Capítulo 8: Formalismo de Hamilton-Jacobi

H. Terças

Instituto Superior Técnico (Departamento de Física)

8.2 Função característica de Hamilton

8.3 Variáveis cíclicas

8.4 Variáveis acção-ângulo

8.1 Função principal de Hamilton

Como vimos, as transformações canónicas $(q_i, p_i) \rightarrow (Q_i, P_i)$ podem ser empregadas para determinar a evolução temporal de um determinado sistema físico. As duas formas seguintes são as mais relevantes:

- Transformar num sistema de coordenadas onde (Q_i, P_i) são cíclicas, resultando em equações do movimento triviais;
- Transformar (q_i, p_i) em novas coordenadas que são os seus valores iniciais, (q_{i0}, p_{i0}) (ver problema 4, série 8).

$$q_i = q_i(q_{i0}, p_{i0}, t), \quad p_i = p_i(q_{i0}, p_{i0}, t).$$

Neste capítulo, vamos construir de forma sistemática esta última classe de transformações

Uma forma automática de garantir equações do movimento triviais é construindo novos Hamiltonianos $K(Q_i, P_i) = 0$, tais que

$$\dot{Q}_i = \frac{\partial K}{\partial P_i} = 0, \quad \dot{P}_i = -\frac{\partial K}{\partial Q_i} = 0.$$

Como vimos, K obtém-se a partir de $H(q_i,p_i)$ na forma $K=H+\frac{\partial F}{\partial t}$, o que então implica

$$H(q_i, p_i, t) + \frac{\partial F}{\partial t} = 0.$$

É conveniente escolher F que dependa das antigas coordenadas q_i e dos novos momentos conservados P_i , ou seja

$$F = P_i Q_i + F_2(q_i, P_i, t).$$

Recorrendo às relações de transformação canónica (ver tabela do §7),

$$p_i = \frac{\partial F_2}{\partial q_i},$$

pelo que a equação de transformação vem

$$H\left(q_1,\ldots,q_n;\frac{\partial F_2}{\partial q_1},\ldots,\frac{\partial F_2}{\partial q_n};t\right)+\frac{\partial F_2}{\partial t}=0.$$

A equação anterior é conhecida como equação de Hamilton-Jacobi.

Trata-se de uma equação diferencial parcial de (n+1) variáveis $\{q_1,\ldots,q_n;t\}$, e costuma-se designar-se por S a função principal de Hamilton

$$F_2 \equiv S = S(q_1, \dots, q_n; \alpha_1, \dots, \alpha_{n+1}; t),$$

onde α_i são (n+1) constantes de integração.

Como S não figura explicitamente na equação de Hamilton-Jacobi, (apenas através das suas derivadas parciais $\dfrac{\partial S}{\partial q_i}$ e $\dfrac{\partial S}{\partial t}$, então $S+\alpha$ também é solução.

 \therefore A constante aditiva α pode assumir o valor de um das (n+1) constantes de integração, pelo que

$$S = S(q_i, \dots, q_n; \alpha_1, \dots, \alpha_n; t).$$

Desta transformação, resulta

$$P_i = \alpha_i, \quad p_i = \frac{\partial S}{\partial q_i},$$

juntamente com

$$Q_i = \frac{\partial S}{\partial \alpha_i} \equiv \beta_i,$$

onde α_i e β_i são constantes (fixadas por condições iniciais).

A solução original do problema pode ser formalmente dada através das relações

$$q_j = q_j(\alpha_i, \beta_i, t),$$
 $p_j = p_j(\alpha_i, \beta_i, t).$

Vejamos o significado físico da função principal de Hamilton.

$$\frac{dS}{dt} = \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial t}.$$

Usando a relação de transformação, $p_i = \frac{\partial S}{\partial a_i}$ e a equação de Hamilton-Jacobi.temos

$$\frac{dS}{dt} = p_i \dot{q}_i - H = L,$$

o que nos mostra que S é a acção

$$S = \int Ldt + S_0$$

Quando o Hamiltoniano não depende explicitamente do tempo¹, podemos escrever S em termos da função característica $W(q_i, \alpha_i)$

$$S(q_i, \alpha_i, t) = W(q_i, \alpha_i) - at.$$

Podemos inferir sobre o seu significado físico de forma semelhante ao que fizémos com a função S,

$$\frac{dW}{dt} = \frac{\partial W}{\partial q_i} \dot{q}_i.$$

Com
$$p_i=rac{\partial W}{\partial q_i}$$
, obtemos
$$rac{dW}{dt}=p_i\dot{q}_i,\quad\Longrightarrow\quad W=\int p_i\dot{q}_idt=\int p_idq_i,$$

o que corresponde à acção abreviada.

