DT12 Rec'd PCT/PTO 1 0 DEC 2004

SEQUENCE LISTING

```
<110> Ambrose, Helen Jean
      Dudley, Adam Jeston
<120> Methods for Detecting Polymorphisms Using ARMS or RFLP
<130> 06275-421US1
<150> PCT/GB03/02524
<151> 2003-06-10
<150> GB 0213579.6
<151> 2002-06-13
<150> US 60/388,812
<151> 2002-06-14
<160> 17
<170> PatentIn Ver. 2.1
<210> 1
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PCR forward
      primer OATP8-1F
<400> 1
aggccctgaa tgaatattag agaa
                                                                    24
<210> 2
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PCR reverse
      primer OATPF8-1R
<400> 2
taatgtacgc ttcaatggaa aaat
                                                                    24
<210> 3
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PCR forward
      primer OATP8-2F
```

<400> 3 ttactttctt catctatgga ggac	24
<210> 4 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:PCR reverse primer OATP8-2R	
<400> 4 aaagctgact ctagatgatt tgag	24
<210> 5 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:PCR forward primer OATP8-3F	
<400> 5 taagatatgc atactgggga gaaa	24
<210> 6 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:PCR reverse primer OATP8-3R	
<400> 6 ctgcaggatc ttaatgggag gtt	23
<210> 7 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:PCR forward primer OATP8-4F	
<400> 7	24

```
<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR reverse
      primer OATP8-4R
<400> 8
ctgcaggatc ttaatgggag gtt
                                                                     23
<210> 9
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR forward
      primer OATP8-5F
<400> 9
tttgagggaa ggtacaatgt cttg
                                                                     24
<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR reverse
      primer OATP8-5R
<400> 10
tctcaaaagg taactgccca ctta
                                                                     24
<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR forward
      primer OATP8-6F
<400> 11
tgtaagccaa accaatggaa taat
                                                                     24
<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: PCR reverse
      primer OATP8-6R
<400> 12
accagaatgc ttgatacaat agtg
                                                                    24
<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR forward
      primer OATP8-7F
<400> 13
aggccctgaa tgaatattag agaa
                                                                    24
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: PCR reverse
      primer OATP8-7R
<400> 14
taatgtacgc ttcaatggaa aaat
                                                                    24
<210> 15
<211> 500
<212> DNA
<213> Homo sapiens
<400> 15
ttcataaatc ttgtaatctg gatatgtaga aaatataaaa attttaattt ctataattta 60
aaattgttgt tcatacaatc tagtgtgtgg ttttatatta tttacttgtt tcaaatttct 120
ctctatgaaa attattttc taagcaaatt ataatctctt taggctagga gtttgtctct 180
gtctttcctc ctctgtgtcc agcattgacc tagtcctgtg gtcaggaaat agcaggccct 240
gaatgaatat tagagaatga ttgattgatt gatattgagc ttgtggcttt tcctattttt 300
aaattgtata ttgttaaagt aaaataaatt atactttttc ttttttaaca ggtgatcatt 360
tcaaaccaag catcagcaac aattaaaaat attcacttgg tatctgtagt ttaataatgg 420
accaacatca acatttgaat aaaacagcag agtcagcatc ttcagagaaa aagaaaacaa 480
