# Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Danni Peng<sup>1, 2</sup>, Sinno Jialin Pan<sup>1</sup>, Jie Zhang<sup>1</sup>, Anxiang Zeng<sup>1</sup>

<sup>1</sup>Nanyang Technological University, Singapore <sup>2</sup>Alibaba-NTU Singapore Joint Research Institute, Singapore





#### Introduction

- Why it is important to periodically update the Recommender System (RS) model?
  - To capture the latest trends (e.g., interest drift of user, change in item popularity)
  - To better serve/predict for the next period



#### Introduction

- How to update the RS model?
  - Incremental Update update the model using only the newly arrived data



- Incremental update is widely adopted in industry due to:
  - a) better training efficiency the amount of training data is relatively small
  - b) better **prediction accuracy** the short-term user interests can be well captured

#### Introduction

The Problem of Forgetting for RS Incremental Update



Key Objective:

Better prediction performance for the next period

Key Challenge:

Extract and retain past knowledge that is especially useful for the next period's predictions

#### **Related Work**

- Sample-based Approach [Diaz-Aviles et al. 2012; Wang et al. 2018; Zhao et al. 2020]
  - Reuse the **past samples** for the current training by <u>maintaining a reservoir</u>
  - Key Limitation:
     Individual samples can <u>hardly represent the big picture</u>

Voir  $SS_{his}$   $SS_{new}$   $SS_{new}$ 

Reservoir Sampling. Figure cited from Zhao et al. 2020

- Model-based Approach [Wang et al. 2020; Mi et al. 2020; Zhang et al. 2020]
  - Extract knowledge from the **past model** via <u>distillation</u> or <u>model fusion</u>
  - Key Limitation:
    - Only consider transfer between two consecutive periods
    - The potential of <u>long-term sequential information</u> is unexplored



Model Fusion. Figure cited from Zhang et al. 2020

#### **Problem Definition**

Conventional Incremental Update

 $T_t$  – the t-th period

 $D_t$  – the dataset collected from  $T_t$ 

 $\Theta_t$  – the model of the t-th period, obtained by minimizing loss on  $D_t$ , initializing from  $\Theta_{t-1}$ :

$$\Theta_t = \operatorname*{arg\,min}_{\Theta} \mathcal{L}(\Theta|D_t, \Theta_{t-1})$$

- Without any post-processing, the updated model  $\Theta_t$  is directly deployed to serve for period  $T_{t+1}$
- Suffer from the **overfitting** and **forgetting** issues



• Adaptive Sequential Model Generation (ASMG) Framework

#### Motivation:

- The sequence of incrementally updated models are <u>highly representative of the</u> <u>respective periods</u>
- Mining the temporal trends exist in this sequence may help to derive a better model for the next period's serving



• Adaptive Sequential Model Generation (ASMG) Framework

 $\mathcal{M}_t$  – the meta model generator at the t-th period

 $\Theta_{1:t}$  – the sequence of incrementally updated models

 $\Theta_t^*$  – the output model used to serve for  $T_{t+1}$ 

The output model  $\Theta_t^*$  is generated by:

$$\Theta_t^* = \mathcal{M}_t(\Theta_{1:t})$$



• Adaptive Sequential Model Generation (ASMG) Framework

How to design and train the meta generator?

To attain two desired properties:

- Good capability of sequential modelling
   → Network Design
- Stable performance of producing a good model for the next period's serving
   → Optimization Process



• Adaptive Sequential Model Generation (ASMG) Framework

- To extract <u>past knowledge that is especially</u> <u>useful</u> for the next period's serving
- We update the parameters of the meta generator  $\omega_t$  by <u>optimizing the output</u> <u>model towards the next period's data</u>:

$$\omega_{t+1} = \underset{\omega}{\operatorname{arg \, min}} \mathcal{L}(\Theta_t^* | D_{t+1}, \omega_t)$$
$$= \underset{\omega}{\operatorname{arg \, min}} \mathcal{L}(\mathcal{M}_{\omega}(\Theta_{1:t}) | D_{t+1}, \omega_t)$$



