VLSI Devices Lecture 8

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

Threshold voltage (1)

Draw quantities as functions of the gate voltage.

Threshold voltage (2)

• The same graph, in the linear scale,

Threshold voltage (3)

- A criterion for the onset of strong inversion
 - The surface potential reaches $2\phi_{B}$.

$$\phi_s = 2\phi_B = 2\frac{k_B T}{q} \log\left(\frac{N_a}{n_i}\right)$$

Taur, Eq. (2.183)

- $\phi_S = 2\phi_B = 2\frac{k_BT}{q}\log\left(\frac{N_a}{n_i}\right)$ Remember that $n(x) = n(\infty)\exp\left(\frac{q\phi(x)}{k_BT}\right)$.
- It means that

$$n(x = 0) = n(\infty) \exp\left(\frac{2q\phi_B}{k_B T}\right) = p(\infty)$$

(Of course, it is difficult to measure n(x=0).)

Depletion approximation (1)

- Consider a depleted MOS structure.
 - With the depletion width, W_d ,

$$\phi_{s} = \frac{1}{2} W_{d} \left(q \frac{N_{a}}{\epsilon_{si}} W_{d} \right)$$

-Then,

$$W_d = \sqrt{\frac{2\epsilon_{si}\phi_s}{qN_a}}$$

0 (No field)

Oxide

Electric field (V/cm)

P-type substrate

 W_d

Position (µm)

Taur, Eq. (2.188)

-Total depletion charge in silicon, Q_d , is

$$Q_d = -qN_aW_d = -\sqrt{2\epsilon_{si}qN_a\phi_s}$$

Taur, Eq. (2.189)

5

Depletion approximation (2)

Another derivation

-When
$$V_g > V_{fb}$$
, $\frac{d\phi}{dx} = -\sqrt{\frac{2k_BTN_a}{\epsilon_{si}}} \left[\left(\exp\left(-\frac{q\phi_s}{k_BT}\right) + \frac{q\phi_s}{k_BT} - 1 \right) + \frac{n_i^2}{N_a^2} \left(\exp\left(\frac{q\phi_s}{k_BT}\right) - \frac{q\phi_s}{k_BT} - 1 \right) \right]^{1/2}$

– In the depletion region, $2\phi_B>\phi_S>\frac{k_BT}{q}$, $\frac{d\phi}{dx}$ is well approximated as

$$-\sqrt{\frac{2k_BTN_a}{\epsilon_{si}}} \left[\left(\exp\left(-\frac{q\phi_s}{k_BT}\right) + \frac{q\phi_s}{k_BT} - 1 \right) + \frac{n_i^2}{N_a^2} \left(\exp\left(\frac{q\phi_s}{k_BT}\right) - \frac{q\phi_s}{k_BT} - 1 \right) \right]^{1/2}$$

Depletion approximation (3)

A good approximation in the depletion region

$$\frac{d\phi}{dx} = -\sqrt{\frac{2qN_a\phi}{\epsilon_{si}}}$$

Rearranged as

$$\frac{1}{\sqrt{\phi}}d\phi = -\sqrt{\frac{2qN_a}{\epsilon_{si}}}dx$$

Integration yields

$$2(\sqrt{0} - \sqrt{\phi_S}) = -\sqrt{\frac{2qN_a}{\epsilon_{Si}}}W_d$$

Taur, Eq. (2.188)

Potential profile

- A parabolic potential profile
 - -The depletion region cannot grow indefinitely.

-When $\phi_S = 2\phi_B$, $n(0) = p(\infty)$

The surface behaves liken-type material. (Inversion)

 $-\phi_s$ is approximately pinned.

Maximum depletion width

• Therefore, maximum depletion width becomes

$$W_d = \sqrt{\frac{4\epsilon_{si}\phi_B}{qN_a}} = \sqrt{\frac{4\epsilon_{si}k_BT \ln(N_a/n_i)}{q^2N_a}}$$
 Taur, Eq. (2.190)

Beyond threshold voltage

It's not perfectly fixed.

- The surface potential is *almost* fixed. (Surface potential pinning)
 - –Small additional change in $\phi_{\scriptscriptstyle S}$ induces an exponential increase of the electron density.
 - Remember that $n = n_i \exp\left(\frac{q\phi}{k_B T}\right)$.
 - When $\phi_{\scriptscriptstyle S}=2\phi_{\scriptscriptstyle B}$, (in other words, $\phi(0)=\phi_{\scriptscriptstyle B}$)

$$n(0) = n_i \exp\left(\frac{q\phi_B}{k_B T}\right) = p(\infty)$$

–Additional potential ($\Delta\phi$) yields

$$n(0) = p(\infty) \exp\left(\frac{q\Delta\phi}{k_B T}\right)$$

It's a high density.

