Non-linear Models-IV

CS771: Introduction to Machine Learning
Purushottam Kar

Outline of discussion

- Kernel Approximation Methods
- PML with kernels
- Neural networks

Kernel methods can be slow 😊

- Need to work with indirect "dual" representations
- Although finite, these representations blow up with data size
- Prediction requires a full pass over data i.e. O(dn) time
- Will see some techniques to remedy this

The Tale of a Trio of Techniques

- Post-processing techniques: learn the kernel SVM (a bit costly), but then make the model cheaper to store and predict
- Approximate training techniques: directly learn a kernel SVM model that is cheap to store and predict
- Kernel approximation techniques: use a different kernel than the one you wanted to, so that the new kernel mimics the original one but always gives models that are cheap to store and predict
- Kernel approximation is the most successful of the three

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1},\dots,\tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1},\dots,\tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1},\dots,\tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1},\dots,\tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1},\dots,\tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1},\dots,\tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

- Learn kernel SVM, support vectors $\{x_{i_j}, \alpha_{i_j}\}$
- Find a reduced set of $k \ll \tilde{n}$ support vectors $\{\tilde{x}_{i_1}, \dots, \tilde{x}_{i_k}\}$ e.g. by using k-means clustering on original support vectors
- Re-compute α values for these reduced set support vectors e.g. by running SVM again on $\{\tilde{x}_{i_1},\dots,\tilde{x}_{i_k}\}$
- Burges and Scholkopf, Improving the Speed and Accuracy of SVMs, NIPS 1996.
- Cossalter et al. Adaptive Kernel Approximation for Large-Scale Non-Linear SVM Prediction, ICML 2011.

Approximate Training Techniques

- Notice that support vectors are always a subset of training data
- Maybe removing this restriction can reduce their number?
- Learn support vectors as well (not necessarily training points)!
- Learn vectors $\mathbf{z}^1, ..., \mathbf{z}^k \in \mathbb{R}^d$ and weights $\alpha_1, ..., \alpha_k \in \mathbb{R}$ so that

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i \cdot \phi_K(\mathbf{z}^i)$$

is a good model (classifier, regressor etc)

- \bullet k chosen based on budget (space, time) of application
- $\mathcal{O}(kd)$ storage and $\mathcal{O}(kd)$ time for prediction
- Joachims and Yu. Sparse Kernel SVMs via Cutting-Plane Training, Machine Learning 76(2):179-193, 2009
- Tsang et al. Core Vector Machines, JMLR 6:363-392, 2005

Approximate Training Techniques

- Notice that support vectors are always a subset of training data
- Maybe removing this restriction can reduce ϕ_K is the map for kernel K?
- Learn support vectors as well (not necessar training points)!
- Learn vectors $\mathbf{z}^1, ..., \mathbf{z}^k \in \mathbb{R}^d$ and weights $\alpha_1, ..., \alpha_k \in \mathbb{R}$ so that

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i \cdot \phi_K(\mathbf{z}^i)$$

is a good model (classifier, regressor etc)

- ullet k chosen based on budget (space, time) of application
- $\mathcal{O}(kd)$ storage and $\mathcal{O}(kd)$ time for prediction
- Joachims and Yu. Sparse Kernel SVMs via Cutting-Plane Training, Machine Learning 76(2):179-193, 2009
- Tsang et al. Core Vector Machines, JMLR 6:363-392, 2005

Kernel Approximation

Landmarking

- Given: training set $S = \{x^1, ..., x^n\}$ and kernel K
- Select $k \ll n$ landmarks

$$\hat{S} = {\{\hat{x}^1, \dots, \hat{x}^k\}} \subset S$$

- Choice may be random or careful (more expensive)
- Use landmarks to create a new k-dim. feature representation $\hat{\phi}(x) = \left[K(x,\hat{x}^1), \dots, K\left(x,\hat{x}^k\right)\right]$
- Now use $\hat{\phi}(x)$ to perform classification, regression, etc
- ullet Can be theoretically shown that if K was nice, so will be \widehat{K}
- No agony of high dim-feature map with \widehat{K}
- Balcan and Blum. On a Theory of Learning with Similarity Functions, ICML 2006.
- K. and Jain. Similarity-based Learning via Data driven Embeddings, NIPS 2011.

Landmarking

- Since k is chosen to be small, so use linear SVM/RR over $\hat{\phi}(x)$ directly
- x^1, \dots, x^n and kernel K
- $\hat{S} = {\{\hat{x}^1, \dots, \hat{x}^k\}} \subset S$

- Can think of $\hat{\phi}$ as giving us a new kernel $\hat{K}(x,y) = \langle \hat{\phi}(x), \hat{\phi}(y) \rangle$
- Choice may be random or careful (more expense
- Use landmarks to create a new k-dim. feature repr $\hat{\phi}(x) = \left[K(x,\hat{x}^1), \dots, K(x,\hat{x}^k)\right]$

• Now use $\phi(x)$ to perform classification, regressing

- $\mathcal{O}(kd)$ model size and $\mathcal{O}(kd)$ prediction time
- Can be theoretically shown that if K was nice, so will be
- ullet No agony of high dim-feature map with \widehat{K}
- Balcan and Blum. On a Theory of Learning with Similarity Functions, ICM
- K. and Jain. Similarity-based Learning via Data driven Embeddings, NIPS 2011.

Work with non-Mercer kernels too!

- A more careful implementation of landmarking
- Basic idea: landmarks may be correlated decorrelate them
- ullet Recall landmark set \hat{S} of size k gave us a map $\hat{\phi}$ that maps to \mathbb{R}^k
- Let $\hat{G} \in \mathbb{R}^{k \times k}$ be Gram matrix over landmark set \hat{S} and let its eigendecomposition be $\hat{G} = U \Lambda U^{\mathsf{T}}$ where $U = [u^1, ..., u^k] \in \mathbb{R}^{k \times k}$ is the matrix of eigenvectors and $\Lambda = \mathrm{diag}(\lambda_1, ..., \lambda_k)$ be eigenvalues
- Nystrom method defines the similarity between x,y as $\hat{\phi}(x)^{\mathsf{T}}G^{\dagger}\hat{\phi}(y)$
- Nystrom features are modified version of landmarking feature $\hat{\phi}$ $\tilde{\phi}(x) = \sqrt{\Lambda^{-1}} U^{\mathsf{T}} \hat{\phi}(x)$

if any $\lambda_i=0$, remove that eigenvalue from Λ and vector from U

- A more careful implementation of landmarking
- Basic idea: landmarks may be correlated decorrelate them
- ullet Recall landmark set \hat{S} of size k gave us a map $\hat{\phi}$ that maps to \mathbb{R}^k
- Let $\hat{G} \in \mathbb{R}^{k \times k}$ be Gram matrix over landmark set \hat{S} and let its eigendecomposition be $\hat{G} = U \Lambda U^{\mathsf{T}}$ where $U = [u^1, ..., u^k] \in \mathbb{R}^{k \times k}$ is the matrix of eigenvectors and $\Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_k)$ Pseudoinverse es
- Nystrom method defines the similarity between x,y as $\hat{\phi}(x)^{\mathsf{T}}G^{\dagger}\hat{\phi}(y)$
- Nystrom features are modified version of landmarking feature $\hat{\phi}$ $\tilde{\phi}(x) = \sqrt{\Lambda^{-1}} U^{\mathsf{T}} \hat{\phi}(x)$

