

CENTRE DE RECHERCHE INFORMATIQUE DE MONTRÉAL

INVESTIGATION ON INSTANCE MIXUP REGULARIZATION STRATEGIES FOR SELF-SUPERVISED SPEAKER REPRESENTATION LEARNING

WOO HYUN KANG, JAHANGIR ALAM, ABDERRAHIM FATHAN

SELF-SUPERVISED SPEAKER REPRESENTATION LEARNING

- Why do we need self-supervised speaker representation learning?
 - Nowadays, vast speech data can be obtained for training a speaker verification system.
 - E.g., YouTube, Soundcloud, TikTok, etc.
 - However, most of these speech samples do not have any speaker labels
 - Also, collecting speaker labeled speech samples can be very expensive in terms of resources

CONVENTIONAL SPEAKER EMBEDDING SYSTEMS

- Although the conventional deep embedding schemes showed impressive performance, they require speaker labels to be trained:
 - End-to-end systems: require speaker labels to define positive and negative pairs for contrastive objective functions

→Therefore we should utilize pseudo-labels to apply these frameworks to self-supervised scenarios

SELF-SUPERVISED ANGULAR PROTOTYPICAL LOSS

- For contrastive objectives, we need to define positive pairs and negative pairs
 - In a self-supervised scenario, we can consider the utterance identity as pseudo-labels
 - For each training utterance, we apply two different types of augmentations, resulting in two samples
 - Samples created from the same utterance are considered as positive pair
 - Samples created from different utterances are considered as negative pair
 - This way, we can apply contrastive loss functions, such as angular prototypical objective

$$L_{AP} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{exp(cos(\omega_i^1, \omega_i^2))}{\sum_{j=1}^{N} exp(cos(\omega_i^1, \omega_j^2))}$$

PROBLEM WITH TRAINING WITH PSEUDO-LABELS

- Using pseudo-labels can allow us to train speaker embedding systems with unlabeled dataset, but the performance is limited as these are not actual speaker labels
 - Therefore, overfitting on the pseudo-labels can cause critical performance degradation
 - As the system is optimized more to the pseudo-labels, it is likely for the system to learn non-speaker attributes

INSTANCE MIXUP (I-MIX)

- I-mix is a data-driven augmentation strategy for improving the generalization of the self-supervised representation
 - For arbitrary objective function $L_{pair}(x, y)$, where x is the **input sample** and y is the corresponding **pseudo-label**, giving two data instances (x_i, y_i) and (x_i, y_i) ,

$$L_{pair}^{i-mix}((x_i, y_i), (x_j, y_j))$$

$$= L_{pair}(\lambda x_i + (1 - \lambda)x_j, \lambda y_i + (1 - \lambda)y_j),$$

• For cross-entopy-based loss (e.g., prototypical loss), this equation can be rewritten as

$$L_{pair}^{i-mix}((x_i, y_i), (x_j, y_j))$$

= $\lambda L_{pair}(x_i, y_i) + (1 - \lambda)L_{pair}(x_j, y_j).$

→Essentially, this **creates synthetic training samples with new pseudo-identities**

INSTANCE MIXUP (I-MIX)

- Here, the mixup coefficient $\lambda \sim Beta(\alpha, \alpha)$
 - This distribution yields λ with value between 0 and 1
 - Depending on the α , the distribution shape varies (symmetric)
 - $\alpha < 1.0$: U-shaped distribution, where the sampled λ is likely to have value close to either 1.0 or 0.0
 - $\alpha = 1.0$: a uniform distribution across 0 to 1
 - $\alpha > 1.0$: a bell-shaped distribution, where the sampled λ is likely to have value close to 0.5

I-MIX ANGULAR PROTOTYPICAL OBJECTIVE (I-AP)

- To enhance the generalization of the selfsupervised speaker embedding system, we applied the i-mix strategy to the angular prototypical objective
 - We apply interpolation on the input acoustic features and utterance identity pseudo-labels

$$L_{i-AP} = -\lambda \frac{1}{N} \sum_{i=1}^{N} \log \frac{exp(cos(\omega_{mix(i,r\neq i)}^{1}, \omega_{i}^{2}))}{\sum_{j=1}^{N} exp(cos(\omega_{mix(i,r\neq i)}^{1}, \omega_{j}^{2}))}$$
$$- (1 - \lambda) \frac{1}{N} \sum_{i=1}^{N} \log \frac{exp(cos(\omega_{mix(i,r\neq i)}^{1}, \omega_{r\neq i}^{2}))}{\sum_{j=1}^{N} exp(\omega_{mix(i,r\neq i)}^{1}, \omega_{j}^{2}))},$$

POSSIBLE LIMITATION OF THE I-AP

- Although applying mixup augmentation to the raw data have proven its strength in many tasks (e.g., speech recognition, image classification), there is room for improvement
 - Due to the linear interpolation, i-mix strategy can only generate new samples between the original samples on the feature space
 - This restricts the diversity of the synthetic training samples, thus limiting the generalization of the system

LATENT SPACE INSTANCE MIXUP (L-MIX)

- In order to overcome this limitation, we propose an i-mix strategy applied to the latent space of speech (I-mix)
 - The latent variable of speech will include essential, disentangled information of various speech attributes
 - We use a variational autoencoder for extracting the latent variable from the given acoustic features (i.e., MFCC)
 - Prior to training the embedding system, we train a VAE for reconstructing the acoustic features

$$L_{VAE} = D_{KL}(q_{\phi}(z|x)||p_{\theta}(z)) - E_{q_{\phi}(z|x)}[log_{\theta}(x|z)],$$

