Principal Components Regression

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

Data set cars 2004

Data cars2004

Data file cars2004 in the data/ folder of the github repo

	price e	ngine	cyl	hp	city_mp	g
Acura 3.5 RL 4dr	43755	3.5	6	225	1	8
Acura 3.5 RL w/Navigation 4dr	46100	3.5	6	225	1	8
Acura MDX	36945	3.5	6	265	1	7
Acura NSX coupe 2dr manual S	89765	3.2	6	290	1	7
Acura RSX Type S 2dr	23820	2.0	4	200	2	4
Acura TL 4dr	33195	3.2	6	270	2	0
	hwy_mpg	weigh	t wł	neel	length	width
Acura 3.5 RL 4dr	24	388	0	115	197	72
Acura 3.5 RL w/Navigation 4dr	24	389	3	115	197	72
Acura MDX	23	445	1	106	189	77
Acura NSX coupe 2dr manual S	24	315	3	100	174	71
Acura RSX Type S 2dr	31	277	8	101	172	68
Acura TL 4dr	28	357	5	108	186	72

Data cars2004

```
'data.frame': 385 obs. of 10 variables:

$ price : int 43755 46100 ...

$ engine : num 3.5 3.5 ...

$ cyl : int 6 6 ...

$ hp : int 225 225 ...

$ city_mpg: int 18 18 ...

$ hwy_mpg : int 24 24 ...

$ weight : int 3880 3893 ...

$ wheel : int 115 115 ...

$ length : int 72 72 ...
```

Predicting Price of cars

- ▶ Response: price
- ▶ Predictors: cyl, hp, ..., length, and width

price =
$$\beta_0 + \beta_1 \text{ cyl} + \beta_2 \text{ hp} + \ldots + \beta_9 \text{ width} + \varepsilon$$

Correlation Matrix

	engine	cyl	hp	city_mpg	hwy_mpg	weight	wheel	length	width
price	0.6	0.654	0.836	-0.485	-0.469	0.476	0.204	0.210	0.314
engine		0.912	0.778	-0.706	-0.708	0.812	0.631	0.624	0.727
cyl			0.792	-0.670	-0.664	0.731	0.553	0.547	0.621
hp				-0.672	-0.652	0.631	0.396	0.381	0.500
city_mpg					0.941	-0.736	-0.481	-0.468	-0.590
hwy_mpg						-0.789	-0.455	-0.390	-0.585
weight							0.751	0.653	0.808
wheel								0.867	0.760
length									0.752

PCA

Variables factor map (PCA)

PCA: Eigenvalues

	eigenvalues	proportion	cum_prop
comp1	6.30	70.04	70.04
comp2	1.21	13.43	83.47
comp3	0.61	6.76	90.23
comp4	0.28	3.06	93.30
comp5	0.21	2.37	95.67
comp6	0.19	2.13	97.79
comp7	0.09	0.99	98.79
comp8	0.07	0.79	99.58
comp9	0.04	0.42	100.00

Predicting Price of cars

```
price = \beta_0 + \beta_1 \text{ cyl} + \beta_2 \text{ hp} + \ldots + \beta_9 \text{ width} + \varepsilon
```

OLS regression:

```
ols_reg <- lm(price ~ ., data = cars2004)
ols_reg_sum <- summary(ols_reg)</pre>
```

OLS Regression

Regress price on 9 predictors

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	32536.025	17777.488	1.8302	6.802e-02
engine	-3273.053	1542.595	-2.1218	3.451e-02
cyl	2520.927	896.202	2.8129	5.168e-03
hp	246.595	13.201	18.6797	1.621e-55
city_mpg	-229.987	332.824	-0.6910	4.900e-01
hwy_mpg	979.967	345.558	2.8359	4.817e-03
weight	9.937	2.045	4.8584	1.741e-06
wheel	-695.392	172.896	-4.0220	6.980e-05
length	33.690	89.660	0.3758	7.073e-01
width	-635.382	306.344	-2.0741	3.875e-02

```
Call:
lm(formula = price ~ ., data = cars2004)
Residuals:
  Min 1Q Median 3Q Max
-21534 -5411 -352 4054 92763
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 32536.025 17777.488 1.830 0.06802.
engine -3273.053 1542.595 -2.122 0.03451 *
cyl 2520.927 896.202 2.813 0.00517 **
hp 246.595 13.201 18.680 < 2e-16 ***
city_mpg -229.987 332.824 -0.691 0.48998
hwy_mpg 979.967 345.558 2.836 0.00482 **
weight 9.937 2.045 4.858 1.74e-06 ***
wheel -695.392 172.896 -4.022 6.98e-05 ***
length 33.690 89.660 0.376 0.70731
width -635.382 306.344 -2.074 0.03875 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 10110 on 375 degrees of freedom
Multiple R-squared: 0.745, Adjusted R-squared: 0.7389
F-statistic: 121.7 on 9 and 375 DF, p-value: < 2.2e-16
```

