Тооцон Бодох Математик: Тооцооллын Инженер

7 марта 2020 г.

1 Шугаман Бус Систем Тэгшитгэл

Бид бүхэн N хувьсагчтай N шугаман тэгшитгэлийн систем $A\vec{x}=\vec{b}$ -ийн шийдийг хэрхэн олох талаар үзсэн. Энд A нь $N\times N$, харин \vec{x},\vec{b} нь N хэмжээст. Түүнээс гадна дата өгөгдөлийн хувьд хэрхэн шугаман тэгшитгэлийн шийд \vec{x} -ийг олохыг бид үзсэн. Гэвч N шугаман бус тэгшитгэлийн $f_i(\vec{x})$ шийдийг олох нь хялбар биш юм. Шугаман бус систем тэгшитгэлийг $f_i(\vec{x}^*)=0$ хангах \vec{x}^* -ийг $(i=1,\ldots,N;\vec{x}=(x_1,\ldots,x_N))$ олох нь зорилго юм. Шугамна бус тэгшитгэлийг доорх байдлаар илэрхийлж болно,

$$f_{1}(\vec{x}) = f_{1}(x_{1}, x_{2}, \dots x_{N}) = 0$$

$$f_{2}(\vec{x}) = f_{2}(x_{1}, x_{2}, \dots x_{N}) = 0$$

$$\vdots$$

$$f_{N}(\vec{x}) = f_{N}(x_{1}, x_{2}, \dots x_{N}) = 0.$$
(1)

Ерөнхий тохиолдолд $\vec{F}(\vec{x}) = 0$ гэж илэрхийлдэг гэдгийг бид харсан. Цаашилбал

$$\vec{F}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_N(\vec{x}) \end{pmatrix} = 0. \tag{2}$$

Өмнө хэсэгт бид N=1 үеийг сонирхосон. Одоо функц $f_i(\vec{x})$ -ын Тейлорын цувааг сонирхоё.

$$f_i(\vec{x}^*) = f_i(\vec{x}^{(k)}) + \sum_{i=1}^N \frac{\partial f_i(\vec{x}^{(k)})}{\partial x_j} (\vec{x}^* - \vec{x}^{(k)}).$$
 (3)

Иймээс ерөнхий систем тэгшитгэлийн хувьд

$$\vec{F}(\vec{x}^*) \approx \vec{F}(\vec{x}^{(k)}) + J(\vec{x}^{(k)})(\vec{x}^* - \vec{x}^{(k)}).$$
 (4)

Энд $J(\vec{x}^{(k)})$ -ийг нь Якобиан матриц гэдэг бөгөөд доорх байдлаар илэрхийлдэг,

$$J(\vec{x}^{(k)}) = \begin{pmatrix} \frac{\partial f_1(\vec{x}^{(k)})}{\partial x_1} & \frac{\partial f_1(\vec{x}^{(k)})}{\partial x_2} & \dots & \frac{\partial f_1(\vec{x}^{(k)})}{\partial x_N} \\ \frac{\partial f_2(\vec{x}^{(k)})}{\partial x_1} & \frac{\partial f_2(\vec{x}^{(k)})}{\partial x_2} & \dots & \frac{\partial f_2(\vec{x}^{(k)})}{\partial x_N} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_N(\vec{x}^{(k)})}{\partial x_1} & \frac{\partial f_N(\vec{x}^{(k)})}{\partial x_2} & \dots & \frac{\partial f_N(\vec{x}^{(k)})}{\partial x_N} \end{pmatrix}.$$
 (5)

2 Ньютоны арга

Ньютоны аргын хувьд тэгшитгэл 4-ийг ашиглан

$$\underbrace{\vec{F}(\vec{x}^*)}_{0} \approx \vec{F}(\vec{x}^{(k)}) + J(\vec{x}^{(k)})(\vec{x}^* - \vec{x}^{(k)}), \tag{6}$$

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} - J^{-1}(\vec{x}^{(k)})\vec{F}(\vec{x}^{(k)}). \tag{7}$$

Бодит хэрэглээнд $J^{-1}(\vec{x}^{(k)})$ -ийг тооцохын оронд

$$J(\vec{x}^{(k)})(\vec{x}^* - \vec{x}^{(k)}) = -\vec{F}(\vec{x}^{(k)}) \tag{8}$$

тэгшитгэлийг тооцон $\vec{y}^{(k)}=(\vec{x}^*-\vec{x}^{(k)})$ -ийг олох бөгөөд $\vec{x}^{(k+1)}=\vec{x}^{(k)}+\vec{y}^{(k)}$ гэж авч үздэг.

