Тема: Метод наименьших квадратов

 1^0 . Постановка линейной задачи метода наименьших квадратов. Связь с задачей интерполяции функции обобщенным полиномом конечной длины в большом числе узлов. Среднеквадратичное уклонение. Полином наилучшего среднеквадратичного приближения. 2^0 . Нормальная система метода наименьших квадратов. Теорема о существовании единственного полинома наилучшего среднеквадратичного приближения. Случай алгебраических полиномов. Пример. 3^0 . Вычислительные аспекты задачи метода наименьших квадратов: симметричность и положительная определенность матрицы нормальной системы, ее обусловленность. Зависимость обусловленности от выбора полиномиального базиса.

 1^0 . Пусть функция y=f(x) задана некоторой таблицей приближенных значений

$$f(x_i) \approx y_i, \quad i = 0, 1, 2, \dots, n.$$

Величины y_i известны с ошибками $\varepsilon_i = y_i^0 - y_i$, где $y_i^0 = f(x_i)$. Если значения y_i получены экспериментально, то ошибки носят случайный характер. Уровень погрешности ("шумов") при этом бывает весьма существенным.

Предположим, что для восстановления f(x) используются линейные комбинации вида

$$\Phi_{m}(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \ldots + a_m \varphi_m(x).$$

Здесь $\varphi_0(x)$, $\varphi_1(x)$, ..., $\varphi_m(x)$ — заданные вещественнозначные базисные функции. Коэффициенты a_0, a_1, \ldots, a_m — это параметры модели, которые требуется определить по исходной таблице. Как правило, $m \ll n$.

Функция $\Phi_{m}(x)$ называется обобщенным полиномом. Часто в качестве базисных выбираются степени независимой переменной. В этом случае вместо обобщенного используется обычный полином

$$P_m(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m.$$

Если уровень неопределенности исходных данных высок, неестественно требовать совпадения значений обобщенного полинома $\Phi_{m}(x)$ в узловых точках x_{i} таблицы с числами y_{i} .

Иными словами, в этом случае не имеет смысла использовать обычную интерполяцию, которая в лучшем случае приводит к повторению исходных больших ошибок наблюдений, в то время как обработка экспериментальных данных требует сглаживания ошибок (избавления от шумов).

Отказ от точных равенств $\Phi_m(x_i) = y_i$ в точ-ках x_i компенсируется требованием приближенных равенств $\Phi_m(x_i) \approx y_i$ при $i=0,1,\dots,n$.

Система приближенных равенств при этом записывается в покомпонентном виде:

$$\begin{cases} a_0\varphi_0(x_0) + a_1\varphi_1(x_0) + \ldots + a_m\varphi_m(x_0) \approx y_0, \\ a_0\varphi_0(x_1) + a_1\varphi_1(x_1) + \ldots + a_m\varphi_m(x_1) \approx y_1, \\ \ldots & \ldots & \ldots \\ a_0\varphi_0(x_n) + a_1\varphi_1(x_n) + \ldots + a_m\varphi_m(x_n) \approx y_n. \end{cases}$$

Предлагаются различные критерии, позволяющие выбрать параметры $a_0,\ a_1,\ \ldots,\ a_m$ так, чтобы выписанная система линейных приближенные равенства выполнялась наилучшим в каком-либо смысле образом.

Один из таких критериев, используемый чаще всего, называется **методом наименьших квадратов**. В этом методе минимизируется среднеквадратичное уклонение, определяемое равенством

$$\delta(\Phi_m, \overrightarrow{y}) = \left[\frac{1}{n+1} \sum_{i=0}^{n} (\Phi_m(x_i) - y_i)^2\right]^{1/2}.$$

Величина $\delta(\Phi_m, \overrightarrow{y})$ является мерой отклонения обобщенного полинома Φ_m от вектора $\overrightarrow{y} = (y_0, y_1, \dots, y_n)$ заданных табличных значений.

