42. Trapping Rain Water

Created	@October 9, 2022 3:43 PM
Difficulty	Medium
≡ LC Url	https://leetcode.com/problems/trapping-rain-water/
Importance	
∷ Tag	Two pointers
	https://www.youtube.com/watch?v=ZI2z5pq0TqA

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.

Example 1:

Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]Output: 6 Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

Example 2:

Input: height = [4,2,0,3,2,5]

Output: 9

42. Trapping Rain Water 1

Constraints:

```
n == height.length
1 <= n <= 2 * 10 4</li>
0 <= height[i] <= 10 5</li>
```

Solution

O(n)


```
class Solution:
    def trap(self, height: List[int]) -> int:
        if not height:
            return 0

    left, right = 0, len(height) - 1
    leftMax, rightMax = height[left], height[right]
    res = 0

    while left < right:
        if leftMax <= rightMax:
            left += 1
            leftMax = max(leftMax, height[left])
            res += leftMax - height[left]
        else:
            right -= 1</pre>
```

42. Trapping Rain Water 2

rightMax = max(rightMax, height[right])
res += rightMax - height[right]
return res

42. Trapping Rain Water 3