Abstract

The particle nature of dark matter is not well understood. The one thing that is well understood is that its mass is bounded from above at $\sim 100~M_{\odot}$ and below at $\sim 10^{-22}$ eV. In addition, fermionic DM is thought to be bounded from below at $\sim 100 \text{ eV}$ by the Pauli exclusion principle. In this talk, I will discuss a simple way to push down the bound on fermionic DM by considering a scenario with a large number of species. Fermionic DM cannot be as light as bosonic DM because the vast number of species required ($\sim 10^{100}$) provides problems for cosmic rays, the LHC, BH evaporation, BH superradiance, early universe constraints, and others. I will present estimates of these constraints on the mass and number of species of particles. Combining all of this relaxes the bound on fermionic DM by ~ 16 orders of magnitude.

Ultra-light fermionic dark matter

Peter B. Denton

Workshop on Asymptotic Safety and Dark Matter

December 9, 2020

2008.06505 with Hooman Davoudiasl and David McGady

Dark matter: what we know

Astrophysically/gravitationally: lots

See many of yesterday's talks

Particle nature:

- ► Coupling to SM/self? Could be zero (other than gravity)
- ▶ Heavier than $\sim 100~M_{\odot}$ leads to tidal disruption effects
- ▶ Lighter than $\sim 10^{-22}$ eV, at $v \sim 10^{-3}$, Compton wavelength is too big
 - ightharpoonup Core/cusp suggests $\sim 10^{-22} 10^{-21} \text{ eV}$

2008.06505

- \triangleright Fermionic DM lighter than ~ 100 eV can't be squeezed into a galaxy
 - S. Tremaine, J. Gunn PRL 42, 407 (1979)

See P. Fox's overview talk yesterday See M. Fairbairn's talk an hour ago

Outline

- 1. Fermionic dark matter can be lighter than 100 eV
- 2. New limits arise from LHC, cosmic rays, black holes, ...
- 3. Strong gravity becomes important
- 4. How many species of particles are there?

Light fermionic dark matter

Light fermionic dark matter m < 100 eV can't be squeezed into galaxies

Two issues:

- 1. Getting light thermal population into low momentum states is difficult
- 2. Pauli exclusion principle

S. Tremaine, J. Gunn PRL 42, 407 (1979)

Focus on #2

Light fermionic dark matter

Light fermionic dark matter m < 100 eV can't be squeezed into galaxies

Two issues:

- 1. Getting light thermal population into low momentum states is difficult
- 2. Pauli exclusion principle

S. Tremaine, J. Gunn PRL 42, 407 (1979)

Focus on #2

Modern treatments find that the limit is

- ▶ 100 eV
- ▶ 190 eV (2σ)
- ▶ 130 eV (2σ)

C. Di Paolo, et al. 1704.06644

- D. Savchenko, A. Rudakovskyi 1903.01862
 - J. Alvey, et al. 2010.03572

Evading Tremaine-Gunn

Dark matter could be composed of many different species

The correct bound on light fermionic DM:

$$N_F \gtrsim \left(rac{100 ext{ eV}}{m}
ight)^4$$

▶ One power: lighter DM requires more species

2008.06505

► Three powers: phase space

So 1 eV fermionic DM is possible if there are $N_F \gtrsim 10^8$ species.

Caveats

- 1. Focused on late time DM effects
- 2. Numbers are correct to within a factor of 2 (or a factor of 10)

Require no interactions

"Model"

Different species can be degenerate:

$$\mathcal{L}\supset -m\sum_{i=1}^{N_F}ar{\chi}_i\chi_i$$

Perhaps $SU(\sqrt{N_F})$ which leads to quasi-degenerate states:

$$rac{m_i - m_j}{m_1} \sim rac{\lambda^2}{16\pi^2} \log rac{m_1}{\Lambda}$$

 m_1 is the lightest mass

L. Randall, J. Scholtz, J. Unwin 1611.04590

Perhaps Kaluza-Klein modes:

Constraint is more complicated

Extrapolation!

Let's extrapolate this as far as possible!

$$m \gtrsim 10^{-22} \text{ eV} \Rightarrow N_F \gtrsim 10^{96}$$

How many DM particles would there be in a galaxy in this case?

