Федер Евгений, Домашнее задание №10 Задание 1.

Воспользуемся 2 заданием

$$gcd(F_n, F_{n-1}) = gcd(F_n - F_{n-1}, F_{n-1}) = gcd(F_{n-2}, F_{n-1}) = gcd(F_{n-1}, F_{n-2})$$

Таким образом мы спускаемся до F_2 и F_1 , а их НОД равен 1.

Задание 2.

Докажем утверждение сразу в две стороны.

Когда a == b случай очевиден. Все немного ломается. 0 - не натуральное число

Теперь рассмотрим a < b.

Покажем $gcd(a,b) = gcd(a,b \pm a)$

- 1) Так как а делится на gcd, и b делится на gcd, то $(a \pm b)$ делится на gcd.(вынести общий множитель)
- 2) Из 1 пункта, $gcd(a, a \pm b) \leq gcd(a, b)$
- 3) Больше не может быть, так как тогда $\exists x: x*$ gcd(a,b) делит и a и на $a\pm b$ а значит делит и b
- 4) Следовательно они равны.

Отлично, из этого следует утверждение в обе стороны:

ullet Влево: возьмем a и b, вычтем из b a, и получим равенство.

• Также можно сделать и для вправо(прибавить a)

Задание 3.

 d_x кратно x

- $\delta(a) * \delta(b) = \sum d_a^k * \sum d_b^k = \sum (d_a * d_b)^k$
- Пусть у нас есть $d_a b$, тогда разделим ее на множители и каждый множитель принадлежит или a или b. Следовательно $\delta(a*b) = \sum d_{a*b}^k = \sum (d_a*d_b)^k$
- приравниваем оба пункта и ЧТД

Задание 4.

- $\bullet p * q = x \Rightarrow p = x/q$
- $x x/q q + 1 = y \Rightarrow x * q x q^2 + q = q * y \Rightarrow q^2 + q * (y x 1) + x = 0$
- Решаем уравнение и проверяем. Если получилось мы победили. Если нет таких не существует.