TALLER DE PROGRAMACIÓN SOBRE GPUS

Facultad de Informática — Universidad Nacional de La Plata

Agenda

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

Agenda

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

GPUs

- Surgen con el fin de liberar a la CPU del proceso de renderizado (a partir de un modelo con determinadas características generar una imagen).
- Actualmente agregan mayor funcionalidad:
 - Mip Mapping
 - Z-Buffering
 - Texturados
 - Antialiasing
 - □ Etc...
- Evolucionan a partir de la industria de videojuegos.

GPUs

- La idea es optimizar el throughput de muchos hilos (threads) ejecutando en paralelo - ocuparlos la mayor parte del tiempo.
- La mayor parte de la arquitectura esta orientada a cómputo.
- Mayor ancho de banda de memoria que CPU (la CPU debe optimizar el ancho de banda de memoria para SO, aplicaciones, E/S):
 - Nvidia 590: 327 GB/s
 - Nvidia Titan V (Volta) 653 GB/s
 - Xeon E7: 102 GB/s

GPU: Arquitecturas

- Dos empresas lideran el mercado de GPUs:
 - Nvidia:
 - GPU serie Geforce para gráficos de escritorio
 - GPU serie Tesla y Quadro para HPC

- AMD (ex ATI Tecnologies):
 - GPU Radeon, Evergreen, Northern Island, Southern Island para gráficos de escritorio
 - GPU Flipper, Xenos, Hollywood para consolas
 - GPU serie Fire para HPC

Agenda

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

- 8
- Primeras GPU Pipeline Gráfico:
 - Recibe una imagen 3D y da como resultado una imagen 2D
 - 4 etapas ejecutadas en paralelo

- Realizado por hardware y con recursos dedicados
 - En CPU debe hacerse por software y todos los recursos para un estado.
- Limitados en el tamaño del problema y en operaciones complejas (sombras e iluminación)

GPUs: Evolución

- Primeras GPU Modelo shader (Geforce 6 y 7):
 - Soluciona las limitaciones con procesadores dedicados y programables:
 - Shader de Vértices (geometría)
 - Shader de Fragmentos (pixeles)

- Problema de desbalance de carga entre procesadores:
 - Aplicaciones con mucha carga geométrica ocupa procesador de vértices desaprovechando del procesador de fragmentos (ociosos)

GPUs: Evolución

- Modelos anteriores de arquitectura fija:
 - Hardware dedicado a cada función
 - Subutilización de procesadores
- Arquitecturas unificadas (a partir de Nvidia G80 ATI R500):
 - Elimina la división de shader de vértices y fragmentos
 - Cada unidad de procesamiento puede realizar las dos funciones
 - Las unidades de procesamiento se llaman Stream Processors (SM)
 - Se eliminan las partes específicas del pipeline
 - Una unidad de procesamiento puede realizar todas las operaciones según la exigencia
 - Soluciona el problema de desequilibrio de carga (Autoequilibrio de carga)

Agenda

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

G80	GT200	Fermi	Kepler	Maxwell	Pascal	Volta	Turing	
2006	2008	2010	2012	2014	2016	2017	2018	

- Arquitectura G80:
 - Reemplaza los pipelines por un procesador unificado
 - Introduce un procesador escalar (SP) de threads
 - Presenta el modelo STMD
 - Introduce la memoria compartida y la sincronización por barreras entre threads
 - Soporte en lenguaje C

G80	GT200	Fermi	Kepler	Maxwell	Pascal	Volta	Turing
2006	2008	2010	2012	2014	2016	2017	2018

- Arquitectura G80:
 - Arreglo de procesadores de streaming (SPA)
 - 8 Unidades de procesamiento independientes
 - Texture/Processor Cluster (TPC)
 - Compute work distribution:
 - Distribuye threads a TPC
 - Sistema de memoria:
 - Memoria Global (DRAM)
 - Procesadores Raster de función fija (ROP)
 - Acceso mediante una red de interconexión
 - Acceden todos los TPC

- Arquitectura G80:
 - Cada TPC:
 - Cache L1
 - Unidades de acceso a texturas
 - Array de Stream Processors (SM):
 - 2 por TPC
 - Planificador de threads