Минимум среднеквадратичного уклонения достигается при тех же значениях коэффициентов a_0, a_1, \ldots, a_m , что и минимум функции, задаваемой следующим равенством

$$S(\overrightarrow{a},\overrightarrow{y}) = \sum_{i=0}^{n} \left\{ \sum_{j=0}^{m} a_{j} \varphi_{j}(x_{i}) - y_{i} \right\}^{2}.$$

Относительно переменных $\overrightarrow{a}=(a_0,a_1,\ldots,a_m)$ минимизируемая функция является квадратичной. Ее эквивалентное задание имеет вид

следующего равенства:

$$S(\overrightarrow{a},\overrightarrow{y}) = \left(P\overrightarrow{a}-\overrightarrow{y},P\overrightarrow{a}-\overrightarrow{y}
ight) = \|P\overrightarrow{a}-\overrightarrow{y}\|_2^2.$$

Здесь P — это прямоугольная матрица размера $n \times m$. Ее элементы определяются по значениям базисных функций $\varphi_j(\cdot)$ в узлах

интерполяции следующим образом:

$$P = \begin{pmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_m(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_m(x_1) \\ \varphi_0(x_2) & \varphi_1(x_2) & \cdots & \varphi_m(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_0(x_n) & \varphi_1(x_n) & \cdots & \varphi_m(x_n) \end{pmatrix}. \tag{P_M}$$

Функции $\delta(\Phi_m, \overrightarrow{y})$ и $S(\overrightarrow{a}, \overrightarrow{y})$ связаны между собой следующим соотношением:

$$[\delta(\Phi_{m{m}},\overrightarrow{y})]^2=rac{1}{n+1}S(\overrightarrow{a},\overrightarrow{y}).$$

Линейная задача МНК. Требуется найти такой обобщенный полином

$$\Phi_{m}^{\overrightarrow{y}}(x) = a_{0}(\overrightarrow{y})\varphi_{0}(x) + a_{1}(\overrightarrow{y})\varphi_{1}(x) + \ldots + a_{m}(\overrightarrow{y})\varphi_{m}(x),$$

для которого среднеквадратичное уклонение $\delta(\Phi_m^{\overrightarrow{y}}, \overrightarrow{y})$ принимает минимальное возможное значение:

$$\delta(\Phi_{m}^{\overrightarrow{y}}, \overrightarrow{y}) = \min_{\Phi_{m}} \delta(\Phi_{m}, \overrightarrow{y}).$$

Удовлетворяющий последнему условию обобщенный полином $\Phi_m^{\overrightarrow{y}}$ называют полиномом наилучшего среднеквадратичного приближения.

 2^0 . К решению линейной задачи МНК применяются различные подходы. Простейший из них состоит в использовании необходимого условия экстремума функции $S(\overrightarrow{a}, \overrightarrow{y})$ по переменным \overrightarrow{a} , состоящего в равенстве нулю

в точке минимума функции ее частных производных:

$$rac{\partial S}{\partial a_k}(\overrightarrow{a},\overrightarrow{y})=0, \hspace{0.5cm} k=0,1,2,\ldots,m. \hspace{0.5cm} (NS)$$

Учитывая, что по определению

$$S(\overrightarrow{a},\overrightarrow{y}) = \sum_{i=0}^{n} \left\{ \sum_{j=0}^{m} a_{j} \varphi_{j}(x_{i}) - y_{i} \right\}^{2},$$

вычислим частные производные в левой ча-

сти последнего равенства. Тогда получаем

$$\frac{\partial S}{\partial a_k}(\overrightarrow{a},\overrightarrow{y}) = \sum_{i=0}^n 2\sum_{j=0}^m \left(a_j\varphi_j(x_i) - y_i\right)\varphi_k(x_i) = 0.$$

Изменяя порядок суммирования и сокращая на 2, приходим к системе линейных уравнений

$$\sum_{j=0}^{m} \left(\sum_{i=0}^{n} \varphi_j(x_i) \varphi_k(x_i)\right) a_j = \sum_{i=0}^{n} y_i \varphi_k(x_i), \quad (NS')$$

где
$$k=0,1,2,\ldots,m$$
.

