CURS 14

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

LOGICA DE ORDINUL I

SEMANTICĂ-RECAP

Fie φ, ψ formule ale lui \mathcal{L} .

Definiția 13.11

 φ şi ψ sunt logic echivalente (notație $\varphi \bowtie \psi$) dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e: V \to A$,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

Definiția 13.12

 ψ este consecință semantică a lui φ (notație $\varphi \vDash \psi$) dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e: V \to A$,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

ECHIVALENȚE ȘI CONSECINȚE LOGICE-RECAP

Propoziţia 13.13

Pentru orice formule φ , ψ și orice variabile x, y,

$$\neg \exists x \varphi \quad \exists \quad \forall x \neg \varphi \qquad (1) \qquad \forall x (\varphi \rightarrow \psi) \quad \exists \quad \exists x \varphi \rightarrow \exists x \psi \qquad (8) \\
\neg \forall x (\varphi \land \psi) \quad \exists \quad \exists x \neg \varphi \qquad (2) \qquad \forall x \varphi \quad \exists \quad \exists x \varphi \qquad (9) \\
\forall x (\varphi \land \psi) \quad \exists \quad \forall x \varphi \land \forall x \psi \qquad (3) \qquad \varphi \quad \exists \quad \exists x \varphi \qquad (10) \\
\forall x \varphi \lor \forall x \psi \quad \exists \quad \forall x (\varphi \lor \psi) \qquad (4) \qquad \forall x \varphi \quad \exists \quad \varphi \qquad (11) \\
\exists x (\varphi \land \psi) \quad \exists \quad \exists x \varphi \land \exists x \psi \qquad (5) \qquad \forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi \qquad (12) \\
\exists x (\varphi \lor \psi) \quad \exists \quad \exists x \varphi \lor \exists x \psi \qquad (6) \qquad \exists x \exists y \varphi \quad \exists \quad \exists y \exists x \varphi \qquad (13) \\
\forall x (\varphi \rightarrow \psi) \quad \exists \quad \forall x \varphi \rightarrow \forall x \psi \qquad (7) \qquad \exists y \forall x \varphi \quad \exists \quad \forall x \exists y \varphi \qquad (14)$$

Propoziția 13.14

Pentru orice termeni s, t, u,

- (i) $\models t = t$;
- (ii) $\models s = t \rightarrow t = s$;
- (iii) $\models s = t \land t = u \rightarrow s = u$.

VARIABILE LEGATE ŞI LIBERE

Definiția 14.1

Fie φ o formulă a lui \mathcal{L} și x o variabilă.

- · O apariție a lui x în φ se numește legată în φ dacă x apare într-o subexpresie a lui φ de forma $\forall x\psi$ sau $\exists x\psi$, unde ψ este o formulă;
- · O apariţie a lui x în φ se numeşte liberă în φ dacă nu este legată în φ .
- · x este variabilă legată (bounded variable) a lui φ dacă x are cel puţin o apariţie legată în φ .
- · x este variabilă liberă (free variable) a lui φ dacă x are cel puţin o apariţie liberă în φ .

Exemplu

Fie $\varphi = \forall x(x = y) \rightarrow x = z$. Variabile libere: x, y, z. Variabile legate: x.

VARIABILE LEGATE ŞI LIBERE

Notaţie: $FV(\varphi) := \text{mulţimea variabilelor libere ale lui } \varphi$.

Definiție alternativă

Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită și prin inducţie pe formule:

```
FV(\varphi) = Var(\varphi), dacă \varphi este formulă atomică;

FV(\neg \varphi) = FV(\varphi);

FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi);

FV(\forall x \varphi) = FV(\varphi) \setminus \{x\}.

Notație: \varphi(x_1, \dots, x_n) dacă FV(\varphi) \subseteq \{x_1, \dots, x_n\}.
```

INTERPRETAREA TERMENILOR ŞI FORMULELOR

Propoziția 14.2

Pentru orice \mathcal{L} -structură \mathcal{A} și orice interpretări $e_1, e_2 : V \to A$, pentru orice termen t,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in Var(t)$, atunci $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2)$.

