Free Theorems for Nested Types

ANONYMOUS AUTHOR(S)

1 SHORT CUT FUSION FOR ARBITRARY NESTED TYPES

Can take \emptyset ; $\alpha \vdash c$ with $[\![\emptyset]; \alpha \vdash c]\!]^{\operatorname{Set}} \rho = C$ for all ρ , i.e., can take c to denote a constant C. We then get a free theorem whose conclusion is $fold_H B \circ G \mu H in_H = G [\![\emptyset]; \alpha \vdash K]\!]^{\operatorname{Set}} B$.

THEOREM 1. Let \emptyset ; ϕ , $\alpha \vdash F : \mathcal{F}$, let \emptyset ; $\alpha \vdash K : \mathcal{F}$, and let ϕ ; $\emptyset \mid \emptyset \vdash g : \mathsf{Nat}^{\emptyset} (\mathsf{Nat}^{\alpha} F (\phi \alpha)) (\mathsf{Nat}^{\alpha} \mathbb{1} (\phi \alpha))$. If we let $H : [\mathsf{Set}, \mathsf{Set}] \to [\mathsf{Set}, \mathsf{Set}]$ be defined by

$$H f x = \llbracket \emptyset; \phi, \alpha \vdash F \rrbracket^{\operatorname{Set}} [\phi := f] [\alpha := x]$$

and let

$$G = \llbracket \phi; \emptyset \mid \emptyset \vdash g : \mathsf{Nat}^{\emptyset} (\mathsf{Nat}^{\alpha} F(\phi \alpha)) (\mathsf{Nat}^{\alpha} \mathbb{1} (\phi \alpha)) \rrbracket^{\mathsf{Set}}$$

then we have that, for every $B \in H[[\emptyset; \alpha \vdash K]]^{Set} \to [[\emptyset; \alpha \vdash K]]^{Set}$,

$$fold_{H} \, B \, (G \,\, \mu H \,\, in_{H}) = G \, \llbracket \emptyset ; \alpha \vdash K \rrbracket^{\mathsf{Set}} \, B$$

PROOF. We first note that the type of g is well-formed since \emptyset ; $\phi, \alpha \vdash F : \mathcal{F}$ so our promotion theorem gives that ϕ ; $\alpha \vdash F : \mathcal{F}$, and ϕ ; $\alpha \vdash \phi \alpha : \mathcal{F}$, so that ϕ ; $\emptyset \vdash \operatorname{Nat}^{\alpha} F(\phi \alpha) : \mathcal{T}$ and ϕ ; $\emptyset \vdash \operatorname{Nat}^{\alpha} \mathbb{1}(\phi \alpha) : \mathcal{T}$. Then ϕ ; $\emptyset \vdash \operatorname{Nat}^{\alpha} F(\phi \alpha) : \mathcal{F}$ and ϕ ; $\emptyset \vdash \operatorname{Nat}^{\alpha} \mathbb{1}(\phi \alpha) : \mathcal{F}$ also hold, and, finally, ϕ ; $\emptyset \vdash \operatorname{Nat}^{\emptyset}(\operatorname{Nat}^{\alpha} F(\phi \alpha))(\operatorname{Nat}^{\alpha} \mathbb{1}(\phi \alpha)) : \mathcal{T}$

Theorem ?? gives that, for any relation environment ρ and any $(a,b) \in [\![\phi,\alpha;\emptyset \vdash \emptyset]\!]^{\mathsf{Rel}}\rho = 1$, eliding the only possible instantiations of a and b gives that

$$(G(\pi_{1}\rho), G(\pi_{2}\rho)) \in [\![\phi; \emptyset \vdash \mathsf{Nat}^{\emptyset}(\mathsf{Nat}^{\alpha}F(\phi\alpha))(\mathsf{Nat}^{\alpha}\mathbb{1}(\phi\alpha))]\!]^{\mathsf{Rel}}\rho$$

$$= [\![\phi; \emptyset \vdash \mathsf{Nat}^{\alpha}F(\phi\alpha)]\!]^{\mathsf{Rel}}\rho \to [\![\phi; \emptyset \vdash \mathsf{Nat}^{\alpha}\mathbb{1}(\phi\alpha)]\!]^{\mathsf{Rel}}\rho$$

$$= [\![\phi; \emptyset \vdash \mathsf{Nat}^{\alpha}F(\phi\alpha)]\!]^{\mathsf{Rel}}\rho \to (\lambda A.1 \Rightarrow \lambda A.(\rho\phi)A)$$

$$= [\![\phi; \emptyset \vdash \mathsf{Nat}^{\alpha}F(\phi\alpha)]\!]^{\mathsf{Rel}}\rho \to (1 \Rightarrow \rho\phi)$$

$$= [\![\phi; \emptyset \vdash \mathsf{Nat}^{\alpha}F(\phi\alpha)]\!]^{\mathsf{Rel}}\rho \to \rho\phi$$

