Nondeterministic Finite Automata (NFA)

Dr. Mohammed Moshiul Hoque CSE, CUET

Nondeterminism

- A nondeterministic finite automaton has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.

DFA vs. NFA

- DFA: δ returns a single state
- Every state of a DFA always has exactly one exiting transition arrow for each symbol in the alphabet
- Labels on the transition arrows are symbols from the alphabet

- \bullet NFA: δ returns a set of states
- Violets that rule
- In an NFA a state may have zero, one or many exiting arrows for each alphabet symbol
- ◆ NFA has an arrow with label ∈
- NFA may have arrows labeled with members of alphabet/∈.
- ◆ Zero, one, or many arrows may exit from each state with label ∈

DFA vs. NFA

Nondeterminism – (2)

- Start in one start state.
- Accept if any sequence of choices leads to a final state.
- Intuitively: the NFA always "guesses right."

Example: Moves on a Chessboard

- States = squares.
- ◆Inputs = r (move to an adjacent red square) and b (move to an adjacent black square).
- Start state, final state are in opposite corners.

Example: Chessboard – (2)

1	2	3
4	5	6
7	8	9

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

Accept, since final state reached

Formal NFA

 \diamond A NFA is a 5-tuple, A = $(Q, \Sigma, \delta, q_0, F)$

- A finite set of states, typically Q.
- An input alphabet, typically Σ.
- \bullet A transition function, typically δ .
- \bullet A start state in Q, typically q_0 .
- lack A set of final states $F \subseteq Q$.

Transition Function of an NFA

- The transition function is a function that takes a state in Q & an input symbol in Σ as arguments & returns a subset of Q.
- $\bullet \delta(q, a)$ is a set of states.
- Extend to strings as follows:
- \bullet Basis: $\delta(q, \epsilon) = \{q\}$
- Induction: $\delta(q, wa) = \text{the union over}$ all states p in $\delta(q, w)$ of $\delta(p, a)$

An NFA accepting all strings that end in 01

Input: **00101**

◆Let A be the language consisting of all strings over {0,1} containing a 1 in the third position from the end (000100 is in A but 0011 is not).

◆NFA that has an input alphabet {0} consisting of a single symbol. It accepts all strings of the form 0^k where k is a multiple of 2 or 3 (accept: ∈, 00, 0000, 000000 but not 0, 00000)

Accept: ∈, a, baba, baa

Reject: b, bb, babba

Transition Table

NFA A= $(\{q_0,q_1,q_2\},\{0,1\}, \delta,q_0,\{q_2\})$

Transition Table

Accept all strings that contains either101 or 11 as a substring (010110)

1.
$$Q = \{q_1, q_2, q_3, q_4\}$$

2. $\Sigma = \{0, 1\}$

3. δ

	0	1	€
$\rightarrow q_1$	$\{q_1\}$	$\{q_1, q_2\}$	Ø
q_2	$\{q_3\}$	Ø	{ q ₃ }
\mathbf{q}_3	Ø	$\{q_4\}$	Ø
*q ₄	$\{q_4\}$	$\{q_4\}$	Ø

4. Start state: q₁

5.
$$F = \{q_4\}$$

Language of an NFA

- \bullet A string w is accepted by an NFA if $\delta(q_0, w)$ contains at least one final state.
- The language of the NFA is the set of strings it accepts.

Example: Language of an NFA

1	2	3
4	5	6
7	8	9

- For our chessboard NFA we saw that rbb is accepted.
- ◆ If the input consists of only b's, the set of accessible states alternates between {5} and {1,3,7,9}, so only even-length, nonempty strings of b's are accepted.
- What about strings with at least one r?

Equivalence of DFA's, NFA's

- A DFA can be turned into an NFA that accepts the same language.
- •If $\delta_D(q, a) = p$, let the NFA have $\delta_N(q, a) = \{p\}$.
- ◆Then the NFA is always in a set containing exactly one state – the state the DFA is in after reading the same input.
- Worst case: DFA-2ⁿ states
 NFA- n states.

Equivalence – (2)

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- Proof is the subset construction.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.

Subset Construction

- Given an NFA with states Q, inputs Σ, transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States 2^Q (Set of subsets of Q).
 - Inputs Σ.
 - Start state {q₀}.
 - Final states = all those with a member of F.

