暗物质

暗物质是一种只通过引力相互作用、极弱的可能的弱相互作用参与宇宙动力学的物质成分。

暗物质不参与电磁相互作用(即不吸光、不发光、不反射光)

暗物质存在的证据

(1) 星系旋转曲线异常:

按牛顿引力理论,星系外围的恒星应转得更慢,但实际观察显示它们的转速远超预期,说明有额外"看不见"的质量在拉扯它们。

(2) 星系团中引力不足:

星系团中星系运动太快,仅靠可见物质无法束缚它们。

弗里茨·兹威基(1930s)最早提出"暗物质"来解释这一现象。

(3) 引力透镜效应:

大质量天体弯曲背景光形成"透镜"。

观测到的光线弯曲比可见质量预测的更强。

(4) 宇宙微波背景辐射 (CMB) 涨落模式:

精细的涨落结构表明宇宙中有大量不参与辐射相互作用的冷物质。

(5) 宇宙大尺度结构形成:

如果只有普通物质, 宇宙膨胀太快, 无法形成今天这样密集的星系结构。

暗物质候选者

- WIMPs (弱相互作用大质量粒子): 最经典模型, 例如超对称粒子 (中微子的一种扩展)
- 轴子 (Axions): 极轻的粒子,来自解决强CP问题的理论
- 类星体黑洞 (MACHOs) : 失败了, 暗物质不是由正常但不可见的天体组成的
- 中微子: 有质量, 但太轻、太"热"了, 不足以成为主导的暗物质

暗能量

在广义相对论框架中,暗能量可以看作是一种具有负压的流体或场,其压强 p 和能量密度 ρ 满足状态方程:

$$p = w\rho$$

当 w<-1/3 会导致宇宙加速膨胀。

$$-4\pi G
ho=3\left(H^2+\dot{H}
ight)$$

$$P_{\Lambda}=-
ho_{\Lambda}=-rac{\Lambda c^2}{8\pi G}$$

加速方程

$$\left|rac{\ddot{a}}{a}=rac{4\pi G}{3}\left(
ho+3p
ight)+rac{\Lambda c^{2}}{3}
ight|$$

Frieman 方程

$$H^2=rac{8\pi G}{3}
ho-rac{kc^2}{a^2}+rac{\Lambda c^2}{3}$$

Cosmic Formation and evolution

Time	era	event	Temp.K
1e-43s	Singularity	Big Bang	Infinity
1e-35s		Time, space, vacuum field	1e32
1e-6s	baryogenisis	hadronic, electroweak, interactions	1e13
1e-2s	Leptogenesis	Electron-positron annihilation	1e10
1min	nucleosynthesis	Helium formation	1e9
30min		Particles stop interacting	4 × 1e3
300kyrs	recombination	Atom forms, transparent universe	1e3
150Myrs		First generation stars, galaxies	
1Byrs		Second generation	

Main observations that favor Big Bang

- (1) Hubble law of redshift-distance
- (2) 3K CMBR
- (3) Light elements cosmic abundances
- (4) Age of the Universe

Hubble law

light source observed moving away \Longrightarrow shift to red from emitted light

分类:

Doppler redshift

Redshift from relative motion between object and observe

Gravitational redshift

Redshift occurs to light escaping deeper gravitational fields

Cosmological redshift

Universe expansion

Hubble law:

$$v = Hd$$

v-recession speed, d-distance, H-Hubble constant

In 1922, Huble discovered galaxies' Doppler lines are redshifted.

Explanation: The entire universe is expanding isotropically.

3K CMBR(宇宙微波背景辐射)

About 30000 years after big bang, the universe temperature dropped so electrons, nucleus and ions combined into neutral atoms. Photons decoupled from matter, in a state of hight T thermal equilibrium, the Planck distribution, Which survived to this as T drops. This is CMB

$$ds^2 = -dt^2 + a^2(t) (dx^2 + dy^2 + dz^2)$$

The future of the universe

R-W 线元

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + R^2(t)\left(rac{\mathrm{d}r^2}{1-kr^2} + r^2\mathrm{d} heta^2 + r^2\sin^2 heta\mathrm{d}arphi^2
ight)$$

 $r, \theta, \varphi\colon$ comoving coordinates

 $k = \mathrm{const}$: 3D space curvature

R=R(t): scale factor of the expanding universe. $R_0\equiv R(0)$ today.

Depending on the curvature factor and matter density of the universe.

• Cosmological redshift is not a Doppler effect but a spatial expansion effect.

• Recession speed can exceed light speed(do not violate SR).