A Confidence sets with high probability

In this appendix we will build up to a proof of Proposition 5, that the confidence sets defined by β^* in equation 5 hold with high probability. We begin with some elementary results from martingale theory.

Lemma 4 (Exponential Martingale).

Let $Z_i \in L^1$ be real-calued random variables adapted to \mathcal{H}_i . We define the conditional mean $\mu_i = \mathbb{E}[Z_i|\mathcal{H}_{i-1}]$ and conditional cumulant generating function $\psi_i(\lambda) = \log \mathbb{E}[\exp(\lambda(Z_i - \mu_i))|\mathcal{H}_{i-1}]$, then

$$M_n(\lambda) = \exp\left(\sum_{1}^{n} \lambda(Z_i - \mu_i) - \psi_i(\lambda)\right)$$

is a martingale with $\mathbb{E}[M_n(\lambda)] = 1$.

Lemma 5 (Concentration Guarantee).

For Z_i adapted real L^1 random variables adapted to \mathcal{H}_i . We define the conditional mean $\mu_i = \mathbb{E}[Z_i|\mathcal{H}_{i-1}]$ and conditional cumulant generating function $\psi_i(\lambda) = \log \mathbb{E}[\exp(\lambda(Z_i - \mu_i))|\mathcal{H}_{i-1}]$.

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} \left\{\sum_{i=1}^{n} \lambda(Z_i - \mu_i) - \psi_i(\lambda) \ge x\right\}\right) \le e^{-x}$$

Both of these lemmas are available in earlier discussion for real-valued variables [11]. We now specialize our discussion to the L^2 -space $\mathcal Y$ where $< y,y>=\|y\|_2^2$. To simplify notation we will write $f_t^*:=f^*(x_t)$ and $f_t=f(x_t)$ for arbitrary $f\in\mathcal F$. We now define

$$Z_{t} = \|f_{t}^{*} - y_{t}\|_{2} - \|f_{t} - y_{t}\|_{2}$$

$$= \langle f_{t}^{*} - y_{t}, f_{t}^{*} - y_{t} \rangle - \langle f_{t} - y_{t}, f_{t} - y_{t}, f_{t} - y_{t} \rangle$$

$$= -\langle f_{t} - f_{t}^{*}, f_{t} - f_{t}^{*} \rangle + 2 \langle f_{t} - f_{t}^{*}, y_{t} - f_{t}^{*} \rangle$$

$$= -\|f_{t} - f_{t}^{*}\|_{2} + 2 \langle f_{t} - f_{t}^{*}, \epsilon_{t} \rangle$$

so that clearly $\mu_t = -\|f_t - f_t^*\|_2$. Now since we have said that the noise is σ -sub-Gaussian, $\mathbb{E}[\exp(\langle \phi, \epsilon \rangle)] \leq \exp\left(\frac{\|\phi\|_2^2 \sigma^2}{2}\right) \ \forall \phi \in \mathcal{Y}$. From here we can deduce that:

$$\psi_{t}(\lambda) = \log \mathbb{E}[\exp(\lambda(Z_{t} - \mu_{t})) | \mathcal{H}_{t-1}]$$

$$= \log \mathbb{E}[\exp(2\lambda < f_{t} - f_{t}^{*}, \epsilon_{t} >)]$$

$$\leq \frac{\|2\lambda(f_{t} - f_{t}^{*})\|_{2}^{2} \sigma^{2}}{2}.$$

We now write $\sum_{i=1}^{t-1} Z_i = L_{2,t}(f^*) - L_{2,t}(f)$ according to our earlier definition of $L_{2,t}$. We can apply Lemma 5 with $\lambda = 1/4\sigma^2$, $x = log(1/\delta)$ to obtain:

$$\mathbb{P}\left\{\left(L_{2,t}(f) \ge L_{2,t}(f^*) + \frac{1}{2}||f - f^*||_{2,E_t} - 4\sigma^2 \log(1/\delta)\right) \ \forall t\right\} \ge 1 - \delta$$

substituting $f = \hat{f}$ to be the least squares solution which minimizes $L_{2,t}(f)$ we can remove $L_{2,t}(\hat{f}) - L_{2,t}(f^*) \leq 0$. From here we use an α -cover discretization argument to complete the proof of Proposition 5.

