北京邮电大学 20222——2023 学年第一学期

《操作系统》期中考试试题

1. CHOICE (16 points)		
C. The dual mode can preven	executed in user mode node to kernel mode that the process from ent	than in kernel mode hrough software interrupt traps
В		
(2) Which of the following sy	stem has the strict ti	me constraint?
A. distributed system	B. time-sharing sy	stem
C. real time system	D. interactive syste	em
С		
•	-	s, 5 real-time processes, 6 batch
processes in 250 ms, then the th A. 10/s B. 15/s	C. 30/s	D. 60/s
D		
	o service, and no usely, waiting for someth	iven. If there are no processes ers to whom to respond, an hing to happen. D. hardware
В		
(5) The interrupt mechanism is except	s used by operating syst	em to handle the following events
A. I/O completion	B. dividing by	zero
C. virtual memory paging	D. calling a pro	cedure

(6)	is not included	in the context of process	?
A.PCB	B. code	C. kernel stack	D. interrupt vector
D			
(7) When d	oes a process migi	rate from running state to	ready state?
A. the proc	cess invokes a syst	em call.	
B. the proc	ess is selected by	scheduler.	
C. its time	slice is used up.		
D. event th	at the process is v	vaiting for occurs.	
С			
(8) Amo	ng the followin	g migrations,	is impossible?
A. ready	y→running	B. ready→waiti	ing
C. runn	ing→ready	D. running→wa	aiting
В			
		time a process spent waiting time	
С			
of completion		m the time of submission of submission of the cound time C. Response	-
В			
indefinitely for	or service. Which	uling policy guarantees of the following schedulin iority C. Round Robin	g policies is starvation
С			
shared varial		ystem, in order to guara ld enter their critical section—	
A. synchro	nous mechanism	B. a data segme	ent
C. a code s	egment	D. a buffer	

` '	eously in a sys	stem. Which		four necessary co e following is not	
		B. hold a	ınd wait	C. preemption	D. circular wait
С					
	Vhich handling node?	g procedures	of the foll	owing situations v	vill not switch into
A. pr	ocedure calls	B. sys	tem calls	C. interruj	pts D. traps
Α					
a integer wait() ar	variable releved to the releved to t	ant to a que a semaphor	ue, its val e S is initia	ue can only be cha alized to 10, now	es of resource, it is anged by operation it's value is 2, how
		_	-	e relevant to S	
A. 8	В. 2	C. 1	D. 0		
D					
① As the read ② In a process of the CPU ③ For a can be s	he result of I/C y state, and the system with t is the basic uni scheduling. several threads hared by the of	O completion CPU sched the operating t for resource s created by thers.	i, a process luling may g system si es allocation one proce	s switches from th	level threads, the d is the basic unit ack and registers
A. (D 2 3	B. (1) (2) (4) C	. 1) 3) 4)	D. ② ③ ④

- 2. (9 points) In a system with 8 processors, there are 10 concurrent processes sharing a type of resource based on a semaphore S, if at most 5 processes are allowed to enter their critical sections to use the resource, then answer the following questions.
- (1) what are the maximum, and minimum numbers of processes in ready, running, and waiting state?

number of processes	ready	running	waiting
maximum	2	8	10
minimum	0	0	0

(2) what are the initial, maximum, and minimum values for the semaphore S respectively?

initial value	maximum value	minimum value
5	5	-5

- 3. (20 points) In a computer system with only one CPU, one input device and one printer. Processes A and B enter the system sequentially at time 0 and time 10, and B has a higher priority. The execution tracks of A and B are as follows:
- A: CPU burst lasting 15ms, then I/O burst of 20ms on the input device, and then CPU burst lasting 40ms, then I/O burst of 30ms on the printer, and then CPU burst lasting 20ms, exiting.
- B: CPU burst lasting 20ms, then I/O burst of 70ms on the printer, and then CPU burst lasting 30ms, exiting.
- (a) Suppose that preemptive priority scheduling algorithm is employed, draw the Gantt chart to describe the resource usage of A and B on the CPU, the input device and the printer.
- (b) Calculate the waiting time and turnaround time for process A and B respectively.

16

4

(b)

A: WT=20ms B: WT=0ms TT=150ms TT=120ms 4. (20 points) Consider the following set of processes, their arrival time, CPU burst time, and priority numbers are as following. The length of the CPU burst given in milliseconds, and larger priority numbers imply higher priority.