Subset Construction

- Given, NFA: $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$
- Goal: DFA, D = $(Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$
- \bullet L(D) = L(N)

States

- $\square Q_D$ is the set of subsets of Q_N
- Q_D is the power set of Q_N
- If Q_N has n states, Q_D will have 2ⁿ states
- □Inaccessible states can be thrown away, so effectively, the number of states D << 2ⁿ

Subset construction

Final States

 $igoplus_D$ is the set of subsets S of Q_N such that $S \cap F_N \neq \emptyset$. That is F_D is all sets of N's states that include at least one accepting state of N.

Transition Function

 \bullet The transition function δ_D is defined by:

$$\delta_D(\{q_1,...,q_k\}, a)$$
 is the union over all $i = 1,...,k$ of $\delta_N(q_i, a)$.

Critical Point

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset Construction: Example 1

Example: We'll construct the DFA equivalent of our "chessboard" NFA.

1	2	3
4	5	6
7	8	9

		r	b
-	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ {1} {2,4} {5}	{2,4}	{5}

Alert: What we're doing here is the *lazy* form of DFA construction, where we only construct a state if we are forced to.

25

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
\longrightarrow {1}	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}		
{2,4,6,8}		
{1,3,5,7}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

		r	b
	→ {1}	{2,4}	{5}
	{2,4}	{2,4,6,8}	{1,3,5,7}
	{5 }	{2,4,6,8}	{1,3,7,9}
	{2,4,6,8}		
	{1,3,5,7}		
*	{1,3,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
$\longrightarrow \{1\}$	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}		
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
$\longrightarrow \{1\}$	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}		
* {1,3,5,7,9}		

		r	b
	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
$\longrightarrow \{1\}$	{2,4}	{5 }
{2,4}	{2,4,6,8}	{1,3,5,7}
{5 }	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5}
* {1,3,5,7,9}		

		r	b
→	1	2,4	5
	2	4,6	1,3,5
	3	2,6	5
	4	2,8	1,5,7
	5	2,4,6,8	1,3,7,9
	6	2,8	3,5,9
	7	4,8	5
	8	4,6	5,7,9
*	9	6,8	5

	r	b
→ [1]	{2,4}	{5}
{2,4}	{2,4,6,8}	{1,3,5,7}
{5}	{2,4,6,8}	{1,3,7,9}
{2,4,6,8}	{2,4,6,8}	{1,3,5,7,9}
{1,3,5,7}	{2,4,6,8}	{1,3,5,7,9}
* {1,3,7,9}	{2,4,6,8}	{5 }
* {1,3,5,7,9}	{2,4,6,8}	{1,3,5,7,9}

	0	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	${q_0,q_1}$	{q _o }
{q₁}	Ø	{q ₂ }
*{q ₂ }	Ø	Ø
${q_0, q_1}$	${q_0,q_1}$	$\{q_0,q_2\}$
*{q ₀ ,q ₂ }	${q_0,q_1}$	$\{q_0\}$
*{q ₁ ,q ₂ }	Ø	{q ₂ }
*{q ₀ ,q ₁ ,q ₂ }	$\{q_0,q_1\}$	$\{q_0,q_2\}$

- NFA N Accepts all strings that end in 01
- \bullet N's set of states: {q₁, q₂, q₃} =03
- ◆Subset construction:
 DFA need 2³ = 8
 states
- Assign new names: A for \emptyset , B for $\{q_0\}$

	0	1
A	A	A
\rightarrow B	E	В
C	A	D
*D	A	A
E	E	F
*F	E	В
*G	A	D
*H	E	F

	0	1
A	A	A
\rightarrow B	E	В
C	A	D
*D	A	A
E	E	F
*F	E	В
*G	A	D
*H	E	F

•From 08 states, starting in start state B, can only reach states B, E and F other 05 states are inaccessible from B

- N = (Q, {a, b}, δ , 1, {1})
- \bullet Q = {1, 2, 3} = 03 states
- DFA states = 08
- ♦ {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

	a	b	ε
Ø	Ø	Ø	Ø
{1}	Ø	{2}	{3}
{2}	{2, 3}	{3}	Ø
{3}	{1, 3}	Ø	Ø
{1, 2}	{2, 3}	{2, 3}	Ø
{1, 3}	{1, 3}	{2}	Ø
{2, 3}	{1, 2, 3}	{3}	Ø
{1, 2, 3}	{1, 2, 3}	{2, 3}	Ø

Example 3

Simplified: no arrows point at states {1} & {1, 2} May be removed without affecting the performance

Dead States & DFA's Missing Some Transitions

- ◆ A DFA to have a transition from any state, on any input symbol, to exactly one state.
- Sometimes, it is more convenient to design the DFA to "die" in situations where we know it is impossible for any extension of the input sequence to be accepted.
- ◆ If we use subset construction to convert a NFA to a DFA, the automation looks almost the same, but it includes a dead state.
- That is, a non-accepting state that goes to itself on every possible input symbol.
- ◆ Dead state: ∅ (empty set of states)

