Генератор сигналов на AD9833

AD9833 - это программируемый генератор сигналов с низким энергопотреблением. Позволяет генерировать сигналы с частотой до 12.5МГц синусоидальной, треугольной и прямоугольной формы. Программирование осуществляется с использованием трехпроводного интерфейса SPI и не составляет труда. Ниже приведены основные характеристики микросхемы:

- Цифровое программирование частоты и фазы.
- Потребляемая мощность 12.65 мВт при напряжении 3 В.
- Диапазон выходных частот от 0 МГц до 12.5 МГц.
- Разрешение 28 бит (0.1 Гц при частоте опорного сигнала 25 МГц).
- Синусоидальные, треугольные и прямоугольные выходные колебания.
- Напряжение питания от 2.3 В до 5.5 В.
- Трехпроводной интерфейс SPI.
- Расширенный температурный диапазон: от –40°C до +105°C.
- Опция пониженного энергопотребления.

Более подробную информацию вы можете найти в даташите. В характеристиках также заявлено, что микросхема не требует внешних компонентов, но здесь производитель лукавит: обвязка и источник опорной частоты все же нужны. На Али продаются модули AD9833 с необходимой обвязкой и кварцевым генератором на 25 МГц, как раз с таким модулем я и собираюсь экспериментировать. Данный модуль имеет следующие выводы:

- VCC плюс питания для цифровых и аналоговых цепей генератора.
- DGND цифровая земля.
- SDATA вход данных интерфейса SPI. Передача осуществляется 16-битными словами.
- SCLK вход тактового сигнала SPI. Используется второй режим работы: (CPOL = 1, CPHA = 0).
- FSYNC выбор микросхемы. Перед началом передачи данных должен быть установлен в 0, по завершении в 1.
- AGND аналоговая земля.
- OUT выход генератора.

Попробуем подключить этот модуль к Ардуино и научиться им управлять. Для начала ознакомимся с его функциональной схемой:

AD9833 состоит из следующих основных частей: два регистра выбора частоты, аккумулятор фазы, два регистра выбора фазы и сумматор смещения фазы (вместе эти компоненты составляют генератор с цифровым управлением - NCO), SIN ROM для преобразования информации о фазе в амплитуду и 10-разрядный цифро-аналоговый преобразователь.

Из схемы видно, что данные с интерфейса SPI передаются в управляющий регистр, регистры выбора фазы и частоты. Именно они определяют сигнал на выходе генератора. И программирование генератора сводится к изменению содержимого указанных регистров.

Управляющий регистр

Это 16-разрядный регистр, управляющий работой генератора. Подробное описание его битов приведено ниже в таблице. Схема из даташита также наглядно демонстрирует их назначение:

Бит	Название	Назначение
-----	----------	------------

		Чтобы AD9833 понял, что принятое по SPI 16-битное слово содержит	
15, 14	DB15, DB14	новое значение для управляющего регистра, два старших бита в слове должны быть установлены в 0.	
13	B28	Регистры частоты AD9833 имеют разрядность 28 бит, поэтому для изменения их содержимого требуется передача двух 16-битных слов. Однако в некоторых случаях требуется изменить только старшую или младшую часть регистра частоты. Здесь и используется данный признак: B28 = 1 говорит о том, что необходимо обновить регистр частоты целиком и его новое значение будет передано двумя последовательными записями. Первая запись содержит 14 младших бит, вторая 14 старших бит. Первые два бита в обеих записях определяют регистр частоты, в который будет записано передаваемое значение и должны быть одинаковыми. Обновление регистра частоты происходит после получения полного слова, поэтому запись промежуточного значения в регистр исключена. B28 = 0 позволяет обновить отдельно старшую или младшую часть регистра. Какая именно часть будет изменена определяется управляющим битом HLB.	
12	HLB	Бит HLB определяет, какая из частей регистра частоты (младшая или старшая) будет перезаписана. Используется при B28 = 0. При B28 = 1 значение этого бита игнорируется. HLB = 1 позволяет обновить старшие 14 бит регистра частоты; HLB = 0 позволяет обновить младшие 14 бит регистра частоты.	
11	FSELECT	Бит FSELECT определяет, какой из регистров используется в аккумуляторе фазы – FREQ0 или FREQ1.	
10	PSELECT	Бит PSELECT определяет, данные какого из регистров PHASE0 или PHASE1 добавляются к выходу аккумулятора фазы.	
9	Зарезервирован	Данный бит зарезервирован и должен быть установлен в 0.	
8	RESET	RESET = 1 сбрасывает внутренние регистры генератора в 0. Сброс не затрагивает регистры управления, частоты и фазы.	
7	SLEEP1	При SLEEP1 = 1 запрещается внутреннее тактирование, приостанавливается работа NCO и выход генератора остается в своем текущем состоянии. При SLEEP1 = 0 тактирование разрешено.	
6	SLEEP12	При SLEEP12 = 1 отключается внутренний ЦАП. Это может быть полезно для генерации прямоугольных импульсов, при которой не требуется выполнение цифро-аналоговых преобразований. При SLEEP12 = 0 внутренний ЦАП активен.	
5	OPBITEN	Данный бит вместе с битом MODE управляют выходом генератора. При OPBITEN = 1 внутренний ЦАП отключается от выхода VOUT и для генерации выходного сигнала используется значение старшего значащего бита с входа ЦАП, что позволяет получить на выходе генератора прямоугольные импульсы.	
4	Зарезервирован	Данный бит зарезервирован и должен быть установлен в 0.	
3	DIV2	Используется в паре со значением OPBITEN = 1. При DIV2 = 1 значени старшего значащего бита данных с входа ЦАП подается напрямую на выход VOUT. DIV2 = 0 позволяет задействовать делитель частоты и уменьшить частоту выходного сигнала вдвое. При OPBITEN = 0 значение данного бита игнорируется.	
2	Зарезервирован	Данный бит зарезервирован и должен быть установлен в 0.	
1	MODE	Данный бит вместе с битом OPBITEN управляют выходом генератора. При OPBITEN = 1 бит MODE должен быть установлен в 0. Значение MODE = 0 позволяет получить на выходе генератора синусоидальный сигнал. При MODE = 1 на выходе будет треугольный сигнал.	
0	Зарезервирован	Данный бит зарезервирован и должен быть установлен в 0.	

И для лучшего понимания назначения битов OPBITEN, MODE и DIV2 я приведу таблицу с их допустимыми комбинациями и формой результирующих сигналов на выходе:

OPBITEN	MODE	DIV2	Сигнал на выходе VOUT
0	0	Х	Синусоидальный
0	1	Х	Треугольный
1	0	0	Прямоугольный с частотой F/2
1	0	1	Прямоугольный с частотой F
1	1	Х	Зарезервировано

Регистры частоты и фазы

Генератор AD9833 имеет 2 регистра частоты и 2 регистра фазы разрядностью 28 бит и 12 бит соответственно.

Выбор активного регистра частоты осуществляется установкой управляющего бита FSELECT: при FSELECT = 0 активным является FREQ0; при FSELECT = 1 активен регистр FREQ1. Результирующая частота на выходе генератора определяется следующим образом:

где F_{MCLK} – это опорная частота, FREQREG – значение, загруженное в активный регистр частоты. Таким образом, если мы хотим получить на выходе генератора сигнал с частотой 400Гц при опорной частоте 25МГц, в активный регистр должно быть загружено значение:

FREQREG =
$$F_{OUT}^*2^{28}$$
 / F_{MCLK} = 400 Γ u * 2^{28} / $25M\Gamma$ u ≈ 4295

Для того чтобы загрузить значение FREQREG в регистр частоты необходимо старшие биты передаваемого по SPI значения установить в 01 для загрузки в FREQ0 или 10 для загрузки в FREQ1. Напомню, что общение с AD9833 осуществляется по SPI 16-битными словами.

При записи нового значения в регистр фазы старшие биты должны быть установлены в 11, а выбор
регистра, в который должно быть записано значение, осуществляется установкой бита 13: при нулевом его значении будет обновлен регистр PHASE0; при установке указанного бита в 1 будет обновлен регистр PHASE1. 12й бит не используется, а биты с 0 по 11 содержат значение для регистра фазы.
Разрядность регистра частоты в 28 бит при опорной частоте 25МГц обеспечивает шаг 0.1Гц для установки частоты сигнала на выходе. А 12-битный регистр фазы обеспечивает разрешение 2π/4096.
Тестовая программа для AD9833 на Ардуино Теперь мы можем написать первую программу для AD9833. Схема подключения модуля AD9833 к Ардуино и скетч приведены ниже.

С подключением все просто: общение с модулем происходит по интерфейсу SPI, для которого на Ардуино отведены следующие пины:

D10 - SS (Slave Select - выбор ведомого), к нему подключаем вывод FSYNC модуля.

D11 - MOSI (Master Out Slave In - выход ведущего, вход ведомого), к нему подключаем вывод SDATA.

D13 - SCK (Serial Clock - Тактовый сигнал), к нему подключаем вывод SCLK.

```
#include <SPI.h>
void setup() {
  SPI.begin();
 WriteAD9833(0x2100); //0010 0001 0000 0000 - Reset + DB28
 WriteAD9833(0x50C7); //0101 0000 1100 0111 - Freq0 LSB (4295)
 WriteAD9833(0x4000); //0100 0000 0000 0000 - Freq0 MSB (0)
 WriteAD9833(0xC000); //1100 0000 0000 0000 - Phase0 (0)
 WriteAD9833(0x2000); //0010 0000 0000 0000 - Exit Reset
}
void WriteAD9833(uint16_t Data){
  SPI.beginTransaction(SPISettings(SPI_CLOCK_DIV2, MSBFIRST, SPI_MODE2));
  digitalWrite(SS, LOW);
  delayMicroseconds(1);
  SPI.transfer16(Data);
 digitalWrite(SS, HIGH);
  SPI.endTransaction();
}
void loop() {
 WriteAD9833(0x2000); //0010 0000 0000 0000 - Синусоидальный сигнал
  delay(5000);
 WriteAD9833(0x2002); //0010 0000 0000 0010 - MODE=1 - Треугольный
  delay(5000);
 WriteAD9833(0x2020); //0010 0000 0010 0000 - OPBITEN=1 - Прямоугольный (MSB/2)
  delay(5000);
 WriteAD9833(0x2028); //0010 0000 0010 1000 - OPBITEN=1, DIV2=1 - Прямоугольный (MSB)
  delay(5000);
 }
```

В данном скетче выполняются следующие действия:

- При первом вызове функции WriteAD9833 производится установка управляющего регистра: бит RESET устанавливается в 1 для выполнения сброса; бит DB28 устанавливается в 1 для перезаписи всего содержимого регистра частоты; биты FSELECT и PSELECT содержат 0, поэтому для генерации выходного сигнала будут использоваться регистры FREQ0 и PHASE0.
- Следующие два вызова передают значение 4295 в регистр частоты FREQ0. Данное значение умещается в 14 младших разрядах, поэтому в старшие разряды регистра записываем нули.
- Сдвиг по фазе не требуется запишем в регистр PHASE0 значение 0
- Последним вызовом WriteAD9833 в процедуре setup снимаем бит RESET, разрешая тем самым работу генератора. Результирующий сигнал поступает на вывод VOUT.
- Следующие вызовы WriteAD9833 в функции loop обновляют содержимое управляющего регистра, перебирая комбинации битов MODE, OPBITEN и DIV2 для генерации сигнала синусоидальной, треугольной и прямоугольной форм.

Вот как выглядит выходной сигнал генератора в виртуальном осциллографе:

Обратите внимание: при генерации синусоидальных и треугольных импульсов, когда сигнал снимается с выхода ЦАП, его амплитуда изменяется в диапазоне 38мВ...0,65В. При генерации импульсов прямоугольной формы мы имеем дело с обычным цифровым сигналом с соответствующими уровнями напряжения. Так в последних двух осциллограммах логической единице соответствует напряжение ~4,5В.

Генератор на АD9833 с дисплеем и энкодером

Разобравшись с управлением AD9833 можно приступать к созданию генератора с интерфейсом управления и индикацией. Для этого добавим в нашу схему энкодер вращения и жидкокристаллический дисплей:

Ранее я писал о том, как можно сделать меню на Ардуино с энкодером вращения. И сейчас я взял такое меню за основу скетча, добавив в него функционал для работы с AD9833. Скачать скетч можно по ссылке.

При включении питания AD9833 настраивается на генерацию синусоидального сигнала частотой 100Гц, соответствующая информация отображается на дисплее. Вращая ручку энкодера можно изменять его частоту, а при нажатии вызывается меню. В меню доступны следующие опции:

- Установка частоты (можно задать произвольное значение от 1 до 12,5МГц).
- Установка фазы (0 360°).
- Выбор формы сигнала.
- Выбор значения, на которое изменяется частота при вращении ручки энкодера.