Discrete Optimization: Homework #4, Ex. #6

Denis Steffen, Yann Eberhard & Gaëtan Bossy March 22, 2018

Let $X = \{a_1, ..., a_t\}$ be a finite set of \mathbb{R}^n , we will prove that $\operatorname{cone}(X)$ is closed and convex.

By Caratheodory's theorem, $\forall x \in \text{cone}(X)$ there exists $\widetilde{X} = \{a'_1, ..., a'_k\} \subseteq X$ such that $x \in \widetilde{X}$ and the vectors $\{a'_i\}$ in \widetilde{X} are linearly independent. Let A be the matrix with a'^T_i (i=1,...,k) on the k-first rows and for the last n-k rows of A can be obtained by the Gram-Schmidt process from the first k rows. A is invertible since it is a $n \times n$ matrix and all the rows are linearly independent.

By exercise #2, cone(\widetilde{X}) = { $x \in \mathbb{R}^n : a_i'^{-1}x \ge 0, i = 1, ..., k; a_j'^{-1}x = 0, j = k+1, ..., n$ }. Since cone(\widetilde{X}) is the finite intersection of the pre-image by a linear application of a closed set (either $[0, \infty[$ or $\{0\})$), it is also closed.

There is a finite number of \widetilde{X} since X is finite. So, we can enumerate all such \widetilde{X} . We will prove that $\operatorname{cone}(X) = \bigcup_{i=1}^m \operatorname{cone}(\widetilde{X_i})$.

By construction, $\forall x \in \text{cone}(X) \ \exists j \in \{1, ..., m\} \text{ such that } x \in \text{cone}(\widetilde{X}_j).$ On the other way, if $x \in \bigcup_{i=1}^m \text{cone}(\widetilde{X}_i)$, there exists $j \in \{1, ..., m\}$ such that $x \in \text{cone}(\widetilde{X}_i)$

 $\operatorname{cone}(\widetilde{X_j})$. By definition of a cone-hull and since every vectors of \widetilde{X} are also in $\operatorname{cone}(X)$ $(\widetilde{X_j} \subseteq X)$, this implies $x \in \operatorname{cone}(X)$.

That's why, cone(X) is closed because it is equal to a finite union of closed sets.

 $\forall x, y \in \text{cone}(X), \ \forall \lambda \in [0, 1] \text{ we need to show } \lambda x + (1 - \lambda)y \in \text{cone}(X).$ $x = \sum_{i=1}^{t} \alpha_i a_i \text{ and } y = \sum_{i=1}^{t} \beta_i a_i \text{ since } x, y \in \text{cone}(X).$

 $\lambda x + (1 - \lambda)y = \sum_{i=1}^{t} (\lambda \alpha_i + (1 - \lambda)\beta_i)a_i$, we can replace $\lambda \alpha_i + (1 - \lambda)\beta_i$ by

 γ_i . Since $\lambda \in [0,1]$ and $\alpha_i, \beta_i \in \mathbb{R}_{\geq 0}, \gamma_i \geq 0$. This implies that $\operatorname{cone}(X)$ is convex:

$$\lambda x + (1 - \lambda)y = \sum_{i=1}^{t} \gamma_i a_i \in cone(X)$$