第1章 半导体二极管及其应用电路

本章重点内容

- PN结及其单向导电特性
- 半导体二极管的伏安特性曲线
- 二极管在实际中的应用

1.1 **PN结** 1.1.1 本征半导体

(a) 硅和锗原子的简化结构模型

(b)晶体的共价键结构及电子空穴对的产生

图 1.1硅、锗原子结构模型及共价键结构示意图

1.1.2 杂质半导体

- 1.N型半导体
- 2.P型半导体

图1.2 N型半导体的结构

图1.3 P型半导体的结构

3. PN结的形成

图1.4 PN结的形成

4. PN结的单向导电特性

(1) PN结的正向导通特性

(a) 正向偏置

(b) 反向偏置

图1.5 PN结的导电特性

(2) PN结的反向截止特性

1.2 半导体二极管

1.2.1 半导体二极管的结构及其在电路中的符号

(a) 结构

(b) 电路符号 图1.6 二极管结构、符号及外形

1.2.2 半导体二极管的伏安特性

图1.7 二极管伏安特性曲线

- 1.正向特性
- 2.反向特性
- 3.反向击穿特性
- 4.温度对特性的影响
- 1.2.3 半导体二极管的主要参数
- 1.最大整流电流 I_{F}
- 2. 最大反向工作电压 U_{RM}
 - 3. 反向饱和电流 I_R
- 4. 二极管的直流电阻R
- 5. 最高工作频率 f_{M}
- 1.2.4 半导体二极管的命名及分类
- 1. 半导体二极管的命名方法

图1.8 半导体器件的型号组成

- 2. 半导体二极管的分类
- 1.2.5 二极管的判别及使用注意事项
- 1. 二极管的判别(用万用表进行检测)
- (1) 二极管正、负极性及好坏的判断
 - (2) 二极管好坏的判别
- (3) 硅二极管和锗二极管的判断
 - (4)普通二极管和稳压管的判别

2. 二极管使用注意事项

*1.3 几种常用的特殊二极管

- 1.3.1 稳压二极管
- 1.稳压二极管的工作特性

(a) 伏安特性 (b) 符号 图1.9 稳压二极管的特性曲线和符号

2.稳压管的主要参数

1.3.2 发光二极管

- 1.普通发光二极管
- 2. 红外线发光二极管
 - 3. 激光二极管

1.1.3 光电二极管

1.3.4 变容二极管

(a) 压控特性曲线 (b) 电路符号 图1.12 变容二极管的压控特性曲线和电路符号

1.4 半导体二极管的应用

1.4.1 整流

1.4.2 钳位

图1.13 二极管钳位电路

1.4.3 限幅

(a)限幅电路

(b)波形 图1.14 二极管限幅电路及波形

4. 电路中的元件保护

图1.15 二极管保护电路

第2章 半导体三极管及其放大电路

本章重点内容

- 晶体三极管的放大原理、输入特性曲线、输出特性曲线
- 基本放大电路的工作原理及放大电路的三种基本偏置方式
- 利用估算法求静态工作点
- 微变等效电路及其分析方法
- 三种基本放大电路的性能、特点

2.1 半导体三极管

2.1.1 三极管的结构及分类

1.三极管的内部结构及其在电路中的符号

(a) NPN (b) PNP 图2.1 三极管的结构示意图及其在电路中的符号

2. 三极管的分类

2.1.2 三极管的放大作用

. 三极管放大时必须的内部条件

- 2. 三极管放大时必须的外部条件
- 3. 三极管内部载流子的传输过程
 - (1)发射区向基区发射电子的过程
 - (2) 电子在基区的扩散和复合过程
 - (3)电子被集电区收集的过程

图2.2 三极管内部载流子的运动情况

4. 三极管电流放大作用的进一步理解

表2.1 $I_{\rm B}$ 、 $I_{\rm C}$ 、 $I_{\rm E}$ 的实验数据

$I_{\rm B}/{\rm mA}$	-0.004	0	0.01	0.02	0.03	0.04	0.05
$I_{\rm C}/{\rm mA}$	0.004	0.01	1.09	1.98	3.07	4.06	5.05
$I_{\rm E}/{ m mA}$	0	0.01	1.10	2.00	3.10	4.10	5.10

2.1.3 三极管的特性曲线

1. 输入特性曲线

- 2. 输出特性曲线
- (1)放大区
 - (2) 饱和区
 - (3) 截止区
- 2.1.4 三极管正常工作时的主要特点
- 1.三极管工作于放大状态的条件及特点
 - 2. 三极管工作于饱和状态的条件及特点
 - 3. 三极管工作于截止状态时的条件及特点
- ~2.1.5 特殊晶体管简介
- 1. 光电三极管

(a)等效电路 (b)电路符号 (c)LED+光电三极管 (d)LED+光电池 图2.4 光电三极管的等效电路与电路符号 图2.5 光电耦合器电路符号

2. 光电耦合器

- 3. 晶闸管
- (1) 单向晶闸管
- A. 内部结构

(b)

图2.6 单向晶闸管外形及电路符号

(a) 内部结构示意图

(a)

(b) 分解图

(c)等效电路

(c)

图2.7 晶闸管内部结构及其等效电路

- A. 判定晶闸管的电极
- B. 检测量晶闸管的导通情况
- (2) 双向晶闸管 双向晶闸管的结构

(a) (b) 图2.8 双向晶闸管外形及电路符号

双向晶闸管的测量

2.1.6 三极管的主要参数

- 1. 电流放大系数
- 2. 反向饱和电流 I_{CBO}
- 3. 穿透电流 I_{CEO}
- $oldsymbol{I}$. 集电极最大允许电流 $oldsymbol{I}_{ ext{CM}}$
- . 集电极、发射极间的击穿电压 $U_{
 m CEO}$
- 6. 集电极最大耗散功率 P_{CM} 。

