### Воротницкий Ю.И.

# Исследование операций

Введение.

Модели исследования операций.

### Введение

## Введение. Общие сведения об учебном курсе

- Объем курса 24 часа лекции
   8 часов дистанционных занятий
   24 часов лабораторные занятия
   4 часа дистанционных занятий
- Лабораторные занятия выполняются в среде пакета RStudio на языке R
- Форма отчетности экзамен (6 семестр)
- Преподавание обеспечивает кафедра телекоммуникаций и информационных технологий
- Лектор Воротницкий Юрий Иосифович, зав. кафедрой

### Введение. Формы проведения занятий

- Лекции рассматриваются основные понятия, сложные места, ответы на вопросы.
- Обязательным является самостоятельное изучение содержания дисциплины (см. программу и вопросы, выносимые на экзамен)
- Лабораторные работы на языке R.
- Управляемая самостоятельная работа:
- выбрать или согласовать с преподавателем свою тему доклада
- написать доклад и разместить его на edurfe.bsu.by

## Введение. Порядок формирования итоговой оценки

- Оценка промежуточной аттестации 40%
  - Лабораторный практикум 50%
  - Реферат 40%
  - Тесты 10%
- Экзаменационная оценка 60%

Лабораторный практикум должен быть выполнен в полном объеме. В противном случае студент не допускается к экзамену.

# Введение. **Литература.**

#### Основная

- 1. Таха, X. Введение в исследование операций. / X. Таха. М.: Издательский дом «Вильямс», 2016. 912 с.
- 2. Бородакий, А.М. Нелинейное программирование в современных задачах оптимизации. / А.М.Бородакий и др. М.: НИЯУ МИФИ, 2011.
- 3. Краснопрошин, В.В. Исследование операций. / В.В. Краснопрошин, Н.А. Лепешинский. Мн: БГУ, 2013. 191 с.
- 4. Исследование операций: задачи, принципы, методология: учебное пособие / Е.С. Вентцель. 5-е изд., стер. М.: КНОРУС, 2013. 192 с.
- 5. Гребенникова, И.В. Методы оптимизации: учебное пособие / И.В. Гребенникова. Екатеринбург: УрФУ, 2017. 148 с.

#### **Дополнительная**

- 1. Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмы / Под ред. В.М. Курейчика. 2-е изд., испр. и доп. М.: Физматлит, 2006. 320 с.
- 2. Химмельблау, Д. Прикладное нелинейное программирование. / Д. Химмельблау. М.: Мир, 1975. 534 с.
- 3. Кудрявцев, Е.М. Исследование операций в задачах, алгоритмах и программах. / Е.М. Кудрявцев. М.: Радио и связь, 1984. 287с.
- 4. Макаров, И.М. Теория выбора и принятия решений. / И.М. Макаров. М.: Наука, 1981. 376с.
- 5. Базара М., Шетти К. Нелинейное программирование. Теория и алгоритмы. М.: Мир, 1982.
- 6. Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
- 7. Ху Т. Целочисленное программирование и потоки в сетях. М.: Мир, 1974.
- 8. Химмельблау Д. Прикладное нелинейное программирование. М.: Мир, 1975

• Исследование операций — применение научных методов к сложным проблемам управления большими системами. Для этого строятся математические модели систем, при помощи которых можно рассчитать и сравнить результаты различных решений, стратегий и управлений. Цель — помочь управлению научно определить свою политику и действие. Журнал Operational Research Quarterly





- Чарльз Бэббидж (1791-1871)
- Разработка первого программируемого цифрового компьютера
- Оптимизация операций в почтовом офисе Соединенного Королевства



- Патрик Блэкет (1897-1974)
- Американская медаль за заслуги (за исследовательские работы в связи с противолодочной войной), 1946
- Нобелевская премия по физике, 1948 (исследования космических лучей)



- Генри Харли
   Арнольд (1886-1950)
- Генерал ВВС США
- Инициатор создания RAND Corporation
- Планировал все боевые операции ВВС США в годы второй мировой войны
- Инициатор разработок в области реактивной авиации

- Исследование операций дисциплина, изучающая количественные методы построения последовательности действий (операций), приводящих к реализации оптимальных решений в условиях наличия альтернатив и ограничений.
- Наличие оптимального решения предполагает существование критерия отбора альтернатив.
- В общем случае в задачах принятия решений альтернативы описываются определенным набором переменных (параметров), которые используются при формализации критерия оптимальности и ограничений.

