## Types and $\lambda$ -calculus

# Problem Sheet 6

Questions 1 and 3(c) will be marked.

- \* 1. Give a type derivation/proof tree for the judgements:
  - (a)  $\vdash (\lambda x.x)2: \mathsf{Nat}$
  - (b)  $x : Nat, y : Nat \vdash ifz y x (pred x) : Nat$
  - (c)  $\vdash \lambda x y. yxx : a \rightarrow (a \rightarrow a \rightarrow b) \rightarrow b$
  - (d)  $\vdash \lambda x yz. y(xz): (a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c$

Solution -

(a) I have to split up the derivation to keep it on the page. First let  $\delta$  be the following derivation of  $\vdash \underline{2}$ : Nat.

$$\frac{\frac{}{\vdash S : \mathsf{Nat} \to \mathsf{Nat}} (\mathsf{TCst}) \quad \frac{}{\vdash \underline{0} : \mathsf{Nat}} (\mathsf{TCst})}{}{\vdash \underline{1} : \mathsf{Nat}} (\mathsf{TApp})} \frac{}{\vdash \underline{1} : \mathsf{Nat}} (\mathsf{TApp})}{}$$

Then we extend this as follows:

$$\frac{\frac{}{x: \mathsf{Nat} \vdash x : \mathsf{Nat}} (\mathsf{TVar})}{\frac{\vdash (\lambda x. x) : \mathsf{Nat} \to \mathsf{Nat}}{\vdash (\lambda x. x) \, \underline{2} : \mathsf{Nat}}} (\mathsf{TAbs})} \frac{\delta}{(\mathsf{TApp})}$$

(b) I have to split the derivation up so it fits onto the page. With  $\Gamma = \{x : \text{Nat}, y : \text{Nat}\}$ . First, let  $\delta$  be this derivation of  $\Gamma \vdash \text{ifz } y : \text{Nat} \to \text{Nat}$ :

$$\frac{\frac{\Gamma \vdash \mathsf{ifz} : \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}}{\Gamma \vdash \mathsf{ifz} \ y : \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat}} \frac{(\mathsf{TVar})}{\Gamma \vdash \mathsf{ifz} \ y : \mathsf{Nat} \to \mathsf{Nat}} \frac{(\mathsf{TVar})}{\Gamma \vdash \mathsf{ifz} \ y \ x : \mathsf{Nat} \to \mathsf{Nat}} (\mathsf{TApp})$$

Then we extend this derivation  $\delta$  as follows:

$$\frac{\delta}{\Gamma \vdash \text{pred} : \text{Nat} \to \text{Nat}} \frac{(\text{TCst})}{\Gamma \vdash x : \text{Nat}} \frac{(\text{TVar})}{(\text{TApp})}$$

$$\frac{\delta}{\Gamma \vdash \text{ifz } y \text{ } x \text{ } (\text{pred } x) : \text{Nat}} (\text{TApp})$$

(c) With  $\Gamma = \{x : a, y : a \rightarrow a \rightarrow b\}$ :

$$\frac{\overline{\Gamma \vdash y : a \to a \to b} \text{ (TVar)} \quad \overline{\Gamma \vdash x : a} \text{ (TVar)}}{\underline{\Gamma \vdash yx : a \to b} \quad \overline{\Gamma \vdash yxx : b} \text{ (TApp)}} \frac{\Gamma \vdash yxx : b}{x : a \vdash \lambda y. yxx : (a \to a \to b) \to b} \text{ (TAbs)}}{\underline{+ \lambda xy. yxx : a \to (a \to a \to b) \to b} \text{ (TAbs)}}$$

(d) With  $\Gamma = \{x : a \rightarrow b, y : b \rightarrow c, z : a\}$ :

$$\frac{\Gamma \vdash y : b \to c}{\Gamma \vdash y : b \to c} \text{(Var)} \quad \frac{\Gamma \vdash x : a \to b}{\Gamma \vdash xz : b} \text{(App)}$$

$$\frac{\Gamma \vdash y(xz) : c}{x : a \to b, \ y : b \to c \vdash \lambda z. \ y(xz) : a \to c} \text{(Abs)}$$

$$\frac{x : a \to b \vdash \lambda yz. \ y(xz) : (b \to c) \to a \to c}{\Gamma \vdash xz : b} \text{(Abs)}$$

$$\frac{x : a \to b \vdash \lambda yz. \ y(xz) : (b \to c) \to a \to c}{\Gamma \vdash \lambda xyz. \ y(xz) : (a \to b) \to (b \to c) \to a \to c} \text{(Abs)}$$

