Campo magnético

Método e recomendacións

PROBLEMAS

Particulas

- Un protón cunha enerxía cinética de 4,0·10⁻¹⁵ J penetra perpendicularmente nun campo magnético uniforme de 40 mT. Calcula:
 - a) O módulo da forza á que está sometido o protón dentro do campo.
 - b) O tipo de movemento realizado polo protón, a traxectoria que describe e o raio desta.

Datos: $q_p = 1.6 \cdot 10^{-19} \text{ C}$; $m_p = 1.67 \cdot 10^{-27} \text{ kg}$. (A.B.A.U. extr. 22) **Rta.:** a) $F_B = 1.4 \cdot 10^{-14} \text{ N}$; b) R = 0.57 m.

Datos	Cifras significativas: 2
Enerxía cinética do protón	$E_{\rm c} = 4.0 \cdot 10^{-15} {\rm J}$
Valor da intensidade do campo magnético	B = 40 mT = 0.040 T
Ángulo entre a velocidade do protón e o campo	$\varphi = 90^{\circ}$
Carga do protón	$q = 1,6 \cdot 10^{-19} \text{ C}$
Masa do protón	$m = 1,67 \cdot 10^{-27} \text{ kg}$
Incógnitas	
Módulo da forza á que está sometido o protón dentro do campo	F_{B}
Radio da traxectoria	R
Ecuacións	

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$ rior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} $a_{N} = \frac{v^{2}}{R}$ $\Sigma \overline{F} = m \cdot \overline{a}$ Aceleración normal (nun movemento circular de raio R) 2.ª lei de Newton da Dinámica

Velocidade nun movemento circular uniforme de raio R

Solución:

a) A velocidade do protón calcúlase a partir da enerxía cinética:

$$E_{c} = \frac{1}{2} m \cdot v^{2} \Longrightarrow 4.0 \cdot 10^{-15} [J] = (1.67 \cdot 10^{-27} [kg] / 2) \cdot v^{2}$$

$$v = \sqrt{\frac{2 \cdot 4.0 \cdot 10^{-15} [J]}{1.67 \cdot 10^{-27} [kg]}} = 2.2 \cdot 10^{6} \text{ m/s}$$

A forza magnética calcúlase pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

En módulos:

$$F_B = |\overline{F}_B| = q \cdot |\overline{v}| \cdot |\overline{B}| \cdot \text{sen } 90^{\circ} = 1,6 \cdot 10^{-19} \text{ [C]} \cdot 2,2 \cdot 10^{6} \text{ [m/s]} \cdot 0,040 \text{ [T]} = 1,4 \cdot 10^{-14} \text{ N}$$

b) Como só actúa a forza magnética, que é perpendicular á velocidade, o protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N .

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio, R:

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{1,67 \cdot 10^{-27} \,[\text{kg}] \cdot 2,2 \cdot 10^6 \,[\text{m/s}]}{1,6 \cdot 10^{-19} \,[\text{C}] \cdot 0,040 \,[\text{T}] \cdot \text{sen } 90^\circ} = 0,57 \,\text{m}$$

Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta e sairía a unha distancia de 2 R = 1,0 m do punto de entrada, na mesma dirección coa que entrou, pero en sentido oposto.

- 1. Unha partícula de masa 8 ng e carga eléctrica $-2 \mu C$ entra nunha rexión do espazo na que hai un campo magnético $\vec{B} = 3 \vec{j}$ T, cunha velocidade, $\vec{v} = 6 \vec{i}$ km·s⁻¹. Calcula:
 - a) A velocidade angular con que se move.
 - b) A intensidade de campo eléctrico (vector) que se debe aplicar para que a partícula siga unha traxectoria rectilínea.

(A.B.A.U. ord. 22)

Rta.: a) $\omega = 7.5 \cdot 10^5 \text{ rad/s}$; b) $\overline{E} = -1.8 \cdot 10^4 \overline{k} \text{ N/C}$.

Datos	Cifras significativas: 3
Masa da partícula	$m = 8,00 \text{ ng} = 8,00 \cdot 10^{-12} \text{ kg}$
Carga da partícula	$q = -2,00 \ \mu \ \text{C} = -2,00 \cdot 10^{-6} \ \text{C}$
Intensidade do campo magnético	$\overline{\boldsymbol{B}} = 3,00 \overline{\mathbf{j}} \mathrm{T}$
Velocidade da partícula	$\overline{\mathbf{v}} = 6.00 \cdot 10^3 \overline{\mathbf{i}} \text{m/s}$
Radio da traxectoria circular	$R = 1,00 \cdot 10^{-7} \text{ m}$
Incógnitas	
Velocidade angular	ω
Vector campo eléctrico para que a partícula siga unha traxectoria rectilínea	$\overline{m{E}}$
Outros símbolos	
Radio da traxectoria circular	R
Valor da forza magnética sobre a partícula	$oldsymbol{ar{F}}_{\!B} \ oldsymbol{ar{F}}_{\!E}$
Vector forza eléctrica sobre a partícula	$\overline{m{F}}_{\!E}$
Fcuacións	

Ecuacións

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$ rior dun campo magnético, \overline{B} , cunha velocidade, \overline{v}

Aceleración normal (nun movemento circular de raio *R*)

 $a_{N} = \frac{v^{2}}{R}$ $\Sigma \overline{F} = m \cdot \overline{a}$

2.ª lei de Newton da Dinámica

Velocidade nun movemento circular uniforme de raio R $v = \frac{2\pi \cdot R}{T}$

Forza, \overline{F}_E , exercida por un campo electrostático, \overline{E} , sobre unha carga, q Relación entre a velocidade lineal v e a velocidade angular ω nun movemento circular de raio R.

 $\overline{F}_E = q \cdot \overline{E}$ $v = \omega \cdot R$

Solución:

a) Como só actúa a forza magnética, que é perpendicular á velocidade, a partícula describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal $a_{\rm N}$.

