Reactive intermediates in organic reactions

Common reactive intermediates:

- Carbocations
- Carbanions
- > Free radicals

Thermodynamic parameters related to Reactive intermediates

Carbocations: Hydride Ion Affinity (HIA)

➤ Carbanions: **pKa**

> Free radicals: BDE

Common reactive intermediates

Only carbanions have a complete octet around the carbon

Common reactive intermediates

A: carbocations

B: free radicals

C: carbanions

D: carbenes

 There are many other organic ions and radicals with charges and unpaired electrons on atoms other than carbon

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth Edition, by Michael B. Smith and Jerry March Copyright © 2007 John Wiley & Sons, Inc.

Carbocations

Carbon-substituted

$$R_3 \oplus R_2$$

R-R₃ = alkyl or aryl

Heteroatom-stabilized

$$R_1$$
 R_3
 R_2

$$R-R_3$$
 = alkyl or anyl $R-R_3$ = alkyl or anyl

$$R_3 \xrightarrow{\Theta} R$$
 R_2

Thermochemistry of carbocations

Stability in gas phase
--- Hydride Ion Affinity (HIA)

$$R-H \rightarrow R^+ + H^- \qquad \Delta H^0 = HIA$$

HIA for selected carbocations

CH ₃ ⁽⁺⁾	312		256	Company of the Compan
C₂H₅ [⊕]	273		236	
CH₃CH₂CH₂ [⊕]	266	(a)	225	distribution and the con-
CH₃CH₂CH₂CH₂ [⊕]	265		225	
>-	265		248	
⊕	246		225	-
⊕ ✓	247	(H)	212	
\	231	HC≡C−CH ₂	270	the company of the contract of the contract of
→	229	H ₂ C=CH	287	a not a second and a second and
→	228	⊕ H ₂ C=C−CH ₃	258	Season more commerced.
→	227	CH ₂ [⊕]	234	de tamen concessore de se seco
\rightarrow	226		220	-
\	224	$\bigcirc\!$	287	American III or III and Indiana

From Bowers, M. T. (ed.) (1979), *Gas Phase Ion Chemistry*, Academic Press, New York

HIA vs BDE

CH₃ [⊕]	312	-	256
C₂H₅ [⊕]	273		236
CH₃CH₂CH₂ [⊕]	266		225
CH₃CH₂CH₂CH₂ [⊕]	265	₩	225
>-	265		248
(246		225
⊕	247	(212
\	231	HC≡C-CH ₂	270
\	229	H₂C=CH	287
→	228	H ₂ C=C−CH ₃	258
	227	CH ₂ ⊕	234
> →	226		220
\	224	$\bigcirc\!$	287
	231	→	249
4	225	>	230
NH₂CH₂ [⊕]	218	\triangleright	218
HOCH₂ [⊕]	243		201
FCH ₂ [⊕]	290		258
NCCH₂ [⊕]	318		

Bond	BDE	Bond	BDE	Bond	BDE
H–H	104.2 (104.2)	CH ₂ =CH-H	110 (110.7)	CH₃–CH₃	90.4 (90.1)
CH ₃ –H	105.1 (105.0)	C ₆ H ₅ –H	110.9 (112.9)	CH ₃ -F	109.9 (115)
CH ₃ CH ₂ -H	98.2 (101.1)	HC≡C–H	132 (131.9)	CH ₃ -CI	84.6 (83.7)
(CH ₃) ₂ CH-H	95.1 (98.6)	C ₆ H ₅ CH ₂ –H	88 (89.7)	CH ₃ –Br	70.9 (72.1)
(CH ₃) ₃ C-H	93.2 (96.5)	CH ₂ =CHCH ₂ -H	86.3 (88.8)	CH ₃ -I	57.2 (57.6)
c(CH ₂) ₃ –H	106.3	CH ₃ C(O)-H	86 (88.1)	CH₃-OH	92.3 (92.1)
c(CH ₂) ₄ –H	96.5	HO-H	119 (118.8)	CH ₃ -NH ₂	84.9 (85.2)
c(CH ₂) ₅ –H	94.5	CH₃O–H	104.4 (104.6)	CH ₃ -SH	74
c(CH ₂) ₆ –H	95.5	NH ₂ –H	107.4 (107.6)	CH ₃ -SiH ₃	88.2
	—Н 82.3	CH ₃ S-H	90.7 (87.4)	CH ₃ -SiMe ₃	89.4
—H		но-он	51	CH ₃ GeMe ₃	83
	_H 71.1	CH₃O–OCH₃	37.6 (38)	CH ₃ -SnMe ₃	71
——————————————————————————————————————		HOCH ₂ -H	94 (96.1)	CH ₃ -PbMe ₃	57
H	73	H ₂ C=CH ₂	(174.1)	CH ₃ -OCH ₃	(83.2)
Ъ	97.4	HC≡CH	(230.7)	CH ₃ -C ₂ H ₅	(89.0)
⊳ −н	90.6	H ₂ C=O	(178.8)	CH ₃ CH(CH ₃) ₂	(88.6)
CH ₃ -CH=CH ₂	(101.4)	CH ₃ -C ₆ H ₅	(103.5)	CH ₃ -C(CH ₃) ₃	(87.5)
C ₆ H ₅ –C ₆ H ₅	(118)	CH ₃ -CH ₂ C ₆ H ₅	(77.6)	CH ₃ -CH ₂ CH=CH ₂	(76.5)

