Laboratorio Sperimentale di Matematica Computazionale (Parte I) Lezione 7

Gianna Del Corso <gianna.delcorso@unipi.it>

22 Marzo 2017

Si consideri un insieme di N utenti $U = \{u_1 u_2 \cdots, u_N\}$ e un insieme di M items $I = \{i_1, \ldots, i_M\}$. Sia $V = \{1, 2, \ldots, v\}$ l'insieme dei possibili voti che un utente può assegnare ad un item. Definiamo $V_0 = V \cup \{?\}$ l'insieme dei possibili voti più il valore ? che corrisponde alla mancata valutazione di un item da parte di un utente. Sia $A \in V_0^{n \times m}$ la matrice utilità , e assumiamo di osservare solo un sottoinsieme di valori Ω , dove ogni valore $a_{ui} \in V$ con $(u,i) \in \Omega$ rappresenta il voto (o rating) che l'utente u ha assegnato all'item i.

Lo scopo di un sistema di raccomandazione è quello di predirre i valori sconosciuti nella matrice di utilità per fare delle raccomandazioni personalizzate, cioè stimare i valori di A per $(u,i) \notin \Omega$.

Denotiamo con $\mathcal{P}_{\Omega}(\cdot)$ il proiettore tale che

$$\mathcal{P}_{\Omega}(M)_{ij} = \begin{cases} m_{ij} & \text{se } (i,j) \in \Omega \\ 0 & \text{altrimenti.} \end{cases}$$

e sia $A_0 = \mathcal{P}_{\Omega}(A)$.

1 Dati

I dati sono contenuti nei files ultraining e ultest che contengono rispettivamente 80.000 e 20.000 ratings su una scala 1-5, da parte di 943 users su 1682 items (film). I file appartengono al dataset Movielens100K.

Dopo aver costruito la matrice del training set con il comando A=spconvert(u1training(:, 1:3)) e la matrice del test set con il comando B=spconvert(u1test(:, 1:3)), si porti B alla stessa dimensione di A.

2 Un semplice sistema di Raccomandazione

Esercizio 1. Si consideri una matrice A utenti-items. Si scriva una funzione

```
function [S_user, S_items]=similarity(A)
% A; matrice dei rating utenti-items
% S_user: matrice di similarita' (misura del coseno) tra ogni coppia
% di utenti di A
% S_items; matrice di similarita' (misura del coseno) tra ogni coppia
% di items di A
```

che presa da una matrice A contenente i ratings di utenti restituisce: la matrice S_user delle similirarità tra utenti S_user(i,j)=cos(A(i,:), A(j,:)) e la matrice S_item delle similirarità tra item S_item(i,j)=cos(A(:, i), A(:, j))

Esercizio 2. Si scriva una funzione

```
function [items_list]=recommend(A, user)
% A: matrice dei rating utenti-items
% user: indice di un utente
% items_list: insieme di indici di item da raccomandare a user
```

La funzione deve implementare il seguente schema:

- \bullet Costruisca le matrici ${\tt S_user}, \ {\tt S_item}$ chiamando la funzione ${\tt similarity}.$
- Analizzando S_user restituisca l'indice i_{max} dell'utente (diverso da user)con cosine similarity pià altra per l'utente user.
- scriva in items_list gli items che i_{max} ha valutato con un punteggio 4 o 5 non ancora valutati di user.

Esercizio 3. Si scriva una funzione

```
function [p, r]=accuracy(B, item_list, user)
% B: matrice user-items (test-set)
% item_list: insieme di indici
% user: identificativo di un utente
% p: valore di precision
% r: valore di relall
```

che implementi il seguente schema

- calcoli il numero dei "true positive" $tp=\#\{i|i\in item_list\cap B(user,i)>=4\}$
- calcoli il numero dei "false positive" $fp=\#\{i|i\in item_list \cup B(user,i) < 4\}$
- calcoli il numero dei "false negative" $fn=\#\{i|i\not\in \text{item_list }i:B(\text{user},i)>=4\}$
- restiruisca p=tp/(tp+fp) come valore di precision e r=tp/(tp+fn) come valore di recall

Per ogni utente nel Test-set (cioè che nella matrice B ha almeno una valutazione) si calcoli l'insieme di item da raccomandare con la funzione recommend(A, user) e i valori di precision e recall . Si calcolino i valori medi su tutti gli utenti.

2.1 II sistema Pure-SVD

Esercizio 4. Si scriva una funzione

```
function [A_mean]=transform(A)}
% A: matrice user-items
% A_mean: marice user_items
```

La funzione deve sostituire costruire una matrice A_mean che sostituisce a tutti i valori zero in A la media dei punteggi che ha attribuito agli item votati.

Si scriva una fuzione

```
function [C]=pure_svd(A, k)}
% A: matrice user-items
% C: matrice user_items
```

La funzione deve

- costruire A_mean utilizzando la funzione del punto precedente
- ullet costruite con la SVD l'approssimazione M di rango k di ${\tt A_mean}$
- cotruisce la matrice B tale che

$$B_{ij} = \begin{cases} a_{ij} & \text{se } a_{ij} \neq 0 \\ m_{ij} & \text{se } a_{ij} = 0. \end{cases}$$

• restituisce la matrice C ottenuta da B arrotondando i valori d'all'intero piu' vicino e tagliando i valori all'intervallo [0,5] secondo la regola $c_{ij} = 0$ se $round(b_{ij}) < 0$ e $c_{ij} = 5$ se $round(b_{ij}) >= 6$.

Si scriva una fuzione

```
function [U]=recommend_svd(A,C)
% A: matrice user-item
% C: matrice user-item ottenuta con la funzione pure_svd
% U: matrice user-item binaria
```

La funzione deve restituire una matrice user-item U tale che $U_{ij}=1$ se $a_{ij}=0$ e $c_{ij}\geq 4$.

Utilizzando la funzione accuracy si calcolino i valori medi di precision e recall su tutti gli utenti del Test-set.