МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

(СГУ)

УТВЕРЖДАЮ	
Зав. кафедрой,	
к. фм.н., доцент	
	Л.Б. Тяпаев

ОТЧЕТ О ПРАКТИКЕ

Студента <u>1</u> курса факультета <u>КНиИТ</u>, направление 09.04.01 «Информатика и вычислительная техника»

Шарова Александра Вадимовича

учебная

Дискретной математики и информационных технологий

курс <u>1</u>	
семестр <u>1</u>	
продолжительность <u>17 недель, с 01.09 .2018 г. по 31.12.2018г.</u>	
Руководитель практики	
заведующий кафедрой, к.ф-м.н.	Л.Б.Тяпаев

СОДЕРЖАНИЕ

OI	ПРЕДЕЛЕНИЯ	3
BE	ВЕДЕНИЕ	4
1	р-Адические числа	5
2	р-Адический анализ в \mathbb{Z}_p	10
CI	ТИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	13

ОПРЕДЕЛЕНИЯ

- 1. \mathbb{Z} кольцо целых рациональных чисел
- 2. \mathbb{Z}_{+} множество натуральных чисел \mathbb{N}
- 3. $N_0 = \{0, 1, \dots\}$
- 4. \mathbb{P} множество простых чисел
- 5. Сепарабельное пространство топологическое пространство, в котором можно выделить счётное всюду плотное подмножество
- 6. Плотное множество подмножество пространства, точками которого можно сколь угодно хорошо приблизить любую точку объемлющего пространства.
- 7. Счётное множество бесконечное множество, элементы которого возможно пронумеровать натуральными числами.
- 8. Хаусдорфово пространство топологическое пространство, удовлетворяющее сильной аксиоме отделимости T_2 .
- 9. Множество из \mathbb{R}^n называется компактом, если из любой последовательности его точек можно выделить сходящуюся подпоследовательность, предел которой принадлежит этому множеству.
- Локально компактное пространство топологическое пространство, у каждой точки которого существует открытая окрестность, замыкание которой компактно.
- 11. Размерностью полного метрического пространства X называется наименьшее целое число n такое, что для любого покрытия пространства X существуют вписанное в него подпокрытие кратности n+1.

ВВЕДЕНИЕ

Со времен Ньютона и Лейбница вещественные числа применялись как основной математический объект, который казалось бы отлично подходил для описания окружающего мира. В большинстве практических задач обычно составлялись уравнения и в последствии искалось числовое решение над полем действительных чисел \mathbb{R} . Обоснования почему в качестве описательного элемента выбрали именно поле \mathbb{R} даже не стоял. В качестве пространства стандартом де-факто долгое время являлось пространство \mathbb{R}^3 , а уже после открытий Римана и Эйнштейна \mathbb{R}^4 .

С течением времени и наращиванием математического аппарата представление о том, что пространство \mathbb{R}^3 является наиболее подходящим для описания реального мира все усиливалось, но надо понимать, что евклидово пространство \mathbb{R}^3 не более чем удачно выбранная модель описания реального физического пространства.

Так как реальный мир построен на евклидовой геометрии, то получается, что и она очень хорошо описывается вещественными числами, но в случае если бы мы могли отказаться от использования данной геометрии для изучения реального мира мы бы могли отказаться и от вещественной числовой системы. Но какую выбрать систему в данном случае? На этот ответ лучше всего отвечает теория p-адического исчисления, которая является с математической точки зрения более подходящей для описания тех объектов, с которыми приходиться работать в задачах физики, биологии и криптографии.[1]

Целью данной научной работы является изучение основ p-адического анализа на поле \mathbb{Z}_p . В данной работе будут рассмотрены такие понятия как p-адическое числа, пространства, функции и p-адическая дифференцируемость. В качестве наглядного примера отличия анализа на \mathbb{R} и на \mathbb{Z}_p будет рассмотрена теорема о среднем значении.

