Y POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Anno Accademico 2014 – 2015

Algoritmi adattativi per il risparmio energetico di sistemi broadcast via Bluetooth

Candidato: Lorenzo Pagliari (798273)

Relatore: Prof. Raffaela Mirandola

Correlatore: Dott. Diego Perez

- Introduzione
- Studio di fattibilità
- Soluzione proposta
- Prove sperimentali
- Conclusioni

Introduzione

- Studio di fattibilità
- Soluzione proposta
- Prove sperimentali
- Conclusioni

Introduzione – Scenario nomale

Situazione normale:

- Presenza di una struttura di rete di comunicazione
- La diffusione dei messaggi è in carico all'infrastruttura di rete
- Presenza di controlli e sistemi di autenticazione
- Visione globale dei dispositivi da parte dell'infrastruttura di rete

Mancanza di reti di comunicazione

Cause:

- Nubifragi
- Forti nevicate
- Dissestamenti idrogeologici
- Esondazioni
- Trombe d'aria
- Forti eventi atmosferici

Disabilitazione volontaria

Situazione di emergenza:

- Possibile assenza della rete elettrica
- Assenza di una struttura di rete
- Assenza di conoscenza globale della rete
- Assenza controlli centralizzati e di autenticazione
- I nodi possono avere solo una visione locale della rete
- Sono possibili solo comunicazioni Peer-to-Peer tra nodi vicini

Soluzione proposta:

• Indipendente dalle reti di comunicazione: Bluetooth

- Indipendente dalle reti di comunicazione: Bluetooth
- Utilizza dispositivi di comune utilizzo: Smartphone

- Indipendente dalle reti di comunicazione: *Bluetooth*
- Utilizza dispositivi di comune utilizzo: Smartphone
- Usa regole per la diffusione delle informazioni: Gossip
 - Paradigma di diffusione virale delle informazioni
 - Scopo: diffondere rapidamente informazioni, senza saturare i canali di comunicazione come il broadcast puro
 - Diverse applicazioni:
 - Mantenimento dei dati in sistemi replicati o distribuiti
 - Studio della diffusione di epidemie
 - Mantenimento di un overlay di rete (routing)

- Indipendente dalle reti di comunicazione: Bluetooth
- Utilizza dispositivi di comune utilizzo: *Smartphone*
- Usa regole per la diffusione delle informazioni: Gossip
- Deve tenere conto del consumo energetico

- Indipendente dalle reti di comunicazione: Bluetooth
- Utilizza dispositivi di comune utilizzo: *Smartphone*
- Usa regole per la diffusione delle informazioni: Gossip
- Deve tenere conto del consumo energetico
- Adattamento ai cambiamenti esterni e interni al dispositivo

- Introduzione
- Studio di fattibilità
- Soluzione proposta
- Prove sperimentali
- Conclusioni

Studio di fattibilità – Bluetooth Low Energy

Bluetooth Low Energy

- Bluetooth **
- Rilasciato nel 2010, con la versione v4.0
- Basso consumo energetico
- Bassa latenza di trasmissione
- Ottimizzata per la trasmissione di piccole informazioni
- In dotazione su tutti i dispositivi mobili di recente produzione

Potenza massima all'output	Potenza minima all'output
10 mW (10 dBm)	0.01 mW (-20 dBm)

Impatto sugli smartphone:

- Numero trasmissioni possibili
- Durata

Impatto sugli smartphone:

- Numero trasmissioni possibili
- Durata

- Introduzione
- Studio di fattibilità
- Soluzione proposta
- Prove sperimentali
- Conclusioni

Algoritmo di Dynamic Fanout

Si basa sulla tecnologia Bluetooth Low Energy

- Si basa sulla tecnologia Bluetooth Low Energy
- Estensione dell'algoritmo di gossip fixed fanout
 - Metodo di trasmissione di tipo push
 - Criterio di terminazione di tipo counter
 - Limite al numero di trasmissioni prefissato: fanout
 - Algoritmo statico, non si adatta ai cambiamenti esterni/interni

- Si basa sulla tecnologia Bluetooth Low Energy
- Estensione dell'algoritmo di gossip fixed fanout
- Metodo di trasmissione Push&Pull

