SBML Model Report

Model name: "Conant2007_WGD_glycolysis_2A3AB"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following three authors: Gavin Conant¹, Lukas Endler² and Kenneth Wolfe³ at August sixth 2008 at 10:23 a.m. and last time modified at May 16th 2012 at 2:25 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	25
events	0	constraints	0
reactions	19	function definitions	0
global parameters	11	unit definitions	8
rules	0	initial assignments	0

Model Notes

This a model from the article:

Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Conant GC, Wolfe KH Mol. Syst. Biol. [2007; Volume: 3 (Issue:)]: 129 17667951,

¹Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland, conantg@tcd.ie

²EMBL-EBI, lukas@ebi.ac.uk

³Smurfit Institute of Genetics, University of Dublin, Trinity College, khwolfe@tcd.ie

Abstract:

After whole-genome duplication (WGD), deletions return most loci to single copy. However, duplicate loci may survive through selection for increased dosage. Here, we show how the WGD increased copy number of some glycolytic genes could have conferred an almost immediate selective advantage to an ancestor of Saccharomyces cerevisiae, providing a rationale for the success of the WGD. We propose that the loss of other redundant genes throughout the genome resulted in incremental dosage increases for the surviving duplicated glycolytic genes. This increase gave post-WGD yeasts a growth advantage through rapid glucose fermentation; one of this lineage's many adaptations to glucose-rich environments. Our hypothesis is supported by data from enzyme kinetics and comparative genomics. Because changes in gene dosage follow directly from post-WGD deletions, dosage selection can confer an almost instantaneous benefit after WGD, unlike neofunctionalization or subfunctionalization, which require specific mutations. We also show theoretically that increased fermentative capacity is of greatest advantage when glucose resources are both large and dense, an observation potentially related to the appearance of angiosperms around the time of WGD.

The original model submitted by the authors was slightly altered and now comprises the models originally submitted as MODEL2426780967, MODEL2427021978, MODEL2427095802. It reproduces figures 2A,3A and 3B from the publication.

This model uses the glycolysis model from Pritchard and Kell (2002) with an additional parameter, **WGD_E**, to adjust for the differing enzyme conzentrations before the whole genome duplication (WGD) and parameters **fV_xxx** that adjust the **Vmax** of the different reactions (xxx eg. HXT or PYK).

Figure 3A from the article can be reproduced by changing the value of the parameters **fV_xxx** to 0.9 individually, with xxx signifying the different enzymes (HXT, HXK ...)

Figure 3B from the publication can be reproduced by setting the parameter **WGD_E** to 0.75 and individually setting the parameters **fV_xxx** to 1.333.

To reproduce figure 2A from the article change the parameter **WGD_E** in the range between 0.65 and 1.0.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2012 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of eleven unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name minute

Definition 60 s

2.2 Unit substance

Name mmol

Definition mmol

2.3 Unit mM

Name mM

Definition $1^{-1} \cdot mmol$

2.4 Unit mmpmin

Name mmolepermin

Definition $mmol \cdot (60 \text{ s})^{-1}$

2.5 Unit mMpmin

Name mMpermin

Definition $mmol \cdot (60 \text{ s})^{-1} \cdot l^{-1}$

2.6 Unit pmin

Name permin

Definition $(60 \text{ s})^{-1}$

2.7 Unit lpmin

Name permin

Definition $1 \cdot (60 \text{ s})^{-1}$

2.8 Unit pmMpmin

Name permMpermin

Definition $mmol^{-1} \cdot (60 \text{ s})^{-1} \cdot 1$

2.9 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.10 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.11 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cyto	cytoplasm		3	1	litre	Ø	

3.1 Compartment cyto

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

4 Species

This model contains 25 species. The boundary condition of eight of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
10	1 tunie	Comparation	Don't ca cint	Constant	Condi-
					tion
GLCi		cyto	$mmol \cdot l^{-1}$		
ATP		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
G6P		cyto	$\operatorname{mmol} \cdot 1^{-1}$		\Box
ADP		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
F6P		cyto	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
F16bP		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
F26bP	Fru2,6-P2	cyto	$\operatorname{mmol} \cdot 1^{-1}$		\square
AMP		cyto	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
DHAP		cyto	$\text{mmol} \cdot l^{-1}$		
GAP		cyto	$\text{mmol} \cdot l^{-1}$		
NAD		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
BPG		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
NADH		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
P3G		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
P2G		cyto	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
PEP		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
PYR		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
AcAld		cyto	$\operatorname{mmol} \cdot 1^{-1}$		
GLCo		cyto	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
C02		cyto	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
EtOH		cyto	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Glycerol		cyto	$mmol \cdot l^{-1}$		$ \overline{\mathbf{Z}} $
Glycogen		cyto	$\text{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
Trehalose		cyto	$\operatorname{mmol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
Succinate		cyto	$\operatorname{mmol} \cdot l^{-1}$		$ \overline{\mathbf{Z}} $