gacgctgcaa tggattcaag
<210> 16
<211> 2646
<212> DNA
<213> Homo sapiens
<400> 16
```

```
atcagcaaca attaaaatat tcacgtggta tctgtagttt aataatggac caacatcaac 60
atttgaataa aacagcagag tcagcatctt cagagaaaaa gaaaacaaga cgctgcaatg 120
gattcaagat gttcttggca gccctgtcat tcagctatat tgctaaagca ctaggtggaa 180
tcattatgaa aatttccatc actcaaatag aaaggagatt tgacatatcc tcttctcttg 240
ctggtttaat tgatggaagc tttgaaattg gaaatttgct tgtgattgta tttgtaagtt 300
actittggatc taaactacac agaccgaaqt taattggaat tggttgtctc cttatgggaa 360
ctggaagtat tttgacatct ttaccacatt tcttcatggg atattatagg tattctaaag 420
aaacccatat taatccatca gaaaattcaa catcaagttt atcaacctgt ttaattaatc 480
aaaccttatc attcaatgga acatcacctg agatagtaga aaaagattgt gtaaaggaat 540
ctgggtcaca catgtggatc tatgtcttca tggggaatat gcttcgtggc ataggggaaa 600
cccccatagt accattgggg atttcataca ttgatgattt tgcaaaagaa ggacattctt 660
ccttgtattt aggtagtttg aatgcaatag gaatgattgg tccagtcatt ggctttgcac 720
tgggatetet gtttgetaaa atgtaegtgg atattggata tgtagatetg ageaetatea 780
gaataactcc taaggactct cgttgggttg gagcttggtg gcttggtttc cttgtgtctg 840
cacaaaaaga aagaaaaatt tcactatcat tgcatgtgct gaaaacaaat gatgatagaa 960
atcaaacagc taatttgacc aaccaaggaa aaaatgttac caaaaatgtg actggttttt 1020
tccagtcttt gaaaagcatc cttaccaatc ccctgtatgt tatatttctq cttttqacat 1080
tgttacaagt aagcagcttt attggttctt ttacttacgt ctttaaatat atqqaqcaac 1140
agtacggtca gtctgcatct catgctaact ttttgttggg aatcataacc attcctacgg 1200
ttgcaactgg aatgttttta ggaggattta tcattaaaaa attcaaattg tctttagttg 1260
gaattgccaa attttcattt cttacttcga tgatatcctt cttgtttcaa cttctatatt 1320
tccctctaat ctgcgaaagc aaatcagttg ccggcctaac cttgacctat gatggaaata 1380
attcagtggc atctcatgta gatgtaccac tttcttattg caactcagag tgcaattgtg 1440
atgaaagtca gtgggaacca gtctgtggga acaatggaat aacttacctg tcaccttqtc 1500
tagcaggatg caaatcetca agtggtatta aaaagcatac agtgttttat aactgtagtt 1560
gtgtggaagt aactggtctc cagaacagaa attactcagc acacttgggt gaatgcccaa 1620
gagataatac ttgtacaagg aaatttttca tctatgttgc aattcaagtc ataaactctt 1680
tgttctctgc aacaggaggt accacattta tcttgttgac tgtgaagatt gttcaacctg 1740
aattgaaagc acttgcaatg ggtttccagt caatggttat aagaacacta gqaqqaattc 1800
tageteeaat atattttggg getetgattg ataaaacatg tatgaagtgg tecaceaaca 1860
gctgtggagc acaaggagct tgtaggatat ataattccgt attttttgga agggtctact 1920
tgggcttatc tatagcttta agattcccag cacttgtttt atatattgtt ttcatttttg 1980
ctatgaagaa aaaatttcaa ggaaaagata ccaaggcatc ggacaatgaa agaaaagtaa 2040
tggatgaagc aaacttagaa ttcttaaata atggtgaaca ttttgtacct tctgctggaa 2100
cagatagtaa aacatgtaat ttggacatgc aagacaatgc tgctgccaac taacattgca 2160
ttgattcatt aagatgttat ttttgaggtg ttcctggtct ttcactgaca attccaacat 2220
tetttaetta cagtggacca atggataagt etatgeatet ataataaact ataaaaaatg 2280
ggagtaccca tggttaggat atagctatgc ctttatggtt aagattagaa tatatgatcc 2340
ataaaattta aagtgagagg catggttagt gtgtgataca ataaaaagta attgtttggt 2400
agttgtaact gctaataaaa ccagtgacta gaatataagg gaggtaaaaa ggacaagata 2460
gattaatagc ctaaataaag agaaaagcct gatgccttta aaaaatgaaa cactttggat 2520
gtattactta ggccaaaatc tggcctggat ttatgctata atatatattt tcatgttaag 2580
ttgtatattt ttcagaaatt ataaatatta ttaatttaaa attcgaaaaa aaaaaaaaa 2640
aaaaaa
```

```
<210> 17
<211> 702
<212> PRT
<213> Homo sapiens
<400> 17
Met Asp Gln His Gln His Leu Asn Lys Thr Ala Glu Ser Ala Ser Ser
1 5 10 15
```