Эта квадратная $(m+1) \times (m+1)$ система линейных уравнений относительно вектора неизвестных $\overrightarrow{a} = (a_0, a_1, \dots, a_m)$ называется **нор-мальной системой МНК**.

В матричном виде нормальная система (NS') записывается в следующем виде:

$$P^T P \overrightarrow{a} = P^T \overrightarrow{y}.$$

Здесь P — это матрица, определяемая равенством

$$P = \begin{pmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_m(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_m(x_1) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_0(x_n) & \varphi_1(x_n) & \cdots & \varphi_m(x_n) \end{pmatrix},$$

а P^T — к ней транспонированная.

Произведение $\Gamma = P^T P$ — это матрица Гра-ма, элементы которой получаются как спе-

циального типа скалярное произведение столбцов матрицы P:

$$\gamma_{ij} = \sum_{k=0}^{n} \varphi_i(x_k) \varphi_j(x_k), \quad \Gamma = (\gamma_{ij}).$$

Полагая $\overrightarrow{b}=P^T\overrightarrow{y}$, получаем для минимизирующего среднеквадратичное уклонение вектора коэффициентов $\overrightarrow{a}=(a_0,a_1,\ldots,a_m)$ ситора

стему линейных уравнений

$$\Gamma \overrightarrow{a} = \overrightarrow{b}.$$
 (NS'')

Лемма. Пусть вектор \overrightarrow{a} является решением системы (NS''). Тогда для любого вектора $\overrightarrow{a}' = \overrightarrow{a} + \overrightarrow{\Delta a}$ справедливо равенство

$$S(\overrightarrow{a}', \overrightarrow{y}) = S(\overrightarrow{a}, \overrightarrow{y}) + ||P\overrightarrow{\Delta a}||_2^2.$$

вектора $\overrightarrow{a}' = \overrightarrow{a} + \overrightarrow{\Delta a}$ справедливы равенства

$$egin{aligned} S(\overrightarrow{a}',\overrightarrow{y}) &= \|P(\overrightarrow{a}+\overrightarrow{\Delta a})-\overrightarrow{y}\|_2^2 = \ &= (P(\overrightarrow{a}+\overrightarrow{\Delta a})-\overrightarrow{y},P(\overrightarrow{a}+\overrightarrow{\Delta a})-\overrightarrow{y}) = \ &= (P\overrightarrow{a}-\overrightarrow{y}+P\overrightarrow{\Delta a},P\overrightarrow{a}-\overrightarrow{y}+P\overrightarrow{\Delta a}) = \ &= (P\overrightarrow{a}-\overrightarrow{y},P\overrightarrow{a}-\overrightarrow{y})+2(P\overrightarrow{a}-\overrightarrow{y},P\overrightarrow{\Delta a})+(P\overrightarrow{\Delta a},P\overrightarrow{\Delta a}). \end{aligned}$$

Выражение в правой части допускает запись в следующей эквивалентной форме:

$$\|P\overrightarrow{a} - \overrightarrow{y}\|_2^2 + 2(P^TP\overrightarrow{a} - P^T\overrightarrow{y}, \overrightarrow{\Delta a}) + \|P\overrightarrow{\Delta a}\|_2^2.$$

Используя введенные ранее матрицу $\Gamma = P^T P$ и вектор $\overrightarrow{b} = P^T \overrightarrow{y}$, получаем

$$S(\overrightarrow{a}', \overrightarrow{y}) = \|P\overrightarrow{a} - \overrightarrow{y}\|_2^2 + 2(\Gamma \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{\Delta a}) + \|P\overrightarrow{\Delta a}\|_2^2.$$

Но по условию $\Gamma \overrightarrow{a} = \overrightarrow{b}$ и поэтому второго слагаемого в последней строке полученного равенства не будет:

$$(\Gamma \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{\Delta a}) = 0.$$

Таким образом, получаем требуемое соотношение

$$S(\overrightarrow{a}', \overrightarrow{y}) = S(\overrightarrow{a}, \overrightarrow{y}) + \|P\overrightarrow{\Delta a}\|_2^2.$$

Следовательно, значение рассматриваемой квадратичной функции на любом возмущенном векторе \overrightarrow{a}' не меньше ее значения на решении \overrightarrow{a} системы (NS'').

