Midterm II Review

EC 320: Introduction to Econometrics

Amna Javed Winter 2020

Anything from the lectures, labs, or problem sets is fair game!

- 1. Simple Linear Regression: Estimation I & II
- 2. Classical Assumptions
- 3. Simple Linear Regression: Inference
- 4. Multiple Linear Regression: Estimation
- 5. Multiple Linear Regression: Inference
- 6. Interpret R output
- 7. Anything before Midterm I

1. Simple Linear Regression: Estimation

OLS mechanics

- How does OLS pick parameter estimates?
- What properties are a direct consequence of OLS?
- · Residuals v.s. errors

Coefficient interpretation (literal)

1. Simple Linear Regression: Estimation (cont.)

Goodness of fit

- $\cdot R^2$ interpretation (literal)
- Understand R^2 derivation
- \cdot Use and misuse of R^2

OLS by hand

- \cdot Estimate coefficients and calculate R^2 .
- Don't have to calculate standard errors by hand.

2. Classical Assumptions

Six assumptions

- 1. Linearity
- 2. Sample variation/no perfect collinearity
- 3. Random sampling
- 4. Exogeneity
- 5. Homoskedasticity
- 6. Normality

What do they buy?

When are they satisfied? When are they violated?

2. Classical Assumptions (cont.)

So what?

- Coefficient interpretation (substantive)
- Hypothesis test validity.

3. Simple Linear Regression: Inference

Making inferences about population parameters

- Population v.s. sample
- What do we mean by "statistical significance?"

Hypothesis testing (e.g., t tests)

- Null hypotheses v.s. alternative hypotheses
- Left-tailed, right-tailed, and two-tailed
- Type I v.s. Type II error

Confidence intervals

4. Multiple Linear Regression: Estimation

OLS mechanics and properties

Goodness of fit

- $\cdot R^2$ interpretation (literal)
- \cdot Know the behavior of R^2 as the number of explanatory variables increases.

Make predictions for certain values of the explanatory values (e.g., hedonic modeling)

4. Multiple Linear Regression: Estimation (cont.)

Coefficient interpretation (literal and substantive)

Omitted-variable bias

- Know when omitting a variable causes bias.
- · Sign the bias.
- Back out correlations between explanatory variables.

5. Multiple Linear Regression: Inference

Confidence intervals and t tests

· Other than degrees of freedom, same as before.

Multicollinearity

- Standard errors depend on the overlapping variation between the explanatory variable.
- \cdot More overlap \implies bigger standard errors \implies less likely to reject null hypothesis.

Irrelevant variables

No F tests on the midterm! Stay tuned for the final.

Midterm Structure

Multiple Choice Questions

Short Analytical Questions

More involved Analytical Questions

Midterm Protocol

Materials

- Writing utensil
- Basic or scientific calculator
- Nothing else

Procedure

• 80 minutes from "you may begin" to "pencils down"