AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOF-ETC F/6 20/11 AMALYSIS OF ACTIVE CONTROL OF CANTILEVER BEAM BENDING VIBRATION--ETC(U) DEC 78 D T PALAC AFTT/80-6 NL AD-A981 894 UNCLASSIFIED 122 40 40 40 40 40

ANALYSIS OF ACTIVE CONTROL OF CANTILEVER BEAM BENDING VIBRATIONS

THESIS

AFIT/GA/AA/78D-6

Donald T. Palac 2Lt USAF

Approved for public release; distribution unlimited

AFIT/GA/AA/78D-6/

ANALYSIS OF ACTIVE CONTROL
OF CANTILEVER BEAM BENDING VIBRATIONS.

THESIS (9) Maler 11.

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

Air University (ATC)

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

A mossion For	_
TAB Cambunced Justification	
Ey	_
I to the land	
/ Ccdes	
Eist Audiand/or	

Donald To Palac USAF

Graduate Astronautical Engineering

December 1078 /2/1/

Approved for public release; distribution unlimited

11000

し

PREFACE

I am indebted to several people for the help and support they provided during the long haul towards this finished product. Dr. Robert A. Calico, my advisor, was a source of encouragement as well as technical guidance. Capt. James Silverthorn helped me unravel the tangled knots of optimal control theory. I would like to thank Capt. John B. Hungerford for his understanding. Finally, I am grateful to my typist, Mary Dunnebacke, whose friendship contributed to more of this thesis than just the typed pages.

							CO	ΝT	ΈN	TS	;								
											•								Page
Preface	e	• •		•	•	•			•	•	•	•	•	•	•	•	•	•	ii
Table o	of Cont	tents	s .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
List of	E Figui	ces		•	•		•		•				•	•	•	•	•	•	iv
Abstrac	ct .	• •		•	•	•	•		•			•		•	•	•	•	•	v
I.	Intro	duct	ion	•		•	•	•	•		•	•	•	•	•	•	•	•	1
II.	Analy	tic !	recl	nni	.qu	es	5	•		•	•	•		•	•	•	•	•	4
III.	Effect	t of	Cha	ano	rin	a	E1	en	en	ıts	; c	£	St	:at	:e				
	Weight										•		•	•	•	•	•	•	8
IV.	Class	ical	Fee	edk	ac	k	Co	mp	er	ısa	ıti	or	1	٠	•		•	•	18
V.	Rate a	and 1	Pos:	iti	.on	-F	Rat	e	Se	ens	01	s	•	•	•	•	•	•	24
VI.	Conclu	usio	n.	•	•	•	•	•	•	•	•	•	•	•		•	•	•	28
VII.	Recom	menda	atio	ons	5	•	•		•	•	•	•	•	•	•		•	•	29
Biblio	graphy	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	30
Append:	ix A:	Тур	ica	1 (Jse	: c	f	tł	ıe	AF	rIT	r •	'To	ota	11'	•			
		Pac			•		•	•	•	•	•	•	•	•	•	٠	•	•	32
Append	ix B:	Roo Plo									no.	i 7	rir •	ne •	Re •	es] •	001	nse •	44
Append	ix C:	Com												on.	, <u>l</u>	Rai	te.		74
																			0.0

LIST OF FIGURES

Fig	gure	Page
1	Root locus diagram for base weighting	12
2	Root locus diagrams for first two state weightings variations	13
3	Root locus diagrams for second two state weighting variations	14
4	Root locus diagrams for feedback compensation	20
5	Root locus diagrams for feedback compensation	21
6	Root locus diagrams for position and rate sensors	26

ABSTRACT

Active control of bending vibrations in a cantilever beam is examined using a digital computer model of beam and control-The controller uses the discretized beam equation of motion in a linear control system, which uses a Luenberger observer to reconstruct modal amplitudes and velocities from the sensor output. Feedback gains obtained from a steady state optimal regulator drive a force actuator. The model is used to examine three areas of active control of bending vibrations. First, impact on control effectiveness is investigated for iterative changes in elements of the state weighting matrix, part of the quadratic performance index minimized for the steady state optimal regulator. Second, the steady state optimal regulator is replaced with classical control through addition of open loop zeroes to the system transfer function. the sensor model is changed to include position and rate information and rate information only. State weighting matrix element changes selectively produce increased damping of the mode associated with the changed element. Breakdown of the observer model, and instability, occurs when the change in an element exceeds a limit peculiar to that element and its relative magnitude. Control through classical feedback compensation is at least as effective as optimal control by the steady state optimal regulator. Addition of rate information to the sensor model causes instability because of numerical inaccuracies in the solution of the linear equation producing the Luenberger observer state estimation.

INTRODUCTION

Increasing interest in construction of large space structures such as solar energy collectors and large orbiting radio telescopes, present unprecedented problems in flexible satellite attitude control. Separation of control and structural frequency bandwidths to control undesirable structural vibrations may not be possible for these large space vehicles. Active controllers applied to structural vibrations may provide an answer.

Balas (Ref 1) described a method for applying active control to a simply supported beam. The equation of motion of the beam in bending is discretized by the normal modes approximation. This information is incorporated in a linear control system, where information from the sensor is used to estimate the modal amplitudes and velocities through a Luenberger observer. The steady state optimal regulator produces control proportional to the modal amplitudes and velocities by minimizing a performance index. This control is applied to the beam by a force actuator.

Hungerford (Ref 4) implemented Balas' method in a digital computer model of a cantilever beam. He showed that, at least within the limits of his investigation, the method of control appeared feasible for controlling bending vibrations in a cantilever beam. Hungerford looked at the influence of control weighting, sensor and actuator location, and observer error on control effectiveness. In this thesis, the influence of state weighting changes, different sensor models, and the

application of classical control techniques are investigated.

The steady state optimal regulator applied to a finite number of states in a beam provides incomplete control; that is, an infinite number of states remain uncontrolled by the regulator regardless of the number of states controlled.

For such a system, there is a need for determining the effects of changing the weighting in the quadratic performance index, which is minimized to produce the "optimal" regulator.

Hungerford investigated the effect of changing the control weighting matrix on the control effectiveness. The first purpose of this thesis was to complete the study of the effect of weighting changes by determining the effect of state weighting matrix element changes on the effectiveness of control.

During the study of the optimal regulator, the root locus indicated the effects of weighting changes. Examination of several root locus diagrams suggested the application of classical control techniques. By placing zeroes at selected points on the root locus, it was expected that effective control might be acheived. Examination of simple feedback compensation applied to a vibrating beam became a second purpose for this thesis.

The Luenberger observer in Hungerford's study used input from a position sensor. Foreseeing application to physical systems, some alternatives in selection of sensors is desirable. The third purpose of this thesis was to expand Hungerford's study to include a rate sensor and a position-rate sensor.

From a starting point offered by Balas, Hungerford began an investigation of the active control of bending vibrations

in a cantilever beam. The overall purpose of this thesis was to further that investigation. The specific areas examined were: the effect of changing elements of the state weighting matrix; the application of simple feedback compensation; and the use of rate and position-rate sensors.

ANALYTIC TECHNIQUES

The basic vehicle for most of the investigation was a digital computer model of a cantilever beam, Luenberger observer, and optimal regulator developed by Hungerford.

For the investigation of state weighting changes and different sensor types, control was applied to the first two normal modes of bending vibration, with a third mode included as a residual mode. This simplified the study without loss of generality, and assured compatability with the "Total" program, developed by Larimer (Ref 5) for control systems analysis and design. "Total" was used to generate root locus diagrams from the linear system matrices produced by the Hungerford's linear system model.

Hungerford's computer model of the system is based on the following block diagram:

v = state vector

 $\hat{\mathbf{v}}$ = estimated state vector

 $[\overline{A}]$ = coefficients from discretized

beam equation

(B) = control coefficients matrix

(C) = output coefficients matrix

(G) = feedback gain matrix

(K) = observer gain matrix

u' = control input

f = control force signal

In order to form the state equations we consider the equation of motion for a cantilever beam with no applied

external forces:

-EI
$$\frac{\partial^4 y(x,t)}{\partial x^4}$$
 = m $\frac{\partial^2 y(x,t)}{\partial t^2}$ (1)

where the stiffness, EI, and the mass per unit length, m, are constant along the beam length. The equation is discretized by using a normal mode approach where:

$$y(x,t) = \sum_{i=1}^{n} \phi_{i}(x)\underline{u}_{i}(t)$$
 (2)

The normal modes $\phi_i(x)$ are found by solution of the special portion of eq 1, and they represent the mode shapes. The modal amplitudes $\underline{u}_i(t)$ form the basis of the linear system model.

The linear system is constructed on a state vector \underline{z} where:

$$\underline{z} = \left\{ \underline{v}_{C}^{T} \mid \underline{e}^{T} \mid \underline{v}_{r}^{T} \right\}^{T}$$

$$\underline{v}_{C} = \left\{ \underline{u}_{i}^{T}(t) \mid \underline{u}_{i}^{T}(t) \right\}^{T} \qquad i=1,2$$

$$\underline{v}_{r} = \left\{ \underline{u}_{i}^{T}(t) \mid \underline{u}_{i}^{T}(t) \right\}^{T} \qquad i=3$$

$$\underline{e} = \left\{ \underline{\hat{v}}_{C} - \underline{v}_{C} \right\}$$
(3)

The subscripts c and r refer to the controlled and residual modes, respectively. The linear system representing the cantilever beam, Luenberger observer, and steady state optimal regulator has the form:

$$\frac{\dot{z}}{\dot{z}} = \begin{bmatrix} [A_{c}] + \{B_{c}\}\{G\} & \{B_{c}\}\{G\} & \{G\} \\ [A_{c}] - \{K\}\{C_{c}\} & \{K\}\{C_{r}\} \end{bmatrix} \underline{z} \quad (4)$$

The subscripts on the control and output coefficient matrices {B} and {C} refer to those coefficients associated with the controlled and residual mode, respectively. For a complete discussion of the assembly of this linear system matrix, the reader is referred to Ref 4.

