

AULA 04 PREENCHIMENTO DE POLÍGONOS

PROF. DR. DENIS HENRIQUE PINHEIRO SALVADEO

AULA ANTERIOR

- Algoritmos de Geração de Linhas
 - Equação da Reta
 - DDA
 - Bresenham (Ponto Médio)
- Algoritmo de Geração de Circunferências
 - Bresenham (Ponto Médio)

AULA DE HOJE

- Preenchimento de Polígonos
 - Questões relacionadas
 - Algoritmo Scan-line

PREENCHIMENTO DE POLÍGONOS

- Duas tarefas:
 - Quais pixels pintar?
 - Qual cor utilizar?
- Como saber quais pixels estão dentro do polígono (paridade)?

Modificado de http://upload.wikimedia.org/wikipedia/commons/2/21/Rasterizing_triangle_edge_de.svg

- Coerência Espacial
 - Bloco (cor)
 - Linhas de Varredura

Retângulos

Para
$$y = y_{min}$$
 Até y_{max} Faça
Para $x = x_{min}$ Até x_{max} Faça
Desenha_Pixel $(x, y, valor)$

http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/Rectangle_raster_offset.svg/2000px-Rectangle_raster_offset.svg.pnį

Preenchimento de Polígonos Arbitrários

Coerência de Arestas

Regra de Paridade

http://upload.wikimedia.org/wikipedia/commons/thumb/5/50/Polygon_scanconversion.svg/2000px-Polygon_scan-conversion.svg.png

SCAN-LINE

Cálculo de interseção de aresta com Linha de Varredura

$$-\Delta y = 1$$

$$- x_{k+1} = x_k + 1/m$$

Aresta

Y _{max} X e	em Y _{min}	1/m	Ponteiro para outra aresta
----------------------	---------------------	-----	----------------------------

Baseados em HILL JR., F. S. Computer Graphics. Machmillan Publishing Company, 1990..

SCAN-LINE

Tabela de Arestas (ET)

SCAN-LINE

Tabela de Arestas Ativas (AET)

$$- y = 9$$

$$-y = 10$$

Baseados em HILL JR., F. S. Computer Graphics. Machmillan Publishing Company, 1990..

ALGORITMO SCAN-LINE

- 1. Construa a ET
- 2. Selecione a menor coordenada y em ET
- Inicialize a AET com vazia
- 4. Repita Até que ET e AET estejam vazias:
 - Mova a lista y na ET para AET (y_{min} = y), mantendo a AET ordenada em x
 - Desenhe os pixels do bloco na linha de varredura y, usando os pares de coordenadas x da AET (cada dois nós definem um bloco)
 - 3. y = y + 1
 - 4. Remova as arestas que possuem $y_{max} = y$ da AET
 - 5. Para cada aresta na AET, atualize x = x + 1/m

Exercício 1

 Considerando o algoritmo Scan-Line, faça o preenchimento do polígono definido pelos vértices A(2,3), B(7,1), C(13,5), D(13,11), E(7,7) e F(2,9).

• Desenho o polígono e marque os pixels preenchidos.

SOLUÇÃO DO EXERCÍCIO 1

Exercício 2

 Considerando o algoritmo Scan-Line, faça o preenchimento do polígono definido pelos vértices A(3,4), B(5,6), C(9,5), D(12,8), E(5,11).

• Desenho o polígono e marque os pixels preenchidos.

Solução do Exercício 2

DISCUSSÃO: SCAN-LINE PARA VÁRIOS POLÍGONOS

- Controle de Paridade para cada polígono
- Prioridade
- Cor Visualizada

http://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Scan-line algorithm.svg/2000px-Scan-line algorithm.svg.png

IMPLEMENTAÇÃO DOS ALGORITMOS VISTOS