```
import pandas as pd
         import numpy as np
         import seaborn as sb
         import matplotlib.pyplot as plt
        Reading the dataset
 In [3]: df = pd.read_csv('/content/penguins_size.csv')
Out [3]:
              species
                          island culmen_length_mm culmen_depth_mm flipper_length_mm
                                                                                        body_mass_g
                                                    18.7
                                                                                        3750.0
                                                                                                     MALE
           0 Adelie
                       Torgersen 39.1
                                                                      181.0
                                                                      186.0
                                                                                        3800.0
                                                                                                     FEMALE
           1 Adelie
                      Torgersen 39.5
                                                    17.4
           2 Adelie
                       Torgersen 40.3
                                                    18.0
                                                                      195.0
                                                                                        3250.0
                                                                                                     FEMALE
           3 Adelie
                                                                                                     NaN
                      Torgersen NaN
                                                    NaN
                                                                      NaN
                                                                                        NaN
           4 Adelie
                      Torgersen 36.7
                                                    19.3
                                                                      193.0
                                                                                        3450.0
                                                                                                     FEMALE
           ··· ...
         339 Gentoo
                      Biscoe
                                 NaN
                                                    NaN
                                                                      NaN
                                                                                        NaN
                                                                                                     NaN
                                 46.8
                                                    14.3
                                                                      215.0
                                                                                        4850.0
                                                                                                     FEMALE
         340 Gentoo
                      Biscoe
                                                                                                     MALE
         341 Gentoo
                                 50.4
                                                    15.7
                                                                      222.0
                                                                                        5750.0
                      Biscoe
         342 Gentoo
                      Biscoe
                                 45.2
                                                    14.8
                                                                      212.0
                                                                                        5200.0
                                                                                                     FEMALE
         343 Gentoo
                      Biscoe
                                 49.9
                                                    16.1
                                                                      213.0
                                                                                        5400.0
                                                                                                     MALE
        344 rows × 7 columns
In [4]: df.shape
Out [4]: (344, 7)
In [5]: df['species'].value_counts()
Out [5]: Adelie
        Gentoo
Chinstrap
                    124
68
        Name: species, dtype: int64
In [6]: df['island'].value_counts()
Out [6]: Biscoe
                    168
                    124
        Dream
        Torgersen 52
Name: island, dtype: int64
        Univariate Analysis
In [7]: | sb.displot(df['island'])
```

Out [7]: <seaborn.axisgrid.FacetGrid at 0x7990c2ac22f0>

In [9]: sb.displot(df['species'])

Out [9]: <seaborn.axisgrid.FacetGrid at 0x7990c2962b00>

In [19]:
 plt.pie(df.species.value_counts() , [0,0.1,0.2] , labels = ['Adelie' , 'Gentoo','Chinstrap'] , autopct =
 plt.title('SPECIES')
 plt.show()

In [20]: sb.barplot(x =df.sex.value_counts().index,y =df.sex.value_counts())

Out [20]: <Axes: ylabel='sex'>

Bi-variate Analysis

In [22]: | sb.lineplot(x = df['species'],y=df['island'])

Out [22]: <Axes: xlabel='species', ylabel='island'>

In [23]: | sb.lineplot(x = df['species'],y=df['body_mass_g'])

Out [23]: <Axes: xlabel='species', ylabel='body_mass_g'>


```
In [26]: sb.lineplot(x = df['island'],y=df['body_mass_g'])
```

Out [26]: <Axes: xlabel='island', ylabel='body_mass_g'>

In [28]: sb.scatterplot(x = df['culmen_depth_mm'],y=df['body_mass_g'])

Out [28]: <Axes: xlabel='culmen_depth_mm', ylabel='body_mass_g'>

Multivariate Analysis

In [34]: sb.jointplot(data=df)

In [29]: sb.pairplot(df)

Out [29]: <seaborn.axisgrid.PairGrid at 0x7990bf85a650>

In [30]: df.plot()

Descriptive statistics

In [35]: df.describe()

