Вопрос 3

Модель идеального газа. Опыты Штерна по измерению скоростей молекул. Исследования статистического распределения молекул по скоростям. Распределение Максвелла.

Идеальный газ — физическая модель, включающая в себя:

- 1) молекулы газа материальные точки
- 2) молекулы хаотично и непрерывно двигаются, причем между столкновениями скорости не меняются
- 3) столкновения носят упругий характер без потерь механической энергии
- 4) силы взаимодействия между молекулами проявляются лишь при столкновении

Движение молекул такого газа подчиняется законам Ньютона.

Молекулы идеального газа двигаются с разными по модулю и направлению скоростями. Все направления движения молекулы равновероятны, поэтому число молекул, движущихся в выбранном направлении, равно количеству движущихся в противоположном направлении. Тогда $\frac{1}{6}$ всех молекул движется по каждой оси (Ox, Oy, Oz) в одном из двух направлений.

В своей работе «Пояснения к динамической теории газов» Дж. Максвелл доказал, что молекулы газа движутся с разными скоростями, при столкновении направления и модули векторов скорости меняются, но распределение молекул по скоростям остается неизменным. Максвелл вывел закон распределения молекул газа по скоростям, опирающийся на основные положения МКТ.

Функция распределения молекул по скоростям:
$$f(v) = 4 \pi \left(\frac{m_0}{2 \pi k T}\right)^{\frac{3}{2}} e^{-\frac{m_0 v^2}{2 k T}} v^2$$

Рассмотрим график этой функции. Значительное число молекул движется со скоростью близкой к $V_{\rm H.B.}$. Эта скорость называется наиболее вероятной скоростью. Она зависит от температуры, а именно, при увеличении температуры, увеличивается наиболее вероятная скорость, что можно наблюдать на втором рисунке.

Найдем
$$v_{\text{н.в.}}$$
:
$$f(v)' = \left(\frac{m_0}{2\pi kT}\right)^{1,5} \cdot \exp\left(\frac{-m_0 v^2}{2kT}\right) \cdot 4\pi (2v + v^2 \left(\frac{-m_0 v}{2kT}\right)) = 0$$

$$v \neq 0 \text{ ; } \exp\left(\frac{-m_0 v^2}{2kT}\right) \neq 0 \text{ ; } \left(\frac{m_0}{2\pi kT}\right)^{1,5} \neq 0 \Rightarrow \frac{m_0 v^2}{2kT} = 0$$

Прямые измерения скоростей молекул были выполнены в 1920 году Отто Штерном. Вокруг проволоки расположены 2 коаксильных цилиндра: радиусом R_A с узкой щелью и радиусом R_B . Серебро испарялось в вакууме с поверхности платиновой проволоки, нагреваемой электрическим током. Атомы Ag, пролетевшие сквозь щель первого цилиндра, оседают на стенке второго и образуют узкую полоску около точки M_0 . При вращении цилиндра атомы Ag попадали на стенку внешнего цилиндра в новое место

M . Вычислим скорость движения атомов серебра: за время, равное отношению расстояния и скорости ($t-\frac{R_{_B}-R_{_A}}{\nu}$), цилиндр повернется на угол $\phi=\omega\,t$.

При этом полоска серебра сместится на длину дуги $(MM_0) = R_B \varphi = R_B \omega t = \frac{R_B (R_B - R_A)}{v}$

Измерив длину дуги (l), можем выразить скорость: $v = \frac{R_B \omega (R_B - R_A)}{l}$

 $T_1 < T_2 < T_3$

f(v)

Можем сделать вывод, что смещение будет больше у тех атомов, у которых скорость меньше. То есть молекулы имеют различные скорости. По количеству осевшего серебра можно определить относительное количество атомов с данной скоростью.

Опыт Штерна хорошо согласовывается с распределением молекул по скоростям Максвелла.