

To aggregate or not to aggregate: Selective match kernels for image search

Giorgos Tolias^{1,2} and Yannis Avrithis² and Hervé Jégou¹

¹INRIA, Rennes

 2 NTUA

Overview

- ▶ Build common model for existing approaches and derive our methods
- ▶ Bridge the gap between matching based (HE) and aggregated based (VLAD) methods
- ▶ Evaluate with full precision descriptors and approximate representation
- ▶ Combine with query expansion using the same principle of aggregation

Set similarity functions

Image representation

- $\mathcal{X} = \{x_1, \dots, x_n\}$ set of n d-dimensional local descriptors
- ▶ Descriptors assigned to cell c: $\mathcal{X}_c = \{x \in \mathcal{X} : q(x) = c\}$

Set similarity function

$$\mathcal{K}(\mathcal{X}, \mathcal{Y}) = \gamma(\mathcal{X}) \gamma(\mathcal{Y}) \sum_{c \in \mathcal{C}} w_c \, \mathrm{M}(\mathcal{X}_c, \mathcal{Y}_c)$$

- ▶ M: cell similarity function
- w_c : visual word weighting e.g. idf
- ullet Normalization factor $\gamma(\mathcal{X}) = \left(\sum_{c \in \mathcal{C}} w_c \; \mathrm{M}\left(\mathcal{X}_c, \mathcal{X}_c
 ight)
 ight)^{-1/2}$
- ightharpoonup Self-similarity $\mathcal{K}(\mathcal{X},\mathcal{X})=1$

Existing methods

Bag-of-Words (BoW)

▶ BoW - cosine similarity

$$M(\mathcal{X}_c, \mathcal{Y}_c) = \# \mathcal{X}_c \times \# \mathcal{Y}_c = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} 1$$
(1)

- ► Similarly with histogram intersection or max pooling
- Hamming Embedding (HE)
- ▶ Descriptor representation: visual word q(x) binary code b_x of B bits

$$M\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} w\left(h\left(b_{x}, b_{y}\right)\right) \tag{2}$$

- ▶ h: Hamming distance
- w: weighting function $w(h)=e^{-h^2/\sigma^2}, h\leq \tau,\ 0,\ {\rm otherwise}$ VLAD
- $V(\mathcal{X}_c) = \sum_{x \in \mathcal{X}_c} r(x)$, where r(x) = x q(x): residual of x
- ullet Concatenation $oldsymbol{\mathcal{V}}(\mathcal{X}) \propto [V(\mathcal{X}_{c_1}), \dots, V(\mathcal{X}_{c_k})]$ of d-dimensional vectors
- ▶ VLAD similarity: $\mathbf{\mathcal{V}}(\mathcal{X})^{\top}\mathbf{\mathcal{V}}(\mathcal{Y}) = \gamma(\mathcal{X})\,\gamma(\mathcal{Y})\sum_{c\in\mathcal{C}}V(\mathcal{X}_c)^{\top}V(\mathcal{Y}_c)$

$$M\left(\mathcal{X}_c, \mathcal{Y}_c\right) = V(\mathcal{X}_c)^{\top} V(\mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} r(x)^{\top} r(y)$$
(3)

Methods in the common model

Model	$\mathrm{M}(\mathcal{X}_c,\mathcal{Y}_c)$	$\phi(x)$	$\sigma(u)$	$\psi(z)$	$\Phi(\mathcal{X}_c)$
BoW (1)	M_{N} or M_{A}	1	u	z	$\#\mathcal{X}_c$
HE (2)	${ m M}_{ m N}$	\hat{b}_x	$w\left(\frac{B}{2}(1-u)\right)$		
VLAD (3)	M_{N} or M_{A}	r(x)	u	z	$V(\mathcal{X}_c)$
SMK (4)	$ m M_N$	$\hat{r}(x)$	$\sigma_{lpha}(u)$		
ASMK (5)	M_A	r(x)	$\sigma_{lpha}(u)$	\hat{z}	$\hat{V}(\mathcal{X}_c)$
SMK* (6)	$ m M_N$	\hat{b}_x	$\sigma_{lpha}(u)$		
ASMK* (7)	M_A	r(x)	$\sigma_{lpha}(u)$	$\hat{b}(z)$	$\hat{b}(V(\mathcal{X}_c))$

Common model

Non aggregated

$$\mathrm{M_N}(\mathcal{X}_c, \mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} \sigma\left(\phi(x)^\top \phi(y)\right)$$

