Modelagem de Dados

Diagrama de Entidade-Relacionamento (DER)

Eduardo Furlan Miranda 2025-07-01

Adaptado de: WERLICH, C. *Modelagem de Dados*. Londrina: EDE SA, 2018. ISBN 978-85-522-1154-9.

Introdução à Modelagem de Dados

- Participar do processo é muito enriquecedor, agregando experiência à vida profissional
- A coleta de dados com o cliente é um fator importante e desafiador
 - O analista deve ir até a empresa, conversar e buscar soluções
 - É essencial escutar o cliente e ser muito observador para captar informações não ditas
- Sempre leve em conta a possibilidade de mudanças futuras
 - Seu projeto deve estar preparado para adaptações
- Seguir as regras da modelagem possibilita futuros ajustes
 - Modelagem sem seguir padrões afeta a performance e gera retrabalho

O Papel do Analista de Sistemas na Modelagem

- Como analista de sistemas, você trabalhará no banco de dados da oficina mecânica do Sr. Ruddy
- Entidades encontradas:
 - clientes, peças, tipos de peças, funcionários
 - serviços realizados e ordem de serviço
- Deverá ser criado o modelo entidade-relacionamento de forma gráfica e textual
- O modelo deverá responder às seguintes questões:
 - Quais serão os principais campos de cada tabela
 - Quais as chaves de cada tabela
 - Será mesmo necessário utilizar a chave estrangeira
 - Haverá alguma tabela associativa

Diagrama de Entidade-Relacionamento (DER) e Modelo Lógico

- O Diagrama de Entidade-Relacionamento (DER) ajuda a responder perguntas e criar o modelo lógico
- Este modelo será utilizado para a próxima etapa de desenvolvimento e apresentado ao cliente
- O DER tem como objetivo a preparação para a implementação física do banco de dados no Sistema Gerenciador de Banco de Dados (SGBD)
- A fase de modelagem física depende diretamente da modelagem lógica
 - É de fundamental importância ter o projeto lógico o mais correto possível

Importância do Planejamento no Banco de Dados

- O modelo de dados relacional é amplamente utilizado no projeto e desenvolvimento de banco de dados
 - Sua simplicidade e facilidade de aprendizado o difundiram entre desenvolvedores
- Imagine a construção de um edifício:
 - Não se constrói um prédio aumentando andares conforme surgem ideias
 - Mudar o local do elevador no quinto andar implicaria refazer tudo
- A analogia da construção de um banco de dados com um edifício é perfeita
 - Destaca a necessidade de planejamento e criação de um projeto antes da construção efetiva

Características do Modelo de Dados Lógico

- O modelo de dados lógico de um banco de dados possui as seguintes características:
 - Todas as tabelas e os relacionamentos entre elas
 - Descrição de todos os atributos de cada tabela
 - Identificação de um atributo chave para cada tabela
 - Determinação de relacionamentos por meio de chaves
- O modelo relacional trabalha com esquemas compostos de tabelas
 - Para que uma tabela exista, é necessário que possua diversas propriedades
 - Essas propriedades são seus atributos ou campos
 - Cada campo possui uma descrição de seu tipo de dado

Tabela Cliente

Figura 2.25 | Tabela Cliente

Tabela: Cliente

Nome	RG	CPF	DT Nasc	Cidade
André Marco	7555333	77799944411	13/08/198	Curitiba
Jonny Lucca	1222333	44455566622	28/02/199	São Paulo
Lia Leme	6333000	99977766644	09/03/198	Curitiba

Exemplo de Entidade: Tabela Cliente e Terminologia Relacional

- Suponha a necessidade de guardar informações sobre um cliente de uma loja
 - Informações possíveis: nome, CPF, RG, data de nascimento, cidade natal
- Essas informações são armazenadas em uma tabela chamada Cliente
- Korth, Silberschatz e Sudarshan (2012) definem termos no modelo relacional:
 - Relação: refere-se a uma tabela
 - Tupla: refere-se a uma determinada linha da tabela
 - Atributo: conhecido como a coluna de uma tabela
- Instância de relação: um determinado conjunto de tuplas ou número de registros
 - Os três registros da Tabela Cliente na Figura 2.25 são uma instância de relação
 - Uma tabela de clientes pode conter centenas ou milhares de registros

A Necessidade de Chaves em Bancos de Dados

- Em um banco de dados com centenas de registros, há possibilidade de duplicidade de nomes
 - Procurar um cliente pelo nome pode resultar em mais de um registro
- Para solucionar esse dilema, é necessário estabelecer um ou mais campos para serem uma chave de identificação
- Alguns valores do registro poderão ser repetidos, como duas pessoas com o mesmo nome
- Obrigatoriamente, deve haver um campo na tabela que nunca se repete
 - Esse campo será a chave da tabela

