

DESARROLLO DE UN MÓDULO DE REDESCRIPCIÓN DE MODELOS DE UTILIDAD MEDIANTE DEEP LEARNING PARA ROBÓTICA COGNITIVA

Yeray Méndez Romero

Índice

- 1. Introducción
- Objetivos
- 3. Metodología
- 4. Desarrollo
- 5. Experimento y pruebas realizadas
- 6. Conclusiones

1.INTRODUCCIÓN

DREAM

- Robótica cognitiva.
- Procesos del sueño.
- Programa de investigación Horizon 2020.
- Grupo Integrado de Ingeniería (UDC).
- MotivEn.

1.INTRODUCCIÓN

MotivEn

- Guiar acciones del robot.
- Sistema basado en motivaciones:
 - Intrínsecas
 - Extrínsecas
- Modelos de utilidad:
 - Separable Utility Regions (SURs)
 - Value Function (VF)

1.INTRODUCCIÓN

Simulador 2D

2.OBJETIVOS

Objetivo principal

DESARROLLAR E INTEGRAR VALUE FUNCTION BASADA EN DEEP LEARNING

DESARROLLAR E INTEGRAR ENTORNO DE SIMULACIÓN 3D

3.METODOLOGÍA

- Metodología adaptada.
- Definición de roles:
 - Equipo de desarrollo:
 - Yeray Méndez Romero.
 - Investigadores:
 - Francisco Javier Bellas Bouza.
 - Alejandro Romero Montero.
- Estructuración del proyecto :
 - Iteraciones.

Herramientas de la asignatura Xestión de

Proxectos:

- Estimación.
- Planificación.
- Recursos.
- Gestión de riesgos.

Requisitos

- Funcionales:
 - Código desarrollado en Python 2.7.x.
 - VF desarrollada empleando TensorFlow.
 - Entorno virtual desarrollado en Gazebo.
 - Comportamiento robótico desarrollado con ROS.

- No funcionales:
 - Mantenibilidad.
 - Facilitar la integración de futuros desarrollos.

Arquitectura inicial

Arquitectura inicial

Arquitectura inicial

- Módulo Value Functions Module
 - Gestiona el uso de las VFs del sistema.
 - Desarrollo de la VF basada en Deep Learning.
 - API Keras de la biblioteca TensorFlow.
 - Batch

Módulo Value Functions Module

Módulo Simulator Module

- Abstrae al sistema de la comunicación con los distintos simuladores.
- Entorno de simulación desarrollado en Gazebo.
- Comunicación con el entorno robótico definida a través de Rospy.

Módulo Simulator Module

Experimento real

- Ajuste de los parámetros de la red
 - Validación cruzada en 10 iteraciones.
 - Datos:
 - Trazas recopiladas del experimento real.
 - Parámetros evaluados:
 - Topología de la red.
 - Épocas de entrenamiento.
 - Algoritmos de aprendizaje : Adam.
 - Batch de tamaño de la traza.

Métricas:

- Error más alto de entrenamiento (error en la peor iteración).
- Error de test en la peor iteración.
- Error medio sobre el conjunto de test en las K iteraciones.
- Desviación estándar en el error de test.
- Tiempo medio de cómputo en las K iteraciones.

Validación cruzada							
Topología	Épocas	Error de entre- namiento en la peor iteración	Error de test en la peor ite- ración	Error medio de test	Desviación estándar	Tiempo medio de entrena- miento	
3-10-3-1	30	0.0059	0.0254	0.0307	0.0098	2.8925	
3-10-3-1	40	0.0049	0.0207	0.0332	0.0114	4.3204	
3-10-3-1	50	0.0052	0.0219	0.0342	0.0113	4.3960	
3-10-3-1	60	0.0046	0.0208	0.0355	0.0105	4.7763	
3-10-3-3-1	30	0.0050	0.0219	0.0272	0.0109	3.1600	
3-10-3-3-1	40	0.0056	0.0225	0.0290	0.0110	5.2762	
3-10-3-3-1	50	0.0048	0.0208	0.0305	0.0147	5.7652	
3-10-3-3-1	60	0.0044	0.0206	0.0282	0.0092	6.2342	
3-10-10-3-1	30	0.0052	0.0220	0.0315	0.0098	3.8771	
3-10-10-3-1	40	0.0088	0.0231	0.0431	0.0253	5.0068	
3-10-10-3-1	50	0.0048	0.0205	0.0309	0.0093	5.7013	
3-10-10-3-1	60	0.0048	0.0219	0.0288	0.0086	6.0962	

Experimento realizado

- No se modelan las SURs.
- Configuración de la VF:
 - Topología: 3-10-3-3-1
 - Épocas de entrenamiento : 30
 - Algoritmo de aprendizaje : Adam
 - Batch configurable.
- Aprendizaje online

Objetivos	It. totales (int)	It. medias (int)	It. medias (ext)	It. medias últimos 10 obj. (ext)
20	1426	140.8	28.0	28.0
35	1594	157.0	26.05	11.8
50	400	39.5	51.16	13.23

 Los resultados indican que la VF basada en Deep Learning logra definir comportamientos robóticos autónomos y adaptativos dentro de MotivEn.

6.CONCLUSIONES

INTEGRACIÓN SATISFACTORIA DE LOS COMPONENTES REQUERIDOS

LOS RESULTADOS DEMUESTRAN QUE LA APLICACIÓN DEL APRENDIZAJE ONLINE ES UNA OPCIÓN VÁLIDA

REDUCCIÓN DEL "REALITY GAP" EN FUTUROS EXPERIMENTOS

GRACIAS POR VUESTRA ATENCIÓN