Algoritmos y Estructuras de Datos II - 16 de abril de 2012 Parcial 1: Análisis de Algoritmos

Docentes: Daniel Fridlender y Silvia Pelozo

1. Dado el siguiente procedimiento:

```
proc p (in / out a : array[1..N] of int)
for j := 1 to N - 1 do
    for k := j + 1 to N do
        if a[k] < a[j] then
             swap (a, j, k)
        fi
    od
od
```

- a) Describir su objetivo.
- b) Determinar la cantidad de comparaciones entre elementos de a que se realizan en el peor caso, en función de N.
- c) ¿Qué característica (independiente del tamaño N) tiene el arreglo a en el peor caso? ¿Y en el mejor caso?
- d) En el peor caso la cantidad de comparaciones entre elementos de a y la cantidad de intercambios es la misma. ¿Es apropiado considerar la operación de intercambio como la operación principal del algoritmo? ¿Por qué?
- 2. ¿Cuáles de las siguientes afirmaciones son verdaderas y cuáles falsas? Justificar con claridad.
 - a) sea t(n) = n 1.000.000, entonces $\forall^{\infty} n \in \mathbb{N}.t(n) > 0$.
 - b) sea $t(n) = \begin{cases} 1 & \text{si } n \text{ es impar} \\ 0 & \text{si } n \text{ es par} \end{cases}$, entonces $\forall^{\infty} n \in \mathbb{N}. t(n) = 1 \text{ y } \forall^{\infty} n \in \mathbb{N}. t(n) = 0.$
 - c) sea $f(n) \in \mathcal{O}(g(n))$ entonces $g(n)^2 \in \Omega(f(n) * g(n))$.
 - d) $f(n) \in \Theta(g(n))$ si y sólo si $g(n) \in \Theta(f(n))$.
- 3. Ordenar las siguientes funciones en orden incremental de acuerdo a sus \mathcal{O} , utilizando igualdad o inclusión estricta según corresponda. Por ejemplo, $\mathcal{O}(n+1) = \mathcal{O}(n) \subset \mathcal{O}(n^n)$.
- b) $3^{\log_3 n}$
- c) \sqrt{n} d) n

- $e) \log_2 n$ $f) n^2 n \log n$

Justificar con claridad utilizando las propiedades que se demostraron, evitando en lo posible la utilización de la regla del límite.

4. Sean K y L constantes, y p el siguiente procedimiento:

```
\operatorname{proc} p(\operatorname{in} n : \operatorname{nat})
  if n \leq 1 then skip
  else
         for i := 1 to K do p(n \text{ div } L) od
        for i := 1 to n do
               for j := 1 to n do operación de \mathcal{O}(1) od
         od
```

Determinar posibles valores de K y L de manera que el procedimiento tenga orden:

a) $\Theta(n^2 \log n)$

b) $\Theta(n^2)$

c) $\Theta(n^3)$

Justificar con claridad.

5. La siguiente recurrencia representa la cantidad de operaciones de un algoritmo en función del tamaño n de la entrada. Determinar la complejidad del algoritmo.

$$t(n) = \begin{cases} n & \text{si } 0 \le n \le 1\\ 2t(n-1) - t(n-2) + n & \text{si } n \ge 2 \end{cases}$$