A COMPILATION OF MOORED CURRENT METER AND WIND RECORDER DATA VOLUME 35 LO. (U) WOODS HOLE OCEANOGRAPHIC INSTITUTION MA S A TARBELL ET AL. AUG 84 WHOI-84-36 N00014-76-C-0197 1/2 AD-A147 103 NL UNCLASSIFIED

Woods Hole Oceanographic Institution

A Compilation of Moored Current Meter and Wind Recorder Data

Volume XXXV Long-Term Upper Ocean Study (LOTUS) (Moorings 764, 765, 766, 767, 770) May 1982 - April 1983

by

Susan A. Tarbell Nancy J. Pennington Melbourne G. Briscoe

August 1984

Technical Report

Funding was provided by the Office of Naval Research under Contract No. N00014-76-C-0197, NR 083-400 and N00014-84-C-0134, NR 083-400.

Approved for public release; distribution unlimited.

WHOI-84-36

A Compilation of Moored Current Meter and Wind Recorder Data

Volume XXXV Long-Term Upper Ocean Study (LOTUS) (Moorings 764, 765, 766, 767, 770) May 1982 - April 1983

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Justification

By_____
Distribution/
Availability Codes

Avail and/or
Special

by

Susan A. Tarbell Nancy J. Pennington Melbourne G. Briscoe

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

August 1984

Technical Report

Funding was provided by the Office of Naval Research under Contracts No. N00014-76-C-0197, NR 083-400 and N00014-84-C-0134, NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-84-36.

Approved for publication; distribution unlimited.

Approved for Distribution:

Nick P. Folonoff, Chairman
Department of Physical Oceanography

SELECTE NOV 2 1984

Abstract

LOTUS was a two-year experiment near 34 N, 70 W, designed to acquire and analyse a continuous set of measurements of currents and temperatures in the upper, open ocean together with local hydrography, meteorology, and mesoscale oceanographic features. The first scientific moorings were deployed in May 1982. The first year of mooring data, from May 1982-April 1983, is presented here.

TABLE OF CONTENTS

			Page
LIST	OF TABLES		3
LIST	OF FIGURES		4
PREFA	ACE		5
ACKNO	DWLEDGEMENTS		7
INTRO	DUCTION		8
Α.	Moorings		8
В.	Instrumentation		14
	 Current Meter VMCM Variation 	s	14 16
		erature Recorders	17
	4. Wind Recorder	s	17
С.	Other Data	•••••	18
	3. Profiling Cur	erature Recorders	18 18 22 22
D.	•	• • • • • • • • • • • • • • • • • • • •	23
Ε.	Data Processing		23
F.	Data Presentation		23
REFER	RENCES		27
DATA	PRESENTATION		28
Α.	Composites		28
		eraturesectors	30-31 32-33 34 35-38
в.	Meteorological Da	ta	39
С.	Current Meter Dat	a	52
	2. Histograms .3. Spectra		52 80 115 150

LIST OF TABLES

Table 1:	Mooring Positions - Deployment and Recovery	12
Table 2:	VMCM Variations	16
Table 3:	Summary of Meteorological Sensors	19
Table 4.	Spectral Plot Information	115

LIST OF FIGURES

1.	LOTUS Area	9
2.	Mooring Positions	10
3.	Mooring Diagrams	11
4.	Summary of CTD Stations	20
5.	Composite CTD Plots	21
6.	Bar Charts Showing Data	24
7.	Composite Speeds	30-31
8.	Composite Temperatures	32-33
9.	Composite Aanderaa	34
10.	Composite Provecs 767-770	35
11.	Composite Provecs 766	36
12.	Composite Provecs 764-765	37
13.	Composite Provecs VAWRS	38

ASSECTATION OF THE SECRET OF THE PROPERTY OF T

PREFACE

This volume is the thirty-fifth in a series of Data Reports presenting mooring current meter and associated data collected by the WHOI Buoy Group.

Volumes I-XVI present data prior to 1976 and are not listed below.

Volumes XVII through XXXIV present data obtained during the years 1972-1984, either by year or experiment (see notes).

A data directory and bibliography for the years 1963-1978 has been published, as WHOI Technical Report 79-88.

Volume XXXV presents data from the first year of the two-year Long-Term Upper-Ocean Study (LOTUS), namely May 1982-April 1983.

Volume No.	WHOI Ref. No.		Notes Year Experiment
XVII	78-49	Tarbell, S., A. Spencer and R. E. Payne	1975-1977 POLYMODE Array II
IIIVX	79-65	Tarbell, S., M. G. Briscoe and R. A. Weller	1978 JASIN
XIX	79-34	Spencer, A., C. Mills and R. Payne	1974-1975 POLYMODE Array I
xx	79-56	Spencer, A.	1974 Rise Array
XXI	79-85	Mills, C. and P. Rhines	1978 W.B.U.C.
XXII	79-87	Tarbell, S. and R. Payne	1973 measurements
XXIII	80-40	Tarbell, S. and R. Payne	1978 POLYMODE Array III
VXIV	80-41	Spencer, A., K. O'Neill and J. Luyten	1976 INDEX
XXV	81-12	Spencer, A., E. D'Asaro and L. Armi	1977 B.B.L. Expt.
IVXX	81-45	Chausse, D. and R. Payne	1972 measurements
XXVII	81-68	McKee, T., E. Francis and N. Hogg	1975,76,78 topographic Expts.
XXVIII	81-73	Mills, C., S. Tarbell, W. B. Owens and R. Payne	1978 L.D.E.
XXIX	82-16	Levy, E., A. Spencer. G. Needell, G. Hund, and J. R. Luyten	1979 INDEX
XXX	82-43	Levy, E., S. A. Tarbell, N. P. Fofonoff	1979-1980 GSE/NSOI
XXXI	83-30	Levy, E. and S. A. Tarbell	1980-1982 WesPac
XXXII		Levy, E.	1979-1980 Vema Channel
XXXIII	84-6	Spencer, A., D. Chausse, and W. Owens	1981-1982 N. Pacific Boundary Current
XXXIV	84-16	Levy, E. and P. L. Richardson	1983, Atlantic North Equatorial Counter- current

LOTUS-related WHOI Technical Reports.

PRESENTLY AVAILABLE REPORTS

Title	WHOI No.	Date
Long Term Upper Ocean Study (LOTUS) A Summary of the Historical Data and Engineering Test Data.	82-53	Dec 82
The Long Term Upper Ocean Study (LOTUS) Cruise Summary and Hydrographic Data Report, OCEANUS 119 - May 1982.	83-7	Feb 83
The Long Term Upper Ocean Study (LOTUS) Cruise Summary and Hydrographic Data Report, OCEANUS 129, Oct 1982.	83-29	Aug 83
Long Term Upper Ocean Study (LOTUS) at 34°N, 70°W Meteorological Sensors, Data, and Heat Fluxes for May-October 1982 (LOTUS-3 and LOTUS-4).	83-32	Sept 83
The Long Term Upper Ocean Study (LOTUS) Cruise Summary and Hydrographic Data Report, ENDEAVOR 97, April 1983.	83-33	Oct 83
The Long Term Upper Ocean Study (LOTUS) Cruise Summary and Hydrographic Data Report, OCEANUS 141, November 1983, and OCEANUS 145, January 1984.	84-26	June 84
Current meter data report, LOTUS-3 and 4.	84-36	Aug 84
PLANNED FUTURE REPORTS		
Subject	Expected Ava	ilability
Meteorological data report, LOTUS-5 and LOTUS-6.	Fall	84
Cruise summary and hydrographic data report, May 84.	Fall	84
Current meter data report, LOTUS-5 and 6.	Fall	84
A summary of the LOTUS experiment.	Winte	r 85

ACKNOWLEDGMENTS

The Long Term Upper Ocean Study (LOTUS) has required the interest and help of almost everyone connected with the Buoy Group, since its inception in 1979. We especially wish to thank the mooring engineering effort, led by Bob Walden, the instrument engineering effort, led by Jerry Dean, the mooring and instrument preparation and operations led by David Simoneau and Joe Poirier, and the data processing led by Ann Spencer. In addition Peter Clay, Matthew Gould, Clayt Collins, Brian Skelly, Scott Worrilow, Willy Ostrom, Rick Trask, and Bob Weller and Bob Reid from C. S. Draper Labs have been on many cruises or spent many hours in special efforts for the project.

