Universidade Federal de Goiás Redes Neurais Profundas - Deep Learning Aula 2 - Redes Neurais Perceptron Multicamadas

Anderson da Silva Soares www.inf.ufg.br/~anderson/ www.deeplearningbrasil.com.br

Sumário

- Compreendendo o gradiente
- Funções de ativação
- Superficies de decisão
- Treinamento de rede multicamadas
 - Retropropagação e regra da cadeia
- Considerações sobre a função de custo
- 6 Considerações Problemas e limitações
- Dicas de implementações
- Conclusão

- Vamos considerar a função $y = f(x) = x^4 3x^3 + 2$
- Queremos "descobrir" qual o valor de x que f(x) seja mínimo
- Considere que temos o ponto x=-1,5 definido aleatoriamente

- Vamos considerar a função $y = f(x) = x^4 3x^3 + 2$
- Queremos "descobrir" qual o valor de x que f(x) seja mínimo
- Considere que temos o ponto x = -1, 5 definido aleatoriamente

- Queremos "descobrir" qual o valor de x que f(x) seja mínimo
- Precisamos da derivada da função, lembrando que, a derivada de x^a é igual a $a*x^{a-1}$
- Logo, a derivada da função no ponto -1,5 é dada por $\frac{dy(-1,5)}{dx} = 4*x^3 9*x^2 = 4*(-1,5)^3 9*(-1,5)^2 = -33,75$
- Vejam a "mágica" do gradiente que nos indica a direção do mínimo da função
- $x_{novo} = (-1, 5) 0,0001 * 33,75 * (-1, 5) = -1,4949$
- em que 0,0001 é a taxa de aprendizado (aula anterior)
- atualizamos x na direção da resposta correta

Problema dos mínimos locais

Figura: Soluções encontradas durante o algoritmo.

Relembrando o neurônio individual

Relembrando a última aula: Elementos dos neurônios

- Entradas: x_1, x_2
- Saidas: *y*₁, *y*₂
- pesos sinápticos: w_1, w_2, \dots, w_8 (Precisamos determinar por meio do treinamento)
- Funções de ativações de cada neurônio (escolha experimental)

Pergunta: Qual a importância da função de ativação em um neurônio?

Importância:

Funções de ativação são funções que recebem um sinal de entrada e o converte para um sinal de saída. Podem ser lineares ou não-lineares, contudo seu principal potencial está na introdução de não lineariedade nas redes neurais.

Figura: Função linear.

$$f(x) = x$$

Figura: Função degrau.

Se for um problema de classificação, ótimo. A função entrega de forma direta se o resultado é a classe 0 ou a classe 1.

Como você modelaria um problema de classificação envolvendo 4 classes?

O que aconteceria se mais de um neurônio respondesse 1.

Figura: Função sigmóide.

$$\sigma(x) = tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

$$tanh(x) = 2 * sigmoid(2x) - 1$$

Figura: Função tangente hiperbólica.

Relembrando o neurônio individual

Saída do corpo:

x * w

Função de ativação: $\sigma(x * w)$

Note relação não linear entre a saída do corpo do neurônio e a saída da função de ativação.

x * w	$\sigma(x*w)$	var(x*w)	$\operatorname{var}(\sigma(x*w))$
-2	0,12	-	-
-1,5	0,18	25%	50%
-1	0,27	33%	50%
-0,5	0,38	50%	41%
0	0,50	100%	32%
0,5	0,62	-	-
1	0,73	100%	18%
1,5	0,82	50%	12%
2	0,88	33%	7%

Relembrando o xor:

Figura: Exemplo Xor

Solução para o xor:

Figura: Solução para o problema xor (não linear)

Relembrando o xor:

Figura: Exemplo Xor não-linear

Relembrando o xor:

Figura: Exemplo de superficies construídas por diferentes arquiteturas

Como treinar uma rede multi-layer perceptron

Figura: Fase 1 do Backpropagation

Como treinar uma rede multi-layer perceptron

Figura: Fase 2 do Backpropagation

Como treinar uma rede multi-layer perceptron

Figura: Fase 3 do Backpropagation

Tabela: Padrões

Entradas		Saida desejada	
$\overline{x_1}$	x_2	y_1	y_2
0,05	0,1	0,01	0,99

Precisamos treinar a rede neural para fornecer as saidas desejadas

Relembrando a última aula: Elementos dos neurônios

• Entradas: x_1, x_2

• Saidas: *y*₁, *y*₂

- pesos sinápticos: w_1, w_2, \dots, w_8 (Precisamos determinar por meio do treinamento)
- Funções de ativaçes de cada neurônio (escolha experimental)

Figura: Rede Neural com pesos inicializados randomicamente.

Parametrizando:

 Usaremos em todos os neurônios a função de ativação hiperbólica;

Propagando a entrada na primeira camada

$$u_{h1} = x_1 * w_1 + x_2 * w_2 + b_1 * 1$$

•
$$u_{h1} = \boxed{0,05*0,15} + \boxed{0,1*0,2} + \boxed{0.35*1} = 0,3775$$

Propagando a entrada na primeira camada

- \bullet $u_{h1} = x_1 * w_1 + x_2 * w_2 + b_1 * 1$
- $u_{h1} = \boxed{0,05*0,15} + \boxed{0,1*0,2} + \boxed{0.35*1} = 0,3775$
- $u_{h2} = x_1 * w_3 + x_2 * w_4 + b_1 * 1$
- $u_{h2} = \boxed{0,05*0,25} + \boxed{0,1*0,3} + \boxed{0,35*1} = 0,39250$

Propagando a entrada na primeira camada - função de ativação

•
$$g(h1) = g(u_{h1}) = \left| \frac{1}{1 + e^{u_{h1}}} \right| = \left| \frac{1}{1 + e^{-0.3775}} \right| = 0.593269992$$

•
$$g(h2) = g(u_{h2}) = \left| \frac{1}{1 + e^{u_{h2}}} \right| = \left| \frac{1}{1 + e^{-0.3925}} \right| = 0.596884378$$

Propagando a entrada na primeira camada - função de ativação

•
$$g(h1) = g(u_{h1}) = \frac{1}{1 + e^{u_{h1}}} = \frac{1}{1 + e^{-0.3775}} = 0.593269992$$

•
$$g(h2) = g(u_{h2}) = \frac{1}{1 + e^{u_{h2}}} = \frac{1}{1 + e^{-0.3925}} = \boxed{0.596884378}$$

Fase 1 - Propagação - Segunda camada

Propagando a entrada na segunda camada

- $u_{o1} = g(h1) * w_5 + g(h2) * w6 + b2 * 1 = 0,593269992 * 0,4 + 0,596884378 * 0,45+0,6*1 = 1,105905967$
- $u_{o2} = g(h1) * w_7 + g(h2) * w_8 + b_2 * 1 = 0,593269992 * 0,5 + 0,596884378 * 0,55 + 0,6 * 1 = 1,224921404$
- $g(o1) = g(u_{o1}) = \frac{1}{1 + e^{u_{o1}}} = \frac{1}{1 + e^{-1,105905967}} = \boxed{0,751365070}$
- $g(o2) = g(u_{o2}) = \frac{1}{1 + e^{u_{o2}}} = \frac{1}{1 + e^{-1,224921404}} = \boxed{0,772928465}$

Fase 1 - Propagação - Segunda camada

Propagando a entrada na segunda camada

- $u_{o1} = g(h1) * w_5 + g(h2) * w6 + b2 * 1 = 0,593269992 * 0,4 + 0,596884378 * 0,45+0,6*1 = 1,105905967$
- $u_{o2} = g(h1) * w_7 + g(h2) * w_8 + b_2 * 1 = 0,593269992 * 0,5 + 0,596884378 * 0,55 + 0,6 * 1 = 1,224921404$
- $g(o1) = g(u_{o1}) = \frac{1}{1 + e^{u_{o1}}} = \frac{1}{1 + e^{-1,105905967}} = \boxed{0,751365070}$
- $g(o2) = g(u_{o2}) = \frac{1}{1 + e^{u_{o2}}} = \frac{1}{1 + e^{-1,224921404}} = \boxed{0,772928465}$

Fase 1 - Propagação

Fim da Fase 1 - Chega de brincadeira, vamos a parte boa.

