

A Stochastic Memoizer for Sequence Data

F. Wood, C. Archabeau, L. James, Y.W Teh (2009)

Presented by: Sarah Nadi & Karim Ali

Nov. 2nd 2010 - CS 886

Outline

- Problem Overview
- Existing Techniques
- Proposed Solution
- Contributions
- Model Used
- Inference & Prediction
- Experiments
- Summary & Discussion

Problem Overview

Existing Techniques

N-grams

- Markov assumption applies
- Given n-1 characters, what is the probability vector of the nth character (given our vocabulary)
- Very good perplexity rates
- Problems:
 - Determining optimal value of n
 - We need more training data

Proposed Solution

- Use a non-Markov model
 - Next value in sequence is conditionally dependent on all preceding values → ∞-gram
 - This introduces a large number of latent variables
 - Use Pitman-Yor (PY) process with concentration parameter = 0
 - Use Hierarchial PY Process (HPYP) to allow comparing common suffixes

Contribution

- Stochastic Memoizer
 - Probabilistic technique
 - Remembers previously returned values
 - Return previously returned symbols or a new symbol
 - Goals
 - Relate shorter sequences with longer sequences
 - Use a HPYP that is tractable

Hierarchial Formulation

Hierarchial Formulation cont'd

H is the base measure d_n is the discount parameter c_n is the precision paramter

Hierarchial Formulation cont'd

H is the base measure d_n is the discount parameter c_n is the precision paramter

$$[s] = [vs']$$

Hierarchial Formulation control

H is the base measure d_n is the discount parameter c_n is the precision paramter

Prefix Tries

Prefix trie for oacac.

Prefix Trees

Prefix tree for oacac.

Trie to Tree Conversion

Prefix trie for oacac.

Prefix tree for oacac.

Coagulation & Fragmentation

Coagulation & Fragmentation

Coagulation & Fragmentation

Coagulation & Fragmentation Cont'd

Coagulation & Fragmentation cont'd

Inference & Prediction

- Same as HPYP
- Use Gibbs sampling in the Chinese Restaurant Franchise (CRF) representation
- $E(G_{[s]}(v)) = E(G_{[s']}(v))$ where s' is the longest common suffix of s
- Need to be able to compute the probability of a symbol v given a sequence s that is not in the training data

Unseen Sequences

Consider s = [oca]

Longest common suffix is s' = [ca]

 $G_{[oacac]}$

Need to reinstantiate G[ca]

Fragment G[oaca]|G[a] into

(G[ca] | G[a]) and

(G[oaca] | G[ca])

Prefix tree for *oacac*.

Unseen Sequences

Consider s = [oca]

Longest common suffix is s' = [ca]

 $G_{[oacac]}$

Need to reinstantiate G[ca]

Fragment G[oaca]|G[a] into

(G[ca] | G[a]) and

(G[oaca] | G[ca])

Prefix tree for oacac.

Unseen Sequences

Consider s = [oca]

Longest common suffix is s' = [ca]

 $G_{[oacac]}$

Need to reinstantiate G[ca]

Fragment G[oaca]|G[a] into

(G[ca] | G[a]) and

(G[oaca] | G[ca])

Prefix tree for oacac.

Experiments

Evaluation Questions

- Do prefix trees provide computational savings?
- Does the sequence memoizer's (∞-gram) performance compare to that of an n-gram model?

Data Sets

- Associated Press (AP) corpus
 - Vocabulary: 1 million words
 - *Training:* 15 million words
 - Testing: 1 million words
 - Preprocessing: Replace low frequency words with a single "unknown word" symbol
- New York Times (NYT) corpus
 - Vocabulary: 150,000 words
 - Training: 13 million words
 - *Testing:* 200,000 words
 - Preprocessing: none

1) Computational Savings

- Use the NYT data set & compare with n-gram model
- Metropolis-Hastings updates used for discount parameters
- Use distinct discount parameters for each of the first 4 levels of the trie, while levels below use a single shared discount parameter

$$d_{[0,1,2,\ldots]} = (.62, .69, .74, .80, .95, .95, \ldots)$$

Computational Savings Results

An ∞-gram with 10 burn-in iterations & 5
samples produced same perplexity scores as a
3-gram model with 125 burn-in iterations & 175
samples

Computational Savings Results cont'd

Computational Savings Results cont'd

2) Performance Results

Performance Results cont'd

Take Home Message

- N-gram models perform based on the choice of n
- An ∞-gram model relieves this constraint
 - Common suffixes used to collapse prefix trie
 - Achieves at least same perplexity as n-gram
 - In most cases, saves computation & storage

Discussion

- Complexity of coagulation & fragmentation processes
- Frequency of fragmentation during experiments
- Intuition of setting concentration parameters to 0
- Computational savings on AP corpus
- Did not mention which n-gram sampler had 125 burn-in & 175 samples
- Different values for discount parameters in lower levels

Thank You ??

Reinstantiating G[ca]|G[c] "restaurant"

