In Exercises 37-38, determine whether A is invertible, and if so, find the inverse. [Hint: Solve AX = I for X by equating corresponding entries on the two sides.]

$$\mathbf{37.} \ A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

37.
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 38. $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

In Exercises 39–40, simplify the expression assuming that A, B, C, and D are invertible.

- **39.** $(AB)^{-1}(AC^{-1})(D^{-1}C^{-1})^{-1}D^{-1}$
- **40.** $(AC^{-1})^{-1}(AC^{-1})(AC^{-1})^{-1}AD^{-1}$
- **41.** Show that if R is a $1 \times n$ matrix and C is an $n \times 1$ matrix, then RC = tr(CR).
- **42.** If A is a square matrix and n is a positive integer, is it true that $(A^n)^T = (A^T)^n$? Justify your answer.
- **43.** (a) Show that if A is invertible and AB = AC, then B = C.
 - (b) Explain why part (a) and Example 3 do not contradict one another.
- **44.** Show that if A is invertible and k is any nonzero scalar, then $(kA)^n = k^n A^n$ for all integer values of n.
- **45.** (a) Show that if A, B, and A + B are invertible matrices with the same size, then

$$A(A^{-1} + B^{-1})B(A + B)^{-1} = I$$

- (b) What does the result in part (a) tell you about the matrix $A^{-1} + B^{-1}$?
- **46.** A square matrix A is said to be *idempotent* if $A^2 = A$.
 - (a) Show that if A is idempotent, then so is I A.
 - (b) Show that if A is idempotent, then 2A I is invertible and is its own inverse.
- **47.** Show that if A is a square matrix such that $A^k = 0$ for some positive integer k, then the matrix I - A is invertible and

$$(I-A)^{-1} = I + A + A^2 + \cdots + A^{k-1}$$

48. Show that the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

satisfies the equation

$$A^{2} - (a + d)A + (ad - bc)I = 0$$

49. Assuming that all matrices are $n \times n$ and invertible, solve for D.

$$C^{T}B^{-1}A^{2}BAC^{-1}DA^{-2}B^{T}C^{-2} = C^{T}$$

50. Assuming that all matrices are $n \times n$ and invertible, solve for D.

$$ABC^{T}DBA^{T}C = AB^{T}$$

Working with Proofs

► In Exercises 51–58, prove the stated result. <

- **51.** Theorem 1.4.1(*a*)
- **52.** Theorem 1.4.1(*b*)
- **53.** Theorem 1.4.1(*f*)
- **54.** Theorem 1.4.1(*c*)
- **55.** Theorem 1.4.2(*c*)
- **56.** Theorem 1.4.2(*b*)
- **57.** Theorem 1.4.8(*d*)
- **58.** Theorem 1.4.8(*e*)

True-False Exercises

TF. In parts (a)–(k) determine whether the statement is true or false, and justify your answer.

- (a) Two $n \times n$ matrices, A and B, are inverses of one another if and only if AB = BA = 0.
- (b) For all square matrices A and B of the same size, it is true that $(A+B)^2 = A^2 + 2AB + B^2$.
- (c) For all square matrices A and B of the same size, it is true that $A^2 - B^2 = (A - B)(A + B).$
- (d) If A and B are invertible matrices of the same size, then AB is invertible and $(AB)^{-1} = A^{-1}B^{-1}$.
- (e) If A and B are matrices such that AB is defined, then it is true that $(AB)^T = A^TB^T$.
- (f) The matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

is invertible if and only if $ad - bc \neq 0$.

- (g) If A and B are matrices of the same size and k is a constant, then $(kA + B)^T = kA^T + B^T$.
- (h) If A is an invertible matrix, then so is A^{T} .
- (i) If $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$ and I is an identity matrix, then $p(I) = a_0 + a_1 + a_2 + \cdots + a_m$.
- (i) A square matrix containing a row or column of zeros cannot be invertible.
- (k) The sum of two invertible matrices of the same size must be invertible.