Tableau de performances par Bande - MAIN4

Fatine BENTIRES ALJ - Alexia ZOUNIAS-SIRABELLA

1 Performances avec communications bloquantes

Dimensions de l'image et t	2	4	8	16
256x256, t:1000	4.17448 seconde(s)	4.39822 seconde(s)	4.89939 seconde(s)	7.54164 seconde(s)
512x512, t:40	1.37499 seconde(s)	0.636361 seconde(s)	0.449267 seconde(s)	0.656705 seconde(s)
8192 x 8192, t:20	150.232 seconde(s)	90.7177 seconde(s)	71.1949 seconde(s)	61.3136 seconde(s)

Commande tapée sans export et avec hostfile. Commande du type : mpirun -n 2 -hostfile hostfile -bynode ./bin/shalw

 $Courbe \ du \ rapport \ entre \ le \ nombre \ de \ processeurs \ et \ le \ temps \ d'exécution \ pour \ l'image \ 8192 \ x \ 8192, \ t : \ 20 \ (x=NP, \ y=temps)$

 $\mathbf{Speed\text{-}up}: \text{ rapport du temps séquentiel sur le temps parallèle. Image 8192 x 8192, } t:20 \text{ (x=NP, y=speed\text{-}up)}$

2 Performances avec communications non bloquantes

Dimensions de l'image et t	2	4	8	16
256x256, t:1000	2.4271 seconde(s)	1.35803 seconde(s)	2.5989 seconde(s)	8.92321 seconde(s)
512x512, t:40	0.892319 seconde(s)	0.678637 seconde(s)	0.417705 seconde(s)	0.810747 seconde(s)
8192 x 8192, t:20	153.478 seconde(s)	80.8468 seconde(s)	68.1585 seconde(s)	45.435 seconde(s)

Temps de calcul en fonction du nombre de processeurs (x=NP, y=temps)

 $\mathbf{Speed\text{-}up} \text{ avec isend et irecv } (x = NP, \ y = \text{speed\text{-}up})$

Remarque: Dans les deux cas, on observe pour l'image de dimension 8192 x 8192 un temps de calcul qui diminue lorsque le nombre de processeurs augmente. De plus, le speed-up semble à peu près linéaire ce qui cohérent avec les résultats attendus.

Concernant l'implémentation, celle avec les communications non bloquantes semble plus rapide que celle avec les communications bloquantes (de quelques secondes).