YZ

Essential prime implicants: W'X', X'Z' minterms 7 and 13 can be covered in multiple ways: m7 can be covered using W'YZ or XYZ m13 can be covered using WY'Z or WXZ

$$F1 = W'X' + X'Z' + W'YZ + WY'Z$$

Q1b)

YZ

WX		00	01	11	10
	00	1	1	1	X
	01	X	0	1	0
	11	0	1	X	0
	10	1	X	0	1

(selecting zeros) Essential Prime implicants: (X'+Z), (W+X'+Y) maxterm 11 can be covered in two ways: (W'+Y'+Z') or (W'+X+Z')

$$F2=(X'+Z)(W+X'+Y)(W'+X+Z')$$

 $F1 = \sum m(0,1,2,3,7,8,9,10,13) \neq F2 = \prod M(4,5,6,9,11,12,14) = \sum m(0,1,2,3,7,8,10,13,15)$

It does not have to be equivalent due to different don't cares being used.

	А	В	С	D	х	Υ	Z
0	0	0	0	0	1	1	1
1	0	0	0	1	0	0	0
2	0	0	1	0	0	0	0
3	0	0	1	1	1	0	0
4	0	1	0	0	0	1	0
5	0	1	0	1	0	0	0
6	0	1	1	0	1	0	0
7	0	1	1	1	0	0	1
8	1	0	0	0	0	1	0
9	1	0	0	1	1	0	0
10	1	0	1	0	0	0	0
11	1	0	1	1	0	0	0
12	1	1	0	0	1	1	0
13	1	1	0	1	0	0	0
14	1	1	1	0	0	0	1
15	1	1	1	1	1	0	0

Χ	CD				
AB		00	01	11	10
	00	1	0	1	0
	01	0	0	0	1
	11	1	0	1	0
	10	0	1	0	0

X=A'B'C'D'+A'B'CD+A'BCD'+ABC'D'+ABCD+AB'C'D= A'B'(C XOR D)' + BC(A XOR D)' + AC'(B XOR D) Y CD

AB

	00	01	11	10
00	1	0	0	0
01	1	0	0	0
11	1	0	0	0
10	1	0	0	0

Y=C'D'

Z CD

AB

	00	01	11	10
00	1	0	0	0
01	0	0	1	0
11	0	0	0	1
10	0	0	0	0

Z=A'B'C'D'+A'BCD+ABCD'= BC(A XOR D) + A'B'C'D'

Q3

X	Υ	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1

1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

When X=0
Let Y=A, Cin=B
Cout = AB ------AND gate

When X=1
Let Y=A, Cin=B
Cout = A+B -----OR gate

When X=0, Y=1 (Or X=1, Y=0)
Let Cin = A
S= A' -----NOT gate

So a full adder can be a universal Device