So if $(A, B) \in \llbracket \phi; \emptyset \vdash \mathsf{Nat}^{\alpha} F(\phi \alpha) \rrbracket^{\mathsf{Rel}} \rho$ then

$$(G(\pi_1\rho)A, G(\pi_2\rho)B) \in \rho\phi$$

Now note that

$$\llbracket \vdash \mathsf{fold}_F^K : \mathsf{Nat}^\emptyset \left(\mathsf{Nat}^\alpha F[\phi := K] \, K \right) \left(\mathsf{Nat}^\alpha ((\mu \phi. \lambda \alpha. F) \alpha) \, K \right) \rrbracket^\mathsf{Set} = \mathit{fold}_H$$

and consider the instantiation

$$\begin{array}{lll} A & = & in_H : H(\mu H) \Rightarrow \mu H \\ B & : & H[\![\emptyset;\alpha \vdash K]\!]^{\mathrm{Set}} \Rightarrow [\![\emptyset;\alpha \vdash K]\!]^{\mathrm{Set}} \\ \rho \phi & = & \langle fold_H B \rangle & \text{a graph of a natural transformation, defined in Enrico's notes} \end{array}$$

1:2 Anon.

(Note that all the types here are well-formed.) This gives

 $\begin{array}{rcl} \pi_1 \rho \phi & = & \mu H \\ \pi_2 \rho \phi & = & \llbracket \emptyset; \alpha \vdash K \rrbracket^{\mathsf{Set}} \\ \rho \phi & : & \mathsf{Rel}(\pi_1 \rho \phi, \pi_2 \rho \phi) \end{array}$

 $A : [\![\phi; \emptyset \vdash \mathsf{Nat}^{\alpha} F(\phi \alpha)]\!]^{\mathsf{Set}}(\pi_1 \rho)$ $B : [\![\phi; \emptyset \vdash \mathsf{Nat}^{\alpha} F(\phi \alpha)]\!]^{\mathsf{Set}}(\pi_2 \rho)$

since

$$A = in_{H} : H(\mu H) \Rightarrow \mu H$$

$$= [\![\emptyset; \phi, \alpha \vdash F]\!]^{\text{Set}} [\![\phi := \mu [\![\emptyset; \phi, \alpha \vdash F]\!]^{\text{Set}}] \Rightarrow \mu [\![\emptyset; \phi, \alpha \vdash F]\!]^{\text{Set}}$$

$$= [\![\emptyset; \phi, \alpha \vdash F]\!]^{\text{Set}} (\pi_{1}\rho) \Rightarrow [\![\emptyset; \phi, \alpha \vdash \phi\alpha]\!]^{\text{Set}} (\pi_{1}\rho)$$

$$= [\![\phi; \alpha \vdash F]\!]^{\text{Set}} (\pi_{1}\rho) \Rightarrow [\![\phi; \alpha \vdash \phi\alpha]\!]^{\text{Set}} (\pi_{1}\rho) \quad \text{Daniel's trick; now a theorem}$$

$$= [\![\phi; \emptyset \vdash \text{Nat}^{\alpha} F(\phi\alpha)]\!]^{\text{Set}} (\pi_{1}\rho)$$

We also have

$$\begin{split} (A,B) &= (in_H,B) &\in & \llbracket \phi; \emptyset \vdash \operatorname{Nat}^\alpha F \left(\phi\alpha\right) \rrbracket^{\operatorname{Rel}} \rho \\ &= & \lambda A. \llbracket \phi; \alpha \vdash F \rrbracket^{\operatorname{Rel}} \rho [\alpha := A] \Rightarrow \lambda A. (\rho\phi) A \\ &= & \lambda A. \llbracket \phi; \alpha \vdash F \rrbracket^{\operatorname{Rel}} [\phi := \langle fold_H B \rangle] [\alpha := A] \Rightarrow \langle fold_H B \rangle \\ &= & \lambda A. \llbracket \emptyset; \phi, \alpha \vdash F \rrbracket^{\operatorname{Rel}} [\phi := \langle fold_H B \rangle] [\alpha := A] \Rightarrow \langle fold_H B \rangle \\ &= & \llbracket \emptyset; \phi, \alpha \vdash F \rrbracket^{\operatorname{Rel}} \langle fold_H B \rangle \Rightarrow \langle fold_H B \rangle \\ &= & \langle \llbracket \emptyset; \phi, \alpha \vdash F \rrbracket^{\operatorname{Set}} (fold_H B) \rangle \Rightarrow \langle fold_H B \rangle \qquad \text{Graph Lemma} \\ &= & \langle map_H \left(fold_H B \right) \rangle \Rightarrow \langle fold_H B \rangle \end{aligned}$$

since if $(x,y) \in \langle map_H(fold_HB) \rangle$, i.e., if $map_H(fold_HB)x = y$, then $fold_HB(in_Hx) = By = B(map_H(fold_HB)x)$ by the definition of $fold_H$ as a (indeed, the unique) morphism from in_H to B. Thus,

$$(G(\pi_1\rho)A, G(\pi_2\rho)B) \in \langle fold_HB \rangle$$

i.e.,

$$fold_H B(G(\pi_1 \rho) in_H) = G(\pi_2 \rho) B$$

Since ϕ is the only free variable in G, this simplifies to

$$fold_H B(G \mu H in_H) = G \llbracket \emptyset; \alpha \vdash K \rrbracket^{\operatorname{Set}} B$$