Ensemble, application et relation

1. Ensemble

1.1 Ensemble, partie et élément

Définition 1.1.1

On dit qu'un ensemble E est constitué d'éléments et qu'un élément a appartient à E (on écrit : $a \in E$) ou n'appartient pas à E (on écrit : $a \notin E$).

Deux ensembles E, F sont dits $\ell gaux$ (on note E = F) s'ils sont constitués des mêmes éléments.

Par convention l'ensemble vide, noté Ø, est l'ensemble ne contenant aucun élément.

Remarques

Un même objet mathématique peut, selon les circonstances, être vu comme un ensemble, ou comme un élément d'un ensemble. Par exemple, l'intervalle [0,1] est un ensemble de nombres réels, mais c'est également un élément de l'ensemble des intervalles de \mathbb{R} .

Un ensemble fini peut être défini en extension, c'est-à-dire par la liste (non ordonnée) de ses éléments. C'est le cas par exemple de l'ensemble $E = \{1, 3, 6, 10, 15, 21, 28, 36, 45, 55\}$.

Dans une écriture comme $\{a, b, c, ...\}$ les éléments a, b, c, etc. sont à priori supposés distincts, et l'ordre dans lequel ils sont donnés n'a aucune importance.

Un ensemble E peut être défini en compréhension (par une propriété caractérisant ses éléments).

Ainsi $E = \left\{ \frac{n(n+1)}{2}, \ n \in \mathbb{N}, \ 1 \leqslant n \leqslant 10 \right\}$ est une autre définition de $\{1, 3, 6, 10, 15, 21, 28, 36, 45, 55\}$.

Définition 1.1.2

Par convention l'ensemble vide, noté ∅, est l'ensemble ne contenant aucun élément.

Un ensemble {a}, formé d'un seul élément, est appelé un singleton.

Un ensemble $\{a,b\}$, formé de deux éléments distincts, est appelé une paire.

Définition 1.1.3

On dit qu'un ensemble F est inclus dans un ensemble E, et on note $F \subset E$, pour exprimer que tout élément de F est également élément de E.

On dit encore que E contient F, ou que F est une partie (ou un sous-ensemble) de E.

Conséquence

Soient E et F deux ensembles.

$$E = F \iff \left\{ \begin{array}{l} E \subset F \\ F \subset E \end{array} \right.$$

Définition 1.1.4

Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Conséquences

- Évidemment, si $E \subset F$ et $F \subset G$, alors $E \subset G$.
- On a l'équivalence A ∈ $\mathcal{P}(E)$ \Leftrightarrow $A \subset E$.

De même : $a \in E \Leftrightarrow \{a\} \subset E \Leftrightarrow \{a\} \in \mathcal{P}(E)$.

Les ensembles E et \emptyset sont toujours des éléments de $\mathcal{P}(E)$.

1.2 Opérations sur les ensembles

1.2.1 Réunion et intersection

Définition 1.2.1

Soit E et F deux ensembles.

 $E \cap F$ est l'ensemble formé des éléments qui sont à la fois dans E et dans F.

 $E \cup F$ est l'ensemble formé des éléments qui sont dans l'un au moins des ensembles E et F.

Conséquence

$$x \in E \cup F \iff x \in E \text{ ou } x \in F$$

$$x \in E \cap F \iff x \in E \text{ et } x \in F$$

Définition 1.2.2

On dit que E, F sont disjoints si $E \cap F$ est vide.

Dans ce cas, on dit que $E \cup F$ est une réunion disjointe.

Remarque

On ne confondra pas distincts et disjoints :

- Dire que E et F sont distincts, c'est dire : (∃x ∈ E, x ∉ F) ou (∃x ∈ F, x ∉ E).
- Dire que E et F sont disjoints, c'est dire : (∀x ∈ E, x ∉ F) et (∀x ∈ F, x ∉ E).

Définition 1.2.3

Soient A et B deux parties d'un ensemble E. On dit que A et B sont complémentaires dans E si leur réunion est l'ensemble E et leur intersection est vide.

Dans ce cas on note $B = \mathbb{C}_E A$ ou $A = \mathbb{C}_E B$. Parfois, on utilise la notation \bar{B} pour désigner le complémentaire de B.

Remarque

La réunion, l'intersection, sont des opérations binaires sur $\mathcal{P}(E)$, en ce sens qu'à deux éléments de $\mathcal{P}(E)$ elles associent un élément de $\mathcal{P}(E)$. Le passage au complémentaire est donc une opération unaire sur $\mathcal{P}(E)$.

Proposition 1.2.1

Soit E un ensemble, et A, B et C des parties de E.

