

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

iContrALL

Korszerű fűtési rendszerek szabályzása munkapéldány

SZADOLGOZAT

Készítette Gyulai László Belső konzulens dr. Kiss Bálint Külső konzulens Kurbucz Máté

Tartalomjegyzék

1.	Mod	dellalkotás, irodalomkutatás	3					
	1.1.	Felírandó modellek	4					
2.	Ház	modellje	5					
	2.1.	Fűtési rendszer és ház kapcsolata	5					
	2.2.	A modellalkotás folyamata	5					
	2.3.	A megvalósított modell / a modell hatóköre, használhatósága, assumptions	6					
	2.4.	Alkalmazott fűtési rendszerek	6					
	2.5.	A modell átviteli függvénye	7					
3.	Fűté	űtési rendszerek modellje						
	3.1.	Általános összefüggések, ill. a radiátor modelljének felírása	8					
		3.1.1. Hőleadás	8					
		3.1.2. Hőfelvétel	9					
		3.1.3. Hőkapacitás	9					
		3.1.4. Energiamérleg állandósult állapotban	9					
		3.1.5. Javítás a radiátormodellen	10					
		3.1.6. Dinamikus modell	10					
	3.2.	Padlófűtés modellje	11					
		3.2.1. Sugárzó és konvektív teljesítmény szétválasztása	11					
		3.2.2. Problémák, eltérések a radiátoros fűtéshez képest	12					
4.	Mod	dellek tesztje	13					
	4.1.	Radiátor unit test	13					
		4.1.1. Állandósult állapot numerikus modellje	13					
		4.1.2. Tranziens Simscape modellje	13					
		4.1.3. Szabályzás célja	13					
	4.0	D. Heffing and London	12					

5.	. Identification	13
6.	. Hagyományos szabályzás performanciája	14
7.	. Szabályzó kiválasztása és analízise	14
	7.1. Ismerkedés az MPC szabályzással	14
	7.2. A MATLAB MPC Toolbox elemei	15
	7.3. Az automatikusan létrehozott MPC tulajdonságai	15
	7.3.1. A kezdeti szabályzó problémái	15
	7.3.2. Robosztusság	15
8.	. A szabályzó paramétereinek finomítása, hangolása, alapbeállítások felülírása	16
	8.0.1. Módosítások az MPC-ben	16
	8.1. Az MPC költségfüggvénye	16
	8.2. Offline MPC - supervisory control	16
	8.3 Validálás	16

1. Modellalkotás, irodalomkutatás

Munkámban elsősorban a különböző fűtési típusok közti különbségeket szeretném megvizsgálni. A ház modelljét először adottnak venném, az eltérést pedig a különböző fűtési módok jelentenék. Azaz megpróbálom felírni a környezet belső hőmérsékletre való ráhatását, eztán pedig modellezem többféle fűtőtest viselkedését.

Ehhez először áttekintettem a hőátadás lehetséges formáit és forrásait. Arra jutottam, hogy ha a levegő hőmérsékletére szabályzok, akkor az abba beleszóló tényezőket veszem sorra:

- konvektív hőátadás: a felszín közelében felmelegedett levegő áramlani kezd
- radiatív hőátadás: sugárzással kibocsátott energia a környezetbe

1. ábra. Alacsony hőmérsékletű fűtés és magas hőmérsékletű hűtés c. könyv ábrája

A levegő hőmérsékletére ezek a következőképp hatnak a leginkább:

- a fűtőtestek konvektív és radiatív hőátadással is melegítik a környezetet
- a radiatív energiát a tárgyak, falak nyelik el, amik ezáltal felmelegszenek (mintegy kapacitásként lesz egy hőtároló tömeg, ami a fűtés kikapcsolásával fenntartja a hőmérsékletet / lassítja a hűlést)
- a fűtetlen falfelületek hűtik a szobát (külső hőmérséklet befolyása)

Így a kezdeti modellben azzal a feltételezéssel élek, hogy ezen kívül más hatás nem lép fel.

