Índice general

4.	La e	estructura de Espacio vectorial	1
	4.1.	La estructura de Espacio Vectorial	1
		4.1.1. Subespacios vectoriales	2
	4.2.	Operaciones con subespacios	3
		4.2.1. Suma directa	5
		4.2.2. Subespacios independientes	6
	4.3.	Dependencia e independencia lineal	7
	4.4.	Base y dimensión de un espacio vectorial	9
	4.5.	Espacio vectorial cociente: variedades	13
		4.5.1. Ecuaciones de subespacios y variedades	14
	4.6.	Ecuaciones de un cambio de base	15
	4.7.	Ejercicios	17

ii Índice general

La estructura de Espacio vectorial

4.1. La estructura de Espacio Vectorial

Sea V un conjunto cualquiera en el que están definidas una ley de composición interna + y una ley de composición externa \cdot , con dominio de operadores en \mathbb{R} (sin ninguna dificultad podría generalizarse la definición que sigue considerando un cuerpo cuanquiera \mathbb{K}).

Se dice que $(V, +, \cdot)$ es un **espacio vectorial** sobre \mathbb{R} si se verifican las siguientes propiedades: (V, +) es un grupo abeliano, es decir, la operación + verifica las propiedades

- Asociativa: $\forall u, v, w \in V$, (u+v)+w=u+(v+w).
- Elemento neutro: Existe $0 \in V$ tal que 0 + u = u + 0 = u, $\forall u \in V$.
- Elementos simétricos: $\forall u \in V, \exists (-u) \in V \text{ tal que } u + (-u) = (-u) + u = 0.$
- Conmutativa: $\forall u, v \in V$, u + v = v + u.

La ley de composición externa · cumple las propiedades siguientes:

- $\forall \lambda, \mu \in \mathbb{R}, \ \forall u \in V, \quad (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u.$
- $\forall \lambda \in \mathbb{R}, \ \forall u, v \in V, \quad \lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v.$
- $\forall \lambda, \mu \in \mathbb{R}, \ \forall u \in V, \quad \lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u.$
- \bullet $\forall u \in V, \qquad 1 \cdot u = u.$

En este contecto, los elementos de \mathbb{R} se llaman escalares. Los de V, vectores.

Ejemplos 4.1.

1. El conjunto

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\}$$

es un espacio vectorial sobre \mathbb{R} con las operaciones

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

 $\lambda \cdot (x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$

Este es el espacio vectorial con el que nosotros trabajaremos casi siempre.

- 2. También es espacio vectorial sobre \mathbb{R} el conjunto $\mathcal{M}_{m \times n}(\mathbb{R})$ de las matrices de orden $m \times n$ con las operaciones ya conocidas de suma de matrices y producto de una matriz por un escalar.
- 3. Asimismo, el conjunto de los polinomios de grado menor o igual que n con coeficientes reales, $\mathbb{R}_n[x]$, es espacio vectorial real con las operaciones de sobra conocidas.

Propiedades inmediatas

Sean $u,v\in V$ y $\lambda,\mu\in\mathbb{R}$ vectores y escalares cualesquiera. Se verifican las propiedades

- $0 \cdot u = 0.$
- $\lambda \cdot 0 = 0.$
- Si $\lambda \cdot u = 0$, entonces $\lambda = 0$ ó u = 0.
- $-(\lambda \cdot u) = (-\lambda) \cdot u = \lambda \cdot (-u).$
- Si $\lambda \cdot u = \mu \cdot u$ y $u \neq 0$, entonces $\lambda = \mu$.
- Si $\lambda \cdot u = \lambda \cdot v$ y $\lambda \neq 0$, entonces u = v.

4.1.1. Subespacios vectoriales

Sea $(V, +, \cdot)$ un espacio vectorial. Si $U \subseteq V$ es un subconjunto no vacío de V, decimos que es un **subespacio vectorial** si es espacio vectorial con las mismas operaciones que están definidas en V.

Para comprobar si un subconjunto $U \subseteq V$ de un espacio vectorial es subespacio vectorial no hace falta demostrar que se verifican todas las propiedades que vimos en la definición de éste. Basta ver las siguientes dos condiciones:

- U es un subgrupo de V, es decir, dados $u, v \in U$, se tiene que $u v \in U$.
- La restricción a U de la ley externa sobre V es también una ley externa sobre U, es decir, si $\lambda \in \mathbb{R}, u \in U$, entonces $\lambda \cdot u \in U$.

Las propiedades de espacio vectorial están garantizadas si se cumplen las dos precedentes.

El siguiente resultado permite comprobar, a partir de una sola condición, si un subconjunto no vacío U de V es o no subespacio vectorial.

Teorema 4.1. Sea $(V, +, \cdot)$ un espacio vectorial sobre \mathbb{R} .

La condición necesaria y suficiente para que $U \subseteq V$ sea un subespacio vectorial de V es que $\forall u, v \in U, \ \forall \lambda, \mu \in \mathbb{R}, \ \ se \ tenga \ que$

$$\lambda \cdot u + \mu \cdot v \in U$$
.

Ejemplos 4.2.

1. El subconjunto

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \subset \mathbb{R}^3$$

es subespacio vectorial.

Solución: En efecto, dados $(x, y, z), (x', y', z') \in U_1$ y $\lambda, \mu \in \mathbb{R}$ se verifica que

$$\lambda \cdot (x, y, z) + \mu \cdot (x', y', z') = (\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$$

Y puesto que

$$\lambda x + \mu x' + \lambda y + \mu y' + \lambda z + \mu z' = \lambda (x + y + z) + \mu (x' + y' + z') = \lambda 0 + \mu 0 = 0,$$

se deduce que $\lambda \cdot (x, y, z) + \mu \cdot (x', y', z') \in U_1$.

2. El subconjunto

$$U_2 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 2\} \subset \mathbb{R}^3$$

no es subespacio vectorial.

Solución: Para comprobarlo, basta observar que

$$(1,1,0),(3,0,-1) \in U_2$$

y sin embargo,

$$(1,1,0) + (3,0,-1) = (4,1,-1) \notin U_2.$$

4.2. Operaciones con subespacios

Intersección de subespacios

Sea $(V, +, \cdot)$ un espacio vectorial y sean U_1 y U_2 dos subespacios vectoriales.

La intersección

$$U_1 \cap U_2 = \{v \in V : v \in U_1 \text{ y } v \in U_2\}$$

es subespacio vectorial.

En general, si $\{U_i : i \in I\}$ es una familia (finita o no) de subespacios, el conjunto

$$\bigcap_{i \in I} U_i = \{ v \in U_i, \ \forall i \in I \}$$

es subespacio vectorial.

Ejemplo 4.3. Halla la intersección de los subespacios de \mathbb{R}^3

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 : x = 0\},\$$

$$U_2 = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}.$$

Solución: Se tiene que

$$U_1 \cap U_2 = \{(x, y, z) \in \mathbb{R}^3 : x = 0, z = 0\} = \{(0, y, 0) \in \mathbb{R}^3 : y \in \mathbb{R}\}.$$

 $U_1 \cap U_2$ es subespacio vectorial.

Suma de subespacios

La unión de dos subespacios $U_1 \cup U_2$ no es, en general, subespacio.

Para comprobarlo, basta considerar los subespacios de \mathbb{R}^3

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 : x = y = 0\}, \quad U_2 = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}.$$

Por definición de unión,

$$U_1 \cup U_2 = \{(x, y, z) \in \mathbb{R}^3 : (x, y, z) \in U_1 \text{ \'o } (x, y, z) \in U_2\}.$$

y se verifica entonces que $(0,0,2) \in U_1 \cup U_2$, $(3,0,0) \in U_1 \cup U_2$ y sin embargo, $(0,0,2) + (3,0,0) = (3,0,2) \notin U_1 \cup U_2$.

Así pues, $U_1 \cup U_2$ no es subespacio vectorial.

Definición 4.1. Se llama suma de los subespacios U_1 y U_2 al conjunto

$$U_1 + U_2 = \{v = u_1 + u_2 : u_1 \in U_1, u_2 \in U_2\}.$$

La suma de dos subespacios $U_1 + U_2$ es subespacio vectorial.