#### • Пример 0.1.

Чтобы попасть из пункта A (остановка автобуса) в пункт В (лодочная станция) человек должен пройти сначала по асфальтовой дороге шириной S (отрезок Ax), а затем по песчаному пляжу шириной s (отрезок xB). Скорость передвижения по асфальту V, скорость передвижения по песку v. Спрашивается, в каком месте нужно свернуть с асфальтовой дороги, чтобы затратить меньше времени на путь.



- **Множество альтернатив** задачи бесконечное множество вещественных чисел х из интервала [0,D].
- Каждому решению соответствует исход или результат маршрут АхВ, требующий для прохождения время t.
- Каждый исход оценивается численно временем t.
- Критерий оптимальности задается функцией t(x), которую надо минимизировать, изменяя варьируемый параметр x. Остальные параметры задачи (v, V, D, s, S) являются фиксированными.



Это – однокритериальная задача принятия решений в условиях определенности при отсутствии ограничений на варьируемые параметры.



- Пример 0.2
   Проектируется электронная схема. Кроме обычных функциональных требований принципиально важны два параметра: потребляемая схемой мощность Р и время задержки распространения сигнала Т.
- В процессе проектирования можно варьировать значения параметров пассивных элементов: сопротивлений R<sub>i</sub>, R<sub>i</sub>∈[0,∞] и емкостей C<sub>j</sub>, C<sub>j</sub>∈[0,C<sub>max</sub>]. Функциональные зависимости P(R<sub>i</sub>,C<sub>j</sub>) и T(R<sub>i</sub>,C<sub>j</sub>) известны (заданы и программно реализованы алгоритмы расчета, то есть построена математическая модель устройства).



- Множество альтернатив задачи бесконечное множество наборов вещественных значений R<sub>i</sub> и C<sub>j</sub>, причем последние варьируются в некоторых границах (присутствуют ограничения сверху C<sub>max</sub>). Каждому фиксированному набору RC=(R<sub>1</sub>,R<sub>2</sub>...R<sub>n</sub>, C<sub>1</sub>,C<sub>2</sub>,...C<sub>m</sub>) соответствуют определенные значения P и T.
- Исходами в данной задаче являются пары чисел (Р,Т), соответствующие каждой альтернативе – набору RC.
- Это многокритериальная задача принятия решений в условиях определенности при наличии ограничений на варьируемые параметры.



#### Введение.

#### Предмет дисциплины. Примеры

$$\begin{cases} \min P(R_i, C_j); \\ \min T(R_i, C_j); \end{cases} R_i \in [0, \infty], C_j \in [0, C_{\max}];$$

$$i = 1,...,n; j = 1,...,m.$$

Дополнительные ограничения на значения варьируемых параметров  $R_i$  и  $C_j$  могут задаваться, исходя из функциональных требований к устройству.  $T_i$ 





- Пример 0.3.
  - Студент, войдя в автобус № 47 решает, брать ли билет. Исход определяется двумя обстоятельствами: решением студента и фактом появления контролера.
- Имеются две альтернативы: брать билет, не брать билет и два состояния окружающей среды: контролер появился и контролер не появился. Известны количество остановок, которые нужно преодолеть и вероятность появления контролера в пределах одного перегона.
- Количественная оценка возможных четырех исходов денежные потери, которые надо минимизировать.
- Это пример однокритериальной задачи принятия решений в условиях неопределенности.

| Альтернатива   | Состояние среды    |                       |  |  |  |
|----------------|--------------------|-----------------------|--|--|--|
|                | Контролер появится | Контролер не появится |  |  |  |
| Брать билет    | 0,75               | 0,75                  |  |  |  |
| Не брать билет | 29                 | 0                     |  |  |  |

- Пример 0.4.
  - Арестованы два подозреваемых в совершении разбойного нападения. Полного доказательства вины нет, и результат судебного разбирательства полностью зависит от поведения подозреваемых.
- У каждого подозреваемого есть две альтернативы: сознаться в разбое или нет. Возможные исходы представлены в таблице.

| Первый       | Второй обвиняемый |                 |  |  |
|--------------|-------------------|-----------------|--|--|
| обвиняемый   | Не признался      | Признался       |  |  |
| Не признался | (2 года, 2 года)  | (10 лет, 0 лет) |  |  |
| Признался    | (0 лет, 10 лет)   | (7 лет, 7 лет)  |  |  |

- Оба не признались получили по 2 года за незаконное хранение оружия. Один признался, другой нет – первый за выдачу сообщника и сотрудничество получает условный срок, второй - садится на 10 лет. Признались оба – наказание смягчается до 7 лет каждому.
- Это задача принятия решения в условиях конфликта, решаемая методами теории игр.

