VARIABLE
COMPLEJA

APUNTES DEL CURSO 2019-2020 IMPARTIDO POR JOSE PEDRO MORENO

Rafael Sánchez

Revisión del 29 de enero de 2020 a las 23:09.

Índice general

Ι	Primer 1	parcial	5
1.	Números	complejos y funciones	7
	1.1. Opera	ciones aritméticas en el cuerpo de los complejos	7
	1.1.1.	Conjugación	8
	1.1.2.	Desigualdad triangular	9
	1.1.3.	Representación polar	10
	1.1.4.	Raíces y potencias	11
II	Apéndi	ces	13
2.	Índices		15

ÍNDICE GENERAL

Parte I Primer parcial

Capítulo 1

Números complejos y funciones

1.1. Operaciones aritméticas en el cuerpo de los complejos

En este curso estudiaremos el cuerpo $\mathbb C$ formado por el cuerpo de los números complejos.

Definición 1 (Número complejo. Parte real e imaginaria). Diremos que un número z es **complejo** cuando sea una tupla de la forma (a,b) (o equivalentemente (a+bi)) con $a,b \in \mathbb{R}$. Llamaremos parte real $\Re(z)$ y parte imaginaria $\Im(z)$ a cada escalar a y b de la tupla respectivamente.

Definición 2 (\mathbb{C}). Definimos \mathbb{C} como el *cuerpo* conformado por la estructura $\langle \mathcal{C}, +, \cdot \rangle$, donde $\mathcal{C} = \{(a,b) \mid \forall a,b \in \mathbb{R}\}$ y las operaciones $+, \cdot$ definidas como:

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc)$$

Proposición 1 (\mathbb{C} es un cuerpo). La estructura $\mathbb{C} = \langle \mathcal{C}, +, \cdot \rangle$ definida anteriormente satisface las condiciones de ser un cuerpo.

Demostración. Se deja al lector.

\Diamond

Ejemplo 1 (Cálculo de un inverso en C)

Por construcción el neutro de la suma en \mathbb{C} es (0,0) y el de la multiplicación es (1,0). Vamos a buscar la expresión del inverso de un complejo z=(a,b). Para ello buscamos resolver el sistema:

$$(a,b) \cdot (x,y) = (1,0)$$

es decir:

$$ax - by = 1$$
$$-bx + ay = 0$$

que tiene solución cuando $a^2 + b^2 \neq 0$. Finalmente obtenemos:

$$(x,y) = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

que como veremos más adelante implica que:

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

Además, tiene sentido que si construimos \mathbb{C} a partir de tuplas $\mathbb{R} \times \mathbb{R}$ entonces $\mathbb{R} \subseteq \mathbb{C}$. Nos interesa definir exactamente como, para ello establecemos la función de inclusión: ι

$$\mathbb{R} \xrightarrow{\iota} \mathbb{C}$$

$$a \longmapsto (a,0)$$

Observación. En ocasiones usaremos indistintamente $(a, 0) \equiv a$ cuando un número complejo solo tenga parte real.

Veremos más adelante que también podemos calcular las raíces de números complejos. En particular para las raíces cuadradas se reduce a resolver el sistema que se deduce de $(x, y)^2 = (a, b)$, es decir:

$$x^2 - y^2 = a$$
$$2xy = b$$

que es un sistema resoluble, sin embargo la expresión no es nada agradable. Usaremos la representación polar de los números complejos para simplificar esta tarea.

1.1.1. Conjugación

Definición 3 (Conjugado de un número complejo). Definimos el **conjugado** de un número complejo $z=(a,b)\in\mathbb{C}$ como $\overline{z}=(a,-b)$.

Definición 4 (Módulo de un número complejo). Definimos el **módulo** de un número complejo $z = (a,b) \in \mathbb{C}$ como $\rho = |z| = \sqrt{a^2 + b^2} \in \mathbb{R}$.

