Esme Gonzalez CIS 4400 Data Warehousing for Analytics Homework Assignment #2 Analytical SQL

2.

3. Write a SQL statement to show the total dollar amount sold to customers summarized by product category name and each month of each Year (YYYY-MM). Only include non-canceled orders that were shipped within 7 days of ordering

SOL 03:

```
SELECT FORMAT_DATE("%Y-%m", order_date) AS Order_month,
category_name,
ROUND( SUM(unit_price * quantity), 2) AS Amount_sold
FROM `order_entry_dataset.customers`
INNER JOIN
  `order_entry_dataset.orders` USING (customer_id)
INNER JOIN
  `order_entry_dataset.order_items` USING (order_id)
  inner join
  `order_entry_dataset.products` USING (product_id)
Where ORDER_STATUS >= 4 AND DATE_DIFF(ship_date, order_date, DAY) < 7
GROUP BY Order_month, CATEGORY_NAME
ORDER BY Order_month, CATEGORY_NAME;</pre>
```

85 Results:

Query complete (1.2 sec elapsed, 80.2 KB processed)

Job information Results JSON Execution details

Row	Order_month	category_name	Amount_sold
1	2019-06	hardware	77781.5
2	2019-06	office equipment	5501.7
3	2019-07	hardware	33114.4
4	2019-07	office equipment	13530.9
5	2019-07	software	18603.2
6	2019-08	hardware	84736.8
7	2010-08	office equipment	12750 3

Rows per page: 100 ▼ 1 - 85 of 85

4. Write a SQL statement to show the total dollar amount sold summarized by Customer marital status and Year along with RANK. The largest sales by marital status by year should be ranked #1.

Question 4:

7 Results:

Row	Year_Order	marital_status	Total_Amount_Sold	Ranking
1	2021	married	2998764.0	1
2	2021	single	2422835.5	2
3	2020	married	1878543.1	3
4	2019	married	1611426.8	4
5	2020	single	1120060.1	5
6	2019	single	522361.1	6
7	2022	married	65571.8	7

5. Write a SQL statement to show the total dollar amount sold across product categories for all orderable products. Calculate the percentage contribution of each product category's sales to the overall total sales.

SOL 05:

```
SELECT category_name, Amount_Sold, SUM(Amount_Sold) OVER () AS TOTAL,
100*Amount_Sold/SUM(Amount_Sold) OVER () AS Percentage
FROM
( SELECT category_name, ROUND( SUM(unit_price * quantity), 2) AS Amount_Sold
FROM
   `order_entry_dataset.orders`
   INNER JOIN
   `order_entry_dataset.order_items` USING (order_id)
   inner join
   `order_entry_dataset.products` USING (product_id)
   WHERE SHIP_DATE IS NOT null
GROUP BY CATEGORY_NAME
ORDER BY CATEGORY_NAME)
```

3 Results:

Row	category_name	category_name Amount_Sold TOTA		Percentage
1	office equipment	3179422.0	1.019469E7	31.187039527440266
2	hardware	6281185.8	1.019469E7	61.61232759407103
3	software	734082.2	1.019469E7	7.200632878488704

6. Write a SQL statement to show the most profitable product over all orders. (unit price above Min Price). Only consider products that are available in the US or Canadian warehouses with list price over \$50.

SQL Q6:

```
SELECT (Unit_price - Min_price) AS Profitable , Country , List_Price , Product_ID ,
Product_Name
FROM `order_entry_dataset.order_items`
  inner join
  `order_entry_dataset.products` USING (product_id)
  inner join
  `order_entry_dataset.inventories` USING (product_id)
```

```
inner join
`order_entry_dataset.warehouses` USING (warehouse_id)
WHERE country = ('US')
OR country = ('CA')
AND list_price>50
ORDER BY Profitable DESC
```

Row	Profitable	Country	List_Price	Product_ID	Product_Name
1	193.6999999999982	US	3379.95	3003	Laptop 128/12/56/v90/110
2	193.6999999999982	US	3379.95	3003	Laptop 128/12/56/v90/110
3	193.6999999999982	US	3379.95	3003	Laptop 128/12/56/v90/110
4	193.6999999999982	US	3379.95	3003	Laptop 128/12/56/v90/110
5	193.6999999999982	CA	3379.95	3003	Laptop 128/12/56/v90/110

7. Which month (be sure to say from which year) had the largest percentage increase in sales over the prior month? Justify your rationale and show your SQL query (Hint: use the LAG function).

