AEEM 3042 – Aircraft Performance & Design

Aircraft Design Historical Parameters

Seven Intellectual Pivot Points

- ✓ 1. Requirements
- 2. First estimate of aircraft weight
 - 3. Critical performance parameters
 - 4. Configuration layout
 - 5. Better weight estimate
 - 6. Performance analysis
 Does it meet the requirements?
 - 7. Optimization Is it the best design?

Seven Intellectual Pivot Points

3. Critical performance parameters

Maximum Lift Coefficient (C_{Lmax})

Lift-to-Drag Ratio (L/D)

Wing Loading (W/S)

Thrust-to-Weight Ratio (T/W)

Cincinnati

Historical Wing Loading

	(W/S) _{TO}
Long Range	110 - 130
Short/Medium Range	80 - 110
Short Takeoff & Landing	40 - 90
Light Civil	10 - 30
Combat Fighter	40 - 70
Combat Intercept	120 - 150
High Altitude	30 - 60

Historical Thrust / Weight

	(T/W) _{TO}
Long Range	0.20 - 0.35
Short/Medium Range	0.30 - 0.45
Short Takeoff & Landing	0.40 - 0.60
Light Civil	0.25 - 0.34
Combat Fighter	0.60 - 1.30

Historical (L / D)_{max}

	(L/D) _{max} Range	Average (L/D) _{max}
Propeller Personal / Utility	9.6 – 14.2	12.1
Commercial Propeller Transport	13.8 – 18.5	16.3
Business Jet	13.0 – 15.6	14.3
Commercial Jet Transport	15.0 – 18.2	14.4
Military Transport / Bomber	17.5 – 20.5	18.9
Military Fighter	9.2 – 13.9	11.0

Historical Aspect Ratio

	Aspect Ratio
Personal	5.0 - 8.0
Commuter	9.0 – 12.0
Regional Turboprops	11.0 – 12.8
Business Jets	5.0 - 8.8
Jet Transports	7.0 – 9.5
Military Fighter / Attack	2.4 – 5.0

Historical Subsonic C_{fe}

	C _{fe} - subsonic
Bomber and Civil Transport	0.0030
Military Cargo	0.0035
Air Force Fighter	0.0035
Navy Fighter	0.0040
Clean Supersonic Cruise	0.0025
Light Aircraft – Single Engine	0.0055
Light Aircraft – Twin Engine	0.0045

$$C_{D_0} = \frac{S_{wet}}{S_{ref}} \ C_{f_e} \qquad \quad k \ = \frac{1}{\pi \ AR \ e} \label{eq:cde}$$

What is S_{wet} / S_{ref} ?

What is S_{wet} / S_{ref} ?

Historical S_{wet} / S_{ref}

Fig. 3.5 Wetted area ratios.

Historical S_{wet} / S_{ref}

Historical C_{Lmax}

	(C _{Lmax}) _{TO}
Long Range	1.6 – 2.2
Short/Medium Range	1.6 – 2.2
Short Takeoff & Landing	3.0 – 7.0
Light Civil	1.2 – 1.8
Combat Fighter	1.4 – 2.0

Cincinnati

HW #20 - Design Sensitivities

Now that you have a working "model" of a particular aircraft:

What happens if you change the input parameters slightly?

Which parameters are most affected by these changes?

Sensitivities to Perform

Cruise Mach number + 0.02 Mach

Operational Radius <u>+</u> 10%

Aspect Ratio <u>+</u> 10%

Reserves Loiter Time + 15 minutes

Structure Factor <u>+</u> 10%

Payload <u>+</u> 10%

TSFC <u>+</u> 10%

Affected Parameters

Takeoff Weight

Fuel Weight

Empty Weight

HW #20 - Design Sensitivities

Cruise Mach Number	-0.02 Mach	Baseline	+0.02 Mach
Value	0.80	0.82	0.84
Δ Takeoff Weight		0	
Δ Fuel Weight		0	
Δ Empty Weight		0	
Operational Radius (NM)	-10% Radius	Baseline	+10% Radius
Value	3,600	4,000	4,400
Δ Takeoff Weight		0	
Δ Fuel Weight		0	
Δ Empty Weight		0	

HW #20 - Design Sensitivities

Cruise Mach Number	-0.02 Mach	Baseline	+0.02 Mach
Value	0.80	0.82	0.84
Δ Takeoff Weight	+6,000	0	-5,500
Δ Fuel Weight	+3,500	0	-2,900
Δ Empty Weight	+2,500	0	-2,600
Operational Radius (NM)	-10% Radius	Baseline	+10% Radius
Value	3,600	4,000	4,400
Δ Takeoff Weight	-25,000	0	+29,000
Δ Fuel Weight	-13,000	0	+15,000
Δ Empty Weight	-12,000	0	+14,000

△ Weight = Sensitivity Weight – Baseline Weight

Homework Assignment

HW #20 – Aircraft Design - Sensitivities (due by 11:59 pm ET on Monday)

HW Help Session

Monday 4:00 – 5:00 pm ET

Posted on Canvas

HW #20 Assignment with instructions, tips, and checklist

HW #20 Template for data table in Excel

Questions?