7. Формула Тейлора

Вычислить пределы с помощью формулы Тейлора (2 предела в каждом варианте):

1. a)
$$\lim_{x\to 0} \frac{\left(\sqrt{\cos 2x + \sin 2x} - e^x\right)/x + 2x(2-x)/(2+x)}{(\ln \cosh x)/\sin x - (1/2)\arcsin x};$$

6)
$$\lim_{x \to +\infty} \left(x \ln(1+x) - x \ln x + \arctan \frac{1}{2x} \right)^{x^2 \arctan x}.$$

2. a)
$$\lim_{x\to 0} \frac{\left((1+3x)^{1/3}-1\right)/\operatorname{tg} x - e^{-\operatorname{sh} x} - x^2(x+5)/(x+6)}{\operatorname{ln}\left(2e^{x^2}-1\right)/\operatorname{sin} x - \operatorname{arctg} 2x};$$

6)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{2}{x^2 - 1} \right)^{1/\sin(x-1)}$$

3. a)
$$\lim_{x\to 0} \frac{\sqrt{1+\sin x} - (1/2) \operatorname{tg} x + x^2/8 - 1}{e^x - \sqrt{1+2x} - x^2};$$

6)
$$\lim_{x \to 0} \left(\frac{\sin(2x + x^3) - \sin(x + 2x^3)}{x} \right)^{1/(2\ln(1+x^2) - \ln^2(1+x))}$$
.

4. a)
$$\lim_{x \to 0} \frac{x + \operatorname{ch} x - e^{\arcsin x}}{\operatorname{tg} x + \sqrt[3]{1 - 3x} - 2\cos x + 1};$$

6)
$$\lim_{x \to 0} \left(\sqrt[3]{1 + 2x + x^3} - \frac{2x}{2x + 3} \right)^{1/x^3}$$
.

5. a)
$$\lim_{x \to 0} \frac{e^{x/(1-x)} - \sin x - \cos x}{\sqrt[6]{1+x} + \sqrt[6]{1-x} - 2}$$
; 6) $\lim_{x \to 0} \left(\frac{\sqrt{\cos x}}{\sqrt{1+x} - (1/2)\sin x}\right)^{1/\arcsin x^2}$.

6. a)
$$\lim_{x \to 0} \frac{\sqrt{2x + \cos 2x} - e^{\lg x} + 2x^2}{2\sin x - 2\ln(1+x) - x^2}$$
; 6) $\lim_{x \to 0} \left(\frac{sh(x + \sin x)}{\sin x + \arcsin x}\right)^{\operatorname{ctg}^2 x}$.

7. a)
$$\lim_{x \to 0} \frac{\ln(\sin x/x) + \cosh(x/\sqrt{3}) - 1}{\sinh x - \ln(x + \sqrt{1 + x^2})};$$

6)
$$\lim_{x \to 0} \left(1 + \frac{1}{2} \ln \frac{1+x}{1-x} - \arctan x \right)^{1/\arcsin x^3}$$
.

8. a)
$$\lim_{x\to 0} \frac{3 \arctan \sin x - \operatorname{tg} \sin 3x}{\sqrt{1+x} \sin x^3 - x^2 \ln (1-16x/9)};$$

6)
$$\lim_{x \to 0} \left(\frac{e^x - x}{\sqrt{1 + x^2} - \ln(1 + x^3)} \right)^{1/x^3}$$

9. a)
$$\lim_{x\to 0} \frac{\sin\sqrt{1+x^3}-\sin 1}{\sqrt[5]{1-2x\ln\cos x}-1}$$
; 6) $\lim_{x\to 0} \left(\sqrt{1-2x+3x^2}+x(1-\sin x)\right)^{\operatorname{ctg}^3 x}$.

10. a)
$$\lim_{x\to 0} \frac{\sqrt[4]{16+x^2}-2e^{x^2}}{1+\ln{(1+x^2)}-\cos{x}}$$
; 6) $\lim_{x\to 0} \left(e^{x-x^2}-x\sqrt[3]{1-3x/2}\right)^{1/(\log{x}-x)}$.

11. a)
$$\lim_{x\to 0} \frac{x\sqrt{e^x-\sqrt{1+2x}-\sqrt[3]{x^6-x^7}}}{(1/e)(1+x)^{1/x}-\sqrt{1-x+7x^2/6}};$$
 6) $\lim_{x\to 0} \left(\frac{\arctan(\sinh x)}{\sin x}\right)^{1/\sin^4 x}.$

12. a)
$$\lim_{x \to 0} \frac{x\sqrt{\ln(1+x) + \cos x + 4x^3/3 - \sqrt[3]{1+3x}}}{\sqrt{1-x+x^2/2} - (\cos x)^{1/x}};$$

6)
$$\lim_{x\to 0} \left(1 + \operatorname{tg} x \arctan x - x^2 \operatorname{ch}^2 x\right)^{1/(1-\cos x)^2}$$
.

