

Internet of Things

LoRa

- LoRa is a wireless Radio frequency technology used to transmit bidirectional information to a longdistance without consuming much power.
- Developed by Semtech
- LoRa stands for Long Range Radio
- Transmits over license-free sub-gigahertz radio frequency bands like 169 MHz, 433 MHz, 868 MHz (Europe) and 915 MHz (North America).
- Enables very-long-range transmissions (more than 10 km in rural areas) with low power consumption
- Based on spread-spectrum modulation techniques derived from chirp spread spectrum (CSS) technology

 Each region have different LoRaWAN Frequency allocations:

Region	Frequency
Europe	867 - 869MHz
North America	902 - 928MHz
China	470 - 510MHz
Korea/Japan	920 - 925MHz
India	865 - 867MHz

Long range: Many miles on line-of-sight links.

Advantages of LoRa

Low power: Can run on battery for years.

Low cost: LoRa modules are pocket-friendly. It uses constant envelope modulation that brings lower cost and higher efficiency to the power amplifier.

Universal: Uses unlicensed bands that are globally available.

Bi-directional: Can send and receive data.

- With a maximum data rate of around 50kb/s.
- LoRa has the lowest of data rates when compared with most of the other technology which makes it not ideal for certain applications where high data rates are required.

Disadvantages of LoRa

LoRa Topologies

Point to Point Communication

- In point to point communication, two LoRa enabled devices talk with each other using RF signals.
- For example, this is useful to exchange data between two ESP32 boards equipped with LoRa transceiver chips that are relatively far from each other or in environments without Wi-Fi coverage.
- Unlike Wi-Fi or Bluetooth that only support short distance communication, two LoRa devices with a proper antenna can exchange data over a long distance.

LPWAN

- Deployed in a star topology
- LoRaWAN defines the communication protocol and system architecture for the network while the LoRa physical layer enables the long-range communication link
- Communication between sensor nodes & BS goes over the wireless channel utilizing LoRa physical layer and the connection between gateways & central server are over IP-based network
- End Nodes transmit directly to all gateways within range, using LoRa
- Gateways relay messages between enddevices & central network server using IP

LoRaWAN network architecture

- An end node broadcast its data to every gateway in its vicinity.
- The gateways forward this packet to the network server.
- The network server collects the messages from all gateways and filters out the duplicate data and determines the gateway that has the best reception.
- The network server forwards the packet to the correct application server where the end user can process the sensor data.
- Optionally the application server can send a response back to the end node.
- When a response is send, the network server receives the response and determines which gateway to use to broadcast the response back to the end node.