¹Recorde: a equação de Hamilton-Jacobi escreve-se $H + \partial_t S = 0$

8.1 Função principal de Hamilton 0000000000000000

$$H(q,p) = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right) \equiv E.$$

Fazendo $p = \frac{\partial S}{\partial a}$, a equação de Hamilton-Jacobi vem

$$\frac{1}{2m} \left[\left(\frac{\partial S}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] + \frac{\partial S}{\partial t} = 0.$$

Uma vez que $S=W-\alpha t$, podemos escrever a versão independente do tempo da equação,

$$\frac{1}{2m} \left[\left(\frac{\partial W}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = \alpha.$$

A constante de integração pode ser identificada com a energia do sistema, $\alpha = E$.

$$\frac{1}{2m} \left[\left(\frac{\partial W}{\partial q} \right)^2 + m^2 \omega^2 q^2 \right] = \alpha.$$

A equação pode ser imediatamente integrada,

$$W = \sqrt{2m\alpha} \int \sqrt{1 - \frac{m\omega^2 q^2}{2\alpha}} \ dq,$$

e, portanto,

8.1 Função principal de Hamilton 0000000000000000

$$S = \sqrt{2m\alpha} \int \sqrt{1 - \frac{m\omega^2 q^2}{2\alpha}} \ dq - Et.$$

Assim, da relação de transformação $Q = \partial_n S$,

$$Q \equiv \beta = \frac{\partial S}{\partial \alpha} = \sqrt{\frac{m}{2\alpha}} \int \frac{dq}{\sqrt{1 - m\omega^2 q^2/(2\alpha)}} - t$$

Exemplo 1: O oscilador harmónico.

$$t + \beta = \frac{1}{\omega}\arcsin\left(q\sqrt{\frac{m\omega^2}{2\alpha}}\right).$$

Invertendo a relação, e definindo $\delta=\beta\omega$

$$q = \sqrt{\frac{2\alpha}{m\omega^2}}\sin(\omega t + \delta).$$

Formalmente, a solução para p vem

$$p = \frac{\partial S}{\partial q} = \frac{\partial W}{\partial q} = \sqrt{2m\alpha - m^2\omega^2q^2} = \sqrt{2m\alpha\left(1 - \sin^2(\omega t + \delta)\right)},$$

ou seja

$$p = \sqrt{2m\alpha}\cos(\omega t + \delta) = m\dot{q}.$$

• Exemplo 1: O oscilador harmónico.

A relação entre as constantes α e β devem estar relacionadas com q_0 e p_0 . Tomando os quadrados de q(t) e p(t) em t=0

$$2m\alpha=p_0^2+m^2\omega^2q_0^2,$$

o que reflecte, obviamente, a conservação da energia mecânica. Da mesma forma,

$$\tan \delta = m\omega \frac{q_0}{p_0}.$$

Podemos, finalmente, calcular explicitamente S,

$$S = 2\alpha \int \cos^2(\omega t + \delta)dt - \alpha t = 2\alpha \int \left(\cos^2(\omega t + \delta) - \frac{1}{2}\right)dt.$$

8.1 Função principal de Hamilton 00000000000000000

$$S = 2\alpha \int \cos^2(\omega t + \delta)dt - \alpha t = 2\alpha \int \left(\cos^2(\omega t + \delta) - \frac{1}{2}\right)dt.$$

Com o Lagrangeano definido como

$$L = \frac{1}{2} \left(m\dot{q}^2 - m^2\omega^2 q^2 \right)$$
$$= \alpha \left(\cos^2(\omega t + \delta) - \sin^2(\omega t + \delta) \right)$$
$$= 2\alpha \left(\cos^2(\omega t + \delta) - \frac{1}{2} \right),$$

vemos claramente que²

$$S = \int Ldt.$$

²Note que esta última relação só é possível mediante determinação de q(t) e p(t).

