DATA SCIENCE CAPSTONE PROJECT

Víctor Pagán Rubio

vpaganrubio@gmail.com

December 27, 2020

Índice de contenido

Executive Summary	3	,
Introduction	3	,
Business Problem	3	,
Data Aquisition and cleaning	3	,
Foursquare Venues Data	3	
Methodology	5	,
Research Method	5	
Kmeans	5	
Data Sources: City, Neighborhood, Latitude, Longitude	6	
Paris Data	6	
Brussels Data	6	
Rome Data	7	
Madrid Data	7	
Results Sections	8	
Clusters in Paris	8	
Clusters in Brussels	8	
Clusters in Rome	9	
Clusters in Madrid	9	
Empirical Findings	10	
Descriptive Stats	10	
Unique categories in Paris	10	
Unique categories in Brussels	10	
Unique categories in Rome	11	
Unique categories in Madrid	11	
Illustrative Graphics	12	,
Paris clusters Map	12	
Brussels clusters Map	12	
Rome clusters Map	13	
Madrid clusters Map	13	
Discussion Section	14	ŀ
Conslusion section	14	ŀ
References, Acknowledgements and Appendices.	14	ļ

Executive Summary.

Foursquare data could help differentiate tourism activities to offer to travelers. Paris, Brussels, Rome and Madrid are great cities where a tourist can spend several weeks exploring different activities. A Tourism Agency could be interested in showing different profiles of a city paying attention to its neighborhoods and its possible activities. Each neighborhood and its geolocation data can be used to get Foursquare information to search for interesting activities. The, kMeans is used to generate 5 clusters of similar neighborhoods which can be seen in the city map. All these cicties have a city center and a radius in which all neighbourhoods are located so they could be easy to explore. All of them have a main cluster with most similar neighborhoods.

Introduction.

Foursquare data could help differentiate tourism activities to offer to travelers. Paris, Brussels, Rome and Madrid are great cities where a tourist can spend several weeks exploring different activities.

Business Problem.

Tourist Agency could be interested in showing different profiles of a city paying attention to its neighborhoods and its possible activities.

The target audience would be the Tourism Companies interested to offer interesting trips to travelers.

Also data could be used to recommend cities to visit to tourists.

Data Aquisition and cleaning.

Geo data can be used to map neighborhoods.

Data can be merged to have neighborhoods and its location to explore data in Foursquare.

Four csv files data (Neighborhood, Borough, Latitude, Longitude) are used.

Foursquare Venues Data.

Foursquare Data can be used to find venues, for example:

Paris	Brussels	Rome		Madrid
Bakery	Bakery	Italian Restaurant	Bar	
Bar	Bar	Basketball Stadium	Beer Garden	
Beer Bar	Bookstore	Boutique	Bistro	

Beer Store	Burger Joint		Café
Bistro	Café Chocolate	Coffee Shop	Coffee Shop
Bourse	Shop	College Cafeteria	Comfort Food Restaurant
Brewery	Clothing Store	Concert Hall	Concert Hall
Buttes-Chaumont	Convenience Store	Cosmetics Shop	Convenience Store
Buttes-Montmartre	Cosmetics Shop	Cupcake Shop	Deli / Bodega
Café	Department Store	Dessert Shop	Department Store
Cheese Shop	Diner	Diner	Dessert Shop
Cocktail Bar	Fast Food Restaurant	Dog Run	Diner
Coffee Shop	French Restaurant	Fast Food Restaurant	Dog Run
Convenience Store	Greek Restaurant	Flower Shop	Donut Shop
Creperie	Gym	Fountain	Garden
Entrepôt	Gym / Fitness Center	Fried Chicken Joint	Gastropub
French Restaurant	History Museum	Garden Center	Gym / Fitness Center
Gastropub	Hotel	Gift Shop	Hostel
Hotel	Italian Restaurant	Grocery Store	Hotel
Indian Restaurant	Italian Restaurant	Gym	Ice Cream Shop
Italian Restaurant	Kebab Restaurant	Gym Pool	Japanese Restaurant
Japanese Restaurant	Middle Eastern Restaurant	Hotel	Mediterranean Restaurant
Korean Restaurant	Notary	Ice Cream Shop	Mexican Restaurant
Pizza Place Plaza	Pizza Place Plaza	Italian Restaurant Jewelry Store	Nightclub Park
Seafood Restaurant	Restaurant	Juice Bar	Pizza Place
Supermarket	Sandwich Place	Nightclub	Playground
Wine Bar	Sandwich Place	Noodle House	Plaza

Methodology.

Research Method.

Kmeans.

Five clusters are generated using kMeans for each city.

