

MATEMÁTICAS

Fundamentos Matemáticos

Tarea 2

Secciones 3 y 4

Alexander Mendoza Dylan Cifuentes June 12, 2023

Contents

1	Ejercicios
	Ejercicio 3.3.20
	Ejercicio 3.4.6
	Ejercicio 4.1.8
	Ejercicio 4.2.15
	Ejercicio 4.3.10
	Ejercicio 4.4.17
	Ejercicio 5.1.7
	Eiercicio 5.2.8

Chapter 1

Ejercicios

Ejercicio 3.3.20

Sean A y B conjuntos. Supongamos que $B \subseteq A$. Demostrar que $A \times A - B \times B = [(A - B) \times A] \cup [A \times (A - B)]$.

Demostración.

Definimos $A \times A - B \times B = (x, y) | x \in A, y \in A, x \notin B$ o $y \notin B$. Luego definimos $(A - B) \times A$ y $A \times (A - B)$:

$$(A-B)\times A=(x,y)|x\in A-B,y\in A=(x,y)|x\in A,x\notin B,y\in A$$

$$A\times (A-B)=(x,y)|x\in A,y\in A-B=(x,y)|x\in A,y\in A,y\notin B$$

Para demostrar que $A \times A - B \times B \subseteq [(A - B) \times A] \cup [A \times (A - B)]$, tomamos $(x, y) \in A \times A - B \times B$. Entonces, por definición de diferencia, sabemos que $(x, y) \in A \times A$ y $(x, y) \notin B \times B$. Tenemos dos casos a considerar:

Si $x \in A-B$, entonces (x,y) pertenece a $(A-B) \times A$ por definición de producto cartesiano. Si $x \in B$, la única forma en que (x,y) pertenece a $A \times A$ pero no a $B \times B$ es que $y \notin B$. Por lo tanto, $(x,y) \in [A \times (A-B)]$, ya que $x \in A$ e $y \in A-B$. En ambos casos, hemos demostrado que $(x,y) \in [(A-B) \times A] \cup [A \times (A-B)]$. Luego, probemos que $A \times A - B \times B \supseteq [(A-B) \times A] \cup [A \times (A-B)]$.

Si $(x,y) \in (A-B) \times A$, entonces $x \in A$ pero $x \in B$ por definición de diferencia. Por lo tanto, y puede pertenecer a cualquier elemento de A porque (x,y) no pertenece a $B \times B$. Si $(x,y) \in A \times (A-B)$, entonces $y \in A-B$. Por lo tanto, x puede pertenecer a cualquier elemento de A porque (x,y) no pertenece a $B \times B$. En ambos casos, demostramos que $(x,y) \in [(A-B) \times A] \cup [A \times (A-B)]$. Como ya demostramos que $A \times A - B \times B \subseteq [(A-B) \times A] \cup [A \times (A-B)]$, entonces por definición de igualdad de conjuntos podemos concluir que $A \times A - B \times B = [(A-B) \times A] \cup [A \times (A-B)]$.

Ejercicio 3.4.6

Sean ${\mathcal A}$ una familia no vacía de conjuntos y B un conjunto.

- (1) Demostrar que $(\bigcup_{X \in \mathcal{A}} X) B = \bigcup_{X \in \mathcal{A}} (X B)$.
- (2) Demostrar que $(\bigcap_{X \in \mathcal{A}} X) B = \bigcap_{X \in \mathcal{A}} (X B)$.

 $\left(\bigcap_{X\in\mathcal{A}}X\right)-B=\bigcap_{X\in\mathcal{A}}(X-B)$. Demostración. De manera similar a como hicimos con la unión. Sea $a\in\left(\bigcap_{X\in\mathcal{A}}X\right)-B$, luego $a\in\bigcap_{X\in\mathcal{A}}X$ y $a\not\in B$. Así $a\in Y$ para todo $Y\in\mathcal{A}$, luego $a\in Y-B$. De esta manera $a\in\bigcap_{X\in\mathcal{A}}(X-B)$, por lo tanto $\left(\bigcap_{X\in\mathcal{A}}X\right)-B=\bigcap_{X\in\mathcal{A}}(X-B)$.

