V204: Das Trägheitsmoment - Korrektur

Ramona Kallo Evelyn Romanjuk

9. November 2017

1 Auswertung

1.1 Statische Methode

Tabelle 1: Temperatur differenzen des breiten Messingstabes $(T_2$ - $T_1)$, des Aluminium $(T_6$ - $T_5)$ und des Edelstahlstabes $(T_7$ - $T_8)$

t/s	$T_2 - T_1/K$	$T_6 - T_5/K$	$T_7 - T_8/K$
100	2,24	2,80	0,59
200	3,88	$3,\!34$	3,48
400	4,48	2,97	$7,\!35$
600	$4,\!37$	$2,\!59$	9,05
700	$4,\!29$	$2,\!47$	$9,\!56$

$$\begin{split} \Delta x_{\mathrm{Messing}} &= (0.03 \pm 0.00) \mathrm{m} \\ \Delta x_{\mathrm{Aluminium}} &= (0.03 \pm 0.00) \mathrm{m} \\ \Delta x_{\mathrm{Edelstahl}} &= (0.03 \pm 0.00) \mathrm{m} \end{split}$$

Zur Bestimmung des Wärmestroms $\frac{dQ}{dt}$ werden die folgenden Literaturwerte für die Wärmeleitkoeffizienten der verschiedenen Metalle verwendet:

$$\begin{split} \kappa_{\mathrm{Messing}} &= 120 \mathrm{W/mK} \\ \kappa_{\mathrm{Aluminium}} &= 237 \mathrm{W/mK} \\ \kappa_{\mathrm{Edelstahl}} &= 15 \mathrm{W/mK} \end{split}$$

Die Wärmeströme der Metalle für unterschiedliche Zeiten werden nun mit der Gleichung

$$\frac{dQ}{dt} = -\kappa \cdot A \cdot \frac{\Delta T}{\Delta x} \tag{1}$$

berechnet. Dabei werden die Werte für die Querschnittsfläche A aus der Versuchsanleitung[1, S. 3] entnommen. Es ergeben sich die folgenden Werte:

Tabelle 2: Wärmeströme von Messing $_{\rm breit},$ Aluminium und Edelstahl

t/s	$rac{dQ}{dt}/\mathrm{W}$				
	Messing	Aluminium	Edelstahl		
	$-7,23 \cdot 10^{-7}$	-1,061	-0,014		
200	$-1,25 \cdot 10^{-6}$	$-1,\!266$	-0,083		
400	$-1,44 \cdot 10^{-6}$	-1,126	-0,176		
600	$-1,41 \cdot 10^{-6}$	-0.98	-0,217		
700	$-1,38 \cdot 10^{-6}$	-0,936	-0,229		

1.2 Dynamische Methode

Für die Berechnung des Wärmeleitungskoeffizienten wird die Gleichung

$$\kappa = \frac{\rho c (\Delta x)^2}{2\Delta t \ln\left(\frac{A_{\text{nah}}}{A_{\text{fern}}}\right)} \tag{2}$$

genutzt, die dafür benötigten Amplituden sowie die Phasendifferenzen können aus der Wertetabelle des Datenloggers entnommen werden. Die Dichte und die Wärmekapazität für Edelstahl werden aus der Versuchsanleitung [1, S. 3] übernommen.

Tabelle 3: Gemessene Daten - Edelstahlstab

A_{nah}/K	$A_{\rm fern}/K$	$\ln \frac{A_{\mathrm{nah}}}{A_{\mathrm{fern}}}$	$\Delta t/s$
19,50	4,05	1,57	76
19,00	$4,\!66$	1,41	78
18,79	$4,\!67$	1,39	74
18,66	$4,\!47$	1,43	72
18,41	4,16	1,49	68

Es berechnen sich die folgenden Wärmeleitkoeffizienten:

$$\begin{split} \kappa_1 &= 12.07 \text{W/mK} \\ \kappa_2 &= 13.09 \text{W/mK} \\ \kappa_3 &= 14.00 \text{W/mK} \\ \kappa_4 &= 13.99 \text{W/mK} \\ \kappa_5 &= 14.21 \text{W/mK} \end{split}$$

Der Mittelwert wird mit der Gleichung

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{3}$$

und der zugehörige Fehler mit

$$\Delta \bar{x} = \frac{1}{\sqrt{N}} \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 (4)

berechnet.

Der experimentell gefundene Wärmeleitkoeffizient von Edelstahl

$$\kappa_{\mathrm{Edelstahl}} = (13.472\,\pm\,0.4)^{\mathrm{W}/\mathrm{mK}}$$

weicht mit -10.19% vom Literaturwert von $K=15 \rm W/mK$ ab. Weiterhin berechnen sich die Wellenlängen mit

$$\lambda = \sqrt{\frac{4\pi\kappa T}{\rho c}}. (5)$$

Hierbei wurden die Materialkonstanten aus der Versuchsanleitung genommen, die Periodendauer T beträgt 200s. Damit erhält man die folgenden Wellenlängen:

$$\begin{split} \lambda_1 &= 0.097 \mathrm{m} \\ \lambda_2 &= 0.1014 \mathrm{m} \\ \lambda_3 &= 0.1049 \mathrm{m} \\ \lambda_4 &= 0.1048 \mathrm{m} \\ \lambda_5 &= 0.1056 \mathrm{m} \\ \lambda &= (0.1027 \pm 0.0016) \mathrm{m} \end{split}$$

Die Frequenz beträgt zudem $f=\frac{1}{T}=5\cdot 10^{-3} \mathrm{Hz}$

Literatur

[1] TU Dortmund. Versuch W2: Wärmeleitung von Metallen. 2017.