

UNIT 01 - REVIEW

Abbas Chokor, Ph.D.

Staff Data Scientist, Seagate Technology

OUR PROGRESS SO FAR

UNIT 1: RESEARCH DESIGN AND What is Data Science **EXPLORATORY DATA ANALYSIS** Research Design and Pandas LICOSUII 4 Statistics Fundamentals I Statistics Fundamentals II Lesson 4 Flexible Class Session Lesson 5 Introduction to Regression Lesson 6 **UNIT 2: FOUNDATIONS OF DATA** Evaluating Model Fit Lesson 7 MODELING Introduction to Classification Lesson 8 Introduction to Logistic Regression Lesson 9 Communicating Logistic Regression Results Lesson 10 Flexible Class Session Lesson 11 Decision Trees and Random Forests Lesson 12 **UNIT 3: DATA SCIENCE IN THE REAL** Natural Language Processing Lesson 13 WORLD Dimensionality Reduction Lesson 14 Time Series Data I Lesson 15 Time Series Data II Lesson 16 Database Technologies Lesson 17 Where to Go Next. Lesson 18 Flexible Class Session Lesson 19

Final Project Presentations

Today's Class

Lesson 20

LAST CLASS

WHAT DID WE LEARN?

- Review of statistics and go over unit project 1
- Explain the difference between causation and correlation
- Test a hypothesis within a sample case study
- Validate your findings using statistical analysis (p-values, confidence intervals)

LAST CLASS

ANNOUNCEMENTS

- ❖ Happy Hour Thanks for coming
- ❖ Fill your exit ticket!
- ❖ Any other questions?

Let's Review What We Learned So Far...

HOW ARE WE GOING TO MANAGE OUR FILES?

HOW TO KEEP YOUR GITHUB UPDATED?

Synch to the class GitHub few hours after class using your Terminal.

git clone git@github.com/JohnSmith/DAT-DEN-03.git

cd /Users/665066/Documents/GitHub/DAT-DEN-03

git remote add upstream git://github.com/ga-students/DAT-DEN-03.git

git fetch upstream

git commit -m "." (if there is any change)

git pull upstream master

git push (to keep your online Github account synch with your local files)

Create and modify notebooks and python files...

LET'S REVIEW THE DATA SCIENCE WORKFLOW

WHAT IS A GOOD QUESTION? **SMART**

- Specific: The dataset and key variables are clearly defined.
- Measurable: The type of analysis and major assumptions are articulated.
- Attainable: The question you are asking is feasible for your dataset and is not likely to be biased.
- Reproducible: Another person (or future you) can read and understand exactly how your analysis is performed.
- Time-bound: You clearly state the time period and population for which this analysis will pertain.

CROSS-SECTIONAL DATA

TIME SERIES/LONGITUDINAL DATA

CODEALONG PART 1: BASIC STATS

• We can use Pandas to calculate the mean, median, mode, min, and max.

```
Methods available include:
    .min() - Compute minimum value
    .max() - Compute maximum value
    .mean() - Compute mean value
    .median() - Compute median value
    .mode() - Compute mode value
.count() - Count the number of observations
```

BIAS VS. VARIANCE

CODEALONG PART 3: STANDARD DEVIATION & VARIANCE

You can calculate variance and standard deviation easily in Pandas.

SKEWNESS

- Skewness is a measure of the asymmetry of the distribution of a random variable about its mean.
- Skewness can be positive or negative, or even undefined.

KURTOSIS

- Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.
- Datasets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails.

CLASS/DUMMY VARIABLES

- Step 1: Select a reference category. We'll choose rural as our reference category.
- Step 2: Convert the values urban, suburban, and urban into a numeric representation that does not imply order.
- Step 3: Create two new variables: area_urban and area_suburban.

STATS SUMMARY

Measure of Centrality	Mean	Median	Mode
Measurement Scales	Interval - Ratio	Interval - Ratio	Nominal - Ratio
• In the dataset?	8	(a)	©
Easy of compute	⊜ ⊕		⊗
• Resistant to outliers?	8	©	☺
Measure of Dispersion	© (Variance, Standard Deviation)	© (Interquartile Range)	8
Extensive used in mathematical models?	☺	⊗	⊗
Graphical Methods		Boxplot ××	Histogram

