Lemme de pompage ultime: Ehrenfeucht, Parikh et Rozenberg

1. Question 0

Informellement, la version du lemme 1 ne marche pas car on n'a aucun contrôle sur le mot du milieu qui va être répété: celui ci peut contenir autant de a que de b, et donc le répéter donne uniquement des mots dans le langage.

On peut uriliser le lemme 2 sur $a^N b^N$ par exemple, en posant $u=a^N$ et $v_i=b$ pour i allant de 1 à N.

2. Question 1

• Justifions d'abord que (1) implique (2). D'après la dernière version du lemme de l'étoile, il existe $k \in \mathbb{N}$, tel que pour tout mot $f \in L$ et toute factorisation $f = uv_1...v_kw$ (avec les v_i non vides), on a l'existence de $0 \le i < j \le k$ tels que:

$$\forall n \geq 0, uv_1...v_i \big(v_{i+1}...v_j\big)^n v_{j+1}...v_k w \in L$$

.

Comme L est régulier, son complementaire \overline{L} l'est aussi, donc on dispose de $k' \in \mathbb{N}$ tel que pour tout mot $f \in \overline{L}$ et toute factorisation $f = uv_1...v_{k'}w$ (avec les v_i non vides), on a l'existence de $0 \le i < j \le k'$ tels que:

$$\forall n \geq 0, uv_1...v_i \big(v_{i+1}...v_j\big)^n v_{j+1}...v_{k'} w \in \overline{L}$$

Ainsi, en prenant $K = \max(k, k')$, pour tout mot $f \in \Sigma^*$, avec $f = uv_1...v_K w$ (les v_i étant non vides):

- Soit $f \in L$ et dans ce cas il existe $0 \le i < j \le k \le K'$ tels que $\forall n \ge 0, uv_1...v_i \big(v_{i+1}...v_j\big)^n v_{j+1}...v_k w \in L$.
- Sinon, $f \in \overline{L}$ et alors il existe $0 \le i < j \le k' \le K'$ tels que $\forall n \ge 0, uv_1...v_i \left(v_{i+1}...v_j\right)^n v_{j+1}...v_k w \in \overline{L}$.

Dans les deux cas, il existe $0 \le i < j \le K'$ tels que $\forall n \ge 0, f \in L \Leftrightarrow uv_1...v_i \big(v_{i+1}...v_j\big)^n v_{j+1}...v_k w \in L$, ce qui conclut la démonstration.

• Pour montrer que (2) implique (3), il suffit de remplacer n par 0 dans la définition de σ_k .

3. Question 2

Soit L vérifiant σ_k' . Soit $x \in \Sigma^*$, on considère $L' = x^{-1}L$.

Soit $y \in L'$, on a $f = xy \in L$.

Soit $y=uv_1...v_kw$ une décomposition que lconque de y dans laquelle les mots v_i sont non vides. L vérifiant σ_k' , on a:

$$f = xy \in L \Leftrightarrow xuv_1...v_k w \in L$$

Et donc il existe $i, j : 0 \le i < j \le k$, tel que:

$$xuv_1...v_iv_{i+1}...v_kw \in L$$

D'où:

$$uv_1...v_iv_{j+1}...v_kw \in x^{-1}L$$

On a donc bel et bien $x^{-1}L$ qui vérifie σ'_k .

4. Question 3

Pour des valeurs p=1 et r=2, ce théorême ressemble au lemme des tiroirs (ou des pigeonniers). En effet, on peut voir f comme une fonction qui à chaque élément de E associe un "tiroir", et le théorème indique qu'il y a au moins deux éléments de E distincts qui ont la même image par f, c'est-à-dire qui sont dans le même "tiroir". On propose donc N(1, m, 2) = m + 1.

5. Question 4

On suppose qu'une paire est un ensemble et donc différente d'un couple par l'exclusion du cas de paire d'élements égaux :

$$x\in X, (x,x)\in X^2, \{x,x\}=\{x\}\notin \mathcal{P}_2(X)$$

En considérant le triplet (p=2, m=2, r=k+1), le théorême de Ramsey donne l'existence de M=N(2,2,k+1) tel que:

Pour tout:

- E un ensemble, $|E| \ge M$.
- C un ensemble, |C|=2.
- F une fonction, $f: P_2 \to C$.

il existe $F \subset E$ tq:

- $|F| \ge k + 1$.
- $|f(P_2(R))| \le 1$.

Donc en particulier en posant :

- E = [1, M], qui est bien un ensemble de cardinal $\geq M$.
- $C = \{0, 1\}$, qui est bien un ensemble de cardinal 2.
- $f: \{u, v\} \in \mathcal{P}_2(E) \mapsto \mathbb{1}_P(u, v) \in C$.

On a l'existence de $F_P \subset [1, M]$ tel que:

- $|F_P| \ge k + 1$
- $|f(P_2(F_P))| \le 1$

Ainsi pour $F \subset E$, $|f(F)| \leq 1$ correspond au fait que toutes les paires de F appartiennent à P ou aucune n'y appartient: $f(F) = \{1\}$ ou $f(F) = \{0\}$.

