G4B - Termoquímica - Ej 8

Dada la síntesis del A_3B_2 (s) a partir de de A_2 (g) y B_2 (g):

- a) Escribir la ecuación termoquímica y calcular la variación de entalpía asociada a la transformación a 200°C.
- **b)** Se colocan en un recipiente, a presión y temperatura constantes de 1 atm y 200°C respectivamente, 12 mol de A_2 y 12 mol de B_2 hasta verificarse <u>reacción completa</u>. Calcular Q, W, ΔH y ΔU para la evolución (se desprecia el volumen del sólido).

Dato: $\Delta H^{\circ} = -15 \text{ kJ por mol de A}_{2} \text{ a 200°C}$.

a)
$$3 A_2(g) + 2 B_2(g) \rightarrow 2 A_3 B_2(s)$$
 $\Delta H_R = -45 \text{ kJ}$

G4B - Termoquímica - Ej 8

Dada la síntesis del A_3B_2 (s) a partir de de A_2 (g) y B_2 (g):

- a) Escribir la ecuación termoquímica y calcular la variación de entalpía asociada a la transformación a 200°C.
- **b)** Se colocan en un recipiente, a presión y temperatura constantes de 1 atm y 200°C respectivamente, 12 mol de A₂ y 12 mol de B₂ hasta verificars e <u>reacción completa</u>. Calcular Q, W, ΔH y ΔU para la evolución (se desprecia el volumen del sólido).

Dato: $\Delta H^{\circ} = -15 \text{ kJ por mol de A}_{2} \text{ a } 200^{\circ}\text{C}.$

G4B - Termoquímica - Ej 8

b)
$$3 A_2 (g) + 2 B_2 (g) \rightarrow 2 A_3 B_2 (s)$$
 MOLES GASEOSOS
(i) 12 mol 12 mol $mi = 24 \text{ mol}$
(f) $- 4 \text{ mol}$ 8 mol $mf = 4 \text{ mol}$

$$V_i = 24 \text{ mol} \cdot 0.082(\text{L.atm/K.mol}) \cdot 473 \text{ K/1 atm} = 930.86 \text{ L}$$

(Desestimamos el volumen del sólido)

$$W = -P \Delta V = -1$$
 atm (155,14-930,86) L = 775,72 L.atm = 78,65 kJ

(Como el sistema se comprime por disminución de nº moles, ingresa trabajo al sistema)

$$Q = Qp = \Delta H = 12 \text{ mol } A_2$$
. (-15 kJ/mol A_2) = -180 kJ

$$\Delta U = Q + W = -101,35 \text{ kJ}$$