First of all... vamos compreender a regra da cadeia

A faz x girar, B faz u girar e C faz y girar.

First of all... vamos compreender a regra da cadeia

A regra da cadeia (chain rule) é usada quando temos uma composição de duas funções.

First of all... vamos compreender a regra da cadeia

A regra da cadeia (chain rule) é usada quando temos uma composição de duas funções.

Se
$$y = f(u)$$
 e $u = g(x)$ então $y = f(g(x))$

First of all... vamos compreender a regra da cadeia

A regra da cadeia (chain rule) é usada quando temos uma composição de duas funções.

Se
$$y = f(u)$$
 e $u = g(x)$ então $y = f(g(x))$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

First of all... vamos compreender a regra da cadeia

Calcule os exemplos abaixo:

•
$$f(x) = (3x - 5x^2)^7$$

•
$$f(x) = \sqrt{(x^2 - 1)^2}$$

•
$$f(x) = \frac{-7}{(2t-3)^2}$$

First of all... vamos compreender a regra da cadeia

Calcule os exemplos abaixo:

$$f(x) = (3x - 5x^{2})^{7}$$

$$u = 3x - 5x^{2} \rightarrow \frac{du}{dx} = 3 - 10x$$

$$y = u^{7} \rightarrow = \frac{dy}{du} 7u^{6}$$

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \frac{dy}{dx} = 7u^{6}(3 - 10x) \frac{dy}{dx} = 7(3x - 2x^{2})^{6}(3 - 10x)$$

Primeiro, precisamos quantificar o quanto a rede errou - diferença entre a saída obtida e a desejada

•
$$E_{total} = \frac{1}{2} \sum_{k=0}^{N} (d_k - g(ok))^2 = E_{o1} + E_{o2} =$$

$$\frac{1}{2} \sum_{k=1}^{N} (d_1 - g(o1))^2 + \frac{1}{2} \sum_{k=1}^{N} (y_2 - g(o2))^2$$

•
$$E_{o1} = \frac{1}{2}(y_1 - g(o1))^2 = \frac{1}{2} * (0,01 - 0,751365070)^2 = \boxed{0,274811083}$$

Primeiro, precisamos quantificar o quanto a rede errou - diferença entre a saída obtida e a desejada

•
$$E_{total} = \frac{1}{2} \sum_{k=1}^{N} (d_k - g(ok))^2 = E_{o1} + E_{o2} =$$

$$\frac{1}{2} \sum_{k=1}^{N} (d_1 - g(o1))^2 + \frac{1}{2} \sum_{k=1}^{N} (y_2 - g(o2))^2$$

•
$$E_{o1} = \frac{1}{2}(y_1 - g(o1))^2 = \frac{1}{2} * (0,01 - 0,751365070)^2 = \boxed{0,274811083}$$

•
$$E_{o2} = \frac{1}{2}(y_2 - g(o2))^2 \frac{1}{2} * (0.99 - 0.772928465)^2 = 0.023560026$$

Primeiro, precisamos quantificar o quanto a rede errou - diferença entre a saída obtida e a desejada

•
$$E_{total} = \frac{1}{2} \sum_{k=1}^{N} (d_k - g(ok))^2 = E_{o1} + E_{o2} =$$

$$\frac{1}{2} \sum_{k=1}^{N} (d_1 - g(o1))^2 + \frac{1}{2} \sum_{k=1}^{N} (y_2 - g(o2))^2$$

