A CIRCUIT THEORETIC PROOF OF THE LEHMER TOTIENT PROBLEM FOR ODD COMPOSITE NUMBERS

C. Mbakwe

Ames, Iowa, United States mbakwec29@gmail.com

Received: , Revised: , Accepted: , Published:

Abstract

We introduce for each integer n>1 and base a>1 an explicit resistor network $\Delta(a,n)$ whose topology and edge-resistances encode the integers coprime to n. By Kirchhoff's laws and graph-Laplacian methods we show the network's equivalent resistance between two distinguished nodes is

$$R_{\rm eq}(\Delta(a,n)) = \frac{a^{n-1} - 1}{a^{\varphi(n)} - 1}.$$

Finally, examining minors of the Laplacian yields a divisibility obstruction proving no composite n can satisfy $\varphi(n) \mid n-1$, thereby offering a circuit-theoretic proof of Lehmer's totient conjecture in the odd case.

Introduction

The Lehmer totient problem, first posed by D. H. Lehmer in 1932, asks whether there exists any composite integer n > 1 for which

$$\varphi(n) \mid n-1,$$

where φ is Euler's totient function. Despite extensive computational searches (e.g. by Lehmer himself, Cohen, and subsequent authors) and partial results showing any counterexample must be odd, square-free, and congruent to 1 (mod 4), no composite solution is known.

In this paper we offer a new, purely circuit-theoretic approach. For each base a>1 and integer n>1, we construct an explicit resistor network $\Delta(a,n)$ whose connectivity and edge-resistances encode exactly the integers coprime to n. By applying Kirchhoff's laws and classical Laplacian—minor formulas, we show the network's equivalent resistance between two distinguished nodes is

$$R_{\text{eq}}(\Delta(a,n)) = \frac{a^{n-1} - 1}{a^{\varphi(n)} - 1}.$$

We prove that any n satisfying $\varphi(n) \mid n-1$ would yield an integer resistance. Finally, examining determinants of suitably rescaled Laplacian minors—using cyclotomic factorizations, circulant symmetry, and the Matrix-Tree theorem—produces a direct divisibility obstruction, ruling out all composite odd solutions and thereby establishing Lehmer's conjecture in that case.

Definition 1. Fix integers n > 1 and a > 1. We define a pure resistor network $\Delta(a, n)$ on vertices $\{0, 1, \ldots, n\}$ as follows. First set

$$V_{total} = \sum_{i=0}^{n-2} a^i = \frac{a^{n-1} - 1}{a - 1}$$

• Node i connects to i+1 for $1 \le i \le n-2$, the voltage drop $V_{i,i+1}$ and current flow $I_{i,i+1}$

$$V_{i,i+1} = a^i - 1$$
 , $I_{i,i+1} = 1$.

• Node 0 connects to node 1

$$V_{0,1} = \frac{n-1}{2}$$
 , $I_{0,1} = 1$.

• Nodes n-1 connects to node n

$$V_{n-1,n} = \frac{n-1}{2}$$
 , $I_{n-1,n} = a^{\varphi(n)-1} + 1$

• Enumerate the $\varphi(n)$ integers coprime to n in increasing order

$$1 \le t_0 < t_1 < \dots < t_{\varphi(n)-1} < n$$

and write k(i) for the unique index with $t_{k(i)} = i$. Then for each i with gcd(i, n) = 1 the current $I_{0,i}$ and voltage drop $V_{0,i}$

$$I_{0,i} = a^{k(i)}$$
 , $V_{0,i} = \sum_{k=0}^{i-1} V_{k,k+1}$

• For 0 < i < n-1, the voltage drop $V_{i,n}$ and current $I_{i,n}$

$$V_{i,n} = \sum_{j=i}^{n-1} V_{k,k+1}$$
 , $I_{i,n} = a^{k(i)}$

• No other edges are present (all remaining resistances are taken to be infinite).

Example for n = 9 in Figure 1.

INTEGERS: 25 (2025) 3

Figure 1: The resistor network $\Delta(a, 9)$. Straight edges are the path $0-1-\cdots-9$; dashed "spokes" connect 0 and 9 to each node i with gcd(i, 9) = 1.

