西安电子科技大学 2020年硕士研究生招生考试初试试题

考试科目代码及名称 951 数据结构 考试时间 2019年12月22日下午(3小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写 在试题上一律作废,准考证号写在指定位置!

-, -	单项选择题	(在下列每	小题的	1备选答案	中选出一	个正确答案。	每题 2 分,	共30分)
1. 计	算机算法指	的是()。					

Δ.	计算方法	В.	解决问题的步骤序列	C.	排序方法	D.	调度方法

- 2. 顺序表比链表 ()。
- A. 更便于随机读取 B. 数据元素的物理存储范围更分散
- C. 插入和删除更简便 D. 更适合线性逻辑结构
- 3. 在一个长度为 n 的顺序表的第 i (1 $\leq i \leq n+1$) 个位置上插入一个元素,需要后移() 个元素。

- A. n-i B. n-i-1 C. n-i+1 D. n+i
- 4. 要从一个顺序表删除一个元素时,被删除元素之后的所有元素均需()一个位置, 移动过程是从()向()依次移动一个元素。
- A. 前移, 后, 前 B. 前移, 前, 后

- C. 后移,后,前 D. 后移,前,后
- 5. 向一个栈顶指针为 top 的链栈中插入一个 s 结点,应执行 ()。
- A. top->next=s;
- B. s->next=top; top=s;
- C. s->next=top->next; top->next=s;
- D. s->next=top; top = top->next;
- 6. 设某二叉树中度数为 0 的结点数为 No, 度数为 1 的结点数为 N1, 度数为 2 的结点数 为 N₂,则下列等式成立的是()。

- A. $N_0 = N_1 + 1$ B. $N_0 = N_1 + N_2$ C. $N_0 = N_2 + 1$ D. $N_0 = 2N_1 + 1$

951 数据结构 试题 共 8 页 第 1 页

7. 一棵二叉树的后序遍历序列为 C、A、	E、B、D,中序遍历序列为 D、A、C、B、E,
则先序遍历序列为 ()。	
A.D.B.A.C.E	B.D. A. B. E. C
C.C.E.D.B.A	D.C.B.D.A.E
8. Huffman 树的带权路径长度等于()。
A. 除根结点之外的所有结点权值之和	B. 所有结点权值之和
C. 各叶子结点的带权路径长度之和	D. 根结点的值
9. 设有6个顶点的无向图,该图至少有()条边,才能确保是一个连通图。
A. 5 B. 6	C. 7 D. 8
10. 设某无向图中有 n 个顶点 e 条边,则强	建立该图邻接表的时间复杂度为()。
A. O(n+e) B. O(n ²)	C. O(ne) D. O(n ³)
11. 若图的邻接矩阵中主对角线上的元素等	全是 0, 其余元素全是 1, 则可以断定该图一定
是()。	
A. 无向图 B. 不是带权图	C. 有向图 D. 完全图
12. 已知采用开放地址法解决散列表冲突,	要从此散列表中删除一个记录, 正确的做法是
()。	
A. 将该元素所在的存储单元清空。	
B. 在该元素上做删除标记。	
C. 将与该元素有相同 Hash 地址的后继元	素顺次前移一个位置。
D. 用与该元素有相同 Hash 地址的最后插	入表中的元素替代。
13. 散列函数有一个共同性质,即函数值	立当以 () 取其值域的每个值。
A. 最大概率 B. 最小概率	C. 平均概率 D. 等概率
14. 快速排序方法在 () 情况下最不	利于发挥其长处。
A. 要排序的数据量太大	B. 要排序的数据中含有多个相同值
C. 要排序的数据已基本有序	D. 要排序的数据个数为奇数

