Московский государственный университет им. М. В. Ломоносова

Факультет вычислительной математики и кибернетики

УДК 517.97

П. М. Ларин

Функция периметра выпуклых множеств

Москва, $2004 \, \Gamma$.

Аннотация

Понятие функции периметра вводится в теории гарантированного поиска. В настоящей статье доказываются некоторые свойства функций периметра выпуклых плоских множеств. Для частного случая — выпуклых многоугольников — строится алгоритм вычисления функции периметра, а также приводится информация о созданной автором компьютерной программе, реализующей этот алгоритм. Доказывается теорема о сходимости функций периметра последовательности многоугольников, аппроксимирующей произвольное выпуклое множество, к функции периметра этого множества.

1 Функция периметра

Обозначим через Ω класс плоских множеств с кусочно-гладкой границей. Зафиксируем некоторое множество $Q_0 \in \Omega$. Для произвольного $Q \subset Q_0$, $Q \in \Omega$, эффективной границей Q будем называть множество

$$\partial Q \setminus \partial Q_0,$$
 (1)

т.е. участки границы Q, не совпадающие с границей Q_0 (см. [1, 2]). $Эф-фективным периметром <math>p_E(Q)$ множества Q будем называть длину эф-фективной границы:

$$p_E(Q) = |\partial Q \setminus \partial Q_0|. \tag{2}$$

Далее, пусть μ обозначает площадь Q_0 , конечную или бесконечную. Функция периметра $P(Q_0; Z)$ множества Q_0 определяется на $[0, \mu]$ как

$$P(Q_0; Z) = \inf_{\substack{Q \subset Q_0 \\ |Q| = Z}} p_E(Q), \tag{3}$$

т.е. как точная нижняя грань эффективных периметров всех подмножеств Q_0 площади Z. С некоторыми допущениями можно сказать, что для заданного Z значение функции периметра — это длина кратчайшей кривой, делящей Q_0 на 2 подмножества, одно из которых имеет площадь Z.

Теорема 1. Пусть $Q_0 \in \Omega$. Тогда точные нижние грани в определении функции периметра (3) реализуются на подмножествах $U \subset Q_0$ таких, что каждый связный компонент эффективной границы U представляет собой дугу окружности либо отрезок прямой.

Доказательство. В [1] доказательство данного утверждения проводится при помощи методов вариационного исчисления, при этом на Q_0 накладываются дополнительные ограничения. Здесь мы приведем более простое и наглядное рассуждение, в то же время никаких ограничений на Q_0 не налагающее.

Пусть PQ — связный компонент эффективной границы U. Предположим, что PQ не является ни дугой окружности, ни отрезком прямой. Тогда на PQ можно выбрать достаточно малый участок RS = u, на котором кривизна непостоянна, но не меняет знак. Обозначим через v отрезок прямой, соединяющий R и S, а через ζ — площадь фигуры, ограниченной u и v. Построим дугу окружности u', соединяющую R и S, лежащую по ту же сторону от v, что и u, и такую, что площадь кругового сегмента, ограниченного u' и v, равна ζ . Нетрудно видеть, что длина u' строго меньше длины u. Таким образом, кривая $PR \cup u' \cup SQ$ делит Q_0 на множества той же площади, что и кривая PQ, но при этом имеет меньшую длину, что приводит к противоречию с определением точной нижней грани. Малость RS гарантирует, что u' не пересекается ни с ∂Q_0 , ни с другими связными компонентами эффективной границы U.

Теорема 2. Пусть $Q_0 \in \Omega$. Тогда точные нижние грани в определении функции периметра (3) реализуются на подмножествах $U \subset Q_0$ таких, что каждый связный компонент эффективной границы U пересекает ∂Q_0 либо

- ullet в гладкой точке ∂Q_0 под прямым углом, либо
- в точке стыка двух гладких участков ∂Q_0 , при этом острие стыка направлено внутрь Q_0 , и оба угла в точке стыка не меньше $\pi/2$.

Доказательство. Предположим противное: пусть для некоторого Z существует такое подмножество U площади Z и с эффективным периметром $P(Q_0; Z)$, что некоторый связный компонент MM' эффективной границы U пересекает ∂Q_0 либо в гладкой точке не под прямым углом, либо в точке стыка двух гладких участков ∂Q_0 , и при этом острие стыка направлено наружу Q_0 , либо острие стыка направлено внутрь Q_0 , но хотя бы один из углов в точке стыка меньше $\pi/2$ (рис. 1).

Пусть M — рассматриваемая точка стыка MM' и ∂Q_0 . Предположим сначала, что MM' является отрезком прямой, и что в некоторой окрестности точки M оба гладких участка ∂Q_0 : MM_1 и MM_2 — также представляют собой отрезки прямых. Выберем на рассматриваемом участке эффективной границы точку N, достаточно близкую к M. Пусть |MN|=a. Между M и N выберем точку P на расстоянии x от M. По условиям теоремы, из двух углов M_1MN M_2MN будет хотя бы один, меньший $\pi/2$; пусть это угол M_1MN . Из точки P опустим перпендикуляр PR на MM_1 . Также построим точку T, лежащую с той же стороны относительно прямой MN, что и M_2 , и такую, чтобы равнобедренный треугольник NPT с основанием NP имел ту же площадь, что и треугольник MPR.

Рис. 1

Обозначим через f(x) длину ломаной NTPR. Нетрудно видеть, что

$$f(x) = \sqrt{\frac{4x^4 \sin^2 x \cos^2 x}{(a-x)^2} + (a-x)^2} + x \sin \theta,$$
 (4)

$$f(0) = a, (5)$$

$$f'(0) = \sin \theta - 1 < 0, (6)$$

что означает, что для достаточно малых x>0 ломаная NTPR короче отрезка MN и при этом ограничивает ту же самую площадь. Мы получаем противоречие с тем фактом, что отрезок MN является частью эффективной границы подмножества, на котором реализуется точная нижняя грань в определении функции периметра.

