

Radosław Kowal 14-15.09.2020

#### Co to takiego?



# Ryzyko wg Was...

### Ryzyko



Termin ryzyko (ang.risk\*) wywodzi się z języka włoskiego (wł. Risico\*), w którym oznacza przede wszystkim przedsięwzięcie, którego wynik jest nieznany albo niepewny, lub możliwość, że coś się uda albo nie uda.

#### Ryzyko wg ISTQB



Ryzyko jest możliwością wystąpienia w przyszłości zdarzenia o niepożądanych konsekwencjach. O poziomie ryzyka decyduje prawdopodobieństwo wystąpienia niekorzystnego zdarzenia oraz jego wpływ (tj. wynikające z niego szkody).

#### Ryzyko wg PMBoK



Ryzyko to prawdopodobieństwo wystąpienia sytuacji, która może oddziaływać na dalszy przebieg projektu — jego jakość, zakres, koszty i/lub harmonogram. Istotne jest, że wpływ ten może być zarówno pozytywny, jak i negatywny, ponadto może wpływać pozytywnie na jeden a negatywnie na inny obszar tego samego projektu. Charakterystycznym dla ryzyka jest możliwość oszacowania prawdopodobieństwa jego wystąpienia oraz siły oddziaływania na projekt.

#### Ryzyko wg PRINCE2



Ryzyko jest zdarzeniem lub ich zbiorem, które w sytuacji wystąpienia mogą mieć wpływ na osiągnięcie celów projektu. Oznacza ono wprost niepewność wyniku. Metodyka PRINCE2 rozróżnia dwa typy ryzyka:

**Zagrożenie** — prawdopodobne zdarzenie mające negatywny wpływ na realizację celów.

Szansa/okazja — prawdopodobne zdarzenie, mające pozytywny wpływ na realizację założonych celów

#### Ryzyko w projekcie



**Ryzyko** można definiować jako przypadek, niebezpieczeństwo, możliwość lub sytuację występującą w projekcie z niepożądanymi konsekwencjami — potencjalny problem.

Poziom ryzyka będzie określony prawdopodobieństwem wystąpienia zdarzenia i jego wpływem.

#### Najważniejsze cechy ryzyka



Ryzyko istnieje, kiedy istnieje prawdopodobieństwo wystąpienia problemu, który może pogorszyć zdanie klienta, użytkownika, uczestnika lub interesariusza o jakości produktu, lub sukcesie projektu.

Ryzyko może, ale nie musi wystąpić – niepewność.

Zazwyczaj prawdopodobieństwo wystąpienia ryzyka jest trudne do oszacowania, a tym bardziej do przedstawienia go w miarach ilościowych.

Zazwyczaj używa się miar jakościowych, a nie ilościowych (znikome, duże itp.).

#### Najważniejsze cechy ryzyka



Przy wystąpieniu ryzyka mogą być odczuwalne jego konsekwencje.

Wystąpienie ryzyka generuje dodatkowe koszty.

Aby uniknąć niekorzystnych skutków oraz dodatkowych kosztów, należy zapobiegać ryzykom.

### Prawdopodobieństwo wystąpienia awarii



Można wyróżnić kilka czynników, które mają wpływ na wystąpienie awarii w czasie eksploatacji oprogramowania:

- Złożone funkcjonalności składające się z dużej ilości modułów.
- Częste zmiany kodu w różnych obszarach systemu.
- Niska jakość analizy w czasie projektowania systemu.
- Niska jakość wymagań, dostarczonych do zespołu deweloperskiego.

### Prawdopodobieństwo wystąpienia awarii



- Duża ilość osób zaangażowanych w projekt.
- Presja czasu.
- Ograniczone zasoby ludzkie oraz sprzętowe.

Prawdopodobieństwo wystąpienia awarii w oprogramowaniu jest czynnikiem indywidualnym, zależy od konkretnej implementacji. Stąd lista może być krótsza bądź dłuższa.

