

Quantitative Methoden

Prof. Dr. Rainer Stollhoff

Zeitreihenanalyse
Klassische Zeitreihenanalyse
Komponentenzerlegung

Übersicht

- Einführung
 - Allgemeine Darstellung
 - Beispiele
- Grundlagen Zeitreihenanalyse
 - Grundbegriffe
 - Trendbestimmung
 - Gleitender Durchschnitt
 - Exponentielle Glättung
 - Lineare Regression
- Klassische Komponentenzerlegung
 - Modellbeschreibung: Trend, Saisonkomponente, Rest
 - Schätzen der Parameter
 - Trend mittels linearer Regression
 - Holt-Winters-Verfahren
- Prognose

Beispiele

Physikalische Messdaten

- Finanzdaten
- Statistische Daten

•

Grundlagen

Zeitreihe als mathematisch, abstrakter Begriff

 X_t

Realisierung einer Zeitreihe

- = Konkrete Beobachtung von Messwerten
- = Datensatz von Zahlenwerten

 x_t

mit t zwischen Startpunkt $t_0 = 0$ und Endpunkt T

Beispiel Erwerbstätige

Quelle:

Erwerbstaetige in Deutschland

Trend: Gleitender Durchschnitt

Zeitreihe

Beobachtungen im Zeitpunkt t

$$(x_t)_{t=0,\dots,T}$$

$$(x_t, x_{t-1}, \dots, x_0)$$

Gleitender Durchschnitt (Moving Average) μ_t^s im Zeitpunkt t mit Horizont s

$$\mu_t = \frac{1}{2s+1} \sum_{i=-s}^{s} x_{t+i} \qquad \text{zentriert}$$

$$(\mu_t^s)_{t=0,\dots,T} ????$$

$$\mu_t = \frac{1}{s+1} \sum_{i=-s}^{0} x_{t+i} \qquad \text{rückwärts}$$

Trend: Exponentielle Glättung

Exponentielle Glättung mit Glättungsparameter α

Niveau
$$n_0 = x_0$$

$$(n_t)_{t=0,...,T}$$
 $n_t = \alpha x_t + (1-\alpha)n_{t-1}$

Trend: Exponentielle Glättung mit Wachstum

= Exponentielle Glättung zweiter Ordnung

Exponentielle Glättung mit Glättungsparameter α und Wachstumsrate β

Niveau
$$n_0 = x_0$$
 $m_0 = x_1 - x_0$ $m_0 = x_1 - x_0$ $m_t = \alpha x_t + (1 - \alpha)(n_{t-1} + m_{t-1})$ Wachstum $m_t = \beta(n_t - n_{t-1}) + (1 - \beta)m_{t-1}$ $m_t = \beta(n_t - n_{t-1}) + (1 - \beta)m_{t-1}$

Beispiel Erwerbstätige

Erwerbstaetige in Deutschland

Beispiel Erwerbstätige

Erwerbstaetige

Gleit. Durchschnitt mit s=6

Exp. Glaettung mit a=.5

Exp. Glaettung mit a=.5, b=.5

Trend: Lineare Regression

- Lineare Regression liefert Prognose
 - der (unbeobachteten) abhängigen Variable y
 - anhand (beobachtbarer) unabhängiger
 Variable x

$$\hat{y} = \hat{y}(x) = a x + b$$

- Lineare Regression in der Zeitreihenanalyse
 - der zukünftigen Entwicklung einer Variablen
 x
 - anhand des bekannten Zeitpunktes t

$$\widehat{x_t} = \widehat{x}(t) = a \ t + b$$

Quantitative Methoden

Prof. Dr. Rainer Stollhoff

Zeitreihenanalyse
Klassische Zeitreihenanalyse
Komponentenzerlegung

Übersicht

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Einführung
 - Allgemeine Darstellung
 - Beispiele
- Grundlagen Zeitreihenanalyse
 - Grundbegriffe
 - Trendbestimmung
 - Gleitender Durchschnitt
 - Exponentielle Glättung
 - Lineare Regression
- Klassische Komponentenzerlegung
 - Modellbeschreibung: Trend, Saisonkomponente, Rest
 - Schätzen der Parameter
 - Trend mittels linearer Regression
 - Holt-Winters-Verfahren
- Prognose