5 Parameters

This model contains eleven global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
WGD_E	WGD enzyme conc		1.0	dimensionless	$\overline{\hspace{1.5cm}}$
	change				
fV_HXT			1.0	dimensionless	\square
fV_HXK			1.0	dimensionless	\square
${ t fV}_{-}{ t TDH}$			1.0	dimensionless	
fV_ENO			1.0	dimensionless	
${ t fV_PFK}$			1.0	dimensionless	
${ t fV}_{ t FBA}$			1.0	dimensionless	$\overline{\checkmark}$
fV_PYK			1.0	dimensionless	$\overline{\checkmark}$
fV_PGK			1.0	dimensionless	$\overline{\checkmark}$
${ t fV_GPM}$			1.0	dimensionless	$\overline{\mathbf{Z}}$
fV_PGI			1.0	dimensionless	$\overline{\mathbf{Z}}$

6 Reactions

This model contains 19 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	НХТ	HXT	GLCo ← GLCi	
2	HXK	HXK	$GLCi + ATP \Longrightarrow G6P + ADP$	
3	PGI	PGI	$G6P \rightleftharpoons F6P$	
4	PFK	PFK	$ATP + F6P \xrightarrow{AMP, F26bP} ADP + F16bP$	
5	FBA	FBA	$F16bP \Longrightarrow DHAP + GAP$	
6	TPI	TPI	$DHAP \Longrightarrow GAP$	
7	TDH	TDH	$GAP + NAD \Longrightarrow BPG + NADH$	
8	PGK	PGK	$ADP + BPG \Longrightarrow ATP + P3G$	
9	GPM	GPM	$P3G \Longrightarrow P2G$	
10	ENO	ENO	$P2G \Longrightarrow PEP$	
11	PYK	PYK	$ADP + PEP \Longrightarrow ATP + PYR$	
12	PDC	PDC	$PYR \longrightarrow AcAld + CO2$	
13	ADH	ADH	$NAD + EtOH \Longrightarrow NADH + AcAld$	
14	ATPase		$ATP \longrightarrow ADP$	
15	AK	adenylate kinase	$2 ADP \Longrightarrow ATP + AMP$	
16	G3PDH	G3PDH	$DHAP + NADH \Longrightarrow NAD + Glycerol$	
17	glycogen_branch	glycogenbranch	$ATP + G6P \longrightarrow ADP + Glycogen$	
18	${\tt trehalose_synth}$	trehalose_synthesis	$ATP + 2 G6P \longrightarrow ADP + Trehalose$	
19	${ t succinate_syn}$	succinate_synthesis	$3 \text{ NAD} + 2 \text{ AcAld} \longrightarrow 3 \text{ NADH} + \text{Succinate}$	

6.1 Reaction HXT

This is a reversible reaction of one reactant forming one product.

Name HXT

Reaction equation

$$GLCo \rightleftharpoons GLCi$$
 (1)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
GLCo		

Product

Table 7: Properties of each product.

Id	Name	SBO
GLCi		

Kinetic Law

$$v_{1} = \frac{\frac{V_{max_1 \cdot fV_HXT \cdot WGD_E \cdot ([GLCo] - [GLCi])}{Kglc_1}}{1 + \frac{[GLCo] + [GLCi]}{Kglc_1} + \frac{Ki_1 \cdot [GLCo] \cdot [GLCi]}{Kglc_1^{2}}}$$
(2)

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_1				$mmol \cdot (60 s)^{-1}$	$\overline{m{m{ec Z}}}$
$\tt Kglc1$			1.192	$1^{-1} \cdot \text{mmol}$	
$Ki_{-}1$			0.910	dimensionless	

6.2 Reaction HXK

This is a reversible reaction of two reactants forming two products.

Name HXK

Reaction equation

$$GLCi + ATP \Longrightarrow G6P + ADP$$
 (3)

Reactants

Table 9: Properties of each reactant.

Id	Name	SBO
GLCi		
ATP		

Products

Table 10: Properties of each product.

Id	Name	SBO
G6P		
ADP		

Kinetic Law

$$v_{2} = \frac{\text{vol}\left(\text{cyto}\right) \cdot \text{WGD_E} \cdot \text{fV_HXK} \cdot \text{Vmax_2} \cdot \left(\frac{[\text{GLCi}] \cdot [\text{ATP}]}{\text{Kglc_2} \cdot \text{Katp_2}} - \frac{[\text{G6P}] \cdot [\text{ADP}]}{\text{Kglc_2} \cdot \text{Katp_2} \cdot \text{Katp_2}}\right)}{\left(1 + \frac{[\text{GLCi}]}{\text{Kglc_2}} + \frac{[\text{G6P}]}{\text{Kg6p_2}}\right) \cdot \left(1 + \frac{[\text{ATP}]}{\text{Katp_2}} + \frac{[\text{ADP}]}{\text{Kadp_2}}\right)}$$
(4)

Table 11: Properties of each parameter.

