Harmonic Analysis

Ikhan Choi

September 16, 2024

Contents

Ι	Singular integral operators	2
1		3 3 4 4 5 5
2	Littlewood-Paley theory 2.1 Littlewood-Paley decomposition	6 6
3	Almost orthogonality 3.1 Coltar lemma	7 7 7
II	Oscillatory integral operators	8
4	Oscillatory integrals	9
5	Foureir restriction	11
6		12
II	Pseudo-differential operators	13
7	Pseudo-differential calculus 7.1	14 14
8	Semiclassical analysis8.1 Heisenberg group8.2 Phase space transforms	18 19 19
9	Microlocal analysis	20

Part I Singular integral operators

Calderón-Zygmund theory

1.1 Convolution type operators

1.1 (Calderón-Zygmund decomposition).

1.2 (Calderón-Zygmund decomposition of sets). Let $f \in L^1(\mathbb{R}^d)$. Let $E_n f$ be the conditional expectation with repect to the σ -algebra generated by dyadic cubes with side length 2^{-n} . Let $Mf := \sup_n E_n |f|$ be the maximal function, and let $\Omega := \{x : Mf(x) > \lambda\}$ for fixed $\lambda > 0$. For $x \in \Omega$ let Q_x be the maximal dyadic cube such that $x \in Q_x$ and

$$\frac{1}{|Q_x|} \int_{Q_x} |f| > \lambda.$$

- (a) $\{Q_x : x \in \Omega\}$ is a countable partition of Ω .
- (b) We have an weak type estimate $|\Omega| \leq \frac{1}{\lambda} ||f||_{L^1}$.
- (c) $||f||_{L^{\infty}(\mathbb{R}^d\setminus\Omega)} \leq \lambda$.
- (d) For $x \in \Omega$

$$\frac{1}{|Q_x|} \int_{Q_x} |f| \le 2^d \lambda.$$

1.3 (Calderón-Zygmund decomposition of functions). For $f \in L^1(\mathbb{R}^d)$ and $\lambda > 0$, let $\Omega := \{x : Mf(x) > \lambda\}$.

Depending on $\lambda > 0$, let

$$g(x) := \begin{cases} |f(x)| & \text{if } Mf(x) \le \lambda \\ \frac{1}{|Q_x|} \int_{Q_x} |f| & \text{if } Mf(x) > \lambda \end{cases}$$

and $b_i := (|f| - g)\chi_{Q_i}$ so that |f| = g + b where $b = \sum_i b_i$.

- (a) $||g||_{L^1} = ||f||_{L^1}$ and $||g||_{L^\infty} \lesssim \lambda$.
- (b) $||b||_{L^1} \le 2||f||_{L^1}$ and $\int b_i = 0$.

 \square

1.4 (L^p boundedness of Calderón-Zygmund operators). Let $T: \mathcal{D}(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d)$ be a singular integral operator of convolution type in the sense that there is $K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\}) \cap \mathcal{D}'(\mathbb{R}^d)$ such that Tf = K * f for all $f \in \mathcal{D}(\mathbb{R}^d)$. We usually say a singular integral operator is *Calderón-Zygmund* if we can show the boundedness in L^p by the Calderón-Zygmund decomposition or its modification. Consider the following two conditions.

(i) T is L^2 -bounded: we have

$$||Tf||_{L^2} \lesssim ||f||_{L^2},$$

(ii) T satisfies the Hörmander condition: we have

$$\int_{|x|>2|y|} |K(x-y)-K(x)| dx \lesssim 1, \qquad y>0.$$

Let $f = g + b = g + \sum_i b_i$ be the Calderón-Zygmund decomposition at $\lambda > 0$, and let $\Omega^* := \bigcup_i Q_i^*$ where Q_i^* is the cube with the same center as Q_i and whose sides are $2\sqrt{d}$ times longer.

(a) The Hörmander condition implies

$$|\{x: |Tb(x)| > \frac{\lambda}{2}\} \setminus \Omega^*| \lesssim_d \frac{1}{\lambda} ||f||_{L^1}.$$

(b)

Proof. Using the Chebyshev inequality and the Hölder inequality, the L^2 -boundedness of T implies

$$|\{x: |Tg(x)| > \frac{\lambda}{2}\}| \leq \frac{4}{\lambda^2} ||Tg||_{L^2(\mathbb{R}^d)}^2 \lesssim \frac{4}{\lambda^2} ||g||_{L^2(\mathbb{R}^d)}^2 \leq \frac{4}{\lambda^2} ||g||_{L^1(\mathbb{R}^d)} ||g||_{L^{\infty}(\mathbb{R}^d)} \leq \frac{4}{\lambda} ||f||_{L^1(\mathbb{R}^d)}.$$

Write

$$|\{x:|T\,b(x)|>\tfrac{\lambda}{2}\}\setminus\Omega^*|\leq \frac{2}{\lambda}\int_{\mathbb{R}^d\setminus\Omega^*}|T\,b(x)|\,dx\leq \frac{2}{\lambda}\sum_i\int_{\mathbb{R}^d\setminus Q_i^*}|T\,b_i(x)|\,dx.$$

Since $x \in \mathbb{R}^d \setminus Q_i^*$ does not belong to supp $b_i \subset Q_i$ and $\int b_i = 0$, we have

$$Tb_{i}(x) = \int_{Q_{i}} K(x - y)b_{i}(y) dy = \int_{Q_{i}} [K(x - y) - K(x)]b_{i}(y) dy,$$

and

$$\int_{\mathbb{R}^d \setminus Q_i^*} |T b_i(x)| \, dx = \int_{Q_i} |b_i(y)| \int_{\mathbb{R}^d \setminus Q_i^*} |K(x-y) - K(x)| \, dx \, dy \lesssim ||b_i||_{L^1}.$$

(We need to show it is valid even though b_i is not smooth)

(c)

1.5 (Hölder boundedness of Calderón-Zygmund operators).

1.2 Truncated integrals

Let E be a Banach space with a specified predual. Let T_n be a bounded sequence in L(E). The point-weak* topology on on L(E) is complete on the closed unit ball. The point-a.e. convergence in $L(E_0, E)$ is stronger, where E_0 is a dense subspace of E. Thus, if we show $T_n \to T$ in point-a.e. in $L(E_0, E)$, then $T \in L(E)$.

Homogeneous kernels

1.3 Hilbert transform

1.6 (Harmonic conjugate).

1.7 (Kernel representation).

1.8 (Fourier series in L^p space).

1.4 A_p weights

1.5 Bounded mean oscillation

Exercises

1.9 (Size and cancellation condition). Let $K \in L^1_{loc}(\mathbb{R}^d \setminus \{0\}) \cap \mathcal{D}'(\mathbb{R}^d)$. We say the condition $|K(x)| \lesssim |x|^{-d}$ for $x \neq 0$ as the *size condition*, and say the condition $\int_{r < |x| < R} K(x) \, dx = 0$ for all $0 < r < R < \infty$ as the *cancellation condition*. If K satisfies the size, cancellation, and Hörmander condition, then it is L^2 bounded, hence Calderón-Zygmund.

1.10 (Gradient size condition). Let $|\nabla K(x)| \lesssim |x|^{-d-1}$ for $x \neq 0$. Then, convolution with K is a Calderón-Zygmund operator.

1.11 (Riesz potential).

Littlewood-Paley theory

- 2.1 Littlewood-Paley decomposition
- 2.2 Multiplier theorems

Almost orthogonality

Carleson measures, paraproducts

- 3.1 Coltar lemma
- **3.2** T(1) theorem

Part II Oscillatory integral operators

Oscillatory integrals

4.1 (Justification of oscillatory integral). For a function ϕ with fast growth toward infinity, we want to define a linear functional I_{ϕ} such that

$$I_{\phi}(a) := \int_{\mathbb{R}^d} e^{i\phi(x)} a(x) dx, \qquad a \in \mathcal{S}(\mathbb{R}^d).$$

A linear functional of the above form is called the *oscillatory integral* with *phase function* ϕ . As a notation, we will use the above integral in the right-hand side to denote the value of I_{ϕ} even for $a \notin L^1(\mathbb{R}^d)$. Then, we have pointwise justifications for integral calculus.

