Deep Learning for Case-Based Reasoning through Prototypes

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin

(Reimplementation)

Main idea

Add special prototype layer to learn prototypes.

Use prototypes to explain class prediction for test examples.

Prototypes similarity

Desired prototypes are:

$$R(g \circ f, D) = \frac{1}{n} \sum_{i=1}^{n} \|(g \circ f)(\mathbf{x}_i) - \mathbf{x}_i\|_2^2. \quad \bullet$$

$$R_1(\mathbf{p}_1, ..., \mathbf{p}_m, D) = \frac{1}{m} \sum_{i=1}^m \min_{i \in [1, n]} \|\mathbf{p}_j - f(\mathbf{x}_i)\|_2^2,$$

$$R_2(\mathbf{p}_1, ..., \mathbf{p}_m, D) = \frac{1}{n} \sum_{i=1}^n \min_{j \in [1, m]} \|f(\mathbf{x}_i) - \mathbf{p}_j\|_2^2.$$

- well reconstructed (minimizing autoencoder error)
- as close as possible to at least one of the training examples in the latent space
- $R_2(\mathbf{p}_1,...,\mathbf{p}_m,D) = \frac{1}{n} \sum_{i=1}^n \min_{j \in [1,m]} \|f(\mathbf{x}_i) \mathbf{p}_j\|_2^2$. representative for all training examples (i.e. every encoded training example is as close as possible to one of the prototype vectors)

*We also use cross-entropy to penalize misclassification

MNIST

CARS

Datasets

FASHION-MNIST

ROCK, PAPER, SCISSORS

Learned prototypes

Distances between prototypes and test example

Accuracy scores

Autoencoder samples

	interpret able	without prototype I.	standard CNN
test set accuracy	99.22%	99.23%	99.24%

	interpret able	without prototype I.	standard CNN
test set accuracy	99.12%	99.37%	99.09%

Learned prototypes

Explainable vs standard classification

Explainable accuracy: 79.57%

Standard accuracy: 78.76%

Autoencoder results

AUTHORS

Learned prototypes

Accuracy & Autoencoder samples

	test set accuracy
authors	89.95%
reimplementation	90.23%

Ablation study

• without R1

• without R2

• without R1 and R2

Any questions?

Thanks for your attention!