if any $\lambda_i = 0$, remove that eigenvalue from Λ and vector from U

- The Nystrom feature also gives us a new kernel \widetilde{K} $\widetilde{K}(x,y) = \widetilde{\phi}(x)^{\mathsf{T}} \widetilde{\phi}(y) = \widehat{\phi}(x)^{\mathsf{T}} U \Lambda^{-1} U^{\mathsf{T}} \widehat{\phi}(y)$
- Note that the Gram matrices corresponding to the landmarking kernels \widehat{K} as well as Nystrom kernel \widetilde{K} are always rank atmost k
- Interesting note: suppose actual kernel K has map $\phi_K(x) \in \mathbb{R}^D$
- Let $\Phi_{\hat{S}} = \left[\phi(\hat{x}^i)\right]_{i=1,\dots,k} \in \mathbb{R}^{D \times k}$ where $\hat{S} = \{\hat{x}^1,\dots,\hat{x}^k\}$ is landmark set
- This means $\hat{\phi}(x) = \Phi_{\hat{S}}^{\mathsf{T}} \phi_K(x)$ and $\hat{G} = \Phi_{\hat{S}}^{\mathsf{T}} \Phi_{\hat{S}}$ i.e. $\widetilde{K}(x,y) = \phi_K(x)^{\mathsf{T}} \Phi_{\hat{S}} \left(\Phi_{\hat{S}}^{\mathsf{T}} \Phi_{\hat{S}} \right)^{\mathsf{T}} \Phi_{\hat{S}}^{\mathsf{T}} \phi_K(y)$
- Takes more time $O(k^2 + kd)$ to construct Nystrom feature map
- Williams and Seeger. Using the Nystrom Method to Speed Up Kernel Machines, NIPS 2000
- Yang et al. Nystrom Method vs Random Fourier Features, NIPS 2012

- The Nystrom feature also gives us a new kernel \widetilde{K} $\widetilde{K}(x,y) = \widetilde{\phi}(x)^{\mathsf{T}} \widetilde{\phi}(y) = \widehat{\phi}(x)^{\mathsf{T}} U \Lambda^{-1} U^{\mathsf{T}} \widehat{\phi}(y)$
- Note that the Gram matrices corresponding to the landmarking kernels \widehat{K} as well as Nystrom kernel \widetilde{K} are always rank atmost k
- Interesting note: suppose actual kernel K has map $\phi_K(x) \in \mathbb{R}^D$
- Let $\Phi_{\hat{S}} = \left[\phi(\hat{x}^i)\right]_{i=1,\dots,k} \in \mathbb{R}^{D \times k}$ where $\hat{S} = \{\hat{x}^1,\dots,\hat{x}^k\}$ is landmark set Decorrelation
- This means $\hat{\phi}(x) = \Phi_{\hat{S}}^{\mathsf{T}} \phi_K(x)$ and $\hat{G} = \Phi_{\hat{S}}^{\mathsf{T}} \Phi_{\hat{S}}^{\mathsf{T}}$... $\widetilde{K}(x,y) = \phi_K(x)^{\mathsf{T}} \Phi_{\hat{S}} \left(\Phi_{\hat{S}}^{\mathsf{T}} \Phi_{\hat{S}}\right)^{\mathsf{T}} \Phi_{\hat{S}}^{\mathsf{T}} \phi_K(y)$
- Takes more time $O(k^2 + kd)$ to construct Nystrom feature map
- Williams and Seeger. Using the Nystrom Method to Speed Up Kernel Machines, NIPS 2000
- Yang et al. Nystrom Method vs Random Fourier Features, NIPS 2012

Explicit Feature Constructions

- Realize that high dim. of feature map ϕ_K is root of all problems
- ullet If ϕ_K were small dim. then training, storage, testing much easier
- Given a Mercer kernel $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can we construct $\overline{\phi}: \mathcal{X} \to \mathbb{R}^k$
 - k should not be too large so we can use $\overline{\phi}$ explicitly
 - It should be easy to map $x \mapsto \overline{\phi}(x)$
 - $\bar{\phi}$ should act as an approx feature map for K i.e. for all $x,y \in \mathcal{X}$ $\langle \bar{\phi}(x), \bar{\phi}(y) \rangle =: \bar{K}(x,y) \approx K(x,y) = \langle \phi_K(x), \phi_K(y) \rangle$
- Note that landmarking and Nystrom do not seek to ensure that \widehat{K} or \widetilde{K} values approximate K but \overline{K} should approximate K values
- Why should such $\bar{\phi}$ even exist?