Proposición 2 (Propiedades del conjugado de un número complejo). Sea $z=(a,b)\in\mathbb{C}$:

- (1) $z \cdot \overline{z} = (a^2 + b^2) = |z|^2$
- (2) $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- (3) $\overline{z+w} = \overline{z} + \overline{w}$
- (4) $\overline{\overline{z}} = z$
- (5) $z + \overline{z} = 2 \cdot \Re(z)$
- (6) $z \overline{z} = 2 \cdot \Im(z)$
- $(7) \ z = \overline{z} \iff z \in \mathbb{R}$
- (8) Si $w \neq 0$, $\frac{\overline{z}}{w} = \frac{\overline{z}}{\overline{w}}$

Demostración. Consideraremos z = (a, b) y w = (c, d).

1.

$$(a,b) \cdot (a,-b) = (a \cdot a - b \cdot (-b), a \cdot (-b) + b \cdot a) = (a^2 + b^2, 0)$$

2.

$$\overline{z \cdot w} = \overline{(ac - bd, ad + bc)} = (ac - bd, -ad - bc) =$$

$$= (ac - (-b)(-d), a(-d) + c(-b)) = (a, -b) \cdot (c, -d) = \overline{z} \cdot \overline{w}$$

3.
$$\overline{z+w} = \overline{(a+c,b+d)} = (a+c,-b-d) = (a,-b) + (c,-d) = \overline{z} + \overline{w}$$

4.

$$\overline{\overline{z}} = \overline{(a, -b)} = (a, b) = z$$

5.

$$z + \overline{z} = (a, b) + (a, -b) = (2a, 0) = 2\Re(z)$$

6.

$$z - \overline{z} = (a, b) - (a, -b) = (0, 2b) = 2\Im(z)$$

7.

$$z = \overline{z} \iff a = a \vee b = -b \iff b = 0 \iff z \in \mathbb{R}$$

8. Vamos a demostrar primero que $\overline{\frac{1}{w}} = \frac{1}{\overline{w}}$:

$$1 = w \cdot \frac{1}{w} \implies 1 = \overline{1} = \overline{w \cdot \frac{1}{w}} = \overline{w} \cdot \frac{\overline{1}}{w}$$

y como $\mathbb C$ es un cuerpo sabemos que $\overline w^{-1}$ existe, por tanto, multiplicando a ambos lados por $\overline w^{-1}$ obtenemos:

$$\frac{1}{\overline{w}} = \overline{\frac{1}{w}}$$

Con este resultado ya es directo demostrar que:

$$\overline{\frac{z}{w}} = \overline{z} \cdot \overline{\frac{1}{w}} = \overline{z} \frac{1}{\overline{w}} = \overline{\frac{z}{\overline{w}}}$$

1.1.2. Desigualdad triangular

En esta sección vamos a ver algunas propiedades de los números complejos así como la desigualdad triangular y su generalización.

Proposición 3 (Propiedades del módulo de un número complejo). De nuevo consideramos z=(a,b), $w=(c,d)\in\mathbb{C}, \{z_i=(a_i,b_i)\}_{i\in\mathbb{N}}\subset\mathbb{C}.$

- 1. $|z \cdot w| = |z| \cdot |w|$.
- $2. |z| = |-z| = |\overline{z}| = |-\overline{z}|.$
- 3. $|\Re(z)| \le |z| \ \text{y} \ |\Im(z)| \le |z|$.
- 4. $|z+w| \leq |z| + |w|$. (Designaldad triangular).
- 5. $|z| |w| \le |z + w|$.
- 6. $||z| |w|| \le |z + w|$.
- 7. $|z_1 + \cdots + z_n| \leq |z_1| + \cdots + |z_n|$. (Desigualdad triangular generalizada).

Demostración. En la gran mayoría de apartados se procede a demostrar la relación de los cuadrados, ya que al ser $f(x) = \sqrt{x}$ una función estrictamente creciente para números positivos, basta tomar raíces a ambos lados y llegamos a relación original.

