Date: 02/04/2020

Assignment No: 02

Machine Learning (CS-603)

Name: Pulkit Mishra

Reg No: 258

Roll Number: 60

Problem Statement

Given:

94 Bengali literature documents in WX format where each document contains data in the following format:

- 1. The sentences (a group of words) are separated by a blank lines i.e. each blank line in the document specifies the starting of a new sentence.
- 2. Each non-blank line contains a word which is already POS tagged.

Task:

- 1. Apply machine learning tool and algorithm to find out the followings in the set of 94 documents:
 - The meaningful topics covered by the documents.
 - The keywords for each of those topics.
- 2. Submit a report (softcopy) mentioning how you have performed this task i.e. the algorithm, code and output in detailed format.

Algorithm

A recurring subject in NLP is to understand a large corpus of texts through topic extraction.

LDA (*short for Latent Dirichlet Allocation*) is an unsupervised machine-learning model that takes documents as input and finds topics as output. The model also says in what percentage each document talks about each topic. Each topic is represented as a weighted list of words

Advantages

- 1. Fast
- 2. Intuitive: Modelling topics as weighted lists of words is a simple approximation yet a very intuitive approach if you need to interpret it. No embedding nor hidden dimensions, just bags of words with weights.
- 3. Can predict topics for new unseen documents: If the new documents have the same structure and should have more or less the same topics, it will work.

Main disadvantages of LDA

- 1. Lots of fine-tuning
- 2. It needs human interpretation: Topics are found by a machine. A human needs to label them in order to present the results to non-experts.

Generally text processing pipeline for LDA looks something like this

1. Removing Encodings

- All of the special hidden characters, escape sequences, control characters need to be removed.
- All such characters were already removed in the given dataset

2. Remove Punctuations

- All of the punctuations need to be removed.
- All such punctuations were already removed in the given dataset

3. Part of Speech Tag

- We are usually not interested in all words when doing LDA. For example, when doing Topic Modeling as in this case, it is advisable to stick to Nouns or Adjective/Noun pairs. We certainly don't need articles or pronouns while building the LDA model. So by doing POS tagging, we can extract the parts we actually care about.
- The given dataset was already POS tagged with the first word of each line being the token and the last word being the tag.
- I prepared three different datasets out of the dataset
 - a. First dataset (data_A.txt) has all the words

- b. Second dataset (data_N.txt) only has the nouns
- c. Third dataset (data_NandV.txt) has the nouns and verbs
- This is done in get_tok() method of data_prep.py by
 - a. Iterating through each line of each page
 - b. Selecting the first and last words of each line
 - c. All first words are added to the first datatset
 - d. First words whose corresponding last word begins with N are added to the second dataset
 - e. First words whose corresponding last word begins with N or V are added to the third dataset

4. Tokenizing Sentences and Words

- Input to the LDA model is supposed to be a list of lists
- This is done in get_all() method of data_prep.py by
 - a. Iterating through all the documents
 - b. get_tok() method is called for each document which returns list of words in the document
 - c. Each such list is appended to get a list of lists
 - d. Data is dumped in json format

5. Remove stop words

- A lot of common words can be present in document which do not play a role in topic modeling and can add noise tour LDA model
- Since I do not know Bengali I could not create any custom stop word list o I have not performed stop word removal

6. Lemmatize or Stemmins

- There is a need to remove redundant words that are present due to either multiple conjugations or plurality. Very useful in removing the dimension.
- Since I do not know Bengali I have not done any such cleaning of the data

7. LDA implementation

- read data method of Ida.py reads data from the file and converts it into a list
- build model method of Ida.py file builds the Ida model and returns it
- To implement the LDA in Python, I have used the *gensim* package
- The parameters given to the model are as follows
 - a. the number of topics is equal to num_topics: In the experiments made I tried several values and am submitting output of 3 and 9 for dataset 2 and 3 and output of 4 and 8 for dataset 1
 - b. the [distribution of the] number of words per topic is handled by eta
 - c. the *[distribution of the]* number of topics per document is handled by **alpha**
- Results method in Ida.py writes the topics found to a file

