

1. 개발환경

패키지 및 Version 정보

Python 3.8.10 pandas 1.3.5 numpy 1.22.4

2.1 결측치 확인

Train 결측치

X_1	X_2	X_3	X_4	• • •	X_2866	X_2867	X_2868	X_2869	X_2870	X_2871	X_2872	X_2873	X_2874	X_2875
NaN	NaN	NaN	NaN		39.34	40.89	32.56	34.09	77.77	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN	-	38.89	42.82	43.92	35.34	72.55	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN		39.19	36.65	42.47	36.53	78.35	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN		37.74	39.17	52.17	30.58	71.78	NaN	NaN	NaN	NaN	NaN
NaN	NaN	NaN	NaN		38.70	41.89	46.93	33.09	76.97	NaN	NaN	NaN	NaN	NaN

Test 결측치

X_1	X_2	X_3	X_4	X_5	X_6	• • •	X_2866	X_2867	X_2868	X_2869	X_2870	X_2871	X_2872	X_2873	X_2874	X_2875
2.0	94.0	0.0	45.0	10.0	0.0		NaN									
2.0	93.0	0.0	45.0	11.0	0.0	(***)	NaN									
2.0	95.0	0.0	45.0	11.0	0.0		NaN									
NaN	NaN	NaN	NaN	NaN	NaN		NaN									
NaN	NaN	NaN	NaN	NaN	NaN		NaN									

PRODUCT_CODE, LINE에 따라 특정 열에 다수의 결측치가 존재함

2.2 데이터 구성 탐색

PRODUCT_CODE 분포 확인

LINE 분포 확인

2.2 데이터 구성 탐색

전체 train data 중 Y_Class 분포 확인

Y_Class에 따른 Y_Quality 확인

→ 0 < 1 < 2 구간차이가 뚜렷한 편

2.2 데이터 구성 탐색

LINE 별 Y_Class 분포 확인

PRODUCT_CODE 별 Y_Class 분포 확인

2.3 Data pipeline 구축

결측치를 채우기 위해 다양한 방법을 시도

test data를 사전에 알 수 없음

- → test data 사용 시 Data Leakage 발생 위험 비식별화된 변수 (X_1 ~ X_2875)가 많음
 - \rightarrow data 변수 별 특성을 제한하기 어려움

최대한 원본 data의 특성을 유지하고자 함

라벨 인코딩

Done.

라벨 인코딩 전

array([2, 3, 4, 5, 1, 0])

```
train['PRODUCT_CODE'].unique()
array(['A_31', 'T_31', '0_31'], dtype=object)
train['LINE'].unique()
array(['T050304', 'T050307', 'T100304', 'T100306', 'T010306', 'T010305'],
     dtype=object)
라벨 인코딩 후
train['PRODUCT_CODE'].unique()
array([0, 2, 1])
train['LINE'].unique()
```

정규화

```
from sklearn.preprocessing import MinMaxScaler

x_col = train.columns[train.columns.str.contains('X')].tolist()
scaler = MinMaxScaler()

scaler.fit(train_x[x_col])

train_x[x_col] = scaler.transform(train_x[x_col])
test_x[x_col] = scaler.transform(test_x[x_col])
```

정규화 전

train_x.loc[:3,'X_2866':'X_2870']

	X_2866	X_2867	X_2868	X_2869	X_2870
0	39.34	40.89	32.56	34.09	77.77
1	38.89	42.82	43.92	35.34	72.55
2	39.19	36.65	42.47	36.53	78.35
3	37.74	39.17	52.17	30.58	71.78

정규화 후

train_x.loc[:3,'X_2866':'X_2870']

	X_2866	X_2867	X_2868	X_2869	X_2870
0	0.256757	0.248647	0.000000	0.122283	0.890487
1	0.240754	0.300866	0.407899	0.164742	0.601770
2	0.251422	0.133929	0.355835	0.205163	0.922566
3	0.199858	0.202110	0.704129	0.003057	0.559181

전체 평균으로 결측값 채우기

```
train_x = train_x.fillna(train_x.mean())
test_x = test_x.fillna(train_x.mean())
```

결측치 채우기 전

	LINE	PRODUCT_CODE	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
592	4	2	0.009804	0.733333	0.0	0.0	0.0	170	0.000000	0.0
593	5	2	0.009804	0.533333	0.0	0.0	0.0	0.0	0.294118	0.0
594	2	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
595	2	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
596	4	1	0.382353	0.466667	0.0	0.0	1.0	0.0	0.000000	0.0
597	5	1	0.196078	0.000000	0.0	0.0	0.0	0.0	0.941176	0.0

결측치 채운 후

train_x.loc[592:,:'X_8']

	LINE	PRODUCT_CODE	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
592	4	2	0.009804	0.733333	0.0	0.0	0.00000	0.0	0.000000	0.000000
593	5	2	0.009804	0.533333	0.0	0.0	0.00000	0.0	0.294118	0.000000
594	2	0	0.013821	0.541547	0.0	0.0	0.39255	0.0	0.223664	0.048711
595	2	0	0.013821	0.541547	0.0	0.0	0.39255	0.0	0.223664	0.048711
596	4	1	0.382353	0.466667	0.0	0.0	1.00000	0.0	0.000000	0.000000
597	5	-1	0.196078	0.000000	0.0	0.0	0.00000	0.0	0.941176	0.000000

결측값 제거

```
train_x = train_x.dropna(axis =1)
test_x = test_x.dropna(axis=1)
```

결측치 제거 전 데이터 프레임 shape 확인

```
train_x.shape, train_y.shape, test_x.shape
((598, 2877), (598,), (310, 2877))
```

결측치 제거 후 데이터 프레임 shape 확인

```
train_x.shape, train_y.shape, test_x.shape
((598, 2795), (598,), (310, 2795))
```

4. Modeling

Tree model 중 성능 비교를 위해 voting 사용

```
#lightGBM, ExtraTreesClassifier, RandomForestClassifier 선택
model = Igbm.LGBMClassifier()
et_cls = ExtraTreesClassifier(n_estimators=500, min_samples_leaf=5, min_samples_split=7, max_features=2795)
rf_cls = RandomForestClassifier(n_estimators=500, min_samples_leaf=5, min_samples_split=7, max_features=2795)
Ig_cls = model.fit(train_x, train_y)
#모델 voting
voting = VotingClassifier(
    estimators=[
        ('et', et_cls),
        ('rf', rf_cls),
        ('lg', lg_cls)
voting.fit(train_x, train_y)
                           VotingClassifier
                                     rf
            et
                                                           Ig
                          ► RandomForestClassifier

    ExtraTreesClassifier

                                                    ► LGBMCTassifier
```

5. 결과도출

```
pred = voting.predict(test_x)
sub['V_Class'] = pred
```

예측값 확인

pred

