Métodos Quantitativos Aula 07

Regressão e Predição (Parte 2)

Roberto Massi de Oliveira Alex Borges Vieira

Soma de Matrizes:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 1+1 & 2+2 \\ 3+3 & 4+4 \\ 5+5 & 6+6 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{bmatrix}$$

```
import numpy as np
1 A = ([[1, 2],
2 [3, 4],
3 [5, 6]])
  5 B = ([[1, 2],
 6 [3, 4],
7 [5, 6]])
    C = np.add(A,B)
  11 print(C)
```

• Subtração de matrizes:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} B = \begin{bmatrix} 2 & 1 \\ 8 & 4 \\ 5 & 10 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 1 - 2 & 2 - 1 \\ 3 - 8 & 4 - 4 \\ 5 - 5 & 6 - 10 \end{bmatrix}$$

$$C = \begin{bmatrix} -1 & 1 \\ -5 & 0 \\ 0 & -4 \end{bmatrix}$$

```
import numpy as np
1 A = ([[1, 2],
2 [3, 4],
3 [5, 6]])
         5 B = ([[2, 1],
         6 [8, 4],
7 [5, 10]])
            C = np.subtract(A,B)
        11 print(C)
```

• Multiplicação de matrizes: $A_{m \times n} \times B_{n \times p} = C_{m \times p}$

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

$$A \times B = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 \times 1 + 3 \times 2 & 2 \times 3 + 3 \times 1 & 2 \times 0 + 3 \times 1 \\ 4 \times 1 + 6 \times 2 & 4 \times 3 + 6 \times 1 & 4 \times 0 + 6 \times 1 \end{bmatrix} = \begin{bmatrix} 8 & 9 & 3 \\ 16 & 18 & 6 \end{bmatrix}$$

• Multiplicação de matrizes: $A_{\underline{m} \times n} \times B_{n \times \underline{p}} = C_{\underline{m} \times \underline{p}}$

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

$$A \times B = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 9 & 3 \\ 16 & 18 & 6 \end{bmatrix}$$

```
import numpy as np
a = np.array([[2, 3],
             [4, 6]])
b = np.array([[1, 3, 0],
    [2, 1, 1]])
ab = np.matmul(a,b)
 print(ab)
```

Inversão de matrizes (apenas matrizes quadradas):

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 1 \\ 1 & 2 & 0 \end{bmatrix} \quad \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & 1 & -3/2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 1 \\ 1 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ a+3d+g & b+3e+h & c+3f+i \\ a+2d & b+2e & c+2f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inversão de matrizes (apenas matrizes quadradas):

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 3 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & 1 & -3/2 \end{bmatrix}$$

```
import numpy as np
\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & 1 & -3/2 \end{bmatrix}
\begin{array}{c} 1 & a = \text{np.array}([[1, 0, 0], \\ 2 & [1, 3, 1], \\ 3 & [1, 2, 0]]) \\ 4 & ai = \text{np.linalg.inv(a)} \\ 5 & print(ai) \\ 7 & print(ai) \end{array}
                                                                                                               [-0.5 0. 0.5]
```

• Transposição de matrizes:


```
import numpy as np
a = np.array([[1, 2],
               [3, 4],
               [5,6]])
at = np.transpose(a)
print(at)
```

Revisão: Regressão Linear Simples

- Modela a relação entre duas variáveis
- Sendo essa relação linear, ela é matematicamente expressa por:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- o y é a variável dependente ou variável resposta
- o x é a variável independente, regressora, explicativa ou previsora
- E é o termo de erro. É a flutuação aleatória que ocorre ao tentar explicar a variável y por x.
 Seja por imperfeições do modelo, erros de medida, ou outras variáveis fora de controle.

Revisão: Regressão Linear Simples

Visão Geral: Regressão Linear Simples

Revisão: Regressão Linear Simples

- Usaremos uma amostra $\{(x_1, y_1), \dots, (x_n, y_n)\}$ para estimar os parâmetros do modelo β_0 e β_1
- Métodos de estimação:
 - Mínimos quadrados ordinários (MQO)
 - Máxima verossimilhança (MV)
 - Método os momentos (MM)
 - Melhor estimador não-enviesado (BLUE)
- ullet A seguir, faremos inferências acerca dos parâmetros eta_0 e eta_1
 - o ex.: propriedades dos estimadores, intervalos de confiança, testes de hipótese

