Finite Element Modelling of Gyroidbased Honeycomb

Aims and Objectives

- Complete Finite Element analysis of proposed gyroid geometry will be performed.
- Open-source tools are exploited.
- Finite Element framework is established for analysing displacement and stress fields.
- Open-source frameworks are indispensable tools to handle state of the art geometries for FE modelling.
- This statement wanted to be proven in this study.

Flowchart

Flowchart - Tools

Geometry Generation

Here are the steps;

- Python script generates points.
- Reading these points from txt file and import them into FreeCAD.
- Manipulate geometry to get Gyroid-based honeycomb.

The process is fully automated.

Geometry Generation

Mesh Generation

Around ~667k cells

Definition of Boundary Conditions

Rest of the boundaries;

Traction-Free

Finite Element Analysis

- Dolfinx Framework has been used.
 https://github.com/FEniCS/dolfinx
- Linear Elasticity equations are solved.
- Python interface has been utilized.

Material Properties

Table 4. The mechanical properties of the Polyamide PA 2200 [29].

Tensile Modulus	1650 MPa
Tensile Strength	48 MPa
Elongation at Break	18%
Melting Temperature (20°C/min)	176°C
Heat Deflection Temperature (1.80 MPa)	70°C
Heat Deflection Temperature (0.65 MPa)	154°C
Density	930 kg/m ³

Visualization – Displacement Field

We are imposing y=-0.01m displacement from top boundary (Compression Test)

Visualization – Von Mises Stresses

Issue - Overlapping

When displacement of the top boundary exceeds y = -0.02m, the mesh overlaps.

Contacts between internal boundaries should be defined to avoid overlapping.

Possible solutions;

- 1) This problem can be treated as postprocessing problem.
- As we now the displacements of the each node in the mesh, we can manipulate the coordinates accordingly.
- At the moment, this is not implemented in **Dolfinx**,
- But we can implement -> it will take some time for sure (it is already ongoing PostDoc project of friend of mine).

Conclusion

- Framework of Finite Element Analysis for Gyroidbased honeycomb geometry is established.
- Material parameters are not well-defined yet, but easily doable.
- More complex structures (graded, periodic) can be implemented using Python scripts.