- 2.1.7 三极管的检测与代换
- 1. 国产三极管的命名方法简介
- . 三极管三个电极(管脚)的估测

- 3. 南韩、日本三极管介绍。
- 4.彩电和彩显行输出管简介
- 5. 三极管好坏的判别
- . 三极管的代换原则

2.2 三极管基本放大电路及其分析方法

- 2.2.1 放大的基本概念
- .2.2 三极管在实际应用中的三种放大电路形式
- 2.2.3 放大电路的组成
- 1. 基本放大电路的组成原则
- 2. 放大电路的组成及各元件的作用
- 2.2.4 放大电路的两种状态——静态和动态

) 直流通路

(b)交流通路

图2.13 直流、交流通路

2.2.5 基本放大电路的工作过程

图2.14 基本放大电路的工作波形

2.3. 放大电路常用的直流偏置电路

- 2.3.1 固定式直流偏置电路
- 2.3.2 分压式电流负反馈偏置电路

图2.15 分压式电流反馈式偏置电路

- 1. 工作点稳定过程
- (1)由基极电阻 R_1 、 R_2 分压而得到固定的基极电位 U_B 。设图2.15中流过 R_1 、 R_2 的电流分别为 I_1 、 I_2 ,则
- (2)利用发射极电阻R_e的电流负反馈作用稳定静态工作点

2. 电容C_e的作用

2.3.3 恒流源偏置电路

(a) 威尔逊恒流源

(b) 小电流恒流源

(c) 改变射极电阻比获得不同 输出电流的恒流源

图2.17 改进型恒流源电路

2.4 放大电路的三种基本分析方法

2.4.1静态工作点估算法

- (1) 画出放大电路的直流通路
- (2)由直流通路列出输入回路和输出回路方程,代入方程,分别求出 I_{BQ} 、 I_{CQ} 、 U_{CEO} 。

例1 估算图2.18所示放大电路的静态工作点,设 $V_{\rm CC}$ =12V, $R_{\rm c}$ =3k , $R_{\rm B}$ =280k =50。

2.4.2 放大电路的图解分析法

1.用图解法确定静态工作点的步骤:

- (1) E_{c} 、 u_{ce} 平面坐标上作出晶体管的输出特性曲线。
- (2)根据直流通路列出放大电路直流输出回路的电压方程式: $U_{\rm CE}=V_{\rm CC}$ $I_{\rm C}\cdot R_{\rm C}$
- (3)根据电压方程式,在输出特性曲线所在坐标平面上作直流负载线。因为两点可决定一条直线,所以分别取($I_{\rm C}=0$, $U_{\rm CE}=V_{\rm CC}$)和($U_{\rm CE}=0$, $I_{\rm C}=E_{\rm C}/R_{\rm c}$)两点,这两点也就是横轴和纵轴的截距,连接两点,便得到直流负载线。
 - (4) 根据直流通路中的输入回路方程求出 I_{BO} 。
- (5)找出 $I_{\rm B}=I_{\rm BQ}$ 这一条输出特性曲线,该曲线与直流负载线的交点即为Q点(静态工作点),该Q点直观地反映了静态工作点($I_{\rm BQ}$ 、 $I_{\rm CQ}$ 、 $U_{\rm CQ}$)的三个值。即为所求静态工作点的值。

图2.19 例2电路图

2. 电路参数对静态工作点的影响

- (1) R_b 对Q点的影响 (2) R_c 对Q点的影响

图2.20 电路参数对Q点的影响

(3) V_{CC} 对Q点的影响

4.3 放大电路的微变等效电路分析法

- . 三极管的微变等效电路 (三极管输入端be间和输出端ce间的微变等效电路)
- 1)三极管输入端(be)间的微变等效电路

图2.21 三极管的微变等效电路

- (2)三极管输出端(ce)间的微变等效电路
- 2. 放大电路的微变等效电路

(a)

- 第一,根据放大电路画出交流通路。
- 用三极管的微变等效电路代替交流通路中的三极管,画出放大电路的微变等效电路。 路。

(a)放大电路

(b)交流通路

(c) 微变等效电路

图2.22 放大电路的微变等效电路

2.5 放大电路的动态性能指标及分析

- 2.5.1 放大电路的动态性能指标
- 1.放大倍数
- 2.输入电阻 r_i

图2.23 放大电路的方框图

- 3.输出电阻 r_o
- 2.5.2 放大电路性能指标估算的方法、步骤
- 1. 在放大电路静态分析的基础上,根据静态工作点的数值及相关公式,求出r
- 2. 画出放大电路的微变等效电路。
- 3. 根据微变等效电路及 A_{u} 、 r_{i} 、 r_{o} 的定义式,分别求出 A_{u} 、 r_{i} 、 r_{o} 。
- 2.5.3 共射放大电路基本动态参数的估算
- 1. 电压放大倍数
- 2.源电压放大倍数 A_{us}