En general, si $(V, +, \cdot)$ es espacio vectorial y U_1, U_2, \ldots, U_n son subespacios de V, el conjunto

$$U_1 + U_2 + \dots + U_n = \sum_{i=1}^n U_i$$

es subespacio vectorial.

Ejemplo 4.4. Halla el subespacio suma de los subespacios de \mathbb{R}^3

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 : x = y = 0\},\$$

 $U_2 = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}.$

Solución: Se tiene que

$$U_1 + U_2 = \{(x, y, z) \in \mathbb{R}^3 : y = 0\}.$$

 $U_1 + U_2$ es subespacio vectorial.

Observaciones sobre las operaciones

Podemos observar, respecto de las operaciones que acabamos de definir, que

1. Dos subespacios U_1 y U_2 se llaman **disjuntos** si

$$U_1 \cap U_2 = \{0\}.$$

- 2. El subespacio intersección de dos o más subespacios es el **mayor subespacio contenido** a la vez en todos y cada uno de ellos.
- 3. El subespacio $U = \sum_{i=1}^{n} U_i$ es el **menor subespacio que contiene** a todos los subespacios U_i .

4.2.1. Suma directa

Sea $(V, +, \cdot)$ espacio vectorial y U_1, U_2, \ldots, U_n subespacios de V.

Definición 4.2. Se dice que la suma $U_1 + U_2 + \cdots + U_n$ es **directa**, y se escribe

$$U_1 \oplus U_2 \oplus \cdots \oplus U_n$$

si cada vector de la suma se expresa de forma única como suma de los elementos de U_i .

En este caso, se dice que los subespacios U_1, U_2, \ldots, U_n son **independientes**.

Ejemplos 4.5.

1. Halla la suma de los subespacios de \mathbb{R}^3

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 : x = y = 0\},\$$

 $U_2 = \{(x, y, z) \in \mathbb{R}^3 : y = z = 0\}.$

¿Es directa dicha suma?

Solución: Si escribimos los subespacios como

$$U_1 = \{(0, 0, z) \in \mathbb{R}^3\}$$
 y $U_2 = \{(x, 0, 0) \in \mathbb{R}^3\}$

vemos que

$$U_1 + U_2 = \{(x, y, z) \in \mathbb{R}^3 : y = 0\} = \{(x, 0, z) \in \mathbb{R}^3\}$$

Además, puede observarse que que cada elemento $(x, 0, z) \in U_1 + U_2$ sólo puede expresarse de la forma

$$(x,0,z) = (x,0,0) + (0,0,z)$$

como suma de elementos de U_1 y U_2 , de modo que la suma es directa.

2. Halla la suma de los subespacios de \mathbb{R}^3

$$U_1 = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}, \quad U_2 = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}.$$

¿Es directa dicha suma?

Solución: La suma es, como en el ejemplo anterior,

$$U_1 + U_2 = \{(x, y, z) \in \mathbb{R}^3 : y = 0\} = \{(x, 0, z) \in \mathbb{R}^3\}.$$

En este caso no es directa; por ejemplo, el elemento $(2,3,1) \in U_1 + U_2$ puede escribirse como

$$(2,3,1) = (0,2,1) + (2,1,0) = (0,1,1) + (2,2,0) = \dots$$

4.2.2. Subespacios independientes

Para comprobar si los subespacios U_1, U_2, \ldots, U_n son independientes puede ser útil la siguiente

Proposición 4.2. Sea $(V, +, \cdot)$ un espacio vectorial.

Los subespacios U_1, U_2, \ldots, U_n son independientes si, y sólo si, la expresión del vector $0 \in V$ como suma de vectores de dichos subespacios es única:

$$0 = 0 + 0 + \dots + 0$$

Cuando esto no se cumple es porque existen elementos $u_i \in U_i$, no todos nulos, tales que

$$u_1 + u_2 + \dots + u_n = 0.$$

Las siguientes proposiciones relacionan la suma y la intersección de subespacios.

Proposición 4.3. Sea $(V, +, \cdot)$ espacio vectorial.

Si U_1, U_2, \ldots, U_n son subspacios independientes, se verifica, $\forall i \neq j$, que $U_i \cap U_j = \{0\}$.

Esto significa que los subespacios independientes son disjuntos dos a dos.

La proposición recíproca no es cierta. Es fácil hallar ejemplos de tres subespacios, disjuntos dos a dos y tales que su suma no sea directa. No obstante, si se consideran únicamente dos subespacios, se tiene la siguiente

Proposición 4.4. Sea $(V, +, \cdot)$ un espacio vectorial.

Dos subespacios U_1 y U_2 de V son independientes si, y sólo si, son disjuntos.

En otras palabras, la proposición anterior nos dice que la suma $U_1 + U_2$ es directa si, y sólo si, $U_1 \cap U_2 = \{0\}$.

Definición 4.3. Sea $(V, +, \cdot)$ un espacio vectorial.

Dos subespacios U_1 y U_2 de V son **suplementarios** si son disjuntos y su suma es el espacio vectorial total V.

Así pues, dos subespacios U_1 y U_2 de V son suplementarios si, y sólo si,

$$U_1 \oplus U_2 = V$$
.

Que U_1 y U_2 sean suplementarios no significa que U_2 sea el único suplementario de U_1 . El ejemplo siguiente aclara este hecho.

Ejemplo 4.6. El suplementario de un subespacio no es único.

Dado el subespacio $U_1 = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\} \subset \mathbb{R}^2$, los subespacios

$$U_2 = \{(0, x) : x \in \mathbb{R}\}\ y\ U_3 = \{(x, x) : x \in \mathbb{R}\}\$$

son dos suplementarios distintos de U_1 , (y hay otros más), ya que se verifica

$$U_1 \cap U_2 = \{(0,0)\}, \quad U_1 \oplus U_2 = \mathbb{R}^2, U_1 \cap U_3 = \{(0,0)\}, \quad U_1 \oplus U_3 = \mathbb{R}^2.$$

4.3. Dependencia e independencia lineal

Sea $v \in V$ un elemento cualquiera de un espacio vectorial $(V, +, \cdot)$.

Definición 4.4. Se dice que v depende linealmente del sistema de vectores $\{u_1, u_2, \ldots, u_n\}$ o bien que es **combinación lineal** de los vectores u_1, u_2, \ldots, u_n , si existen n escalares $\lambda_i \in \mathbb{R}$ tales que

$$v = \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + \dots + \lambda_n \cdot u_n$$
.

Ejemplos 4.7.

1. El vector 0 depende linealmente de cualquier sistema de vectores.

En efecto, basta considerar la igualdad

$$0 = 0 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n$$

cualesquiera que sean los vectores v_i .

2. En \mathbb{R}^3 , el vector (3,10,-8) depende linealmente de los vectores (1,2,0), (2,0,2) y (1,2,-2)

En efecto, basta observar que

$$(3, 10, -8) = 2 \cdot (1, 2, 0) - 1 \cdot (2, 0, 2) + 3 \cdot (1, 2, -2).$$

3. El vector $(0,0,1) \in \mathbb{R}^3$ no es combinación lineal de los vectores (1,1,0) y (0,3,0).

Esto es así porque es imposible una igualdad del tipo

$$(0,0,1) = \lambda \cdot (1,1,0) + \mu \cdot (0,3,0),$$

pues debería ser $1 = \lambda 0 + \mu 0 = 0$.

Subespacio generado por un sistema de vectores

Definición 4.5. Sea $(V, +, \cdot)$ espacio vectorial.

Dado un sistema $S = \{u_1, u_2, \dots, u_n\}$ de n vectores de V, se llama **subespacio generado** por dicho sistema al subespacio

$$\langle S \rangle = \langle u_1, u_2, \dots, u_n \rangle = \langle u_1 \rangle + \langle u_2 \rangle + \dots + \langle u_n \rangle$$
$$= \{ \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + \dots + \lambda_n \cdot u_n : \lambda_i \in \mathbb{R} \}.$$

En ese caso, el sistema $\{u_1, u_2, \dots, u_n\} \subset V$ se llama **sistema generador** del subespacio $\langle S \rangle$, lo que justifica la notación

$$\langle S \rangle = \langle u_1, u_2, \dots, u_n \rangle.$$

 $\langle S \rangle$ es el menor subespacio que contiene a todos los vectores de S.