Dwarf spheroidals have $\sim 10^{96}$ DM particles if $m \sim 10^{-22}$ eV

Coincidence

Below this the fourth power scaling law drops to $N_F \gtrsim (\frac{100 \text{ eV}}{m})^1$

No more Pauli exclusion

Extrapolation!

Let's extrapolate this as far as possible!

$$m \gtrsim 10^{-22} \text{ eV} \Rightarrow N_F \gtrsim 10^{96}$$

How many DM particles would there be in a galaxy in this case?

Dwarf spheroidals have $\sim 10^{96}$ DM particles if $m \sim 10^{-22}$ eV

Coincidence

Below this the fourth power scaling law drops to $N_F \gtrsim (\frac{100 \text{ eV}}{m})^1$

No more Pauli exclusion

Too many species

Claim:

 10^{96} species is Too Many

SM has 10^2 species

From now it doesn't matter:

- 1. if the species are DM,
- 2. if they are fermions, or
- 3. if their masses are degenerate

Too many species

Claim:

 10^{96} species is Too Many

SM has 10^2 species

From now it doesn't matter:

- 1. if the species are DM,
- 2. if they are fermions, or
- 3. if their masses are degenerate

2008.06505

Gravitational effects are suppressed by M_P , but enhanced by N

$$\sum_{i}^{N} \sigma_{i} \sim N \frac{E^{2}}{M_{P}^{4}}$$

Cosmic ray constraints

Highest energy collisions recorded are UHECRs

Telescope Array and the Pierre Auger

Observatory see a suppression at $10^{19.5}~{\rm eV}$

O. Deligny for TA and Auger 2001.08811

Could be photo-pion production (GZK)

K. Greisen PRL 16, 748 (1966)

G. Zatsepin, V. Kuzmin JETP Lett. 4, 78 (1966)

Could be end of sources

See e.g. R.A. Batista, et al. 1903.06714

Cosmic ray constraints

Can use cosmic rays to constrain large number of species

- 1. As N increases, $BR(pp \to \chi\chi) \to 1$
- 2. Showers would be reconstructed at a lower energy
- 3. There would appear to be a suppression to the flux
- 4. No suppression is seen below $E_{\rm LAB} \sim 10^{19.5}~{\rm eV}~(\sqrt{s}=250~{\rm TeV})$

$$N \lesssim 4 \times 10^{68}$$
 for $m \lesssim 100 \text{ TeV}$

LHC

Lower energy, better precision

- Searches for monojets
- ▶ Detected 245 events with $E_T^{miss} > 1 \text{ TeV}$
- ► Expected 238±23
 - ▶ Mostly $Z \to \nu \nu$ with ISR or brem

ATLAS 1711.03301

- $ightharpoonup G o \chi\chi$ looks the same
- ► Include 3-body $(4\pi)^{-3}$ factor

$$N \lesssim 10^{62}$$
 for $m \lesssim 500 \text{ GeV}$

100 TeV will improve by \sim 2+ orders of magnitude

BH evaporation

- $ightharpoonup t_{evap} \sim \frac{10^{67}}{N} \left(\frac{M_{BH}}{M_{\odot}}\right)^3 \, {
 m yr}$
- ▶ We assume that $M_{BH} \sim 10 M_{\odot}$ have been around for $\sim 10^9$ yr
- ► $10M_{\odot} \to T_{BH} \sim 10^{-11} \text{ eV}$

$$N \lesssim 10^{61}$$
 for $m \lesssim 10^{-11} \text{ eV}$

Fermionic DM can be as light as $\sim 10^{-13}$ eV Need $\sim 10^{61}$ quasi-degenerate species

These constraints apply regardless of whether it is DM, fermionic, or quasi-degenerate

BBN

Low energies but high densities

- ► New states populated via gravity in the early universe
- ightharpoonup Don't want $\rho_{\chi} \gtrsim \rho_{\gamma}$
- $ightharpoonup
 ho_\chi/\rho_\gamma \sim NT^3/M_P^3$
- ► Implies a maximum reheat temperature
- ▶ BBN requires $T_{rh} \ge 10 \text{ MeV}$

