Final project: Very-long-baseline Interferometry

Juan Lorente Guarnieri 816020

Understanding, running, and modifying the code

Input Image

```
# SRC: M87
     # RA: 12 h 30 m 49.4234 s
     # DEC: 12 deg 23 m 28.0439 s
     # MJD: 48277.0000
     # RF: 230.0000 GHz
     # FOVX: 100 pix 0.000182 as
     # FOVY: 100 pix 0.000182 as
                               I (Jy/pixel)
                                             Q (Jy/pixel)
                                                           U (Jy/pixel)
     # x (as)
                  y (as)
     0.0000891800 0.0000891800 0.0000017870 -0.0000003144 0.0000002609
11
     0.0000873600 0.0000891800 0.0000021787 -0.0000003004 0.0000003130
     0.0000855400 0.0000891800 0.0000026383 -0.0000002713 0.0000003709
     0.0000837200 0.0000891800 0.0000031731 -0.0000002242 0.0000004338
     0.0000819000 0.0000891800 0.0000037904 -0.0000001568 0.0000005006
14
     0.0000800800 0.0000891800 0.0000044970 -0.0000000660 0.0000005695
     0.0000782600 0.0000891800 0.0000053005 0.0000000501 0.0000006385
     0.0000764400 0.0000891800 0.0000062074 0.0000001942 0.0000007052
     0.0000746200 0.0000891800 0.0000072253 0.0000003678 0.0000007669
     0.0000728000 0.0000891800 0.0000083602 0.0000005727 0.0000008197
     0.0000709800 0.0000891800 0.0000096197 0.0000008102 0.0000008604
```

What do I, Q, U, V represent?

$$I = \begin{pmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

U-V coverage

EHT2017_m87

Switching arrays

EHT2017_m87

EHTII

Dirty image and dirty beam

Dirty image

Dirty beam

Clean beam

Experiments (Easier celestial object)

rowan_m87 (default)

dirty image

clean image

clean image (blurred)

GT image

jason_mad_eofn

Experiments (Larger telescope array)

EHT2017_m87

EHTII

Experiments (Larger telescope array)

EHT2017_m87

EHTII

GT

SgrA 230.00 GHz I 100.0 -0.00675.0 --0.00550.0 Relative Dec (µas) bixel bixel 25.0 0.0 0.003 -25.0-0.002-50.0 --0.001-75.0 --100.0100.0 75.0 50.0 25.0 0.0 -25.0 -50.0 -75.0-100.0 Relative RA (μ as)

'simple': 0

'simple': 1000

'tv': 1

'tv': 10

'tv2': 1

'tv2': 10

'flux': 1

'flux': 1e8

'l1': 0.1

'l1': 1e5

O2 Telescopes obs

Forward model: Telescope observations

Add different amounts of noise

add_th_noise = False

add_th_noise = True

Compute frequencies by each pair of telescopes at a time

Add telescopes - Metrics (density-uniformity)

Add telescopes - Metrics (entropy)

Add telescopes - Metrics (spread)

Add telescopes - Metrics (area)

Add telescopes - Metrics (grid fill)

Add telescopes - Metrics (radial uniformity)

Evaluate the effect of satellite telescopes

Evaluate the effect of satellite telescopes

Satellite telescopes - Metrics (density-uniformity)

Satellite telescopes - Metrics (entropy)

Satellite telescopes - Metrics (spread)

Satellite telescopes - Metrics (area)

Satellite telescopes - Metrics (grid fill)

Satellite telescopes - Metrics (radial uniformity)

VLBI Imaging

VLBI Imaging: Estimating an image of a celestial object

Dirty Image

2 57

Model Image

Dirty Image

Model Image

Dirty Image

Model Image

Thermal noise

Model Image

Model Image

Clean beam (Gaussian beam)

Model Image

Cleaned Image

Results

gain = 0.001 threshold = 4e-4

gain = 0.1 threshold = 4e-4

Image model

CLEANed image

Dirty image

04 Summary

Things done

Summary

- Code (Section 2)
- Forward modeling (Section 3)
 - Add different amounts of noise
 - Compute frequencies by each pair of telescopes at a time
 - Add telescopes to maximize frequency coverage
 - Evaluate the effect of satellite telescopes
- VLBI imaging (Section 4)
 - Using the dirty image and dirty beam (CLEAN)
 - Using directly the frequency data

Final project: Very-long-baseline Interferometry

Juan Lorente Guarnieri 816020