Let $\mathcal{F}^{\alpha} \subset \mathcal{F}$ be an α -2 cover of \mathcal{F} such that $\forall f \in \mathcal{F}$ there is some $||f^{\alpha} - f||_2 \leq \alpha$. We can use a union bound on \mathcal{F}^{α} so that $\forall f \in \mathcal{F}$:

$$L_{2,t}(f) - L_{2,t}(f^*) \ge \frac{1}{2} \|f - f^*\|_{2,E_t} - 4\sigma^2 \log(N(\mathcal{F}, \alpha, \|\cdot\|_2)/\delta) + DE(\alpha)$$
For $DE(\alpha) = \min_{f^{\alpha} \in \mathcal{F}^{\alpha}} \left\{ \frac{1}{2} \|f^{\alpha} - f^*\|_{2,E_t}^2 - \frac{1}{2} \|f - f^*\|_{2,E_t}^2 + L_{2,t}(f) - L_{2,t}(f^{\alpha}) \right\}$ (14)

We will now seek to bound this discretization error with high probability.

Lemma 6 (Bounding discretization error).

If $||f^{\alpha}(x) - f(x)||_2 \le \alpha$ for all $x \in \mathcal{X}$ then with probability at least $1 - \delta$:

$$DE(\alpha) \le \alpha t \left[8C + \sqrt{8\sigma^2 \log(4t^2/\delta)} \right]$$

Proof. For non-trivial bounds we will consider the case of $\alpha \leq C$ and note that via Cauchy-Schwarz:

$$||f^{\alpha}(x)||_{2}^{2} - ||f(x)||_{2}^{2} \le \max_{||y||_{2} \le \alpha} ||f(x) + y||_{2}^{2} - ||f||_{2}^{2} \le 2C\alpha + \alpha^{2}.$$

From here we can say that

$$||f^{\alpha}(x) - f^{*}(x)||_{2}^{2} - ||f(x) - f^{*}(x)||_{2}^{2} = ||f^{\alpha}(x)||_{2}^{2} - ||f(x)||_{2}^{2} + 2 < f^{*}(x), f(x) - f^{\alpha}(x) > \le 4C\alpha$$

$$||y - f(x)||_{2}^{2} - ||y - f^{\alpha}(x)||_{2}^{2} = 2 < y, f^{\alpha}(x) - f(x) > + ||f(x)||_{2}^{2} - ||f^{\alpha}(x)||_{2}^{2} \le 2\alpha|y| + 2C\alpha + \alpha^{2}$$

Summing these expressions over time i=1,..,t-1 and using sub-gaussian high probability bounds on |y| gives our desired result.

Finally we apply Lemma 6 to equation 14 and use the fact that \hat{f}_t^{LS} is the $L_{2,t}$ minimizer to obtain the result that with probability at least $1 - 2\delta$:

$$\|\hat{f}_t^{LS} - f^*\|_{2,E_t} \le \sqrt{\beta_t^*(\mathcal{F},\alpha,\delta)}$$

Which is our desired result.

B Bounding the number of large widths

Lemma 1 (Bounding the number of large widths). If $\{\beta_t > 0 | t \in \mathbb{N}\}$ is a nondecreasing sequence with $\mathcal{F}_t = \mathcal{F}_t(\beta_t)$ then

$$\sum_{k=1}^{m} \sum_{i=1}^{\tau} \mathbb{1}\{w_{\mathcal{F}_{t_k}}(x_{t_k+i}) > \epsilon\} \le \left(\frac{4\beta_T}{\epsilon^2} + \tau\right) \dim_E(\mathcal{F}, \epsilon)$$

Proof. We first imagine that $w_{\mathcal{F}_t}(x_t) > \epsilon$ and is ϵ -dependent on K disjoint subsequences of $x_1, ..., x_{t-1}$. If x_t is ϵ -dependent on K disjoint subsequences then there exist $\|\overline{f} - \underline{f}\|_{2, E_t} > K\epsilon^2$. By the triangle inequality $\|\overline{f} - f\|_{2, E_t} \le 2\sqrt{\beta_t} \le 2\sqrt{\beta_T}$ so that $K < 4\beta_T/\epsilon^2$.

In the case without episodic delay, Russo went on to show that in any sequence of length l there is some element which is ϵ -dependent on at least $\frac{l}{\dim_E(\mathcal{F},\epsilon)}-1$ disjoint subsequences [11]. Our analysis follows similarly, but we may lose up to $\tau-1$ proper subsequences due to the delay in updating the episode. This means that we can only say that $K \geq \frac{l}{\dim_E(\mathcal{F},\epsilon)} - \tau$. Considering the subsequence $w_{\mathcal{F}_{t_k}}(x_{t_k+i}) > \epsilon$ we see that $l \leq \left(\frac{4\beta T}{\epsilon^2} + \tau\right) \dim_E(\mathcal{F},\epsilon)$ as required.