\*\* 2. Give terms *M* in normal form that satisfy each of the following (you are *not* required to justify them with a proof tree, but you may wish to so as to check your answer):

(a) 
$$\vdash M : (a \rightarrow b) \rightarrow a \rightarrow b$$

(b) 
$$x:(a \rightarrow a) \rightarrow c \vdash M:c$$

(c) 
$$\vdash M : a \rightarrow b \rightarrow \mathsf{Nat}$$

Solution -

(a) e.g. 
$$\lambda x \cdot x$$
 or perhaps  $\lambda x y \cdot x y$ 

(b) e.g. 
$$x(\lambda y. y)$$

(c) e.g. 
$$\lambda xy.2$$

- \*\* 3. Use inversion to prove that the following terms are not typable:
  - (a)  $\underline{1}(\lambda x.x)$
  - (b) pred  $(\lambda x. x)$
  - (c)  $\lambda xy.xy(yx)$

Solution -

- (a) Suppose  $\underline{1}$  ( $\lambda x.x$ ) is typable and we look for a contradiction. Then, by definition, there is a type A such that  $\vdash \underline{1}$  ( $\lambda x.x$ ) : A. By inversion, there is a type B such that:
  - (i)  $\vdash 1 : B \rightarrow A$  and
  - (ii)  $\vdash (\lambda x. x) : B$

By inversion on (i), we must have that there is a type *C* such that:

- (a)  $\vdash S : C \rightarrow B \rightarrow A$  and
- (b)  $\vdash$  0 : *C*

By inversion on (a),  $S: C \to B \to A$  is in  $\mathbb{C}$ , but this is impossible, because the only assignment to S in  $\mathbb{C}$  is Nat  $\to$  Nat.

- (b) Suppose pred  $(\lambda x. x)$  is typable and we look for a contradiction. Then, by definition, there is a type A and  $\vdash$  pred  $(\lambda x. x): A$ . By inversion, there is a type B and:
  - (i)  $\vdash$  pred :  $B \rightarrow A$
  - (ii)  $\vdash \lambda x. x : B$

By inversion on (i), pred :  $B \to A$  must be in  $\mathbb{C}$ , from which, by definition of  $\mathbb{C}$ , we deduce that B = A = Nat. This makes (ii)  $\vdash \lambda x.x$ : Nat. By inversion on (ii), we have that there are types  $C_1$  and  $C_2$  such that  $\text{Nat} = C_1 \to C_2$ , but this is impossible.

- (c) Suppose that  $\lambda xy.xy(yx)$  were typable. By definition of typability, there is some A such that  $\vdash \lambda xy.xy(yx): A$ . By inversion twice, it must be that there are types B, C and D such that (1)  $A = B \rightarrow C \rightarrow D$  and  $x:B,y:C \vdash xy(yx):D$ . By inversion on this judgement, we have that there is some type E such that:
  - i  $x:B, y:C \vdash xy:E \rightarrow D$
  - ii  $x:B, y:C \vdash yx:E$

By inversion on the former, we have that there is some type F such that:

- (a)  $x:B, y:C \vdash x:F \rightarrow E \rightarrow D$
- (b)  $x:B, y:C \vdash y:F$

By inversion on these two judgments, we have that (2)  $B = F \rightarrow E \rightarrow D$  and (3) C = F. By inversion on (ii) we get that there is a type G such that:

- (A)  $x:B, y:C \vdash y:G \rightarrow E$
- (B)  $x:B, y:C \vdash x:G$

By inversion on these two judgements, we get that (4)  $C = G \rightarrow E$  and (5) B = G. Now, by combining equations (1)–(5) we obtain:

$$F = G \rightarrow E = B \rightarrow E = (F \rightarrow E \rightarrow D) \rightarrow E$$

but this is impossible because whatever type F is cannot include itself as a substring.

\*\* 4. The following property is called *Weakening*:

For all  $\Gamma$ ,  $\Gamma'$  and A: if  $\Gamma \vdash M : A$  and  $\Gamma \subseteq \Gamma'$  then  $\Gamma' \vdash M : A$ .

We can prove Weakening by induction on M.

