Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 1

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Тема: Введение в Vivado HLS

Задание 2

Студент: Ерниязов Т.Е. Гр. № 3540901/81501

Преподаватель: Антонов А.П.

Оглавление

Задание	3
Ход работы	4
Решение 1	4
Моделирование	5
Синтез	
C/RTL моделирование	8
Решение 2	9
Моделирование	9
Синтез	10
C/RTL моделирование	12
Выводы	13

Задание

Создать проект lab1_2

Подключить файл lab1 2.c (папка source)

Написать тест lab1 2 test.c по аналогии с тестом lab1 1 test.c

Микросхема: xa7a12tcsg325-1q

Сделать solution1

задать: clock period 6; clock_uncertainty 0.1 осуществить моделирование

осуществить синтез\

привести в отчете:

- performance estimates=>summary
- utilization estimates=>summary
- Performance Profile
- scheduler viewer (выполнить Zoom to Fit)

На скриншоте показать Latency

На скриншоте показать Initiation Interval

• resource viewer (выполнить Zoom to Fit)

На скриншоте показать Latency На скриншоте показать Initiation Interval

Осуществить C|RTL моделирование

Открыть временную диаграмму (все сигналы)

• Отобразить два цикла обработки на одном экране

На скриншоте показать Latency

На скриншоте показать Initiation Interval

Сделать solution2

задать: clock period 10; clock_uncertainty 0.1

осуществить моделирование

осуществить синтез

привести в отчете:

- performance estimates=>summary
- utilization estimates=>summary
- Performance Profile
- scheduler viewer (выполнить Zoom to Fit)

На скриншоте показать Latency

На скриншоте показать Initiation Interval

• resource viewer (выполнить Zoom to Fit)

На скриншоте показать Latency

На скриншоте показать Initiation Interval

Осуществить C|RTL моделирование

Открыть временную диаграмму (все сигналы)

•Отобразить два цикла обработки на одном экране

На скриншоте показать Latency

На скриншоте показать Initiation Interval

Выводы

Объяснить отличие двух solutions

Ход работы

Решение 1

- 1. Создание проекта lab1_2.
- 2. Подключение файлов lab1_2.c, lab1_2_test.c.

Lab1_2.c

```
void lab1_2 (int in[3], char a, char b, char c, int out[3]) {
int x,y;
for(int i = 0; i < 3; i++) {
    x = in[i];
    y = a*x + b + c;
out[i] = y;
}
</pre>
```

Lab1_2_test.c

```
#include <stdio.h>
int main()
     int inA, inB, inC;
     int out[3];
     // For adders
     int refOut[3][3] = \{\{6,7,8\}, \{12,14,16\}, \{24,28,32\}\};
     int pass;
     int i;
     inA = 1;
     inB = 2;
     inC = 3;
     int in[3] = \{1, 2, 3\};
     int res[3];
      // Call the adder for 5 transactions
      for (i=0; i<3; i++)
      {
            lab1 2(in, inA, inB, inC, out);
            for (int j=0; j<3; j++)
{
      fprintf(stdout, " d*1+d+d+d=d n, inA, inB, inC, out[j]);
        // Test the output against expected results
      if (equals(out, refOut[i]) == 1)
```

```
pass = 1;
           else
                 pass = 0;
           inA=inA*2;
           inB=inB*2;
           inC=inC*2;
     }
     if (pass)
           fprintf(stdout, "-----Pass!----\n");
           return 0;
     }
     else
           fprintf(stderr, "-----Fail!-----\n");
           return 1;
     }
int equals(int a[], int b[])
     int res = 1;
for (int i = 0; i<sizeof(a)/sizeof(int); i++)</pre>
           if (a[i] == b[i])
     {
           res = 1;
           else return 0;
     return res;
```

3. Конфигурирование решения.

Моделирование

4. Результат моделирования заданного решения.

```
1 warning generated.
INFO: [APCC 202-3] Tmp directory is apcc_db
INFO: [APCC 202-1] APCC is done.
   Compiling(apcc) ../../../source/lab1_2.c in debug mode
INFO: [HLS 200-10] Running 'D:/Xilinx/Vivado/2019.2/bin/unwrapped/win64.o/apcc.exe'
INFO: [HLS 200-10] For user 'loris' on host 'laptop-34slcvbc' (Windows NT_amd64 version 6.2) on Thu Dec 12 02:59:10 +0300 2019
INFO: [HLS 200-10] In directory 'D:/Antonov/lab1_z2/lab1_z2/lab1_2/solution1/csim/build'
INFO: [APCC 202-3] Tmp directory is apcc_db
INFO: [APCC 202-1] APCC is done.
   Generating csim.exe
  1*1+2+3=6
  1*1+2+3=7
  1*1+2+3=8
  2*1+4+6=12
  2*1+4+6=14
  2*1+4+6=16
  4*1+8+12=24
  4*1+8+12=28
  4*1+8+12=32
       ----Pass!-----
Finished C simulation.
```

Моделирование выполнено без ошибок. Тест пройден успешно.

Синтез

5. Выполним команду Solution -> Run C Synthesis -> Active solution

Производительность

Достигнутая задержка (estimated) равна 5,690 + (погрешность - uncertainty) 0,10. Величина задержки укладывается в заданные требования к тактовой частоте, но является значительной для заданных ограничений.

