Correlated Counfounder and Propensity Score Matching

Miao Cai 2017-10-13

Creating simulation data

Random variables X_1 - X_3 have the correlation coefficient of 0.3; random variables X_4 - X_6 have the correlation coefficient of 0.5; random variables X_7 - X_9 have the correlation coefficient of 0.8. The true population parameters for X_1, X_4, X_7 is 2, parameters for X_2, X_5, X_8 is 3, parameters for X_3, X_6, X_9 is 1.

```
library(MASS)
library(Matrix)
library(GMCM)
## Warning: package 'GMCM' was built under R
## version 3.4.2
library(MatchIt)
## Warning: package 'MatchIt' was built under R
## version 3.4.2
# correlations
r1 = 0.3
r2 = 0.5
r3 = 0.8
# block diagnoal correlation matrix
m1 = matrix(r1, nrow=3, ncol=3)
diag(m1) = 1
m2 = matrix(r2, nrow=3, ncol=3)
diag(m2) = 1
m3 = matrix(r3, nrow=3, ncol=3)
diag(m3) = 1
cmat = bdiag(m1, m2, m3)
# covariates
x = data.frame(mvrnorm(n=1000, mu=rep(0,9), Sigma=cmat))
# pt: the probability to draw the binary treatment
pt = GMCM:::inv.logit(rowSums(x))
```

```
# tr: treatment
tr = rbinom(n = 1000, size = 1, prob = pt)
# y
y = rnorm(n = 1000,
                                                                                                                                                   \underline{\text{mean}} = \text{tr} * 3 + 3 \times x \times x + 2 \times x \times x + x \times x + x \times x + 2 \times x \times x + 2 \times x \times x + x \times
# constructing the data.frame
dat <- data.frame(x, tr, y)</pre>
```

Part 1 Nine Covariates

This part firstly uses all 9 correlated covariates to match the treatment and comparison group¹. Then I use linear regression to estimate the coefficients of $X_1 \sim X_9$, and Cohen's d is used to test effect size.²

```
library(effsize)
## Warning: package 'effsize' was built under R
## version 3.4.2
set.seed(666)
#1 select all comparison cases
# and randomly select 100 treatment cases
# and all the comparison group cases
data1 <- rbind(dat[dat$tr == 0,],</pre>
               dat[sample(which(dat$tr == 1), 100),])
#2 match the treatment and comparison groups - 1 to 1 match
matcheddata1 <- match.data(
  matchit(tr ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)
          data = data1,
          method = "nearest",
          ratio = 1))
#3.1 linear regression - y and treatment
lm1.1 <- lm(y ~ tr, data = matcheddata1)</pre>
knitr::kable(
  summary(lm1.1)$coefficients,
  caption = 'Linear regression between y and treatment',
  digits = 2
)
```

Table 1: Linear regression between y and treatment

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.52	0.54	0.96	0.34
tr	8.93	0.77	11.61	0.00

```
#3.2 linear regression - y, treatment and covariates
lm1.2 \leftarrow lm(y \sim tr + X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
             data = matcheddata1)
knitr::kable(
```

- ¹ Propensity score method is used to match the treatment group and the comparison group. I use the MatchIt package to do propensity score matching
- $^2\,\mathrm{Cohen}$'s d is calculated using the following formula:

Cohen's
$$d = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}}$$

,with the cohen.d() function in the effsize package. When paired is set, the effect size is computed using the approach suggested in (Gibbons et al. 1993) Gibbons, R. D., Hedeker, D. R., & Davis, J. M. (1993). Es $timation\ of\ effect\ size\ from\ a\ series$ of experiments involving paired comparisons. Journal of Educational Statistics, 18, 271-279.

```
summary(lm1.2)$coefficients,
  caption = 'Linear regression between y ,treatment and 9 covariates',
  digits = 2
)
```

