

First Semester 2018-2019 Instruction Division Course Handout (Part II)

Date: 02/08/2018

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F212

Course Title : Electromagnetic Theory I Instructor In-charge : Jayendra N. Bandyopadhyay

Instructor(s) :SubhashisGangopadhyay and Jayendra N. Bandyopadhyay

1. Course Description

Electromagnetic Theory I is the first of the two courses on Electromagnetic Theory to be offered to Physics students. It is also a mandatory course for Chemistry students. It is an elementary course and it deals with Electrostatics, Magnetostatics, and basics of Electrodynamics.

2. Scope and Objectives

- To learn the mathematical tools to solve all problems of electomagnetism
- Understand the concept of electric field
- Learn to solve electrostatic problems using the concept of potential
- Understand how electric field gets modified in materials
- Understand the concept of magnetic field
- Understand how magnetic field gets modified in materials
- Understand the magnetic induction and introduction of Electrodynamics
- Introduction of Maxwell's equations and electromagnetic waves

3. Prescribed Text Book

T1. Introduction to Electrodynamics", David J.Griffiths, Forth Edition, Pearson Education Inc., 2014.

4. Reference Book

R1. "PHYSICS", Vol. 2, David Halliday, Robert Resnick and Kenneth S. Krane, Fifth edition, John Wiley & Sons, Inc., 2002.

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

5. Course Plan

Module Number	Lecture session/Tutorial session	Reference	Learning Outcome
1. Introduction of basic mathematics	L1.1 Vectoralgebra	T1 1.1- 1.3, 1.5	Understanding of basic
	L1.2-1.3 Differentialvectorcalculus		mathematicswhichwill berequired to
	L1.4 -1.5 Integralvectorcalculus		solvedifferentproblem s of
	L1.6 The Dirac Delta function		electromagnetictheory
	T1.1-1.2Problemsolving session		
2. Electrostatics in free space	L2.1 The electricfield	T1 2.1- 2.5, 3.4	Understanding of the concept of the
	L2.2-2.3 Divergence and curl of electrostaticfields		electricfield due to a collection of static charges and to
	L2.4-2.5 Electric potential		calculate the electricfield due to
	L2.6 Work and energy in electrostatics		different distribution of charges.
	L2.7 Conductors		
	L2.8-2.9 A special technique to solveelectrostaticproblems: Multipole expansion		
	T2.1-2.3Problemsolving session		
3. Electrostatics in matter	L3.1 Polarization	T1 4.1-4.4	Understanding of the behavior of the
	L3.2 The field of a polarizedobject		electricfieldinsidematt er. Effect of
	L3.3 The electric displacement		electricfield on the dielectricmaterials.
	L3.4-3.6 Lineardielectrics		dicicculculaterials.
	T3.1-3.2 Problemsolving session		
4. Magnetostatics in free space	L4.1 The Lorentz force	T1 5.1-5.4	Understanding of the
	L4.2-4.3 The Biot-Savartlaw		concept of magnetic field due to the presence of

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

CHAIN CO.	-	1	
	L4.4-4.6 The divergence and curl of		steadycurrents. Learn
	the magnetic field		to calculate the
			magneticfield due to
	L4.7-4.8 The magnetic vector potential		different configuration
			of
	T4.1-4.2 Problemsolving session		currentcarryingwire.
5. Magneticfields	L5.1 Magnetization	T1 6.1-6.4	Understanding of the
in matter			behavior of the
III IIIdettei	L5.2 The field due to		magneticfieldinsidema
	magnetizedobject		tterial. Effect of
	magnetizedobject		
	1.5.2.5.4.771 :1: 0.11		magneticfield on the
	L5.3-5.4 The auxiliaryfield		magnetizedmaterial.
	Y 5 5 Y		
	L5.5. Linear and		
	nonlinearmagneticmaterials		
	T5.1 Problemsolving session		
6. Electrodynamics	L6.1-6.2 Ohm'slaw and	T1 7.1-7.2	Understanding of the
	Electromotive force		effect due to moving
			charges and
	L6.3-6.4 Electromagnetic induction		movingcharges in
			materials. Introduction
	T6.1 Problemsolving session		of the concept of
	1011 110014111001 11118 04001011		electromagnetic
			induction and its
			applications.
7.	L7.1 Electrodynamicsbefore Maxwell	T1 7.3	Undestanding of the
Maxwell'sequation	and Maxwell contribution in	11 /.3	contribution of
1			Maxwell in
S	electromagnetictheory		
	1727214 112 / /:		electromagnetictheory
	L7.2-7.3 Maxwell'séquations		and its applications in
	77 1 D 11 1		the future generation
	T7.1 Problemsolving session		

6. Evaluation Scheme:

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

Evaluation Components	Weightage (%)	Date & Time	Remarks
Mid-semester test	30	11/10 9:00 - 10:30 AM	Closed book
Tutorials	30		Closed book.
			Total five tests will be conducted, of which best four would be counted.
Comprehensive	40	6/12 FN	Closed and Open book.

After completing this course the students will be able to

- 1) understand the concept of the electric and magnetic fields in free space,
- 2) understand the behavior of the electric and magnetic fields inside matter,
- 3) learn to calculate electric field and magnetic field for different cases,
- 4) understand the relationship between the electric and magnetic fields,
- 5) and understand the basics of electrodynamics.

Closed Book Test: No reference material of any kind will be permitted inside the exam hall.

Open Book Exam: Use of the textbook (T1) and reference book (R1) will be allowed. Photocopy of these books will also be allowed. Besides, only **hand-written class notes** are permitted. Use of calculators will be allowed in all exams. No exchange of any material will be allowed during exams.

Note:

It shall be the responsibility of the individual student to be regular in maintaining the self study schedule as given in the course handout, attend lectures and the lab demonstration as per the schedule announced in Nalanda. Mid Semester Test and Comprehensive Examination are according to the Evaluation Scheme given in the respective Course Handout. If the student is unable to appear for the Regular Test/Examination due to genuine exigencies, the student must refer to the procedure for applying for Make-up Test/Examination. No make up for the tutorials.

(Jayendra N. Bandyopadhyay) Instructor In charge PHY F212.

