Regular Expressions

A notation to describe "finite-automaton" patterns

E.g. Binary strings that "begin with a string of 0's followed by a string of 1's".

Binary strings that "start and end with the same symbol".

Regular expressions are just such a compact notation to describe these patterns, which are described respectively as $0^* \cdot 1^*$ and

$$0+1+(0(0+1)*0)+(1(0+1)*1).$$

Regular expressions have many important applications in CS:

- Lexical analysis in compiler construction.
- Search facilities provided by text editors and databases; utilities such as awk and grep in Unix.
- Programming languages such as Perl and XML.

Regular expressions and their denotations

Fix a Σ . We define simultaneously *regular expression* E and the *language* denoted by E, written L(E), by induction over the following rules:

• The constants ϵ and \emptyset are regular expressions; $L(\epsilon) \stackrel{\text{def}}{=} \{ \epsilon \} \text{ and } L(\emptyset) \stackrel{\text{def}}{=} \emptyset.$

• For
$$a \in \Sigma$$
, a is a regular expression; $L(a) \stackrel{\text{def}}{=} \{a\}$.

 \bullet If E and F are regular expressions, then so are $(E+F),\,(E\cdot F)$ and $(E^*);$ we have

Notations

+ is sometimes written \cup or |, and $(E \cdot F)$ is sometimes simply written (EF).

Parentheses may sometimes be omitted. We assume:

- (i) The regular expression operators have the following *order of precedence* (in decreasing order): star, concatenation, union.
 - E.g. 01^* means $0(1^*)$, not $(01)^*$; 0+10 means 0+(10), not (0+1)0.
- (ii) Union and concatenation associate to the left i.e. $E \cdot F \cdot G$ means $(E \cdot F) \cdot G$. (Since union and concatenation are associative, the choice of left or right association does not really matter.)

Examples

- (i) $01^* + 1$ is formally $((0 \cdot (1^*)) + 1)$.
- (ii) $(0+1)01^*0$ is formally $((((0+1)\cdot 0)\cdot (1^*))\cdot 0)$.

Examples: Languages over $\{0,1\}$ denoted by regular expressions

- 1. 0*10* denotes words that have exactly one 1.
- 2. $(0+1)^*1(0+1)^*$ denote words that have at least one 1.
- 3. $0(0+1)^*0+1(0+1)^*1+0+1$ denotes words that start and end with the same symbol.

We shall say that a word w matches E just in case $w \in L(E)$.

Equivalence of regular expressions

We say that E and F are equivalent, written $E\equiv F$, just in case L(E)=L(F).

Note that \equiv is an equivalence relation.

Some identities

- 1. Associativity: $(E+F)+G\equiv E+(F+G)$ and $(EF)G\equiv E(FG)$.
- 2. Commutativity: $E + F \equiv F + E$
- 3. $E\emptyset \equiv \emptyset$.
- 4. $\emptyset^* \equiv \{ \epsilon \}$.
- 5. $E + \emptyset \equiv E \equiv \emptyset + E$ and $E \cdot \epsilon \equiv E \equiv \epsilon \cdot E$.
- 6. But in general $E + \epsilon \not\equiv E$, and $E \cdot \emptyset \not\equiv E$.

For which E do the equivalences hold?

Example: Verify $(a + b)^* \equiv a^* (b a^*)^*$

Proof. Observe that $L((a+b)^*)$ is the set of all strings over $\{a,b\}$, thus $L(a^*(b\,a^*)^*)\subseteq L((a+b)^*)$.

Note that any $s \in L((a+b)^*)$ can be written *uniquely* as

$$a^{n_0} b a^{n_1} b \cdots a^{n_{r-1}} b a^{n_r}$$
 (1)

where a^n means $\underbrace{a\cdots a}_n$, each $n_i\geq 0$ and $r\geq 0$. (r is just the number of

occurrences of b in s. E.g. in case s is b, $n_0=n_1=0$; in case s is ϵ , $n_0=0$.)

Any string in $L((ba^*)^*)$ has the shape $(\underline{b\,a^{n_1})\,\cdots\,(b\,a^{n_r})}$, where each $n_i\geq 0$

and $r\geq 0$. It follows that any string in $L(a^*(ba^*)^*)$ has the shape $a^{n_0}\ b\ a^{n_1}\ \cdots\ b\ a^{n_r}$ where each $n_i\geq 0$ and $r\geq 0$ i.e. of the shape (1).

Question: Is there a finite set of (equivalence) axioms and rules such that $(a+b)^* \equiv a^* \, (b \, a^*)^*$ (indeed any valid equivalence) is a theorem?

Kozen's Axioms for the Algebra of Regular Expressions

1.
$$E + (F + G) \equiv (E + F) + G$$
 7. $E(F + G) \equiv EF + EG$

2.
$$E+F \equiv F+E$$
 8. $(E+F)G \equiv EG+FG$

3.
$$E + \emptyset \equiv E$$
 9. $\emptyset E \equiv E\emptyset \equiv \emptyset$

4.
$$E + E \equiv E$$
 10. $\epsilon + EE^* \equiv E^*$

5.
$$(EF)G \equiv E(FG)$$
 11. $\epsilon + E^*E \equiv E^*$

6.
$$\epsilon E \equiv E \epsilon \equiv E$$

and two rules:

12.
$$F + EG < G \Rightarrow E^*F < G$$

13.
$$F + GE \le G \Rightarrow FE^* \le G$$

Note: $E \leq F$ means $L(E) \subseteq L(F)$.

(Sound and) Complete Axiomatisation of Equivalence

Soundness: Each axiom is a valid equivalence between regular expressions, and each rule is sound (i.e. if the premise is a valid equivalence, so is the conclusion).

E.g. to say that rule (13) is sound is to say that for any E,F and G, if $L(F+GE)\subseteq L(G)$, then $L(FE^*)\subseteq L(G)$.

Completeness: Further the axiomatisation is *complete* i.e.

Kozen's Theorem. All valid equivalences between regular expressions can be derived from Kozen's axioms and rules, using the laws of (in)equational logic i.e.

if
$$E \leq F$$
 then $E \oplus G \leq F \oplus G, G \oplus E \leq G \oplus F$ and $E^* \leq F^*$ where $\oplus = +$ and \cdot .

On proving Kozen's Theorem

Soundness proof: For an illustration, we prove (13).

Suppose $L(F+GE)\subseteq L(G)$. Any $w\in L(FE^*)$ has the form $fe_1\cdots e_n$ where $n\geq 0, f\in L(F)$ and $e_i\in L(E)$. We prove that $w\in L(G)$ by induction on n.

The base case of n=0 follows from $L(F)\subseteq L(G)$.

For the inductive case, we need to show that $fe_1 \cdots e_{n+1} \in L(G)$. Now $fe_1 \cdots e_n \in L(FE^*)$; by the IH we have $fe_1 \cdots e_n \in L(G)$; and so $fe_1 \cdots e_n e_{n+1} \in L(GE)$ which is contained in L(G) by supposition.

Completeness proof: beyond the scope of this course.

Example: $(a + b)^* \equiv a^* (b a^*)^*$ revisited

We prove the harder direction "≤" using Kozen's system.

Note that $\epsilon, a, b \leq a^*(ba^*)^*$. [Ex. Prove it using $\epsilon \leq E^*$!]

We have $a(a^*(ba^*)^*) \equiv (aa^*)(ba^*)^* \leq a^*(ba^*)^*$ by (5) and (10). Similarly

$$b(a^*(ba^*)^*) \equiv (ba^*)(ba^*)^* \le (ba^*)^* \equiv \epsilon(ba^*)^* \le a^*(ba^*)^*.$$

The last two steps follow from (6) and (10). Because of the preceding, by (7), we have $(a+b)+(a+b)(a^*(ba^*)^*) \leq a^*(ba^*)^*$, and so, by rule (12) – taking E and F to be (a+b) – we have

$$(a+b)^*(a+b) \le a^*(ba^*)^*.$$

Since $\epsilon \leq a^*(ba^*)^*$, by rule (10) we have $(a+b)^* \leq a^*(ba^*)^*$ as desired. \square

Equivalence of regular expressions and finite automata

The equivalence of regular expressions and finite automata is a fundamental result in Automata Theory.

