trainity

BY ASHISH KUMAR SAMANTARAY

Ashish Kumar Samantaray

B.Tech, Computer Science and Engineering

HYPERLINK OFEXCEL SHEET

Click here to get the working file

This project requires us to identify patterns that indicate if a customer will have difficulty paying their installments. This information can be used to make decisions such as denying the loan, reducing the amount of loan, or lending at a higher interest rate to risky applicants. The company wants to understand the key factors behind loan default so it can make better decisions about loan approval.

MICROSOFT EXCEL CANVA FOR CREATING PPT

I chose **Microsoft Excel** because it is thw most convenient spreadhseet and can be used efficiently to view statistics and analyse the data set given very quickly.

I chose Canva so as to make my PPT look more visually appealing.

insights AHEAD

WITH DETAILED APPROACH AND OUTPUT AND FORMULA BOX (GRAPH IF ASKED)

application_current

previous_application

First I added both the work books in the same working file so that it would be easier for me to get transferred to another sheet and not open a whole new workbook for doing other task of the other sheet. I made this possible by importing data as a csv file and then formatting it as a table to make it possible for me to make a pivot table for the same.

Missing Data Analysis

First we used the **countblank** formula so as to find the number of BLANKS in each field of the tables given to us as the **dataset**. The formula for the same is given below.

Since formula was created for one field, it was extended to other columns and later the table consisting of count of blanks and name of the field was copied and pasted as the transpose of the table and formatted as a table so as to get the headers. Finally we carried out the Graph operations with the tables. Next are the tables along with the graphs.

=COUNTBLANK(DM2:DM50000)

Paste Special	? ×
Paste	
<u>A</u> II	O All using Source theme
<u>F</u> ormulas	O All except borders
<u>V</u> alues	O Column <u>w</u> idths
Forma <u>t</u> s	O Formulas and number formats
O <u>C</u> omments	O Values and number formats
O Validatio <u>n</u>	All merging conditional formats
Operation	
N <u>o</u> ne	
○ A <u>d</u> d	O <u>Di</u> vide
. <u>S</u> ubtract	
Skip <u>b</u> lanks	✓ Transpos <u>e</u>
Paste <u>L</u> ink	OK Cancel

FIELDS	COUNT OF BLANKS	PERCENTAGE +
COMMONAREA_AVG	34960	69.92139843
COMMONAREA_MODE	34960	69.92139843
COMMONAREA_MEDI	34960	69.92139843
NONLIVINGAPARTMENTS_AVG	34714	69.42938859
NONLIVINGAPARTMENTS_MODE	34714	69.42938859
NONLIVINGAPARTMENTS_MEDI	34714	69.42938859
LIVINGAPARTMENTS_AVG	34226	68.45336907
LIVINGAPARTMENTS_MODE	34226	68.45336907
LIVINGAPARTMENTS_MEDI	34226	68.45336907
FONDKAPREMONT_MODE	34191	68.38336767
FLOORSMIN_AVG	33894	67.78935579
FLOORSMIN_MODE	33894	67.78935579
FLOORSMIN_MEDI	33894	67.78935579
YEARS_BUILD_AVG	33239	66.47932959
YEARS_BUILD_MODE	33239	66.47932959
YEARS_BUILD_MEDI	33239	66.47932959
OWN_CAR_AGE	32950	65.90131803
LANDAREA_AVG	29721	59.44318886
LANDAREA_MODE	29721	59.44318886
LANDAREA_MEDI	29721	59.44318886
BASEMENTAREA_AVG	29199	58.39916798
BASEMENTAREA_MODE	29199	58.39916798
BASEMENTAREA_MEDI	29199	58.39916798
EXT_SOURCE_1	28172	56.3451269
NONLIVINGAREA_AVG	27572	55.1451029
NONLIVINGAREA_MODE	27572	55.1451029
NONLIVINGAREA_MEDI	27572	55.1451029
ELEVATORS AVG	26651	53.30306606

***Full Table in the Working file

After analysing the table informing the percentage of null values in the dataset, we decided that the fields having more than or equal to **50** percent are to be dropped because if they are manipulated, then the overall dataset may be wrongly influenced through the highly present median values; fields having null values less than **1** percent can be ignore as they are negligible and wont affect the data set so much and the **0s** being left out as it is. The remaining are to be filled with appropriate data.

NAME_TYPE_SUITE	192	0.38400768
OBS_30_CNT_SOCIAL_CIRCLE	168	0.33600672
DEF_30_CNT_SOCIAL_CIRCLE	168	0.33600672
OBS_60_CNT_SOCIAL_CIRCLE	168	0.33600672
DEF_60_CNT_SOCIAL_CIRCLE	168	0.33600672
EXT_SOURCE_2	126	0.25200504
AMT_GOODS_PRICE	38	0.07600152
AMT_ANNUITY	1	0.00200004
CNT_FAM_MEMBERS	1	0.00200004

Light Green for lower percentage (Undisturbed)

Light yellow for Mid values (Manipulated)

FLOORSMAX_AVG	24875	49.75099502
FLOORSMAX_MODE	24875	49.75099502
FLOORSMAX_MEDI	24875	49.75099502
YEARS_BEGINEXPLUATATION_AVG	24394	48.78897578
YEARS_BEGINEXPLUATATION_MODE	24394	48.78897578
YEARS_BEGINEXPLUATATION_MEDI	24394	48.78897578
TOTALAREA_MODE	24148	48.29696594
EMERGENCYSTATE_MODE	23698	47.39694794
OCCUPATION_TYPE	15654	31.30862617

Full Table in Working file

FIELDS	₩	COUNT OF BLANK	PERCENTAGI 🕂
COMMONAREA_AVG		34960	69.92139843
COMMONAREA_MODE		34960	69.92139843
COMMONAREA_MEDI		34960	69.92139843
NONLIVINGAPARTMENTS_AVG		34714	69.42938859
NONLIVINGAPARTMENTS_MODE		34714	69.42938859
NONLIVINGAPARTMENTS_MEDI		34714	69.42938859
LIVINGAPARTMENTS_AVG		34226	68.45336907
LIVINGAPARTMENTS_MODE		34226	68.45336907

Red for high percentage (Dropped)

Green
for 0
category
(Undisturbed)

SK_ID_CURR	0	0
TARGET	0	0
NAME_CONTRACT_TYPE	0	0
CODE_GENDER	0	0
FLAG_OWN_CAR	0	0
FLAG_OWN_REALTY	0	0
CNT_CHILDREN	0	0
AMT_INCOME_TOTAL	0	0
AMT CREDIT	0	0

Additionally, We also remove the duplicates by using the inbuilt function of excel of removing duplicate rows (If found).

Further, there are some columns such as **Total_Area_Mode,Floor_Max**, **EmergencyState_Mode**, etc which are to be dropped essentially so as to make the dataset more compact and so as to make it easily being analysed and further the fields are out of the scope of the analysis.

FLOORSMAX_AVG	24875	49.75099502
FLOORSMAX_MODE	24875	49.75099502
FLOORSMAX_MEDI	24875	49.75099502
YEARS_BEGINEXPLUATATION_AVG	24394	48.78897578
YEARS_BEGINEXPLUATATION_MODE	24394	48.78897578
YEARS_BEGINEXPLUATATION_MEDI	24394	48.78897578
TOTALAREA_MODE	24148	48.29696594

Then a Pivot Table is created now to calculate the mean and median and mode of the various fields so that we could work upon replacing the fields with appropriate data so that dataset is not affected and is filled perfectly.

Row Labels	Count of OCCUPATION_	TYPE
Laborers		8952
Sales staff		5160
Core staff		4434
Managers		3489
Drivers		3044
High skill tech staff		1852
Accountants		1621
Medicine staff		1403
Security staff		1140
Cooking staff		963
Cleaning staff		739
Private service staff		447
Low-skill Laborers		357
Waiters/barmen staf	f	228
Secretaries		212
Realty agents		123
HR staff		101
IT staff		80
(blank)		
Grand Total		34345

Then we categorize the occupation type and then we count the number of occupation type in total and observe that the labourers is basically the **mode** of the occupation type.

