Estabilidade Estabilidade Interna Teorema de Lyapunov Sistemas Variantes no tempo

Estabilidade

Valter J. S. Leite¹

¹CEFET-MG / Campus V Divinópolis, MG - Brasil

Programa de Pós-Graduação em Engenharia Elétrica Associação ampla entre CEFET–MG e UFSJ

O que nos espera?

- Estabilidade
 - Estabilidade em sistemas multivariáveis
 - Sistemas discretos no tempo
- Estabilidade Interna
 - Sistemas Discretos no tempo
- Teorema de Lyapunov
 - Em tempos recentes...
- Sistemas Variantes no tempo

5.1 Estabilidade

Introduzir conceitos de estabilidade:

- Estabilidade de entrada-saída;
- Estabilidade interna;
- Teorema de Lyapunov;
- Estabilidade de sistemas variantes no tempo.

Bibliografia

Use:

- Capítulos 8 (estabilidade interna) e 9 (estabilidade entrada-saída) do livro do Hespanha.
- Capítulo 5 do livro do Chen.

5.2 Estabilidade de entrada-saída de sistemas LIT

⇒ Uma entrada é chamada limitada se

$$|u(t)| \le u_m < \infty$$
, para todo $t \ge 0$.

⇒ Um sistema é chamado BIBO estável (Bounded-input bounded-output) se toda entrada limitada excita uma saída limitada.

Um sistema SISO invariante no tempo descrito pela integral de convolução é BIBO estável se e somente se g(t) é absolutamente integrável em $[0,\infty)$, ou

$$\int_0^\infty |g(t)|dt \le M < \infty$$

para alguma constante M.

Se um sistema com resposta ao impulso g(t) é BIBO estável , então, quando $t \to \infty$:

- **1** A saída excitada por u(t) = a, para $t \ge 0$, tende a $\hat{g}(0).a$.
- ② A saída excitada por $u(t) = \operatorname{sen}(\omega_0 t)$, para $t \ge 0$, tende a

$$|\hat{g}(j\omega_0)|$$
sen $(\omega_o t + \angle \hat{g}(j\omega_0))$

sendo $\hat{g}(s)$ a transformada de Laplace de g(t).

Um sistema SISO com função de transferência racional própria $\hat{g}(s)$ é BIBO estável se e somente se todo polo de $\hat{g}(s)$ tem parte real negativa, ou seja, os polos estão no semi-plano esquerdo do plano complexo s.

Exemplo 5.1

Considere um sistema com realimentação positiva (ver Figura 2.5(a) do Chen). A resposta ao impulso é dada pela relação

$$g(t) = \sum_{i=1}^{\infty} a^i \delta(t-i).$$

Aplicando o Teorema 5.1

$$\int_0^\infty |g(t)|dt = \sum_{i=1}^\infty |a|^i = \begin{cases} \infty & \text{se } |a| \ge 1, \\ \frac{|a|}{1-|a|} < \infty & \text{se } |a| < 1. \end{cases}$$

conclui-se que, se o |a| for menor que 1, o sistema é estável.

Resultados para sistemas multivariáveis

Teorema 5.M1

Um sistema multivariável com matriz resposta ao impulso $\mathbf{G}(t) = [g_{ij}(t)]$ é BIBO estável se e somente se toda $g_{ij}(t)$ é absolutamente integrável em $[0,\infty)$.

Teorema 5.M3

Um sistema multivariável com matriz de transferência racional própria $\hat{\mathbf{G}}(s) = [\hat{g}_{ij}(s)]$ é BIBO estável se e somente se todo polo de toda $\hat{g}_{ij}(s)$ tem parte real negativa.

Observações:

Todo polo de $\hat{\mathbf{G}}(s)$ é um autovalor de $\mathbf{A}.$

Nem todo autovalor de ${\bf A}~$ é um polo de $\hat{{\bf G}}(s).$ Isso é devido ao cancelamento.

Exemplo 5.2

O circuito da Figura 4.2 (b) do Chen é descrito pelas equações

$$\dot{x}(t) = x(t) + 0u(t), y(t) = 0.5x(t) + 0.5u(t),$$

tem autovalor real positivo $(\lambda=1)$. A função de transferência é dada por $\hat{g}(s)=0.5(s-1)^{-1}0+0.5=0.5$.

