ttH process data analysis

Kristijonas Silius

DAM project 2024

Goals

- Generate a particle collision dataset using madgraph software
- Calculate relevant parameters (transverse momentum, pseudorapidity, invariant mass)
- Find correlating parameters
- Visualize the data
- Train a simple regression model to predict invariant mass values

DATASET - generate events via MadGraph5

Monte Carlo event generator – solving phase space integral to generate particle event data

Process: $p p > t t \sim h$

Parse generated event data from .lhe file (looks similar to an .html)

```
unweighted events.html X
home > ksilius > Downloads > MG5_aMC_v3_5_1 > ttH_first_try > Events > run_01 > 💠 unweighted_events.html > 🔗 LesHouchesEvents > 😭 header
                 1 +3.9984600e-01 2.75585100e+02 7.54677100e-03 1.11412500e-01
                              0 501 502 +0.0000000000e+00 +0.000000000e+00 +2.0110498484e+03 2.0110498484e+03 0.000000000e+00 0.0000e+00 -1.0000e+00
                              0 502 503 -0.0000000000e+00 -0.000000000e+00 -1.4769733205e+02 1.4769733205e+02 0.000000000e+00 0.0000e+00 1.0000e+00
                                       0 -3.7735007045e+01 -2.0046702125e+02 +1.4039547900e+03 1.4292057268e+03 1.7300000000e+02 0.0000e+00 -1.0000e+00
                                     503 +3.3812676473e+01 -4.8419716203e+01 -1.0704529752e+01 1.8311568192e+02 1.7300000000e+02 0.0000e+00 1.0000e+00
                                       0 +3.9223305718e+00 +2.4888673745e+02 +4.7010225617e+02 5.4642577173e+02 1.2500000000e+02 0.0000e+00 0.0000e+00
        <rscale> 2 0.24870661E+03</rscale>
        <asrwt>0</asrwt>
        <pdfrwt beam="1"> 1
                                    21 0.30939226E+00 0.27558507E+03</pdfrwt>
        <pdfrwt beam="2"> 1
                                    21 0.22722668E-01 0.27558507E+03</pdfrwt>
        <totfact> 0.49496147E+02</totfact>
                 1 +3.9984600e-01 2.13899100e+02 7.54677100e-03 1.14207900e-01
                                501 502 +0.0000000000e+00 +0.0000000000e+00 +5.0161909268e+01 5.0161909268e+01 0.0000000000e+00 0.0000e+00 -1.0000e+00
                                502 503 -0.0000000000e+00 -0.0000000000e+00 -2.8568169682e+03 2.8568169682e+03 0.000000000e+00 0.0000e+00
                                      0 -1.3137873502e+02 -1.0791654017e+02 -8.1821751897e+02 8.5341388552e+02 1.7300000000e+02 0.0000e+00 1.0000e+00
                                     503 +1.5543991920e+01 +9.1428228556e+01 -1.7446685610e+03 1.7556759736e+03 1.7300000000e+02 0.0000e+00 1.0000e+00
                                       0 +1.1583474310e+02 +1.6488311612e+01 -2.4376897902e+02 2.9788901836e+02 1.2500000000e+02 0.0000e+00 0.0000e+00
        <rscale> 2 0.20935397E+03</rscale>
        <asrwt>0</asrwt>
        <pdfrwt beam="1"> 1
                                    21 0.77172148E-02 0.21389909E+03</pdfrwt>
        <pdfrwt beam="2"> 1
                                    21 0.43951042E+00 0.21389909E+03</pdfrwt>
        <totfact> 0.60282610E+02</totfact>
                 1 +3.9984600e-01 2.65030000e+02 7.54677100e-03 1.10415800e-01
                                        0 +0.0000000000e+00 +0.000000000e+00 +1.8382460758e+02 1.8382460758e+02 0.000000000e+00 0.0000e+00 1.0000e+00
                                     501 -0.0000000000e+00 -0.000000000e+00 -4.4707280611e+02 4.4707280611e+02 0.0000000000e+00 0.0000e+00 -1.0000e+00
                                       0 -5.2627408539e+00 +9.3434213215e+01 -1.0231714423e+02 2.2171027636e+02 1.7300000000e+02 0.0000e+00 1.0000e+00
                                     501 +8.2560277376e+01 -1.8703887716e+01 -2.2516132727e+01 1.9391237982e+02 1.7300000000e+02 0.0000e+00 1.0000e+00
                                        0 -7.7297536522e+01 -7.4730325499e+01 -1.3841492158e+02 2.1527475750e+02 1.2500000000e+02 0.0000e+00 0.0000e+00
        <rscale> 2 0.26503005E+03</rscale>
         <asrwt>0</asrwt>
        <pdfrwt beam="1"> 1
                                     2 0.28280709E-01 0.26503005E+03</pdfrwt>
                                    -2 0.68780430E-01 0.26503005E+03</pdfrwt>
        <pd><pdfrwt beam="2"> 1
```

