

Models

- Israel Group Revach (ETHZ), Shlezinger (BGU), Eldar (Weizmann)
 - KalmanNet (IEEE TSP 2022)
 - RTSNet (IEEE TSP 2023)
- KTH Group
 - DANSE: Data-Driven Non-Linear State Estimation of Model-Free Process in Unsupervised Learning Setup
 IEEE TSP 2024
- North-Eastern Group
 - Hybrid Neural Network Augmented Physics-based Models for Nonlinear Filtering International Conference on Information Fusion (2022)

Lorentz Attractor

Figure 2.2: Lorenz attractor generated with $\Delta \tau = 10^{-5}$ and J = 5.

Differential Equation

A general form of a deterministic differential equation is

$$\dot{\mathbf{x}}_{\tau} = \frac{\mathrm{d}}{\mathrm{d}\tau} \mathbf{x}_{\tau} = \mathbf{A} \cdot \mathbf{x}_{\tau} \tag{2.4}$$

Solution

The solution of (2.4), can be used to characterize a linear state evolution in a discrete-time interval $\Delta \tau$. More specifically, the extrapolation of \mathbf{x} in from time τ to time $\tau + \Delta \tau$ is given by:

$$\mathbf{x}_{\tau+\Delta\tau} = \mathbf{F}_{\Delta\tau} \cdot \mathbf{x}_{\tau}, \quad \mathbf{F}_{\Delta\tau} = \exp\left(\mathbf{A} \cdot \Delta\tau\right).$$
 (2.5)

Here, $\mathbf{F}_{\Delta\tau}$ is the volution matrix that is given as an infinite *Taylor* expansion, namely

$$\exp\left(\mathbf{A}\cdot\Delta\tau\right) \triangleq \sum_{k=0}^{J} \mathbf{A} \cdot \frac{\Delta\tau^{k}}{k!}, \quad J \to \infty.$$
 (2.6)

While there are cases, i.e., forms of A matrix, in which the evolution can be accurately described as a finite Taylor expansion, it does not hold in general. Therefore in these cases, one should use a finite approximation with sufficiently large J.

Lorentz System

The continuous-time state vector \mathbf{x}_{τ} captures the chaotic movement of a single particle through three-dimensional space.

Here, the continuous-time state vector \mathbf{x}_{τ} describes the chaotic movement of a single particle in a three-dimensional space. The dynamic forces governing the particle's chaotic motion are encapsulated by the system dynamics matrix

$$\mathbf{A}\left(\mathbf{x}_{\tau}\right) = \begin{pmatrix} -10 & 10 & 0\\ 28 & -1 & -\mathbf{x}_{1,\tau}\\ 0 & \mathbf{x}_{1,\tau} & -\frac{8}{3} \end{pmatrix}. \tag{2.17}$$

This matrix's nonlinearity is underscored by its state dependence, particularly on $x_{1,\tau}$, showcasing the system's complexity.

Sampling Mismatch – Testing Data

- 10 Trajectories are generated from the decimated data
- Observation noise $r^2 = 0[dB]$.
- Files:
 - RTSNet_TSP/Simulations/Lorenz_Atractor/data/decimation at master KalmanNet/RTSNet_TSP GitHub
 - RTSNet_TSP/main_lor_decimation.py at master · KalmanNet/RTSNet_TSP · GitHub

Results (RTSNet TSP)

Fig. 8. Lorenz attractor with sampling mismatch (decimation), T = 3000.

 $\begin{tabular}{ll} TABLE\ VIII\\ MSE[dB]\ -\ LORENZ\ ATTRACTOR\ WITH\ SAMPLING\ MISMATCH \\ \end{tabular}$

Noise	Extended KF (EKF)	PF	KalmanNet	EKS	PS	BRNN	GNN-BP	RTSNet-1	RTSNet-2
-0.024	-6.316	-5.333	-11.106	-10.075	-7.222	-2.342	-16.479	-15.436	-16.803
± 0.049	± 0.135	± 0.136	± 0.224	± 0.191	± 0.202	± 0.092	± 0.352	± 0.329	± 0.301