

FIG.2

FIG.4B

7/13

CCGTTTCCTC CCCTCCCCTC CACTCGGCCG TCCCTCCTTC CTCCTCCTC CTCCCTCCTC	60
CTCCCGCTCC TGAAGAGCGC GCCGCGTGGG GGACGGCCCG GTTACTTCCT CCAGAGACTG	120
ACGAGTGCGG TGTCGCTCCA GCTCAGAGCT CCCGGAGCCG CCCGGCCAGC GTCCGGCCTC	180
CCTGATCGTC TCTGGCCGGC GCCCTCGCCC TCGCCCGGCG CGCACCGAGC AGCCGCGGGC	240
GCCGAGCAGC CACCGTCCCG ACCAAGCGCC GGCCCTGCCC GCAGCGGCAG GATGAATGAT	300
TTCGGAATCA AGAATATGGA CCAGGTAGCC CCTGTGGCTA ACAGTTACAG AGGGACACTC	360
AAGCGCCAGC CAGCCTTTGA CACCTTTGAT GGGTCCCTGT TTGCTGTTTT TCCTTCTCTA	420
AATGAAGAGC AAACACTGCA AGAAGTGCCA ACAGGCTTGG ATTCCATTTC TCATGACTCC	480
GCCAACTGTG AATTGCCTTT GTTAACCCCG TGCAGCAAGG CTGTGATGAG TCAAGCCTTA	540
AAAGCTACCT TCAGTGGCTT CAAAAAGGAA CAGCGGCGCC TGGGCATTCC AAAGAACCCC	600
TGGCTGTGGA GTGAGCAACA GGTATGCCAG TGGCTTCTCT GGGCCACCAA TGAGTTCAGT	660
CTGGTGAACG TGAATCTGCA GAGGTTCGGC ATGAATGGCC AGATGCTGTG TAACCTTGGC	720
AAGGAACGCT TICTGGAGCT GGCACCTGAC TITGTGGGTG ACATTCTCTG GGAACATCTG	780
GAGCAAATGA TCAAAGAAAA CCAAGAAAAG ACAGAAGATC AATATGAAGA AAATTCACAC	840
CTCACCTCCG TTCCTCATTG GATTAACAGC AATACATTAG GTTTTGGCAC AGAGCAGGCG	900
CCCTATGGAA TGCAGACACA GAATTACCCC AAAGGCGGCC TCCTGGACAG CATGTGTCCG	960
GCCTCCACAC CCAGCGTACT CAGCTCTGAG CAGGAGTTTC AGATGTTCCC CAAGTCTCGG	1020
CTCAGCTCCG TCAGCGTCAC CTACTGCTCT GTCAGTCAGG ACTTCCCAGG CAGCAACTTG	1080
AATTIGCTCA CCAACAATTC TGGGACTCCC AAAGACCACG ACTCCCCTGA GAACGGTGCG	1140
GACAGCTTCG AGAGCTCAGA CTCCCTCCTC CAGTCCTGGA ACAGCCAGTC GTCCTTGCTG	1200
GATGTGCAAC GGGTTCCTTC CTTCGAGAGC TTCGAAGATG ACTGCAGCCA GTCTCTCTGC	1260
CTCAATAAGC CAACCATGTC TTTCAAGGAT TACATCCAAG AGAGGAGTGA CCCAGTGGAG	1320
CAAGGCAAAC CAGTTATACC TGCAGCTGTG CTGCCCGGCT TCACAGGAAG TGGACCTATT	1380
CAGCTGTGGC AGTTTCTCCT GGAGCTGCTA TCAGACAAAT CCTGCCAGTC ATTCATCAGC	1440
TGGACTGGAG ACGGATGGGA GTTTAAGCTC GCCGACCCCG ATGAGGTGGC CCGCCGGTGG	1500
GGAAAGAGGA AAAATAAGCC CAAGATGAAC TACGAGAAGC TGAGCCGGGG CTTACGCTAC	1560 1620
TATTACGACA AGAACATCAT CCACAAGACG TCGGGGAAGC GCTACGTGTA CCGCTTCGTG	1680
TGCGACCTCC AGAACTTGCT GGGGTTCACG CCCGAGGAAC TGCACGCCAT CCTGGGCGTC	1740
CAGCCCGACA CGGAGGACTG AGGTCGCCGG GACCACCCTG AGCCGGCCCC AGGCTCGTGG	1800
ACTGAGTGGG AAGCCCATCC TGACCAGCTG CCTCCGAGGA CCCAGGAAAG GCAGGATTGA	1860
AAATGTCCAG GAAAGTGGCC AAGAAGCAGT GGCCTTATTG CATCCCAAAC CACGCCTCTT	1920
GACCAGGCTG CCTCCCTTGT GGCAGCAACG GCACAGCTAA TTCTACTCAC AGTGCTTTTA	1980
AGTGAAAATG GTCGAGAAAG AGGCACCGGG AAGCCGTCCT GGCGCCTGGC AGTCCGTGGG	2040
ACGGGATGGT TCTGGCTGTT TGAGATTCTC AAAGGAGCGA GCATGTCGTG GACACACACA	2100
GACTATTITI AGATTITCTI TIGCCTITIG CAACCAGGAA CAGCAAATGC AAAAACTCTT	2160
TGAGAGGGTA GGAGGGTGGG AAGGAAACAA CCATGTCATT TCAGAAGTTA GTTTGTATAT	2220
ATTATAATAA TCTTATAATT GTTCTCAGAA TCCCTTAACA GTTGTATTTA ACAGAAATTG	2269
TATATTGTAA TITAAAATAA TTATATAACT GTATTTGAAA TAAGAATTC	2203

FIG.6

8/13

Met	Asn 1	Asp	Phe	Gly	He	Lys	Asn	Met	Asp 0	GIn	Val	Ala	Pro 15	Val	Ala
Asn	Ser	Tyr	Arg 20	Gly	Thr	Leu	Lys	Arg 25	GIn	Pro	Ala	Phe	Asp 30	Thr	Phe
Asp	Gly	Ser 35		Phe	Ala	Val	Phe 40	Pro	Ser	Leu	Asn	Glu 45	Glu	GIn	Thr
Leu	GIn 50	Glu	Val	Pro	Thr	G1y 55	Leu	Asp	Ser	He	Ser 60	His	Asp	Ser	Ala
Asn 65	Cys	Glu	Leu	Pro	Leu 70	Leu	Thr	Pro	Cys	Ser 75	Lys	Alo	Val	Met	Ser 80
Gln	Ala	Leu	Lys	A1a 85	Thr	Phe	Ser	Gly	Phe 90	Lys	Lys	Glu	GIn	Arg 95	Arg
Leu	Gly	He	Pro 100	Lys	Asn	Pro	Trp	Leu 105	Trp	Ser	Glu	GIn	GIn 110	Val	Cys
GIn	Trp	Leu 115	Leu	Trp	Ala	Thr	Asn 120	Glu	Phe	Ser	Leu	Val 125	Asn	Val	Asn
	130	•				135	·				140	Asn			
145	•				150			·		155		Asp			160
				165					170			Lys		G1u 175	Asp
	•		180					185				His	190	He	
		195		•			200					Tyr 205			
Thr	210					215					220	Met			
Ser 225					230					235		GIn			240
		•		245					250			Ser		255	
_			260					265				Asn	270		
	•	275		-			280					Ser 285			
Ser	290					295	-				300	Ser			
Va I 305		•			310					315		Asp			320
Ser	Leu	Cys	Leu	Asn 325	Lys	Pro	Thr	Met	Ser	Phe	Lys	Asp	Tyr	11e	Gln

Glu Arg Ser Asp Pro Val Glu Gln Gly Lys Pro Val Ile Pro Ala Ala 340 345 Val Leu Ala Gly Phe Thr Gly Ser Gly Pro Ile Gln Leu Trp Gln Phe 365 360 Leu Leu Glu Leu Leu Ser Asp Lys Ser Cys Gln Ser Phe Ile Ser Trp 375 Thr Gly Asp Gly Trp Glu Phe Lys Lau Ala Asp Pro Asp Glu Val Ala 390 395 385 Arg Arg Trp Gly Lys Arg Lys Asn Lys Pro Lys Met Asn Tyr Glu Lys 405 Leu Ser Arg Gly Leu Arg Tyr Tyr Tyr Asp Lys Asn Ile lle His Lys 425 Thr Ser Gly Lys Arg Tyr Val Tyr Arg Phe Val Cys Asp Leu Gln Asn 440 Leu Leu Gly Phe Thr Pro Glu Glu Leu His Ala Ile Leu Gly Val Gln 455 450 Pro Asp Thr Glu Asp 465

