2024 Digital IC Design Homework II

NAME	E24094198	Jigitai Te Design Tie	
Student ID	陳育政		
		Sunctional Simulation	Result
FIFO Pass		LIFO Pass	CIPU Pass
		Stage 1	I
The	ere are to	otal 0 errors	s in FIFO !!
		Stage 2	
The	ere are t	otal 0 errors	s in LIFO !!
		Stage 3	
Th	ere are tota	al 0 errors in FI	F02 !!
	** C(**************************************	** <u>_</u> ** / 0.0 ** /
	**	*********	** ^ ^ ^ w
	Corre	ct / Total : 100	/ 100
		Description of your de	osian

Description of your design

原先我以為 FIFO 和 LIFO 的資料輸入是有先後順序的,因此最初計劃設計一個 FSM 控制狀態,但是在檢視助教提供的 testbench 後,我發現 FIFO 和 LIFO 的資料是同時餵入。考量到 FIFO 和 LIFO 的資料處理方式不太一樣,我最後把 FIFO 和 LIFO 的處理拆分成 2 個獨立的 FSM,而 LIFO 的資料處理 又會比 FIFO 更繁瑣一點(多了 valid_thing/done_thing 的訊號),於是相較於 FIFO 的 4 個 states,我在設計 LIFO 的 FSM 將其分成 7 個 states,便於控制訊號。我的 FIFO FSM 根據教授上課的講義所說的,分成 3 個部分,分別為 Sequential Circuit 的 currState register 及 Combinational Circuit 的 nextState logic/Output logic。至於 LIFO FSM 的設計,原先我也打算設計成 3 個部分,但是輸出結果一直會有問題(應該是訊號的控制有誤差),所以最後我是設計成只有 currState register 和 nextState logic 共 2 個部分,這個部份是我日後可以

再寫的更標準的。有關於第二部分和第三部分的 luggage 處理,我是分別用 Luggage 和 Remain_Luggage 存行李資料,Luggage 只有存當次 LIFO 的行李,每次 LIFO 輸出完畢,舊的行李資料就會被覆蓋掉。而 Remain_Luggage 則是存所有行李,並用 remain_luggage_count 計算目前所有行李的總數,當有 pop-out luggage 行為時,就根據 thing_num 的值把相對應數量的行李從 Remain_Luggage 的尾巴 pop-out,而 remain_luggage_count 也減去相對應數字,代表移除行李。