# Введение. **Предмет дисциплины.** Основные модели исследования операций

| Степень<br>неопреде-<br>ленности<br>информа-<br>ции | Вид модели                                      |                 |                    |                 |        |                             |                        |                             |  |
|-----------------------------------------------------|-------------------------------------------------|-----------------|--------------------|-----------------|--------|-----------------------------|------------------------|-----------------------------|--|
|                                                     | Условной оптимизации                            |                 | Ком-               | Гра-            | Macco- | Управ-                      | Кон-                   |                             |  |
|                                                     | Линей-<br>ная                                   | Нели-<br>нейная | Цело-<br>численная | бина-<br>торная | фовая  | вого об-<br>служи-<br>вания | ления<br>запаса-<br>ми | фликт-<br>ной си-<br>туации |  |
| Детерми-<br>нирован-<br>ная                         |                                                 |                 |                    |                 |        |                             |                        |                             |  |
| Вероят-<br>ностная                                  |                                                 |                 |                    |                 |        |                             |                        |                             |  |
| Нечеткая                                            |                                                 |                 |                    |                 |        |                             |                        |                             |  |
| Отсутст-<br>вие ин-<br>формации                     | Экспертные оценки<br>Имитационное моделирование |                 |                    |                 |        |                             |                        |                             |  |

#### Модели исследования операций Общая схема решения задач исследования операций

- Этапы решения задач исследования операций:
  - 1. Формализация исходной проблемы
  - 2. Построение математической модели
  - 3. Поиск оптимального решения (решение модели)
  - 4. Проверка адекватности модели
  - 5. Реализация решения
- Из всех этапов только третий достаточно точно определен и прост в силу хорошо проработанной математической теории. Выполнение остальных этапов в значительной мере является искусством, а не наукой.
- На всех этапах, предшествующих получению оптимального решения математической модели, успех зависит от опыта и творчества всей команды (специалистов-аналитиков и заказчиков задачи принятия решений), занимающейся решением задачи исследования операций

#### Модели исследования операций Общая схема решения задач исследования операций

#### • Формализация исходной проблемы

- предполагает исследование предметной области, где возникла рассматриваемая проблема
- описание возможных альтернативных решений
- выбор варьируемых параметров
- определение критерия оптимальности
- построение системы ограничений

#### • Построение математической модели

- перевод формализованной задачи на язык математических соотношений
- попытка построить математическую модель как одну из стандартных математических моделей
- если модель очень сложная и не приводится к стандартному типу, ее следует упростить, либо применить эвристический подход, либо методы имитационного моделирования

#### Модели исследования операций. Общая схема решения задач исследования операций

- Поиск оптимального решения (решение модели)
  - Применение известных методов оптимизации, методов имитационного моделирования или эвристических подходов
  - Исследование чувствительности оптимального решения к отклонению варьируемых параметров
- Проверка адекватности модели
  - Оценка полученного решения: имеет ли оно смысл и приемлемо ли интуитивно
  - Сравнение полученного решения с известными ранее моделями или поведением реальной системы
- Реализация решения
  - Перевод результатов решения модели в рекомендации, комплекты технической документации или другие документы, понятные для лиц принимающих решение – заказчиков решения исходной проблемы

# Модели исследования операций. Сравнение исходов и выбор альтернатив

### Модели исследования операций. **Сравнение исходов и альтернатив**

- Четыре ключевых вопроса постановки любой задачи исследования операций:
  - 1. Что в данном случае считать альтернативными решениями?
  - 2. Каким ограничениям должно удовлетворять возможное решение?
  - 3. Каков характер связи альтернатив и исходов?
  - 4. По какому критерию **отдать предпочтение** тем или иным альтернативным решениям?



