Project Overview

Build a predictive model that identifies the month, hour of day, and appliances (kitchen, laundry, or water heater/ac) that use the most power.

Hypothesis

The most power is used by water heater/ac during months of Dec, Jan, Feb, and July between the hours of 6am - 9pm.

Data Overview/Cleansing

- Drop irrelevant rows
- Change column names for easier readability
- Change date column to month only
- Change time column to hour of day (24 hour clock)
- Remove '?' and null values
- Use MinMaxScaler for Kitchen, LaundryRoom, and WaterHeat AC columns due to variance in values
- Removed zero values due to imbalanced data

Analysis and Results

- Split data into train and test (80%, 20%)
- Target variable > 'Consumer active power?'
- Ran Linear Regression in Scikit Learn and StatsModels
- None of the factors reflected normal distribution.
- Very little correlation for any factors
- Scikit Learn provided score of 0.86
- StatsModels provided R-squared of 0.86

```
In [2]:
```

```
import pandas as pd
import numpy as np
import csv
import sys
```

```
In [3]:
```

```
#df = pd.read_table('household_power_consumption.txt')
with open("household_power_consumption.txt" , "r") as txt_file:
    with open("csv_file.csv", "w") as csv_file:
        in_txt = csv.reader(txt_file, delimiter = ';')
        out_csv = csv.writer(csv_file)
        out_csv.writerows(in_txt)
```

```
In [4]:
```

```
df = pd.read_csv('csv_file.csv')
df.head(3)
```

/Users/krys/anaconda2/lib/python2.7/site-packages/IPython/core/interac tiveshell.py:2717: DtypeWarning: Columns (2,3,4,5,6,7) have mixed type s. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)

Out[4]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_int
0	16/12/2006	17:24:00	4.216	0.418	234.840	18.400
1	16/12/2006	17:25:00	5.360	0.436	233.630	23.000
2	16/12/2006	17:26:00	5.374	0.498	233.290	23.000

In [5]:

df.shape

Out[5]:

(2075259, 9)

In [6]:

df.drop(df.columns[[3,4,5]], axis=1, inplace=True)

In [7]:

df.head(2)

Out[7]:

	Date	Time	Global_active_power	Sub_metering_1	Sub_metering_2	Sub_me
0	16/12/2006	17:24:00	4.216	0.000	1.000	17.0
1	16/12/2006	17:25:00	5.360	0.000	1.000	16.0

In [8]:

```
In [9]:
```

Out[9]:

df.head(2)

	Date	Time	Global_active_power	Kitchen	LaundryRoom	WaterHeat_AC
(16/12/2006	17:24:00	4.216	0.000	1.000	17.0
-	16/12/2006	17:25:00	5.360	0.000	1.000	16.0

```
In [10]:
```

```
from datetime import datetime
from dateutil.parser import parse
```

In [11]:

```
df['Date'] = pd.to_datetime(df['Date'], format='%d/%m/%Y')
df['Date'] = df['Date'].dt.month
```

In [12]:

```
df['Time'] = pd.to_datetime(df['Time'], format='%H:%M:%S')
df['Time'] = df['Time'].dt.hour
```

In [13]:

```
df.head(2)
```

Out[13]:

	Date	Time	Global_active_power	Kitchen	LaundryRoom	WaterHeat_AC
C	12	17	4.216	0.000	1.000	17.0
1	12	17	5.360	0.000	1.000	16.0

In [14]:

```
df['Global_active_power'].value_counts().head()
```

Out[14]:

```
? 25979
0.218 9491
0.216 9319
0.322 9226
0.324 9153
```

Name: Global_active_power, dtype: int64

```
df['Kitchen'].value_counts().head(10)
Out[15]:
0.000
          1840611
1.000
             82920
0.0
             39564
?
             25979
2.000
             18537
38.000
             15954
37.000
             14556
39.000
              6452
36.000
              5128
1.0
              2016
Name: Kitchen, dtype: int64
In [16]:
df['LaundryRoom'].value counts().head(10)
Out[16]:
0.000
          1408274
1.000
           367317
2.000
           153938
0.0
             28556
?
             25979
1.0
             10907
3.000
              7096
37.000
              6565
4.000
              5671
36.000
              5498
Name: LaundryRoom, dtype: int64
In [17]:
df['WaterHeat_AC'].isnull().sum()
Out[17]:
25979
In [18]:
df['Global_active_power'].replace('?', np.nan,inplace=True)
```

