Cinétique homogène

Agrégation

Manipulation introductive

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2^-}_{(aq)}^{-} = I_{2(aq)}^{-} + 2 SO_4^{2^-}_{(aq)}$$
 K°(25°C)=10⁴⁹

• $Ag_{(aq)}^{+} + I_{(aq)}^{-} = AgI_{(s)}$ K°(25°C)=8,52.10¹⁷

Réactions thermodynamiquement favorables

Comment et à quelles vitesses se déroulent ces réactions ?

Manipulation introductive

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)} + 2 SO_4^{2-}_{(aq)}$$

•
$$Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$$

Réactions thermodynamiquement favorables

Expérience:

•
$$2 I_{(aq)}^{-} + S_2 O_8^{2-}_{(aq)} = I_{2(aq)}^{+} + 2 SO_4^{2-}_{(aq)}$$

Réaction lente

•
$$Ag^{+}_{(aq)} + I^{-}_{(aq)} = AgI_{(s)}$$

Réaction rapide

Oxydation des ions iodure par le peroxodisulfate

	2 I ⁻ (aq) +	S ₂ O ₈ ²⁻ (aq)	= I _{2(aq)} +	- 2 SO ₄ ²⁻ (aq)
Etat initial	C ₀	C ₀ '	0	0
A l'instant t Avancement = x(t)	C ₀ -2x	C ₀ '-x	X	2x

Suivie spectrophotométrique

	2 I ⁻ (aq) +	S ₂ O ₈ ²⁻ (aq)	= I _{2(aq)} +	2 SO ₄ ²⁻ (aq)
Etat initial	C_0	C ₀ '	0	0
A l'instant t Avancement = x(t)	C ₀ -2x	C ₀ '-x	X	2x

Conditions initiales:

$$C_0 = 0.75 \text{ mol. L}^{-1}$$

 $C_0' = 2.5.10^{-4} \text{ mol. L}^{-1}$

Absorbance : $A = b \times [I_2]$

Méthodes de suivie cinétique

	Méthode de suivi chimique	Méthode de suivi physique
Avantages	accès direct à la concentration	 Très pratique. Suivi continu d'une grandeur directement proportionnel à la concentration.
Inconvénients	 Long nécessite de réaliser plusieurs titrages avec trempe préalable des différents échantillon 	 Ne donne pas accès directement aux concentrations. Sensibles aux réactions parasites.

MESTRE Eloïse

Exploitation du suivie spectroscopique

	2 I ⁻ (aq) +	$S_2O_8^{2-}(aq) =$	l _{2(aq)} +	2 SO ₄ ²⁻ (aq)
Etat initial	C ₀ = excès	C ₀ '	0	0
A l'instant t Avancement = x(t)	C_0 -2x = excès	C ₀ '-x	X	2x
A l'instant final	excès	$C_0' - x = 0$	C ₀ '	2C ₀ '

Conditions initiales:

$$C_0 = 0.75 \text{ mol. L}^{-1}$$

 $C_0' = 2.5.10^{-4} \text{ mol. L}^{-1}$

Absorbance : $A = b \times [I_2]$

Méthode intégrale

Réaction : $\alpha A \rightarrow \cdots$

Loi de vitesse : $v = k \times [A]^p$

Ordre 0	Ordre 1	Ordre 2	
$-\frac{1}{\alpha}\frac{d[A]}{dt} = k \Longrightarrow [A] = [A]_0 - \alpha kt$	$-\frac{1}{\alpha} \frac{d[A]}{dt} = k[A] \Rightarrow [A] = [A]_0 e^{-\alpha kt}$ $\Rightarrow \boxed{\ln \frac{[A]}{[A]_0} = -\alpha kt}$	$-\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^2 \Rightarrow \frac{d[A]}{[A]^2} = -\alpha k dt$ $\Rightarrow \frac{1}{[A]} - \frac{1}{[A]_0} = \alpha kt$	

Méthode intégrale

Réaction : $\alpha A \rightarrow \cdots$

Loi de vitesse : $v = k \times [A]^p$

Ordre 0	Ordre 1	Ordre 2	
$-\frac{1}{\alpha}\frac{d[A]}{dt} = k \Longrightarrow [A] = [A]_0 - \alpha kt$	$-\frac{1}{\alpha} \frac{d[A]}{dt} = k[A] \Rightarrow [A] = [A]_0 e^{-\alpha kt}$ $\Rightarrow \boxed{\ln \frac{[A]}{[A]_0} = -\alpha kt}$	$-\frac{1}{\alpha} \frac{d[A]}{dt} = k[A]^2 \Rightarrow \frac{d[A]}{[A]^2} = -\alpha k dt$ $\Rightarrow \frac{1}{[A]} - \frac{1}{[A]_0} = \alpha kt$	
$[A]_{t_{1/2}} = \frac{[A]_0}{2} \Longrightarrow \boxed{t_{1/2} = \frac{[A]_0}{2\alpha k}}$	$[A]_{t_{1/2}} = \frac{[A]_0}{2} \Longrightarrow \boxed{t_{1/2} = \frac{\ln 2}{\alpha k}}$	$[A]_{t_{1/2}} = rac{[A]_0}{2} \Longrightarrow \boxed{t_{1/2} = rac{1}{lpha k [A]_0}}$	

Merci