输入电阻 r_i

- ,输出电阻 $r_{
 m o}$
 - 2.5.4 共集电极、共基极放大电路
- . 共集电极放大电路

(a) 典型电路

图 2.25 共集电极电路

(b) 交流通路

- (1)静态工作点的估算
- (2) 动态分析
- 2. 共基极电路

共集电极放大电路的微变等效电路 图2.26

(a) 电路图

共基放大电路 图2.27

(b) 交流通路

(1)静态分析

2) 动态分析

图2.28 共基极微变等效电路

电压放大倍数 A_u 输入电阻 r_i 输出电阻 r_o

2.6 三种基本放大电路的比较

*2.7 多级放大电路

2.7.1多级放大电路的组成

图2.29 多级放大电路的结构框图

.7.2 多级放大电路的耦合方式

- (1)保证信号在级与级之间能够顺利地传输;
- (2)耦合后,多级放大电路的性能必须满足实际的要求。 为了满耦合后,各级电路仍具有合适的静态工作点

7.3 阻容耦合

图2.30 两级阻容耦合放大电路

- (1) 优点:因电容具有"隔直"作用,所以各级电路的静态工作点相互独立,互不影响。这给放大电路的分析、设计和调试带来了很大的方便。此外,还具有体积小、重量轻等优点。
- (2)缺点:因电容对交流信号具有一定的容抗,在信号传输过程中,会受到一定的衰减。尤其对于变化缓慢的信号容抗很大,不便于传输。此外,在集成电路中,制造大容量的电容很困难,所以这种耦合方式下的多级放大电路不便于集成

2.7.4 直接耦合

图2.31 直接耦合放大电路

- 1. 优点:既可以放大交流信号,也可以放大变化非常缓慢(直流)的信号;电 路简单,便于集成,所以集成电路中多采用这种耦合方式。
- 2. 缺点:存在着各级静态工作点相互牵制和零点漂移这两个问题。(第5章将讨 论零点漂移问题。

2.7.5 变压器耦合

- (1) 优点:因变压器不能传输直流信号,只能传输交流信号和进行阻抗变换, 所以,各级电路的静态工作点相互独立,互不影响。改变变压器的匝数比,容易 实现阻抗变换,因而容易获得较大的输出功率。
 - (2)缺点:变压器体积大而重,不便于集成。同时频率特性差,也不能传送直 流和变化非常缓慢的信号。

图2.32 变压器耦合放大电路

2.7.6 组合放大电路

1. 共发 - 共基组合放大电路

图2.33 共发 - 共基组合放大器的交流通路

图2.34 共集 - 共发组合放大器的交流通路

- 2. 共集-共发组合放大电路
 - (1) 电压放大倍数
 - (2)输入电阻
 - (3)输出电阻

思考题

- 1、 基本放大电路由哪些必不可少的部分组成?各元件有什么作用?
- 2、 试画出PNP型三极管的基本放大电路,并注明电源的实际极性,以及各电极实际电流方向。
 - 3、 三极管具有放大作用的内部条件和外部条件各是什么?
- 4、 为什么说三极管放大作用的本质是电流控制作用?如何用三极管的电流分配关系来说明它的控制作用?
 - 5、 试在特性曲线上指出三极管的三个工作区:放大区、截止区、饱和区。
 - 6、 三极管发射极与集电极对调使用时,放大作用将如何?
- 7、 在哪些情况下,工作点沿直流负载线移动?在哪些情况下,工作点沿交流负载线移动?实际上工作点有没有可能到达交流负载线的上顶端和下顶端?为什么?

试分析电流负反馈偏置电路中,射极电阻R_e和它的并联电容C_e的作用原理。

第3章 场效应管及其放大电路

本章重点:

- 结型、绝缘栅型场效应管的工作原理、输出特性、转移特性及主要参数
- 共源、共漏极放大电路的工作原理 场效应管的偏置方式及静态工作点的求法

3.1 概述

- 3.1.1 场效应管的特点
- 3.1.2 场效应管的分类
 - 3.1.3 场效应管与晶体三极管的比较

3.2场效应管

- 3.2.1 结型场效应管
- 1 结构

图3.1 结型场效应管的结构示意图和符号

2. 结型场效应管的工作原理

(a)
$$u_{GS}$$
=0, u_{DS} =0时的情况

(b) u_{GS} = $0,u_{DS}$ < $|V_P|$ 时的情况

(c) $u_{GS} = 0, u_{DS} = |V_P|$ 时的情况 图3.2

(d) u_{GS} =0, u_{DS} >| V_{P} |时的情况 改变u_{DS}时结型场效应导电沟道的变化

(a) U_{Gs} =0时 (b) u_{GS} V_{P} 时沟道被夹断

图3.3

3. 结型场效应管的特性曲线

(1)转移特性

图3.4 N沟道结型场效应管的转 移特性曲线

(2)输出特性

图3.5 N沟道结型场效应管输出特性曲线

可变电阻区:当漏源电压 $u_{\rm DS}$ 很小时,场效应管工作于该区。此时,导电沟道畅通,场效应管的漏源之间相当于一个电阻一。在栅、源电压 $u_{\rm GS}$ 一定时,沟道电阻也一定, $i_{\rm D}$ 随 $u_{\rm GS}$ 增大而线性增大。但当栅源电压变化时,特性曲线的斜率也随之发生变化。可以看出,栅源电压 $u_{\rm DS}$ 无关,我们称这个区域为恒流区,也称为放大区。在恒流区, $i_{\rm D}$ 主要由栅源电压 $u_{\rm GS}$ 决定。

恒流区:随着 $u_{\rm DS}$ 增大到一定程度, $i_{\rm D}$ 的增加变慢,以后 $i_{\rm D}$ 基本恒定,而与漏源电压 $u_{\rm DS}$ 无关,我们称这个区域为恒流区,也称为放大区。在恒流区, $i_{\rm D}$ 主要由栅源电压 $u_{\rm CS}$ 决定。