		_			
Id	Name	SBO	Value	Unit	Constant
Vmax_2			236.70	$\begin{array}{c} \text{mmol } \cdot (60 \text{ s})^{-1} \cdot \\ I^{-1} \end{array}$	Ø
Kglc_2			0.08	$1^{-1} \cdot mmol$	
Katp_2			0.15	$1^{-1} \cdot \text{mmol}$	\square
${ m Keq}_{-}2$			2000.00	dimensionless	\square

Id	Name	SBO	Value	Unit	Constant
Kg6p_2				$1^{-1} \cdot \text{mmol}$	
${\tt Kadp_2}$			0.23	$1^{-1} \cdot \text{mmol}$	$ \overline{\mathcal{L}} $

6.3 Reaction PGI

This is a reversible reaction of one reactant forming one product.

Name PGI

Reaction equation

$$G6P \rightleftharpoons F6P$$
 (5)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
G6P		

Product

Table 13: Properties of each product.

Id	Name	SBO
F6P		

Kinetic Law

$$v_{3} = \frac{\text{vol}(\text{cyto}) \cdot \text{Vmax}_3 \cdot \text{fV}_\text{PGI} \cdot \text{WGD}_\text{E} \cdot \left(\frac{[\text{G6P}]}{\text{Kg6p}_3} - \frac{[\text{F6P}]}{\text{Kg6p}_3 \cdot \text{Keq}_3}\right)}{1 + \frac{[\text{G6P}]}{\text{Kg6p}_3} + \frac{[\text{F6P}]}{\text{Kf6p}_3}}$$
(6)

Table 14: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_3			1056.00	$mmol \cdot (60 \text{ s})^{-1} \cdot 1^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Kg6p_3			1.40	$1^{-1} \cdot mmol$	
Keq_3			0.29	dimensionless	
$Kf6p_3$			0.30	$1^{-1} \cdot \text{mmol}$	

6.4 Reaction PFK

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Name PFK

Reaction equation

$$ATP + F6P \xrightarrow{AMP, F26bP} ADP + F16bP$$
 (7)

Reactants

Table 15: Properties of each reactant.

Id	Name	SBO
ATP		
F6P		

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
AMP		
F26bP	Fru2,6-P2	

Products

Table 17: Properties of each product.

Id	Name	SBO
ADP		
F16bP		

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = vol\left(cyto\right) \cdot Vmax_4 \cdot fV_PFK \cdot WGD_E \\ gR_4 \cdot \frac{[F6P]}{Kf6p_4} \cdot \frac{[ATP]}{Katp_4} \cdot \left(1 + \frac{[F6P]}{Kf6p_4} + \frac{[ATP]}{Katp_4} + \frac{\frac{gR_4 \cdot [F6P]}{Kf6p_4} \cdot [ATP]}{Katp_4}\right) \\ \cdot \frac{\left(1 + \frac{[F6P]}{Kf6p_4} + \frac{[ATP]}{Katp_4} + \frac{\frac{gR_4 \cdot [F6P]}{Kf6p_4} \cdot [ATP]}{Katp_4}\right)^{2} + L0_4 \cdot \left(\frac{1 + \frac{Ciatp_4 \cdot [ATP]}{Kiatp_4}}{1 + \frac{[ATP]}{Kiatp_4}}\right)^{2} \cdot \left(\frac{1 + \frac{Ciap_4 \cdot [AMP]}{Kamp_4}}{1 + \frac{[AMP]}{Kamp_4}}\right)^{2} \cdot \left(\frac{1 + \frac{Ci26_4 \cdot [F26bP]}{Kf26_4} + \frac{Cf16_4 \cdot [F16bP]}{Kf16_4}}{1 + \frac{[F16bP]}{Kf26_4} + \frac{[F16bP]}{Kf16_4}}\right)^{2}$$

Table 18: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_4			110.000	$\begin{array}{c} \text{mmol} \cdot (60 \text{s})^{-1} \cdot \\ 1^{-1} \end{array}$	Ø
$gR_{-}4$			5.120	dimensionless	
${\tt Kf6p_4}$			0.100	$1^{-1} \cdot \text{mmol}$	\square
${\tt Katp_4}$			0.710	$1^{-1} \cdot \text{mmol}$	
$L0_4$			0.660	dimensionless	
${\tt Ciatp_4}$			100.000	dimensionless	
${\tt Kiatp_4}$			0.650	$1^{-1} \cdot \text{mmol}$	
\mathtt{Camp}_{-4}			0.085	dimensionless	
${\tt Kamp_4}$			0.100	$1^{-1} \cdot \text{mmol}$	
Cf26_4			0.017	dimensionless	
Kf26_4			$6.82 \cdot 10^{-4}$	$1^{-1} \cdot \text{mmol}$	
$Cf16_4$			0.397	dimensionless	$\overline{\mathbf{Z}}$
$Kf16_4$			0.111	$1^{-1} \cdot \text{mmol}$	$\overline{\mathbf{Z}}$
$\mathtt{Catp}_{-}4$			3.000	dimensionless	$ \overline{\mathbf{Z}} $

6.5 Reaction FBA

This is a reversible reaction of one reactant forming two products.

Name FBA

Reaction equation

$$F16bP \Longrightarrow DHAP + GAP \tag{9}$$

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
F16bP		

Products

Table 20: Properties of each product.