This work has been supported by the Office of Naval Research under Contracts N00014-76-C-0197, NR 083-400, and N00014-84-C-0134, NR 083-400.

INTRODUCTION

The Long Term Upper Ocean Study (LOTUS) began in 1979 when it became clear that even massive one- to two-month upper-ocean experiments (e.g., JASIN) could not expect to yield the large variety of possible environmental conditions, nor could they provide any insights into seasonal effects or give long-term statistical response models.

After an engineering period and a collection of historical data (Trask, Briscoe, and Pennington, 1982), the first LOTUS scientific moorings were set in May 1982 at the old Woods Hole Site L (Figure 1), in an array (Figure 2) designed to sample the surface meteorology and full water column (moorings 767 and 766) as well as the larger-scale properties of the mesoscale field (moorings 764 and 765). Surface mooring 767 (designated LOTUS-3; LOTUS-1 and -2 were earlier tests) was replaced by 770 (LOTUS-4) in October 1982, and the entire array was replaced in April 1983 (LOTUS-5).

This report describes the data from the 764, 765, 766, 767, 770 mooring array, as well as some associated data. A later report will describe the second year of the experiment. The hydrographic data (XBT and CTD) are described in each cruise report (see REFERENCES) and are only summarized here.

A. Moorings

Figure 3 and Table 1 give details of the moorings and locations. The bottom in the area is essentially flat and featureless sand and silt, with a nominal depth of 5368 m (corrected). The mooring diagrams show six different kinds of subsurface instrumentation (see next section) and three different kinds of moorings.

The two intermediate moorings (764 and 765) and the near-surface mooring (766) are constructed entirely of chain and wire rope, except for a short length of braided nylon line directly under the acoustic release.

The surface moorings are chain and wire rope in the top 2000 m to guard against fishbite, and braided nylon beneath for compliance. The surface moorings are slightly longer than the water depth, but the constant presence of a current at the site prevents any slack and entanglement in the mooring line. Tension measurements just under the surface buoy usually show 2000-4500 pounds

Figure 1. The location of the Long Term Upper Ocean Study area.

in the last of the last of

Figure 2. A chart of a section of the LOTUS area showing the location of the two LOTUS surface moorings (♠), near-surface mooring (♠) and the subsurface mooring (♠) during the first year of the experiment. ♠ is a MIT/CSDL moored Profiling Current Meter during May-October 1982.

Figure 3. Mooring diagrams of the five LOTUS moorings for the first year of the experiment.

Table 1: Moori j Positions

Mooring #	Days at Sea	Duration	Loran C position
764 LOTUS 3 Intermediate-South	340	8 May 1982 - 14 April 1983	33 49.16 70 00.83*
765 LOTUS 3 Intermediate-East	339	9 May 1982 - 14 April 1983	33 59.81 69 47.14
766 LOTUS 3 Near Surface	336	10 May 1982 - 12 April 1983	34 01.20 70 01.45
767 LOTUS 3 Surface	170	12 May 1983 - 30 Oct. 1982	33 57.16 70 01.31
770 LOTUS 4 Surface	110	31 Oct. 1982 - 19 Feb. 1983	33 57.19 69 59.71

^{*} At deployment; after 1 June the estimated position (see text) was 33°44.6'N, 70°10.0'W.

tension, depending on the large-scale current field; local wind and current effects at the surface have little effect on the mean line tension. See also Walden and Clay (1983).

All moorings recovered from the site have shown evidence of fishbite (teeth marks or even removal of the PVC jacket on the wire rope), especially in the 500-1000 m depth range.

Movement of Mooring 764

Intermediate mooring 764 was set on 8 May 1982 (OCEANUS Cruise 119) at 33°49.16'N, 70°00.83'W (Northstar 7000 Loran C coordinates). When the mooring recovery was attempted on 14 April 1983 (ENDEAVOR Cruise 97), it did not surface near the deployment position but rather some 10 miles to the southwest. In fact, it was 3 hours from the time of release to the time of actually grapnelling the mooring, at which time the position was 33°44.19'N, 70°13.73'W (Loran C), or 11.9 miles WSW of the deployment site.

Study of the pressure and temperature records from mooring 764 show that a strong, nearly barotropic, southwesterly current on 30-31 May 1982 pushed the top of the mooring over some 70 meters. Early on 31 May, as the current was continuing to increase, the pressure suddenly dropped by 70 decibars on both instruments on the mooring, and the measured current dropped about 20 cm/s at the 1024 m instrument and 10 cm/s at the 527 m instrument. Over the next 33 hours the two pressure records stayed about constant except for three or four short (1-2 hour) 5-20 decibar (increasing) pressure spikes. On the afternoon of 1 June the pressure suddenly increased by 30-35 decibars and settled out to a new equilibrium; at the same time the measured current increased by 8-10 cm/s to a new value a little less than the value on 31 May prior to the pressure decrease.

Our conclusions are:

- (1) The horizontal holding power of the clump (dead weight) anchor was insufficient to keep the anchor from dragging under the high-current condition on 31 May. Possibly the Danforth anchor attached to the clump did not deploy correctly.
- (2) The mooring began to move at a maximum of 20 cm/s in a direction between 230°-250° T, and fetched up 33 hours later while moving at some 8-10 cm/s.

We estimate the 20 cm/s speed (or higher) occurred for about 13 hours, followed by a 7 hour decrease to (say) 9 cm/s, and then constant for 13 hours; this gives an approximate average speed of 14.5 cm/s, and a total distance travelled of 17.2 km or 9.2 n.mi. in a direction approximately 240° T.

- (3) The drift of the ship was 0.7-2.1 knots in directions from 201° T through west and north to 072° T, during the period from 10 minutes before the release of 764 to 55 minutes afterwards, as we were hove to listening to the radio and acoustics and watching for a light. The average speed and speed-weighted average direction was 1.4 knots toward 291° T. The wind during the time was light and out of the North, so we can assume the mooring drifted at a speed of 0(1) knot in a westerly to southerly direction, for a period of about 3 hours for a distance of about 3 n.mi.
- (4) Using a trial and error search algorithm, we looked for an inferred anchor position that (a) was close to being 240 T from the original anchor position, and approximately 9.2 n.mi. from it, and (b) was in the NW quadrant from the recovery position and about 3 n.mi. from it. There is no unique solution to this search, but the points cluster around 33°44.6'N, 70°10.0'W (Loran C) with a scatter of about a mile N-S and half a mile E-W.
- (5) Summary: Mooring 764 moved SW about 9 n.mi. on 31 May-1 June 1982. The final position was 33°44.6'N, 70°10.0'W, within 1/2 to 1 mile. The position is consistent with current measurements and recovery data.