For investigating system time response, eq 4 can be integrated. However, a root locus may be constructed from the open loop transfer function which has the form:

$$\frac{Y}{U} = \left\{ C_{C} \right\}^{T} \left[s[I] - [A] \right]^{-1} \left\{ B_{C} \right\}$$
 (5)

The matrices appearing in this formula may be obtained from the construction of the linear system model. The solution of eq 5 and the generation of the associated root locus diagram may be accomplished merely by loading the appropriate matrices into the "Total" program and executing the required options. An example of the use of "Total" for generation of the open loop transfer function and root locus diagram may be found in Appendix A.

To investigate a certain state weighting configuration or sensor type, the following steps were taken to produce a root locus diagram for analysis of control effectiveness. First, beam length, width, thickness, stiffness, and mass per unit length were selected. Sensor and actuator locations, type of sensor, observer pole offset, and state and control

weightings were input to the linear system model with the beam parameters. The coefficient matrix in eq 4 was produced along with the component matrices $[A_C]$, $[A_T]$, $\{B_C\}$, $\{B_T\}$, $\{C_C\}$, $\{C_T\}$, $\{G\}$, and $\{K\}$. At this point, if time response information was desired, the linear system model was numerically integrated. The matrices required for solution to eq 5 were loaded into "Total" and a root locus diagram was generated. For the investigation of classical control application, the same steps were followed. However, options of the "Total" program allow replacement of the feedback transfer function produced by the steady state optimal regulator with any desired transfer function.

EFFECT OF CHANGING ELEMENTS OF STATE WEIGHTING MATRIX

There have been several suggestions from various sources for picking the elements of the diagonal state weighting matrix [F] in the performance index:

$$J = 1/2 \int_0^{\infty} \left(\underline{v}_C^T[F] \underline{v}_C + f^T R f \right) dt$$
 (6)

For instance, Bryson and Ho (Ref. 2) present a scheme for selection of these elements based on the estimated maximum values of the states. Balas suggests energy weighting. Neither of these, when applied to the system in preliminary studies, yielded satisfactory response. The first investigation in this thesis, then, was a systematic exploration of the effect of changing each element of the state weighting matrix.

As a starting point, a configuration was selected that was previously shown to be stable using the weightings as picked by Hungerford. An aluminum beam 3 meters long, 3 cm wide and .5 cm thick was chosen. The observer poles were set ten units to the left of the average real value of the system poles. For the purpose of this examination, sensor and actuator locations were picked sufficiently far from any node to delete the effects of locating close to a node. On a 3 meter cantilever beam, a position sensor at 1.4 m from the clamped end and a force actuator at 0.6 m from the clamped end provides the desired conditions.

To begin the study, elements of the state weighting matrix were set to unity; that is

The elements were separately varied from a value of .01 to 100, incremented by a factor of 10. Analysis of the results of variation about a base value of 1 suggested that a more suitable base value would be of order 10^2 . Root locus diagrams for state weighting element variation from 1, Figs Bl to B5 in Appendix B, show significant changes only when elements are changed to 100. Unless otherwise noted, the root locus diagrams and time response results for this and all parts of the investigation are for unity gain. The gain is the coefficient k in the following equation:

7

$$u' = k \{G\} \hat{\underline{v}}_{C}$$
 (8)

where, again, u' is the control input, $\{G\}$ is the feedback gain matrix, and $\hat{\underline{v}}_{C}$ is the controlled portion of the state vector.

To provide a more effective basis for the examination of effect of weighting charges, a new value was arbitrarily selected as a base from which each diagonal element was alternately varied. Since significant changes in the root locus were previously obtained with weightings of order 10^2 , a value of 500 was selected as a new base value. Each diagonal element was set to 500, and in alternate executions of the computer program, each element was incremented from 500 to 1,000 to 2,000. Again, a root locus for each case may be found in Appendix B, Figs B6 to B9.

For these weighting variations, significant effects of

weighting changes were noticed in the root locus diagrams. The resulting movement of open loop zeroes in some case produced changes in the branch patterns. More importantly the closed loop pole locations for a unity gain system shifted significantly with respect to one another. For variations of the first two state weightings, these shifts were only slightly noticeable. Augmenting these first two state weighting elements to values of 10,000 and 100,000 produced more notable changes in the root locus diagrams.

At this point in the study it was realized that the value of the investigation was limited by a major problem with the investigative technique. Up to this point the third residual mode and the Luenberger observer were omitted when the component matrices were input to "Total" program. Although "Total" is capable of handling the 10 x 10 system resulting from four controlled mode states, four observer error states, and two residual mode states, the open loop transfer function produced had a 17th order polynomial numerator and an 18th order polynomial denominator. The order of this transfer function was too large to be processed by the "Total" program, so the residual mode and observer had been omitted. However, eight pole-zero cancellations occur because the forward loop transfer function zeroes are cancelled with the feedback transfer function poles. Omitting these poles and zeroes produced a transfer function small enough for the root locus generation by "Total". In this way the investigation was continued including the residual mode and the observer.

Figure 1 shows the resulting analysis performed on the

3 meter beam with the first two vibration modes controlled and the third mode with no control applied. Each element of the diagonal weighting matrix had a value of 500. loop poles appear on the root locus as x's. The four open loop poles grouped together near the real axis represent the observer open loop poles. The three open loop poles located on the imaginary axis represent the beam model with no natural damping, and their placement on the imaginary axis represents the free vibration frequencies of each mode. small circles on the diagram represent open loop zeroes, and the closed loop system poles for a gain of unity appear as triangles. It is the relative positions of these closed loop poles that is of interest in this investigation. Changes in the locations of the closed loop poles on the branches extending from the imaginary axis represent changes in damping of the associated mode. These changes are of particular interest to this investigation.

The system that appears in Fig 1 serves as a basis for comparison. State weighting matrix changes will produce changes in closed loop pole locations from those in this figure. These shifts represent changes in the system response. Changes in response can be verified by examination of time response plots, which were obtained by numerical integration of the system as formulated in Hungerford's program. Time response plots of actuator force, displacement at sensor location modal amplitudes of the first three modes, and the percentage of the initial energy left in the beam can be found in Appendix B, Figs Bll to B25, for each system

ROOT LOCUS FOR 3M BEAM
WEIGHTING = DIAG(500 500 500 500)

40

Figure 1: Root locus diagram for base weighting configuration.

As before, weightings in the diagonal state weighting matrix were changed alternately, with one element varied as the other three stayed fixed at a value of 500. The amount of augmentation of each element was based on the previous analysis omitting the observer and residual mode.

discussed in this section.

A root locus for a diagonal weighting matrix with the first state weighting of 100,000 and the remaining weights at 500 is shown in Fig 2a. The most obvious effect of this heavy weighting on the first mode position state is the shift to the left of the closed loop pole on the branch starting at the first mode open loop pole. The effect of such shift on system response is higher damping on first mode vibrations, and examination of the time response plots, Fig B15, verifies increased first mode damping. This weighting also causes changes in the pattern of observer open loop

Figure 2: Root locus diagrams for first two state weighting variations.

Figure 3: Root locus diagrams for second two state weighting variations.

pole positions; all four observer open loop poles are located off the real axis. This shift of observer poles causes a change in the branch patterns. The branch from the third mode open loop pole is moved closer to the imaginary axis, resulting in a shift to the right of the third mode closed loop pole and reduced damping the third mode. Examination of the time response plots, Fig Bl6, shows reduced damping in the third mode for heavy weighting of the first state.

Second state weighting was augmented to a value of 10,000, as shown in Fig 2b. In this case, augmentation of the weighting produced no noticeable changes in the closed loop pole locations, and no noticeable changes in the time response. The observer open loop poles, however, have been shifted farther away from each other. Augmenting this weighting to a value of 100,000 produces further separation of these observer poles, which causes a shift in the third mode branch into the right half plane and instability results.

As with increased first state weighting, increasing the third state weighting produces a shift to the left of the first mode closed loop pole, as in Fig 3a. Time response plots for the first two modes are nearly identical for a first state weighting of 100,000 and the third state weighting of 2,000. This indicates that the same behavior can be produced with heavy weightings on position state or relatively light weighting on the corresponding velocity state. The behavior of the observer poles is not similar for the two cases; for the third state weighting increase, the observer open loop pole locations are not significantly shifted. Consequently, the third mode

branch of the root locus in Fig 3a has not been significantly shifted from its position when all weightings have a value of 500. Third mode time response plots, Figs B20, B21 and B22 verify that response of this mode does not significantly change when the third state weighting is increased to 2,000.

When the fourth state weighting is increased from a value of 500, the observer open loop poles shift off the real axis. As in previous cases, this causes a critical shift in the third mode branch pattern, and for unity gain an unstable system results. To investigate the effect of changing this fourth state weighting, the value was decreased from the base value of 500 rather than increased. Figure 3b shows a root locus diagram for the fourth state weighting of 100. A shift to the right of the second mode closed loop pole resulted, indicating the expected decreased damping of the second vibration mode. The time response plots of this second mode, Fig B24, shows decreased damping. The shift of this closed loop pole had sufficient numerical impact to cause a decrease in the average of the real part of the closed loop system poles for unity gain. Since the observer open loop poles are picked to be ten units to the left of the average real part, the open loop observer poles are shifted to the right. resulting shift in the branch patterns produced higher damping of the third mode for unity gain, as exhibited in the third mode time response plot, Fig B25.

The results of this part of the study can be summarized by examining the effects of weighting changes on the closed loop vibration mode poles and the open loop observer poles. When an element of the state weighting matrix is increased with respect to the other elements, the associated closed loop pole reflects this increase in a shift to the left, indicating increased damping. For instance, relative increases in the first and third state weightings move the first mode closed loop pole to the left. Larger relative increases of the position state weightings are required to produce the same closed loop pole shift as a smaller relative velocity state weighting increase. There is a numerical limit to the tolerable amount of relative increase peculiar to each state weighting element and the relative magnitudes of the weighting configuration. When this limit is approached the mechanism for choosing open loop observer poles produces an increasingly scattered pattern of pole placement. This scattered pattern may cause an outward shift of higher mode closed loop poles, and instability may result for increasingly scattered patterns.

CLASSICAL FEEDBACK COMPENSATION APPLIED TO VIBRATING BEAM

The steady state optimal regulator provides a method for controlling bending vibration in a beam optimally through minimization of a performance index. As evidenced in the previous section, the choice of weightings in this performance index predetermines the limits of optimization; in some cases, the optimum was still an unstable system. Although intelligent selection of weightings can produce effective control, an alternative control law may also effectively control bending vibrations in a cantilever beam.

In applying the "Total" root locus generator during investigation of state weighting changes, it became apparent that selection of location of open loop poles and zeroes was the net effect of the application of the optimal regulator control law. The purpose of the investigation of classical control was to determine if satisfactory control of cantilever beam bending vibrations might be obtained by using classical feedback techniques as an alternative to the modern optimal control theory.

Classical feedback compensation as applied to bending vibrations in a cantilever beam deals with the relationships of the locations of system open loop poles and zeroes. By adding poles or zeroes at specified positions on a system root locus, branch patterns can be moved. The root locus of the system for a 3 m beam as described in the previous section and a steady state optimal regulator with all state weightings set to 500 is shown in Fig 4a. Sensor and actuator positions

remain at 1.4 m and 0.6 m from the clamped end, respectively. The Luenberger observer has been omitted since the states need not be known in order to apply classical feedback compensation. Classical feedback compensation was applied by first removing the steady state optimal regulator poles and zeroes from the transfer function of the system in Fig 4a. A feedback compensation transfer function was constructed to add zeroes in the desired locations on the root locus. This feedback transfer function replaced the steady state optimal regulator in the linear system model.

The technique used in this investigation involved the use of state space input, transfer function manipulation, and root locus and time response options of the "Total" program. First, the system model for the open loop beam was produced by the execution of the digital computer linear system model developed by Hungerford. By using the state-space input options of "Total", the [A], {B}, and {C} matrices were loaded for the uncontrolled beam. These matrices constitute a 6 x 6 system of one position state and one velocity state for each of three modes. The forward-loop transfer function was generated from this information, and the desired feedbackloop transfer function was loaded using the transfer function manipulation options. The open-loop transfer function was generated and used to construct a root locus. Time response to step input plots generated by time response options may be found in Appendix B, Figs B26, B27, B28, and B29. A comparison criterion was applied to these time response plots.

Figure 4: Foot locus diagrams for base weighting and feeback compensation.

Figure 5: Root locus diagrams for feedback compensation.

to settle to within 5% of the final sensor displacement for a step input was selected as the comparison criterion for this investigation.

After examining Fig 4a, it was decided that favorable response characteristics might be obtained by pulling the branches toward the left of the root locus after removing the optimal regulator poles and zeroes. Classical feedback compensation rules suggest that root locus branches may be moved to the left by the addition of zeroes to the system (Ref 3). simplest application of the rule is the addition of one zero. On a root locus diagram, the transfer function s + a places a zero on the real axis at -a. Root locus diagrams were produced and studied for location of this zero at the origin and 2, 4, 6, 8, 10, 20, 30, 40, and 50 units to the left of the origin on the real axis. Figure 4b shows the root locus for a = 0, and Fig 5a is a root locus for a = 50. As expected, the branch patterns in both cases are moved to the left. However, small values of "a" move the lower frequency branches more, and higher values of "a" have a greater effect on the higher frequencies. Figure 4b represents the former case, and Fig 5b represents the latter. Thus, when "a" is zero and the gain is 35, the time to settle to within 5% of final displacement is 3.2 sec, as shown in Fig B26. The same settling time is 3.0 sec when the steady state optimal regulator is applied with all state weightings equal to 500, as shown in Fig B27. When "a" is 50, there is little first mode damping and the 5% settling time is nearly infinite, as shown in Fig B28.

It was found that a zero near the origin affected low

frequencies and a zero far to the left of the origin affected high frequencies. An attempt was made to affect both by adding two zeroes. One zero was placed at the origin and a second zero was added to produce the transfer function s(s + a).

Root locus diagrams were studied for location of the second zero at 20, 40, 60, and 80. Figure 5b shows the unity gain closed loop poles when a = 40, which is representative of the considered cases. The 5% settling time for this compensation is 2.2 sec, as shown in Fig B29.

RATE AND POSITION-RATE SENSORS

For a cantilever beam in bending vibration with the first three modes considered and the first two modes controlled and observed, the resulting linear system model, as before, has ten states. There are two controlled mode position states, two controlled mode velocity states, four observer error states, and one residual mode position state and velocity state. The output matrix {C} determines the nature of the output y; for Hungerford's study and the previous portions of this study the {C} matrix for a position sensor had the following form:

The more general form of {C} is

For a rate sensor, c_1 , c_2 , and c_5 are zero, and for a sensor providing a combination of position and rate information, c_1 through c_6 are non-zero. An attempt was made to examine the use of a rate sensor and a position-rate sensor in the linear system model of the vibrating beam.

Changing from a position sensor required a substantial modification of the linear system model as compiled by Hungerford. The observer gain matrix $\{K\}$ was found by setting the eigenvalues of the matrix $[A-\{K\}\{C\}]$ equal to a desired set of eigenvalues. The resulting linear equation is simplified when c_3 , c_4 and c_6 are zero. The more general case requires the solution of more complicated system of linear equations:

$$\begin{bmatrix} c_1 & c_2 & c_3 & c_4 \\ -\omega_1^2 c_3 & -\omega_2^2 c_4 & c_1 & c_2 \\ c_1 \omega_2^2 & c_2 \omega_1^2 & c_3 \omega_2^2 & c_4 \omega_1^2 \\ -c_3 \omega_1^2 \omega_2^2 & -c_4 \omega_1^2 \omega_2^2 & c_1 \omega_2^2 & c_2 \omega_1^2 \end{bmatrix} \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \end{bmatrix} = \begin{bmatrix} H_3 \\ H_2 - \omega_1^2 - \omega_2^2 \\ H_1 \\ H_0 - \omega_1^2 \omega_2^2 \end{bmatrix}$$
(14)
$$H_3 = r_1 + r_2 + r_3 + r_4$$

$$H_2 = r_1 (r_2 + r_3 + r_4) + r_2 (r_3 + r_4) + r_3 r_4$$

$$H_1 = r_4 (r_1 r_2 + r_1 r_3 + r_2 r_3) + r_1 r_2 r_3$$

$$H_0 = r_1 r_2 r_3 r_4$$

In equations (14), r_1 , r_2 , r_3 , and r_4 are the desired observer eigenvalues. Solution of (14) using a library linear equation solving routine allowed a choice of sensor type.

For this part of the study, a beam one meter long was used. All other parameters were kept the same as those in the first part of this investigation, with all state weightings equal to 500. Sensor and actuator positions were varied along the length of the beam at 0.2 m intervals, and the linear system model compiled for each configuration. This was done for a position sensor, a rate sensor, and a position-rate sensor. The eigenvalues of corresponding systems were compared for stability information. Computer model outputs for three different sensors at 0.6 m and actuator at 0.4 m given in Appendix C.

It was found that including rate information in the sensor

Figure 6: Root locus diagrams for position and rate sensors.

model caused unstable third mode vibrations. This instability results directly from stiffness and ill-conditioning of the linear system of equations that is solved for observer gains. A comparison of root locus diagrams for a beam with sensor at 0.6 m and actuator at 0.4 m with position and rate sensors appears in Fig 6. Although the closed loop observer eigenvalues are the same for both systems, the figure shows a shift in open loop observer poles that causes a shift to the right of the open loop zeroes when rate information is sensed.

CONCLUSION

- 1. Damping of a controlled mode can be changed by making a change in the corresponding position or velocity state weighting matrix element in the quadratic performance index of the steady state optimal regulator. The rest of the system remains unaffected unless the value of this element approaches the numerical limits of the model. At this limit, the observer model begins to break down.
- 2. Classical feedback compensation applied through addition of open loop zeroes to the system root locus can provide effective control of bending vibrations in a cantilever beam.
- 3. The observer model is adversely affected when rate information is included in the sensor model, whether this model includes rate and position sensing or rate sensing alone.

RECOMMENDATIONS

- 1. The study of state weighting element changes was limited to a beam with two controlled modes and one residual mode by limitations of the "Total" program. The study should be expanded to consider a higher number of modes, perhaps by expanding the capability of this package.
- 2. Based on the relationships discovered in this investigation and in Hungerford's work, control effectiveness of combinations of state and control weighting, observer pole offsett, and sensor and actuator locations should be investigated.
- 3. Classical feedback compensation should be applied to very long beams. Hungerford found that the optimal regulator had difficulty with long beams. The results of this investigation suggest that classical control may be more effective because of increased numerical simplicity.
- 4. Classical feedback compensation should be applied to a beam model that includes a higher number of modes and higher frequency vibrations. The use of more complex types of compensation may also warrant investigation. Other sensor and actuator locations than the ones used in this study should be investigated using classical compensation.

BIBLIOGRAPHY

- Balas, M.J., "Active Control of Flexible Systems
 "AlAA Symposium on Dynamics and Control of Large
 Flexible Spacecraft, Blacksburg, June 14, 1977.
- Bryson, Arthur E., and Yu-Chi Ho, Applied Optimal Control, Waltham, Mass.: Blaisdell Publishing Company, 1969.
- 3. D'Azzo, John J., and Constantine H. Houpis, <u>Linear</u>
 <u>Control System Analysis and Design</u>, New York: <u>McGraw-Hill Book Company</u>, 1975.
- 4. Hungerford, John B., "Active Control of Bending Vibration in a Cantilever Beam", Air Force Institute of Technology thesis AFIT/GA/AA/77D-7, 1977.
- 5. Larimer, Stanley J., "User's Manual for Total", AFIT digital computer package user's guide, 1978.

APPENDICES

Appendix A

Typical Use of the AFIT "Total" Package

The following pages are a listing of a typical session with the interaction computer-aided design program for control system analysis called "Total". Options in the package are selected by a numerical input, and the lists of options used can be found at convenient locations in the listing.

ATTACH, TOTAL, ID=AFIT

FFN IS TOTAL PF CYCLE NO. = 001 COMMAND- TOTAL

WELCOME TO TOTAL--VERSION 1.4
TYPE HELP FOR INTRO, TYPE 99 FOR NEW FEATURES BULLETIN

OPTION > 10

(10-19) MATRIX INPUT OPTIONS

- * 10 LIST OFTIONS
- * 11 AMAT CONTINUOUS SYSTEM MATRIX
- * 12 BMAT CONTINUOUS INFUT DISTRIBUTION MATRIX
- * 13 CMAT OUTFUT CONTRIBUTION MATRIX
- * 14 DMAT DIRECT TRANSMISSION MATRIX
- * 15 KMAT ST. VAR. FEEDBACK MATRIX
- * 16 FMAT DISCRETE SYSTEM MATRIX
- * 17 GMAT DISCRETE INPUT DISTRIBUTION MATRIX
- * 18 HELP USER SET UP STATE-SPACE MODEL OF SYSTEM
- * 19 EXPLAIN USE OF ABOVE MATRICIES

OPTION > 18

WHERE

IS THE SYSTEM (1) CONTINUOUS OR (2) DISCRETE? > 1

THE EQUATIONS YOU ARE ABOUT TO INPUT HAVE THE FORM:

XDOT(T) = C AMAT JX(T) + C BMAT JU(T) Y(T) = C CMAT JX(T) + C DMAT JU(T) U(T) = GAIN*(R(T) - C KMAT JX(T))

AND X IS A VECTOR OF N STATE VARIABLES
U IS A VECTOR OF M INPUTS

Y IS A VECTOR OF L OUTFUTS

ENTER NO. OF STATES, INPUTS, OUTPUTS > 10,1,1

ENTER AMAT WITH 10 ROWS AND 10 COLUMNS.

ENTER 10 ELEMENTS PER ROW: ROW 1 > 0 0 1 0 0 0 0 0 0

ROW 2 > 0 0 0 1 0 0 0 0 0

ROW 3 > -12.002 0 0 0 0 0 0 0 0 0

ROW 4 > 0 -471.433 0 0 0 0 0 0 0 0

ROW 5 > 0 0 0 0 -44.73 106.9 1 0 30.16 0

ROW 6 > 0 0 0 0 10.6 -25.31 0 1 -7.14 0

ROW 7 > 0 0 0 0 -167.3 371.0 0 0 104.7 0

ROW 8 > 0 0 0 0 501.7 -1670 0 0 -338.3 0

ROW 9 > 0 0 0 0 0 0 0 0 0 1

Pierre.

COL	L > 1	2	3	· 4	5
ROW					
1	0.	0.	1.000	0.	0.
2	0.	0.	0.	1.000	0.
3	-12.00	0.	0.	0.	0.
4	0.	-471.4	0.	0.	0.
5	0.	0.	0.	0.	-44.73
6	0.	0.	0.	0.	10.60
7	0.	0.	0.	0.	-167.3
8	0.	0.	0.	0.	501.7
9	0.	0.	0.	0.	0.
10	0.	0.	٥.	0.	0.

COL	. > 6	7	8	9	10
ROW					
1	0.	0.	0.	0.	0.
2	0.	0.	0.	0.	0.
3	0.	0.	0.	0.	0.
4	0.	0.	0.	0.	0.
5	106.9	1.000	0.	30.16	0.
6	-25.31	0.	1.000	-7.140	0.
7	371.0	0.	0.	104.7	0.
8	-1670.	0.	0.	-338.3	0.
9	0.	0.	0.	0.	1.000
10	0.	0.	0.	-3697.	0.

ENTER BMAT WITH 10 ROWS AND 1 COLUMNS.

ENTER 10 ELEMENTS PER COLUMN: COLUMN 1 > 0 0 -.1174 .5535 0 0 0 0 0 -1.112

COL > 1 ROW 1 0. 2 0. 3 -.1174 4 • 5535 5 0. 6 0. 7 0. 8 0. 9 0. -1.112 10

ENTER CMAT WITH 1 ROWS AND 10 COLUMNS.

ENTER 10 ELEMENTS FER ROW: ROW 1 > -.5542 1.324 0 0 0 0 0 0 -.3737 0

COL > 1 2 3 4 5 ROW 1 -.5542 1.324 0. 0. 0. COL > 6 7 8 9 10 ROW 1 0. 0. 0. -.3737 0.

IS THERE A DIRECT-TRANSMISSION (D MATRIX)--YES OR NO? > NO!

DMAT SET TO 1 BY 1 ZERO MATRIX (OFTION 78)
IS THERE A STATE-VARIABLE FEEDBACK MATRIX--YES OR NO? > YES

ENTER KMAT WITH 1 ROWS AND 10 COLUMNS.

ENTER 10 ELEMENTS FER ROW: ROW 1 > 10.88 111.1 -45.1 21.8 10.88 111.1 -45.1 21.8 0 0

COL > 1 2 3 ROW 10.88 111.1 21.80 -45.10 10.88 1 COL > 6 7 8 10 ROW -45.10 111.1 221.80 0. 0.

THE STATE-SPACE REPRESENTATION IS COMPLETE.

OFTION > 20 1

(20-29) BLOCK DIAGRAM MANIPULATION OFTIONS

* 20 LIST OFTIONS

* 21 FORM OLTF = GTF * HTF (IN CASCADE)

* 22 FORM CLTF = (GAIN*GTF)/(1 + GAIN*GTF*HTF)

* 23 FORM CLTF ≈ GAIN*OLTF / (1 + GAIN*OLTF)

* 24 FORM CLTF ≈ GTF + HTF (IN PARALLEL)

* 25 GTF(S) & HTF(S) FROM CONTINUOUS STATE-SPACE MODEL

* 26 GTF(Z) & HTF(Z) FROM DISCRETE STATE-SPACE MODEL

* 27 WRITE ADJOINT(SI-AMAT) TO FILE ANSWER

* 28 FIND HTF FROM CLTF & GTF (FOR CLTF=GTF*HTF/(1+GTF*HTF))

* 29 FIND HTF FROM CLTF & GTF (FOR CLTF= GTF /(1+GTF*HTF))

OPTION > 25

GTF(S) AND HTF(S) CALCULATED FROM STATE-SPACE TYPE: GTF OR HTF FOR RESULTS

FORWARD-LOOP TRANSFER FUNCTION

GK= (GNK/GDK)= 1.213

```
GTF(S) NUMERATOR
```

I		GNFOLY(I)	GZERO	(I)
1	(1.213)5** 8	(.8688E-11) -	(088.a)L 1
2	(84,99)5** 7	(.8670E-11) -	(088.6-)L +
3	(5418.)S** 6	(-19.81) -	+ J(1.554)
4	(.2494E+06)5** 5	(-19.81)	+ J(−1.554)
5	(.6119E+07)S** 4	(-15.21) -	+ J(2.205)
6	(.7856E+08)S** 3	(-15.21) -	+ J(-2.205)
7	(.5698E+09)S** 2	(4079E-12) -	+ J(50.81)
8	(.3168E+10)S** 1	(4079E-12) H	+ J(-50.81)
9	(.1383E+11)	GNK=	1.213
		CTE /	N TIENOMINATOR	

GTF(S) DENOMINATOR

Ι		GDFOLY(I)	GPOLE(I)
1	(1.000)S**10	(1916E-09) + J(3.464
2	(70.04)S** 9	(-,1916E-09) + J(-3,464
3	(6017.)S** 8	(-19.81) + J(-1.554)
4	(•3142E+06)S** 7	(-19.81) + J(1.554
5	(.9563E+07)S** 6	(-15.21) + J(-2.205
6	('	.2149E+09)S** 5	(-15.21) + J(2.205
フ	(.3703E+10)S** 4	(.1402E-11) + J(-21.71
8	(.3978E+11)S** 3	(.1398E-11) + J(21.71
9	(.2056E+12)S** 2	(2216E-12) + J(60.80
10	(.4470E+12)S** 1	(2216E-12) + J(-60.80
11	(.1951E+13)	GDK= 1.000

OPTION > HTF

FEEDBACK-LOOP TRANSFER FUNCTION

HK= (HNK/HDK)= 14.31

HTF(S) NUMERATOR

I	HNF'OLY(I)			HZERO(I)					
1	(17.36)5	** 9	(.8111E-	02) -)L +	0.)
2	(1276.)S	** 8	(-7.386) .) L +	5.583)
3	(.1169E+06)S	** 7	(-7.386) .	F JC	-5.583)
4	(•5326E+07)S	** 6	(-1.689) -) L 1	-12.35)
5	(.1601E+09)S	** 5	(-1.689) .) L +	12.35)
6	(.2489E+10)S	** 4	(-22.63) -)L +	-22.62)
7	(.3020E+11)S	** 3	(-22.63) .)L +	22.62)
8	(.2253E+12)S	** 2	(-5.053) .	+ J(-62.70)
9	(.9350E(12)S	** 1	(-5.053) .) L +	62.70)
10	(7598E+10)			ИН	K≖	17.	36	

HTF(S) DENOMINATOR

		****	147	211111 211				
I	HDFOLY(I)			HPOLE(I)				
1	(1.213) 5** 8	(.8688E-11) + J(6.880			
2	(84.99) S** 7	(.8670E-11) + J(-6.880			
3	(5418·)S** 6	(-19.81) + J(1.554			
4	(.2494E+06)S** 5	(-19.81) + J(-1.554			
5	(.6119E+07)S** 4	(-15.21) + J(2.205			
6	(.7856E+08)S** 3	(-15.21) + J(-2.205			
7	(.5698E+09)S** 2	(4079E-12) + J(50.81			
8	(.3168E+10)S** 1	(4079E-12) + J(-50.81			