A modellben feltételezem, hogy a fűtőtest felületi hőmérsékletével tudunk beavatkozni. A modellben paraméter a fűtőtestek hőátadási tényezője és felülete. Zavarásként (?) hat a külső hőmérséklet értéke, amit mérni is tudunk. Kimenet a belső hőmérséklet (térben konstansnak véve azt / átlagolva a szoba levegőjére)

A modell felírásához a fűtőtest tulajdonságain kívül szükség van a szobában található levegő mennyiségére is. A zavarás hatását is fel kell írni, azaz hogy egy külső hőmérsékletváltozás hogyan jelenik meg a kimeneten. (Célszerű itt egy átviteli függvényt felírni először, szuperpozíciószerűen. A zavarás viszont nem a modell bemenetén és nem is a kimenetén hat.)

A felírandó átviteli függvények:

- levegő felmelegedése konstans külső hőmérsékletet feltételezve, fűtőtest egységugrással
- levegő felmelegedése fűtés kikapcsolt állapota mellett, környezeti hőmérséklet ugrásával

Ezeket ráadtam a rendszerre és két bemenetű, egy kimenetű rendszerként identifikáltam.

1.1. Felírandó modellek

Fűtési típusok szerint:

- radiátoros fűtés hőátvitele
- padlófűtés hőátvitele

A fentiekre különböző értékű lesz a

- hőátadási tényező
- hőtároló tömeg
- költségfüggvény?
- előremenő vízhőmérséklet és ezzel a leadott teljesítmény maximumértéke

ami így eltérő ház-modelleket fog eredményezni.

2. Ház modellje

A szabályzótervezéshez rendelkezésre kell, hogy álljon a szabályzott szakasz modellje. Ehhez egy könnyen módosítható, koncentrált paraméterű rendszert vettem fel. Felépítettem egy hálózatot¹, ahol minden elemhez lehet fizikai tartalmat rendelni. Majd ahhoz, hogy ehhez szabályzót lehessen tervezni, identifikáltam azt az ugrásválaszával.

2.1. Fűtési rendszer és ház kapcsolata

Amikor a fűtési rendszer viselkedését szimulálom, nekem kell megalkotni mind a szabályzott épületrész, mind a fűtési rendszer modelljét. Így tehát ez a modellezésen felül egy méretezési feladat is, amit egy kész épületnél már elvégeztek a tervezés során, és a megfelelő fűtési teljesítmény áll rendelkezésre.

Ha a szabályzást egy már meglévő épületre tervezzük, akkor csak a rendszerek adatait kell felvenni, illetve identifikálni. A szakdolgozatban tárgyalt egyszerű példa során csak egy részét ismerem a paramétereknek, tehát méretezési kérdéseket is fogok érinteni. Szerencsére új építésű házaknál kötelező az energetikai tanúsítás², ami egy meglehetősen részletes lajstromot ad az épület hőtechnikai tulajdonságairól. Ez alapján lehet egy hozzávetőlegesen jó modellünk az épületről, illetve a fűtési rendszerről is találhatók adatok paraméterek. Az interneten számos tanúsító cég töltött fel minta tanúsítványokat, amiben a számítások levezetése, indoklása is megtalálható. Így az energetikai tanúsítvány lehet egy interface a szakdolgozatban bemutatott modell és a gyakorlati alkalmazások között: valódi épület tanúsítványa alapján a modellem paraméterezhető.

2.2. A modellalkotás folyamata

White-box grey-box black-box

Említést érdemel, hogy a szakirodalomban hogy állnak hozzá ehhez a kérdéshez, a szabályzótervezés során néhányan egyáltalán nem alkotnak modellt, csak a mért adatokat használják fel. Lényegében én is mért adatokat használok, tulajdonképpen, mivel a modellt olyan alakban kéne felírni, hogy a szabályzó azt futtatni tudja. (?)

Viszont az ident toolbox tf identjénél kihasználtam azt, hogy a rendszer jellegét ismerem, azaz hogy hány pólusa és hány zérusa van a szakasznak / felnyitott körnek. Így lett egy nagyon jól illeszkedő átviteli függvényem.

