- i -

SEQUENCE LISTING

<110>	Anderson, Marilyn, A., Lay, Fung T., Heath, Robyn L.	
<120>	Plant-derived molecules and genetic sequences encoding same uses therefor	and
<130>	18-01	
<140> <141>	not yet assigned 2002-02-08	
<150>	USSN 60/267,271	
<151>	2001-02-08	
<160>	61	
<170>	PatentIn version 3.0	
<210>	1	
<211>	28	
	DNA	
	primer	
<400>	1	
ggaatto	ccat atggctcgct ccttgtgc	28
<210>	2	
<211>	29	
<212>		
	primer	
10137	PT THICK	
<400>	2	
gcggato	cete agttatecat tatetette	29
<210>	3	
<211>		
<212>		
	primer	
<400>	3	
ccggatc	cag agaatgcaaa acag	24
-210-	4	
<210>	4	
<211> <212>	26 DNA	
<212>		
~213/	brimer	
<400>	4	
gggagct	ctt agttatccat tatctc	26
<210>	5	
	31	
	DNA	
	primer	
	_	
<400>	5	

- ii -

ggaatt	ctaa :	acaa	tgga	tc g	ctcc	ttgt	gc								31
<210> <211> <212> <213>	6 29 DNA prima	er													
<400> gctctag	6 gatc :	agtt	atcc	at ta	atct	cttc									29
<210> <211> <212> <213>	7 141 DNA Nicot	tiana	a ala	ata											
<220> <221> <222>	CDS	.(14:	1)												
<400> aga gaa Arg Glu															48
aaa cca Lys Pro															96
cat tgt His Cys					_										141
<210><211><211><212><213>	8 47 PRT Nicol	tiana	a ala	ata											
<400> Arg Glu	8	Tira	mp~	G3 12	Com	7 ==		Dho	Dro	Clyr	Tle	Cve	Tle	Thr	
1	т сув	пуѕ	5	GIU	set	ASII	1111	10	PLO	Gry	1.1.0	Cys	15	1111	
Lys Pro	Pro	Cys 20	Arg	Lys	Ala	Cys	Ile 25	Ser	Glu	Lys	Phe	Thr 30	Asp	Gly	
His Cys	Ser 35	Lys	Ile	Leu	Arg	Arg 40	Cys	Leu	Cys	Thr	Lys 45	Pro	Cys		
<210><211><212><212><213>	9 75 DNA Nicot	ciana	a ala	ata											
<220> <221> <222>	CDS (1).	. (75)	i .												
<400>	9														

- iii -

atg Met 1	gct Ala	cgc Arg	tcc Ser	ttg Leu 5	tgc Cys	ttc Phe	atg Met	gca Ala	ttt Phe 10	gct Ala	atc Ile	ttg Leu	gca Ala	agg Arg 15	atg Met	48
cto	ttt Phe	gtt Val	gcc Ala 20	tat Tyr	gag Glu	gtg Val	caa Gln	gct Ala 25								75
<21 <21 <21 <21	.1> .2>	10 25 PRT Nicot	ciana	a ala	ıta											
<40 Met	0> : Ala	10 Arg	Ser	Leu 5	Cys	Phe	Met	Ala	Phe	Ala	Ile	Leu	Ala	Arg 15	Met	
Let	. Phe	Val	Ala 20	Tyr	Glu	Val	Gln	Ala 25								
<2	L1> L2>	11 99 DNA Nico	tian	a ala	ata											
<22	20> 21> 22>	CDS	. (99	}												
ate	00> g ttt L Phe	11 gat Asp	gag Glu	aag Lys 5	atg Met	act Thr	aaa Lys	aca Thr	gga Gly 10	gct Ala	gaa Glu	att Ile	ttg Leu	gct Ala 15	gag Glu	48
ga: Gl:	a gca	aaa Lys	act Thr 20	ttg Leu	gct Ala	gca Ala	gct Ala	ttg Leu 25	ctt Leu	gaa Glu	gaa Glu	gag Glu	ata Ile 30	atg Met	gat Asp	96
aa As:																99
<2 <2	10> 11> 12> 13>	12 33 PRT Nico	tian	a al	ata											
<4 Va 1	00> l Phe	12 = Asp	Glu	Lys 5	Met	Thr	Lys	Thr	Gly 10	Ala	Glu	Ile	Leu	Ala 15	Glu	
Gl	u Ala	a Lys	Thr 20	· Leu	Ala	Ala	Ala	Leu 25	Leu	Glu	Glu	Glu	Ile 30	Met	Asp	
As	n															
	10> 11>	13 216														

- iv -

	NA icotian	ia ala	ata											
	DS 1)(2:	.6)												
<400> 1 atg gct Met Ala	cac te	ttg Leu 5	tgc Cys	ttc Phe	atg Met	gca Ala	ttt Phe 10	gct Ala	atc Ile	ttg Leu	gca Ala	agg Arg 15	atg Met	48
ctc ttt Leu Phe	gtt gco Val Ala 20	tat Tyr	gag Glu	gtg Val	caa Gln	gct Ala 25	aga Arg	gaa Glu	tgc Cys	aaa Lys	aca Thr 30	gaa Glu	agc Ser	96
aac aca Asn Thr	ttt cci Phe Pro 35	gga Gly	ata Ile	tgc Cys	att Ile 40	acc Thr	aaa Lys	cca Pro	cca Pro	tgc Cys 45	aga Arg	aaa Lys	gct Ala	144
tgt atc Cys Ile 50	agt gag Ser Gli	g aaa 1 Lys	ttt Phe	act Thr 55	gat Asp	ggt Gly	cat His	tgt Cys	agc Ser 60	aaa Lys	atc Ile	ctc Leu	aga Arg	192
agg tgc Arg Cys 65		_												216
<211> 7 <212> P	4 2 PRT (icotia)	na al	ata											
<400> 1 Met Ala 1	.4 Arg Se:	r Leu 5	Cys	Phe	Met	Ala	Phe 10	Ala	Ile	Leu	Ala	Arg 15	Met	
Leu Phe	Val Al	a Tyr	Glu	Val	Gln	Ala 25	Arg	Glu	Cys	Lys	Thr 30	Glu	Ser	
Asn Thr	Phe Pro	o Gly	Ile	Cys	Ile 40	Thr	Lys	Pro	Pro	Cys 45	Arg	Lys	Ala	
Cys Ile 50	Ser Gl	ı Lys	Phe	Thr 55	Asp	Gly	His	Cys	Ser 60	Lys	Ile	Leu	Arg	
Arg Cys 65	Leu Cy	s Thr	Lys 70	Pro	Cys									
<211> 2 <212> D	.5 !40 DNA Vicotia	na al	ata											
	CDS (1)(2	40)												

