

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)

[Knowledge is Nectar]

Department of Computer Engineering

Name	Ms Neerja Doshi
UID	2021300029
DIV	BE COMPS [ADV -> BATCH F]`
ADV EXP 5	

AIM	To use Rstudio and do Linear and Logistic Regression on Housing Dataset	
Dataset Particulars	Name: Housing Dataset	
	Link: https://www.kaggle.com/datasets/ictinstitute/utrecht-housing-dataset/data	
	Column Details :	
	 id: a number between 0 and 100000 that is a unique identifier for each house. zipcode: Each house has a zipcode corresponding to the area the house is in. The zipcode can be an indicator of build year or other properties. There are four different zip codes in use: 3520, 3525, 3525, 3800. lot-len: the length in meters of the plot of land the house is built on. Each house is built on a square plot of land. It can be anything from 5.0 to 100.0 meters lot-width: the width in meters of the plot of land the house is built on. It can be anything from 5.0 to 100.0 meters lot-area: the total area of the plot of land the house is built on. You can probably compute this from lot-len and lot-width. house-area. The living area of the house in square meters. 30.0 square meters is a tiny house, 200.0 square meters would be a mansion. garden-size: The size of the garden in square meters. Many people want to have a large garden. balcony: the number of balconies the house has. Common values are 0,1, or 3 balconies x-coor: the x-coordinate describing the location of the house. It is an integer value between 2000 and 3000 y-coor: the y-coordinate describing the location of the house. It is an integer value between 5000 and 6000 	

1) Box Plot to figure out outliers:

2) Making the model:

3) Scatter Plot

4) Scatter Plot with regression Line:

5) Accuracy score of Model:

```
> mse <- mean((my_data$taxvalue - predictions)^2)
> cat("Mean Squared Error:", mse)
Mean Squared Error: 9572780854>
> rmse <- sqrt(mse)
> cat("Root Mean Squared Error:", rmse)
Root Mean Squared Error: 97840.59
> r_squared <- summary(model)$r.squared
> cat("R-squared:", r_squared)
R-squared: 0.6895374
> |
```

Logistic Regression:

1) Problem Statement:

a) To classify weather a house is a monument or not on basis of all relevant features.

2) Solution:

- a) The following columns are selected with the given logic to classify weather a house is a monument or not monument
 - i) **house_area:** Larger houses might be more likely to be monuments.
 - ii) **garden size:** Historic houses often have larger gardens.
 - iii) **buildyear:** Older houses are more likely to be monuments.
 - iv) **balcony:** Historic houses might have unique balcony designs.
 - v) **zipcode:** Certain areas might have more historic houses.

1) Model Making:

```
> set.seed(123)
> trainIndex <- createDataPartition(my_data$monument, p = 0.75, list = FALSE)
> trainData <- my_data[trainIndex, ]
> testData <- my_data[-trainIndex, ]
> model <- glm(monument ~ house.area + garden.size + buildyear + balcony + zipcode, data = train ata, family = "binomial")
> predictions <- predict(model, newdata = testData, type = "response")
> predicted_classes <- ifelse(predictions > 0.5, 1, 0)
```

2) Logistic Regression Plot

3) Confusion Matrix

4) All Classification Matrics:

```
> metrics <- confusionMatrix(confusion_matrix$table)</pre>
> print(metrics)
Confusion Matrix and Statistics
   predicted_classes
  0 49 5
  1 0 46
                 Accuracy: 0.95
                   95% CI : (0.8872, 0.9836)
    No Information Rate : 0.51
    P-Value [Acc > NIR] : < 2e-16
                     Kappa : 0.9002
 Mcnemar's Test P-Value: 0.07364
              Sensitivity: 1.0000
          Specificity: 0.9020
Pos Pred Value: 0.9074
          Neg Pred Value: 1.0000
   Prevalence : 0.4900
Detection Rate : 0.4900
Detection Prevalence : 0.5400
       Balanced Accuracy: 0.9510
```

Conclusion

By performing this experiment I learnt how to use lm and glm libraries of R Studio well along with the syntax of R language.