МИКРОКОНТРОЛЛЕРЫ

Современные 32-разрядные ARM-микроконтроллеры серии STM32: последовательный интерфейс I²C

Олег Вальпа

В статье приведено описание последовательного интерфейса I^2C 32-разрядных ARM-микроконтроллеров серии STM32 от компании STMicroelectronics. Рассмотрены архитектура, состав и назначение регистров конфигурирования интерфейса, а также приведены примеры программ его использования.

ВВЕДЕНИЕ

нтерфейс I²С, или IIС получил свою аббревиатуру от английских слов Inter-Integrated Circuit и представляет собой последовательную шину, состоящую из двух двунаправленных линий связи с названием SDA и SCL, как сокращение от слов Serial Data Address и Serial Clock. Он обеспечивает обмен данными между микроконтроллером и различными периферийными устройствами, такими как АЦП, ЦАП, микросхемы памяти, другие микроконтроллеры и микросхемы. Схема подключения устройств по интерфейсу I²С показана на рисунке 1.

Стандарт на интерфейс I^2 С был разработан фирмой Philips в начале 1980-х годов. Согласно этому стандарту, интерфейс имел 7-разрядный адрес. Он позволял обращаться к 127 устройствам на скорости до 100 кбит/с. В дальнейшем интерфейс получил свое развитие и стал 10-разрядным, позволяющим обращаться к 1023 устройствам на

скорости до 400 кбит/с. Максимальное допустимое количество микросхем, подсоединенных к одной шине, ограничивается максимальной емкостью шины в 400 пФ. Версия стандарта 2.0, выпущенная в 1998 году, представила высокоскоростной режим работы со скоростью до 3.4 Мбит/с с пониженным энергопотреблением. Версия 2.1 2001 года включает в себя лишь незначительные доработки.

ОПИСАНИЕ ИНТЕРФЕЙСА I²C

микроконтроллер STM32 [1] включает в свой состав интерфейс l^2 С, который отличается своей развитостью. Он допускает несколько ведущих устройств на шине и поддерживает высокоскоростной режим. Кроме того, в микроконтроллере STM32 интерфейс l^2 С можно использовать для широкого спектра приложений, включая генерацию и верификацию контрольной суммы. С ним также можно работать по

протоколам SMBus (System Management Bus) и PMBus (Power Management Bus). Большинство моделей STM32 включают в свой состав два интерфейса I^2C с именами I^2C1 и I^2C2 .

Интерфейс может работать в одном из следующих четырех режимов:

- Slave transmitter (ведомый передатчик);
- Slave receiver (ведомый приемник);
- Master transmitter (ведущий передатчик);
- Master receiver (ведущий приемник).

По умолчанию интерфейс работает в режиме «Ведомый» и автоматически переключается на «Ведущий» после генерирования старт-условия. Переключение с «Ведущего» на «Ведомый» происходит при потере арбитража или после генерирования стоп-условия, что позволяет работать нескольким «Ведущим» микроконтроллерам в одной системе поочередно.

В режиме «Ведущий» I²С инициирует обмен данными и генерирует тактовый сигнал. Передаче последовательных данных всегда предшествует старт-условие, а завершается обмен всегда стопусловием. Оба этих условия генерируются в режиме «Ведущий» программно.

В режиме «Ведомый» I²С способен распознать свой собственный адрес (7 или 10 бит) и адрес общего вызова. Определение наличия адреса общего вызова можно включить или отключить программно.

Адрес и данные передаются 8-битными посылками, старшим битом вперед. Первый байт, следующий за стартусловием, содержит адрес (один байт в 7-битном режиме и два байта в 10-битном режиме). Адрес всегда передается в режиме «Ведущий».

За 8 тактами передачи байта данных следует 9-й такт, в течение которого

Рис. 1. Схема подключения устройств по интерфейсу I²C

Рис. 2. Временная диаграмма одной посылки интерфейса I²C

приемник должен послать бит уведомления ACK, получивший свое название от слова ACKnowledge. На рисунке 2 приведена временная диаграмма одной посылки интерфейса 1^2 C.

Наличие уведомления в ответе можно программно включить или отключить. Размерность адреса интерфейса l^2C (7 бит или 10 бит и адрес общего вызова) можно выбрать программно.

АРХИТЕКТУРА БЛОКА ИНТЕРФЕЙСА I²C

ункциональная схема блока интерфейса 1²С для микроконтроллера STM32 приведена на рисунке 3.

