UK National Rail Analysis

•••

Presented by: Alex Kennedy, Arthur Levitan, Bryce Martin, Julia Snabes

Table of Contents

- Objective
- Background Info
- Building the Pipeline
- What is EDA?
- Business Questions
- Data Exploration & Insights
- Conclusion
- Appendix

Objective

Create a data pipeline to collect data from UK National Rail. Explore the UK National Rail dataset, generate business questions and gain insights into the train system based on data.

Background

- -UK National Rail system
- -Publically available data
- -Creation of, and changes to, train schedule records (scheduled arrivals/departures vs actual)
- -Robust, highly used train system

Background

Building the Data Pipeline

- -Connected to a website that streams live train movement data
- -Saved data to cloud due to large volume
- -Completed exploratory data analysis on the data

What is EDA?

- -Exploratory data analysis
- -Analyzing and exploring a data set to draw meaningful insights
- -Completed our EDA in Python, leveraging Pandas library

https://dev.to/ckawara/exploratory-data-analysis-ultimate-guide-3mea

EDA cont.

- -Cleaning data
- -Creating new columns
- -Filtering data

```
Dropping some columns with not enough or relevant data
4]: df= df.drop(['working_time_pass','train_length','Easting','Northing','GridType','StationNameLang',
            'CreationDateTime', 'ModificationDateTime', 'RevisionNumber', 'Modification',
            'AtcoCode','CrsCode','estimated_time','source','actual_time','actual_time_class','source_instance',
            'estimated time minutes'], axis=1)
5]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 138795 entries, 0 to 138794
    Data columns (total 16 columns):
         Column
                                 Non-Null Count
                                                  Dtype
         route id
                                 138795 non-null object
         unique_id
                                 138795 non-null object
         service_start_date
                                 138795 non-null object
         update origin
                                 132982 non-null object
                                 138795 non-null object
         train platform
         working time arrival
                                 138795 non-null datetime64[ns]
         working time departure 138795 non-null datetime64[ns
         planned_time_arrival
                                 132829 non-null datetime64[ns]
         planned_time_departure 132329 non-null datetime64[ns]
         actual arrival time
                                 113977 non-null datetime64[ns]
         actual_departure_time 125424 non-null datetime64[ns]
         platform
                                 133098 non-null object
        is delayed arrival
                                 138795 non-null bool
        is delayed departure
                                 138795 non-null bool
        TiplocCode
                                 130187 non-null object
                                 130187 non-null object
     15 StationName
    dtypes: bool(2), datetime64[ns](6), object(8)
    memory usage: 15.1+ MB
```

Business Questions

- -How does the rail system appear to be operating based on data? How often are trains delayed?
- -What are the relationships between working/planned times and actual times? Does National Rail need to adjust their scheduling?
- -Are certain factors correlated to more frequent delays?

Dataset At-a-Glance

-Date range: 12/16/23 - 12/18/23

<u>Total Trips</u>	<u>Total Stations</u>	<u>Routes</u>	
132.83K	2371	24.04K	
<u>Data Fe</u>		<u>Average Delay</u> (In Seconds)	
7	-2	-24.55	

What is the longest route based on time?

Aberdeen, Scotland → Penzance, England

What times are stations busiest?

How often are trains delayed?

-**False**: (not delayed) 96.4% of the time

-**True**: (delayed) 3.6% of the time

How long are most delays across all data?

-Majority of delays between 0-6 minutes

What key factors influence delayed arrival time?

-trip length found to be a key factor

What are busiest stations? Is delay amount affected by volume?

The top 10 stations with the most frequent stops	are:	
station_name		
Clapham Junction Rail Station		
London Bridge Rail Station		
East Croydon Rail Station		
Gatwick Airport Rail Station		
Vauxhall Rail Station		
Stratford (London) Rail Station		
London St Pancras International LL Rail Station	463	
London Blackfriars Rail Station		
Haywards Heath Rail Station		
Farringdon (London) Rail Station		

What are busiest stations? Is delay amount affected by volume?

-Average delay amount = in seconds

-Highest average delay amount:

Wool Rail Station 1,371.43 seconds (23 minutes)

Correlation matrix of time relationships

- -Strong negative correlation: trip length vs delay amount
- -Strong positive correlation: planned/working arrival vs actual arrival

What is the relationship between working arrival time and actual arrival time?

What is the relationship between planned arrival time and actual arrival time?

What is the relationship between working arrival time and planned arrival time? How often do they differ?

Overview of time relationships

Conclusions

Based on data, UK rail system is operating at fairly timely schedule

Planned vs working times appear to rarely deviate; their current timetables seem to be working well

Certain factors do affect delays, such as overall trip length

Considerations on privatization of rail system

Thank you!

Appendix

Project Github: https://github.com/jsnabes/GC_Final_Project

Office of Rail & Road: https://dataportal.orr.gov.uk/statistics/usage/passenger-rail-usage/

UK National Rail maps: https://www.nationalrail.co.uk/travel-information/maps-of-the-national-rail-network/