Id	Name	SBO
DHAP		
GAP		

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = \frac{\text{vol}(\text{cyto}) \cdot \text{Vmax}_5 \cdot \text{fV}_\text{FBA} \cdot \text{WGD}_\text{E} \cdot \left(\frac{[\text{F16bP}]}{\text{Kf16bp}_5} - \frac{[\text{DHAP}] \cdot [\text{GAP}]}{\text{Kf16bp}_5 \cdot \text{Keq}_5}\right)}{1 + \frac{[\text{F16bP}]}{\text{Kf16bp}_5} + \frac{[\text{DHAP}]}{\text{Kdhap}_5} + \frac{[\text{GAP}]}{\text{Kdhap}_5} + \frac{[\text{F16bP}] \cdot [\text{GAP}]}{\text{Kdhap}_5 \cdot \text{Kgap}_5}} + \frac{[\text{DHAP}] \cdot [\text{GAP}]}{\text{Kdhap}_5 \cdot \text{Kgap}_5}}$$
(10)

Table 21: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_5			94.690	$\begin{array}{c} \text{mmol } \cdot (60 \text{s})^{-1} \cdot \\ 1^{-1} \end{array}$	Ø
Kf16bp_5			0.300	$1^{-1} \cdot \text{mmol}$	
$Keq_{-}5$			0.069	$1^{-1} \cdot \text{mmol}$	
Kdhap_5			2.000	$1^{-1} \cdot \text{mmol}$	$\overline{\mathbf{Z}}$
${\tt Kgap_5}$				$1^{-1} \cdot \text{mmol}$	
Kigap_5			10.000	$1^{-1} \cdot \text{mmol}$	

6.6 Reaction TPI

This is a reversible reaction of one reactant forming one product.

Name TPI

Reaction equation

$$DHAP \rightleftharpoons GAP \tag{11}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
DHAP		

Product

Table 23: Properties of each product.

Id	Name	SBO
GAP		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mmol}$

$$v_6 = \text{vol}(\text{cyto}) \cdot (\text{k1_6} \cdot [\text{DHAP}] - \text{k2_6} \cdot [\text{GAP}])$$
 (12)

Table 24: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1_6			450000.000	$(60 \text{ s})^{-1}$	
$k2_6$			10^{7}	$(60 \text{ s})^{-1}$	

6.7 Reaction TDH

This is a reversible reaction of two reactants forming two products.

Name TDH

Reaction equation

$$GAP + NAD \Longrightarrow BPG + NADH \tag{13}$$

Reactants

Table 25: Properties of each reactant.

Id	Name	SBO
GAP		
NAD		

Products

Table 26: Properties of each product.

Id	Name	SBO
BPG		
NADH		

Kinetic Law

Derived unit contains undeclared units

$$v_{7} = \frac{\text{vol}\left(\text{cyto}\right) \cdot \text{C}_{\text{-}}7 \cdot \left(\frac{\text{Vmaxf}_{\text{-}}7 \cdot \text{fV}_{\text{-}}\text{TDH} \cdot \text{WGD}_{\text{-}}\text{E} \cdot [\text{GAP}] \cdot [\text{NAD}]}{\text{Kgap}_{\text{-}}7 \cdot \text{Knad}_{\text{-}}7} - \frac{\text{Vmaxr}_{\text{-}}7 \cdot \text{fV}_{\text{-}}\text{TDH} \cdot \text{WGD}_{\text{-}}\text{E} \cdot [\text{BPG}] \cdot [\text{NADH}]}{\text{Kbpg}_{\text{-}}7 \cdot \text{Knadh}_{\text{-}}7}\right)}{\left(1 + \frac{[\text{GAP}]}{\text{Kgap}_{\text{-}}7} + \frac{[\text{BPG}]}{\text{Kbpg}_{\text{-}}7}\right) \cdot \left(1 + \frac{[\text{NAD}]}{\text{Knad}_{\text{-}}7} + \frac{[\text{NADH}]}{\text{Knadh}_{\text{-}}7}\right)}$$

$$\tag{14}$$

Table 27: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
C_7			1.000	dimensionless	\overline{Z}
${\tt Vmaxf}_{\tt -}{\tt 7}$			1152.000	$\begin{array}{c} \text{mmol} \cdot (60 \text{ s})^{-1} \cdot \\ 1^{-1} \end{array}$	\square
${\tt Kgap_7}$			0.210	$1^{-1} \cdot \text{mmol}$	
${\tt Knad}_{\tt -}{\tt 7}$			0.090	$1^{-1} \cdot \text{mmol}$	$ \overline{\mathbf{Z}} $
${\tt Vmaxr}_{\tt -}{\tt 7}$			6719.000	$\begin{array}{c} \text{mmol} \cdot (60 \text{ s})^{-1} \cdot \\ 1^{-1} \end{array}$	\square
$Kbpg_{-}7$			0.010	$1^{-1} \cdot mmol$	
Knadh_7			0.060	$1^{-1} \cdot \text{mmol}$	$\overline{\mathbf{Z}}$

6.8 Reaction PGK

This is a reversible reaction of two reactants forming two products.

Name PGK

Reaction equation

$$ADP + BPG \Longrightarrow ATP + P3G \tag{15}$$

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
ADP		
BPG		

Products

Table 29: Properties of each product.

