

Relative Position and Map Networks in Few-shot Learning for Image Classification

Zhiyu Xue, Zhenshan Xie, Zheng Xing, Lixin Duan

UESTC

Introduction

Ravi, S., & Larochelle, H. (2016). Optimization as a model for few-shot learning.

Baseline

Figure 1: Relation Network architecture for a 5-way 1-shot problem with one query example.

Sung, Flood, et al. "Learning to compare: Relation network for few-shot learning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Motivation

RMN:different channels have different descriptions

RPN: the importance of each position is different

Architecture

Relative Map Netwrok

$$P_{S,Q} = Sig(\sum_{i=1}^{n} w_i G_{\phi_i}^i(M_{x_S}^i, M_{x_Q}^i))$$

Relative Position Network

$$V_{i,j}^{s,q} = H([v_{i,j}^S, v_{i,j}^Q])$$

$$w = W_2 \cdot \sigma(W_1 \cdot V_{i,j}^{s,q})$$

$$Att_{i,j} = w^T V_{i,j}^{s,q}$$

$$M_{x^Q} := M_{x^Q} + Att \otimes M_{x^Q}$$

Experiments

Table 1. Mean accuracies (%) of different methods on the MiniImageNet dataset. Results are obtained over 600 test episodes with 95% confidence intervals.

Model	MiniImageNet (5-way)		
	1-shot	5-shot	
MATCHING NETS [21]	43.56 ± 0.84	55.31±0.73	
META LSTM [15]	43.44±0.77 60.60±0		
MAML [3]	48.70±1.84 63.11±0		
PROTOTYPICAL NETS [19]	49.42±0.78 68.20±6		
META SGD [12]	50.47 ± 1.87	64.03±0.94 65.32±0.70 66.41±0.63	
RN [20]	50.44 ± 0.82		
GNN [17]	50.33 ± 0.36		
PABN [6]	51.87	65.37	
TPN [13]	52.78 ± 0.27	66.59 ± 0.28	
EGNN(No Trans) [8]	-	66.85	
R2-D2 [2]	51.80 ± 0.20	68.4 ± 0.20	
Ours(Conv4)	51.72±0.67	67.80±0.30	
Ours(Our backbone)	53.35 ± 0.77	69.35 ± 0.61	

Table 2. Mean accuracies (%) of different methods on the CIFAR-FS dataset. Results are obtained over 600 test episodes with 95% confidence intervals.

Model	CIFAR-FS (5-way)			
	1-shot	5-shot		
MAML [3]	58.9±1.9	71.5±1.0		
PROTOTYPICAL NETS [19]	55.5 ± 0.7	72.0 ± 0.6		
RN [20]	55.0±1.0	69.3±0.8		
GNN [17]	61.9	75.3		
R2-D2 [2]	62.3 ± 0.2	77.4 ± 0.2		
Ours	61.43	76.16		

Table 3. Ablation study w.r.t. average accuracies (%) over 600 test episodes with 95% confidence intervals MiniImageNet in task 5-way K-shot about ablation study, where K=1,3,5,7 and 10.

Ave Acc	5-1	5-3	5-5	5-7	5-10
RN [20]	50.44	60.63	65.32	67.73	69.81
RPN	52.43	62.96	67.03	69.51	72.01
RMN	50.54	63.12	68.28	70.49	72.12
Ours	53.35	63.94	69.35	70.87	73.17

Thanks for watching

https://github.com/chrisyxue/RMN-RPN-for-FSL