- (a) $I_{\phi}: A_{\delta}^{m}(\mathbb{R}^{d}) \to \mathbb{C}$ is well-defined and continuous, if ϕ .
- (b) The change of variables is justified as follows:
- (c) The integral by parts is justified as follows:

$$\int_{\mathbb{R}^d} e^{i\phi(y)} i\partial \phi(y) a(x+y) dy = -\int_{\mathbb{R}^d} e^{i\phi(y)} \partial a(x+y) dy, \quad x \in \mathbb{R}^d, \ a \in A^m_{\delta}(\mathbb{R}^d).$$

- (d) The Fubini theorem is justified as follows:
- (e) The Fourier inversion is justified as follows:

$$a(x) = (2\pi)^{-d} \int_{\mathbb{R}^{2d}} e^{i(x-y)\xi} a(y) \, dy \, d\xi, \quad x \in \mathbb{R}^d, \ a \in A^m_{\delta}(\mathbb{R}^d).$$

Proof. (a) Note that $A^m_{\delta}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ is dense in $A^m_{\delta}(\mathbb{R}^d)$. The most difficult part is the construction and the computation of L and its transpose.

(e) Note that the function
$$(y, \xi) \mapsto a(y)$$
 belongs to $A_{\delta}^{m'}(\mathbb{R}^{2d})$ since

4.2 (Point evaluation of multiplier). Let $\phi \in$ be a phase function. We want to show the following point evaluation holds with previously justified oscillatory integral:

$$\Phi(D)a(x) = (2\pi)^{-d} \int_{\mathbb{R}^d} e^{i\phi(y)} a(x+y) \, dy, \qquad x \in \mathbb{R}^d, \ a \in A^m_{\delta}(\mathbb{R}^d),$$

where $\Phi := \mathcal{F}^* e^{i\phi}$. Which condition for ϕ makes Φ be able to act on \mathcal{S}' by multiplication?

4.3 (Stationary phase approximation).

4.4 (Van der Corput lemma).

Dispersive equations and strichartz estimates

Exercises

4.5 (Fresnel phase). We compute L with a specific example

Proof.

$$(1+xQ^{-1}D)e^{\frac{i}{2}xQx} = \langle x \rangle^2 e^{\frac{i}{2}xQx}.$$

The transpose of $\langle x \rangle^{-2} (1 + xQ^{-1}D)$ is $\langle x \rangle^{-2} (1 + di - 2ix^2 - xD)$ for Q = I.

Note that $\langle x \rangle^{-2n} \langle D \rangle^{2n}$ is self-adjoint.

Let Q be a non-degenerate symmetric bilinear form on \mathbb{R}^d . Consider a multiplier operator $e^{\frac{i}{2}DQD}$: $\mathcal{S} \to \mathcal{S}$ such that

$$e^{\frac{i}{2}DQD}a(x) := \mathcal{F}^* e^{\frac{i}{2}\xi Q\xi} \mathcal{F}a(x).$$

(a) The pointwise evaluation is given by the oscillatory integral.

$$e^{\frac{i}{2}DQD}a(x) = (2\pi)^{-d} \frac{e^{\frac{i\pi}{4}} \operatorname{sgn}(Q)}{|\det Q|^{\frac{1}{2}}} \int_{\mathbb{R}^d} e^{-\frac{i}{2}yQ^{-1}y} a(x+y) \, dy, \qquad x \in \mathbb{R}^d, \ a \in A^m_{\delta}.$$

(b)
$$e^{\frac{i}{2}DQD}a(x) = \sum_{k=0}^{n} \frac{i^{k}}{2^{k}k!} (DQD)^{k}a(x) + r_{n}(x)$$

Foureir restriction

Kakeya Bochner-Riesz Geometric measure theory

Part III Pseudo-differential operators

Pseudo-differential calculus

7.1

7.1 (Hörmander symbol classes). Let $m, \rho, \delta \in \mathbb{R}$. The Hörmander class $S^m_{\rho, \delta}(\mathbb{R}^{2d})$ of symbols is the set of smooth functions $a \in C^{\infty}(\mathbb{R}^d_x \times \mathbb{R}^d_{\varepsilon})$ such that

$$|\partial_x^{\alpha}\partial_{\varepsilon}^{\beta}a(x,\xi)| \lesssim_{\alpha,\beta} \langle \xi \rangle^{m+\delta|\alpha|-\rho|\beta|}$$

for each $\alpha, \beta \in \mathbb{Z}_{\geq 0}^d$.

