Generative Adversarial Networks for Social Scientists

Social Science Data Lab

Marcel Neunhoeffer ¹ November 04, 2020

¹University of Mannheim

These Cats Do Not Exist!

Figure 1: Cats from thiscatdoesnotexist.com

These Persons Do Not Exist!

Figure 2: Persons from thispersondoesnotexist.com

These Voices Never Said These Words!

Figure 3: Voices from descript.com

Why We Should Care!

Fake Persons are Used to Spread Misinformation.

"How a fake persona laid the groundwork for a Hunter Biden conspiracy deluge" (NBC News, Oct. 29, 2020)

Figure 4: "'Martin Aspen', a fake identity whose profile picture was created by artificial intelligence."

Deep Fakes Can Make the Detection of Misinformation Really Hard.

Can we still trust audio visual sources?

Figure 5: A Deep Fake (three years ago...).

Clever Applications of GANs Enhance our Social Science Methods Toolkit.

What I will talk about today:

- GANs for Multiple Imputation.
- · GANs for Small Area Estimation
- GANs for Privacy Protective Synthetic Data
- ٠.

A Quick Introduction to

Generative Adversarial Networks.

Generative Adversarial Nets Are Surprisingly Simple.

- Generative Adversarial Nets (GANs), introduced by Goodfellow et al. (2014), allow it to sample from arbitrary joint (continuous) distributions.
- At its core, a GAN is a minimax game with two competing actors—a discriminator (D) trying to tell real from synthetic samples and a generator (G) to produce realistic synthetic samples from random noise.
- · Formally, this two-player minimax game can be written as:

$$\min_{G} \max_{D} \mathbb{E}_{x \sim p_{X}}[f(D(x))] + \mathbb{E}_{z \sim p_{z}}[f(1 - D(G(z)))]$$
(1)

where $f: [0,1] \to \mathbb{R}$ is a monotone function. For example, in standard GAN, $f(a) = \log(a)$, and in Wasserstein GAN (Arjovsky et al., 2017), f(a) = a.

 $p_{data}(x)$ is the distribution of the real data, X is a sample from $p_{data}(x)$. The generator network G(z) takes as input z from p(z), where z is a random sample from a probability distribution p(z).

Generative Adversarial Nets Are Surprisingly Simple.

Figure 6: The architecture of a GAN. Source: Freecodecamp.org, Thalles Silva

Let's Look at Some Code.

Social Science Applications of GANs.

Multiple Imputation with Generative Adversarial Nets.

- For imputation we only want to sample imputations for missing values from the underlying joint distribution.
- Yoon et al. (2018) and Li et al. (2019) propose a straightforward extensions to the basic GAN architecture for imputation.

GAN Architectures for Imputation.

Figure 7: GAN architectures for Imputation. Left: Yoon et al., 2018, Right: Li et al., 2019.

Experiments with GAIN.

Table 1: Overview of one generated data set for experiment 1

Variable	Type	Missing	Description
Υ	Continuous	0	Dependent Variable
Χ	Continuous	320	Independent Variable 1 for the regression.
Bin	Binary	317	Independent Variable 2 for the regression.
Bimod	Continuous	270	Bi-modal variable.
Categ	Unordered Categorical	271	Categorical Variable.

Y is generated by: $Y = X + 2 \cdot Bin + 3 \cdot Bin \cdot X + \epsilon$.

Density of the imputed values for the bi-modal variable.

Multiple Imputation for Small Area Estimation.

Figure 9: Multiple Imputation for SAE. Source: Honaker & Plutzer 2016.

Multilevel Regression with Post-Stratification.

$$\begin{pmatrix} obs \ s \ d \ y \\ 1 \ 1 \ 0 \ 3 \\ 2 \ 1 \ 1 \ 1 \\ 3 \ 1 \ 1 \ 2 \\ 4 \ 2 \ 0 \ 3 \\ \vdots \ \vdots \ \vdots \\ n-m-2 \ k \ 0 \ 2 \\ n-m-1 \ k \ 1 \ 1 \\ n-m \ k \ 1 \ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} obs \ s \ d \ \hat{y} \\ 1 \ 1 \ 0 \ 2.7 \\ 2 \ 1 \ 1 \ 1.9 \\ 3 \ 2 \ 0 \ 1.2 \\ 4 \ 2 \ 1 \ 1.7 \\ 5 \ 3 \ 0 \ 1.5 \\ 6 \ 3 \ 1 \ 2.3 \\ \vdots \ \vdots \ \vdots \ \vdots \\ 2k-3 \ k-1 \ 0 \ 2.1 \\ 2k-2 \ k-1 \ 1 \ 1.4 \\ 2k-1 \ k \ 0 \ 1.9 \\ 2k \ k \ 1 \ 2.6 \end{pmatrix} \Rightarrow \begin{pmatrix} obs \ s \ \hat{y} \ w \\ 1 \ 1 \ 2.7 \ 4 \\ 2 \ 1 \ 1.9 \ 7 \\ 3 \ 2 \ 1.2 \ 3 \\ 4 \ 2 \ 1.7 \ 9 \\ 3 \ 2 \ 1.2 \ 3 \\ 4 \ 2 \ 1.7 \ 9 \\ 5 \ 3 \ 1.5 \ 3 \\ 6 \ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.4 \ 2 \ 1.7 \ 9 \\ 5 \ 3 \ 1.5 \ 3 \\ 6 \ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.3 \ 6 \\ 3 \ 2.4 \ 2 \ 1.7 \ 9 \\ 2k-3 \ k-1 \ 2.1 \ 2 \\ 2k-2 \ k-1 \ 1.4 \ 8 \\ 2k-1 \ k \ 1.9 \ 4 \\ 2k \ k \ 2.6 \ 7 \\ \hline{ \sum w=N} \end{pmatrix} \bar{y}_{s=k} = 2.36$$