FIG.7B

SKKK IRLYQFLLDLLRSGDM-KDSIWWVDKDKGTFQFSSKHKEALAHRWGIQKGNRKKNTYQKMARALRNYGKTGEVKKVK--KKLTYQF-S SKKKIRLYQFLLDLLRSGDM-KDSIWWVDKDKGTFQFSSKHKEALAHRWGIQKGNRKKNTYQKMARALRNYGKTGEVKKVK--KKLTYQF-S WDPSV1LWQFLLQLLREQG-NGH11SNTSRDGGEFKLV--DAEEVARLWGLRK-NKTNMNTDKLSRALRYYYQKN11RKVS-GQKFVYKFV-NG-QIQLWQFLLELLTDKD-ARDCISWVG-DEGEFKLN--QPELVAQKWGQRK-NKPTMNYPKLSRALRYYYDGDMICKVQ-GKGFVYKFV-NG-QVQLWQFLLEILTDCE-HTDVIEWVG-TEGEFKLT--DPDRVARLWGEKK-NKPTMNYPKLSRALRYYYDGDMISKVS-GQKFVYKFV-?GA-LQLWQFLVALLDDPT-NARFLAWTG-RQMEFKLI--EPEEVARLWGIQK-NRPAMNYDKLSRSLRYYYEKGIMQKVA-GERYVYKFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGIRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-QIQLWQFLLELLSDSA-NASCITWEG-TNGEFKMT--DPDEVARRWGERK-SKPNMNYDKLSRALRYYYDKNIMTKVH-GKRYAYKFD-SG-PIQLWQFLLELLTDKS-COSFISWIG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGRRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-SG-QIQLWQFLLELLSDSS-NASCITWEG-TNGEFKMT--DPDEVARRWGERK-SKPNMNYDKLSRALRYYYDKNIMTKVH-GKRYAYKFD SGGQ1QLWQPLLELLADSS-NANA1SWEG-QSGEFRL1--DPDEVARRWGERK-AKPNMNYDKLSRALRYYYDKNIMTEVH-GKRYAYKFD ADSATTLWOFLLOLLOKPQ-NKHMICWTSNDG-QFKLL--QAEEVARLWGTRK-NKPNMNYDKLSRALRYYYVKNTTKKVN-GOKVYKFVS (GNT IYLWEFLLALLQDKATCPKYIKWTQREKGIFKLV--DSKAVSRLWCKHK-NKEDMNYETMGRALRYYYQRGILAKVE-GQRLVIQFK GGSHIHLWQFLKELLASPQVNGTAIRWIDRSKGIPKIE--DSVRVAKLWGRRK-NRPAMNYDKLLRSIRQYYKKGIMKKSERSQRLVYQFC SG-PIQLWQFLLELLTDKS-COSFISWTG-DGWEFKLS--DPDEVARRWGKRK-WEPKMNYEKLSRGLRYYYDKNIIRKTA-GKRYVYRFV-EGSTTYLWEFLLKLLQDREYCPRFIKWTNREKGVFKLV--DSKAVSRLWGMHK-NKEDMNYETWGRALRYYYQRGILAKVD-GQRLVIHFV GSGQIQ WQPLLELLSDSN-NASCITWEGTNG EFKLT--DPDEVARRWGERK-SKPNMNTDKLSRALR LWQFILLLLLLDQN-HDHLICNTSNDG-QFKLL--KAEEVAKLWGLRK-NETNMNYDKLSRALR **-LUMAN** -LIMAN -LIMAN HUMAN SEAUR DROME OROME DROME MOUSE MOUSE DROME)ROME CHICK **JROME** MOUSE **KENLA LIMAN** MOUSE SES MOUSE RAT GABP DELG ETS2 ETS2 FL11 ETS3 ETS6 PEA3 VETS ETS2 ETS2 ETS2 ETS2 ETS2 SAP1 ERG ELK

FIG.8/

SUBSTITUTE SHEET (RULE 26)

12/13

