Advanced Machine Learning

Wasserstein GANs

GANs, Wasserstein distance, Duality, WGANs

Outline

1. GANs

- Wasserstein Distance
- 3. Wasserstein GANs

- One of the applications of Deep Learning that has most excited the public are Generative Adversarial Networks or GANs
- ullet Their aim is to generate new random samples from the same distribution as some training set, ${\cal D}$
- Their number of real world applications are

- One of the applications of Deep Learning that has most excited the public are Generative Adversarial Networks or GANs
- ullet Their aim is to generate new random samples from the same distribution as some training set, ${\cal D}$
- Their number of real world applications are

- One of the applications of Deep Learning that has most excited the public are Generative Adversarial Networks or GANs
- ullet Their aim is to generate new random samples from the same distribution as some training set, ${\cal D}$
- Their number of real world applications are

- One of the applications of Deep Learning that has most excited the public are Generative Adversarial Networks or GANs
- ullet Their aim is to generate new random samples from the same distribution as some training set, ${\cal D}$
- Their number of real world applications are questionable

- One of the applications of Deep Learning that has most excited the public are Generative Adversarial Networks or GANs
- ullet Their aim is to generate new random samples from the same distribution as some training set, ${\cal D}$
- Their number of real world applications are questionable
- But nobody cares because they are cool!

- The loss of the generator depends on its ability to trick the discriminator
- The loss of the discriminator depends on its ability not to be tricked
- We try to train the two networks simultaneously
- We hope that over time the generator produces better and better fakes

- The loss of the generator depends on its ability to trick the discriminator
- The loss of the discriminator depends on its ability not to be tricked
- We try to train the two networks simultaneously
- We hope that over time the generator produces better and better fakes

- The loss of the generator depends on its ability to trick the discriminator
- The loss of the discriminator depends on its ability not to be tricked
- We try to train the two networks simultaneously
- We hope that over time the generator produces better and better fakes

- The loss of the generator depends on its ability to trick the discriminator
- The loss of the discriminator depends on its ability not to be tricked
- We try to train the two networks simultaneously
- We hope that over time the generator produces better and better fakes

- GANs are notoriously difficult to train
- The generator and discriminator training can decouple
- Often the discriminator becomes too good at correctly identifying the generated images
- Then there can be little gradient information to help the generator as every small change in parameters doesn't significantly change the discriminator decision
- To try to solve this problem we first make a seemly unconnected diversion

- GANs are notoriously difficult to train
- The generator and discriminator training can decouple
- Often the discriminator becomes too good at correctly identifying the generated images
- Then there can be little gradient information to help the generator as every small change in parameters doesn't significantly change the discriminator decision
- To try to solve this problem we first make a seemly unconnected diversion

- GANs are notoriously difficult to train
- The generator and discriminator training can decouple
- Often the discriminator becomes too good at correctly identifying the generated images
- Then there can be little gradient information to help the generator as every small change in parameters doesn't significantly change the discriminator decision
- To try to solve this problem we first make a seemly unconnected diversion

- GANs are notoriously difficult to train
- The generator and discriminator training can decouple
- Often the discriminator becomes too good at correctly identifying the generated images
- Then there can be little gradient information to help the generator as every small change in parameters doesn't significantly change the discriminator decision
- To try to solve this problem we first make a seemly unconnected diversion

- GANs are notoriously difficult to train
- The generator and discriminator training can decouple
- Often the discriminator becomes too good at correctly identifying the generated images
- Then there can be little gradient information to help the generator as every small change in parameters doesn't significantly change the discriminator decision
- To try to solve this problem we first make a seemly unconnected diversion

Outline

1. GANs

2. Wasserstein Distance

3. Wasserstein GANs

- In many machine learning tasks we want to minimise the distance between two probability distributions
- This requires that we can measure distances between probability distributions
- One prominent measure is the Kullback-Leibler or KL divergence

$$KL(p||q) = \int p(\boldsymbol{x}) \log \left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{y})}\right) d\boldsymbol{x}$$

- In many machine learning tasks we want to minimise the distance between two probability distributions
- This requires that we can measure distances between probability distributions
- One prominent measure is the Kullback-Leibler or KL divergence

$$KL(p||q) = \int p(\boldsymbol{x}) \log \left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{y})}\right) d\boldsymbol{x}$$

- In many machine learning tasks we want to minimise the distance between two probability distributions
- This requires that we can measure distances between probability distributions
- One prominent measure is the Kullback-Leibler or KL divergence

$$KL(p||q) = \int p(\boldsymbol{x}) \log \left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{y})}\right) d\boldsymbol{x}$$

- In many machine learning tasks we want to minimise the distance between two probability distributions
- This requires that we can measure distances between probability distributions
- One prominent measure is the Kullback-Leibler or KL divergence

$$KL(p||q) = \int p(\boldsymbol{x}) \log \left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{y})}\right) d\boldsymbol{x}$$

- KL-divergences are non-negative quantities that are minimised when the two probability distributions are the same
- They are not distances (they aren't symmetric and they don't satisfy the triangular inequality)

We don't really care about this, but what

• we do care about is that if q(x)=0 when $p(x) \neq 0$ then $\log\left(\frac{p(x)}{q(y)}\right)$ diverges

- KL-divergences are non-negative quantities that are minimised when the two probability distributions are the same
- They are not distances (they aren't symmetric and they don't satisfy the triangular inequality)

We don't really care about this, but what

• we do care about is that if q(x)=0 when $p(x) \neq 0$ then $\log\left(\frac{p(x)}{q(y)}\right)$ diverges

- KL-divergences are non-negative quantities that are minimised when the two probability distributions are the same
- They are not distances (they aren't symmetric and they don't satisfy the triangular inequality)