1.

$$|z \cdot w|^2 = (ac - bd)^2 + (ad + bc)^2 = a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2 = (a^2 + b^2)(c^2 + d^2) = |z|^2 + |w|^2$$

2. Los cuatro términos se pueden abreviar en $\tilde{z}=(\pm a,\pm b)$ y entonces:

$$|\tilde{z}| = \sqrt{(\pm a)^2 + (\pm b)^2} = \sqrt{a^2 + b^2} = |z|$$

3. Como $|z|^2 = |\Re(z)|^2 + |\Im(z)|^2$ entonces es claro que:

$$|\Re(z)|^2 \le |\Re(z)|^2 + |\Im(z)|^2 \text{ y } |\Im(z)|^2 \le |\Re(z)|^2 + |\Im(z)|^2$$

4.

$$\begin{split} |z+w| &\leqslant |z| + |w| \\ |z+w|^2 &\leqslant (|z|+|w|)^2 \\ (z+w)\overline{(z+w)} &\leqslant |z^2| + |w^2| + 2\,|z|\,|w| \\ (z+w)(\overline{z}+\overline{w}) &\leqslant |z^2| + |w^2| + 2\,|z|\,|w| \\ |z^2| + |w^2| + z\overline{w} + \overline{z}w &\leqslant |z^2| + |w^2| + 2\,|z|\,|w| \\ \not \mathcal{Z} \cdot \Re(z\overline{w}) &= z\overline{w} + w\overline{z} &\leqslant \not Z\,|z|\,|w| \\ \Re(z\overline{w}) &\leqslant |z|\,|w| = |z|\,|\overline{w}| = |z\overline{w}| \end{split}$$

5.

$$|z| = |z + w - w| \le |z + w| + |-w| = |z + w| + |w| \implies |z| - |w| \le |z + w|$$

Análogamente demostramos la segunda desigualdad expresando |w| = |w + z - z|.

- 6. Directa de la propiedad anterior y la desigualdad triangular.
- 7. Por inducción sobre el número de términos del sumatorio de la desigualdad triangular. Sabemos que el caso base se cumple (n = 2), ahora suponemos que se cumple para n sumandos y lo probamos cierto para n + 1, es decir, suponemos que es cierto:

$$\left| \sum_{i=1}^{i=n} z_i \right| \leqslant \sum_{i=1}^{i=n} |z_i|$$

y entonces:

$$\left| \sum_{i=1}^{i=n+1} z_i \right| = \left| z_{n+1} + \sum_{i=1}^{i=n} z_i \right| \le |z_{n+1}| + \left| \sum_{i=1}^{i=n} z_i \right| \le |z_{n+1}| + \sum_{i=1}^{i=n} |z_i| = \sum_{i=1}^{i=n+1} |z_i|$$

1.1.3. Representación polar

Los números complejos, al estar construidos como un par ordenado de números reales se pueden representar geométricamente en el plano complejo (similar a \mathbb{R}^2). De esta forma, el número z=a+bi=(a,b) se puede representar como el punto (a,b) de \mathbb{R}^2 .

Además, toman especial importancia los puntos de la circunferencia unidad, (los que satisfacen la ecuación $x^2 + y^2 = 1$). Usando un poco de trigonometría podemos obtener fácilmente que los puntos del plano complejo que se corresponden con los de la circunferencia unidad son $(\cos \theta, \sin \theta)$.

Observación. Los números complejos no tienen una expresión única en esta forma ya que $(\cos \theta, \sin \theta) = (\cos(\theta + 2k\pi), \sin(\theta + 2k\pi))$ con $k \in \mathbb{Z}$.

De esta forma, cualquier número complejo z podrá expresarse como $z=|z|(\cos\theta,\sin\theta)$. Usualmente denominaremos a θ como el argumento de z, es decir, $\theta=\arg(z)$. Además, es común encontrar el módulo expresado con la letra ρ .

Esta forma de representar los números complejos nos simplificará varias tareas, como multiplicarlos o hallar raíces.

1.1.4. Raíces y potencias

Parte II

Apéndices

Capítulo 2

Índices

Lista de definiciones

1.	Definición (Número complejo. Parte real e imaginaria)	7
2.	Definición (\mathbb{C})	7
3.	Definición (Conjugado de un número complejo)	8
4.	Definición (Módulo de un número complejo)	8

Lista de teoremas

1.	Proposición (\mathbb{C} es un cuerpo)	7
2.	Proposición (Propiedades del conjugado de un número complejo)	8
3.	Proposición (Propiedades del módulo de un número complejo)	9

Lista de ejemplos

1.	Ejemplo (Cálculo	de un	inverso en	\mathbb{C}																										7
----	-----------	---------	-------	------------	--------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

22 LISTA DE EJEMPLOS

Lista de ejercicios