8. Data Visualization

a. pyLDAvis package is used to visualize the LDA model

Code

```
1. data_prep.py
   # Below code is for data preparation
   import os
   import json
   def get_tok(file):
           f = open(file, "r")
           list = []
           for line in f:
           words = line.split()
           if words and (words[-1][0] == "N" or words[-1][0] == "V"):
           list.append(words[0])
           return list
   def get_all():
           mega = []
           basepath = 'testdata/new/'
           for entry in os.listdir(basepath):
           if os.path.isfile(os.path.join(basepath, entry)):
           mega.append(get_tok(os.path.join(basepath, entry)))
           with open('data_NandV.txt', 'w') as outfile:
           json.dump({"name": mega},outfile)
   get_all()
2. Ida.py
   # Below code is for implementing LDA, getting output and data visulaization
   from gensim import corpora, models
   import numpy as np
   import json
   def read_data():
           with open('data NandV.txt') as json file:
           data = json.load(json_file)
```

```
return data
```

```
def build_model(data):
       from gensim import corpora, models
       print(type(data['name']))
       print(type(data['name'][0]))
       list_of_list_of_tokens = data['name']
       dictionary LDA = corpora.Dictionary(list of list of tokens)
       dictionary LDA.filter extremes(no below=3)
       corpus = [dictionary_LDA.doc2bow(list_of_tokens) for list_of_tokens in
list_of_list_of_tokens]
       num_topics = 9
       lda_model = models.LdaModel(corpus, num_topics=num_topics, \
                     id2word=dictionary LDA, \
                     passes=10, alpha=[0.001]*num_topics, \
                     eta=[0.001]*len(dictionary_LDA.keys()))
       return Ida_model
def results(Ida model):
       ans = []
       for i,topic in Ida_model.show_topics(formatted=True, num_topics=9,
num words=10):
       ans.append(str(i)+": "+ topic)
       ans.append("\n")
       outf = open("LDA_NandV_9topics.txt",'w')
       outf.writelines(ans)
       outf.close()
def visulaize(lda model):
       import pyLDAvis
       import pyLDAvis.gensim
       vis = pyLDAvis.gensim.prepare(topic_model=lda_model, corpus=corpus,
dictionary=dictionary_LDA)
       pyLDAvis.save_html(vis, "LDA_NandV_9topics.html")
data = read data()
lda_model = build_model(data)
results(lda_model)
visulaize(lda_model)
```

Output

Total 6 outputs have been generated as the given dataset was split into three datasets as specified above.

- For dataset 1, number of topics were kept 4 in one experiment and 8 in the other
 - For number of topics = 4, data visualization can be found in A/LDA_A_4topics.html
 - a. 0.016*"rameSa" + 0.014*"ramA" + 0.008*"sureSa" + 0.006*"mahima" + 0.006*"dAkwAra" + 0.005*"jyATAimA" + 0.005*"rameSera" + 0.004*"wAxera" + 0.004*"BArawI" + 0.003*"ramAra"
 - b. 0.016*"rameSa" + 0.009*"kexArabAbu" + 0.008*"ramA" + 0.007*"beNI" + 0.005*"rameSera" + 0.004*"gobinxa" + 0.004*"jyATAimA" + 0.004*"sureSa" + 0.003*"BEraba" + 0.003*"ramAra"
 - c. 0.028*"BArawl" + 0.020*"apUrba" + 0.015*"dAkwAra" + 0.006*"xAxA" + 0.005*"apUrbara" + 0.004*"weoyZArl" + 0.004*"BArawlra" + 0.004*"xeSera" + 0.004*"sumiwrA" + 0.003*"SaSI"
 - d. 0.027*"acalA" + 0.020*"sureSa" + 0.013*"mahima" + 0.010*"acalAra" + 0.007*"sureSera" + 0.005*"mqNAla" + 0.004*"mahimera" + 0.003*"kexArabAbu" + 0.003*"bqxXa" + 0.003*"gAdZi"
 - For number of topics = 8, data visualization can be found in A/LDA_A_8topics.html
 - a. 0.045*"apUrba" + 0.021*"weoyZArl" + 0.020*"BArawl" + 0.008*"apUrbara" + 0.007*"weoyZArlra" + 0.006*"tAkA" + 0.004*"nlce" + 0.003*"BArawlra" + 0.003*"banXa" + 0.003*"bAsAyZa"
 - b. 0.032*"rameSa" + 0.020*"ramA" + 0.010*"beNI" + 0.009*"rameSera" + 0.009*"jyATAimA" + 0.006*"ramAra" + 0.006*"gobinxa" + 0.005*"biSbeSbarI" + 0.005*"BEraba" + 0.004*"wora"
 - c. 0.025*"mqNAla" + 0.009*"BAi" + 0.008*"apUrba" + 0.008*"xixi" + 0.007*"yawIna" + 0.006*"sejaxi" + 0.006*"Celera" + 0.006*"mAyZera" + 0.005*"CedZe" + 0.005*"apUrbara"
 - d. 0.023*"acalA" + 0.022*"sureSa" + 0.012*"mahima" + 0.010*"acalAra" + 0.007*"kexArabAbu" + 0.007*"sureSera" + 0.004*"mahimera" + 0.003*"bqxXa" + 0.002*"sureSabAbu" + 0.002*"lAgilena"