Revisão: Regressão Linear Múltipla

Modelo linear:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$$

 Matematicamente, dizemos que as derivadas parciais de y em relação aos coeficientes de regressão não dependem desses coeficientes

$$\frac{\partial y}{\partial \beta_0} = 1; \frac{\partial y}{\partial \beta_1} = x_1; \dots; \frac{\partial y}{\partial \beta_p} = x_p$$

Contra exemplo:

$$y_i = \beta_0 + e^{\beta_2 x_i} + \varepsilon_i$$

Revisão: Tipos de Regressão

• Modelo linear simples:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Modelo linear múltiplo:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$$

Modelo não-linear:

$$y_i = \beta_0 + e^{\beta_2 x_i} + \varepsilon_i$$

Revisão: Objetivos da Regressão

- Previsão: influência das variáveis independentes x na variável resposta y
- Descrição dos dados ou explanação: usar modelos para sumarizar ou descrever dados
- Seleção de variáveis ou triagem: determinar a importância de cada variável independente x na determinação de y. Quanto menor a contribuição de determinada variável, maior a possibilidade de sua exclusão do modelo
- Controle da saída: modelo estimado pode ser usado para controlar a saída y.
 É possível encontrar um modelo ótimo para a variável de saída

 Modelos com mais de uma variável previsora. Mas cada variável previsora tem uma relação linear com a variável de resposta

- Conceitualmente, seria equivalente a fazer um gráfico de uma linha de regressão num espaço n-dimensional
- A resposta y é uma função de k variáveis previsoras X₁,X₂,..., X_k

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_k x_k + e$$

Dada uma amostra com n observações

$$\{(x_{11},x_{21},\cdots,x_{k1},y_{1}),\cdots,(x_{1n},x_{2n},\cdots,x_{kn},y_{n})\}$$
 O modelo consiste de n equações:
$$y_{1}=b_{0}+b_{1}x_{11}+b_{2}x_{21}+\cdots+b_{k}x_{k1}+e_{1}$$

$$y_{2} = b_{0} + b_{1}x_{12} + b_{2}x_{22} + \dots + b_{k}x_{k2} + e_{2}$$

$$\vdots$$

$$y_{n} = b_{0} + b_{1}x_{1n} + b_{2}x_{2n} + \dots + b_{k}x_{kn} + e_{n}$$

• Representação matricial do modelo:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_{2n} & x_{2n} & \cdots & x_{kn} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_n \end{bmatrix}$$

- Ex. 01: Uma equipe de segurança de redes desenvolveu vários esquemas alternativos para conter ataques a servidores. O grupo quer avaliar os mecanismos e definiu um índice de sucesso dos esquemas.
- O índice de sucesso é baseado em dois fatores
 - Tempo do experimento (duração)
 - Número de ataques no período

Esse enunciado nos leva ao seguinte modelo de regressão linear múltipla:

indice =
$$b_0 + b_1(\#ataques) + b_2(duração)$$

Ex. 01: $f(x) = b_0 + b_1(\#ataques) + b_2(duração)$

Dados amostrais:

Esquema	#Ataques	Duração	Índice
Α	5	118	8.1
В	13	132	6.8
С	20	119	7.0
D	28	153	7.4
E	41	91	7.7
F	49	118	7.5
G	61	132	7.6
Н	62	105	8.0

- Ex. 01:
 - o Para a estimação do modelo, precisamos calcular:

$$\mathbf{X}, \mathbf{X}^{\mathsf{T}}, \mathbf{X}^{\mathsf{T}}\mathbf{X}, (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \in \mathbf{X}^{\mathsf{t}}\mathbf{y}$$

o Essas matrizes e operações entre matrizes, são usadas para estimar os parâmetros:

$$\mathbf{b} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

 \circ Cada elemento da matriz **b** resultante corresponde a um parâmetro $b_{\mathbf{k}}$

