

HIMax®

Módulo analógico de entrada Manual

Todos los productos de HIMA nombrados en el presente manual son marcas registradas. Salvo donde se indique lo contrario, esto se aplicará también a los demás fabricantes aquí citados y a sus productos.

Tras haber sido redactadas cuidadosamente, las notas y las especificaciones técnicas ofrecidas en este manual han sido compiladas bajo estrictos controles de calidad. En caso de dudas, consulte directamente a HIMA. HIMA le agradecerá que nos haga saber su opinión acerca de p. ej. qué más información debería incluirse en el manual.

Reservado el derecho a modificaciones técnicas. HIMA se reserva asimismo el derecho de actualizar el material escrito sin previo aviso.

Hallará más información en la documentación recogida en el CD-ROM y en nuestros sitios web http://www.hima.com.

© Copyright 2015, HIMA Paul Hildebrandt GmbH

Todos los derechos reservados.

Contacto

Dirección de HIMA:

HIMA Paul Hildebrandt GmbH

Apdo. Postal/Postfach 1261

D-68777 Brühl

Tel.: +49 6202 709-0

Fax: +49 6202 709-107 E-Mail: info@hima.com

	Modificaciones	Tipo de modificación	
de revisión		técnica	redaccional
4.00	Adaptación a HIMax V4/SILworX V4 Edición en español (traducción)		

Índice de contenidos

1	Introducción	5
1.1	Estructuración y uso del manual	5
1.2	Destinatarios	
1.3	Convenciones de representación	6
1.3.1	Notas de seguridad	6
1.3.2	Notas de uso	7
2	Seguridad	8
2.1	Uso conforme a la finalidad prevista	8
2.1.1	Condiciones ambientales	
2.1.2	Precauciones contra descargas electrostáticas	
2.2	Peligros remanentes	
2.3	Medidas de seguridad	9
2.4	Información para emergencias	9
3	Descripción del producto	10
3.1	Función de seguridad	11
3.1.1	Reacción en caso de error	11
3.2	Volumen de suministro	11
3.3	Placa de tipo	12
3.4	Composición	
3.4.1	Diagramas de bloques	14
3.4.2	Lectura	
3.4.3 3.4.4	Indicadores de bus de sistema	
3.4.4 3.5	Datos del producto	
3.6	Tarjetas de conexión	
3.6.1	Codificación mecánica de tarjetas de conexión	
3.6.2	Codificación de tarjetas de conexión X-CB 020 5X	
3.6.3	Codificación de tarjetas de conexión X-CB 021 5X	
3.6.4	Tarjeta de conexión con bornes de rosca	
3.6.5	Asignación de bornes de tarjeta de conexión con bornes de rosca	
3.6.6	Tarjeta de conexión con conector de cables	
3.6.7	Asignación de conectores de tarjeta de conexión con conector de cables	27
3.7	Cable del sistema X-CA 014	28
3.7.1	Codificación de conectores de cable	29
1	Puesta en carvicio	20

4.1	Montaje	30
4.2	Instalación y desmontaje del módulo	31
4.2.1	Montaje de una tarjeta de conexión	
4.2.2	Instalación y desmontaje de un módulo	
4.3	Modos operativos de módulo y modos operativos de canal	
4.3.1	Configuración del módulo, modo operativo	
4.3.2 4.3.3	Configuración del canal, modo operativo	
4.3.4	OC Limit y SC Limit SW-LOW y SW-HIGH	
4.3.5	Representación de los valores de medición	
4.4	Configuración del módulo en SILworX	37
4.4.1	Ficha "Module"	38
4.4.2	Ficha I/O Submodule AI16_51	
4.4.3	Ficha I/O Submodule AI16_51: Channels	
4.4.4	Submodule Status [DWORD]	
4.4.5 4.5	Diagnostic Status [DWORD] Variantes de conexión	
4.5 4.5.1	Circuitados de entrada monocanales	_
4.5.1	Puestas en circuito redundantes de entrada	
4.5.3	Puestas en circuito triplemente redundantes de entrada	
4.5.4	Conexión de sensores mediante terminación FTA (Field Termination As	
5	Funcionamiento	55
5.1	Manejo	55
5.2	Diagnóstico	55
6	Mantenimiento	56
6.1	Tareas de mantenimiento	56
6.1.1	Carga del sistema operativo	56
6.1.2	Ensayo de prueba	56
7	Puesta fuera de servicio	57
8	Transporte	58
9	Desecho	59
	Anexo	61
	Termopares utilizables	61
	Glosario	
	Índice de ilustraciones	63
	Índice de tablas	64
	Índice alfabético	65

X-AI 16 51 1 Introducción

1 Introducción

El presente manual describe las características técnicas del módulo y sus posibles usos. El manual contiene información relativa a la instalación, la puesta en servicio y la configuración en SILworX.

1.1 Estructuración y uso del manual

El contenido de este manual es parte de la descripción del hardware del sistema electrónico programable HIMax.

El manual se divide en los siguientes capítulos principales:

- Introducción
- Seguridad
- Descripción del producto
- Puesta en servicio
- Funcionamiento
- Conservación
- Puesta fuera de servicio
- Transporte
- Desecho

Deberán observarse además los siguientes documentos:

Nombre	Contenido	Documento Nº
Manual del sistema HIMax	Descripción del hardware del sistema HIMax	HI 801 141 S
Manual de seguridad HIMax	Funciones de seguridad del sistema HIMax	HI 801 196 S
Manual de comunicación HIMax	Descripción de la comunicación y los protocolos	HI 801 195 S
Ayuda en pantalla de SILworX (OLH)	Manejo de SILworX	-
Primeros pasos	Introducción al SILworX	HI 801 194 S

Tabla 1: Manuales vigentes adicionales

Los manuales actuales se hallan en la página web de HIMA: www.hima.com. Con ayuda del índice de revisión del pie de página podrá compararse la vigencia de los manuales que se tengan respecto a la edición que figura en internet.

1.2 Destinatarios

Este documento va dirigido a planificadores, proyectadores y programadores de equipos de automatización y al personal autorizado para la puesta en servicio, operación y mantenimiento de dispositivos y sistemas. Se presuponen conocimientos especiales en materia de sistemas de automatización con funciones relacionadas con la seguridad.

HI 801 198 ES Rev. 4.00 página 5 de 66

1 Introducción X-AI 16 51

1.3 Convenciones de representación

Para una mejor legibilidad y comprensión, en este documento se usa la siguiente notación:

Negrita Remarcado de partes importantes del texto.

Designación de botones de software, fichas e ítems de menús

de SILworX sobre los que puede hacerse clic

Coursiva Variables y parámetros del sistema
Coursier Entradas literales del operador

RUN Designación de estados operativos en mayúsculas

Cap. 1.2.3 Las referencias cruzadas son enlaces, aun cuando no estén

especialmente marcadas como tales. Al colocar el puntero sobre un enlace tal, cambiará su aspecto. Haciendo clic en él, se saltará

a la correspondiente página del documento.

Las notas de seguridad y uso están especialmente identificadas.

1.3.1 Notas de seguridad

Las notas de seguridad del documento se representan de la siguiente forma. Para garantizar mínimos niveles de riesgo, deberá seguirse sin falta lo que indiquen. Los contenidos se estructuran en

- Palabra señalizadora: peligro, advertencia, precaución, nota
- Tipo y fuente de peligro
- Consecuencias del peligro
- Prevención del peligro

▲ PALABRA SEÑALIZADORA

¡Tipo y fuente de peligro! Consecuencias del peligro Prevención del peligro

Las palabras señalizadoras significan

- Peligro: su inobservancia originará lesiones graves o mortales
- Advertencia: su inobservancia puede originar lesiones graves o mortales
- Precaución: su inobservancia puede originar lesiones moderadas

NOTA

¡Tipo y fuente del daño! Prevención del daño

página 6 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 1 Introducción

1.3.2 Notas de uso La información adicional se estructura como sigue: i En este punto figura el texto con la información adicional. Los trucos y consejos útiles aparecen en la forma: SUGE- En este punto figura el texto con la sugerencia.

RENCIA En este punto figura el texto con la sugerencia.

HI 801 198 ES Rev. 4.00 página 7 de 66

2 Seguridad X-AI 16 51

2 Seguridad

En ningún caso deje sin leer las siguientes informaciones de seguridad, las notas y las instrucciones. Use el producto siempre cumpliendo todas las directivas y las recomendaciones de seguridad.

Este producto se usa con SELV o PELV. El módulo en sí no constituye ninguna fuente de peligro. El uso en áreas explosivas sólo se autoriza si se toman medidas adicionales.

2.1 Uso conforme a la finalidad prevista

Los componentes HIMax van destinados a conformar sistemas de control con función relacionada con la seguridad.

Para hacer uso de estos componentes en sistemas HIMax deberán cumplirse las siguientes condiciones.

