Thus, there exists no real roots for I(y) such that I(x)=0, x ER

Thus for f(1) = A + + B + + C $\Delta < 0$

B2-4AC CO
4 (a1+121...+ an) 2

Lun (a1+121...+an) 2

> (a, 2 + 6, 2 + . . + 0, 2)

 $\sum_{N=1}^{N} a_{N}^{2} > \sum_{N} \left(\sum_{k=1}^{N} a_{k} \right)^{2}$ where equality if N=1

(iii) Suprose that $a_{k} = 34 - 1, k \in \mathbb{Z}$ that $a_{1} = 1, a_{2} = 8, \dots, a_{n} = 3n - 1$ Hence, using (ii), we obtain

= $\frac{1}{N} + N^{\frac{1}{N}} = N^{\frac{3}{2}}$ (using the sum of in arithmetic series $\int S_{N} = \frac{N}{2} (\alpha + e^{-1})^{\frac{3}{2}}$... (1) $\int f(3)^{\frac{3}{2}} + \dots + (3N-1)^{\frac{3}{2}}$

Making the substitution $a_k \rightarrow a_k^2$ gives $\sum_{n=1}^{\infty} a_n^{k} + \frac{1}{n} \left(\sum_{n=1}^{\infty} a_n^2\right)^2$

Hence lusing ag = sh-1, hez,

 $(1)^{\frac{1}{2}} + (3)^{\frac{1}{2}} + \dots + (2n-1)^{\frac{1}{2}}$ $7 = \frac{1}{2} \left((1)^{\frac{1}{2}} + (3)^{\frac{1}{2}} + (3)^{\frac{1}{2}} + \dots + (2n-1)^{\frac{1}{2}} \right)^{\frac{1}{2}}$ $7 = \frac{1}{2} \left((1)^{\frac{1}{2}} + (3)^{\frac{1}{2}} + (3)^{\frac{1}{2}} + (3)^{\frac{1}{2}} \right)^{\frac{1}{2}} = n^{\frac{1}{2}}$

Hence 14 + 34 + ... + (2x-1) + >, x =

Herre pris In-1 - 9n PA + 9A = 9A-1

= (1-9,) + (12-9,) + (93-94) + ... + (9n-1-9n) = 1-9n lusing the established relation, programme -. \(\sum_{k} = 1 - 1 - 1 - 1 (IV) Considering all possible cases n games, IN= 32x VC/ 4 = x(1) ~~ } + (1/6) 1 + MC/ 3/2 (1/2) x-2 = $5 \wedge \left(\frac{1}{6}\right)^n + \left(\frac{1}{6}\right)^n$ + \ v (v-1) +32 + 7 x (7) , } $= \frac{5n}{1} + \frac{1}{6} + \frac{25(n)(n-1)}{1126n}$ 20N + 4 + 25N2-25M = 25 (n-1)2 -5(n-1) +4 Like (n-1 - (_25n2 - 5n +4)

4-x6M

$$= \frac{125 n + 200 - 305}{4 + 6 n} = \frac{25 (n-1) (5 n-8)}{4 + 6 n}$$

as required.

(1) as
$$n \rightarrow \infty$$
, $2n \rightarrow \infty$, thence the probability.

That game never ends $\rightarrow \infty$

$$P(never ends) = 0$$
 as it must end eventually.

Jusay