Discussion 07

Trees, Linked Lists

Aditya Balasubramanian aditbala [at] berkeley [dot] edu

Announcements

- Cats due today
- Ants released tommorow
 - Checkpoint due Friday
- Magic: the Lambda-ing will be released as an extra credit project
 - Smaller project
- HW04, Lab07, due Thursday
- Clobber policy
 - If you do better on final, can clobber midterm
- Midterm Discussion

rees

Tree

- What are they?
 - Data structure for hierarchies of data
- What should we know
 - Recursion!
 - Every subtree is also a Tree

Tree Terminology

- <spanstyle="color:#e2935b;">ParentNode
 - A node that has branches
- Child Node
 - A node with a parent
 - Can only have one parent
- <spanstyle="color:#233571;">RootThe top node in a tree
 - There is only one root for a tree
- Label
 cred to @Poggenkemper
 The value of a node

More Tree Terminology

- <spanstyle="color:#1c3678;">LeafA node with no branches
- Branch</span
 - A subtree of the root
 - All branches are also trees
- <spanstyle="color:#6ba4c8;">Depth</spanHow far away a node is from the
- < span style="c cred to:@PoggenRemper">Height</span

Tree

- Initializing a Tree
 - Tree(label, branches=[])
 - \circ t = Tree(1, [Tree(2), Tree(3)])
- Accessing branches of a Tree
 - o t.branches -> [Tree(2), Tree(3)]
- Checking if a Tree is a leaf
 - o t.is_leaf() -> False
 - o t.branches[0].is_leaf() -> True
- Getting label of a Tree
 - o t.label -> 1

Manipulating Trees

for b in t.branches

- What is this?
 - IMPORTANT line for dealing with a Tree
- Why use this?
 - Allows us to iterate through branches of a Tree
 - Useful for calling recursive functions on all branches of a Tree
- Can also be a base case
 - The for loop does not run if there are no branches to iterate over

How do I use this? (Recursion for Trees)

- 1. Base Case
 - Smallest Input
 - Usually a leaf
- 2. Recursive Calls
 - Call recursive function on branches
- 3. Putting it together
 - Use recursive calls to solve problem
 - Can use max, min, sum, any, all on lists

Worksheet 😃

Linked List @ > @ > @

Linked Lists

- Can be thought of as a queue waiting to enter a place (starting from the end of the line)
- Each person only knows themself and who is in front of them (rest of the line)

Linked Lists (In More Formal Terms)

- An object that either has a first and rest attribute or is empty
- rest
 - Must be Link.empty or another Linked List
 - Recursive data type!
- first
 - Any data type

Linked List Example

```
one = Link(1, Link(2, Link(3)))
>>> one.first
>>> one.rest
Link(2, Link(3))
>>> one.rest.rest
Link(3)
>>> one.rest.rest.first
3
>>> Link(Link(1), Link(2, Link(3)))
>>> Link(1, 2)
```

Worksheet 😃

Thank you!

Attendance Form -> https://tinyurl.com/adit-disc07

Anon Feedback -> https://tinyurl.com/adit-anon