Learning (RNH+DNN)

CS 3244 Machine Learning

Convolutional Layer: Feature Kernels & Feature Maps

 $k^{[l-1]} = c^{[l]}$ # filters from previous layer $k^{[l-1]}$ is equal to #channels into current layer $c^{[l]}$

Pooling Layer

- **Downsamples** Feature Maps
- Helps to train later kernels to detect higher-level features
- Reduces dimensionality
- Aggregation methods
 - Max-Pool (most used)
 - Average-Pool
 - Sum-Pool

Calculation 2×2 Max-Pool 37 34 | 70 | 112 37

Image credit: https://computersciencewiki.org/index.php/Max-pooling / Pooling

NUS CS3244: Machine Learning

Fully-Connected Neuron vs. Convolutional Activation Map

Layer stores activation of each neuron ρ separately Layer stores activation map of **each kernel** k separately

41

Image credit: https://towardsdatascience.com/a-comprehensive

Plattening

FEATURE LEARNING

Convolutional Neural Network

CONVOLUTION + RELU

- Convert to fixed-length 1D vector
 - · With fully connected layers (regular neurons)

NUS CS3244: Machine Learning

CONVOLUTION + RELU POOLING

• Learns nonlinear relations with multiple layers

B Learn Nonlinear Features

4 Classification

• Softmax := Multiclass Logistic Regression

- BICYCLE

• Feature input = image embedding vector

(typically large vector)

mage Embedding

Key concepts

pooling layers

Learn Spatial Feature

• Series of multiple convolution +

· Progressively learn more diverse

and higher-level features

FLATTEN FULLY CONNECTED

CLASSIFICATION

NUS CS3244: Machine Learning

Week 10A&B: Learning Outcomes

- 1. Understand how deep learning enables better model performance than shallow machine learning
- Explain how CNNs and RNNs are different from feedforward neural networks
- 3. Appropriately choose and justify when to use each architecture
- 4. Explain how to mitigate training issues in deep learning

Week 10B: Lecture Outline

- 1. Deep learning motivation
- 2. Popular Architectures
 - 1. Convolutional Neural Networks
 - 2. Recurrent Neural Networks
- 3. Deep learning training issues

Convolutional Neural Networks (CNN)

Convolutional Neural Network

NUS CS3244: Machine Learning

Key concepts

1 Learn Spatial Feature

- Series of multiple convolution + pooling layers
- Progressively learn more diverse and higher-level features
- Analogy: human visual cortex

2 Flattening

Convert to fixed-length1D vector

3 Learn Nonlinear Features

- With fully connected layers (regular neurons)
- Learns nonlinear relations with multiple layers
- Analogy: semantic reasoning

4 Classification

- Softmax := Multiclass
 Logistic Regression
- Feature input = image embedding vector
 (typically large vector)
- Analogy: decision making

From Manual Feature Engineering To Automatic Feature Learning

From Manual Feature Engineering To Automatic Feature Learning

Recurrent Neural Networks (RNN)

Applications of RNN

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec ____ moi? "The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Image credit: https://laptrinhx.com/understanding-of-recurrent-neural-networks-lstm-gru-3720007533/

~

draw a shape, any shape.

- **Draw something** and see what the Al will continue drawing
- **Take screenshot** and post your results
 - No obscenities please
- **Emote**
 - Up vote those you like
 - Down vote those with mistakes
- **Discuss** how you think the model predicted what to draw next

Try yourself: https://magenta.tensorflow.org/assets/sketch rnn demo/index.html

Feedforward Neural Network

Neural Network (simplified 1-hidden layer)

Input Layer

Hidden Layer

Output Layer

Neurons with Recurrence

$$\widehat{\boldsymbol{y}} = g^{[y]} \left(g^{[h]}(\boldsymbol{x}_t, \boldsymbol{h_{t-1}}) \right)$$

Recurrent Neural Network (RNN)

$$\widehat{y}_t = g^{[y]}(h_t)$$

$$h_t = g^{[h]}(x_t, h_{t-1})$$

RNN Weights

Feedforward Neural Network

$$\widehat{\mathbf{y}} = g^{[\mathbf{y}]} \left(\left(\mathbf{W}^{[h\mathbf{y}]} \right)^{\mathsf{T}} \mathbf{h} \right)$$
$$\mathbf{h} = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x} \right)$$

Question: Do these weights change for different time *t*?

Recurrent Neural Network

$$\widehat{y}_{t} = g^{[y]} \left(\left(\mathbf{W}^{[hy]} \right)^{\mathsf{T}} \mathbf{h}_{t} \right)$$

$$\mathbf{h}_{t} = g^{[h]} \left(\left(\mathbf{W}^{[xh]} \right)^{\mathsf{T}} \mathbf{x}_{t} + \left(\mathbf{W}^{[hh]} \right)^{\mathsf{T}} \mathbf{h}_{t-1} \right)$$

$$= g^{[h]} \left(\left(\mathbf{W}^{[xh]} \oplus \mathbf{W}^{[hh]} \right)^{\mathsf{T}} (\mathbf{x}_{t} \oplus \mathbf{h}_{t-1}) \right)$$

RNNs: Backpropagation Through Time

$$W^{[xh]} = \begin{pmatrix} 0.3 & 1.0 & 0.1 & 0.5 \\ -0.1 & 0.3 & -0.3 & 0.1 \\ -0.1 & 0.1 & -0.5 & -0.5 \end{pmatrix} \qquad W^{[hy]} = \begin{pmatrix} 0.3 & 0.1 & 0.5 \\ 0.3 & 0.1 & 0.1 & 0.5 \\ -0.1 & 0.1 & 0.5 & 0.5 \end{pmatrix}$$

 $V^{[hy]} = \begin{pmatrix} 0.3 & 0.9 & 0.1 \\ 0.2 & -0.6 & 0.5 \\ -0.1 & 0.1 & 0.5 \\ -0.1 & 1.0 & -0.2 \end{pmatrix} \qquad W^{[hh]} = \begin{pmatrix} 0.1 & 0.4 & 0.8 \\ -0.1 & 0.5 & -0.2 \\ 0.9 & 0.2 & 0.6 \end{pmatrix}$

 $\sigma(\widehat{\mathbf{y}}) = \frac{e^{\widehat{\mathbf{y}}}}{1 \cdot (1 + e^{\widehat{\mathbf{y}}})}$

Example RNN

Training text prediction

- Dictionary
 - [h, e, l, o]
- Encoding and Decoding chars
 - One-hot encoding (e.g., BOW)
 - Softmax classification
- At training time,
 - $x_t = y_{t-1}$
 - Loss is calculated as Cross-Entropy Error between \hat{y}_t and y_t

$$W^{[xh]} = \begin{pmatrix} 0.3 & 1.0 & 0.1 & 0.5 \\ -0.1 & 0.3 & -0.3 & 0.1 \\ -0.1 & 0.1 & -0.5 & -0.5 \end{pmatrix} \qquad W^{[hy]} = \begin{pmatrix} 0.3 & 0.9 & 0.1 \\ 0.2 & -0.6 & 0.5 \\ -0.1 & 0.1 & 0.5 \\ 0.1 & 1.0 & 0.2 \end{pmatrix} \qquad W^{[hh]} = \begin{pmatrix} 0.1 & 0.4 & 0.8 \\ -0.1 & 0.5 & -0.2 \\ 0.9 & 0.2 & 0.6 \end{pmatrix} \qquad \sigma(\hat{y}) = \frac{\exp(\hat{y})}{\sum_{c=1}^{C} \exp(\hat{y}_{c})}$$

Example RNN Predicting Text

- At prediction time,
 - Forward propagate calculating activations to generate sequence of characters
 - $\bullet \ x_t = \hat{y}_{t-1}$

