Music
Generation

A Transformer-Based Chord Generation Model

RYAN GHIMIRE & ANIKETH LUCHMAPURKAR

Problem

 Melodies without chords/accompaniments sound empty

 Many struggle to compose accompaniments

Current models generate full songs

These models restrict, not foster, creativity

Related Work

 Music generation began with statistical modeling to generate melodies (Conklin, 2003)

- Transformer and Recurrent Neural Network (RNN) models

- DeepBach,

RNN model focused solely on generating classical music pieces from scratch (Hadjeres et al., 2017).

- These models have further evolved to generating:

- Varied music styles (Mao et al., 2018)

Songs based on melodic feature input (Copet et al.,
 2024).

- Google Magenta
 - Specialty in chord generation
- Spotify CTRL working on AI tools for music creation assistance

Solution

- Model that generates chords for melodies
- Predicts chord from melody fragment and past chords, ensuring...
 - Chord matches notes
 - Consistent chord progressions

Dataset & Preprocessing

- POP909 dataset: 909 pop melodies and accompaniments
- Broke melody into fragments by associated chord
- Constructed CSV
 - Each instance: <Key, Melody
 Sequence, Past N Chords,
 Chord>
- Numericized "Past N Chords" (feature) and "Chord" (labels) with label encoder

The Model

Split into sub-models:

- Melody Sequence Sub-Model
- Previous Chord Sub-Model

Melody Sub-Model

- Input layer
- Embedding layer
 - Lowers dimensionality to make it able to draw relationships between parts of input
- Transformer Layer
 - Self-attention
 - Discovers what is important in melody
 - Develops correlations and relationships
 - Multi-head attention
 - Parallel runs of self-attention
- Global Pooling Layer
 - Average into singular vector

Previous Chord Sub-Model

- Input Layer
- Embedding Layer
- Flatten Layer
 - Multidimensional Vector → 1D vector (flattening)
- Dense Hidden Layer
 - Finds correlations/patterns in flattened data

Results

Results

Conclusion

- Model predicts harmonically fitting chords
- Struggles with repetitive chord progressions
- Needs better focus on musical structure
- Future Improvements
 - Incorporate harmonic function data
 - Expand to tempo and dynamic variation

Thank You!

Any Questions?