Занимаемые ресурсы

tilization Estima	tes				
Summary					
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	73	-
FIFO	-	-	-	-	-
Instance	-	2	166	49	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	50	-
Register	-	-	141	-	-
Total	0	2	307	172	0
Available	40	40	16000	8000	0
Utilization (%)	0	5	1	2	0

Данный проект будет занимать на микросхеме:

4 DSP блока.

DSP блок цифровой процессор обработки сигналов, специализированный микропроцессор, особенностью работы которого является поточный характер обработки больших объемов данных в реальном масштабе времени и, обычно, с интенсивным обменом данных с другими внешними устройствами. (Нужен для преобразования представленных в виде цифр, как правило, в режиме реального времени). В данном блоке будут использованы сумматор и умножитель.

307 регистров для хранения и считывания данных (чисел). 172 LUT

6. Перейдем на вкладку Analysis.

Performance Profile 🖾 🔼 Resource Profile							
	Pipelined	Latency	Iteration Latency	Initiation Interval	Trip count		
✓ ■ lab1_2	-	19	-	20	-		
Loop 1	no	18	6	-	3		

Задержка времени со старта до момента получения результата составляет 19 тактов. Задержка времени до готовности получения новых данных — 20 тактов. Временная диаграмма:

Получение результата происходит следующим образом:

- Первый такт
 - о Считывание параметра с
 - о Считывание параметра b
 - о Считывание параметра а
 - о Инициализация параметра
- Второй седьмой такты
 - о Выполнение действий в цикле
- 7. Профиль ресурсов

Значения в отчете по ресурсам идентичные значениям в пункте 5.

C/RTL моделирование

8. Результат выполнения.

9. Отчет о выполнении

Результаты идентичны полученным в пункте 6.

Решение 2

Моделирование

1. Создание и конфигурирование решения.

Исходные файлы соответствуют файлам решения 1.

Синтез

2. Выполним команду Solution-> Run C Synthesis -> Active solution

Производительность

Отношение величины полученной задержки к заданному значению значительно отличаются по отношению к первому решению. Результаты свидетельствуют о том, что измененные параметры влекут за собой изменение устройства.

Затрачиваемые ресурсы

lization Estima	tes					
Summary						
Name	BRAM_18K	DSP48E	FF	LUT	URAM	
DSP	-	-	-	-	-	
Expression	-	2	0	94	-	
FIFO	-	-	-	-	-	
Instance	-	-	-	-	-	
Memory	-	-	-	-	-	
Multiplexer	-	-	-	42	-	
Register	-	-	139	-	-	
Total	0	2	139	136	0	
Available	40	40	16000	8000	0	
Utilization (%)	0	5	~0	1	0	

По сравнению с решением 1, использование ресурсов значительно меньше. Используется более чем в 2 раза меньше регистров и значительно меньше LUT.

3. Перейдем на вкладку Analysis.

Free Performance Profile Resource Profile							
	Pipelined	Latency	Iteration Latency	Initiation Interval	Trip count		
✓ ■ lab1_2	-	13	-	14	-		
Loop 1	no	12	4	-	3		

На изображении видно, что до получения ответа требуется 13 тактов, а готовность получения новых данных наступает через 14 такт. Действия в цикле ограничиваются 4 тактами вместо 6.

Общий отчет о затраченных ресурсах

C/RTL моделирование

4. Результат выполнения

```
Compiling module work.glbl
Built simulation snapshot lab1_2
***** Webtalk v2019.2 (64-bit)

**** SW Build 2708876 on Wed Nov 6 21:40:23 MST 2019

**** IP Build 2700528 on Thu Nov 7 00:09:20 MST 2019
     ** Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.
source D:/Antonov/lab1_z2/lab1_z2/lab1_2/solution2/sim/verilog/xsim.dir/lab1_2/webtalk/xsim_webtalk.tcl -notrace
INFO: [Common 17-186] 'D:/Antonov/lab1_z2/lab1_z2/lab1_2/solution2/sim/verilog/xsim.dir/lab1_2/webtalk/usage_statistics_ext_xsim.xm
INFO: [Common 17-206] Exiting Webtalk at Thu Dec 12 03:08:04 2019...
***** xsim v2019.2 (64-bit)

**** SW Build 2708876 on Wed Nov 6 21:40:23 MST 2019

**** IP Build 2700528 on Thu Nov 7 00:09:20 MST 2019
     ** Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.
INFO: [COMmon 17-206] Exiting xsim at Thu Dec 12 03:10:21 2019...
INFO: [COSIM 212-316] Starting C post checking ...
  1*1+2+3=6
  1*1+2+3=7
  1*1+2+3=8
  2*1+4+6=12
  2*1+4+6=14
  2*1+4+6=16
  4*1+8+12=24
  4*1+8+12=28
  4*1+8+12=32
      -----Pass!-----
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
Finished C/RTL cosimulation.
```

5. Отчет решения

На временной диаграмме изображены Latency, Initiation interval.

Выводы

В ходе работы были рассмотрены два решения, отличающиеся лишь параметром периода тактовой частоты. В ходе выполнения лабораторной работы был получен результат, что при большем периоде тактов, программа сумела вместить в 1 период чисто комбинаторную схему, в то время как при меньшем периоде это оказалось невозможным. Были получены 2 решения: первое — полный цикл выполнения составил 19 тактов, а максимальная задержка обработки сигнала на такте составляет 5.69 нс, и второе —решение, задержка в котором составила большую величину 8.47 нс, но при этом все действия выполняются за 13 тактов.