<u>Dunnhumby – CASE STUDY</u>

TOPIC - SQL

1. Exploratory queries

a. Find out which age group is the most active shopper(join hh_demographic and transaction_data)

```
select
          age_desc,
          count(t.household_key) as most_active_shopper
from `dunnhumby_dataset.transaction_data` t
join `dunnhumby_dataset.hh_demographic` d
on t.household_key = d.household_key
group by age_desc
order by count(t.household_key) desc;
```

Quer	y results	
JOB IN	FORMATION	RESULTS JSON
Row	age_desc	most_active_shopper
1	45-54	520586
2	35-44	386327
3	25-34	249829
4	65+	103857
5	55-64	91498
6	19-24	75206

b. Which week had the best sales

Quer	y results		
JOB IN	IFORMATION	RESULTS	JSON
Row /	week_no //	sales //	
1	92	113192.87	
2	99	101363.92	
3	98	98949.62	
4	68	97967.05	
5	85	97663.46	
6	94	96964.24	
7	72	96930.47	
8	59	96701.23	
9	46	95878.08	
10	42	93370.29	

c. What is the average basket size for shoppers (Divide it in small, medium, large)

```
Ans —

select

case
when sales_value between 0 and 5 then "small"
when sales_value between 5 and 10 then "medium"
when sales_value > 10 then "large"
end as Type_of_order,
count(*) as number_of_orders

from `dunnhumby_dataset.transaction_data`
group by 1
order by 2 desc;
```

Query results				
JOB IN	FORMATION	RESUL	TS	JSON
Row /	Type_of_order	1.	numb	er_of_orders
1	small			2291394
2	medium			225562
3	large			78776

d. Find foot traffic for each store per week. (Foot traffic: number of customers transacting)

Or

Find top 3 stores with highest foot traffic for each week

Que	ry results		
JOB I	NFORMATION	RESU	JLTS JSON
Row	week_no	store_id //	Highest_foot_traffic
1	1	324	154
2	1	321	124
3	1	32004	117
4	2	375	205
5	2	292	169
6	2	315	135
7	3	367	346
8	3	375	310

e. Top5 spending customers (households) with sales value in integer

Ans-

```
select
          household_key,
          cast(sum(sales_value) as int) as sales
from `dunnhumby_dataset.transaction_data`
group by household_key
order by 2 desc
limit 5;
```

Query results					
JOB IN	JOB INFORMATION RESULTS				
Row	household_key/	sales //			
1	1023	38320			
2	1609	27860			
3	2322	23647			
4	1453	21661			
5	2459	20672			

F. Find out which income group shops the most

```
Ans -
select
    income_desc, count(*) as most_number_transaction

from `dunnhumby_dataset.hh_demographic` d
join `dunnhumby_dataset.transaction_data` t
on d.household_key = t.household_key
group by income_desc
order by 2 desc;
```

Quer	y results		
JOB IN	FORMATION	RESULTS	JSON
Row	income_desc	most_r	number_transaction
1	50-74K		348536
2	35-49K		278341
3	75-99K		168837
4	25-34K		128678
5	Under 15K		114408
6	15-24K		104112
7	125-149K		88004
8	150-174K		71330
9	100-124K		59480

2. Customer profiling

a. Create a basic customer profiling with first, last visit, number of visits, average money spent per visit and total money spent order by highest avg money

```
select
    household_key, min(week_no) as first_visit,
    max(WEEK_NO) as last_visit,
    count(distinct day) as number_of_visits,
    round(sum(sales_value) / count(distinct BASKET_ID),2)
    as avg_money_spent,
    round(sum(sales_value),2) as total_money_spent
from `dunnhumby_dataset.transaction_data`
group by household_key
order by avg_money_spent;
```

Quer	y results					▲ SAVE RESU	JLTS *
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETA	AILS EXECUT	ION GRAPH PREVIEW	
Row /	household_key/	first_visit //	last_visit //	number_of_visits //	avg_money_spent //	total_money_spent	
.1	70	2	101	32	2.39	76.4	
2	2304	12	83	69	2.73	240.09	
3	1381	17	101	38	2.74	134.4	
4	2166	16	73	21	2.81	84.21	
5	534	17	102	339	2.83	1315.44	
6	1289	1	102	385	2.88	1512.08	

b. Do a single customer analysis selecting most spending customer for whom we have demographic information(because not all customers in transaction data are present in demographic table)

limit 1;

c. What products does the customer buy most

Query results				
JOB IN	FORMATION	RESULTS	JSON	
Row	household_key/	product_id //	Qty	
1	1609	1082185	160	
2	1609	6632283	141	
3	1609	951590	125	
4	1609	1029743	109	
5	1609	1127831	98	
6	1609	892728	96	
7	1609	6533889	84	
8	1609	9527158	72	
9	1609	1055737	72	

d. Which promotional campaigns were they a part of(campaign_table)