B. Instrumentation

1. Current Meters

The primary current meters used in the LOTUS experiment are Vector Averaging Current Meters (VACM) and Vector Measuring Current Meters (VMCM). They differ mainly in their flow-sensing elements: the VACM uses a Savonius rotor and a vane to give speed and direction which are resolved against an internal compass to East and North components whereas the VMCM uses orthogonal cosine-response propellers that sense directly the flow components which are then rotated relative to an internal compass.

Both instruments provide a continuous vector-averaging during a recording interval by sampling 8 (VACM) or 4 (VMCM) times per rotation of the sensor;

both cases correspond to sampling and vector-averaging at least several times per second.

The last of the statistics tables (p. 154) gives the instrument identification numbers for each depth and mooring.

The recording interval of the instruments depends on the planned deployment period of the mooring to which they are attached. The one year moorings have current meters with recording intervals of 7.5 minutes whereas those on the 6 month moorings have a 3.75 minute recording interval.

Additional technical information on the VACM and its sensors may be found in Fofonoff and Ercan (1967), McCullough (1975), Payne et al. (1976), and Dean (1979). The VMCM is described in Weller and Davis (1979). Intercomparisons of these instruments are given in Halpern et al. (1981).

Both current meters record on Phillips-type cassettes by means of Sea Data recorders. The cassettes are removed ashore and transcribed to 9-track computer tapes for further processing.

Temperature measurements are made by both the VACMs and VMCMs. The VACM temperature sensor (a thermistor embedded in its end cap just above the vane) has an accuracy and resolution of approximately .01°C (Payne et al., 1976), and .07 x 10⁻³°C (Tarbell et al., 1979) respectively. Some VACMs have either a pressure sensor (VACM-P) (located just above the vane) or a pair of thermistors separated by approximately one meter to give the vertical temperature gradient (VACM-DT) (Dean, 1979). The time response of the end-cap thermistor is approximately 94 s, whereas the thermistor system used in the VACM-DT has a 12 s response (Levine, 1981); this difference can affect certain kinds of data comparisons.

Only the temperature and pressure sensors are calibrated prior to deployment; the rotor and vane weights, sizes and bearing clearances are simply kept within narrow specifications to permit the nominal calibrations (McCullough, 1975) to be used.

The VMCM also senses temperature with a thermistor embedded in the upper end cap of the pressure case. According to the manufacturers specifications a calibrated thermistor has an accuracy of .01°C. For the temperature range selected for the LOTUS VMCMs (17°C to 30°C) the resolution of the system is 1.4×10^{-3} °C.

2. VMCM Variations

The VMCM is a relatively new instrument undergoing continuous tests to perfect its long term performance. One component of the instrument which is under examination is the material used for the orthogonal propellers. Propellors fabricated of black Delrin (a Dupont Co. Acetal homopolymer resin) were used on the LOTUS 3 and 4 VMCMs. The color black was chosen to decrease their visibility and thus discourage any interference by fish.

Various antifouling compounds were tested on the LOTUS 3 VMCM propellers. The propellers of several instruments were coated with antifouling paint, wax, and in one case a combination of paint and wax while the propellers of one instruments were left bare. The LOTUS 4 VMCM propellers contained no antifouling compounds.

The LOTUS 4 propeller assemblies differed from those used in LOTUS 3 in that the blades were fitted to the hub with a dovetail joint and pinned. Each propeller was also balanced. The LOTUS 3 propeller had rabbet joints with pins and was not balanced.

Another aspect of the VMCM under careful study is the type of bearings used on the propeller shaft. The LOTUS 3 VMCMs used type 316 stainless steel bearings as did the LOTUS 4 VMCMs, however, the LOTUS 4 instruments had an additional 18-8 stainless steel retainer ring attached around the shaft which limited any excessive lateral movement.

Table 2 summarizes the variations between the LOTUS 3 and 4 VMCMs.

TABLE 2: VMCM Variations

		Propeller Material	Antifouling Paint	Compounds Wax	Bearings
LOTUS	3	Black Delrin Blades rabbet jointed at hub; not balanced	5m, 10, 25, 75	5m, 50, 100	Type 316 Stainless
LOTUS	4	Black Delrin Blades dovetail jointed at hub; balanced	None		Type 316 Stainless with 18-8 retainer ring

3. Aanderaa Temperature Recorders

Each LOTUS surface mooring (LOTUS 3 and LOTUS 4) had three 100 m long Aanderaa thermistor cables with recorders. The recording packages were each held in stainless steel brackets with strength members that were fastened in line with the mooring. The thermistor cables were attached to the mooring line with clamps manufactured by the Stauff Corporation. Nominally the thermistor cables were situated between 50 and 350 meters depth passing by several current meters where necessary. The thermistor cables contain 11 thermistors each separated by 10 meters.

The temperature range of the thermistor chains used during LOTUS is 10.08° to 36.04°C. The resolution of the temperature measurements is .025°C. The 6 month deployment period and the limited tape capacity restricted the sampling interval to 60 minutes.

Calibration of the thermistor cables was performed at WHOI. The procedure involved immersing the entire cable into a calibration bath and then decreasing the bath temperature in a series of steps from 30° to 10°C. Calibration coefficients are calculated for each thermistor using a second order polynomial.

Two other Aanderaa recorders, modified at WHOI to make single temperature measurements, were placed on the LOTUS near-surface mooring (mooring 766) at 477 and 626 meters. These recording units did not have a multi-sensor cable but rather a single thermistor fastened to the instrument's top end cap. The deployment period for these instruments was one year, which when combined with the reduced data input, allowed a sampling interval of 20 minutes. Aside from the differences mentioned above, the specification of the single point instruments are identical to those used with thermistor cables.

4. Vector-Averaging Wind Recorder

The Vector-Averaging Wind Recorder (VAWR), an adaption of the Vector Averaging Current Meter (VACM), was designed at WHOI for making high quality, long duration observations of meteorological parameters from moored oceanic buoys. The VAWR contains integrating and recording circuitry which computes vector-averaged wind velocity. The VAWR also provides several channels for recording additional measurements. The VAWRs used in LOTUS were fitted with

more responsive wind sensors and were designed to cause much less flow disturbance around the wind sensors than the VAWR used previously. Two VAWRs were mounted on the tower of LOTUS-3. On LOTUS-4, the VAWR electronics packages were placed inside the instrument well primarily to increase the mechanical stability of the buoy, to prevent theft by vandals of the self-recorded data, and to more fully expose the navigation light on the tower. The VAWRs on LOTUS-3, serial No. 184 and No. 537, recorded data averaged over 3.75 min., those on LOTUS-4 serial No. 177 and No. 381, recorded data averaged over 7.5 min. The averaging interval was thus doubled to accommodate the extra relative humidity data being recorded on LOTUS-4. These sampling rates were long enough to average out the bulk of the buoy motion effects but still short enough to retain high-frequency variability in the meteorological data. Table 3 is a summary of the meteorological sensors and their specifications. See Deser et al. (1983), for additional meteorological information.