Random Feature Constructions

- Several popular Mercer kernels have a peculiar form $K(x,y) = \mathbb{E}_{\omega \sim \mathcal{D}_K}[K_{\omega}(x,y)]$
 - ω is an auxiliary variable (depending on the kernel, $\omega \in \mathbb{N}$, \mathbb{R} , \mathbb{R}^d)
 - \mathcal{D}_K is a distribution that depends on kernel K and known to us
 - K_{ω} is a very "simple" Mercer kernel, he Normalization constant $K_{\omega}(x,y) = \langle \phi_{\omega}(x), \phi_{\omega} |$ $\phi_{\omega}:\mathcal{X}\to\mathbb{R}$

needed to ensure $\langle \bar{\phi}(x), \bar{\phi}(y) \rangle \approx K(x, y)$

• Sample several $\omega_1, \dots, \omega_k$ and define the map

$$\bar{\phi}: x \mapsto \frac{1}{\sqrt{k}} \cdot \left[\phi_{\omega_1}(x), \dots, \phi_{\omega_k}(x) \right] \in \mathbb{R}^k$$

 Can theoretically prove that with high probability $\langle \bar{\phi}(x), \bar{\phi}(y) \rangle \approx K(x, y)$

Random Feature Constructions

Gaussian/Laplacian kernels

$$K(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{\boldsymbol{\omega} \sim \mathcal{D}_K} [\cos(\boldsymbol{\omega}^\mathsf{T} \mathbf{x}) \cos(\boldsymbol{\omega}^\mathsf{T} \mathbf{y})]$$
$$\phi_{\boldsymbol{\omega}} : \mathbf{x} \mapsto \cos(\boldsymbol{\omega}^\mathsf{T} \mathbf{x})$$

Note that auxiliary variable is a vector here $\pmb{\omega} \in \mathbb{R}^d$ Rahimi and Recht, Random Features for Large Scale Kernel Machines, NIPS 2007

- Intersection kernel
 Maji and Berg, Max-margin Additive Classifiers for Detect, ICCV 2009.
- Homogeneous kernels
 Vedaldi and Zisserman. Efficient Additive Kernels via Explicit Feature Maps, CVPR 2010
- Polynomial kernels
 K. and Karnick. Random Feature Maps for Dot Product Kernels. AISTATS 2012

Other kernel approximation approaches

- Use decision trees to compute similarity between two points and use that as kernel – extremely fast prediction
 Jose et al. Local Deep Kernel Learning, ICML 2013.
- Learn these kernel approximations in a task-dependent manner Perronnin et al. d Yan Liu. Large-scale Image Categorization with Explicit Data embedding, CVPR 2010.

PML with Kernels

Gaussian Processes

Priors and Posteriors

- How can we argue about priors and posteriors in an RKHS \mathcal{H}_K ?
- Details too advanced (covered in CS772, CS775, CS698X)
- Basic idea: argue about distributions over functions $f: \mathcal{X} \to \mathbb{R}$
- Gaussian processes is one such family of distributions $f \sim \mathrm{GP}(\mu,K)$ $\mu\colon \mathcal{X} \to \mathbb{R}$ is the *mean* function and κ is the covariance kernel
- What does it mean to sample a function?
- Think of sampling a very very long vector (imprecise way though)
- Let $|\mathcal{X}| = N < \infty$ with $\mathcal{X} = \{x^1, x^2, ..., x^N\}$
- Then can think of $f: \mathcal{X} \to \mathbb{R}$ as a vector in \mathbb{R}^N $f = [f(x^1), ..., f(x^N)]$