Table 2: Linear regression between y , treatment and 9 covariates

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	0.02	0.10	0.20	0.84
tr	2.85	0.16	17.52	0.00
X1	3.10	0.07	43.77	0.00
X2	2.04	0.07	27.53	0.00
X3	0.99	0.08	12.55	0.00
X4	3.08	0.08	36.33	0.00
X5	1.96	0.08	23.10	0.00
X6	1.05	0.09	11.21	0.00
X7	2.98	0.13	23.09	0.00
X8	2.18	0.13	16.39	0.00
X9	0.89	0.14	6.54	0.00

```
#4 effect size - Cohen's d
cohen.d(matcheddata1$y[matcheddata1$tr == 1],
            matcheddata1$y[matcheddata1$tr == 0],
            paired = TRUE)$estimate
## [1] 1.22433
```

Part 2 Three Covariates

This part firstly uses 3 correlated covariates to match the treatment and comparison group. Then propensity scores are used to match the treatment groups and comparison groups. Linear regression and Cohen's d are conducted after propensity score matching.

```
#1 select all comparison cases
# and randomly select 100 treatment cases
# and all the comparison group cases
data2 <- rbind(dat[dat$tr == 0,],</pre>
               dat[sample(which(dat$tr == 1), 100),])
#2 match the treatment and comparison groups - 1 to 1 match
matcheddata2 <- match.data(</pre>
  matchit(tr \sim X1 + X4 + X7,
          data = data2,
          method = "nearest",
          ratio = 1))
#3.1 linear regression - y and treatment
lm2.1 \leftarrow lm(y \sim tr, data = matcheddata2)
knitr::kable(
  summary(lm2.1)$coefficients,
  caption = 'Linear regression between y and treatment',
  digits = 2
)
```

Table 3: Linear regression between y and treatment

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-0.42	0.55	-0.76	0.45
tr	10.44	0.78	13.40	0.00

```
#3.2 linear regression - yi¼ treatment and covariates
lm2.2 \leftarrow lm(y \sim tr + X1 + X4 + X7,
            data = matcheddata2)
knitr::kable(
  summary(lm2.2)$coefficients,
  caption = 'Linear regression between y ,treatment and 9 covariates',
  digits = 2
)
```

Table 4: Linear regression between y , treatment and 9 covariates

	Estimate	Std. Error	t value	$\Pr(> \mid \! t \mid)$
(Intercept)	-2.62	0.34	-7.77	0
tr	7.95	0.46	17.25	0
X1	3.30	0.24	13.56	0
X4	3.79	0.24	15.95	0
X7	4.36	0.30	14.40	0

#4 Cohen's d

```
cohen.d(matcheddata2$y[matcheddata2$tr == 1],
            matcheddata2$y[matcheddata2$tr == 0],
            paired = TRUE)$estimate
```

[1] 1.262105

Part 3 Integrating 9 Covariates into 3 Principal Components

This part integrates the 9 covariates into 3 principal components using one principal component analysis.³ Then propensity scores are used to match the treatment groups and comparison groups using the 3 principal components. Linear regression and Cohen's d are conducted after propensity score matching.

³ Prinpal component analysis is conducted using the base R function prcomp()

```
#1 select all comparison cases
# and randomly select 100 treatment cases
# and all the comparison group cases
data3 <- rbind(dat[dat$tr == 0,],</pre>
                dat[sample(which(dat$tr == 1), 100),])
#2 principal component analysis
pca3 <- prcomp(data3[,paste("X", 1:9, sep = "")], scale = FALSE)</pre>
pca3data <- data.frame(</pre>
  data3$y,
  data3$tr,
  pca3$x[,1:3]
  )#extract the three PCs, y and tr
names(pca3data) <- c("y", "tr", "PC1", "PC2", "PC3")</pre>
#3 propensity score matching - one to one match
matcheddata3 <- match.data(</pre>
  matchit(tr ~ PC1 + PC2 + PC3,
          data = pca3data,
          method = "nearest",
          ratio = 1))
#4.1 linear regression - y and treatment
lm3.1 \leftarrow lm(y \sim tr, data = matcheddata3)
knitr::kable(
  summary(lm3.1)$coefficients,
  caption = 'Linear regression between y and treatment',
  digits = 2
)
```

