Classification using Naive Bayes

There are various ways to load data. For example, you can use pandas to load data from a CSV file or from a webpage. You can use load data with Scikit Learn. You can also use Seaborn to load data. Iris is a built-in dataset in Seaborn.

```
In [1]: import seaborn as sns
iris = sns.load_dataset('iris')
iris.head()
```

Out[1]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

It is a two dimension feature matrix.

```
In [3]: %matplotlib inline
```

Set aesthetic parameters in one step.

In [4]: sns.set()
sns.pairplot(iris, hue='species', size=1.5)

Out[4]: <seaborn.axisgrid.PairGrid at 0x1c5877de518>

In [5]: import sklearn
 from sklearn.preprocessing import scale
 from sklearn.cross_validation import train_test_split
 from sklearn import metrics
 from sklearn import preprocessing

C:\Users\by3001pm\AppData\Local\Continuum\anaconda3\lib\site-packages\sklearn \cross_validation.py:41: DeprecationWarning: This module was deprecated in ve rsion 0.18 in favor of the model_selection module into which all the refactor ed classes and functions are moved. Also note that the interface of the new C V iterators are different from that of this module. This module will be remov ed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

```
In [7]: X_iris = iris.drop('species', axis=1)
X_iris.shape
```

Out[7]: (150, 4)

In [8]: y_iris = iris['species']
y_iris.shape

Out[8]: (150,)

Split the data into a training set and a testing set using the train_test_split utility function. Learn more about splitting data at http://scikit-learn.org/0.16/modules/generated/sklearn.cross_validation.train_test_split.html)

In [9]: from sklearn.cross_validation import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(X_iris, y_iris,
random_state=1) # random_state generates random sampling

In [10]: from sklearn.naive_bayes import GaussianNB # 1. choose model class
model = GaussianNB() # 2. instantiate model
model.fit(Xtrain, ytrain) # 3. fit model to data
y_model = model.predict(Xtest) # 4. predict on new data

In [11]: from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

Out[11]: 0.97368421052631582

The accuracy is over 97%