

Contents

Julieta, Hasmik	2
Coding	2
Conceptual	
Questions	
Summary	3
Anna, Anush	
Coding	
Conceptual	2
Questions	
Summary	
Mary, Sona	6
Coding	6
Conceptual	6
Questions	6
Suggestions, Summary	6
Hripsime, Anjel	
Coding	
Conceptual	8
Questions	8
Summary	
Elen, Anna	10
Coding	10
Conceptual	10
Questions	1
Summary	11
Tigran	12
Coding	12
Conceptual	
Questions	
Summany	1.

Julieta, Hasmik

Coding

 While running the code I faced with the errors of the absence of datasets.

```
Error in mutate(Gcdaily, Gold = Close - lag(Close, default = Close[1]))
: object 'Gcdaily' not found
Solution is to call your files in codes:
```

```
Cldaily <- read.delim("Cldaily.txt", header = T,sep = ",")
Gcdaily <- read.delim("Gcdaily.txt", header = T,sep = ",")
eurusdDaily <- read.delim("eurusdDaily.txt", header = T,sep = ",")</pre>
```

2. You need to save the models in RDA format and then to load them on Shiny, or use the source function not to run the R script separately:

```
source("PROJECT R CODE _ Julieta, Hasmik.R")
load("PROJECT R CODE _ Julieta, Hasmik.rda")
```

3. Useless step, you can just compare the current values with past values:

```
Gcdaily1 <- mutate(Gcdaily, Gold = Close - lag(Close, default = Close[1]))
Cldaily <- mutate(Cldaily, Oil = Close - lag(Close, default = Close[1]))

Gcdaily1 <- Gcdaily %>%
   mutate(Gold_dummy = ifelse(Gold > 0, 1, 0),
        Gold_dummy1 = ifelse(Gold < 0, -1, 0),
        Gold_dummy2 = Gold_dummy + Gold_dummy1)</pre>
```

4. There is no need to use 2 ifelse functions:

```
Gcdaily1 <- Gcdaily %>%
  mutate(Gold_dummy = ifelse(Gold > 0, 1, 0),
  Gold_dummy1 = ifelse(Gold < 0, -1, 0),
  Gold_dummy2 = Gold_dummy + Gold_dummy1)</pre>
```

5. Why do we need the drop down menu with one choice?

6. A lot of visually inappropriate typos e.g.:

Oil_dummy2 USD_dummy2 Gold_dummy2 AAPL_dummy2 FB_dummy2 AMZN_dummy2

Histogram of Final_data[[data1()]]

Conceptual

- 1. The histogram is for numeric data not categorical. The bar plot is more appropriate visualization tool for categorical data.
- 2. Independent variable can remain the same, and not to be changed to categorical. You lose the information.
- 3. Absence of models and interpretations in the report.
- 4. ... nominal (equivalently categorical)... is not correct.

Questions

1. What does default mean?

lag(Close, default = Close[1])

- 2. Why sequential growth rate and not with the base?
- 3. Why did you choose the close price?
- 4. How the Amazon, Apple, Google stock prices are calculated?
- 5. How your ROC curve will be changed if you set 0 to 1, and vice versa?
- 6. How the specificity, sensitivity will be changed if you raise the threshold values.
- 7. How the logistic regression is estimated?
- 8. Interpret the coefficients.
- 9. Why OLS is not appropriate? (prediction, Bin, Hetero)
- 10. What is the range of p/(1-p)?
- 11. Show multinomial logit calculations for k=3
- 12. What is the non-information rate?

Criteria	%	Points	Julieta	Hasmik
Curiosity	20%	0.8	0.78	0.78
Skepticism	35%	1.4	0.8	0.8
Organization	25%	1	0.78	0.78
Shiny	20%	0.8	0.8	0.8
Total	100%	4	3.1	3.1

Anna, Anush

Coding

- 1. I could not find anything new in your code.
- 2. It is not correct to use createDataPartition with numeric variable?

```
set.seed(1000)
training.samples <- df$residual.sugar %>%
    createDataPartition(p = 0.8, list = FALSE)
train.data <- df[training.samples, ]
test.data <- df[-training.samples, ]</pre>
```

3. Discordances in code output and interpretation, e.g:

```
## Residual standard error: 1.231 on 3908 degrees of freedom
## Multiple R-squared: 0.9403, Adjusted R-squared: 0.9401
## F-statistic: 5594 on 11 and 3908 DF, p-value: < 2.2e-16</pre>
```

We see that adjusted R-squared of our model is 0.91. So if we didn't know that there is a correlation among the variables, we would think that we have a pretty good model. But that is not true.

4. The absence of sent data and Rmd file (I could not run your code).

Conceptual

- 1. The wrong usage of R^2 (you need to look at adjusted R^2 for multiple regression).
- 2. A lot of typos, copy-past formulas, difference in fonts, scientific notations which make your work less attractive.
- 3. The existence of incorrect statements e.g.:
 - ...The model will have a low accuracy if it is overfitting...
 ...Multicollinearity is often described as the statistical phenomenon
 wherein there exists a perfect or exact relationship between predictor
 variables...
 - if n < p, the OLS solution is not even unique (perfect multicollinearity)
- 4. You use p and k as the number of variables simultaneously.
- 5. The name of the paper does not fully correspond to its meaning.

Questions

- 1. What is the difference between multicollinearity and net collinearity? Bring an example.
- 2. Can we use another loss function? Why do we use square?

Our estimates of the population parameters are referred to as $\hat{\beta}$. Recall that the criteria we use for obtaining our estimates is to find the estimator $\hat{\beta}$ that minimizes the sum of squared residuals. Why this criteria? Where does this criteria come from?

3. Does the Lasso have the b coefficient?

4. Var (ols) ><? Var(ridge), bias(ols)<>?bias(ridge)

Criteria	%	Points	Anna	Anush
Curiosity	20%	0.8	0.7	0.7
Skepticism	35%	1.4	0.8	0.8
Organization	25%	1	0.8	0.8
Shiny	20%	0.8	*	*
Total	100%	4	2.3	2.3

Mary, Sona

Coding

1. I could not find anything new in your code

Conceptual

- 1. I could not find anything new in your report
- 2. A lot of typos which make your work less attractive.
- 3. You cannot classify the price:

 In this paper we have used KNN algorithm to classify Mobile phone prices depending on it
- 4. The existence of incorrect statements e.g.:

Classifiers Of Machine Learing:

- 1. Decision Trees
- 2. Bayesian Classifiers
- 3. Neural Networks
- 4. K-Nearest Neighbour
- 5. Support Vector Machines
- 6. Linear Regression
- 7. Logistic Regression
- 5. The usage of standardization for categorical data is not correct.

```
standardized.X <- scale(ds[,-21])
set.seed(55)
training index <- createDataPartition(</pre>
```

Questions

- 1. How the accuracy, sensitivity, specificity for multiple classes are calculated?
- 2. How the Minkowski distance is calculated?
- 3. What does happen with DB with an increase of k?

Suggestions, Summary

You can play on train-test errors, decision boundaries, the problem of high dimensionality, similarity, dissimilarity measures.

Criteria	%	Points	Mary	Sona
Curiosity	20%	0.8	0.6	0.6
Skepticism	35%	1.4	0.8	0.8
Organization	25%	1	0.7	0.7
Shiny	20%	0.8	0.8	0.8
Total	100%	4	2.9	2.9

Hripsime, Anjel

Coding

1. I could not find anything new in your code.

Conceptual

- 1. A lot of typos, copy-past formulas, the difference in fonts, scientific notations which make your work less attractive.
- 2. The labeling of graphs and variables are not correct:

Number of Suicides according gender
emale imale
Number of Suicides according generation
G.I. Generation Boomers Millenials Silent Generation X Generation Z

- 3. The usage of boxplots for high imbalance (with a high frequency of 0-s) data is not appropriate.
- 4. The inclusion of year in regression should be done by data manipulation.
- 5. The interpretation of significance and coefficients (both for nominal and ordinal data) are wrong.
- ...for a one unit change in the age75+ years male, the difference in the logs of expected counts of the sum_Suicide is expected to decrease...
- ...We can see that for a one unit change in the generation 4...
- 6. The testing of overdispersion was needed to understand the estimation method.
- 7. The usage of rounding in the report is necessary.

