Sistemas Operacionais Embarcados

UART

Possíveis cenários:

- Aparelhos ligados à internet (IoT)
- Envio de dados de um microcontrolador para um computador pessoal
- Troca de dados entre microcontroladores
- Leitura de sensores (GPS, acelerômetro etc.)
- Leitura e escrita em memória externa

→ USB	→ UART
→ WiFi	→ SPI
→ Ethernet	→ I2C
→ Bluetooth	→ I2S
→ HDMI	\rightarrow CAN
→ VGA	→ Etc.

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ USB

→ WiFi

→ Ethernet

- → Bluetooth
- → HDMI

→ UART

→ SPI

→ I2C

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ UART <

→ SPI

→ I2C

Protocolo assíncrono: o clock não é enviado junto com os dados

Os dispositivos devem "concordar" com uma taxa de transmissão

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ UART <

→ SPI

→ I2C

Necessita de 2 fios: transmissão e recepção

Permite comunicação full-duplex

O fio de transmissão pode ser usado para indicar o endereço do dispositivo (quando há mais de um deles)

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

- \rightarrow SPI
- **→ I2C**

Necessita de 3 fios: clock, transmissão e recepção

Permite comunicação full-duplex

Permite um quarto fio, para indicar o endereço do escravo (quando há mais de um deles)

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ UART

→ I2C

 \rightarrow SPI

Possui dois fios: clock e dados

Permite comunicação half-duplex

O fio de dados pode ser usado para indicar o endereço do escravo (quando há mais de um deles)

A linha de transmissão (TX) fica em nível alto enquanto não houver dados para enviar

Um bit em nível baixo indica o começo da transmissão (START bit)

O byte de informação é enviado serialmente (neste caso, 0b01010101 ou 0x55)

A ordem dos bits enviados deve ser determinada previamente (LSB ou MSB)

Um bit em nível alto indica o fim da transmissão (STOP bit)

O mesmo protocolo é seguido aqui para enviar o byte 0b11111111, ou 0xFF

Não há sinal de clock. A temporização dos bits deve ser previamente conhecida pelo transmissor e pelo receptor

A taxa de transmissão é chamada de baud rate. Ela é diferente da taxa de dados, já que o protocolo prevê bits extra, como o START e o STOP

Pode-se enviar 7 ou 8 bits de informação (caracteres ASCII, por exemplo, precisam de somente 7 bits)

ST (0)	D0	D1	D2	D3	D4	D5	D6	D7	AD	PA	SP (1)	SP (1)

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	_[Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	"	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	ŕ
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ī
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
			•			•		_			

UAI

Pode-se acrescentar o envio de endereço, no caso de múltiplos transmissores e receptores

ST (0)	D0	D1	D2	D3	D4	D5	D6	D7	AD	PA	SP (1)	SP (1)
--------	----	----	----	----	----	----	----	----	----	----	--------	--------

Pode-se enviar um bit de paridade, para o receptor conferir se houve erro na transmissão

ST (0)	D0	D1	D2	D3	D4	D5	D6	D7	AD	PA	SP (1)	SP (1)
--------	----	----	----	----	----	----	----	----	----	----	--------	--------

Dark		Byte + bit	de paridade
Byte	Quantidade de 1s	Par	Ímpar
0000000	0	o 00000000	1 00000000
01010001	3	1 01010001	o 01010001
01101001	4	o 01101001	1 01101001
10111111	7	1 10111111	o 10111111

Pode-se enviar um bit de paridade, para o receptor conferir se houve erro na transmissão

ST (0)	D0	D1	D2	D3	D4	D5	D6	D7	AD	PA	SP (1)	SP (1)
--------	----	----	----	----	----	----	----	----	----	----	--------	--------

Duto			Byte + bit	de par	idade
Byte		Quantidade de 1s			Ímpar
0000000		0	o 00000000	1	0000000
01010001				7	01010001
01101001		•	os bits 100000000		01101001
10111111	-	· ·	sabe que houve ι pois a quantidade		10111111
	en		a foi ímpar	ue	

Pode-se enviar um segundo bit de STOP, para sistemas mais lentos não perderem o sincronismo

3v3 Power	1	•	0	2	5v Power
GPIO 2 (12C1 SDA)	3	0	0	4	5v Power
GPIO 3 (12C1 SCL)	5	0	•	6	Ground
GPIO 4 (GPCLK0)	7	•	0	8	GPIO 14 (TXD / Transmit)
Ground	9		0	10	GPIO 15 (RXD / Receive)
GPIO 17	11	0	0	12	GPIO 18 (PCM CLK)
GPIO 27	13	•	•	14	Ground
GPIO 22	15	0	0	16	GPIO 23
3v3 Power	17	•	•	18	GPIO 24
GPIO 10 (SPI0 MOSI)	19	•	•	20	Ground
GPIO 9 (SPI0 MISO)	21	•	•	22	GPIO 25
GPIO 11 (SPIO SCLK)	23	•	•	24	GPIO 8 (SPI0 CE0)
Ground	25	•	•	26	GPIO 7 (SPI0 CE1)
GPIO 0 (EEPROM SDA)	27	0	0	28	GPIO 1 (EEPROM SCL)
GPIO 5	29	0	•	30	Ground
GPIO 6	31	0	0	32	GPIO 12 (PWM0)
GPIO 13 (PWM1)	33	•	•	34	Ground
GPIO 19 (PCM FS)	35	0	0	36	GPIO 16
GPIO 26	37	0	0	38	GPIO 20 (PCM DIN)
Ground	39		0	40	GPIO 21 (PCM DOUT)

O Raspbian utiliza a porta serial assíncrona (UART) para acesso remoto ao terminal (bash)*

Para utilizar a UART para outros propósitos, você deve desabilitar este acesso remoto, da seguinte maneira:

^{*}http://elinux.org/RPi Serial Connection#Connection to a microcontroller or other peripheral

1 - Execute

\$ sudo raspi-config

vá em Advanced options -> Serial, e desabilite o acesso:

Would you like a login shell to be accessible over serial? No.

Quando sair deste programa, não o deixe dar reiniciar (reboot) o sistema.

2 - Execute

```
$ grep "enable_uart" /boot/config.txt
```

e verifique se este arquivo contém a linha "enable_uart=1"

Se o arquivo conter a linha "enable_uart=0", abra o arquivo:

\$ sudo nano /boot/config.txt

e troque "enable_uart=0" por "enable_uart=1".

3 - Reinicie o Raspberry Pi:

\$ sudo reboot

4 - Se você estiver usando o Raspberry Pi 3 ou 4, o arquivo de acesso à porta serial não é "/dev/ttyAMA0", e sim "/dev/ttyS0", pois "/dev/ttyAMA0" é a porta serial usada para comunicar com o módulo Bluetooth da placa. Assim, em todos os exemplos desta aula, troque as definições

#define TTY /dev/ttyAMA0

por

#define TTY /dev/ttyS0

Hardware para exemplos UART