#### Poziom ryzyka



Prawdopodobieństwo wystąpienia awarii można spróbować oszacować przy pomocy poziomu ryzyka. Wykorzystuje się do tego trzy czynniki: **Poziom ryzyka** (*ang. risk level*)

Wpływ ryzyka (ang. risk impact)

Providencie ośstwa ryzyka (

Prawdopodobieństwo ryzyka (ang. risk likelihood)

#### Poziom ryzyka



poziom ryzyka = prawdopodobieństwo zdarzenia \* wpływ zdarzenia

### Poziom ryzyka





#### Prawdopodobieństwo oraz wpływ



#### Prawdopodobieństwa wystąpienia ryzyka oraz jego wpływ:

- A niskie prawdopodobieństwo, niski wpływ
- B mało prawdopodobne, duży wpływ
- C średnie prawdopodobieństwo, średni wpływ
- D wysokie prawdopodobieństwo wystąpienia, duży wpływ
- E wysokie prawdopodobieństwo wystąpienia, niski wpływ
- F najwyższe prawdopodobieństwo wystapienia, najwyższy wpływ Priorytety od najwyższego do najniższego:

#### Zalety testowania opartego na ryzyku



- Wszystkie czynności procesu testowego (planowanie, analiza, monitorowanie) są odnoszone do poziomu ryzyka.
- Koncentruje się na pytaniu, co może pójść źle, jeśli nastąpi awaria.
- Konieczne jest ustalenie możliwych ryzyk rodzajów awarii oraz przeanalizowania wpływu ich pojawienia się.

#### Zalety testowania opartego na ryzyku



- Testowanie weryfikuje, czy poszczególne ryzyka naprawdę istnieją w systemie, czy też nie. Gdy test wykonał się z wynikiem pozytywnym oznacza to, że ryzyko związane z tym testem nie istnieje lub jego wystapienie jest bardzo mało prawdopodobne.
- Im więcej testów pokrywa dany obszar ryzyka, tym wzrasta przekonanie o tym, że ryzyko nie stanowi już takiego zagrożenia.
- Priorytetyzacja testów ryzyka optymalizujemy naszą pracę pod kątem dostępnych zasobów oraz czasu.

#### Ryzyko projektowe



#### Czynniki dostawcy:

- niemożność dostarczenia produktu/podzespołu przez zewnętrzną grupę;
- czynniki kontraktowe

#### Ryzyko projektowe



#### Czynniki organizacyjne:

- brak umiejętności i ludzi
- czynniki osobiste i treningi
- czynniki polityczne
- niepoprawny odbiór lub oczekiwania względem testowania

#### Ryzyko projektowe



#### Czynniki techniczne:

- problem ze zdefiniowaniem właściwych wymagań
- zakres wymagań
- jakość projektów, kodu i testów

### Ryzyko produktowe



Potencjalne obszary występowania awarii (powodujące przyszłe niebezpieczeństwa) w oprogramowaniu lub systemie nazywane są ryzykiem produktu, gdyż są ryzykiem w odniesieniu do jakości produktu.

#### Ryzyko produktowe



#### Wyróżniamy następujące ryzyko produktu:

- oprogramowanie dostarczone na rynek zawierające defekty powodujące awarie
- potencjalne zagrożenia zranienia osoby lub wprowadzenie niebezpieczeństwa uszkodzeń wewnątrz organizacji
- słabe parametry oprogramowania (np. funkcjonalność, bezpieczeństwo, niezawodność, użyteczność i wydajność)
- oprogramowanie, które nie zachowuje się tak jak powinno

#### Ryzyko produktowe



#### Wyróżniamy następujące ryzyko produktu:

- oprogramowanie dostarczone na rynek zawierające defekty powodujące awarie
- potencjalne zagrożenia zranienia osoby lub wprowadzenie niebezpieczeństwa uszkodzeń wewnątrz organizacji
- słabe parametry oprogramowania (np. funkcjonalność, bezpieczeństwo, niezawodność, użyteczność i wydajność)
- oprogramowanie, które nie zachowuje się tak jak powinno

#### Testowanie a ryzyko



Testowanie uwzględnia ryzyko na trzy następujące sposoby:

Testowanie ukierunkowane (ang. targeted testing)
Priorytetyzacja (ang. prioriterized testing)
Raportowanie (ang. reporting)

Powyższe zdarzenia powinny występować podczas całego cyklu wytwarzania oprogramowania.

