Análise de K-Means e KNN: Fundamentos e Aplicações Práticas

Explorando Geometria, Escalabilidade e Impacto Prático em Machine Learning

Bruno Martins Mendes Vieira

Programa de Pós-Graduação em Física Ambiental

27 de Agosto de 2025

Roteiro da Apresentação

- MINN
 - Contexto Histórico do KNN
 - Introdução ao Algoritmo KNN
 - Funcionamento
 - A Geometria das Métricas de Distância
 - Problemas e Variações
 - Resumo
- K-Means: O Algoritmo de Clusterização
 - Visão Geral
 - Como Ocorre
 - Problema Inerentes
 - Métodos e Comparações
 - Resumo
- Estudo de Caso
- 4 Conclusão Final

Roteiro da Apresentação

- KNN
 - Contexto Histórico do KNN
 - Introdução ao Algoritmo KNN
 - Funcionamento
 - A Geometria das Métricas de Distância
 - Problemas e Variações
 - Resumo
- 2 K-Means: O Algoritmo de Clusterização
 - Visão Geral
 - Como Ocorre
 - Problema Inerentes
 - Métodos e Comparações
 - Resumo
- 3 Estudo de Caso
- 4 Conclusão Fina

Introdução ao Contexto Histórico do KNN

• O algoritmo K-Nearest Neighbors (KNN) é um dos métodos mais intuitivos e fundamentais em aprendizado de máquina.

Introdução ao Contexto Histórico do KNN

- O algoritmo K-Nearest Neighbors (KNN) é um dos métodos mais intuitivos e fundamentais em aprendizado de máquina.
- Sua história pode ser dividida em três fases principais:
 - Origem (1951)
 - Formalização e Popularização (1967)
 - Evolução e Otimização (1970 em diante)

A Origem do KNN: Um Projeto Militar Secreto (1951)

 Contexto: Surgiu em um contexto militar, logo após a Segunda Guerra Mundial, diferente de algoritmos acadêmicos tradicionais.

A Origem do KNN: Um Projeto Militar Secreto (1951)

- Contexto: Surgiu em um contexto militar, logo após a Segunda Guerra Mundial, diferente de algoritmos acadêmicos tradicionais.
- Quem: Formulado por Evelyn Fix e Joseph Hodges, estatísticos da Força Aérea dos EUA.
- Onde: Desenvolvido na Escola de Medicina da Aviação da Força Aérea dos EUA.
- O que: Relatório técnico de 1951, "Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties".
 - Propôs um método de classificação não-paramétrico para classificar objetos (ex.: aeronaves amigas ou inimigas) sem suposições sobre a distribuição dos dados.

A Origem do KNN: Um Projeto Militar Secreto (1951)

- Contexto: Surgiu em um contexto militar, logo após a Segunda Guerra Mundial, diferente de algoritmos acadêmicos tradicionais.
- Quem: Formulado por Evelyn Fix e Joseph Hodges, estatísticos da Força Aérea dos EUA.
- Onde: Desenvolvido na Escola de Medicina da Aviação da Força Aérea dos EUA.
- O que: Relatório técnico de 1951, "Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties".
 - Propôs um método de classificação não-paramétrico para classificar objetos (ex.: aeronaves amigas ou inimigas) sem suposições sobre a distribuição dos dados.
- Curiosidade: O trabalho não foi publicado abertamente na época, provavelmente por ser confidencial, permanecendo restrito por mais de uma década.

• **Contexto:** O KNN ganhou notoriedade nos anos 60, entrando no campo acadêmico da ciência da computação e teoria da informação.

- **Contexto:** O KNN ganhou notoriedade nos anos 60, entrando no campo acadêmico da ciência da computação e teoria da informação.
- Quem: Thomas Cover e Peter Hart, da Universidade de Stanford.

- **Contexto:** O KNN ganhou notoriedade nos anos 60, entrando no campo acadêmico da ciência da computação e teoria da informação.
- Quem: Thomas Cover e Peter Hart, da Universidade de Stanford.
- **O que:** Publicaram o artigo "Nearest Neighbor Pattern Classification" em 1967, que foi crucial por:

- **Contexto:** O KNN ganhou notoriedade nos anos 60, entrando no campo acadêmico da ciência da computação e teoria da informação.
- Quem: Thomas Cover e Peter Hart, da Universidade de Stanford.
- **O que:** Publicaram o artigo "Nearest Neighbor Pattern Classification" em 1967, que foi crucial por:
 - Formalizar a regra do vizinho mais próximo (k = 1).