- Arquitectura G80:
 - Cada SM:
 - 8 Scalar Processors (**SP**)
 - Cache de instrucciones (I cache) compartida por los SP
 - Cache de solo lectura (C cache) compartida por los SP
 - 2 Unidades de funciones especiales (SFU)
 - Sqrt, Sin, Cos, Log etc
 - Si las SFU están ocupadas el planificador ejecuta otras sentencias
 - Unidad MT que envía instrucciones a los SP y SFU
 - Memoria compartida (shared memory) por los SP

- Arquitectura G80:
 - Cada SP:
 - Operaciones matemáticas
 - Unidad de punto flotante (FPU)
 - Unidad de punto fijo (INT-U)
 - Movimientos de datos hacia y desde la memoria

Si comparamos un SP con una arquitectura CPU Intel Sandy Bridge...

SP Archivo de Registro Multi-Banco Move comp

- Arquitectura GT200 (Geforce, Quadro y Tesla):
 - Incremento en el número de SPs
 - Mayor capacidad en los registros
 - Hardware adicional para acceso eficiente a memoria (Coalescencia)
 - Soporte para punto flotante en doble precisión
 - Soporte para mayor número de thread.
 - Memoria compartida de mayor tamaño (64Kb) y configurable:
 - 16KB de memoria compartida y 48KB de cache L1
 - 48KB de memoria compartida y 16KB de cache L1

G80	GT200	Fermi	Kepler	Maxwell	Pascal	Volta	Turing
2006	2008	2010	2012	2014	2016	2017	2018

- Arquitectura GF100 (Fermi):
 - Reemplaza TPC por Graphics Processing Clusters (GPC)
 - Hasta 4 GPC (dependiente del modelo)
 - Los SMs comparten una cache de nivel 2
 - 6 controladores de memoria

G80	GT200	Fermi	Kepler	Maxwell	Pascal	Volta	Turing	
2006	2008	2010	2012	2014	2016	2017	2018	

- Arquitectura GF100 (Fermi):
 - □ GPC:
 - Raster engine
 - Hasta 4 SMs

- Arquitectura GF100 (Fermi):
 - Cada SM tiene 32 SPs (2 bloques de 16 SPs)
 - Los SMs comparten una cache de nivel 2 (768KB)
 - Unidades de Load/Store:
 - Escriben o leen direcciones de 16 threads por ciclo en cache o en DRAM
 - Incremento en el número de SFUs
 - Hilos administrados en warps (32 hilos):
 - 2 scheduler de warps (permite ejecutar 2 warp concurrentemente no en 64 bits)
 - 2 dispatchers de instrucciones

- Arquitectura GF100 (Fermi):
 - Cada SP:
 - Una unidad de punto flotante (FPU), soporta simple y doble precisión
 - Una unidad aritmético lógica (ALU), soporta nuevas operaciones:
 - Shift
 - Bit-inversion
 - Compare
 - Convert
 - Etc...

- Arquitectura GF100 (Fermi):
 - Planificador Administrador de threads:
 - La CPU envía comandos a la GPU que recibe la unidad GigaThread
 - La unidad GigaThread envía bloques de threads a varios SMs
 - Cada SM administra los bloques en warps (32 threads)
 - El planificador dual de warps selecciona 2 warps y da una instrucción de cada warp a 16SPs, 16 unidades Load/Store o 4 SFU
 - La mayoría de las instrucciones pueden ser lanzadas dual:
 - Se pueden lanzar 2 operaciones enteras, Load/Store y SFU en concurrente
 - Las instrucciones de doble precisión no pueden ser lanzadas concurrentemente
 - Multithreading por hardware: cambios de contextos por hardware nativo.

- Arquitectura GK110 (Kepler):
 - SM renombrado a SMX:
 - 192 CUDA cores (SPs)
 - 32 Special Function Units (SFU)
 - 32 Load/Store units (LD/ST)
 - 4 warp scheduler
 - Anidamiento de kernel sin interacción con la CPU
 - Creación dinámica de threads sin interacción con la CPU
 - Kernels pueden crear otros kernels
 - Hyper-Q: permite conexiones entre cuda streams y procesos MPI

G80	GT200	Fermi	Kepler	Maxwell	Pascal	Volta	Turing
2006	2008	2010	2012	2014	2016	2017	2018

