

Lecture: Nonlinear optimization without constraints

- 1. General Nonlinear optimization problems
- 2. Convex sets
- 3. Convex functions
- 4. Convex optimization problems

General nonlinear optimization problems

minimize
$$f(\mathbf{x})$$
 s.t. $\mathbf{x} \in \mathcal{F}$

- $\mathcal{F} \subset \mathbf{R}^n$ is called the *feasible region*.
- $f: \mathcal{F} \to \mathbf{R}$ is called the objective function.

Definition 1.

- (i) The point $\mathbf{x} \in \mathbf{R}^n$ is called feasible if $\mathbf{x} \in \mathcal{F}$.
- (ii) The point $\hat{\mathbf{x}} \in \mathcal{F}$ is a local optimal solution to (2) if there exists a $\delta > 0$ such that $f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{F}$ such that $|\mathbf{x} \hat{\mathbf{x}}| \leq \delta$.
- (iii) The point $\hat{\mathbf{x}} \in \mathcal{F}$ is a global optimal solution to (2) if $f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{F}$.

Some examples

Linear optimization:
$$f(\mathbf{x}) = \mathbf{c}^\mathsf{T}\mathbf{x}$$
 and $\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{A}\mathbf{x} \ge \mathbf{b}\}$, i.e.

$$minimize \quad \mathbf{c}^\mathsf{T}\mathbf{x}$$

s.t.
$$Ax \ge b$$

Quadratic optimization:
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{H}\mathbf{x} + \mathbf{c}^\mathsf{T}\mathbf{x}$$
 and $\mathcal{F} = {\mathbf{x} \in \mathbf{R}^n : \mathbf{A}\mathbf{x} \ge \mathbf{b}}$, i.e.

minimize
$$\frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{H}\mathbf{x} + \mathbf{c}^\mathsf{T}\mathbf{x}$$

s.t. $\mathbf{A}\mathbf{x} > \mathbf{b}$

Nonlinear optimization:
$$\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : g_i(\mathbf{x}) \leq 0, i = 1, \dots, m\}$$
, i.e.

minimize
$$f(\mathbf{x})$$

s.t.
$$g_i(\mathbf{x}) \leq \mathbf{0}, \ i = 1, \dots, m.$$

- Linear optimization problems are well posed since they can be solved using the simplex method.
- Quadratic optimization problems are well posed if H is positive semi-definite.
- When are general nonlinear optimization problems well posed?
 - One class of nonlinear optimization problems that is well posed is convex optimization problems.

Comment 1. We will see that linear optimization problems and quadratic optimization problems with positive semi-definite \mathbf{H} are special cases of convex optimization problems.

Convex sets

Definition 2. A set $C \subset \mathbb{R}^n$ is convex if

$$(1-t)\mathbf{x}_1 + t\mathbf{x}_2 \in C$$

for every choice of $\mathbf{x}_1 \in C$, $\mathbf{x}_2 \in C$ and $t \in (0,1)$.

Convex set

Non-convex set

Convex set

Non-convex set

Theorem 1. Let $C_1, \ldots C_n \subset \mathbb{R}^n$ be convex sets. Then the intersection $C = \bigcap_{k=1}^n C_k$ of the sets is also a convex set.

Exempel 1. Let

$$\mathbf{A} = egin{bmatrix} \mathbf{ar{a}}_1^\mathsf{T} \ draingledown \ \mathbf{ar{a}}_m^\mathsf{T} \end{bmatrix} \in \mathbf{R}^{m imes n} \quad ext{and} \quad \mathbf{b} = egin{bmatrix} b_1 \ draingledown \ b_m \end{bmatrix} \in \mathbf{R}^m$$

The set $\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ is convex. This follows since

$$\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : \bar{\mathbf{a}}_j^\mathsf{T} \mathbf{x} \ge b_j, \ j = 1, \dots, m\} = \bigcap_{j=1}^n \{\mathbf{x} \in \mathbf{R}^n : \bar{\mathbf{a}}_j^\mathsf{T} \mathbf{x} \ge b_j\}$$

The sets $\{\mathbf{x} \in \mathbf{R}^n : \bar{\mathbf{a}}_j^\mathsf{T} \mathbf{x} \ge b_j\}$ are half-planes and thereby obviously convex.

