VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

PRVNÍ DOMÁCÍ ÚKOL, 2015 5. SKUPINA

Čuba Eduard (xcubae00) Demčák Ján (xdemca01) Kolcún Róbert (xkolcu00) Kučera Rudolf (xkucer91) Kulich Jakub (xkulic03) Kurák Ondrej (xkurak00)

1 Úloha č. 1

1.1 Zadanie

Určete podmnožiny X, Y množiny $\{1,2,3,4,5,6\}$ pro které platí: $X=\{2,6,x,y\}, Y=\{2,x,z,u\}, X\cap Y'=5,6, X'\cap Y=1,4.$

1.2 Riešenie

$$X, Y \subseteq M, \ M = \{1; 2; 3; 4; 5; 6\}, \ X = \{2; 6; x; y\}, \ Y = \{2; x; z; u\}$$

$$X \cap Y' = \{5; 6\} \ Y \cap X' = \{1; 4\}$$

$$x \in X \cap Y' \Rightarrow x \in X \land x \notin Y; 5, 6 \in X \land 5, 6 \notin Y$$

$$x \in Y \cap X' \Rightarrow x \in Y \land x \notin X; 1, 4 \in Y \land 1, 4 \notin X$$

$$X = \{2; 6; 5; x\}, \ Y = \{2; 1; 4; x\}, \ x \in M \land x \notin \{1; 2; 4; 5; 6\} \Rightarrow x = 3$$

$$X = \{2; 6; 5; 3\}, \ Y = \{2; 1; 4; 3\}$$

2 Úloha č. 2

2.1 Zadanie

Na množině $M = \{1, 2, 3, 4\}$ určete vyjmenovaním relaci, která je symetrická, reflexivní, ale není tranzitivní.

2.2 Riešenie

 $R \subseteq M \times M$; $M = \{1, 2, 3, 4\}$; R je reflexívna, symetrická a nie je tranzitívna

$$R = \{[1; 1]; [2; 2]; [3; 3]; [4; 4]; [1; 4]; [4; 1]; [3; 4]; [4; 3]\}$$

Reflexívnosť: [1;1]; [2;2]; [3;3]; $[4;4] \in R$

Symetria: $[1; 4] \in R \land [4; 1] \in R$; $[3; 4] \in R \land [4; 3] \in R$

Tranzitívnosť: $[3;4] \in R \wedge [4;1] \in R \wedge [3;1] \notin R \times$

3 Úloha č. 3

3.1 Zadanie

Rozhodněte o pravdivosti tvrzení: Nechť R_1 , R_2 jsou relace uspořádaní na stejné množině. Potom relace $R_1 \circ R_2$ je též relace uspořádaní. Svou odpověď zdůvodněte.

3.2 Riešenie

 $R_1, R_2 \subseteq M^2$; Ak R_1, R_2 sú relácie usporiadania $\Rightarrow R_1 \circ R_2$ je tiež relácia usporiadania. R_1, R_2 sú relácie usporiadania \Leftrightarrow sú reflexívne(R), antisymetrické(A), tranzitívne(T)

$$M = \{1; 2; 3\}, R_1 = \{[1; 1]; [2; 2]; [3; 3]\}, R_2 = \{[1; 1]; [2; 2]; [3; 3]; [1; 3]\}$$
$$R_1 \circ R_2 = \{[1; 1]; [2; 2]; [3; 3]; [1; 3]\}; R \checkmark A \checkmark T \checkmark$$

Kedže R_1 a R_2 sú relácie usporiadania na M sme si istí, že reflexivita sa zachová aj po skladaní, ale antisymetria a tranzitívnosť sa zachovať nemusia.

$$M = \{1; 2; 3\}$$

$$R_1 = \{[1; 1]; [2; 2]; [3; 3]; [3; 1]\}, R_2 = \{[1; 1]; [2; 2]; [3; 3]; [1; 3]\}$$

$$R_1 \circ R_2 = \{[1; 1]; [2; 2]; [3; 3]; [3; 1]; [1; 3]\}$$

$$R \checkmark T \checkmark A \times : [1; 2] \in R_1 \circ R_2 \land [2; 1] \in R_1 \circ R_2 \land 1 \neq 2$$

$$M = \{1; 2; 3; 4\}$$

$$R_1 \circ R_2 = \{[1;1]; [2;2]; [3;3]; [4;4]; [4;1]; [1;3]\}$$
 $R \checkmark A \checkmark T \times : [4;1] \in R_1 \circ R_2 \ \land \ [1;3] \in R_1 \circ R_2 \ \land \ [4;3] \notin R_1 \circ R_2$

 $R_1 = \{[1; 1]; [2; 2]; [3; 3]; [4; 4]; [4; 1]\}, R_2 = \{[1; 1]; [2; 2]; [3; 3]; [4; 4]; [1; 3]\}$

4 Úloha č. 4

4.1 Zadanie

Zjistěte zda-li jsou následující grafy izomorfní:

4.2 Riešenie

Graf č. 3 nie je izomorfný so žiadným z ostatných grafov, pretože sa v ňom nachádza 5 štvoruholníkov a v ostatných grafoch sa nachádzajú najviac 2 štvoruholníky.

Graf č. 1 a graf č. 2 nie sú izomorfné preto, že graf č. 1 obsahuje 2 štvoruholníky spojené práve jednou hranou a graf č. 2 obsahuje 2 štvoruholníky bez priameho spojenia hranou. Taktiež i graf č. 2 a graf č. 4

Graf č. 1 je izomorfný s grafom č. 4.