Байесовский выбор субоптимальной структуры модели глубокого обучения

О. Ю. Бахтеев

Диссертация на соискание ученой степени кандидата физико-математических наук 05.13.17 — Теоретические основы информатики Научный руководитель: д.ф.-м.н. В.В. Стрижов

Московский физико-технический институт 5 июня 2019 г.

Выбор структуры модели глубокого обучения

Цель: предложить метод выбора структуры модели глубокого обучения. **Задачи**

- Предложить критерии оптимальной и субоптимальной сложности модели глубокого обучения.
- ② Предложить алгоритм построения модели субоптимальной сложности и оптимизации параметров.

Исследуемые проблемы

- Большое число параметров и гиперпараметров модели, высокая вычислительная сложность оптимизации.
- Многоэкстремальность и невыпуклость задачи оптимизации.

Методы исследования

Рассматриваются графовое представление нейронной сети. Используются методы вариационного байесовского вывода. Для получения модели субоптимальной сложности используется метод автоматического определения релевантности параметров с использоваением градиентных методов оптимизации гиперпараметров и структурных параметров модели.

Проблема выбора оптимальной структуры

Правдоподобие моделей с избыточным числом параметров значимо не меняется при их удалении.

Глубокое обучение предполагает оптимизацию моделей с заведомо избыточной сложностью.

Модель глубокого обучения

Определение

Моделью $f(\mathbf{w}, \mathbf{x})$ назовем дифференцируемую по параметрам \mathbf{w} функцию из множества признаковых описаний объекта во множество меток:

$$\mathbf{f}: \mathbb{X} \times \mathbb{W} \to \mathbb{Y}$$
,

где \mathbb{W} — пространство параметров функции \mathbf{f} .

Особенность задачи выбора модели *глубокого обучения* — значительное число параметров моделей приводит к неприменимости ряда методов оптимизации и выбора структуры модели (AIC, BIC, кросс-валидация).

Модель определяется параметрами ${f W}$ и структурой ${f \Gamma}.$

Структура задает набор суперпозиций, входящих в модель и выбирается согласно статистическим критериям сложности модели.

Эмпирические оценки статистической сложности модели:

- число параметров;
- 2 число суперпозиций, из которых состоит модель.

Выбор структуры: двуслойная нейросеть

Модель \mathbf{f} задана **структурой** $\mathbf{\Gamma} = [\gamma^{0,1}, \gamma^{1,2}].$

Модель:
$$\mathbf{f}(\mathbf{x}) = \mathbf{softmax}\left(\mathbf{f}_1(\mathbf{x})\mathbf{W}_0^{1,2}\right), \quad \mathbf{f}(\mathbf{x}): \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad \mathbf{x} \in \mathbb{R}^n.$$

$$\mathbf{f}_1(\mathbf{x}) = \gamma_0^{0,1} \mathbf{g}_0^{0,1}(\mathbf{x}) + \gamma_1^{0,1} \mathbf{g}_1^{0,1}(\mathbf{x}),$$

где $\mathbf{w} = [\mathbf{W}_0^{0,1}, \mathbf{W}_1^{0,1}, \mathbf{W}_0^{1,2}]^\mathsf{T}$ — матрицы параметров, $\{\mathbf{g}_{0,1}^0, \mathbf{g}_{0,1}^1, \mathbf{g}_{1,2}^0\}$ — обобщенно-линейные функции скрытых слоев нейросети.

$$\begin{aligned} \gamma_0^{0,1} \mathbf{g}_0^{0,1}(\mathbf{x}) &= \gamma_0^{0,1} \sigma(\mathbf{x} \mathbf{W}_0^{0,1}) \\ \mathbf{f}_0(\mathbf{x}) &= \mathbf{x} & \mathbf{f}_1(\mathbf{x}) & \mathbf{g}_0^{1,2}(\mathbf{x}) &= \gamma_0^{1,2} \mathbf{softmax}(\mathbf{x} \mathbf{W}_0^{1,2}) \\ \gamma_1^{0,1} \mathbf{g}_1^{0,1}(\mathbf{x}) &= \gamma_1^{0,1} \sigma(\mathbf{x} \mathbf{W}_1^{0,1}) \end{aligned}$$

Графовое представление модели глубокого обучения

Заданы:

- $oldsymbol{1}$ ациклический граф (V, E);
- **2** для каждого ребра $(j,k) \in E$: вектор базовых дифференцируемых функций $\mathbf{g}^{j,k} = [\mathbf{g}_0^{j,k}, \dots, \mathbf{g}_{k+1}^{j,k}]$ мощности $K^{j,k}$;
- ${f 3}$ для каждой вершины $v\in V$: дифференцируемая функция агрегации ${f agg}_v$.
- **4** Функция ${\bf f} = {\bf f}_{|V|-1}$, задаваемая по правилу

$$\mathbf{f}_{\nu}(\mathbf{w}, \mathbf{x}) = \mathsf{agg}_{\nu}\left(\left\{\left\langle \gamma^{j,k}, \mathbf{g}^{j,k}\right\rangle \circ \mathbf{f}_{j}(\mathbf{x}) | j \in \mathsf{Adj}(\nu_{k})\right\}\right), \nu \in \{1, \dots, |V|-1\}, \quad \mathbf{f}_{0}(\mathbf{x}) = \mathbf{x}$$

$$\tag{1}$$

и являющаяся функцией из признакового пространства $\mathbb X$ в пространство меток $\mathbb Y$ при значениях векторов, $\gamma^{j,k} \in [0,1]^{K^{j,k}}$.

Определение

Граф (V,E) со множестом векторов базовых функций $\{\mathbf{g}^{j,k},(j,k)\in E\}$ и функций агрегаций $\{\mathbf{agg}_v,v\in V\}$ назовем *параметрическим семейством моделей* \mathfrak{F} .

Утверждение

Для любого значения $oldsymbol{\gamma}^{j,k} \in [0,1]^{\kappa^{j,k}}$ функция $\mathbf{f} \in \mathfrak{F}$ является моделью.

Ограничения на структурные параметры

Примеры ограничений для одного структурного параметра $\gamma, |\gamma|=3.$

На вершинах куба

На вершинах симплекса

Внутри куба

Внутри симплекса

Априорное распределение параметров

Определение

Априорным распределением параметров \mathbf{w} и структуры $\mathbf{\Gamma}$ модели \mathbf{f} назовем вероятностное распределение $p(\mathbf{W},\mathbf{\Gamma}|\mathbf{h},\mathbf{f}): \mathbb{W} \times \mathbb{\Gamma} \times \mathbb{H} \to \mathbb{R}^+$, где \mathbb{W} — множество значений параметров модели, $\mathbb{\Gamma}$ — множество значений структуры модели.

Определение

Гиперпараметрами $\mathbf{h} \in \mathbb{H}$ модели назовем параметры распределения $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \mathbf{f})$ (параметры распределения параметров модели \mathbf{f}).

Модель f задается следующими величинами:

- $lackbox{ }$ Параметры $w\in \mathbb{W}$ задают суперпозиции f_{v} , из которых состоит модель f.
- ullet Структурные параметры $oldsymbol{\Gamma} = \{\gamma^{j,k}\}_{(j,k)\in E} \in \mathbb{F}$ задают вклад суперпозиций $oldsymbol{f}_v$ в модель $oldsymbol{f}$.
- ullet Гиперпараметры $oldsymbol{h} \in \mathbb{H}$ задают распределение параметров и структурных параметров модели.
- lacktriangle **Метапараметры** $oldsymbol{\lambda} \in \mathbb{A}$ задают вид оптимизации модели.

Априорное распределение на структуре модели

Каждая точка на симплексе задает модель.

Распределение Гумбель-софтмакс: $\Gamma \sim \mathsf{GS}(\mathsf{s},\lambda_{\mathsf{temp}})$

 $\lambda_{\mathsf{temp}} = 0.995$

 $\lambda_{\text{temp}} = 5.0$

Распределение Дирихле: $\Gamma \sim \mathsf{Dir}(\mathsf{s}, \lambda_{\mathsf{temp}})$

$$\lambda_{\mathsf{temp}} = 0.995$$

 $\lambda_{\mathsf{temp}} = 5.0$

Байесовский выбор модели

Базовая модель:

- $oldsymbol{\circ}$ параметры модели $oldsymbol{\mathsf{w}} \sim \mathcal{N}(0, lpha^{-1}),$
- гиперпараметры
 модели h = [α].

