# CSc 165 Computer Game Architecture

# 12 - Animation

CSc 165 Lecture Notes 12 - Model Animation

#### **Overview**

- Approaches to Animation
- Skeletal Animation
- Animation Transformations
- Keyframe Interpolation
- Keyframe Sequences



# **Approaches to Animation**

- Traditional or "Cel" animation
  - Developed (and still used) for cartooning
- Rigid Hierarchy
- Per-Vertex
  - Morph Targets
- Skeletal

3



CSc 165 Lecture Notes 12 - Model Animation

#### **Animation "Skeleton"**



CSc 165 Lecture Notes 12 - Model Animation



- Define *model* 
  - vertices/faces/groups
- Define skeleton
  - Bones and Joints
- Associate model vertices with bones
  - o "Rigging" the model
- Create movement poses (<u>keyframes</u>)
  - Move joints (vertices follow)
  - o Save skeleton position/orientation data as keyframes

5





Model credit: Essential Blender, Roland Hess, www.blender.org



## Rigging the Mesh

#### Pose mode



7



CSc 165 Lecture Notes 12 - Model Animation

# KeyFraming

- Multiple model orientations (views, poses)
  - o A single view is called a "frame"
- Each pose represents a "key" view
- Display (render) key views in sequence
  - o Or, interpolate between keyframes

# **Keyframe Drawing**





1



2







**Keyframe:** 

0

3

4

5



- Animated model file stores each keyframe
- Application code repeatedly:
  - Sets (specifies) "current frame"
  - Invokes model.draw()
- draw () renders triangles using current frame

9



CSc 165 Lecture Notes 12 - Model Animation

# **KeyFrames**





KeyFrame 1 (time = 0)





**KeyFrame 2 (time = 15)** 





KeyFrame 3 (time = 30)





KeyFrame 4 (time = 45)

# **Blender Keyframing**



CSc 165 Lecture Notes 12 - Model Animation 子× 3 + so Blender – export Ctrl O Open Recent... animation for RAGE Recover Last Session Recover Auto Save... Shift Ctrl S File User Preferences... Ctrl Alt U 🌠 Save Startup File Load Factory Settings Export r Link Ctrl Alt O Append Import **RAGE** Collada (Default) (.dae) addons Ogre3D (.scene and .mesh) U Quit realXtend Tundra (.txml and .mesh) Stanford (.ply) Stl (.stl) 3D Studio (.3ds) If a model has multiple Autodesk FBX (.fbx) Wavefront (.obi) animations, each animation is exported separately RAGE Skeletal Model Animation (.rka) RAGE Skeletal Model Mesh (.rkm)

11



# Models usually have multiple animations

examples: WoW Models

- o Idle
- o Walk
- <sub>o</sub> Run
- o Attack
- Laugh
- Beg
- o Die
- 0 ...



Crocodile



Chimera



**Female Goblin** 

13



CSc 165 Lecture Notes 12 - Model Animation

#### **Loading Animated Models in RAGE**

```
protected void setupScene (Engine eng, SceneManager sm) throws IOException
   // load skeletal entity - in this case it is an avatar
   // parameters are: entity name, mesh file, skeleton file
   SkeletalEntity manSE =
         sm.createSkeletalEntity("manAv", "man.rkm", "man.rks");
   // loading its texture in the standard way
   Texture tex = sm.getTextureManager().getAssetByPath("man.jpg");
   TextureState tstate = (TextureState) sm.getRenderSystem()
                       .createRenderState(RenderState.Type.TEXTURE);
   tstate.setTexture(tex);
   manSE.setRenderState(tstate);
   // attach the skeletal entity to a scene node
   SceneNode manN = sm.getRootSceneNode().createChildSceneNode("manNode");
   manN.attachObject(manSE);
   // load the model's animations
   manSE.loadAnimation("walkAnimation", "walk.rka");
   manSE.loadAnimation("waveAnimation", "wave.rka");
```



### **Playing and Updating Animations in RAGE**

15



CSc 165 Lecture Notes 12 - Model Animation

## SkeletalEntity Class





## **Bone Hierarchy**



17



CSc 165 Lecture Notes 12 - Model Animation

#### **Vertex Transformations**

Vertices must be "relocated" (transformed according to their attached bones' transforms) before being drawn

- o e.g., multiply each vertex by its joint's "initial transformations"
- o Vertices are in "global" (model) coordinates
- o Bone transforms are in "local" (bone) space, and relative to parent bone





## **Bone (Model) Animation**

- o For each bone:
  - Select nearest keyframe based on current time
  - Compute the bone's animation transform from the associated bone's keyframe transform values, applying parents' transforms recursively up to the root bone
- Gather the transformed bones to send to vertex shader
- o In the vertex shader for each vertex:
  - Apply the assigned bone's "animation transform" to vertex
  - If vertex is attached to more than one bone, use a weighted sum (assuming weight-painting was used)
  - Output transformed vertex.

19



CSc 165 Lecture Notes 12 - Model Animation

# **Animating a Vertex**





#### optional -- Keyframe Interpolation

Need many keyframes to insure smooth animation opossible overhead issues

#### Solution:

- o reduce number of keyframes
- o interpolation for intermediate frames





CSc 165 Lecture Notes 12 - Model Animation

#### **Keyframe Interpolation** (cont.)

- Find the "missing keyframe" time

  frameTime = frameNumber / FPS
- Select nearest keyframes
- Interpolate position and rotation





#### **Linear Interpolation Problems**

#### Bouncing ball doesn't "look right":



#### Rotating character arm shortens:





CSc 165 Lecture Notes 12 - Model Animation

#### **Non-Linear Translation**

- Define desired path with (e.g.) cubic curve
- Interpolate position by evaluating curve at time=t





# Keyframe Interpolation vs. Lots of Keyframes

- o Keyframe interpolation allows for a smaller model file
- Having the DCC export more keyframes allows the animation to capture advanced DCC animation capabilities
- RAGE export (.rks) files export a keyframe for each frame, to allow taking full advantage of Blender's animation tools.