PHYIR2 - Laboratoire de Physique

Laboratoire nº 2 : diviseur de tension

Objectifs d'apprentissage

À l'issue de cette séance de laboratoire les étudiants seront capables :

- ▷ de réaliser un circuit diviseur de tension à l'aide d'une source de tension et de résistances;
- ▷ de déterminer théoriquement et expérimentalement le gain d'un circuit diviseur de tension;
- ▷ d'observer expérimentalement et de justifier à l'aide de la loi d'Ohm et des lois de Kirchhoff l'effet d'une résistance de charge sur le gain d'un diviseur de tension.

1 Laboratoire n° 2 : diviseur de tension

1.1 Introduction

Au cours de ce laboratoire vous réaliserez et étudierez le comportement d'un circuit diviseur de tension.

1.1.1 Prérequis

Notions de tension et de courant continus, loi d'Ohm, lois de Kirchhoff, lois d'association des résistances et diviseur de tension.

1.1.2 Objectifs de la séance de laboratoire n° 2

- ▷ de réaliser un circuit diviseur de tension à l'aide d'une source de tension et de résistances;
- ▷ de déterminer théoriquement et expérimentalement le gain d'un circuit diviseur de tension;
- ▷ d'observer expérimentalement et de justifier à l'aide de la loi d'Ohm et des lois de Kirchhoff l'effet d'une résistance de charge sur le gain d'un diviseur de tension.

1.2 Matériel

- \triangleright un jeu de résistances (1 k, 2.2 k, 4.7 k, 10 k, 22 k, 47 k, 100 k, 220 k et 470 k Ω)
- ▶ Une alimentation continue
- ▶ Un multimètre digital
- ▶ Des câbles de connexion
- ▶ Un « breadboard » (une platine d'expérimentation)

1.3 Mesures

1.3.1 diviseur de tension

Réalisez le montage correspondant à la figure 1, en prenant pour $R_1=22~k\Omega$ et pour $R_2=10~k\Omega$.

Attention : votre enseignant(e) pourrait vous communiquer d'autres valeurs pour les résistances R_1 , R_2 et R_{ch} .

Figure 1 Diviseur de tension.

- ▶ Mesurez la différence de potentiel U_s aux bornes de R_2 pour trois valeurs de la tension d'entrée U_e (de -10 V à 10 V maximum). Refaites cette mesure en remplaçant la résistance R_2 par $R_2/2$ (par exemple 4, 7 $k\Omega$). Mesurez la valeur de R_2 avec l'ohmmètre. Calculez le gain en tension pour les deux valeurs de résistances R_2 et $R_2/2$.
- \triangleright Sur le montage correspondant à la figure 2, connectez la résistance de charge R_{ch} en parallèle aux bornes de R_2 . Mesurez le potentiel U_s aux bornes de R_{ch} . Calculez le gain en tension correspondant pour 3 valeurs de R_{ch} (1 k, 10 k, 100 $k\Omega$). Mesurez les résistances correspondant aux trois valeurs de R_{ch} utilisées à l'aide de l'ohmmètre.
- ⊳ Portez vos mesures dans la feuille de travail Excel que vous avez téléchargé de poési.

FIGURE 2 Diviseur de tension avec une résistance de charge.

1.4 Questions

- \triangleright Concernant le diviseur de tension (avec les deux valeurs de R_2), vos résultats sont-ils en accord avec la théorie? Justifiez votre réponse.
- \triangleright Expliquez l'effet que vous observez vous en faisant varier la résistance de charge R_{ch} connectée au diviseur de tension?