•
$$E_{o1} = \frac{1}{2}(y_1 - g(o1))^2 = \frac{1}{2} * (0,01 - 0,751365070)^2 = \boxed{0,274811083}$$

•
$$E_{o2} = \frac{1}{2}(y_2 - g(o2))^2 \frac{1}{2} * (0.99 - 0.772928465)^2 = 0.023560026$$

•
$$E_{total} = 0.274811083 + 0.023560026 = 0.298371109$$

- $\frac{\partial E_{total}}{\partial w_5}$: Gradiente com respeito a w_5
- Segundo a regra da cadeia: $\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial w_5}$

- $\frac{\partial E_{total}}{\partial w_5}$: Gradiente com respeito a w_5
- Segundo a regra da cadeia: $\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial w_5}$
- Agora basta aplicar essa regra das derivadas parciais e está tudo resolvido. Lista de exercícios para a próxima semana.

- $\frac{\partial E_{total}}{\partial w_5}$: Gradiente com respeito a w_5
- Segundo a regra da cadeia: $\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial w_5}$
- Vamos ilustrar para ver o quanto pode ser fácil...

Corrigindo w_5 : queremos estimar o quanto w_5 afeta o erro total (E)

- $\frac{\partial E_{total}}{\partial w_5}$: Gradiente com respeito a w_5
- $\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial w_5}$

O ponto principal na retropropagação é "desmantelar" ou "quebrar" o processo usando a regra da cadeia para torná-lo o mais modular possível e usar a descida do gradiente para atualizar os pesos.

- $E_{total} = \frac{1}{2} * (y_1 g_{o1})^2 + \frac{1}{2} * (y_2 g_{o2})^2$
- $\frac{\partial E_{total}}{\partial g_{o1}}=2*\frac{1}{2}(y_{o1}-g_{o1})^{2-1}*-1+0$ (Constante na derivada em relação a g_{o1})
- $\frac{\partial E_{total}}{\partial g_{o1}} = -(y_1 g_{o1}) = 0,01 0,75136507 = \boxed{0,74136507}$

Corrigindo w_5 : queremos estimar o quanto w_5 afeta o erro total (E)

Agora a parcela $\frac{\partial g_{o1}}{\partial u_{o1}}$

- $g_{o1} = \frac{1}{1 + e^{-u_{o1}}} =$ saída da função de ativação
- $\frac{\partial g_{o1}}{\partial u_{o1}} = g_{o1}(1 g_{o1}) = 0,75136507 * (1 0,75136507) = 0,186815602$

Agora a parcela $\frac{\partial u_{o1}}{\partial w_5}$

- $u_{o1} = w_5 * g_{h1} + w_6 * g_{h2} + b_2 * 1$
- $\frac{\partial u_{o1}}{\partial w_5} = 1 * g_{h1} * w_5^{1-1} + 0 + 0 = g_{h1} = \boxed{0,59326992}$

Corrigindo w_5 : queremos estimar o quanto w_5 afeta o erro total (E)

Finalmente nós temos todas as parcelas

•
$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial w_5}$$

•
$$\frac{\partial E_{total}}{\partial w_5} = 0,74136507 * 0,186815602 * 0,593269992 = 0,0822167041$$

Simplificando em termos de algoritmo:

•
$$\frac{\partial E_{total}}{\partial w_5} = -(y_1 - g_{o1}) * g_{o1} * (1 - g_{o1}) * g_{h1} = 0,74136507 * 0,186815602 * 0,593269992 = 0,0822167041$$

Corrigindo w_5 : queremos estimar o quanto w_5 afeta o erro total (E)

Finalmente nós temos todas as parcelas

$$\bullet \ \frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial w_5}$$

• $\frac{\partial E_{total}}{\partial w_5} = 0,74136507 * 0,186815602 * 0,593269992 = 0,0822167041$

Simplificando em termos de algoritmo:

- $\frac{\partial E_{total}}{\partial w_5} = -(y_1 g_{o1}) * g_{o1} * (1 g_{o1}) * g_{h1} = 0,74136507 * 0,186815602 * 0,593269992 = 0,0822167041$
- $\delta_{o1} = -(y_1 g_{o1}) * g_{o1} * (1 g_{o1}) = Derivada parcial (o1).$

Corrigindo w_5 : queremos estimar o quanto w_5 afeta o erro total (E)

Finalmente nós temos todas as parcelas

$$\bullet \ \frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial w_5}$$

• $\frac{\partial E_{total}}{\partial w_5} = 0,74136507 * 0,186815602 * 0,593269992 = 0,0822167041$

Simplificando em termos de algoritmo:

- $\frac{\partial E_{total}}{\partial w_5} = -(y_1 g_{o1}) * g_{o1} * (1 g_{o1}) * g_{h1} = 0,74136507 * 0,186815602 * 0,593269992 = 0,0822167041$
- $\delta_{o1} = -(y_1 g_{o1}) * g_{o1} * (1 g_{o1}) = Derivada parcial (o1).$
- Logo, considerando a taxa de aprendizado $\eta=0,5$ $w_5(t+1)=w_5(t)-\eta\frac{\partial E_{total}}{\partial w_5}$ =0,4-0,5*0,0822167041=0,35891648

Mesma regra para atualizar os outros pesos sinápticos da camada

- $w_6(t+1) = 0,408666186$
- $w_7(t+1) = 0,511301270$
- $w_8(t+1) = 0,561370121$

Agora, vamos atualizar os pesos da primeira camada.

- $\frac{\partial E_{total}}{\partial w_1}$: Gradiente com respeito a w_1

Agora, vamos atualizar os pesos da primeira camada.

- $\frac{\partial E_{total}}{\partial w_1}$: Gradiente com respeito a w_1
- $\bullet \frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial g_{h1}} * \frac{\partial g_{h1}}{\partial u_{h1}} * \frac{\partial u_{h1}}{\partial w_1}$

- $\frac{\partial E_{total}}{\partial w_1}$: Gradiente com respeito a w_1
- $\frac{\partial E_{total}}{\partial w_1} = \frac{\partial E_{total}}{\partial g_{h1}} * \frac{\partial g_{h1}}{\partial u_{h1}} * \frac{\partial u_{h1}}{\partial w_1}$
- Temos três parcelas para resolver a) $\frac{\partial E_{total}}{\partial a_{t,1}}$, b) $\frac{g_{h1}}{\partial u_{t,1}}$ e, por fim, c) ∂u_{h1} ∂w_1
- Para resolver a), temos que lembrar que $E_{total} = E_{o1} + E_{o2}$
- $E_{o1} = \frac{1}{2} * (d_1 g_{o1})^2$ e $E_{o2} = \frac{1}{2} * (d_2 g_{o2})^2$
- $\frac{\partial E_{total}}{\partial g_{h1}} = \left| \frac{\partial E_{o1}}{\partial g_{h1}} \right| + \left| \frac{\partial E_{o2}}{\partial g_{h1}} \right|$, não temos essas parcelas :(

Corrigindo w_1 : queremos estimar o quanto w_1 afeta o erro total (E)

•
$$\frac{\partial E_{total}}{\partial g_{h1}} = \boxed{\frac{\partial E_{o1}}{\partial g_{h1}}} + \boxed{\frac{\partial E_{o2}}{\partial g_{h1}}}$$
, não temos essas parcelas :(

•
$$\frac{\partial E_{o1}}{\partial u_{o1}} = \frac{\partial E_{o1}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} = 0,74136507 * 0,186815602 = 0,138498562$$
• valores calculades nos slides 38 e 39

valores calculados nos slides 38 e 39

$$ullet$$
 $rac{\partial E_{total}}{\partial g_{h1}}=egin{bmatrix} rac{\partial E_{o1}}{\partial g_{h1}} + rac{\partial E_{o2}}{\partial g_{h1}} \end{pmatrix}$, não temos essas parcelas :(