Exemplo 2: O oscilador bi-dimensional assimétrico.

$$H(x, p_x, y, p_y) = \frac{1}{2m} \left(p_x^2 + p_y^2 + m^2 \omega_x^2 x^2 + m^2 \omega_y^2 y^2 \right).$$

Como as coordenadas e os momentos separam-se, podemos procurar por soluções do tipo³

$$S(x, y, \alpha, \alpha_u, t) = W_x(x, \alpha) + W_y(y, \alpha_u) - \alpha t.$$

Assim, a equação de Hamilton-Jacobi escreve-se na forma

$$\frac{1}{2m} \left[\left(\frac{\partial W_x}{\partial x} \right)^2 + \left(\frac{\partial W_y}{\partial y} \right)^2 + m^2 \omega_x^2 x^2 + m^2 \omega_y^2 y^2 \right] = \alpha,$$

o que fornece

$$\frac{1}{2m} \left(\frac{\partial W_y}{\partial y} \right)^2 + \frac{1}{2} m^2 \omega_y^2 y^2 = \alpha_y,$$

$$\frac{1}{2m} \left(\frac{\partial W_x}{\partial x} \right)^2 + \frac{1}{2} m^2 \omega_x^2 x^2 = \alpha - \alpha_y = \alpha_x,$$

 $^{^3}$ Notação: usam-se as constantes α e α_y para aproveitar o facto de que $E = \alpha^*$ uma primeira constante.

• Exemplo 2: O oscilador bi-dimensional assimétrico.

Procedendo de forma análoga, i.e. fazendo uso das relações de transformação após integração das EDPs, $p_i=\frac{\partial W_i}{\partial q_i}$ e $q_i=\frac{\partial W_i}{\partial \alpha_i}$, obtemos

$$x = \sqrt{\frac{2\alpha_x}{m\omega_x^2}} \sin(\omega_x t + \delta_x),$$

$$y = \sqrt{\frac{2\alpha_y}{m\omega_y^2}} \sin(\omega_y t + \delta_y),$$

$$p_x = \sqrt{2m\alpha_x} \cos(\omega_x t + \delta_x),$$

$$p_y = \sqrt{2m\alpha_y} \cos(\omega_y t + \delta_y).$$

A energia mecânica é $E = \alpha_x + \alpha_y = \alpha$.

Exemplo 2: O oscilador bi-dimensional assimétrico.

Procedendo de forma análoga, i.e. fazendo uso das relações de transformação após integração das EDPs, $p_i=\frac{\partial W_i}{\partial q_i}$ e $q_i=\frac{\partial W_i}{\partial \alpha_i}$, obtemos

$$x = \sqrt{\frac{2\alpha_x}{m\omega_x^2}} \sin(\omega_x t + \delta_x),$$

$$y = \sqrt{\frac{2\alpha_y}{m\omega_y^2}} \sin(\omega_y t + \delta_y),$$

$$p_x = \sqrt{2m\alpha_x} \cos(\omega_x t + \delta_x),$$

$$p_y = \sqrt{2m\alpha_y} \cos(\omega_y t + \delta_y).$$

A energia mecânica é $E = \alpha_x + \alpha_y = \alpha$.

Exemplo 3: O oscilador bi-dimensional simétrico.

$$H=E=\frac{1}{2m}\left(p_r^2+\frac{p_\theta^2}{r^2}+m^2\omega^2r^2\right).$$

A função principal de Hamilton é

$$S(r, \theta, \alpha, \alpha_{\theta}) = W_r(r, \alpha) + W_{\theta}(\theta, \alpha_{\theta}) - \alpha t.$$

Como θ é coordenada cíclica.

$$p_{\theta} = \frac{\partial S}{\partial \theta} = \frac{\partial W_{\theta}}{\partial \theta} = \alpha_{\theta},$$

podemos escrever

$$S(r, \theta, \alpha, \alpha_{\theta}) = W_r(r, \alpha) + \theta \alpha_{\theta} - \alpha t.$$

Exemplo 3: O oscilador bi-dimensional simétrico.