Dead States & DFA's Missing Some Transitions

- ◆ In general, we can add a dead state to any automaton that has no more than one transition for any state & input symbol.
- Then add a transition to the dead state from each other state q, on all input symbols for which q has no other transition.
- The result will be a DFA in the strict sense
- Thus, we shall sometimes refer to an automaton as a DFA if it has at most one transition out of any state on any symbol, rather than if it has exactly one transition

NFA's With ϵ -Transitions

- ♦ We can allow state-to-state transitions on ∈ input.
- These transitions are done spontaneously, without looking at the input string.
- A convenience at times, but still only regular languages are accepted.
- Useful in proving equivalence: finite automata = regular expressions

Example: Uses of ε-transitions

- ε-NFA that accepts decimal numbers consisting of:
- -an optional +/- sign
- A string of digits
- -Another string of digits. Either this string of digits or the string (2) can be empty, but at least one of the two strings of digits must be nonempty.

An ∈-NFA Accepting decimal numbers

E= (
$$\{q_0, q_1, q_2, q_4, q_5\}, \{., +, -, 0, 1, ..., 9\}, \delta, q_0, \{q_5\}$$
)

	€	+, -		0, 1,, 9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q_3	{q ₅ }	Ø	Ø	$\{q_3\}$
q_4	Ø	Ø	$\{q_3\}$	Ø
$*q_5$	Ø	Ø	Ø	Ø

Example: Uses of ε-transitions

∈-transitions help to recognize keywords: web, ebay

Example: ∈-NFA

Closure of States

- \diamond CL(q) = set of states you can reach from state q following only arcs labeled ϵ .
- ◆Example: CL(A) = {A};
 CL(E) = {B, C, D, E}.

Closure of a set of states = union of the closure of each state.

45

Extended Delta

- \bullet Basis: δ(q, ε) = CL(q).
- Induction: δ(q, xa) is computed as follows:
 - 1. Start with $\delta(q, x) = S$.
 - 2. Take the union of $CL(\delta(p, a))$ for all p in S.
- Intuition: $\delta(q, w)$ is the set of states you can reach from q following a path labeled w.

And notice that $\delta(q, a)$ is *not* that set of states, for symbol a.

Example:

Extended Delta

- \bullet $\delta(A, 0) = CL(\{E\}) = \{B, C, D, E\}.$
- \bullet $\delta(A, 01) = CL(\{C, D\}) = \{C, D\}.$
- Language of an ϵ -NFA is the set of strings w such that $\delta(q_0, w)$ contains a final state.

Equivalence of NFA, ϵ -NFA

- \bullet Every NFA is an ϵ -NFA.
 - It just has no transitions on ϵ .
- Converse requires us to take an ϵ -NFA and construct an NFA that accepts the same language.
- We do so by combining ϵ —transitions with the next transition on a real input.

Warning: This treatment is a bit different from that in the text.

Picture of ε-Transition Removal

Picture of ε-Transition Removal

Picture of ϵ -Transition Removal

Equivalence -(2)

- •Start with an ϵ -NFA with states Q, inputs Σ , start state q_0 , final states F, and transition function δ_E .
- Construct an "ordinary" NFA with states Q, inputs Σ , start state q_0 , final states F', and transition function δ_N .

Equivalence – (3)

- \bullet Compute $\delta_N(q, a)$ as follows:
 - 1. Let S = CL(q).
 - 2. $\delta_N(q, a)$ is the union over all p in S of $\delta_E(p, a)$.
- F' = the set of states q such that CL(q) contains a state of F.
- Intuition: δ_N incorporates ϵ —transitions before using a but not after.

Equivalence – (4)

Prove by induction on |w| that

$$CL(\delta_N(q_0, w)) = \hat{\delta}_E(q_0, w).$$

Thus, the ε-NFA accepts w if and only if the "ordinary" NFA does.

Interesting

closures: CL(B)

 $= \{B,D\}; CL(E)$

€-NFA

 $= \{B,C,D,E\}$

Example: ε-NFAto-NFA

Since closures of B and E include final state D.

Since closure of E includes B and C; which have transitions on 1 to C and D. 55

Summary

- \bullet DFA's, NFA's, and ϵ -NFA's all accept exactly the same set of languages: the regular languages.
- The NFA types are easier to design and may have exponentially fewer states than a DFA.
- But only a DFA can be implemented!