0 Introduction

The goal of this document is to fully characterize the Dunson and Stanford day-specific probabilities model. In its current state it tries to provide full detail of the derivations described in *Bayesian Inferences on Predictors of Conception Probabilities*.

1 The day-specific probabilities model

1.1 Model specification

We wish to model the probability of a woman becoming pregnant for a given menstrual cycle as a function of her covariate status across the days of the cycle. Consider a study cohort and let us index

woman
$$i$$
, $i = 1,...,n$
cycle j , $j = 1,...,n_i$
day k , $k = 1,...,K$

where day k refers to the kth day out of a total of K days in the fertile window. Let us write day i, j, k as a shorthand for individual i, cycle j, and day k and similarly for cycle j, k. Then we observe that

```
\mathbb{P} \Big( \text{yes a pregnancy for cycle i,j} \ \big| \ \text{intercourse status across cycle} \Big) \\ = 1 - \mathbb{P} \Big( \text{not a pregnancy for cycle } i,j \ \big| \ \text{intercourse status across cycle} \Big) \\ = 1 - \mathbb{P} \Big( \text{didn't become pregnant on any of days } 1, \dots, K \ \big| \ \text{intercourse status across cycle} \Big) \\ = 1 - \prod_{k=1}^K \mathbb{P} \Big( \text{didn't become pregnant on day } i,j,k \ \big| \ \text{intercourse status across cycle,} \\ \text{didn't become pregnant on days } 1 \ \text{through } k-1 \ \text{of cycle } i,j \Big) \\ = 1 - \prod_{k=1}^K \left\{ 1 - \mathbb{P} \Big( \text{became pregnant on day } i,j,k \ \big| \ \text{intercourse status across cycle,} \\ \text{didn't become pregnant on days } 1 \ \text{through } k-1 \ \text{of cycle } i,j \Big) \right\} \\ = 1 - \prod_{k=1}^K \left\{ 1 - I \Big( \text{yes intercourse on day } i,j,k \ \big| \ \text{yes intercourse on day } i,j,k, \\ \text{didn't become pregnant on days } 1 \ \text{through } k-1 \ \text{of cycle } i,j \Big) \right\} \\ = 1 - \prod_{k=1}^K \left\{ 1 - \mathbb{P} \Big( \text{became pregnant on day } i,j,k \ \big| \ \text{yes intercourse on day } i,j,k, \\ \text{didn't become pregnant on days } 1 \ \text{through } k-1 \ \text{of cycle } i,j \Big) \right\}^{I \Big( \text{yes intercourse on day } i,j,k \Big)} \\ \text{didn't become pregnant on days } 1 \ \text{through } k-1 \ \text{of cycle } i,j \Big) \right\}^{I \Big( \text{yes intercourse on day } i,j,k \Big)}
```

With this result in mind, we now consider the Dunson and Stanford day-specific probabilities model. Using the same indexing scheme as above, denote

 Y_{ij} an indicator of conception for woman i, cycle j

 X_{ijk} an indicator of intercourse for woman i, cycle j, day k

 u_{ijk} a covariate status vector of length q for woman i, cycle j, day k

Then writing $X_{ij} = (X_{ij1}, ..., X_{ijK})$ and $U_{ij} = (u'_{ijk}, ..., u'_{ijk})'$, Dunson and Stanford propose the model:

$$\mathbb{P}\left(Y_{ij} = 1 \mid \xi_i, X_{ij}, U_{ij}\right) = 1 - \prod_{k=1}^{K} (1 - \lambda_{ijk})^{X_{ijk}}$$

$$\lambda_{ijk} = 1 - \exp\left\{-\xi_i \exp\left(u'_{ijk}\boldsymbol{\beta}\right)\right\}$$

$$\xi_i \sim \mathcal{G}(\phi, \phi) \tag{1}$$

From our previous derivation, we see that we may interpret λ_{ijk} as the day-specific probability of conception in cycle j from couple i given that conception has not already occured, or in the language of Dunson and Stanford, given intercourse only on day k.

Delving further, we see that λ_{ijk} is strictly increasing in $u_{ijkh}\beta_h$, where we are denoting u_{ijkh} to be the h^{th} term in u_{ijk} and similarly for β_h . When $\beta_h=0$ then the h^{th} covariate has no effect on the day-specific probability of conception.

 λ_{ijk} is also strictly increasing in ξ_i which as Dunson and Stanford suggest may be interpreted as a woman-specific random effect. The authors state that specifying the distribution of the ξ_i with a common parameters prevents nonidentifiability between $\mathbb{E}[\xi_i]$ and the day-specific parameters. Since $\text{Var}[\xi_i] = 1/\phi$ it follows that ϕ may be interpreted as a measure of variability across women.