Strong inversion

Beyond strong inversion,

$$\frac{d\phi}{dx} \approx -\sqrt{\frac{2k_BTN_a}{\epsilon_{si}} \left(\frac{q\phi}{k_BT} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q\phi}{k_BT}\right)\right)}$$
 Taur, Eq. (2.191)

-The electrons are distributed extremely close to the surface with an inversion-layer width less than 50 Å.

Strong inversion

- Quantum confinement effect
 - -A peak distribution 10²0 Å away from the surface

MOS equation

- Up to now, $Q_{\mathcal{S}}(\phi_{\mathcal{S}})$ is found. We can control only V_g .
 - Relation between V_g and ϕ_s

$$V_g - V_{fb} = V_{ox} + \phi_s = -\frac{Q_s}{C_{ox}} + \phi_s$$

Taur, Eq. (2.195)

 $\frac{\epsilon_{ox}}{t_{ox}}$, oxide capacitance per unit area

– In general, $Q_S(\phi_S)$ is known. We can solve the above equation.

Taur, Eq. (2.182)

TCAD simulation of a long-channel MOSFET

• Channel length, 1 μm

$$-V_{fb}$$
 is -1.08 V.

- $-t_{ox}$ is 1.2 nm.
- $-C_{ox}$ is 2.88X10⁻⁶ F/cm².
- $-V_{DD}$ of 1.1 V

- (Estimate its technology node.)

I_d versus V_{gs}

Input characteristics

I_d versus V_{ds}

- Output characteristics
 - -Triode mode
 - -Saturation mode

Schematic

- x = 0 at silicon surface
 - -y = 0 at the source and y = L at the drain
 - -Source and substrate are grounded.
 - Uniform p-type substrate

Gradual channel approximation

• Variation of the electric field in the y-direction is much less than the corresponding variation in the x-direction.

$$\left| \frac{\partial^2 \phi}{\partial x^2} \right| \gg \left| \frac{\partial^2 \phi}{\partial y^2} \right|$$

Poisson equation

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = -\frac{q}{\epsilon_{si}} [p(x, y) - n(x, y) - N_a]$$

- Poisson equation under the GCA

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\epsilon_{si}} [p(x,y) - n(x,y) - N_a]$$
 Taur, Eq. (2.175)

Electron quasi-Fermi potential, V(y) as ϕ_n in Taur,

It was written Eq. (2.61).

- It is assumed that V is independent of x.
 - Why? MOSFET current flows predominantly along the y-direction.
 - -Since $\mathbf{J}_n = -q\mu_n n \nabla \phi_n$, V varies mainly along the y-direction.
 - Boundary conditions:

$$V(y = 0) = V_S = 0$$

 $V(y = L) = V_d = V_{dS}$

• Electron density, n(x, y)

$$n(x,y) = \frac{n_i^2}{N_a} \exp\left(\frac{q}{k_B T}(\phi - V)\right)$$

Taur, Eq. (3.1)

Still, ϕ_R is the reference value.

Our previous expressions (1)

- They are modified by V. (Terms related with the electron density)
 - Electric field

$$\begin{split} E_{x}^{2}(x,y) &= \left(\frac{d\phi}{dx}\right)^{2} \\ &= \frac{2k_{B}TN_{a}}{\epsilon_{si}} \left[\left(\exp\left(-\frac{q\phi}{k_{B}T}\right) + \frac{q\phi}{k_{B}T} - 1\right) \right. \\ &\left. + \frac{n_{i}^{2}}{N_{a}^{2}} \left(\exp\left(-\frac{qV}{k_{B}T}\right) \left(\exp\left(\frac{q\phi}{k_{B}T}\right) - 1\right) - \frac{q\phi}{k_{B}T} \right) \right] \text{ Taur, Eq. (3.2)} \end{split}$$

Our previous expressions (2)

- They are modified by V. (Terms related with the electron density)
 - Surface inversion

$$\phi(0,y) = V(y) + 2\phi_B$$
 Taur, Eq. (3.3)

Maximum depletion layer width

$$W_{dm} = \sqrt{\frac{2\epsilon_{si}[V(y) + 2\phi_B]}{qN_a}}$$
 Taur, Eq. (3.4)

• Summary: With the GCA, our MOS expressions are re-used only with modification by V.