Stabilization of carbocations

Stabilization due to alkyl substitution hyperconjugative interaction

HIA of different carbocations

$$Me - CH_2 \xrightarrow{-27} Me_2 - CH \xrightarrow{-18} Me_3 - C$$

276

 $Me_2 - CH \xrightarrow{-18} Me_3 - C$

231

The effect of beta substituents: Rationalize

$$\begin{array}{ccc}
& \oplus & & \oplus \\
\text{Me-CH}_2 & & \longrightarrow & \text{Me-CH}_2 & \oplus \\
& & & & & & \\
276 & & & & & & \\
\end{array}$$

Carbocations stabilized by hyperconjugation

$$= \begin{bmatrix} H_3C \xrightarrow{+... \text{CH}_3} \\ CH_3 \end{bmatrix}$$

Stabilization due to alkyl substitution — hyperconjugative interaction

Carbocations stabilized by hyperconjugation

$$(CD_3)_3C^{\oplus}$$
 + $(CH_3)_3CH$ \longrightarrow $(CH_3)_3C^{\oplus}$ + $(CD_3)_3CH$ less hyper-conjugation Meat-Ner M. LAm. Chem. Soc. **1987**, 109, 7947

Meot-Ner, M. J. Am. Chem. Soc. 1987, 109, 7947

Physical Evidence for Hyperconjugation: The Adamantyl Cation

Bonds participating in the hyperconjugative interaction, e.g C-R, will be lengthened while the C(+)-C bond will be shortened.

First X-ray Structure of an Aliphatic Carbocation

 $K_{298} = 1.97 \pm 0.20$

Stabilization of carbocations

> Stabilization due to increasing delocalization

Carbocations stabilized by charge delocalization

 In SO₂, this equilibrium has been known for many years

$$Ph_3CCl \iff Ph_3C^{\oplus} + Cl^{\ominus}$$

 Ph₃C⁺BF₄⁻ and related salts are commercially available

Confirmed structure of carbocations

Cyclopropylmethyl cations

Stabilization of carbocations

Stabilization due to alkyl substitution hyperconjugative interaction

- > Stabilization due to increasing delocalization
- > Heteroatom effects--- related to π donating ability and σ withdrawing ability of the heteroatom

Carbocations stabilized by heteroatom

- ◆ Simple acyl cations RCO⁺ have been prepared in solution and the solid state
- ◆ acetyl cation CH₃CO⁺ is about as stable as t-butyl cation

Carbocations in solution

- Stable ion media for carbocations --- an environment devoid of nucleophiles and bases to make carbocations persistent
- SbF₅ developed by Olah et. al. as stable ion media

$$RX + SbF_5 \rightarrow R^+ + Sb_2F_{10}X^-$$

Sb₂F₁₀X⁻ --- very poor nucleophile and very weak base

Other stable ion media: HF- SbF₅; FSO₃H-SbF₅ ...

Generation of Carbocations

Hydride abstraction from neutral precursors

$$R_3C-H$$
 + Lewis-Acid \longrightarrow $R_3C \oplus$

$$R_3C-H = H RS H R_2N H etc.$$

Lewis-Acid: Ph₃C BF₄, BF₃, PCl₅

Removal of an energy-poor anion from a neutral precursor via Lewis Acids

$$R_3C - X + LA - R_3C \oplus + LA - X \ominus$$

 $\begin{tabular}{ll} \textbf{LA}: Ag &, AlCl_3, SnCl_4, SbCl_5, \textbf{SbF_5}, BF_3, FeCl_3, ZnCl_2, PCl_3, PCl_5, POCl_3\\ & & \\ \textbf{X}: & F, Cl, Br, I, OR \end{tabular}$

Generation of Carbocations

Acidic dehydratization of secondary and tertiary alcohols

$$R_3C-OH + H-X \xrightarrow{-H_2O} R_3C \oplus + X \ominus$$

R: Aryl + other charge stabilizing substituents

X: SO_4^{2-} , CIO_4^{-} , FSO_3^{-} , $CF_3SO_3^{-}$

From neutral precursors via heterolytic dissociation (solvolysis) - First step in $S_N 1$ or E1 reactions

$$R_3C \rightarrow X \xrightarrow{solvent} R_3C \oplus + X \ominus$$

Ability of X to function as a leaving group:

$$-N_2^+ > -OSO_2R' > -OPO(OR')_2 > -I \ge -Br > CI > OH_2^+ \dots$$

Generation of Carbocations

1. The Carbocation May Combine with a Species Possessing an Electron Pair

$$R^{\oplus} + Y^{\ominus} \longrightarrow R-Y$$

- 1. The Carbocation May Combine with a Species Possessing an Electron Pair
- **2.** The Carbocation May Lose a Proton (or much less often, another positive ion)

- 1. The Carbocation May Combine with a Species Possessing an Electron Pair
- **2.** The Carbocation May Lose a Proton (or much less often, another positive ion)
- **3.** Rearrangement.

- 1. The Carbocation May Combine with a Species Possessing an Electron Pair
- **2.** The Carbocation May Lose a Proton (or much less often, another positive ion)
- **3.** Rearrangement.
- **4.** Addition.

$$R^{\oplus}$$
 + $C=C$ $R \rightarrow C-C$