Thus, we can replace the blanks with labourers so that the data set get stretched to the mode and does get outlied.

Now we replace the **blanks** with the **laborers** value by clickling find and select in editing section of home tab and then click on replace and then leaving the *find* what blank and then writing laborers with replace with section and click on replace all.

Now we calculated the median of EXT_SOURCE_3 and decided to replace it throughout the blanks of that field.

=MEDIAN(AN2:AN50000)

Then we performed the **replacement** function with the whole column and the blanks were finally replaced with the median of the field. Similarly we worked out with other field eliminating the blank cells.

Outliers Analysis

First we created the pivot table and get the row label as the SK_ID and the sum of AMT_CREDIT. Further after creating the pivot table, the table was copied and values were pasted as it was not possible to create a scatter plot with the pivot table. Now we created a scatter plot as well as box pot to get the extent of scattering of the data points during the analysis of the data set.

Next are the tables and the pivot table and the box plot and scattered plot along with the marked outliers.

Row Labels	₩.	Sum of AMT_	CREDIT
100002		-	406597.5
100003		1	293502.5
100004			135000
100006			312682.5
100007			513000
100008			490495.5
100009			1560726
100010			1530000
100011			1019610
100012			405000
100014			652500
100015			148365
100016			80865
100017			918468
100018			773680.5
100019			299772
100020			509602.5
100021			270000
100022			157500
100023			544491
100024			427500
100025		1	132573.5
100026			497520
100027			239850
100029			247500
100030			225000
100031			979992
100032			327024
100033			790830
100034			180000
100035			665892
1			

512064

Pivot table 100035

Row Labels ▼	Sum of AMT	CREDIT ▼
100002		406597.5
100003		1293502.5
100004		135000
100006		312682.5
100007		513000
100008		490495.5
100009		1560726
100010		1530000
100011		1019610
100012		405000
100014		652500
100015		148365
100016		80865
100017		918468
100018		773680.5
100019		299772
100020		509602.5
100021		270000
100022		157500
100023		544491
100024		427500
100025		1132573.5
100026		497520
100027		239850
100029		247500
100030		225000
100031		979992
100032		327024
100033		790830
100034		180000
100035		665892
100036		512064

Copied table

Red mark are the outliers

Scatter Plot

Red mark are the outliers

Box Plot

Outlier Value 1

Outlier Value 2

Series "Sum of AMT_CREDIT" Point "1"

Value: 3956274

Now as we identified the **outliers**, we decided to get the values replaced so as to get the dataset settled and keep the median mode and mean of the dataset consistent.

Row Labels 🔻	Sum of AMT_CREDIT
100002	406597.5
100003	1293502.5
100004	135000
100006	312682.5
100007	513000
100008	490495.5
100009	1560726
100010	1530000
100011	1019610
100012	405000
100014	652500
100015	148365
100016	80865
100017	918468
100018	773680.5
100019	299772
100020	509602.5
100021	270000
100022	157500
100023	544491
100024	427500
100025	1132573.5

Updated Tables and Graphs after replacing outliers

Then we performed the quartile ANALYSIS so as to divide the data into four quart parts.

Below are the quart table and the table before modification. (Before changing outliers)

QUARTILE ANALYSIS		
MIN	45000	
1ST	270000	
2ND	514778	
3RD	808650	
MAX	4050000	

Row Labels 🔻	Sum of AMT_CREDIT-	127306	808650	114537	294322.5	139173	45000
117337		127401	808650	115245	294322.5	143626	45000
120926		127405	808650	117095	294322.5	144432	45000
117085 137220		127416		118533	294322.5		
110403		127548	808650			2.0000	
152866		127698		118783	294322.5	150491	45000
108906	2925000	127704		120585	294322.5	152058	45000
154804		127722		125621	294322.5	152670	45000
156385		127890		134898	294322.5	153225	45000
108224 109450		127899	808650	135098	294322.5	153845	45000
109450	2095500	127902	808650	133030	254322.3	155645	45000