Correlations and OLS Coefficients

```
correlation
                   coefficient
engine
          0.5997873 -3273.05304
          0.6544123 2520.92691
cyl
        0.8360930
                      246.59496
hp
city_mpg -0.4854130 -229.98735
hwy_mpg
       -0.4694315
                      979.96656
weight
      0.4760867
                        9.93652
wheel
        0.2035464
                     -695.39157
length
          0.2096682
                       33.69009
width
          0.3135383
                     -635.38224
```

Some correlation signs don't match regression coeff. signs

Principal Components Regression (PCR)

Uses of PCA

PCA can be used to ...

- ► Reduce the dimensionality of a data set (i.e. reduce the number of variables)
- ► For data visualization and exploration purposes to obtain:
 - a map to visualize the objects in terms of their proximities, and
 - another map to visualize the variables in terms of their correlations.
- Summarize the systematic patterns of variation within observations, within variables, and between observations and variables.

More uses of PCA

When fitting a regression model:

$$\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

We can also use PCA as a *pre-processing* step on the predictors before fitting a regression equation.

PCA Regression Idea

Decompose the predictors data matrix \mathbf{X} into PC's, and then regress \mathbf{y} onto the PCs

PCA Formula Decomposition

Decompose the predictors data matrix ${\bf X}$ into PC's

$$X = ZV^T$$

where:

- **Z** is the matrix of PCs
- ▶ V is the matrix of loadings

Without loss of generality suppose the predictors and response are standardized.

Regress y onto the PC's:

$$\hat{\mathbf{y}} = \hat{\beta}_1 \mathbf{z}_1 + \hat{\beta}_2 \mathbf{z}_2 + \dots + \hat{\beta}_p \mathbf{z}_p$$

where:

- ightharpoonup $\mathbf{z_j}$ is the j-th PC
- $ightharpoonup \hat{eta}_j$ is the estimate of the j-th PCR-coefficient

In matrix notation:

$$\hat{\mathbf{y}} = \mathbf{Z}\hat{\boldsymbol{\beta}}_{PCR}$$

The vector of PCR coefficients is obtained via OLS:

$$\hat{\boldsymbol{\beta}}_{PCR} = (\mathbf{Z}^\mathsf{T}\mathbf{Z})^{-1}\mathbf{Z}^\mathsf{T}\mathbf{y}$$

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	0.000	515.0450	0.0000	1.0000	
PC1	-4470.761	205.4021	-21.7659	0.0000	
PC2	7608.419	469.1001	16.2192	0.0000	
PC3	-9650.324	661.0626	-14.5982	0.0000	
PC4	-1768.547	981.9554	-1.8010	0.0725	
PC5	10528.146	1116.5683	9.4290	0.0000	
PC6	-5593.736	1179.2391	-4.7435	0.0000	
PC7	-5746.452	1723.8664	-3.3335	0.0009	
PC8	-7606.196	1928.9437	-3.9432	0.0001	
PC9	5473.090	2663.9282	2.0545	0.0406	

Usually, you don't use all p PCs, but just k < p of them i.e.

$$\hat{\mathbf{X}}_{(n,p)} = \mathbf{Z} \mathbf{V}^\mathsf{T}$$

The regression of y onto the k PCs is:

$$\hat{\mathbf{y}} = \hat{\beta}_1 \mathbf{z_1} + \hat{\beta}_2 \mathbf{z_2} + \dots + \hat{\beta}_k \mathbf{z_k}$$