13. a)
$$\lim_{x\to 0} \frac{\sin(xe^x) + \sin(xe^{-x}) - 2x - 2x^3/3}{x^5}$$
;

6)
$$\lim_{x \to 0} \left(\log_2 \left(\frac{3 - 4x}{1 - 2x} - \frac{1 + 4x}{1 + 2x} \right) \right)^{2 \operatorname{sh} x / (x - \sin x)}$$
.

14. a)
$$\lim_{x\to 0} \frac{\sin(x\cos x) + x\ln(1+2x^2/3) - x}{\sqrt{1+x^5} - 1}$$
;

6)
$$\lim_{x\to 0} \left(\cos\sin x + (1/2) \arctan x^2\right)^{1/\sin x^4}$$
.

15. a)
$$\lim_{x\to 0} \frac{\sqrt[3]{1-x^2/2} - e^{-x^2/6}}{x^2 \ln(1+x) - (\lg x^3) \cosh(x/2)};$$

6)
$$\lim_{x\to 0} \left(\frac{2x}{\sin 2x} - \frac{2}{3}x^2 \right)^{x^2/\left(x^2 - \arctan x^2\right)}$$
.

16. a)
$$\lim_{x\to 0} \frac{\ln(\cos x + x\sin x) - (x^2/2)e^x}{(x/2)\sqrt[3]{1-x} + \sqrt{1+x^2/3} - \sin(x/2) - 1};$$

6)
$$\lim_{x \to 0} \left(\sqrt[3]{1 + 3x} - \operatorname{tg} \sin x + x^2 \right)^{1/(\operatorname{arctg} x - x \cos x)}$$
.

17. a)
$$\lim_{x\to 0} \frac{e^{\cos x} - e\sqrt[3]{1 - 4x^2}}{(1/x)\arcsin 2x - 2\operatorname{ch} x^2}$$
;

6)
$$\lim_{x \to 0} \left(1 + \arcsin x^3 \right)^{e^x / \left(x \sqrt[3]{\cos x} - \sin x + \operatorname{tg}^3 x \right)}$$

18. a)
$$\lim_{x\to 0} \frac{\ln(\sqrt{1+2x} - \operatorname{tg} x) + (1/2)\operatorname{arctg} x^2}{xe^{x^2} - \sin x}$$
;

6)
$$\lim_{x \to 0} \left(\frac{6}{\ln(1+3\sin^2 x)} - \frac{4}{\ln(2-\cos 2x)} \right)^{1/x^2}$$
.

19. a)
$$\lim_{x\to 0} \frac{\ln(1+x) + (1/2) \sin x^2 - x}{\sqrt{1+ \log x} - \sqrt{1+ \sin x}}$$
; 6) $\lim_{x\to +\infty} (\cot x)^{x^2(\log(1/x) - \arctan(1/x))}$.

20. a)
$$\lim_{x\to 0} \frac{\sqrt{1-2x}-e^{-x}+x^2\sqrt[3]{1+x}}{\sin^2 x - \ln \cosh^2 x}$$
;

6)
$$\lim_{x \to +\infty} \left(\frac{\sqrt{x^2 - x}}{x} + \frac{1}{4} \sin \frac{2}{x} \right)^{x^2 + \sin 3x}.$$

- 1. Как выглядят формулы Тейлора и Маклорена?
- 2. Какие формы остаточного члена Вы знаете?
- 3. Как определить количество слагаемых в формуле Тейлора, применяемой при вычислении предела?

- 4. Для любой ли функции можно написать формулу Тейлора?
- 5. Можно ли написать формулу Маклорена для функции f(x) = 1/x? А для функции $f(x) = \sin x/x$?

Задание 8. Равномерная непрерывность

Исследовать функцию f(x) на равномерную непрерывность на множестве X:

1.
$$f(x) = 3x - \frac{1}{2x+1}$$
, a) $X = [0, +\infty)$; 6) $X = (-0, 5; 0)$.

2.
$$f(x) = \frac{2}{x} + 3\sqrt{x+1}$$
, a) $X = [1, +\infty)$; 6) $X = (0, 1)$.

3.
$$f(x) = x + \sqrt{2x} + \frac{1}{3x}$$
, a) $X = [2, +\infty)$; 6) $X = (0, 1)$.

4.
$$f(x) = x - \frac{2}{x^2}$$
, a) $X = [1, +\infty)$; 6) $X = (0, 1)$.

5.
$$f(x) = 2\sqrt{x} + \frac{1}{\sqrt{x-3}}$$
, a) $X = [4, +\infty)$; 6) $X = (3, 5)$.

6.
$$f(x) = \frac{x^2}{x+1}$$
, a) $X = [0, +\infty)$; 6) $X = (-1, 0)$.

7.
$$f(x) = \sqrt{2x+1} + \frac{1}{3x}$$
, a) $X = [1, +\infty)$; 6) $X = (0, 2)$.

