Experimento 04 - Máquina de atwood

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

15 de outubro de 2014

1 Resumo

Inicialmente, prendeu-se um fio (inextensível) com duas massas nas extremidades em uma polia em torno de um eixo fixo (Máquina de Atwood). Após variar a diferença entre as massas das extremidades dos pesos dos fios (com discos de metal de massas variadas) e obter os períodos de queda de da massa de maior peso com um cronômetro, foi utilizada a fórmula $\Delta m = (\frac{2h}{gR^2})(I+MR^2)\frac{1}{t^2} + (\frac{tau_a}{gR}) \text{ para determinar o momento de inércia da polia e o torque do atrito. Após a transformação linear da equação, traçou-se um gráfico de <math>\Delta m$ por $1/t^2$. A partir desses dados e das dimensões do cilindro (calculadas com um paquímetro), foi possível a determinação do momento de inércia aproximado e do torque realizado pela força de atrito na polia.

2 Objetivos

O experimento realizado teve como objetivo estudar a máquina de Atwood, utilizando para isso a determinação do momento de inércia da polia utilizada e do torque realizado pelo atrito entre tal polia e o fio que a toca. $T = \sqrt{\frac{8\pi I_0 L}{Gr^4}}$

3 Procedimento Experimental e Coleta de Dados

3.1 Procedimento

A montagem do experimento da Máquina de Atwood consiste em dois pesos de suspensão ligados por um fio leve e inextensível (foi utilizado um pedaço de barbante), que passa por uma polia, um cilindro (no caso, um de latão com raio R, medido com o paquímetro, e momento de inércia I), como mostra a figura 1.

Figura 1: Montagem experimental

Entre os pesos de suspensão, são distribuídos discos metálicos que aumentam sua massa total (vide figura 1). O objetivo desses discos é variar a massa em cada extremidade do fio, mas manter a soma m1 + m2 (vide figura 1) constante. Para tal, basta-se apenas passar os discos de um peso para o outro, para assim, dada a equação

$$\Delta m = (2h/gR^2)(I + MR^2)(1/t^2) + \tau_a/(gR),$$

apenas Δm , que é a diferença m1-m2, mude, enquanto M, que é a soma m1+m2, mantem-se constante.

O experimento em si consiste em abandonar o corpo mais pesado, m1, de uma altura h constante, mensurada com a fita métrica, e medir o tempo t de queda, com o cronômetro. Esse procedimento foi realizado três vezes e então foi tirado o tempo medio.

3.2 Dados Obtidos

As massas dos pesos de suspensão foram medidas, tais que

$$m1 = (891.6 \pm 0.1)g$$
 e $m2 = (895.7 \pm 0.1)g$

Já os discos têm massas de, em gramas:

Tabela 1: Massas dos discos metálicos							
m_{d1}	m_{d2}	m_{d3}	m_{d4}	m_{d5}	m_{d6}	m_{d7}	m_{d8}
9.0 ± 0.1	9.1 ± 0.1	3.7 ± 0.1	3.9 ± 0.1	2.0 ± 0.1	9.4 ± 0.1	1.9 ± 0.1	2.1 ± 0.1

Então, pôde ser montada a seguinte tabela:

Tabela 2:	Tempos	medidos	para o	respectivo	Δm

$\Delta m(g)$	$t_1(s)$	$t_2(s)$	$t_3(s)$	$t_{medio}(s)$
37.0 ± 0.1	4.31 ± 0.01	4.21 ± 0.01	4.21 ± 0.01	4.24 ± 0.03
29.2 ± 0.1	4.43 ± 0.01	4.64 ± 0.01	4.46 ± 0.01	4.51 ± 0.05
10.2 ± 0.1	8.45 ± 0.01	8.24 ± 0.01	8.32 ± 0.01	8.34 ± 0.05
10.4 ± 0.1	8.76 ± 0.01	8.65 ± 0.01	8.40 ± 0.01	8.60 ± 0.09
9.8 ± 0.1	8.51 ± 0.01	8.53 ± 0.01	8.50 ± 0.01	8.51 ± 0.01
13.6 ± 0.1	7.18 ± 0.01	7.28 ± 0.01	7.31 ± 0.01	7.26 ± 0.03

Isso tudo, para $h = (115.00 \pm 0.05)~cm,~M = (1829, 0 \pm 0.3)~g~M_{polia} = (1433, 0 \pm 0, 1)~g~e$ $R = (6.025 \pm 0.003)~cm$

4 Análise dos Resultados e Discussões

4.1 Regressão linear

Tem-se a equação:

$$\Delta m = \frac{2h}{qR^2}(I + MR^2) \cdot \frac{1}{t^2} + \frac{\tau_a}{qR},$$

onde $\Delta m = m_1 - m_2$, $M = m_1 + m_2$, h é a altura inicial, t é o tempo em que os corpos se deslocam de h, I é o momento de inércia do cilindro de latão, R é o seu raio.

