PREDICATE LOGIC

[Example] P(x): D(>3) tome or False for value of ∞ . P(u) is $T \in P(2)$ is F.

P(a1, x2,..., xcn) is the value of the poop. En. p at the n-tupe (a1, x2,..., xm) & P is also called n-place predicate or n-any predicate.

Quantifiers Quantification expresses the extent to which a predicate is true over a range of elements.

Universal Quanti Siers

- The universal quantification of P(x) is the statement "P(x) for all values of x in the domain".

- Notation 4 oc P(a) 4-> universal quantifier

- An element good which P(x) is folge is called countex example of $\forall x \neq x$

		1 010
Statement	When tour?	When felse?
4x8(x)	P(x) is true yes x	There is an or for which POD is fely
FX PGG)	There is an & for which P(x) is street	P(x) is solve for every or

TExample (1) p(x); x+1>x what is the touth value of the quantification $\forall x p(x)$, domain $\exists R$ (according) if p(x) is true $\forall x \in R$ the quantification $\forall x \in R$ is domain.

② P(x): x>3 what is the bruth value of the quantification ∃xP(x) domain ⇒ R

quantification ∃xP(x) domain > R

ii x>3 is brue sometime for example when x=4

ii 3xP(x) is true.

There exist a unique or such that P(x) is drue.

Precedence of Quantifiers) If & I have higher precedence then all logical Operations. For eg. + x P(x) V Q(x) is disjumption of $\forall x \in \mathcal{P}(x) \text{ and } \mathcal{Q}(x), \quad (\forall x \mathcal{P}(x)) \vee \mathcal{Q}(x) \neq \forall x \in \mathcal{P}(x) \mathcal{Q}(x)$

LOGICAL EQUIVALENCES INVOLVING QUANTIFIERS

-Statements involving predicates & quantifiers are legically equivalent if they have the same touth value no matter which predicates are substitute into these . Statements & which domain of disclourse is used for the ramables in these prop. Ens.

Example $\forall x(p(x) \land q(x)) \equiv \forall x p(x) \land \forall x q(x)$

□ Suffose tx (pconqco) is T >ia e Domain

COST Time Demo Tei (a) (Time (a) pA (a))

Dust whood me (a) and true

Hapan Hapan Hara (a) Dx Har Compaths.

Now, suppose Ax PGON AX D(2) is T => Ax P(x) is T and Tiles of a CD than Planty Teleson and a (a) is T (:: P(x) & Q(x) are both true tox)

PHAED PLAD NGLOW STAME

> Yx(P(x)) AT, M

NEGATING QUNTIFIED EXPRESSIONS

(Example) Hx P(x): Every estudent in your day has staken a Course in calculy

TXP(x); It is not the case that every student in your class has staken a course in calady. I These is a student in your days who has not taken a course in calculy, (a) TXTP(a)

Thus T +xc P(xc) = 3x TP(xc)

2 notes 15

De Morgan's Laws for quartificas)	
Negation Equirdent When is Negation When false?	
73×PG) +×7P(x) For erry x There is any ox for which PGO is falle PGO is T	
Teres for which comme comme	
NESTED QUANTIFIERS	
Hx Q(α), Where Q(α) is = y P(sy) where P(xy) is ₹4920	
Example $D = \mathbb{R}$ $\forall x \exists y (x + y = 0)$	
Six, oct = 0	
Quandification of Low variables	
Statement When Towe? When Palse?	
Hx Hy P(x,y) bair x, y Fair x, y For which P(x,y) is true for every For which P(x,y) is false	
YX FYP(X,4) For every & there is These year se s. A. P(x,y) is true P(x,y) is true P(x,y) is true	
How Is an a for which For every or those is P(058) is true for P(058) is felow every y	
There is a pair xy P(x,y) is salge for which p(x,y) is false for every pair x, y There is a pair x y For every Fair x, y	

Example B(x,y): x6y=0 What are the Anithraley
of the quartificultures By 4 x B(x y)
and 4 x Fy B(xy) where xy E R

(RE)DXHXEED DOES

There is real no. y s. t. + real no. x \$ (654)

No matter what y is disosen there is only one rated

of x s.t. xty =0

"! There is no real no! If s.t. Itse & real ness.

There is no real no! If s.t. Itse to treal ness.

There is no real no! If s.t. Itself to the seal ness.

(C) HX 34 900)