- Double passage au complémentaire :
$$\overline{A} = A$$
. - Idempotence : $\begin{cases} A \cap A = A \\ A \cup A = A \end{cases}$
- Commutativité : $\begin{cases} A \cap B = B \cap A \\ A \cup B = B \cup A \end{cases}$ - Associativité : $\begin{cases} (A \cap B) \cap C = A \cap (B \cap C) \\ (A \cup B) \cup C = A \cup (B \cup C) \end{cases}$
- Distributivité : $\begin{cases} A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \end{cases}$ - Dualité : $\begin{cases} \overline{A \cap B} = \overline{A} \cup \overline{B} \\ \overline{A \cup B} = \overline{A} \cap \overline{B} \end{cases}$
- Partie vide et partie pleine : $\begin{cases} A \cup \emptyset = A \\ A \cap B = \emptyset \Leftrightarrow A \subset \overline{B} \end{cases}$ $\begin{cases} A \cap E = A \\ A \cup B = E \Leftrightarrow \overline{B} \subset A \end{cases}$

Proposition 1.2.2

Soit A, B, C trois parties quelconques d'un ensemble E.

$$A = B \Leftrightarrow (A \subset B) \text{ et } (B \subset A) \qquad A \subset B \Leftrightarrow \overline{B} \subset \overline{A}$$

$$(A \cup B) \subset C \Leftrightarrow (A \subset C) \text{ et } (B \subset C) \qquad A \subset (B \cap C) \Leftrightarrow (A \subset B) \text{ et } (A \subset C)$$

1.2.2 Différence et différence symétrique

Définition 1.2.4

Soit E et F deux ensembles.

- − Différence : l'ensemble $E \setminus F$ est formé des éléments qui sont dans E mais pas dans F.
- − Différence symétrique : on note $E\Delta F$ l'ensemble $(E \cup F) \setminus (E \cap F)$. C'est l'ensemble des éléments qui sont dans un et un seul des deux ensembles E et F.

Conséquences

Soit E un ensemble, A et B deux parties de E. $A \setminus B = \{x \in E \mid x \in A \text{ et } x \notin B\}$ Soit E et F deux ensembles. $E \triangle F = (E \setminus F) \cup (F \setminus E)$

Proposition 1.2.3

Pour toutes parties A, B, C d'un ensemble E,

$$A\Delta B = B\Delta A$$
 $A\Delta A = \emptyset$ $A\Delta E = \overline{A}$ $A\Delta \emptyset = A$
 $A\Delta (B\Delta C) = (A\Delta B)\Delta C$ $A\cap (B\Delta C) = (A\cap B)\Delta (A\cap C)$

1.2.3 Partition d'un ensemble

Définition 1.2.5

Soit E un ensemble et \mathscr{T} une partie de $\mathscr{P}(E)$. On dit que \mathscr{T} est une partition de E si i/ $\forall B \in \mathscr{T}, \quad B \neq \varnothing$. ii/ $\forall B, C \in \mathscr{T}, \quad (B \neq C \Longrightarrow B \cap C = \varnothing)$. iii/ $\forall x \in E, \exists B \in \mathscr{T}/ \quad x \in B$.

Exemples

- 1. $\{\mathbb{R}_{+}^*, \{0\}, \mathbb{R}_{+}^*\}$ est une partition de \mathbb{R} .
- 2. Pour tout ensemble E et toute partie A de E différente du vide et de E, la paire $\{A, \overline{A}\}$ est une partition de E.

1.3 Produit cartésien d'ensembles

Définition 1.3.1

Soit $E_1, E_2, ..., E_n$ n ensembles (non nécessairement distincts deux à deux), avec $n \ge 2$.

- Pour tout entier k (compris entre 1 et n), soit x_k un élément de l'ensemble E_k . (x_1, x_2, \ldots, x_n) est appelé un n-uplet de composantes x_1, x_2, \ldots, x_n (dans cet ordre).
- On appelle produit cartésien de E₁, E₂, ..., E_n, et on note E₁ × E₂ × ... × E_n, l'ensemble des n-uplets (x₁, x₂, ..., x_n). Par exemple, E × F = {(a, b), a ∈ E, b ∈ F}.

$$(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n) \iff x_i = y_i, \ \forall i : 1 \le i \le n.$$

 $(x_1, x_2, ..., x_n) \ne (0, 0, ..., 0) \iff \exists i \in \{1, 2, ..., n\} / x_i \ne 0.$

Remarques

- Un n-uplet est donc le moyen de regrouper n éléments dans un ordre bien défini.
- On parle de couple si n = 2, de triplet si n = 3, de quadruplet si n = 4, etc.
- On ne confondra pas (par exemple) la paire {a, b} avec le couple (a, b) :
 - Si a et b sont différents, les couples (a, b) et (b, a) désignent en effet deux objets différents, alors que {a, b} et {b, a} désignent le même ensemble.
 - · De même si a = b: l'ensemble $\{a, b\}$ se réduit au singleton $\{a\}$, alors que (a, a) est toujours un couple (mais dont les deux composantes sont égales).
- Si E_1, E_2, \ldots, E_n sont égaux à un même ensemble E, on note E^n plutôt que $E \times E \times \cdots \times E$.
- Par définition, la diagonale de E^2 est l'ensemble $\Delta = \{(x, x), x \in E\}$.