Deep Learning Lab 04

FELLAH ABDELNOUR

ab.fellah@esi-sba.dz

BENOUNENE ABDELRAHMANE

a.benounene@esi-sba.dz

Contents

1	Introduction														1											
	1.1	Our Da	ata .					•			•			•	 •	•		 •				•		 •		1
2	Arch	nitectur	res S	umr	nari	ies																				1
	2.1	Efficie	ntNe	et .																						1
		2.1.1	de	pth =	0																					1
		2.1.2	de	pth =	1 .																					2
		2.1.3	de	pth =	2																			 		2
	2.2	Shuffle	eNet																					 		3
		2.2.1	de	pth =	0																					3
		2.2.2	de	pth =	1 .																			 		3
		2.2.3	de	pth =	2						•			•	•			 •	•		 •	•	 •	 		4
3	Resi	ults																								5
	3.1	Discus	ssion								•			•	•	•					 •		 •			6
4	cone	clusion																								6

1 Introduction

This report is about the forth lab of the Deep Learning course. The lab is about transfer learning. We will be using shufflenet and efficientnet for this lab. The performance metrics of different models in the context of transfer learning are presented. Transfer learning involves leveraging knowledge gained from training on one task or dataset to improve learning performance on a related but different task or dataset.

1.1 Our Data

The data is Chest X-rays from kaggle. It contains 21165 samples. We used startified hold out for this lab to maintain class balance.

2 Architectures Summaries

2.1 EfficientNet

2.1.1 depth = 0

Figure 1: Accuracy And Loss

Total params: 5,846,144

Trainable params: 1,838,596

Non-trainable params: 4,007,548

Input size (MB): 0.57

Forward/backward pass size (MB): 173.68

Params size (MB): 22.30

Estimated Total Size (MB): 196.55

Figure 2: Accuracy And Loss

2.1.2 depth = 1

Total params: 5,846,144

Trainable params: 2,250,756

Non-trainable params: 3,595,388

Input size (MB): 0.57

Forward/backward pass size (MB): 173.68

Params size (MB): 22.30

Estimated Total Size (MB): 196.55

2.1.3 depth = 2

Figure 3: Accuracy And Loss

Total params: 5,846,144

Trainable params: 2,967,988

Non-trainable params: 2,878,156

Input size (MB): 0.57

Forward/backward pass size (MB): 173.68

Params size (MB): 22.30

Estimated Total Size (MB): 196.55

2.2 ShuffleNet

2.2.1 depth = 0

Figure 4: Accuracy And Loss

Total params: 2,830,056

Trainable params: 1,576,452

Non-trainable params: 1,253,604

Input size (MB): 0.57

Forward/backward pass size (MB): 47.97

Params size (MB): 10.80

Estimated Total Size (MB): 59.34

2.2.2 depth = 1

Total params: 2,830,056

Trainable params: 2,053,636
Non-trainable params: 776,420

Input size (MB): 0.57

Forward/backward pass size (MB): 47.97

Figure 5: Accuracy And Loss

Params size (MB): 10.80

Estimated Total Size (MB): 59.34

2.2.3 depth = 2

Figure 6: Accuracy And Loss

Total params: 2,830,056

Trainable params: 2,554,988

Non-trainable params: 275,068

Input size (MB): 0.57

Forward/backward pass size (MB): 47.97

Params size (MB): 10.80

Estimated Total Size (MB): 59.34

3 Results

The following table shows the performance metrics of the different models:

- depth 0: (the last three fully connected)
- depth 1: (one convolutional layers + the last three fully connected)
- depth 2: (two convolutional layers + the last three fully connected)

Metric	ShuffleNetV2x0.5_0	ShuffleNetV2x0.5_1	ShuffleNetV2x0.5_2
Accuracy	0.8995	0.9036	0.9323
F1-Score	0.9063	0.9104	0.9390
Precision	0.9143	0.9134	0.9335
Recall	0.8988	0.9131	0.9448
AUC	0.9810	0.9829	0.9899

Metric	EfficientNet-B0_0	EfficientNet-B0_1	EfficientNet-B0_2
Accuracy	0.8885	0.9068	0.9313
F1-Score	0.8994	0.9159	0.9376
Precision	0.9073	0.9095	0.9459
Recall	0.8920	0.9231	0.9304
AUC	0.9769	0.9848	0.9878

Table 1: Performance Metrics of Different Models

3.1 Discussion

- Accuracy: and F1-Score: Models with depth of 2 consistently achieve the highest accuracy and F1-Score values, surpassing 0.93 and 0.937, respectively, indicating strong overall performance.
- Precision and Recall: Models with depth of 2 demonstrate high precision and recall values, suggesting effective identification of positive instances with minimal false positives.
- Area Under the Curve (AUC): All models exhibit AUC values exceeding 0.97, indicating strong discrimination ability, with Models with depth of 2 consistently achieving the highest values, surpassing 0.987.

ShuffleNet2 and EfficientNet2 emerge as the top performers across all metrics, showcasing their robustness and effectiveness for the given task.

4 conclusion

Increasing the number of fine-tuned layers adds complexity to the model. This complexity may allow the model to capture more intricate patterns in the data, potentially leading to better performance, especially if the task at hand is complex and requires high-level representations. However, overly complex models may also be prone to overfitting, especially if the dataset is small or noisy. And increasing the required computational resources.