Регистр сдвига на этой схеме представляет собой основной регистр, через который передаются и принимаются данные. Передаваемые данные предварительно записываются в регистр данных, после чего через регистр сдвига последовательно транслируются в линию связи SDA. Принимаемые по этой же линии связи данные накапливаются в регистре сдвига, а затем перемещаются в регистр данных. Таким образом, интерфейс может передавать и принимать данные только поочередно.

Кроме того, регистр сдвига аппаратно подключен к компаратору, который позволяет сравнивать принятый адрес с адресными регистрами и, таким

образом, определять, для кого предназначен очередной блок данных.

Узел управления частотой позволяет формировать сигнал синхронизации SCL в роли ведущего и синхронизироваться от этого сигнала в качестве ведомого устройства. Регистр CCR обеспечивает программную настройку данного узла. Блок интерфейса подключен к выходу PCLK1 шины APB1 через два предварительных делителя. Микроконтроллер поддерживает два режима обмена: стандартный (Standard Speed) — до 100 кГц, и быстрый (Fast Speed) — до 400 кГц. В зависимости от режима обмена частота тактирования модуля должна быть не менее 2 МГц в стандартном режиме и не менее 4 МГц в быстром режиме.

Блок вычисления позволяет аппаратно вычислять контрольную сумму блока данных и сохранять ее в регистре РЕС.

Управление блоком интерфейса I²C, а также формирование флагов событий и прерываний выполняется узлом логики управления. Он же позволяет обслуживать запросы ПДП и формировать сигнал АСК. Связь этого блока с микроконтроллером осуществляется программно с помощью регистров управления CR1, CR2 и регистров состояния SR1, SR2.

ПРЕРЫВАНИЯ ОТ І²С

Інтерфейс I²C имеет аппаратную организацию, способную формировать запросы на прерывание в зависимости от режима работы и текущих событий. В таблице 1 приведены запросы на прерывание от интерфейса I²C.

ОПИСАНИЕ РЕГИСТРОВ

ля работы с интерфейсом I²C в микроконтроллере STM32 имеются специальные регистры. Карта этих регистров с названием входящих в них разрядов представлена в таблице 2.

Рассмотрим регистры, необходимые для работы интерфейса I^2C . К ним относятся:

- I²C CR1 управляющий регистр 1;
- I²C_CR2 управляющий регистр 2;
- I²C_OAR1 регистр собственного адреса 1;
- I²C_OAR2 регистр собственного адреса 2;
- I^2C_DR регистр данных;
- I^2C_SR1 статусный регистр 1;
- I²C SR2 статусный регистр 2;

Рис. 3. Функциональная схема блока интерфейса I²C

MUKPOKOHTPOAAEPЫ CHIP NEWS YKPANHA

- I²C_CCR регистр управления тактовым сигналом;
- I²C_TRISE регистр параметра TRISF

Некоторые разряды этих регистров используются для работы в режиме SMBus.

Регистр I^2C_CR1 является первым управляющим регистром интерфейса I^2C . Он имеет следующие управляющие разряды:

- разряд 15 SWRST обеспечивает программный сброс шины I²C;
- разряд 14 зарезервирован;
- разряд 13 SMBus формирует сигнал тревоги в режиме SMBus;
- разряд 12 PEC служит для функции проверки ошибки пакета (Packet Error Checking);
- разряд 11 POS служит для анализа сигналов АСК или РЕС при приеме;
- разряд 10 АСК возвращает бит уведомления АСК после приема корректного байта адреса или данных;
- разряд 9 STOP служит для формирования и анализа стоп-условия;

Таблица 1. Запросы на прерывание от интерфейса I ² C												
Событие	Флаг события	Разрешающий бит управления										
Послано старт-условие	SB	ITEVFEN										
Ведущий послал адрес или ведомый получил свой адрес	ADDR											
Ведущий послал заголовок 10 бит	ADD10											
Ведомый получил стоп-условие	STOPF											
Передача байта закончена	BTF											
Буфер приема не пуст	RxNE	ITEVFEN 11 ITBUFEN										
Буфер передачи пуст	TxE											
Ошибка шины	BERR	ITERREN										
Потеря прав на шину ведущего	ARLO											
Ошибка уведомления	AF											
Переполнение/недостача данных	OVR											
Ошибка пакета	PECERR											
Ошибка превышения времени	TIMEOUT											