Én összeraktam a fizikai modellt simulinkben (ez white-box) majd annak az ugrásválaszát mértem. Így nem egy állapotteres modell, hanem egy átviteli fv. "keletkezett".

Egyzónás hőmérsékletszabályzást veszek alapul, azaz egy referenciajelem és egy mért hőmérsékletem van, a modellben a szoba levegőjének hőmérsékletét mindenhol ugyanakkorának feltételezem. A szabályzás külső behatások ellenében történik, úgy mint alacsonyabb külső hőmérséklet, illetve a napsütés, szellőzés hatása.

¹Fodor HáRe alapján nézzük meg a különbséget rendszer és hálózat között.

²TNM 2006 rendelet alapján kötelező az energetikai tanúsítvány pl. átlagos lakóépületekre, irodákra.

Nem foglalkozok viszont belső zavarással, pl. több szoba különböző típusú fűtésével, vagy a belső hőterheléssel, ami pl. emberek jelenlétéből fakad.

Természetesen lehetett volna nagyon sok állapotú állapoteres modellt is létrehozni, ám rengeteg nem mérhető belső változója lett volna, emiatt nem biztos hogy teljesen irányítható vagy megfigyelhető rendszert kaptam volna, így pedig a szabályzótervezés nem működik.

2.3. A megvalósított modell / a modell hatóköre, használhatósága, assumptions

Figyelembe kell vennem a ház hőveszteségeit és hőtároló képességét is. Kell a határoló elemek felszíne, hőátbocsátási tényezője, a hőtároló elemek fajhője. Az alábbi táblázat értékeinek nagy részét ki lehet tölteni a tanúsítványból. Az épület hőigénye numerikusan is szerepel, ám ez pl. éves átlagolással adódik, nem csak a fűtési rendszert, hanem a várható időjárást is figyelembe veszi, illetve az energiaigénynél nem csak a fűtési, hanem használati melegvíz előállítására felhasznált energiát is.

felület	méret	kalorikus hőátbocsá- tási tényező	hőtároló tömeg	hőkapac
külső fal	4.5 m ²	2 W /m ² K	4.5*200kg	e.g. 4.5*200*840 $\frac{J}{K}$
ablak	4 m ²	4 W/m ² K	0	0
belső válaszfalak	50 m ²	7	50*100kg	50*100*840
padló	16 m ²	11	16*200kg	169*200*840
mennyezet	16 m ²	? rad / conv		

1. táblázat. Egy szoba határoló felületei és azok termikus tulajdonságai

A példában a schönherzes kollégiumi szoba határoló elemeit vettem fel. Minden szobának van ablaka és külső fala, egy átlagos szobát 4 másik vesz körül. A belső falakon nem veszt hőt, csak az ablakon ill. a külső falon. Feltételezzük, hogy a radiátoros fűtést egy szeleppel szabályozhatjuk, amit tetszőleges mértékben nyithatunk ki. A napsütés hőnyereségét is figyelembe vehetjük.

A modell mintavételi ideje? A teljesítményeket megnöveljük és semmi mást, az nem lesz ekvivalens.

2.4. Alkalmazott fűtési rendszerek

Az alkalmazott fűtési rendszerek az épületet annak különböző pontjain gerjesztik. (Belső változóira nem egyformán hatnak: a kimeneten a változás intenzitása és sebessége más-más.) A teljes plant modell a fűtési rendszer és a ház sorba kötésével adódik.

