

SME0822 Análise Multivariada e Aprendizado Não-Supervisionado

Aula 4a: Distribuição normal multivariada

Prof. Cibele Russo

cibele@icmc.usp.br

http://www.icmc.usp.br/~cibele

Baseado em Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. Prentice Hall.

Veja também https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Definição

O vetor $X_{p\times 1}=(X_1,\ldots,X_p)^{\top}$ tem **distribuição normal multivariada** (p-variada) se sua função densidade de probabilidade é dada por

$$f(\underline{\mathbf{x}}) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\underline{\mathbf{x}} - \underline{\boldsymbol{\mu}})^{\top} \Sigma^{-1}(\underline{\mathbf{x}} - \underline{\boldsymbol{\mu}})\right\},$$

com $-\infty < x_i < \infty$, i = 1, 2, ..., p e Σ uma matriz positiva definida.

Notação: $X \sim N_p(\mu, \Sigma)$.

Exemplo: normal bivariada

Definição alternativa

X tem distribuição normal p-variada se e somente se $\underline{a}^{\top}X$ tem distribuição normal univariada, para qualquer vetor fixo $\underline{a}_{p\times 1}$.

Obs: Se X é considerado um ponto aleatório no espaço p-dimensional, então $\underline{a}^{\top}X$ pode ser considerado uma projeção de X em um subespaço unidimensional.

Teorema 1

Se \underline{X} tem distribuição normal p-variada, e se $\underline{Y} = A\underline{X} + \underline{b}$, com $A_{q \times p}$ e $\underline{b}_{q \times 1}$ fixos (não aleatórios), então \underline{Y} tem distribuição normal q-variada.

Prova:

Seja $\mathcal{L}_{q \times 1}$ um vetor fixado.

Então
$$\underline{c}^{\top} \underline{Y} = \underline{c}^{\top} (A\underline{X} + \underline{b}) = \underline{a}^{\top} \underline{X} + \underline{c}^{\top} \underline{b} \text{ com } \underline{a} = \underline{c}^{\top} A.$$

Como $\underline{a}^{\top}\underline{X}$ tem distribuição normal pois \underline{X} tem distribuição normal, então para qualquer \underline{c} fixado, $\underline{c}^{\top}\underline{Y}$ tem distribuição normal.

Teorema 1

Se \underline{X} tem distribuição normal p-variada, e se $\underline{Y} = A\underline{X} + \underline{b}$, com $A_{q \times p}$ e $\underline{b}_{q \times 1}$ fixos (não aleatórios), então \underline{Y} tem distribuição normal q-variada.

Prova:

Seja $\underline{\varepsilon}_{q\times 1}$ um vetor fixado.

Então
$$\underline{c}^{\top} \underline{Y} = \underline{c}^{\top} (A\underline{X} + \underline{b}) = \underline{a}^{\top} \underline{X} + \underline{c}^{\top} \underline{b} \text{ com } \underline{a} = \underline{c}^{\top} A$$

Como $\underline{z}^{\top}\underline{\chi}$ tem distribuição normal pois $\underline{\chi}$ tem distribuição normal, então para qualquer \underline{c} fixado, $\underline{c}^{\top}\underline{\chi}$ tem distribuição normal.

Teorema 1

Se \underline{X} tem distribuição normal p-variada, e se $\underline{Y} = A\underline{X} + \underline{b}$, com $A_{q \times p}$ e $\underline{b}_{q \times 1}$ fixos (não aleatórios), então \underline{Y} tem distribuição normal q-variada.

Prova:

Seja $\underline{\varepsilon}_{q \times 1}$ um vetor fixado.

Então
$$\underline{c}^{\top} \underline{Y} = \underline{c}^{\top} (A\underline{X} + \underline{b}) = \underline{a}^{\top} \underline{X} + \underline{c}^{\top} \underline{b} \text{ com } \underline{a} = \underline{c}^{\top} A.$$

Como $\underline{a}^{\top}\underline{\chi}$ tem distribuição normal pois $\underline{\chi}$ tem distribuição normal, então para qualquer \underline{c} fixado, $\underline{c}^{\top}\underline{\chi}$ tem distribuição normal.

Teorema 1

Se \underline{X} tem distribuição normal p-variada, e se $\underline{Y} = A\underline{X} + \underline{b}$, com $A_{q \times p}$ e $\underline{b}_{q \times 1}$ fixos (não aleatórios), então \underline{Y} tem distribuição normal q-variada.

Prova:

Seja $\underline{\varepsilon}_{q\times 1}$ um vetor fixado.

Então
$$\underline{c}^{\top} \underline{Y} = \underline{c}^{\top} (A \underline{X} + \underline{b}) = \underline{a}^{\top} \underline{X} + \underline{c}^{\top} \underline{b} \text{ com } \underline{a} = \underline{c}^{\top} A.$$

Como $\underline{a}^{\top} \underline{\mathcal{X}}$ tem distribuição normal pois $\underline{\mathcal{X}}$ tem distribuição normal, então para qualquer \underline{c} fixado, $\underline{c}^{\top} \underline{\mathcal{Y}}$ tem distribuição normal.

Corolário

Qualquer subconjunto de elementos de um vetor χ com distribuição normal multivariada tem distribuição normal multivariada. Em particular, cada elemento unidimensional tem distribuição normal univariada.

Obs: Para o Teorema 1 e Corolário, a matriz de variâncias e covariâncias de X, Σ , é suposta de posto completo.

Teorema 2

Se $X \sim N_p(\underline{\mu}, \Sigma)$, com $\Sigma > 0$ e se $Y = AX + \underline{b}$, com $A_{q \times p}$ e $\underline{b}_q \times 1$ fixos (não aleatórios), então $Y \sim N_q(A\mu + \underline{b}, A\Sigma A^\top)$.

Corolário 1

Se $X \sim N_p(\underline{\mu}, \Sigma)$, com $\Sigma > 0$ e se $Y = \underline{\tilde{g}}^\top X$, com $\underline{\tilde{g}}_{p \times 1}$ fixo, então $Y \sim N(\underline{\tilde{g}}^\top \mu, \underline{\tilde{g}}^\top \Sigma \underline{\tilde{g}})$ (normal univariada).

Corolário 2

Se
$$X \sim N_p(\underline{\widetilde{\mu}}, \Sigma)$$
, com $\Sigma > 0$ e se $Z = \Sigma^{-1/2}(X - \underline{\widetilde{\mu}})$, então $Z \sim N_p(\underline{0}, I_p)$. Além disso, $(X - \underline{\widetilde{\mu}})^\top \Sigma^{-1}(X - \underline{\widetilde{\mu}}) = \sum_{i=1}^p Z_i^2 \sim \chi_p^2$.

Corolário 1

Se $\underline{X} \sim N_p(\underline{\mu}, \Sigma)$, com $\Sigma > 0$ e se $Y = \underline{\tilde{g}}^\top \underline{X}$, com $\underline{\tilde{g}}_{p \times 1}$ fixo, então $Y \sim N(\underline{\tilde{g}}^\top \underline{\mu}, \underline{\tilde{g}}^\top \Sigma \underline{\tilde{g}})$ (normal univariada).

Corolário 2

Se
$$X \sim N_p(\underline{\mu}, \Sigma)$$
, com $\Sigma > 0$ e se $Z = \Sigma^{-1/2}(X - \underline{\mu})$, então

$$\underline{Z} \sim N_p(\underline{0}, I_p)$$
. Além disso, $(\underline{X} - \underline{\mu})^{\top} \Sigma^{-1} (\underline{X} - \underline{\mu}) = \sum_{i=1}^p Z_i^2 \sim \chi_p^2$.

Teorema 3

Se $X \sim N_p(\mu, \Sigma)$, $\Sigma > 0$, então sua função característica é dada por

$$\varphi_{X}(\underline{t}) = \exp\{i\underline{t}^{\top}\underline{\mu} - \frac{1}{2}\underline{t}^{\top}\Sigma\underline{t}\}\$$

Prova em Mardia et al. (1979) pág 61.

Exercício: Seja $X \sim N_p(\underline{\mu}, \Sigma)$. Mostre que $Y = \underline{c}^\top X \sim N(\underline{c}^\top \underline{\mu}, \underline{c}^\top \Sigma \underline{c})$, ou seja, normal univariada.

Teorema 4

- a. Dois vetores aleatórios com distribuição normal multivariada são independentes se e somente se eles são não-correlacionados.
- Para dois vetores conjuntamente normais, a independência de todos os pares de seus componentes implica na independência dos dois vetores originais.

Teorema 4

- a. Dois vetores aleatórios com distribuição normal multivariada são independentes se e somente se eles são não-correlacionados.
- b. Para dois vetores conjuntamente normais, a independência de todos os pares de seus componentes implica na independência dos dois vetores originais.

Teorema 5

Se $X \sim N(\underline{\mu}, \Sigma)$ e duas matrizes A e B fixas, então AX e BX são independentes se e somente se $A\Sigma B^{\top} = 0$.

Resultado

Considere $\Breve{X} \sim \mathcal{N}(\mu, \Sigma)$ e a partição

$$\label{eq:continuous_energy} \begin{split} \ & \underbrace{\boldsymbol{X}}_{} = \begin{pmatrix} \underbrace{\boldsymbol{X}}_{1}(q \times 1) \\ \boldsymbol{X}_{2}((p-q) \times 1) \end{pmatrix} \sim N_p \left[\begin{pmatrix} \underbrace{\boldsymbol{\mu}}_{1}(q \times 1) \\ \underbrace{\boldsymbol{\mu}}_{2}((p-q) \times 1) \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \right]. \end{split}$$

Então

- a. $X_1 \sim N_q(\mu_1, \Sigma_{11})$
- b. X_1 e X_2 são independentes se e somente se $\Sigma_{12} = 0$.

Resultado: Distribuição condicional

Considere

$$\overset{\times}{X} = \begin{pmatrix} \overset{\times}{X_{1(q \times 1)}} \\ \overset{\times}{X_{2((p-q) \times 1)}} \end{pmatrix} \sim N_p \begin{bmatrix} \begin{pmatrix} \overset{\longleftarrow}{\mu_{1(q \times 1)}} \\ \overset{\longleftarrow}{\mu_{2((p-q) \times 1)}} \end{pmatrix}, \begin{pmatrix} \overset{\Sigma}{\Sigma_{11}} & \overset{\Sigma}{\Sigma_{12}} \\ \overset{\Sigma}{\Sigma_{21}} & \overset{\Sigma}{\Sigma_{22}} \end{pmatrix} \end{bmatrix},$$

com $\Sigma_{12} > 0$.

Então

$$\underline{X_1}|\underline{X_2} = \underline{x_2} \sim N_q(\underline{\mu_1} + \Sigma_{12}\Sigma_{22}^{-1}(\underline{x_2} - \underline{\mu_2}), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

Resultado

Considere $X \sim N_p(\underline{\mu}, \Sigma)$ com $|\Sigma| > 0$. Então

a.
$$(\mathbf{X} - \mathbf{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{X} - \mathbf{\mu}) \sim \chi_p^2$$
;

b.
$$P(X; (X - \mu)^{\top} \Sigma^{-1} (X - \mu) \leq \chi_{p,\alpha}^2) = 1 - \alpha$$

Definição

A quantidade $(X - \mu)^T \Sigma^{-1} (X - \mu)$ é chamada de **Distância de Mahalanobis** entre $X \in \mathcal{X}$ e μ .

Resultado

Considere $X \sim N_p(\mu, \Sigma)$ com $|\Sigma| > 0$. Então

a.
$$(\mathbf{X} - \mathbf{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{X} - \mathbf{\mu}) \sim \chi_p^2$$
;

b.
$$P(X; (X - \mu)^{\top} \Sigma^{-1} (X - \mu) \le \chi_{p,\alpha}^2) = 1 - \alpha$$

Definição

A quantidade $(X - \mu)^{\top} \Sigma^{-1} (X - \mu)$ é chamada de **Distância de Mahalanobis** entre X e μ .

Resultado

A densidade da normal multivariada é constante em superfícies em que

$$(\underbrace{x} - \underbrace{\mu})^{\top} \Sigma^{-1} (\underbrace{x} - \underbrace{\mu}) = c^2$$

e o conjunto dos \underline{x} que satisfazem a equação acima são os que compoem o contorno de densidade de probabilidade constante.

Propriedade:

Os **contornos de densidade constante** no caso normal multivariado são elipsoides definidos por \underline{x} tais que

$$(\underline{x} - \underline{\mu})^{\top} \Sigma^{-1} (\underline{x} - \underline{\mu}) = c^2.$$

Esses elipsóides têm centro em $\underline{\mu}$ e eixos em $\pm c\sqrt{\lambda_i}\underline{e}_i$ em que $(\lambda_i,\underline{e}_i)$ é um par de autovalor-autovetor de Σ .

Densidade da normal bivariada (elementos não correlacionados)

Exemplo: Contornos elípticos da normal bivariada

Densidade da normal bivariada (elementos correlacionados)

Contornos elípticos da normal bivariada (elementos correlacionados)