A equação de Hamilton-Jacobi então escreve-se⁴

$$\frac{1}{2m} \left(\frac{\partial W_r}{\partial r} \right)^2 + \frac{\alpha_\theta^2}{2mr^2} + \frac{1}{2} m\omega^2 r^2 = 0.$$

A solução do problema obtém-se integrado a EDP e obter $W_r(r,\alpha)$, juntamente com as relações de transformação

$$p_r = \frac{\partial W_r}{\partial r}, \quad r = \frac{\partial W_r}{\partial \alpha}, \quad p_\theta = \alpha_\theta$$

8.2 Função característica de Hamilton

Como vimos, a equação de Hamilton-Jacobi fica mais transparente quando ${\cal H}$ é conservado,

$$\begin{split} H + \frac{\partial S}{\partial t} &= 0 \Longrightarrow S(q_i,t) = W(q_i) - \alpha_1 t, \\ \text{ou seja, com } p_i &= \frac{\partial S}{\partial q_i} = \frac{\partial W}{\partial q_i} \text{, vem} \\ &\quad H\left(q_i, \frac{\partial W}{\partial q_i}\right) = \alpha_1. \end{split}$$

As novas coordenadas são

$$Q_i = \frac{\partial W}{\partial P_i} = \frac{\partial W}{\partial \alpha_i},$$

onde α_i são constantes. O novo Hamiltoniano é $K(Q_i, P_i) = \alpha_1$. A função W tem propriedades de transformação distinta das de S!.

 \therefore W gera uma transformação canónica tal que as novas coordenadas (Q_i,P_i) são todas cíclicas! Com $K(Q_i,P_i)=\alpha_1$, as equações do movimento fornecem

$$\dot{Q}_i = \frac{\partial K}{\partial P_i} = \frac{\partial K}{\partial \alpha_i} = \delta_{1i}, \quad \dot{P}_i = -\frac{\partial K}{\partial Q_i} = 0,$$

de onde vem imediatamente

$$P_i = \alpha_i, \qquad Q_i = \delta_{1i}t + \beta_i = \frac{\partial W}{\partial \alpha_i}.$$

 \therefore A única coordenada que não é constante do movimento é $Q_1 = \alpha_1 t + \beta_1$. Temos n constantes de integração, sendo que uma delas é apenas umas constante aditiva, α_1 (que nós escolhemos como coincidente com o valor que H toma ao ser conservado — em geral, uma energia.)

Escolha:

As constantes $\{\alpha_1, \dots, \alpha_n\}$ são escolhidas como os momentos conservados P_i .

$$\gamma_i = \gamma_i(\alpha_i).$$

Desta forma, a equação de Hamilton vem

$$\dot{Q}_i = \frac{\partial K}{\partial \gamma_i} = v_i,$$

onde v_i é uma certa função de γ_i . Neste caso, **todas** as coordenadas têm a mesma dependência temporal

$$Q_i = v_i t + \beta_i.$$

A construção sistemática das equações de Hamilton-Jacobi para a funções principal S e característica W é feita na forma

1. Escolha do Hamiltoniano

$$H(q_i, p_i, t) \mid H(q_i, p_i) = \text{constante}$$

2. Transformações canónicas apropriadas

Variáveis
$$Q_i = \beta_i$$
 e $P_i = \alpha_i$ | Variáveis $P_i = \alpha_i$

3. Novos Hamiltonianos K

$$K = 0 \mid K = H(P_i) = \alpha_1$$

4. Novas equações do movimento

$$\dot{Q}_i = \frac{\partial K}{\partial P_i} = 0, \quad \dot{P}_i = -\frac{\partial K}{\partial Q_i} = 0 \quad \middle| \quad \dot{Q}_i = \frac{\partial K}{\partial P_i} = v_i, \quad \dot{P}_i = -\frac{\partial K}{\partial Q_i} = 0$$

5. Novas soluções das equações do movimento

$$Q_i = \beta_i, \quad P_i = \gamma_i \mid Q_i = v_i t + \beta_i, \quad P_i = \gamma_i$$

Definição da funções principal e característica

$$S(q_i, P_i, t) \mid W(q_i, P_i)$$

7. Equações de Hamilton-Jacobi

$$\underbrace{H\left(q_i,\frac{\partial S}{\partial q_i},t\right)+\frac{\partial S}{\partial t}=0}_{n \text{ non-trivial constants } \left\{\alpha_1,\dots,\alpha_n\right\}} \underbrace{H\left(q_i,\frac{\partial W}{\partial q_i}\right)-\alpha_1=0}_{n \text{ non-trivial constants}=n \text{ integration } \left\{\alpha_2,\dots,\alpha_n\right\}+\alpha_1$$