Process	Arrival Time	CPU Burst Time	Priority number
P1	8	10	1
P2	9	10	3
Р3	10	7	7
P4	11	5	5

- (1) Suppose that preemptive SJF scheduling algorithm is employed,
 - (a) Draw a Gantt chart illustrating the execution of these processes;
 - (b) Calculate the average waiting time.

- Waiting time: T=12, T2=21, T3=5, T4=0; avg. (12+21+5+0)/4=9.5
 - (2) Suppose that priority-based non-preemptive scheduling is employed,
 - (a) Draw a Gantt chart illustrating the execution of these processes;
 - (b) Calculate the average turnaround time.

average turnaround time: (10+31+15+19)/4=18.75 ms

5. (15 points) Implement the Readers-Writers problem using semaphores.

Readers: only read the content of the shared data.

Writers: may update the content of the shared data.

Writers access the shared data mutually exclusive.

Readers and writers access the shared data in the order they request, no reader will be kept waiting unless a writer has requested access to the shared data.

```
// 3 points:
    int r_count=0; //当前读者数量
    Semaphore
                    //读者与写者互斥访问 shared data
      wrt=1;
                   //读者、写者排队访问 shared data F
      rw_queue=1;
                    //读者互斥访问变量 r count
      r mutex=1;
// 4 points:
    writer(){
        wait(rw_queue);
        wait(wrt);
          writing the shared data;
        signal(wrt);
        signal(rw_queue);
    }
 // 8 points:
     reader(){
       wait(rw_queue);
       wait(r_mutex);
          r count++;
          if (r_count==1) wait(wrt); // 当前第一个读者申请访问文件 F
       signal(r mutex);
       signal(rw_queue);
          reading the shared data;
       wait(r_mutex);
         r_count--;
         if (r_count==0) signal(wrt); // 最后一个读者离开,释放文件 F
       signal(r_mutex);
```

}

Process	Max requirement			A	Allocation			Available		
	A	В	C	A	В	С	A	В	C	
P1	5	5	9	2	1	2	2	3	3	
P2	5	3	6	4	0	2				
Р3	4	0	11	4	0	5]			
P4	4	2	5	2	0	4	1			
P5	4	2	4	3	1	4	1			

Assume the system uses Banker's algorithm to avoid deadlock.

(1) Calculate matrix NEED.

	A	В	C
P1	3	4	7
P2	1	3	4
P3	0	0	6
P4	2	2	1
P5	1	1	0

(2) Is the state at T0 safe? If yes, give the safety process sequence.

The system at time T0 is safe,

because there is a safe sequence existing (P4, P5, P1, P2, P3).

PROCESS P4 P5 P1 P2 P3	WORK			
	2	3	3	
P4	4	3	7	
P5	7	4	11	
P1	9	5	13	
P2	13	5	15	
Р3	17	5	20	

(3) At time T0, can the request for resources (0, 3, 4) by P2 be granted? Why?

This request can not be granted,

because the resources available are not enough.

Request2=(0, 3, 4), available=(2, 3, 3)

(4) Then based on (3), can the request for resources (2, 0, 1) by P4 be granted? Why?

This request can be granted,

because after allocation, resources available are (0, 3, 2), there still exists a safe sequence (P4, P5, P1, P2, P3).

Request $4=(2,0,1) \le \text{need } 4=(2,2,1)$, available =(2,3,3) after allocation:

Process	Need			Need Allocation			Available		
A	A	В	C	A	В	C	A	В	C
P1	3	4	7	2	1	2	0	3	2
P2	1	3	4	4	0	2]		
Р3	0	0	6	4	0	5]		
P4	0	2	0	4	0	5	1		
P5	1	1	0	3	1	4	1		

(5) Then, based on (4), can the request for resources (0, 2, 0) by P1 be granted? Why?

This request cannot be granted,

because after (4), the resources left are (0, 3, 2),.

Request1=(0, 2, 0) < need1=(3, 4, 7), available=(0, 3, 2)

If granted, then after allocation:

Process	Need		ess Need Allocation				Available		
	A	В	C	A	В	C	A	В	C
P1	3	2	7	2	3	2	0	1 2	2
P2	1	3	4	4	0	2			
Р3	0	0	6	4	0	5			
P4	0	2	0	4	0	5			
P5	1	1	0	3	1	4			

Any process's need cannot be satisfied. this state is unsafe.