A weakly informative prior for resonance frequencies

Marnix Van Soom & Bart de Boer

MaxEnt 2021

l

[Wilson + 2014]

[Wilson + 2014]

[Littenberg and Cornish 2015]

[Wilson + 2014]

[Littenberg and Cornish 2015]

[Xu + 2019]

$$D = data$$

$$D = \text{data}$$

 $\mathbf{x} = \{x_1 \cdots x_K\}$
 $= K \text{ resonance frequencies}$

$$p(D, x) = \mathcal{L}(x) \; \pi(x)$$

$$p(D, \mathbf{x}) = \mathcal{L}(\mathbf{x}) \; \pi(\mathbf{x})$$

Assume $\mathcal{L}(x)$ is given

$$p(D, \mathbf{x}) = \mathcal{L}(\mathbf{x}) \; \pi(\mathbf{x})$$

- Assume $\mathcal{L}(x)$ is given
- \blacksquare Choose $\pi(x)$ subject to limited prior information

$$p(D, \mathbf{x}) = \mathcal{L}(\mathbf{x}) \ \pi(\mathbf{x})$$

- Assume $\mathcal{L}(x)$ is given
- **CHOOSE** $\pi(x)$ SUBJECT TO LIMITED PRIOR INFORMATION
 - Don't know prior estimates \hat{x}

$$p(D, \mathbf{x}) = \mathcal{L}(\mathbf{x}) \ \pi(\mathbf{x})$$

- Assume $\mathcal{L}(x)$ is given
- \blacksquare CHOOSE $\pi(x)$ SUBJECT TO LIMITED PRIOR INFORMATION
 - Don't know prior estimates \hat{x}
 - Don't know K

$$Z(K) = \int d^K x \, \mathcal{L}(x) \pi(x)$$

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

Most common choice in literature

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

- Most common choice in literature
- $K \text{ iid } x_k \in [a,b] \text{ with } global \text{ bounds}$

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

- Most common choice in literature
- $K \text{ iid } x_k \in [a, b] \text{ with } global \text{ bounds}$
- Label switching problem ?

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

- Most common choice in literature
- $K \text{ iid } x_k \in [a, b] \text{ with } global \text{ bounds}$
- Label switching problem £
 - Exchange symmetry

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

- Most common choice in literature
- $K \text{ iid } x_k \in [a, b] \text{ with } global \text{ bounds}$
- Label switching problem ?
 - Exchange symmetry
 - Frustrates calculating Z(K) [Celeux + 2018]

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

$$\pi_1(\mathbf{x}|a,b) = \prod_{k=1}^K h(x_k|a,b)$$

$$\pi_2(\boldsymbol{x}|\boldsymbol{a},\boldsymbol{b}) = \prod_{k=1}^K h(x_k|a_k,b_k)$$

$$\pi_2(\boldsymbol{x}|\boldsymbol{a},\boldsymbol{b}) = \prod_{k=1}^K h(x_k|a_k,b_k)$$

■ *K* independent $x_k \in [a_k, b_k]$ with *local* bounds (a, b)

$$\pi_2(\boldsymbol{x}|\boldsymbol{a},\boldsymbol{b}) = \prod_{k=1}^K h(x_k|a_k,b_k)$$

- K independent $x_k \in [a_k, b_k]$ with *local* bounds (a, b)
- Multiplet problem ∮

$$\pi_2(\boldsymbol{x}|\boldsymbol{a},\boldsymbol{b}) = \prod_{k=1}^K h(x_k|a_k,b_k)$$

- K independent $x_k \in [a_k, b_k]$ with *local* bounds (a, b)
- Multiplet problem ?
 - Need overlap for close frequencies

$$\pi_2(\boldsymbol{x}|\boldsymbol{a},\boldsymbol{b}) = \prod_{k=1}^K h(x_k|a_k,b_k)$$

- K independent $x_k \in [a_k, b_k]$ with *local* bounds (a, b)
- Multiplet problem ?
 - Need overlap for close frequencies
 - But this brings back the label switching problem

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k)$$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k)$$

■ Maximum entropy distribution

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k)$$

- Maximum entropy distribution
- Chain of coupled Pareto distributions

Pareto
$$(x|x_*, \lambda) = \frac{\lambda}{x} \left(\frac{x_*}{x}\right)^{\lambda}$$
 $(x_* \le x)$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k) \qquad \mathbf{x} \in \mathcal{R}_K(x_0)$$

- Maximum entropy distribution
- Chain of coupled Pareto distributions

Pareto
$$(x|x_*, \lambda) = \frac{\lambda}{x} \left(\frac{x_*}{x}\right)^{\lambda}$$
 $(x_* \le x)$