8. Novos momentos $P_i = \gamma_i(\alpha_1, \dots, \alpha_n)$

$$S = S(q_i, \gamma_i, t) \mid W = W(q_i, \gamma_i)$$

9. Transformação no problema original

$$\begin{aligned} p_i &= \frac{\partial S}{\partial q_i} \ \middle| \ p_i &= \frac{\partial W}{\partial q_i} \end{aligned}$$

$$Q_i &= \frac{\partial S}{\partial P_i} = \frac{\partial S}{\partial \gamma_i} = \beta_i \ \middle| \ Q_i &= \frac{\partial W}{\partial P_i} = \frac{\partial W}{\partial \gamma_i} = v_i t + \beta_i \end{aligned}$$

 \therefore O problema pode ser resolvido para as coordenadas q_i em termos das 2n constantes β_i , γ_i (que, por sua vez, são obtidas recorrendo às condições iniciais).

Como é claro, quando o Hamiltoniano não depende explicitamente do tempo ($H = \alpha_1$), ambos os métodos são equivalentes

$$S(q_i, P_i, t) = W(q_i, P_i) - \alpha_1 t$$

8.3 Variáveis cíclicas

8.3 Variáveis cíclicas •0000000

Uma coordenada q_i diz-se **separável** quando S (ou W) pode ser dividida em dois termos, na forma

$$S(\lbrace q_i \rbrace; \lbrace \alpha_i \rbrace; t) = S_1(q_1; \lbrace \alpha_i \rbrace; t) + S'(q_2, \dots, q_n; \lbrace \alpha_i \rbrace; t).$$

Neste caso, a equação de Hamilton-Jacobi pode ser dividida em duas equações para S_1 e S'. De uma forma geral, se todas as m coordenadas forem separáveis

$$S = \sum_{i=1}^{m} S_i(q_i; \{\alpha_i\}; t) + S'(q_{m+1}, \dots, q_n; \{\alpha_i\}; t).$$

Se todas as coordenadas forem separáveis, teremos m=n equações do tipo⁵

$$H_i\left(q_j, \frac{\partial S_j}{\partial q_i}; \{\alpha_i\}; t\right) + \frac{\partial S_i}{\partial t} = 0.$$

8.3 Variáveis cíclicas 0000000

No caso de um problema separável,

$$H_i\left(q_j, \frac{\partial S_j}{\partial q_j}; \{\alpha_i\}; t\right) + \frac{\partial S_i}{\partial t} = 0.$$

as constantes α_i são chamadas de **constantes de separação**.

NOTA: Nem todas as funções H_i são necessariamente Hamiltonianos; os α_i 's pode ser energias, quadrados de momento angular, ou outra quantidade qualquer (depende da natureza de q_i).

Podemos observar rapidamente que coordenadas **cíclicas** são **separáveis**, mostrando o interesse real deste formalismo. Seja q_1 uma variável cíclica, cujo momento $p_1 = {\rm constante} \equiv \gamma.$

8.3 Variáveis cíclicas

$$H\left(q_2,\ldots,q_n;\gamma;\frac{\partial W}{\partial q_2},\ldots,\frac{\partial W}{\partial q_n}\right)=\alpha_1.$$

Tentando separar a função característica W na forma

$$W = W_1(q_1, \alpha) + W'(q_2, \dots, q_n; \alpha),$$

vemos que a equação de Hamilton-Jacobi apenas depende de W^\prime , e 6

$$p_1 \equiv \gamma = \frac{\partial W_1}{\partial q_1} \implies W_1 = \gamma q_1,$$

implicando $W = \gamma q_1 + W'$.

Consideremos uma situação em que s nas n coordenadas são não-cíclicas. Então, a decomposição anterior pode ser feita na forma 7

8.3 Variáveis cíclicas

$$W(q_1, \dots, q_n; \alpha_1, \dots, \alpha_n) = \sum_{i=1}^s W_i(q_i; \alpha_1, \dots, \alpha_n) + \sum_{i=s+1}^n \alpha_i q_i.$$

Ficamos, assim, com s equações de Hamilton-Jacobi para resolver

$$H\left(q_i; \frac{\partial W_i}{\partial q_i}; \alpha_2, \dots, \alpha_n\right) = \alpha_1, \quad i = \{1, \dots, s\}.$$

Para saber mais... não existe nenhum critério simples ditando qual a escolha de coordenadas que conduz à separação das equações de Hamilton-Jacobi. Para sistemas de coordenadas ortogonais, o <u>critério de Stäckel</u> sobre condições necessárias e suficientes pode ser útil (c.f. Goldstein, §10.5)

Por consistência de notação, escolhemos os momentos conservados $\gamma_i = \alpha_i$.

