Problem 0.1. It can be shown that $\pi_{13}(S^6) = \mathbb{Z}/60$. Let $X = S^6 \cup e^{14}$ be obtained by attaching a 14-cell to a S^6 along a generator in $\pi_{13}(S^6)$.

- (1) Calculate $\pi_6(X)$.
- (2) Calculate $\pi_{13}(X)$

Solution. Attaching a 14-cell along a generator in $\pi_{13}(S^6) = \mathbb{Z}/60$ trivializes this homotopy group, so $\pi_{13}(X) \cong 0$.

By cellular approximation, $\pi_i(X) = 0$ for i < 6, so by Hurewicz, $\pi_6(X) \cong H_6(X)$, and it is clear that $H_6(X) \cong \mathbb{Z}$ by cellular homology.

Problem 0.2. Compute $H_* (\Omega (S^3 \vee S^3))$.

Solution. We have the homotopy fibration $\Omega\left(S^3 \vee S^3\right) \to P\left(S^3 \vee S^3\right) \to S^3 \vee S^3$, since the base space is simply-connected, we obtain the following by LSSS:

from which we can deduce that

$$H_n\left(\Omega\left(S^3\vee S^3\right)\right)\cong egin{cases} \mathbb{Z}^n, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$

Problem 0.3. True or false? Briefly justify your answer:

- (1) If an *n*-dimensional CW complex is *n*-connected, then it is contractible.
- (2) If X is a simply connected CW complex with finitely many cells, then ΩX is weakly equivalent to a CW complex with finitely many cells.
- (3) If X is an n-truncated CW complex, then its suspension ΣX is (n+1)-truncated.

Solution. (a) By the Hurewicz theorem, the first nontrivial homology group equals the first nontrivial homotopy group, so if π_k is nontrivial for some k > n, then H_k is also nontrivial, but since there are no cells of dimension > n, we conclude that $\pi_k = 0$ for all k. Now the inclusion of a point induces a weak homotopy equivalence, hence it is a homotopy equivalence by Whitehead's theorem, so the space is contractible.

(b) False. If this were true, then the homology groups of ΩX would be nontrivial only in finitely many dimensions, but we have just seen that $H_n\left(\Omega\left(S^3\vee S^3\right)\right)\cong\mathbb{Z}^n$

in all even dimensions.

(c) False: S^1 is 2-truncated, but S^2 is not 3-truncated since $\pi_3\left(S^2\right)\cong\mathbb{Z}$ (and $S^2=\Sigma S^1$).

Problem 0.4. Let X be a simply connected space with homology

$$H_n(X) \cong \mathbb{Z}/n$$
 for all $n > 1$.

- (1) Show that $\pi_k(X)$ is finite for all k.
- (2) Show that there are infinitely many $k \in \mathbb{N}$ with $\pi_k(X) \not\cong 0$.

Proof. (1) Let P be the set of all primes. Then \mathcal{F}_P is the set of all finite abelian groups. Now by theorem 1.7 in Hatcher's spectral sequences text, since X is simply-connected and $H_n(X) \in \mathcal{C} = \mathcal{F}_p$ for all n > 0, we have $\pi_n(X) \in \mathcal{F}_p$ for all n > 0.

(2) Suppose for contradiction that there are only finitely many nontrivial homotopy groups. Since these are also finite abelian, this means that there is a maximal finite collection P of primes such that each $p \in P$ divides the order of some nontrivial homotopy group of X. Let now $p \notin P$. Then by assumption, $\pi_k \in \mathcal{C} = \mathcal{F}_P$ for all k < p, so the Hurewicz homomorphism $h \colon \pi_p(X) \to H_p(X) \cong \mathbb{Z}/p$ is an isomorphism mod $\mathcal{C} = \mathcal{F}_P$. Hence the cokernel is in \mathcal{F}_P . But $\mathbb{Z}/p \notin \mathcal{F}_P$ by assumption, so the image of h must be all of \mathbb{Z}/p . But then by the first isomorphism theorem, we obtain $\pi_p(X)/\ker h\cong \mathbb{Z}/p$, so in particular,

$$|\pi_p(X)| \cong |\ker h| |\mathbb{Z}/p| = p |\ker h| > 1$$

so $\pi_p(X)$ is nontrivial, and also has order a multiple of p, so $p \in P$, which is a contradiction.

Problem 0.5 (Whitehead tower computation). Let $\mathbb{RP}^1 \subset \mathbb{RP}^\infty$ be the inclusion. Define $X = \mathbb{RP}^\infty/\mathbb{RP}^1$ by collapsing \mathbb{RP}^1 to a point.

(1) Show that X is simply connected, that

$$H^*(X; \mathbb{Z}) \cong \begin{cases} \mathbb{Z}, & * = 0, 2\\ \mathbb{Z}/2, & * > 3 \text{ even}\\ 0, & \text{otherwise} \end{cases}$$

and that as a graded ring, $H^*(X; \mathbb{Z}) \cong \mathbb{Z}[a]/2a^2$ with |a| = 2.

(2) Show that there is a homotopy fiber sequence

$$S^1 \to \tau_{>2} X \to X$$

and use the cohomological Leray-Serre spectral sequence to compute $H^*(\tau_{>2}X;\mathbb{Z})$.

- (3) Show that $\tau_{>2}X$ is homotopy equivalent to a finite CW complex.
- (4) Is there a finite CW complex with the same homotopy groups as X? Briefly justify your answer.

Solution. a