Design Theory: Functional Dependencies and Normal Forms, Part II

Instructor: Shel Finkelstein

Reference:

A First Course in Database Systems, 3rd edition, Chapter 3

Important Notices

- Lab4 assignment is due on Sunday, June 2, by 11:59pm.
 - Subject of Lab4 is Lecture 10 (Application Programming).
 - Lab4 has been/will be discussed at Lab Sections.
 - Your solution should be submitted via Canvas as a zip file.
 - Canvas is used for both Lab submission and grading.
 - Late Lab Assignments will not be accepted.
 - Be sure that you post the correct file!
 - Load file for Lab4 has been posted to Piazza.
 - You <u>must</u> use load file to do Lab4.
 - Load data helps with testing, but we won't post query solutions.
- See <u>Small Group Tutoring website</u> for LSS Tutoring with Chandler Hawkins.

Important Notices (Final)

CMPS 182 Final Exam is on **Monday June 10, 4:00 – 7:00pm**, in our usual classroom.

- No early/late Finals, no make-up Finals.
- No devices.
- Includes a Multiple Choice Section and a Longer Answers Section.
 - Bring <u>Red Scantron</u> sheets (ParSCORE form number f-1712) sold at Bookstore, and #2 pencils for Multiple Choice Section.
 - Ink and #3 pencils don't work.
- Covers entire quarter, with slightly greater emphasis on second half of quarter.
- You may bring in <u>one</u> double-sided 8.5 by 11 sheet, with anything that you can read unassisted printed or written on both sides of the paper.
 - No sharing of sheets is permitted.
 - Include name on top right of sheet. Sheets will be collected with Finals.
- You must show your UCSC ID at end of Final.
- Will post Practice Final from Spring 2017 (2 Sections) on Piazza.

Important Notices

- Gradiance #5 was assigned on Tuesday, May 28, and is due on Friday, June 7 by 11:59pm.
 - You should have enough information to complete this Gradiance Assignment by Friday, May 31.
 - Some of the questions may be difficult.

Spring 2019 <u>Student Experience of Teaching Surveys - SETs</u> are now open, and SETs close on Sunday June 9 at 11:59pm.

- SETs is the new term for campus-wide student course evaluations.
- Instructors are not able to identify individual responses.
- Constructive responses help improve future courses.

Normal Forms

Given a relation schema, we want to understand whether it is a good design or a bad design.

 Intuitively, a good design is one that does not store data redundantly, and does not lead to anomalies.

If we know that rank determines salary_scale, which is a better design?

Employees(eid, name, addr, rank, salary_scale)

OR

Employees2(<u>eid</u>, name, addr, rank)
Salary_Table(<u>rank</u>, salary_scale)

Remember that sometimes database designers **may choose** to live with redundancy in order to improve query performance. But then they'll have to cope with anomalies, which can be difficult.

First Normal Form (1NF)

- A relation schema is in *first normal form (1NF)* if the type of every attribute is atomic.
- Very basic requirement of the relational data model.
 - Not based on FDs.
 - Every other Normal Form we'll discuss assumes 1NF.

Example:

R(ssn: char(9), name: string, age: int)

All our examples so far have been in 1NF.

Example of a non-first normal form relation:

R(ssn: char(9), name: Record[firstname: string, lastname: string],

age: int, children: Set(string))

Second Normal Form (2NF)

- Not particularly important
 - We won't discuss this.
 - (Neither does the textbook.)

Keeping FDs Simple

We proved in previous Lecture that:

If
$$X \rightarrow YZ$$
, then $X \rightarrow Y$ and $X \rightarrow Z$

and: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

- So from now on, we'll assume that right side of every FD is a <u>single</u> attribute.
 - For example, instead of writing AC → BDE, we will write:

$$AC \rightarrow B$$
, $AC \rightarrow D$, $AC \rightarrow E$

Boyce-Codd Normal Form (BCNF)

- Let R be a relation schema, F be a set of FDs that holds for R, with A as an attribute in R, and X as a subset of the attributes in R.
- R is in Boyce-Codd Normal Form (BCNF) if
 - For every FD X \rightarrow A in \mathcal{T} , at least one of following is true:
 - $X \rightarrow A$ is a trivial FD (i.e., $A \in X$) or,
 - X is a superkey.
- BNCF is desirable for avoiding redundancy.
 - Recall our Employees2/Salary_Table example.

Is this relation in BCNF?

Α	В	С
a1	b1	c1
a1	b2	c1

- The only functional dependency given is A \rightarrow C.
- (to fill in)

Is this relation in BCNF?

