실무 데이터 분석 (로지스틱회귀 & MLP)

인공지능 기반 스마트 설계 컴퓨터 Al공학부 천세진

DATA SCIENCE LABS

명: PARKING SPRAG(8속)_<열전> 품 번: 45926-4G100 |간: 2023.10.05. 22:40:08 축 정 자: 양정훈

측정시간: 2023.10.05. 22:40:08 특기사항: 231005_일상검사_야_초_1-2-1_0K

	번호	항 목	측정값	기준값	상한공차	하한공차	편 차	판 정		
-	3 평	면1								
		평면도	0.002	0.100			Total	+		
		SMmf	4P	0.001	0.001	-0.001	0.002			
	5 원	1(I) <상>								
		D	16.496	16.485	0.030	0.000	0.011	-		
		SMmf	4P	0.000	0.000	0.000	0.001			
	6 원	2(I) <중>								
		D	16.500	16.485	0.030	0.000	0.015	+		
		SMmf	4P	0.002	0.002	-0.002	0.004			
	7 원	3(I) <하>								
		D	16.502	16.485	0.030	0.000	0.017	+		
		SMmf	4P	0.000	0.000	0.000	0.001			
	8 원	통1(I) <- 원1	., 원2, 원3의 🗄	측정점 병합						
		D	16.499	16.485	0.030	0.000	0.014	-		
		원통도	0.005	0.000						
		직각도	0.021	0.050		평면1		++		
		SMmf	12P	0.002	0.003	-0.002	0.005			
	14 점	2 <- 점1의 되	부름 <열전 관리	치수(Spec : :	116.6±0.1)>					
		X	116.644	116.600	0.100	0.000	0.044	-		
		Υ	-10.904	10.900	0.100	-0.100	0.004	+		
	16 각도1 <- 각도[XYPLAN]:직선2와 직선3									
		Ang	•	57.000	0.333	-0.333	0.129	++		
	17 직	선4 <27° 소재	>							
	•	Y/X	27.226	27.000	0.500	-0.500	0.226	++		
			V () (

데이터 처리 단계

1. 데이터 이해 (목적, 구성, 특징) 2. 데이터 전처리 (결측값, 이상치, 중복값)

3. 데이터 탐색 (데이터의 분포, 상관관계, 이 상치 탐색)

4. 통계적인 분석 (Aggregation/Summarization)

5. 시각화

6. 결론 도출

1. 데이터 이해

1. 데이터 이해

Traditional workflow

3D측정기1 (CMM: Coordinate Measuring Machine)

데이터분석자1

3D측정기2

CMM data

수기 기록: 문서 증가

The proposed workflow

3D측정기1 (CMM: Coordinate Measuring Machine)

Clouds

1 데이터이해

측정시간	5: PARKING SP : 2023.10.05 : 231005_일상	. 22:40:08		품 번: 측 정 자:	45926-4G100 양정훈								
번호	항 목	측정값	기준값	상한공차	하한공차	편 차	판 정						
3 평	 면1												
	평면도 SMmf	0.002 4P	0.100 0.001	0.001	-0.001	Total 0.002	+						
5 원	1(I) <상> D SMmf	16.496 4P	번호	항 목	측정값	기취	준값	상한공차	하한공차	 편	차	판	정
6 원	2(I) <중> D SMmf	16.500 4P	3 평면1	평면도 SMmf	0.002 4P		.100 0.001	0.001	-0.001		Total 0.002		+
7 원	3(I) <하> D SMmf	16.502 4P	16.485 0.000	0.030 0.000	0.000 0.000	0.017 0.001	+						
8 원	통1(I) <- 원1 _. D 원통도 직각도 SMmf	, 원2, 원39 16.499 0.005 0.021 12P	의 측정점 병합 16.485 0.000 0.050 0.002	0.030 0.003	0.000 평면1 -0.002	0.014 0.005	- ++						
14 점	2 <- 점1의 되 [!] X Y	부름 <열전 구 116.644 -10.904	관리치수(Spec : 116.600 10.900	116.6±0.1)> 0.100 0.100	0.000 -0.100	0.044 0.004	- +						
16 각	도1 <- 각도[X\ Ang	YPLAN]:직선 57.129	2와 직선3 57.000	0.333	-0.333	0.129	++						
17 직	선4 <27° 소재: Y/X	> 27.226	27.000	0.500	-0.500	0.226	++	ABS					

1. 日

품 명: PARKING SPRAG(8속)_<열전> 품 번: 45926-4G100

측정시간: 2023.10.05. 22:40:08 측 정 자: 양정훈

특기사항: 231005_일상검사_야_초_1-2-1_0K

• 데이터 머와

품명	품번	측정시간	측정자	특기사항	품질상태

번호	항 목	측정값	기준값	상한공차	하한공차	편 차	판 정
3 평	면1 평면도 SMmf	0.002 4P	0.100 0.001	0.001	-0.001	Total 0.002	+

번호	항목	측정값	기준값	상한공차	하한공차	편차	판정

1. 데이터 이해

• 데이터 피봇팅(Pivot)

품명	품번	측정시간	측정자	특기사항	품질상태
PARKING SPRAG(8 속)_<열 전>		2023.10. 05. 22:40:08	양정훈	231005_ 일상검사 _야_초 _1-2- 1_OK	OK