Предлагаемая модель:

- параметры модели $\mathbf{w}_r^{j,k} \sim \mathcal{N}(0,\gamma_r^{j,k}(\mathbf{A}_r^{j,k})^{-1}), \ \mathbf{A}_r^{j,k}$ диагональная матрица параметров, соответствующих базовых функций $\mathbf{g}_r^{j,k}, \ (\mathbf{A}_r^{j,k})^{-1} \sim \text{inv-gamma}(\lambda_1,\lambda_2),$
- структурные параметры модели $\Gamma = \{\gamma^{j,k}, (j,k) \in E\},\ \gamma^{j,k} \sim \mathsf{GS}(\mathsf{s}^{j,k}, \lambda_{\mathsf{temp}}),$
- гиперпараметры модели
 h = [diag(A), s],
- ullet метапараметры $\lambda_1, \lambda_2, \lambda_{\mathsf{temp}}.$

Обоснованность как статистическая сложность

Статистическая сложность модели f:

$$\mathsf{MDL}(\mathbf{y}, \mathbf{f}) = -\log p(\mathbf{h}|\mathbf{f}) - \log p(\hat{\mathbf{w}}|\mathbf{h}, \mathbf{f}) - \log (p(\mathbf{y}|\mathbf{X}, \hat{\mathbf{w}}, \mathbf{f})\delta\mathfrak{D}),$$

где $\delta\mathfrak{D}$ — допустимая точность передачи информации о выборке \mathfrak{D} .

Оптимизация параметров **w** производится согласно **апостериорному распределению параметров**:

$$L = \log p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \mathbf{h}, \mathbf{f}) \propto \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{h}, \mathbf{f}) + \log p(\mathbf{w}|\mathbf{h}, \mathbf{f}).$$

Оптимизация гиперпараметров производится в согласно апостериорному распределению гиперпараметров:

$$Q = \log p(\mathbf{f}|\mathbf{X}, \mathbf{y}) \propto \log p(\mathbf{h}|\mathbf{f}) + \log \int p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{f}) p(\mathbf{w}|\mathbf{h}, \mathbf{f}) d\mathbf{w}.$$

Вариационная нижняя оценка обоснованности

Интеграл обоснованности невычислим аналитически.

Обоснованность модели:

$$p(\mathbf{y}|\mathbf{X}, \lambda_{\mathsf{temp}}, \mathbf{f}) = \iint_{\mathbf{w}, \Gamma} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{f}) p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f}) d\mathbf{w} d\mathbf{\Gamma}.$$

Определение

Вариационными параметрами модели $\theta \in \mathbb{R}^u$ назовем параметры распределения q, приближающие апостериорное распределение параметров и структуры $p(\mathbf{w}, \Gamma | \mathbf{X}, \mathbf{y}, \mathbf{h}, \mathbf{f}, \lambda_{\text{temp}})$:

$$q \approx \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{f})p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})}{\iint\limits_{\mathbf{w}', \mathbf{\Gamma}'} p(\mathbf{y}|\mathbf{X}, \mathbf{w}', \mathbf{\Gamma}', \mathbf{f})p(\mathbf{w}', \mathbf{\Gamma}'|\mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})d\mathbf{w}'d\mathbf{\Gamma}'}$$

Получим нижнюю оценку $\log \hat{p}(\mathbf{y}|\mathbf{X},\lambda_{\mathsf{temp}},\mathbf{f})$ интеграла

$$\log p(\mathbf{y}|\mathbf{X}, \lambda_{\text{temp}}, \mathbf{f}) \ge \mathsf{E}_{\mathsf{g}} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{f}) - \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}, \mathbf{\Gamma})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\text{temp}}, \mathbf{f})).$$

Она совпадает с интегралом обоснованности при

$$D_{\mathsf{KL}}(q(\mathbf{w}, \mathbf{\Gamma})|p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \lambda_{\mathsf{temp}}, \mathbf{f})) = 0.$$

Задача выбора модели

Зададим вариационное распределение $q=q_{\mathbf{w}}q_{\Gamma}$ с параметрами $\boldsymbol{\theta}$, приближающие апостериорное распределение $p(\mathbf{w},\Gamma|\mathbf{X},\mathbf{y},\mathbf{h},\mathbf{f})$ параметров и структуры.

Определение

 Φ ункцией потерь $L(\theta|\mathbf{h},\mathbf{X},\mathbf{y},\mathbf{f})$ назовем дифференцируемую функцию, качество модели на обучающей выборки при параметрах θ распределения q.

 Φ ункцией валидации $Q(\mathbf{h}|\theta,\mathbf{X},\mathbf{y},\mathbf{f})$ назовем дифференцируемую функцию, качество модели при векторе heta, заданном неявно.

