Halftone Based Adversarial Example

蕭擎軒

Outline

- 1. Recall: What is Adversarial Example?
- 2. Introduction: Halftone Based Adversarial Example
- CVPR 2016: Image Style Transfer Using Convolutional Neural Networks
- 4. Experiment: Halftone MNIST
- 5. Application: Reinforce CAPTCHA
- 6. Conclusion and Future Work

What is Adversarial Example?

 Adversarial examples are recognizable by human but can fool deep neural networks in the testing stage.

What is Adversarial Example?

$$g(x) = x'$$

$$f(x') = 2$$

Halftone Based Adversarial Example

What is Halftone?

- Halftone is the reprographic technique that simulates continuous tone imagery through the use of dots, varying either in size or in spacing, thus generating a gradient-like effect.
- This reproduction relies on a basic optical illusion: the tiny halftone dots are blended into smooth tones by the human eye. (視覺積分)

離散

連續

Does CNN Have Optical Illusion?

g(x) = x'

f(x') = ?

f(x) = 2

Image Style Transfer Using Convolutional Neural Networks

Leon A. Gatys^[1]
Alexander S. Ecker^[2]
Matthias Bethge^[3]

CVPR 2016 (ORAL)

Architecture

1. Square Loss of Content

- p: original image
- x: generated image
- P^L: original image's feature representation in layer i
- F^L: generated image's feature representation in layer i

$$\mathcal{L}_{ ext{content}}(ec{p},ec{x},l) = rac{1}{2} \sum_{i,j} \left(F_{ij}^l - P_{ij}^l
ight)^2$$

2. Square Loss of Style

3. Square Loss of Total

 α : weighting factors for content

$$\mathcal{L}_{total} = \alpha \mathcal{L}_{content} + \beta \mathcal{L}_{style}$$

 β : weighting factors for style

$$\mathcal{L}_{\text{total}}(\vec{p}, \vec{a}, \vec{x}) = \alpha \mathcal{L}_{\text{content}}(\vec{p}, \vec{x}) + \beta \mathcal{L}_{\text{style}}(\vec{a}, \vec{x})$$

$$\vec{x} := \vec{x} - \lambda \frac{\partial \mathcal{L}_{total}}{\partial \vec{x}}$$

Architecture

Content / Style Weight

Content

 α Content + β Style

Style

Iteration

Iteration: 0 Iteration: 1 Iteration: 10

Halftone MNIST

Experiment

MNIST	Training	Testing	LeNet	AlexNet	VGG16	VGG19	ResNet18	ResNet50
32 x 32	Original	Original	98.89%	98.99%				
	Original	Halftone	81.46%	21.46%				
	Halftone	Halftone	96.88%	97.94%				
256 x 256	Original	Original						
	Original	Halftone						
	Halftone	Halftone						

Application

CAPTCHA	Al	Human	
W6 8HP	Easy	Easy	
30st example	Hard	Hard	
	Hard	Easy	

Conclusion

- Progress of Adversarial Example
- Generate Halftone Effect with Style Transfer
- Discuss the impact of Halftone on Convolutional Neural Networks Models, eg: LeNet, AlexNet...

Future Work

- 1. Adversarial Retraining
 - Train on Halftone
 - Test on Halftone
- 2. Resize to 256 x 256 (Enhance the Halftone Effect)
- 3. Testing on more models, eg: VGG, ResNet...

Reference

- Adversarial Examples: Attacks and Defenses for Deep Learning: https://arxiv.org/abs/1712.07107
- Halftone: https://en.wikipedia.org/wiki/Halftone
- Image Style Transfer Using Convolutional Neural Networks: https://ieeexplore.ieee.org/document/7780634/