МФТИ ФУПМ

Лабораторная работа 5.1.1

(Общая физика: квантовая физика)

Экспериментальная проверка уравнения Эйнштейна для фотоэффекта и определение постоянной Планка

Работу выполнил: Черников Тимофей, 902 группа **Цель работы:** Исследовать зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, вычислить величину постоянной Планка.

1. Теоретическое введение

Фотоэффект — явление испускания электронов фотокатодом, облучаемым светом, Это явление хорошо объясняется фотонной теорией света. Взаимодействие монохроматического света с веществом можно описывать как взаимодействие с веществом частиц, называемых фотонами, которые обладают энергией $\hbar\omega$ и импульсом $\hbar\omega/c$. При столкновении фотона с электроном фотокатода энергия отона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением

$$\hbar\omega = E_{max} + W \tag{1}$$

Здесь E_{max} — максимальная кинетическая энергия электрона после выхода из фотокатода, W — работа выхода электрона из катода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывен — он простирается от нуля до E_{max} .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подается задерживающий (V < 0) или ускоряющий (V > 0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 1): все испущенные электроны попадают на анод.

ваются полем и возвращаются на катод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода. Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V_0 очевидным соотношением $E_{max}=eV_0$. Тогда (1) примет вид, называемый уравнением Эйнштейна:

$$eV_0 = \hbar\omega - W \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить, какова функциональная зависимость I(V). Расчет для простейшей геометрии — плоский катод, освещаемый светом, и параллельный ему анод — приводит к зависимости

$$\sqrt{I} \propto V_0 - V$$

т. е. корень квадратный из фототока линейно зависит от запирающего напряжения. Эта зависимость хорошо описывает экспериментальные данные.

Рис. 1: Зависимость фототока от напряжения на аноде фотоэлемента

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света ω , лежащих в видимой области спектра. С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания V_0 при разных частотах света и строится зависимость $V_0(\omega)$, которая, как это следует из (2), должна иметь вид

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{3}$$

Потенциал запирания V_0 для любого катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ (рис. 2) можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{4}$$

Как показывает формула (4), угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества, однако, зависит величина фототока, работа выхода W и форма кривой I(V) (рис. 1). Все это определяет выбор пригодных для опыта катодов.

Рис. 2: Зависимость запирающего потенциала от частоты света

2. Выполнение работы

Сначала выполним градуировку монохроматора. Проведем серию измерений для линий спектра неона, снимая зависимость длины волны света от параметра θ барабана монохроматора. Построим график и аппроксимируем значения многочленом второй степени. Как видно, на графике практически все значения попали на линию, поэтому смысла в увеличении степени многочлена нет.

Проведем 5 серий измерений зависимости фототока от напряжения для разных длин волн падающего света, изменяя на монохроматоре параметр θ и переводя его в длину волны с помощью градуировки. Ток приведен в безразмерных единицах. Согласно формуле $\sqrt{I} \propto V$, построми графики зависимости в координатах $\sqrt{I}(V)$ и аппроксимируем линейные участки прямой. Экстраполируя прямую к нулю, получим значения потенциала запирания для каждой серии измерения (длины волны). Результаты сведем в таблицу.

Погрешность для I-0.01 и для \sqrt{I} около 0.05 для малых значений (которые и используются при вычислении запирающего напряжения).

Таблица 1: Градуировка монохроматора

№ линии	θ, ±10°	λ, \mathring{A}
1	2618	7032
2	2592	6929
3	2520	6717
4	2500	6676
5	2480	6598
6	2456	6532
7	2446	6506
8	2412	6404
9	2398	6382
10	2376	6334
11	2364	6304
12	2348	6266
13	2322	6217
14	2304	6163
15	2294	6143
16	2276	6096
17	2266	6074
18	2240	6030
19	2244	5975
20	2200	5944
21	2182	5881
22	2160	5852
23	1898	5400

Рис. 3: Градуировка монохроматора

Таблица 2: Зависимость фототока от напряжения для $\lambda = 5850 \pm 10^{\circ} (22$ линия)

