See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/243954314

AnAB initio study of the geometrical structures and vibrational spectra of the free ion NO 2? and the LiNO2 molecule

ARTICLE in JOURNAL OF STRUCTURAL CHEMISTRY · NOVEMBER 1985

Impact Factor: 0.51 · DOI: 10.1007/BF00747822

READS

4

2 AUTHORS, INCLUDING:

Victor Solomonik

Ivanovo State University of Chemistry and ...

77 PUBLICATIONS 217 CITATIONS

SEE PROFILE

AN AB INITIO STUDY OF THE GEOMETRICAL STRUCTURES AND VIBRATIONAL SPECTRA OF THE FREE ION NO AND THE Lino Molecule

S. P. Konovalov and V. G. Solomonik

UDC 539.194

The Hartree-Fock-Roothaan method has been used in a two-exponential basis with and without the inclusion of polarization defunctions on the nitrogen and oxygen atoms to calculate the geometry and the vibrational characteristics of the free NO_2^- ion and the $LiNO_2$ molecule. The results are compared with published data as regards the nitrite ion and the alkali-metal nitrites. The parameters of the LiO_2N rings in $LiNO_3$ and $LiNO_2$ are compared. A study has been made of the effects of the polarization defunctions on the calculated parameters of NO_2^- and $LiNO_2$. The rigid rotor-harmonic oscillator approximation has been used to calculate the thermodynamic parameters of $LiNO_2$ in the ideal-gas state.

So far there have been no experimental studies on the geometry and vibrational spectrum of the $LiNO_2$ molecule. The spectroscopic data [1, 2] and electron diffraction [3, 4] indicate cyclic structures for the molecules $MNO_2(M=Na, K, Rb, Cs)$. Nevertheless, no final conclusion has been drawn [1-4] on the symmetry of the equilibrium configurations in these molecules.

In accordance with the data of [1-4], nonempirical calculations on MXO₂ (M = Li, Na; X = N, P) [5] have shown that the least energy occurs in a cyclic structure of the form

M N. Also, according to [5], the potential surface for a molecule of this type has three further local minima corresponding to the structures Li-O-N, Li N , and

 $N\dots$ Li. There have been no theoretical studies on the force fields and vibrational

spectra of the alkali metal nitrites.

In previous ab initio studies on the free NO_2^- ion (see for example [6] and references in [7]), only the electronic and geometrical structures were considered.

Here we examine the geometrical structure and vibrational spectra of the LiNO_2 molecule and the free NO_2 ion by the SCF MO LCAO method by the use of fairly broad and flexible bases.

CALCULATION DETAILS

All the calculations were performed with the MOLECULE program [8] at the computing center at Ivanovo Chemical Technology Institute. We used the following sets of grouped gaussian functions: $DZ = (9s5p/4s2p)_{N,O}$, $(9s4p/4s2p)_{Li}$ [9, 10] and DZ + P being the smae basis supplemented with polarization functions of d type on the nitrogen and oxygen atoms with the exponents 0.80 (N) and 0.85 (O)[11].

The geometrical parameters of the cyclic structure $Li \stackrel{O}{\longrightarrow} N$ $(C_{2\upsilon})$ and of the NO_2^- ion

Ivanovo Chemical Technology Institute. Translated from Zhurnal Strukturnoi Khimii, Vol. 25, No. 6, pp. 11-17, November-December, 1984. Original article submitted March 25, 1983.

