Ponovitev osnov

1 Kombinatorika

1.1 Permutacije

1. brez ponavljanja: $P_n = n!$

2. s ponavljanjem: $P_n^{k_1,...,k_n} = \frac{n!}{k_1!,...,k_n!}$

1.2 Variacije

- 1. brez ponavljanja: $V_n^r = \frac{n!}{(n-r)!}$
- 2. s ponavljanjem: $V_n^r = n^r$

1.3 Kombinacije

- 1. brez ponavljanja: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$
- 2. s ponavljanjem: $\binom{n}{k} = \binom{n+k-1}{k}$

Lastnosti binomskega simbola: $\binom{n}{n} = 1 \quad \binom{n}{0} = 1 \quad \binom{n}{1} = n \quad \binom{n}{r} = \binom{n}{n-r}$ Binomski izrek: $(a+b)^n =$

$$(a+b)^n = {n \choose 0}a^nb^0 + {n \choose 1}a^{n-1}b^1 + {n \choose 2}a^{n-2}b^2 + \dots + {n \choose n}a^0b^n$$

Za kombinacije velja, da vrstni red **ni** pomemben. Medtem pa ko v splosnem za variacije in permutacije velja, da vrstni red **je** pomemben.

2 Verjetnost

2.1 Elementarna verjetnost

Izid iz dane mnozice izidov je izbran na slepo, ce so vsi izidi iz te mnozice enako verjetni. Takrat se dogodek A zgodi z verjetnostio:

$$P(A) = \frac{st. izidov, ki so v A}{st. vseh izidov}$$

Nasprotni dogodek pa z verjetnostjo:

$$P(\overline{A}) = 1 - P(A)$$

Nacelo vkljucitev in izkljucitev dogodkov:

$$P(A_1 \cup \dots \cup A_n) = P(A_1) + \dots + P(A_n)$$

$$-P(A_1 A_2) - P(A_1 A_3) - \dots - P(A_{n-1} A_n)$$

$$+P(A_1 A_2 A_3) + P(A_1 A_2 A_4) + \dots +$$

$$P(A_{n-2} A_{n-1} A_n) - \dots + (-1)^{n+1} P(A_1 \dots A_n)$$

Dogodki A_1, A_2, \ldots, A_k in B so **neodvisni**, ce velja

$$P(A_1 \dots A_k) = P(A_1) \dots P(A_k)$$

ali z drugimi besedami... Verjetnost produkta paroma neodvisnih dogodkov je enaka produktu vrjetnosti teh dogodkov.

2.2 Pogojna verjetnost Verjetnost da se zgodi dogodek A, ce vemo, da se zgodi dogodek B, je

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(B)}$$

Dogodka A in b sta **neodvisna**, ce velja P(A|B) = P(A) ali P(AB) = P(A)P(B). Pazi! Za par **nezdruzljivih** dogodkov A in B pa velja P(AB) = 0, P(A + B) = P(A) + P(B), P(A|B) = 0 in P(B|A) = 0.

2.3 Popolna verjetnost

Dogodki $H_1, H_2, \dots H_n$ tvorijo **popoln sistem dogodkov**, ce se nobena dva dogodka ne moreta zgoditi hrkati in se vedno zgodi vsaj en od njih. Ce dogodki izpolnjujejo ta pogoj, potem po nacelu vkljucitev/izkljucitev velja:

$$P(A) = \sum_{i=1}^{\infty} P(A \cap H_i) = \sum_{i=1}^{\infty} P(H_1) P(A|H_i)$$

Za **popolni sistem dogodkov** velja unija hipotez:

$$P(A|H_1 \cup \dots \cup H_n) = \frac{P(A|H_1)P(H_1) + \dots + P(A|H_n)P(H_n)}{P(H_1) + \dots + P(H_{n-1}) + P(H_n)}$$

Zanje velja tudi Bayesova formula:

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{P(A)}$$

$$= \frac{P(H_i)P(A|H_i)}{\sum_{k=1}^{n} P(H_k)P(A|H_k)}$$

2.4 Geometrijska verjetnost

Tocka je izbrana na slepo iz intervala, lika, telesa.. ce za vsak dogodek A velja:

$$P(A) = \frac{mera\ izidov,\ ki\ so\ v\ A}{mera\ vseh\ izidov}$$

Pri tem je mera lahko dolzina, ploscina, volumen,.. Basically upas da narises graf pravilno.