- e. 0.029*"apUrba" + 0.016*"BArawl" + 0.012*"sumiwrA" + 0.011*"xeSera" + 0.006*"apUrbabAbu" + 0.005*"apUrbara" + 0.005*"mAnuRera" + 0.005*"oi" + 0.004*"lokati" + 0.004*"ApanAxera"
- f. 0.038*"mahima" + 0.023*"sureSa" + 0.012*"acalA" + 0.005*"pArabe" + 0.004*"seo" + 0.004*"niwe" + 0.004*"wAxera" + 0.004*"kara" + 0.004*"xaroyZAna" + 0.004*"sbAmIra"
- g. 0.017*"acalA" + 0.009*"mqNAla" + 0.008*"sureSa" + 0.006*"kexArabAbu"
 + 0.005*"apUrba" + 0.004*"gAdZi" + 0.003*"mahima" + 0.003*"sureSera"
 + 0.003*"acalAra" + 0.003*"mqNAlera"
- h. 0.033*"BArawl" + 0.021*"dAkwAra" + 0.011*"apUrba" + 0.008*"xAxA" + 0.005*"sumiwrA" + 0.005*"SaSI" + 0.005*"BArawlra" + 0.004*"wAxera" + 0.004*"xeSera" + 0.003*"apUrbara"
- For dataset 2, number of topics were kept 3 in one experiment and 9 in the other
 - For number of topics = 3, data visualization can be found in A/LDA_N_3topics.html
 - a. 0.033*"sureSa" + 0.015*"kexArabAbu" + 0.013*"mahima" + 0.012*"sureSera" + 0.008*"mqNAla" + 0.008*"mahimera" + 0.006*"acalAra" + 0.005*"acalA" + 0.005*"gAdZi" + 0.004*"sbAmIra"
 - b. 0.046*"BArawl" + 0.028*"dAkwAra" + 0.011*"xAxA" + 0.008*"BArawlra" + 0.008*"sumiwrA" + 0.007*"xeSera" + 0.006*"weoyZArl" + 0.005*"apUrbabAbu" + 0.005*"SaSl" + 0.004*"apUrbara"
 - c. 0.040*"rameSa" + 0.026*"ramA" + 0.012*"rameSera" + 0.012*"jyATAimA" + 0.010*"beNI" + 0.008*"ramAra" + 0.006*"BEraba" + 0.005*"gobinxa" + 0.005*"rAmabAbu" + 0.005*"beNIra"
 - For number of topics = 9, data visualization can be found in A/LDA N 9topics.html
 - a. 0.051*"rameSa" + 0.029*"ramA" + 0.015*"jyATAimA" + 0.015*"rameSera" + 0.011*"beNI" + 0.010*"ramAra" + 0.007*"BEraba" + 0.007*"gobinxa" + 0.006*"biSbeSbarl" + 0.006*"beNIra"
 - b. 0.032*"BArawl" + 0.007*"Celera" + 0.007*"tAkA" + 0.007*"maxa" + 0.007*"mAyZera" + 0.006*"apUrbara" + 0.006*"rAga" + 0.006*"saMsAre" + 0.006*"mAke" + 0.006*"Xarma"