击穿区:如果继续增大 u_{DS} 到一定值后,漏、源极之间会发生击穿,漏极电流 i_{D} 急剧上升,若不加以限制,管子就会损坏。

夹断区:当 u_{GS} 负值增加到夹断电压 u_{GS} (off) 后, i_{D} 0,场效应管截止。

3.2.2 绝缘栅型场效应管

1. 增强型绝缘栅场效应管的结构及工作原理

(1) 结构及符号

图3.6 增强型MOS管结构及符号图

(3) 特性曲线

衬底引

(a) 转移特性

(b)输出特性

图3.8 N沟道增强型场效应管特性曲线

3.2.3 耗尽型绝缘栅场效应管的结构及工作原理

(a) N沟道结构图

(b)N沟道符号

(c)P沟道符号

图3.9 耗尽型MOS管结构及符号图

(a)转移特性

(b)输出特性

图3.10 N沟道耗尽型场效应管特性曲线

3.3 场效应管的主要参数

- 1、 夹断电压 $U_{GS(off)}$:实质上是使 $i_D = 0$ 时所需的 u_{GS} 值。
- 2、 饱和漏电流 I_{DSS}

 $\epsilon u_{\rm GS}$ = 0的情况下,当 $u_{\rm DS}$ $>|V_{\rm P}|$ 时的漏极电流称为饱和漏电流,通常令 $u_{\rm DS}$ =10V, $u_{\rm GS}$ = 0V时测出的 $i_{\rm D}$ 就是 $I_{\rm DSS}$ 。

- 3 低频互导(跨导) $g_{\rm m}$
- 4 最大耗散功率 $P_{\rm DM}$

3.4 场效应管的检测及使用注意事项

3.4.1 场效应管的检测

- 1. 管脚的判别
- 2.质量判定

3.4.2 场效应管使用注意事项

- 1、 MOS管栅、源极之间的电阻很高,使得栅极的感应电荷不易泄放,因极间电容很小,帮会造成电压过高使绝缘层击穿。因此,保存MOS管应使三个电极短接,避免栅极悬空。焊接时,电烙铁的外壳应良好地接地,或烧热电烙铁后切断电源再焊。
- 2、 有些场效应晶体管将衬底引出,故有4个管脚,这种管子漏极与源极可互换使用。但有些场效应晶体管在内部已将衬底与源极接在一起,只引出3个电极,这种管子的漏极与源极不能互换。
 - 3、 使用场效应管时各极必须加正确的工作电压。
- 4、 在使用场效应管时,要注意漏、源电压、漏源电流及耗散功率等,不要超过规定的最大允许值。

3.5 场效应管放大电路

3.5.1 场效应管的直流偏置电路及静态分析

1.直流偏置电路

(1) 自偏压电路

(a) 自偏压电路

(b)分压式自偏压电路

图3.11 场效应管的偏压电路

(2) 分压式自偏压电路

2. 静态工作点的确定

- (1) 在输出特性上作直流负载线
- (2)作负载转移特性
- (3) 作源极负载线
- (4)确定静态工作点Q
- (5) 转移特性和输出特性上求出Q点所对应的电压电流值: $u_{\rm GS}$ = -0.7V , $i_{\rm D}$ = 0.37mA , $u_{\rm DS}$ = 9V。

*3.5.2 场效应管放大器的微变等效电路分析法

1. 场效应管的等效电路

图3.12 场效应管微变等效电路

2、应用微变等效电路法分析场效应管放大电路

(a) 电路图

图3.13 共源极电路及其微变等效电路

- (1) 大倍数电压放
 - 2 入电阻
- 3 输出电阻

3. 三种基本放大电路的性能比较

思考题与练习题

思考题

- 1、考虑P沟道结型场效应管对电源极性的要求,试画出由这种类型管子组成的共源放大电路。
- 2、增强型MOS管能否使用自给栅偏压偏置电路来设置静态工作点?
- 3、试画出自给栅偏压共源放大电路的微变等效电路,并写出 $A_{\rm u}$ 、 $r_{\rm i}$ 、 $r_{\rm o}$ 的表达式
- 4、试在具有四象限的直角坐标上分别画出各种类型场效应管(包括N沟道、P沟道MOS增强型和耗尽型,JFET P沟道、N沟道耗尽型)的转移特性示意图,并标明各自的开启电压或夹断电压。
- 5、增强型场效应管能否用自偏压的方法来设置静态工作点,试说明理由。

第4章 负反馈放大电路

本章重点:

- 反馈极性、类型的判断
- 负反馈对电路性能的影响
- 深度负反馈电路的估算

4.1 反馈的定义及概念

(a)射极输出器

(b)静态工作点稳定电路

图4.1 两种放大电路中的反馈

4.2 负反馈放大电路的基本关系式

图4.2 反馈放大电路方框图

4.3 反馈的分类与判别

4.3.1 反馈的分类

4.3.2 正反馈与负反馈的判别

图4.3 反馈极性的判别

4.3.3 交流反馈与直流反馈的判别

图4.4 交流反馈与直流反馈

4.3.4 电压反馈与电流反馈的判别

(a) 电流反馈

(b)电压反馈

图4.5 电压反馈与电流反馈

4.3.5 串联反馈与并联反馈的判别

4.4 负反馈的四种组态

4.4.1 电压串联负反馈及其判别

(a)电路图

图4.6 电压串联负反馈放大电路

.4.2 电流串联负反馈及其判别

(a) 电路图

(b) 方框图

(c)由集成运放组成的电流串 联负反馈电路

图4.7 电流串联负反馈放大电路

.4.3 电压并联负反馈及其判别

(a)电路图

(b)由集成运放组成的电压并联负反馈电路

图4.8 电压并联负反馈放大电路

4.4 电流并联负反馈及其判别

a 电路图

(b) 方框图

(c)由集成运放组成的电流并联负 反馈电路

图4.9 电流并联负反馈放大电路

4.5 负反馈对放大电路性能的影响

4.5.1 提高放大倍数的稳定性

4.5.2 减小非线性失真和抑制噪声及干扰

图4.10 负反馈减小非线性失真

4.5.3 扩展通频带

- 4.5.4 负反馈对输入电阻的影响
- 1. 使用串联负反馈可提高放大电路的输入电阻

4.12 并联负反馈方框图

2. 使用并联负反馈可减小放大电路的输入电阻

负反馈对放大电路输出电阻的影响 4.5.5

1. 使用电压负反馈可减小放大电路的输出电阻

图4.13 电压负反馈方框图

2. 使用电流负反馈可提高放大电路的输出电阻

图4.14 电流负反馈方框图

综上所述:

- (1) 放大电路若引入的是串联负反馈,则可以提高放大电路的输入电阻,若引入的是并联负反馈则使输入电阻降低。其提高或降低的程度取决于反馈深度(1+AF)。
- (2)放大电路若引入的是电压负反馈,则可减小放大电路的输出电阻,若引入的是电流负反馈则使输出电阻增加,其减小或增加的程度取决于反馈深度(1+AF)。

以上分析了放大电路引入负反馈后对性能的改善及影响。为了改善放大电路的 某些性能应如何引入负反馈呢?一般是:

- (1)要稳定直流量(静态工作点),应该引入直流负反馈。
- (2)要改善交流性能,应引入交流负反馈。
- (3)要稳定输出电压,应引入电压负反馈;要稳定输出电流,应引入电流负反馈。
- (4)要提高输入电阻,应引入串联负反馈;要减小输入电阻,应引入并联负反馈。

性能的改善或改变都与反馈深度(1 + AF)有关,且都是以牺牲放大倍数为代价。

4.6 深度负反馈放大电路的分析

4.6.1 深度负反馈的特点

4.6.2 深度负反馈的估算

图4.15 (a) 电压串联负反馈电路的计算 (b) 电流串联负反馈电路的计算

第5章 集成运算放大器

本章重点:

- 直接耦合放大电路及存在的主要问题
- 典型差分放大电路的工作原理
- 理想运放及"虚短"、"虚断"、"虚地"的基本概念
- 运放的两种工作状态及特点
- 运放的分析计算及在实际中的应用

5.1 直接耦合放大电路中存在的主要问题

- 5.1.1 前后级之间的直流工作状态互相影响
- 5.1.2 零点漂移
- 5.1.3 减小零点漂的办法
 - (1) 1 选用高质量的硅管
 - 2 利用二极管或热敏元件补偿

二极管补偿电路 图5-2

图5-3 利用热敏电阻R_t补偿温漂的电路

(1) 3 采用差分式放大电路

5.2 差分放大电路

5.2.1 基本差分放大电路

图5.4 基本 差分放大电路

5.2.2 静态分析

5.2.3 信号放大原理及电压放大倍数

1. 共模信号输入

图5.5 共模信号作用于差分电路

2. 差模信号输入

图5.6 任意信号输入方式下的差分电路任意分放大器

- 3. 任意信号输入
- 5.2.4 差分放大器的其它指标
- 1. 共模抑制比
- 2. 差模输入电阻
- 3. 差模输出电阻
 - 4. 共模输出电阻

5.3 常见的几种改进型差分电路

- 5.3.1 长尾式差分放大电路
- 1. 电路中接入Re后对输入差模信号的放大作用完全无影响。

图5.7 长尾式差分电路

图5.8 对差模输入信号的等效电路

2. Re对共模输入信号的放大有抑制作用

图5.9 对共模输入信号的等效电路

5.3.2 带恒流源的差分电路

1. 恒流源特性

图5.10 恒流源的电流、电压特性

2. 恒流源差分放大电路

图5.11 带恒流源的差分电路

3. 差分放大电路四种接法的比较

5.4 集成运算放大器

5.4.1 集成运算放大器的分类

- 1.通用型集成运算放大器
 - 2. 专用型集成运算放大器
 - (1) 低功耗或微功耗集成运算放大器:电源电压±15V时,功耗小于6mW或µW级。
 - (2) 高速集成运算放大器。
 - (3) 宽带集成运算放大器:一般带宽应大于 $10MH_Z$ 。
 - (4) 高精度集成运算放大器:特点是高增益、高共模抑制比、低偏流、低温漂、低噪声等。
 - (5) 高电压集成运算放大器:正常输出电压U、大于 $\pm 22V$ 。
 - (6) 功率型集成运算放大器。
 - (7) 高输入阻抗集成运算放大器。
 - (8) 电流型集成运算放大器。
 - (9) 跨导型集成运算放大器。
 - (10)程控型集成运算放大器。
 - (11)低噪声型集成运算放大器。
 - (12)集成电压跟随器。

5.4.2 集成运算放大器的组成

1.组成

图5.12 集成运算放大器内部电路组成框图

- 1 输入级
- 2 中间级
- 3 输出级
- 4 偏置电路

2. 典型通用集成运算放大器F007内电路简介

(1) F007的内电路

3. 集成运算放大器的识读

4. 集成运算放大器在电路中的符号

5.4.3 集成运算放大器的传输特性

1. 传输特性

(a) 实际运放的传输特性

(b) 理想运放的传输特性

图5.15 集成运放的传输特性

2.线性区的特点

图5.16 集成运放线性工作

3. 非线性区(饱和区)的特点

(a) 虚断、虚短

(b)虚断、虚地

图5.17 集成运放工作在线性区时的等效电路

图5.18 集成运放工作在非线性区时的两种情况

5.5 理想集成运算放大器与实际集成运算放大器

- 5.5.1 理想运算放大器及其性能指标
- 5.5.2 理想运放与实际运放
- 5.5.3 集成运放的三种基本输入形式
- 1. 反相输入

2. 同相输入

3. 差模输入

图5.22 差动放大组态

5.6 集成运算放大器在实际中的应用

5.6.1 集成运放在信号运算方面的应用

1.加法运算电路

图5.23 反相加法运算电路

2.减法运算电路

- 1 电路组成
- 2 电路分析及减法运算条件

图5.24 差动输入式减法运算电路

3. 微分电路

(a)

