

Planning and Approximate Reasoning Hatem A. Rashwan

Planning under uncertainty: MDPs

Plan Execution

- problem: real world differs from model described by Σ
- more realistic model: interleaved planning and execution
 - plan supervision
 - plan revision
 - re-planning
- dynamic planning: closed loop between planner and controller
 - execution status

Planning Example Robot navigation

- A robot act in the environment aiming to avoid the obstacles and reach its goal.
- The robot aims to reach the celled labelled with +1 and avoid the cell labelled with -1

Planning Example Why the short path is problematic

- Non-perfect execution: actions are performed with a probability < 1
- What are the best actions for a robot (an agent) under this constraint? (move right->up->up->right)
- And what is the maximum performance of the execution?

(e.g., 99%)

Example

- A robot does not exactly perform the desired motions due to different reasons.
 - Uncertainty about performing actions

Planning Example Non-Deterministic Transitions

Consider non-deterministic transition model (UP/R/L)

Desired action is UP

Example

- Intended action is executed with p=0.8
- With p = 0.1, the robot can move right or left.
 - Uncertainty about performing actions

Markov Decision Process (MDP) motivation

Executing the A* plan

Transitions are non-deterministic

Uncertainty about performing actions will be occurred

MDP motivation

 Perhaps using longer path with lower probability to not reach the cell labelled -1 is good option.

This proposed path can have the highest overall utility.

Axioms of Probability

- Let A be a proposition about the world
- P(A) = probability proposition A is true
- $0 \le P(A) \le 1$
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

Random Variables

- Random Variables: variables in probability to capture phenomena
- A random variable has a domain of values it can take on.
- Probability distribution function represents
 "probability of each value"

Example – Pick Fruit from Basket

- Random variable: F
- Domain: a, o
- PDF:

$$\circ$$
 p(F = a) = $\frac{1}{4}$

$$o p(F = o) = \frac{3}{4}$$

- The **expected value** of a function of a random variable **is the** weighted average of the probability distribution over outcomes.
- Example: calculate the expected time of waiting for an elevator
- Time: 5ms 2ms 0.5ms
- Probability: 0.2 0.7 0.1

$$5 \times 0.2 + 2 \times 0.7 + 0.5 \times 0.1 =$$
2.45ms

Transition Model

- Given that our agent is in some state s, there is a probability to go to the first state, another probability to go to the second state, and so on for every existing state.
- This is our transition probability.
- Probability to reach the next state s from state s by choosing action a is $P(s, a, s') \sim P(s/s', a) =>$ It is called **Transition model**

Markov Property:

The transition probabilities from *s* to *s* 'depend only on the current state *s* and not on the history of earlier states.

Reward:

- In each state s, the robot (agent) receives a reward R(s).
- The reward may be positive or negative but must be bounded
- This can be generalized to be a reward function R(s, a, s')

Reward

• In our example, the reward is -0.04 in all states (e.g., the cost of the motion) except the terminal states (reward is +1/-1)

A negative reward gives an incentive

- to reach the goal quickly
- Or "living in this environment is not enjoyable"

-0.04	-0.04	0.04	+1
-0.04		-0.04	-1
-0.04	-0.04	-0.04	-0.04

Markov Decision Process-MDP

Given a **sequential decision problem** in fully observable, stochastic environment with a known Markovian transition model

Then a Markov Decision Process-MDP (*S*, *A*, *Si*, *P*, *R*) is defined by the components of:

- Set of states: S
- Set of actions: A
- Initial sates: Si
- Transition model: *P*(*s*,*a*,*s*')
- Reward function: R(s)
 - Here: considering only R(s)
 (does not change the problem)

- Process/observation:
 - \circ Assume start state s_i
 - \circ Receive immediate reward r_i
 - Move, or observe a move, randomly to a new state according to the probability transition matrix
 - \circ Future rewards (of next state) are discounted by γ

probability transition matrix T is

Solving a Markov System with Rewards

- $V^*(s_i)$ expected discounted sum of future rewards starting in state s_i
- $V^*(s_i) = r_i + \gamma [p_{i1}V^*(s_1) + p_{i2}V^*(s_2) + \dots p_{in}V^*(s_n)]$
- γ is a discount factor, where $\gamma \in [0, 1]$.
- It informs the agent of how much it should care about rewards now to rewards in the future.
- If $(\gamma = 0)$, that means the agent is short-sighted, in other words, it only cares about the first reward.
- If $(\gamma = 1)$, that means the agent is far-sighted, i.e. it cares about all future rewards.
- What we care about is the total rewards that we're going to get.

Value Iteration to Solve a Markov System with Rewards

- $V_1(s_i)$ expected discounted sum of future rewards starting in state s_i for one step.
- $V_2(s_i)$ expected discounted sum of future rewards starting in state s_i for two steps.

• ...

