# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP2005/022731

International filing date: 06 December 2005 (06.12.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2005-033312

Filing date: 09 February 2005 (09.02.2005)

Date of receipt at the International Bureau: 12 January 2006 (12.01.2006)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2005年 2月 9日

出 願 番 号

Application Number:

特願2005-033312

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

umber

人

JP2005-033312

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願

株式会社リコー

Applicant(s):

2005年12月21日

特許庁長官 Commissioner, Japan Patent Office





【書類名】 特許願 【整理番号】 200414232 【提出日】 平成17年 2月 9日 【あて先】 特許庁長官 殿 【国際特許分類】 G03G 21/00 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 原田 博臣 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 川原 真一 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 春日 輝之 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 須田 武男 【氏名】 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 高橋 裕 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 柳田 雅人 【氏名】 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 水石 治司 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 大慈彌 篤哉 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 藤城 宇貢 【発明者】 【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内 【氏名】 田渕健 【特許出願人】 【識別番号】 0 0 0 0 0 0 6 7 4 7 【氏名又は名称】 株式会社リコー 【代理人】 【識別番号】 100108121 【弁理士】 【氏名又は名称】 奥山 雄毅 【先の出願に基づく優先権主張】 【出願番号】 特願2004-200212 【出願日】 平成16年7月7日 【手数料の表示】 【予納台帳番号】 068893 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0200787

# 【書類名】特許請求の範囲

#### 【請求項1】

被塗布面に潤滑剤を塗布する潤滑剤塗布装置において、

前記潤滑剤塗布装置は、潤滑剤塗布装置内に収納された潤滑剤と、

潤滑剤を像担持体に塗布する塗布ローラと、

像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材と を備えることを特徴とする潤滑剤塗布装置。

#### 【請求項2】

被塗布面に潤滑剤を塗布する潤滑剤塗布装置において、

前記潤滑剤塗布装置は、潤滑剤塗布装置内に収納された固形潤滑剤と、

前記固形潤滑剤に当接して表面に付着させた潤滑剤成分を像担持体に塗布する塗布ローラと、

前記固形潤滑剤を塗布ローラに加圧当接させる付勢部材と、

像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材とを備え、

前記固形潤滑剤は前記塗布ローラに対し重力方向で下方に配置されると共に、

前記付勢部材は前記固形潤滑剤に対し重力方向で下方に配置される

ことを特徴とする潤滑剤塗布装置。

#### 【請求項3】

潤滑剤と、該潤滑剤を像担持体表面に塗布する塗布部材と、シート状に形成した弾性体の エッジ部をトレーリング姿勢で押し当て該像担持体表面上に塗布した該潤滑剤を圧着伸展 させる均し部材と、を具備する潤滑剤塗布装置において、

前記均し部材の当接角度が、10°以上である

ことを特徴とする潤滑剤塗布装置。

#### 【請求項4】

請求項3に記載の潤滑剤塗布装置において、

前記均し部材は、潤滑剤塗布装置に対して着脱可能である

ことを特徴とする潤滑剤塗布装置。

#### 【請求項5】

請求項3または4に記載の潤滑剤塗布装置において、

前記潤滑剤は、潤滑剤塗布装置に対して着脱可能である

ことを特徴とする潤滑剤塗布装置。

#### 【請求項6】

請求項3ないし5のいずれかに記載の潤滑剤塗布装置において、

前記像担持体は転写部材である

こと特徴とする潤滑剤塗布装置。

#### 【請求項7】

請求項3ないし5のいずれかに記載の潤滑剤塗布装置において、

前記像担持体は感光体である

ことを特徴とする潤滑剤塗布装置。

#### 【請求項8】

潤滑剤と、該潤滑剤を像担持体表面に塗布する塗布部材と、シート状に形成した弾性体のエッジ部をトレーリング姿勢で押し当て該像担持体表面上に塗布した該潤滑剤を圧着伸展させる均し部材と、シート状に形成した弾性体のエッジ部をカウンター姿勢で押し当て該像担持体表面上の異物を除去するクリーニング部材と、を具備する潤滑剤塗布装置において、

前記像担持体の移動方向に対して、上流側からクリーニング部材、塗布部材、均し部材の順に配置され、かつ該均し部材の当接角度が10°以上である

ことを特徴とする潤滑剤塗布装置。

#### 【請求項9】

潤滑剤と、該潤滑剤を像担持体表面に塗布する塗布部材と、シート状に形成した弾性体の

エッジ部をトレーリング姿勢で押し当て該像担持体表面上に塗布した該潤滑剤を圧着伸展させる均し部材と、シート状に形成した弾性体のエッジ部をカウンター姿勢で押し当て該像担持体表面上の異物を除去するクリーニング部材と、を具備する潤滑剤塗布装置において、

前記像担持体の移動方向に対して、上流側からクリーニング部材、塗布部材、均し部材の順に配置され、かつ該均し部材の当接線圧が0.01N/cm以上であることを特徴とする潤滑剤塗布装置。

# 【請求項10】

請求項8または9に記載の潤滑剤塗布装置において、

前記均し部材は、前記潤滑剤塗布装置に対して着脱可能である

ことを特徴とする潤滑剤塗布装置。

#### 【請求項11】

請求項8ないし10のいずれかに記載の潤滑剤塗布装置において、

前記潤滑剤は、前記潤滑剤塗布装置に対して着脱可能である

ことを特徴とする潤滑剤塗布装置。

#### 【請求項12】

前記像担持体が転写部材であり、請求項8ないし11のいずれかに記載の潤滑剤塗布装置 を着脱可能に具備する

ことを特徴とする転写装置。

#### 【請求項13】

前記像担持体が感光体であり、請求項8ないし11のいずれかに記載の潤滑剤塗布装置を 着脱可能に具備する

ことを特徴とするプロセスカートリッジ。

#### 【請求項14】

前記像担持体が感光体であり、該感光体と、請求項8ないし11のいずれかに記載の潤滑 剤塗布装置と、を一体的に具備する

ことを特徴とするプロセスカートリッジ。

#### 【請求項15】

請求項1ないし11のいずれかに記載の潤滑剤塗布装置において、

前記潤滑剤塗布装置は、繊維状のブラシを有する塗布ローラと、

ブレード状のエラストマーの均し部材と を備える

ことを特徴とする潤滑剤塗布装置。

#### 【請求項16】

請求項1ないし11、15のいずれかに記載の潤滑剤塗布装置において、

前記潤滑剤塗布装置は、複数のフィルムを有する塗布ローラを備える

ことを特徴とする潤滑剤塗布装置。

#### 【請求項17】

請求項1または2、15または16のいずれかに記載の潤滑剤塗布装置において、 前記潤滑剤塗布装置は、均し部材が、トレーリング方式で被塗布面に当接している ことを特徴とする潤滑剤塗布装置。

#### 【請求項18】

請求項1、3ないし11、15ないし17のいずれかに記載の潤滑剤塗布装置において、 前記潤滑剤塗布装置は、粉体状の潤滑剤を収納している

ことを特徴とする潤滑剤塗布装置。

#### 【請求項19】

潜像を形成する像担持体と、少なくとも、像担持体表面に均一に帯電を施す帯電装置と像担持体表面に形成された潜像にトナーを供給し可視像化する現像装置と像担持体表面をクリーニングするクリーニング装置とから選択されるプロセス装置とを備えるプロセスカートリッジにおいて、

前記プロセスカートリッジは、潤滑剤を像担持体に塗布する塗布ローラと、

像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材と を有する潤滑 剤塗布装置を備える

ことを特徴とするプロセスカートリッジ。

#### 【請求項20】

請求項19に記載のプロセスカートリッジにおいて、

前記プロセスカートリッジは、請求項1ないし18のいずれかに記載の潤滑剤塗布装置 あるいは転写装置あるいはプロセスカートリッジを備える

ことを特徴とするプロセスカートリッジ。

# 【請求項21】

潜像を形成する像担持体と、

像担持体表面に均一に帯電を施す帯電装置と、

帯電した像担持体表面に画像データに基づいて露光し潜像を書き込む露光装置と、

像担持体表面に形成された潜像にトナーを供給し可視像化する現像装置と、

像担持体表面をクリーニングするクリーニング装置と、

像担持体表面の可視像を直接又は中間転写体に転写した後に記録媒体に転写する転写装置と、

記録媒体上のトナー像を定着させる定着装置とを備える画像形成装置において、

前記画像形成装置は、潤滑剤を像担持体に塗布する塗布ローラと、

像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材と を有する潤滑 剤塗布装置を備える

ことを特徴とする画像形成装置。

#### 【請求項22】

請求項21に記載の画像形成装置において、

前記画像形成装置は、請求項1ないし18のいずれかに記載の潤滑剤塗布装置あるいは 転写装置あるいはプロセスカートリッジを備える

ことを特徴とする画像形成装置。

### 【請求項23】

請求項22に記載の画像形成装置であり、感光体を複数並列に配置した所謂タンデム型の画像形成装置。

#### 【請求項24】

請求項21ないし23のいずれかに記載の画像形成装置において、

前記潤滑剤塗布装置は、像担持体移動方向に対して、クリーニング装置の下流側に配置されている

ことを特徴とする画像形成装置。

#### 【請求項25】

請求項21ないし24のいずれかに記載の画像形成装置において、

前記潤滑剤塗布装置に用いられる潤滑剤が、粉体状であって、体積平均粒径が、0.1 ~3.0mmの範囲にある

ことを特徴とする画像形成装置。

#### 【請求項26】

請求項21ないし25のいずれかに記載の画像形成装置において、

前記潤滑剤は、脂肪酸金属塩であって、

前記脂肪酸金属塩の金属が、亜鉛、鉄、カルシウム、アルミニウム、リチウム、マグネシウム、ストロンチウム、バリウム、セリウム、チタン、ジルコニウム、鉛、マンガンの中から選択される金属であって、

前記脂肪酸金属塩の脂肪酸が、ラウリル酸、ステアリン酸、バルミチン酸、ミステリン酸、オレイン酸の中から選択される少なくとも1以上の脂肪酸である

ことを特徴とする画像形成装置。

#### 【請求項27】

請求項21ないし26のいずれかに記載の画像形成装置において、

前記画像形成装置は、像担持体の摩擦係数μsを0.3以下にすることを特徴とする画像形成装置。

# 【請求項28】

請求項21ないし27のいずれかに記載の画像形成装置において、

前記画像形成装置は、体積平均粒径が10μm以下で、体積平均粒径と個数平均粒径との比(分散度)が、1.00ないし1.40の範囲にあるトナーを用いる

ことを特徴とする画像形成装置。

#### 【請求項29】

請求項21ないし28のいずれかに記載の画像形成装置において、

前記画像形成装置は、平均円形度が0.93ないし1.00の範囲にあるトナーを用いる

ことを特徴とする画像形成装置。

# 【請求項30】

請求項21ないし29のいずれかに記載の画像形成装置において、

前記画像形成装置は、SF-1が100ないし180であって、SF-2が100ない し180の範囲にあるトナーを用いる

ことを特徴とする画像形成装置。

#### 【請求項31】

請求項21ないし30のいずれかに記載の画像形成装置において、

前記画像形成装置は、外観形状がほぼ球形状であって、

短軸と長軸との比(r 2 / r 1)が 0 . 5  $\sim$  1 . 0 の範囲で、厚さと短軸との比(r 3 / r 2)が 0 . 7  $\sim$  1 . 0 の範囲であって、長軸 r 1  $\geq$  短軸 r 2  $\geq$  厚さ r 3 の関係を満足するトナーを用いる

ことを特徴とする画像形成装置。

#### 【請求項32】

請求項21ないし31のいずれかに記載の画像形成装置において、

前記トナーは、少なくとも、窒素原子を含む官能基を有するポリエステルプレポリマー、ポリエステル、着色剤、離型剤を含むトナー組成物を水系媒体中で樹脂微粒子の存在下で架橋及び/又は伸長反応させる

ことを特徴とする画像形成装置。

# 【請求項33】

潜像を形成する像担持体と、像担持体表面に均一に帯電を施す帯電装置と、帯電した像担持体表面に画像データに基づいて露光し、潜像を書き込む露光装置と、像担持体表面に形成された潜像にトナーを供給し、可視像化する現像装置と、像担持体表面をクリーニングするクリーニング装置と を備え、像担持体表面の可視像を直接又は中間転写体に転写した後に記録媒体に転写する転写装置と、記録媒体上のトナー像を定着させる定着装置とを備え、かつ、ブレードで収容する潤滑剤で像担持体上に薄層を形成する潤滑剤塗布装置を前記クリーニング装置と前記帯電装置との間に設ける画像形成装置に用いられるトナーであって、

体積平均粒径が $10\mu$  m以下で、体積平均粒径と個数平均粒径との比(分散度)が、1.00 ないし1.40 の範囲にある

ことを特徴とするトナー。

# 【請求項34】

請求項33に記載のトナーにおいて、

前記トナーは、平均円形度が0.93ないし1.00の範囲にあることを特徴とするトナー。

#### 【請求項35】

請求項33または34に記載のトナーにおいて、

ことを特徴とするトナー。

【請求項36】

請求項33ないし35のいずれかに記載のトナーにおいて、

前記トナーは、外観形状がほぼ球形状であって、

短軸と長軸との比(r 2 / r 1)が 0 . 5 ~ 1 . 0 の範囲で、厚さと短軸との比(r 3 / r 2)が 0 . 7 ~ 1 . 0 の範囲であって、長軸 r 1  $\geq$  短軸 r 2  $\geq$  厚さ r 3 の関係を満足する