TABLE 1. Characteristics of the Free NO2 Ion*

Danamatan	Ab ini	tio calc.	B 1111	
Parameter ————————	DZ	DZ+P	Published data	
— <i>Е</i>	204,02512	204,12419] {	
$R_e(N-O)$	1,273	1,235	$(1,23\pm0,05)$ [7]	
α_e (O-N-O)	116,7	116,6	(118±5) [7]	
$Q(\mathbf{N})$	+0,420	+0,116		
Q(O) q(N—O)	$\begin{array}{c c} -0.710 \\ 0.338 \end{array}$	-0,580 $0,589$	1	
f_d	8,547	11,587	7,50 [17]	
f_{dd}	2,033	3,013	1,66 [17]	
f_{α}	1,614	1,952	1,67 [17]	
$f_{d\alpha}$	0,359	0,467	0,394 [17]	
$v_1(A_1)$	1394	1623	(1330 ± 20) [7]	
$v_2(A_1)$	800	888	(810 ± 20) [7]	
$egin{aligned} \mathbf{v_3}(B_2) \ (\partial \mu/\partial Q_1)^2 \end{aligned}$	1354 1,00	$\begin{vmatrix} 1554 \\ 0.90 \end{vmatrix}$	(1245 ± 40) [7]	
$(\partial \mu/\partial \hat{Q}_s)^2$	0,45	0,29		
(θμ/θQ3)2 μ†	17,13	20,65		
	0,803	0,626	$2,36\pm0,10$ \$ [7]	
Ib	4,10	3,58	$2,36\pm0,10$ (7)	

*Here and in Tables 2 and 5, we use the following symbols and dimensions: E total energy (au), R, internuclear distance (Å), α bond angle (deg), Ω charge on an atom (au), q populations in the bonds (au), f force constant (mdyn/Å), ν frequency (cm⁻¹),

 $(\partial\mu/\partial Q_i)^2$ square of the derivative of the dipole moment coordinate $Q_i(D^2 \text{ Å}^{-2} \text{ a.m.u.}^{-1})$, μ dipole moment (D); IP ionization potential (eV), and $\mathcal I$ mean amplitude (Å).

† The center of mass coincides with the center of the coordinates.

* Electron affinity of the NO₂ Molecule.

TABLE 2. Characteristics of the $LinO_2$ Molecule Calculated Ab initio

Parameter	DZ	DZ+P	Parameter	DZ	DZ+P	
	211,52362	211,63045	Q(N)	+0,350	+0,347	
$R_{\rho}(N-0)$	1,277	1,238	Q(O)	0,569	-0,552	
$R_{o}(\text{Li}-0)$	1,934	1,886	q(N—O)	0,315	0,544	
R _e (Li N)	2,341	2,255	q(Li—O)	0,184	0,168	
$\alpha_{c}(O-N-O)$	111,4	113,6	μ	6,42	6,13	
Q(Li)	+0,788	+0,757	IP	11,5	11,0	

were optimized not only in the DZ basis but also $D_Z + P$. Also, in DZ we optimized the O_t C_s structure with the linear $Li-O_b-N$, fragment, which according to [5] is the isomer having the energy closest to that of the cyclic structure. We obtained the following internuclear distances for the C_S configuration: $R(N-O_t)$ 1,232, $R(N-O_b)$ 1,306, $R(Li-O_b)$ 1,636 Å and the bond angle $\alpha(O_t-N-O_b)$ 115,4°. Table 1 and 2 give the calculated characteristics for NO_2 and $LiNO_2$.

TABLE 3. Force Constants of the $LiNO_2$ Molecule (mdyn/Å)

Force constant	DZ	DZ+P	Force constant	DZ	DZ+P	
f_{r}	0,701	0,833	$\ _{f_{dr}}$	0,260	0,339	
f_{rr}	0,194	0,072	f_{α}	2,113	2,350	
f_d	8,411	11,027	$f_{r\alpha}$	-0,214	0,165	
f_{dd}	2,539	3,033	$f_{d\alpha}$	0,691	0,783	
$f_{d\boldsymbol{r}}'$	0,234	-0,309	f_{ω}	0,214	0,186	

TABLE 4. Vibration Frequencies v_1 (cm⁻¹), Values of $(\partial \mu/\partial Q_i)^2$ ($D^2 \mathring{A}^{-2}$ a.m.u.⁻¹), Potential-Energy Distribution PED Over the Natural Coordinates, and Isotopic Shifts Δv_i (⁶Li-⁷Li) (cm⁻¹) for the LiNO₂ Molecule