2.1.1 Condiciones ambientales

Tipo de condición	Rango de valores
Clase de protección	Clase de protección III según IEC/EN 61131-2
Temperatura ambiente	0+60 °C
Temperatura de almacenamiento	-40+85 °C
Polución	Grado de polución II según IEC/EN 61131-2
Altitud de emplazamiento	< 2000 m
Carcasa	Estándar: IP20
Tensión de alimentación	24 VCC

Tabla 2: Condiciones ambientales

En condiciones ambientales distintas a las especificadas en este manual es posible que el sistema HIMax sufra disfunciones.

2.1.2 Precauciones contra descargas electrostáticas

Las modificaciones o ampliaciones del sistema, así como la sustitución de módulos, únicamente deberán ser realizas por personal con conocimientos sobre medidas de protección contra descargas electrostáticas.

NOTA

¡Daños en los dispositivos por descarga electrostática!

- Realice estas tareas en un lugar de trabajo antiestático y llevando una cinta de puesta a tierra.
- Guarde bien protegidos (p. ej. en su embalaje original) los dispositivos que no tenga en uso.

página 8 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 2 Seguridad

2.2 Peligros remanentes

Un módulo HIMax en sí no representa ninguna fuente de peligro.

Lo siguiente puede conllevar peligros remanentes:

- Errores de realización del proyecto
- Errores en el programa de usuario
- Errores en el cableado

2.3 Medidas de seguridad

Respete las normas de seguridad vigentes en el lugar de uso y use la debida indumentaria de seguridad personal.

2.4 Información para emergencias

Un sistema de control HIMax forma parte del equipamiento de seguridad de una planta. Si el sistema de control deja de funcionar, la planta adoptará un estado seguro.

En caso de emergencia está prohibida toda intervención que impida la función de seguridad de los sistemas HIMax.

HI 801 198 ES Rev. 4.00 página 9 de 66

3 Descripción del producto

El módulo analógico de entrada X-AI 16 51 sirve para usar en el sistema electrónico programable (PES) de HIMax.

El módulo puede aplicarse en todos los slots del rack, excepto en los slots para los módulos de bus de sistema. Más información en el manual de sistema HI 801 141 S.

El módulo sirve para evaluar hasta 16 señales de entrada analógicas.

Para las entradas analógicas pueden configurarse diversos modos operativos:

- tensión/temperatura, medición de tensión en mV
- Termopares
- · Corriente, medición de corriente en mA
- Pt100 (conexión a 2 hilos, conexión a 4 hilos)

El módulo ha sido diseñado para usarlo según las normas con termómetros de resistencia Pt100 (IEC 60751:2008) y termopares (IEC 60584-1:1998).

Para usarlo con termómetros de resistencia Pt100, el módulo ofrece dos fuentes de corriente.

El módulo ha sido certificado por el ente de inspección oficial TÜV como apto para aplicaciones hasta el nivel SIL 1 (IEC 61508, IEC 61511 y IEC 62061).

Con un circuitado 1002 de los módulos (capítulo 4.5.2) se obtiene una función de seguridad del nivel SIL 2 y con un circuitado 1003 de los módulos (capítulo 4.5.3) se obtiene una función de seguridad del nivel SIL 3.

El módulo podrá hacerse operar en un rack junto con módulos relacionados con la seguridad.

El módulo no tiene repercusiones sobre los módulos relacionados con la seguridad. Esto incluye particularmente la CEM, la seguridad eléctrica, la comunicación a X-SB y X-CPU y el programa del usuario.

Módulo y tarjeta de conexión están mecánicamente codificados. Véase el capítulo 3.6.1.

Las normas aplicadas para la verificación y certificación de los módulos y el sistema HIMax constan en el manual del sistema HIMax HI 801 196 S.

página 10 de 66 HI 801 198 ES Rev. 4.00

3.1 Función de seguridad

El módulo no ejecuta ninguna función relacionada con la seguridad.

El módulo mide la tensión de termómetros de resistencia y termopares con precisión metrológica.

El módulo mide la corriente de sensores con precisión metrológica.

3.1.1 Reacción en caso de error

En caso de error, para los valores de proceso se comunicará el valor inicial (valor por defecto 0) al programa del usuario. Los valores iniciales deberá parametrizarlos el usuario. Si en lugar del valor de proceso es el valor bruto el que se evalúa, el usuario deberá programar el monitoreo y el valor para casos de error en el programa de usuario.

El módulo activará el LED Error en el panel frontal.

3.2 Volumen de suministro

Para funcionar el módulo necesita la correspondiente tarjeta de conexión. Si se usa un FTA se necesitará un cable de sistema para conectar la tarjeta de conexión al FTA. Las tarjetas de conexión, el cable de sistema y los FTA no se incluyen en el volumen de suministro del módulo.

Las tarjetas de conexión se describen en el capítulo 3.6, los cables de sistema en el capítulo 3.7 y los FTA en sus respectivos manuales.

HI 801 198 ES Rev. 4.00 página 11 de 66

3.3 Placa de tipo

La placa de tipo contiene estos datos importantes:

- Nombre del producto
- Distintivo de homologación
- Código de barras (código 2D o líneas)
- Nº de referencia (Part-No.)
- Índice de revisión del hardware (HW-Rev.)
- Índice de revisión del software (SW-Rev.)
- Tensión de trabajo (Power)
- Especificaciones EX (si procede)
- Año de fabricación (Prod-Year:)

Fig. 1: Ejemplo de placa de tipo

página 12 de 66 HI 801 198 ES Rev. 4.00

3.4 Composición

El módulo está equipado con 16 entradas galvánicamente separadas entre sí. Las entradas miden las señales analógicas de entrada y proporcionan los valores al programa del usuario.

El módulo está equipado con dos fuentes de corriente, pudiendo cada una alimentar hasta ocho termómetros de resistencia Pt100. Una de las fuentes de corriente alimenta las entradas impares y la otra las entradas pares.

Mediante las 16 entradas analógicas pueden evaluarse los valores de medición de sensores, termopares y Pt100.

Según el modo operativo deberán usarse distintas tarjetas de conexión. Para el modo operativo *Voltage/Temperature* deberá usarse la tarjeta de conexión X-CB 020 y para el modo operativo *Current* la tarjeta de conexión X-CB 021

El sistema procesador del módulo de E/S dirige y monitorea el nivel de E/S. Los datos y estados del módulo de E/S se transmiten a los módulos procesadores mediante el bus redundante del sistema. Por razones de disponibilidad, el bus del sistema se implementa de forma redundante. La redundancia sólo estará garantizada cuando ambos módulos de bus de sistema se hayan introducido en el rack y se hayan configurado en SILworX.

Los LED indican el estado de las entradas analógicas. Véase el capítulo 3.4.2.

HI 801 198 ES Rev. 4.00 página 13 de 66

3.4.1 Diagramas de bloques

Los siguientes diagramas de bloques muestran la estructura del módulo.

Diagrama de bloques en caso de conectar termopares y Pt100

En caso de conectar termopares y Pt100 (termómetros de resistencia), deberán usarse las tarjetas de conexión X-CB 020.

Fig. 2: Diagrama de bloques en caso de conectar termopares y Pt100

página 14 de 66 HI 801 198 ES Rev. 4.00

Diagrama de bloques en caso de conectar sensores

En caso de conectar sensores deberán usarse las tarjetas de conexión X-CB 021.

Fig. 3: Diagrama de bloques en caso de conectar sensores

HI 801 198 ES Rev. 4.00 página 15 de 66

3.4.2 Lectura

La siguiente figura reproduce la lectura del módulo:

Fig. 4: Lectura

página 16 de 66 HI 801 198 ES Rev. 4.00

Los LED indican el estado operativo del módulo.

Los LED del módulo se dividen en estas categorías:

- Indicadores de estado del módulo (Run, Error, Stop, Init)
- Indicadores de bus de sistema (A, B)
- Indicadores de E/S (Al 1...16, Field)

Al conectarse la tensión de alimentación tendrá lugar siempre una prueba de LEDs, durante la cual se encenderán brevemente todos los LED.

Definición de las frecuencias de parpadeo:

En la siguiente tabla se definen las frecuencias de parpadeo de los LED:

Nombre	Frecuencia de parpadeo
Parpadeo1	Largo (600 ms) encendido, largo (600 ms) apagado
Parpadeo2	Corto (200 ms) encendido, corto (200 ms) apagado, corto (200 ms) encendido, largo (600 ms) apagado
Parpadeo X	Comunicación Ethernet: Parpadeo sincronizado con la transmisión de datos

Tabla 3: Frecuencias de parpadeo de los LED

Indicadores de estado de módulo

Estos LED se hallan en la parte de arriba de la placa frontal.

