Université de Nice - Sophia Antipolis

Polytech'Nice - PeiP2 Contrôle d'Optique Ondulatoire

11 Juin 2014 - Durée: 1h30

Cette feuille doit être cachetée par vos soins. Afin de faciliter le décachetage, n'opérez de fixation qu'à l'intérieur des ellipses hachurées

Documents non autorisés.

1. Si un atome d'hydrogène dans son état fondamental absorbe un photon de longueur d'onde λ_1 , puis émet un photon de longueur d'onde λ_2 , sur quel niveau l'électron se trouve-t-il après cette émission?

Rappel:
$$\frac{1}{\lambda_{n,m}} = R_{\infty} \left| \frac{1}{n^2} - \frac{1}{m^2} \right|$$

A.N.: $R_{\infty} = 10^7 \ m^{-1}$, $\lambda_1 = 106.67 \ nm \ et \ \lambda_2 = 533.33 \ nm$.

2. Un dispositif de fentes d'Young est constitué de 2 fentes distantes de $d = F_1F_2 = 1$ mm. On observe les franges d'interférence sur un écran E placé parallèlement au plan des franges à une distance z = 1,6 m des fentes. Le dispositif est placé dans l'air (indice 1). La longueur d'onde d'émission de la source S monochromatique est λ .

a. <u>Calculer</u>, en détaillant chaque étape, l'expression de l'intensité en un point M situé à une distance x du centre de l'écran (O).

b. Donner la position x des franges sombres et des franges brillantes en fonction de λ , z et d .	

$${\bf c.}$$
 On mesure un interfrange de 1 mm. Quelle est la valeur de la longueur d'onde de la source $S\,?$

3. On considére le même dispositif de Young que au point 2., mais on tient compte que chaque fente a une largeur a. A partir de l'équation

$$\tilde{A}_z(x) = \frac{e^{ikz}}{i\lambda z} \int_{-\infty}^{+\infty} dx' \tilde{A}_0(x') e^{-\frac{2i\pi xx'}{\lambda z}},$$

l'axe x' étant l'axe parallèle à x porté par le plan contenant les fentes,

a. calculer l'expression de l'amplitude complèxe en un point M situé à une distance x du centre de l'écran, dans le cas où **seule** la fente du bas soit éclairée;

b. montrer que l'expression de l'intensité en un point M situé à une distance x du centre de l'écran, au cas où la lumière passe par les **deux fentes**, peut s'écrire sous la forme

$$I(x) = I(x = 0)\mathcal{F}_{dif}(x) \times \mathcal{G}_{int}(x)$$

où
$$\mathcal{F}_{dif}(x) = \left(\frac{\sin\left(\frac{\pi ax}{\lambda z}\right)}{\frac{\pi ax}{\lambda z}}\right)^2$$
 et $\mathcal{G}_{int}(x) = \frac{1}{2}\left[1 + \cos\left(\frac{2\pi dx}{\lambda z}\right)\right]$.

c. Etude de la fonction $\mathcal{G}_{int}(x)$.
c.1. Déterminer la position x des franges sombres, des franges brillantes dues au phénomène de l'interférence, en fonction de λ , z et d .
c.2. Déterminer donc l'expression de l'interfrange δx en fonction de λ, z et d .
d. Etude de la fonction $\mathcal{F}_{dif}(x)$.
Déterminer la largeur Δ de la figure de diffraction en fonction de λ, z et a .

e. Déterminer la rélation entre a et d qui permet d'observer sur l'écran au moins 7 franges brillantes. (Remarque : il faut donc que 7 franges brillantes soient contenues dans la largeur de la figure de diffraction)
e.1. Représenter l'intensité $I(x)$ en fonction de x .