•	Ex. 01	:			Е	Esquem	ıa	#Atac	-	Duração			
	Г1	5	118	1	Α				5	118	8.		
	1	3	110	B C					13 132 20 119			6.8 7.0	
	1	13	132			D E F			28 153 41 91 49 118			7.4	
X =	1	20	119								7.7		
	1	20	119									7.5 7.6	
	v 1	28	153		F				61 62	132 105	7. 8.		
	$\mathbf{A} = 1$	41	91	_	1	1	,	1	1	1	•	1 7	
	1	49	118	T	1	1	1	1	1	1	1	1	
		<i>c</i> 1	1.00	$\mathbf{X}^{T} =$	5	13	20	28	41	49	61	62	
	1	61	132	1	118	132	119	153	91	118	132	105	
	1	62	105	L .					.7% (1 .7 %)				

$$C = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} = \begin{bmatrix} 7.7134 & -0.0227 & -0.0562 \\ -0.0227 & 0.0003 & 0.0001 \\ -0.0562 & 0.0001 & 0.0004 \end{bmatrix} \qquad \mathbf{X}^{\mathsf{T}} \mathbf{y} = \begin{bmatrix} 60.1 \\ 2118.9 \\ 7247.5 \end{bmatrix}$$

• Ex. 01:

$$\mathbf{b} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

$$\mathbf{b} = \begin{bmatrix} 7.7134 & -0.0227 & -0.0562 \\ -0.0227 & 0.0003 & 0.0001 \\ -0.0562 & 0.0001 & 0.0004 \end{bmatrix} \begin{bmatrix} 60.1 \\ 2118.9 \\ 7247.5 \end{bmatrix} = \begin{bmatrix} 8.37 \\ 0.005 \\ -0.009 \end{bmatrix}$$

indice =
$$b_0 + b_1(\#ataques) + b_2(duração)$$

indice = 8.373 + 0.005*#ataques - 0.009*duração

- Algumas notações importantes:
 - SSE Sum of Squared Errors (soma dos quadrados residuais, com regressão)

$$SSE = \{ \mathbf{y}^T \mathbf{y} - \mathbf{b}^T \mathbf{X}^T \mathbf{y} \}$$
 ou $SSE = \sum e_i^2$

SST – Total Sum of Squares (soma dos quadrados residuais, sem regressão)

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i^2 - 2y_i \overline{y} + \overline{y}^2) = \left(\sum_{i=1}^{n} y_i^2\right) - n\overline{y}^2 = SSY - SSO$$

- \circ SSY Sum of Squares of $\frac{y}{y}$
- \circ SS0 Sum of Squares of $\overline{\mathcal{Y}}$
- SSR Sum of Squares explained by Regression (SSR = SST SSE)

Revisão: Qualidade da Regressão

- Para avaliar a qualidade da regressão:
 - 1. Calcule SST
 - 2. Calcule SSE
 - 3. Calcule o coeficiente de determinação (valor entre 0 e 1):

$$R^2 = \frac{\text{SST-SSE}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

Quanto maior o coeficiente de determinação, melhor a regressão

Voltando ao Ex. 01:

indice = 8.373 + 0.005*#ataques - 0.009*duração

Índice	#At.	Dur.	Índice estimado	e i	e i 2
8.1	5	118	7.4	-0.71	0.51
6.8	13	132	7.3	0.51	0.26
7.0	20	119	7.4	0.45	0.21
7.4	28	153	7.2	-0.20	0.04
7.7	41	91	7.8	0.10	0.01
7.5	49	118	7.6	0.11	0.01
7.6	61	132	7.5	-0.05	0.00
8.0	62	105	7.8	-0.21	0.04

• Ex. 01:

Assim SSE = 1.08

$$SSY = \sum y_i^2 = 452.91$$

sso =
$$n\overline{y}^2 = 451.5$$

SSR = SST - SSE = .33

$$R^2 = \frac{SSR}{SST} = \frac{.33}{1.41} = .23$$

Isto é, esta regressão está RUIM!

• Ex. 01: Por que a regressão encontrada é ruim?

Vamos examinar as propriedades dos parâmetros da regresão

$$s_e = \sqrt{\frac{SSE}{n-3}} = \sqrt{\frac{1.08}{5}} = .46$$

Graus de liberdade: n -3 (3 parametros)

Vamos calcular o desvio padrão dos parâmetros da regressão

• Ex. 01: Cálculo do desvio padrão:

$$C = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \begin{bmatrix} 7.7134 & -0.0227 & -0.0562 \\ -0.0227 & 0.0003 & 0.0001 \\ -0.0562 & 0.0001 & 0.0004 \end{bmatrix}$$

$$b_0 = s_e \sqrt{c_{00}} = .46\sqrt{7.71} = 1.2914$$

$$b_1 = s_e \sqrt{c_{11}} = .46\sqrt{.0003} = .0097$$

$$b_2 = s_e \sqrt{c_{22}} = .46\sqrt{.0004} = .0083$$

• Ex. 01:

Em um nível de 90%, por exemplo Intervalos de confiança são:

$$b0 = 8.37 \pm (2.015)(1.29) = (5.77, 10.97)$$

 $b1 = .005 \pm (2.015)(.01) = (-.02, .02)$
 $b2 = -.009 \pm (2.015)(.008) = (-.03, .01)$

Somente b₀ é significativo, neste nível

90% já é um nível de confiança baixo e 2 dos 3 parâmetros não têm significância

• Ex. 01: Análise da variância

Podemos então dizer que realmente nenhuma das variáveis previsoras é significativa?

O Teste-F pode ser usado para essa finalidade

- Verificar se y depende ou não das variáveis previsoras
- Tabela F utilizada no teste:
 - https://drive.google.com/open?id=1trjh4htB9TgARp7XuBL097oRMDwls7QR

- Utilização do Teste-F (análise da variância):
 - 1. Calcule SSR e SSE e seus graus de liberdade:
 - a. SSR tem k graus de liberdade (k = nº de parâmetros 1)
 - b. SSE tem **n-(k+1)** graus de liberdade (**k+1** parâmetros)
 - 2. Calcule o quadrado das médias da regressão (MSR) e dos erros (MSE)
 - a. MSR = SSR/GL
 - b. MSE = SSE/GL
 - c. MSR/MSE tem uma distribuição F
 - 3. Se MSR/MSE > tabela-F, variáveis previsoras (x) explicam uma fração significativa de y
 - a. y depende de pelo menos uma variável previsora

- Voltando ao Ex. 01:
 - o SSR = 0.33
 - SSE = 1.08
 - \circ MSR = SSR/k = 0.33/2 = 0.16
 - \sim MSE = SSE/(n-k-1) = 1.08/(8 2 1) = 0.22
 - F-calculado = MSR/MSE = 0.76
 - F[90; k-1, n-k-1] = F[90; 2, 5] = 3.78 (em 90% de confiança)
 - F-calculado < F-tabelado

Conclusão: as variáveis previsoras não contribuem significativamente para o modelo (o modelo estimado é inadequado)

Múltipla Colinearidade

- Se dois previsores são linearmente dependentes, eles são colineares
 - Significa que são relacionados
 - Uma segunda variável (x) não melhora a regressão, pode inclusive piorar a regressão
- Sintomas típicos:
 - o Resultados inconsistentes em vários testes de significância
 - F-calculado > F-tabelado, mas ICs para coeficientes incluem 0 (inconsistência nos testes)
- Detecção de múltipla colinearidade:
 - Se a correlação entre variáveis previsoras for alta, elimine uma e repita a regressão sem ela
 - Se a significância da regressão melhorar, provavelmente havia múltipla colinearidade

Múltipla Colinearidade

• Cálculo da correlação:

$$s^{2}_{xy} = \sum_{i=1}^{n} (y_{i} - \overline{y})(x_{i} - \overline{x})$$

Correlação entre
$$x$$
 e $y = R_{xy} = \frac{s^2_{xy}}{s_x s_y}$

1 import numpy as np
2
3 x = [1.6, 1.7, 1.8, 1.9]
4 y = [60, 70, 80, 90]
5 xy = [x, y]
6
7 r = np.corrcoef(xy)

- Breve revisão:
 - Coeficiente de correlação varia de -1 a 1

perfeita	forte	forte moderada fraca	fraca	relação	fraca	moderada		forte	perfeita	
					1		120000		0.0	
-1	-0.8	-0.6	-0.4	-0.2	0	0.2	0,4	0,6	0,8	+1

 Ex. 02: Sete programas foram monitorados quanto às suas demandas por recursos: número de operações de I/Os (disco), consumo de memória (em KB) e tempo de CPU (em ms). Os dados são mostrados a seguir:

Tempo de CPU y _i	2	5	7	9	10	13	20
Disk I/Os x _{1i}	14	16	27	42	39	50	83
Tamanho da Memoria x _{2i}	70	75	144	190	210	235	400

 Encontre um modelo linear para estimar o tempo de CPU em outros função dos dois recursos

Ex. 02: Tempo de CPU y_i
 Disk I/Os x_{1i}
 Tamanho da Memoria x_{2i}
 Total Tempo de CPU y_i
 Tot

