Симплексный метод решения ЗЛП

Рассмотрим каноническую задачу линейного программирования, которая состоит в определении максимального значения функции

$$F = \sum_{j=1}^{n} c_j x_j \to max$$

при условиях

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i, i = \overline{1, m} \\ x_j \ge 0 \ (j = \overline{1, n}) \end{cases}.$$

Основным методом решения таких задач является симплексный метод. Он основан на переходе от одного решения к другому, при котором значение целевой функции возрастает (при условии, что данная задача имеет оптимальное решение, и каждое ее решение является невырожденным). Указанный переход возможен, если известно какое-нибудь исходное решение.

Для существования какого-нибудь допустимого решения необходимо, чтобы система ограничений была совместна. Запишем систему ограничений в матричной форме:

где

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}.$$

Допустим, что r=rankA≤m≤n. Тогда r базисных переменных могут быть выражены через (n-r) свободных.

Решение $X^0 = (x_1^0, x_2^0, ..., x_n^0)$, которое соответствует нулевым значениям свободных переменных, называется базисным (опорным) планом. Опорный план называется невырожденным, если базисные переменные положительны, вырожденным – если среди базисных переменных хотя бы один ноль.

Система (6.2) определяет многогранник решений. Каждая из его вершин определяет опорный план. Двигаясь из одной вершины в другую в сторону увеличения значения целевой функции, мы получим решение задачи или установим неограниченность функции.

Пусть X^0 – невырожденный опорный план канонической ЗЛП:

$$X^0=(x_1^{\ 0},x_2^{\ 0},...,x_r^{\ 0},0,...,0),x_i^{\ 0}>0,i=\overline{1,r}.$$
 Тогда целевая функция запишется через небазисные переменные так:

$$F = F_0 + \sum_{j=r+1}^{n} d_j x_j$$
,где $F_0 = F(X^0)$.

Если все d_i отрицательны, то план X^0 – оптимальный.

Пусть существуют положительные d_i . Выберем из них максимальное – d_k . Тогда вместо одной из базисных переменных будем вводить в базис переменную x_k . Выводить будем ту переменную, для которой выполняется условие: $min\left\{\frac{\beta_i}{\alpha_{ik}}\right\}$, $\alpha_{ik}>0$. Здесь через β_i , α_{ik} обозначены коэффициенты разложения небазисной переменной x_i через базисную x_k .

Пример 6.1. Найти минимум функции
$$F(x) = -x_1 + x_2 - 3x_3$$
 при условиях:
$$\begin{cases} -x_1 + 2x_2 + x_3 \leq 2 \\ -x_1 - 3x_2 - x_3 \geq -6 \\ x_1 + x_2 - x_3 \leq 2 \end{cases}$$
 $x_1, x_2, x_3 \geq 0$

Решение. Сначала приведем задачу к каноническому виду, заменив направление поиска и введя дополнительные переменные:

$$G(x) = -F(x) = x_1 - x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6 \rightarrow max$$

при условиях:

$$\begin{cases} -x_1 + 2x_2 + x_3 + x_4 = 2\\ -x_1 - 3x_2 - x_3 - x_5 = -6\\ x_1 + x_2 - x_3 + x_6 = 2\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Добьемся того, чтобы все свободные члены равенств-ограничений были положительными:

$$\begin{cases} -x_1 + 2x_2 + x_3 + x_4 = 2\\ x_1 + 3x_2 + x_3 + x_5 = 6\\ x_1 + x_2 - x_3 + x_6 = 2\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

В этой системе базисными будут векторы x_4, x_5, x_6 , так как они линейно независимы. Опорный план задачи: $X^0 = (0,0,0,2,6,2)$. $F_0 = F(X^0) = F(0,0,0,2,6,2) = 0$.

Составим первую симплекс-таблицу.

Базисные	x_1	x_2	x_3	x_4	x_5	x_6	b
переменные							
x_4	-1	2	1	1	0	0	2
x_5	1	3	1	0	1	0	6
x_6	1	1	-1	0	0	1	2
G	1	-1	3	0	0	0	0

В последней строке таблицы найдем самое большое положительное число. (Если таких чисел нет, то функция не ограничена) Это число 3, которое стоит в третьем столбце. Столбец, в котором оно стоит, называется разрешающим. Значит, вводить в новый базис мы будем переменную x_3 . Определим, какую переменную будем выводить: для всех $\alpha_{ik} > 0$ $min\left\{\frac{\beta_i}{\alpha_{ik}}\right\} = = \left\{\frac{2}{1}, \frac{6}{1}\right\} = 2$ - соответствует переменной x_4 .

Теперь следует преобразовать таблицу так, чтобы в разрешающем столбце в первой строке (соответствующей переменной x_4) осталась 1, а в остальных строках этого столбца получились 0. Для этого выполним матричные преобразования:

- а) из второй строки вычтем первую;
- б) к третьей строке прибавим первую;
- в) из четвертой строки вычтем 3 первых.

Получим:

Базисные	x_1	x_2	x_3	x_4	x_5	x_6	b
переменные							
x_3	-1	2	1	1	0	0	2
x_5	2	1	0	-1	1	0	4
x_6	0	3	0	1	0	1	4
G	4	-7	0	-3	0	0	-6

В последней строке таблицы найдем самое большое положительное число. Это число 4, которое стоит в первом столбце. Значит, вводить в новый базис мы будем переменную x_1 . Определим, какую переменную будем выводить: для всех $\alpha_{ik}>0$ $min\left\{\frac{\beta_i}{\alpha_{ik}}\right\}=\left\{\frac{4}{2}\right\}=2$ — соответствует переменной x_5 .

Теперь следует преобразовать таблицу так, чтобы в разрешающем столбце во второй строке (соответствующей переменной x_5) осталась 1, а в остальных строках этого столбца получились 0. Для этого выполним матричные преобразования:

- а) вторую строку поделим на 2;
- б) к первой прибавим преобразованную вторую;
- в) из четвертой строки вычтем 4 преобразованных вторых.

Получим:

Базисные	x_1	x_2	x_3	x_4	x_5	x_6	b
переменные							
x_3	0	2,5	1	0,5	0,5	0	4
x_1	1	0,5	0	-0,5	0,5	0	2
x_6	0	3	0	1	0	1	4
G	0	-9	0	-1	-2	0	-14

Поскольку в последней строке нет положительных элементов, то решение задачи получено.

В итоговой симплексной таблице базисными оказались переменные x_1, x_3, x_6 . Их значения стоят в столбце b: $x_1 = 2, x_3 = 4, x_6 = 4$. Основная переменная x_2 в базис не вошла, значит, $x_2 = 0$. Число -14,

стоящее в последней клетке таблицы, есть значение целевой функции с обратным знаком, т.е. -G(x)=-14. Значит, F(x) = -14.

Omsem: min F(x) = F(2,0,4) = -14.

Приведем пример реализации алгоритма в Microsoft Excel.

Запишем в ячейки A1:C1 нули — первоначальные значения переменных x_1 , x_2 , x_3 .

В ячейку E1 введем формулу: =-1*A1+B1-3*C1 — значение целевой функции в начальной точке.

Заполним диапазон А3:С5 элементами матрицы ограничений.

В ячейке D1 запишем формулу = $CVMM\Pi POU3B(\$A\$1:\$C\$1;A3:C3)$, тиражируем ее на две строки вниз. Таким образом, в ячейках D3:D5 лежат значения левых частей неравенств- ограничений в начальной точке.

Запишем в ячейках Е3:Е5 значения правых частей неравенств-ограничений (рис. 6.1).

Для удобства преобразуем второе ограничение-неравенство, умножив его на -1 (рис. 6.2).

	F19	-	(-	f _x		
4	Α	В	С	D	Е	
1	0	0	0		0	
2						
3	-1	2	1	0	2	
4	1	3	1	0	6	
5	1	1	-2	0	2	
6						
_						

Активизируем ячейку Е1 и на вкладке Данные вызовем процедуру Поиск решения. Выставим следующие параметы.

Оптимизировать целевую функцию - \$E\$1.

До: Минимум.

В графе Изменяя ячейки переменных нужно указать адреса ячеек, в которых лежат первоначальные значения переменных x_1 , x_2 , x_3 : A\$1:\$C\$1. Записать ограничения в окно B соответствии c ограничениями (рис. 6.3, 6.4).