En particular, si $v \in V$ es un vector cualquiera, $\langle v \rangle = \{\lambda \cdot v : \lambda \in \mathbb{R}\} \subset V$ es el **subespacio** generado por v. Además se verifica que $\langle v \rangle = \langle \lambda \cdot v \rangle$, para cualquier $\lambda \in \mathbb{R}$.

Ejemplo 4.8. En \mathbb{R}^3 , el sistema $\{(1,0,0),(0,1,0)\}$ genera el subespacio

$$\begin{split} U &= \langle (1,0,0), (0,1,0) \rangle \\ &= \{ (x,y,z) \in \mathbb{R}^3 : (x,y,z) = \lambda(1,0,0) + \mu(0,1,0) \} \\ &= \{ (x,y,z) \in \mathbb{R}^3 : (x,y,z) = (\lambda,\mu,0) \} = \{ (x,y,z) \in \mathbb{R}^3 : z = 0 \}. \end{split}$$

Sistemas equivalentes

El subespacio $\langle u_1, u_2, \dots, u_n \rangle$ es el conjunto de las combinaciones lineales de los vectores u_1 , u_2, \dots, u_n ya que es inmediato comprobar que

$$v$$
 es combinación lineal de $\{u_1, u_2, \dots, u_n\} \Leftrightarrow v = \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + \dots + \lambda_n \cdot u_n \Leftrightarrow v \in \langle u_1, u_2, \dots, u_n \rangle.$

Definición 4.6. Dos sistemas de vectores $\{u_1, u_2, \dots, u_n\}$ y $\{v_1, v_2, \dots, v_m\}$ son **equivalentes** si, y sólo si,

$$\langle u_1, u_2, \dots, u_n \rangle = \langle v_1, v_2, \dots, v_m \rangle.$$

Observación 4.1. A propósito de esta definición podemos observar que

- Dos sistemas de vectores son equivalentes si, y sólo si, cada vector de uno de los sistemas es combinación lineal de los del otro y recíprocamente.
- Un sistema de vectores cualquiera $\{u_1, u_2, \dots, u_n\}$ es equivalente al sistema $\{v, u_2, \dots, u_n\}$, siendo $v = u_1 + \lambda_2 \cdot u_2 + \dots + \lambda_n \cdot u_n$.

Este hecho es consecuencia de la anterior observación, y puede enunciarse diciendo que si a un vector cualquiera de un sistema de vectores le sumamos una combinación lineal de los restantes vectores del sistema, el sistema así obtenido es equivalente al inicial.

■ Si el vector u_1 del sistema $\{u_1, u_2, \dots, u_n\}$ es combinación lineal de los restantes, entonces los sistemas $\{u_1, u_2, \dots, u_n\}$ y $\{u_2, \dots, u_n\}$ son equivalentes.

Ejemplo 4.9. En \mathbb{R}^3 los sistemas $\{(1,2,0),(-1,1,0)\}$ y $\{(1,0,0),(0,1,0)\}$ son equivalentes.

En efecto: Por ser

$$(1,2,0) = (1,0,0) + 2 \cdot (0,1,0), \qquad (-1,1,0) = -(1,0,0) + (0,1,0),$$

se deduce que

$$\langle (1,2,0), (-1,1,0) \rangle \subseteq \langle (1,0,0), (0,1,0) \rangle.$$

Recíprocamente, por ser

$$(1,0,0) = \frac{1}{3} \cdot (1,2,0) - \frac{2}{3} \cdot (-1,1,0), \qquad (0,1,0) = \frac{1}{3} \cdot (1,2,0) + \frac{1}{3} \cdot (-1,1,0),$$

se tiene que

$$\langle (1,0,0), (0,1,0) \rangle \subseteq \langle (1,2,0), (-1,1,0) \rangle$$

lo que completa la igualdad.

Por tanto, $\langle (1,0,0),(0,1,0)\rangle = \langle (1,2,0),(-1,1,0)\rangle$ y los sistemas son equivalentes.

Definición 4.7. Un sistema de vectores $\{u_1, u_2, \dots, u_n\}$ es linealmente independiente o es un sistema libre, si la expresión

$$\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + \cdots + \lambda_n \cdot u_n = 0$$

implica que $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Si los vectores $\{u_1, u_2, \dots, u_n\}$ no son independientes, se dice que son **linealmente dependientes**; en tal caso se puede escribir

$$\lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + \dots + \lambda_n \cdot u_n = 0$$

con algún $\lambda_i \neq 0$.

Es inmediato observar que

- Un sistema $\{u_1, u_2, \dots, u_n\}$ es linealmente dependiente si, y sólo si, uno de los vectores u_i es combinación lineal de los restantes.
- Un sistema $\{u_1,u_2,\ldots,u_n\}$ es linealmente independiente si, y sólo si, se verifica la igualdad

$$\langle u_1, u_2, \dots, u_n \rangle = \langle u_1 \rangle \oplus \langle u_2 \rangle \oplus \dots \oplus \langle u_n \rangle.$$

Propiedades

- 1. Cualquier vector no nulo forma él mismo un sistema linealmente independiente.
- 2. Si $0 \in \{u_1, u_2, \dots, u_n\}$ entonces el sistema es linealmente dependiente.
- 3. Si el sistema $\{u_1, u_2, \ldots, u_n\}$ es linealmente dependiente, también lo es el sistema $\{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_m\}$, cualesquiera que sean los vectores v_1, v_2, \ldots, v_m añadidos.
- 4. Si el sistema $\{u_1, u_2, \ldots, u_p, u_{p+1}, \ldots, u_n\}$ es linealmente independiente, también lo es el sistema $\{u_1, u_2, \ldots, u_p\}$ obtenido eliminando n-p vectores cualesquiera en el sistema inicial.
- 5. Si $\{u_1, u_2, \dots, u_n\}$ es linealmente independiente y $v \notin \langle u_1, u_2, \dots, u_n \rangle$ entonces el sistema $\{v, u_1, u_2, \dots, u_n\}$ es linealmente independiente.

Ejemplos 4.10.

1. El sistema $\{(1,0,0),(0,1,0),(2,-3,0)\}$ de \mathbb{R}^3 es linealmente dependiente, pues se observa que

$$(2, -3, 0) = 2 \cdot (1, 0, 0) + (-3) \cdot (0, 1, 0).$$

2. El sistema $\{(1,0,0),(0,1,0),(2,3,1)\}$ de \mathbb{R}^3 es linealmente independiente, ya que no se puede expresar ningún vector del sistema como combinación lineal de los otros dos.

En particular, la igualdad $(2,3,1) = \lambda(1,0,0) + \mu(0,1,0)$ es imposible, pues nos lleva a 1=0.

4.4. Base y dimensión de un espacio vectorial

Un espacio vectorial $(V, +, \cdot)$ se dice de **tipo finito** si admite un número finito de generadores. Si $(V, +, \cdot)$ es de tipo finito, existe un sistema finito $\{u_1, u_2, \ldots, u_n\} \subset V$ tal que

$$V = \langle u_1, u_2, \dots, u_n \rangle.$$

En ese caso, para cada $v \in V$ existen n escalares $\lambda_i \in \mathbb{R}$ tales que

$$v = \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2 + \dots + \lambda_n \cdot u_n.$$

Un espacio vectorial de tipo finito admite por lo general más de un sistema de generadores. De entre éstos, son particularmente importantes los que están formados por vectores linealmente independientes.

Definición 4.8 (Base). Se llama **base** de un espacio vectorial de tipo finito, a cualquier sistema de generadores formado por vectores linealmente independientes.

Si $(V, +, \cdot)$ es espacio vectorial y $B = \{e_1, e_2, \dots, e_n\}$ es una base, cada vector de V se puede expresar, **de forma única**, como combinación lineal de los vectores de B, es decir, $\forall v \in V$ existen escalares $x_1, x_2, \dots x_n \in \mathbb{R}$, **únicos**, tales que

$$v = x_1 \cdot e_1 + x_2 \cdot e_2 + \dots + x_n \cdot e_n.$$

Definición 4.9. Se llaman coordenadas de v en la base B a los escalares $x_1, x_2, \ldots, x_n \in \mathbb{R}$ de la expresión anterior.

