Speech Signal Fundamentals II

Deviation from Ideal Spectra

$$x(t) = \cos(2\pi f_0 t)$$
 x(t) has infinite length.

* Negative frequencies omitted

Deviation from Ideal Spectra

$$x(t) = \cos(2\pi f_0 t)$$

* Negative frequencies omitted

Deviation from Ideal Spectra

$$x(t) = \cos(2\pi f_0 t)$$

* Negative frequencies omitted

Finite-length = Time-windowed

$$x(t) = \cos(2\pi f_0 t)$$
 x(t) has infinite length.

But in real life, we can never have a signal of infinite length.

A portion of sine wave with finite length can be considered as a windowed version of the infinite length sine wave.

E.g.: A sine wave from t_1 to t_2 , $x_w(t)$ can be written as:

$$x_w(t) = \cos(2\pi f_0 t) w(t)$$
 Where:
$$w(t) = \begin{cases} 1 & \text{; } t_1 \le t < t_2 \\ 0 & \text{; } otherwise \end{cases}$$

Recall that ...

Square Window

$$w(t) = \begin{cases} 1 & \text{; } 0 \le t < 0.5 \text{ sec.} \\ 0 & \text{; } otherwise \end{cases}$$

Effect of Time-windowing

$$s(t) = (\sin(2\pi(100)t) + \sin(2\pi(200)t))w(t)$$

w(t) is a 1-second-long square window

Window Length Vs. Frequency Resolution

Window Length Vs. Frequency Resolution

Window Length Vs. Frequency Resolution

Window Length Vs. Freq.Resolution

Time Resolution Vs. Frequency Resolution

Different Types of Window

Sampling

Sampling

Sampling

Normalized Frequency

Fourier Transform

X(f) -2Fs Fs O Fs 2Fs f(Hz.) Repeats every Fs

f: frequency (Hz.)

Discrete-time Fourier Transform

 ω : Normalized frequency (Radian per sample)

Discrete-time Fourier Transform

$$x[n] \Leftrightarrow X(e^{j\omega})$$

Discrete-time Fourier Transform

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Inverse Discrete-time
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$$
 Transform

Example

 $=1+2\cos(\omega)+2\cos(2\omega)$

Discrete-time Convolution

Discrete-time Filter

$$Y(e^{j\omega}) = X(e^{j\omega})T(e^{j\omega}) \iff y[n] = x[n] * t[n]$$

Family of Fourier Transform

- "Discreteness" in one domain implies "Periodicity" in the other domain.
- "Continuity" in one domain implies "Aperiodicity" in the other domain.

Transform	Time	Freq.
Cont. Fourier Trans.	Cont. & aperiodic	Cont. & aperiodic
Fourier Series	Cont. & periodic	Disc. & aperiodic
DTFT	Disc. & aperiodic	Cont. & periodic
DFT	Disc. & periodic	Disc & periodic

Discrete Fourier Transform

$$x[n] \Leftrightarrow X[k]$$

DFT
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}$$
 $k = 0,1,...,N-1$

IDFT
$$X[n] = \frac{1}{N} \sum_{k=0}^{N-1} x[k] e^{j\frac{2\pi kn}{N}}$$

$$n = 0,1,...,N-1$$

Discrete Fourier Transform

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}$$

N DFT

Numerical Computing Environment

Millions of Engineers and Scientists Trust MATLAB

MATLAB combines a desktop environment tuned for iterative analysis and design processes with a programming language that expresses matrix and array mathematics directly.

Professionally Built

MATLAB toolboxes are professionally developed, rigorously tested, and fully documented.

With Interactive Apps

MATLAB apps let you see how different algorithms work with your data. Iterate until you've got the results you want, then automatically generate a MATLAB program to reproduce or automate your work.

Retrieved from: https://www.mathworks.com/products/matlab.html
On January 31st, 2018

GNU Octave

Scientific Programming Language

- Powerful mathematics-oriented syntax with built-in plotting and visualization tools
- Free software, runs on GNU/Linux, macOS, BSD, and Windows
- Drop-in compatible with many Matlab scripts

Download	Docs

Retrieved from: https://www.gnu.org/software/octave/ On January 31st, 2018

Octave Demo

- Basic operations
 - Variables
 - Colon operator
 - Matrix manipulation
 - Convolution
- Arrays
- Plotting
- Loading/Saving audio
- Help
- Control structures