260-2017-02-10

Rick Gilmore 2017-02-08 08:44:58

Today's Topics

- How neurons talk to one another
- Synaptic communication

In the beginning

- Soma receives input from dendrites
- Axon hillock sums/integrates
- If sum > threshold, AP "fires"

Illustration of summation

Steps in synaptic transmission

- Rapid change in voltage triggers neurotransmitter (NT) release
- Voltage-gated calcium Ca++ channels open
- Ca++ causes synaptic vesicles to bind with presynaptic membrane, merge, exocytosis
- NTs diffuse across synaptic cleft

Steps in synaptic transmission

- NTs bind with receptors on postsynaptic membrane
- Receptors respond
- NTs unbind, are inactivated

Synaptic transmission

Exocytosis

http://dx.doi.org/doi:10.1038/nrn2948

Why do NTs move from presynaptic terminal toward postsynaptic cell?

- Electrostatic force pulls them
- Force of diffusion

Why do NTs move from presynaptic terminal toward postsynaptic cell?

- Electrostatic force pulls them
- Force of diffusion

Postsynaptic receptor types

- *Ionotropic* (receptor + ion channel)
 - Ligand-gated
 - Open/close ion channel
 - Ions flow in/out depending on membrane voltage and ion type
 - Faster, but short-acting effects

Postsynaptic receptor types

- *Metabotropic* (receptor only)
 - Trigger 2nd messengers
 - G-proteins
 - Open/close adjacent channels, change metabolism
 - Slower, but longer-lasting effects

Receptor types

Receptors generate postsynaptic potentials (PSPs)

- Small voltage changes
- Amplitude scales with # of receptors activated
- Excitatory PSPs (EPSPs)
 - Depolarize neuron (make more +)
- Inhibitory (IPSPs)
 - Hyperpolarize neuron (make more -)

NTs inactivated

- Buffering
 - e.g., glutamate into astrocytes (Anderson and Swanson 2000)
- Reuptake via transporters
 - molecules in membrane that move NTs inside
 - e.g., serotonin via serotonin transporter (SERT)
- Enzymatic degradation
 - e.g., AChE degrades ACh

Questions to ponder

• Why must NTs be inactivated?

Questions to ponder

- Why must NTs be inactivated?
 - Keeps messages discrete, localized in time and space

What sort of PSP would opening a Na+ channel produce?

- Excitatory PSP, Na+ flows in
- Excitatory PSP, Na+ flows out
- Inhibitory PSP, Na+ flows in
- Inhibitory PSP, Na+ flows out

What sort of PSP would opening a Na+ channel produce?

- Excitatory PSP, Na+ flows in
- Excitatory PSP, Na+ flows out
- Inhibitory PSP, Na+ flows in
- Inhibitory PSP, Na+ flows out

What sort of PSP would opening a Cl- channel produce?

Remember [Cl-out]>>[Cl-in]; Assume resting potential ~60 mV

- Excitatory PSP, Cl- flows in
- Excitatory PSP, Cl- flows out
- Inhibitory PSP, Cl- flows in
- Inhibitory PSP, Cl- flows out

What sort of PSP would opening a Cl- channel produce?

Remember [Cl-out]>>[Cl-in]; Assume resting potential ~60 mV

- Excitatory PSP, Cl- flows in
- Excitatory PSP, Cl- flows out
- Inhibitory PSP, Cl- flows in
- Inhibitory PSP, Cl- flows out

Types of synapses

Types of synapses

- Axodendritic (axon to dendrite)
- Axosomatic (axon to soma)
- Axoaxonic (axon to axon)
- Axosecretory (axon to bloodstream)

Synapses on

- dendrites
 - usually excitatory
- cell bodies
 - usually inhibitory
- axons
 - usually modulatory (change p(fire))

Summary of chemical transmission

Neurotransmiters

Family	Neurotansmitter
Amino acids	Glutamate (Glu) Gamma aminobutyric acid (GABA) Glycine Aspartate

Glutamate

- Primary excitatory NT in CNS
- Role in learning (via NMDA receptor)
- Transporters on neurons and glia (astrocytes and oligodendrocytes)
- Linked to umami (savory) taste sensation, think monosodium glutamate (MSG)
- Dysregulation in schizophrenia? (Javitt 2010)

Glutamate

Type	Receptor	Esp Permeable to
Ionotropic	AMPA	Na+, K+
	Kainate	
	\mathbf{NMDA}	Ca++
Metabotropic	mGlu	

GABA

- Primary inhibitory NT in CNS
- Excitatory in developing CNS, [Cl-] in >> [Cl-] out
- Binding sites for benzodiazepines (e.g., Valium), barbiturates, ethanol, etc.

Type	Receptor	Esp Permeable to
Ionotropic	GABA-A	Cl-
Metabotropic	GABA-B	K+

GABA

"GABAA-receptor-protein-example" by Chemgirl131 at English Wikipedia - Transferred from en.wikipedia to Commons by Sreejithk2000 using CommonsHelper.. Licensed under Public Domain via Commons.

Next time...

• More on NTs!

References

Anderson, Christopher M., and Raymond A. Swanson. 2000. "Astrocyte Glutamate Transport: Review of Properties, Regulation, and Physiological Functions." Glia~32~(1). John Wiley & Sons, Inc.: 1–14. doi:10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W.

Javitt, Daniel C. 2010. "Glutamatergic Theories of Schizophrenia." Israel Journal of Psychiatry and Related Sciences 47 (1): 4.