

Department of Information Engineering (DEI)

Master degree on ICT for Internet and Multimedia Engineering (MIME)

Internet of Things and Smart Cities 14 – IoT platforms

Marco Giordani (marco.giordani@unipd.it)

Department of Information Engineering (DEI) – SIGNET Research Group University of Padova – Via Gradenigo 6/B, 35131, Padova (Italy)

Special thanks to: Dr. Sara Baldoni

Overview

- An IoT platform is a collection of components providing some functionalities which are common to different IoT systems.
- An IoT system designer can focus on their specific product features and rely on the platform for the common functionalities.
- This allows to reduce complexity, cost, and the time needed for development.

Overview

Requirements

Producer side	Platform side
Miniaturized sensor	Data processing
Component integration	User data aggregation (cross-population trends)
Battery design	Mobile app
Wireless connectivity	Security features
Firmware	Database management
Data fusion	

IoT platforms

- An IoT platform needs to be reliable, customizable, scalable and resilient.
- An IoT platform can include the following functionalities:
 - Data acquisition from the edge.
 - Data routing.
 - Integration with cloud services (processing, storage, analytics, visualization).
 - Security management.
 - Device management.
 - Development tools and kits (SDKs).

IoT platforms

- Usually, there is a cloud based IoT core (or hub) which establishes connectivity
 and security between edge devices and cloud services.
 - It is a gateway implementing bi-directional messaging, which filters/routes the messages.
 - The core is accessed through standard protocols such as TCP, HTTP and MQTT.
- IoT core and cloud services are offered as "managed services": the user pays for it, on a usage basis.
- Due to the variety of IoT objects, no support for raw sensor connectivity.
- Users are responsible for creating a software that that interfaces to their specific sensors and makes them compatible with the IoT platforms.

IoT platforms

- There are many variants of IoT platforms that are available from commercial vendors and the open-source community.
 - Commercial cloud providers tend to provide rather comprehensive and robust IoT platforms that build upon their existing infrastructure and technology.
- The two most popular IoT platforms, in terms of breadth of coverage, relevance and market presence, are:
 - Amazon AWS IoT.
 - Microsoft Azure IoT.

Platform

- The Amazon IoT platform is known as AWS IoT.
- It is an example of Infrastructure as a Service (IaaS).
- It is composed of:
 - An **IoT core** which offers cloud-hosted functionalities;
 - An edge gateway for external execution (Greengrass).
 - Greengrass provides a subset of IoT core functionalities, and resides in the user premises, outside the AWS cloud perimeter.
 - A real-time operating system for microcontroller-based things (FreeRTOS).
 - FreeRTOS allows the construction of IoT things and constrained devices that can be connected to the AWS IoT cloud.

AWS IoT core

- The **IoT core** is composed of:
 - Data plane: Drives sensor data into the cloud for processing and storage
 - Message broker.
 - Rules engine.
 - Device shadows (Digital twins).
 - Control plane: security and management components.

AWS IoT core: Data plane

Supports publish/subscribe via MQTT.

AWS IoT core: Data plane

Processes the payloads to route them to other services.

AWS IoT core: Data plane

Shadows are persistent digital representations of the devices containing the last

reported state and, if applicable, the desired state.

AWS IoT core: Data plane

- The use of shadows allows for the following functionalities:
 - Cloud services access shadows to obtain the last known reading and to initiate actions by modifying the desired state to what an output should be.
 - If there is a discrepancy between a reported and a desired state, the shadow instructs the endpoint to initiate the necessary action.
 - Completion of the action is confirmed when the endpoint reports a new state that matches the desired one.
 - Shadows allows applications and services to operate on the last known data even when devices are disconnected, thus minimizing disruptions caused by the temporary outages.
 - Cloud services can operate with a simple output abstraction of the desired state, with the edge software handling device-specific steps and protocols.

AWS IoT core: Control plane

Control plane: security and management components.

Internet of Things and Smart Cities Copyright © Prof. Marco Giordani (marco.giordani@unipd.it). All rights reserved.

AWS IoT core: Control plane

- The security component allows to:
 - Secure the connection and the payload exchange.
 - Handle authentication of devices.
 - Manage authorization. Authorization is expressed as a policy attached to each entity before it accesses the system.
- The management component allows to:
 - Register devices (through an ID, custom attributes and security certificates).
 - Perform remote management (software update, security patches, reboot, ...).

AWS supporting services

- AWS additionally provide supporting services such as:
 - Database (e.g., Amazon Simple Storage (S3) and DynamoDB).
 - Messaging: the Simple Notification Service (SNS) sends and receives notifications through SMS, email and social media.
 - Queuing: the Simple Queue Service (SQS) stores data in queues retrieved by apps.
 - IoT analytics: interoperates with Amazon general analytics providing tools for data cleansing, forecasting, image, video, and text analysis. It can be integrated with usersupplied functions (data filtering, interpolation, outlier elimination...).
 - General visualization service (QuickSight).

AWS IoT Edge: FreeRTOS

- Real-time OS (RTOS) designed for microcontrollers and small microprocessors.
- Can support the deterministic execution of real-time tasks, memory allocation, static and intertask coordination primitives (e.g., notifications, message queues, multiple types of semaphores, and stream and message buffers).
- Extensions for AWS IoT connectivity, security, and over-the-air updates.
- Primarily intended to enable IoT things and constrained devices to be connected to AWS IoT cloud directly or via a supporting gateway (e.g., Greengrass).

AWS IoT Edge: Greengrass

- Software acting as an edge gateway to provide secure connection and exchange
 of data and commands even when disconnected from the cloud.
- It operates at the edge (e.g., on premises and outside of AWS trusted perimeter).
- It easily connects to larger AWS IoT installations through the cloud and provides a local execution environment for cloud-developed services.
- Data plane functions:
 - Local message broker, device shadows, Lambda runtime, and support for local execution of ML inference engines.
- Control plane functions:
 - Security and authentication management, support for local secrets manager, and hardware security modules including trusted platform module (TPM).

Platform

https://azure.microsoft.com/

- It is another example of Infrastructure as a Service (IaaS).
- The main component is the IoT Hub: It is the linchpin between the data sources
 and the cloud back-end processing services is a cloud hosted IoT gateway.
 - It provides the first-point interface for data ingestion and ensures authenticated and secure communication between endpoints and cloud services.
 - It supports brokered-based bidirectional communication and routing of messages based on their type and processing rules.
 - Data routing.
 - Device twins (digital twins).
 - Control plane: security and management.

Azure IoT Hub: Data plane

 Device connectivity modes include posting via HTTP and brokered messaging via AMQPP and MQTT in both native and web-socket variants.

Azure IoT Hub: Data plane

Warm path (towards the stream processing for low-latency processing).

Azure IoT Hub: Data plane

Cold path (towards the storage): supports more complex queries on larger
aggregate data sets that may be required by analytics and ML that take longer time.

Azure IoT Hub: Control plane

• **Security**: authentication, rule-based authorization and encryption (at the transport layer using TLS or DTLS for TCP and UDP connections, respectively).

Azure IoT Hub: Control plane

 Management: Device planning, provisioning (identity and security credentials), and retirement of individual devices and in bulk for groups.

Azure IoT supporting services

- Azure IoT provides additional supporting services such as:
 - Time Series Insights (TSI): an analytics storage and visualization service.
 - CosmosDB: a NoSQL database.
 - **Azure monitor**: a tool which allows the connection to a device for extracting its logs and obtain insights about the operation of the system (+ visualization functionality).
 - Azure IoT Edge: it provides the following functionalities:
 - It runs on customer premises outside the cloud.
 - It provides a subset of IoT functions, support for local execution of applications.
 - It allows cloud connectivity.
 - When connectivity to the cloud is lost, the IoT Edge hub goes into the offline mode and buffers messages destined to go to the cloud.

Azure IoT Edge

- Edge devices can connect to the cloud via an IoT hub assuming they meet security requirements and can handle the required protocols and procedures.
- For less capable and legacy devices, Microsoft provides the Azure IoT Edge that runs on customer premises and outside of the cloud. It provides:
 - Device upward cloud connectivity and performs communications gateway functions and protocol and format conversions if necessary.
 - Connection multiplexing for underlying devices over a common single connection to the cloud (congestion control and isolatation to support security).
 - Data format and protocol translations, if needed.
 - Support for local execution of applications, and limited operation when offline.
 - Hardware security features, such as trusted platform module (TPM) and hardware security module (HSM), if available.

Azure IoT Edge

- Azure IoT Edge includes two operating systems that may be used at the edge to streamline development and cloud connectivity:
 - **Windows IoT Core**: a scaled down version of Windows OS targeted for embedded devices that uses tools and interfaces familiar to Windows developers.
 - Azure sphere: an OS designed for constrained edge devices. It is a secure operating system for real- time processing that supports cloud connectivity and over-the-air software and security updates.

Azure IoT Saas and PaaS

- Azure IoT offerings also include SaaS and PaaS variants:
 - Azure IoT Central (SaaS): intended to simplify the development of IoT solutions that do
 not require much service customization.
 - It makes use of Azure IoT architecture and services (such as the IoT hub and the basic analytics),
 without exposing their intricacies directly to the users.
 - Dashboard and functions can be accessed from browsers on PCs and tablet.
 - It can be used to define and manage connected devices.
 - Azure IoT solutions accelerators (PaaS): complete IoT reference solutions for common IoT scenarios with open-source code that users can customize and deploy.
 - Focus primarily on the application part and connection with Azure IoT services.
 - Main scenarios: remote monitoring, connected factory, predictive maintenance, device simulation.

Other IoT cloud platforms

Examples

- Google IoT: https://cloud.google.com/architecture/connected-devices/iot-platform-product-architecture
- IBM Watson: https://www.ibm.com/it-it/watson
- Oracle IoT Cloud: https://docs.oracle.com/en/cloud/paas/iot-cloud/index.html
- Cisco IoT Cloud Connect: https://www.cisco.com/c/en/us/solutions/internet-of-things/iot-control-center.html
- ThingWorx IIoT Platform: https://www.ptc.com/en/products/thingworx
- Altair SmartWorks: https://altair.com/altair-iot-studio
- •