Los vectores $x_i \cdot e_i$ se llaman **componentes** de v en la base B.

Se suele escribir el vector v como

$$v = (x_1, x_2, \dots, x_n),$$

confundiéndolo deliberadamente con el vector de \mathbb{R}^n formado por sus coordenadas en B.

Se verifican los siguientes teoremas:

Teorema 4.5. Todo espacio vectorial $(V, +, \cdot)$ de tipo finito, $V \neq \{0\}$, admite al menos una base.

Teorema 4.6. En un espacio vectorial de tipo finito, todas las bases tienen el mismo número de elementos.

Estos teoremas nos llevan a la siguiente definición:

Sea $(V, +, \cdot)$ un espacio vectorial de tipo finito.

Definición 4.10. Se llama dimensión de V al número de elementos que tiene una cualquiera de sus bases. Se representa por

$$\dim(V)$$
.

El espacio vectorial {0} es de tipo finito pero no tiene base. Por convenio, se escribe

$$\dim(\{0\}) = 0.$$

A partir de ahora, puesto que todo espacio vectorial de tipo finito es, en particular, un espacio vectorial de dimensión finita, hablaremos de espacios vectoriales de dimensión finita.

Ejemplo 4.11. El espacio vectorial \mathbb{R}^3 es de dimensión finita. En concreto $\dim(\mathbb{R}^3) = 3$. Una base es $C = \{(1,0,0), (0,1,0), (0,0,1)\}$. Se llama **base canónica**.

Las coordenadas de un vector en dicha base se obtienen de forma inmediata.

Así, si tomamos v = (1, 3, 5) resulta

$$(1,3,5) = 1 \cdot (1,0,0) + 3 \cdot (0,1,0) + 5 \cdot (0,0,1),$$

luego las coordenadas de v son (1,3,5).

En general, las coordenadas de un vector cualquiera w = (x, y, z) en la base canónica son (x, y, z).

Si consideramos la base B de \mathbb{R}^3 formada por los vectores $B = \{(1,1,1), (1,1,0), (1,0,0)\}$, las coordenadas de v en dicha base B son (5,-2,-2), ya que

$$(1,3,5) = 5 \cdot (1,1,1) - 2 \cdot (1,1,0) - 2 \cdot (1,0,0).$$

Podemos escribir entonces que $(1,3,5)_C = (5,-2,-2)_B$.

En general, puede probarse que las coordenadas del vector w = (x, y, z) respecto de la base B son (z, y - z, x - y), por lo que podemos escribir la igualdad

$$(x, y, z)_C = (z, y - z, x - y)_B.$$

Ejemplos 4.12.

- 1. Los vectores $e_1=(1,0,\ldots,0),\ e_2=(0,1,\ldots,0),\ \ldots,\ e_n=(0,0,\ldots,1)$ constituyen una base de \mathbb{R}^n que llamaremos **base canónica**.
- 2. $B = \{1, x, x^2, \dots, x^n\}$ es una base de $\mathbb{R}_n[x]$ que llamaremos base canónica de $\mathbb{R}_n[x]$.
- 3. El conjunto de matrices $\{E_{hk}: 1 \leq h \leq m, 1 \leq k \leq n\}$, donde $E_{hk} = (e_{ij})$ es la matriz tal que $e_{ij} = 1$ si (i,j) = (h,k) y $e_{ij} = 0$ si $(i,j) \neq (h,k)$, es una base del espacio vectorial real $\mathcal{M}_{m \times n}(\mathbb{R})$ a la que llamaremos base canónica de $\mathcal{M}_{m \times n}(\mathbb{R})$.

Propiedades

En las propiedades que siguen se supone que $(V, +, \cdot)$ es un espacio vectorial de dimensión finita, y que $\dim(V) = n$.

- \blacksquare Todo sistema de más de n vectores de V es linealmente dependiente.
- \blacksquare Todo sistema generador de V tiene al menos n vectores.
- Si U es subespacio propio de V, entonces $\dim(U) < \dim(V)$.
- Un sistema $B = \{e_1, e_2, \dots, e_n\}$ de n vectores es base de V si, y sólo si, se cumple una de las condiciones:
 - B es un sistema linealmente independiente.
 - ullet B es un sistema de generadores.
- Si $\{e_1, e_2, \ldots, e_n\}$ es una base de V y $\{v_1, v_2, \ldots, v_p\}$, con p < n es un sistema de vectores linealmente independiente, se pueden encontrar n p vectores de la base que, añadidos a los p vectores del sistema dado, forman una base de V.

Rango de un sistema de vectores

Sea $S = \{u_1, u_2, \dots, u_m\}$ un sistema de vectores de un espacio vectorial $(V, +, \cdot)$.

Definición 4.11. Se llama \mathbf{rango} de S y se escribe

$$\operatorname{rang}(S) = \operatorname{rang}(u_1, u_2, \dots, u_m),$$

al mayor número de vectores linealmente independientes del sistema.

Se verifica por tanto que

$$\operatorname{rang}(u_1, u_2, \dots, u_m) = \dim(\langle u_1, u_2, \dots, u_m \rangle).$$

Si dim(V) = n, puede comprobarse que

- Un sistema de m vectores es linealmente independiente si, y sólo si, su rango es m.
- \blacksquare Un sistema de m vectores de V es sistema generador de V si, y sólo si, su rango es n.
- ullet Un sistema de n vectores de V es base si, y sólo si, su rango es n.

Ejemplo 4.13. Para calcular el rango del sistema

$$S = \{v_1, v_2, v_3, v_4\} = \{(1, 2, 5, 0), (4, 1, 0, 3), (5, 3, 5, 3), (3, -1, -5, 3)\}$$

de \mathbb{R}^4 , recurrimos a las operaciones elementales:

$$\begin{pmatrix} 1 & 2 & 5 & 0 \\ 4 & 1 & 0 & 3 \\ 5 & 3 & 5 & 3 \\ 3 & -1 & -5 & 3 \end{pmatrix} \xrightarrow{v_2 - 4v_1} \begin{pmatrix} 1 & 2 & 5 & 0 \\ 0 & -7 & -20 & 3 \\ v_4 - 3v_1 & 0 & -7 & -20 & 3 \\ 0 & -7 & -20 & 3 \end{pmatrix}$$

A la vista de dicha matriz se deduce que rang(S) = 2 y además, de las igualdades

$$v_2 - 4v_1 = v_3 - 5v_1$$
 y $v_2 - 4v_1 = v_4 - 3v_1$

podemos deducir también que

$$v_3 = v_1 + v_2$$
 y $v_4 = v_2 - v_1$.

Se verifica la siguiente proposición:

Proposición 4.7 (Fórmula de las dimensiones). Si $(V, +, \cdot)$ es de dimensión finita y U_1 , U_2 son subespacios de V, se cumple

$$\dim(U_1) + \dim(U_2) = \dim(U_1 + U_2) + \dim(U_1 \cap U_2).$$

Una primera consecuencia de esta proposición es que la suma $U_1 + U_2$ de dos subespacios es directa si, y sólo si, se verifica

$$\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2).$$

Esta igualdad caracteriza a los subespacios independientes (pues, como sabemos, deben ser disjuntos) pero también a los suplementarios, que deben cumplir (aunque no basta con ello) la igualdad $\dim(U_1) + \dim(U_2) = n$.

La proposición que sigue proporciona un procedimiento para obtener parejas de subespacios suplementarios a partir de una base cualquiera de V.

Proposición 4.8. Sea $(V, +, \cdot)$ un espacio vectorial de dimensión finita.

 $Si \{e_1, e_2, \ldots, e_n\}$ es una base de V y se divide en dos sistemas disjuntos $\{e_1, \ldots, e_r\}$ y $\{e_{r+1}, \ldots, e_n\}$, los subespacios

$$U_1 = \langle e_1, \dots, e_r \rangle \ y \ U_2 = \langle e_{r+1}, \dots, e_n \rangle$$

son suplementarios.