Out [35]:

			laneth mm	aulman danth i			hadu maaa m		
				culmen_depth_i			,		
		342.000		342.000000	342.0		342.000000		
		43.9219		17.151170		15205	4201.754386		
	std	5.45958	34	1.974793	14.06	1714	801.954536		
	min	32.1000	000	13.100000	172.0	00000	2700.000000		
	25%	39.2250	000	15.600000	190.0	00000	3550.000000		
	50%	44.4500	000	17.300000	197.0	00000	4050.000000		
	75%	48.5000	000	18.700000	213.0	00000	4750.000000		
	max	59.6000	000	21.500000	231.0	00000	6300.000000		
[37]:	df.in	fo()							
	RangeInc Data co # Co 0 spc 1 is 2 cu 3 cu 4 fl 5 bo 6 se dtypes:	dex: 344 lumns (to lumn ecies land lmen_len lmen_dep ipper_le dy_mass_ x	344 344 gth_mm 342 th_mm 342 ngth_mm 342 g 342 (4), object(to 343 nns): n-Null Count Dty n-null cont Obj t non-null obj 2 non-null flo 2 non-null flo 2 non-null flo 2 non-null flo 4 non-null obj					
	Check th	ne missir	ng values						
n [36]:	df.is	null().	any()						
ut [36]:	island culmen_ culmen_o		True						
In [38]:	df.is	null().	.sum()						
t [38]:	culmen_c		2						
	Label Er	ncoder							
n [41]:	from	sklearr	n.preproce	essing import	LabelEnd	oder			
[42]:	le =	LabelEr	ncoder()						
n [44]:	df['s	ex'] =	le.fit_tr	ansform(df['s	ex'])				
ut [44]:		species	island	culmen_length_n	nm culmei	n_depth_mm	flipper_length_mm	body_mass_g	sex
	0 /	Adelie	Torgersen	39.10000	18.700	00	181.000000	3750.000000	2
	1 /	Adelie	Torgersen	39.50000	17.400	00	186.000000	3800.000000	1
	2 /	Adelie	Torgersen	40.30000	18.000	00	195.000000	3250.000000	1
	3 /	Adelie	Torgersen	43.92193	17.151	17	200.915205	4201.754386	3
		A .1 . 1! .	_				100 000000	3450.000000	1
	4 /	Adelle	Torgersen	36.70000	19.300	00	193.000000	0100.00000	1
	4 /		lorgersen 	36.70000	19.300	00			
	 .								
	339 (17		 4201.754386	
	339 (340 (Gentoo Gentoo	 Biscoe	 43.92193 46.80000	 17.151 14.300	17 00	200.915205	 4201.754386 4850.000000	 3 1
	339 (340 (341 (Gentoo Gentoo	 Biscoe Biscoe	 43.92193	 17.151	17 00 00	 200.915205 215.000000	 4201.754386	 3 1 2

343 Gentoo Biscoe

344 rows × 7 columns

49.90000

16.10000

213.000000

5400.000000 2

```
In [45]: df.fillna(df.mean() , inplace= True)
df
```

<ipython-input-45-826902893166>:1: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future
version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify
the value of numeric_only to silence this warning.
 df.fillna(df.mean() , inplace= True)

Out [45]:

s		species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
	0	Adelie	Torgersen	39.10000	18.70000	181.000000	3750.000000	2
	1	Adelie	Torgersen	39.50000	17.40000	186.000000	3800.000000	1
	2	Adelie	Torgersen	40.30000	18.00000	195.000000	3250.000000	1
	3	Adelie	Torgersen	43.92193	17.15117	200.915205	4201.754386	3
	4	Adelie	Torgersen	36.70000	19.30000	193.000000	3450.000000	1
	339	Gentoo	Biscoe	43.92193	17.15117	200.915205	4201.754386	3
	340	Gentoo	Biscoe	46.80000	14.30000	215.000000	4850.000000	1
	341	Gentoo	Biscoe	50.40000	15.70000	222.000000	5750.000000	2
	342	Gentoo	Biscoe	45.20000	14.80000	212.000000	5200.000000	1
	343	Gentoo	Biscoe	49.90000	16.10000	213.000000	5400.000000	2

344 rows × 7 columns

one hot encoding

```
In [47]:
```

```
df_main = pd.get_dummies(df,columns =['species' , 'island' ])
df_main.head()
```

Out [47]:

:		culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	species_Adelie	species_Chinstrap	species_Gentoo	isla
	0	39.10000	18.70000	181.000000	3750.000000	2	1	0	0	0
	1	39.50000	17.40000	186.000000	3800.000000	1	1	0	0	0
	2	40.30000	18.00000	195.000000	3250.000000	1	1	0	0	0
	3	43.92193	17.15117	200.915205	4201.754386	3	1	0	0	0
	4	36.70000	19.30000	193.000000	3450.000000	1	1	0	0	0

outliers

```
In [49]: sb.boxplot(df['body_mass_g'])
```

Out [49]: <Axes: >


```
In [50]: sb.boxplot(df['culmen_length_mm'])
```

```
Out [50]: <Axes: >
```