- Arquitectura GK110 (Kepler) :
 - Hasta 8 SMX (1536 SPs)
 - Hasta 2,08 Gflops
 - Modelo 690 2x8 SMX (3072 SPs)
 - Hasta 2 x 2,08 Gflops
 - Hasta 6 Gb de Memoria GDDR5
 - Entre 4 y 18 Gflops/Watt
 - GPU Boost (análogo turboboost)

Arquitectura GK110 (Kepler):

- Arquitectura GM107 (Maxwell):
 - Reordenamiento de los cores para mejoras en cuanto al ahorro de energía:
 - 60Watts contra 250Watts de la GTX 480
 - 30GFlops/Watt contra 15GFlop/Watts de las anteriores
 - SMX renombrado a SMM.
 - Cada SMM dividido en 4 Control Logic, cada Control Logic:
 - 32 CUDA cores (SPs)
 - 8 Special Function Units (SFU)
 - 8 Load/Store units (LD/ST)
 - 4 warp scheduler
 - Se integra con CPUs ARM (Karma)
 - Incremento de caché L2 Reducción de las necesidades de ancho de banda

G80	GT200	Fermi	Kepler	Maxwell	Pascal	Volta	Turing
2006	2008	2010	2012	2014	2016	2017	2018

Arquitectura GM107 (Maxwell):

- Arquitectura GP100 (Pascal):
 - Memoria HBM2 (High Bandwidth Memory): Sólo algunos modelos
 - 3D Stacked Memory (2,5D): La memoria permite ser "Apilada" alcanzando velocidades de 720GB/s

G80	GT200	Fermi			Pascal		Turing
2006	2008	2010	2012	2014	2016	2017	2018

- Arquitectura GP100 (Pascal):
 - Memoria Unificada:

- Arquitectura GP100 (Pascal):
 - Nvlink (NVidia NVLINK high-speed interconect):
 - Interconexión con alto ancho de banda y eficiente energéticamente para comunicación ultra-rápida entre la CPU y la GPU
 - De 5 a 12 veces más rápido que interconexiones PCle Gen3

- Arquitectura GP100 (Pascal):
 - Mejoras en cálculo de doble precisión
 - Mixed-Precision: método que usa diferente precisión en un cálculo
 - Uso típico: mezcla de operaciones de simple y doble precisión
 - Ejemplo: double(a) + double(float(b) + float(c))
 - Limitaciones anteriores con doble precisión
 - Doble precisión no soportada hasta GT200
 - A partir de Fermi pero con bajo rendimiento

- □ SM:
 - Mayor número de SMs:
 - 60 (activos 56).
 - Menos SPs (Cuda cores) por SM:
 - **6**4
 - Por SM, mayor porción de:
 - Memoria compartida
 - Registros

Total cores

56 * 64 = 3584

GPUs: Evolución NVidia

- Arquitectura GV100 400 (Volta):
 - NVLink 2.0: Actualización del bus NVLink. Velocidades mayores al PCI Express (300GB/s).
 - HBM2: Mejora en la tecnología de la memoria (anchos de banda hasta 900GB/s)
 - Tensor cores: elementos de cómputo diseñados para multiplicar matrices FP16 de 4x4, y permiten también la acumulación de una tercera matrix FP16 o FP32 (Formato en coma flotante de simple precisión). Introducidos para acelerar el entrenamiento de redes neuronales (Deep learning).

G80	GT200	Fermi	Kepler	Maxwell		Volta	_
2006	2008	2010	2012	2014	2016	2017	2018

GPUs: Evolución NVidia

- □ Nvidia **RTX** (Turing) (septiembre de 2018)
- RTX 2080 TI

□ **Sps:** 4352

□ **SM**: 32

□ Clock: 1.3Ghz boostclock1.5Ghz/1.6Ghz

■ Memoria GDDR6: 11GB

G80	GT200	Fermi	Kepler	Maxwell	Pascal	Volta	Turing
2006	2008	2010	2012	2014	2016	2017	2018