Tipos Fundamentais de Chaves

- Coronel e Rob (2011) explicam que uma chave consiste em um ou mais atributos
 - Eles determinam a existência de outros atributos
- Chaves são utilizadas para:
 - Estabelecer os relacionamentos entre as tabelas
 - Estabelecer a integridade referencial dos dados
- Os tipos de chaves em uma tabela podem ser:
 - Chave Primária, Chave Concatenada ou Composta
 - Chave Substituta ou Surrogada, Chave Secundária, ou Chave Estrangeira
- É um fundamento primordial que cada tabela exista uma chave primária

Chave Primária

Figura 2.26 | Chave Primária

Tabela: Cliente

Nome	RG	CPF	DT Nasc	Cidade
André Marco	7555333	77799944411	13/08/198	Curitiba
Jonny Lucca	1222333	44455566622	28/02/199	São Paulo
Lia Leme	6333000	99977766644	09/03/198	Curitiba

Chave Primária: Definição e Escolha

- A chave primária é também conhecida como Primary Key (PK)
- Devemos escolher um dos campos da tabela para ser a chave primária
- Na Figura 2.26, o campo CPF foi escolhido como chave primária
 - Uma pessoa não pode ter o CPF igual ao de outra
- Escolhas inadequadas para chave primária:
 - O campo nome, pois é comum termos pessoas com nomes e sobrenomes iguais
 - O campo data de nascimento, pela sua possibilidade de repetição
 - A cidade de nascimento, pois pode haver repetição como "Curitiba" no exemplo

Representação Textual da Chave Primária e RG como Candidato

- Na forma textual, a chave primária deve sempre ficar em evidência
 - Em negrito, sublinhado e com sinal # na sua frente
 - Exemplo: Cliente (#CPF, Nome, RG, Dt Nasc, Cidade)
- A ordem dos campos não prejudica o funcionamento das tabelas
 - Para fins didáticos, a chave primária fica sempre como o primeiro campo
- RG como campo para chave primária é questionável
 - Documento do RG é emitido em órgãos diferentes em estados diferentes
 - Existe a possibilidade de repetição do número do RG

Chave Composta ou Concatenada

Figura 2.27 | Chave Composta ou Concatenada

Tabela: Cliente

Nome	RG	Órgão Expedidor	CPF	DT Nasc
André Marco	7555333	SSP-PR	77799944411	13/08/19
Jonny Lucca	1222333	SSP-SP	4445556662	28/02/19
Lia Leme	6333000	SSP-PR	9997776664	09/03/19

Chave Composta

Chave Concatenada ou Composta

- Se quiséssemos usar o RG como chave, deveríamos solicitar também o órgão expedidor do documento
 - Essas duas informações em conjunto não se repetem
- Esse é o conceito de chave concatenada ou composta
 - Um ou mais campos que juntos não se repetem
- A forma textual da tabela Cliente demonstrada na Figura 2.27 ficaria:
 - Cliente (#RG, # Órgão Expedidor, Nome, CPF, DT Nasc)
- É ideal que não se utilizem mais de quatro campos para uma chave composta

Chave Surrogada ou Substituta

Figura 2.28 | Chave Surrogada ou Substituta

Tabela: Encomenda

Código	Encomenda	Quantidade	Preço Unitário
1	Rosas Vermelhas	12	R\$ 3,50
2	Chocolate ao Leite	2	R\$ 8,00
3	Urso de Pelúcia	1	R\$ 23,00
4	Cartão Florido	1	R\$ 9,80

Chave Substituta ou Surrogada

- Também conhecida como Surrogate Key
- É uma chave primária criada exclusivamente para impedir a repetição de registros
 - É usada quando não há um campo natural que possa servir como chave primária
- Esse tipo de chave (Figura 2.28) é um campo de valor inteiro
 - Tem um auto incremento, gerenciado pelo SGBD
 - A cada registro adicionado, o campo recebe um incremento
- Características importantes:
 - Nunca pode ser alterado
 - Nunca pode ser reaproveitado em casos de exclusão de registro
- Forma textual: Encomenda (#Código, Encomenda, Quantidade, Preço Unitário)