## **Proposed Method** – GRU Meta Generator

- GRU Meta Generator Network Design
  - At each step  $i \in \{1, ..., t\}$ , the hidden state  $h_i \in \mathbb{R}^d$  is computed from the previous step hidden state  $h_{i-1} \in \mathbb{R}^d$  and  $\theta \in \mathbb{R}$  of the current step input model  $\Theta_i \in \mathbb{R}^n$ :

$$r_{i} = \sigma(W_{r} \cdot [h_{i-1}, \theta]),$$

$$z_{i} = \sigma(W_{z} \cdot [h_{i-1}, \theta]),$$

$$\tilde{h}_{i} = \tanh(W_{\tilde{h}} \cdot [r_{i} \odot h_{i-1}, \theta]),$$

$$h_{i} = (1 - z_{i}) \odot h_{i-1} + z_{i} \odot \tilde{h}_{i},$$

- The output parameter  $\theta^* \in \mathbb{R}$  of the final serving model  $\Theta_i^* \in \mathbb{R}^n$  at step i is obtained from the respective hidden state  $h_i$  via a linear transformation:

$$\theta^* = W \cdot h_i + b$$

## **Proposed Method** – GRU Meta Generator

- GRU Meta Generator Training Strategy 1
  - The computation time of GRUs increases linearly with sequence length
  - To improve training efficiency while preserving long-term memory, train the GRU meta generator on a **fixed-length sequence** by **continuing on a previously learned hidden state**
  - When training  $\mathcal{M}_{t+1}$ , we take in a sequence of k most recent models  $\Theta_{t-(k-1):t}$  as inputs, and use a previously learned hidden state  $h_{t-k}$  as the initial hidden state:

$$\omega_{t+1} = \underset{\omega}{\operatorname{arg \, min}} \mathcal{L}(\Theta_t^* | D_{t+1}, \omega_t)$$

$$= \underset{\omega}{\operatorname{arg \, min}} \mathcal{L}(\mathcal{M}_{\omega}(\Theta_{t-(k-1):t}, h_{t-k}) | D_{t+1}, \omega_t)$$

# **Proposed Method** – GRU Meta Generator

- GRU Meta Generator Training Strategy 2
  - To ensure more accurate sequential modeling, further train the meta generator **on multiple periods' data concurrently**
  - When trianing  $\mathcal{M}_{t+1}$ , instead of optimizing  $\Theta_i^*$  towards  $D_{t+1}$  only, we optimize all  $\{\Theta_i^*\}_{i=t-(k-1)}^t$  towards all  $\{D_{i+1}\}_{i=t-(k-1)}^t$  concurrently:

$$\omega_{t+1} = \underset{\omega}{\operatorname{arg \,min}} \sum_{i=t-(k-1)}^{t} \lambda_{i} \mathcal{L}(\Theta_{i}^{*}|D_{i+1}, \omega_{t})$$

$$= \underset{\omega}{\operatorname{arg \,min}} \sum_{i=t-(k-1)}^{t} \lambda_{i} \mathcal{L}(\mathcal{M}_{\omega}(\Theta_{t-(k-1):i}, h_{t-k})|D_{i+1}, \omega_{t})$$

where  $\lambda_i$  is computed from a linear decay function  $\lambda_{t-(k-j)} = \frac{j}{\sum_{j'=1}^k j'}$  for  $j \in \{1, 2, ..., k\}$  to assign greater weight to the more recent data

## **Proposed Method** – ASMG-GRU



# **Proposed Method** – Instantiate on Embedding&MLP Base Model



## **Experiments** – Settings

#### Datasets

|                    | Dataset             | Users  | Items      | Categories | Samples   |
|--------------------|---------------------|--------|------------|------------|-----------|
| Public datasets    | $\overline{}$ Tmall | 49,986 | 43,571     | 634        | 6,094,202 |
|                    | Sobazaar            | 17,126 | 24,785     | -          | 1,685,320 |
|                    | MovieLens           | 43,181 | $51,\!142$ | 20         | 6,840,091 |
| Industrial dataset | _ Lazada            | 10,000 | $43,\!878$ | 3,860      | 6,659,828 |

#### Baselines

IU – Conventional incremental update

**BU-w** – Batch update using the most recent w periods of data

**SPMF** – A sample-based approach

IncCTR – A model-basd approach that applies knowledge distillation across two consecutive models

**SML** – A model based approach that learns to fuse two consecutive models

SML-MF - SML instantiated on Matrix Factorization (MF) base model

**ASMG-linear** – A meta generator that linearly combines the sequence of models, i.e.,  $\Theta_t^* = \sum_{i=t-(k-1)}^t \alpha_i \Theta_i$ 

