Backpropagation in MLP

Tirtharaj Dash

Dept. of CS & IS and APPCAIR BITS Pilani, Goa Campus

September 04, 2021

Where we are:

Summary of the previous lecture:

- Deep Feedforward Nets and MLPs
- Forward computation in MLPs
- Role of activation functions
- Re-doing XOR with ReLU activation
- Role of hidden representations

Today, we will know:

- How the error is backpropagated via usage of chain rule in calculus.
- That is, we will derive the steps in the backpropagation procedure.
- This will help us understand the tensor-level operation that I will show in the next lecture.

Introduction I

- We are concerned with MLPs (deep fully-connected feedforward neural networks).
- The parameters of an MLP are its synaptic strenghts or interconnection weights.
- There are two main computations in an MLP:
 - Forward: Activations flow from inputs to output layer (leading upto: the calculation loss)
 - Backward: Gradient of the loss (or error) is backpropagated from the output layer towards input via the hidden layers (leading upto: the update of weights)

Introduction II

- The parameters (weights) play a significant role in forward and backward computation.
- The method adopted to update the parameters in a deep network is known as the Backpropagation procedure [1].

[1] D.E. Rumelhart, G. Hinton, R.J. Williams (1986): Learning representations by back-propagating errors. Nature, 323(6088), 533–536.

Introduction III

• A portion of a 1-hidden layer MLP showing 1 hidden unit:

Notations I

We will adopt the following for our derivations:

- For convenience, we will consider a 1-hidden layer MLP.
- L denotes the loss function: At this point, we will not define what L is, but, it is some function $L(\mathbf{y}, \hat{\mathbf{y}})$.
- **y**: vector of target outputs (y_k denotes the output of kth output neuron).
- $\hat{\mathbf{y}}$: vector of computed outputs
- There are *c* output neurons (one neuron for each target). For instance:
 - In binary classification, c = 1
 - In multiclass classification, c = no. of classes
 - In regression, c = 1

Notations II

- Some examples of $L(\mathbf{y}, \hat{\mathbf{y}})$:
 - Binary cross-entropy: $L = -(y \log \hat{y} + (1 y) \log(1 \hat{y})$
 - Cross-entropy: $L = -\sum_{k=1}^{c} y_k \log \hat{y}_k$
 - Squared error: $L = \frac{1}{2} \sum_{k=1}^{c} (y_k \hat{y}_k)^2$
 - MSE for a batch of B instances: $L = \frac{1}{2B} \sum_{i=1}^{B} \sum_{k=1}^{c} (y_k^{(i)} \hat{y}_k^{(i)})^2$

Notations III

- The subsctipt *i* corresponds to the inputs.
- ullet There are d input units, each corresponding to a feature vector in ${f x}$.
- The subscript *j* corresponds to the hidden layer.
- There are m units in the hidden layer.
- The subscript *k* corresponds to the output layer.
- There are c units in the output layer.

Notations IV

- Weights (see the footnote below):
 - w_{ji}: weight parameter for the connection from ith input to jth neuron in the hidden layer.
 - w_{kj} : weight parameter for the connection from jth hidden neuron to kth neuron in the output layer.

Note: In our forward propagation lecture (also in our Textbook 1), we were using a different notation. That is, w_{ij} and w_{ik} respectively. Don't get confused.

Notations V

- z denotes the net input to any neuron j. For example,
 - z_i : for the hidden neuron j
 - z_k : for the output neuron k
- a denotes the activation value. That is: $a = \sigma(z)$, where σ is some activation function (preferrably, continuous).
 - a_j : for the hidden neuron j
 - a_k : for the output neuron k. But, this is equal to \hat{y}_k .

GD and Backprop I

Gradient Descent (GD) on loss:

• The update to any parameter w_{ij} at any iteration t is carried out using the step

$$w_{ij}^{(t)} \leftarrow w_{ij}^{(t-1)} - \eta \left. \frac{\partial L}{\partial w_{ij}} \right|_{\mathsf{at} \ w_{ij} = w_{ij}^{(t-1)}}$$

• Next, we will see how to derive $\frac{\partial L}{\partial w_{ij}}$ for the hidden layer parameters and the output layer parameters.

Note: In this particular slide and in the next one the subscript in w (i.e. i and j) are just local variables. They represent any weight in a network.

GD and Backprop II

What exactly is $\frac{\partial L}{\partial w_{ij}}$?

