

General information

Designation

Polyphenylene ether (PPE) [polyphenylene oxide (PPO)] + polystyrene alloy (impact modified) blend

Tradenames

Diamar; Luranyl; Noryl; Vestoran; Xyron

Typical uses

Electrical fittings; TV components; Washing Machine components; car fascia panels; Calculator cases; VDU housings

Composition overview

Compositional summary

Miscible blend of: Polyphenylene Ether (PPE) [Polyphenylene Oxide (PPO)] [(poly 2,6-dimethylphenylene ether, (C6H2(CH3)2O)n)] + Polystryrene (PS) or a High-Impact Polystryrene (PS-HI, SB). 50:50 mixture results in a Tg of about 150 deg C. More PPO raises Tg, more PS lowers Tg.

Material family Base material Additive

Polymer code

Plastic (thermoplastic, amorphous) PPE+PS (Polyphenylene ether + polystyrene blend) Impact modifier (PPE+PS)-I

Composition detail (polymers and natural materials)						
Polymer	85	-	95	%		
Impact modifier	5	-	15	%		
Price						
Price	* 1.68	-	2.3	USD/lb		
Physical properties						
Density	0.0459	-	0.0491	lb/in^3		
Mechanical properties						
Young's modulus	0.345	-	0.36	10^6 psi		
Yield strength (elastic limit)	* 5.6	-	6.4	ksi		
Tensile strength	7.01	-	8.01	ksi		
Elongation	32.6	-	37.6	% strain		
Compressive modulus	* 0.345	-	0.36	10^6 psi		
Compressive strength	* 9.53	-	10.5	ksi		
Flexural modulus	0.323	-	0.344	10^6 psi		
Flexural strength (modulus of rupture)	8.19	-	11	ksi		
Shear modulus	* 0.123	-	0.129	10^6 psi		
Bulk modulus	* 0.565	-	0.593	10^6 psi		
Poisson's ratio	* 0.391	-	0.406			
Shape factor	5.8					
Hardness - Vickers	* 11.6	-	13.2	HV		
Hardness - Rockwell M	88.6	-	97.7			
Hardness - Rockwell R	* 117	-	128			
Fatigue strength at 10^7 cycles	* 2.63	-	3.42	ksi		
Mechanical loss coefficient (tan delta)	* 0.0161	-	0.0168			

Impact & fracture properties

Fracture toughness	* 1.32	-	3.96	ksi.in^0.5
Impact strength, notched 23 °C	0.0208	_	0.0232	BTU/in^2

Thermal properties

PPE+PS alloy (impact modified)

Glass temperature	261	-	289	°F
Heat deflection temperature 0.45MPa	205	-	244	°F
Heat deflection temperature 1.8MPa	190	-	244	°F
Maximum service temperature	* 174	-	201	°F
Minimum service temperature	-67	-	-49	°F
Thermal conductivity	* 0.158	-	0.164	BTU.ft/hr.ft^2.°F
Specific heat capacity	* 0.344	-	0.358	BTU/lb.°F
Thermal expansion coefficient	* 60	-	61.2	µstrain/°F

Electrical properties

Electrical resistivity	* 3.3e20	-	3e21	µohm.cm
Dielectric constant (relative permittivity)	* 4.01	-	4.42	
Dissipation factor (dielectric loss tangent)	* 0.0121	-	0.0146	
Dielectric strength (dielectric breakdown)	511	-	551	V/mil
Comparative tracking index	150	-	225	V

Optical properties

Transparency	Transparent
--------------	-------------

Magnetic properties

IV	lagnetic t	type	lon-m	nagne	eti	C
----	------------	------	-------	-------	-----	---

Bio-data

RoHS (EU) compliant grades?	1
Food contact	Yes

Absorption & permeability

Water absorpt	ion @ 24 hrs	0.07	- 0.1	%

Processing properties

Polymer injection molding	Acceptable				
Polymer extrusion	Acceptable				
Polymer thermoforming	Unsuitable				
Linear mold shrinkage	0.545	-	0.66	%	
Melt temperature	352	-	550	°F	
Molding pressure range	9.98	-	14.9	ksi	

Durability

Durability	
Water (fresh)	Excellent
Water (salt)	Excellent
Weak acids	Excellent
Strong acids	Acceptable
Weak alkalis	Excellent
Strong alkalis	Acceptable
Organic solvents	Limited use
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Fair
Flammability	Highly flammable

Primary production energy, CO2 and water

i filliary production onergy, occ and water				
Embodied energy, primary production	* 5.07e4	-	5.59e4	BTU/lb
CO2 footprint, primary production	* 5.78	-	6.38	lb/lb
NOx creation	* 0.017	-	0.0188	lb/lb
SOx creation	* 0.0509	_	0.0563	lh/lh

Water usage	* 7.09e3	-	7.83e3	in^3/lb
Processing energy, CO2 footprint & water				
Polymer extrusion energy	* 2.51e3	-	2.77e3	BTU/lb
Polymer extrusion CO2	* 0.437	-	0.483	lb/lb
Polymer extrusion water	* 134	-	200	in^3/lb
Polymer molding energy	* 8.09e3	-	8.94e3	BTU/lb
Polymer molding CO2	* 1.41	-	1.56	lb/lb
Polymer molding water	* 350	-	525	in^3/lb
Coarse machining energy (per unit wt removed)	* 419	-	463	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.073	-	0.0807	lb/lb
Fine machining energy (per unit wt removed)	* 2.35e3	-	2.59e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.41	-	0.453	lb/lb
Grinding energy (per unit wt removed)	* 4.49e3	-	4.96e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.783	-	0.866	lb/lb
Recycling and end of life				
Recycle	✓			
Embodied energy, recycling	* 1.72e4	-	1.9e4	BTU/lb
CO2 footprint, recycling	* 1.96	-	2.17	lb/lb
Recycle fraction in current supply	0.1			%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 1.47e4	-	1.62e4	BTU/lb
Combustion CO2	* 2.97	-	3.12	lb/lb
Landfill	✓			
Biodegrade	×			

Notes

Other notes

Also known as: PPE, polyphenylene ether

Links

ProcessUniverse

Producers

Reference

Shape