REFERENCE

@ GROUND FLOOR

@ 2ND & 3RD FLOOR

@ 4TH FLOOR

1. The program will determine the quantity of the main reinforcement

MAIN REINFORCEMENTS: DIA. QTY:

Example:

@ Ground Floor

@ 2nd and 3rd Floor

@ 4th Floor

- 2. The program will determine splice length.
 - If the Splice Type is "Lapped Splice" or "Welded Splice (Lap)"

 $S_L = Splice \ Length \ based \ in \ Parameters$

• If the Splice Type is "Welded Splice (Butt)" or "Mechanical"

$$S_L = 0$$

Example

$$f'c = 4000 \, psi \rightarrow 27.6$$

@ Ground Floor

@ 2nd-3rd Floor

3. The program will determine the length of the main reinforcement (Must be converted to meters) For Ground Floor

$$L_B = H + D_F + 0.5S_L + h_L - d_{F(L)} - d_{F(T)} - CC_F$$

For Upper Floor

$$L_B = H + 0.5S_L$$

Where:

 $D_F = Depth \ of \ the \ Footing \ connected \ below$

 $d_{F(L)} = diameter\ of\ the\ Longitudinal\ reinforcent\ of\ the\ Footing$

 $d_{F(T)} = diameter\ of\ the\ Transverse\ reinforcent\ of\ the\ Footing$

 $CC_F = Concrete\ Cover\ of\ Footing$

 $h_L = Hook \ Length \ @ \ 90^{\circ} \ based \ on \ the \ Parameters$

Illustration:

Isolated and Combined Footing

Example:

CONCRETE COVER —	
FOOTINGS	75
SUSPENDED SLAB	20
SLAB ON GRADE	40
BEAMS EXPOSED ON EA	RTH 40
BEAMS EXPOSED ON W	EATHER 40
COLUMNS EXPOSED ON	EARTH 75
COLUMNS EXPOSED ON	WEATHER 40

@ Ground Floor

$$h_L = 600, D_F = 1500, CC_F = 75$$

LONGITUDINAL REINFORCEMENT	TRANSVERSE REINFORCEMENT
DIAMETER 25	DIAMETER 25
QUANTITY 11	QUANTITY 11
HOOK TYPE 90 ▼	HOOK TYPE 90 ▼

$$d_{F(L)} = 25 \ \&d_{F(T)} = 25$$

$$L_B = H + D_F + 0.5S_L + h_L - d_{F(L)} - d_{F(T)} - CC_F$$

$$L_B = 3350 + 1500 + 0.5(775) + 600 - 25 - 25 - 75 = 5712.5 \ mm \rightarrow 5.7125 \ m$$

H 3150
H _c 2450
QUANTITY 13
MAIN REINFORCEMENTS:
DIA. 32
QTY: 16

$$L_B = H + 0.5S_L$$

 $L_B = 3150 + 0.5(775) = 3537.5 \, mm \rightarrow 3.5375 \, m$

@ 4th Floor

H 450 H _C 415 QUAN	50
MAIN F DIA. QTY:	REINFORCEMENT 32 12

$$L_B = H + 0.5S_L$$

 $L_B = 4500 + 0.5(775) = 4887.5 \text{ } mm \rightarrow 4.8875 \text{ } m$

4. After determining the quantities of main reinforcement and their respective required bar length, the program will determine their respective manufactured bars and no. of manufactured pcs

LEGEND:

 $Qty_P = no. of pcs. produced$

 $Qty_M = no.of$ manufactured pcs.

 $L_{M} = Available \ Manufactured \ Reinforcement \ Length$

 $Qty_C = Quantity \ of \ Column$

 $L_W = Wastage\ Length$

 $L_E = Excess\ manufactured\ {\it bar}\ {\it length}$

 $L_{CB} = Chosen Manufactured Bar Length$

$$Qty_{Pn} = \frac{L_M}{L_B}$$

 $L_W = [Qty_P - Qty_P \text{ (round down into whole number)}] \times L_B$

$$Qty_{Mn} = m \cdot \frac{Qty_B}{Qty_{Pn}} \cdot Qty_C$$

 $L_E(m) = [Qty_M(round up to whole number) - Qty_M] \times L_M$

And

Total Wastage = $L_E + L_W[Qty_{Mn} (round down to whole number)]$

Then the program will choose the manufactured bar length with the lowest $Total\ wastage$

Example:

@ Ground Floor: $Qty_B = 24 \& L_B = 5.7125 m$

L [M]	Qty [B]	L [B]	Qty (Column)	Qty [P]	Qty [M]	L [W]	L [E]	Total Waste	I
-------	---------	-------	-----------------	---------	---------	-------	-------	----------------	---

6				1.05	1	312	312	0.288	0	89.700
7.5	24	5.7125	13	1.31	1	312	312	1.788	0	557.700
10.5	24	5.7 125	13	1.84	1	312	312	4.788	0	1493.700
12				2.10	2	156	156	0.575	0	89.700

$$Qty_M = 312 \& L_M = 6 m$$

@ 2nd-3rd Floor: $Qty_B = 16 \& L_B = 3.5375 m$

L [M]	Qty [B]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.70	1	208	208	2.463	0	512.200
7.5	16	3.5375	13	2.12	2	104	104	0.425	0	44.200
10.5	10	3.5575	13	2.97	2	104	104	3.425	0	356.200
12				3.39	3	69.33	70	1.388	8	103.738

$$Qty_M = 104 \& L_M = 7.5 m$$

@ 4th Floor: $Qty_B = 12 \& L_B = 4.8875 m$

L [M]	Qty [B]	L [B]	Qty (Column)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.23	1	156	156	1.113	0	173.550
7.5	40	4 0075	40	1.53	1	156	156	2.613	0	407.550
10.5	12	4.8875	13	2.15	2	78	78	0.725	0	56.550
12			,	2.46	2	78	78	2.225	0	173.550

$$Qty_M = 78 \& L_M = 10.5 m$$

5. The program will determine the Price of the Reinforcement of the column

 $Price_{Total} = Qty_M Price_M$

Where:

 $Price_{M} = Price \ of \ the \ steel \ reinforcement \ based \ on \ Pricing$

= Sorted through Reinforcement Grade, diameter, and Manufactured Length

Example

@ Ground Floor

Rebar GRADE 60 (@32mm) [6m]- P1719.66

Rebar GRADE 60 (@32mm) [7.5m]- P2149.58

Rebar GRADE 60 (@32mm) [9m]- P2579.50

Rebar GRADE 60 (@32mm) [10.5m]- P3009.83

Rebar GRADE 60 (@32mm) [12m]- P4352.95

 $Qty_M = 312 \ and \ L_M = 7.5 \ m \ \therefore Price_M =$ † 1719.66

 $Price_{Total} = Qty_{M}Price_{M} = 312 \cdot 1719.66$

 $Price_{Total} =$ **536, 533. 92**

Rebar GRADE 60 (Ø32mm) [6m]- P1719.66

Rebar GRADE 60 (Ø32mm) [7.5m]- P2149.58

Rebar GRADE 60 (Ø32mm) [9m]- P2579.50

Rebar GRADE 60 (Ø32mm) [10.5m]- P3009.83

Rebar GRADE 60 (Ø32mm) [12m]- P4352.95

 $Qty_M = 104 \ and \ L_M = 7.5 \ m \ \therefore Price_M =$?149.58

 $Price_{Total} = Qty_{M}Price_{M} = 104 \cdot 2149.58$

 $Price_{Total} = \mathbb{P} 223, 556.32$

@ 4th Floor

Rebar GRADE 60 (Ø32mm) [6m]- P1719.66

Rebar GRADE 60 (Ø32mm) [7.5m]- P2149.58

Rebar GRADE 60 (Ø32mm) [9m]- P2579.50

Rebar GRADE 60 (Ø32mm) [10.5m]- P3009.83

Rebar GRADE 60 (Ø32mm) [12m]- P4352.95

 $Qty_M = 78 \ and \ L_M = 10.5 \ m \ \therefore Price_M = \ 3009.83$

 $Price_{Total} = Qty_M Price_M = 78 \cdot 3009.83$

 $Price_{Total} =$ **234**, **766**. **74**

6. The program will then compute the weight of the main reinforcement of each floor of the column.

$$W = L_M Q t y_M W_D$$

Where:

 $W_D = Weight \ based \ of \ the \ cdiameter \ of \ the \ main \ reinforcement.$

Example:

kg/m 0.222 0.395 0.616 0.888 1.597
0.395 0.616 0.888 1.597
0.616 0.888 1.597
0.888 1.597
1.597
2 455
2.466
3.854
4.833
6.313
7.991
9.864
11.926
15.413
19.318

@ Ground Floor

MAIN REINFORCEMENTS:
DIA. 32
QTY: 16

 $W_D=6.313$

 $W = L_M Q t y_M W_D$

W = 6(312)(6.313)

W = 11817.936 kg

@ 2nd-3rd Floor

MAIN REINFORCEMENTS:

DIA. 32 QTY: 16

 $W_D=6.313$

 $W = L_M Q t y_M W_D$

W = 7.5(104)(6.313)

W = 4924.14 kg

@ 4th Floor

$$W_D=6.313$$

 $W = L_M Q t y_M W_D$

W = 10.5(78)(6.313)

W = 5170.347 kg

7. The program will compute the labor price of the column.

$$Price_{Labor} = W \cdot L_R$$

Where:

 $L_R = Labor Rate in Footing based in the Pricing$

CATEGORY: LABOR RATE (REBAR PER KG) - 9 items

FOOTING [KG]- P 17

WALL FOOTING [KG]- P 17

COLUMN [KG]-P 15

STAIRS [KG]- P 15
BEAM [KG]- P 16

FOOTING TIE BEAM [KG] - P 16

SLAB ON GRADE [KG]- P 17

SUSPENDED SLAB [KG]- P 18

WALLS [KG]- P 16

 $L_R=\mathbb{P}\,15$

Example

@ Ground Floor

 $W = 11817.936 \, kg$

 $Price_{Labor} = W \cdot L_R$

 $Price_{Labor} = 11817.936 \cdot 15$

 $Price_{Labor} = \mathbb{P} \ \mathbf{177}, \mathbf{269}. \ \mathbf{04}$

@ 2nd - 3rd Floor

 $W = 4924.14 \, kg$

 $Price_{Labor} = W \cdot L_R$

 $Price_{Labor} = 4924.14 \cdot 15$

 $Price_{Labor} =$ **73**, **862**. **10**

@ 4th Floor

 $W = 5170.347 \, kg$

 $Price_{Labor} = W \cdot L_R$

 $Price_{Labor} = 5170.347 \cdot 15$

 $Price_{Labor} = 77,555.205$