Ejercicio 4.1.8

A es un conjunto y B⊆A y existe la función

$$\chi B \colon A \to \{0,1\}$$

$$a \to \begin{cases} 0 & si & a \notin D \\ 1 & si & a \in D \end{cases}$$

Probar que $\chi B = \chi C \leftrightarrow B = C$

Dem \leftarrow : Suponga que B=C por definición de igualdad B \subseteq C y C \subseteq B, luego $(\forall a \in A)(a \in B \leftrightarrow a \in C)(\forall a \in A)$, entonces por definición de la función $\chi B(a)=1$ Sii $\chi C(a)=1$, por lo tanto $(\forall a \in A)(\chi B(a)=\chi C(a))$ lo que implica que $\chi B=\chi C$

Dem \to :Suponga que $\chi B = \chi C$, entonces para cualquier y, y \in X,luego $\chi B(y) = \chi C(y)$ por definición de función, como $\chi B(y) = \chi C(y)$ entonces ambas son 1 o son 0. Si $\chi B(y) = \chi C(y) = 1$, entonces y \in A e y \in B, lo que implica que A = B, Si $\chi B(y) = \chi C(y) = 0$ entonces y \notin A e y \notin B, luego por definición de diferencia se puede decir que y \in X-A e y \in X-B, por tanto

A = X - (X - A) = X - (X - B) = B sin embargo, esta última no puede ser verdadera ya que X es un conjunto no vacío y A y B son subconjuntos no vacíos de X. Por lo tanto, debemos tener A = B, luego como se han demostrado amabas implicaciones pondemos conliuir que $\chi B = \chi C \leftrightarrow B = C$

Ejercicio 4.2.15

Sea A un conjunto no vacío, y sea $g: \mathscr{P}(A) \to \mathscr{P}(A)$ una función. La función g es monótona si $X \subseteq Y$ implica $g(X) \subseteq g(Y)$ para todo $X, Y \in \mathscr{P}(A)$. Supong-

amos que g es monótona.

- (1) Sea \mathcal{D} una familia de subconjuntos de A. Demuestra que $g\left(\bigcap_{X\in\mathcal{D}}X\right)\subseteq\bigcap_{X\in\mathcal{D}}g(X)$.
- (2) Demuestra que existe algún $T \in \mathcal{P}(A)$ tal que g(T) = T. A dicho elemento T se le llama un punto fijo de g. Usa la Parte (1) de este ejercicio.

Demostración.

- (1) Queremos demostrar que $g\left(\bigcap_{X\in\mathcal{D}}X\right)\subseteq\bigcap_{X\in\mathcal{D}}g(X)$. Sea $y\in g\left(\bigcap_{X\in\mathcal{D}}X\right)$. Entonces existe $x\in\bigcap_{X\in\mathcal{D}}X$ tal que y=g(x). Como $x\in\bigcap_{X\in\mathcal{D}}X$, tenemos que $x\in X$ para todo $X\in\mathcal{D}$. Por lo tanto, $g(x)\in g(X)$ para todo $X\in\mathcal{D}$, ya que g es monotona. Esto implica que $y=g(x)\in g(X)$ para todo $X\in\mathcal{D}$, lo que significa que $y\in\bigcap_{X\in\mathcal{D}}g(X)$.
- (2) Consideremos el conjunto $T = \bigcap X \in \mathcal{P}(A) : g(X) \subseteq X$. Como $\mathcal{P}(A)$ no es vacío, este conjunto está bien definido. Queremos mostrar que g(T) = T. Primero, demostraremos que $g(T) \subseteq T$. Sea $y \in g(T)$. Entonces existe $x \in T$ tal que y = g(x). Como $x \in T$, tenemos que $x \in X$ para todo $X \in \mathcal{P}(A)$ tal que $g(X) \subseteq X$. En particular, $x \in T$, por lo que $y = g(x) \in T$, lo que implica que $g(T) \subseteq T$. Luego, demostraremos que $T \subseteq g(T)$. Sea $x \in T$. Queremos demostrar que $x \in g(T)$, es decir, que existe $y \in T$ tal que x = g(y). Como $x \in T$, tenemos que $x \in X$ para todo $X \in \mathcal{P}(A)$ tal que $g(X) \subseteq X$. En particular, $x \in g(x)$, por lo que $g(x) \subseteq X$ para todo $X \in \mathcal{P}(A)$ tal que $g(X) \subseteq X$. Por lo tanto, $x \subseteq T$, lo que implica que $x \in g(T)$. Por lo tanto, hemos demostrado que $T \subseteq g(T)$. Combinando las dos inclusiones, obtenemos g(T) = T, lo que significa que T es un punto fijo de g.

Ejercicio 4.3.10

Sean A y B conjuntos, y sea $f: A \to B$ una función. Demostrar que si f tiene dos inversos distintos a la izquierda entonces no tiene inverso a la derecha, y que si f tiene dos inversos distintos a la derecha entonces no tiene inverso a la izquierda. inversos a la derecha, entonces no tiene inverso a la izquierda.

