Analiza błędów

Jan Sarba, Dariusz Rozmus

12.03.2025

1 Treść zadań

1.1 Zadanie 1

Oblicz przybliżoną wartość pochodnej funkcji, używając wzoru

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} \tag{1}$$

Sprawdź działanie programu dla funkcji $\tan(x)$ oraz x=1. Wyznacz błąd, porównując otrzymaną wartość numerycznej pochodnej z prawdziwą wartością. Pomocna będzie tożsamość $\tan'(x) = 1 + \tan^2(x)$. Na wspólnym rysunku przedstaw wykresy wartości bezwględnej błędu metody, błędu numerycznego oraz błędu obliczeniowego E(h) w zależności od h dla $h=10^{-k}, k=0,...,16$. Użyj skali logarytmicznej na obu osiach. Czy wykres wartości bezwględnej błędu obliczeniowego posiada minimum? Porównaj wyznaczoną wartość h_{min} z wartością otrzymaną ze wzoru.

$$h_{min} \approx 2\sqrt{\frac{\epsilon_{mach}}{M}}, \quad \text{gdzie } M \approx |f''(x)|$$
 (2)

Powtórz ćwiczenie używając wzoru różnic centralnych

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}. (3)$$

Porównaj wyznaczoną wartość h_{\min} z wartością otrzymaną ze wzoru

$$h_{\min} \approx \sqrt[3]{3\epsilon_{\mathrm{mach}}/M}, \quad \text{gdzie } M \approx |f'''(x)|.$$
 (4)

Porównaj wyznaczoną empirycznie wartość błędu obliczeniowego $E(h_{\min})$, z jakim wyznaczone zostało f'(x), przy zastosowaniu wzorów (1) oraz (3). Która metoda jest dokładniejsza?

1.2 Zadanie 2

Napisz program obliczający sumę n liczb zmiennoprzecinkowych pojedynczej precyzji, losowo rozłożonych w przedziale [0,1] wg rozkładu jednostajnego. Użyj wyłącznie zmiennych pojedynczej precyzji, chyba że wskazano inaczej. Sumę oblicz według każdego z poniższych sposobów:

- (a) Zsumuj liczby według kolejności, w której zostały wygenerowane. Użyj akumulatora podwójnej precyzji do przechowywania akumulowanej sumy.
- (b) Zsumuj liczby według kolejności, w której zostały wygenerowane. Użyj akumulatora pojedynczej precyzji do przechowywania akumulowanej sumy.
- (c) Użyj algorytmu Kahana sumowania z kompensacją, sumując liczby w kolejności, w której zostały wygenerowane. Użyj akumulatora pojedynczej precyzji do przechowywania akumulowanej sumy.

```
sum = 0.0
err = 0.0
for i=1 to n
    y = x[i] - err
    temp = sum + y
    err = (temp - sum) - y
    sum = temp
```

- (d) Zsumuj liczby w porządku rosnącym, od liczb o najmniejszej wartości bezwzględnej do liczb o największej wartości bezwzględnej.
- (e) Zsumuj liczby w porządku malejącym, od liczb o największej wartości bezwzględnej do liczb o najmniejszej wartości bezwzględnej.

Narysuj wykres błędu względnego w zależności od $n=10^k,\ k=4,\ldots,8$. Jako prawdziwą wartość sumy przyjmij wartość math.fsum(x).

1.3 Zadanie 3

Przepisz poniższe wyrażenia, tak aby uniknąć zjawiska kancelacji dla wskazanych argumentów.

(a)
$$\sqrt{x+1} - 1$$
, $x \approx 0$

(b)
$$x^2 - y^2$$
, $x \approx y$

(c)
$$1 - \cos x$$
, $x \approx 0$

(d)
$$\cos^2 x - \sin^2 x$$
, $x \approx \frac{\pi}{4}$

(e)
$$\ln x - 1$$
, $x \approx e$

(f) $e^x - e^{-x}$, $x \approx 0$ (Wskazówka: Użyj rozwinięcia w szereg Taylora).

1.4 Zadanie 4

Efektywność η kolektora słonecznego dana jest wzorem:

$$\eta = K \frac{QT_d}{I},\tag{5}$$

gdzie K jest stałą znaną z dużą dokładnością, Q – objętość przepływu, T_d – różnica temperatur, I – natężenie promieniowania. Dokładność, z jaką można zmierzyć Q, T_d , I zależy od konstrukcji kolektora. Na podstawie (1) wyliczono, że sprawność kolektora S_1 wynosi 0.76, a sprawność kolektora S_2 wynosi 0.70. Wielkości Q, T_d , I zmierzono z następującym błędem:

Kolektor	S_1	S_2
Q	1.5%	0.5%
T_d	1.0%	1.0%
I	3.6%	2.0%

Czy na podstawie powyższych danych możemy być pewni, że S_1 ma większą sprawność niż S_2 ? Odpowiedź szczegółowo uzasadnij.

2 Argumentacja

W Zadaniu 1. zaczynamy od zdefiniowania podstawowych funkcji:

```
def pochodna_numeryczna(x, h):
    return (tan(x+h) - tan(x))/h

def pochodna_numeryczna_centralna(x, h):
    return (tan(x+h) - tan(x-h))/(2*h)

def pochodna_analityczna(x):
    return 1 + tan(x)**2 # wzor z polecenia

def pochodna_analityczna_2(x):
    return 2 * tan(x) * (1 + tan(x)**2)

def pochodna_analityczna_3(x):
```

Z pomocą tych funkcji łatwo wyliczyć można błędy bezwzględne dla danych parametrów. Równie proste jest obliczenie teoretycznego przybliżenia h_{\min} zdefiniowanego w poleceniu.

return 2 * $(3 * \tan(x)**4 + 4 * \tan(x)**2 + 1)$

Funkcje potrzebne do Zadania 2. są trywialne, przykładowo:

```
\begin{tabular}{ll} \beg
```

Algorytm Kahana przepisaliśmy z polecenia.

