

Линейные пространства и отображения

Алексей Перегудин, 2020

Множество, элементы которого можно складывать друг с другом и умножать на числа

Множество, элементы которого можно складывать друг с другом и умножать на числа

V — множество

Множество, элементы которого можно складывать друг с другом и умножать на числа

$$V$$
 — множество

$$v_1, v_2 \in V \Rightarrow v_1 + v_2 \in V$$

Множество, элементы которого можно складывать друг с другом и умножать на числа

$$V$$
 — множество

$$v_1, v_2 \in V \Rightarrow v_1 + v_2 \in V$$

$$v \in V$$
, c – число $\Rightarrow cv \in V$

Множество, элементы которого можно складывать друг с другом и умножать на числа

V — множество

$$v_1, v_2 \in V \Rightarrow v_1 + v_2 \in V$$

$$v \in V$$
, c – число $\Rightarrow cv \in V$

$$\Rightarrow$$
 V — линейное пространство

Множество, элементы которого можно складывать друг с другом и умножать на числа

V — множество

 $v_1, v_2 \in V \Rightarrow v_1 + v_2 \in V$

 $v \in V$, c – число $\Rightarrow cv \in V$

V – линейное пространство

 \Rightarrow (над \mathbb{R} , если $c \in \mathbb{R}$)

Множество, элементы которого можно складывать друг с другом и умножать на числа

V — множество

 $v_1, v_2 \in V \Rightarrow v_1 + v_2 \in V$

 $v \in V$, c – число $\Rightarrow cv \in V$

V – линейное пространство

 \Rightarrow (над \mathbb{R} , если $c \in \mathbb{R}$)

(над \mathbb{C} , если $c \in \mathbb{C}$)

Множество, элементы которого можно складывать друг с другом и умножать на числа

$$V$$
 – множество

$$v_1, v_2 \in V \Rightarrow v_1 + v_2 \in V$$

$$v \in V$$
, c – число $\Rightarrow cv \in V$

$$V$$
 — линейное пространство элементы V — вектора

Примеры линейных пространств

Вещественные числа $\mathbb R$

Примеры линейных пространств

Вещественные числа $\mathbb R$

Сложение

$$2 + 5 = 7$$

Вещественные числа $\mathbb R$

Сложение

$$2 + 5 = 7$$

$$-10 \cdot 5 = -50$$

Примеры линейных пространств

Векторы \mathbb{R}^n

Сложение

$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 8 \\ 9 \\ 7 \end{bmatrix}$$

$$2 \cdot \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix} = \begin{bmatrix} 14 \\ 14 \\ 14 \end{bmatrix}$$

Примеры линейных пространств

Матрицы $\mathbb{R}^{m \times n}$

Сложение

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}$$

$$3 \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \\ 3 & 3 \end{bmatrix}$$

Множество из одного нуля {0}

Сложение

$$0 + 0 = 0$$

$$5 \cdot 0 = 0$$

Примеры линейных пространств

Множество P_n многочленов степени $\leq n$

Сложение

 $(1+x^2) + (x-x^2) = (1+x)$

$$5 \cdot (1 + x^2) = (5 + 5x^2)$$

Примеры линейных пространств

Множество P_{∞} всех многочленов

Сложение

$$(5+x^2) + (x^{999} - x^2) = (1+x^{999})$$

$$3 \cdot 2x^{1001} = 6x^{1001}$$

Множество C^0 всех непрерывных функций (на \mathbb{R})

Сложение

$$f(x) + g(x)$$

$$\mathbf{c} \cdot f(x)$$

Множество C^{∞} всех гладких функций (на \mathbb{R})

Сложение

$$f(x) + g(x)$$

$$\mathbf{c} \cdot f(x)$$

Примеры линейных пространств

Множество l^{∞} всех ограниченных последовательностей

Сложение

$$= 4, 0, 4, 0, 4, 0, \dots$$

Положительные числа $\mathbb{R}_{>0}$

Положительные числа $\mathbb{R}_{>0}$

Множество всех матриц

Положительные числа $\mathbb{R}_{>0}$

Множество всех матриц

Все возрастающие функции

Положительные числа $\mathbb{R}_{>0}$

Множество всех матриц

Все возрастающие функции

Все функции, имеющие разрыв типа «скачок»

Линейная оболочка

Линейная оболочка набора векторов

$$Span(v_1, v_2, ..., v_n) = \{a_1v_1 + a_2v_2 + ... + a_nv_n \mid a_i \in \mathbb{R}\}$$