Supported by the ordered region

$$\mathcal{R}_K(x_0) = \{ \mathbf{x} | x_0 \le x_1 \le x_2 \le \dots \le x_K \}$$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k) \qquad \mathbf{x} \in \mathcal{R}_K(x_0)$$

Support
$$\mathcal{R}_3(x_0) = \{x | x_0 \le x_1 \le x_2 \le x_3\}$$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k) \qquad \mathbf{x} \in \mathcal{R}_K(x_0)$$

Pairwise prior distribution $\pi_3(x|\lambda)$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k) \qquad \mathbf{x} \in \mathscr{R}_K(x_0)$$

Pairwise posterior distribution $P_3(x|\lambda) \propto \mathcal{L}(x)\pi_3(x|\lambda)$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k) \qquad \mathbf{x} \in \mathscr{R}_K(x_0)$$

Pairwise posterior distribution $P_1(x|a,b) \propto \mathcal{L}(x)\pi_1(x|a,b)$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k) \qquad \mathbf{x} \in \mathscr{R}_K(x_0)$$

$$P_1(\mathbf{x}|a,b)$$
 vs. $P_3(\mathbf{x}|\lambda)$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k) \qquad \mathbf{x} \in \mathscr{R}_K(x_0)$$

$$P_1(\mathbf{x}|a,b)$$
 vs. $P_3(\mathbf{x}|\lambda)$

Label switching problem <

Multiplet problem 🗸

Ansatz: Jeffreys prior $m(x_k) \propto 1/x_k$

Ansatz: Jeffreys prior $m(x_k) \propto 1/x_k$

$$m(x) = \begin{cases} \prod_{k=1}^{K} \frac{1}{x_k} & x \in \mathcal{R}_K(x_0) \\ 0 & \text{else} \end{cases}$$

Ansatz: Jeffreys prior $m(x_k) \propto 1/x_k$

$$m(x) = \begin{cases} \prod_{k=1}^{K} \frac{1}{x_k} & x \in \mathcal{R}_K(x_0) \\ 0 & \text{else} \end{cases}$$

$$u_1 = \log(x_1/x_0)$$

$$u_2 = \log(x_2/x_1)$$

$$\dots$$

$$u_K = \log(x_K/x_{K-1})$$

Ansatz: Jeffreys prior $m(x_k) \propto 1/x_k$

$$m(x) = \begin{cases} \prod_{k=1}^{K} \frac{1}{x_k} & x \in \mathcal{R}_K(x_0) \\ 0 & \text{else} \end{cases}$$

$$\begin{array}{c} u_1 = \log(x_1/x_0) \\ u_2 = \log(x_2/x_1) \\ \dots \\ u_K = \log(x_K/x_{K-1}) \end{array}$$

$$m(u) = m(x(u)) \left| \frac{\mathrm{d}x}{\mathrm{d}u} \right| = \begin{cases} 1 & u \ge 0 \\ 0 & \text{else} \end{cases}$$

Normalize
$$m(u) = \begin{cases} 1 & u \ge 0 \\ 0 & \text{else} \end{cases}$$
 by constraining first moments $\langle u \rangle := \overline{u}$

Normalize
$$m(u) = \begin{cases} 1 & u \ge 0 \\ 0 & \text{else} \end{cases}$$
 by constraining first moments $\langle u \rangle := \overline{u}$

Minimize

$$D_{\mathrm{KL}}(\pi_3|m) = \int \mathrm{d}^K u \, \pi_3(u) \log \frac{\pi_3(u)}{m(u)}$$

subject to

$$\langle \boldsymbol{u} \rangle \equiv \int \mathrm{d}^K \boldsymbol{u} \, \boldsymbol{u} \pi_3(\boldsymbol{u}) := \overline{\boldsymbol{u}}$$

Normalize
$$m(u) = \begin{cases} 1 & u \ge 0 \\ 0 & \text{else} \end{cases}$$
 by constraining first moments $\langle u \rangle := \overline{u}$

Minimize

$$D_{\mathrm{KL}}(\pi_3|m) = \int \mathrm{d}^K u \, \pi_3(u) \log \frac{\pi_3(u)}{m(u)}$$

subject to

$$\langle u \rangle \equiv \int \mathrm{d}^K u \, u \, \pi_3(u) := \overline{u}$$