ことを特徴とするトナー。

【請求項37】

請求項33ないし36のいずれかに記載のトナーにおいて、

前記トナーは、少なくとも、窒素原子を含む官能基を有するポリエステルプレポリマー、ポリエステル、着色剤、離型剤を含むトナー組成物を水系媒体中で樹脂微粒子の存在下で架橋及び/又は伸長反応させる

ことを特徴とするトナー。

# 【書類名】明細書

【発明の名称】潤滑剤塗布装置、プロセスカートリッジ、トナー、および画像形成装置 【技術分野】

# [0001]

本発明は、複写機、ファクシミリ、プリンター等の画像形成装置に関し、特に像担持体に適用される潤滑剤塗布装置、プロセスカートリッジ、トナーおよび画像形成装置に関する。

#### 【背景技術】

# [00002]

電子写真プロセスを用いる画像形成装置は、像担持体として感光体を備え、感光体の表面に放電によって電荷を与え帯電させ、帯電した感光体表面を露光して静電潜像を形成し、その静電潜像にトナーを供給して可視像化し、形成された感光体表面の可視像を転写紙表面に転写した後、定着して排出する。可視像を転写後の感光体表面には未転写のトナー等が残留するため、これらが次の画像形成に悪影響を与えないように、感光体表面はクリーニング装置によりクリーニングされて次の画像形成プロセスに備えられる。クリーニング装置としては、ゴム等の弾性体からなるクリーニングブレードや合成樹脂の繊維をブラシ状に形成したクリーニングブラシを感光体表面に摺擦させて、未転写トナー等の付着物を除去するものが一般的に知られている。

#### [0003]

ところが、上記のようなクリーニングブレードやクリーニングブラシは、感光体との摺擦を続けると、経時で摩耗し、欠けや変形等が起因してクリーニング性能が低下するという問題がある。また、感光体表面も摩耗するため、寿命が短くなる。そこで、感光体とこれらのクリーニング部材との間に働く摩擦抵抗を低減して、クリーニング部材、感光体の摩耗等の不具合を解消するために、感光体表面に潤滑剤を塗布するなどの手法がとられている。また、感光体表面に潤滑剤を塗布すると、感光体表面の摩擦係数が低下するため、トナーに外添される流動化剤や帯電制御剤等がクリーニング部材との当接圧で感光体表面に膜状に固着する、いわゆるフィルミングの発生を防止することができる。感光体上に現像されたトナーも感光体表面との付着力が低減することで、転写性が向上する。

#### $[0\ 0\ 0\ 4\ ]$

感光体表面に潤滑剤を塗布する手段としては、例えば次ような装置がある。すなわち、脂肪酸金属塩等の潤滑剤を棒状に成型した固形潤滑剤を設置し、この固形潤滑剤と感光体の両方に当接するようにブラシローラを備えるものである。この塗布手段によれば、ブラシローラが回転駆動することにより、固形潤滑剤がブラシローラの摺擦により削られて粉体となってブラシローラのブラシ繊維に付着し、そのブラシローラに付着した粉体状の潤滑剤が感光体の表面に塗布されるようになっている。

# [0005]

感光体表面に塗布される潤滑剤の量は、少なすぎると、塗布ムラが生じ、十分に潤滑剤が塗布されていない部分にクリーニング不良が発生したり、クリーニングブレード等のクリーニング部材の摩耗が進行したりする。一方、潤滑剤の塗布量が多すぎると、感光体表面と近接又は接触する帯電ローラの表面を汚染したり、高温高湿の環境下で潤滑剤が吸湿することにより、感光体表面に形成する静電潜像が流れ、画像ボケを発生させてしまう。

したがって、感光体表面に適切な量の潤滑剤を塗布することが重要である。そのため、潤滑剤塗布装置においては、特許文献1、2のように潤滑剤を塗布するブラシローラの繊維の密度を規定したり、固形潤滑剤をブラシローラ側に加圧する加圧部材を設けてその加圧力を規定したり、ブラシローラの感光体表面への食い込み量等を規定した提案がなされている。

#### $[0\ 0\ 0\ 6]$

ところで、近年高画質化への要求が高まっており、特に高精細なカラー画像形成を実現させるため、トナーの小粒径化、球形化が進められている。小粒径化により、ドットの再現性が良好になり、球形化により現像性、転写性の向上を図ることができる。従来の混練

粉砕法により、このような小粒径化、球形化したトナーを製造するのは非常に困難であることから、懸濁重合法、乳化重合法、分散重合法等により製造された重合トナーが採用されつつある。

# $[0\ 0\ 0\ 7\ ]$

しかしながら、球形化、小粒径化されたトナーを用いた場合、画像形成後に行われる感光体上のクリーニングにいくつかの問題を生じている。その一つは、球形化、小粒径化されたトナーのクリーニングが、一般的に用いられているブレードクリーニング方式では難しいということである。クリーニングブレードは感光体表面を摺擦しながらトナーを除去するが、感光体との摩擦抵抗によりクリーニングブレードのエッジの部分が変形するため、感光体とクリーニングブレードの間には微小な空間が生じる。この空間には小粒径のトナーであるほど侵入しやすい。そして、侵入したトナーが球形に近い形状であるほど転がり摩擦力が小さいため、感光体とクリーニングブレードとの空間で転がり始め、クリーニングブレードをすり抜け、クリーニング不良につながるというものである。

# [0008]

このようなクリーニング不良を防ぐ対策として、例えばクリーニングブレードの感光体への当接圧を高くするなどの方法がとられている。これにより、感光体表面との摩擦力は高まり、クリーニングブレードの損傷や摩耗はより進行しやすくなっている。また、クリーニングブレードが不規則に振動することにより起こるブレード鳴きや、ブレードめくれ等が発生しやすくなっている。そこで、感光体表面に均一に潤滑剤を塗布し、感光体表面の摩擦係数を低減することが一層重要になってきている。

#### [0009]

感光体表面に均一に潤滑剤の塗布が行われない場合、感光体表面の摩擦係数が不均一となり、トナー像の転写が良好に行われず、所謂「虫喰い」と呼ばれる画像部での中抜けや、所謂「画像ボケ」とばれる画像部のトナー付着不足や、所謂「ボソツキ」と呼ばれるぼそついた画像など、種々の異常画像が発生する。

# $[0 \ 0 \ 1 \ 0]$

ここで、上記感光体表面には、トナー像を転写した後にもトナーが残留しているため、 残留トナーのクリーニングも行う必要がある。そして、転写後に行う潤滑剤の塗布と残留 トナーのクリーニングとの2つの工程の被塗布部材上での位置関係は、以下の2つのバタ ーンが考えられる。即ち、潤滑剤塗布が先でクリーニングが後となる塗布後クリーニング の関係と、クリーニングが先で潤滑剤塗布が後となるクリーニング後塗布の関係の2つの バターンであり、それぞれ異常画像発生のメカニズムが異なる。

#### $(0\ 0\ 1\ 1)$

まず、塗布後クリーニングのパターンにおける、異常画像発生のメカニズムを説明する

このバターンの場合、除去されずにトナーが残留している状態の被塗布部材表面に潤滑剤を塗布することになる。ここで、もともと被塗布部材表面に担持していた画像のうち文字部にあたる部分は、転写材への転写後にも被塗布部材表面に残留トナーが多く存在し、文字部以外の部分は、実質的には残留トナーは存在していない。そして、残留トナーの付着量が多いところからは、そのトナーと共に多量の潤滑剤が塗布ブラシ及びクリーニング位置におけるクリーニングブレードなどによって掻き取られるため、クリーニング位置を通過後の被塗布部材表面における潤滑剤の塗布量に偏りが生じてしまう。

#### [0012]

特に同一画像を連続して出力した場合には、被塗布部材表面のうち残留トナーの多い部分が常に同じであるため、このような偏りが顕著となる。また、塗布ブラシ等の塗布部材に残留トナーが付着するため、塗布ブラシが汚れてしまい、長期に渡って潤滑剤を均一に塗布し続けることが困難になってくる。そして、被塗布部材表面に均一な潤滑剤層が形成できないと、表面の静止摩擦係数 $\mu$ に偏りが生じたり、トナーを転写するために十分低い値にならなかったりして転写ムラが生じ、虫喰い、画像ボケ、ボソツキ等の異常画像となる。

# $[0\ 0\ 1\ 3]$

図7は上記の従来方式の潤滑剤塗布装置の構成概略図である。

感光体1の回転方向に対して上流側に固形潤滑剤の塗布ローラ3 a が配置されており、下流側にクリーニングブレード8 a が配置されている。このため、前述したように、クリーニングブレード8 a により、塗布したばかりの潤滑剤が残留トナーと共に掻き取られて、潤滑剤の均一な塗布が行えないという不具合が生じやすい。さらに、残留トナーの付着により潤滑剤塗布ローラ3 a が汚れてしまい、長期に亘る潤滑剤の均一な塗布が困難となる。

#### $[0\ 0\ 1\ 4]$

次に、クリーニング後塗布のバターンにおける、異常画像発生のメカニズムを説明する

クリーニング後塗布を行えば、塗布後の潤滑剤が塗布ブラシ及びクリーニングブレードで掻き取られることがないので、前記の塗布後クリーニングの構成での不具合は防止できる。しかし、潤滑剤が塗布された被塗布部材表面がそのまま転写位置に進入して転写が行われると、表面の静止摩擦係数 $\mu$ が適正範囲にあるにも関わらず異常画像が発生してしまうことが分かった。これは、潤滑剤の粒子は塗布しただけで均一な層となるほど細かくないため、被塗布部材表面で層厚にムラが生じ、これがトナーの転写性に影響を及ぼしてしまうからである。被塗布部材表面に均一な潤滑剤層が形成できないと、表面の静止摩擦係数 $\mu$ が不均一になったり、トナーを転写するために十分低い値にならなかったりして転写ムラが生じ、虫喰い、画像ボケ、ボソツキ等の異常画像となる。

# [0015]

特許文献3で、中間転写方式の画像形成装置においてクリーニング後の被塗布部材表面に潤滑剤を塗布した後、この潤滑剤を均すことによって潤滑剤を均一に塗布できるようにし、虫喰い、画像ボケ、ボソツキ等の異常画像のない良好な転写画像を得る方式が提案されている。しかしながら、上記特許文献3では、球形化、小粒径化された重合トナーを用いた画像形成装置の場合の残留トナー除去に対応する記載となっていなかった。

### $[0\ 0\ 1\ 6\ ]$

感光体表面に残留して付着している上記重合トナーをクリーニングするために、感光体に潤滑剤を塗布して摩擦係数 $\mu$ を下げることが行われている。しかし、従来技術では、バー状の固形潤滑剤をブラシで削り取って感光体に塗布し、その後段でクリーニング装置によりトナーを回収していたため、感光体に塗布された潤滑剤がトナーと共に一部回収されてしまい効率的な潤滑剤の塗布ができなかった。このため、従来のトナーよりも小粒径で付着力の強い重合トナーのクリーニング性が悪化し、虫食い、画像ボケ、ボソツキ等の異常画像の発生原因となっていた。

#### $[0\ 0\ 1\ 7]$

また、潤滑剤として粉体を塗布する場合は、シールが困難であり輸送時などに漏れる可能性があり、密封性を上げると感光体駆動トルクが上がり、モータの肥大化やコストアップにつながるという問題があった。さらに、環境面でも工場の組立時やメンテナンス時などの密閉されていない状態で、過って落下させたりすると周囲を汚したり、不用意に吸い込んだりする危険があった。

#### [0018]

固形潤滑剤をブラシローラ側に加圧する加圧部材に板バネ、圧縮コイルバネ、ねじりコイルバネを用いると、上記ばねが、より圧縮、変形された状態の初期と、固形潤滑剤が消費されて上記ばねが伸張した状態の経時では、上記バネによる加圧力が異なっており、初期から経時に至る間に上記加圧力は低下していく。加圧力が小さくなると程潤滑剤の消費量は少なく、塗布量も少なくなるので、加圧力の大きい初期に比べ、加圧力の低い経時では潤滑剤の塗布量が低下してしまう。

したがって、経時の塗布不足、ムラと、初期の過剰塗布を両立させなくてはならない。

#### $[0\ 0\ 1\ 9]$

特許文献4には重合トナーのクリーニング性を向上させるために、潤滑剤の塗布量を画

像データ情報に基づいて制御する方式が記載されている。クリーニング後塗布の方式であるが、潤滑剤の塗布量均一化の方式において本発明とは異なる。

特許文献 5 には、トナーのクリーニング性を向上させるために、潤滑剤を均一に塗布する方式が記載されている。クリーニング後塗布の方式であるが、上記と同様に、潤滑剤の塗布量均一化の方式において本発明とは異なる。

[0020]

ここで、新品の潜像担持体表面の摩擦係数は高く、クリーニングシートの捲き込みが発生し易い状態となっている。クリーニングシートの巻き込みは、一般的な画像形成装置のクリーニングシートを用いた場合、像担持体の摩擦係数が 0.3 以下であればよい。この問題を解消するため、組立工程において、像担持体をユニットへ組み込む前に潤滑剤塗布装置によってあらかじめ摩擦係数を低くしておく製造方法を考えた。しかしながら、潤滑剤をただ塗布しても像担持体表面に圧着されていないため容易に掻き取られてしまい低摩擦係数を維持することは困難であった。