множество всех линейных комбинаций этих векторов

университет итмо

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = ?$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = ?$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\mathrm{Span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = ?$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{a \cdot \begin{bmatrix}1\\1\end{bmatrix} \mid a \in \mathbb{R}\right\}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{ \begin{bmatrix} a\\a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{ \begin{bmatrix} a\\a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-5\\-5\end{bmatrix}\right) = ?$$

Линейная оболочка (примеры)

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\5\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{ \begin{bmatrix} a\\a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-5\\-5\end{bmatrix}\right) = \left\{\begin{bmatrix}a\\a\end{bmatrix} \mid a \in \mathbb{R}\right\}$$

Линейная оболочка (примеры)

Общее решение диф. уравнения

$$\ddot{y} = -y$$

университет итмо

Линейная оболочка (примеры)

Общее решение диф. уравнения $\ddot{y}=-y$ имеет вид $y(t)=c_1\sin t+c_2\cos t$

университет итмо

Линейная оболочка (примеры)

Общее решение диф. уравнения
$$\ddot{y}=-y$$
 имеет вид $y(t)=c_1\sin t+c_2\cos t$

Множество всех решений этого уравнения:

$$\operatorname{Span}(\sin t, \cos t)$$

Линейная оболочка является линейным пространством

Линейная оболочка является линейным пространством

Линейная оболочка является линейным пространством

$$x \in \operatorname{Span}(v_1, v_2)$$

Теоремка

Линейная оболочка является линейным пространством

$$x \in \text{Span}(v_1, v_2)$$

$$\updownarrow$$

$$x = a_1 v_1 + a_2 v_2$$

Теоремка

Линейная оболочка является линейным пространством

$$x \in \operatorname{Span}(v_1, v_2)$$

$$\downarrow x = a_1v_1 + a_2v_2$$

$$\downarrow x = ca_1v_1 + ca_2v_2$$

Теоремка

Линейная оболочка является линейным пространством

$$x \in \operatorname{Span}(v_1, v_2)$$

$$\downarrow x = a_1v_1 + a_2v_2$$

$$\downarrow x = ca_1v_1 + ca_2v_2$$

$$\downarrow cx = ca_1v_1 + ca_2v_2$$

$$\downarrow cx \in \operatorname{Span}(v_1, v_2)$$

Теоремка

Линейная оболочка является линейным пространством

$$x \in \operatorname{Span}(v_1, v_2)$$
 $y \in \operatorname{Span}(v_1, v_2)$

Теоремка

Линейная оболочка является линейным пространством

Теоремка

Линейная оболочка является линейным пространством

$$x \in \text{Span}(v_1, v_2)$$
 $y \in \text{Span}(v_1, v_2)$

$$x = a_1v_1 + a_2v_2$$
 $y = b_1v_1 + b_2v_2$

$$x + y = (a_1 + b_1)v_1 + (a_2 + b_2)v_2$$

Теоремка

Линейная оболочка является линейным пространством

$$x \in \text{Span}(v_1, v_2)$$
 $y \in \text{Span}(v_1, v_2)$

$$x = a_1v_1 + a_2v_2$$
 $y = b_1v_1 + b_2v_2$

$$x + y = (a_1 + b_1)v_1 + (a_2 + b_2)v_2$$

$$x + y \in \text{Span}(v_1, v_2)$$

Линейная оболочка является линейным пространством

$$x \in \text{Span}(v_1, v_2)$$
 \Rightarrow $cx \in \text{Span}(v_1, v_2)$
 $y \in \text{Span}(v_1, v_2)$ $x + y \in \text{Span}(v_1, v_2)$

Теоремка

Линейная оболочка является линейным пространством

Доказательство

$$x \in \text{Span}(v_1, v_2)$$
 \Rightarrow $cx \in \text{Span}(v_1, v_2)$
 \Rightarrow $y \in \text{Span}(v_1, v_2)$ $x + y \in \text{Span}(v_1, v_2)$

Линейная оболочка замкнута относительно сложения и умножения на число ⇒ является линейным пространством

Факт

Линейная оболочка векторов – наименьшее линейное пространство, содержащее эти вектора

V — линейное пространство W — линейное пространство

Если $W\subseteq V$, то W — линейное подпространство пространства V

Факт

 $\{0\}$ и само V являются линейными подпространствами любого линейного пространства V

Факт

 $\{0\}$ и само V являются линейными подпространствами любого линейного пространства V

