

# Séries de Fourier

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

\* très facile \*\* facile \*\*\* difficulté moyenne \*\*\*\* difficile \*\*\*\* très difficile I: Incontournable

### Exercice 1 \*\*

- 1. Soit f la fonction définie sur  $\mathbb{R}$ ,  $2\pi$ -périodique et impaire telle que  $\forall x \in \left[0, \frac{\pi}{2}\right]$ ,  $f(x) = \sin\left(\frac{x}{2}\right)$ . Déterminer f(x) pour tout réel x.
- 2. Soit f la fonction définie sur  $\mathbb{R}$ ,  $2\pi$ -périodique et paire telle que  $\forall x \in \left[0, \frac{\pi}{2}\right], f(x) = \sin\left(\frac{x}{2}\right)$ . Déterminer f(x) pour tout réel x.

Correction ▼ [005781]

#### **Exercice 2**

Développer en série de FOURIER les fonctions suivantes puis déterminer la valeur des sommes indiquées :

- 1) (\*\*)  $f: \mathbb{R} \to \mathbb{R}$   $2\pi$ -périodique paire telle que  $\forall x \in [0,\pi], f(x) = 1 \frac{2x}{\pi}$ . En déduire  $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}, \sum_{n=1}^{+\infty} \frac{1}{n^2}$
- 2) (\*\*)  $f: \mathbb{R} \to \mathbb{R}$   $2\pi$ -périodique impaire telle que  $\forall x \in [0,\pi], f(x) = x(\pi-x)$ . En déduire  $\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3}$ ,  $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6}$  et  $\sum_{n=1}^{+\infty} \frac{1}{n^6}$ .
- 3) (\*\*)  $f: \mathbb{R} \to \mathbb{R}$   $2\pi$ -périodique telle que  $\forall x \in ]-\pi,\pi]$ ,  $f(x)=\sin\left(\frac{x}{2}\right)$ . En déduire  $\sum_{n=0}^{+\infty}(-1)^n\frac{2n+1}{16n^2+16n+3}$ . 4) (\*\*\*)  $f: \mathbb{R} \to \mathbb{R}$   $2\pi$ -périodique telle que  $\forall x \in [-\pi,\pi]$ ,  $f(x)=\operatorname{ch}(\lambda x)$  ( $\lambda$  réel strictement positif donné). En déduire  $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\lambda^2 + n^2}$ ,  $\sum_{n=1}^{+\infty} \frac{1}{\lambda^2 + n^2}$  et  $\sum_{n=1}^{+\infty} \frac{1}{(\lambda^2 + n^2)^2}$ .
- **5)** (\*\*)  $f: \mathbb{R} \to \mathbb{R}$  telle que  $\forall x \in \mathbb{R}, f(x) = \sup(0, \sin x)$ . En déduire  $\sum_{n=1}^{+\infty} \frac{1}{4n^2-1}$ . Correction ▼ [005782]

#### Exercice 3 \*\*\*

Soit  $a \in \mathbb{C} \setminus [-1, 1]$ .

- 1. (a) Développer en série trigonométrique la fonction  $f: t \mapsto \frac{1}{a-\cos t}$  (utiliser la racine de plus petit module, notée b, de l'équation  $z^2 - az + 1 = 0$ ).
  - (b) La série obtenue est-elle la série de FOURIER de f?
- 2. Déduire de 1) la valeur des intégrales  $I_n = \int_0^\pi \frac{\cos(nt)}{a \cos t} \, dt$ ,  $n \in \mathbb{N}$ .

Correction ▼ [005783]

# Exercice 4 \*\*\* I

(un développement en série de fonctions de  $\frac{\pi}{\sin(\pi z)}$  et  $\cot(\pi z)$ ).

Soit  $\alpha \in \mathbb{C} \setminus \mathbb{Z}$ . Soit f l'application de  $\mathbb{R}$  dans  $\mathbb{C}$ ,  $2\pi$ -périodique telles que  $\forall x \in [-\pi, \pi], f(x) = \cos(\alpha x)$ .

- 1. Développer la fonction f en série de FOURIER.
- 2. En déduire que pour tout  $z \in \mathbb{C} \setminus \mathbb{Z}$ ,

$$\frac{\pi}{\sin(\pi z)} = \frac{1}{z} + \sum_{n=1}^{+\infty} (-1)^n \frac{2z}{z^2 - n^2} \text{ et } \pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{+\infty} \frac{2z}{z^2 - n^2}.$$

Correction ▼ [005784]

# Exercice 5 \*\*

Développer en série de FOURIER la fonction  $f: x \mapsto x - E(x) - \frac{1}{2}$ .

Correction ▼ [005785]

### Correction de l'exercice 1

1. • Puisque f est impaire, f(0) = 0. Puisque f est impaire et  $2\pi$ -périodique,  $-f(\pi) = f(-\pi) = f(\pi)$  et donc  $f(\pi) = 0$ . Puisque f est  $2\pi$ -périodique, pour  $k \in \mathbb{Z}$ ,  $f(2k\pi) = f(0) = 0$  et  $f((2k+1)\pi) = f(\pi) = 0$ . Finalement,  $\forall k \in \mathbb{Z}$ ,  $f(k\pi) = 0$ .