图5.25 微分运算电路

5.6.2 集成运放在信号处理方面的应用

- 1.立体声消音电路
- . 高档音响设备中的十五段优质均衡器

图5.27 立体声消音电路

图5.28 十五段优质均衡器

图5.30 R4的滑动触头移到最左边

(3) 当 R_4 的滑动头移到最右边时,其电路如图5.31(a) 所示

图5.31 R4的滑动触头移到最右边

3. 实时监控报警器

图5.32 监控报警器

5.6.3 可编程增益放大器 +15V A \overline{u}_{o} DG201 $u_{\rm o}$ -15V $A_{S1} = 1$ A_{S1} R_1 $A_{S2} = 10$ A_{S2} 900 S_3 R_2 $A_{S3} = 100$

+5V

-1**9**V

 Y_0 Y_1 Y_2 Y_3

A B

图5.33 可编程增益放大器的基本电路

 R_3

 R_4

图34 码控四段转换可编程增益放大器

л_{S4}=1000

第6章 信号产生电路

本章重点内容

- 产生正弦振荡的条件
- LC正弦波振荡电路的工作原理
- LC正弦波振荡电路的工作判别
- 石英晶体振荡电路及其工作原理

6.1 正弦波振荡电路

- 6.1.1 自激式正弦波振荡电路与反馈放大器的异同
- 1.相同点:均引入反馈。
- 2.不同点:
- (1) 自激式正弦波振荡电路用来产生稳定的输出信号;反馈放大电路用来放大信号,工作任务不同
- (2)自激式正弦波振荡电路没有外部信号输入;反馈放大电路有待放大的信号输入。
- (3)正弦波振荡电路中引入的是正反馈;反馈放大电路中一般引入负反馈,以改善性能。
- (4)正弦波振荡电路的振荡也不同于负反馈放大电路的自激振荡。前者是依靠外部接入的正反馈网络产生振荡;后者是放大电路的附加相移使负反馈变成正反馈而产生振荡

6.1.2 自激式振荡电路的组成及产生和稳定振幅的条件

- 1. 放大环节: 放大电路
- 2. 正反馈网络:供给维持振荡的能量 , 必需满足下列条件:
- (1)振幅平衡条件:AF 1
- (2)相位平衡条件: $_{A} + _{B} = 2n$ (n=1、2、3......)

稳幅环节: 产生稳定的信号输出 , 条件;

选频网络:选出振荡器产生维持振荡所需要的信号频率。

$oldsymbol{arphi}$ | $A\stackrel{.}{F}$ |= 1

1. 电路的组成

6.2 LC振荡电路

图6.1 变压器反馈式正弦波振荡电路

2.振荡条件

- (1)相位平衡条件:为满足相位平衡条件,变压器的初、次级之间同名端必须正确连接。如图6.1所示,设某一瞬间基极对地信号电压为正极性"+",由于共射电路的倒相作用,集电极的瞬时极性"-",即_A = 180°。电当频率 $_0$ 时:LC回路的谐振阻抗是纯电阻性,由图中 L_1 及 L_2 的同名端可知,反馈信号与输出电压极性相反,即。于是 $_\Delta$ + $_B$ = 360°,保证了电路的正反馈,满足振荡的相位条件。
- 当频率 $_0$ 时:LC回路的阻抗不是纯电阻性,而是感性或容性阻抗,此时LC回路对信号会产生附加相移,造成,那么 $_A$ + $_B$ 360°,不能满足相位平衡条件,电路也不可能产生振荡。由此可见,LC振荡电路只有在 $_0$ 这个频率上,才有可能产生振荡。
- (2) 振幅条件:为了满足振幅平衡条件AF 1,对晶体管的 值有一定要求,一般只要 值较大,就能满足振幅平衡条件,反馈线圈匝数越多,耦合越强,电路越容易起振。

ॢ3.电路振荡频率

ℊౣౣౢ∮. 电路优缺点

- ℊ₤₤₯,易起振,输出电压较大。由于采用变压器耦合,易满足阻抗匹配的要求。
- (2)调频方便,一般在LC回路中采用接入可变电容器的方法来实现,调频范围较宽,工作频率通常在几兆赫左右
- (3)输出波形不理想。由于反馈电压取自电感两端,它对高次谐波的阻抗大,反馈也强,因此在输出波形中含有较多高次谐波成份。

6.2.2 电感三点式LC振荡器

1. 电路的组成

2. 振荡条件分析

- (1)相位条件:设基极瞬间极性为正,由于放大器的倒相作用,集电极电位为负,则电感的 端为负, 端为公共端, 端为正,各瞬时极性如图6.2所示。反馈电压由 端引至三极管的基极,故为正反馈,满足相位条件。
- (2)幅度条件:从图6.2可以看出,反馈电压取自电压 L_2 的两端,并通过 C_1 的耦合后加到晶体管的b、e间的,所以改变线圈抽头的位置,即改变 L_2 的大小,就可以调节反馈电压的大小,当满足 |AF|>1时,电路便可起振。