Potrzebne dane generowaliśmy za pomocą funkcji np.random.uniform()

3 Wyniki

3.1 Zadanie 1.

Wygenerujmy wykresy różnic między wynikiem analitycznym a numerycznym. Punkt przecięcia czerwonych, przerywanych linii wynik aproksymacji h_{\min} zawartej w poleceniu.

Mnimalne błędy bezwzględne
$$\Delta f'(x)_{\rm h}$$
:
$$\Delta f'(x)_{h_{\rm min.~emp.}} = \Delta f'(x)_{h_{\rm k=8}} \approx 2.55*10^{-8}$$

$$\Delta f'(x)_{h_{\rm min}} \approx 1.83*10^{-8}$$

Rysunek 1: Wykres błędu bezwzględnego

Metoda różnicy centralnej: Mnimalne błędy bezwzględne $\Delta f'(x)_h$:

$$\begin{split} \Delta f'(x)_{h_{\rm min.~emp.}} &= \Delta f'(x)_{h_{\rm k=8}} \approx 6.22*10^{-12} \\ \Delta f'(x)_{h_{\rm min}} &\approx 8.68*10^{-11} \end{split}$$

Rysunek 2: Ten sam wykres dla metody różnicy centralnej

3.2 Zadanie 2.

Następujący wykres przedstawia błąd bezwzględny każdej metody sumowania w porównaniu do funkcji np.sum().

Otrzymane wyniki różnią się z każdym wywołaniem w zakresie ok. \pm rząd wielkosci. Oto jeden z nich:

Rysunek 3: suma_double pokrywa się z suma_float

3.3 Zadanie 3.

 $\mathbf{a})$

$$\sqrt{x+1} - 1 = \frac{(\sqrt{x+1} - 1)(x+1+1)}{(\sqrt{x+1} + 1)} - \frac{x+1-1}{\sqrt{x+1} + 1} = \frac{x}{\sqrt{x+1} + 1}$$

b)

$$x^2 - y^2 = (x - y)(x + y)$$

 $\mathbf{c})$

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
$$\cos \frac{x}{2} \left(\cos \frac{x}{2} - \cos^2 \frac{x}{2}\right)$$
$$1 - \cos(x) = 2\cos^2\left(\frac{x}{2}\right)$$

 \mathbf{d}

$$\cos^2 x - (1 - \cos^2 x) = 2\cos^2 x - 1$$

 $\mathbf{e})$

$$\ln x - \ln e = \ln \frac{x}{e}$$

f)

W otoczeniu x = 0:

$$e^{x} \approx 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$$

$$e^{-x} \approx 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!}$$

$$e^{x} - e^{-x} \approx 2x + \frac{2x^{3}}{3!} + \frac{2x^{5}}{5!}$$

3.4 Zadanie 4

$$\eta = K \frac{QT_d}{J}$$

Przykład przybliżony:

$$\eta = K \frac{0.985Q_1 + 0.99T_d}{1.036J} \approx 0.7153610039K \frac{T_d}{J}$$
$$\eta = K \frac{1.005Q_2 + 1.01T_d}{0.98} \approx 0.7250357143K \frac{T_d}{J}$$

Przedziały

$$\eta_1 \in (0.714, 0.806)$$

$$\eta_2 \in (0.675, 0.725)$$

Różnica między największą możliwą wartością η_1 i najmniejszą możliwą wartością η_2 :

$$\max \eta_1 - \min \eta_2 = 0.806 - 0.675 = 0.131$$

Różnica między największą możliwą wartością η_2 i najm
niejszą możliwą wartością η_1 :

$$\max \eta_2 - \min \eta_1 = 0.725 - 0.714 = 0.011$$

4 Wnioski

4.1 Zadanie 1.

Dla naszych danych, podane wzory aproksymujące h_{\min} są całkiem trafne, choć empirycznie za każdym razem udawało nam się przewyższyć dokładność aproksymowaną korzystając z metody różnicy centralnej.

Wyraźnie widać również wyższość drugiej metody nad pierwszą - dla co najmniej czterech wartości h metoda druga dawała nam lepszą dokładność, niż możliwie najdokładniejszy wynik metody pierwszej.

4.2 Zadanie 2.

Choć wyniki nie były tak stabilne, jak w poprzednim zadaniu, metoda sumowania Kahana stale przewyższa wszystkie pozostałe swoją dokładnością o co najmniej rząd wielkości. Co ciekawe, otrzymywaliśmy z rzadka błąd wynoszący równe 0.0.

4.3 Zadanie 3.

Przekształcenie problemów pozwoli nam zdecydowanie zwiększyć stabilność obliczeń.

4.4 Zadanie 4.

Nie można mieć pewności, że $\eta_1 > \eta_2$. Wynika to z faktu, że można dobrać takie parametry mieszczące się w zadanych niepewnościach, że wniosek jest odwrotny.

5 Bibliografia

- Algorytm sumacyjny Kahana (Wikipedia)
- \bullet Wolfram Alpha - obliczanie pochodnych analitycznie
- \bullet Wykład 1 arytmetyka (MOWNiT)