Id	Name	SBO
ATP		
P3G		

Kinetic Law

$$v_{8} = \frac{\text{vol}\left(\text{cyto}\right) \cdot \text{fV_PGK} \cdot \text{Vmax_8} \cdot \text{WGD_E} \cdot \frac{\text{Keq_8} \cdot [\text{BPG}] \cdot [\text{ADP}] - [\text{P3G}] \cdot [\text{ATP}]}{\text{Kp3g_8} \cdot \text{Katp_8}}}{\left(1 + \frac{[\text{BPG}]}{\text{Kbpg_8}} + \frac{[\text{P3G}]}{\text{Kp3g_8}}\right) \cdot \left(1 + \frac{[\text{ADP}]}{\text{Kadp_8}} + \frac{[\text{ATP}]}{\text{Katp_8}}\right)}$$

$$(16)$$

Table 30: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_8			1288.000	$\begin{array}{c} \text{mmol } \cdot (60 \text{ s})^{-1} \cdot \\ I^{-1} \end{array}$	Z
Keq_8			3200.000	dimensionless	
Kp3g_8			0.530	$1^{-1} \cdot \text{mmol}$	
Katp_8			0.300	$1^{-1} \cdot \text{mmol}$	
Kbpg_8			0.003	$1^{-1} \cdot \text{mmol}$	
Kadp_8			0.200	$1^{-1} \cdot \text{mmol}$	Z

6.9 Reaction GPM

This is a reversible reaction of one reactant forming one product.

Name GPM

Reaction equation

$$P3G \rightleftharpoons P2G$$
 (17)

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
P3G		

Product

Table 32: Properties of each product.

Id	Name	SBO
P2G		

Kinetic Law

$$v_{9} = \frac{\text{vol}(\text{cyto}) \cdot \text{Vmax}_9 \cdot \text{fV}_\text{GPM} \cdot \text{WGD}_\text{E} \cdot \left(\frac{[P3G]}{Kp3g_9} - \frac{[P2G]}{Kp3g_9 \cdot \text{Keq}_9}\right)}{1 + \frac{[P3G]}{Kp3g_9} + \frac{[P2G]}{Kp2g_9}}$$
(18)

Table 33: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_9			2585.00	$\begin{array}{c} \text{mmol } \cdot (60 \text{ s})^{-1} \cdot \\ 1^{-1} \end{array}$	
$Kp3g_9$			1.20	$l^{-1} \cdot mmol$	
${\tt Keq_9}$			0.19	dimensionless	
Kp2g_9			0.08	$1^{-1} \cdot \text{mmol}$	

6.10 Reaction ENO

This is a reversible reaction of one reactant forming one product.

Name ENO

Reaction equation

$$P2G \rightleftharpoons PEP$$
 (19)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
P2G		

Product

Table 35: Properties of each product.

Id	Name	SBO
PEP		

Kinetic Law

$$v_{10} = \frac{\text{vol}(\text{cyto}) \cdot \text{Vmax}_{-}10 \cdot \text{fV}_{-}\text{ENO} \cdot \text{WGD}_{-}\text{E} \cdot \left(\frac{[\text{P2G}]}{\text{Kp2g}_{-}10} - \frac{[\text{PEP}]}{\text{Kp2g}_{-}10 \cdot \text{Keq}_{-}10}\right)}{1 + \frac{[\text{P2G}]}{\text{Kp2g}_{-}10} + \frac{[\text{PEP}]}{\text{Kpep}_{-}10}}$$
(20)

Table 36: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_10			201.60	$\begin{array}{c} \text{mmol } \cdot (60 \text{s})^{-1} \cdot \\ 1^{-1} \end{array}$	Ø
Kp2g_10			0.04	$1^{-1} \cdot mmol$	
$\mathrm{Keq}_{-}10$				dimensionless	
${\rm Kpep}_{-}10$			0.50	$1^{-1} \cdot \text{mmol}$	

6.11 Reaction PYK

This is a reversible reaction of two reactants forming two products.

Name PYK

Reaction equation

$$ADP + PEP \Longrightarrow ATP + PYR \tag{21}$$

Reactants

Table 37: Properties of each reactant.

Id	Name	SBO
ADP		
PEP		

Products

Table 38: Properties of each product.

Id	Name	SBO
ATP		
PYR		

Kinetic Law

$$v_{11} = \frac{\text{vol}\left(\text{cyto}\right) \cdot \text{Vmax}_11 \cdot \text{fV}_\text{PYK} \cdot \text{WGD}_\text{E} \cdot \left(\frac{[\text{PEP}]\cdot[\text{ADP}]}{\text{Kpep}_11 \cdot \text{Kadp}_11} - \frac{[\text{PYR}]\cdot[\text{ATP}]}{\text{Kpep}_11 \cdot \text{Kadp}_11 \cdot \text{Kadp}_11}\right)}{\left(1 + \frac{[\text{PEP}]}{\text{Kpep}_11} + \frac{[\text{PYR}]}{\text{Kpyr}_11}\right) \cdot \left(1 + \frac{[\text{ADP}]}{\text{Kadp}_11} + \frac{[\text{ATP}]}{\text{Katp}_11}\right)}$$

$$(22)$$

Table 39: Properties of each parameter.