Table 5: Linear regression between y and treatment

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.96	0.52	1.85	0.07
tr	8.46	0.73	11.57	0.00

```
\#4.2\ linear\ regression\ -\ yi\%\ treatment\ and\ covariates
lm3.2 \leftarrow lm(y \sim tr + PC1 + PC2 + PC3,
             data = matcheddata3)
knitr::kable(
  summary(lm3.2)$coefficients,
  caption = 'Linear regression between y ,treatment and 3 PCs',
  digits = 2
)
```

Table 6: Linear regression between y ,treatment and 3 PCs

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-4.01	0.26	-15.57	0
tr	2.91	0.34	8.59	0
PC1	-1.03	0.09	-10.90	0
PC2	2.33	0.11	20.51	0
PC3	-5.36	0.18	-30.00	0

```
#5 Cohen's d
```

[1] 1.132767

```
cohen.d(matcheddata3$y[matcheddata3$tr == 1],
             matcheddata3$y[matcheddata3$tr == 0],
             paired = TRUE)$estimate
```

Part 4 Separately Integrating 9 Covariates into 3 sets of Principal Components

This part separately integrates the 9 covariates into 3 sets principal components.⁴ Then propensity scores are used to match the treatment groups and comparison groups using the 3 sets of principal components. Linear regression and Cohen's d are conducted after propensity score matching.

⁴ Different from part 3, this part uses 3 principal component analyses and integrates $X_1 - X_3$ into PC_1 , integrates $X_4 - X_6$ into PC_2 , and integrates $X_7 - X_9$ into PC_3 .

```
#1 select all comparison cases
# and randomly select 100 treatment cases
# and all the comparison group cases
data4 <- rbind(dat[dat$tr == 0,],</pre>
               dat[sample(which(dat$tr == 1), 100),])
#2 principal component analysis - set 1
pca4.1 <- prcomp(data4[,paste("X", 1:3, sep = "")], scale = FALSE)</pre>
pca4.2 <- prcomp(data4[,paste("X", 4:6, sep = "")], scale = FALSE)</pre>
pca4.3 <- prcomp(data4[,paste("X", 7:9, sep = "")], scale = FALSE)</pre>
pca4data <- data.frame(</pre>
  data4$y,
  data4$tr,
 pca4.1$x[,1],
  pca4.2$x[,1],
  pca4.3$x[,1]
  )#extract the three PCs, y and tr
names(pca4data) <- c("y", "tr", "PC1", "PC2", "PC3")</pre>
#3 propensity score matching - one to one match
matcheddata4 <- match.data(</pre>
  matchit(tr ~ PC1 + PC2 + PC3,
          data = pca4data,
          method = "nearest",
          ratio = 1))
#4.1 linear regression - y and treatment
lm4.1 <- lm(y ~ tr, data = matcheddata4)</pre>
knitr::kable(
  summary(lm4.1)$coefficients,
  caption = 'Linear regression between y and treatment',
 digits = 2
)
```

Table 7: Linear regression between y and treatment

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.98	0.53	1.87	0.06
tr	8.78	0.74	11.81	0.00

```
#4.2 linear regression - yi¼ treatment and covariates
lm4.2 \leftarrow lm(y \sim tr + PC1 + PC2 + PC3,
            data = matcheddata4)
knitr::kable(
  summary(lm4.2)$coefficients,
  caption = 'Linear regression between y ,treatment and 3 PCs',
  digits = 2
```

Table 8: Linear regression between y ,treatment and 3 PCs

Estimate	Std. Error	t value	$\Pr(> t)$
-4.06	0.24	-17.06	0
2.73	0.32	8.57	0
3.62	0.12	29.00	0
-3.47	0.13	-27.44	0
-3.49	0.11	-30.77	0
	-4.06 2.73 3.62 -3.47	-4.06 0.24 2.73 0.32 3.62 0.12 -3.47 0.13	-4.06 0.24 -17.06 2.73 0.32 8.57 3.62 0.12 29.00 -3.47 0.13 -27.44

```
#5 Cohen's d
```

```
cohen.d(matcheddata4$y[matcheddata4$tr == 1],
            matcheddata4$y[matcheddata4$tr == 0],
            paired = TRUE)$estimate
```

[1] 1.328392