复变函数 2406 第六周作业

2023年4月3日

- 1. (1) 计算正弦函数 $\sin z$ 的模 $|\sin z|$, 其中 $z = x + \mathbf{i}y \in \mathbb{C}$;
- (2) 计算 $\min_{|z|=1} |\sin z|$ 与 $\max_{|z|=1} |\sin z|$.
- 2. (1) 证明: 指数函数 e^z 的周期一定为 $2k\pi i$ 的形式, 其中 $k \in \mathbb{Z} \setminus \{0\}$;
- (2) 微分中值定理对于解析函数成立吗? 若成立, 证明之; 否则, 举例说明.
- 3. 分别计算沿着 (1) 直线段; (2) 左半单位圆周; (3) 右半单位圆周的下列积分:

$$I = \int_{\mathbf{i}}^{\mathbf{i}} |z| \, \mathrm{d}z.$$

4. 计算积分 ($[z_1, z_2]$ 表示连接 z_1, z_2 的直线段)

$$\int_{[z_1,z_2]} \operatorname{Re} z \, \mathrm{d}z.$$

5. (1) 计算积分

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{(z-z_0)^n}, \quad n \in \mathbb{Z};$$

(2) 利用上述结论计算积分 (提示: 二项式定理 + 交换积分与求和顺序)

$$\int_{|z|=1} \left(z + \frac{1}{z} \right)^{2n} \frac{dz}{z} \quad (n = 1, 2, \dots);$$

6. 利用 ML 不等式证明不等式:

$$\left| \oint_{|z|=1} \frac{\sin z}{z^2} \, \mathrm{d}z \right| < \pi \mathrm{e}.$$

7. 证明: 若函数 f 在闭单位圆盘 $\overline{\mathbb{D}} = \{z \mid |z| \leq 1\}$ 上连续, 则

$$\lim_{r \to 1^{-}} \int_{|z|=r} f(z) \, \mathrm{d}z = \int_{|z|=1} f(z) \, \mathrm{d}z.$$