TD(0)

Supongamos que tienes un agente que se mueve en una cuadrícula de 4x4. El objetivo del agente es llegar a la esquina inferior derecha (4,4) partiendo de la esquina superior izquierda (1,1). Las recompensas son -1 por cada movimiento. Los movimientos posibles en cada estado son abajo y derecha.

Asuma que con una política π se generaron los siguientes episodios:

- **Episodio 1**: Derecha (D), Derecha (D), Abajo (A), Abajo (A), Abajo (A)
- **Episodio 2**: Derecha (D), Abajo (A), Abajo (A), Derecha (D), Abajo (A)
- **Episodio 3**: Abajo (A), Abajo (A), Derecha (D), Derecha (D), Abajo (A)

Se pide:

- Utilize el enfoque de **TD(0)** para **estimar** $V_{\pi}(s)$ y $Q_{\pi}(s,a)$.
- Si utilizamos el algoritmo de **SARSA** con dicha política π fija, ¿cambiaría el resultado?

Notas:

- Tasa de aprendizaje (α): 0.1
- Factor de descuento (γ) : 0.9

Ejercicio 2: Q-Learning

Utilizando los mismos episodios anteriores genere una política π_2 utilizando Q-Learning.

• ¿Se puede decir que π_2 es mejor que π ?

Ejercicio 3: Evitando el Abismo

Una vez jugando los episodios anteriores, de repente se añade un "abismo" en la celda (2, 3) (utilizando la notación (fila, columna) con base en 1) y la recompensa de caer en el abismo es -10.

En la siguiente iteración se observa el siguiente episodio: Derecha (D), Abajo (A), Derecha (D).

- Actualice la estimación π asumiendo que se estaba ejecutando TD(0).
- Actualice la política π_2 asumiendo que se estaba ejecutando Q-Learning.

Bibliografía: Example 6.6: Cliff Walking (cap 6.5, Reinforcement Learning. An Introduction", R.S. Sutton & A.G. Barto (2018))