Supermarket EDA

November 2, 2019

1 Data Gathering

1.0.1 Loading Modules

1.0.2 Loading Dataset

```
In [2]: train = pd.read_csv("Train.csv")
          test = pd.read_csv("Test.csv")
```

2 Exploratory Data Analysis

Out[3]:		Item_Weight	<pre>Item_Visibility</pre>	${\tt Item_MRP}$	Outlet_Establishment_Year	\
co	ount	7060.000000	8523.000000	8523.000000	8523.000000	
m∈	ean	12.857645	0.066132	140.992782	1997.831867	
st	td	4.643456	0.051598	62.275067	8.371760	
mi	in	4.555000	0.000000	31.290000	1985.000000	
25	5%	8.773750	0.026989	93.826500	1987.000000	
50	0%	12.600000	0.053931	143.012800	1999.000000	
75	5%	16.850000	0.094585	185.643700	2004.000000	
ma	ЭX	21.350000	0.328391	266.888400	2009.000000	

Item_Outlet_Sales
count 8523.000000
mean 2181.288914
std 1706.499616

```
min 33.290000
25% 834.247400
50% 1794.331000
75% 3101.296400
max 13086.964800
```

2.0.1 Univariate Analysis

Out[4]: Text(0.5, 1.0, 'Item_Outlet_Sales Distribution')


```
In [5]: #Skewness and Kurtosis
    print ("Skew is:", train.Item_Outlet_Sales.skew())
    print("Kurtosis: %f" % train.Item_Outlet_Sales.kurt())
```

Skew is: 1.1775306028542798

Kurtosis: 1.615877

Skewness is more than 1, meaning the distribution is right skewed and Kurtosis is also more than 1, meaning it is too peaked

Skew is: 0.1272022683110526

Kurtosis: -0.889769

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f722e21f2e8>

There is no consistent format maintained during integration of data. 'Low Fat', 'low fat' and 'lf' all mean the same.

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f722e119320>

In [15]: sns.countplot(train.Outlet_Location_Type)

Out[15]: <matplotlib.axes._subplots.AxesSubplot at 0x7f722e114470>

Out[16]: (array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)

2.0.2 Bivariate Analysis

Out[17]: [<matplotlib.lines.Line2D at 0x7f722e033470>]

No significant pattern evident

There is a negative correlation between Item_Visibility and Outlet_Sales. This is verified below.