Below are the quart table and the table after modification. (after changing outliers)

***FULL DATA TABLE IN WORKFILE

QUARTILE ANALYSIS		
MIN	45000	
1ST	270000	
2ND	514778	
3RD	808650	
MAX	3150000	

Row Labels 🔻	Sum of AMT_CREDIT 🔻
100002	406597.5
100003	1293502.5
100004	135000
100006	312682.5
100007	513000
100008	490495.5
100009	1560726
100010	1530000
100011	1019610
100012	405000
100014	652500
100015	148365
100016	80865
100017	918468
100018	773680.5
100019	299772
100020	509602.5
100021	270000
100022	157500
100023	544491
100024	427500
100025	1132573.5
100026	497520
100027	239850
100029	247500
100030	225000
100031	979992

Data Imbalance Analysis

First we created a pivot table so that we could easily analyse or classify a particular type of data. Here we have to take the Target Variable as the field as mentioned in the task heading and perform the task according to the outcome in pivot table.

Thus we selected Target in row and values respectively as seen below.

Then we created a pie chart as well as bargraph for the table we received in the pivot table. Below are the Pie chart, Bar Graph and the relative table.

Row Labels	Count of TARGET	Percenta 🔻
0	45973	91.94783896
1	4026	8.052161043
Grand Total	49999	

By seeing the ratio of the imbalance in the dataset of target analysis, It is not a suitable field to be used as a representative. Thus we chose Name Family Status as the represtative field now.

RATIO

45973:4026

Now we take Name Family Status as the dataset and construct the bargraph and piechart.

Graph and table is in the next page.

Pie Chart and Bar Graph and Table for

Name Family Status

Classification is
Diversified thus
suitable for Analysis.
(though not binary)

Row Labels	Count of NAME_FAMILY_STATUS
Civil marriage	4859
Married	32094
Separated	3142
Single / not married	7306
Unknown	1
Widow	2597
Grand Total	49999

Univariate, Segmented
Univariate, and Bivariate
Analysis

UNIVARIATE ANALYSIS

As the name suggests, Univariate analysis explores one variable in a data set, separately.

Next are examples of three univariate analysis performed in the working file of our data set.

(WorkfileAttached at the beginning)

UniVariate Analysis I

Row Labels	~	Count of NAME_EDUCATION_TYPI
Academic degree		20
Higher education		12167
Incomplete higher		1620
Lower secondary		620
Secondary / secondary special	I	35572

UniVariate Analysis II

Row Labels	▼ Count of NAME_FAMILY_STATUS
Civil marriage	4859
Married	32094
Separated	3142
Single / not married	7306
Unknown	1
Widow	2597

UniVariate Analysis III

Row Labels	Count of NAME_CONTRACT_	TYPI 🔻
Cash loans		45276
Revolving loans		4723

BIVARIATE ANALYSIS

Bivariate analysis is stated to be an analysis of any concurrent relation between two variables or attributes.

Next are examples of three bivariate analysis performed in the working file of our data set.

(WorkfileAttached at the beginning)

BiVariate Analysis I

Row Labels	*	0	*	1	*	Grand Tota	+
Cash loans		414	84	37	92	452	276
Revolving loans		44	189	2	34	47	723

BiVariate Analysis II

BiVariate Analysis III

Row Labels	¥	0 -	1	ı	*
Co-op apartment		176	5		15
House / apartment		40895	5	34	173
Municipal apartment		1700)	1	145
Office apartment		398	3		29
Rented apartment		682)		87
With parents		2122	2	2	277

SEGMENTED BIVARIATE ANALYSIS

Segmented Bivariate analysis is one of the simplest form of visualization to analyze data.

Next is an example of segmented univariate analysis performed in the working file of our data set.

(WorkfileAttached at the beginning)

Segmented UniVariate Analysis

We chose the variable as the **name contract type** and then decided to segment it on the basis of the **code gender**, for which we kept the name contract type in row value and the code gender in column value.

Segmented UniVariate Analysis

Then we filtered out the results on the basis of the gender on the filter section of the pivot table. And below are the tables we obtained.