Теорема. Пусть порождающие функции φ_0 , φ_1 , ..., φ_m линейно независимы. Тогда полином наилучшего среднеквадратичного приближения $\Phi_m^{\overrightarrow{y}}(x)$ существует и единствен.

Доказательство. Матрица Γ — это матрица Γ рама линейно независимой системы φ_0 , φ_1 , ..., φ_m . Ее определитель, как известно, не равен нулю. Поэтому решение системы $\Gamma \overrightarrow{a} = \overrightarrow{b}$ существует и единственно.

Это означает, что если полином наилучшего среднеквадратичного приближения $\Phi_m^{\overrightarrow{y}}(x)$ существует, то его коэффициенты

$$\overrightarrow{a} = (a_0, a_1, \dots, a_m)$$

определяются однозначно.

Пусть $\overrightarrow{a'}
eq \overrightarrow{a}$, тогда $\overrightarrow{\Delta a}
eq 0$ и по предыдущей лемме имеем

$$S(\overrightarrow{a}', \overrightarrow{y}) = S(\overrightarrow{a}, \overrightarrow{y}) + \|P\overrightarrow{\Delta a}\|_2^2 > S(\overrightarrow{a}, \overrightarrow{y}).$$

Это означает, что вектор \overrightarrow{a} доставляет функции $S(\overrightarrow{a}', \overrightarrow{y})$ минимум.

Замечание. Если m=n, а функции φ_0 , φ_1 , ..., φ_m линейно независимы, то полином наилучшего среднеквадратичного приближения, найденный методом наименьших квадратов, совпадает с интерполяционным полиномом, построенным по узлам x_0 , x_1 , ..., x_n .

При использовании МНК, как правило, предполагается, что $m \ll n$. В этом случае метод обладает сглаживающими свойствами.

Часто для приближения по МНК используется система алгебраических степеней

$$1, \quad x, \quad x^2, \quad \ldots, \quad x^m,$$

причем число интерполяционных условий не меньше, чем число базисных мономов, то есть $m \leq n$.

В силу линейной независимости рассматриваемых степенных функций по доказанной теореме алгебраический полином наилучшего среднеквадратичного приближения в этом случае существует и единствен.

Для степенных функций $\varphi_{k}(x) \equiv x^{k}$ нормальная система (NS'') записывается в следую-

щем покомпонентном виде:

$$\sum_{j=0}^{m} \left(\sum_{i=0}^{n} x_i^{j+k} \right) a_j = \sum_{i=0}^{n} y_i x_i^k, \quad k = 0, 1, \dots, m.$$

Если m=1, то эта система принимает вид

$$egin{cases} (n+1)a_0 + (\sum\limits_{i=0}^n x_i)a_1 = \sum\limits_{i=0}^n y_i, \ (\sum\limits_{i=0}^n x_i)a_0 + (\sum\limits_{i=0}^n x_i^2)a_1 = \sum\limits_{i=0}^n x_i y_i. \ i=0 \end{cases}$$

Среднеквадратичное приближение при этом осуществляется линейной функцией — полиномом $a_0 + a_1 x$.

В случае m=2 имеем

$$\begin{cases} (n+1)a_0 + (\sum\limits_{i=0}^n x_i)a_1 + (\sum\limits_{i=0}^n x_i^2)a_2 = \sum\limits_{i=0}^n y_i, \\ (\sum\limits_{i=0}^n x_i)a_0 + (\sum\limits_{i=0}^n x_i^2)a_1 + (\sum\limits_{i=0}^n x_i^3)a_2 = \sum\limits_{i=0}^n y_ix_i, \\ (\sum\limits_{i=0}^n x_i^2)a_0 + (\sum\limits_{i=0}^n x_i^3)a_1 + (\sum\limits_{i=0}^n x_i^4)a_2 = \sum\limits_{i=0}^n y_ix_i^2. \end{cases}$$

Приближение осуществляет квадратичная функция — полином наилучшего среднеквадратчного приближения

$$P_2(x) = a_0 + a_1 x + a_2 x^2.$$

Задача. Пусть функция y = f(x) задана следующей таблицей:

										0.9
$oldsymbol{y}$	0.21	0.23	0.31	0.29	0.42	0.35	0.58	0.61	0.59	0.66

Требуется аппроксимировать f(x) полинома-ми первой и второй степени, построенными по методу наименьших квадратов.