Рис. 6.4

Выбираем метод решения: Поиск решения линейных задач симплекс-методом, нажимаем кнопку

Выбираем опцию Сохранить найденное решение и нажимаем ОК. На рисунке 6.5 представлено полученное решение: в диапазоне A1:C1 – значения переменных x_1 , x_2 , x_3 – точка минимума, в ячейке E1 – минимальное значение функции.

Пример 6.2. Найти минимум функции $F(x) = -11x_1 - 5x_2 + 8x_3 + 2x_4$ при условиях:

$$\begin{cases} x_1 + x_2 - x_3 = 4 \\ -2x_1 + 5x_3 + x_4 = 10. \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Решение 1. В этой системе базисными будут векторы x_2, x_4 , так как они линейно независимы. Выведем эти векторы из целевой функции. Для этого из ограничений выразим x_2, x_4 :

$$\begin{cases} x_2 = 4 - x_1 + x_3 \\ x_4 = 10 + 2x_1 - 5x_3 \end{cases}$$

Подставив полученные выражения в целевую функцию и выполнив преобразования, получим:

$$F(x) = -2x_1 - 7x_3 \rightarrow min.$$

Заменив направление поиска, получим задачу:

$$G(x) = -F(x) = 2x_1 + 7x_3 \rightarrow max$$

при условиях:

$$\begin{cases} x_1 + x_2 - x_3 = 4 \\ -2x_1 + 5x_3 + x_4 = 10. \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Составим первую симплекс-таблицу.

Базисные	x_1	x_2	x_3	x_4	b
переменные					
x_2	1	1	-1	0	4
x_4	-2	0	5	1	10
G	2	0	7	0	0

В последней строке таблицы найдем самое большое положительное число. Это число 7, которое стоит в третьем столбце. Значит, вводить в новый базис мы будем переменную x_3 . Определим, какую переменную будем выводить: для всех $\alpha_{ik}>0$ $min\left\{\frac{\beta_i}{\alpha_{ik}}\right\}==\left\{\frac{10}{5}\right\}=2$ - соответствует переменной x_4 .

Теперь следует преобразовать таблицу так, чтобы в разрешающем столбце во второй строке (соответствующей переменной x_4) осталась 1, а в остальных строках этого столбца получились 0. Для этого выполним матричные преобразования:

- а) поделим вторую строку на 5;
- б) к первой строке прибавим преобразованную вторую;
- в) из третьей строки вычтем 7 вторых.

Получим:

Базисные	x_1	x_2	x_3	x_4	b
переменные					
x_2	0,6	1	0	0,2	6
x_3	-0,4	0	1	0,2	2
G	4.8	0	0	-1.4	-14

В последней строке таблицы найдем самое большое положительное число. Это число 4,8, которое стоит в первом столбце. Значит, вводить в новый базис мы будем переменную x_1 . Определим, какую переменную будем выводить: для всех $\alpha_{ik}>0$ $min\left\{\frac{\beta_i}{\alpha_{ik}}\right\}=\left\{\frac{6}{0,6}\right\}=10$ - соответствует переменной x_2 .

Теперь следует преобразовать таблицу так, чтобы в разрешающем столбце в первой строке (соответствующей переменной x_1) осталась 1, а в остальных строках этого столбца получились 0. Для этого выполним матричные преобразования:

- а) первую строку поделим на 0,6;
- б) ко второй прибавим преобразованную первую, умноженную на 0,4;

в) из третьей строки вычтем преобразованную первую, умноженную на 4,8. Получим:

Базисные	x_1	x_2	x_3	x_4	b
переменные					
x_1	1	10/6	0	2/6	10
x_3	0	4/6	1	1/3	6
G	0	-8	0	-3	-62

Поскольку в последней строке нет положительных элементов, то решение задачи получено.

В итоговой симплексной таблице базисными оказались переменные x_1, x_3 . Их значения стоят в столюце b: $x_1 = 10, x_3 = 6$. Число -62, стоящее в последней клетке таблицы, есть значение целевой функции с обратным знаком, т.е. -G(x)=-62. Значит, F(x)=-62.