- **Contexto:** O KNN ganhou notoriedade nos anos 60, entrando no campo acadêmico da ciência da computação e teoria da informação.
- Quem: Thomas Cover e Peter Hart, da Universidade de Stanford.
- **O que:** Publicaram o artigo "Nearest Neighbor Pattern Classification" em 1967, que foi crucial por:
 - Formalizar a regra do vizinho mais próximo (k = 1).
 - Provar que a taxa de erro do KNN n\u00e3o \u00e9 pior que o dobro da taxa de erro do classificador de Bayes.

- **Contexto:** O KNN ganhou notoriedade nos anos 60, entrando no campo acadêmico da ciência da computação e teoria da informação.
- Quem: Thomas Cover e Peter Hart, da Universidade de Stanford.
- **O que:** Publicaram o artigo "Nearest Neighbor Pattern Classification" em 1967, que foi crucial por:
 - Formalizar a regra do vizinho mais próximo (k = 1).
 - Provar que a taxa de erro do KNN não é pior que o dobro da taxa de erro do classificador de Bayes.
 - Popularizar o termo "Nearest Neighbor" na comunidade de reconhecimento de padrões e aprendizado de máquina.

• **Contexto:** Após 1967, o KNN tornou-se um algoritmo fundamental, ensinado em cursos de aprendizado de máquina.

- **Contexto:** Após 1967, o KNN tornou-se um algoritmo fundamental, ensinado em cursos de aprendizado de máquina.
- Avanços:

- Contexto: Após 1967, o KNN tornou-se um algoritmo fundamental, ensinado em cursos de aprendizado de máquina.
- Avanços:
 - KNN Ponderado: Introdução de pesos para vizinhos mais próximos.

- Contexto: Após 1967, o KNN tornou-se um algoritmo fundamental, ensinado em cursos de aprendizado de máquina.
- Avanços:
 - KNN Ponderado: Introdução de pesos para vizinhos mais próximos.
 - **Estruturas de dados:** Desenvolvimento de *k-d trees* para buscas mais rápidas em grandes conjuntos de dados.

- **Contexto:** Após 1967, o KNN tornou-se um algoritmo fundamental, ensinado em cursos de aprendizado de máquina.
- Avanços:
 - KNN Ponderado: Introdução de pesos para vizinhos mais próximos.
 - **Estruturas de dados:** Desenvolvimento de *k-d trees* para buscas mais rápidas em grandes conjuntos de dados.
 - Fuzzy KNN: Em 1985, James Keller introduziu uma versão que lida com incertezas na classificação.

Conclusão

- O KNN nasceu como uma solução prática para um problema militar.
- Após um período de obscuridade, foi formalizado e popularizado pela academia.
- Tornou-se um dos algoritmos mais intuitivos e duradouros do aprendizado de máquina.
- Sua simplicidade e flexibilidade continuam a inspirar avanços e aplicações.

O Que é o K-Nearest Neighbors (KNN)?

- Algoritmo Supervisionado: Usado para classificação e regressão.
- Baseado em Instâncias: Não "aprende" um modelo explícito a partir dos dados de treino. Ele memoriza todo o conjunto de treinamento.
- Aprendizagem Preguiçosa (Lazy Learning): Todo o cômputo ocorre no momento da predição, não durante o "treinamento".
- Premissa Central: Pontos de dados semelhantes existem em proximidade uns dos outros. A "semelhança" é medida por uma métrica de distância.

Como o KNN Funciona? (Classificação)

Figura: Diagrama do funcionamento do KNN [ibm_knn_br]

A Escolha Crítica: A Métrica de Distância

A forma como medimos a "proximidade" define a fronteira de decisão do modelo. A escolha da métrica depende da natureza dos dados.

Distância Euclideana (L_2)

É a distância mais intuitiva: o comprimento de uma linha reta entre dois pontos.

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$
 (1)

Distância Euclideana (L_2)

É a distância mais intuitiva: o comprimento de uma linha reta entre dois pontos.

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$
 (1)

Exemplo:

• Pontos: p = (2,3), q = (5,7)

Distância Euclideana (L_2)

É a distância mais intuitiva: o comprimento de uma linha reta entre dois pontos.

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$
 (1)

Exemplo:

• Pontos: p = (2,3), q = (5,7)

$$d(p,q) = \sqrt{(2-5)^2 + (3-7)^2}$$

$$= \sqrt{(-3)^2 + (-4)^2}$$

$$= \sqrt{9+16}$$

$$= \sqrt{25}$$

$$= 5$$

Dimensionalidade

Mas, e quando aumentamos para 4 dimensões?

Clientes com quatro características

- Idade
- Nº de Compras
- Avaliação Média
- Tempo como Cliente

Perfil de Cliente:

- Cliente A: (Idade: 30, Compras: 15, Avaliação: 4, Tempo: 24)
- Cliente B: (Idade: 35, Compras: 10, Avaliação: 5, Tempo: 36)

Distância de Manhattan (L_1)

Também conhecida como "distância do táxi".

$$d(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

- Intuição Geométrica: Distância percorrida em uma grade (como quarteirões de uma cidade).
- Uso Comum: Eficaz em espaços de alta dimensão.

Distância Manhattan

- Idade: |35 30| = 5
- Nº de Compras: |10 15| = |-5| = 5
- Avaliação Média: |5-4|=1
- **Tempo como Cliente**: |36 24| = 12

$$d_{\text{manhattan}} = 5 + 5 + 1 + 12 = 23 \tag{2}$$

Resultado: A distância Manhattan é 23.

Distância Euclideana

Distância Euclideana

- Idade: $(35-30)^2 = 5^2 = 25$
- Nº de Compras: $(10-15)^2 = (-5)^2 = 25$
- Avaliação Média: $(5-4)^2 = 1^2 = 1$
- Tempo como Cliente: $(36-24)^2 = 12^2 = 144$

Distância Euclideana

- Idade: $(35-30)^2 = 5^2 = 25$
- Nº de Compras: $(10-15)^2 = (-5)^2 = 25$
- Avaliação Média: $(5-4)^2 = 1^2 = 1$
- Tempo como Cliente: $(36-24)^2 = 12^2 = 144$

$$d_{\text{euclidiana}} = \sqrt{25 + 25 + 1 + 144} = \sqrt{195} \approx 13.96 \tag{3}$$

Comparação e Análise

Distância:

Manhattan: 23

• Euclideana: ≈ 13.96

Ponto chave: Tempo como cliente

Manhattan: Contribui com 12 de 23.

• Euclideana: Contribui $12^2 = 144$ em 195 (mais de 73%).

A Maldição da Dimensionalidade

 Concentração de Distância: Em alta dimensão, a distância entre o vizinho mais próximo e o mais distante de um ponto se torna quase a mesma.

Impacto no KNN: A premissa de "vizinho próximo" perde o sentido, e a votação dos vizinhos se torna aleatória.

O Trade-off Viés-Variância na Escolha de K

K Pequeno (e.g., K=1)	K Grande (e.g., K=N)
Alta Variância: Sensível a ruídos	Baixa Variância: Ignora nuances
e outliers.	locais.
Resultado: Overfitting	Resultado: Underfitting
(superajuste).	(subajuste).

Tabela: Comparação entre K Pequeno e K Grande

Variações: O KNN Ponderado

A Ideia da Ponderação

Dar mais peso aos vizinhos mais próximos, usando o **inverso da distância** como peso.

Vantagem: Torna o modelo mais robusto a outliers e menos sensível à escolha exata de K.

A Vantagem do "Lazy Learning"

- Sem Custo de Treinamento: O "treino" é apenas armazenar os dados, o que é muito rápido.
- Adaptação Contínua: É fácil adicionar novos dados sem precisar retreinar o modelo do zero.
- Interpretabilidade Local: As predições podem ser explicadas olhando para os vizinhos que as influenciaram.

Resumo Final do KNN

• Forças: Simples, sem tempo de treino, naturalmente não-linear e adaptável.

Resumo Final do KNN

- Forças: Simples, sem tempo de treino, naturalmente n\u00e3o-linear e adapt\u00e1vel.
- Fraquezas: Sensível à "maldição da dimensionalidade", requer escalonamento de características, computacionalmente caro para predição.

Resumo Final do KNN

- Forças: Simples, sem tempo de treino, naturalmente n\u00e3o-linear e adapt\u00e1vel.
- Fraquezas: Sensível à "maldição da dimensionalidade", requer escalonamento de características, computacionalmente caro para predição.
- Sucesso ou Fracasso: Depende criticamente da escolha da métrica de distância, do valor de K e de um pré-processamento cuidadoso.

Roteiro da Apresentação

- MINN
 - Contexto Histórico do KNN
 - Introdução ao Algoritmo KNN
 - Funcionamento
 - A Geometria das Métricas de Distância
 - Problemas e Variações
 - Resumo
- K-Means: O Algoritmo de Clusterização
 - Visão Geral
 - Como Ocorre
 - Problema Inerentes
 - Métodos e Comparações
 - Resumo
- Estudo de Caso
- 4 Conclusão Final

K-Means: Visão Geral

Definição

O K-Means é um algoritmo de aprendizado não supervisionado que agrupa um conjunto de dados em K cluster distintos e não sobrepostos.

Clusterização Inicial

Figura: Primeira iteração, posição randômica dos centroides [medium_cwi_kmeans].

Processo Iterativo e Convergência

O algoritmo repete dois passos até que a atribuição dos cluster não mude:

Passo de Atribuição: Cada ponto é atribuído ao centroide mais próximo.

$$C_i^{(t)} = \{ \mathbf{x} : ||\mathbf{x} - \boldsymbol{\mu}_i^{(t)}||^2 \le ||\mathbf{x} - \boldsymbol{\mu}_j^{(t)}||^2 \quad \forall j, 1 \le j \le K \}$$

Passo de Atualização: Os centroides são recalculados como a média de todos os pontos atribuídos a eles.

$$\mu_i^{(t+1)} = \frac{1}{|C_i^{(t)}|} \sum_{\mathbf{x} \in C_i^{(t)}} \mathbf{x}$$

Problemas Inerentes e Soluções

- Sensibilidade à Inicialização: A escolha aleatória dos centroides iniciais pode levar a resultados ruins.
 - Solução: K-Means++, que escolhe os centroides iniciais de forma a estarem distantes uns dos outros.

$$P(x) = \frac{D(x)^{2}}{\sum_{x \in X} D(x)^{2}},$$
 (4)

P(x) = Probabilidade do ponto x ser escolhido como próxima centroide

 $D(x)^2$ = Distância para o centróide mais próximo

 $\sum_{x \in X} = \text{Soma de } D(x)^2 \text{ para todos os pontos no dataset.}$

Primeiro Centróide

 $\label{prop:prop:control} Figura: \ Primeiro \ centroide \ escolhido [\textbf{geeksforgeeks_kmeans}].$

Segundo Centróide

Figura: Segundo centroide escolhido [geeksforgeeks_kmeans].

Terceiro Centróide

 $\label{linear_figura:} Figura: Terceiro centroide escolhido [{\bf geeks for geeks_kmeans}].$

Quarto Centróide

 $\label{linear_property} Figura: Quarto \ centroide \ selecionado [\textbf{geeksforgeeks_kmeans}].$

Quantidade de Clusters

Mas, como podemos determinar a quantidade de cluster?

Quantidade de Clusters

Mas, como podemos determinar a quantidade de cluster?

- Método do Cotovelo (Elbow Method)
- Análise da Silhueta (Silhouette Analysis)

Método do Cotovelo (Elbow Method)

Análise da Silhueta (Silhouette Analysis)

Figura: Pontos iniciais.

Figura: Pontuação média para cinco cluster.

Figura: Pontuação média para quatro cluster.

Figura: Pontuação média para três cluster.

Figura: Pontuação média para dois cluster.

Comparação com Outros Métodos

K-Means	DBSCAN (Baseado em Densidade)
Requer K pré-definido.	Não requer K .
Assume clusters esféricos.	Encontra clusters de formas arbitrárias.
Particiona todos os pontos.	Robusto a outliers (classifica-os como ruído).
Rápido em dados de baixa dimensão.	Não atribui todos os pontos.

Tabela: Comparação entre entre técnicas, mostrando suas diferenças.

Resumo Final do K-Means

Pontos Fortes

- Simplicidade e Rapidez: Fácil de implementar e computacionalmente eficiente.
- Escalabilidade: Funciona bem em datasets grandes.

Pontos Fracos

• Fraquezas: Vulnerável à inicialização e a outliers. Inadequado para clusters não-esféricos.

Roteiro da Apresentação

- MINITED IN THE REPORT OF TH
 - Contexto Histórico do KNN
 - Introdução ao Algoritmo KNN
 - Funcionamento
 - A Geometria das Métricas de Distância
 - Problemas e Variações
 - Resumo
- 2 K-Means: O Algoritmo de Clusterização
 - Visão Geral
 - Como Ocorre
 - Problema Inerentes
 - Métodos e Comparações
 - Resumo
- Studo de Caso
- 4 Conclusão Fina

Introdução ao Estudo de Caso

Imagine que somos um banco e precisamos entender o comportamento dos nossos clientes. Como o K-Means e o KNN podem nos ajudar a segmentá-los para um marketing mais eficiente?