- $\frac{\partial E_{o1}}{\partial u_{o1}} = \frac{\partial E_{o1}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} = 0,74136507 * 0,186815602 = 0,138498562$
- valores calculados nos slides 38 e 39

$$ullet$$
 $rac{\partial u_{o1}}{\partial g_{h1}}=w_5$, pois, $u_{o1}=w_5*g_{h1}+rac{w_6*g_{h2}+b_2*1}{}$ =0,4

Constante, estamos derivando para g_{h1}

$$ullet$$
 $rac{\partial E_{total}}{\partial g_{h1}}=egin{bmatrix} rac{\partial E_{o1}}{\partial g_{h1}} + rac{\partial E_{o2}}{\partial g_{h1}} \end{pmatrix}$, não temos essas parcelas :(

•
$$\frac{\partial E_{o1}}{\partial u_{o1}} = \frac{\partial E_{o1}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} = 0,74136507 * 0,186815602 = 0,138498562$$

valores calculados nos slides 38 e 39

$$ullet$$
 $rac{\partial u_{o1}}{\partial g_{h1}}=w_5$, pois, $u_{o1}=w_5*g_{h1}+w_6*g_{h2}+b_2*1=0,4$

•
$$\frac{\partial E_{o1}}{\partial g_{h1}} = \frac{\partial E_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial g_{h1}} = 0,138498562 * 0,4 = 0,055399425$$

•
$$\frac{\partial E_{total}}{\partial g_{h1}} = \boxed{\frac{\partial E_{o1}}{\partial g_{h1}}} + \boxed{\frac{\partial E_{o2}}{\partial g_{h1}}}$$
, não temos essas parcelas :(

- $\bullet \ \frac{\partial E_{o1}}{\partial g_{h1}} = \frac{\partial E_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial g_{h1}}$
- $\frac{\partial E_{o1}}{\partial u_{o1}} = \frac{\partial E_{o1}}{\partial g_{o1}} * \frac{\partial g_{o1}}{\partial u_{o1}} = 0,74136507 * 0,186815602 = 0,138498562$
- valores calculados nos slides 38 e 39
- $\frac{\partial u_{o1}}{\partial g_{h1}} = w_5$, pois, $u_{o1} = w_5 * g_{h1} + w_6 * g_{h2} + b_2 * 1 = 0, 4$
- $\bullet \ \frac{\partial E_{o1}}{\partial g_{h1}} = \frac{\partial E_{o1}}{\partial u_{o1}} * \frac{\partial u_{o1}}{\partial g_{h1}} = 0,138498562 * 0,4 = 0,055399425$
- Usando os mesmos passos, $\frac{\partial E_{o2}}{\partial g_{h2}} = -0,019049119$
- Logo, $\frac{\partial E_{Total}}{\partial q_h 1} = 0,055399425 0,019049119 = 0,036350306$

- \bullet Agora falta: $\frac{\partial g_{h1}}{\partial u_{h1}}$, sabemos que: $g_{h1}=\frac{1}{1+e^{-u_{h1}}}$
- $\frac{\partial g_{h1}}{\partial u_{h1}} = g_{h1} * (1 g_{h1}) = 0,59326999 * (1 0,59326999) = 0,241300709$
- Falta, $\frac{\partial u_{h1}}{\partial w_1}$, sabemos que $u_{h1}=w_1*x_1+w_2*x_2+b_1*1$
- Derivando em relação a w_1 , temos que, $\frac{\partial u_{h1}}{\partial w_1} = x_1 = \boxed{0,05}$
- Finalmente:
- $\frac{\partial E_{total}}{\partial w_1} = 0,036350306 * 0,241300709 * 0,05 = 0,000438568$
- $w_1(t+1) = w_1(t) \eta * \frac{\partial E_{total}}{\partial w_1}$