Klassische Komponentenzerlegung (KK)

- Die Entwicklung der Werte x_t einer Zeitreihe kann man zerlegen in
 - Trendkomponente m_t
 beschreibt die langfristige mittlere Entwicklung
 - (konjunkturelle Komponente k_t)
 beschreibt Schwankungen über einen mehrjährigen
 Horizont
 - saisonale Komponente s_t
 erfasst regelmäßige (z.B. jahreszeitliche) Schwankungen
 - Restkomponente r_t
 Nicht vorhersagbare Einflüsse

- Die Zerlegung erfolgt
 - Additiv

$$x_t = m_t + s_t + r_t$$

(Multiplikativ)

$$x_t = m_t * s_t * r_t$$
$$\ln(x_t) = \ln(m_t) + \ln(s_t) + \ln(r_t)$$

KK mit linearer Regression

- Die Entwicklung der Werte x_t einer Zeitreihe kann man zerlegen in
 - Trendkomponente m_t
 beschreibt die langfristige mittlere Entwicklung
 - (konjunkturelle Komponente k_t)
 beschreibt Schwankungen über einen mehrjährigen
 Horizont
 - saisonale Komponente s_t
 erfasst regelmäßige (z.B. jahreszeitliche) Schwankungen
 - Restkomponente r_t
 Nicht vorhersagbare Einflüsse

Die einzelnen Komponenten werden nacheinander geschätzt

 Trendkomponente m_t durch lineare Regression

$$m_t = a \cdot t + b$$

 $(\mu_t \text{ mit gleitendem Durchschnitt})$
 $(n_t \text{ mit exponentieller Glättung})$

2. saisonale Komponente s_k durch saisonale (Rest)Mittelwerte

$$s_k = \sum_n x_{k+n\cdot K} - m_{k+n\cdot K}$$

wobei $k = t \mod K$ die Saison im Zeitpunkt t

3. Restkomponente r_t als Rest $r_t = x_t - (m_t + s_k)$

KK mit linearer Regression

- Die Entwicklung der Werte x_t einer Zeitreihe kann man zerlegen in
 - Trendkomponente m_t
 beschreibt die langfristige mittlere Entwicklung
 - (konjunkturelle Komponente k_t)
 beschreibt Schwankungen über einen mehrjährigen
 Horizont
 - saisonale Komponente s_t
 erfasst regelmäßige (z.B. jahreszeitliche) Schwankungen
 - Restkomponente r_t
 Nicht vorhersagbare Einflüsse

Die einzelnen Komponenten werden nacheinander geschätzt

 Trendkomponente m_t durch lineare Regression

$$m_t = a \cdot t + b$$

2. saisonale Komponente s_k durch saisonale (Rest)Mittelwerte

$$s_k = \sum_n x_{k+n\cdot K} - m_{k+n\cdot K}$$

wobei $k = t \mod K$ die Saison im Zeitpunkt t

3. Restkomponente r_t als Rest $r_t = x_t - (m_t + s_k)$

KK mit linearer Regression

KK mit gleitendem Durchschnitt

(hier: zentriert mit Horizont s = 6)

