Numerics Methods and Useful Facts

Tyler Chen

Contents

1	Line	ar Algebra	3	
	1.1	Classification of Matrices	3	
		1.1.1 Hermetian	3	
		1.1.2 Skew symmetric	3	
		1.1.3 Normal	3	
		1.1.4 Positive definite	3	
	1.2	Matrix Decompositions	4	
		1.2.1 SVD	4	
		1.2.2 (P)LU	4	
			4	
		1.2.4 QR	4	
		1.2.5 Eigen	4	
	1.3	Matrix and Vector Norms	4	
	1.4	Rayleigh Quotients	5	
	1.5		5	
	1.6	Iterative Methods	5	
		1.6.1 Simple Iteration	5	
			5	
			5	
			_	
2		y	5	
	2.1	Laplacian	5	
3	Initial Value Problems 5			
	3.1		5	
	3.2		5	
	3.3		5	

1 Linear Algebra

1.1 Classification of Matrices

Matrices are assumed to be complex unless specified otherwise.

1.1.1 Hermetian

Definition: A matrix A is Hermetian if $A^* = A$

Properties:

- ⇒ Real eigenvalues
- \Rightarrow Normal
- \Rightarrow Unitarily diagonalizable
- $\Rightarrow ||A||_2 = \rho(A)$

1.1.2 Skew symmetric

Definition: A real matrix A is skew symmetric if $A^T = -A$

Properties:

- \Rightarrow pure imaginary eigenvalues
- $\Rightarrow I + A$ is invertible

1.1.3 **Normal**

Definition: A matrix A is normal if $A^*A = AA^*$

Properties:

⇔ Unitarily diagonalizable

1.1.4 Positive definite

Definition: A matrix A is positive definite if all eigenvalues are positive.

Properties:

- $\Leftrightarrow v^*Av > 0 \text{ for all } v$
- ⇔ Has Cholesky factorization

1.2 Matrix Decompositions

1.2.1 SVD

$$A = U\Sigma V^*$$

 \bullet *U* unitary

 \bullet Σ diagonal, with real positive entries in non-increasing order

 \bullet V unitary

Existence: Always

Uniqueness: Note: double check Unique up to complex sign of columns of U and V

Computing:

Why it is useful:

• Rank revealing

• Numerical stability of algorithms using SVD

1.2.2 (P)LU

Existence:

Uniqueness:

Computing: Gaussian Elimination

When is pivoting needed?

1.2.3 Cholesky

Existence: If A is Hermetian positive definite

Uniqueness: Unique up to sign

Why it is useful:

• Save storage space

1.2.4 QR

1.2.5 **Eigen**

1.3 Matrix and Vector Norms

$$||A|| = \sup_{u \neq 0} \frac{||Au||}{||u||} = \sup_{||u||=1} ||Au||$$

$$||A|| = \sup_{u,v \neq 0} \frac{\langle Au, v \rangle}{||u|| \, ||v||} = \sup_{||u|| = ||v|| = 1} \langle Au, v \rangle$$

If A is self Hermetian, *Note:* double check this

$$||A|| = \sup_{u \neq 0} \frac{\langle Au, u \rangle}{||u||^2} = \sup_{||u||=1} \langle Au, u \rangle$$

1.4 Rayleigh Quotients

Note: Anne seems to like these

1.5 Miscellaneous

1.5.1 Gradients of Matrix Vector Forms

$$\nabla x^* A x = 2Ax$$

1.6 Iterative Methods

- 1.6.1 Simple Iteration
- 1.6.2 Conjugate Gradient
- 1.6.3 **GMRES**

2 Boundary Value Problems

2.1 Laplacian

3 Initial Value Problems

Note: need better section names

3.1 Runge-Kutta Methods

3.2 LMMs

3.3 Stability

zero stable region of abs stability A stable L stable etc MOL Von Neumann