6. Question 5

Soit $f=f_1f_2...f_n\in \Sigma^*$ avec $n=|f|\geq N.$ On pose

$$P = \left\{ (i,j) \in [\![1;n-1]\!]^2, i < j \mid f_1...f_if_{j+1}...f_n \in L_1 \right\}$$

Alors il existe un sous-ensemble F_P de [1; N] de taille au moins (k + 1) tel que toutes les paires dans cet ensemble sont soit toutes dans P, soit toutes en dehors de P. De fait, en considérant un $F_P' \subset F_P$ de taille exactement (k + 1), on dispose d'un ensemble de cardinal (k + 1) dont les paires sont soit toutes dans P, soit toutes en dehors de P.

Notons $(a_1,...,a_{k+1})$ les éléments F_P' dans l'ordre croissant, et posons:

$$\forall i < k+1, v_i = f_{a_i+1}...f_{a_{i+1}}$$

$$u = f_1...f_{a_1}$$

$$w = f_{a_{k+1}+1}...f_n$$

et considérons la décomposition $f=uv_1...v_kw$. On remarque que les mots v_i sont bien non-nuls. Par construction, soit toutes les paires dans F_P' sont dans P et dans ce cas

$$\forall i,j: 0 \leq i < j \leq k, uv_1...v_iv_{j+1}...v_n \in L_1$$

, soit $\forall i, j : 0 \le i < j \le k, uv_1...v_iv_{j+1}...v_n \notin L_1$.

Montrons l'équivalence de l'énoncé. Soit $0 \le i < j \le k$.

- Sens direct: Soit f in L_1 . Comme L_1 vérifie σ'_k , on a l'éxistence de $0 \le i' < j' \le k$ tel que $uv_1...v_{i'}v_{j'+1}...v_n \in L_1$. Ainsi une paire de F'_P est dans P, et donc toutes les paires le sont. Donc $uv_1...v_iv_{j+1}...v_n \in L_1$.
- Sens indirect: Supposons que $uv_1...v_iv_{j+1}...v_n \in L_1$. Alors $\forall 0 \leq i' < j' \leq k, uv_1...v_{i'}v_{j'+1}...v_n \in L_1$. En particulier, d'après σ'_k , il existe $0 \leq i' < j' \leq k$ tel que si $uv_1...v_{i'}v_{j'+1}...v_n \in L_1$ alors $f \in L_1$. Donc $f \in L_1$.

7. Question 6

Remarquons d'abord, que le résultat de la question 5 sur L_1 est aussi valable pour L_2 .

Soit
$$L_n = \{u \in L, |u| \le n + N\}$$

Soit P_n :

$$L_{1,n} = L_{2,n}$$

Montrons que $L_1=L_2$ en montrant que $\forall n\in\mathbb{N},\,P_n$ est vérifiée, par récurrence sur n.

Initialisation:

On sait que les mots de taille au plus N de L_1 sont exactement les mots de taille au plus N de L_2 . Ainsi, P_0 est vérifiée.

Hérédité:

Soit $n \in \mathbb{N}$, on suppose P_n vérifiée. Montrons que P_{n+1} est vérifiée.

Soit
$$f \in L_{1,n+1} \setminus L_{1,n}$$
, on a

$$f \in L_1$$

donc par Q5, on a l'existence d'une factorisation: $f=uv_1...v_kw$ avec $k\geq N$ telle que:

$$\forall i, j : 0 \le i < j \le k, uv_1...v_iv_{j+1}...v_kw \in L_1$$

Ainsi, $\forall i, j : 0 \le i < j \le k$:

$$|f| > |f_{i,j} = uv_1...v_iv_{j+1}...v_kw|$$

On a donc, $\forall i,j: 0 \leq i < j \leq k, f_{i,j} \in L_{1,n} = L_{2,n}$, par hypothèse de récurrence.

Cependant, le résultat de la question 5 s'applique aussi à L_2 . Or

$$\forall i, j : 0 \le i < j \le k, f_{i,j} \in L_{2,n} \subset L_2$$

D'où,

$$f\in L_2$$

De plus $|f| \le N + n + 1$ donc $f \in L_{2,n+1}$.

Ainsi, $L_{1,n+1}\subset L_{2,n+1}$, par le raisonnement symétrique, on a que $L_{2,n+1}\subset L_{1,n+1}$ donc:

$$L_{1,n+1} = L_{2,n+1}$$

On a donc montré, par récurrence, que $\forall n \in \mathbb{N}, L_{1,n} = L_{2,n}$, ainsi,

$$L_1 = L_2$$

8. Question 7

Soit $k \in \mathbb{N}$.

Sur un alphabet fini, le nombre de mots de longueur inferieure ou égale à N est fini.

Ainsi $\mathcal{P}(\{u \in \Sigma^*, |u| \leq N\})$ est un ensemble fini.

Or Q6 donne l'égalité entre les langages vérifiant σ'_k et dont les ensembles de mots de taille inférieures à N sont les mêmes.

Le nombre de ces ensembles étant fini, les langages vérifiant σ_k' sont en nombre fini.

9. Question 8

D'après la question 2, tous les langages résiduels de L_1 sont dans σ_k . D'après la question 7, il y a un nombre fini de langages vérifiant σ_k '. Donc L_1 a un nombre fini de résiduels, puis, d'après le théorème de Myhill-Nerode, L_1 est rationnel.