#### Tester a ryzyko



- Właścicielem ryzyka zawsze jest biznes, a nie zespół deweloperski.
- Biznes decyduje o akceptacji aktualnego poziomu ryzyka i jest zainteresowany, aby był na jak najniższym poziomie.
- Testerzy zapewniają obiektywne informacje interesariuszom biznesowym, właścicielowi produktu na temat poziomu ryzyka.
- Tester nie jest osobą decyzyjną, ale jego zadania powinny uwzględniać poziom dopuszczalnego ryzyka.

#### Ryzyko w testowaniu



Pojęcia ryzyka używa się dla zdecydowania gdzie zacząć testowanie i gdzie przetestować bardziej dogłębnie Etapy rozpoznania ryzyka:

- →Identyfikacja ryzyk
- →Szacowanie wpływu ryzyk na projekt ocena ryzyka
- →Plany redukujące ryzyka łagodzenie ryzyka
- →Plany "B" zarządzanie ryzykiem
- →Wszystkie czynności testowe odnosimy do poziomu ryzyka

#### Ryzyko w testowaniu



#### Techniki identyfikacji:

- Rozmowy z ekspertami
- Niezależne oceny
- Wykorzystanie szablonów ryzyka
- Retrospektywy projektu
- Warsztaty dotyczące ryzyka
- Burza mózgów
- Listy kontrolne
- Odwołanie się do przeszłego doświadczenia

#### Ryzyko w testowaniu – ocena ryzyka





- złożoność technologii
- złożoność zespołu
- outsourcing
- geograficzne rozproszenie zespołu
- stare systemy (legacy systems)
- · konflikty w zespole
- niewystarczająca wiedza/kwalifikacje
- czas, zasoby, presja kierownictwa
- · problemy z dostawcami
- brak wcześniejszej działalności QA
- słabe przywództwo
- duża liczba zmian

- częstość użycia danej funkcjonalności
- krytyczność cechy dla osiągnięcia celu biznesowego
- · utrata reputacji
- · utrata biznesu
- · straty finansowe
- straty środowiskowe
- straty społeczne
- sankcje prawne lub kryminalne
- utrata licencji
- bezpieczeństwo (safety)
- negatywny rozgłos w wyniku widoczności awarii

#### Ryzyko w testowaniu - łagodzenie



Łagodzenie ryzyka to proces, w którym podejmuje się decyzje i implementuje metryki w celu redukcji ryzyka lub utrzymania go na określonym poziomie.

Istnieją cztery główne sposoby łagodzenia ryzyka:

łagodzenie ryzyka (ang. risk mitigation) przez przedsięwzięcie czynności prewencyjnych, zapobiegających pojawieniu się ryzyka lub zmniejszających ich ewentualną dotkliwość;

**plany awaryjne** (ang. contingency plans) mające na celu zredukować siłę oddziaływania ryzyka, które rzeczywiście nastąpi;

transfer ryzyka (ang. risk transfer), czyli przeniesienie ryzyka na stronę trzecią (np. ubezpieczyciela), który będzie ponosił skutki ewentualnego wystąpienia ryzyka;

zignorowanie i zaakceptowanie ryzyka, które polega po prostu na tym, że nie podejmuje się żadnych akcji do momentu wystąpienia tego ryzyka.

# Ryzyko w testowaniu – łagodzenie przez testowanie



Wykrywanie awarii pozwala na usunięcie defektu (potencjalnego źródła ryzyka) Wykonanie testów daje nam informację o prawdopodobieństwie wystąpienia ryzyka Poziom ryzyka wyznacza zakres i dokładność testowania

#### Jak testerzy mogą łagodzić ryzyko?

- priorytetyzacja testów według poziomu ryzyka; wykorzystywanie umiejętności najbardziej doświadczonych osób;
- wybór odpowiednich technik projektowania testów; przeprowadzanie szkoleń z testowania czy tworzenia testowalnego kodu o wysokiej jakości;
- przeprowadzanie przeglądów i inspekcji;
- przeprowadzanie przeglądów projektów testów;
- zdefiniowanie zakresu i intensywności testów regresji;
- stosowanie wczesnego prototypowania;
- automatyzowanie projektowania i wykonywania testów;
- uzyskanie określonego poziomu niezależności;