 $[0\ 0\ 2\ 1\ ]$ 

そこで、潤滑剤を圧着・伸展すべくシート状の弾性体を均し部材として塗布部材の下流に設置した。それにより低摩擦係数を比較的長く維持することが可能になったが、所謂カウンター姿勢で当接すると均し部材のエッジ部が磨耗し易かったり、摩擦係数のはらつきが大きくなったりした。そこで所謂トレーリング姿勢で当接したところ均し部材の寿命が延び、ばらつきも小さくなった(特許文献3)。しかしながら、トレーリング姿勢でも、角度を小さくして寝かせ過ぎてしまうと、当接圧を上げても圧着・伸展せず、低摩擦係数を維持できない。すなわち、シート状均し部材を用い、トレーリング姿勢で圧着・伸展させるためには、その角度が肝要であることを我々は発見した。特許文献6ないし8には、クリーニングブレードの当接角度、当接圧を規定した発明について記載されているが、本発明とは構成において異なるものである。

[0022]

【特許文献1】特開平10-260614号公報

【特許文献2】特開2003-57996号公報

【特許文献3】特開2001-305907号公報

【特許文献4】特開2002-244485号公報

【特許文献5】特開2000-330443号公報

【特許文献 6 】 特開 2 0 0 3 - 0 5 8 0 0 9 号公報

【特許文献7】特開2002-062740号公報

【特許文献8】特開2004-109234号公報

【発明の開示】

【発明が解決しようとする課題】

[0023]

本発明は、上記問題点に鑑みて、球形化、小粒径化されたトナーを用いた画像形成装置であっても、感光体表面全域において塗布ムラを生じることなく、また、過剰な塗布も防いで、適切な量の潤滑剤塗布が可能な構成をもつ潤滑剤塗布装置を提供することを課題とする。また、該潤滑剤塗布装置を搭載し、感光体表面のクリーニング性を向上させると共に、画像ボケ等の異常画像の発生を防いで、高品質の画像を出力する画像形成装置を提供する。

【課題を解決するための手段】

[0024]

上記課題を解決するための手段として、本発明は以下の特徴を有している。

請求項1に記載の潤滑剤塗布装置では、被塗布面に潤滑剤を塗布する潤滑剤塗布装置において、前記潤滑剤塗布装置は、潤滑剤塗布装置内に収納された潤滑剤と、潤滑剤を像担持体に塗布する塗布ローラと、像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材とを備えることを特徴とする。

請求項2に記載の潤滑剤塗布装置では、被塗布面に潤滑剤を塗布する潤滑剤塗布装置にお

いて、前記潤滑剤塗布装置は、潤滑剤塗布装置内に収納された固形潤滑剤と、前記固形潤滑剤に当接して表面に付着させた潤滑剤成分を像担持体に塗布する塗布ローラと、前記固形潤滑剤を塗布ローラに加圧当接させる付勢部材と、像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材とを備え、前記固形潤滑剤は前記塗布ローラに対し重力方向で下方に配置されると共に、前記付勢部材は前記固形潤滑剤に対し重力方向で下方に配置されることを特徴とする。

#### [0025]

請求項3に記載の潤滑剤塗布装置では、潤滑剤と、該潤滑剤を像担持体表面に塗布する塗布部材と、シート状に形成した弾性体のエッジ部をトレーリング姿勢で押し当て該像担持体表面上に塗布した該潤滑剤を圧着伸展させる均し部材と、を具備する潤滑剤塗布装置において、前記均し部材の当接角度が、10°以上であることを特徴とする。

請求項4に記載の潤滑剤塗布装置では、さらに、前記均し部材は、潤滑剤塗布装置に対して着脱可能であることを特徴とする。

請求項5に記載の潤滑剤塗布装置では、さらに、前記潤滑剤は、潤滑剤塗布装置に対して着脱可能であることを特徴とする。

請求項6に記載の潤滑剤塗布装置では、さらに、前記像担持体は転写部材であること特徴とする。

請求項7に記載の潤滑剤塗布装置では、さらに、前記像担持体は感光体であることを特徴とする。

#### [0026]

請求項8に記載の潤滑剤塗布装置では、潤滑剤と、該潤滑剤を像担持体表面に塗布する塗布部材と、シート状に形成した弾性体のエッジ部をトレーリング姿勢で押し当て該像担持体表面上に塗布した該潤滑剤を圧着伸展させる均し部材と、シート状に形成した弾性体のエッジ部をカウンター姿勢で押し当て該像担持体表面上の異物を除去するクリーニング部材と、を具備する潤滑剤塗布装置において、前記像担持体の移動方向に対して、上流側からクリーニング部材、塗布部材、均し部材の順に配置され、かつ該均し部材の当接角度が10°以上であることを特徴とする。

請求項9に記載の潤滑剤塗布装置では、潤滑剤と、該潤滑剤を像担持体表面に塗布する塗布部材と、シート状に形成した弾性体のエッジ部をトレーリング姿勢で押し当て該像担持体表面上に塗布した該潤滑剤を圧着伸展させる均し部材と、シート状に形成した弾性体のエッジ部をカウンター姿勢で押し当て該像担持体表面上の異物を除去するクリーニング部材と、を具備する潤滑剤塗布装置において、前記像担持体の移動方向に対して、上流側からクリーニング部材、塗布部材、均し部材の順に配置され、かつ該均し部材の当接線圧が0.01N/cm以上であることを特徴とする。

請求項10に記載の潤滑剤塗布装置では、請求項8または9に記載の潤滑剤塗布装置において、前記均し部材は、前記潤滑剤塗布装置に対して着脱可能であることを特徴とする。 請求項11に記載の潤滑剤塗布装置では、さらに、前記潤滑剤は、前記潤滑剤塗布装置に対して着脱可能であることを特徴とする。

請求項12に記載の転写装置では、前記像担持体が転写部材であり、請求項8ないし11 のいずれかに記載の潤滑剤塗布装置を着脱可能に具備することを特徴とする。

請求項13に記載のプロセスカートリッジでは、前記像担持体が感光体であり、請求項8 ないし11のいずれかに記載の潤滑剤塗布装置を着脱可能に具備することを特徴とする。 請求項14に記載のプロセスカートリッジでは、前記像担持体が感光体であり、該感光体 と、請求項8ないし11のいずれかに記載の潤滑剤塗布装置と、を一体的に具備すること を特徴とする。

#### [0027]

請求項15に記載の潤滑剤塗布装置では、請求項1ないし11のいずれかに記載の潤滑剤塗布装置において、前記潤滑剤塗布装置は、繊維状のブラシを有する塗布ローラと、ブレード状のエラストマーの均し部材とを備えることを特徴とする。

請求項16に記載の潤滑剤塗布装置では、請求項1ないし11、15のいずれかに記載の

潤滑剤塗布装置において、前記潤滑剤塗布装置は、複数のフィルムを有する塗布ローラを備えることを特徴とする。

請求項17に記載の潤滑剤塗布装置では、請求項1または2、15または16のいずれかに記載の潤滑剤塗布装置において、前記潤滑剤塗布装置は、均し部材が、トレーリング方式で被塗布面に当接していることを特徴とする。

請求項18に記載の潤滑剤塗布装置では、請求項1、3ないし11、15ないし17のいずれかに記載の潤滑剤塗布装置において、前記潤滑剤塗布装置は、粉体状の潤滑剤を収納していることを特徴とする。

#### [0028]

請求項19に記載のプロセスカートリッジでは、潜像を形成する像担持体と、少なくとも、像担持体表面に均一に帯電を施す帯電装置と像担持体表面に形成された潜像にトナーを供給し可視像化する現像装置と像担持体表面をクリーニングするクリーニング装置とから選択されるプロセス装置とを備えるプロセスカートリッジにおいて、前記プロセスカートリッジは、潤滑剤を像担持体に塗布する塗布ローラと、像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材とを有する潤滑剤塗布装置を備えることを特徴とする

請求項20に記載のプロセスカートリッジでは、さらに、前記プロセスカートリッジは、請求項1ないし18のいずれかに記載の潤滑剤塗布装置あるいは転写装置あるいはプロセスカートリッジを備えることを特徴とする。

#### [0029]

請求項21に記載の画像形成装置では、潜像を形成する像担持体と、像担持体表面に均一に帯電を施す帯電装置と、帯電した像担持体表面に画像データに基づいて露光し潜像を書き込む露光装置と、像担持体表面に形成された潜像にトナーを供給し可視像化する現像装置と、像担持体表面をクリーニングするクリーニング装置と、像担持体表面の可視像を直接又は中間転写体に転写した後に記録媒体に転写する転写装置と、記録媒体上のトナー像を定着させる定着装置とを備える画像形成装置において、前記画像形成装置は、潤滑剤を像担持体に塗布する塗布ローラと、像担持体上に塗布された潤滑剤を伸展させて薄層を形成する均し部材とを有する潤滑剤塗布装置を備えることを特徴とする。

請求項22に記載の画像形成装置では、さらに、前記画像形成装置は、請求項1ないし18のいずれかに記載の潤滑剤塗布装置あるいは転写装置あるいはプロセスカートリッジを備えることを特徴とする。

請求項23に記載の画像形成装置では、さらに、前記画像形成装置は、感光体を複数並列 に配置した所謂タンデム型の画像形成装置であることを特徴とする。

#### [0030]

請求項24に記載の画像形成装置では、さらに、前記潤滑剤塗布装置は、像担持体移動方向に対して、クリーニング装置の下流側に配置されていることを特徴とする。

請求項25に記載の画像形成装置では、さらに、前記潤滑剤塗布装置に用いられる潤滑剤が、粉体状であって、体積平均粒径が、0.1~3.0mmの範囲にあることを特徴とする。

請求項26に記載の画像形成装置では、さらに、前記潤滑剤は、脂肪酸金属塩であって、前記脂肪酸金属塩の金属が、亜鉛、鉄、カルシウム、アルミニウム、リチウム、マグネシウム、ストロンチウム、バリウム、セリウム、チタン、ジルコニウム、鉛、マンガンの中から選択される金属であって、前記脂肪酸金属塩の脂肪酸が、ラウリル酸、ステアリン酸、バルミチン酸、ミステリン酸、オレイン酸の中から選択される少なくとも1以上の脂肪酸であることを特徴とする。

#### $[0\ 0\ 3\ 1]$

請求項27に記載の画像形成装置では、さらに、前記画像形成装置は、像担持体の摩擦係数μsを0.3以下にすることを特徴とする。

請求項28に記載の画像形成装置では、さらに、前記画像形成装置は、体積平均粒径が10μm以下で、体積平均粒径と個数平均粒径との比(分散度)が、1.00ないし1.4

0の範囲にあるトナーを用いることを特徴とする。

請求項29に記載の画像形成装置では、さらに、前記画像形成装置は、平均円形度が0.93ないし1.00の範囲にあるトナーを用いることを特徴とする。

請求項30に記載の画像形成装置では、さらに、前記画像形成装置は、SF-1が100ないし180であって、SF-2が100ないし180の範囲にあるトナーを用いる。ことを特徴とする。

請求項31に記載の画像形成装置では、さらに、前記画像形成装置は、外観形状がほぼ球形状であって、短軸と長軸との比(r 2/r 1)が0.5 $\sim$ 1.0の範囲で、厚さと短軸との比(r 3/r 2)が0.7 $\sim$ 1.0の範囲であって、長軸r 1 $\geq$ 短軸r 2 $\geq$ 厚さr 3の関係を満足するトナーを用いることを特徴とする。

請求項32に記載の画像形成装置では、さらに、前記トナーは、少なくとも、窒素原子を含む官能基を有するポリエステルプレポリマー、ポリエステル、着色剤、離型剤を含むトナー組成物を水系媒体中で樹脂微粒子の存在下で架橋及び/又は伸長反応させることを特徴とする。

#### [0032]

請求項33に記載のトナーでは、潜像を形成する像担持体と、像担持体表面に均一に帯電を施す帯電装置と、帯電した像担持体表面に画像データに基づいて露光し、潜像を書き込む露光装置と、像担持体表面に形成された潜像にトナーを供給し、可視像化する現像装置と、像担持体表面をクリーニングするクリーニング装置とを備え、像担持体表面の可視像を直接又は中間転写体に転写した後に記録媒体に転写する転写装置と、記録媒体上のトナー像を定着させる定着装置とを備え、かつ、ブレードで収容する潤滑剤で像担持体上に薄層を形成する潤滑剤塗布装置を前記クリーニング装置と前記帯電装置との間に設ける画像形成装置に用いられるトナーであって、体積平均粒径が10μm以下で、体積平均粒径と個数平均粒径との比(分散度)が、1.00ないし1.40の範囲にあることを特徴とする。

請求項34に記載のトナーでは、さらに、前記トナーは、平均円形度が0.93ないし1.00の範囲にあることを特徴とする。

請求項35に記載のトナーでは、さらに、前記トナーは、SF-1が100ないし180であって、SF-2が100ないし180の範囲にあることを特徴とする。

請求項36に記載のトナーでは、さらに、前記トナーは、外観形状がほぼ球形状であって、短軸と長軸との比(r2/r1)が0.5 $\sim$ 1.0の範囲で、厚さと短軸との比(r3/r2)が0.7 $\sim$ 1.0の範囲であって、長軸r1 $\geq$ 短軸r2 $\geq$ 厚さr3の関係を満足することを特徴とする。

請求項37に記載のトナーでは、さらに、前記トナーは、少なくとも、窒素原子を含む官能基を有するポリエステルプレポリマー、ポリエステル、着色剤、離型剤を含むトナー組成物を水系媒体中で樹脂微粒子の存在下で架橋及び/又は伸長反応させることを特徴とする。

