Knowledge Modeling (II) - Protege

一、全称量词、存在量词示例

全称量词、存在量词示例

- 1. 打开 "pizza_2.owl" 文件;
- 2. 增加 "PizzaBase" 的subclass "EdibleBase" 与 "PizzaTopping" 的subclass "ChocolateTopping"

存在量词示例

选择 "Object properties" 中的 "hasTopping";

存在量词示例

选择Restricted property、Restriction filler、Restriction type

存在量词示例

全称量词示例

选择"Object properties"中的"hasBase";

全称量词示例

选择Restricted property、Restriction filler、Restriction type

全称量词示例

作业一:

创建一个包含axioms和assertions的consistent ontology (任选感兴趣的领域),要求:

- 1) 包含Class、Individual、Object Property、Data Property
- 2) 定义Property Domain、Range、Individual Type
- 3) 最终以Turtle形式导出,三元组数量不低于25条
- 4) 体现全称量词与存在量词

选择 "Tools" — "Create axioms from Excel workbook"

打开Excel文件"知识图谱.xlsx"

使用MappingMaster DSL的语法规则编辑Transformation Rule

📤 Transformation Rule Editor	×
Sheet name:	Sheet1 ▼
Start column:	A
End column:	G
	1
Start row:	1
End row:	3
Comment:	
Rule:	
确定	取消
确定	取消

完整的语法规则: https://github.com/protegeproject/mapping-master/wiki/MappingMasterDSL

Rule示例:

• 作为类名导入

Class:@A1 /*指定A1单元格作为类名*/

Class:@A* /*指定A列所有内容作为类名*/

Class:@*1 /*指定第1行所有内容作为类名*/

	А		D		
1	Student	John	20	age	hasFrien
	Employee	Mary	19		
	Person				

• 导入类的同时,创建类之间的公理

Class:@A1

SubClassOf:@A3 /*A1是A3的子类*/

Rule示例:

• 作为类名导入

Class:@A1 /*指定A1单元格作为类名*/

Class:@A* /*指定A列所有内容作为类名*/

Class:@*1 /*指定第1行所有内容作为类名*/

• 导入类的同时,创建类之间的公理

Class:@A1

SubClassOf:@A3 /*A1是A3的子类*/

确定

取消

John

20

hasFriend

age

Student

Rule示例:

• 作为类名导入

Class:@A1 /*指定A1单元格作为类名*/

Class:@A* /*指定A列所有内容作为类名*/

Class:@*1 /*指定第1行所有内容作为类名*/

А		D		
Student	John	20	age	hasFrie
Employee	Mary	19		
Person				

• 导入类的同时,创建类之间的公理

Class:@A1

SubClassOf:@A3 /*A1是A3的子类*/

Rule示例:

• 作为实例导入

Individual:@C* Types:@A1 /*指定C列所有内容作为实例,类型为Student*/

• 导入实例的同时,创建实例属性

Individual: @C* Types: @A1 Facts: @F1 @D* (xsd:integer)

/*创建数据属性age,值为对应的D列的值,

类型为Int(默认为String)*/

Rule示例:

• 作为实例导入

Individual:@C* Types:@A1 /*指定C列所有内容作为实例,类型为Student*/

• 导入实例的同时,创建实例属性

Individual:@C* Types:@A1

Facts: @F1 @D* (xsd:integer)

/*创建数据属性age,值为对应的D列的值,类型为Int(默认为String)*/

Rule示例:

• 导入实例的同时, 创建实例属性

Individual:@C1

Facts: @G1(ObjectProperty) @C2

/*创建对象属性hasFriend,值为Mary*/

Rule示例:

• 导入实例的同时,创建实例属性

Individual:@C1

Facts: @G1(ObjectProperty) @C2

/*创建对象属性hasFriend,值为Mary*/

三、课堂作业

给定Excel表格"站点.xlsx",编写相应规则将其导入Protege。 要求:

- 1)尽可能多地生成三元组;
- 2) 将生成结果可视化。