Resultados em tempo discreto

 \Rightarrow Uma sequência de entrada u[k] é chamada limitada se

$$|u[k]| \le u_m < \infty$$
, para $k = 1, 2, \dots$

⇒ Um sistema discreto é chamado BIBO estável (Bounded-input bounded-output) se toda sequência de entrada limitada excita uma sequência de saída limitada.

Um sistema discreto SISO, descrito pelo somatório de convolução, é BIBO estável se e somente se g[k] é absolutamente somável em $[0,\infty)$, ou seja,

$$\sum_{k=0}^{\infty} |g[k]| \le M < \infty$$

para alguma constante M.

Se um sistema discreto com resposta ao impulso g[k] é BIBO estável , então, quando $k \to \infty$:

- **①** A saída excitada por u[k] = a, para $k \ge 0$, tende a $\hat{g}(1).a$.
- ② A saída excitada por $u[k] = \operatorname{sen}(\omega_0 k)$, para $k \ge 0$, tende a

$$|\hat{g}(e^{j\omega_0})|\operatorname{sen}(\omega_o k + \angle \hat{g}(e^{j\omega_0}))$$

sendo $\hat{g}(z)$ é a transformada z de g[k].

Um sistema discreto SISO com função de transferência racional própria $\hat{g}(z)$ é BIBO estável se e somente se todo polo de $\hat{g}(z)$ tem magnitude menor que 1, ou seja, os polos estão dentro do círculo unitário no plano complexo z.

Exemplo 5.3

Considere um sistema LTI discreto com sequencia de resposta ao impulso dada por g[k]=1/k, para $k=1,2,\ldots$, e g[0]=0.

$$\begin{split} S &:= & \sum_{k=0}^{\infty} |g[k]| = \sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \\ &= & 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) + \dots \\ S &> & 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \infty \end{split}$$

A sequencia de resposta ao impulso não é absolutamente somável, ou seja, o sistema não é BIBO estável.

/ sistemas discretos multivariáveis

Teorema 5.MD1

Um sistema discreto MIMO com matriz de resposta ao impulso $G[k] = [g_{ij}[k]]$ é BIBO estável se e somente se toda $g_{ij}[k]$ é absolutamente somável.

Teorema 5.MD3

Um sistema discreto MIMO com matriz de transferência racional própria $\hat{\mathbf{G}}(z) = [\hat{g}_{ij}(z)]$ é BIBO estável se e somente se todo polo de toda $\hat{g}_{ij}(z)$ tem magnitude menor que 1.

5.3 Estabilidade interna

A estabilidade interna, ou estabilidade da resposta a entrada zero, é a resposta de

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$$

excitada por um estado inicial x_0 diferente de 0. A solução do sistema é dada por

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0.$$

Definição 5.1

A resposta à entrada zero de $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ é marginalmente estável ou estável no sentido de Lyapunov se todo estado inicial finito \mathbf{x}_0 excita uma resposta limitada.

A resposta é assintoticamente estável se todo estado inicial finito excita uma resposta limitada, a qual, tende a ${\bf 0}$ quando $t \to \infty.$

Definição 5.4

- ① A equação $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ é marginalmente estável se e somente se todos autovalores de \mathbf{A} têm parte real zero ou menor que zero e aqueles que possuem parte real zero são raízes simples do polinômio mínimo de \mathbf{A} .
- ② A equação $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ é assintoticamente estável se e somente se todos os autovalores de \mathbf{A} têm parte real negativa.

Obs.: A transformação de equivalência $\bar{\mathbf{x}} = \mathbf{P}\mathbf{x}$ não altera a estabilidade da equação $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$.

Exemplo 5.4:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x}, \quad \text{Sistema estável}$$

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \mathbf{x}, \quad \text{Sistema instável}$$

Os sistemas possuem os mesmos autovalores. No entanto, no segundo caso $\lambda=0$ não é raíz simples do polinômio mínimo.

Observações

- Todo polo de $\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ é um autovalor de \mathbf{A} .
- Estabilidade assintótica implica BIBO estabilidade.
- BIBO estabilidade, em geral, n\u00e3o implica estabilidade assint\u00f3tica.

