```
[27]: import pandas as pd
from causalinference import CausalModel
import seaborn as sns
import matplotlib.pyplot as plt
```

```
[28]: data_path = './data/Fichier Wake-Up v01..xlsx'
```

0.1 Covariates

```
[29]: # Leaving out "MedHistSmoking" as highly unbalanced, and as to many covars for 

→ samples

covar_fields = ['Age_(calc.)', 'Sex', 'Prestroke_disability_(Rankin)', 

→ 'Discovery_to_groin', 'NIH_on_admission',

'MedHist_Hypertension', 'MedHist_Diabetes', 

→ 'MedHist_Hyperlipidemia',

'MedHist_Atrial_Fibr.', 'wake_up', 'T6', 'CBF']
```

0.2 Outcome variables:

Encode wake-up

any_bleeding 3M_Death MRS01

```
[30]: outcome_var = 'any_bleeding'
```

0.3 Intervention: IVT with rTPA

Retain only relevant variables

```
[31]: intervention_var = 'IVT_with_rtPA'

[32]: data = pd.read_excel(data_path)

data.columns = data.columns.str.replace(' ','_')

# Encode mRS (0 or 1) vs (> 1)
data['MRSO1'] = data['3M_mRS'].isin([0, 1])
```

```
[33]: # Drop NaN (has to be done before one-hot-encoding)
data = data.dropna()
```

data['wake_up'] = data['Time_of_symptom_onset_known'] == "wake up"

data = data[covar_fields + [outcome_var, intervention_var]]

```
[34]: # One-hot encoding for categorical vars
data['Sex'] = data['Sex'] == 'Male'
data['MedHist_Hypertension'] = data['MedHist_Hypertension'] == 'yes'
```

```
data['MedHist_Diabetes'] = data['MedHist_Diabetes'] == 'yes'
data['MedHist_Hyperlipidemia'] = data['MedHist_Hyperlipidemia'] == 'yes'
data['MedHist_Atrial_Fibr.'] = data['MedHist_Atrial_Fibr.'] == 'yes'

data['IVT_with_rtPA'] = data['IVT_with_rtPA'] == 'yes'

if outcome_var != 'MRSO1':
    data[outcome_var] = data[outcome_var] == 'yes'
data = data.astype(float)
```

Defining model with regards to IVT as intervention

```
[35]: intervention = data.IVT_with_rtPA.to_numpy()
  outcome = data[outcome_var].to_numpy()
  covars = data[covar_fields].to_numpy()
```

[36]: causal = CausalModel(outcome, intervention, covars)
print(causal.summary_stats)

Summary Statistics

	Controls	$N_c=17$	Treat	ed (N_t=15)	
Variable	Mean	S.d.	Mean	S.d.	Raw-diff
Y	0.059	0.243	0.133	0.352	0.075
	Controls	s (N_c=17)	Treat	ed (N_t=15)	
Variable	Mean	S.d.	Mean	S.d.	Nor-diff
XO	66.965	20.275	70.809	14.201	0.220
X1	0.529	0.514	0.533	0.516	0.008
X2	0.235	0.562	0.867	1.246	0.653
ХЗ	197.588	51.044	249.467	108.283	0.613
X4	17.235	6.350	14.400	6.345	-0.447
Х5	0.647	0.493	0.733	0.458	0.181
Х6	0.118	0.332	0.200	0.414	0.219
Х7	0.294	0.470	0.267	0.458	-0.059
Х8	0.235	0.437	0.400	0.507	0.348
Х9	0.471	0.514	0.800	0.414	0.705
X10	104.612	55.062	141.500	83.161	0.523
X11	16.576	19.092	14.507	17.701	-0.112

Estimate propensity scores

```
[37]: causal.est_propensity()
  print(causal.propensity)
  print(causal.propensity.keys())
```

Estimated Parameters of Propensity Score

	Coef.	S.e.	z	P> z	[95% Cor	nf. int.]
Intercept	-18.095	11.237	-1.610	0.107	-40.121	3.930
XO	-0.006	0.085	-0.068	0.946	-0.172	0.161
X1	2.389	2.484	0.962	0.336	-2.479	7.257
Х2	4.442	2.954	1.504	0.133	-1.349	10.232
ХЗ	0.056	0.036	1.574	0.115	-0.014	0.126
Х4	-0.091	0.242	-0.376	0.707	-0.566	0.384
Х5	-0.889	2.424	-0.367	0.714	-5.639	3.862
Х6	-9.195	7.628	-1.205	0.228	-24.145	5.755
Х7	-1.406	3.040	-0.462	0.644	-7.364	4.553
Х8	-0.184	2.874	-0.064	0.949	-5.817	5.449
Х9	5.402	2.786	1.939	0.052	-0.058	10.862
X10	0.038	0.028	1.356	0.175	-0.017	0.093
X11	-0.087	0.107	-0.812	0.417	-0.296	0.123

dict_keys(['lin', 'qua', 'coef', 'loglike', 'fitted', 'se'])

Match by propensity scores (nearest-neighbour)

```
[38]: causal.est_via_matching(bias_adj=True)
print(f'Outcome variable: {outcome_var}')
print(causal.estimates)
```

Outcome variable: any_bleeding

Treatment Effect Estimates: Matching

	Est.	S.e.	Z	P> z	[95% Con	f. int.]
ATE	0.133	0.200	0.665	0.506	-0.260	0.526
ATC	0.133	0.205	0.650	0.516	-0.269	0.535
ATT	0.133	0.238	0.559	0.576	-0.334	0.601

/Users/jk1/opt/anaconda3/envs/uw_bridging/lib/python3.8/site-packages/causalinference/estimators/matching.py:100: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.

return np.linalg.lstsq(X, Y)[0][1:] # don't need intercept coef

```
[39]: data['propensity_score'] = causal.propensity['fitted']
```

0.4 Distribution of covariates with respect to treatment and outcome

[40]: []


```
[41]: \# sns.stripplot(x=outcome\_var, y="propensity\_score", hue='IVT\_with\_rtPA', \_ \rightarrow data=data)
```

- [42]: $\# sns.stripplot(x="index", y="propensity_score", hue='IVT_with_rtPA', data=data.$ $\rightarrow reset_index())$
- []: