1. 데이터 링크 계층과 유사

- A. 데이터 링크 계층은 물리적으로 1:1 연결된 호스트 사이의 전송
- B. 전송 계층은 논리적으로 1:1 연결된 호스트 사이의 전송

전송 계층과 데이터 링크 계층의 차이

2. 전송 계층의 주요 기능

A. 흐름 제어

• 수신자의 처리량을 초과하지 않게 데이터 전송

B. 혼잡 제어

• 네트워크 라우터의 처리량을 초과하지 않게 데이터 전송

c. 오류 제어

- 데이터 변형, 데이터 분실 오류
- 재전송 기능으로 복구

3. 전송 계층 설계시 고려 사항: 연결설정

- A. 개념적으로 양자 합의가 필요
 - 한쪽의 연결 설정 요구: Conn_Req
 - 상대방의 연결 수락 응답: Conn_Ack

3. 전송 계층 설계시 고려 사항: 연결설정

- A. 실제 통신 환경의 오류 발생 가능성에 대한 고려
- B. 3 단계 설정
 - 연결설정 후, 세 번째의 Data_Req는 Conn_Ack에 대한 응답 기능도 수행

4. 전송 계층 설계시 고려 사항: 연결해제

- A. 일방적 연결해제
 - 한쪽의 연결 해제 요구에 의하여 연결이 해제됨
 - 전송이 진행중인 데이터의 처리가 완료되지 못함

4. 전송 계층 설계시 고려 사항: 연결해제

- A. 점진적 연결 해제
 - 양쪽의 합의하에 연결이 해제됨
 - 전송이 진행중인 데이터의 처리가 계속됨

- 1. 연결형 서비스를 지원
- 2. 전이중 방식의 양방향 가상 회선을 제공
- 3. 신뢰성 있는 데이터 전송을 보장

1. TCP 헤더 - 필드

- A. Source Port / Destination Port
 - 송수신 포트 번호
- B. Sequence Number
 - 순서 번호
 - 세그먼트 내의 바이트 수
 - 범위: 0 ~ 232 1

TCP 헤더

- c. Acknowledgement Number
 - 응답 번호
 - ACK 플래그가 지정된 경우에 한해 유효
 - 다음에 수신하기를 원하는 데이터를 지정

2. TCP 헤더 - 캡슐화

- A. 캡슐화
 - IP 프로토콜에 캡슐화되어 전송
 - IP 프로토콜의 입장에서는 단순한 TCP 헤더도 데이터로 처리함

TCP 세그먼트의 캡슐화

3. 포트 번호

- A. TCP, UDP 프로토콜이 상위 계층에 제공하는 주소 표현 방식
- B. TCP, UDP가 독립적으로 관리하는 고유의 포트 번호
- c. Well-known 포트
 - 많이 사용하는 인터넷 서비스에 고정된 포트 번호 할당
- D. [unix] /etc/services 파일 참고

Well-known 포트

서비스	포트 번호			
FTP(데이터 채널)	20			
FTP(제어 채널)	21			
Telnet(텔넷)	23			
SMTP	25			
DNS	53			
HTTP	80			
rlogin	513			
rsh	514			
portmap	111			

- 1. 비연결형 서비스를 제공
- 2. 헤더와 전송 데이터에 대한 체크섬 기능을 제공
- 3. Best Effort 전달 방식을 지원 (흐름/혼잡제어 등 미지원)

4. UDP 헤더

• 프로토콜 오버헤드의 최소화

UDP 헤더

4. UDP 헤더

- A. Source Port / Destination Port
 - 송수신 프로세스에 할당된 네트워크 포트 번호
- B. Length: 헤더를 포함한 UDP 데이터그램의 크기
- c. Checksum: 헤더와 데이터에 대한 체크섬

(15 31
	Source Port	Destination Port
	Length	Checksum

UDP 헤더

5. UDP의 데이터 전송

- A. 각 데이터그램이 독립적으로 전송됨
- B. UDP에서의 데이터그램 분실
 - 데이터 순서 번호 기능을 제공하지 않음
 - 데이터 분실 오류는 상위 계층에서 해결해야 함

