Note for vortex phase transition in iron-based superconductor

Wei Cheng

2023.3.17

Content

1 $k \cdot p$ construct Hamiliton

1

2 Vortex Phase Transition

4

Abstract

Iron-based superconductor is a very good platform to search Majorana zero model due to it's topological band and high temperature superconductor. Here we search the vortex phase transition in iron-based superconductor. First we can use the $k \cdot p$ method to construct the Hamiliton. Then use the Hamiliton we can do some numerical calculation and theory analysis.

1 $k \cdot p$ construct Hamiliton

The space group of iron-based superconductor is P4/nmm,it include the frational translate,so it can't can be seen the the direct product of the translate group and the point group.But along the $\Gamma-Z$,it can be seen the D4h group. At the same time,we can know the band near the fermi surface of the iron-based superconductor are p_z, d_{xz}, d_{yz} orbit. So we can choose the basics $|p_z, \uparrow\rangle$, $|p_z, \downarrow\rangle$, $|d_{xz+iyz}, \downarrow\rangle$, $|d_{xz-iyz}, \uparrow\rangle$, $|d_{xz-iyz}, \uparrow\rangle$, $|d_{xz-iyz}, \uparrow\rangle$, to construct our Hamiliton. For any $6 \cdot 6$ matrix, we can break down to the linear superposition of 36 basics matrix.

$$H(\vec{k}) = \sum_{ij} f_{ij}(\vec{k}) M_{ij} \tag{1}$$

we can construct the 36 basics Hermitian matrix from the direct product of the Pauli matrix and the Gellman matrix.

$$M_{ij} = G_i \otimes \sigma_j \tag{2}$$

The G_i means the Gell-Man matrix, it's range is from 0 to 8. The σ_j means the Pauli matrix, it's range is from 0 to 3. At the same time, because we need to consider the spin orbit coupling, so we need sonsider the double group, we can find the character table of the D4h.

D _{4h}	E	=	2C4	2Ĉ,	C_2	2C2	2C2"	I	ī	28,	284	o _h	$2\sigma_{\mathbf{v}}$	$2\sigma_{\rm d}$		_
		E			$\overline{C}_{\!\scriptscriptstyle 2}$	2Ĉ₂′	2Ē2"					σ̄ _h 2σ̄ _▼	25,	25 d	Time Inv.	Bases
Γ_1^+	1	1	1	1	1	1	1	1	1	1	1	1	1	1	a	R
Γ_2^+	1	1	1	1	1	-1	-1	1	1	1	1	1	-1	-1	a	S _z
Γ_3^+	1	1	-1	-1	1	1	-1	1	1	-1	-1	1	1	-1	a	(x^2-y^2)
$\Gamma_{\!\!\!4}^+$	1	1	-1	-1	1	-1	1	1	1	-1	-1	1	-1	1	a	ху
Γ_5^+	2	2	0	0	-2	0	0	2	2	0	0	-2	0	0	a	S_x , S_y
Γ_1^{\bullet}	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	a	$(x^2-y^2)xyz$
Γ_2^-	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	1	a	z
Γ_3	1	1	-1	-1	1	1	-1	-1	-1	1	1	-1	-1	1	a	xyz
Γ_4^-	1	1	-1	-1	1	-1	1	-1	-1	1	1	-1	1	-1	a	$(x^2-y^2)z$
Γ,	2	2	0	0	-2	0	0	-2	-2	0	0	2	0	0	a	x,y
Γ ₆ ⁺	2	-2	$\sqrt{2}$	-√2	0	0	0	2	-2	$\sqrt{2}$	-√2	0	0	0		$\phi(1/2,-1/2),$ $\phi(1/2,1/2)$
Γ_7^+	2	-2	$-\sqrt{2}$	$\sqrt{2}$	0	0	0	2	-2	$-\sqrt{2}$	$\sqrt{2}$	0	0	0	c	$\Gamma_6^+ \times \Gamma_3^+$
Γ6	2	-2	$\sqrt{2}$	$-\sqrt{2}$	0	0	0	-2	2	$-\sqrt{2}$	$\sqrt{2}$	0	0	0	c	$\Gamma_6^+ \times \Gamma_1^-$
Γ,	2	-2	$-\sqrt{2}$	$\sqrt{2}$	0	0	0	-2	2	$\sqrt{2}$	$-\sqrt{2}$	0	0	0	c	$\Gamma_6^+ \times \Gamma_3^-$

图 1:

We can get the generator of D4h group is C_{4z} , $C_{2x}^{'}$, Inversion. At the same time, the system has the time reversal symmetry. We can get the transformation

matrix in the basics before we mentioned.

$$C_{4z} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-i & & & & & \\ & 1+i & & & & \\ & & 1-i & & & \\ & & & 1+i & & \\ & & & & -1-i & \\ & & & & & i \end{pmatrix} \qquad C_{2x} = \begin{pmatrix} i & & & & \\ i & & & & \\ & i & & & \\ & i & & & \\ & & i & & \\ & & & i & \\ & & & i \end{pmatrix}$$
(3)

we can get the character table of the polynomials of the momentum k

k polynomial	representation	time reversal
$1,k_x^2 + k_y^2,k_z^2$	Γ_1^+	+
$k_x k_y$	Γ_4^+	+
$k_{x}^{2}-k_{y}^{2}$	Γ_3^+	+
$\{k_x k_z, k_y k_z\}$	Γ_5^+	+
$\{k_x, k_y\}$	Γ_5^-	-
k_z	$\Gamma_{\!2}^{-}$	-

we can get the character table of M_{ij} . Then we can multiple the same representation of the k polynomials and the M_{ij} matrix.

Matrix	representation	time reverse
M_{03}	Γ_2^+	-
${ m M}_{10}$	Γ_1^-	-
$\{M_{11}, M_{12}\}$	Γ_5^-	+
M_{13}	Γ_2^-	+
M_{20}	Γ_1^-	+
$\{{\mathcal M}_{21}, M_{22}\}$	Γ_5^-	-
M_{23}	Γ_2^-	-
M_{30}, M_{80}	Γ_1^+	+
$\{M_{31}, M_{32}\}$	Γ_5^+	-
M_{33}	Γ_2^+	-
$\{M_{40}, M_{53}\}$	Γ_5^-	+
${ m M}_{41}$	Γ_3^-	-
M_{42}	Γ_4^-	-
$\{M_{43}, M_{50}\}$	Γ_5^-	-
${ m M}_{51}$	Γ_3^-	+
${ m M}_{52}$	Γ_4^-	-
$\{M_{60}, M_{73}\}$	Γ_5^+	-
${ m M}_{61}$	Γ_3^+	+
${ m M}_{62}$	Γ_4^+	+
$\{M_{63}, M_{70}\}$	Γ_5^+	+
M_{71}	Γ_3^+	-
M_{72}	Γ_4^+	-
M_{83}	Γ_2^+	-

图 2:

Vortex Phase Transition