1 р-Адические числа

1.1 р-Адическая норма

Определение 1. Пусть M - некоторое непустое множество, и пусть $d: M \times M \to \mathbb{R}_{\geq 0}$ - функция двух переменных, определенная на этом множестве и принимающая значения во множестве действительных неотрицательных чисел. Функция d называется метрикой (а множество M - метрическим пространством), если d удоволетворяет трем условиям:

- 1. Для каждой пары $a,b\in M$ справедливо: d(a,b)=0 тогда и только тогда, когда a=b.
- 2. Для каждой пары $a, b \in M$ справедливо равенство d(a, b) = d(b, a).
- 3. Для каждой тройки $a,b,c\in M$ справедливо неравенство $d(a,b)\leq d(a,c)+d(c,b).$

Пример 1. Множество \mathbb{R} всех действительных чисел есть метрическое пространство с метрикой d(a,b) = |a-b|, где |.| есть абсолютная величина.

Определение 2. Функция $\|.\|$, определенная на произвольном коммутативном кольце R и принимающая значения в $\mathbb{R}_{\geq 0}$ называется нормой (также, абсолютной величиной), если она удовлетворяет следующим условиям:

- 1. Для любого $a \in R$ справедливо, что $\|a\| = 0$ тогда и только тогда, когда a = 0.
- 2. Для каждой пары $a, b \in R$ справедливо равенство $||a \cdot b|| = ||a|| \cdot ||b||$.
- 3. Для каждой пары $a,b \in R$ справедливо неравенство треугольника: $\|a+b\| \leq \|a\| + \|b\|$

Из определения следует, что если положить $d(a,b) = \|a-b\|$, то фактически будет задана метрика d на кольце R. Данная метрика называется метрикой, индуцированной нормой $\|.\|$.

Определение 3. Пусть $p \in \mathbb{P}$ – некоторое простое число. В поле \mathbb{Q} введем другую норму $\|.\|_p$ по правилу:

- 1. $||0||_p = 0$,
- 2. $||n||_p = p^{-ord_p n}$,

где n>0 некоторое натуральное число, а ord_pn показатель степени, в которой число p входит в это произведение. В этом случае норма $\|.\|_p$ называется p-адической нормой.

Норма $\|.\|_p$ удовлетворяет всеми характерными свойствами нормы даже в более сильной форме, а именно:

- 1. $||x||_p \ge 0$, причем $||x||_p = 0$ если x = 0.
- $2. \|xy\|_p = \|x\|_p \cdot \|y\|_p.$
- 3. $||x + y||_p \le \max(||x||_p, ||y||_p)$ [2]

Заметим, что норма $\|x\|_p$ может принимать лишь счетное число значений p^{-ord_pn} .

Также, норма $\|x\|_p$ определяет ультраметрику на \mathbb{Q} . Данная норма неархимедова, так как $\|nx\|_p \leq \|x\|_p \, \forall n \in \mathbb{Q}_+$.

Теорема 1. Нормы $\|.\| u \|.\|_p \ \forall p = 2, 3, \dots$ исчерпывают все нетривиальные неэквивалентные нормы поля рациональных чисел \mathbb{Q} .

1.2 р-Адические числа

Определение 4. Пополнение поля \mathbb{Q} по p-адической норме образует поле \mathbb{Q}_p p-адических чисел. Поле \mathbb{Q}_p аналогично полю $\mathbb{R} = \mathbb{Q}_{\infty}$ вещественных чисел, получаемых пополнение поля \mathbb{Q} по норме $\|x\| = \|x\|_{\infty}$.

Определение 5. Любое p-адическое число $x \neq 0$ однозначно представляется в каноническом виде

$$x = p^{\gamma} \cdot (x_0 + x_1 \cdot p + x_2 \cdot p^2 + \dots \tag{1}$$

где $\gamma = \gamma(x) \in \mathbb{Z}$ и x_j – целые числа такие, что $0 \le x_j \le p-1, x_0 > 0,$ $(j=0,1,\dots).$

Представление (1) аналогично разложению любого вещественного числа x в бесконечную десятичную дробь:

$$x = \pm 10^{\gamma} \cdot (x_0 + x_1 \cdot 10^{-1} + x_2 \cdot 10^{-2} + \dots),$$

$$\gamma \in \mathbb{Z}, x_j = 0, 1, \dots, 9, x_0 > 0,$$

и доказывается аналогично.

Помимо разложения, представление (1) дает рациональные числа тогда и только тогда, когда, начиная с некоторого номера числа $x_j, j=0,1,\ldots$ образуют периодическую последовательность.

Определение 6. Поле \mathbb{Q}_p является коммутативно-ассоциативной группой по сложению;

Определение 7. Поле $\mathbb{Q}_p^* = \mathbb{Q}_p \setminus \{0\}$ является коммутативно-ассоциативной группой по умножению;

Определение 8. Поле \mathbb{Q}_p^* называется мультипликативной группой поля $\mathbb{Q}_p[3];$

Определение 9. p-адические числа x, для которых $||x||_p \le 1$ (т.е. $\gamma(x) \ge 0$ или $\{x\}_p = 0$), называются целыми p-адическими числами, и их множество обозначается \mathbb{Z}_p . Множество \mathbb{Z}_p является подкольцом кольца \mathbb{Q}_p ; \mathbb{Z}_+ плотно в \mathbb{Z}_p . Целые числа $x \in \mathbb{Z}_p$, для которых $||x||_p = 1$, называютсяются единицами в \mathbb{Z}_p . [4]

Совокупность элементов x из \mathbb{Z}_p , для которых $\|x\|_p < 1$ (т.е. $\gamma(x) \geq 0$ или $\|x\|_p \leq \frac{1}{p}$) образуют главный идеал кольца \mathbb{Z}_p ; Данный идеал имеет вид $p\mathbb{Z}_p$. Поле вычетов $\mathbb{Z}_p \setminus p\mathbb{Z}_p$ состоит из p элементов. В мультипликативной группе поля $\mathbb{Z}_p \setminus p\mathbb{Z}_p$ существует единица $\eta \neq 1$ порядка p-1 такая, что элементы $0, \eta, \eta^2, \ldots, \eta^{p-1} = 1$ образуют полный набор представителей классов вычетов поля $\mathbb{Z}_p \setminus p\mathbb{Z}_p$.

1.3 Пространство р-адических чисел \mathbb{Q}_p

В силу свойств p-адической нормы норма в поле \mathbb{Q}_p удовлетворяет неравенству треугольника:

$$||x + y||_p \le \max(||x||_p, ||y||_p) \le ||x||_p + ||y||_p, x, y \in \mathbb{Q}_p.$$

Следовательно в \mathbb{Q}_p можно ввести метрику:

$$\rho(x,y) = ||x - y||_{p}. \tag{2}$$

При этом \mathbb{Q}_p становится полным метрическим пространством. Из представления (1) следует сепарабельность \mathbb{Q}_p .

Определение 10. $B_{\gamma}(a)$ – круг радиуса p^{γ^p} с центром в точке $a \in \mathbb{Q}_p$:

$$B_{\gamma}(a) = \left\{ x : \|x - a\|_{p} \le p^{\gamma} \right\}, \gamma \in \mathbb{Z}$$
(3)

Определение 11. $S_{\gamma}(a)$ – граница радиуса p^{γ^p} .

$$S_{\gamma}(a) = \left\{ x : \|x - a\|_p = p^{\gamma} \right\}, \gamma \in \mathbb{Z}$$
 (4)

Лемма 1. Если $b \in B_{\gamma}(a)$, то $B_{\gamma}(b) = B_{\gamma}(a)$.

Замечание 1. Круг $B_{\gamma}(a)$ и окружность $S_{\gamma}(a)$ – открыто-замкнутые множества в \mathbb{Q}_p .

Замечание 2. Всякая точка круга $B_{\gamma}(a)$ является его центром.

Замечание 3. Любые два круга в \mathbb{Q}_p либо не имеют общих точек, либо один содержится в другом.

Замечание 4. Всякое открытое множество в \mathbb{Q}_p есть объединение не более чем счетного числа кругов без общих точек.

Лемма 2. Если множество $M \subset \mathbb{Q}_p$ содержит две различные точки а и $b, a \neq b,$ то его можно представить в виде объединения непересекающихся открыто-замкнутых (в M) множеств M_1, M_2 таких, что $a \in M_1, b \in M_2$.