- V -

<pre><400> 15 aga gaa tgc aaa aca gaa agc aac aca ttt cct gga ata tgc att acc 48 Arg Glu Cys Lys Thr Glu Ser Asn Thr Phe Pro Gly Ile Cys Ile Thr 1 10 15</pre>	
aaa cca cca tgc aga aaa gct tgt atc agt gag aaa ttt act gat ggt 96 Lys Pro Pro Cys Arg Lys Ala Cys Ile Ser Glu Lys Phe Thr Asp Gly 20 25 30	
cat tgt agc aaa atc ctc aga agg tgc cta tgt act aag cca tgt gtg 144 His Cys Ser Lys Ile Leu Arg Arg Cys Leu Cys Thr Lys Pro Cys Val 35 40 45	
ttt gat gag aag atg act aaa aca gga gct gaa att ttg gct gag gaa 192 Phe Asp Glu Lys Met Thr Lys Thr Gly Ala Glu Ile Leu Ala Glu Glu 50 55 60	
gca aaa act ttg gct gca gct ttg ctt gaa gaa gag ata atg gat aac 240 Ala Lys Thr Leu Ala Ala Ala Leu Leu Glu Glu Glu Ile Met Asp Asn 65 70 75 80	
<210> 16 <211> 80 <212> PRT <213> Nicotiana alata	
<400> 16 Arg Glu Cys Lys Thr Glu Ser Asn Thr Phe Pro Gly Ile Cys Ile Thr 1 5 10 15	
Lys Pro Pro Cys Arg Lys Ala Cys Ile Ser Glu Lys Phe Thr Asp Gly 20 25 30	
His Cys Ser Lys Ile Leu Arg Arg Cys Leu Cys Thr Lys Pro Cys Val 35 40 45	
Phe Asp Glu Lys Met Thr Lys Thr Gly Ala Glu Ile Leu Ala Glu Glu 50 60	
Ala Lys Thr Leu Ala Ala Leu Leu Glu Glu Glu Ile Met Asp Asn 65 70 75 80	
<210> 17 <211> 541 <212> DNA <213> Nicotiana alata	
<220> <221> CDS <222> (1)(318)	
<pre><400> 17 atg gct cgc tcc ttg tgc ttc atg gca ttt gct atc ttg gca agg atg Met Ala Arg Ser Leu Cys Phe Met Ala Phe Ala Ile Leu Ala Arg Met 1</pre>	3

- vi -

															agc Ser	96	
		ttt Phe 35													gct Ala	144	:
-		agt Ser					_	-		_	_				aga Arg	192	
agg Arg 65	tgc Cys	cta Leu	tgt Cys	act Thr	aag Lys 70	cca Pro	tgt Cys	gtg Val	ttt Phe	gat Asp 75	gag Glu	aag Lys	atg Met	act Thr	aaa Lys 80	240	
		gct Ala														288	
ttg Leu	ctt Leu	gaa Glu	gaa Glu 100	gag Glu	ata Ile	atg Met	gat Asp	aac Asn 105	taa	ttag	gagat	tta 9	gaagi	aaat	ta	338	
agga	ıtgca	ıgt a	tcac	cacat	a at	aaag	gttto	: tac	cttt	cctt	aaaa	agtgt	ag d	ctaa	tgttgt	398	
gttt	taat	tg g	rettt	tagt	a go	cttt	tatt	aca	cttt	caaa	taag	gtgtg	ggc a	actto	caatcc	458	
tttg	jtgca	at c	ttgo	acta	a gt	ttat	ttgt	: gta	cttt	taa	tgaa	aato	gac o	cttc	tatggt	518	
cttt	ggtt	aa a	ıaaaa	aaaa	a aa	ıa										541	
<210 <211 <212 <213	.> 1 !> F	.8 .05 PRT Jicot	iana	ı ala	ıta												
<400		.8		-		_,			_,			_	_ ~	_			
met 1	Ala	Arg	ser	Leu 5	Cys	Pne	Met	Ala	Phe 10	Ala	IIe	Leu	Ala	Arg 15	Met		
Leu	Phe	Val	Ala 20	Tyr	Glu	Val	Gln	Ala 25	Arg	Glu	Cys	Lys	Thr 30	Glu	Ser		
Asn	Thr	Phe 35	Pro	Gly	Ile	Cys	Ile 40	Thr	Lys	Pro	Pro	Cys 45	Arg	Lys	Ala		
Cys	Ile 50	Ser	Glu	Lys		Thr 55	Asp	Gly	His	Cys	Ser 60	Lys	Ile	Leu	Arg		
Arg 65	Cys	Leu	Cys	Thr	Lys 70	Pro	Cys	Val	Phe	Asp 75	Glu	Lys	Met	Thr	Lys 80		
Thr	Gly	Ala	Glu	Ile 85	Leu	Ala	Glu	Glu	Ala 90	Lys	Thr	Leu	Ala	Ala 95	Ala		
r	т	a1	01	~ 7	~ 7 .			_									

- vii -

			100					105								
<210 <211 <211 <211	1> : 2> :	19 223 DNA Nico	tiana	a al	ata											
aaaa taag	gaga agtg gtgtg	tag (ctaai actt	tgtt: caat	gt gi cc ti	tttt: ttgt:	aatt gcaa	g gci t cti	tttt: tgca	agta ctaa	gcc	tttt	att	acact	tttctt tttaaa tttaa	120
<210 <211 <211 <211	L> : 2> 1	20 105 PRT pept:	ide													
<400 Met 1		20 Arg	Ser	Leu 5	Cys	Phe	Met	Ala	Phe 10	Ala	Ile	Leu	Ala	Met 15	Met	
Leu	Phe	Val	Ala 20	Tyr	Glu	Val	Gln	Ala 25	Arg	Glu	Cys	Lys	Thr 30	Glu	Ser	
Asn	Thr	Phe 35	Pro	Gly	Ile	Cys	Ile 40	Thr	Lys	Pro	Pro	Cys 45	Arg	Lys	Ala	
Cys	Ile 50	Ser	Glu	Lys	Phe	Thr 55	Asp	Gly	His	Cys	Ser 60	Lys	Leu	Leu	Arg	`
Cys 65	Leu	Cys	Thr	Lys	Pro 70	Cys	Val	Phe	Asp	Glu 75	Lys	Met	Ile	Ľуs	80	
Thr	Gly	Ala	Glu	Thr 85	Leu	Val	Glu	Glu	Ala 90	Lys	Thr	Leu	Ala	Ala 95	Ala	
Leu	Leu	Glu	Glu 100	Glu	Ile	Met	Asp	Asn 105								
<210 <213 <212 <213	L> :	21 105 PRT pepti	ide													
<400 Met 1		21 Arg	Ser	Ile 5	Phe	Phe	Met	Ala	Phe 10	Leu	Val	Leu	Ala	Met 15	Met	
Leu	Phe	Val	Thr 20	Tyr	Glu	Val	Glu	Ala 25	Gln	Gln	Ile	Cys	Lys 30	Ala	Pro	
Ser	Gln	Thr 35	Phe	Pro	Gly	Leu	Cys 40	Phe	Met	Asp	Ser	Ser 45	Cys	Arg	Lys	
Tyr	Cys	Ile	Lys	Glu	Lys	Phe	Thr	Gly	Gly	His	Cys	Ser	Lys	Leu	Gln	

