Feuille 6

Conditionnement des matrices

Exercice 1:

Soit $A \in M_n(\mathbb{R})$ inversible et $b \in \mathbb{R}^n$. On considère la solution x du système Ax = b, et la solution $x + \delta x$ du système $A(x + \delta x) = b + \delta b$ dont le second membre est perturbé par un vecteur $\delta b \in \mathbb{R}^n$. On se donne une norme sur \mathbb{R}^n et on munit $M_n(\mathbb{R})$ de la norme induite associée.

1- Montrer que

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|},\tag{1}$$

οù

$$\kappa(A) = ||A|| \, ||A^{-1}|| \tag{2}$$

est appelé conditionnement de la matrice A pour la norme considérée.

- **2-** Montrer qu'il existe $b \in \mathbb{R}^n$ et $\delta b \in \mathbb{R}^n$ tels que (1) soit remplacé par une égalité.
- **3-** Montrer que $\kappa(A) \geq 1$.
- **4-** Montrer que $\kappa(AB) \leq \kappa(A)\kappa(B)$.

Exercice 2 : Soit $A \in M_n(\mathbb{R})$ inversible. On munit \mathbb{R}^n de la norme euclidienne et $M_n(\mathbb{R})$ de la norme induite associée. On note $\kappa_2(A)$ le conditionnement de la matrice A pour la norme euclidienne.

- 1- Montrer que la matrice $A^{T}A$ est sym 'etrique d'efinie positive.
- **2-** On note σ_{max} , σ_{min} respectivement la plus grande et la plus petite valeur propre de $A^{T}A$. Montrer que

$$\kappa_2(A) = \sqrt{\frac{\sigma_{max}}{\sigma_{min}}}. (3)$$

Indication : on pourra utiliser la propriété $||A||_2 = \sqrt{\rho(A^T A)}$.

3- Montrer que si A est symétrique définie positive alors

$$\kappa_2(A) = \frac{\lambda_{max}}{\lambda_{min}},\tag{4}$$

- où $\lambda_{max}, \lambda_{min}$ désignent respectivement la plus grande et la plus petite valeur propre de A.
- 4- Calculer $\kappa_2(A)$ pour la matrice $A \in M_n(\mathbb{R})$ suivante

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \vdots \\ 0 & -1 & \ddots & \ddots & 0 \\ \vdots & 0 & \ddots & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}.$$