Занятие 4. Предикаты. Понятие логики 1-го порядка

- 1. (Устно) Пусть переменная x пробегает множество четырехугольников. Рассмотрим несколько предикатов от этой переменной:
 - A(x) «x параллелограмм»;
 - B(x) –«x прямоугольник»;
 - C(x) «x poмб»;
 - $D(x) \langle \langle x \kappa вадрат \rangle \rangle$;
 - E(x) «диагонали x равны»;
 - F(x) «диагонали x перпендикулярны»;
 - G(x) «диагонали x делятся пополам точкой пересечения».

Укажите, какие из следующих высказываний истинны:

- д) $\forall x B(x) \to E(x);$ e) $\exists x C(x) \to D(x);$ ж) $\forall x E(x) \to B(x);$
- 3) $\exists x \ C(x) \land \neg E(x);$ и) $\exists x \ \neg C(x) \land E(x);$ к) $\exists x \ C(x) \land E(x).$

Какие из высказываний a) — k) представляют собой известные вам теоремы геометрии?

2. a) На множестве действительных чисел задан предикат P(x, y):

$$x^{2}(3 + y) - 4xy + 2y - 1 \ge 0$$
.

Найдите все значения y, для которых истинен предикат $\forall x P(x, y)$.

- б) Тот же предикат P(x, y) рассматривается на множестве положительных действительных чисел. Найдите все значения y, для которых истинен предикат $\forall x \ P(x, y)$.
- в) Выполните то же задание, если предикат P(x, y) изначально определен на множестве натуральных чисел.
- 3. На множестве натуральных чисел рассматривается предикат S(x, y, z): число z равно сумме чисел x и y. Используя этот предикат, связки и кванторы, запишите следующие предикаты:
 - а) Ev(x): число x чётно;
- б) Less(x, y): число x меньше числа y;
- в) Eq(x, y): числа x и y равны;
- Γ) Del3(x): число x кратно 3;
- д) One(x): число x равно 1;
- е) Eq3(x): число x равно 3.
- 4. Через LCD(x, y, z) обозначен некоторый предикат на множестве натуральных чисел, S(x, y, z) и Eq(x, y) предикаты, определённые в задании 3.

Какое отношение должен описывать предикат LCD(x, y, z), чтобы предикат, приведённый ниже,

был тождественно истинен на множестве натуральных чисел?

- 5. Пусть $A = \langle N; |, \leq \rangle$ алгебраическая система, в которой N множество натуральных чисел, | отношение делимости, \leq отношение не больше. Сигнатура $\Sigma = \{P_1^2, P_2^2\}$.
- а) Сколько моделей может быть построено для данной сигнатуры в данной алгебраической системе?
- б) Дана формула $F = P_1^2 x_1 x_2 \to P_2^2 x_1 x_2$. Равны ли FInt(F) для разных моделей в алгебраической системе A?