Очевидный факт

Если $v_1, v_2, ..., v_n \in V$, то $\mathrm{Span}(v_1, v_2, ..., v_n)$ — линейное подпространство пространства V

$$V = \mathbb{R}^2$$

$$W = \operatorname{Span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$$

$$V = \mathbb{R}^2$$

$$W = \operatorname{Span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$$

$$V = \mathbb{R}^2$$

$$W = \operatorname{Span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$$

$$W \subseteq V$$

 C^{∞} — линейное пространство гладких функций

 C^{∞} — линейное пространство гладких функций

*С*⁰ – линейное пространство непрерывных функций

 C^{∞} — линейное пространство гладких функций

*С*⁰ – линейное пространство непрерывных функций

 P_{10} — линейное пространство полиномов степени ≤ 10

 C^{∞} — линейное пространство гладких функций

*С*⁰ – линейное пространство непрерывных функций

 P_{10} — линейное пространство полиномов степени ≤ 10

 P_{∞} – линейное пространство всех полиномов

 C^{∞} — линейное пространство гладких функций

*С*⁰ – линейное пространство непрерывных функций

 P_{10} — линейное пространство полиномов степени ≤ 10

 P_{∞} – линейное пространство всех полиномов

Кто кому подпространство?

 C^{∞} — линейное пространство гладких функций

*С*⁰ – линейное пространство непрерывных функций

 P_{10} — линейное пространство полиномов степени ≤ 10

 P_{∞} – линейное пространство всех полиномов

$$P_{10} \subseteq P_{\infty} \subseteq C^{\infty} \subseteq C^{0}$$

университет итмо

Базис и размерность пространства

Пусть n — наименьшее возможное число элементов набора $\{v_1, v_2, ..., v_n\}$ такого, что $\mathrm{Span}(v_1, v_2, ..., v_n) = V$

Пусть n — наименьшее возможное число элементов набора $\{v_1,v_2,...,v_n\}$ такого, что $\mathrm{Span}(v_1,v_2,...,v_n)=V$

Тогда $oldsymbol{n}$ называется размерностью пространства V

$$\dim V = n$$

Пусть n — наименьшее возможное число элементов набора $\{v_1, v_2, ..., v_n\}$ такого, что $\mathrm{Span}(v_1, v_2, ..., v_n) = V$

Тогда $oldsymbol{n}$ называется размерностью пространства V

$$\dim V = n$$

А сам набор $\{v_1, v_2, ..., v_n\}$ — базисом пространства V (одним из возможных)

Посмотрим на три вектора

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right)$$

университет итмо

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$Span\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right)$$

университет итмо

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

Span
$$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$

университет итмо

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

Span
$$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix} 3 \\ 0 \end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix} 3 \\ 0 \end{bmatrix}\right) \neq \mathbb{R}^2$$

Span
$$\binom{2}{2}$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix} 3 \\ 0 \end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix},\begin{bmatrix}3\\0\end{bmatrix}\right) = \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}3\\0\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\operatorname{Span}\left(\begin{bmatrix}2\\2\end{bmatrix}\right) \neq \mathbb{R}^2$$

$$\dim \mathbb{R}^2 = 2$$

Какова размерность пространства полиномов третьей степени

$$P_3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}?$$

университет итмо

Базис и размерность пространства

Какова размерность пространства полиномов третьей степени

$$P_3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}?$$

$$P_3 = \mathrm{Span}(1, x, x^2, x^3)$$

Какова размерность пространства полиномов третьей степени

$$P_3 = \{ax^3 + bx^2 + cx + d \mid a, b, c, d \in \mathbb{R}\}?$$

$$P_3 = \text{Span}(1, x, x^2, x^3)$$

$$\dim P_3 = 4$$

Какова размерность пространства всех полиномов P_{∞} ?

Какова размерность пространства всех полиномов P_{∞} ?

$$P_{\infty} = \text{Span}(1, x, x^2, x^3, x^4, x^5, ...)$$

Какова размерность пространства всех полиномов P_{∞} ?

$$P_{\infty} = \text{Span}(1, x, x^2, x^3, x^4, x^5, ...)$$

$$\dim P_{\infty} = \infty$$

Какова размерность пространства всех полиномов P_{∞} ?

$$P_{\infty} = \text{Span}(1, x, x^2, x^3, x^4, x^5, ...)$$

$$\dim P_{\infty} = \infty$$

(счетная бесконечность)

Какова размерность пространства гладких функций C^{∞} ?

