

ABSTRACT

5 **IDENTIFYING UNCORRECTABLE CODEWORDS IN A
REED-SOLOMON DECODER FOR ERRORS AND ERASURES**

In a Reed-Solomon decoder handling both errors and erasures, an uncorrectable codeword is identified when any one or more of six conditions (a) to (f) is satisfied:

- 10 (a) no solution to key equation $\sigma(x)T(x) \equiv \omega(x) \text{ mod } x^{2T}$;
 (b) $\deg \sigma(x) \neq n_{\text{errors}}$;
 (c) error and erasure locations coincide;
 (d) $\deg \omega(x) \geq n_{\text{errors}} + n_{\text{erasures}}$;
 (e) $n_{\text{erasures}} + 2 * n_{\text{errors}} > 2T$; and
15 (f) an error location has a zero correction magnitude.

N_{errors} and N_{erasures} represent, respectively, a number of errors and erasures, with respect to an error locator polynomial $\sigma(x)$ and an erasure locator polynomial $\Lambda(x)$, 2T is the strength of a Reed-Solomon code, $\omega(x)$ is 20 an errata evaluator polynomial, and T(x) is a modified syndrome polynomial. A detector circuit 300 comprises a logic unit 350 which tests for the conditions (a) to (g), and an indicator unit 360 which provides a corresponding output.

25

[Figure 2]