

← Go Back to Machine Learning 3

:≡ Course Content

Quiz 1 - K-Means, DBSCAN and Hierarchical clustering

Type : Graded Quiz

Attempts : 1/1
Questions : 15
Time : 25m

Due Date : Nov 10, 11:59 PM IST

Your Marks : 12/15

Instructions

~

Attempt History

Attempt #1

Nov 08, 6:48 AM

Q No: 1

Incorrect Answer

Marks: 0/1

Marks: 12

Assume, you want to cluster 7 observations into 3 clusters using K-Means clustering algorithm. After first iteration clusters, C1, C2, C3 has following observations:

C1: {(2,2), (4,4), (6,6)}

C2: {(0,4), (4,0)}

C3: {(6,6), (10,10)}

What will be the cluster centroids if you want to proceed for second iteration?

C1: (4,4), C2: (2,2),	C3: (8,8)	Correct Option
O C1: (2,2), C2: (0,0),	C3: (5,5)	You Selected
O None of these		
Q No: 2	Correct Answer	
What is the full form of DE	BSCAN?	Marks: ´
O Distance-Based Seg	gmented Clustering of Applications with Noise	
Density-Based Spat	ial Clustering of Applications with Noise	You Selected
O Density-Based Segr	mented Clustering of Applications with Noise	
O Distance-Based Spa	atial Clustering of Applications with Noise	
Q No: 3	Correct Answer	
Which of the following link	kage methods provides a chain like structure wh	Marks: ´ nile clustering groups?
Single Linkage		You Selected
Ward Linkage		
Average Linkage		
Complete Linkage		
Complete Linkage No: 4	Correct Answer	

O Text data		
Time series da	ata	
All of the give	n options are correct	You Selected
Multimedia da	ta	
Q No: 5	Correct Answer	Marks: 1/1
The goal of clustering	ng is to-	Walks. I/I
Classify the da	ata point into different classes	
Divide the data	a points into groups	You Selected
All of the give	n options are correct	
Predict the ou	tput values of input data points	
Q No: 6	Correct Answer	
	luster distance is given as 4.2 and the aves silhouette coefficient.	Marks: 1/1 erage inter-cluster distance is given
0.4524		
0.5623		
0.2632		You Selected
0.1248		
Q No: 7	Correct Answer ng characteristics are used in determining	Marks: 1/1

 $https://pesedu.olympuslms.com/courses/118314/quizzes/1156376?pb_id=17941$

Small cluste		
Both comp	act and distinct clusters	You Selected
O Compact c	usters	
O Distinct clu	sters	
Q No: 8	Incorrect Answer	
.		Marks: 0/
	nt to cluster 7 observations into 3 clusters us n clusters, C1, C2, C3 has following observa	
C1: {(2,2), (4,4),		
JI ((2,2), (4,4), (
C2: {(0,4), (4,4),		
C2: {(0,4), (4,0)}	Manhattan distance for observation (9, 9) fro	om cluster centroid C1. In second
C2: {(0,4), (4,0)} C3: {(5,5), (9,9)} What will be the	Manhattan distance for observation (9, 9) fro	om cluster centroid C1. In second
C2: {(0,4), (4,0)} C3: {(5,5), (9,9)} What will be the teration.	Manhattan distance for observation (9, 9) fro	om cluster centroid C1. In second
C2: {(0,4), (4,0)} C3: {(5,5), (9,9)} What will be the teration. 13*sqrt(2) 5*sqrt(2)	Manhattan distance for observation (9, 9) fro	om cluster centroid C1. In second You Selected
C2: {(0,4), (4,0)} C3: {(5,5), (9,9)} What will be the teration. 13*sqrt(2) 5*sqrt(2)		
C2: {(0,4), (4,0)} C3: {(5,5), (9,9)} What will be the teration. 13*sqrt(2) 5*sqrt(2) None of the		You Selected
C2: {(0,4), (4,0)} C3: {(5,5), (9,9)} What will be the teration. 13*sqrt(2) 5*sqrt(2) None of the control of	e given options	You Selected

Reduce the	e variation between the clusters	
Reduce the	e variation between and within the clusters	
O None of th	e above	
Reduce the	e variation within the clusters	You Selected
Q No: 10	Incorrect Answer	
How many cluste	ers will be formed at the end of final step in Agg	Marks: 0/1 lomerative clustering ?
O log(n), whe	ere n is number of samples	
Based on control	choice of K	You Selected
O 1		Correct Option
O 2		
Q No: 11	Correct Answer	Marks: 1/1
Why are linkage	methods used?	
To measur	e inter-cluster distance	You Selected
O To link all t	he clusters	
O To measur	e intra-cluster distance	
O To link the	similar clusters	
Q No: 12	Correct Answer	
What is the first	step in agglomerative hierarchical clustering	Marks: 1/1

a. Assume	each data point is a cluster	You Selected
Form k clu	sters	
O None of th	ne above	
Reduce th	e variation within the clusters	
Q No: 13	Correct Answer	
For which value	of p, Minkowski distance is equal to the Euclide	Marks: 1/ ean distance ?
2		You Selected
O 3		
O 1		
0 0		
Q No: 14	Correct Answer	
Assuming the cl	es distance between B and A is 4, and the distanuster BC is formed, what is the distance betwee ngle link method	
4,5		
5,6		
6 ,4		You Selected
O 4,6		
Q No: 15	Correct Answer	
		Marks: 1/

Which one of the following techniques does not require t dependent or independent?	the variables to be separated as
Regression	
Boosting	
○ Classification	
Previous	Next
Clustering	You Selected

© 2024 All rights reserved Privacy · Terms