We don't really care about this, but what

• we do care about is that if q(x)=0 when $p(x)\neq 0$ then $\log\left(\frac{p(x)}{q(y)}\right)$ diverges

- KL-divergences are non-negative quantities that are minimised when the two probability distributions are the same
- They are not distances (they aren't symmetric and they don't satisfy the triangular inequality)

We don't really care about this, but what

• we do care about is that if q(x)=0 when $p(x) \neq 0$ then $\log\left(\frac{p(x)}{q(y)}\right)$ diverges

Wasserstein Distance

 A more benign measure of the differences between two probability functions is the Wasserstein or Earth Moving distance

This is a true distance, but more

importantly for us it measure distance in a very natural way so that distributions that are close has a small Wasserstein distance

• Although this seems contrived if our probability distribution represents the probability of a 128×128 matrix of real valued triples represents an image of dog, then it is easy to imagine that the Wasserstein distance may be more benign than the KL-divergence

Wasserstein Distance

 A more benign measure of the differences between two probability functions is the Wasserstein or Earth Moving distance

This is a true distance, but more importantly for us it measure distance in a very natural way so that distributions that are close has a small Wasserstein distance

• Although this seems contrived if our probability distribution represents the probability of a 128×128 matrix of real valued triples represents an image of dog, then it is easy to imagine that the Wasserstein distance may be more benign than the KL-divergence

Wasserstein Distance

 A more benign measure of the differences between two probability functions is the Wasserstein or Earth Moving distance

This is a true distance, but more

importantly for us it measure distance in a very natural way so that distributions that are close has a small Wasserstein distance

• Although this seems contrived if our probability distribution represents the probability of a 128×128 matrix of real valued triples represents an image of dog, then it is easy to imagine that the Wasserstein distance may be more benign than the KL-divergence

High Probability Manifold

- But how do we formalise the Wasserstein distance?
- A good place to start is to define a transportation policy $\gamma({m x},{m y})$ with

$$\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = p(\boldsymbol{x}) \qquad \int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} = q(\boldsymbol{y})$$

• This looks like a joint probability distribution, but we interpret $\gamma(\boldsymbol{x},\boldsymbol{y})$ as the amount of probability mass/density that we transfer from $p(\boldsymbol{x})$ to $q(\boldsymbol{y})$

- But how do we formalise the Wasserstein distance?
- A good place to start is to define a transportation policy $\gamma({m x},{m y})$ with

$$\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = p(\boldsymbol{x}) \qquad \int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} = q(\boldsymbol{y})$$

• This looks like a joint probability distribution, but we interpret $\gamma(\boldsymbol{x},\boldsymbol{y})$ as the amount of probability mass/density that we transfer from $p(\boldsymbol{x})$ to $q(\boldsymbol{y})$

- But how do we formalise the Wasserstein distance?
- A good place to start is to define a transportation policy $\gamma({m x},{m y})$ with

$$\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = p(\boldsymbol{x}) \qquad \int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} = q(\boldsymbol{y})$$

• This looks like a joint probability distribution, but we interpret $\gamma(\boldsymbol{x},\boldsymbol{y})$ as the amount of probability mass/density that we transfer from $p(\boldsymbol{x})$ to $q(\boldsymbol{y})$

- We want to choose the transportation policy that minimises the amount of probability mass we need to move
- Let $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$ be a distance measure then the cost of a transportation policy is

$$C(\gamma) = \int \int d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y}$$

- We want to choose the transportation policy that minimises the amount of probability mass we need to move
- Let d(x,y) = ||x y|| be a distance measure then the cost of a transportation policy is

$$C(\gamma) = \int \int d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y}$$

- We want to choose the transportation policy that minimises the amount of probability mass we need to move
- Let $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$ be a distance measure then the cost of a transportation policy is

$$C(\gamma) = \int \int d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} = \mathbb{E}_{\gamma} [d(\boldsymbol{x}, \boldsymbol{y})]$$

where we interpret $\gamma(\boldsymbol{x},\boldsymbol{y})$ as a probability distribution

- We want to choose the transportation policy that minimises the amount of probability mass we need to move
- Let $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$ be a distance measure then the cost of a transportation policy is

$$C(\gamma) = \int \int d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} = \mathbb{E}_{\gamma}[d(\boldsymbol{x}, \boldsymbol{y})]$$

where we interpret $\gamma(\boldsymbol{x},\boldsymbol{y})$ as a probability distribution

The Wasserstein Distance

• The Wasserstein distance W(p,q) between two probability distributions is defined as

$$W(p,q) = \min_{\gamma \in \Lambda(p,q)} \mathbb{E}_{\gamma}[d(\boldsymbol{x},\boldsymbol{y})]$$

• Where $\Lambda(p,q)$ is the set of joint distributions $\gamma(\boldsymbol{x},\boldsymbol{y})$ such that

$$\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = p(\boldsymbol{x}) \qquad \int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} = q(\boldsymbol{y})$$

The Wasserstein Distance

• The Wasserstein distance W(p,q) between two probability distributions is defined as

$$W(p,q) = \min_{\gamma \in \Lambda(p,q)} \mathbb{E}_{\gamma}[d(\boldsymbol{x},\boldsymbol{y})]$$

• Where $\Lambda(p,q)$ is the set of joint distributions $\gamma(\boldsymbol{x},\boldsymbol{y})$ such that

$$\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = p(\boldsymbol{x}) \qquad \int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} = q(\boldsymbol{y})$$

- To compute the Wasserstein distance we have to solve a minimisation task!
- This looks nasty, but it is a (continuous) linear programmming problem
- Suppose p and q were discrete distribution (i.e. x and y only take discrete points)
- Then we could treat each value of $\gamma(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector $\boldsymbol{\gamma}$ and each value of $d(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector \boldsymbol{D}
- ullet Our objective is to choose γ to minimise $D^{\mathsf{T}}\gamma$

- To compute the Wasserstein distance we have to solve a minimisation task!
- This looks nasty, but it is a (continuous) linear programmming problem
- Suppose p and q were discrete distribution (i.e. x and y only take discrete points)
- Then we could treat each value of $\gamma(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector $\boldsymbol{\gamma}$ and each value of $d(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector \boldsymbol{D}
- ullet Our objective is to choose γ to minimise $oldsymbol{D}^{\mathsf{T}}\gamma$

- To compute the Wasserstein distance we have to solve a minimisation task!
- This looks nasty, but it is a (continuous) linear programmming problem
- Suppose p and q were discrete distribution (i.e. x and y only take discrete points)
- Then we could treat each value of $\gamma(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector $\boldsymbol{\gamma}$ and each value of $d(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector \boldsymbol{D}
- ullet Our objective is to choose γ to minimise $D^{\mathsf{T}}\gamma$

- To compute the Wasserstein distance we have to solve a minimisation task!
- This looks nasty, but it is a (continuous) linear programmming problem
- Suppose p and q were discrete distribution (i.e. x and y only take discrete points)
- Then we could treat each value of $\gamma(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector $\boldsymbol{\gamma}$ and each value of $d(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector \boldsymbol{D}
- ullet Our objective is to choose γ to minimise $D^{\mathsf{T}}\gamma$

- To compute the Wasserstein distance we have to solve a minimisation task!
- This looks nasty, but it is a (continuous) linear programmming problem
- Suppose p and q were discrete distribution (i.e. x and y only take discrete points)
- Then we could treat each value of $\gamma(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector $\boldsymbol{\gamma}$ and each value of $d(\boldsymbol{x}, \boldsymbol{y})$ as an element of a vector \boldsymbol{D}
- ullet Our objective is to choose γ to minimise $oldsymbol{D}^{\mathsf{T}} \gamma$

Constraints

$$\sum_{j} \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) = p(\boldsymbol{x}_i)$$

$$\sum_{i} \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) = q(\boldsymbol{y}_j)$$

$$A \gamma = P$$

$$\begin{vmatrix} \gamma(x_1, y_1) \\ \gamma(x_2, y_1) \\ \vdots \\ \gamma(x_n, y_1) \\ \gamma(x_1, y_2) \\ \gamma(x_2, y_2) \\ \vdots \\ \gamma(x_n, y_2) \end{vmatrix} = \begin{vmatrix} q(y_1) \\ q(y_2) \\ \vdots \\ q(y_n) \\ p(x_1) \\ p(x_2) \\ \vdots \\ p(x_n) \end{vmatrix}$$

$$\gamma(x_1, y_n)$$

$$\gamma(x_2, y_n)$$

$$\vdots$$

$$\gamma(x_n, y_n)$$

Lagrange Formulation

For discrete distributions

$$\min_{m{\gamma}}m{D}^{\mathsf{T}}m{\gamma}$$
 subject to $m{A}m{\gamma}=m{P}, \quad m{\gamma}\geq 0$

Writing the Lagrangian

$$\mathcal{L}(oldsymbol{\gamma},oldsymbol{lpha}) = oldsymbol{D}^{\mathsf{T}}oldsymbol{\gamma} - oldsymbol{lpha}^{\mathsf{T}}ig(oldsymbol{A}^{\mathsf{T}}oldsymbol{\gamma} - oldsymbol{P}ig)$$

where lpha is a vector of Lagrange multipliers

The solution to the discrete optimisation problem is given by

$$\min_{oldsymbol{\gamma}} \max_{oldsymbol{lpha}} \mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha})$$

Lagrange Formulation

For discrete distributions

$$\min_{m{\gamma}}m{D}^{\mathsf{T}}m{\gamma}$$
 subject to $m{A}m{\gamma}=m{P}, \quad m{\gamma}\geq 0$

Writing the Lagrangian

$$\mathcal{L}(\gamma, \alpha) = D^{\mathsf{T}} \gamma - \alpha^{\mathsf{T}} (A^{\mathsf{T}} \gamma - P)$$

where lpha is a vector of Lagrange multipliers

The solution to the discrete optimisation problem is given by

$$\min_{oldsymbol{\gamma}} \max_{oldsymbol{lpha}} \mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha})$$

Lagrange Formulation

For discrete distributions

$$\min_{\boldsymbol{\gamma}} \boldsymbol{D}^\mathsf{T} \boldsymbol{\gamma}$$
 subject to $\ \, \boldsymbol{A} \boldsymbol{\gamma} = \boldsymbol{P}, \quad \boldsymbol{\gamma} \geq 0$

Writing the Lagrangian

$$\mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha}) = oldsymbol{D}^\mathsf{T} oldsymbol{\gamma} - oldsymbol{lpha}^\mathsf{T} oldsymbol{(A}^\mathsf{T} oldsymbol{\gamma} - oldsymbol{P})$$

where lpha is a vector of Lagrange multipliers

The solution to the discrete optimisation problem is given by

$$\min_{oldsymbol{\gamma}} \max_{oldsymbol{lpha}} \mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha})$$

$$egin{aligned} \mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha}) &= oldsymbol{D}^\mathsf{T} oldsymbol{\gamma} - oldsymbol{lpha}^\mathsf{T} (oldsymbol{A} oldsymbol{\gamma} - oldsymbol{P}) \ &= oldsymbol{P}^\mathsf{T} oldsymbol{lpha} - oldsymbol{\gamma}^\mathsf{T} ig(oldsymbol{A}^\mathsf{T} oldsymbol{lpha} - oldsymbol{D} ig) \end{aligned}$$