OPTION >

OPEN-LOOP TRANSFER FUNCTION

OLK= GAIN*(OLNK/OLDK)= 17.36 GAIN= 1.000

OLTF(S) NUMERATOR OLNFOLY(I) Ι OLZERO(I) 21.07)S**17 .8111E-02) + J(0. 2 3024.)5**16 -7.386) + J(5.583 3 .3444E+06)S**15 -7.386 -5.583) + J(.2764E+08)S**14 .8840E-11) + J(-6.880 5 .1705E+10)S**13 .8839E-11) + J(4.880 .8381E+11)5**12 -15.21+ 2,205 J(7 .3269E+13)S**11 -15.21+ 1(~2,205 8 J(.9882E+14)5**10 -1.689) + -12.35 9 ·2274E+16)S** 9 -1.689) + J(12.35 10 .4007E+17)S** 8 -19.81) + J(-1.554 11 .5513E+18)S** 7 -19.81) + J(1.554 -22.63 12 .5984E+19)S** 6) + J(-22.62 13 .5073E+20)S** 5 -22.63 22.62 J(14 .3319E+21)S** 4 -,2142E-11) -50.81 + 15 .1364E+22)S** 3 -.2104E-11) + JC 50.81 16 .6074E+22)S** 2 -5.053) + J(-62.70) 17 .1290E+23)S** 1 -5.053) + J; 62.70 18 -.1051E+21) OLNK= 21.07 - OLTF(S)-DENOMINATOR-I OLDPOLY(I) OLPOLE(I) 1 1.213) S**18 -.1916E-09) + J(3.464 2 170.0)S**17 (-.1916E-09)) t -3.464) 3 ·1867E+05)S**16 -15.21 -2.205 4 .1521E+07)S**15 -15.21) + J(2.205 5 .9449E+08)S**14 .8546E-11) + J(6.880 6 ·4783E+10)S**13 -6.880 .8546E-11) + J(7 1.554 .1958E+12)S**12 -19.81 + J() 8 -19.81 .6350E+13)S**11 + J(-1.554) 9 .1641E+15)S**10 -19.81 1.553) J(10 .3422E+16)S** 9 -19.81 J(-1.553 11 .5714E+17)S** 8 -15.21 J(2.206 12 .7453E+18)S** 7 -15.21 + J -2.206 13 .7428E+19)S** .1656E-11) + .10 21.71 14 .5674E+20)S** .1656E-11) + -21.7115 .3414E+21)S** -.9013E-12) + 50.81 .1609E+22)S** -50.81 16 -.1101E-11) + J(17 .5371E+22)S** 2 .5889E-12) + J(60.80)

.5889E-12) + J(

OLDK=

-60.80

1.213

)

.1236E+23)S** 1

.2697E+23)

18

19

```
ENTER NUM & DENOM DEGREES (OR SOURCE): 9,10
ENTER NUMERATOR CONSTANT: 21.07
ENTER EACH ROOT -- RE, IN
OLZERO( 1)= .0081111;0
OLZERO( 2)= -7.386,5.583
OLZERO(3) = (
                                     -5.583
                          ) + J(
                                               ) ASSUMED
OLZERO(4) = -1.688,12:35
OLZERO( 5)= ( -1.689
                          -12.35
                                               ) ASSUMED
OLZERO(6)= -22763+22+62
OLZERO( 7)≈ ( -22.63
                           ) + J(
                                     -22.62
                                               ) ASSUMED
OLZERO(8) = -5.053,62.7
OLZERO(9) = (-5.053)
                           ) t (
                                     -62.70
                                               ) ASSUMED
OLTF NUMERATOR (OLNPOLY)
                                OLTF ZEROS (OLZERO)
    21.07
           )S** 9 (
                              .8111E-02) + J(
                                       ) <del>|</del> + (
             )S** 8
                             -7.386
    1549.
                         (
                                                   5.583
    .1419E+06)S** 7
                                        ) + J(
                             -7.386
                                                  -5.583
                              -1.689
                                        ) + J(
                                                  12.35
    .6464E+07)S** 6
   .1944E+09)S** 5
                                        ) + J(
                              -1.689
                                                   -12.35
                             -22.63
                                                  22,62
    .3021E+10)S** 4
                                        ) + 기(
    .3666E+11)S** 3
                                        ) + J(
                                                  .-22.62
                              -22.63
                              -5.053 ) + J(
-5.053 ) + J(
    .2735E+12)S** 2
                                                  62.70
    .1135E+13)S** 1
                                                  -62.70
   -.9221E+10)
                         FOLYNOMIAL CONSTANT=
                                                  21.07
ENTER DENOMINATOR CONSTANT: 1.233 ...
ENTER EACH ROOT--RE, IM
OLPOLE( 1)= 0,3.464
OLPOLE( 2)= ( ... O.
                          ) + J(
                                               ) ASSUMED
                                     -3.464
OLFOLE( 3)= -99(81,1.553
OLFOLE(4) = (-19.81)
                          ) + J(
                                     -1.553
                                               ) ASSUMED
OLPOLE(5) = -15.21, 2.206
                          ) + J(
                                     -2.206
                                               ) ASSUMED
OLFOLE(6) = (-15.21)
OLFOLE( 7)= 0,21.71
OLPOLE( 8)= ( 0.
                           ) + J(
                                     -21.71
                                               ) ASSUMED
OLPOLE( 9)= 0,60.8
OLPOLE(10) = (
                          ) <del>|</del> | | (
                                     -60.80 ) ASSUMED
OLTF DENOMINATOR (OLDPOLY)
( 1.213 )S**10 ( 0. ) + J( 3
( 84.96 )S** 9 ( 0. ) + J( -3
( 7298. )S** 8 ( -19.81 ) + J( 1
                                       ) + J( 3.464
                                                   -3.464
                                                   1.553
                                         ) + J(
    •3810E+06)S** 7
                             -19.81
                                                  -1.553
                                                   2.206
                             -15.21
                                         ) + J(
    •1160E+08)S** 6
                                         ) t (
                                                   -2.206
    .2606E+09)S** 5
                              -15.21
                                         ) + J(
                                                    21.71
    .4491E+10)S** 4
                               0.
                                         ) + J(
                               0.
                                                   -21.71
    •4824E+11)S** 3
                                         ) + )(
    .2493E+12)S** 2
                               0.
                                                   60.80
                                         ) + J(
    •5419E+12)S** 1
                               0.
                                                   -60.80
                         FOLYNOMIAL CONSTANT=
                                                   1.213
    .2365E+13)
GAIN= 1.0 OLK= GAIN*(OLNK/OLDK)= 17.37015663644
OPTION > AA=10 THESE COMMANDS SET THE PLOT BOUNDARIES
AA=
         10.00000000
```

FACTORED INPUT OF OLTF

-38-

OPTION > BB=70

BB= 70.00000000

OPTION > DD=-70

DD= -70.0000000

OPTION > PLOT/ON

OPTION > ANSWER,ON

ANSWER ON--OUTPUT WILL GO TO FILE--ANSWER

OPTION > 42

ENTER GAIN OF INTEREST (GAIN), TOLERANCE (GTOL):> 1,.01

ROOT LOCUS, 3M BEAM WT = DIAG(500 500 500 2000)

OFTION > STOP

LOCAL FILE--PLOT--CONTAINS CALCOMP PLOT(S)
LOCAL FILE--ANSWER--CONTAINS OUTPUT
ALL INFO IN TOTAL HAS BEEN SAVED IN LOCAL FILE--MEMORY.
STOP

9.632 CP SECONDS EXECUTION TIME COMMAND- ROUTE, PLOT, ST=CSB, DC=PT, TID=BB

COMMAND- ROUTE, ANSWER, DC=PR, ST=CSB, TID=BB, FID=F11

COMMAND- LOGOUT

OPEN+_GOP (O_TF) POOT LOCUS USING OPTION 42

```
2005
    B-LOCKE PT.
                         2-7ER0
                                              4-IMAGINARY AXIS
    1-POLE
                         3-BREAK PT.
                                              5-SENSITIVITY PT.
 10 POLES AT
    y =
          Э.
                             Y =
                                  3.4540
    ¥ =
                                 -3.4:40
         Ð.
                                  1.5730
    X =
        -19,911
                             Y =
    X =
        -13.810
                                  -1. 1:39
                                   2.7130
    Y =
         -15.217
                             Y =
    X =
         -15.710
                             Y =
                                  -2.2650
    X =
         Ç.
                             Y =
                                   21,710
    X =
         3.
                             Y =
                                  -21.719
    y =
         0.
                             Y =
                                   60.500
    x =
                                  -60.800
         U.
  3 TEROS AT
        .31111=72
    Y =
                             Y =
                                   9.
    X = -7.3851
                                 5.5339
    X = -7.3959
                             Y =
                                  -5.5430
    X = -1.6830
                                  12.350
                             Y =
    X = -1.[8]n
                             Y =
                                  -1 2.350
    X = -22.531
                             Y =
                                   22.:21
                                  -22.529
    X =
        -22.539
                             Y =
    X = -5.0530
                                  62.703
                             Y =
        -F.0530
    Y =
                                  -6 2.733
 SAIN CONSTANT (OLNK/OLDK) = 17.370157
 GAIN OF INTEREST (GAIN) = 1.100
                                                           .10005-0
                                       +OR- GTOL =
  SENSITIVITY OF INTEREST (OLK) = 17.37 +OR- KTO. =
                                                             .1737
 ROOTS OF INTEREST
        -3.135 N
   Y =
                             Y =
                                   2.5015
   X =
        -3.1369
                             Y =
                                  -2.5615
    Y =
        -4.7211
                             Y =
                                  0.
    ¥ =
        -11.115
                             Y =
                                  -13.F75
   X = -11.116
                             Y =
                                  13.175
    Y =
        -5.1393
                             Y =
                                  -21.492
    X = -5.6533
                                   21.402
                             Y =
    Y = -11.532
                             Y =
                                  0.
    X =
         .11975
                                  -52.245
                             Y =
    X =
          .14375
                             Y =
                                   62.245
REGION OF COLCULATION-FEAL: CO=
                                 -ن (، ۱
                                             TO AA=
                                                      10.0
                      TMAJ: DD= -70.0
                                             TO 39=
                                                      70.0
```