#### 【発明の効果】

#### $[0\ 0\ 3\ 3]$

以上説明したように、上記解決するための手段により、本発明の潤滑剤塗布装置では、 感光体表面に対する長期間に亘る効率的な潤滑剤の塗布を可能とする。

さらに、本発明の潤滑剤塗布装置では、感光体表面の摩擦係数を一定の低い値に保つために必要な潤滑剤の消費量を低減させることができる。

特に、潤滑剤の設置位置を塗布ローラの下側に配置することにより、初期から経時の潤滑材塗布量の変動を抑えることができる。

さらに、本発明の転写装置では、初期ブレード巻き込みのない転写装置を提供することができる。

さらに、本発明のプロセスカートリッジおよび画像形成装置では、感光体のクリーニング不良による異常画像のない良好な画像を提供することができる。

# 【発明を実施するための最良の形態】

### [0034]

以下に、本発明の実施の形態を図面に基づいて説明する。

図1は、本発明に係る画像形成装置の概略構成を示す図である。

画像形成装置は、その内部の略中央に中間転写ベルト56を備えている。中間転写ベルト56は、ポリイミドやポリアミド等の耐熱性材料からなり、中抵抗に調整された基体からなる無端状ベルトで、4つのローラ52、53、54、55に掛け回して支持され、図中矢印A方向に回転駆動される。中間転写ベルト56の下方にはイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色トナーに対応した4つの作像ユニットが中間転写ベルト56のベルト面に沿って並んでいる。

#### [0035]

図7は、4つの作像ユニットのうち1つを拡大して示す図であり、従来の潤滑剤塗布装置の構成を示す図であるが、本発明の構成と基本的には同様であるため、本図で概略構成を説明する。いずれの作像ユニットでも同様の構成であるので、この図においては、色の区別を示すY、M、C、Kの表示を省略する。各作像ユニットは感光体1Y、1M、1C、1Kを有し、各感光体1の周りには、感光体1表面に電荷を与える帯電装置2、感光体1表面に形成された潜像を各色トナーで現像してトナー像とする現像装置4、感光体1表面に潤滑剤を塗布する潤滑剤塗布装置3、トナー像転写後の感光体1表面のクリーニングをするクリーニング装置8がそれぞれ配置されている。

また、図1を参照すると、4つの作像ユニットの下方には、帯電した各感光体の表面に各色の画像データに基づいて露光をし、潜像を形成する露光装置9が備えられている。

中間転写ベルト56を挟んで、各感光体1と対向する位置には、感光体1上に形成されたトナー像を中間転写ベルト56上に一次転写する一次転写ローラ51がそれぞれ配置されている。一次転写ローラ51は、図示しない電源に接続されており、所定の電圧が印加される。

#### [0036]

中間転写ベルト56のローラ52で支持された部分の外側には、二次転写ローラ61が 圧接されている。二次転写ローラ61は、図示しない電源に接続されており、所定の電圧 が印加される。二次転写ローラ61と中間転写ベルト56との接触部が二次転写部であり 、中間転写ベルト56上のトナー像が転写紙に転写される。

中間転写ベルト56のローラ55で支持された部分の外側には、二次転写後の中間転写ベルト56の表面をクリーニングする中間転写ベルトクリーニング装置57が設けられている。

二次転写部の上方には、転写紙上のトナー像を転写紙に半永久的に定着させる定着装置70が備えられている。定着装置70は、内部にハロゲンヒータを有する加熱ローラ72及び定着ローラ73に巻き掛けられた無端の定着ベルト71と、定着ベルト71を介して定着ローラ73に対向、圧接して配置される加圧ローラ74とから構成されている。

画像形成装置の下部には、転写紙を載置し、二次転写部に向けて転写紙を送り出す給紙装置20が備えられている。

# [0037]

次に、図7で本画像形成装置の特徴をより詳細に説明する。

感光体 l は、有機感光体であり、ポリカーボネート系の樹脂で表面保護層が形成されている。

帯電装置2は、帯電部材として導電性芯金の外側に中抵抗の弾性層を被覆して構成される帯電ローラ2aを備える。帯電ローラ2aは、図示しない電源に接続されており、所定の電圧が印加される。帯電ローラ2aは、感光体1に対して微小な間隙をもって配設される。この微小な間隙は、例えば、帯電ローラ2aの両端部の非画像形成領域に一定の厚みを有するスペーサ部材を巻き付けるなどして、スペーサ部材の表面を感光体1表面に当接させることで、設定することができる。また、帯電ローラ2aには、帯電ローラ2a表面に接触してクリーニングする帯電クリーニング部材2bが設けられている。

#### [0038]

現像装置4は、感光体1と対向する位置に、内部に磁界発生手段を備える現像スリーブ4 a が配置されている。現像スリーブ4 a の下方には、図示しないトナーボトルから投入されるトナーを現像剤と混合し、攪拌しながら現像スリーブ4 a へ汲み上げるための2つのスクリュー4 b が備えられている。現像スリーブ4 a によって汲み上げられるトナーと磁性キャリアからなる現像剤は、ドクターブレード4 c によって所定の現像剤層の厚みに規制され、現像スリーブ4 a に担持される。現像スリーブ4 a は、感光体1 との対向位置において同方向に移動しながら、現像剤を担持般送し、トナーを感光体1 の潜像面に供給する。

尚、図1においては、二成分現像方式の現像装置4の構成を示したが、これに限るものではなく、一成分現像方式の現像装置であっても適用可能である。

# [0039]

潤滑剤塗布装置 3 は、固定されたケースに収容された固形潤滑剤 3 b と、固形潤滑剤 3 b に接触して潤滑剤を削り取り、感光体 1 に塗布するブラシローラ 3 a とを備える。固形潤滑剤 3 b は、直方体状に形成されており、加圧部材 3 c によってブラシローラ 3 a 側に付勢されている。加圧部材 3 c は、板バネ、圧縮バネ等のバネがよく、特に図に示すように圧縮バネを好適に用いることができる。固形潤滑剤 3 b はブラシローラ 3 a によって削り取られ消耗し、経時的にその厚みが減少するが、加圧部材 3 c で加圧されているために常時ブラシローラ 3 a に当接している。ブラシローラ 3 a は、回転しながら削り取った潤滑剤を感光体 1 表面に塗布する。

この潤滑剤塗布装置3は、本発明において以下に図2で説明する様にクリーニング装置8の内部に設けられる。

# [0040]

ここで、図2のように固形潤滑剤3bがブラシローラ3aの下方から加圧、当接される場合と、図7のように側方から加圧、当接される場合と、図示しない上方から加圧、当接される場合の加圧力と初期から経時(寿命)までの加圧力偏差(初期加圧力ー経時加圧力)を求めた結果を表1に示す。

# 【表 1】

| 初期 | ばね加圧力<br>潤滑剤自重 | A<br>B |
|----|----------------|--------|
|    | ばね加圧力          | C      |
| 経時 | 潤滑剤自重          | D      |



| 固形潤滑剤の加           | E方向 | ブラシの下方から | ブラシの側方から | ブラシの上方から |
|-------------------|-----|----------|----------|----------|
| 潤滑剤加圧力            | 初期  | A-B      | Α        | A+B      |
|                   | 経時  | C-D      | С        | C+D      |
| 潤滑剤加圧力偏差<br>(初期−経 |     | A-B-C+D  | A-C      | A+B-C-D  |

固形潤滑剤3bの加圧方向によって、ブラシローラ3aにかかる加圧力、加圧力偏差が異なることがわかる。

# [0041]

では、実際の塗布装置では、加圧力、加圧力偏差がどのようになっているか説明する

機種 G と機種 J の 2 機種で比較した結果を表 2 に示す。加圧力偏差は、固形潤滑剤 3 b を下から加圧した場合に対し上方から加圧した場合で、機種 Gでは 4 2 %、機種 J では 2 2 %大きくなっている。

# 【表2】

|                      |           | 機種G<br>(A4機) | 機種J<br>(A3機) |
|----------------------|-----------|--------------|--------------|
| 初期                   | ばね加圧力(mN) | 1480         | 1800         |
| ו <del>על</del> נעדן | 潤滑剤自重(mN) | 167          | 363          |
| 奴吐                   | ばね加圧力(mN) | 1140         | 900          |
| 経時                   | 潤滑剤自重(mN) | 108          | 274          |



| 固形潤滑     | 剤の加圧  | E方向  | ブラシの<br>下方から | ブラシの<br>側方から | ブラシの<br>上方から |
|----------|-------|------|--------------|--------------|--------------|
|          | 機種G   | (mN) | 281          | 340          | 399          |
| 潤滑剤加圧力偏差 | (A4機) | (%)  | 100          | 121          | 142          |
| (初期-経時)  | 機種J   | (mN) | 812          | 900          | 988          |
|          | (A3機) | (%)  | 100          | 3111         | 122          |

機種により潤滑剤の必要塗布量が異なり、レイアウト上の制約から使用する加圧バネの乗数も異なるので、単純に上記偏差の大きさを比較することはできないが、加圧力偏差が大きいと潤滑剤の塗布量変動量が大きくなるため、初期の過剰塗布か、または、経時の塗布不足を引き起こす可能性があり、加圧力偏差が小さい程安定塗布を実現することができる

よって、図2のように固形潤滑剤3bがブラシローラ3aの下方から加圧されている配置の方が側方、上方から加圧されるよりも潤滑剤の安定塗布に寄与する。

# [0042]

図2で本発明のクリーニング装置8の構成を説明する。

クリーニング装置 8 は、クリーニングブレード 8 a、潤滑剤均しブレード 8 b、支持部材 8 c、ハウジング 8 dを備える。クリーニングブレード 8 a は、ウレタンゴム、シリコーンゴム等のゴムを板状に形成してなり、そのエッジが感光体 1 表面に当接するようにして設けられ、転写後に残留する感光体 1 上のトナーを除去する。クリーニングブレード 8 a よび潤滑剤均しブレード 8 b は、金属、プラスチック、セラミック等からなる支持部材 8 c に貼着されて支持され、後に詳細に説明するが、感光体 1 表面に対し概略図 2 に示す角度で設置される。

# [0043]

潤滑剤塗布装置3は、クリーニング装置8の内部に配置され、感光体1移動方向上流側にクリーニングブレード8a、同下流側に潤滑剤均しブレード8bがそれぞれ配設される

クリーニングブレード8aにより残留トナーが除去されてクリーンな状態の感光体1の表面に、潤滑剤塗布装置3によって塗布された潤滑剤を、その後に潤滑剤均しブレード8bが感光体1表面を摺擦することで引き延ばし、感光体1表面に潤滑剤の薄層を形成することができる。

# [0044]

また、潤滑剤塗布装置3は、感光体1表面に潤滑剤を塗布するのみならず、例えば、図1の中間転写ベルト56表面に潤滑剤を塗布する装置としても使用することができる。この場合、中間転写ベルトクリーニング装置57に隣接して潤滑剤塗布装置3を設けるか、あるいは中間転写ベルトクリーニング装置57に含んで構成することができる。中間転写ベルトクリーニング装置57よりも中間転写ベルト56移動方向上流側に潤滑剤塗布装置3を設け、中間転写ベルト56表面に潤滑剤を塗布し、それを中間転写ベルトクリーニング装置57に備えられたクリーニングブレードにより引き延ばして、潤滑剤の薄層を形成する。これにより、二次転写ローラ61とのニップ部において二次転写されずに中間転写ベルト56表面に残存するトナー等の付着物を良好にクリーニングすることができる。

#### [0045]

さらに、上記の潤滑剤塗布装置3を、感光体1と、帯電装置2、現像装置4及びクリーニング装置8から選択される任意の手段とを含んで一体に支持し、画像形成装置本体に着脱自在に形成したプロセスカートリッジとすることができる。プロセスカートリッジ内における潤滑剤塗布装置3の設置位置は、クリーニング装置8と一体とする場合は、既に説明したように、クリーニングブレード8aよりも感光体1移動方向下流側とする。本プロセスカートリッジによって、感光体1表面のクリーニング性能を長期に亘って維持し、画質の劣化を生じさせることのないプロセスカートリッジとすることができる。

#### $[0\ 0\ 4\ 6]$

次に、潤滑剤塗布装置3についてより詳細に説明する。図2は、本実施形態にかかる潤滑剤塗布装置3近傍の部分拡大図である。潤滑剤塗布装置3は、感光体用クリーニング装置8内に設けられ、固形潤滑剤3bと、この固形潤滑剤3bを感光体1に塗布するためのブラシ状部材としてのブラシローラ3aとを備えている。固形潤滑剤3bは、ステアリン酸亜鉛を主成分とする潤滑油添加剤を溶解した後冷却固化させたものであり、バー状に成型されている。固形潤滑剤3bは、潤滑剤保持部材3dに保持され、感光体クリーニング装置のハウジング8dに取り付けた加圧バネ3cによって潤滑剤保持部材3dを介して固形潤滑剤3bをブラシローラ3a側に押し当てている。ブラシローラ3aは感光体1に当接して設けられており、ブラシローラ3aの回転によって、固形潤滑剤3bをブラシローラ3a側に掻き取り、ブラシローラ3aに付着した潤滑剤が感光体1との当接部から感光体1表面に付着する。

# [0047]

図3は、潤滑剤塗布装置3の固形潤滑剤3bの構成を示す図であり、長手方向を正面として見た図である。

#### [0048]

# [0049]

尚、図3では加圧部材3 c を 4 つ設けた例を示したが、本発明においては、2 つ以上、より好ましくは3 つ以上の加圧部材3 c を設けるのがよい。加圧部材3 c が 2 つの場合、例えば長手方向両端部に加圧部材3 c をそれぞれ配置すると、中央領域に位置する加圧部材3 c がないために、長手方向の圧バランスが十分にとれず、感光体1 長手方向中央領域に塗布ムラを生じやすくなる。したがって、3 つ以上の加圧部材3 c を長手方向に並べて設けることで、長手方向全域で圧バランスをとり、潤滑剤のより均一な塗布が可能となる

ブラシローラ3 a の回転方向は、図 2 に示すように、感光体 1 移動方向に対し順方向であることが好ましいが、逆方向に回転してもよい。

#### $[0\ 0\ 5\ 0\ ]$

上記固形潤滑剤3bとしては、乾燥した固体疎水性潤滑剤を用いることが可能であり、ステアリン酸亜鉛の他にも、ステアリン酸バリウム、ステアリン酸鉛、ステアリン酸ストロステアリン酸コバルト、ステアリン酸銅、ステアリン酸ストロム、ステアリン酸カルシウム、ステアリン酸カドミウム、ステアリン酸を持つものを用いることができる。また、同じ脂肪酸基であるオレイン酸亜鉛、オレイン酸マンガン、オレイン酸鉄、オレイン酸コバルト、オレイン酸鉛イン酸亜鉛、オレイン酸銅、や、バルチミン酸、亜鉛バルチミン酸コバルト、オレイン酸のガルシウム、ボルチミン酸のアルミニウム、バルチミン酸カルシウムを用いてもよい。他にも、カブリル酸鉛、カブロン酸鉛、リノレン酸亜鉛、リノレン酸コバルト、リノレン酸カルシウム、及びリコリノレン酸カドミウム等の脂肪酸リカレン酸コバルト、リノレン酸カルシウム、及びリコリノレン酸カドミウム等の脂肪酸、脂肪酸の金属塩なども使用できる。さらに、キャンデリラワックス、カルナウバワックス、ライスワックス、木ろう、オオバ油、みつろう、ラノリンなどのワックス等も使用できる。

#### $[0\ 0\ 5\ 1]$

次に、本実施形態の特徴部について説明する。本実施形態においては、上記ブラシローラ3aによる潤滑剤塗布位置に対して移動方向の上流側の感光体表面にクリーニング手段としてのクリーニングブレード8aを当接させ、かつ、潤滑剤塗布位置に対して移動方向の下流側の感光体表面に潤滑剤均し手段としての潤滑剤均しブレード8bを当接させている。また、本実施形態においては、図4に示すように、クリーニングブレード8aを感光体1表面に対してカウンター方向から、潤滑剤均しブレード8bを感光体1表面に対して

トレーリング方向から当接させている。これら、クリーニングブレード8a及び潤滑剤均しブレード8bは、どちらも弾性体であるゴムから構成されているものである。

# [0052]

以上の構成において、表面に担持するトナー像を転写材に転写した後の感光体表面に残留した残留トナーは、先ず、クリーニングブレード8aによって除去される。これによってクリーンな状態となった感光体表面に、ブラシローラ3aが当接し、潤滑剤が塗布される。塗布された潤滑剤は、感光体表面移動方向下流側で潤滑剤均しブレード8bの当接位置を通過する際に、表面が均されて一様に押し広げられ、厚みの均一な潤滑剤の層となる

以上のような構成からなる潤滑剤塗布装置3およびクリーニング装置8を画像形成装置に備えることにより、感光体1表面に適切な量の潤滑剤が塗布され、また、塗布ムラを生じることなく、潤滑剤の均一な薄膜を形成することができる。

# [0053]

上記のように、残留トナーをクリーニングした後、潤滑剤を塗布し、更に潤滑剤を均して均一な層状にすることによって、潤滑剤塗布後のみに感光体をクリーニングする塗布後クリーニングの場合や、クリーニングした後に潤滑剤を塗布するクリーニング後塗布の場合に生じる上述の不具合をどちらも防止することができる。即ち、塗布後クリーニングを行うことによる潤滑剤の塗布量の偏りや、表面の静止摩擦係数の偏りが生じるのを防止でき、クリーニング後塗布による不均一な潤滑剤層に起因して生じる、虫喰い、画像ボケ、ボソツキ等の異常画像の発生を防止することができる。それと共に、ブラシローラ3aの塗布機能も長期に渡って維持することができる。また、潤滑剤均しブレード8bにゴムを用いているので、潤滑剤均しブレード8bが当接された状態で感光体を駆動しても、感光体表面が傷つくことがない。

本発明では、クリーニングブレード8a及び感光体1表面の摩耗を防ぐことができ、球形化、小粒径化されたトナーを用いた場合であっても、感光体1表面に残存する転写残トナー等のクリーニングを良好に行うことができる。また、潤滑剤の過剰な塗布により、感光体1表面が湿度の影響を受けて発生する画像ボケを防ぐことができる。

# [0054]

また、本実施形態では、クリーニングブレード8aを用いて感光体 1 表面をクリーニングするものであるが、クリーニングブレード8aに代えて中抵抗から低抵抗の導電性ブラシにバイアス印加を行ったクリーニングブラシを用いるようにしても良い。

また、本発明は上記実施形態に限定されることなく、本発明の技術思想を利用する全ての装置に適用可能である。感光体あるいは中間転写体はベルト形状、ローラ形状の何れでも良い。

#### [0055]

本実施形態では潤滑剤均しブレード8bを感光体1の表面にトレーリング方式にて当接させ、潤滑剤の塗布状態の均一化を行い、従来方式との比較試験を行った。その結果、本発明の効果が確認された。

(本発明の効果確認試験)

#### 本発明

第 1 ブレード (上流側:カウンター方式、ブレード種:ウレタンブレード、厚: 1.3 mm)

潤滑剤塗布装置 (ブラシ種:絶縁PET、潤滑剤加圧1250mNX4)

第 2 ブレード (下流側:トレーリング方式、ブレード種:ウレタンブレード、厚: 1 . 3 m m )

#### 従来方式

第1ブレード(上流側:なし))

潤滑剤塗布装置(ブラシ種:絶縁PET、潤滑剤加圧1250mN×4)

第2ブレード(下流側:カウンター方式、ブレード種:ウレタンブレード、厚:1.3 mm) 上記条件で潤滑剤の塗布を行い、重合トナーを使用した画像面積率 50%の画像形成条件にて、感光体表面摩擦係数  $\mu=0$ . 2 を保つために必要な潤滑剤の塗布量を比較した。その結果、

本発明 0.04g/km

従来方式 0.35g/km

となり、塗布後クリーニング方式の従来方式に比べてクリーニング後塗布+均しブレード 方式の本発明が感光体表面の摩擦係数低下に効果の高いことが確認された。

#### [0056]

以下に、本発明の実施例について説明する。

図8は、本発明の潤滑剤塗布装置を用いた低摩擦係数の像担持体の製造イメージを示す図である。図9は、本発明の潤滑剤塗布装置とその要部であるシート状均し部材の「角度」と「圧着・伸展」のイメージを示す図である。

# [実施例1]

シート状均し部材は、バンドー化学(株式会社)製の厚さ  $2 \, \text{mm}$ となるウレタンゴムシートを用い、感光体をセットした時に当接圧  $25\pm10$ (g/cm)、当接角度は  $0\sim90$ ( $^\circ$ )まで変化できるようにとなるようトレーリング姿勢で設置し、塗布ブラシには東英産業(株式会社)製の毛足長さ  $3 \, \text{mm}$ の導電ナイロンブラシを用い、感光体に対して食い込み量  $1 \, \text{mm}$ となるよう設置し、潤滑剤塗布装置を作成した。この潤滑剤塗布装置を用い、感光体に十分潤滑剤が塗れるまで(おおよそ  $5\sim10$  分間)空回しを行い、その感光体を用いてプロセスカートリッジを作成した。

これらのプロセスカートリッジを(株式会社)リコー製ImagioNeoC325へ投入し、35C80%環境、A4サイズ白紙画像横通紙、の条件で連続通紙をI000枚行った。結果は、下表の通り当接角度がI00以下の場合はクリーニングシートの巻込みが発生し、その他は発生しなかった。

# 【表3】

| 当接角度(°)   | 5 | 8 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
|-----------|---|---|----|----|----|----|----|----|----|----|
| シート巻込み発生の | × | × | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 有無        |   |   |    |    | İ  |    |    |    |    |    |

# 0057

#### [ 実施例 2 ]

シート状均し部材は、北辰工業(株式会社)製の厚さ1.6 mmとなるウレタンゴムシートを用い、感光体をセットした時に当接圧55±10(g/cm)、当接角度は0~90(°)まで変化できるようにとなるようトレーリング姿勢で設置し、塗布ブラシには(株式会社)槌屋製の毛足長さ2.5 mmの導電ナイロンブラシを用い、感光体に対して食い込み量0.5 mmとなるよう設置し、潤滑剤塗布装置を作成した。この潤滑剤塗布装置を用い、感光体に十分潤滑剤が塗れるまで(おおよそ5~10分間)空回しを行い、その感光体を用いてプロセスカートリッジを作成した。

これらのプロセスカートリッジを(株式会社)リコー製ImagioNeoC325へ投入し、35C80%環境、A4 サイズ白紙画像横通紙、の条件で連続通紙を1000 枚行った。結果は、下表の通り当接角度が $10^\circ$  以下の場合はクリーニングシートの巻込みが発生し、その他は発生しなかった。

#### 【表4】

| 当接角度(゜)   | 5 | 8 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
|-----------|---|---|----|----|----|----|----|----|----|----|
| シート巻込み発生の | × | × | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 有無        |   |   |    |    |    |    |    |    |    |    |

#### 0058

#### [実施例3]

シート状均し部材は、東洋ゴム工業(株式会社)製の厚さ1.5mmとなるウレタンゴム

シートを用い、感光体をセットした時に当接圧  $20 \pm 10$ (g/cm)、当接角度は $0\sim90$ (°)まで変化できるようにとなるようトレーリング姿勢で設置し、塗布ブラシには(株式会社)槌屋製の毛足長さ 3mmの導電ナイロンブラシを用い、感光体に対して食い込み量 1mmとなるよう設置し、潤滑剤塗布装置を作成した。この潤滑剤塗布装置を用い、感光体に十分潤滑剤が塗れるまで(おおよそ  $5\sim10$ 分間)空回しを行い、その感光体を用いてプロセスカートリッジを作成した。

これらのプロセスカートリッジを(株式会社)リコー製ImagioNeoC325へ投入し、35C80%環境、A4 サイズ白紙画像横通紙、の条件で連続通紙を1000 枚行った。結果は、下表の通り当接角度が $10^\circ$  以下の場合はクリーニングシートの巻込みが発生し、その他は発生しなかった。

# 【表5】

| 当接角度(°)   | 5 | 8 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
|-----------|---|---|----|----|----|----|----|----|----|----|
| シート巻込み発生の | × | × | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 有無        |   |   |    |    |    |    |    |    |    |    |

0059

#### [ 実施例 4 ]

クリーニングシートは、バンドー化学(株式会社)製の厚さ2mmとなるウレタンゴムシートを用い、感光体に対して当接圧20±10(g/cm)、当接角75±10(゚)となるよう設置し、塗布ブラシには東英産業(株式会社)製の毛足長さ3mmの導電ナイロンブラシを用い、感光体に対して食い込み量1mmとなるよう設置し、シート状均し部材には、東洋ゴム工業(株式会社)製の厚さ1.5mmとなるウレタンゴムシートを用い、当接角15±5(゚)、当接線圧は種々変化させプロセスカートリッジを作成した。

これらのプロセスカートリッジを(株式会社)リコー製ImagioNeoC325へ投入し、実験室環境下において、A4 サイズ白紙画像横通紙、の条件で連続通紙を1000 枚行い、機内汚染の有無を確認した。結果は、下表の通り当接線圧が0.01 (N/cm) 以下の場合は機内汚染が確認され、その他は問題なかった。

# 【表 6】

| 当<br>(N/ | 接<br>/cm) | 線   | 圧         | 0.00 | 0.00<br>5 | 0.01 | 0.05 | 0.1 | 0.5 | 1.0 | 5.0 |
|----------|-----------|-----|-----------|------|-----------|------|------|-----|-----|-----|-----|
| 機        | 内污鱼       | そのす | <b>手無</b> | ×    | ×         | 0    | 0    | 0   | 0   | 0   | 0   |

0060

#### [ 実施例5]

クリーニングシートは、北辰工業(株式会社)製の厚さ2mmとなるウレタンゴムシートを用い、感光体に対して当接圧25±10(g/cm)、当接角70±10(゚)となるよう設置し、塗布ブラシには(株式会社)槌屋製の毛足長さ3mmの絶縁ポリエステルブラシを用い、感光体に対して食い込み量1mmとなるよう設置し、シート状均し部材には、東洋ゴム工業(株式会社)製の厚さ1mmとなるウレタンゴムシートを用い、当接角25±5(゚)、当接線圧は種々変化させプロセスカートリッジを作成した。

これらのプロセスカートリッジを(株式会社)リコー製 I magioNeoC325へ投入し、実験室環境下において、A4サイズ白紙画像横通紙、の条件で連続通紙を1000枚行い、機内汚染の有無を確認した。結果は、下表の通り当接線圧が0.01(N/cm)以下の場合は機内汚染が確認され、その他は問題なかった。

#### 【表 7 】

| 当 接 線 圧<br>(N/cm) | 0.00<br>1 | 0.00<br>5 | 0.01 | 0.05 | 0.1 | 0.5 | 1.0 | 5.0 |
|-------------------|-----------|-----------|------|------|-----|-----|-----|-----|
| 機内汚染の有無           | ×         | ×         | 0    | 0    | 0   | 0   | 0   | 0   |

