Reference: P. W. Atkins, Physical Chemistry (6th ed.), Oxford University Press (1998).

Table 24.4 Limiting ionic conductivities in water at 298 K, λ /(mS m² mol⁻¹)

Cations		Anions	
Ba ²⁺	12.72	Br 08.0	7.81
Ba ²⁺ Ca ²⁺	11.90	CH ₃ CO ₂	4.09
Cs ⁺	7.72	CI	7.635
Cu ²⁺	10.72	CIO ₄	6.73
H [±]	34.96	CO_3^{2-}	13.86
K+	7.350	$(CO_2)_2^{2-}$	14.82
Li+	3.87	F	5.54
Mg ²⁺	10.60	$[Fe(CN)_{6}]^{3}$	30.27
Na ⁺	5.010	[Fe(CN) ₆] ⁴⁻	44.20
$[N(C_2H_5)_4]^+$	3.26	HCO ₂	5.46
$[N(C_2^{115})_4]^+$	4.49	1-	7.68
	7.35	NO_3^-	7.146
NH ₄ ⁺ Rb ⁺	7.78	OH-	19.91
Sr ²⁺	11.89	SO ₄ ²⁻	16.00
Zn ²⁺	10.56	5-4	

windly the state of the same that the same and the

Data: KL, RS

Table 24.5 Ionic mobilities in water at 298 K, $u/(10^{-8} \text{ m}^2 \text{ s}^{-1})$

Cations		Anions	
Aa+	6.42	Br-	
Ag ⁺ Ca ²⁺ Cu ²⁺	6.17	CH ₃ CO ₂	47
Cu ²⁺	5.56	CI-	
H ⁺ 0.9	36.23	CO ₃ ²⁻	
K ⁺	7.62	(ps)LF-MEE.0	
Li ⁺	4.01	$[Fe(CN)_{6}]^{3-}$	
Na ⁺	5.19	$[Fe(CN)_6]^{4-}$	
NH ₄ ⁺	7.63	HOSHITHER	
$[N(CH_3)_4]^+$	4.65	NO_3^-	
Rb ⁺	7.92	OH-	
Zn ²⁺	5.47	SO ₄ ²⁻	

Data: Principally Table 24.4 and $u = \lambda/zF$

Table 24.6 Debye-Hückel-Onsager coefficients for (1,1)-electrons 25 °C

mail new artists of the artists

Solvent	$A/(\text{mS m}^2 \text{ mol}^{-1}/(\text{mol L}^{-1})^{1/2})$	$B/(\text{mol } L^{-1})$
Acetone (propanone)	3.28	1.63
Acetonitrile	2.29	0.716
Ethanol	8.97	1.83
Methanol	15.61	0.923
Nitrobenzene	4.42	0.776
Nitromethane	111	0.708
Water	6.020	0.229

Data: J.O'M. Bockris and A.K.N. Reddy, *Modern electrochemistry*. Please York (1970).

Table 24.7 Diffusion coefficients at 25 °C, D/(10⁻⁹ m² s⁻¹)

Molecules in liquids				lons in wa	ter		
I ₂ in hexane in benzene CCI ₄ in heptane Glycine in water Dextrose in water Sucrose in water	4.05 2.13 3.17 1.055 0.673 0.5216	H ₂ in CCI ₄ (I) N ₂ in CCI ₄ (I) O ₂ in CCI ₄ (I) Ar in CCI ₄ (I) CH ₄ in CCI ₄ (I) H ₂ O in water CH ₃ OH in water C ₂ H ₅ OH in water	9.75 3.42 3.82 3.63 2.89 2.26 1.58 1.24	K ⁺ H ⁺ Li ⁺ Na ⁺	1.96 9.31 1.03 1.33	Br-CI-F-I-OH-	200

Data: AIP and (for the ions) $\lambda = zuF$ in conjunction with Table 24.5.