- разряд 8 START служит для формирования и анализа старт-условия;
- разряд 7 NOSCTETCH отключает растяжку такта в режиме ведомого;
- разряд 6 ENGC разрешает общий вызов;
- разряд 5 ENPEC разрешает сигнал PEC;
- разряд 4 ENARP разрешает сигнал ARP;
- разряд 3 SMBTYPE назначает тип интерфейса в качестве ведущего или ведомого для режима SMBus;
- разряд 2 зарезервирован;
- разряд 1 SMBUS переключает режимы I²C и SMBus;

Табли	ца 2. Карта ре	регистров интерфейса I ² C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0																																		
Сдвиг	Регистр	31	30	29	2	3 2	27	26	25	2	4 2	3	22	21	20) .	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x00	I ² C_CR1	Резерв												SWRST	Резерв	ALERT	PFC	POS	ACK	STOP	START	NOSTRETCH	ENGC	ENPEC	ENARP	SMBTYPE	Резерв	SMBUS	PE							
	Исх. значение																0		0	0	0	0	0	0	0	0	0	0	0		0	0				
0x04	I ² C_CR2		LAST ITBUFEN ITEVTEN Page Base Base Base Base Base Base Base Bas													езерв	FREQ[5:0]																			
	Исх. значение																	0	0	0	0	0			0	0	0	0	0	0						
0x08	I ² C_OAR1		Резерв													Al		ADD0																		
	Исх. значение	1																			0						0	0	0	0	0	0	0	0	0	0
0x0C	I ² C_OAR2		Резерв 0 0														ΑC		ENDUAL																	
	Исх. значение																							0	0	0	0	0	0	0	0					
0x10	I ² C_DR		Резерв														DR[7:0]																			
	Исх. значение		Тезоры																	0	0	0	0	0	0	0	0									
0x14	I ² C_SR1		Резерв											SMBALERT	TIMEOUT	Резерв	PECERR	OVR	AF	ARLO	BERR	¥	R×NT	Резерв	STOPF	ADD10	BTF	ADDR	SB							
	Исх. значение																				0	0		0	0	0	0	0	0	0		0	0	0	0	0
0x18	I ² C_SR2		PEC[7:0] PEC[7:0]													SMBDEFAULT	GENCALL	Резерв	TRA	BUSY	MSL															
	Исх. значение																				0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
0x1C	I ² C_CCR									P	езер	D											Pa	200						CCR	[11:0)]				
	Исх. значение									, i	езер	В									0	0	l e	зерв	0	0	0	0	0	0	0	0	0	0	0	0
0x20	I ² C_TRISE															-	Pesi	ерв														T	TRISE]	
	Исх. значение		Тезоры								0 0 0 1											0														

разряд 0 РЕ — разрешает работу
 интерфейса.

Регистр I^2C_CR2 является вторым управляющим регистром интерфейса I^2C и имеет следующие управляющие разряды:

- разряды 15...13 зарезервированы;
- разряд 12 LAST используется в режиме ведущего приемника, чтобы позволить генерацию сигнала NACK по последнему принятому
 байту:
- разряд 11 DMAEN разрешает запрос DMA;
- разряд 10 ITBUFEN разрешает прерывания от буфера;
- разряд 9 ITEVTEN разрешает прерывания от события;
- разряд 8 ITERREN разрешает прерывания от ошибки;
- разряды 7 и 6 зарезервированы;
- разряды 5...0 FREQ[5:0] задают частоту работы шины.

Регистр I²C_OAR1 — первый регистр собственного адреса, включает в себя следующие разряды:

- разряд 15 ADDMODE задает 7или 10-разрядный режим адресации в качестве ведомого;
- разряды 14...10 зарезервированы:
- разряды 9 и 8 ADD[9:8] назначают 9 и 8 биты адреса при 10-битной адресации интерфейса;
- разряды 7...1 ADD[7:1] назначают 7...1 биты адреса;
- разряд 0 ADD0 назначает бит 0 адреса при 10-битной адресации интерфейса.

Регистр I²C_OAR2 — второй регистр собственного адреса, включает в себя следующие разряды:

- разряды 15...8 зарезервированы;
- разряды 7...1 ADD[7:1] назначают 7...1 биты адреса в режиме двойной адресации;
- разряд 0 ENDUAL разрешает режим двойной адресации.

