Systematic Factor Portfolio Construction

Paragon Global Investments

Factors

- Factors are "attributes" that drive returns of assets
- You can use factors to predict the risk and return of a stock/other asset based on its relationship to a factor or group of factors
- Think of a factor as a portfolio that has its own return and variation statistics

Regression using Factors

- Factor investing uses regression models to analyze relationships
- In the regression model, the factor is the independent variable (regressor)

Different Types of Factors

- Style Factors
 - Relate to the characteristics of an asset/company
- Macroeconomic Factors
 - Relate to the effects of macroeconomic forces on the returns of an asset

- Value
 - Stocks that appear undervalued based on fundamental metrics such as low price-to-earnings or price-to-book ratios.
 - The value factor captures the tendency for undervalued stocks to eventually correct upward, offering potential for superior long-term returns.

- Momentum
 - Stocks exhibiting strong recent performance, with the expectation that these trends will continue.
 - The momentum factor leverages the persistence of price trends, suggesting that past winners may keep winning in the near term.
 - Often times you can look at windows of 3 months, 6 months, 12 months

- Yield
 - Stocks offering attractive income returns, typically measured by dividend yield.
 - The yield factor attracts investors seeking steady cash flows and stability, particularly in lower-volatility market environments.

- Size
 - A classification based on a company's market capitalization, often differentiating small-cap stocks from large-cap stocks
 - The size factor is predicated on the observation that smaller companies can offer higher growth potential and distinct risk-return characteristics compared to larger firms.

Macroeconomic Factors

- Interest Rates
- Inflation
- GDP growth
- Any other relevant macroeconomic influences on the economy

Part I: Factor Construction Models

Multi-Factor Portfolio Construction Decisions

• There are numerous variables that asset managers must consider when constructing multi-factor portfolios

Variable 1: Top-Down vs. Bottom Up

- Top-Down:
 - Capture exposure to multiple factors by combining multiple single-factor indices
 - Provides more diversification, but greater chance of factor dilution
- Bottom Up:
 - Capture exposure to multiple factors by selecting securities that score highly across all factors on average
 - Provides higher factor exposures

Variable 2: Sector-Neutral vs. Sector-Agnostic

- Sector-Neutral:
 - Stock selection is conducted independently within each sector to hit a sector weight target
 - reduce exposure to unintended risks
- Sector-Agnostic:
 - Stock selection is conducted purely by factor score without any sector constraint
 - may inadvertently overweight sectors that have performed well in the past
 - potentially leading to an imbalance that exposes you to higher concentration risk and increased vulnerability to sector-specific downturns

Variable 3: Rebalancing Frequency

- Reselect and reweight constituent securities on a regular basis
- There is a trade-off between turnover costs and factor decay
- Turnover costs are incurred every time a portfolio manager trades securities
- Factor decay occurs when factor exposure decreases over time

Variable 4: Factor Combinations

- The type and combination of factors
- Choosing which factors and weighing them accordingly

Part II: Construction Models for Security Selection

Heuristic Construction Parameters

- Heuristic Multi-factor approach could be used to derive a comprehensive factor score for a particular security
- Factor score: an assigned score based on an assets relationship to a factor or factors

Heuristic Construction Model Process

- 1. Identify the proper factor or factors you want to use in your model
- 2. Run a factor regression analysis of the companies you are looking at onto your set of factors
- 3. For each company, calculate a factor score (up to your discretion)
- 4. Select the top n assets based on their factor scores and construct a portfolio based on these results

Heuristic Construction Model Process

 Feed the information into a portfolio weighting scheme such as mean-variance to get the final portfolio allocation weights and develop a systematically adjusted portfolio of assets

Pros and Cons of Heuristic Construction Model

- It's easy to implement
- Just run regression and calculate a score
- However, the heuristic approach might generate more tracking errors

Ways to Calculate Factor Score

$$Q_i = 0.2 * F_{1,i} + 0.2 * F_{2,i} + 0.2 * F_{3,i} + 0.2 * F_{4,i} + 0.2 * F_{5,i}$$

where G_i represents the comprehensive factor score for a security i, while $F_{i,j}$ represents the factor score of security i for a factor j.

Ways to Calculate Factor Score

- Normalize regression data
- This model is based on raw factor scores being normalized such that their distribution has a mean of 0 and a standard deviation of 1
 - Calculate the Z-scores

Optimized Multi-Factor Construction

- When constructing multi-factor portfolios, you can control the active risk of a portfolio through the introduction of a risk optimization framework
- Active risk: the risk characteristics of an actively managed portfolio relative to a benchmark)

Active Risk (Tracking Error) Minimization

• Tracking Error: measure of the divergence between the return profile of a portfolio and its corresponding benchmark

Tracking Error =
$$\sqrt{var(r_p - r_b)}$$

• r_p and r_b represent the return of a portfolio and the return of a benchmark respectively.