8.
$$f(x) = 2x - \sqrt{x} + \frac{1}{x-1}$$
, a) $X = [2, +\infty)$; 6) $X = (0, 1)$.

9.
$$f(x) = \frac{x^3 - 4}{x^2}$$
, a) $X = [1, +\infty)$; 6) $X = (0, 1)$.

10.
$$f(x) = \sqrt{2x+1} - \frac{1}{\sqrt{x}}$$
, a) $X = [1, +\infty)$; 6) $X = (0, 1)$.

11.
$$f(x) = \frac{x^2 + 1}{x - 1}$$
, a) $X = [3, +\infty)$; 6) $X = (1, 3)$.

12.
$$f(x) = 2\sqrt{x} + \frac{1}{3-2x}$$
, a) $X = [2, +\infty)$; 6) $X = (0; 1, 5)$.

13.
$$f(x) = 5x + \sqrt{x+3} + \frac{1}{x-1}$$
, a) $X = [2, +\infty)$; 6) $X = (0; 1)$.

14.
$$f(x) = 2x - \frac{1}{x^2}$$
, a) $X = [1, +\infty)$; 6) $X = (0, 1)$.

15.
$$f(x) = \frac{2x+1}{\sqrt{x}}$$
, a) $X = [1, +\infty)$; 6) $X = (0, 1)$.

16.
$$f(x) = 2x + \frac{1}{1 - 3x}$$
, a) $X = [1, +\infty)$; 6) $X = (1/3, 1)$.

17.
$$f(x) = \frac{1}{x+1} + \sqrt{2x+4}$$
, a) $X = [1, +\infty)$; 6) $X = (-1, 0)$.

18.
$$f(x) = \sqrt{x+1} + \frac{1}{(x-1)^2}$$
, a) $X = [2, +\infty)$; 6) $X = (1, 2)$.

19.
$$f(x) = 2x + \frac{1}{(x-1)^2}$$
, a) $X = [2, +\infty)$; 6) $X = (1, 2)$.

20.
$$f(x) = \sqrt{2x+6} + \frac{1}{\sqrt{x+2}}$$
, a) $X = [0, +\infty)$; 6) $X = (-2, 0)$.

- 1. Что означает, что функция равномерно непрерывна на данном множестве?
- 2. Как звучит условие того, что функция не является равномерно непрерывной на данном множестве?
- 3. Как доказать, что функция не является равномерно непрерывной на данном множестве?
- 4. В чем отличие равномерной непрерывности на множестве от непрерывности на множестве?
- 5. Является ли равномерно непрерывная функция непрерывной на данном множестве? А наоборот?
- 6. Может ли разрывная функция быть равномерно непрерывной?
- 7. Как звучит теорема Кантора?

Список литературы

- [1] Т.В. Родина, Е.С. Трифанова. Курс лекций по математическому анализу I (Для направления «Прикладная математика и информатика»). Учебное пособие. СПб: СПбГУ ИТМО, 2010, 183 стр.
- [2] Т.В. Родина, Е.С. Трифанова. Задачи и упражнения по математическому анализу – I (Для направления «Прикладная математика и информатика»). Учебное пособие. СПб: СПбГУ ИТМО, 2011, 208 стр.

Миссия университета — генерация передовых знаний, внедрение инновационных разработок и подготовка элитных кадров, способных действовать в условиях быстро меняющегося мира и обеспечивать опережающее развитие науки, технологий и других областей для содействия решению актуальных задач.

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Кафедра высшей математики – крупнейшая в Санкт-Петербургском национальном исследовательском университете информационных технологий, механики и оптики. С момента основания на ней работали такие выдающиеся ученые, как И.П. Натансон, В.А. Тартаковский, В.Н. Попов, И.А. Молотков, А.Г. Аленицын, В.В. Жук и другие. Научные интересы сотрудников покрывают практически все разделы математики. На кафедре сложилась мощная научная школа по математическому моделированию сложных физических систем. В последнее время активно развивается направление, связанное с нанофизикой и нанотехнологиями, квантовым компьютером и квантовыми коммуникациями. Сотрудники кафедры активно участвуют в международных научных конференциях, работают в рамках Российских и международных научных проектов. Сложилось тесное научное сотрудничество с Санкт-Петербургским государственным университетом, Петербургским отделением Математического института имени В.А. Стеклова РАН, лабораторией физикохимии наносистем Института химии силикатов РАН и другими научными центрами как в России, так и за рубежом: университетами Марселя и Тулона (Франция), Ювяскиля (Финляндия), Гумбольдтовским университетом Берлина (Германия).

Родина Татьяна Васильевна Трифанова Екатерина Станиславовна Бойцев Антон Александрович

ТИПОВОЙ РАСЧЕТ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

для направления "Прикладная математика и информатика" 2 модуль

Учебно-методическое пособие

В авторской редакции Редакционно-издательский отдел Университета ИТМО Зав. РИО Н.Ф. Гусарова Подписано к печати 19.04.2016 Заказ № 3675 Тираж Отпечатано на ризографе