所以
$$4a_{n+2} + a_n = 4a_{n+1}$$
.

所以
$$a_{n+2} = a_{n+1} - \frac{1}{4}a_n$$
.

$$\text{Ff is} \frac{a_{{\scriptscriptstyle n+2}} - \frac{1}{2} a_{{\scriptscriptstyle n+1}}}{a_{{\scriptscriptstyle n+1}} - \frac{1}{2} a_{{\scriptscriptstyle n}}} = \frac{a_{{\scriptscriptstyle n+1}} - \frac{1}{4} a_{{\scriptscriptstyle n}} - \frac{1}{2} a_{{\scriptscriptstyle n+1}}}{a_{{\scriptscriptstyle n+1}} - \frac{1}{2} a_{{\scriptscriptstyle n}}} = \frac{1}{2}.$$

所以{ $a_{n+1} - \frac{1}{2}a_n$ } 为等比数列.

评注 把四个"部分和"转化为三个"通项",再利用定义证明等比数列.

5 数学归纳法

例 5 设数列{ a_n } 的前 n 项和为 S_n 满足 $S_n = 2na_{n+1} - 3n^2 - 4n$ $n \in \mathbb{N}^*$ 且 $S_n = 15$.

- (1) 求 a_1 μ_2 μ_3 的值;
- (2) 求数列 $\{a_n\}$ 的通项公式.

解析 (1) 当 n=2 时 $S_2=4a_3-20$ $S_3=S_2+a_3=5a_3-20=15$ 解得 $a_3=7$.

所以 $a_1 + a_2 = 8$.

当 n=1 时 $\mu_1=2a_2-7$ 解得 $a_1=3$ $\mu_2=5$.

(2) 猜想 $a_n = 2n + 1$.

由(1) 得 n=1 时猜想成立:

假设 $n = k(k \ge 2)$ 时假设成立 "即 $a_k = 2k + 1$;

曲
$$a_k = S_k - S_{k-1} = 2ka_{k+1} - 3k^2 - 4k - 2(k-1)a_k + 3(k-1)^2 + 4(k-1)$$
,

整理 得
$$a_{k+1} = \frac{(2k-1)a_k + 6k + 1}{2k} = 2(k+1) + 1.$$

所以 n = k + 1 时命题成立.

综上 $\mu_n = 2n + 1$.

评注 数学归纳法是解决此类问题的通法 ,尤其 是当题目中条件不容易消元时.

教学中不能简单地把此类问题"套路化",要引导学生体会 S_n 与 a_n 的双向关系,在解题时可以根据题目条件及要解决的问题"消部分和"或"消通项". 消元后通常是构造等差或等比数列. 运用公式后,是否需要验证 取决于项的实际意义 项为正整数.

参考文献:

[1]杨二明 ,罗增儒. 数列公式 $a_n = S_n - S_{n-1}$ ($n \ge 2$) 的教学认识[J]. 中学数学研究(华南师范大学版), 2014(09): 53 + 1 - 4.

(收稿日期: 2020 - 03 - 09)

一道圆锥曲线定值问题的深度探析

殷可丁

(汉中中学 陕西 汉中 723000)

摘 要:本文首先将2013年高考数学江西卷文科的一道圆锥曲线试题一般化,并对该一般化问题尝试探究,然后从极点、极线、调和点列的角度分析了该题目的几何实质,最后从更一般的圆锥曲线的角度对该问题进行了深度探析. 关键词:高考题;探析;极点;极线;调和点列

1 问题提出

原题 (2013 年高考数学江西卷文科) 椭圆 $C: \frac{x^2}{a^2}$

$$+\frac{y^2}{h^2}=1(a>b>0)$$
 的离心率 $e=\frac{\sqrt{3}}{2}$ $\mu+b=3$.

- (1) 求椭圆 C 的方程;
- (2) 如图 1 A B D 是椭圆 C 的顶点 P 是椭圆 C 上除顶点外的任意一点 直线 DP 交 x 轴于点 N ,直线 AD 交 BP 于点 M ,设 BP 的斜率为 k MN 的斜率为 m. 证明: 2m-k 为定值.

作者简介: 殷可丁(1979 -) 男 陕西汉中人 本科 中学高级教师 研究方向: 解题教学研究.

本题第(1) 问答案是 $\frac{x^2}{4} + y^2 = 1$; 第(2) 问答案为 $2m - k = \frac{1}{2}$ 为定值. 笔者发现 ,第(2) 问答案定值 $\frac{1}{2}$ 正 好是 $\frac{b}{a}$ 这是巧合 还是必然?于是笔者对第(2) 问做了进一步的思考探究.

2 问题推广

笔者将原题第(2)问一般化为下面的结论.

结论 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) ,点 A , B D 是椭圆 C 的顶点 P 是椭圆 C 上除顶点外的任意 一点 ,直线 DP 交 x 轴于点 N ,直线 AD 交 BP 于点 M , 设 BP 的斜率为 k MN 的斜率为 m 则 $2m - k = \frac{b}{a}$.