 $[0\ 0\ 6\ 1]$ 

# [ 実施例 6 ]

クリーニングシートは、東洋ゴム工業(株式会社)製の厚さ1.6 mmとなるウレタンゴムシートを用い、感光体に対して当接圧55±10(g/cm)、当接角70±10(°)となるよう設置し、途布ブラシには(株式会社)槌屋製の毛足長さ2.5 mmの絶縁ポリエステルブラシを用い、感光体に対して食い込み量0.5 mmとなるよう設置し、シート状均し部材には、バンドー化学(株式会社)製の厚さ1.3 mmとなるウレタンゴムシートを用い、当接角22±5(°)、当接線圧は種々変化させプロセスカートリッジを作成した。

これらのプロセスカートリッジを(株式会社)リコー製ImagioNeoC325へ投入し、実験室環境下において、4 サイズ白紙画像横通紙、の条件で連続通紙を1000 枚行い、機内汚染の有無を確認した。結果は、下表の通り当接線圧が0.01(N/cm)以下の場合は機内汚染が確認され、その他は問題なかった。

# 【表8】

| 当 接線 圧<br>(N/cm) | 0.00<br>1 | 0.00<br>5 | 0.01 | 0.05 | 0.1 | 0.5 | 1.0 | 5.0 |
|------------------|-----------|-----------|------|------|-----|-----|-----|-----|
| 機内汚染の有無          | ×         | ×         | 0    | 0    | 0   | 0   | 0   | 0   |

# [0062]

本発明の画像形成装置において、現像装置 4 で使用するトナーは、体積平均粒径  $3\sim8$   $\mu$  m であり、体積平均粒径(D  $\nu$  )と個数平均粒径(D n )との比(D  $\nu$  / D n )が 1 . 0  $0 \sim 1$  . 4 0 の範囲にあることが好ましい。

小粒径のトナーを用いることで、潜像に対して緻密にトナーを付着させることができる。しかしながら、本発明の範囲よりも体積平均粒径が小さい場合、二成分現像剤では現像装置における長期の攪拌において磁性キャリアの表面にトナーが融着し、磁性キャリアの帯電能力を低下させ、一成分現像剤として用いた場合には、現像ローラへのトナーのフィルミングや、トナーを薄層化する為のブレード等の部材へのトナーの融着を発生させやすくなる。逆に、トナーの体積平均粒径が本発明の範囲よりも大きい場合には、高解像で高画質の画像を得ることが難しくなると共に、現像剤中のトナーの収支が行われた場合にトナーの粒径の変動が大きくなる場合が多い。

#### [0063]

また、粒径分布を狭くすることで、トナーの帯電量分布が均一になり、地肌かぶりの少ない高品位な画像を得ることができ、また、転写率を高くすることができる。しかしながら、Dv/Dnが1.40を超えると、帯電量分布が広くなり、解像力も低下するため好ましくない。

尚、トナーの平均粒径及び粒度分布は、コールターカウンターTA-II、コールターマルチサイザーII(いずれもコールター社製)を用いて測定することができる。本発明においてはコールターカウンターTA-II型を用い個数分布、体積分布を出力するインターフェイス(日科技研社製)及びバーソナルコンピュータ(PC9801:NEC社製)に接続し、測定した。

#### [0064]

上記のようなトナーは、トナーに内添、あるいは外添されている離型性を向上させるためのワックスや、流動性を向上させるための無機微粒子等がトナー中に占める割合が、小粒径化されたことで従来のトナーに比べ高くなっている。そして、これらの添加剤が感光体1上に発生する付着物質の要因となっている。そこで、本発明の潤滑剤塗布装置3を搭載することにより、感光体1表面全域にわたって均一な潤滑剤の薄膜を形成させ、これらの付着物質の感光体1表面への付着力を低減させることができる。また、感光体1表面とクリーニング装置8のクリーニングブレード8a、潤滑剤均しブレード8bとの間に働く摩擦力を低減させてクリーニングを良好に行うことができる。

#### $[0\ 0\ 6\ 5]$

本発明のクリーニング装置8を搭載することの効果が大きく得られる画像形成装置は、

現像手段4で使用するトナーが、平均円形度0.93以上と円形度の高いトナーである場合である。円形度の高いトナーは、ブレード方式のクリーニングでは感光体1とクリーニングブレードの隙間に入り込み、すり抜けやすい。クリーニングブレードの感光体1に対する当接圧を上げると、感光体1のダメージが大きくなる。また、ブラシローラにトナーの帯電極性とは逆極性のバイアスを印加し、静電的にトナーを回収する方法においても、ブラシローラからのトナーの除去が困難なことから、徐々に静電的なトナー除去能力が低下する傾向にある。

しかしながら、本発明のクリーニング装置8により、上記のような平均円形度の高いトナーを用いる場合であっても、以下のようにして効率よく感光体1表面をクリーニングすることができる。すなわち、感光体1上の残存トナーは、先ず静電的クリーニング部材であるベルト67によって静電気的に回収され、その後、最終的にクリーニングブレード8aによって残存するトナーが掻き取られ除去される。感光体1表面にダメージを与えることなく、効率的にクリーニングを行うことができる。

#### [0066]

尚、トナーの平均円形度は、光学的に粒子を検知して、投影面積の等しい相当円の周囲長で除した値である。具体的には、フロー式粒子像分析装置(FPIA-2000;シスメックス社製)を用いて測定を行う。所定の容器に、予め不純固形物を除去した水 $100\sim150\,\mathrm{mL}$ を入れ、分散剤として界面活性剤 $0.1\sim0.5\,\mathrm{mL}$ を加え、さらに、測定試料 $0.1\sim9.5\,\mathrm{g}$ 程度を加える。試料を分散した懸濁液を超音波分散器で約 $1\sim3$ 分間分散処理を行い、分散液濃度を $3,000\sim10,000$ 個/  $\mu$  Lにしてトナーの形状及び分布を測定する。

# $[0\ 0\ 6\ 7]$

また、本発明の画像形成装置で使用するトナーは、形状係数SF-1が $100\sim180$ の範囲にあり、形状係数SF-2が $100\sim180$ の範囲にあることが好ましい。

図 5 は、形状係数 S F -1、形状係数 S F -2 を説明するためにトナーの形状を模式的に表した図である。形状係数 S F -1 は、トナー形状の丸さの割合を示すものであり、下記式(1)で表される。トナーを 2 次元平面に投影してできる形状の最大長M X L N G の二乗を図形面積 A R E A で除して、 1 0 0  $\pi$  / 4 を乗じた値である。

 $SF-1 = \{ (MXLNG) 2/AREA \} \times (100\pi/4) \cdot \cdot \cdot \vec{x} (1)$ 

SF-1の値が100の場合トナーの形状は真球となり、SF-1の値が大きくなるほど不定形になる。

#### [0068]

また、形状係数SF-2は、トナーの形状の凹凸の割合を示すものであり、下記式(2)で表される。トナーを2次元平面に投影してできる図形の周長PERIの二乗を図形面積AREAで除して、100/4 $\pi$ を乗じた値である。

 $SF-2 = \{ (PERI) 2 / AREA \} \times (100 / 4\pi) \cdot \cdot \cdot \vec{\pi} (2) \}$ 

SF-2の値が100の場合トナー表面に凹凸が存在しなくなり、SF-2の値が大きくなるほどトナー表面の凹凸が顕著になる。

トナーの形状が球形に近くなると、トナーとトナーあるいはトナーと感光体 1 との接触が点接触に近くなるために、トナー同士の吸着力は弱くなり従って流動性が高くなり、また、トナーと感光体 1 との吸着力も弱くなって、転写率は高くなる。一方、球形トナーはクリーニングブレード 8 a と感光体 1 との間隙に入り込みやすいため、トナーの形状係数 SF-1 又はSF-2 はある程度大きい方がよい。また、SF-1 とSF-2 が大きくなると、画像上にトナーが散ってしまい画像品位が低下する。このために、SF-1 とSF-2 は 1 8 0 を越えない方が好ましい。

尚、形状係数の測定は、具体的には、走査型電子顕微鏡(S-800:日立製作所製)でトナーの写真を撮り、これを画像解析装置(LUSEX3:ニレコ社製)に導入して解析して計算した。

#### [0069]

本発明の画像形成装置に好適に用いられるトナーは、例えば、少なくとも、窒素原子を

含む官能基を有するポリエステルプレポリマー、ポリエステル、着色剤、離型剤とを有機 溶媒中に分散させたトナー材料液を、水系溶媒中で架橋及び/又は伸長反応させて得られ るトナーである。以下に、トナーの構成材料及び製造方法の例を挙げて説明する。

#### [0070]

(変性ポリエステル)

本発明に係るトナーはバインダ樹脂として変性ポリエステル(i)を含む。変性ポリエステル(i)としては、ポリエステル樹脂中にエステル結合以外の結合基が存在したり、またポリエステル樹脂中に構成の異なる樹脂成分が共有結合、イオン結合などで結合した状態をさす。具体的には、ポリエステル末端に、カルボン酸基、水酸基と反応するイソシアネート基などの官能基を導入し、さらに活性水素含有化合物と反応させ、ポリエステル末端を変性したものを指す。

#### $[0\ 0\ 7\ 1]$

変性ポリエステル(i)としては、イソシアネート基を有するポリエステルプレポリマー(A)とアミン類(B)との反応により得られるウレア変性ポリエステルなどが挙げられる。イソシアネート基を有するポリエステルプレポリマー(A)としては、多価アルコール(PO)と多価カルボン酸(PC)の重縮合物で、かつ活性水素基を有するポリエステルを、さらに多価イソシアネート化合物(PIC)と反応させたものなどが挙げられる。上記ポリエステルの有する活性水素基としては、水酸基(アルコール性水酸基及びフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基などが挙げられ、これらのうち好ましいものはアルコール性水酸基である。

# [0072]

ウレア変性ポリエステルは、以下のようにして生成される。

多価アルコール化合物(PO)としては、2価アルコール(DIO)および3価以上の 多価アルコール (TO) が挙げられ、(DIO) 単独、または(DIO) と少量の(TO )との混合物が好ましい。2価アルコール(DIO)としては、アルキレングリコール( エチレングリコール、1,2一プロピレングリコール、1,3ープロピレングリコール、 1,4-ブタンジオール、1,6-ヘキサンジオールなど);アルキレンエーテルグリコ ール (ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリ エチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコー ルなど);脂環式ジオール(1,4-シクロヘキサンジメタノール、水素添加ビスフェノ ール A など); ビスフェノール 類(ビスフェノール A 、ビスフェノール F 、ビスフェノー ル S など);上記脂環式ジオールのアルキレンオキサイド(エチレンオキサイド、プロピ レンオキサイド、ブチレンオキサイドなど)付加物;上記ビスフェノール類のアルキレン オキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付 加物などが挙げられる。これらのうち好ましいものは、農素数2~12のアルキレングリ コールおよびビスフェノール類のアルキレンオキサイド付加物であり、特に好ましいもの はビスフェノール類のアルキレンオキサイド付加物、およびこれと農素数2~12のアル キレングリコールとの併用である。3価以上の多価アルコール(TO)としては、3~8 価またはそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメ チロールプロバン、ペンタエリスリトール、ソルビトールなど);3価以上のフェノール 類(トリスフェノールPA、フェノールノボラック、クレゾールノボラックなど);上記 3価以上のポリフェノール類のアルキレンオキサイド付加物などが挙げられる。

#### [0073]

多価カルボン酸(PC)としては、2価カルボン酸(DIC)および3価以上の多価カルボン酸(TC)が挙げられ、(DIC)単独、および(DIC)と少量の(TC)との混合物が好ましい。2価カルボン酸(DIC)としては、アルキレンジカルボン酸(コハク酸、アジピン酸、セバシン酸など);アルケニレンジカルボン酸(マレイン酸、フマール酸など);芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。これらのうち好ましいものは、炭素数4~20のアルケニレンジカルボン酸および炭素数8~20の芳香族ジカルボン酸である。3価以上

の多価カルボン酸 (TC)としては、炭素数 9 ~ 2 0 の芳香族多価カルボン酸 (トリメリット酸、ピロメリット酸など)などが挙げられる。なお、多価カルボン酸 (PC)としては、上述のものの酸無水物または低級アルキルエステル (メチルエステル、エチルエステル、イソプロピルエステルなど)を用いて多価アルコール (PO)と反応させてもよい。

# $[0\ 0\ 7\ 4]$

多価アルコール (PO) と多価カルボン酸 (PC) の比率は、水酸基 [OH] とカルボキシル基 [COOH] の当量比 [OH] / [COOH] として、通常  $2/1 \sim 1/1$ 、好ましくは  $1.5/1 \sim 1/1$ 、さらに好ましくは  $1.3/1 \sim 1.02/1$  である。

# [0075]

#### [0076]

多価イソシアネート化合物(PIC)の比率は、イソシアネート基 [NCO] と、水酸基を有するポリエステルの水酸基 [OH] の当量比 [NCO] / [OH] として、通常 5  $/ 1 \sim 1$  / 1、好ましくは 4  $/ 1 \sim 1$  . 2 / 1、さらに好ましくは 2 . 5  $/ 1 \sim 1$  . 5 / 1 である。 [NCO] / [OH] が 5 を超えると低温定着性が悪化する。 [NCO] のモル比が 1 未満では、ウレア変性ポリエステルを用いる場合、そのエステル中のウレア含量が低くなり、耐ホットオフセット性が悪化する。

# [0077]

イソシアネート基を有するポリエステルプレポリマー(A)中の多価イソシアネート化合物(PIC)構成成分の含有量は、通常 $0.5\sim40wt\%$ 、好ましくは $1\sim30wt\%$ 、さらに好ましくは $2\sim20wt\%$ である。0.5wt%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。また、40wt%を超えると低温定着性が悪化する。

