Optimización, caracterización y aceleración de un modelo de retina mediante el uso de metaheurísticas y algoritmos bioinspirados

Rubén Crespo-Cano, Alejandro Serrano-Cases, Eduardo Fernández, Sergio Cuenca-Asensi y Antonio Martínez-Álvarez

Departamento de Tecnología Informática y Computación Universidad de Alicante

Jornadas SARTECO 2018

Índice

- Introducción
 - La retina
 - Neuroprótesis visuales
 - ▶ Modelo de retina
- Algoritmos evolutivos multiobjetivo
 - GA, PSO y DE
- Materiales y métodos
 - Registros electrofisiológicos
 - Comparación de MOEAs e interpretación estadística
- Experimentos y resultados
- Aceleración automática del modelo
- Conclusiones y trabajo futuro

La retina

Neuroprótesis visuales

- Neuroprótesis cortical
- Único tratamiento posible para ceguera causada por glaucoma, retinitis pigmentosa en etapa terminal, atrofia óptica, etc.
- Restauración del sentido visual de forma limitada

¿Qué es un modelo de retina?

- Representación bioinspirada capaz de realizar parte de las funciones de pre-procesamiento llevadas a cabo en la retina
- Modelo capaz de transformar el mundo visual externo en señales eléctricas que puedan ser utilizadas para excitar las neuronas del córtex occipital

Bloques de procesamiento del modelo bioinspirado de retina

Descripción matemática del modelo de retina

$$S_{1} = W_{1} \cdot f_{DoG}(\sigma_{1}, \sigma_{2}, \mu_{1}, \mu_{2}, k_{1}, k_{2}, R + B, G)$$

$$+ W_{2} \cdot f_{DoG}(\sigma_{1}, \sigma_{2}, \mu_{1}, \mu_{2}, k_{1}, k_{2}, R + G, B)$$

$$+ W_{3} \cdot f_{LoG}(\sigma_{1}, \sigma_{2}, \mu_{1}, \mu_{2}, k_{1}, k_{2}, I)$$

$$S_{2} = NLIF(S_{1}, t, I, rp, pt, fmf)$$

$$(2)$$

Algoritmos evolutivos multiobjetivo

¿Por qué una estrategia evolutiva multiobjetivo?

- Muchos parámetros y rango dinámico
- ► Enorme espacio de búsqueda ⇒ Imposibilidad de exploración de todo el espacio de soluciones
- Necesidad de guiar el proceso de búsqueda
- ► Varios objetivos antagónicos ⇒ Problema **multiobjetivo**

Algoritmos evolutivos multiobjetivo

Propuesta:

Utilización de **técnicas de computación evolutiva** para guiar la exploración del espacio de soluciones y un procedimiento **multiobjetivo** para evaluar cada solución alcanzada en el proceso de exploración

Algoritmos evolutivos multiobjetivo

- ► Algoritmos genéticos (**GA**)
 - ► SPEA2
 - NSGA-II
 - NSGA-III
- Optimización por enjambre de partículas (PSO)
- Evolución diferencial (DE)

Materiales y métodos

Obtención de los registros electrofisiológicos

Materiales y métodos

Evaluación de MOEAs e interpretación estadística

Hipervolumen (HV)

- Volumen de la sección dominada del espacio de soluciones
- Métrica de rendimiento

Materiales y métodos

Evaluación de MOEAs e interpretación estadística

- Naturaleza estocástica de los algoritmos evolutivos
- Uso de herramientas estadísticas para comparar los resultados
- Ejecución de cada experimento de forma independiente N veces
- ► Inferencias estadísticas → métodos no paramétricos
 - Prueba de Kruskal-Wallis
 - Prueba de Wilcoxon-Mann-Whitney

Parámetros de los algoritmos evolutivos

- Algoritmos implementados de acuerdo a la descripción existente en la literatura
- ► Tamaño población: 40
- ► Probabilidad cruce: 40%
- ► Probabilidad mutación: 5%
- ▶ Número de generaciones: 100
- ▶ Algoritmo PSO $\rightarrow \phi_1$ **y** ϕ_2 : 2.05
- ▶ Algoritmo DE \rightarrow **F**: 1

