PN基础 (3): OSI参考模型与PROFINET

原创 杨德奇 PROFINET 2019-07-26 19:19

收录于合集

#PN基础

6个

谈到通信的时候,经常会提到OSI参考模型。什么OSI是参考模型呢?

OSI (Open System Interconnection , 开放系统互联)参考模型是 ISO (International Standard Orgnization , 国际标准化组织)制定的定义和描述用于计算机或通信系统间互联的标准框架。该模型将一个通信系统抽象的划分为七个不同的层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,所以该模型也称为七层模型。

			0S1	开放系统互连参考模型	
层			协议数据单元 PDU	功能	
主机层	7	应用层	数据Data	最靠近用户的一层,提供应用接口和直接提供各种网络服务。	
	6	演示层		网络服务与应用程序之间的数据转换,字符编码,数据压缩和加/解密	
	5	会话层		管理通信会话,即以两个节点之间多次来回传输的形式连续地交换信息。	
	4	运输层	数据段 Segment	在网络上的点之间可靠地传输数据段,包括分段,确认和多路复用	
媒	3	网络层	数据包 Packet	构建和管理多节点网络,包括寻址,路由, 流量控制	
体	2	数据链路层	帧Frame	通过物理层连接的两个节点之间的数据帧的可靠传统。_PROFINET	
层	1	物理层	符号sysbol	原始比特流在物理介质上的传输和接收	

除了有OSI的七层模型,还有一个TCP/IP的四层模型。TCP/IP 模型与OSI模型的对应关系以及各层的协议产品如下图所示。

OSI vs TCP/IP						
OSI七层网络模型	TCP/IP四层概念模型	对应网络协议	对应的典型设备	区域		
应用层(Application)		TFTP. FTP. NPS. WAIS	SUTTENT. MITT.			
表示是(Presentation)	应用票	Telnet, Riogin, SMMP. Gopher	備冊方式。而像鐵餅码 。ENL字投传物编码			
会话是(Session)		SMTP. DNS	建立会话。\$8\$\$20例以证 、新点接待	计算机		
传输器(Transport)	传输层	TCP. UDP	透程和端口			
网络是 (Network)	興採提	IP. ICMP. ARP. RARP. AKP.	路出疆。 防火塘、多层 交换机			
数景链路是 (Data Link)		FDDI. Ethernet. Arpanet. FDN. SLIP. PPP	用卡、用新、交换机	MA NET		
物理层 (Physical)	网络接口	IEEE 802. 1A. IEEE802. 256 IEEE802. 11	中華版。(2008年)(10年) 1008			

具体到PROFINET通信,它在OSI模型上的映射如下图:

7	应用层	PROFINET 服务 IEC61158
5/6	会话层/表示层	空
4	传输层	UDP (RFC 768)
3	网络层	IP (RFC 791)
2	数据链路层	实时增强功能 IEC61784-2 IEEE802.3, 全双工 IEEE802.1Q 优先级标签
1	物理层	IEEE802.3 100 Base TX IEEE802.3 100 Base FX 无线 PROFINET

结合PN的数据通道来理解,可以看到以太网定义了物理层和数据链路层,其上的网络层和传输层对应着IP和TCP/UDP, PROFINET的服务位于最上面的应用层。PROFINET数据可以分为两大类,一类是非实时的标准数据,它在传输层应用到UDP,网络层用到IP,再往下是以太网。另一类实时数据则跳过了传输层和网络层,从应用层直接到了以太网层,在以太网层面上采用的是IEEE802.3百兆全双工的网络,以及IEEE802.1Q定义的优先级或根据IEC61784-2而采用的包括时钟同步等在内的增强实时功能。

往期文章回顾:

PN基础 (1): 什么是PROFINET

PN基础(2): 以太网 工业以太网 PROFINET

ps: 微信暂停了新注册公众号的评论功能, 欢迎大家关注本公众号, 并进入公众号后在对话界面提出您的宝贵意见和建议。

点击阅读原文,了解更多关于OSI和TCP/IP模型信息