C. Other Data

1. XBT and CTD

During each cruise to the site, an XBT section was made along approximately 70°W from about 40°N to 34°N, and CTD stations were made near the moorings and around the array. These data are all given in detail in each cruise report: OCEANUS 119 and 129, and ENDEAVOR 97 are relevant to the mooring data described here. All the CTD stations that were taken during the first year in the LOTUS area are shown by position in Figure 4. For general reference, Figures 5a and 5b show typical CTD profiles at the LOTUS site for each season. Below 200 m there is little seasonal influence, but the mesoscale effect of a variable eddy field is visible especially in the main thermocline.

2. Aanderaa Temperature Recorders

A complete report on the data quality and results from the Aanderaa equipment will be given elsewhere. The purpose of it on the surface moorings was to give 10 m resolution between 50 and 350 m for the measurement of the depth of the mixed layer. The severe wave-driven motions of the surface mooring, however, caused difficulties with the simple reel-to-reel Aanderaa tape recorders and the 100 m long thermistor strings. The data progressively degraded during the deployment period, so only at the beginning of each 6-month deployment do we have the desired resolution.

Table 3: Meteorological sensors and their specifications

	Pacameter	Sensor	TABLE 2: Manufacturer	METEOROLOGIC Mange	AL SENSORS Sensor Accuracy	System Accuracy	LOTUS-3	LOTUS-4	Comments
١.	Wind speed	G[11]-cup	R.M. Young Co., model 6301	0-54 =/=		0.2 =/e ^(c)	x	x	· · · · · · · · · · · · · · · · · · ·
2.	Wind direction	Vane	R.M. Young Co., model 6101	0-360*	See Text		x	×	
3.	Air temperature	Thermistor with Thaller Shield	Yellow Springs Instrument Co., model 44034	±35°C	0.1°C	0.5°C ⁽⁶⁾	x	x	
4.	Mull temperature	thermistor	Yellow Springs Instrument Co., Model 44034	₹30 °C	0.1°C	0.3°C ⁽⁸⁾	x	x	
5.	Berometric pressure	Digiquerts with Gill Pressure port	Peroscientific,Inc Model 215	. 0-L034 mb	0.2 mb	0.5 mb ^(m)	x		
		Mecoid	Yeilow Springs Instrument Co., model 2014-28/35 KA-3-48	964-1064 mb	3 mb	5 mb ^{r}		x	
٤.	Tension (at top of mooring)	Hydraulic piston	W. Swift Co., Bourne, MA	0-9300 lbc.		40 lbs ^(r)			
1.	Wind speed	Gill 3-cup anemometer	R.M. Young Co., model 6301	0-54 m/s	See Text	0.1 m/s(r)	ĸ	x	LOTUS-3, \$184, Sampling cates 3.75 min
2.	Wind direction	Vane	R.M. Young Co., model 6101	0-360*	See Text	5. (8)	x	x	LOTUS-4, #177, Sampling rates
3.	Air temperature	thermistor with Thaller Shield	Yellow Springs Instrument Co., model 44034	₹32.c	6.1°C	6.3°C(#)	x	x	7.5 min.
4.	Sea temperature	Thermistor	Thermometrics Co.	±30 °C	0.004°C	0.01°C ^(e)	x	x	
5.	Solar radiation	Pyranometer	appley Co.,	0-1400W/m²	19	54 (=)		x	
			MYCAL Eng., model P-4405-A	0-1400W/= ²	34	54 (m)	x		
6.	Relative humidity	Strain gauge	MYCAL Eng., model MS-3552-8	0-1004	69	(*)		*	(*) failed after one month
۱.	Wind speed and direction	Integral 3-cup anemometer and vane	winot	0-54 m/s 0-160°	See Text	0.1 m/a(s)	x		LOTUS-3, #537, Sempling rate: 3.75 min LOTUS-4, #381, Sempling rate: 7.5 min.
2.	Wind Speed and direction	Propeller and	R.M. Young Co., model 5101	f 50 m/s 0-360°	See Text	5* (m)		×	
١.	Air temperature	Thermistor with PRE, shield	Yellow Springs Instrument Co., model 44034 housing - Polar Research Labs.	<u>+</u> 15*c	0.1°C	3.G(m)	x		
١.	Becometric pressure	Olgiquertz with Gill Pressure port	Paroscientific, Model 215-A5-002	0-1034 mb	0.1 mb	0.5 mb ^(m)	x	x	
5.	VAMR electronic chassis tempera-	Thermistor	Yellow Springs [nstrument Co., Model 44034	<u>+</u> 15*C	0.1°C	0.1-0(0)		x	Engineering tes sensor

ARGOS digitization resolution Scatterplot estimate Manufacturer's value Estimate based on previous experience

Figure 4. Locations of CTD stations in the LOTUS area taken during the first year of LOTUS.

Figure 5. a) Total depth CTD profiles for the LOTUS area for each of the first three cruises.

b) Blowup of upper 750 m.

Profiling Current Meter (PCM)

The M.I.T.-Draper Profiling Current Meter (PCM) is a programmable moored upper ocean current and density profiler capable of making over 1000 repeated profiles from 20-200 m depth along the upper section of a barely subsurface mooring. It is free to move along the guideline portion of its mooring by adjusting its buoyancy under computer control of an electric oil pump/swim bladder assembly. As the instrument ascends, it measures current with a spherical 2-axis electromagnetic current probe, temperature with a thermistor, electrical conductivity with an inductive cell, and pressure with a strain gauge. Samples are accumulated at 1 Hz and averaged into pre-programmed depth bins, typically 5 m thick. Magnetic field and tilt information are used to vector-average horizontal current data. The instrument maintains a rise rate of 10-15 cm/s during ascents so that profiles can be repeated as often as 1 hour. Battery and tape recorder storage provide the principal limitations to the duration of the PCM deployments. The instrument relies on computer software to manage finite resources efficiently. PCMlF was moored at 33°59.6'N, 69°56.8'W, during May-October 1982. The instrument is not from Woods Hole and the data are not presented here.

4. Engineering Data

The VACM pressure sensors on the subsurface moorings are useful engineering data: during low current periods they confirm the nominally calculated depths of instruments, and during high current periods they help relate the currents to mooring tilt-over. In fact, an error in the counter used to measure the wire rope for 764, 765, 766, and 767 was detected and the instrument depths corrected by use of the pressure records.

The tensiometer on each surface mooring gives a simple strip-chart (Rustrak) recording of a load-cell output. On LOTUS-3 at 3395 m the tensiometer was in the nylon part of the mooring and saw only the low-frequency tension changes as the mooring responded to the depth-integrated current. On LOTUS-4 at 2000 m the tensiometer was at the bottom of the chain/wire-rope part of the mooring, and essentially all of the high-frequency tension fluctuations caused by the surface waves were measured there. The conclusion is that the high frequency fluctuations are damped out in the top section of nylon; this is apparently why the top nylon pieces of the LOTUS-1 and -2 test deployments were so weakened when examined after recovery.

D. Data Quality

Figure 6 shows all the data considered good that were returned from the first year of LOTUS. Bar graphs are for current meter data, meteorological data and Aanderaa thermistor chain data.

E. Data Processing

Time series are identified by a three digit mooring number, a sequential instrument position number, a letter to indicate the data version, and a number to indicate the time sampling interval of that data set. Sequential position numbers if preceded by an "S" indicate that the instrument was set on the surface buoy. 770S1E1DG24 is the first instrument set on the surface flotation of mooring 770. It has been edited to the Eth version and has a sampling of one point per day from a Gaussian filter which has a half width of 24 hours. Similarly, 7642C450 is the second instrument on mooring 764. It has been processed to the Cth version which is sampled every 450 seconds (or 7 1/2 minutes).