Ans -

Query results JOB INFORMATION **RESULTS JSON EXECUTION DETAILS** Row **DESCRIPTION** household_key CAMPAIGN 1609 13 1 TypeA 2 1609 18 TypeA TypeB 1609 11

3. Product analysis

a. Find the most selling product

b. When did the product sell the most and where

Ans –

```
select
    product_id, count(quantity) as qty, week_no, store_id
from `dunnhumby_dataset.transaction_data`
where product_id in
    (select
        product_id
    from `dunnhumby_dataset.transaction_data`
    group by PRODUCT_ID
    order by count(*) desc
    limit 1)
group by 1, 3, 4
order by 2 desc
limit 1;
```

Quer	y results				
JOB IN	IFORMATION	RESULTS	JSON		EXECUTION DETAILS
Row /	product_id //	qty /	week_no	1.	store_id //
1	1082185	17		34	367

c. Where was the product placed in store and featured in ad for that particular store and week

```
with t as
      (select
             product_id, count(quantity) as qty, week_no, store_id
      from `dunnhumby_dataset.transaction_data`
      where product_id in
             (select
               product_id
             from `dunnhumby_dataset.transaction_data`
             group by PRODUCT_ID
             order by count(*) desc
             limit 1)
      group by 1, 3, 4
      order by 2 desc
      limit 1)
select c.*
from `dunnhumby_dataset.causal_data` c
join t t1
on c.product_id = t1.product_id
where c.STORE_ID in (t1.store_id)
and c.WEEK_NO in (t1.week_no);
```


d. Was it a part of some campaigns

Ans –

Quer	y results	
JOB IN	IFORMATION	RESULTS
Row	product_id //	CAMPAIGN //
1	1082185	8
2	1082185	13
3	1082185	18

e. How many household did actually redeem coupons for this product in each campaign

Quer	y results			
JOB IN	FORMATION	RESULTS	JSON	
Row	product_id //	CAMPAIGN //	count	1.
1	1082185	18		63
2	1082185	13		35

f. Which products were the best seller(top 3) for each week and what quantity did they sell

```
Ans -
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	week_no	product_id //	Qty /	top_3
1	1	981760	21	1
2	1	1082185	20	2
3	1	1029743	15	3
4	2	1082185	38	1
5	2	1029743	28	2
6	2	1106523	20	3
7	3	1082185	54	1
8	3	995242	34	2
9	3	1133018	31	3

4. Advance analysis and queries

a. Find out on which weeks does each household shop and find their cumulative spending over time(sum of all previous) (uses sum over partition)

```
with t as
(select
    household_key, WEEK_NO, round(sum(SALES_VALUE),2) as spending
from `dunnhumby_dataset.transaction_data`
group by 1, 2)
select
    t.household_key, t.week_no, t.spending,
    round(sum(spending) over(partition by household_key order by WEE
K_NO),2) as spending
from t;
```

Query results						
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS		
Row	household_key/	week_no //	spending	spending_1		
1	1	8	78.66	78.66		
2	1	10	41.1	119.76		
3	1	13	26.9	146.66		
4	1	14	63.43	210.09		
5	1	15	53.45	263.54		
6	1	16	26.76	290.3		
7	1	17	23.55	313.85		
8	1	19	110.34	424.19		
9	1	20	87.44	511.63		

b. Find the trend in spending for each customer (spending compared to last purchase) (use lag function)

Quer	Query results						
JOB IN	JOB INFORMATION		RESULTS JS0		CUTION DETAILS		
Row /	household_key/	week_no	revenue	prev_revenue //	change_in_revenue //		
1	1	8	78.66	nuli	nuli		
2	1	10	41.1	78.66	37.56		
3	1	13	26.9	41.1	14.2		
4	1	14	63.43	26.9	-36.53		
5	1	15	53.45	63.43	9.98		
6	1	16	26.76	53.45	26.69		
7	1	17	23.55	26.76	3.21		
8	1	19	110.34	23.55	-86.79		
9	1	20	87.44	110.34	22.9		

C. Find number of returning customers and percent of returning customers for all week

