Three data types: continuous, counts and coin flips

Cóilín Minto, Olga Lyashevska

Marine and Freshwater Research Centre Atlantic Technological University Galway, Ireland

July 15th 2022

Ollscoil Teicneolaíochta an Atlantaigh

Atlantic Technological University

Outline

1. Data types

2. Probability distributions

3. Explanatory variables

Continuous data

- Response y is continuous, e.g., y = 1.25 possible
- Response can be positive or negative (on the real line)
- Apparent positive linear relationship with continuous variable x
- Example y could be a change in water height

Positive continuous data

- Response y is also continuous, e.g., y = 0.25 possible
- Response can only be positive (on the positive real line)
- Apparent positive non-linear relationship with continuous variable x
- **Example** y could be mass of individuals
 - Discuss what values mass/weight of a fish could be

Count data

- Response y is a count (discrete), e.g., y = 1.25 impossible
- Response can be zero or a positive integer
- Apparent positive non-linear relationship with continuous variable x
- **Example** y could be an organism count per unit area (abundance)
 - Discuss what values of abundance are possible

Binary data

- Response y can be either a 1 or a 0 (or other binary categories, e.g., on/off)
 - Often it is a sum of positives out of a given number of trials, e.g., total number of heads in 10 coin flips
 - Key thing is that for any one flip there can only be 2 outcomes
- Apparent positive non-linear relationship with continuous variable x
- Example y could be maturity status (mature/immature) for an organism
 - Discuss other binary data examples

Outline

1. Data types

2. Probability distributions

3. Explanatory variables

Probability distribution

A function that describes the probabilities associated with possible outcomes for an experiment (think of the response y)

Continuous probability distributions

Normal distribution

Continuous probability distributions

Normal distribution

- Distribution is continuous, e.g., y = 1.25 possible
- Positive or negative values possible (on the real line)
- Governed by two parameters: mean μ and variance σ^2
- Write: $y \sim N(\mu, \sigma^2)$

Positive continuous probability distributions

Lognormal distribution

Positive continuous probability distributions

Lognormal distribution

- Distribution is continuous, e.g., y = 1.25 possible
- Only positive values possible (on the positive real line)
- Governed by two parameters: mean μ and standard deviation σ (both on log scale)
- Write: $y \sim \mathsf{Lognormal}(\mu, \sigma)$

Count probability distributions

Poisson distribution

Count probability distributions

Poisson distribution

- Distribution is discrete, e.g., y = 1.25 impossible
- Distribution is only positive at zero and positive integers
- Governed by one parameter: rate λ (e.g., density)
 - Discuss rates in relation to counts
- Write: $y \sim \mathsf{Pois}(\lambda)$

Binary probability distribution

Binary (Bernoulli) distribution

Binary probability distribution

Binary (Bernoulli) distribution

- Distribution over 0 or 1 (or other binary categories) only
- Governed by parameter: probability of success p (e.g., probability of being mature)
- Think: coin flip but coin not necessarily fair
- Write y ∼ Bernoulli(p)

Binomial probability distribution

Binomial distribution

Binomial probability distribution

Binomial distribution

- Distribution over $\{0, 1, \dots, n\}$ only
- Governed by 2 parameters: number of trials n (think: number coin flips) and probability of success p on any trial
- Write $y \sim \text{Bin}(n, p)$

Note: Binomial is the sum of Bernoulli trials

Outline

1. Data types

2. Probability distributions

3. Explanatory variables

Often a goal of an experiment or observational study is to relate observed response values to explanatory variables, e.g.,

¹Also called "predictors"

Often a goal of an experiment or observational study is to relate observed response values to explanatory variables, e.g.,

 Does mass depend on length and is this the same across areas?

¹Also called "predictors"

Often a goal of an experiment or observational study is to relate observed response values to explanatory variables, e.g.,

- Does mass depend on length and is this the same across areas?
- Does abundance relate to environment, e.g., temperature?

¹Also called "predictors"

Often a goal of an experiment or observational study is to relate observed response values to explanatory variables, e.g.,

- Does mass depend on length and is this the same across areas?
- Does abundance relate to environment, e.g., temperature?
- Does behavioural response depend on time-of-day?

¹Also called "predictors"

Often a goal of an experiment or observational study is to relate observed response values to explanatory variables, e.g.,

- Does mass depend on length and is this the same across areas?
- Does abundance relate to environment, e.g., temperature?
- Does behavioural response depend on time-of-day?
- ...

We would like to explore/model the relationships between the response and explanatory variables

¹Also called "predictors"