Convex functions

Definition 3. Let $C \subset \mathbb{R}^n$ be a convex set. A real valued function $f: C \to \mathbb{R}$ is convex if for every choice of $\mathbf{x}_1 \in C$, $\mathbf{x}_2 \in C$ and $t \in (0,1)$

$$f((1-t)\mathbf{x}_1+t\mathbf{x}_2) \le (1-t)f(\mathbf{x}_1)+tf(\mathbf{x}_2)$$

Theorem 2. If f_1, \ldots, f_m are convex functions on C and $\gamma_1, \ldots, \gamma_m$ are non-negative real constants, then the function

$$f(\mathbf{x}) = \gamma_1 f_1(\mathbf{x}) + \ldots + \gamma_m f_m(\mathbf{x})$$

is convex on C.

Proof: Let $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $t \in (0,1)$. According to Definition 3 we have that

$$f((1-t)\mathbf{x}_1 + t\mathbf{x}_2) = \sum_{k=1}^m \gamma_k f_k((1-t)\mathbf{x}_1 + t\mathbf{x}_2)$$

$$\leq \sum_{k=1}^m \gamma_k [(1-t)f_k(\mathbf{x}_1) + tf_k(\mathbf{x}_2)]$$

$$= (1-t)\sum_{k=1}^m \gamma_k f_k(\mathbf{x}_1) + t\sum_{k=1}^m \gamma_k f_k(\mathbf{x}_2)$$

$$= (1-t)f(\mathbf{x}_1) + tf(\mathbf{x}_2), \text{ which shows that } f \text{ is convex.}$$

Theorem 3. Let $C \subset \mathbb{R}^n$ be a convex set. A continuously differentiable function $f: C \to \mathbb{R}$ is convex if and only if, for every $\mathbf{x}_1 \in C$ and $\mathbf{x}_2 \in C$

$$f(\mathbf{x}_2) \ge f(\mathbf{x}_1) + \nabla f(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1)$$

A direct consequence of the Theorem is that a convex function can be estimated from below with a piecewise linear convex function.

$$f_{sl}(\mathbf{x}) = \max_{\mathbf{x}} \{ f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) \}$$

Theorem 4. Assume that $C \subset \mathbb{R}^n$ is a given convex set with at least one interior point. A two times continuously differentiable function $f: C \to \mathbb{R}$ is then convex, if and only if, the Hessian $\nabla^2 f(\mathbf{x})$ is positive semi-definite for every $\mathbf{x} \in C$.

A point $\mathbf{x} \in C$ is an interior point if there exists a ball with center in \mathbf{x} , $\mathcal{B}(\mathbf{x}, \epsilon) = \{\mathbf{y} \in \mathbf{R}^n : |\mathbf{x} - \mathbf{y}| < \epsilon\}$, such that $\mathcal{B}(\mathbf{x}, \epsilon) \subset C$.

Convex set with interior points

Convex set without an interior point

Note that it in general is important that the function f is defined on a (convex) subset $C \subset \mathbf{R}^n$.

Exempel 2. Let $C=(0,\infty)$, which is a convex set. The Function $f(x)=-\ln(x)$ is convex on C since $\nabla^2 f(\mathbf{x})=\frac{1}{x^2}$ is positive for all $x\in C=(0,\infty)$. The function is not definied for $x\leq 0$ and is therefore not convex on $C=(-\infty,\infty)$.

Exempel 3. The function $f(x) = x^3$ is convex if it is defined on $C = [0, \infty)$, but it is not convex if it is defined on $C = (-\infty, \infty)$.

