ORACLE®

SPATIAL

May 2011
Oracle Spatial User Conference

Oracle Spatial User Conference

May 19, 2011
Ronald Reagan Building and International Trade Center
Washington, DC USA

May 2011 Oracle Spatial User Conference

Using Oracle Spatial

for

Cloud-Based Point Cloud Data Management

May 2011 Oracle Spatial User Conference

Todd Rothermel

VP, Operations, Incubation

Tim Howerton Software Developer

Point Cloud Overview

Data Collection

- Methods: LiDAR, Sonar, and GPR
- Styles: Aerial, Static, Mobile, and Bathymetric

Point Cloud Positives

- Quickly acquire "as-built" (existing) conditions for a project
- Point cloud used in 3D modeling and geospatial software

Point Cloud Negatives

- Typical point cloud data files (LAS, XYZ, POD, PTS) are multiple gigabytes in size
- Transfer and distribution cause significant delays

Positives from Negatives

- Oracle 11g Spatial and Amazon EC2 Cloud
 - Efficient, secure storage and delivery to designers and construction contractors

Enter TrueViz PULSE™

- Combines extensive 3-D design expertise with unique tools and workflows
- Acquires, optimizes, extracts and leverages LiDAR point cloud data
- Utilizes point cloud data from design through construction

Enter TrueViz PULSE™ Data Manager

- Point cloud data management system
- Users quickly locate and extract specific areas of interest, including cross sections and polygons
- Oracle 11g database
- Amazon EC2 Linux instance
- Silverlight mapping interface

Oracle Spatial in the cloud

- 11gR2 database on Oracle Enterprise Linux
 - DB created on Amazon EC2 instance
 - Setup using image provided by Oracle
 - RMAN configured for S3 data file backup
- EBS volumes attached to server as storage devices
 - Raw devices used as data files for Tablespace(s)
 - On-demand storage as new LiDAR data is collected

Oracle Spatial SDO_PC

- Point Clouds stored using SDO_PC package
 - Loaded into database using LibLAS las2oci
 - Points converted directly from .las files to SDO_PC blocks
 - Significant reduction in load time

Oracle Spatial SDO_PC

- User-defined areas extracted using SDO_PC_PKG.CLIP_PC
 - Blocks are inserted into queuing table
 - Points extracted using SDO_PC_PKG.TO_GEOMETRY
 - LiDAR attributes stored on point dimensions 4-11
- Points are written to a variety of formats
 - .las, .pod, .txt
- Filtering by classification
 - Ground, vegetation, water, buildings, etc.

Client Access to Point Clouds

- Web access through WCF services, ODP.NET
 - Bing Maps Silverlight application displays all point cloud collect locations
 - Admin interface manages and monitors cloud storage through EC2 .NET API
 - Points extracted and streamed to a variety of clients, such as MicroStation, iPad, and Android

May 2011 Oracle Spatial User Conference

DEMONSTRATION

Leveraging Oracle Spatial

HNTB next steps...

- Oracle MapViewer and GeoRaster
- Rasterize point cloud data to display densities (currently mapping minimum bounding rectangles)

Conclusion

- Increased use of LiDAR has led to significant data storage and delivery challenges
- HNTB was forced to look beyond traditional storage methods
- Oracle's SDO_PC package used in the Amazon cloud provides us with the combination of speed, scaling and flexibility we need to leverage LiDAR

ORACLE®

SPATIAL