LED	Color	Estado	Significado	
Run	Verde	Encendido	Módulo en estado RUN, funcionamiento normal	
		Parpadeo1	Módulo en estado STOP/OS_DOWNLOAD o RUN/UP STOP (sólo en módulos procesadores)	
		Apagado	Módulo no en estado RUN, observar otros LED de estado	
Error	Rojo	Encendido/ Parpadeo1	Fallos internos del módulo detectados por la autocomprobación, p. ej. errores de hardware y de software o fallos de la fuente de alimentación. Errores al cargar el sistema operativo	
		Apagado	Funcionamiento normal	
Stop	Amarillo	Encendido	Módulo en estado STOP/VALID CONFIGURATION	
		Parpadeo1	Módulo en estado STOP/INVALID CONFIGURATION o STOP/OS_DOWNLOAD	
		Apagado	Módulo no en estado STOP, observar otros LED de estado	
Init	Amarillo	Encendido	Módulo en estado INIT	
		Parpadeo1	Módulo en estado LOCKED	
		Apagado	Módulo no en estado INIT ni LOCKED, observar otros LED de estado	

Tabla 4: Indicadores de estado de módulo

HI 801 198 ES Rev. 4.00 página 17 de 66

3.4.3 Indicadores de bus de sistema

Los LED indicadores de bus de sistema están rotulados con Sys Bus.

LED	Color	Estado	Significado
Α	A Verde Encendido		Conexión física y lógica al módulo de bus de sistema en el slot 1
		Parpadeo1	Sin conexión al módulo de bus de sistema en el slot 1
	Amarillo	Parpadeo1	Conexión física establecida al módulo de bus de sistema en el slot 1
			Sin conexión a un módulo procesador (redundante) en el funcionamiento del sistema
B Verde End		Encendido	Conexión física y lógica al módulo de bus de sistema en el slot 2
		Parpadeo1	Sin conexión al módulo de bus de sistema en el slot 2
	Amarillo	Parpadeo1	Conexión física establecida al módulo de bus de sistema en el slot 2 Sin conexión a un módulo procesador (redundante) en el funcionamiento del sistema
A+B	Apagado	Apagado	Sin conexión física ni lógica a los módulos del bus del sistema en los slots 1 y 2.

Tabla 5: Indicadores de bus de sistema

3.4.4 Indicadores de E/S

LED	Color	Estado	Significado
Channel	Amarillo	Encendido	Según el modo operativo. Véase el capítulo 4.3.
116		Parpadeo2	
		Apagado	
Field	Rojo	Parpadeo2	Errores de campo en al menos un canal (p. ej. interrupción, cortocircuito, etc.) según los umbrales parametrizados.
		Apagado	Sin errores en campo

Tabla 6: Indicadores de E/S

página 18 de 66 HI 801 198 ES Rev. 4.00

3.5 Datos del producto

Generalidades			
Tensión de alimentación	24 VCC, -15%+20%, w _s ≤ 5%, SELV, PELV		
Amperaje	mín. 500 mA (sin fuentes/canales)		
	máx. 600 mA		
Temperatura de trabajo	0 °C+60 °C		
Temperatura de almacenamiento	-40 °C+85 °C		
Humedad	máx. 95% de humedad relativa, sin rocío		
Grado de protección	IP 20		
Dimensiones (H x A x Prof) en mm	310 x 29,2 x 230		
Masa	aprox. 1,4 kg		

Tabla 7: Datos del producto

Fig. 5: Vistas

HI 801 198 ES Rev. 4.00 página 19 de 66

Entradas analógicas	
Cantidad de entradas (número de canales)	16, separadas galvánicamente
Rango útil:	
Medición de corriente	0/420 mA
Medición de tensión	-280+280 mV
Resolución digital	14 bits
Derivación para medición de corriente	12,5 Ω, en tarjeta de conexión X-CB 021
Máx. intensidad admisible por la derivación	50 mA
Tenacidad de la entrada frente a la tensión	30 VCC
Inhibición de tensiones parásitas	> 60 dB (modo común 50/60 Hz)
Renovación del valor de medición (en el programa del usuario)	Tiempo de ciclo del programa del usuario
Tiempo de exploración	2 ms
Precisión metrológica	
Precisión metrológica en todo el rango de temperatura (-10 °C+70 °C)	±4‰ del valor final
Tiempo de sintonía al 99% del valor de proceso al cambiar la señal de entrada	15 ms

Tabla 8: Datos técnicos de las entradas analógicas

página 20 de 66 HI 801 198 ES Rev. 4.00

En la Tabla 25 se relacionan las tolerancias de los termopares autorizados para este módulo.

Precisión metrológica						
Rango de temperaturas Tolerancia 25 °C Tolerancia (060 °C)						
Pt100, sensores	-200+850 °C	±2 °C	±2 °C			

Tabla 9: Precisión metrológica

Fuentes de corriente	
Cantidad de fuentes de corriente	2
Tensión de salida de fuente de corriente	28,5 VCC +0/-10%
Intensidad de salida de fuente de corriente	máx. 0,5 mA

Tabla 10: Datos técnicos de las fuentes de corriente

HI 801 198 ES Rev. 4.00 página 21 de 66

3.6 Tarjetas de conexión

Una tarjeta de conexión conecta el módulo al nivel de campo. Módulo y tarjeta de conexión conforman juntos una unidad funcional. Antes de instalar el módulo, monte la tarjeta de conexión en el slot previsto.

Se dispone de las siguientes tarjetas de conexión para conectar Pt100 y termopares:

Tarjeta de conexión	Descripción
X-CB 020 51	Tarjeta de conexión con bornes de rosca
X-CB 020 53	Tarjeta de conexión con conector de cables

Tabla 11: Tarjetas de conexión disponibles para conectar Pt100 y termopares

Se dispone de las siguientes tarjetas de conexión para conectar sensores:

Tarjeta de conexión	Descripción
X-CB 021 51	Tarjeta de conexión con bornes de rosca
X-CB 021 53	Tarjeta de conexión con conector de cables

Tabla 12: Tarjetas de conexión disponibles para conectar sensores

3.6.1 Codificación mecánica de tarjetas de conexión

Los módulos de E/S y las tarjetas de conexión están mecánicamente codificados a partir de la versión AS 00 del hardware, para evitar el montaje de módulos de E/S inadecuados. La codificación impide montar elementos equivocados y evita así repercusiones sobre el campo y módulos redundantes. Además, el montaje de elementos equivocados no afecta en absoluto al sistema HIMax, ya que sólo los módulos correctamente configurados en SILworX adoptarán el estado RUN.

Los módulos de E/S y sus correspondientes tarjetas de conexión están dotados de una codificación mecánica en forma de cuñas. Las cuñas de codificación de la regleta de resorte de la tarjeta de conexión encajan en las escotaduras de la regleta del conector del módulo de E/S, véase Fig. 6.

Los módulos de E/S codificados sólo encajarán en las tarjetas de conexión correspondientes.

página 22 de 66 HI 801 198 ES Rev. 4.00

- Escotadura de regleta
- 2 Escotadura de regleta preparada
- 3 Cuña de codificación
- 4 Guía para cuña de codificación

Fig. 6: Ejemplo de una codificación

Los módulos de E/S codificados encajarán también en tarjetas de conexión sin codificar. Los módulos de E/S no codificados no encajarán en tarjetas de conexión codificadas.

3.6.2 Codificación de tarjetas de conexión X-CB 020 5X

a7	a13	a20	a26	e7	e13	e20	e26
	X					X	X

Tabla 13: Posición de las cuñas de codificación

3.6.3 Codificación de tarjetas de conexión X-CB 021 5X

a7	a13	a20	a26	e7	e13	e20	e26
	X					X	X

Tabla 14: Posición de las cuñas de codificación

HI 801 198 ES Rev. 4.00 página 23 de 66

3.6.4 Tarjeta de conexión con bornes de rosca

Mono

X-CB 020 51

X-CB 021 51

Conector de módulo de E/S

Conexión por el lado del campo (bornes de rosca)

Fig. 7: Tarjeta de conexión con bornes de rosca

página 24 de 66 HI 801 198 ES Rev. 4.00

3.6.5 Asignación de bornes de tarjeta de conexión con bornes de rosca

N⁰ de pin	Designación	Señal	Nº de pin	Designación	Señal
1	101	S1+	1	102	S2+
2	1a	Al1+	2	2a	Al2+
3	1b	Al1-	3	2b	Al2-
4	3a	Al3+	4	4a	Al4+
5	3b	Al3-	5	4b	Al4-
6	5a	AI5+	6	6a	Al6+
7	5b	AI5-	7	6b	Al6-
8	7a	AI7+	8	8a	Al8+
9	7b	AI7-	9	8b	Al8-
NIO de orto		0 - ~ - 1	NIO de orde	,	0 - ~ - 1
Nº de pin	Designación	Señal	Nº de pin	Designación	Señal
N° de pin	Designacion 09a	Al9+	1	10a	Al10+
1	09a	Al9+	1	10a	Al10+
1 2	09a 09b	AI9+ AI9-	1 2	10a 10b	AI10+ AI10-
1 2 3	09a 09b 11a	AI9+ AI9- AI11+	1 2 3	10a 10b 12a	AI10+ AI10- AI12+
1 2 3 4	09a 09b 11a 11b	AI9+ AI9- AI11+ AI11-	1 2 3 4	10a 10b 12a 12b	AI10+ AI10- AI12+ AI12-
1 2 3 4 5	09a 09b 11a 11b 13a	Al9+ Al9- Al11+ Al11- Al13+	1 2 3 4 5	10a 10b 12a 12b 14a	AI10+ AI10- AI12+ AI12- AI14+
1 2 3 4 5 6	09a 09b 11a 11b 13a 13b	AI9+ AI9- AI11+ AI11- AI13+ AI13-	1 2 3 4 5 6	10a 10b 12a 12b 14a 14b	AI10+ AI10- AI12+ AI12- AI14+ AI14-

Tabla 15: Asignación de bornes de tarjeta de conexión con bornes de rosca

La conexión por el lado del campo se realiza con conectores de bornes que se conectan a las regletas de pins de las tarjetas de conexión.

