Solutions to Assignment 7

Yogeshwaran D.

December 20, 2021

1. Compute the variances of the uniform random variable on [n], the Binomial and the hypergeometric random variable.

Proof: For the uniform random variable, let $\Omega = [n]$ with $p(\omega) = \frac{1}{n}$ for all $\omega \in \Omega$. Let $X(\omega) = \omega$. Then, it is clear that $P(X = \omega) = \frac{1}{n}$ for all $\omega \in \Omega$, and therefore

$$\mathbb{E}[X] = \sum_{i=1}^{n} i \mathbb{P}(X = i) = \sum_{i=1}^{n} \frac{i^2}{n} = \frac{n+1}{2}$$

and

$$\mathsf{VAR}[X] = \sum_{i=1}^{n} i^2 \mathbb{P}(X=i) - \mathbb{E}[X]^2 = \frac{n^2 - 1}{12}$$

For $X \sim Bin(p)$, we have the sample space $\Omega = \{(a_1,...,a_n): a_i \in \{0,1\}\}$ with $p(a_1,...,a_n) = p^b(1-p)^c$ where b,c are the number of ones and zeros in the sequence $a_1,...,a_n$ respectively. Now, with this, we define $X(a_1,...,a_n)$ to be the number of 1s in the sequence a_i . Then $X \sim Bin(p)$. Consider the random variables $X_i = 1_{a_i=1}$. Then, note that X_i are independent, and $X = \sum_{i=1}^n X_i$. Therefore, we get:

$$\mathbb{E}[X_i] = \mathbb{P}[a_i = 1] = p \implies \mathbb{E}[X] = np$$

and because $X_i^2 = X_i$, we get

$$VAR[X] = \sum_{i=1}^{n} VAR[X_i] = \sum_{i=1}^{n} (\mathbb{E}[X_i] - \mathbb{E}[X_i]^2) = np(1-p)$$

For the hypergrometric distribution with parameters $n \geq m, r$, we consider the sample space of r-sized subsets of n with the uniform pmf, and let $X(S) = \#\{S \cap [m]\}$. Then X is hypergeometric with parameters n, m, r. We define the random variables $X_i(S) = 1_{i \in S}$ for $i \in [m]$. Now it is clear that

$$\mathbb{E}[X_i] = \frac{r}{n} \implies \mathbb{E}[X] = \frac{mr}{n}$$

However, the X_i are dependent, therefore we calculate

$$\mathbb{E}[X^2] = \sum_{i=1}^n \mathbb{E}[X_i^2] + \sum_{i \neq j} \mathbb{E}[X_i X_j]$$

Note that $\mathbb{E}[X_i X_j] = \mathbb{P}[i, j \in S] = \frac{r(r-1)}{n(n-1)}$. Therefore, noting that $X_i^2 = X_i$, we get

$$\mathbb{E}[X^2] = \frac{mr}{n} + \binom{m}{2} \frac{r(r-1)}{n(n-1)}$$

whence $\mathsf{VAR}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ gives the answer.

2. Show that $VAR[aX + b] = a^2VAR[X]$.

Proof: We have:

$$\begin{split} \mathsf{VAR}[aX+b] &= \mathbb{E}[(aX+b)^2] - \mathbb{E}[(aX+b)]^2 \\ &= a^2 \mathbb{E}[X^2] + 2ab \mathbb{E}[X] + b^2 - a^2 \mathbb{E}[X]^2 - 2ab \mathbb{E}[X] - b^2 \\ &= a^2 (\mathbb{E}[X^2] - \mathbb{E}[X]^2) = a^2 \mathsf{VAR}[X] \end{split}$$

as desired. \blacksquare

3. Two fair dice are rolled independently. Find the pmf, mean and variance of the following random variables - (1) The sum of the two dice. (2) The maximum among the two dice.

Proof : By a case-by-case analysis, it is easy to see that if X is the sum of the dice, then $P(X=a)=\frac{6-|7-a|}{36}$ for $a\in\{2,3,...,12\}$. From this, it is easy to find , by definition just as in question 1, $\mathbb{E}[X]=7$, $\mathsf{VAR}[X]=\frac{35}{6}$.

For the second, we note that if Y is the larger of the numbers, then $\{Y=a\}=\{(c,d):c=a,d< a \text{OR} c< a,d=a\}$, so it has 2a-1 elements. Thus, $\mathbb{P}(Y=a)=\frac{2a-1}{36}$ for $a\in[6]$. Using the definitions, one finds $\mathbb{E}[X]=\frac{161}{36}$ and $\mathsf{VAR}[X]=\frac{2555}{1296}$.

4. Balls are thrown one after another (uniformly at random) into two bins. Each throw is independent of the previous throw. The experiment stops when there is no empty bin. Let X be the total number of balls thrown. Find $\mathbb{P}(X \geq n)$ for all $n \geq 1$.

Proof: See that $\{X \geq n\}$ if and only if the first n-1 throws have landed in the same bin. That bin has two ways of being picked, and the probability of the ball going into the same bin each time is $\frac{1}{2}$, so we get $2(\frac{1}{2})^{n-1} = \frac{1}{2^{n-2}} = \mathbb{P}\{X \geq n\}$, for $n \geq 2$.

5. Let X be the number of empty cells corresponding to Maxwell-Boltzmann distribution. Compute the pmf, mean and variance of X.