Splosno za vse nastete verjetnosti velja:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 in $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$

3 Dss in porazdelitve

3.1 Diskretna slucjana spremenljivka Naj bo X diskretna slucajna spremenljivka $\implies X$ je funkcija s koncno ali stevno zalogo vrednosti a_1, a_2, \ldots Verjetnost, da X zavzame vrednost $a_i \in R$, oznacimo z $P(X = a_i) = p_i$. Porazdelitev X lahko podamo na dva enakovredna nacina, in sicer s:

1. s porazdelitveno shemo

$$X \sim \begin{pmatrix} a_1 & a_2 & a_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}$$

velja $0 \le p_i \le 1$ in $p_1 + p_2 + \cdots = 1$

2. s porazdelitveno funkcijo

$$F_x(x) := P(X \le x)$$

3.2 Bernoullijeva slucajna spremenljivka

$$X \sim B(p)$$

- V vsakem poskusu ima dogodek A verjetnost p, X pa ima vrednost 1, ce se je zgodil dogodek A, in 0 sicer.
- P(X = 1) = p, P(X = 0) = 1 p
- 3.3 Binomska slucajna spremenljivka

$$X \sim B(n, p)$$

- ullet X je stevilo pojavitev izida A v n ponovitvah poskusa
- $P(X = k) = \binom{n}{k} p^k (1-p)^{(n-k)}$ za $k = 0, 1, \dots, n$.

Izvajamo n neodvisnih slucajnih poskusov. V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A). X nam pove kolikokrat se je zgodil dogodek A v n poskusih. npr. kovanec vrzemo 10x, koliksne so vrjetnosti, da pade cifra 0x, 2x, vsaj 3x,.. ali 5x vrzemo posteno kocko, izracunaj stevilo sestic, ki pade $\Longrightarrow B(5, \frac{1}{6})$

3.4 Geometrijska slucajna spremenljivka

$$X \sim G(p)$$

- X je stevilo ponovitev poskusa do (vkljucno) prve ponovitve izida A.
- $P(X = k) = (1-p)^{k-1}p$ za k = 1, 2, ...
- $P(X \le k) = 1 (1-p)^k$ za k = 1, 2, ...

Izvajamo neodvisne slucajne poskuse, dokler se ne zgodi dogodek A. V vsakem poskusu se lahko zgodi dogodek A s **konstantno** verjetnostjo p, p = P(A). npr. koliko metov kocke je potrebnih, do prve sestice $\implies G(1/6)$.

3.5 Pascalova oz. negativna binomska slucajna spremenljivka

$$X \sim P(n, p)$$

- X je stevilo ponovitev poskusa do (vkljucno) n-te ponovitve izida A.
- $P(X = k) = \binom{k-1}{n-1} (1-p)^{k-n} p^n$ za $k = n, n+1, n+2, \dots$

npr. koliko metov kocke je potrebnih, dokler sestica ne pade $5x \implies P(5, \frac{1}{6})$. Stevilo metov kovanca, dokler grb ne pade $2x \implies P(2, \frac{1}{3})$.

3.6 Hipergeometrijska slucjana spremenljivka

$$X \sim H(K, N - K, n)$$

- X je stevilo elementov z doloceno lastnostjo med izbranimi.
- $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ za k = $0, 1, 2, \dots min\{n, R\}$

V populaciji N imamo K elementov z doloceno lastnostjo. Izbiramo brez vracanja nelementov. npr. koliko pikov med 7 kartami, ki smo jih na slepo izbrali izmed 16 kart, kjer so bli stirje piki. imamo 400 ljudi, 100 brezposlenih, nakljucno jih izberemo 10. Zanima nas kaksna verjetnost je da sta 2 izmed teh brezposelna $\implies P(x = 2) =$ H(100, 400 - 100, 10).

3.7 Poissonova slucajna spremenljivka

$$X \sim P(\lambda)$$

- X je stevilo ponovitev dogodka A na danem intervalu, pri cemer:
 - se dogodki pojavljajo neodvisno
 - povprecno stevilo dogodgov λ , ki se pojavjio na dolocenem intervalu, je konstantno.

•
$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 za $k = 0, 1, 2, ...$

npr. ce se dogodek pojavi v povprecju 3x na minuto, lahko uporabimo poissa za izracun kolikokrat se bo dogodek zgodil v 1/4h $\implies P(45)$. St avtomobilov, ki preckajo cesto v 1min.