- $V_k(s_i)$ expected discounted sum of future rewards starting in state si for k steps.
- As $k \to \infty V_k(s_i) \to V^*(s_i)$
- Stop when difference of k + 1 and k values is smaller than some \in .

3-State Example: Values $\gamma = 0.5$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.0	-1.0	-10.0
3	5.0	-1.25	-10.75
4	4.9375	-1.4375	-11.0
5	4.875	-1.515625	-11.109375
6	4.8398437	-1.5585937	-11.15625
7	4.8203125	-1.5791016	-11.178711
8	4.8103027	-1.5895996	-11.189453
9	4.805176	-1.5947876	-11.194763
10	4.802597	-1.5973969	-11.197388
11	4.8013	-1.5986977	-11.198696
12	4.8006506	-1.599349	-11.199348
13	4.8003254	-1.5996745	-11.199675
14	4.800163	-1.5998373	-11.199837
15	4.8000813	-1.5999185	-11.199919

3-State Example: Values $\gamma = 0.9$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	5.8	-1.8	-11.6
3	5.8	-2.6100001	-14.030001
4	5.4355	-3.7035	-15.488001
5	4.7794	-4.5236254	-16.636175
6	4.1150985	-5.335549	-17.521912
7	3.4507973	-6.0330653	-18.285858
8	2.8379793	-6.6757774	-18.943516
9	2.272991	-7.247492	-19.528683
50	-2.8152928	-12.345073	-24.633476
51	-2.8221645	-12.351946	-24.640347
52	-2.8283496	-12.3581295	-24.646532
86	-2.882461	-12.412242	-24.700644
87	-2.882616	-12.412397	-24.700798
88	-2.8827558	-12.412536	-24.70094

3-State Example: Values $\gamma = 0.2$

Iteration	SUN	WIND	HAIL
0	0	0	0
1	4	0	-8
2	4.4	-0.4	-8.8
3	4.4	-0.44000003	-8.92
4	4.396	-0.452	-8.936
5	4.3944	-0.454	-8.9388
6	4.39404	-0.45443997	-8.93928
7	4.39396	-0.45452395	-8.939372
8	4.393944	-0.4545412	-8.939389
9	4.3939404	-0.45454454	-8.939393
10	4.3939395	-0.45454526	-8.939394
11	4.3939395	-0.45454547	-8.939394
12	4.3939395	-0.45454547	-8.939394

Markov Chain - Example

- Markov Chain
 - states
 - transitions
 - rewards
 - no actions
 - Value of a state, using infinite discounted horizon

$$V^*(s_i) = r_i + \gamma [p_{i1}V^*(s_1) + p_{i2}V^*(s_2) + \dots p_{in}V^*(s_n)]$$

• Assume γ =0.9

$$V(1)=0+.9(.5 V(1)+.5 V(2))$$

 $V(2)=10+.9(.2 V(1)+.1 V(2)+.7 V(3))$
 $V(3)=0+.9(.9 V(2)+.1 V(3))$

Markov Decision Processes

- Finite set of states, $s_1, ..., s_n$
- Finite set of actions, $a_1,...,a_m$
- Probabilistic state, action transitions:
- $P_{ij}^{K} = prob \ (next = s_j \mid current = s_i \mid take \ action = a_k)$
- *Markov property*: State transition function only dependent on current state, not on the "history" of how the state was reached.
- Reward for each state, $r_1, ..., r_n$
- Process:
 - \circ Start in state s_i
 - \circ Receive immediate reward $r_{\rm i}$
 - \circ Choose action $a_k \in A$
 - \circ Change to state s_j with probability $P_{ij}^{\ k}$
 - Discount future rewards

Solving an MDP

- Find an action to apply to each state.
- A policy is a mapping from states to actions.
- Optimal policy for every state, there is no other action that gets a higher sum of discounted future rewards.
- For every MDP there exists an optimal policy.
- Solving an MDP is finding an optimal policy.
- A specific policy converts an MDP into a plain Markov system with rewards.

Solving an MDP - Example

- Note the need to have a finite set of states and actions (R or D).
 R=> Research, and D=> Development
- Note the need to have all transition probabilities.

Value Iteration

- $V^*(s_i)$ expected discounted future rewards, if we start from state s_i , and we follow the optimal policy.
- Compute V^* with value iteration:
- $-V_k(s_i)$ = maximum possible future sum of rewards starting from state s_i for k steps.
- Bellman's Equation:

$$V^{n+1}(s_i) = \max_{k} \{r_i + \gamma \sum_{j=1}^{N} P_{ij}^k V^n(s_j)\}$$

• Dynamic programming

Nondeterministic Example

- Reward and discount factor to be decided.
- Note the need to have a finite set of states and actions.
- Note the need to have all transition probabilities.