В общем случае, когда MN, M_1N и M_2N не являются прямыми, точку N всегда можно выбрать достаточно близкой к M, чтобы в приведенном рассуждении можно было пренебречь отличием MN, M_1N и M_2N от прямых вследствие их регулярности.

2 Функция периметра выпуклых множеств

Теорема 3. Пусть $Q_0 \in \Omega$ и Q_0 выпуклое. Тогда точные нижние грани в определении функции периметра (3) реализуются на подмножествах $U \subset Q_0$ таких, что каждый связный компонент эффективной границы U пересекает ∂Q_0 в гладкой точке ∂Q_0 .

Доказательство. С учетом того, что из-за выпуклости Q_0 гладкие участки ∂Q_0 могут стыковаться только острием наружу, данная теорема является следствием предыдущей.

Теорема 4. Пусть $Q_0 \in \Omega$ и Q_0 выпуклое. Тогда точные нижние грани в определении функции периметра (3) реализуются на подмножествах

 $U \subset Q_0$ таких, что эффективная граница U является связной (и представляет собой, по доказанному выше, одну дугу окружности или один отрезок прямой).

Доказательство. Предположим, что указанная эффективная граница содержит хотя бы два элемента M_1N_1 и M_2N_2 , где каждый M_iN_i является дугой или отрезком.

Введем следующую классификацию различных случаев формы и взаимного расположения M_1N_1 и M_2N_2 . Каждому конкретному случаю будем сопоставлять пару (k_1,k_2) , где $k_i\in\{-1,0,1\}$. Если M_iN_i является отрезком прямой, то $k_i=0$. Если же M_iN_i является дугой окружности, то $k_i=1$, при условии, что M_iN_i обращена к другому элементу M_jN_j выпуклостью, и $k_i=-1$, при условии, что M_iN_i обращена к другому элементу M_jN_j вогнутостью.

Очевидно, можно считать, что $k_1 \leqslant k_2$. Также нетрудно видеть, что с учетом предыдущей теоремы, случаи (-1,-1) и (-1,0) вследствие выпуклости Q_0 невозможны.

Рассмотрим случай (-1,1) (рис. 2 а). Согласно предыдущей теореме, ∂Q_0 является гладкой в некоторых окрестностях M_i , N_i . Поэтому в этих окрестностях можно выбрать точки M_1', N_1', M_2', N_2' , лежащие в направлении центра дуг относительно M_1, N_1, M_2 и N_2 соответственно, так, чтобы площади фигур $M_1N_1N_1'M_1'$ и $M_2N_2N_2'M_2'$ были равны. Полу-

чается, что $M'_1N'_1 \cup M'_2N'_2$ делит Q_0 на пару множеств той же площади, что и $M_1N_1 \cup M_2N_2$, но при этом длина $M'_iN'_i$ меньше длины M_iN_i . Таким образом, построена пара подмножеств Q_0 с той же площадью и с меньшим эффективным периметром, что противоречит определению функции периметра.

Случай (0,1) (рис. 2 б) рассматривается аналогично с той лишь разницей, что длина $M_1'N_1'$ может оказаться равной длине M_1N_1 ; при этом суммарная длина $M_1'N_1' \cup M_2'N_2'$ все равно будет меньше $M_1N_1 \cup M_2N_2$.

В случае (0,0) (рис. 2 в), аналогичным образом перемещая оба отрезка с сохранением площадей подмножеств, мы придем либо к случаю (0,1), либо к полному исчезновению одного из отрезков (при этом эффективный периметр скачкообразно уменьшится, и мы опять получим противоречие).

Рассмотрим случай (1,1) (рис. 2 г). Пусть l_i — длина, а R_i — радиус дуги M_iN_i . Запишем условие неизменности площадей с точностью до бесконечно малых второго порядка:

$$l_1 dR_1 + l_2 dR_2 = 0, (7)$$

откуда

$$dR_1 = l_2 dt, (8)$$

$$dR_2 = -l_1 dt. (9)$$

Для суммарной длины дуг имеем:

$$d(l_1 + l_2) = l_1 l_2 \left(\frac{1}{R_1} - \frac{1}{R_2}\right) dt.$$
 (10)

Таким образом, при $R_1 \neq R_2$ для достаточно малых по модулю dt того же знака, что и $R_1 - R_2$, получим уменьшение эффективного периметра.

Если же $R_1 = R_2$, то $d(l_1 + l_2) = 0$. Однако, вводя обозначение

$$\theta_i = \frac{l_i}{R_i},\tag{11}$$

и помня, что $d\theta_i=0$ вследствие локальной гладкости ∂Q_0 , и $d^2\theta_i\leqslant 0$ вследствие выпуклости Q_0 , получим

$$d^{2}(l_{1} + l_{2}) = -\theta_{1}\theta_{2}(l_{1} + l_{2})dt^{2} + d^{2}\theta_{1}R_{1} + d^{2}\theta_{2}R_{2} < 0,$$
(12)

т.е. уменьшение эффективного периметра вне зависимости от знака dt.

В приведенном рассуждении неявно использовался тот факт, что M_1N_1 и M_2N_2 не имеют общих конечных точек. Предположим теперь, что $M_1=M_2=M$. Пусть, к примеру, имеет место случай (1,1) (рис. 3 а). Выберем на MN_i в достаточной близости от M точки P_i . Внутри множества $MN_1P_1P_2N_2$ построим круг B с площадью, равной площади MP_1P_2 (рис. 3 б). Нетрудно видеть, что множество $MN_1P_1P_2N_2 \cup B$

имеет ту же площадь, что и изначальное множество, ограниченное MN_1 и MN_2 , при меньшем эффективном периметре, что опять означает противоречие. Случаи (-1,1) и (0,1) рассматриваются аналогично.