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

GPUs: Evolución ATI

- ATI fundada en 1985 y comprada por AMD en 2006:
 - 1987: tarjetas graficas EGA Wonder y VESA Wonder
 - 1989: ayuda en el standard VESA
 - □ 1991 1994: Aceleradoras gráficas Mach8, Mach32, Mach64
 - 1996 1998: Linea aceleradores 3D Rage, Rage II, Rage Pro, Rage 128 GL
 - 1999 : Rage Movility (Primera tarjeta para portátiles), Rage 128 Pro
 - □ 2000 : Chip R100 inicio de la linea Radeon
 - 2001 2003: R200 y R300, procesadores para consolas (Xbox 360 y Wii)
 - 2004: R400 y R480 sobre PClexpress
 - 2005: R500 primera en usar shaders unificados

GPUs: Evolución ATI

- 2006: Comprada por AMD
- 2007: Revision RV670 del chip R600
- 2008: RV770 competencia de Nvidia Geforce 8800
- 2009: RV800 y RV870 gran éxito por el retraso de la arquitectura Nvidia Fermi

 Actualidad: Tecnologia ATI STREAM: tecnologias hardware y software que permiten que la CPU y la GPU trabajen en conjunto en programación de proposito general

- Tres niveles de procesamiento (uno más que Nvidia):
 - Posee varias Computing Units (CU) o SIMD Engines
 - Cada computing unit contiene varios Stream Cores (SC)
 - Cada Stream Core posee 5 Processing Elements (PE)
- Cada arquitectura tiene diferentes cantidades de CU y de SCs por CU.

Computing Units (CU) o SIMD Engines.

Stream Cores (SC) y Processing Elements (PE).

- 4 PE puede realizar operaciones:
 - Escalares
 - Punto Flotante
- El 5to PE realiza operaciones especiales (sin, cos, log, etc).
- Las operaciones de punto flotante requieren 2 o mas PE.
- Las operaciones en doble precision necesitan 4 PE.

Planificador:

- Diferentes cargas de trabajo son asignadas a las diferentes SIMD Engines
- Cada work item (o hilo) es asignado a los SC
- Se asignan hasta 4 work items por SC
- En una arquitectura con 16 SC por SIMD Engine, 64 works items son ejecutados juntos
- El grupo de 64 works items ejecutados juntos se los llama workfronts
- El numero de work items deberia ser multiplo de workfronts

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

GPU: Arquitecturas Manycore

- A partir del concepto de GPGPU se conoce a las GPUs como arquitecturas Manycore.
- Además de Nvidia y ATI-AMD surgen otras arquitecturas Manycore que no son placas gráficas:
 - Intel Xeon PHI
 - Pezy-SC (Japón)
 - Sistema Sunway TaihuLight (China)

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

Intel Xeon Phi

- Intel Many Integrated Core Architecture (MIC), en el mercado Xeon Phi:
 - Coprocesador basado en X86
 - No es una GPU pero se basa en el concepto de GPGPU
 - Más fácil de programar y compilar que en una GPU
 - (100% compatible X86 y X86_64)
 - Menos procesadores que las GPU pero rendimiento similar
 - Uso de herramientas existentes: OpenMP, Cilk, OpenCl etc.
 - Multithreading por hardware

Intel Xeon Phi: 1ra Generación

- Cores in-order 4 threads
- Cache L2 por core
- Anillo bidireccional
- 2010 Modelo Knights Ferry (PCle):
 - 32 cores, 1.2Ghz, 2GB DDR5
- 2011 Modelo Knights Corner (PCle):
 - Basado en pentium P54C
 - 60 cores, 1.2Ghz, 6-16 GB DDR5

Intel Xeon Phi: 1ra Generación

- Vector Processing Unit.
- Novel 512-bit SIMD instruction set.
- Por ciclo: 16 operaciones simple precicion (SP) u 8 en doble (DP).
- Soporta instrucciones Fused
 Multiply-Add (FMA) 32 SP o 16
 DP de punto flotante por ciclo.

Intel Xeon Phi: 2da Generación

Knights Landing Overview

- 2013 Modelo Knights Landing:
 - PCle Processor Host
 - Basado en el procesador Atom
 - 64 o 72 cores, 1.3–1.5 Ghz, MCDRAM
 - 256 a 278 hilos (Multithreading por hardware)

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

Pezy-SC

Pertenece a una corporacion Japonesa.