Estabilidade interna em tempo discreto

Teorema 5.4D4

- ① A equação $\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k]$ é marginalmente estável se e somente se todos autovalores de \mathbf{A} tem magnitude menor ou igual a 1 e aqueles que são 1 são raízes simples do polinômio mínimo de \mathbf{A} .
- ② A equação $\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k]$ é assintoticamente estável se e somente se todos os autovalores de \mathbf{A} têm magnitude menor que 1.

5.4 Teorema de Lyapunov

Seja $V: \mathbb{R}^n \to \mathbb{R}: \mathbf{x} \mapsto V(\mathbf{x})$ uma função que assume valores reais e $D \subset \mathbb{R}^n$ um conjunto compacto que contém a origem $\mathbf{x} = \mathbf{0}$ no seu interior.

Definição: A função $V=V(\mathbf{x})$ é definida (semidefinida) positiva em D em relação ao ponto de equilíbrio $\mathbf{x}=\mathbf{0}$, se

- **1** V é continuamente diferenciável $(V \in C^1)$,
- **2** $V(\mathbf{0}) = 0$,
- $V(\mathbf{x}) > (\geq) \quad 0 \text{ para todo } \mathbf{x} \in D, \ \mathbf{x} \neq 0.$

¹ver "Enciclopédia de Automática. Vol. 2, capítulo 3. Editora: Blucher, 2007".

Considere a função $V(\mathbf{x}) = \mathbf{x}' \mathbf{M} \mathbf{x}$ uma medida generalizada de energia. Se o sistema é estável, a energia deve diminuir com o passar do tempo. A derivada da função $V(\mathbf{x})$ ao longo das trajetórias do sistema é:

$$\frac{dV(\mathbf{x})}{dt} = \dot{\mathbf{x}}' \mathbf{M} \mathbf{x} + \mathbf{x}' \mathbf{M} \dot{\mathbf{x}},$$

$$= (\mathbf{A} \mathbf{x})' \mathbf{M} \mathbf{x} + \mathbf{x}' \mathbf{M} (\mathbf{A} \mathbf{x}),$$

$$= \mathbf{x}' \mathbf{A}' \mathbf{M} \mathbf{x} + \mathbf{x}' \mathbf{M} \mathbf{A} \mathbf{x},$$

$$= \mathbf{x}' (\mathbf{A}' \mathbf{M} + \mathbf{M} \mathbf{A}) \mathbf{x},$$

$$= -\mathbf{x}' \mathbf{N} \mathbf{x}.$$

As matrizes M e N têm que ser definidas positiva.

O sistema $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ é estável se todos autovalores da matriz \mathbf{A} têm parte real negativa.

Teorema 5.5

A matriz ${\bf A}$ tem todos autovalores com parte real negativa se e somente se para qualquer matriz simétrica definida positiva ${\bf N}$, a equação de Lyapunov

$$\mathbf{A}'\mathbf{M} + \mathbf{M}\mathbf{A} = -\mathbf{N}$$

tem solução simétrica única \mathbf{M} e \mathbf{M} é definida positiva.

Corolário 5.5: Todos os autovalores da matriz ${\bf A}$ $n \times n$ tem parte real negativa se e somente se para qualquer matriz ${f \bar N}$ $m \times n$ com m < n e com a propriedade

posto
$$O := \text{posto} \begin{bmatrix} \bar{\mathbf{N}} \\ \bar{\mathbf{N}} \mathbf{A} \\ \vdots \\ \bar{\mathbf{N}} \mathbf{A}^{n-1} \end{bmatrix} = n \text{ (posto pleno de coluna)}$$

sendo O uma matriz $nm \times n$, a equação de Lyapunov

$$\mathbf{A}'\mathbf{M} + \mathbf{M}\mathbf{A} = -\mathbf{\bar{N}}'\mathbf{\bar{N}} =: -\mathbf{N}$$

tem solução simétrica única \mathbf{M} e \mathbf{M} é definida positiva.