- We note that $\gamma \geq 0$ so the dual problem is to find a vector α that maximises $P^{\mathsf{T}}\alpha$ subject to the constraints $A^{\mathsf{T}}\alpha \leq D$
- Although the vector form allows us to make connections with our earlier discussion of linear programming, it is a little difficult to interpret

$$egin{aligned} \mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha}) &= oldsymbol{D}^\mathsf{T} oldsymbol{\gamma} - oldsymbol{lpha}^\mathsf{T} (oldsymbol{A} oldsymbol{\gamma} - oldsymbol{P}) \ &= oldsymbol{P}^\mathsf{T} oldsymbol{lpha} - oldsymbol{\gamma}^\mathsf{T} ig(oldsymbol{A}^\mathsf{T} oldsymbol{lpha} - oldsymbol{D} ig) \end{aligned}$$

- We note that $\gamma \geq 0$ so the dual problem is to find a vector α that maximises $P^{\mathsf{T}}\alpha$ subject to the constraints $A^{\mathsf{T}}\alpha \leq D$
- Although the vector form allows us to make connections with our earlier discussion of linear programming, it is a little difficult to interpret

$$egin{aligned} \mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha}) &= oldsymbol{D}^\mathsf{T} oldsymbol{\gamma} - oldsymbol{lpha}^\mathsf{T} (oldsymbol{A} oldsymbol{\gamma} - oldsymbol{P}) \ &= oldsymbol{P}^\mathsf{T} oldsymbol{lpha} - oldsymbol{\gamma}^\mathsf{T} ig(oldsymbol{A}^\mathsf{T} oldsymbol{lpha} - oldsymbol{D} ig) \end{aligned}$$

- We note that $\gamma \geq 0$ so the dual problem is to find a vector α that maximises $P^{\mathsf{T}}\alpha$ subject to the constraints $A^{\mathsf{T}}\alpha \leq D$
- Although the vector form allows us to make connections with our earlier discussion of linear programming, it is a little difficult to interpret

$$egin{aligned} \mathcal{L}(oldsymbol{\gamma}, oldsymbol{lpha}) &= oldsymbol{D}^\mathsf{T} oldsymbol{\gamma} - oldsymbol{lpha}^\mathsf{T} (oldsymbol{A} oldsymbol{\gamma} - oldsymbol{P}) \ &= oldsymbol{P}^\mathsf{T} oldsymbol{lpha} - oldsymbol{\gamma}^\mathsf{T} ig(oldsymbol{A}^\mathsf{T} oldsymbol{lpha} - oldsymbol{D} ig) \end{aligned}$$

- We note that $\gamma \geq 0$ so the dual problem is to find a vector α that maximises $P^{\mathsf{T}}\alpha$ subject to the constraints $A^{\mathsf{T}}\alpha \leq D$
- Although the vector form allows us to make connections with our earlier discussion of linear programming, it is a little difficult to interpret

• We can write a Lagrangian for the original problem

$$\mathcal{L} = \sum_{i,j} d(\boldsymbol{x}_i, \boldsymbol{y}_i) \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - \sum_i \alpha(\boldsymbol{x}_i) \left(\sum_j \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - p(\boldsymbol{x}_i) \right)$$
$$- \sum_j \beta(\boldsymbol{y}_j) \left(\sum_i \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - q(\boldsymbol{y}_j) \right)$$

subject to $\gamma(\boldsymbol{x}_i,\boldsymbol{y}_i) \geq 0$

Rearranging

$$\mathcal{L} = \sum_{i} \alpha(\boldsymbol{x}_i) p(\boldsymbol{x}_i) + \sum_{j} \beta(\boldsymbol{y}_j) q(\boldsymbol{y}_j) - \sum_{i,j} \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) (\alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_j) - d(\boldsymbol{x}_i, \boldsymbol{y}_i))$$

$$\forall i, j \quad \alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_i) \leq d(\boldsymbol{x}_i, \boldsymbol{y}_i)$$

• We can write a Lagrangian for the original problem

$$\mathcal{L} = \sum_{i,j} d(\boldsymbol{x}_i, \boldsymbol{y}_i) \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - \sum_i \alpha(\boldsymbol{x}_i) \left(\sum_j \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - p(\boldsymbol{x}_i) \right)$$
$$- \sum_j \beta(\boldsymbol{y}_j) \left(\sum_i \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - q(\boldsymbol{y}_j) \right)$$

subject to $\gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) \geq 0$ where $\alpha(\boldsymbol{x}_i)$ and $\beta(\boldsymbol{y}_j)$ are Lagrange multipliers (they are components of $\boldsymbol{\alpha}$)

Rearranging

$$\mathcal{L} = \sum_{i} \alpha(\boldsymbol{x}_i) p(\boldsymbol{x}_i) + \sum_{j} \beta(\boldsymbol{y}_j) q(\boldsymbol{y}_j) - \sum_{i,j} \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) (\alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_j) - d(\boldsymbol{x}_i, \boldsymbol{y}_i))$$

$$\forall i, j \quad \alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_j) \leq d(\boldsymbol{x}_i, \boldsymbol{y}_j)$$

• We can write a Lagrangian for the original problem

$$\mathcal{L} = \sum_{i,j} d(\boldsymbol{x}_i, \boldsymbol{y}_i) \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - \sum_i \alpha(\boldsymbol{x}_i) \left(\sum_j \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - p(\boldsymbol{x}_i) \right) - \sum_j \beta(\boldsymbol{y}_j) \left(\sum_i \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - q(\boldsymbol{y}_j) \right)$$

subject to $\gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) \geq 0$ where $\alpha(\boldsymbol{x}_i)$ and $\beta(\boldsymbol{y}_j)$ are Lagrange multipliers (they are components of $\boldsymbol{\alpha}$)

