CS CM122 Discussion

Apr 14 2023

Overview for today

Part 1. Textbook chapter 9

Part 2. Project 1 overview

Chapter 9

Trie of a set of patterns

- Each edge corresponds to a character
- Each path to a leaf (end node) is a string in the set of patterns
- Each node has unique outgoing edges corresponding to different characters
- To search for a string in the trie, start from the root and traverse the edges corresponding to the characters in the string
- Question: what is the time complexity for searching a string of length K in a trie?

Trie of patterns: "ananas", "and", "antenna", "banana", "bandana", "nab", "nana", "pan" (textbook 9.3)

Suffix trie

The suffix trie of a string Text is the trie formed from all its suffixes.

For example, the suffix trie of "ATAC\$" is the trie with set of patterns: "\$", "C\$", "AC\$", "TAC\$", "ATAC\$".

Each path to a leaf is a unique suffix

The leaves are labelled with the starting positions of the suffix

Suffix trie of text panamabananas\$ (textbook 9.4)

In-class whiteboard demonstration: why the "\$" sign is mandatory

- Suffix trie of string "PAPA"
- Suffix trie of string "PAPA\$"

Suffix tree

Merging single-branch paths in a suffix trie results in a suffix tree.

Each path to leaf still corresponds to a unique suffix. The number of leaves is therefore equal to the number of suffixes.

Suffix tree of text panamabananas\$ (textbook 9.5)

Converting a suffix trie to a suffix tree

- Traverse every node in the suffix trie while keeping track of its previous edge
- If you encounter a node with only 1 child, merge the two nodes and update the previous edge, then traverse the child(ren).
- If you encounter a node with multiple children, traverse every child instead
- Stop when you encounter a leaf

Longest repeat in a string

The longest repeat in a string is its longest suffix tree path that ends in a branch

Suffix array	Starting Positions	Sorted Suffixes
Sullix alray	13	\$
	5	abananas\$
	3	amabananas\$
All suffixes of a string are sorted. The resulting	1	anamabananas\$
list of starting positions is the suffix array (no	7	ananas\$
need to store the actual suffixes in memory)	9	anas\$
Question: given a suffix array of length N, what	11	as\$
is an efficient algorithm to search for a substring	6	bananas\$
and what is its time complexity?	4	mabananas\$
	2	namabananas\$
	8	nanas\$
	10	nas\$
	0	panamabananas\$
	12	s\$

Suffix array of text panamabananas\$ (textbook 9.6)

Burrows-Wheeler transform of "panamabananas\$"

Cyclic Rotations			M	("	pa	na	ma	ba	na	na	s\$	")		
panamabananas\$	\$	р	а	n	а	m	а	b	а	n	а	n	а	S
\$panamabananas	а	b	a	n	а	n	а	S	\$	p	а	n	a	m
s\$panamabanana	a	m	a	b	а	n	а	n	a	S	\$	р	a	n
as\$panamabanan	а	n	a	m	а	b	а	n	a	n	а	S	\$	p
nas\$panamabana	a	n	a	n	a	s	\$	p	a	n	a	m	a	b
anas\$panamaban	a	n	a	s	\$	p	a	n	a	m	a	b	a	n
nanas\$panamaba	а	S	\$	p	а	n	a	m	a	b	a	n	a	n
ananas\$panamab	b	a	n	a	n	a	S	\$	p	a	n	a	m	a
bananas\$panama	m	a	b	a	n	a	n	а	S	\$	p	a	n	a
abananas\$panam	n	a	m	а	b	а	n	а	n	а	S	\$	p	a
mabananas\$pana	n	a	n	a	S	\$	p	a	n	a	m	a	b	a
amabananas\$pan	n	a	s	\$	р	а	n	а	m	a	b	a	n	a
namabananas\$pa	p	a	n	a	m	a	b	a	n	a	n	a	s	\$
anamabananas\$p	s	\$	p	a	n	а	m	a	b	a	n	a	n	a

CPPC

In the original text, the first letter in a row follows the last letter in the same row.

Question: to generate the BWT do you need to store the entire matrix of cyclic rotations in the memory?

