Problem

Let $MULT = \{a\#b\#c \mid a, b, c \text{ are binary natural numbers and } a \times b = c\}$. Show that MULT? L.

Step-by-step solution

Step 1 of 2

The class L:L is the class of languages that are decidable in logarithmic space on a deterministic truing machine.

That is, $L = SPACE(\log n)$

Given that,

 $MULT = \{ a\#b\#c \mid \text{where } a,b,c \text{ are binary natural numbers and } a \times b = c \}.$

Comment

Step 2 of 2

We have to show that $MULT \in L$.

That means, we have to construct a deterministic Turing machine (DTM) that decides MULT in logarithmic space.

Let M be the DTM that decides MULT in logarithmic space.

The construction of $\,M\,$ is as follows:

M = "On input a#b#c:

- 1. If either of the three strings is not a binary number as defined above then reject
- 2. Initialize a binary counter i pointing to the O.
- 3. Initialize a binary counter j to $\max(0, i+1 \text{length of } 1)$
- 4. Initialize a binary counter k to i-j
- 5. Now take a binary counter $x \leftarrow x + a[j]*b[k]$
- 6. Repeat steps 3 to 5 $\min(i, n-1)_{\text{times}}$.
- 7. Repeat steps 2 to 6 2n-1 times and calculate x = floor(x/2)
- 8. If any discrepancy arises between the calculate next bit of *c* and then reject.
- 9. If the multiplication ended with no errors then accept.

Thus, clearly \emph{M} runs in log space and decides \emph{MULT} .

So, $MULT \in L$

Comment