1.1.1 Computation consideration

As an aside, we note that it may be more computationally convenient to calculate

$$\begin{split} \mathbb{P}\left(Y_{ij} = 1 \mid \xi_{i}, X_{ij}, U_{ij}\right) \\ &= 1 - \prod_{k=1}^{K} (1 - \lambda_{ijk})^{X_{ijk}} \\ &= 1 - \prod_{k=1}^{K} \left[\exp\left\{-\xi_{i} \exp\left(u'_{ijk}\boldsymbol{\beta}\right)\right\} \right]^{X_{ijk}} \\ &= 1 - \prod_{k=1}^{K} \exp\left\{-X_{ijk}\xi_{i} \exp\left(u'_{ijk}\boldsymbol{\beta}\right)\right\} \end{split}$$

1.2 Marginal probability of conception

The marginal probability of conception, obtained by integrating out the couple-specific frailty ξ_i , has form as follows.

$$\begin{split} &\mathbb{P}(Y_{ij} = 1 \,| X_{ij}, \boldsymbol{U}_{ij}) \\ &= \int_{0}^{\infty} \mathbb{P}\left(Y_{ij}, \xi_{i} \,| X_{ij}, \boldsymbol{U}_{ij}\right) d\xi_{i} \\ &= \int_{0}^{\infty} \mathbb{P}\left(Y_{ij}, \xi_{i} \,| X_{ij}, \boldsymbol{U}_{ij}\right) \mathcal{G}(\xi_{i}; \boldsymbol{\phi}, \boldsymbol{\phi}) d\xi_{i} \\ &= \int_{0}^{\infty} \left[1 - \prod_{k=1}^{K} (1 - \lambda_{ijk})^{X_{ijk}} \right] \mathcal{G}(\xi_{i}; \boldsymbol{\phi}, \boldsymbol{\phi}) d\xi_{i} \\ &= 1 - \int_{0}^{\infty} \prod_{k=1}^{K} \left[1 - \lambda_{ijk}\right]^{X_{ijk}} \mathcal{G}(\xi_{i}; \boldsymbol{\phi}, \boldsymbol{\phi}) d\xi_{i} \\ &= 1 - \int_{0}^{\infty} \prod_{k=1}^{K} \left[\exp\left\{-\xi_{i} \exp\left(\boldsymbol{u}_{ijk}' \boldsymbol{\beta}\right)\right\}\right]^{X_{ijk}} \mathcal{G}(\xi_{i}; \boldsymbol{\phi}, \boldsymbol{\phi}) d\xi_{i} \\ &= 1 - \int_{0}^{\infty} \prod_{k=1}^{K} \exp\left\{-\xi_{i} X_{ijk} \exp\left(\boldsymbol{u}_{ijk}' \boldsymbol{\beta}\right)\right\} \mathcal{G}(\xi_{i}; \boldsymbol{\phi}, \boldsymbol{\phi}) d\xi_{i} \\ &= 1 - \int_{0}^{\infty} \exp\left\{-\xi_{i} \sum_{k=1}^{K} X_{ijk} \exp\left(\boldsymbol{u}_{ijk}' \boldsymbol{\beta}\right)\right\} \mathcal{G}(\xi_{i}; \boldsymbol{\phi}, \boldsymbol{\phi}) d\xi_{i} \\ &= 1 - \left[\frac{\boldsymbol{\phi}}{\boldsymbol{\phi} + \sum_{k=1}^{K} X_{ijk} \exp\left(\boldsymbol{u}_{ijk}' \boldsymbol{\beta}\right)}\right]^{\boldsymbol{\phi}} \end{split}$$

since

$$\begin{split} &\int_{0}^{\infty} \exp\left\{-\xi_{i} \sum_{k=1}^{K} X_{ijk} \exp\left(\mathbf{u}_{ijk}^{\prime} \boldsymbol{\beta}\right)\right\} \mathcal{G}(\xi_{i}; \phi, \phi) d\xi_{i} \\ &= \int_{0}^{\infty} \exp\left\{-\xi_{i} \sum_{k=1}^{K} X_{ijk} \exp\left(\mathbf{u}_{ijk}^{\prime} \boldsymbol{\beta}\right)\right\} \frac{\phi^{\phi}}{\Gamma(\phi)} \xi_{i}^{\phi-1} d\xi_{i} \\ &= \int_{0}^{\infty} \frac{\phi^{\phi}}{\Gamma(\phi)} \xi_{i}^{\phi-1} \exp\left\{-\xi_{i} \left[\phi + \sum_{k=1}^{K} X_{ijk} \exp\left(\mathbf{u}_{ijk}^{\prime} \boldsymbol{\beta}\right)\right]\right\} d\xi_{i} \\ &= \left[\frac{\phi}{\phi + \sum_{k=1}^{K} X_{ijk} \exp\left(\mathbf{u}_{ijk}^{\prime} \boldsymbol{\beta}\right)\right]^{\phi}} \int_{0}^{\infty} \frac{\left[\phi + \sum_{k=1}^{K} X_{ijk} \exp\left(\mathbf{u}_{ijk}^{\prime} \boldsymbol{\beta}\right)\right]^{\phi}}{\Gamma(\phi)} \\ &\times \xi_{i}^{\phi-1} \exp\left\{-\xi_{i} \left[\phi + \sum_{k=1}^{K} X_{ijk} \exp\left(\mathbf{u}_{ijk}^{\prime} \boldsymbol{\beta}\right)\right]^{\phi}\right\} d\xi_{i} \end{split}$$

and the function inside the integral is a gamma density function.

2 Posterior computation

Express the data augmentation model as

$$Y_{ij} = I\left(\sum_{k=1}^{K} X_{ijk} Z_{ijk} > 0\right),$$

$$Z_{ijk} \sim \text{Poisson}\left(\xi_i \exp\left(\mathbf{u}'_{ijk} \boldsymbol{\beta}\right)\right), \quad k = 1, \dots, K$$
(2)

Let us further define $W_{ijk} = X_{ijk}Z_{ijk}$ for all i, j, k.

2.1 Verifying the equivalence of the data augmentation model