5. 哈尔变换可以用矩阵的形式表示为:

$$T = HFH^T$$

其中,F是一个N×N的图像矩阵,H是N×N变换矩阵,T是N×N变换结果。对于哈尔变换,变换矩阵H包含基函数 $h_k(z)$,它们定义在连续闭区间 $z \in [0,1], k = 0,1,2 \cdots N-1$,其中N = 2^n 。为了生成矩阵,定义整数k,即k = $2^p + q - 1$ (这里 $0 \le p \le n-1$,当 p=0 时 q=0,或 1;当 $p \ne 0$ 时, $1 \le q \le 2^p$)。可得哈尔基函数为:

$$h_0(z) = h_{00}(z) = \frac{1}{\sqrt{N}}, z \in [0,1]$$

且

$$h_k(z) = h_{pq}(z) = \frac{1}{\sqrt{N}} \begin{cases} 2^{\frac{p}{2}}, & (q-1)/2^p \le z < (q-0.5)/2^p \\ -2^{\frac{p}{2}}, & (q-0.5)/2^p \le z < q/2^p \\ 0, & \not\exists \Xi, \ z \in [0,1] \end{cases}$$

 $N\times N$ 哈尔变换矩阵的第i行包含了元素 $h_i(z)$,其中 $z=\frac{0}{N},\frac{1}{N},\cdots (N-1)/N$ 。计算当N=16时的 H_{16} 矩阵。

得到表格:

k	p	q	$(q-1)/2^p$	$(q-0.5)/2^p$	$q/2^p$
0	0	0	-1	-0.5	0
1	0	1	0	0.5	1
2	1	1	0	0.5/2	1/2
3	1	2	1/2	1.5/2	2/2
4	2	1	0	0.5/4	1/4
5	2	2	1/4	1.5/4	2/4
6	2	3	2/4	2.5/4	3/4
7	2	4	3/4	3.5/4	1
8	3	1	0	0.5/8	1/8
9	3	2	1/8	1.5/8	2/8
10	3	3	2/8	2.5/8	3/8
11	3	4	3/8	3.5/8	4/8
12	3	5	4/8	4.5/8	5/8
13	3	6	5/8	5.5/8	6/8
14	3	7	6/8	6.5/8	7/8
15	3	8	7/8	7.5/8	1

第 k 行元素为 $h_k(z)$:

$$h_k(z) = h_{pq}(z) = \frac{1}{\sqrt{N}} \begin{cases} 2^{p/2}, & \frac{q-1}{2^p} \le z < \frac{q-0.5}{2^p} \\ -2^{p/2}, & \frac{q-0.5}{2^p} \le z < \frac{q}{2^p} \end{cases}$$

$$0, & otherwise$$

其中在本题中:

$$z = list\left(range\left(0,1,\frac{1}{16}\right)\right)$$

得到 16×16 的变换矩阵 H_{16} 为: (矩阵应用 LaTex 书写截图所得)

矩阵源码:

```
\begin{equation*}
        \setlength{\arraycolsep}{1.5pt}
        \addtocounter{MaxMatrixCols}{16}
        \begin{bmatrix}
         0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ sqrt{2} & \sqrt{2} \ \tag{2} \ 
& -\sqrt{2}\\
         0 & 0 & 0 & 0 & 2 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
         0 & 0 & 0 & 0 & 2\sqrt{2} & -2\sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
         0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt{2} & -2\sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
         \end{bmatrix}
\end{equation*}
```