Edge Detection

Yeni Herdiyeni Departemen Ilmu Komputer FMIPA IPB

1

Outline

- □ Introduction
- □ Image Segmentation
- □ Edge detection method
 - Edge-based
 - Region-based

Teknik Segmentasi

- \square Discontinuity \rightarrow Edge-based
- ☐ Similarity (kemiripan) → Regionbased: histogram-based thresholding, region growing, region splitting dan merging, clustering/ classification, dan pendekatan teori graf.

3

Segmentasi – Edge-based

What are edges? □ Local intensity change □ Strong edge = the steep areas in a 3D plot (show: blobs-for-edge, surface plot) Edge detection

Deteksi Tepi

- □ Deteksi tepi (Edge detection) adalah operasi yang dijalankan untuk mendeteksi garis tepi (edges) atau boundary untuk segmentasi, registrasi, dan identifikasi objek.
- ☐ Edge adalah beberapa bagian dari citra di mana intensitas kecerahan **berubah** secara drastis.

.

Deteksi Tepi (edge)

- ☐ Edge adalah beberapa bagian dari citra di mana intensitas kecerahan **berubah** secara drastis.
- □ Dalam objek berdimensi 1, perubahan dapat diukur dengan menggunakan fungsi turunan (derivative function).
- □ Perubahan mencapai maksimum pada saat nilai turunannya pertamanya mencapai nilai maksimum atau nilai turunan kedua (2nd derivative) bernilai 0.

Gradient Operators

• Motivasi: mendeteksi perubahan changes Perubahan nilai piksel yang besar — Gradient besar

MATLAB function: > help edge

9

Introduction

Fig.1. Edges are boundaries between different textures. Edge also can be defined as discontinuities inimage intensity from one pixel to another. [4]

EDGE DETECTION METHOD

- ☐ First-Order Derivative Edge Detection
 - The Roberts operators
 - The Prewitt operators
 - The Sobel operators
 - First-Order of Gausssian (FDOG)
- ☐ Second-Order Derivative Edge Detection
 - Laplacian
 - Canny

11

Edge Detectors

- ☐ Mudah diimplementasikan dan cepat
- ☐ Berdasarkan grey-level gradient
 - Dihitung pada setiap piksel => Gradient image: g(x,y)
 - Menggunakan 16-bit atau 32-bit image untuk merepresentasikan gradient!
- \square Gradient : the first-order derivative: f'(x, y) = g(x, y)
- ☐ Bekerja pada arah x dan y:

$$g_x(x, y) \approx f(x+1, y) - f(x-1, y)$$

 $g_y(x, y) \approx f(x, y+1) - f(x, y-1)$

	x-1	X	x+1
y-1			
У			
y+1			

Fist-Order Derivative Edge Detection

Definition:

$$\nabla f = \left[\frac{G_x}{G_y}\right] = \left[\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial x}}\right]$$
 the gradient vector

$$\nabla f = |\nabla f| = \sqrt{{G_x}^2 + {G_y}^2}$$
 the magnitude of this vector

angle of
$$\nabla f = \tan^{-1} \left(\frac{G_y}{G_x} \right)$$
 the direction of the gradient vector

Fist-Order Derivative Edge Detection

Fig.2. Orthogonal gradient generation.[2]

 $G(x, y) = \frac{\partial F(x, y)}{\partial x} \cos \theta + \frac{\partial F(x, y)}{\partial y} \sin \theta$

The gradient along the line normal to the edge slope

 $G(j,k) = \left[\left[G_R(j,k)\right]^2 + \left[G_C(j,k)\right]^2\right]^{1/2}$

The spatial gradient amplitude

 $G(j,k) \, = \, \left| G_R(j,k) \right| + \left| G_C(j,k) \right|$

The gradient amplitude combination

The Roberts operators

Z ₁ ,	Z2.0	Z ₃ ₽
Z44	Z 5₽	Z ₆ .
Z 7₽	Z ₈ ₽	Z 9₽

0	0	0
0	-1	0
0	0	1

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
\hline
0 & 1 & 0 \\
\end{array}$$

$$G_x = (z_9 - z_5)$$
 $G_y = (z_8 - z_6)$

$$G_{y} = (z_8 - z_6)$$

The Prewitt operators

-1	-1	-1
0	0	0
1	1	1

$$G_x = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3) \quad G_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

17

The Sobel operators

$$\begin{array}{c|cccc} Z_{1\wp} & Z_{2\wp} & Z_{3\wp} \\ \hline Z_{4\wp} & Z_{5\wp} & Z_{6\wp} \\ \hline Z_{7\wp} & Z_{8\wp} & Z_{9\wp} \\ \hline \end{array}$$

$$\begin{array}{c|cccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}$$

$$\begin{array}{c|cccc}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}$$

$$G_x = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$
 $G_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$

Fig.3. Impulse response arrays for 3 \times 3 orthogonal differential gradient edge operators.[2]