**ASMG-GRU** – Our proposed method

## **Experiments** – Comparison with Baselines

| M-111          | Tmall               |        | Sobazaar            |        | MovieLens           |        | Lazada              |        |
|----------------|---------------------|--------|---------------------|--------|---------------------|--------|---------------------|--------|
| Method         | AUC ↑               | imp%   |
| IU             | $0.8180 \pm 0.0007$ | -      | $0.7998 \pm 0.0007$ | -      | $0.7494 \pm 0.0002$ | -      | $0.6381 \pm 0.0001$ | -      |
| BU-3           | $0.8107 \pm 0.0009$ | -0.89% | $0.7913 \pm 0.0009$ | -1.06% | $0.7379 \pm 0.0003$ | -1.53% | $0.6332 \pm 0.0002$ | -0.77% |
| BU-5           | $0.8002 \pm 0.0009$ | -2.18% | $0.7824 \pm 0.0012$ | -2.18% | $0.7280 \pm 0.0005$ | -2.86% | $0.6287 \pm 0.0004$ | -1.47% |
| BU-7           | $0.7938 \pm 0.0005$ | -2.96% | $0.7781 \pm 0.0007$ | -2.71% | $0.7212 \pm 0.0003$ | -3.76% | $0.6203 \pm 0.0002$ | -2.79% |
| SPMF           | $0.8187 \pm 0.0006$ | 0.09%  | $0.8007 \pm 0.0004$ | 0.11%  | $0.7511 \pm 0.0002$ | 0.23%  | $0.6381 \pm 0.0002$ | 0.00%  |
| IncCTR         | $0.8190 \pm 0.0007$ | 0.12%  | $0.8009 \pm 0.0006$ | 0.14%  | $0.7502 \pm 0.0003$ | 0.11%  | $0.6388 \pm 0.0003$ | 0.11%  |
| SML            | $0.8194 \pm 0.0007$ | 0.17%  | $0.8021 \pm 0.0012$ | 0.29%  | $0.7522 \pm 0.0009$ | 0.37%  | $0.6416 \pm 0.0011$ | 0.55%  |
| SML-MF         | $0.7628 \pm 0.0013$ | -6.75% | $0.7782 \pm 0.0017$ | -2.70% | $0.7242 \pm 0.0012$ | -3.36% | $0.6100 \pm 0.0016$ | -4.40% |
| ASMG-Linear    | $0.8190 \pm 0.0006$ | 0.12%  | $0.8002 \pm 0.0008$ | 0.05%  | $0.7524 \pm 0.0002$ | 0.40%  | $0.6390 \pm 0.0001$ | 0.14%  |
| ASMG-GRUsingle | $0.8241 \pm 0.0010$ | 0.75%  | $0.8055 \pm 0.0017$ | 0.71%  | $0.7539 \pm 0.0009$ | 0.60%  | $0.6439 \pm 0.0005$ | 0.91%  |
| ASMG-GRUmulti  | $0.8289 \pm 0.0010$ | 1.33%  | $0.8108 \pm 0.0017$ | 1.38%  | $0.7564 \pm 0.0009$ | 0.93%  | $0.6452 \pm 0.0005$ | 1.11%  |
|                | LogLoss ↓           | imp%   |
| IU             | $0.5382 \pm 0.0011$ | -      | $0.5466 \pm 0.0017$ | -      | $0.5871 \pm 0.0002$ | -      | $0.4327 \pm 0.0001$ | -      |
| BU-3           | $0.5518 \pm 0.0009$ | -2.53% | $0.5536 \pm 0.0013$ | -1.28% | $0.5949 \pm 0.0004$ | -1.33% | $0.4342 \pm 0.0001$ | -0.35% |
| BU-5           | $0.5615 \pm 0.0015$ | -4.33% | $0.5653 \pm 0.0009$ | -3.42% | $0.6056 \pm 0.0007$ | -3.15% | $0.4361 \pm 0.0003$ | -0.79% |
| BU-7           | $0.5732 \pm 0.0012$ | -6.50% | $0.5783 \pm 0.0017$ | -5.80% | $0.6105 \pm 0.0004$ | -3.99% | $0.4379 \pm 0.0002$ | -1.20% |
| SPMF           | $0.5220 \pm 0.0007$ | 3.01%  | $0.5425 \pm 0.0005$ | 0.75%  | $0.5857 \pm 0.0001$ | 0.24%  | $0.4327 \pm 0.0001$ | 0.00%  |
| IncCTR         | $0.5344 \pm 0.0010$ | 0.71%  | $0.5458 \pm 0.0007$ | 0.15%  | $0.5865 \pm 0.0003$ | 0.10%  | $0.4321 \pm 0.0001$ | 0.14%  |
| SML            | $0.5198 \pm 0.0009$ | 3.42%  | $0.5418 \pm 0.0017$ | 0.88%  | $0.5843 \pm 0.0008$ | 0.48%  | $0.4309 \pm 0.0003$ | 0.42%  |
| SML-MF         | $0.5822 \pm 0.0019$ | -8.18% | $0.5713 \pm 0.0021$ | -4.52% | $0.6106 \pm 0.0014$ | -4.00% | $0.4390 \pm 0.0005$ | -1.46% |
| ASMG-Linear    | $0.5226 \pm 0.0012$ | 2.90%  | $0.5430 \pm 0.0013$ | 0.66%  | $0.5840 \pm 0.0002$ | 0.53%  | $0.4314 \pm 0.0000$ | 0.30%  |
| ASMG-GRUsingle | $0.5154 \pm 0.0018$ | 4.24%  | $0.5370 \pm 0.0017$ | 1.76%  | $0.5828 \pm 0.0011$ | 0.73%  | $0.4304 \pm 0.0003$ | 0.53%  |
| ASMG-GRUmulti  | $0.5079 \pm 0.0018$ | 5.63%  | $0.5309 \pm 0.0017$ | 2.87%  | $0.5806 \pm 0.0011$ | 1.11%  | $0.4299 \pm 0.0003$ | 0.65%  |