Regressions with few PCs

Regression with first two PCs

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.000	713.7648	0.0000	1
PC1	-4470.761	284.6524	-15.7060	0
PC2	7608.419	650.0930	11.7036	0

Regressions with few PCs

Regression with first two PCs

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.000	713.7648	0.0000	1
PC1	-4470.761	284.6524	-15.7060	0
PC2	7608.419	650.0930	11.7036	0

Regression with first three PCs

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.000	602.0143	0.0000	1
PC1	-4470.761	240.0858	-18.6215	0
PC2	7608.419	548.3113	13.8761	0
PC3	-9650.324	772.6881	-12.4893	0

PC Regression property

Because of uncorrelatedness, the contributions and estimated coefficient of a PC are unaffected by which other PCs are also included in the regression.

How does PCR work?

PC Regression Idea

Decompose the predictors data matrix ${\bf X}$ into PC's

$$X = ZV^T$$

Replace X with ZV^T in the fitted values:

$$\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$$

OLS Regression in terms of PCs

$$\begin{split} \hat{\mathbf{y}} &= \mathbf{X} (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y} \\ &= \mathbf{Z} \mathbf{V}^\mathsf{T} \left((\mathbf{Z} \mathbf{V}^\mathsf{T})^\mathsf{T} \mathbf{Z} \mathbf{V}^\mathsf{T} \right)^{-1} (\mathbf{Z} \mathbf{V}^\mathsf{T})^\mathsf{T} \mathbf{y} \\ &= \mathbf{Z} \mathbf{V}^\mathsf{T} \left(\mathbf{V} \mathbf{Z}^\mathsf{T} \mathbf{Z} \mathbf{V}^\mathsf{T} \right)^{-1} \mathbf{V} \mathbf{Z}^\mathsf{T} \mathbf{y} \\ &= \mathbf{Z} \mathbf{V}^\mathsf{T} (\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^\mathsf{T})^{-1} \mathbf{V} \mathbf{Z}^\mathsf{T} \mathbf{y} \\ &= \mathbf{Z} \mathbf{V}^\mathsf{T} (\mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{V}^\mathsf{T}) \mathbf{V} \mathbf{Z}^\mathsf{T} \mathbf{y} \\ &= \mathbf{Z} \boldsymbol{\Lambda}^{-1} \mathbf{Z}^\mathsf{T} \mathbf{y} \\ &= \mathbf{Z} \hat{\boldsymbol{\beta}}_{PCR} \end{split}$$

OLS and PCR coefficients

Relationship between OLS coefficients and PCR coefficients when using all PCs, that is, $\mathbf{X} = \mathbf{Z}\mathbf{V}^\mathsf{T}$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}_{OLS}$$

$$= \mathbf{Z}\mathbf{V}^{\mathsf{T}}\hat{\boldsymbol{\beta}}_{OLS}$$

$$= \mathbf{Z}\hat{\boldsymbol{\beta}}_{PCR}$$

OLS and PCR coefficients

Relationship between OLS coefficients and PCR coefficients when using all PCs, that is, $X = \mathbf{Z} \mathbf{V}^\mathsf{T}$:

$$egin{aligned} \hat{\mathbf{y}} &= \mathbf{X} \hat{oldsymbol{eta}}_{OLS} & \hat{\mathbf{y}} &= \mathbf{Z} \hat{oldsymbol{eta}}_{PCR} \ &= \mathbf{Z} \mathbf{V}^{\mathsf{T}} \hat{oldsymbol{eta}}_{OLS} & = \mathbf{X} \mathbf{V} \hat{oldsymbol{eta}}_{PCR} \ &= \mathbf{Z} \hat{oldsymbol{eta}}_{PCR} & = \mathbf{X} \hat{oldsymbol{eta}}_{OLS} \end{aligned}$$

Notice when using all PCs, OLS $\hat{\mathbf{y}}$ is the same as PCR $\hat{\mathbf{y}}$

