

MSE643 Property Prediction and Model Comparison

Team Members

Harsh Kumar Singh Mrigank Kumar Abhisekh Prakash Sudhanshu Kamal Raj Rawat Manish Kumar

Instructor: Prof. Krishanu Biswas

Project Work Flow

Collected Steel alloy Composition data

Prepared the data

Data Cleaning, Data Splitting And Data Transformation

Training of models

SV, DT, KNN(10), Ridge regression, Random Forest, Linear regression and ANN models

Conclusion

Comparison with ANN

Evaluating models

Comparing their performance based on error analysis

Problem Definition and Objectives

About Data and Data Preperation

02

04

Data

03

We have the initial Data of steel strength, we have 17 columns, of all elements such as Fe, Mg, Cr, etc content as a feature and then yield strength, tensile strength and elongation as labels.

Standardization

Converting data into uniform format using the Minimum and Maximum formula given b below

 $X' = \frac{X - Xmin}{Xmax - Xmin}$

Data pre-processing

Removing the first column which contained the Formula of Steel

Missing data

We had 9 Null data points for elongation, so we filled them with average Values from all the data points we have

RangeIndex: 312 entries, 0 to 311 Data columns (total 17 columns):

	Data	COLUMNIS (COCAL 17	corumns).	
	#	Column	Non-Null Count	
	0	Fe	312 non-null	
	1	С	312 non-null	
	2	mn	312 non-null	
	3	si	312 non-null	
	4	cr	312 non-null	
	5	ni	312 non-null	
	6	mo	312 non-null	
	7	V	312 non-null	
	8	n	312 non-null	
	9	nb	312 non-null	
S	10	co	312 non-null	
b	11	W	312 non-null	
J	12	al	312 non-null	
S	13	ti	312 non-null	
	14	yield strength	312 non-null	
S	15	tensile strength	312 non-null	
	16	elongation	303 non-null	
	dtynes: float64(17)			

dtypes: float64(17) memory usage: 41.6 KB

Data preparation continues

X_new,X_test,y_new,y_test = train_test_split(X_scaled,y_scaled,test_size=0.1,random_state=1);
X_train,X_valid,y_train,y_valid = train_test_split(X_new,y_new,test_size=0.2,random_state=1)

Methods used for comparison

01 R2 Score

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}}$$

02 RMSE

$$\sqrt{rac{\sum_{i=1}^{N}\left(x_{i}-\hat{x}_{i}
ight)^{2}}{N}}$$

03 MAE

$$rac{\sum_{i=1}^{n}|y_i-x_i|}{n}$$

Co-relation data

Observation

- Carbon correlation on Elongation (-0.27) indicating increased brittleness
- Tensile Strength and Yield Strength are strongly correlated (0.82).
- Elongation is negatively correlated with both Yield Strength (-0.57) and Tensile Strength (-0.61) — indicating a tradeoff between strength and ductility.

$$rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

This reflects that our data are correctly taken from experiments as it matches with the theoretical correlations and studies.

Error charts

- Random Forest consistently performs the best with the lowest RMSE (~0.088) and lowest MAE (~0.06), indicating high prediction accuracy and minimal average error.
- **Support Vector** follows closely, with a slightly higher RMSE (~0.092) and MAE (~0.067), still performing better than most other models.
- Decision Tree and KNN models show comparable error levels with RMSE around 0.107 and MAE ~0.073, indicating moderate performance.
- Linear and RidgeCV models perform the worst, with RidgeCV having the highest RMSE (~0.13) and MAE (~0.088), suggesting they are less suited for this regression task.

Artificial Neural Network

Activation Function used

$$Tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

EPOCH used 500 Batch size- 128

history = model.fit(X_train, y_train, batch_size = 128, shuffle=True, epochs=500)

Comparision with all models and conclusion

	R2 Score	RMSE	MAE
Random Forest	.769904	0.087720	0.0986
ANN	0.7790	0.0823	0.0566

From the analysis ML and DL models(ANN),we found out that ANN would be the best model for prediction of YS, UTS and Elongation through the composition of 14 elements in the steels