Todo subespacio U de un espacio vectorial $(V, +, \cdot)$ de dimensión finita tiene al menos un suplementario; la proposición anterior permite obtener un procedimiento para hallarlo, que se indica a continuación:

- \blacksquare Se obtiene una base de U.
- ullet Se completa dicha base de U hasta obtener una base del espacio vectorial V.
- Los vectores añadidos para completar la base generan el suplementario buscado.

Ejemplo 4.14. Halla un suplementario U' del subespacio

$$U = \langle (1, 1, 2), (0, 2, 1), (2, 0, 3) \rangle$$

Solución: Para ello, procedemos como sigue:

lacksquare Obtenemos una base de U.

Una base puede ser $\{(1,1,2),(0,2,1)\}$ pues ambos vectores son linealmente independientes mientras que $(2,0,3) = 2 \cdot (1,1,2) - (0,2,1)$.

Por tanto,

$$U = \langle (1, 1, 2), (0, 2, 1) \rangle.$$

■ Se completa la base de U hasta obtener una base del espacio vectorial $V = \mathbb{R}^3$. Podemos añadir (0,0,1) (pues $(0,0,1) \notin U$) y se obtiene la base de \mathbb{R}^3

$$\{(1,1,2),(0,2,1),(0,0,1)\}.$$

 Los vectores añadidos para completar la base generan el suplementario buscado, de modo que

$$U' = \langle (0, 0, 1) \rangle.$$

Puesto que hay varias maneras de elegir la base de U y para cada una de ellas se puede obtener la base de \mathbb{R}^3 de infinitas formas distintas, el complementario de un subespacio no es único.

4.5. Espacio vectorial cociente: variedades

Sea $(V, +, \cdot)$ un espacio vectorial y U un subespacio de V. Si $v \in V$ es un elemento cualquiera, se llama **variedad lineal vectorial** o, simplemente, variedad vectorial, al conjunto

$$v + U = \{v + u : u \in U\}$$

Al subespacio U lo llamaremos **dirección** de la variedad, y la **dimensión** de la variedad es la dimensión de U.

En general, las variedades vectoriales no son subespacios. De hecho, v + U es un subespacio de V si, y sólo si, $v \in U$.

Es más, si $v \notin U$, el elemento neutro 0 de V no pertenece a la variedad v+U, luego v+U no puede ser subespacio.

Proposición 4.9. Sea V un espacio vectorial, U, W subespacios de V y $v, v' \in V$. Las variedades vectoriales v + W y v' + U son iguales si, y sólo si, W = U y $v - v' \in W = U$.

Se verifica que

- v + U = v' + U si, y sólo si, $v v' \in U$.
- Si $u \in v + U$ entonces u + U = v + U.
- 0 + U = U y, en general, si $u \in U$ entonces u + U = U.
- $V = \bigcup_{v \in V} (v + U).$

El conjunto $\{v + U : v \in V\}$ de todas las variedades vectoriales de dirección U se llama **conjunto cociente** de V por U y se representa por V/U.

$$V/U = \{v + U : v \in V\}$$

Este conjunto tiene estructura de espacio vectorial; para ello se definen las operaciones

- Suma: (v+U) + (v'+U) = (v+v') + U.
- Producto por escalares: $\lambda \cdot (v + U) = (\lambda \cdot v) + U$.

El espacio vectorial obtenido $(V/U, +, \cdot)$ se llama **espacio vectorial cociente**.

En este espacio vectorial, el elemento neutro de la suma es 0+U=U y el opuesto de v+U es -(v+U)=-v+U.

Proposición 4.10. Sea V un espacio vectorial de dimensión finita y U un subespacio de V. Entonces

$$\dim(V/U) = \dim(V) - \dim(U).$$

4.5.1. Ecuaciones de subespacios y variedades

Sea V tal que $\dim(V) = n$ y $B = \{v_1, \dots, v_n\}$ una base de V.

Sea $\{u_1, u_2, \ldots, u_m\}$ una base de U e identifiquemos cada vector u_j con su vector de coordenadas $(a_{1j}, a_{2j}, \ldots, a_{nj})_B$ en la base B. En esta situación, dado $u \in U$ existirán escalares $\lambda_1, \lambda_2, \ldots, \lambda_m$ tales que

$$u = \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_m u_m.$$

Por tanto

$$u \equiv (x_1, x_2, \dots, x_n)_B$$

= $\lambda_1(a_{11}, \dots, a_{n1})_B + \dots + \lambda_m(a_{1m}, \dots, a_{nm})_B$

Esta ecuación describe cómo es un elemento cualquiera de U. Se denomina ecuación vectorial de U en la base B.

Separando en ella coordenada a coordenada obtenemos las ecuaciones paramétricas de U en la base B, que vienen dadas por

$$\begin{cases} x_1 = \lambda_1 a_{11} + \lambda_2 a_{12} + \dots + \lambda_m a_{1m} \\ x_2 = \lambda_1 a_{21} + \lambda_2 a_{22} + \dots + \lambda_m a_{2m} \\ \dots & \dots & \dots \\ x_n = \lambda_1 a_{n1} + \lambda_2 a_{n2} + \dots + \lambda_m a_{nm} \end{cases}$$

Si eliminamos los parámetros λ_i de las ecuaciones anteriores, resultan n-m ecuaciones homogéneas que relacionan las coordenadas x_1, x_2, \ldots, x_n entre sí, a las que denominaremos ecuaciones implícitas del subespacio U en la base B.

Análogamente, si $v \in u+U$ y $(b_1,b_2,\ldots,b_n)_B$ es el vector de coordenadas de u en B, entonces

$$v \equiv (x_1, x_2, \dots, x_n)_B$$

= $(b_1, \dots, b_n)_B + \lambda_1(a_{11}, \dots, a_{n1})_B + \dots + \lambda_m(a_{1m}, \dots, a_{nm})_B$

es la **ecuación vectorial** de la variedad u + W en la base B.

Separando coordenada a coordenada obtenemos las **ecuaciones paramétricas** de u+U en la base B, que vienen dadas por

$$\begin{cases} x_1 = b_1 + \lambda_1 a_{11} + \lambda_2 a_{12} + \dots + \lambda_m a_{1m} \\ x_2 = b_2 + \lambda_1 a_{21} + \lambda_2 a_{22} + \dots + \lambda_m a_{2m} \\ \dots & \dots & \dots \\ x_n = b_n + \lambda_1 a_{n1} + \lambda_2 a_{n2} + \dots + \lambda_m a_{nm} \end{cases}$$

Eliminando los parámetros λ_i de las ecuaciones anteriores, resultan n-m ecuaciones (no todas homogéneas) que denominaremos **ecuaciones implícitas** de la variedad u+U en la base B.

4.6. Ecuaciones de un cambio de base

Sean $B = \{e_1, e_2, \dots, e_n\}$ y $B' = \{u_1, u_2, \dots, u_n\}$ bases de un espacio vectorial $(V, +, \cdot)$.

Supongamos que conocemos la expresión de cada vector de la base B como combinación lineal de los vectores de la base B' y consideremos dichas expresiones,

$$\begin{cases} e_1 = a_{11}u_1 + a_{21}u_2 + \dots + a_{n1}u_n \\ e_2 = a_{12}u_1 + a_{22}u_2 + \dots + a_{n2}u_n \\ \dots & \dots & \dots \\ e_n = a_{1n}u_1 + a_{2n}u_2 + \dots + a_{nn}u_n \end{cases}$$

Dado $v \in V$, en la base B podemos escribir

$$v = x_1e_1 + x_2e_2 + \dots + x_ne_n,$$

donde (x_1, x_2, \ldots, x_n) son las coordenadas de v en dicha base B.

Análogamente, en la base B' el vector v se expresa, con otras coordenadas, como

$$v = y_1 u_1 + y_2 u_2 + \dots + y_n u_n$$
.

Si en la expresión $v = x_1e_1 + x_2e_2 + \cdots + x_ne_n$ sustituimos cada vector e_i por su expresión en la nueva base y operamos, obtenemos de nuevo la expresión de v en la base B'.