Solution:

$$\pi_3(\boldsymbol{u}|\boldsymbol{\lambda}) = \prod_{k=1}^K \mathsf{Exp}(u_k|\lambda_k) \qquad (\boldsymbol{u} \ge 0)$$

where the rates $\lambda_k = 1/\overline{u_k}$

Normalize
$$m(u) = \begin{cases} 1 & u \ge 0 \\ 0 & \text{else} \end{cases}$$
 by constraining first moments $\langle u \rangle := \overline{u}$

Minimize

$$D_{\mathrm{KL}}(\pi_3|m) = \int \mathrm{d}^K u \, \pi_3(u) \log \frac{\pi_3(u)}{m(u)}$$

subject to

$$\langle \boldsymbol{u} \rangle \equiv \int \mathrm{d}^K \boldsymbol{u} \, \boldsymbol{u} \pi_3(\boldsymbol{u}) := \overline{\boldsymbol{u}}$$

Solution:

$$\pi_3(\boldsymbol{u}|\boldsymbol{\lambda}) = \prod_{k=1}^K \mathsf{Exp}(u_k|\lambda_k) \qquad (\boldsymbol{u} \ge 0)$$

where the rates $\lambda_k = 1/\overline{u_k}$

Equivalent to Jaynes' *principle of maximum entropy* with m(u) serving as the invariant measure [Jaynes 1968]

Transform $\pi_3(u|\lambda)$ to x space and re-express λ

Transform $\pi_3(u|\lambda)$ to x space and re-express λ

$$u \to x: \begin{cases} x_1 = x_0 \exp\{u_1\} \\ x_2 = x_0 \exp\{u_1 + u_2\} \\ \dots \\ x_K = x_0 \exp\{u_1 + u_2 + \dots + u_K\} \end{cases}$$

Transform $\pi_3(u|\lambda)$ to x space and re-express λ

$$u \to x : \begin{cases} x_1 = x_0 \exp\{u_1\} \\ x_2 = x_0 \exp\{u_1 + u_2\} \\ \dots \\ x_K = x_0 \exp\{u_1 + u_2 + \dots + u_K\} \end{cases}$$

$$\pi_3(\mathbf{x}|\boldsymbol{\lambda}) = \pi_3(\mathbf{u}(\mathbf{x})|\boldsymbol{\lambda}) \Big| \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}\boldsymbol{x}} \Big| = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k)$$

Transform $\pi_3(u|\lambda)$ to x space and re-express λ

$$u \to x: \begin{cases} x_1 = x_0 \exp\{u_1\} \\ x_2 = x_0 \exp\{u_1 + u_2\} \\ \dots \\ x_K = x_0 \exp\{u_1 + u_2 + \dots + u_K\} \end{cases}$$

- $\pi_3(\mathbf{x}|\boldsymbol{\lambda}) = \pi_3(\mathbf{u}(\mathbf{x})|\boldsymbol{\lambda}) \Big| \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} \Big| = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k)$
- How to set **hyperparameters** $\lambda_k^{-1} = \overline{u_k} = \overline{\log x_k/x_{k-1}}$?

Transform $\pi_3(u|\lambda)$ to x space and re-express λ

$$u \to x: \begin{cases} x_1 = x_0 \exp\{u_1\} \\ x_2 = x_0 \exp\{u_1 + u_2\} \\ \dots \\ x_K = x_0 \exp\{u_1 + u_2 + \dots + u_K\} \end{cases}$$

$$\quad \ \ \pi_3(\mathbf{x}|\boldsymbol{\lambda}) = \pi_3(\mathbf{u}(\mathbf{x})|\boldsymbol{\lambda}) \Big| \tfrac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} \Big| = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k)$$

- How to set **hyperparameters** $\lambda_k^{-1} = \overline{u_k} = \overline{\log x_k/x_{k-1}}$?
 - Use identity: $\langle x_k \rangle \equiv \int \mathrm{d}^K x x_k \pi_3(x|\lambda) = \frac{\lambda_k}{\lambda_k 1} \langle x_{k-1} \rangle$

Transform $\pi_3(u|\lambda)$ to x space and re-express λ

$$u \to x: \begin{cases} x_1 = x_0 \exp\{u_1\} \\ x_2 = x_0 \exp\{u_1 + u_2\} \\ \dots \\ x_K = x_0 \exp\{u_1 + u_2 + \dots + u_K\} \end{cases}$$

$$\pi_3(\mathbf{x}|\mathbf{\lambda}) = \pi_3(\mathbf{u}(\mathbf{x})|\mathbf{\lambda}) \left| \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}} \right| = \prod_{k=1}^K \mathsf{Pareto}(x_k|x_{k-1},\lambda_k)$$

