Journée des doctorants

Silviu Filip Sébastien Maulat Stephen Melczer Vincent Neiger Marie Paindavoine Antoine Plet Valentina Popescu

Aric Team, LIP, ENS de Lyon, France

June 2015

AriC

 $_{
m JDD}$

June 2015

2/15

AriC JDD

June 2015

AriC — Error-correcting codes

Goal:

Enable reliable delivery of data over unreliable communication channels

Strategy:

add redundancy to the message add redundancy to the message add redundancy to the message

AriC — Error-correcting codes

polynomials of degree $\leqslant k$ \longrightarrow their evaluation at x_1, \ldots, x_n $w = w_0 + w_1 X + \cdots + w_k X^k$ $(w(x_1), \ldots, w(x_n))$

AriC JDD June 2015

5/15

AriC — (list-)Decoding

Find a solution of a structured linear system,

where $A_{i,j}$ is a Toeplitz / Hankel / Vandermonde / ... matrix

AriC — (list-)Decoding

Find a short vector in a (structured) polynomial lattice,

where T_i has a **Toeplitz** structure:

AriC

JDD

AriC

June 2015

AriC – Lattice-Based Cryptography

 $AriC \hspace{1.5cm} JDD \hspace{1.5cm} June \hspace{1mm} 2015 \hspace{1.5cm} 9/\hspace{1mm} 15$

AriC – Lattice-Based Cryptography

- ► Public Key Encryption
- ► Identity Based Encryption
- ► Fully Homomorphic Encryption
- Signature
- Group Signature
- ► Hash Function
- Cryptographic Multilinear Maps

Two types of filters:

- ▶ finite impulse response (FIR) $\Rightarrow H_d(\omega)$ polynomial
- ▶ infinite impulse response (IIR) $\Rightarrow H_d(\omega)$ rational function

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization

$$H_d^*(\omega) = \sum_{k=0}^{L} a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^L a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization

$$H_d^*(\omega) = \sum_{k=0}^{L} a_k^* \cos(\omega k)$$

13/15

Goal: filter synthesis toolchain for embedded and FPGA targets

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^L a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^L a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^{L} \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^{L} \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization:

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

FIR case:
$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Steps:

1. Optimal filter computation:

$$H_d(\omega) = \sum_{k=0}^{L} a_k \cos(\omega k)$$

Naive rounding:

$$\overline{H}_d(\omega) = \sum_{k=0}^L \overline{a}_k \cos(\omega k)$$

2. Coefficient quantization:

$$H_d^*(\omega) = \sum_{k=0}^L a_k^* \cos(\omega k)$$

Goal: filter synthesis toolchain for embedded and FPGA targets