```
Ans -
with t as
(select
        t2.week_no, t1.household_key,
        case when min(t1.week_no) < t2.week_no then 1 else 0</pre>
        end as decider
from `dunnhumby_dataset.transaction_data` t1
left join `dunnhumby_dataset.transaction_data` t2
on t1.household_key = t2.household_key
group by 1, 2)
select
   week_no, sum(decider) as returning_cust, count(decider) as total_cust,
    sum(decider) / count(decider) * 100 as percent_return
from t
group by 1
order by 1;
```

Query results							
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS			
Row	week_no //	returning_cust	total_cust	percent_return			
1	1	0	88	0.0			
2	2	46	175	26.2857142			
3	3	115	228	50.4385964			
4	4	152	270	56.2962962			
5	5	232	370	62.7027027			
6	6	314	433	72.5173210			
7	7	360	491	73.3197556			
8	8	398	530	75.0943396			
9	9	493	622	79.2604501			
10	10	568	708	80.2259887			

d. Quarterly analysis: sales comparison(create a new quarter column using case when,12 weeks(3 months)=1 quarter)
 (Use cte tables)

Ans-

```
select
    case
    when week_no between 0 and 12 then "quarter1"
    when week_no between 13 and 25 then "quarter2"
    when week_no between 26 and 38 then "quarter3"
    when week_no between 39 and 51 then "quarter4"
    when week_no between 52 and 64 then "quarter5"
    when week_no between 65 and 77 then "quarter6"
    when week_no between 78 and 90 then "quarter7"
    when week_no between 91 and 102 then "quarter8"
    end as Quarter,
    round(sum(sales_value),2) as Sales
from `dunnhumby_dataset.transaction_data`
group by 1;
```

Query results						
JOB IN	IFORMATION	RESULTS	JSON			
Row	Quarter		Sales			
1	quarter1		328865.31			
2	quarter2		1001743.24			
3	quarter3		1073977.47			
4	quarter4		1123719.64			
5	quarter5		1148910.61			
6	quarter6		1143552.58			
7	quarter7		1144484.66			
8	quarter8		1092209.57			

e. Are the customers spending more or less over time (group in 25 week segments)

Ans -

```
case
   when week_no between 0 and 25 then "quarter1"
   when week_no between 26 and 51 then "quarter2"
   when week_no between 52 and 77 then "quarter3"
   when week_no between 78 and 102 then "quarter4"
   end as Quarter,
   round(sum(sales_value),2) as spending
from `dunnhumby_dataset.transaction_data`
group by 1,2
order by 1 asc;
```

Query results JOB INFORMATION **RESULTS JSON EXECUTION DETAILS** household_key_ spending Row Quarter 1 765.38 quarter1 2 1 quarter2 1148.71 3 1 quarter3 1131.98 1284.09 4 1 quarter4 5 2 quarter1 409.65 2 580.54 quarter2 6 7 2 quarter3 395.05 8 2 quarter4 569.1 9 3 quarter1 464.58 1424.74 10 3 quarter2

f. Customer churn analysis for each quarter

on t1.household_key = t2.household_key

and t1.Quarter < t2.Quarter
where t2.household_key is null</pre>

group by 1
order by 1;

```
with t as
(select *,
      case
      when week_no between 0 and 12 then "quarter1"
      when week_no between 13 and 25 then "quarter2"
      when week_no between 26 and 38 then "quarter3"
      when week_no between 39 and 51 then "quarter4"
      when week_no between 52 and 64 then "quarter5"
      when week_no between 65 and 77 then "quarter6"
      when week_no between 78 and 90 then "quarter7"
      when week_no between 91 and 102 then "quarter8"
      end as Quarter
from `dunnhumby_dataset.transaction_data`)
      t1.Quarter, count(distinct t1.household_key) as churned_cust
from t t1
full outer join t t2
```

Quer	Query results							
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS				
Row /	Quarter	1.	churned_cust //					
1	quarter1		5					
2	quarter2		3					
3	quarter3		5					
4	quarter4		8					
5	quarter5		16					
6	quarter6		34					
7	quarter7		119					
8	quarter8		2310					

g. Find the retained customers for each quarter
 (retained :Households who were there in previous quarters and are there in the current quarter)