图6.2 电感三点式LC振荡电路

3.振荡频率

4. 电路的优缺点

- (1) 由于 L_1 和 L_2 之间的耦合很紧,故电路易起振,输出幅度大。
- (2)调频方便,电容C若采用可变电容器,就能获得较大的频率调节范围。
- (3)由于反馈电压取自电压 L_2 的两端,它对高次谐波的阻抗大,反馈也强,因此在输出波形中含有较多的高次谐波成份,输出波形不理想。

6.2.3 电容三点式振荡电路

图6.3 电容三点式振荡器

- 1.相位条件
- 2. 幅度条件
- 3.振荡频率
- 4. 电路的优、缺点
 - (1)容易起振,振荡频率高,可达 $100M_{HZ}$ 以上。
- (2)输出波形较好。这是由于 C_2 对高次谐波的阻抗小,反馈电路中的谐波成份少,故振荡波形较好。
- (3)调节频率不方便。因为 C_1 、 C_2 的大小既与振荡频率有关,也与反馈量有关,改变 C_1 (或 C_2)时会影响反馈系数,从而影响反馈电压的大小,造成工作性能不稳定。

6.2.4 串联改进型电容三点式LC振荡电路

图6.4 克拉泼振荡电路

6.3 石英晶体振荡电路

6.3.1 石英晶体的谐振特性与等效 电路

图6.5 石英晶体的符号和等效电路

图6.6 石英晶体的电抗—频率特性

6.3.2 石英晶体振荡电路

1. 并联型石英晶体振荡电路

图6.7 并联型石英晶体正弦波振荡电路

2. 串联型石英晶体振荡电路

*6.4 RC正弦波振荡电路

6.4.1 RC串并联网络的选频特性

(a) R -C串并联电路 (b) 低频等效电路 (c) 高频等效电路

图6.9 RC串并联网络及其高低频等效电路

6.4.2 RC串并联网络的频率特性

6.4.4 RC移相式振荡电路

图6.12 RC超前型移相式 振荡电路

*6.5 非正弦波产生电路

6.5.1 矩形波产生电路

1. 工作原理

(a) 电路 (b) 波形

图6.13 矩形波发生电路及其波形

2.振荡频率及其调节

6.5.2 三角波发生器

(a) 电路图

(b) 波形图 图6.14 三角波发生器

图6.15 频率可调的三角波发生器

5.3 锯齿波发生器

图6.16 锯齿波发生器

第7章 功率放大电路

本章重点内容

- 功率放大电路的特点
- 互补对称推挽功率放大电路及其工作原理
- 集成功率放大电路的原理及应用

7.1 功率放大电路概述

7.1.1功率放大电路的特点

- 1. 要求输出足够大的功率
- 2. 效率要高
- 3. 非线性失真要小
- 4.要考虑功率管的散热和保护问题
- 5. 在分析方法上,通常采用图解法

7.1.2 功率放大电路的三种工作状态

- 1. 甲类放大状态
- 2. 甲乙类放大状态
- 3. 乙类放大状态

图7.2 功放电路的三种工作状态

(a) 甲类放大

(b) 甲乙类放大 (c) 乙类放大

7.2互补对称功率放大电路

7.2.1 OCL互补对称功率放大电路

1.乙类OCL互补对称电路

- (a) 基本互补对称电路
- (b)由NPN管组成的射极输出器
- (c) 由PNP管组成的射极输出器

图7.3 两射极输出器组成的基本互补对称电路

2. 乙类OCL互补对称电路主要参数估算

(1)输出功率及效率

图7.4 乙类OCL互补对称电路图解分析

(2)管耗

(3)功率管参数的选择

3. 甲乙类OCL互补对称电路

图7.5 交越失真

a)用二极管提供偏置

(b)用 U_{BE} 倍增电路提供偏置图7.6 甲乙类互补对称电路

7.2.2 OTL互补对称功率放大电路

1. 基本电路

图7.7 采用一个电源的互补对称电路

2.带自举的OTL电路

图7.8 带自举的单电源互补对称电路

7.2.3采用复合管的准互补对称功率放大电路

1.复合管

2.复合管组成的准互补对称功放电路

图7.10 准互补对称功放电路

7.2.4实际功率放大电路分析

1. OTL音频功率放大电路

(1) 电路组成

7.11 OTL音频功率放大电路

图7.12 高保真OCL功率放大电路

(2)主要技术指标的估算

7.3 集成功率放大电路

7.3.1集成功率放大电路分析

1. LM386内部电路

图7.13 LM386内部电路原理图

2. LM386的电压放大倍数

3. LM386的外形和引脚图

图7.14 LM386的外形和引脚的排列

7.3.2集成功率放大电路的主要性能指标

3.3集成功率放大电路的应用

集成OTL电路的应用

图7.15 LM386外接元件最少的用法

图7.16 LM386电压增益最大的用法

图7.17 LM386的一般用法

2.集成OCL电路的应用

图7.18 TDA1521的基本用法

7.4 功率管的安全使用和保护

7.4.1功放管的二次击穿问题

7.4.2功放管的散热问题

图7.20 3AD11-17功率管的PCM-Ta曲线

7.4.3功放管的保护措施

1.过热保护

2.过压和过流保护

图7.22 由 $I_{\rm CM}$ 、 $P_{\rm CM}$ 、 $U_{\rm (BR)\,CEO}$ 和二次击穿临界曲线限制的安全工作区

图7.23 功放管的保护电路

第8章 直流稳压电源

本章重点内容

- 整流电路的工作原理及元器件参数的选择
- 电容滤波电路的工作原理
- 分立及集成稳压电路的工作原理

8.1 直流稳压电源的组成

直流稳压电源的组成如图8.1所示