# Ryzyko w testowaniu – łagodzenie przez testowanie



- Zarządzamy przez cały cykl życia projektu
- Sprawdzamy czy proces redukcji ryzyka przebiega prawidłowo
- Raportujemy, zgłaszamy do kierownictwa podstawa decyzji o kolejnej fazie projektu oraz archiwizujemy dane

W związku z postępem projektu, lista ryzyk powinna być okresowo przeglądana i kierownik testów powinien dla każdego ryzyka produktowego przedyskutować następujące kwestie:

- czy dane ryzyko zostało prawidłowo oszacowane?
- czy czynności łagodzenia ryzyka (np. wykonanie testów) zostały
- przeprowadzone?
- jakie są efekty czynności łagodzących ryzyko (np. wyniki testów)?
- czy w stosunku do danego ryzyka należy przeprowadzić dodatkowe
- czynności, np. więcej testów?
- czy można dane ryzyko usunąć z listy ryzyk?
- Dodanie nowych ryzyk do listy

## Identyfikacja ryzyka





Radosław Kowal: Prawa do korzystania z materiałów posiada Software Development Academy

#### Techniki testowania opartego na ryzyku



#### Techniki Lekkie

Minimalizacja kosztów Szybkość reakcji Elastyczność Np: PRAM, SST, PrisMa

Techniki formalne i cięzkie

Wykorzystują więcej czynników Bardziej złożone oceny jakościowe i skale Np: FMEA, SQF, FTA

#### Techniki testowania opartego na ryzyku – wybór technik



Podczas wyboru odpowiedniej techniki powinniśmy wziąć pod uwagę:

- ➤ dostępność zasobów oraz kwalifikacje personelu niektóre metody wymagają doświadczenia w ich stosowaniu;
- zas poświęcony na wdrożenie oraz stosowanie metody;
- > koszt (np. dodatkowe szkolenia czy koszt wynikający z czasu, jaki
- > członkowie zespołu poświęcają na wykonywanie czynności
- wymaganych przez metodę);
- > dostępność wymaganych przez metodę danych

#### Techniki testowania opartego na ryzyku – Analiza SWOT



Analiza SWOT to jedna z metod analitycznych przedsiębiorstwa. Cechuje ją prostota i szybkość zastosowania.

**SWOT** to w rzeczywistości akronim angielskich słów:

- •S jak strengths mocne strony
- •W jak weaknesses słabe strony
- •O jak opportunities szanse
- T jak threats zagrożenia

Analiza SWOT to analiza mocnych i słabych stron oraz szans i zagrożeń przedsiębiorstwa.

#### Techniki testowania opartego na ryzyku – Analiza SWOT



**Mocne strony** to pozytywne czynniki wewnętrzne. Stanowią o wewnętrznej sile firmy. Należy o nie dbać, aby utrzymać je również w przyszłości. Mogą zostać wykorzystane do działań związanych z ekspansją firmy. Przykłady mocnych stron to:

- Wysokie kwalifikacje zatrudnionych pracowników
- •Ponadprzeciętnie dobrze zorganizowana praca firmy (np. poprawnie wdrożone metodologie zarządzania)
- •Duże zasoby finansowe zgromadzone w przeszłości
- **Słabe strony** to negatywne czynniki wewnętrzne. Należy skupić się na ich eliminacji, aby nie osłabiły mocnych stron. Ograniczają one bowiem sprawność przedsiębiorstwa i hamują jego rozwój. Przykłady słabych stron to:
- Ograniczony proces produkcyjny, wpływający na niską jakość produktu
- •Przestarzałe, awaryjne maszyny, które doprowadzają do przestoju w produkcji
- Duża rotacja pracowników

### Techniki testowania opartego na ryzyku – Analiza SWOT





Radosław Kowal: Prawa do korzystania z materiałów posiada Software Development Academy



#### Failure Mode and Effect Analysis

Analiza przyczyn i skutków awarii Rozpoznanie i ocena potencjalnych awarii systemu oraz ich wpływu Analiza od najniższego poziomu (detali) – metoda typu bottom-up

#### Pozwala odpowiedzieć na pytanie

Co może ulec awarii?