This is calculated using chain-rule of (partial) derivative.
 This turns out to be:

$$\frac{\partial L}{\partial w_{ij}} = \frac{\partial L}{\partial \text{ activation}} \frac{\partial \text{ activation}}{\partial \text{ net-input}} \frac{\partial \text{ net-input}}{\partial w_{ij}}$$

or,

$$\frac{\partial L}{\partial w_{ij}} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{\partial w_{ij}}$$

Ignoring the subscript on a and z here. In the next slides, these will be clearer.

GD and Backprop III

A figure showing flow of gradient from *L* towards the inputs:

Gradients at output layer I

We want to compute $\frac{\partial L}{\partial w_{kj}}$ for all j and k:

• Let us see the dependecy graph (chain) first:

• Now, the expression for the derivative based on the above chain:

$$\frac{\partial L}{\partial w_{kj}} = \frac{\partial L}{\partial \hat{y}_k} \frac{\partial \hat{y}_k}{\partial z_k} \frac{\partial z_k}{\partial w_{kj}}$$

• We want to compute these individual quantities. See next.

Gradients at output layer II

- Derivative of the loss w.r.t. the output (activation), $\frac{\partial L}{\partial \hat{y}_k}$:
 - Since we have not defined our function L: Let us keep it as it is, and call it: L'
 - If *L* is squared-error, this would be:

$$\frac{\partial L}{\partial w_{kj}} = -(y_k - \hat{y}_k)$$

Gradients at output layer III

- Derivative of the output (activation) w.r.t. the net input, $\frac{\partial \hat{y}_k}{\partial z_k}$:
 - We know that $\hat{y}_k = \sigma^{(2)}(z_k)$, where $\sigma^{(2)}$ is the output layer activation function, we have then:

$$\frac{\partial \hat{y}_k}{\partial z_k} = \frac{\partial \sigma^{(2)}(z_k)}{\partial z_k} = \sigma^{(2)'}(z_k)$$

Gradients at output layer IV

- Derivative of the net input w.r.t. the weight, $\frac{\partial z_k}{\partial w_{ki}}$:
 - We know that $z_k = \sum_{j=1}^m w_{kj} a_j$ (for simplicity we are not using the bias term; however, including this is staraightforward: the summation will start at j=0). Now, the derivative is:

$$\frac{\partial \hat{y}_k}{\partial z_k} = a_j$$

Gradients at output layer V

• Substituting the quantities obtained earlier we get our $\frac{\partial L}{\partial w_{kj}}$ expression:

$$\frac{\partial L}{\partial w_{kj}} = L'(\mathbf{y}, \hat{\mathbf{y}}) \sigma^{(2)'}(z_k) a_j$$

• The blue expression is called the *local gradient* computed at the output neuron k, and we denote it as δ_k .

Gradients at output layer VI

• A simple diagram shown as:

$$\delta_k = L'(\mathbf{y}, \hat{\mathbf{y}}) \sigma^{(2)'}(z_k)$$

- Notice that we do not need to re-calculate this δ_k while calculating some other weight (i.e. different j) for the same k. We can re-use the computed δ_k .
- ullet Also, recall that a_j was already computed during our forward computation.

Gradients at hidden layers I

We want to compute $\frac{\partial L}{\partial w_{ii}}$ for all i and j:

• Let us first see the dependency graph:

The dependency graph does not show that the weight w_{ji} leads to error at all the neurons at the next layer (outputs). We show this next.

Gradients at hidden layers II

• All the paths from w_{ii} to L:

The yellow-lines show the paths.

Gradients at hidden layers III

- What is this really?
 - L depends on $\hat{\mathbf{y}}$
 - $\hat{\mathbf{y}}$ depends on a_j
- For the hidden unit *j*, we know these following from forward computation:

$$z_j = \sum_{i=1}^d w_{ji} x_i$$

and

$$a_j = \sigma^{(1)}(z_j)$$

• For the output unit k, we know that:

$$z_k = \sum_{j=1}^m w_{kj} a_j$$

Gradients at hidden layers IV

• In the end, $\frac{\partial L}{\partial w_{ii}}$ turns out to be:

$$\begin{split} \frac{\partial L}{\partial w_{ji}} &= \left(\sum_{k=1}^{c} \frac{\partial L}{\partial \hat{y}_{k}} \frac{\partial \hat{y}_{k}}{\partial z_{k}} \frac{\partial z_{k}}{\partial a_{j}}\right) \frac{\partial a_{j}}{\partial z_{j}} \frac{\partial z_{j}}{\partial w_{ji}} \\ &= \left(\sum_{k=1}^{c} \frac{\partial L}{\partial \hat{y}_{k}} \frac{\partial \hat{y}_{k}}{\partial z_{k}} w_{kj}\right) \sigma^{(1)'}(z_{j}) x_{i} \\ &= \left(\sum_{k=1}^{c} L'(\mathbf{y}, \hat{\mathbf{y}}) \sigma^{(2)'}(z_{k}) w_{kj}\right) \sigma^{(1)'}(z_{j}) x_{i} \\ &= \left(\sum_{k=1}^{c} \delta_{k} w_{kj}\right) \sigma^{(1)'}(z_{j}) x_{i} \\ &= \delta_{j} x_{i} \end{split}$$

Gradients at hidden layers V

• δ_i is the local gradient computed at the hidden unit j:

$$\delta_j = \left(\sum_{k=1}^c \delta_k w_{kj}\right) \sigma^{(1)'}(z_j)$$

 Notice the first term in parenthesis. This is saying weigh all the local gradients computed at the output layer by the corresponding interconnection weights.

Generalisation to Deeper Nets I

More on δ_i computed in the last slide:

- This is a beautiful finding, which takes all our worries of computing gradients for deeper network.
- This allows us to generalise to any layers, since we are travelling from L towards the inputs, on the way, we are calculating these local gradients.

Generalisation to Deeper Nets II

• Then the local gradient of any neuron j at any hidden layer ℓ (where $\ell_{max} > \ell \geq 1$) can be easily computed as:

$$\delta_j^{(\ell)} = \left(\sum_{k=1}^{m^{(\ell+1)}} \delta_k^{(\ell+1)} w_{kj}^{(\ell+1)}\right) \sigma^{(\ell)'}(z_j^{(\ell)})$$

• Then the gradient of the loss L w.r.t to any weight at layer ℓ is simply:

$$\frac{\partial L}{\partial w_{jj}^{(\ell)}} = \delta^{(\ell)} a_{i}^{(\ell-1)}$$

Notations: (ℓ) is used to denote a layer index; $\ell=0$ corresponds to the inputs; ℓ_{max} corresponds to the output layer; $m^{(\ell)}$ denotes the number of neurons (units) at layer ℓ ; $\mathbf{a}^{(0)}=\mathbf{x}$.

Generalisation to Deeper Nets III

 This can be clearly shown as a bunch of computational (flow) paths in the network:

 There are several independent paths in the network: That is, computations along one path does not affect the computations in another path. This allows tensor-level parallel computation (we will see this in the next lecture).

Parameter updates I

- We have now computed the derivatives of L w.r.t. all the parameters in the network.
- \bullet The update to the parameters based on the GD procedure for any network layer ℓ is then:

$$w_{ij}^{(\ell)} = w_{ij}^{(\ell)} - \eta \frac{\partial L}{\partial w_{ij}^{(\ell)}}$$

 That is, the gradient of L w.r.t. all the parameters of the network have to be computed first and then the update is done. Otherwise the computation of the local gradients will be wrong.

Parameter updates II

Common mistake:

```
For layer \ell \in \{1,\dots,\ell_{\textit{max}}\}:
Compute gradient of L w.r.t. weights at layer \ell
Update the weights at layer \ell
```

Correct (writing again):

```
For layer \ell \in \{1,\dots,\ell_{max}\}:

Compute gradient of L w.r.t. weights at layer \ell

For layer \ell \in \{1,\dots,\ell_{max}\}:

Update the weights at layer \ell
```

Parameter updates III

- The derivations so far has been to show how the backpropagation procedure operates at the scalar-level.
- However, you will notice that many computations such as the local gradints at neurons at any layer can be computed in parallel (i.e. computation of $\delta_i^{(\ell)}$ and $\delta_j^{(\ell)}$ is independent) allowing tensor-level computation.
- Further, the quantities computed at the forward propagation such as
 a_js can be reused for backpropagation. This requires some kind of
 recor keeping. This results in requirement of more memory storage for
 backpropagation.

Homework

The following questions will make you comfortable with the derivations we did here:

- Derive the complete backpropagation procedure for a classification problem with c classes. Here, L is the cross-entropy loss.
- e Derive the complete backpropagation procedure for a regression problem. Here L is the SSE.
- What happens to the derivations if we have a batch-size greater than 1 in our training? What would change in our derivations?