Math 425 HW7

Rohan Mukherjee

May 11, 2023

Lemma 1. Let $A : \mathbb{R}^n \to \mathbb{R}^m$. If for every $x, y \in \mathbb{R}^n$, and $c \in \mathbb{R}$ we have that

$$A(cx + y) = cAx + Ay$$

then A is linear.

Proof. Choosing y = 0, we see that for every $x \in \mathbb{R}^n$, and $c \in \mathbb{R}$, we have that A(cx) = A(cx + 0) = cAx + A0 = cAx. Choosing c = 1, we see that for every $x, y \in \mathbb{R}^n$, we have that $A(x + y) = A(1 \cdot x + y) = 1 \cdot Ax + Ay = Ax + Ay$.

Since I used this lemma countless times without mentioning it, I thought I should add (and prove) it here.

1. Denote $S = \{x_1, \dots, x_n\}$. We recall that

$$\operatorname{span}(S) = \left\{ \sum_{i=1}^{n} a_i x_i \mid a_i \in \mathbb{R}, x_i \in X \right\}$$

Given $\sum_{i=1}^{n} a_i x_i$, $\sum_{i=1}^{n} b_i x_i \in S$, we know that

$$\sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} b_i x_i = \sum_{i=1}^{n} a_i x_i + b_i x_i = \sum_{i=1}^{n} (a_i + b_i) x_i \in \text{span}(S)$$

Also, given $c \in \mathbb{R}$,

$$c\sum_{i=1}^{n}a_{i}x_{i}=\sum_{i=1}^{n}(ca_{i})x_{i}\in \operatorname{span}(S)$$

which shows that span(*S*) is a vector space.

2. Let $x, y \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then,

$$BA(cx + y) = B(cAx + Ay) = cBAx + BAy$$

So indeed, BA is linear. Next, by definition A^{-1} is defined as the left inverse of A. Since A is onto, it has a right inverse, say B (We are thinking of A, A^{-1} , B as functions). Now,

$$Bx = A^{-1}ABx = A^{-1}x$$

Since this holds for all $x \in \mathbb{R}^n$, it follows that $B = A^{-1}$, and hence A^{-1} is also a right inverse of A. Note now that, for any $x, y \in \mathbb{R}^n$ and $c \in \mathbb{R}$, $x = Az_1$ for some $z_1 \in \mathbb{R}^n$ and $y = Az_2$ for some $z_2 \in \mathbb{R}^n$ (since A is onto), and so

$$A^{-1}(cx + y) = A^{-1}(cAz_1 + Az_2) = A^{-1}(A(cz_1) + Az_2) = A^{-1}(A(cz_1 + z_2)) = cz_1 + z_2 = cA^{-1}x + A^{-1}y$$

Since $A^{-1}x = A^{-1}Az_1 = z_1$, and similarly $A^{-1}y = z_2$.

- 3. Let $x, y \in \mathbb{R}^n$, and suppose that Ax = Ay. By lineararity, A(x y) = 0. Then x y = 0, which says that x = y, so A is indeed 1–1.
- 4. Let $A : \mathbb{R}^n \to \mathbb{R}^m$ be any linear transformation, null(A) be its nullspace, and range(A) be its range. First, let $x, y \in \text{null}(A)$ and $c \in \mathbb{R}$. Then,

$$A(cx + y) = cAx + Ay = c \cdot 0 + 0 = 0 + 0 = 0$$

So $cx + y \in \text{null}(A)$, which shows that null(A) is a vector space. Similarly, let $x, y \in \text{range}(A)$, and $c \in \mathbb{R}$. Then $x = Az_1$ and $y = Az_2$ for some $z_1, z_2 \in \mathbb{R}^n$. Now,

$$cx + y = cAz_1 + Az_2 = A(cz_1 + z_2)$$

So, cx + y is the image of $cz_1 + z_2$ which shows that it is in the range.

5. Let $a_i = Ae_i$ for $i \in \{1, ..., n\}$ where $e_i \in \mathbb{R}^n$ is the vector with a 1 in position i and a 0 everywhere else. We notice that for any vector $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$, we have that $x = \sum_{i=1}^n x_i e_i$, and since A is linear,

$$Ax = A\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i A(e_i) = \sum_{i=1}^{n} x_i a_i$$

If we let $y = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$, we know that

$$x \cdot y = \sum_{i=1}^{n} x_i a_i$$

which shows that $Ax = x \cdot y$ for every x. Note also that y is unique, since A is a function (i.e., Ae_i can only have 1 value). If ||y|| = 0, then y = 0 and so A = 0 since it maps everything to 0, and then given any vector $x \in \mathbb{R}^n$ with ||x|| = 1, we have that ||Ax|| = ||0|| = 0, and since $||A|| \ge 0$, it follows that ||A|| = 0. Indeed, ||A|| = 0 = ||y||. So now suppose that $||y|| \ne 0$.

We also notice that (by Cauchy-Schwartz),

$$||Ax|| = ||x \cdot y|| \le ||x|| \cdot ||y||$$

Taking the sup over all $x \in \mathbb{R}^n$ with ||x|| = 1 yields $||A|| \le ||y||$. We also note that since $||y|| \ne 0$, ||y|| is a vector of norm 1, and

$$\frac{1}{\|y\|}\|Ay\| = \|A\frac{y}{\|y\|}\| = \frac{y}{\|y\|} \cdot y = \frac{\|y\|^2}{\|y\|} = \|y\|$$

So $||A|| \ge ||y||$. Therefore, ||A|| = ||y||.

6. Suppose that $A \not\equiv 0$. Then there is some $x \in \mathbb{R}^n$ so that $Ax \neq 0$. It is clear that $x \neq 0$. Letting z = x/||x||, we see that ||z|| = 1 and that $Az = Ax/||x|| = 1/||x||Ax \neq 0$, since $\frac{1}{||x||} \neq 0$. Since $||\cdot||$ is a norm, we see that ||Az|| > 0. Since

$$||Ax - Ay|| < C||x - y||^r$$

holds for all $x, y \in \mathbb{R}^n$. We may choose y = 0 to see that

$$||Ax|| = ||Ax - A0|| < C||x - 0||^r = C||x||^r$$

holds for all $x \in \mathbb{R}^n$ and $c \in \mathbb{R}$. In particular, for all $\varepsilon > 0$ we have that

$$\varepsilon ||Az|| = ||A(\varepsilon z)|| < C||\varepsilon z||^r = C\varepsilon^r \cdot ||z||^r = C\varepsilon^r$$

Which tells us that

$$||Az|| < C\varepsilon^{r-1}$$

Choosing $\varepsilon < \left(\frac{\|Az\|}{C}\right)^{\frac{1}{r-1}}$ yields a contradiction (Notice: since the power $(r-1)^{-1} > 0$, it follows that $\varepsilon^{r-1} < \frac{\|Az\|}{C}$ since $x^{\frac{1}{r-1}}$ is increasing on x > 0).