Chapter 3

Logic Gates (逻辑门)

Objectives:

Basic gates: NOT(非),AND(与),OR(或)

Extend gates: NAND(与非),NOR(或非),

Exclusive-OR(异或), Exclusive-NOR(同或)

Symbols

Introductory Paragraph

• Logic Gate is the smallest operational function unit in a digital system, which will perform the basic operations.

(在数字系统中,逻辑门是最小的功能单元)

• Logic Symbols are used to represent the logic gates in accordance with ANSI/IEEE standard.

(ANSI/IEEE国际组织规定了表示这些逻辑门的符号规范)

3-1 THE INVERTER (反相器)

- The inverter performs the operation called inversion (反相) or complementation (反码).
- The polarity indicator is a "bubble". When appearing on the input/output, it means that a LOW level is the active or asserted input/output state.

(a) Distinctive shape symbols with negation indicators

(b) Rectangular outline symbols with polarity indicators

FIGURE 3-1
Standard logic symbols for the inverter (ANSI/IEEE Std. 91-1984).

The Inverter

Symbol

Logic expression

$$X = A$$

•Truth table (真值表)

Input A	Output X
0	1
1	0

Waveform

3-2 THE AND GATE (与门)

- The AND gate produces a HIGH only when all of the inputs are HIGH. When any of the inputs is LOW, the output is LOW.
- The basic purpose of an AND gate is to determine when certain conditions are simultaneously true.

(a) Distinctive shape

(b) Rectangular outline with the AND (&) qualifying symbol

FIGURE 3-8

Standard logic symbols for the AND gate showing two inputs (ANSI/IEEE Std. 91-1984).

The AND Gate

Symbol

$$\frac{A}{B}$$

•Logic expression X = AB

$$X = AB$$

•Truth table

In	Output	
A	В	X
0	0	0
0	1	0
1	0	1
1	1	1

The AND Gate

 Boolean multiplication is the same as the AND function.

TABLE 3-4

A	В	AB = X
0	0	$0 \cdot 0 = 0$
0	1	$0 \cdot 1 = 0$
1	0	$1 \cdot 0 = 0$
1	1	$1 \cdot 1 = 1$

Waveform

The AND Gate can be extended to any number of inputs

An AND gate performing an enable/inhibit function for a frequency counter.

3-3 THE OR GATE (或门)

- The OR gate produces a LOW only when all of the inputs are LOW. When any of the inputs is HIGH, the output is HIGH.
- The basic purpose of an OR gate is to determine when one or more conditions are true.

(a) Distinctive shape

(b) Rectangular outline with the OR(≥ 1) qualifying symbol

FIGURE 3-17
Standard logic symbols for the OR gate showing two inputs (ANSI/IEEE Std. 91-1984).

The OR Gate

Symbol

•Logic expression X = A + B

$$X = A + B$$

•Truth table

Inputs		Output
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

The OR Gate

 Boolean addition is the same as the OR function.

TABLE 3-6

A	B	A + B = X
0	0	0 + 0 = 0
0	1	0 + 1 = 1
1	0	1 + 0 = 1
1	1	1 + 1 = 1

Waveform

3-4 THE NAND GATE (与非门)

- The NAND gate produces a LOW only when all of the inputs are HIGH. When any of the inputs is LOW, the output is HIGH.
- The term NAND is a contraction of NOT-AND and implies an AND function with a complemented (inverted) output.

(a) Distinctive shape, 2-input NAND gate and its NOT/AND equivalent

(b) Rectangular outline,2-input NAND gatewith polarity indicator

FIGURE 3-25

Standard NAND gate logic symbols (ANSI/IEEE Std. 91–1984).

The NAND Gate

Symbol

$$A = D - X$$

Logic expression

$$X = \overline{AB}$$

Negative-OR

•Truth table

Inputs		Output
Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Waveform

3-5 THE NOR GATE (或非门)

• The NOR gate produces a HIGH only when all of the inputs are LOW. When any of the inputs is HIGH, the output is LOW.

(a) Distinctive shape, 2-input NOR gate and its NOT/OR equivalent

(b) Rectangular outline, 2-input NOR gate with polarity indicator

FIGURE 3–33

Standard NOR gate logic symbols (ANSI/IEEE Std. 91-1984).

