Sprawozdanie Lab2

Powiększanie tablicy dwoma sposobami.

Pliki do kompilacji oraz plik Makefile w folderze o nazwie Lab2.

Niżej tabele z pomiarami czasów wykonywania algorytmu dla powiększania tablicy 10-elementowej o: 10^1 , 10^2 , 10^3 , 10^4 elementów. Tylko na tyle pozwoliła specyfikacja komputera(AMD A4-4300M APU 2.50 GHz).

Czas algorytmu "2n" [s]

	Czas algorytiiu zii [s]					
	10	100	1000	10000		
1	0,0000080	0,0000110	0,0000920	0,0003990		
2	0,0000060	0,0000100	0,0000450	0,0003620		
3	0,0000080	0,0000100	0,0000580	0,0003540		
4	0,0000070	0,0000140	0,0000710	0,0003320		
5	0,0000080	0,0000170	0,0000600	0,0003980		
6	0,0000090	0,0000150	0,0000520	0,0006160		
7	0,0000100	0,0000170	0,0000900	0,0004180		
8	0,0000080	0,0000090	0,0000730	0,0006670		
9	0,0000070	0,0000120	0,0000530	0,0005280		
10	0,0000080	0,0000110	0,0000580	0,0004410		
11	0,0000080	0,0000120	0,0000650	0,0005800		
12	0,0000080	0,0000170	0,0000490	0,0006200		
13	0,0000080	0,0000170	0,0000960	0,0003840		
14	0,0000080	0,0000130	0,0000470	0,0005330		
15	0,0000080	0,0000110	0,0000430	0,0003480		
16	0,0000050	0,0000150	0,0000440	0,0004240		
17	0,0000120	0,0000090	0,0000440	0,0005200		
18	0,0000070	0,0000080	0,0000660	0,0003950		
19	0,0000110	0,0000100	0,0000630	0,0003410		
20	0,0000050	0,0000100	0,0000440	0,0003710		

Czas algorytmu "+1" [s]

	5 7 7 5 1 1					
	10	100	1000	10000		
1	0,000006	0,000057	0,003485	0,345954		
2	0,000015	0,000067	0,003957	0,347412		
3	0,000010	0,000120	0,003636	0,347438		
4	0,000015	0,000100	0,003608	0,340633		
5	0,000006	0,000084	0,004041	0,338552		
6	0,000013	0,000120	0,003610	0,343252		
7	0,000007	0,000100	0,003605	0,344621		
8	0,000059	0,000100	0,004739	0,350970		
9	0,000014	0,000110	0,003566	0,345906		
10	0,000006	0,000089	0,005248	0,344370		
11	0,000010	0,000077	0,005274	0,347747		
12	0,000012	0,000084	0,005543	0,345437		
13	0,000008	0,000091	0,004096	0,337838		
14	0,000014	0,000084	0,004554	0,346841		
15	0,000016	0,000100	0,003917	0,350552		
16	0,000011	0,000110	0,003605	0,345347		
17	0,000017	0,000084	0,003582	0,345973		
18	0,000009	0,000067	0,004632	0,350352		
19	0,000010	0,000061	0,005662	0,351398		
20	0,000007	0,000091	0,003869	0,342302		

Czasy średnie przeprowadzonych testow:

Zwiekszano o:	10 ¹	10 ²	10 ³	10 ⁴
T _{śr} (2n) [s]	0,00000795	0,0000124	0,00006065	0,00045155
T _{śr} (+1) [s]	0,00001325	0,0000898	0,00421145	0,34564475

Wnioski:

- Widoczne są nieznaczne roznice w czasie na początku, w szczególności w tabeli samych
 pomiarów. Algorytm zwiększania sukcesywnego "+1" jest szybszy dla małych powiekszen(dla
 10 i 100 lepszy jest algorytm "+1")
- Przy bardzo dużym powiększaniu rozmiaru tablicy zdecydowanie lepszy okazał się algorytm "2n". Jednak nie jest on idealny ponieważ potrzeba dla niego więcej pamięci, więc jest szybszy, ale mniej ekonomiczny.
 - Dla małych rozmiarow algorytm "2n" jest nieekonomiczny, a dla dużych o wiele szybszy.
 - Z kolei algorytm "+1" dla małych wielkości, bardzo ekonomiczny, lecz dla dużych bardzo czasochłonny.