Nela vemos que existe uma relação linear entre Δm e $\frac{1}{t^2}$. Para explorar essa relação, foi construída a Tabela 3, relacionando Δm a $\frac{1}{t^2}$.

Tabela 3: A diferença de massa, relacionada à grandeza $1/t^2$.

$\Delta m (g)$	t(s)	$1/t^2 \ (s^{-2})$
37.0 ± 0.3	4.24 ± 0.03	0.055 ± 0.001
29.2 ± 0.3	4.51 ± 0.05	0.049 ± 0.001
10.2 ± 0.3	8.34 ± 0.05	0.0143 ± 0.0002
10.4 ± 0.3	8.60 ± 0.09	0.0135 ± 0.0003
9.8 ± 0.3	8.51 ± 0.01	0.01379 ± 0.0002
13.6 ± 0.3	7.26 ± 0.03	0.0189 ± 0.0003

Fazendo a regressão linear de Δm X $\frac{1}{t^2}$, pelo método de mínimos quadrados, obtém-se os seguintes coeficientes:

$$a = 602 \pm 2 \ (gs^2)$$

 $b = 1.77 \pm 0.08 \ (g).$

A reta resultante da regressão linear, sobreposta aos pontos medidos experimentalmente pode ser vista na Figura 2. Nota-se que o experimento falhou em coletar dados distribuidos uniformemente sobre o eixo Δm , e isso pode acarretar erros e incertezas.

Figura 2: Regressão linear de Δm por $1/t^2$ sobreposta aos pontos experimentais

4.2 Momento de inércia

O momento de inércia da polia de latão pode ser escrito em função do coeficiente angular a pela fórmula

$$I = a \cdot \frac{gR^2}{2h} - MR^2,$$

$$\Delta I = \sqrt{\Delta a^2 \cdot \frac{g^2R^4}{4h^2} + \Delta R^2 \cdot (a\frac{g}{h^2} - M)^2 + \Delta M^2 \cdot R^4}$$

Sendo ΔI o erro da polia. Assim, obtemos o valor do momento de inércia de

$$I = 0.00267 \pm 0.00004 \ Kg \cdot m^2$$

Outra forma de se calcular o momento de inércia seria pela fórmula do momento de inércia de um cilindro:

$$I = \frac{M_{polia}R^2}{2}$$

$$\Delta I = \sqrt{(R^2 \cdot \Delta M_{polia})^2 + (2M_{polia}R \cdot \Delta R)^2}$$

substituindo os valores medidos, obtemos:

$$I = 0.00260 \pm 0.000003 \; Kg \cdot m^2$$

As faixas de erro não se sobrepõem, mas isso pode ser explicado por uma série de fatores. Pode-se observar no gráfico que os valores medidos estão muito mal distribuídos pela faixa de Δm . O erro das medidas de tempo também foram possívelmente subestimadas, uma vez que dependem fortemente do fator humano.

4.3 Torque da força de atrito

Da equação linearizada original, vemos que o coeficiente linear é

$$b = \frac{\tau_a}{gR}$$

logo

$$\tau_a = bgR$$

$$\Delta \tau_a = \sqrt{(gR \cdot \Delta b)^2 + (bg \cdot \Delta R)^2}$$

Assim, podemos calcular o valor de τ_a como

$$\tau_a = 0.00104 \pm 0.00004 \ N \cdot m$$

5 Conclusões

O experimento permitiu calcular calcular o momento de inércia e o torque da força de atrito com precisão razoável, apesar de não estar de acordo com a teoria. Explicações possíveis para essa divergência podem ser apontadas como a má distribuição dos pontos experimentais e a subestimação do erro humano na medição do tempo. Os valores encontrados foram $I = 0.00267 \pm 0.00004 \; Kg \cdot m^2 \; {\rm e} \; \tau_a = 0.00104 \pm 0.00004 \; N \cdot m.$