Ejemplos de tableaux anotados

1. Lógica proposicional

Satisfacibilidad. Comenzamos con un tableau para comprobar si la fórmula $(p \to \neg p \lor \neg q) \land p$ es satisfacible:

Como el tableau es abierto, la fórmula es satisfacible. A partir de los literales de la rama abierta definimos una interpretación σ que satisface $(p \to \neg p \lor \neg q) \land p : \sigma(p) = 1, \sigma(q) = 0.$

Consecuencia lógica. Comprobamos $\{p \to q \land r, \neg (q \land t)\} \models t \to \neg p$ haciendo el tableau de las premisas y la negación de la conclusión.

1.
$$p \rightarrow q \land r$$
 (Prem.)

2. $\neg (q \land t)$ (Prem.)

3. $\neg (t \rightarrow \neg p)$ (Negac. Conc.)

4. $t \alpha, 3$

5. $\neg \neg p \alpha, 3$

6. $p \sigma, 5$

7. $\neg p \beta, 1$

8. $q \land r \beta, 1$

8. $q \land r \beta, 1$

9. $q \alpha, 8$

10. $r \alpha, 8$

11. $\neg q \beta, 2$

12. $\neg t \beta, 2$

9,11

8 4,12

Obtenemos un tableau cerrado, por tanto la conclusión es consecuencia lógica de las premisas.

2. Lógica de predicados

Validez. Comprobamos si la fórmula $\exists x(\neg Px \land Qx) \rightarrow \exists y(Qy \rightarrow \neg Py \land Ry)$ es válida haciendo el tableau de la negación.

1.
$$\neg (\exists x (\neg Px \land Qx) \rightarrow \exists y (Qy \rightarrow \neg Py \land Ry))$$
2.
$$\exists x (\neg Px \land Qx) \quad \alpha, 1$$
3.
$$\neg \exists y (Qy \rightarrow \neg Py \land Ry) \quad \alpha, 1$$
4.
$$\neg Pa \land Qa \quad \delta, 2$$
5.
$$\neg Pa \quad \alpha, 4$$
6.
$$Qa \quad \alpha, 4$$
7.
$$\neg (Qa \rightarrow \neg Pa \land Ra) \quad \gamma, 3$$
8.
$$Qa \quad \alpha, 7$$
9.
$$\neg (\neg Pa \land Ra) \quad \alpha, 7$$
10.
$$\neg \neg Pa \quad \beta, 9$$

$$\otimes$$
5,10

La rama de la derecha queda abierta, por lo que la fórmula inicial es satisfacible. Por tanto, $\exists x(\neg Px \land Qx) \to \exists y(Qy \to \neg Py \land Ry)$ no es válida. Podemos construir una estructura $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ que la hace falsa: $\mathcal{D} = \{1\}, \mathcal{I}(a) = 1, \mathcal{I}(Q) = \{1\}, \mathcal{I}(P) = \mathcal{I}(R) = \emptyset$.

Satisfacibilidad. Nos preguntamos si el conjunto $\{\forall x(Px \to Qx), \exists xPx, \neg \forall xQx\}$ es satisfacible. Hacemos su tableau.

1.
$$\forall x(Px \to Qx)$$

2. $\exists xPx$

3. $\neg \forall xQx$

4. $Pa \quad \delta, 2$

5. $\neg Qb \quad \delta, 3$

6. $Pa \xrightarrow{} Qa \quad \gamma, 1$

7. $Pb \xrightarrow{} Qb \quad \gamma, 1$

8. $\neg Pa \quad \beta, 6$
 $\otimes \quad 10. \quad \neg Pb \quad \beta, 7$

4,8

 $\Rightarrow \quad 5,111$

El tableau es abierto, por lo que el conjunto propuesto es satisfacible. La rama abierta está formada por los nodos 1–7 y 9–10. Su literales son $\{Pa, \neg Qb, Qa, \neg Pb\}$. Definimos la estructura $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ con $\mathcal{D} = \{1, 2\}, \mathcal{I}(a) = 1, \mathcal{I}(b) = 2, \mathcal{I}(P) = \{1\}$ y $\mathcal{I}(Q) = \{1\}$. Se puede comprobar que $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ satisface el conjunto de fórmulas propuesto.

Consecuencia lógica. Para comprobar $\forall x(Px \to \forall yRxy), \ \forall x\exists y\neg Rxy \models \neg Pa$ debemos hacer el tableau de las dos premisas y la negación de la conclusión.

Para comprobar
$$\forall x(Px \to \forall yRxy), \ \forall x\exists y\neg Rxy \models \text{as y la negación de la conclusión.}$$

1. $\forall x(Px \to \forall yRxy) \ (\text{Premisa})$

2. $\forall x\exists y\neg Rxy \ (\text{Premisa})$

3. $\neg \neg Pa \ (\text{Negac. concl.})$

4. $Pa \ \sigma, 3$

5. $Pa \to \forall yRay \ \gamma, 1$

6. $\neg Pa \ \beta, 5$

8. $\exists y\neg Ray \ \gamma, 2$

4,6

9. $\neg Rab \ \delta, 8$

10. $Rab \ \gamma, 7$
 \bigotimes

9,10

Dado que el tableau es cerrado, se verifica la relación de consecuencia lógica propuesta.