Textbook 9.7

First-last property of a Burrows-Wheeler transform

$pa_3na_2ma_1ba_4na_5na_6s$ \$

The ith occurrence of a letter in the last column is exactly the same instance in the original text as the the ith occurrence of the letter in the first column.

```
panamabananas
a<sub>1</sub> bananas $ panam
a<sub>2</sub> mabananas $ pan
a<sub>3</sub> namabananas $ p
a<sub>4</sub> nanas $ panamab
a<sub>5</sub> nas $ panamaban
a<sub>6</sub> s $ p a n a m a b a n a n
 ananas $ panam a<sub>1</sub>
m abananas $ pan a<sub>2</sub>
n amabananas $ p a3
  anas $ panamab a4
  as $ panamaban a<sub>5</sub>
  anamabananas $
s $panamabanan a<sub>6</sub>
```

Textbook 9.9

In-class whiteboard demonstrations: BWT procedures

- Inverting a transformed text
- Finding occurrences of a substring

How to find the original positions of matched substrings?

Have an array containing original positions of each suffix

M(Text)								SUFFIXARRAY(Text)						
\$	р	а	n	а	m	а	b	а	n	а	n	а	S	13
a	b	a	n	a	n	a	s	\$	р	a	n	a	m	5
a	m	a	b	a	n	а	n	a	S	\$	р	а	n	3
a	n	a	m	а	b	a	n	а	n	а	s	\$	р	1
a	n	a	n	a	S	\$	р	а	n	a	m	а	b	7
a	n	a	S	\$	р	а	n	а	m	а	b	а	n	9
a	s	\$	р	a	n	а	m	а	b	а	n	а	n	11
b	a	n	a	n	a	s	\$	р	a	n	а	m	а	6
m	а	b	a	n	а	n	а	S	\$	р	а	n	а	4
n	a	m	a	b	a	n	a	n	a	S	\$	р	а	2
n	a	n	a	S	\$	p	а	n	а	m	а	b	а	8
n	а	s	\$	р	а	n	а	m	a	b	а	n	а	10
p	a	n	a	m	a	b	a	n	a	n	a	s	\$	0
s	\$	р	a	n	a	m	a	b	a	n	a	n	а	12

Textbook 9.12

How do you know how many times a letter occurs in the last column?

Have an array counting the occurrence of each letter in the last column up to each row

i	FirstColumn	LastColumn	LastToFirst(i)	Count						
				\$	a	b	m	n	р	S
O	\$1	s_1	13	0	0	0	0	0	0	0
1	a_1	m_1	8	0	0	0	0	0	0	1
2	a_2	n_1	9	0	0	0	1	0	0	1
3	a_3	p_1	12	0	0	0	1	1	0	1
4	a_4	b_1	7	0	0	0	1	1	1	1
5	a_5	n_2	10	0	0	1	1	1	1	1
6	a_6	n_3	11	0	0	1	1	2	1	1
7	b_1	a_1	1	0	0	1	1	3	1	1
8	m_1	a_2	2	0	1	1	1	3	1	1
9	n_1	a_3	3	0	2	1	1	3	1	1
10	n_2	a_4	4	0	3	1	1	3	1	1
11	n_3	a_5	5	0	4	1	1	3	1	1
12	p_1	\$ 1	0	0	5	1	1	3	1	1
13	s_1	a_6	6	1	5	1	1	3	1	1
				1	6	1	1	3	1	1

Textbook 9.11

Project 1

Format of data files

>read_0/1
ACGTATTTGAACTCCGGTATCTACACATTACGAGACGCATTATCAGCGTA
>read_0/2
TTAGGAAAGTCAAATGCATGGATCAGGGGCAAGATGCAGACACGGCTTAC
>read_1/1
AATGCGACGAAAGGCAGTACTTGTGCTCCATCTAGTTTGACGTATCCCAA
>read_1/2
AAGACGTTCTTGCTCAGCTTGAGAGCCCCTCCGCGCCACGCAGTCACCCA
>read_2/1
ATGAGATACAGTACATGAGTGCTCCTCTACTGACACGTTTCGCTTTGCTC
>read_2/2
AGCCCCTCCGCGCCACGCAGTCACCCAGTGCCGCTGATGCCCAAGCACAG
>read_3/1
TTTAACGCGCTCTCCTTCCCGCTTCAGGGAATAATAGCAAGCGTGTTTTT

Reads file: each line is a read, each read may contain errors

| Spenome length: 1000 generated: 04132023_1331 |
TTATAAACACAGGACGACCCCCGGATCAAAAACAACCAGTCTGGCTAAACGAGTAACTCGACCCCGAGTGTGAGCAAT
CGTAGACGTCTGTGGTATTGGGCAAAGGTTTTAGAAATTGCTATGGGCCCTATAGTCATTTGGGGCTTGCTCCTATAGTT
CTCCGTATCCAGTTGTGCTAATGGGAGGTCGCCAGGCGGGGGACCAACTATGCCCCACAGGACAAATCTGACGCCGTGAT
TGCAGCCCACAAGGTTTAAACGTAACTGCGGCCCCGCTTAATTTGGATATGTGGTGGGTTCCGGCATATGTAGATGCTT
GTTGTAACCGAGATGCCTCAGGCAGATACCTTAATGCGACGAAAGGCAGCACTTGTGCTCCATCTAGTTTGACCGTATCCC
AAGGATGAGATACATACATGAGTGCTCCTCTACTGACACGTTTCGCTTTGCTCCACAGCAAAACATTAATCCAACGCAGTC
CGCAGGTATGGTGACTAGCGCAAAGTTTGTCTGTATCTTTAGTAAGCCGTTAGTTTCGAAGACTGCCGCTACTCTGTTGAA

