浙江工业大学期终考试命题稿

2020/2021 学年第 2 学期

课程名称	机械原理	使用班级	机械
教师份数	10	学生份数	
命题人	王 晨	审核人签字	
命题总页数	页	每份试卷 需用白纸	1 大张
AB 卷、近四年试剂	是		
试卷中一部分试题 的考试区分度?	是		
试卷考核的内容是 程目标?	是		

命题注意事项

- 一、命题稿请用 A4 纸电脑打印,或用教务处印刷的命题纸用黑色水笔书写,保持字迹清晰,页码完整。
- 二、AB 卷必须难度相当、覆盖面相同,卷面上不注明 A、B 字样,由教务处抽取其中一套作为期终考试卷。
- 三、命题稿必须经基层教学组织负责人或系主任审核签字,并在考试前两周交教务处。

浙江工业大学 2020/2021 学年

第 2 学期试卷

				14 —	7 /9	7 12 C	•			
班级	班级									
学号			任课教师							
题序		<u> </u>		四	五.	六	七	八	九	总评
计分								<		
								17		
一、填空	这题(每:	空1分,	共 12 分)						
1. 在平	面机构中	,一个平	西低副	提供2_	_个约束	,一个平	面高副	是供 <u>1</u>	_个约束	o
2. 速度	影像的相	似原理兒	R能应用-	于同-	一构件	,而不	能应用一	于整个机	构。	
3. 从效	率的观点	来看,机	1构自锁	的条件是	效率小	卜于等于	<u>0</u> 。			
4. 平衡	技术中常	·把远低-	于机器的	一阶固有	 	转子称为	」	性转子	接近5	或超过机
器的一阵	个固有频	率的转子	称为	挠性转子	<u>.</u> .					
5. 机器	周期性速	度波动的	的调节方法	法一般是	加装	飞轮	非周期	性速度波	支动调节:	方法是除
机器本身	身有自调的	性的外一	般加装_	调速	器。					
6. 平行	四边形机	构的极位	z夹角等-	于0_	0					
7. 平底	垂直于导	路的直动	力推杆盘	形凸轮机	构中,其	其压力角	等于0_	0 。		
8. 对标		柱齿轮茅	そ说,已经	知压力角	$\alpha = 20^{\circ}$,齿顶高	系数 h_a^*	=1,其不	下发生根 ⁺	切的最小
齿数是_	17									
9. 差动:	轮系有_	2	由度。							
二、选择	¥答案('	每空1分	,共12	分)						
1. 某机	构为 III 组	及机构,	那么该机	.构应满足	足的必要	充分条件	是(D)。		
A. 含有	一个原动]件组;	C	. 最多含	有一个]	III 级杆组	l;			
B. 至少含有一个基本杆组; D. 至少含有一个 III 级杆组。										
2. 某机	构中有 6	个构件,	则该机构	勾的全部	瞬心数目	月为(I)) 。			

-
A. 3 B. 6 C. 9 D. 15
3. 一台机器空运转,对外不作功,这时机器的效率 (C)。
A. 大千零; B. 小于零;
C. 等千零; D. 大小不一定。
4. 图示轴颈 1 在驱动力矩 M_d 作用下等速运转, Q 为载荷,图中半径为 R_{21}
ρ 的细线圆为摩擦圆,则轴承 2 作用到轴颈 1 上的全反力 R_{21} 应是图中所
示的(C)作用线。
A. A B. B C. C D. D E. E
5. 达到动平衡的回转件(A)是静平衡。
A. 一定 B. 不一定 C. 有可能 D. 不可能
6. 机械运转中,转子动平衡的条件是:回转件各不平衡质量产生的离心惯性力系的(C)。
A. 合力等千零 B. 合力偶矩等千零
C. 合力和合力偶矩均为零 D. 合力和合力偶矩均不为零
7. 对于存在周期性速度波动的机器,安装飞轮主要是为了在(C)阶段进行速度调节。
A. 起动 B. 停车 C. 稳定运转
8. 对于双摇杆机构,最短构件与最长构件长度之和(B)大于其余两构件长度之和。
A. 一定 B. 不一定 C. 一定不
9. 当凸轮机构的从动件推程按等加速等减速规律运动时,推程开始和结束时(B)。
A.存在刚性冲击 B. 存在柔性冲击 C. 不存在冲击
10. 斜齿圆柱齿轮的标准模数和标准压力角在 (D)上。
A. 端面 B. 轴面 C. 主平面 D. 法面
11. 轮系中若有某个齿轮的轴线相对于机架不是固定的,则可认为此轮系为(B)。
A. 定轴轮系
12. 在单向间歇运动机构中,(C)可以获得不同转向的间歇运动。
A. 不完全齿轮机构 B. 圆柱凸轮间歇运动机构
C. 棘轮机构 D. 槽轮机构

三、如图所示,已知: BC // DE // GF,且分别相

等,计算平面机构的自由度。若存在复合较链、

局部自由度及虚约束,请指出。(共9分)

解:复合铰链 B 处 (可不答);局部自由度如图 B

处; (2分)虚约束为 DE 杆及其两端的转动副(2

分)。

需约束计算 $p' = 2P_l' - 3n' = 2 \times 2 - 3 \times 1 = 1$ (可不计算)

$$F = 3n - (2P_l + P_h - p') - F' = 3 \times 8 - (2 \times 11 + 1 - 1) - 1 = 1 \quad (5 \%)$$

四、在图示的机构中,已知各构件尺寸如图所示。原动件1的速度为v₁。试:

- ⑴确定在图示位置该机构的所有速度瞬心。
- (2)利用瞬心法求构件 3 的角速度 ω_3 。(共 10 分)
- (1) 机构的所有瞬心位置如图所示。

(每个瞬心1分,共6分)

(2) 求构件 3 的角速度 ω_3 。 因为有

$$v_{P_{13}} = v_1 = \omega_3 \overline{P_{13}P_{34}}$$

所以角速度为

$$\omega_3 = \frac{v_1}{P_{13}P_{34}}, 顺时针方向$$

(4分)

五、在图示连杆机构中,已知驱动力矩 M_d 和摩擦角 φ 如图所示。 图中虚线小圆为转动副的摩擦圆,Q 为阻力。

- (1)直接在图上画出各运动副中反力作用线的位置和方向;
- (2) 写出构件 3 的力平衡方程式; 画出构件 3 的力多边形草图。(共 12 分)

- (1)各运动副反力作用线及方向见图
- (2)构件 3 的力平衡方程式: $Q+F_{R43}+F_{R23}=0$,构件 3 的力多边形草图如图示。

六、采用图解法设计一曲柄摇杆机构。已知 $L_{AD}=75mm$, $L_{CD}=60mm$, 当曲柄转角 $\varphi=150^\circ$ 时摇杆处于右极限位置,要求机构行程速比系数 K=1.18182 ,如图所示。(自定比例尺作图)(共 12 分)

解:选取绘图比例尺 $\mu_L = 0.002 \text{m/mm}$ 。其中:极位夹角 $\theta = \frac{180^{\circ} \times (K-1)}{(K+1)} = 15^{\circ}$ 。

接已知条件作出固定铰链点 A 和 D;按 φ =150°过 A 点作射线交由 D 点为圆心,以 l_{CD} 为半径的 C 点所在圆(有两个交点,即两组解),如图 8-101 中为 C_2 点;作 AC_1 ,使 $\angle C_2AC_1$ 为 θ (=15°),得到 C_1 点。因为 $l_{AC_2} = \frac{(l_{AB} + l_{BC})}{2}$, $l_{AC_1} = \frac{(l_{BC} - l_{AB})}{2}$,而 $l_{AC_2} = \overline{AC_2}\mu_{\text{L}}$, $l_{AC_1} = \overline{AC_1}\mu_{\text{L}}$,所以有:

$$l_{AB} = 97 \, \text{mm}, l_{BC} = 15 \, \text{mm}$$

七、图示为直动从动件盘形凸轮机构,凸轮逆时针转动。试求:

- (1)由图示位置计算,当凸轮转过 90° 时,从动件上升的距离S;
- ②当凸轮转过90°时,将此时凸轮机构压力角 α 表示在图中;
- ③如果凸轮轮廓不变,将从动件滚子变成尖顶,此时从动件上升的距离是否改变?

(共10分)

(1)由反转法,当凸轮转过 90° 时,取 AB=A'B',从动件上升距离为 S,如图 所示。

(2)压力角 α 如图 9-9 所示。

图 9-9

(3)从动件上升距离变化,因为两处凸轮轮廓的曲率不一样,所以切点位置会有差异。

八、有一对标准正常外啮合渐开线直齿圆柱齿轮传动,如图示,已知:中心距 a= 100mm,传动比 $i_{12}=1.5$,压力角 $\alpha=20^{\circ}$.试:

- (1)选择合理的模数m和齿数 Z_1 、 Z_2 。要求: ①因强度要求,其模数m不小于 3,且按第一系列(… 3,4,5,6, •••)选择; ②小齿轮齿数 Z_1 按不根切选择;
- (2)计算齿轮 2 的 r_{a2} 、 r_2 、 r_{b2} 、 r_{f2} , 并将这些符号一一标注在下图中对应的位置;
- (3)直接在图中作出理论啮合线 N_1N_2 和实际啮合线 B_1B_2 。(共 14 分)

1.
$$a = \frac{1}{2} m(z_1 + z_2) = \frac{1}{2} m(1 + i) z_1$$
 $mz_1 = 80$

若 m = 3, $z_1 = 26.6$, 为非整数, 不行; 若 m = 4, $z_1 = 20$, 可以; 若 m = 5

$$z_1$$
 根切,不行。所以取 $m=4$ mm, $z_1=20$, $z_2=30$ 。

2.
$$r_{a2} = \frac{1}{2} m z_2 + h_a m = 64 \text{mm}$$
 $r_2 = \frac{1}{2} m z_2 = 60 \text{mm}$ $r_{b2} = \frac{1}{2} m z_2 \cos \alpha = 56.38 \text{mm}$ $r_{f2} = \frac{1}{2} m z_2 - (h_a + c^*) m = 55 \text{mm}$

九、求图示轮系中的 n_H ,已知 $n_1 = 13r/\min$,

 $n_4 = 240r/\min$,蜗杆4为单头右旋,图中括

号内的数值为各轮的齿数。(共9分)

解:

对定轴轮系3′-4,

$$i_{43} = \frac{n_4}{n_3} = \frac{z_3^2}{z_4} = \frac{100}{1}$$
,所以 $n_3 = \frac{n_4}{100} = \frac{240}{100} = 2.4 \text{ r/min}$,方向如图所示。 ---2 分

对周转轮系 3-2'-2-1-H,

$$i_{31}^{\mathrm{H}} = \frac{n_3 - n_{\mathrm{H}}}{n_1 - n_{\mathrm{H}}} = -\frac{z_2}{z_3} \cdot \frac{z_1}{z_2} = -\frac{40}{50} \cdot \frac{30}{20} = -\frac{6}{5}, \quad \text{ID} \frac{2.4 - n_{\mathrm{H}}}{-13 - n_{\mathrm{H}}} = -\frac{6}{5}, \quad \text{Meff } n_{\mathrm{H}} = -6 \text{ r/min} \quad ---6 \text{ f/min}$$

即 $n_{\rm H}$ 大小为 6 r/min ,方向与齿轮 1 转向相同。---1 分