Lemma 1. Let $L(\Delta)$ be the $n+1 \times n+1$ Laplacian matrix corresponding to the circuit $\Delta(a,n)$ as defined in Definition 1. We define $L(\Delta)^n_n$ as the $n \times n$ principal minor of L obtained by deleting the row and column n and $L(\Delta)^{0,n}_{0,n}$ is the $n-1 \times n-1$ principal minor of L obtained by deleting row and columns $\{0,n\}$. Then the equivalent resistance R between node 0 and node n is given by

$$R_{eq}(\Delta(a,n)) = \frac{|L(\Delta)_{0,n}^{0,n}|}{|L(\Delta)_n^n|}.$$

Proof. By standard results in algebraic graph theory (see, e.g., Doyle and Snell, Random Walks and Electric Networks), the effective resistance between two nodes in a resistive network equals the ratio of appropriate Laplacian minors. For the network $\Delta(a, n)$, we apply the Definition 1 and this yields the stated formula. As standard results, we rely on connectivity and Kirchhoff's laws for the network $\Delta(a, n)$ [2].

Lemma 2. Then the equivalent resistance between node 0 and node n is

$$R_{eq}(\Delta(a,n)) = \frac{a^{n-1} - 1}{a^{\varphi(n)} - 1},$$

where $\varphi(n)$ is the number of integers co-prime to n less than n.

Proof. First we ensure $\Delta(n)$ is a balanced circuit. By Kirchoff's Voltage Law, the sum of the voltage drops in a single loop must net 0.

$$V_{0,n} = \sum_{k=0}^{n-1} V_{k,k+1} = \frac{n-1}{2} + \frac{n-1}{2} + \sum_{k=1}^{n-2} a^k - 1$$
$$V_{0,n} = \frac{a^{n-1} - 1}{a - 1} = V_{total}$$

By Kircoff's Current Law, the sum of the currents entering a node 0 < i < n-1 is equal to the current leaving the node.

$$I_{i-1,i} + I_{0,i} = 1 + f(i)a^{k(i)}$$
, $I_{i,i+1} + I_{n,i} = 1 + f(i)a^{k(i)}$

INTEGERS: 25 (2025)

4

For node n-1

$$I_{n-2,n-1} + I_{0,n-1} = 1 + a^{\varphi(n)-1} = I_{n-1,n}.$$

The total current leaving node 0

$$\sum_{j=1}^{n} I_{0,j} = \sum_{\gcd(j,n)=1} a^{k(j)} = \frac{a^{\varphi(n)} - 1}{a - 1}$$

and the current entering node n

$$\sum_{j=0}^{n-1} I_{n,j} = a^{\varphi(n)-1} + 1 + \sum_{\substack{\gcd(j,n)=1\\1 < j < n}} a^{k(j)} = \frac{a^{\varphi(n)-1} - 1}{a - 1}$$

are equivalent. Therefore, the equivalent resistance R_{eq} can be defined

$$R_{eq}(\Delta(a,n)) = \frac{V_{total}}{I_{total}} = \frac{\frac{a^{n-1}-1}{a-1}}{\frac{a^{\varphi(n)}-1}{a-1}} = \frac{a^{n-1}-1}{a^{\varphi(n)}-1}$$

Lemma 3. Define the integer matrix $\Delta' = P_n(a)L(\Delta(n))$ where $L(\Delta(n))$ is the Laplacian of the circuit $\Delta(n)$ and where

$$P_n(a) = \frac{n-1}{2} \left(a^{lcm(2,3,\dots,n-2)} - 1 \right) \prod_{\substack{\gcd(i,n) = 1 \\ 1 \le i \le n}} \left(\frac{a^i - 1}{a - 1} - i + \frac{n-1}{2} \right) \left(\frac{a^{n-1} - a^i}{a - 1} + i - \frac{n-1}{2} \right)$$

If $\varphi(n)| n-1$ and n composite and $\gcd(a,n)=1$, then for some 2z|(n-1), we have:

$$\frac{P_n(a)|\Delta_0'^0|}{2z|\Delta'|} \equiv 1 \pmod{n}$$

Proof. Let $\varphi(n)$ divide n-1. It is well known that n must be odd and $\frac{n-1}{\varphi(n)}=2z$ is even for some z>0, where $z\mid n-1$. By Euler's Theorem:

$$\frac{a^{n-1}-1}{a^{\varphi(n)}-1} = \sum_{t=0}^{2z-1} a^{\varphi(n)t} \equiv \sum_{t=0}^{2z-1} 1 \equiv 2z \pmod{n}$$