直流稳压图8.1电源的组成

- 1.电源变压器
- 2.整流电路
- 3.滤波器
- 4.稳压电路

8.2 小功率整流与滤波电路

8.2.1 单相整流电路

- 1. 整 流电路的主要技术指标
- 2. 桥式整流电路的工作原理

图8.3 桥式整流电路的波形图

3. 桥式整流电路的参数计算

8.2.2滤波电路

- 1. 电容滤波电路
- 2. 电感滤波电路

3. 复合滤波电路

(c) LC- 型滤波电路

图8.7 常用的复合滤波电路

8.3 串联型稳压电路

- 8.3.1 稳压电路的技术指标
- 1. 稳压系数 $S_{
 m V}$
- 2. 纹波抑制比Sr
- 3. 输出电压的温度系数 S_{T}

- 4. 输出电压的温度系数 S_{T}
- 5. 电流调整率 S_{I}
- 8.3.2 串联型稳压电路

1. 电路组成和工作原理

图8.8 串联型稳压电路

- (1) 采样电路
- (2) 基准电压和放大电路
- (3)调整管
- 2. 输出电压的调节范围
- 3. 调整管的选择
- (1)集电极最大允许电流 $I_{\rm CM}$
- (2) 集电极和发射极之间的反向击穿电压 $U_{(\mathrm{BR})\,\mathrm{CEO}}$
- (3) 集电极最大允许耗散功率 $P_{\rm CM}$
- *4. 高精度基准电源

图8.10 LM399的结构与应用电路

8.3.3 三端集成稳压器

1. 三端集成稳压器的产品分类及特点

- (1)固定式三端集成稳压器
- (2) 可调式三端集成稳压器

2.三端集成稳压器的工作原理

(1)固定式三端集成稳压器

基准电压

启动电路

采样及误差放大电路

a)原理电路

(b)外部引脚图 图8.11 7800型三端集成稳压器的原理电路与外部引脚图

调整与保护电路

2) 可调式三端集成稳压器

(a) 结构图

TO-3封装 (b)317M的外部引脚图 TO-2000封装

图8.12 可调式三端集成稳压器的结构与外部引脚图

*8.4 开关型稳压电路

8.4.1 开关型稳压电路的特点和分类

- 1.开关型稳压电路的特点
- 2.开关型稳压电路的分类

8.4.2 串联开关型稳压电路

图8.13 开关型稳压电路的组成

图8.14 脉冲调宽式开关型稳压电路原理图

图8.15 脉冲调宽式开关型稳压电路的波形图

图8.16 串联开关型稳压电路的简化电路

8.4.3并联开关型稳压电路

(a)基本原理图

图8.17并联开关型稳压电路的基本原理图及其等效电路

图8.18 并联型开关稳压电路的波形分析

图8.19 并联型开关稳压电路的简化图

8.4.4开关型集成稳压器

1. L4960的结构与原理

2. L4960典型应用电路

*8.5 三端集成稳压器的应用

8.5.1 固定式三端集成稳压器的应用

1. 基本应用电路

图8.23 三端集成稳压器的基本应用电路

2. 同时输出正、负电压的电路

图8.24 同时输出正、负电压的稳压电路

3. 提高输出电压的电路

4. 组成恒流源电路

图8.25 提高三端集成稳压器输出电压的电路

图8.26 组成恒流源电路

5. 输出电压可调电路

图8.27 输出电压可调的稳压电路

8.5.2 可调式三端集成稳压器的应用

1. 可调式三端稳压器的应用

(a)正输出可调稳压电路

(b)负输出可调稳压电路 图8.28 可调式三端稳压器的典型应用

2. 高输出电压稳压电路

图8.29 高输出电压稳压电路

3. 高精度稳压电源

图8.30 具有跟踪预调整功能的高精度稳压电源

4. 并联法扩大输出电流

图8.31 并联扩流的可调式稳压电路

图8.32可调高精度恒流源

第9章 模拟电子技术在实际中的应用

本章重点内容

- 晶体管超外差式收音机各部分电路、及整机电路的工作原理
- 在单元电路学习的基础上,通过对收音机、CASPER TM-5159型多频彩色显示器的电源电路、无级调 光台灯电路原理的学习,巩固所学的理论知识,建立模拟电子技术应用的整体概念

9.1 晶体管超外差式收音机的原理、安装与调试

- 9.1.1 无线电广播信号的发射与接收
- 9.1.2 晶体管超外差式(AM)收音机的原理电路、各元件的作用
- 1. 原理电路
- 2. 电路中各元件的作用

图9.3 六管超外差式调幅收音机原理电路简化框图

9.1.3 静态时整机直流供电情况

图9.4 收音机整机静态供电情况示意图

9.1.4 整机工作原理简述

9.1.5 收音机的安装与调试

- 1. 收音机的安装
- 2. 调整晶体管的静态工作点
- 3. 调整中频频率
- 4. 整机频率覆盖
- 5. 统调

9.2 CASPER TM-5159型多频彩色显示器的电源电路

- 9.2.1 消磁电路的消磁工作过程
- 9.2.2 整流滤波电路的工作过程
- 9.2.3 整流滤波电路的工作过程

图9.5 CASPER TM-5159型多频彩色显示器的电源结构方框图

9.1.4 开关振荡电路的工作过程

图9.6 CASPER TM-5159型多频彩色显示器的开关振荡电路

- 9.1.5 稳压控制电路的工作过程
- 9.1.6 高频脉冲整流滤波电路的工作过程

9.3 家用无级调光台灯电路的工作原理、制作与调试

9.3.1 电路及其工作原理

图9.8 调光台灯电路原理图

- 9.3.2 元器件的选择
- 9.3.3 安装与调试