- в) Дана формула $G = P_1^2 x_1 x_2 \wedge P_1^2 x_2 x_1 \rightarrow P_2^2 x_1 x_2$. Равны ли FInt(G) для разных моделей в алгебраической системе A?
- г) Дана формула $H = P_1^2 x_1 x_2 \wedge P_2^2 x_2 x_1 \rightarrow P_1^2 x_2 x_1 \wedge P_2^2 x_1 x_2$. Равны ли FInt(H) для разных моделей в алгебраической системе A?
 - 6. Дана формула $F = \forall x_1 \forall x_2 (P_1^2 x_1 x_3 \rightarrow P_2^2 x_3 x_1 \vee P_2^2 x_1 x_2)$.
- а) Формула интерпретируется в алгебраической системе A, описанной в задании 6, так, что символу P_1^2 соответствует отношение |, а символу P_2^2 отношение \leq . Вычислите значения $\mathrm{FInt}(F)$ для x_3 в диапазоне от 1 до 9. Верно ли, что существует бесконечно много значений переменной x_3 для которых $\mathrm{FInt}(F)=1$?
- б) Формула интерпретируется в алгебраической системе A, описанной в задании 5, так, что символу P_1^2 соответствует отношение \leq , а символу P_2^2 отношение \mid . Вычислите значения $\mathrm{FInt}(F)$ для x_3 в диапазоне от 1 до 5. Верно ли, что существует бесконечно много значений переменной x_3 , для которых $\mathrm{FInt}(F)=1$?
 - 7. Даны формулы $F = \forall x_1 \exists x_2 (P_1^1 x_1 \land \neg P_1^1 x_2)$ и $G = \exists x_1 \forall x_2 (P_1^1 x_1 \land \neg P_1^1 x_2)$.
- а) Имеется ли модель, в которой формула F истинна? Тот же вопрос для формулы G.
- б) Имеется ли модель, в которой формула F выполнима, но не истинна? Тот же вопрос для формулы G.
 - в) Имеется ли модель, в которой формула F противоречие?
 - 8. Дана формула $F = \forall x_1 (P_1^2 x_1 x_2 \land \neg P_1^2 x_2 x_1)$.
 - а) Имеется ли модель, в которой эта формула истинна?
 - б) Имеется ли модель, в которой эта формула выполнима, но не истинна?
 - в) Имеется ли модель, в которой эта формула противоречие?

Комментарии к заданиям

- 4. Только z = HOД(x, y).
- 5. а) 2 модели. В алгебраической системе $A = \langle N; |, \leq \rangle$ каждый символ из $\Sigma = \{P_1^2, P_2^2\}$ может быть интерпретирован в сигнатуре этой системы. Тройка $\{A, \Sigma, \mu\}$ называется *моделью* логики 1-го порядка, где μ всюду определенное, однозначное, сюръективное отображение множества Σ в сигнатуру алгебраической системы A. Таким образом, можно построить всего 2 модели: в первой $\mu(P_1^2) = |$ и $\mu(P_2^2) = \leq$, во второй $\mu(P_1^2) = \leq$ и $\mu(P_2^2) = |$.
 - б) нет, в) да, г) да.
- 6. а) да (все простые подходят), б) нет (для $x_3 \ge 3$ берем $x_1 = x_3 2$, $x_2 = x_3 1$, тогда FInt(F) = 0).
 - 7. Ответ: а) нет, б) нет (нет свободных переменных), в) в любой.

Решение. Пусть в некоторой модели формула F истинна, тогда для любого x_1 следует, что $P_1^1x_1$ будет тинным, но тогда для любого x_2 , $\neg P_1^1x_2$ – ложно, т.е. и конъюнкция $P_1^1x_1 \land \neg P_1^1x_2$ ложна. Для G – аналогично.

8. Ответ: а) нет, б) нет, в) в любой.

Решение. Возьмем $x_1 = x_2$, тогда $P_1^2 x_1 x_1$ должен быть одновременно истинным и ложным, чтобы конъюнкция $P_1^2 x_1 x_1 \wedge \neg P_1^2 x_1 x_1$ была истинной, что невозможно.

Домашнее задание... на следующей странице.

Домашнее задание.

- 1. Внимательно изучите комментарии к задачам из практического занятия.
- 2. Доделать 1в) из практического занятия. Должно получиться: $y \in \{1, 2\}$.
- 3. На множестве действительных чисел задан предикат P(x, y):

$$3x^2 - 4xy + 2y^2 \ge 1.$$

- а) Найдите все значения y, для которых истинен предикат $\forall x P(x, y)$.
- б) Найдите все значения x, для которых истинен предикат $\forall y \ P(x, y)$.
- в) Зависит ли значение предиката $\exists x \ P(x, y)$ от значения переменной y?
- 4. На множестве целых неотрицательных чисел рассматривается предикат S(x, y, z): число z равно сумме чисел x и y. Используя этот предикат, связки и кванторы, запишите следующие предикаты:
 - a) Nil(x): число x равно 0;