- c. 0.029*"ramA" + 0.019*"beNI" + 0.011*"jyATAmaSAi" + 0.011*"suramA" + 0.010*"ebAra" + 0.009*"tAkA" + 0.009*"snAna" + 0.009*"rameSera" + 0.009*"rAmabAbu" + 0.008*"anekakRaNa"
- d. 0.043*"sureSa" + 0.019*"kexArabAbu" + 0.016*"mahima" + 0.015*"sureSera" + 0.009*"mahimera" + 0.007*"acalAra" + 0.007*"mqNAla" + 0.006*"acalA" + 0.005*"qAdZi" + 0.004*"sureSabAbu"
- e. 0.040*"dAkwAra" + 0.017*"BArawl" + 0.011*"sumiwrA" + 0.010*"apUrbabAbu" + 0.010*"dAkwArabAbu" + 0.009*"rAmaxAsa" + 0.006*"BAi" + 0.006*"Xarma" + 0.005*"apUrbara" + 0.004*"aXikAra"
- f. 0.035*"mqNAla" + 0.031*"BAi" + 0.016*"xixi" + 0.010*"Age" + 0.006*"rAmaxAsa" + 0.005*"acalAra" + 0.005*"xeSera" + 0.005*"mqNAlera" + 0.005*"kAne" + 0.005*"sebA"
- g. 0.029*"weoyZArl" + 0.013*"sAheba" + 0.010*"weoyZArlra" + 0.007*"nlce" + 0.007*"xeSera" + 0.006*"rAmaxAsa" + 0.006*"rAga" + 0.006*"APisera" + 0.005*"puliSera" + 0.005*"bAbu"
- h. 0.046*"BArawl" + 0.020*"dAkwAra" + 0.007*"xAxA" + 0.007*"BArawlra" + 0.006*"xeSera" + 0.005*"sumiwrA" + 0.004*"apUrbabAbu" + 0.004*"tAkA" + 0.003*"mAnuRera" + 0.003*"gAdZi"
- i. 0.055*"dAkwAra" + 0.048*"BArawl" + 0.027*"xAxA" + 0.019*"SaSI" + 0.014*"sumiwrA" + 0.014*"BArawlra" + 0.009*"kabi" + 0.006*"mAnuRera" + 0.005*"xeSera" + 0.005*"saMsAre"
- For dataset 3, number of topics were kept 3 in one experiment and 9 in the other
 - For number of topics = 3, data visualization can be found in A/LDA_NandV_3topics.html
 - a. 0.020*"sureSa" + 0.013*"ramA" + 0.011*"rameSa" + 0.009*"mahima" + 0.006*"sureSera" + 0.004*"mahimera" + 0.004*"beNI" + 0.004*"ramAra" + 0.003*"rameSera" + 0.003*"acalAra"
 - b. 0.023*"BArawl" + 0.015*"dAkwAra" + 0.006*"xAxA" + 0.005*"sureSa" + 0.005*"kexArabAbu" + 0.004*"BArawlra" + 0.004*"sumiwrA" + 0.004*"xeSera" + 0.003*"apUrbabAbu" + 0.003*"SaSI"
 - c. 0.017*"rameSa" + 0.007*"weoyZArl" + 0.006*"jyATAimA" + 0.005*"mqNAla" + 0.005*"BAi" + 0.005*"rameSera" + 0.004*"BEraba" + 0.004*"gobinxa" + 0.003*"xixi" + 0.003*"tAkA"

- For number of topics = 9, data visualization can be found in A/LDA NandV 9topics.html
 - a. 0.014*"sureSa" + 0.010*"kexArabAbu" + 0.005*"sureSera" + 0.005*"mahima" + 0.004*"mahimera" + 0.003*"mqNAla" + 0.003*"weoyZArl" + 0.003*"gAdZi" + 0.003*"sbAmIra" + 0.003*"nIce"
 - b. 0.037*"BArawl" + 0.009*"rAmaxAsa" + 0.008*"weoyZArl" + 0.004*"apUrbara" + 0.004*"haiyZACila" + 0.004*"apUrbabAbu" + 0.004*"rAga" + 0.004*"CedZe" + 0.004*"mAke" + 0.004*"apUrba"
 - c. 0.041*"rameSa" + 0.026*"ramA" + 0.013*"rameSera" + 0.012*"jyATAimA" + 0.010*"beNI" + 0.009*"ramAra" + 0.006*"BEraba" + 0.006*"gobinxa" + 0.005*"beNIra" + 0.004*"ne"
 - d. 0.045*"mqNAla" + 0.018*"kexArabAbu" + 0.007*"kRamA" + 0.007*"hAlaxAra" + 0.006*"lAgilena" + 0.005*"mqNAlera" + 0.005*"WAkabe" + 0.005*"ewakAla" + 0.005*"uTilena" + 0.005*"meyZe"
 - e. 0.022*"bqxXa" + 0.021*"GqNA" + 0.020*"hauka" + 0.015*"bApera" + 0.011*"sAkRI" + 0.011*"suramA" + 0.011*"kAke" + 0.011*"hacce" + 0.011*"parei" + 0.010*"pArawena"
 - f. 0.015*"sureSa" + 0.009*"BAi" + 0.005*"xixi" + 0.005*"sureSera" + 0.005*"mahima" + 0.004*"kexArabAbu" + 0.003*"acalAra" + 0.003*"kAne" + 0.003*"haibe" + 0.003*"tAkA"
 - g. 0.019*"sureSa" + 0.008*"mahima" + 0.007*"sureSera" + 0.006*"rAmabAbu" + 0.004*"weoyZArI" + 0.003*"acalAra" + 0.003*"acalAra" + 0.003*"sureSabAbu" + 0.003*"gAdZi" + 0.003*"jyATAmaSAi"
 - h. 0.040*"BArawl" + 0.030*"dAkwAra" + 0.012*"xAxA" + 0.008*"sumiwrA" + 0.008*"BArawlra" + 0.006*"xeSera" + 0.005*"SaSI" + 0.005*"apUrbabAbu" + 0.004*"mAnuRera" + 0.003*"dAkwArera"
 - i. 0.042*"sureSa" + 0.018*"mahima" + 0.015*"sureSera" + 0.012*"mahimera" + 0.010*"banXu" + 0.008*"gAdZi" + 0.006*"nIce" + 0.006*"acalAra" + 0.006*"bAbAra" + 0.006*"xoRa"