Ch 3.1-2: (Multi)-Linear Regression Lecture 5 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Sep 12, 2022

Announcements

Last time:

• Started 3.1 - Single linear regression

Announcements:

- Office Hours: Tues Fri
- Homework #2 Due Weds, Sep 14
 - Upload solutions to CROWDMARK
 - Look for an email with the link to do this
 - Upload file for each question separately
- Quizzes
 - Approximately once a week
 - Look for email from crowdmark for feedback

2/26

Grades will be updated on D2L

Dr. Munch (MSU-CMSE)

Mon, Sep 12, 2022

Covered in this lecture

- Confidence interval, hypothesis test, and p-value for coefficient estimates
- Residual standard error (RSE)
- R squared
- Setup for multiple linear regression

Section 1

Last time

Setup

 Predict Y on a single predictor variable X

$$Y \approx \beta_0 + \beta_1 X$$

• "≈" "is approximately modeled as"

- Given $(x_1, y_1), \dots, (x_n, y_n)$
- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be prediction for Y on ith value of X.
- $e_i = y_i \hat{y}_i$ is the *i*th residual

Least squares criterion: RSS

Residual sum of squares RSS is

$$RSS = e_1^2 + \dots + e_n^2$$

= $\sum_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$

Least squares criterion

Find β_0 and β_1 that minimize the RSS.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Linear regression is unbiased

Variance of linear regression estimates

Variance of linear regression estimates:

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where $\sigma^2 = \operatorname{Var}(\varepsilon)$

ullet Residual standard error is an estimate of σ

$$RSE = \sqrt{RSS/(n-2)}$$

Confidence Interval

The 95% confidence interval for β_1 approximately takes the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

Interpretation:

There is approximately a 95% chance that the interval

$$\left[\hat{\beta}_1 - 2 \cdot \operatorname{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \operatorname{SE}(\hat{\beta}_1)\right]$$

will contain β_1 where we repeatedly approximate $\hat{\beta}_1$ using repeated samples.

CI in Advertising data

For the advertising data set, the 95% CIs are:

10 / 26

• β_1 :: [0.042, 0.053]

• β_0 :: [6.130, 7.935]

Section 2

New stuff on evaluating models

. Munch (MSU-CMSE) Mon, Sep 12, 2022

Hypothesis testing

 H_0 : There is no relationship between X and Y

 H_1 : There is some relationship between X and

Y

r. Munch (MSU-CMSE) Mon, Sep 12, 2022

Test statistic and p-value

Test statistic:

$$t = rac{\hat{eta}_1 - 0}{\operatorname{SE}(\hat{eta}_1)}$$

t-distribution with n-2 degrees of freedom

Dr. Munch (MSU-CMSE)

Advertising example

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

r. Munch (MSU-CMSE) Mon, Sep 12, 2022

Assessing the accuracy of the module: RSE

Residual standard error (RSE):

$$RSE = \sqrt{\frac{1}{n-2}RSS}$$
$$= \sqrt{\frac{1}{n-2}\sum_{i}(y_i - \hat{y}_i)^2}$$

Assessing the accuracy of the module: R^2

R squared:

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where total sum of squares is

$$TSS = \sum_{i} (y_i - \overline{y})^2$$

Advertising example

$$R^2 = 0.61$$

$$R^2 = 0.33$$

$$R^2 = 0.05$$

Dr. Munch (MSU-CMSE)

Coding group work

Run the section titled "Assessing Coefficient Estimate Accuracy"

Or. Munch (MSU-CMSE) Mon, Sep 12, 2022

Section 3

Multiple Linear Regression

r. Munch (MSU-CMSE) Mon, Sep 12, 2022

Setup

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p x_p + \varepsilon$$

Estimation and Prediction

Given estimates $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \cdots, \hat{\beta}_p$, prediction is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

Minimize the sum of squares

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$
$$= \sum_{i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 - \dots - \hat{\beta}_p x_p)$$

Coefficients are closed form but UGLY

Advertising data set example

Sales =
$$\beta_0 + \beta_1 \cdot TV + \beta_2 \cdot radio + \beta_3 \cdot newspaper$$

	Coefficient
Intercept	2.939
TV	0.046
radio	0.189
newspaper	-0.001

Interpretation of coefficients

$$\mathtt{Sales} = \beta_0 + \beta_1 \cdot \mathtt{TV} + \beta_2 \cdot \mathtt{radio} + \beta_3 \cdot \mathtt{newspaper}$$

	Coefficient
Intercept	2.939
TV	0.046
radio	0.189
newspaper	-0.001

Single regression vs multi-regression

	Coefficient
Intercept	2.939
TV	0.046
radio	0.189
newspaper	-0.001

Correlation matrix

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Coding group work

Run the section titled "Multiple Linear Regression"

Dr. Munch (MSU-CMSE)

Next time

Lec#	_ec# Date		Topic	Reading	Homeworks
1	w	Aug 31	Intro / First day stuff / Python Review Pt 1	1	
2	F	Sep 2	What is statistical learning? / Python Review Pt 2	2.1	
	М	Sep 5	No class - Labor day		
3	W	Sep 7	Assessing Model Accuracy	2.2	HW #1 Due
4	F	Sep 9	Linear Regression	3.1	
5	М	Sep 12	More Linear Regression	3.2	
6	W	Sep 14	Even more linear regression	3.3	HW #2 Due
7	F	Sep 16	Probably more linear regression		
8	М	Sep 19	Intro to classification, Logisitic Regression	4.1, 4.2, 4.3	
9	W	Sep 21	More logistic regression		HW #3 Due
10	F	Sep 23	Review		
11	М	Sep 26	Midterm #1		
12	W	Sep 28	[No class, Dr Munch out of town]		
13	F	Sep 30	[No class, Dr Munch out of town]		
14	М	Oct 3	Leave one out CV	5.1.1, 5.1.2	
15	W	Oct 5	k-fold CV	5.1.3	
16	F	Oct 7	More k-fold CV	5.1.4	
17	М	Oct 10	CV for classification	5.1.5	HW #4 Due
18	W	Oct 12	Resampling methods: Bootstrap	5.2	
19	F	Oct 14	Subset selection	6.1	
20	М	Oct 17	Shrinkage: Ridge	6.2.1	HW #5 Due
21	W	Oct 19	Shrinkage: Lasso	6.2.2	
22	F	Oct 21	Dimension Reduction	6.3	

r. Munch (MSU-CMSE) Mon, Sep 12, 2022