PROJECTION ONTO A SIMPLEX*

Abstract. Explains how to find a projection onto a simplex.

1. Projection onto a face(n-1 simplex). Consider a projection problem as below:

$$\min_{x} \quad \frac{1}{2} \|x - z\|_{2}^{2} \tag{1.1a}$$

$$s.t. e^T x = b (1.1b)$$

$$x \ge 0. \tag{1.1c}$$

where $e \in \mathbb{R}^n$ is a vector of all 1's. Then the KKT condition of (1.1a) is

$$0 \le x - z + \lambda e \perp x \ge 0 \tag{1.2}$$

where λ is the Largrange multiplier to (1.1b). So the solution x^* of (1.1a) is

$$x^* = (z - \lambda e)_+ = \max\{z - \lambda e, 0\}$$
 (1.3)

where the max operator applies element-wise. If we define a function $g(\lambda)$ like below

$$g(t) := \sum_{i:z_i - \lambda \ge 0} (z_i - \lambda) = \sum_{i=1}^n x_i = e^T x$$
 (1.4)

then the optimal solution x^* of (1.1a) can be obtained by finding a value of λ^* such that $g(\lambda^*) = b$.

Without loss of generality, we assume that the vector z is sorted in descending order. Let w be a vector such that

$$w_k = \sum_{i=1}^k z_i. \tag{1.5}$$

Assume that λ_k is the solution of $g(\lambda) = b$ when the first k entries of z have $z_i - \lambda^k \ge 0$. Then from

$$\sum_{i=1}^{k} (z_i - \lambda_k) = b \tag{1.6}$$

we have

$$\lambda_k = \frac{w_k - b}{k}.\tag{1.7}$$

And we need to find the k^* such that $z_{k^*} - \lambda_{k^*} \ge 0$ and $z_{k^*+1} - \lambda_k^* \le 0$. Then $\lambda^* = \lambda_{k^*}$ and $x^* = (z - \lambda^* e)_+$.

^{*}June 3, 2013

2. Projection onto n-simplex. Now we consider a projection onto n-simplex:

$$\min_{x} \quad \frac{1}{2} \|x - z\|_{2}^{2} \tag{2.1a}$$

s.t.
$$e^T x \le b$$
 (2.1b)

$$x \ge 0. \tag{2.1c}$$

The KKT condition of (2.1a) is

$$0 \le x - z + \lambda e \perp x \ge 0 \tag{2.2a}$$

$$0 \le b - e^T x \perp \lambda \ge 0. \tag{2.2b}$$

Again, λ is the Lagrange multiplier.

First, if $e^T z_+ \leq b$, then it can be easily shown that $x^* = z_+$ is a solution. Thus assume that $e^T z_+ > b$. Then the solution should be $x^* = (z - \lambda^* e)_+$ from the KKT condition where λ^* is the optimal Lagrange multiplier. Also we can see that $e^T x^* = b$. If not, i.e. $e^T x^* < b$, we should have $\lambda^* = 0$ and

$$b > e^T x^* = e^T (z - \lambda^* e)_+ = e^T z_+ > b$$
 (2.3)

which contradicts. Thus we can use the same technique discussed in Section 1. Note that since $e^T z_+ > b$, λ^* will be nonnegative if the smallest k^* is chosen, and thus satisfies the KKT condition.

3. Projection onto an intersection of n-simplex and box constraints. We consider another problem like below:

$$\min_{x} \quad \frac{1}{2} \|x - z\|_{2}^{2} \tag{3.1a}$$

$$s.t. e^T x \le b \tag{3.1b}$$

$$0 \le x \le u. \tag{3.1c}$$

Since the constraints are convex, we can solve this problem using Dykstra's projection algorithm. Let $C = \{x \mid e^T x \leq b\}$ and $D = \{x \mid 0 \leq x \leq u\}$. Then the Dykstra's projection algorithm is described in algorithm 1.¹ To use the algorithm, we need to know the projection onto each convex set C and D. For (3.1b), we can use the projection described in previous sections. Since (3.1c) is a simplex box constraint, we can simply truncate to project onto this set.

 $^{^1{\}rm The~algorithm}$ is from the wiki page. ${\tt http://en.wikipedia.org/wiki/Dykstra's_projection_algorithm}$

Algorithm 1 Projection onto $C \cap D$

Require: z: A point projected.

C, D: Convex Sets.

 $\mathcal{P}_C(x), \mathcal{P}_D(x)$: Projection functions onto C and D, respectively.

Ensure: x: Projection of z onto $C \cap D$.

1: $k \leftarrow 0$

2:
$$x_0 \leftarrow z$$
, $y_0 \leftarrow 0$, $p_0 \leftarrow 0$, $q_0 \leftarrow 0$

3: repeat

- 4: $y_k \leftarrow \mathcal{P}_D(x_k + p_k)$
- $p_{k+1} \leftarrow (x_k y_k) + p_k$ $x_{k+1} \leftarrow \mathcal{P}_C(y_k + q_k)$
- $q_{k+1} \leftarrow (y_k x_{k+1}) + q_k$ 7:
- $k \leftarrow k+1$
- 9: **until** x_k, y_k, p_k and q_k are fixed points.