Теорема 5. Пусть $Q_0 \in \Omega$, Q_0 выпуклое и $|Q_0| = \mu$. Тогда

$$\max_{[0,\mu]} P(Q_0; Z) = P\left(Q_0; \frac{\mu}{2}\right). \tag{13}$$

Доказательство. Пусть эффективная граница подмножества, на котором реализуется точная нижняя грань в определении функции периметра (3) для $Z=\mu/2$, представляет собой дугу окружности MN (рис. 4). Согласно теореме 3, в точках M и N существуют касательные a, b к ∂Q_0 . Также, вследствие выпуклости Q_0 , это множество лежит по одну

Рис. 4

сторону от каждой из упомянутых касательных.

Понятно, что для любого $0\leqslant Z<\mu/2$ найдется такая точка P, лежащая на a левее M, что площадь подмножеств E_1 и E_2 , на которые

делит Q_0 дуга PR, ортогональная a и b, составляет Z и $\mu/2-Z$; при этом эффективная граница E_1 и E_2 не превышает длины дуги MN, т.е. $\max P(Q_0;Z)$.

В случае, когда MN представляет собой не дугу, а отрезок, рассуждение аналогично, но при этом не имеет значения, берется ли точка P левее или правее M.

Теорема 6. Пусть $Q_0 \in \Omega$, Q_0 выпуклое $u |Q_0| = \mu$. Пусть для некоторого Z, $0 < Z < \mu$ существует подмножество Q_0 , имеющее площадь Z u эффективный периметр $P(Q_0; Z)$, u эффективная граница которого представляет собой отрезок прямой. Тогда

$$P(Q_0; Z) = \max_{[0, \mu]} P(Q_0; Z). \tag{14}$$

Доказательство. Аналогично предыдущей теореме.

3 Функция периметра выпуклых многоугольников

Рассмотрим задачу построения функции периметра $P(Q_0; Z)$ в частном случае, когда Q_0 представляет собой выпуклый многоугольник L. Обозначим его стороны через f_i , $1 \le i \le n$. Следующий простой алгоритм в некотором смысле осуществляет перебор всех дуг и отрезков, ортого-

нальных ∂Q_0 и поэтому могущих оказаться эффективными границами подмножеств, на которых реализуется точная нижняя грань в определении функции периметра (3). Будем перебирать все пары (f_i, f_j) ; для

каждой из таких пар либо вообще не будет существовать дуг или отрезков, ортогональных f_i и f_j (рис. 5 а), либо же таковые будут образовывать однопараметрическое семейство дуг с центром в точке пересечения прямых, на которых лежат f_i и f_j (в случае, если f_i и f_j непараллельны, рис. 5 б) или однопараметрическое семейство отрезков одинаковой длины (в случае параллельности f_i и f_j , рис. 5 в). Для каждого из случаев (б) и (в) построим «функцию периметра пары граней» $\pi_{ij}(Z)$, выражающую зависимость длины дуги или отрезка MN от площади Z одного из пары множеств, на которые MN делит L. Для определенности будем считать, что $M \in f_i$, $N \in f_j$ и под Z понимается площадь того из двух подмножеств Q_0 , которое лежит справа при движении по MN от M к N; при этом будет справедливо равенство

$$\pi_{ij}(Z) = \pi_{ji}(\mu - Z). \tag{15}$$

Для каждой $\pi_{ij}(Z)$ также необходимо установить область определения D_{ij} , представляющую собой отрезок, для нахождении которого следует учесть крайние точки f_i и f_j , а также возможность пересечения MN с прочими гранями L (рис. 6). Нетрудно видеть, что если $D_{ij} = [a_{ij}, b_{ij}]$, то $D_{ji} = [\mu - b_{ij}, \mu - a_{ij}]$. (Для упомянутого выше случая (а) удобно положить $D_{ij} = \varnothing$.) Таким образом, указанная процедура даст нам набор функций $\pi_{ij}(Z)$ для некоторых значений (i,j), причем для параллельных f_i и f_j функция $\pi_{ij}(Z)$ будет константой. Пусть f_i и f_j непараллельны. Тогда в том случае, когда движение по MN от f_i к f_j происходит по часовой стрелке, функция $\pi_{ij}(Z)$ будет иметь вид

$$\pi_{ij}(Z) = \sqrt{2\theta_{ij}(Z + \zeta_{ij})},\tag{16}$$

где θ_{ij} — угол между прямыми a_i и a_j , на которых лежат отрезки f_i и f_j , а ζ_{ij} — площадь фигуры, получаемой вычитанием L из кругового сектора MNP; здесь P — точка пересечения a_i и a_j (рис. 7). Если f_i и f_j соседние, то $\zeta_{ij}=0$.

В случае же, когда движение по MN от f_i к f_j происходит против часовой стрелки, функция $\pi_{ij}(Z)$ будет иметь вид

$$\pi_{ij}(Z) = \sqrt{2\theta_{ij}(\mu - Z + \zeta_{ij})},\tag{17}$$

Рис. 6

Рис. 7

где $\theta_{ij}=\theta_{ji},\ \zeta_{ij}=\zeta_{ji}.$ Однако удобнее оказывается положить

$$\theta_{ij} = -\theta_{ji}, \quad \zeta_{ij} = -\zeta_{ji} - \mu \tag{18}$$

с тем, чтобы и в этом случае пользоваться формулой (16), как мы и будем в дальнейшем поступать.

Выше подразумевалось, что $i \neq j$. При i = j имеются две функции

$$\pi_{ii}^{(1)}(Z) = \sqrt{2\pi Z}, \quad \pi_{ii}^{(2)}(Z) = \sqrt{-2\pi(Z-\mu)}$$
 (19)

с областями определения

$$D_{ii}^{(1)} = [0, b_{ii}], \quad D_{ii}^{(2)} = [\mu - b_{ii}, \mu]$$
 (20)

соответственно. Положим

$$D_{ii} = D_{ii}^{(1)} \cup D_{ii}^{(2)} \tag{21}$$

И

$$\pi_{ii}(Z) = \begin{cases} \pi_{ii}^{(1)}(Z), & Z \in D_{ii}^{(1)}, Z \notin D_{ii}^{(2)}, \\ \pi_{ii}^{(2)}(Z), & Z \in D_{ii}^{(2)}, Z \notin D_{ii}^{(1)}, \\ \min\{\pi_{ii}^{(1)}(Z), \pi_{ii}^{(2)}(Z)\}, & Z \in D_{ii}^{(2)} \cap D_{ii}^{(2)}. \end{cases}$$
(22)

Нетрудно видеть окончательно, что P(L;Z) определяется следующим образом:

$$P(L;Z) = \min_{i,j:\ D_{ij} \ni Z} \pi_{ij}(Z). \tag{23}$$

Действительно, все имеющиеся дуги и отрезки, ортогональные ∂L , «учтены» в функциях $\pi_{ij}(Z)$ в том смысле, что для каждой такой дуги или

отрезка, имеющего длину P и ограничивающего подмножество L площади Z, существует пара (i,j) такая, что

$$\pi_{ij}(Z) = P. \tag{24}$$

Выбирая в (23) из всех дуг и отрезков, ограничивающих подмножество площади Z, кратчайшую, мы и получаем значение функции периметра для значения аргумента Z.

Заметим также, что определение (23) делает ясным смысл определения (22).

Мы, таким образом, приходим к выводу, что P(L;Z) является кусочно-гладкой с гладкими участками, представляющими собой функции вида (16) и константы. Будем обозначать гладкие участки через $\pi_i(Z)$, их параметры — через θ_i , ζ_i , а соответствующие области определения (отрезки) — через $D_i = [a_{i-1}, a_i]$, $1 \leqslant i \leqslant m$. Очевидно, что

$$\pi_i(Z) = \pi_{m-i+1}(\mu - Z),$$
(25)

$$\theta_i + \theta_{m-i+1} = 0, \tag{26}$$

$$\zeta_i + \zeta_{m-i+1} + \mu = 0, \tag{27}$$

$$a_i + a_{m-i} = \mu. (28)$$

Теорема 7. Пусть L — выпуклый многоугольник. Тогда гладкие участки $\pi_i(Z)$ функции периметра P(L;Z) стыкуются острием «вверх».

 \mathcal{A} оказательство. Рассмотрим произвольную точку стыка $Z=a_i$, в которой

$$\pi_i(Z) = \pi_{i+1}(Z). \tag{29}$$

Предположим, что острие стыка направлено вниз (рис. 8). График функции $\pi_i(Z)$ представляет собой участок графика некоторой функции $\pi_{jk}(Z)$. Поэтому существует дуга или отрезок MN, соединяющий стороны f_j и

Рис. 8

 f_k , ортогональный им, имеющий длину $\pi_{jk}(a_i)$ и ограничивающий подмножество площади a_i . Согласно теореме 3, точки M и N являются внутренними точками отрезков f_j и f_k . Это означает, что $\pi_{jk}(Z)$ определена в некоторой окрестности точки a_i . Поэтому для достаточно малых $\varepsilon > 0$ будет выполнено неравенство

$$\pi_{ik}(a_i + \varepsilon) < \pi_{i+1}(a_i + \varepsilon) \tag{30}$$

вследствие того, что функции, фигурирующие в обеих частях неравенства, принимают одинаковые значения в точке a_i , а производная $\pi_{i+1}(Z)$ в этой точке больше производной $\pi_{jk}(Z)$. Таким образом, мы приходим к противоречию с тем фактом, что $\pi_{i+1}(Z)$ представляет собой минимальную из всех функций $\pi_{lp}(Z)$, определенных в некоторой окрестности a_i .

Теорема 8. Пусть L — выпуклый многоугольник. Тогда функция периметра P(L;Z) является выпуклой вверх, т.е.

$$P(L; \lambda_1 Z_1 + \lambda_2 Z_2) \geqslant \lambda_1 P(L; Z_1) + \lambda_2 P(L; Z_2)$$
(31)

для любых $Z_i, \in [0, \mu], \ \lambda_i \geqslant 0, \ \lambda_1 + \lambda_2 = 1.$

Доказательство. Данное утверждение следует из выпуклости вверх функций $\pi_i(Z)$ и предыдущей теоремы.

Суммируя вышесказанное, мы приходим к следующему общему виду функции периметра P(L;Z) произвольного выпуклого многоугольника L. P(L;Z) является кусочно-гладкой. Точки стыка гладких участков $a_0=0,\,a_1,\,a_2,\,\ldots,\,a_m=\mu$ расположены симметрично относительно точки $\mu/2$:

$$a_i + a_{m-i} = \mu. (32)$$

Среди гладких участков $\pi_i(Z)$ не более, чем один является константой. В случае, когда он имеется, m — количество функций $\pi_i(Z)$ — нечетно, индекс функции-константы равен (m+1)/2, а участок, на котором она определена, имеет вид

$$D_{\frac{m+1}{2}} = \left[\frac{\mu}{2} - \eta, \ \frac{\mu}{2} + \eta \right] \tag{33}$$

для некоторого $\eta > 0$. Значение $\pi_{\frac{m+1}{2}}(Z)$ совпадает с максимумом P(L;Z). Необходимым условием наличия участка-константы является наличие в L параллельных граней.

