Solution Section 3.1 – Inner Products

Exercise

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$, and k = 3. Compute the following.

a) $\langle \vec{u}, \vec{v} \rangle$

c) $\langle \vec{u} + \vec{v}, \vec{w} \rangle$

e) $d(\vec{u}, \vec{v})$

b) $\langle k\vec{v}, \vec{w} \rangle$

d) $\|\vec{v}\|$

f) $\|\vec{u} - k\vec{v}\|$

a)
$$\langle \vec{u}, \vec{v} \rangle = 1(3) + 1(2)$$

= 5

b)
$$\langle k\vec{v}, \vec{w} \rangle = \langle 3v, w \rangle$$

= $9 \cdot 0 + 6 \cdot (-1)$
= -6

c)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

= $1 \cdot 0 + 1 \cdot (-1) + 3 \cdot 0 + 2 \cdot (-1)$
= -3

d)
$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

$$= \sqrt{3^2 + 2^2}$$

$$= \sqrt{13}$$

e)
$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||$$

 $= ||(-2, -1)||$
 $= \sqrt{(-2)^2 + (-1)^2}$
 $= \sqrt{5}$

f)
$$\|\vec{u} - k\vec{v}\| = \|(1, 1) - 3(3, 2)\|$$

 $= \|(-8, -5)\|$
 $= \sqrt{(-8)^2 + (-5)^2}$
 $= \sqrt{89}$

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (1, 1)$, $\vec{v} = (3, 2)$, $\vec{w} = (0, -1)$ and k = 3. Compute the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 2u_1v_1 + 3u_2v_2$.

a) $\langle \vec{u}, \vec{v} \rangle$

c) $\langle \vec{u} + \vec{v}, \vec{w} \rangle$

e) $d(\vec{u}, \vec{v})$

b) $\langle k\vec{v}, \vec{w} \rangle$

d) $\|\vec{v}\|$

f) $\|\vec{u} - k\vec{v}\|$

a)
$$\langle \vec{u}, \vec{v} \rangle = 2(1)(3) + 3(1)(2)$$

= 12 |

b)
$$\langle k\vec{v}, \vec{w} \rangle = 2(3 \cdot 3)(0) + 3(3 \cdot 2)(-1)$$

= -18 |

c)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

= $1 \cdot 0 + 1 \cdot (-1) + 3 \cdot 0 + 2 \cdot (-1)$
= -3

d)
$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

$$= \sqrt{2(3)(3) + 3(2)(2)}$$

$$= \sqrt{30}$$

e)
$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||$$

 $= ||\langle (-2, -1)\rangle||$
 $= \sqrt{2(-2)(-2) + 3(-1)(-1)}$
 $= \sqrt{11} |$

f)
$$\|\vec{u} - k\vec{v}\| = \|(1, 1) - 3(3, 2)\|$$

 $= \|\langle (-8, -5)\rangle\|$
 $= \sqrt{2(-8)^2 + 3(-5)^2}$
 $= \sqrt{203}$

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following.

a)
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

e)
$$\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

a)
$$\langle \vec{u}, \vec{v} \rangle = 3 \cdot 4 + (-2) \cdot (5)$$

 $= 2$

$$\langle \vec{v}, \vec{u} \rangle = 4 \cdot 3 + (5) \cdot (-2)$$

= 2 |

$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle (7,3), (-1,6) \rangle$$

= $7(-1) + 3(6)$

$$\langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle = (3)(-1) + (-2)(6) + (4)(-1) + (5)(6)$$

= 11

$$\langle \vec{u} + \vec{v}, \ \vec{w} \rangle = \langle \vec{u}, \ \vec{w} \rangle + \langle \vec{v}, \ \vec{w} \rangle$$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle (3, -2), (3, 11) \rangle$$

= $3(3) + (-2)(11)$
= -13

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle = (3)(4) + (-2)(5) + (3)(-1) + (-2)(6)$$

= -13 |

$$\langle \vec{u}, \ \vec{v} + \vec{w} \rangle = \langle \vec{u}, \ \vec{v} \rangle + \langle \vec{u}, \ \vec{w} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = (-4 \cdot 3) \cdot 4 + ((-4)(-2)) \cdot (5)$$

= -8

$$k\langle \vec{u}, \vec{v} \rangle = (-4)(3 \cdot 4 + (-2) \cdot (5))$$

$$=-8$$

$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

Let $\langle \vec{u}, \vec{v} \rangle$ be the Euclidean inner product on \mathbb{R}^2 , and let $\vec{u} = (3, -2)$, $\vec{v} = (4, 5)$, $\vec{w} = (-1, 6)$, and k = -4. Verify the following for the weighted Euclidean inner product $\langle \vec{u}, \vec{v} \rangle = 4u_1v_1 + 5u_2v_2$.

a)
$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

d)
$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$$

$$e$$
) $\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

a)
$$\langle \vec{u}, \vec{v} \rangle = 4 \cdot 3 \cdot 4 + 5 \cdot (-2) \cdot (5)$$

= -2 |

$$\langle \vec{v}, \vec{u} \rangle = 4 \cdot 4 \cdot 3 + 5 \cdot (5) \cdot (-2)$$

= -2

$$\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$$

b)
$$\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle (7,3), (-1,6) \rangle$$

= $4 \cdot 7(-1) + 5 \cdot 3(6)$
= $62 \mid$

$$\langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle = 4 \cdot (3)(-1) + 5 \cdot (-2)(6) + 4 \cdot (4)(-1) + 5 \cdot (5)(6)$$

= 62 |

$$\langle \vec{u} + \vec{v}, \ \vec{w} \rangle = \langle \vec{u}, \ \vec{w} \rangle + \langle \vec{v}, \ \vec{w} \rangle$$

c)
$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle (3, -2), (3, 11) \rangle$$