19

First-Order of Gausssian

 $G(x) = e^{-(\frac{x^2}{2\sigma^2})}$ It is hard to find the gradient by using the equation

 $G'(x) = (-\frac{x}{\sigma^2})e^{-(\frac{x^2}{2\sigma^2})}$ In order to simplify the computation

$$M_x(x,y) = G_x * I(x,y)$$
 $M = |M_x| + |M_y|$
 $M_y(x,y) = G_y * I(x,y)$

Fig.4. Using 1st-order differentiation to detect (a) the sharp edges, (c) the step edges with noise, and (e) the ramp edges. (b)(d)(e) are the results of differentiation of (a)(c)(e).[3]

21

Tugas Minggu Depan

- ☐ Buat program deteksi Tepi dengan menggunakan operator
 - Robert
 - **■** Prewitt
 - Sobel
- □ **Program tidak boleh** menggunakan fungsi MATLAB

Second Order Derivation

Laplacian

23

Second-order derivative edge detection

The Laplacian of a 2-D function f(x, y) is a second-order derivative defined as:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Second-order derivative edge detection

The 2-D Gaussian function:

$$h(x, y) = -e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

The Laplacian of Gaussian (LOG):

$$\nabla^2 h(x, y) = -\left[\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right] e^{-\frac{r^2}{2\sigma^2}}$$

27

Second-order derivative edge detection

0	0	0	-1	-1	-2	-1	-1	0	0	0
0	0	-2	-4	-8	-9	-8	-4	-2	0	0
0	-2	-7	-15	-22	-23	-22	-15	-7	-2	0
-1	-4	-15	-24	-14	-1	-14	-24	-15	-4	-1
-1	-8	-22	-14	52	103	52	-14	-22	-8	-1
-2	-9	-23	-1	103	178	103	-1	-23	-9	-2
-1	-8	-22	-14	52	103	52	-14	-22	-8	-1
-1	-4	-15	-24	-14	-1	-14	-24	-15	-4	-1
0	-2	-7	-15	-22	-23	-22	-15	-7	-2	0
0	0	-2	-4	-8	-9	-8	-4	-2	0	0
0	0	0	-1	-1	-2	-1	-1	0	0	0

Fig.7. An 11×11 mask approximation to Laplacian of Gaussian (LOG).[3]

Second-order derivative edge detection

- ☐ Sensitive to noise
- ☐ Gaussian function
- ☐ Low-pass filter

29

Second-order derivative edge detection

- (b) Laplacian mask of Fig.(a)
- (c) Laplacian mask of **Fig**.(b)
- (d) LOG mask of Fig.(b)

Fig.9. Simulation of second-order of derivative edge detection[3

Second-order derivative edge detection

Fig. 10. Using 1st-order differentiation to detect (a) the sharp edges, (c) the step edges with noise, and (e) the ramp edges. (b)(d)(e) are the results of differentiation of (a)(c)(e).[3]

31

Second-order derivative edge detection

The Drawbacks of the Differentiation Method for Edge Detection :

- Sensitivity to noise
- Not good for ramp edges
- Make no difference between the significant edge and the detailed edge

Edge Detector: Laplacian

- □ Noise reduction
 - 2D Gaussian used for smoothing
- ☐ Edge enhancement
 - Second-order derivative (second-order gradient)
- □ Edge localisation
 - Zero-crossings

33

Edge Detector: Laplacian The second-order derivative is very sensitive to noise!

Second Order Derivation

Canny

35

Canny Edge Detector

- □ Noise reduction
 - 2D Gaussian used for smoothin្ធថ្នំ
- ☐ Edge enhancement
 - Magnitude of gradient vector:

$$g = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

- □ Edge localisation
 - Complicated...

Canny Edge Detection Good detection Good localization Single response Many edge candidate The accurate edge

Second-order derivative edge detection

-1	-1	-1		
-1	8	-1		
-1	-1	-1		
(b)				

$$\nabla^2 f = 4z_5 - (z_2 + z_4 + z_6 + z_8)$$

$$\nabla^2 f = 4z_5 - (z_2 + z_4 + z_6 + z_8) \qquad \nabla^2 f = 8z_5 - (z_1 + z_2 + z_3 + z_4 + z_6 + z_7 + z_8 + z_9)$$

Conlusion

- ☐ Fist-Order Derivative Edge Detection:
 - > the simplest method
- ☐ Second-Order Derivative Edge Detection:
 - > sensitive to noise

Reference

- [1] Soo-Chang Pei, Jian-Jiun Ding, " Imporved Harris' Algotithm ForConer And Edge Detections", vol 1, 2005.
- [2] William K. Pratt , "Digital Image Processing_William K. Pratt 3rd ", chapter 15.
- [3] Jiun-De Huang, "Image Compression by Segmentation and Boundary Description", chapter 2.
- [4] J. Canny, "A Computational Approach to Edge Detection," IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-8, 6,November 1986, 679–698.

43

END