CS 731: Blockchain Technology And Applications

Sandeep K. Shukla
IIT Kanpur

C3I Center

Acknowledgement

 The material of this lecture material is mostly due to Prof. Arvind Narayanan's Lecture at Princeton and his

book on Bitcoin (Chapter 5 mostly

Recap: Bitcoin miners

Bitcoin depends on miners to:

- Store and broadcast the block chain
- Validate new transactions
- Vote (by hash power) on consensus

But who are the miners?

The task of Bitcoin miners

Mining Bitcoins in 6 easy steps

- 1. Join the network, listen for transactions
 - a. Validate all proposed transactions
- 2. Listen for new blocks, maintain block chain
 - a. When a new block is proposed, validate it
- 3. Assemble a new valid block
- 4. Find the nonce to make your block valid
- 5. Hope everybody accepts your new block
- 6. Profit!

Useful to Bitcoin network

Mining difficulty "target" (2014-08-07)

256 bit hash output

64+ leading zeroes required

Current difficulty = 2^{66.2}

=84,758,978,290,086,040,000

Setting the mining difficulty

Every two weeks, compute:

Expected number of blocks in 2 weeks at 10 minutes/block

Mining difficulty over time

Bitcoin Hash Rate vs Difficulty (2 Months)

Time to find a block

Mining hardware

SHA-256

- General purpose hash function
 - Part of SHA-2 family: SHA-224,SHA-384,SHA-512
- Published in 2001
- Designed by the NSA
- Remains unbroken cryptographically
 - Weaknesses known
- SHA-3 (replacement) under standardization

256-bit state

CPU mining

```
while (1) {
    HDR[kNoncePos]++;
    IF (SHA256(SHA256(HDR)) < (65535 << 208) / DIFFICULTY)
    return;
}

two hashes</pre>
```

Throughput on a high-end PC = $10-20 \text{ MHz} \approx 2^{24}$

139,461 years to find a block today!

GPU mining

- GPUs designed for high-performance graphics
 - high parallelism
 - high throughput
- First used for Bitcoin ca. October 2010
- Implemented in OpenCL
 - Later: hacks for specific cards

GPU mining advantages

- easily available, easy to set up
- parallel ALUs
- bit-specific instructions
- can drive many from 1 CPU
- can overclock!

"Goodput"

Observation: some errors are okay (may miss a valid block)

Goodput: throughput × success rate

Worth over-clocking by 50% with 30% errors!

Source: LeonardH, cryptocurrencies talk.com

GPU mining disadvantages

- poor utilization of hardware
- poor cooling
- large power draw
- few boards to hold multiple GPUs

Throughput on a good card = $20-200 \text{ MHz} \approx 2^{27}$

≈173 years to find a block w/100 cards!

FPGA mining

- Field Programmable Gate Area
- First used for Bitcoin ca. June 2011
- Implemented in Verilog

FPGA mining advantages

- higher performance than GPUs
 - o excellent performance on bitwise operations
- better cooling
- extensive customisation, optimisation

Bob Buskirk, thinkcomputers.org

FPGA mining disadvantages

- higher power draw than GPUs designed for
 - frequent malfunctions, errors
- poor optimization of 32-bit adds
- fewer hobbyists with sufficient expertise
- more expensive than GPUs
- marginal performance/cost advantage over GPUs

Throughput on a good card = 100-1000 MHz ≈ 2³⁰ 25 years to find a block w/100 boards!

Bitcoin ASICs

TerraMiner™ IV – 2TH/s Networked ASIC Miner

\$5,999

Shipping June 2014

300 GH Bitcoin Mining Card The Monarch BPU 300 C

\$1,497.00

Qty: 1 ADD TO CART

Pre-Order Terms: This is a pre-order. 28nm ASIC bitcoin mining hardware products are shipped according to placement in the order queue, and delivery may take 3 months or more after order. All sales are final.

DETAILS

- 2.5 TH/s
- Dimensions: 15" x 13.3" x 13.7" (38cm x 34cm x 35cm)
- 28nm ASIC technology
- · Silent Cooling
- In-built WiFi Connection (without Antenna)
- Less than 750 watt (0.3 per GH)
- 1 Year Guarantee
- \$ 5.800

COMES WITH

- 1. Power Supply
- Free Remote Power Outlet & Smartphone App
- 3. Free User Guide
- 4. Free Personal Assistance for Setup

SHPPING

- · Worldwide, Express
- · Included in the price
- Available:

 100 Units: Shipping Ap
 (Week 3)

Bitcoin ASICs

- special purpose
 - o approaching known limits on feature sizes
 - o less than 10x performance improvement expected
- designed to be run constantly for life
- require significant expertise, long lead-times
- perhaps the fastest chip development ever!