Gaussian Processes

- For $|\mathcal{X}| = N < \infty$, we say a function f is sampled from $\mathrm{GP}(\mu,K)$ if $f \sim \mathcal{N}(\mu,G)$ where $\mu \in \mathbb{R}^N$ is mean fn. and $G \in \mathbb{R}^{N \times N}$ with $G_{ij} = K\left(x^i, x^j\right)$
- Note that f need not be linear etc, can be very complex
- Gaussian processes popularly use a Gaussian kernel for K
- Note that the Gaussian kernel K forces f to be smooth i.e. if two points $x^i, x^j \in \mathcal{X}$ are close i.e. $\|x^i x^j\|_2$ is small then functions f that take very different values on these points get low prob.
- Exercise: verify this yourself
- Mean function is taken to be zero (unless we have other reasons)

- Solve a regression problem $\{x^i,y^i\}_{i=1,\dots,n}$, $x^i\in\mathcal{X},y^i\in\mathbb{R}$ and $n\ll N$
- Prior dist. (GP) $f \sim GP(0, K)$
- Likelihood dist. (Gaussian) $y^i|f \sim \mathcal{N}(f(x^i), \sigma^2)$
- ullet Note: GP makes sense even if ${\mathcal X}$ is set of vectors, images, text etc
- Can do regression over vectors, images as we did in kernel RR
- Let $\mathbf{y} = [y^1, ..., y^n]^\top \in \mathbb{R}^n$
- Using a very special property of Gaussians we can show $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, G_n + \sigma^2 \cdot I_n)$ where $\mathbf{0} \in \mathbb{R}^n$ and $G_n \in \mathbb{R}^{n \times n}$ is the Gram matrix of training data

Oct 18, 2017

- Solve If a vector $\mathbf{v} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if a vector $\mathbf{v} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $\mathbf{v}_S \sim \mathcal{N}(\boldsymbol{\mu}_S, \boldsymbol{\Sigma}_{S,S})$ Likelih $\boldsymbol{\Sigma}_{S,S} \in \mathbb{R}^{|S| \times |S|}$
 - \mathbf{y} is just a subvector of f sion over \mathbf{y} , \mathbf{s} , in
- Let $\mathbf{y} = [y, y^n]^{\mathsf{T}}$
- Using a very special property of Gaussians we can show $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, G_n + \sigma^2 \cdot I_n)$ where $\mathbf{0} \in \mathbb{R}^n$ and $G \in \mathbb{R}^{n \times n}$ is the Gram matrix of training of

where $\mathbf{0} \in \mathbb{R}^n$ and $G_n \in \mathbb{R}^{n \times n}$ is the Gram matrix of training data

according to a Gaussian, then

for every subset $S \subset [n]$, the

sub-vector $\mathbf{v}_S = [\mathbf{v}_i]_{i \in S} \in \mathbb{R}^{|S|}$ is

also a Gaussian vector!

- So we have $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, G_n + \sigma^2 \cdot I_n)$
- Now a new test point comes along $\tilde{x} \in \mathcal{X}$. Can we predict \tilde{y} ?
- Let $\tilde{\mathbf{y}} = [\mathbf{y}, \tilde{y}] \in \mathbb{R}^{n+1}$, G_{n+1} be the Gram matrix over $\{x^i\}_{i=1,\dots,n} \cup \tilde{x}$
- Previous slide gives us $\tilde{\mathbf{y}} \sim \mathcal{N}(\mathbf{0}, G_{n+1} + \sigma^2 \cdot I_{n+1})$
- Let $\tilde{\mathbf{g}} = [K(x^1, \tilde{x}), ..., K(x^n, \tilde{x})]^{\mathsf{T}} \in \mathbb{R}^n$
- Then we can show that

$$\mathbb{P}\left[\tilde{\mathbf{y}} \middle| \tilde{\mathbf{x}}, \left\{\mathbf{x}^{i}, \mathbf{y}^{i}\right\}_{i=1,\dots,n}\right] = \mathcal{N}(\tilde{\mu}, \tilde{\sigma}^{2})$$

$$\tilde{\mu} = \tilde{\mathbf{g}}^{\mathsf{T}}(G_{n} + \sigma^{2} \cdot I_{n})^{-1}\mathbf{y}$$

$$\tilde{\sigma}^{2} = K(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}) + \sigma^{2} - \tilde{\mathbf{g}}^{\mathsf{T}}(G_{n} + \sigma^{2} \cdot I_{n})^{-1}\tilde{\mathbf{g}}$$