C Eluder dimension for specific function classes

In this section of the appendix we will provide bounds upon the eluder dimension for some canonical function classes. Recalling Definition 2, $\dim_E(\mathcal{F}, \epsilon)$ is the length d of the longest sequence $x_1, ..., x_d$ such that for some $\epsilon' \geq \epsilon$:

$$w_k = \sup \left\{ \| (\overline{f} - \underline{f})(x_k) \|_2 \ \middle| \ \| \overline{f} - \underline{f} \|_{2, E_t} \le \epsilon' \right\} > \epsilon'$$
 (15)

for each $k \leq d$.

C.1 Finite domain X

Any $x \in \mathcal{X}$ is ϵ -dependent upon itself for all $\epsilon > 0$. Therefore for all $\epsilon > 0$ the eluder dimension of \mathcal{F} is bounded by $|\mathcal{X}|$.

C.2 Linear functions $f(x) = \theta \phi(x)$

Let $\mathcal{F} = \{f \mid f(x) = \theta \phi(x) \text{ for } \theta \in \mathbb{R}^{n \times p}, \phi \in \mathbb{R}^p, \|\theta\|_2 \leq C_{\theta}, \|\phi\|_2 \leq C_{\phi} \}$. To simplify our notation we will write $\phi_k = \phi(x_k)$ and $\theta = \theta_1 - \theta_2$. From here, we may manipulate the expression

$$\|\theta\phi\|_2^2 = \phi_k^T \theta^T \theta \phi_k = Tr(\phi_k^T \theta^T \theta \phi_k) = Tr(\theta \phi_k \phi_k^T \theta)$$

$$\implies w_k = \sup_{\theta} \{ \|\theta\phi_k\|_2 \mid Tr(\theta\Phi_k\theta^T) \le \epsilon^2 \} \text{ where } \Phi_k := \sum_{i=1}^{k-1} \phi_i \phi_i^T$$

We next require a lemma which gives an upper bound for trace constrained optimizations.

Lemma 7 (Bounding norms under trace constraints).

Let $\theta \in \mathbb{R}^{n \times p}$, $\phi \in \mathbb{R}^p$ and $V \in \mathbb{R}_{++}^{p \times p}$, the set of positive definite $p \times p$ matrices, then:

$$W^2 = \max_{\alpha} \|\theta\phi\|_2^2 \text{ subject to } Tr(\theta V \theta^T) \le \epsilon^2$$

is bounded above by $W^2 \le (2n-1)\epsilon^2 \|\phi\|_{V^{-1}}^2$ where $\|\phi\|_A^2 := \phi^T A \phi$.

Proof. We first note that $\|\theta\phi\|_2^2 = Tr(\theta\phi\phi^T\theta^T) = \sum_1^n (\theta\phi)_i^2 \le \left(\sum_1^n (\theta\phi)_i\right)^2$ by Jensen's inequality. We define $\tilde{\Phi} \in \mathbb{R}^{n \times p}$ such that each row of $\tilde{\Phi} = \phi^T$. Then this inequality can be expressed as:

$$W^2 = Tr(\theta \phi \phi^T \theta^T) \le Sum(\theta \otimes \tilde{\Phi})^2$$

Where $A \otimes B = C$ for $C_{ij} = A_{ij}B_{ij}$ and $Sum(C) := \sum_{i,j} C_{ij}$ We can now obtain an upper bound for our original problem through this convex relaxation:

$$\max_{\boldsymbol{\theta}} Sum(\boldsymbol{\theta} \otimes \tilde{\boldsymbol{\Phi}}) \text{ subject to } Tr(\boldsymbol{\theta} V \boldsymbol{\theta}^T) \leq \epsilon^2$$

We can now form the lagrangian $\mathcal{L}(\theta, \lambda) = -Sum(\theta \otimes \tilde{\Phi}) + \lambda (Tr(\theta V \theta^T) - \epsilon^2)$. Solving for first order optimality $\nabla_{\theta} \mathcal{L} = 0 \implies \theta^* = \frac{1}{2\lambda} \tilde{\Phi} V^{-1}$. From here we form the dual objective

$$g(\lambda) = -Sum(\frac{1}{2\lambda}\tilde{\Phi}V^{-1}\otimes\tilde{\Phi}) + Tr(\frac{1}{4\lambda}\tilde{\Phi}V^{-1}\tilde{\Phi}^{T}) - \lambda\epsilon^{2}$$