- How to set **hyperparameters** $\lambda_k^{-1} = \overline{u_k} = \overline{\log x_k/x_{k-1}}$?
 - Use identity: $\langle x_k \rangle \equiv \int \mathrm{d}^K x x_k \pi_3(x|\lambda) = \frac{\lambda_k}{\lambda_k 1} \langle x_{k-1} \rangle$
 - Thus:

$$\lambda_k = \frac{\overline{x_k}}{\overline{x_k} - \overline{x_{k-1}}}$$

Convenient parametrization:

$$\pi_3(x|\overline{x_0})$$
 where $\overline{x_0} \equiv (x_0, \overline{x_1}, \overline{x_2}, \cdots, \overline{x_K})$

Convenient parametrization:

$$\pi_3(\mathbf{x}|\overline{\mathbf{x_0}})$$
 where $\overline{\mathbf{x_0}} \equiv (x_0, \overline{x_1}, \overline{x_2}, \cdots, \overline{x_K})$

- **Inference insensitive** to values of the hyperparameters $\overline{x_0}$
 - Maximum entropy: weak inductive bias
 - Heavy tails
 - Terrible sample statistics $\frac{1}{n} \sum_{i} x_k^{(i)} \rightarrow \overline{x_k}$

Convenient parametrization:

$$\pi_3(\mathbf{x}|\overline{\mathbf{x_0}})$$
 where $\overline{\mathbf{x_0}} \equiv (x_0, \overline{x_1}, \overline{x_2}, \cdots, \overline{x_K})$

- **Inference insensitive** to values of the hyperparameters $\overline{x_0}$
 - Maximum entropy: weak inductive bias
 - Heavy tails
 - Terrible sample statistics $\frac{1}{n} \sum_{i} x_k^{(i)} \rightarrow \overline{x_k}$
- **Sampling** trivial: $u \rightarrow x$

Convenient parametrization:

$$\pi_3(\mathbf{x}|\overline{\mathbf{x_0}})$$
 where $\overline{\mathbf{x_0}} \equiv (x_0, \overline{x_1}, \overline{x_2}, \cdots, \overline{x_K})$

- **Inference insensitive** to values of the hyperparameters $\overline{x_0}$
 - Maximum entropy: weak inductive bias
 - Heavy tails
 - Terrible sample statistics $\frac{1}{n} \sum_{i} x_k^{(i)} \rightarrow \overline{x_k}$
- **Sampling** trivial: $u \rightarrow x$
- "Consistent"
 - Marginalizing out higher frequencies \equiv having set up $\pi_3(x|\overline{x_0})$ without knowledge of those frequencies

Convenient parametrization:

$$\pi_3(\mathbf{x}|\overline{\mathbf{x_0}})$$
 where $\overline{\mathbf{x_0}} \equiv (x_0, \overline{x_1}, \overline{x_2}, \cdots, \overline{x_K})$

- **Inference insensitive** to values of the hyperparameters $\overline{x_0}$
 - Maximum entropy: weak inductive bias
 - Heavy tails
 - Terrible sample statistics $\frac{1}{n} \sum_{i} x_k^{(i)} \rightarrow \overline{x_k}$
- **Sampling** trivial: $u \rightarrow x$
- "Consistent"
 - Marginalizing out higher frequencies \equiv having set up $\pi_3(x|\overline{x_0})$ without knowledge of those frequencies
- Scale invariant: $\pi_3(cx|\overline{x_0}) = f(c)\pi_3(x|\overline{x_0})$ [Newman 2005]

Compare the $\pi_i(\mathbf{x}|\cdot)$ candidates on a simple inference task.

Compare the $\pi_i(\mathbf{x}|\cdot)$ candidates on a simple inference task.

- Measure resonance frequencies of the human vocal tract
- Five representative vowel sounds taken from the CMU ARCTIC database [Kominek and Black 2004]
- $D \in \{\text{shore}, \text{that}, \text{you}, \text{little}, \text{until}\}$
- Compare $Z_i(K)$ and $H_i(K)$ for each D and $i \in \{1, 2, 3\}$

Compare the $\pi_i(\mathbf{x}|\cdot)$ candidates on a simple inference task.

Figure: Comparison of π_1 , π_2 and π_3 in terms of the marginal priors $\pi_i(x_k|\cdot)$ for the case K:=3. The marginal $\pi_i(x_k|\cdot)$ is obtained by integrating out the two other frequencies; for example, $\pi_i(x_1|\cdot) = \iint \mathrm{d}x_2\,\mathrm{d}x_3\,\pi_i(x|\cdot)$. The pdfs are shown on a common log scale and are scaled by the appropriate Jacobian determinant $|\mathrm{d}x_k/\mathrm{d}\log x_k| = x_k$.

$\pi_1(x|\cdot)$ is excluded for $K \ge 4$

Compare the $\pi_i(\mathbf{x}|\cdot)$ candidates on a simple inference task.

Figure: (a) Model selection in Experiment I (top row) and Experiment II (bottom row). (b) In Experiment I, π_2 and π_3 are compared in terms of evidence $\lceil \log Z_i(K) \rceil$ and uninformativeness $\lceil H_i(K) \rceil$ for each (D,K). The arrows point from π_2 to π_3 and are color-coded by the value of K. For small values of K, the arrow lengths are too small to be visible on this scale.

)

Compare the $\pi_i(\mathbf{x}|\cdot)$ candidates on a simple inference task.

Figure: The VTR problem for the case (D := until, K := 10). Left panel: The data D, i.e., the quasi-periodic steady-state part consisting of 3 highly correlated pitch periods. Right panel: Inferred VTR frequency estimates $\{\hat{x}_k\}_{k=1}^K$ for K := 10 at 3 sigma. They describe the power spectral density of the vocal tract transfer function $|T(x)|^2$, represented here by 25 posterior samples and compared to the Fast Fourier Transform (FFT) of D. All \hat{x}_k are well resolved and most have error bars too small to be seen on this scale.

Compare the $\pi_i(\mathbf{x}|\cdot)$ candidates on a simple inference task.

Conclusions:

- 1. π_1 can't be used for $K \ge 4$
- 2. π_2 dominated by π_3 in terms of **evidence** $Z_i(K)$
- 3. π_2 about as uninformative as π_3 in terms of the **information** $H_i(K)$
- 4. π_3 can push K further

- The prior facilitates model selection problems in which the number *K* of resonance frequencies is unknown by enabling the use of more robust evidence-based methods, even in the presence of multiplets of arbitrary order.
 - 1. Solves label switching problem
 - 2. Solves multiplet problem

- The prior facilitates model selection problems in which the number *K* of resonance frequencies is unknown by enabling the use of more robust evidence-based methods, even in the presence of multiplets of arbitrary order.
 - 1. Solves label switching problem
 - 2. Solves multiplet problem
- The prior
 - 1. is in the exponential family,
 - 2. encodes a weakly inductive bias,
 - 3. provides a reasonable density everywhere,
 - 4. is easily parametrizable,
 - 5. is easy to sample from.

That's enough! Meant to be overwhelmed.

- The prior facilitates model selection problems in which the number *K* of resonance frequencies is unknown by enabling the use of more robust evidence-based methods, even in the presence of multiplets of arbitrary order.
 - 1. Solves label switching problem
 - 2. Solves multiplet problem
- The prior
 - 1. is in the exponential family,
 - 2. encodes a weakly inductive bias,
 - 3. provides a reasonable density everywhere,
 - 4. is easily parametrizable,
 - 5. is easy to sample from.

That's enough! Meant to be overwhelmed.

- The prior is valid for any collection of scale variables which are intrinsically ordered.
 - Does it apply to modeling spectra directly?

References I

- Celeux, Gilles, Kaniav Kamary, Gertraud Malsiner-Walli, Jean-Michel Marin, and Christian P. Robert (2018). "Computational Solutions for Bayesian Inference in Mixture Models". In: arXiv:1812.07240 [stat].
- Jaynes (1968). "Prior Probabilities". In: *IEEE Transactions on Systems Science and Cybernetics* 4.3, pp. 227–241.
- Kominek, John and Alan W Black (2004). "The CMU Arctic Speech Databases". In: Fifth ISCA Workshop on Speech Synthesis.
- Littenberg, Tyson B. and Neil J. Cornish (2015). "Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise". In: *Physical Review D* 91.8, p. 084034.
- Newman, M. E. J. (2005). "Power Laws, Pareto Distributions and Zipf's Law". In: *Contemporary Physics* 46.5, pp. 323–351.
- Wilson, Andrew Gordon+ (2014). "Bayesian Inference for NMR Spectroscopy with Applications to Chemical Quantification". In: arXiv:1402.3580 [stat].
- Xu, K., G. Marrelec, S. Bernard, and Q. Grimal (2019).
 - "Lorentzian-Model-Based Bayesian Analysis for Automated Estimation of Attenuated Resonance Spectrum". In: *IEEE Transactions on Signal Processing* 67.1, pp. 4–16.