Los conectores de bornes tienen las siguientes características:

Conexión por el lado del o	campo
Conectores de bornes	4 unidades, de 9 polos
Sección transversal de cable	0,21,5 mm² (monohilo) 0,21,5 mm² (hilo fino) 0,21,5 mm² (con puntera terminal)
Longitud de pelado	6 mm
Destornillador	Ranura 0,4 x 2,5 mm
Par de apriete	0,20,25 Nm

Tabla 16: Características de los conectores de bornes

HI 801 198 ES Rev. 4.00 página 25 de 66

3.6.6 Tarjeta de conexión con conector de cables

Mono

X-CB 020 53

X-CB 021 53

- Conector de módulo de E/S
- Conexión por el lado del campo (conector de cables hilera 1)
- Conexión por el lado del campo (conector de cables hilera 32)
- 4 Codificación para conectores de cable

Fig. 8: Tarjeta de conexión con conector de cables

página 26 de 66 HI 801 198 ES Rev. 4.00

3.6.7 Asignación de conectores de tarjeta de conexión con conector de cables Para estas tarjetas de conexión, HIMA ofrece cables de sistema preconfeccionados. Véase el capítulo 3.7.

Asignación de conectores

La siguiente tabla describe la asignación de conectores del cable del sistema.

Designación de hilos conforme a DIN 47100:

Lillana		С		b		a
Hilera	Señal	Color	Señal	Color	Señal	Color
1	libre		libre		Reservado	pk-rd
2	libre		libre		Reservado	gy-rd
3	libre		libre		Reservado	pk-bu
4	libre		libre		Reservado	gy-bu
5	libre		libre		libre	
6	libre		libre		libre	
7	libre		libre		libre	
8	libre		libre		libre	
9	libre		libre		libre	
10	libre		libre		libre	
11	libre		libre		libre	
12	libre		libre		libre	
13	libre		libre		libre	
14	libre		libre		libre	
15	libre		libre		libre	
16	libre		libre		libre	
17	Al16+	ye-bu	AI16-	gn-bu	libre	
18	Al15+	ye-pk	AI10-	pk-gn	libre	
19	Al14+	ye-gy	AI14-	gy-gn	libre	
20	Al13+	bn-bk	AI13-	wh-bk	libre	
21	Al12+	bn-rd	Al12-	wh-rd	libre	
22	Al11+	bn-bu	Al11-	wh-bu	libre	
23	AI10+	pk-bn	AI10-	wh-pk	libre	
24	AI9+	gy-bn	AI9-	wh-gy	libre	
25	Al8+	ye-bn	Al8-	wh-ye	libre	
26	AI7+	bn-gn	AI7-	wh-gn	libre	
27	Al6+	rd-bu	Al6-	gy-pk	libre	
28	Al5+	vt	AI5-	bk	libre	
29	Al4+	rd	Al4-	bu	S2-	ye-bk
30	Al3+	pk	AI3-	gy	S1-	gn-bk
31	Al2+	ye	Al2-	gn	S2+	ye-rd
32	Al1+	bn	Al1-	wh	S1+	gn-rd

Tabla 17: Asignación de conectores del cable del sistema

HI 801 198 ES Rev. 4.00 página 27 de 66

3.7 Cable del sistema X-CA 014

El cable de sistema X-CA 014 conecta las tarjetas de conexión X-CB 020 53 y X-CB 021 53 al nivel de campo mediante terminaciones FTA (Field Termination Assemblys) o bornes en línea.

Generalidades	
Cable	LIYDY-CY TP 20 x 2 x 0,25 mm ²
Conductor	De hilo fino
Diámetro exterior medio (d)	aprox. 23,7 mm
Mínimo radio de curvatura	
Tendido fijo	5 x d
Tendido móvil	10 x d
Respuesta frente al fuego	Resistente a llama y autoextinguible conforme a IEC 60332-1-22-2
Longitud	830 m
Codificación por colores	Conforme a DIN 47100, véase Tabla 17.

Tabla 18: Datos de cables

1 Conectores de cable idénticos

Fig. 9: Cable de sistema X-CA 014 01 n

El cable del sistema puede suministrarse en las siguientes variantes estándar:

Cable del sistema	Descripción	Longitud
X-CA 014 01 8	Conectores de cables codificados a ambos lados.	8 m
X-CA 014 01 15		15 m
X-CA 014 01 30		30 m

Tabla 19: Cables de sistema disponibles X-CA 014

página 28 de 66 HI 801 198 ES Rev. 4.00

3.7.1 Codificación de conectores de cable

Los conectores de cables tienen tres clavijas de codificación. Así, los conectores podrán conectarse únicamente a tarjetas de conexión y FTAs con las correspondientes escotaduras.

HI 801 198 ES Rev. 4.00 página 29 de 66

4 Puesta en servicio X-AI 16 51

4 Puesta en servicio

En este capítulo se describe cómo se instala y configura el módulo, así como sus variantes de conexión. Hallará más información en el manual de seguridad de HIMax HI 801 196 S.

Se permite el módulo monocanal sólo en aplicaciones de modo Low-Demand. En aplicaciones de modo High-Demand (1002, 1003) habrá que proveer redundancia. La aplicación relacionada con la seguridad (SIL 1/SIL 2/SIL 3) de las entradas (incluidos los sensores conectados a ellas) deberá cumplir las exigencias normativas de seguridad.

4.1 Montaje

Para el montaje observe los siguientes puntos:

- Para usar sólo con los correspondientes componentes de ventilación, véase el manual HI 801 141 S.
- Para usar sólo con la correspondiente tarjeta de conexión. Véase el capítulo 3.6.
- El módulo, incluidos sus elementos de conexión, habrá de montarse de tal manera que se tenga por lo menos el grado de protección IP 20 según EN 60529: 1991 + A1:2000.

NOTA

¡Daños por conexión incorrecta del circuito! La inobservancia puede dar lugar a daños en elementos electrónicos. Observe los siguientes puntos.

- Bornes y conectores por el lado del campo
 - Al conectar bornes y conectores al lado del campo, preste atención a una puesta a tierra adecuada.
 - Use cable apantallado con hilos trenzados por pares (twisted pair).
 - Para cada entrada de medición use un par trenzado del cable apantallado.
 - Por la parte del módulo tienda el apantallado en el carril de apantallado de cables (use borne de conexión de apantallado SK 20 o equivalente).
 - En el caso de los conductores de varios hilos, HIMA recomienda dotar a los extremos del conductor con punteras terminales. Los bornes de conexión deberán ser aptos para los bornes secundarios de las secciones transversales empleadas.
- En caso de usar fuentes de corriente, use la fuente asignada a la entrada respectiva (p. ej. B. S1+ con Al1+).
- HIMA recomienda usar la fuente de corriente del módulo. Posibles disfunciones de una unidad externa de alimentación o medición pueden dar lugar a sobrecargas y daños en la entrada de medición afectada del módulo. ¡Si usa fuente externa, compruebe el valor cero y el valor final seguido a una sobrecarga no transitoria!
- Un circuitado redundante de las entradas deberá implementarse mediante las correspondientes tarjetas de conexión. Véase el capítulo 3.6 y 4.5.

página 30 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 4 Puesta en servicio

4.2 Instalación y desmontaje del módulo

En este capítulo se describe cómo sustituir un módulo existente o colocar un módulo nuevo.

Al retirar el módulo, la tarjeta de conexión permanecerá en el rack HIMax. Esto evita trabajos de cableado adicionales en los bornes de conexión, ya que todas las conexiones de campo se realizan mediante la tarjeta de conexión del módulo.

4.2.1 Montaje de una tarjeta de conexión

Herramientas y medios auxiliares

- Destornillador, ranura de 0,8 x 4,0 mm
- Tarjeta de conexión adecuada

Montaje de la tarjeta de conexión:

- 1. Introduzca la tarjeta de conexión en el carril guía con la ranura hacia arriba (véase al respecto el siguiente dibujo). Encaje la ranura en la espiga del carril guía.
- 2. Emplace la tarjeta de conexión sobre el carril de apantallado de cables.
- 3. Atorníllela al rack con los dos tornillos imperdibles. Primero enrosque el tornillo inferior y luego el superior.

Desmontaje de la tarjeta de conexión:

- 1. Destornille los tornillos imperdibles del rack.
- 2. Separe la tarjeta de conexión por abajo del carril de apantallado.
- 3. Saque la tarjeta de conexión del carril guía.