Data from cassettes were transcribed onto 9-track magnetic tapes, converted to scientific units, edited to remove launch and retrieval transients and erroneous data values. All the directional values have been converted from the Magnetic North co-ordinate system to True North.

Low passed versions of the data series were formed by passing the data through a Gaussian filter with a 24 hour half-width, then subsampling the resultant series once a day. The unfiltered series all start at noon, therefore the filtered series also present noon data points.

F. Data Presentation

Following the text, composite plots are presented. They show the first year's data. Aanderaa thermistor chain data, current meter temperatures, current meter speeds, progressive vector diagrams of the current meter data are shown respectively.

The data are broken up into three groups. The meteorological data are presented first. Time series, histograms and spectra for the VAWRs (Vector Averaging Wind Recorder) are shown. The second group of data is the current meter data for the two six month surface moorings. The third group is the

CURRENT & TEMPERATURE

LOTUS 3 LOTUS 4 1982 J A S O N O J F TEMPERATURE ---CURRENT S 1 SURFACE S 2 MOORINGS 10 20 25 35 50 75 100 LOTUS 3 LOTUS 4 100 t....... NEAR 200 SURFACE 250 JASONDJE 3CO SUBSURFACE MOORINGS 350 500 MOORINGS 400 450 (SOUTH) 1000 500 600 750 SUBSURFACE 1000 500 MOORINGS 1500 2500 (EAST) 1000 4000 AANDERAA TEMPERATURE DATA METEOROLOGICAL DATA LOTUS 3 LOTUS 4 LOTUS 3 1982 VAWR 1 50 -150 Wind Direction 150-250 Sea Temperature 250-350 Salar Radiation Relative Humidity VAWR *2 Wind Direction Air Temperature Berometric Pressure ARGOS Wind Ovection Barametric Pressur Relative Humidily

Figure 6. Bar chart showing data return for the first year of LOTUS.

Latitude

near surface moorings and two subsurface moorings which are presented by depth. All the time series are first followed by the histograms then the spectra in each group. The statistics for all the instruments are presented at the end of the data section.

The following is a brief description of the different plots. Progressive Vector Diagrams

Current vectors from the filtered time series are placed tail-to-head so as to show the path that a particle in a perfectly homogeneous flow would have traveled. The plots for each time series begin with an asterisk and are annotated monthly. Moorings 767 and 770 were set consecutively, so the progressive vector diagrams representing data from instrumented mooring 770 have been appended to the plots for the same depth from mooring 767. In those cases where there is a time separation of greater than a few days the positioning of the following Provec is arbitrary.

Variables vs. Time Plots

Individual variables and the stick plots are plotted against time from one day Gaussian filtered time series.

The plots have been done to the same scales to facilitate comparisons. In the case of the deepest temperature measurements, the temperature has been plotted on two scales, first the general scale then at a scale selected for that data set that shows details. Pressures have been plotted against a negative decibar scale to invert the trace to facilitate comparisons with temperature and speed.

The plots for time series from consecutive moorings 767 and 770 are combined for appropriate depths.

Histograms

Data are taken from the unfiltered time series. For each class interval the frequency value is a percentage of the total count. For the 'weighted direction' histogram each value is weighted by the corresponding speed value before assigning to a class interval. All histograms have 50 class intervals per inch.

The plots have been done to the same scales to facilitate comparisons. In the case of the deepest temperature measurements, the temperature has been

plotted on two scales, the general scale as indicated below, then at a scale selected for the individual data set that shows details.

- *** note: the histogram for 7675 which was fouled by a garbage bag.
- *** note: insolation plotted at two scales to show detail by eliminating the nighttime points.

Spectral Plots

Table 4 in the Spectra section of this report shows the exact number of cycles per piece and number of pieces. Generally speaking the 225 second sampled current meters have a piece length of 32000 points. LOTUS 3 was long enough to have 2 pieces. LOTUS 4 data has only one piece. The year long nearsurface and subsurface current meters have four 16000 point pieces.

Statistics

The statistics are created from the unfiltered time series. See Volume XVII (POLYMODE Array II) of this series (see page 5) for a description of the various types of statistical parameters.

The coding on the statistics tables stand for the following instruments:

- m VMCM
- v VACM
- a VACM with Pressure
- D VACM with DT

REFERENCES

- Briscoe, M. G., and R. A. Weller, 1984. Preliminary results from the Long

 Term Upper Ocean Study (LOTUS). <u>Dynamics of Atmospheres and Oceans</u>, in press.
- Clay, P. R., 1983. LOTUS Discus Mooring. <u>Proceedings of the 1983 Symposium on Buoy Technology</u>, Marine Technological Society Gulf Coast Section, April 27-29, 1983, New Orleans, p. 108.
- Dean, J., 1979. A moored instrument for vertical temperature gradients.

 <u>Journal of Geophysical Research</u>, 84, 5089-5091.
- Deser, C., R. A. Weller, and M. G. Briscoe, 1983. Long Term Upper Ocean Study (LOTUS) at 34°N, 70°W: Meteorological Sensors, Data, and Heat Fluxes for May-October 1982 (LOTUS-3 and LOTUS-4). Woods Hole Oceano. Inst. Tech. Rept. 83-32.
- Fofonoff, N. P., and Y. Ercan, 1967. Response characteristics of a Savonius rotor current meter. Woods Hole Oceano. Inst. Tech. Rept. 67-33.
- Halpern, D., R. A. Weller, M. G. Briscoe, R. E. Davis, and J. R. McCullough,
 1981. Intercomparison tests of moored current measurements in the upper
 ocean. Journal of Geophysical Research, 86, 419-428.
- Levine, M. D., 1981. Dynamic response of the VACM temperature sensor.

 <u>Deep-Sea Research</u>, 28A, 1401-1408.
- McCullough, J. R., 1975. Vector averaging current meter speed calibration and recording technique. Woods Hole Oceano. Inst. Tech. Rept. 75-55.
- Montgomery, E. T., N. J. Pennington, and M. G. Briscoe, 1984. The Long Term Upper Ocean Study (LOTUS) cruise summary and hydrographic data report, OCEANUS 141, November 1983, and OCEANUS 145, January 1984. Woods Hole Oceano. Inst. Tech. Rept. 84-26.
- Payne, R. E., A. L. Bradshaw, J. P. Dean, and K. E. Schleicher, 1976. Accuracy of temperature measurements with the VACM. <u>Woods Hole Oceano. Inst.</u>

 Tech. Rept. 76-94.
- Trask, R. P., 1981. Mechanical and operational details of a Neil Brown
 Instrument Systems internally recording conductivity, temperature, depth
 (CTD) profiler. Woods Hole Oceano. Inst. Tech. Rept. 81-74.
- Trask, R. P., M. G. Briscoe, and N. J. Pennington, 1982. Long Term Upper Ocean Study (LOTUS), A summary of the historical data and engineering test data. Woods Hole Oceano. Inst. Tech. Rept. 82-53.