번호	항목	측정값	기준값	상한공차	하한공차	편차	판정
3 평면1	평면도	0.002	0.100				+
3 평면1	SMmf	4P	0.001			0.002	
5 원1(I) <상>	D	16.496	16.485	0.030	0.000	0.011	-
5 원1(I) <상>	SMmf	4P	0.000	0.000	0.000	0.001	
							DOVDICUT 2022 @ I

품명	품번	측정시간	측정자	특기사항	품질상태	
PARKING SPRAG(8 속)_<열 전>	45926- 4G100	2023.10. 05. 22:40:08	양정훈	231005_ 일상검사 _야_초 _1-2- 1_OK	OK	<

편차_3 평면1_평면도	편차_3 평면1_SMmf	편차_5 원1(I) <상>_D	편차_5 원1(I) <상>_SMmf
	0.002	0.011	0.001

	번호	항목	측정값	기준값	상한공차	하한공차	편차	판정
Ī	3 평면1	평면도	0.002	0.100				+
	3 평면1	SMmf	4P	0.001			0.002	
	5 원1(I) <상>	D	16.496	16.485	0.030	0.000	0.011	-
	5 원1(I) <상>	SMmf	4P	0.000	0.000	0.000	0.001	
								H

HT 2023 @ DAU

1. 데이터 이해

• 적절한 X | y 형태의 데이터를 구성

```
품명,편차_각도1 <- 각도[XYPLAN]:직선2와 직선3 Ang,편차_각도2 <- 각도[XYPLAN]:직 PARKING SPRAG(8속)_<열전>,0.303,-0.023,0.037,0.016,-0.001,0.037,0.010,0.014,0.037,0.016,0.037,0.010,0.014,0.037,0.016,0.037,0.016,0.037,0.016,0.014,0.037,0.016,0.016,0.016,0.014,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.011,0.015,0.040,0.046,0.046,0.046,0.046,0.011,0.015,0.040,0.046,0.046,0.046,0.046,0.011,0.015,0.040,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.046,0.0
```


4. 로지스틱 회귀 vs. 선형회귀

• 선형회귀

- 연속적인 값을 예측하는 데 사용됩니다. 예를 들어, 집의 크기, 위치 등의 특성을 바탕으로 집값을 예측하는 경우에 사용됩니다.
- 실수 값을 직접 출력합니다. 예를 들어 집값, 온도 등이 될 수 있습니다.

• 로지스틱 회귀

- 확률을 출력하며, 이 확률은 보통 특정 클래스에 속할 확률로 해석됩니다 (예: 스팸메일일 확률).
- 로지스틱 회귀: 범주형 결과(대개 이진 분류)를 예측하는 데 사용됩니다. 예를 들어, 이메일이 스팸인지 아닌지, 특정 질병의 유무 등을 예측할 때 사용합니다.

```
X = data_imputed.drop(columns=['품질상태'])
 y = data_imputed['품질상태']
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
✓ 0.0s
 # 로지스틱 회귀 모델 생성 및 훈련
 logistic model = LogisticRegression()
 logistic_model.fit(X_train, y_train)
 y_pred = logistic_model.predict(X_test)
 # 모델 평가
 accuracy = accuracy_score(y_test, y_pred)
  report = classification_report(y_test, y_pred)
```

1.0	precision	recall	f1-score	support
1.0	1.00	1.00	1.00	2
accuracy			1.00	2
macro avg	1.00	1.00	1.00	2
weighted avg	1.00	1.00	1.00	2

• 차원축소를 통해 얻어진 주요 특징이 어디에 속하는지 보여줌

2D Logistic Regression on PCA Components 2Dated 2stic Regression on PCA Components 2Dated 3stic Regression on PCA Components 2 and 3

 Multilayer perceptron

 데이터준비
 모델 초기
 순전파
 손전파
 손실계산
 역전파
 가중치 갱신

•모델 초기화

• 순전파

```
# 모델 클래스 정의
class BinaryClassifier(nn.Module):
    def __init__(self):
        super(BinaryClassifier, self).__init__()
        self.fc1 = nn.Linear(X_train.shape[1], 12)
        self.fc2 = nn.Linear(12, 8)
        self.fc3 = nn.Linear(8, 1)
        self.sigmoid = nn.Sigmoid()
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.sigmoid(self.fc3(x))
        return x
```


• 손실계산/ 역전파

```
∨ for epoch in range(50):
     total_loss = 0
      correct = 0
     total = 0
     for data, target in train_loader:
         optimizer.zero_grad()
         output = model(data)
         loss = criterion(output, target.view(-1, 1))
         total_loss += loss.item()
         predicted = output.round()
         correct += (predicted == target.view(-1, 1)).sum().item()
         total += target.size(0)
         loss.backward()
         optimizer.step()
     epoch_loss = total_loss / len(train_loader)
     epoch_accuracy = correct / total
     epoch_losses.append(epoch_loss)
     epoch_accuracies.append(epoch_accuracy)
     print(f'Epoch {epoch+1}: Loss = {epoch_loss:.4f}, Accuracy = {epoch_accur
```


•모델 평가

```
# 모델 평가
with torch.no_grad():
    output = model(X_test)
    predicted = output.round() # 0.5 이상을 1로, 미만을 0으로
    accuracy = (predicted == y_test.view(-1, 1)).sum().item() / len(y_test)
    print(f'Test Accuracy: {accuracy}')

Test Accuracy: 1.0
```

• 모델 평가