Α	В	С
a1	b1	c1
a1	b2	c1

The relation is <u>not</u> in BCNF because:

 $A \rightarrow C$ is not a trivial FD and A is not a superkey.

- Given that A \rightarrow C, we can infer that C value of second tuple is also c1.
- But note that c1 is redundantly stored twice.

Third Normal Form (3NF)

- Let R be a relation schema, T be a set of FDs that holds for R, with A as an attribute in R, and X as a subset of the attributes in R.
- R is in third normal form (3NF) if
 - For every FD X \rightarrow A in \mathcal{T} , at least one of following is true:
 - $X \rightarrow A$ is a trivial FD (i.e., $A \in X$), or
 - X is a superkey, or
 - A is part of some key of R.
- Note that red condition says that A is part of some key for R, not some superkey for R.

Consider R(A, B, C, D)

with FD: $A \rightarrow D$

Note: Trivial FDs and FDs based on Primary Keys are implicit, and are often not listed, because 3NF obviously covers all of those.

- Is it in BCNF?
- Is it in 3NF?

A	В	С	D
a1	b1	c1	d1
a1	b2	c2	d1
a1	b2	с3	d1
a2	b2	с3	d2

Now consider R(A, B, C, D)

with FD's: $A \rightarrow D$, and $D \rightarrow A$.

- Note that BCD is also a key for R.
- Is it in BCNF?
- Is it in 3NF?

Α	В	С	D
a1	b1	c1	d1
a1	b2	c2	d1
a1	b2	с3	d1
a2	b2	c3	d2

Note that there is still redundancy in R, even though it is in 3NF!

14

BCNF and 3NF

- By definition, any BCNF relation must also be a 3NF relation.
- Definition says:
 - ... if at least one of the following holds for each FD X \rightarrow A:
 - $X \rightarrow A$ is a trivial dependency (i.e., $A \in X$). BCNF, 3NF
 - X is a superkey. BCNF, 3NF
 - A is part of some key of R. 3NF
- However, a 3NF relation is not always in BCNF.
 - Example 2 is an example of a 3NF relation that is **not** in BCNF.

Relationships Among Normal Forms – The Big Picture


```
Company_Info(<u>emp</u>, dept, manager)
dept → manager
```

Is it in BCNF?

Is it in 3NF?

```
R(<u>city, street</u>, zip)

city, street \rightarrow zip

zip \rightarrow city
```

The above FDs are true of most post office policies. Note that a city may have <u>multiple</u> zips, but a zip must be in a <u>single</u> city.

Is it in BCNF?
Is it in 3NF?

- Despite 3NF, there can be Redundancy: The association of a zip with a city could appear in multiple records of R.
- So although R is in 3NF, there can be Anomalies:
 - zip → city. So if the city is changed in one (city, street, zip) record, but is not changed for another (city, street, zip) record that has the same zip, that's an anomaly.

Customers(<u>ssn</u>, name, address)

 $ssn \rightarrow name$

ssn → address

Is it in BCNF?

Is it in 3NF?

Algorithm for Testing Whether a Relation is in BCNF using Attribute Closure

Given R and \mathcal{F} , determine whether R is in BCNF.

- For each FD $X \rightarrow Y \in \mathcal{F}$ such that $Y \not\subseteq X$ (i.e., the FD is non-trivial), compute X^+ .
 - If every such X is a superkey (i.e., X⁺ = attr(R)), then
 R is in BCNF.
 - If there is a set X of attributes such that X⁺ ≠ attr(R), then
 R is not in BCNF.

Examples: BCNF Testing

- CompanyInfo(emp, dept, manager)
 - emp \rightarrow dept, dept \rightarrow manager
 - dept⁺ ≠ attr(CompanyInfo). Hence CompanyInfo is not in BCNF.
- Customers(ssn, name, address)
 - ssn → name
 - ssn → address
 - ssn⁺ = attr(Customers) Hence Customers **is** in BCNF.
- R(city, street, zip)
 - city, street → zip
 - $zip \rightarrow city$
 - $zip^+ \neq attr(R)$ Hence R **is not** in BCNF.

More on BCNF

Is R(A,B) is in BCNF?

Fact: Any binary relation schema is in BCNF. (Why?)

How can we "improve" a relation that is not in BCNF?

- Approach: Decompose ("break up") R into smaller relations so that each smaller relation is in BCNF.
- We did this when we decomposed Employees, separating out Salary_Table because of FD: rank → salary_scale.

Employees2(eid, name, addr, rank)

Salary_Table(<u>rank</u>, salary_scale)

Decomposition of a Relation

A decomposition of a relation R is defined by sets of attributes $X_1, ..., X_k$ (which don't have to be disjoint) such that:

- 1. Each $X_i \subseteq attr(R)$
- 2. $X_1 \cup X_2 \cup ... \cup X_k = attr(R)$

For a decomposition, we will write $\pi_{Xi}(R)$ as R_i , with instances of R written as r and instances of R_i written as r_i .

Examples:

- CompanyInfo(emp, dept, manager)
 - $-R_1(emp, dept), R_2(dept, manager)$
- R(A,B,C,D,E,F,G)
 - $R_1(A,C), R_2(A,B,C,D), R_3(C,D,E,F,G)$

Goals for Redesigning Schema Using A Decomposition

- 1. The decomposition Eliminates Anomalies.
- 2. The decomposition doesn't lead to any "extra data" (that was not in instance r) when the r_i 's are re-joined back together.
 - Such Decompositions are called Lossless Join decompositions.
 - Why must the <u>Natural Join</u> of all the r_i's always give <u>at least</u> all the data that was in r?
- 3. Dependency Preservation: (not required for Final)
 - The FD's on R_i are the FD's in \mathcal{T}^+ that mention only attr(R_i).
 - The decomposition is Dependency-Preserving if when the R_i 's are re-joined back together, the FD's that were on the R_i 's imply all of the original FD's in \mathcal{F} .

Are All BCNF Decompositions Good?

- Is it always possible to decompose R so that each smaller relation is in BCNF?
- YES
- One strategy: decompose R into a set of relation schemas R_1 , ..., R_k such that each R_i is a binary relation schema.
- Are all BCNF decompositions good?
- NO

Decomposing a Relation

• Suppose we have decomposed R into R_1 and R_2 . Given an instance r of R, we decompose r into r_1 and r_2 . Can we get back the original instance r by (Natural) Joining r_1 and r_2 ?

Lossless Join Decomposition

In general, can we obtain r by Natural Joining r₁ with r₂ ... with r_k?

- That is, must it always true for any instance r, that: $r = r_1 \bowtie r_2 \bowtie ... \bowtie r_k$ (Natural Join)?

More precise definition:

- Let R be a relation schema and ${\mathcal F}$ be a set of FDs over R.
- A decomposition of R into k schemas, with attribute sets X_1 , ..., X_k , is a Lossless Join decomposition with respect to \mathcal{F} if:

For every instance r of R that satisfies \mathcal{F} , we have:

$$r = \pi_{X1}(r) \bowtie ... \bowtie \pi_{Xk}(r)$$

= $r_1 \bowtie r_2 \bowtie ... \bowtie r_k$

Lossless Join Example 1

- Let R(A,B,C) be a relation schema with no functional dependencies
- Is the decomposition of R into schemas $R_1(A,B)$ and $R_2(B,C)$ a Lossless Join decomposition?

Instance rx

Α	В	С
a1	b1	c1
a1	b1	c2
a1	b2	сЗ

$$\pi_{A, B}(rx)$$

Α	В
a1	b1
a1	b2

$$\pi_{B,C}(rx)$$

В	O
b1	c1
b1	c2
b2	сЗ

$$\pi_{A, B}(rx) \bowtie \pi_{B, C}(rx)$$

Α	В	С
a1	b1	c1
a1	b1	c2
a1	b2	сЗ

Lossless Join Example 2

Instance ry

Α	В	С
a1	b1	c1
a2	b1	c2

 $\pi_{A, B}(ry)$

Α	В
a1	b1
a2	b1

 $\pi_{B,C}(ry)$

В	С
b1	c1
b1	c2

 $\pi_{A, B}(ry) 1 \pi_{B,C}(ry)$

Α	В	С
a1	b1	c1
a1	b1	c2
a2	b1	c1
a2	b1	c2

Lossy!

- By projecting on $R_1(A,B)$ and $R_2(B,C)$, some information may be lost (sometimes).
- We no longer know that (a1,b1,c2) did not exist in the original relation!
- Hence R₁ and R₂ is <u>not</u> a Lossless Join decomposition of R.

