DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS	1	(20)	
Midterm Exam	2	(20)	
MATH 122 Spring 2014	3	(20)	
Your Name:	4	(20)	
KUID Number:	5	(20)	
1 (10)	6	(20)	
2 (10) 3 (10)	7	(20)	
4 (10)	8	(20)	
	Total	l (200)	

Some useful formulas

To be filled

Multiple choice questions

- (1) Let b = <2, 0, 1>, a = <1, 0, -3>. Find $proj_ab$.
 - (A)
 - (B)
 - (C)
 - (D)
- (2) Find $< 1, 1, -2 > \times < 3, -2, 1 >$
 - (A)
 - (B)
 - (C)
 - (D)
- (3) Find the sum of the series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

- (A)
- (B)
- (C)
- (D)
- (4) Find the angle between the planes 2x + y + z = 1, 2x y + 2z = 1.
 - (A)
 - (B)
 - (C)
 - (D)

(5) Expand the function

$$f(x) = \sin(x)$$

in Taylor series around the point $a = \pi/2$.

(6) Determine the interval of convergence for the power series

$$\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}.$$

(7) Find the points on the curve $r = 1 - \sin(\theta)$, where the tangent line is horizontal or vertical.

(8) Find the exact length of the polar curve $r = \sin(\theta), 0 \le \theta \le \pi/3$.

(9) Find the volume of the parallelepiped spanned on the vectors $\vec{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$, $\vec{b} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, $\vec{c} = \mathbf{j} - 5\mathbf{k}$

(10) Find the equations of the plane passing through the origin and the points P(2, -4, 6) and Q = (5, 1, 3).

(11) Find the line of intersection of the planes 2x - y + z = 2, 3x - 2y + z = 1.

(12) Find the plane that passes through the point P(1, -1, 1) and contains the line x = 2y = 3z.