### Модели исследования операций. **Оценка исходов.** Системы предпочтений.

- Для выбора наилучшего решения необходимо задать систему предпочтений, позволяющую сравнивать различные исходы.
- Существуют различные способы задания системы предпочтений лица, принимающего решение.
- Важно, что формирование системы предпочтений никак не ограничивается характером связи альтернатив и исходов

### Модели исследования операций. **Оценка исходов** Системы предпочтений.

- Основные способы формального описания системы предпочтений:
  - **Критериальный** (задание критериев оптимальности и сопоставление каждому исходу одной или нескольких числовых характеристик, значения которых определяют предпочтительность того или иного исхода с точки зрения соответствующего критерия)
  - С помощью бинарных отношений (отдельный исход сам по себе не оценивается и четкие критерии оценки могут не формироваться; сравниваются пары исходов с точки зрения предпочтительности одного перед другим)
  - Использование функций выбора (выделение из некоторого множества альтернатив лучших вариантов).

### Модели исследования операций. **Оценка исходов.** Системы предпочтений.

- Критериальный способ описания системы предпочтений
  - Критерий оптимальности правило, позволяющее оценивать исходы и сравнивать их между собой.
  - Обычно критерий оптимальности дает возможность объективно оценить каждый возможный исход независимо от других.
  - Простейшая ситуация: каждый исход у можно оценить конкретным вещественным числом в соответствии с некоторым заданным отображением: F: Y→R.
  - Сравнение исходов сводится к сравнению соответствующих вещественных чисел: исход  $\vec{y}_k$  может считаться более предпочтительным, чем  $\vec{y}_l$  если  $F(\vec{y}_k) > F(\vec{y}_l)$ . Исходы  $\vec{y}_k$  и  $\vec{y}_l$  эквивалентны, если  $F(\vec{y}_k) = F(\vec{y}_l)$
  - ullet Функция F называется *целевой функцией*.

### Модели исследования операций. Оценка исходов. Системы предпочтений.

 Критериальный способ описания системы предпочтений

Однокритериальная задача:

$$F: Y \to R; \quad \forall \vec{y}_k, \vec{y}_l \in Y:$$
 $F(\vec{y}_k) > F(\vec{y}_l) \Rightarrow \vec{y}_k \succ \vec{y}_l$ 
 $F(\vec{y}_k) = F(\vec{y}_l) \Rightarrow \vec{y}_k \sim \vec{y}_l$ 

Однокритериальная детерминированная задача:

$$\exists \psi(\vec{x}) : \vec{y} = \psi(\vec{x}) \Rightarrow$$

$$F = F(\vec{y}) = F(\psi(\vec{x})) = F(\vec{x});$$

$$F(\vec{x}_k) > F(\vec{x}_l) \Rightarrow \vec{y}_k \succ \vec{y}_l;$$

$$F(\vec{x}_k) = F(\vec{x}_l) \Rightarrow \vec{y}_k \sim \vec{y}_l.$$

### Модели исследования операций. **Оценка исходов.** Системы предпочтений.

- Язык бинарных отношений
- Отдельный исход сам по себе не оценивается и критериальные (целевые) функции не вводятся.
- Каждая пара исходов  $\vec{y}_k$  ,  $\vec{y}_l$  может находиться в одном из следующих бинарных отношений:
  - первый предпочтительнее второго (строго доминирует);
  - первый не менее предпочтителен, чем второй (не строго доминирует);
  - первый эквивалентен второму;
  - первый и второй исходы несравнимы между собой.

### Модели исследования операций. **Оценка исходов.** Системы предпочтений.

- Язык бинарных отношений
- Бинарным отношением на множестве Y называется произвольное подмножество В множества Y², где Y² – множество всех упорядоченных пар ( ȳ<sub>k</sub>, ȳ<sub>l</sub>): В⊆Y².
- Наглядный способ задания бинарных отношений на конечных множествах – с помощью направленных графов:
  - Если задано отношение  $\mathsf{B} \subseteq \mathsf{Y}^2$  и  $(\vec{\mathcal{Y}}_k \, \vec{\mathcal{Y}}_{l \rightarrow}) \in \mathsf{B}$ , то проведем стрелку от  $\vec{\mathcal{Y}}_k$  к  $\vec{\mathcal{Y}}_l$ . Если  $(\vec{\mathcal{Y}}_k, \vec{\mathcal{Y}}_k) \in \mathsf{B}$ , то нарисуем петлю-стрелку, начинающуюся и заканчивающуюся в этой точке.