Introdução: K-Means vs. KNN em Finanças

- K-Means: Algoritmo de clusterização não supervisionada que agrupa dados por similaridade, sem necessidade de rótulos prévios.
- KNN: Método de classificação supervisionada que faz previsões com base nos K vizinhos mais próximos, utilizando métricas de distância.
- Relevância: Ambos são amplamente utilizados em finanças para segmentação de clientes, previsão de comportamentos e gestão de riscos.

K-Means: Aplicações Práticas em Finanças

- **Segmentação de Clientes**: Agrupar clientes por comportamento para marketing direcionado.
- Gestão de Risco: Classificar candidatos a empréstimo por perfil de risco.
- Detecção de Fraude: Identificar transações anômalas como outliers.
- Otimização de Caixas Eletrônicos: Posicionar recursos em áreas de alta demanda com base em padrões de uso.

Cenário Hipotético com K-Means: Segmentação de Clientes

Desafio: Otimizar o serviço bancário para diferentes perfis de cliente.

- Passo 1: Coletar dados demográficos e de transações (e.g., idade, renda anual, gastos mensais) de milhões de contas.
- Passo 2: Normalizar os dados para mitigar o impacto de outliers e escalas diferentes.
- Passo 3: Aplicar o método do cotovelo para determinar o número ideal de clusters (K = 5).
- Passo 4: Executar o K-Means para agrupar clientes em perfis, como "investidores jovens" e "poupadores aposentados".
- Passo 5: Desenvolver produtos específicos, como robôs-consultores para jovens e planos de previdência para idosos.

Resultado: Melhoria na retenção de clientes por meio de estratégias personalizadas.

Resultados do K-Means: Método do Cotovelo

Figura: Método do cotovelo para determinar o número ideal de clusters K=5.

Resultados do K-Means: Segmentação de Clientes

Figura: Segmentação de 1000 clientes com base em renda anual e gastos mensais.

KNN: Aplicações Práticas em Finanças

- Previsão de Ações: Prever preços de ativos usando similaridades históricas.
- Score de Crédito: Classificar a pontuação de risco de candidatos com base em dados passados.
- Detecção de Fraude: Identificar transações atípicas com base em desvios de padrões conhecidos
- Previsão de Falência: Avaliar o risco de falha de empresas por comparações históricas.

Cenário Hipotético com KNN: Previsão de Ações

Desafio: Prever a direção do preço de uma ação para o próximo dia.

- Passo 1: Coletar dados históricos de uma ação (preços, volume, indicadores técnicos).
- Passo 2: Pré-processar os dados, normalizando as características.
- Passo 3: Selecionar K = 5 e a métrica de distância Euclidiana.
- Passo 4: Identificar os *K* vizinhos mais próximos com base nas condições atuais do mercado.
- Passo 5: Prever o movimento (alta ou queda) com base na maioria dos vizinhos.

Resultado: Aumento na precisão das decisões de compra e venda.

Resultados do KNN: Previsão de Movimentos de Ações

Figura: Distribuição das previsões de movimento de 300 ações de teste (0: Queda, 1: Alta).

Insights Comparativos e Futuro

- K-Means: Eficaz para segmentação não supervisionada, mas requer interpretação humana para nomear clusters e é sensível a inicializações.
- KNN: Ideal para previsões supervisionadas, mas computacionalmente intensivo em grandes datasets e sensível à maldição da dimensionalidade
- Modelos Híbridos: A integração de K-Means e KNN pode melhorar a detecção de fraudes ou previsões ao combinar segmentação e classificação.
- Desafios: Mitigar ruídos nos dados, reduzir viés e garantir escalabilidade em grandes volumes de dados financeiros.

Roteiro da Apresentação

- MINITED IN THE REPORT OF TH
 - Contexto Histórico do KNN
 - Introdução ao Algoritmo KNN
 - Funcionamento
 - A Geometria das Métricas de Distância
 - Problemas e Variações
 - Resumo
- K-Means: O Algoritmo de Clusterização
 - Visão Geral
 - Como Ocorre
 - Problema Inerentes
 - Métodos e Comparações
 - Resumo
- 3 Estudo de Caso
- 4 Conclusão Final

Resumo da Apresentação

- Exploramos a simplicidade e as complexidades dos algoritmos KNN (supervisionado) e K-Means (não supervisionado).
- Discutimos a importância das métricas de distância, da escolha de K e do pré-processamento para o sucesso desses modelos.
- Demonstramos como, apesar de seus desafios, eles são ferramentas poderosas e versáteis para análise e previsão de dados, com aplicações concretas em finanças e outras áreas.

Referências I

referencias

Obrigado pela presença de todos!

brunomendes@fisica.ufmt.br