1.	How many 4-digit number can be formed with no digit repeated by using the digits 3, 4, 5, 6, 7, 8 and 0?
	a) 280 b) 560 c) 720 d) 840
2.	The greatest positive integer which divide n(n+1) (n+2) (n+3) for all
	n∈N is
	a) 2 b) 6 c) 20 d) 24
3.	Which of the following statement is true?
	a) A triangle can have two right angles
	b) A triangle can have two obtuse angles
	c) A triangle can have two acute angles
	A triangle can have all three angles less then 60°.
4.	If α and β are the roots of $x^2 + x + 1 = 0$ then $\alpha^{2040} \rightleftharpoons \beta^{2040}$ is
	a) -2 b) -1 c) 1 d) 2
5.	$\int \sqrt{1 + \sin x} dx = ?$
	a) $\sqrt{2} \sin(\frac{\pi}{4} - \frac{x}{2}) + C$ b) $\sqrt{2} \sin(\frac{\pi}{4} - \frac{x}{2}) + C$
	c) $-2\sqrt{2} \sin(\frac{\pi}{4} - \frac{x}{2}) + C$ d) None of these
	Group 'B'
6.	a) Differentiate between permutation and combination. [2]
	b) In how many ways can the letters of the word 'PENCIL' can be
	arranged under the following condition.
	i) How many begin with 'N'. [1]
	ii) How many begin with 'E' and end with 'I'
_	iii) If there is no restriction.
7.	a) The numbers 1, 2, 3, ∞ are said to be natural number. These numbers are used to form various series.
	i) Write the formula for the sum of first (n+1) even natural numbers.
	ii) Write the formula for the sum of square of first (n-1) natural numbers.
	[2]

Group 'A'

[1×5=5]

		-4.	10
	b)	Define consistent and independent with suitable example.	Ther.
8.	a)	Mayor Balen Shah plans to have circular information technology	Dar
0.	1	of radius 2 km in Kathmandu. A separate area in the form	
111	/	segment formed by a chord of length 2 km is to be al	
11		exclusively for a canteen in the park. Find the area of the segm	
		be allotted for the canteen.	
			[3]
	b)	In a \triangle ABC, $a = 2\sqrt{2}$, $b = 2\sqrt{3}$ and $c = 75^{\circ}$. Find the other side	le and
		the angles.	[2]
9.	av	Evaluate: $\int \frac{1}{x^2 - a^2} dx$	[2]
	V	$\int_{0}^{\infty} x^{2} - a^{2} dx$	[2]
	L	Evaluate: $\int \frac{1}{x^2 - a^2} dx$ Evaluate: $\int \sqrt{\frac{9 + x}{9 - x}} dx$	
	Or	Evaluate: $\int \sqrt{9-x} dx$	[3]
10	,		
10	i. as	Evaluate: $\int \frac{1}{a+b \cos x} dx$ when $a < b$	[3]
	6	Find $\int \sqrt{x^2 + 2 + 5} dx$.	[2]
11		In \triangle ABC, prove that	[2]
	1		
		$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$ Where 'S' is semi perimeter of \triangle ABC.	[3]
	b)	Solve the following equation by using cramer's rule:	[2]
	-	2x + 3y = 7 and $3x + 5y = 9$	[-]
13		Define de-moive's theorem	[1]
		$2\cos(\frac{9\pi}{2})$ is $\sin\frac{9\pi}{2}$	[,]
	b)	Find the quotient $\frac{2 \cos(\frac{9\pi}{4}) i \sin(\frac{9\pi}{4})}{4(\cos(\frac{-3\pi}{2}) + i \sin(\frac{-3\pi}{2}))}$ in rectangular form.	[3]
	X	$4\left(\cos\left(\frac{-3\pi}{2}\right) + i\sin\left(\frac{-3\pi}{2}\right)\right)$	[2]
	c	If $z = (\cos \theta + i \sin \theta)$, Show that $z^n - \frac{1}{z^n} = 2i \sin n\theta$.	[1]
	C	zn zn	[1]

so Best of Luck cell