Tracking Error

- Tracking error is indicative of a portfolio's performance divergence from the benchmark
- Positive TE suggests outperformance
- Negative TE suggests lagging performance

Tracking Error

- A tracking error of 1% implies an expected tracking portfolio return within ± 1% with a 67% probability and a tracking error of 2% implies an expected tracking portfolio return within ± 2% with a 95% probability
- You want to minimize TE

Let w_i be the weighting of stock i in the portfolio, such that $1 \le i \le N$, with N being an arbitrary constant. Three key variables are defined as follows:

- 1. w represents a vector of weightings of stocks in the preallocated portfolio;
- 2. x represents a vector of the index weightings of the same set of stocks (S&P500);
- 3. Q represents the positive definite covariance matrix of stock returns.

We suppose the tracking error function to be the following:

$$TE(w) = (w - x)' Q (w - x)$$

where (w - x)' is the transpose of (w - x)

Tracking Error Minimization

- This is a convex function
- While optimizing this is possible, it can be mathematically difficult
- We can approximate the optimization by a sequence of "continuously differentiable non-convex piecewise quadratic functions"

Tracking Error Minimization

- We can view this as a problem subject to a constraint on the total number of assets, K
- This is a discontinuous optimization problem

$$\min TE(w), where w \in \mathbb{R}^{n}$$

$$subject to \sum_{i=1}^{N} \Lambda(w_{i}) \leq K; \sum_{i=1}^{N} w_{i} = 1; w \geq 0$$

Tracking Error Minimization

min
$$(TE(w) + \mu \sum_{i=1}^{N} \Lambda(w_i))$$
, where $w \in R^n$ and $\mu \ge 0$
subject to $\sum_{i=1}^{N} w_i = 1$; $w \ge 0$

Steps to Minimize - Step 1

start by solving the simpler convex problem (no cardinality constraint)

min
$$TE(w)$$
, where $w \in \mathbb{R}^n$
subject to $\sum_{i=1}^{N} w_i = 1; w \ge 0$

Steps to Minimize - Step 2

• then **incrementally** introduce the penalty approximation (with parameters λ and ρ_k)

$$min(TE(w) + \mu max(\sum_{i=1}^{N} g_{\lambda}(w_i; \rho_k) - K, 0)), where w \in R^n$$

subject to
$$\sum_{i=1}^{N} w_i = 1; w \ge 0$$

Steps to Minimize - Step 3

- Terminate the iteration if $(x_i)_k \le q_k$ or $(x_i)_k \le r_k$.
- Otherwise go back to step 1 and find the solution of the approximation at P_{k+1}

Principal Component Analysis (PCA)

- Five-factor models are not perfect ways to explain risk
- PCA (Principal Component Analysis) is a technique that automatically finds a set of new factors from your data
- These factors are chosen because they explain as much of the variation in your data as possible, and they don't overlap with each other (they're uncorrelated)
- This means that instead of starting with pre-assumed factors, PCA lets the data itself reveal the most important underlying patterns.

PCA

- Compute the correlation matrix between all the factors
- Example of a correlation matrix

										1.0
Week	1.000	-0.151	-0.036	-0.159	-0.207	0.095	0.147	0.115	-0.223	0.9
KC Points	-0.151	1.000	-0.143	0.189	-0.070	0.227	0.192	0.235	0.570	0.8
Opp Points	-0.036	-0.143	1.000	-0.218	-0.215	-0.062	0.167	0.069	-0.314	0.7
Receptions	-0.159	0.189	-0.218	1.000	0.841	0.673	0.338	0.471	0.273	0.6
Receiving Targets	-0.207	-0.070	-0.215	0.841	1.000	0.500	0.209	0.252	0.250	0.5
Receiving Yards	0.095	0.227	-0.062	0.673	0.500	1.000	0.889	0.856	0.356	0.4
Yards Per Reception	0.147	0.192	0.167	0.338	0.209	0.889	1.000	0.844	0.352	0.3
Long Reception	0.115	0.235	0.069	0.471	0.252	0.856	0.844	1.000	0.378	0.2
KC Total Yards	-0.223	0.570	-0.314	0.273	0.250	0.356	0.352	0.378	1.000	0.1
	Week	KC Points	Opp Points	Receptions	Receiving Targets	Receiving Yards	Yards Per Reception	Long Reception	KC Total Yards	0.0

PCA

- Do eigen decomposition to determine the eigenvalues
- Sort the eigenvalues from highest to lowest
- The largest eigenvalue corresponds to the first principal component (PC1), which explains the most variance. The second largest corresponds to PC2, and so on.
- Then decide on how many components to keep

PCA

- Each principal component is a linear combination of the original variables.
- The factor loadings (or eigenvectors) show you how each original variable contributes to each component.
- Project your original data onto the selected principal components.
- This gives you a new, reduced set of features (PC1, PC2, ...).

Applying PCA

- The loadings (elements of the eigenvectors) reveal the exposure of each asset to the principal components.
- You can analyze these exposures to understand the risk sources in your portfolio, use them in risk management, or even construct factor-based portfolios by targeting specific principal components.