A kettő között az interface az, hogy hol avatkozunk be. Így a ház bemenetei igazából a belső változókra vonatkozó "zavarások" (a külső hőmérséklethez képest)

2.5. A modell átviteli függvénye

A Simulinkben identifikáltam, aztán az adatokat a sys ident toolbox-szal dolgoztam fel, tudva a modell struktúráját. (az átviteli fv. számlálójának, nevezőjének a fokszámait)

3. Fűtési rendszerek modellje

3.1. Általános összefüggések, ill. a radiátor modelljének felírása

Mivel a Matlab szimulációban a legbefúvásos fűtés modelljének teljesítmény kimenete van, fel akartam állítani egy olyan modellt, ami beillesztehető az eredeti légbefúvó rendszer helyére. A ház hőveszteségeit a Matlab számolja³, ebből pedig adódik a szoba levegőjének hőmérséklete. A rendszer szabályozását így visszavezettem a leadott teljesítmény szabályzására. A levezetett egyenletnek köszönhetően egy teljesítményigényhez meg tudom majd mondani hogy mennyire kell a szabályzószelepeket kinyitni.

Az Épületgépészet a gyakorlatban⁴ c. könyvben szó esik fűtési rendszerek méretezéséről. Itt adatként szerepel egy épületre a szobák hőigénye⁵ és névleges hőmérséklete. Ehhez választanak megfelelő méretű radiátort, hogy azokban a kiszámolt sebességgel vizet keringetve a hőleadás elég legyen az adott helyiségbe. (Ehhez figyelembe kell venni minden radiátorra a keringő víz hőmérsékletét is, különösen ha azok sorba vannak kötve és a hőmérsékletesések is jelentősek.)

Hasonlóan méretezési feladatot mutat be a [2, 4.2.7.3] is. Ezek alapján vezettem le a leadott hő mennyiségét állandósult állapotra. Természetesen a felmelegedés és lehűlés idejét is figyelembe kell majd venni, de ezzel érthető módon a méretezésnél sem számolnak.

3.1.1. Hőleadás

A fűtőtestek hőleadását befolyásolja a fűtőtestek közepes hőmérsékletkülönbsége (ld. a 2. egyenletet), a felülete és a hőleadási tényezője. Ezek közötti kapcsolatot adja az 1. egyenlet ([2, 358. o.]-ből):

$$\dot{Q}_{le} = k_e \ A_e \ \Delta t_m \tag{1}$$

ahol

 \dot{Q}_{le} [W] a leadott hő

 $k_e \left[\frac{\mathsf{W}}{\mathsf{m}^2 \mathsf{K}} \right]$ hőleadási tényező - ezt hőmérsékletfüggetlennek tekintem.

 A_e [m²] a radiátor felülete

 Δt_m [K] a közepes hőmérsékletkülönbség:

$$\Delta t_m = \frac{t_s + t_r}{2} - t_i \tag{2}$$

ahol

 t_s a radiátorba befolyó, t_r az onnan kifolyó víz hőmérséklete $^{\circ}$ C-ban

³Pontosításra szorul ez a modell is, mert valószínűleg csak a konvektív hővezetéssel számol (a sugárzásival pedig nem). A légbefúvás a ház levegőjét melegíti. Ám a modellben a ház hőtároló tömege nem jelenik meg, csak egy hőellenállás a veszteségek modellezéséhez.

⁴Könyvtári könyv, Verlag. 5.11.6, 2. o.

⁵Pontosan nem tudom még, hogyan definiálják a hőigényt: mekkora kültéri hőmérsékletet vesznek pl. figyelembe, illetve hogy radiátor méretezésénél ezt nyilván felül kell becsülni.

 t_i a szoba hőmérséklete

A hőátadási tényező is hőmérsékletfüggő, de ezzel egyelőre nem foglalkozom, állandónak tekintem.

3.1.2. Hőfelvétel

A vízből felvett hő felírható:

$$\dot{Q}_{fel} = c \ \dot{m} \ \Delta t \tag{3}$$

ahol

 \dot{Q}_{fel} [W] a vízből felvett hő, ami annak lehűléséből adódik

$$c\left[\frac{\mathsf{J}}{\mathsf{kg}\,\mathsf{K}}\right]$$
 a víz fajhője

 $\dot{m} \left[\frac{\mathrm{kg}}{\mathrm{s}} \right]$ a víz tömegárama

 $\Delta t = t_s - t_r$ [K] a víz lehűlésének mértéke

3.1.3. Hőkapacitás

Katalógusból radiátorok tömege és a bennük lévő víz térfogata leolvasható. A hőkapac számítása:

3.1.4. Energiamérleg állandósult állapotban

Állandósult állapot esetén a leadott hő egyenlő a felvettel, mivel akkor nem történik hőfelhalmozás, hőtárolás. Azaz ekkor a radiátor hőkapacitását nem kell figyelembe vennem.

