Estatística I

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

- Introdução
- Gráficos para Variáveis Qualitativas
 - Gráfico de Barras
 - Gráfico de Pareto
 - Gráfico de Barras Empilhadas
 - Gráfico de Setores.

2 / 26

Gráficos e tabelas são uma constante em periódicos como jornais diários, revistas, periódicos técnicos e relatórios, acadêmicos ou não. Apesar disso, não existe uma teoria complexa sobre gráficos nos livros de Matemática e/ou Estatística. Na verdade, não existe muita teoria. No entanto, essa é uma parte essencial na formação de qualquer profissional. Na verdade, é essencial para a formação de qualquer cidadão.

As técnicas, os conceitos e o conteúdo sobre visualizações gráficas fazem parte da Estatística Descritiva e, conforme Unwin (2015), é parte essencial da Análise de Dados.

As técnicas, os conceitos e o conteúdo sobre visualizações gráficas fazem parte da Estatística Descritiva e, conforme Unwin (2015), é parte essencial da Análise de Dados.

Estatística Descritiva

A Estatística Descritiva emprega métodos numéricos e gráficos para investigar padrões em um conjunto de dados, resumir informações e apresentar resultados de maneira apropriada.

As técnicas, os conceitos e o conteúdo sobre visualizações gráficas fazem parte da Estatística Descritiva e, conforme Unwin (2015), é parte essencial da Análise de Dados.

Estatística Descritiva

A Estatística Descritiva emprega métodos numéricos e gráficos para investigar padrões em um conjunto de dados, resumir informações e apresentar resultados de maneira apropriada.

Um Gráfico Estatístico é uma representação visual dos dados e, tem a vantagem de, rápida e concisamente, informar sobre sua variabilidade.

Cuidado!

Existem vários tipos e formatos de gráficos e, tanto a escolha quanto a forma como são visualizados podem ter uma influência importante nas conclusões tiradas em relação a análise dos dados. Não há limites para o número de possibilidades de interpretações. Isso significa que você precisa adquirir experiência na criação e visualização de gráficos para aprender a apreciar o que eles podem e não podem mostrar.

Cuidado!

Existem vários tipos e formatos de gráficos e, tanto a escolha quanto a forma como são visualizados podem ter uma influência importante nas conclusões tiradas em relação a análise dos dados. Não há limites para o número de possibilidades de interpretações. Isso significa que você precisa adquirir experiência na criação e visualização de gráficos para aprender a apreciar o que eles podem e não podem mostrar.

Não é o que você olha que importa, é o que você vê.

Henry David Thoreau

Assim, a depender do tipo de variável considerada, temos diferentes tipos de gráficos. Veremos alguns a partir de agora!

Tomemos como ilustração a variável Y: grau de instrução da Tabela CompanhiaMB. Para organizar os dados provenientes de uma variável qualitativa, é usual fazer uma tabela de frequências, como a Tabela abaixo, antes de construir os gráficos.

Distribuições de Frequências

Tabela: Frequências e porcentagens dos 36 empregados da seção de orçamentos da Companhia MB segundo o grau de instrução.

Grau de	Frequência	Proporção	Porcentagem
instrução	n_i	f_i	100 <i>f</i> ;
Fundamental	12	0,3333	33,33
Médio	18	0,5000	50,00
Superior	6	0,1667	16,67
Total	36	1,0000	100,00

Fonte: Morettin and Bussab (2017)

8 / 26

O gráfico em barras consiste em construir retângulos ou barras, em que uma das dimensões é proporcional à magnitude a ser representada $(n_i \text{ ou } f_i)$, sendo a outra arbitrária, porém igual para todas as barras. Essas barras são dispostas paralelamente umas às outras, horizontal ou verticalmente. Na próxima Figura temos o gráfico em barras (verticais) para a variável "Grau de Instrução".

FIG 1: Gráfico em barras para a variável Y: grau de instrução.

Fonte: Morettin (2017)

FIG 1: Gráfico em barras para a variável Y: grau de instrução.

O conjunto de dados Fleiss93 do pacote meta contém detalhes de sete estudos sobre o uso de aspirina após infarto do miocárdio. A Figura abaixo representa um gráfico de barras dos tamanhos dos estudos, com os estudos ordenados pelo número total de pacientes.

Os gráficos de barras são talvez o tipo de visualização de dados mais comumente usado. No entanto, para a representação de variáveis qualitativas, há também o gráfico de setores, popularmente conhecido como gráfico de pizza.

Gráfico de Pareto

Um gráfico de Pareto é um gráfico de barras em que as barras são ordenadas da maior frequência de ocorrência para a menor frequência de ocorrência. No gráfico de Pareto também acrescentamos uma linha acima das barras com a frequência acumulada da variável.

Gráfico de Pareto

Gráfico de Barras Empilhadas

Gráfico de Barras Empilhadas

Gráfico de Setores

O gráfico em setores é comumente utilizado para representar parte de um todo, geralmente em percentagens. Ele é bastante apropriado para mostrar frequências de ocorrências de variáveis qualitativas.

Gráfico de Setores

https://maf105.github.io/

Gráfico em setores para a variável Y: grau de instrução.

1=Fundamental, 2=Médio, 3=Superior

Fonte: Morettin (2017)

Um procedimento alternativo para resumir um conjunto de valores, com o objetivo de se obter uma idéia da forma de sua distribuição, é o ramo-e-folhas. Uma vantagem deste diagrama é que não perdemos (ou perdemos pouca) informação sobre os dados em si.

Diagrama de ramos e folhas para variáveis contínuas

Quando o número de observações é relativamente grande, este diagrama pode ser útil.

Tabela: Diagrama de Ramos e Folhas da idade

Ramo	Folhas																
2	0	3	5	6	6	7	8	9									
3	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	9
2 3 4	0	0	1	1	2	3	3	4	6	8							
•	"	Ŭ	_	_	_	Ū	Ŭ	•	Ŭ	Ŭ							

Tabela: Diagrama de Ramos e Folhas dos Salários (× sal. Min)

Ramo	Folhas						
4	00	56					
5	25	73					
6	26	66	86				
7	39	44	59				
8	12	46	74	95			
9	13	35	77	80			
10	53	76					
11	06	59					
12	00	79					
13	23	60	85				
14	69	71					
15	99						
16	22		61				
17	26						
18	75						
19	40						
20							
21							
22							
23		30					

4 Há um destaque grande para o valor 23,30.

- Há um destaque grande para o valor 23,30.
- ② Os demais valores estão razoavelmente concentrados entre 4,00 e 19.40.

- Há um destaque grande para o valor 23,30.
- Os demais valores estão razoavelmente concentrados entre 4,00 e 19,40.
- Um valor mais ou menos típico para este conjunto de dados poderia ser, por exemplo, 10,00.

- Há um destaque grande para o valor 23,30.
- Os demais valores estão razoavelmente concentrados entre 4,00 e 19,40.
- Um valor mais ou menos típico para este conjunto de dados poderia ser, por exemplo, 10,00.
- Má uma leve assimetria em direção aos valores grandes; a suposição de que estes dados possam ser considerados como amostra de uma população com distribuição simétrica, em forma de sino (a chamada distribuição normal), pode ser questionada.

Referências

- P. A. Morettin and W. O. Bussab. *Estatística básica*. Saraiva Educação, 2017.
- A. Unwin. Graphical data analysis with R, volume 27. CRC Press, 2015.