= $4 \cdot 3(3) + 5 \cdot (-2)(11)$
= -74

$$\langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle = 4 \cdot (3)(4) + 5 \cdot (-2)(5) + 4 \cdot (3)(-1) + 5 \cdot (-2)(6)$$

$$= -74$$

$$\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$$

$$d) \langle k\vec{u}, \vec{v} \rangle = 4 \cdot (-4 \cdot 3) \cdot 4 + 5 \cdot ((-4)(-2)) \cdot (5)$$

$$= 8$$

$$k \langle \vec{u}, \vec{v} \rangle = (-4)(4 \cdot 3 \cdot 4 + 5 \cdot (-2) \cdot (5))$$

$$= 8$$

$$\langle k\vec{u}, \vec{v} \rangle = k \langle \vec{u}, \vec{v} \rangle$$

$$e) \langle \vec{0}, \vec{v} \rangle = 4 \cdot 0 \cdot 4 + 5 \cdot 0 \cdot (5)$$

$$= 0$$

$$\langle \vec{v}, \vec{0} \rangle = 4 \cdot 4 \cdot 0 + 5 \cdot (5) \cdot (0)$$

$$= 0$$

$$\langle \vec{0}, \vec{v} \rangle = \langle \vec{v}, \vec{0} \rangle = 0$$

Let $\vec{u} = (u_1, u_2)$ and $\vec{v} = (v_1, v_2)$. Show that the following are inner product on \mathbb{R}^2 by verifying that the inner product axioms hold. $\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 5u_2v_2$

Axiom 1:
$$\langle \vec{u}, \vec{v} \rangle = 3u_1v_1 + 5u_2v_2$$

 $= 3v_1u_1 + 5v_2u_2$
 $= \langle \vec{v}, \vec{u} \rangle$ \checkmark
Axiom 2: $\langle \vec{u} + \vec{v}, \vec{w} \rangle = 3(u_1 + v_1)w_1 + 5(u_2 + v_2)w_2$
 $= 3(u_1w_1 + v_1w_1) + 5(u_2w_2 + v_2w_2)$
 $= 3u_1w_1 + 3v_1w_1 + 5u_2w_2 + 5v_2w_2$
 $= (3u_1w_1 + 5u_2w_2) + (3v_1w_1 + 5v_2w_2)$
 $= \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ \checkmark
Axiom 3: $\langle k\vec{u}, \vec{v} \rangle = 3(ku_1)v_1 + 5(ku_2)v_2$
 $= k(3u_1v_1 + 5u_2v_2)$

$$=k\langle \vec{u}, \vec{v}\rangle$$

Axiom 4:
$$\langle \vec{v}, \vec{v} \rangle = 3v_1v_1 + 5v_2v_2$$

= $3v_1^2 + 5v_2^2 \ge 0$
 $v_1 = v_2 = 0$ iff $\vec{v} = \vec{0}$

Show that the following identity holds for the vectors in any inner product space

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

Solution

$$\|\vec{u} + \vec{v}\|^{2} + \|\vec{u} - \vec{v}\|^{2} = \langle \vec{u} + \vec{v}, \vec{u} + \vec{v} \rangle + \langle \vec{u} - \vec{v}, \vec{u} - \vec{v} \rangle$$

$$= \langle \vec{u}, \vec{u} + \vec{v} \rangle + \langle \vec{v}, \vec{u} + \vec{v} \rangle + \langle \vec{u}, \vec{u} - \vec{v} \rangle - \langle \vec{v}, \vec{u} - \vec{v} \rangle$$

$$= \langle \vec{u}, \vec{u} \rangle + \langle \vec{u}, \vec{v} \rangle + \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle + \langle \vec{u}, \vec{u} \rangle - \langle \vec{u}, \vec{v} \rangle - \langle \vec{v}, \vec{u} \rangle + \langle \vec{v}, \vec{v} \rangle$$

$$= 2 \langle \vec{u}, \vec{u} \rangle + 2 \langle \vec{v}, \vec{v} \rangle$$

$$= 2 \|\vec{u}\|^{2} + 2 \|\vec{v}\|^{2}$$

Exercise

Show that the following identity holds for the vectors in any inner product space

$$\langle \vec{u}, \vec{v} \rangle = \frac{1}{4} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

$$\|\vec{u} + \vec{v}\|^{2} = \langle \vec{u} + \vec{v}, \ \vec{u} + \vec{v} \rangle = \|\vec{u}\|^{2} + 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^{2}$$

$$\|\vec{u} - \vec{v}\|^{2} = \langle \vec{u} - \vec{v}, \ \vec{u} - \vec{v} \rangle = \|\vec{u}\|^{2} - 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^{2}$$

$$\|\vec{u} + \vec{v}\|^{2} = \|\vec{u}\|^{2} + 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^{2}$$

$$- \|\vec{u} - \vec{v}\|^{2} = \|\vec{u}\|^{2} - 2\langle \vec{u}, \ \vec{v} \rangle + \|\vec{v}\|^{2}$$

$$\|\vec{u} + \vec{v}\|^{2} - \|\vec{u} - \vec{v}\|^{2} = 4\langle \vec{u}, \ \vec{v} \rangle$$

$$\langle \vec{u}, \ \vec{v} \rangle = \frac{1}{4} (\|\vec{u} + \vec{v}\|^{2} - \|\vec{u} - \vec{v}\|^{2})$$

Prove that $||k\vec{v}|| = |k| ||\vec{v}||$

$$||k\vec{v}||^2 = \langle k\vec{v}, \vec{v} \rangle$$
$$= k^2 \langle \vec{v}, \vec{v} \rangle$$
$$= k^2 ||\vec{v}||^2$$

$$||k\vec{v}|| = k ||\vec{v}||$$