# **ЛАБОРАТОРНАЯ РАБОТА №** 3 ПЕРЕСЕЧЕНИЕ КРИВЫХ ПОВЕРХНОСТЕЙ

**Цель работы:** построить линию пересечения кривых поверхностей и решить задачу визуализации полученного решения, используя аппарат трехмерных преобразований и вычисления плоских проекций лабораторной работы  $N \ge 2$ .

#### Краткие теоретические сведения

В данной лабораторной работе в качестве геометрических объектов задаются поверхности кривой формы. Предлагается решить позиционную задачу на взаимное пересечение нескольких кривых поверхностей. Используются поверхности, формообразование которых имеет аналитическое описание.

В задаче предлагается задание как минимум двух кривых поверхностей: одна из них — поверхность вращения второго порядка; другая — линейчатая поверхность общего вида. Выбор этих классов поверхностей очевиден — они имеют широкое применение в технике, моделировании и конструировании объектов сложной формы, обладают свойством технологичности.

Результат решения задачи — определение линии пересечения заданных поверхностей. Формализация процедур построения линии пересечения основывается на применении следующего подхода. Линия пересечения определяется как массив точек, принадлежащих одной и другой поверхности. Для этого одна из кривых поверхностей (линейчатая поверхность общего вида) декомпозируется на пучок прямых линий. Задача, таким образом, сводится к определению точек встречи каждой прямой линии, принадлежащей линейчатой поверхности, с поверхностью вращения второго порядка. Это действие оформляется в процедуру и повторяется в цикле необходимое (для достижения заданной точности) количество раз.

Ниже приводится математическое описание процедуры.

### Определение точки встречи прямой с поверхностью вращения

Аналитически решение задачи на пересечение прямой с поверхностью вращения заключается в совместном решении уравнений поверхности вращения и прямой.

Уравнения поверхностей вращения второго порядка в локальной системе координат имеют следующий вид:

| Сфера                     | $x^2 + y^2 + z^2 = R^2.$                                    |
|---------------------------|-------------------------------------------------------------|
| Эллипсоид                 | $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1.$  |
| Однополостный гиперболоид | $\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{b^2} = 1.$  |
| Двуполостный гиперболоид  | $\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{b^2} = -1.$ |
| Конус                     | $\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{b^2} = 0.$  |
| Цилиндр                   | $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1.$                    |

Эти уравнения можно записать в следующем виде:

$$x^2 + y^2 + k_1 \cdot z^2 = k_2. {(3.1)}$$

Значения коэффициентов  $k_1$  и  $k_2$  для приведенных поверхностей представлены в табл. 3.1.

Таблица 3.1

| Название поверхности      | $k_1$              | $k_2$  | Примечание                                                             |
|---------------------------|--------------------|--------|------------------------------------------------------------------------|
| Сфера                     | 1                  | $R^2$  | <i>R</i> – радиус сферы                                                |
| Эллипсоид                 | $\frac{a^2}{b^2}$  | $a^2$  | $egin{array}{cccccccccccccccccccccccccccccccccccc$                     |
| Однополостный гиперболоид | $-\frac{a^2}{b^2}$ | $a^2$  | a и $b$ — действительная и мнимая полуоси гиперболы в плоскости $xOz$  |
| Двухполостный гиперболоид | $-\frac{a^2}{b^2}$ | $-a^2$ | a и $b$ — действительная и мнимая полуоси гиперболы в плоскости $xOz$  |
| Конус                     | $-\frac{a^2}{b^2}$ | 0      | $tg\alpha = a/b$ , $\alpha$ – угол наклона образующей конуса к его оси |
| Цилиндр                   | 0                  | $a^2$  | a — радиус цилиндра                                                    |

Таким образом, поверхности вращения второго порядка выражаются в компактном, удобном для аналитического решения виде.

Уравнение прямой, проходящей через две точки, имеет вид

$$\frac{x - x_N}{x_M - x_N} = \frac{y - y_N}{y_M - y_N} = \frac{z - z_N}{z_M - z_N}.$$
 (3.2)

Из уравнения (3.2) выразим, например, x и y через z:

$$x = x_N + \rho(z - z_N), \tag{3.3}$$

$$y = y_N + \delta(z - z_N), \tag{3.4}$$

где коэффициенты  $\rho = \frac{x_M - x_N}{z_M - z_N}$  и  $\delta = \frac{y_M - y_N}{z_M - z_N}$ .

Подставив выражения (3.3) и (3.4) в уравнение (3.1), получим квадратное уравнение относительно z:

$$Az^2 + Bz + C = 0, (3.5)$$

где коэффициенты и свободный член соответственно равны:

$$A = \rho^{2} + \delta^{2} + k_{1},$$

$$B = 2 \left[ \rho \cdot x_{N} + \delta \cdot y_{N} - (\rho^{2} + \delta^{2}) z_{N} \right],$$

$$C = (x_{N} - \rho \cdot z_{N})^{2} + (y_{N} - \delta \cdot z_{N})^{2} - k_{2}.$$

Корни квадратного уравнения (3.5) — это координаты  $z_1$  и  $z_2$  искомых точек пересечения. Координаты  $x_1$ ,  $x_2$  и  $y_1$ ,  $y_2$  определяются из соотношений (3.3) и (3.4).

Решение в общем виде является универсальным для решения задач на пересечение поверхностей вращения второго порядка с прямой.

#### Порядок выполнения работы

- 1. На первом этапе выполнения работы выбираются кривые поверхности для задачи. Важно задать такое сочетание: одна поверхность поверхность вращения второго порядка, а другая линейчатая поверхность.
- 2. На втором этапе составляется программа, в результате выполнения которой на экране дисплея демонстрируется задача. Начинается работа с оформления процедуры определения пересечения прямой в пространстве

с поверхностью вращения второго порядка. Далее вычисляется массив точек, принадлежащих линии пересечения.

- 3. На этапе визуализации задачи выполняются следующие действия:
- задается точечный или линейчатый каркас поверхностей;
- в геометрическую модель поверхностей включается массив точек линии пересечения;
- выводятся на экран ортогональные проекции и проекции, обеспечивающие наглядное изображение поверхностей и линий их пересечения. Для демонстрации работы алгоритма задаются преобразования одного объекта (перемещение, вращение, масштабирование и др.) относительно другого объекта. Для этого используется аппарат трехмерных геометрических преобразований лабораторной работы № 2.

На <u>рис. 3.1</u>, <u>рис. 3.2</u>, <u>рис. 3.3</u> представлены результаты решения задачи на пересечение сферы с прямым круговым цилиндром.



Рис. 3.1. Ортогональные проекции



Рис. 3.2. Изометрия



Рис. 3.3. Перемещение одной поверхности относительно другой

## Примеры преобразований

Примеры преобразований приведены на рис. 3.4, рис. 3.5.



Рис. 3.4. Пересечение сферы и косой плоскости



Рис. 3.5. Ортогональные проекции

## Варианты заданий

Вариант 1



# Вариант 2





# Вариант 3





# Вариант 4







**Вариант** 5











Вариант 7









## Оформление отчета по лабораторной работе

В отчете должны быть представлены результаты всех этапов лабораторной работы. Структура отчета следующая:

- 1. Постановка задачи и выбор объектов.
- 2. Краткое математическое описание, в котором следует привести два основных этапа выполнения лабораторной работы.

Первый этап — решение позиционной задачи на пересечение двух или более объектов кривой формы (поверхности вращения второго порядка, линейчатые поверхности). Результат этого этапа — реализация алгоритма определения массива точек, принадлежащих линии пересечения.

Второй этап — визуализация задачи. Необходимо рассчитать каркасы заданных поверхностей и линию (линии) их пересечения. На экране компьютера выполняются трехмерные преобразования и вычисляются плоские проекции.

- 3. Листинг программы, реализующей геометрические преобразования объекта.
- 4. Результаты выполненных преобразований в виде копий графического экрана. Демонстрируются следующие изображения:
  - ортогональные проекции;
- наглядное изображение (аксонометрическая или центральная проекции).

Задается преобразование (перемещение, вращение, масштабирование и др.), которое демонстрирует изменение положения одного объекта относительно другого и алгоритм по корректному вычислению точек на линии пересечения.