MÁQUINAS – GRAMÁTICAS – LENGUAJES (Jerarquía de Chomsky)

Lenguajes	Máquinas	Gramáticas	Equivalencia Determinismo – No determinismo
REGULARES	Autómata Finito Determinístico	Regulares o de Tipo 3	110 40011111111111111111111111111111111
(TIPO 3)	AFD = $\langle E, A, \delta, e_0, F \rangle$ E : conjunto finito de estados A : alfabeto de entrada \delta : función de transición δ : E x A \to E e ₀ : estado inicial; e ₀ \in E F : conjunto de estados finales; $F \subseteq E$	$G = \langle N, T, P, S \rangle$ Formato de reglas de Tipo 3:: - Lineales a derecha $A \to aB$ $A \to a$ - Lineales a izquierda $A \to Ba$ $A \to a$ Para $A \in N \cup \{S\}; B \in N; a \in T$ En ambos casos se puede incluir $S \to \varepsilon$	SI
INDEPENDIEN- TES O LIBRES	Autómata de Pila Determinístico o	Libres del Contexto o de Tipo 2	
DEL CONTEXTO (TIPO 2)	No Determinístico AP = <e, <math="" a,="" p,="">\delta, e_0,Z_0, F> E: conjunto finito de estados A: alfabeto de entrada P: alfabeto de la Pila; $P \cap A = \emptyset$ δ: función de transición δ: E x $(A \cup \{\epsilon\})$ x $P \to E$ x P^* (determin.) δ: E x $(A \cup \{\epsilon\})$ x $P \to P_f(E \times P^*)$ (no determ.) (P_f denota los subconjuntos finitos de E x P^*) e₀: estado inicial; $e_0 \in E$ Z₀: símbolo distinguido; $Z_0 \in P$ F: conjunto de estados finales; $F \subseteq E$.</e,>	$G = \langle N, T, P, S \rangle$ Formato producciones $A \to \omega$ donde $A \in N \cup \{S\};$ $\omega \in (N \cup T)^* - \{\epsilon\}$ Se puede incluir $S \to \epsilon$	NO

Lenguajes	Máquinas	Gramáticas	Equivalencia Determinismo – No determinismo
DEPENDIENTES O SENSIBLES	Autómata Linealmente Acotado	Sensibles al Contexto o de Tipo 1	
AL CONTEXTO (TIPO 1)	ALA= $<$ E, A , C , δ , e_0 , B, F, $\#$, $\$>$	$G = \langle N, T, P, S \rangle$	
	E: conjunto finito de estados	Formato de reglas de Tipo 1:	
	A: alfabeto de entrada; A⊆ C	$\gamma A\beta \rightarrow \gamma \omega \beta$	
	C: alfabeto de la cinta;	12-5p 1 12-5p	CT
	$C=A \cup \{B, \#, \$\} \cup Auxiliares$	donde $A \in N \cup \{S\}$	SI
	δ: función de transición	$\gamma, \beta \in (N \cup T)^*$	
	δ : E x C \rightarrow E x C x {D, I, N} ver (1)	$\omega \in (\mathbb{N} \cup \mathbb{T})^* - \{\varepsilon\}$	
	$\delta: E \times C^k \to E \times (C \times \{D, I, N\})^k$ (k cintas)		
	ver (2)	Se puede incluir $S \rightarrow \varepsilon$	
	e_0 : estado inicial; $e_0 \in E$	1	
	B : símbolo blanco; $B \notin A y B \in C$		
	F : conjunto de estados finales; $F \subseteq E$		
	#: símbolo de inicio de la/s cinta/s C		
	\$: símbolo de fin de la/s cinta/s C		
ESTRUCTURA-	Máquina de Turing Determinística	Contractivas o de Tipo 0	
DOS POR	$MTD = \langle E, A, C, \delta, e_0, B, F \rangle$	$G = \langle N, T, P, S \rangle$	
FRASES	E: conjunto finito de estados		
(TIPO 0)	A: alfabeto de entrada; A⊆ C	Formato de reglas de Tipo 0:	
	C: alfabeto de la cinta; $C=A \cup \{B\} \cup Auxiliares$	$\gamma A \beta \rightarrow \gamma \omega \beta$	CI
	δ : función de transición	1 1 1 2 2 (2)	SI
	$\delta: E \times C \to E \times C \times \{D, I, N\} \text{ (1 cinta) ver (3)}$	donde $A \in N \cup \{S\}$	
	$\delta: E \times C^k \to E \times (C \times \{D, I, N\})^k \text{ (k cintas)}$	$\gamma, \beta, \omega \in (\mathbb{N} \cup \mathbb{T})^*$	
	ver (4)	(ω puede ser igual a ε)	
	e_0 : estado inicial; $e_0 \in E$		
	B : símbolo blanco; $B \notin A y B \in C$		
	F : conjunto de estados finales; $F \subseteq E$		

Nota: Para todas las gramáticas N, T y S se definen como sigue:

- N es un conjunto finito de símbolos no terminales
- T es un conjunto finito de símbolos terminales; $N \cap T = \emptyset$
- S es el símbolo distinguido o axioma; $S \notin (N \cup T)$
- (1) No se permiten movimientos a la izquierda de # ni a la derecha de \$.
- (2) En ninguna de las cintas se permiten movimientos a la izquierda de # ni a la derecha de \$. Tampoco se permite reescribir los símbolos # y \$.
- (3) No se permiten movimientos a la izquierda de la celda de inicio de la cinta.
- (4) En ninguna de las cintas se permiten movimientos a la izquierda de de la celda de inicio.

Se puede establecer la siguiente relación entre los distintos tipos de gramáticas:

$$G_{TIPO-3} \subset G_{TIPO-2} \subset G_{TIPO-1} \subset G_{TIPO-0}$$

Esto significa que por ejemplo un lenguaje regular (tipo 3) se puede generar con una gramática de tipo 3, de tipo 2, de tipo 1 ó de tipo 0, siendo la más restrictiva la de tipo 3.