To ying to find
$$2 \in C$$
 s.t. $2 = \lambda$. (c) $2 = \alpha + bi$ where α , $b \in R$
 $(\alpha + bi)^{\lambda} = \lambda = 0 + i\lambda$ (c) $\begin{cases} \alpha^2 - b^2 = 0 \\ -b^2 + \lambda abi = 0 + \lambda i \end{cases}$ (c) $\begin{cases} \alpha^2 - b^2 = 0 \\ -\lambda ab = 1 \end{cases}$ (d) $\begin{cases} \alpha = b \\ -ab = \frac{1}{\lambda} \end{cases}$
 $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (e) $\begin{cases} \alpha = b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\ -ab = \frac{1}{\lambda} \end{cases}$ (f) $\begin{cases} \alpha = -b \\$

Find two distinct Squall motes of i