Mixed-Nash Equilibrium eg:

	Party	¬Party
Clown	(6,0)	(1,1)
¬Clown	(4,4)	(2,3)

0p + (1 - p)4 = 1p + (1 - p)3 Solve for p. This gives us $(\frac{1}{2}Clown, \frac{1}{2}\neg Clown)$

6q + (1 - q)1 = 4q + (1 - q)2 Solve for q. This gives us $(\frac{1}{3}Party, \frac{2}{3}\neg Party)$

Normal-Form Games: Matrix representation of a game Strategy dominance Iterated dominance Nash equilibrium Pareto Optimality: Optimal from point of view of an outside observer Strictly dominant: > for any strat profile of other players. Weakly dom: > for at least one strat profile. Very weak dom: \geq

ORIGAMI: Lower everything. First set highest equal to the utility of the next highest attacher's undefended utility.

		t_1	t_2	t_3	t_4
Eg:	Covered	(1,0)	(3,0)	(8,0)	(8,1)
	Uncovered	(-1,1)	(0,2)	(0,4)	(-4,4)

 $-1r_4 + (1 - r_4)4 = 0r_3 + (1 - r_3)4 = 2$

We set 2 here because it is the next lowest, on t_2 . If we have resources left over then we include t_2 and do

 $-1r_4 + (1 - r_4)4 = 0r_3 + (1 - r_3)4 = 0r_2 + (1 - r_2)2 = 0$ and solve with $r_2 + r_3 + r_4 = n_{resources}$. Set everything in terms of

one variable and then plug in here.

Normal Form Game RPS example

	Paper	Rock	Scissor
Paper	(0,0)	(7,-7)	(-1,1)
Rock	(-7,7)	(0,0)	(2,-2)
Scissor	(1,-1)	(-2,2)	(0,0)

We use the form $1 - p_1 - p_2$. So something like $P_2(paper) =$ $p_10 + 7p_2 - (1 - p_1 - p_2) = -1 + p_1 + 8p_2$ Follow similar pattern. Then let $P_2(paper) = P_2(Rock) = P_2(Scissor)$ and solve for probabilities.

Extensive Form Game: Tree representation is node is state and branch is action. Final branch is terminating action. Leaf is reward. $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ N =set of players; A =set of actions, H =set of non-terminal choice nodes. Z =set of terminal nodes (disjoint from $H \chi: G \to 2^A$ action function which assigns to each choice node a set of possible actions. $\rho: H \to N$ player function which assigns each choide node a player $i \in N$ who chooses an action at that node. $\sigma: HxA \to H \cup Z$ is the successor function. Maps a choice node and action to new choice node $u = (u_1, \dots, u_n)$ where $u_i: Z \to \mathbb{R}$ is real valued utility for player i on terminal nodes

(0, 0)

Player set N: {Entrant, Incumbent}

Action set A: {Enter, Stay out, Accommodate, Fight}

Choice set H: $\{n_1, n_2\}$

Terminal set Z: $\{n_3, n_4, n_5\}$

Action function $\chi: H \mapsto 2^A \chi(n_1) = \{Enter, Stay out\}$ Player function $\rho: H \mapsto \mathbb{N}$ $\rho(n_1) = Entrant$

Successor function $\sigma: H \times A \mapsto H \cup Z$ $\sigma(n_1, Enter) = n_2$

Utility function $u = (u_1, u_2, ..., u_n)$ $u_1(n_4) = 2, u_2(n_4) = 1$

Realization plan for player 1

$$\begin{split} r_1() &= 1, r_1(L) + r_1(R) = r_1() \\ r_1(Ll) + r_1(Lr) &= r_1(L) \\ r_1(), r_1(L), r_1(R) &\geq 0 \\ r_1(Ll), r_1(Lr) &\geq 0 \end{split}$$

Behavioral Strat for player 1

$$\beta_1(L) = r_1(L), \beta_1(R) = r_1(R)$$
$$\beta_1(l) = \frac{r_1(Ll)}{r_1(L)}, \beta_1(r) = \frac{r_1(Lr)}{r_1(L)}$$