REARCH NUMBER 1

DALCHLATION STED STOF = .6000

•	7 10 0 0 0 0		6		
0.	3.45.40140	1,1549,039	700274	. 0000	:
-3.9773627	0,5135734	4.7330s74	.790251	.75213	<i>:</i>
-3.2323154	7.5017472	4.1435637	1.01446	• 7 8 7 ? j	
-5.6551227	4.7452771	7.3955615	2.27050	•70-13	
-7.3350000	5.5 937000	9.258 3654	0 •	.79774	?
	3 DANCH	VINBES 5			
CALCHLAT	104 STED STRE =	.8000			
PRINTING	31=0 5175 ===	4.000			
LOCUS REAL	TOOMS IMAG	DIST TO ORIGIN	GAIN	7 E T (20
0.	-7.45.0100	3.4549.003	۹.	• 3 86 0 0	1
-3.0773627	-2.5173774	4.6370374	.990251	.76213	7
-3.2773154	-2,5310152	4.1435637	1.01446	.78923	•
-5.6931227	-4.7372771	7.3755615	2.27050	.76573	<u>.</u>
-7. 3350010	-5.2979799	9.2536654	0.	.79774	2
	RPANCH	PUMBER 3			
	104 STEP SIZE =	.8003			
PRINTING	Steo dise =	4.000			
(0010 >=1	. 0013 7440	0101 10 001711	C 4 T 11		.
LOCAS REAL	LOCUE IMAG	DIST TO ORIGIN	GAIN	7576	, U
-19.310000	1.5630000	19.9/0790	0.	.9953+	1
-19.4731.47	0.	19.473547	.1299555-07	1.50033	7.
-23.473547	ŭ•	23.473547	.1744825-01	1.00000)
-27.47.35.+7	0.	27.473547	.087254E-01	1.00000	9
-31.473647	<u>1</u> .	31.473547	.269939	1.00005	u
-35.47.3547	0.	35.473547	.721512	1.0000)	9
-39.477547	9.	39.473567	· º 26712	1.00100	9
-41.373547	<u>0</u> •	11.573947	1.02433	1.00033	•,
-45.233547	<u>.</u>	45.233 547	1.30914	1.00000)
-49.2334+7	0 •	49.233547	1.05059	1.00000	9
-53.233547	0 •	53.273547	1.98770	1.00000	3
-57.233747	n.	57.233547	2.31655	1.00000	0
-61.233547	9.	61.233547	2.53648	1.00000	1
-65.273547	7 •	65.233547	2.94727	1.80000	3
-69.233547	□ •	69.233547	7.24939	1.09603	3
-73.2337.47	9.	73.233547	3.54459	1.00000	j
-77.273147	7.	77.233.47	3.33281	1.800033	ù -
-81.233077	9•	81.233547	4.11517	1.00000	
-35.233547	n.	65.233597	4.39240	1.00000	5
-89.233547	j.	69.233147	4.68511	1.00003	3
~90.0335+7 9099	narv	90.033547	4.71316	1.00003	3
5034	· (
	<u>.</u>				
	TRANCH	1.014353 4			
	10H 3TTT ST7F = ST5F = =	. 2009 4.009			
LOGUS REAL	_2003 IMAS	0157 10 031714	GATY	7572	~~
±19.31.1015	_ 77773 I max -4. Tugaaag	19.570730	0 A 1 T	91674	,
*19.473.47	· ·	19,473547	.1299:5E+27	1.00000	1
-15.473' +7	9• 9•	15.4/3547	• 766125 F= 6?	1.000000	-
- 17 1 41 7 1 7 1	<u> </u>	11.473547	.749354E-01	1.00000	~ ~ <i>1</i>
	المجنوب والمستمرة وا	A6471 U 171		* * *	:4

```
- . (1324 5)
                                    and the second section
                                                    1 1 1 1 K
 ·811110337-03
                                                    n,
                                    .311110005-02
                                                                    1.09690
                         PRANCH FUMBER
      CALCHLATION STEP TITE =
                                  . 8000
      PRINTING STEP STAE
                                  4.633
  LOCUS REAL
                   LOCUE IMAG
                                  DIST TO ORIGIN
                                                        GAIN
                                                                     ? ETA
                                                                               SO
-15.217039
                  2.2030000
                                   15.359142
                                                                     . 98255
                                                                               1
                  4.5777773
-16.5537704
                                   17.21756 .
                                                    .166725E-01
                                                                     .96173
                                                                                0
                  0.3025575
-15.333671
                                   17.454124
                                                    ·16(355
                                                                     . 37873
                                                                                0
-13,121324
                  11.649207
                                   17.544453
                                                    .594198
                                                                     .7.791
                                                                                0
                  13.017000
-10.77.2835
                                   17.512472
                                                    1.05776
                                                                     .61!15
                                                                                5
-7.55306.3
                  14.233256
                                                    1.55 155
                                   10.0342...
                                                                     .45953
                                                                                0
-3.8<sub>2</sub>,,023
                  12.735765
                                   13.275632
                                                    6.00735
                                                                     .20043
                                                                                0
-1.5333000
                  12.330000
                                   12.464963
                                                                     .13F50
                         PRANCH 1 UMPER
     CALCULATION STEP SIZE =
                                  .8000
     PRINTING STEP SITE
                                  4.000
  LOCUR PEAL
                   LOCKS THEG
                                  DIST TO ORIGIN
                                                                     7570
                                                        GAIN
                                                                              Cn
                 -2.2969930
-15,213630
                                   15.359142
                                                    U.
                                                                     . 98555
                                                                               1
-16.5537799
                 -4.5697923
                                   17.277 964
                                                    .166728F-01
                                                                     . 95433
                                                                                0
-15.334631
                 -5.3777776
                                   17.454424
                                                    . 150955
                                                                     . 27973
                                                                                9
-13,123324
                 -11.54=207
                                                    . 594153
                                   17.5,4963
                                                                     .74781
                                                                               0
-10.772835
                 -13.275380
                                   17.512472
                                                    1.05778
                                                                     • 51515
                                                                               5
-7.5390443
                 -1+.207=54
                                   16.0343 44
                                                                     .44659
                                                    1.55155
                                                                               O
                 -12.774745
+3,4554023
                                   13.270662
                                                    4.00795
                                                                     . 29049
                                                                                0
-1.6533000
                 -12.350350
                                   12.464960
                                                                     . 1 7! 59
                        PPANCH NUMBER
     CALCULATION STED TIZE =
                                  .0000
     PPINTING STEP SITE
                                  4.000
 LOGIS REAL
                   LOCUS IMAG
                                  DIST TO DRIVEN
                                                       GAIN
                                                                     ZETA
                                                                              20
 0.
                  21.719700
                                   21.710000
                                                    0.
                                                                     .00000
                                                                               1
-3.9754521
                  21.443017
                                   22.237:53
                                                    · 43106
                                                                     .17905
                                                                               0
                  21 . 2917 54
-7.1253757
                                   22.442904
                                                    1.08434
                                                                     . 317 + 3
                                                                               5
                  ר איז די די די די
-10. 39771
                                   27.952 699
                                                    1.45150
                                                                     . 43523
                                                                               0
                  23.275374
-14.053137
                                   27.137.205
                                                    2.22723
                                                                     .51675
                                                                               n
                  24. 277.76
-17.303159
                                   30.150157
                                                    4.14249
                                                                     .59750
                                                                               0
-21.777571
                  22. 210 238
                                   31. 358-51
                                                    17.5852
                                                                     . 63153
                                                                               0
-22.530000
                  22.524100
                                   31.99F593
                                                                     .70725
                                                                               2
                                                    ΰ.
                        DUVATOR LACKBES
     DALGULATION STED RIZE =
                                  .6030
     PRINTING STEP SIZE
                                  4.000
  LOCUS PEAL
                   - nois THAG
                                  DIST TO ORIGIN
                                                       GAIN
                                                                     7 ETA
                 -21.711110
                                   21.713900
                                                                     . oorno
                                                    0.
                                   22.207853
                                                    ·F43106
                                                                     . 17905
```

-17.499153	-01° 1-11-12	10.150137	6.14243	.59753	0
-21./22521	-22, 21, 22, 24	21.956651	17.5252	• 65157	9
-22.430010	~??.N?D]DD	71.996533	C •	.70725	2
	PRANCH	L NWGES 3			
	100 5750 5175 =	-			
54141143	\$150 CT77 =	4.000			
FOORS SEVE	-0013 THEG	DIST TO ORIGIN	GNIH	ZETE	CO
0.	51.936700	60.300000	C •	.00000	1
.12233051	45. 22250	62.377551	1.09025	.00197	5
0 •	52 • 7 9 % TV E	62.736533		.00000	9 4 0 2
-3. 24333002	64.034060	64.536470	7.21999	• 05032	0
-5. 0;<	62.799999	62.303281	0.	. 08633	2
	PRANCH	NUMBER 10			
	10N 3173 3175 -	0000			
	ION 3792 CTZE = STEP STZE = =				
~4141113	\$156 N. (*)	4.000			
LODUS REAL	LOCUS IMAG	DIST TO ORIGIN	GAIN	7 E T L	20
0.	<u>-5).230200</u>	(0.300000	C •	.00000	1
.12233051	-62.377380	62.377501	1.09899	.00197	5
0.	-52.735558	62.734553		.00000	5 4
-3.2:39032	-51.59:350	84.538770	7.24999	.05[22	Ď
-5. 0530000	-52.730000	62.903231	n .	.03033	2
				· ·	-

F1100JJ //// END OF LIST ////

Appendix B

Root Locus Diagrams and Time Response Plots

Figure Bl. Root locus diagrams for base weightings.

Figure B2. Root locus diagrams for first state weighting variation.

Figure B3. Root locus diagrams for second state weighting variation.

Figure B4. Root locus diagrams for third state weighting variation.

Figure B5. Poot locus diagrams for fourth state weighting variatio

Figure B6. Root locus diagrams for first state weighting variation.

Figure B7. Poot locus diagrams for second state weighting variation.

Figure B8. Root locus diagrams for third state weighting variation.

Figure B9. Root locus diagrams for fourth state weighting variation.

Figure B10. Root locus diagrams for large first two state weightings.

Figure Bll. Time response for weighting = DIAG(500 500 500 500).

Figure Bl2. Time response for weighting = DIAG(500 500 500 500).

Figure Bl3. Time response for weighting = DIAG(500 500 500).

Figure Bl4. Time response for weighting \approx DIAG(100,000 500 500).

Figure B15. Time response for weighting = DIAG(100,000 500 500).

Figure B16. Time response for weighting \approx DIAG(100,000 500 500 500).

Figure B17. Time response for weighting = DIAG(500 10,000 500 500).

Figure B18. Time response for weighting = DIAG(500 10,000 500 500).

Figure Bl9. Time response for weighting = DIAG(500 10,000 500 500).

Figure B20. Time response for weighting = DIAG(500 500 2000 500).

Figure B21. Time response for weighting = DIAG(500 500 2000 500).

Figure B22. Time response for weighting = DIAG(500 500 2000 500).

Figure B23. Time response for weighting = DIAG(500 500 500 100).

Figure B24. Time response for weighting = DIAG(500 500 500 100)

Figure B25. Time response for weighting = DIAG(500 500 500 100)

Fig B26. Sensor displacement for one zero at origin.

Figure B28. Sensor displacement for one zero at -50.

Sensor displacement for zeroes at origin and -40. Figure B29.

Appendix C

Computer Output for Position, Rate, and Position-Rate Sensors

ELECTROPICATION CONTRACTOR CONTRA

KSER DESERVER AND 1 R	351500, FOSITION = .6 ACTUATOR FUSITION = .400, BENY LE15TH = 1.0	35.1 M4SS PEISTIY/DUIT LEUGTH = .394437 35M1 STIFFNEUS (EI) = .310256+02	COUTS OF CHARACTE ISTIC EQUATION: FIRST MOR: * 1975000000000000000000000000000000000000	\$50347 M378: .44543339634388441	NATURAL FEEDURALIES: .311794434385942+02	SECOND MOTE: .13541259457892E+03 THIRD 4009: .54721595367344E+03
图 · 新花园 · 山田						
			1 1	1		

:

0

The state of the s

THE TAME MATRIX

•100000+01 d•	10+300001.	J	• 6	THE "P" MATTIX, TRANSPOSED	~	THE "C" MATPIX
• 0	J.	3.	301063n5+05 0.		3.	
		7215025+33				

THE "A" 4XTRIX (RESIDUAL)

.1 7721 E+61

-115-1111-01

.133333335E+51 5.

THE "O" MATRIX FOR RESIDUALS

4.15746485481

THE "6" MATEIX FOR RESIDIALS, TRANSPOSED

THE WATER -,4849321E+02 .16305655+02 1100000011 -23635625460-.22246655+02 -1631741E±02. . 12734755462 -- 1766247E+91 50+39213546340000° -0 __-140/573E+68___ .4,653585+02 -. 1636362E+02 100000001. - 228 3 3 0 3 E + 0 0 -- 51800495+03 245772+62 -. 223543, 5+02 (-24.24.24.3504.3559.3.24.3.47.557.4) . 3. 941432+65 \$3+2029.072 IN THE WALL TO STATE OF THE (-c.17.5555.35317.-31.0.1245642745) -- 17:5247E+01 .62125Z=+B3. 54020497463 .37002645+83 £16.405.4002.903 -.01047715432 14E WELTHTO USED

THE "G" MATRIX

LITY PRACTICABLE

. C

ウナアとのことでので・-

.............

.5012572403.

10 +257354 13

-.3424435540136E+62 THE TAY TATELY, TRANSPOSED THE TALKOTT NATION 11 SESIRED ROOT -.1673745E+F5 .1000001±01 CONDITY PRACTICABLE מנע פֿערעני פּערעני פּער 1.35744555401346+32 . 3922000+32 . 1930 BuuE+31 DE THE SYSTEM · 75542.1.+62 -- 141 103E+03 -. 1675621E+63 -. 6: 22553ET+04 (-27.65.747.3422.34.35.7.2.55.27) (-27.65.747.34.24.34.57.4.65.7) (-27.656.4.34.39.4.34.510.45407.0) .16 345773+01 (-24.1285437+5:0:+124.4417612736) ELGENYLUES OF N-KG \mathbf{H} (-1.650 - 18012 (-547.1877622.8) (-[4.2,1041740 0,1194.441]+17746) (3.20072447454) + 347418773000 (4.1.) 13484 T 31777628 (+1, +541341(5)13+3+) (-36.344555781 5.6.) (-27. 244550+0106624) (+34.244.5033203,1.) (-32.244; 53; 55; 71.).; 10+0+04175 -. 455835+25 11132713+03 (,+1 -. 7-51557 i T <u>†</u>

)

×	•
_	4
	•
7	
,	
_	•
: -	ı
- -	
ľ	;
خ	
Ú	,
ı I	
L)
1) () ()	
٠	
1	-
<u>.</u>	1
-	•
1	
,-	

0. 20364475+02 -66543316+02 -11630906+01 -11032716+03 -24533256+05 -46535436+02	THE SYSTEM MATRIX 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		i i i i i i i i i i i i i i i i i i i
0. 16000000000000000000000000000000000000	E KIGHT CIDE OF 0 0 1153913E+01 1346431E+03 -2521034E+05 0 0	9. .10096935+01 .16399655+02 4849329E+92	VELLY FRACTICABLE
. 100000305+91 16303525+62 16303525+62 0 0 0 37435545+92	1 HE 1	. 16006665+61 . 1636352E+02 . 4.65365402	The second secon
0. 273£629E+C3 -309·143E+05 0. 0. 0.	3. 16393626+02 4.553666+02 1.09)0995+01 0. 0. 3745547+02	35 - KO** *41*17K -144.16775+81 -141.163.+35 -163.56** # + 63 -78270** * 1+3* -78270** * 1+3*	0.7+423652074) 0.47442755574) 0.272443/2152) 0.272343/2152)
0. - 9 51 7 35 75 + 63 - 0.05 45 51 5 + 02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		148 % + 1	(-114.0650.40.472.55) (-114.0055040.422.40 (16.744.71205)f.533 (16.744.717050f.65)

)

RESIBUAL MODE ↤ GTAN WITH VELCOITY OFNSON AND LUGNEFRGER ORSHAVER AND のこんとしまたくなり

THE PLANT OF THE TANK TO BE THE TRACTICARIES OF THE PROCESS OF THE

-.16746475+61

- - - THE "O" MATEIX FOR FESIDUALS """

THE MAY MATELY FOR RESIDUALS, TRANSPOSEE THE "3" MATFIX, TRANSPOSEC THE "A" MATRIX (RESIDUAL) THE "C" MATRIX .1877218E+61 .2175471°+[1 .1000000100 0 -.16554615+61 03+525002240 .1rggr@B+61 . C #0+08080#* 0 - 39138CBE+0R -,25944535+86 -- 97216521+63 **.** . 0

THE "A" YATRIX

-81-

HOHEA SUS DIES

			and the second s		MATRIX					ICABLE
.222c0e5_+C2	*1273475E+62	17862475+61	.23853D9±+03	•16317415+92	THE "A+56"	• 0		16339E5t+F2	20 4 70 20 64 24 •	THE STATE OF THE PRACTICABLE TO UNC. T
26354302+02	++1408973E+C0	5100C45E+03	.31248775+62	•23993091+60		10000001+01		-1636362E+62	- 4 10 5 3 C D . + 0 Z	- IBIS PAGE I FR., 52, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75
-330.2645+03	. 9521257:+03	. 46222635+06	510.049E+C3	17862-75+01		• 0	• 6		02.174LUES OF A+96	0.3248842748) *.09248842748) 3.8794739784) 93.4794739784)
THE RICCATE SOLUTION	•2975c511+05	. £ 521257/+03	140,973_+03	.12734751+62 THE WEIGHTS USEC 530. 540. 540. 540.		• 0	ů.	10 t	+ 170 05 00 0 0 + 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0	(+8.1335535338.7,30.03248 (-8.13355353307,+30.0324 (-24.24435640136,193.379 (-24.24435640136,-193.379 118. SMILLEST RE

THE "K" MATHIX, TRANSFORME

.4375275F+C0 194734445-64 THE "ALKO" MATPIX

.1722539T+00T ●3552241E+00

<u>с</u>

. U

.

-. 97216u27+u3

0

--3813603E+05 --1109271C+03 --1418103E+63

THE SIGENVALUES OF A-KO

(-34,2443555545,0,) (-35,24435565753,0,) (-36,2443554214,0,) (-37,24435521133,0,) --34244356401365+02 н DESIFED ROOT -.3574485640135:.+02 Ħ AVERAGE FEAL PART

THE EIGENVALUES OF THE SYSTEM

(+297,384395101,645,40591113) (+207,384395101,+645,4059615113) (3,60025348,5)7,2(6,366(113926) (3,60025944,537,+706,566(113926) (165,567170161,0)

(-4.076733035514,31,49661587524) (-4.036733035614,-31,48651847624) (17.2761451(155,22,35386573731) (17.2761461:165,-22,35365878731) (6.673623353469,3.)

-83-

THE COLOR OF CALLER OF CAL

THE LEFT SIDE OF THE SYSTEM MATRIX

0. 0. 20364472+02 65949312+62 0.	0. 97216022+63 0. 46535401+02
+ + + 12 (1) (2) C2 (6, 4)	0. 0. 0. 3731267E+62
.130,00007+01 0. 16363624+92 .48653665+32	3. 0. 0. 3.435547+52
0. 0. -27036292+03 -38991438+03	0.000000000000000000000000000000000000
4	a. a. a. a. a. a. a. a. a. a. a. a. a. a

THE MIGHT SIDE OF THE SYSTEM MATRIX

133913E+61 .133913E+63 0. 0. .1639000c+01	+ + + + + + + + + + + + + + + + + + +	17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0. 0. 3814053=+35 0. 61966112+53
•			*************************************	6 8 5 3 5 4 5 5 4 5 3 6 4 5 3 6 4 5 5 4 5 3 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
••	ن ، •	* * * * * * * * * * * * * * * * * * *	3. *•16303r21+[2	0. .270523:+63
3.	•	•	•	ů.

THU "A + 86 + XC" MATSIX

į
.17229c95+60 .17856545+90 .1780423E+02
. 36522413+03 . 64246573+09 17532716+02 . 15953080+03
3. 5. 27005298+63 38931438+65
0. 10. 9517257_+03 605+931_+02

37 + 60 + 40. EIGENAALUES

(-10.5169,00+216,50.40211372753) (-10.51695094216,-63.40211372753) (-184.4523145409,1.) (-2.3562116+364.3.)