- viii -

Arg Lys Cys Leu Cys Thr Lys Pro Cys Val Phe Asp Lys Ile Ser Ser 65 70 75 80

Glu Val Lys Ala Thr Leu Gly Glu Glu Ala Lys Thr Leu Ser Glu Val

Val Leu Glu Glu Glu Ile Met Met Glu 100 105

<210> 22

<211> 78

<212> PRT

<213> peptide

<400> 22

Met Ala Asn Ser Met Arg Phe Phe Ala Thr Val Leu Leu Ile Ala Leu 1 5 10 15

Leu Val Thr Ala Thr Glu Met Gly Pro Met Thr Ile Ala Glu Ala Arg 20 25 30

Thr Cys Glu Ser Gln Ser His Arg Phe Lys Gly Pro Cys Ser Arg Asp 35 40 45

Ser Asn Cys Ala Thr Val Cys Leu Thr Glu Gly Phe Ser Gly Gly Arg 50 55 60

Cys Pro Trp Ile Pro Pro Arg Cys Phe Cys Thr Ser Pro Cys 65 70 75

<210> 23

<211> 78

<212> PRT

<213> peptide

<400> 23

Met Gly Arg Ser Ile Arg Leu Phe Ala Thr Phe Phe Leu Ile Ala Met

1 5 10 15

Leu Phe Leu Ser Thr Glu Met Gly Pro Met Thr Ser Ala Glu Ala Arg 20 25 30

Thr Cys Glu Ser Gln Ser His Arg Phe His Gly Thr Cys Val Arg Glu 35 40 45

Ser Asn Cys Ala Ser Val Cys Gln Thr Glu Gly Phe Ile Gly Gly Asn 50 55 60

Cys Arg Ala Phe Arg Arg Cys Phe Cys Thr Arg Asn Cys 65 70 75

<210> 24

<211> 77

<212> PRT

<213> peptide

<400> 24

- ix -

Met Lys Leu Ser Met Arg Leu Ile Ser Ala Val Leu Ile Met Phe Met Ile Phe Val Ala Thr Gly Met Gly Pro Val Thr Val Glu Ala Arg Thr Cys Glu Ser Gln Ser His Arg Phe Lys Gly Thr Cys Val Ser Ala Ser Asn Cys Ala Asn Val Cys His Asn Glu Gly Phe Val Gly Gly Asn Cys Arg Gly Phe Arg Arg Cys Phe Cys Thr Arg His Cys 70 <210> 25 <211> 47 <212> PRT <213> peptide <400> 25 Arg Glu Cys Lys Thr Glu Ser Asn Thr Phe Pro Gly Ile Cys Ile Thr Lys Pro Pro Cys Arg Lys Ala Cys Ile Ser Glu Lys Phe Thr Asp Gly His Cys Ser Lys Leu Leu Arg Arg Cys Leu Cys Thr Lys Pro Cys 40 <210> 26 <211> 47 <212> PRT <213> peptide <400> 26 Gln Ile Cys Lys Ala Pro Ser Gln Thr Phe Pro Gly Leu Cys Phe Met Asp Ser Ser Cys Arg Lys Tyr Cys Ile Lys Glu Lys Phe Thr Gly Gly His Cys Ser Lys Leu Gln Arg Lys Cys Leu Cys Thr Lys Pro Cys 40 <210> 27 <211> 47 <212> PRT <213> peptide <400> 27 Arg His Cys Glu Ser Leu Ser His Arg Phe Lys Gly Pro Cys Thr Arg Asp Ser Asn Cys Ala Ser Val Cys Glu Thr Glu Arg Phe Ser Gly Gly 20

- X -

```
Asn Cys His Gly Phe Arg Arg Cys Phe Cys Thr Lys Pro Cys
<210>
      28
<211>
       47
<212>
      PRT
<213>
      peptide
<400> 28
Arg Val Cys Glu Ser Gln Ser His Gly Phe His Gly Leu Cys Asn Arg
Asp His Asn Cys Ala Leu Val Cys Arg Asn Glu Gly Phe Ser Gly Gly
Arg Cys Lys Gly Phe Arg Arg Cys Phe Cys Thr Arg Ile Cys
<210> 29
<211>
      47
      PRT
<212>
<213> peptide
<400> 29
Arg Thr Cys Glu Ser Gln Ser His Arg Phe His Gly Thr Cys Val Arg
Glu Ser Asn Cys Ala Ser Val Cys Gln Thr Glu Gly Phe Ile Gly Gly
Asn Cys Arg Ala Phe Arg Arg Cys Phe Cys Thr Arg Asn Cys
                            40
<210> 30
<211>
      47
<212> PRT
<213> peptide
Arg Ile Cys Arg Arg Arg Ser Ala Gly Phe Lys Gly Pro Cys Val Ser
Asn Lys Asn Cys Ala Gln Val Cys Met Gln Glu Trp Gly Glu Gly Gly
Asn Cys Asp Gly Pro Leu Arg Arg Cys Lys Cys Met Arg Arg Cys
                            40
<210>
      31
<211>
       51
<212>
       PRT
<213> peptide
<400> 31
Gln Lys Leu Cys Gln Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly
                5
```

Phe Pro Cys

- xi -

Asn Asn Asn Ala Cys Arg Asn Gln Cys Ile Asn Leu Glu Lys Ala Arg His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr 40 Phe Pro Cys 50 <210> 32 <211> 20 <212> PRT <213> peptide <400> 32 Arg Asn Cys Glu Ser Leu Ser His Arg Phe Lys Gly Pro Cys Thr Arg Asp Ser Asn Cys <210> 33 51 <211> <212> PRT <213> peptide <400> 33 Gln Lys Leu Cys Glu Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly 5 Asn Asn Asn Ala Cys Lys Asn Gln Cys Ile Asn Leu Glu Lys Ala Arg 25 His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr Phe Pro Cys 50 <210> 34 <211> 51 <212> PRT <213> peptide Gln Lys Leu Cys Gln Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly Asn Asn Asn Ala Cys Lys Asn Gln Cys Ile Arg Leu Glu Lys Ala Arg His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr 40