Решение. Вычислим суммы в нормальных системах, соответствующих двум первым зна-

чениям m=1 и m=2. Получим

$$\begin{array}{ll} \sum\limits_{i=0}^9 x_i = 4.5, & \sum\limits_{i=0}^9 x_i^2 = 2.85, & \sum\limits_{i=0}^9 x_i^3 = 2.025, \\ & \sum\limits_{i=0}^9 x_i^4 = 1.5333, \\ \sum\limits_{i=0}^9 y_i = 4.25, & \sum\limits_{i=0}^9 y_i x_i = 2.356, & \sum\limits_{i=0}^9 y_i x_i^2 = 1.6154. \end{array}$$

Для коэффициентов полинома наилучшего среднеквадратичного приближения $P_1(x) =$

 $a_0 + a_1 x$ имеем систему линейных уравнений

$$\begin{cases} 10a_0 + 4.5a_1 = 4.25, \\ 4.5a_0 + 2.85a_1 = 2.356. \end{cases}$$

Ее решение: $a_0 \approx 0.183$, $a_1 \approx 0.538$.

При этом

$$\delta_1 = \left[\frac{1}{10} \sum_{i=0}^{9} (P_1(x_i) - y_i)^2\right]^{1/2} \approx 0.0486.$$

Для m=2 имеем систему

$$\begin{cases} 10a_0 + 4.5a_1 + 2.85a_2 = 4.25, \\ 4.5a_0 + 2.85a_1 + 2.025a_2 = 2.356, \\ 2.85a_0 + 2.025a_1 + 1.5333a_2 = 1.6154. \end{cases}$$

Ее решение: $a_0 \approx 1.194$, $a_1 \approx 0.452$, $a_2 \approx 0.0947$.

Среднеквадратичное отклонение при этом опре-

деляется равенством

$$\delta_2 = \left[\frac{1}{10} \sum_{i=0}^{9} (P_2(x_i) - y_i)^2\right]^{1/2} \approx 0.0481.$$

Отметим, что средняя погрешность в исходных данных заведомо превышает 0.01.

По этой причине приближение полиномами первой и второй степени дают практически

эквивалентный результат. Но в силу большей простоты следует предпочесть линейное приближение $f(x) \approx P_1(x)$.

 3^{0} . Метод вычисления параметров

$$(a_0,a_1,a_2,\ldots,a_m)$$

как решения нормальной системы весьма привлекателен: задача сведена к системе линейных алгебраических уравнений с квадратной матрицей. Матрица Г этой системы симметрична и положительно определена.

Тем не менее, если не выбирать исходные базисные функции

$$\varphi_0(x), \quad \varphi_1(x), \quad \varphi_2(x), \quad \dots, \quad \varphi_m(x)$$

специальным образом, то уже при m>5 нормальная система оказывается плохо обусловленной.

Это происходит, во-первых, из-за того, что функции φ_0 , φ_1 , ..., φ_m . хотя и являются линейно независимыми, но при этом могут оказаться в совокупности очень близки к линейно зависимой системе.

Во-вторых, при переходе к нормальной системе $P^TP\overrightarrow{a}=P^T\overrightarrow{y}$ происходит симметризация матрицы системы, но при этом обусловленность решаемой СЛАУ еще более ухудшается.

Простейший пример "почти линейно зависимой" системы дает система $1, x, x^2, \dots, x^m$ при больших m.