Tuble 39. Troperties of each parameter.					
Id	Name	SBO	Value	Unit	Constant
Vmax_11			1000.00	$\begin{array}{c} \text{mmol } \cdot (60 \text{s})^{-1} \\ 1^{-1} \end{array}$	Z
Kpep_11			0.14	$1^{-1} \cdot \text{mmol}$	\square
Kadp_11			0.53	$1^{-1} \cdot \text{mmol}$	

Id	Name	SBO	Value	Unit	Constant
Keq_11				dimensionless	$ \mathbf{Z} $
${ t Kpyr}_{-}$ 11				$1^{-1} \cdot \text{mmol}$	
$\mathtt{Katp}_{-}11$			1.50	$1^{-1} \cdot \text{mmol}$	

6.12 Reaction PDC

This is an irreversible reaction of one reactant forming two products.

Name PDC

Reaction equation

$$PYR \longrightarrow AcAld + CO2 \tag{23}$$

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
PYR		

Products

Table 41: Properties of each product.

Id	Name	SBO
AcAld		
C02		

Kinetic Law

$$v_{12} = \frac{\text{vol}\left(\text{cyto}\right) \cdot \text{Vmax}_{-}12 \cdot \text{WGD}_{-}\text{E} \cdot \left(\frac{[\text{PYR}]}{\text{Kpyr}_{-}12}\right)^{\text{nH}_{-}12}}{1 + \left(\frac{[\text{PYR}]}{\text{Kpyr}_{-}12}\right)^{\text{nH}_{-}12}}$$
(24)

Table 42: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax_12			857.80	$\begin{array}{c} \text{mmol } \cdot (60 \text{ s})^{-1} \cdot \\ 1^{-1} \end{array}$	
Kpyr_12 nH_12				$1^{-1} \cdot mmol$ dimensionless	

6.13 Reaction ADH

This is a reversible reaction of two reactants forming two products.

Name ADH

Reaction equation

$$NAD + EtOH \Longrightarrow NADH + AcAld$$
 (25)

Reactants

Table 43: Properties of each reactant.

Id	Name	SBO
NAD		
EtOH		

Products

Table 44: Properties of each product.

Id	Name	SBO
NADH		
AcAld		

Kinetic Law

Derived unit contains undeclared units

 $v_{13} = \frac{v_{13} \cdot v_{01}(\text{cyto}) \cdot \text{Vmax}_{13} \cdot \text{WGD}_{-\text{E}} \cdot \left(\frac{[\text{EtOH}] \cdot [\text{NAD}]}{\text{Ketoh}_{-13} \cdot \text{Kinad}_{-13}} + \frac{[\text{NADH}] \cdot [\text{NADH}]}{\text{Kinad}_{-13} \cdot \text{Ketoh}_{-13}} + \frac{[\text{NADH}] \cdot [\text{NADH}]}{\text{Kinad}_{-13} \cdot \text{Ketoh}_{-13}} + \frac{[\text{NADH}] \cdot [\text{NADH}]}{\text{Kinad}_{-13} \cdot \text{Ketoh}_{-13}} + \frac{[\text{NADH}] \cdot [\text{NADH}]}{\text{Kinad}_{-13} \cdot \text{Kinad}_{-13} \cdot \text{Kinadh}_{-13}} + \frac{[\text{EtOH}] \cdot [\text{NADH}]}{\text{Kinad}_{-13} \cdot \text{Kinadh}_{-13}} + \frac{[\text{EtO$

Table 45: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
Vmax_13			209.500	$mmol \cdot (60 s)^{-1} \cdot$	\overline{Z}
				1^{-1}	
Ketoh_13			17.000	$1^{-1} \cdot \text{mmol}$	
Kinad_13			0.920	$1^{-1} \cdot \text{mmol}$	$ \overline{\mathbf{A}} $
$\mathrm{Keq}_{-}13$			$6.9\cdot10^{-5}$	dimensionless	
Knad_13			0.170	$1^{-1} \cdot \text{mmol}$	
$Knadh_13$			0.110	$1^{-1} \cdot \text{mmol}$	\square
Kinadh_13			0.031	$1^{-1} \cdot \text{mmol}$	
Kacald_13			1.110	$1^{-1} \cdot \text{mmol}$	
Kiacald_13			1.100	$1^{-1} \cdot \text{mmol}$	
$Kietoh_13$			90.000	$1^{-1} \cdot \text{mmol}$	

6.14 Reaction ATPase

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$ATP \longrightarrow ADP \tag{27}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
ATP		

Product

Table 47: Properties of each product.

Id	Name	SBO
ADP		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{14} = \text{vol}(\text{cyto}) \cdot \text{Katpase}_{-1}4 \cdot [\text{ATP}]$$
 (28)

Table 48: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Katpase_14			39.5	$(60 \text{ s})^{-1}$	Ø

6.15 Reaction AK

This is a reversible reaction of one reactant forming two products.

Name adenylate kinase

Reaction equation

$$2 ADP \Longrightarrow ATP + AMP \tag{29}$$

Reactant

Table 49: Properties of each reactant.

Id	Name	SBO
ADP		

Products

Table 50: Properties of each product.

Id	Name	SBO
ATP		
AMP		

Kinetic Law

24

Derived unit $(60 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{15} = \text{vol}(\text{cyto}) \cdot (\text{k1}_{-}15 \cdot [\text{ADP}] \cdot [\text{ADP}] - \text{k2}_{-}15 \cdot [\text{ATP}] \cdot [\text{AMP}])$$
(30)

Table 51: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1_15			45.0	$\begin{array}{c} \text{mmol}^{-1} \cdot (60 \text{ s})^{-1} \cdot \\ 1 \end{array}$	

Id	Name	SBO	Value	Unit	Constant
k2_15			100.0	$\begin{array}{c} \text{mmol}^{-1} \cdot (60 \text{ s})^{-1} \cdot \\ 1 \end{array}$	Ø

6.16 Reaction G3PDH

This is a reversible reaction of two reactants forming two products.

Name G3PDH

Reaction equation

$$DHAP + NADH \Longrightarrow NAD + Glycerol$$
 (31)

Reactants

Table 52: Properties of each reactant.

Id	Name	SBO
DHAP		
NADH		

Products

Table 53: Properties of each product.

Id	Name	SBO
NAD		
Glycerol		

Kinetic Law

$$v_{16} = \frac{\text{vol}\left(\text{cyto}\right) \cdot \text{Vmax}_{-}16 \cdot \text{WGD}_{-}\text{E} \cdot \left(\frac{[\text{DHAP}]}{\text{Kdhap}_{-}16} \cdot \frac{[\text{NADH}]}{\text{Knadh}_{-}16} - \frac{[\text{Glycerol}]}{\text{Kdhap}_{-}16} \cdot \frac{[\text{NAD}]}{\text{Knadh}_{-}16} \cdot \frac{1}{\text{Keq}_{-}16}\right)}{\left(1 + \frac{[\text{DHAP}]}{\text{Kdhap}_{-}16} + \frac{[\text{Glycerol}]}{\text{Kglycerol}_{-}16}\right) \cdot \left(1 + \frac{[\text{NADH}]}{\text{Knadh}_{-}16} + \frac{[\text{NAD}]}{\text{Knad}_{-}16}\right)}$$
(32)

Table 54: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
Vmax_16			47.110	$\begin{array}{c} \text{mmol } \cdot \ (60 \text{s})^{-1} \ \cdot \\ l^{-1} \end{array}$	Ø
$Kdhap_{-}16$				$1^{-1} \cdot mmol$	
Knadh_16			0.023	$1^{-1} \cdot \text{mmol}$	
Keq_16				dimensionless	
Kglycerol_16				$1^{-1} \cdot \text{mmol}$	
Knad_16			0.930	$1^{-1} \cdot \text{mmol}$	

6.17 Reaction glycogen_branch

This is an irreversible reaction of two reactants forming two products.

Name glycogenbranch

Reaction equation

$$ATP + G6P \longrightarrow ADP + Glycogen$$
 (33)

Reactants

Table 55: Properties of each reactant.

Id	Name	SBO
ATP		
G6P		

Products

Table 56: Properties of each product.

Id	Name	SBO
ADP		
Glycogen		

Kinetic Law

Derived unit $mmol \cdot (60 \text{ s})^{-1}$

$$v_{17} = \text{vol}(\text{cyto}) \cdot \text{KGLYCOGEN}_{-17}$$
 (34)

Table 57: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KGLYCOGEN_17			6.0	$\begin{array}{c} \text{mmol} \; \cdot \; (60 \text{s})^{-1} \; \cdot \\ \text{l}^{-1} \end{array}$	Ø

6.18 Reaction trehalose_synth

This is an irreversible reaction of two reactants forming two products.

Name trehalose_synthesis

Reaction equation

$$ATP + 2G6P \longrightarrow ADP + Trehalose$$
 (35)

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
ATP		
G6P		

Products

Table 59: Properties of each product.

Id	Name	SBO
ADP Trehalose		

Kinetic Law

Derived unit $mmol \cdot (60 \text{ s})^{-1}$

$$v_{18} = \text{vol}(\text{cyto}) \cdot \text{Ktrehalose}_{-}18$$
 (36)

Table 60: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Ktrehalose-			2.4	$\begin{array}{c} \text{mmol} \cdot \left(60 \text{s}\right)^{-1} \cdot \\ \text{l}^{-1} \end{array}$	Ø

6.19 Reaction succinate_syn

This is an irreversible reaction of two reactants forming two products.

Name succinate_synthesis

Reaction equation

$$3 \text{ NAD} + 2 \text{ AcAld} \longrightarrow 3 \text{ NADH} + \text{Succinate}$$
 (37)

Reactants

Table 61: Properties of each reactant.

Id	Name	SBO
NAD		
AcAld		

Products

Table 62: Properties of each product.