В случае отсутствия участка-константы m четно.

Для остальных гладких участков $\pi_i(Z)$ функции P(L;Z) справедливы соотношения

$$\pi_i(Z) = \sqrt{2\theta_i(Z + \zeta_i)},\tag{34}$$

причем параметры указанных функций удовлетворяют условиям

$$\theta_i + \theta_{m-i+1} = 0, \tag{35}$$

$$\zeta_i + \zeta_{m-i+1} + \mu = 0. {36}$$

Для участка-константы естественно положить $\theta_{\frac{m+1}{2}} = 0$. Тогда, как нетрудно видеть, будет справедливо следующее свойство:

$$\theta_1 > \theta_2 > \ldots > \theta_m. \tag{37}$$

Действительно, если предположить, что $\theta_i \leqslant \theta_{i+1}$, то между соответствующими функциями будет невозможен стык острием «вверх».

Напоследок отметим, что P(L;Z) вполне задается числом m и наборами

$$a_1, a_2, \dots, a_{\left[\frac{m}{2}\right]}, \quad \theta_1, \theta_2, \dots \theta_{\left[\frac{m}{2}\right]}.$$
 (38)

Остальные параметры находятся из условий $a_0 = 0$, $a_m = \mu$, условий симметричности относительно точки $\mu/2$, равенства нулю P(L;Z) на концах области определения и условий непрерывности P(L;Z) в точках стыка a_i .

Теорема 9. Пусть L- выпуклый многоугольник, $\theta-$ наименьший из его углов, $|L|=\mu$. Тогда для функции периметра P(L;Z) справедлива оценка:

$$P(L;Z) \leqslant M_{\theta,\mu}(Z),\tag{39}$$

где

$$M_{\theta,\mu}(Z) = \begin{cases} \sqrt{2\theta Z}, & Z \in \left[0, \frac{\mu}{2}\right], \\ \sqrt{2\theta(\mu - Z)}, & Z \in \left[\frac{\mu}{2}, \mu\right]. \end{cases}$$
(40)

Доказательство. Нетрудно видеть, что на первом гладком участке $[a_0, a_1]$ функция P(L; Z) совпадает с $M_{\theta,\mu}(Z)$. Действительно, кандидатами в $\pi_1(Z)$ могут выступать только $\pi_{ij}(Z)$, обращающиеся в 0 в Z=0, т.е. те, у которых $\zeta_{ij}=0$, а это условие выполнено только в том случае, когда f_i и f_j либо соседние стороны, либо одна и та же сторона. При этом $\pi_1(Z)$ будет задаваться выражением

$$\pi_{1}(Z) = \min\{\sqrt{2\theta_{1}Z}, \sqrt{2\theta_{2}Z}, \dots, \sqrt{2\theta_{m}Z}, \sqrt{2\pi Z}\} =$$

$$= \sqrt{2}\min\{\theta_{1}, \theta_{2}, \dots, \theta_{m}, \pi\}Z =$$

$$= \sqrt{2}\min\{\theta_{1}, \theta_{2}, \dots, \theta_{m}\}Z =$$

$$= \sqrt{2\theta Z} = M_{\theta,\mu}(Z).$$

$$(41)$$

Аналогичное рассуждение приводит к выводу, что

$$\pi_m(Z) = \sqrt{2\theta(\mu - Z)}. (42)$$

Как было указано выше, функции $\pi_i(Z)$ задаются формулами (34), а также формулой $\pi_i(Z)=$ const на отрезках $[a_{i-1},a_i]$. Однако, как нетрудно видеть, все эти формулы задают некоторые функции на всем отрезке $[0,\mu]$. Для $\pi_i(Z)=$ const это очевидно; для функций (34) несложно убедиться, что в силу их вида выражение под корнем будет неотрицательно для любых $Z\in [0,\mu]$. Обозначим через $\tilde{\pi}_i(Z)$ функцию, получаемую распространением определения $\pi_i(Z)$ на весь отрезок $[0,\mu]$. Нетрудно видеть, что в силу вида функций $\tilde{\pi}_i(Z)$ для любого $i,1\leqslant i\leqslant m-1$ справедливы соотношения:

$$\tilde{\pi}_i(Z) < \tilde{\pi}_{i+1}(Z), \quad Z \in [0, a_i), \tag{43}$$

$$\tilde{\pi}_i(Z) = \tilde{\pi}_{i+1}(Z), \quad Z = a_i, \tag{44}$$

$$\tilde{\pi}_i(Z) > \tilde{\pi}_{i+1}(Z), \quad Z \in (a_i, \, \mu], \tag{45}$$

откуда следует, что

$$\tilde{\pi}_i(Z) \leqslant \tilde{\pi}_{i+1}(Z), \quad Z \in [0, a_k], \quad k \leqslant i,$$

$$(46)$$

$$\tilde{\pi}_i(Z) \geqslant \tilde{\pi}_{i+1}(Z), \quad Z \in [a_k, \mu], \quad k \geqslant i.$$
 (47)

Пусть $Z \in [a_i, a_{i+1}]$. Тогда

$$\tilde{\pi}_1(Z) \geqslant \tilde{\pi}_2(Z) \geqslant \ldots \geqslant \tilde{\pi}_{i-1}(Z) \geqslant$$

$$\geqslant \pi_i(Z) = \tilde{\pi}_i(Z) \leqslant \tilde{\pi}_{i+1}(Z) \leqslant \ldots \leqslant \tilde{\pi}_m(Z), \quad (48)$$

т.е.

$$P(L;Z) = \pi_i(Z) \leqslant \tilde{\pi}_1(Z), \tag{49}$$

$$P(L;Z) = \pi_i(Z) \leqslant \tilde{\pi}_m(Z), \tag{50}$$

иЛи

$$P(L;Z) \leqslant M_{\theta,\mu}(Z). \tag{51}$$

Cледствие 1. Пусть L — выпуклый многоугольник, θ — наименьший из его углов. Тогда $\theta_1 = -\theta_m = \theta$.