イソシアネート基を有するポリエステルプレポリマー(A)中の1分子当たりに含有されるイソシアネート基は、通常1個以上、好ましくは、平均1.5~3個、さらに好ましくは、平均1.8~2.5個である。1分子当たり1個未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。

#### [0078]

次に、ポリエステルプレポリマー(A)と反応させるアミン類(B)としては、2価アミン化合物(B1)、3価以上の多価アミン化合物(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、およびB1~B5のアミノ基をブロックしたもの(B6)などが挙げられる。

2 価アミン化合物(B 1)としては、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4'ージアミノジフェニルメタンなど);脂環式ジアミン(4,4'ージアミノー3,3'ージメチルジシクロへキシルメタン、ジアミンシクロへキサン、イソホロンジアミンなど);および脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。3 価以上の多価アミン化合物(B 2)としては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。アミノアルコール(B 3)としては、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。アミノオルカプタン(B 4)としては、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。アミノ酸(B 5)としては、アミノプロピオン酸、アミノカプロン酸などが挙げられる。B 1~B 5 のアミノ基をブロックしたもの(B 6)としては、前記B 1~B 5 のアミン類とケトン類(アセトン、メチルエチルケ

トン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリジン化合物などが挙げられる。これらアミン類(B)のうち好ましいものは、BlおよびBlと少量のB2の混合物である。

# [0079]

アミン類(B)の比率は、イソシアネート基を有するポリエステルプレポリマー(A)中のイソシアネート基 [NCO] と、アミン類(B)中のアミノ基 [NHx] の当量比 [NCO] / [NHx] として、通常 $1/2\sim2/1$ 、好ましくは $1.5/1\sim1/1.5$ 、さらに好ましくは $1.2/1\sim1/1.2$ である。 [NCO] / [NHx] が2を超えたり1/2未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。

また、ウレア変性ポリエステル中には、ウレア結合と共にウレタン結合を含有していてもよい。ウレア結合含有量とウレタン結合含有量のモル比は、通常100/0~10/90であり、好ましくは80/20~20/80、さらに好ましくは、60/40~30/70である。ウレア結合のモル比が10%未満では、耐ホットオフセット性が悪化する。

# [0080]

本発明で用いられる変性ポリエステル(i)は、ワンショット法、プレポリマー法により製造される。変性ポリエステル(i)の重量平均分子量は、通常1 万以上、好ましくは2 万~1 0 0 0 万、さらに好ましくは3 万~1 0 0 万である。この時のピーク分子量は1 0 0 0 ~1 0 0 0 0 が好ましく、1 0 0 0 0 未満では伸長反応しにくくトナーの弾性が少なくその結果耐ホットオフセット性が悪化する。また1 0 0 0 0 を超えると定着性の低下や粒子化や粉砕において製造上の課題が高くなる。変性ポリエステル(i)の数平均分子量は、後述の変性されていないポリエステル(ii)を用いる場合は特に限定されるものではなく、前記重量平均分子量とするのに得やすい数平均分子量でよい。(i)単独の場合は、数平均分子量は、通常2 0 0 0 0 0 以下、好ましくは1 0 0 0 0 へ 1 0 0 0 0 、さらに好ましくは1 0 0 0 ~ 8 0 0 0 である。1 0 0 0 0 0 を超えると低温定着性及びフルカラー装置に用いた場合の光沢性が悪化する。

変性ポリエステル(i)を得るためのポリエステルプレポリマー(A)とアミン類(B)との架橋及び/又は伸長反応には、必要により反応停止剤を用い、得られるウレア変性ポリエステルの分子量を調整することができる。反応停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、およびそれらをブロックしたもの(ケチミン化合物)などが挙げられる。

尚、生成するポリマーの分子量は、THFを溶媒としゲルバーミエーションクロマトグラフィー(GPC)を用いて測定することができる。

#### $[0\ 0\ 8\ 1]$

(未変性ポリエステル)

本発明においては、前記変性されたポリエステル(i)単独使用だけでなく、この(i)と共に、未変性ポリエステル(ii)をバインダ樹脂成分として含有させることもできる。(ii)を併用することで、低温定着性及びフルカラー装置に用いた場合の光沢性が向上し、単独使用より好ましい。(ii)としては、前記(i)のポリエステル成分と同様な多価アルコール(PO)と多価カルボン酸(PC)との重縮合物などが挙げられ、好ましいものも(i)と同様である。また、(ii)は無変性のポリエステルだけでなく、ウレア結合以外の化学結合で変性されているものでもよく、例えばウレタン結合で変性されていてもよい。(i)と(ii)は少なくとも一部が相溶していることが低温定着性、耐ホットオフセット性の面で好ましい。従って、(i)のポリエステル成分と(ii)は類似の組成が好ましい。(ii)を含有させる場合の(i)と(ii)の重量比は、通常5/95~80/20、好ましくは5/95~30/70、さらに好ましくは5/95~25/75、特に好ましくは7/93~20/80である。(i)の重量比が5%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。

#### [0082]

(ii) のピーク分子量は、通常1000~10000、好ましくは2000~8000

、さらに好ましくは $20000\sim5000$ である。1000未満では耐熱保存性が悪化し、10000を超えると低温定着性が悪化する。(ii)の水酸基価は5以上であることが好ましく、さらに好ましくは $10\sim120$ 、特に好ましくは $20\sim80$ である。5未満では耐熱保存性と低温定着性の両立の面で不利になる。(ii)の酸価は $1\sim5$ が好ましく、より好ましくは $2\sim4$ である。ワックスに高酸価ワックスを使用するため、バインダは低酸価バインダが帯電や高体積抵抗につながるので二成分系現像剤に用いるトナーにはマッチしやすい。

#### [0083]

バインダ樹脂のガラス転移点(Tg)は通常35~70℃、好ましくは55~65℃である。35℃未満ではトナーの耐熱保存性が悪化し、70℃を超えると低温定着性が不十分となる。ウレア変性ポリエステルは、得られるトナー母体粒子の表面に存在しやすいため、本発明のトナーにおいては、公知のポリエステル系トナーと比較して、ガラス転移点が低くても耐熱保存性が良好な傾向を示す。

尚、ガラス転移点(Tg)は、示差走査熱量計(DSC)によって測定することができる。

# [0084]

#### (着色剤)

着色剤としては、公知の染料及び顔料が全て使用でき、例えば、カーボンブラック、ニ グロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カ ドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイ エロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイ エロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5 G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL 、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウ ムマーキュリレッド、アンチモン朱、パーマネントレッド 4 R、パラレッド、ファイセー レッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブ リリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド( F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカン ファストルビンB、ブリリアントスカーレットG、リソールルビンGX、バーマネントレ ッドF5R、ブリリアントカーミン6B、ピグメントスカーレット3B、ボルドー5B、 トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10 B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB 、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルー ン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クローム バーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブル ー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブ ルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブル ー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブル ー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジ オキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン 、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグ リーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フ タロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びそ れらの混合物が使用できる。着色剤の含有量はトナーに対して通常1~15重量%、好ま しくは3~10重量%である。

#### [0085]

着色剤は樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチの製造、またはマスターバッチとともに混練されるバインダ樹脂としては、ポリスチレン、ポリーpークロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体、あるいはこれらとビニル化合物との共重合体、ポリメチルメタクリレート、ポリブ

チルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族又は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化バラフィン、バラフィンワックスなどが挙げられ、単独あるいは混合して使用できる。

# [0086]

(荷電制御剤)

荷電制御剤としては公知のものが使用でき、例えばニグロシン系染料、トリフェニルメ タン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、 アルコキシ系アミン、4級アンモニウム塩(フッ素変性4級アンモニウム塩を含む)、ア ルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性 剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。具体的にはニグロシン 系染料のボントロン03、4級アンモニウム塩のボントロンP-51、含金属アゾ染料の ボントロンS-34、オキシナフトエ酸系金属錯体のE-82、サリチル酸系金属錯体の E-84、フェノール系縮合物のE-89(以上、オリエント化学工業社製)、4級アン モニウム塩モリブデン錯体のTP-302、TP-415(以上、保土谷化学工業社製) 、 4 級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導 体のコピーブルーPR、4級アンモニウム塩のコピーチャージ NEG VP2036、 コピーチャージ NX VP434 (以上、ヘキスト社製)、LRA-901、ホウ素錯 体であるLR-147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリ ドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、4級アンモニウム塩等の官能 基を有する高分子系の化合物が挙げられる。このうち、特にトナーを負極性に制御する物 質が好ましく使用される。

荷電制御剤の使用量は、バインダ樹脂の種類、必要に応じて使用される添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくはバインダ樹脂100重量部に対して、0.1~10重量部の範囲で用いられる。好ましくは、0.2~5重量部の範囲がよい。10重量部を超える場合にはトナーの帯電性が大きすぎ、荷電制御剤の効果を減退させ、現像ローラとの静電気的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招く。

#### [0087]

(離型剤)

離型剤としては、融点が50~120℃の低融点のワックスが、バインダ樹脂との分散の中でより離型剤として効果的に定着ローラとトナー界面との間で働き、これにより定着ローラにオイルの如き離型剤を塗布することなく高温オフセウ類及ス無を気になったのものが挙げられる。ロウ類及スにより口のようなワックス成分としては、以下のものが挙げられる。ロウ類及スでは、カルナバワックス、綿ロウ、オゾケライト、セルシン等の植物系ワックス、及びは、カルナバワックス、オゾケライト、セルシン等のが変が多れる。ひれの動物系ワックス、オゾケライト、セルシン等のが変が多れる。なができる。マイクリスタリン、オッシャー・トン、ボリーカス、ボリーカスの分に、エステル、ケトン、ボリーカス、ボリクスの外に、エステアリン酸アミド、ボリーカスの合成炭化水素等の脂肪酸で、低分子量の結晶性高分子等がある。さらに、12ーヒドをアミド及び、低分子量の結晶性高分子等のよずリートのホモ重合体あるいは共重合体(例えば、カーステアリルテートのホエチクリレートの共重合体等)等、側鎖に長いアルキル基を有する結晶性高分子等も用いることができる。

荷電制御剤、離型剤はマスターバッチ、バインダ樹脂とともに溶融混練することもできるし、もちろん有機溶剤に溶解、分散する際に加えても良い。

[0088]

(外添剤)

トナー粒子の流動性や現像性、帯電性を補助するための外添剤として、無機微粒子が好ましく用いられる。この無機微粒子の一次粒子径は、 $5\times10-3\sim2~\mu$  mであることが好ましく、特に $5\times10-3\sim0$ .  $5~\mu$  mであることが好ましい。また、BET法による比表面積は、 $20\sim500$  m 2 / g であることが好ましい。この無機微粒子の使用割合は、トナーの $0.01\sim5$  w t % であることが好ましく、特に $0.01\sim2$ . 0 w t % であることが好ましい。

無機微粒子の具体例としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭化ケイ素、窒化ケイ素などを挙げることができる。中でも、流動性付与剤としては、疎水性シリカ微粒子と疎水性酸化チタン微粒子を併用するのが好ましい。特に両微粒子の平均粒径が5×10-2μm以下のものを使用して攪拌混合を行った場合、トナーとの静電力、ファンデルワールス力は格段に向上することより、所望の帯電レベルを得るために行われる現像装置内部の攪拌混合によっても、トナーから流動性付与剤が脱離することなく、ホタルなどが発生しない良好な画像品質が得られて、さらに転写残トナーの低減が図られる。

酸化チタン微粒子は、環境安定性、画像濃度安定性に優れている反面、帯電立ち上がり特性の悪化傾向にあることより、酸化チタン微粒子添加量がシリカ微粒子添加量よりも多くなると、この副作用の影響が大きくなることが考えられる。しかし、疎水性シリカ微粒子及び疎水性酸化チタン微粒子の添加量が0.3~1.5 w t %の範囲では、帯電立ち上がり特性が大きく損なわれず、所望の帯電立ち上がり特性が得られ、すなわち、コピーの繰り返しを行っても、安定した画像品質が得られる。

# [0089]

次に、トナーの製造方法について説明する。ここでは、好ましい製造方法について示すが、これに限られるものではない。

### (トナーの製造方法)

1)着色剤、未変性ポリエステル、イソシアネート基を有するポリエステルプレポリマー、離型剤を有機溶媒中に分散させトナー材料液を作る。

有機溶媒は、沸点が100℃未満の揮発性であることが、トナー母体粒子形成後の除去が容易である点から好ましい。具体的には、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2一ジクロロエタン、1,1,2一トリクロロエタン、トリクロエエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどを単独あるいは2種以上組合せて用いることができる。特に、トルエン、キシレン等の芳香族系溶媒および塩化メチレン、1,2一ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素が好ましい。有機溶媒の使用量は、ポリエステルプレポリマー100重量部に対し、通常0~300重量部、好ましくは0~100重量部、さらに好ましくは25~70重量部である。

#### [0090]

2)トナー材料液を界面活性剤、樹脂微粒子の存在下、水系媒体中で乳化させる。

水系媒体は、水単独でも良いし、アルコール(メタノール、イソプロピルアルコール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)などの有機溶媒を含むものであってもよい。

トナー材料液100重量部に対する水系媒体の使用量は、通常50~2000重量部、好ましくは100~1000重量部である。50重量部未満ではトナー材料液の分散状態が悪く、所定の粒径のトナー粒子が得られない。20000重量部を超えると経済的でない。

#### [0091]

また、水系媒体中の分散を良好にするために、界面活性剤、樹脂微粒子等の分散剤を適

宜加える。

界面活性剤としては、アルキルベンゼンスルホン酸塩、 $\alpha$ ーオレフィンスルホン酸塩、リン酸エステルなどのアニオン性界面活性剤、アルキルアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリンなどのアミン塩型や、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウムなどの4級アンモニウム塩型のカチオン性界面活性剤、脂肪酸アミド誘導体、多価アルコール誘導体などの非イオン界面活性剤、例えばアラニン、ドデシルジ(アミノエチル)グリシン、ジ(オクチルアミノエチル)グリシンやN-アルキル-N, N-ジメチルアンモニウムベタインなどの両性界面活性剤が挙げられる。

# [0092]

また、フルオロアルキル基を有する界面活性剤を用いることにより、非常に少量でその効果をあげることができる。好ましく用いられるフルオロアルキル基を有するアニオン性界面活性剤としては、炭素数  $2 \sim 10$  のフルオロアルキルカルボン酸及びその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、 $3-[\omega-7)$ ルオロアルキル(2-20)スルホン酸ナトリウム、 $3-[\omega-7)$ ルオロアルカノイル(2-20)カルボン酸及び金属塩、バーフルオロアルカノイル(2-20)カルボン酸及び金属塩、バーフルオロアルキル(2-20)カルボン酸及び全の金属塩、バーフルオロアルキル(2-20)スルホン酸グでの金属塩、バーフルオロオクタンスルホンアミド、2-20、スルホン酸及びその金属塩、バーフルオロオクタンスルホンアミド、2-20、スルホン酸及びその金属塩、バーフルオロオクタンスルホンアミド、2-20、スルホン酸がその金属塩、バーフルオロオクタンスルホンアミド、バープロピルー2-20、スルホンアミドプロピルトリメチルアンモニウム塩、バーフルオロアルキル(2-210)スルホンアミドプロピルトリメチルアン塩、モノバーフルオロアルキル(2-210)エチルリン酸エステルなどが挙げられる。

商品名としては、サーフロンS-111、S-112、S-113(旭硝子社製)、フロラードFC-93、FC-95、FC-98、FC-129(住友3M社製)、ユニダインDS-101、DS-102(ダイキン工業社製)、メガファックF-110、F-120、F-113、F-191、F-812、F-833(大日本インキ社製)、エクトップEF-102、103、104、105、112、123A、123B、306A、501、201、204、(トーケムプロダクツ社製)、フタージェントF-100、F150(ネオス社製)などが挙げられる。

#### [0093]

また、カチオン性界面活性剤としては、フルオロアルキル基を右する脂肪族 1 級、 2 級もしくは 2 級アミン酸、バーフルオロアルキル(C 6 -C 1 0)スルホンアミドプロピルトリメチルアンモニウム塩などの脂肪族 4 級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩、商品名としてはサーフロン S-1 2 1 (旭硝子社製)、フロラード F C -1 3 5 (住友 3 M 社製)、ユニダイン D S -2 0 2 (ダイキン工業社製)、メガファック F -1 5 0 、F -8 2 4 (大日本インキ社製)、エクトップ E F -1 3 2 (トーケムプロダクツ社製)、フタージェント F -3 0 0 (ネス社製)などが挙げられる。

#### [0094]

樹脂微粒子は、水系媒体中で形成されるトナー母体粒子を安定化させるために加えられる。このために、トナー母体粒子の表面上に存在する被覆率が $10\sim90\%$ の範囲になるように加えられることが好ましい。例えば、ポリメタクリル酸メチル微粒子 $1\mu$ m、及び $3\mu$ m、ポリスチレン微粒子 $0.5\mu$ m及び $2\mu$ m、ポリ(スチレン-アクリロニトリル)微粒子 $1\mu$ m、商品名では、PB-200H(花王社製)、SGP(総研社製)、テクノポリマーSB(積水化成品工業社製)、SGP-3G(総研社製)、ミクロバール(積水ファインケミカル社製)等がある。

また、リン酸三カルシウム、炭酸カルシウム、酸化チタン、コロイダルシリカ、ヒドロキシアバタイト等の無機化合物分散剤も用いることができる。

# [0095]

上記の樹脂微粒子、無機化合物分散剤と併用して使用可能な分散剤として、高分子系保 護コロイドにより分散液滴を安定化させても良い。例えばアクリル酸、メタクリル酸、α ーシアノアクリル酸、αーシアノメタクリル酸、イタコン酸、クロトン酸、フマール酸、 マレイン酸または無水マレイン酸などの酸類、あるいは水酸基を含有する(メタ)アクリ ル系単量体、例えばアクリル酸ーβーヒドロキシエチル、メタクリル酸ーβーヒドロキシ エチル、アクリル酸-β-ヒドロキシプロビル、メタクリル酸-β-ヒドロキシプロピル アクリル酸一ァーヒドロキシプロピル、メタクリル酸一ァーヒドロキシプロピル、アク リル酸ー3ークロロ2ーヒドロキシプロビル、メタクリル酸ー3ークロロー2ーヒドロキ シプロピル、ジエチレングリコールモノアクリル酸エステル、ジエチレングリコールモノ メタクリル酸エステル、グリセリンモノアクリル酸エステル、グリセリンモノメタクリル 酸エステル、N-メチロールアクリルアミド、N-メチロールメタクリルアミドなど、ビ ニルアルコールまたはビニルアルコールとのエーテル類、例えばビニルメチルエーテル、 ビニルエチルエーテル、ビニルプロピルエーテルなど、またはビニルアルコールとカルボ キシル基を含有する化合物のエステル類、例えば酢酸ビニル、プロピオン酸ビニル、酪酸 ビニルなど、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドあるいはこ れらのメチロール化合物、アクリル酸クロライド、メタクリル酸クロライドなどの酸クロ ライド類、ビニルピリジン、ビニルピロリドン、ビニルイミダゾール、エチレンイミンな どの含窒素化合物、またはその複素環を有するものなどのホモポリマーまたは共重合体、 ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンアルキルアミン、ポリ オキシプロピレンアルキルアミン、ポリオキシエチレンアルキルアミド、ポリオキシプロ ピレンアルキルアミド、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレ ンラウリルフェニルエーテル、ポリオキシエチレンステアリルフェニルエステル、ポリオ キシエチレンノニルフェニルエステルなどのポリオキシエチレン系、メチルセルロース、 ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース類などが 使用できる。

# [0096]

#### [0097]

3) 乳化液の作製と同時に、アミン類(B) を添加し、イソシアネート基を有するポリエステルプレポリマー(A) との反応を行わせる。

この反応は、分子鎖の架橋及び/又は伸長を伴う。反応時間は、ポリエステルプレポリマー(A)の有するイソシアネート基構造とアミン類(B)との反応性により選択されるが、通常10分~40時間、好ましくは2~24時間である。反応温度は、通常、0~150  $\mathbb C$ 、好ましくは40~98  $\mathbb C$ である。また、必要に応じて公知の触媒を使用することができる。具体的にはジブチルチンラウレート、ジオクチルチンラウレートなどが挙げられる。

#### [0098]

4) 反応終了後、乳化分散体(反応物)から有機溶媒を除去し、洗浄、乾燥してトナー母体粒子を得る。

有機溶媒を除去するためには、系全体を徐々に層流の攪拌状態で昇温し、一定の温度域で強い攪拌を与えた後、脱溶媒を行うことで紡錘形のトナー母体粒子が作製できる。また、分散安定剤としてリン酸カルシウム塩などの酸、アルカリに溶解可能な物を用いた場合は、塩酸等の酸により、リン酸カルシウム塩を溶解した後、水洗するなどの方法によって

、トナー母体粒子からリン酸カルシウム塩を除去する。その他酵素による分解などの操作 によっても除去できる。

# [0099]

5)上記で得られたトナー母体粒子に、荷電制御剤を打ち込み、ついで、シリカ微粒子、酸化チタン微粒子等の無機微粒子を外添させ、トナーを得る。

荷電制御剤の打ち込み、及び無機微粒子の外添は、ミキサー等を用いた公知の方法によって行われる。

これにより、小粒径であって、粒径分布のシャープなトナーを容易に得ることができる。さらに、有機溶媒を除去する工程で強い攪拌を与えることで、真球状からラクビーボール状の間の形状を制御することができ、さらに、表面のモフォロジーも滑らかなものから梅干形状の間で制御することができる。

#### [0100]

また、本発明に係るトナーの形状は略球形状であり、以下の形状規定によって表すことができる。

図 6 は、本発明に係るトナーの形状を模式的に示す図である。図 6 において、略球形状のトナーを長軸 r 1、短軸 r 2、厚さ r 3(但し、r 1  $\geq$  r 2  $\geq$  r 3 とする。)で規定するとき、本発明のトナーは、短軸と長軸との比(r 2 / r 1)(図 6 (b) 参照)が 0 . 5  $\sim$  1 . 0 で、厚さと短軸との比(r 3 / r 2)(図 6 (c) 参照)が 0 . 7  $\sim$  1 . 0 の範囲にあることが好ましい。短軸と長軸との比(r 2 / r 1)が 0 . 5 未満では、真球形状から離れるためにドット再現性及び転写効率が劣り、高品位な画質が得られなくなる。また、厚さと短軸との比(r 3 / r 2)が 0 . 7 未満では、扁平形状に近くなり、球形トナーのような高転写率は得られなくなる。特に、厚さと短軸との比(r 3 / r 2)が 1 . 0 では、長軸を回転軸とする回転体となり、トナーの流動性を向上させることができる。

なお、r 1、r 2、r 3 は、走査型電子顕微鏡(SEM)で、視野の角度を変えて写真を撮り、観察しながら測定した。

# $[0\ 1\ 0\ 1\ ]$

以上によって製造されたトナーは、磁性キャリアを使用しない1成分系の磁性トナー或いは、非磁性トナーとしても用いることができる。

また、2成分系現像剤に用いる場合には、磁性キャリアと混合して用いれば良く、磁性キャリアとしては、鉄、マグネタイト、Mn、Zn、Cu等の2価の金属を含むフェライトであって、体積平均粒径 $20\sim100~\mu$ mが好ましい。平均粒径が $20~\mu$ m未満では、現像時に感光体1にキャリア付着が生じやすく、 $100~\mu$ mを越えると、トナーとの混合性が低く、トナーの帯電量が不十分で連続使用時の帯電不良等を生じやすい。また、Znを含むCuフェライトが飽和磁化が高いことから好ましいが、画像形成装置100のプロセスにあわせて適宜選択することができる。磁性キャリアを被覆する樹脂としては、特に限定されないが、例えばシリコーン樹脂、スチレンーアクリル樹脂、含フッ素樹脂、オレフィン樹脂等がある。その製造方法は、コーティング樹脂を溶媒中に溶解し、流動層中にスプレーしコア上にコーティングしても良く、また、樹脂粒子を静電気的に核粒子に付着させた後に熱溶融させて被覆するものであってもよい。被覆される樹脂の厚さは、 $0.05\sim10~\mu$ m、好ましくは $0.3\sim4~\mu$ mがよい。

# 【図面の簡単な説明】

#### [0102]

- 【図1】本発明に係る画像形成装置の概略構成を示す図である。
- 【図2】本発明の潤滑剤塗布装置およびクリーニング装置の概略構成を示す図である
- 【図3】 潤滑剤塗布装置の固形潤滑剤の構成を示す図であり、長手方向を正面として見た図である。
- 【図4】感光体へのブレードの当接方式および当接角度を示す図である。
- 【図 5 】 形状係数 S F 2 を説明するためにトナーの形状を模式的に表した図である。

- 【図6】 本発明に係るトナーの形状を模式的に示す図である。
- 【図7】従来の潤滑剤塗布装置およびクリーニング装置の構成を示す図である。
- 【図8】本発明の潤滑剤塗布装置を用いた低摩擦係数像担持体の製造イメージを示す 図である。
- 【図9】本発明の潤滑剤塗布装置と、そのようぶであるシート状均し部材の角度と圧着・伸展のイメージを示す図である。

## 【符号の説明】

[0103]

- 1 感光体
- 2 帯電装置
- 2 a 帯電ローラ
- 2 b 帯電クリーニング部材
- 3 潤滑剤塗布装置
- 3 a ブラシローラ
- 3 b 固形潤滑剤
- 3 c 加圧部材
- 3 d 潤滑剤保持部材
- 4 現像装置
- 8 クリーニング装置
- 8 a クリーニングブレード
- 8b 潤滑剤均しブレード
- 8 c ブレード保持部材
- 8d ハウジング
- 9 露光装置
- 5 1 1次転写ローラ
- 56 中間転写ベルト
- 6 1 2次転写ローラ







【図4】















(ь)



(c)





[図8]



# 表面に塗布された潤滑剤



【書類名】要約書

【要約】

【課題】 球形化、小粒径化されたトナーを用いた画像形成装置であっても、感光体表面全域において塗布ムラを生じることなく、また、過剰な塗布も防いで、適切な量の均一な潤滑剤塗布が可能な潤滑剤塗布装置を提供することを課題とする。

【解決手段】 クリーニングブレード8aを感光体1表面に対してカウンター方向から、 潤滑剤均しブレード8bを感光体1表面に対してトレーリング方向から当接させ、感光体 表面に残留した残留トナーをクリーニングブレード8aによって除去し、クリーンな状態 となった感光体1表面に、ブラシローラ3aにより潤滑剤が塗布され、下流側で潤滑剤均 しブレード8bで均されることにより均一な潤滑剤の層とすることができる。

【選択図】 図2

# 出願人履歴

000000674720020517 住所変更

東京都大田区中馬込1丁目3番6号株式会社リコー