COMP 472: Artificial Intelligence Machine Learning Unsupervised Learning video #6

Russell & Norvig: not much really

Today

- Introduction to ML
- Naive Bayes Classification -> supervised
 - Application to Spam Filtering
- Decision Trees
- Unsupervised Learning) Volume HERE!
 Neural Netwood
- - Perceptrons
 - Multi Layered Neural Networks

Skill Aquisition

Game Al

Learning Tasks

Remember this slide?

Unsupervised Learning

- Learn without labeled examples
 - i.e. X is given, but not f(X)

- Without a f(X)
 - you can't really identify/label a test instance
 - but you can:
 - Cluster/group the features of the test data into a number of groups
 - Discriminate between these groups without actually labeling them

Clustering

Represent each instance as a vector $\langle a_1, a_2, a_3, ..., a_n \rangle$

Each vector can be visually represented in an dimensional

space

X ₂
X ₄
3

	a_1	\mathfrak{a}_2	0.3	Output
X_1	1	0	0	? .
X ₂	1	6	0	3 ·
X ₃ _	8	0	1	3 ·
X ₄	6	1_	0	3 ·
X ₅	1	7	1	? ·

k-means Clustering

- 1. Represent each instance as a point on a n dimensional space
- 2. Partition points into k regions such that:
 - distance between points within a region is minimized
 - distance between points across regions is maximized

- Naturally works well with features with numerical values
 - uhere distance between points can be measured by the Euclidean distance
- Needs modifications for categorical values
 - which have no order
 - eg "Honda", "Audi", "BMW", "Ferrari" "Nissan", "Kamborghin"
 - needs domain-specific distance measure

edit dist (Honda, Nissan) = 1 edit dist (Honda, Audi) = 3 dist (Fervari Landorahin) =

editaist (Hondy, nissan)

k-means Clustering

 User selects how many clusters they want (the value of k)

- 1. Place k points into the space (eg. at random).
 These points represent initial group centroïds.
- 2. Assign each data point x_n to the nearest centroid.
- 3. When all data points have been assigned, recalculate the positions of the k centroïds as the average of the cluster
- 4. Repeat Steps 2 and 3 until none of the data instances change group.

cluster

Euclidean Distance

- To find the nearest centroid...
 - □ typical metric is the Euclidean distance
 - □ Euclidean distance between 2 pts:

$$p = (p_1, p_2, ..., p_n)$$
 $dist(p_i, q_i)$ $d = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$

- To compute the next generation of centroids...
 - □take mean of all points in the cluster in each dimension
 - □ mean of 2 points:

$$p = (p_1, p_2, ..., p_n)$$

$$q = (q_1, q_2, ..., q_n)$$

$$p_1 + q_1 p_2 + q_2 p_n + q_n$$

$$c = (\frac{p_1 + q_1}{2}, \frac{p_2 + q_2}{2}, \dots, \frac{p_n + q_n}{2})$$

instences in the dataset

Example (in 2-D... i.e. 2 features)

initial 3 random centroïds

Example

partition data points to closest centroid

Example re-compute new centroïds

Example

re-assign data points to new closest centroïds

Example

Notes on k-means

- negatives:
 - does not guarantee to converge to the global optimum
 - very sensitive to initial choice of centroids
 - many find useless clusters...
 - user must set initial k
 - not easy to do...
- but converges very fast!/

many other clustering algorithms...

Today

- 1. Introduction to ML
- 2. Naïve Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks video 47
 - a. Perceptrons
 - b. Multi Layered Neural Networks

Up Next

- 1. Introduction to ML
- 2. Naive Bayes Classification
 - a. Application to Spam Filtering
- 3. Decision Trees
- 4. (Evaluation
- 5. Unsupervised Learning)
- 6. Neural Networks
 - a. Perceptrons —
 - b. Multi Layered Neural Networks -