Case study: TerraMiner IV

- First shipped Jan 2014
- 2 TH/s
- Cost: US\$6,000

Still, 14 months to find a block!

Market dynamics (2013/2014)

- Most boards obsolete within 3-6 months
 - Half of profits made in first 6 weeks
- Shipping delays are devastating to customers
- Most companies require pre-orders
- Most individual customers should have lost...

But... rising prices have saved them!

Professional mining centers

Needs:

- cheap power
- good network
- cool climate

BitFury mining center, Republic of Georgia

The future

- Can small miners stay in the game?
- Do ASICs violate the original Bitcoin vision?
- Would we be better off without ASICs?

Energy consumption & ecology

Thermodynamic limits

Landauer's principle: Any non-reversible computation must consume a minimum amount of energy.

Specifically, each bit changed requires (kT In 2) joules

SHA-256 is not reversible

Energy consumption is inevitable

Energy aspects of Bitcoin mining

- Embodied energy: used to manufacture mining chips & other equipment
 - should decrease over time
 - returns to scale
- Electricity: used to perform computation
 - should increase over time
 - returns to scale
- Cooling: required to protect equipment
 - costs more with increased scale!

Estimating energy usage: top-down

- Each block worth approximately US\$15,000
- Approximately \$25/s generated
- Industrial electricity (US): \$0.03/MJ
 - ○\$0.10/kWh

Upper bound on electricity consumed:

 $900 \, MJ/s = 900 \, MW$

Estimating energy usage: bottom-up

- Best claimed efficiency: 1 GHz/W
- Network hash rate: 150,000,000 GHz
- (excludes cooling, embodied energy)

Lower bound on electricity consumed:

150 MW

How much is a MW?

Three Gorges Dam = 10,000 MW typical hydro plant ≈ 1,000 MW

Kashiwazaki-Kariwa nuclear power plant = 7,000 MW typical nuclear plant ≈ 4,000 MW

major coal-fired plant ≈ 2,000 MW

All payment systems require energy

Data furnaces

- **Observation:** in the limit, computing devices produce heat almost as well as electric heaters!
- Why not install mining rigs as home heaters?
- Challenges:
 - Ownership/maintenance model
 - Gas heaters still at least 10x more efficient
 - O What happens in summer?

Open questions

- Will Bitcoin drive out electricity subsidies?
 - Will Bitcoin require guarding power outlets?
 - Can we make a currency with no proof-of-work?

Mining pools

Economics of being a small miner

- Cost: ≈US\$6,000
- Expected time to find a block: ≈14 months
- Expected revenue: ≈\$1,000/month

TerraMiner IV

Mining uncertainty

Time to find first block

Mining pools

- Goal: pool participants all attempt to mine a block with the same coinbase recipient
 - send money to key owned by pool manager
- Distribute revenues to members based on how much work they have performed
 - minus a cut for pool manager

How do we know how much work members perform?

Mining shares

Idea: prove work with "near-valid blocks" (shares)

4AA087F0A52ED2093FA816E53B9B6317F9B8C1227A61F9481AFED67301F2E3FB D3E51477DCAB108750A5BC9093F6510759CC880BB171A5B77FB4A34ACA27DEDD 00000000008534FF68B98935D090DF5669E3403BD16F1CDFD41CF17D6B474255 BB34ECA3DBB52EFF4B104EBBC0974841EF2F3A59EBBC4474A12F9F595EB81F4B 00000000002F891C1E232F687E41515637F7699EA0F462C2564233FE082BB0AF 0090488133779E7E98177AF1C765CF02D01AB4848DF555533B6C4CFCA201CBA1 460BEFA43B7083E502D36D9D08D64AFB99A100B3B80D4EA4F7B38E18174A0BFB 652F374601D149AC47E01E7776138456181FA4F9D0EEDD8C4FDE3BEF6B1B7ECE 785526402143A291CFD60DA09CC80DD066BC723FD5FD20F9B50D614313529AF3 000000000041EE593434686000AF77F54CDE839A6CE30957B14EDEC10B15C9E5 9C20B06B01A0136F192BD48E0F372A4B9E6BA6ABC36F02FCED22FD9780026A8F Mining pools

Hey folks! Here's our next block to work on

coinbase:

25→pool

Pool manager

H(prev: mrkl_root: nonce: hash: $0 \times 00000000000000003$

0x000000000007313f 89...

1f...

58900000000045a161

\$\$\$ 0x00000000000a87790

8€0000000001e8709

6気0000000000490c6b

00.

Mining pool variations

- Pay per share: flat reward per share
 - Typically minus a significant fee
 - O What if miners never send in valid blocks?
- Proportional: typically since last block
 - Lower risk for pool manager
 - More work to verify
- "Luke-jr" approach: no management fee
 - Miners can only get paid out in whole BTC
 - Pool owner keeps spread

Mining pool protocols

- API for fetching blocks, submitting shares
 - Stratum
 - Getwork
 - Getblockshare
- Proposed for standardization with a BIP
 - Increasingly important; some hardware support

Mining pool history

- First pools appear in late-2010
 - O Back in the GPU era!
- By 2014: around 90% of mining pool-based
- June 2014: GHash.io exceeds 50%

Mining pools (as of August 2014)

Are mining pools a good thing?

Pros

- Make mining more predictable
- Allow small miners to participate
- More miners using updated validation software

Cons

- Lead to centralization
- Discourage miners from running full nodes

Can we prevent pools?

Mining incentives and strategies

Game-theoretic analysis of mining

Several strategic decisions

- Which transactions to include in a block
 - Default: any above minimum transaction fee
- Which block to mine on top of
 - Default: longest valid chain
- How to choose between colliding blocks
 - Default: first block heard
- When to announce new blocks
 - Default: immediately after finding them

Game-theoretic analysis of mining

Assume you control $0 < \alpha < 1$ of mining power

Can you profit from a non-default strategy?

For some α , YES, though analysis is ongoing!

Forking attacks

Forking attacks

- Certainly possible if $\alpha > 0.5$
 - o may be possible with less
 - avoid block collisions
- Attack is detectable
 - Might be reversed
 - Might crash exchange rate

I expect you to die, Mr.
Bitcoin

Goldfinger Attack?

Forking attacks via bribery

- Idea: building $\alpha > 0.5$ is expensive. Why not rent it instead?
 - Payment techniques:
 - Out-of-band bribery
 - Run a mining pool at a loss
 - Insert large "tips" in the block chain

This is an open problem!

Checkpointing

satoshi

Founder Sr. Member

Activity: 364

Bitcoin 0.3.2 released

July 17, 2010, 09:35:51 PM

Download links available now on bitcoin.org. Everyone should upgrade to this version.

- Added a simple security safeguard that locks-in the block chain up to this point.
- Reduced addr messages to save bandwidth now that there are plenty of nodes to connect to.
- Spanish translation by milkiway.
- French translation by aidos.

Default clients ship with built-in checkpoint

Block-withholding attacks

Strategy: don't announce blocks right away. Try to get ahead!

Block-withholding attacks, take 2

What happens if a block is announced when you're ahead by 1?

The race is on!

Block-withholding attacks

- Improved strategy for any α if you can win every race
 - Ideal network position
 - Our Bribery?
- With a 50% chance of winning races, improved strategy for α >
 0.25
- Not yet observed in practice!

Surprising departure from previous assumptions

Punitive forking

- Suppose you want to blacklist transactions from address X
 - Freeze an individual's money forever
- Extreme strategy: announce that you will refuse to mine on any chain with a transaction from X

With α < 0.5, you'll soon fall behind the network

Feather-forking strategy

- To blacklist transactions from X, announce that you will refuse to mine directly on any block with a transaction from X
 - but you'll concede after n confirming blocks

• Chance of pruning an offending block is α^2

Response to feather forking

- For other miners, including a transaction from X induces an α^2 chance of losing a block
- Might be safer to join in on the blacklist
- Can enforce a blacklist with $\alpha < 0.5!$

Success depends on convincing other miners you'll fork

Feather-forking: what is it good for?

- Freezing individual bitcoin owners
 - ransom/extortion
 - o law enforcement?
- Enforcing a minimum transaction fee...

A second look at transaction fees

Default policy:

```
priority = sum(input_value * input_age)/size_in_bytes
```

Accept without fees if:

priority > 0.576

Transaction fees will matter more

Currently, block rewards are > 99% of miner revenue. But:

Eventually, transaction fees will dominate

Courtesy: Brian Warner

Will miners cooperate to enforce fees?

Bribery attacks

Start a new mining pool paying 25+\varepsilon

Guarantee payment instead of dividing up wins

Mutual trust issues

Pay miners directly

Potentially cheaper

Trust/information issues

Kickbacks

Solve some trust issues

Complicated technically

Summary

- Miners are free to implement any strategy
- Very little non-default behavior in the wild
- No complete game-theoretic model exists

Things might be about to get interesting...