(Huom: viisi tehtävää)

1. Kun on annettuna lukuja sisältävä taulukko A[1..n] sekä luku s, kysytään onko taulukossa kahta lukua, joiden summa on s (s.o. A[i] + A[j] = s, missä $1 \le i < j \le n$). Esimerkiksi syötteellä A = [-1, 3, 6, 2, -3] ja s = 5 vastaus olisi "kyllä", mutta summaa s = 4 tuottavaa lukuparia taulukosta A ei löydy. Esitä tehtävän ratkaiseva algoritmi ja arvioi sen aikakompleksisuus suhteessa taulukon alkioiden lukumäärään n.

("Brute-force" 3 p, kertaluokkaa tehokkaampi 6 p.)

- On valittava tehokkain kolmesta saman ongelman ratkaisevasta hajota-ja-hallitsetyyppisestä algoritmista A, B ja C, jotka ratkaisevat ogelman (n-kokoiset tapaukset) seuraavasti:
 - Algoritmi A ratkaisee viisi kpl puolta pienempiä osaongelmia rekursiivisesti ja yhdistää niiden ratkaisut lineaarisessa ajassa.
 - Algoritmi B ratkaisee kaksi (n − 1)-kokoista osaongelmaa rekursiivisesti ja yhdistää niiden ratkaisut vakioajassa.
 - Algoritmi C ratkaisee yhdeksän kpl n/3-kokoisia osaongelmia rekursiivisesti ja yhdistää niiden ratkaisut neliöllisessä (O(n²)) ajassa.

Mikä on kunkin algoritmin aikakompleksisuus asymptoottisen kertaluokan tarkkuudella, ja mikä algoritmeista on tämän perusteella tehokkain? (6 p.)

3. Merkkijonon A = a₁a₂...a_m alijono syntyy poistamalla siitä nolla tai useampia merkkejä a_i. Jonojen pisin yhteinen alijono on jokin mahdollisimman pitkä niille yhteinen alijono. Esimerkiksi "aula" on merkkijonojen "kaatuilla" ja "naulita" pisin yhteinen alijono. Halutaan laskea jonojen A = a₁a₂...a_m ja B = b₁b₂...b_n pisimmän yhteisen alijonon pituus; merkitään sitä L(m, n). Sen arvo voidaan laskea seuraavilla, jonojen A ja B alkuosille A_i = a₁a₂...a_i (0 ≤ i ≤ m) ja B_j = b₁b₂...b_j (0 ≤ j ≤ n) johdettavissa olevilla palautuskaavoilla:

$$L(i,j) = 0$$
, kun $i = 0$ tai $j = 0$. Muulloin . . .
 $L(i,j) = L(i-1,j-1) + 1$, jos $a_i = b_j$, ja muuten
 $L(i,j) = \max\{L(i-1,j), L(i,j-1)\}$.

Esitä polynomisessa ajassa toimiva algoritmi jonojen A ja B pisimmän yhteisen alijonon pituuden L(m, n) laskemiseksi, ja arvioi sen aikakompleksisuus. (6 p.)

- 4. Selitä lyhyesti mutta täsmällisesti
 - (a) prioriteettijono
 - (b) polynominen palautus
 - (c) branch-and-bound
 - (d) ←approksimointialgoritmi (6 p.)

- 5. Valitse, mihin seuraavista luokista kukin allaolevista väitteistä sijoittuu:
 - K: Kyllä, väite pitää paikkansa;
 - LK: Luultasti kyllä ei ole todistettu, mutta yleisesti oletetaan näin olevan;
 - LE: Luultavasti ei tätä ei ole kumottu, mutta yleisesti oletetaan, ettei näin ole; E: Ei, väite ei pidä paikkaansa.
 - (a) Jokin luokan \mathcal{NP} ongelma ratkeaa polynomisessa ajassa.
 - (b) Jokainen NP-täydellinen ongelma vaatii pahimmassa tapauksessa ylipolynomisen ratkaisuajan.
 - (c) Jokainen luokan P ongelma ratkeaa polynomisessa ajassa.
 - (d) Jokin NP-täydellinen ongelma ratkeaa polynomisessa ajassa.
 - (e) Jos P = NP, jokainen NP-täydellinen ongelma vaatii pahimmassa tapauksessa ylipolynomisen ratkaisuajan.
 - (f) Jos jokin NP-täydellinen ongelma ratkeaa polynomisessa ajassa, niin P = NP.

(6 p.)

(Yht. max. 30 p.)