Beírva a (2)-ba (1)-t:

$$\dot{Q}_{le} = k_e \ A_e \ \left(\frac{t_s + t_r}{2} - t_i\right) = k_e \ A_e \ \left(\frac{t_s + (t_s - \Delta t)}{2} - t_i\right)$$
 (4)

Ahol felhasználtuk azt is, hogy $t_r=t_s-\Delta t$, majd Δt helyére beírhatjuk a (3) átrendezett alakját:

$$\Delta t = \frac{\dot{Q}_{fel}}{c \ \dot{m}} \tag{5}$$

Beírva (4)-ba (5)-t:

$$\dot{Q}_{le} = k_e A_e \left(t_s - t_i - \frac{\dot{Q}_{fel}}{c \ \dot{m}} \right)$$

$$\dot{Q}_{le} + \frac{k_e \ A_e \ \dot{Q}_{fel}}{2 \ c \ \dot{m}} = k_e \ A_e \ (t_s - t_i)$$
 (6)

$$2 c \dot{m} \dot{Q}_{le} + k_e A_e \dot{Q}_{fel} = k_e A_e 2 c \dot{m} (t_s - t_i)$$

Csak abban az esetben, ha $\dot{Q}_{le} = \dot{Q}_{fel}$:

$$\dot{Q}(2 c \dot{m} + k_e A_e) = 2 k_e A_e c \dot{m} (t_s - t_i)$$

$$\dot{Q} = \frac{2 c \dot{m} k_e A_e}{2 c \dot{m} + k_e A_e} (t_s - t_i)$$
(7)

A fenti képletet kiegészítve kezelhető lenne a hőmérsékletfüggő hőleadási tényező.

Mivel a hőleadást, hőtárolást Simscape-ben valósítottam meg, a radiátorba bemenő hőt kell csak kiszámítani. Erre meg kell vizsgálni, hogy az állandósult állapotbeli képlet helyes-e.

Megjegyzés: A radiátorba bekerülő teljesítményt a t_s-t_r szabja meg (3. egyenlet), viszont itt t_r -t kiejtettem az egyenletekből. Viszont az irodalom⁶ szerint a $\Delta t=t_s-t_r$ -re szabályzozással megtakarítás érhető el. Meg kell vizsgálni, reális-e mindkét paraméter mérése, radiátorok esetén, vagy csak padlófűtésnél.

3.1.5. Javítás a radiátormodellen

A közepes vízhőmérséklet, a közepes felületi hőmérséklet is jöhet kimeneten ahhoz, hogy a steady-state model számolhassa a bemenő hőmérsékletet.

3.1.6. Dinamikus modell

A felmelegedéskor és lehűléskor a pontos hőleadást akkor tudjuk modellezni, ha ismerjük a radiátor hőkapacitását. Ehhez tudnunk kell, hogy a radiátorban mennyi víz van, illetve hogy a radiátortest milyen nehéz.

Radiátor katalógusokból⁷ azt találtam, hogy az egyes radiátor típusokra ezek a paraméterek milyen értékűek.

Ismert a radiátor hossza, magassága, konstrukciója. Ezalapján a tömege, illetve az acél hőkapacitása alapján a radiátortest hőkapacitása - simscape termikus hőtároló elem blokként víztérfogata, a víz fajhője még egy hőtároló elem.

Ezen hőtároló elemek feltöltődése szimulálva adja a dinamikus viselkedést.