### Модели исследования операций. Оценка исходов. Системы предпочтений.

- Язык бинарных отношений
- Основной вопрос: пусть на множестве Y задана система предпочтений в виде бинарного отношения В (чаще всего – отношение строгого доминирования). Что понимать под решением задачи выбора? Какими свойствами обладает построенная нами система предпочтений?
- Очевидным является следующее *определение*: пусть задана модель <Y,B>. Элемент  $\vec{y}^* \in Y$  называется наилучшим по B в Y, если  $(\vec{y}^*, \vec{y}) \in B \ \forall \vec{y} \in Y / \vec{y}^*$



#### Модели исследования операций. Оценка исходов. Системы предпочтений.

- Пример 1.1
- Молодой кандидат наук выбирает место будущей работы, исходя из следующих альтернатив:
  - 1. ассистент в Университете с окладом 250 у.е.
  - 2. доцент в техническом университете с окладом 350 у.е.
  - 3. зав. кафедрой в международном институте заготовки рогов и копыт с окладом 450 у.е.
- Критерии предпочтительности:
  - Заработок
  - Престиж вуза и возможность дальнейшей научной работы
  - Ученый построил для себя следующее отношение предпочтения на данном множестве исходов:



### Модели исследования операций. **Сравнение альтернатив.** Системы предпочтений.

#### Функции выбора

- Идея выделение из некоторого множества альтернатив подмножества «лучших» вариантов.
- Пусть X множество (может быть и бесконечное) всех возможных альтернатив. Тогда через 2<sup>X</sup> обозначим множество всех подмножеств X. Среди всех подмножеств X выделяется класс XD допустимых предъявлений XD⊆2<sup>X</sup>.
- Определение: функцией выбора на классе допустимых предъявлений XD называется функция C:XD→2<sup>X</sup>, такая, что для любого множества A ∈ XD выполняется C(A)⊆A.

### Модели исследования операций. **Оценка исходов.** Системы предпочтений.

#### • Функции выбора

- Таким образом, функция выбора ставит в соответствие каждому множеству альтернатив (из класса допустимых предъявлений) некоторое его подмножество. В результате происходит сужение предъявляемого выбора альтернатив, что моделирует процесс выбора нужных («лучших») вариантов.
- Основное достоинство функций выбора моделирование сложных принципов выбора (например – выбор «типичного» или «среднего» варианта из предложенного множества альтернатив).
- Введение механизма предъявления множеств является принципиальным для практических применений. Ошибочно полагать, что класс допустимых предъявлений совпадает с множеством всех подмножеств 2<sup>X</sup>. В действительности оказывается доступным лишь некоторое подмножество XD⊆2<sup>X</sup>.

#### Модели исследования операций. **Сравнение альтернатив.** Системы предпочтений.

- Пример 1.2
- Функция выбора, осуществляющая выбор эффективных точек в многокритериальной задаче проектирования электронной схемы:

$$\begin{cases} \min P(R_{i}, C_{j}); \\ \min T(R_{i}, C_{j}); \end{cases} R_{i} \in [0, \infty], C_{j} \in [0, C_{\max}]; \\ i = 1, ..., n; j = 1, ..., m. \end{cases}$$

$$\vec{y} = (P, T) \in A; A: \begin{cases} R_{i} \in [0, \infty]; \\ C_{j} \in [0, C_{\max}]; \\ P \in [0, P_{\max}]; \\ T \in [0, T_{\max}]; \end{cases}$$

#### Модели исследования операций. **Оценка исходов.** Системы предпочтений.

#### • Пример 1.2

$$\mathbf{C}(A) = \left\{ \vec{y} \in A \mid \forall \vec{u} \in A, \quad \vec{u} \neq \vec{y} : \forall i, u_i \geq y_i \right\} \quad (y_1 = P, y_2 = T)$$

Данная функция **C**(A) осуществляет выбор эффективных (оптимальных по Парето) альтернатив в многокритериальной задаче. (Множество решений, оптимальных по Парето — множество решений, для которых значение каждого частного критерия оптимальности не может быть улучшено без ухудшения других).

#### Модели исследования операций. Выбор альтернатив.

Характер связи альтернатив и исходов



Детерминированная связь

$$X \xrightarrow{\psi(x)} Y;$$
  
 $\vec{y} = \psi(\vec{x}); \quad x \in X, \quad y \in Y.$ 

Вероятностная связь

#### Decisions under certainty



Mapping  $\psi$  from a set  $\mathbf{X}$  to a set  $\mathbf{Y}$  is a prescribed way of assigning to each object  $x_i$  in set  $\mathbf{X}$  a particular object  $y_j$  in set  $\mathbf{Y}$ 

Due to the mapping  $\psi$  each element  $x_i$  of the set **A** corresponds to a certain element  $y_j = \psi(x_i)$  of the set **B** 

#### Decisions under Risk



- In this case, we know the probabilities  $P_{ij}$  of the outcomes  $y_j$ , j=1,...,m if the alternative  $x_i$  was choosen
- $\forall i \quad \sum_{j=1}^{m} P_{i,j} = 1$

Set of Alternatives

Set of Outcomes

#### Decisions under Ignorance



- In this case, we usually know the outcomes  $y_j$  that may correspond to the chosen alternative  $x_i$ .
- We don't know the probabilities  $P_{ij}$ . We only usually know when they are exactly equal to 0

Set of Alternatives

Set of Outcomes

Критериальное описание систем предпочтений. Основные понятия моделей исследования операций.

### Модели исследования операций. Основные понятия моделей исследования операций.

- Большая часть моделей исследования операций основана на критериальном описании систем предпочтений.
- Каждый исход описывается вектором выходных параметров модели  $\vec{y} = (y_1, y_2, ..., y_p)$
- Каждая альтернатива однозначно определяется вектором изменяемых (варьируемых) параметров задачи

$$\vec{x} = (x_1, x_2, ..., x_n)$$

- Значения компонент вектора выходных параметров (исход) определяется его связью с вектором изменяемых параметров (альтернативой). Значения вектора выходных параметров могут также зависеть от значений вектора некоторых фиксированных параметров задачи (параметров среды)  $\vec{a} = (a_1, a_2, ..., a_l)$
- При решении детерминированной задачи предполагается известной функциональная зависимость

$$\vec{y} = \psi(x_1, x_2, ..., x_n, a_1, a_2, ..., a_l)$$

## Модели исследования операций. Основные понятия моделей исследования операций.

• Изменяемые переменные (переменные решения — decision variables) — переменные, оптимальные значения которых должны быть найдены в ходе решения математической модели задачи исследования операций:

$$X_1, X_2, ..., X_n$$

 Целевая (критериальная) функция (objective function) – функция, вычисляющая количественное выражение критерия оптимальности:

$$F(x_1, x_2, ..., x_n, a_1, a_2, ..., a_l)$$

Эта функция достигает экстремума, когда ее аргументы принимают значения, описывающие оптимальное решение задачи в соответствии с заданным критерием. Эта функция зависит как от изменяемых переменных  $x_1, x_2, ..., x_n$ , так и от параметров задачи  $a_1, a_2, ..., a_l$ , которые принимают фиксированные значения, определяемые ее условием.

#### Модели исследования операций. Основные понятия моделей исследования операций.

- Ограничения (constraints) неравенства или равенства, определяющие область  $\varphi_j(x_1,x_2,...,x_n,c_{j1,}c_{j2},...,c_{jr}) \stackrel{\rightharpoonup}{=} b_j$ , допустимых значений (ОДЗ) изменяемых переменных, в которой осуществляется поиск решения (экстремума j = 1, 2, ..., m. целевой функции) Часто выделяют два специфических типа ограничений:
  - простые ограничения сверху (simple upper bound):
  - неотрицательность переменных (nonnegativity  $x_i \ge 0$  , i=1,2,...,nrestrictions):

$$x_i \le u_i, \quad i = 1, 2, ..., n$$

$$x_i \ge 0$$
,  $i = 1, 2, ..., n$ 

### Модели исследования операций. Основные понятия моделей исследования операций.

- Математическая модель (model) результат формализации задачи исследования операций. Включает в себя множество изменяемых переменных, целевую функцию и ограничения, записанные в виде математических соотношений или заданные соответствующими вычислительными алгоритмами.
- Параметры модели (parameters) множество параметров  $\{x_i, a_k, b_j, c_{js}, u_i\}$ , входящих в структуру целевой функции и функций ограничений. Значения этих параметров определяются условием решаемой задачи и должны быть заданы при формировании математической модели.