Sometimes, there are no interior point, and then the following theorem is useful:

Theorem 5. Assume that $C \subset \mathbb{R}^n$ is a given convex set and that $f: C \to \mathbb{R}$ is a two times continuously differentiable function on C. Then, f is convex on C if, and only if, the following inequality is satisfied for every choice of $\hat{\mathbf{x}} \in C$ and $\mathbf{x} \in C$:

$$(\mathbf{x} - \hat{\mathbf{x}})^\mathsf{T} \nabla^2 f(\hat{\mathbf{x}}) (\mathbf{x} - \hat{\mathbf{x}}) \ge 0$$

Exempel 4. Assume that

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x}$$
$$C = \{\mathbf{x} \in \mathbf{R}^{n} : \mathbf{A}\mathbf{x} = \mathbf{b}\}.$$

If $\mathbf{x}, \hat{\mathbf{x}} \in C$, it follows that $\mathbf{x} - \hat{\mathbf{x}} \in \mathcal{N}(\mathbf{A})$ since $\mathbf{A}(\mathbf{x} - \hat{\mathbf{x}}) = \mathbf{b} - \mathbf{b} = \mathbf{0}$. If \mathbf{Z} is a matrix spanning the nullspace, i.e. $\mathbf{Z} = \begin{bmatrix} \mathbf{z}_1 & \dots & \mathbf{z}_k \end{bmatrix}$ where the columns form a basis for $\mathcal{N}(\mathbf{A})$ it follows that $\mathbf{x} - \hat{\mathbf{x}} = \mathbf{Z}\mathbf{v}$ for some $\mathbf{v} \in \mathbf{R}^k$. Therefore, it holds that

$$(\mathbf{x} - \hat{\mathbf{x}})^\mathsf{T} \nabla^2 f(\hat{\mathbf{x}}) (\mathbf{x} - \hat{\mathbf{x}}) = \mathbf{v}^\mathsf{T} \mathbf{Z}^\mathsf{T} \mathbf{H} \mathbf{Z} \mathbf{v}$$

which is positive for an arbitrary $\mathbf{v} \in \mathbf{R}^k$ if, and only if, if the reduced Hessian $\mathbf{Z}^\mathsf{T}\mathbf{H}\mathbf{Z}$ is positive semi-definite. According to the previous theorem f is thus convex on C if, and only if, $\mathbf{Z}^\mathsf{T}\mathbf{H}\mathbf{Z}$ is positive semi-definite.

Convex optimization problems

The optimization problem

minimize
$$f(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathcal{F}$ (2)

is called convex if

- the feasible region $\mathcal{F} \subset \mathbf{R}^n$ is convex.
- the objective function $f: \mathcal{F} \to \mathbf{R}$ is convex.

Examples of convex optimization problems

Linear optimization:

minimize
$$\mathbf{c}^\mathsf{T}\mathbf{x}$$

s.t.
$$Ax \ge b$$

We have already shown that $\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ is convex and the objective function $f(\mathbf{x}) = \mathbf{c}^\mathsf{T}\mathbf{x}$ is convex since it satisfies the inequality in Definition 3 with equality.

Quadratic optimization:

minimize
$$\frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{H}\mathbf{x} + \mathbf{c}^\mathsf{T}\mathbf{x}$$

s.t. $\mathbf{A}\mathbf{x} \geq \mathbf{b}$

This problem is convex if \mathbf{H} is positive semi-definite since the objective function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{H}\mathbf{x} + \mathbf{c}^\mathsf{T}\mathbf{x}$ according to Theorem 4 then is convex.

Quadratic optimization under linear equality constraints:

minimize
$$\frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{H}\mathbf{x} + \mathbf{c}^\mathsf{T}\mathbf{x}$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

It is easy to show that the feasible region $\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}\}$ is convex. This problem is therefore, according to Example 4 convex if the reduced Hessian $\mathbf{Z}^\mathsf{T}\mathbf{H}\mathbf{Z}$ is positive semi-definite.

Nonlinear optimization:

minimize
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \leq \mathbf{0}, i = 1, \dots, m.$

This problem is convex if $g_i : \mathbf{R}^n \to \mathbf{R}$, i = 1, ..., n are convex functions and f is a real valued convex function on

$$\mathcal{F} = \{ \mathbf{x} \in \mathbf{R}^n : g_i(\mathbf{x}) \leq 0, i = 1, \dots, m \}.$$

For proving this, we need to show that \mathcal{F} is convex. Since,

$$\mathcal{F} = \bigcap_{i=1}^m \{ \mathbf{x} \in \mathbf{R}^n : g_i(\mathbf{x}) \le 0 \}$$

it is enough to show that $\mathcal{F}_i = \{\mathbf{x} \in \mathbf{R}^n : g_i(\mathbf{x}) \leq 0\}$ is convex.