Какова размерность пространства гладких функций C^{∞} ?

$$C^{\infty} = \operatorname{Span}(???)$$

Какова размерность пространства гладких функций C^{∞} ?

$$C^{\infty} = \operatorname{Span}(???)$$

$$\dim C^{\infty} = \infty$$

Какова размерность пространства гладких функций C^{∞} ?

$$C^{\infty} = \operatorname{Span}(???)$$

$$\dim C^{\infty} = \infty$$

(несчетная бесконечность)

Линейные отображения

Линейные отображения

Отображение $f:V \to W$ между линейными пространствами V и W называется линейным, если

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$
$$f(cv) = cf(v)$$

Линейная комбинация координат вектора

$$f: \mathbb{R}^2 \to \mathbb{R}: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto 2x + 3y$$

Линейная комбинация координат вектора

$$f: \mathbb{R}^2 \to \mathbb{R}: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto 2x + 3y$$

Уважает сложение

$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) = 2(x_1 + x_2) + 3(y_1 + y_2) = f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}\right) + f\left(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right)$$

Линейная комбинация координат вектора

$$f: \mathbb{R}^2 \to \mathbb{R}: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto 2x + 3y$$

Уважает умножение на число

$$f\left(\begin{matrix} c \cdot \begin{bmatrix} x \\ y \end{bmatrix}\right) = 2cx + 3cy = c \cdot f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$$

Вычисление следа матрицы

 $tr: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto trace(A)$

Вычисление следа матрицы

$$tr: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto trace(A)$$

Уважает сложение

$$tr(A + B) = \sum (a_{ii} + b_{ii}) = \sum a_{ii} + \sum b_{ii} = tr(A) + tr(B)$$

Вычисление следа матрицы

$$tr: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto trace(A)$$

Уважает умножение на число

$$tr(\mathbf{c} \cdot A) = \sum ca_{ii} = c \sum a_{ii} = \mathbf{c} \cdot tr(A)$$

Взятие производной

$$\frac{d}{dt}: C^{\infty} \to C^{\infty}: y(t) \mapsto \dot{y}(t)$$

Взятие производной

$$\frac{d}{dt}: C^{\infty} \to C^{\infty}: y(t) \mapsto \dot{y}(t)$$

Уважает сложение

$$\frac{d}{dt}(y_1 + y_2) = \frac{d}{dt}(y_1) + \frac{d}{dt}(y_2)$$

Взятие производной

$$\frac{d}{dt}: C^{\infty} \to C^{\infty}: y(t) \mapsto \dot{y}(t)$$

Уважает умножение на число

$$\frac{d}{dt}(\mathbf{c} \cdot \mathbf{y}) = \mathbf{c} \cdot \frac{d}{dt}(\mathbf{y})$$

Антипримеры

Вычисление длины вектора

$$f: \mathbb{R}^n \to \mathbb{R}: v \mapsto ||v||$$

Вычисление длины вектора

$$f: \mathbb{R}^n \to \mathbb{R}: v \mapsto ||v||$$

Не уважает сложение

$$||a + b|| \neq ||a|| + ||b||$$

Вычисление длины вектора

$$f: \mathbb{R}^n \to \mathbb{R}: v \mapsto ||v||$$

Не уважает сложение

$$||a + b|| \neq ||a|| + ||b||$$

Вычисление определителя

$$f: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto \det(A)$$

Вычисление длины вектора

$$f: \mathbb{R}^n \to \mathbb{R}: v \mapsto ||v||$$

Вычисление определителя

$$f: \mathbb{R}^{n \times n} \to \mathbb{R}: A \mapsto \det(A)$$

Не уважает сложение

$$||a + b|| \neq ||a|| + ||b||$$

Не уважает умножение на число

$$\det(cA) = c^n \det(A) \neq c \det(A)$$

Матрице $A_{m \times n}$ соответствует линейное отображение

$$f: \mathbb{R}^n \to \mathbb{R}^m: \mathbf{x} \mapsto A\mathbf{x}$$

Пространство \mathbb{R}^3

Пространство \mathbb{R}^2

Пространство \mathbb{R}^3

Пространство \mathbb{R}^2

 $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

[2] 1 1

Пространство \mathbb{R}^3

Пространство \mathbb{R}^2

 $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$

Сейчас придёт матрица и будет отображать...

[2] 1

Пространство \mathbb{R}^3

[2]

Пространство \mathbb{R}^3

[2]

Пространство \mathbb{R}^3

[2] 1 1

0 5 2

Пространство \mathbb{R}^2

Пространство \mathbb{R}^3

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

[2] 1 1

0 5 2

Пространство \mathbb{R}^2

Матрица как линейное отображение

Пространство \mathbb{R}^3

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} =$$

[2] 1 1

0 5 2

Пространство \mathbb{R}^2

 $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$

Матрица как линейное отображение

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} =$$

Матрица как линейное отображение

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

Матрица как линейное отображение

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

Матрица как линейное отображение

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

[0] |5| |2|

Матрица как линейное отображение

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix} =$$

Матрица как линейное отображение

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

Матрица как линейное отображение

Матрица как линейное отображение

$$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 12 \\ 25 \end{bmatrix}$$

Пространство \mathbb{R}^2

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

Матрица 2×3 сработала как линейное отображение $\mathbb{R}^3 \to \mathbb{R}^2$

$$\begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 12 \\ 25 \end{bmatrix}$$

Матрица как линейное отображение

$$\begin{bmatrix} 1 \\ y \\ \end{bmatrix} = \begin{bmatrix} * & * & * & * & * \\ * & * & A & * & * \\ * & * & * & * \end{bmatrix} \begin{bmatrix} 1 \\ x \\ \end{bmatrix}$$

Матрица $A \in \mathbb{R}^{m \times n}$ отображает вектор $x \in \mathbb{R}^n$ в вектор $y \in \mathbb{R}^m$ (легко показать, что это отображение – линейное)

Любое линейное отображение $f:\mathbb{R}^n \to \mathbb{R}^m: x \mapsto y$ может быть задано как y=Ax, где $A\in\mathbb{R}^{m\times n}$

Любое линейное отображение $f: \mathbb{R}^n \to \mathbb{R}^m : x \mapsto y$ может быть задано как y = Ax, где $A \in \mathbb{R}^{m \times n}$

Пример

$$f: \mathbb{R}^2 \to \mathbb{R}: \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto 2x_1 + 3x_2$$

$$y = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Любое линейное отображение $f: \mathbb{R}^n \to \mathbb{R}^m: x \mapsto y$ может быть задано как y = Ax, где $A \in \mathbb{R}^{m \times n}$

Любое линейное отображение $f: \mathbb{R}^n \to \mathbb{R}^m: x \mapsto y$ может быть задано как y = Ax, где $A \in \mathbb{R}^{m \times n}$

Куда при этом переходят стандартные базисные вектора пространства \mathbb{R}^n ?

Любое линейное отображение $f:\mathbb{R}^n \to \mathbb{R}^m: x \mapsto y$ может быть задано как y=Ax, где $A\in\mathbb{R}^{m\times n}$

Куда при этом переходят стандартные базисные вектора пространства \mathbb{R}^n ?

В вектора, совпадающие со столбцами матрицы!

Матрица
$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix}$$
 соответствует отображению $f: \mathbb{R}^? \to \mathbb{R}^?$

Матрица
$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix}$$
 соответствует отображению $f: \mathbb{R}^3 \to \mathbb{R}^2$

Матрица
$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix}$$
 соответствует отображению $f: \mathbb{R}^3 \to \mathbb{R}^2$

Во что она превратит стандартный базис
$$\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$$
 пространства \mathbb{R}^3 ?

Матрица
$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix}$$
 соответствует отображению $f: \mathbb{R}^3 \to \mathbb{R}^2$

Во что она превратит стандартный базис $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$ пространства \mathbb{R}^3 ?

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

Матрица
$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix}$$
 соответствует отображению $f: \mathbb{R}^3 \to \mathbb{R}^2$

Во что она превратит стандартный базис $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$ пространства \mathbb{R}^3 ?

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 4 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

В вектора $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 5 \end{bmatrix} \in \mathbb{R}^2$, совпадающие со столбцами матрицы.

Смысл столбцов матрицы

Хочу задать линейное отображение $f: \mathbb{R}^3 \to \mathbb{R}^4$, указав, куда переходят базисные вектора.

$$f\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\8\\0\end{bmatrix} \qquad f\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\3\\3\\3\end{bmatrix} \qquad f\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\7\\8\\6\end{bmatrix}$$

$$f\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\3\\3\\3\end{bmatrix}$$

$$f\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\7\\8\\6\end{bmatrix}$$

Смысл столбцов матрицы

Хочу задать линейное отображение $f: \mathbb{R}^3 \to \mathbb{R}^4$, указав, куда переходят базисные вектора.

$$f\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\8\\0\end{bmatrix} \qquad f\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\3\\3\\3\end{bmatrix} \qquad f\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\7\\8\\6\end{bmatrix}$$

Какая матрица соответствует этому отображению?