Run k-means to cluster the neighborhood into 5 clusters.

```
# set number of clusters
kclusters = 5

n_grouped_clustering = n_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(n_grouped_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]

37]: array([0, 1, 1, 1, 1, 2, 1, 1, 1, 1])
```

Let's create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood.

```
# add clustering labels
neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)

n_merged = p_n

# merge n_grouped with n_data to add latitude/longitude for each neighborhood
n_merged = n_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood')

n_merged.head() # check the last columns!
```

Data Sources: City, Neighborhood, Latitude, Longitude.

The Data Sources are csv files using Borough for the name of the city, Neighborhood for the neighborhood and it's latitude and longitude.

Paris Data.

Brussels Data.

Brussels

Rome Data.

Rome

```
r_n=pd.read_csv('Rome.csv')
      r_n.head()
15]:
          Borough
                                      Neighborhood
                                                       Latitude
                                                                Longitude
                                                                 12.485487
       0
             Rome
                          Municipio I – Historical Center 41.902860
       1
             Rome
                       Municipio II – Parioli/Nomentano 41.922397
                                                                 12.498321
                            Municipio III – Monte Sacro 41.942542
                                                                 12.540979
             Rome
       3
             Rome
                               Municipio IV - Tiburtina 41.921630
                                                                 12.553682
                    Municipio V – Prenestino/Centocelle 41.891288
                                                                12.551022
             Rome
```

Madrid Data.

Madrid

18]:

	Borough	Neighborhood	Latitude	Longitude
0	Madrid	Centro	40.411535	-3.707628
1	Madrid	Arganzuela	40.398889	- 3.710203
2	Madrid	Retiro	40.411335	- 3.674905
3	Madrid	Salamanca	40.428002	-3.686771
4	Madrid	Chamartin	40.461520	-3.686584

Results Sections.

Clusters in Paris.

Clu	ster 1											
[41]: N	n_me	rged.loc[n_m	erged['Clus	ter Labels'] == 0, n_m	merged.colum	mns[[1] + 1	ist(range(5	, n_merged	.shape[1]))]]	
Out[41]:		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Mos Commo Venu
	11	Palais- Bourbon	Hotel	French Restaurant	Italian Restaurant	Plaza	Café	History Museum	Cocktail Bar	Historic Site	Japanese Restaurant	Gourme
	13	Élysée	French Restaurant	Hotel	Bakery	Spa	Department Store	Cocktail Bar	Resort	Corsican Restaurant	Plaza	Italia Restaura
	15	Batignolles- Monceau	Hotel	French Restaurant	Italian Restaurant	Japanese Restaurant	Bakery	Restaurant	Bistro	Plaza	Café	Korea Restaura
	18	Observatoire	French Restaurant	Hotel	Bistro	Italian Restaurant	Bakery	Brasserie	Fast Food Restaurant	Supermarket	Sushi Restaurant	Tea Roo
Clu	ster 2											
[42]: H	n me	rged.loc[n m	erged['Clus	ter Lahels'	1 == 1 n m	nerged colu	mns[[1] +]	ist(range(5	n merged	shane[1]))]	11	

Clusters in Brussels.

Exa	ımi	ne Clusters	in Brusse	els								
Clus	ter '	1										
M	n_m	erged.loc[n_n	nerged['Clu	ster Labels'] == 0, n_n	merged.colu	ımns[[1] + 1	ist(range(5, n_merged	.shape[1]))]]	
52]:		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0	Bruxelles-Ville	Chocolate Shop	Plaza	Bar	Bookstore	Hotel	Bakery	Italian Restaurant	Seafood Restaurant	Clothing Store	Sandwich Place
	1	Schaerbeek	Tram Station	Supermarket	Plaza	Hookah Bar	Gastropub	Italian Restaurant	Coffee Shop	Middle Eastern Restaurant	Bus Station	Soccer Field
	2	Etterbeek	Bar	Sandwich Place	Plaza	Cosmetics Shop	Supermarket	Pizza Place	Snack Place	Diner	Department Store	Kebab Restaurant
	3	Ixelles	Bar	Italian Restaurant	Clothing Store	Wine Bar	Art Gallery	Tea Room	Coffee Shop	Bakery	French Restaurant	Plaza
	4	Saint Gilles	Bar	Greek Restaurant	Moroccan Restaurant	Bakery	Performing Arts Venue	Pizza Place	Plaza	Brasserie	Friterie	Gym / Fitness Center
	5	Anderlecht	Bar	Convenience Store	Plaza	Restaurant	Greek Restaurant	Metro Station	Bakery	Supermarket	History Museum	Italian Restaurant
-lC1	7	Koekelberg	Gym	History Museum	Bar	Piano Bar	Convenience Store	Sandwich	Falafel Restaurant	Soccer Field	French	Supermarket

Clusters in Rome.

Examine Clusters in Rome Cluster 1 : M n_merged.loc[n_merged['Cluster Labels'] == 0, n_merged.columns[[1] + list(range(5, n_merged.shape[1]))]] 84]: 1st Most 2nd Most 3rd Most 4th Most 5th Most 6th Most 7th Most 8th Most 9th Most 10th Most Neighborhood Common Venue Venue Venue Pizza Municipio I – Historical Sandwich Jewelry Store Dessert Italian Ice Cream 0 Hotel Plaza Boutique Fountain Restaurant Shop Municipio II -Italian Seafood College Juice Bar 1 Plaza Restaurant Fountain Nightclub Coffee Shop Hotel Parioli/Nomentano Restaurant Restaurant Cafeteria Municipio V -Pizza Place Café Supermarket Gym Prenestino/Centocelle Restaurant House Place Court Stadium Restaurant Fried Middle Municipio VI – Roma Delle Torri Italian Fast Food Pizza Place Supermarket Wine Shop Chicken Office Plaza Brewery Eastern Restaurant Restaurant Restaurant Joint Gym / Municipio VII - Appio-Ice Cream Miscellaneous Italian Garden Flower Pizza Place Pub Fountain Fitness Chicken Latino/Tuscolano/Cinecittà Restaurant Shop Shop Center Shop Center Joint Vegetarian / Municipio VIII - Appia Ice Cream Italian Soccer Supermarket Restaurant Pizza Place Vegan Restaurant Café Plaza Diner Bakery Shop Stadium

Clusters in Madrid.

Clu	ster 1											
K	n_mer	ged.loc[n_m	erged['Clus	ter Labels'] == 0, n_m	erged.colur	nns[[1] + 1	ist(range(5	, n_merged.	shape[1]))]]	
.06]:	١	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Mos Commo
	18	Vicalvaro	Breakfast Spot	Dog Run	Bar	Wine Bar	Dessert Shop	Dumpling Restaurant	Donut Shop	Diner	Department Store	Farmer Marke
Clu	ster 2	aged leefn w	erged['Clus	ter Labels'] == 1, n_m	erged.colur	mns[[1] + 1	ist(range(S	5, n_merged.	shape[1]))	11	
H	n_mer	.gea. Toc[u]										
		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	Commo
: № .07]:			1st Most Common	Common	10th Mos Commo Venu Desse Sho							

Empirical Findings.

Most of the neighborhoods have the same different services to offer to the tourist. The city with unique categories greatest number is Paris (204), followed by Brussels (166), next is Madrid (132) and last Rome (80).

Descriptive Stats.

Unique categories in Paris.

Vaugirard	65	65	65	65	65
Élysée	39	39	39	39	39

Let's find out how many unique categories can be curated from all the returned venues

```
print('There are {} uniques categories.'.format(len(n_venues['Venue Category'].unique())))

There are 204 uniques categories.
```

3. Analyze Each Neighborhood in Paris

. # one hot encoding

Unique categories in Brussels.

Watermael-Boitsfort	6	6	6	6	6
Woluwé-St-Lambert	21	21	21	21	21
Woluwé-St-Pierre	14	14	14	14	14

Let's find out how many unique categories can be curated from all the returned venues

```
print('There are {} uniques categories.'.format(len(n_venues['Venue Category'].unique())))
There are 166 uniques categories.
```

Analyze Each Neighborhood in Brussels

Unique categories in Rome.

Municipio XIV – Monte Mario	8	8	8	8
Municipio XV – Cassia/Flaminia	32	32	32	32

Let's find out how many unique categories can be curated from all the returned venues

```
: ▶ print('There are {} uniques categories.'.format(len(n_venues['Venue Category'].unique())))

There are 80 uniques categories.
```

Analyze Each Neighborhood in Rome

```
# one hot encoding

n onehot = nd get dummies(n venues[['Venue Category']] nnefiv="" nnefiv sen="")
```

Unique categories in Madrid.

Retiro	28	28	28	28	28	28
Salamanca	77	77	77	77	77	77
San Blas-Canillejas	20	20	20	20	20	20
Tetuan	40	40	40	40	40	40
Usera	12	12	12	12	12	12
Vicalvaro	3	3	3	3	3	3
Villa de Vallecas	9	9	9	9	9	9
Villaverde	5	5	5	5	5	5

Let's find out how many unique categories can be curated from all the returned venues

```
print('There are {} uniques categories.'.format(len(n_venues['Venue Category'].unique())))
There are 132 uniques categories.
```

Illustrative Graphics

Paris clusters Map

Brussels clusters Map

Rome clusters Map

Madrid clusters Map

Discussion Section

All these cicties have a city center and a radius in which all neighbourhoods are located. All of them have a main cluster with most similar neighborhoods.

Conslusion section.

Similar cities with similar services some of then with more unique categories than others.

References, Acknowledgements and Appendices.

Foursquare.

Google Maps.

Wikipedia.