В определенном смысле "наиболее линейно независимой" является система функций φ_0 , φ_1 , ..., φ_m , ортогональная в скалярном произведении, присутствующем в определении элементов матрицы Грама Г.

В случае ортогональных базисных функций матрица Γ диагональна, а потому решение системы $\Gamma \overrightarrow{a} = \overrightarrow{b}$ легко вычисляется:

$$egin{cases} a_k = rac{b_k}{\gamma_{kk}}, \ b_k = \sum\limits_{i=0}^{n} y_i arphi_k(x_i), \ \gamma_{kk} = \sum\limits_{i=0}^{n} arphi_k^2(x_i), \ i=0 \end{cases} \qquad k=0,1,2,\ldots,n.$$

Однако выбор ортогональной системы далеко не всегда возможен. Поэтому часто используются системы базисных функций, для которых матрица Грама лишь близка к диа-гональной.

При аппроксимации на отрезке [-1,1] пример такой системы дают **полиномы Чебышёва**

$$T_0(x), T_1(x), T_2(x), \ldots, T_m(x).$$

Полиномы Чебышёва определяются следующими рекуррентными соотношениями:

$$T_0(x) = 1, \ T_1(x) = x,$$

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$

Найденный по базисным функциям $T_0(x)$, $T_1(x)$, ..., $T_m(x)$ полином наилучшего среднеквадратичного приближения

$$\widetilde{P_m}(x) = \widetilde{a_0}T_0(x) + \widetilde{a_1}T_1(x) + \ldots + \widetilde{a_m}T_m(x)$$

допускает также стандартное разложение по степеням $oldsymbol{x}$.

Однако задача отыскания коэффициентов $\widetilde{a_0},\ \widetilde{a_1},\ \ldots,\ \widetilde{a_m}$ в разложении по полиномам Чебышёва обладает гораздо лучшей обусловленностью и по этой причине предпочтительнее с вычислительной точки зрения.

Тема: Дискретное преобразование Фурье

 1^0 . Аналог разложения в ряд Фурье функции, известной лишь в конечном числе узлов. 2^0 . Система для коэффициентов разложения в покомпонентном и матричном виде, ее симметризация. 3^0 . Лемма об ортогональности базисных функций в дискретном скалярном произведении. Определение прямого и обратного дискретного преобразования Фурье. 4^0 . Расчетные формулы для быстрого преобразования Фурье. Подсчет и сравнение количества арифметических операций. 5^0 . Задача тригонометрической интерполяции и ее чувствительность к погрешностям в исходных данных.

 1^0 . В приложениях широко используются различные варианты преобразования Фурье функций непрерывного аргумента — важной операции математического анализа. Не менее часто применяется представление функций, непрерывных и периодических, в виде сходящихся тригонометрических рядов Фурье.

Как известно, всякая непрерывно дифференцируемая периодическая с периодом 1

функция f = f(x) разложима в сходящийся ряд Фурье:

$$f(x) = \sum_{k=-\infty}^{+\infty} \alpha_k e^{i2\pi kx}. \tag{FS}$$

Символ i в степени экспоненты — это, как обычно, мнимая единица. Коэффициенты разложения (FS) вычисляются по формулам

$$lpha_k = \int\limits_0^1 f(x)e^{-i2\pi kx}dx, \qquad \qquad (CF)$$

где $k=0,\pm 1,\pm 2,\pm 3,\ldots$

Однако, функция f = f(x) зачастую бывает известна лишь в конечном числе точек отрезка [0,1]. Предположим, например, что это равноотстоящие точки

$$x_{oldsymbol{j}}=rac{j}{N}, \quad j=0,1,2,\ldots,N-1.$$

В этом случае аналогом разложения в ряд Φ урье (FS) служат равенства:

$$f(x_j) = \sum_{k=0}^{N-1} a_k e^{2\pi k \frac{j}{N}i}, \quad 0 \leq j < N. \quad (SDF)$$

Это разложение справедливо тогда и только тогда когда тригонометрический полином

$$S_{N}(x) = \sum_{k=0}^{N-1} a_{k}e^{i2\pi kx}$$

$$(TP_{N})$$

интерполирует функцию f(x) на отрезке [0,1] по ее значениям в узлах $x_j,\ 0 \leq j < N.$

 2^0 . Рассмотрим следующую задачу о коэффициентах разложения (SDF).