- xii -

```
<210> 35
<211> 51
<212> PRT
<213> peptide
<400> 35
Gln Lys Leu Cys Glu Arg Pro Ser Gly Thr Trp Ser Gly Val Cys Gly
Asn Asn Asn Ala Cys Lys Asn Gln Cys Ile Asn Leu Glu Lys Ala Arg
His Gly Ser Cys Asn Tyr Val Phe Pro Ala His Lys Cys Ile Cys Tyr
Phe Pro Cys
   50
<210> 36
<211> 52
<212> PRT
<213> peptide
<400> 36
Gln Lys Leu Cys Ala Arg Pro Ser Gly Thr Trp Ser Ser Gly Asn Cys
Arg Asn Asn Asn Ala Cys Arg Asn Phe Cys Ile Lys Leu Glu Lys Ser
            20
Arg His Gly Ser Cys Asn Ile Pro Phe Pro Ser Asn Lys Cys Ile Cys
Tyr Phe Pro Cys
    50
<210> 37
<211> 47
<212> PRT
<213> peptide
<400> 37
Lys Ile Cys Arg Arg Ser Ala Gly Phe Lys Gly Pro Cys Met Ser
Asn Lys Asn Cys Ala Gln Val Cys Gln Glu Gly Trp Gly Gly
Asn Cys Asp Gly Pro Phe Arg Arg Cys Lys Cys Ile Arg Gln Cys
                           40
<210> 38
      47
<211>
      PRT
<212>
      peptide
<213>
<400> 38
```

- xiii -

Lys Val Cys Arg Gln Arg Ser Ala Gly Phe Lys Gly Pro Cys Val Ser

Asp Lys Asn Cys Ala Gln Val Cys Leu Gln Glu Gly Trp Gly Gly Gly

Asn Cys Asp Gly Pro Phe Arg Arg Cys Lys Cys Ile Arg Gln Cys

<210> 39

<211> 47 <212> PRT

<213> peptide

<400> 39

Lys Thr Cys Glu Asn Leu Val Asp Thr Tyr Arg Gly Pro Cys Phe Thr

Thr Gly Ser Cys Asp Asp His Cys Lys Asn Lys Glu His Leu Leu Ser

Gly Arg Cys Arg Asp Asp Val Arg Cys Trp Cys Thr Arg Asn Cys

<210> 40

<211> 48

<212> PRT

<213> peptide

<400> 40

Arg Val Cys Met Gly Lys Ser Ala Gly Phe Lys Gly Leu Cys Met Arg

Asp Gln Asn Cys Ala Gln Val Cys Leu Gln Glu Gly Trp Gly Gly

Asn Cys Asp Gly Val Met Arg Gln Cys Lys Cys Ile Arg Gln Cys Trp 40

<210> 41

<211> 48

<212> PRT

<213> peptide

Arg Val Cys Arg Arg Arg Ser Ala Gly Phe Lys Gly Leu Cys Met Ser

Asp His Asn Cys Ala Gln Val Cys Leu Gln Glu Gly Trp Gly Gly Gly

Asn Cys Asp Gly Val Ile Arg Gln Cys Lys Cys Ile Arg Gln Cys Trp

<210> 42

20 <211>

<212> PRT

- xiv -

<213> peptide <400> 42 Glu Val Cys Glu Lys Ala Ser Lys Thr Trp Ser Gly Asn Cys Gly Asn 10 Thr Gly His Cys <210> 43 <211> 47 <212> PRT <213> peptide <400> 43 Arg Val Cys Met Lys Gly Ser Gln His His Ser Phe Pro Cys Ile Ser Asp Arg Leu Cys Ser Asn Glu Cys Val Lys Glu Glu Gly Gly Trp Thr Ala Gly Tyr Cys His Leu Arg Tyr Cys Arg Cys Gln Lys Ala Cys <210> 44 <211> 45 <212> PRT <213> peptide <400> 44 Asn Thr Cys Glu Asn Leu Ala Gly Ser Tyr Lys Gly Val Cys Phe Gly Gly Cys Asp Arg His Cys Arg Thr Gln Glu Gly Ala Ile Ser Gly Arg Cys Arg Asp Asp Phe Arg Cys Trp Cys Thr Lys Asn Cys 40 <210> 45 <211> 50 <212> PRT <213> peptide <400> 45 Leu Cys Asn Glu Arg Pro Ser Gln Thr Trp Ser Gly Asn Cys Gly Asn Thr Ala His Cys Asp Lys Gln Cys Gln Asp Trp Glu Lys Ala Ser His

Gly Ala Cys His Lys Arg Glu Asn His Trp Lys Cys Phe Cys Tyr Phe
35 40

Asn Cys

<400> 49

- xv -

```
<210> 46
<211> 51
<212> PRT
<213> peptide
<400> 46
Lys Leu Cys Asp Val Pro Ser Gly Thr Trp Ser Gly His Cys Gly Ser
Ser Ser Lys Cys Ser Gln Gln Cys Lys Asp Arg Glu His Phe Ala Tyr
Gly Gly Ala Cys His Tyr Gln Phe Pro Ser Val Lys Cys Phe Cys Lys
Arg Gln Cys
    50
<210> 47
<211> 50
<212> PRT
<213> peptide
<400> 47
Glu Leu Cys Glu Lys Ala Ser Lys Thr Trp Ser Gly Asn Cys Gly Asn
Thr Gly His Cys Asp Asn Gln Cys Lys Ser Trp Glu Gly Ala Ala His
Gly Ala Cys His Val Arg Asn Gly Lys His Met Cys Phe Cys Tyr Phe
                            40
Asn Cys
   50
<210> 48
<211> 46
<212> PRT
<213> peptide
<400> 48
Asn Thr Cys Glu His Leu Ala Asp Thr Tyr Arg Gly Val Cys Phe Thr
Asn Ala Ser Cys Asp Asp His Cys Lys Asn Lys Ala His Leu Ile Ser
Gly Thr Cys His Asp Trp Lys Cys Phe Cys Thr Gln Asn Cys
<210> 49
<211> 49
<212> PRT
<213> peptide
```