- Atualizando w_1 , $w_1(t+1) = w_1(t) \eta * \frac{\partial E_{total}}{\partial w_1}$
- $w_2(t+1) = 0,19956143$
- $w_3(t+1) = 0,24975114$
- $w_4(t+1) = 0,29950229$
- Com os pesos sinápticos no instante t, E=0,298371109
- Com os pesos sinápticos no instante t+1, E=0,291027924
- Com os pesos sinápticos no instante t + 10000, E = 0,000035085
- Saídas calculadas no instante t + 10000,
- Para $(y_1 = 0, 01)$ temos 0, 015912196
- Para $(y_2 = 0.99)$ temos 0.984065734

Resumindo:

- $w_6(t+1) = w_6(t) \delta_{o_1} * g_{h_1}$
- $\delta_{o_1} = -(d_{o_1} g_{o_1}) * g_{o_1}(1 g_{o_1})$
- $\bullet \delta_{o_2} = -(d_{o_2} g_{o_2}) * g_{o_2}(1 g_{o_2})$
- $w_2(t+1) = w_2(t) \delta_{h_1} * i_1$
- $\delta_{h_2} = (w_6 * \delta_{o_1} + w_8 * \delta_{o_2}) * g_{h_2} * (1 g_{h_2})$

Figura: Funcionamento do gradiente descendente.

Figura: Funcionamento do gradiente descendente.

Figura: Funcionamento do gradiente descendente.

Figura: Comparação gradiente descendente (Full batch) e estocástico (mini-batch).

Gradiente descendente: pode exigir muita memória - impraticável para datasets grandes.

SGD: na prática pode ser entendido como gradiente descendente "ruídoso" porém lento. A escolha é um trade-off difícil.

Figura: Comparação gradiente descendente (Full batch) e estocástico (mini-batch)

Considerações - Poder expressivo

- "Two layer network with sigmoid units in the hidden layer and (unthresholded) linear units in the output layer - Any bounded continuous function." (Cybenko 1989, Hornik et. al. 1989)
- "A network of three layers, where the output layer again has linear units - Any function." (Cybenko 1988).
- Então podemos concluir que sigmóides empilhadas são a última fronteira no aprendizado supervisionado? Certo?

Considerações sobre a quantidade de neurônio e camadas

Gradiente diminui exponencialmente em relação ao número de camadas.

Considerações - Problemas

Gradiente diminui exponencialmente em relação ao número de camadas.

Considerações - Problemas

Gradiente diminui exponencialmente em relação ao número de camadas.

Considerações - Problemas

Gradiente diminui exponencialmente em relação ao número de camadas.

Efeitos da aplicação de uma função sigmoide em cascata. Não há inclinação detectável.

Considerações - Playground tensorflow

Considerações - TensorBoard

TensorBoard é um software de visualização gráfica incluido em qualquer instalação TensorFlow.

Nas palavras do time da Google: "The computations you'll use TensorFlow for - like training a massive deep neural network - can be complex and confusing. To make it easier to understand, debug, and optimize TensorFlow programs, we've included a suite of visualization tools called TensorBoard."

Ferramentas úteis

Meu primeiro tensorboard

```
1 # meuprimeirotensorboard.py
2 import tensorflow as tf
3 a = tf.constant(2)
4 b = tf.constant(3)
5 x = tf.add(a, b)
6 with tf.Session() as sess:
7 print sess.run(x)
8 writer = tf.summary.FileWriter('./graphs', sess.graph)
0 writer.close
```

Explicando...

A última linha cria um objeto que grava as operações em um log.

```
$ python [meuprimeirotensorboard.py]
$ tensorboard --logdir="./graphs"
```

Ferramentas úteis

Abra seu navegador em http://localhost:6006/

Conclusão

Backpropagation é um método que nos permite atualizar os pesos de uma rede neural multicamadas. Foi possível demonstrar que a regra da cadeia combinada com a gradiente descendente é capaz de otimizar a função objetivo da rede.

Por hoje é só...