Parsed .csv file

This example has 10k events

Possible to generate a new batch with more

Conventions and meanings

- Calculations and measurements done using c=1 and $\hbar=1$
- t top quark
- t2 anti-top quark
- h Higgs boson
- Eta η pseudorapidity spatial coordinate describing the angle between a particle and the beam axis
- p_T transverse momentum
- M_inv invariant mass

Analysis start

- Generated new batch with 500 000 data points
- After calculations, data set looks like this [500000 rows x 22 columns]

pid_t	E_t	px_t	py_t	pz_t	pT_t	eta_t	pid_t2	E_t2	px_t2	py_t2	pz_t2	pT_t2	eta_t2	pid_h	E_h	px_h	py_h	pz_h	pT_h	eta_h	M_inv
6	463.2705	176.3492	103.7824	377.9163	204.6211	1.372997	-6	387.9539	-162.335	-58.4856	-301.34	172.5489	-1.32411	. 25	134.5495	-14.0145	-45.2968	15.17787	47.41522	0.314876	979.6296
6	807.4687	258.7377	3.865722	-745.061	258.7665	-1.77956	-6	236.3007	-132.787	-30.7236	85.63138	136.2948	0.592924	25	200.1999	-125.951	26.85792	88.71311	128.7827	0.643516	1103.592
6	549.3163	-343.672	-166.184	-355.094	381.7431	-0.83114	-6	932.1703	459.4385	139.7581	-779.998	480.225	-1.26176	25	196.9337	-115.766	26.42626	95.1719	118.7442	0.733829	1315.65
6	338.0329	-128.756	201.6179	-164.649	239.2235	-0.64303	-6	373.5744	95.73716	-264.733	174.297	281.5127	0.585172	25	240.9867	33.01869	63.11547	-193.328	71.23058	-1.72394	898.8512
6	524.7242	206.2773	154.4485	-423.086	257.691	1 -1.27095	-6	327.4506	-18.9251	-18.1589	-276.78	26.22794	-3.05178	25	405.7319	-187.352	-136.29	-308.736	231.6802	-1.09817	731.6523
						'ـــــــــــــــــــــــــــــــــــــ	<i>/</i>			_											

top anti top Higgs All

For some reason corner.corner() did not work for me, therefore:

Used
seaborn.pairplot()
function;

Not even all parameters

Plotting only 100 rows (for speed)

1000 rows plotted

Not very readable, need different approach

Correlation coefficient

$$\rho_{X,Y} = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

$$cov(X, Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(X))(y_i - E(Y)).$$

Plotting a correlation matrix

Plotting the higher correlation coefficient plots

Training basic regression model to predict M_inv values Starting with 1000 point sample over 250 epochs

Using 500 000 points, 25 epochs

500 000 points, 100 epochs, early stopping and variable learning rate

Conclusions

- The data set was generation, parsing and all the calculations were successful
- Learned new methods of data visualization, using new libraries (such as seaborn)
- Found the correlation matrix to be a very useful tool
- Did not use pandas much before, but now I find it very useful and convenient
- The model training was completed fully, did not try out everything I could to make it better, but it was nice practice, with better understanding of what is going on, instead of tensorflow just being a "blackbox" that gives me results