FD's and Lossless Joins

- Let R(A,B,C) be a relation schema
- Is the decomposition of R into schemas $R_1(A,B)$ and $R_2(B,C)$ a Lossless Join decomposition if we know $B \rightarrow C$?
 - ry is not a legal instance, since it does not satisfy $B \rightarrow C$.
- But that doesn't prove that $R_1(A,B)$ and $R_2(B,C)$ is a Lossless Join decomposition in the presence of the FD B \rightarrow C.
 - Is it Lossless?
 - Yes; see textbook, Sections 3.4.1 and 3.4.2 ...
 - ... or later slides in this lecture!!

Lossless Join Example 3

```
CompanyInfo(emp, salary, dept, manager)
emp → salary, dept, manager
dept → manager
```

- CompanyInfo is not in BCNF because of dept → manager.
- Let's decompose into R₁(emp, salary) and R₂(dept, manager).

```
Instance r of CompanyInfo:
(Bolt, 85K, Math, Tromb)
(Montgomery, 90K, Math, Tromb)
(Brandt, 88K, CS, Pohl)
```

Lossless Join Example 3 (cont'd)

Decompose instance r of CompanyInfo(emp, salary, dept, manager)

```
    r<sub>1</sub>(emp, salary)
        (Bolt, 85K)
        (Montgomery, 90K)
        (Brandt, 88K)
    r<sub>2</sub>(dept, manager)
        (Math, Tromb)
        (CS, Pohl)
```

- $r_1 \bowtie r_2 = r_1 \times r_2$ has 6 tuples in it.
- But instance r had only 3 tuples in it!
 - Hence the decomposition of CompanyInfo(emp, salary, dept, manager) into R_1 (emp, salary) and R_2 (dept, manager) is not a Lossless Join decomposition.

A Necessary and Sufficient Condition for Lossless Join Decomposition

• We would like our decompositions to be Lossless, and we'd like to be able to decide when a decomposition is Lossless.

Let R be a relation and \mathcal{F} be set of FDs that hold over R.

Fact: A decomposition of R into two relation schemas R_1 with attributes X_1 and R_2 with attributes X_2 is Lossless if and only if \mathcal{F}^+ contains either:

1.
$$X_1 \cap X_2 \rightarrow X_1$$
, or

$$2. X_1 \cap X_2 \rightarrow X_2$$

That is, the intersection of the attributes of R_1 and R_2 is a superkey of either R_1 or R_2

Testing Whether a Decomposition is a Lossless Join Decomposition

Fact: A decomposition of R into relation schemas R_1 and R_2 is Lossless if and only if \mathcal{F}^+ contains either:

1.
$$X_1 \cap X_2 \rightarrow X_1$$
, or

2.
$$X_1 \cap X_2 \rightarrow X_2$$

That is, the intersection of the attributes of R_1 and R_2 is a superkey of either R_1 or R_2

- This **Fact** works only for decompositions into **two** relations.
 - And note that it's <u>not the definition</u> of Lossless Join Decomposition!
- "The Chase" (see textbook) is a procedural algorithm for checking whether <u>any</u> decomposition is a Lossless Join decomposition.
 - We won't cover "The Chase" in this class.

Two More Lossless Join Examples

- Decompose R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$, with \mathcal{F} being the empty set.
 - Since B → AB and B → BC are not in \mathcal{F}^+ , this decomposition is not a Lossless Join decomposition.
- CompanyInfo(emp, salary, dept, manager)
 emp → salary, dept, manager
 dept → manager
 CompanyInfo is not in BCNF.

Decompose into R_1 (emp, salary) and R_2 (dept, manager)

- Since FDs $\{\}$ \rightarrow emp, salary and $\{\}$ \rightarrow dept, manager are not in \mathcal{T}^+ , this decomposition is not a Lossless Join decomposition₈₅

A Final Lossless Join Example

```
Employees(eid, name, addr, rank, salary scale)
  with FD: rank \rightarrow salary scale
Decomposition:
   Employees2(eid, name, addr, rank)
   Salary_Table(rank, salary_scale)
   Employees2 ∩ Salary Table = {rank}
   rank \rightarrow attr(Salary Table).
   Therefore, the decomposition is Lossless.
```

Decomposition and Normalization [Not required for Final]

Given a relation schema and functional dependencies, it is always possible to decompose schema into a set of **BCNF** relations that:

- 1) Eliminates Anomalies,
- and is 2) a Lossless Join decomposition.
- However, the schema might not always be 3) Dependency-Preserving.

Given a relation schema and functional dependencies, it is always possible to decompose schema into a set of **3NF** relations that:

- is 2) a Lossless Join decomposition,
- and is 3) Dependency-Preserving.
- However, the schema might not always 1) Eliminate Anomalies.