Drain current

• Electron current density at a point
$$(x, y)$$

$$J_n(x, y) = -q\mu_n n(x, y) \frac{dV}{dy}$$

Taur, Eq. (3.5)

- (It includes both the drift and diffusion currents.)
- When integrated from x = 0 to x_i ,

$$I_d(y) = qW \int_0^{x_i} \mu_n n(x, y) \frac{dV}{dy} dx$$

Sign change due to convention of terminal current

z-directional width

Taur, Eq. (3.6)

Further simplification

• Electron current density at a point
$$(x, y)$$

$$I_d(y) = qW \int_0^{x_i} \mu_n n(x, y) \frac{dV}{dy} dx = -\mu_{eff} W \frac{dV}{dy} \left(-q \int_0^{x_i} n(x, y) dx \right)$$

$$= -\mu_{eff} W \frac{dV}{dy} Q_i(y)$$
Taur, Eq. (3.8)

- We introduce an effective mobility, μ_{eff} .
- Since V is a function of y only, V is interchangeable with y.

$$Q_i(y) = Q_i(V)$$

-Then,

$$I_d(y)dy = \mu_{eff}W[-Q_i(V)]dV$$

$I_d(y)$ is actually a constant.

• When integrated from y=0 to L, (from V=0 to V_{ds})

$$I_d = \mu_{eff} \frac{W}{L} \int_0^{V_{ds}} [-Q_i(V)] dV$$
 Taur, Eq. (3.10)

-Then, how can we find $Q_i(V)$? (We must perform the x-directional integration.)

egration.)
$$Q_{i} = -q \int_{0}^{x_{i}} n(x,y) dx = -q \int_{\phi_{s}}^{\delta} \frac{dx}{d\phi} d\phi \qquad \text{but not zero.}$$

$$= -q \int_{\delta}^{\phi_{s}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V)\right)}{E_{x}(\phi, V)} d\phi \qquad \text{Taur, Eq. (3.12)}$$

Then, how can we determine ϕ_{c} ?

• For given
$$V_{gs}$$
 and V , we can solve the MOS equation.
$$V_{gs} = V_{fb} + \phi_s - \frac{Q_s}{C_{ox}}$$

$$= V_{fb} + \phi_s + \frac{\sqrt{2\epsilon_{si}k_BTN_a}}{C_{ox}} \left[\frac{q\phi_s}{k_BT} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q}{k_BT}(\phi_s - V)\right) \right]^{1/2}$$
 Taur, Eq. (3.14)

Only two important terms are kept.

– We can numerically solve the above equation to obtain ϕ_s .

$V(\phi_s)$?

Recall that

$$V_{gs} = V_{fb} + \phi_s + \frac{\sqrt{2\epsilon_{si}k_BTN_a}}{C_{ox}} \left[\frac{q\phi_s}{k_BT} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q}{k_BT}(\phi_s - V)\right) \right]^{1/2}$$
Taur, Eq. (3.14)

- We can rearrange

$$\frac{C_{ox}^2 \left(V_{gs} - V_{fb} - \phi_s\right)^2}{2\epsilon_{si}k_B T N_a} = \frac{q\phi_s}{k_B T} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q}{k_B T}(\phi_s - V)\right)$$

-Therefore,

$$V = \phi_{s} - \frac{k_{B}T}{q} \log \left\{ \frac{N_{a}^{2}}{n_{i}^{2}} \left[\frac{C_{ox}^{2} (V_{gs} - V_{fb} - \phi_{s})^{2}}{2\epsilon_{si}k_{B}TN_{a}} - \frac{q\phi_{s}}{k_{B}T} \right] \right\}$$

Taur, Eq. (3.48)

Pao-Sah double integral

ullet Finally, the expression for I_d reads

$$I_{d} = q\mu_{eff} \frac{W}{L} \int_{0}^{V_{ds}} \left[\int_{\delta}^{\phi_{s}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V)\right)}{E_{x}(\phi, V)} d\phi \right] dV$$

Taur, Eq. (3.13)

- It is the Pao-Sah double integral.
- Rigorous within the GCA, but it is difficult to evaluate.