V, B	I	\sqrt{I}
8.09	0.62	0.79
3.95	0.60	0.77
0.11	0.55	0.74
-2.60	0.44	0.66
-3.04	0.38	0.62
-3.34	0.31	0.56
-3.57	0.25	0.50
-3.96	0.13	0.36
-4.23	0.10	0.32
-4.48	0.06	0.24
-5.00	0.00	0.00

Таблица 3: Зависимость фототока от напряжения для разных длин волн

V, B	I	\sqrt{I}		
Для .	$\lambda = 70$	$30 \pm 10^{\circ} (1$ линия)		
8.01	0.60	0.77		
2.59	0.53	0.73		
0.91	0.48	0.69		
-0.12	0.36	0.60		
-0.52	0.28	0.53		
-0.88	0.18	0.42		
-1.46	0.07	0.26		
-2.20	0.00	0.00		
Для λ	$\lambda = 630$	$00 \pm 10^{\circ} (11$ линия)		
1.41	0.55	0.74		
-1.21	0.45	0.67		
-2.10	0.35	0.59		
-2.45	0.25	0.50		
-2.82	0.15	0.39		
-3.02	0.10	0.32		
-3.27	0.05	0.22		
-3.50	0.00	0.00		
Для $\lambda = 6070 \pm 10^{\circ} (17$ линия)				
8.00	0.62	0.79		
0.16	0.55	0.74		
-1.89	0.47	0.69		
-2.67	0.35	0.59		
-2.97	0.27	0.52		
-3.15	0.22	0.47		
-3.34	0.16	0.40		
-3.65	0.10	0.32		
-3.90	0.05	0.22		
-4.10	0.00	0.00		
Для $\lambda = 6670 \pm 10^{\circ} (4$ линия)				
1.95	0.55	0.74		
-0.65	0.45	0.67		
-1.29	0.35	0.59		
-1.65	0.25	0.50		
-2.00	0.15	0.39		
-2.24	0.10	0.32		
-2.47	0.05	0.22		
-2.71	0.00	0.00		

Рис. 4: Зависимости фототоков от напряжения для различных λ

Таблица 4: Запирающие напряжения для разных длин волн

$N_{ar{o}}$	$\lambda \pm 10, \mathring{A}$	$\omega, 10^{15} \ \mathrm{c}^{-1}$	V_0 , B
22	5852±10	3.22 ± 0.01	5.15 ± 0.5
1	7032±10	2.68 ± 0.01	2.75 ± 0.3
11	6304 ± 10	2.99 ± 0.01	3.72 ± 0.4
17	6074 ± 10	3.10 ± 0.01	$4.35{\pm}0.5$
4	6678 ± 10	2.82 ± 0.01	2.93 ± 0.3

Теперь построим график зависимости $V_0(\omega)$. Согласно (3) профитируем это прямой.

Рис. 5: Зависимость запирающего напряжения от частоты

Получившиеся значение $\frac{dV_0}{d\omega} = 0.54 \pm 0.07$

Из наклона прямой согласно (4) получаем значение постоянной Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e}, \quad \hbar = 0.54 \cdot 10^{-15} 1.610^{-19} \approx (0.9 \pm 0.15) 10^{-34} \; \text{Джс}$$

В пределах погрешности это согласуется с табличным значением $\hbar = 1.05410^{-34}$ Джс.

Нетрудно также оценить красную границу спектра:

$$\omega_{\kappa} = (2.3 \pm 0.3) 10^{15} c^{-1}, \quad \lambda_{\kappa} = \frac{2\pi c}{\omega_{\kappa}} = 8200 \pm 1000 \mathring{A}$$

И найти работу выхода

$$W = \hbar \omega_{\rm K} = 1.5 \pm 0.3 \; {\rm 9B}$$

3. Вывод

При измерении постоянной планка появились большие погрешности. В-основном они вызваны большими погрешностями углов наклона прямых на рисунке 4, которые, в свою очередь, вызваны недостаточным количеством измерений тока электронов при напряжениях близких к запирающим (для некоторых линий прямые строились по трём-четырём точкам и точность страдала). Тем не менее, получившееся значение постоянной Планка соответствует табличному.