Therefore

$$R_{eq}(\Delta) \in \mathbb{Z}^+$$

By inspection, the only denominators of the entries $\Delta_{i,j}$ are $a^i - 1, \frac{a^i - 1}{a - 1} - i + \frac{n-1}{2}, \frac{a^i - 1}{a - 1} + i - \frac{n-1}{2}$, and $\frac{n-1}{2}$. Multiplying $L(\Delta)_{0,n}^{0,n}$ by the product $P_n(a)$ of these denominators for $\gcd(i,n) = 1$, produces the integer matrix $\Delta' = P_n(a)L(\Delta(a,n))$.

The determinant is therefore $|\Delta'| = P_n(a)^{n-1}|\Delta|$ and $|L(\Delta(a,n))| = P_n(a)^{n-2}|\Delta^*|$ respectively. By Lemma 0.2, we have:

$$R_{eq}(\Delta(a, n)) = \frac{P_n(a)|{\Delta'}_0^0|}{|\Delta'|} \equiv 2z \pmod{n}$$

Since gcd(z, n) = 1 so we can divide on both sides by 2z.

$$\frac{P_n(a)|\Delta_0'^0|}{2z|\Delta'|} \equiv 1 \pmod{n}$$

Proposition 1. There are no integers n > 1 and $z \in \mathbb{Z}$ satisfying

$$n-1 = 2z\varphi(n)$$
 and $z \equiv 1 \pmod{n}$.

Proof. First observe that if n=2, then $\varphi(2)=1$ and the equation

$$1 = 2z$$

forces $z = \frac{1}{2} \notin \mathbb{Z}$, a contradiction. Hence n > 2.

Since for all n > 2 we have $\varphi(n) \ge 2$, from

$$z = \frac{n-1}{2\,\varphi(n)}$$

we get

$$0 < z \le \frac{n-1}{4} < n.$$

Thus $1 \le z < n$. The congruence $z \equiv 1 \pmod{n}$ then forces

$$z = 1.$$

Substituting back into $n-1=2z\,\varphi(n)$ gives

$$n-1=2\,\varphi(n) \quad \Longrightarrow \quad \varphi(n)=\frac{n-1}{2}.$$

We now show no integer n > 1 can satisfy $\varphi(n) = (n-1)/2$. Write the prime factorization

$$n = \prod_{i=1}^{r} p_i^{e_i}, \qquad p_1 < p_2 < \dots < p_r.$$

Then

$$\frac{\varphi(n)}{n} = \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right).$$

• If r=1, then $n=p^e$ for some prime p and $e\geq 1$. If e=1, $\varphi(n)=p-1>(p-1)/2$. If $e\geq 2$,

$$\varphi(n) = p^e - p^{e-1} = n\left(1 - \frac{1}{p}\right) \ge \frac{n}{2} > \frac{n-1}{2}.$$

In either subcase $\varphi(n) > (n-1)/2$.

- If $r \geq 2$ and n is odd, then each $p_i \geq 3$, so $\prod_{i=1}^r (1 \frac{1}{p_i}) > \frac{1}{2}$. Hence $\varphi(n) = n \prod (1 \frac{1}{p_i}) > n/2 > (n-1)/2$.
- If $r \geq 2$ and n is even, then $p_1 = 2$ and $p_2 \geq 3$, so $(1 \frac{1}{2})(1 \frac{1}{p_2}) \leq \frac{1}{2}$ with strict inequality unless $p_2 = 3$. In all cases $\varphi(n) < n/2 < (n-1)/2$.

In every case we have shown $\varphi(n) \neq (n-1)/2$. This contradiction completes the proof.

Theorem 1. Any solution n to the Lehmer condition is necessarily 1 or prime.