Регистр данных I^2C_DR имеет 8 разрядов DR[7:0] для приема и передачи данных на шину I^2C . В этот регистр данные записываются для передачи и читаются из него при приеме. Разряды 15...9— зарезервированы.

Регистр I^2C_SR1 — первый статусный регистр, и включает в себя следующие разряды:

- разряд 15 SMBALERT сигнализирует о тревоге шины SMBus;
- разряд 13 зарезервирован;
- разряд 14 TIMEOUT оповещает об ошибке превышения времени для сигнала SCL;

- разряд 12 PECERR свидетельствует об ошибке PEC при приеме;
- разряд 11 OVR формируется при ошибке переполнения данных;
- разряд 10 AF возникает в случае ошибки уведомления;
- разряд 9 ARLO указывает на ошибку потери прав на шину;
- разряд 8 BERR устанавливается при ошибке шины;
- разряд 7 ТхЕ оповещает, что регистр данных пуст;
- разряд 5 зарезервирован;
- разряд 6 RxNE информирует, что регистр данных не пуст;
- разряд 4 STOPF детектирует стопусловие в режиме ведомого;
- разряд 3 ADD10 устанавливается, когда ведущий послал первый байт адреса при 10-битной адресации;
- разряд 2 ВТF оповещает о завершении передачи байта;
- разряд 1 ADDR устанавливается, если послан адрес в режиме ведущего или принят адрес в режиме ведомого;
- разряд 0 SB устанавливается при генерации старт-условия в режиме ведущего.

Регистр I^2C_SR2 — второй статусный регистр, включает в себя следующие разряды:

- разряды 15...8 PEC[9:8] содержат контрольную сумму кадра;
- разряд 7 DUALF является флагом двойной адресации в режиме ведомого;
- разряд 6 SMBHOST устанавливается, когда принят заголовок SMBus Host в режиме ведомого;
- разряд 5 SMBDEFAULT возникает, если принят адрес по умолчанию для SMBus-устройства в режиме ведомого;
- разряд 4 GENCALL указывает, что принят адрес общего вызова в режиме ведомого;
- разряд 3 зарезервирован;
- разряд 2 TRA оповещает о режиме передачи/приема;
- разряд 1 BUSY информирует, что шина занята;
- разряд 0 MSL детектирует режим «Ведущий»/«Ведомый».

Регистр I²C_CCR — регистр управления тактовым сигналом, который включает в себя разряды:

- разряд 15 F/S задает стандартную или быструю скорость для режима ведущего;
- разряд 14 DUTY назначает скважность 2 или 16/9 в быстром режиме;

- разряды 13 и 12 зарезервированы;
- разряды 11...0 ССR[11:0] управляют тактовым сигналом для быстрой и стандартной скорости в режиме ведущего.

Регистр I^2C_TRISE — регистр параметра TRISE, который включает в себя:

- разряды 15...6 зарезервированы;
- разряды 5...0 TRISE[5:0] определяют максимальное время фронта для быстрой и стандартной скорости в режиме ведущего. Данный параметр задает момент времени, по которому производятся выборка состояния линий.

Более подробное описание назначения всех регистров I^2C и их разрядов можно найти на сайте www.st.com [2].

ПРОГРАММИРОВАНИЕ ИНТЕРФЕЙСА І²С

Рассмотрим практическую реализацию по использованию интерфейса I²С. Для этого можно воспользоваться стандартной библиотекой периферии микроконтроллера STM32. Для интерфейса I²С настройки режима, скорости и всего остального находятся в заголовочном файле и объявлены в виде структуры:

```
I2C_InitTypeDef:typedef struct{
uint32_t I2C_ClockSpeed;
uint16_t I2C_Mode;
uint16_t I2C_DutyCycle;
uint16_t I2C_OwnAddress1;
uint16_t I2C_Ack;
uint16_t I2C_Ack;
uint16_t I2C_
AcknowledgedAddress;
}I2C_InitTypeDef;
```

В этой структуре ее элементы имеют следующее назначение:

- uint32_t I²C_ClockSpeed частота тактового сигнала, максимум 400 КГц;
- uint16_t l²C_Mode режим работы;
- uint16_t I²C_DutyCycle настройки для работы в быстром режиме;
- uint16_t I²C_OwnAddress собственный адрес устройства;
- uint16_t l²C_Ack включено или нет использование бита подтверждения ACK:
- uint16_t l²C_AcknowledgedAddress выбор формата адреса: 7 бит или 10 бит.

Рассмотрим процедуры инициализации и работы с интерфейсом I²C.

МИКРОКОНТРОЛЛЕРЫ

Листинг 1

```
GPIO_InitTypeDef gpio; // Создание структуры для портов ввода-вывода
I2C_InitTypeDef i2c; // Создание структуры для интерфейса I2C
void init I2C1(void)
// Включить тактирование
RCC APB1PeriphClockCmd(RCC APB1Periph I2C1, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);
// Инициализировать I2C
i2c.I2C_ClockSpeed = 100000;
i2c.I2C_Mode = I2C_Mode_I2C;
i2c.I2C DutyCycle = I2C DutyCycle 2;
// Задать адрес=0x12
i2c.I2C_OwnAddress1 = 0x12;
i2c.I2C_Ack = I2C_Ack_Disable;
i2c.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
I2C_Init(I2C1, &i2c);
// Назначить выводы интерфейса
gpio.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
```

Листинг 2

```
void I2C_StartTransmission(I2C_TypeDef* I2Cx, uint8_t
transmissionDirection, uint8_t slaveAddress)
// Ждать освобождения шины
while (I2C_GetFlagStatus (I2Cx, I2C_FLAG_BUSY));
// Сформировать старт-условие
I2C_GenerateSTART(I2Cx, ENABLE);
// Ждать установки бита
while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_MODE_SELECT));
// Отправить адрес ведомому устройству
I2C_Send7bitAddress(I2Cx, slaveAddress, transmissionDirection);
// Если передача данных
if(transmissionDirection == I2C Direction Transmitter)
{while(!I2C_CheckEvent(I2Cx,
I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));}
// Если прием данных
if(transmissionDirection== I2C_Direction_Receiver)
{while(!I2C_CheckEvent(I2Cx,
12C_EVENT_MASTER_RECEIVER_MODE_SELECTED));}
```

Листинг 3

```
// Функция передачи данных
void I2C_WriteData(I2C_TypeDef* I2Cx, uint8_t data)
{
// Вызвать библиотечную функцию передачи данных
I2C_SendData(I2Cx, data);
// Ждать окончания передачи данных
while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED));
}
// Функция приема данных
uint8_t I2C_ReadData(I2C_TypeDef* I2Cx)
{
// Ждать поступления данных
while(!I2C_CheckEvent(I2Cx, I2C_EVENT_MASTER_BYTE_RECEIVED));
data = I2C_ReceiveData(I2Cx); // Считать данные из регистра
return data; // Возвратить данные в вызывающую функцию
```

Для настройки интерфейса 1^2 С в качестве ведущего устройства и передачи данных через него необходимо выполнить следующие действия:

- 1) разрешить тактирование портов;
- 2) инициализировать I²C, задав его скорость, адрес и формат адреса;
- назначить выводы микроконтроллера;
- 4) разрешить работу интерфейса;
- 5) сформировать стартовое условие;
- б) послать адрес адресуемого устройства и данные;
- 7) сформировать стоповое условие.

Для облегчения процесса программирования желательно создать набор основных функций для работы с 1^2 C.

В листинге 1 приведена функция инициализации интерфейса I²C в соответствии с описанным выше алгоритмом.

Теперь рассмотрим функцию для общения по I²C. Для расширения возможностей эта функция имеет три параметра: номер используемого блока I²C, направление передачи данных и адрес подчиненного устройства. Код данной функции приведен в листинге 2.

Приведенная функция использует простые функции передачи и приема данных, приведенные в листинге 3.

Закончив обмен данными по 1^2 С, необходимо вызвать функцию формирования стоп-условия 1^2 С_Generate STOP(1^2 Сх, ENABLE).

На основе приведенных функций можно создавать программы для работы с множеством разнообразных периферийных устройств.

ЗАКЛЮЧЕНИЕ

еоспоримым преимуществом интерфейса 1^2 С является простота подключения устройств с помощью всего лишь двух линий связи и общего провода, благодаря чему данный интерфейс надежно закрепился в технике и попрежнему широко применяется в современной аппаратуре.

Литература:

- 1. www.st.com.
- 2. www.st.com/web/en/resource/ technical/document/reference_manual/ CD00246267.pdf.

 ^{*} Статья перепечатана из журнала «Современная электроника», № 1, 2015 г., с разрешения редакции, тел. +7 (495) 232-00-87, www.soel.ru