## Звіт до лабораторної роботи №4: «Багатовимірна класифікація»

студента 1-го курсу магістратури факультету комп'ютерних наук та кібернетики Кравця Олексія

# Зміст

| 1 | Постановка задачі              | 4 |
|---|--------------------------------|---|
| 2 | Опис методів                   | • |
|   | 2.1 Метод 1                    | 4 |
|   | 2.2 Метод 2                    |   |
|   | 2.3 Метод 3                    |   |
| 3 | Результати                     |   |
|   | 3.1 Тести на площині           |   |
|   | 3.2 Багатовимірна класифікація | 4 |
| 4 | Висновок                       | _ |

## 1 Постановка задачі

Маємо навчальну вибірку у вигляді векторів багатовимірного простору. Вибірка розподілена на 3 класи, що не перетинаються.

Необхідно, на базі навчальної вибірки, провести класифікацію тестової вибірки трьома різними методами.

## 2 Опис методів

Для класифікації використовуються центри мас класів

$$M_k = \frac{\sum_{j=1}^L \mathbf{y}_j^k}{L}$$

де  $M_k$  — центр мас k-го класу, L — кількість елементів (векторів) у класі,  $y_j^k$  — елемент (вектор) k-го класу.

Нехай  $M^1,\ldots,M^m$  — центи мас класів.  $X=(x_1,\ldots,x_n)$  — точка, яку необхідно класифікувати.

#### 2.1 Метод 1

Будемо класифікувати точки за найбільш суттєвою різницею до центрів мас класів. Тобто для кожного виміру  $i \in \{1, 2, \dots, n\}$  будемо рахувати відстань від точки до центрів мас класів та рахувати наступний вираз для кожного класу

$$\frac{|M_i^k - x_i|}{\left(\sum_{j \neq k} |M_i^j - x_i|\right) / (m-1)} \tag{1}$$

ділимо відстань до поточного класу на середню відстань до інших класів. Або

$$\frac{|M_i^k - x_i|}{\min_{j \neq k} |M_i^j - x_i|} \tag{2}$$

ділимо відстань до поточного класу на мінімальну відстань до інших класів.

В результаті отримуємо  $m \cdot n$  значень (для кожного виміру та кожного класу). Вибираємо мінімальне значення, і клас, що йому відповідає, буде результатом.

#### 2.2 Метод 2

Для класифікації точки обираємо той клас, що має найменшу відстань до точки по найбільшій кількості вимірів. Отже, рахуємо наступний вираз

$$\left(\underset{j \in \{1,\dots,m\}}{\operatorname{arg \, min}} |M_1^j - x_1|, \dots, \underset{j \in \{1,\dots,m\}}{\operatorname{arg \, min}} |M_n^j - x_n|\right) \tag{3}$$

І вибираємо той клас, що зустрівся більше всіх.

#### 2.3 Метод 3

Порахуємо суму відстаней від точки до центрів мас класів по кожному виміру. Оберемо той клас, у якого сумма найменша. Отже, обираємо клас за наступним правилом

$$\underset{j \in \{1,\dots,m\}}{\operatorname{arg\,min}} \left( \sum_{i=1}^{n} |M_i^j - x_i| \right) \tag{4}$$

# 3 Результати

#### 3.1 Тести на площині

Для наочності провели класифікацію точок на площині. У **Методі 1** було використано рівняння (2).



Рис. 1:

Якщо розглянути результати більш детально, то можна помітити, що **Метод 2** не може точно класифікувати багато точок. Розглянемо перші 10 тестових точок

```
Dot: [5.65745822 1.61601466] has class: [1, 2]
Dot: [3.11274373 3.51509479] has class: [0]
Dot: [2.18177761 4.85891041] has class: [0, 1]
Dot: [5.77468377 1.25891148] has class: [1, 2]
Dot: [2.98349104 1.50439155] has class: [0, 1]
Dot: [1.70904297 0.18443474] has class: [1, 2]
Dot: [3.657386 2.51339512] has class: [0, 1]
Dot: [0.30887251 1.39323232] has class: [1]
Dot: [5.44959532 1.19780945] has class: [1, 2]
```

Dot: [0.86936923 2.4472638 ] has class: [1]

Легко помітити, що Метод 2 не може класифікувати деякі точки.

## 3.2 Багатовимірна класифікація

Для тестування багатовимірної класифікації я обрав набір даних «Іриси Фішера». Кожний елемент набору даних це— чотиривимірний вектор, що розподілений в один з трьох класів. Точність класифікації я оцінюю так

точність = 
$$\frac{\mbox{кількість правильних класифікацій}}{\mbox{загальна кількість класифікацій}}$$

Також будемо проводити крос-валідацію. Розділимо набір даних на 5 частин.

Виведемо таблицю з отриманою точністю.

| Метод        | fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | mean  |
|--------------|--------|--------|--------|--------|--------|-------|
| Метод 1 тіп  | 0.867  | 0.867  | 0.733  | 0.9    | 0.8    | 0.833 |
| Метод 1 теап | 0.9    | 0.867  | 0.767  | 0.933  | 0.833  | 0.86  |
| Метод 2      | 0.933  | 0.9    | 0.933  | 0.967  | 0.833  | 0.913 |
| Метод 3      | 0.967  | 0.9    | 0.8    | 0.967  | 0.8    | 0.887 |

## 4 Висновок

**Метод 2** показав найкращі результати на Ірисах Фішера, однак для класифікації точок на площині цей метод показує себе погано. Він не може класифікувати деякі точки.