MA 101 (Mathematics - I)

Differentiation: Exercise set 2

CMVT/L'Hôpital's Rules

- 1. Use CMVT to derive the following: Suppose f, g are differentiable on [a, b] and $|f'(x)| \ge |g'(x)| > 0$ for all x. Show that for $a \le x < y \le b$, $|f(y) - f(x)| \ge |g(y) - g(x)|$.
- 2. Find the following by using L'Hôpital's Rules, whenever needed. Do not forget to check the conditions needed for using L'Hôpital's Rules.

- 3. Let f be a differentiable on $(0,\infty)$ and suppose that $\lim_{x\to\infty} (f(x)+f'(x))=L$. Show that $\lim_{x\to\infty} f(x)=L$ and $\lim_{x \to \infty} f'(x) = 0. \quad \text{[Hint. } f(x) = \frac{e^x f(x)}{e^x}.\text{]}$
- 4. Try to use L'Hôpital's Rule to find the limit of $\frac{\tan x}{\sec x}$ as $x \to (\pi/2)$. Also, evaluate it directly by changing to sines and cosines.

Taylor's Theorem

- 5. Let x_0 be a fixed in \mathbb{R} . Find the n-th Taylor polynomial and the remainder for the following functions f about x_0 , and check for $x \in \mathbb{R}$ whether the remainder term converges to zero as $n \to \infty$.
 - (i) $f(x) := e^x$ on \mathbb{R} ,
- (ii) $f(x) := \sin x$ on \mathbb{R} ,
- 6. Show that for any $k \in \mathbb{N}$ and for all x > 0

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots - \frac{x^{2k}}{2k} < \ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^{2k+1}}{2k+1}.$$

- 7. For a differentiable function $f:[a,b]\to\mathbb{R}$, a point $c\in(a,b)$ is called a **point of inflection** of f if f(x) - f(c) - f'(c)(x - c) changes sign as x increases through c in an interval containing c. Suppose $n \in \mathbb{N}$ is odd, $f'(c) = \cdots = f^{(n-1)}(c) = 0$ and $f^{(n)}(c) \neq 0$. Show that c is a point of inflection for f.
- 8. What is the Taylor series for a polynomial?
- 9. Consider the function

$$f(t) = \begin{cases} e^{-1/t}, & \text{if } t > 0, \\ 0, & \text{if } t \le 0. \end{cases}$$

Show that

- (1) f is infinitely differentiable on \mathbb{R} .
- (2) f has a Taylor series about the point 0.
- (3) the Taylor series converges to a function different from f.
- 10. Determine whether x=0 is a point of local maximum/minimum of the following functions defined on \mathbb{R} :
 - (i) $f(x) := x^4 x^3 + 2$, (ii) $g(x) := x \sin x$, (iii) $h(x) = \sin x + \frac{1}{6}x^3$, (iv) $k(x) := \cos x 1 + \frac{1}{2}x^2$.

Limit superior/inferior

- 11. Find limit superior and limit inferior of the following sequences.
 - (1) $a_n = \frac{n}{n+1}$, if n is odd, and $a_n = \frac{1}{n}$, if n is even.
 - (2) $a_n = (-1)^n (1 \frac{1}{n}).$
 - (3) $a_n = (-1)^n (n + \frac{1}{2^n})$
 - $(4) (1,-1,\frac{1}{2},-2,\frac{1}{3},-3,\ldots)$
 - $(5) (-1)^n (1-\frac{1}{n})n^{1/n}$