	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	species_Adelie	species_Chinstra
culmen_length_mm	1.000000	-0.235053	0.656181	0.595110	0.264024	-0.834277	0.448530
culmen_depth_mm	-0.235053	1.000000	-0.583851	-0.471916	0.316379	0.537305	0.320468
flipper_length_mm	0.656181	-0.583851	1.000000	0.871202	0.193476	-0.692055	-0.180520
body_mass_g	0.595110	-0.471916	0.871202	1.000000	0.340402	-0.554721	-0.291351
sex	0.264024	0.316379	0.193476	0.340402	1.000000	0.024857	-0.038745
species_Adelie	-0.834277	0.537305	-0.692055	-0.554721	0.024857	1.000000	-0.441643
species_Chinstrap	0.448530	0.320468	-0.180520	-0.291351	-0.038745	-0.441643	1.000000
species_Gentoo	0.490869	-0.821550	0.865530	0.815411	0.006427	-0.667991	-0.372649
island_Biscoe	0.238622	-0.630442	0.609855	0.625523	-0.013800	-0.354038	-0.484951
island_Dream	0.033950	0.455604	-0.420557	-0.459651	-0.036926	0.014743	0.661151
island_Torgersen	-0.378494	0.269073	-0.287321	-0.256785	0.068753	0.474285	-0.209464

In [55]:

plt.figure(figsize=(11,8))
sb.heatmap(df_main.corr(),annot =True)

Out [55]: <Axes: >

Split the data into dependent and independent variables.

In [56]: df_main.head()

Out [56]:

•		culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex	species_Adelie	species_Chinstrap	species_Gentoo	isla
	0	39.10000	18.70000	181.000000	3750.000000	2	1	0	0	0
	1	39.50000	17.40000	186.000000	3800.000000	1	1	0	0	0
	2	40.30000	18.00000	195.000000	3250.000000	1	1	0	0	0
	3	43.92193	17.15117	200.915205	4201.754386	3	1	0	0	0
	4	36.70000	19.30000	193.000000	3450.000000	1	1	0	0	0

