

Rare Sound Event Detection Using 1D Convolutional Recurrent Neural Networks

Hyungui Lim¹, Jeongsoo Park^{1,2}, Kyogu Lee², Yoonchang Han¹

¹ Cochlear.ai, Seoul, Korea ² Music and Audio Research Group, Seoul National University, Seoul, Korea {hglim, jspark, ychan}@cochlear.ai, kglee@snu.ac.kr

Introduction

- Rare sound event detection (RSED) task aims to detect certain emergency sounds (baby crying, glass breaking, gunshot) and their onset times precisely.
- We apply **1D CRNN** which is a combination of 1D convolutional neural network (1D ConvNet) and recurrent neural network (RNN) with long short-term memory units (LSTM) for each target event.
- Different input length (timestep) and different set of audio mixtures are applied to combine the results to imporve performance.

Proposed Method

- Log-amplitude mel-spectrogram is extracted from audio signal.
 - window size: 46 ms / hop size: 23 ms / mel-filter banks: 128
- \bullet The mel-spectrogram is divided into a chunk with the size of a timestep (au frames).
 - baby crying: 50, 100 / glass break: 5 / gunshot: 10, 14, 20, 50

- We apply spectral-side 1D ConvNet that enables frame-level investigation by filtering the spectral components of each frame.
- filter size: 32 / # of filters: 128
- Batch Normalization (BN)
- activation : rectified linear unit (ReLU)
- Max-pooling is applied to each filter output to extract representative value.

- 128 features from the ConvNet pass through the RNN and are converted to 128 outputs for each frames.
- We apply unidirectional backward RNN-LSTM.
 - # of layers : 2 / # of units : 128
 - activation: hyperbolic tangent (tanh)

- The time-distributed output layer consists of one sigmoid unit. It represents a probability sequence of the target event during the timestep (τ) .
- Sliding ensemble method combines the probability sequences by sliding the prediction chunk with a hop size of one frame.

Dataset

- Training set
- 4 sets (S₁, S₂, S₃, S₄) of 15,000 synthesized audio mixtures (5,000 per event class)
- Test set
 - 1,500 given audio mixtures (500 per event class)

Ensemble method

Event	Ensemble method			
Baby crying	$\left(p_1^{(100)} + 2p_2^{(50)} + p_3^{(50)} + p_3^{(100)}\right)/5$			
Glass breaking	$\left(p_1^{(5)} + p_3^{(5)}\right)/2$			
Gunshot	$\left(2p_1^{(14)} + p_1^{(50)} + p_3^{(10)} + p_4^{(10)} + p_4^{(20)}\right)/6$			

• p_a^b : probability sequence calculated by the model using a mixture set of S_a and a timestep size of b.

Decision Making

- Presence of event
- maximum probability value > 0.8 (0.5 for 'gunshot')
- Onset time of event
 - first index of the value greater than 0.5 before 50 frames (200 for 'baby crying') from the maximum probability value.

Results

	ER		F-score	
	dev	eval	dev	eval
Baby crying	0.05	0.15	97.6	92.2
Glass breaking	0.01	0.05	99.6	97.6
Gunshot	0.16	0.19	91.6	89.6
Overall	0.07	0.13	96.3	93.1

• The results have achieved the 1st place in the challenge.

Conclusion

- The approach of separating spectral/temporal processing using 1D ConvNet and RNN-LSTM has shown promising results.
- There are three main factors that improve performance.
 - 1. A large amount of synthesized audio data.
 - 2. Frame-wise detection which is effective in finding the precise onset time.
 - 3. The internal/external ensemble methods which reduce a lot of noise.