ASSIGNMENT

1. Determine whether the following signals are Energy, Power or neither.

a.
$$e^{-at}u(t)$$
, $a > 0$

b.
$$x(t) = tu(t)$$

- 2. Consider the capacitor shown in figure. Assume capacitance is constant. Let input x(t)=i(t) and output $y(t)=v_c(t)$.
 - a. Find the input-output relationship
 - b. Determine whether the system is memoryless, causal, linear, time-invariant, stable.

3. Consider the periodic impulse train $\delta_{T_0}(t)$ shown in figure. It is defined as

$$\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0)$$

a. Determine complex exponential Fourier series of the impulse train

- b. Determine trigonometric Fourier series of the impulse train
- 4. Prove modulation theorem of CTFT
- 5. Fourier transform of x(t) is given in the figure. ($p_a(w)$ denotes a rectangular pulse centered at zero)

$$X(\omega) = \frac{1}{2}p_a(\omega - \omega_0) + \frac{1}{2}p_a(\omega + \omega_0)$$

Find and sketch x(t).

6. Find the Fourier coefficient for the periodic sequence shown in figure

7. Prove that

$$u[n] \leftrightarrow \pi \delta(\Omega) + \frac{1}{1 - e^{-j\Omega}}, \qquad |\Omega| \le \pi$$