5. UDP의 데이터 전송

- A. UDP에서의 데이터그램 도착 순서 변경
 - 데이터 순서 번호 기능을 제공하지 않음
 - 데이터 도착 순서 변경 오류는 상위 계층에서 해결해야 함

- 1. 기본 기능: 송수신 호스트 사이의 패킷 전달 경로를 선택
- 2. 네트워크 계층 주요기능: 라우팅, 패킷의 분할과 병합

3. 라우팅

- A. 라우팅 테이블: 네트워크 구성 형태에 관한 정보를 관리
- B. 라우팅: 송수신 호스트 사이의 패킷 전달 경로를 선택하는 과정

4. 패킷의 분할과 병합

- A. 상위 계층에서 내려온 데이터는 하위 계층인 MAC 계층의 프레임 구조에 정의된 형식으로 캡슐화 되어야 함
- B. 송신 호스트에서는 전송 전에 적절한 크기로 데이터를 분할하고
- c. 수신 호스트는 분할되어 수신한 데이터를 다시 병합함

1. 인터넷 서비스: 비연결형

- A. 패킷의 전달 순서
 - 패킷이 서로 다른 경로로 전송되므로 도착 순서가 일정하지 않음
 - 상위 계층에서 순서를 재조정해야 함
- B. 패킷 분실 가능성
 - 패킷의 100% 도착을 보장하지 않음
 - 상위 계층에서 패킷 분실 오류를 복구해야 함

2. 라우팅 (Routing)

- A. 패킷의 전송 경로를 지정 라우팅 테이블(Routing Table)
- B. 전송 경로 결정시 고려 사항
 - 공평 원칙: 다른 패킷의 우선 처리를 위해 다른 패킷이 손해를 보면 안됨
 - 효율 원칙: 전체 네트워크의 효율성에 대해 고려해야 함
- c. 정적/동적 라우팅
 - 정적 라우팅
 - ❖ 패킷 전송이 이루어지기 전에 경로 정보를 라우터가 미리 저장하여 중계
 - ❖ 단점: 경로 정보의 갱신이 어려우므로, 네트워크 변화/네트워크 혼잡도 대처 부족
 - 동적 라우팅
 - ❖ 라우터의 경로 정보가 네트워크 상황에 따라 적절히 조절됨
 - ❖ 단점: 경로 정보의 수집과 관리로 인한 성능 저하

- 1. 비연결형 서비스를 제공
- 2. 패킷을 분할/병합하는 기능을 수행
- 3. 헤더 체크섬(checksum)만 제공
- 4. Best Effort 방식의 전송 기능
- 5. IP 헤더

IP 헤더

1. IP 헤더: 주소 관련 필드

- A. Source Address: 송신 호스트의 IP 주소
- B. Destination Address: 수신 호스트의 IP 주소
- c. IP 주소 체계

2. IP 헤더: 기타 필드

- A. Version Number: 버전 4 (IPv4)
- B. Header Length: 헤더 길이를 32 비트 단위로 표시
- c. Packet Length: 헤더를 포함한 패킷의 전체 길이
- D. Time To Live(TTL)
 - 패킷의 생존 시간
 - 라우터를 거칠 때마다 1씩 감소되며, 0이 되면 네트워크에서 강제로 제거
- E. Transport Protocol: 상위 계층 프로토콜
- F. Header Checksum: 헤더 오류 검출
- G. Options
- н. Padding

3. 패킷의 분할

A. 분할의 필요성

3. 패킷의 분할

- A. 분할의 예
 - IP 헤더를 제외한 전송 데이터의 크기: 380 바이트
 - 패킷의 최대 크기: 128 바이트

IP 헤더	분할 1	분할 2	분힐	3	분할 4	
		Identification	Packet Length	MF	Fragment Offset	
IP 헤더	분할 1	1254 2bytes	124 1 24 bytes	1 1bvte	0 1bvte	= 128 bytes
IP 헤더	분할 2	1254	124		13	120 07.00
IP 헤더	분할 3	1254	124	1	26	
IP 헤더	분할 4	1254	88	0	39	

패킷 분할의 예