SOL 07:

```
GROUP BY Order_Month))
WHERE PriorMonthSales <> 0
ORDER BY PercentageChangeInSales DESC
```

Row	Order_Month	MonthlySales	PriorMonthSales	MonthlySalesDifference	PercentageChangeInSales
1	2019-09	434015.5	97496.1	336519.4	345.16190904046414
2	2020-12	759097.4999999998	198009.70000000007	561087.7999999997	283.36379480399165
3	2020-05	338531.0999999998	130551.4	207979.6999999998	159.30867076109473
4	2019-07	390539.4000000001	152899.99999999997	237639.4000000001	155.4214519293657
5	2020-10	417839.49999999994	165608.7	252230.79999999993	152.30528347846453
6	2019-12	406763.10000000003	162071.9	244691.200000000004	150.9769429493947
7	2021 04	1020720 500000000	4061 40 E00000001	410500 000000000	142 74050550000066
				Rows per page:	100 ▼ 1 - 31 of 31

8. Who is the "best" Sales Manager? Justify your rationale and back it up with queries and data. You may also wish to graph various data to support your justification. DO NOT just total up sales. Consider multiple factors and build a weighted model with SQL. Look at other tables beyond just orders.

SOL O8 Total sales:

5 Results:

Row	Manager_ID	Total_Amount_Sold
1	147	2512812.1
2	148	2412208.9
3	149	2149284.6
4	146	1649670.6
5	145	1647657.6

As you can see from the query results, Manger

ID 147 has the highest total amount of sales then the four other managers. To create the highest amount to be row one I did order Total_Amount_sold. This shows who had the second highest amount the tresult. Another Example would be to do profitability from another example like six.

SQL Q8 Profitability:

```
SELECT Manager_ID, SUM(Unit_price - Min_price) AS Profitable, FROM `order_entry_dataset.salesreps` AS S Inner Join `order_entry_dataset.orders` AS O on S.Employee_ID=0.Sales_Rep_ID INNER JOIN `order_entry_dataset.order_items` USING (order_id) INNER JOIN `order_entry_dataset.products` USING (product_id) GROUP BY Manager_ID ORDER BY profitable DESC
```

5 Results:

Row	Manager_ID	Profitable
1	147	5552.550000000007
2	149	3896.2000000000025
3	148	3821.0500000000056
4	146	3376.7250000000013
5	145	3087.7999999999997

Looking at my results on this query, you

can see how again we have five results with Manger Id 147 having the highest results . Showing that 147 is the best sales manager but another example is seeing the amount of customers.

SOL O8 Amount of Customers:

```
SELECT SUM(Customer_ID) AS Amount_of_Customers, Manager_ID
FROM `order_entry_dataset.salesreps` AS S
Inner Join `order_entry_dataset.orders` AS O
on S.Employee_ID=0.Sales_Rep_ID
INNER JOIN `order_entry_dataset.order_items` USING (order_id)
INNER JOIN `order_entry_dataset.customers` USING (customer_id)
GROUP BY Manager_ID
ORDER BY Amount_of_Customers DESC
```

Row	Amount_of_Customers	Manager_ID
1	115653	148
2	113919	147
3	89997	149
4	73564	146
5	60439	145

This query shows that Manger Id 148 has

the most customers out of everyone but this proves that 147 is the best manager. The reason is because 147 made the most sales with not the highest number of customers. If you remember from the first query 147 was the highest and 148 was the second highest in sales. If you think about it, if 147 and 148 have the same amount of customers then 147 will still have the highest number of sales.