- So we have $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, G_n + \sigma^2 \cdot I_n)$
- Now a new test point comes along $\tilde{x} \in \mathcal{X}$. Can we predict \tilde{y} ?
- Let $\tilde{\mathbf{y}} = [\mathbf{y}, \tilde{y}] \in \mathbb{R}^{n+1}$, G_{n+1} be the Gram matrix over
- Previous slide gives us $\tilde{\mathbf{y}} \sim \mathcal{N}(\mathbf{0}, G_{n+1})$
- Let $\tilde{\mathbf{g}} = [K(x^1, \tilde{x}), ..., K(x^n, \tilde{x})]^{\mathsf{T}} \in \mathbb{R}^n$
- Then we can show that

Predictive posterior

$$\mathbb{P}\left[\tilde{\mathbf{y}} \middle| \tilde{\mathbf{x}}, \left\{\mathbf{x}^{i}, \mathbf{y}^{i}\right\}_{i=1,\dots,n}\right] = \mathcal{N}(\tilde{\mu}, \tilde{\boldsymbol{x}}^{i})$$

$$\tilde{\mu} = \tilde{\mathbf{g}}^{\mathsf{T}}(G_{n} + \sigma^{2} \cdot I_{n})^{-1}\mathbf{y}$$

$$\tilde{\sigma}^{2} = K(\tilde{\mathbf{x}}, \tilde{\mathbf{x}}) + \sigma^{2} - \tilde{\mathbf{g}}^{\mathsf{T}}(G_{n} + \sigma^{2} \cdot I_{n})^{-1}\tilde{\mathbf{g}}$$

Verify that the mean $\tilde{\mu}$ is nothing but the kernel RR solution!

A few thoughts

- GP regression is a Bayesian counterpart to kernel RR
- Similar cost for storing model, making predictions
- GP gives additional information about variance in prediction just as Bayesian models usually do (ref. Bayesian linear regression)
- Can apply accelerated learning techniques to GPs as well
- Can use GPs to perform kernel dim-redn as well
- Just as we did online MAP, can do online GP as well
- Btw, can do online kernel SVM, online kernel RR as well ©
- Kernel perceptron is already online

Neural Networks

Disclaimers

- Field is progressing rapidly newer methods being proposed
- Some of the mentors, even some course students, more experienced with neural networks than the instructor
- Will cover very basics and essentials

- Consider the quadratic kernel $K_{\mathrm{quad}} = (\langle \mathbf{x}^1, \mathbf{x}^2 \rangle + 1)^2$ on $\mathcal{X} = \mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{\mathrm{quad}} = (\langle \mathbf{x}^1, \mathbf{x}^2 \, \rangle + 1)^2$ on $\mathcal{X} = \mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

- Consider the quadratic kernel $K_{ ext{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\phi_{\text{quad}}(\mathbf{x}) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$
- A linear model over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

Can represent any quadratic fn over **x**

- Consider the quadratic kernel $K_{ ext{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- The feature map for $K_{\underline{quad}}$ is ϕ_{quad} where for $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2)\in\mathbb{R}^2$

Training an SVM using GD/CD tunes these weights

$$= \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$$

over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

Can represent any quadratic fn over **x**

- Consider the quadratic kernel $K_{ ext{quad}} = (\langle \mathbf{x}^1, \mathbf{x}^2 \, \rangle + 1)^2$ on $\mathcal{X} = \mathbb{R}^2$
- The feature map for K_{quad} is ϕ_{quad} where for $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2)\in\mathbb{R}^2$

