SVs Shape Population Structure in Wild Sunflowers

Michael Alonge

Massive haplotypes underlie ecotypic differentiation in sunflowers

Marco Todesco¹*, Gregory L. Owens^{1,2}*, Natalia Bercovich¹*, Jean-Sébastien Légaré¹,

Shaghayegh Soudi³, Dylan O. Burge¹, Kaichi Huang¹, Katherine L. Ostevik⁴, Emily B. M.

Drummond¹, Ivana Imerovski¹, Kathryn Lande¹, Mariana A. Pascual¹, Winnie Cheung¹, S. Evan

Staton¹, Stéphane Muños⁵, Rasmus Nielsen², Lisa A. Donovan⁶, John M. Burke⁶, Sam Yeaman³,

Loren H. Rieseberg¹

Vancouver, British Columbia, Canada

USA

¹ Department of Botany and Biodiversity Research Centre, University of British Columbia,

 $^{^2 \,} Department \, of \, Integrative \, Biology, \, University \, of \, California, \, Berkeley, \, Berkeley, \, California, \, Californ$

³ Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada

⁴ Department of Biology, Duke University, Durham, North Carolina, USA

⁵ LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France

⁶ Department of Plant Biology, University of Georgia, Athens, Georgia, USA

^{*} These authors made similar contributions to this work

SVs Suppress Recombination

 More obvious with large SVs such as large inversions.

Ecotypic Adaptive Stability

- Different wild species/ecotypes are adapted to specific environments.
- These adaptations are often maintained, even though there is often admixture that occurs (like introgression).
- How????

3 Sunflower Species Were Considered

- 1. Helianthus annuus
 - a. Wild Progenitor of Modern Sunflower
- 2. Helianthus petiolaris
- 3. Helianthus argophyllus

Setup

- Collected 10 plants from each of 151 populations amongst the three species.
- Crossed a random pair within the same population
- Phenotyped plants and ultimately sequenced 1401 of them.
- Enriched for genic space still pretty low coverage
- Called SNPs w.r.t the sunflower reference
- GWAS on a bunch of different traits

^{*}Late flowering in inland populations has been naturally selected for - avoid flowering in hotter time of year

Takeaways

- 1. Large GWAS signal on chr6 associated with later flowering
- 2. A 10 Mbp haplotype explains most of the flowering time variation
- 3. Late flowering genotypes have a deletion of a known regulator.
- 4. Take an Arabidopsis plant with a AtFT mutation that flowers late a. Ectopically express this regulator and it flowers early again.
- 5. Phylogeny shows when this haplotype arose.

Seed Size

Large Haploblocks Associated with More Traits