Row Labels	•	Count of NAME_CONTRACT_	TYPE
Cash loans			15611
Revolving loa	ns		1563
Grand Total			17174

Row Labels	•	Count of NAME	_CONTRACT_TYPE
Cash Ioans			29665
Revolving loa	ns		3158
Grand Total			32823

Segmented UniVariate Analysis

Below are the graphs for the segmented analysis of the NAME_CONTRACT_TYPE on the basis of CODE_GENDER.

Correlations Analysis

For a correlation table, first we need to select the target variable. Here our target variable is **TARGET** as seen from the dataset. Now we correlate **TARGET** with every possible field.

But there is one limitation, we cant correlate them with the field having non numeric values. Thus we have correlated them with the ones having numeric values.

Following is the formula we used (We kept the TARGET field as constant array1 to provided in formulas of correl for every other field except TARGET itself.

=CORREL(\$B\$1:\$B\$50000,BK1:BK50000)

Then a table was obtained consisting of correlation of target with every other field.

***Full Table in Working file

Field with which correl is done w.r.t. Target Variabl	Correl Value 🔻
SK_ID_CURR	0.003294877
CNT_CHILDREN	0.026363931
AMT_INCOME_TOTAL	0.010893745
AMT_CREDIT	-0.032343834
AMT_ANNUITY	-0.012399094
AMT_GOODS_PRICE	-0.041306523
REGION_POPULATION_RELATIVE	-0.040799172
DAYS_BIRTH	0.076787685
DAYS_EMPLOYED	-0.040294905
DAYS_REGISTRATION	0.042342679
DAYS_ID_PUBLISH	0.046926745
FLAG_MOBIL	0.001323455
FLAG_EMP_PHONE	0.04140843
FLAG_WORK_PHONE	0.021302134
FLAG_CONT_MOBILE	0.006765545
FLAG_PHONE	-0.032679413
FLAG_EMAIL	-0.001311805
HOUR_APPR_PROCESS_START	-0.032036463
REG_REGION_NOT_LIVE_REGION	0.009438717
REG_REGION_NOT_WORK_REGION	-0.001006443
LIVE_REGION_NOT_WORK_REGION	-0.005497852
REG_CITY_NOT_LIVE_CITY	0.0387731
REG_CITY_NOT_WORK_CITY	0.048450787
LIVE_CITY_NOT_WORK_CITY	0.032261323
EXT_SOURCE_2	-0.158424274

Then we arranged the correlations from largest to smallest and obtained the top 10n correlations.

***Full Table in Working file (Only Top 10 is shown here)

Field with which correl is done w.r.t. Target Variabl	Correl Value
DAYS_BIRTH	0.076787685
DAYS_LAST_PHONE_CHANGE	0.056136735
REG_CITY_NOT_WORK_CITY	0.048450787
DAYS_ID_PUBLISH	0.046926745
FLAG_DOCUMENT_3	0.045050228
DEF_60_CNT_SOCIAL_CIRCLE	0.044259774
DAYS_REGISTRATION	0.042342679
DEF_30_CNT_SOCIAL_CIRCLE	0.041603087
FLAG_EMP_PHONE	0.04140843
REG_CITY_NOT_LIVE_CITY	0.0387731

RESULT

I found this project on risk analytics in banking and financial services to be immensely valuable and insightful. It provided me with a practical understanding of how real-world data is analyzed in the financial sector using tools like Excel. By exploring the key factors that indicate customer difficulties in paying installments, I gained a deeper insight into risk assessment in lending. This project's focus on identifying patterns for loan default allowed me to appreciate the importance of data-driven decision-making in the industry. I learned how financial institutions can use data analysis to make informed choices, such as denying loans to high-risk applicants or adjusting loan terms based on risk profiles. Overall, this project not only enhanced my Excel skills but also deepened my understanding of risk management and analytics in the banking sector.

Ashish Kumar Samantaray

B.Tech, Computer Science and Engineering

ashish.kumar.samantaray2003@gmail.com

7205691104