Туре	DZ		DZ+P			Δν _i (6Li-7Li)	
Туре	v _i	$(\partial \mu/\partial Q_{\hat{i}})^2$	v_{i}	$(\partial \mu/\partial Q_{\hat{i}})^2$	PED *(DZ)	DZ	DZ+P
A_1	$ \begin{array}{cccc} v_1 & 1423 \\ v_2 & 882 \\ v_3 & 589 \\ \end{array} $	0,86 0,51 2,79	1590 959 589	0,74 0,36 2,90	$ \begin{vmatrix} 0,80d + 0,20\alpha \\ 0,85\alpha \\ 0,98r \end{vmatrix} $	0,2 $0,2$ $40,9$	0,1 0,5 40,8
B_2 B_1	$ \begin{array}{c ccc} v_4 & 1266 \\ v_5 & 340 \\ v_6 & 301 \end{array} $	$\begin{array}{c} 17,49 \\ 0,32 \\ 1,77 \end{array}$	1490 422 279	21,20 0,38 1,44	$1,00d \\ 0,91r \\ 1,00\omega$	0,5 $15,8$ $4,3$	0,5 19,8 3,7

^{*}Contributions to PED less than 0.15 have been omitted

 $[14]^*$ for LiNO2. Then a similarity transform was applied to matrix F to find the force constants in the natural coordinates (Table 3).

DISCUSSION

<u>NO_Ion.</u> We found changes in the theoretical values of the geometrical parameters and characteristics for the nitrite ion on including the polarization d functions in the DZ basis analogous to those obtained previously for the BO_2^- , NO_3^- and CO_3^{2-} [16]. The shortening of the $R_e(N-0)$ internuclear distance is accompanied by reductions in the magnitudes of the charges on the atoms and by increases in the bond populations. The force constants f_d , f_{dd} , f_{α} , and $f_{d\alpha}$, increase by 36, 48, 20, and 30%, while the frequencies ν_1 , ν_2 , and ν_3 increase by 16, 11, and 15% correspondingly. The calculations with the DZ basis on the whole reproduce the experimental data better than do those with DZ + P. While the force constants obtained with the DZ basis differ from the experimental values [17] by on average 12%, the differences for DZ + P is 42%. The deviations in the frequencies of the normal vibrations are 4.5% (DZ) and 19% (DZ + P).

The isotopic shifts calculated with the DZ basis for the vibrational frequencies of NO_2 under the substitutions $^{14}N \rightarrow ^{15}N$, $^{16}O \rightarrow ^{18}O$ also agree well with the experimental values [17] (mean deviation 7%, maximum 11.7%).

LiNO₂ Molecule. The calculations showed that the C₂v configuration for the lithium nitrite molecule lies lower in energy than does C_S. The difference $E(C_s) - E(C_{2v})$ is 27.6 kJ in the DZ basis or 62.3kJ † in the DZ + P basis. Therefore, a difference from LiBO₂ [18] is that adding the polarization functions to the basic sets of atoms in the acid residue increases the molecular rigidity as regards the motion of the lithium around the NO₂ fragment in the plane.

^{*}In the case of LiNO₂, instead of the S(B₁) coordinate adopted in[4] we used $S(B_1) = \sqrt{RD/2}(\omega_1 - \omega_2)$ [15]. †Difference in energy between structures whose geometrical parameters were found in the DZ basis.

A check with the DZ basis showed that the $C_{\rm S}$ structure is not an isomer and does not correspond to any singular point on the potential surface. Movement of the lithium atom that $O_{\rm c}$

causes the ${\rm Li-O_b-N'}$ to form a ring reduces the energy, while motion in the opposite direction increases it. This result casts doubt on the conclusions of [5] on the existence of two other isomers for the MXO₂ molecule.