- xvi -

Asn Leu Cys Glu Arg Ala Ser Leu Thr Trp Thr Gly Asn Cys Gly Asn 1 5 10 15

Thr Gly His Cys Asp Thr Gln Cys Arg Asn Trp Glu Ser Ala Lys His 20 25 30

Gly Ala Cys His Lys Arg Gly Asn Trp Lys Cys Phe Cys Tyr Phe Asn 35 40 45

Cys

<210> 50

<211> 79

<212> PRT

<213> peptide

<400> 50

Leu Phe Val Ala Tyr Glu Val Gln Ala Arg Glu Cys Ala Arg Glu Ile 1 5 10 15

Phe Thr Gly Leu Cys Ile Thr Asn Pro Gln Cys Arg Lys Ala Cys Ile
20 25 30

Lys Glu Lys Phe Thr Asp Gly His Cys Ser Lys Ile Leu Arg Arg Cys 35 40 45

Leu Cys Thr Lys Pro Cys Thr Gly Ala Glu Thr Leu Ala Glu Glu Ala
50 60

Thr Thr Leu Ala Ala Leu Leu Glu Glu Glu Ile Met Asp Asn 65 70 75

<210> 51

<211> 105

<212> PRT

<213> peptide

<400> 51

Met Ala Arg Ser Val Cys Phe Met Ala Phe Ala Ile Leu Ala Val Met
1 5 10 15

Leu Phe Val Ala Tyr Asp Val Glu Ala Lys Asp Cys Lys Thr Glu Ser 20 25 30

Asn Thr Phe Pro Gly Ile Cys Ile Thr Lys Pro Pro Cys Arg Lys Ala 35 40 45

Cys Ile Lys Glu Lys Phe Thr Asp Gly His Cys Ser Lys Ile Leu Arg 50 55

Arg Cys Leu Cys Thr Lys Pro Cys Val Phe Asp Glu Lys Met Ile Lys 65 70 75 80

Thr Gly Ala Glu Thr Leu Ala Glu Glu Ala Thr Thr Leu Ala Ala Ala 90 95

Leu Leu Glu Glu Glu Ile Met Asp Asn

- xvii -

105 100

<210> 52

<211> 106

<212> PRT

<213> peptide

<400> 52

Met Ala Arg Ser Leu Cys Phe Met Ala Phe Ala Val Leu Ala Met Met

Leu Phe Val Ala Tyr Glu Val Gln Ala Lys Ser Thr Cys Lys Ala Glu

Ser Asn Thr Phe Pro Gly Leu Cys Ile Thr Lys Pro Pro Cys Arg Lys

Ala Cys Leu Ser Glu Lys Phe Thr Asp Gly Lys Cys Ser Lys Ile Leu 50

Arg Arg Cys Ile Cys Tyr Lys Pro Cys Val Phe Asp Gly Lys Met Ile

Gln Thr Gly Ala Glu Asn Leu Ala Glu Glu Ala Glu Thr Leu Ala Ala

Ala Leu Leu Glu Glu Glu Met Met Asp Asn

<210> 53 <211> 47

<212> PRT

<213> peptide

<400> 53

Arg Thr Cys Glu Ser Gln Ser His Arg Phe Lys Gly Pro Cys Ser Arg

Asp Ser Asn Cys Ala Thr Val Cys Leu Thr Glu Gly Phe Ser Gly Gly 20

Arg Cys Pro Trp Ile Pro Pro Arg Cys Phe Cys Thr Ser Pro Cys 40

<210> 54 <211> 19

<212> PRT

<213> peptide

Arg Thr Cys Glu Ser Gln Ser His Arg Phe His Gly Thr Cys Val Arg 5

Glu Ser Asn

<210> 55

<211> 47

- xviii -

<212> PRT <213> pepti	.de				
<400> 55 Arg Thr Cys 1	Glu Ser Gln 5		Phe Lys Gly Thr (Cys Val Ser 15	
Ala Ser Asn	Cys Ala Asn 20	Val Cys His A 25	Asn Glu Gly Phe '	Val Gly Gly 30	
Asn Cys Arg 35	Gly Phe Arg	Arg Arg Cys F 40	Phe Cys Thr Arg I 45	His Cys	
<210> 56 <211> 1104 <212> DNA <213> Nicot	ciana alata				
<220> <221> CDS <222> (1)	(1104)				
<400> 56 aag gct tgt Lys Ala Cys 1	acc tta aac Thr Leu Asn 5	Cys Asp Pro A	aga att gcc tat q Arg Ile Ala Tyr (10	gga gtt tgc 3ly Val Cys 15	48
ccg cgt tca Pro Arg Ser	gaa gaa aag Glu Glu Lys 20	aag aat gat c Lys Asn Asp A 25	egg ata tgc acc a arg Ile Cys Thr i	aac tgt tgc Asn Cys Cys 30	96
gca ggc acg Ala Gly Thr 35	aag ggt tgt Lys Gly Cys	aag tac ttc a Lys Tyr Phe S 40	agt gat gat gga a Ser Asp Asp Gly '		144
tgt gaa gga Cys Glu Gly 50	gag tct gat Glu Ser Asp	cct aga aat o Pro Arg Asn E 55	cca aag gct tgt : Pro Lys Ala Cys ' 60		192
tgt gat cca Cys Asp Pro 65	aga att gcc Arg Ile Ala 70	tat gga gtt t Tyr Gly Val C	ge eeg egt tea Cys Pro Arg Ser (75	J-1 J-11 11 J	240
aag aat gat Lys Asn Asp	cgg ata tgc Arg Ile Cys 85	Thr Asn Cys C	egc gca ggc acg Cys Ala Gly Thr 1 90		288
aag tac ttc Lys Tyr Phe	agt gat gat Ser Asp Asp 100	gga act ttt g Gly Thr Phe V 105	gtt tgt gaa gga (Val Cys Glu Gly (Jag J	336
cct aga aat Pro Arg Asn 115	cca aag gct Pro Lys Ala	tgt cct cgg a Cys Pro Arg A	aat tgc gat cca Asn Cys Asp Pro 1 125	434	384
tat ggg att Tyr Gly Ile	tgc cca ctt Cys Pro Leu	gca gaa gaa a Ala Glu Glu I	aag aag aat gat Lys Lys Asn Asp	~ J J J ·	432

- xix -

	130					135					140			,	
		tgt Cys													480
		ttt Phe	_	_	_				_						528
		cgg Arg													576
		gaa Glu 195													624
		ggt Gly													672
-		tct Ser	_					~	_	_			_	_	720
	_	att Ile					_				-	-			768
		ata Ile													816
	-	gat Asp 275	_				_	-	_						864
		aag Lys													912
		cca Pro				_	-	_			_				960
		gca Ala													1008
		tgt Cys													1056
		gaa Glu 355													1104

- XX -

<	2	1	0	>	5	7

<211> 368

<212> PRT

<213> Nicotiana alata

<400> 57

Lys Ala Cys Thr Leu Asn Cys Asp Pro Arg Ile Ala Tyr Gly Val Cys
1 10 15

Pro Arg Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys 20 25 30

Ala Gly Thr Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val 35 40 45

Cys Glu Gly Glu Ser Asp Pro Arg Asn Pro Lys Ala Cys Thr Leu Asn 50 55 60

Cys Asp Pro Arg Ile Ala Tyr Gly Val Cys Pro Arg Ser Glu Glu Lys 70 75 80

Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Thr Lys Gly Cys 85 90 95

Lys Tyr Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp 100 105 110

Pro Arg Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Pro Arg Ile Ala 115 120 125

Tyr Gly Ile Cys Pro Leu Ala Glu Glu Lys Lys Asn Asp Arg Ile Cys 130 135 140

Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp 145 150 155

Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Lys Asn Pro Lys Ala 165 170 175

Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly Ile Cys Pro Leu 180 185 190

Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly
195 200 205

- xxi -

Lys Lys Gly Cys Lys Tyr Phe Ser Asp Gly Thr Phe Val Cys Glu 215 210 Gly Glu Ser Asp Pro Lys Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp 235 230 Gly Arg Ile Ala Tyr Gly Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr 265 Phe Ser Asp Asp Gly Thr Phe Val Cys Glu Gly Glu Ser Asp Pro Arg 280 Asn Pro Lys Ala Cys Pro Arg Asn Cys Asp Gly Arg Ile Ala Tyr Gly 295 290 Ile Cys Pro Leu Ser Glu Glu Lys Lys Asn Asp Arg Ile Cys Thr Asn 310 Cys Cys Ala Gly Lys Lys Gly Cys Lys Tyr Phe Ser Asp Asp Gly Thr 330 Phe Ile Cys Glu Gly Glu Ser Glu Tyr Ala Ser Lys Val Asp Glu Tyr 345 Val Gly Glu Val Glu Asn Asp Leu Gln Lys Ser Lys Val Ala Val Ser <210> 58 <211> 47 <212> PRT <213> Nicotiana alata <220> <221> misc_feature <222> (1)..(1) $\langle 223 \rangle$ X = R or Q <220> <221> misc_feature <222> (2)..(2) $\langle 223 \rangle$ X = E or I or T <220>

- xxii -

```
<221> misc_feature
<222> (2)..(2)
<223> X = E or I or T
<220>
<221> misc_feature
<222> (4)..(4)
<223> X = K or E
<220>
<221> misc_feature
<222> (5)..(5)
<223> X = T or A or S
<220>
<221> misc_feature
      (6)..(6)
<222>
<223> X = E or P or Q
<220>
<221> misc_feature
<222> (8) .. (8)
<223> X = N or Q or H
<220>
<221> misc_feature
      (9)..(9)
<222>
<223> X = T or R
<220>
<221> misc_feature <222> (11)..(11)
<223> X = P or K or H
<220>
<221> misc_feature
<222> (13)..(13)
\langle 223 \rangle X = I or L or P or T
<220>
<221> misc_feature
<222> (15)..(15)
<223> X = I or F or S or V
<220>
<221> misc_feature <222> (16)..(16)
<223> X = T or M or R or S
<220>
<221> misc_feature
<222> (17)..(17)
<223> X = K or D or E or A
<220>
<221> misc_feature
<222> (18)..(18)
```

- xxiii -

```
\langle 223 \rangle X = P or S
<220>
<221> misc_feature
<222> (19)..(19)
\langle 223 \rangle X = P or S or N
<220>
<221> misc_feature
<222>
        (21)..(21)
<223> X = R or A
<220>
<221> misc_feature
<222> (22)..(22)
\langle 223 \rangle X = K or T or S or N
<220>
<221> misc_feature
<222> (23)..(23)
<223> X = A or Y or V
<220>
<221> misc_feature
<222> (25)..(25)
<223> X = I or L or Q or H
<220>
<221> misc_feature
<222>
        (26)..(26)
<223> X = S or K or T or N
<220>
<221> misc_feature
<222> (28)..(28)
<223> X = K or G
<220>
<221> misc_feature
<222> (30)..(30)
<223> X = T or S or I or V
<220>
<221> misc_feature
<222> (31)..(31)
\langle 223 \rangle X = D or G
<220>
<221> misc_feature
<222>
        (33) . . (33)
<223> X = H or R or N
<220>
<221> misc_feature
<222> (35)..(35)
\langle 223 \rangle X = S or P or R
```

- xxiv -

```
<220>
<221> misc_feature
<222> (36)..(36)
<223> X = K or W or A or G
<220>
<221> misc feature
<222> (37)..(37)
<223> X = I or L or F
<220>
<221> misc_feature
<222> (38)..(38)
<223> X = L or Q or P or R
<220>
<221> misc_feature
<222>
      (39)..(39)
\langle 223 \rangle X = R or P
<220>
<221> misc_feature
<222> (40)..(40)
<223> X = R or K
<220>
<221> misc_feature
<222> (42)..(42)
<223> X = L or F
<220>
<221> misc_feature
<222> (45)..(45)
<223> X = K or S or R
<400> 58
Xaa Xaa Cys Xaa Xaa Xaa Ser Xaa Xaa Phe Xaa Gly Xaa Cys Xaa Xaa
Xaa Xaa Xaa Cys Xaa Xaa Cys Xaa Xaa Glu Xaa Phe Xaa Xaa Gly
Xaa Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Cys Thr Xaa Xaa Cys
<210> 59
<211> 32
<212> PRT
<213> Nicotiana alata
<220>
<221> misc feature
<222> (2)..(2)
\langle 223 \rangle X = A or G or K
<220>
<221> misc_feature
```

- xxv -

```
<222> (3)..(3)
<223> X = R or N or L
<220>
<221> misc_feature
<222> (5)..(5)
<223> X = L or I or M
<220>
<221> misc_feature <222> (6)..(6)
<223> X = C or F or R
<220>
<221> misc feature
<222> (7)..(7) <223> X = F \text{ or } L
<220>
<221> misc_feature
<222> (8)..(8)
<223> X = M or F or I
<220>
<221> misc_feature <222> (9)..(9)
\langle 223 \rangle X = A or S
<220>
<221> misc feature
<222> (10)..(10)
<223> X = F or T or A
<220>
<221> misc_feature
<222> (11)..(11)
<223> X = A or L or V or F
<220>
<221> misc_feature
<222> (12)..(12)
<223> X = I or V or L or F
<220>
<221> misc_feature
<222> (13)..(13)
<223> X = L or I
<220>
<221> misc_feature
<222>
        (14)..(14)
<223> X = A or I or M
<220>
<221> misc_feature
<222> (15)..(15)
\langle 223 \rangle X = M or A or F
```

- xxvi -

```
<220>
<221> misc_feature
<222>
      (16)..(16)
<223> X = M or L
<220>
<221> misc_feature
<222> (17)..(17)
<223> X = L or I
<220>
<221> misc_feature
<222> (18)..(18)
\langle 223 \rangle X = F or V
<220>
<221> misc_feature
<222> (19)..(19)
\langle 223 \rangle X = V or T or L
<220>
<221> misc_feature
<222>
       (20) ... (20)
<223> X = A or T or S
<220>
<221> misc_feature
      (21)..(21)
<222>
\langle 223 \rangle X = Y or T
<220>
<221> misc_feature
<222> (22)..(22)
<223> X = E or G
<220>
<221> misc_feature
<222> (23)..(23)
<223> X = V or M
<220>
<221> misc_feature
<222> (24)..(24)
<223> X = no amino acid or G
<220>
<221> misc_feature
<222> (25)..(25)
<223> X = no amino acid or P
<220>
<221> misc_feature
<222>
       (26)..(26)
<223> X = no amino acid or M or V
```

<220>

- xxvii -

```
<221> misc feature
<222> (27)..(27)
<223> X = no amino acid or T
<220>
<221> misc_feature
<222> (28)..(28)
<223> X = no amino acid or I or S
<220>
<221> misc_feature <222> (29)..(29)
<223> X = no amino acid or A or V
<220>
<221> misc_feature
<222> (30)..(30)
\langle 223 \rangle X = Q or E
<220>
<221> misc_feature
<222> (32)..(32)
<223> X = no amino acid or Q
<400> 59
10
25
          20
<210> 60
<211> 33
<212> PRT
<213> Nicotiana alata
<220>
<221> misc_feature
<222> (1)..(1)
<223> X = no amino acid or V
<220>
<221> misc_feature <222> (2)..(2)
<223> X = no amino acid or F
<220>
<221> misc_feature
<222> (3)..(3)
<223> X = no amino acid or D
<220>
<221> misc_feature
<222>
      (4)..(4)
<223> X = no amino acid or E or K
<220>
<221> misc_feature
```

- xxviii -

```
<222> (5)..(5)
<223> X = no amino acid or K or I
<220>
<221> misc_feature
<222>
      (6)..(6)
<223> X = no amino acid or M or S
<220>
<221> misc_feature <222> (7)..(7)
<223> X = no amino acid or T or I or S
<220>
<221> misc feature
<222> (8)..(8)
<223> X = no amino acid or K or E
<220>
<221> misc_feature
<222> (9)..(9)
<223> X = no amino acid or T or V
<220>
<221> misc_feature
       (10)..(10)
<222>
<223> X = no amino acid or G or K
<220>
<221> misc feature
<222>
       (11)..(11)
<223> X = no amino acid or A
 <220>
 <221> misc_feature
 <222>
       (12)..(12)
 <223> X = no amino acid or E
 <220>
 <221> misc_feature
       (13)..(13)
 <222>
 <223> X = no amino acid or I or T
 <220>
 <221> misc_feature
 <222> (14)..(14)
 <223> X = no amino acid or L
 <220>
 <221> misc_feature
 <222>
        (15)..(15)
 <223> X = no amino acid or A or V or G
 <220>
 <221> misc_feature
 <222> (16)..(16)
 <223> X = no amino acid or E
```

- xxix -

```
<220>
<221> misc_feature
<222>
      (17)..(17)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (18)..(18)
<223> X = no amino acid or A
<220>
<221> misc_feature
<222> (19)..(19)
<223> X = no amino acid or K
<220>
<221> misc_feature
<222>
      (20)..(20)
<223> X = no amino acid or T
<220>
<221> misc_feature
<222>
      (21)...(21)
<223> X = no amino acid or L
<220>
<221> misc_feature
<222>
      (22)..(22)
<223> X = no amino acid or A or S
<220>
<221> misc feature
<222> (23)..(23)
<223> X = no amino acid or A or E
<220>
<221> misc_feature
<222>
      (24)..(24)
<223> X = no amino acid or A or V
<220>
<221> misc_feature
<222> (25)..(25)
<223> X = no amino acid or L or V
<220>
<221> misc_feature
<222> (26)..(26)
<223> X = no amino acid or L
<220>
<221> misc_feature
<222>
      (27)..(27)
<223> X = no amino acid or E
<220>
```

- XXX -

```
<221> misc_feature
<222>
     (28)..(28)
<223> X = no amino acid or E
<220>
<221> misc_feature
     (29)..(29)
<222>
<223> X = no amino acid or E
<220>
<221> misc_feature
<222>
     (30)..(30)
<223> X = no amino acid or I
<220>
<221> misc_feature
<222>
     (31)..(31)
<223> X = no amino acid or M
<220>
<221> misc_feature
<222>
     (32)..(32)
<223> X = no amino acid or D or M
<220>
<221> misc_feature
     (33)..(33)
<222>
<223> X = no amino acid or N or E
<400> 60
1.0
30
          20
Xaa
<210> 61
<211> 112
<212> PRT
<213> Nicotiana alata
<220>
<221> misc_feature
<222> (2)..(2)
<223> X = A or G or K
<220>
<221> misc_feature
<222>
     (3)..(3)
<223> X = R or N or L
<220>
<221> misc_feature
<222> (5)..(5)
<223> X = L or I or M
```

- xxxi -

```
<220>
<221> misc_feature <222> (6)..(6)
<223> X = C or F or R
<220>
<221> misc_feature
<222> (7) .. (7)
\langle 223 \rangle X = F or L
<220>
<221> misc_feature
<222> (8)..(8)
<223> X = M or F or I
<220>
<221> misc_feature
<222> (9)..(9)
<223> X = A or S
<220>
<221> misc_feature
       (10)..(10)
<222>
<223> X = F or T or A
<220>
<221> misc feature
<222> (11)..(11)
\langle 223 \rangle X = A or L or V or F
<220>
<221> misc_feature
<222> (12)..(12)
<223> X = I or V or L or F
<220>
<221> misc_feature
<222>
        (13)..(13)
\langle 223 \rangle X = L or I
<220>
<221> misc_feature
<222> (14)..(14)
<223> X = A or I or M
<220>
<221> misc_feature
<222>
        (15)..(15)
\langle 223 \rangle X = M or A or F
<220>
<221> misc_feature <222> (16)..(16)
\langle 223 \rangle X = M or L
<220>
```

- xxxii -

```
<221> misc_feature
<222> (17)..(17)
\langle 223 \rangle X = L or I
<220>
<221> misc_feature
<222> (18)..(18)
<223> X = F or V
<220>
<221> misc_feature <222> (19)..(19)
<223> X = V or T or L
<220>
<221> misc_feature
<222> (20)..(20)
<223> X = A or T or S
<220>
<221> misc_feature
<222> (21)..(21)
<223> X = Y or T
<220>
<221> misc_feature <222> (22)..(22)
\langle 223 \rangle X = E or G
<220>
<221> misc_feature
<222> (23)..(23)
<223> X = V or M
<220>
<221> misc_feature
<222> (24)..(24)
<223> X = no amino acid or G
<220>
<221> misc_feature
<222> (25)..(25)
<223> X = no amino acid or P
<220>
<221> misc_feature
<222> (26)..(26)
<223> X = no amino acid or M or V
<220>
<221> misc_feature
<222>
       (27)..(27)
<223> X = no amino acid or T
<220>
<221> misc_feature
<222> (28)..(28)
```

- xxxiii -

```
<223> X = no amino acid or I or S
   <220>
   <221> misc_feature
   <222> (29)..(29)
   <223> X = no amino acid or A or V
   <220>
   <221> misc_feature
   <222>
          (30)..(30)
   <223> X = Q \text{ or } E
   <220>
   <221> misc_feature
   <222> (32)..(32)
   <223> X = no amino acid or Q
<220>
   <221> misc_feature
   <222> (33)..(33)
   <223> X = R or Q
   <220>
   <221> misc_feature
   <222>
         (34)..(34)
   <223> X = E or I or T
   <220>
   <221> misc_feature
         (36)..(36)
   <222>
   <223> X = K or E
   <220>
   <221> misc feature
   <222> (37)..(37)
   <223> X = T or A or S
   <220>
   <221> misc_feature
   <222> (38)...(38)
<223> X = E or P or Q
   <220>
   <221> misc_feature
   <222> (40)..(40)
   <223> X = N or Q or H
   <220>
   <221> misc_feature
   <222>
         (41) . . (41)
   <223> X = T or R
   <220>
   <221> misc_feature
   <222>
         (43)..(43)
   \langle 223 \rangle X = P or K or H
```