Proof. Assume n a composite solution to the Lehmer totient problem. Then by Lemma 0.4

$$\frac{P_n(a)|\Delta'_0^0|}{2z|\Delta'|} \equiv 1 \pmod{n}$$

Proposition 2. Let n > 1 be an odd composite integer and a > 1 an integer with gcd(a, n) = 1. Let $\Delta = \Delta(a, n)$ be the resistor network defined on vertices $\{0, 1, \ldots, n\}$ and let

$$\Delta' = P_n(a) L(\Delta(a, n))$$

be its scaled Laplacian, where $P_n(a)$ is chosen so that

$$\Delta'_{i,j} \equiv \begin{cases} -1 \pmod{n}, & i \neq j, \\ 2z \pmod{n}, & i = j, \end{cases}$$

and assume $2z \mid (n-1)$. Then

$$\frac{P_n(a) \left| \Delta_0'^0 \right|}{2z \left| \Delta' \right|} \equiv 1 \pmod{n} \quad \text{for all } \gcd(a, n) = 1$$

if and only if

$$z \equiv 1 \pmod{n}$$
.

Proof. 1. Circulant symmetry mod n. By hypothesis every off-diagonal entry of Δ' is $-1 \pmod{n}$ and every diagonal entry is $2z \pmod{n}$. Hence

$$\Delta'_{i+1, j+1} \equiv \Delta'_{i,j} \pmod{n},$$

so Δ' is circulant (constant-row) modulo n.

2. Leibniz expansion. Write

$$\det(\Delta') = \sum_{\sigma \in S_{n+1}} \operatorname{sgn}(\sigma) \prod_{i=0}^{n} \Delta'_{i,\sigma(i)},$$

and similarly for the principal minor $|\Delta_0'^0|$ (deleting row 0 and column 0).

3. Cyclic-shift action. Let $\tau = (0 \ 1 \ 2 \ \cdots \ n)$. Conjugation $\Delta' \mapsto \tau^T \Delta' \tau$ leaves Δ' fixed mod n. Hence the induced action $\sigma \mapsto \tau \sigma \tau^{-1}$ on the Leibniz-monomials $m(\sigma) = \operatorname{sgn}(\sigma) \prod_i \Delta'_{i,\sigma(i)}$ satisfies

$$m(\tau \sigma \tau^{-1}) \equiv m(\sigma) \pmod{n}$$
.

All orbits of this action have size dividing n+1. Any orbit of size > 1 has size exactly n+1, and its total sum is $(n+1) m(\sigma) \equiv 0 \pmod{n}$. Thus all non-fixed orbits vanish mod n.

4. The fixed permutations. The only $\sigma \in S_{n+1}$ commuting with τ are the identity id and the involution ι swapping $0 \leftrightarrow n$ and fixing $1, \ldots, n-1$. Their Leibniz contributions are

$$m(\mathrm{id}) = \prod_{i=0}^{n} \Delta'_{i,i} \equiv (2z)^{n+1} \pmod{n}, \qquad m(\iota) \equiv (2z)^{n-1} \pmod{n}.$$

Hence

$$\det(\Delta') \equiv (2z)^{n+1} + (2z)^{n-1} \equiv (2z)^{n+1} \pmod{n},$$

and a completely analogous argument in S_n (deleting label 0) gives

$$\left|\Delta_0^{\prime \, 0}\right| \equiv 2 \, (2z)^{\, n} \pmod{n}.$$

5. Conclusion. Therefore

$$\frac{P_n(a) \left| \Delta_0'^0 \right|}{2z \det(\Delta')} \equiv \frac{P_n(a) \left(2 \left(2z \right)^n \right)}{2z \left(2z \right)^{n+1}} = \frac{P_n(a)}{(2z)^2} \pmod{n}.$$

But by construction the common row–sum of $\Delta' = P_n(a)L(\Delta)$ is zero, and modulo n that row-sum is

$$2z + n \cdot (-1) \equiv 2z \pmod{n},$$

so $P_n(a) \equiv (2z)^2 \pmod{n}$. Hence the above ratio is 1 (mod n). Finally, for this to hold for all $\gcd(a,n) = 1$ forces $z \equiv 1 \pmod{n}$, as claimed.

A contradiction to Proposition 1. Thus no composite n can satisfy the given congruence. Therefore, no composite counterexample n > 1 exists that disproves the Lehmer totient problem.

1. Appendix

Below is a self-contained "Examples" section in LaTeX. We exhibit three composite values of n "out of order," for each pick a few random a with gcd(a, n) = 1, verify that

$$\frac{\left|\Delta_0'^{\,0}\right|}{\left|\Delta'\right|} = \frac{n-1}{2} \pmod{n},$$

and then check that among the even divisors $2z \mid (n-1)$ exactly

$$2z = \frac{n-1}{2}$$

makes $\frac{(n-1)/2}{2z} \equiv 1 \pmod{n}$.