In [15]:

```
In [19]:
df['Global_active_power'].isnull().value_counts()
Out[19]:
False
         2049280
           25979
True
Name: Global_active_power, dtype: int64
In [20]:
df.dropna(subset=['Global_active_power'], inplace=True)
In [21]:
df['Global_active_power'].isnull().sum()
Out[21]:
0
In [22]:
df['Kitchen'].replace('?', np.nan,inplace=True)
In [23]:
df['Kitchen'].isnull().value_counts()
Out[23]:
         2049280
False
Name: Kitchen, dtype: int64
In [24]:
df.dropna(subset=['Kitchen'], inplace=True)
In [25]:
df['Kitchen'].isnull().sum()
Out[25]:
0
In [26]:
#df1 = df1.drop(df1[(df1.LaundryRoom == '?').index])
df['LaundryRoom'].replace('?', np.nan,inplace=True)
```

```
In [27]:
df['LaundryRoom'].isnull().value counts()
Out[27]:
False
         2049280
Name: LaundryRoom, dtype: int64
In [28]:
df.dropna(subset=['LaundryRoom'], inplace=True)
In [29]:
df['LaundryRoom'].isnull().sum()
Out[29]:
0
In [30]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2049280 entries, 0 to 2075258
Data columns (total 6 columns):
Date
                       int64
Time
                        int64
Global active power
                       object
Kitchen
                       object
                       object
LaundryRoom
WaterHeat AC
                       float64
dtypes: float64(1), int64(2), object(3)
memory usage: 109.4+ MB
######
In [31]:
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
In [32]:
df[['Kitchen']] = scale.fit transform(df[['Kitchen']].as matrix())
/Users/krys/anaconda2/lib/python2.7/site-packages/sklearn/utils/valida
tion.py:429: DataConversionWarning: Data with input dtype object was c
onverted to float64 by MinMaxScaler.
  warnings.warn(msg, _DataConversionWarning)
```

```
In [33]:
df['Kitchen'].value counts()
Out[33]:
0.00000
             1880175
0.011364
                84936
0.022727
                19017
0.431818
                16119
                14892
0.420455
0.443182
                 6503
0.409091
                 5270
0.397727
                 1359
0.454545
                 1159
                  802
0.363636
0.159091
                  702
0.170455
                  635
0.375000
                  603
0.147727
                  600
0.136364
                  597
0.352273
                  586
0.193182
                  580
0.181818
                  579
0.113636
                  576
0.204545
                  563
0.306818
                  546
0.125000
                  541
0.386364
                  534
0.102273
                  522
0.238636
                  510
0.034091
                  507
0.227273
                  505
0.215909
                  487
0.340909
                  484
0.318182
                  480
0.613636
                   53
0.818182
                   46
0.625000
                   44
0.806818
                   41
0.875000
                   34
0.636364
                   32
0.886364
                   32
0.795455
                   29
0.897727
                   28
0.681818
                   26
0.909091
                   19
0.761364
                   18
0.772727
                   16
0.715909
                   16
0.659091
                   13
0.750000
                   13
0.670455
                   13
0.647727
                   13
```

```
0.704545
                 12
0.693182
                 10
0.784091
                  9
0.920455
                  6
0.943182
                  4
0.988636
                  3
                  3
0.931818
                  3
1.000000
0.954545
                  2
0.977273
Name: Kitchen, dtype: int64
In [34]:
df[['Global_active_power']] = scale.fit_transform(df[['Global_active_power']].as_mat
In [35]:
df[['LaundryRoom']] = scale.fit_transform(df[['LaundryRoom']].as_matrix())
In [36]:
df[['WaterHeat_AC']] = scale.fit_transform(df[['WaterHeat_AC']].as_matrix())
```

In [37]:

0.738636

0.727273

12

12

df.head(3)

Out[37]:

	Date	Time	Global_active_power	Kitchen	LaundryRoom	WaterHeat_AC
0	12	17	0.374796	0.0	0.0125	0.548387
1	12	17	0.478363	0.0	0.0125	0.516129
2	12	17	0.479631	0.0	0.0250	0.548387

```
In [38]:
```

df.describe()

Out[38]:

	Date	Time	Global_active_power	Kitchen	LaundryRoom	,
count	2.049280e+06	2.049280e+06	2.049280e+06	2.049280e+06	2.049280e+06	4
mean	6.454433e+00	1.150391e+01	9.194415e-02	1.274913e-02	1.623150e-02	4
std	3.423209e+00	6.925189e+00	9.571738e-02	6.992081e-02	7.277533e-02	4
min	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	(
25%	3.000000e+00	5.000000e+00	2.100308e-02	0.000000e+00	0.000000e+00	(
50%	6.000000e+00	1.200000e+01	4.761905e-02	0.000000e+00	0.000000e+00	_;
75%	9.000000e+00	1.800000e+01	1.314503e-01	0.000000e+00	1.250000e-02	ļ
max	1.200000e+01	2.300000e+01	1.000000e+00	1.000000e+00	1.000000e+00	

In [39]:

import matplotlib.pyplot as plt
%matplotlib inline
df.Global_active_power.hist()

