

Uitvoeringsorganisatie Bedrijfsvoering Rijk Ministerie van Binnenlandse Zaken en Koninkrijksrelaties

Explainable AI with Python

Nino van Halem

About me

Artificial Intelligence BSc @ Nijmegen

Artificial Intelligence MSc @ Nijmegen

Software engineer/ Data scientist @ NFI

Data scientist @ Rijks ICT Gilde

Agenda

- > Explainability
- Machine learning models
- > Explainability methods
- > Wrap up and conclusion

Explainability

> What?

Why am I getting a discount and my neighbour isn't?
Why are we predicting people to buy certain products?
How certain is the car, what is it's priority?

> Why?

GDPR, non-discrimination, transparency, fairness, trust, control

Agenda

- > Explainability
- Machine learning models
- > Explainability methods
- > Wrap up and conclusion

Machine learning models

Directly interpretable (easy to explain)

Linear regression

Logistic regression

Decision trees

Not directly interpretable (hard to explain)

Neural networks

Random forests

Linear regression

Decision tree

Survival of passengers on the Titanic

Neural network

Agenda

- > Explainability
- Machine learning models
- > Explainability methods
- > Wrap up and conclusion

Explainability

Model-agnostic

Works for any model

Model-specific

Uses the structure of the model

Global

About the behaviour of the entire model

> Local

About a certain prediction

California block prices

Ground truth:

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
9463	2.7	32.0	5.56338	1.06338	380.0	2.676056	39.44	-123.73	1.65

> Prediction:

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal	
9463	2.7	32.0	5.56338	1.06338	380.0	2.676056	39.44	-123.73	0.000	
									0.886	

> What?

Change in average prediction (on training set) after fixing each variable to test value

> How?

Fix variable
Keep track of change in average prediction
Repeat!

California block prices

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
5247	15.0001	36.0	9.368263	1.173653	862.0	2.580838	34.09	-118.44	5.00001
19550	2.0885	35.0	4.812065	1.106729	1687.0	3.914153	37.62	-121.01	0.73700
18764	1.4911	18.0	6.215859	1.453744	494.0	2.176211	40.75	-122.31	0.75800
15779	3.8625	52.0	8.758621	2.482759	153.0	5.275862	37.78	-122.41	3.50000
8870	6.6343	52.0	7.166189	1.037249	748.0	2.143266	34.06	-118.40	5.00001
10967	4.8000	34.0	5.223881	1.044776	723.0	3.597015	33.76	-117.89	1.92700
17310	11.7794	39.0	14.666667	1.809524	59.0	2.809524	34.35	-119.50	5.00001
5199	1.4329	21.0	3.057762	1.003610	1283.0	4.631769	33.93	-118.28	0.94100
12187	3.1832	9.0	6.288462	1.083333	596.0	3.820513	33.67	-117.31	1.57400
235	2.3036	35.0	4.620513	1.176923	1009.0	2.587179	37.79	-122.20	1.26000
									2.070

2.078

California block prices

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
5247	15.0001	36.0	9.368263	1.173653	862.0	2.580838	39.44	-118.44	???
19550	2.0885	35.0	4.812065	1.106729	1687.0	3.914153	39.44	-121.01	???
18764	1.4911	18.0	6.215859	1.453744	494.0	2.176211	39.44	-122.31	???
15779	3.8625	52.0	8.758621	2.482759	153.0	5.275862	39.44	-122.41	???
8870	6.6343	52.0	7.166189	1.037249	748.0	2.143266	39.44	-118.40	???
10967	4.8000	34.0	5.223881	1.044776	723.0	3.597015	39.44	-117.89	???
17310	11.7794	39.0	14.666667	1.809524	59.0	2.809524	39.44	-119.50	???
5199	1.4329	21.0	3.057762	1.003610	1283.0	4.631769	39.44	-118.28	???
12187	3.1832	9.0	6.288462	1.083333	596.0	3.820513	39.44	-117.31	???
235	2.3036	35.0	4.620513	1.176923	1009.0	2.587179	39.44	-122.20	???

California block prices

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
5247	15.0001	36.0	9.368263	1.173653	862.0	2.580838	39.44	-123.7	???
19550	2.0885	35.0	4.812065	1.106729	1687.0	3.914153	39.44	-123.7	???
18764	1.4911	18.0	6.215859	1.453744	494.0	2.176211	39.44	-123.7	???
15779	3.8625	52.0	8.758621	2.482759	153.0	5.275862	39.44	-123.7	???
8870	6.6343	52.0	7.166189	1.037249	748.0	2.143266	39.44	-123.7	???
10967	4.8000	34.0	5.223881	1.044776	723.0	3.597015	39.44	-123.7	???
17310	11.7794	39.0	14.666667	1.809524	59.0	2.809524	39.44	-123.7	???
5199	1.4329	21.0	3.057762	1.003610	1283.0	4.631769	39.44	-123.7	???
12187	3.1832	9.0	6.288462	1.083333	596.0	3.820513	39.44	-123.7	???
235	2.3036	35.0	4.620513	1.176923	1009.0	2.587179	39.44	-123.7	???

California block prices

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
5247	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
19550	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
18764	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
15779	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
8870	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
10967	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
17310	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
5199	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
12187	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???
235	2.7	32.0	5.563	1.063	3.8	2.676	39.44	-123.7	???

0.886

Order matters!


```
n = 50
random.seed(1)
contributions = defaultdict(lambda: [])
for ordering in tqdm(sample(list(itertools.permutations(data.feature_names)), n)):
  breakdown = exp.predict_parts(X_test_sample, type='break_down', order=list(ordering))
  for item in list(zip(breakdown.result.variable_name, breakdown.result.contribution))[1:-1]:
    contributions[item[0]].append(item[1])
sns.boxplot(data=pd.DataFrame(contributions))
_ = plt.title(f'Contribution values for different variables, N={n}')
```


> Pros

Understandable

Compact

Intuitive

> Cons

Misleading for interactions
Order matters

Calculate the 'contribution' of each variable/player (game theory)

> How?

Add value of the test instance for a variable to a coalition of other variables Compare this with random value for variable of interest

Variables:

Number of occupants Total income

Number of rooms

UBR | RIJKS ICT GILDE

> Shapley value(

Coalitions:


```
import dalex as dx

exp = dx.Explainer(model, X_train, y_train)
shapley_values = exp.predict_parts(X_test_sample, type='shap', random_state=1)
shapley_values.plot()
```


> Pros

Single value
Strong foundation in Game Theory
Works well for additive contributions

Cons

Does not show interaction effects Can be very time consuming

LIME

- > Local Interpretable Model-agnostic Explanations
- > Fit a simple model on a black box model to explain an instance
- Oversimplification

Permute data

Permute data

- > Permute data
- > Calculate distance measure

Calculate distance measure

- > Permute data
- > Calculate distance measure
- > Make predictions with black box model

Make predictions with black box model

RIJKS ICT GILDE

- > Permute data
- > Calculate distance measure
- > Make predictions with black box model
- Choose features
- > Fit a simple model (based on distance measure)

Fit a simple model (based on distance measure)

Fit a simple model (based on distance measure)

UBR | RIJKS ICT GILDE

Explanation

UBR '

RIJKS ICT GILDE

Explanation

LIME for images

Predicted: wolf True: wolf

Predicted: husky

True: husky

Predicted: wolf True: wolf

Predicted: wolf True: husky

Predicted: husky True: husky

Predicted: wolf True: wolf

RIJKS ICT GILDE

LIME for text

"This movie was not bad at all."

positive

Text with highlighted words
This movie was not bad at all.

LIME

> Pros

Readable/visual
Configurable
Applicable on tabular data, images, and text

Cons

Definition of neighbourhood is hard Instable explanations

Summary

- > Many reasons to explain your models
- > Many ways to explain your models
- > Breakdown plots, Shapley values, LIME

Sometimes explainability is better than performance Questions?

nino.halem@minbzk.nl

https://github.com/RIG-MYCELIA/XAI-workshop

