	TP2 Niveau1 - Bagur Laou-Hap	Pt		А В	C D	Note	
l.	Schématisation de la régulation						
1	Compléter le schéma TI fourni ci-dessus en plaçant les fils permettant un fonctionnement de la régulation de niveau.	1	Α			1	
2	Donner le nom des différents éléments : réglée, réglante, perturbatrice, organe de réglage.	1	Α			1	
3	Dans le schéma fonctionnel ci-dessus, placer les éléments suivants : W, X, LV1, Qout, LV2, Qin, LIC, LT.	1	Α			1	
4	Comment agit le débit Qin sur le niveau X ?	1	С			0,35	
5	Comment agit le débit Qout sur le niveau X ?	1	С			0,35	
6	Quel est le sens d'action du procédé ? En déduire le sens d'action du régulateur.	1	С			0,35	
7	Si l'entrée du bloc H (le réservoir) est soumise à un débit constant non nul, donner l'allure de la mesure en fonction du temps.	1	D			0,05	
8	En déduire si le bloc H est un bloc : stable, instable, integrateur.	1	D			0,05	
II.	L'erreur statique quand Qin = 0						
1	En régime permanent (mesure X constante), quelle est la valeur du Qout ?	1	Α			1	
2	En déduire la commande de la vanne Y si celle-ci est NF.	1	Α			1	
3	Quelle est alors la valeur de l'erreur statique pour les deux bandes proportionnelles ?	1	В			0,75	Justifier
4	Pour les deux valeurs de bande proportionnelle (10%, 20 %), relever la valeur de l'erreur statique.	1	Α			1	
5	Expliquez pourquoi elles sont différentes des valeurs théoriques.	1	С			0,35	
III.	L'erreur statique quand Qin ≠ 0						
1	Relever la valeur de la commande Y pour avoir un niveau stable à 50%.	1	С			0,35	Copie d'écran
2	En régime permanent, quelle sera la valeur de la commande Y ?	1	D			0,05	
3	En déduire, la valeur de l'erreur statique pour les bandes suivantes (10%, 20 %).	1	D			0,05	
4	Pour les deux valeurs de bande proportionnelle (10%, 20 %), relever la valeur de l'erreur statique en fonctionnement.	1	С			0,35	Courbes ?
5	Expliquez pourquoi elles sont différentes des valeurs théoriques.	1	Х			0	
6	Proposer une méthode permettant d'annuler cette erreur statique, sans utiliser de correcteur intégral.	1	Χ			0	
7	Vérifier le fonctionnement de votre méthode, pour Xp égal à 20%. On donnera la valeur réelle de l'erreur statique.	1	Х			0	
			Note: 9,05/20				

TP2: Niveau 1

1)

2) Grandeur réglée : Le niveau

Grandeur réglante: Débit d'eau en sortie Grandeur perturbatrice: Débit d'eau en entrée

Organe de réglage: Électrovanne

3)

4) Quand le débit Qin augmente le niveau d'eau dans la cuve augmente et la mesure X diminue (distance entre l'eau et le capteur).

5) Quand le débit Qout augmente le niveau d'eau dans la cuve diminue et la mesure X augmente (distance entre l'eau et le capteur).

6) Le procédé est inverse ear quand le débit Qin augmente la mesure X diminue. Le régulateur doit done être réglée en directe.

- 7) La mesure X sera constante en fonction du temps.
- 8) Le bloe II est done stable.

II)

- 1) En régime permanent la valeur de Qout est égal à la valeur de Qin. Dans un premier temps, le début Qin=0 alors le débit Qout= 0.
- 2) La valeur de y=0 quand la vanne est NF
- 3) L'erreur statique vaut 0.
- 4) Pour20%

10 carreaux = 100% 0,2 carreaux = 2%

On a une erreur statique de 2% aussi.

5) Les résultats sont différents des valeurs théoriques car il y a des perturbations.

III)

- 1) Pour avoir un niveau stable de 50% on a besoin d'une commande y de 50%
- 2) En régime permanent la valeur de la commande y sera de 100%
 - 3) la valeur de l'erreur statique pour une bande de 10 % est de 6% la valeur de l'erreur statique pour une bande de 20 % est de 8%
- 4) La valeur de l'erreur statique en fonctionnement pour une bande de 10 % est de 8% la valeur de l'erreur statique en fonctionnement pour une bande a 20 % est de 13%