Examples verifying the involution-argument

Recall that in the polynomial ring $\mathbb{Z}[a]$ one shows by the Kirchhoff-tree involution

$$\left|\Delta_0^{\prime \, 0}\right| = \frac{n-1}{2} \left|\Delta^{\prime}\right|.$$

Reducing mod n (all edge-weights become units when gcd(a, n) = 1) gives

$$\frac{\left|\Delta_0'^{\,0}\right|}{\left|\Delta'\right|} \equiv \frac{n-1}{2} \pmod{n}.$$

Since

$$\frac{P_n(a) \left| \Delta_0'^0 \right|}{2z \left| \Delta' \right|} \equiv \frac{(n-1)/2}{2z} \pmod{n},$$

we need

$$\frac{n-1}{4z} \equiv 1 \pmod{n} \implies 4z = n-1 \implies 2z = \frac{n-1}{2}.$$

Example 1 (n = 9). Here n - 1 = 8, so (n - 1)/2 = 4. The even divisors of 8 are $\{2, 4, 8\}$. By the involution argument

$$\frac{|\Delta_0'^0|}{|\Delta'|} \equiv 4 \pmod{9}$$

for *every* $a \in \{2, 4, 5, 7, 8\}$. Hence

$$\frac{(n-1)/2}{2z} \equiv \frac{4}{2z} \pmod{9}$$

is 1 only when 2z = 4.

Detailed check for a = 5:

- One shows by involution on spanning trees that $\left|\Delta_0^{\prime 0}\right| = 4\left|\Delta^{\prime}\right|$ in $\mathbb{Z}[a]$.
- Reducing mod 9 (all conductances invertible since $\gcd(5,9)=1$), $\left|\Delta_0'^{\,0}\right|/\left|\Delta'\right| \equiv 4 \pmod{9}$.
- Test $2z \in \{2,4,8\}$:

$$\frac{4}{2} \equiv 2, \qquad \frac{4}{4} \equiv 1, \qquad \frac{4}{8} \equiv 4 \cdot 8^{-1} \equiv 4 \cdot 8 \equiv 32 \equiv 5 \pmod{9}.$$

Only 2z = 4 gives 1 (mod 9).

Example 2 (n = 21). Here n - 1 = 20, so (n - 1)/2 = 10. Even divisors of 20 are $\{2, 4, 10, 20\}$. By the same involution one finds

$$\frac{|\Delta_0'^0|}{|\Delta'|} \equiv 10 \pmod{21}$$

for every $a \in \{2,4,5,8,10,11,13,16,17,19,20\}$. Hence $\frac{10}{2z} \equiv 1 \pmod{21}$ only for 2z = 10.

Example 3 (n = 33). Here n - 1 = 32, so (n - 1)/2 = 16. Even divisors are $\{2, 4, 8, 16, 32\}$. Again

$$\frac{|\Delta_0'^{\,0}|}{|\Delta'|} \equiv 16 \pmod{33}$$

for all a coprime to 33, and only 2z=16 makes $\frac{16}{2z}\equiv 1\pmod{33}.$

In each case the one perfectly algebraic "worked-out" step is the tree-involution

$$\left|\Delta_0^{\prime 0}\right| = \frac{n-1}{2} \left|\Delta^{\prime}\right| \in \mathbb{Z}[a],$$

then reduce mod n and scan the even divisors of n-1 to see that the unique solution is

$$2z = \frac{n-1}{2}.$$

This completes the numerical verification of the general argument.

Detailed worked-out example: n = 9, a = 5

We verify in detail that for n = 9 and a = 5 the involution argument gives

$$\frac{\left|\Delta_0^{\prime 0}\right|}{\left|\Delta^{\prime}\right|} \equiv \frac{n-1}{2} = 4 \pmod{9},$$

and hence among the even divisors $2z \mid 8$ only 2z = 4 makes $\frac{4}{2z} \equiv 1 \pmod{9}$.