Algorithm 1 Ньютоны АРГА

1: **ОРОЛТ:**

- 2: $\vec{x}^{(0)}$ ▶ N хэмжээст анхны таамаг шийд вектор. ightharpoonup Хэрэв $\| \vec{x}^{(k+1)} - \vec{x}^{(k)} \| < tol$ бол алгоритм зогсоно. 3: *tol* \triangleright Хэрэв $N > N_{max}$ бол алгоритм зогсоно. 4: N_{max} **5**: **ГАРАЛТ**: ightharpoonup тэгшитгэл $\vec{F}(\vec{x}^{(k)}) = 0$ -ийг хангах. 6: ойролцоо шийд $\vec{x}^{(k)}$ 7: k = 0while $N \leq N_{max}$ do $\vec{F}(\vec{x}^{(k)})$ болон $J(\vec{x}^{(k)})$ -ийг тооцох. $J(\vec{x}^{(k)})\vec{y}^{(k)} = -\vec{F}(\vec{x}^{(k)})$ -ийг тооцох. $\vec{x}^{(k+1)} = \vec{x}^{(k)} + \vec{y}^{(k)}$ 10: 11: if $\parallel \vec{y}^{(k)} \parallel < tol$ then 12: break 13:
- 15: Алгоритм Зогсох.

k = k + 1

14:

3 Шугаман Бус Оптимизац

Язгуур олох алгоритмыг ашиглан оптимизацын бодлогын шийдийг олж болох уу? Хамгийн бага утгыг нь олох шаардлагатай доорх шугаман бус бодлогыг авч үзэе.

$$\min_{\vec{x}} E(\vec{x}). \tag{9}$$

Мөн түүнчлэн $\max_{\vec{x}} E(\vec{x})$ шийдийг олох нь $\min_{\vec{x}} (-E(\vec{x}))$ шийд олохтой ижил юм. $E(\vec{x})$ -ыг онцгой цэгд $\vec{x}^{(*)}$ шинжилхийн тулд

$$\nabla E(\vec{x}^*) = \begin{pmatrix} \frac{\partial E(\vec{x}^*)}{\partial x_1} \\ \frac{\partial E(\vec{x}^*)}{\partial x_N} \\ \vdots \\ \frac{\partial E(\vec{x}^*)}{\partial x_N} \end{pmatrix} = 0$$
(10)

тэгшитгэлийг үнэлнэ. Онцгой цэг $\vec{x}^{(*)}$ нь $E(\vec{x})$ -ын хамгийн бага цэг нь хэрэв доорх нөхцөл хангагддаг бол

$$\nabla^{2}E(\vec{x}^{*}) = \begin{pmatrix} \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{1}\partial x_{1}} & \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{1}\partial x_{N}} \\ \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{2}\partial x_{2}} & \cdots & \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{2}\partial x_{N}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{N}\partial x_{1}} & \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{N}\partial x_{2}} & \cdots & \frac{\partial^{2}E(\vec{x}^{*})}{\partial x_{N}\partial x_{N}} \end{pmatrix} > 0.$$
 (11)

Тэгшитгэл 11 нь шугаман бус систем тэгшитгэлийг үүсгэдэг,

$$\vec{F}(\vec{x}) = \nabla E(\vec{x}^*) = 0. \tag{12}$$

Энэхүү тэгшитгэлийн шийдийг олохын тулд Ньютоны аргыг хэрэглэх боломжтой бөгөөд Якобиан матриц нь $J(\vec{x}^{(k)}) = \nabla^2 E(\vec{x}^{(k)})$ болно. Иймээс тэгшитгэл 8 нь

$$\nabla^{2} E(\vec{x}^{(k)}) \vec{y}^{(k)} = -\nabla E(\vec{x}^{(k)}),$$

$$\vec{x}^{(k+1)} = \vec{x}^{(k)} + \vec{y}^{(k)}.$$
(13)

хэлбэрт орно. Ньютоны арга нь давталт бүрд 2-дугаар эрэмбийн уламжлалыг тооцох шаардлагатай болдог буюу иймээс бодит хэрэглээнд тохиромжгүй байдаг. Тиймээс

$$\vec{y}^{(k)} = -\nabla E(\vec{x}^{(k)}), \vec{x}^{(k+1)} = \vec{x}^{(k)} + \eta \vec{y}^{(k)},$$
(14)

тэгшитгэлийг тооцох нь хялбар байдаг. Тэгшитгэл 14-ийг Steepest Descent арга гэж нэрлэдэг. **Жишээ бодлого:** эх сурвалж: Numerical Analysis by R.L.Burden and J.D.Faires and ЕТН. Түүнчлэн бодлогонд зориулж энгийн с++ кодыг хавсаргав.

. . .

The pressure required to sink a large, heavy object in soft homogeneous soil, that lies above hard-base soil, can be predicted by the pressure required to sink smaller objects in the same soil. The bridge-foundations can be modeled as circular plates. The pressure p required to sink a circular plate of radius r in the soft soil to a certain depth d can be approximated by an expression:

$$p(r) = k_1 e^{k_2 r} + k_3 r$$

where $k_1,\ k_2>0$, and k_3 depend on d and the consistency of the soil but not on the radius of the plate.

a) You have the following data: a pressure of 100 N/m^2 is required to sink a plate of radius r=0.1 m to depth d=1 m, whereas a plate of radius r=0.2 m requires a pressure of 120 N/m^2 and a plate of radius r=0.3 m requires a pressure of 150 N/m^2 to get sunk to the same depth d. Formulate the system of equations to be solved for the coefficients $k_1, \ k_2,$ and k_3 and the Jacobian matrix of the resulting system.