Rearranging

$$\mathcal{L} = \sum_{i} \alpha(\boldsymbol{x}_i) p(\boldsymbol{x}_i) + \sum_{j} \beta(\boldsymbol{y}_j) q(\boldsymbol{y}_j) - \sum_{i,j} \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) (\alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_j) - d(\boldsymbol{x}_i, \boldsymbol{y}_i))$$

$$\forall i, j \quad \alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_i) \leq d(\boldsymbol{x}_i, \boldsymbol{y}_i)$$

• We can write a Lagrangian for the original problem

$$\mathcal{L} = \sum_{i,j} d(\boldsymbol{x}_i, \boldsymbol{y}_i) \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - \sum_i \alpha(\boldsymbol{x}_i) \left(\sum_j \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - p(\boldsymbol{x}_i) \right) - \sum_j \beta(\boldsymbol{y}_j) \left(\sum_i \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) - q(\boldsymbol{y}_j) \right)$$

subject to $\gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) \geq 0$ where $\alpha(\boldsymbol{x}_i)$ and $\beta(\boldsymbol{y}_j)$ are Lagrange multipliers (they are components of $\boldsymbol{\alpha}$)

Rearranging

$$\mathcal{L} = \sum_{i} \alpha(\boldsymbol{x}_i) p(\boldsymbol{x}_i) + \sum_{j} \beta(\boldsymbol{y}_j) q(\boldsymbol{y}_j) - \sum_{i,j} \gamma(\boldsymbol{x}_i, \boldsymbol{y}_j) (\alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_j) - d(\boldsymbol{x}_i, \boldsymbol{y}_i))$$

$$\forall i, j \quad \alpha(\boldsymbol{x}_i) + \beta(\boldsymbol{y}_i) \leq d(\boldsymbol{x}_i, \boldsymbol{y}_i)$$

• We can write a Lagrangian for the continuous problem

$$\mathcal{L} = \iint d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} - \int \alpha(\boldsymbol{x}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} - p(\boldsymbol{x}) \right) d\boldsymbol{x}$$
$$- \int \beta(\boldsymbol{y}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} - q(\boldsymbol{y}) \right) d\boldsymbol{y}$$

subject to $\gamma(\boldsymbol{x},\boldsymbol{y}) \geq 0$

Rearranging

$$\mathcal{L} = \int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} - \iint \gamma(\boldsymbol{x}, \boldsymbol{y}) (\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) - d(\boldsymbol{x}, \boldsymbol{y})) d\boldsymbol{x} d\boldsymbol{y}$$

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \le d(\boldsymbol{x}, \boldsymbol{y})$$

• We can write a Lagrangian for the continuous problem

$$\mathcal{L} = \iint d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} - \int \alpha(\boldsymbol{x}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} - p(\boldsymbol{x}) \right) d\boldsymbol{x}$$
$$- \int \beta(\boldsymbol{y}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} - q(\boldsymbol{y}) \right) d\boldsymbol{y}$$

subject to $\gamma(\boldsymbol{x},\boldsymbol{y}) \geq 0$ where $\alpha(\boldsymbol{x})$ and $\beta(\boldsymbol{y})$ are Lagrange multiplier functions

Rearranging

$$\mathcal{L} = \int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} - \iint \gamma(\boldsymbol{x}, \boldsymbol{y}) (\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) - d(\boldsymbol{x}, \boldsymbol{y})) d\boldsymbol{x} d\boldsymbol{y}$$

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \le d(\boldsymbol{x}, \boldsymbol{y})$$

We can write a Lagrangian for the continuous problem

$$\mathcal{L} = \iint d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} - \int \alpha(\boldsymbol{x}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} - p(\boldsymbol{x}) \right) d\boldsymbol{x}$$
$$- \int \beta(\boldsymbol{y}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} - q(\boldsymbol{y}) \right) d\boldsymbol{y}$$

subject to $\gamma(\boldsymbol{x},\boldsymbol{y}) \geq 0$ where $\alpha(\boldsymbol{x})$ and $\beta(\boldsymbol{y})$ are Lagrange multiplier functions

Rearranging

$$\mathcal{L} = \int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} - \iint \gamma(\boldsymbol{x}, \boldsymbol{y}) (\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) - d(\boldsymbol{x}, \boldsymbol{y})) d\boldsymbol{x} d\boldsymbol{y}$$

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \le d(\boldsymbol{x}, \boldsymbol{y})$$

• We can write a Lagrangian for the continuous problem

$$\mathcal{L} = \iint d(\boldsymbol{x}, \boldsymbol{y}) \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y} - \int \alpha(\boldsymbol{x}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} - p(\boldsymbol{x}) \right) d\boldsymbol{x}$$
$$- \int \beta(\boldsymbol{y}) \left(\int \gamma(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{x} - q(\boldsymbol{y}) \right) d\boldsymbol{y}$$

subject to $\gamma(\boldsymbol{x},\boldsymbol{y}) \geq 0$ where $\alpha(\boldsymbol{x})$ and $\beta(\boldsymbol{y})$ are Lagrange multiplier functions

Rearranging

$$\mathcal{L} = \int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} - \iint \gamma(\boldsymbol{x}, \boldsymbol{y}) (\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) - d(\boldsymbol{x}, \boldsymbol{y})) d\boldsymbol{x} d\boldsymbol{y}$$

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \le d(\boldsymbol{x}, \boldsymbol{y})$$

- We note that $\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{y})$ for all \boldsymbol{x} and \boldsymbol{y}
- ullet This has to be true when x=y so that

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x}) \le d(\boldsymbol{x}, \boldsymbol{x}) = 0$$

- So $\beta(\boldsymbol{x}) = -\alpha(\boldsymbol{x}) \epsilon(\boldsymbol{x})$ where $\epsilon(\boldsymbol{x}) \geq 0$
- But want to maximise

$$\int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} = \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x} - \int q(\boldsymbol{x}) \epsilon(\boldsymbol{x}) d\boldsymbol{x}$$