9) Create a query that joins together all of the columns in these tables: PRODUCTS, CUSTOMERS, ORDER_ITEMS, PROMOTIONS and SALES REP. Be aware that not all orders have sales reps. Export this view to a CSV file. Click Save Results button and then select CSV File (Google Drive). Download the CSV file from Google Drive.

SOL 09:

```
SELECT *
FROM `order_entry_dataset.salesreps` AS SR
Inner Join `order_entry_dataset.orders` AS ORT
on SR.EMPLOYEE_ID=ORT.SALES_REP_ID
INNER JOIN `order_entry_dataset.order_items` USING (order_id)
INNER JOIN `order_entry_dataset.promotions` AS p
on p.PROMO_ID=ORT.PROMOTION_ID
inner join
```

```
`order_entry_dataset.products` USING (product_id)
INNER JOIN `order_entry_dataset.customers` USING (customer_id)
Where sales_rep_id is NOT null
```

Row	customer_id	product_id	order_id	EMPLOYEE_ID	FIRST_NAME	LAST_NAME	EMAIL	PHONE_NUMBER	HIRE_DATE	JOB_ID	SALARY	COMMISSION_
1	283	3123	1313	151	David	Bernstein	DBERNSTE	011.44.1344.345268	2005-03-24	SA_REP	95000	
2	283	3124	1313	151	David	Bernstein	DBERNSTE	011.44.1344.345268	2005-03-24	SA_REP	95000	
3	283	3129	1313	151	David	Bernstein	DBERNSTE	011.44.1344.345268	2005-03-24	SA_REP	95000	
4	283	3133	1313	151	David	Bernstein	DBERNSTE	011.44.1344.345268	2005-03-24	SA_REP	95000	
5	283	3134	1313	151	David	Bernstein	DBERNSTE	011.44.1344.345268	2005-03-24	SA_REP	95000	
					Re	ows per page:	100 🕶 1	- 100 of 1789 First	page /<	<	>	> Last page

$\underline{https://drive.google.com/drive/folders/1p8sxJxqD0l1h5}\underline{W654Tqtq-ZPNj8FgAo?usp=sharing}$

10) Import all of the data from your VIEW into Microsoft Excel. Create a pivot table from the resulting data set and then summarize the data according to total sales by product category and customer country.

Row Labels	Sum of Total Sales		
⊟ CH	81027471		
hardware	44116805.6		
office equipment	3926980.2		
software	108763.5		
□ CN	9982969.2		
hardware	4440473.7		
office equipment	490842.8		
software	18036.3		
■ DE	24870165.6		
hardware	11813304.8		
office equipment	1310738.1		
software	97991		
∃IN	24397250.5		
hardware	17153973		
office equipment	424074		
software	1659		
⊟π	86170076		
hardware	42715556.4		
office equipment	2987759.5		
software	695550.1		
⊟TH	10430256		
hardware	7728384		
office equipment	29798.5		
software	62587.8		
■US	13078826797		
hardware	5533609486		
office equipment	802904461.2		
software	121573919.2		
⊟ (blank)	C		
(blank)	C		
Grand Total	22500638172		

11) Import all of the data from your VIEW into Tableau or Google Data Studio. Create an appropriate visualization from the resulting data set that summarizes the data according to total sales by product category and customer income level over time (e.g., months or years).

At the end of the assignment answers, please tell me:

- 1. How many hours did you spend working on the assignment? I believe I spent 2-3 days on it
- 2. What was the most difficult part of completing the assignment? Getting started with the sql was the most difficult. The reason is to have a starting point and use all the learning materials provided. But overall, It was a great learning experience I will be able to use!

Sources:

- http://holowczak.com/exploring-analytical-sql-with-google-bigguery/7/
- http://holowczak.com/getting-started-with-google-bigguery-o
 n-google-cloud-platform/6/
- http://holowczak.com/reverse-engineering-a-google-bigguery-schema-with-dbschema/5/
- http://holowczak.com/creating-a-service-account-and-key-file-for-google-bigguery/3/