(a) Fréchet space

7.2 (Asymptotic expansion). Let $\rho, \delta \in \mathbb{R}$. Let $a_k \in S_{\rho,\delta}^{m_k}(\mathbb{R}^{2d})$ for a sequence $(m_k)_{k=0}^{\infty} \subset \mathbb{R}$ with m_0 and $m_k \downarrow -\infty$. We want to construct $a \in S_{\rho,\delta}^{m_0}(\mathbb{R}^{2d})$ such that

$$a - \sum_{k=0}^{n-1} a_k \in S^{m_n}_{\rho,\delta}(\mathbb{R}^{2d}). \tag{\dagger}$$

The symbol a_0 is called the *principal symbol* of a, or the operator $Op^t(a)$.

Let $\chi \in C_c^\infty(\mathbb{R}^d_\xi,[0,1])$ be a cutoff function such that

$$\chi(\xi) = \begin{cases} 1, & \text{if } |\xi| \le 1\\ 0, & \text{if } |\xi| \ge 2 \end{cases}.$$

- (a) If $a \in S^m_{\rho,\delta}$, then $\chi(\varepsilon\xi)a(x,\xi)$ is uniformly bounded in $S^m_{\rho,\delta}$ for $\varepsilon \in (0,1)$ if $\rho \le 1$.
- (b) There is $a \in S_{\rho,\delta}^{m_0}$ such that (†) if $\rho \leq 1$.

Proof. (a) On the support of $\xi \mapsto \chi(\varepsilon \xi)$ holds $\langle \xi \rangle < 2|\xi| \le 4\varepsilon^{-1}$ because $1 < \varepsilon^{-1}$, so for each $\alpha, \beta \in \mathbb{Z}_{\geq 0}^d$ we have

$$\begin{split} |\partial_{x}^{\alpha}\partial_{\xi}^{\beta}(\chi(\varepsilon\xi)a(x,\xi))| &= |\sum_{\tau}\binom{\beta}{\tau}\partial_{\xi}^{\beta-\tau}(\chi(\varepsilon\xi))\partial_{x}^{\alpha}\partial_{\xi}^{\tau}a(x,\xi)| \\ &= |\sum_{\tau}\binom{\beta}{\tau}\varepsilon^{|\beta|-|\tau|}\partial_{\xi}^{\beta-\tau}\chi(\varepsilon\xi)\partial_{x}^{\alpha}\partial_{\xi}^{\tau}a(x,\xi)| \\ &(\because \langle \xi \rangle \leq 4\varepsilon^{-1}) \quad \leq \sum_{\tau}\binom{\beta}{\tau}(4\langle \xi \rangle^{-1})^{|\beta|-|\tau|}|\partial_{\xi}^{\beta-\tau}\chi(\varepsilon\xi)||\partial_{x}^{\alpha}\partial_{\xi}^{\tau}a(x,\xi)| \\ &\lesssim \sum_{\tau}\binom{\beta}{\tau}\langle \xi \rangle^{-(|\beta|-|\tau|)}\langle \xi \rangle^{m+\delta|\alpha|-\rho|\tau|} \\ &(\because \rho \leq 1) \quad \leq \langle \xi \rangle^{m+\delta|\alpha|-\rho|\beta|}. \end{split}$$

(b) Because we have $\varepsilon^{-1} \leq \langle \xi \rangle$ on the support of $1 - \chi(\varepsilon \xi)$, for each k we can take a sequence ε_k small enough such that

$$\max_{\substack{\alpha,\beta\in\mathbb{Z}_{\geq 0}^d\\|\alpha|+|\beta|\leq k}}|\partial_x^{\alpha}\partial_\xi^{\beta}((1-\chi(\varepsilon_k\xi))a_k(x,\xi))|\leq 2^{-k}\langle\xi\rangle^{m_k+1+\delta|\alpha|-\rho|\beta|}.$$