- Si basa sulla tecnologia Bluetooth Low Energy
- Estensione dell'algoritmo di gossip fixed fanout
- Metodo di trasmissione Push&Pull
- Criteri di terminazione: mix tra counter e blind
 - Blind: la decisione dipende solo dallo stato interno del dispositivo
 - > Counter: termina quando il contatore raggiunge una certa soglia

Algoritmo di Dynamic Fanout

- Si basa sulla tecnologia Bluetooth Low Energy
- Estensione dell'algoritmo di gossip fixed fanout
- Metodo di trasmissione Push&Pull
- Criteri di terminazione: mix tra counter e blind

Dynamyc Fanout, Advertising Limit

- DF= limite trasmissioni, AL = limite pubblicità
- Parametri dinamici, aggiornati periodicamente
- Adattamento ai cambiamenti esterni e interni
- Compromesso tra risparmio energetico ed efficienza

Soluzione proposta – Dynamic Fanout

$$DF = \begin{cases} 1 + \left(\frac{\sqrt{0, 2 \cdot z - 1, 9}}{10}\right) \cdot x - 0.0000004x^{4} &, x < X_{\text{max}} \\ \max\left(1 + \left(\frac{\sqrt{0, 2 \cdot z - 1, 9}}{10}\right) \cdot x - 0.0000004x^{4}; 1 + \frac{1}{2}DF_{\text{max}}\right) &, x \geqslant X_{\text{max}} \end{cases}$$

$$FB = \frac{\sqrt{0, 2 \cdot x - 1, 9}}{10}$$

$$FC = 0.0000004x^4$$

Asintoto =
$$1 + DF_{max} \cdot 50\%$$

Soluzione proposta – Advertising Limit

$$AL = \ln(2x) + 1$$

- Introduzione
- Studio di fattibilità
- Soluzione proposta
- Prove sperimentali
- Conclusioni

Prove sperimentali – Modello di Rete

Random Geometric Graph (N,ρ):

- Modello di rete P2P
- ρ: distanza entro la quale sono possibili collegamenti
- Modello adatto per reti wireless o ad hoc, dove è importante la distanza fisica tra i nodi

Sinergia con il Bluetooth

Prove sperimentali – Simulazioni

Parametri di simulazione:

- Numero di nodi: 2 → 1000
- Densità di nodi: 0.02 nodi/mq → 0.0001 nodi/mq
- Raggio d'azione ρ: 15m, 50m

Dati raccolti:

- Copertura della rete
- Tempo totale richiesto per la rispettiva copertura
- Parametro di efficienza

Prove sperimentali – Risultati

Prove sperimentali – Risultati

- Introduzione
- Studio di fattibilità
- Soluzione proposta
- Risultati ottenuti
- Conclusioni

Proposta di algoritmo dinamico per la comunicazione di dispositivi in situazioni di emergenza:

- Sfrutta il Bluetooth Low Energy
- Sfrutta il paradigma di trasmissione di gossipi

L'algoritmo proposto:

- Si adatta bene ai cambiamenti esterni/interni
- Ha una buona efficienza di diffusione anche a densità relativamente basse
- Evita la ritrasmissione di informazioni già ricevute

Sviluppi futuri:

- Mobilità dei nodi
- Distribuzione dei nodi secondo pattern urbani
- Più connessioni per singolo Master
- Miglior gestione dei messaggi (TTL)
- Nuovi algoritmi di gossip più efficienti

Algoritmi adattativi per il risparmio energetico di sistemi broadcast via Bluetooth

Grazie per l'attenzione!

Dati batteria smartphone

Smartphone		Batteria							Consumi				
		canacità [mAh]	V	\A/b	Autonomia			idle [w]			load [w]		
		Standby [h]	3G [h]	LTE [h]	min	avg	max	avg	max				
Samsung Galaxy S5	4.0	2800	3,85	10,78	390	11	10	0,3	0,5	1,1	3,1	6,2	
Samsung Galaxy S4	4.0	2600	3,8	9,88	350	8	8	0,4	0,8	1,2	3,2	5,1	
Samsung Galaxy S3	4.0	2100	3,8	7,98	460	7	9	1,2	1,4	1,5	3,3	3,4	
LG G3	4.0	3000	3,8	11,4	100			0,6	1,8	2,3	4,4	9,1	
LG G2	4.0	3000	3,8	11,4	100			0,4	1,1	1,4	3,8	4,8	
iPhone 6 plus	4.0	2915	3,8	11,1	384	12		0,5	2,1	2,5	3,5	3,8	
iPhone 6	4.0	1810	3,81	6,91	250	10		0,3	1,5	2	3,1	5,2	
iPhone 5	4.0	1440	3,8	5,45	225			0,4	1,2	1,4	2,2	2,9	
Google Nexus 5	4.0	2300	3,5	8	300			0,3	0,8	1	4,3	8,4	
Google Nexus 6	4.1	3220	3,8	12,2	250 - 330			1,2	15	1,7	4,8	10,9	
Nokia Lumia 930	4.0	2420	3,8	9,2	384	16		1	1,1	1,4	3,8	6,5	
Nokia Lumia 1020	4.0	2000	3,8	7,6	350			1,5	2,2	2,5	3,4	4,7	

Numero di trasmissioni possibili

	2 kB	800 kB	2 MB	50 MB	200 MB	500 MB	800 MB	1 GB	5 GB
Samsung Galaxy S5	416	414	410	298	162	84	56	44	8
Samsung Galaxy S4	368	366	364	266	146	76	50	42	8
Samsung Galaxy S3	288	288	284	210	116	60	42	32	6
LG G3	310	308	306	242	146	80	56	44	8
LG G2	358	356	354	272	156	84	58	46	8
iPhone 6 plus	380	378	374	282	158	84	56	46	8
iPhone 6	266	264	262	192	102	54	36	28	6
iPhone 5	296	294	290	190	92	44	30	24	4
Google Nexus 5	222	222	218	174	104	56	38	32	6
Google Nexus 6	304	302	300	242	150	86	60	48	10
Nokia Lumia 930	290	288	286	218	126	68	46	38	8
Nokia Lumia 1020	266	266	264	196	110	56	38	30	6

Autonomia dispositivi

	2 kB	800 kB	2 MB	50 MB	200 MB	500 MB	800 MB	1 GB	5 GB
Samsung Galaxy S5	3,47	3,45	3,42	2,49	1,35	0,7	0,47	0,38	0,08
Samsung Galaxy S4	3,08	3,06	3,04	2,23	1,22	0,64	0,43	0,35	0,07
Samsung Galaxy S3	2,41	2,4	2,38	1,76	0,97	0,51	0,35	0,28	0,06
LG G3	2,59	2,57	2,56	2,03	1,23	0,68	0,47	0,38	0,08
LG G2	2,99	2,98	2,96	2,27	1,31	0,71	0,49	0,39	0,08
iPhone 6 plus	3,17	3,15	3,12	2,35	1,32	0,7	0,48	0,39	0,08
iPhone 6	2,22	2,21	2,19	1,6	0,86	0,45	0,3	0,24	0,05
iPhone 5	2,47	2,45	2,42	1,59	0,77	0,38	0,25	0,2	0,04
Google Nexus 5	1,86	1,85	1,83	1,45	0,87	0,48	0,33	0,27	0,06
Google Nexus 6	2,54	2,53	2,51	2,02	1,26	0,72	0,5	0,41	0,09
Nokia Lumia 930	2,42	2,4	2,39	1,83	1,06	0,57	0,39	0,32	0,07
Nokia Lumia 1020	2,23	2,22	2,2	1,64	0,92	0,48	0,33	0,26	0,05

Soluzione proposta – Dynamic Fanout

50

$$FB = \frac{\sqrt{0, 2 \cdot x - 1, 9}}{10}$$

Dynamic Fanout con Fattore di Correzione

Prove sperimentali – Complessità

Complessità:

 Difficile stabilire la complessità con questi parametri variabili

- Nel caso teorico di:
 - Batteria sempre carica
 - Tutti i nodi connessi allo stesso grafo
 - Strategia Push&Pull
- → Tempo totale di contagio: O(In n) cicli
- → La copertura richiede almeno *O(n*loglog n)* messaggi

BLE – Link Layer