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se a partícula entra perpendicularmente ao campo magnético, sen ϕ = 1. Despexando o raio, R:

$$R = \frac{m \cdot v}{|q| \cdot B} = \frac{8,00 \cdot 10^{-12} [\text{kg}] \cdot 6,00 \cdot 10^{3} [\text{m/s}]}{2,00 \cdot 10^{-6} [\text{C}] \cdot 3,00 [\text{T}]} = 8,00 \cdot 10^{-3} \text{ m} = 8,00 \text{ mm}$$

Pódese calcular a velocidade angular a partir da velocidade lineal:

$$v = \omega \cdot R \Rightarrow \omega = \frac{v}{R} = \frac{6,00 \cdot 10^3 \text{ [m/s]}}{8,00 \cdot 10^{-3} \text{ [m]}} = 7,50 \cdot 10^5 \text{ rad/s}$$

b) Se a forza eléctrica anula a magnética:

$$\overline{F}_B + \overline{F}_E = q(\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$

$$\overline{E} = -(\overline{v} \times \overline{B}) = -(6.00 \cdot 10^3 \overline{i} [\text{m/s}] \times 3.00 \overline{j} [\text{T}]) = -1.80 \cdot 10^4 \overline{k} \text{ N/C}$$

Cifus simifostinas 2

- 1. Un electrón acelérase desde o repouso mediante unha diferenza de potencial de 1,0·10³ V, penetrando a continuación, perpendicularmente, nun campo magnético uniforme de 0,20 T. Calcula:
 - a) A velocidade do electrón ao entrar no campo magnético.
 - b) O raio da traxectoria do electrón.
 - c) O módulo, a dirección e o sentido do campo eléctrico uniforme necesario para que o electrón non experimente desviación ao seu paso pola rexión na que existen o campo eléctrico e o magnético.

Datos:
$$q_e = -1,6 \cdot 10^{-19} \text{ C}$$
; $m_e = 9,1 \cdot 10^{-31} \text{ kg}$. (A.B.A.U. extr. 19)
Rta.: a) $v = 1,9 \cdot 10^7 \text{ m/s}$; b) $r = 5,4 \cdot 10^{-4} \text{ m}$; c) $|E| = 3,8 \cdot 10^6 \text{ N/C } \pm \overline{\boldsymbol{v}} \pm \overline{\boldsymbol{B}}$

Datos	Cifras significativas: 2
Diferenza de potencial de aceleración	$V = 1,0.10^3 \text{ V}$
Valor da intensidade do campo magnético	B = 0.20 T
Carga do electrón	$q = -1,60 \cdot 10^{-19} \text{ C}$
Ángulo entre a velocidade do protón e o campo magnético	$\varphi = 90^{\circ}$
Masa do electrón	$m = 9.1 \cdot 10^{-31} \text{ kg}$
Incógnitas	-
Velocidade do electrón	ν
Radio da traxectoria circular	$\frac{R}{E}$
Vector campo eléctrico que anule o efecto do campo magnético	$\overline{m{E}}$
Outros símbolos	
Valor da forza magnética sobre o electrón	F_B
Período do movemento circular	T
Enerxía (cinética) do protón	$E_{\mathbf{c}}$
Fougeións	

Ecuacións

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$ rior dun campo magnético, \overline{B} , cunha velocidade, \overline{v}

Aceleración normal (nun movemento circular de raio $\it R$)	$a_{\rm N} = \frac{v^2}{R}$
2.ª lei de Newton da Dinámica	$\Sigma \overline{F} = m \cdot \overline{a}$
Velocidade nun movemento circular uniforme de raio ${\cal R}$	$v = \frac{2\pi \cdot R}{T}$
Traballo do campo eléctrico	$W(eléctrico) = q \cdot \Delta V$
Traballo da forza resultante	$W = \Delta E_{\rm c}$
Enerxía cinética	$egin{aligned} ar{E}_{ m c} &= rac{1}{2} \; m{m} \cdot m{ u}^2 \ m{ar{F}}_{\!E} &= \; m{q} \cdot m{ar{E}} \end{aligned}$
Forza, \overline{F}_E , exercida por un campo electrostático, \overline{E} , sobre unha carga, q	$\overline{m{F}}_{\!E}=m{q}\cdot\overline{m{E}}$

Solución:

a) Para calcular a velocidade temos que ter en conta que ao acelerar o electrón cunha diferenza de potencial (supomos que desde o repouso), este adquire unha enerxía cinética:

$$W(\text{eléctrico}) = |q| \cdot \Delta V = \Delta E_c = \frac{1}{2} m_p v^2 - \frac{1}{2} m_p v_0^2$$

Se parte do repouso, $v_0 = 0$. A velocidade final é:

$$v = \sqrt{\frac{2|q| \cdot \Delta V}{m_{\rm p}}} = \sqrt{\frac{2 \cdot 1.6 \cdot 10^{-19} [{\rm C}] \cdot 1.0 \cdot 10^{3} [{\rm V}]}{9.1 \cdot 10^{-31} [{\rm kg}]}} = 1.9 \cdot 10^{7} {\rm m/s}$$

Análise: A velocidade é moi alta, pero non tanto que haxa que facer correccións relativistas.

b) Como só actúa a forza magnética, que é perpendicular á velocidade, o electrón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N .