LATENT SPACE INSTANCE MIXUP (L-MIX)

- Once the VAE is trained, we can use this for extracting the latent variable and reconstructing the acoustic feature
 - The VAE encoder generates the Gaussian posterior latent distribution $z \sim N(\mu, \sigma^2)$
 - The latent distributions are linearly interpolated, which yields a new Gaussian distribution (weighted sum of independent normal distributions)

$$z_{mix} = \lambda z_1 + (1 - \lambda)z_2$$

 $\sim N(\lambda \mu_1 + (1 - \lambda \mu)_2, \lambda^2 \sigma_1^2 + (1 - \lambda)^2 \sigma_2^2),$

• The mixed up latent variable is fed into the decoder network to generate a synthetic acoustic feature x_{l-mix}

L-MIX ANGULAR PROTOTYPICAL OBJECTIVE (L-AP)

 Analogous to i-AP, we can apply the I-mix strategy to the angular prototypical objective

$$L_{l-AP} = -\lambda \frac{1}{N} \sum_{i=1}^{N} \log \frac{exp(cos(\omega_{l-mix(i,r\neq i)}^{1}, \omega_{i}^{2}))}{\sum_{j=1}^{N} exp(cos(\omega_{l-mix(i,r\neq i)}^{1}, \omega_{j}^{2}))}$$
$$- (1 - \lambda) \frac{1}{N} \sum_{i=1}^{N} \log \frac{exp(cos(\omega_{l-mix(i,r\neq i)}^{1}, \omega_{r\neq i}^{2}))}{\sum_{j=1}^{N} exp(\omega_{l-mix(i,r\neq i)}^{1}, \omega_{j}^{2}))}.$$

VoxCeleb dataset

- Training set
 - VoxCeleb2 development set
 - 5994 speakers included (no labels were used for our experiments)
- Evaluation set
 - VoxCeleb1 trial

Acoustic features

- 40 dim. MFCC (mel filterbank cepstral coefficients) features
- Augmentations:
 - Wave-level augmentation: MUSAN noise or RIR simulation
 - Cepstrum-level augmentation: random cepstrum/frame masking (similar to SpecAugment)

Embedding system

- ECAPA-TDNN architecture: state-of-the-art system for supervised text-independent speaker recognition
- Attentive channel- and context-dependent statistics pooling
- Multi-layer aggregation
- Embedding dimension: 512

Variational autoencoder (VAE)

10 layered convolutional VAE

Layer #	Encoder	Decoder
1	3×3 2D-Conv, 32 ReLU, stride 3	64×32 FC
2	3×3 2D-Conv, 64 ReLU, stride 3	3×3 2D-TransposedConv, 32 ReLU, stride 3
3	3×3 2D-Conv, 32 ReLU, stride 3	3×3 2D-TransposedConv, 64 ReLU, stride 3
4	3×3 2D-Conv, 32 ReLU, stride 3	3×3 2D-TransposedConv, 32 ReLU, stride 3
5	32×64 FC for each μ and $log\sigma^2$	3×3 2D-TransposedConv, 1 ReLU, stride 3

Analysis on synthetic samples

Since i-mix and I-mix applies mixup on different space, they can create very different samples even when
using the same mixup coefficient

Analysis on synthetic samples

- Since the i-mix strategy applies linear interpolation on the feature space, the generated samples are placed on the line between the two original samples
- On the other hand, the samples created via I-mix are not necessarily placed on the line
 - This indicates that the I-mix can create samples with more diversity on the feature space

Speaker verification performance

- Here, we compare performance of the systems trained with various objective functions and augmentations on the VoxCeleb1 evaluation set
- → i-mix and I-mix can both improve the performance when the right coefficient is used
- → The best performance was observed when using I-mix along with wave-level augmentation and cepsaugment

Augmentation	Objective	EER [%]	
	Human Benchmark (Huh et al. 2020)	15.7700	
None	i-vector (Huh et al. 2020)	15.2800	
	AP (FastResNet34) (Huh et al. 2020)	25.3700	
	GCL (ResNet18) (Inoue and Goto 2020)	15.2600	
waveaug	AP (FastResNet34) (Huh et al. 2020)	11.6000	
	AP	11.6384	w/o regularization
waveaug	i-AP ($\alpha=0.5$)	11.9618	
	i-AP ($\alpha = 1.0$)	11.2407	I-MIX
	i -AP ($\alpha = 32.0$)	11.8240	
	$1-AP(\alpha=0.5)$	11.8876	1 8 4137
	$1-AP(\alpha=1.0)$	10.7741	L-MIX
	$1-AP (\alpha = 32.0)$	11.7179	
	AP	11.6013	w/o regularization
	i -AP ($\alpha = 0.5$)	10.6257	I-MIX
wayeana	i -AP ($\alpha = 1.0$)	10.9279	
waveaug +cepsaug	i -AP ($\alpha = 32.0$)	12.1633	
	$1-AP (\alpha = 0.5)$	10.4931	L-MIX
	$1-AP(\alpha=1.0)$	10.5408	
	1-AP ($\alpha = 32.0$)	11.8399	

CONCLUSION

- We incorporate the i-mix strategy to the self-supervised speaker embedding learning framework for robust speaker verification
- We also propose a latent space i-mix strategy (I-mix), which performs i-mix on the latent space of the speech
- Our experimental results show that the self-supervised speaker embedding learning can benefit greatly from the i-mix regularization strategy
- Moreover, the proposed I-mix strategy can further improve the performance, by yielding much diverse synthetic training samples

