Definition: Field

A field is a set \mathbb{F} , containing at least two elements on which two operations + (addition) and · (multiplication) are defined so that for each pair of elements $x,y\in\mathbb{F}$ there are unique elements x+y and $x\cdot y$ in \mathbb{F} for which the following conditions hold for all elements $x,y,z\in\mathbb{F}$

- x + y = y + x (commutativity of addition)
- (x+y)+z=x+(y+z) (associativity of addition)
- There is an element $0 \in \mathbb{F}$, which is named 0 such that x + 0 = x (existence of additive identity)
- For each x, we have an element $-x \in \mathbb{F}$ such that x + (-x) = 0 (existance of additive inverse)
- xy = yx (commutativity of multiplication)
- $(x \cdot y) \cdot z = x \cdot z + y \cdot z$ and $x \cdot (y + z) = x \cdot y + x \cdot z$ (distributivity)
- There is an element $1 \in \mathbb{F}$, such that $1 \neq 0$ and $x \cdot 1 = x$ (existence of a multiplicative identity)
- if $x \neq 0$, then there is an element $x^{-1} \in \mathbb{F}$ such that $x \cdot x^{-1} = 1$ (existance of multiplicative inverses)