7. előadás

2020. március 30.

$\mathbb{R}^n \to \mathbb{R}$ típusú függvények szélsőértékei

Amint azt már az "egyváltozós analízisben" is hangsúlyoztuk, a matematikai alkalmazások egyik legfontosabb fejezete a függvények szélsőértékeinek a vizsgálata. Valósvalós függvényeknél megismerkedtünk az abszolút- és a lokális szélsőértékek fogalmával, a lokális szélsőértékekre vonatkozó szükséges feltétellel, valamint több elégséges feltétellel. Most ezeket az ismereteket terjesztjük ki $\mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N})$ típusú függvényekre.

• Fogalmak

Az egyváltozós esetben bevezetett fogalmak minden további nehézség nélkül átvihetők a többváltozós függvényekre.

Legyen $f \in \mathbb{R}^n \to \mathbb{R} \ (n \in \mathbb{N})$ egy adott függvény.

Azt mondjuk, hogy az $a \in \mathcal{D}_f$ pontban az f függvénynek abszolút maximuma van (vagy másképp fogalmazva az a pont az f függvénynek abszolút maximumhelye), ha az $f(x) \leq f(a)$ egyenlőtlenség igaz $\forall x \in \mathcal{D}_f$ pontban. Ekkor az f(a) függvényértéket az f függvény abszolút maximumának nevezzük.

Analóg módon értelmezzük az *abszolút minimumhely* és az *abszolút minimum* fogalmát.

Az abszolút maximumhelyet, illetve az abszolút minimumhelyet közösen abszolút szélsőértékhelynek, az abszolút maximumot, illetve az abszolút minimumot közösen abszolút szélsőértéknek nevezzük.

Minden további nehézség nélkül definiálhatjuk ezeknek a fogalmaknak a *lokális* változatait. Például:

1. definíció. Azt mondjuk, hogy az $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N})$ függvénynek az $a \in \mathcal{D}_f$ pontban lokális maximuma van (más szóval az a pont lokális maximumhely), ha

$$\exists K(a): \forall x \in K(a) \cap \mathcal{D}_f \text{ pontban } f(x) \leq f(a).$$

Ekkor az f(a) függvény
értéket az f függvény $lokális\ maximumának$ nevezzük.

A lokális minimumhely és a lokális minimum definíciója hasonló. Ha ui. $a \in \mathcal{D}_f$ és egy K(a) környezet esetén igaz az

$$f(x) \ge f(a) \quad (x \in K(a) \cap \mathcal{D}_f)$$

becslés, akkor az f(a) függvényértéket az f függvény lokális minimumának, az a pontot pedig az f lokális minimumhelyének nevezzük. (Más szóval ekkor az f függvénynek az a pontban lokális minimuma van.)

A lokális maximumhelyet, illetve a lokális minimumhelyet közösen lokális szélsőértékhelynek, a lokális maximumot, illetve a lokális minimumot közösen lokális szélsőértéknek nevezzük.

Szükséges feltétel a lokális szélsőértékre

A valós-valós függvények lokális szélsőértékeire vonatkozó szükséges feltétel *lényeges* nehézség nélkül átvihető az $\mathbb{R}^n \to \mathbb{R}$ típusú függvényekre.

- 1. tétel. (Elsőrendű szükséges feltétel a lokális szélsőértékre). Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N})$ és $a \in \text{int } \mathcal{D}_f$. Tegyük fel, hogy
 - $f \in D\{a\}$ és
 - \bullet az f függvénynek az a pontban lokális szélsőértéke van.

Ekkor $f'(a) = \mathbf{0}$, azaz

$$f'(a) = (\partial_1 f(a), \partial_2 f(a), \dots, \partial_n f(a)) = (0, 0, \dots, 0).$$

Az állítás bizonyításaként elég arra gondolni, hogy ha az f függvénynek az a pontban például lokális minimuma van és i = 1, 2, ..., n egy rögzített index, akkor a

$$g_i(t) = f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n) \quad (t \in K(a_i))$$

valós-valós függvénynek a $t = a_i$ pontban lokális minimuma van. Mivel $f \in D\{a\}$, ezért $g_i \in D\{a_i\}$ és $g_i'(a_i) = 0$, ami éppen azt jelenti, hogy $\partial_i f(a) = 0$.

2. definíció. Az $a \in \text{int } \mathcal{D}_f$ pont a deriválható $f \in \mathbb{R}^n \to \mathbb{R}$ függvény stacionárius pontja, ha $f'(a) = \mathbf{0} \in \mathbb{R}^n$.

Megjegyzések

- 1. A tétel tehát azt állítja, hogy a lokális szélsőértékhelyek szükségképpen a függvény stacionárius pontjai. Az $f'(a) = \mathbf{0}$ azonban csak szükséges, de nem elégséges feltétel a lokális szélsőértékre. Az n = 1 esetben például az $f(x) := x^3$ ($x \in \mathbb{R}$) függvénynek az a = 0 pont stacionárius pontja, mivel f'(0) = 0, de ez a pont nyilván nem lokális szélsőértékhely.
- **2.** Mivel $f \in \mathbb{R}^n \to \mathbb{R}$ esetén $f'(x) = (\partial_1 f(x), \dots, \partial_n f(x))$, ahol $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, ezért f stacionárius pontjai az x_1, x_2, \dots, x_n ismeretlenekre vonatkozó

$$\partial_1 f(x_1, \dots, x_n) = 0,$$

$$\partial_2 f(x_1, \dots, x_n) = 0,$$

$$\vdots$$

$$\partial_n f(x_1, \dots, x_n) = 0$$

egyenletrendszer megoldásai. Az így kapott (x_1, \ldots, x_n) pont(ok)ban lehet(nek) tehát az f függvény lokális szélsőértékhelyei.

• Másodrendű elégséges feltétel a lokális szélsőértékre

A fentiek alapján a stacionárius pontok között lehetnek olyanok, amelyekben a függvénynek nincs lokális szélsőértéke. Fontos kérdés tehát annak eldöntése, hogy egy stacionárius hely vajon lokális szélsőértékhely-e. Ennek eldöntéséhez a valós-valós esetben az elsőrendű- vagy a másodrendű elégséges feltételt használtuk. Ez utóbbi állítás szerint,

ha $f \in D^2\{a\}$, f'(a) = 0 és f''(a) > 0 (illetve f''(a) < 0), akkor az f függvénynek az a pontban lokális minimuma (illetve lokális maximuma) van. Világos, hogy ennek az állításnak a bizonyításánál alkalmazott utat $\mathbb{R}^n \to \mathbb{R}$ típusú függvényre nem használhatjuk.

A többváltozós esetben a kiindulópontunk alapötlete a Peano-féle maradéktagos Taylor-formula alkalmazása. Idézzük fel ezt az állítást: Tegyük fel, hogy $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N})$ és az $a \in \text{int } \mathcal{D}_f$ pontban $f \in D^2\{a\}$. Ekkor van olyan $\varepsilon \in \mathbb{R}^n \to \mathbb{R}$, a $\lim_{\mathbf{0}} \varepsilon = 0$ feltételnek eleget tevő függvény, hogy

$$f(a+h) = f(a) + \langle f'(a), h \rangle + \frac{1}{2} \langle f''(a)h, h \rangle + \varepsilon(h) \cdot ||h||^2 \quad (h \in \mathbb{R}^n, \ a+h \in \mathcal{D}_f).$$

Tegyük fel, hogy az a pont az f függvény stacionárius pontja, azaz $f'(a) = \mathbf{0}$. Ekkor $\langle f'(a), h \rangle = 0$ minden $h \in \mathbb{R}^n$ vektorra, tehát

$$(*) f(a+h) - f(a) = \frac{1}{2} \langle f''(a)h, h \rangle + \varepsilon(h) \cdot ||h||^2 (h \in \mathbb{R}^n, a+h \in \mathcal{D}_f).$$

A következő fontos észrevétel az, hogy ha $\langle f''(a)h,h\rangle > 0$ minden $h \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ vektorra, ekkor a (*) egyenlőség jobb oldala is pozitív. (Fogadjuk el bizonyítás nélkül ezt az állítás.) Ugyanez igaz tehát (*) bal oldalára is, tehát

$$f(a+h) - f(a) > 0$$
, vagyis $f(a+h) > f(a)$, ha $h \in \mathbb{R}^n$ és $a+h \in \mathcal{D}_f$.

Ez azt jelenti, hogy az f függvénynek az a pontban lokális minimuma van.

Ha azt tesszük fel, hogy $\langle f''(a)h,h\rangle < 0$, akkor az f függvénynek az a pontban lokális maximuma van.

A fentieket a következő állításban foglaljuk össze:

2. tétel. Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ és $a \in \operatorname{int} \mathcal{D}_f$. Tegyük fel, hogy $f \in D^2\{a\}$, $f'(a) = \mathbf{0}$ és

$$(**) \qquad \langle f''(a)h, h \rangle > 0 \text{ (illetve } \langle f''(a)h, h \rangle < 0), \text{ ha } h \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$$

Ekkor az f függvénynek az a pontban lokális minimuma (illetve lokális maximuma) van.

Világos, hogy a (**) feltételek nehezen ellenőrizhetők. A gyakorlatban már jól használható ekvivales átfogalmazásukhoz azonban további fogalmak bevezetésére lesz szükségünk. Az $f \in D^2\{a\}$ feltétel miatt a Young-tétel szerint az $f''(a) \in \mathbb{R}^{n \times n}$ Hesse-féle mátrix szimmetrikus, ezért a továbbiakban f''(a) helyett egy tetszőleges $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrixot fogunk tekinteni.

2. definíció. Legyen $n \in \mathbb{N}$ és $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ egy szimmetrikus mátrix. Ekkor a

$$Q(h) := \langle A \cdot h, h \rangle = \sum_{i,j=1}^{n} a_{ij} h_i h_j, \qquad h = \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} \in \mathbb{R}^n$$

függvényt az A mátrix által meghatározott kvadratikus alaknak nevezzük.

- **3. definíció.** Azt mondjuk, hogy az $A \in \mathbb{R}^{n \times n}$ szimmetrikus mátrix, illetve a $Q(h) = \langle A \cdot h, h \rangle$ $(h \in \mathbb{R}^n)$ kvadratikus alak
 - pozitív definit, ha $\forall h \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ esetén Q(h) > 0;
 - negatív definit, ha $\forall h \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ esetén Q(h) < 0;
 - indefinit, ha Q pozitív és negatív értéket is felvesz.

Megjegyzés. Ha $f \in D^2\{a\}$, akkor a fentiek alapján már értelmeztük azt is, hogy az $f''(a) \in \mathbb{R}^{n \times n}$ Hesse-féle mátrix pozitív, illetve negatív definit.

Egy mátrix, illetve kvadratikus alak definitségének az eldöntése nem egyszerű feladat. A következő állításban a gyakorlatban jól használható eredményt fogalmazunk meg.

3. tétel. (Sylvester-kritérium). Legyen $n \in \mathbb{N}$, $A \in \mathbb{R}^{n \times n}$ egy szimmetrikus mátrix és $Q(h) = \langle A \cdot h, h \rangle$ $(h \in \mathbb{R}^n)$ az A által meghatározott kvadratikus alak. Jelölje

$$D_k := \det \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \dots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{bmatrix} \qquad (k = 1, 2, \dots, n)$$

az A mátrix "bal felső sarokmátrixának" a determinánsát.

Ekkor az A mátrix, illetve a Q kvadratikus alak

- pozitív definit \iff ha $D_k > 0 \ (\forall k = 1, 2, ..., n),$
- negativ definit \iff ha $(-1)^k D_k > 0 \ (\forall k = 1, 2, ..., n).$

Megjegyzés. A gyakorlaton megmutatjuk, hogy ez az algebrai jellegű tétel az n=2 esetben elemi úton könnyen belátható.

- **4. tétel.** (Másodrendű elégséges feltétel a lokális szélsőértékre $\mathbb{R}^n \to \mathbb{R}$ függvényekre.) Legyen $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N})$ és $a \in \text{int } \mathcal{D}_f$. Tegyük fel, hogy
 - $\bullet \ f \in D^2\{a\},$
 - \bullet az apont az f függvény stacionárius pontja, azaz $f'(a)=\mathbf{0},$
 - \bullet az f''(a) Hesse-féle mátrix pozitív (negatív) definit.

Ekkor az f függvénynek az a pontban lokális minimuma (maximuma) van.

Megjegyzés. A Sylvester-kritérium segítségével vizsgálhatjuk az f''(a) Hesse-mátrix pozitív, illetve negatív definitségét. Ha a Sylvester-kritérium feltételei nem teljesülnek, akkor a fenti elégséges feltétel nem használható. Ilyenkor egyedi vizsgálatokkal lehet eldönteni, hogy egy stacionárius pont vajon lokális szélsőértékhely-e vagy sem.

Kétváltozós függvények esetén azonban van egy egyszű elégséges feltétel arra az esetre is, amikor a függvénynek nincs lokális szélsőértékhelye egy stacionárius pontan. Ezért célszerű megmegjegyezni ezt a speciális esetet.

- 5. tétel. Legyen $f \in \mathbb{R}^2 \to \mathbb{R}$ és $a \in \operatorname{int} \mathcal{D}_f$. Tegyük fel, hogy
 - (a) $f \in D^2\{a\}$,
 - (b) $f'(a) = (\partial_1 f(a), \partial_2 f(a)) = (0, 0).$

Ekkor:

 1^0 Ha

$$\det f''(a) = \det \begin{bmatrix} \partial_{11} f(a) & \partial_{12} f(a) \\ \partial_{21} f(a) & \partial_{22} f(a) \end{bmatrix} > 0$$

és $\partial_{11} f(a) > 0$ [illetve $\partial_{11} f(a) < 0$], akkor az f függvénynek a-ban lokális minimuma [illetve maximuma] van.

 2^0 Ha det f''(a) < 0, akkor f-nek a-ban nincs lokális szélsőértéke (az a pont nyeregpont).

Megjegyzés. Világos, hogy az 1^o állítás a Sylvester-kritériumból következő 4. tétel az n=2 speciális esetben.

Ha n > 2, akkor nincs a 2^o állításnak megfelelő "szép" elégséges feltétel.

Abszolút szélsőértékek

Az a megfigyelés, hogy a lokális szélsőértékhelyeken a függvény deriváltja eltűnik (feltéve, hogy létezik), lehetővé tette olyan f egyváltozós függvény abszolút szélsőértékeinek meghatározását, amelyik folytonos egy korlátos és zárt [a,b] intervallumban, és differenciálható annak (a,b) belsejében. Ekkor ui. f-nek van legnagyobb és legkisebb értéke a Weierstrass-tétel szerint. Ha f ezek valamelyikét egy c pontban veszi fel, akkor vagy c=a, vagy c=b, vagy pedig $c\in(a,b)$. Ez utóbbi esetben lokális szélsőértékről van szó, és így f'(c)=0. Ha tehát megkeressük az összes olyan $c\in(a,b)$ pontot, amelyben f' eltűnik, akkor biztos, hogy az abszolút szélsőértékhelyek ezek közül, valamint az a és a b végpontok közül kerülnek ki. Például az abszolút maximumhelyet úgy határozzuk meg, hogy kiszámítjuk f értékeit ezekben a pontokban (nem feledkezve meg az a és b végpontokról sem), és kiválasztjuk azokat, amelyekben f értéke a legnagyobb.

Ezt a gondolatmenetet könnyen általánosíthatjuk többváltozós függvényekre.

6. tétel. Legyen $H \subset \mathbb{R}^n$ korlátos és zárt halmaz. Tegyük fel, hogy az $f: H \to \mathbb{R}$ függvény folytonos és léteznek a parciális deriváltjai H belsejének minden pontjában. Ekkor f a legnagyobb (legkisebb) értékét vagy a H halmaz határán veszi fel, vagy pedig egy olyan $a \in \text{int } \mathcal{D}_f$ belső pontban, ahol $\partial_i f(a) = 0$ teljesül minden $i = 1, 2, \ldots, n$ indexre.

A fentieket a következő példával illusztráljuk.

Példa. Határozzuk meg az

$$f(x,y) := xy(x^2 + y^2 - 1) \quad ((x,y) \in \mathbb{R}^2)$$

függvény abszolút szélsőértékhelyeit és abszolút szélsőértékeit a

$$H := \{(x, y) \mid x^2 + y^2 \le 1\} \subset \mathbb{R}^2$$

zárt körlapon.

Megoldás. A $H \subset \mathbb{R}^2$ halmaz korlátos és zárt, továbbá az f polinomfüggvény folytonos a H halmazon. Ezért Weierstrass tétele szerint f-nek a H halmazon van legnagyobb és

legkisebb értéke. Az abszolút szélsőértékhelyek vagy a körlap határán (ez az $x^2 + y^2 = 1$ egyenletű körvonal), vagy pedig a H halmaz belsejében helyezkednek el.

Világos, hogy az f függvény értéke nulla a H halmaz határának minden pontjában. Mivel $(x,y) \in \text{int } H$ (azaz $x^2 + y^2 < 1$), x > 0, y < 0 esetén f pozitív, továbbá x > 0 és y > 0 esetén f negatív, ezért f abszolút szélsőértékhelyei szükségképpen H belsejében helyezkednek el, és az abszolút szélsőértékek nullától különbözőek.

Legyen $(x,y) \in \text{int } H$ egy olyan pont, ahol f-nek abszolút szélsőértéke van. Ez a pont egyúttal lokális szélsőértékhely is. Az

$$f(x,y) := xy(x^2 + y^2 - 1) = x^3y + xy^3 - xy \quad ((x,y) \in \mathbb{R}^2)$$

egy polinomfüggvény, ezért $f \in D(\text{int } H)$. A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel szerint a szóban forgó helyen a parciális deriváltak 0-val egyenlőek:

$$\partial_x f(x,y) = 3x^2y + y^3 - y = y(3x^2 + y^2 - 1) = 0,$$

$$\partial_y f(x,y) = x^3 + 3xy^2 - x = x(x^2 + 3y^2 - 1) = 0.$$

Ha y=0, akkor a második egyenletből x=0 adódik (hiszen |x|<1 miatt $x^2-1\neq 0$). Az origóban a függvény értéke nulla, ezért a fentiek alapján a (0,0) pont nem abszolút szélsőértékhely. Így $x\neq 0, y\neq 0$, tehát

$$3x^{2} + y^{2} - 1 = 0$$

$$x^{2} + 3y^{2} - 1 = 0$$

$$\Rightarrow 3x^{2} + y^{2} - 1 = x^{2} + 3y^{2} - 1 \iff x^{2} = y^{2} \iff$$

$$x^{2} = \frac{1}{4} \text{ és } y^{2} = \frac{1}{4} \iff x = \pm \frac{1}{2} \text{ és } y = \pm \frac{1}{2}.$$

A lehetséges szélsőértékhelyek tehát az

$$\left(\frac{1}{2}, \frac{1}{2}\right), \quad \left(\frac{1}{2}, -\frac{1}{2}\right), \quad \left(-\frac{1}{2}, \frac{1}{2}\right), \quad \left(-\frac{1}{2}, -\frac{1}{2}\right)$$

pontok. Az itt felvett helyettesítési értékek:

$$f\left(\frac{1}{2},\frac{1}{2}\right) = -\frac{1}{8}, \quad f\left(\frac{1}{2},-\frac{1}{2}\right) = \frac{1}{8}, \quad f\left(-\frac{1}{2},\frac{1}{2}\right) = \frac{1}{8}, \quad f\left(-\frac{1}{2},-\frac{1}{2}\right) = -\frac{1}{8}.$$

A függvényértékeket összehasonlítva azt kaptuk, hogy a H halmazon az f függvény legnagyobb értéke $\frac{1}{8}$, és ezt az értéket az $(\frac{1}{2},-\frac{1}{2})$, $(-\frac{1}{2},\frac{1}{2})$ pontokban veszi fel. Az abszolút minimumhelyek pedig az $(\frac{1}{2},\frac{1}{2})$, $(-\frac{1}{2},-\frac{1}{2})$ pontok, és az abszolút minimum $-\frac{1}{8}$.