

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.01 Информатика и вычислительная** техника

ОТЧЕТ

по лабораторной работе № 2

Название: Организация ЭВМ и систем

Дисциплина: Организация памяти конвейерных суперскалярных электронных вычислительных машин

Студент	ИУ6-72Б		И.С. Марчук
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А.Ю. Попов
•		(Подпись, дата)	(И.О. Фамилия)

Цель работы - освоение принципов эффективного использования подсистемы памяти современных универсальных ЭВМ, обеспечивающей хранение и своевременную выдачу команд и данных в центральное процессорное устройство.

Ход работы

Эксперимент 1. Исследования расслоения динамической памяти.

Цель: определение способа трансляции физического адреса, используемого при обращении к динамической памяти.

Смоделированный эксперимент показан на рисунке 1.

Рисунок 1

Вывод: Переход к близким данным переходится быстрее. Данные лучше сохранить в один пакет. Надо чтобы было чередование.

Эксперимент 2. Сравнение эффективности ссылочных и векторных структур.

Цель: оценка влияния зависимости команд по данным на эффективность вычислений.

Исходные данные: размер линейки кэш-памяти верхнего уровня; объем физической памяти.

Смоделированный эксперимент показан на рисунке 2.

Рисунок 2

Вывод: Массив — примитивная векторная структура, но их можно везде применить. Но иногда нужны списки. Надо улучшать ЭВМ, чтобы решить проблему семантического разрыва.

Эксперимент 3. Исследование эффективности программной предвыборки.

Цель: выявление способов ускорения вычислений благодаря применению предвыборки данных.

Исходные данные: степень ассоциативности и размер TLB данных. Смоделированный эксперимент показан на рисунке 3.

Рисунок 3

Вывод: можно использовать предварительную загрузку в TLB (если не будет прерывания) в ограниченное время. Что сделает обращение к памяти в 1,3 раза быстрее.

Эксперимент 4. Исследование способов эффективного чтения оперативной памяти.

Цель: исследование возможности ускорения вычислений благодаря использованию структур данных, оптимизирующих механизм чтения оперативной памяти.

Исходные данные: Адресное расстояние между банками памяти, размер буфера чтения.

Смоделированный эксперимент показан на рисунке 4.

Рисунок 4

Вывод: при оптимизации необходимо, чтобы данные были расположены в одном пакете, что даст быстродействие. Если это возможно реализовать в программировании, то это дат ускорение.

Эксперимент 5. Исследование конфликтов в кэш-памяти.

Цель: исследование влияния конфликтов кэш-памяти на эффективность вычислений.

Исходные данные: Размер банка кэш-памяти данных первого и второго уровня, степень ассоциативности кэш-памяти первого и второго уровня, размер линейки кэш памяти первого и второго уровня.

Смоделированный эксперимент показан на рисунке 5.

Рисунок 5

Вывод: нужно "ходить" по памяти, не равный расстоянию конфликта. С кэшем в 6 раз быстрее. Надо уменьшать конфликты в кэш памяти.

Эксперимент 6. Сравнение алгоритмов сортировки.

Цель: исследование способов эффективного использования памяти и выявление наиболее эффективных алгоритмов сортировки, применимых в вычислительных системах.

Исходные данные: количество процессоров вычислительной системы, размер пакета, количество элементов в массиве, разрядность элементов массива.

Смоделированный эксперимент показан на рисунке 6.

Рисунок 6

Вывод: несмотря на формульную быстроту QuickSort — в среденем O(n*log(n)) и O(n2), у метода Radix-Counting формульная быстрота работы будет O(n/log(n)), что говорит о его быстродействии.

Вывод: узнали принципы эффективного использования подсистемы памяти современных универсальных ЭВМ, обеспечивающее хранение и своевременную выдачу команд и данных в центральное процессорное устройство. Изучили программу PCLAB.