In [58]: y = df_main['body_mass_g']

```
Out [58]: 0
                3750.000000
                3800.000000
                3250,000000
         4
                3450.000000
         339
                4201.754386
                4850.000000
         341
                5750.000000
         342
                5200.000000
         343
                5400.000000
               body_mass_g, Length: 344, dtype: float64
 In [59]: x=df_main.drop(columns = ['body_mass_g'] , axis=1)
Out [59]:
                culmen_length_mm culmen_depth_mm
                                                    flipper_length_mm sex species_Adelie
                                                                                           species_Chinstrap
                                                                                                              species_Gentoo island_Biscoe
             0 39.10000
                                   18.70000
                                                     181.000000
                                                                                            0
                                                                                                              0
                                                                                                                              0
                                                                                            0
                                                                                                              0
                                                                                                                              0
             1 39.50000
                                   17.40000
                                                     186.000000
                                                                                            0
                                                                                                              0
                                                                                                                              0
            2 40.30000
                                   18.00000
                                                     195.000000
               43.92193
                                   17.15117
                                                     200.915205
                                                                        3
                                                                             1
                                                                                            0
                                                                                                              0
                                                                                                                              0
                                                                                                              0
               36.70000
                                   19.30000
                                                     193.000000
                                                                                            0
                                                                                                                              0
                                                     200.915205
                                                                             0
                                                                                            0
          339
               43.92193
                                   17.15117
                                                                        3
                                                                                                              1
                                                                                                                              1
                                                                                            0
          340 46.80000
                                   14.30000
                                                     215.000000
                                                                             0
                                                                                                              1
                                                                                                                              1
                                                                        1
          341 50.40000
                                   15.70000
                                                     222.000000
                                                                        2
                                                                             0
                                                                                            0
                                                                                            0
          342 45.20000
                                   14.80000
                                                     212.000000
                                                                        1
                                                                             0
                                                                                                              1
                                                                                                                              1
               49.90000
                                   16.10000
                                                     213.000000
                                                                        2
                                                                             0
                                                                                            0
         344 rows × 10 columns
         Scaling the data
 In [60]:
          from sklearn.preprocessing import MinMaxScaler
          scale =MinMaxScaler()
 In [61]: X_scaled= pd.DataFrame(scale.fit_transform(x),columns =x.columns)
          X_scaled.head()
Out [61]:
             culmen_length_mm culmen_depth_mm flipper_length_mm
                                                                          sex species_Adelie species_Chinstrap species_Gentoo island_Biscoo
          0 0.254545
                                                                                               0.0
                                                                                                                 0.0
                                                                                                                                 0.0
                                0.666667
                                                   0.152542
                                                                     0.666667
                                                                               1.0
          1 0.269091
                                0.511905
                                                   0.237288
                                                                     0.333333 1.0
                                                                                               0.0
                                                                                                                 0.0
                                                                                                                                 0.0
             0.298182
                                0.583333
                                                   0.389831
                                                                     0.333333 1.0
                                                                                               0.0
                                                                                                                 0.0
                                                                                                                                 0.0
             0.429888
                                0.482282
                                                   0.490088
                                                                     1.000000 1.0
                                                                                               0.0
                                                                                                                 0.0
                                                                                                                                 0.0
          4 0.167273
                                0.738095
                                                   0.355932
                                                                     0.333333 1.0
                                                                                               0.0
                                                                                                                 0.0
                                                                                                                                 0.0
         Split the data into training and testing
 In [62]: from sklearn.model_selection import train_test_split
          X_train,X_test,y_train,y_test = train_test_split(X_scaled,y,test_size=0.3,random_state=10)
         Check the training and testing data shape
 In [63]:
         X_train.shape
Out [63]: (240, 10)
 In [64]:
          X_train.head()
Out [64]:
                culmen_length_mm
                                  culmen_depth_mm
                                                     flipper_length_mm
                                                                             sex species_Adelie
                                                                                                 species_Chinstrap
                                                                                                                   species_Gentoo
                                                                                                                                  island_Bis
          258 0.432727
                                   0.059524
                                                     0.610169
                                                                        0.333333
                                                                                  0.0
                                                                                                 0.0
                                                                                                                   1.0
                                                                                                                                   1.0
          332 0.414545
                                   0.250000
                                                     0.694915
                                                                        0.333333 0.0
                                                                                                 0.0
                                                                                                                   1.0
                                                                                                                                   1.0
          121 0 203636
                                   0.797619
                                                     0.440678
                                                                        0.666667 1.0
                                                                                                 0.0
                                                                                                                   0.0
                                                                                                                                   0.0
               0.334545
                                                     0.389831
                                                                                                 0.0
                                                                                                                   0.0
                                                                                                                                   1.0
                                   0.952381
                                                                        0.666667 1.0
               0.050909
                                   0.702381
                                                     0.305085
                                                                        0.333333 1.0
                                                                                                 0.0
                                                                                                                   0.0
                                                                                                                                   0.0
 In [67]: y_train.shape
```

```
Out [67]: (240,)
 In [68]: y_train.head()
                4350.0
4650.0
3500.0
4400.0
Out [68]: 258
          332
121
          70
                3600.0
          Name: body_mass_g, dtype: float64
In [65]: X_test.shape
Out [65]: (104, 10)
 In [66]: X_test.head()
Out [66]:
                                                                                 sex species_Adelie species_Chinstrap species_Gentoo island_Bis
                culmen\_length\_mm \quad culmen\_depth\_mm \quad flipper\_length\_mm
          229 0.534545
                                    0.273810
                                                        0.728814
                                                                           0.666667 0.0
                                                                                                                         1.0
                                                                                                                                          1.0
           80 0.090909
                                    0.488095
                                                        0.288136
                                                                           0.333333 1.0
                                                                                                      0.0
                                                                                                                         0.0
                                                                                                                                          0.0
           327 0.774545
                                    0.321429
                                                                           0.666667 0.0
                                                                                                      0.0
                                                                                                                         1.0
                                                                                                                                          1.0
                                                        0.796610
             6 0.247273
                                    0.559524
                                                        0.152542
                                                                           0.333333 1.0
                                                                                                      0.0
                                                                                                                         0.0
                                                                                                                                          0.0
          309 0.727273
                                    0.464286
                                                        0.983051
                                                                           0.666667 0.0
                                                                                                      0.0
                                                                                                                         1.0
                                                                                                                                          1.0
 In [69]: y_test.shape
Out [69]: (104,)
In [70]: y_test.head()
Out [70]: 229
                 5150.0
                3200.0
5500.0
3625.0
         80
327
         6
                5550.0
          Name: body_mass_g, dtype: float64
```