Charge-sheet model

- Simpler model with further approximations
 - Consider the previous method to calculate Q_i :

$$Q_{i} = -q \int_{\delta}^{\phi_{S}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V)\right)}{E_{x}(\phi, V)} d\phi$$

-A more simple way? Instead, Q_d is approximated as

$$Q_d = -qN_aW_d = -\sqrt{2\epsilon_{si}qN_a\phi_s}$$

Taur, Eq. (3.15)

-Then, Q_i can be approximated as

$$Q_i = Q_s - Q_d = -C_{ox}(V_{gs} - V_{fb} - \phi_s) + \sqrt{2\epsilon_{si}qN_a\phi_s}$$

Taur, Eq. (3.16)

28

(Of course, it is not exact.)

Change of variable

- Now, Q_i can be a function of ϕ_s .

-Variable change from
$$V$$
 to ϕ_s :
$$I_d = \mu_{eff} \frac{W}{L} \int_0^{V_{ds}} [-Q_i(V)] dV = \mu_{eff} \frac{W}{L} \int_{\phi_{s,s}}^{\phi_{s,d}} [-Q_i(\phi_s)] \frac{dV}{d\phi_s} d\phi_s$$
 Taur, Eq. (3.17)

Surface potentials at the two ends, y = 0 and L. They can be calculated by solving Taur, Eq. (3.14).

$$\frac{dV}{d\phi_s}$$
? (1)

Recall that

$$V = \phi_{s} - \frac{k_{B}T}{q} \log \left\{ \frac{N_{a}^{2}}{n_{i}^{2}} \left[\frac{C_{ox}^{2} (V_{gs} - V_{fb} - \phi_{s})^{2}}{2\epsilon_{si}k_{B}TN_{a}} - \frac{q\phi_{s}}{k_{B}T} \right] \right\}$$
Taur, Eq. (3.18)

-Therefore,

$$\frac{dV}{d\phi_{s}} = 1 - \frac{k_{B}T}{q} \frac{\frac{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s})}{\epsilon_{si}k_{B}TN_{a}} - \frac{q}{k_{B}T}}{\frac{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s})^{2}}{2\epsilon_{si}k_{B}TN_{a}} - \frac{q\phi_{s}}{k_{B}T}}$$

$$\frac{dV}{d\phi_s}$$
? (2)

Simple rearrange yields

$$\frac{dV}{d\phi_{s}} = 1 + \frac{2k_{B}T}{q} \frac{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s}) + \epsilon_{si}qN_{a}}{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s})^{2} - 2\epsilon_{si}qN_{a}\phi_{s}}$$

Taur, Eq. (3.19)

– It is still very complicated...

Integrand

• When multiplied with $-Q_i(\phi_s)$,

$$(-Q_i(\phi_s))\frac{dV}{d\phi_s}$$

$$= -Q_i(\phi_s) + \frac{2k_BT}{q} \frac{C_{ox}^2(V_{gs} - V_{fb} - \phi_s) + \epsilon_{si}qN_a}{C_{ox}(V_{gs} - V_{fb} - \phi_s) + \sqrt{2\epsilon_{si}qN_a\phi_s}}$$

- -The second term is still very complicated...
- Is it really important?

Comparison between two terms

• Let's draw two terms.

-Assume that N_a = 10¹⁷ cm⁻³, t_{ox} = 10 nm, V_{gs} = 1.0 V, and V_{fb} = -0.88

- -The second term is small.
- It is meaningful only when $Q_i \approx 0$.
- -This is corresponding to $C_{ox}(V_{gs} V_{fb} \phi_s)$ = $\sqrt{2\epsilon_{si}qN_a\phi_s}$.

Integrand, again

Within this condition,

$$(-Q_{i}(\phi_{s})) \frac{dV}{d\phi_{s}} \approx -Q_{i}(\phi_{s}) + \frac{k_{B}T}{q} \frac{C_{ox}\sqrt{2\epsilon_{si}qN_{a}\phi_{s}} + \epsilon_{si}qN_{a}}{\sqrt{2\epsilon_{si}qN_{a}\phi_{s}}}$$

$$= -Q_{i}(\phi_{s}) + \frac{k_{B}T}{q} C_{ox} + \frac{k_{B}T}{q} \frac{\sqrt{2\epsilon_{si}qN_{a}}}{2\sqrt{\phi_{s}}}$$

Its integration yields $\frac{k_BT}{q}C_{ox}\phi_s$.

Its integration yields $\frac{k_B T}{q} \sqrt{2\epsilon_{si}qN_a\phi_s}.$

34

Thank you!