⁷Purmo Ventil Compact - purmo.com

3.2. Padlófűtés modellje

Aljzat, aljzatbeton: slab facade: frontal - homlokzat

3.2.1. Sugárzó és konvektív teljesítmény szétválasztása

Fun facts:

- A falakra az $\alpha=10~\frac{\rm W}{\rm m^2~K}$ érték a sugárzó és konvektív hőleadást is tartalmazza. A konvektív hőleadás függ a felületi áramlási sebességtől: falsaroknál ez az érték alacsonyabb, kb. a fele.
- A sugárzó hő a Stefan-Boltzmann törvény alapján függ az emisszivitástól. (Annak a mértéke, hogy a test a feketetesthez képest mennyi hőt bocsát ki). A hőmennyiség a hőmérséklet negyedik hatványával arányos. A sugárzott hő meghatározásához még meg kell keresni és be kell írni a Simscape blokkba a megfelelő együtthatókat. Valami általános összefüggést kell találni, hogy a radiátor milyen arányban melegíti a külső falat, ahol van, ill. az ablakra milyen hatással van: még nem kezelem le ezeket az aszimmetriákat, hanem minden hőmérsékleteloszlást homogénnek veszek. A Stefan-Boltzmann törvény direkt alkalmazása helyett a szabványokban és irodalomban található közelítésekkel élek.
- A q_r [^W_{m²}] radiant heat flux density a T. Cholewa⁸ (5.) egyenlet alapján számítható de az a geometriától is angyban függ. Helyette Kilkis1994 (4) és (6) javasolt, illetve a [1]-ból is lehet mért értékekkel számolni / a szabványok ajánlását használni.
- A hőhidak a hőveszteségek meglepően nagy részéért felelősek, jelentős hibát követünk el, ha ezekkel nem számolunk. Meg kell keresni az energ. tanúsítványokban hogy hol tüntetik fel ezek mértékét.

Fűtött padló, falak, mennyezet esetén jelentős szerepe van a sugárzó hőleadásnak.

- A.Laouadi / Building and Environment 39 (2004) 421 431 p424, eq. 10-11: radiant heat transfer model
- TEMPERATURE CONTROL STRATEGIES FOR RADIANT FLOOR EIEATING SYSTEMS, Zhi Long Zhang: 40.o.
- [1] T. Cholewa et al. / Energy and Buildings 66 (2013) 599-606 Table 5: coefficient
- Kilkis1994 A simplified model for radiant heating and cooling panels: itt van képlet sugárzóra
- Kiegészítés: [2, 349. o.]

A sugárzó hőleadási tényező bevezetésével viszont linearizálhatjuk a hőleadást, a hőleadás így egyszerűen lineárisan függ majd a hőmérséklet-különbségtől.

$$\dot{Q}_r = h_r A_e \left(t_{surf} - t_{AUST} \right) \tag{8}$$

ahol

⁸On the heat transfer coefficients between heated/cooled radiant floor and room. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.07.065

 \dot{Q}_r [W] a leadott sugárzó hő

 $h_r \; [\frac{\mathsf{W}}{\mathsf{m}^2 \, \mathsf{K}}]$ sugárzó hőleadási tényező

 $A_e \ [\mathrm{m^2}]$ a padló felülete

 t_{surf} [K] padló hőmérséklete

 t_{AUST} [K] fűtetlen felületek átlagos hőmérséklete - a fal hőmérsékletének veszem a Simscapeben

3.2.2. Problémák, eltérések a radiátoros fűtéshez képest

Tegyük fel ho

4. Modellek tesztje

4.1. Radiátor unit test

4.1.1. Állandósult állapot numerikus modellje

Annak ellenőrzése, hogy a 7 egyenlet jó-e. Azaz elfogadható-e ez a közelítés állandósult állapotban, illetve a tranziens alatt mennyire feasible.

Az egyenletben a mintavételi idő egy szorzóként jelenik meg,

Az egyenlet wattban adja a kimenetét. A teszt egy formája lehet, ha a gyári adatokat (fűtési teljesítmény) összevetem az általam számoltakkal.

