Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 3. Tydzień rozpoczynający się 23. marca

Zadania

- 1. A oraz B są zdarzeniami takimi, że: $P(A \cap B) = 1/4$, $P(A^C) = 1/3$, P(B) = 1/2. Znaleźć $P(A \cup B)$.
- 2. Czy prawdą jest, że 13. dzień miesiąca powiązany jest z piątkiem? (1 stycznia 1601 31 grudnia 2000)

ZAŁOŻENIA: rok numer n jest jest przestępny jeżeli $n \equiv_4 0$, pod warunkiem, że $n \not\equiv_{100} 0$; dodatkowo – jeżeli $n \equiv_{400} 0$ (czyli rok 2000), to wcześniejszy warunek jest nieważny. Ile razy w 400-letnim cyklu 13-tym dniem miesiąca był poniedziałek, wtorek, ..., niedziela?

Mówimy, że zmienne X,Y są niezależne, wtedy gdy – w wypadku dyskretnym – spełniony jest warunek $P(X=x_i,Y=y_k)=P(X=x_i)\cdot P(Y=y_k).$

- 3. Zmienna X ma rozkład $B(n_1, p)$ a zmienna Y rozkład $B(n_2, p)$. Zmienne są niezależne. Wykazać, że zmienna Z = X + Y ma rozkład $B(n_1 + n_2, p)$.
- 4. Niezależne zmienne losowe X,Y mają rozkład Poissona z parametrami λ_1 i λ_2 . Wykazać, że zmienna Z=X+Y ma rozkład Poissona z parametrem $\lambda_1+\lambda_2$.

Gęstość 2-wymiarowej zmiennej losowej (X,Y) to $f(x,y)=3xy\,$ na obszarze ograniczonym prostymi $y=0,\ y=x,\ y=2-x.$

- 5. Wyznaczyć gęstości brzegowe $f_1(x), f_2(y)$.
- 6. Obliczyć wartość oczekiwaną zmiennej brzegowej Y. Czy zmienne X,Y są niezależne? (odpowiedź uzasadnić)
- 7. Prawdopodobieństwo sukcesu w pojedynczej próbie jest równe p. Wykonujemy niezależne doświadczenia do momentu uzyskania 3 sukcesów. Zmienna losowa X to liczba przeprowadzonych prób. Wyznaczyć rozkład zmiennej X, tzn. podać jej funkcję gęstości (ppb). Obliczyć wartość oczekiwaną zmiennej X.
- 8. Czytelnie i starannie bez korzystania z notatek napisać wielkie i małe greckie litery: alfę α , betę β , (d)zetę ζ , etę η , lambdę λ , chi χ , ksi ξ , fi ϕ , rho ρ .
- 9. (a) Niech $X \sim U[-2,2]$. Znaleźć rozkład zmiennej Y = |X|.
 - (b) Dla $X \sim U[-1,1]$ wyznaczyć rozkłady zmiennych $Y = X^3, Z = X^2$.
- 10. Niech X będzie zmienną o rozkładzie geometrycznym $(X \sim \text{Geom}(p))$. Sprawdzić, że $V(X) = \frac{1-p}{p^2}$.
- 11. Zbiory A_1, \ldots, A_4 mają moc odpowiednio 40, 32, 20, 50. Losowo wybieramy pewien element (z całości). Wartością zmiennej losowej X jest moc zbioru z którego pochodzi wybrany element. Następnie losowo wybieramy jeden ze zbiorów. Wartością zmiennej losowej Y jest moc wybranego zbioru. Obliczyć E(X) i E(Y).

Witold Karczewski