

Presentación del equipo

Felipe Uribe
Realización de
informe y
algortimos

Oscar David
Vasco Correa
Realización de
informe y
algoritmos

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

Utilizar el recorrido de grafos de manera eficiente en el cual se pueda hallar la menor longitud posible.(A*)

Complejidad del algoritmo

	Complejidad temporal	Complejidad de la memoria
A*	O(E)	O(E)
Dijkstra	O(V*V)	O(V*E*(2 ^E))

Complejidad en tiempo (¿Cuál de los dos algoritmos es el más Rápido?) y memoria de los algoritmos (Cantidad de Memoria RAM que cada algoritmo utiliza), V es "fundamental devertex" o vértice (# de vértices), los grafos se representan con, E lo cual significa "edge" o aristas que son las relaciones entre todos los vértices