Out[39]:

<matplotlib.axes._subplots.AxesSubplot at 0x1140cc850>

In [40]:

df.Kitchen.hist()

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x11433a610>

In [41]:

df.LaundryRoom.hist()

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x1144e2390>


```
In [42]:
```

```
df.WaterHeat_AC.hist()
```

Out[42]:

<matplotlib.axes._subplots.AxesSubplot at 0x114669c90>

In [46]:

```
print df.groupby('Date')['Kitchen']
```

<pandas.core.groupby.SeriesGroupBy object at 0x114a4c590>

In [47]:

```
df = df[df.Kitchen != 0.0]
```

In [48]:

```
df = df[df.LaundryRoom != 0.0]
```

In [49]:

```
df = df[df.WaterHeat_AC != 0.0]
```

```
In [50]:
```

```
df['Kitchen'].value_counts().head()
```

Out[50]:

0.011364	24533
0.022727	5562
0.420455	4523
0.431818	4188
0.409091	1823

Name: Kitchen, dtype: int64

In [51]:

df.Kitchen.hist()

Out[51]:

<matplotlib.axes._subplots.AxesSubplot at 0x114a4cd50>


```
In [52]:
```

```
df.plot(x='Global_active_power', y='Kitchen', kind='scatter')
```

Out[52]:

<matplotlib.axes. subplots.AxesSubplot at 0x114aa0250>

In [53]:

```
df.plot(x='Global_active_power', y='LaundryRoom', kind='scatter')
```

Out[53]:

<matplotlib.axes._subplots.AxesSubplot at 0x11706fe90>


```
In [54]:
```

```
df.plot(x='Global_active_power', y='WaterHeat_AC', kind='scatter')
```

Out[54]:

<matplotlib.axes._subplots.AxesSubplot at 0x1168c9450>

In [92]:

df.plot(x='Date', y='WaterHeat_AC', kind='scatter')

Out[92]:

<matplotlib.axes._subplots.AxesSubplot at 0x11995f190>

In [94]:

df.plot(x='Time', y='Kitchen', kind='scatter')

Out[94]:

<matplotlib.axes._subplots.AxesSubplot at 0x1199eb910>

In [95]:

df.plot(x='Time', y='LaundryRoom', kind='scatter')

Out[95]:

<matplotlib.axes._subplots.AxesSubplot at 0x11a05b150>

In [55]:

df.groupby('Global_active_power')['Kitchen', 'LaundryRoom', 'WaterHeat_AC'].head()

Out[55]:

	Kitchen	LaundryRoom	WaterHeat_AC
1019	0.011364	0.0875	0.548387
1020	0.022727	0.4375	0.548387
1021	0.011364	0.3250	0.548387
1022	0.011364	0.4375	0.548387
1023	0.011364	0.3375	0.548387
1024	0.011364	0.4375	0.548387
1025	0.022727	0.4375	0.548387
1026	0.011364	0.4375	0.548387
1027	0.011364	0.4625	0.548387
1000	0044004	0 4500	0 = 10007

In [56]:

```
log_columns = ['Global_active_power', 'Kitchen']
log_df = df.copy()
log_df[log_columns] = log_df[log_columns].apply(np.log10)
```

In [57]:

```
import seaborn as sns
sns.lmplot('Global_active_power', 'Kitchen', log_df)
```

Out[57]:

<seaborn.axisgrid.FacetGrid at 0x116a1a450>


```
In [58]:
```

```
df.corr()
```

Out[58]:

	Date	Time	Global_active_power	Kitchen	LaundryRoo
Date	1.000000	-0.029764	-0.059210	-0.012303	-0.030546
Time	-0.029764	1.000000	0.124053	-0.000787	-0.029223
Global_active_power	-0.059210	0.124053	1.000000	0.645848	0.586256
Kitchen	-0.012303	-0.000787	0.645848	1.000000	0.006576
LaundryRoom	-0.030546	-0.029223	0.586256	0.006576	1.000000
WaterHeat_AC	-0.085688	-0.122444	0.305524	0.009362	0.056804

In [59]:

```
#from sklearn.model_selection import StratifiedKFold
#x_train, x_test, y_train, y_test = cross_validation.train_test_split(x,y,

# test_size=0.20
# random_state=0
```

In [60]:

```
df = df[['Date', 'Time', 'Kitchen', 'LaundryRoom', 'WaterHeat_AC', 'Global_active_po
```

In [61]:

df.head()

Out[61]:

	Date	Time	Kitchen	LaundryRoom	WaterHeat_AC	Global_active_power
1019	12	10	0.011364	0.0875	0.548387	0.196089
1020	12	10	0.022727	0.4375	0.548387	0.329350
1021	12	10	0.011364	0.3250	0.548387	0.283904
1022	12	10	0.011364	0.4375	0.548387	0.327539
1023	12	10	0.011364	0.3375	0.548387	0.283179

```
In [62]:
from sklearn.cross_validation import train test split
/Users/krys/anaconda2/lib/python2.7/site-packages/sklearn/cross valida
tion.py:44: DeprecationWarning: This module was deprecated in version
0.18 in favor of the model selection module into which all the refacto
red classes and functions are moved. Also note that the interface of t
he new CV iterators are different from that of this module. This modul
e will be removed in 0.20.
  "This module will be removed in 0.20.", DeprecationWarning)
In [63]:
train, test = train test split(df, train size=.80, test size=.20)
In [64]:
from sklearn import linear model
from sklearn.linear model import LinearRegression
lin model = linear model.LinearRegression()
In [80]:
feature cols = ['Date', 'Time', 'Kitchen', 'LaundryRoom', 'WaterHeat AC']
X = train[feature cols]
y = train.Global active power
In [81]:
lin model.fit(X,y)
Out[81]:
LinearRegression(copy X=True, fit intercept=True, n jobs=1, normalize=
False)
In [86]:
print lin model.intercept
print lin model.coef
```

4.93865726e-01

4.63246609e-01

-0.0232587114105 [-1.17121708e-04

1.97212089e-01]

4.97507939e-03

```
In [84]:
pd.DataFrame(zip(train.columns, lin_model.coef_), columns = ['factors', 'est_Coef']
Out[84]:
  factors
               est_Coef
0 Date
               -0.000117
1 | Time
               0.004975
2 Kitchen
               0.493866
3 | LaundryRoom
               0.463247
4 | WaterHeat_AC | 0.197212
In [88]:
lin model.score(X,y)
Out[88]:
0.85724536127314077
In [89]:
test_feature_cols = ['Date', 'Time', 'Kitchen', 'LaundryRoom', 'WaterHeat_AC']
test_X = test[feature_cols]
test_y = test.Global_active_power
In [91]:
lin_model.score(test_X,test_y)
Out[91]:
0.86002406046229396
In [70]:
# STATS MODELS
In [71]:
import statsmodels.formula.api as smf
In [72]:
lm = smf.ols(formula='Global_active_power ~ Kitchen + LaundryRoom + WaterHeat_AC',
```

data=df).fit()

In [73]:

lm.params

Out[73]:

dtype: float64

In [75]:

lm.summary()

Out[75]:

OLS Regression Results

Dep. Variable:	Global_active_power	R-squared:	0.827
Model:	OLS	Adj. R-squared:	0.827
Method:	Least Squares	F-statistic:	7.764e+04
Date:	Mon, 20 Feb 2017	Prob (F-statistic):	0.00
Time:	18:02:46	Log-Likelihood:	66873.
No. Observations:	48693	AIC:	-1.337e+05
Df Residuals:	48689	BIC:	-1.337e+05
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	0.0596	0.001	82.304	0.000	0.058 0.061
Kitchen	0.4939	0.001	339.401	0.000	0.491 0.497
LaundryRoom	0.4599	0.002	300.323	0.000	0.457 0.463
WaterHeat_AC	0.1834	0.001	141.631	0.000	0.181 0.186

Omnibus:	10314.988	Durbin-Watson:	0.184
Prob(Omnibus):	0.000	Jarque-Bera (JB):	19654.854
Skew:	1.310	Prob(JB):	0.00
Kurtosis:	4.682	Cond. No.	6.26

```
In [76]:
```

In [77]:

lm.summary()

Out[77]:

OLS Regression Results

Dep. Variable:	Global_active_power	R-squared:	0.858
Model:	OLS	Adj. R-squared:	0.858
Method:	Least Squares	F-statistic:	5.875e+04
Date:	Mon, 20 Feb 2017	Prob (F-statistic):	0.00
Time:	18:09:10	Log-Likelihood:	71635.
No. Observations:	48693	AIC:	-1.433e+05
Df Residuals:	48687	BIC:	-1.432e+05
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
Intercept	-0.0225	0.001	-18.926	0.000	-0.025 -0.020
Kitchen	0.4938	0.001	374.162	0.000	0.491 0.496
LaundryRoom	0.4630	0.001	333.212	0.000	0.460 0.466
WaterHeat_AC	0.1978	0.001	166.581	0.000	0.195 0.200
Date	-0.0002	7.49e-05	-2.299	0.022	-0.000 -2.54e-05
Time	0.0049	4.82e-05	102.350	0.000	0.005 0.005

Omnibus:	12342.380	Durbin-Watson:	0.216
Prob(Omnibus):	0.000	Jarque-Bera (JB):	33023.272
Skew:	1.363	Prob(JB):	0.00
Kurtosis:	5.974	Cond. No.	105.

In []:		
In []:		
In []:		