4.1.2. Tranziens Simscape modellje

A bejövő hő függvényében a hőleadás tranziensei. A bejövő hőt a képlet numerikusan számítja. A tranzienst viszont Simscape-ben szimulálom. Ez folytonos rendszert feltételez.

4.1.3. Szabályzás célja

Állandósult állapotban olyan bemenő hőáramot elérni, ami épp fedezi a veszteségeket.

4.2. Padlófűtés unit test

5. Identification

A Simulink modellt bemenetein gerjesztem (külső hőmérséklet ablak 40 °C 5 napig, majd fűtés 60 °C előremenő hőmérsékleten valve = 1 állásban. 9)

 $^{^9}$ A stratégia lehet t_s előremenő hőmérséklet vagy $\alpha\cdot\dot{m}$ tömegáram szabályzása $\alpha=[0..1]$ beavatkozójellel.

6. Hagyományos szabályzás performanciája

PI, miért nem jó Csak SISO-ra működik és itt esetünkben itt több bemenetről van szó mindenképpen. Irodalom:

S. Prívara et al.

7. Szabályzó kiválasztása és analízise

Az identifikált modellekre többféle szabályzót tervezek, illetve próbálok ki.

7.1. Ismerkedés az MPC szabályzással

Ahhoz, hogy az MPC szabályzás működését, tulajdonságait meg tudjam figyelni, lépésről lépésre fogok featureöket hozzáadni.

A kezdeti cél egy "sima" szabályzás. Kérdés, hogy egyáltalán tud-e ilyet az MPC. Gyanítom, hogy a hibaminimalizáló függvény megfelelő megadásával tud: ha egy négyzetes hibaminimalizáló van rajta, *biztosan "jó"* lesz.¹⁰

Plant bemenetek lehetnek:

- kazán bekapcsolása
- előremenő hőmérséklet unmeasured VAGY uncontrolled inputként
- 1 db. fűtőtest (most radiátor) szelepének tömegárama (szelep áteresztése)
- Később több fűtőtest vagy többféle fűtőtestek (padlófűtés, különböző teljesítményű radiátorok) szabályozása
- környezeti hőmérséklet: mért bemenet később predikció is lesz rá. Hatása a kimeneten már identifikálva lett, 3 pólussal és 2 zérussal tökéletesen lekövethető.
- napsugárzás zavaró hatása szimulálható a bizonytalansága valószínűleg nagy lesz

Belső változók - fűtési rendszer és ház kapcsolata

- napsugárzás radiatív, az ablak felületével és a szöggel arányos
- fűtőtestek sugárzó és konvektív hőárama

Paraméterek a plantben nem állandók:

- hőátadási tényezők hőmérsékletfüggők, áramlási sebesség-függők (szél)
- szellőztetés, belső hőterhelés hatása

Az elvárás a következő lépésben az, hogy ha egy t_0 időpontban a rendszer egy adott állapotban van, és várható egy zavarás Δt idő múlva (vagy mértem egy zavarást MOST és a hatása csak később jelenne meg a kimeneten), akkor a rendszer megfelelően beavatkozzon.

(Azaz ha fél óra múlva 10 °C-al melegebb lesz, ne fűtsön.)

 $^{^{10}}$ Bármit is jelentsen a $j \acute{o}$ szabályzás.

7.2. A MATLAB MPC Toolbox elemei

Az MPC blokknak van egy alapértelmezett költségfüggvénye, és ennek a súlyozását lehet beállítani. Külön beállítható a szabályzási és a szimulációs horizont. Ezek optimális beállításai

A kezdeti MPCkontrollert egyszerűen étre lehet hozni az identifikált modellből és a bemenetek típusának megadásával. (A szelep a beavatkozó jelem, ebből származik a kazán bekapcsolása (hiszterézises cucc), illetve a plantnek van még egy bemenete, egy mérhető zavarás.) Ezután a bemenetek értékkészletét adtam meg, illetve van egy normalizáló faktor, ami a jellemző*full scale*.