Chave Secundária

- De acordo com Coronel e Rob (2011), a chave secundária é utilizada para fins de recuperação de informação
- É uma chave que auxilia na recuperação de um registro
- Exemplo: um paciente esqueceu o CPF (chave primária) no consultório médico
 - Pode-se usar sobrenome ou data de nascimento como chaves secundárias para pesquisa
 - Devem aparecer vários registros, mas facilita encontrar o correto

Chave Estrangeira (FK) e Relacionamentos 1 para N

- Korth, Silberschatz e Sudarshan (2012) descrevem a chave estrangeira (Foreign Key - FK) como a chave primária de outra tabela
 - É por meio dessa chave que ocorrem os relacionamentos entre as tabelas
- Para evitar redundâncias, como a repetição de cidades em várias tabelas:
 - Criamos uma tabela Cidade e a relacionamos com a tabela Cliente
- O relacionamento 1 para N é estabelecido pelo uso da chave estrangeira
 - A FK de uma tabela (lado N) é sempre a PK de outra tabela (lado 1)
 - Seus valores devem coincidir com a chave primária ou serem nulos, estabelecendo integridade referencial
- Forma textual: o caractere & é utilizado na frente do campo para identificar a FK
 - Exemplo: Cliente (#CPF, Nome, DT Nasc, &CodCidade)
- Uma tabela pode ter diversas chaves estrangeiras
 - A FK poderá se repetir uma infinidade de vezes, conforme a necessidade

Relacionamento Cliente e Cidade

Figura 2.29 | Relacionamento Cliente e Cidade

Tabela: Cidade

Chave Estrangeira

CodCidade	Cidade
1	Curitiba
2	São Paulo
3	Campinas
4	Blumenau

Tabela: Cliente

CPF	Nome	DT Nasc	CodCidade
77799944411	André Marco	13/08/1980	1
44455566622	Jonny Lucca	28/02/1999	2
99977766644	Lia Leme	09/03/1987	1

Integridade Referencial: Conceito e Aplicação

- A integridade referencial em um banco de dados relacional é uma restrição
 - Ela impede que dados incorretos entrem no banco de dados, por exemplo, evitar que o cliente insira uma cidade inexistente
- Sua exigência básica é que a chave estrangeira exista em outra tabela como chave primária
 - Garante que a FK foi cadastrada antes como PK na tabela que compõe o relacionamento
- Passos para estabelecer a integridade referencial:
 - 1º Passo: observar no diagrama os relacionamentos e procurar por cardinalidades do tipo N
 - 2º Passo: se houver N, haverá chaves estrangeiras (pode haver várias)
 - 3º Passo: a tabela do lado 1 deverá receber novos campos
 - Inserir a chave primária da tabela correspondente ao relacionamento do lado N

Relacionamento 1 para N com notação diferente

Notação de Pé-de-Galinha

Notação de Bachman

Notação de Bachman vs Notação de Setas

Quadro 2.1 | Notação de Bachman vs Notação de Setas

Cardinalidade	Notação Original de Bachman	Notação de Setas	
1:1		←	
1:N		→	
N:1	4	₩ →	
M:N	←	*	

Notações Gráficas para o Diagrama ER

- Para representar as cardinalidades no modelo gráfico de um Diagrama de Entidade-Relacionamento, diversas notações podem ser utilizadas
- Uma notação gráfica é a forma como algo é criado, desenhado ou projetado, são os padrões adotados
- Principais notações:
 - Peter Chen: amplamente utilizada em livros de banco de dados, como neste
 - Pé-de-Galinha (Crow's Foot): criada por James Martin, muito popular
 - O termo vem do relacionamento do lado N que aparenta um pé-degalinha
 - Bachman: desenvolvida por Charles William Bachman, transformada na notação de Setas
 - Utilizada em muitos softwares para criação de modelos lógicos
- Existem diversas outras notações, como UML, IDEF e OMT
 - O SGBD Microsoft Access, por exemplo, representa o lado N com o sinal do infinito

Estudo de Caso: Estúdio de Gravação - Requisitos Iniciais

- Um estudo de caso para exemplificar a criação de um modelo lógico de banco de dados
- Estúdio de gravação de vídeos publicitários, com demanda crescente de clientes
 - Necessidade de melhor controle do processo de produção dos vídeos
- Requisitos elencados para o modelo conceitual:
 - Cadastrar dados sobre o filme e os atores
 - Cada filme deverá ter somente um diretor
 - O filme sempre pertencerá a um único cliente
- O Diagrama de Entidade-Relacionamento (Figura 2.33) foi criado com base nesses requisitos
 - Nas tabelas associativas, foram inseridas as chaves estrangeiras

Figura 2.33 | Modelo Conceitual do Estudo de Caso

Figura 2.32 | Relacionamento 1 para N com notação diferente

Um ou Mais Zero ou Mais ———— Zero ou Um Um e só Um

Evolução do Estudo de Caso: Novos Requisitos

- Após a apresentação do modelo conceitual, o cliente solicitou requisitos adicionais:
 - Controlar os locais onde foi gravado o filme publicitário
 - Informações sobre o cliente devem ser guardadas e cada filme pertence somente a um cliente
 - Cada filme sempre é sobre somente um produto alvo
 - Controlar os atores que atuaram nos filmes
 - O ator pode trabalhar no mesmo filme, atuando como um personagem diferente
- Como resultado, foi elaborado o modelo lógico do banco de dados (Figura 2.34)

Modelo de Entidade-Relacionamento do Estudo de Caso

Modelo Lógico do Estúdio: Forma Textual 30/42 e Passos de Elaboração

- Forma textual dos campos e suas respectivas chaves:
 - Filme (#IdFilme, nome, duração, dt_início, dt_fim, &IdCliente, &IdDiretor, &CodProduto)
 - Cliente (#IdCliente, nome, endereço)
 - Produto (#CodProduto, nome)
 - Diretor (#IdDiretor, nome)
 - Ator (#CodAtor, nome, foto, sexo, dt nasc, cachê)
 - Cenário (#IdCenário, Local, descrição)
 - Locação (#IdLocação, &IdFilme, &IdCenário, dt_início, dt_fim, valor_gasto)
 - Atuação (#CodAtuação, &CodAtor, &IdFilme, personagem)
- Passos para a elaboração do Modelo de Entidade-Relacionamento:
 - identificar as tabelas
 - identificar os relacionamentos e as cardinalidades
 - nos relacionamentos N para N, criar a tabela associativa
 - criar o modelo textual com os campos de cada tabela
 - achar as chaves primárias
 - inserir as chaves estrangeiras das tabelas que estão relacionadas e possuem o N

A Importância da Prática na Modelagem

- Esta unidade trouxe subsídios para o início do processo de modelagem de dados
 - Aprendemos sobre os modelos conceitual e físico para criar
 Modelos de Entidade-Relacionamentos
- A prática é a amiga da perfeição
 - Quanto mais modelagens você fizer, seus diagramas serão cada vez melhores
- A próxima unidade demonstrará como melhorar os diagramas com mais técnicas e estudos de casos
- Esta é uma profissão que precisa de estudo e atualização constantes

Retomando o Desafio da Oficina Mecânica

- Você aprendeu o processo de modelagem de dados para realizar o modelo conceitual e lógico
- Reconhecer uma tabela, estabelecer relacionamentos e aplicar cardinalidades são passos importantes
- No desafio desta unidade, você conheceu os requisitos para modelar o banco de dados de uma oficina mecânica
 - Foi necessário encontrar as tabelas: clientes, peças, tipos de peças, funcionários, serviços realizados e ordem de serviço
- Agora, devemos encontrar os campos e as chaves de cada tabela
- Deverá ser criado o Modelo de Entidade-Relacionamento de forma gráfica e textual, respondendo:
 - Quais serão os principais campos de cada tabela
 - Quais são as chaves de cada tabela
 - Será mesmo necessário utilizar a chave estrangeira
 - Haverá alguma tabela associativa

Campos e Chaves Essenciais na Modelagem

- Toda tabela deverá ter mais de um campo, tais como: nome, quantidade, preço, endereço
- Toda tabela deve possuir uma chave primária
 - Procure por um campo que possa servir como identificar único
 - Você poderá criar um campo novo e denominar o campo como código (Cod) ou identificador (Id)
 - Exemplo: Cliente (#codCliente, Nome, [...])
 - Boa prática: deixar o nome da tabela atrás da chave primária
- Chaves Estrangeiras (FK):
 - Observe o relacionamento entre as tabelas: se a tabela tem cardinalidade N, haverá chave estrangeira nessa tabela
 - Se tem mais de um N, haverá mais de uma chave estrangeira
 - Exemplo: Tipo de Peça (#idTipoPeça, Tipo de Peça) e Peça (#codPeça, NomePeça, ..., &IdTipoPeça)
 - Insira o símbolo & no início da chave estrangeira

Desafio Final da Oficina: Agenda e Nota Fiscal

- Para finalizar o desafio, resgate todos os diagramas criados para a oficina mecânica
- Modifique o Modelo de Entidade-Relacionamento, levando em consideração:
 - A criação de uma agenda de horários para os atendimentos com hora marcada
 - A geração de nota fiscal dos serviços realizados e peças utilizadas
- Crie uma apresentação e mostre a evolução de seus diagramas de entidade-relacionamentos

Desafios Práticos: Cenários de Modelagem

- Você possui dois cenários independentes e deverá criar o Diagrama de Modelagem-Relacionamento
 - Determine os relacionamentos, as cardinalidades e as chaves de cada cenário
- 1º Cenário: Países, Estados e Cidades
 - Um país possui vários estados
 - Um estado possui muitas cidades
 - Um estado só poderá estar relacionado a um país
 - Uma cidade só poderá estar vinculada a um estado
- 2º Cenário: Eventos e Palestrantes
 - Um encontro de eventos de empreendedorismo pode ter muitos palestrantes
 - Um palestrante pode palestrar em mais de um evento

Modelo Entidade-Relacionamentos do 1º Cenário

Figura 2.35 | Modelo Entidade-Relacionamentos do 1º Cenário

Resolução do Cenário 1: País, Estado e Cidade

- Relacionamento País-Estado: um país poderá ter mais de um estado, e o estado não poderá pertencer a outro país
 - Sendo, assim, um relacionamento 1 para N
- Relacionamento Estado-Cidade: um estado pode ter várias cidades, mas a cidade nunca pertencerá a outro estado
 - Sendo este, então, um relacionamento 1 para N também
- A forma textual ficará da seguinte forma:
 - País (#IdPaís, NomePaís, bandeira, idioma)
 - Estado (#IdEstado, NomeEstado, &IdPaís)
 - Cidade (#IdCidade, NomeCidade, &IdEstado)

Modelo de Entidade-Relacionamento do 2º Cenário

Figura 2.36 | Modelo de Entidade-Relacionamento do 2º Cenário

Resolução do Cenário 2: Evento e Palestrante

- Relacionamento Evento-Palestrante: um evento pode ter muitos palestrantes e o palestrante pode palestrar em mais de um evento
 - A resposta é sim para as duas perguntas, sendo o relacionamento N para N
- Em todo relacionamento N para N, devemos criar a tabela associativa
 - Na tabela associativa, muitas vezes misturamos os nomes das duas tabelas que originaram o relacionamento
- A forma textual deve ficar da seguinte forma:
 - Evento (#CodEvento, Evento, Data, Local)
 - Palestrante (#CodPalestrante, Nome, Foto, Descrição da Formação)
 - Even-Palest (#IdEven-Palest, &CodEvento, &CodPalestrante, data, horário, sala)

Avaliação: Tipos de Chaves

- Segundo Navathe e Ramez (2005), o objeto básico de um Modelo de Entidade-Relacionamento é uma entidade (ou tabela)
 - Representa algo do mundo real com informações a serem armazenadas
 - As informações podem ser classificadas por categorias, sendo esses os campos da entidade
 - Podemos apontar um dos campos como um campo chave da tabela
- Os principais tipos de chave encontrados em um Modelo de Entidade-Relacionamento são:
 - Chave primária e chave estrangeira

Avaliação: Verdadeiro ou Falso sobre Chaves

 Conforme Coronel e Rob (2011), uma chave consiste em um ou mais atributos que determinam outros atributos

Avalie as afirmativas:

- Uma chave primária é obrigatória nas tabelas, mas existe a possibilidade de deixar o seu valor como nulo, inserindo o valor da chave somente nos momentos de pesquisas no banco de dados. (Falso)
- Uma chave secundária tem como objetivo o conjunto de várias chaves primárias, que juntas poderão formar uma única chave primária. (Falso)
- Uma chave estrangeira é uma chave que, obrigatoriamente, é uma chave primária em outra tabela e deverá se relacionar com a tabela que possui a chave estrangeira. (Verdadeiro)

Ferramentas CASE para Modelagem e Novo Estudo de Caso

- Para ser um analista de sistemas, é crucial estar atento às tecnologias que surgem
 - São necessárias ferramentas apropriadas para criar modelos e apresentá-los a clientes e outros analistas
- As ferramentas CASE (Computer-Aided Software Engineering) serão estudadas na próxima unidade
 - Elas permitem padronizar e controlar o desenvolvimento da modelagem do banco de dados
- Para um novo cliente (salão de beleza de médio porte), você precisará elaborar o DER completo
 - Mapear todas as entidades e gerar documentação do modelo
 - Utilizar conceitos de UML para ajustes na modelagem
 - O último passo será usar uma ferramenta CASE para criar o DER final para apresentação