Glu Lys Lys Thr Arg Arg Cys Asn Gly Phe Lys Met Phe Leu Ala

20 25 30 Ala Leu Ser Phe Ser Tyr Ile Ala Lys Ala Leu Gly Gly Ile Ile Met Lys Ile Ser Ile Thr Gln Ile Glu Arg Arg Phe Asp Ile Ser Ser Ser 55 Leu Ala Gly Leu Ile Asp Gly Ser Phe Glu Ile Gly Asn Leu Leu Val Ile Val Phe Val Ser Tyr Phe Gly Ser Lys Leu His Arg Pro Lys Leu Ile Gly Ile Gly Cys Leu Leu Met Gly Thr Gly Ser Ile Leu Thr Ser Leu Pro His Phe Phe Met Gly Tyr Tyr Arg Tyr Ser Lys Glu Thr His Ile Asn Pro Ser Glu Asn Ser Thr Ser Ser Leu Ser Thr Cys Leu Ile 135 Asn Gln Thr Leu Ser Phe Asn Gly Thr Ser Pro Glu Ile Val Glu Lys 150 155 Asp Cys Val Lys Glu Ser Gly Ser His Met Trp Ile Tyr Val Phe Met 165 170 Gly Asn Met Leu Arg Gly Ile Gly Glu Thr Pro Ile Val Pro Leu Gly 185 Ile Ser Tyr Ile Asp Asp Phe Ala Lys Glu Gly His Ser Ser Leu Tyr 200 Leu Gly Ser Leu Asn Ala Ile Gly Met Ile Gly Pro Val Ile Gly Phe 210 215 Ala Leu Gly Ser Leu Phe Ala Lys Met Tyr Val Asp Ile Gly Tyr Val 230 235 Asp Leu Ser Thr Ile Arg Ile Thr Pro Lys Asp Ser Arg Trp Val Gly 250 Ala Trp Trp Leu Gly Phe Leu Val Ser Gly Leu Phe Ser Ile Ile Ser 260 Ser Ile Pro Phe Phe Leu Pro Lys Asn Pro Asn Lys Pro Gln Lys Glu Arg Lys Ile Ser Leu Ser Leu His Val Leu Lys Thr Asn Asp Asp 290 295 Arg Asn Gln Thr Ala Asn Leu Thr Asn Gln Gly Lys Asn Val Thr Lys 310 315

Asn Val Thr Gly Phe Phe Gln Ser Leu Lys Ser Ile Leu Thr Asn Pro

				325					330					335	
Leu	Tyr	Val	Ile 340	Phe	Leu	Leu	Leu	Thr 345	Leu	Leu	Gln	Val	Ser 350	Ser	Phe
Ile	Gly	Ser 355	Phe	Thr	Tyr	Val	Phe 360	Lys	Tyr	Met	Glu	Gln 365	Gln	Tyr	Gly
Gln	Ser 370	Ala	Ser	His	Ala	Asn 375	Phe	Leu	Leu	Gly	Île 380	Ile	Thr	Ile	Pro
Thr 385	Val	Ala	Thr	Gly	Met 390	Phe	Leu	Gly	Gly	Phe 395		Ile	Lys	Lys	Phe 400
Lys	Leu	Ser	Leu	Val 405	Gly	Ile	Ala	Lys	Phe 410	Ser	Phe	Leu	Thr	Ser 415	Met
Ile	Ser	Phe	Leu 420	Phe	Gln	Leu	Leu	Tyr 425	Phe	Pro	Leu	Ile	Cys 430	Glu	Ser
Lys	Ser	Val 435	Ala	Gly	Leu	Thr	Leu 440	Thr	Tyr	Asp	Gly	Asn 445	Asn	Ser	Val
Ala	Ser 450	His	Val	Asp	Val	Pro 455	Leu	Ser	Tyr	Cys	Asn 460	Ser	Glu	Cys	Asn
Cys 465	Asp	Glu	Ser	Gln	Trp 470	Glu	Pro	Val	Cys	Gly 475	Asn	Asn	Gly	Ile	Thr 480
Tyr	Leu	Ser	Pro	Cys 485	Leu	Ala	Gly	Cys	Lys 490	Ser	Ser	Ser	Gly	Ile 495	Lys
Lys	His	Thr	Val 500	Phe	Tyr	Asn	Сув	Ser 505	Cys	Val	Glu	Val	Thr 510	Gly	Leu
Gln	Asn	Arg 515	Asn	Tyr	Ser	Ala	His 520	Leu	Gly	Glu	Cys	Pro 525	Arg	Asp	Asn
Thr	Cys 530	Thr	Arg	Lys	Phe	Phe 535	Ile	Tyr	Val	Ala	Ile 540	Gln	Val	Ile	Asn
Ser 545	Leu	Phe	Ser	Ala	Thr 550	Gly	Gly	Thr	Thr	Phe 555	Ile	Leu	Leu	Thr	Val 560
Lys	Ile	Val	Gln	Pro 565	Glu	Leu	Lys	Ala	Leu 570	Ala	Met	Gly	Phe	Gln 575	Ser
Met	Val	Ile	Arg 580	Thr	Leu	Gly	Gly	Ile 585	Leu	Ala	Pro	Ile	Tyr 590	Phe	Gly
Ala	Leu	Ile 595	Asp	Lys	Thr	Cys	Met 600	Lys	Trp	Ser	Thr	Asn 605	Ser	Cys	Gly
Ala	Gln 610	Gly	Ala	Cys	Arg	Ile 615	Tyr	Asn	Ser	Val	Phe 620	Phe	Gly	Arg	Val
Tyr	Leu	Gly	Leu	Ser	Ile	Ala	Leu	Arg	Phe	Pro	Ala	Leu	Val	Leu	Tyr