We now consider the changes in the LiNO₂ molecule on extending the basis by including polarization d functions. In the case of the NO₂ section, the changes in the geometrical parameters and electron-density distribution are the same as in the NO₂ ion. The Li-O bond resembles N-O in shortening when there is the corresponding increase in the force constant $f_{\bf r}.$ The changes in the nondiagonal force constants means that there is a decrease in the difference between the frequencies of the symmetrical and antisymmetric stretching vibrations of the NO₂ and LiO₂ fragments. The diagonal force constants and vibrational frequencies increase when d functions are included in the basis: ν_1 by 12%, ν_2 by 8%, and ν_5 by 24%. An exception is represented by f_{ω} and the corresponding frequency ν_6 (B₁), which corresponds to nonplanar ring bending (ν_6 decreases by 8%), while ν_3 hardly alters.

The calculations indicate that the $R_e({\rm N-O})$ internuclear distances in LiNO₂ and NO₂ are similar, although there is an altered electron-density distribution in LiNO₂ and a reduction in f_d. The other force constants f_{α} , f_{dd} , $f_{d\alpha}$ increase. There are certain differences in the changes in $\nu_{\rm Sym}$ (N-O) on going from NO₂ to LiNO₂ in the DZ and DZ + P bases: While the value increases in DZ (mainly due to increase in f_{dd}), it decreases in DZ + P.

Table 4 gives the frequencies of the normal vibrations v_1 and the values of $(\partial \mu/\partial Q_i)^2$, which are proportional to the intensities of the IR bands. No experimental value have been published. For other MNO₂ (M = Na, K, Rb, Cs) , measurements have been made only of the wave numbers of the strongest band v_4 [1, 2], which is close to $v_3 = 1245 \pm 40$ cm⁻¹ [7] for the nitrite ion, and also $v_2 = 802$ and 808 cm⁻¹ for KNO₂ [1] (doubling due to band splitting in the matrix), which are close to $v_2 = 810 \pm 20$ cm⁻¹ [7] in NO₂. The constancy of v_4 in the sequence MNO₂ (M = Na, K, Rb, Cs) and the similarity of v_4 and v_2 to the corresponding frequencies for NO₂ would indicate that the vibrations of the NO₂ section in the MNO₂ molecules are highly characteristic, including vibrations of totally symmetric type v_8 ym(N-O). Therefore, a comparison with the measured frequencies for the free NO₂ ion [7] enables one to estimate the errors in calculating v_1 , v_2 , and v_4 for LiNO₂; the errors evidently do not exceed 10% in the DZ basis or 20% in DZ + P. The error in calculating v_3 (Li-O) in the DZ basis is probably of the same order as for v(Li-O) in LiNO₃ ($\delta = 7.4\%$) [19]. On the whole, as for NO₂, the addition of the d functions to the DZ basis leads to an increase in the relative error in determining the frequencies for LiNO₂. A similar

conclusion can probably be drawn for the frequencies of the fragment L_i $\stackrel{O}{\longrightarrow} N$ in LiNO3.

The calculated isotopic shifts for NO₂ due to the substitutions $^{14}\text{N} \rightarrow ^{15}\text{N}$ and $^{16}\text{O} \rightarrow ^{18}\text{O}$ are similar to those for the nitrite ion [17].

We now compare the structure and parameters of MNO_2 with those of the fragment MO_2N in the MNO_3 molecule. Vapor electron diffraction [3, 20, 21] has shown that the effective internuclear distances and the mean vibration amplitudes of the $RbNO_2$ and $CsNO_2$ molecules

and of the M ${\overset{O}{\stackrel{}{\text{\sc NO}_3}}}$ N ring in RbNO_3 or CsNO_3 are the same within the limits of the ex-

perimental error. In the interpretation of the internuclear distances for MNO $_3$, it was assumed [20, 21] that the NO $_3$ fragment has D $_3$ h symmetry. The internuclear distances R(N-0) and R(0...0) derived in [20, 21] correspond therefore to certain effective values $\overline{R}(N-0) = [R(N-O_t) + 2R(N-O_b)]/3$ and $\overline{R}(0...0) = [R(O_b...O_b) + 2R(O_b...O_t)]/3$. The quantities $\overline{l}(N-0)$ and $\overline{l}(0...0)$ were determined analogously.

