E-TEXTILES

Additional materials

Overview

- The world of wearable devices is vast, and it is constantly expanding.
- It is intimately connected with people's everyday lives, as anything functional to perform daily activities is actually "wearable".
- Among all of them, wearables applied in the healthcare field are of major interest. Furthermore, the recent worldwide spread of COVID-19 is forcing several healthcare providers to rethink the way services are provided and is leading to a faster digitalization process, thus paving the way to a more intensive use of wearable devices and remote monitoring solutions in the medical field

Overview

- By combining the notion of biosensor and wearability, a useful and comfortable technology can be obtained.
- The market offers a great variety of wearables with different characteristics and monitoring approaches.
- These are connected in what can be considered a full-fledged network, commonly referred to as body sensor network (BSN) or body area network (BAN). A complete monitoring system implies the presence of an effective communication protocol and reliable data management and processing

From the microscopic to macroscopic scale, the fabric is composed of fibres and yarns.

The former is the basic element of the textile material, whilst the latter is an intermediate material between fibre and fabrics, composed of interlocked fibres.

Both the components can be made conductive applying different techniques [18], the most used of which are shown in Figure 1

Figure 1. Most common manufacturing techniques of conductive textiles: knitting, weaving, embroidery; coating methods; printing methods.

Table 1. Synthesis of the main advantages and disadvantages of the manufacturing techniques.

	Advantages	Disadvantages	
Knitting	skin comfort; low weight; high elasticity	Complex manufacturing process; limitations in	
Weaving	long-lasting fabrics; less likely to shrink when washing; less likely to lose colour		
Embroidery	possibility to lay the base material in all directions rather than in pre-defined ones (enhanced skin-electrode contact)	the choice of fabrics; damaging of the natural properties of textiles	
Coating methods	good conductivity; maintenance of the original fibre properties such as density, flexibility, and handiness; resistant to corrosion.	high production cost; difficult to scale production	
Printing methods	reduction in production cost; possibility of a large-scale production	durability of printed patterns; optimal performance achieved only with smooth and flat surfaces	

Manufacturing of Conductive Fibres

- There are two processes to make conductive fibres: wire drawing and fibre coating. Wire drawing is a mechanical process that transforms the raw material into microfilaments with a diameter of 5–8 mm, applying forces with industrial machines. After the drawing, the microfilament is annealed at a high temperature of 600–900 °C to restore its mechanical and electrical properties. Afterwards, the wire is cooled and wrapped in a revolving cylinder. The most used metals for this process are copper, silver, bronze, steel, and silverplating copper.
- The obtained fibres yield several advantages. They are resistant to washing and sweat; the fibres are also strong, biologically inert, and available at low cost. Nevertheless, they are difficult to manufacture due to their heaviness [4]. Fibre coating consists of applying metals or conductive polymers on the surface of a non-metallic substrate to make it conductive [19]. The substrate can be either a fibre, a yarn, or a fabric. In the presented review, the fibre is considered as conductive unit for the purpose of clarity

Table 2. Materials used to manufacture e-textiles [4,20–22].

Metal (Monofilament Fibers)	Electrical Properties					
	Conductivity [S·m/mm ²]	Resistivity [Ω·mm²/m]	Thermal Coefficient of Resistance [10 ⁻⁶ K ⁻¹]			Notes
			Minimum	Typical	Maximum	_
Cu	58.5	0.0171	3900	3930	4000	Corrosion with water
Cu/Ag	58.5	0.0171	3900	4100	4300	-
						Biocompatible, stable, rare, unaffected
Ag 99%	62.5	0.0160	3800	3950	4100	by moisture, resonant, moldable, malleable
AgCu	57.5	0.0174	3800	3950	4100	-
Bronze	7.5	0.1333	600	650	700	-
Steel 304	1.4	0.7300	-	1020	-	-
Steel 316	1.3	0.7500	-	1020	-	-
Conductive polymer	Conductivity [S/cm]	Doping	Limitations			Advantages
PEDOT:PSS	4700	P	Brittle, needs additional steps to process			High conductivity, resistance to humidity, stable at high temperatures transparent
PANI (Polyaniline)	112	P	Hard to process, not biodegradable, limited solubility			High conductivity, stable in different environments, low cost
Fabrics	Category		Relative permittivity (ϵ_r) at 1 kHz			Physical characteristics
Cotton	Natural		3.004			Absorbent, breathable
Nylon (Polyamide)	Synthetic		1.222		Breathable, elasticity	
Polyester threads (PES)	Synthetic		1.178			Breathable
Linen	Natural		4.007			Absorbent, breathable
Rayon	Synthetic		5.082			Breathable, elasticity, transparent
PVC textile	Synthetic		3.118			Waterproof, non breathable

Manufacturing of Yarns

- As far as the yarns are concerned, these can be manufactured in different ways to form the fabrics. The manufacturing processes are knitting, weaving, and embroidering; the resulting fabric is named after the used technique.
- The processes used for smart textiles are the same as those used for regular textiles. A knitted fabric is made of a single yarn looped continuously to create a braid-shape and with the use of a needle, a series of yarns are connected.
- This manufacturing technology carries several advantages: skin comfort, low weight, and high elasticity. In fact, the knitted fabric is slightly more stretchable in width than in length, but if stretched too much it may lose its shape

■ Knitted fabrics provide stretchiness and temperature control, and thus, they are preferably employed for warmth, comfort, and wrinkle resistant applications, like clothing, although they shrink when frequently washed.

■ The knitting technology can be divided into weft and warp fabrics. Weft knitted fabrics, produced in flat or tubular form, are highly elastic and drapeable, while warp knitted fabrics are not much elastic while difficult to reveal

Figure 2. Typical placement sites of sensors that can be included in sensorized garments (ECGs, respiratory signal monitors, IMUs, pulse oximeters, other sensors).