

Closed-loop multi-sensor SLAM using factor graphs for fixed-wing UAV.

Adam Radomski

Master Thesis
Supervised by Timo Hinzmann, Thomas Schneider

Motivation

Develop localization framework which can simultaneously:

- Estimate local navigation solution with minimal latency
- Find optimal solution given all the measurements

Approach

Work done so far

Backbone of the localization framework

- Short Term Smoother
 - building a full factor graph given sensor data
 - estimating position and passing data to LTS
- Long Term Smoother
 - building a map with the input data
 - "translating" the map to a factor graph
 - optimizing the factor graph and updating data in the map

Current challenges

- Reading landmarks from the map and translating them into a factor graph
- Inserting fixed landmarks into STS

Future work

- 3-stage landmark initialization
 - Stage 1: compute 3D landmark coordinate and initialize the feature as binary factor (state x_k and x_{k+1}).
 - Stage 2: formulate the feature re-projection factors connecting the 3D landmark state and pose.
 - Stage 3: once uncertainty converges marginalize landmark state and switch back to binary factor formulation.
- Sliding-Window STS
 - Reduce the STS problem to a sliding-window factor graph

Overview

Adding a video

Example Slide

Adding a video

LittleDog walking over rough terrain (S. Schaal, "The latest version of the LittleDog Robot," 2010. https://www.youtube.com/watch?v=nUQsRPJ1dYw)

Adding a video - Example Slide

- Point 1
- Point 2
 - Point 1.1
 - Point 1.2

Caption