**Пример:** Построить прямоугольную картонную коробку максимального объема V из ограниченного количества картона (спойлер: это куб с максимально возможной площадью сторон  $S_{max}$ ).

Варьируемые параметры: длины сторон  $x_1, x_2, x_3$ .

Максимизируемая целевая функция:  $F = V = x_1 x_2 x_3$ ;

Ограничения: S=2  $(x_1 x_2 + x_1 x_3 + x_2 x_3) \le S_{max}$  , длины сторон неотрицательны

Математическая формулировка:

$$\begin{cases} \max F = x_1 x_2 x_3 \\ 2(x_1 x_2 + x_1 x_3 + x_2 x_3) \le S_{\max} \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$



**Пример:** Построить прямоугольную картонную коробку заданного объема  $V^*$  с заданной площадью сторон  $S^*$ ).



**Пример:** Построить прямоугольную картонную коробку заданного объема  $V^*$  с заданной площадью сторон  $S^*$ ).

Варьируемые параметры: длины сторон  $x_1, x_2, x_3$ .

Целевая функция:  $F = (V-V^*)^2 = (x_1 x_2 x_3 - V^*)^2$ 

Ограничения: S=2 ( $x_1$   $x_2$  + $x_1$   $x_3$  + $x_2$   $x_3$ ) = S\*, длины сторон неотрицательны

Математическая формулировка:

$$\begin{cases} \min F = (x_1 x_2 x_3 - V^*)^2 \\ 2(x_1 x_2 + x_1 x_3 + x_2 x_3) = S^* \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$



**Пример:** Построить прямоугольную картонную коробку заданного объема  $V^*$  с заданной площадью сторон  $S^*$ ).

Выразим 
$$x_3$$
 через  $S^*$ ,  $x_1$  и  $x_2$ :  $x_3 = (S^* - 2x_1x_2)/2(x_1 + x_2)$ 

Варьируемые параметры: длины сторон  $x_1, x_2$ .

Целевая функция:  $F = (V-V^*)^2 = (x_1 x_2 (S^*-2 x_1 x_2)/2(x_1 + x_2) - V^*)^2$ 

Ограничения: длины сторон неотрицательны

Математическая формулировка:

$$\begin{cases}
\min F = (x_1 x_2 (S^* - 2x_1 x_2) / 2(x_1 + x_2) - V^*)^2 \\
x_1 \ge 0, x_2 \ge 0
\end{cases}$$

Пример: Решить систему линейных алгебраических уравнений:

$$\begin{cases} 3x_1 + 8x_2 + 3x_3 - x_4 = 4 \\ 2x_1 + 3x_2 + 4x_3 + x_4 = -4 \\ x_1 - 3x_2 - 2x_3 - 2x_4 = 3 \\ 5x_1 - 8x_2 + 4x_3 + 2x_4 = -8 \end{cases}$$

$$\begin{cases} \min F = (3x_1 + 8x_2 + 3x_3 - x_4 - 4)^2 + \\ +(2x_1 + 3x_2 + 4x_3 + x_4 + 4)^2 + \\ +(x_1 - 3x_2 - 2x_3 - 2x_4 - 3)^2 + \\ +(5x_1 - 8x_2 + 4x_3 + 2x_4 + 8)^2 \\ X \in R \end{cases}$$

## Модели исследования операций **Методы исследования операций**

- Процедура поиска оптимального решения может быть реализована двумя способами:
  - В первом случае поиск оптимального решения достигается путем нахождения оптимальных значений (обычно – доставляющих минимум или максимум целевой функции) варьируемых параметров задачи. В этом случае говорят о параметрической оптимизации.
  - Во втором случае для нахождения оптимального решения варьируют структуру оптимизируемого объекта. Такая оптимизация называется структурной. Обычно структурная оптимизация сочетается с оптимизацией параметрической.