Genome file: a genome split into several lines

Your output should look like this. S for substitutions, I for insertions and D for deletions

```
>S129 C A
>S141 G A
>S219 G T
>S298 G T
>S369 C T
>S455 A G
>S460 A G
>S718 C A
>S863 T G
>I413 G
>I624 G
>D281 T
>D544 C
```

Types of genetic mutations used for grading

https://commons.wikimedia.org/wiki/File:Deletion_Insertion_Substitution-en.svg

... AGCGTCGATGGAGATT...

. AGCGT-----AGATT...

... AGCGTAGATT...

Deletion

, AGCGTCGATGGAGATT,

AGCGTCGACCATTGGAGATT...

Insertion

AGCGTCGATGGAGATT AGCGTCGCTGGAGATT

Substitution

What data structure should you use to represent the genome?

Lecture 3

Index for L/3 (is BIG!)

- Intuition: Create an index (or phone book) for the genome.
- We can look up an entry quickly.

If L=30, each entry will have a key of length 10. Each entry will contain on average N/4¹⁰ positions. (Approximately 3,000).

Sequence	Positio	ns	
AAAAAAAA	32453,	64543,	76335
AAAAAAAAAC	64534,	84323,	96536
AAAAAAAAAG	12352,	32534,	56346
AAAAAAAAT	23245,	54333,	75464
AAAAAAAACA			
AAAAAAAACC	43523,	67543	
CAAAAAAAA	32345,	65442	
CAAAAAAAAC	34653,	67323,	76354
TCGACATGAG	54234,	67344,	75423
TCGACATGAT	11213,	22323	
TTTTTTTTTG	64252		
TTTTTTTTT	64246,	77355,	78453

You can create a hash table containing positions of all unique k-mers in the genome.

You can also use tries or BWT.

If L=45, each entry will have a key of length 15. Each entry will contain on average 3 positions.

How do you map a read to the genome?

Assume you have a read of length L and a hash table k-mer positions.

You can cut the read into L/k fragments and try to find the position of each fragment. x

Genome

Read (with 1 substitution in the middle)

Not found in hash or mapped to somewhere else

How do you identify mutations from aligned reads?

Ref:	TTTTGTCACCCTCAACAA	C	CGACGCT
Read:			
Read:	TCACCCTCAACAA	Α	CGACGCT
Read:		Α	CGACGCT
Read:	ACCCTCAACAA	THE REAL PROPERTY.	The state of the s
Read:	TTTTGTCACCCTCAACAA	Α	CGACGCT
Read:	CCCTCAACAA	Α	CGACGCT
Read:		_	
Read:	CCTCAACAA	A	CGACGCT
Read:			

After aligning reads to the reference genome, your program should be able to compare the reference and the reads at each position and check if a different nucleotide is present in the reads.

Advanced read mapping techniques

Even better fragment-based alignment

Published: 04 March 2012

Fast gapped-read alignment with Bowtie 2

Nature Methods 9, 357–359 (2012) Cite this article

82k Accesses | 27158 Citations | 129 Altmetric | Metrics

Instead of cutting a read of length L into L/k fragments, apply a sliding window of length k across the read (this allows you to get more than L/k fragments)

What if your fragments are mapping to many different positions?

JOURNAL ARTICLE

The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote 3

Yang Liao, Gordon K. Smyth, Wei Shi ™

Nucleic Acids Research, Volume 41, Issue 10, 1 May 2013, Page e108, https://doi.org/10.1093/nar/gkt214

Published: 03 April 2013 Article history ▼

Each fragment in a read casts a "vote" on each of the potential genomic regions where it came from.

The region with the majority of the votes from all fragments wins.

Needleman-Wunsch alignment for two sequences (in Chapter 5 of textbook)

This allows you to find any arbitrary indels.

Wikipedia

How would indels look like on your read?

Deletion: some fragments of your read will map to positions that are more far apart on the genome

Insertion: some fragments of your read will map to positions that are closer on the genome