 $N \lesssim 10^{63}$ for $m \lesssim 10 \text{ MeV}$

Supernovae

Low energies but high densities and more measurements

- Neutrino production $\sigma_{\nu} \sim E^2 G_F^2$
- ▶ Dark sector production $\sigma_{\chi} \sim NE^2/M_P^4$
- ➤ Can't have a significant amount of energy to dark sector
- $ightharpoonup N \lesssim G_F^2 M_P^4$

 $N \lesssim 10^{66}$ for $m \lesssim 100 \text{ MeV}$

Superradiance with bosons

Narrow applicability range, apply down to $N_B = 1$ for bosons

- ▶ Power law for small masses m^{-9}
- ► Exponential for large masses
- ightharpoonup Conservatively take constraints on S=0
- ▶ Different regions are distinct constraints

H. Davoudiasl, PBD 1904.09242

M. Baryakhtar, R. Lasenby, M. Teo 1704.05081

Superradiance with fermions

- \triangleright Power law for small masses m^{-6}
- ► Exponential for large masses
- Conservatively take constraints on $S = \frac{1}{2}$
- ▶ Different regions are distinct constraints
- ▶ If $N_F \lesssim$ cloud occupation number, superradiance stops
 - Occupation number $\sim 10^{77}$ for stellar mass BH

Superradiance combinatorics

Assumed that generating N_F particles out of N_F species yields N_F distinct species

Just because a large number of particles spanning a large number of species are produced doesn't mean that they are actually different

The expected number of distinct species is

$$N_F \left[1 - \left(\frac{N_F - 1}{N_F} \right)^{N_F} \right] \to N_F \left(1 - \frac{1}{e} \right) \approx 0.63 N_F$$

Less than factor of two ⇒ we're good

Neutrino oscillations

If neutrinos get mass via usual seesaw, can write down:

$$\xi_i H^* \bar{\ell} \chi_i$$

leads to oscillations

$$P(\nu_{\ell} \to \chi_i) \sim rac{\xi_i^2 \langle H \rangle^2}{m_{\nu}^2} \sin^2 \left(rac{m_{\nu}^2 L}{4E}
ight)$$

Assume $m_{\nu, \text{lightest}}$ is not too light

$$\langle H \rangle^2 / m_{\nu}^2 \sim 10^{24}$$

Neutrino oscillations

If neutrinos get mass via usual seesaw, can write down:

$$\xi_i H^* \bar{\ell} \chi_i$$

leads to oscillations

$$P(\nu_\ell \to \chi_i) \sim \frac{\xi_i^2 \langle H \rangle^2}{m_\nu^2} \sin^2 \left(\frac{m_\nu^2 L}{4E} \right)$$

Assume $m_{\nu, \text{lightest}}$ is not too light $\langle H \rangle^2 / m_{\nu}^2 \sim 10^{24}$

2008.06505

$$P(\nu_{\ell} \to \chi) \sim N_F P(\nu_{\ell} \to \chi_i) \lesssim 0.1$$

 $N_F \xi_i^2 \lesssim 10^{-25}$

To be competitive with LHC, need $\xi_i \gtrsim e^{-97}$ Instanton effects should suppress by $\sim e^{-100}$

L. Abbott, M. Wise NPB 325, 687 (1989)

R. Kallosh, et al. hep-th/9502069

R. Kallosh, et al. hep-th/9502069

P. Svrcek, E. Witten hep-th/0605206

H. Davoudiasl 2003.04908

L. Hui, et al. 1610.08297

Proton decay

One can write down this proton decay operator

$$\mathcal{O} \sim \frac{udd\chi_i}{M_P^2}$$

$$\Gamma(p \to \pi^+ + \chi) \sim N_F \frac{m_p^5}{M_P^4}$$

$$N_F \lesssim 10^{12} \quad \text{for} \quad m \lesssim 100 \text{ MeV}$$

If there is an associated global U(1) charge, an instanton would suppress this rate by $e^{-200} \sim 10^{87}$

Strong gravity

Literature suggests that at $N \sim 10^{32}$ something happens with strong gravity

