MMM - Problem Set 2

IES FSV UK

Winter Semester 2021/2022

Notes:

Homework is due to 18th November 13:00, submit your solution via Moodle. You can also bring the hand-written part to the lecture.

1) Find complete solution (without any software) of these difference equations and discuss stability of equilibrium:

a)
$$y_{n+1} + 0.8y_n = 5$$

$$y_{n+2} - 4y_{n+1} + 8y_n = -5$$

2) Consider the cobweb model from the lecture

- Find out the first letter of your surname (English alphabet)
- Find appropriate values of coefficients a,b,c,d

• *Example:* S -> a = 4; b = 1; c = 4; d = 0.4;

surname	Α	В	С	D	E	F	G	Н	1	J	K	L	М
a	1	2	3	4	5	1	2	3	4	5	1	2	3
b	0.2	0.3	0.4	0.5	0.8	1	1.2	0.2	0.3	0.4	0.5	0.8	1
С	1	1	1	1	1	2	2	2	2	2	3	3	3
d	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.5	0.3	0.3	0.5	0.5
Surname	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
Α	4	5	1	2	3	4	5	1	2	3	4	5	1
В	0.2	0.3	0.4	0.5	0.8	1	1.2	0.2	0.3	0.4	0.5	0.8	1
С	3	3	4	4	4	4	4	5	5	5	5	5	6
D	1	1	1	1	1	0.4	1	1.2	1.2	1.2	1.2	1.2	1.2

- Write down your personal equation. Find equilibrium.
- Solve your personal difference equation quantitatively. (Find sequence p_t .)
- Draw **phase diagram** (of the difference equation): **hand-written and Python.**

4) Consider following systems of differential equations.

$$\dot{x}(t) = a.x(t) + b.y(t) + e$$
$$\dot{y}(t) = c.x(t) + d.y(t) + f$$

- Find out the first letter of your first name and the first letter of your surname (English alphabet)
- Find appropriate values of coefficients *a,b,c,d*,e,f

Example: Josef Stráský – *surname:* S, *first name:* J;--> a = -3; b = 3; c = -1; d = 1; e = -3; f = 2

Example: $0050j$ Strainty Structure: $0, 0000j$ $00000j$ $000000j$ $000000j$ 0000000000														
surname	first name	Α	В	С	D	Е	F	G	Н	1	J	K	L	М
Α	d	-3	-2	-1	1	2	3	-3	-2	-1	1	2	3	-3
В	е	2	2	2	-2	-2	-2	3	3	3	-3	-3	-3	1
С	f	1	1	1	1	1	1	2	2	2	2	2	2	3
surname	first name	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
Α	d	-2	-1	1	2	3	-3	-2	-1	1	2	3	-3	-2
В	е	1	1	-1	-1	-1	3	3	3	3	3	3	1	1
С	f	3	3	3	3	3	-1	-1	-1	-1	-1	-1	-2	-2

Consider your personal system of differential equations and without any software:

- o Find **fixed point, equilibrium lines**, draw **phase diagram** by hand and explain in detail how you got it.
- o Draw phase in Python including arrows.
- o Find eigenvalues of the system. Classify fixed point.
- o If you get "strange" system (for instance, parallel equilibrium lines do not intersect), rename yourself (for the purpose of this problem set).