ETGG1803 Final Exam Review Questions

If your section is...

02 (MW 9:00am – 11:15am)

01 (MW 12:00 – 2:15pm)

03 (TR 3:00 – 5:15pm)

Wednesday May 4, 8:00am – 9:50am

Monday May 2, 12:00 – 1:50pm

Thursday May 5, 2:00 – 2:50pm

I should be around for last-minute questions:

- Monday (5/2/2016) from ~ 8:15am 11am
- Tuesday (5/3/2016) from ~8:15am 11am

Some advice:

- Do:
 - Get plenty of sleep and eat before the test.
 - Break up your studying (don't just cram the night before)
 - Make a cheat sheet (one sheet of 8.5" x 11" paper [typed or hand-written], single-sided)
 - It's OK if you want to share copies of your cheat-sheet with others.
- Don't:
 - o Just study the answers to the guizzes and practice final.
 - Panic. Whatever happens, there are solutions...talk to me after the final (in person / email) and we can figure something out.

Class outline

- Section01 (Coordinate Spaces and Vectors)
 - 2d polar <-> Euclidean conversions
 - Vector notation and terminology (head, tail, magnitude)
 - Connection between vectors and points.
 - Python OOP basics and "class hooks": __init__, __str__, __len__, __getitem__,
 __setitem__, __eq__
 - hasattr and isinstance functions
 - Raising exceptions
- Section02 (Vector Operations)
 - o [for each operation, a symbolic, numeric, and *graphical* interpretation]
 - Negation
 - Vector-scalar multiplication
 - Magnitude
 - Addition / Subtraction
 - Normalization
 - Additional "class hooks": __add__, __sub__, __mul__, __rmul__, __truediv__,
 __rtruediv__, __neg__, etc.
- Section03 (Basic Vector Physics)
 - Integrating position from velocity.
 - Newton-Euler-1 integration (the kind we used in the lab)
 - The connection between acceleration, velocity, and dt (w/ variable frame rate)
 - Gravity Accleration
 - Rotating and pointing in pygame.
 - Basic inheritance
 - Basic friction (both methods: opposing force and time-based velocity-scaling)

- Section04 (Dot and Cross Product)
 - o The two numeric methods and why they are equivalent.
 - V-dot-v == magnitudeSquared
 - Finding the angle between two vectors
 - Shotgun problem (including the linear interpolation of damage
 - Acute-Right-Obtuse classification
 - o Projections
 - Link-beamos problem
 - Cross Product
 - Main application
 - Magnitude of the result (and connection to area)
- Section05 (RayTracer Part I)
 - For each: know how we define them and the "main" formula used with them
 - Ray
 - Plane
 - Sphere
 - I (usually) don't ask you to completely replicate any hit detection algorithms, but I
 probably will ask you for parts of it...
 - Main idea / algorithm
 - Constructing camera coordinate system (camX, camY, camZ, and camPos)
 - o Calculating view plane width & height
 - o Calculating view plane origin
 - o Calculating the position of a pixel on the view plane (based on a pygame pixel)
 - o Finding the closest object hit.
- Section06 (Ray Tracer II)
 - material / light / perceived color connection
 - o be able to describe the 3 "passes" of lighting (ambient, diffuse, specular)
 - o be able to show how to calculate the diffuse, ambient, specular color of an object
 - o be able to describe the ray-tracer shadow algorithm.
- Section07 (Matrices)
 - Matrix terminology
 - dimension
 - notation for indicating a single element or a row or column (0-based)
 - square-ness
 - Identity matrix
 - Matrix-Vector connection
 - Right and Left-handed difference
 - Transposing
 - Matrix * Matrix
 - Matrix * Vector and Vector * Matrix
 - The connection to __mul__ and __rmul__ methods in python
 - The connection with left and right-handed vectors.
 - Connection between matrices and systems of linear equations
- Section08 (Transformations)
 - Terminology

- Basis vectors
- Using matrices to transform vectors
- local vs world basis vectors
- Analyzing a mystery matrix
 - Point-method (pick some points, observe how the mesh is transformed)
 - By analyzing rows (in a LHS) the basis vectors
- Derivation and matrix for
 - Mirror / Reflection
 - Rotation around cardinal axes (worldX, worldY, worldZ)
 - Scale
 - Shear (in 1 or 2 dimensions)
 - Translation
- o Homogeneous space
 - As used in translation
 - Specifying points & vectors
- Concatenating transforms
 - Using a "pipeline"
 - By matrix multiplying
 - Why method 2 is better than method 1 (in terms of number of adds / multiplies)
- Scene Graphs
 - Purpose (esp. hierarchical transforms)
 - Specifying (e.g. I might give you a hierarchy and ask you to sketch out the tree)
 - Implementing matrix concatenation / tree-traversal.
- Section 09 ("Finished Rasterizer")
 - Whatever we get to in lecture[®]