# HƯỚNG DẪN BÀI TẬP CỰC TRỊ ĐỊA PHƯƠNG

## 1. Kiến thức cần nhớ

#### Bài toán

Tìm cực trị địa phương của hàm số y = f(x).



## Quy tắc 1- Tiêu chuẩn đạo hàm cấp 1

- 1 Tìm tập xác định của hàm số.
- 2 Tính f'(x).
- lacksquare Tìm tất cả các điểm trong miền xác định của f mà f'(x)=0 hoặc f'(x) không xác định tại đó.
- 4 Lập bảng biến thiên
- Oựa vào bảng biến thiên để kết luận



## Quy tắc 2- Tiêu chuẩn đạo hàm cấp 2

- 1 Tìm tập xác định của hàm số.
- 2 Tính f'(x). Giải  $f'(x) = 0 \Leftrightarrow x = x_i$  với  $i = 1, 2, \ldots$
- 3 Tính f''(x)
- $oldsymbol{0}$  Dựa vào dấu của  $f''(x_i)$  để kết luận:
  - Nếu  $f''(x_i) > 0$  thì f đạt cực tiểu tại  $x_i$ .
  - Nếu  $f''(x_i) < 0$  thì f đạt cực đại tại  $x_i$ .
  - Nếu  $f''(x_i) = 0$  sử dụng Quy tắc 1 để kết luận.

## 2. Các ví dụ

#### Ví du 2.1

Tìm cực trị địa phương của  $f(x) = (1+2x)^3 - 27x^2 - 1$ 



Tập xác định  $D=\mathbb{R}$ .

Giải 
$$f'(x)=0\Leftrightarrow 6\left(1+2x\right)^2-54x=0\Leftrightarrow x=1\lor x=rac{1}{4}.$$

Bảng biến thiên

Giảng viên: Nguyễn Minh Hải

| $oldsymbol{x}$ | $-\infty$ |   | $rac{1}{4}$ |   | 1  |   | $+\infty$ |
|----------------|-----------|---|--------------|---|----|---|-----------|
| f'(x)          |           | + | 0            | _ | 0  | + |           |
| f(x)           | $-\infty$ |   | 11/16        |   | _1 |   | +∞        |

Vậy

- Hàm số đạt cực tiểu địa phương tại x=1 và  $f_{min}=-1$ .
- Hàm số đạt cực đại địa phương tại  $x=rac{1}{4}$  và  $f_{max}=rac{11}{16}.$

Ví dụ 2.2

Tìm cực trị địa phương của  $f(x)=3x^4-4x^3-12x^2+5$ 

B Lời giải.

Tập xác định  $D=\mathbb{R}$ .

 $\stackrel{\cdot }{\text{Giải}}\stackrel{\cdot }{f'(x)}=0\Leftrightarrow 12x^3-12x^2-24x=0\Leftrightarrow x=0\lor x=2\lor x=-1.$ 



Vậy

- Hàm số đạt cực tiểu địa phương tại x=-1 và  $f_{min}=0$ .
- Hàm số đạt cực tiểu địa phương tại x=2 và  $f_{min}=-27$ .
- Hàm số đạt cực đại địa phương tại x=0 và  $f_{max}=5.$

Ví du 2.3

Tìm cực trị địa phương của  $f(x)=(2x+7)(x+1)^{2/3}$ 

 $\raiseta$ Lời giải. Tập xác định  $D=\mathbb{R}.$ 

Ta có 
$$f'(x) = rac{10(x+2)}{3(x+1)^{1/3}}.$$

Giải 
$$f'(x) = 0 \Leftrightarrow egin{cases} x+2=0 \ x 
eq -1 \end{cases} \Leftrightarrow x = -2$$

Hơn nữa, f'(x) không xác định tại  $x=-1\in D$ . Vậy các điểm tới hạn của f là x=-2 và x=-1



Vậy

- Hàm số đạt cực đại địa phương tại x=-2 và  $f_{max}=3$ .
- Hàm số đạt cực tiểu địa phương tại x=-1 và  $f_{min}=0$ .

## Ví du 2.4(Đề HKI-2016-2017)

Tìm cực trị tương đối của  $f(x) = \ln(1-x) + \sin^{-1}(x)$ .

 $oldsymbol{\mathcal{J}}$  Lời giải. Tập xác định D=[-1;1).

Ta có 
$$f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{1-x} = \frac{\sqrt{1-x^2}-(x+1)}{1-x^2}.$$

$$f'(x) = 0 \Leftrightarrow \begin{cases} \sqrt{1-x^2} = x+1 \\ -1 < x < 1 \end{cases} \Leftrightarrow \begin{cases} 2x(x+1) = 0 \\ -1 < x < 1 \end{cases} \Leftrightarrow \begin{bmatrix} x = 0 & (\text{Nhận}) \\ x = -1 & (\text{Loại}) \end{cases}$$

Hơn nữa, f'(x) không xác định tại  $x=-1\in D$ . Vậy hàm số có các điểm tới hạn là x=0 và x=-1.



Vậy f đạt cực đại tương đối tại x=0 và  $f_{max}=0$ 

## Ví dụ 2.5(Đề HKI-2015-2016)

Tìm cực trị địa phương của  $f(x) = x - 2 \tan^{-1} x$ .

 $rac{1}{2}$  **Lời giải.** Tập xác định  $D=\mathbb{R}$ . Ta có

$$f'(x) = 1 - rac{2}{x^2 + 1} = rac{x^2 - 1}{x^2 + 1}$$
  $f''(x) = rac{4x}{(1 + x^2)^2}$ 

Giải  $f'(x) = 0 \Leftrightarrow x^2 - 1 = 0 \Leftrightarrow x = \pm 1$ .

- Vì f''(-1)=-1<0 nên f đạt cực đại tương đối tại x=-1 và  $f_{max}=rac{\pi}{2}-1.$
- Vì f''(1)=1>0 nên f đạt cực tiểu tương đối tại x=1 và  $f_{min}=1-rac{\pi}{2}.$

#### Ví du 2.6

Tìm cực trị tương đối (địa phương) của  $f(x)=rac{e^x}{x}.$ 

 $rac{ extstyle L lpha i giải.}{ extstyle Ta có}$  Tâp xác định  $D=\mathbb{R}\setminus\{0\}.$ 

$$f'(x) = rac{xe^x - e^x}{x^2} = rac{e^x(x-1)}{x^2} \ f''(x) = rac{e^x(x^2 - 2x + 2)}{x^3}$$

Giải 
$$f'(x)=0\Leftrightarrow egin{cases} x
eq 0 \ x-1=0 \end{cases} \Leftrightarrow x=1.$$

Vì f''(1)=e>0 nền f đạt cực tiểu tại x=1 và  $f_{max}=e.$ 

Cách 2:

Giải 
$$f'(x) = 0 \Leftrightarrow x = 1$$
.

|   | $oldsymbol{x}$ | $-\infty$     | ) 1           | $+\infty$ |
|---|----------------|---------------|---------------|-----------|
| _ | f'(x)          | _             | - 0           | +         |
|   | f(x)           | $0$ $-\infty$ | $+\infty$ $e$ | +∞        |

#### Ví dụ 2.7(Hàm xác định từng khoảng)

Tìm cực trị địa phương của  $f(x)=egin{cases} 3-x & ext{nếu}\ x<0 \ 3+2x-x^2 & ext{nếu}\ x\geq0 \end{cases}$ 

 $oldsymbol{\mathcal{L}\grave{o}i}$  giải. Tập xác định  $oldsymbol{D}=\mathbb{R}.$  Ta có

$$f'(x) = \begin{cases} -1 & \text{khi } x < 0 \\ 2 - 2x & \text{khi } x > 0 \end{cases}$$

Giải  $f'(x) = 0 \Leftrightarrow 2 - 2x = 0 \Leftrightarrow x = 1$ . Tai x = 0:

$$\lim_{x o 0^+} rac{f(x) - f(0)}{x - 0} = \lim_{x o 0^+} rac{2x - x^2}{x} = \lim_{x o 0^+} (2 - 2x) = 2$$
 $\lim_{x o 0^-} rac{f(x) - f(0)}{x - 0} = \lim_{x o 0^-} rac{-x}{x} = -1$ 

Vì  $f'_{-}(0) \neq f'_{+}(0)$  nên f'(0) không tồn tại. Vậy các điểm tới hạn là x=0 và x=1.



- Hàm số đạt cực tiểu tại x=0 và  $f_{min}=3$
- Hàm số đạt cực đại tại x=1 và  $f_{max}=4$ .

## Ví dụ 2.8(Hàm trị tuyệt đối)

Tìm cực trị địa phương của  $f(x) = \left| x^2 - 2x \right| + 3$ .

 $\raise Lời giải. Viết lại hàm <math>f(x)$ 

$$f(x) = egin{cases} x^2 - 2x + 3 & ext{n\'eu} \ x \leq 0 \lor x \geq 2 \ -x^2 + 2x + 3 & ext{n\'eu} \ 0 < x < 2 \end{cases}$$

Tập xác định  $D = \mathbb{R}$ .

Ta có

$$f'(x) = egin{cases} 2x-2 & ext{n\'eu}\ x < 0 \lor x > 2 \ -2x+2 & ext{n\'eu}\ 0 < x < 2 \end{cases}$$

Giải  $f'(x) = 0 \Leftrightarrow x = 1$ . Tại x = 0

$$f'_+(0) = \lim_{x o 0^+} rac{f(x) - f(0)}{x - 0} = \lim_{x o 0^+} rac{x^2 - 2x}{x} = \lim_{x o 0^+} (2x - 2) = -2$$
  $f'_-(0) = \lim_{x o 0^-} rac{f(x) - f(0)}{x - 0} = \lim_{x o 0^-} rac{-x^2 + 2x}{x} = \lim_{x o 0^-} (-2x + 2) = 2$ 

Vì  $f_-'(0) 
eq f_+'(0)$  nên f'(0) không tồn tại. Tại x=2

$$f'_{+}(2) = \lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{+}} \frac{x^{2} - 2x}{x - 2} = \lim_{x \to 2^{+}} (2x - 2) = 2$$

$$f'_{-}(2) = \lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{-x^{2} + 2x}{x - 2} = \lim_{x \to 2^{-}} (-2x + 2) = -2$$

Vì  $f_-'(2) 
eq f_+'(2)$  nên f'(2) không tồn tại.

Vậy các điểm tới hạn của f là  $x=1,\,x=2$  và x=0.



Vây

- Hàm số đạt cực tiểu tại x=0 và  $f_{min}=3$ .
- Hàm số đạt cực tiểu tại x=2 và  $f_{min}=3$ .
- Hàm số đạt cực đại tại x=1 và  $f_{max}=4$ .