Propoziția 14.3

Pentru orice \mathcal{L} -structură \mathcal{A} , orice interpretări $e_1, e_2 : V \to A$, pentru orice formulă φ ,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in FV(\varphi)$, atunci $\mathcal{A} \models \varphi[e_1] \iff \mathcal{A} \models \varphi[e_2].$

ECHIVALENȚE ȘI CONSECINȚE LOGICE

Propoziția 14.4

Pentru orice formule φ , ψ şi orice variabilă $x \notin FV(\varphi)$,

$$\varphi \quad \exists x \varphi \qquad (15)$$

$$\varphi \quad \exists x \varphi \qquad (16)$$

$$\forall x (\varphi \land \psi) \quad \exists \varphi \land \forall x \psi \qquad (17)$$

$$\forall x (\varphi \lor \psi) \quad \exists \varphi \lor \forall x \psi \qquad (18)$$

$$\exists x (\varphi \land \psi) \quad \exists \varphi \lor \exists x \psi \qquad (19)$$

$$\exists x (\varphi \lor \psi) \quad \exists \varphi \lor \exists x \psi \qquad (20)$$

$$\forall x (\varphi \to \psi) \quad \exists \varphi \to \exists x \psi \qquad (21)$$

$$\exists x (\varphi \to \psi) \quad \exists \varphi \to \exists x \psi \qquad (22)$$

$$\forall x (\psi \to \varphi) \quad \exists \varphi \to \varphi \qquad (23)$$

$$\exists x (\psi \to \varphi) \quad \exists \varphi \to \varphi \qquad (24)$$

Dem.: Exerciţiu.

ENUNȚURI

Definiția 14.5

O formulă φ se numește enunț (sentence) dacă $FV(\varphi) = \emptyset$, adică φ nu are variabile libere.

Notație: $Sent_{\mathcal{L}}$:= mulțimea enunțurilor lui \mathcal{L} .

Propoziția 14.6

Fie φ un enunţ. Pentru orice interpretări $e_1, e_2: V \to A$,

$$\mathcal{A} \vDash \varphi[e_1] \Longleftrightarrow \mathcal{A} \vDash \varphi[e_2]$$

Definiția 14.7

O \mathcal{L} -structură \mathcal{A} este un model al lui φ dacă $\mathcal{A} \vDash \varphi[e]$ pentru o (orice) evaluare $e: V \to A$. Notație: $\mathcal{A} \vDash \varphi$

Fie x o variabilă a lui \mathcal{L} și u termen al lui \mathcal{L} .

Definiția 14.8

Pentru orice termen t al lui \mathcal{L} , definim

 $t_x(u)$:= expresia obţinută din t prin înlocuirea tuturor aparițiilor lui x cu u.

Propoziția 14.9

Pentru orice termen t al lui \mathcal{L} , $t_x(u)$ este termen al lui \mathcal{L} .

- · Vrem să definim analog $\varphi_x(u)$ ca fiind expresia obținută din φ prin înlocuirea tuturor aparițiilor libere ale lui x cu u.
- De asemenea, vrem ca următoarele proprietăți naturale ale substituției să fie adevărate:

$$\vDash \forall x \varphi \to \varphi_x(u)$$
 şi $\vDash \varphi_x(u) \to \exists x \varphi$.

Apar însă probleme!

Fie $\varphi := \exists y \neg (x = y)$ şi u := y. Atunci $\varphi_x(u) = \exists y \neg (y = y)$. Avem

- · Pentru orice \mathcal{L} -structură \mathcal{A} cu $|A| \geq 2$ avem că $\mathcal{A} \models \forall x \varphi$.
- · $\varphi_{\mathsf{x}}(u)$ nu este satisfiabilă.

Fie x o variabilă, u un termen și φ o formulă.

Definiția 14.10

Spunem că x este liberă pentru u în φ sau că u este substituibil pentru x în φ dacă pentru orice variabilă y care apare în u, nici o subformulă a lui φ de forma $\forall y\psi$ nu conține apariții libere ale lui x.

Observație

x este liberă pentru u în φ în oricare din următoarele situații:

- · u nu conține variabile;
- · φ nu conține variabile care apar în u;
- · nici o variabilă din u nu apare legată în φ ;
- · x nu apare în φ ;
- · φ nu conține apariții libere ale lui x.

Fie x o variabilă, u termen și φ o formulă a.î. x este liberă pentru u în φ .

Definiția 14.11

 $\varphi_x(u)$:= expresia obţinută din φ prin înlocuirea tuturor apariţiilor libere ale lui x cu u.

Spunem că $\varphi_x(u)$ este o substituție liberă.

Propoziția 14.12

 $\varphi_{\mathsf{X}}(u)$ este formulă a lui \mathcal{L} .

Noțiunea de substituție liberă evită problemele menționate anterior și se comportă cum am aștepta.

Propoziția 14.13

Pentru orice termeni u_1 și u_2 și orice variabilă x,

(i) pentru orice termen t,

$$\models u_1 = u_2 \to t_x(u_1) = t_x(u_2).$$

(ii) pentru orice formulă φ a.î. x este liberă pentru u_1 și u_2 în φ ,

$$\vDash u_1 = u_2 \to (\varphi_{\mathsf{X}}(u_1) \leftrightarrow \varphi_{\mathsf{X}}(u_2)).$$

Propoziția 14.14

Fie φ o formulă și x o variabilă.

(i) Pentru orice termen u substituibil pentru x în φ ,

$$\models \forall x \varphi \rightarrow \varphi_{\mathsf{X}}(u), \qquad \models \varphi_{\mathsf{X}}(u) \rightarrow \exists x \varphi.$$

- (ii) $\vDash \forall x \varphi \to \varphi$, $\vDash \varphi \to \exists x \varphi$.
- (iii) Pentru orice simbol de constantă c,

$$\models \forall x \varphi \rightarrow \varphi_x(c), \qquad \models \varphi_x(c) \rightarrow \exists x \varphi.$$

În general, dacă x si y sunt variabile, φ și $\varphi_x(y)$ nu sunt logic echivalente: fie \mathcal{L}_{ar} , \mathcal{N} și $e:V\to\mathbb{N}\;$ a.î. e(x)=3, e(y)=5, e(z)=4. Atunci

$$\mathcal{N} \vDash (x \dot{<} z)[e], \text{ dar } \mathcal{N} \not\vDash (x \dot{<} z)_x(y)[e].$$

Totuși, variabilele legate pot fi substituite, cu condiția să se evite conflicte.

Propoziția 14.15

Pentru orice formulă φ , variabile distincte x şi y a.î. $y \notin FV(\varphi)$ şi y este substituibil pentru x în φ ,

$$\exists x \varphi \vDash \exists y \varphi_x(y)$$
 şi $\forall x \varphi \vDash \forall y \varphi_x(y)$.

FORMA RECTIFICATĂ

- · O formulă φ este în formă rectificată dacă:
- (i) nici o variabilă nu apare și liberă și legată
- (ii) cuantificatori distincți leagă variabile distincte
- · Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- · Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Example

$$\forall x P(x) \land \exists x \forall y R(x,y) \land S(x) \ \exists \forall x P(x) \land \exists x_1 \forall y R(x_1,y) \land S(x_2)$$

În continuare vom presupune că toate formulele sunt în formă rectificată.

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}, x_1, ..., x_n$ sunt variabile distincte şi φ nu conţine cuantificatori.

Example

Fie R este un simbol de relație de aritate 2. Formula

$$\forall x \,\exists y \,\forall z ((R(x,y) \vee \neg R(x,z)) \wedge R(x,x))$$

este în formă prenex.

CUM CALCULĂM FORMA PRENEX?

· Se înlocuiesc \to şi \leftrightarrow : $\varphi \to \psi \quad \exists \quad \neg \varphi \lor \psi$ $\varphi \leftrightarrow \psi \quad \exists \quad (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$

· Se aplică următoarele echivalențe:

$$\neg\exists x \neg \varphi \quad \exists x \varphi \quad \forall x \varphi \quad \forall x \varphi \land \forall x \psi \quad \exists x (\varphi \land \psi) \\
\neg \forall x \neg \varphi \quad \exists x \varphi \quad \exists x \varphi \quad \exists x \varphi \lor \exists x \psi \quad \exists x (\varphi \lor \psi) \\
\neg \exists x \varphi \quad \exists x \neg \varphi \quad \forall x \forall y \varphi \quad \exists x \forall y \forall x \varphi \\
\neg \forall x \varphi \quad \forall \quad \exists x \neg \varphi \quad \exists x \exists y \varphi \quad \exists \quad \exists y \exists x \varphi \\
\forall x \varphi \land \psi \quad \exists \quad \forall x (\varphi \lor \psi) \operatorname{dacă} x \notin FV(\psi) \\
\exists x \varphi \lor \psi \quad \exists \quad \forall x (\varphi \land \psi) \operatorname{dacă} x \notin FV(\psi) \\
\exists x \varphi \land \psi \quad \exists \quad \exists x (\varphi \land \psi) \operatorname{dacă} x \notin FV(\psi) \\
\exists x \varphi \land \psi \quad \exists \quad \exists x (\varphi \land \psi) \operatorname{dacă} x \notin FV(\psi)$$

Example

Fie R un simbol de relație de aritate 2.

$$\varphi = \forall x \neg (\exists y R(x,y) \rightarrow \exists x R(x,y))$$

$$\exists x \neg (\exists v R(x,v) \rightarrow \exists z R(z,y))$$

$$\exists x \neg (\neg \exists v R(x,v) \lor \exists z R(z,y))$$

$$\exists x \neg (\neg \exists v R(x,v) \land \neg \exists z R(z,y))$$

$$\exists x \exists v (R(x,v) \land \neg \exists z R(z,y))$$

$$\exists x \exists v (R(x,v) \land \neg \exists z R(z,y))$$

$$\exists x \exists v (R(x,v) \land \neg z R(z,y))$$

$$\exists x \exists v \forall x \exists v (R(x,v) \land \neg z R(z,y))$$

FORMA PRENEX

Teorema de formă prenex 14.16

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ şi $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

(opţională pentru examen)

Demonstrăm prin inducție după structura formulei φ .

- \cdot φ este formulă atomică. Atunci φ este în formă prenex, deci $\varphi^*:=\varphi$.
- $\cdot \varphi = \forall x \psi$. Conform ipotezei de inducţie, există o formulă ψ^* în formă prenex astfel încât $\psi \vDash \psi^*$ şi $FV(\psi) = FV(\psi^*)$. Definim $\varphi^* := \forall x \psi^*$.

Demonstrație (cont.)

 $\cdot \varphi = \neg \psi.$

Conform ipotezei de inducţie, există o formulă $\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0$ în formă prenex astfel încât $\psi \bowtie \psi^*$ şi $FV(\psi) = FV(\psi^*)$. Notăm $\forall^c = \exists$, $\exists^c = \forall$ şi definim

$$\varphi^* := Q_1^c x_1 \dots Q_n^c x_n \, \neg \psi_0.$$

Atunci φ^* este în formă prenex, $\varphi^* \bowtie \neg \psi^* \bowtie \neg \psi = \varphi$ şi $FV(\varphi^*) = FV(\psi^*) = FV(\psi) = FV(\varphi)$.

FORMA PRENEX

Demonstraţie (cont.)

 $\cdot \ \varphi = \psi \lor \chi$ și, conform ipotezei de inducție, există formulele în formă prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$

astfel încât $\psi \bowtie \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \bowtie \chi^*$ şi $FV(\chi) = FV(\chi^*)$.

Definim

$$\varphi^* := Q_1 x_1 \dots Q_n x_n S_1 z_1 \dots S_m z_m \, \psi_0 \vee \chi_0.$$

Atunci φ^* este în formă prenex, $\mathit{FV}(\varphi^*) = \mathit{FV}(\varphi)$ și

$$\varphi^* \vDash \psi^* \lor \chi^* \vDash \psi \lor \chi = \varphi.$$

Deoarece φ a fost în formă rectificată, echivalența \exists este justificată de următoarele proprietăți:

$$\forall x \varphi \lor \psi \vDash \forall x (\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$$

 $\exists x \varphi \lor \psi \vDash \exists x (\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$

FORMA NORMALĂ PRENEX

Fie ${\cal L}$ un limbaj de ordinul întâi care conține

- · două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- · un simbol de funcție unară f și un simbol de funcție binară g;
- · două simboluri de constante c, d.

Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \exists y (g(y, z) = c) \land \neg \exists x (f(x) = d)$$

Avem

$$\varphi \quad \exists y (g(y,z) = c \land \neg \exists x (f(x) = d))$$

$$\exists y (g(y,z) = c \land \forall x \neg (f(x) = d))$$

$$\exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$$

Prin urmare, $\varphi^* = \exists y \forall x \big(g(y,z) = c \land \neg (f(x) = d) \big)$ este o formă normală prenex pentru φ .

FORMA NORMALĂ PRENEX

Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \neg \forall y (S(y) \to \exists z R(z)) \land \forall x (\forall y P(x, y) \to f(x) = d).$$

Avem că

 $\varphi^* = \exists y \forall z \forall x \exists v (S(y) \land \neg R(z) \land (\neg P(x, v) \lor f(x) = d))$ este o formă normală prenex pentru φ .

FAILURECONFETTI.SMACKJEEVES.COM

Baftă la examen!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.