Zss in porazdelitve

4.1 Zvezna slucjana spremenljivka Naj bo X zvezna slucajna spremenljivka $\implies X$ je realna funkcija, za katero obstaja integrabilna funkcija $p_X: R \to [0, \infty)$, tako da za vsak $x \in R$ velja:

$$F_X(x) := P(X \le x) = \int_{-\infty}^x p_X(t) dt$$

Funkciji p_X pravimo **gostota verjet**nosti, funkciji F_X pa porazdelitvenafunkcija. Mnozici vrednosti, ki jih zavzame spremenljivka X, pravimo **zaloga vrednosti** in jo oznacimo z Z_X . Lastnosti:

- $\int_{-\infty}^{+\infty} p_X(x) dx = 1$
- $P(a < X < b) = \int_a^b p_X(x) dx = F_X(b) F_X(a), \ a, b \in R, \ a < b$
- $P(X=a)=0, a\in R$ ngot

 \mathbf{ce} je funkcija zvezna v x, potem za njo velja tudi F'(x) = p(x). Za zvezno slucajno spremenljivko X je funkcija prezivetja S(x) = P(X > x) vedno zvezna, nenarascujoca in zavzema vrednosti na intervalu [0, 1]. 4.2 Enakomerna zvezna slucajna spre-

$$X \sim U[a,b]$$

• $p_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & sicer \end{cases}$

menljivka

•
$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$$

Vsi izidi na intervalu [a, b] so enako ver-

4.3 Eksponentna slucajna spremenljivka

$$X \sim \epsilon(\lambda)$$

- $p_X(x) = \begin{cases} 0 & x < 0 \\ \lambda e^{-\lambda x} & x \ge 0 \end{cases}$
- $F_X(x) = \begin{cases} 0 & x < 0 \\ 1 e^{-\lambda x} & x > 0 \end{cases}$

Slucajna spremenljivka X - cas med zaporednima dogodkoma, pri cemer so dogodki neodvisni in se pojavijo s konstantno stopnjo λ . λ predstavlja povprecno stevilo dogodkov na izbrano casovno enoto.

4.4 Normalna slucajna spremenljivka

$$X \sim N(\mu, \sigma)$$

- $p_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ za $x \in R$
- Za $F_X(x)$ ne obstaja eksplicitna for-Vrednost preberemo iz pomula. razdelitvenih tabel.

Po centralnem limitnem izreku sta vsota in povprecje veliko neodvisnih, enako porazdeljenih spremenljivk, normalno porazdeljeni. Porzadelitev N(0,1) je standardna normalna porazdelitev \implies potem za vsak x velja P(X < x) = 1 - P(X > x).

4.5 Gamma slucajna spremenljivka

$$X \sim \Gamma(n, \lambda)$$

•
$$p_X(x) = \begin{cases} 0 & x \le 0 \\ \frac{\lambda^n x^{n-1} e^{-\lambda x}}{\Gamma(n)} & x > 0 \end{cases}$$

V povprecju imamo na casovno enoto λ ponovitev dogodka A, X pa je cas med prvo in (n+1) ponovitvijo dogodka A.

4.6 Hi kvadrat slucajna spremenljivka

$$X \sim \chi^2(n) = \Gamma(\frac{n}{2}, \frac{1}{2})$$

•
$$p_X(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} & x > 0 \end{cases}$$

Je vsota kvadratov n neodvisnih standardnih normalnih slucajnih spremenljivk.

5 Matematicno upanje

5.1 Matematicno upanje diskretne slucajne spremenljivke

$$X \sim \begin{pmatrix} a_1 & a_2 & a_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}$$

oz. zvezne slucajne spremenljivke z gostoto p_X je

$$\begin{array}{l} E(X) = \sum_{k=0}^{\infty} x_k p_k \text{ oz.} \\ E(X) = \int_{-\infty}^{\infty} x p_X(x) \, dx. \end{array}$$

Za vsaki slucajni spremenljivki X in Y (lahko sta odvisni, lahko je ena zvezna in druga diskretna) ter $a, b \in R$ velja

$$E(aX + bY) = aE(X) + bE(Y)$$

5.2 Matematicno upanje funkcije $f: R \to R$ slucajne spremenljivke X je

$$E(f(X)) = \sum_{k=0}^{\infty} f(x_k) p_k \text{ oz.}$$

$$E(f(X)) = \int_{-\infty}^{\infty} f(x) p_X(x) dx.$$

5.3 Matematicna upanja dss in zss

- $X \sim Pois(\lambda) \implies E(x) = \lambda$
- $X \sim Pascal(n,p) \implies E(X) = \frac{n}{n}$
- $X \sim B(n, p) \implies E(X) = np$
- $X \sim G(p) \implies E(X) = \frac{1}{2}$
- $X \sim H(K, N K, n) \Longrightarrow E(X) = \frac{nK}{K + (N K)}$
- $X \sim \epsilon(\lambda) \implies E(X) = \frac{1}{\lambda}$
- $X \sim U[a,b] \implies E(X) = \frac{a+b}{2}$
- $X \sim N(\mu, \sigma) \implies E(X) = \mu$
- $X \sim \chi^2(n) \implies E(X) = n$

Disperzija in std. odklon 6

7.1 Disperzija ali *varianca* slucajnje spremenljivke X je definirana kot

$$D(X) = E((X - E(X))^{2}) = E(X^{2}) - E(X)^{2}$$

Za $a, b \in R$ velja

$$D(aX + b) = a^2 D(X).$$

Ce sta X in Y neodvisni je

$$E(XY) = E(X)E(Y) \text{ in }$$

$$D(X+Y) = D(X) + D(Y).$$

7.2 Standardni odklon slucajnje spremenljivke X je enak

$$\sigma(X) = \sqrt{D(X)}.$$

Ponovitev analize

appx. Odvodi

- 1. $\frac{1}{x} = -\frac{1}{x^2}$
- 2. $x^n = nx^{n-1}$
- 3. $\sqrt{x} = \frac{1}{2\sqrt{x}}$
- 4. $\sqrt[n]{x} = \frac{1}{\sqrt[n]{x^{n-1}}}$
- 5. $\sin(ax) = a\cos ax$
- 6. $\cos(ax) = -a\sin(ax)$
- 7. $\tan x = \frac{1}{\cos^2 x}$ 8. $e^a x = ae^{ax}$
- 9. $a^x = a^x \ln a$
- 10. $x^x = x^x (1 + \ln x)$
- 11. $lnx = \frac{1}{x}$
- 12. $log_a x = \frac{1}{x \ln a}$

13.
$$\arcsin x = \frac{1}{\sqrt{1-x^2}}$$

14.
$$\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

15.
$$\arctan x = \frac{1}{1+x^2}$$

16.
$$\operatorname{arccot} x = -\frac{1}{1+x^2}$$

1.
$$\int x^a dx = \begin{cases} \frac{x^{a+1}}{a+1} + C & a \neq -1 \\ \ln|x| + C & a = -1 \end{cases}$$

$$2. \int \ln x \, dx = x \ln x - x + C$$

3.
$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

$$4. \int e^x dx = e^x + C$$

$$5. \int a^x \, dx = \frac{a^x}{\ln a} + C$$

6.
$$\int \cos(ax) \, dx = \frac{\sin(ax)}{a} + C$$

7.
$$\int \sin(ax) \, dx = \frac{-\cos(ax)}{a} + C$$

8.
$$\int \tan x \, dx = -\ln|\cos x| + C$$

9.
$$\int \frac{dx}{\cos^2 x} = \int \sec^2 x \, dx = \tan x + C$$

10.
$$\int \frac{dx}{\sin^2 x} = \int \csc^2 x \, dx = -\cot x + C$$

11.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$$

Integriranje absolutnih vrednosti (primer): Imamo funkcijo f(x) = |x|, ki je

zvezna na intervalu [-1,1] Ce hocemo to funkcijo in zelimo izracunati njeno porazdelitveno funkcijo integrirati locimo 2 primera:

$$\begin{array}{lll} 1. & -1 \leq x < 0 \\ F(x) & = & \int_{-1}^{x} |t| \, dt & = & \int_{-1}^{x} -t \, dt & = \\ & -\frac{t^{2}}{2}|_{-1}^{x} = -\frac{1}{2}(x^{2} - 1) \end{array}$$

2.
$$0 \le x < 1$$

 $F(x) = \int_{-1}^{x} |t| dt = \int_{-1}^{0} -t dt + \int_{0}^{x} t dt = -\frac{t^{2}}{2}|_{0}^{-1} + -\frac{t^{2}}{2}|_{0}^{x} = \frac{1}{2}(1+x^{2})$

$$\sqrt[n]{x} = (x)^{\frac{1}{n}}$$