Id	Name	SBO
NADH		
Succinate		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{19} = \text{vol}(\text{cyto}) \cdot \text{k}_{-}19 \cdot [\text{AcAld}]$$
(38)

Table 63: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k_19			21.4	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species GLCi

Initial concentration $0.097652231064563 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in HXK and as a product in HXT).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLCi} = v_1 - v_2 \tag{39}$$

7.2 Species ATP

Initial concentration $2.52512746499271 \text{ mmol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in HXK, PFK, ATPase, glycogen_branch, trehalose_synth and as a product in PGK, PYK, AK).

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{ATP} = v_8 + v_{11} + v_{15} - v_2 - v_4 - v_{14} - v_{17} - v_{18} \tag{40}$$

7.3 Species G6P

Initial concentration $2.67504014044787 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in PGI, glycogen_branch, trehalose_synth and as a product in HXK).

$$\frac{\mathrm{d}}{\mathrm{d}t}G6P = v_2 - v_3 - v_{17} - 2v_{18} \tag{41}$$

7.4 Species ADP

Initial concentration $1.28198768168719 \text{ mmol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in PGK, PYK, AK and as a product in HXK, PFK, ATPase, glycogen_branch, trehalose_synth).

$$\frac{\mathrm{d}}{\mathrm{d}t}ADP = v_2 + v_4 + v_{14} + v_{17} + v_{18} - v_8 - v_{11} - 2v_{15}$$
(42)

7.5 Species F6P

Initial concentration $0.624976405532373 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in PFK and as a product in PGI).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{F6P} = v_3 - v_4 \tag{43}$$

7.6 Species F16bP

Initial concentration $6.22132076069411 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in FBA and as a product in PFK).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{F}16\mathrm{bP} = v_4 - v_5 \tag{44}$$

7.7 Species F26bP

Name Fru2,6-P2

Initial concentration $0.02 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in PFK), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{F}26\mathrm{b}\mathrm{P} = 0\tag{45}$$

7.8 Species AMP

Initial concentration $0.292884853320091 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a product in AK and as a modifier in PFK).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AMP} = v_{15} \tag{46}$$

7.9 Species DHAP

Initial concentration $1.00415254899644 \text{ } \text{mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in TPI, G3PDH and as a product in FBA).

$$\frac{d}{dt}DHAP = v_5 - v_6 - v_{16}$$
 (47)

7.10 Species GAP

Initial concentration $0.0451809175780963 \text{ mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in TDH and as a product in FBA, TPI).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GAP} = v_5 + v_6 - v_7 \tag{48}$$

7.11 Species NAD

Initial concentration $1.50329030201531 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in TDH, ADH, succinate_syn and as a product in G3PDH).

$$\frac{d}{dt}NAD = v_{16} - v_7 - v_{13} - 3v_{19}$$
(49)

7.12 Species BPG

Initial concentration $7.36873499865602 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in PGK and as a product in TDH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{BPG} = v_7 - v_8 \tag{50}$$

7.13 Species NADH

Initial concentration $0.0867096979846952 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in G3PDH and as a product in TDH, ADH, succinate_syn).

$$\frac{d}{dt}NADH = v_7 + v_{13} + 3v_{19} - v_{16}$$
 (51)

7.14 Species P3G

Initial concentration $0.885688538360659 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in GPM and as a product in PGK).

$$\frac{\mathrm{d}}{\mathrm{d}t} P3G = v_8 - v_9 \tag{52}$$

7.15 Species P2G

Initial concentration $0.127695817386632 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in ENO and as a product in GPM).

$$\frac{d}{dt}P2G = v_9 - v_{10} \tag{53}$$

7.16 Species PEP

Initial concentration $0.0632352144936527 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in PYK and as a product in ENO).

$$\frac{d}{dt}PEP = v_{10} - v_{11} \tag{54}$$

7.17 Species PYR

Initial concentration $1.81531251192736 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in PDC and as a product in PYK).

$$\frac{d}{dt}PYR = v_{11} - v_{12} \tag{55}$$

7.18 Species AcAld

Initial concentration $0.178140579850657 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in succinate_syn and as a product in PDC, ADH).

$$\frac{d}{dt}AcAld = v_{12} + v_{13} - 2v_{19}$$
 (56)

7.19 Species GLCo

Initial concentration $50 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in HXT), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLCo} = 0\tag{57}$$

7.20 Species CO2

Initial concentration $1 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in PDC), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CO2} = 0\tag{58}$$

7.21 Species Et OH

Initial concentration $50 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in ADH), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EtOH} = 0\tag{59}$$

7.22 Species Glycerol

Initial concentration $0.15 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in G3PDH), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glycerol} = 0\tag{60}$$

7.23 Species Glycogen

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in glycogen_branch), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glycogen} = 0 \tag{61}$$

7.24 Species Trehalose

Initial concentration $0 \text{ } mmol \cdot l^{-1}$

This species takes part in one reaction (as a product in trehalose_synth), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Trehalose} = 0 \tag{62}$$

7.25 Species Succinate

Initial concentration $0 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in succinate_syn), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Succinate} = 0 \tag{63}$$

 $\mathfrak{BML2}^{lA}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany