Data Mining (BGU) Prof. Mark Last

Lecture No. 5 – Decision Tree Learning II

Rule Extraction

- Discretization of Continuous Attributes
- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview
- Comparison of Decision Trees

Rule Extraction – Student Admission

Complete set of extracted rules

- ■If (Test <600) and (Place of Birth = Israel) Then Grade = Low
- ■If (Test <600) and (Place of Birth = Abroad) Then Grade = Medium
- ■If (600<Test <700) and (Gender = F) Then Grade = High</p>
- ■If (600<Test <700) and (Gender = M) Then Grade = Medium
- ■If (Test >700) Then Grade = High

Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
 - Fraction of records that satisfy both the antecedent and consequent of a rule
- What are the coverage and the accuracy of each rule extracted from the following trees?

Characteristics of Rule-Based Classifier

- Mutually exclusive rules (חוקים זרים)
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by <u>at most</u> one rule
- Exhaustive rules (חוקים בעלי כיסוי מלא)
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by <u>at least</u> one rule
- Example: mutually exclusive and exhaustive?
 - If (Test < 600) Then Grade = Low
 - If $(600 \le \text{Test} < 700)$ Then Grade = Medium
 - If (Test \geq 700) Then Grade = High

Data Mining (BGU) Prof. Mark Last

Lecture No. 5 – Decision Tree Learning II

- Rule Extraction
- Discretization of Continuous Attributes

- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview
- Comparison of Decision Trees

Discretization Algorithm

Lecture No. 5

Data Mining (BGU)

Discretization Algorithm (continued)

Notation

- S entire set of instances
- *A* attribute (feature)
- *T* threshold (partition boundary)
- S_1 set of instances below the threshold ($v \le T$)
- S_2 set of instances above the threshold (v > T)

Discretization Algorithm (continued)

• Entropy induced by *T*:

$$E(A,T;S) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

- Information Gain:
 - $\bullet \quad Gain \ (A,T;S) = Ent \ (S) E(A,T;S)$
- Example:

Record	1	2	3	4	5
Value	1	1.5	1.5	1.7	2.1
Class	0	1	0	1	1

Discretization Example

Record	1	2	3	4	5
Value	1	1.5	1.5	1.7	2.1
Class	0	1	0	1	1

$$E(A,T;S) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

Value <=	Pos (0)	Neg (1)	Total	Prob (0)	Prob (1)
1	1	0	1	1.00	0.00
1.5	2	1	3	0.67	0.33
1.7	2	2	4	0.50	0.50
2.1	2	3	5	0.40	0.60
Value >	Pos (0)	Neg (1)	Total	Prob (0)	Prob (1)
1	1	3	4	0.25	0.75
1.5	0	2	2	0.00	1.00
1.7	0	1	1	0.00	1.00
2.1	0	0	0		

The best threshold

Value <=	plogp	plogp	Total	Entropy	Info Gain
1	0.000		0.000	0.649	0.322
1.5	0.390	0.528	0.918	0.551	0.420
1.7	0.500	0.500	1.000	0.800	0.171
2.1	0.529	0.442	0.971	0.971	
Value >	plogp	plogp			
1	0.500	0.311	0.811		
1.5		0.000	0.000		
1.7		0.000	0.000		
2.1					

Data Mining (BGU)

Prof. Mark Last

L'ecture No. 5 – Decision Tree Learning II

- Rule Extraction
- Discretization of Continuous Attributes
- Alternative Splitting Rules

- Information Gain Ratio
- Gini Index
- Twoing
- CART Overview
- Comparison of Decision Trees

Splitting Rules

- General Requirements
 - Function of class probabilities $f(p_1, p_2, ...)$
 - Symmetric around 1/2 f(p) = f(1-p)
 - Convex function
- Possible splitting functions (rules)
 - Entropy (Information Gain and Gain Ratio)
 - Twoing
 - Gini Index

Information Gain Ratio

- ID3 selects the attribute which maximizes the mutual information (information gain):
 - $\bullet \quad gain(A) = I(p, n) E(A)$
 - I (p, n) unconditional entropy (does not depend on the choice of A)
 - E(A) conditional entropy after splitting the root node by the test attribute A
- The information gain is maximal when E(A) is equal to zero
- E(A) = 0 if for each value of A
 - Either all examples are positive
 - Or all examples are negative

Gain Ratio (cont.)

- The problem with multi-valued and continuous attributes in noisy databases
 - The probability of a subset of examples to have the same class increases monotonically with a decrease in the subset size
 - The extreme case is a subset of one example
 - The average size of a subset decreases with an increase in the total number of attribute values (e.g., attribute Date)
- Conclusion
 - Information gain is biased towards multi-valued and continuous attributes

Gain Ratio (cont.)

- The Gain Ratio Approach
 - "Punish" the multi-valued attributes via dividing (normalizing) their information gain by the *Split Information*:

$$SplitInfo_{A}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

- The *Split Information* represents the *entropy* of the tested attribute (in contrast to the entropy of the target attribute)
- The Gain Ratio: Gain(A)/SplitInfo(A)

Gain Ratio – Student Example

שם פרטי	שם משפחה	מגדר	מקום לידה	ציון פסיכומטרי	ממוצע ציונים
First Name	Last Name	Gender	Place of Birth	Test Grade	GPA
David	Cohen	M	USA	Over 700	High
Ophir	Levy	M	Israel	600-700	Medium
Sharon	Grosman	F	Israel	600-700	High
Diana	Liberman	F	Russia	0-600	Medium
Anat	Klein	F	Israel	0-600	Low

Let us assume that the attribute "Place of Birth" has <u>three</u> possible values: USA, Israel, and Russia

Information Gain – *Place of Birth*

	Place of Birth			Total
	Israel	USA	Russia	
Low	1	0	0	1
р	0.333	0.000	0.000	
-logp	1.585	0.000	0.000	
Medium	1	0	1	2
р	0.333	0.000	1.000	
-logp	1.585	0.000	0.000	
High	1	1	0	2
р	0.333	1.000	0.000	
-logp	1.585	0.000	0.000	
Total	3	1	1	5
р	0.60	0.20	0.20	0.80
Entropy	1.585	0.000	0.000	0.951
Gain				0.571

Info(D) = 1.522

Prof. Mark Last

Data Mining (BGU) Split Information and Gain Ratio Student Example

Info(D) = 1.522

	Place of			
	Birth			Total
	Israel	USA	Russia	
Total	3	1	1	5
р	0.60	0.20	0.20	1.00
-logp Gain	0.737	2.322	2.322	1.371
Gain				0.571
Gain Ratio				0.416

 Split Information Information Gain Information Gain Ratio

Gain Ratio (Test Grade) = **0.474**

Gain Ratio (Gender) = 0.176

Gain Ratio (Place of Birth) = 0.416

Lecture No. 5 17

Gini index

- All attributes are assumed continuous-valued
- Assume there exist several possible split values for each attribute
- May need other tools, such as clustering, to get the possible split values
- Can be modified for categorical attributes

Gini Splitting Rule

 Looks for the largest class in the data set and strives to isolate it from all other classes

Lecture No. 5

Gini Index

- If a data set T contains examples from n classes, gini index, gini(T) is defined as $gini(T) = 1 \sum_{j=1}^{n} p_{j}^{2}$
 - where p_i is the relative frequency of class j in T.
- If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the gini index of the split data contains examples from n classes, the gini index gini(T) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

- Reduction in Impurity: $\Delta gini(A) = gini(D) gini_A(D)$
- The attribute provides the smallest $gini_{split}(T)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Gini vs. Entropy

2.00

1.00

0.00

Entropy

p

Gini Splitting Rule - Example

$$gini(T)=1-\sum_{j=1}^{n} p_{j}^{2}$$

Split 1

Class:	Α	В	С	D	Total	PI/Pr
Age <= 65	40	0	0	10	50	0.5
Age > 65	0	30	20	0	50	0.5
Total	40	30	20	10	100	

Split 2

Class:	Α	В	С	D	Total	PI/Pr
Age <= 65	40	0	0	0	40	0.4
Age > 65	0	30	20	10	60	0.6
Total	40	30	20	10	100	

Prob							
Α		В	С	D	Gini	Gini Split	Gini Drop
	0.80	0.00	0.00	0.20	0.32	0.400	0.300
	0.00	0.60	0.40	0.00	0.48		
	0.40	0.30	0.20	0.10	0.70		

Split 2

Prob						
Α	В	С	D	Gini	Gini Split	Gini Drop
1.00	0.00	0.00	0.00	0.00	0.367	0.333
0.00	0.50	0.33	0.17	0.61	$\Big)$	
0.40	0.30	0.20	0.10	0.70		

Better split

Twoing Splitting Rule (CARTTM)

Source: L. Breiman, J. Friedman, R. Olshen, and C. Stone (1984), Classification and Regression Trees,

Pacific Grove: Wadsworth

Maximize

$$\frac{p_L p_R}{4} \left[\sum_{j} \left| p(j/t_L) - p(j/t_R) \right| \right]^2$$

- Notation
 - p_L proportion of cases going to the left node
 - p_R proportion of cases going to the right node
 - j class index
 - $p(j/t_I)$ probability of class j at the left node
 - $p(j/t_R)$ probability of class j at the right node
- Attempts to find groups of up to 50% of the data each
- If impossible power-modified twoing

Lecture No. 5

Twoing Splitting Rule - Example

Which split is better?

Twoing Splitting Rule - Example $\frac{p_L p_R}{4} \left[\sum_{j} |p(j/t_L) - p(j/t_R)| \right]^2$

$$\frac{p_L p_R}{4} \left[\sum_{j} \left| p(j/t_L) - p(j/t_R) \right| \right]^2$$

Split 1

Class:	Α	В	С	D	Total	PI/Pr
Age <= 65	40	0	0	10	50	0.5
Age > 65	0	30	20	0	50	0.5
Total					100	

Better split

Split 2

Class:	Α	В	C	D	Total	PI/Pr
Age <= 65	40	0	0	0	40	0.4
Age > 65	0	30	20	10	60	0.6
Total					100	

Abs						
Α		В	С	D	Total	Twoing
	0.800	0.600	0.400	0.200	2.000	0.25

Prob			
Α	В	С	D
0.80	0.00	0.00	0.20
0.00	0.60	0.40	0.00

Prob				
Α		В	С	D
	1.00	0.00	0.00	0.00
	0.00	0.50	0.33	0.17

Abs					
Α	В	С	D	Total	Twoing
1.000	0.500	0.333	0.167	2.000	0.240

Lecture No. 5 24

25

Using Splitting Rules (Gini, Twoing, Entropy)

- Gini -- is usually best for yes/no outcomes
- Twoing similar to entropy but more flexible because it has a tuning parameter
 - excellent for multi-class outcomes
 - twoing excellent for hard to classify problems
 - problems where accuracy for all methods will be low
 - inherently difficult problems or low signal/noise ratio
- Entropy- popular in Machine Learning literature

Prof. Mark Last

Lecture No. 5 – Decision Tree Learning II

- Rule Extraction
- Discretization of Continuous Attributes
- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview

Comparison of Decision Trees

Lecture No. 5

27

CARTTM Algorithm Main Steps

- Grow the maximal tree based on the entire data set
 - A binary splitting procedure
 - Splitting rules
 - Stopping criteria
- Derive a set of pruned sub-trees
 - Create "efficiency frontier"
- Select the best tree by using validation set or crossvalidation

CARTTM: Binary Splitting Procedure

- Continuous (Ordinal) Attributes
 - Each distinct value is considered for threshold
 - Branching rule: $x \le C$
 - M possible splits (M number of distinct values)
- Nominal (Categorical) Attributes
 - The branching rule is determined separately for each possible value
 - 2^{M-1} 1 possible splits (M number of values)

CARTTM: Stopping Criteria

- Splitting is impossible
 - One case left in a node
 - All the cases in the node have the same target value
- Other reasons
 - Too few cases in the node (default = 10 cases)

Pruning Trees

Tree T

Branch T_{t2}

Sub-tree $T - T_{t2}$

Deriving a set of pruned sub-trees

• Objective: minimizing the cost-complexity function $R_{\alpha}(T) = R(T) + \alpha \cdot \left| \widetilde{T} \right|$

- \blacksquare T a tree
- \blacksquare R(T) the training error rate of a tree
- \blacksquare $R_{\alpha}(T)$ the cost-complexity of a tree
- ullet $\left| \widetilde{T} \right|$ number of terminal nodes in a tree
- α complexity parameter (real number, greater than zero)

CARTTM Pruning Algorithm

$$R_{\alpha}(T) = R(T) + \alpha \cdot \left| \widetilde{T} \right|$$

- Step 1 Initialize the list of optimal trees with the maximal tree
- Step 2 Initialize $\alpha = 0$
- Step 3 Increase α until the tree ceases to be optimal
- Step 4 Find a new sub-tree, which is optimal with the new value of α
- Step 5 Add the new sub-tree to the list of optimal trees.
- Step 6 If the new sub-tree has more than one terminal node, go to Step 3. Otherwise, stop.

CARTTM Student Example Maximal Tree ($\alpha = 0$)

CART™ Student Example (cont'd) Removing *Place of Birth*

- Cost-complexity of the single node *t*
 - $R_{\alpha}(\{t\}) = R(t) + \alpha * 1 = 0.50 + \alpha$
- Cost-complexity of the branch T_t
 - $R_{\alpha}(T_t) = R(T_t) + \alpha^* |\check{T}_t| = 0 + \alpha^* 2$
- The critical value of α
 - $\blacksquare R_{\alpha}(\{t\}) = R_{\alpha}(T_t)$
 - $-0.50 + \alpha = 2 \alpha$
 - $\alpha = 0.50$

CARTTM Student Example (cont'd) New Sub-Tree ($\alpha = 0.50$)

Lecture No. 5 35

Data Mining (BGU) Prof. Mark Last

Lecture No. 5 – Decision Tree Learning II

- Rule Extraction
- Discretization of Continuous Attributes
- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview
- Comparison of Decision Trees

Lecture No. 5 36

Comparison of Decision Trees

(based on Lim et al., Machine Learning, 40, 203–228, 2000)

Computational Complexity

Comparison of Decision Trees Error Rate

Comparison of Decision Trees Tree Size

Lectures No. 4-5: Summary

- Classification tasks involve model construction and model testing
- Decision trees are one of the most popular classification models
- Decision trees are usually constructed in a top-down recursive divide-and-conquer manner
- Overfitting can be avoided with pre-pruning and post-pruning techniques
- Most popular splitting criteria include Gini, Twoing, and Entropy