Universidad de Costa Rica

Facultad de Ingeniería

Escuela de Ciencias de la Computación e Informática

Redes de comunicación de datos

Tarea 7

2025

Autor

David González Villanueva C13388

Homework assignment

- 1. Consider routing in a network with 180 routers, and on average every router is connected to 5 other routers. Routing information is exchanged every 120 msec. How much network bandwidth is used under link-state and distance vector routing to exchange this information. Assume sequence numbers are used to damp flood packets for link-state. Please explain any assumptions you make about the size of routing table entries.
 - 6 pts
- How can flooding and broadcast be said to be similar to each other? How do they differ? Name one way in which they are similar/different.
 - 2 pts
- 3. Split horizon does not always help in avoiding the count-to-infinity problem. Illustrate a case where it fails (make routing tables show 2 iterations).
 - 2 pts

1. Ancho de banda de las actualizaciones (cada 120 ms)

Supuestos iniciales:

- Tamaño de cada entrada de ruteo: 8 Bytes (4 Bytes para destino + 4 Bytes para métrica).
- Grado medio de enlaces por router: $5 \rightarrow$ Total de enlaces en la red: (180 * 5) / 2 = 450.
- a) Protocolo Link-State
 - Cada router genera un LSA (Link State Advertisement) de 28 Bytes, compuesto por:
 - o 4 Bytes de ID propio.
 - o 4 Bytes de número de secuencia.
 - 5 * 4 Bytes para información de los vecinos.
 - Cada LSA se transmite una vez por cada enlace, resultando en 450 transmisiones. Esto equivale a 450 * 28 Bytes = 12,600 Bytes cada 120 ms.
 - Tráfico por segundo por router: Aproximadamente 12,600 Bytes * $(1000 / 120) \approx 105,000$ Bytes/s (aproximadamente 0.84 Mbps).
 - Tráfico total en la red: 180 routers * 105,000 Bytes/s \approx 18.9 MB/s (aproximadamente 151.2 Mbps).
- b) Protocolo Distance-Vector
 - Cada router envía su tabla de ruteo completa (180 entradas * 8 Bytes = 1,440 Bytes) a cada uno de sus 5 vecinos. Esto implica 1,440 Bytes * 5 = 7,200 Bytes cada 120 ms.
 - Tráfico por segundo por router: Aproximadamente 7,200 Bytes * $(1000 / 120) \approx 60,000$ Bytes/s (aproximadamente 0.48 Mbps).
 - Tráfico total en la red: 180 routers * 60,000 Bytes/s \approx 10.8 MB/s (aproximadamente 86.4 Mbps).

2. Flooding vs Broadcast

Similitud: Ambos entregan un mensaje a todos los nodos.

Diferencia:

Broadcast: una única trama con dirección de difusión llega a todos los hosts de ese dominio de capa 2, sin reenvío de routers.

Flooding: cada router reenvía el paquete por todas sus interfaces (una sola vez por enlace), propagándose multi-salto por toda la topología de routers.

3. Ejemplo de Falla de "Split Horizon" (Conteo al Infinito)

Topología: A — B — C (Costo 1 por enlace).

Inicial: A: B=1, C=2 (vía B); B: A=1, C=1; C: B=1, A=2 (vía B).

Falla B-C: Ruptura del enlace.

Iteración 1 (Detección local): A: B=1, C=2; B: A=1, C= ∞ ; C: B= ∞ , A= ∞ .

Iteración 2 (Intercambio de Vectores): A→B: "C=2"; B: C=3 (vía A); B→A: "C=3"; A:C=4 (vía

B). C no recibe nueva información, permanece C=0, $A=\infty$, $B=\infty$.

Iteración	Nodo	A	В	С
0	A	0	1	2 (vía B)
	В	1	0	1
	С	2 (vía B)	1	0
1	A	0	1	2 (información antigua)
	В	1	0	∞
	С	∞	∞	0
2	A	0	1	4 (vía B)
	В	1	0	3 (vía A)
	С	∞	∞	0

B aprendió originalmente "C=1" de su enlace directo **no** "vía A". Split horizon solo prohíbe anunciar a A rutas que B aprendió *de A*, pero aquí B nunca obtuvo la ruta a C de A, sino directamente de C. Por eso en la Iteración 2 B anuncia "C=3 vía A" y reintroduce información caduca, iniciando el conteo hasta infinito.

Homework assignment 2

Exercise 7.

Consider the network of Fig. 5-12(a). Distance vector routing is used, and the following link state packets have just come in at router D: from A: (B: 5, E: 4); from B: (A:4, C: 1, F: 5); from C: (B: 3, D: 4, E: 3); from E: (A: 2, C: 2, F: 2); from F: (B: 1, D:2, E: 3). The cost of the links from D to C and F are 3 and 4 respectively. What is D's new routing table? Give both the outgoing line to use and the cost.

Figure 5-12. (a) A network. (b) The link state packets for this network.

Vecinos de D:

05/22/25

- D-C = 3
- D-F = 7

Costos mínimos desde D:

- Destino C: 3 (vía C)
- Destino F: 7 (vía F)
- Destino B: 5 (vía $C \rightarrow B$)
- Destino E: 4 (vía $C \rightarrow E$)
- Destino A: 9 (vía $C \rightarrow E \rightarrow A$)

Destino	Siguiente salto	Costo total
A	С	9
В	С	5
С	С	3
Е	С	4
F	F	7