Figure 10: MRP for SAE. Source: Honaker & Plutzer 2016.

Results of GAIN for Small Area Estimation.

Figure 11: State Level Estimates of Turnout in the US Election 2008.

Results of GAIN for Small Area Estimation.

Table 2: RMSE and Correlation of State Level Predictions and Turnout 2008.

	RMSE	Correlation
GAIN	0.0303	0.8514
MRP	0.0561	0.8375
Amelia	0.0343	0.8286
BART	0.1280	0.7774

Private Post-GAN Boosting for Synthetic Data. (Neunhoeffer, Wu & Dwork)

Motivation

- A recent line of work (Beaulieu-Jones et al., 2019; Xie et al., 2018; Yoon et al., 2019) studies how one can generate synthetic data by incorporating differential privacy into generative adversarial networks (GANs) (Goodfellow et al., 2014).
- Due to the noise, the convergence of GANs becomes even more elusive.
 This often leads to poor utility at the end of training.
- We propose Private post-GAN boosting (Private PGB), a differentially private method that combines samples produced by the sequence of generators during GAN training to create a high-quality synthetic dataset.
- We leverage the Private
 Multiplicative Weights method
 (Hardt & Rothblum, 2010; Hardt et al., 2012) to reweight generated samples.

Results

 Real samples from 25 multivariate normal distributions, synthetic examples without privacy from a GAN and Non-Private PGB, and synthetic examples from a GAN with differential privacy and Private PGB.

 Specific Utility of Synthetic 1940 American Census Data. Panel (A): Distribution of Race Membership in Synthetic Samples. Panel (B): Regression RMSE with Synthetic Samples.

Algorithm

synthetic dataset B generated by the set of generators \mathcal{G} , a collection of discriminators $\{D_1,\ldots,D_N\}$, number of iterations T, per-round privacy budget ϵ_0 , learning rate parameter η . Initialize ϕ^1 to be the uniform distribution over B

Require: a private dataset $X \in \mathcal{X}^n$ a

for $t = 1, \ldots, T$ do

Distinguisher player: Run exponential mechanism \mathcal{M}_E to select a discriminator D^t using quality score $q(X,D_j) = U(\phi^t,D_j)$ and privacy parameter ϵ_0 .

Synthetic data player: Multiplicative

weights update on the distribution

over B: for each example $b \in B$:

$$\phi^{t+1}(b) \propto \phi^t(b) \exp(\eta D^t(b))$$

Let $\overline{\it D}$ be the discriminator defined by the uniform average over the set $\{{\it D}^1,\dots,{\it D}^T\}$, and $\overline{\it \phi}$ be the distribution defined by the average over the set $\{\it \phi^1,\dots,\it \phi^T\}$

Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. *CoRR*, abs/1701.07875, 2017. URL http://arxiv.org/abs/1701.07875.

Brett K. Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P. Bhavnani, James Brian Byrd, and Casey S. Greene. Privacy-preserving generative deep neural networks support clinical data sharing. *Circulation: Cardiovascular Quality and Outcomes*, 12(7):e005122, 2019. doi: 10.1161/CIRCOUTCOMES.118.005122. URL https://www.ahajournals.org/doi/abs/10.1161/CIRCOUTCOMES.118.005122.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2*, NIPS'14, pp. 2672–2680, Cambridge, MA, USA, 2014. MIT Press. URL

http://dl.acm.org/citation.cfm?id=2969033.2969125.

Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pp. 61–70, 2010. doi: 10.1109/FOCS.2010.85. URL https://doi.org/10.1109/FOCS.2010.85.

Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for differentially private data release. In *Advances in Neural Information Processing Systems* 25: 26th Annual

Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., pp. 2348–2356, 2012, URL

http://papers.nips.cc/paper/

4548-a-simple-and-practical-algorithm-for-differentially-private-data-release

Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Misgan: Learning from incomplete data with generative adversarial networks, 2019.

Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative adversarial network. *CoRR*, abs/1802.06739, 2018. URL http://arxiv.org/abs/1802.06739.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing Data Imputation using Generative Adversarial Nets. 2018. URL http://arxiv.org/abs/1806.02920.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating synthetic data with differential privacy guarantees. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=S1zk9iRqF7.