Se todos os autovalores de ${f A}$ tem parte real negativa, então a equação de Lyapunov

$$\mathbf{A}'\mathbf{M} + \mathbf{M}\mathbf{A} = -\mathbf{N}$$

tem solução única para todo ${f N}$, e a solução pode ser expressa como

$$\mathbf{M} = \int_0^\infty e^{\mathbf{A}'t} \mathbf{N} e^{\mathbf{A}t} dt.$$

A matriz ${\bf A}$ tem todos os autovalores com magnitude menor que ${\bf 1}$ se e somente se para qualquer matriz simétrica definida positiva ${\bf N}$ ou para ${\bf N}=\bar{{\bf N}}'\bar{{\bf N}}$, com a propriedade dada no corolário 5.5, a equação discreta de Lyapunov

$$M - A'MA = N$$

tem solução simétrica única \mathbf{M} e \mathbf{M} é definida positiva.

Se todos os autovalores de ${f A}$ têm módulo menor que 1, então a equação de Lyapunov

$$\mathbf{M} - \mathbf{A}' \mathbf{M} \mathbf{A} = \mathbf{N}$$

tem solução única para todo ${f N}$, e a solução pode ser expressa como

$$\mathbf{M} = \sum_{m=0}^{\infty} (\mathbf{A}')^m \mathbf{N} \mathbf{A}^m.$$

Abordagem moderna

- Como utilizar as ferramentas de análise de estabilidade para projetar sistemas de controle que estabilizem plantas?
- Reformulação do resultado de Lyapunov em termos de inequações.

Teorema

O sistema $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ é assintoticamente estável se e somente se existe \mathbf{P} que satisfaz a desigualdade matricial linear (muito conhecida pela sigla LMI², *Linear Matrix Inequality*) de Lyapunov

$$\begin{aligned} \mathbf{A'P} + \mathbf{PA} &<& \mathbf{0}, \\ \mathbf{P} &>& \mathbf{0}. \end{aligned}$$

²ver livro/pdf em: http://www.stanford.edu/~boyd/lmibook/

5.5 Estabilidade de sistemas LVT

BIBO estabilidade

Um sistema linear variante no tempo (LVT) descrito por

$$y(t) = \int_{t_0}^{t} g(t,\tau)u(\tau)d\tau$$

é BIBO estável se toda entrada limitada excita uma saída limitada.

• A condição que atende a afirmativa acima é

$$\int_{t_0}^t |g(t,\tau)| \, d\tau \le M < \infty,$$

para todo t e t_0 com $t \ge t_0$ e sendo M uma constante finita.

BIBO estabilidade

- A estabilidade de sistemas LVT multivariável é feita verificando se cada elemento de $\mathbf{G}(t,\tau)$ atende a condição estabelecida para o caso monovariável.
- Outra maneira é usar uma norma de matriz, em geral usa-se a norma infinita.
- A resposta ao estado zero de um sistema LVT é BIBO estável se e somente se existem constantes M_1 e M_2 tais que

$$\|\mathbf{D}(t)\| \le M_1 < \infty$$

е

$$\int_{t_0}^t \|\mathbf{G}(t,\tau)\| \, d\tau \le M_2 < \infty.$$

Estabilidades marginal e assintótica

- A equação $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}$ será marginalmente estável se todo estado inicial finito excita uma resposta finita.
- A resposta $\mathbf{x}(t) = \mathbf{\Phi}(t,t_0)\mathbf{x}(t_0)$ é marginalmente estável se e somente se existe uma constante M tal que

$$\|\mathbf{\Phi}(t,t_0)\| \leq M < \infty.$$

 Para que a resposta seja assintoticamente estável é necessário que, além da condição descrita no caso marginalmente estável,

$$\|\mathbf{\Phi}(t,t_0)\| \to 0$$
, quando $t \to \infty$.

Estabilidades marginal e assintótica

- A estabilidade de sistemas LVT não é caracterizada pelos autovalores de $\mathbf{A}(t)$. Ver exemplo 5.5.
- A BIBO estabilidade é invariante sobre qualquer transformação de equivalência.
- As estabilidades marginal e assintótica não são invariantes sobre qualquer transformação de equivalência.

Teorema 5.7

As estabilidades marginal e assintótica de $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}$ são invariantes sobre qualquer transformação de Lyapunov.

Estabilidade Estabilidade Interna Teorema de Lyapunov Sistemas Variantes no tempo

Exemplo 5.5

Seja o sistema
$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} = \begin{bmatrix} -1 & e^{2t} \\ 0 & -1 \end{bmatrix} \mathbf{x}$$
. O sistema é estável ou instável?