EMC4100054 MODELAGEM DE ESCOAMENTOS TURBULENTOS

Lista de Exercícios 3 (Data de entrega: 17/06)

- 1. Obtenha a equação de transporte para o tensor de Reynolds uiui.
- 2. Simplifique a equação da energia cinética turbulenta $k = (\overline{u_i u_i})/2$ para o caso de um escoamento médio turbulento plenamente desenvolvido em um duto.
- 3. Demonstre (3.39) e mostre que (3.27) pode ser reescrita como

$$\overline{\epsilon} = v \frac{\overline{\partial u_i}}{\partial x_j} \frac{\partial u_i}{\partial x_j} + \frac{\partial^2 \overline{u_i u}_j}{\partial x_i \partial x_j}$$

- 4. Usando correlações para camada limite turbulenta sobre uma superfície plana disponíveis em livros texto da graduação, determine os valores de $U\infty/u^*$, Re $_\delta$ e Re * em x = 1 e 2 m. Considere $U\infty = 25 \text{m/s}$ e $v=1,5\times10^{-5}$ m²/s.
- 5. Considere o escoamento turbulento plenamente desenvolvido de água em uma tubulação circular de parede lisa com raio R.
 - a) Assumindo que a espessura da subcamada limite viscosa δ_{v} é equivalente a $y_{+} = 5$, mostre em um gráfico log-log, a razão δ_{v}/R para números de Reynolds (= $\overline{U}D/v$) iguais a 10^{4} , 10^{5} e 10^{6} . Use alguma correlação, como a de Blasius, para determinar a tensão na parede.
 - b) Represente em um gráfico a distribuição de velocidade $U_{(r)}/\overline{U}$ para cada um dos números de Reynolds.
 - c) Avalie o valor local da velocidade média em y₊ = 5 e 50.
- 6. A partir da proposta de Coles para uma camada limite turbulenta, represente o perfil de velocidade para uma camada limite com gradiente de pressão nulo, favorável (b = 10) e adverso (b = -10). Represente o perfil de velocidade para a condição de separação (b → ∞).