

COMPUTER GRAPHICS

ЗАСОБИ ПРОГРАМУВАННЯ КОМП'ЮТЕРНОЇ ГРАФІКИ

COMPUTER GRAPHICS

OPEN_GL (part 4)

Open GL. 3D Преобразования

- Системы координат.
- Преобразование модели.
- Преобразование вида.
- Преобразование проецирования.
- Примеры.

Open GL. СЦЕНА

Open GL. СЦЕНА

Open GL. СЦЕНА

Open GL. 1-й шаг

Open GL. 2-й шаг

Open GL. 3-й шаг

Open GL. GLM Математическая библиотека

OpenGL Mathematics

GLSL + Optional features = OpenGL Mathematics (GLM) A C++ mathematics library for graphics programming

Основные библиотеки:

```
glm/glm.hpp // vec2, vec3, mat4, radians glm/ext.hpp // perspective, translate, rotate
```

Поддерживаются все функции GLSL

+ матричные операции с квадратными и прямоугольными матрицами (и многое другое)

Open GL. GLM

Матрица Модели (model) ОСК→МСК

```
Матрица масштабирования (Scale) - S.
S = glm::scale(glm::mat4(1.0f), glm::vec3(1.0f, 1.0f, 1.0f));
коэффициенты масштабирования
```

Матрица вращения (Rotate) - R.

```
R =glm::rotate(glm::mat4(1.0f), glm::radians(35.0f),

ось поворота
glm::vec3(1.0f, 0.0f, 0.0f));
```

Матрица сдвига (Translation) - Т.

```
T = g\bar{l}m::translate(glm::mat4(1.0f),
```

```
glm::vec3(0.0f, 0.0f, -1.0f));
```

Model = R *S * T.

Open GL. GLM Матрица Вида (view) МСК→СКН

Матрица преобразования в СК камеры (наблюдателя)

Open GL. ПРОЕЦИРОВАНИЕ

projection = glm::ortho (-1.0f, 1.0f, -1.0f, 1.0f , 2.0f , 10.0f);

левая граница экрана, правая граница экрана нижняя граница экрана, верхняя граница экрана Z переднего плана, Z заднего плана

Open GL. ПРОЕЦИРОВАНИЕ Перспективное

Far Clipping Plane Угол обзора (FOV, зум). Піраміда Отношение сторон видимост экрана (aspect = W/H). Z переднего плана (Zn). Z заднего плана (Zf). Near Clipping Plane CVV**Camera Location**

projection = glm::perspective(2.0f, WIDTH/HEIGHT, 2.0f, 10.f);

Преобразует пирамиду видимости в канонический объем отсечения (CVV).

Левосторонняя система. CVV – куб, с центром в начале координат и длиной ребра = 2.

Все что попадает в куб – растеризуется. Все что не попадает в куб – отсекается.

 ${
m CVV}$ – псевдоглубина (псевдо ${
m Z}$): ${
m \it Z}$

Псевдоглубина $\widehat{\mathbf{Z}}$:

- рассчитывается по Z,
- у всех точек лежащих на передней плоскости $\widehat{Z} = -1$,
- у всех точек лежащих на дальней плоскости $\widehat{Z} = +1$,
- у всех точках внутри пирамиды видимости $\widehat{\pmb{Z}} \in [-1, +1]$.

Расчет псевдоглубины : $Z o \widehat{Z}$

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & a & 0 & b \\ 0 & 0 & 1/Z_E & 1 & 0 \end{bmatrix}; P = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Будем искать

$$\widehat{Z} = \frac{aZ + b}{Z}$$

Расчет псевдоглубины:
$$Z \to \widehat{Z}$$

Пусть $\widehat{Z} = \frac{aZ+b}{Z}$
 $0, 1, -1$
 $0, 1, 1$
 $0, -1, -1$
 $0, -1, 1$
 $0, -1, 1$

Near Clipping Plane

 $Z_{far} \to Z_{far}$
 $Z_{far} \to Z_{far}$

$$Z_f(aZ_n + b) + Z_n(aZ_f + b) = 0$$

$$\alpha = \frac{Z_f + Z_n}{Z_f - Z_n}; b = \frac{-2Z_f Z_n}{Z_f - Z_n}$$

Расчет псевдоглубины : $Z o \widehat{Z}$

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{Z_f + Z_n}{Z_f - Z_n} & \frac{-2Z_f Z_n}{Z_f - Z_n} \\ 0 & 0 & 0 & \frac{Z_f + Z_n}{Z_f - Z_n} & \frac{Z_f = 10}{Z_n - Z_n} \end{bmatrix}; Z_f = 10, Z_n = 2; Z_n = 10, Z_n$$

$$Z=2 \rightarrow \widehat{Z}=-1; Z=10 \rightarrow \widehat{Z}=1; Z=5 \rightarrow \widehat{Z}=.5$$

Преобразование Х, Ү

$$M = \begin{bmatrix} s & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & \alpha & b \\ 0 & 0 & 1 & 0 \end{bmatrix}; \quad \begin{bmatrix} s & 0 & 0 & 0 \\ 0, 1, -1 & 0, 1, 1 \\ 0, -1, -1 & 0, -1, 1 \end{bmatrix}$$

$$\widehat{Y} = q * \frac{Y}{Z}; 1 = q * \left(\frac{\frac{H}{2}}{Z_n}\right) = q * tg(fov/2)$$

$$q = ctg\left(\frac{fov}{2}\right)$$

$$s = \frac{q}{aspect} = ctg(\frac{fov}{2})/aspect$$

Far Clipping plane

Матрица трансформации в CVV

Open GL. Пример

22

Open GL. Пример

Vertix Shaider:

```
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main() {
      gl_Position = projection*view*model*vec4(position,
                                                      1.0f);
         ourColor = color;
```

Open GL. Z буфер

Для проверки видимости пиксела используется тест глубины (z - буфер).

Включение glEnable(GL_DEPTH_TEST);

Очистка glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

ЛИТЕРАТУРА

Официальный сайтhttps://www.opengl.org/wiki/Main_PageOpen GL programming guidehttp://glprogramming.com/red/index.htmlРусскоязычный сайтhttp://www.opengl.org.ru/books/open_gl/index.html

- OpenGL super bible: comprehensive tutorial and reference / Richard S. Wright Jr. – 5th ed., Pearson Education Inc. – 2011
- Рост Р.Дж. Open GL. Трехмерная графика и язык программирования шейдеров. Для профессионалов.- Спб.: Питер, 2005.- 428 с.: ил.
- Ву М., Девис Т., Нейдер Дж., Шрайнер Д. Open GL. Руководство по программированию. Библиотека программиста. 4-е изд. СПб.: Питер, 2006. 624 с.: ид.

ЛИТЕРАТУРА

GLSL:

The OpenGL® Shading Language.

The Khronos Group Inc. Language Version: 3.30, Document Revision: 6. 11-Mar-2010

https://www.khronos.org/opengl/wiki/OpenGL_Shading_Language

ЛИТЕРАТУРА

GLM:

The OpenGL Mathematics. GLSL +
Optional features = OpenGL Mathematics
(GLM)

https://glm.g-truc.net/0.9.9/index.html

GLM manual

http://glm.g-truc.net/glm.pdf

Вопросы для экзамена

TEMA: 3D

- 1. Какие системы координат используются в OpenGL?
- 2. Как формируется и какие преобразования выполняет матрица модели?
- 3. Как формируется и какие преобразования выполняет матрица вида?
- 4. Как формируется и какие преобразования выполняет матрица проецирования?

END #14