Kleene's Theorem. Let $L\subseteq \Sigma^*$. The following are equivalent:

- (i) L is regular i.e. for some finite automaton M, L=L(M).
- (ii) L is denoted by some regular expression E i.e. L=L(E).

Proof of Kleene's Theorem: "(i) \Rightarrow (ii)"

We show that there is a systematic way to transform a regular expression E to an equivalent NFA N_E – so that $L(E)=L(N_E)$ – by recursion on the structure of E.

Base cases: For each of the three cases, namely $E=\epsilon,\emptyset$ and a where $a\in\Sigma$, there is an NFA N_E that accepts L(E).

Inductive cases: Take regular expressions E and F. Suppose N_E and N_F are NFAs that accept L(E) and L(F) respectively. We have proved that regular languages are closed under union, concatenation and star by constructing NFAs that accept $L(N_E) \cup L(N_F), L(N_E) \cdot L(N_F)$ and $(L(N_E))^*$ respectively. By definition, these NFAs are equivalent to $E + F, E \cdot F$ and E^* respectively.

We construct the NFA that accepts (0 + 01*0)*0.

$$0 \longrightarrow 0$$

We construct the NFA that accepts $(0 + 01^*0)^*0$.

$$1^*$$
 $0 \stackrel{\epsilon}{\longrightarrow} 0 \stackrel{1}{\longleftarrow} 0$

We construct the NFA that accepts (0 + 01*0)*0.

$$01*0$$

$$\frac{0}{\epsilon} \cdot \underbrace{\frac{\epsilon}{\epsilon} \cdot \frac{1}{\epsilon} \cdot \frac{0}{\epsilon}}_{\epsilon} \cdot \underbrace{0}_{\epsilon}$$

We construct the NFA that accepts (0 + 01*0)*0.

Proof of Kleene's Theorem: "(ii) \Rightarrow (i)"

Given an NFA $M=(Q,\Sigma,\delta,q_0,F)$, for $X\subseteq Q$ and $q,q'\in Q$, we construct, by induction on the size of X, a regular expression

$$E_{q,q'}^X$$

whose denotation is the set of all strings w such that

there is a path from q to q' in M labelled by w (i.e. $q \Longrightarrow q'$) such that all intermediate states along that path lie in X.

It suffices to prove:

Lemma. For any $X\subseteq Q$, for any $q,q'\in Q$, there is a regular expression $E^X_{q,q'}$ satisfying $L(E^X_{q,q'})=$ $\{\,w\in\Sigma^*:q\stackrel{w}{\Longrightarrow}q'\text{ in }M\text{ with all intermediate states of seq. in }X\,\}$

We prove the Lemma by induction on the size of X.

Basis: $X=\emptyset$. Let a_1,\cdots,a_k be all the symbols in $\Sigma\cup\{\epsilon\}$ such that $q'\in\delta(q,a_i)$. For $q\neq q'$, take

$$E_{q,q'}^{\emptyset} \stackrel{\text{def}}{=} \begin{cases} a_1 + \dots + a_k & \text{if } k \ge 1\\ \emptyset & \text{if } k = 0 \end{cases}$$

and for q = q', take

$$E_{q,q'}^{\emptyset} \stackrel{\text{def}}{=} \begin{cases} a_1 + \dots + a_k + \epsilon & \text{if } k \ge 1 \\ \epsilon & \text{if } k = 0 \end{cases}$$

Inductive step: For a nonempty X, choose an element $r \in X$ - call it the separating state. Now any path from q to q' with all intermediate states in X, either

- (1) never visits r, or
- (2) visits r for the first time, followed by a finite number of loops from r back to itself without visiting r in between but staying in X, and finally followed by a path from r to q'.

Thus we take

$$E_{q,q'}^{X} \stackrel{\text{def}}{=} \underbrace{E_{q,q'}^{X-\{r\}}}_{(1)} + \underbrace{E_{q,r}^{X-\{r\}} \cdot (E_{r,r}^{X-\{r\}})^* \cdot E_{r,q'}^{X-\{r\}}}_{(2)}$$

Finally the expression $\sum_{f \in F} E_{q_0,f}^Q$ has denotation L(M).

Heuristic: it is best to choose a separating state r that disconnects the automaton as much as possible.

Example: Transforming NFAs to regular expressions

Consider the NFA $M=(\{\,a,b,c\,\},\{\,0,1\,\},\delta,a,\{\,a\,\})$ where δ is given by

	0	1	ϵ
\overline{a}	Ø	$\{b\}$	Ø
b		$\{c\}$	\emptyset
c	$ \{b\}$	$\{a\}$	\emptyset

We pick b as the separating state: the resulting regular expression is

$$E_{a,a}^{\{a,b,c\}} = E_{a,a}^{\{a,c\}} + E_{a,b}^{\{a,c\}} \cdot (E_{b,b}^{\{a,c\}})^* \cdot E_{b,a}^{\{a,c\}}.$$

By inspection $E_{a,a}^{\set{a,c}}=\epsilon$, $E_{a,b}^{\set{a,c}}=1$ and $E_{b,a}^{\set{a,c}}=11$.

Picking c as the separating state, we have

$$E_{b,b}^{\{a,c\}} = E_{b,b}^{\{a\}} + E_{b,c}^{\{a\}} \cdot (E_{c,c}^{\{a\}})^* \cdot E_{c,b}^{\{a\}}$$

where
$$E_{b,b}^{\{\,a\,\}} = 0 + \epsilon$$
, $E_{b,c}^{\{\,a\,\}} = 1$, $E_{c,c}^{\{\,a\,\}} = \epsilon$ and $E_{c,b}^{\{\,a\,\}} = 0 + 11$.

Hence putting it all together we have

$$E_{a,a}^{\{a,b,c\}} = \epsilon + 1(0 + \epsilon + 1\epsilon^*(0+11))^*11 \equiv \epsilon + 1(0+10+111)^*11$$

I.e.
$$L(M) = L(\epsilon + 1(0 + 10 + 111)^* 11)$$
.

But regular expressions are not uniquely determined by this process. It depends on the choices of seperating states.

If we start with c as the separating state: the resulting regular expression is

$$E_{a,a}^{\{a,b,c\}} = E_{a,a}^{\{a,b\}} + E_{a,c}^{\{a,b\}} \cdot (E_{c,c}^{\{a,b\}})^* \cdot E_{c,a}^{\{a,b\}}.$$

By inspection
$$E_{a,a}^{\set{a,b}}=\epsilon$$
, $E_{a,c}^{\set{a,b}}=10^*1$ and $E_{c,a}^{\set{a,b}}=1$.

Picking b as the next separating state, we have

$$E_{c,c}^{\{a,b\}} = E_{c,c}^{\{a\}} + E_{c,b}^{\{a\}} \cdot (E_{b,b}^{\{a\}})^* \cdot E_{b,c}^{\{a\}}$$

where
$$E_{c,c}^{\{\,a\,\}} = \epsilon$$
, $E_{c,b}^{\{\,a\,\}} = 0 + 11$, $E_{b,b}^{\{\,a\,\}} = \epsilon + 0$ and $E_{b,c}^{\{\,a\,\}} = 1$.

Hence putting it all together we have

$$E_{a,a}^{\{a,b,c\}} = \epsilon + 10^* 1(\epsilon + (0+11)(\epsilon+0)^* 1)^* 1 \equiv \epsilon + 10^* 1 ((0+11) 0^* 1)^* 1$$

I.e.
$$L(M) = L(\epsilon + 10^*1 ((0 + 11) 0^* 1)^*1).$$

Therefore the two resulting regular expressions have to be equivalent, which can be shown equationally as follows:

$$\epsilon + 10^*1 ((0 + 11) 0^* 1)^*1$$

$$\equiv \epsilon + 10^* (1 (0 + 11) 0^*)^* 11 \qquad A(BA)^* \equiv (AB)^*A$$

$$\equiv \epsilon + 10^* ((10 + 111) 0^*)^* 11 \qquad A(B + C) \equiv AB + AC$$

$$\equiv \epsilon + 1 (0 + 10 + 111)^* 11 \qquad A^*(BA^*)^* \equiv (A + B)^*$$

Question

Is there a procedure (algorithm) that, given a string s and a regular expression E, will decide whether or not s matches E?

Models of Computation

24