- xxxiv -

```
<220>
<221> misc_feature
<222> (45)..(45)
\langle 223 \rangle X = I or L or P or T
<220>
<221> misc_feature
<222> (47)..(47)
<223> X = I or F or S or V
<220>
<221> misc_feature
<222> (48)..(48)
<223> X = T or M or R or S
<220>
<221> misc_feature
<222> (49)..(49)
\langle 223 \rangle X = K or D or E or A
<220>
<221> misc_feature
<222> (50)..(50)
\langle 223 \rangle X = P or S
<220>
<221> misc_feature
<222> (51)..(51)
<223> X = P or S or N
<220>
<221> misc_feature
<222>
       (53)..(53)
\langle 223 \rangle X = R or A
<220>
<221> misc_feature
<222> (54)..(54)
\langle 223 \rangle X = K or T or S or N
<220>
<221> misc_feature
<222> (55)..(55)
<223> X = A or Y or V
<220>
<221> misc_feature
<222>
       (57)..(57)
<223> X = I or L or Q or H
<220>
<221> misc feature
<222> (58)..(58)
\langle 223 \rangle X = S or K or T or N
<220>
<221> misc_feature
```

- XXXV -

```
<222> (60)..(60)
\langle 223 \rangle X = K or G
<220>
<221> misc_feature
<222> (62)..(62)
\langle 223 \rangle X = T or S or I or V
<220>
<221> misc_feature
<222> (63)..(63)
<223> X = D or G
<220>
<221> misc_feature
<222> (65)..(65)
<223> X = H or R or N
<220>
<221> misc_feature
<222> (67)..(67)
<223> X = S or P or R
<220>
<221> misc feature
<222> (68)..(68)
<223> X = K or W or A or G
<220>
<221> misc_feature
<222>
       (69)..(69)
<223> X = I \text{ or } L \text{ or } F
<220>
<221> misc_feature
<222> (70)..(70)
<223> X = L or Q or P or R
<220>
<221> misc feature
<222> (71)..(71)
<223> X = R or P
<220>
<221> misc_feature
<222> (72)...(72) <223> X = R or K
<220>
<221> misc_feature
<222>
       (74)..(74)
\langle 223 \rangle X = L or F
<220>
<221> misc_feature
<222> (77)..(77)
<223> X = K or S or R
```

- xxxvi -

```
<220>
<221> misc_feature
<222>
      (78)..(78)
<223> X = P or N or H
<220>
<221> misc_feature
<222>
      (80)..(80)
<223> X = no amino acid or V
<220>
<221> misc_feature
      (81)..(81)
<222>
<223> X = no amino acid or F
<220>
<221> misc_feature
<222>
      (82)..(82)
<223> X = no amino acid or D
<220>
<221> misc_feature
<222>
      (83)..(83)
<223> X = no amino acid or E or K
<220>
<221> misc_feature
<222>
      (84)..(84)
<223> X = no amino acid or K or I
<220>
<221> misc_feature
<222> (85)..(85)
<223> X = no amino acid or M or S
<220>
<221> misc_feature
<222> (86)..(86)
<223> X = no amino acid or T or I or S
<220>
<221> misc_feature
<222> (87)..(87)
<223> X = no amino acid or K or E
<220>
<221> misc_feature
<222> (88)..(88)
<223> X = no amino acid or T or V
<220>
<221> misc_feature
<222>
      (89)..(89)
<223> X = no amino acid or G or K
<220>
```

- xxxvii -

```
<221> misc_feature
<222>
      (90)..(90)
<223> X = no amino acid or A
<220>
<221> misc_feature
<222> (91)..(91)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (92)..(92)
<223> X = no amino acid or I or T
<220>
<221> misc_feature
<222> (93)..(93)
<223> X = no amino acid or L
<220>
<221> misc_feature
<222>
      (94)..(94)
<223> X = no amino acid or A or V or G
<220>
<221> misc_feature
<222>
      (95)..(95)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222>
      (96)..(96)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222>
       (97)..(97)
<223> X = no amino acid or A
<220>
<221> misc_feature
<222>
      (98)..(98)
<223> X = no amino acid or K
<220>
<221> misc_feature
<222>
      (99)..(99)
<223> X = no amino acid or T
<220>
<221> misc_feature
<222>
      (100)..(100)
<223> X = no amino acid or L
<220>
<221> misc_feature
<222> (101)..(101)
```

- xxxviii -

```
\langle 223 \rangle X = no amino acid or A or S
<220>
<221> misc_feature
<222> (102)..(102)
<223> X = no amino acid or A or E
<220>
<221> misc_feature
<222> (103)..(103)
<223> X = no amino acid or A or V
<220>
<221> misc feature
<222> (104)..(104)
<223> X = no amino acid or L or V
<220>
<221> misc_feature
<222> (105)..(105)
<223> X = no amino acid or L
<220>
<221> misc_feature
<222> (106)..(106)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (107)..(107)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (108)..(108)
<223> X = no amino acid or E
<220>
<221> misc_feature
<222> (109)..(109)
<223> X = no amino acid or I
<220>
<221> misc_feature <222> (110)..(110)
<223> X = no amino acid or M
<220>
<221> misc_feature
<222> (111)..(111)
<223> X = no amino acid or D or M
<220>
<221> misc_feature
<222> (112)..(112)
<223> X = no amino acid or N or E
```

- xxxix -

<400															
Met 1	Xaa	Xaa	Ser	Xaa 5	Xaa	Xaa	Xaa	Xaa	Xaa 10	Xaa	Xaa	Xaa	Xaa	Xaa 15	Xaa
Xaa	Xaa	Xaa	Xaa 20	Xaa	Xaa	Xaa	Xaa	Xaa 25	Xaa	Xaa	Xaa	Хаа	Xaa 30	Ala	Xaa
Xaa	Xaa	Cys 35	Xaa	Xaa	Xaa	Ser	Xaa 40	Xaa	Phe	Xaa	Gly	Xaa 45	Cys	Xaa	Xaa
Xaa	Xaa 50	Xaa	Cys	Xaa	Xaa	Xaa 55	Cys	Xaa	Xaa	Glu	Xaa 60	Phe	Xaa	Xaa	Gly
Хаа 65	Cys	Xaa	Xaa	Xaa	Xaa 70	Xaa	Xaa	Cys	Xaa	Cys 75	Thr	Xaa	Xaa	Cys	Xaa 80
Xaa	Xaa	Xaa	Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Xaa 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa
Xaa	Xaa	Xaa	Xaa 100	Xaa	Xaa	Xaa	Xaa	Xaa 105	Xaa	Xaa	Xaa	Xaa	Xaa 110	Xaa	Xaa