Az optimalizálás egy költségfüggvény minimalizálását jelenti, amiben *büntetjük* a referenciajeltől való eltérést és a beavatkozó jelek **értékét vagy változását**.

A fenti a klasszikus MPC, tov. info. Baochang DING, Modern MPC című könyvében olvasható.

7.3. Az automatikusan létrehozott MPC tulajdonságai

Az MPC szabályzót létrehoztam a toolbox-szal, az identfikált szakaszból. Beállítottam a be-és kimenetek jellegét, korlátait. A ki-és bemeneteket helyesen bekötve már működött is a szabályzás.

7.3.1. A kezdeti szabályzó problémái

Igaz, hogy az alapjelkövetés gyakorlatilag tökéletes volt, de a beavatkozó jelnek a gyakorlatban nem csak a nagysága, hanem a frekvenciája is korlátos. Ezért a beavatkozó szervnek is kell egy átviteli függvény ideális esetben. (Itt most a szelepről van szó.)

A súlyozatlan MPC nem vette figyelembe a beavatkozójel változásának nagy költségét, ezért irreálisan gyorsan nyitotta és zárta azt. A gyakorlatban nincs szükség tűpontos referenciakövetésre, a hőmérséklet kb. 1 °C-ot ingadozhat. (\pm 0.5 °C) Ha ezt megengedjük, a beavatkozás költsége lecsökkenhet.

7.3.2. Robosztusság

A Simulinkben identifikált modellre pontosan lehetett átviteli függvényt illeszteni, így a szabályzóban futó modell gyakorlatilag tökéletes volt. Gyakorlatban viszont a modellek igencsak pontatlanok lehettek, így megvizsgáltam a szabályzás viselkedését megváltozott paraméterekkel is. Ezt a szabályzás alapvetően jól viselte, a referenciakövetés minősége megmaradt.

8. A szabályzó paramétereinek finomítása, hangolása, alapbeállítások felülírása

8.0.1. Módosítások az MPC-ben

A súlyozást módosítva adhatunk költséget a beavatkozásnak, csökkentve így pl. annak a frekvenciáját. Ez a referenciakövetést rontja, de esetünkben nem cél a tized °C-os pontosság, hanem az energiamegtakarítás. Pontosan fel kellene ezért írni a forintosított költségét a beavatkozásnak, és ezt minimalizálni.

8.1. Az MPC költségfüggvénye

Nem csak a bemenetek értékei súlyozhatók. Az egyik kinyomtatott doksiban nem csak a bemenetek, vagy a hibajel kap súlyozást, hanem a villamos energia aktuális ára is tényező.

Kell keresni egy suitable költségfüggvényt. Illetve megfontolandó lenne vízhőmérsékletre szabályozni, annak a költsége szemléletesebb.

8.2. Offline MPC - supervisory control

4.4. Approaches without real-time dynamic optimization¹¹ Döntési fa, affin leképezés ilyenek.

Elkészíteni az offline döntési hálót viszont nehezebb.

8.3. Validálás

Szimulációval ellenőrizzük a szabályzás robosztusságát. Ehhez megnöveltem a hőtároló tömegeket.

Ötlet: random időpontban lehetne ablaknyitást szimulálni. Napsütés hatásmechanizmusa. Radiant heat transfer paramétere továbbra sem olyan világos: sok publikációban a hőmérsékletkülönbség lineáris függését tartalmazza és nem a Stefan-Boltzmann törvény szerinti negyedik hatvány szerintit

¹¹Thieblemont-ból. A real-time update nélküli MPC a legegyszerűbb és a leggyorsabban kiszámolható. Gyakran más irányítási technikákon alapul.

Hivatkozások

- [1] Tomasz Cholewa, Marian Rosiński, Zenon Spik, Marzenna R. Dudzińska, and Alicja Siuta-Olcha. On the heat transfer coefficients between heated/cooled radiant floor and room. *Energy and Buildings*, 66:599 606, 2013.
- [2] Csoknyai István. Több, mint hidraulika. Herz Armatúra Hungária Kft, 2013.