Soit  $x \in ]-\pi, 0[$ . Puisque f est impaire,  $f(x) = -f(-x) = -\sin\left(-\frac{x}{2}\right) = \sin\left(\frac{x}{2}\right)$  et donc  $\forall x \in ]-\pi, \pi[$ ,  $f(x) = \sin\left(\frac{x}{2}\right)$ .

Soit  $x \in \mathbb{R} \setminus \pi\mathbb{Z}$ . Il existe  $k \in \mathbb{Z}$  tel que  $-\pi < x - 2k\pi < \pi$  et puisque f est  $2\pi$ -périodique,  $f(x) = f(x - 2k\pi) = \sin\left(\frac{x - 2k\pi}{2}\right) = (-1)^k \sin\left(\frac{x}{2}\right)$ . De plus,  $-\pi < x - 2k\pi < \pi \Rightarrow k < \frac{x + \pi}{2\pi} < k + 1$  et  $k = E\left(\frac{x + \pi}{2\pi}\right)$ .

$$\forall x \in \mathbb{R}, \ f(x) = \begin{cases} 0 \text{ si } x \in \pi \mathbb{Z} \\ (-1)^k \sin\left(\frac{x}{2}\right) \text{ où } k = E\left(\frac{x+\pi}{2\pi}\right) \text{ si } x \notin \pi \mathbb{Z} \end{cases}.$$

2. • Soit  $x \in [-\pi, 0]$ . Puisque f est paire,  $f(x) = f(-x) = \sin\left(-\frac{x}{2}\right) = \sin\left(\left|\frac{x}{2}\right|\right)$  et donc  $\forall x \in [-\pi, \pi]$ ,  $f(x) = \sin\left(\left|\frac{x}{2}\right|\right)$ .

Soit  $x \in \mathbb{R}$ . Il existe  $k \in \mathbb{Z}$  tel que  $-\pi < x - 2k\pi \le \pi$  et puisque f est  $2\pi$ -périodique,  $f(x) = f(x - 2k\pi) = \sin\left(\left|\frac{x - 2k\pi}{2}\right|\right)$ .

$$\forall x \in \mathbb{R}, \ f(x) = \sin\left(\left|\frac{x}{2} - k\pi\right|\right) \text{ où } k = E\left(\frac{x+\pi}{2\pi}\right).$$

#### Correction de l'exercice 2

1. La fonction f est continue par morceaux sur  $\mathbb{R}$  et  $2\pi$ -périodique. On peut donc calculer ses coefficients de FOURIER.



Puisque f est paire,  $\forall n \in \mathbb{N}^*$ ,  $b_n(f) = 0$  puis pour  $n \in \mathbb{N}$ ,  $a_n(f) = \frac{2}{\pi} \int_0^{\pi} \left(1 - \frac{2x}{\pi}\right) \cos(nx) dx$ . Par suite,  $a_0(f) = 0$  puis pour  $n \in \mathbb{N}^*$ ,

$$a_n(f) = \frac{2}{\pi} \left( \left[ \left( 1 - \frac{2x}{\pi} \right) \frac{\sin(nx)}{n} \right]_0^{\pi} + \frac{2}{n\pi} \int_0^{\pi} \sin(nx) \, dx \right) = \frac{4}{n\pi^2} \left[ \frac{-\cos(nx)}{n} \right]_0^{\pi} = \frac{4(1 - (-1)^n)}{n^2 \pi^2}.$$

La fonction f est  $2\pi$ -périodique, continue sur  $\mathbb{R}$  et de classe  $C^1$  par morceaux sur  $\mathbb{R}$ . D'après le théorème de DIRICHLET, la série de FOURIER de f converge vers f sur  $\mathbb{R}$ . Par suite, pour tout réel x,

$$f(x) = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} (a_n(f)\cos(nx) + b_n(f)\sin(nx)) = \frac{4}{\pi^2} \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{n^2} \cos(nx) = \frac{8}{\pi^2} \sum_{p=0}^{+\infty} \frac{\cos((2p+1)x)}{(2p+1)^2}.$$

$$\forall x \in \mathbb{R}, f(x) = \frac{8}{\pi^2} \sum_{n=0}^{+\infty} \frac{\cos((2n+1)x)}{(2n+1)^2}.$$

L'égalité f(0)=1 fournit  $\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}=\frac{\pi^2}{8}$ . Ensuite, si  $S=\sum_{n=1}^{+\infty}\frac{1}{n^2}$ , on a

$$S = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} + \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} = \frac{\pi^2}{8} + \frac{S}{4},$$

et donc  $S = \frac{4}{3} \times \frac{\pi^2}{8} = \frac{\pi^2}{6}$ .

D'autre part, puisque f est continue par morceaux sur  $\mathbb{R}$  et  $2\pi$ -périodique, la formule de PARSEVAL fournit  $\frac{(a_0(f))^2}{2} + \sum_{n=1}^{+\infty} ((a_n(f))^2 + (b_n(f))^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$  et donc

3

$$\frac{64}{\pi^4} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4} = \frac{2}{\pi} \int_0^{\pi} \left(1 - \frac{2x}{\pi}\right)^2 dx = \left[-\frac{1}{3} \left(1 - \frac{2x}{\pi}\right)^3\right]_0^{\pi} = \frac{2}{3}$$

et donc  $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4} = \frac{2}{3} \times \frac{\pi^4}{64} = \frac{\pi^4}{96}$ . Enfin, si on pose  $S = \frac{1}{n^4}$ ,

$$S = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4} + \sum_{n=1}^{+\infty} \frac{1}{(2n)^4} = \frac{\pi^4}{96} + \frac{S}{16},$$

et donc  $S = \frac{16}{15} \times \frac{\pi^4}{96} = \frac{\pi^4}{90}$ .

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}, \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \text{ et } \sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

2. La fonction f est continue par morceaux sur  $\mathbb R$  et  $2\pi$ -périodique. On peut donc calculer ses coefficients de FOURIER.



Puisque f est impaire,  $\forall n \in \mathbb{N}$ ,  $a_n(f) = 0$  puis pour  $n \in \mathbb{N}^*$ ,

$$b_n(f) = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \sin(nx) \, dx = \frac{2}{\pi} \left( \left[ x(\pi - x) \frac{-\cos(nx)}{n} \right]_0^{\pi} + \frac{1}{n} \int_0^{\pi} (\pi - 2x) \cos(nx) \, dx \right)$$

$$= \frac{2}{n\pi} \left( \left[ (\pi - 2x) \frac{\sin(nx)}{n} \right]_0^{\pi} + \frac{2}{n} \int_0^{\pi} \sin(nx) \, dx \right) = \frac{4}{n^2 \pi} \left[ -\frac{\cos(nx)}{n} \right]_0^{\pi} = \frac{4(1 - (-1)^n)}{n^3 \pi}.$$

La fonction f est  $2\pi$ -périodique, continue sur  $\mathbb{R}$  et de classe  $C^1$  par morceaux sur  $\mathbb{R}$ . D'après le théorème de DIRICHLET, la série de FOURIER de f converge vers f sur  $\mathbb{R}$ . Par suite, pour tout réel x,

$$f(x) = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} (a_n(f)\cos(nx) + b_n(f)\sin(nx)) = \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1 - (-1)^n}{n^3} \sin(nx) = \frac{8}{\pi} \sum_{p=0}^{+\infty} \frac{\sin((2p+1)x)}{(2p+1)^3}.$$

$$\forall x \in \mathbb{R}, f(x) = \frac{8}{\pi} \sum_{n=0}^{+\infty} \frac{\sin((2n+1)x)}{(2n+1)^3}.$$

L'égalité  $f\left(\frac{\pi}{2}\right) = \frac{\pi^2}{4}$  fournit  $\sum_{n=0}^{+\infty} (-1)^n \frac{1}{(2n+1)^3} = \frac{\pi^3}{32}$ . Ensuite, puisque f est continue par morceaux sur  $\mathbb{R}$  et  $2\pi$ -périodique, la formule de Parseval fournit  $\frac{(a_0(f))^2}{2} + \sum_{n=1}^{+\infty} ((a_n(f))^2 + (b_n(f))^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx$  et donc

$$\frac{64}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6} = \frac{2}{\pi} \int_0^{\pi} x^2 (\pi - x)^2 dx = \frac{2}{\pi} \left[ \pi^2 \frac{x^3}{3} - 2\pi \frac{x^4}{4} + \frac{x^5}{5} \right]_0^{\pi} = 2\pi^4 \left( \frac{1}{3} - \frac{1}{2} + \frac{1}{5} \right) = \frac{\pi^4}{15}$$

et donc  $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6} = \frac{\pi^2}{64} \times \frac{\pi^4}{15} = \frac{\pi^6}{960}$ . Enfin, si on pose  $S = \frac{1}{n^6}$ ,

$$S = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^6} + \sum_{n=1}^{+\infty} \frac{1}{(2n)^6} = \frac{\pi^6}{960} + \frac{S}{64},$$

et donc  $S = \frac{64}{63} \times \frac{\pi^6}{960} = \frac{\pi^6}{945}$ .

$$\sum_{n=0}^{+\infty} (-1)^n \frac{1}{(2n+1)^3} = \frac{\pi^3}{32}, \sum_{n=1}^{+\infty} \frac{1}{(2n+1)^6} = \frac{\pi^6}{960} \text{ et } \sum_{n=1}^{+\infty} \frac{1}{n^6} = \frac{\pi^6}{945}.$$

3. La fonction f est continue par morceaux sur  $\mathbb{R}$  et  $2\pi$ -périodique. On peut donc calculer ses coefficients de FOURIER.



La fonction f a mêmes coefficients de FOURIER que la fonction g définie sur  $\mathbb{R}$ , impaire et  $2\pi$ -périodique telle que  $\forall x \in \left]0, \frac{\pi}{2}\right[, g(x) = 0$ . Donc  $\forall n \in \mathbb{N}, a_n(f) = 0$  puis pour  $n \in \mathbb{N}^*$ ,

$$b_n(f) = \frac{2}{\pi} \int_0^{\pi} \sin\left(\frac{x}{2}\right) \sin(nx) \, dx = \frac{1}{\pi} \int_0^{\pi} \left(\cos\left(\left(n - \frac{1}{2}\right)x\right) - \cos\left(\left(n + \frac{1}{2}\right)x\right)\right) dx$$

$$= \frac{1}{\pi} \left[\frac{\sin\left(\left(n - \frac{1}{2}\right)x\right)}{n - \frac{1}{2}} - \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{n + \frac{1}{2}}\right]_0^{\pi} = \frac{1}{\pi} \left(-\frac{(-1)^n}{n - \frac{1}{2}} - \frac{(-1)^n}{n + \frac{1}{2}}\right)$$

$$= -\frac{(-1)^n}{\pi} \frac{2n}{n^2 - \frac{1}{4}} = -\frac{(-1)^n}{\pi} \frac{8n}{4n^2 - 1}.$$

La fonction f est  $2\pi$ -périodique et de classe  $C^1$  par morceaux sur  $\mathbb{R}$ . D'après le théorème de DIRICHLET, la série de FOURIER de f converge en tout réel x et a pour somme  $\frac{1}{2}(f(x^+)+f(x^-))$ . En particulier,

$$\forall x \in ]-\pi, \pi[, \sin(\frac{x}{2}) = -\frac{8}{\pi} \sum_{n=1}^{+\infty} (-1)^n \frac{n}{4n^2 - 1} \sin(nx).$$

L'égalité  $f\left(\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}$  fournit

$$\frac{1}{\sqrt{2}} = -\frac{8}{\pi} \sum_{n=0}^{+\infty} (-1)^n \frac{n}{4n^2 - 1} \sin\left(n\frac{\pi}{2}\right) = \frac{8}{\pi} \sum_{p=0}^{+\infty} \frac{2p + 1}{4(2p + 1)^2 - 1} \sin\left((2p + 1)\frac{\pi}{2}\right) = \frac{8}{\pi} \sum_{p=0}^{+\infty} (-1)^p \frac{2p + 1}{16p^2 + 1p + 3},$$

$$\boxed{\sum_{n=0}^{+\infty} (-1)^n \frac{2n + 1}{16n^2 + 16n + 3} = \frac{\pi}{8\sqrt{2}}.}$$

4. f est  $2\pi$ -périodique, continue par morceaux sur  $\mathbb R$  et paire. Pour  $n \in \mathbb N^*$ ,  $b_n(f) = 0$  puis pour  $n \in \mathbb N$ ,  $a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{ch}(\lambda x) \cos(nx) \, dx$ .

**1ère solution.** Soit  $n \in \mathbb{N}$ .

$$\begin{split} a_n(f) &= \frac{1}{\pi} \mathrm{Re} \left( \int_{-\pi}^{\pi} \mathrm{ch}(\lambda x) e^{inx} \, dx \right) = \frac{1}{2\pi} \mathrm{Re} \left( \int_{-\pi}^{\pi} e^{(\lambda + in)x} \, dx + \int_{-\pi}^{\pi} e^{(-\lambda + in)x} \, dx \right) \\ &= \frac{1}{2\pi} \mathrm{Re} \left( \frac{e^{(\lambda + in)\pi} - e^{-(\lambda + in)\pi}}{\lambda + in} + \frac{e^{(-\lambda + in)\pi} - e^{-(-\lambda + in)\pi}}{-\lambda + in} \right) = \frac{(-1)^n}{2\pi} \mathrm{Re} \left( \frac{2 \operatorname{sh}(\lambda \pi)}{\lambda + in} + \frac{-2 \operatorname{sh}(\lambda \pi)}{-\lambda + in} \right) \\ &= \frac{(-1)^n \operatorname{sh}(\lambda \pi)}{\pi} \mathrm{Re} \left( \frac{\lambda - in}{\lambda^2 + n^2} + \frac{\lambda + in}{\lambda^2 + n^2} \right) = \frac{2\lambda \operatorname{sh}(\lambda \pi)}{\pi} \times \frac{(-1)^n}{n^2 + \lambda^2} \end{split}$$