We may assume $\varepsilon_k \downarrow 0$ so that the following sum is locally finite:

$$a(x,\xi) := \sum_{k=0}^{\infty} (1 - \chi(\varepsilon_k \xi)) a_k(x,\xi).$$

If we choose *n* such that $m_0 \ge m_n + 1$, then in the expansion

$$a(x,\xi) = \sum_{k=0}^{n-1} (1 - \chi(\varepsilon_k \xi)) a_k(x,\xi) + \sum_{k=n}^{\infty} (1 - \chi(\varepsilon_k \xi)) a_k(x,\xi)$$

the first sum clearly belongs to $S_{\rho,\delta}^{m_0}$ and so is the second sum because

$$\begin{split} |\partial_x^{\alpha} \partial_{\xi}^{\beta} \sum_{k=n}^{\infty} (1 - \chi(\varepsilon_k \xi)) a_k(x, \xi)| &\leq \sum_{k=n}^{\infty} 2^{-k} \langle \xi \rangle^{m_{k+1} + 1 + \delta |\alpha| - \rho |\beta|} \\ &\leq \langle \xi \rangle^{m_n + 1 + \delta |\alpha| - \rho |\beta|} \\ &\leq \langle \xi \rangle^{m_0 + \delta |\alpha| - \rho |\beta|} \end{split}$$

for every $\alpha, \beta \in \mathbb{Z}_{\geq 0}^d$. Therefore, $a \in S_{\rho, \delta}^{m_0}$.

Write

$$(a-\sum_{k=0}^{n-1}a_k)(x,\xi)=\sum_{k=0}^{n-1}\chi(\varepsilon_k\xi)a_k(x,\xi)+\sum_{k=n}^{\infty}(1-\chi(\varepsilon_k\xi))a_k(x,\xi).$$

The first sum belongs to $S^{-\infty}$ because it is compactly supported, and we can also show that the second sum belongs to $S^{m_n}_{\rho,\delta}$ by decomposing with n' such that $m_n \ge m'_n + 1$ and by considering the multiplication with a cutoff remains in the same symbol class.

7.3 (Quantization). For a symbol a defined on \mathbb{R}^{2d} and $t \in [0,1]$, we want to define a pseudo-differential operator $\operatorname{Op}^t(a)$ such that

$$\operatorname{Op}^{t}(a)f(x) := (2\pi)^{-d} \int_{\mathbb{R}^{2d}} e^{i(x-y)\xi} a((1-t)x + ty, \xi)f(y) \, dy \, d\xi, \qquad f \in \mathcal{S}(\mathbb{R}^{d}).$$

The operator $\operatorname{Op}^t(a)$ is the *t*-quantization of the symbol a. The analysis of *t*-quantizations is sometimes called the *Kohn-Nirenberg calculus* for t=0, the *Weyl calculus* for $t=\frac{1}{2}$.

- (a) $\operatorname{Op}^0(a): \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ is well-defined and continuous, if $a \in \mathcal{S}'(\mathbb{R}^2 d)$.
- (b) $\operatorname{Op}^0(a): \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$ is well-defined and continuous, if $a \in S^m_{\rho,\delta}(\mathbb{R}^{2d})$ for $\delta \leq 1$.

Proof. (b) For $\psi = e^{ih(kx-\omega t)}$, $H = i\partial_t$, $D = -i\partial_x$ (we have $\xi = (\operatorname{Ad}\mathcal{F})D$),

Since $\langle D_v \rangle^2$ is a self-adjoint partial differential operator, for any $n \in \mathbb{Z}_{\geq 0}$ we have

$$\operatorname{Op^{0}}(a)f(x) = (2\pi)^{-d} \int_{\mathbb{R}^{2d}} e^{i(x-y)\xi} a(x,\xi) f(y) \, dy \, d\xi$$

$$(\because D_{y}e^{i(x-y)\xi} = -\xi e^{i(x-y)\xi}) = (2\pi)^{-d} \int_{\mathbb{R}^{2d}} \langle \xi \rangle^{-2n} \langle D_{y} \rangle^{2n} e^{i(x-y)\xi} a(x,\xi) f(y) \, dy \, d\xi$$

$$(\because \operatorname{IBP}) = (2\pi)^{-d} \int_{\mathbb{R}^{2d}} e^{i(x-y)\xi} \langle \xi \rangle^{-2n} a(x,\xi) \langle D_{y} \rangle^{2n} f(y) \, dy \, d\xi.$$

