Fibonacci Tilings

Fibonacci numbers (https://www.cut-the-knot.org/arithmetic/Fibonacci.shtml) $\{F_n, n \geq 0\}$ satisfy the recurrence relation

(1)
$$F_{n+2} = F_{n+1} + F_n,$$

along with the initial conditions $F_1=1$ and $F_0=0$.

The Fibonacci name has been attached to the sequence $0,1,1,2,3,5,\ldots$ due to the inclusion in his 1202 book *Liber Abaci* of a rabbit reproduction puzzle: under certain constraints the rabbit population at discrete times is given exactly by that sequence. As naturally, the sequence is simulated by counting the tilings with dominoes of a $2 \times n$ board:

A tiling of a $2 \times n$ board may end with two horizontal dominoes or a single vertical domino:

In the former case, it's an extension of a tiling of a $2 \times (n-2)$ board; in the latter case, it's an extension of a tiling of a $2 \times (n-1)$. If T_n denotes the number of domino tilings of a $2 \times n$ board, then clearly

$$T_n = T_{n-2} + T_{n-1}$$

which is the same recurrence relation that is satisfied by the Fibonacci sequence. By a direct verification, $T_1=1$, $T_2=2,\,T_3=3,\,T_4=5,\,$ etc., which shows that $\{T_n\}$ is nothing but a shifted Fibonacci sequence. If we define, $T_0=1,\,$ as there is only one way to do nothing; and $T_{-1}=0,\,$ because there are no boards with negative side lengths, then $F_n=T_{n-1},\,$ for $n\geq 0.$

The domino tilings are extensively used in *Graham, Knuth, Patashnik* and by *Zeitz. Benjamin & Quinn* economize by considering only an upper $1 \times n$ portion of the board (and its tilings). This means tiling a $1 \times n$ board with 1×1 and 1×2 pieces.

I'll use Benjamin & Quinn's frugal tilings to prove Cassini's Identity (https://www.cut-the-knot.org/Generalization/CevaPlus.shtml#Cassini)

$$F_{n+1} \cdot F_{n+1} - F_n \cdot F_{n+2} = (-1)^n.$$

In terms of the tilings, I want to prove that $T_n \cdot T_n - T_{n-1} \cdot T_{n+1} = (-1)^n$.

The meaning of the term $T_n \cdot T_n$ is obvious: this is the number of ways to tile two $1 \times n$ boards where the tilings of the two boards are independent of each other. Similarly, $T_{n-1}T_{n+1}$ is the number of ways to tile two boards: one $1 \times (n-1)$ and one $1 \times (n+1)$. Now, the task is to retrieve the relation between the two numbers annunciated by Cassini's identity.

Our setup consists of two $1 imes n$ boards:												
								1				
with the bottom board shifted one square to the right:												
								1				
								1	1			
									-			
The tilings of the two boards may or may not have a fault line. A <i>fault line</i> is a line on the two boards at which the two tilings are breakable. For example, the tilings below have three fault lines:												
]	_			
									J			
The trick is now to swap tails: the pieces of the two tilings (along with the boards) after the last fault line:												
									1			
								1	J			
								I				

Since the bottom board has been shifted just one square, the swap produces one tiling of a $1 \times (n+1)$ - the top board in the diagram - and one tiling of a $1 \times (n-1)$ board - the bottom board in the diagram. Note that the old faults have been preserved and no new faults have been introduced.

Thus, in the presence of faults, there is a 1-1 correspondence between two n-tilings (T_n) and a pair of (n-1)- and (n+1)-tilings. The time is to account for the faultless combinations, if any.

But there are. Any 1×1 square induces a fault. This leaves exactly two faultless tilings. If n is odd, both n-1 and n+1 are even, there is a unique pair of (n-1)— and (n+1)-tilings:

If n is even, there is a unique n-tiling that, when shifted, generates no fault lines:

References

- 1. A. T. Benjamin, J. J. Quinn, *Proofs That Really Count: The Art of Combinatorial Proof* (https://www.amazon.com/exec/obidos/ISBN=0883853337/ctksoftwareincA/), MAA, 2003
- 2. R. Graham, D. Knuth, O. Patashnik, *Concrete Mathematics* (https://www.amazon.com/exec/obidos/ISBN=0201558025/ctksoftwareincA/), 2nd edition, Addison-Wesley, 1994.
- 3. D. Singmaster, *Problems for Metagrobologists* (https://www.amazon.com/exec/obidos/ISBN=9814663638/ctksoftwareincA/), World Scientific, 2016, #183
- 4. P. Zeitz, The Art and Craft of Problem Solving (https://www.amazon.com/exec/obidos/ISBN=0471135712/ctksoftwareincA/), John Wiley & Sons, 1999

Related material Read more...

- The Basic Rules of Counting (https://www.cut-theknot.org/arithmetic/combinatorics/BasicRules.shtml)
- Combinatorial Proofs (https://www.cut-the-knot.org/arithmetic/combinatorics/CombinatorialProofs.shtml)
- The Inclusion-Exclusion Principle (https://www.cut-the-knot.org/arithmetic/combinatorics/InclusionExclusion.shtml)
- Inclusion-Exclusion Principle: an Example (https://www.cut-the-knot.org/arithmetic/combinatorics/InclExclEx.shtml)
- Ramsey's Theorem (https://www.cut-the-knot.org/arithmetic/combinatorics/Ramsey.shtml)
- Coloring Points in the Plane (https://www.cut-the-knot.org/proofs/two_color.shtml)
- Probabilities (https://www.cut-the-knot.org/Probability/Probabilities.shtml)
- Example: A Poker Hand (https://www.cut-theknot.org/Probability/PokerSampleSpaces.shtml)

knot.org/algebra.shtml)

Copyright © 1966-2016 Alexander Bogomolny (https://www.cut-the-knot.org/index.shtml)

68143302