- Performance drops as window size increases.
- Model-based approach performs better than the sample-based approach.
- GRU meta generator
   design is better than its
   linear counterpart in
   terms of modelling the
   sequential patterns.

Average performance over 7 test periods

#### **Experiments** – Comparison with Baselines



Disentangled performance over 7 test periods

# **Experiments** – Ablation Study

Variants of ASMG-GRU



# **Experiments** – Ablation Study

Prediction Performance

| Variant        | Tmall  |           | Sobazaar |           | MovieLens |           | Lazada |           |
|----------------|--------|-----------|----------|-----------|-----------|-----------|--------|-----------|
|                | AUC ↑  | LogLoss ↓ | AUC ↑    | LogLoss ↓ | AUC ↑     | LogLoss ↓ | AUC ↑  | LogLoss ↓ |
| ASMG-GRUfull   | 0.8267 | 0.5108    | 0.8083   | 0.5323    | 0.7565    | 0.5811    | 0.6452 | 0.4299    |
| ASMG-GRUzero   | 0.8224 | 0.5162    | 0.8079   | 0.5343    | 0.7550    | 0.5818    | 0.6440 | 0.4303    |
| ASMG-GRUunif   | 0.8284 | 0.5102    | 0.8091   | 0.5324    | 0.7563    | 0.5811    | 0.6449 | 0.4300    |
| ASMG-GRUsingle | 0.8241 | 0.5154    | 0.8055   | 0.5370    | 0.7539    | 0.5828    | 0.6439 | 0.4304    |
| ASMG-GRUmulti  | 0.8289 | 0.5079    | 0.8108   | 0.5309    | 0.7564    | 0.5806    | 0.6452 | 0.4299    |

Average performance over 7 test periods

Computation Efficiency

|               | Tmall | Sobazaar | MovieLens | Lazada |
|---------------|-------|----------|-----------|--------|
| ASMG-GRUfull  | 93.6  | 23.1     | 59.3      | 42.6   |
| ASMG-GRUmulti | 13.8  | 3.4      | 8.7       | 6.2    |

Training time (in minutes) of GRU meta generator at the last test period

# **Experiments** – Sensitivity Analysis

Effect of Input Sequence Length



• Effect of GRU Hidden Size



#### **Conclusion**

- Propose an ASMG framework to generate a better serving model by encoding a sequence of historical models.
- Introduce a GRU-based meta generator capable of capturing the sequential pattens.
- Further develop two training strategies to improve the computation efficiency and sequential modelling ability of the GRU meta generator.
- Conduct model updating experiments on three public datasets and one industrial dataset from Lazada.

## Thank you for your attention!

Contact me: danni001@ntu.edu.sg