W jaki sposób może to ulec awarii?

Jak często będzie ulegało awarii?

Jakie są konsekwencje awarii?

Jak awaria wpływa na niezawodność/bezpieczeństwo systemu?

#### Techniki testowania opartego na ryzyku – kroki FMEA



#### Failure Mode and Effect Analysis

- Zdefiniowanie analizowanego systemu
- Zdefiniowanie możliwych typów awarii oraz oszacowanie ich częstotliwości
- Analiza systemu (identyfikacja potencjalnych przyczyn awarii oraz działań korekcyjnych)
- Identyfikacja metod detekcji awarii oraz działań korekcyjnych, naprawczych lub prewencyjnych
- Określenie przyczyn awarii, ich konsekwencji, lista zagrożeń i ryzyk

#### Techniki testowania opartego na ryzyku – tabela FMEA



FMEA przeprowadzana jest zwykle przy użyciu arkusza kalkulacyjnego, w którym uzupełnia się tabelę FMEA. Istnieje wiele różnych wersji takiej tabeli, które różnią się poziomem szczegółowości niektórych informacji. Przykładowa tabela może zawierać następujące informacje:

- nazwa funkcji, w której może wystąpić awaria;
- możliwa awaria (ryzyko produktowe);
- możliwa przyczyna awarii;
- konsekwencje awarii;
- Pr. prawdopodobieństwo wystąpienia awarii (ang. likelihood);
- W. wpływ;
- Dotkl. dotkliwość (ang. severity); w niektórych wersjach FMEA ten parametr się pomija;
- RPN priorytet ryzyka (ang. Risk Priority Number), definiowany jako
- iloczyn: RPN =  $Pr \cdot W \cdot Dotkl$ ;
- metoda wykrywania i zalecane czynności.



#### Product Risk Managment

- Lekka
- Prosta
- Macierz ryzyka produktowego jasna informacja dla interesariuszy
- Ryzyko jest charakteryzowane prawdopodobieństwem i wpływem (nie połączone ze sobą)



#### Czynniki dla wpływu:

- obszary krytyczne (identyfikowane na podstawie analizy użycia systemu oraz tego, w jaki sposób system może ulec awarii);
- obszary widoczne (czyli takie, w których użytkownicy mogą bezpośrednio odczuć awarię, jeśli coś pójdzie nie tak, jak trzeba);
- najczęściej używane obszary (podział funkcji na te, których użytkownicy używają zawsze, często, okazjonalnie lub rzadko i oszacowanie wpływu na podstawie tej klasyfikacji);
- istotność z biznesowego punktu widzenia (tzn.
  jaka jest ważność poszczególnych cech
  systemuunktu widzenia biznesowego celu jego
  działania);
- koszt zmian (zwykle wykorzystywany w tzw. systemach systemów).

#### Czynniki dla prawdopodobieństwa:

- złożoność (np. w sensie złożoności cyklomatycznej, skomplikowanej logiki);
- liczba zmian (jest ona ważnym czynnikiem defektotwórczym);
- nowe technologie i metody;
- presja czasu;
- brak doświadczenia;
- rozproszenie geograficzne zespołu;
- kod nowy vs. re-używalny;
- interfejsy
- rozmiar
- historia defektów
- jakość wymagań







#### Faza planowania:

- Określenie interesariuszy i przypisanie czynników:
- Kierownik projektu: widoczne obszary, istotność biznesowa, złożoność, nowe technologie
- Analityk biznesowy: widoczne obszary, istotność biznesowa
- Analityk systemu: złożoność, nowe technologie

#### Zidentyfikowano ryzyka:

- brak komunikacji systemu z ekranem
- niepoprawność wyświetlanych wyników na ekranie;
- niewygodny interfejs użytkownika;
- błędy w logice biznesowej systemu (zarządzanie liniami i kursami);
- wolne działanie systemu.



Faza indywidualnego przygotowania Analiza ryzyk przez członków zespołu, przykład dla kierownika projektu:

| Kierownik projektu                       | W pływ |        | Prawdopodobieństwo |       |
|------------------------------------------|--------|--------|--------------------|-------|
| Czynniki                                 | WidOb  | IstBiz | Złoż               | NTech |
| W agi                                    | 1,0    | 2,0    | 1,0                | 2,0   |
| R1: brak komunikacji<br>z ekranem        | 4      | 5      | 1                  | 5     |
| R2: niepoprawna informacja<br>na ekranie | 5      | 5      | 3                  | 1     |
| R3: niewygodny interfejs                 | 2      | 1      | 1                  | 2     |
| R4: błędy w logice biznesowej            | 1      | 3      | 5                  | 4     |
| R5: wolne działanie systemu              | 2      | 4      | 4                  | 4     |



Faza przetwarzania indywidualnych ocen Kierownik

testów uśrednia oceny:

| Uśrednione oceny                         | Wpływ |        | Prawdopodobieństwo |       |
|------------------------------------------|-------|--------|--------------------|-------|
| Czynniki                                 | WidOb | IstBiz | Złoż               | NTech |
| W agi                                    | 1,0   | 2,0    | 1,0                | 2,0   |
| R1: brak komunikacji<br>z ekranem        | 4,5   | 4,0    | 2,0                | 5,0   |
| R2: niepoprawna informacja<br>na ekranie | 5,0   | 5,0    | 4,0                | 1,0   |
| R3: niewygodny interfejs                 | 1,5   | 1,0    | 1,0                | 1,5   |
| R4: błędy w logice biznesowej            | 2,0   | 2,5    | 4,5                | 4,0   |
| R5: wolne działanie systemu              | 3,0   | 3,5    | 2,5                | 3,5   |



Faza przetwarzania indywidualnych ocen Liczymy ważoną ocenę:

| Ryzyko                                   | W pływ        | Prawdopodobieństwo |
|------------------------------------------|---------------|--------------------|
| R1: brak komunikacji z ekranem           | 4,5+8,0=12,5  | 2,0+10,0=12,0      |
| R2: niepoprawna informacja na<br>ekranie | 5,0+10,0=15,0 | 4,0+2,0=6,0        |
| R3: niewygodny interfejs                 | 1,5+2,0=3,5   | 1,0+3,0=4,0        |
| R4: Błędy w logice biznesowej            | 2,0+5,0=7,0   | 4,5+8,0=12,5       |
| R5: Wolne działanie systemu              | 3,0+7,0=10,0  | 2,5+7,0=9,5        |



Macierz ryzyka produktowego:





Metody łagodzenia ryzyka:

| Ryzyko | Kwadrant | W pływ | Prawdopodobieństwo | Metody<br>łagodzenia                                                                             |
|--------|----------|--------|--------------------|--------------------------------------------------------------------------------------------------|
| R1     | п        | wysoki | wysokie            | wczesny<br>prototyp<br>systemu<br>sprawdzający<br>połączenie<br>z ekranem                        |
| R2     | IV       | wysoki | niskie             | testowanie<br>białoskrzynkowe<br>(kryterium<br>MC/DC) oraz<br>inspekcje kodu                     |
| R5     | IV       | wysoki | niskie             | testy<br>wydajnościowe,<br>inspekcja<br>projektu bazy<br>danych                                  |
| R4     | I        | niski  | wysokie            | testowanie<br>eksploracyjne<br>oraz testowanie<br>oparte na<br>przypadkach<br>użycia             |
| R3     | ш        | niski  | niskie             | brak (poziom<br>znikomy, nie ma<br>potrzeby alokacji<br>zasobów na<br>testowanie tego<br>ryzyka) |



- Analiza drzewa awarii
- Określa przyczyny źródłowe (root cause) awarii
- Określa prawdopodobieństwo niepożądanych zdarzeń
- Dobrze sprawdza się w przypadku dużych i skomplikowanych systemów, a także systemów o znaczeniu krytycznym
- W sposób graficzny prezentuje zależności pomiędzy kombinacjami zdarzeń
- Metoda dedukcyjna top-down



Przykładowe drzewo awarii:





Przykładowe drzewo awarii:



# 5 x dlaczego?



Jest jedną z metod pozwalających na wykrywanie przyczyn problemów (lub defektów). Jest to zasada, którą stosujemy w celu ustalenia podstawowej przyczyny problemu. Zadawanie kilku pytań "Dlaczego?" pozwala dojść do źródła zakłóceń, gruntownie zbadać ich przyczynę i skupić się na ich skutecznym rozwiązywaniu. Dzięki zadawaniu pytań "Dlaczego?" problem staje się bardziej zrozumiały, przez co podstawowa przyczyna jego powstania jest łatwiejsza do zidentyfikowania i wyeliminowania. Analiza 5 Whys pozwala odpowiedzieć na pytania:



### 5 x dlaczego? - zasady



Reguły i wskazówki pomocne do prawidłowego wykonania analizy<sup>[2]</sup>:

- 1.Konieczne jest prawidłowe sformułowanie i zapisanie problemu, a także jego zrozumienie przez uczestników.
- 2.Należy dbać o logikę ciągu przyczynowo-skutkowego oraz odróżnienie przyczyn od objawów. Aby upewnić się, że przyczyny źródłowe na pewno prowadzą do błędu, można odwrócić powstałe w analizie zdania za pomocą zwrotu "i dlatego".
- 3.Analizę należy wykonywać krok po kroku, nie skakać do konkluzji. Przyczyn należy szukać w procesach, nie w ludziach. Błędem jest określać przyczynę źródłową jako "błąd ludzki", "nieuwaga pracownika" itp..
- 4.Należy pytać "dlaczego", aż do określenia przyczyny źródłowej, a zatem takiej, której eliminacja sprawi, że błąd już nie wystąpi.
- 5.Poleca się wykonywać analizę na papierze czy tablicy, zamiast na komputerze.
- 6. Niezbędne jest zaangażowanie kierownictwa, moderatora oraz prawidłowo dobranej grupy.
- 7. Ważna jest atmosfera szczerości i zaufania.

# 5 x dlaczego? - przykład



Problem - Nie wysłaliśmy biuletynu informującego o najnowszych aktualizacjach oprogramowania na czas.

- 1.Dlaczego nie wysłaliśmy biuletynu na czas? Aktualizacje nie zostały wdrożone do ostatecznego terminu.
- 2.Dlaczego aktualizacje nie zostały wdrożone na czas? Ponieważ programiści wciąż pracowali nad nowymi funkcjami.
- 3.Dlaczego programiści wciąż pracowali nad nowymi funkcjami? Jeden z nowych programistów nie znał procedur.
- 4.Dlaczego nowy programista nie znał wszystkich procedur? Nie był odpowiednio przeszkolony.
- 5.Dlaczego nie został odpowiednio przeszkolony? Ponieważ dyrektor ds. technicznych jest przekonany, że nowi pracownicy nie potrzebują dokładnych szkoleń i powinni się uczyć podczas pracy

# Pytania, jakie warto zadań przed podjęciem decyzji co testujemy



- które elementy aplikacji mogą zostać przetestowane we wczesnej fazie?
- które części kodu/moduły są najbardziej skomplikowane i dlatego najbardziej narażone na wystąpienie błędów?
- która funkcjonalność jest najważniejsza z punktu widzenia zastosowania projektu? która funkcjonalność jest najbardziej widoczna dla klienta?
- które z wymagań zostały zmienione lub ogólnie zdefiniowane?
- która funkcjonalność ma największy wpływ na bezpieczeństwo aplikacji?
- która funkcjonalność ma największy wpływ na finanse?

# Pytania, jakie warto zadań przed podjęciem decyzji co testujemy



- które elementy testowanej aplikacji mają największe znaczenie dla klienta?
- które aspekty podobnych, ukończonych poprzednio projektów powodowały problemy?
- które elementy podobnych, ukończonych projektów powodowały największe problemy w fazie utrzymania (maintenance)?
- co programiści uznają na najbardziej narażony na ryzyko element aplikacji?
- która część systemu była tworzona pod presją czasu?
- jaki rodzaj problemów może spowodować negatywną reakcję klienta?
- jaki rodzaj testów może pokryć możliwie najwięcej funkcjonalności?
- które z poprzednio wykonanych przypadków testowych powodowały wykrycie błędów? (test case value)



# PYTANIA?

kowal.radek@gmail.com