Exemplo 1: o problema de Kepler.

Escolhendo coordenadas polares (r, θ) (movimento no plano),

$$H = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} \right) + V(r) = \alpha_1,$$

8.3 Variáveis cíclicas 00000000

onde a última igualdade decorre da conservação da energia. coordenada cíclica, pelo que

$$W = W_1(r) + \alpha_{\theta}\theta.$$

A equação de Hamilton-Jacobi fornece⁸

$$\left(\frac{\partial W_1}{\partial r}\right)^2 + \frac{\alpha_{\theta}^2}{r^2} + 2mV(r) = 2m\alpha_1,$$

cuja solução formal conduz a

$$W = \int \sqrt{2m(\alpha_1 - V) - \frac{\alpha_\theta^2}{r^2}} dr + \alpha_\theta \theta.$$

8.3 Variáveis cíclicas 00000000

transformação $Q_i = \frac{\partial W}{\partial \alpha_i}$, temos⁹

$$t + \beta_1 = \frac{\partial W}{\partial \alpha_1} = \int \frac{dr}{\sqrt{2m(\alpha_1 - V) - \frac{\alpha_\theta^2}{r^2}}},$$

е

$$\beta_2 = \frac{\partial W}{\partial \alpha_\theta} = -\int \frac{\alpha_\theta dr}{\sqrt{2m(\alpha_1 - V) - \frac{\alpha_\theta^2}{r^2}}} + \theta.$$

Esta última equação pode ser expressa na forma usual para a coordenada u=1/r.

$$\theta = \beta_2 - \int \frac{du}{\sqrt{\frac{2m}{\alpha_\theta^2}}(\alpha_1 - V) - u^2}$$

Exemplo 2: O potencial central em coordenadas esféricas.

Consideremos o movimento sob a acção do mesmo potencial central V(r)em coordenadas esféricas (r, θ, φ) ,

8.3 Variáveis cíclicas 0000000

$$H = \frac{1}{2m} \left(p_r^2 + \frac{p_{\theta}^2}{r^2} + \frac{p_{\varphi}^2}{\sin^2 \theta r^2} \right) + V(r).$$

Podemos começar por separar a função W na forma

$$W = W_r(r) + W_{\theta}(\theta) + W_{\varphi}(\varphi),$$

reparando que φ é uma coordenada cíclica, i.e. $W_{\varphi} = \alpha_{\varphi} \varphi$, o que conduz a

$$\left(\frac{\partial W_r}{\partial r}\right)^2 + \frac{1}{r^2} \left[\left(\frac{\partial W_\theta}{\partial \theta}\right)^2 + \frac{\alpha_\varphi^2}{\sin^2 \theta} \right] + 2mV(r) = 2m\alpha_1.$$

8.3 Variáveis cíclicas 0000000

O termo a vermelho depende apenas de θ , pelo que

$$\left[\left(\frac{\partial W_{\theta}}{\partial \theta} \right)^2 + \frac{\alpha_{\varphi}^2}{\sin^2 \theta} \right] = \alpha_{\theta}^2.$$

Assim, a equação de Hamilton-Jacobi que resta resolver vem, então

$$\left(\frac{\partial W_r}{\partial r}\right)^2 + \frac{\alpha_\theta^2}{r^2} = 2m(\alpha_1 - V(r)).$$

As constantes de integração α_1 , α_θ e α_φ têm significados físicos facilmente identificáveis.

$$\alpha_{\theta}^2 = p_{\theta}^2 + \frac{p_{\varphi}^2}{\sin^2 \theta}, \quad \alpha_1 = E.$$

Hamiltoniano a 3 dimensões pode ser reduzido ao Hamiltoniano do problema no plano

$$H = \frac{1}{2m} \left(p_r^2 + \frac{\alpha_\theta^2}{r^2} \right) + V(r).$$

Uma classe importante de problemas é aquela que contém **movimentos periódicos** (não necessariamente harmónicos!), como o caso do pêndulo

$$H = E = \frac{p_{\theta}^2}{2m\ell^2} - mg\ell\cos\theta.$$

Resolvendo para p_{θ} , temos

simples.

$$p_{\theta} = \pm \sqrt{2m\ell^2(E + mg\ell\cos\theta)}.$$

Sistemas periódicos são caracterizados por dois tipos de movimento

- Libração: $-\pi < \theta < \pi$:
- Rotação: $\theta \in \mathbb{R}$.