- We note that $\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{y})$ for all \boldsymbol{x} and \boldsymbol{y}
- ullet This has to be true when x=y so that

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x}) \le d(\boldsymbol{x}, \boldsymbol{x}) = 0$$

- So $\beta(\boldsymbol{x}) = -\alpha(\boldsymbol{x}) \epsilon(\boldsymbol{x})$ where $\epsilon(\boldsymbol{x}) \geq 0$
- But want to maximise

$$\int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} = \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x} - \int q(\boldsymbol{x}) \epsilon(\boldsymbol{x}) d\boldsymbol{x}$$

- We note that $\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{y})$ for all \boldsymbol{x} and \boldsymbol{y}
- ullet This has to be true when x=y so that

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x}) \le d(\boldsymbol{x}, \boldsymbol{x}) = 0$$

- So $\beta(\boldsymbol{x}) = -\alpha(\boldsymbol{x}) \epsilon(\boldsymbol{x})$ where $\epsilon(\boldsymbol{x}) \geq 0$
- But want to maximise

$$\int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} = \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x} - \int q(\boldsymbol{x}) \epsilon(\boldsymbol{x}) d\boldsymbol{x}$$

- We note that $\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{y})$ for all \boldsymbol{x} and \boldsymbol{y}
- ullet This has to be true when x=y so that

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x}) \le d(\boldsymbol{x}, \boldsymbol{x}) = 0$$

- So $\beta(\boldsymbol{x}) = -\alpha(\boldsymbol{x}) \epsilon(\boldsymbol{x})$ where $\epsilon(\boldsymbol{x}) \geq 0$
- But want to maximise

$$\int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} = \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x} - \int q(\boldsymbol{x}) \epsilon(\boldsymbol{x}) d\boldsymbol{x}$$

- We note that $\alpha(\boldsymbol{x}) + \beta(\boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{y})$ for all \boldsymbol{x} and \boldsymbol{y}
- ullet This has to be true when x=y so that

$$\alpha(\boldsymbol{x}) + \beta(\boldsymbol{x}) \le d(\boldsymbol{x}, \boldsymbol{x}) = 0$$

- So $\beta(\boldsymbol{x}) = -\alpha(\boldsymbol{x}) \epsilon(\boldsymbol{x})$ where $\epsilon(\boldsymbol{x}) \geq 0$
- But want to maximise

$$\int \alpha(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x} + \int \beta(\boldsymbol{y}) q(\boldsymbol{y}) d\boldsymbol{y} = \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x} - \int q(\boldsymbol{x}) \epsilon(\boldsymbol{x}) d\boldsymbol{x}$$

• Thus the dual problem is to find a function $\alpha(x)$ —or a vector of functions $(\alpha(x_i)|i)$ —that maximises

$$\int \alpha(\boldsymbol{x}) \left(p(\boldsymbol{x}) - q(\boldsymbol{x}) \right) d\boldsymbol{x}$$

Subject to the constraint

$$\alpha(\boldsymbol{x}) - \alpha(\boldsymbol{y}) \le d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|$$

• This is a continuity constraint on the Lagrange multiplier function $\alpha({m x})$ known as Lipschitz-1

• Thus the dual problem is to find a function $\alpha(x)$ —or a vector of functions $(\alpha(x_i)|i)$ —that maximises

$$\int \alpha(\boldsymbol{x}) \left(p(\boldsymbol{x}) - q(\boldsymbol{x}) \right) d\boldsymbol{x}$$

Subject to the constraint

$$\alpha(\boldsymbol{x}) - \alpha(\boldsymbol{y}) \le d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|$$

• This is a continuity constraint on the Lagrange multiplier function $\alpha({m x})$ known as Lipschitz-1

ullet We note for a Lipschitz-1 function and any unit vector $oldsymbol{u}$

$$\boldsymbol{u}^\mathsf{T} \boldsymbol{\nabla} \alpha(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{\alpha(\boldsymbol{x}) - \alpha(\boldsymbol{x} + \epsilon \boldsymbol{u})}{\epsilon} \le 1$$

 That is, at every point the gradient in all directions must be less than 1

ullet We note for a Lipschitz-1 function and any unit vector $oldsymbol{u}$

$$\boldsymbol{u}^{\mathsf{T}} \boldsymbol{\nabla} \alpha(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{\alpha(\boldsymbol{x}) - \alpha(\boldsymbol{x} + \epsilon \boldsymbol{u})}{\epsilon} \le 1$$

 That is, at every point the gradient in all directions must be less than 1

ullet We note for a Lipschitz-1 function and any unit vector $oldsymbol{u}$

$$\boldsymbol{u}^{\mathsf{T}} \boldsymbol{\nabla} \alpha(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{\alpha(\boldsymbol{x}) - \alpha(\boldsymbol{x} + \epsilon \boldsymbol{u})}{\epsilon} \le 1$$

• That is, at every point the gradient in all directions must be less than 1 (since the gradient defines the direction of greatest increase it is both necessary and sufficient for $\|\nabla \alpha(x)\| \le 1$ everywhere)

ullet We note for a Lipschitz-1 function and any unit vector $oldsymbol{u}$

$$\boldsymbol{u}^{\mathsf{T}} \boldsymbol{\nabla} \alpha(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{\alpha(\boldsymbol{x}) - \alpha(\boldsymbol{x} + \epsilon \boldsymbol{u})}{\epsilon} \le 1$$

• That is, at every point the gradient in all directions must be less than 1 (since the gradient defines the direction of greatest increase it is both necessary and sufficient for $\|\nabla \alpha(x)\| \le 1$ everywhere)

Calculating the Wasserstein Distance

 To recall the big picture we want to compute the Wasserstein distance

$$W(p,q) = \min_{\gamma \in \Lambda(p,q)} \mathbb{E}_{\gamma}[d(\boldsymbol{x},\boldsymbol{y})]$$

- For high dimensional objects $\gamma({m x},{m y})$ would be a huge object to approximate
- Instead we can compute the Wasserstein distance in the dual formulation

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x}$$

subject to the constraint that $\alpha(\boldsymbol{x})$ is a Lipschitz-1 function

Calculating the Wasserstein Distance

 To recall the big picture we want to compute the Wasserstein distance

$$W(p,q) = \min_{\gamma \in \Lambda(p,q)} \mathbb{E}_{\gamma}[d(\boldsymbol{x},\boldsymbol{y})]$$

- ullet For high dimensional objects $\gamma(oldsymbol{x}, oldsymbol{y})$ would be a huge object to approximate
- Instead we can compute the Wasserstein distance in the dual formulation

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x}$$

subject to the constraint that $\alpha(\boldsymbol{x})$ is a Lipschitz-1 function

Calculating the Wasserstein Distance

 To recall the big picture we want to compute the Wasserstein distance

$$W(p,q) = \min_{\gamma \in \Lambda(p,q)} \mathbb{E}_{\gamma}[d(\boldsymbol{x},\boldsymbol{y})]$$

- For high dimensional objects $\gamma({m x},{m y})$ would be a huge object to approximate
- Instead we can compute the Wasserstein distance in the dual formulation

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x}$$

subject to the constraint that $\alpha(\boldsymbol{x})$ is a Lipschitz-1 function

Calculating the Wasserstein Distance

 To recall the big picture we want to compute the Wasserstein distance

$$W(p,q) = \min_{\gamma \in \Lambda(p,q)} \mathbb{E}_{\gamma}[d(\boldsymbol{x},\boldsymbol{y})]$$

- For high dimensional objects $\gamma({m x},{m y})$ would be a huge object to approximate
- Instead we can compute the Wasserstein distance in the dual formulation

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x} = \max_{\alpha} \mathbb{E}_p[\alpha(\boldsymbol{X})] - \mathbb{E}_q[\alpha(\boldsymbol{X})]$$

subject to the constraint that $\alpha(\boldsymbol{x})$ is a Lipschitz-1 function

Calculating the Wasserstein Distance

 To recall the big picture we want to compute the Wasserstein distance

$$W(p,q) = \min_{\gamma \in \Lambda(p,q)} \mathbb{E}_{\gamma}[d(\boldsymbol{x},\boldsymbol{y})]$$

- For high dimensional objects $\gamma({m x},{m y})$ would be a huge object to approximate
- Instead we can compute the Wasserstein distance in the dual formulation

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} \int \alpha(\boldsymbol{x}) (p(\boldsymbol{x}) - q(\boldsymbol{x})) d\boldsymbol{x} = \max_{\alpha} \mathbb{E}_p[\alpha(\boldsymbol{X})] - \mathbb{E}_q[\alpha(\boldsymbol{X})]$$

subject to the constraint that $\alpha(\boldsymbol{x})$ is a Lipschitz-1 function

Outline

- 1. GANs
- Wasserstein Distance
- 3. Wasserstein GANs

- What has this got do with GANs?
- Suppose we want to minimise the distance between the distribution p(x) of real images (of which \mathcal{D} are samples) and the distribution q(x) of images drawn from a generator
- We can use a normal GAN generator, $G(z, w_G)$, that generates an image when given a random variable $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- ullet To do this we choose the weights, $oldsymbol{w}_G$ of the generator to minimise

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} (\mathbb{E}_{\boldsymbol{x} \sim p}[\alpha(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x} \sim q}[\alpha(\boldsymbol{x})])$$

- What has this got do with GANs?
- Suppose we want to minimise the distance between the distribution p(x) of real images (of which \mathcal{D} are samples) and the distribution q(x) of images drawn from a generator
- We can use a normal GAN generator, $G(z, w_G)$, that generates an image when given a random variable $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- ullet To do this we choose the weights, $oldsymbol{w}_G$ of the generator to minimise

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} (\mathbb{E}_{\boldsymbol{x} \sim p}[\alpha(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x} \sim q}[\alpha(\boldsymbol{x})])$$

- What has this got do with GANs?
- Suppose we want to minimise the distance between the distribution p(x) of real images (of which \mathcal{D} are samples) and the distribution q(x) of images drawn from a generator
- We can use a normal GAN generator, $G(z, w_G)$, that generates an image when given a random variable $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- ullet To do this we choose the weights, $oldsymbol{w}_G$ of the generator to minimise

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} (\mathbb{E}_{\boldsymbol{x} \sim p}[\alpha(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x} \sim q}[\alpha(\boldsymbol{x})])$$

- What has this got do with GANs?
- Suppose we want to minimise the distance between the distribution p(x) of real images (of which \mathcal{D} are samples) and the distribution q(x) of images drawn from a generator
- We can use a normal GAN generator, $G(z, w_G)$, that generates an image when given a random variable $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- ullet To do this we choose the weights, $oldsymbol{w}_G$ of the generator to minimise

$$W(p,q) = \max_{\alpha(\boldsymbol{x})} (\mathbb{E}_{\boldsymbol{x} \sim p}[\alpha(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{x} \sim q}[\alpha(\boldsymbol{x})])$$

Estimating Expectations

• Although we can't compute $\mathbb{E}_p[\alpha(\boldsymbol{x})]$ and $\mathbb{E}_q[\alpha(\boldsymbol{x})]$ exactly, we can estimate them from samples

$$\mathbb{E}_p[\alpha(\boldsymbol{x})] \approx \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}), \quad \mathbb{E}_q[\alpha(\boldsymbol{x})] \approx \frac{1}{n} \sum_{i=1}^n \alpha(G(\boldsymbol{z}_i, \boldsymbol{w}_G))$$

