1	What is claimed is:
, 2	A process for measuring and recording the thickness of an automotive trim pane
6	material comprising the steps of:
4	contacting a first surface of the material at a first position with an inductive sensor;
5	contacting a second and opposite surface of the material with/a metallic object and
6	generating a first output signal;
7	converting the first output signal of the sensor into a value that represents the
8	thickness of the material at said first position;
9	contacting said first surface of the material at a second/position with said inductive
10	sensor;
11	contacting a second opposite surface of the material at said second position with a
12	metallic object and generating a second signal;
13	converting the second output signal of the sensor into a value that represents the
14	thickness of the material at said second position; and
15	generating a cross-sectional thickness profile in said material as between said first
16	and second positions.
17	
18	2. The process of claim 1 wherein the sensor is a linear analog sensor.
19	
20	3. The process of claim 1 including the step of communicating said cross-sectional
21	thickness profile in said material to a controller which is in communication with a
22	cutting assembly to cut said material to a desired thickness, wherein said controller

1	adjusts the thickness of a cut into said material based upon said cross-sectional profile
2	thickness in said material to provide a cut of desired thickness.
3	
4	4. The process of claim 3 wherein said cutting assembly comprises laser scoring.
5	
6	5. The process of claim 3, wherein said sensor is attached to a robotic arm and the
7	sensor is moved from the first position to the second position by said robotic arm.
8	
9	6. The process of claim 3, wherein the sensor is mounted on a flexible mechanism
10	to promote contact between the sensor and the material.
11	
12	7. The process of claim 1, wherein the automotive trim panel is an instrument
13	panel.
14	
15	8. The process of claim 3, wherein the automotive trim panel material forms an air
16	bag opening upon deployment of an air bag and said cut of said trim panel material
17	weakens said material for air bag deployment.
18	
19	9. The process of claim 1 including the step of communicating said cross-sectional
20	thickness profile in said material to a controller which is in communication with a
21	molding operation for said automotive trim panel material which controller instructs
22	said molding operation to adjust molding conditions to thereby adjust thickness of the

	/
1	material exiting the mold based upon said cross-sectional thickness profile in said
2	material to provide a material of substantially uniform thickness.
3	
4	10. The process of claim 3 wherein said controller is additionally in communication
5	with a molding operation for said automotive trim panel material wherein said controller
6	instructs said molding operation to adjust molding conditions to adjust thickness of the
7	material exiting the mold based upon said cross-sectional thickness profile in said
8	material to provide a material of substantially uniform thickness.
9	
10	11. The process of claim 10 wherein said adjustment of molding conditions to adjust
11	thickness comprises adjusting the amount of material provided in the mold.
12	
13	12. A process for measuring and recording the thickness of an automotive trim
14	panel material comprising the steps of:
15	contacting a first surface of the material at a plurality of positions with an inductive
16	sensor,
17	contacting a second and opposite surface of the material at a corresponding plurality
18	of positions with a metallic object to generate a plurality of output signals,
19	converting said output signals into a value that represents the thickness of the
20	material at said plurality of positions;
21	generating a cross-sectional thickness profile in said material as between said
22	plurality of positions; and

1	communicating said cross-sectional thickness profile in said material to a controller
1	communicating said cross-sectional unexhess profile in said material to a controller
2	which is in communication with a cutting assembly to cut said material to a desired
3	thickness, wherein said controller adjusts the thickness of a cut into said material based
4	upon said cross-sectional profile thickness in said material to provide a cut of desired
5	thickness.
6	
7	13. The process of claim 12 wherein the automotive trim panel provides an air bag
8	opening and said cut of said trim panel material weakens said material for air bag
9	deployment.
10	
11	