Consideremos movimentos descritos por um Hamiltoniano H = H(q, p), é conveniente introduzir-se a varíavel de acção

$$J = \oint pdq,$$

onde a integração é feita sobre um período completo (de rotação ou libração).

Em termos da variável de acção (que na verdade tem dimensões de momento angular!), o Hamiltoniano escreve-se

$$H = \alpha_1 = H(J),$$

ao passo que a função característica é

$$W = W(q, J).$$

A coordenada canonicamente conjugada a J recebe o nome de variável ângulo

$$w = \frac{\partial W}{\partial J},$$

cuja equação do movimento, então, será

$$\dot{w} = \frac{\partial H}{\partial J} = \nu(J) \Longrightarrow w = \nu t + \beta.$$

Consideremos a variação de w após um período completo do movimento,

$$\Delta w = \oint \frac{\partial w}{\partial q} dq = \oint \frac{\partial^2 W}{\partial q \partial J} dq.$$

Como J é uma constante,

$$\Delta w = \frac{d}{dJ} \oint \frac{\partial W}{\partial q} dq = \frac{d}{dJ} \oint p dq = 1,$$

o que imediatamente implica $\Delta w = 1 = \nu \tau$, ou seja

$$\nu = \frac{1}{\tau}$$

é uma frequência.

O uso das variáveis acção-ângulo (J,w) é extremamente poderoso para extrairmos as frequências de movimentos periódicos!

$$H(q,p) = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2 \equiv \alpha.$$

$$J = \oint p dq = \oint \sqrt{2m\alpha - m^2\omega^2 q^2} dq.$$

Como sabemos, $q = \sqrt{2\alpha/m\omega^2}\sin(\omega t + \delta) = \sqrt{2\alpha/m\omega^2}\sin\theta$,

$$J = \frac{2\alpha}{\omega} \int_0^{2\pi} \cos^2 \theta d\theta = \frac{2\pi\alpha}{\omega}.$$

Resolvendo para α .

$$\alpha \equiv H = \frac{J\omega}{2\pi}.$$

A frequência é então

$$\nu = \frac{\partial H}{\partial J} = \frac{\omega}{2\pi}$$

Este formalismo é especialmente poderoso no caso de **sistemas separáveis**. Como vimos anteriormente (sem convenção da soma sobre índices repetidos!)

$$p_i = \frac{\partial W_i(q_i; \alpha_1, \dots, \alpha_n)}{\partial q_i},$$

o que fornece p_i como função de q_i e das n constantes de integração

$$p_i = p_i(q_i; \alpha_1, \dots, \alpha_n).$$

Trata-se da equação da órbita projectada no plano (q_i, p_i) .

A ideia é construir variáveis acção-ângulo (J, w) para os pares (q_i,p_i) cuja órbita é periódica (mesmo que o movimento total não seja necessariamente períodico).

Para cada par (q_i, p_i) definimos a correspondente varíavel acção¹⁰

$$J_i = \oint p_i dq_i.$$

Usando a relação de transformação canónica.

$$J_i = \oint \frac{\partial W_i(q_i; \alpha_1, \dots, \alpha_n)}{\partial q_i} dq_i.$$

Como as coordenadas (q_i, p_i) são separáveis, então podemos expressar $\alpha_i = \alpha_i(J_i)$.

$$W = W(q_1, \dots, q_n; J_1, \dots, J_n) = \sum_{i} W_j(q_j; J_i, \dots, J_n),$$

e, portanto,

$$H = \alpha_1 = H(J_1, \dots, J_n).$$

As variáveis ângulo vêm

$$w_i = \frac{\partial W}{\partial J_i} = \sum_{j=1}^n \frac{\partial W_j(q_j; J_1, \dots, J_n)}{\partial J_i},$$

que satisfazem as equações do movimento

$$\dot{w}_i = \frac{\partial H(J_1, \dots, J_n)}{\partial J_i} = \nu_i(J_1, \dots, J_n) \implies w_i = \nu_i t + \beta_i.$$

Nota: As constantes ν_i podem ser identificadas com frequências de um sistema multi-periódico (embora essa conclusão não seja óbvia - c.f. Goldstein, §10.7).

Exmeplo: O problema de Kepler com variáveis acção-ângulo.

Voltamos ao Hamiltoniano em coordenadas esféricas

$$H = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\varphi^2}{\sin^2 \theta r^2} \right) - \frac{k}{r}.$$

As variáveis acção são

$$J_{\varphi} = \oint p_{\varphi} d\varphi = \oint \frac{\partial W}{\partial \varphi} d\varphi = \oint \alpha_{\varphi} d\varphi,$$

$$J_{\theta} = \oint p_{\theta} d\theta = \oint \frac{\partial W}{\partial \theta} d\theta = \oint \sqrt{\alpha_{\theta}^2 - \frac{\alpha_{\varphi}^2}{\sin^{\theta}}} d\theta,$$

$$J_r = \oint p_r dr = \oint \frac{\partial W}{\partial r} dr = \oint \sqrt{2mE + \frac{2mk}{r} - \frac{\alpha_{\theta}^2}{r^2}} dr.$$

O primeiro integral é trivial (coordenada cíclica)

$$J_{\varphi} = 2\pi\alpha_{\varphi} = 2\pi p_{\varphi}.$$

Para avaliar o segundo integral ao longo de "uma volta completa", começamos por definir $\cos a = \alpha_{\varphi}/\alpha_{\theta}^{11}$,

$$J_{\theta} = \alpha_{\theta} \oint \sqrt{1 - \cos^2 a \csc^2 \theta} d\theta.$$

È necessário perceber que a é o ângulo polar (latitude), pelo que a integração vai de $-\theta_0$ a θ_0 , que é onde o radical se anula ($\sin \theta_0 = \cos a \rightarrow \cos \theta$ $\theta_0 = \pi/2 - a$). Assim,

$$J_{\theta} = 4\alpha_{\theta} \int_{0}^{\theta_{0}} \csc \theta \sqrt{\sin^{2} a - \cos^{2} \theta} d\theta.$$

$$J_{\theta} = 4\alpha_{\theta} \sin^2 a \int_{0}^{\pi/2} \frac{\cos^2 \psi}{1 - \sin^2 a \sin^2 \psi} d\psi.$$

Após uma segunda substituição, $u = \tan \psi$, vem

$$J_{\theta} = 4\alpha_{\theta} \sin^2 a \int_0^{\infty} \frac{du}{(1+u^2)(1+u^2\cos^2 a)}$$
$$= 4\alpha_{\theta} \int_0^{\infty} \left(\frac{1}{1-u^2} - \frac{\cos^2 a}{1+u^2\cos^2 a}\right)$$
$$= 2\pi\alpha_{\theta}(1-\cos a) = 2\pi(\alpha_{\theta} - \alpha_{\varphi}).$$

O último integral pode escrever-se na forma

$$J_r = \oint \sqrt{2mE + \frac{2mk}{r} - \frac{(J_\theta + J_\varphi)^2}{4\pi^2 r^2}} dr,$$

Usando o teorema dos resíduos (c.f. Goldstein §10.8)

$$\operatorname{Res}(r \to 0) = i \frac{J_{\theta} + J_{\varphi}}{2\pi}, \quad \operatorname{Res}(r \to +\infty) = -\frac{2m}{\sqrt{-E}},$$

vem que

$$J_r = -(J_\theta + J_\varphi) + \pi k \sqrt{\frac{2m}{-E}}.$$

Portanto.

$$H = E = -\frac{2\pi^2 m k^2}{(J_x + J_\theta + J_\phi)^2}.$$

O problema é triplamente degenerado,

$$\nu = \frac{\partial H}{\partial J_r} = \frac{\partial H}{\partial J_{\theta}} = \frac{\partial H}{\partial J_{\varphi}} = \frac{4\pi^2 m k^2}{\left(J_r + J_{\theta} + J_{\varphi}\right)^3}.$$

Isto era esperado, pois sabemos que para ${\cal E}<0$, as órbitas são fechadas (elipses). O período é

$$\tau = \frac{2\pi}{\nu} = \pi k \sqrt{\frac{m}{-2E^3}}.$$

Comparando as expressões para H e ν , podemos ainda escrever (teorema do Virial)

$$H = \langle T + V \rangle = -\langle T \rangle = -\nu \frac{J_r + J_\theta + J_\varphi}{2},$$

ou seja

$$\langle T \rangle = \frac{1}{2} \nu J$$