证法 1 由题意 ,设直线 BP 的方程为 y = k(x - a) $k \neq 0$ $k \neq \pm \frac{b}{a}$. 代入椭圆 C 的方程 得 $(b^2 + a^2k^2) x^2 - 2a^3k^2x + a^4k^2 - a^2b^2 = 0.$ 设 $P(x_1, y_1)$ 由韦达定理 得 $ax_1 = \frac{a^4k^2 - a^2b^2}{b^2 + a^2k^2}$. 所以 $x_1 = \frac{a^3k^2 - ab^2}{b^2 + a^2k^2}$ $y_1 = k(x_1 - a) = -\frac{2kab^2}{b^2 + a^2k^2}$.

所以 $P(\frac{a^3k^2 - ab^2}{b^2 + a^2k^2}, -\frac{2kab^2}{b^2 + a^2k^2})$. 直线 AD 的方程为 $y = \frac{b}{a}x + b$,与 y = k(x - a) 联

立 絹 $M(\frac{ab+a^2k}{ak-b}, \frac{2kab}{ak-b})$.

设 $N(x_2,0)$,由D,P,N三点共线,解得 $x_2=\frac{a^2k-ab}{ak+b}$,所以 $N(\frac{a^2k-ab}{ak+b},0)$.

所以直线 MN 的斜率 $m = \frac{\frac{2kab}{ak-b}}{\frac{a^2k+ab}{ak-b} - \frac{a^2k-ab}{ak+b}} =$

 $\frac{ak+b}{2a} , \square 2m-k = \frac{b}{a}.$

证法 2 设 $P(x_0,y_0)$ $(x_0 \neq 0,x_0 \neq \pm a)$,则 $k = \frac{y_0}{x_0-a}$.

直线 AD 的方程为 $y = \frac{b}{a}x + b$, ①

直线 *BP* 的方程为 $y = \frac{y_0}{x_0 - a}(x - a)$, ②

直线 *DP* 的方程为 $y = \frac{y_0 - b}{x_0}x + b$.

可得 $N(-\frac{bx_0}{v_0-b}|0)$.

由①②解得 $M(\frac{a^2y_0 + abx_0 - a^2b}{ay_0 - bx_0 + ab}, \frac{2aby_0}{ay_0 - bx_0 + ab})$.

因此,直线 MN 的斜率

$$m = \frac{\frac{2aby_0}{ay_0 - bx_0 + ab}}{\frac{a^2y_0 + abx_0 - a^2b}{ay_0 - bx_0 + ab} + \frac{bx_0}{y_0 - b}}$$

$$= \frac{2aby_0(y_0 - b)}{a^2y_0^2 + 2abx_0y_0 - 2a^2by_0 + (a^2b^2 - b^2x_0^2)}$$

$$= \frac{2aby_0(y_0 - b)}{2a^2y_0^2 + 2abx_0y_0 - 2a^2by_0}$$

$$= \frac{b(y_0 - b)}{ay_0 + bx_0 - ab}.$$

所以
$$2m - k = \frac{2b(y_0 - b)}{ay_0 + bx_0 - ab} - \frac{y_0}{x_0 - a}$$

$$= \frac{bx_0y_0 - 2b^2x_0 - aby_0 + 2ab^2 - ay_0^2}{ax_0y_0 - 2abx_0 - a^2y_0 + bx_0^2 + a^2b}$$

$$= \frac{b(bx_0y_0 - 2b^2x_0 - aby_0 + 2ab^2 - ay_0^2)}{abx_0y_0 - 2ab^2x_0 - a^2by_0 + (b^2x_0^2 + a^2b^2)}$$

$$= \frac{b(bx_0y_0 - 2b^2x_0 - aby_0 + 2ab^2 - ay_0^2)}{abx_0y_0 - 2ab^2x_0 - a^2by_0 + (2a^2b^2 - a^2y^2)}$$

$$= \frac{b(bx_0y_0 - 2b^2x_0 - aby_0 + 2ab^2 - ay_0^2)}{a(bx_0y_0 - 2b^2x_0 - aby_0 + 2ab^2 - ay_0^2)}$$

$$= \frac{b(bx_0y_0 - 2b^2x_0 - aby_0 + 2ab^2 - ay_0^2)}{a(bx_0y_0 - 2b^2x_0 - aby_0 + 2ab^2 - ay_0^2)}$$

$$= \frac{b}{a}.$$

接着 笔者又产生了一系列问题.

问题 1 在双曲线和抛物线中是否有类似结论?

图 1 中有三个顶点分别是 A D B ,而双曲线中只有两个顶点,抛物线只有一个顶点,显然,从这一角度将椭圆中这一结论推广到双曲线和抛物线不现实.

问题 2 图 1 的特征是椭圆上有一个四边形 *AB-PD* 其中四边形四个点中三个点固定 ,另一个点运动 ,图 1 的这一几何特征与该结论有什么联系?

于是 笔者先带着问题 2 从几何的角度进行了探究思考 ,以揭示结论的几何特征.

在完全四点形的每条边上有一组调和共轭点,其中两个点是顶点,另外一对点里,一个点是对边点,另一个点是这条边与对边三点形的边的交点. 注意到图 1 中有一个完全四点形 ABPD ,于是 连接 AP BD 交于点 Q 连接 MQ 交 x 轴于点 H ,如图 2 所示. 则图 2 中点 A B H N 是调和点列,同时 $\triangle QMN$ 是一个自极三

角形.

由 $\triangle QMN$ 是一个自极三角形 ,则点 N 的极线是 MH. 而点 N 在 x 轴上 ,可知过点 N 作椭圆的两条切线 ,其切点弦垂直于 x 轴 ,该切点弦所在直线也是点 N 的极线 ,因此可知 $MH \perp x$ 轴.

由 A B H N 是调和点列 所以 $\frac{|HA|}{|HB|} = \frac{|NA|}{|NB|}$.

即|HA|(|HN|-|HB|)=|HB|(|HN|+|HA|).所以 $|HA| \cdot |HN|-|HB| \cdot |HN|=2|HB| \cdot |HA|.$

所以
$$\frac{1}{|HB|}$$
 $-\frac{1}{|HA|}$ $=\frac{2}{|HN|}$.

则 $2m - k = 2\tan(\pi - \angle MNH) - \tan(\pi - \angle MBH)$

$$= -2 \tan \angle MNH + \tan \angle MBH$$

$$=-2 \frac{|HM|}{|HN|} + \frac{|HM|}{|HB|}$$
$$= \left(\frac{-2}{|HN|} + \frac{1}{|HB|}\right) |HM|$$

$$=\frac{\mid HM\mid}{\mid HA\mid}$$

$$=\frac{\mid OD\mid}{\mid OA\mid}$$

$$=\frac{b}{a}$$
.

到此 问题 2 基本有了答案. 进一步观察思考 ,笔者又产生了如下问题.

问题 3 直线 AD 的斜率恰好为 $\frac{b}{a}$,记直线 AD 的

斜率为 k_{AD} 则等量关系 $2m - k = \frac{b}{a}$ 变成了 $k_{AD} + k = 2m$ 成立. 也就是说 ,四边形 ABPD 中,如果 A ,D 不是固定点 那么 $k_{AD} + k = 2m$ 是否依然成立?

问题 4 图 1 中 ,四边形 ABPD 的一条边在 x 轴上也显得有些特殊 ,如果四边形 ABPD 的四条边不在坐标轴上 ,那么 $k_{4D}+k=2m$ 是否成立?

带着这些问题 笔者从更一般的圆锥曲线的角度 进行了深入思考. 如图 3 四边形 ABPD 是圆锥曲线 C 上的四边形. 因为完全四点形的每条边上有一组调和共轭点 ,其中两个点是顶点 ,另外一对点里 ,一个点是对边点 ,另一个点是这个边与对边三点形的边的交点. 所以 ,点 A , B H N 是调和点列 MA MB MH MN 是调和线束.

所以
$$\frac{\sin \angle AMH}{\sin \angle BMH} \cdot \frac{\sin \angle BMN}{\sin \angle AMN} = 1.$$

设直线 MA MB MH MN 的倾斜角分别为 α_1 α_2 , α_3 α_4 ,则 $\angle AMH = \alpha_3 - \alpha_1$, $\angle BMN = \alpha_4 - \alpha_2$, $\angle BMH = \alpha_2 - \alpha_3$, $\angle AMN = \alpha_4 - \alpha_1$.

则 $\sin(\alpha_3 - \alpha_1) \sin(\alpha_4 - \alpha_2) = \sin(\alpha_2 - \alpha_3) \sin(\alpha_4 - \alpha_1)$. 可见 ,这一等量关系就是所有问题的关键所在.

由此,也可以看出原题的命题背景及本文中结论的几何实质.

在图 2 中
$$\alpha_3 = \frac{\pi}{2}$$
 则有 $\sin(\frac{\pi}{2} - \alpha_1) \sin(\alpha_4 - \alpha_2)$

$$= \sin(\alpha_2 - \frac{\pi}{2}) \sin(\alpha_4 - \alpha_1).$$

所以 $\cos\alpha_1(\sin\alpha_4\cos\alpha_2 - \cos\alpha_4\sin\alpha_2)$

$$=-\cos\alpha_2(\sin\alpha_4\cos\alpha_1-\sin\alpha_1\cos\alpha_4)$$
.

去括号,整理得 $2\cos\alpha_1\cos\alpha_2\sin\alpha_4 = \cos\alpha_1\cos\alpha_4\sin\alpha_2 + \cos\alpha_2\cos\alpha_4\sin\alpha_1$.

化简 # $2 \tan \alpha_4 = \tan \alpha_1 + \tan \alpha_2$.

即直线 MA 的斜率 k_{AM} ,直线 MB 的斜率 k ,直线 MN 的斜率 m 满足 k_{AM} + k = 2m. 再回到图 1 中 ,当 A , D 两点固定 ,则 k_{AM} 为定值 ,即 2m - k 为定值 ,这就是原题.

参考文献:

[1]梅向明,刘增贤,王汇淳,王智秋.高等几何[M].北京:高等教育出版社 2008.

(收稿日期: 2020 - 04 - 07)