 $\it 3$ адачей выбора модели $\it f$ назовем двухуровневую задачу оптимизации:

$$\mathbf{h}^* = rg\max_{\mathbf{h} \in \mathbb{H}} Q(\mathbf{h}|oldsymbol{ heta}^*, \mathbf{X}, \mathbf{y}, \mathbf{f}),$$

где $heta^*$ — решение задачи оптимизации

$$\boldsymbol{\theta}^* = \operatorname*{arg\,max}_{\boldsymbol{\theta} \in \mathbb{R}^{\boldsymbol{u}}} \textit{L}(\boldsymbol{\theta}|\mathbf{h},\mathbf{X},\mathbf{y},\mathbf{f}).$$

Обобщающая задача

Задачу выбора модели $\mathbf{h}^*, \boldsymbol{\theta}^*$ назовем обобщающей на множестве $U_{\theta} \times U_{h} \times U_{\lambda} \subset \mathbb{R}^{u} \times \mathbb{H} \times \Lambda$, если выполнены условия:

- Для каждого $\mathbf{h} \in U_h$ и каждого $\lambda \in U_\lambda$ решение $\boldsymbol{\theta}^*$ определено однозначно.
- ② Условие максимизации правдоподобия выборки: существует $\lambda \in U_{\lambda}$ и $K_1 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $h_1, h_2 \in U_h, Q(h_1) - Q(h_2) > K_1$: матожидания правдоподбия выборок: $\mathsf{E}_a \mathsf{log} \ p(\mathsf{y}|\mathsf{X}, \theta_1, \lambda_{\mathsf{temp}}, \mathsf{f}) > \mathsf{log} \mathsf{E}_a \ p(\mathsf{y}|\mathsf{X}, \theta_2, \lambda_{\mathsf{temp}}, \mathsf{f}).$
- **3** Условие минимизации сложности модели: существует $\lambda \in U_{\lambda}$ и $K_2 \in \mathbb{R}_+$, такие что для любых векторов гиперпараметров $h_1, h_2 \in U_h, Q(h_1) - Q(h_2) > K_2, E_q \log p(y|\theta_1, \lambda_{temp}, f) = \log E_q p(y|\theta_2, \lambda_{temp}, f),$ количество ненулевых параметров у первой модели меньше, чем у второй.
- Условие максимизации обоснованности модели: существует значение гиперпараметров λ , такое что оптимизация задачи эквивалента оптимизации вариационной оценки обоснованности модели:

 $\mathbf{h}^* = \arg\max p(\mathbf{y}|\mathbf{X}, \mathbf{h}', \lambda_{\text{temp}}, \mathbf{f}), \quad \boldsymbol{\theta}^* = \arg\min D_{KL}(q|p(\mathbf{w}, \Gamma|\mathbf{y}, \mathbf{X}, \lambda_{\text{temp}}, \mathbf{f})).$

- **5** Условие перехода между структурами: Существует константа K_3 , такая что для любых двух векторов h_1, h_2 и соответствующих векторов $\theta_1^*, \theta_2^*: D_{\mathsf{KL}}(q_{\Gamma_2}, q_{\Gamma_1}) > K_3, D_{\mathsf{KL}}(q_{\Gamma_1}, q_{\Gamma_2}) > K_3$: существуют значения гиперпараметров λ_1, λ_2 , такие что $Q(h_1, \lambda_1) > Q(h_2, \lambda_1), Q(h_1, \lambda_1) < Q(h_2, \lambda_2).$
- **6** Условие непрерывности: h^*, θ^* непрерывны по метапараметрам.

Анализ задач выбора моделей

Теорема [Бахтеев, 2019]

Следующие задачи выбора модели не являются обобщающими:

- **1** метод максимума правдоподобия: $\max_{\theta} \mathsf{E}_q \mathsf{log} p(\mathsf{y}|\mathsf{X}, \theta, \lambda_{\mathsf{temp}}, \mathsf{f});$
- 2 метод максимума апостериорной вероятности $\max_{\boldsymbol{\theta}} \mathsf{E}_q \mathsf{log} p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}, \mathbf{f}) p(\boldsymbol{\theta}|\mathbf{h}, \lambda_{\mathsf{temp}}) p(\mathbf{h}|\mathbf{f});$
- $egin{align*} 3 \mod \mathbf{M} & \mathbf{M} = \mathbf{M} = \mathbf{M} + \mathbf{M} = \mathbf{M} = \mathbf{M} + \mathbf{M} = \mathbf{M} = \mathbf{M} + \mathbf{M} = \mathbf{$
- $egin{aligned} & \text{кросс-валидация } \max_{\mathbf{h}} \mathbb{E}_q \log p(\mathbf{y}_{\text{valid}} | \mathbf{X}_{\text{valid}}, \boldsymbol{\theta}^*, \lambda_{\text{temp}}, \mathbf{f}) p(\mathbf{h} | \mathbf{f}), \\ & \boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_q \log p(\mathbf{y}_{\text{train}} | \mathbf{X}_{\text{train}}, \boldsymbol{\theta}, \lambda_{\text{temp}}, \mathbf{f}) p(\boldsymbol{\theta} | \mathbf{h}). \end{aligned}$
- **5** AIC: $\max_{\theta} E_q \log p(\mathbf{y}|\mathbf{X}, \theta, \lambda_{\text{temp}}, \mathbf{f}) |\theta_i : \theta_i \neq 0|$;
- **6** BIC: $\max_{\theta} \mathbb{E}_q \log p(\mathbf{y}|\mathbf{X}, \theta, \lambda_{\text{temp}}, \mathbf{f}) \frac{1}{2} \log(m) |\theta_i : \theta_i \neq 0|$;
- \mathfrak{T} перебор структуры модели: $\max \mathbf{\Gamma}' \max_{\theta} \mathsf{E}_q \mathsf{log} p(\mathsf{y}|\mathsf{X}, \theta, \lambda_{\mathsf{temp}}, \mathsf{f}) \mathbb{I}(\mathbf{\Gamma} = \mathbf{\Gamma}').$

Предлагаемая задача оптимизации

Теорема [Бахтеев, 2018]

Пусть функции потерь и валидации L,Q являются непрерывно-дифференцируемыми на некоторой области U. Тогда следующая задача является обобщающей на U.

$$\mathbf{h}^* = \underset{\mathbf{h}}{\operatorname{arg max}} Q =$$
 (Q*)

$$\begin{split} &= \lambda_{\mathsf{likelihood}}^{\mathsf{Q}} \mathsf{E}_{q^*} \mathsf{log} \; p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f}) - \\ &- \mathsf{prior}_{\mathsf{Q}} \mathsf{D}_{\mathsf{KL}} \big(q^*(\mathbf{w}, \mathbf{\Gamma}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f}) \big) - \\ &- \sum_{p' \in \mathsf{P}, \lambda \in \lambda_{\mathsf{Q}}^{\mathsf{struct}}} \lambda \mathsf{D}_{\mathsf{KL}} (\mathbf{\Gamma}|p') + \mathsf{log} p(\mathbf{h}|\mathbf{f}), \end{split}$$

где

$$\begin{aligned} q^* &= \arg\max_{\mathbf{q}} L = \mathsf{E}_{\mathbf{q}} \log \ p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma},\mathbf{h},\lambda_{\mathsf{temp}},\mathbf{f}) \\ &- \mathsf{L}_{\mathsf{prior}} \mathsf{D}_{\mathsf{KL}} \big(q^*(\mathbf{w},\boldsymbol{\Gamma}) || p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\lambda_{\mathsf{temp}},\mathbf{f}) \big). \end{aligned} \tag{L^*}$$

Оптимизационная задача обобщает алгоритмы оптимизации: оптимизация правдоподобия и обоснованности, последовательное увеличение и снижение сложности модели, полный перебор структуры.

$$\lambda_{ ext{struct}}^Q = [0; 0; 0].$$

$$\lambda_{\mathsf{struct}}^Q = [1; 0; 0].$$

$$\lambda_{\mathsf{struct}}^Q = [1; 1; 0].$$

Адекватность задачи оптимизации

Теорема, [Бахтеев, 2018]

Пусть задано параметрическое множество вариационных распределений: $q(\theta)$. Пусть $\lambda_{\text{likelihood}}^{L} = \lambda_{\text{prior}}^{L} > 0, \lambda_{\text{struct}}^{Q} = \mathbf{0}$. Тогда:

- ① Задача оптимизации (Q^*) доставляет максимум апостериорной вероятности гиперпараметров с использованием вариационной оценки обоснованности: $\log \hat{p}(\mathbf{y}|\mathbf{X},\mathbf{h},\lambda_{\mathsf{temp}},\mathbf{f}) + \log p(\mathbf{h}|\mathbf{f}) \to \max_{\mathbf{a}}$.
- ② Вариационное распределение q приближает апостериорное распределение $p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f})$ наилучшим образом: $D_{\mathsf{KL}}(q||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f})) \to \mathsf{min}$.