THIS PAGE IS RETT QUARTITY PRACTICABLE

. 394437 SENSOR POSITION = ACTUATOR POSITION = BEAM LENSIN = 1.0

CANTILEVER BEAM WITH POSITION AND VELOCITY SENSOF AND LUENBERGER OBSERVER AND 1 RESIDUAL MODE

*: 694 0000000000E+01 .31325E+02 .18753000000000E+01 BEAM MASS DENSITY/UNIT LENGTH = .
BEAM STT=MESS (EI) = .313256
RODTS OF D448ACTERISTIC FOUATION:
FIRST 400F: .18753000000000 SECOND MODE:

.31179483438994E+02 .19541259057892E+03 .54721595367304E+03 SECOND MODE: FIRST 40DE: THIRS MODE!

THIRD MODE: "76 NATURAL FREDUENCIES:

TO THE TRACTICABLE

-85-

FHE "A" MATRIX

• 0	.1000000E+01	• 0	.0	
.1 CO 00 00 E + 01	• 0	• 0	• 0	
•	e c	. 0	7318608F+05	
° C	• 0	9721502E+03	• •	

TPANSFOSED		
4ATRIX,		
HE 3H1		

.2175471E+01

-.7320097E+00

<u>ت</u>

X I & L & H	
THE "C" HATRIX	.1877218E+01
	1-654015+01
	.19772185+01
	1:53401F+01

THE "A" 4ATRIX (RESIDUAL)

.1006000E+01	٠. ت
0.	- 209-45 35+05

TRANSPOSED	
THE "8" MATRIX FOR FESIDUALS, TRANSPOSED	
THE "8" M	
	10766,05+01

. O THE "C" MATRIX FOR RESIDUALS

.11 689c3F+61	
• 15 0 3 76 3E + C1	

THE "S" MATRIX

1257E+07	.278139475+62 THE RIDGAIL SOLUTION		2235435+32	•2273055E+02
09735+9r7108649E+63 .7124877E+62 3474E+071786247E+61 .2389303E+60 75 USEn 500, E00.	3 4 3 1 3 4 3 4 3 5 4 3 5 4 3 5 4 5 5 6 4 3 5 4 5 6 5 6 5 6 5 6 6 5 6 6 6 6 6 6 6 6	21257 E + U3	140:9735+n0 5108043E+03	.1273475E+02 1785247E+01
1786247F+01 .2339303E+00	1490977F+9F	7108049E+03	.* 124877E+02	.23437038+00
	.12734745+07 E WSIGHTS USEN 0. 500. 500. 500.	1 86247E+01	*5333303E+00	.10317:1E+02

THE "4 +9G" MATRIX

. 0	.1090030E+01	.1673335E+62	4843320E+02
.100 00 00E+01	• 0	1638362E+02	•4 865 365E+02
0.	0•	.2708529F+03	-,7799143E+05
• 0	0.	9617957E+67	603-931E+00

THE EIGENVALUES OF A+BG

STATE OF STATES PRACTICABLE

THE "<" MATPIX, TRANSPOSED

.7510332E+02 -.703F573E+C0 30+32767627 -. 9243797F-C1

THE "A-KC" MATRIX

.17 75575E+00 .17.3734E+00 -.1499853E+03 •13°0919E+01 .3041513F+60 07+3*5 6*5. .1132913E+P3 -.13372525+01 .1736576F+00 -. ?550265F+0g -.3932707E+05 .1 728919E+01 -.133333345400 10+5252575. --3731971F+67 .1102818E+63

DATE SUCTEMBERS OF BEK

(-37.2+4.35573441, C.) (-36.24435573441, C.) (-35.2+4.35522177, G.) (-3-.2+435557762, G.)

DESIRED ROOT -.3574485540174E+02 11 7227 7 uSVeu∧V Bhl

-.3424485640136E+02

H

HE BIGHRUSTURE OF THE SYSTEM

(-207,2293338677,546,475553011) (-207,229393387,-615,296353011) (3,69920483334,-311560917) (3,69920483349,-346,711690913) (46,5747782478,6) (-6,9554965396,71,4679616615) (-6,955300957906,-71,47396418115) (17,1588265337,-22,367921002) (17,1588397446024,0)

ALTERIOR TOWN OF LANGUAGE A SOUTH OF THE STATE OF THE STA

THE LEFT SIDE OF THE SYSTEM MATRIA

.0	.0	*20 16 447E+02	507+931E+02	135 £387 E+00	.6452537F+00	9731934E+03	.1102818E+03	0.	+c56840E+02
0.	.1070000E+01	.1630355E+02	4803320E+02	0.	0.	• 0	0.	. 0	3771207E+02
.1030001=+01 0.	• 0	153(7A?E+02	.436:305E+P2	. 0	• □	• 0	• 0	0.	.3743355F1023771207E+02
1.	•	. 1 1 3 5 5 2 5 F + B 3	-, 7 º 951+3F+05	٠.	J.	Ĵ•	• •	ງ•	7196611E+03
• • • • • • • • • • • • • • • • • • • •	J.	とりもいしいできずんで・	5 07-931E+02	• വ	· •	•	•	• 0	

THE RIGHT SIDE OF THE SYSTEM MATRIX

0.		.0	• 0	• 0
٥.	٦.	• 0	•0	• 0
. 2735320#+PR	16 3(362F+62	.1630965F+32	0.	0.
F. 107.2319F+93	* + 8 6 3 3 5 6 F + 6 2	- 11849323E+02	0 •	0.
	, 0 G 4 18 13 F + CO	1735575F+0U	1375311E+0C	1051793E+01
527026cE+0A	. 5 52537F+00	00+31220721.	.6631305E+00	.1133281E+03
.1323319E+C1	1033252F+01	.1320913E+01	1051733E+01	• 0
3832737E+0F	.1102818F+03	1409953E+P3	.1133231E+03	0.
	ŋ.	• 0	0.	.1000000E+01
6136511F+G3	20+375525_2*	3731207E+02	2994453E+0F	• 0
+ 4 : 5 m. L	XI31 4 36 - KC WATEIX	·		
13343375469	.1736576=+00	*8641513E+PB	.1735575E+0C	
01 + 3 - Kuroto+	00+3030346	.64575775400	.17.373+E+0F	
36.26.23.05 + 03	. 77219795+63	17396.87F+02	.1753057E+02	
20+3372226t*	79132-25+65	.1589354E+43	18947855+03	

.1735575E+0	.17.373+E+0	.1753057E+0	18947855+0
.3641513E+ PO	.645757375400	1739687F+02	.1589354E+n3
.1736576F÷00	00+30303322	.77216797+63	79132-25+05
133a3375+09	のでもは、Makのかの。	F. 36.26.23.05 + 0.3	20+3372226+*

"4 + 3G - MO" FIGENVALUES

184.052675785.0.)	(+10.3+250770765,50.2077594959)	(-10.34230730303,-60.755594050)	(-3.338555533154, 9.)
(-186	(-19.	(-10.	(-3.0

VITA

Donald T. Palac was born April 8, 1955 in Evanston, Illinois. After graduating from high school in 1973 in Dundee, Illinois, he attended Purdue University. While at Purdue he participated in the ROTC program. He graduated from Purdue in May, 1977, and received a Bachelor of Science of Aeronautical Engineering and his commission in the USAF. His active duty career began at the Air Force Institute of Technology in October, 1977.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

, , , , , , , , , , , , , , , , , , , ,	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AFIT/GA/AA/78D-6		
. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
ANALYSIS OF ACTIVE CONTRI CANTILEVER BEAM BENDING V	= -	MS Thesis
ORNITUDARN DUAM DUMBING V	IDARIIOND	6. PERFORMING ORG. REPORT NUMBER
· AUTHOR(e)		8 CONTRACT OR GRANT NUMBER(*)
Donald Thomas Palac 2 Lt		
PERFORMING ORGANIZATION NAME AND AD	DORESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Air Force Institute of TAFIT-EN, Wright Patterson		AREA & WORK UNII NUMBERS
1. CONTROLLING OFFICE NAME AND ADDRES	s	12. REPORT DATE
		December 1978
		13. NUMBER OF PAGES 90
14. MONITORING AGENCY NAME & ADDRESS(II	different from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public rele	ase; distribution	unlimi te d
7. DISTRIBUTION STATEMENT (of the abetract	entered in Block 20, if different from	n Report)
7. DISTRIBUTION STATEMENT (of the abetract of		release; IAW AFR 190-17
		release; IAW AFR 190-17
8. SUPPLEMENTARY NOTES	Approved for public JOSEPH P. HIPPS, Ma Director of Informa	release; IAW AFR 190-17
8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if neces Active modal control Classical control	Approved for public JOSEPH P. HIPPS, Ma Director of Informa	release; IAW AFR 190-17
8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side it neces Active modal control	Approved for public JOSEPH P. HIPPS, Ma Director of Informa	release; IAW AFR 190-17

Active control of bending vibrations in a cantilever beam is examined using a digital computer model of beam and controller. The controller uses the discretized beam equation of motion in a linear control system, which uses a Luenberger observer to reconstruct modal amplitudes and velocities from the sensor output. Feedback gains obtained from a steady state optimal regulator drive a force actuator. The model is used to examine

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

three areas of active control of bending vibrations. impact on control effectiveness is investigated for iterative changes in elements of the state weighting matrix, part of the quadratic performance index minimized for the steady state optimal regulator. Second, the steady state optimal regulator is replaced with classical control through addition of open loop zeroes to the system transfer function. Third, the sensor model is changed to include position and rate information and rate information only. State weighting matrix element changes selectively produce increased damping of the mode associated with the changed element. Breakdown of the observer model, and instability, occurs when the change in an element exceeds a limit peculiar to that element and its relative magnitude. Control through classical feedback commensation is at least as effective as optimal control by the steady state optimal regulator. Addition of rate information to the sensor model causes instability because of numerical inaccuracies in the solution of the linear equation producing the Luenberger observer state estimation.