Security Games:

Entries: $C_T^K T = \frac{T!}{K!(T-K)}$ K = number of resources, T = number of targets. $K \leq T$ Compact form is size 4T

Stackelberg Security Games (SSGs): Limited resource allocation, defender commits to a (mixed) strategy, attacker observes and responds

Attacker: $U_{att}^{cov}(t_i) < U_{att}^{uncov}(t_i)$ Defender: $U_{def}^{cov}(t_i) > U_{def}^{uncov}(t_i)$

Strong SSE: Attacker plays a best response against defender's mixed strat. When ties exist, attacker chooses optimal strategy for the de-

A pair of strategies $(x, BR_{att}(x))$ forms a SSE IFF

- defender plays a best response $EU_{def}(x, BR_{att}(x))$ $EU_{def}(x', BR_{att}(x')) \forall x'$
- Attacker plays best response $EU_{att}(x, BR_{att}(x))$ $EU_{att}(x,t_i)\forall t_i$
- Attacker breaks ties in favor of defender

Theorem: SSE always exists

Weak SSG: a pair of strategies $(x, BR_{att}(x))$ forms a weak SE IFF

- defender plays a best response $EU_{def}(x, BR_{att}(x))$ $EU_{def}(x', BR_{att}(x')) \forall x'$
- Attacker plays best response $EU_{att}(x, BR_{att}(x))$ $EU_{att}(x,t_i)\forall t_i$
- Attacker does not break ties in favor of defender. Attacker chooses strategy which is worst for defender

Theorem: Weak SSE does **not** always exist.

Note: Nash strategies ARE NOT Stackelberg strategies. In zerosum security games Maximin, Minimax, Nash, and Stackelberg strats are equivalent.

Behavioral Game Theory:

BRASS: Bounded rationality (ϵ) . Think like ORIGAMI but within an ϵ bound. $EU_{att}(t_i) \geq EU_{att}(t_i) + \epsilon$

Assumption: Attacker perceives any ϵ -difference in utility and plays utility maximizing strategy.

$$\begin{aligned} \max_{v,x,z,q} v_d e f \\ s.t.z_t &\in \{0,1\} \forall t \\ \Sigma z_t &= 1 \\ q_t &\in \{0,1\} \forall t \\ \Sigma q_t &\geq 1 \\ x_t &\in [0,1] \forall t \\ \Sigma x_t &\leq K \\ 0 &\leq v_{att} - U_{att}(t,x_t) \leq (1-z_t)M, \forall t \\ \epsilon (1-q_t) &\leq v_{att} - U_{att}(t,x_t) \leq \epsilon + (1-q_t)M, \forall t \\ v_{def} - U_{def}(t,x_t) &\leq (1-q_t)M, \forall t \end{aligned}$$

GUARD/COBRA: observation uncertainty (anchoring bias) (Continuation from BRASS) No observation may lead to anchoring bias on uniform distribution. Optimize against attacker's belief $x'_t = \alpha \frac{1}{N} + (1 - \alpha)x_t$ (N = #targets, $\alpha \in [0, 1]$ decreases with # observations)

$$\begin{aligned} \max_{v,x,z} v_{def} \\ s.t.z_t &\in \{0,1\} \forall t \\ \Sigma_t z_t &= 1 \\ x_t &\in [0,1], \forall t \\ \Sigma_t x_t &\leq K \\ 0 &\leq v_{att} - U_{att}(t,x_t') \leq (1-z_t)M, \forall t \\ x_t' &= \alpha \frac{1}{N} + (1-\alpha)x_t, \forall t \\ v_{def} - U_{def}(t,x_t) &\leq (1-z_t)M, \forall t \end{aligned}$$

Quantal Response: $\lambda q(t_t, x) = \frac{e^{\lambda U_{att}(t_t, x)}}{\sum_j e^{\lambda U_{att}(t_j, x)}} \lambda$ is the error level (rationality of attackers). (rationality of attacker; $\lambda = 0$: attacks targets uniformly; $\lambda = \inf$: perfectly rational)

Subjective Utility: Linear comb of features and a weight for the attacker's preference. $SU_{att}(t_i, \vec{x}) = \sum w_i f_i(t_i)$ replace Quantal Response s/U/SU/g, $\lambda = 1$

Prospect Theory: How to decide be alternatives that involve risks and uncertainty. Value function: values of outcome. Weight function: perceived probabilities.