*Proof.* The proof is by induction on *M*.

- When M is a variable  $x \dots (a)$
- When M is a constant c, let A be a type,  $\Gamma$  and  $\Gamma'$  be type environments such that  $\Gamma \subseteq \Gamma'$  and suppose  $\Gamma \vdash c : A$ . By inversion, it follows that  $c:A \in \mathbb{C}$ . Therefore, the side condition is fulfilled to use (TCst) to also justify  $\Gamma' \vdash c : A$  (this rule does not place any requirements on the environment).
- When M is an application PQ, assume the induction hypotheses:
- (IH1) For all  $\Gamma''$  and  $\Gamma'''$  and A', if  $\Gamma'' \subseteq \Gamma'''$  and  $\Gamma'' \vdash P : A'$  then  $\Gamma''' \vdash P : A'$ .
- (IH2) For all  $\Gamma''$  and  $\Gamma'''$  and A', if  $\Gamma'' \subseteq \Gamma'''$  and  $\Gamma'' \vdash Q : A'$  then  $\Gamma''' \vdash Q : A'$ .

Let A be a type,  $\Gamma$  and  $\Gamma'$  be environments such that  $\Gamma \subseteq \Gamma'$ . Then suppose  $\Gamma \vdash PQ : A$ . By inversion, there must be a type B such that  $\Gamma \vdash P : B \to A$  and  $\Gamma \vdash Q : B$ . It follows from (IH1) with  $\Gamma'' := \Gamma$  and  $\Gamma''' := \Gamma'$  and  $A' := B \to A$  that  $\Gamma' \vdash P : B \to A$ . It follows from (IH2) with  $\Gamma'' := \Gamma$ ,  $\Gamma''' := \Gamma'$  and A' := B that  $\Gamma' \vdash Q : B$ . Therefore, by (TApp),  $\Gamma' \vdash PQ : A$ .

• When M is an abstraction  $\lambda x.P$  ... (b)

Complete the remaining two cases.

#### Solution

- (a) When M is a variable x, let A be a type,  $\Gamma$  and  $\Gamma'$  be type environments such that  $\Gamma \subseteq \Gamma'$  and suppose  $\Gamma \vdash x : A$ . By inversion, it follows that  $x : A \in \Gamma$ . Since  $\Gamma'$  contains all the typings of  $\Gamma$ , also  $x : A \in \Gamma'$ . Hence, by (TVar),  $\Gamma' \vdash x : A$ .
- (b) When M is an abstraction  $\lambda x.P$ , assume the induction hypothesis:
  - (IH) For all  $\Gamma''$  and  $\Gamma'''$  and A', if  $\Gamma'' \subseteq \Gamma'''$  and  $\Gamma'' \vdash P : A'$  then  $\Gamma''' \vdash P : A'$ . Let A be a type,  $\Gamma$  and  $\Gamma'$  be type environments such that  $\Gamma \subseteq \Gamma'$ . Then suppose  $\Gamma \vdash \lambda x . P : A$ . By the variable convention we can assume that x does not occur in  $\Gamma$  or  $\Gamma'$ . By inversion, it follows that there are types B and C such that  $A = B \to C$  and  $\Gamma, x : B \vdash P : C$ . Then, it follows from the induction hypothesis with  $\Gamma'' = \Gamma \cup \{x : B\}$  and  $\Gamma''' = \Gamma' \cup \{x : B\}$  and A' := C, that  $\Gamma', x : B \vdash P : C$ . It follows by (TAbs) that, therefore,  $\Gamma' \vdash \lambda x . P : B \to C$ , as required.

### \*\*\* 5. Find terms *M* and *N* such that:

- (i) *M* is not typable
- (ii) N is typable
- (iii) M > N

#### Solution -

Let  $M := (\lambda y. 0) (\lambda x. xx)$  and N := 0. Clearly requirements (ii) and (iii) are satisfied. M is not typable because it has an untypable term as a subterm. It is possible to prove by induction that if M is typable then it cannot have an untypable subterm, but you can also "see" this if you consider that each rule of the type system has a conclusion of shape  $\Gamma \vdash M : A$  and judgements as premises whose subjects are exactly the immediate subterms of M. Hence, every subterm of M will eventually be the conclusion of a rule in the derivation of  $\Gamma \vdash M : A$ . Hence, it must be that every closed subterm is typable.