Problem 1.

- (a) Considering \mathbb{C} as a \mathbb{R} -vector space, find a basis for \mathbb{C} .
- (b) Considering \mathbb{C} as a \mathbb{C} -vector space, find a basis for \mathbb{C} .
- (a) Proof. A basis for \mathbb{C} as a \mathbb{R} -vector space is $B = \{1, i\}$. This is shown to be a basis by the following: Let $a + bi \in \mathbb{C}$ then consider the linear combination a(1) + b(i) = a + bi as an arbitrary element of \mathbb{C} is a linear combination of the elements of B we have $\operatorname{Span}(B) = \mathbb{C}$. Lastly to show linear independence of B consider the linear combination a(1) + b(i) = 0 = 0 + 0i as two complex numbers are equal if and only if their real parts are equal and imaginary parts are equal we get a = 0 and b = 0. Thus B is a basis for \mathbb{C} as a \mathbb{R} -vector space.
- (b) Proof. A basis for \mathbb{C} as a \mathbb{C} -vector space is given by $B = \{1+i\}$. Let $a+bi \in \mathbb{C}$ then consider the linear combination $(\frac{a+b}{2} + \frac{b-a}{2}i)(1+i) = \frac{a+b}{2} + \frac{a+b}{2}i + \frac{b-a}{2}i \frac{b-a}{2} = a+bi$ as an arbitrary element of \mathbb{C} is a linear combination of the element of B we have $\mathrm{Span}(B) = \mathbb{C}$. Note that $\frac{a+b}{2} + \frac{b-a}{2}i \in C$ is a scalar as this is a \mathbb{C} -vector space. Lastly to show linear independence of B consider the linear combination $a+bi \in \mathbb{C}$ and $1+i \in B$ we have (a+bi)(1+i)=0 if and only if a+bi=0 as \mathbb{C} is a field hence no zero divisors.

Problem 2. Let V be a \mathbb{K} -vector space, and suppose that S_1, S_2 are subsets of V satisfying the following conditions:

- S_1 and S_2 are both finite.
- $S_1 \cap S_2 = \emptyset$.
- $S_1 \cup S_2$ is a linearly independent set.
- (a) Prove that $\operatorname{Span}(S_1 \cup S_2) = \operatorname{Span}(S_1) \oplus \operatorname{Span}(S_2)$.
- (b) What would change about the claim in (a) if $S_1 \cup S_2$ was not assumed to be linearly independent?
- (a) Proof. Assume that V is a \mathbb{K} -vector space, and that S_1, S_2 are as described. First I will show that $\operatorname{Span}(S_1) + \operatorname{Span}(S_2)$ is a direct sum. As $\operatorname{Span}(S_1), \operatorname{Span}(S_2)$ are both vector spaces we have that $\vec{0} \in \operatorname{Span}(S_1) + \operatorname{Span}(S_2) \neq \emptyset$. Now assume that $\vec{v} \in \operatorname{Span}(S_1) \cap \operatorname{Span}(S_2)$ then $\vec{v} \in \operatorname{Span}(S_1)$ and $\vec{v} \in \operatorname{Span}(S_2)$ so $v = k_1 \vec{s_1} + \ldots + k_n \vec{s_n}$ where $k_i \in \mathbb{K}$ and $\vec{s} \in S_1$ and $v = c_1 \vec{u_1} + \ldots + c_n \vec{u_n}$ where $c_i \in \mathbb{K}$ and $\vec{u_i} \in S_2$. Then $c_1 \vec{u_1} + \ldots + c_n \vec{u_n} + -(k_1 \vec{s_1} + \ldots + k_n \vec{s_n}) = c_1 \vec{u_1} + \ldots + c_n \vec{u_n} + (-k_1 \vec{s_1}) + \ldots + (-k_n \vec{s_n}) = \vec{0}$ but as $S_1 \cup S_2$ is linear independent and the previous equation is a linear combination of $S_1 \cup S_2$ we have that for each $c_i, k_i \in \mathbb{K}$ that $c_i = k_i = 0$ hence only $\vec{0} \in \operatorname{Span}(S_1) \cap \operatorname{Span}(S_2)$ which implies $\operatorname{Span}(S_1) + \operatorname{Span}(S_2)$ is a direct sum.

Now suppose $\vec{v} \in \operatorname{Span}(S_1 \cup S_2)$ then $\vec{v} = k_1 \vec{s_1} + \ldots + k_n \vec{s_n} + c_1 \vec{u_1} + \ldots + c_n \vec{c_n}$ where $k_i, c_i \in \mathbb{K}$ and $\vec{s_i} \in S_1$ and $\vec{u_i} \in S_2$. As $k_1 \vec{s_1} + \ldots + k_n \vec{s_n} \in \operatorname{Span}(S_1)$ and $c_1 \vec{u_1} + \ldots + c_n \vec{u_n} \in S_2$ \square

(b)

Problem 3. Let $V = \mathbb{Q}^4$, considered as a \mathbb{Q} -vector space, and let U be the subspace

$$U = \text{Span}(\mathbf{u_1} = (1, -1, 2, 1), \mathbf{u_2} = (2, -3, 6, 3)).$$

Extend the set $\{\mathbf{u_1}, \mathbf{u_2}\}$ into a basis for V. That is, find two vectors $\mathbf{v_1}, \mathbf{v_2} \in V$ so that

$$\{u_1,u_2,v_1,v_2\}$$

is a basis for V.

Proof.

Problem 4. Let $V = \mathcal{P}_3(\mathbb{R})$ be the \mathbb{R} -vector space of polynomials of degree 3 or less. Let U be the subspace (you can take this for granted)

$$U = \{ p(x) \in \mathcal{P}_3(\mathbb{R}) : p'(7) = 0 \}$$

where p'(x) is the derivative of p(x) and p'(7) is the derivative evaluated at x = 7. Find a basis for U.

Proof.

Problem 5. The classical "Inclusion-Exclusion Principle" states that, for two finite sets A_1, A_2 , the cardinality of the union satisfies:

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

Notice that we have a similar formula for vector spaces V_1, V_2 :

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$$

For three sets, A_1, A_2, A_3 , the Inclusion-Exclusion Principle says

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3|$$
$$-|A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3|$$
$$+|A_1 \cap A_2 \cap A_3|.$$

Give an example showing that, sadly, the following analogous formula does not hold for vector spaces V_1, V_2, V_3 :

$$\dim(V_1 + V_2 + V_3) = \dim(V_1) + \dim(V_2) + \dim(V_3)$$
$$-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3)$$
$$+ \dim(V_1 \cap V_2 \cap V_3).$$

HINT: CONSIDER SUBSPACES OF A FAMILIAR LOW-DIMENSIONAL VECTOR SPACE.