

Eine Autokorrektor, der Zeichenfolgen in Smiley umwandelt:

Zeichenfolge	Wird umgewandelt in
:-)	☺
:)	©
:-(8
:(8

Zu Erstellen ein Automat, der:

- * den Eingabezeichestorm liest und bis auf die Smilies unverändert ausgibt und
- * erkennt, ob die Eingabefolgen gültige Smilys darstellen

Eingabealphabet: $E = \{:, -,), (, x\}$

Ausgabealphabet: $A = \{:, -, :), (, x, :), : (:, x, :), :\}$

An den Kanten X,X – Eingabezeichen, Ausgabezeichen

91 for. br. sano mano juno.macnocens cinden icci.

Beispiel: Autokorrektur

Zunächst die "interessanten" Eingabefolgen definieren.

Welche sind diese?

Zeichenfolge	Wird umgewandelt in
:-)	☺
:)	☺
:-(⊗
:(8

Konstruieren Sie den Automaten nur für die zu ersetzende Zeichenfolge.

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Beispiel: Autokorrektur

- * Was passiert wenn man auch andere Zeichen angibt?
- * Erweitern Sie den Automaten für den Fall, dass auch andere Zeichenfolgen angegeben werden. vgl. Tabelle

Zeichenfolge	Wird umgewandelt in
:-)	☺
:)	☺
:-(8
:(8

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

DEA - NEA

Definition DEA (Wiederholung)

- Ein deterministischer, endlicher (Akzeptor-) Automat (DEA) ist ein 5-Tupel (Z, Σ, δ, z₀, E) mit

 - $-\Sigma \triangleq$ endliches Eingabealphabet
 - $-\delta: Z \times \Sigma -> Z \triangleq Übergangsfunktion$
 - $-z_0 \in Z \triangleq Startzustand$

Was bedeutet: DEA A ist deterministisch?

Es ist immer eindeutig bestimmt, wie es weitergeht: $\delta(z, a) = z^{c}$

Nachteile....?

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Beispiel DEA...

DEAA

Erkennen Sie den Zusammenhang zwischen den Automaten und der Sprache?

$$L(A) = \{0\} \cup \{1\omega 1 \mid \omega \in \{0, 1\}^*\}$$

Frage: kann man den Automaten auch einfacher gestalten – und wenn ja, wie?

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Nichtdeterministische, endliche Automaten (NEA)

 Erweiterung: Ein Zustand kann für ein zu verarbeitendes Zeichen einen, mehrere oder keinen Folgezustand / Folgezustände haben

Mehrfachübergang von z₁ (nicht eindeutig):

$$\delta(z_1, 1) = z_2$$

 $\delta(z_1, 1) = z_1$

Nichtdeterminismus Leicht zu erkennen, dass: $L(A') = \{0\} \cup \{1\omega 1 \mid \omega \in \{0, \, 1\}^*\}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

NEA

 δ ist keine Funktion im "klassischen" Sinne

$$\delta(\mathsf{z},\,\mathsf{a}) = \begin{cases} - & \triangleq \emptyset \\ \mathsf{z}' & \triangleq \{\mathsf{z}'\} \\ \mathsf{z}',\,\mathsf{z}'',\,\ldots \triangleq \{\mathsf{z}',\,\mathsf{z}'',\,\ldots\} \end{cases} \quad \mathsf{z} \in \mathsf{Z},\,\mathsf{a} \in \Sigma$$

@ Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

NEA

$$\delta: Z \times \Sigma \ \Rightarrow \ P(Z) \ \triangleq \ 2^Z$$
 Potenzmenge von Z \(\rightarrow \ Menger aller \) Teilmengen von Z \(|P(Z)| = 2^{|Z|} \)

z.B.
$$Z = \{z_0, z_1, z_2\}$$

$$P(Z) = \{\emptyset, \{z_0\}, \{z_1\}, \{z_2\}, \{z_0, z_1\}, \{z_0, z_2\}, \{z_1, z_2\}, \{z_0, z_1, z_2\}\}$$

 δ wird meist nur für die relevanten (Z x Σ)-Paare angegeben, die anderen Zuordnungen sind (- = \emptyset = irrelevant).

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

13

NEA

Ein nichtdeterministischer, endlicher Automat (NEA) ist ein 5-Tupel (Z, \sum , δ , z_0 , E) mit Z, \sum , z_0 , E wie beim DEA

- * $\delta: Z x \sum \rightarrow P(Z) \triangleq Überführungsfunktion$
- * Auf der Ebene der Zustände ist δ keine Funktion, sondern eine Relation $\delta(z, a) \subset Z$
- * $\delta(z, a)$ kann auch leer sein

Bezeichnung: NEA A' oder A'_{NEA} oder ...

Aufgabe NEA → DEA

- Gegeben sei ein nichtdeterministischer endlicher Automat A. Konstruieren Sie einen deterministischen endlichen Automaten A', sodass gilt: L(A) = L(A').
- A= ({0, 1}, { s_0 , s_1 , s_2 , s_3 , s_4 }, δ , s_0 , { s_4 })

- a) Geben Sie die Übergangstabelle aus der Potenzmengenkonstruktion an.
- b) Definieren und zeichnen Sie den äquivalenten deterministischen Automaten.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Lösung zu a)

Zustandsmenge	1	0
$\{s_0\}$	$\{s_1\}$	Ø
$\{s_1\}$	$\{s_1,s_2\}$	Ø
$\{s_1, s_2\}$	$\{s_1, s_2, s_3\}$	Ø
$\{s_1, s_2, s_3\}$	$\{s_1, s_2, s_3, s_4\}$	$\{s_3\}$
$\{s_1, s_2, s_3, s_4\}$	$\{s_0, s_1, s_2, s_3, s_4\}$	$\{s_3\}$
$\{s_0, s_1, s_2, s_3, s_4\}$	$\{s_0, s_1, s_2, s_3, s_4\}$	$\{s_3\}$
$\{s_3\}$	$\{s_4\}$	$\{s_3\}$
$\{s_4\}$	$\{s_0\}$	Ø
Ø	Ø	Ø

Lösung zu b)

Aufgabe NEA → DEA

 Gegeben sei folgender nichtdeterministischer endlicher Automat: A = ({a, b}, {s₀, s₁, s₂, s₃, s₄}, δ, s₀, {s₄})

- Geben Sie die Zustandsübergangstabelle zur Konstruktion des deterministischen endlichen Automaten an.
- b) Zeichnen Sie das Zustandsdiagramm des deterministischen endlichen Automaten A' und geben Sie diesen vollständig an.
- Geben Sie die Sprache, die von dem Automaten erkannt wird, als regulären Ausdruck an.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Lösung zu a)

	a	b
$\{s_0\}$	$\{s_0\}$	$\{s_1\}$
$\{s_1\}$	$\{s_1, s_2\}$	$\{s_1, s_3\}$
$\{s_1, s_2\}$	$\{s_1,s_2\}$	$\{s_1, s_3, s_4\}$
$\{s_1, s_3\}$	$\{s_1, s_2, s_4\}$	$\{s_1, s_3\}$
$\{s_1, s_3, s_4\}$	$\{s_1, s_2, s_4\}$	$\{s_1, s_3\}$
$\{s_1, s_2, s_4\}$	$\{s_1,s_2\}$	$\{s_1, s_3, s_4\}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Lösung zu b) und c)

A' = ({a, b}, {s₀, s₁, s₂, s₃, s₄, s₅},
$$\delta$$
', s₀, {s₄, s₅})

L(A') = a*b(a + b)*(ab + ba)

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Yes we can...