- ullet where $\mathcal{B}\subset\mathcal{D}$ is a minibatch of true images and $oldsymbol{z}_i\sim\mathcal{N}(\mathbf{0},\mathbf{I})$
- ullet From this we can choose $oldsymbol{w}_G$ to minimise

$$C = \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_i, \boldsymbol{w}_G))$$

Estimating Expectations

• Although we can't compute $\mathbb{E}_p[\alpha(x)]$ and $\mathbb{E}_q[\alpha(x)]$ exactly, we can estimate them from samples

$$\mathbb{E}_p[\alpha(\boldsymbol{x})] \approx \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}), \quad \mathbb{E}_q[\alpha(\boldsymbol{x})] \approx \frac{1}{n} \sum_{i=1}^n \alpha(G(\boldsymbol{z}_i, \boldsymbol{w}_G))$$

- ullet where $\mathcal{B}\subset\mathcal{D}$ is a minibatch of true images and $oldsymbol{z}_i\sim\mathcal{N}(\mathbf{0},\mathbf{I})$
- ullet From this we can choose $oldsymbol{w}_G$ to minimise

$$C = \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_i, \boldsymbol{w}_G))$$

Estimating Expectations

• Although we can't compute $\mathbb{E}_p[\alpha(x)]$ and $\mathbb{E}_q[\alpha(x)]$ exactly, we can estimate them from samples

$$\mathbb{E}_p[\alpha(\boldsymbol{x})] \approx \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}), \quad \mathbb{E}_q[\alpha(\boldsymbol{x})] \approx \frac{1}{n} \sum_{i=1}^n \alpha(G(\boldsymbol{z}_i, \boldsymbol{w}_G))$$

- ullet where $\mathcal{B}\subset\mathcal{D}$ is a minibatch of true images and $oldsymbol{z}_i\sim\mathcal{N}(\mathbf{0},\mathbf{I})$
- ullet From this we can choose $oldsymbol{w}_G$ to minimise

$$C = \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_i, \boldsymbol{w}_G))$$

The Critic

- For this quantity to approximate the Wasserstein distance we need to find a function $\alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha})$ that maximises C
- To do this we learn a second network, the critic or discriminator whose job it is to maximise

$$C = \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

• The network $\alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha})$ should be Lipschitz-1 (which we usually botched by, for example, putting in a punishment term to ensure the gradient of the output for a randomly chosen input \boldsymbol{x} never exceeds 1)

The Critic

- For this quantity to approximate the Wasserstein distance we need to find a function $\alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha})$ that maximises C
- To do this we learn a second network, the critic or discriminator whose job it is to maximise

$$C = \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

• The network $\alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha})$ should be Lipschitz-1 (which we usually botched by, for example, putting in a punishment term to ensure the gradient of the output for a randomly chosen input \boldsymbol{x} never exceeds 1)

The Critic

- For this quantity to approximate the Wasserstein distance we need to find a function $\alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha})$ that maximises C
- To do this we learn a second network, the critic or discriminator whose job it is to maximise

$$C = \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

• The network $\alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha})$ should be Lipschitz-1 (which we usually botched by, for example, putting in a punishment term to ensure the gradient of the output for a randomly chosen input \boldsymbol{x} never exceeds 1)

$$\max_{\boldsymbol{w}_{\alpha}} \min_{\boldsymbol{w}_{G}} \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

$$\max_{\boldsymbol{w}_{\alpha}} \min_{\boldsymbol{w}_{G}} \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

$$\max_{\boldsymbol{w}_{\alpha}} \min_{\boldsymbol{w}_{G}} \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

$$\max_{\boldsymbol{w}_{\alpha}} \min_{\boldsymbol{w}_{G}} \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

$$\max_{\boldsymbol{w}_{\alpha}} \min_{\boldsymbol{w}_{G}} \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

$$\max_{\boldsymbol{w}_{\alpha}} \min_{\boldsymbol{w}_{G}} \frac{1}{|\mathcal{B}|} \sum_{\boldsymbol{x} \in \mathcal{B}} \alpha(\boldsymbol{x}, \boldsymbol{w}_{\alpha}) - \frac{1}{n} \sum_{i=1}^{n} \alpha(G(\boldsymbol{z}_{i}, \boldsymbol{w}_{G}), \boldsymbol{w}_{\alpha})$$

- Wasserstein GANs are, at least for me, one of the most elegant pieces of theory in recent years
- By trying to minimise the Wasserstein distance between the distribution of a generator and a true distribution we arrive at optimising two adversarial networks just like a GAN
- This uses a rather beautiful dual formulation
- It is claimed that W-GANs solve many of the problems of traditional GANs

- Wasserstein GANs are, at least for me, one of the most elegant pieces of theory in recent years
- By trying to minimise the Wasserstein distance between the distribution of a generator and a true distribution we arrive at optimising two adversarial networks just like a GAN
- This uses a rather beautiful dual formulation
- It is claimed that W-GANs solve many of the problems of traditional GANs

- Wasserstein GANs are, at least for me, one of the most elegant pieces of theory in recent years
- By trying to minimise the Wasserstein distance between the distribution of a generator and a true distribution we arrive at optimising two adversarial networks just like a GAN
- This uses a rather beautiful dual formulation
- It is claimed that W-GANs solve many of the problems of traditional GANs

- Wasserstein GANs are, at least for me, one of the most elegant pieces of theory in recent years
- By trying to minimise the Wasserstein distance between the distribution of a generator and a true distribution we arrive at optimising two adversarial networks just like a GAN
- This uses a rather beautiful dual formulation
- It is claimed that W-GANs solve many of the problems of traditional GANs