Fig. 10: Colocación de la tarjeta de conexión

HI 801 198 ES Rev. 4.00 página 31 de 66

4 Puesta en servicio X-AI 16 51

Fig. 11: Atornillado de la tarjeta de conexión

página 32 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 4 Puesta en servicio

4.2.2 Instalación y desmontaje de un módulo

Este capítulo describe cómo se instala y retira un módulo HIMax. Un módulo podrá instalarse y retirarse sin interrumpir el funcionamiento del sistema HIMax.

NOTA

¡Daños de los conectores en caso de introducirlos ladeados! La inobservancia puede dar lugar a daños en el sistema de control. Coloque los módulos siempre con cuidado en su rack.

Herramientas

- Destornillador, ranura de 0,8 x 4,0 mm
- Destornillador, ranura de 1,2 x 8,0 mm

Instalación

- 1. Abra la chapa de cierre del rack del ventilador:
 - ☑ Ponga los bloqueos en posición open
 - ☑ Gire la chapa de cierre hacia arriba e introdúzcala en el rack del ventilador
- 2. Coloque el módulo en la parte superior del perfil de suspensión, véase 1.
- 3. Gire el módulo en la parte inferior en la rack y encástrelo con una ligera presión, véase 2.
- 4. Atornille el módulo, véase 3.
- 5. Saque la chapa de cierre hacia arriba del rack del ventilador y gírela hacia abajo.
- 6. Bloquee la chapa de cierre.

Desmontaje

- 1. Abra la chapa de cierre del rack del ventilador:
 - ☑ Ponga los bloqueos en posición open
 - ☑ Gire la chapa de cierre hacia arriba e introdúzcala en el rack del ventilador
- 2. Suelte el tornillo, véase 3.
- 3. Gire el módulo para sacarlo de la parte inferior en la rack y desencájelo con una ligera presión hacia arriba del perfil, véase 2 y 1.
- 4. Saque la chapa de cierre hacia arriba del rack del ventilador y gírela hacia abajo.
- 5. Bloquee la chapa de cierre.

HI 801 198 ES Rev. 4.00 página 33 de 66

4 Puesta en servicio X-Al 16 51

Fig. 12: Instalación y desmontaje de módulo

Durante el funcionamiento del sistema HIMax tenga abierta la chapa de cierre del rack del ventilador brevemente (< 10 min.), pues ello menoscaba la convección forzada.

página 34 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 4 Puesta en servicio

4.3 Modos operativos de módulo y modos operativos de canal

4.3.1 Configuración del módulo, modo operativo

Con el parámetro *Mode of Operation* de la ficha *I/O Submodule Al16_51* se dispone de los siguientes dos modos operativos:

- Tensión/Temperatura Con el modo operativo Voltage/Temperature podrá optarse por conectar termopares, Pt100 o sensores por cada canal. Véase cap. 4.3.2.
- La intensidad de todos los canales está definida para el modo operativo Voltage/Current.
- Si para el módulo se elige el modo operativo *Current*, el parámetro de sistema *Mode* estará inhabilitado (gris) en la configuración de canal. Todos los canales se pondrán de forma fija al modo operativo *Voltage/Current*.

4.3.2 Configuración del canal, modo operativo

Con el parámetro de sistema *Mode of Operation* de la ficha *I/O Submodule Al16_51: Channels* se dispondrá de los siguientes modos operativos:

- Tensión/Corriente Si se elige el modo operativo *Voltage/Current*, ese canal podrá usarse para medir tensión o corriente.
- Termopar En el modo operativo *Thermocouple* podrá seleccionarse entre varios tipos de termopar, en los que la temperatura del punto de comparación se incluirá en el cálculo de la temperatura. Véase Tabla 25. Si a un canal se le asigna un termopar, el parámetro de sistema *Reference Position for Temperature* deberá conectarse al valor de proceso de un canal de medición de temperatura (Pt100). Éste servirá como referencia de la tensión por temperatura para todos los canales que se hayan definido en la configuración de canal como termopar. La temperatura para el punto de comparación (Pt100) deberá estar dentro de un rango de -40...+80 °C. El punto de comparación podrá usarse asimismo para otros módulos (X-Al 16 51) dentro de un sistema HIMax. Para la medición por Pt100 deberán estar activos los parámetros de sistema *Current Source 1 ON y Current Source 2 ON*.
- Pt100 Si se elige el modo operativo Pt100, deberá estar activo el parámetro de sistema Current Source 1 ON, para poder alimentar con corriente los canales impares.
 El parámetro de sistema Current Source 2 ON deberá estar activo para poder alimentar con corriente constante los canales pares.
- La configuración se rechazará en caso de que los canales impares estén ajustados para medición de Pt100 y Current Source 1 ON esté desactivado o en caso de que los canales impares estén ajustados para medición de Pt100 y Current Source 2 ON esté desactivado.

4.3.3 OC Limit y SC Limit

Si no se necesita la evaluación de interrupción (OC) o cortocircuito (SC) de cables, podrá usarse la configuración predeterminada de los parámetros de sistema OC Limit y SC Limit.

Si se necesita una evaluación de interrupción (OC) o cortocircuito (SC) de cables, deberán adaptarse los límites de acuerdo a los valores de medición. Véase el capítulo 4.3.5.

4.3.4 SW-LOW y SW-HIGH

Si se necesita el valor booleano de canal -> Ch. Value. [BOOL], deberán adaptarse los límites SP-LOW y SP-HIGH de acuerdo a los valores de medición. Véase el capítulo 4.3.5.

HI 801 198 ES Rev. 4.00 página 35 de 66

4 Puesta en servicio X-Al 16 51

4.3.5 Representación de los valores de medición

Los valores de medición se representarán, de acuerdo a la siguiente estandarización, con el parámetro de sistema *Raw Value [DINT]*:

Tensiones

-2 000 000 dígitos equivalen a -200 mV+2 000 000 dígitos equivalen a +200 mV10 000 dígitos equivalen a 1 mV

Temperaturas 10 000 dígitos equivalen a 1 °C 0 dígitos equivalen a 0 °C

Corrientes 200 000 dígitos equivalen a 20 mA 10 000 dígitos equivalen a 1 mA

página 36 de 66 HI 801 198 ES Rev. 4.00

4.4 Configuración del módulo en SILworX

El módulo se configura en el editor de hardware de la utilidad de programación SILworX.

Para la configuración observe los siguientes puntos:

- Para el diagnóstico del módulo y de los canales podrán usarse en el programa del usuario los parámetros del sistema además del valor de medición. Hallará más información sobre los parámetros del sistema en las tablas a partir del capítulo 4.4.1.
- Si el valor 0 se halla dentro del rango de medición válido, en el programa del usuario deberá evaluarse, además de -> Channel OK, también el estado -> raw value. La utilización de dicho estado y otros estados de diagnóstico (p. ej. de cortocircuito e interrupción de cables) ofrece posibilidades adicionales para diagnosticar el circuito externo y para configurar en el programa del usuario las reacciones frente a errores.
- Hallará más información sobre estos parámetros del sistema en la Tabla 21 y la Tabla 22.
- Si se crea un grupo de redundancia, éste se configurará en sus fichas. Las fichas del grupo de redundancia son diferentes de las de los módulos individuales. Véanse las tablas subsiguientes.

Para poder evaluar los parámetros del sistema en el programa del usuario, deberán asignarse variables globales a los parámetros del sistema. Realice este paso dentro del editor de hardware en la vista en detalle del módulo.

Las tablas subsiguientes contienen los parámetros de sistema del módulo en el mismo orden que en el editor de hardware.

SUGE- Para convertir los valores hexadecimales en secuencias de bits puede usarse RENCIA p. ej. la calculadora de Windows® en su formato "científico".

HI 801 198 ES Rev. 4.00 página 37 de 66

4.4.1 Ficha "Module"

La ficha **Module** contiene los siguientes parámetros de sistema del módulo:

Nombre		R/W	Descripción			
Estos estados y parámetros se escriben						
Туре			X-AI 16 51			
Name W		W	Nombre del módulo			
Spare Module W		W	Activado: la ausencia de un módulo del grupo de redundancia en el rack no se evaluará como error. Desactivado: la ausencia de un módulo del grupo de redundancia en el rack se evaluará como error.			
			Configuración por defecto: Desactivado			
			¡Aparece sólo en la ficha del grupo de redundancia!			
Noise blanking W		W	Admitir inhibición de fallos por parte del módulo procesador (activado/desactivado). Configuración por defecto: Activado La reacción a error frente a una perturbación transitoria se inhibe hasta el tiempo de seguridad. Seguirá obrando el último valor de proceso válido para el programa del usuario.			
Nombre	Tipo	R/W	Descripción			
	de datos					
Los siguientes estad del usuario	dos y paráme	etros po	drán asignarse a variables globales y utilizarse en el programa			
Module OK	BOOL	R	TRUE:			
			Modo mono: sin errores de módulo.			
			Modo en redundancia: al menos uno de los módulos			
			redundantes no tiene un error de módulo (lógica "OR").			
			FALSE:			
			Error de módulo			
			Error de canal de un canal (no errores externos)			
			Módulo no introducido.			
			Observe el parámetro "Module Status".			
Module Status	DWORD	R	Estado del módulo			
			Codificación Descripción			
			0x00000001 Error del módulo 1)			
			0x00000002 Umbral de temperatura 1 excedido			
			0x00000004 Umbral de temperatura 2 excedido			
			0x00000008 Valor de temperatura erróneo			
			0x00000010 Tensión L1+ errónea			
			0x00000020 Tensión L2+ errónea			
			0x00000040 Tensiones internas erróneas			
			0x80000000 Sin conexión al módulo 1)			
			1) Estos errores tienen repercusiones sobre el estado Module OK y no es necesario evaluarlos explícitamente en el programa del usuario.			
Timestamp [µs]	DWORD	R	Parte en microsegundos de la marca de tiempo. Momento de la medición de las entradas analógicas			
Timestamp [s]	DWORD	R	Parte en segundos de la marca de tiempo.			
			Momento de la medición de las entradas analógicas.			