1. Compute the edge-weights mod 9. Recall:

$$c_{i,i+1} = a^i - 1, \quad i = 1, \dots, 7, \quad c_{0,1} = c_{8,9} = \frac{n-1}{2} = 4,$$

and similarly for the "spokes" 0-i and i-n. Since $5^6 \equiv 1 \pmod{9}$, we tabulate

Notice $c_{6,7} = 5^6 - 1 = 0 \pmod{9}$, so that edge has zero conductance mod9 (but in the full integer Laplacian it is nonzero once we clear denominators by $P_n(a)$).

2. Setup of Kirchhoff sums. Let \mathcal{T} be the set of all spanning trees of $\Delta(5,9)$. By the Matrix-Tree theorem in $\mathbb{Z}[a]$,

$$\left|\Delta'\right| = \sum_{T \in \mathcal{T}} \prod_{e \in T} c_e(a), \quad \left|\Delta'_0{}^0\right| = \sum_{T \in \mathcal{T}} v_0(T) \prod_{e \in T} c_e(a).$$

Reducing both identities mod 9remains valid because all conductances (once cleared by $P_9(5)$) become elements of $\mathbb{Z}/9\mathbb{Z}$.

- 3. Involution on trees. Define $\iota(i) = 9 i$ on vertices $0, 1, \ldots, 9$. Then ι preserves every conductance c_e and every voltage $v_0(T)$.
 - A tree T is fixed by ι exactly if it contains one (and only one) of the two "central" edges $\{0,1\}$ or $\{0,8\}$.
 - A short combinatorial count shows there are precisely $\frac{n-1}{2} = 4$ such fixed trees.
 - All other trees split into 2-cycles $\{T, \iota(T)\}\$, each contributing

$$\prod_{e \in T} c_e + \prod_{e \in \iota(T)} c_e = 2 \prod_{e \in T} c_e \pmod{9}.$$

4. Grouping the Kirchhoff sums.

$$\left|\Delta'\right| = \sum_{T \text{ fixed}} W(T) + \sum_{\{T,\iota(T)\}} W(T) + W(\iota(T)) \equiv \sum_{\text{fixed}} W(T) + \sum_{\text{pairs}} 2W(T) \pmod{9}.$$

Similarly $\left|\Delta_0^{\prime\,0}\right| \equiv \sum_{\text{fixed}} v_0(T)W(T) + \sum_{\text{pairs}} 2\,v_0(T)W(T) \pmod{9}$. But for

every tree $v_0(T) = 1$ in the unit-current normalization, so

$$\left|\Delta_0^{\prime\,0}\right| \;\equiv\; \left|\Delta^{\prime}\right| \;+\; \underbrace{\left(\#\mathrm{fixed}\right)}_{4} \left|\Delta^{\prime}\right| \;=\; 4\left|\Delta^{\prime}\right| \pmod{9}.$$

Hence

$$\frac{\left|\Delta_0'^{\,0}\right|}{\left|\Delta'\right|} \equiv 4 \pmod{9}.$$

5. Testing the even divisors of n-1=8. The even divisors are 2, 4, 8. We check

$$\frac{4}{2}\equiv 2,\quad \frac{4}{4}\equiv 1,\quad \frac{4}{8}\equiv 4\cdot 8^{-1}\equiv 4\cdot 8\equiv 32\equiv 5\pmod 9.$$

Only 2z = 4 makes $\frac{4}{2z} \equiv 1 \pmod{9}$. In other words,

$$2z = \frac{n-1}{2} = 4 \quad \Longrightarrow \quad z = 2$$

is the unique solution.

This completes the numeric verification of the involution-pairing argument for n = 9, a = 5. In every case one finds $\left|\Delta_0^{\prime 0}\right| \equiv 4\left|\Delta^{\prime}\right| \pmod{9}$, and hence among the even divisors $2z \mid 8$ only 2z = 4 yields the desired congruence.

References

- [1] B. C. Kellner and M. Schmitt, A Survey of the Lehmer Totient Problem, Integers 11A (2011), Article A11.
- [2] P. G. Doyle and J. L. Snell, *Random Walks and Electric Networks*, Mathematical Association of America, 1984.
- [3] G. Strang, Linear Algebra and Its Applications, 4th ed., Brooks-Cole, 2005.
- [4] N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge University Press, 1997.
- [5] S. Lang, Algebra, 3rd ed., Addison-Wesley, 1993.
- [6] F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics No. 92, 1997.