It is evident from Table 5 that $R_e(N-0)$, l(N-0) in LiNO₂ and $\overline{R}(N-0)$, $\overline{l}(N-0)$ in LiNO₃ are virtually the same. The characteristicity of the R(M-0) bond lengths for the heavy atoms and the mean amplitudes l(M-0) in the ring [3, 20, 21] apply also for Li-0. The force

TABLE 5. Comparison of the Parameters of the Li N Ring in LiNO₂ and LiNO₃ Calculated in the DZ Basis

Parameter	LiNO ₂	LiNO _s [19]	Parameter	LiNO ₂	LiNO ₃ [19]	
R(N-O)	1,277	1,313	l(Li · · · N)	0,102	0,102	
$\overline{R}(N-O)$		1,278	l(O · · · O)	0,056	0,065	
R(Li-O)	1,934	1,926	$\overline{l}(O \cdots O)$		0,063	
$R(\text{Li } \cdots \text{N})$	2,341	2,305	f_r	0,701	0,744	
$\alpha(0-N-0)$	111,4	113,3	f_{rr}	0,194	0,205	
v _{sym} (Li-O)	589	567	f_d	8,411	6,084	
v _{sym} (N-O)	1423	1013	f_{dd}	2,539	1,230	
v asym (Li-O)	340	351	$f_{dr'}$	-0,234	-0,074	
v _{asym} (N-O)	1266	1240	f_{dr}	0,260	0,099	
ν _{op}	301	185	f_{α}	2,113	1,801	
l(Li-O)*	0,139	0,133	$f_{r\alpha}$	-0,214	0,212	
l(N-O)	0,047	0,051	$f_{d\alpha}$	0,691	0,298	
Ĩ(N—O)		0,047	f_{ω}	0,214	0,245	

^{*}Values given for T = 800°K

TABLE 6. Thermodynamic Functions for LiNO $_2$ Ideal Gas in J/mole $^{\circ}$ K

т, к	100	298,15	500	1000	1500	2000	2500	3000
$c_p \\ \Phi^* \\ S^0$	37,01	54,64	65,77	76,99	80,19	81,43	82,03	82,37
	177,00	217,80	241,53	280,00	306,04	325,86	341,85	355,28
	211,05	260,17	291,29	341,20	373,13	396,40	414,64	429,63

constants show that NO $_2$ in LiNO $_2$ is more rigid than in the Li $\overset{\hbox{O}}{\underset{\hbox{O}}{\bigvee}}N$ ring in LiNO $_3\colon$ the

values of f_d , f_{dd} , f_{α} , $f_{d\alpha}$ in the nitrite are larger than those in the nitrate. On the other hand, f_r and f_{rr} are larger in LiNO₃. Nevertheless, in spite of certain differences, there are analogous force fields and similarity between certain frequencies for lithium nitrite and nitrate. For example, $v_{sym}(\text{Li}-0)$ and $v_{sym}(\text{Li}-0)$ for LiNO₃ and LiNO₂, which are related to motion of the lithium relative to the acid residue in the plane of the molecule.

We used the molecular parameters of $LiNO_2$ obtained in the DZ basis (Tables 2 and 4) for the rigid rotor-harmonic oscillator approximation to calculate the thermodynamic functions of $LiNO_2$ in the ideal-gas state (Table 6), which are required to calculate high-temperature processes involving lithium nitrite vapor.

