note: I write function / morphism composition as $f(g(x)) = gf = f \circ g$.

2.5: f is an epimorphism means $\forall a, b$ $fa = fb \Rightarrow a = b$.

Let $f: X \to Y$ be an epimorphism, and suppose it is not surjective, i.e. $\exists y \in Y$ with an empty fiber. Consider two maps a, b from Y to $\{0,1\}$: a sends all of Y to 0, and b is the same, except for sending $y \mapsto 1$. Then fa = fb but $a \neq b$, so epimorphisms must be surjections.

Now let f be surjective, i.e. every y has a nonempty fiber f_y (let $f(f_y)$ mean to pick an arbitrary $x \in f_y$ to put in f). Suppose for $a, b: Y \to Z$, $a \neq b$ but fa = fb.

Then $\exists y \ a(y) \neq b(y) \Rightarrow a \circ f(f_y) \neq b \circ f(f_y)$, but we supposed $a \circ f = b \circ f$. The only way out was if f_y was empty for some y, but f is surjective. Hence f surjective $\Longrightarrow (fa = fb \Rightarrow a = b)$, i.e. f is an epimorphism.

- 2.9: Sets are isomorphic when they have the same cardinality. $A' \cap B' = \emptyset = A'' \cap B'' \iff |A' \cup B'| = |A'| + |B'| = |A''| + |B''| = |A'' \cup B''| \iff A' \cup B' \cong A'' \cup B''.$
- 2.10: Each $a \in A$ has a choice of mapping to each $b \in B$. Since these choices are independent between different a's, we multiply by |B| for each $a \in A$, i.e. $|B^A| = |B|^{|A|}$
- 2.11: A bijection is: $\forall p \in \mathcal{P}(A), \forall e \in A \ e \mapsto 1 \text{ if } e \in P, \text{ otherwise } e \mapsto 0.$ Since a unique subset determines a unique map and vice-versa (construct the inverse), this is indeed a bijection.
- 3.1: For $f \in \operatorname{Hom}_{\mathsf{C}op}(B,A)$ and $g \in \operatorname{Hom}_{\mathsf{C}op}(C,B)$, we define composition as $fg \in \operatorname{Hom}_{\mathsf{C}op}(C,A)$. This is well defined through the parent category: $f \in \operatorname{Hom}_{\mathsf{C}}(A,B)$ and $g \in \operatorname{Hom}_{\mathsf{C}}(B,C) \Rightarrow fg \in \operatorname{Hom}_{\mathsf{C}}(A,C)$. Associativity and existence of the identity morphism also follow from the parent category.
- 3.4: No, there is no identity.
- 3.5: The \subseteq relation is reflexive and transitive.
- 3.6: finite dimensional vector spaces, the morphisms are maps between these spaces. A matrix with 0 rows/columns is a map involving $\vec{0}$.

- 3.7: Elements of $\operatorname{Hom}(\zeta_1, \zeta_2)$ are morphisms σ_{12} such that $\zeta_1 \sigma_{12} = \zeta_2$. Composition is well-defined: $\zeta_1 \sigma_{12} \sigma_{23} = \zeta_3 \Rightarrow \sigma_{12} \sigma_{23} = \sigma_{13} \in \operatorname{Hom}(\zeta_1, \zeta_3)$
- 3.9: I think an isomorphism between msets should map equivalent elements to equivalent elements, with the objects of mset being a set equipped with an equivalence relation \sim . Generalizing, the morphisms are just functions where $a \sim b \Rightarrow f(a) \sim f(b)$, that way any morphism which is a bijection is an isomorphism. Set is a full subcategory as it is true for all functions that $a = b \Rightarrow f(a) = f(b)$.
- 3.10: Any set with two elements is a subobject classifier in Set, with the subobjects being subsets.

3.11:

Note that the bottom category $C_{\alpha,\beta}$ "looks like" a full subcategory of $C_{A,B}$, as in there is a one-to-one and onto mapping of objects and morphisms, respecting domain and composition, between $C_{\alpha,\beta}$ and a full subcategory of $C_{A,B}$.

For the top category $C^{A,B}$, we have $f_1\sigma_{12}=f_2$ and $g_1\sigma_{12}=g_2$.

4.1: