Positive Properties of Context-Free languages

1

Union

Context-free languages are closed under: Union

 L_1 is context free $L_1 \cup L_2$ $L_2 ext{ is context free} ext{ is context-free}$

,

Language

Grammar

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \to aS_2 a \mid bS_2 b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

,

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under:

Concatenation

 $L_{\rm l}$ is context free

 L_2 is context free

 L_1L_2

is context-free

5

Example

Language

Grammar

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \to aS_2 a \mid bS_2 b \mid \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

7

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\Longrightarrow}$ L^* is context-free

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

۵

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

11

Intersection

Context-free languages are **not** closed under: in

intersection

 L_1 is context free

e.

 $L_1 \cap L_2$

 L_2 is context free

not necessarily
context-free

$$L_1 = \{a^n b^n c^m\}$$
 $L_2 = \{a^n b^m c^m\}$

Context-free: Context-free:

$$S \to AC$$
 $S \to AB$

$$A \rightarrow aAb \mid \lambda$$
 $A \rightarrow aA \mid \lambda$

$$C \to cC \mid \lambda$$
 $B \to bBc \mid \lambda$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under: **complement**

L is context free $\longrightarrow \overline{L}$ not necessarily context-free

$$L_1 = \{a^n b^n c^m\}$$
 $L_2 = \{a^n b^m c^m\}$

Context-free: Context-free:

$$S \to AC$$
 $S \to AB$

$$A \rightarrow aAb \mid \lambda$$
 $A \rightarrow aA \mid \lambda$

$$C \to cC \mid \lambda$$
 $B \to bBc \mid \lambda$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

15

Intersection
of
Context-free languages
and
Regular Languages

The intersection of

a context-free language and a regular language

is a context-free language

17

Example:

context-free

$$L_1 = \{w_1w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1

regular

$$L_2 = \left\{a, c\right\}^*$$

DFA M_2

19

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

NPDA M

Applications of Regular Closure

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

22

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\} \qquad \overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 context-free regular

(regular closure) $\{a^nb^n\}\cap\overline{L_1}$ context-free

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a * b * c *\} = \{a^n b^n c^n\}$$

context-free regular context-free

Impossible!!!

Therefore, L is **not** context free