- Trask, R. P., and M. G. Briscoe, 1983a. The Long Term Upper Ocean Study (LOTUS) Cruise summary and hydrographic data report OCEANUS 119 May 1982. Woods Hole Oceano. Inst. Tech. Rept. 83-7.
- Trask, R. P., and M. G. Briscoe, 1983b. The Long Term Upper Ocean Study (LOTUS) Cruise summary and hydrographic data report OCEANUS 129 October 1982. Woods Hole Oceano. Inst. Tech. Rept. 83-29.
- Trask, R. P., and M. G. Briscoe, 1983c. The Long Term Upper Ocean Study (LOTUS) Cruise summary and hydrographic data report ENDEAVOR 97 April 1983. Woods Hole Oceano. Inst. Tech. rept. 83-33.
- Weller, R. A., and R. E. Davis, 1980. A vector measuring current meter.

 <u>Deep-Sea Research</u>, <u>27A</u>, 565-582.

DATA PRESENTATION

COMPOSITES

Figure 7a. Composite plot of current meter speeds for LOTUS-3.

Figure 7b. Composite plot of current meter speeds for LOTUS-4.

Figure 8a. Composite plot of current meter temperatures for LOTUS-3.

Figure 8b. Composite plot for current meter temperatures for LOTUS-4.

THE PARTICIPATION OF THE PROPERTY OF THE PROPE

Figure 9. Composite plot of Aanderaa data from moorings 767 and 770 over the depth range of 50 to 350 m.

Figure 10. Composite provecs for the surface moorings 767 and 770 for the first year of LOTUS.

Figure 11. Composite provecs for the year long near-surface mooring 766.

Figure 12. Composite provecs for the year long subsurface moorings 764 and 765.

Figure 13. Provecs for the duplicate wind sensors on moorings 767 (LOTUS-3) and 770 (LOTUS-4).

SURFACE MOORINGS 767 AND 770 METEOROLOGICAL DATA

Data File 767510225

Data File 7672AB225

Data File 770SiF450

Data File 770SiF450

Data File 770S2F450

CONTROL OF THE PROPERTY OF THE

SURFACE MOORINGS 767 AND 770

NEAR-SURFACE MOORING 766
WITH SUBSURFACE MOORINGS 764 AND 765
INCLUDED BY DEPTH.

TIME SERIES

ASIS INCOMES TO THE SECOND SECOND PRODUCT TO SECOND SECOND

Depth 2500m

TO BE ON THE PROPERTY OF THE P

HISTOGRAMS

Data File 7673E225

Depth = 5m

Data File 7703D225

Depth - 5m

Data File 7674C225

Depth = 10m

Data File 7704D225

Depth = 10m

Data File 76750225

Depth - 15m

THE PROPERTY OF THE PROPERTY O

Data File 7705D225

Depth = 15m

Data File 76760225

Depth = 20m

Data Flue 76770225

 $D\epsilon_{m}$ th = 25m

Data Flue 7706D225

Depth - 25m

Data File 76780225

Depth = 35m

Data File 7679D225

Depth = 50m

Data Fule 77070225

Depth = 50m

Data File 767100225

Depth = 65m

Data File 767110225

Depth = 75%

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Data File 7708D225

Depth = 75m

Data File 767120225

Depth = 100m

Data File 7709D225 : Depth - 100m

Data Fule 76610450

Depth = 127 m

Data File 76620450

Depth = 129m

Data File 76630450

Depth - 178m

Data File 76640450

Depth = 228m

Data File 76650450

다./S

Ġ

.<u>-</u> .75

Depth - 278m

ò

CM/S

73

Data File 76660450

Depth - 328m

Data File 76670450 : Depth = 427m

Data File 76410450

Depth - 527 m

Data File 76510450

Depth = 527m

Data File 76611C450 : Depth = 775m

Data File 76420450 - Depth = 1024m

Data File 76520450

Depth = 1024m

Data File 766120450

Depth = 1024m

Data File 766130450

Depth - 1521m

Data File 770140225

Depth = 2500m

Data File 76614C450

Depth = 2516m

Data File 766150450

Depth = 4007m

SPECTRA

Table 4

Spectral Plots 450 second sampled data has a piece length of 16000. 225 second sampled data has a piece length of 32000.

.: r.

.pn

opn

the first of the second section is the second section of the second section is the second section of the second

.pr

STATISTICS

METEROLOGICAL DATA

Mean									Kurtosis	vs							
Data	EAST	NORTH	SPEED	SEA TEMP	AIR TEMP	INSOL H		BAR PRESS	Data	EAST	NORTH	₩. F.		!	į	REL HUMIOITY	BAR PRESS
76751 76752 77051 77052	0.910 1.821 0.559 0.522	0.926 1.775 -0.541 -0.564	5.702 5.429 8.303 8.705	25.167	24.284 24.245 18.522 19.662	93,749	92,985	1016.514	76751 76752 77051 77052	1	2.731 2.959 2.109 2.124		2.578	2.717 2.425 3.023 6 2.770	6,465	5,338	2,721 2,944
Variance	9 U								Minimum Value	Value							
Data	 EAST	NORTH	SPEED	SEA	AIR TEMP	INSOL	REL HUMIDITY		Data	EAST	NORTH	SPEED	SEA TEMP	AIR TEMP	INSOL	REL HUMIOITY	BAR
76751 76752 77051 77051	15.220 12.057 34.370 37.975	22.325 17.591 45.009 49.888	6.719 6.639 11.033 12.667	3.738	4.406 5.690 8.693 3.704	18451.223		12.129	767S1 767S2 770S1 770S2	-12.798 -10.120 -14.679 -15.629	-14.363 -13.113 -17.813	.0407 .0316 .0599	20.121 - 19.312	17.940 17.200 8.211 15.190	10,339	53.147	1007.084
Skemess	Š:						į		Maximum Value	, Value							
Data	EAST	NORTH	٠				KEL HUMIDITY		Data	FACT		SPFFD	SEA	AIR	INSOL		
76751 76752 77051 77051	0898 0827 0.180 0.185	-0.440 -0.524 .0764	,	0.383	-0.610 -0.242 -0.592 .0395	2.022	- -1.806	-0.527	767S1 767S2 770S1	13.984 17.081	14.217 14.619 16.732	15.177 15.307 18.387	29.452	29.240 30.992 24.587	782.091	102.362	1023,795
,									77052	18.085		19.311	•	27.352	•		

East and North

×	<u>ই</u> ল্কন
MINAX	3.574 3.223 5.844 6.141
Σ	4.977 4.389 6.725 7.081
ORIENT	26.842 25.718 8.063 8.287
	.282 .266 .131 .133
COEFF.	.262 .238 .0391
COVAR.	4.833 3.471 1.538 1.773
	767S1 767S2 770S1 770S2