The NOR Gate

Symbol

$$\frac{A}{B}$$
 \longrightarrow X

$$A = D - X$$

•Logic expression X = A + B

$$X = \overline{A + B}$$

Negative-AND gate

•Truth table

Inputs		Output	
	4 E	3	X
	0 0		1
	0 1		0
	1 0		0
	1 1		0

•Waveform

Example: Airplane gear monitoring system

3-6 THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

- The exclusive-OR (XOR) gate has only two inputs.
- The output of an XOR gate is HIGH only when two inputs are at opposite logic levels.

(a) Distinctive shape

(b) Rectangular outline with the XOR qualifying symbol (= 1)

FIGURE 3-41
Standard logic symbols for the exclusive-OR gate.

The XOR Gates (异或门)

•Symbol

Logic expression

$$X = A \oplus B = \overline{AB} + \overline{AB}$$

•Truth table

Inputs		Output
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Waveform

The XNOR gates (同或门)

- The exclusive-NOR (XNOR) gate has only two inputs.
- The output of an XNOR gate is LOW only when two inputs are at opposite logic levels.

FIGURE 3-44
Standard logic symbols for the exclusive-NOR gate.

(a) Distinctive shape

(b) Rectangular outline

The XNOR Gates

Symbol

$$A \longrightarrow X$$

•Logic expression
$$X = \overline{A \oplus B} = AB + \overline{A}\overline{B}$$

•Truth table

-	Inputs		Output
_	Α	В	X
	0	0	1
	0	1	0
	1	0	0
_	1	1	1

•Waveform

Example: Determine the output waveform for the XOR gate and for the XNOR, given the input waveforms of A and B as follows:

Example: The XOR gate used to add two bits.

I	nput bits	Output
Α	В	Sum
0	0	0
0	1	1
1	0	1
1	1	0 (without 1 carry)

b.

d.

1. The truth table for a 2-input AND gate is

	Inputs		Output
	\overline{A}	В	X
a.	0	0	0
	0	1	1
	1	0	1
	1	1	0

	Inputs		Output
=	A	В	X
•	0	0	0
2.	0	1	0
	1	0	0
	1	1	1

Inp	uts	Output
\overline{A}	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Inputs		Output
\overline{A}	В	X
0	0	0
0	1	1
1	0	1
1	1	1

d.

2. The truth table for a 2-input NOR gate is

	Inputs		Output
	\overline{A}	В	X
a.	0	0	0
	0	1	1
	1	0	1
	1	1	0

Output		
X	-	
0		b.
1		
1		
0		
	-	

Inp	uts	Output
\overline{A}	В	X
0	0	0
0	1	0
1	0	0
1	1	1

C.

Inp	uts	Output
\overline{A}	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Inp	outs	Output
\overline{A}	В	X
0	0	0
0	1	1
1	0	1
1	1	1

d.

3. The truth table for a 2-input XOR gate is

	Inputs		Output
	A	В	X
a.	0	0	0
	0	1	1
	1	0	1
	1	1	0

	Inputs		Output
	\overline{A}	В	X
b.	0	0	1
	0	1	0
	1	0	0
	1	1	0

	Inputs		Output
	A	В	X
	0	0	0
C.	0	1	0
	1	0	0
	1	1	1

Inputs		Output
\overline{A}	В	X
0	0	0
0	1	1
1	0	1
1	1	1

- 4. The symbol $\stackrel{A}{B}$ is for a(n)
- a. OR gate
- b. AND gate
- c. NOR gate
- d. XOR gate

- 5. The symbol $\stackrel{A}{B}$ is for a(n)
- a. OR gate
- b. XNOR gate
- c. NOR gate
- d. XOR gate

- 6. A logic gate that produces a HIGH output only when all of its inputs are HIGH is a(n)
- a. OR gate
- b. AND gate
- c. NOR gate
- d. NAND gate

- 7. The expression X = A + B means
- a. A OR B
- b. A AND B
- c. A XOR B
- d. A XNOR B

- 8. A 2-input gate produces the output shown. (*X* represents the output.) This is a(n)
- a. OR gate
- b. AND gate
- c. NOR gate
- d. NAND gate

- 9. A 2-input gate produces a HIGH output only when the inputs agree. This type of gate is a(n)
- a. OR gate
- b. AND gate
- c. NOR gate
- d. XNOR gate

- 10. The required logic for a PLD can be specified in an Hardware Description Language by
- a. text entry
- b. schematic entry
- c. state diagrams
- d. all of the above

Homework

• Problems: 2, 7, 10, 12, 15, 17, 19, 24

Answers

- 1. c 6. b
- 2. b 7. c
- 3. a 8. d
- 4. a 9. d
- 5. d 10. d