GEOMETRY QUALIFYING EXAM SPRING 2001 (Auckly & Miller)

Work as many of the following problems as you can. You do not have to solve every problem to pass.

1. On
$$\mathbb{R}^2$$
 let
$$X = y \frac{\partial}{\partial x} + y^2 x \frac{\partial}{\partial y},$$
$$Y = (x+y) \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}.$$
$$\alpha = -dx + x dy$$

Calculate: a) [X, Y], b) $L_Y \alpha$, c) $L_Y (d\alpha)$.

- **2.** a) Construct an atlas for $S^2 \times S^1$.
 - b) Parametrize S^2 by (θ, φ) where $x = \cos \theta \cos \varphi$, $y = \sin \theta \cos \varphi$, $z = \sin \varphi$. Parametrize $S^2 \times S^1$ by $(\theta_1, \varphi_1, \alpha)$ in a similar way $(\alpha \in (\theta, 2\pi))$ and define $f: S^2 \times S^1 \to S^2$; $f(\theta_1, \varphi_1, \alpha) = (2\theta_1, \varphi_1)$. Notice that $\mu = \frac{1}{4\pi} \sin \varphi \, d\theta \wedge d\varphi$ is the normalized area form on S^2 .

Compute $\int_{S^2 \times S^1} \frac{1}{2\pi} d\alpha \wedge f^* \mu$. (Use the orientation $d\alpha \wedge d\theta \wedge d\varphi$.)

- c) Show that the answer remains unchanged if μ is replaced by $\mu + d\omega$.
- d) What does this integral represent geometrically?
- **3.** Let $q = dt^2 + \sin^2 t \, d\alpha^2 + \cos^2 t \, d\beta^2$.
 - a) Pick an orthonormal coframe, θ^k , suitable for computation with the metric, g.
 - b) Compute the connection form, ω , relative to the coframe that you chose in part a).
 - c) Compute the curvature form, Ω , relative to the same coframe.
- **4.** Let E and F be distributions on (M,g) so that $X \in E$ and $Y \in F$ implies g(X,Y) = 0 and so that $X,Y \in \Gamma(E)$ implies $\nabla_X Y \in \Gamma(E)$ and $X,Y \in \Gamma(F)$ implies that $\nabla_X Y \in \Gamma(F)$.
 - a) State Frobenius' Theorem.
 - b) Show that E and F are integrable.
 - c) Show that any point of M has a product neighborhood $V \times U$ so that $g|_{V \times U} = g|_v \oplus g|_u$.
- **5.** Let X and Y be the vector fields on $\mathbb{R}^4 \{0\} \times \mathbb{R}^2$ given by

$$X = x^{2} \frac{\partial}{\partial x^{2}} + x^{3} \frac{\partial}{\partial x^{3}}$$
$$Y = x^{3} \frac{\partial}{\partial x^{1}} - x^{2} \frac{\partial}{\partial x^{4}}$$

Let E be the subbundle of the tangent bundle generated by X and Y.

- a) Use the Frobenius Theorem to show that E is integrable.
- b) Find parametric equations for the integral manifold containing the point (1, 2, 3, 4).
- **6.** a) State Sard's Theorem. Let $f: S^2 \to \mathbb{R}$ be a smooth map.
 - b) Show that for any $y_0 \in \mathbb{R}$ and any $\varepsilon > 0$ there is a $y \in B_{\varepsilon}(y_0)$ so that $f^{-1}(y)$ is a finite disjoint union of circles.
- **7.** a) Give an example of a space, X, with $\pi_1(Y) = \langle a, b, c | a^3 = 1, b^4 = 1, c^5 = 1, (abc)^2 = 1 \rangle$.
 - b) Give an example of a space, Y, with $\pi_1(Y) = \langle a, b | aba^{-1}b = 1 \rangle$.
 - c) Closed, Hausdorff, separable 2-manifolds have been classified. State the classification theorem.
 - d) There is a closed 2-manifold with the fundamental group from part b). Which 2-manifold has this fundamental group?