Teil I

Festkörperphysik

Literatur

•	Hunklinger:	restkorperpnysik

- Kittel: Einführung in die Festkörperphysik
- N. W. Ashcroft, N. D. Merim: Festkörperphysik
- H. Ibach, H Luth: Festkörperphysik
- M. P. Marder: Condensed Matter Physics
- A. A. Abrikosov: Fundamentals of the Theory of Metals

Inhaltsverzeichnis

Ι	Festkörperphysik	i				
1	Bindungskräfte	1				
	1.1 Klassen von Festkörpern	1				
	1.2 Fundamentale Konzepte	2				
	1.3 5 Bindungstypen	2				
	1.4 zweite Periode	2				
	1.5 Van-der-Waals-Bindung	3				
2	Struktur der Festkörper	4				
3	3 Strukturbestimmung und reziproke Gitter					
4	Strukturelle Defekte	4				
5	Gitterdynamik	4				
6	Elastische Eigenschaften, Phononen	4				
7	Isolatoren	4				

8	Fermi-Gas freier Elektronen	4
9	Energiebänder und Fermiflächen/-surfaces	4
10	Dynamik von Kristallelektronen	4
11	Halbleiter	4
12	Magnetismus	4
13	Suptraleitung	4

1 Bindungskräfte

- 1) Bindung in Festkörpern
 - (i) Bindungstypen
 - (ii) Bindungsenergie
- 2) Fluktuationsbindung
 - (i) Van-der-Waals-Kräfte
 - (ii) Lennard-Jones-Potential
 - (iii) Edelgaskristalle
- 3) Ionenbindung
 - (i) Bindungsenergie
 - (ii) Inonenkristalle
- 4) Kovalente Bindungen
- 5) Metallische Bindungen
- 6) Wasserstoffbrückenbindung

 Festkörperphysik — Eigenschaften fester Materialien <u>Atomkerne + Elektronen</u> 10^{23}

1.1 Klassen von Festkörpern

- Isolatoren
- Halbleiter
- \bullet Metalle
- \bullet Supraleiter

1.2 Fundamentale Konzepte

- Schrödingergleichung
- Pauli-Prinzip
- Coulombsche-Wechselwirkung
- Maxwellgleichungen
- Statistische Mechanik

Unterschiedliche Atomare Ordnung

/

idelale Kristalle

ideale amorphe Festkörper

1.3 5 Bindungstypen

- 1) Fluaktions-Bindung
- 2) Ionenbindung
- 3) Kovalente-Bingungen
- 4) metallische Bindungen
- 5) Wasserstoffbrückenbindung

1.4 zweite Periode

	Li	Ве	В	С	N_2	O_2	F_2	Ne
Bindungsenergie eV/Atom	1,6	3,3	5,8	7,4	4,9	2,6	0,8	0,02
Schmelztemperatur K	453	1560	2348	4765	62	54	53	24

metall. charakter. Bindung \

alente ___

Molekülkristalle

Potential (Abstoßung) zwischen neutralen Atomen (Molekülen) mit abgeschlossener Elektronenschale

2

$$\phi(r) = \frac{A}{r^m}$$
, $m = 12$ oder $\phi(r) = A' e^{r/\rho}$

1.5 Van-der-Waals-Bindung

$$\varphi(r) \sim \frac{\vec{P}_1 \vec{P}_2}{r^3} - \frac{3(\vec{P}_1 \vec{r})(\vec{P}_2 \vec{r})}{r^5}$$

$$\vec{P}_1 \parallel \vec{P}_2 \to \varphi(r) = -\frac{2P_1 P_2}{r^3}$$

$$\varphi \sim -\frac{P_1 P_2}{r^3} \sim \frac{1}{r^6}$$
(1)

(1) heißt Van-der-Waal-Potential

$$\varphi(r) = \frac{A}{r^{12}} - \frac{B}{r^6} \equiv \underbrace{4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - (\sigma)^6 \right]}_{\text{Lennard-Jones-Potential}} \qquad A = 4\varepsilon \sigma^{12}, \ B = 4\varepsilon \sigma^6$$

Van der Waals Bindung \rightarrow Bindungsenergie von Edelgaskristallen

$$U_B = \frac{1}{2} \sum_{m} \phi_m = \frac{N}{2} \phi_m = 2N\varepsilon \sum_{n \neq m} \left[\underbrace{\left(\frac{\sigma}{r_{mn}}\right)^{12} - \left(\frac{\sigma}{r_{mn}}\right)^6}_{\text{Lennard-Jones-Potential}} \right]$$

$$r_{mn}=R~p_{mn};~p_{mn}=1,~\sqrt{2}~,~$$
 2 , ... Bindungsenergie eines Kristalls mit N Atomen

$$U = 2N\varepsilon \left[\left(\frac{\sigma}{R} \right)^{12} \underbrace{\left(\frac{12}{1^{12}} + \frac{6}{\sqrt{2}^{12}} + \ldots \right)}_{12,1319...} - \left(\frac{\sigma}{R} \right)^{6} \underbrace{\left(\frac{12}{1^{6}} + \frac{6}{\sqrt{2}^{6}} + \ldots \right)}_{14,4539...} \right]$$

$$\begin{split} \left|\frac{\mathrm{d}U_B}{\mathrm{dR}}\right|_{R=R_0} &= 0 \qquad \left|\frac{\mathrm{d}U_B}{\mathrm{dR}^2}\right|_{R=R_0} > 0;\\ R_0 &= 1,09\sigma \qquad |U_B|_{\mathrm{Atom}} \sim 10^{-2} - 10^{-1} \; \mathrm{eV} \end{split}$$

2. Vorlesung

fcc force centered cubic, kubisch flächenzentrierte Struktur

- 2 Struktur der Festkörper
- 3 Strukturbestimmung und reziproke Gitter
- 4 Strukturelle Defekte
- 5 Gitterdynamik
- 6 Elastische Eigenschaften, Phononen
- 7 Isolatoren
- 8 Fermi-Gas freier Elektronen
- 9 Energiebänder und Fermiflächen/-surfaces
- 10 Dynamik von Kristallelektronen
- 11 Halbleiter
- 12 Magnetismus
- 13 Suptraleitung