Here we solve for the dual-optimal $\lambda^* \nabla_{\lambda} g = 0 \implies \frac{1}{2\lambda^*} Sum(\frac{1}{2\lambda} \tilde{\Phi} V^{-1} \otimes \tilde{\Phi}) - \frac{1}{4\lambda^*} Tr(\frac{1}{4\lambda} \tilde{\Phi} V^{-1} \tilde{\Phi}^T) = \epsilon^2$. From the definition of $\tilde{\Phi}$, $Sum(\tilde{\Phi} V^{-1} \otimes \tilde{\Phi}) = n\phi^T V^{-1}\phi$ and $Tr(\tilde{\Phi} V^{-1} \tilde{\Phi}^T) = \phi^T V^{-1}\phi$. From this we can simplify our expression to conclude:

$$\begin{split} \frac{n}{2\lambda^{*2}}\phi^TV^{-1}\phi - \frac{1}{4\lambda^{*2}}\phi^TV^{-1}\phi &= \epsilon^2 \implies \lambda^* = \sqrt{\frac{(n-1/2)}{2\epsilon^2}} \|\phi\|_{V^{-1}} \\ &\implies g(\lambda^*) = -\frac{n}{2\lambda^*} \|\phi\|_{V^{-1}}^2 + \frac{1}{4\lambda^*} \|\phi\|_{V^{-1}}^2 - \lambda^*\epsilon \\ \text{strong duality} &\implies f(\theta^*) = g(\lambda^*) = \sqrt{2n-1}\epsilon \|\phi\|_{V^{-1}} \end{split}$$

From here we conclude that the optimal value of $W^2 \leq f(\theta^*)^2 \leq (2n-1)\epsilon^2 \|\phi\|_{V^{-1}}^2$.

Using this lemma, we will be able to address the eluder dimension for linear functions. Using the definition of w_k from equation 15 together with Φ_k we may rewrite:

$$w_k = \max_{\alpha} \{ \sqrt{Tr(\theta \phi_k \phi_k^T \theta)} \mid Tr(\theta \Phi_k \theta^T) \leq \epsilon^2 \}.$$

Let $V_k := \Phi_k + \left(\frac{\epsilon}{2C_{\theta}}\right)^2 I$ so that $Tr(\theta \Phi_k \theta^T) \leq \epsilon^2 \implies Tr(\theta V_k \theta^T) \leq 2\epsilon^2$ through a triangle inequality. Now applying Lemma 7 we can say that $w_k \leq \epsilon \sqrt{4n-2} \|\phi_k\|_{V_k^{-1}}$. This means that if $w_k \geq \epsilon$ then $\|\phi_k\|_{V_k^{-1}}^2 > \frac{1}{4n-2} > 0$.

We now imagine that $w_i \ge \epsilon$ for each i < k. Then since $V_k = V_{k-1} + \phi_k \phi_k^T$ we can use the Matrix Determinant together with the above observation to say that:

$$det(V_k) = det(V_{k-1})(1 + \phi_k^T V_K^{-1} \phi_k) \ge det(V_{k-1}) \left(1 + \frac{1}{4n-2}\right) \ge \dots \ge \lambda^p \left(1 + \frac{1}{4n-2}\right)^{k-1}$$
 (16)

for $\lambda := \left(\frac{\epsilon}{2C_{\theta}}\right)^2$. To get an upper bound on the determinant we note that $det(V_k)$ is maximized when all eigenvalues are equal or equivalently:

$$det(V_k) \le \left(\frac{Tr(V_k)}{p}\right)^p \le \left(\frac{C_\phi^2(k-1)}{p} + \lambda\right)^p \tag{17}$$

Now using equations 16 and 17 together we see that k must satisffy the inequality $\left(1+\frac{1}{4n-2}\right)^{(k-1)/p} \leq \frac{C_{\phi}^2(k-1)}{\lambda p} + 1$. We now write $\zeta_0 = \frac{1}{4n-2}$ and $\alpha_0 = \frac{C_{\phi}^2}{\lambda} = \left(\frac{2C_{\phi}C_{\theta}}{\epsilon}\right)^2$ so that we can epress this as:

$$(1+\zeta_0)^{\frac{k-1}{p}} \le \alpha_0 \frac{k-1}{p} + 1$$

We now use the result that $B(x,\alpha) = \max\{B \mid (1+x)^B \le \alpha B + 1\} \le \frac{1+x}{x} \frac{e}{e-1} \{\log(1+\alpha) + \log(\frac{1+x}{x})\}$. We complete our proof of Proposition 2 through computing this upper bound at (ζ_0, α_0) ,

$$\dim_{E}(\mathcal{F}, \epsilon) \leq p(4n-1)\frac{e}{e-1}\log\left[\left(1+\left(\frac{2C_{\phi}C_{\theta}}{\epsilon}\right)^{2}\right)(4n-1)\right]+1=\tilde{O}(np).$$

C.3 Quadratic functions $f(x) = \phi^T(x)\theta\phi(x)$

Let $\mathcal{F} = \{f \mid f(x) = \phi(x)^T \theta \phi(x) \text{ for } \theta \in \mathbb{R}^{p \times p}, \phi \in \mathbb{R}^p, \|\theta\|_2 \leq C_{\theta}, \|\phi\|_2 \leq C_{\phi}\}$ then for any \mathcal{X} we can say that:

$$\dim_E(\mathcal{F}, \epsilon) \le p(4p-1)\frac{e}{e-1}\log\left[\left(1 + \left(\frac{2pC_{\phi}^2C_{\theta}}{\epsilon}\right)^2\right)(4p-1)\right] + 1 = \tilde{O}(p^2).$$

Where we have simply applied the linear result with $\tilde{\epsilon} = \frac{\epsilon}{pC_{\mathcal{P}}}$. This is valid since if we can identify the linear function $g(x) = \theta \phi(x)$ to within this tolerance then we will certainly know f(x) as well.

C.4 Generalized linear models

Let $g(\cdot)$ be a component-wise independent function on \mathbb{R}^n with derivative in each component bounded $\in [\underline{h}, \overline{h}]$ with $\underline{h} > 0$. Define $r = \frac{\overline{h}}{\underline{h}} > 1$ to be the condition number. If $\mathcal{F} = \{f \mid f(x) = g(\theta\phi(x)) \text{ for } \theta \in \mathbb{R}^{n \times p}, \phi \in \mathbb{R}^p, \|\theta\|_2 \le C_{\theta}, \|\phi\|_2 \le C_{\phi} \}$ then for any \mathcal{X} :

$$\dim_E(\mathcal{F}, \epsilon) \le p\left(r^2(4n-2)+1\right) \frac{e}{e-1} \left(\log\left[\left(r^2(4n-2)+1\right)\left(1+\left(\frac{2C_\theta C_\phi}{\epsilon}\right)^2\right)\right]\right) + 1 = \tilde{O}(r^2np)$$

This proof follows exactly as per the linear case, but first using a simple reduction on the form of equation (15).

$$w_{k} = \sup \left\{ \|(\overline{f} - \underline{f})(x_{k})\|_{2} \mid \|\overline{f} - \underline{f}\|_{2,E_{t}} \leq \epsilon' \right\}$$

$$\leq \max_{\theta_{1},\theta_{2}} \left\{ \|g(\theta_{1}\phi_{k}) - g(\theta_{2}\phi_{k})\|_{2} \mid \sum_{i=1}^{k-1} \|g(\theta_{1}\phi_{i}) - g(\theta_{2}\phi_{i})\|_{2}^{2} \leq \epsilon^{2} \right\}$$

$$\leq \max_{\theta} \left\{ \overline{h} \|\theta\phi_{k}\|_{2} \mid \sum_{i=1}^{k-1} \underline{h}^{2} \|\theta\phi_{i}\|_{2}^{2} \leq \epsilon^{2} \right\}$$

To which we can now apply Lemma 7 with the ϵ rescaled by r. Following the same arguments as for linear functions now completes our proof.

D UCRL-Eluder

For completeness, we explicitly outline an optimistic algorithm which uses the confidence sets in our analysis of PSRL to guarantee similar regret bounds with high probability over all MDP M^* . The algorithm follows the style of UCRL2 [7] so that at the start of the kth episode the algorithm form $\mathcal{M}_k = \{M|P^M \in \mathcal{P}_k, R^M \in \mathcal{R}_k\}$ and then solves for the optimistic policy that attains the highest reward over any M in \mathcal{M}_k .

Algorithm 2

UCRL-Eluder

```
1: Input: Confidence parameter \delta > 0, t=1
 2: for episodes k = 1, 2, ... do
           form confidence sets \mathcal{R}_k(\beta^*(\mathcal{R}, \delta, 1/k^2)) and \mathcal{P}_k(\beta^*(\mathcal{P}, \delta, 1/k^2)) compute \mu_k optimistic policy over \mathcal{M}_k = \{M | P^M \in \mathcal{P}_k, R^M \in \mathcal{R}_k\}
 3:
 4:
 5:
           for timesteps j = 1, ..., \tau do
 6:
                  apply a_t \sim \mu_k(s_t, j)
                  observe r_t and s_{t+1}
 7:
                  advance t = t + 1
 8:
            end for
 9:
10: end for
```

Generally, step 4 of this algorithm with not be computationally tractable even when solving for μ^M is possible for a given M.