Смысл столбцов матрицы

Хочу задать линейное отображение $f: \mathbb{R}^3 \to \mathbb{R}^4$, указав, куда переходят базисные вектора.

$$f\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\8\\0\end{bmatrix} \qquad f\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\3\\3\\3\end{bmatrix} \qquad f\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\7\\8\\6\end{bmatrix}$$

Какая матрица соответствует этому отображению?

$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 3 & 7 \\ 8 & 3 & 8 \\ 0 & 3 & 6 \end{bmatrix} \in \mathbb{R}^{4 \times 3}.$$

Композиция отображений = произведение матриц

университет итмо

Картинка

Такие картинки называются коммутативными диаграммами

Особые пространства, связанные с матрицей

Range A

Множество всех векторов $Ax \in \mathbb{R}^m$, которые могут получиться из всевозможных векторов $x \in \mathbb{R}^n$ в результате отображения $x \mapsto Ax$

Range A

Множество всех векторов $Ax \in \mathbb{R}^m$, которые могут получиться из всевозможных векторов $x \in \mathbb{R}^n$ в результате отображения $x \mapsto Ax$

Range
$$A_{m \times n} = \{ y \in \mathbb{R}^m \mid y = Ax, x \in \mathbb{R}^n \}$$

Range A

Множество всех векторов $Ax \in \mathbb{R}^m$, которые могут получиться из всевозможных векторов $x \in \mathbb{R}^n$ в результате отображения $x \mapsto Ax$

Range
$$A_{m \times n} = \{ y \in \mathbb{R}^m \mid y = Ax, x \in \mathbb{R}^n \}$$

Другие названия

Образ матрицы A, столбцовое пространство матрицы A, Im(A)

Range [1 1] =
$$\frac{\text{множество всех возможных}}{\text{значений произведения}}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Range [1 1] =
$$\frac{\text{множество всех возможных}}{\text{значений произведения}} = ?$$

Range [1 1] =
$$\frac{\text{множество всех возможных}}{\text{значений произведения}} = \mathbb{R}$$
 [1 1] $\begin{bmatrix} x \\ y \end{bmatrix}$

Range [1 1] =
$$\begin{array}{c} \text{множество всех возможных} \\ \text{значений произведения} \end{array} = \mathbb{R} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \chi \\ y \end{bmatrix}$$

Range
$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} =$$

Range [1 1] =
$$\begin{array}{c} \text{множество всех возможных} \\ \text{значений произведения} \end{array} = \mathbb{R} \\ [1 \ 1] \begin{bmatrix} x \\ y \end{bmatrix}$$

множество всех возможных

Range [1 1] =
$$\begin{array}{c} \text{множество всех возможных} \\ \text{значений произведения} \end{array} = \mathbb{R} \\ [1 \ 1] \begin{bmatrix} x \\ y \end{bmatrix}$$

Range
$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} =$$
 $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ = ?

множество всех возможных

Range [1 1] =
$$\frac{\text{множество всех возможных}}{\text{значений произведения}} = \mathbb{R}$$
 [1 1] $\begin{bmatrix} x \\ y \end{bmatrix}$

множество всех возможных

Range
$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} =$$
 значений произведения

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \left\{ \begin{bmatrix} a \\ 0 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$$

Произведение матрицы на вектор = линейная комбинация столбцов матрицы

Произведение матрицы на вектор = линейная комбинация столбцов матрицы

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & a_2 & \dots & a_n \\ 1 & 1 & \dots & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Произведение матрицы на вектор = линейная комбинация столбцов матрицы

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & a_2 & \dots & a_n \\ 1 & 1 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$Ax = x_1 \begin{bmatrix} 1 \\ a_1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ a_2 \\ 1 \end{bmatrix} + \dots + x_n \begin{bmatrix} 1 \\ a_n \\ 1 \end{bmatrix}$$

