- Lemma 4.19:
 - Well-defined: show that $\lambda_1 \simeq \lambda_2 \Longrightarrow f \circ \lambda_1 \simeq f \circ \lambda_2$ (use definition of $\lambda_1 \simeq \lambda_2$).
 - Homomorphism: use that $f \circ (\lambda * \mu) = (f \circ \lambda) * (f \circ \mu)$.
- **Lemma 4.20**: for loop λ in (X, x_0) , find based homotopy between $f \circ \lambda$ and $g \circ \lambda$ in terms of based homotopy H between f and g.
- **Lemma 4.21**: straightforward, just use the definition of f_* .
- **Corollary 4.22**: use definition of homotopy equivalent based spaces and lemma 4.21, to show the induced homomorphisms of the homotopy equivalences are inverse to each other.
- Theorem 4.23:
 - There is path p from x_0 to x_1 .
 - Let λ loop in X based at x_0 .
 - Define $\overline{p}(s)=p(1-s),$ define loop λ_p in X based at x_1 by

$$\lambda_p(s) = \begin{cases} \overline{p(3s)} & \text{if } s \in [0, 1/3] \\ \lambda(3s - 1) & \text{if } s \in [1/3, 2/3] \\ p(3s - 2) & \text{if } s \in [2/3, 1] \end{cases}$$

• Claim:

$$\Phi_p:\pi_1(X,x_0)\to\pi_1(X,x_1),\quad \Phi([\lambda])=\left[\lambda_p\right]$$

is isomorphism.

• Well-defined: show if λ , μ loops based at x_0 , $\lambda \simeq \mu \Longrightarrow \lambda_p \simeq \mu_p$ by homotopy diagram (merge \overline{p} , λ , p on bottom and \overline{p} , μ , p on top).