

2	You Tue Wed Thu Tri Set Date//2	()
		1272017
	QN06:-	
	What is an electric dipoler	
	Calculate electric field at a	
	point due to electric dipole?	
	Jus:-	
	Electric Dipole:	
	A pair of positive charge	
	and negative charge of same	
	magnitude having constant distance	
	between them is called	
	Electric Dipole. It is useful concept	
	in dielectrics and other applications	
	in solid and liquid materials.	
	Electric Dipole Moment:	
	The product of magnitude of	
	charge and seperation between them	
	is called electric dipole moments	
	and It is written as:	
	P= 9/d	111111111111111111111111111111111111111

distance 'r' is:	
E K9/ (3)	
r2	
Compairing (1) and (1)	
E+ = E - (10)	
To calculate net electric field	
at P' due to dipole, resolve	
the electric field E, and E.	
into components.	
Rectangular component of E+ is:	
$E(+\infty) = E + \cos 0$, $E(+y) = E + \sin 0$	
Rectangular components of E- is:	
El-x)= E-coso, E(-y)= E-sino	
The resultant x-component of	
electric field is:	
Ex = (+ F(+x)) + (F(+x))	
Ex = +Ecoso + (-Ecoso)	
Ex = + E600 - E600	
$\begin{bmatrix} E_{x} = 0 \end{bmatrix}$ (a)	
(0)	
	4

[Wad] Thu Fri Sat Da	ite://2
	,
The resultant y-component of	
electric field is:	2
Ey = (Fev) + (E(-y))	
Ey = - Esino + (-Esino).	
Ey = - Esino - Esino	
[Fy=-2 E sino] (6)	
Magnitude of resultant elect	ric
field E is:	
E - V(Ex)3+(Ey)3	
$E^{3} = (E_{x})^{3} + (E_{y})^{2}$	i
E' = (0)' + (-2E sino)'	
$E^2 = (-2E\sin\theta)^2$	
Taking on bisides	
E = -28E sino.	
From (i)	
E=-2Kg 4/2	
T T Y	
E= -2K(9d)	
Ar'	

Mon To	ue Wed Thu Fri Set Date: _/_/20	
	from dipole moment	
	i ICP	
	t = - S P	
and the same	Y 3	
	F=-KPY"	_
	By Phytagerous theorem:	
	$c^2 = a^2 + b^2$	
	$y^2 = (d)^2 + x^2$	
	2)	
	$y^2 - x^2 + 2^2 - 1 Y = 2^2 + x^2$	
	4 ,	
	$Y = (x^2 + d^2)^{\frac{1}{2}}$	
	1= \	
	Put in ex (iv)	
	E = - KP/x2+ d2 -3/2	
	4)	
	E=-KP[x2/1+d]]-3/2	Ð
7.2	42	
	Ez-KP (x") 1+d")-3/2	
	12 - N. 1 (4x')	
	E2 - KPx-3/1+ 12/-3/2	
	L2 11 K 1+ A	
D ₁		0 1
-	By Binomial Series:	

Mon Tue Wed Thu Pri Sat	_/_/20_
	,
E2-KPx3/1+3 d2	
2 42*	
Ex Neglect the higher order	ey .
terme, we get.	
F- KP	1 10
χ^3	1 /-
This is the electric field	at
P due to electric dipole.	Ŷ.
Where x is distance betwee	n
point P and bisecting	
point od of distance b/u	v
tay and -ay.	
<u> </u>	1

Mon Tue	Wed Thu Pri Sat Date: _/_	/20
3.0	(Applied Physics):-	
	Assignment 01:-	
	QNOZ:-	
	Explain the electric field	, Theore
	due to ring of charges?	
	Ans - dEVE /dEL	
-	Diagram:	
	X / X	
-	/ 2	
	*/ *	
	/***********	
	ds R	
	Explanation:	
	Consider a positively charged	
	ring having radius R' on which	
	positive charge 'ar' is distributed	
	uniformly. This is called linear	
	charge distribution. Take a small	

	length element do of ring baving charge day.	
777	The linear charge density is	
THE STATE	defined as:	
	$\lambda = dq$	
100	ds	
	dv= 2ds 0	-
	H is given:	
(B)	dEr= Kdar _ @	
	γ2	1 6
N. 10	dEm=Kdg/ 6	3
10 10	Y 2	
	Compairing @ and @	
	dEL = dEm	1. 1
	To find magnitude of electric field	
-	dE = JdEx + dEy (ii)	
	Component of dEL:-	
•	dElx = dEc coso	
	dEly = dEcsino	2010

Components of LEM .-. dEmon - dEm coso dEmy - dEm sind Resultant x - component: dEx = dEccoso + (- dEmcoso) dEx= dEcoro - dEmisso 1 dEn = 0 Resultant Y-component: dEy = dEisino + dEmsino (dEy = 2dEsino) Now eq. (ii) becomes dF = J(0) + (2d Esino) dE=2dEcsino dE= 2 Kdy sino : sin0=P=2 dE=2Kdgz

	From eq (1)	= 41
	dE = 2K2dsZ (iii)	
	Y 3	
10 200	The value of ris:	199
	6 c2 = a2 + b2	- 3
	$y^2 = z^2 + R^2$	
	Y= \(\frac{7}{2} + R^3 \)	
N. N.	$y = (z_1^2 + R^2)^{\frac{1}{2}}$	1
Time 1	Put r in (iii)	
1980	LE = 2K 2d12	2115
质。信	$(7^3 + R^2)^{3/2}$	
	Integrating	
	(dE = (2K 2dsz	
•	SdE = \(2 K \(\frac{2}{z^2 + R^2} \)^{3/2}	
6	E= 22K[2ds	
4411	$E = 2zK(\lambda ds)$ $(z'+R')^{(2)}$	3
	It = 27AK TRI (iv)	
	$\left(Z^3 + R^3\right)^{3/3}$	
	we Know that	
MA TO SERVICE	1=dq = dq-2ds =) q-2dsds	
	2	
		THE PARTY AND

The surface charge density is: dy-orda integrate: V= or Sda V- or (dadu) have to calculate electric field at point P having distance from the plane of disk. df. - Kda 2 Em= Kde Compairing: dFL = dEM calculate electric field resolve the electric field into components.

along x-axis -	
LEX = dELX +(EMX)	
dEx = Elx - Emx	
[dex = 0]	
alons y-axis	
dEy = Ely + Emy	
dEy = 2 Ecy = Ecm }	
dEy = 2Ely sino	
The magnitude of electric field is	
dE = VdEx + dEg	
dE=V(0)"+ (2Elysino)"	
dE= 2Elysino	
dE= 2Kdy sind Sino=P=Z	7
$-V^2$ $H \times$	
from eq (i)	
d[= 2Korda/2]	
. Y ² (Y)	
dE= 2ZKorda	
For 'r' By phytogeron Theorem:	
c2 = a+b2	
$v^2 = 7^2 + R^2$	

(dF=-02 C) 1 - 1 2E (z'+R');