TP: Feigenbaum / Mandelbrot

Commentaires: Cette feuille est un complément. A traiter uniquement lorsque les TP sont terminés!

EXERCICE 1: Comment travailler sur une image avec matplotlib?

Un exemple pour retenir le code :

— Importer les bons modules :

```
import matplotlib.pyplot as plt
import matplotlib.image as mping
import numpy as np
```

— Créer une liste correspondant aux pixels (en RGB) de l'image : (ici : $n \times n$ blanche)

```
list = [[[1,1,1] for j in range(n)] for i in range(n)]
```

— Obtenir un tableau numpy:

```
fig=np.array(list)
```

— Afficher l'image:

```
plt.imshow(fig)
plt.show()
```

— Afficher ou enregistrer:

```
plt.show()
plt.savefig("....")
```

EXERCICE 2: Ensemble de Feigenbaum

Soit c un nombre réel de l'intervalle]-2,0] et la suite (x_n) définie par :

$$x_0 = 0$$
 et pour tout $n \in \mathbb{N}$, $x_{n+1} = x_n^2 + c$

Programmer une fonction qui trace l'ensemble des orbites de la suite (x_n) (représentation de l'ensemble de FEIGENBAUM) pour un c donné, c'est à dire les points de coordonnées (c, x_k) pour $c \in]-2, 0]$ et $200 \le k \le 300$.

Vous devez obtenir un résultat semblable à celui de la figure 1

Figure 1 – Bifurcation de Feigenbaum

EXERCICE 3: Ensemble de Mandelbrot

Soit c un nombre complexe tel que $|c| \le 2$ et la suite (z_n) définie par :

$$z_0 = 0$$
 et pour tout $n \in \mathbb{N}$, $z_{n+1} = z_n^2 + c$

- 1. Nous admettrons que s'il existe $p \in \mathbb{N}$ tel que $|z_p| > 2$ alors $\forall n \geq p, |z_n| > 2$ et $|z_n| \underset{n \to +\infty}{\longrightarrow} +\infty$.
- 2. On considère le pavé $\mathcal{P}=[-2;2]^2$ et \mathcal{G} la fenêtre graphique représentant \mathcal{P} . Pour chaque point \mathcal{P} de \mathcal{G} d'affixe c (dans \mathcal{P}) calculer les termes de (z_n) tant que ceux-ci ont un module inférieur ou égal à 2 et que $n\leq 100$. Représenter alors graphiquement le point d'affixe c dont la couleur dépend du rang N de la suite tel que $|z_N|>2$ (ou N=100 si un tel rang n'existe pas). L'ensemble obtenu est une représentation de l'ensemble de MANDELBROT.

Vous devez obtenir un résultat semblable à celui de la figure 2

 ${\tt FIGURE~2-Ensemble~de~Mandelbrot}$