Training an SVM using GD/CD tunes these weights

 $) = \left[1, \sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2\right] \in \mathbb{R}^6$

over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

But not these weights

CS771: Intro to ML

Can represent any quadratic fn over **x**

- Consider the auadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$

Training an SVM using GD/CD tunes these weights

 K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2 \in \mathbb{R}^6$

over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

ND AND THE PROPERTY OF THE STATE OF THE STAT

Can represent any quadratic fn over **x**

- Consider the auadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- Th A 3 layer network $K_{
 m guad}$ is $\phi_{
 m guad}$ whe

Training an SVM using GD/CD tunes these weights

 K_{quad} is ϕ_{quad} where for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \mathbb{R}^2$ $\sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2 \in \mathbb{R}^6$

 $\langle \mathbf{w}, \phi_{\text{quad}}(\mathbf{x}) \rangle$

over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}^6$

Input Iayer

CS771: Intro to I

Can represent any quadratic fn over x

- Consider the auadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- A 3 layer network $K_{ ext{quad}}$ is $\phi_{ ext{quad}}$ where for $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2) \in \mathbb{R}^2$

Training an SVM using GD/CD tunes these weights

 $\sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2 \in \mathbb{R}^6$

over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}$

 $\langle \mathbf{v}, \phi_{\text{quad}}(\mathbf{x}) \rangle$ \mathbf{W}_6 W_1 \mathbf{W}_5 $\mathbf{w}_3 \mathbf{w}_4$ id id Sq Sq But not these weights

Input layer

Output

layer

Oct 18, 2017

Can represent any quadratic fn over **x**

- Consider the auadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- Th A 3 layer network K

 K_{quad} is ϕ_{quad} where for $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2)\in\mathbb{R}^2$

 $\sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2 \right] \in \mathbb{R}^6$

over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}$

Training an SVM using GD/CD tunes these weights

I/O layers are called "visible"

But not these weights

Input layer

Output

layer

Oct 18, 2017

CS771: Intro to I

Can represent any quadratic fn over **x**

- Consider the auadratic kernel $K_{\mathrm{quad}}=(\langle \mathbf{x}^1,\mathbf{x}^2 \, \rangle +1)^2$ on $\mathcal{X}=\mathbb{R}^2$
- Th A3 layer network $K_{ ext{quad}}$ is $\phi_{ ext{quad}}$ where for $\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2)\in\mathbb{R}^2$

 W_1

Training an SVM using GD/CD tunes these weights

 $\sqrt{2} \cdot \mathbf{x}_1, \mathbf{x}_1^2, \sqrt{2} \cdot \mathbf{x}_1 \cdot \mathbf{x}_2, \mathbf{x}_2^2, \sqrt{2} \cdot \mathbf{x}_2 \in \mathbb{R}^6$

over ϕ_{quad} is represented as a vector $\mathbf{w} \in \mathbb{R}$

I/O layers are called "visible"

But not these weights

 $\langle \mathbf{w}, \phi_{\text{quad}}(\mathbf{x}) \rangle$

 \mathbf{W}_6

id sq \times sq id

 $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$

Input layer

Output

layer

Hidden

layer

37

 \mathbf{X}_1 \mathbf{X}_2 ... \mathbf{X}_C

Oct 18, 2017

CS771: Intro to ML

Input

Input layer: no i/p

Hidden/output layer: i/p

from other neurons

Some input items can be a constant e.g. 1

CS771: Intro to ML

Activation

Input/output later: id

Hidden layer: non-linear

Input

Input layer: no i/p

Hidden/output layer: i/p

from other neurons

Some input items can be a constant e.g. 1

Oct 18, 2017

Output layer: final o/p Input/hidden layer: o/p

to other neurons

Activation

Input/output later: id

Hidden layer: non-linear

Input

Input layer: no i/p Hidden/output layer: i/p

from other neurons

Some input items can be a constant e.g. 1

n Neural Networks

Output layer: final o/p Input/hidden layer: o/p to other neurons

Activation

Input/output later: id

Hidden layer: non-linear

Input

Input layer: no i/p Hidden/output layer: i/p

from other neurons

Some input items can be a constant e.g. 1

n Neural Networks

Common "activation" fns f

Sigmoid

 \mathbf{w}_{d}

$$\sigma(t) = \frac{\exp(t)}{\exp(t) + 1}$$

Rectified Linear Unit (ReLU)

$$r(t) = [t]_+ = \max(t, 0)$$

$$tanh(t) = \frac{\exp(2t) - 1}{\exp(2t) + 1}$$

 $y = f\left(\sum_{i=1}^{\alpha} \mathbf{w}_i \cdot \mathbf{x}_i\right)$

 \mathbf{x}_1

 \mathbf{X}_2 ...

 \mathbf{x}_{d}

Output layer: final o/p Input/hidden layer: o/p to other neurons

Activation

Input/output later: id

Hidden layer: non-linear

Input

Input layer: no i/p Hidden/output layer: i/p

from other neurons

Some input items can be a constant e.g. 1

n Neural Networks

If there is no hidden layer then network is just a linear model, also called a **percepton**

$$tanh(t) = [t]_{+} = \max(t, 0)$$
$$tanh(t) = \frac{\exp(2t) - 1}{\exp(2t) + 1}$$

 \mathbf{x}_2 ... \mathbf{x}_d

Output layer: final o/p Input/hidden layer: o/p to other neurons

Activation

Input/output later: id

Hidden layer: non-linear

Input

Input layer: no i/p Hidden/output layer: i/p from other neurons

Some input items can be a constant e.g. 1

Sometimes output layer is given a non-id activation. Matter of convention

rks

Common "activation" fns fSigmoid

If there is no hidden layer then network is just a linear model, also called a **percepton**

$$tanh(t) = \lfloor t \rfloor_{+} = \max(t, 0)$$
$$tanh(t) = \frac{\exp(2t) - 1}{\exp(2t) + 1}$$

 \mathbf{w}_1 \mathbf{w}_2 ...

 $y = f\left(\sum_{i=1}^{\infty} \mathbf{w}_i \cdot \mathbf{x}_i\right)$

 \mathbf{x}_2 ... \mathbf{x}_d

 \mathbf{w}_{d}

- Just as in kernel slide, lower layers can be interpreted as working very hard to compute useful and informative features
- Last layer exploits all this hard work to learn a good model $y = \sum_{i=1}^{k_l} \mathbf{w}_i \cdot \phi(\mathbf{x}_i), k_l = \# \text{nodes in layer previous to output layer}$
- Note: output is linear in the features computed by lower layers

- Just as in I very hard t
- Last layer

$$y = \sum_{i=1}^{k_l} \mathbf{w}_i$$

• Note: outp

as working

ıt layer

^ layers

- Just as in I very hard t
- Last layer

$$y = \sum_{i=1}^{k_l} \mathbf{w}_i$$

• Note: outp

CS771: Intro to ML

Oct 18, 2017

- Just as in kernel slide, lower layers can be interpreted as working very hard to compute useful and informative features
- Last layer exploits all this hard work to learn a good model $y = \sum_{i=1}^{k_l} \mathbf{w}_i \cdot \phi(\mathbf{x}_i), k_l = \# \text{nodes in layer previous to output layer}$
- Note: output is linear in the features computed by lower layers
- Can have any no. of layers, any no. of nodes in each layer
- Having a linear activation function is useless since the entire network will then just learn a linear function in input
- ReLU networks always learn piecewise linear functions
- Try proving the above two results by induction on number of hidden layers (base case – no hidden layer) as an exercise

Oct 18, 20

CS771: Intro to M

- Kernel models work with a vast (often infinite) set of features.
 NN methods try to learn a small set of features from data itself
- Features are non-linear in kernels as well as NNs
- Why can't I have the nice operations of product, squaring, identity as "activation functions" as in the kernel slide?
- A variant called Sum-product Networks (SPN) does exactly this
- Neural networks are also universal
- A neural network with a single hidden layer with infinitely many nodes or else infinitely many layers each with finitely many nodes can learn any function of the input (details technical)
- Next class: how NNs are trained

Please give your Feedback

http://tinyurl.com/ml17-18afb