Пусть также распределение q декомпозируется на два независимых распределения для параметров ${\bf w}$ и структуры ${\bf \Gamma}$ модели ${\bf f}$:

$$q = q_{\mathsf{w}}q_{\mathsf{\Gamma}}, q_{\mathsf{\Gamma}} \approx p(\mathsf{\Gamma}|\mathsf{y},\mathsf{X},\mathsf{h},\mathsf{f}), q_{\mathsf{w}} \approx p(\mathsf{w}|\mathsf{\Gamma},\mathsf{y},\mathsf{X},\mathsf{h},\mathsf{f}).$$

Тогда вариационные распределения $q_{\mathsf{w}}, q_{\mathsf{\Gamma}}$ приближают апостериорные распределения $p(\mathsf{\Gamma}|\mathsf{y},\mathsf{X},\mathsf{h},\lambda_{\mathsf{temp}},\mathsf{f}), p(\mathsf{w}|\mathsf{\Gamma},\mathsf{y},\mathsf{X},\mathsf{h},\lambda_{\mathsf{temp}},\mathsf{f})$ наилучшим образом:

$$D_{\mathsf{KL}}(q_{\mathsf{\Gamma}}||p(\mathsf{\Gamma}|\mathsf{y},\mathsf{X},\mathsf{h},\lambda_{\mathsf{temp}},\mathsf{f})) o \mathsf{min}, \quad D_{\mathsf{KL}}(q_{\mathsf{w}}||p(\mathsf{w}|\mathsf{y},\mathsf{X},\mathsf{h},\mathsf{f})) o \mathsf{min}.$$

Оператор оптимизации

Определение

Назовем *оператором оптимизации T* выбор вектора параметров heta' по параметрам предыдущего шага heta.

Оператор стохастического градиентного спуска:

$$\hat{m{ heta}} = T \circ T \circ \cdots \circ T(m{ heta}_0, \mathbf{h}) = T^{\eta}(m{ heta}_0, \mathbf{h}), \quad$$
 где $T(m{ heta}, \mathbf{h}) =$ $= m{ heta} - \lambda_{\mathsf{lr}}
abla L(m{ heta}, \mathbf{h})|_{\hat{\mathfrak{D}}},$

 $\lambda_{
m lr}$ — длина шага градиентного спуска, θ_0 — начальное значение параметров θ , $\hat{\mathfrak{D}}$ — случайная подвыборка исходной выборки \mathfrak{D} .

Перепишем итоговую задачу оптимизации:

$$\mathbf{h}' = T^{\eta}(Q, \mathbf{h}, T^{\eta}(L, \boldsymbol{\theta}_0, \mathbf{h})),$$

где $heta_0$ — начальное значение heta.

Теорема, [Бахтеев, 2019]

Пусть Q,L — локально выпуклы и непрерывны в некоторой области $U_W \times U_\Gamma \times U_H \times U_\lambda \subset \mathbb{W} \times \mathbb{F} \times \mathbb{H} \times \mathbb{A}$, при этом $U_H \times U_\lambda$ — компакт. Тогда решение задачи градиентной оптимизации стремится к локальному минимуму $\mathbf{h}^* \in U$ исходной задачи оптимизации (Q^*) при $\eta \to \infty$, \mathbf{h}^* является непрерывной функцией по метапараметрам модели.

Нижняя вариационная оценка обоснованности на основе мультистарта

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{h},\mathbf{f}) \geq \mathsf{E}_{q(\mathbf{W})} \mathsf{log} \ p(\mathbf{y},\mathbf{w}|\mathbf{X},\mathbf{h},\mathbf{f}) - \mathsf{E}_{q_{\mathbf{w}}}(-\mathsf{log}(q_{\mathbf{w}})).$$

Теорема [Бахтеев, 2016]

Пусть L — функция потерь, градиент которой —

непрерывно-дифференцируемая функция с константой Липшица $\mathcal{C}.$

Пусть $\boldsymbol{\theta} = [\mathbf{w}^1, \dots, \mathbf{w}^k]$ — начальные приближения оптимизации модели, λ_{lr} — шаг градиентного спуска.

Тогда разность энтропий на смежных шагах оптимизации приближается следующим образом:

$$\mathsf{E}_{q_{\mathbf{w}}^{\tau}}(-\mathsf{log}(q_{\mathbf{w}}^{\tau})) - \mathsf{E}_{q_{\mathbf{w}}^{\tau-1}}(-\mathsf{log}(q_{\mathbf{w}}^{\tau-1})) \approx \frac{1}{k} \sum_{r=1}^{k} \left(\lambda_{\mathsf{lr}} \mathit{Tr}[\mathbf{H}(\mathbf{w}^{r})] - \lambda_{\mathsf{lr}}^{2} \mathit{Tr}[\mathbf{H}(\mathbf{w}^{r})\mathbf{H}(\mathbf{w}^{r})] \right),$$

где ${\bf H}$ — гессиан функции потерь L, $q_{\bf w}^{ au}$ — распределение $q_{\bf w}^{ au}$ в момент оптимизации au.

Градиентный спуск как вариационная оценка обоснованности модели

Эмпирическое распределение на точках старта оптимизации — вариационное распределение.

Градиентный спуск не оптимизирует оценку обоснованности.

Снижение вариационной оценки обоснованности — начало переобучения.

Анализ обобщающей задачи оптимизации

Теорема, [Бахтеев, 2018]

Пусть $\lambda_{
m prior}^L>0, m\gg0, rac{m}{\lambda_{
m prior}^L}\in\mathbb{N}.$ Тогда оптимизация функции

$$L = \mathsf{E}_q \mathsf{log} \ p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}, \mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f}) - \lambda_{\mathsf{prior}}^L \mathsf{D}_{\mathsf{KL}}(q||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathsf{temp}, \mathbf{f}})))$$

эквивалентна минимизации $\mathsf{E}_{\hat{\mathbf{X}},\hat{\mathbf{y}}\sim p(\mathbf{X},\mathbf{y})} \mathsf{D}_{\mathit{KL}}(q||p(\mathbf{w},\mathbf{\Gamma}|\hat{\mathbf{X}},\hat{\mathbf{y}},\mathbf{h},\lambda_{\mathsf{temp}},\mathbf{f})),$ где $\hat{\mathbf{X}},\hat{\mathbf{y}}$ — случайные подвыборки мощностью $\frac{m}{\lambda_{\mathsf{L},\mathsf{L}}^L}$ из генеральной совопкупности.

Определение

Параметрической сложностью модели назовем минимальную дивергенцию между априорным и вариационным распределением:

$$C_p = \min_{\mathbf{h}} D_{\mathsf{KL}}(q||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \lambda_{\mathsf{temp}}, \mathbf{f})).$$

Теорема, [Бахтеев, 2018]

При устремлении параметрической сложности модели к нулю относительная плотность параметров модели стремится к единице:

$$C_p o 0 \implies
ho(\mathbf{w}) o 1, \quad
ho(w) = rac{q(0)}{q(w)} = \exp\left(-rac{\mu^2}{\sigma^2}
ight).$$

Оптимизация параметрической сложности

Теорема, [Бахтеев, 2018]

Пусть
$$\lambda_{\mathsf{likelihood}}^Q = \frac{\lambda_{\mathsf{prior}}^L}{\mathsf{prior}} > 0, \lambda_{\mathsf{struct}}^Q = \mathbf{0}.$$
 Тогда предел оптимизации

$$\lim_{\substack{\lambda_{\mathsf{prior}}^{\boldsymbol{Q}} \to \infty}} \lim_{\substack{\eta \to \infty}} T^{\eta} \big(Q, \mathbf{h}, T^{\eta} (L, \boldsymbol{\theta}_0, \mathbf{h}) \big)$$

доставляет минимум параметрической сложности. Существует компактная область U, такая что для любой точки $\theta_0 \in U$ предел данной оптимизации доставляет нулевую параметрическую сложность: $C_p = 0$.