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio, *R*:

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{9.1 \cdot 10^{-31} [\text{kg}] \cdot 1.9 \cdot 10^7 [\text{m/s}]}{1.6 \cdot 10^{-19} [\text{C}] \cdot 0.20 [\text{T}] \cdot \text{sen } 90^{\circ}} = 5.3 \cdot 10^{-4} \text{ m} = 0.53 \text{ mm}$$

Análise: O raio ten un valor demasiado pequeno, menos dun milímetro.

c) Se actúa unha forza eléctrica que anula a magnética,

$$\overline{F}_B + \overline{F}_E = q (\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$

O campo eléctrico debe valer, en módulo:

$$|\overline{E}| = |-(\overline{v} \times \overline{B})| = 1.9 \cdot 10^7 \text{ [m/s]} \cdot 0.20 \text{ [T]} \cdot \text{sen } 90^\circ = 3.8 \cdot 10^6 \text{ N/C}$$

O sentido ten que ser oposto ao da forza magnética. Poñamos o caso de que a velocidade é paralela ao eixe Y en sentido negativo e o campo magnético é paralelo ao eixe Z en sentido negativo, a forza magnética estará na dirección do eixe X en sentido negativo:

$$\overline{\mathbf{F}}_{B} = q \left(\overline{\mathbf{v}} \times \overline{\mathbf{B}} \right) = -q v B \left(-\overline{\mathbf{j}} \times -\overline{\mathbf{k}} \right) = -q v B \overline{\mathbf{i}}$$

A forza eléctrica deberá estar na mesma dirección pero en sentido contrario.

$$\overline{F}_{E} = -\overline{F}_{B} = q v B \overline{i}$$

Pero como a carga do electrón é negativa, o campo eléctrico deberá ser de sentido oposto ao da forza

$$\overline{E} = \overline{F}_E / (-q) = -v B \overline{i}$$

- 1. Un protón móvese nun círculo de raio r = 20 cm, perpendicularmente a un campo magnético B = 0,4 T. Determina:
 - a) A velocidade do protón.
 - b) O período do movemento.
 - c) O campo eléctrico necesario para anular o efecto do campo magnético.

Datos:
$$q_p = 1.6 \cdot 10^{-19} \text{ C}$$
; $m_p = 1.67 \cdot 10^{-27} \text{ kg}$.

(A.B.A.U. ord. 19)

Rta.: a) $v = 7,66.10^6 \text{ m/s}$; b) $T = 1,64.10^{-7} \text{ s}$; c) $E = 3,07.10^6 \text{ N/C}$.

Datos

Raio da traxectoria circular Intensidade do campo magnético Carga do protón Masa do protón Incógnitas

Cifras significativas: 3

R = 20.0 cm = 0.200 m B = 0.400 T $q_p = 1.60 \cdot 10^{-19} \text{ C}$ $m_p = 1.67 \cdot 10^{-27} \text{ kg}$

Datos	Cifras significativas: 3
Velocidade do protón	$\frac{\overline{v}}{v}$
Período do movemento	T
Vector campo eléctrico que anule o efecto do campo magnético	$\overline{m{E}}$
Outros símbolos	
Vector forza magnética sobre o electrón	$egin{array}{c} ar{m{F}}_{\!\scriptscriptstyle E} \ ar{m{F}}_{\!\scriptscriptstyle E} \end{array}$
Vector forza eléctrica sobre o electrón	$\overline{m{F}}_{\!E}$
Ecuacións	
Lei de Lorentz: forza magnética sobre unha carga, q , que se despraza polo intrior dun campo magnético, \overline{B} , cunha velocidade, \overline{v}	$e^{-}\overline{F}_{B} = q(\overline{v} \times \overline{B})$
Aceleración normal (nun movemento circular de raio R)	$a_{\mathrm{N}} = \frac{v^2}{R}$
2.ª lei de Newton da Dinámica	$\Sigma \overline{F} = m \cdot \overline{a}$
Velocidade nun movemento circular uniforme de raio ${\it R}$	$v = \frac{2\pi \cdot R}{T}$
Forza, \overline{F}_{E} , exercida por un campo electrostático, \overline{E} , sobre unha carga, q	$\overline{F}_{E} = q \cdot \overline{E}$

Solución:

a) Como só actúa a forza magnética, que é perpendicular á velocidade, o protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N.

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando a velocidade, v:

$$v = \frac{|q| \cdot B \cdot R \cdot \sec \varphi}{m} = \frac{|1,60 \cdot 10^{-19} [C]| \cdot 0,400 [T] \cdot 0,200 [m] \cdot \sec 90^{\circ}}{1,67 \cdot 10^{-27} [kg]} = 7,66 \cdot 10^{6} m/s$$

b) O período do movemento calcúlase a partir da ecuación da velocidade no movemento circular uniforme:

$$v = \frac{2\pi \cdot R}{T} \Rightarrow T = \frac{2\pi \cdot R}{v} = \frac{2 \cdot 3,14 \cdot 0,200 \text{ [m]}}{7,66 \cdot 10^6 \text{ [m/s]}} = 1,64 \cdot 10^{-7} \text{ s}$$

c) Se actúa unha forza eléctrica que anula a magnética,

$$\overline{F}_B + \overline{F}_E = q (\overline{v} \times \overline{B}) + q \cdot \overline{E} = \overline{0}$$

O campo eléctrico debe valer, en módulo:

$$|\overline{\pmb{E}}| = |-(\overline{\pmb{\nu}} \times \overline{\pmb{B}})| = 7,66 \cdot 10^6 \text{ [m/s]} \cdot 0,400 \text{ [T]} \cdot \text{sen } 90^\circ = 3,07 \cdot 10^6 \text{ N/C}$$

Correntes

- Dous condutores rectilíneos, paralelos e infinitos, están situados no plano yz, na dirección do eixo z, separados unha distancia de 80 cm. Se por cada un deles circula unha corrente de 12 A en sentidos contrarios, calcula:
 - a) A forza por unidade de lonxitude que se exercen mutuamente, indicando a dirección e o sentido
 - b) O vector campo magnético no punto medio da distancia que separa os condutores.

DATO:
$$\mu_0 = 4\pi \ 10^{-7} \text{ T m A}^{-1}$$
. (A.B.A.U. ord. 23)
Rta.: a) $F/l = 3,6\cdot 10^{-5} \text{ N/m}$; b) $\overline{B} = -1,20\cdot 10^{-5} \text{ }\overline{\textbf{j}} \text{ T}$

Datos

Intensidade de corrente polo condutor 1 Intensidade de corrente polo condutor 2

Distancia entre os condutores

Permeabilidade magnética do baleiro

Incógnitas

Forza por unidade de lonxitude que se exercen mutuamente Campo magnético no punto medio entre os dous condutores

Ecuacións

Lei de Biot-Savart: campo magnético, $\overline{\textbf{\textit{B}}}$, creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, I

Principio de superposición:

Lei de Laplace: forza magnética que exerce un campo magnético, $\overline{\textbf{\textit{B}}}$, sobre un tramo, l, de condutor recto polo que circula unha intensidade de corrente, I

Cifras significativas: 3

 $I_1 = 12,0 \text{ A}$ $I_2 = 12,0 \text{ A}$ d = 80.0 cm = 0.800 m $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$

 \overline{F}/l $\overline{\mathbf{R}}$

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$
$$\overline{B} = \Sigma \overline{B}_i$$

$$\overline{F}_B = I(\overline{l} \times \overline{B})$$

 \overline{B}

Solución:

a) O valor do campo magnético, $\overline{\bf B}$, creado a unha distancia, r, por un condutor recto polo que circula unha intensidade de corrente, I, vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

O campo magnético creado polo condutor 1 no condutor 2, que dista 80 cm del é:

$$\vec{B}_{1} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r} (-\vec{j}) = \frac{4\pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 12,0 [\text{A}]}{2\pi \cdot 0,800 [\text{m}]} (-\vec{j}) = -3,00 \cdot 10^{-6} \vec{j} \text{ T}$$

A forza por unidade de lonxitude que exerce o condutor 1 sobre un condutor 2 vale:

$$\frac{\vec{F}}{l} = \frac{I_2(\vec{l} \times \vec{B}_1)}{l} = I_2(\vec{u}_l \times \vec{B}_1) = 12,0[A](-\vec{k} \times (-3,00 \cdot 10^{-6} \vec{j}[T])) = 3,60 \cdot 10^{-5} \vec{i} \text{ N/m}$$

O campo magnético creado polo condutor 2 no condutor 1 é:

$$\vec{B}_{2} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r} (-\vec{j}) = \frac{4\pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 12,0 [\text{A}]}{2\pi \cdot 0,800 [\text{m}]} (-\vec{j}) = -3,00 \cdot 10^{-6} \vec{j} \text{ T}$$

A forza por unidade de lonxitude que se exerce sobre un condutor 2 sobre un condutor 1 vale:

$$\frac{\vec{F}}{l} = \frac{I_1(\vec{l} \times \vec{B}_2)}{l} = I_1(\vec{u}_l \times \vec{B}_2) = 12.0 [A](\vec{k} \times (-3.00 \cdot 10^{-6} \ \vec{j}[T])) = -3.60 \cdot 10^{-5} \ \vec{i} \text{ N/m}$$

Análise: Os condutores que transportan a corrente no mesmo sentido atráense e en sentido oposto repélense.

b) No diagrama debúxanse os campos magnéticos \overline{B}_1 e \overline{B}_2 creados por ambos os condutores no punto medio.

O campo magnético creado polo condutor 1 no punto equidistante de ambos os condutores é:

$$\vec{B}_{1} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r_{1}} \left(-\vec{\mathbf{j}} \right) = \frac{4\pi \cdot 10^{-7} \left[\text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 12,0 \left[\text{A} \right]}{2\pi \cdot 0,400 \left[\text{m} \right]} \left(-\vec{\mathbf{j}} \right) = -6,00 \cdot 10^{-6} \vec{\mathbf{j}} \text{ T}$$

O campo magnético creado polo condutor 2 no punto equidistante de ambos os condutores vale o mesmo:

$$\overline{B}_2 = -6.00 \cdot 10^{-5} \, \overline{i} \, \text{T}$$

O campo magnético resultante é a suma vectorial de ambos:

$$\overline{\boldsymbol{B}} = \overline{\boldsymbol{B}}_1 + \overline{\boldsymbol{B}}_2 = -6.00 \cdot 10^{-5} \, \overline{\boldsymbol{j}} \, [\mathrm{T}] + (-6.00 \cdot 10^{-5} \, \overline{\boldsymbol{j}} \, [\mathrm{T}]) = -1.20 \cdot 10^{-5} \, \overline{\boldsymbol{j}} \, \mathrm{T}$$

- 1. Por un fío condutor rectilíneo e infinitamente longo, situado sobre o eixe X circula unha corrente eléctrica no sentido positivo do eixe. O valor do campo magnético producido pola devandita corrente é de $6\cdot10^{-5}$ T no punto A(0, $-y_A$, 0), e de $8\cdot10^{-5}$ T no punto B(0, $+y_B$, 0). Sabendo que $y_A + y_B = 21$ cm, determina:
 - a) A intensidade que circula polo fío condutor.
 - b) O módulo e a dirección do campo magnético producido pola devandita corrente no punto de coordenadas (0, 8, 0) cm.

Dato: $\mu_0 = 4 \pi \ 10^{-7} \ \text{T·m·A}^{-1}$. **Rta.:** a) $I = 36 \ \text{A}$; b) $\overline{B} = 9.10^{-5} \ \overline{k} \ \text{T}$. (A.B.A.U. extr. 21)

Datos

Campo magnético no punto A Campo magnético no punto B Posición do punto A Posición do punto B Distancia entre os puntos A e B Posición do punto C Permeabilidade magnética do baleiro

Incógnitas

Intensidade de corrente polo condutor

Módulo e dirección do campo magnético no punto C

Ecuacións

Lei de Biot-Savart: campo magnético, \overline{B} , creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, I

Cifras significativas: 3

$$\overline{\mathbf{B}}_{A} = 6,00 \cdot 10^{-5} \text{ T}
\overline{\mathbf{B}}_{B} = 8,00 \cdot 10^{-5} \text{ T}
\underline{\mathbf{r}}_{A} (0, -y_{A}, 0) \text{ cm}
\underline{\mathbf{r}}_{B} (0, +y_{B}, 0) \text{ cm}
\underline{\mathbf{r}}_{C} (0, 8,00, 0) \text{ cm}
\underline{\mathbf{r}}_{C} (0, 8,00, 0) \text{ cm}
\underline{\mathbf{r}}_{O} = 4 \pi \cdot 10^{-7} \text{ T·m·A}^{-1}$$

 $\frac{I}{\mathbf{B}_{C}}$

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

O valor do campo magnético $\overline{\boldsymbol{B}}$ creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente I vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

Substituíndo valores na ecuación do campo magnético creado polo condutor no punto $A(0, -y_A, 0)$ cm:

$$|\vec{B}_{A}| = 6,00 \cdot 10^{-5} [T] = \frac{4 \pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot I}{2 \pi \cdot y_{A} \cdot 10^{-2} [m]}$$

$$I = 3,00 \cdot y_{A}$$

Analogamente para o punto $B(0, y_B, 0)$ cm:

$$|\vec{B}_{B}| = 8,00 \cdot 10^{-5} [T] = \frac{4 \pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot I}{2 \pi \cdot v_{B} \cdot 10^{-2} [m]}$$

$$I$$
 = 4,00 · y_B

Empregando o dato:

$$y_{\rm A} + y_{\rm B} = 21,0$$

Despexando y_A e y_B nas ecuacións anteriores, pódese escribir:

$$\frac{I}{3,00} + \frac{I}{4,00} = 21,0 \Rightarrow \frac{4,00 I + 3,00 I}{12,0} = 21,0$$

$$I = \frac{21,0 \cdot 12,0}{7,00} = 36,0 \text{ A}$$

$$y_{A} = 12,0 \text{ cm}$$

$$y_{B} = 9,00 \text{ cm}$$

b) O campo magnético creado polo condutor no punto C(0, 8, 0) cm é:

$$\vec{\boldsymbol{B}}_{\mathrm{C}} = \frac{\mu_{0} \cdot I}{2\pi \cdot r} (\vec{\mathbf{k}}) = \frac{4\pi \cdot 10^{-7} \left[\text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 36,0 \text{ [A]}}{2\pi \cdot 0,080 \text{ (m]}} (\vec{\mathbf{k}}) = 9,00 \cdot 10^{-5} \vec{\mathbf{k}} \text{ T}$$

- Dous fíos condutores moi longos, rectilíneos e paralelos, disponse verticalmente separados 8 cm. Polo condutor situado á esquerda circula unha corrente de intensidade 30 A, e polo situado á dereita, outra de 20 A, ambas cara arriba. Calcula:
 - a) O campo de indución magnética no punto medio entre os dous condutores.
 - b) A forza por unidade de lonxitude exercida sobre un terceiro condutor vertical situado entre os dous condutores iniciais, a 3 cm do condutor da esquerda, polo que circula unha corrente de 10 A dirixida cara abaixo.
 - c) É conservativo o campo magnético creado polo condutor? Xustifícao.

Dato: $\mu_0 = 4 \pi \ 10^{-7} \ \text{T·m·A}^{-1}$.

(A.B.A.U. ord. 18)

Rta.: a) $|\overline{\bf B}| = 5,00 \cdot 10^{-5} \text{ T; b}) \overline{\bf F} / l = 1,2 \cdot 10^{-3} \text{ N/m cara ao } 2.^{\circ} \text{ condutor.}$

Datos

Intensidade de corrente polo condutor 1 Intensidade de corrente polo condutor 2 Distancia entre os condutores Permeabilidade magnética do baleiro Intensidade de corrente polo condutor 3 Distancia do condutor 3 ao condutor 1

Incógnitas

Campo magnético no punto medio entre os dous condutores

Forza por unidade de lonxitude exercida sobre un condutor 3 a 3 cm do 1

Ecuacións

Lei de Biot-Savart: campo magnético, $\overline{\pmb{B}}$, creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, I

Principio de superposición:

Lei de Laplace: forza magnética que exerce un campo magnético, \overline{B} , sobre un tramo, l, de condutor recto polo que circula unha intensidade de corrente, l

Cifras significativas: 3

 $I_1 = 30,0 \text{ A}$ $I_2 = 20,0 \text{ A}$ d = 8,00 cm = 0,0800 m $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T·m·A}^{-1}$ $I_C = 10,0 \text{ A}$ $d_{31} = 3,00 \text{ cm} = 0,0300 \text{ m}$

 $\overline{\overline{B}}_{F_3}$

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

$$\overline{B} = \Sigma \overline{B}_i$$

$$\overline{F}_B = I(\overline{I} \times \overline{B})$$

Solución:

a) O valor do campo magnético \overline{B} creado a unha distancia r por un condutor recto polo que circula unha intensidade de corrente I vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da cor<u>r</u>ente.

No diagrama debúxanse os campos magnéticos \overline{B}_1 e \overline{B}_2 creados por ámbolos dous condutores no punto medio 4.

O campo magnético creado polo condutor 1 no punto 4 equidistante de ámbolos dous condutores é:

$$\vec{B}_{1\to 4} = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_{14}} \left(-\vec{\mathbf{k}} \right) = \frac{4\pi \cdot 10^{-7} \left[\text{T·m·A}^{-1} \right] \cdot 30,0 \left[\text{A} \right]}{2\pi \cdot 0,040 \text{ o} \left[\text{m} \right]} \left(-\vec{\mathbf{k}} \right) = -1,50 \cdot 10^{-4} \vec{\mathbf{k}} \text{ T}$$

O campo magnético creado polo condutor 2 no punto 4 equidistante de ámbolos dous condutores é:

$$\vec{B}_{2\to 4} = \frac{\mu_0 \cdot I_B}{2\pi \cdot r_{24}} \vec{k} = \frac{4\pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot 20,0 [A]}{2\pi \cdot 0,040 [m]} \vec{k} = 1,00 \cdot 10^{-4} \vec{k} T$$

O campo magnético resultante é a suma vectorial de ambos

$$\overline{B} = \overline{B}_{1 \to 4} + \overline{B}_{2 \to 4} = -1,50 \cdot 10^{-4} \, \overline{k} \, [T] + 1,00 \cdot 10^{-4} \, \overline{k} \, [T] = -5,00 \cdot 10^{-5} \, \overline{k} \, T$$

b) No diagrama debúxanse os campos magnéticos \overline{B}_1 e \overline{B}_2 creados por ambos os condutores no punto 5, situado a 3 cm do condutor da esquerda.

O campo magnético creado polo condutor 1 no punto 5, a 3 cm del é:

$$\vec{\boldsymbol{B}}_{1\to 5} = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_{15}} (-\vec{\mathbf{k}}) = \frac{4\pi \cdot 10^{-7} [\text{T} \cdot \text{m} \cdot \text{A}^{-1}] \cdot 30,0 [\text{A}]}{2\pi \cdot 0,030 [\text{m}]} (-\vec{\mathbf{k}}) = -2,00 \cdot 10^{-4} \vec{\mathbf{k}} \text{ T}$$

O campo magnético creado polo condutor 2 no punto 5, a 5 cm del é:

$$\vec{B}_{2\to 5} = \frac{\mu_0 \cdot I_B}{2\pi \cdot r_{25}} \vec{k} = \frac{4\pi \cdot 10^{-7} [\text{T} \cdot \text{m} \cdot \text{A}^{-1}] \cdot 20,0 [\text{A}]}{2\pi \cdot 0,050 [\text{m}]} \vec{k} = 8,00 \cdot 10^{-5} \vec{k} \text{ T}$$

$$\overline{B}_5 = \overline{B}_{1 \to 5} + \overline{B}_{2 \to 5} = -2,00 \cdot 10^{-4} \, \overline{k} \, [T] + 8,00 \cdot 10^{-5} \, \overline{k} \, [T] = -1,20 \cdot 10^{-4} \, \overline{k} \, T$$

A forza por unidade de lonxitude que se exerce sobre un condutor 3 situado no punto 5 é:

$$\frac{\vec{\boldsymbol{F}}}{l} = \frac{I(\vec{\boldsymbol{l}} \times \vec{\boldsymbol{B}}_5)}{l} = I(\vec{\boldsymbol{u}}_l \times \vec{\boldsymbol{B}}_5) = 10,0 [A](-\vec{\boldsymbol{j}} \times (-1,2 \cdot 10^{-4} \ \vec{\boldsymbol{k}} [T])) = 1,2 \cdot 10^{-3} \ \vec{\boldsymbol{i}} \ N/m$$

Está dirixida cara ao condutor 2 porque o sentido da corrente é o contrario que o dos outros condutores. Análise: Os condutores que transportan a corrente no mesmo sentido atráense e os que o fan en sentido oposto repélense. Aínda que sufre a repulsión de ambos os dous condutores, a forza maior é a do condutor polo que circula maior intensidade e se atopa mais cerca, ou sexa o 1.

c) Non. Para que un campo vectorial sexa conservativo, a circulación do campo ao longo dunha liña pechada debe ser nula, o que é equivalente a dicir que a circulación entre dous puntos A e B é independente do camiño seguido, só dependería dos puntos A e B.

O campo magnético, \overline{B} , non é conservativo. A circulación do vector \overline{B} ao longo dunha liña l pechada non é nula. Pola lei de Ampère.

$$\oint \vec{B} \, d\vec{l} = \mu_0 \sum I$$

♦ CUESTIÓNS

Partículas

- 1. Unha partícula posúe unha carga de 5 nC e penetra nunha rexión do espazo onde hai un campo magnético $\overline{\bf B} = 0.6 \, \bar{\bf i} \, {\rm T}$ cunha velocidade $\overline{\bf v} = 8 \cdot 10^6 \, \bar{\bf j} \, {\rm m} \cdot {\rm s}^{-1}$, describindo unha circunferencia de 2 µm de raio. O valor da masa da partícula é:
 - A) 7.5×10^{-22} kg.
 - B) 4.5×10^{-22} kg.
 - C) 2.5×10^{-22} kg.

(A.B.A.U. ord. 24)

Datos Carga da partícula	Cifras significativas: 2 $q = 5.0 \text{ nC} = 5.0 \cdot 10^{-9} \text{ C}$
Intensidade do campo magnético	$\frac{q}{\mathbf{B}} = 0.60 \mathbf{\bar{i}} \mathrm{T}$
Velocidade da partícula	$\frac{\mathbf{D}}{\mathbf{v}} = 8.0 \cdot 10^6 \mathbf{j} \text{m/s}$
Radio da traxectoria circular	$R = 2.0 \ \mu \text{m} = 2.0 \cdot 10^{-6} \ \text{m}$
Incógnitas	K = 2,0 μm = 2,0·10 m
Masa da partícula	m
Outros símbolos	
Valor da forza magnética sobre a partícula	F_{B}
Vector forza eléctrica sobre a partícula	$rac{F_B}{F_E}$
Ecuacións	
Lei de Lorentz: forza magnética sobre unha carga, q , que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v}	$\overline{F}_B = q(\overline{v} \times \overline{B})$
Aceleración normal (nun movemento circular de raio R)	$a_{\rm N} = \frac{v^2}{R}$
2.ª lei de Newton da Dinámica	$\Sigma \overline{F} = m \cdot \overline{a}$

Solución:

Como só actúa a forza magnética, que é perpendicular á velocidade, a partícula describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N.

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se a partícula entra perpendicularmente ao campo magnético, sen $\varphi = 1$. Despexando a masa, *m*:

$$m = \frac{R \cdot q \cdot B}{v} = \frac{2.0 \cdot 10^{-6} [\text{m}] \cdot 5.0 \cdot 10^{-9} [\text{C}] \cdot 0.60 [\text{T}]}{8.0 \cdot 10^{6} [\text{m/s}]} = 7.5 \cdot 10^{-22} \text{ kg}$$

Coincide coa opción A.

Análise: A masa desta partícula é $7.5 \cdot 10^{-22} / 1.67 \cdot 10^{-27} = 4.5 \cdot 10^5$ veces a masa do protón, e a súa carga vale $5\cdot10^{-9}$ / $1,6\cdot10^{-19}$ = $3,1\cdot10^{10}$. Non parece moi probable que unha partícula poida ter a carga de $31\,000\,000\,000$ de protóns e a masa de só 450 000. Si comparámolo co positrón, (xa que a súa carga é positiva) a antipartícula do electrón, a relación de masas é $7.5 \cdot 10^{-22} / 9.1 \cdot 10^{-31} = 7.9 \cdot 10^8$ veces a masa do positrón. Tampouco parece probable semellante concentración de antimateria. Repasando os cálculos, non parecen conter erros, así que supoño que a persoa que redactou o exercicio non elixiu os valores axeitados.

- 1. Un núcleo do isótopo ¹/₂He describe unha traxectoria de raio r nun campo magnético. Sen variar as condicións do campo magnético nin da dirección ou velocidade de entrada, facemos incidir un núcleo de ³He que describirá unha traxectoria de raio:
 - A) Menor.
 - B) Maior.
 - C) Igual.

(A.B.A.U. ord. 23)

Solución: A

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, $\overline{\nu}$, vén dada pola lei de Lorentz:

$$\overline{\boldsymbol{F}}_{B} = q \left(\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}} \right)$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe traxectoria circular con velocidade de valor constante, xa que a aceleración só ten compoñente normal a_N .

$$a_{\rm N} = \frac{v^2}{r}$$

Se só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_{B}$$

Aplicando a 2.ª lei de Newton

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se as partículas entran perpendicularmente ao campo, sen $\varphi=1$. Despexando o radio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

A carga do núcleo de ³He é a mesma que a do núcleo de ⁴He.

$$q_3 = q_4 = 2$$

Como as velocidades e o campo magnético tamén son iguais, aplicando esta expresión tanto ao núcleo de ⁴₂He como ao núcleo de ³₂He e dividindo unha entre a outra queda:

$$\frac{R_3}{R_4} = \frac{\frac{m_3 \cdot \mathbf{v}}{\mathbf{q}_3 \cdot \mathbf{B}}}{\frac{m_4 \cdot \mathbf{v}}{\mathbf{q}_4 \cdot \mathbf{B}}} = \frac{m_3}{m_4} = \frac{3}{4} < 1 \implies R_3 < R_4$$

O radio da circunferencia descrita polo núcleo de ${}_{2}^{3}$ He é menor que o da circunferencia descrita polo núcleo de ${}_{2}^{4}$ He.

- 1. Dúas partículas con cargas, respectivamente, Q_1 e Q_2 , describen traxectorias circulares de igual raio nunha rexión na que hai un campo magnético estacionario e uniforme. Ámbalas partículas:
 - A) Deben ter a mesma masa.
 - B) Deben ter a mesma velocidade.
 - C) Non é necesario que teñan a mesma masa nin velocidade.

(A.B.A.U. extr. 21)

Solución: C

Se só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_B$$

Aplicando a 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Como as partículas entran perpendicularmente ao campo, sen φ = 1. Despexando o raio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

Se as cargas son distintas, para que o raio sexa o mesmo, deber ter momentos lineais, $m \cdot v$, proporcionais ás cargas. Pero non é necesario que teñan a mesma masa ou velocidade.

$$\frac{m_1 \cdot v_1}{Q_q} = \frac{m_2 \cdot v_2}{Q_2} = R \cdot B = \text{constante}$$

- 1. Unha partícula de masa m e carga q penetra nunha rexión onde existe un campo magnético uniforme de módulo B perpendicular á velocidade, v, da partícula. O raio da órbita descrita:
 - A) Aumenta se aumenta a intensidade do campo magnético.
 - B) Aumenta se aumenta a enerxía cinética da partícula.
 - C) Non depende da enerxía cinética da partícula.

(A.B.A.U. ord. 21, extr. 19)

Solución: B

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe traxectoria circular con velocidade de valor constante xa que a aceleración só ten compoñente normal $a_{\rm N}$. Se só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_B$$

Aplicándoa 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética quedaría:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se as partículas entran perpendicularmente ao campo, sen $\varphi=1$. Despexando o raio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

Se aumenta a enerxía cinética, aumenta a velocidade e, como se ve na ecuación anterior, aumenta tamén o raio da traxectoria.

- 1. Unha partícula móvese nun círculo de raio r perpendicularmente a un campo magnético, $\overline{\textbf{\textit{B}}}$. Se duplicamos o valor de $\overline{\textbf{\textit{B}}}$, o valor de r:
 - A) Duplícase.
 - B) Redúcese á metade.
 - C) Non varía.

(A.B.A.U. extr. 20)

13

Solución: B

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe unha traxectoria circular con velocidade de valor constante xa que a aceleración só ten compoñente normal a_N .

$$a_{\rm N} = \frac{v^2}{r}$$

Se só actúa a forza magnética:

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_{B}$$

Aplicando a 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Como as partículas entran perpendicularmente ao campo, sen φ = 1. Despexando o raio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

Como o valor da velocidade é constante, o mesmo que a carga e a masa da partícula, o raio da traxectoria é inversamente proporcional á intensidade do campo magnético. Se o campo magnético faise o dobre, o raio da traxectoria redúcese á metade.

- 1. Un protón e unha partícula α entran perpendicularmente no seo dun campo magnético estacionario e uniforme de indución, \overline{B} , describindo traxectorias circulares de igual raio. O cociente entre as velocidades da partícula α e do protón, $\nu(\alpha)$ / $\nu(p)$, é:
 - A) 0,5
 - B) 2
 - C) 8

DATOS:
$$m(\alpha) = 4 m(p)$$
; $q(\alpha) = 2 q(p)$.

(A.B.A.U. ord. 20)

Solución: A

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe unha traxectoria circular con velocidade de valor constante xa que a aceleración só ten compoñente normal a_N .

$$a_{\rm N} = \frac{v^2}{r}$$

Se só actúa a forza magnética:

×

×

×

×

×

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_B$$

Aplicando a 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Como as partículas entran perpendicularmente ao campo, sen φ = 1. Despexando a velocidade v:

$$v = \frac{q \cdot B \cdot R}{m}$$

Como o raio e o campo magnético son os mesmos, aplicando esta expresión tanto á partícula α como ao protón e dividindo unha entre a outra queda:

$$\frac{v_{\alpha}}{v_{p}} = \frac{\frac{q_{\alpha} \cdot \mathbf{B} \cdot \mathbf{R}}{m_{\alpha}}}{\frac{q_{p} \cdot \mathbf{B} \cdot \mathbf{R}}{m_{p}}} = \frac{m_{p} \cdot q_{\alpha}}{m_{\alpha} \cdot q_{p}} = \frac{m_{p} \cdot 2 \, q_{p}}{4 \, m_{p} \cdot q_{p}} = \frac{1}{2}$$

$$v_{\alpha} = 1/2 v_{p}$$

A velocidade da partícula alfa é a metade que a do protón.

- 1. Se unha partícula cargada se move nun campo magnético e este exerce unha forza, dita forza sempre é perpendicular á velocidade da partícula.
 - A) Verdadeiro.
 - B) Falso.
 - C) Depende do módulo da velocidade da partícula.

(A.B.A.U. extr. 18)

Solución: A

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular á velocidade da partícula.

- 1. Se unha partícula cargada de masa desprezable penetra nun campo magnético uniforme cunha velocidade que forma un ángulo de 180° coas liñas do campo, a traxectoria que describe a partícula é:
 - A) Rectilínea.
 - B) Circular.
 - C) Parabólica.

(A.B.A.U. ord. 18)

Solución: A

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F} = q (\overline{v} \times \overline{B})$$

O módulo do produto vectorial dos vectores velocidade e indución magnética é:

$$|\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}}| = |\overline{\boldsymbol{v}}| \cdot |\overline{\boldsymbol{B}}| \cdot \operatorname{sen} \varphi$$

Onde φ é o ángulo que forman eses vectores. Se φ = 180°, entón sen φ = 0 e a forza é nula, polo que a partícula non se desvía. A traxectoria será rectilínea.

Correntes

- 1. A relación entre o módulo do campo magnético B_1 creado por unha corrente rectilínea indefinida I nun punto situado á distancia perpendicular r do condutor e o B_2 creado por outra corrente 2 I nun punto situado á distancia 3 r, B_1 / B_2 , é:
 - A) 2/3
 - B) 9 / 2
 - C) 3/2

(A.B.A.U. extr. 23)

Solución: C

O módulo do campo magnético creado por unha corrente rectilínea indefinida segue a lei de Biot - Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

Nesta expresión B é o campo magnético, μ_0 é a constante de permeabilidade magnética do vacío, I é a intensidade da corrente e r é a distancia perpendicular ao condutor.

A expresión para o campo magnético no primeiro caso é:

$$B_1 = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

No segundo caso:

$$B_2 = \frac{\mu_0 \cdot 2I}{2\pi \cdot 3r}$$

Dividindo o campo magnético B₁ polo campo magnético B₂, obtemos que:

$$\frac{B_1}{B_2} = \frac{\frac{\mu_0 \cdot I}{2\pi \cdot r}}{\frac{\mu_0 \cdot 2I}{2\pi \cdot 3r}} = \frac{3}{2}$$

- 1. Por un condutor rectilíneo moi longo circula unha corrente de 1 A. O campo magnético que se orixina nas súas proximidades faise máis intenso canto:
 - A) Máis groso sexa o condutor.
 - B) Maior sexa a súa lonxitude.
 - C) Máis preto do condutor estea o punto onde se determina.

(A.B.A.U. extr. 17)

Solución: C

A dirección do campo magnético, \overline{B} , creado por unha intensidade, I, de corrente que circula por un condutor rectilíneo indefinido é circular arredor do fío e o seu valor nun punto a unha distancia, r, do fío vén dada pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

O sentido do campo magnético vén dado pola regra da man dereita (o sentido do campo magnético é o do peche da man dereita cando o polgar apunta no sentido da corrente eléctrica).

Como se ve na expresión, canto menor sexa a distancia, r, do punto ao fío, maior será a intensidade do campo magnético.

- 1. Dous condutores idénticos A e B paralelos, con correntes respectivas + I e I (entrando e saíndo do plano do papel) están separados unha distancia a. Un terceiro condutor, C, paralelo e idéntico aos anteriores e con corrente + I (entrando) sitúase en a/2. Sobre el exércese unha forza:
 - A) Dirixida cara a A.
 - B) Dirixida cara a B.
 - C) Non se exerce ningunha forza sobre el.

(A.B.A.U. ord. 17)

Solución: A

O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

No diagrama debúxanse os campos magnéticos $\overline{\textbf{\textit{B}}}_{B}$ creados por ambos os condutores no punto medio D, e o vector forza magnética, $\overline{\textbf{\textit{F}}}_{D}$, exercida sobre o condutor alí situado.

Tanto o campo magnético creado polo condutor A no punto D equidistante de ambos os condutores como o campo magnético creado polo condutor B no punto D están dirixidos no sentido negativo do eixe Z. Por tanto, o vector campo magnético resultante tamén o está. Aplicando a lei de Lorentz:

$$\overline{F} = I(\overline{l} \times \overline{B}) = I(l\overline{i} \times B(-\overline{k})) = I \cdot l \cdot B(-\overline{i})$$

Vese que está dirixida cara ao condutor que leva a corrente A.

Actualizado: 13/06/24

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de tradución de, de Óscar Hermida López.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Sumario

Juliano	
CAMPO MAGNÉTICO	
PROBLEMAS	1
Partículas	1
Correntes	5
CUESTIÓNS	9
Partículas	9
Correntes	
Índice de probas A.B.A.U.	
	16
` '	15
2018	
1. (ord.)	
2. (extr.)	14
2019	
1. (ord.)	4
2. (extr.)	3, 12
2020	
1. (ord.)	13
2. (extr.)	13
2021	
1. (ord.)	12
2. (extr.)	7, 11
2022	
1. (ord.)	2
2. (extr.)	1