If $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{F}_i$, it holds that $g_i(\mathbf{x}_1) \leq 0$ and $g_i(\mathbf{x}_2) \leq 0$. Since g_i is convex, it follows that

$$g_i((1-t)\mathbf{x}_1+t\mathbf{x}_2) \le (1-t)g_i(\mathbf{x}_1)+tg_i(\mathbf{x}_2) \le 0$$

for $t \in (0,1)$. This shows that $(1-t)\mathbf{x}_1 + t\mathbf{x}_2 \in \mathcal{F}_i$ and \mathcal{F}_i is therefore a convex set.

The following theorem demonstrated a very nice property of convex optimization problems

Theorem 6. If $\hat{\mathbf{x}} \in \mathcal{F}$ is a local optimal solution to the convex optimization problem (2), then it is also a global optimal solution.

Proof: Assume that $\hat{\mathbf{x}} \in \mathcal{F}$ is not a global optimal solution. Then there exists a $\mathbf{x} \in \mathcal{F}$ such that $f(\mathbf{x}) < f(\hat{\mathbf{x}})$. Since \mathcal{F} is convex it holds that $\mathbf{x}(t) = (1-t)\hat{\mathbf{x}} + t\mathbf{x} \in \mathcal{F}$ for $t \in (0,1)$. Since f is convex we have

$$f(\mathbf{x}(t)) \le (1-t)f(\hat{\mathbf{x}}) + tf(\mathbf{x}) = f(\hat{\mathbf{x}}) + t(f(\mathbf{x}) - f(\hat{\mathbf{x}})) < f(\hat{\mathbf{x}})$$

But since $\mathbf{x}(t) = \hat{\mathbf{x}} + t(\mathbf{x} - \hat{\mathbf{x}})$, there are feasible points arbitrarily close to $\hat{\mathbf{x}}$ (i.e. for small t) where the objective function value is smaller than $f(\mathbf{x})$. This contradicts that $\hat{\mathbf{x}}$ is a local optimal solution. Therefore, it must hold that $f(\hat{\mathbf{x}}) < f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{F}$.

The following corollary is very useful:

Theorem 7. Assume that the function f is continuously differentiable and convex on \mathbb{R}^n . Then $\hat{\mathbf{x}} \in \mathbb{R}^n$ is a global minimum if, and only if, $\nabla f(\hat{\mathbf{x}}) = \mathbf{0}^\mathsf{T}$.

Proof: Since $\hat{\mathbf{x}} \in \mathbf{R}^n$ is a global minimum it is also a local minimum, hence it follows from the first order necessary optimality conditions that $\nabla f(\hat{\mathbf{x}}) = \mathbf{0}^\mathsf{T}$.

Conversely, assume that $\nabla f(\hat{\mathbf{x}}) = \mathbf{0}^T$. Then according to Theorem 3 it holds that

$$f(\mathbf{x}) \ge f(\hat{\mathbf{x}}) + \underbrace{\nabla f(\hat{\mathbf{x}})}_{=0}(\mathbf{x} - \hat{\mathbf{x}}) = f(\hat{\mathbf{x}})$$

for all $x \in \mathbb{R}^n$. This shows that \hat{x} is a global minimum to f.

Exempel 5. Consider the optimization problem

$$\mathsf{minimize}\, f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\mathsf{T}\mathbf{H}\mathbf{x} + \mathbf{c}^\mathsf{T}\mathbf{x}$$

where \mathbf{H} is positive semi-definite. Then f is a convex function and the minimizing point satisfies

$$\nabla f(\hat{\mathbf{x}})^{\mathsf{T}} = \mathbf{H}\hat{\mathbf{x}} + \mathbf{c} = \mathbf{0}$$

This is the same optimality condition that was derived earlier.

Comments

Theorem 6 shows that every local optimal solution to a convex optimization problem also is a global optimal solution. Note that the optimal solution is not necessarily unique, and that there is not always a (finite) optimal solution to a convex optimization problem.

Exempel 6.

minimize
$$x_1 + x_2$$

s.t. $x_1 \ge 1$

is unbounded from below and hence lacks an optimal solution. The convex optimization problem below lacks a unique optimal solution

minimize
$$x_1 + x_2$$

s.t. $x_1 + x_2 > 1$