Questions

- 1. What is the shape of Poisson regression fitted line?
- 2. How did you select the variables?
- 3. How do we estimate the Poisson regression?
- 4. What does Poisson heterogeneity mean?
- 5. How did you conclude that var is greater then mean?

$$Var[Y_i|x_i] = exp(\beta^t x_i)(1 + \eta^2 exp(\beta^t x_i)).$$

Criteria	%	Points	Anjel	Hripsime
Curiosity	20%	0.8	0.7	0.7
Skepticism	35%	1.4	0.5	0.5
Organization	25%	1	0.7	0.8
Shiny	20%	0.8	*	*
Total	100%	4	1.9	2

Elen, Anna

Coding

- 1. The absence of source working files (Rmd).
- 2. Path Error:Level:God

```
offers <- read.csv('C:/Users/chilinga/Desktop/master_degree/data_mining/Project/Offers.csv', sep = ';', header=T)
head(offers)
trans <- read.csv('C:/Users/chilinga/Desktop/master_degree/data_mining/Project/Transaction.csv', sep = ';', header=T)
head(trans)</pre>
```

- 3. Libraries must be in the first chunk:
- 4.

```
library(tidyverse)
library(reshape2)
library(plyr)
library(pivottabler)

offers <- read.csv('Offers.csv', sep = ';', header=T)
head(offers)

trans <- read.csv('Transaction.csv', sep = ';', header=T)
head(trans)
library(reshape)</pre>
```

5. The absence of cleaned data:

6. Visualization should help to understand the data/tool.

Conceptual

1. We can perform clustering with different measures.

- Համոզվել, որ տվյալներն ամբողջական են, և չկան բացակայող տվյալներ, բնութագրիչներն ունեն չափման նույն միավորը:
- 2. The discordance in text and work. You do not use the single-link:

Գոյություն ունի կլաստերինգի 2 հիմնական տեսակ՝ հիերարխիկ և k-միջիններ։ Մեր օրինակում դիտարկել ենք հիերարխիկ <mark>տեսակը single-link տարբերակով</mark>։

- 3. The wrong/absence of/ description of variables (offer, past peak).
- 4. Ambiguous statements:

Ինչպես գիտենք, մի կլաստերի ներսում համախորդները իրար նման են, միննույն ժամանակ տարբեր են մյուս կլաստերների համախորդներից։ Այժմ հաշվենք, թե յուրաքանչյուր համախորդը որքան է տարբերվում կլաստերի միջինից։ Այս հեռավորությունը կարող ենք հաշվել տարբեր ինդեքսներով. այդ դեպքում մենք հաշվել ենք Gower-ի տարբերությամբ։

- 5. It is impossible to obtain overlapped clusters from hierarchical clustering.
- 6. The linkages are used for distance measures of clusters (not points).
- 7. The absence of scaling.

Questions

- 1. Why did you choose k=4?
- 2. What did the function daisy do?
- 3. How does the method Gower work?
- 4. Why did you use hierarchical clustering?
- 5. What does method = "ward" mean?
- 6. What is the difference between within cluster distance, total cluster distance, between cluster distance?

Criteria	%	Points	Elen	Anna
Curiosity	20%	0.8	0.78	0.78
Skepticism	35%	1.4	0.6	0.55
Organization	25%	1	0.6	0.6
Shiny	20%	0.8	*	*
Total	100%	4	2	1.9

Tigran

Coding

- 1. The absence of RMD file.
- 2. Path Error:Level:God

setwd("C:\\Users\\Lenovo\\Desktop\\Final Project")
getwd()

Conceptual

 Weak structure of report (into-model-body-conclusion), lack of continuity/integrity:

Deteils in Presentation. Should speak about lambda parameter.

- 2. .. the predicted outcome is the class (discrete).. is not the same.
- 3. You do not need to have the long R outputs in your main report.

Questions

- What is the difference between bagging and random forest?
- 2. What is the difference between the validation set ans test set?
- 3. Why do we need regularization term in XGBoost?
- 4. What does weight mean in XGBoost?
- 5. What is the parameter T in regularization term?

Criteria	%	Points	Tigran
Curiosity	20%	0.8	0.8
Skepticism	35%	1.4	0.65
Organization	25%	1	0.86
Shiny	20%	0.8	0.8
Total	100%	4	3.1