• Ex. 02: CPU time = $b_0 + b_1$ (# disk I/Os) + b_2 (tamanho da mem)

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 7 & 271 & 1324 \\ 271 & 13855 & 67188 \\ 1324 & 67188 & 326686 \end{bmatrix}$$

$$\mathbf{C} = (\mathbf{X}^{T}\mathbf{X})^{-1} = \begin{bmatrix} 0.6297 & 0.0223 & -0.0071 \\ 0.0223 & 0.0280 & -0.0058 \\ -0.0071 & -0.0058 & 0.0012 \end{bmatrix}$$

• Ex. 02: CPU time = $b_0 + b_1$ (# disk I/Os) + b_2 (tamanho da mem)

$$\mathbf{X}^{T} \mathbf{y} = \begin{bmatrix} 66 \\ 3375 \\ 16388 \end{bmatrix}$$

$$b = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y} = \begin{bmatrix} -0.1614 & 0.1182 & 0.0276 \end{bmatrix}^{T}$$

Cpu time = -0.1614 + 0.1182(# disk I/Os) + 0.0265(tam. Mem)

Ex. 02: Vamos fazer a analise de variancia (ANOVA) da regressao:
 Calculo das previsoes, erros e erros quadrados

	y _i	2	5	7	9	10	13	20	
	x_{1i}	14	16	27	42	39	50	83	
	x_{2i}	70	75	144	190	210	235	400	
	\hat{y}_i	3.3490	3.7180	6.8472	9.8400	10.0151	11.9783	20.2529	
	e _i	-1.3490	1.2820	0.1528	-0.8400	-0.0151	1.0217	-0.2529	
	$(e_i)^2$	1.8198	1.6436	0.0233	0.7053	0.0002	1.0439	0.0639	
$SSE = \sum_{i} e_i^2 = 5.3 = \{ y^T y - b^T X^T y \}$									

• Ex. 02:
$$SSY = \sum_{i} y_{i}^{2} = 828 \qquad SSO = n\overline{y}^{2} = 622.29$$
$$SST = SSY - SSO = 828 - 622.29 = 205.71$$
$$SSR = SST - SSE = 205.71 - 5.3 = 200.41$$

$$R^2 = \frac{SSR}{SST} = \frac{200.41}{205.71} = 0.97$$

A regressão explica 97% da variabilidade dos dados: BOM!

• Ex. 02: Calculo do desvio padrao dos erros e dos coeficientes

$$s_e = \sqrt{\frac{SSE}{n-3}} = \sqrt{5.3/4} = 1.2$$

Desvio padrao estimado para

$$b_0 = s_e \sqrt{c_{00}} = 1.2\sqrt{0.6297} = 0.9131$$

$$b_1 = s_e \sqrt{c_{11}} = 1.2\sqrt{0.0280} = 0.1925$$

$$b_2 = s_e \sqrt{c_{22}} = 1.2\sqrt{0.0012} = 0.0404$$

• Ex. 02: Cálculo de IC para nível de confiança de 90% (t-student):

4 graus de liberdade $t_{0.90.4}$ = 2.132

$$b_0 = -0.1614 \pm (2.132)(0.9131) = (-2.11,1.79)$$

$$b_1 = 0.1182 \pm (2.132)(0.1925) = (-0.29,0.53)$$

$$b_2 = 0.0265 \pm (2.132)(0.0404) = (-0.06,0.11)$$

Nenhum parâmetro significativo.

```
    Ex. 02: Realizando o teste F:
        SSE = 5.3
        Graus de liberdade do SSE = n-(k+1) = n-3 = 4
        MSE = SSE/n-(k+1) = 5.3/4 = 1.33

    SSR = 200.41
        Graus de liberdade do SSR = k = 2
        MSR = 200.41/2 = 100.205

    MSR / MSE = 75.40
        Tabela F: 4.32
```

MSR/MSE > F

Regressão passou no teste-F. Hipótese de que todos os parâmetros são 0 não pode ser aceita. Inconsistência?