Лемма (2) утверждает, что всякое множество пространства \mathbb{Q}_p , состоящее из более чем одной точки, несвязно. Другими словами, связная компонента любой точки совпадает с самой точкой. Из этого следует, что \mathbb{Q}_p является вполне несвязным пространством.

Если рассматривать лемму для случая, когда множество M состоит только из двух точек a и b, убеждаемся, что существует непересекающиеся окрестности этих точек. Из этого можно сделать вывод, что пространство \mathbb{Q}_p хаусдорфово.

Лемма 3. Для того чтобы множество $K \subset \mathbb{Q}_p$ было компактом, необходимо и достаточно, чтобы оно было замкнутым и ограниченным в \mathbb{Q}_p

Замечание 5. Всякий круг $B_{\gamma}(a)$ является и окружность $S_{\gamma}(a)$ компакты.

Замечание 6. Пространство \mathbb{Q}_p локально компактное.

Замечание 7. Всякий компакт можно покрыть конечным числом кругов фиксированного радиуса без общих точек.

Замечание 8. В пространстве \mathbb{Q}_p справедлива лемма Гейне-Бореля: из кажедого бесконечного покрытия компакта K можно выбрать конечное покрытие K.

Теорема 2. Размерность пространства \mathbb{Q}_p равна 0.

$\mathbf{2}$ р-Адический анализ в \mathbb{Z}_p

Так как компакт \mathbb{Z}_p есть пополнение множества \mathbb{N}_0 по метрике $d_p(x,y) = \|x-y\|_p$, то любое число из \mathbb{Z}_p есть предел последовательности чисел из \mathbb{N}_0 .

Определение 12. p-адическое целое z является пределом последовательности $\{z_i\}_{i=0}^{\infty}$, если если для любого $\epsilon > 0$ найдется N такое, что $\|z_i - z\|_p < \epsilon$ как только i > N. [5]

Определение 13. p-адическое целое z есть предел последовательности $\{z_i\}_{i=0}^{\infty}$, если для любого (достаточно большого) положительного рационального целого K найдется N такое, что $z_i \equiv z \pmod{p}^K$ при всех i > N. [5]

Замечание 9. По определению р-адической метрики $||z_i - z||_p \le p^{-K}$ тогда и только тогда, когда $z_i \equiv z \pmod{p}^K$. [5]

Определение 14. Функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ называется непрерывной в точке $z \in \mathbb{Z}_p$, если для любого (достаточно большого) положительного рационального целого M найдется положительное рациональное целое L такое, что $f(x) \equiv f(z) \pmod{p}^M$ как только $x \equiv z \pmod{p^L}$. [5]

Определение 15. Функция f называется равномерно непрерывной на \mathbb{Z}_p , если f непрерывна в каждой точке $z \in \mathbb{Z}_p$, и L зависит только от M и не зависит от z.[6]

2.1 р-адическая дифференцируемость

Определение 16. Функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ называется дифференцируемой в точке $z \in \mathbb{Z}_p$, если существует p-адическое число $f'(x) \in \mathbb{Q}_p$ такое, что для любого $M \in \mathbb{N}$ справедливо

$$\left\| \frac{f(x+h) - f(x)}{h} - f'(x) \right\|_{p} \le \frac{1}{p^{M}},\tag{5}$$

если h достаточно мало, т.е. когда $\|h\|_p \leq p^{-K}$, где K = K(M) достаточно велико.

Определение 17. Функция f называется равномерно дифференцируемой (на \mathbb{Z}_p), если неравенство (5) выполняется одновременно для всех $x \in \mathbb{Z}_p$ как только h достаточно мало. [7]

Лемма 4. Если совместимая функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ дифференцируема в точке $x \in \mathbb{Z}_p$, то $f'(x) \in \mathbb{Z}_p$.

Определение 18. Функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ называется дифференцируемой в точке $x \in \mathbb{Z}_p$, если существует p-адическое число $f'(x) \in \mathbb{Q}_p$ такое, что для любого $M \in \mathbb{N}$ справедливо

$$f(x+h) \equiv f(x) + h \cdot f'(x) \pmod{p}^{M + ord_p h} \tag{6}$$

Определение 19. Функция f называется равномерно дифференцируемой (на \mathbb{Z}_p), если неравенство (6) выполняется одновременно для всех $x \in \mathbb{Z}_p$ как только h достаточно мало, т.е. когда $ord_ph \geq K = K(M)$ для достаточно большого $K \in \mathbb{N}$.

Замечание 10. Правила дифференцирования не зависят от метрики: для вычисления производных суммы, частного и сложной функции в p-адическом анализе используются те же формулы, что и в действительном.

Замечание 11. Между действительным и p-адическим анализом существует резкое различие например в том, что в и в том, и в в другом случае производная константы равна 0, однако в p-адическом анализе в отличии от действительного равенство нулю производной некоторой функции не означает, что эта функция константа.

2.2 теорема о среднем

Теорема 3. (в \mathbb{R}) Если функция f(x) непрерывна на отрезке [a,b] и диф-ференцируема на интервале (a,b), то в этом интервале найдется хотя бы одна точка ξ , такая, что $f(b) - f(a) = f'(\xi)(b-a)$.

Ключевая проблема в доказательстве данной теоремы на поле \mathbb{Q}_p в том, что поле \mathbb{Q}_p неупорядоченное. Но эта трудность может быть устранена[8]. В \mathbb{R} мы можем переопределить среднее так, что:

$$\xi = at + b(1-t) \quad \forall 0 \le t \le 1;$$

такое преобразование, к примеру, делается когда данная теорема доказывается в поле \mathbb{C} . Теперь мы можем написать p-адический аналог теоремы о среднем.

Теорема 4. (в \mathbb{Q}_p)[9] Если функция f(x) дифференцируема и производная непрерывна на \mathbb{Q}_p , то для любых двух чисел а и b из множества \mathbb{Q}_p най-дется такой элемент $\xi \in \mathbb{Q}_p$, что:

$$\xi = at + b(1-t) \quad \forall t : |t| \le 1$$

для которого:

$$f(b) - f(a) = f'(\xi)(b - a).$$

Доказательство. Возьмем $f(x) = x^p - x$, a = 0, b = 1, тогда производная $f'(x) = px^{p-1} - 1$ и f(a) = f(b) = 0. Теорема предполагает, что существует такое число $\xi : p\xi^{p-1} - 1 = 0$. В свою очередь любое $\xi = at + b(1-t) = (1-t)$, где $t \in \mathbb{Z}_p$ (это значит, что $t | \leq 1$), должно принадлежать \mathbb{Z}_p . В свою очередь $p\xi^{p-1} - 1$ принадлежит \mathbb{Z}_p (а это принадлежит $1 + p\mathbb{Z}_p$) и из-за этого не может быть нулем.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Козырев, С. В. Методы и приложения ультраметрического и р-адического анализа: от теории всплесков до биофизики / С. В. Козырев // Совр. пробл. матем. 2008. Т. 12. С. 3–168.
- 2 И.В., Волович. р–Адическая математическая физика: основные конструкции, применения к сложным и наноскопическим системам / [Волович И.В., Козырев С.В.: б. и.], 2008. 30 с.
- 3 Baker, A. An Introduction to p-adic Numbers and p-adic Analysis / [A. Baker : s. n.], 2017. 64 p.
- 4 Владимиров, В.С. р-Адический анализ и математическая физика / [В.С. Владимиров, Волович И.В., Зеленов Е.И.] : М.:Физматлит, 1994. 352 с.
- 5 Анашин, В.С. Введение в прикладной р-адический анализ / [В.С. Анашин : б. и.].
- 6 Ciocan, N. P-adic Functions Part 1 / [N. Ciocan : s. n.], 2011. 11 p.
- 7 Anashin, V. The p-adic ergodic theory and applications / [V. Anashin : s. n.], 2014. 221 p.
- 8 Gouvea, F.Q. p-adic Numbers: An Introduction / [F.Q. Gouvea] : Springer, 2011. 306 p.
- 9 Alain, M.R. A Course in p-adic Analysis / [M.R. Alain] : Springer-Verlag New York, 2000. 438 p.