Recommender System Video Games

Sam Darmali

The Business Problem

Companies have large catalogues of products.

Impossible for customers to try every single product.

Helps users discover products that they may not have otherwise found.

Leads to more conversions and increased revenue.

Data Overview

Amazon Customer Reviews Dataset

0	Ratings: 1,/00,000+	
0	Unique users: 1,000,000+	User 1
0	Unique games: 56,000+	
0	Sparsity: 0.003 %	
		•
		•

User u

Game 1		*****			Game <i>i</i>
×		X		X	
	X	X			
			Х		X
				X	
×	Х		X		X
		X	X		
×	Х	X		X	X
	Х		X		
		X			

Subsetting the Data

- The casual gamer
 - Has reviewed more than 5 games
 - Has not reviewed more than 300 games (Youtubers / professional reviewers)
- Games liked by the casual gamer
 - Has received more than 400 reviews
- Time frame
 - Ratings from 2010 2015
 - o Train: 2010 2013
 - o Test: 2014 2015

Data Subset

• Subset:

o Ratings: 33,000+

O Unique users: 13,000+

Unique games: 200+

Sparsity: 1.126%

Number of Ratings

Top 20 Most Reviewed Games

Reviews per Category

Approach

- Modelling
 - User-based collaborative filtering
 - Item-based collaborative filtering
 - Latent factor models (Matrix Factorization)
- Evaluation
 - Choose 3 best models based on:
 - Root Mean Squared Error
 - Mean Precision
 - Mean Average Precision

Collaborative Filtering

Matrix Factorization

Characterizes items

 and users by vectors

 of latent factors

 Latent factors inferred from item rating patterns

	M1	M2	МЗ	M4	M5
Comedy	3	1	1	3	1
Action	1	2	4	1	3

	M1	M2	МЗ	M4	M5
4	3	1	1	3	1
	1	2	4	1	3
	3	1	1	3	1
(1)	4	3	5	4	4

Success Criteria / Metrics

- Root Mean Squared Error (RMSE)
 - Measure of how close predicted ratings are to actual ratings.
 - o Problem:
 - Predicts 5 stars for many games
 - Poor at choosing which of those to recommend

Success Criteria / Metrics

Mean Precision

$$Precision = \frac{\text{# of our recommendations that are relevant}}{\text{# of items we recommended}}$$

- 'Relevant' = Rated 4 or above
- Mean Average Precision (MAP)
 - Average Precision (AP) Average of Precision scores up to a given cutoff.

AP@N =
$$\frac{1}{m} \sum_{k=1}^{N} (P(k) \text{ if } k^{th} \text{ item was relevant}) = \frac{1}{m} \sum_{k=1}^{N} P(k) \cdot rel(k)$$

MAP@N =
$$\frac{1}{|U|} \sum_{u=1}^{U} (AP@N)_u = \frac{1}{|U|} \sum_{u=1}^{U} \frac{1}{m} \sum_{k=1}^{N} P_u(k) \cdot rel_u(k)$$

Mean Average Precision Intuition

Rank	Recommendation	Result	Precision
1	Call of Duty	True Positive	1
2	Grand Theft Auto	False Positive	1/2
3	Assassin's Creed	False Positive	1/3

$$AP = \frac{1 + 1/2 + 1/3}{3} = 0.61$$

Rank	Recommendation	Result	Precision
1	Assassin's Creed	False Positive	0
2	Grand Theft Auto	False Positive	0
3	Call of Duty	True Positive	1/3

$$AP = \frac{0 + 0 + 1/3}{3} = 0.11$$

Quantitative Findings

	Root Mean Squared Error	Mean Precision	Mean Average Precision
Matrix Factorization Model	1.09	0.85%	8.22%
User Based Model	1.33	1.50%	16.03%
Item Based Model	1.21	1.47%	16.31%

Shooters Adventure Open World

Bought before 2014

ASSASSIN'S

BATTLEFTELD 3

Shooter

Matrix Factorization

Adventure

User-based

Adventure

Shooter

Item-based

Open World

Shooter

Bought after 2014

Milds course day.

Adventure

Shooter

ASSASSIN'S

Open World

Limitations

- Ratings are explicit feedback
- Implicit feedback would be helpful to gauge interest
 - Browsing history
 - Search patterns
 - Mouse movements

Conclusions

Lessons

- The business case defines the success metric
- For marketplace recommenders, precision / ranking based metrics are preferred

Next

- Fix Mario problem
- Deployment
- Content based filtering
- Deep learning

Thank You