Así, se obtiene

$$v = x_1e_1 + x_2e_2 + \dots + x_ne_n$$

$$= x_1(a_{11}u_1 + a_{21}u_2 + \dots + a_{n1}u_n) + x_2(a_{12}u_1 + a_{22}u_2 + \dots + a_{n2}u_n)$$

$$+ \dots + x_n(a_{1n}u_1 + a_{2n}u_2 + \dots + a_{nn}u_n)$$

$$= (x_1a_{11} + x_2a_{12} + \dots + x_na_{1n})u_1 + (x_1a_{21} + x_2a_{22} + \dots + x_na_{2n})u_2$$

$$+ \dots + (x_1a_{n1} + x_2a_{n2} + \dots + x_na_{nn})u_n$$

y como teníamos que $v=y_1u_1+y_2u_2+\cdots+y_nu_n$ y la expresión de v en la base B' es única, obtenemos las igualdades

$$\begin{cases} y_1 &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ y_2 &= a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots &\vdots &\vdots &\ddots &\vdots \\ y_n &= a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{cases}$$

que relacionan las coordenadas de v en ambas bases. Dichas igualdades pueden escribirse también como un producto de matrices:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{B'} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{B}$$

Esta igualdad se conoce con el nombre de **expresión matricial del cambio de base** y se escribe abreviadamente como

$$Y_{B'} = M_{BB'} \cdot X_B$$

donde X_B representa la matriz columna de las coordenadas en la base B de un vector $v \in V$, e $Y_{B'}$ es la matriz columna de las coordenadas en la base B' de dicho vector v.

La matriz

$$A = M_{BB'} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

se llama **matriz del cambio de base**, de la base B a la base B'. Sus columnas son las coordenadas de los vectores de B expresados en función de (como combinación lineal de) los de la base B'.

Ejemplo 4.15. Dada la base $B = \{v_1, v_2, v_3\}$ de \mathbb{R}^3 con

$$v_1 = (0, 1, -2), v_2 = (1, 1, 2), v_3 = (1, 1, 0),$$

determinar las coordenadas del vector $v \in \mathbb{R}^3$ respecto de B sabiendo que dicho vector tiene, respecto a la base canónica, las coordenadas (4, -1, 6).

4.7 Ejercicios 17

Solución: Si llamamos C a la base canónica, como tenemos los vectores de B expresados en función de los de C podemos escribir la expresión matricial del cambio de la base B a la base C, que viene dada por la igualdad

$$M_{BC} \cdot X_B = X_C$$

Puesto que en nuestro caso conocemos X_C , resulta

$$\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & 2 & 0 \end{array}\right) \cdot \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 4 \\ -1 \\ 6 \end{array}\right)$$

Multiplicando a la izquierda por la matriz inversa de M_{BC} , se obtiene

$$M_{BC} \cdot X_B = X_C \Rightarrow M_{BC}^{-1} \cdot M_{BC} \cdot X_B = M_{BC}^{-1} \cdot X_C$$

$$\Rightarrow X_B = M_{BC}^{-1} \cdot X_C$$

es decir, la matriz de paso de C a B es

$$M_{CB} = M_{BC}^{-1}$$

de modo que

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = M_{BC}^{-1} \cdot \begin{pmatrix} 4 \\ -1 \\ 6 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 1 & 0 \\ -1 & 1 & 1/2 \\ 2 & -1 & -1/2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \\ 6 \end{pmatrix} = \begin{pmatrix} -5 \\ -2 \\ 6 \end{pmatrix}$$

Por tanto, $v = -5v_1 - 2v_2 + 6v_3$, es decir, las coordenadas de v respecto de B son $(-5, -2, 6)_B$.

4.7. **Ejercicios**

- 1. Razonar, en cada caso, si \mathbb{R}^2 con las operaciones indicadas tiene o no estructura de espacio vectorial sobre \mathbb{R} .
 - a) (x,y) + (x',y') = (x+x',0)k(x, y) = (kx, ky)
- b) (x,y) + (x',y') = (x,y+y') $k(x,y) = (kx^2, ky)$
- c) (x,y) + (x',y') = (x+x',y+y')k(x, y) = (-kx, -ky)
- d) (x,y) + (x',y') = (x+x',y+y')k(x,y) = (kx,0)
- e) (x,y) + (x',y') = (x+x'+1,y+y'-2) f) (x,y) + (x',y') = (x+x',y+y')k(x,y) = (kx + k - 1, ky - 2k + 2)
 - k(x, y) = (x, y)
- 2. En el espacio vectorial $(\mathbb{R}[x], +, \cdot)$, razonar cuáles de los siguientes subconjuntos son subespacios vectoriales:
 - a) $S_1 = \{p(x) \in \mathbb{R}[x] : \operatorname{grado}(p(x)) < 3\}$

- b) $S_2 = \{ p(x) \in \mathbb{R}[x] : \text{grado}(p(x)) \le n \},$ $(n \in \mathbb{N})$
- c) $S_3 = \{p(x) \in \mathbb{R}[x] : \operatorname{grado}(p(x)) = 3\}$
- d) $S_4 = \{p(x) \in \mathbb{R}[x] : p(0) = 0\}$
- e) $S_5 = \{p(x) \in \mathbb{R}[x] : p(0) = 1\}$
- 3. Decir si los siguientes subconjuntos de \mathbb{R}^3 son o no subespacios del espacio vectorial usual $(\mathbb{R}^3,+,\cdot)$:
 - a) $S_1 = \{(x, 0, z) \in \mathbb{R}^3 : x, z \in \mathbb{R}\}$
- e) $S_5 = \{(x, y, z) \in \mathbb{R}^3 : 2x + y + z = 4\}$

- b) $S_2 = \{(x, y, 2) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$ f) $S_6 = \{(x, y, z) \in \mathbb{R}^3 : 2x + y + z = 0\}$ c) $S_3 = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \in \mathbb{Z}\}$ g) $S_7 = \{(x, y, z) \in \mathbb{R}^3 : x = \sqrt{2y}, y = z\}$
- d) $S_4 = \{(2x, x, -3x) \in \mathbb{R}^3 : x \in \mathbb{R}\}$ h) $S_8 = \{(x, y, z) \in \mathbb{R}^3 : x^2 = y = z\}$
- 4. En los casos del ejercicio anterior en que sea afirmativa la respuesta, obtener un sistema generador del correspondiente subespacio.
- 5. Probar que en el espacio vectorial usual $(\mathbb{R}^3, +, \cdot)$ se verifican las igualdades
 - a) $\langle (1,2,1), (1,3,2) \rangle = \langle (1,1,0), (3,8,5) \rangle$.
 - b) $\langle (1,1,1), (0,1,0) \rangle = \langle (2,3,2), (1,0,1) \rangle$.
- 6. Dados los sistemas de vectores de \mathbb{R}^4 , $S = \{u_1, u_2, u_3, u_4\}$ y $T = \{v_1, v_2, v_3, v_4, v_5\}$, siendo

$$\begin{array}{ll} u_1 = (1,2,1,1) & u_2 = (1,-1,2,-1) \\ u_3 = (2,5,1,3) & u_4 = (0,-1,3,-2) \\ v_1 = (-2,1,3,-2) & v_2 = (1,0,-1,1) \\ v_4 = (0,4,2,1) & v_5 = (1,0,1,0) \end{array}$$

comprueba si S y T son equivalentes y halla bases de los subespacios $\langle S \rangle$ y $\langle T \rangle$.

- 7. Hallar un vector $(x,y,z) \in \mathbb{R}^3$ que verifique x+y+z=8 y tal que pertenezca a los subspacios $W = \langle (1,2,3), (1,0,1) \rangle$ y $U = \langle (0,1,2), (2,1,2) \rangle$.
- 8. Dados los vectores de \mathbb{R}^4 $v_1 = (1, 1, 0, 0), v_2 = (1, 0, 1, 1)$ y $v_3 = (0, 0, 1, 0),$
 - a) Demuestra que son linealmente independientes.
 - b) Amplía el sistema $\{v_1,v_2,v_3\}$ a una base de \mathbb{R}^4 y halla las coordenadas del vector u = (2, 1, -1, 0) respecto de dicha base.
- 9. En el espacio vectorial de las funciones reales de variable real se consideran las funciones f_1, f_2, f_3 definidas por

$$f_1(x) = \text{sen}(x);$$
 $f_2(x) = \cos(x);$ $f_3(x) = \text{sen}(2x).$

Demostrar que constituyen un conjunto de vectores linealmente independientes.