## Модели исследования операций. Построение целевых функций

## Модели исследования операций Построение целевых функций

$$\vec{y} = B\vec{x} \Rightarrow \vec{y} = \psi(\vec{x}, \vec{a}); \quad \vec{x} \in X, \quad \vec{y} \in Y$$
 или  $X \xrightarrow{P_{k,l}} Y; \quad \vec{x}_k \Rightarrow \vec{y}_l \text{ с } P_{kl}(\vec{a}); \quad \forall k : \sum_l P_{kl}(\vec{a}) = 1.$   $\vec{x} = (x_1, x_2, ..., x_n)^T; \quad \text{при наличии ограничений на входные}$   $\vec{y} = (y_1, y_2, ..., y_m)^T; \quad \text{параметры } \vec{x} \in D, \quad D \subset X$   $\vec{a} = (a_1, a_2, ..., a_l)^T - \text{ входные независимые параметры;}$   $\vec{y}^* = (y_1^*, y_2^*, ..., y_m^*)^T - \text{ оптимальные значения;}$   $\vec{x} = \vec{x}^* : \vec{y} \to \vec{y}^* \iff \min F = F(\vec{y}) \quad \text{или max } F = F(\vec{y})$ 

Если **В** - детерминированный оператор,  $F = F(\vec{x}, \vec{a})$ .

Один выходной параметр:

$$y \rightarrow y^* \Rightarrow F(y) = (y(\vec{x}, \vec{a}) - y^*)^2$$

Выходная характеристика:  $y = y(\vec{x}, \vec{a}, f); \quad f_{\min} \le f \le f_{\max}$ 



#### Технология Stealth









#### Основные пути снижения ЭПР:

- Проектирование геометрии объекта
- Исключение или укрытие высокоотражающих элементов
- Применение радиопоглощающих покрытий

#### Основные требования к радиопоглощающему покрытию:

- Минимальный коэффициент отражения плоской волны в направлении к излучателю в заданном диапазоне частот, углов падения и поляризации
- Гладкая поверхность
- Стойкость к внешним воздействиям
- Технологичность изготовления и нанесения на объект
- Минимальная масса
- Минимальная толщина
- Минимальная стоимость



#### Структурная оптимизация









#### Параметрическая оптимизация

Числовые значения электромагнитных (или технологических) параметров материалов слоев



Геометрические размеры (толщины слоев, размеры структурных элементов)

Критерии оптимальности: минимальный коэффициент отражения в заданном диапазоне частот, углов падения и поляризации, минимальная толщина, минимальная масса, минимальная стоимость и др.

Параметрическая оптимизация.

Несколько оптимизируемых выходных параметров:

$$\vec{y} \to \vec{y}^* \Leftrightarrow \begin{cases} y_1 \to y_1^* \\ y_2 \to y_2^* \\ \dots \\ y_m \to y_m^* \end{cases} \Rightarrow \begin{cases} F_1(y_1) \\ F_2(y_2) \\ \dots \\ F_m(y_m) \end{cases}$$

Выходные параметры могут иметь различные размерности, масштабы, а также неодинаковую значимость.



### Поиск оптимального решения

- Определить область компромиссов (область решений, оптимальных по Парето)
- Задать критерий, позволяющий выбрать из множества эффективных точек ту, которую мы будем считать оптимальной.
- Найти решение, оптимальное в соответствии с заданным критерием

Функция предпочтительности

$$\vec{y} \to \vec{y}^* \Rightarrow \vec{F}(\vec{y}) = \min(F_1(\vec{y}), F_2(\vec{y}), ...)^T$$

$$\vec{y}' \succ \vec{y}" \Rightarrow U(\vec{y}') < U(\vec{y}")$$

Для детерминированных задач:

$$\vec{y} = \vec{y}(\vec{x}) \Rightarrow \vec{F}(\vec{x}) = \min(F_1(\vec{x}), F_2(\vec{x}), ...)^{T}$$

$$\vec{x}' \to \vec{y}'(\vec{x}') \qquad U(\vec{y}(\vec{x})) = U(\vec{x})$$

$$\vec{x}'' \to \vec{y}''(\vec{x}'') \qquad \vec{y}' \succ \vec{y}'' \Rightarrow U(\vec{x}') < U(\vec{x}'')$$

Свертывание векторных критериев оптимальности

$$\min U(\vec{x}) = \sum_{j=1}^{m} \alpha_j F_j(\vec{x})$$

$$\min U(\vec{x}) = \max_{j} \left[ \alpha_{j} F_{j} \left( \vec{x} \right) \right]$$

$$\min U(\vec{x}) = F_l(\vec{x}); \quad F_j(\vec{x}) \le F_j^+,$$
 $j = 1, 2...m; j \ne l$