Произведение матрицы на вектор = линейная комбинация столбцов матрицы

 \bigvee

Range матрицы — множество всех возможных линейных комбинаций столбцов матрицы

Произведение матрицы на вектор = линейная комбинация столбцов матрицы

 \prod

Range матрицы — множество всех возможных линейных комбинаций столбцов матрицы

Range
$$A = \text{Span}\left(\begin{bmatrix} 1 \\ a_1 \end{bmatrix}, \begin{bmatrix} 1 \\ a_2 \end{bmatrix}, ..., \begin{bmatrix} a_n \\ 1 \end{bmatrix}\right)$$

Nullspace A

Множество всех векторов $x \in \mathbb{R}^n$ таких, что Ax = 0

Nullspace A

Множество всех векторов $x \in \mathbb{R}^n$ таких, что Ax = 0

Nullspace $A_{m \times n} = \{x \in \mathbb{R}^n \mid Ax = 0 \in \mathbb{R}^m\}$

Nullspace A

Множество всех векторов $x \in \mathbb{R}^n$ таких, что Ax = 0

Nullspace
$$A_{m \times n} = \{x \in \mathbb{R}^n \mid Ax = 0 \in \mathbb{R}^m\}$$

Другие названия

Нуль-пространство матрицы A, ядро матрицы A, $\operatorname{Ker}(A)$

Nullspace
$$[1 1] =$$

множество всех
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 таких, что

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

Nullspace
$$[1 1] =$$

множество всех
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 = ?
$$[1 \quad 1] \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

Nullspace
$$[1 1] =$$

множество всех
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 таких, что $= \left\{ \begin{bmatrix} a \\ -a \end{bmatrix} \mid a \in \mathbb{R} \right\}$ $[1 \quad 1] \begin{bmatrix} x \\ y \end{bmatrix} = 0$

Nullspace
$$[1 1] =$$

множество всех
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 таких, что $= \left\{ \begin{bmatrix} a \\ -a \end{bmatrix} \mid a \in \mathbb{R} \right\}$ $[1 \quad 1] \begin{bmatrix} x \\ y \end{bmatrix} = 0$

Nullspace
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} =$$

Nullspace [1 1] =
$$\begin{array}{c} \text{множество всех} \begin{bmatrix} x \\ y \end{bmatrix} \\ \text{таких, что} \end{array} = \left\{ \begin{bmatrix} a \\ -a \end{bmatrix} \middle| a \in \mathbb{R} \right\} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 \end{array}$$

Nullspace
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Nullspace [1 1] =
$$\begin{array}{c} \text{множество всех} \begin{bmatrix} x \\ y \end{bmatrix} \\ \text{таких, что} \end{array} = \left\{ \begin{bmatrix} a \\ -a \end{bmatrix} \middle| a \in \mathbb{R} \right\} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 \end{array}$$

Nullspace
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Nullspace [1 1] =
$$\begin{array}{c} \text{множество всех} \begin{bmatrix} x \\ y \end{bmatrix} \\ \text{таких, что} \end{array} = \left\{ \begin{bmatrix} a \\ -a \end{bmatrix} \middle| a \in \mathbb{R} \right\} \\ \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0 \end{array}$$

Nullspace
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} =$$

множество всех
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 таких, что $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$

$$= \left\{ \begin{bmatrix} 0 \\ b \end{bmatrix} \middle| b \in \mathbb{R} \right\}$$

Range $A_{m \times n}$ — линейное подпространство пространства \mathbb{R}^m

 $\operatorname{Nullspace} A_{m \times n}$ — линейное подпространство пространства \mathbb{R}^n

Range $A_{m \times n}$ — линейное подпространство пространства \mathbb{R}^m

Nullspace $A_{m \times n}$ — линейное подпространство пространства \mathbb{R}^n

Оба факта докажите самостоятельно

университет итмо

Картинка

Размерности образа и ядра

Размерности образа и ядра

rank A = dim(Range A)

 $\operatorname{nullity} A = \dim(\operatorname{Nullspace} A)$

университет итмо

Размерности образа и ядра

Ранг матрицы

rank A = dim(Range A)

 $\operatorname{nullity} A = \dim(\operatorname{Nullspace} A)$

Размерности образа и ядра

Ранг матрицы

rank A = dim(Range A)

 $\operatorname{nullity} A = \dim(\operatorname{Nullspace} A)$

«Дефект», «размерность ядра» матрицы

Range A = ? rank A = ? Nullspace A = ? nullity A = ?

Range A = ? rank A = ? Nullspace A = ? nullity A = ?

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Range
$$A = \text{Span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \right)$$

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Range
$$A = \operatorname{Span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \right) = \operatorname{Span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right)$$

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Range
$$A = \text{Span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \right) = \text{Span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right)$$

$$= \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Range A = ? rank A = ? Nullspace A = ? nullity A = ?

