Analisi Matematica 1 A

Davide Peccioli Anno accademico 2021-2022

Indice

1	Insi	iemi	5
	1.1	Corrispondenza biunivoca	5
		1.1.1 Corrispondenza $\mathbb{N} - \mathbb{Z}$	5
		1.1.2 Corrispondenza $\mathbb{N} - \mathbb{N} \times \mathbb{N}$	5
	1.2	Insieme \mathbb{R}	6
		1.2.1 Relazioni	8
		1.2.2 Definizione assiomatica dei numeri reali	12
	1.3	Campi ordinati completi	13
		1.3.1 Rappresentazione	14
2	Lip	sum	15
3	Lim	nite successione	16
	3.1	Applicazione del Principio di Archimede	18
	3.2	Limiti	19
	3.3	Confronti tra infiniti	22
4	Cos	stante di Nepero	23
5	Cor	ntinuità	25
	5.1	Discontinuità	30
	5.2	Prolungamento per continuità di una funzione	32
6	Suc	cessioni	33
	6.1	Un limite notevole	33
	6.2	Sottosuccessioni	34
	6.3	Successioni a valori in \mathbb{R}^n	36
		6.3.1 Successioni e chiusura di $E \subset \mathbb{R}^n$	39
	6.4	Successioni di Cauchy	40
7	Teo	oremi per le funzioni continue	42

1 Insiemi

Gli insiemi numerici a cui siamo abituati da sempre sono

20 set 2021

$$\mathbb{N} = \{0, 1, 2, \cdots\}$$

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$$

$$\mathbb{Q} = \{r = \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \setminus \{0\}, m, n \text{ primi tra loro}\}$$

Per l'insieme $\mathbb Q$ esiste una rappresentazione decimale:

$$r = n, \alpha_1 \alpha_2 \alpha_3 \cdots \alpha_j \cdots$$

con $n \in \mathbb{Z}$, $a_i \in \{0, 1, 2, \dots, 9\}$. " $\alpha_1 \alpha_2 \alpha_3 \cdots \alpha_j \cdots$ " prende il nome di allineamento periodico (o finisce o si ripete all'infinito).

1.1 Corrispondenza biunivoca

Due insiemi *finiti* possono essere messi in corrispondenza biunivoca se e solo se hanno lo stesso numero di oggetti.

1.1.1 Corrispondenza $\mathbb{N} - \mathbb{Z}$

1.1.2 Corrispondenza $\mathbb{N} - \mathbb{N} \times \mathbb{N}$

In rosso è segnato l'insieme \mathbb{N} , mentre in nero le coppie di $\mathbb{N} \times \mathbb{N}$, che sono state ordinate dalle freccie rosse:

In generale, se $K \leftrightarrow \mathbb{N}$ (dove \leftrightarrow si legge "in corrispondenza biunivoca") \Longrightarrow

$$K \leftrightarrow K \times K = K^{2}$$

$$K \leftrightarrow K \times K \times K = K^{3}$$

$$K \leftrightarrow K \times K \times \cdots \times K = K^{n}$$

Definizione Un insieme A è detto numerabile se può essere messo in corrispondenza biunivoca con $\mathbb N$

Gli insiemi $\mathbb{N},\,\mathbb{Z},\,\mathbb{Q}$ e $\mathbb{N}^n,\,\mathbb{Z}^n,\,\mathbb{Q}^n$ sono numerabili

1.2 Insieme \mathbb{R}

21 set 2021

Proposizione p.i Sia d la diagonale del quadrato di lato 1, ovvero $d^2=2$. $d\notin \mathbb{Q}$

dim. (p.i) Assumiamo per assurdo che $d \in \mathbb{Q}$

 $\implies \exists m, n \in \mathbb{Z}, n \neq 0$ primi tra loro tali che $d = \frac{m}{n}$

$$\implies \frac{m^2}{n^2} = 2$$

$$\implies m^2 = 2n^2$$

 $\implies m^2$ è pari $\implies m$ è pari ¹

 $\implies \exists \, k \in \mathbb{Z} \text{ tale che } m = 2k$

$$\implies m^2 = 4k^2$$

$$\implies 2n^2 = 4k^2$$

$$\implies n^2 = 2k_2$$

$$\implies n^2$$
 è pari $\implies n$ è pari;

si ha contradizione dell'ipotesi che m, n fossero primi tra di loro (in quanto entrambi pari hanno almeno un divisore in comune, ovvero 2).

Proposizione $p.ii \quad m \in \mathbb{Z}, m^2 \text{ pari} \implies m \text{ pari}$

¹ dimostrazione successiva

dim. (p.ii) Per assurdo, assumiamo m dispari

$$\implies \exists k \in \mathbb{Z} | m = 2k + 1$$

$$\implies m^2 = (2k+1)^2 = 4k^2 + 4k + 1$$

$$\implies m^2 = \underbrace{4k(k+1)}_{pari} + 1$$

 $\implies m^2$ è dispari.

Si ha contraddizione, pertanto m è pari.

Dal momento che si è utilizzata nelle ultime dimostrazioni, è bene aprire una parentesi sulle $dimostrazioni\ per\ assurdo$

Schema dimostrativo per assurdo

Proposizione p.iii (schema I) Siano p, q preposizioni

$$(p \implies q) \iff \left((p \land \neg q) \implies \neg p\right)$$

dim. (p.iii)

p	q	$\neg p$	$\neg q$	$p \implies q$	$p \land \neg q$	$(p \land \neg q) \implies \neg p$
1	1	0	0	1	0	1
1	0	0	1	0	1	0
0	1	1	0	1	0	1
0	0	1	1	1	0	1

Si noti come la quinta e l'ultima colonna siano uguali.

Proposizione p.iv (schema II) Siano p, q preposizioni

$$(p \implies q) \iff (p \land \neg q) \implies q)$$

dim. (p.iv)

p	q	$\neg q$	$p \wedge \neg q$	$p \implies q$	$(p \land \neg q) \implies q$
1	1	0	0	1	1
0	0	1	0	1	1
1	0	1	1	0	0
0	1	0	0	1	1

Si noti come la quinta e l'ultima colonna siano uguali.

Proposizione p.v (schema III) Siano p, q preposizioni

$$(p \implies q) \iff (\neg q \implies \neg p)$$

dim. (p.v)

p	q	$\neg q$	$\neg p$	$p \implies q$	$\neg q \implies \neg p$
1	1	0	0	1	1
1	0	1	0	0	0
0	1	0	1	1	1
0	0	1	1	1	1

Si noti come la quinta e l'ultima colonna siano uguali.

Dalle dimostrazioni precedenti (p.i) si è reso evidente che necessitiamo di un insieme numerico che permetta di risolvere il problema di trovare la diagonale di un quadrato di lato 1: infatti, questo semplice caso ci dimostra che la retta euclidea non è in corrispondenza biunivoca con \mathbb{Q} , ma che anzi la retta di \mathbb{Q} ha "un buco"

Vogliamo trovare X tale che $\mathbb{Q} \subseteq X$, $X \leftrightarrow \text{retta}$

Per trovare questo insieme è necessario introdurre le *relazioni* all'interno di un insieme

1.2.1 Relazioni

Sia A un insieme generico: diciamo \mathcal{R} relazione su A tale che

$$\mathcal{R} \subseteq A \times A$$

Dati $a,b \in A$ si scrive $a\mathcal{R}b \iff (a,b) \in \mathcal{R}$. Diciamo che a è in corrispondenza con b se $a\mathcal{R}b$

Proprietà

- \mathcal{R} si dice simmetrica se $a, b \in A$, $a\mathcal{R}b \implies b\mathcal{R}a$
- \mathcal{R} si dice riflessiva se $\forall a \in A, a\mathcal{R}a$

- \mathcal{R} si dice transitiva se dati $a, b, c \in A$, $a\mathcal{R}b \wedge b\mathcal{R}c \implies a\mathcal{R}c$
- \mathcal{R} si dice antisimmetrica se dati $a, b \in A$, $a\mathcal{R}b \wedge b\mathcal{R}a \implies a = b$

Definizione Una relazione \mathcal{R} su A è detta di ordine se soddisfa le proprietà riflessiva, antisimmetrica e transitiva

Definizione Una relazione \mathcal{R} su A è detta di *ordine totale* (o anche A è totalmente ordinato rispetto ad \mathcal{R}) se è una relazione d'ordine e vale

$$\forall a, b \in A \quad a\mathcal{R}b \lor b\mathcal{R}a$$

Esempi (1.1)

- A insieme delle parole del dizionario italiano, R ordine lessicografico
 a, b ∈ A aRb se a viene prima o coincide con b nell'ordine alfabetico.
 R è riflessiva, transitiva e antisimmetrica, R è di ordine totale.
- Sia U insieme universo, $\mathscr{P}(U)$ l'insieme delle parti di U^2 , \mathcal{R} relazione di inclusione (\subset)

$$A, B \in \mathcal{P}(U), A \subset B \iff \forall x \in A \implies x \in B$$

 \mathcal{R} è di ordine su $\mathscr{P}(U)$ ma non è di ordine totale

- Nell'insieme Q si consideri la relazione
 - minore stretto

a < b se a precede strettamente b nell'ordine da sinistra a destra della retta euclidea

- minore uguale

 $a \leq b$ se a precede o coincide b nell'ordine da sinistra a destra della retta euclidea

Si noti che

< non è di ordine (non soddisfa né la proprietà riflessiva né la proprietà antisimmetrica)

 $[\]overline{^2}$ Si è fatto così e non si è scelto \overline{V} (insieme di tutti gli insiemi) per evitare i paradossi; in particolare, vedasi $paradosso\ di\ Russel$

 \leq è di ordine totale

La relazione < non è di ordine in quanto

- 1. non soddisfa la proprietà riflessiva: ogni numero non è minore a se stesso
- 2. non soddisfa la proprietà di antisimmetria, in quanto non esiste nessuna coppia di numeri per cui valgano le relazioni a < b e b < a

La relazione \leq è di ordine totale, in quanto soddisfa tutte e tre le proprietà:

- 1. è riflessiva, in quanto ogni numero è minore o uguale a se stesso
- 2. è antisimmetrica, in quanto l'unico modo per cui valga la relazione $a \leq b$ e $b \leq a$ è che a = b
- 3. è transitiva, in quanto se $a \leq b$ è $b \leq c$ allora $a \leq c$
- 4. inoltre, per ogni coppia (non ordinata) di numeri reali, è sempre possibile stabilire almeno un ordine che permetta di soddisfare la relazione.

Definizione La relazione \mathcal{R} su A è detta relazione di equivalenza se soddisfa le proprietà riflessiva, simmetrica e transitiva. Si indica generalmente con $x \sim y$ invece di $x\mathcal{R}y$

Una classe di equivalenza di $u \in A$ (dove u è detto "rappresentante") è

$$[u] = \{v \in A: \, v \sim u\}$$

L'insieme quoziente di A rispetto a \sim :

$$A/\sim:=\{[u]:u\in A\}$$

22 set 2021 **Definizione** Un insieme U si dice totalmente ordinato con la relazione d'ordine " \preceq "

Consideriamo $A \subseteq U$

1. A è limitato superiormente se

$$\exists k \in U \text{ t. c. } \forall a \in A, a \leq k$$

 $\implies k$ è detto maggiorante di A

2. A è limitato inferiormente se

$$\exists h \in U \text{ t. c. } \forall a \in A, h \leq a$$

 $\implies k$ è detto minorante di A

Possono esistere infiniti maggioranti e infiniti minoranti

Definizione M è il massimo di A se M è un maggiorante $(a \leq M \forall a \in A)$ e $M \in A$

Definizione m è il minimo di A se m è un minorante $(m \leq a \forall a \in A)$ e $m \in A$

Si dice che $M = \max A$ e $m = \min A$

Esempi (1.2) Per tutti gli esempi successivi si consideri $U=\mathbb{Q}$ e $\preceq=\leq$

1. $A = \{5, 7, 9, -4, 588\}$. min A = -4, max A = 588

Con $A \subseteq Q$ e A contenente un numero finito di valori

- \implies A ammette max e min
- 2. $B=\{2^n\,|\,n\in\mathbb{N}\},\,B$ è limitato inferiormente

 \implies min B = 1, B non è limitato superiormente

3. $C = \{1 + 1/n \mid n \in \mathbb{N} \setminus \{0\}\}, C$ è limitato: $\forall x \in C, 1 < x \le 2$ C ammette un massimo (max C = 2), C non ammette un minimo

4. $D = \{1 - 1/n \mid n \in \mathbb{N} \setminus \{0\}\}$

 $\forall\,x\in D,\,0\leq x<1$

 $\min D = 0$, D non ammette \max

Definizione Sia U totalmente ordinato con relazione d'ordine \preceq , e sia $a \in U$.

- \bullet Diciamo estremo superiore di A (sup A) il più piccolo dei maggioranti.
- \bullet Diciamo $estremo \ inferiore$ di A (infA)il più grande dei minoranti

 $\sup A = \min\{M \in U \mid \forall x \in A, x \leq M\}, \quad \inf A = \max\{m \in U \mid \forall x \in A, m \leq a\}$ Se esistono $\max A$ e/o $\min A$

 $\implies \sup A = \max A, \inf A = \min A$

Esempio (1.3) Sia
$$C = \{1 + 1/n \mid n \in \mathbb{N} \setminus \{0\}\}$$

$$\max C = 2 = \sup C$$

$$\min C = \nexists$$

 \implies se m è minorante di C

$$\implies m \le 1 \implies \inf C = 1.$$

Sia
$$D = \{1 - 1/n \mid n \in \mathbb{N} \setminus \{0\}\}\$$

$$\min D = 0 = \inf D$$

$$\max D = \nexists$$

 \implies se M è maggiorante di D

$$\implies M \ge 1 \implies \sup D = 1$$

Esempio (1.4)

$$E = \{r \in \mathbb{Q}; r \ge 0, r^2 < 2\} \subseteq \mathbb{Q}$$

- E è limitato: $\forall r \in E, 0 \le r < 2$
- $\inf E = \min E = 0$
- $\sup E$? Se $x^2 < 2$

$$\implies 0 \le x < \sqrt{2} \notin \mathbb{Q}$$
. Un candidato $\sup E = \sqrt{2} \notin \mathbb{Q}$

$$\implies \sup E = \sharp$$

L'obiettivo, quindi, è quello di costruire un insieme numerico X (con $\mathbb{Q} \subseteq X$) con operazioni + e \cdot tale che ogni sottoinsieme limitato ammetta estremo superiore e inferiore.

1.2.2 Definizione assiomatica dei numeri reali

- \mathcal{R}_1 . È definita un'applicazione $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, indicata con il segno "+" detta addizione o somma, che soddisfa le seguenti proprietà:
 - $-\ \forall\, a,b,c\in\mathbb{R},\, (a+b)+c=a+(b+c)$ (associativa);
 - $\forall a, b \in \mathbb{R}, a + b = b + a \text{ (commutativa)};$
 - esiste un elemento in \mathbb{R} indicato con 0 (zero) tale che $\forall a \in \mathbb{R}$, a + 0 = a (esistenza elemento neutro per +);

- $\forall a \in \mathbb{R}, \exists * \text{ tale che } a + * = 0, \text{ si indica } * = -a, \text{ detto inverso}, opposto di a (esistenza dell'inverso per +).$
- \mathcal{R}_2 . È definita un'applicazione $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, indicata con il segno "·" detta prodotto o moltiplicazione, che soddisfa le seguenti proprietà:
 - $\forall a, b, c \in \mathbb{R}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$ (associativa);
 - $\forall a, b \in \mathbb{R}, a \cdot b = b \cdot a \text{ (commutativa)};$
 - esiste un elemento in \mathbb{R} indicato con 1 (uno) tale che $\forall a \in \mathbb{R}$, $a \cdot 1 = a$ (esistenza elemento neutro per +);
 - $\forall a \in \mathbb{R}, a \neq 0 \exists * \text{ tale che } a \cdot * = 1, \text{ si indica } * = a^{-1}, \text{ detto } inverso, reciproco di a (esistenza dell'inverso per ·);}$
 - $\forall a, b, c \in \mathbb{R}, (a+b) \cdot c = (a \cdot c) + (b \cdot c)$ (distributiva).
- \mathcal{R}_3 . È definita in \mathbb{R} una relazione di ordine totale, indicata con " \leq ", che soddisfa le seguenti proprietà:
 - $\forall a, b, c \in \mathbb{R}: a \leq b \implies a + c \leq b + c;$
 - $\forall a, b, c \in \mathbb{R}, 0 \le c: a \cdot c \le b \cdot c.$
- \mathcal{R}_4 . Sia $A \subset R$, $A \neq \emptyset$

Se A è limitato superiormente, allora A ammette un estremo superiore.

Se A è limitato inferiormente, allora A ammette un estremo inferiore

 \mathcal{R}_1 garantisce che $(\mathbb{R},+)$ è un gruppo

Queste proprietà possono essere definite anche per \mathbb{Q} , in cui valgono però solo le proprietà corrispondenti a \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 .

Se valgono le proprietà \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 per un qualche insieme \mathbb{K} , questo insieme prende il nome di *campo totalmente ordinato*.

 \mathbb{R} e \mathbb{Q} sono campi totalmente ordinati, e \mathbb{R} è un campo ordinato completo

1.3 Campi ordinati completi

Si è costruito un insieme \mathbb{R} con $(+,\cdot,\geq)$, che soddisfa \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 e \mathcal{R}_4 .

- Quanti insiemi con queste proprietà esistono?
- Che relazione c'è tra di loro?
- Come li rappresentiamo?

Definizione Dati B e B' campi ordinati (soddisfano \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3), si definisce isomorfismo tra B e B' una relazione

$$\varphi: B \to B'$$

$$a \mapsto a' = \varphi(a)$$

che gode delle seguenti proprietà:

- φ è biunivoca
- $\forall a, b \in B$

i.
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

ii.
$$\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$$

iii.
$$a \le b \implies \varphi(a) \le \varphi(b)$$

Teorema I Siano B e B' campi ordinati $(+,\cdot,\leq,\mathcal{R}_1,\mathcal{R}_2,\mathcal{R}_3)$, con B completo e B' completo

 $\implies \exists$ un isomorfismo $\varphi: B \to B'$

Si dice che B è isomorfo a B' (e viceversa) poiché la relazione di isomorfismo è di equivalenza: $B \sim B'$

Non lo dimostreremo

Scelto un campo B a piacere possiamo costruire la classe di equivalenza

$$[B] = \{\text{campi ordinati completi}\}$$

$$\mathbb{R} = [B]$$

1.3.1 Rappresentazione

Modello decimale: $x \in \mathbb{R}$ si rappresenta come

$$x = p, \alpha_1 \alpha_2 \cdots \alpha_n \cdots$$

dove $p \in \mathbb{Z}$ e $[\alpha_1 \alpha_2 \cdots \alpha_n \cdots]$ è un allineamento infinito di cifre tra $\{1, \cdots, 9\}$

Modello binario: $y \in \mathbb{R}$ si rappresenta come

$$y = p, \beta_1 \beta_2 \cdots \beta_n \cdots$$

dove $p \in \mathbb{Z}$ e $[\beta_1 \beta_2 \cdots \beta_n \cdots]$ è un allineamento infinito di cifre tra $\{1,2\}$

Non conta il modello che si usa; è necessario dimostrare che questi modelli soddisfino gli assiomi: fare riferimento al libro di testo

2 Lipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

3 Limite successione

2 nov 2021

Data
$$\{a_n\}_{n=0}^{\infty}$$
, $\mathbb{N} \to \mathbb{R}$, $a: n \to a_n$, $l \in \mathbb{R}^*$, diciamo che

$$\lim_{n \to \infty} a_n = l$$

se $\forall V(l) \exists U(+\infty) n \in (\mathbb{N}intersezioneD) \implies a_{n \in V(l)}$ Scriviamo $\forall V(l) \exists \overline{n} \in N \mid \forall n > \overline{n} a_n \in V(l)$

 $l \in \mathbb{R}$, diciamo che $\{a_n\}_{n=0}^{\infty}$ è **convergente** a l se $\forall \varepsilon \exists \overline{n} \in \mathbb{N} | \forall n > \overline{n} | a_n - l | < \varepsilon$

Se $l = \pm \infty$ a_n è divergente a $\pm \infty$, se $\lim_{n \to +\infty} a_n = \nexists$ allora $\{a_n\}_{n=0}^{\infty}$ è irregolare (o oscillante).

Esempio (3.1)

- $\{a_n\}_{n=0}^{\infty} = (-1)^n$ con $n \in \mathbb{N}$ è irregolare e limitata
- $\{b_n\}_{n=0}^{\infty} = (-1)^n \cdot n$ con $n = 0, -1, 2, -3, 4, \cdots$ è irregolare e non limitata

Si dice di una successione $\{a_n\}_{n=0}^{\infty}$

- $\forall \{a_n\}$ è crescente se $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$
- $\forall \{a_n\}$ è strettamente crescente se $\forall n \in \mathbb{N}, \, a_n < a_{n+1}$
- $\forall \{a_n\}$ è decrescente se $\forall n \in \mathbb{N}, a_n \geq a_{n+1}$
- $\forall \{a_n\}$ è strettamente decrescente se $\forall n \in \mathbb{N}, a_n > a_{n+1}$

Una successione crescente o decrescente si dice monotona, se strettamente crescente o decrescente si dice strettamente monotona.

Un predicato P(n) è verificato definitivamente se $\exists \overline{n} \forall n \leq \overline{n} \ P(n)$ è vero

Valgono per $\{a_n\}_{n=0}^{\infty}$ i seguenti teoremi

- Teorema di unicità del Limite
- Teorema di permanenza del segno
- Teorema di limitatezza:

Teorema II

$$\lim_{n\to\infty} a_n = l \in \mathbb{R} \implies \{a_n\}_{n=0}^{\infty} \text{ è convergente e limitata}$$

- Teorema del confronto
- Teorema di esistenza del Limite per successioni definitivamente monotone

Teorema III $\{a_n\}_{n=0}^{\infty}$ è definitivamente crescente

 \implies ammette limite in $\mathbb{R}*$

Precisamente se

- $\{a_n\}_{n=0}^{\infty}$ è definitivamente monotona e limitata \implies è convergente
- $\{a_n\}_{n=0}^{\infty}$ è definitivamente monotona e non limitata \implies è divergente

Teorema IV Principio di Archimede $\forall a,b \in \mathbb{R}_+, a,b > 0$

$$\implies \exists n \in \mathbb{N} \text{ tale che } na > b$$

dim. (IV) Utilizziamo la funzione parte intera:

$$x \in \mathbb{R} \text{ si dice } [x] = \max_{n \in \mathbb{Z}} \{n \le x\}$$

Si verifica che $\forall x \in \mathbb{R}, [x] < x \leq [x] + 1$

Se
$$x \ge 0$$
, $[x] \ge 0$, $[x] \in \mathbb{R}$

Considerato $x = \frac{b}{a}$

$$\left\lceil \frac{b}{a} \right\rceil \leq \frac{b}{a} < \left\lceil \frac{b}{a} \right\rceil + 1$$

Posto $\overline{n} = \left[\frac{b}{a}\right] + 1 \in \mathbb{N}$

$$\frac{b}{a} < \overline{n} \implies \overline{n}a > b$$

Osserviamo che posto a=1 si ha che $\forall b \in \mathbb{R}, \, \exists n \in \mathbb{N}$ t.c. n>b

3.1 Applicazione del Principio di Archimede

Verifichiamo che

$$\lim_{n\to\infty}\frac{1}{n}=0$$

Fissiamo $\varepsilon > 0$, vogliamo verificare che definitivamente $\left| \frac{1}{n} \right| < \varepsilon$

$$\iff \frac{1}{n} < \varepsilon$$

$$\iff n > \frac{1}{\varepsilon}$$

 $\frac{1}{\varepsilon} \in \mathbb{R}$ allora per il principio di archimede

$$\exists \overline{n} \in \mathbb{N}, \overline{n} > \frac{1}{\varepsilon}$$

Allora $\forall n \geq \overline{n}, n > \frac{1}{\varepsilon}$

 $\implies \frac{1}{n} \leq \varepsilon$ dunque $\frac{1}{n} < \varepsilon$ definitivamente

Dunque

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Teorema V Disugualiganza di Bernoulli

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, x > -1$$

si ha che

$$(1+x)^n \ge 1 + nx$$

dim. (V) Dimostrazione per induzione

$$P(n): (1+x)^n \ge 1 + nx, x > -1$$

1. P(0)

$$1 + x > 0 (1 + x)^0 = 1 = 1 + n0$$

P(0) è vera

2. Assumiamo vera P(n)

3.2 Limiti

Progressione geometrica

$$q \in \mathbb{R}, \lim_{n \to \infty} q^n = ?, n \in \mathbb{N}$$

• q>1, q=1+p con p>0 $q^n=(1+p)^n\geq 1+np$ per la disuguaglianza di Bernoulli

$$1 + np \to +\infty$$
 per $n \to +\infty$

Per confronto

$$\lim_{n \to +\infty} q^n = +\infty$$

•
$$q = 1$$
 $q^n = 1$ $\forall n$

$$\lim_{n \to +\infty} q^n = 1$$

•
$$-1 < q < 1 \iff |q| < 1$$

 $\implies |q| = \frac{1}{1+p} \operatorname{con} p > 0$

$$|q^n| = |q|^n = \frac{1}{(1+p)^n} \le \frac{1}{1+np}$$

$$1 + np \to +\infty \text{ per } n \to +\infty$$

$$\implies \frac{1}{1 + np} \to 0$$

Per confronto

$$\lim_{n \to +\infty} |q^n| = 0 \implies \lim_{n \to +\infty} q^n = 0$$

- q = -1 $q^n \text{ è irregolare e limitata}$
- q < -1

$$q^n = (-1)^n |q|^n$$

ma |q|>1quindi $|q|^n\to +\infty$ per $n\to +\infty,$ e quindi q^n è irregolare non limitata

Riassumendo

$$q^n \begin{cases} \text{divergente a} + \infty & q > 1 \\ \text{convergente a 1} & q = 1 \\ \text{convergente a 0} & |q| < 1 \\ \text{irregolare limitata} & q = -1 \\ \text{irregolare non limitata} & q < -1 \end{cases}$$

Esercizio Posto $q \in \mathbb{R}$ e

$$b_n = \sum_{k=0}^n q^k$$

calcolare

$$\lim_{n\to+\infty}b_n$$

Soluzione Da risolvere

Teorema VI Sia $f: D \to \mathbb{R}$: $x \to f(x)$, $x_0 \in D'$ e $x_0 \in \mathbb{R}$ *, $l \in \mathbb{R}$ *

Allora $\lim_{x \to x_0} f(x) = l$ (A)

 \iff

per ogni successione $a: \{a_n\}_{n=0}^{\infty}$ a valori in $D \setminus \{x_0\}$

$$a_n \xrightarrow{n \to +\infty} x_0 \implies f(a_n) \xrightarrow{n \to +\infty} l)$$
 (B)

dim. (VI)

(A) \implies (B) Sappiamo che $\lim_{x\to x_0} f(x) = l$ ovvero

$$\forall V(l) \exists U(x_0) | x \in U \land x \in V landx \neq x_0 \implies f(x) \in V(l)(1)$$

Consideriamo $\{a_n\}_{n=0}^{\infty}$ con $a_n \xrightarrow{n \to +\infty} x_0$ con $a_n \in D$ e $a_n \neq x_0$ ossia

$$\exists \overline{n} \in \mathbb{N} \forall n \ge \overline{n} a_n \in D \land a_n \ne x_0 \land a_n \in U(x_0)$$

allora $f(a_n) \in V(l)(2)$

Concludendo unendo (1) e (2)

$$\forall V(l) \exists \overline{n} \in \mathbb{N} | \forall n > \overline{n} f(a_n) \in V(l)$$

ossia

$$\lim_{n \to +\infty} f(a_n) = l$$

(B) \Longrightarrow (A) Procediamo per assurdo: verificando $\neg A \Longrightarrow \neg B$

¬B: esiste una successione $\{a_n\}_{n=0}^{\infty}$ tale che $a_n \in D \setminus \{x_0\}$ per cui $a_n \xrightarrow{\rightarrow}$

Consideriamo $\delta = 1 \; \exists x_1 \, 0 < |x - x_0| < 1 \, \land \, f(x_1) \notin V(l)$

Consideriamo $\delta = \frac{1}{2} \exists x_2 \ 0 < |x_2 - x_0| < 1 \land f(x_2) \notin V(l)$

Consideriamo $\delta = \frac{1}{n} \exists x_n \, 0 < |x_n - x_0| < 1 \land f(x_n) \notin V(l)$

Allora abbiamo costruito una successione $\{x_n\}_{n=0}^{\infty}$ tale che $x_n \in D$, $x_n \neq x_0$ e $f(x_n) \notin V(l)$

inoltre
$$\forall \varepsilon > 0 \exists \overline{n} | \forall n > \overline{n} 0 < |x_n - x_0| < \varepsilon \ (\overline{n} > \frac{1}{\varepsilon})$$

ossia
$$x_n \xrightarrow{n \to +\infty} x_0$$

Abbiamo costruto una successione $\{x_n\}_{n=0}^{\infty}$ con $x_n \to x_0, x_n \neq x_0$ e $\lim_{n \to +\infty} f(x_n) = l$

ossia abbiamo ottenuto che $\neg B$ è vera

3.3 Confronti tra infiniti

1. Dati a > 1 e $n \in \mathbb{N}$ osserviamo che

$$0 \le \frac{\sqrt{n}}{a^n} = \frac{\sqrt{n}}{(1+h)^n} \le$$

$$\le \frac{\sqrt{n}}{1+hn} \le \frac{\sqrt{n}}{hn} =$$

$$= \frac{1}{h} \cdot \frac{1}{\sqrt{n}}$$

 $e \xrightarrow{1} \xrightarrow{n \to +\infty} 0$ allora per confronto

$$\lim_{n\to +\infty}\frac{\sqrt{n}}{a^n}=0$$

ovvero

$$\sqrt{n} = o(a^n)_{n \to +\infty}$$

2. Dato a > 1

$$0 \le \frac{n}{a^n} = \left(\frac{\sqrt{n}}{(\sqrt{a})^n}\right)^2$$

ma
$$\frac{\sqrt{n}}{(\sqrt{a})^n} \xrightarrow{n \to +\infty} 0$$

Otteniamo che

$$\lim_{n \to +\infty} \frac{n}{a^n} = 0$$

ovvero

$$n = o(a^n)_{n \to +\infty}$$

3. Dato $k \in \mathbb{N} \setminus \{0, 1\}$

$$0 \le \frac{n^k}{a^n} = \left(\frac{n}{(\sqrt[k]{a})^n}\right)^k$$

ma
$$\frac{n}{(\sqrt[k]{a})^n} \xrightarrow{n \to +\infty} 0$$

Dato che a > 1 e $\sqrt[k]{a} > 1$ concludiamo che

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0$$

ovvero

$$n^k = o(a^n)_{n \to +\infty}$$

4.

4 Costante di Nepero

Consideriamo la successione $a_n = \left(1 + \frac{1}{n}\right)^n$

8 nov 2021

$$\lim_{n \to +\infty} (1 + \frac{1}{n})^n = 1^{+\infty}$$

è una forma indeterminata

Verifichiamo la convergenza:

- 1. a_n è crescente
- 2. a_n è superiormente limitata
- 3. applichiamo il teorema di esistenza del limite per le succesioni monotone
- 1. $a_1 = 2$, per $n \ge 2$ stimiamo il rapporto

$$\frac{a_n}{a_{n-1}} = \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{1}{n-1}\right)^{n-1}} =$$

$$= \frac{\left(\frac{1+n}{n}\right)^n}{\left(\frac{n}{n-1}\right)^{n-1}} = \frac{\left(\frac{1+n}{n}\right)^n}{\left(\frac{n}{n-1}\right)^n \left(\frac{n}{n-1}\right)^{-1}} =$$

$$= \frac{\left(\frac{1+n}{n}\right)^n \left(\frac{n-1}{n}\right)^n}{\frac{n-1}{n}} = \frac{\left(\frac{n^2-1}{n^2}\right)^n}{\frac{n-1}{n}} =$$

$$= \frac{\left(1 - \frac{1}{n^2}\right)^n}{\frac{n-1}{n}} = **$$

Applico la disuguaglianza di Bernoulli

$$\frac{1}{n^2} < 1, -\frac{1}{n^2} > -1$$

$$\implies (1 - \frac{1}{n^2}) \ge 1 - n\frac{1}{n^2} = 1 - \frac{1}{n}$$

$$\implies ** \ge \frac{1 - \frac{1}{n}}{1 - \frac{1}{n}} = 1$$

Quindi $\forall n \geq 2, a_n \geq a_{n-1}$, quindi a_n è crescente definitivamente

2. Dimostriamo ora che a_n è limitata superiormente.

Consideriamo
$$b_n = (1 + \frac{1}{n})^{n+1} \ (a_n \le b_n \forall n \in \mathbb{N})$$

Verifichiamo che b_n è decrescente.

$$\frac{b_n}{b_{n-1}} = \frac{(1+\frac{1}{n})^n}{(1+\frac{1}{n-1})^n} = \dots = \frac{1+\frac{1}{n}}{(1+\frac{1}{n^2-1})^n}$$

Stimiamo $(1+\frac{1}{n^2-1})^n$; per qualsiasi $n\geq 2,\,\frac{1}{n^2-1}>0,$ e posso applicare Bernoulli:

$$(1 + \frac{1}{n^2 - 1})^n \ge 1 - \frac{n}{n^2 - 1} \ge 1 + \frac{n}{n^2} = 1 + \frac{1}{n}$$

Ottengo quindi che

$$\frac{b_n}{b_{n-1}} = \frac{1 + \frac{1}{n}}{(1 + \frac{1}{n^2 - 1})^n} \le \frac{1 + \frac{1}{n}}{1 + \frac{1}{n}} = 1$$

Quindi $\forall n \geq 2, b_n < b_{n-1}$, quindi b_n decrescente definitivamente, ma $b_2 = 4 \implies b_n \leq 4$ definitivamente

Poiché $a_n \leq b_n \forall n \in \mathbb{N}$ si ha a_n crescente e $a_n \leq 4$ definitivamente

3. Dunque, per il teorema di esistenza del limite per successioni monotone limitate, otteniamo che

$$\lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n = \sup\left\{\left(1+\frac{1}{n}\right)^n\right\} \in \mathbb{R}$$

(esiste ed è un numero reale), e lo chiamiamo e, detta costante di Nepero $\hfill\Box$

Quindi

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n$$

Osserviamo che

$$a_1 = 2 \le \left(1 + \frac{1}{n}\right)^n \le 4$$

Una prima stima di e risulta essere

$$2 \le e \le 4$$

Con opportuni algoritmi di approssimazione si stima che

$$e = 2,7182818284...$$

Osservazione (4.1) $e \in \mathbb{R} \setminus \mathbb{Q}$ (dimostrazione sul libro di testo)

Proposizione p.vi

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Lemma *l.***i** Sia $x_n \xrightarrow{n \to +\infty} \pm \infty$ allora

$$\lim_{n \to +\infty} \left(1 + \frac{1}{x_n} \right)^{x_n} = e$$

dim. (p.vi) Applicando il teorema di relazione, a partire dal lemma (l.i) si ottiene

$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{n} \right)^n = e$$

dim. (l.i)

1.
$$x_n \xrightarrow{n \to +\infty} +\infty$$
, ricordiamo $[x_n] \le x_n \le [x_n] + 1$

$$2. \ldots$$

5 Continuità

Sia $f: D \to \mathbb{R}, D \subseteq \mathbb{R} \ x_0 \in D', x_0 \in \mathbb{R}, \ l \in \mathbb{R}$

Diciamo $\lim_{x\to x_0} f(x) = l$

$$\iff \forall \varepsilon > 0 \exists \delta > 0 \text{ t. c. } 0 < |x - x_0| < \delta \implies |f(x) - l| < \varepsilon$$

Il valore di l non è in alcun modo legato ad $f(x_0)$

Consideriamo $x_0 \in D$

Esempi (5.1)

•
$$f(x) = x^2$$

$$\lim_{x \to 0} f(x) = 0 = f(0)$$

$$f(x) = \begin{cases} x^2 & x \neq 0 \\ 1 & x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = 0 \neq f(0)$$

•
$$\operatorname{sgn}(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

$$\lim_{x \to 0} \operatorname{sgn}(x) = \sharp$$

$$\lim_{x \to 0^{+}} \operatorname{sgn}(x) = 1 \neq \operatorname{sgn}(0) = 0$$

$$\lim_{x \to 0^{-}} \operatorname{sgn}(x) = -1 \neq \operatorname{sgn}(0) = 0$$

_

•
$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = 0 = f(0)$$

Definizione Consideriamo $D \subseteq \mathbb{R}^n$

$$f: D \to \mathbb{R}^m$$

 $x \mapsto f(x)$

con
$$x = (x_1, \dots, x_n), f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$

Diciamo che f è continua in $x_0 \in D$ se

- a. x_0 punto isolato di D
- $b.\ x_0\in D'$ e vale una delle seguenti affermazioni tra di loro equivalenti:

i.
$$\forall V(f(x_0)) \exists U(x_0) \text{ tale che } x \in U \cap D$$

 $\implies f(x) \in V$

ii.
$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{tale che} \; |x - x_0| < \delta$$

$$\implies |f(x) - f(x_0)| < \varepsilon$$
iii. $\lim_{x \to x_0} f(x) = f(x_0)$

iv.data $\{x_n\}_{n=0}^{\infty}$ a valori in Dtale che $x_n \xrightarrow{n \to \infty} x_0$ allora

$$\lim_{n \to \infty} f(x_n) = f(x_0)$$

Lemma l.ii Le quattro affermazioni precedenti sono equivalenti

dim. (l.ii)

i. ⇔ ii. è ovvio

ii. ⇒ iii. è ovvio

 $iii. \iff iv.$ per il teorema di relazione

$$iii. \Longrightarrow ii. \lim_{x \to x_0} f(x) = f(x_0)$$
 vale

$$\forall \varepsilon > 0 \,\exists \delta > 0 : |x - x_0| < \delta \wedge x \neq x_0 \implies |f(x) - f(x_0)| < \varepsilon$$

se
$$x = x_0 |f(x) - f(x_0)| = |f(x_0) - f(x_0)| = 0 < \varepsilon$$

 $\implies \forall \varepsilon > 0 \,\exists \delta > 0 : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon \text{ ossia } f$
continua in x_0

Diciamo che f è continua in $E \subseteq D$ se $\forall x_0 \in E$ f è continua in x_0

Esempi (5.2) In generale dati $f: D \to \mathbb{R}$ con $D \subseteq \mathbb{R}$, e $x_0 \in D$ se si ha

$$\begin{cases} \lim_{x \to x_0^+} f(x) = f(x_0) \text{ si dice che } f \text{ è continua da destra} \\ \lim_{x \to x_0^-} f(x) = f(x_0) \text{ si dice che } f \text{ è continua da sinistra} \end{cases}$$

9 nov 2021

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\iff \lim_{h \to 0} f(x_0 + h) = f(x_0) \iff$$

$$\lim_{h \to 0} f(x_0 + h) - f(x_0) = 0$$

Esempio (5.3) Verifichiamo che $\forall x_0 \in \mathbb{R}$, $\sin x$ è continua in x_0 . Sappiamo che $\lim_{x\to 0} \sin x = 0$.

Per $x_0 \in \mathbb{R}$

$$\lim_{h \to 0} \sin(x_0 + h) - \sin(x_0) =$$

$$= \lim_{h \to 0} \left(\sin x_0 \cos h + \sin h \cos x_0 - \sin x_0 \right) =$$

$$= \lim_{h \to 0} \left(\sin x_0 (\cos h - 1) + \sin h \cos x_0 \right) =$$

Dato che $\sin h \xrightarrow{h \to 0} 0$

$$= \sin x_0 \lim_{h \to 0} \left(\cos h - 1\right) = 0$$

Allora $\forall x_0 \in \mathbb{R}$ si ha

$$\lim_{x \to x_0} \sin x = \sin x_0$$

 $\implies \sin x$ continua su $\mathbb R.$ Allo stesso modo si verifica che $\cos x$ è continua su $\mathbb R$

Proprietà (Algebra delle funzioni continue) Date $f, g: D \to \mathbb{R}$, con $x_0 \in D \subseteq \mathbb{R}$, f, g continue in x_0 , allora $\forall a \in \mathbb{R}$ si ha che af + g è continua in x_0

Inoltre

- fg continua in x_0
- se $g(x_0) \neq 0$ allora $\frac{f}{g}$ continua in x_0
- $f_+(x) = \max\{0, f(x)\}$ è continua in x_0

Teorema VII (Continuità della funzione composta) Sia $f: D \to \mathbb{R}$, $x_0 \in D$, $g: f(D) \to \mathbb{R}$. Se f è continua in x_0 e g continua in $f(x_0)$

 $\implies g \circ f$ è continua in x_0

dim. (VII)

$$\forall V(g(f(x_0))) \exists W(f(x_0)) \text{ tale che } \forall y \in W \cap f(D)$$

$$\implies g(y) \in V$$

 $\exists U(x_0) \text{ tale che } \forall x \in U \cap D \implies f(x) \in W$

Allora $\exists U(x_0)$ tale che $\forall x \in U \cap D \ g(f(x)) \in V$

 $\implies g \circ f$ è continua in x_0

Proprietà Date $f: D \to \mathbb{R}$, x_0 di accumulazione per $D, g: E \to \mathbb{R}$, con $f(D) \subseteq E$, assumiamo

i.

$$\lim_{x \to x_0} f(x) = l \in E$$

ii. q continua in $l, l \in \mathbb{R}$

$$\implies \lim_{x \to x_0} g(f(x)) = g(l)$$

Allora, date i. e ii., si ha

$$\lim_{x \to x_0} g(f(x)) = g\left(\lim_{x \to x_0} f(x)\right)$$

Si dimostra che sono continue nel loro dominio

- i polinomi
- le frazioni algebriche
- le funzioni esponenziali
- le funzioni logaritmiche
- le funzioni goniometriche e le loro inverse

Tutte queste funzioni sono dette "funzioni elementari"

Attenzione Data $f: D \to \mathbb{R}$, f invertibile su D, e f continua su D $\Rightarrow f^{-1}$ sia continua du f(D)

Esempio (5.4) La funzione è analiticamente definita come

$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ x - 1 & 2 < x \le 3 \end{cases}$$

Notiamo che $D=[0,1]\cup(2,3],$ e che fsia continua nel suo dominio.

$$f(D) = [0, 2]$$

Invertendola:

$$f^{-1}(x) = \begin{cases} x & 0 \le x \le 1\\ x+1 & 1 < x \le 2 \end{cases}$$

Quindi f^{-1} non è continua su f(D), in particolare non è continua in $x_0 = 1$

Proprietà Data $f: I \to \mathbb{R}$, con I intervallo,

se f è invertibile e continua su I

 $\implies f^{-1}$ è continua su J=f(I)

5.1 Discontinuità

Consideriamo $f:D\to\mathbb{R},\,x_0\in D$ e f continua in $D\setminus\{x_0\}$

Diciamo che:

1. x_0 è una discontinuità eliminabile se

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R} \, \land \, l \neq f(x_0)$$

Esempio (5.5)

$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

f è continua in $\mathbb{R} \setminus \{0\}$, vale

$$\lim_{x \to 0} f(x) = 1 \in \mathbb{R} \neq 0$$

Quindi $x_0 = 0$ è discontinuità eliminabile

2. x_0 è detto salto o punto di salto se

$$\lim_{x \to x_0^+} f(x) = l \in \mathbb{R}$$

$$\lim_{x \to x_0^-} f(x) = n \in \mathbb{R}$$

$$l \neq n$$

Si definisce ampiezza del salto la grandezza

$$s = l - n$$

Esempio (5.6) Data

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

si ha che $x_0 = 0$ è salto. s = 1

Esempio (5.7) Data

$$sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

si ha che $x_0 = 0$ è salto. s = 2

Notazione Nel Pagani Salsa i punti di salto sono detti discontinuità di prima specie

Notazione Nella terminologia a lezione, si intendono sia i salti che le discontinuità eliminabili come discontinuità di prima specie

3. x_0 è discontinuità di seconda specie se si verifica una delle seguenti condizioni

$$\lim_{x \to x_0^{\pm}} f(x) = \pm \infty$$

$$\mp \infty$$

$$+ \infty$$

$$- \infty$$

$$\lim_{x \to x_0^+} f(x) = \nexists$$

$$\lim_{x \to x_0^-} f(x) = \nexists$$

5.2 Prolungamento per continuità di una funzione

Sia $f: D \to \mathbb{R}$ e $x_0 \in D'$.

Assumiamo che

$$\lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

Diciamo prolungamento per continuità di f in x_0 la funzione

$$\tilde{f}(x) = \begin{cases} f(x) & x \in D \setminus \{x_0\} \\ l & x = x_0 \end{cases}$$

 \tilde{f} è continua in x_0

Ovviamente se $x_0 \in D$ e f continua in x_0 allora

$$\tilde{f}(x) = f(x)$$

Esempi (5.8)

Consideriamo

$$f(x) = \begin{cases} x^2 & x \neq 0\\ 1 & x = 0 \end{cases}$$

f non è continua in 0, con una discontinuità eliminabile

$$\tilde{f}(x) \begin{cases} x^2 & x \neq 0 \\ 0 & x = 0 \end{cases} = x^2$$

Questo è il prolungamento per continuità di f

Consideriamo

$$f(x) = x \sin \frac{1}{x}$$

Si ha che dom $f = \mathbb{R} \setminus \{0\}$. f è continua nel suo dominio.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0$$

Allora

$$\tilde{f}(x) \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

è il prolungamento per continuità di f in 0; \tilde{f} è continua su \mathbb{R}

• Consideriamo $f(x) = x^x$. Si ha che $D = \text{dom} f = (0; +\infty)$.

Osserivamo che

$$\lim_{x \to 0^+} x^x = e^l = 1$$

dove

$$l = \lim_{x \to 0^+} x \ln x = \dots = 0$$

La funzione \tilde{f}

$$\tilde{f}(x) \begin{cases} x^x & x \neq 0 \\ 1 & x = 0 \end{cases}$$

è l'estensione per continuità di f(x) in $x_0=0.\ \tilde{f}$ è continua su $[0;+\infty)$

6 Successioni

6.1 Un limite notevole

$$\lim_{n \to +\infty} \sqrt[n]{n^{\alpha}} \qquad \text{con } \alpha \in \mathbb{R}$$

- $\alpha = 0 \implies \text{il limite vale } 1$
- $\alpha > 0$; ricordiamo che

$$\lim_{n \to +\infty} \frac{n^{\alpha}}{(1+\varepsilon)^n} = 0$$

Allora $\forall \varepsilon > 0$

$$-(1-\varepsilon)^n < n^\alpha < (1+\varepsilon)^n$$

definitivamente

Ma è facile vedere

$$1 < n^{\alpha} < (1 + \varepsilon)^n$$

definitivamente

$$\implies 1 < \sqrt[n]{n^{\alpha}} < 1 + \varepsilon$$
 definitivamente

Per $\varepsilon \to 0$ si ha che

$$\lim_{n \to +\infty} \sqrt[n]{n^{\alpha}} = 1$$

$$\sqrt[n]{n^{\alpha}} = \frac{1}{\sqrt[n]{n^{-\alpha}}} = \frac{1}{\sqrt[n]{n^{\beta}}}$$

Ma $\sqrt[n]{n^{\beta}} \xrightarrow{n \to +\infty} 1$, con $\beta = -\alpha > 0$ Quindi

$$\frac{1}{\sqrt[n]{n^{\beta}}} = 1$$

Ne segue che $\forall \alpha \in \mathbb{R}$

$$\lim_{n \to +\infty} \sqrt[n]{n^{\alpha}} = 1$$

6.2 Sottosuccessioni

Si ha l'obiettivo di indagare più a fondo il comportamento delle successioni irregolari

Esempi (6.1)

1. Si consideri

$$a_n = (-1)^n = 1, -1, 1, -1$$

• con gli indici pari

$$a_{2n} = (-1)^{2n} = 1, 1, 1 \qquad n \in \mathbb{N}$$

si ha che $a_{2n} \xrightarrow{n \to +\infty} 1$

• con gli indici dispari

$$a_{2n+} = (-1)^{2n+1} = -1, -1, .1$$
 $n \in \mathbb{N}$

si ha che $a_{2n+1} \xrightarrow{n \to +\infty} -1$

Definizione Sia $a:\{a_n\}_{n=0}^{\infty}$ successione a valori reali. Consideriamo una successione di indici

$$k: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto k_n$$

con k strettamente crescente, ovvero

$$k_n < k_{n+1} \quad \forall n \in \mathbb{N}$$

Diciamo sottosuccessione di a la successione

$$b_n = a_{k_n}$$

Concretamente per costruire $\{b_n\}_{n=0}^{\infty}$ cancelliamo ad $\{a_n\}_{n=0}^{\infty}$ una quantità infinita di termini lasciando gli altri invariati.

Ogni successione è sottosuccessione di se stessa, basta prendere $k_n=n$

Esercizio Dati

$$a_n = \sin\left(\frac{\pi}{2}n\right)$$
$$b_n = n\sin\left(\frac{\pi}{2}n\right)$$

estrarre le possibili sottosuccessioni regolari

Soluzione DA FARE

15 nov 2021

Teorema VIII (legame limite successione e sottosuccessione) Consideriamo $\{a_n\}_{n=0}^{\infty},\ l\in\mathbb{R}^*,$

$$\lim_{n \to \infty} a_n = l$$

 \iff ogni sottosuccessione di a_n ammette una sottosuccessione che tende a l

dim. (VIII)

" \Longrightarrow " La prima implicazione è vera, pertanto

$$\forall V(l) \exists \overline{n} \forall n \geq \overline{n} : a_n \in V(l)$$

Sia $n \to k_n$ crescente, e $b_n = a_{k_n}$, allora

$$\exists \, \overline{\overline{n}} \, \forall \, n \ge \overline{\overline{n}} : \, k_n \ge \overline{n}$$

allora $b_n = a_{k_n} \in V(l)$.

Dunque

$$\forall V(l) \exists \overline{\overline{n}} \in \mathbb{N} \text{ t. c. } \forall n > \overline{\overline{n}} : b_n \in V(l)$$

$$\implies \lim_{n \to +\infty} b_n = l$$

Abbiamo anche dimostrato che $a_n \xrightarrow{n \to \infty} l$ implica che qualsiasi sua sottosuccessione $b_{k_n} \to l$

$$\forall V(l) \forall n \in \mathbb{N} \exists n' \geq n | a_{n'} \notin V(l)$$

Consideriamo n = 1; $\exists n'_1 > 1$ tale che $a_{n'_1} \notin V(l)$; $k_1 = n'_1$

Consideriamo $n=k_1+1; \exists n_2' \geq k_1+1 > k_1$ tale che $a_{n_2'} \notin V(l); k_2=n_2'$

Consideriamo $n=k_2+1; \exists n_3' \geq k_2+1 > k_1$ tale che $a_{n_3'} \notin V(l);$ $k_3=n_3'$

. . .

Otteniamo una successione di indici

$$\mathbb{N} \to \mathbb{N}$$
$$n \mapsto k_n$$

strettamente crescente, e una successione $b_n = a_{k_n}$ tale che

$$\exists V(l) | \forall n, b_n \notin V(l)$$

Allora b_n non può ammettere sottosuccessioni che tendono a l

 \implies abbiamo dimostrato la negazione della seconda implicazione, partendo dalla negazione della prima, ovvero la prima implicazione implica la seconda $\hfill\Box$

6.3 Successioni a valori in \mathbb{R}^n

$$\{a_k\}_{k=0}^{\infty}$$
 $a_k = (a_1^k, a_2^k, a_3^k, \cdots, a_n^k) \in \mathbb{R}^n$

Esempio (6.2) Fissato $x \in \mathbb{R}^n$,

$$a_k = kx = (kx_1, kx_2, kx_3, \cdots, kx_n)$$

 $\{a_k\}_{k=0}^{\infty}$ a valori vettoriali è convergente a $l \in \mathbb{R}^n$ se

$$\forall \, \varepsilon > 0 \, \exists \overline{k} \in \mathbb{N} \, \forall \, k \geq \overline{k} : \underbrace{\left| a_k - l \right|}_{\left(\sum_{j=1}^n (a_j^k - l)^2 \right)^{1/2}} < \varepsilon$$

 $\{a_k\}_{k=0}^{\infty}$ a valori vettoriali è divergente a $l\in\mathbb{R}^n$ se

$$\forall M > 0 \,\exists \overline{k} \in \mathbb{N} \,\forall \, k \geq \overline{k} : |a_k| > M$$

 $\{a_k\}_{k=0}^{\infty}$ si dice irregolare (oscillante) se non è né convergente né divergente

Osservazione (6.1) Per $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n vale il teorema di legame tra limiti di successione e sottosuccessioni

Valgono tutti i teoremi sui limiti che non coinvolgono l'ordinamento del codominio. (In particolare, non si definiscono le successioni monotone, e quindi non vale il teorema sui limiti delle successioni monotone)

Proposizione p.vii Sia $E \subseteq \mathbb{R}^n$, sia $y \in \mathbb{R}^n \cup \{\infty\}$

Se y è di accumulazione per E

 $\implies \exists \{x_k\}_{k=0}^{\infty}$ a valori in E, con $x_k \neq y \ \forall k \in \mathbb{N}$ e tale che

$$\lim_{k \to +\infty} x_k = y$$

dim. (p.vii)

caso 1. $y \in \mathbb{R}^n$: $y \in E'$, si ha

$$\forall r > 0 \exists x \in E, x \neq y, x \in B_r(y)$$

Consideriamo $k=1,2,3,\ldots$; possiamo determinare $x_k\in E,$ con $x_k\neq y$ e $x_k\in B_{1/k}(y)$

Abbiamo ottenuto una successione $\{x_k\}_{k=0}^{\infty}$ a valori in E tale che $\forall \varepsilon > 0 \; \exists \; \overline{k} \; | \; \forall \; k \geq \overline{k} : x_k \in B_{1/k}(y) \subset B_{1/\overline{k}}(y) \subset B_{\varepsilon}(y)$

Allora
$$x_k \xrightarrow{k \to +\infty} y$$
, $x_k \neq y$

caso 2. $y = \infty, y \in E'$

$$\forall M > 0 \exists x \in E : |x| > M$$

Per $k = 1, 2, 3, \ldots$ consideriamo $x_k \in E$, con $|x_k| \ge k$ allora

$$\forall \varepsilon > 0 \,\exists \overline{k} \in \mathbb{N} \,\forall \, k \geq \overline{k} : |x_k| \geq k \geq \overline{k} > M$$

$$\implies x_k \to \infty$$

Teorema IX (di Bolzano-Weierstrass per le successioni) Data $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n (valori vettoriali), si ha che

se $\{a_k\}_{k=0}^{\infty}$ è limitata

 $\implies \exists \{a_{h_k}\}_{k=0}^{\infty} \text{ sottosuccessione tale che } a_{h_k} \text{ è } convergente \text{ a } l \in \mathbb{R}$

Ogni successione limitata ammette sempre una sottosuccessione convergente

dim. (IX) Indichiamo con $E = \{a_k\}$ = insieme dei valori della successione. E è limitato per ipotesi;

caso 1. assumiamo che E abbia un numero infinito di elementi.

 \implies per il teorema di Bolzano-Weiesrtrass sui sottoinsiemi infiniti di $\mathbb{R}^n \implies E$ ammette almeno un punto di accumulazione $\lambda \in \mathbb{R}^n$

$$\implies \exists \{b_k\}_{k=0}^{\infty} \text{ a valori in } E, \text{ tale che } b_k \xrightarrow{k \to +\infty} \lambda$$

Ma
$$E \equiv i$$
 valori di $\{a_k\}_{k=0}^{\infty}$

dunque b_k è sottosuccessione di a_k .

Allora esiste una sottosuccessione di a_k convergente.

caso 2. assumiamo che E abbia un numero finito di elementi.

 \implies esisterà sicuramente un valore di E assunto infinite volte dalla successione $\{a_k\}_{k=0}^{\infty}$. Sia $a_k=l$ per infiniti indici.

Consideriamo $b_k = l, \forall k \in \mathbb{N}, b_k$ è successioni a valori in E, ed essendo costante: $b_k \xrightarrow{k \to +\infty} l$, dunque b_n è convergente

Osservazione (6.2) Il teorema di Bolzano-Weierstrass per le successioni utilizza il teorema di Bolzano-Weierstrass per gli insiemi in \mathbb{R}^n . Dunque è necessaria la completezza di \mathbb{R}

Se $\{a_n\} \subset \mathbb{R}^n$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{R}$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{C}$ ed è limitata $\implies \{a_n\}$ convergente

Se $\{a_n\} \subset \mathbb{Q}$ ed è limitata $\Rightarrow \{a_n\}$ convergente

6.3.1 Successioni e chiusura di $E \subset \mathbb{R}^n$

Si ricorda che la chiusura è

$$\overline{E} = E \cup \delta E$$

Proprietà Data $E \in \mathbb{R}^n$ e $y \in \mathbb{R}$

$$y \in \overline{E} \iff \exists \{x_k\}_{k=0}^{\infty} \text{ a valori in } E \text{ tale che } x_k \xrightarrow{k \to +\infty} y$$

Dimostrazione. Procediamo spezzando le due implicazioni

" \Longrightarrow " Ricordiamo che $\overline{E}=E\cup E'$

$$y\in \overline{E}=E\cup E'$$

- se $y \in E$, allora consideriamo $x_k \equiv y \in E$ si ha $x_k \xrightarrow{k \to +\infty} y$
- se $y \in E'$ e $y \notin E$, per la proposizione (p.vii), $\exists \{x_k\}_{k=0}^{\infty}$ a valori in E tale che $x_k \xrightarrow{k \to +\infty} y$
- " <=- " Assumiamo per assurdo che esista $x_k \xrightarrow{k \to +\infty} y$ e $y \notin \overline{E}$, con $x_k \in E$.

 \overline{E} è un insieme chiuso, allora $(\overline{E})^C$ è aperto, ovvero $\exists\, r>0$ tale che $B_r(y)\subset (\overline{E})^C$

Allora $B_r(y) \cap \overline{E} = \emptyset$, allora poiché $E \subset \overline{E}$

$$\exists r > 0 : B_r(y) \cap E = \emptyset$$

allora qualsiasi successione a valori in E non può convergere a y, dunque neghiamo $x_k \xrightarrow{k \to +\infty} y$, si ha contraddizione, dunque

$$y \in \overline{E}$$

Teorema X Dato $E \in \mathbb{R}^n$

E è chiuso (A)

 \iff se esiste $\{x_k\}_{k=0}^{\infty}$ a valori in E tale che $x_k \xrightarrow{k \to +\infty} y$ allora $y \in E$ (B)

Equivalentemente:

 $E \ e \ chiuso \ ^{(A)}$

 \iff tutte le sue successioni convergenti hanno limite in E stesso (B)

dim. (X)

" \Longrightarrow " E è chiuso. Ricordiamo che E è chiuso $\iff E = \overline{E}$ Allora per proprietà precedente

$$\{x_k\}_{k=0}^{\infty} \subset E \land x_k \to y \implies y \in \overline{E} = E$$

" \Leftarrow " Ricordiamo che E chiuso \Leftrightarrow $E' \subset E$. Dimostriamo che $E' \subset E$.

Consideriamo $y \in E', \implies \exists \{x_k\}_{k=0}^{\infty} \subset E, \text{ con } x_k \neq y, x_k \to y, \text{ allora per (B)}, y \in E$

Dunque
$$E' \subset E$$
, ed E chiuso

6.4 Successioni di Cauchy

Definizione Sia $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n . Questa successione è detta successione di Cauchy (o successione fondamentale) se

$$\forall \varepsilon > 0 \,\exists \, \overline{k} \in \mathbb{N} \,|\, \forall \, k, m \ge \overline{k} : \, |a_k - a_m| < \varepsilon$$

O, equivalentemente

$$\forall \varepsilon > 0 \,\exists \, \overline{k} \in \mathbb{N} \,\forall \, k > \overline{k} \,\forall \, p \in \mathbb{N} : \, |a_k - a_{k+p}| < \varepsilon$$

(Definitivamente $|a_k - a_{k+p}| < \varepsilon$)

Intuitivamente, da un certo punto in poi i valori della successione di Cauchy sono vicini a piacere

Studieremo il legame tra l'essere di Cauchy l'essere convergente.

16 nov 2021 **Lemma** *l.iii* Data $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n ,

$$\{a_k\}_{k=0}^{\infty}$$
è di Cauchy $\implies \{a_k\}_{k=0}^{\infty}$ è limitata

dim. (l.iii) Consideriamo $\varepsilon = 1$:

$$\exists \varkappa > 0 : \forall k > \varkappa$$

si ha $|a_k - a_{\varkappa}| < 1, \, \forall \, k \geq \varkappa$

$$|a_k - a_{\varkappa}| \ge ||a_k| - |a_{\varkappa}||$$

Allora per $k > \varkappa$

$$||a_k| - |a_{\varkappa}|| < 1$$

 $|a_{\varkappa}| - 1 < |a_k| < |a_{\varkappa}| + 1$

Consideriamo

$$m = \min\{|a_0|, |a_1|, \cdots, |a_{\varkappa}|, |a_{\varkappa}| - 1\}$$

$$M = \max\{|a_0|, |a_1|, \cdots, |a_{\varkappa}|, |a_{\varkappa}| + 1\}$$

Dunque $\forall k \in \mathbb{N}$,

$$m < |a_k| < M$$

$$\implies \{a_k\}_{k=0}^{\infty}$$
 è limitata

Teorema XI (Criterio di convergenza di Cauchy per le successioni)

Data $\{a_k\}_{k=0}^{\infty}$ a valori in \mathbb{R}^n , si ha

 a_k convergente $\iff a_k$ è di Cauchy

dim. (XI)

" \Longrightarrow " $\{a_k\}$ è convergente, allora

$$\exists l \in \mathbb{R}^n$$

tale che

$$\forall \varepsilon > 0 \,\exists \, \overline{k} : \, \forall \, k > \overline{k} : \, |a_k - l| < \varepsilon$$

possiamo scrivere

$$|a_k - a_m| \le |a_k - l| + |a_m - l|$$

$$\exists \overline{k} \, \forall \, k, m \ge \overline{k} :$$

$$|a_k - l| < \varepsilon/2$$

$$|a_m - l| < \varepsilon/2$$

ossia

$$|a_k - a_m| \le |a_k - l| + |a_m - l| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

$$\implies \{a_n\}$$
 è di Cauchy

"
$$\Leftarrow=$$
" $\{a_k\}_{k=0}^{\infty}$ è di Cauchy

$$\Longrightarrow_{L_{emma}} \{a_k\}_{k=0}^{\infty}$$
 è limitata

 \Longrightarrow_{B-W} ammette una sotosuccessione convergente, ossia esiste $h_k \in \mathbb{N}$, $\{a_{h_k}\}$ è convergente, ossia $\exists l \in \mathbb{R}^n$:

$$\forall \varepsilon \exists \overline{k} : \forall k > \overline{k} : |a_{hk} - l| < \varepsilon/2$$

Osserviamo

$$|a_k - l| \le |a_k - a_{h_k}| + |a_{h_k} - l|$$

Poiché la successione è di Cauchy

$$\exists \, \overline{\overline{k}} : \, \forall \, m, h > \overline{\overline{k}} : \, |a_m - a_h| < \varepsilon$$
$$\exists \, \overline{\overline{k}} : \, \forall \, k \ge \overline{\overline{\overline{k}}} : \, h_k > \overline{\overline{\overline{k}}}$$

Allora preso

$$\varkappa = \max\{\overline{k}, \overline{\overline{k}}, \overline{\overline{k}}\}$$

Otteniamo $\forall k \geq \varkappa$

$$|a_k - l| \le \overbrace{|a_k - a_{h_k}|}^{<\varepsilon/2} + \overbrace{|a_{h_k} - l|}^{<\varepsilon/2} < \varepsilon$$

Osservazione (6.3) Nella dimostrazione si è usato il Teorema di Bolzano-Weirestrass, ossia la completezza di \mathbb{R} , dunque il criterio di convergenza di Cauchy non vale per successioni a valori in \mathbb{Q} o in \mathbb{Q}^n .

7 Teoremi per le funzioni continue

Notazione Un punto x_0 tale che $f(x_0) = 0$ è detto zero di f

Teorema XII (Teorema di esistenza degli zeri) Consideriamo f: $[a,b] \to \mathbb{R}$, e assumiamo f continua su [a,b], e assumiamo che f(a)f(b) < 0 $\implies \exists c \in (a,b) \mid f(c) = 0$

dim. (XII) Assumiamo f(a) > 0 e f(b) < 0.

Poniamo $a_0 = a$ e $b_0 = b$; consideriamo il punto medio $c_0 = \frac{a_0 + b_0}{2}$.

Abbiamo tre possibilità sul segno di $f(c_0)$:

- 1. $f(c_0) > 0$: poniamo $a_1 = c_0 e b_1 = b_0$;
- 2. $f(c_0) < 0$: poniamo $a_1 = a_0 e b_1 = c_0$;
- 3. $f(c_0) = 0$: la dimostrazione è terminata ponendo $c = c_0$: f(c) = 0.

Consideriamo $c_1 = \frac{a_1 + b_1}{2}$

Abbiamo tre possibilità sul segno di $f(c_1)$:

- 1. $f(c_1) > 0$: poniamo $a_2 = c_1 e b_2 = b_1$;
- 2. $f(c_1) < 0$: poniamo $a_2 = a_1 e b_2 = c_1$;
- 3. $f(c_1) = 0$: la dimostrazione è terminata ponendo $c = c_1$: f(c) = 0.

Procedendo in questo modo, vi sono due possibilità

- $\exists n \text{ tale che } f(c_n) = 0: c = c_n \text{ e } f(c) = 0;$
- si ottengono due successioni a valori reali in [a, b], che chiamiamo $\{a_n\}_{n=0}^{\infty}$ e $\{b_n\}_{n=0}^{\infty}$ tali che:
 - $\{a_n\}_{n=0}^{\infty}$ crescente e $\forall n, a_n \leq b_0 = b;$
 - $-\{b_n\}_{n=0}^{\infty}$ decrescente e $\forall n, b_n \ge a_0 = a;$
 - $\forall n, a_n \leq b_n$

Otteniamo inoltre una sequenza di intervalli $[a_n, b_n]$ tali che

$$[a_0, b_0] \supset [a_1, b_1] \supset \cdots \supset [a_{n-1}, b_{n-1}] \supset [a_n, b_n] \cdots$$

Inoltre

$$b_n - a_n = \frac{b_{n-1} - a_{n-1}}{2} \,\forall \, n$$

allora

$$b_n - a_n = \frac{b_0 - a_0}{2^n}.$$

Si verifica che $a_n \longrightarrow l$, in quanto a_n crescente e limitata superiormente, e $b_n \longrightarrow m$, in quanto b_n è decrescente e limitata inferiormente: allora

$$\forall n: a_n \leq l, b_n \geq m$$

allora

$$\forall n: \ 0 \le m - l \le b_n - a_n = \frac{b_0 - a_0}{2^n} \xrightarrow{n \to +\infty} 0$$

$$\implies m - l = 0$$

$$\implies m = l.$$

Poniamo c = m = l, e consideriamo c candidato zero della funzione. Verifichiamo che vale f(c) = 0.

Infatti,

$$\forall n \quad f(a_n) > 0 \quad f(b_n) < 0$$

inoltre

$$\lim_{n \to +\infty} f(a_n) = f(c)$$

perché f continua e vale il teorema di relazione, e

$$\lim_{n \to +\infty} f(b_n) = f(c).$$

Inoltre

$$\lim_{n \to +\infty} f(a_n) \ge 0$$

per il teorema di permanenza del segno, e

$$\lim_{n \to +\infty} f(b_n) \le 0.$$

Risulta quindi che
$$\begin{cases} f(c) \ge 0 \\ f(c) \le 0 \end{cases}$$

$$\implies f(c) = 0$$

Osservazione (7.1) Sotto l'ipotesi f continua su un intervallo [a, b], c, lo zero c non è unico.

Osservazione (7.2) Il teorema vale solo su intervalli

Esempio (7.1) Preso

$$f(x) = \begin{cases} 1 & x \in [a, b] \\ -1 & x \in [c, d] \end{cases}$$

con $b \nleq c$, vale che f(a) > 0, f(d) < 0, f è continua su $[a, b] \cup [c, d] = D$, $\nexists c \in D$ tale che f(c) = 0

Osservazione (7.3) Data $f:[a,b] \to \mathbb{R}$, l'ipotesi di f continua non è eliminabile

Teorema XIII (dei valori intermedi) Sia $f:(a,b) \to \mathbb{R}, \ a,b \in \mathbb{R}^*,$ continua su (a,b); indichiamo

$$i = \inf_{x \in (a,b)} f(x) \qquad s = \sup_{x \in (a,b)} f(x)$$

con $i, s \in \mathbb{R}^*$

$$\implies \forall \lambda \in (i, s), \exists c \in (a, b) \text{ tale che } f(c) = \lambda$$

dim. (XIII) Prendiamo $\lambda \in (i, s)$.

$$\exists x_1, x_2 \in (a, b) \text{ t. c. } i < \underbrace{f(x_1)}_{m} < \lambda < \underbrace{f(x_2)}_{M} < s.$$

Consideriamo $g(x) = f(x) - \lambda$: g continua su (a, b), e $g(x_1) < 0$ e $g(x_2) > 0$; inoltre $x_1, x_2 \in (a, b)$, quindi g continua su $[x_1, x_2]$ oppure $[x_2, x_1]$.

Allora, per il teorema di esistenza degli zeri, si ha che

$$\exists c \text{ tra } x_1, x_2 \text{ t. c. } q(c) = 0$$

ossia

$$f(c) - \lambda = 0 \implies f(c) = \lambda$$

Corollario Sia $f:(a,b)\to\mathbb{R}$ continua su $(a,b),\,a,b\in\mathbb{R}^*;$ si indica con

$$i = \inf_{x \in (a,b)} f(x) \qquad s = \sup_{x \in (a,b)} f(x)$$

con $i, s \in \mathbb{R}^*$, si ha che

$$f((a,b)) = (i,s)$$

Possiamo dire che f continua mappa intervalli in intervalli, ovvero

$$f(I) = J$$

con
$$J=(i,s)$$
, e

$$i = \inf_{x \in I} f(x)$$
 $s = \sup_{x \in I} f(x)$