The αb initio calculations give the energy for the dissociation of LiNO₂ into Li⁺ and NO₂ as 690 kJ/mole* in the DZ basis or 709 kJ/mole in the DZ + P. The energies for dissociation into Li plus NO₂ were calculated from data on the ionization potential of the lithium atom (IP(Li) = 5.39178 ± 0.00001 eV [22]) and the electron affinity of NO₂ (EA (NO₂) = 2.36 ± 0.10 eV [7]) as 397 and 417 kJ/mole in the DZ and DZ + P bases correspondingly.

Therefore, we have derived the complete force field and vibrational spectrum for the lithium nitrite molecule. The calculations show close analogies in structure and properties

between LiNO_2 and the $\text{Li} \bigcirc N$ ring in LiNO_3 as previously observed for compounds of the

heavy alkali metals [3, 20, 21]. The data will be useful in future theorethical and experimental studies on LiNO₂ and similar molecules.

 $[*]E(Li^+) = -7.23599 \text{ au.}$

LITERATURE CITED

- 1. A. A. Belyaeva, V. N. Bukhmarina, Yu. B. Predtechenskii, and L. D. Shcherba, paper deposited at ONIITEKhIM No. 132khp-D82 of 13 January 1982.
- 2. A. M. Shapovalov, PhD Thesis, Moscow University (1980).
- V. A. Kulikov, V. V. Ugarov, and N. G. Rambidi, Zh. Strukt. Khim., 22, 183 (1981).
- 4. N. I. Tuseev, E. Z. Zasorin, and V. P. Spiridonov, Zh. Strukt. Khim., 20, 587 (1979).
- 5. C. J. Marsden, in: Ninth Austin Symposium on Molecular Structure(1982) p. 33.
- 6. G. V. Pfeiffer and L. C. Allen, J. Chem. Phys., <u>51</u> 190 (1969).
- 7. Thermodynamic Parameters of Individual Substances: Handbook [in Russian], Volume 1, Part 1, Nauka, Moscow (1982), p. 295.
- 8. J. Almlof, USIP Report 74-29, University of Stockholm (1974).
- 9. S. Husinaga, J. Chem. Phys., 42, 1292 (1965).
- 10. T. H. Dunning, J. Chem. Phys., <u>53</u>, 2823 (1970).
- 11. T. H. Dunning and P. J. Hay, in: Methods of Electronic Structure Theory, Plenum Press, New York (1977), Chapter I, p. 1.
- 12. V. G. Solomonik, V. M. Ozerova, and V. V. Sliznev, Zh. Neorg. Khim., 27, 1636 (1982).
- 13. S. J. Cyvin, Molecular Vibrations and Mean-Square Amplitudes, Elsevier (1968).
- 14. S. J. Cyvin, B. N. Cyvin, and A. Snelson, J. Chem. Phys., 74, 4338 (1970).
- 15. A. Snelson, B. N. Cyvin, and S. J. Cyvin, J. Mol. Struct., 24, 165 (1975).
- 16. S. P. Konovalov and V. G. Solomonik, Zh. Fiz. Khim., 57, $36\overline{3}$ (1983).
- 17. R. Kato and J. Rolfe, J. Chem. Phys., 47, 1901 (1967).
- 18. S. P. Konovalov and V. G. Solomonik, Zh. Neog. Khim., 29, No. 7 (1984).
- 19. V. G. Solomonik and S. P. Konovalov, Zh. Strukt. Khim., 24, No. 5, 10 (1983).
- 20. V. A. Kulikov, V. V. Ugarov, and N. G. Rambidi, Zh. Strukt. Khim., 22, 196 (1981).
- 21. V. A. Kulikov, V. V. Ugarov, and N. G. Rambidi, Zh. Strukt. Khim., 22, 168 (1981).
- 22. V. N. Kondrat'ev (editor), Bond Energies, Ionization Potentials, and Electron Affinities: Handbook [in Russian], Nauka, Moscow (1974).