The derivatives of the integrand is integrable with respect to ξ for a sufficiently large n with $m + |\beta| - 2n < -d$ because

$$\begin{split} |\partial_{x}^{\beta}(e^{i(x-y)\xi}\langle\xi\rangle^{-2n}a(x,\xi)\langle D_{y}\rangle^{2n}f(y))| \\ &=|\sum_{\tau}\binom{\beta}{\tau}(i\xi)^{\beta-\tau}e^{i(x-y)\xi}\langle\xi\rangle^{-2n}\partial_{x}^{\tau}a(x,\xi)\langle D_{y}\rangle^{2n}f(y)| \\ &\leq \sum_{\tau}\binom{\beta}{\tau}\langle\xi\rangle^{|\beta|-|\tau|}\langle\xi\rangle^{-2n}|\partial_{x}^{\tau}a(x,\xi)||\langle D_{y}\rangle^{2n}f(y)| \\ &(\because a\in S_{\rho,\delta}^{m}) \quad \lesssim \sum_{\tau}\binom{\beta}{\tau}\langle\xi\rangle^{|\beta|-|\tau|}\langle\xi\rangle^{-2n}\langle\xi\rangle^{m+\delta|\tau|}|\langle D_{y}\rangle^{2n}f(y)| \\ &(\because \delta\leq 1) \quad \lesssim \langle\xi\rangle^{m+|\beta|-2n}|\langle D_{y}\rangle^{2n}f(y)|, \end{split}$$

so the partial derivative ∂_x commutes with the integral. Since

$$x^{\alpha}e^{i(x-y)\xi} = (y+D_{\xi})^{\alpha}e^{i(x-y)\xi} = \sum_{\sigma} {\alpha \choose \sigma} y^{\alpha-\sigma}D_{\xi}^{\sigma}e^{i(x-y)\xi},$$

we have an expansion

$$\begin{split} x^{\alpha}\partial_{x}^{\beta}\operatorname{Op^{0}}(a)f(x) &= x^{\alpha}\partial_{x}^{\beta}\int_{\mathbb{R}^{2d}}e^{i(x-y)\xi}\langle\xi\rangle^{-2n}a(x,\xi)\langle D_{y}\rangle^{2n}f(y))\,dy\,d\xi\\ &= \int_{\mathbb{R}^{2d}}x^{\alpha}\partial_{x}^{\beta}(e^{i(x-y)\xi}\langle\xi\rangle^{-2n}a(x,\xi)\langle D_{y}\rangle^{2n}f(y))\,dy\,d\xi\\ &= \int_{\mathbb{R}^{2d}}\sum_{\sigma,\tau}\binom{\alpha}{\sigma}\binom{\beta}{\tau}y^{\alpha-\sigma}D_{\xi}^{\sigma}e^{i(x-y)\xi}(i\xi)^{\beta-\tau}\langle\xi\rangle^{-2n}\partial_{x}^{\tau}a(x,\xi)\langle D_{y}\rangle^{2n}f(y)\,dy\,d\xi\\ &= \int_{\mathbb{R}^{2d}}\sum_{\sigma,\tau}\binom{\alpha}{\sigma}\binom{\beta}{\tau}e^{i(x-y)\xi}(-D_{\xi})^{\sigma}[(i\xi)^{\beta-\tau}\langle\xi\rangle^{-2n}\partial_{x}^{\tau}a(x,\xi)]y^{\alpha-\sigma}\langle D_{y}\rangle^{2n}f(y)\,dy\,d\xi. \end{split}$$

Here

$$\sup_{x \in \mathbb{R}^d} |(-D_{\xi})^{\sigma} [(i\xi)^{\beta-\tau} \langle \xi \rangle^{-2n} \partial_x^{\tau} a(x,\xi)]|$$

is integrable with respect to ξ for sufficiently large n, so with this n we have

$$\sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial_x^{\beta} \operatorname{Op}^0(a) f(x)| \lesssim \sum_{\alpha \leq \alpha} \sup_{y \in \mathbb{R}^d} |y^{\alpha - \sigma} \langle D_y \rangle^{2n} f(y)|$$

for each $\alpha, \beta \in \mathbb{Z}^d_{\geq 0}$ and all $f \in \mathcal{S}(\mathbb{R}^d)$, which implies $\operatorname{Op}^0(a) f \in \mathcal{S}(\mathbb{R}^d)$.

7.4 (Change of quantization). Let $m \in \mathbb{R}$, .

- (a) $\operatorname{Op}^t(a) = \operatorname{Op}^0(e^{itD_xD_{\xi}}a)$. In particular, since $M_{e^{itx\xi}}: \mathcal{S}(\mathbb{R}^{2d}) \to \mathcal{S}(\mathbb{R}^{2d})$, $\operatorname{Op}^t(a): \mathcal{S}(\mathbb{R}^{2d}) \to \mathcal{S}(\mathbb{R}^{2d})$ is well-defined and continuous.
- (b) $a \in S^m_{\rho,\delta}(\mathbb{R}^{2d})$ if and only if $e^{itD_xD_\xi}a \in S^m_{\rho,\delta}(\mathbb{R}^{2d})$, if $0 \le \delta \le \rho \le 1$ and $\delta < 1$.
- (c) We have the formal adjoint

$$\operatorname{Op}^{t}(a)^{*} = \operatorname{Op}^{1-t}(\overline{a}).$$

In particular, $\operatorname{Op}^t(a): \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ is well-defined and continuous for $a \in S^m_{\rho,\delta}(\mathbb{R}^{2d})$.

Proof. (a) Note that

$$\begin{aligned} \operatorname{Op}^{t}(a)f(x) &= (2\pi)^{-d} \int_{\mathbb{R}^{2d}} e^{i(x-y)\xi} a((1-t)x + ty, \xi) f(y) \, dy \, d\xi \\ &(\because \operatorname{Inversion on } \mathbb{R}^{2d}) &= (2\pi)^{-3d} \int_{\mathbb{R}^{4d}} e^{i(x-y)\xi} e^{i((1-t)x + ty)x^* + i\xi\xi^*} \widehat{a}(x^*, \xi^*) f(y) \, dx^* \, d\xi^* \, dy \, d\xi \\ &= (2\pi)^{-3d} \int_{\mathbb{R}^{4d}} e^{i(x-y + \xi^*)\xi} \widehat{a}(x^*, \xi^*) e^{i((1-t)x + ty)x^*} f(y) \, dx^* \, d\xi^* \, dy \, d\xi \end{aligned} \\ &(\because \operatorname{Inversion on } \mathbb{R}^d) &= -(2\pi)^{-2d} \int_{\mathbb{R}^{2d}} \widehat{a}(x^*, y - x) e^{i((1-t)x + ty)x^*} f(y) \, dx^* \, dy \end{aligned} \\ &(\because [\xi^*/y - x]) &= -(2\pi)^{-2d} \int_{\mathbb{R}^{2d}} e^{i(x + t\xi^*)x^*} \widehat{a}(x^*, \xi^*) f(x + \xi^*) \, dx^* \, d\xi^*. \end{aligned}$$

(b) We have the oscillatory integral

$$e^{itD_xD_\xi}a(x,\xi) = (2\pi)^{-d}|t|^{-d}\int_{\mathbb{R}^{2d}}e^{-it^{-1}y\eta}a(x+y,\xi+\eta)\,dy\,d\eta.$$

Enough to show

$$\left| \int_{\mathbb{R}^{2d}} e^{-it^{-1}y\eta} a(x+y,\xi+\eta) \, dy \, d\eta \right| \lesssim \langle \xi \rangle^m.$$

Fix ξ and $\delta \leq \rho$

7.5 (Moyal product). Let $a \in S^m_{\rho,\delta}(\mathbb{R}^{2d})$ and $b \in S^l_{\rho,\delta}(\mathbb{R}^{2d})$.

(a) there exists a unique function $a^{\#^t}b \in S^{m+l}_{\rho,\delta}(\mathbb{R}^{2d})$ such that

$$a^{t}(x,D)b^{t}(x,D) = (a\#^{t}b)^{t}(x,D).$$

(b) It is concretely described by

$$(a\#^t b)(x,\xi) = (2\pi)^{-2} \int_{\mathbb{R}^{4d}} e^{-i(y\eta - z\zeta)} a(x+tz,\xi+\eta) b((1-t)y+x,\xi+\zeta) \, dy \, d\eta \, dz \, d\zeta.$$

(c) If $\delta < \rho$, then

$$a^{\#t}b(x,\xi) \sim \sum_{k \in \mathbb{Z}_{>0}} \frac{1}{i^k k!} (\partial_y \partial_\eta - \partial_z \partial_\zeta)^k a((1-t)x + tz, \eta) b(tx + (1-t)y, \zeta) \Big|_{\substack{y=z=x,\\ \eta=\zeta=\xi}}.$$

7.6 (Parametirx and elliptic operators).

7.7 (Calderón-Vaillancourt theorem).

Exercises

Quantization of linera and quadratic exponential symbols.

Semiclassical analysis

We define for h > 0 and $t \in [0, 1]$

$$\operatorname{Op}_{h}^{t}(a)f(x) := (2\pi h)^{-d} \int_{\mathbb{R}^{2d}} e^{\frac{i}{h}(x-y)\xi} a((1-t)x + ty, \xi) f(y) \, dy \, d\xi, \qquad f \in \mathcal{S}(\mathbb{R}^{d}).$$

$$Op_h^w(D_x a) = [D_x, Op_h^w(a)], \qquad Op_h^w(hD_{\xi}a) = -[x, Op_h^w(a)].$$

For example, regardless of h > 0 and $t \in [0, 1]$,

$$Op(\xi)\psi(x) = hD\psi(x) = -ih\psi'(x)$$

and

$$Op(H)\psi(x) = -\frac{h^2}{2m}\Delta\psi(x) + V(x)\psi(x),$$

where

$$H(x,\xi) := \frac{|\xi|^2}{2m} + V(x).$$

In physics, the operator Op(H) is frequently written as \hat{H} , which will not be used to avoid the confusion regarding the Fourier transform.

$$\frac{d}{dt}a(t) = \{a(t), H\} = X_H a(t)$$

$$\frac{d}{dt}\hat{a}(t) = \frac{d}{dt}e^{\frac{i}{\hbar}t\hat{H}}\hat{a}e^{-\frac{i}{\hbar}t\hat{H}} = -\frac{i}{\hbar}[\hat{a}(t), \hat{H}]$$

Let $J: \mathbb{R}^{2d} \to \mathbb{R}^{2d}: (x,\xi) \mapsto (\xi,-x)$ be a symplectomorphism, the rotation of $\frac{\pi}{2}$ in *clock-wise*. Then,

$$\mathcal{F}_h^* \operatorname{Op}_h^w(a) \mathcal{F}_h = \operatorname{Op}_h^w(J^*a).$$

Also,

we have

$$[Op_h^w(a), Op_h^w(b)] = Op_h^w(-ih\{a, b\}) + O(h^2).$$

Since the Weyl quantization has a bound

$$\|\operatorname{Op}_{h}^{w}(a)\|_{B(L^{2}(\mathbb{R}^{d}))} \lesssim \|a\|_{C_{b}(\mathbb{R}^{2d})} + O(h^{\frac{1}{2}}), \quad a \in C_{b}(\mathbb{R}^{2d}) \cap S_{\rho,\delta}^{m}(\mathbb{R}^{2d}),$$

for a bounded net $f_h \in L^2(\mathbb{R}^d)$, the positive linear functional $C_0(\mathbb{R}^{2d})$ defined by

$$a \mapsto \langle \operatorname{Op}_h^w(a) f_h, f_h \rangle, \qquad a \in C_0(\mathbb{R}^{2d}) \cap S_{\rho, \delta}^m(\mathbb{R}^{2d})$$

has a limit point in the weak* topology. If a finite Radon measure μ on \mathbb{R}^{2d} is a limit, then μ is called a *semicalssical defect* of the net f_h .

Let p be a symbol such that $|p(x,\xi)| \gtrsim \langle \xi \rangle^k$ for sufficiently large $|\xi|$. This symbol has an interpretation of the Hamiltonian. Suppose the following two conditions are satisfied:

$$\lim_{h\to 0}\|\operatorname{Op}_h^w(p)f_h\|_{L^2(\mathbb{R}^d)}=0, \qquad \|f_h\|_{L^2(\mathbb{R}^d)}=1.$$

Then, the support of any semicalssical defect measure μ is contained in $p^{-1}(0)$, called the *characteristic variety* or the *zero energy surface* of the symbol p. We can understand this support restriction as saying that in the semiclassical limit $h \to 0$ all the mass of solution coalesces onto a specific set in phase space. Also we have the flow invariance $\{p,\mu\}=0$, i.e. $\int_{\mathbb{R}^{2d}} \{p,a\} d\mu=0$ for all $a\in\mathcal{D}(\mathbb{R}^{2d})$, which means that μ is invariant under the Hamiltonian flow generated by p.

8.1 Heisenberg group

8.2 Phase space transforms

Microlocal analysis