- \bullet ϕ : Descriptor representation (residual, binary, scalar)
- \bullet σ : Selectivity function (post-processing of similarity score)

Aggregated

$$M_{A}(\mathcal{X}_{c}, \mathcal{Y}_{c}) = \sigma \left\{ \psi \left(\sum_{x \in \mathcal{X}_{c}} \phi(x) \right)^{\top} \psi \left(\sum_{y \in \mathcal{Y}_{c}} \phi(y) \right) \right\} = \sigma \left(\Phi(\mathcal{X}_{c})^{\top} \Phi(\mathcal{Y}_{c}) \right)$$

- ullet ψ : Post-processing of aggregated representation (ℓ_2 -normalization, power-law)
- ullet $\Phi(\mathcal{X}_c)$: Aggregated representation of descriptors in cell c

Our methods

Selective Match Kernel (SMK)

$$\mathsf{SMK}(\mathcal{X}_c, \mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} \sigma_{\alpha}(\hat{r}(x)^{\top} \hat{r}(y)) \tag{}$$

Selectivity function σ : Thresholded polynomial of the form

$$u(u) = \begin{cases} \operatorname{sign}(u)|u|^{\alpha} & \text{if } u > \tau \\ 0 & \text{otherwise} \end{cases}$$

• ϕ : ℓ_2 -normalized residual: $\hat{r}(x) = r(x)/\|r(x)\|$

Aggregated Selective Match Kernel (ASMK)

$$\mathsf{ASMK}(\mathcal{X}_c, \mathcal{Y}_c) = \sigma_{\alpha} \left(\hat{V}(\mathcal{X}_c)^{\top} \hat{V}(\mathcal{Y}_c) \right) \tag{5}$$

ullet Aggregate residuals and ℓ_2 -normalize: $\Phi(\mathcal{X}_c) = \hat{V}(\mathcal{X}_c) = V(\mathcal{X}_c) / \|V(\mathcal{X}_c)\|$

ullet Selectivity function σ_{lpha} on single matches of aggregated representations

Binarized counterparts

$$\mathsf{SMK}^{\star}(\mathcal{X}_c, \mathcal{Y}_c) = \sum_{x \in \mathcal{X}_c} \sum_{y \in \mathcal{Y}_c} \sigma_{\alpha}(\hat{b}_x^{\top} \hat{b}_y) \tag{6}$$

$$\mathsf{ASMK}^{\star}(\mathcal{X}_c, \mathcal{Y}_c) = \sigma_{\alpha} \left\{ \hat{b} \left(\sum_{x \in \mathcal{X}_c} r(x) \right)^{\top} \hat{b} \left(\sum_{y \in \mathcal{Y}_c} r(y) \right) \right\} \tag{7}$$

 $\triangleright b$: element-wise binarization function

Matching example

Aggregation example

Experiments

Comparison with state of the art

Dataset	MA	Oxf5k	Oxf105k	Par6k	Holidays
ASMK*		76.4	69.2	74.4	80.0
ASMK*	×	80.4	75.0	77.0	81.0
ASMK		78.1	-	76.0	81.2
ASMK	×	81.7	-	78.2	82.2
HE [Jégou <i>et al.</i> 10]		51.7	-	_	74.5
HE [Jégou <i>et al.</i> 10]	×	56.1	-	-	77.5
HE-BURST [Jain <i>et al.</i> 10]		64.5	-	-	78.0
HE-BURST [Jain <i>et al.</i> 10]	×	67.4	-	-	79.6
Fine vocabulary [Mikulík <i>et al.</i> 10]	×	74.2	67.4	74.9	74.9
AHE-BURST [Jain <i>et al.</i> 10]		66.6	-	-	79.4
AHE-BURST [Jain <i>et al.</i> 10]	×	69.8	-	-	81.9
Rep. structures [Torri <i>et al.</i> 13]	X	65.6	_	-	74.9

Combined with query expansion

ASMK: 87.9 on Oxford5k (Fine vocabulary+QE: 84.9)
 ASMK*: 85.0 on Oxford105k (Fine vocabulary+QE: 79.5)

Memory ratio after-before aggregation

k	8k	16k	32k	65k	
Oxf	69 %	78 %	85 %	89 %	
Par	68 %	76%	82%	86 %	
Hol	55%	65%	73%	78 %	

- Aggregation reduces memory requirements and improves performance in all cases
- Aggregation handles burstiness in this context (large vocabularies)