	PRESS/TDIF		4.133 3.302 3.197 3.248 3.237 4.804 3.257 1.511 2.842 .566
Skewness	TEMP	773 744 678 616 404 777 539 539 539 384 665 800 385 385 385 385 385 385 385 385 387	-1.898 -1.942 0536 -474 .474 .278 -1.057 -2.573 -1.414 -2.024 -2.024
×	NORTH	279 264 264 264 216 0298 0298 0298 0780 440 913 514 514 698 698 612	291 136 891 510 510 594 718 594 718 601 601 0583 199
	EAST	. 342 - 440 - 798 - 312 - 362 - 409 - 625 - 632 - 633 - 632 - 633 - 633	.177 .0691 .735 .0390 .333 .252 .454 .454 .517 .755 .254 0703
	PRESS/TDIF		284.402 241.861 222.499 186.742 748.822 750.522 743.943 .121-4 .427-4
	TEMP	3.510 3.6555 3.927 4.729 4.729 5.1849 1.742 1.779 1.779 1.776 1.776 1.776	.253 .421 .292 .525 .525 .647 .101 .0521 .0424 .110 .1158 .555 .0168 .283-2
Variance	SPEED	296.754 234.173 262.819 273.252 212.557 209.984 181.191 175.588 160.043 160.043 155.804 241.343 230.332 242.047 224.079 214.185 301.075	114.052 23.789 123.649 24.593 169.228 143.620 150.872 155.239 115.129 45.824 21.237 11.674
Yar	NORTH	309,489 269,984 217,329 315,727 234,268 205,045 1130,927 1130,927 1130,927 1130,927 1130,927 259,904 266,923 272,855 278,262	146.438 40.780 104.216 39.955 148.426 78.642 128.079 134.218 121.542 113.172 71.724 60.289 35.725 19.070
	EAST	434.154 316.091 285.839 360.791 255.271 231.611 199.481 160.822 144.548 370.344 360.166 337.822 520.017	177.084 57.587 229.252 58.068 357.361 207.922 314.208 320.665 309.521 287.046 110.615 102.726 36.738 36.738 36.736
	PRESS/TO IF		537.203 1038.711 544.645 1051.011 141.829 195.699 .894-2 297.308 .360-2 .702-2
	TEMP	25.057 24.946 24.897 24.897 23.245 22.229 20.223 20.023 20.023 21.295 21.295 21.295 21.296 21.296	16.995 7.537 16.941 7.537 19.503 19.460 18.860 18.218 18.218 17.576 17.576 17.576 17.576 17.576 17.576 17.576 17.576
≅	SPEED	27.868 24.927 28.135 28.135 28.135 23.752 21.162 25.316 19.491 18.417 22.551 22.258 20.592 20.592 25.308	16.734 9.405 9.147 19.477 13.570 18.228 18.099 17.439 17.439 17.439 17.439 17.439
MEANS	NORTH	-3.117 -0.893 -0.893 -0.554 -0.562 -0.148 -1.246 -1.246 -1.273 -3.273 -3.759 -3	1.193 -0.185 -0.373 -0.373 -0.856 -1.219 -2.127 -2.127 -2.127 -1.219 -3.76
	EAST	-17.890 -16.391 -19.695 -17.565 -18.355 -19.999 -15.642 -15.033 -15.03	-8.315 -3.721 -7.156 -7.156 -6.364 -6.241 -6.240 -6.840 -6.703 -15.163 -7.446 -2.441 -0.932
	depth	5 10 15 25 25 25 25 35 35 35 35 35 35 35 35 35 35 35 35 35	1024 1024 1024 1024 127 129 178 228 228 228 427 775 1024 1521 1521 1521
	Data	## 7673 ## 7674 ## 7675 ## 7675 ## 7679 ## 76710 ## 76710 ## 7703 ## 7705 ## 7709	a 7641 a 7642 a 7651 a 7652 a 7663 0 7664 0 7667 0 76613 a 76613 a 76613

.	97 - I	PRESS/TD IF																								644.890		310 016	319.030		372,989	.253	474.270	.0375	6980	205	1			
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-	TEMP	27.873	27.607	27.504	27 510	27 426	27.75	562.12	20.33	20.901	26.157	697.47		24-130	24.115	24.088	24.088	24.074	23,999	23.103	•	17 070	6/6.71	9.204	17.765	161.01	22 452	22.433	204.22	20.011	19.758	19.304	18.667	18.116	14.758	10.005	4.861	3.651	2.489
ź	E	SPEED	94.667	92,839	92.701	95. 226	86.565	77 200	205. 17	07.00	70.140	80.558	16.00	77 404	\$7.5°	10.07	169.8/	70.389	68.181	66.112		30.34/	54 453	1000	40.382	30 193	667.00	751 69	FF 707	707.00	20.448	\$/:/s	58.346	54.833	49.741	39.570	29.985	24.926	•	21.187
		H CK	49.181	68,344	61,644	75.775	63.606	58 927	57 312	77.0	100 08	77 631	1	47 505	45 323	77.55	026.74	33.087	75.55	32.440	100	C)0. K1	56 201	28.00	446.00	23.24	1	40.082	17.510	26.75	15 / · · · ·	176.14	33.989	30.751	19.942	31,853	27.764	14.124		13.698
	1080	CASI	39.849	30,675	29.403	31.778	28.179	22 835	25.842	30 952	18 601	17.317		72 887	70 205	73 -25	67 100	007.70	150.50	707.00	10 665	20.01	49 861	28 493	49.25	22,149		55.071	38 430	52 221	50.524 50.620	20.00	TCT - 64	47.484	9.451	31.849	29.451	004.61	, 6	19.266
	PRESS/TH RE																						528.302	1028.630	535 983	1041.948		127,363		181,093	0261	202 757	604.707	5710	9770	2450.1				
Minimum Value	TEMP	ļ	20.023	19.839	19.826	19.815	19.559	19.479	19.225	19.108	18.945	18.706		19.297	19,302	19.295	19,112	19 310	19.309	19 325			14.266	5.630	14,338	5.564		17.927	17,920	17.762	17 607	17 152	10 667	100.01	10.004	77.0	3.401 3.401	2000	244.0	7. 7. t
Minimu	SPEED		.118	.041/	00:	211.	.041/	7060	.0417	.0934	.0417	000		.0932	.186	.0545	.0833	.0417	172	•	.0417	1	1.098	.404	.492	.284		.0744	000-	.217	.403	140	0606	2000	0. P	000	1.314		1 410	741
	NORTH		-//.310	70 010	78 997	72.503	501.57	-00.72/	-53.190	-56.179	-53.145	-56.059	;	-61.638	-59.040	-62.199	-54.625	-54.170	-51.614	•	-11.415		-61.696	-35.477	-52.216	-29.617		-51.585	-34.425	-45.974	-51.301	-44.913	-41 289	-30.797	39 535	26 900	-16.325		-16.913	777.34
	F EAST	•	-80,380																-40.494		-30,344				-46.940												-22.926		-20.939	
	RESS/TD IF																					1	22.781	107.17	15.263	14.550		15.638	·	15.563	יים	S	9							
Kurtosis	TEMP P	١٠	2.596	~	~	_	_	-	-	٠.	٦ ,	7	r	ic	<i>.</i> .	je	<i>,</i> ,	7	1.957	•		,	2,00	400.7 400.7	. bg.	3.4/9	•	٦-	; '	'nι	•	ø.	5. 8	4	œ	4	12,619	ヿ	۲.	
Z	NORTH	3.047	4.499	5.438	4.144	4.265	4.148	4 621	3 510	A 65.2	36.4	† pn . n	2 486	3 142	300	ָרָילָ הַילָילָ הַילָילָ		200	78/.7	, ;	3.121	100	7.00	, c. r.	217.0	2,0,0	2 761	4 6 7	777	7.7.0	7000	5.939	3.893	3.371	4.770	3.596	3.074	•	2.827	
	EAST	2.821	3.211	3.611	2.982	3.052	2.789	3.020	3.022	2 Refi	7 753	;	3 391	38	3 363	318		155.6	*21.2	. :	4.112	727	000	4 9 2 2	2000	7.003	163.5	200	0.00	2,740	0.0	2.812	758.0	2.598	3.095	2.756	2,464	•	5.449	
	!		2								_	•	'n	10	15	2,5	3 6	3 5	ָ ק	200	7000	527	1074	527	1024	1054	127	129	2,7	228	210	0/1	358	/74	??	1024	1521	0107	200	
			m 7674																20// E				v 7642				7661	7662	7663	7664	7563	7567	2007	1007	100/	7100/	v 76613	100/	C 100/	

EAST AND NORTH CORR. COVAR. COEFF. ELLIPSE ORIENT **MAJAX** MINAX m 7673E225 68.221 .186 .224 66.209 21.546 16.715 5 VM-1103 7674B225 10 VM20803 51.917 .178 .178 56.972 18.704 15.370 59.968 17.895 m 7675B225 15 VM-503 59,486 .244 13.525 .239 .154 v 7676B225 20 V-5101 51.416 56.832 19.859 16.796 .152 m 7677B225 25 VM20903 53.605 .203 50.542 17.303 13.789 .219 35 V-5102 51.853 52.185 16.488 12.837 7678B225 .238 .221 .297 15.269 m 7679B225 50 VM-1003 53,271 .309 57.704 10.733 65 V-5110 59.050 .255 47.622 16.334 12.174 76710B225 .285 75 VM20703 47,638 .300 53.710 13,993 9.795 76711B225 .328 13.364 m 76712B225 100 VM-1805 47.003 .367 .332 54,075 8.926 -.997-1 .171 m 7703C225 5 VM042 -31.531 106.051 19.478 16,148 105.675 19,207 15.785 m 7704C225 10 VM040 -31.150-.102 .178 7705C225 15 V0433 -51.443 -.159 .222 109.731 20.257 15.763 -61.791 114.762 19.090 14.211 7706D225 25 VM039 -.222 .256 14.140 m 7707C225 50 VM037 -56.197 -.205 .255 112.176 18.993 75 VM038 -152.732 -.402 115.820 24.370 14.295 m 7708D225 .413 7.480 .289 .364 6.242 m 77014C225 2500 VM-043 69.941 3,968 -15.839 112.974 13.557 11.820 527 V-178P -.984-1 .128 v 7641B450 6.384 1024 V-195P 87.832 7.590 7642B450 0.637 .131-1 .159 .341 527 V-179P -20,299 -.131 98,994 15.247 10.050 7651B450 90.424 v 7652B450 1024 V-325P -0.134-.278-2 .171 7.620 6.321 18,914 12.167 -9.066 -.394-1 .357 92,480 v 7661B450 96 V-106P 7662B450 98 VM201003 1.590 .124-1 .385 89,296 14,420 8.867 17.728 148 V-108P 3.969 .198-1 .362 88.779 11.313 76638450 .362 17.984 198 V-589 -.110 96.901 11,465 7664B450 -22.900 -.511-1 .375 93,010 17,608 7665B450 248 V-109P -9.913 11.001 D 7666C450 328 DT5114 2.114 .117-1 .372 89.304 16.943 10.637 427 V-591 28.470 .320 .328 62.167 11.209 7.529 D 7667C450 76611B450 748 DT-5115 2.059 .262-1 .235 87,228 10,140 7.758 76612B450 1024 V-5113 1.460 .333-1 .188 85.423 7.346 5.967 0.758 76613B450 1498 V-5106 .286-1 .281 87.556 4.363 6.068 v 76615B450 3998 V-661 4.284 .137 .366 81.464 4,430 6.987

DOCUMENT LIBRARY

August 3, 1984

DISTRIBUTION LIST FOR TECHNICAL REPORT EXCHANGE

Institute of Marine Sciences Library University of Alaska O'Neill Building 905 Koyukuk Ave. North Fairbanks, AK

Attn: Stella Sanchez-Wade

Documents Section
Scripps Institution of Oceanography
Library, Mail Code C-075C

La Jolla, CA 92093

Hancock Library of Biology & Oceanography Alan Hancock Laboratory University of Southern California Los Angeles, CA 90007

Gifts & Exchanges Library Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, NS, B2Y 4A2, CANADA

Office of the International Ice Patrol c/o Coast Guard R&D Center Avery Point Groton, CT 06340

Library Physical Oceanographic Laboratory Nova University 8000 N. Ocean Drive Dania, FL 33304

NOAA/EDIS Miami Library Center 4301 Rickenbacker Causeway Miami, FL 33149

Library Skidaway Institute of Oceanography P.O. Box 13687 Savannah, GA 31406

Institute of Geophysics University of Hawaii Library Room 252 2525 Correa Road Honolulu, HI 96822 Library Chesapeake Bay Institute 4800 Atwell Road Shady Side, MD 20876

MIT Libraries Serial Journal Room 14E-210 Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory Room 48-311 MIT Cambridge, MA 02139

Marine Resources Information Center Bldg. E38-320 MIT Cambridge, MA 02139

Library Lamont-Doherty Geological Observatory Colombia University Palisades, NY 10964

Library Serials Department Oregon State University Corvallis, OR 97331

Pell Marine Science Library University of Rhode Island Narragansett Bay Campus Narragansett, RI 02882

Working Collection Texas A&M University Dept. of Oceanography College Station, TX 77843

Library Virginia Institute of Marine Science Gloucester Point, VA 23062

Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington Seattle, WA 98195

Library R.S.M.A.S. University of Miami 4600 Rickenbacker Causeway Miami, FL 33149

REPORT DOCUMENTATION PAGE	1. REPORT NO. WHOI-84-36	2.	3. Recipient's Accession No.
Title and Subtitle			5. Report Date
	ed Current Meter and Wind		August 1984
	erm Upper Ocean Study (LO)		6.
(MOORINGS 764, 765, 766	5, 767, 770) May 1982-April	1983	8. Performing Organization Rept. No.
	J. Pennington, and Melbour	ne G. Briscoe	WHOI-84-36
. Performing Organization Name a	nd Address		10. Project/Task/Work Unit No.
Woods Hole Oceanogra	phic Institution		11. Contract(C) or Grant(G) No.
Woods Hole, Massachus			(C) N00014-76-C-0197,NR 083- (G) N00014-84-C-0134,NR 083-
2. Sponsoring Organization Name a			13. Type of Report & Period Covered
Office of Naval Resear Environmental Science			Technical
Arlington, Virginia 22			14.
5. Supplementary Notes			
This report should be c	ited as: Woods Hole Oceano	g. Inst. Tech. Rept	. WHOI-84-36.
i. Abstract (Limit: 200 words)			
LOTUS was a tw	o-year experiment near 34°	N, 70°W, designed	to acquire and analyse a
continuous set of meas	urements of currents and te	mperatures in the	upper, open ocean together
with local hydrography	, meteorology, and mesoscal	e oceanographic fe	eatures. The first scientific
moorings were deploye	d in May 1982. The first yes	ar of mooring data	from May 1982-April 1983,
is presented here.			
7. Document Analysis a. Descript	ors		
1. LOTUS	2324		
2. Upper Ocean Variab	*		Ì
3. Moored Instruments 4. Air-Sea Interaction			
b. Identifiers/Open-Ended Terms			
2	•		
c. COSATI Field/Group			
L Availability Statemen:		19. Security Cla	1 1
Approved for publication	on: distribution unlimited.	UNCLASS	NIFIED 154

FILMED

11-84