KK mit exponentieller Glättung mit Wachstum = Holt-Winters-Verfahren

Exponentielle Glättung mit Glättungsparameter α und Wachstumsrate β und Saisonkomponenten s, mit Periode p

$$\hat{x}_{t+h} = n_t + h * m_t + s_{t-p+1+(h-1) \bmod p}$$

Niveau

$$(n_t)_{t=0,\dots,T}$$

$$n_t = \alpha(x_t - s_{t-p}) + (1 - \alpha)(n_{t-1} + m_{t-1})$$

Wachstum

$$(m_t)_{t=0,...,T}$$

$$m_t = \beta(n_t - n_{t-1}) + (1 - \beta)m_{t-1}$$

Saisonkomponente

$$(s_t)_{t=0,\dots,T}$$

$$s_t = \gamma(x_t - n_t) + (1 - \gamma)s_{t-p}$$

KK mit exponentieller Glättung mit Wachstum = Holt-Winters-Verfahren

Holt-Winters filtering

KK – Vergleich der Verfahren

Erwerbstaetige in Deutschland

Zeitreihenanalyse - Prognose

- Mit einer Zeitreihenanalyse kann eine Prognose erstellt werden
 - der zukünftigen Entwicklung einer Variablen x
 - anhand der beobachteten Gegenwart und Vergangenheit von x

KK mit linearer Regression – Prognose

Die einzelnen Komponenten werden nacheinander geschätzt

- 1. Trendkomponente m_t durch lineare Regression $m_t = a \cdot t + b$
- 2. saisonale Komponente s_t durch saisonale (Rest-)Mittelwerte

$$s_{t+k} = \sum_{n} x_{t+n\cdot k} - m_{t+n\cdot k}$$

3. Restkomponente r_t als Rest $r_t = x_t - (m_t + s_t)$

Über die Komponenten kann eine einfache Prognose abgegeben werden

$$x_{t+1} = m_{t+1} + s_{t+1} + r_{t+1}$$

 Trendkomponente m_t durch lineare Regression

$$m_t = a \cdot (t+1) + b$$

2. saisonale Komponente s_t durch saisonale (Rest-)Mittelwerte

$$S_{(t+1 \mod K)}$$

3. Restkomponente $r_{t+1}=0$

KK mit linearer Regression – Prognose

KK mit exponentieller Glättung mit Wachstum = Holt-Winters-Verfahren

Exponentielle Glättung mit Glättungsparameter α und Wachstumsrate β

und Saisonkomponenten s_t mit Periode p

Niveau

$$(n_t)_{t=0,...,T}$$

Wachstum

$$(m_t)_{t=0,...,T}$$

$$n_t = \alpha(x_t - s_{t-p}) + (1 - \alpha)(n_{t-1} + m_{t-1})$$

$$m_t = \beta(n_t - n_{t-1}) + (1 - \beta)m_{t-1}$$

Saisonkomponente

$$(s_t)_{t=0,\dots,T}$$

$$s_t = \gamma(x - n_t) + (1 - \gamma)s_{t-p}$$

$$\hat{x}_{t+h} = n_t + h * m_t + s_{t-p+1+(h-1) \bmod p}$$

KK Prognose - Vergleich der Verfahren

Erwerbstaetige in Deutschland

KK Prognose - Vergleich der Verfahren

Erwerbstaetige in Deutschland

Zusammenfassung

- Unter Zeitreihen versteht man wiederholte Beobachtungen einer Messgröße im Zeitverlauf.
- Man unterscheidet zwischen der abstrakten mathematischen Verwendung (Zeitreihe als Modell) und einer konkreten Realisierung (Zeitreihe als Datensatz).
- Bei der klassischen Komponentenzerlegung einer Zeitreihe unterscheidet man Trend, Saisonale Komponente und Rest.
- Die Komponenten des Modells lassen sich mit unterschiedlichen Verfahren schätzen u.a.:
 - Gleitender Durchschnitt
 - Exponentielle Glättung / Holt-Winters
 - Lineare Regression
- Zeitreihenmodelle erlauben eine Prognose für in der Zukunft liegende Zeitpunkte
 - Die Prognose schreibt Trends und wiederkehrende saisonale Muster aus der Vergangenheit in die Zukunft fort
 - Die Prognose berücksichtigt keine neuartigen Entwicklungen (Schocks, Strukturwandel,...)