UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT 1110 — Kalkulus og lineær algebra.

Eksamensdag: Mandag 14. juni 2004.

Tid for eksamen: 09.00 - 12.00.

Oppgavesettet er på 3 sider.

Vedlegg: Formelsamling.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1.

a) Bruk elementære rekkeoperasjoner til å bringe matrisen

$$\begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & -2 & 1 & 1 & 0 \\ 1 & 2 & 1 & 3 & 7 \end{bmatrix}$$

på redusert trappeform. Finn så alle løsninger av likningssystemet

$$x_1 + 2x_2 + 2x_4 = 5$$

$$x_2 + x_3 + x_4 = 3$$

$$-2x_2 + x_3 + x_4 = 0$$

$$x_1 + 2x_2 + x_3 + 3x_4 = 7$$

Finn en basis for nullrommet til matrisen

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & -2 & 1 & 1 \\ 1 & 2 & 1 & 3 \end{bmatrix}$$

og en basis for kolonnerommet til A.

(Fortsettes side 2.)

b) Finn invers til matrisen $B=\begin{bmatrix}1&2&0\\0&1&1\\0&-2&1\end{bmatrix}$ og bruk B^{-1} til å løse likningssystemet

$$x_1 + 2x_2 = 5$$

 $x_2 + x_3 = 3$
 $-2x_2 + x_3 = 3$

c) Finn for hvilke a og $b \in \mathbb{R}$ likningssystemet

$$x_1 + 2x_2 = 5$$

 $x_2 + x_3 = 3$
 $-2x_2 + (a+1)x_3 = b^2 - 10$

har ingen, én eller uendelig mange løsninger. Finn rangen og dimensjonen til nullrommet til matrisen

$$C = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & a+1 \end{bmatrix}$$

når a varierer.

Oppgave 2.

- a) La D være området som både ligger på innsiden av kjeglen $z=\sqrt{x^2+y^2}$ og på innsiden av kuleflaten $x^2+y^2+z^2=1$. Beregn $\iiint\limits_D z dV$.
- b) La C være kurven gitt ved parameterfremstillingen

$$\vec{r}(t) = \frac{1}{2}t^2\vec{i} + \sqrt{2}t\vec{j} + \ln(t)\vec{k}.$$

Finn buelengden av C mellom punktene svarende til parameterverdiene t=1 og t=e.

Oppgave 3.

a) Finn arealet av området i \mathbb{R}^2 som i polarkoordinater er bestemt av ulikhetene $0 \le r \le \frac{1}{\sqrt{1+\theta^2}}$, $0 \le \theta \le 1$.

(Fortsettes side 3.)

- b) For hvilke x er rekka $\sum_{n=1}^{\infty} \frac{(-1)^n 2^n x^{2n}}{n}$ konvergent?
- c) La f(x) betegne summen av rekka i b) der den konvergerer. Finn et funksjonsuttrykk for f(x).

Oppgave 4.

- a) La D være området i \mathbb{R}^2 som oppfyller ulikhetene: $x^2+y^2\leq 1,\, x\geq 0,$ $y\geq 0$ og $0\leq y\leq x.$ Lag en skisse av området og beregn dobbelt integralet $I=\iint\limits_D (x+y^2)dA$ ved å innføre polarkoordinater.
- b) Beregn I ved å regne ut direkte et kurveintegral $\oint_C Pdx + Qdy$ av et passelig vektorfelt $\vec{F} = P\vec{\imath} + Q\vec{\jmath}$ langs den stykkevis glatte kurven C som utgjør randa til D.

SLUTT