Soluzioni metodi matematici

Andrea Princic 1837592

9 Settembre 2018

Es. 1

Una relazione di equivalenza è una relazione con le proprietà riflessiva, simmetrica e transitiva.

$$A = \{1, 2, 3\}, R = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$$

La classe di equivalenza di a è l'insieme di elementi con cui a è in relazione.

L'insieme quoziente è l'insieme delle classi di equivalenza. In questo caso: $\{[1],[2]\}$

Es. 2

- A. F: non è nemmeno una funzione e se lo fosse non sarebbe iniettiva perché due elementi vanno in c
- B. F: è soltanto transitiva
- C. V
- D. F: a viene associato a 3 elementi

Es. 3

Un programma è soltanto una sequenza binaria finita quindi un numero naturale in binario. Inumeri naturali sono numerabili quindi sì, i programmi sono numerabili

Es. 4

Si deve considerare che ogni insieme ha $\frac{n(n-1)}{2}$ sottoinsiemi di 2 elementi. Dim che \forall $n \geq 0$ un insieme di n elementi ha $\frac{n(n-1)(n-2)}{6}$ sottoinsiemi di 3 elementi.

Caso base: n = 0

un insieme di 0 elementi ha 0 sottoinsiemi di 3 elementi.

Passo induttivo: n+1

Supponiamo di avere un insieme di n elementi e di aggiungerne uno nuovo. Per ottenere i sottoinsiemi di 3 elementi del nuovo insieme si prendono tutti i sottoinsiemi di 3 elementi che aveva prima e poi si uniscono i sottoinsiemi di 2 elementi che aveva prima in cui ad ognuno è stato aggiunto il nuovo elemento. I sottoinsiemi di 3 elementi saranno quindi: $\frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{6} = \frac{3n(n-1)+n(n-1)(n-2)}{6} = \frac{(n+1)n(n-1)}{6}$

Es. 5

- A. F: se C è vera A è falsa, e quindi non c'è nessuna implicazione su B
- B. V: se la parte sinistra è (sempre) falsa l'implicazione logica è vera
- C. F: se $A \land \neg B$ fosse una tautologia (quindi rientra nella definizione di soddisfacibile) il tableau di $A \to B$ sarebbe chiuso
- D. F: $\neg (A \land B) \lor (A \to B) = \neg A \lor \underline{\neg B} \lor \neg A \lor \underline{B}$ che è sempre vera
- E. F: poniamo $A = \neg B$ entrambi soddisfacibili. Allora $\neg A \lor \neg B$ sarebbe una tautologia e quindi il tableau di $A \land B$ sarebbe chiuso

Es. 6

- A. F: Nel caso in cui P è insoddisfacibile e Q è soddisfacibile la formula è falsa
- B. V

Es. 7

- A. $\exists X \neg \exists x \ x \in X$ (esiste un insieme X per il quale non esiste nessun elemento x che gli appartiene)
- B. $\forall X \ \forall Y \ \exists Z \ \forall x \ ((x \in X \land x \in Y) \leftrightarrow x \in Z)$ (per ogni insieme X e Y esiste un insieme Z per il quale ogni elemento x che appartiene a entrambi X e Y appartiene anche a Z e viceversa)

Es. 8

Un modello è un'interpretazione che rende vera una formula