Ozyegin University CS 321 Programming Languages Sample Problems on Lambda Calculus

1.	Apply one step of beta reduction on the following lambda terms, if possible. If there is no beta reduction possibility, write NORMAL FORM.
	$\bullet \ (\lambda x . x y z) abc \ \Rightarrow \ \underline{\hspace{1cm}}$
	$\bullet \ (\lambda w . \lambda p . p w) \ \Rightarrow \ \underline{\hspace{1cm}}$
	$\bullet \ (\lambda x . \lambda y . x (y x)) (\lambda w . \lambda v . w) (\lambda z . z) \ \Rightarrow \ \underline{\hspace{1cm}}$
	$\bullet \ (\lambda z . z (\lambda k . k) m) \ \Rightarrow \ \underline{\hspace{1cm}}$
	$\bullet \ (\lambda u . (\lambda x . x u) (\lambda y . u)) \ \Rightarrow \underline{\hspace{1cm}}$
	$\bullet \ (\lambda n . n n) (\lambda n . n n) \ \Rightarrow \underline{\hspace{1cm}}$
	$\bullet \ (\lambda g . (\lambda h . h) g) \ \Rightarrow \underline{\hspace{1cm}}$
2.	Reduce the following lambda term to its normal form. If a normal form does not exist, show that the term does not converge.

$$(\lambda x.\; \lambda y.\; x\; (y\; x))\; (\lambda w.\; \lambda v.\; w)\; (\lambda z.\; z)$$

9	Doduce	+ha	following	lambda	expression	+0 ;	ta normal	form
ა.	Reduce	tne	IOHOMING	rampga	expression	to 1	ts normai	iorm.

$$(\lambda f.\lambda m.\lambda p.m (f m p)) (\lambda y.\lambda z.y z) (\lambda w.w)$$

4. The following are the Church encodings for boolean values and conditional expression. Write down an encoding for logical *and*.

$$\mathbf{true} = \lambda a.\lambda b. \ a$$

$$\mathbf{false} = \lambda a. \lambda b. \ b$$

$$\mathbf{if} = \lambda c. \lambda t. \lambda e. \ c \ t \ e$$

$$\mathbf{and} = \underline{\hspace{1cm}}$$

5.	Using	the	encodings	below,	show	that	mult	3 2	is 6 .	

$$\begin{aligned} \mathbf{0} &= (\lambda f.\lambda x.x) \\ \mathbf{1} &= (\lambda f.\lambda x.fx) \\ \mathbf{2} &= (\lambda f.\lambda x.f(fx)) \\ \mathbf{3} &= (\lambda f.\lambda x.f(f(fx))) \\ \mathbf{mult} &= \lambda m.\lambda n.\lambda f.\lambda x.m(nf)x \end{aligned}$$