Кеш-память Хранилища

Технология кеширования данных

- Caching affects performance:
 - It reduces disk access (with cache hits).
 - It reduces the negative effects of the RAID overhead.
 - It assists in disk I/O request sorting and queuing.

Кеш отложенной записи

Операция чтения с использованием кэш-памяти

Операция чтения с использованием кэш-памяти

Операция записи с использованием кэш-памяти

Эффект от кеширования

Requests per second

Управление кэш-памятью: алгоритмы

- LRU элементы с самой большой давностью использования
 - Удаляет данные, доступ к которым не выполнялся долгое время
- MRU последние по времени использования элементы
 - Удаляет данные, доступ к которым осуществлялся недавно

Управление кэш-памятью: использование уровней отсечки

- Управление пиковыми нагрузками ввода-вывода осуществляется с помощью сброса
 - Сброс это процесс передачи данных из кэш-памяти на диски системы хранения
- Ниже приведены три режима сброса для управления использованием кэш-памяти.
 - Неактивный сброс
 - Сброс на высоком уровне отсечки
 - Принудительный сброс

Защита данных кэш-памяти

- Система обеспечивает защиту данных в кэш-памяти от сбоев электропитания или при неполадках в работе кэш-памяти.
 - Зеркалирование кэш-памяти
 - Обеспечивает защиту данных от сбоев в работе кэш-памяти
 - Каждая операция записи в кэш-память выполняется в двух различных областях на двух независимых картах памяти
 - Аварийное сохранение данных из кэш-памяти
 - Обеспечивается защита данных при сбоях электропитания
 - В случае сбоев электропитания непереданные данные выгружаются в выделенный набор дисков, которые называются системными дисками

Многоуровневая кэш-память

- Позволяет создавать вторичную кэш-память большой емкости с использованием твердотельных дисков
- Обеспечивает многоуровневое хранение между кэшпамятью DRAM и твердотельными дисками (вторичной кэш-памятью)
- Большинство операций чтения обслуживаются непосредственно из высокопроизводительной кэш-памяти многоуровневого хранения

Преимущества

- Улучшенная производительность при пиковой рабочей нагрузке
- Бесперебойная работа и прозрачность для приложений

Технология серверного кэширования на основе флэшпамяти

- Использует интеллектуальное программное обеспечение для кэширования и флэш-карту PCIe в вычислительной системе
- Значительно повышает производительность приложений
 - Обеспечивает повышение производительности в случае большого количества операций чтения
 - Устраняет задержки в работе сети, связанные с доступом к СХД при выполнении операций ввода-вывода
- Интеллектуально определяет данные, которые целесообразно размещать в вычислительной системе на флэш-карте PCIe
- Использует минимум ресурсов ЦП и памяти
 - Управление флэш-памятью осуществляется с помощью карты PCIe

данных

Warmup time and Cache Hit Rate: Example

- 8TB of Volume
- 32GB of read cache Array Cache Size = (DRAM Read Cache) + (FLASH Read Cache)
- 256GB of flash cache
- 288 GB total of array cache

Cache Hit Rate:

288GB/8TB = 0.036 For a random workload, best flash cache hit % would be 3.6% Cache Hit Rate = $\frac{\text{Array Cache Size}}{\text{Working Set Size}}$

Flash Cache Fill Rate:

Host Workload: 20,000 4kb random reads Flash Cache Fill Rate = Read IOPS * (IO Size Modifier) 20,000 * 16 = 320 MB/sec for filling flash cache

Time to Fill:

Maximum cache hit rate can be obtained in: 288GB / (320 MB/sec) = 900 seconds 15 minutes

Time to fill =
$$\frac{\text{Array Cache Size}}{\text{Flash Cache Fill Rate}}$$