Intro to Biodiversity Analysis

Biomonitoring

Repeated biodiversity measurements across time and space

Biodiversity

Measurement of alpha, beta, and gamma diversity for community analyses
Integration of DNA-based, biological and environmental ecological indicators

DNA-based indicators

Includes ESVs, OTUs, taxa, genes, genomes, metagenomes, metagenomes, metatranscriptomes, or metabolic activity predicted from sequence analysis.

Identification of sequences by comparison with reference databases according to predefined cut-offs.

Biological indicators

Includes species, indicator assemblages, communities, trophic guilds, biomass, density or metabolic activity derived from direct measurement.

Identification of species largely based on morphological characters and manual comparison with taxonomic keys.

Environmental indicators

Site characteristics such as nutrient levels, moisture, temperature or other structural measures.

Earth observation data such as numerical weather data, photograph radar or sonar imagery.

What is biodiversity?

Typical biodiversity analyses include:

- 1. Alpha diversity (richness) average number of unique species at local scale ex. average number of species per site/treatment/condition
 - gamma diversity is landscape scale diversity, ex. total number of unique species across all sites
 - visualized as box plots, bar plots
- 2. Beta diversity ratio between regional and local diversity, comparison of diversity between pairs of communities, looks at how beta diversity changes over space/time/treatment/conditions ex. diversity indexes such as Bray Curtis/Sorensen/Jaccard dissimilarities/distances, Shannon (evenness), Simpson (richness+evenness), etc
 - visualized using unconstrained NMDS with fitted environmental parameters or constrained RDA (hypothesis-testing) where the PCA is constrained using a few selected env params
 - PERMANOVA (usually accompanies NMDS) can be used to see whether groupings explain a significant amount of variation in beta diversity or ANOVA to see whether variation explained by axes/constraints is significant (usually accompanies RDA)
- 3. Community composition summarized to a particular taxonomic rank
 - visualized using stacked bar plots, heatmaps

NMDS Binary Bray Curtis dissimilarities

Community composition

Fierer et al., 2009 Ecol Letters

Robinson et al., 2022 Sci Rep

Related descriptive concepts:

Hill's numbers / Expected richness, Zeta diversity (new)
Phylogenetic diversity / Unifrac distances
Indicator analysis
Network analysis / trophic analysis
Nestedness analysis

Related predictive methods:

Regression/Hierarchical partitioning/GLMs Simper

raw sequence data + primer sequences -> MetaWorks bioinformatic processing -> results.csv

1. Extract ESV table from results.csv

```
#read in MetaWorks results
COI <- read.csv("results.csv", header=TRUE, stringsAsFactors=FALSE)
# see the top of the COI object (results file)
head(COI)[1:5,1:5]
# Create pivot table using reshape2 library
ESV.table <- reshape2::dcast(COI, SampleName ~ GlobalESV, value.var =
"ESVsize", fun.aggregate = sum)
# see the top of the table
head(ESV.table)[1:5,1:5]
                         Zotu1 Zotu10 Zotu10001 Zotu10005 Zotu10008
                           188
                T0_S1_R1_B
                T0_S1_R2_B
                           360
                T0_S1_R3_B
                           626
```

T0_S2_R1_B

T0_S2_R2_B

202

106

230

471

0

2. Remove under-sequenced samples ex. Remove samples with less than 10,000 reads

visualize read depth distribution
hist(as.numeric(rowSums(ESV.table)))

remove samples with < 10,000 reads ESV.table2 <- ESV.table[!rowSums(ESV.table) < 10000,]

- 3. Remove rare ESVs
 - ex. filter ESV table to remove ESVs that represent less than 0.0001 or 0.01% of total reads
 - Set a cutoff to compensate for the the rate of expected index-hopping/tagswitching (Schnell et al. 2015, 2.5-2.7%; Elbrecht & Leese papers 0.01%)
 - Remove ESVs with < 8 reads (default setting in USEARCH)
 - Remove ESVs with < 3 reads because these rare clusters tend to contain poorquality artefactual sequences (Tedersoo et al., et al., 2010 New Phytologist; Zhan et al., 2014 PLoS ONE)

Stringency

```
# remove ESVs that represent less than 0.0001 or 0.01% of all reads cutoff <- sum(colSums(ESV.table2)) * 0.0001 ESV.table3 <- ESV.table2 ESV.table3[colSums(ESV.table2) < cutoff] <- NULL
```

- 4. (Optional) Remove infrequent ESVs (especially important for network analysis but can be done on large datasets to reduce the dataset size)
 - ex. remove ESVs if they are not present in at least 1/treatments of the samples

- 5. Plot rarefaction curves to assess that sequencing effort was sufficient
 - Do curves reach a plateau?
 - yes may not need to rarefy, just normalize for multivariate analyses by converting read counts to proportions (reads in ESV / total reads in sample) or Hellinger transform
 - no rarefy to lowest number of reads per sample (old school) or 15th percentile (my preference)
 - randomly subsample "x" number of reads per sample (ex, 1,000 reads per sample; old school, don't do this)

6. Filter taxonomic assignments by the appropriate bootstrap support cutoffs to ensure a certain level of accuracy (depends on marker type, amplicon length, taxonomic rank)

```
#read in MetaWorks results
COI <- read.csv("results.csv", header=TRUE, stringsAsFactors=FALSE)

# filter COI taxonomic assignments for 95% correct species, 99% correct genus & up
# See https://github.com/terrimporter/CO1Classifier for cutoffs
COI$Species <- ifelse(COI$sBP >= 0.7, COI$Species, "")
COI$Genus <- ifelse(COI$gBP >= 0.3, COI$Genus, "")
COI$Family <- ifelse(COI$fBP >= 0.2, COI$Family, "")
```

Summary

Exploratory analysis:

- 1. Richness -> box plots
- 2. Beta diversity -> NMDS, fitted env vars
- 3. Community composition -> stacked bar charts or heatmaps summarized to ex. phyla (bacteria), class (fungi), order (arthropods)

Next steps:

Address the specific hypotheses/objectives for your project using whatever descriptive/predictive analyses are most appropriate

Richness

ESV.table3 under-sequenced samples removed, rare ESVs removed t <- read.csv("ESVtable.csv", header=TRUE, row.names=1, stringsAsFactors = FALSE)

ESV Richness ----

r <- data.frame(sample=rownames(t), richness=specnumber(t))

sample	richness	time	site	replicate	preservative
T0_S1_R2_B T0_S1_R2_B	93	TØ	S1	R2	Bas
T0_S1_R3_B T0_S1_R3_B	122	Τ0	S1	R3	Bas
T0_S2_R1_B T0_S2_R1_B	147	Τ0	S2	R1	Bas
T0_S2_R3_B T0_S2_R3_B	172	Τ0	S2	R3	Bas
T0_S3_R1_B T0_S3_R1_B	172	Τ0	S3	R1	Bas
T0_S3_R2_B T0_S3_R2_B	129	TØ	S 3	R2	Bas

Beta diversity

```
# binary Bray Curtis = Sorensen dissimilarity (presence-absence)
m <- vegdist(t, method="bray", binary=TRUE)
```

Do 3 dimensional NMDS nmds3 <- metaMDS(m, k=3, trymax=100)

Site explains 50% (p = 0.001) and preservative explains 8.5% (p = 0.04) of the variation in beta diversity due to both variation within and among groups.

Time does not explain a significant amount of variation in beta diversity.

Stress = 0.07, Linear R2 = 0.976

Community composition

read in ESV table and fix up formatting # read in taxonomy and fix up formatting # merge ESV and taxonomy

summarize community composition at the phylum rank gg <- data.frame(tab2 %>% group_by(sample,Phylum) %>% dplyr::summarize(sum(reads)))

For users new to RStudio & biodiversity analysis

STREAM data workshop presentation by Wendy Monk https://youtu.be/aQGKXHrxaiw?t=4908

Sample scripts

Available from https://github.com/terrimporter/IntroBiodiversityAnalysis2022

Big biodiversity papers

Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. *Ecology Letters*, *12*(11), 1238–1249. doi: <u>10.1111/j.1461-0248.2009.01360.x</u>

Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. *Nature*, *405*(6783), 212–219. doi: 10.1038/35012221

Tedersoo, L., Bahram, M., Polme, S., **Koljalg**, U., Yorou, N. S., Wijesundera, R., ... **Abarenkov**, K. (2014). Global diversity and geography of soil fungi. *Science*, *346*(6213), 1256688–1256688. doi: 10.1126/science.1256688

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., **Knight**, R., **Gilbert**, J.A., Zhao, H. (2017). A communal catalogue reveals Earth's multiscale microbial diversity. *Nature*. doi: 10.1038/nature24621