Parámetros del cromosoma

Parámetro	Rango
K	3 - 13
Threshold	225.0 - 275.0
Leakage	10.0 - 15.0
Refractory Period	1.0 - 10.0
Persistence Time	3 - 7
Frequency Modulator Factor	0.25 - 0.40

Métricas comparativas entre modelos de retina

- ► **Métrica 1**: Firing Rate Absolute Difference (**FRAD**)
- Métrica 2: Peristimulus Time Histogram Kullback-Leibler Divergence (PSTH-KLD)
- Métrica 3: Interspike-Interval Histogram Kullback-Leibler Divergence (ISIH-KLD)
- ► Métrica 4: Receptive Field Absolute Difference (RFAD)

Interpretación estadística

- Métrica: Hipervolumen (HV)
- ► Comparación de metaheurísticas de naturaleza estocástica
 - Evitar la influencia de efectos aleatorios
- ▶ 10 ejecuciones independientes por cada EA

Interpretación estadística

- ► Media del **HV** para cada EA
- 100 generaciones
- $\blacktriangleright \ \, \mathsf{Mejores} \,\, \mathsf{resultados} \, \to \, \textbf{PSO}$

Contraste de hipótesis

Prueba de Kruskal-Wallis

- ▶ *p*-valor obtenido: 1.21*e*−7
- Diferencia estadísticamente significativa

Prueba de Wilcoxon-Mann-Whitney

	SPEA2	NSGA-II	NSGA-III	PSO	DE
SPEA2	_	0.0963	0.0015	0.0002	0.0233
NSGA-II	_	-	0.0003	0.0002	0.4497
NSGA-III	_	-	-	0.0002	0.0002
PSO	_	-	-	-	0.0002
DE	_	-	-	-	-

Predicción de disparos

- Una célula ganglionar
- Cuatro repeticiones del mismo estímulo
- Datos biológicos (rojo), modelo de retina (verde) y modelo HVSP (azul)

Aceleración automática del modelo

- Selección de un individuo del frente de Pareto
- ightharpoonup Codificación en lenguaje C o Bajo acoplamiento
 - Código fuente sencillo
 - ▶ Código fuente ineficiente → Incompatible con tiempo real
- Necesidad de mejorar el tiempo de ejecución y el tamaño del programa

Propuesta

- Usar optimizaciones/parámetros del compilador para obtener la mejor planificación y mapeado de recursos
- Objetivo de tiempo real

Aceleración automática del modelo

Criterios

- ► Tiempo de ejecución
- ► Tamaño en memoria del programa

Problema de optimización multiobjetivo

- Objetivos contrapuestos
- Algoritmo NSGA-II
- Codificación individuos: cada parámetro de optimización representa un gen

Aceleración automática del modelo

Parámetros

▶ Población: 500

▶ **Prob.** cruce: 20%

▶ Prob. mutación: 5%

▶ Núm. generaciones: 1000

Plataformas

► **x86_64**: 2x Intel U7300 1.73 GHz

► ARMv7I: 4x Cortex-A53

1.2GHz

Conclusiones y trabajo futuro

Conclusiones

- Ajuste del modelo computacional de retina
- Varias metaheurísticas para el ajuste del modelo (uso del hipervolumen y métodos estadísticos para validar las soluciones)
- Optimización de un individuo del frente de Pareto para la ejecución en tiempo real

Trabajo futuro

Mejorar el modelo computacional de retina:

- Mecanismos de control de ganancia y contraste
- Filtros post-disparo neuronal
- ▶ Filtros de acoplamiento

Optimización, caracterización y aceleración de un modelo de retina mediante el uso de metaheurísticas y algoritmos bioinspirados

Rubén Crespo-Cano, Alejandro Serrano-Cases, Eduardo Fernández, Sergio Cuenca-Asensi y Antonio Martínez-Álvarez

Departamento de Tecnología Informática y Computación Universidad de Alicante

Jornadas SARTECO 2018

