

Calculus 1 Workbook

Linear approximation

LINEAR APPROXIMATION

- 1. Find the linearization of $f(x) = x^3 4x^2 + 2x 3$ at x = 3 and use the linearization to approximate f(3.02).
- 2. Find the linearization of $g(x) = \sqrt{8x 15}$ at x = 8 and use the linearization to approximate f(8.05).
- 3. Find the linearization of $h(x) = 2e^{x-4} + 6$ at x = 5 and use the linearization to approximate h(5.1).

ESTIMATING A ROOT

- 1. Use linear approximation to estimate $\sqrt[5]{34}$.
- 2. Use linear approximation to estimate $\sqrt[8]{260}$.
- 3. Use linear approximation to estimate $\sqrt[4]{85}$.
- 4. Use linear approximation to estimate $\sqrt[4]{615}$.
- 5. Use linear approximation to estimate $\sqrt{95}$.
- 6. Use linear approximation to estimate $\sqrt[3]{700}$.

ABSOLUTE, RELATIVE, AND PERCENTAGE ERROR

■ 1. What is the absolute change of f(x) from $x = \pi$ to $x = 2\pi$?

$$f(x) = 3x^2 - \cos\left(\frac{x}{2}\right)$$

■ 2. What is the relative change of g(x) from x = 2 to x = 3?

$$g(x) = 2x^4 - 3x^2 - 5$$

■ 3. What is the relative change of h(x) from x = 0 to $x = \pi$?

$$h(x) = \tan x + 4x + 2$$

W W W . KRISTAKING MATH. COM