Risk aversion: *convexity*.

Endowment effect: value things we own more highly. Loss is strong.

PROBABILITY WEIGHTING

$$\pi(p) = \frac{p^{\gamma}}{(p^{\gamma} + (1-p)^{\gamma})^{\frac{1}{\gamma}}}$$
Underweight of high

Underweight of high probability. Overweight of small probability.

Expected Utility:

 $U_{att}(t_i, \vec{x} = U_{att}^{uncov}(1 - x_{t_i}) + U_{att}^{cov}x_{t_i}$

Prospect Utility:

Uproperty: $U_{att}^{PT}(t_i, \vec{x}) = V(U_{att}^{uncov})\pi(1 - x_{t_i}) + V(U_{att}^{cov})\pi(x_{t_i})$ Multi-Agent Learning:

$$Q(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

Eg: where
$$\alpha = \frac{1}{2}$$
, $\gamma = \frac{1}{2}$

s_t	a_t	s_{t+1}	r_t
A	D	В	2
В	D	С	3

$$Q(A, D) = (1 - \frac{1}{2})0 + \frac{1}{2}(2 + \frac{1}{2} \max_{a' \in \{D, U\}} Q(B, a')) = 1.$$

$$Q(A, D) = (1 - \frac{1}{2})0 + \frac{1}{2}(2 + \frac{1}{2} \max_{a' \in \{D, U\}} Q(B, a')) = 1.$$

$$Q(B, D) = (1 - \frac{1}{2})0 + \frac{1}{2}(3 + \frac{1}{2} \max_{a' \in \{D, U\}} Q(C, a')) = 1.5$$

 $Q(s_t, a_t) = 0$: we have no stored value in that element of the matrix (initialized to 0). 2/3: that is the reward in the table. In both cases the max = 0: again there were no values in the states

(B then C) and so the best action we could take would give us 0 reward.

Nash Equilibrium: Players do not want to deviate from their actions even when the other player changes their strategy. NE is actions not a cell

Using Transition and Reward functions $\hat{T}(s, a, s')$ and $\hat{R}(s, a, s')$ \hat{T} we look up chance of going to state s' from iterated $Q(s_t, a_t)$. \hat{R} we just lookup on the table.

Optimal Policy: $\hat{V}^{\pi_0}(s) = \hat{T}(s, \pi s, s')(\hat{R}(s, a, s') + \gamma \hat{V}^{\pi_0}(s))$

a	a	s'	\hat{T}	\hat{R}
A	U	A	1	12
A	D	В	$\frac{1}{2}$	2
В	U	В	1	8
В	D	С	1	-6
С	D	С	1	12

$$\hat{V}^{\pi_0}(B) = \hat{T}(B, \pi_0(B), B)(8 + \frac{1}{2}V^{\pi_0}(B) = 8 + \frac{1}{2}V^{\pi_0}(B)$$

$$= 8\frac{1}{1 - \frac{1}{2}} = 16(1 + x + x^2 \dots = \frac{1}{1 - x})$$

Exploration: $f(u,n) = u + \frac{k}{n}$ where u =utility, n =#visits, k = some const. Replace when calculating values (this offsets).

Random exploration has higher regret than exploration function.

MDP: given a present state, the future and the past are independent.

Value Iteration

$$V_{k+1}(s) \leftarrow \max_a \Sigma_{s'} T(s,a,s') [R(s,a,s') + \gamma V_k(s')]$$
 Complexity $O(S^2A)$

Policy Iteration:

Evaluation
$$V_{k+1}^{\pi_i}(s) \leftarrow \Sigma_{s'}T(s, \pi_i(s), s')[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s')]$$

Improvement with one step looksheed

Improvement with one step lookahead