CSC3022H:

Machine Learning: Introduction

Geoff Nitschke

Department of Computer Science University of Cape Town, South Africa

Course Syllabus

Supervised Learning:

- ANNs: Back propagation.
- Generative Learning algorithms: Monte-Carlo.
- Concept Learning.

Unsupervised Learning:

- Clustering: Hierarchical clustering, K-means, EC, NE.
- PCA, ICA, SOM, ART.

Reinforcement Learning:

Q-learning. Policy and Value function approximation.

Where Does ML Fit In?

Approaches to AI

 GOFAI: Good Old Fashioned AI (McCarthy, 1955; Haugeland, 1985).

New (Biologically Inspired) AI (Brooks, 1989).

GOFAI: Central Hypothesis

- Knowledge can be represented by symbols and intelligence is reducible to symbol manipulation (Allen and Simon, 1963).
- Al is achieved by manipulation of symbols.
- Dominated AI paradigm until the late 20th century.

Philosophical Roots:

- Gottfried Leibniz (1646 1716): Attempted to create a logical calculus of all human ideas.
- David Hume (1711 1776): Perception is reducible to "atomic impressions".
- Immanuel Kant (1724 1804): Experience is controlled by formal rules.

GOFAI and Symbols

Formal Logic:

- Symbols: AND, OR, NOT, A, B...
- Expressions: TRUE or FALSE statements.
- Process: Rules of logical deduction.

Chess:

- Symbols: The pieces.
- Expressions: All possible board configurations.
- Processes: The legal chess moves.

GOFAI and Symbols

Human Thought:

- Symbols: Encoded in our brains.
- Expressions: Our thoughts.
- Processes: The mental operations of thinking.

Al "Thought":

- Symbols: Data structures.
- Expressions: Sets of data structures.
- Processes: Programs that manipulate the data structures.

GOFAI → Thinking Machine?

GOFAI Approaches

Top-Down Approach: Hierarchical symbolic based algorithm.

ComputerMove

ComputerMove2

11111111

GOFAI algorithms?

ComputerMove3

Some GOFAI Algorithms

- Finite State Machines (FSMs).
- MINIMAX, Alpha-Beta Pruning.
- Monte-Carlo Search.
- Rule (Knowledge) Based Systems / Bayesian inference (Expert Systems).
- Concept Learning.

New (Biologically Inspired) AI

- Bottom-Up (Synthetic) Approach: Individual components interact (self-organise) to produce global (system-level) behaviour.
- New Al methods: How should simple components interact to produce "intelligent" behaviour?

Some New AI Methods

- Evolutionary Algorithms (EAs).
- Artificial Neural Networks (ANNs)
- Reinforcement Learning (RL)
- Particle Swarm Optimisation (PSO).

"Weak" AI?

- We can build machines that act as if they were intelligent.
- Most AI research is in this area (and successful for many applications).
- Constrained problem sets / domains.
- Specific techniques to "simulate" intelligent decisions/actions.
- Does not try to solve the problem of general intelligence.
- All Al applications today are "weak" Al.

"Strong" AI?

The goal is to build machines that are actually thinking "like people" (as opposed to just simulating thinking)

The Chinese room.

Examples ... ?

Chinese Room Argument (Searle, 1980)

- Person in room speaks English but not Mandarin.
- Receives notes in Mandarin.
- Has English *rule-book* for how to write new Chinese
 characters given input Chinese
 characters returns notes.

- Person = CPU, Rule-book = Al Program, Notes = Data
- From outside observer's point of view, the room appears to speak perfect Mandarin!

The Learning Problem

- Machine Learning (ML) is programming computers to optimise a performance criterion using example data or past experience.
- Learning is used when:
 - Human expertise does not exist (e.g.: Robots navigating on Mars).
 - Humans are unable to explain their expertise (e.g.: Speech and facial recognition).
 - Solution changes in time (e.g.: Routing on a computer network).
 - Solution needs to be adapted to particular cases (e.g.: Biometrics).