From Manual Feature Engineering To Automatic Feature Learning

Sequence Modeling Applications

Further reading: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

then predicts output

Image Captioning: CNN + RNN (LSTM) - not in exam

Deep Learning Training Issues

Deep Learning Training Issues

- Overfitting
- Saturating Gradient Problem
- Vanishing Gradient Problem

Overfitting in deep neural networks

- Recall: what is overfitting?
 - Performance: Validation < Training
- Why can deep learning overfit?
 - Too many parameters!
 - Model is more expressive than neeeded
- Mitigation?
 - Dropout
 - Randomly "drop out" some neurons during batch training
 - Cannot propagate through those neurons during training
 - Note: all nodes are still used for prediction

Further reading: https://towardsdatascience.com/12-main-dropout-methods-mathematical-and-visual-explanation-58cdc2112293

Deep Learning Training Issues

- Overfitting
- Saturating Gradient Problem
- Vanishing Gradient Problem

Gradient Descent Weight Update (Neural Network)

Gradient of error

$$\nabla \varepsilon = \frac{d\varepsilon}{dW} = \frac{d\varepsilon}{d\hat{y}} \frac{d\hat{y}}{dW}$$

$$\frac{df}{dW} \frac{d\hat{g}}{dW} \frac{d\hat{g}}{df}$$

Differentiable Activation Functions

Step

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

ReLU

$$\max(0, x)$$

image credit.

https://miro.medium.com/max/1400/0*sIJ-gbjlz0zrz8lb.png

Saturating Gradient Problem due to activation functions Mitigate with ReLU activation function

When x value far from 0, gradient \rightarrow 0 (saturating) When gradient \approx 0, then $\Delta W = \eta \nabla \varepsilon$ weights don't update much

Mitigation

With ReLU, gradient is always 1 (for x > 0) Can always update weights (for x > 0)

Vanishing Gradient Problem

$$\frac{\partial \hat{y}}{\partial W^{[1]}} = \frac{df^{[1]}}{dW^{[1]}} \frac{dg^{[1]}}{df^{[1]}} \cdots \frac{dg^{[l]}}{df^{[l]}} \frac{df^{[l+1]}}{dg^{[l]}} \frac{dg^{[l+1]}}{df^{[l+1]}} \cdots \frac{df^{[L]}}{dg^{[L-1]}} \frac{dg^{[L]}}{df^{[L]}}$$

If some gradients are small (< 1), multiplying many small numbers equals a very small number. E.g., $0.5^{15} \approx 0.0003$

Image credit: https://towardsdatascience.com/understanding-rnns-lstms-and-grus-ed62eb584d90

Mitigating Vanishing Gradients in CNN:

Using architecture with "shortcut" connections

- ResNet (Residual Networks)
- Propagates residuals (forward) and gradients (backwards) through "shortcut connections"
- Gradients through shortcuts will not be as small

2D Convolution 2D Convolution 2D Convolution 2D Convolution

Further reading: https://towardsdatascience.com/vggnet-vs-resnet-924e9573ca5c

Image credit: https://www.kaggle.com/keras/resnet50

Mitigating Vanishing Gradients in RNN Using architectures with "forget" gates

Includes "forget" gates

Image Credit: http://dprogrammer.org/rnn-lstm-gru

Further reading: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Wrapping Up

From Manual Feature Engineering To Architecture Engineering

What did we learn?

• CNN: exploits <u>spatial information</u> using **convolutions**

 RNN: exploits <u>history information</u> using **recurrence**

Grand issues with AI (Deep Learning)

Lack of **Explainability** [W11b]

Algorithmic Bias (Societal) [W13a]

Data **Privacy**

Image credits:

https://miro.medium.com/max/2000/1*H4cW- RCyHpu5FNtVaAPoQ.gif https://www.insperity.com/wp-content/uploads/bias_1200x630.png https://www.fightforprivacy.co/_nuxt/img/512f421.gif