951 数据结构 试题 共 8 页 第 2 页

B. [lbn] C. n D. [lbn]

15. 在归并排序过程中,需归并的趟数为()。

A. \sqrt{n}

二、判断题(每题1分,共15分)
1. 线性表中的所有元素都有一个前驱元素和后继元素。()
2. 栈和队列的存储方式只能是链接方式。()
3. 查找和修改是对数组的基本操作。()
4. 二叉树的后序遍历序列中,任意一个结点均处在其孩子结点的后面。()
5. 一个含有 n 个结点的完全二叉树,它的高度是 $\lfloor \log_2 n \rfloor$ +1。()
6. 当向二叉排序树中插入一个结点,则该结点一定成为叶子结点。()
7. 调用一次深度优先遍历可以访问到图中的所有顶点。()
8. 带权无向图的最小生成树是唯一的。())
9. 如果表示某个图的邻接矩阵是不对称矩阵,则该图一定是有向图。()
10. 在一个有向图的拓扑序列中,若顶点 a 在顶点 b 之前,则图中必有一条弧 <a, b="">。()</a,>
11. 在散列法中,散列函数必须是一个一对一的函数。()
12. 散列表发生冲突的可能性与装填因子无关。()
13. 索引顺序结构和索引非顺序结构的索引表中索引项都是按照关键字顺序排列的。()
14. 对 n 个元素执行快速排序,在进行第一次划分时,关键字的比较次数总是 n-1 次。
至(1684)五,五百个一条成为水质是几十分,多种皮肤的发生和几个个四点,正(1684)
15. 归并排序算法中辅助数组所需的空间复杂度为 O(n)。()
三、填空题(每题 2 分, 共 30 分)
1. 数据的物理结构主要包括和
2. 顺序表中逻辑上的元素的物理位置相邻。
3. 在双向循环链表中, 在 m 所指的结点之后插入 n 指针所指的结点, 其操作
是, n->next= m->next; m->next->prior=n; m->next=n。
4. 设有一个空栈, 现有输入序列 (a, b, c, d, e), 经过 push, push, pop, push, pop, push,
push 的操作,输出序列是。
5. 两个字符串相等的充要条件是两个串的相等和对应位置的字符相等。

6. 装有 n 个叶子的哈夫曼树的结点总数为。
7. 设二叉树中结点的两个指针域分别为 lchild 和 rchild, 则判断指针变量 p 所指向的结点
为叶子结点的条件是。
8. 根据初始关键字序列(19、22、01、38、10)建立的二叉排序树的高度为。
9. 设一棵二叉树的前序序列为 ABC,则有种不同的二叉树可以得到这种序列。
10. 解决散列表冲突的两种方法是和。
11. 对于一个具有 n 个顶点和 e 条边的无向图,如果采用邻接表存储方法存储该无向图,
边表中所含结点有个。
12. 在一个具有 n 个顶点的完全有向图中,包含有条边。
13. 设某无向图中顶点数和边数分别为n和e,所有顶点的度数之和为d,则e=。
14. 对一个长度为 n 的任意文件进行排序,至少需要次比较。
15. 对 n 个元素进行冒泡排序时,最少的比较次数是。
四、问题求解题(共 45 分)
1. (7分) 假设字符集{ a, b, c, d, e, f}对应的权重为{ 45, 13, 12, 16, 9, 5 }。
(1) 为这 6 个字符建立 Haffman 树,并给出相应的 Haffman 编码,要求左子树权重小
于右子树且编码时左边为 0 右边为 1。
(2) 求出 Haffman 树的带权路径长度 WPL。
2. (8分)设完全二叉树的顺序存储结构中存储数据 ABCDE,要求画出该完全二叉树并
给出该二叉树的前序、中序和后序遍历序列。
3. (7分)一个线性表为 B=(12, 23, 45, 57, 20, 03, 78, 31, 15, 36), 设散列表为 HT[012],
散列函数为 H(key)=key%13 并用线性探查法解决冲突,请画出散列表,并计算等概率情
况下查找成功的平均查找长度。

951 数据结构 试题 共 8 页 第 4 页

2020 .

4. (7分) 下图是有 5个顶点(1,2,3,4,5)的无向图。请回答相关问题:

- (1) 请画出该图的邻接矩阵和邻接表。
- (2) 若该图采用邻接矩阵表示,按邻接点序号从小到大选择,给出从顶点2开始的广度优先搜索序列。
- (3) 在广度优先搜索算法中,除了邻接矩阵,还使用了什么数据结构?
- 5. (8分)有6个顶点(v₀, v₁, v₂, v₃, v₄, v₅)的有向图的邻接矩阵如下图。请回答相关问题:

$$\infty$$
 ∞ 5 ∞ ∞ ∞

$$\infty$$
 ∞ ∞ ∞ ∞ 10

- (1) 画出该有向图。
- (2) 求从顶点 vo 开始到其余顶点的最短路径。按最短路径生成的次序填写下表。

951 数据结构 试题 共 8 页 第 5 页

步骤	最短路径点集 S	选择的顶点	源点到各顶点的长度							
			D[0] D[1] D[2] D[3]					D[4] D[5]		
初始	{0}	***	0	00	10	00	30	100		
第一步	{0, 2}	2								
第二步										
第三步			fi							
第四步										
第五步										

- 6. (8分)某人去超市购物,设有 n 种物品,第 i 种物品的重量为 w_i ,价值为 v_i ,一个人最多能带的重量为 c (c>0)。
- (1) 请设计一个算法使得一个人能带走的物品价值最大。
- (2) 如果有 3 种物品,第一种物品是大米重 5 公斤,价值 50 元;第二种物品是面粉 重 10 公斤,价值 80 元;第三种物品是土豆重 15 公斤,价值 45 元。已知一个人 最多能带 25 公斤。根据设计的算法,给出最优的方案(每种物品的携带数量)。

五、算法题(共30分)

1. (10 分)已知线性表的元素是无序的,实现一个删除表中所有值小于 max 但大于 min 的元素的算法,该线性表以带头结点的单链表为存储结构。

void delete (LinkList *head, int max, int min)

LinkList *p, *q;

951 数据结构 试题 共 8 页 第 6 页

2. (10 分)编写一个非递归算法的函数求出二叉排	序树中的关键字最小的元素(注意异
常情况的处理)。数据结构如下所示:	
typedef int ElemType;	
typedef struct node {	
ElemType data;	
struct node *left, *right;	
}BTreeNode;	
请据此填写以下函数(提示:二叉排序树中的位置位	言息对应于关键字大小信息):
ElemType FindMax(BTreeNode *BST)	
人{一。中的品,每1种的品质是为win 价值的win 一}人	新妇 - 1840年1842 / Jan - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1
BTreeNode *t;	
if(){	
printf("不能在空树上查找最小值! \n");	
return;	
(重要) 经商品价价值 使表现的现在分词	
while (t->left!=NULL)	
nim 天大里 xum 子小里亦写中主。归居了一切。	
return; place \$4.50.	
} (27 to 17	
3. (10分)利用图的深度优先搜索写一个算法,判	别以邻接表方式表示的有向图中是否
存在由顶点 v _i 到顶点 v _j 的路径 (i≠j)。	
#define N 8	
typedef struct node	
{	
int adjvex;	

951 数据结构 试题 共 8 页 第 7 页

```
struct node *next;
}edgenode;
typedef struct
   char vertex;
   edgenode *link;
}vexnode;
int visited[N];
int exist_path_DFS(vexnode ga[], int i, int j)
/*以邻接表为存储结构,判断 v_i和 v_j之间是否有路径,若有返回 1,否则返回 0*/
   edgenode *p;
   if(_____) return 1;
      visited[i]=1; /*标记 vi 已被访问*/
      ______; /*访问 vi 的第一个邻接点*/
      while(_____) /*依次访问 v<sub>i</sub> 的邻接点*/
         if(____&&__
                                      _____) /*vi 的邻接点
若未被访问过,且该邻接点到 vj 存在路径*/
             return 1;
          p=p->next;
   return 0;
                 951 数据结构 试题 共8页 第8页
```

西安电子科技大学

2019 年硕士研究生招生考试初试试题

考试科目代码及名称 951 数据结构

考试时间 2018年12月23日下午(3小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写 在试题上一律作废,准考证号写在指定位置!

- 一、单项选择题(在下列每小题的备选答案中选出一个正确答案。每空2分,共30分)
- 1. 抽象数据类型的三个组成部分不包括()。
- A. 数据对象 B. 数据类型 B. 数据类型

C. 基本操作 D. 数据关系

- 2. 对于顺序表,以下说法错误的是()。
- A. 顺序表是用一维数组实现的线性表,数组的下标可以看成是元素的绝对地址。
- B. 顺序表的所有存储结点按相应数据元素间的逻辑关系决定的次序依次排列。
- C. 顺序表的特点是逻辑结构中相邻的结点在存储结构中仍相邻。
- D. 顺序表的特点是逻辑上相邻的元素,存储在物理位置也相邻的单元中。
- 3. 如果用尾指针(rear)来表示带头结点的单循环链表,那么其头结点和尾结点的存储位 置分别是()。

A. rear 和 rear->next->next B. rear->next 和 rear

C. rear->next->next 和 rear D. rear 和 rear->next

4. 将长度为 n 的顺序表中的结点循环右移 k 位的算法的时间复杂度为 ()。

A. O(k) B. $O(n \times k)$ C. O(n)

5. 设输入序列是 1、2、3、4、5、6,则通过栈的作用后可以得到的输出序列是()。

A. 5, 3, 4, 6, 1, 2

B. 3, 2, 5, 6, 4, 1

D. O(n+k)

C. 3, 1, 2, 5, 4, 6 D. 1, 5, 4, 6, 2, 3

6. 当利用大小为 n 的数组顺序存储一个队列时,该队列的最大长度为()。

951 数据结构 试题 共 8 页 第 1 页

7. 二叉树作为非	F线性数据结构,它	能使用的存储结	构是()。
A. 顺序结构		B. 链式结	构
C. 顺序结构和银	连式结构都可以	D. 顺序结	构和链式结构都不可以
8. 设某哈夫曼树	十中有 999 个结点,贝	则此哈夫曼树中	有()个叶子结点。
A. 499	B. 500	C. 501	D. 502
9. 深度为7(根	的层次为1)的完全	二叉树至少有()个结点。
A. 62	B. 63	C. 64	D. 65
10.6个顶点的无	向图成为一个连通图	至少应有()	条边。
A. 4	B. 5	C. 6	D. 15
1.对于一个有 n	个顶点和 e 条边的无	向图,进行拓扎	排序时,总的时间为()。
A.n	B. n+1	C. n-1	D. n+e
2. 下列方法中,	()不是散列函数	(的构造方法。	
A. 数字选择法	B. 除留余数法	C. 随材	D. 开放地址》
3. 以下说法错误	民的是()。		
A. 散列法存储的	基本思想是由关键与	字的值直接计算 8	出数据的存储地址。

- B. 装填因子是散列法的一个重要参数,它反映散列表的装填程度。

A. n-2 B. n-1 C. n D. n+1

- C. 散列表的结点中只包含数据元素自身的信息,不包含任何地址。
- D. 散列表的查找效率主要取决于散列表造表时选取的散列函数和处理冲突的方法。
- 14. 关于动态规划算法下列说法不正确的是()。
- A. 备忘录方法是动态规划算法的一个变形。
- B. 适用于动态规划法求解的问题, 经分解得到的子问题是互相独立的。
- C. 动态规划法通常用于求解具有某种最优性质的问题。
- D. 以自底向上的方式计算最优值。
- 15. 以下能用贪心算法解决的问题是()。
- A. 矩阵连乘问题 B. 整数划分问题

951 数据结构 试题 共 8 页 第 2 页

C. 0-1 背包问题 D. 背包问题

二、判断题(每题1分,共15分)

- 1. 定义逻辑结构时可不考虑物理结构。
- 2. 线性表采用顺序存储,必须占用一片连续的存储单元。
- 3. 对于线性表来说, 定位运算在顺序表和单链表上的时间复杂度均为 O(n)。
- 4. 循环队列的引入,目的是为了克服溢出。
- 5. 在具有 n 个单元的循环队列中, 队满时共有 n 个元素。
- 6. 若某内部排序算法不稳定,则该算法没有使用价值。
- 7. 如果两个串含有相同的字符,则这两个串相等。
- 8. 一棵完全二叉树可以存在度不为 2 的非叶子结点。
- 9. 树最适合用来表示元素之间具有分支层次关系的数据。
- 10. 在哈夫曼树中, 权值最小的结点离根节点最近。
- 11. 在一个图中,所有顶点的度数之和等于所有边的数目的 2 倍。
- 12. 任何无环的有向图, 其节点都可以排在一个拓扑排序里。
- 13. 带权连通图的最小生成树的权值之和一定小于它的其它生成树的权值之和。
- 14. 平方取中法需要事先掌握关键字的数字分布情况。
- 15. 快速排序算法在最坏情况下就变成了冒泡排序。

三、填空题(每空2分,共30分)

- 1. 若将数据结构形式定义为二元组(K,R),其中 K 是数据元素的有限集合,则 R 是 K 上(1)。
- 2. 一个顺序表的第一个元素的存储地址是 0x12ff7c, 每个元素的长度是 4, 则第 3 个元 素的地址是 (2) 。
- 3. 对于顺序表,定位运算的时间复杂性为___(3)

