

EGEC 180 – Digital Logic and Computer Structures

Spring 2024

Lecture 14: Analysis and Design of Sequential Circuits (3.4)

Rakesh Mahto, Ph.D.

Office: E 314, California State University, Fullerton

Office Hour: Monday and Wednesday 2:00 - 3:30 pm

Or by appointment

Office Hour Zoom Meeting ID: 891 2907 5346

Email: <u>ramahto@fullerton.edu</u> **Phone No**: 657-278-7274

Analysis Design

The behavior of a sequential circuit is determined by the inputs, outputs and states of its Flip-Flops (FFs).

Analysis: obtain a suitable description (table or diagram) for the time sequence of inputs, outputs and FF states.

- Given a circuit
- Find the State Table or State Diagram

Analysis Model: Two-process PS/NS Method

Design of Clocked Sequential Circuits

Design of Sequential Circuit: for its design we need knowledge of the type of FFs used and a list of Boolean functions for the input combinational circuit to the FFs.

- Determine type of FFs (SR, D, T, JK)
- Find combinational circuit connected to input(s) of FFs

Design Model: Two-process PS/NS Method

Analysis and Design of Clocked Sequential Circuits

Input equations:

- 1) Part of the circuit that generates the signals for the inputs to the FFs, also
- 2) Selecting the type of FFs.
 - Time is not specified, it is implied
 - Convenient way for specifying the logic diagram also known as state equations

Logic Storage Devices

	Characteristic Table					Exc	itat	ion	Tak	ole				
		S	R	Q(t+1)	Operation		Q	Q⁺	S	R	Operation			
	S — Q	S — Q	S — Q	SQ [0	0	Q(t)	Hold		0	0	0	d	Hold
		0	1	0	Reset	Q(t+1) = S +R'Q	0	1	1	0	Set			
	$R \longrightarrow Q'$	1	0	1	Set		1	0	0	1	Reset			
		1	1	?	Undefined		1	1	d	0	Hold			
D Q-	D [60]	1)	Q(t+1)	Operation		Q⁺)	Operation			
→ c •	$D \rightarrow C$	(ס	0	Reset	Q(t+1) = D	(0	(0	Reset			
	<u>R</u>	-	1	1	Set		1		1		Set			
		J	К	Q(t+1)	Operation		Q	Q⁺	J	К	Operation			
->c ->c		0	0	Q(t)	Hold		0	0	0	d	Hold			
<u>К</u> р	J-D-D Q	0	1	0	Reset	Q(t+1) = JQ' + K'Q	0	1	0	d	Set			
		1	0	 1	Set]	1	0	d	0	Reset			
		1	1	Q(t)	Toggle		1	1	d	1	Hold			
T Q-	- 4	-	Γ	Q(t+1)	Operation		C	ર ⁺		Т	Operation			
->c	T D Q	()	Q(t)	No Change	Q(t+1) = Q ⊕ T	Q	<u>(</u> t)	(0	Hold			
			1	Q(t)	Toggle		Q	<u>(t)</u>		1	Toggle			

Analysis and Design of Clocked Sequential Circuits Inputs, outputs, and FF states may be listed in a State Table or drawn in a State Diagram:

State Table:

(befo	nt State ore CLK ulse)	Inputs	3	ext Sta r CLK p	Outputs (during pres state)		

Lay this out like you would a truth table

Reading A State Diagram

Note: **11/00** Implies 2 Inputs and that every state has 4 (2²) transitions out. Also, this means there are 2 outputs with each transition.

Moore Models

Moore Model: Sequential Circuits in which outputs depend on the states, one dimensional column suffices.

Mealy Models

Mealy Model: Sequential Circuits in which outputs depend on the inputs and the states, two dimensional columns.

Starting with the Logic Diagram (circuit)

Step 1) Write the state, input and output equations

Output equations F = Q A

Input equations E = F + B

State equations $Q(t+1) = Q^+ = Q A + B$

NOTE:

- 2 inputs A and B
- 1 Output F
- 1 D type FF

Step 2) Complete the State Table

	Inp	uts	04	Q⁺	F
Q	Α	В	QA	ץ	Г
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	1	1

$$Q(t+1) = Q^+ = Q A + B$$

$$F = Q A$$

NOTE: The circled states are considered stable states since the state does not change when transitioning or graphically

AB/F

00/0, 10/0

Step 3) Draw the State Diagram

	Inp	uts	Ο Δ	O+	F
Q	Α	В	QA	Q⁺	Г
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	1	1

NOTE: There are 2 inputs so each state should have 2² outputs and there should be a total of 8 transitions in the diagram one for each row of the state table.

Practice Problem #1

Starting with the Logic Diagram (circuit)

NOTE: This is a typical quiz problem

Inputs: A, Clk

Outputs: X, X', Y, Y', B

Step 1) Write the state, input and output equations

Outputs Eq:

$$B(A,X,Y) = A \oplus Y'$$

Input Eq:

$$Y^{+}(A,X,Y) = A+X'$$

 $X^{+}(A,X,Y) = (((Y+X)'A)'$

Practice Problem #1 State Table From Equations (1)

$$X^{+}(X,Y,A) = (((Y+X)'A)'$$

= $(((Y+X)')' + A'$
= $Y + X + A'$

$$Y^+(X,Y,A) = A + X'$$

$$B^{+}(X,Y,A) = A \oplus (Y)'$$
$$= AY + A'Y'$$

Practice Problem #1 State Table From Equations (2)

Step 2) Complete the State Table

	Present State					ext ate	В
Х	Υ		Х	Υ			
0	0	0	1	1	1		
0	0	1	0	1	0		
0	1	0	1	1	0		
0	1	1	1	1	1		
1	0	0	1	0	1		
1	0	1	1	1	0		
1	1	0	1	0	0		
1	1	1	1	1	1		

$$X^{+}= \Sigma m(0,2,3,4,5,6,7)$$
 $B^{+}= \Sigma m(1,2,5,6)$ $Y^{+}= \Sigma m(0,1,2,3,5,7)$

NOTE: The circled states are considered stable states since the state does not change when transitioning or graphically

Practice Problem #1 State Table From Equations (3)

Step 3) Draw the State Diagram

Present State		А		ext ate	В
Х	Υ		X ⁺	Υ+	
0	0	0	1	1	1
0	0	1	0	1	0
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	1	1

Design of Clocked Sequential Circuits

From verbal or written description use this information to generate (in this case the verbal statement said we need to use D flipflops (FF):

Step 1) Complete State Diagram or State Table

Pres Sta	sent ate			ext ate	
В	Α	Х	B ⁺	A ⁺	Z
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

Logic Circuit Design

- Step 2) Define the FFs inputs so that the State changes occur as specified by problem description. Two approaches:
 - 1. Know FF inputs, want to define the next state. Use Characteristic Table of FFs.
 - 2. Know the transition, want to find the inputs that cause those transitions. Use Excitation Table (PS/NS) of FFs.

Note:

- A. Choose types of FFs to use

 Number of FFs determined by number of states (4 or 2² states = 2 FF

 Type: JK most flexible; SR or D for data transfer; T when complementing is
 - involved. Most popular is the D FF.
- B. Notation to distinguish FF inputs in complex circuits (2 letter designations)

 First letter refers to specific FF input (J, K, D, T, S, R)

 Second letter refers to a FF identifier (A, B, C, etc)

Logic Storage Devices

Characteristic Table						Exc	citat	ion	Tak	ole	
		S	R	Q(t+1)	Operation		Q	Q⁺	s	R	Operation
s Q-	S — Q	0	0	Q(t)	Hold		0	0	0	d	Hold
		0	1	0	Reset	Q(t+1) = S + R'Q	0	1	1	0	Set
	$R \longrightarrow Q'$	1	0	1	Set		1	0	0	1	Reset
		1	1	?	Undefined		1	1	d	0	Hold
)	Q(t+1)	Operation		Q⁺		D		Operation
>c		()	0	Reset	Q(t+1) = D	0		0		Reset
	Rp	ν -	1	1	Set		1		1		Set
		J	К	Q(t+1)	Operation		ď	Q⁺	J	К	Operation
→ C		0	0	Q(t)	Hold		0	0	0	d	Hold
—Kb		0	1	0	Reset	Q(t+1) = JQ' + K'Q	0	1	0	d	Set
		1	0	_ 1	Set		1	0	d	0	Reset
		1	1	Q(t)	Toggle		1	1	d	1	Hold
T Q-		•	Г	Q(t+1)	Operation		C	ุว⁺		Т	Operation
- >c	T D Q	()	Q(t)	No Change	Q(t+1) = Q ⊕ T	Q	<u>(</u> t)	(0	Hold
		-	1	Q(t)	Toggle		Q	<u>(t)</u>		1	Toggle

Developing Flipflop Input Equations For B⁺ and A⁺

$$\mathsf{B}^{\scriptscriptstyle +}\!\!= \overline{B}AX + B(\overline{A}X + A\overline{X})$$

	AX 00	A'X 01	AX 11	AX' 10
В' О	0	0	1	0
B 1	0	1	0	1

Developing the Output Equation

Present State			Next State		
В	Α	X	В	Α	Z
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

Assembling Circuit

Step 3) Draw Logic Diagram

Q&A