• Ex. 02: Vamos calcular a correlação entre as variáveis previsoras:

$$n = 7 \sum x_{1i} = 271 \sum x_{2i} = 1324$$

$$\sum x_{1i}^{2} = 1385 \sum x_{2i}^{2} = 32668$$

$$\sum x_{1i} x_{2i} = 67188$$

$$Correlacao(x_{1}, x_{2}) = R_{x_{1}, x_{2}} =$$

$$\sum x_{1i} x_{2i} - \frac{1}{n} (\sum x_{1i}) (\sum x_{2i})$$

$$\left[\sum x_{1i}^{2} - \frac{1}{n} (\sum x_{1i}) (\sum x_{1i})\right]^{1/2} \left[\sum x_{2i}^{2} - \frac{1}{n} (\sum x_{2i}) (\sum x_{2i})\right]^{1/2}$$

$$= 0.9947$$

• Ex. 02:

Conclusões:

- o Alta correlação (0,9947): multicolinearidade prejudica a regressão
- \circ Precisa refazer regressão somente com # de I/Os e, separadamente, com tamanho de memória, e escolher melhor previsor (isto é, aquele que resulta no maior R^2)
- Neste caso, o modelo indicado é o de regressão linear simples

Regressão Curvilinear

- Regressão linear assume relações lineares entre previsoras e a resposta
- O que acontece quando essas relações não são lineares?
 - Coeficientes de determinação com baixos valores
- Possível solução: modelar o problema com regressão curvilinear
- Inspeção visual (dispersão) pode revelar que o modelo deve ser curvilinear
- Deve-se tentar transformar modelos curvilineares para lineares

Revisão: Teste Visual de Pressupostos

• Ex. (linearidade):

Gráficos de pontos x vs. y para ver o tipo básico da curva

Revisão: Teste Visual de Pressupostos

• Ex. (homocedasticidade):

Gráfico de pontos ε_i versus \hat{y}_i Verificar tendência no espalhamento

Caso haja tendência ao espalhamento, usar regressão não-linear ou linearização

• Tipos comuns de modelos de regressão curvilinear:

$$y = bx^{a}$$

$$y = a + \frac{b}{x}$$

$$y = ab^{x}$$

- Para transformar esses equações em modelos lineares, costuma-se usar logaritmos, multiplicações, divisões, etc., sobre os modelos curvilineares
- Quer se obter algo como: y' = a + bx'
 y' e x' obtidos através da transformação

Alguns exemplos de transformação de curvilinear para linear:

Nao Linear
$$\Rightarrow$$
 Linear
 $y = a + b/x$ $\Rightarrow y = a + b(1/x)$ $x' = 1/x$
 $y = 1/(a + bx)$ $\Rightarrow 1/y = a + bx$ $y' = 1/y$
 $y = x/(a + bx)$ $\Rightarrow (x/y) = a + bx$
 $y = a \times b^x$ $\Rightarrow \ln y = \ln a + x \ln b$ $y' = A + Bx'$
 $y = a + bx^n$ $\Rightarrow y = a + b(x^n)$

 Ex. 03: A Lei de Amdahl para operações de I/Os em sistemas de computação diz que a taxa de I/O e proporcional a velocidade do processador. Para cada instrução executada, há um bit de I/O em média.

Para validar a lei, os números de I/Os e as utilizações de CPU de um número de computadores foram medidos. Usando a taxa MIPS nominal para o sistema e a sua utilização, a taxa de processamento de instruções (em MIPS) e a taxa de I/O (em KB/s) foram computados para um período. Os dados foram mostrados abaixo. Valide a Lei de Amdahl.

S	Sistema	1	2	3	4	5	6	7	8	9	10
Ν	IIPS Usado	19.63	5.45	2.63	8.24	14	9.87	11.27	10.13	1.01	1.26
T	axa de I/O	288.6	117.3	64.6	356.4	373.2	281.1	149.6	120.6	31.1	23.7

- Ex. 03:
 - Vamos assumir, por hora, o seguinte modelo curvilinear:

I/O rate =
$$\alpha$$
 (MIPS rate)^b log(I/O rate) = log α + b log(MIPS rate)

Os parâmetros $b_0 = \log \alpha e b_1 = b$ podem ser estimados via regressão linear simples

Parametro	Media	Desvio Padrao	CI 90%
b_0	1.423	0.119	(1.20, 1.64)
b_1	0.888	0.135	(0.64, 1.14)

R2 = 0.84 -> boa regressao

Coeficientes são significativos com confiança de 90%. Como o IC para b₁ contém 1,
 podemos aceitar a hipótese de que o relacionamento entre I/O rate e MIPS rate é linear.