SPECIFICATION

MULTILAYER CHIP VARISTOR

TYPE: AVLC 18 S 02 015

March. 2, 2002

AMOTECH CO., LTD.	DESIGNED	CHECKED	APPROVED
1WON-DONG, SEOCHO-GU, SEOUL, KOREA 2-544-1383 FAX: 82-2-517-7183	3		

1. Electrical Specification

1-1 Test condition

Varistor voltage In = 1 mA DC
Leakage current Vdc = 18 V DC

Maximum clamping voltage Ic = 1 A

Rated peak single pulse transient current $8 / 20 \mu s$ waveform Capacitance f = 1 KHz, Vrms = 0.5 V

Insulation resistance after reflow soldering V = 3.6 V DC

Soldering paste: Tamura (Japan) RMA-20-21L

Stencil : SUS, 150 $\,\mu\mathrm{m}$ thickness

Reflow soldering condition Pad size : 0.5 (Width) x 0.6 (Length)

0.5 (Distance between pads)

Soldering profile : 230 $^{\circ}$ C, 5 sec.

1-2 Electrical specification

Maximum allowable continuous DC voltage	V		
Varistor voltage / norminal voltage / breakdown voltage	24~32	V	
Maximum clamping voltage	45	V	Maximum
Rated peak single pulse transient current	5	Α	Maximum
Nonlinearity coefficient	> 15		
Leakage current at continuous DC voltage	< 20	μ A	
Response time	< 1	ns	
Varistor voltage temperature coefficient	< 0.05	%/℃	
Capacitance measured at 1KHz	15	pF	Typical
Capacitance tolerance	-30 to +30	%	
Insulation resistance after reflow soldering on PCB	> 10	$M\Omega$	
Operating ambient temperature	-55 to +125	${\mathbb C}$	
Storage temperature	-55 to +150	${\mathbb C}$	

1-3 Reliability testing procedures

Reliability parameter	Test	Test methods and remarks	Test requirement		
Pulse current capability	lmax 8/20 μs	IEC 1051-1, Test 4.5. 10 pulses in the same direction at 2 pulses per minute at maximum peak current	d Vn /Vn ≤ 10% No visible damage To meet Vn tolerance		
Environmental reliability	Thermal shock	IEC 68-2-14 Condition for 1 cycle Step 1 : Min. -40° C, 60 ± 3 min. Step 2 : Max. $+85^{\circ}$ C, 60 ± 3 min.	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Low temperature	Number of cycles: 5 times IEC 68-2-1 Place the chip at $-40\pm3\%$ for 500 ± 12 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Climatic sequence	IEC 1051-1, Test 4.17 a) Dry heat : 85℃, 16hrs b) Damp heat, cyclic, the first cycle : 55℃, 93%RH, 24hrs c) Cold : -40℃, 2hrs d) Damp heat cyclic, remaining 5 cycles : 55℃, 93%RH, 24hrs/cycle	d Vn /Vn ≤ 10% No visible damage To meet Vn tolerance		
	Heat resistance	IEC 68-2-3 Apply the rated voltage for 1000 ± 48 hrs at 85 ± 3 °C. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Humidity resistance	<u>IEC 68-2-30</u> Place the chip at 40 ± 2 °C and 90 to 95% humidity for 500 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% No visible damage To meet Vn tolerance		
Mechanical Reliability	Solderability	$\label{eq:lemma:bound} \frac{\text{IEC 68-2-20}}{\text{Solder bath method, 230}\pm5^{\circ}\!$	At least 95% of terminal electrode is covered by new solder		
	Resistance to soldering heat	IEC 68-2-20 Solder bath method, $260 \pm 5^{\circ}\mathrm{C}$, 10 sec.	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Bending strength	IEC 68-2-21 Warp:2mm, Speed:0.5mm/sec, Duration: 10sec.The measurement shall be made with board in the bent position	d Vn /Vn ≤ 5% No visible damage To meet Vn tolerance		
	Adhesive strength	IEC 68-2-22 Applied force on SMD chip by fracture from PCB	Strength > 10 N (1 kg) No visible damage		

2. Material Specification

Body ZnO based ceramics

Internal electrode Silver – Palladium

External electrode Silver – Platinum

3. Dimension Specification

Unit: mm

4. Package Specification

	Α	В	С	D	Е	F	G	Н	J	T	T1
Spec.	0.62	1.12	8.00	3.50	1.75	2.00	2.00	4.00	1.50	0.60	0.1
Tolerance	±0.04	±0.04	±0.10	±0.05	±0.10	±0.05	±0.05	±0.10	+0.10 -0.00	±0.05	Max.

4-1 Material for package

4-1-1 Paper carrier tape

Laminated virgin pulp

4-1-2 Top tape

Polyester film

4-1-3 Bottom tape

Adhesive coated paper

4-1-4 Plastic reel

GPPS (General Purpose Poly Styrene) resin

4-1-5 Plastic bag

PE (Poly ethylene)

5. Soldering Recommendations

5-1 Soldering profile

5-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use Sn / Pb / Ag (62 / 36 / 2) or equivalent solder.
- Use non-activated flux (CI content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

5-3 Solder pad layout

6. Storage condition

- Storage environment must be at an ambient temperature of 25~35 $\,^\circ\mathbb{C}$ and an ambient humidity of 40~60 $\,^\circ$ RH
- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.
 If 6 months of more have elapsed, check solderability before use.

7. Description about package label

AMOTECH CO., LTD. 691-1, Kasan-Dong, Keumcheon-Gu, Seoul, Korea

Metal Oxide Varistor

Type: AVLC 18S 02 015 Lot: F01147PI13

Quantity: 10,000 pcs Date: September 27, 2001

Type: AVLC 18S 02 015

AVLC: Series name

5: Maximum continuous working voltage - Vdc

S: Varistor voltage tolerance - S is special order

02 : Chip size - 02 is 0402 (1.0 x 0.5 mm) size

015: Capacitance - 015 means 15 pF

Lot: F01147PI13

F: Powder type - F means formulation powder

01: Production year - 2001

147 : Ceramic tape batch number

P: Production type – P means mass production

I : Production month – I means September

13: Production date

Qunatity: 10,000 pcs

- Quantity of shipping chip varistor

Date: September 27, 2001

- Shipping date