

Two Facts:

- 1. During a natural disaster it is essential for first responders to have access to victims' locations.
- 2. People often use social media to report their status.

The Goal:

Leverage social media to locate people in need of emergency disaster relief.

Data Collection

Processing Data

Exploratory Data Analysis

Modeling & Mapping

Data Collection

 Multiple social media options: Twitter, Facebook, Instagram

Twitter's basic API is restrictive

Third party package, Twitterscraper was used

Disaster Sourcing

- To make a robust model, multiple disaster events were targeted
 - Hurricane Harvey (Aug-Sept 2017)
 - Montecito Mudslides (Jan 2018)
 - Southern Tornados (April 2019)
 - Noreaster (March 2018)
 - o Floods (July 2019)
- Total tweets collected: 22,862

Data Collection

Processing Data

Exploratory Data Analysis

Modeling & Mapping

NLP Preprocessing

Drop Duplicates

Check for Nulls

Remove Unnecessary Punctuation

Creating Target Variable

Create critical bag of words

E.g. medivac, sos, & save me

Mapped to tweets

Assigning Locational Data

- Geolocation was not available for our tweets
- Locations were randomly assigned to tweets
- Five areas were created to simulate concentrated areas

Data Collection

Processing Data

Exploratory Data Analysis

Modeling & Mapping

Total Dataset

Hurricanes

Tornado

Non Urgent

Floods

Non Urgent

Mudslides

Non Urgent

Noreaster

Non Urgent

Data Collection

Processing Data

Exploratory Data Analysis

Modeling & Mapping

Model Selection

- Several classification models were used
 - Logisitc regression, random forest, adaptive boosting
- CountVectorizer was used with a custom set of stop words
 - Including top words shared by positive/negative classes
- GridSearchCV was used to search through large sets of parameters
- Best model was determined to be AdaBoost

Model Evaluation

- Recall (sensitivity) was selected as the target metric
 - False negatives should be minimized
- Final model performance: 89% recall
 - 489 Predicted Positives / 551 Actual Positives
- Positive tweets are then visually represented

Mapping Urgent Tweets

Data Collection

Processing Data

Exploratory Data Analysis

Modeling & Mapping

Conclusions

Limitations

- Identification Issues
- Data Issues
- Privacy Issues

Recommendations

- Broader social media access.
- Real time geo-locations.
- Concentration of each post's timing.
- Greater variation and quantity of posts.

Thank You

Questions?

Sources

- https://www.smh.com.au/world/nuclear-war-extreme-weather-top-list-of-2018-global-threats-20180118-h0k0ce.html
- https://about.twitter.com/en_us/company/brand-resources.html
- https://www.mnn.com/earth-matters/climate-weather/blogs/tornado-alley-forecast-more-tornadoes
- https://houstorian.wordpress.com/old-houston-maps/
- https://cohgis-mycity.opendata.arcgis.com/datasets/city-of-houston-etj
- https://blog.twitter.com/en_sea/topics/insights/2018/5-Tips-for-using-Twitter-during-emergencies-and-natural-disaster.html