951 数据结构 试题 共 8 页 第 3 页

4. 在双向链表中求某个结点的前驱结点的算法的时间复杂度是(4)。
5. 一般情况下,将递归算法转换成等价的非递归算法应该设置(5)。
6. 串是个字符的序列。
7. 含有 3 个结点 a, b, c, 且先序序列为 abc 的二叉树一共有种。
8. 已知一棵满二叉树的结点个数为 20 到 40 之间的素数,则此二叉树的深度为
(8)。
9. 存储完全二叉树的最简单、最省空间的存储方式是(9)。
10. 一个具有 n 个顶点和 e 条边的无向连通图,利用克鲁斯卡尔算法产生的最小生成树,
其时间复杂度为。
11. 一个具有 n 个顶点 e 条边的无向图的邻接矩阵中,零元素的个数为(11)。
12. 在索引表中, 若一个索引项对应数据表中的一个记录, 则称此索引为(12)索
引。
13. 发生冲突的两个关键字称为散列函数的。
14. 动态规划法的一个变形是方法。
15. 背包问题和 0-1 背包问题都具有(15)性质。
and the substitute of the subs
四、问题求解题(共 45 分)
1. (7分)设有一组关键字序列(46,34,65,72,31,12,75,10,55)。散列表长为13。
(1) 请设计一个适当的散列函数 (采用除留余数法);
(2) 画出用拉链法构造的散列表 (链表中插入结点时采用尾插法);
(3) 写出拉链法构造的散列表在等概率的情况下,查找成功的平均查找长度和查找不成功
时的平均查找长度。
2. (7 分) 对给定的一组关键字: 45, 23, 67, 12, 88, 41, 90, 120, 60, 100, 54,
16, 画出应用归并排序对上述序列进行排序中各趟归并的结果。

951 数据结构 试题 共 8 页 第 4 页

第一趟归并后[[] [] []
第二趟归并后[] [] []
第三趟归并后[] []
第四趟归并后[a 1.]

3. (7分) 在如下数组 R 中链接存储了一个线性表, 表头指针为 R[3].next, 试按照下面格式写出该线性表。

R	0	1	2	3	4	5	6	7	8
data	zhou	li	zhao		wu	sun		wan	song
next	1	7	4	2	8	NULL		5	0

- 4. (8分) 按要求画出对应的树或森林:
- (1) 画出下图的树对应的二叉树;

(2) 画出下图的二叉树对应的森林;

951 数据结构 试题 共 8 页 第 5 页

5. (8分)假设用于通信的电文仅由8个字母{a,b,c,d,e,f,g,h}组成,字母在电文中出现的次数分别为{7,18,2,6,30,3,20,9},画出哈夫曼树(要求左子树的权值小于右子树),并给这8个字母设计哈夫曼编码表。

- 6. (8分)如下是一个有向无环图,假设邻接表是有序排列的:例如,当遍历 0 节点的出边时,边 0->1 出现在 0->6 和 0->7 之前。
- (1)计算拓扑排序,列举节点在后进先出栈中的出栈顺序。
- (2)从节点 2 开始进行广度优先搜索,列举节点在先进先出队列中的出队顺序。

951 数据结构 试题 共 8 页 第 6 页

五、算法设计题(共30分)

1. (10 分)已知头指针分别为 la 和 lb 的带头结点的单链表中,结点按元素值递增有序排列。写出将 la 和 lb 两个链表合并成一个结点按元素值递增有序排列的单链表,要求不另外开辟空间,用 la 的头结点作为合并后的单链表的头结点。

```
linklist *Union(linklist *la, linklist *lb)
{
    linklist *p, *q, *r, *s;
}
```

2. (10 分)设二叉树的存储结构为二叉链表,编写二叉树递归算法 int Degrees_2(BTNode *t),统计二叉树中度为 2 的结点个数。

951 数据结构 试题 共8页 第7页

3. (10 分) 设有两个集合 A 和集合 B,要求设计生成集合 C=A \cap B 的算法,其中集合 A、B 和 C 用链式存储结构表示。

```
int data;
    int data;
    struct node *next;
}lklist;
void intersection(lklist *ha,lklist *hb,lklist *&hc)
{
```

951 数据结构 试题 共8页 第8页