(http://pezy.co.jp/en/products/pezy-sc.html)

Pezy-SC

- Primera generación (2012):
 - □ PEZY-1 processor:
 - □ 512 cores
 - □ 666Mhz

- PEZY-1 Quad PCI Board:
 - \Box PEZY-1 x 4 = 2048 cores

- □ Segunda generación (2014):
 - PEZY-SC processor:
 - 1024 cores
 - □ 733Mhz

- PEZY-SC Quad PCI Board:
 - PEZY-SC x 4 = 4096 cores

DDR3/4

64bit, 2,400MHz (19.2GB/s)

DDR3/4

64bit, 2,400MHz (19,2GB/s)

DDR3/4

64bit, 2,400MHz (19,2GB/s)

DDR3/4

64bit, 2,400MHz (19.2GB/s)

Pezy-SC

- PEZY tercera generación (2017):
 - PEZY-SC2 processor:
 - 2048 cores
 - □ 1Ghz

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

Sistema Sunway TaihuLight

Mega sistema compuesto por 10649600 cores organizados en grupos de multi procesadores.

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

Arquitecturas paralelas - Evolución

Existen dos rankings, que se elaboran en junio y noviembre de cada año, que evalúan distintos aspectos de las arquitecturas paralelas:

Top 500: proyecto que elabora un ranking de las computadores más rápidas. Utiliza como unidad de medida el Gflops.

Green 500: proyecto que elabora un ranking basado en el Top 500 pero considerando la eficiencia energética. Utiliza como unidad de medida el GFlop por Watt.

GPU: Entre los puestos en TOP 500

	AMD-ATI	NVIDIA	XEON PHI	Pezy-SC	Sunway
Nov 2009	5° Cluster Radeon	-	-	-	-
Jun 2010	-	2°	-	-	-
Nov 2010	-	1°	-	-	-
2011-2012	-	Primeros 10	-	-	-
Nov 2012	-	1° Kepler	7°	-	-
Jun 2013	-	2° Kepler	1° y 6°	-	
2015-2017	No	2° - 6° Pascal y Kepler	1° y 8°	69°	1°
Jun 2019	No	1°-2°, 8° y 10° Volta, 6° Pascal	7°	No	3°

GPU: Entre los puestos GREEN 500

	AMD-ATI	NVIDIA	XEON PHI	Pezy-SC	Sunway
Nov 2009	8° Cluster	-	-	-	-
Jun 2010	-	4° y 8°	-	-	-
2010 - 2011	Primeros 10	Primeros 10	-	-	-
Nov 2012	2° FirePro	3° y 4° Kepler	1°	-	-
Jun 2013	4° FirePro	1° y 2° Kepler	3°	-	-
Nov 2014	1ª FirePro	3° al 10° Kepler	19°	2°	-
Jun 2016	4°	5°-10° Kepler	44°	1° y 2°	-
Jun 2017	42°	1°-6° y 8°-10° Pascal	18°	7°	-
Nov 2017	No	3°, 6°-10° Volta	18°	1° y 3°	20°
Jun 2019	No	1°-4°, 6°, 7°, 9°-10° Volta – 5° Pascal	29°	No	25°

- I. Arquitectura GPU: Introducción
- II. GPUs de arquitectura fija y evolución hacia arquitecturas unificadas
- III. Arquitecturas Nvidia y su evolución
- IV. Arquitecturas ATI-AMD
- V. Otras arquitecturas Manycore
 - I. Intel Xeon PHI
 - II. Pezy-SC
 - III. Systema Sunway
- VI. Rankings
- VII. GPUs provistas por la cátedra

Arquitecturas disponibles en la sala

- □ GPU: Nvidia Geforce 560TI (Fermi):
 - Arquitectura Fermi GF114
 - 8 SMs
 - 48 SPs por SM (32 por SM mas 16 SP de spare)
 - Total 384 cores
 - 1Gb de RAM GDDR5

Arquitecturas disponibles en la sala

- □ GPU: Nvidia Geforce 960 (Maxwell):
 - Arquitectura Maxwell GM206-300
 - 8 SMMs x 4 Control Logic
 - Cada control Logic 32 SPs (128SPs por SMM)
 - Total 1024 cores
 - 2Gb de RAM GDDR5

Arquitecturas disponibles en la sala

- □ Cada GPU conectada por PCI-Express a un Host Intel i5 2300:
 - 4 cores fisicos
 - 8Gb de RAM

Hosts forman un cluster de GPU conectado a 1Gbit Ethernet.