Dem por contradicción: Sean $g_1, g_2 \to A$ tal que $g_1 \neq g_2$ y $g_1 \circ f = g_2 \circ f = idA$, entonces f tiene inversa, si f tiene inversa, existe $h \circ f = idA$ y $f \circ h = idB$ de manera que:

```
(g_1 \circ f) \circ h = (g_2 \circ f) \circ h

g_1 \circ (f \circ h) = g_2 \circ (f \circ h)

g_1 \circ idB = g_2 \circ idB
```

 $g_1 = g_2$ y esto lleva a una contradicción ya que se tenia dicho que $g_1 \neq g_2$.

De manera similar suponga que f tiene dos inversos a derecha h_1, h_2 de manera que $h_1 \neq h_2$ y $h_1 \circ f = h_2 \circ f = idB$, entonces f tiene inversa a izquiera, si f tiene inversa, existe $h \circ f = idA$ y $f \circ h = idB$ de manera que:

$$(h_1 \circ f) \circ g = (h_2 \circ f) \circ g$$

```
h_1 \circ (f \circ g) = h_2 \circ (f \circ g)

h_1 \circ idB = h_2 \circ idB

h_1 = h_2 y esto lleva a una contradicción ya que se tenia dicho que h_1 \neq h_2.
```

Ejercicio 4.4.17

Sean A y B conjuntos, y sea $f:A\to B$ una función. Demuestra que f es sobreyectiva si y solo si $B-f(X)\subseteq f(A-X)$ para todo $X\subseteq A$.

Demostración.

Empecemos demostrando que $B-f(X)\subseteq f(A-X)$ implica que f es sobreyectiva. Sea $b\in B$ luego $b\in B-f(X)$ para algún $X\subseteq A$. Sabemos que $B-f(X)\subseteq f(A-X)$, así $b\in f(A-X)$ esto por definición de subconjunto, con esto podemos concluir que b=f(a) para algún $a\in A$ y $a\notin X$. Se sobreentiende que b=f(x) para algún $x\in X$ cuando $x\in X$ cu

Concluyamos la demostración con el caso en el que cuando f es sobreyectiva $B-f(X)\subseteq f(A-X)$ para algún $X\subseteq A$ se cumple. Sabemos que B=f(A) recordemos que A y B son el dominio y codominio de f respectivamente. Luego sea $a\in A$ y sea $b\in B-f(X)$ para todo $X\subseteq A$. Así b=f(a) para algún $a\in A$ y $a\notin X$, esto por definición de diferencia de conjuntos e imagen de un conjunto sobre una función. Así tenemos que $b\in f(A-X)$.

Ejercicio 5.1.7

Sea A un conjunto, y piense que \subseteq define una relación sobre P(A), Sea A un conjunto. El símbolo " \subseteq " representa una relación sobre P(A), donde $P,Q \in P(A)$ están relacionados si y sólo si $P\subseteq Q$. Es esta relación reflexiva, simétrica y/o transitiva?

Para la relación " \subseteq " en el conjunto $P(\mathbf{A})$ de un conjunto A, se puede demostrar que:

- Es reflexiva, ya que cualquier conjunto P es un subconjunto de sí mismo , y por lo tanto $P \subseteq P$ para cualquier $P \in P(A)$.
- No es simétrica, ya que si P⊆Q, no necesariamente se cumple que Q⊆P.
 Un contraejemplo sencillo es tener P = 1,2 y
 Q = 1,2,3. En este caso, se tiene que P⊆Q, pero no se cumple que Q⊆P.
- Es transitiva, ya que si P⊆Q y Q⊆R, entonces por definición todo elemento de P es también un elemento de Q, y todo elemento de Q es también un elemento de R. Por lo tanto, todo elemento de P también es un elemento de R, y se cumple que P⊆R para cualquier P,Q,R∈ P(A). Entonces, la relación "⊆" es reflexiva y transitiva, pero no es simétrica.

Entonces, la relación " \subseteq " es reflexiva y transitiva, pero no es simétrica.

Ejercicio 5.2.8

Teorema 1. Sea $n \in \mathbb{N}$. $[0] \cup [1] \cup \ldots \cup [n-1] = \mathbb{Z}$

Sea $n\in\mathbb{Z}$. Demuestra que $n^3\equiv n\mod 6$. Demostración. Por Teorema 1 sabemos que o $n^3\equiv 0\mod 6$ o $n^3\equiv 1\mod 6$ o ... o $n^3\equiv 5\mod 6$. Así

$$0^3 \equiv 0 \equiv 0 \mod 6$$

$$1^3 \equiv 1 \equiv 1 \mod 6$$

$$2^3 \equiv 8 \equiv 2 \mod 6$$

$$3^3 \equiv 27 \equiv 3 \mod 6$$

$$4^3 \equiv 64 \equiv 4 \mod 6$$

$$5^3 \equiv 125 \equiv 5 \mod 6$$