Machine Learning Homework Sheet 04

Linear Classification

1 Linear classification

Problem 1: We want to create a generative binary classification model for classifying *nonnegative* one-dimensional data. This means, that the labels are binary $(y \in \{0, 1\})$ and the samples are $x \in [0, \infty)$.

We place a uniform prior on y

$$p(y = 0) = p(y = 1) = \frac{1}{2}.$$

As our samples x are nonnegative, we use exponential distributions (and not Gaussians) as class conditionals:

$$p(x \mid y = 0) = \text{Expo}(x \mid \lambda_0)$$
 and $p(x \mid y = 1) = \text{Expo}(x \mid \lambda_1),$

where $\lambda_0 \neq \lambda_1$. Assume, that the parameters λ_0 and λ_1 are known and fixed.

- a) What is the name of the posterior distribution $p(y \mid x)$? You only need to provide the name of the distribution (e.g., "normal", "gamma", etc.), not estimate its parameters.
- b) What values of x are classified as class 1? (As usual, we assume that the classification decision is $y_{predicted} = \arg\max_k p(y = k \mid x)$)

Problem 2: Assume you have a linearly separable data set. What properties does the maximum likelihood solution for the decision boundary w of a logistic regression model have? Assume that w includes the bias term.

What is the problem here and how do we prevent it?

Problem 3: Show that the softmax function is equivalent to a sigmoid in the 2-class case.

Problem 4: Which basis function $\phi(x_1, x_2)$ makes the data in the example below linearly separable (crosses in one class, circles in the other)?