CORRELATION

 ρ quantifies the strength and direction of movements of two random variables

PYTHON & PANDAS

Measure of Centrality		.mean()	.median()		.mode()
Measure of Dispersion	.vaı	r(), .std()	.min(), .max .quantile(` '	
Summary	.describe()				
Graphical Methods			<pre>.plot(kind = '</pre>	box')	<pre>.plot(kind = 'hist')</pre>
Correlation Matrix	.corr()				
Scatter plot	<pre>DataFrame.plot(kind = 'scatter', x = 'SerieName', y = 'SerieName')</pre>				
Scatter matrix	<pre>pd.tools.plotting.scatter_matrix(DataFrame)</pre>				
len(), .coun .columns, .set_index(), .unique() .va .drop() .isnull(), .drop		lue_counts(), .notnul(),	ոբ	o.sort(), .apply()	

CONFOUNDING

No!

CONFOUNDING

Confounding variables often hide the true association between causes and outcomes.

In statistics, a confounder is a variable that influences both the dependent variable and independent variable causing a spurious association.

HYPOTHESIS TESTING STEPS

• First, you need a hypothesis to test, referred to as the *null hypothesis*. The opposite of this would be the *alternative hypothesis*.

HYPOTHESIS TESTING STEPS

- For example, if we want to test the relationship between gender and sales, we may have the following hypotheses.
- Null hypothesis: There is no relationship between Gender and Sales.
- Alternative hypothesis: There is a relationship between Gender and Sales.
- Once you have your hypotheses, you can check whether the data supports rejecting the null hypothesis or failing to reject the hypothesis.

VALIDATE YOUR FINDINGS

- We know how to carry out a hypothesis test, but how do we tell if the association we found is *statistically significant*?
- Statistical significance is the likelihood that a result or relationship is caused by something other than random chance.
- Statistical hypothesis testing is traditionally employed to determine if a result is statistically significant or not.

VALIDATE YOUR FINDINGS

TABLE 1

Relationship between Common Language and Hypothesis Testing

COMMON LANGUAGE	STATISTICAL STATEMENT	CONVENTIONAL TEST THRESHOLD
"Statistically significant" "Unlikely due to chance"	The null hypothesis was rejected.	P < 0.05
"Not significant" "Due to chance"	The null hypothesis could not be rejected.	P > 0.05

If we repeat this study 100 times, our point of estimate would lie in that range 95 times.

VALIDATE YOUR FINDINGS

t-value	p-value	$1-\alpha$ Confidence Interval $([\mu_0 - \sigma, \mu_0 + \sigma])$	H ₀ / H _a	Conclusion
≥·	≤ α	μ_0 is outside	Found evidence that $\mu \neq \mu_0$: Reject H_0	$\mu \neq \mu_0$
<.	> α	μ_0 is inside	Did not find that $\mu \neq \mu_0$: Fail to reject H_0	$\mu=\mu_0$ (assume)

UNIT 01 - SUMMARY

Visualization

VISUALIZATION

https://python-graph-gallery.com

DISTRIBUTION

CORRELATION

RANKING

UNIT 01 - SUMMARY

Let's Practice...

STATS SUMMARY

- Open Lessono5-Review-Starter
- Data is in "datasets"

LESSON

EXITICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET

COURSE

BEFORE NEXT CLASS

BEFORE NEXT CLASS

Start Working ...

- Project: Unit Project 2
- Think about Final Project ...

OUR PROGRESS SO FAR

UNIT 1: RESEARCH DESIGN AND EXPLORATORY DATA ANALYSIS

What is Data Science	I agga g 1
What to Data Science	LCSSUII I
Daggarah Dagign and Dandag	T again
Troboaren Design ana i anaas	LCSSUII 2
Statistics Fundamentals I	L aggan 9
DOWNSOLD I WILWAITION I	LC550II 0
Statistica Fundamentals II	I cason 4
Statistics I difadificitals II	Lessuii 4
Florible Class Session	T aggan 5
I IOIINIO OIGNO NONDIOII	

UNIT 2: FOUNDATIONS OF DATA MODELING

Lesson 6
Lesson 7
Lesson 8
Lesson 9
Lesson 10
Lesson 11

UNIT 3: DATA SCIENCE IN THE REAL WORLD

Decision Trees and Random Forests	Lesson 12
Natural Language Processing	Lesson 13
Dimensionality Reduction	Lesson 14
Time Series Data I	Lesson 15
Time Series Data II	Lesson 16
Database Technologies	Lesson 17
Where to Go Next	Lesson 18
Flexible Class Session	Lesson 19
Final Project Presentations	Lesson 20

Next Class

LESSON

Q&A