G. Dvali 0806.3801
I. Antoniadis, et al. hep-ph/9804398

S. Adler PRI, 44, 1567 (1980)

S. Adler PRL 44, 1567 (1980)
N. Arkani-Hamed, S. Dimopoulos, G. Dvali hep-ph/9807344

 $\mathbf{X}.$ Calmet, S. Hsu, D. Reeb $\mathbf{0803.1836}$

G. Dvali, M. Redi 0905.1709

A. del Rio, R. Durrer, S. Patil 1808.09282 Calmet:

 $N \sim 10^{32}$ species with $m \lesssim 1$ TeV may pull M_P to electroweak According to Dvali or Adler:

$$G^{-1}(\mu) \sim G^{-1}(0) - Nm^2 \log \frac{\mu^2}{m^2}$$

 $m\sqrt{N} \leq M_P$

 $G^{-1}(0) = M_P^2$

This leads to

~

$$G^{-1}(\mu) \sim G^{-1}(0) - \frac{N\mu^2}{12\pi}$$

Summary

- ▶ The "number of species" axis for DM is interesting
- Fermionic DM can be as light as 10^{-13} eV with kev constraints from BH lifetimes and the LHC
- Many similar constraints on the number of species from cosmic rays, LHC, BH lifetimes, BBN, and SNe
- Certain DM considerations leads to strong gravity questions
- More work to be done on this topic in many directions: pheno and theory

Thanks!

Backups

Superradiance

Rotating BHs will create particles on-shell out of the vacuum: Extracts angular momentum

Y. Zeldovich JETP Lett. 14, 180 (1971)

Conceptually similar to Hawking and Unruh radiation

Phenomenologically: BHs can constrain the *existence* of bosons, independent of coupling

A. Arvanitaki, et al. 0905.4720

A cloud of particles forms around the BH \Rightarrow no fermions*

Care is needed for axions

Superradiance

Boson cloud growth rate:

$$\Gamma_0 = \frac{1}{24} a^* G^8 M^8 \mu_B^9 , \qquad \Gamma_1 = 4a^* G^8 M^8 \mu_B^7$$

 $a^* \equiv J/GM^2 \in [-1,1]$ Leading to an occupation number after spinning down Δa^* :

$$N = GM\Delta a^*$$

Superradiance depletes the spin of a BH if:

$$e^{\Gamma_B \tau_{\rm BH}} > N$$

 $au_{
m BH} \sim {
m time} \ {
m to} \ {
m spin} \ {
m the} \ {
m BH} \ {
m back} \ {
m up}$

Wavelength has to enter into the ergosphere:

$$\mu_B > \Omega_H$$

Angular velocity:

$$\Omega_H \equiv \frac{1}{2GM} \frac{a^*}{1 + \sqrt{1 - a^{*2}}}$$

Only include dominant m=1 spherical harmonic mode

M. Barvakhtar, R. Lasenby, M. Teo 1704.05081

EHT: ApJL 875 L5 (2019)

- ► EHT can infer the spin
- ► Some degeneracies with disk properties
- ► EHT (conservative): $|a^*| \ge 0.5$
- ► Twisted light: $|a^*| = 0.9 \pm 0.05$ at 95% F. Tamburini, B. Thidé, M. Valle 1904.07923

rules out $a^* = 0$ at 6 σ

Circularity: No real power yet

C. Bambi, et al. 1904.12983

If a BH with large $|a^*|$ is measured, it could not have spun down much

Time scale

Astrophysics can spin the BH back up, possibly faster than superradiance

- ▶ From the Eddington limit, $\tau_{\text{Salpeter}} \sim 4.5 \times 10^7 \text{ yrs}$
- ► EHT: $\dot{M}_{\rm M87^*}/\dot{M}_{\rm Edd} \sim 2 \times 10^{-5}$
- ▶ Mergers: one $\sim 10^9$ yrs ago with a much smaller galaxy

A. Longobardi, et al. 1504.04369

▶ μ_B constraint has very weak dependence: $\tau_{\rm RH}^{-1/7}$ or $\tau_{\rm RH}^{-1/9}$

We take $\tau_{\rm BH} = 10^9 \ \rm yrs$

Past ultra light boson constraints

Spin-1 constraints M. Baryakhtar, R. Lasenby, M. Teo 1704.05081

New constraints from M87*

Bosons with masses in the regions in color are ruled out.

Spin dependence

Superradiance Spin-down

Different spherical harmonic modes leads to different maximum spins

Vector (scalar) in bold (dotted) for $\mu_B = 10^{-12} \text{ eV}$ M. Baryakhtar, R. Lasenby, M. Teo 1704.05081

How to detect ultra light bosons with superradiance

Vector with $\mu_B = 10^{-12}$ eV $\sigma_{a^*} \sim 0.3, \, \sigma_M/M \sim 10\%$

M. Baryakhtar, R. Lasenby, M. Teo 1704.05081

Superradiance combinatorics

Assumed that generating N_F particles out of N_F species yields N_F distinct species Just because a large number of particles spanning a large number of species are produced doesn't mean that they are actually different

The expected number of distinct species is

$$N_F \left[1 - \left(\frac{N_F - 1}{N_F} \right)^{N_F} \right] \to N_F \left(1 - \frac{1}{e} \right) \approx 0.63 N_F$$

Less than factor of two ⇒ we're good

Strong gravity: deviations

A running in G would lead to variations in gravity on different scales

$$\frac{\delta G}{G} \lesssim 10^{-9}$$
 for $\ell \gtrsim 10^3 \text{ km} \to 10^{-13} \text{ eV}$

P. Fayet 1712.00856

S. Schlamminger, et al. 0712.0607

This is not as strong as the 10^{32} arguments

Strong gravity: deviations

A running in G would lead to variations in gravity on different scales

$$\frac{\delta G}{G} \lesssim 10^{-9}$$
 for $\ell \gtrsim 10^3 \text{ km} \to 10^{-13} \text{ eV}$

P. Fayet 1712.00856

S. Schlamminger, et al. 0712.0607

This is not as strong as the 10^{32} arguments

At $N \sim 10^{60}$ and $m \sim 10^{-3}$ eV consistent with theory arguments on previous slide

$$\Rightarrow \frac{\delta G}{G} \sim 10^{-2}$$
 for $\ell \sim 0.1 \text{ mm}$

Close to current constraints

J. Lee, et al. 2002.11761

Neutrino oscillations

If neutrinos get mass via usual seesaw, can write down:

$$\xi_i H^* \bar{\ell} \chi_i$$

leads to oscillations

$$P(\nu_{\ell} \to \chi_i) \sim rac{\xi_i^2 \langle H \rangle^2}{m_{\nu}^2} \sin^2 \left(rac{m_{\nu}^2 L}{4E}
ight)$$

Assume $m_{\nu, \text{lightest}}$ is not too light

$$\langle H \rangle^2/m_{\nu}^2 \sim 10^{24}$$

Neutrino oscillations

If neutrinos get mass via usual seesaw, can write down:

$$\xi_i H^* \bar{\ell} \chi_i$$

leads to oscillations

$$P(\nu_\ell \to \chi_i) \sim \frac{\xi_i^2 \langle H \rangle^2}{m_\nu^2} \sin^2 \left(\frac{m_\nu^2 L}{4E} \right)$$

Assume $m_{\nu, \text{lightest}}$ is not too light $\langle H \rangle^2 / m_{\nu}^2 \sim 10^{24}$

$$P(\nu_{\ell} \to \chi) \sim N_F P(\nu_{\ell} \to \chi_i) \lesssim 0.1$$

 $N_F \xi_i^2 \lesssim 10^{-25}$

To be competitive with LHC, need $\xi_i \gtrsim e^{-97}$ Instanton effects should suppress by $\sim e^{-100}$

L. Abbott, M. Wise NPB 325, 687 (1989)

R. Kallosh, et al. hep-th/9502069

P. Svrcek, E. Witten hep-th/0605206

H. Davoudiasl 2003.04908L. Hui, et al. 1610.08297

Nucleon decay

One can write down this proton decay operator

$$\mathcal{O} \sim \frac{udd\chi_i}{M_P^2}$$

$$\Gamma(p \to \pi^+ + \chi) \sim N_F \frac{m_p^5}{M_P^4}$$

$$N_F \lesssim 10^{12} \quad \text{for} \quad m \lesssim 100 \text{ MeV}$$

If there is an associated global U(1) charge, an instanton would suppress this rate by $e^{-200} \sim 10^{87}$