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Nullspace
$$A = \left\{ \begin{bmatrix} 0 \\ a \\ b \\ c \\ 0 \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}$$

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Nullspace
$$A = \left\{ \begin{bmatrix} 0 \\ a \\ b \\ c \\ 0 \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\} = \operatorname{Span} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right)$$

Range A = ? rank A = ? Nullspace A = ? nullity A = ?

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Range
$$A = \text{Span} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$
 Nullspace $A = \text{Span} \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

Range
$$A = ?$$
 rank $A = ?$ Nullspace $A = ?$ nullity $A = ?$

Range
$$A = \text{Span}\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$$
 Nullspace $A = \text{Span}\begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$ rank $A = 2$ nullity $A = 3$

$$rank A = 2$$
 nullity $A = 3$

 $\operatorname{rank} A + \operatorname{nullity} A = \operatorname{ширина} \operatorname{матрицы}$

$$rank A = 2$$
 nullity $A = 3$

 $\operatorname{rank} A + \operatorname{nullity} A = \operatorname{ширина} \operatorname{матрицы}$

Это неслучайно!

Rank-nullity theorem

(теорема о ранге и дефекте, теорема о размерностях ядра и образа)

Rank-nullity theorem

(теорема о ранге и дефекте, теорема о размерностях ядра и образа)

 $\operatorname{rank} A_{m \times n} + \operatorname{nullity} A_{m \times n} = n$

Как увидеть эту теорему на картинке?

Как увидеть эту теорему на картинке?

Размерность синенького + размерность красненького = размерность исходного пространства

университет итмо

Примеры

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range $A = \mathbb{R}^2$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость → плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

 $B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$B = \text{Span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$B = \text{Span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

rank $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость → плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$B = \text{Span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

$$rank B = 1$$

Nullspace
$$B = \text{Span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$B = \text{Span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

rank $B = 1$

Nullspace
$$B = \text{Span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

nullity $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → прямая

Range
$$B = \text{Span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$$

rank $B = 1$

Nullspace
$$B = \text{Span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

nullity $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → прямая

Range
$$B = \text{Span}\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right)$$

$$rank B = 1$$

Nullspace
$$B = \text{Span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

nullity $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$C = \{0\}$$

Примеры

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → прямая

Range
$$B = \text{Span}\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right)$$

$$rank B = 1$$

Nullspace
$$B = \text{Span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

nullity $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$C = \{0\}$$

$$rank C = 0$$

Примеры

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → прямая

Range
$$B = \text{Span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

$$rank B = 1$$

Nullspace
$$B = \text{Span}\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$$

nullity $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$C = \{0\}$$

$$rank C = 0$$

Nullspace
$$C = \mathbb{R}^2$$

Примеры

Рассмотрим три линейных отображения $f: \mathbb{R}^2 \to \mathbb{R}^2$.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

плоскость \rightarrow плоскость

Range
$$A = \mathbb{R}^2$$

$$rank A = 2$$

Nullspace
$$A = \{0\}$$

nullity
$$A = 0$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

плоскость → прямая

Range
$$B = \text{Span}\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$$

$$rank B = 1$$

Nullspace
$$B = \text{Span} \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix}$$

nullity $B = 1$

$$C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Range
$$C = \{0\}$$

$$rank C = 0$$

Nullspace
$$C = \mathbb{R}^2$$

nullity
$$C = 2$$

Линейное преобразование — линейное отображение $f: V \to V$ пространства в себя

Линейному преобразованию $f:\mathbb{R}^n \to \mathbb{R}^n$ соответствует квадратная матрица

Примеры линейных преобразований плоскости

Растяжение

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix}$$

Растяжение

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix} = \begin{bmatrix} 2x_{\text{old}} \\ 3y_{\text{old}} \end{bmatrix}$$

Растяжение

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix}$$

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix}$$

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix}$$

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix}$$

Поворот

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix}$$

Поворот

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix} = \begin{bmatrix} -y_{\text{old}} \\ x_{\text{old}} \end{bmatrix}$$

$$\begin{bmatrix} x_{\text{new}} \\ y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\text{old}} \\ y_{\text{old}} \end{bmatrix}$$

Поворот на 90° против часовой стрелки

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

Стоит посмотреть

Канал:

Плейлист:

Удачных путешествий по линейным пространствам!