BLG335e 2022 Fall Recitation 1

Erdi Sarıtaş

saritas21@itu.edu.tr

Outline

- Prerequisites
 - Proofing Techniques
 - Probability
- Sorting
 - Insertion Sort
 - Merge Sort
 - Growth of Functions
 - Asymptotic Notation
 - Comparison of Functions
 - Comparison

Proofing Techniques

- Mathematical Induction
 - 1. Basis Step: $P(n_0)$ is true
 - 2. Induction Step: $P(n_k) \rightarrow P(n_{k+1})$

$$\sum_{n=1}^{n} x = \frac{1}{2} n (n+1)$$

- Proof by Contradiction
 - Assume P(n) is false
 - Show assumption is wrong

√2 is irrational

$$\sum_{x=1}^{n} x = \frac{1}{2} n (n+1)$$

$$Verify: P(1) = 1 (true)$$

Induction:
$$P(n)$$
: 1 + 2 + 3 + ... + $n = \frac{n(n+1)}{2}$

$$P(n+1)$$
: 1 + 2 + 3 + ... + n + $(n + 1) = \frac{(n+1)(n+2)}{2}$

$$\frac{n(n+1)}{2} + (n+1)? = \frac{(n+1)(n+2)}{2} (true)$$

• 3^k -1 is multiple of 2

n=1: 3-1 = 2 is multiple of 2

Let's assume $\sqrt{2}$ is rational.

Then $\sqrt{2}$ should be written as $\frac{p}{q}$ and $2 = \frac{p^2}{q^2}$ $2q^2 = p^2$ and p^2 is even, thus p is even (p = 2m) $2q^2 = 4m^2$ and $q^2 = 2m^2$ meaning q^2 is also even

If both p^2 and q^2 are even there is no possibility to get 2 by dividing p^2 by q^2 . Thus, $\sqrt{2}$ cannot be rational, it is irrational.

There are infinitely many prime numbers

Proof. For the sake of contradiction, suppose there are only finitely many prime numbers. Then we can list all the prime numbers as $p_1, p_2, p_3, \ldots p_n$, where $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7$ and so on. Thus p_n is the nth and largest prime number. Now consider the number $a = (p_1 p_2 p_3 \cdots p_n) + 1$, that is, a is the product of all prime numbers, plus 1. Now a, like any natural number, has at least one prime divisor, and that means $p_k \mid a$ for at least one of our n prime numbers p_k . Thus there is an integer c for which $a = cp_k$, which is to say

$$(p_1p_2p_3\cdots p_{k-1}p_kp_{k+1}\cdots p_n)+1=cp_k.$$

Dividing both sides of this by p_k gives us

$$(p_1p_2p_3\cdots p_{k-1}p_{k+1}\cdots p_n)+\frac{1}{p_k}=c,$$

so

$$\frac{1}{p_k} = c - (p_1 p_2 p_3 \cdots p_{k-1} p_{k+1} \cdots p_n).$$

The expression on the right is an integer, while the expression on the left is not an integer. This is a contradiction.

Probability

- Pr[A] ≥ 0 for every event A
- Pr[S] = 1
- $Pr[\emptyset] = 0$
- If $A \subseteq B$, then $Pr[A] \leq Pr[B]$
- Pr[S A] = 1 Pr[A] (complement)
- $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B] \le Pr[A] + Pr[B]$
- Mutually exclusive events $Pr[A \cap B] = 0$
- Independed events $Pr[A \cap B] = Pr[A]Pr[B]$

Insertion Sort

```
INSERTION-SORT (A)
   for j = 1 to A. length
      key = A[j]
       // Insert A[j] into the sorted sequence A[1...j-1].
 i = j - 1
      while i > 0 and A[i] > key
          A[i+1] = A[i]
         i = i - 1
      A[i+1] = key
```

Merge Sort

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

```
MERGE(A, p, q, r)
1 n_1 = q - p + 1
2 n_2 = r - q
3 let L[1...n_1+1] and R[1...n_2+1] be new arrays
4 for i = 1 to n_1
5 	 L[i] = A[p+i-1]
6 for j = 1 to n_2
7 	 R[j] = A[q+j]
8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
11 i = 1
12 for k = p to r
13
       if L[i] < R[j]
14 	 A[k] = L[i]
         i = i + 1
16 else A[k] = R[j]
17
           j = j + 1
```

Asymptotic Notation

$$f(n) = o(g(n)) \approx a < b$$

 $f(n) = O(g(n)) \approx a \le b$
 $f(n) = O(g(n)) \approx a = b$
 $f(n) = O(g(n)) \approx a \ge b$
 $f(n) = \omega(g(n)) \approx a \ge b$

Comparison of Functions

$$O(2) < O(log(x)) < O(x) < O(xlog(x)) < O(x^2) < O(2^x) < O(x!) < O(x^x)$$

Comparision

• Speed: Merge > Insertion

• Memory: Insertion > Merge

Case	Insertion	Merge
best	O(n)	O(nlog(n))
worst	O(n^2)	O(nlog(n))
average	O(n^2)	O(nlog(n))