Задача (DDF). Найти по известным значениям функции в узлах

$$f_j = f(x_j), \quad j = 0, 1, \dots, N-1,$$

коэффициенты (a_0,a_1,\dots,a_{N-1}) разложения (SDF).

Введем следующие необходимые для решения задачи (DDF) обозначения:

$$\varphi_k(x) \equiv e^{i2\pi kx}, \quad k = 0, 1, 2, \dots, N-1.$$

Тогда сопутствующий задаче тригонометри-

ческий полином имеет вид

$$S_{m{N}}(x) = \sum_{m{k}=0}^{m{N}-1} a_{m{k}} arphi_{m{k}}(x).$$

Условия (SDF) при этом записываются в виде системы линейных уравнений относительно неизвестных (a_0,a_1,\ldots,a_{N-1}) следующим

образом:

$$\begin{cases} \varphi_0(x_0)a_0 + \varphi_1(x_0)a_1 + \ldots + \varphi_{N-1}(x_0)a_{N-1} = f_0, \\ \varphi_0(x_1)a_0 + \varphi_1(x_1)a_1 + \ldots + \varphi_{N-1}(x_1)a_{N-1} = f_1, \\ \vdots \\ \varphi_0(x_{N-1})a_0 + \varphi_1(x_{N-1})a_1 + \\ + \varphi_2(x_{N-1})a_2 + \ldots + \varphi_{N-1}(x_{N-1})a_{N-1} = f_{N-1}. \end{cases}$$

В матричном виде эта система принимает следующий вид:

$$P\overrightarrow{a} = \overrightarrow{f}.$$
 (SDF')

Здесь квадратная матрица P задается равенством

$$P = \begin{bmatrix} \varphi_0(x_0) & \varphi_1(x_0) & \cdots & \varphi_{N-1}(x_0) \\ \varphi_0(x_1) & \varphi_1(x_1) & \cdots & \varphi_{N-1}(x_1) \\ \varphi_0(x_2) & \varphi_1(x_2) & \cdots & \varphi_{N-1}(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0(x_{N-1}) & \varphi_1(x_{N-1}) & \cdots & \varphi_{N-1}(x_{N-1}) \end{bmatrix},$$

вектор-столбец неизвестных \overrightarrow{a} покомпонентно записывается следующим образом

$$\overrightarrow{a} = \uparrow (a_0, a_1, a_2, \dots a_{N-1}),$$

а вектор-столбец правой части имеет вид

$$\overrightarrow{f} = \uparrow (f_0, f_1, f_2, \ldots, f_{N-1}).$$

Вместе с матрицей P рассмотрим ей сопряженную P^* , на которую умножим систему (SDF') слева. Тогда получим

$$P^*P\overrightarrow{a} = P^*\overrightarrow{f}.$$
 (SDF'')

Произведение $P^*P \equiv \Gamma = (\gamma_{jk})$ представляет собой матрицу Грама для функций $\varphi_0, \varphi_1, \ldots,$

 $arphi_{N-1}$, то есть в поэлементном виде матрица $\Gamma = P^*P$ записывается следующим образом:

$$\begin{pmatrix} (\varphi_{0},\varphi_{0}) & (\varphi_{1},\varphi_{0}) & \cdots & (\varphi_{N-1},\varphi_{0}) \\ (\varphi_{0},\varphi_{1}) & (\varphi_{1},\varphi_{1}) & \cdots & (\varphi_{N-1},\varphi_{1}) \\ (\varphi_{0},\varphi_{2}) & (\varphi_{1},\varphi_{2}) & \cdots & (\varphi_{N-1},\varphi_{2}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (\varphi_{0},\varphi_{N-1}) & (\varphi_{1},\varphi_{N-1}) & \cdots & (\varphi_{N-1},\varphi_{N-1}) \end{pmatrix}.$$

Здесь

$$(\gamma_{jk}) = (\varphi_k, \varphi_j) = \sum_{i=0}^{N-1} \varphi_k(x_i) \overline{\varphi_j(x_i)}.$$

Сосчитаем элементы γ_{jk} точно.

Лемма. Справедливы равенства

$$(arphi_{m{k}},arphi_{m{j}})=N\delta_{m{k}}^{m{j}}=egin{cases} 0, & j
eq k, \ N, & j=k, \end{cases}$$

ГДе $0 \le k < N$, $0 \le j < N$.

Доказательство. Пусть $\,\omega\,=\,e^{rac{2\pi i}{N}}\,\equiv\,\exp{\{rac{2\pi i}{N}\}}\,.$

Тогда

$$(arphi_k, arphi_j) = \sum_{l=0}^{N-1} arphi_k(x_l) \overline{arphi_j(x_l)} =$$

$$=\sum_{l=0}^{N-1}\omega^{kl}\omega^{-jl}=\sum_{l=0}^{N-1}\left[\omega^{(k-j)}
ight]^{l}.$$

Если k=j, то $\omega^{(k-j)}=\omega^0=1$. Следователь-

но, справедливо равенство

$$(arphi_k, arphi_k) = \sum_{l=0}^{N-1} (1) = N.$$

Если $k \neq j$, то комплексное число $q = \omega^{k-j}$ не равно 1. Поэтому справедливы равенства

$$(\varphi_k, \varphi_j) = \sum_{l=0}^{N-1} q^l = \frac{1-q^N}{1-q} = \frac{1-\omega^{(k-j)N}}{1-q}.$$

Воспользуемся здесь равенством

$$\omega^{oldsymbol{N}}=(e^{rac{2\pi}{N}i})^{oldsymbol{N}}=e^{2\pi i}=1.$$

Тогда получим

$$(\varphi_k, \varphi_j) = \frac{1 - (\omega^N)^{(k-j)}}{1 - q} = \frac{1 - 1}{1 - q} = 0.$$

В связи с доказанной леммой говорят, что

функции $arphi_0,\ arphi_1,\ \ldots,\ arphi_{N-1}$ ортогональны на конечном множестве точек $x_0,\ x_1,\ \ldots,\ x_{N-1}.$

Таким образом, матрица Грама Γ ортогональных на конечном множестве точек x_0 , $x_1, \, \ldots, \, x_{N-1}$ функций $arphi_0, \, arphi_1, \, \ldots, \, arphi_{N-1}$ диагональна и имеет вид

$$\Gamma = egin{bmatrix} N & 0 & 0 & \cdots & 0 \ 0 & N & 0 & \cdots & 0 \ 0 & 0 & N & \cdots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \cdots & N \end{bmatrix}; \qquad \det \Gamma = N^N.$$

Система (SDF'') при этом записывается в виде следующих равенств

$$a_k = \frac{1}{N} \sum_{l=0}^{N-1} f_l e^{-\frac{2\pi k l}{N}i}, \quad 0 \le k < N.$$

Воспользовавшись обозначением $\omega = e^{\frac{2\pi}{N}i}$ перепишем эти равенства и систему (SDF'') в следующем "парном" варианте:

$$f(x_j) = \sum_{k=0}^{N-1} a_k \omega^{kj}, \quad 0 \le j < N, \quad (IDF)$$

$$a_k = \frac{1}{N} \sum_{l=0}^{N-1} f(x_l) \omega^{-kl}, \quad 0 \le k < N.$$
 (DDF)

Операцию преобразования по формулам (DDF)

вектора

$$\overrightarrow{f_N} = (f_0, f_1, f_2, \dots, f_{N-1})$$

в вектор $\overrightarrow{a_N} = (a_0, a_1, \dots, a_{N-1})$ называют прямым дискретным преобразованием Фурье.

Операцию же по формулам (IDF), переводящую вектор $\overrightarrow{a_N}$ в вектор $\overrightarrow{f_N}$, называют обратным дискретным преобразованием Фурье.