In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt

from sklearn.preprocessing import normalize

import scipy.cluster.hierarchy as shc

from sklearn.cluster import AgglomerativeClustering

<frozen importlib._bootstrap>:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incomp atibility. Expected 192 from C header, got 216 from PyObject

data = pd.read_csv('wholesale_customers_data.csv') In [2]: data.head()

Out[2]:

	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
0	2	3	12669	9656	7561	214	2674	1338
1	2	3	7057	9810	9568	1762	3293	1776
2	2	3	6353	8808	7684	2405	3516	7844
3	1	3	13265	1196	4221	6404	507	1788
4	2	3	22615	5410	7198	3915	1777	5185

In [3]: data.shape

Out[3]: (440, 8)

Out[5]:

	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicassen
(0.000112	0.000168	0.708333	0.539874	0.422741	0.011965	0.149505	0.074809
	0.000125	0.000188	0.442198	0.614704	0.599540	0.110409	0.206342	0.111286
:	0.000125	0.000187	0.396552	0.549792	0.479632	0.150119	0.219467	0.489619
;	0.000065	0.000194	0.856837	0.077254	0.272650	0.413659	0.032749	0.115494
	4 0.000079	0.000119	0.895416	0.214203	0.284997	0.155010	0.070358	0.205294

In [7]:

```
# Plot dendrograms

plt.figure(figsize = (15,12))
plt.title("Data Dendrogram")
den = shc.dendrogram(shc.linkage(data_scaled,method = 'ward'))
```

Data Dendrogram


```
In [8]:  # Plot dendrograms

plt.figure(figsize = (15,12))
    plt.title("Data Dendrogram")
    den = shc.dendrogram(shc.linkage(data_scaled,method = 'ward'))
    plt.axhline(y = 6, color = 'r',linestyle = '---')
```

Out[8]: <matplotlib.lines.Line2D at 0x7f7f363551f0>

Data Dendrogram


```
In [9]:
             # as threshold line cuts dendrogram at 6, it intersects with two bars, therefore we have 2 clusters
In [12]:
             cluster = AgglomerativeClustering(n clusters=2,affinity='euclidean',linkage = 'ward')
             cluster.fit predict(data scaled)
Out[12]: array([1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
                1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,
                1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0,
                0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1,
                0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
                0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,
                0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
                0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
                0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1,
                1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
                0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1,
                1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1])
```

lets visualize these 2 clusters

In []:


```
plt.figure(figsize = (10,7))
plt.scatter(data_scaled['Milk'],data_scaled['Fresh'],c =cluster.labels_ )
plt.show()
In [16]:
             1.0
             0.8
             0.6
             0.4
             0.2
             0.0
                   0.0
                                     0.2
                                                       0.4
                                                                         0.6
                                                                                           0.8
 In [ ]:
 In [ ]:
 In [ ]:
```

In	[]:[
			1
In	[1: [1
In	[1: [1
In	1]:[1
In	[]:[1