Omsem: min F(x) = F(10,0,6,0) = -62. •

Решение 2. Заменим направление поиска, получим задачу:

$$G(x) = +11x_1 + 5x_2 - 8x_3 - 2x_4$$

$$\begin{cases} x_1 + x_2 - x_3 = 4 \\ -2x_1 + 5x_3 + x_4 = 10. \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Для использования симплексного метода приведем ЗЛП к единичному базису, выразив базисные переменные и целевую функцию через свободные переменные, получив таким образом, первое допустимое решение. Для этого воспользуемся методом Жордана-Гаусса. Составляем таблицу:

Базисные	x_1	x_2	x_3	x_4	b
переменные					
	1	1	-1	0	4
	-2	0	5	1	10
G	11	5	-8	-2	

Выберем в качестве базисной переменной x_4 . Для этого избавимся от -2 в третьей строке таблицы, прибавив к ней вторую, умноженную на 2. Получим:

Базисные переменные	x_1	x_2	x_3	x_4	b
	1	1	-1	0	4
x_4	-2	0	5	1	10
G	7	5	2	0	20

Выберем в качестве базисной переменной x_2 . Для этого избавимся от 5 в третьей строке таблицы, вычтя из нее первую, умноженную на 5. Получим:

Базис	x_1	x_2	x_3	x_4	b
ные					
перем					
енные					
x_2	1	1	-1	0	4
x_4	-2	0	0	1	10
G	2	0	7	0	0

Получили первое допустимое решение $X_1 = (0,4,0,10)$. Далее повторяем решение 1. •

Приведем пример реализации алгоритма в Microsoft Excel.

Запишем в ячейки A1:D1 нули – первоначальные значения переменных x_1 , x_2 , x_3 , x_4 .

В ячейку Е1 введем формулу: =-11*A1-5*B1+8*C1+2*D1 — значение целевой функции в начальной точке.

Заполним диапазон А3:D4 элементами матрицы ограничений.

В ячейке E1 запишем формулу =cymnpouse(\$A\$1:\$D\$1;A3:D3), тиражируем ее на строку вниз. Таким образом, в ячейках E3:E4 лежат значения левых частей ограничений в начальной точке.

Запишем в ячейках F3:F4 значения правых частей неравенств-ограничений (рис. 6.6).

Активизируем ячейку E1 и на вкладке *Данные* вызовем процедуру *Поиск решения*. Выставим следующие параметы.

Оптимизировать целевую функцию - \$E\$1.

До: Минимум.

В графе *Изменяя ячейки переменных* нужно указать адреса ячеек, в которых лежат первоначальные значения переменных x_1 , x_2 , x_3 , x_4 : A\$1:D\$1. Записать ограничения в окно *В соответствии с ограничениями* (рис. 6.7, 6.8).

Рис. 6.8

Выбираем метод решения: Поиск решения линейных задач симплекс-методом, нажимаем кнопку Найти решение.

Выбираем опцию *Сохранить найденное решение* и нажимаем OK. На рисунке 6.9 представлено полученное решение: в диапазоне A1:D1 — значения переменных x_1 , x_2 , x_3 , x_4 — точка минимума, в ячейке E1 — минимальное значение функции.

Пример 6.3. Найти максимум функции

$$F(x) = x_1 - 24x_2 + 12x_3$$

при условиях:

$$\begin{cases} x_1 - 3x_2 + 2x_3 \le 1 \\ -x_1 + 4x_2 - x_3 \ge 2. \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Решение. Сначала приведем задачу к каноническому виду, введя дополнительные переменные:

$$\begin{cases} x_1 - 3x_2 + 2x_3 + x_4 = 1 \\ -x_1 + 4x_2 - x_3 - x_5 = 2. \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

Для использования симплексного метода приведем ЗЛП к единичному базису, выразив базисные переменные и целевую функцию через свободные переменные, получив таким образом, первое допустимое решение. Для этого воспользуемся методом Жордана-Гаусса. Составляем таблицу:

Базисные	x_1	x_2	x_3	x_4	x_5	b
переменные						
x_4	1	-3	2	1	0	1
	-1	4	-1	0	-1	2
G	1	-24	12	0	0	0

Одна базисная переменная в плане есть $-x_4$. Выберем в качестве второй базисной переменной x_2 . Для того, чтобы обнулить -24 в третьей строке, прибавим к третьей строке вторую, умноженную на 6. Получим:

Базисные	x_1	x_2	x_3	x_4	x_5	b
переменные						
x_4	1	-3	2	1	0	1
	-1	4	-1	0	-1	2
G	-5	0	6	0	-6	12

Теперь во второй строке получим базисную единицы для переменной x_2 . Для этого поделим на 4 вторую строку таблицы. Для того, чтобы обнулить -3 в первой строке, прибавим к первой строке измененную вторую, умноженную на 3. Получим:

Базисные	x_1	x_2	x_3	x_4	x_5	b
переменные						
x_4	1/4	0	5/4	1	-3/4	5/2
x_2	-1/4	1	-1/4	0	-1/4	1/2
G	-5	0	6	0	-6	12

Получили первое допустимое решение

$$X_1 = (0, 1/2, 0, 5/2, 0), F(X_1) = -12.$$

Поскольку в последней строке таблицы есть положительное число (6), наше решение не оптимально. Число 6 соответствует переменной x_3 , значит, ее мы будем вводить в новый базис. Так как единственное $\alpha_{ik} = 5/4 > 0$ соответствует переменной x_4 , то ее будем выводить.

Теперь следует преобразовать таблицу так, чтобы в разрешающем столбце в первой строке (соответствующей переменной x_4) осталась 1, а в остальных строках этого столбца получились 0. Для этого выполним матричные преобразования:

- а) первую строку поделим на 5/4;
- б) ко второй прибавим преобразованную первую, умноженную на 1/4;
- в) из третьей строки вычтем преобразованную первую, умноженную на 6. Получим:

Базисные переменные	x_1	x_2
ν.	0.2	0
Λ1.	0,4	U

Базисные	x_1	x_2	x_3	x_4	x_5	b
переменные						
x_4	0,2	0	1	0,8	-0,6	2
x_2	-0,2	1	0	0,2	-0,4	1
G	-6,2	0	0	-4,8	-2,4	0

Получили второе допустимое решение.

$$X_2 = (0,1,2,0,0), F(X_1) = 0.$$

Поскольку в последней строке нет положительных элементов, то найденное решение оптимально.

Ответ:
$$max F = F(0; 1; 2) = 0. \bullet$$

Задачи

Решить следующие задачи симплексным методом.

1.1.
$$F(x) = 2x_1 - 6x_2 + 5x_5 \rightarrow max$$

$$\begin{cases}
-2x_1 + x_2 + x_3 + x_5 = 20 \\
-x_1 - 2x_2 + x_4 + 3x_5 = 24 \\
3x_1 - x_2 - 12x_5 + x_6 = 18 \\
x_1, x_2, x_3, x_4, x_5, x_6 \ge 0
\end{cases}$$

1.2.
$$F(x) = 8x_2 + 7x_4 + x_6 \rightarrow max$$

$$\begin{cases} x_1 - 2x_2 - 3x_4 - 2x_6 = 12 \\ 4x_2 + x_3 - 4x_4 - 3x_6 = 12 \\ 5x_2 + 5x_4 + x_5 + x_6 = 25 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

1.3.
$$F(x) = 2x_1 - x_2 + 3x_4 + 2x_5 + 4 \rightarrow min$$

$$\begin{cases} x_1 - 2x_3 + x_4 - 3x_5 = 2\\ 2x_1 + x_2 + 4x_3 + x_5 = 6\\ -x_1 + 2x_2 + 3x_4 = 4\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

1.4.
$$F(x) = -6x_1 + 3x_2 + 3x_4 \rightarrow max$$

$$\begin{cases} 3x_1 + 2x_2 + x_4 \ge 18 \\ 2x_1 + x_2 + 2x_4 \le -9 \\ 2x_1 - 4x_2 + 2x_3 = 10 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

1.5.
$$F(x) = x_1 + x_2 + x_3 - x_4 \rightarrow max$$

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 12 \\ x_1 + 2x_2 + x_3 \le 20 \\ x_1 + x_2 + x_3 \le 20 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}.$$

1.6.
$$F(x) = -2x_1 - 4x_2 - 2x_3 \rightarrow min$$

$$\begin{cases} -2x_1 + x_2 + x_3 \le 4 \\ -x_1 + x_2 + 3x_3 \le 6 \\ x_1 - 3x_2 + x_3 \le 2 \end{cases}$$
$$x_1, x_2, x_3 \ge 0$$