Tabla 20: Ficha "Module" del editor de hardware

página 38 de 66 HI 801 198 ES Rev. 4.00

4.4.2 Ficha I/O Submodule Al16_51

La ficha I/O Submodule Al16 51 contiene los siguientes parámetros del sistema:

Nombre		R/W	Descripción
Estos estados y parámetros	se escriben	directa	mente en el editor de hardware.
Name		R	Nombre del módulo
Show Signal Overflow		W	Indicación de desborde de señal de medición con el LED <i>Field</i> . Activado: indicación activada de desborde de señal de medición. Desactivado: indicación desactivada de desborde de señal de medición. Configuración por defecto: Activado
Current Source 1 ON		W	Uso de la fuente de corriente 1 del módulo. Activado: fuente de corriente de canales impares 1,315 activada. Desactivado: fuente de corriente de canales impares 1,315 desactivada. Configuración por defecto: Activado
Current Source 2 ON		W	Uso de la fuente de corriente 2 del módulo. Activado: fuente de corriente de canales pares 2,416 activada. Desactivado: fuente de corriente de canales pares 2,416 desactivada. Configuración por defecto: Activado
Mode of Operation		W	Se dispone de los siguientes modos operativos Tensión/Temperatura Corriente Configuración por defecto: Tensión/Temperatura Hallará más información en la 4.3.1.
Nombre	Tipo de datos	R/W	Descripción
Los siguientes estados y par del usuario.	rámetros pod	drán asi	gnarse a variables globales y utilizarse en el programa
Background Test Error	BOOL	R	TRUE: Prueba en segundo plano errónea FALSE: Prueba en segundo plano exenta de errores
Diagnostic Request	DINT	W	Para solicitar un valor de diagnóstico, deberá enviarse al módulo el correspondiente ID (ver codificación en 4.4.5) mediante el parámetro <i>Diagnostic Request</i> .
Diagnostic Response DINT		R	Una vez que <i>Diagnostic Response</i> devuelva el ID de <i>Diagnostic Request</i> (ver codificación en 4.4.5), en <i>Diagnostic Status</i> se tendrá el valor de diagnóstico solicitado.
Diagnostic Status	DWORD	R	Valor de diagnóstico solicitado conforme a Diagnostic Response. En el programa del usuario se podrán evaluar los ID de Diagnostic Request y de Diagnostic Response. Sólo cuando ambos contengan el mismo ID, contendrá Diagnostic Status el valor de diagnóstico solicitado.

HI 801 198 ES Rev. 4.00 página 39 de 66

Nombre	Tipo de datos	R/W	Descripción
Reference Position for Temperature	REAL	W	El parámetro de sistema Reference Position for Temperature deberá conectarse al valor de proceso de un canal de medición de temperatura (Pt100). Rango de valores: -40+80 °C Hallará más información en el capítulo 4.3.1.
Restart on Error	BOOL	W	Todo módulo de E/S que esté desactivado prolongadamente a causa de errores podrá ponerse de nuevo en estado RUN mediante el parámetro Restart on Error. Para ello cambie el parámetro Restart on Error de FALSE a TRUE. El módulo de E/S realizará una autocomprobación completa y adoptará el estado RUN si no detecta ningún error. Configuración por defecto: FALSE
Submodule OK	BOOL	R	TRUE: Sin errores de submódulo Sin errores de canal. FALSE: Error de submódulo Error de canal (también errores externos) de un canal
Submodule Status	DWORD	R	Estado del submódulo codificado en bits (ver codificación en 4.4.4)

Tabla 21: Ficha I/O Submodule Al16_51 del editor de hardware

página 40 de 66 HI 801 198 ES Rev. 4.00

4.4.3 Ficha I/O Submodule Al16_51: Channels

La ficha **I/O Submodule Al16_51: Channels** contiene los siguientes parámetros del sistema para cada entrada analógica. A los parámetros de sistema con -> podrán asignárseles variables globales y utilizarse en el programa del usuario. Los valores sin -> deberá Ud. escribirlos directamente.

Nombre	Tipo de datos	R/W	Descripción
Channel no.		R	Nº de canal, predefinido por defecto
-> Process Value [REAL]	REAL	R	proceso = (valor bruto x factor de escala / 10 000) + offset de escala.
Scal. Factor	REAL		Factor de escala que se multiplica por el valor bruto. Configuración por defecto: 1.0
Offset	REAL		Offset de escala que se suma al valor bruto. Configuración por defecto: 0.0
-> Raw Value [DINT]	DINT	R	Valor en bruto sin procesar del canal. Véase el capítulo 4.3.5: Si en lugar del valor de proceso es el valor bruto el que se evalúa, el usuario deberá programar el monitoreo y el valor para casos de error en el programa de usuario.
-> Channel OK	BOOL	R	TRUE: Canal exento de errores El valor de proceso será válido. FALSE: Canal erróneo. El valor de proceso se pondrá a su valor inicial (por defecto = 0). ¡El valor inicial deberá parametrizarlo el usuario!
OC Limit	DINT	W	Valor umbral para la detección de una interrupción de cables. Si el valor de proceso cae por debajo de <i>OC Limit</i> , el módulo lo detectará como una interrupción de cables y pondrá el LED <i>Channel</i> de ese canal en el modo de parpadeo2 y se encenderá el LED <i>Field</i> . Configuración por defecto: -20 000 000
-> OC	BOOL	R	TRUE: Hay una interrupción de cables. FALSE: No hay interrupciones de cables. Definido por <i>OC Limit</i> .
SC Limit	DINT	W	Valor umbral para la detección de un cortocircuito de cables. Si el valor de proceso sobrepasa <i>OC Limit</i> , el módulo lo detectará como un cortocircuito de cables y pondrá el LED <i>Channel</i> de ese canal en el modo de parpadeo2 y se encenderá el LED <i>Field</i> . Configuración por defecto: 20 000 000
-> SC	BOOL	R	TRUE: Hay un cortocircuito de cables. FALSE: No hay cortocircuito de cables. Definido por SC Limit.
SP LOW	DINT	W	Límite superior del nivel Low SP LOW (valor de conmutación LOW) determina el límite a partir del cual el módulo detecta LOW y hace que se apague el LED Channel. Restricciones: SP LOW ≤ SP HIGH Configuración por defecto: -10 000
SP HIGH	DINT	W	Límite inferior del nivel High SP HIGH (valor de conmutación HIGH) determina el límite a partir del cual el módulo detecta HIGH y hace que se encienda el LED Channel. Restricciones: SP LOW ≤ SP HIGH Configuración por defecto: 10 000
-> Ch. Value [BOOL]	[BOOL]	R	Valor booleano del canal según los límites SP LOW y SP HIGH

HI 801 198 ES Rev. 4.00 página 41 de 66

Nombre	Tipo de datos	R/W	Descripción
T on [μs]	UDINT	W	Retardo de conexión El módulo indicará un cambio de nivel de LOW a HIGH sólo cuando el nivel High esté presente más que el tiempo parametrizado como t_{on} . Atención: El máximo tiempo de reacción T_R (worst case) se prolongará para ese canal en el retardo aquí elegido, ya que un cambio de nivel se reconocerá como tal sólo tras transcurrir el tiempo de retardo. Rango de valores: $0(2^{32} - 1)$ Configuración por defecto: 0
T off [μs]	UDINT	W	Retardo de desconexión El módulo indicará un cambio de nivel de HIGH a LOW sólo cuando el nivel Low esté presente más que el tiempo parametrizado como t _{off} . Atención: El máximo tiempo de reacción T _R (worst case) se prolongará para ese canal en el retardo aquí elegido, ya que un cambio de nivel se reconocerá como tal sólo tras transcurrir el tiempo de retardo. Rango de valores: 0(2 ³² - 1) Configuración por defecto: 0
Mode of Operation			Se dispone de los siguientes modos operativos: Voltage/Current – Tensión/Corriente Thermocouple Type R/Termopar tipo R (no habilitado) Thermocouple Type S/Termopar tipo S (no habilitado) Thermocouple Type B/Termopar tipo B (no habilitado) Thermocouple of type J/Termopar tipo J Thermocouple of type K/Termopar tipo K Thermocouple of type T/Termopar tipo T Thermocouple of type E/Termopar tipo E Pt100 Configuración por defecto: Tensión/Corriente Hallará más información en la 4.3.2.
Filter parameter [ms]			El parámetro de sistema <i>Filter parameter [ms]</i> indica el tiempo a lo largo del cual se obtienen los valores de medición. Rango de valores: 210 000 [ms] con una fineza de 2 ms (2, 4, 6,). Configuración por defecto: 2
Redund.	BOOL	W	Requisitos: deberá haber creado un módulo redundante. Activado: activación de la redundancia de canal para ese canal Desactivado: desactivación de la redundancia de canal para ese canal Configuración por defecto: desactivado.
Redundancy value	BYTE	W	Definición de cómo se forma el valor de redundancia. Min Max Average Configuración por defecto: Max ¡Aparece sólo en la ficha del grupo de redundancia!

Tabla 22: Ficha I/O Submodule Al16_51: Channels del editor de hardware

página 42 de 66 HI 801 198 ES Rev. 4.00

4.4.4 Submodule Status [DWORD]

Codificación de Submodule Status.

Codificación	Descripción
0x0000001	Error de la unidad de hardware (submódulo)
0x00000002	Reset de un bus de E/S
0x00000004	Error en la inicialización del hardware
0x00000008	Error en la comprobación de coeficientes
0x00000080	Reinicialización del monitoreo de selección de chip

Tabla 23: Submodule Status [DWORD]

HI 801 198 ES Rev. 4.00 página 43 de 66

4.4.5 Diagnostic Status [DWORD]

Codificación de Diagnostic Status:

ID	Descripción			
0	Los valores de	diagnóstico (1001016) se mostrarán consecutivamente.		
100	Estado de temperatura codificado en bits 0 = normal Bit0 = 1 : Umbral de temperatura 1 excedido Bit1 = 1 : Umbral de temperatura 2 excedido Bit2 = 1 : medición de temperatura errónea			
101	temperatura m	edida (10 000 dígitos/°C)		
200	0 = normal Bit0 = 1 : L1+ (sión codificado en bits 24 V) es errónea 24 V) es errónea		
201	¡No se usa!			
202				
203				
300	Subtensión de	24 V (BOOL)		
10011016	Estado de los	canales 116		
	Codificación	Descripción		
	0x0001	Se ha producido un error de la unidad de hardware (submódulo)		
	0x0002	Error de canal debido a error interno		
	0x0400	Límites de SC/OC transgredidos por arriba/abajo o error de módulo/canal		
	0x1000	Temperatura del punto de comparación fuera del rango de valores		
	0x2000	Valor de medición por arriba/abajo del límite aceptable		
	0x4000	Canal no parametrizado		

Tabla 24: Diagnostic Information [DWORD]

página 44 de 66 HI 801 198 ES Rev. 4.00

4.5 Variantes de conexión

Este capítulo describe el correcto circuitado de seguridad instrumentada del módulo. Son admisibles las siguientes variantes de conexión.

Las entradas se conectan al circuito mediante tarjetas de conexión.

4.5.1 Circuitados de entrada monocanales

En la puesta en circuito como la de la Fig. 13, deberán usarse las tarjetas de conexión con derivación X-CB 021 51 (con bornes de rosca) o X-CB 021 53 (con conector de cables).

Fig. 13: Conexión monocanal de un sensor

En las puestas en circuito como la de la Fig. 14 hasta la Fig. 16, deberán usarse las tarjetas de conexión sin derivación X-CB 020 51 (con bornes de rosca) o X-CB 020 53 (con conector de cables).

Fig. 14: Conexión monocanal de termopares

HI 801 198 ES Rev. 4.00 página 45 de 66

Fig. 15: Conexión monocanal de Pt100 (termómetro de resistencia) (a 2 hilos)

Fig. 16: Conexión monocanal de Pt100 (termómetro de resistencia) (a 4 hilos)

página 46 de 66 HI 801 198 ES Rev. 4.00

4.5.2 Puestas en circuito redundantes de entrada

Con un circuitado 1002 de los módulos se obtiene una función de seguridad del nivel SIL 2.

La evaluación del circuitado 1002 puede realizarse en SILworX, debiendo para ello crearse un grupo de redundancia de dos módulos.

En las puestas en circuito como la de la Fig. 17 hasta la Fig. 20, deberán usarse las tarjetas de conexión sin derivación X-CB 020 01 (con bornes de rosca) o X-CB 020 03 (con conector de cables).

Fig. 17: Conexión redundante de un termopar

Fig. 18: Conexión redundante de termopares

HI 801 198 ES Rev. 4.00 página 47 de 66

Fig. 19: Circuitado 1002 de Pt100 (termómetro de resistencia) (a 2 hilos)

página 48 de 66 HI 801 198 ES Rev. 4.00

Fig. 20: Circuitado 1002 de Pt100 (termómetro de resistencia) (a 4 hilos)

HI 801 198 ES Rev. 4.00 página 49 de 66

4.5.3 Puestas en circuito triplemente redundantes de entrada

Con un circuitado 1003 de los módulos se obtiene una función de seguridad del nivel SIL 3. La evaluación del circuitado 1003 deberá realizarse en el programa del usuario.

En la puesta en circuito como la de la Fig. 21 hasta la Fig. 24, deberán usarse las tarjetas de conexión sin derivación X-CB 020 51 (con bornes de rosca) o X-CB 020 53 (con conector de cables).

Fig. 21: Puesta en circuito triplemente redundante de un termopar

página 50 de 66 HI 801 198 ES Rev. 4.00

Fig. 22: Puesta en circuito triplemente redundante de termopares

HI 801 198 ES Rev. 4.00 página 51 de 66

Fig. 23: Circuitado 1003 de Pt100 (termómetro de resistencia) (a 2 hilos)

página 52 de 66 HI 801 198 ES Rev. 4.00

Fig. 24: Circuitado 1003 de Pt100 (termómetro de resistencia) (a 4 hilos)

HI 801 198 ES Rev. 4.00 página 53 de 66

4.5.4 Conexión de sensores mediante terminación FTA (Field Termination Assembly)

La conexión de iniciadores mediante el bloque de terminación de campo FTA se realiza como se ilustra en la Fig. 25. Hallará más información en los manuales de "X-FTA".

En la puesta en circuito como la de la Fig. 25 deberán usarse las tarjetas de conexión sin derivación X-CB 020 51 (con bornes de rosca) o X-CB 020 53 (con conector de cables). La derivación se halla en el bloque FTA de terminación. La redundancia se genera en el bloque FTA.

Fig. 25: Conexión mediante terminación FTA (Field Termination Assembly)

página 54 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 5 Funcionamiento

5 Funcionamiento

El módulo opera en un rack HIMax y no necesita de monitoreo especial.

5.1 Manejo

No se contempla ninguna operación de manejo en el módulo en sí.

Operaciones como p. ej. el forzado de las entradas analógicas se realizan en el PADT. Hallará más información al respecto en la documentación de SILworX.

5.2 Diagnóstico

El estado del módulo se indica mediante LEDs en la cara frontal del módulo. Véase el capítulo 3.4.2.

El historial de diagnóstico del módulo puede además leerse con la utilidad de programación SILworX. En los capítulos 4.4.4 y 4.4.5 se describen los estados de diagnóstico más importantes.

Si en un rack se encaja un módulo, éste generará mensajes de diagnóstico durante la inicialización, los cuales apuntarán a disfunciones tales como valores de tensión incorrectos.

Estos mensajes denotarán un error del módulo sólo cuando se produzcan tras la transición al estado de sistema en funcionamiento.

HI 801 198 ES Rev. 4.00 página 55 de 66

6 Mantenimiento X-AI 16 51

6 Mantenimiento

Los módulos averiados deberán sustituirse con módulos intactos del mismo tipo o de un tipo de reemplazo homologado.

La reparación del módulo está reservada al fabricante.

Para sustituir módulos deberán observarse las condiciones indicadas en el manual del sistema HI 801 141 S y el manual de seguridad HI 801 196 S.

6.1 Tareas de mantenimiento

6.1.1 Carga del sistema operativo

En el marco del mantenimiento perfectivo, HIMA sigue desarrollando el sistema operativo del módulo. HIMA recomienda aprovechar paradas programadas de la línea para cargar la versión actual del sistema operativo a los módulos.

La carga del sistema operativo se describe en el manual del sistema y en la ayuda directa en pantalla. Para cargar el sistema operativo, el módulo deberá encontrarse en estado STOP.

La versión actual del módulo figura en el panel de control de SILworX. La placa de tipo indica la versión instalada a la entrega de fábrica, véase el capítulo 3.3.

6.1.2 Ensayo de prueba

Los módulos HIMax deben someterse a un ensayo de prueba cada 10 años. Hallará más información en el manual de seguridad HI 801 196 S.

página 56 de 66 HI 801 198 ES Rev. 4.00

7 Puesta fuera de servicio

Saque el módulo del rack para ponerlo fuera de servicio. Más información en el capítulo *Instalación y desmontaje del módulo*.

HI 801 198 ES Rev. 4.00 página 57 de 66

8 Transporte X-AI 16 51

8 Transporte

Para evitar daños mecánicos, transporte los componentes HIMax empaquetados.

Guarde los componentes HIMax siempre empaquetados en su embalaje original. Éste sirve además como protección contra descargas ES. El embalaje del producto solo no es suficiente para el transporte.

página 58 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 9 Desecho

9 Desecho

Los clientes industriales son responsables de desechar ellos mismos el hardware de HIMax tras la vida útil del mismo. Si se desea puede solicitarse a HIMA la eliminación de los componentes usados.

Deseche todos los materiales respetuosamente con el medio ambiente.

HI 801 198 ES Rev. 4.00 página 59 de 66

9 Desecho X-AI 16 51

página 60 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 Anexo

Anexo

Termopares utilizables

Tipo TC	Emparejamiento	Tensión de entrada	Rango de temperaturas	Tolerancia 25 °C	Tolerancia (060 °C)
E	CrNi/CuNi	-9,06376,373 mV	-210150 °C -1500 °C 01000 °C	±3,1 °C ±2 °C ±1,3 °C	±4,5 °C ±2,8 °C ±2,3 °C
J	Fe/CuNi	-8,09569,553 mV	-2100 °C 01200 °C	±2 °C ±1,7 °C	±4,7 °C ±2,7 °C
K	CrNi/NiAI	-6,03554,819 mV	-210150 °C -1501370 °C	±3 °C ±2 °C	±4,1 °C ±3,6 °C
Т	Cu/CuNi	-5,75321,003 mV	-210160 °C -160400 °C	±2,6 °C ±1,3 °C	±4,7 °C ±2,5 °C
B 1)	Pt30%Rh/Pt6%Rh	0,09213,820 mV	1501820 °C		
R 1)	Pt13%Rh/Pt	-0,22621,003 mV	-500 °C 01760 °C		
S 1)	Pt10%Rh/Pt	0,23618,609 mV	-500 °C 01760 °C		

[¡]No autorizado para su uso con X-AI 16 51! El valor de medición proporciona resultados de medición demasiado inexactos.

Tabla 25: Tolerancias de los termopares

HI 801 198 ES Rev. 4.00 página 61 de 66

Anexo X-AI 16 51

Glosario

Término	Descripción
ARP	Address Resolution Protocol: protocolo de red para asignar direcciones
	de red a direcciones de hardware
Al	Analog input: entrada analógica
Connector Board	Tarjeta de conexión para módulo HIMax
COM	Módulo de comunicación
CRC	Cyclic Redundancy Check: suma de verificación
DI	Digital input: entrada digital
DO	Digital output: salida digital
CEM	Compatibilidad electromagnética
EN	Normas europeas
ESD	ElectroStatic Discharge: descarga electrostática
FB	Bus de campo
FBS	Lenguaje de bloques funcionales
FTT	Tiempo de tolerancia de errores
ICMP	Internet Control Message Protocol: protocolo de red para mensajes de estado
IEC	y de error Normas internacionales de electrotecnia
Dirección MAC	
	Dirección de hardware de una conexión de red (Media Access Control)
PADT	Programming and Debugging Tool (según IEC 61131-3), PC con SILworX
PE	Tierra de protección
PELV	Protective Extra Low Voltage: baja tensión funcional con separación segura
PES	Programmable Electronic System
PFD	Probability of Failure on Demand: probabilidad de un fallo al solicitar una función de seguridad
PFH	Probability of Failure per Hour: probabilidad de una disfunción peligrosa por hora
R	Read
ID de Rack	Identificación (número) de un rack
Sin repercusiones	Suponiendo que hay dos circuitos de entrada conectados a la misma fuente (p. ej. transmisor). Entonces un circuito de entrada se denominará "sin repercusiones", cuando no falsee las señales del otro circuito de entrada.
R/W	Read/Write
SB	Bus de sistema (módulo de bus)
SELV	Safety Extra Low Voltage: baja tensión de protección
SFF	Safe Failure Fraction: porcentaje de fallos fácilmente dominables
SIL	Safety Integrity Level (según IEC 61508)
SILworX	Utilidad de programación para HIMax
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	Direccionamiento por "Sistema.Rack.Slot" de un módulo
SW	Software
TMO	TimeOut
TMR	Triple Module Redundancy: módulos de triple redundancia
W	Write
wS	Valor máximo del total de componentes de corriente alterna
WatchDog (WD)	Control de tiempo para módulos o programas. En caso de excederse el tiempo de WatchDog, el módulo pasará al estado de parada con fallo.
WDT	WatchDog Time
וטייי	wateribeg fille

página 62 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 Anexo

Índice d	e ilustraciones	
Fig. 1:	Ejemplo de placa de tipo	12
Fig. 2:	Diagrama de bloques en caso de conectar termopares y Pt100	14
Fig. 3:	Diagrama de bloques en caso de conectar sensores	15
Fig. 4:	Lectura	16
Fig. 5:	Vistas	19
Fig. 6:	Ejemplo de una codificación	23
Fig. 7:	Tarjeta de conexión con bornes de rosca	24
Fig. 8:	Tarjeta de conexión con conector de cables	26
Fig. 9:	Cable de sistema X-CA 014 01 n	28
Fig. 10:	Colocación de la tarjeta de conexión	31
Fig. 11:	Atornillado de la tarjeta de conexión	32
Fig. 12:	Instalación y desmontaje de módulo	34
Fig. 13:	Conexión monocanal de un sensor	45
Fig. 14:	Conexión monocanal de termopares	45
Fig. 15:	Conexión monocanal de Pt100 (termómetro de resistencia) (a 2 hilos)	46
Fig. 16:	Conexión monocanal de Pt100 (termómetro de resistencia) (a 4 hilos)	46
Fig. 17:	Conexión redundante de un termopar	47
Fig. 18:	Conexión redundante de termopares	47
Fig. 19:	Circuitado 1002 de Pt100 (termómetro de resistencia) (a 2 hilos)	48
Fig. 20:	Circuitado 1002 de Pt100 (termómetro de resistencia) (a 4 hilos)	49
Fig. 21:	Puesta en circuito triplemente redundante de un termopar	50
Fig. 22:	Puesta en circuito triplemente redundante de termopares	51
Fig. 23:	Circuitado 1003 de Pt100 (termómetro de resistencia) (a 2 hilos)	52
Fig. 24:	Circuitado 1003 de Pt100 (termómetro de resistencia) (a 4 hilos)	53
Fig. 25:	Conexión mediante terminación FTA (Field Termination Assembly)	54

HI 801 198 ES Rev. 4.00 página 63 de 66

Anexo X-AI 16 51

Índice de	e tablas	
Tabla 1:	Manuales vigentes adicionales	5
Tabla 2:	Condiciones ambientales	8
Tabla 3:	Frecuencias de parpadeo de los LED	17
Tabla 4:	Indicadores de estado de módulo	17
Tabla 5:	Indicadores de bus de sistema	18
Tabla 6:	Indicadores de E/S	18
Tabla 7:	Datos del producto	19
Tabla 8:	Datos técnicos de las entradas analógicas	20
Tabla 9:	Precisión metrológica	21
Tabla 10:	Datos técnicos de las fuentes de corriente	21
Tabla 11:	Tarjetas de conexión disponibles para conectar Pt100 y termopares	22
Tabla 12:	Tarjetas de conexión disponibles para conectar sensores	22
Tabla 13:	Posición de las cuñas de codificación	23
Tabla 14:	Posición de las cuñas de codificación	23
Tabla 15:	Asignación de bornes de tarjeta de conexión con bornes de rosca	25
Tabla 16:	Características de los conectores de bornes	25
Tabla 17:	Asignación de conectores del cable del sistema	27
Tabla 18:	Datos de cables	28
Tabla 19:	Cables de sistema disponibles X-CA 014	28
Tabla 20:	Ficha "Module" del editor de hardware	38
Tabla 21:	Ficha I/O Submodule Al16_51 del editor de hardware	40
Tabla 22:	Ficha I/O Submodule Al16_51: Channels del editor de hardware	42
Tabla 23:	Submodule Status [DWORD]	43
Tabla 24:	Diagnostic Information [DWORD]	44
Tabla 25:	Tolerancias de los termopares	61

página 64 de 66 HI 801 198 ES Rev. 4.00

X-AI 16 51 Anexo

Índice alfabético

Datos técnicos		Diagrama de bloques	14
Entradas	20	Función de seguridad	11
Fuentes de corriente	21	Indicadores de estado de módulo	17
Módulo	19	Tarjeta de conexión	22
Diagnóstico	55	Con bornes de rosca	24
Indicadores de bus de sistema		Con conector de cables	26
Indicadores de E/S	18		

HI 801 198 ES Rev. 4.00 página 65 de 66

HI 801 198 ES © 2015 HIMA Paul Hildebrandt GmbH HIMax y SILworX son marcas registradas de: HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Alemania Tel. +49 6202 709-0 Fax +49 6202 709-107 HIMax-info@hima.com www.hima.com