4.7 Ejercicios

10. Razonar si las siguientes matrices constituyen un sistema libre o un sistema ligado en el espacio vectorial de las matrices cuadradas de orden 2:

$$\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix} \qquad \begin{pmatrix} 6 & -2 \\ 4 & 2 \end{pmatrix} \qquad \begin{pmatrix} -1 & -1 \\ 3 & 2 \end{pmatrix}$$

11. Sea \mathcal{M} el conjunto de matrices reales de la forma

$$\begin{pmatrix} a & 0 & b+c \\ 0 & a+b & 0 \\ b-c & 0 & a+b+c \end{pmatrix} \quad \text{con } a,b,c \in \mathbb{R}.$$

Demostrar que \mathcal{M} es un espacio vectorial con las operaciones usuales "suma de matrices" y "producto de un número real por una matriz" y hallar una base suya.

12. Sea V un espacio vectorial tal que

$$\langle v_1, v_2, \dots, v_n \rangle = V$$
 pero $\langle v_1, v_2, \dots, v_{k-1}, v_{k+1}, \dots, v_n \rangle \neq V$

para cada k = 1, 2, ..., n. Probar que $\{v_1, v_2, ..., v_n\}$ es una base de V.

13. En el espacio vectorial real usual \mathbb{R}^4 se consideran los vectores

$$u_1 = (1, 2, 3, 4), \quad u_2 = (2, 3, 4, 1), \quad u_3 = (3, 4, 1, 2), \quad u_4 = (4, 1, 2, 3).$$

Demostrar que forman una base de \mathbb{R}^4 y hallar las coordenadas de v=(1,1,1,1) respecto de ella.

14. En el espacio vectorial de los polinomios de grado menor o igual que 2 con coeficientes reales se consideran los polinomios

$$p_1 = 3 + x + 2x^2$$
, $p_2 = -1 + 2x^2$, $p_3 = 1 + x + 3x^2$ y $p = 2 + 3x - x^2$.

Se pide:

- a) Demostrar que $B' = \{p_1, p_2, p_3\}$ es una base del espacio.
- b) Hallar las coordenadas de p en la base usual $B = \{1, x, x^2\}$ y en la base B'.
- 15. En \mathbb{R}^3 se considera la base $B = \{(2,1,3), (1,1,0), (-1,0,0)\}.$
 - a) Si el vector v tiene coordenadas (3,1,-1) en esta base, ¿cuáles son sus coordenadas en la base canónica?
 - b) Si el vector w tiene coordenadas (2, -1, 3) en la base canónica, ¿cuáles son sus coordenadas en la base B?
- 16. Dadas las bases de \mathbb{R}^3

$$B = \{(2,0,0), (1,2,0), (3,2,1)\}$$
 y $B' = \{(0,0,1), (0,2,1), (6,2,4)\},$

hallar la expresión matricial del cambio de coordenadas de B a B'. ¿Cual sería la expresión matricial del cambio de coordenadas de B' a B?

17. En el espacio vectorial de las funciones reales de variable real se consideran las funciones f_1 , f_2 , f_3 , f_4 , f_5 y f_6 definidas por

$$f_1(x) = 1$$
 $f_2(x) = \sin(x)$ $f_3(x) = \cos(x)$
 $f_4(x) = \sin(x+1)$ $f_5(x) = \cos^2(x)$ $f_6(x) = \sin^2(x)$

- a) Hallar el rango del sistema $S = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ y dar una base del subespacio engendrado por S.
- b) Dar las coordenadas de los vectores de S respecto de la base hallada en a).
- c) Averiguar cuáles de los siguientes vectores pertenecen al anterior subespacio:

$$f(x) = \cos(2x),$$
 $g(x) = \sin(2x),$ $h(x) = \cos(x+1) \cdot \cos(x-1).$

18. Consideremos las bases de \mathbb{R}^4 , $B = \{u_1, u_2, u_3, u_4\}$ y $B' = \{v_1, v_2, v_3, v_4\}$.

Sabiendo que la relación entre ellas viene dada por $v_1 = u_1 + u_2$, $v_2 = -u_4$, $v_3 = u_2 - u_3$, $v_4 = 2u_1 + u_2$, hallar la matriz del cambio de base de B a B' y las ecuaciones del cambio de coordenadas. ¿Cuál sería la matriz del cambio de base de B' a B? ¿Y las ecuaciones del cambio de coordenadas?

Si un vector v tiene por coordenadas (3,1,2,6) en la base B, ¿cuáles serían sus coordenadas en la base B'?

Si otro vector w tiene por coordenadas (0,1,1,-1) en B', ¿cuáles serían sus coordenadas en la base B?

- 19. Sean S y T subespacios vectoriales de \mathbb{R}^3 y sea u un vector no nulo de \mathbb{R}^3 . Demostrar:
 - a) $S \cap \langle u \rangle \neq \{0\} \Rightarrow \langle u \rangle \subseteq S$.
 - b) $\dim(S) = \dim(T) = 2 \Rightarrow S \cap T \neq \{0\}.$
- 20. Consideremos \mathbb{R}^5 y $B=\{v_1,v_2,v_3,v_4,v_5\}$ una base suya. Sean U y W los siguientes subespacios:

$$U = \langle v_1 + v_2, v_1 - v_2, v_1 + v_3 \rangle, \qquad W = \langle v_1 + v_2 + v_3, v_1 + 2v_4 \rangle.$$

Obtener bases de U, W, U + W y $U \cap W$, así como la dimensión de cada uno de ellos.

21. Hallar una base, la dimensión, unas ecuaciones paramétricas y unas implícitas de M, N, $M \cap N$ y M + N, siendo M y N los subespacios de \mathbb{R}^4 definidos por

$$M = \{(x, y, z, t) \in \mathbb{R}^4 : (x, y, z, t) = (\alpha + 3\beta + 2\gamma, 3\alpha - \beta + \gamma, \alpha + \beta + \gamma, -5\beta + 2\gamma), \alpha, \beta, \gamma \in \mathbb{R} \}$$

$$N = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0, y - z - t = 0, x + 4y - 2z - 2t = 0 \}$$

- 22. Considérese el espacio vectorial $(\mathbb{R}_n[x], +, \cdot)$.
 - a) Demostrar que el sistema formado por el polinomio x^n y sus n primeras derivadas forman una base de $\mathbb{R}_n[x]$.

4.7 Ejercicios 21

- b) Considérese n=2; para $\mathbb{R}_2[x]$
 - 1) Ver si los vectores $p_1 = 1 + 3x + 5x^2$, $p_2 = -1 + 2x^2$ y $p_3 = 3 + 3x + x^2$ son linealmente independientes.
 - 2) Sean $q_1 = 1 + x^2$ y $q_2 = 1 x^2$. Tomar $W = \langle q_1, q_2 \rangle$. Demostrar que $q = 1 + 5x^2$ pertenece a W y expresarlo en función de q_1 y q_2 .
 - 3) Sea $U = \langle p_1, p_2, p_3 \rangle$. Obtener L = U + W y $S = U \cap W$, dando la dimensión y una base de cada uno de ellos.
- 23. En \mathbb{R}^3 se consideran los vectores $u_1 = (1, 2, 0), u_2 = (3, 1, 2)$ y $u_3 = (5, 5, 2)$.
 - a) Determinar el subespacio V generado por los vectores u_1 , u_2 y u_3 . Dar su dimensión y una base.
 - b) Determinar dos subespacios, W_1 y W_2 , de dimensiones distintas, tales que

$$V \cap W_1 = V \cap W_2 = \langle (-2, 1, -2) \rangle.$$

- c) Para W_1 se pide:
 - 1) Calcular $V + W_1$. ¿Es esta suma directa? ¿Es $V \cup W_1$ un subespacio?
 - 2) Dar un subespacio suplementario V' de V y otro W'_1 de W_1 .
 - 3) Calcular $V' \cap W_1$, una base y su dimensión.
- d) Igual que c) para W_2 .
- 24. Sea W el siguiente conjunto de matrices:

$$W = \left\{ \left(\begin{array}{cc} a+b+c & 0 \\ b & c \end{array} \right) : a, b, c \in \mathbb{R} \right\}$$

Demostrar que W es un subespacio vectorial del espacio $(\mathcal{M}_2(\mathbb{R}), +, \cdot)$. Dar una base de W. Dar un subespacio suplementario de W. ¿Podrías dar varios suplementarios distintos para W?

