REZA KALANTAR, PhD

San José, CA | (650) 400-9102 | rekalantar@gmail.com | U.S. Green Card holder (NIW) linkedin.com/in/reza-kalantar | https://rekalantar.github.io | medium.com/@rekalantar

OBJECTIVE

Machine Learning Researcher with 5+ years of experience in deep learning, computer vision, and medical AI. Delivered innovative models for multi-modal image registration, synthesis and segmentation, achieving up to 10x performance improvements for registration. Published 7+ peer-reviewed papers, built and deployed real-world AI models with measurable clinical impact.

SKILLS

- Languages: Python, C++, MATLAB, Swift, SQL
- Machine Learning Libraries: PyTorch, TensorFlow, Keras, Scikit-learn, Monai, Hugging Face Transformers
- DevOps & MLOps Tools: Docker, MLFlow, DVC
- Cloud Platforms: Azure, AWS
- Data Analysis and Visualization: Pandas, NumPy, Matplotlib, Seaborn

WORK EXPERIENCE

MVision AI

Machine Learning Researcher

London, United Kingdom Dec 2023 - Present

- **Developed and optimized AI algorithms** for image segmentation and registration across multi-modal datasets, achieving a **10x speedup** without performance degradation using supervised and unsupervised models
- Led the end-to-end development of an AI pipeline for medical image segmentation and registration, deploying models via Docker and Azure, which facilitated real-time cloud inference in clinical settings
- Collaborated with cross-functional teams including clinicians, product managers, physicists, and engineers to scale the product for deployment in real clinical environments, ensuring compliance with medical standards
- My developments directly contributed to **the launch of a new product line** focused on medical image registration, expanding the company's offerings in the healthcare sector

EDUCATION

The Institute of Cancer Research, London, United Kingdom PhD in Deep Learning for Medical Image Analysis

Oct 2019 – Oct 2023

- Led research on generative image synthesis, segmentation for treatment planning and quantitative image analysis using state-of-the-art AI algorithms for pelvic cancers
- Published 7 peer-reviewed articles, the highest among PhD peers during the program
- Presented research at 5+ international AI conferences to technical and clinical audiences
- Collaborated with clinicians, physicists and engineers to develop and validate AI tools for potential deployment in real-world treatment workflows

PERSONAL PROJECTS

End-to-end multi-task AI product for Inter- & cross-modality image registration

Dec 2023 – Present

- Led the design and development of a scalable AI pipeline for medical image registration, integrating unsupervised transformers (TransMorph) and adaptive segmentation models to enhance registration speed and accuracy
- Achieved 10x speedup over clinical baseline methods with >90% success rate in challenging registration cases, deploying the models on the cloud for real-time clinical applications
- Collaborated with ML engineers, clinicians and product management teams to ensure **clinical compliance**, **implement docker-based deployment** and facilitate integration with existing company interfaces
- Contributed to the company-wide internal codebase by development of new AI tools and documentations, streamlining onboarding and cross-team developments

Adaptive AI image synthesis-segmentation framework for treatment planning

Mar 2020 - Dec 2020

- **Developed** a modular AI pipeline for medical image synthesis and adaptive segmentation, integrating GANs, diffusion models, transformers and novel encoder-decoder architectures
- Authored the first publication on AI-driven adaptive synthetic-image assisted segmentation framework for MR-Linac systems, leading to an oral presentation at the largest radiation oncology conference (ASTRO) in San Diego
- This research resulted in **5 peer-reviewed publications** and presentations at various international conferences, contributing significantly to AI algorithms for pelvic cancer treatment
- Collaborated with expert clinicians to evaluate the AI pipeline, achieving ~99% acceptance rate for generated adapted results in real-world treatment scenarios

Development of AI COVID-19 detector and iOS application

Mar 2020 – Dec 2020

- Developed a CNN classifier using non-curated open-source chest X-ray datasets and large-scale transfer learning, achieving >95% accuracy in detecting COVID-19 pneumonia
- Built an iOS app integrating the trained deep learning model, enhancing accessibility for non-technical users and earning recognition from research institutes in the UK, Italy and Canada
- Co-authored a peer-reviewed paper detailing the findings, contributing to open-source COVID-19 research which resulted in **over 200 citations**

PUBLICATIONS

Domain-Adaptive and Per-Fraction Guided Deep Learning Framework for MRI-Based Segmentation of Organs at Risk in Gynecologic Cancers Advances in Radiation Oncology	Apr 2025
MED-INPAINT: Medical Image Synthesis using Multi-Level Conditional Inpainting with a Denoising Diffusion Probabilistic Model and Adaptive Contrast Priors <i>IEEE MedAI</i>	Nov 2023
Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced Segmentation of Cervical Cancer on MRI <i>Diagnostics</i>	Nov 2023
Non-Contrast CT Synthesis Using Patch-Based Cycle-Consistent Generative Adversarial Network (Cycle-GAN) for Radiomics and Deep Learning in the Era of COVID-19 Nature Scientific Reports	June 2023
Automatic Segmentation of Pelvic Cancers Using Deep Learning Diagnostics	Oct 2021
CT-Based T1-Weighted MR Image Synthesis Using UNet, UNet++ and Cycle-GAN <i>Diagnostics</i>	July 2021
Deep Learning COVID-19 Detection Bias: Accuracy Through AI International Orthopedics	Aug 2020

AWARDS & SCHOLARSHIPS

Awarded prestigious PhD studentship (~£140,000) by the Institute of Cancer Research (ICR) and the Royal Marsden Hospital (RMH) Funded by the National Institute of Health and Care Research (NIHR) Biomedical Research Centre	Oct 2019
Awarded the best poster for MRes project at the Hamlyn Symposium on Medical Robotics Received from Lord Ara Darzi & Professor Guang-Zhong Yang	Sep 2019
Received £12,000 postgraduate scholarship from Imperial College London Hamlyn Centre for Robotics Surgery	Sep 2018