Lecture 2: Image Classification with Linear Classifiers

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Administrative: Assignment 1

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Syllabus

Deep Learning Basics

Data-driven approaches

Linear classification & kNN

Loss functions
Optimization
Backpropagation

Multi-layer perceptrons

Neural Networks

Convolutional Neural Networks

Convolutions

PyTorch / TensorFlow

Activation functions

Batch normalization

Transfer learning

Data augmentation

Momentum / RMSProp / Adam

Architecture design

Computer Vision Applications

RNNs / Attention / Transformers

Image captioning

Object detection and segmentation

Style transfer

Video understanding

Generative models

Self-supervised learning

3D vision

Human-centered Al

Fairness & ethics

Image Classification

A Core Task in Computer Vision

Today:

- The image classification task
- Two basic data-driven approaches to image classification
 - K-nearest neighbor and linear classifier

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

----- cat

This image by Nikita is licensed under CC-BY 2.0

What the computer sees

An image is a tensor of integers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Challenges: Viewpoint variation

All pixels change when the camera moves!

Challenges: Illumination

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under CC-BY 2.0

Challenges: Deformation

This image_by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Challenges: Context

Image source:

https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-lq?utm_source=linkedin_share&utm_medium=member_desktop_web

Modern computer vision algorithms

This image is CC0 1.0 public domain

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

```
def train(images, labels):
                                            Memorize all
  # Machine learning!
                                            data and labels
  return model
def predict(model, test images):
                                            Predict the label
  # Use model to predict labels
                                            of the most similar
  return test_labels
                                            training image
```


First classifier: **Nearest Neighbor**

Training data with labels

query data

Distance Metric

 $ightarrow \mathbb{R}$

Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

	test i	mage	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

46	12	14	1	
82	13	39	33	a
12	10	0	30	-
2	32	22	108	ē,
	82 12	82 13 12 10	82 13 39 12 10 0	82 13 39 33 12 10 0 30


```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier


```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Memorize training data


```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.vtr.dtype)
```

```
Nearest Neighbor classifier
```

```
For each test image:
Find closest train image
Predict label of nearest image
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Image Classification with Linear Classifiers


```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok


```
import numpy as np
class NearestNeighbor:
 def init (self):
   pass
 def train(self, X, y):
   """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
   self.Xtr = X
   self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
   num test = X.shape[0]
   # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
   # loop over all test rows
   for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
   return Ypred
```

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

Image Classification with Linear Classifiers

What does this look like?

1-nearest neighbor

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$K = 1$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

$$K = 1$$

K-Nearest Neighbors: try it yourself!

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithms themselves.

Very problem/dataset-dependent.

Must try them all out and see what works best.

Idea #1: Choose hyperparameters that work best on the **training data**

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on **test** data

train

test

Idea #1: Choose hyperparameters that work best on the training data	BAD : K = 1 always works perfectly on training data		
train			
		how algo	
train		test	

Never do this!

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on **test** data

BAD: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into **train**, **val**; choose hyperparameters on val and evaluate on test

Better!

train validation test

Setting Hyperparameters

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Setting Hyperparameters

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

What does this look like?

What does this look like?

k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

k-Nearest Neighbor with pixel distance never used.

- Curse of dimensionality

Dimensions = 3Points = 4^3

K-Nearest Neighbors: Summary

In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on the K nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the **validation set**;

Only run on the test set once at the very end!

Linear Classifier

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Neural Network

This image is CC0 1.0 public domain

[He et al. 2015]

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Plot created using Wolfram Cloud Cat image by Nikita is licensed under CC-BY 2.0

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

Class 1:

Three modes

Class 2:

Everything else

Linear Classifier - Choose a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14
			0.11

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2.Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

	1		A	
		18		
1				

cat	3.2	1.3	2.2

A **loss function** tells how good our current classifier is

	1		A	
		186		
	-0	P	~\)	
Ê				

cat 3.2

2.2

car

4.9

2.5

5.1 -1.7 frog

2.0

-3.1

Image Classification with Linear Classifiers

cat **3.2**

2 1.3

2.2

car 5.1

frog

4.9 2.0

2.5 **-3.1**

-1.7

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

A loss function tells how good our current classifier is

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

Where x_i is image and

 y_i is (integer) label

Loss over the dataset is a average of loss over examples:

 $L = \frac{1}{N} \sum L_i(f(x_i, W), y_i)$

2.2

3.2 1.3

4.9

2.5

-3.1

car -1.7 frog

cat

5.1

2.0

Image Classification with Linear Classifiers

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

1	
1	

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

car

frog

3.2

5.1

-1.7

1.3

3 2.2 9 2.5

4.9

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat	

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat **3.2**

5.1

1.3

2.2

4.9

2.5

frog

Losses:

car

2.9

-1.7 | 2.0

-3.1

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

Universidad

= 2.9 + 0

= 2.9

M

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

 \cap

2.0

2.2

2.5

-3.1

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1)$$

$$+\max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

$$= 0$$

Image Classification with Linear Classifiers

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 2.2 (-3.1) + 1)$ $+\max(0, 2.5 - (-3.1) + 1)$
- $= \max(0, 6.3) + \max(0, 6.6)$
- = 6.3 + 6.6
- = 12.9

cat	3.2	1.3	2.2	
car	5.1	4.9	2.5	
frog	-1.7	2.0	-3.1	
Losses:	2.9	0	12.9	

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

5.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat 3.2

car

frog

Losses:

1.3

4.9

2.2

2.5

12.9

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

L = (2.9 + 0 + 12.9)/3

-3.1 -1.7 2.0 2.9

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

Multiclass SVM loss:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

cat

1.3

classes?

Q2: what is the min/max possible SVM loss L_i?

car

4.9 2.0

Q3: At initialization W is small so all $s \approx 0$. What is the loss L_i ,

frog Losses:

assuming N examples and C

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

2.5

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

3.2

2.2 1.3

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q4: What if the sum

was over all classes? (including $j = y_i$)

-1.7 2.0 frog 2.9

5.1

cat

car

Losses:

4.9

-3.1 12.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

1.3

2.2

2.5

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q5: What if we used mean instead of sum?

car 5.1 **4.9** frog -1.7 2.0 Losses: 2.9 0

3.2

cat

-3.1 12.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

3.2

5.1

-1.7

cat

car

frog

1.3

4.9

2.0

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q6: What if we used

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$

Universidad

2.9 12.9 Losses: Image Classification with Linear Classifiers

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

2.2

2.5

cat 3.2 1.3 car 5.1 4.9

frog -1.7 2.0 -3.1 Losses: 2.9 0 12.9

Multiclass SVM loss:

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax classifier

Want to interpret raw classifier scores as probabilities

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Probabilities must be >= 0

cat 3.2 24.5 car
$$5.1 \xrightarrow{\text{exp}} 164.0$$
 frog -1.7 0.18

unnormalized

probabilities

cat

car

frog

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$
 $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Probabilities must be >= 0 Probabilities must sum to 1

3.2 $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Probabilities must sum to 1

3.1 $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Probabilities must sum to 1

3.2 $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Probabilities must sum to 1

3.3 $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Probabilities must sum to 1

3.4 $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Probabilities must sum to 1

3.5 $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Probabilities probabil

probabilities

Universidad

Softmax **Function**

Want to interpret raw classifier scores as **probabilities** $s = f(x_i; W)$ $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$ Softmax **Function Probabilities Probabilities** must be >= 0must sum to 1 cat 24.5 3.2 0.13 exp normalize 164.0 5.1 0.87 car -1.7 0.18 0.00frog Unnormalized unnormalized probabilities log-probabilities / logits probabilities

Universidad Popular del Cesar

Universidad Popular del Cesar

Want to interpret raw classifier scores as probabilities $s = f(x_i; W)$ $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$ Softmax **Function Probabilities Probabilities** $L_i = -\log P(Y = y_i | X = x_i)$ must be >= 0must sum to 1 cat 24.5 0.13 3.2 1.00 compare < exp normalize 164.0 0.87 5.1 0.00 car -1.7 0.18 frog 0.00Unnormalized unnormalized probabilities Correct log-probabilities / logits probabilities

Image Classification with Linear Classifiers

Universidad

Popular del Casar

March 31, 202

Want to interpret raw classifier scores as probabilities $s = f(x_i; W)$ $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$ Softmax **Function Probabilities Probabilities** $L_i = -\log P(Y = y_i | X = x_i)$ must be >= 0must sum to 1 cat 24.5 3.2 0.13 1.00 compare < exp normalize 164.0 5.1 0.87 car 0.00 Cross Entropy -1.7 0.00 0.18 frog Unnormalized unnormalized probabilities Correct log-probabilities / logits probabilities

Universidad Popular del Cesar

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q1: What is the min/max possible softmax loss L_i?

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_i , assuming C classes?

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car

5.1

frog -1.7

Q2: At initialization all s will be approximately equal; what is the loss? A: -log(1/C) = log(C),

If C = 10, then $L_i = log(10) \approx 2.3$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

assume scores:
$$[10, -2, 3]$$
 $[10, 9, 9]$ $[10, -100, -100]$ and $y_i = 0$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [20, -2, 3] [20, 9, 9] [20, -100, -100] and $y_i = 0$

Q: What is the **softmax loss** and the **SVM** loss **if I double the correct class score from 10 -> 20**?

Coming up:

- Regularization
- Optimization