Теорема, [Бахтеев, 2018]

Пусть $\lambda_{\text{likelihood}}^L = 1$, $\lambda_{\text{struct}}^Q = \mathbf{0}$. Пусть \mathbf{f}_1 , \mathbf{f}_2 — результаты градиентной оптимизации при разных значениях гиперпараметров $\lambda_{\text{prior}}^{Q,1}, \lambda_{\text{prior}}^{Q,2}, \lambda_{\text{prior}}^{Q,1} < \lambda_{\text{prior}}^{Q,2}$, полученных при начальном значении вариационных параметров $\boldsymbol{\theta}_0$ и гиперпараметров \mathbf{h}_0 . Пусть $\boldsymbol{\theta}_0$, \mathbf{h}_0 принадлежат области U, в которой соответствующие функции L и Q являются локально-выпуклыми. Тогда:

$$C_{p}(f_{1}) - C_{p}(f_{2}) \geq \lambda_{\text{prior}}^{L}(\lambda_{\text{prior}}^{L} - \lambda_{\text{prior}}^{Q,1}) \sup_{\theta, h \in U} |\nabla_{\theta, h}^{2} D_{KL}(q|p) (\nabla_{\theta}^{2} L)^{-1} \nabla_{\theta} D_{KL}(q|p))|.$$

Результаты, выносимые на защиту

- Предложен метод байесовского выбора субоптимальной структуры модели глубокого обучения с использованием автоматического определения релевантности параметров.
- Предложены критерии оптимальной и субоптимальной сложности модели глубокого обучения.
- 3 Предложен метод графового описания моделей глубокого обучения.
- Финаров предложено обобщение задачи оптимизации структуры модели, включающее ранее описанные методы выбора модели:
 - оптимизация обоснованности;
 - последовательное увеличение сложности модели;
 - ▶ последовательное снижение сложности модели;
 - ▶ полный перебор вариантов структуры модели.
- Предложен метод оптимизации вариационной оценки обоснованности на основе мультистарта оптимизации модели.
- Предложен алгоритм оптимизации параметров, гиперпараметров и структурных параметров моделей глубокого обучения.
- Исследованы свойства оптимизационной задачи при различных значениях метапараметров. Рассмотрены ее асимптотические свойства.

Список работ автора по теме диссертации

Публикации ВАК

- 1 Bakhteev, O., Kuznetsova, R., Romanov, A. and Khritankov, A. A monolingual approach to detection of text reuse in Russian-English collection // In 2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT) (pp. 3-10). IEEE.
- 2 Бахтеев О.Ю., Попова М.С., Стрижов В.В. Системы и средства глубокого обучения в задачах классификации. // Системы и средства информатики. 2016. № 26.2. С. 4-22.
- (3) Romanov, A., Kuznetsova, R., Bakhteev, O. and Khritankov, A. Machine-Translated Text Detection in a Collection of Russian Scientific Papers. // Computational Linguistics and Intellectual Technologies. 2016.
- 4 Bakhteev, O. and Khazov, A., 2017. Author Masking using Sequence-to-Sequence Models // In CLEF (Working Notes). 2017.
- Бахтеев О.Ю., Стрижов В.В. Выбор моделей глубокого обучения субоптимальной сложности. // Автоматика и телемеханика. 2018. №8. С. 129-147.
- 6 Огальцов А.В., Бахтеев О.Ю. Автоматическое извлечение метаданных из научных PDF-документов. // Информатика и её применения. 2018.
- Смердов А.Н., Бахтеев О.Ю., Стрижов В.В. Выбор оптимальной модели рекуррентной сети в задачах поиска парафраза. // Информатика и ее применения. 2019.
- 8 Грабовой А.В., Бахтеев О.Ю., Стрижов В.В. Определение релевантности параметров нейросети. // Информатика и её применения. 2019.
- 9 Bakhteev O., Strijov V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms // Annals of Operations Research. 2019.

Выступления с докладом

- "Восстановление панельной матрицы и ранжирующей модели в разнородных шкалах", Всероссийская конеренция «57-я научная конеренция МФТИ», 2014.
- 2 "Выбор модели глубокого обучения субоптимальной сложности с использованием вариационной оценки правдоподобия", Международная конференция «Интеллектуализация обработки информации», 2016.
- 3 "Градиентные методы оптимизации гиперпараметров моделей глубокого обучения", Всероссийская конференция «Математические методы распознавания образов ММРО», 2017.
- (4) "Дегектирование переводных заимствований в текстах научных статей из журналов, входящих в РИНЦ", Всероссийская конференция «Математические методы распознавания образов ММРО», 2017.
- (Байесовский выбор наиболее правдоподобной структуры модели глубокого обучения", Международная конференция «Интеллектуализация обработки информации». 2018.