Следствие 2. Пусть L — выпуклый многоугольник. Тогда при построении P(L;Z) можно не учитывать функции вида $\pi_{ii}(Z)$, т.к. они заведомо не дадут вклада в P(L;Z).

Следствие 3. Пусть L — выпуклый многоугольник, $|L| = \mu$. Тогда для функции периметра P(L;Z) справедлива оценка:

$$P(L;Z) \leqslant M_{\pi,\mu}(Z),\tag{52}$$

причем неравенство будет строгим, если исключить точки Z=0 и $Z=\mu$. $\mathit{Следствие}\ 4$. Пусть L— выпуклый многоугольник, θ — наименьший из его углов, $|L|=\mu$. Тогда для максимума функции периметра P(L;Z) справедлива оценка:

$$\max_{[0,\mu]} P(L;Z) \leqslant \sqrt{\theta\mu}.$$
 (53)

Следствие 5. Пусть L — выпуклый многоугольник, $|L| = \mu$. Тогда для максимума функции периметра P(L;Z) справедлива оценка:

$$\max_{[0,\mu]} P(L;Z) < \sqrt{\pi\mu}.\tag{54}$$

Пример 1. Функция периметра треугольника. Нетрудно видеть, что функция периметра произвольного треугольника равна $M_{\theta,\mu}(Z)$, где θ — наименьший из углов треугольника, а μ — его площадь.

Рассмотрим вышеприведенный алгоритм построения функции периметра выпуклого многоугольника на следующем менее тривиальном примере.

Пример 2. Функция периметра правильного шестиугольника. Пусть L — правильный шестиугольник со стороной, равной 1. Площадь L составляет $\mu = 3\sqrt{3}/2$, и областью определения P(L;Z) будет отрезок $[0, 3\sqrt{3}/2]$.

Как было показано выше, функции вида $\pi_{ii}(Z)$ можно исключить из рассмотрения. С учетом этого, а также с учетом симметричности L, достаточно построить три функции: $\pi_{12}(Z)$, $\pi_{13}(Z)$ и $\pi_{14}(Z)$ (а также им симметричные относительно середины отрезка $Z = 3\sqrt{3}/4$).

 $\pi_{12}(Z)$ определена на участке $[0,\pi/3]$ (рис. 9 а) и, очевидно, равна $\sqrt{4\pi Z/3}$. $\pi_{13}(Z)$ определена на $[\pi/6-\sqrt{3}/4,2\pi/3-\sqrt{3}/4]$ (рис. 9 б).

Как нетрудно видеть,
$$\zeta_{13} = \sqrt{3}/4$$
, и поэтому $\pi_{13}(Z) = \sqrt{\frac{2\pi}{3} \left(Z + \frac{\sqrt{3}}{4}\right)}$.

 $\pi_{14}(Z)$ является константой, равной $\sqrt{3}$ с областью определения $[\sqrt{3}/4,\,5\sqrt{3}/4]$ (рис. 9 в). Перечислим еще раз параметры построенных и им симметричных функций:

$$D_{12} = \left[0, \frac{\pi}{3}\right], \quad \pi_{12}(Z) = \sqrt{\frac{4}{3}\pi Z}, \quad \theta_{12} = \frac{2\pi}{3}, \quad \zeta_{12} = 0,$$
 (55)

$$D_{13} = \left[\frac{\pi}{6} - \frac{\sqrt{3}}{4}, \frac{2\pi}{3} - \frac{\sqrt{3}}{4}\right], \quad \pi_{13}(Z) = \sqrt{\frac{2\pi}{3}} \left(Z + \frac{\sqrt{3}}{4}\right),$$

$$\theta_{13} = \frac{\pi}{3}, \quad \zeta_{13} = \frac{\sqrt{3}}{4}, \quad (56)$$

$$D_{14} = \left[\frac{\sqrt{3}}{4}, \frac{5\sqrt{3}}{4}\right], \quad \pi_{14}(Z) = \sqrt{3}, \quad \theta_{14} = 0,$$
 (57)

$$D_{31} = \left[\frac{7\sqrt{3}}{4} - \frac{2\pi}{3}, \frac{7\sqrt{3}}{4} - \frac{\pi}{6}\right], \quad \pi_{31}(Z) = \sqrt{\frac{2\pi}{3}\left(\frac{7\sqrt{3}}{4} - Z\right)},$$

$$\theta_{31} = -\frac{\pi}{3}, \quad \zeta_{31} = -\frac{7\sqrt{3}}{4}, \quad (58)$$

$$D_{21} = \left[0, \frac{\pi}{3}\right], \quad \pi_{21}(Z) = \sqrt{\frac{4\pi}{3} \left(\frac{3\sqrt{3}}{2} - Z\right)},$$

$$\theta_{21} = -\frac{2\pi}{3}, \quad \zeta_{21} = -\frac{3\sqrt{3}}{2}. \quad (59)$$

Для того, чтобы получить P(L;Z) согласно (23), построим графики $\pi_{ij}(Z)$ и графическим методом определим минимум (рис. 10). График P(L;Z) выделен жирной линией. Решая уравнения

$$\pi_{12}(Z) = \pi_{13}(Z), \quad \pi_{13}(Z) = \pi_{14}(Z),$$

$$\pi_{14}(Z) = \pi_{31}(Z), \quad \pi_{31}(Z) = \pi_{21}(Z), \quad (60)$$

найдем все a_i . Имеем окончательно:

$$m = 5, (61)$$

Рис. 10

$$a_0 = 0$$
, $a_1 = \frac{\sqrt{3}}{4}$, $a_2 = \frac{9}{2\pi} - \frac{\sqrt{3}}{4}$, $a_3 = \frac{7\sqrt{3}}{4} - \frac{9}{2\pi}$, $a_4 = \frac{5\sqrt{3}}{4}$, $a_5 = \frac{3\sqrt{3}}{2}$, (62)

$$\theta_1 = \frac{2\pi}{3}, \quad \theta_2 = \frac{\pi}{3}, \quad \theta_3 = 0, \quad \theta_4 = -\frac{\pi}{3}, \quad \theta_5 = -\frac{2\pi}{3},$$
 (63)

$$\pi_1(Z) = \sqrt{\frac{4}{3}\pi Z},\tag{64}$$

$$\pi_2(Z) = \sqrt{\frac{2\pi}{3} \left(Z + \frac{\sqrt{3}}{4}\right)},$$
(65)

$$\pi_3(Z) = \sqrt{3},\tag{66}$$

$$\pi_4(Z) = \sqrt{\frac{2\pi}{3} \left(\frac{7\sqrt{3}}{4} - Z\right)},$$
(67)

$$\pi_5(Z) = \sqrt{\frac{4\pi}{3} \left(\frac{3\sqrt{3}}{2} - Z\right)}.$$
(68)

Теорема 10. Пусть L- выпуклый многоугольник, $|L|=\mu$. Тогда для произвольного $\varepsilon>0$ функция периметра P(L;Z) на участке $[\varepsilon, \mu-\varepsilon]$ удовлетворяет условию Липшица с константой $\sqrt{\pi/2\varepsilon}$:

$$|P(L; Z_1) - P(L; Z_2)| \le \sqrt{\frac{\pi}{2\varepsilon}} |Z_1 - Z_2|.$$
 (69)

Доказательство. Нетрудно видеть, что на участке $(0,\,\mu/2)$ выполняется неравенство

$$P'(L;Z) \leqslant M'_{\pi,\mu}(Z),\tag{70}$$

причем в точках скачка производной P(L;Z) неравенство справедливо для любой из односторонних производных. В этом можно убедиться непосредственным вычислением с учетом того, что P(L;Z) состоит из участков вида (34) с $\theta_i < \pi$ и $\zeta_i \geqslant 0$. Принимая во внимание симметричность обеих функций относительно $Z = \mu/2$, можно написать для произвольного $Z \in (0, \mu)$:

$$\left| P'(L;Z) \right| \leqslant \left| M'_{\pi,\mu}(Z) \right|,\tag{71}$$

причем в точках скачка производных неравенство справедливо для любых односторонних производных. В свою очередь, величину $|M'_{\pi,\mu}(Z)|$ на $[\varepsilon, \mu-\varepsilon]$ можно вследствие выпуклости $M_{\pi,\mu}(Z)$ оценить через значение $|M'_{\pi,\mu}(Z)|$ на концах отрезка:

$$\left|M'_{\pi,\mu}(Z)\right| \leqslant \sqrt{\frac{\pi}{2\varepsilon}}.$$
 (72)

4 Аппроксимация выпуклых множеств многоугольниками

Вернемся к рассмотрению функций периметра произвольных выпуклых множеств из Ω . Пусть $Q_0 \in \Omega$ и Q_0 выпуклое. Многоугольником, вписанным в Q_0 , будем называть любой многоугольник L, все вершины которого лежат на ∂Q_0 . Нетрудно видеть, что $L \subset Q_0$ вследствие выпуклости Q_0 . Обозначим через $z(Q_0, L)$ разность между площадями Q_0 и L:

$$z(Q_0, L) = |Q_0| - |L|, (73)$$

а через $d(Q_0,L)$ — минимальную величину, удовлетворяющую условию, что любая точка $x\in\partial L$ лежит на расстоянии, не большем $d(Q_0,L)$ от ∂Q_0 :

$$d(Q_0, L) = \max_{x \in \partial L} \min_{y \in \partial Q_0} |x - y|.$$

$$(74)$$

Теорема 11. Пусть $Q_0 \in \Omega$, Q_0 выпуклое $u |Q_0| = \mu$. Пусть $\{L_n\}$ - последовательность многоугольников, вписанных в Q_0 , такая, что

$$z(Q_0, L_n) = z_n \to 0, \quad d(Q_0, L_n) = d_n \to 0.$$
 (75)

Tог ∂a

$$\lim_{n \to \infty} P(L_n; Z) = P(Q_0; Z), \tag{76}$$

причем для любого $\varepsilon > 0$ сходимость будет равномерной на $[\varepsilon, \mu - \varepsilon]$.

Доказательство. Пусть задано произвольное $Z,\ 0 < Z < \mu$. Выберем такое N, чтобы для всех $n \geqslant N$ выполнялись неравенства

$$z_n < Z, \quad z_n < \mu - Z. \tag{77}$$

Пусть $n \geqslant N$. Рассмотрим функцию периметра $P(L_n)$ в точке Z. Пусть эффективная граница подмножества L_n площади Z, на котором реализуется точная нижняя грань в определении функции периметра (3), представляет собой дугу окружности или отрезок MN (рис. 11 а). Согласно условиям леммы, существует точка $R \in \partial Q_0$, лежащая на расстоянии, не большем d_n от M, и точка S, лежащая на расстоянии, не большем d_n от N. Кривая RMNS имеет длину, не превосходящую $P(L_n; Z) + 2d_n$, и делит Q_0 на пару множеств, площадь одного из которых равна $Z + \alpha_n(Z)$, где $0 \leqslant \alpha_n(Z) \leqslant z_n$. Поэтому справедливо неравенство

$$P(Q_0; Z + \alpha_n(Z)) \leqslant P(L_n; Z) + 2d_n. \tag{78}$$

Поскольку ∂Q_0 кусочно-гладкая, то $P(Q_0)$ непрерывна, а значит, и равномерно непрерывна на $[0,\mu]$. Это означает, что существует функция $\delta(z)$ определенная для положительных z, неубывающая, и предел которой при $z\to 0$ равен 0, такая, что

$$|P(Q_0; Z_1) - P(Q_0; Z_2)| \le \delta(z),$$
 (79)

Рис. 11

если $|Z_1 - Z_2| \leqslant z$. Полагая $Z_1 = Z + \alpha_n(Z)$, $Z_2 = Z$ и учитывая, что $0 \leqslant \alpha_n(Z) \leqslant z_n$, имеем:

$$P(Q_0; Z) - \delta(z_n) \leqslant P(Q_0; Z + \alpha_n(Z)) \leqslant P(L_n; Z) + 2d_n, \tag{80}$$

или

$$P(Q_0; Z) - \delta(z_n) - 2d_n \leqslant P(L_n; Z). \tag{81}$$

Рассмотрим теперь функцию периметра $P(Q_0)$ в точке Z. Пусть эффективная граница подмножества Q_0 площади Z, на котором реализуется точная нижняя грань в определении функции периметра (3), представляет собой дугу окружности или отрезок MN (рис. 11 б). В силу (77) MN пересекает L_n по некоторой кривой RS (хотя здесь возможен случай, когда $MN \cap L_n$ несвязно, для дальнейших рассуждений это несущественно). Кривая RS имеет длину, не превосходящую $P(Q_0; Z)$, и делит L_n на пару множеств, площадь одного из которых равна $Z - \beta_n(Z)$, где $0 \leqslant \beta_n(Z) \leqslant z_n$. Поэтому справедливо неравенство

$$P(L_n; Z - \beta_n(Z)) \leqslant P(Q_0; Z). \tag{82}$$

Вводя, по аналогии с $\delta(z)$, функции $\delta_n(z)$, приходим к неравенству

$$P(L_n; Z) \leqslant P(Q_0; Z) + \delta_n(z_n), \tag{83}$$

объединяя которое с (81), получаем:

$$P(Q_0; Z) - \delta(z_n) - 2d_n \leqslant P(L_n; Z) \leqslant P(Q_0; Z) + \delta_n(z_n). \tag{84}$$

Согласно предыдущей теореме, на отрезке $[\varepsilon, \mu - \varepsilon]$ можно положить

$$\delta_n(z) = \sqrt{\frac{\pi}{2\varepsilon}} z \tag{85}$$

для всех n, и поэтому оценка (84) доказывает равномерную сходимость на $[\varepsilon, \mu - \varepsilon]$.

Таким образом, нахождение функции периметра произвольного выпуклого множества $Q_0 \in \Omega$ с заданной точностью сводится к нахождению функции периметра «аппроксимирующего» многоугольника L по описанному ранее алгоритму. Соотношение (84) позволяет легко оценить погрешность $|P(Q_0; Z) - P(L; Q_0)|$ на $[\varepsilon, \mu - \varepsilon]$.

Также, последняя теорема с очевидностью позволяет распространить некоторые утверждения, доказанные для многоугольников, на общий случай произвольного выпуклого множества $Q_0 \in \Omega$.

Теорема 12. Пусть $Q_0 \in \Omega$ и Q_0 выпуклое. Тогда функция периметра $P(Q_0; Z)$ является выпуклой вверх.

Теорема 13. Пусть $Q_0 \in \Omega$, Q_0 выпуклое $u |Q_0| = \mu$. Тогда для функции периметра $P(Q_0; Z)$ справедлива оценка:

$$P(Q_0; Z) \leqslant M_{\pi, \mu}(Z). \tag{86}$$

Теорема 14. Пусть $Q_0 \in \Omega$, Q_0 выпуклое $u |Q_0| = \mu$. Тогда для максимума функции периметра $P(Q_0; Z)$ справедлива оценка:

$$\max_{[0,\mu]} P(Q_0; Z) \leqslant \sqrt{\pi \mu}. \tag{87}$$

Теорема 15. Пусть $Q_0 \in \Omega$, Q_0 выпуклое и $|Q_0| = \mu$. Тогда для произвольного $\varepsilon > 0$ функция периметра $P(Q_0; Z)$ на участке $[\varepsilon, \mu - \varepsilon]$ удовлетворяет условию Липшица с константой $\sqrt{\pi/2\varepsilon}$.

В заключение отметим, что автором была создана компьютерная программа, способная вычислять функцию периметра выпуклых многоугольников по приведенному в п. 2 алгоритму. Программа обеспечивает:

- интерактивный ввод многоугольника при помощи «мыши», а также ввод из файла;
- изображение графика P(Z), а также вывод параметров a_i , θ_i и ζ_i в файл;
- \bullet изображение подмножества, на котором реализуется точная нижняя грань для Z, равного половине площади многоугольника.

На рис. 12 показано, как выглядит окно программы при вводе многоугольника и при выводе графика. Основу программы составляет автономная библиотека объектов на языке C++, готовая к использованию в других программах.

Список литературы

- [1] Ларин П. М. О невозможности гарантированного поиска в достаточно большой области. Деп. в ВИНИТИ. 26.05.98. № 1629—В98.
- [2] Ларин П. М. О неразрешимости задач гарантированного поиска в достаточно большой области // Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. 2000. № 1. С. 44–47.

119992 ГСП-2 Москва, Воробьевы горы, МГУ им. М. В. Ломоносова, 2-й учебный корпус, Φ -т ВМиК.

Электронная почта: ecrpela@mail.ru

Рис. 12