PCR Coefficients transition formula

In general, you can always reexpress the PCR coefficients in terms of the original variables:

$$\hat{\mathbf{y}} = \mathbf{Z}\hat{\boldsymbol{\beta}}_{PCR}
= \mathbf{X}\mathbf{V}\hat{\boldsymbol{\beta}}_{PCR}$$

by premultiplying $\hat{oldsymbol{eta}}_{PCR}$ by the loadings ${f V}$

PC Regression Coefficients

Regression coefficients in terms of the original variables, for each of the 9 PC regressions:

```
PC1
                PC2
                                 PC5
                                              PC7
                     PC3
                           PC4
                                       PC6
                                                    PC8
                                                          PC9
engine
         1641
               2345
                    5487
                          5203
                               1887
                                      1064
                                           2168.5 -3551 -3327
         1544
               2881
                    7312
                          7289
                                2213
                                      1401
                                           -295.5
                                                   3856
                                                         3766
cyl
         1377
               4148
                   8402
                          8755 16016 17348 17585.7 17700 17352
hp
city_mpg -1487 -3864 459
                          -149 -470 999
                                           1891.3 2151 -1213
        -1472 -4140
                     583
                           516 1633 1468
hwy_mpg
                                           1477.9 1607
                                                         5536
weight 1642 1261 -510 -1187 -2266 707
                                           3557.7
                                                   5507
                                                        7033
wheel
        1385 -2392 -2860 -2422 -3009 -187 -3315.7 -4832 -4938
length
        1332 -2634 -2202 -1346 -883 -2778
                                             28.2
                                                  1260
                                                          447
width
         1501
               -738 -1731 -2811 1464
                                      -904 -2413.8 -1978 -2142
```

The solution with 9 PCs matches the OLS solution.

PCR with all PCs equals OLS solution

With y and X standardized, the OLS solution:

```
Xengine Xcyl Xhp Xcity_mpg Xhwy_mpg Xweight Xwheel
-3326.7904 3766.1495 17352.2185 -1213.0142 5535.9355 7032.5383 -4937.8106
Xlength Xwidth
446.9752 -2141.8196
```

matches the PCR solution using all PCs:

```
engine cyl hp city_mpg hwy_mpg weight wheel -3326.7904 3766.1495 17352.2185 -1213.0142 5535.9355 7032.5383 -4937.8106 length width 446.9752 -2141.8196
```

How to choose an "optimal" number of PCs?

Number of PCs

- ► The main challenge in PCR is the choice for *k*, the number of PCs
- ightharpoonup k is also known as the tuning parameter
- ▶ *k* is usually chosen via cross-validation

Regression with PC1

$$\hat{\mathbf{y}} = \hat{\beta}_1 \mathbf{z_1} = \mathbf{X}(\hat{\beta}_1 \mathbf{v_1})$$

	correlation	coefficient
engine	0.5997873	1640.623
cyl	0.6544123	1543.678
hp	0.8360930	1376.699
city_mpg	-0.4854130	-1487.103
hwy_mpg	-0.4694315	-1471.922
weight	0.4760867	1641.840
wheel	0.2035464	1385.197
length	0.2096682	1331.796
width	0.3135383	1500.565

Regression with PC1 and PC2

$$\hat{\mathbf{y}} = \hat{\beta}_1 \mathbf{z_1} + \hat{\beta}_2 \mathbf{z_2} = \mathbf{X} \mathbf{V}_{1:2} \hat{\boldsymbol{\beta}}_{1:2}$$

	correlation	coefficient
engine	0.5997873	2345.1254
cyl	0.6544123	2881.3726
hp	0.8360930	4148.0459
city_mpg	-0.4854130	-3864.4992
hwy_mpg	-0.4694315	-4139.9870
weight	0.4760867	1260.7474
wheel	0.2035464	-2391.5824
length	0.2096682	-2634.3174
width	0.3135383	-738.1835

Number of PCs via Cross-Validation

- Optionally: divide the data into training and test sets.
- ▶ If you don't have a test set, then all your data is the training set.
- ightharpoonup Divide the training set into m parts (of similar size).
- ► For each possible number *k* of PCs do:
 - For each part, use the rest of the data to fit the PC regression, and use the part to compute the MSE.
 - Repeat for each part, and average the MSE's.
- Select the number of PCs with smallest MSE.

