Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий Дисциплина:

«Инженерно-технические средства защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

«Рефлектометр импульсный РИ-307USBм»

2023г.

Выполнили:			
Нгуен Хонг Хань, студентка группы N34481			
Увгд (полнись)			
Чан Тхю Нга, студентка группы N344			
Мда (подпись)			
Ахуссу Конан Жак, студент группы N344			
(подпись)			
Проверил:			
Попов Илья Юрьевич, к.т.н., доцент факультета БИТ			
(отметка о выполнении)			
(подпись)			
Санкт-Петербург			

СОДЕРЖАНИЕ

Содер	жание.		2
1 Теоретическая часть			
1.1		А-200 «РИМП»	
1.2		уктура импульного рефлектометра и приципы работы	
1.3	Пар	аметры	5
	1.3.1	Волновое сопротивление (импеданс) кабельной линии	5
	1.3.2	Эквивалентная схема кабельной линии	5
	1.3.3	Виды рефлектограмм неоднородностей кабельных диний	6
2	Практическая часть		
Заклю	очение		10

ВВЕДЕНИЕ

Цель работы – Ознакомиться с принципом работы импульсного рефлектометра.

Для достижения цели работы необходимо решать следующие задачи: измерить волновое сопротивление провода (тип - витая пара) и определить, что происходит с проводом в его скрытой части.

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 ЛПА-200 «РИМП»

Импульсный рефлектометр РИ-307USBм — это двухканальный кабельный локатор, предназначенный для определения характера и местоположения неоднородностей и повреждений кабельной линии (обрыв, короткое замыкание, муфта, сростка кабеля, параллельный отвод, катушка Пупина, разбитость пар, «мерцающие» неоднородности).

1.2 Структура импульного рефлектометра и приципы работы

Рефлектометр для кабельных линий работает по следующему принципу:

- в проверяемый кабель подаются короткие электрические импульсы;
- если в кабеле имеются неоднородности или повреждения, энергия импульса полностью или частично отражается обратно к прибору;
- возвращенный отраженный сигнал измеряется, результаты измерений анализируются и затем выводятся на дисплей.

Рефлектометр для кабельных линий позволяет определить характер и местоположение основных неоднородностей или повреждений присутствующих в кабелях: обрывы; короткие замыкания; места замыканий кабеля; перепутанные пары; параллельные отводы; плавающие дефекты; катушки Пупина; переход на жилу другого диаметра; плотная земля.

Рисунок 1 – Структурная схема импульсного рефлектометра

Генератор зондирующих импульсов посылает в кабельную линию короткий электрический импульс. Приёмник отражённых сигналов через равные промежутки времени захватывает сигнал с линии и отображает их на устройстве отображения прибора. Таким образом, на экране импульсного рефлектометра строится график, на котором по

вертикальной оси отображается амплитуда отражённого сигнала, а по горизонтальной оси – время. Строго говоря, импульсный рефлектометр измеряет именно временную задержку между входным воздействием и отражённым сигналом. Однако, зная скорость распространения электромагнитной волны в кабеле, можно трансформировать ось времени в ось расстояний, что и сделано во всех импульсных рефлектометрах.

Работу импульсного рефлектометра очень просто разъясняет пример длинного тоннеля. Мы можем не видеть конца этого тоннеля, но если крикнуть в него, то через некоторое время мы услышим эхо, возвещающее нам о том, что наш крик отразился от конца тоннеля и вернулся назад в виде эхо. Иногда мы можем услышать множественное эхо, когда сигнал несколько раз отражается от начала и конца тоннеля (об этом мы вспомним, когда будем рассматривать процесс согласования прибора с кабельной линией).

1.3 Параметры

1.3.1 Волновое сопротивление (импеданс) кабельной линии

Одной из важнейших характеристик кабеля является волновое сопротивление Zo. Если кабель исправен и его волновое сопротивление не меняется — сигнал проходит по кабелю без отражений. Если имеет место обрыв, короткое замыкание или иная неоднородность — сигнал отражается полностью, или частично, причем коэффициент отражения определяется следующим образом:

$$K = \frac{Z - Z_0}{Z + Z_0}$$

где Z – волновое сопротивление в точке неоднородности.

1.3.2 Эквивалентная схема кабельной линии

Любую кабельную линию можно описать в терминах погонных величин: емкости С, индуктивности L, активного сопротивления R и межпроводной проводимости G, как это показано на рис. 3. Таким образом, бесконечный кабель моделируется бесконечной цепью одинаковых малых кусочков единичной длины, имеющих указанные погонные характеристики.

Рисунок 2 – Эквивалентная схема кабельной линии

Известна связь погонных характеристик и волнового сопротивления кабеля:

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

В области высоких частот, наиболее интересной для импульсной рефлектометрии, формулу можно упростить, так как в этой области $R << \omega L$ и $G << \omega C$:

$$Z_0 \approx \sqrt{\frac{L}{c}}$$

В точке обрыва ($R=\infty$) коэффициент отражения K=1, т.е. имеем полное отражение в виде импульса положительной полярности. В точке короткого замыкания ($G=\infty$) K=-1 т.е. возникает такое же отражение, только в виде импульса противоположенной полярности. Что же касается амплитуд импульсов, то они зависят не только от коэффициента отражения, но и от ослабления исходного импульса в кабеле на длине, равной расстоянию от источника импульсов до точки отражения и обратно.

1.3.3 Виды рефлектограмм неоднородностей кабельных диний

Рисунок 3 – Рефлектограмма с дефектом "частичный обрыв кабеля"

Рисунок 4 — Рефлектограмма КЛ с неоднородностью типа " частичное короткое замыкание

Рисунок 5 – Рефлектограмма КЛ с малым параллельным отводом

2 ПРАКТИЧЕСКАЯ ЧАСТЬ

Рефлектограмма коричневого провода наблюдается отражения сигнала с меньшего амплитуда (рис. 6). Линия находится в обрыве.

Рисунок 6 – Рефлектограмма коричневого провода

Рефлектограмма синего провода выглядит аналогично отклику от дефекта "обрыв кабеля", только отрицательной полярности, значит это короткое замыкание (рис. 7).

Рисунок 7 – Рефлектограмма синего провода

На синей линии сигнал не отразился и не был принят на другом контакте (рис. 8). Это говорит о наличии в линии резистора, на котором сигнал затухает.

Рисунок 8 – Рефлектограмма желтого провода

На зеленой линии в месте подключения "параллельного отвода" наблюдается увеличение емкостной составляющей волнового сопротивления (небольшой отрицательный отклик), переходящий в прямую линию, заканчивающуюся откликом от обрыва кабеля (рис. 9).

Рисунок 9 – Рефлектограмма зеленого провода

ЗАКЛЮЧЕНИЕ

В результате лабораторных работ удалось приобрести навыки работы с импульсным рефлектометром. Проведен анализ графиков и успешно решены особенности работы четырех витых пар проводов. Результат описан в разделе «Прогресс». Полученные навыки будут в дальнейшем использованы для изучения аспектов работы с инженернотехническими средствами защиты информации. Цели и задачи лабораторной работы успешно выполнены.