- б) Ev(x): число x чётно;
- в) NoMore(x, y): число x не больше числа y;
- Γ) One(x): число x равно 1;

д) Eq(x, y): числа x и y равны;

- е) F(x, y, z): число z равно |x y|.
- 5. Через U(x, y, z) обозначен некоторый предикат на множестве неотрицательных целых чисел, S(x, y, z), Nil(x), One(x) и Eq(x, y) предикаты, определённые в домашнем задании 4. Приведённый ниже предикат тождественно истинен на множестве неотрицательных целых чисел:

$$U(x, y, z) \leftrightarrow \exists u \exists v \exists w (One(u) \land S(u, v, y) \land U(x, v, w) \land S(x, w, z)) \lor \\ \exists u (Nil(u) \land Eq(y, u) \land Eq(z, u)).$$

- а) Найдите значения U(1, 0, 0), U(2, 2, 2), U(2, 3, 6).
- б) Каково значение z, если U(3,1,z) истинно? А если истинно значение U(4,2,z)?
- в) Каково значение x, если U(x, 1, 5) истинно? А если истинно значение U(x, 2, 10)?
- г) Каково значение y, если U(2, y, 8) истинно? А если истинно значение U(4, y, 12)?
 - д) Какие значения могут иметь x и y, если U(x, y, 9)?
- е) Верно ли, что при любых значениях x и y существует значение z, для которого U(x, y, z) имеет значение истина? Если существует, то какое именно?
- 4. Пусть M множество подмножеств некоторого множества X. Отношение Sub(A, B) означает, что множество A подмножество B; отношение Emb(A, B) означает, что множество A вложимо в множество B. Используя эти предикаты, связки и кванторы, запишите следующие предикаты:
 - а) Emp(A): множество A пусто; б) One(A): множество A одноэлементно;
 - в) Card(A, B): множества A и B равномощны;
 - Γ) Eq(A, B): множества A и B равны; д) Inf(A): множество A бесконечно;
 - e) Fin(A): множество A конечно; m Count(A): множество A счётно.
- 5. Пусть $A = \langle M; \omega_1, \omega_2; \rho \rangle$ алгебраическая система с носителем M, бинарными операциями ω_1 , ω_2 и бинарным отношением ρ . Даны формулы $F = \forall x_3(P_1^2x_1x_2 \rightarrow P_2^1f_1^2x_1x_3f_1^2x_2x_3)$ и $G = \exists x_3P_1^2x_3f_1^2f_2^2x_1x_2f_2^2x_2x_1$ в сигнатуре $\Sigma = \{f_1^2, f_2^2, P_1^2\}$.
- а) Пусть M множество действительных чисел, ω_1 операция сложения, ω_2 операция умножения, ρ отношение меньше. Равны ли FInt(F) для разных

моделей в алгебраической системе A? Равны ли FInt(G) для разных моделей в алгебраической системе A?

- б) Пусть M множество положительных действительных чисел, ω_1 операция сложения, ω_2 операция умножения, ρ отношение меньше. Равны ли FInt(F) для разных моделей в алгебраической системе A? Равны ли FInt(G) для разных моделей в алгебраической системе A?
- в) Пусть M множество подмножеств некоторого множества X, ω_1 операция объединения множеств, ω_2 операция пересечения множеств, ρ отношение «быть собственным подмножеством». Равны ли $\mathrm{FInt}(F)$ для разных моделей в алгебраической системе A? Равны ли $\mathrm{FInt}(G)$ для разных моделей в алгебраической системе A?
- г) Пусть M множество натуральных чисел, ω_1 операция div, ω_2 операция mod, ρ отношение меньше. Равны ли $\mathrm{FInt}(F)$ для разных моделей в алгебраической системе A? Равны ли $\mathrm{FInt}(G)$ для разных моделей в алгебраической системе A?