Proof: The sample space is $\Omega = \{(r_1, ..., r_n) : r_i = 0, \sum r_i = r\}$ with the probability distribution $p(r_1, ..., r_n) = \frac{1}{n^r} \binom{r}{r_1, r_2, ..., r_n}$. Let $E_i = \mathbb{P}(r_i = 0)$. Then, we note that

$$P(E_{i_1} \cap ... \cap E_{i_j}) = \sum_{r_i \ge 0, \sum r_i = n, r_{i_l} = 0 \forall l} \frac{1}{n^r} \binom{r}{r_1, r_2, ..., r_n}$$

$$= \sum_{r_i \ge 0, \sum r_i = n, i = 1, ..., n - j} \frac{1}{n^r} \binom{r}{r_1, r_2, ..., r_{n-j}}$$

$$= \frac{(n-j)^r}{n^r}$$

Therefore, using the generalized IEP,

$$\mathbb{P}(X=k) = \sum_{j=k}^{m} (-1)^{j-k} \binom{j}{k} \binom{n}{j} \frac{(n-j)^r}{n^r}$$

Let $X_i = 1_{E_i}$. Then $X = \sum_{i=1}^n X_i$. Note that for $i \neq j$,

$$\mathbb{E}[X_i] = \mathbb{E}[X_i^2] = \frac{(n-1)^r}{n^r} \quad ; \quad \mathbb{E}[X_i X_j] = \mathbb{P}[E_i \cap E_j] = \frac{(n-2)^r}{n^r}$$

Therefore

$$\mathbb{E}[X] = n \frac{(n-1)^r}{n^r}$$

and

$$\mathbb{E}[X^2] = \sum_{i=1}^n E[X_i^2] + \sum_{i \neq j} E[X_i X_j] = n \frac{(n-1)^r}{n^r} + \binom{n}{2} \frac{(n-2)^r}{n^r}$$

and one can finish from here. \blacksquare

6. Let X be the number of empty cells corresponding to Fermi-Dirac distribution. Compute the pmf, mean and variance of X.

Proof: In the Fermi-Dirac distribution, it is always true that n-r cells are empty. Therefore, $\mathbb{P}(X=n-r)=1$ and $\mathbb{P}(X=t)=0$ for $t\neq n-r$. It is easily seen that $\mathbb{E}[X]=n-r$ and $X-\mathbb{E}[X]=0$, so $\mathsf{VAR}[X]=0$.

7. Prove Markov's inequality and Chebyshev's inequality just using pmf of a random variable. Recall that for a finite random variable with pmf p_X , $\mathbb{P}(X \in A) = \sum_{x \in A} p_X(x)$ for any subset $A \subset \mathbb{R}$.

Proof: Suppose that X takes values $\{a_1,...,a_n\}$ with $0 \le a_i < a_j$ for i < j. Let t > 0. If $t \le a_1$ or $t > a_n$, the Markov inequality is obvious. If not, then there exists k such that $a_k < t \le a_{k+1}$, following which we do

$$t\mathbb{P}(X \ge t) \le \sum_{i=k+1}^{n} i\mathbb{P}(X = a_i) \le \mathbb{E}[X]$$

and the inequality follows. Chebyshev follows from

$$\mathbb{P}(|X - \mathbb{E}[X]| \geq t) = \mathbb{P}((X - \mathbb{E}[X])^2 \geq t^2) \leq \frac{\mathbb{E}[(X - \mathbb{E}[X])^2]}{t^2} = \frac{\mathsf{VAR}[X]}{t^2}$$

whence, we are done. \blacksquare

8. In a population of size N, m people prefer candidate A. In an opinion poll, n people are chosen at random and asked their preferences. Let Y denote the proportion of people who prefer candidate A among the n randomly chosen people. Find t (depending on N, n, m) such that $\mathbb{P}(|Y - \frac{m}{N}| \ge t) \le 10^{-2}$. ¹

 $^{^{1}\}mathrm{EXTRA}$: Can you find n such that $t \leq 10^{-4}.$

Proof: Note that $nY \sim Bin(n, \frac{m}{N})$. Therefore, $\mathbb{E}[Y] = \frac{m}{N}$ and $\mathsf{VAR}[Y] = \frac{m(N-m)}{nN^2}$. By Chebyshev's inequality,

$$\mathbb{P}\left[|Y - \frac{m}{N}\| \ge t\right] \le \frac{m(N - m)}{nN^2t^2}$$

and therefore, $t^2 \ge \frac{100m(N-m)}{nN^2}$ is sufficient.

9. Suppose two permutations of [n] are chosen at random and independently. Let X denote the number of matches between the two random permutations i.e., the number of co-ordinates at which the permutations match. Compute the pmf and mean of X.

Proof: To match at exactly m places, we choose a subset of size m in $\binom{n}{m}$ ways, and ensure the rest of the indices are deranged, which has probability $\frac{D_{n-m}}{(n-m)!}$. Thus, we get $\mathbb{P}(X=m)=\binom{n}{m}\frac{D_{n-m}}{(n-m)!}$.

The expectation is much easier: If X_i denotes the random variable that there is a match at the *i*th position, then $\mathbb{E}[X_i] = \frac{1}{n}$ and $X = \sum_{i=1}^n X_i$, so $\mathbb{E}[X] = 1$.

10. Let a standard fair die be rolled. Suppose the die shows the number i, then we choose a coin with probability of heads being i/6. Now this coin is tossed independently and repeatedly until we get a heads. Let the random variable X be the number of tosses. Find the probability $\mathbb{P}(X=n)$ for all $n \geq 1$.

Proof: Note that $\mathbb{P}(X=n)=\sum_{i=1}^6\mathbb{P}(X=n|D=i)\mathbb{P}(D=i)$ by the law of total probability, where D denotes the value of the dice roll. However, $\mathbb{P}(X=n|D=i)=(1-\frac{i}{6})^{n-1}\frac{i}{6}$, so we simply get

$$\mathbb{P}(X=n) = \frac{1}{6} \sum_{i=1}^{6} (1 - \frac{i}{6})^{n-1} \frac{i}{6}$$

which is the final answer. \blacksquare