1 Задача на бином Ньютона

1

1 Задача на бином Ньютона

1.1 Условие

Решить уравнение $C_x^y = C_{100}^{50} + 3*C_{101}^{52} + C_{100}^{53}$

1.2 Пример решения

$$C_{100}^{50} + 3 \cdot C_{101}^{52} + C_{100}^{53} = C_{100}^{50} + 3 \cdot C_{100}^{51} + 3 \cdot C_{100}^{52} + C_{100}^{53} = (C_{100}^{50} + C_{100}^{51}) + 2 \cdot C_{100}^{51} + 2 \cdot C_{100}^{52} + (C_{100}^{52} + C_{100}^{53}) = (C_{101}^{51} + 2 \cdot C_{101}^{52} + C_{101}^{53}) + (C_{101}^{52} + C_{101}^{53}) + (C_{101}^{52} + C_{101}^{53}) = (C_{101}^{52} + C_{102}^{53}) = (C_{101}^{52} + C_{101}^{53}) + (C_{101}^{52} + C_{101}^{53}) + (C_{101}^{52} + C_{101}^{53}) = (C_{101}^{52} + C_{101}^{53}) + (C_{101}^{52} + C_{101}^{53}) + (C_{101}^{52} + C_{101}^{53}) = (C_{101}^{52} + C_{101}^{53}) + (C_{101}^{52}$$

2 Найти кратчайшие пути в невзвешенном орграфе

2.1 Условие

Орграф задан списком ребер или графически. Вершины нумеруются с 0 до n. Нет изолированных вершин. Также задается стартовая вершина s. Необходимо найти для каждой вершины кратчайшее расстояние от вершины s до всех Алгоритм определяется следующим образом: bfs если ису четный и dfs если ису нечетный

2.2 Пример оформления

Пусть дан список ребер [(0,1),(1,2),(2,3),(2,4),(3,5),(3,4),(4,5)]

Стартовая вершина: 1

Алгоритм: bfs

queue	curr	$\operatorname{dist}[0]$	$\operatorname{dist}[1]$	$\operatorname{dist}[2]$	dist[3]	dist[4]	dist[5]
[2]	1	∞	0	$min(\infty, 0+1)$	∞	∞	∞
[3, 4]	2	∞	0	1	$min(\infty, 1+1)$	$min(\infty, 1+1)$	∞
[4, 5]	3	∞	0	1	2	min(2, 2+1)	$min(\infty, 2+1)$
[5]	4	∞	0	1	2	2	min(2+1,2+1)
	5	∞	0	1	2	2	3

Other: $dist = [\infty, 0, 1, 2, 2, 3]$

Для dfs аналогично но queue называется stack

3 Найти кратчайшие пути в взвешенном орграфе

3.1 Условие

Орграф задан списком ребер с весами или графически. Вершины нумеруются с 0 до n. Нет изолированных вершин. Также задается стартовая вершина s. Необходимо найти для каждой вершины кратчайшее расстояние от вершины s до всех

3.2 Пример оформления

Пусть дан список ребер с весами [(0,1,-10000),(1,2,5),(2,3,6),(2,4,11),(3,5,12),(3,4,2),(4,5,10)]

Стартовая вершина: 1

Алгоритм: Дейкстра

priority_queue	curr	dist[0]	dist[1]	dist[2]	dist[3]	dist[4]	dist[5]
[(1, 2, 5)]	1	∞	0	$min(\infty, 0+5)$	∞	∞	∞
[(2,3,6),(2,4,11)]	2	∞	0	5	$min(\infty, 5+6)$	$min(\infty, 5+11)$	∞
[(3,4,2),(2,4,11),(3,5,12)]	3	∞	0	5	11	min(16, 11 + 2)	$min(\infty, 11+8)$
[(4,5,10),(3,5,12)]	4	∞	0	5	11	13	min(19, 13 + 10)
	5	∞	0	5	11	13	19

Other: $dist = [\infty, 0, 5, 11, 13, 19]$

4 Найти минимальное остовное дерево

4.1 Условие

Неориентированный граф задан списком ребер с весами или графически. Вершины нумеруются с 0 до n. Нет изолированных вершин. Также задается стартовая вершина s. Необходимо найти минимальное остовное дерево Алгоритм определяется следующим образом: Ярника-Прима если ису четный и Краскала если ису нечетный

4.2 Пример оформления

4.2.1 Алгоритм Ярника-Прима

Пусть дан список ребер с весами [(0,1,-10000),(1,2,5),(2,3,6),(2,4,11),(3,5,12),(3,4,2),(4,5,10)] Стартовая вершина: 0

Алгоритм: Ярника-Прима

```
priority queue
                           tree
                                                             \operatorname{curr}
                             0
                                                                              [(0, 1, -10000)]
                     [(0, 1, -10000)]
                                                               1
                                                                                 [(1,2,5)]
                [(0, 1, -10000), (1, 2, 5)]
                                                               2
                                                                            [(2,3,6),(2,4,11)]
           [(0, 1, -10000), (1, 2, 5), (2, 3, 6)]
                                                               3
                                                                      [(3,4,2),(2,4,11),(3,5,12)]
      [(0,1,-10000),(1,2,5),(2,3,6),(3,4,2)]
                                                               4
                                                                     [(4,5,10),(2,4,11)^*,(3,5,12)]
 [(0, 1, -10000), (1, 2, 5), (2, 3, 6), (3, 4, 2), (4, 5, 10)]
                                                                                [(3,5,12)^*]
Otbet: [(0, 1, -10000), (1, 2, 5), (2, 3, 6), (3, 4, 2), (4, 5, 10)]
```

4.2.2 Алгоритм Краскала

Пусть дан список ребер с весами [(0,1,-10000),(1,2,5),(2,3,6),(2,4,11),(3,5,12),(3,4,2),(4,5,10),(0,2,100)]

Стартовая вершина: 0 Алгоритм: Краскала

Tiji opitim. Trpuckaja							
${ m tree}$	компоненты связности	список ребер					
	[0][1][2][3][4][5]	[(0,1,-10000),(3,4,2),(1,2,5),(2,3,6),					
		(4,5,10), (2,4,11), (3,5,12), (0,2,100)					
[(0, 1, -10000)]	[01][2][3][4][5]	[(3,4,2),(1,2,5),(2,3,6)					
		,(4,5,10),(2,4,11),(3,5,12),(0,2,100)]					
[(0, 1, -10000), (3, 4, 2)]	[01][2][34][5]	[(2,3,6),(4,5,10),(2,4,11),(3,5,12),(0,2,100)]					
[(0,1,-10000),(3,4,2),(1,2,5)]	[012][34][5]	$[(2,3,6),(4,5,10),(2,4,11),(3,5,12),(0,2,100)^*]$					
[(0,1,-10000),(3,4,2),(1,2,5),(2,3,6)]	[01234][5]	$[(4,5,10),(2,4,11)^*,(3,5,12)]$					
[(0,1,-10000),(3,4,2),(1,2,5),(2,3,6),(4,5,10)]	[012345]	$[, (3, 5, 12)^*]$					

Otbet: [(0,1,-10000),(1,2,5),(2,3,6),(3,4,2),(4,5,10)]