Types of Data

- Discrete: One of a finite number of values (e.g.: Address).
- Continuous: Within a range (e.g.: Salary).
- Ordinal: Ranking for numerical value (e.g.: Age).
- Relational (e.g.: Employee records).
- Independent identical distributed vectors (e.g. Employee X record).
- Time series dependent vectors (e.g. Financial indicators for time t, related to t-1).
- Images (Matrices).
- Variable-size non-vector data (e.g. Strings, trees, graphs, text).
- Objects (e.g. Within a relational schema).

What is Machine Learning (ML)?

- Data is cheap and abundant Knowledge is expensive and scarce.
- Build model that is a good and useful approximation to the data:
 - Learn general models from data of particular examples.
- ML: Design and Analysis of algorithms that improve their performance at some task with experience (Mitchell, 1997).

What is ML?

- Optimise performance criteria using example data (past experience).
- Statistics: Inference from a sample.

Main Goal of Learning: Prediction

Knowledge

- Obtain a model of some training data, through a learning process.
- Use that model to predict something about data not seen before.
- Learn the same distribution as training data using test data.

Inferential Statistics

We have to get information about this large group of Work with a small group of people randomly selected people Random selection

What is ML?

- ML ≈ Inferential + Multivariate + Computational statistics:
 - □ Inferential statistics ≈ Inference from data sample.
 - Multivariate statistics ≈ Prediction of values of a function assumed to describe a multivariate dataset.

 Computational statistics ≈ Computational methods for statistical problems.

What is ML?

- Main types of inference problems:
 - Point estimation.
 - Confidence sets.
 - Hypothesis testing.

- ML is mostly about point estimation:
 - A statistic (best guess) derived from sample data.

Data mining: "Knowledge extraction"!

27

Types of Learning

Supervised Learning:

Classification / Regression.

Unsupervised Learning:

Clustering / Dimensionality reduction.

Reinforcement Learning:

Value and policy iteration / Q Learning.

Supervised Learning

- Predicting a target variable for which we get to see examples.
 - Classification: Predict a discrete target variable.
 - Regression: Predict a continuous target variable.

Prediction of future cases:

Find a rule that predicts output for future inputs.

Knowledge extraction:

Finding a rule that is easy to understand.

Compression:

Finding rule that is simpler than the data it explains.

Supervised Learning

Useful when humans cannot define a decision rule, but can perform the classification task – for example:

Supervised Learning: Classification

- Given: Set of labeled examples (training data), each described by a set of attributes, and labeled with a class:
 - Find a model for the class attribute as a function of the values of other attributes.
- Goal: Classify previously unseen examples (test data) accurately.

Words in a document

"Sports" "News"

"Science"

Discrete Labels Classification

Supervised Learning: Classification

Facial Recognition: Predicting a discrete target variable:

Training examples

training dataset

model

Test images

test dataset

	В
	В
	В
	A
	A

Classification Examples

Fraud Detection:

- Predict fraudulent cases in credit card transactions.
- Training data: Previous transactions of given account holder.
- Attributes: Time of purchase, product type, cost, location,...
- Class: Label transactions as fraudulent or fair.

Credit Scoring:

- Differentiate between low-risk and high-risk credit applications.
- Training data: Incoming and savings
- Attributes: Income, expenses, debts,...
- Class: Label application as good or bad.

Supervised Learning: Regression

- Predict a continuous valued variable based on attribute values.
 - e.g.: Stock price prediction
 - Predict the value based on a combination of the last k values
 (linear regression):

Feature Space ${\mathcal X}$

Label Space ${\mathcal Y}$

Share Price "\$ 24.50"

Continuous Labels Regression

Task: Given $X \in \mathcal{X}$, predict $Y \in \mathcal{Y}$.

Regression Example

- Predicting a continuous target variable: Price of a car:
 - x: car attributes.
 - □ y: price.
 - $y = g(x \mid \theta)$.
 - □ *g()* model.
 - \Box θ parameters.

Reading

Chapter 14 – Key Ideas in Machine Learning

Chapter 1 – Introduction