常见分布的期望和方差推导

版权

分类专栏: #概率与数理统计 文章标签: 期望 方差 常见分布

概率与数理统计 专栏收录该内容

¥9.90 ¥99.00

28 订阅 59 篇文章

订阅专栏

🌰 超级会员免费看

1.常见分布的期望和方差推导

名称	标记	分布律或概率密度函数	期望	方差
二项分布	B(n,p)	$P(X = k) = C_n^k p^k (1-p)^{n-k} (k = 0, 1, \dots, n)$	np	np(1-p)
0-1 分布	B(1,p)	$P(X = k) = p^{k}(1-p)^{1-k} (k = 0,1)$	p	p(1-p)
泊松分布	$P(\lambda)$	$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} (k = 0, 1, \dots; \lambda > 0)$	λ	λ
几何分布	G(p)	$P(X = k) = p(1-p)^{k-1}$ $(k = 1, 2, \cdots)$, 其中 p 为在伯努利试验中事件 A 首次在 第 k 次发生的概率	1 p	$\frac{1-p}{p^2}$
指数分布	e(λ)	$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \lambda > 0 \\ 0, & x \leq 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
均匀分布	U(a,b)	$p(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{ 其他} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
正态分布	$N(\mu,\sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} (-\infty < x < +\infty)$	μ	σ² SDN @Uncertainty!!