STROKE PREDICTION

0 udarach

Według Światowej Organizacji Zdrowia (WHO) udary są drugą w kolejności najczęstszą przyczyną śmierci i trzecią prowadzącą do niepełnosprawności oraz odpowiedzialną za 11% wszystkich zgonów.

Nasza analiza ma na celu określenie czy pacjentowi grozi udar i pozwala stwierdzić, czy potrzebna jest dodatkowa diagnostyka, aby temu zapobiec.

Wielkość zbioru i zmienna celu, wybór metryk

Zbiór posiada **5510** rekordów i **11** kolumn.

Zmienną celu jest numeryczna kolumna **Stroke,** która przyjmuje wartości 0-1.

Wartość zmiennej celu (Stroke)	Liczebność wartości
0	4861
1	249

Metryki:

- f1-score
- AUC
- Recall
- Precision

Zmienne niezależne i ich typy

Nazwa zmiennej	typ	braki danych	min	max
gender	kategoryczna	-	-	-
age	ilościowa	-	0.08	82
hypertension	kategoryczna 0-1	-	-	-
heart_disease	kategoryczna 0-1	-	-	_
ever_married	kategoryczna	-	-	-
work_type	kategoryczna	-	-	-
Residence_type	kategoryczna	-	-	-
avg_glucose_leve	ilościowa	-	55.12	271.74
bmi	ilościowa	201 / 4%	10.3	97.6
smoking_status	kategoryczna	-	-	-

Wykresy pudełkowe dla średniego poziomu glukozy oraz bmi wskazują na występowanie w zbiorze obserwacji odstających. W dalszej części przedstawimy wnioski z rozpoznania tematu, aby zdecydować, czy te wartości rzeczywiście są odstające, czy mieszczą się w granicach normy.

Rozkład wieku jest dość zrównoważony, nieprzypominający rozkładu normalnego - słupki dla wartości krańcowych są wysokie. Histogram dla glukozy wyodrębnia grupę osób o podwyższonym poziomie cukru - naszym podejrzeniem jest, iż jest to grupa cukrzyków.

Histogram dla bmi posiada długi prawy ogon, jednak są to nieliczne obserwacje.

Tutaj nie ma zaskoczenia - ryzyko udaru rośnie wraz z wiekiem.

Większość obserwacji wskazuje, że wysoki poziom glukozy jest powiązany z wystąpieniem udaru.

W grupie osób po przebytym udarze bmi jest większe niż w grupie osób, które nie doznały udaru.

Zmienne niezależne - inne spostrzeżenia

- gender 1 wartość Other.
- **age** do pierwszych 2 lat życia dane przedstawione są w miesiącach, przy czym brane jest, że 1 miesiąc = 0.08.
- avg_glucose_level poziom jest zależny od tego, czy był mierzony po posiłku czy na czczo, jaką metodą był mierzony, a także normy różnią się u osób starszych, dzieci oraz kobiet w ciąży. Wartość ponad 200 mg/dL wskazuje na cukrzycę. Nasza największa wartość w zbiorze jest poniżej liczby, którą znaleźliśmy w źródłach, więc nasze dane uznaliśmy za poprawne.
- **bmi** wartość powyżej 40 oznacza otyłość III stopnia. Dane uznaliśmy za prawidłowe, gdyż przykładowo osoba o wzroście 175 cm i wadze 300 kg posiada bmi 98 (zbliżone do maksymalnej wartości w naszym zbiorze), więc są to przypadki możliwe (najgrubszy człowiek świata, który trafił do KRG, ważył około 600 kg).

Zmienne niezależne - podsumowanie

Po analizie i w wyniku One-Hot-Encodingu zbiór ostatecznie zawierał 23 zmienne.

W wyniku usunięcia braków danych zbiór ostatecznie posiadał **4909** rekordów.

Dodatkowo zmienną **bmi** podzieliliśmy na kategorie i przeprowadziliśmy drugą turę uczenia najlepszych modeli, podmieniając zmienną ilościową bmi na porządkową.

Transformacja zmiennej bmi

ВМІ	Ryzyko chorób towarzyszących otyłości
< 18.5	minimalne, ale zwiększony poziom wystąpienia innych problemów zdrowotnych
< 25	minimalne
< 30	średnie
< 35	wysokie
< 40	bardzo wysokie
>= 40	ekstremalny poziom ryzyka

https://pl.wikipedia.org/wiki/Wska%C5%BAnik_masy_cia%C5%82a

Oversampling, Undersampling, SMOTE

Jako że nasz zbiór danych jest niezbalansowany zdecydowaliśmy się na użycie technik balansujących i przetestowanie ich skuteczności na naszym zbiorze:

- Oversampling polega na stworzeniu kopii wierszy klasy rzadziej występującej
- Undersampling polega na usunięciu wierszy klasy częściej występującej
- **SMOTE** generuje syntetyczne dane dla klasy mniejszościowej poprzez minimalne zmiany wartości już istniejących punktów

Ze względu na małą liczbę jedynek w zbiorze zrezygnowaliśmy z Undersamplingu.

Standaryzacja zmiennych, redukcja wymiarów

Po zamianie zmiennych kategorycznych na liczbowe dokonaliśmy **standaryzacji** zmiennych. Do wszystkich modeli użyliśmy tak przeskalowanych danych, również do drzew decyzyjnych czy lasów losowych, które nie potrzebują spełnienia tego założenia.

Ze względu na małą liczbę zmiennych pominęliśmy krok redukcji wymiarów i nie stosowaliśmy PCA.

Budowa modeli

Wykorzystaliśmy 6 algorytmów:

- Drzewo decyzyjne
- Las losowy
- XGBoost
- SVM
- KNN
- Regresja logistyczna

Dla każdego algorytmu wytypowaliśmy zestaw parametrów i GridSearchem wyznaczyliśmy najlepsze modele wg **f1-score** i **AUC** dla każdego z 2 sposobów zbalansowania zbioru (Oversampling, SMOTE).

Dodatkowo w regresji logistycznej w przypadku zmiennych dopełniających się (np. female, male) eliminowaliśmy z modelu jedną zmienną ze względu na założenie braku współliniowości zmiennych.

TOP 3 najlepszych modeli

XGBOOST (oversampling, SMOTE)

```
Paramtery modelu: max_depth: 3, booster: gbtree, learning_rate: 0.05 criterion: entropy, max_features: 3, n_estimators: 50, min
_impurity_decrease: 0.3, min_samples_split: 100, min_samples_leaf: 50, min_child_weigh: 20, reg_lambda: 0.1, reg_alpga: 0
             precision recall f1-score support
                  0.99
                           0.74
                                     0.84
                 0.15
                           0.83
                                    0.26
   accuracy
                                     0.74
  macro avg
                 0.57
                           0.78
                                    0.55
                 0.94
                         0.74
weighted avg
                                     0.81
[[684 245]
[ 9 44]]
ROC score: 0.783232122184536
```

	precision	recall	f1-score	support
0	0.98	0.72	0.83	929
1	0.14	0.79	0.23	53
accuracy			0.72	982
macro avg	0.56	0.75	0.53	982
weighted avg	0.94	0.72	0.80	982

[[665 264] [11 42]]

ROC score: 0.754138148140626

SVM (oversampling, SMOTE)

```
Paramtery modelu: C: 1, kenrel: poly, gamma: auto, degree: 1
            precision recall f1-score support
                0.99
                         0.73
                                  0.84
                                            929
                0.15
                         0.85
                                  0.26
                                           53
                                  0.74
                                            982
   accuracy
              0.57
                         0.79
                                0.55
                                            982
  macro avg
weighted avg
              0.94
                         0.74
                                  0.81
                                            982
[[678 251]
[ 8 45]]
ROC score: 0.7894368056542844
```

		precision	recall	f1-score	support
	0	0.98	0.72	0.83	929
	1	0.14	0.79	0.24	53
accur	acy			0.73	982
macro	avg	0.56	0.76	0.54	982
weighted	avg	0.94	0.73	0.80	982

[[673 256] [11 42]]

ROC score: 0.7584438531998294

Regresja logistyczna (oversampling, SMOTE)

	precision	recall	f1-score	support
	0.99	0.74	0.84	929
1	0.15	0.83	0.26	53
accuracy	/		0.74	982
macro ave	g 0.57	0.78	0.55	982
weighted ave	g 0.94	0.74	0.81	982

[[685 244] [9 44]

ROC score: 0.7837703353169365

		precision	recall	f1-score	support
	0	0.98	0.75	0.85	929
	1	0.15	0.79	0.25	53
accur	acy			0.75	982
macro	avg	0.57	0.77	0.55	982
weighted	avg	0.94	0.75	0.82	982

[[694 235] [11 42]]

ROC score: 0.7697463289802384

Najlepsze modele

xGBoost (oversampling)

Po zmianie 'bmi' na zmienną kategoryczną dwa modele poprawiły nieco swoje wyniki.

Paramtery modelu: max_depth: 5, booster: gbtree, learning_rate: 0.05 criterion: entropy, max_features: 3, n_estimators: 50, min_impurity_decrease: 0.3, min_samples_split: 100, min_samples_leaf: 50, min_child_weigh: 20

	precision	recall	f1-score	support
0	0.98	0.79	0.88	929
1	0.17	0.75	0.28	53
accuracy			0.79	982
macro avg	0.58	0.77	0.58	982
weighted avg	0.94	0.79	0.85	982

training_time = 0.177

[[737 192] [13 40]]

ROC score: 0.7740215691451551

regresja logistyczna (oversampling)

	precision	recall	f1-score	support	training_time = 0.029
0	0.99	0.74	0.85	929	
1	0.16	0.85	0.27	53	
accuracy			0.75	982	
macro avg	0.57	0.79	0.56	982	
weighted avg	0.94	0.75	0.82	982	

[[688 241] [8 45]] ROC score: 0.7948189369782886

Najważniejsze zmienne

Regresja logistyczna - features coefficients:
age 1.808
hypertension 0.177
heart_disease 0.036
avg_glucose_level 0.156
bmi 0.167
gender_Female -0.018
work_type_Govt_job -0.38
work_type_Never_worked -0.298
work_type_Private -0.55
work_type_Self-employed -0.586
residence_type_Urban 0.028
smoking_status_formerly smoked 0.061
smoking_status_never smoked -0.015
smoking_status_smokes 0.139

