1. (9 points) Convert the following unsigned base 2 numbers (binary) to base 16 numbers (hexadecimal):

A. 0110 0001 1111

- 0110=(0x2^0 + 1x2^1 +1x2^2 + 0x2^3) -> (6)_D -> (6)_H
- $0001 = (1x2^0 + 0x2^1 + 0x2^2 + 0x2^3) \rightarrow (1) D \rightarrow (1) H$
- 1111= (1x2^0 + 1x2^1 + 1x2^2+1x2^3) -> (15)_D (F)_H
- => (61F)__H

B. 1000 1111 1100

- 1000= (0x2^0 + 1x2^1 +1x2^2 + 1x2^3) ->(8) D ->(8) H
- 1111= (1x2⁰ + 1x2¹ +1x2² + 1x2³) ->(15)_D ->(F)_H
- 1100= (0x2^0 + 0x2^1 +1x2^2 + 1x2^3) ->(12)_D ->(C)_H
- => (8FC)_H

C. 0001 0110 0100 0101

- $0001 = (1x2^0 + 0x2^1 + 0x2^2 + 0x2^3) \rightarrow (1) D \rightarrow (1)_H$
- $0110 = (0x2^0 + 1x2^1 + 1x2^2 + 0x2^3) \rightarrow (6) D \rightarrow (6)_H$
- $0100 = (0x2^0 + 0x2^1 + 1x2^2 + 0x2^3) \rightarrow (4)_D \rightarrow (4)_H$
- $0101 = (1x2^0 + 0x2^1 + 0x2^2 + 0x2^3) \rightarrow (5) D \rightarrow (5)_H$
- => (1645) H
- 2. (27 points) Convert the following binary numbers to base 10 numbers (decimal). Each time if binary numbers are represented in:
- a) Signed magnitude representation.
- 1) 1100 1010 =
 - $0x2^0 + 1x2^1 + 0x2^2 + 1x2^3 + 0x2^4 + 0x2^5 + 1x2^6$
 - 2+8+64
 - => (-74)_D
- 2) 1111 0010 =
 - $0x2^0 + 1x2^1 + 0x2^2 + 0x2^3 + 1x2^4 + 1x2^5 + 1x2^6$
 - 2+16+32+64
 - => (-114)_D
- 3) 1000 0111 =
 - $1x2^0 + 1x2^1 + 1x2^2 + 0x2^3 + 0x2^4 + 0x2^5 + 0x2^6$
 - 1+2+4
 - => (-7)_D
- b) One's complement representation.
- 1) 1100 1010 =
 - $-(1x2^0 + 0x2^1 + 1x2^2 + 0x2^3 + 1x2^4 + 1x2^5 + 1x2^6)$
 - => (-53) D
- 2) 1111 0010 =
 - $-(1x2^0 + 0x2^1 + 1x2^2 + 1x2^3)$
 - => (-13)_D

```
3) 1000 0111 =
```

- $-(1x2^3 + 1x2^4 + 1x2^5 + 1x2^6)$
- => (-120) D
- c) Two's complement representation.
- 1) 1100 1010 =
 - (1011 0110) 2's complement
 - $-(1x2^1 + 1x2^2 + 1x2^4 + 1x2^5)$
 - => (-54)_D
- 2) 1111 0010 =
 - (1000 1110) 2's complement
 - $-(1x2^1 + 1x2^2 + 1x2^3)$
 - => (-14)_D
- 3) 1000 0111 =
 - (1111 1001) 2's complement
 - $-(1x2^0 + 1x2^3 + 1x2^4 + 1x2^5 + 1x2^6)$
 - (-121)_D

For example, question A, if 1100 1010 is a binary number represented in signed magnitude representation, what is the decimal value? Also do it again if 1100 1010 is a binary number in one's

complement representation and two's complement representation. There are 9 separate answers in total.

3. (36 points) Convert the following base 10 (decimal) values to binary numbers (8-bits). Each binary

result represented in:

- a) Signed magnitude representation.
- 1) $-100_d =$
 - $2-100 \rightarrow 0$
 - $2-50 \rightarrow 0$
 - $\bullet \quad 2-25 \to 1$
 - $2-12 \to 0$
 - $2-6 \rightarrow 0$
 - $\bullet \quad 2-3 \to 1$
 - $\bullet \quad 2-1 \to 1$
 - => 11100100
- 2) -16d =
 - $2-16 \rightarrow 0$
 - $2-8\rightarrow 0$
 - $2-4\rightarrow 0$
 - $2-2\rightarrow 0$
 - $2-1 \rightarrow 1$
 - => 10010000

- 3) -21_d =
 - $2-21 \rightarrow 1$
 - 2 − 10→ 0
 - $2-5 \rightarrow 1$
 - $\bullet \quad 2-2 \to 0$
 - $\bullet \quad 2-1 \to 1$
 - => 10010101
- 4) $-0_d =$
 - => 10000000
- b) One's complement representation.
- 1) -100_d =
 - 11100100
 - => 10011011 1's complement
- 2) -16d =
 - 10010000
 - => 11101111 1's complement
- 3) -21d =
 - 10010101
 - => 11101010 1's complement
- 4) $-0_d =$
 - 10000000
 - => 11111111 1's complement
- c) Two's complement representation.
- 1) $-100_d =$
 - 11100100
 - => 10011100 2's complement
- 2) -16d =
 - 10010000
 - => 11110000 2's complement
- 3) -21d =
 - 10010101
 - => 11101011 2's complement
- 4) $-0_d =$
 - 10000000
 - => 10000000 2's complement

(There are 12 separate answers in total.)

- 4. (4 points) What is the range of:
- A. An unsigned 7-bit number?
 - 0 (2ⁿ -1), n=7
 - $0-(2^7-1)$
 - 0 (128 1)
 - => 0 to 127
- B. A signed 7-bit number?
 - -2^(n-1) (2^(n-1) -1)
 - $-2^{(7-1)} (2^{(7-1)} 1)$
 - -2^6 (2^6 1)
 - => -64 to 63
- 5. (12 points) Solve following bitwise operations (Λ = AND, V = OR)
- e.g. $0101 \land 0011 = 0001$
- 1. 1000 \wedge 1110
 - =>1000 ∧ 1110 = 1000
- 2. 1000 v 1110
 - => 1000 \times 1110 = 1110
- 3. $(1000 \land 1110) \lor (1001 \land 1110)$
 - 1000 \(\) 1110 = 1000
 - 1001 \(\Lambda \) 1110 = 1000
 - =>1000 \times 1000 = 1000
- 6. (9 points) Please demonstrate each step in the calculation of the arithmetic operation 25 65. (both
- 25 and 65 are signed decimal numbers)
 - 25
 - $2-25 \to 1$
 - $2-12 \rightarrow 0$
 - $2-6 \rightarrow 0$
 - $2-3\rightarrow 1$
 - 00011001
 - 00011001 2's complement
 - (25) 00011001 + (-65) 10111111
 - => (10101000) 2's complement $\rightarrow (-40)_D$
- 7. (3 points) Mathematically the answer in Q6 is -40d. Please verify your answer in Q6 using a conversion of 2's and decimal numbers
 - (-40) D \rightarrow (10101000) 2's complement
 - $-(0x2^0 + 0x2^1 + 0x2^2 + 1x2^3 + 0x2^4 + 1x2^5 + 0x2^6)$
 - -(8 + 32)
 - => (-40) D