2ème solution. Une double intégration par parties fournit

$$\begin{split} a_n(f) &= \frac{1}{\pi} \left( \left[ \frac{\sinh(\lambda x)}{\lambda} \cos(nx) \right]_{-\pi}^{\pi} + \frac{n}{\lambda} \int_{-\pi}^{\pi} \sinh(\lambda x) \sin(nx) \, dx \right) = \frac{1}{\pi} \left( \frac{2(-1)^n \sinh(\lambda \pi)}{\lambda} + \frac{n}{\lambda} \int_{-\pi}^{\pi} \sinh(\lambda x) \sin(nx) \, dx \right) \\ &= \frac{1}{\pi} \left( \frac{2(-1)^n \sinh(\lambda \pi)}{\lambda} + \frac{n}{\lambda} \left( \left[ \frac{\cosh(\lambda x)}{\lambda} \sin(nx) \right]_{-\pi}^{\pi} - \frac{n}{\lambda} \int_{-\pi}^{\pi} \cosh(\lambda x) \cos(nx) \, dx \right) \right) \\ &= \frac{2(-1)^n \sinh(\lambda \pi)}{\lambda \pi} - \frac{n^2}{\lambda^2} a_n(f), \end{split}$$

et donc  $\forall n \in \mathbb{N}$ ,  $a_n(f) = \frac{2(-1)^n \operatorname{sh}(\lambda \pi)}{\lambda \pi} \times \frac{\lambda^2}{n^2 + \lambda^2} = \frac{2\lambda \operatorname{sh}(\lambda \pi)}{\pi} \times \frac{(-1)^n}{n^2 + \lambda^2}$ .

La fonction f est  $2\pi$ -périodique, continue sur  $\mathbb{R}$  et de classe  $C^1$  par morceaux sur  $\mathbb{R}$ . D'après le théorème de DIRICHLET, la série de FOURIER de f converge vers f sur  $\mathbb{R}$ . On en déduit que

$$\forall x \in \mathbb{R}, f(x) = \frac{\sinh(\lambda \pi)}{\lambda \pi} + \frac{2\lambda \sinh(\lambda \pi)}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + \lambda^2} \cos(nx).$$

L'égalité f(0) = 1 fournit  $1 = \frac{\sinh(\lambda \pi)}{\lambda \pi} + \frac{2\lambda \sinh(\lambda \pi)}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + \lambda^2}$  et donc

$$\textstyle \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + \lambda^2} = \frac{\pi}{2\lambda \sinh(\lambda\pi)} \left(1 - \frac{\sinh(\lambda\pi)}{\lambda\pi}\right) = \frac{\pi(\sinh(\lambda\pi) - \pi\lambda)}{2\lambda^2\pi \sinh(\lambda\pi)}$$

et l'égalité  $f(\pi) = \operatorname{ch}(\lambda \pi)$  fournit

$$\begin{split} \sum_{n=1}^{+\infty} \frac{1}{n^2 + \lambda^2} &= \frac{\pi}{2\lambda \operatorname{sh}(\lambda \pi)} \left( \operatorname{ch}(\lambda \pi) - \frac{\operatorname{sh}(\lambda \pi)}{\lambda \pi} \right) = \frac{\lambda \pi \operatorname{ch}(\lambda \pi) - \operatorname{sh}(\lambda \pi)}{2\lambda^2 \operatorname{sh}(\lambda \pi)} \\ \forall \lambda > 0, \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + \lambda^2} &= \frac{\pi}{2\lambda \operatorname{sh}(\lambda \pi)} \operatorname{et} \sum_{n=1}^{+\infty} \frac{1}{n^2 + \lambda^2} = \frac{\lambda \pi \operatorname{ch}(\lambda \pi) - \operatorname{sh}(\lambda \pi)}{2\lambda^2 \operatorname{sh}(\lambda \pi)}. \end{split}$$

La fonction f est  $2\pi$ -périodique, continue par morceaux sur  $\mathbb{R}$ . L'égalité de Parseval s'écrit  $\frac{(a_0(f))^2}{2} + \sum_{n=1}^{+\infty} ((a_n(f))^2 + (b_n(f))^2) = \frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 \, dx$  avec

$$\frac{1}{\pi} \int_{-\pi}^{\pi} (f(x))^2 dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{ch}^2(\lambda x) \ dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\mathrm{ch}(2\lambda x) + 1}{2} \ dx = 1 + \frac{\mathrm{sh}(2\lambda \pi)}{2\pi},$$

et donc  $1 + \frac{\sinh(2\lambda\pi)}{2\pi} = \frac{2\sinh^2(\lambda\pi)}{\pi^2\lambda^2} + \frac{4\lambda^2\sinh^2(\lambda\pi)}{\pi^2} \sum_{n=1}^{+\infty} \frac{1}{(\lambda^2 + n^2)^2}$  puis

$$\textstyle \sum_{n=1}^{+\infty} \frac{1}{(\lambda^2 + n^2)^2} = \frac{\pi^2}{4\lambda^2 \operatorname{sh}^2(\lambda\pi)} \left( 1 + \frac{\operatorname{sh}(2\lambda\pi)}{2\pi} - \frac{2\operatorname{sh}^2(\lambda\pi)}{\pi^2\lambda^2} \right) = \frac{2\pi^2\lambda^2 + \pi\lambda \operatorname{sh}(2\lambda\pi) - 4\lambda^2 \operatorname{sh}^2(\lambda\pi)}{8\lambda^4 \operatorname{sh}^2(\lambda\pi)}.$$

$$\forall \lambda>0, \Sigma_{n=1}^{+\infty} \tfrac{1}{(\lambda^2+n^2)^2} = \tfrac{\pi^2\lambda^2+\pi\lambda\operatorname{ch}(\lambda\pi)\operatorname{sh}(\lambda\pi)-2\lambda^2\operatorname{sh}^2(\lambda\pi)}{4\lambda^2\operatorname{sh}^2(\lambda\pi)}.$$

5. La fonction f est continue par morceaux sur  $\mathbb{R}$  et  $2\pi$ -périodique. On peut donc calculer ses coefficients de FOURIER.



Soit  $n \in \mathbb{N}$ .

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} \sup(\sin x, 0) \cos(nx) \, dx = \frac{1}{\pi} \int_{0}^{\pi} \sin x \cos(nx) \, dx = \frac{1}{2\pi} \int_{0}^{\pi} \sin((n+1)x) - \sin((n-1)x) \, dx$$

$$= \begin{cases} \frac{1}{2\pi} \int_{0}^{\pi} \sin(2x) \, dx \sin n = 1 \\ \frac{1}{2\pi} \left[ -\frac{\cos((n+1)x)}{n+1} + \frac{\cos((n-1)x)}{n-1} \right]_{0}^{\pi} \sin n \neq 1 \end{cases} = \begin{cases} \frac{1}{2\pi} \left[ -\frac{\cos(2x)}{2} \right]_{0}^{\pi} \sin n = 1 \\ \frac{1}{2\pi} \left( -\frac{(-1)^{n+1}-1}{n+1} + \frac{(-1)^{n-1}-1}{n-1} \right) \sin n \neq 1 \end{cases}$$

$$= \begin{cases} 0 \sin n = 1 \\ -\frac{1+(-1)^{n}}{\pi} \frac{1}{n^{2}-1} \sin n \neq 1 \end{cases}$$

Soit  $n \in \mathbb{N}^*$ .

$$b_n(f) = \frac{1}{\pi} \int_0^{\pi} \sin x \sin(nx) \, dx = \frac{1}{2\pi} \int_0^{\pi} (\cos((n-1)x) - \cos((n+1)x)) \, dx = \begin{cases} \frac{1}{2} \sin n = 1 \\ 0 \sin n \neq 1 \end{cases}$$

La fonction f est  $2\pi$ -périodique, continue sur  $\mathbb{R}$  et de classe  $C^1$  par morceaux sur  $\mathbb{R}$ . D'après le théorème de DIRICHLET, la série de FOURIER de f converge vers f sur  $\mathbb{R}$ . On en déduit que pour tout réel x

$$\sup(\sin x, 0) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{1}{\pi} \sum_{n=2}^{+\infty} \frac{1 + (-1)^n}{n^2 - 1} \cos(nx) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum_{p=1}^{+\infty} \frac{1}{4p^2 - 1} \cos(2px).$$

$$\forall x \in \mathbb{R}, \sup(\sin x, 0) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1} \cos(2nx).$$

L'égalité f(0)=0 fournit  $\frac{1}{\pi}-\frac{2}{\pi}\sum_{n=1}^{+\infty}\frac{1}{4n^2-1}=0$  et donc

$$\sum_{n=1}^{+\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}.$$

**Remarque.** 
$$\sum_{n=1}^{+\infty} \frac{1}{4n^2-1} = \lim_{N \to +\infty} \frac{1}{2} \sum_{n=1}^{N} \left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \lim_{N \to +\infty} \frac{1}{2} \left( 1 - \frac{1}{2N+1} \right) = \frac{1}{2}$$

#### Correction de l'exercice 3

1. (a) Soit  $a \in \mathbb{C} \setminus [-1, 1]$ . Pour tout réel  $t, a - \cos t \neq 0$  et

$$\frac{1}{a-\cos t} = \frac{2}{2a-e^{it}-e^{-it}} = \frac{-2e^{it}}{(e^{it})^2 - 2ae^{it} + 1}.$$

L'équation  $z^2 - 2az + 1 = 0$  admet deux solutions non nulles inverses l'une de l'autre. On note b la solution de plus petit module de sorte que  $|b| \le 1$ .

On ne peut avoir |b|=1 car alors il existe  $\theta \in \mathbb{R}$  tel que  $b=e^{i\theta}$ . On en déduit que  $2a=b+\frac{1}{b}=2\cos\theta\in[-2,2]$  puis que  $a\in[-1,1]$  ce qui n'est pas. Donc  $|b|\neq 1$ . Plus précisément, puisque  $|b|\leqslant \left|\frac{1}{b}\right|$ , on a |b|<1 et  $\left|\frac{1}{b}\right|$ . En particulier,  $b\neq \frac{1}{b}$ .

