MEAM 520 Lecture 2: Background and Definitions

Cynthia Sung, Ph.D.

Mechanical Engineering & Applied Mechanics
University of Pennsylvania

Last Time

Class logistics

- Assignments and lecture slides on Canvas
- Announcements and questions on Piazza
- Office hours on Google Calendar
- 6 Labs + Final Project

Reading

Chapter 1: Introduction

Lab₀

Lab 0: Run the Lvnx

MEAM 520, University of Pennsylvania

August 28, 2018

This exercise is due on Wednesday, September 5, by midnlght (11:59 p.m.) Submit your answers to the questions at the end of the document on Canvas. Late submissions will be accepted until midnight on Saturday, September 8, but they will be penalized by 2878 for each partial or full day late. After the late desdline, no further assignments may be submitted; post a private message on Piazza to request an extension if you need one due to a special situation such as illness. This assignment is worth 5 points.

You may do the exercise in pairs, but each student should submit their own answers on Carras. You may talk with other students shout this assignment, ask the teaching team questions, use a calculator and other tools, and consult outside sources such as the Internet. When you get stuck, post a question on Piazza or go to office bours!

Instructions

The purpose of this mini-lab is to get you familiar with the Lynxmotion robot manipulator ('Lynx').

- Reserve a time: Plan a time to try out the robot. If you have a partner, both of you need to
 be present. Reserve a 30-minute time slot using one of the following sites. Each robot has its own
 schedule, so if one is reserved during your desired time, you should check the other three.
- http://meam520station1.youcanbook.me
- http://meam520station2.youcanbook.me
- http://meam520station3.youcanbook.me
- http://meam520station4.youcanbook.me
- Review instructions: Read over these instructions before your scheduled time so that you are familiar with the procedures.
- Show up: Go to Towne B2 at the time of your reservation. This room is in the basement of Towne Building. Use your PennCard to enter B2. If your card does not work, find another student to let you in, and request access using the form at https://meanlabs.seas.upenn.edu/access-request/.
- 4. Find your robot: The four Lynx robots are attached to desks stationed around the room. Each robot is labeled with its name and station number; find the robot that you reserved.
 5. Login: Use your PennKey and password to login to the computer to which your reserved robot is
- attached.
 6. Transfer: Download the lab0.zip file attached with this assignment, and unzip it into a folde
- somewhere within your Documents folder.

 7. Start MATLAB: Use the menu at the lower left to start MATLAB. (All Programs → Mathematics
- Start MATLAB: OSe the menu at the lower left to start MATLAB. (All Programs → Mathematics → MATLAB R2018b).
- 8. Change current folder: Inside MATLAB, navigate to the folder containing your unzip'd files.

1

Lab 0 is due by 11:59 p.m. on Wednesday, 9/5

Robot Manipulators

Are composed of

- Rigid **links**
- Connected by joints
- To form a kinematic chain.

There are two types of basic **joints**:

- Revolute (rotary), like a hinge, allows relative rotation between two links
- Prismatic (linear), like a slider, allows a relative linear motion (translation) between two links

How to draw R and P joints

Revolute	Prismatic	Examples
_	Revolute	Revolute Prismatic

prismatic made of revolute

Parts of a manipulator

Symbolic representation

Types of Manipulators

SERIAL

PARALLEL

Let's describe this lamp like a robot.

What kind of joints does a human arm have?

Configuration Space (C-Space)

Configuration: complete specification of the location of every point on the manipulator **Configuration space**: set of all configurations

How many possible configurations does this lamp have?

Joint variables

Joint variables to denote each joint's position.

Joint displacements are defined relative to the zero configuration.

Use θ_i for revolute joints

Use d_i for prismatic joints

Axis orientation defines the positive direction (use the RHR for revolute joints)

For rigid manipulators, knowing all joint variable values defines the configuration

Degrees of Freedom

Degrees of Freedom (DOF): The minimum number of parameters needed to specify the configuration

How many DOF does a rigid body in 3D space have?

Robots need at least ____ joints (____ DOF) for the end-effector to reach every point in the workspace with arbitrary orientation

Workspace

Workspace: volume swept out by the endeffector as the robot does all possible motions

- Depends on robot geometry
- Depends on joint limits
- Depends on the point on the end-effector

dexterous workspace reachable workspace

Workspace

NOTE: Workspace and configuration space have different dimensionality!

Configuration space: #{DOF} dimensions

Workspace: 3D or 2D depending on task

Task space: the parameter space for the task.

Often this is the 6D space of position/orientation

Workspace

What is the reachable workspace of the lamp?

What is the dexterous workspace of the lamp?

Spatial mechanisms

If we let the **base move and rotate** on the table, what type of robot is the lamp?

What is the new **reachable workspace** of the lamp?

We can apply the same terminology to mobile robots.

BUT it is non-holonomic.

Does the configuration of a manipulator fully define how it will move in the future?

The configuration gives you an **instantaneous description** of the geometry

State: set of variables sufficient to tell you the future time response when combined with dynamics and future inputs

A robot's dynamics equations determine accelerations (${m F}=m{m a}$) State requires joint variables q and derivatives $\dot q$

Practice: Unimate's 1960 manipulator arm

https://youtu.be/nOV5tEy8Oq8

Cartesian (PPP)
Useful for: gantries

https://youtu.be/97KX-j8Onu0

SCARA (RRP)

Useful for: speed, planar tasks

https://youtu.be/Hj7PxjeH5y0

Cylindrical (RPP)

Useful for: material transfer

Kinematics is the study of motion without

references to the causes of that motion.

Forward Kinematics

Given the joint coordinates, what are the task coordinates?

Representing positions

A point exists in space as a geometric entity

Coordinate frame

- an origin (point in space)
- 2 or 3 orthogonal coordinate axes Call this frame $o_0x_0y_0z_0$ or **frame 0**

Point p is written as a vector

$$\mathbf{v}_p^0 = p^0 = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x & y & z \end{bmatrix}^\top$$

Vectors

 y_0 O_0

A vector has a magnitude/length

$$\|\mathbf{v}_p^0\| = \sqrt{x^2 + y^2 + z^2}$$
$$\|\mathbf{v}_p^0\| = \left(\left(\mathbf{v}_p^0\right)^{\mathsf{T}} \mathbf{v}_p^0\right)^{\frac{1}{2}}$$

This is called the ℓ^2 norm.

A vector has a direction

$$\hat{e}_p^{\,0} = rac{\mathbf{v}_p^0}{\|\mathbf{v}_p^0\|}$$

This unit vector has length 1

How do we deal with rotated frames?

Forward Kinematics

Given the joint coordinates, what are the task coordinates?

Next time: Rotation Matrices in 2D and 3D

Chapter 2: Rigid Motions

- Read Sec. 2.intro-2.5
- Brush up on B.1-B.4 if necessary
 - Key concepts: vector, matrix, transpose, dot product, norm, matrix multiplication

I will be traveling for a research conference Prof. Mark Yim will substitute This material will be important for Lab 1

