

## Universidade Federal do Paraná - UFPR Centro Politécnico Departamento de Matemática

Disciplina: Introdução a Geometría Analítica e Álgebra Linear Código: CM303 2

## Lista semana 7

- 1. Considere os vetores  $\vec{u}=(2,-1,1), \vec{v}=(1,-1,0)$  e  $\vec{w}=(-1,1,2)$ . Determine o que se pede.
  - (a)  $\vec{w} \times \vec{v}$ .

(b)  $\vec{v} \times \vec{w}$ .

 $(c)\vec{v} \times \vec{u}$ .

(d)  $\vec{v} \times (\vec{w} - \vec{u})$ .

- (e)  $\vec{v} \times (5\vec{v})$ .
- (f)  $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v})$ .
- (g)  $(2\vec{u}) \times (3\vec{v})$ .
- (h)  $\vec{u} \cdot (\vec{v} \times \vec{w})$ .
- (i)  $(\vec{u} \times \vec{v}) \cdot \vec{w}$ .
- (j)  $\vec{u} \cdot (\vec{v} \times \vec{u})$ .
- (k)  $\vec{v} \cdot (\vec{v} \times \vec{u})$ .
- (1)  $(\vec{u} \times \vec{v}) \times \vec{w}$ .
- (m)  $\vec{u} \times (\vec{v} \times \vec{w})$ .
- (n)  $|\vec{v} \times \vec{w}|$ .
- (o) O versor de  $\vec{v} \times \vec{w}$ .
- (p) O ângulo entre  $\vec{u} \in \vec{u} \times \vec{v}$ .
- **2.** Sejam A=(2,0,3), B=(-1,1,2) e C=(4,1,2). Calcule  $\overrightarrow{AB}\times\overrightarrow{AC}$ .
- **3.** Encontre todos os vetores de módulo igual a 5 que são ortogonais a  $\vec{u} = (1, 1, 0)$  e  $\vec{v} = (2, -1, 3)$ .
- **4.** Se  $|\vec{u}| = 3$ ,  $|\vec{v}| = \sqrt{2}$  e o ângulo entre  $\vec{u}$  e  $\vec{v}$  é  $\pi/4$ , determine  $|\vec{u} \times \vec{v}|$ .
- **5.** Determine a área do paralelogramo determinado pelos vetores  $\vec{u} = (3, 1, 2)$  e  $\vec{v} = (4, -1, 0)$ .
- **6.** Calcule a área do triângulo determinado pelos vetores  $\vec{u} = (1, 2, -1)$  e  $\vec{v} = (3, 0, -1)$ .
- 7. Determine a medida da altura relativa ao lado BC do triângulo de vértices  $A=(0,1,-1),\ B=(-2,0,1)$  e C=(1,-2,0).
- 8. Considere os vetores  $\vec{u} = (2, -1, 1), \vec{v} = (1, -1, 0)$  e  $\vec{w} = (-1, 1, 2)$ . Determine o que se pede (note que esses são os mesmos vetores do exercício 1).
  - (a)  $(\vec{u}, \vec{v}, \vec{w})$ .
- (b)  $(\vec{v}, \vec{u}, \vec{w})$ .
- $(c)(\vec{w}, \vec{v}, \vec{u}).$
- $(d)(2\vec{u}, -3\vec{v}, 4\vec{w}).$
- (e)  $(\vec{u}, \vec{v}, \vec{u} + \vec{v})$ .
- (f)  $(\vec{u}, \vec{v}, \vec{u} \times \vec{v})$ .
- **9.** Em cada item, verifique se são coplanares os vetores.
  - (a)  $\vec{u} = (3, -1, 2), \vec{v} = (1, 2, 1) \text{ e } \vec{w} = (-2, 3, 4).$
  - (b)  $\vec{u} = (2, -1, 0), \vec{v} = (3, 1, 2) \text{ e } \vec{w} = (7, -1, 2).$
- 10. Em cada item, verifique se são coplanares os pontos.
  - (a)  $A = (1, 1, 1), B = (-2, -1, -3), C = (0, 2, -2) \in D = (-1, 0, -2).$
  - (b)  $A = (1,0,2), B = (-1,0,3), C = (2,4,1) \in D = (-1,-2,2).$
- **11.** Determine o volume do paralelepípedo gerado pelos vetores  $\vec{u} = (3, -1, 2), \vec{v} = (2, 1, 1)$  e  $\vec{w} = (-1, 0, 1)$ .

12. Sejam  $\vec{u}$ ,  $\vec{v}$  e  $\vec{w}$  vetores não coplanares em  $\mathbb{R}^3$ . Da mesma forma que podemos gerar um paralelepípedo com estes vetores também podemos gerar um tetraedro (lembre que com dois vetores, podemos gerar um paralelogramo e também um triângulo). A figura abaixo ilustra o tetraedro.



Mostre que o volume do tetraedro é dado por

$$V_{\text{tetr}} = \frac{1}{6} |(\vec{u}, \vec{v}, \vec{w})|.$$

 $Sugest\~ao$ . O tetraedro é uma pirâmide e, portanto, seu volume é um terço do produto entre a área da base e a medida da altura. Qual é a relação entre a área da base e a altura do tetraedro e do paralelepípedo?

- **13.** Considere os pontos A = (-1, 3, 2), B = (0, 1, -1), C = (-2, 0, 1) e D = (1, -2, 0).
  - (a) Determine o volume do tetraedro de vértices  $A, B, C \in D$ .
  - (b) Determine a medida da altura traçada da base BCD até o vértice A.

## Respostas:

- 1. (a) (2,2,0).
  - (b) (-2, -2, 0).
  - (c) (-1, -1, 1).
  - (d) (-1, -1, -1).
  - (e) (0,0,0).
  - (f) (-2, -2, 2).
  - (g) (6,6,-6).
  - (h) -2.
  - (i) -2.

- (j) 0.
- (k) 0.
- (1) (3, -1, 2).
- (m) (2, -2, -6).
- (n)  $2\sqrt{2}$ .
- (o)  $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$ .
- (p)  $\pi/2$ .

- 2.  $\overrightarrow{AB} \times \overrightarrow{AC} = (0, -5, -5).$
- **3.** Há dois vetores:  $\left(\frac{5}{\sqrt{3}}, -\frac{5}{\sqrt{3}}, -\frac{5}{\sqrt{3}}\right) e\left(-\frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}, \frac{5}{\sqrt{3}}\right)$ .
- **4.**  $|\vec{u} \times \vec{v}| = 3$ .
- 5.  $3\sqrt{13}$ .
- **6.**  $\sqrt{11}$ .
- 7.  $\frac{3\sqrt{35}}{7}$ .
- 8.

- $(a)(\vec{u}, \vec{v}, \vec{w}) = -2.$
- (b)  $(\vec{v}, \vec{u}, \vec{w}) = 2$ .
- (c)  $(\vec{w}, \vec{v}, \vec{u}) = 2$ .
- 9. (a) Não são coplanares.
  - (b) São coplanares.
- 10. (a) São coplanares.
  - (b) Não são coplanares.
- **11.** 8.
- 12.
- **13.** (a) 4.
  - $(b)\frac{8}{\sqrt{10}}.$

- (d)  $(2\vec{u}, -3\vec{v}, 4\vec{w}) = 48$ .
- (e)  $(\vec{u}, \vec{v}, \vec{u} + \vec{v}) = 0$ .
- (f)  $(\vec{u}, \vec{v}, \vec{u} \times \vec{v}) = 3$ .