Contrôle d'analyse I N°1

Durée : 1 heure 45 minutes Barème sur 20 points

NOM:		
	Groupe	
PRFNOM.	_	

1. On considère la droite d d'équation

$$d: y = -4x - 10$$

et la parabole Γ d'équation

$$\Gamma: y = P(x) = \frac{1}{m}x^2 + 2x + m(m-2)$$

dépendant d'un paramètre $m \in \mathbb{R}^*$.

Déterminer m tel que

- la droite d et la parabole Γ se coupent en deux points distincts,
- le sommet de Γ soit situé dans le demi-plan défini par y > -4x 10.

6 pts

$$S = \,] \leftarrow, \, 0 \, [\, \cup \,] \, 1 \, , \, 2 \, [\, \cup \,] \, 5 \, , \, 10 \, [\, .$$

- **2.** On donne les valeurs d'une longueur d'arc de cercle ℓ , d'un rayon a_0 et d'un paramètre $\lambda = \frac{3}{2}$. On construit une suite d'angles de la manière itérative suivante :
 - α_0 est l'angle défini par le rayon a_0 et la longueur d'arc ℓ ;
 - α_1 est l'angle défini par le rayon $a_1 = \lambda a_0$ et la même longueur d'arc ℓ ;
 - α_2 est l'angle défini par le rayon $a_2 = \lambda a_1$ et la même longueur d'arc ℓ ;
 - et ainsi de suite, comme illustré sur le dessin...

a) Déterminer la somme γ_n de ces angles après n étapes, $n \in \mathbb{N}^*$

$$\gamma_n = \alpha_0 + \alpha_1 + \dots + \alpha_{n-1} .$$

b) Déterminer l'angle total

$$\gamma = \alpha_0 + \alpha_1 + \alpha_2 + \cdots.$$

3 pts

$$\gamma_n = \frac{\ell}{a_0} \cdot \frac{1 - (\frac{2}{3})^n}{1 - \frac{2}{3}}, \qquad \gamma = \frac{3\ell}{a_0}.$$

3. Résoudre en $x \in \mathbb{R}$, en fonction du paramètre réel m, l'inéquation suivante :

$$\sqrt{\left|x^2 - 5m^2\right|} \ge x - m \,.$$

6 pts

- $$\begin{split} & \ \, \mathrm{si} \,\, m > 0 \,, \quad S = \,] \leftarrow, \, 2m \,] \, \cup \, \big[\, 3m \,, \, \to \, \big[\,, \\ & \ \, \mathrm{si} \,\, m = 0 \,, \quad S = \, \mathbb{R} \,, \\ & \ \, \mathrm{si} \,\, m < 0 \,, \quad S = \,] \leftarrow, \, -m \,\big] \,. \end{split}$$

4. On considère le domaine ci-dessous en découpant un demi-disque dans un rectangle. Les grandeurs a et r sont variables alors que le périmètre L est fixé. On posera $\pi \simeq 3$.

- a) Décrire les contraintes géométriques sur a et r et en déduire le domaine de variation de la variable r. $D_r = \left[0, \frac{L}{7} \right]$.
- b) Déterminer l'aire du domaine en fonction de la variable r et représenter son $A(r) = \frac{r}{2} (2L - 13r)$. graphe.
- c) Pour quelle relation entre a et r l'aire est-elle maximale? $a_{\rm max} = 4r_{\rm max}$.

5 pts