#### A REPORT ON

# **ANALOG CIRCUIT DESIGN ASSIGNMENT**

#### **ANALOG AND DIGITAL VLSI DESIGN**

#### **SUBMITTED BY**

| NAME                    | ID Number     |
|-------------------------|---------------|
| Jay Kamat               | 2018A8PS0409P |
| Kamalesh S.             | 2017B3A30560P |
| Devesh Santosh Todarwal | 2017B4A80518P |
| Mehul Gera              | 2017B3A30579P |

Submitted in partial fulfillment of the course

## EEE/INSTR F313 - Analog and Digital VLSI Design



Birla Institute of Technology and Science - Pilani 29th October, 2020 Problem Statement No. 48

# **INDEX**

| Sr. No. | Торіс                                          |
|---------|------------------------------------------------|
| 1       | Introduction                                   |
| 2       | Design Specifications                          |
| 3       | MOSFET Sizing                                  |
| 4       | Settling Time Analysis                         |
| 5       | Closed Loop Gain and Phase Margin              |
| 6       | Other Parameters, Innovation and Temp. Effects |

#### INTRODUCTION

Problem Statement:

Ques 48. Design a Two stage single-ended output CMOS OPAMP with a -3dB bandwidth of 5MHz.

- (a) Analog schematic for OPAMP (choose appropriate OPAMP).
- (b) Analysis of all equations for OPAMP, with a systematic derivation of all transistors W/L ratios. (Do not use hit-an-trial method)
- (c) What is the settling time for your OPAMP?
- (d) What is the closed loop gain and phase margin for your OPAMP using STB analysis?
- (e) Calculate and plot the following parameters for your OPAMP: DC gain, Bode plot for AC gain and phase, CMRR plot, ICMR plot, PSRR plot, slew rate, settling time, output voltage swing (dc + Transient), power consumption, and input and output offset voltage.

### **DESIGN SPECIFICATIONS**

| Technology            | TSMC 180nm technology*                                                                                                         |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| $V_{DD}$              | 2.5V                                                                                                                           |  |
| $C_L$                 | ≤1 pF                                                                                                                          |  |
| Current mirror ratios | ≤ 20                                                                                                                           |  |
| Reference Current     | Single ideal current source of arbitrary value, with the positive node tied to $V_{\text{DD}}$ or negative node tied to ground |  |
| Power Dissipation     | ≤3mW unless stated                                                                                                             |  |

## **MOSFET SIZING**

Channel length used = 350 nm for all MOSFETS

| MOSFET         | W/L     |
|----------------|---------|
| M1, M7, M8, M9 | 60.649  |
| M4, M5, M6     | 127.45  |
| M3             | 122.87  |
| M2, M13        | 121.298 |
| M11, M14       | 30.47   |
| M10, M12       | 60.94   |

Stage 1 was used as differential amplifier with single ended output to obtain a single ended output with some gain

Stage 2 was used as a cascode amplifier in order to boost gain and obtain 3dB frequency by matching Rout

## **Design Equations Used**

| Quantity                     | Formula                                                                     |  |
|------------------------------|-----------------------------------------------------------------------------|--|
| $\boldsymbol{\mathcal{G}}_m$ | $\frac{2I_{D}}{V_{oV}}$                                                     |  |
| r                            | $\frac{1}{\lambda l_D}$                                                     |  |
| $I_{D}$                      | $\frac{1}{2}\mu C_{ox} \frac{W}{L} (V_{GS} - V_T)^{2} (1 + \lambda V_{DS})$ |  |
| CMRR                         | $20 \log_{10}(\frac{A_{_D}}{A_{_{CM}}})$                                    |  |
| PSRR                         | $20 \log_{10}(\frac{A_{_D}\Delta V supply}{\Delta V out})$                  |  |

## Schematic Diagram



#### **SETTLING TIME ANALYSIS**



Settling time = 0.127 us (non-inverting feedback configuration) Slew Rate = 2960 V/us

#### **CLOSED LOOP GAIN AND PHASE MARGIN**



We connect the op-amp in a closed loop fashion and use miller compensation capacitor of 0.5f to adjust for Gain and Phase margin

Phase Margin = 79.537 degrees Gain Margin = 28.60067 dB

#### **OTHER PARAMETERS**

#### 1) AC Gain and Phase



Max Gain = 60.9 dB

3 dB frequency = 5.248 MHz (target was 5 MHz)

# 2) ICMR plot



#### ICMR = 0.952 volt

### 3) CMRR Plot



CMRR = 26.88 dB

### 4) DC Gain



*DC Gain* = 688.081 (slope of *VTC*)

### 5) PSRR



PSRR = 17dB

## 6) Output Voltage Swing



DC Swing can be seen from VTC (0 to 2.5 volts)

### 7) Power Consumption

Is(M5): 4.78678e-05 device\_current Is(M4): 4.8014e-05 device\_current Is(M12): 2.3021e-05 device\_current

I(bias): 50e-5

Power = 1.547 mW (within the 3mW budget)

8) Input Offset Voltage = 0.5763 volt

9) Output Offset Voltage = 0.131584 volt

| Parameter         | Target        | Achieved       |
|-------------------|---------------|----------------|
| Open Loop Gain    | -             | 60.9 dB        |
| 3dB Frequency     | 5 MHz         | 5.248 MHz      |
| ICMR              | -             | 0.952 volt     |
| Power Consumption | <= 3mW        | 1.547 mW       |
| CMRR              | -             | 26.88 dB       |
| PSRR              | -             | 17 dB          |
| Gain Margin       | -             | 28.60067 dB    |
| Phase Margin      | 50-60 degrees | 79.537 degrees |
| DC Gain           | -             | 688.081        |

### **INNOVATION**

- We added a compensation capacitor (Miller Compensation) to obtain such a high 3dB frequency.
- 2) Normally people use Common Drain stage for Output Impedance matching, but we used a Cascode for the same, so that we get both gain as well as output impedance, which helped in setting the 3dB frequency, as cascode offers high Rout.

## **TEMPERATURE EFFECTS ON Adm**



100 degrees 27 degrees 0 degrees