3088 html

NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004 BY BONNIE MCBRIDE AND SANFORD GORDON

REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

```
### CEA analysis performed on Wed 20-Nov-2024 23:09:11
# Problem Type: "Rocket" (Infinite Area Combustor)
prob case=______3088 ro equilibrium
# Pressure (1 value):
p,psia= 850
# Chamber/Exit Pressure Ratio (1 value):
pi/p= 2092.699
# Supersonic Area Ratio (1 value):
supar= 102.788
# You selected the following fuels and oxidizers:
reac
                      wt%=100.0000
fuel H2(L)
oxid 02(L)
                      wt%=100.0000
# You selected these options for output:
# long version of output
# Proportions of any products will be expressed as Mass Fractions.
output massf
# Heat will be expressed as siunits
output siunits
# Input prepared by this script:/var/www/sites/cearun.grc.nasa.gov/cgi-bin/CEARU
N/prepareInputFile.cgi
### IMPORTANT: The following line is the end of your CEA input file!
end
OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F
RKT=T FROZ=F EQL=T IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F
TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00
Pc,BAR =
           58.605209
Pc/P = 2092.6990
SUBSONIC AREA RATIOS =
SUPERSONIC AREA RATIOS =
                          102.7880
NFZ= 1 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00
                                           TEMP, K DENSITY
   REACTANT
                    WT.FRAC
                              (ENERGY/R),K
       EXPLODED FORMULA
                   1.000000 -0.108389E+04
                                              20.27 0.0000
F: H2(L)
        H 2.00000
                                             90.17 0.0000
0: 02(L)
                   1.000000 -0.156101E+04
         0 2.00000
```

https://cearun.grc.nasa.gov/OFILES/ 3088.ht

SPECIES BEING CONSIDERED IN THIS SYSTEM

11/20/24, 8:09 PM 3088.html

(CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES)

LAST thermo.inp UPDATE: 9/09/04

g 6/97	*H	g 4/02	H02	tpis78	*H2
g 8/89	H20	g 6/99	H202	g 5/97	*0
g 4/02	*0H	tpis89	*02	g 8/01	03
g11/99	H2O(cr)	g 8/01	H2O(L)	g 8/01	H2O(L)

0/F = 1.000000

	EFFECTIVE FUEL	EFFECTIVE OXIDANT	MIXTURE
ENTHALPY	h(2)/R	h(1)/R	h0/R
(KG-MOL)(K)/KG	-0.53767500E+03	-0.48783267E+02	-0.29322914E+03

KG-FORM.WT./KG bi(2) bi(1) b0i 0.99212255E+00 0.0000000E+00 0.49606127E+00 0.0000000E+00 0.62502344E-01 0.31251172E-01 *H *0

POINT ITN T Н 0

Pinf/Pt = 1.868006Pinf/Pt = 1.874529

ADD H20(cr)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

Pin = 850.0 PSIA CASE = _____

Pinf/P

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
FUEL	H2(L)	1.000000	-9012.000	20.270
OXIDANT	02(L)	1.0000000	-12979.000	90.170

O/F= 1.00000 %FUEL= 50.000000 R,EQ.RATIO= 7.936683 PHI,EQ.RATIO= 7.936683

EXIT

1.0000 1.8745 2092.70 1730.50

EXIT

P, BAR	58.605	31.264	0.02800	0.03387
T, K	977.49	826.58	245.01	249.41
RHO, KG/CU M	2.9072 0	1.8341 0	6.2371-3	7.3737-3
H, KJ/KG	-2438.06	-3604.54	-9354.83	-9268.52
U, KJ/KG	-4453.89	-5309.16	-9803.83	-9727.80
G, KJ/KG	-37152.1	-32959.3	-18055.9	-18125.9
S, KJ/(KG)(K)	35.5134	35.5134	35.5134	35.5134
M, (1/n)			4.537	
MW, MOL WT	4.032	4.032	4.032	4.032
(dLV/dLP)t	-1.00000	-1.00000	-1.01675	-1.02167
(dLV/dLT)p	1.0000	1.0000	1.4204	1.5344
Cp, KJ/(KG)(K)	7.8107	7.6564	26.5399	31.4909
GAMMAs	1.3587	1.3686	1.1397	1.1312
SON VEL,M/SEC	1655.0	1527.4	715.3	720.8
MACH NUMBER	9 999	1 000	5 199	5 128

CHAMBER THROAT

PERFORMANCE PARAMETERS

Ae/At	1.0000	120.76	102.79
CSTAR, M/SEC	2092.0	2092.0	2092.0
CF	0.7301	1.7779	1.7667
Ivac, M/SEC	2643.4	3840.1	3820.3
Isp, M/SEC	1527.4	3719.3	3696.1

MASS FRACTIONS

11/20/24, 8:09 PM ______3088.html

*H2 0.43700 0.43700 0.43700 0.43700 H20 0.56300 0.56300 0.06541 0.08464 H20(cr) 0.00000 0.00000 0.49759 0.47836

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MASS FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

*H H02 H202 *0 *0H

*02 03 H20(L)

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K