Birla Institute of Technology & Science, Pilani Work-Integrated Learning Programmes Division Second Semester 2018-2019

Mid-Semester Test (EC-2 Makeup)

Course No. : IS ZC464

Course Title : MACHINE LEARNING

Nature of Exam : Closed Book

Weightage : 30% Duration : 2 Hours

Date of Exam : 24/03/2019 (FN)

No. of Pages = 1 No. of Questions = 4

Note:

1. Please follow all the *Instructions to Candidates* given on the cover page of the answer book.

2. All parts of a question should be answered consecutively. Each answer should start from a fresh page.

3. Assumptions made if any, should be stated clearly at the beginning of your answer.

Q.1. Answer the following questions

 $[3 \times 3 = 9]$

(a) What is Pearson Correlation Coefficient? Explain.

- (b) What do you understand by the remainder(A) for an attribute A in decision tree learning? Give an appropriate expression to compute the remainder(A) using feasible notations for training data.
- (c) Explain Receiver Operating characteristic (ROC) curve and its significance in machine learning.
- Q.2. Answer the following questions

 $[2 \times 3 = 6]$

- (a) What is the significance of a decision boundary in classification? Illustrate using an example.
- (b) What is weighted K-nearest neighbor classification? Illustrate using an example.
- (c) What do you understand by the dimensionality reduction. Illustrate using an example.
- Q.3. Consider the training data consisting of 10 2-D feature vectors belonging to two classes A and B. The data belonging to class A is <3,2>, <4,3>, <3,5>, <2,4>, <2.5, 3.5>, <3.5, <4 and the data belonging to class B is <2.5, 2>, <3.5, 2.5>, <4,1>, <4,2>. Answer the following questions
 - (a) Is the data linearly separable? Explain why.
 - (b) Classify the testing point <3,2> using k-Nearest Neighbor classifier with k=3. Show all steps of computation.
 - (c) Classify the testing point <2.5, 3> using *distance weighted* k-Nearest Neighbor classifier with k=5. Explain all steps of computation.
- Q.4. Consider the following training data with variables X1, X2 and X3 and the target class Y as described in the following table. Use Naive Bayes' classifier to classify whether a person who sleeps moderately between 6 to 8 hours, exercises 3 days a week but is not able to take good nutritional food, is healthy or not. Explain all steps of computation. [6]

Sleep (X1)			Nutrition (X2)			Exercise (X3)			Healthy (Y)	
	yes	no		yes	no		yes	no	yes	no
Less than 4 hours (L)	4	6	Poor nutrition (P)	10	6	Once in a week (W1)	6	7	26	14
Moderate between 6 to 8 hours (M)	10	3	Good nutrition (G)	16	8	3 days a week (W3)	9	4		
Excess more than 9 hours (E)	12	5				6 days in a week (W6)	11	3		