25. En el espacio vectorial \mathbb{R}^4 se consideran los subespacios

$$M = \langle (0,0,0,1) \rangle,$$

$$N = \{(x,y,z,t) : x - y + z - t = 0, \ x - 3z + t = 0, \ 2y - 8z + at = 0\}.$$

- a) Hallar el valor de "a" para que N tenga dimensión 2.
- b) Para los valores de "a" obtenidos en a)
 - 1) Dar unas ecuaciones implícitas y unas paramétricas para N.
 - 2) Hallar la dimensión, una base, unas ecuaciones implícitas y unas paramétricas para N+M.
 - 3) ¿Es directa la suma N + M? ¿Son suplementarios N y M?
- 26. Consideremos el espacio vectorial \mathbb{C}^4 sobre \mathbb{C} (con las operaciones usuales). Obtener la dimensión, una base, unas ecuaciones paramétricas y unas implícitas del subespacio generado por los vectores

$$u = (1, 2+i, 3-i, -i), \quad v = (-1, 1-i, -2+i, 4+i), \quad w = (1, 5+i, 4-i, 4-i).$$

27. En el espacio vectorial real $(\mathbb{R}^4, +, \cdot)$, sean S y H subespacios vectoriales de dimensión 2 tales que

$$S \cap H = \{(x, y, z, t) \in \mathbb{R}^4 : 2x + z = 0, \ y = 0, \ x + t = 0\}$$

$$S + H = \{(x, y, z, t) \in \mathbb{R}^4 : x = a - b + 2c, \ y = a + 2c, \ z = 2b + 2c, \ t = b; \ a, b, c \in \mathbb{R}\}$$

- a) Hallar S y H.
- b) Dar un subespacio T tal que S y T sean suplementarios.
- 28. En \mathbb{R}^3 se consideran los subconjuntos

$$H_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0, \ x + z = 0\}, \qquad H_2 = \{(x, y, z) \in \mathbb{R}^3 : x + \alpha y + \beta z = 0\}.$$

- a) Probar que son subespacios de \mathbb{R}^3 .
- b) Encontrar los valores de α y β tales que $H_1 \oplus H_2 = \mathbb{R}^3$.
- c) Hallar los valores de α y β para que $H_1 \cup H_2$ sea subespacio.
- d) Si tomamos $\alpha = 1$, calcular β y un vector v tales que $\langle H_1 \cup \{v\} \rangle = H_2$.
- 29. Considérese el espacio vectorial real $(\mathbb{R}_3[x], +, \cdot)$ y sea W el subespacio vectorial generado por los polinomios $p(x) = 1 + 2x^2 + x^3$ y $q(x) = 1 + 3x x^2 + 2x^3$.
 - a) Dado el vector $r(x) = 3 + 3x + 3x^2 + 4x^3$, ¿pertenece r(x) a W?
 - b) Hallar una base de W y completarla hasta una base de $\mathbb{R}_3[x]$. Obtener un suplementario para W.
 - c) Si la respuesta a a) fuese afirmativa, hallar las coordenadas de r(x) en una base de W. Si se considera como vector de $\mathbb{R}_3[x]$, ¿cuáles son sus coordenadas en la base hallada en b)? ¿Y sus coordenadas en la base $B = \{1, x, x^2, x^3\}$?
- 30. En el espacio vectorial $\mathbb{R}_3[x]$ se consideran los subconjuntos

$$U = \{p(x) \in \mathbb{R}_3[x] : p(-1) = 0\},\$$

$$V = \{p(x) \in \mathbb{R}_3[x] : p(x) = ax^3 + bx^2 + (a+b)x + 2b, \ a, b \in \mathbb{R}\}$$

Prueba que U y V son subespacios vectoriales y halla unas ecuaciones paramétricas y unas implícitas de los subespacios U, V, U + V y $U \cap V$.

31. Considera, en el espacio vectorial $\mathcal{M}_{2\times 2}(\mathbb{R})$ de las matrices cuadradas de orden 2 con elementos reales, los subespacios

$$V = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\} \qquad W = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

Halla la dimensión y una base de los subespacios V, W, V + W y $V \cap W$.

32. En \mathbb{R}^3 se consideran los subespacios

$$U = \{(x, y, z) : z = 0\}$$

$$V = \langle (0, 1, 1), (2, 0, 1), (2, 1, 2) \rangle$$

Halla la dimensión y una base de los subespacios U, V, U + V y $U \cap V$.

4.7 Ejercicios 23

33. En \mathbb{R}^4 se consideran los subespacios definidos por las ecuaciones que siguen:

$$V \equiv \begin{cases} x + y + z + t = 0 \\ 2x - y + 2z - t = 0 \\ 4x + y + 4z + t = 0 \end{cases} \qquad W \equiv \begin{cases} x = \alpha + \beta + 2\gamma \\ y = \beta + \gamma \\ z = -\alpha + \beta \\ t = 3\beta + 3\gamma \end{cases}$$

Halla la dimensión y una base de los subespacios V, W, V + W y $V \cap W$.

34. Se consideran los subespacios U y W de $(\mathbb{R}^4, +, \cdot)$ cuyos vectores (x, y, z, t) satisfacen, respectivamente,

- a) Determínese la dimensión y una base de cada uno de ellos.
- b) Hállense los subespacios $U \cap W$ y U + W. ¿Son U y W suplementarios?

35. Hállense unas ecuaciones paramétricas de la variedad vectorial E de $(\mathbb{R}^5, +, \cdot)$ definida por las ecuaciones implícitas

$$\begin{cases} x + y + z - 2t + 3u = 2 \\ 2x + y + 3z - 6t + 8u = 7 \\ x - 2y + 3z + t - 2u = 5 \\ 3x + 2y + 4z - 8t + 11u = 9 \end{cases}$$

36. Hállense unas ecuaciones implícitas de la variedad vectorial E de $(\mathbb{R}^4, +, \cdot)$ definida por las ecuaciones paramétricas

$$\begin{cases} x = 1 + \alpha + \beta \\ y = 2\alpha + \beta + \gamma \\ z = 2 + \alpha - \beta + 2\gamma \\ t = -1 + 3\alpha + 2\beta + \gamma \end{cases}$$

37. Hállese un sistema de generadores de la intersección de los subespacios V_1 y V_2 de \mathbb{R}^4 definidos por

$$V_{1} \equiv \left\{ \begin{array}{cccccccc} x & - & z & = & 0 \\ y & + & t & = & 0 \end{array} \right. \qquad V_{2} \equiv \left\{ \begin{array}{ccccccc} x_{1} & = & \alpha & + & \beta & + & \mu \\ x_{2} & = & & \beta & + & \mu \\ x_{3} & = & \alpha & & + & \mu \\ x_{4} & = & & \beta & + & \mu \end{array} \right.$$

38. Se consideran las siguientes variedades lineales de \mathbb{R}^4 :

$$V_{1} \equiv \begin{cases} x_{1} = 2 + \alpha + \beta + 2\mu \\ x_{2} = 1 - \alpha + \beta \\ x_{3} = 3 + 3\alpha + 3\alpha + 3\mu \\ x_{4} = 5 - \alpha + 2\beta + \mu \end{cases} \qquad V_{2} \equiv \begin{cases} x + y + z = 5 \\ 2x - y + z = 4 \\ 3y + z = 6 \end{cases}$$

Se pide:

- a) Hallar la dimensión, un elemento y la dirección de cada una de estas variedades.
- b) Localizar $V_1 \cap V_2$ y $V_1 + V_2$, dando un punto y la dirección de cada una.
- c) Obtener unas ecuaciones implícitas de V_1 , unas paramétricas de V_2 y unas paramétricas y otras implícitas de $V_1 \cap V_2$ y $V_1 + V_2$.