Value Iteration-Bellman equation

- Start with some policy $\pi_0(s_i)$.
- Such policy transforms the MDP into a plain Markov system with rewards.
- Compute the values of the states according to the current policy.
- Update policy:

$$\pi_{k+1}(s_i) = r_i + \arg\max_{a} \{ \gamma \sum_{j=1}^{N} P_{ij}^a V^{\pi_n}(s_j) \}$$

- Keep computing
- Stop when $\pi_{k+1} = \pi_k$.

Nondeterministic Example

Nondeterministic Example

```
\pi^*(s) = D, for any s = S1, S2, S3, and S4, \gamma = 0.9.
V^*(S2) = r(S2,D) + 0.9 (1.0 V^*(S2))
V*(S2) = 100 + 0.9 V*(S2)
V*(S2) = 1000.
V*(S1) = r(S1,D) + 0.9 (1.0 V*(S2))
V*(S1) = 0 + 0.9 \times 1000
V*(S1) = 900.
V*(S3) = r(S3,D) + 0.9 (0.9 V*(S2) + 0.1 V*(S3))
V^*(S3) = 0 + 0.9 (0.9 \times 1000 + 0.1 V^*(S3))
V*(S3) = 81000/91.
V^*(S4) = r(S4,D) + 0.9 (0.9 V^*(S2) + 0.1 V^*(S4))
V^*(S4) = 40 + 0.9 (0.9 \times 1000 + 0.1 V^*(S4))
V*(S4) = 85000/91.
```

Solve the MDP

Markov Decision Processes satisfy both mentioned properties.

- Bellman equation gives us recursive decomposition (the first property).
- Bellman equation tells us how to break down the optimal value function into two pieces,
 - the optimal behaviour for one step followed by
 - the optimal behaviour after that step.
- We can do prediction, i.e., evaluate the given policy to get the value function on that policy (Dynamic Programming).
- Evaluating a random policy
- Policy Update

MDP solving - Value Iteration Example

- In this Grid World, we get a reward of as shown in the figure for each transition we make (actions we take). And the actions that we can take are **north**, **south**, **east and west**.
- Our agent is following some random policy π with a weight of 0.5, 0.3, 0.1 and 0.1 for moving to north, south, east and west directions, respectively.

We need to calculate the policy for four actions, up, left, right and down with the center node with a reward of 1

MDP solving – Value Iteration Example

$$\pi_{k+1}(s_i) = r_i + \arg\max_{a} \{ \gamma \sum_{j=1}^{N} P_{ij}^{a} V^{\pi_n}(s_j) \}$$

state space and reword

MDP solving – Value Iteration Example

$$\pi_{k+1}(s_i) = r_i + \arg\max_{a} \{ \gamma \sum_{j=1}^{N} P_{ij}^a V^{\pi_n}(s_j) \}$$

(left \leftarrow) 0.5*5+0.1*10+0.1*1+0.3*-8 = 1.2 (up \uparrow) 0.5*10+0.1*5+0.1*-8+0.3*1 = 5.0 (right \rightarrow) 0.5*-8+0.1*10+0.1*1+0.3*5 = -1.4 (Down \downarrow) 0.5*1+0.1*5+0.1*-8+0.3*10 = 3.2

state space and reword

$$\pi_{1=1+\max\{1.2,5.0,-1.4,3.2\}=6.0}$$

Planning and Approximate Reasoning Hatem A. Rashwan

Application: Planning for Mobile Robot Manipulation

Graph for Navigation with Complex 3D Body [Hornung et al., '12]

- 3D (x,y,θ) lattice-based graph representation for full-body collision checking
 - -takes set of motion primitives as input
 - –takes Nfootprints of the robot defined as polygons as input
 - -each footprint corresponds to the projection of a part of the body onto x,y plane
 - -collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map

Manipulation Lattice for Arm Planning [Cohen et al., '13]

- •Representation
 - -ex. Single arm with n joints $\{\theta 1,...,\theta n\}$

Manipulation Lattice for Arm Planning [Cohen et al., '13]

- Representation
 - -ex. Single arm with n joints $\{\theta 1,...,\theta n\}$

Manipulation Lattice for Arm Planning [Cohen et al., '13]

- Non-uniform Dimensionality
 - -far from goal: only 4 DoFs active
 - -around goal: all 7 DoFs are active
- Non-uniform Resolution
 - -far from goal: larger discretization of joint angles
 - -around goal: finer discretization of joint angles

4D

- 1. Shoulder pan
- 2. Shoulder pitch
- 3. Upper arm roll
- 4. Elbow flex

7D

- 1. Shoulder pan
- 2. Shoulder pitch
- 3. Upper arm roll
- 4. Flbow flex
- 5. Forearm roll
- 6. Wrist flex
- 7. Wrist roll

Summary

- ☐ Multiple planners used for both domains
- Start and goal configurations are often most constrained
 –can be exploited by the planners
- ☐ Planning is higher-dimensional but can take longer than on ground and aerial vehicles
- ☐ Design of proper heuristics is a key to efficiency

End

5 0