PCR without training-and-test sets:

```
library(pls)
set.seed(2)

pcr_fit <- pcr(price ~ ., data = cars2004, scale = TRUE, validation = "CV")
summary(pcr_fit)
validationplot(pcr_fit, val.type = "MSEP")</pre>
```

pcr() standardizes the predictors, but not the response

Data: X dimension: 385 9 Y dimension: 385 1

```
Fit method: svdpc
Number of components considered: 9
VALIDATION: RMSEP
Cross-validated using 10 random segments.
      (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7
                                                                  com
CV
           19802
                   16369
                           14540
                                   12242
                                           12244
                                                  11489
                                                          11092
                                                                  109
adjCV
           19802 16363 14506 12212
                                          12217
                                                  11374
                                                          11051
                                                                  109
      8 comps 9 comps
CV
       10760
               10728
adjCV
     10719 10686
TRAINING: % variance explained
      1 comps 2 comps 3 comps
                             4 comps
                                     5 comps
                                             6 comps 7 comps 8 comps
       70.04
               83.47
                       90.23
                               93.30
                                       95.67
                                               97.79
                                                       98.79
                                                               99.58
       32.22
               50.11 64.60 64.82 70.87 72.40
                                                      73.15
                                                               74.21
price
```


PCR with training-and-test sets:

Data: X dimension: 208 9

```
Y dimension: 208 1
Fit method: svdpc
Number of components considered: 9
VALIDATION: RMSEP
Cross-validated using 10 random segments.
      (Intercept) 1 comps 2 comps 3 comps 4 comps
                                                 5 comps 6 comps 7
                                                                   com
CV
           18291
                   15203
                           12983
                                   10552
                                           10572
                                                   10361
                                                            9346
                                                                    94
adjCV
           18291 15190 12952 10540 10560
                                                   10381
                                                            9327
                                                                    94
      8 comps 9 comps
CV
        9203
                8852
adjCV
        9182
                8832
TRAINING: % variance explained
      1 comps 2 comps 3 comps
                              4 comps
                                      5 comps
                                              6 comps 7 comps 8 comps
χ
       68.61
               82.49
                       90.05
                                93.57
                                       95.98
                                                97.91
                                                        98.80
                                                                99.58
       32.49
               53.06 67.70 67.80 68.57 75.55
                                                       75.66
                                                                76.96
price
```


Number of PCs via Cross-Validation

- ▶ PCR with CV suggests using all k = 9 PCs.
- ▶ The PCR solution coincides with the OLS.
- ► There is not really an advantage of PCR in this particular example.
- ► As this example shows: the PCs with large variation may not necessarily be good predictors.
- ► However, a regression on PC1 may still be an interesting case.

Geometry of PCR

PCR Geometry

PCR fitted vector with first PC (Phatak & de Jong, 1997)

PCR Geometry

PCR fitted vector with two first PCs (Phatak & de Jong, 1997)

PCR Geometry

"The geometric interpretation of principal component regression is quite straightforward. $\hat{\boldsymbol{\beta}}_{PCR}^{m}$ is simply the orthogonal projection of $\hat{\boldsymbol{\beta}}_{OLS}$ onto the subspace spanned by the eigenvectors corresponding to the PCs retained in the regression."

(Phatak & de Jong, 1997)

PC Regression rationale

- ► The main advantage of PC regression occurs when multicollinearities are present.
- ► Finding regression coefficients is more straightforward with **Z** because its columns are orthogonal.
- Calculation of OLS estimates via PC regression may be numerically more estable.
- PCR assumes that the new predictors (i.e. the PCs), explain the response, especially those PCs with larger variance.

PC Regression Issues

- ► The first PCs may not be necessarily related to the response.
- PCR is not a feature selection method.
- ► Each of the PCs used in the regression is a linear combination of all *p* predictor variables.
- PCR is not scaling-invariant.

References

- ▶ **Principal Component Analysis** by Ian Jolliffe (2004). *Chapter 8:* Principal Components in Regression Analysis. Springer.
- ▶ Linear Models with R by Julian Faraway (2015). *Chapter 11:* Shrinkage Methods. CRC Press.
- ▶ Modern Multivariate Statistical Techniques by Julian Izenman (2008). Chapter 5, sec 6: Biased Regression Methods. Springer.
- ▶ Modern Regression Methods by Thomas Ryan (1997). Chapter 12, sec 9: Other Biased Estimators. Wiley.
- ▶ The Geometry of Partial Least Squares by Aloke Phatak and Sijmen de Jong (1997). *Journal of Chemometrics, Vol. 11, 311-338.*