

0. Course Details

COMP3314
Machine Learning

Dr. Hengshuang Zhao

Personal Information

- Dr. Hengshuang Zhao
 - Assistant Professor at HKU CS department
 - Previously at CUHK, Oxford and MIT
 - O Homepage: https://www.cs.hku.hk/~hszhao
 - o Research: Computer vision, machine learning, artificial intelligence
 - Interested Topics:
 - Visual scene understanding, perception, reconstruction
 - Image/video/3d recognition like classification, segmentation, and detection, neural radiance fields (NeRF), 3d Gaussian splatting
 - Representation learning, multimodal learning, unified vision system
 - Un-/weakly-/semi-supervised learning, transfer learning, open-world learning, advanced architecture design
 - Artificial intelligence generated content (AIGC)
 - Visual content creation, generation, and manipulation (image/video/3d)
 - Autonomous driving, embodied ai, robot learning, LLM applications etc.

Course Staff

Lecture

COMP 3314

- o Friday 02:30 pm 05:20 pm, at CYPP4
- Instructor
- o Dr. Hengshuang Zhao (email: hszhao@cs.hku.hk)
 - o Research: Computer vision, machine learning, artificial intelligence
 - Office: CB424 or Zoom (https://hku.zoom.us/my/hszhao)
 - Consultation hours: Tuesday, 1:00 pm 2:00 pm
- TA
 - Mr. Yixing Lao (email: <u>laoyx@connect.hku.hk</u>)
 - o Office: HW-335A or Zoom (https://hku.zoom.us/my/laoyixing)
 - o Consultation hours: Monday, 2:00 pm 4:00 pm
 - o Mr. Lihe Yang (email: <u>liheyang@connect.hku.hk</u>)
 - Office: HW-335A or Zoom (https://hku.zoom.us/my/liheyang)
 - Consultation hours: Wednesday, 10:00 am 12:00 pm
 - Please make an appointment in advance to avoid waiting

course?

In this course (comp3314) you will not learn ...

- Reinforcement Learning (RL)

 Am I in the wrong
 - Consider taking: comp3270 AI
 Deep Learning (RNN, GAN, Deep RL)

COMP 3314

- Consider taking: comp3340 Applied deep learning, and/or
- Consider taking: comp3317 Computer vision
 To work on bigger applied projects
- Consider taking: comp3362 Hands-on AI: experimentation and applications, and/or
- Consider taking: comp3414 Experiential learning on AI and robotics
- R language with a focus on statistical modeling
 Consider taking: comp3354 Statistical learning

*subject to change

Tentative Schedule*

Date	Topic*	Date	Topic*
6 Sep	Canceled (Typhoon)	25 Oct	Evaluation & Tuning
13 Sep	Course Details, Introduction, Perceptron	1 Nov	Ensemble Learning
20 Sep	Adaline, Logistic Regression	8 Nov	Regression
27 Sep	SVM, Decision Tree Learning, KNN	15 Nov	Clustering
4 Oct	Data Preprocessing, Dimensionality Reduction	22 Nov	Multilayer ANN
11 Oct	Holiday (no class)	29 Nov	Convolutional Neural Network
18 Oct	Reading Week (no class)		

Assessment

- Assignments (50 %)
 - 4 equally weighted assignments
 - Written and/or programming
 - Release schedule (subject to change)
 - A1: scheduled on 20 Sep
 - A2: scheduled on 4 Oct
 - A3: scheduled on 8 Nov
 - A4: scheduled on 29 Nov
 - Late submission policy
 - 20% deduction within 24 hours, 50% deduction within 48 hours
 - no accept beyond 48 hours, unless extreme emergency
- Final examination (50 %)
 - Written exam, closed-book
 - Candidates are permitted to bring to the examination ONE sheet(s) of A4-sized paper with printed/written notes on both sides

Plagiarism

- What is Plagiarism?
 - http://www.hku.hk/plagiarism
- If a student commits plagiarism, with evidence after investigation, no matter whether the student concerned admits or not, a penalty will be imposed
- First Attempt: the student shall be warned in writing and receive zero mark for the whole assignment or the whole test; if the student does not agree, s/he can appeal to the Programme Director within a week
- Subsequent Attempt: May impose any of the following penalties: a published reprimand, suspension of study for a period of time, fine, or expulsion from the University
- Both the student who copies and the student who offers his/her work for copying shall be penalized

Prevent Plagiarism

- Never copy/paste anything without citing
 - If you copy existing work you must clearly state and cite appropriately
 - Solutions to assignments may be found on the internet
 - To prevent plagiarism, don't search for them
- Never look at existing solutions
 - Work on the problem yourself
- Never ask your friend to see his/her solution
 - Note that the source will also be punished with 0 marks

Course Materials

- Available (before lecture) on Moodle
 - Slides in PDF
 - Install on mobile device to view materials
 - Save paper, don't print
- Use the provided materials responsibly
 - For your own research and private study only
 - Don't distributed to others without the appropriate authorization
 - If you do so you could face consequences based on copyright or even academic misconduct issues
 - I do not hold copyright for most materials

Reference Textbook

• Python Machine Learning (PML), Third Edition, Sebastian Raschka & Vahid Mirjalili [amazon, publisher]

Lecture Slide Chapter	Corresponding PML Chapter(s)
1. Introduction	1
2. Perceptron & Adaline	2
3. Logistic Regression, SVM, Decision Trees, KNN	3
4. Data Preprocessing	4
5. Dimensionality Reduction	5
6. Evaluation & Tuning	6
7. Ensemble Learning	7
8. Regression	10
9. Clustering	11
10. Multilayer Artificial Neural Network	12
11. CNN	15

References and Acknowledgements

- Textbooks
 - Introduction to Machine Learning (IML), Third Edition, Ethem
 Alpaydin
 - Machine Learning: An Algorithmic Perspective, Second Edition, Stephen Marsland
 - An Introduction to Statistical Learning, Gareth James, Daniela
 Witten, Trevor Hastie and Robert Tibshirani
- Other Courses
 - Machine Learning Crash Course, Google
 - Machine Learning, Coursera
- Additional references (if any) will be listed on the lecture slides

Tools

- Provided examples and exercises will use the following tools
 - o Python 3
 - NumPy
 - SciPy library
 - o scikit-learn
 - o Matplotlib
 - Pandas
 - <u>Tensorflow</u> / <u>PyTorch</u>
 - Jupyter Notebook
- All of the above can be installed conveniently with **Anaconda**
- You can also directly start coding here: <u>colab.research.google.com</u>

COMP 3314

- Don't send us an email unless personal or individual information is involved Example
 - Not OK
 - What is the answer to the assignment on slide 17 of chapter 2
 - Please use the forum for this kind of questions

• I would like to make an appointment for consultation outside

- OK
- your office hours If you contact us by email, please use your university email and include your
- university number in the email
- If you have general questions about course materials, please use the forum
 - We will answer within 3 working days
 - Please help to answer questions by others

Q & A