Report: Entanglement entropy of Hydrogen molecule

Author Lu Wei

University USTC

October 28, 2021

Contents

The Hydrogen molecule is consistent of two interacting Hydrogen atoms and we would like to get the entanglement between the two atoms. I have tried some methods to get the ground state and these gives me totally different results

1 direct decomposition

The terms in the molecular Hamiltonian can be viewed as a Pauli strings and also as a tensor products of some Pauli operators, so the Hamiltonian itself is a matrix of 2n dimension. then we can direct perform a eigen-decomposition on the matrix and for the 4-qubit Hamiltonian we'd like to take the first as atom A.

• In the OpenFermion package there exists function 0getsparseoperator0 and 'eigenspectrum' that can directly get the eigenvalue and eigenvector. The terms expect |1100\rangle and |0011\rangle are very small and we can take the resulting two terms, the result is shown:

• Apart from the Openfermion we can directly transform the Hamiltonian into matrix and get the eigen-information. Compare with the result above, there difference in energy is at about 10⁻¹⁴, but the corresponding eigenvector is a direct product state |0110⟩, leading to a 0 of the entanglement entropy.

2 VQE

To compute the entanglement entropy of the Hydrogen molecule, first we use the ansate:

$$|\psi\rangle = a|0011\rangle + b|0101\rangle + c|1001\rangle + d|1100\rangle$$

We use the following quantum circuit to prepare the state

where: and the result is:

3 Discussion

There are some reasons leading to this difference:

- The intractable problem is to know hoe the electron and orbitals are encoded to the qubit form and thus for the state $|q_0q_1q_2q_3\rangle$, we don't know each qubit represents
- In the OpenFermion it is said to be molecular orbitals and therefore we direct think the first two qubits as atom A is not proper.
- The VQE approach has a bad overlap with the eigenvalue, which may be caused by the optimization process. Because the main idea is to get the energy but not the state.