DSC 257R - UNSUPERVISED LEARNING

K-MEANS CLUSTERING

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

The K-Means Optimization Problem

- Input: Points $x_1, ..., x_n \in \mathbb{R}^d$; integer k
- Output: "Centers", or representatives, $\mu_1, \dots, \mu_k \in \mathbb{R}^d$
- Goal: Minimize average squared distance between points and their nearest representatives:

$$cost(\mu_1, ..., \mu_k) = \sum_{i=1}^{n} \min_{j} \|x_i - \mu_j\|^2$$

The K-Means Optimization Problem

- Input: Points $x_1, ..., x_n \in \mathbb{R}^d$; integer k
- Output: "Centers", or representatives, $\mu_1, ..., \mu_k \in \mathbb{R}^d$
- Goal: Minimize average squared distance between points and their nearest representatives:

$$cost(\mu_1, ..., \mu_k) = \sum_{i=1}^{n} \min_{j} \|x_i - \mu_j\|^2$$

The K-Means Optimization Problem

- Input: Points $x_1, ..., x_n \in \mathbb{R}^d$; integer k
- Output: "Centers", or representatives, $\mu_1, \dots, \mu_k \in \mathbb{R}^d$
- Goal: Minimize average squared distance between points and their nearest representatives:

$$cost(\mu_1, ..., \mu_k) = \sum_{i=1}^{n} \min_{j} \|x_i - \mu_j\|^2$$

Centers carve \mathbb{R}^d into k convex regions: μ_j 's region consists of points for which it is the closest center.

An Unfavorable Optimization Landscape

In fact, k-means is an **NP-hard** optimization problem.

What can we hope for in such situations?

- Initialize centers μ_1, \dots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

- Initialize centers μ_1, \dots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

- Initialize centers μ_1, \dots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

- Initialize centers μ_1, \dots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

- Initialize centers μ_1, \dots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

- Initialize centers μ_1, \dots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

- Initialize centers μ_1, \dots, μ_k in some manner.
- Repeat until convergence:
 - Assign each point to its closest center.
 - Update each μ_i to the mean of the points assigned to it.

Each iteration reduces the cost \Rightarrow convergence to a local optimum.

Initialization Matters

Initializing the K-Means Algorithm

Typical practice: choose k data points at random as the initial centers.

Initializing the *K***-Means Algorithm**

Typical practice: choose k data points at random as the initial centers.

Another common trick: start with extra centers, then prune later.

Initializing the *K***-Means Algorithm**

Typical practice: choose k data points at random as the initial centers.

Another common trick: start with extra centers, then prune later.

A particularly good initializer: k-means++

- Pick a data point x at random as the first center
- Let $C = \{x\}$ (centers chosen so far)
- Repeat until desired number of centers is attained:
 - \blacksquare Pick a data point x at random from the following distribution:

$$\Pr(x) \propto dist(x, C)^2$$
,

where
$$dist(x, C) = min_{z \in C} ||x - z||$$

Add x to C

