Final Report: Income Prediction Model with Data Drift Analysis

Group 8:

Mukesh Khemani Ayush Sati Mihir Kumar Aayush Parashar Anurag Sahu

1. Introduction

This report presents an overview of the **Income Prediction Model**, outlining the approach, model pipeline, experiment tracking tools, and results from data drift analysis. The goal of the model is to predict whether an individual's income is greater than \$50K based on demographic and work-related features.

2. Approach and Methodology

The model was developed using **machine learning techniques** to classify income levels. The key steps in the approach include:

- Data Collection & Preprocessing: The dataset was cleaned, missing values handled, and categorical variables encoded.
- **Feature Selection & Engineering**: Features like age, education, work hours, and capital gains were selected based on importance.
- Model Training & Evaluation: Various classifiers were tested, and the best-performing model was fine-tuned using hyperparameter optimization.
- Deployment & UI Development: A Gradio-based UI was created for user interaction.

3. Model Pipeline Flow

Below is a simplified flow of the model pipeline:

1. Data Preprocessing

- Handle missing values
- o Convert categorical data
- Normalize numerical features

2. Model Selection

- o Train models like Decision Trees, Random Forests, and Logistic Regression
- Evaluate using accuracy, precision, recall, and F1-score

3. Experiment Tracking & Optimization

- Tools like MLflow were used to track experiments
- Hyperparameter tuning performed

4. Deployment

Model integrated with Gradio UI for real-time prediction

4. Experiment Tracking and Results

The experiments were tracked using **MLflow** to ensure reproducibility. The following observations were noted:

- Best Model: Random Forest performed the best with an accuracy of 85%.
- **Feature Importance**: Education and capital-gain were among the most influential predictors.

5. Data Drift Analysis

To monitor the performance of the deployed model, a **data drift detection** system was implemented.

- Tools Used: Evidently Al
- Key Metrics:
 - o **P-Value**: Measures whether distributions have significantly changed
 - o Distance Score: Quantifies drift magnitude
 - Drift Detected?: Determines whether data drift occurred

Data Drift Table

Feature	P-Value	Distanc e	Drift Detected
Age	0.27387 5	0.01060 9	No
fnlwgt	0.76050 3	0.00712 7	No
education-num	0.72465 6	0.00736 1	No
capital-gain	1.00000 0	0.00179 0	No
capital-loss	1.00000 0	0.00207 8	No
hours-per-wee k	0.99992 5	0.00346 8	No

Conclusion: No significant drift was detected in the dataset.

6. UI Snapshots & Predictions

6.1 Data Drift Output

6.2 Income Prediction Model UI

Example Prediction:

• Input: Age = 21, Education = None, Hours-Per-Week = 0

• Output: Income ≤50K

7. Conclusion

- A robust income prediction model was developed and deployed.
- Experiment tracking ensured model reproducibility.
- **Data drift monitoring** was implemented, confirming no significant drift.
- The interactive UI allows users to test predictions in real-time.

Next Steps:

- Continue monitoring model performance.
- Improve feature engineering for better accuracy.
- Implement real-world dataset updates periodically.