```
Ans -
```

```
with t as
       (select *,
             case
             when week_no between 0 and 12 then "quarter1"
             when week_no between 13 and 25 then "quarter2"
             when week_no between 26 and 38 then "quarter3"
             when week_no between 39 and 51 then "quarter4"
             when week_no between 52 and 64 then "quarter5"
             when week_no between 65 and 77 then "quarter6"
             when week_no between 78 and 90 then "quarter7"
             when week_no between 91 and 102 then "quarter8"
             end as Quarter
      from `dunnhumby_dataset.transaction_data`)
select
      t1.Quarter, count(distinct t1.household_key) as retained_cust
from t t1
left join t t2
on t1.household_key = t2.household_key
where t1.Quarter > t2.Quarter
group by 1
order by 1;
```

Quer	Query results						
JOB IN	IFORMATION	RESULTS	JSON				
Row /	Quarter		retained_cust //				
1	quarter2		1476				
2	quarter3		2285				
3	quarter4		2283				
4	quarter5		2302				
5	quarter6		2316				
6	quarter7		2323				
7	quarter8		2309				

h. Find products(product table :SUB_COMMODITY_DESC) which are most frequently bought together

```
with a as
      (select *
      from `dunnhumby_dataset.product` p
      join `dunnhumby_dataset.transaction_data` t
      on p.PRODUCT_ID = t.PRODUCT_ID)
SELECT
      a1.sub_commodity_desc as product1,
      a2.sub_commodity_desc as product2,
      count(distinct a1.basket_id) as no_of_times_together
from a a1
join a as a2
on a1.basket_id = a2.basket_id
where a1.sub_commodity_desc < a2.sub_commodity_desc</pre>
group by 1 , 2
order by 3 desc
limit 100;
```

Quer	y results						▲ SAVE RESUL
JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH	PREVIEW
Row /	product1	1.	product2	/,	no_of_time	s_together	
1	BANANAS		FLUID MILK W	HITE ONLY		15662	
2	FLUID MILK WHIT	TE ONLY	MAINSTREAM	1 WHITE BREAD		14075	
3	FLUID MILK WHIT	TE ONLY	SOFT DRINKS	12/18&15PK CA		10576	
4	FLUID MILK WHIT	TE ONLY	SHREDDED CH	HEESE		10349	
5	DAIRY CASE 1009	% PURE JUICE	FLUID MILK W	HITE ONLY		9549	
6	FLUID MILK WHIT	TE ONLY	KIDS CEREAL			8428	
7	FLUID MILK WHIT	TE ONLY	SFT DRNK 2 L	ITER BTL CARB I		8021	
8	FLUID MILK WHIT	TE ONLY	POTATO CHIP	S		7660	
9	EGGS - LARGE		FLUID MILK W	HITE ONLY		7569	

i. Calculate Customer lifetime value(CLV) for different age group
 Average purchase value — the value of all customer purchases over a particular time
 frame , divided by the number of purchases in that period

Average purchase frequency — divide the number of purchases in that same time period by the number of individual customers who made a transaction over the same period

Customer value — the average purchase frequency multiplied by the average purchase value

Average customer lifespan — the average length of time a customer continues buying from you

CLV = customer value X average customer lifespan

```
Ans -
select
      AGE_DESC.
      round((avg_purch_val*avg_purch_freq*avg_cust_lifespan),2) as clv
from
      (with cte as
      (select
             household_key,
             (max(WEEK_NO) - min (WEEK_NO))
             as cust_duration
      from `dunnhumby_dataset.transaction_data`
      group by household_key)
      select
             AGE_DESC.
             sum(SALES_VALUE)/count(distinct(BASKET_ID)) as avg_purch_val,
             count(distinct(BASKET_ID))/count(distinct(d.household_key))
             as avg_purch_freq,
             (sum(cte.cust_duration)/count(1)) as avg_cust_lifespan,
      from `dunnhumby_dataset.transaction_data` t
      inner join `dunnhumby_dataset.hh_demographic` d
      on t.household_key=d.household_key
      join cte
      on cte.household_key=d.household_key
      group by AGE_DESC)
```

Query results							
JOB IN	FORMATION	RESULTS	JSON				
Row	AGE_DESC	/1	clv				
1	65+		382170.97				
2	55-64		461916.72				
3	35-44		588905.9				
4	25-34		503434.69				
5	45-54		525416.21				
6	19-24		427939.21				