Apellidos, nombre: Ivan Dragos Cornel

PRÁCTICA: Nº 29 – Contador ascendente JK módulo 16

1. Enunciado:

Estudio, desarrollo, montaje y comprobación de un contador asíncrono binario de módulo 16 empleando biestables JK (flip-flop) de la familia TTL 74LS76 o bien el 74LS112, mediante el suministro de entrada de reloj procedente de un generador de onda cuadrada en TTL. Inicialmente señalizalo con 4 leds.

Monta un display con su decodificador para mostrar la cuenta en el mismo de una forma más clara.

- 2. Objetivos: crear un contador que cuente automáticamente, primero en binario, y luego en decimal, de 0 a 8. Se debe reiniciar solo y volver a contar indefinidamente.
- 3. Esquema lógico o simbólico (sin elementos físicos reales). En caso de electrónica digital incluye tabla de verdad:

'76
FUNCTION TABLE

INPUTS					OUTPUTS	
PRE	CLR	CLK	J	К	Q	ā
L	н	×	×	×	Н	L
H	L	×	X	×	L	н
L	L	×	×	X	нt	HT
н	н	7	L	L	α ₀	$\overline{\alpha}_0$
н	н	л	H	L	н	L
н	н	7	L	Н	L	н
H	н	J	Н	н.	TOGGLE	

	Q4	Q3	Q2	Q1
1° impulso	0	0	0	1
2° impulso	0	0	1	0
3° impulso	0	0	1	1
4° impulso	0	1	0	0
5° impulso	0	1	0	1
6° impulso	0	1	1	0
7° impulso	0	1	1	1
8° impulso	1	0	0	0
9º impulso	1	0	0	1
10° impulso	1	0	1	0
11° impulso	1	0	1	1
12° impulso	1	1	0	0
13° impulso	1	1	0	1
14° impulso	1	1	1	0
15° impulso	1	1	1	1
16° impulso				

4. Esquema físico (todo lo necesario para que funcione):

5. Explicación del funcionamiento:

Un flip-flop, es un <u>multivibrador</u> capaz de permanecer en uno de dos estados posibles durante un tiempo indefinido en ausencia de perturbaciones. Esta característica es ampliamente utilizada en <u>electrónica digital</u> para memorizar información. El paso de un estado a otro se realiza variando sus entradas.

El Flip flop J-K es versátil y es uno de los tipos de flip-flop más usados. Su funcionamiento es idéntico al del flip-flop S-R en las condiciones SET, RESET y de permanencia de estado. La diferencia está en que el flip-flop J-K no tiene condiciones no válidas como ocurre en el S-R.

Este dispositivo de almacenamiento es temporal que se encuentra dos estados (alto y bajo), cuyas entradas principales, J y K, a las que debe el nombre, permiten al ser activadas:

- J: El grabado (set), puesta a 1 ó nivel alto de la salida.
- K: El borrado (reset), puesta a 0 ó nivel bajo de la salida.

Si no se activa ninguna de las entradas, el biestable permanece en el estado que poseía tras la última operación de borrado o grabado.

Con estas posibilidades hemos programado este circuito integrado de manera que, al ser de módulo 16 (usamos 2 de estos integrados), nos cuente mediante los 4 clocks, de 0 a 8 y se reinicie. Todo esto se refleja en el display, que previamente pasa por el decodificador.

6. Fotografía del montaje final:

