Teoría de la integral y de la medida

Hoja \mathbf{n}^0 **5** (Medidas exteriores)

- 1.- Sea X un conjunto no vacío. Definimos $\mu^* : \mathcal{P}(X) \to [0,1]$ mediante $\mu^*(\emptyset) = 0$, $\mu^*(A) = 1$, si $A \neq \emptyset$, $A \subset X$. Comprobar que μ^* es una medida exterior. Determinar la σ álgebra de los conjuntos medibles.
- 2.- Sea X un conjunto no vacío. Definimos $\mu^*(\emptyset) = 0$, $\mu^*(X) = 2$, $\mu^*(A) = 1$ para $A \neq \emptyset$, $A \neq X$. Comprobar que μ^* es una medida exterior. Determinar la σ álgebra de los conjuntos medibles.
- 3.- Comprobar que si μ^* es una medida exterior finitamente aditiva entonces es numerablemente aditiva.
- 4.- Sea μ^* una medida exterior, sea H un conjunto μ^* -medible, sea μ_H^* la restricción de μ^* a $\mathcal{P}(H)$.
 - a) Comprobar que μ_H^* es una medida exterior en H.
 - b) Comprobar que $A \subset H$ es μ_H^* -medible si y solo si es μ^* -medible
- 5.- Si en el ejercicio 4) se suprime la hipótesis de que H sea μ^* -medible, ¿qué partes seguirían siendo ciertas y cuales fallarían?
- 6.- Sea μ^* una medida exterior, sean $\{A_j\}$ una sucesión de conjuntos μ^* -medibles disjuntos. Probar que

$$\mu^* \left(E \bigcap \left(\bigcup_{j=1}^{\infty} A_j \right) \right) = \sum_{j=1}^{\infty} \mu^* (E \cap A_j), \quad \forall E \subset X.$$

Esto aparece en la demostración del Teorema de Caratheodory. (Sugerencia: Empezar considerando que A_1 es medible y tomando como conjunto de prueba $E \cap (\cup_1^{\infty} A_j)$.)

- 7.- Sea X un conjunto con un número infinito de elementos. Tomemos como clase recubridora \mathcal{C} , la formada por el vacío, el total y los conjuntos con un único elemento. Definimos $\rho(\emptyset)=0,\ \rho(X)=\infty$, $\rho(E)=1,$ si $E\in\mathcal{C},\ E\neq\emptyset,\ X$. Describir la medida exterior así obtenida. Estudiar la σ álgebra de los conjuntos medibles.
- 8.- Sea X un conjunto no-numerable. Sea \mathcal{C} la σ álgebra formada por los conjuntos numerables y no-numerables de complementario numerable.

Sea $\mu: \mathcal{C} \to [0, \infty]$ definida mediante $\mu(E) = \text{card } E$, si E es finito, $\mu(E) = \infty$ en otro caso.

- a) Probar que μ es una medida completa en \mathcal{C} .
- b) Estudiar la medida μ^* construida a partir de \mathcal{C} y μ .