

MEMORIAS

BUSES: DIRECCION, DATOS, CONTROL

- Desde el punto de vista logico es UNIDIMENSIONAL, 1D.
- Direcciones son lineales

PARTES DE UNA CELDA BASICA RAM	DEFINICIÓN	
RD	Orden de leer(Bus de control)	
WR	Orden de escribir(Bus de control)	
EN	Enable, habilita la memoria(RD,WR)	

TIPOS DE MEMORIA

MEMORIAS	CUALES	DEFINICION	EJEMPLO
VOLATIL	RAM	RANDOM ACCES MEMORY: puede ser leía y escrita en cualquier momento de manera rapida. Necesita energia para retener los datos	SRAM,DRAM
NO-VOLATIL	ROM	READ ONLY MEMORY: Puede ser leía pero no escrita(o es muy lento o requiere un proceso especial). NO NECESITA ENERGIA para retener los datos	ROM,OTP,EEPROM,FLASH

FRAM-NINGUNA DE LAS DOS

TIPOS DE RAM

SRAM(RAM ESTATICA)

- No necesita refresco
- Tiempo de acceso a cualquier direccion es FIJO y BAJO.
- Consume poca energia para mantener un valor.
- Se usa mucha mas area de chip por cada bit (entre 6 y 12 transistores)
- Menos masiva, mas cara por unidad de area.
- Utilizada en registros del CPU y caché de alta velocidad.
- Más rapida que la DRAM.

NVRAM O NVSRAM (memoria RAM NO volatil)

- Posee una bateria de backup, que mantiene los datos en memoria mientras no está conectado el equipo. Limitaciones de tamaño y costo.
- Memoria rapida=tiempo de acceso bajo.

• TIEMPO DE ACCESO: tiempo que tarda desde RD, a que los datos están disponibles.

MEMORIA PRIMARIA

Tiene que tener un tiempo de lectura rápido. La memoria primaria puede ser:

- SRAM
- DRAM
- ROM
- FLASH
- etc.

DRAM(RAM DINAMICA)

- · Necesita refresco.
- REFRESCO: lectura/escritura periodica.
- No tan rapida como la SRAM, pero más densa.
- Conforma la mayor parte de la memoria primaria de un PC moderno.

• El valor se guarda en un capacitor que se descarga a lo largo del tiempo. POCA AREA y alta densidad.

REFRESCO:

Lee el bit guardado y vuelve a escribirlo antes de que se pierda. La carga se mantiene por varios milisegundos.

- La memoria no se puede usar mientras es refrescada.
- Consume mas energia.

ROM (Read Only Memory)

No se borra al quitar la energía

CLASIFICACIÓN:

- OTP ROM O ROM
- EPROM(UV)
- EEPROM
- FLASH

JERARQUÍA DE MEMORIA:

Estructura que utiliza multiples niveles de memorias que incrementan en cantidad a medida que se alejan del procesador.

CACHÉ:

SRAM estática, rapida conectada directamente al CPU para acceder a los datos de uso más frecuente.

 Memoria que guarda datos de otra memoria para acelerar la velocidad de procesamiento, sea para leer o escribir.

 Ahora se utiliza globalmente como un concepto y puede implementarse por HW o SW.

MEMORIA SECUNDARIA-HDD MAGNÉTICO

- Un cabezal lee y escribe los datos guardados magnéticamente en dicha superficie induciendo un campo magnético o corriente.
- Circunferencia en una superficie es llamada pista. LAS PISTAS se dividen en sectores.
- La proyección de esta circunferencia a lo largo de los platos se llama cilindro.
- Los datos se guardan en SECTORES y cada sector se identifica con su CHS
 o I BA.
- En el cabezal hay un dispositivo de magnetizar la superficie de un plato (lectura/escritura)
- Los "1" y "0" estan en codificacion Manchester.

MEMORIA SECUNDARIA-SSD FLASH

- Estas memorias deben ser borradas de a paginas. Borrarlas setea todos los bytes a OXFF.
- Tienen limitados ciclos de lectura y escritura xq ocurre desgaste en aislación del Floating Gate.
- Requieren HW interno que asegura el parejo desgaste de las celdas.
- También se encarga de re-mapear sectores desgastados y otros con defectos de fabricación.
 - Los file systems implementan mecanismos para prevenir el desgaste. TRIM

La pila (stack) de un microcontrolador se puede implementar en memoria tipo SRAM, pero

no en memoria tipo FLASH-VERDADERO

Un procesador de 32 bits hace casi siempre hace referencia a que el bus de datos es de 32 bits.- FALSO

En un procesador con arquitectura Harvard, no es posible ejecutar un programa directamente desde memoria tipo RAM.

Falso.

Realizar una tarea compleja, siempre va a requerir de más instrucciones de código de máquina en un procesador tipo CISC que en uno tipo RISC.

Falso.

La pila en un microprocesador, puede estar tanto en memoria FLASH como en memoria RAM. **Falso**

- MEMORIA FLASH: 10 mil veces (se daña si escribo mas)
- EEPROM:1 MILLON DE VECES