Ensuite, pour |t| < |b|, on a

$$\frac{1}{a - \cos t} = \frac{-2e^{it}}{(e^{it} - b)\left(e^{it} - \frac{1}{b}\right)} = \frac{2}{\frac{1}{b} - b} \left(\frac{b}{e^{it} - b} - \frac{1/b}{e^{it} - \frac{1}{b}}\right) = \frac{2b}{1 - b^2} \left(\frac{be^{-it}}{1 - be^{-it}} + \frac{1}{1 - be^{it}}\right)$$

$$= \frac{2b}{1 - b^2} \left(be^{-it} \sum_{n=0}^{+\infty} b^n e^{-int} + \sum_{n=0}^{+\infty} b^n e^{int}\right) \left(\operatorname{car}|be^{it}| = |be^{-it}| = |b| < 1\right)$$

$$= \frac{2b}{1 - b^2} \left(\sum_{n=0}^{+\infty} b^{n+1} e^{-i(n+1)t} + \sum_{n=0}^{+\infty} b^n e^{int}\right) = \frac{2b}{1 - b^2} \left(1 + \sum_{n=1}^{+\infty} b^n e^{int} + \sum_{n=1}^{+\infty} b^n e^{-int}\right)$$

$$= \frac{2b}{1 - b^2} \left(1 + 2\sum_{n=1}^{+\infty} b^n \cos(nt)\right).$$

$$\forall t \in \mathbb{R}, \frac{1}{a - \cos t} = \frac{2b}{1 - b^2} \left(1 + 2\sum_{n=1}^{+\infty} b^n \cos(nt)\right).$$

(b) Pour tout réel  $t \in [-\pi, \pi]$  et tout entier naturel non nul n, on a  $|b^n \cos(nt)| \leq |b|^n$ . Comme la série numérique de terme général  $|b|^n$  converge, on en déduit que la série de fonctions de terme général  $t \mapsto b^n \cos(nt)$ ,  $n \in \mathbb{N}$ , converge normalement et donc uniformément sur le segment  $[-\pi, \pi]$ .

On sait alors que la série obtenue est la série de FOURIER de f.

2. Puisque la fonction f est paire, pour tout entier naturel n,  $a_n(f) = \frac{2}{\pi} \int_0^{\pi} \frac{\cos(nt)}{a - \cos t} dt$ . Donc, pour tout entier naturel n (y compris pour n = 0),

$$\int_0^{\pi} \frac{\cos(nt)}{a - \cos t} dt = \frac{\pi a_n(f)}{2} = \frac{2b^{n+1}\pi}{1 - b^2}$$

Finalement,

$$\forall n \in \mathbb{N}, \int_0^\pi \frac{\cos(nt)}{a - \cos t} dt = \frac{2b^{n+1}\pi}{1 - b^2}.$$

# Correction de l'exercice 4 A

Soit α ∈ ℂ \ ℤ. La fonction f est 2π-périodique, continue sur ℝ et de classe C¹ par morceaux sur ℝ. Donc la série de FOURIER de f converge vers f sur ℝ d'après le théorème de DIRICHLET.
 Puisque f est paire, ∀n ∈ ℕ\*, b<sub>n</sub>(f) = 0 puis pour n ∈ ℕ,

$$a_n(f) = \frac{2}{\pi} \int_0^{\pi} \cos(\alpha x) \cos(nx) dx = \frac{1}{\pi} \int_0^{\pi} (\cos((n+\alpha)x) + \cos((n-\alpha)x)) dx$$

$$= \frac{1}{\pi} \left[ \frac{\sin((\alpha+n)x)}{\alpha+n} + \frac{\sin((\alpha-n)x)}{\alpha-n} \right]_0^{\pi} (\cos\alpha \notin \mathbb{Z})$$

$$= \frac{1}{\pi} \left( \frac{\sin((\alpha+n)\pi)}{\alpha+n} + \frac{\sin((\alpha-n)\pi)}{\alpha-n} \right) = (-1)^n \frac{2\alpha \sin(\alpha\pi)}{\pi(\alpha^2-n^2)}$$

Finalement,

$$\forall \alpha \in \mathbb{C} \setminus \mathbb{Z}, \forall x \in [-\pi, \pi], \cos(\alpha x) = \frac{\sin(\alpha \pi)}{\alpha \pi} + \frac{\sin(\alpha \pi)}{\pi} \sum_{n=1}^{+\infty} (-1)^n \frac{2\alpha}{\alpha^2 - n^2} \cos(nx).$$

## 2. Soit $z \in \mathbb{C} \setminus \mathbb{Z}$ .

On prend  $\alpha = z$  et x = 0 dans la formule précédente et on obtient  $1 = \frac{\sin(\pi z)}{\pi z} + \frac{\sin(\pi z)}{\pi} \sum_{n=1}^{+\infty} (-1)^n \frac{2z}{z^2 - n^2}$  (\*). Maintenant,

$$\sin(\pi z) = 0 \Leftrightarrow \frac{1}{2i}(e^{i\pi z} - e^{-i\pi z}) = 0 \Leftrightarrow e^{i\pi z} = e^{-i\pi z} \Leftrightarrow e^{2i\pi z} = 1 \Leftrightarrow 2i\pi z \in 2i\pi \mathbb{Z} \Leftrightarrow z \in \mathbb{Z}.$$

Puisque  $z \in \mathbb{C} \setminus \mathbb{Z}$ ,  $\sin(\pi z) \neq 0$  et l'égalité (\*) peut s'écrire  $\frac{\pi}{\sin(\pi z)} = \frac{1}{z} + \sum_{n=1}^{+\infty} (-1)^n \frac{2z}{z^2 - n^2}$ .

De même, en prenant  $\alpha = z$  et  $x = \pi$ , on obtient  $\cos(\pi z) = \frac{\sin(\pi z)}{\pi z} + \frac{\sin(\pi z)}{\pi} \sum_{n=1}^{+\infty} \frac{2z}{z^2 - n^2}$  et donc  $\pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{+\infty} \frac{2z}{z^2 - n^2}$ .

$$\frac{\pi}{\sin(\pi z)} = \frac{1}{z} + \sum_{n=1}^{+\infty} (-1)^n \frac{2z}{z^2 - n^2} \text{ et } \pi \cot(\pi z) = \frac{1}{z} + \sum_{n=1}^{+\infty} \frac{2z}{z^2 - n^2}.$$

#### Correction de l'exercice 5

La fonction f est 1-périodique, continue par morceaux sur  $\mathbb{R}$ . On peut donc calculer ses coefficients de FOURIER.



La fonction f a mêmes coefficients de FOURIER que la fonction  $g: x \mapsto \begin{cases} f(x) \text{ si } x \notin \mathbb{Z} \\ 0 \text{ si } x \in \mathbb{Z} \end{cases}$  qui est impaire. Donc,  $\forall n \in \mathbb{N}, \, a_n(f) = 0$  puis pour  $n \in \mathbb{N}^*$ 

$$b_n(f) = \frac{2}{1} \int_0^1 f(t) \sin\left(\frac{2n\pi t}{1}\right) dt = \int_0^1 (2t - 1) \sin(2n\pi t) dt$$

$$= \left[ -\frac{(2t - 1)\cos(2n\pi t)}{2n\pi} \right]_0^1 + \frac{1}{n\pi} \int_0^1 \cos(2n\pi t) dt = \left( -\frac{1}{2n\pi} - \frac{1}{2n\pi} \right) + 0$$

$$= -\frac{1}{n\pi}.$$

La fonction f est de plus de classe  $C^1$  par morceaux sur  $\mathbb{R}$  et d'après le théorème de DIRICHLET, en tout réel x, la série de FOURIER de f converge et a pour pour somme  $\frac{1}{2}(f(x^+)+f(x^-))$ . En particulier,

$$\forall x \in \mathbb{R} \setminus \mathbb{Z}, f(x) = x - E(x) - \frac{1}{2} = -\sum_{n=1}^{+\infty} \frac{\sin(2n\pi x)}{n\pi}.$$

Soit  $p \in \mathbb{N}^*$ . Pour  $n \in \mathbb{N}^*$ ,

$$b_n(f_p) = 2\int_0^1 f(pt)\sin(2n\pi t) dt = 2\int_0^p f(u)\sin\left(2n\pi \frac{u}{p}\right) \frac{du}{p}$$

$$= \left[ -\frac{(2t-1)\cos(2n\pi t)}{2n\pi} \right]_0^1 + \frac{1}{n\pi}\int_0^1 \cos(2n\pi t) dt = \left( -\frac{1}{2n\pi} - \frac{1}{2n\pi} \right) + 0$$

$$= -\frac{1}{n\pi}.$$

**Remarque.** Soient  $p \in \mathbb{N}^*$  et  $x \in [0,1] \setminus \left\{ \frac{k}{p}, k \in [0,p] \right\}$ . Alors  $px \notin \mathbb{Z}$  et donc

$$f_p(x) = f(px) = -\sum_{n=1}^{+\infty} \frac{\sin(2np\pi x)}{n\pi} = \sum_{k=1}^{+\infty} b_{k,p} \sin(2k\pi x)$$

où  $\forall k \in \mathbb{N}^*, \, b_{k,p} = \begin{cases} 0 \text{ si } k \notin p\mathbb{Z} \\ -\frac{1}{\frac{k}{p}\pi} \text{ si } k \in p\mathbb{Z} \end{cases}$  mais malheureusement, on ne peut pas récupérer ces coefficients car la série obtenue ne converge pas normalement.

$$\forall (p,q) \in (\mathbb{N}^*)^2, \int_0^1 f_q(x) f_q(x) dx = \frac{(PGCD(p,q))^2}{12pq}.$$