## BEV检测

#### 目录

- 自底向上BEV特征建模
  - Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D
  - BEVDet: High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View
- 自顶向下bev 3D检测
  - DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries
  - BEVFormer
- 历史帧物体预测(HoP)Temporal Enhanced Training of Multi-view 3D Object Detector via Historical
- Object Prediction

### 自底向上BEV特征建模

可以把"自底向上"理解为由"2D to 3D"借助深度估计或者3D编码,先把图像提升到点云(2d to 3d),进行 voxel pooling成BEV.而"自顶向下"理解为"3D to 2D",先生成BEV query,再用query投影到图像(3d to 2d),对图像特征attention来query出3D特征

# Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D

### https://github.com/nv-tlabs/lift-splat-shoot

LSS是早期的比较直接的尝试,即先估计每个像素的深度,再通过内外参投影到bev空间。只是因为不存在深度标签,这里并没有直接回归深度值,而是对每个像素点预测一系列的离散深度值的概率,概率最大的深度值即为估计结果。

可以得到深度分布特征α和图像特征c,将二者做外积,可以得到一个视锥特征(frustum-shaped point cloud)

得到多视角的视锥特征后,可以通过外参将视锥投影到bev平面。在bev平面下,每个存在高度信息的像素称为体素(voxel),具有无限高度的voxel称为pillar,将每个视锥的每个点分配给最近的pillar,再执行sum pooling,得到CxHxW的bev特征。作者采用cumsum trick来提升sum pooling 效率,并把这一过程称为 splat.

有了bev特征后,就可以很方便的进行3D检测、语义分割、预测和规划等一系列任务,作者把这个过程称为 shoot。LSS方法可以得到稠密的bev特征,缺点是由于每个像素都预测了一系列深度概率值,计算量相对较大。

## BEVDet: High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View

基于LSS的自底向上建立BEV的方法

先对多视角图像进行特征提取,再通过基于LSS的视角转换(View Transformer)将多视角特征投影到bev空间下,再用和第一步类似的backbone对bev特征进行编码,最后进行目标检测。这种方法虽然在LSS这一步存在不少冗余的计算,但好处是得到了显式的bev特征,可以做bev视角下的特征提取和数据增强,并且可以使用任意的目标检测头。



提出了scale-NMS,即对不同类别的目标进行不同尺度的缩放,来做更符合客观场景的目标框过滤

## 自顶向下bev 3D检测

## DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries

### https://github.com/WangYueFt/detr3d

由于bev特征需要从多视角图像特征融合得到,用Resnet+FPN(没有transformer encoder模块)对多视角图像提取特征。Decoder模块参照deformable DETR的思路,在bev空间预设多个3D的object queries,并从object queries经线性映射得到3D的参考点(reference points)。下一步是3D的参考点如何与2D的特征做交互,文中利用了内外参的先验信息,将3D reference points投影到各个视角的图片上。由于多相机之间存在共视区域和盲区问题,一个参考点可能投影到多个视角,也可能一个视角也投不到,所以加了一个二进制的mask代表当前视角是否被投影成功。

接下来是做cross-attention,DETR3D的做法与DETR和deformable DETR都有一些不同,object queries不是和DETR那样与全图交互,也不是和deformable DETR那样先从object queries预测一些参考点,再预测一些以参考点为基准的采样点,然后和采样点的特征交互,而是直接和3D参考点投影的2D参考点处的特征交互(经过双线性插值),相当于交互的特征个数=object queries个数,比deformable DETR还要少(每个object query预测K个采样点,默认是4个),应该说是更稀疏的deformable DETR了。后面bbox推理值和真值的匹配和损失函数的计算和DETR是一样的。

#### **BEVFormer**

#### 采用纯视觉



#### 整体pipline:

- Backbone + Neck (ResNet-101-DCN + FPN) 提取环视图像的多尺度特征;
- 论文提出的 Encoder 模块(包括 Temporal Self-Attention 模块和 Spatial Cross-Attention 模块)完成环 视图像特征向 BEV 特征的建模;
- 类似 Deformable DETR 的 Decoder 模块完成 3D 目标检测的分类和定位任务;
- 正负样本的定义(采用 Transformer 中常用的匈牙利匹配算法,Focal Loss + L1 Loss 的总损失和最小);
- 损失的计算(Focal Loss 分类损失 + L1 Loss 回归损失);
- 反向传播, 更新网络模型参数;

输入的数据是一个 6 维的张量: (bs, queue, cam, C, H, W)

bs: batch size; queue: 连续帧的个数; cam: 每帧中包含的图像数量,对于nuScenes数据集而言是六张环视图片;

C, H, W: 图片的通道数, 图片的高度, 图片的宽度;

**SCA: Spatial cross-attention** 

BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection



BEVHeight++: Toward Robust Visual Centric 3D Object Detection

TABLE 3: Comparison on the nuScenes val set. "L" denotes LiDAR, "C" denotes camera and "D" denotes Depth/LiDAR supervision. † denotes initialization from an FCOS3D [53] backbone.

| Methods                 | Backbone | Image Size | Modality | NDS↑  | mAP↑  | mATE. | mASE↓ | mAOE↓ | mAVE↓ | mAAE↓ |
|-------------------------|----------|------------|----------|-------|-------|-------|-------|-------|-------|-------|
| CenterPoint-Voxel [54]  | ĺ        | (4)        | L        | 0.648 | 0.564 |       | 19    |       | 2     | -     |
| CenterPoint-Pillar [54] |          | 190        | L        | 0.602 | 0.503 |       | 36    | -     | *     |       |
| FCOS3D [53]             | R101-DCN | 900×1600   | C        | 0.415 | 0.343 | 0.725 | 0.263 | 0.422 | 1.292 | 0.153 |
| DETR3D† [20]            | R101-DCN | 900×1600   | C        | 0.422 | 0.347 | 0.765 | 0.267 | 0.392 | 0.876 | 0.211 |
| DETR4D† [55]            | R101-DCN | 640×1600   | C        | 0.509 | 0.422 | 0.688 | 0.269 | 0.388 | 0.496 | 0.184 |
| PETR† [21]              | R101-DCN | 900×1600   | C        | 0.442 | 0.370 | 0.711 | 0.267 | 0.383 | 0.865 | 0.201 |
| PETRv2† [22]            | R101-DCN | 640×1600   | C        | 0.524 | 0.421 | 0.681 | 0.267 | 0.357 | 0.377 | 0.186 |
| PolarFormer† [26]       | R101-DCN | 900×1600   | C        | 0.528 | 0.432 | 0.648 | 0.270 | 0.348 | 0.409 | 0.201 |
| BEVFormer† [25]         | R101-DCN | 900×1600   | C        | 0.517 | 0.416 | 0.673 | 0.274 | 0.372 | 0.394 | 0.198 |
| BEVDet [29]             | Swin-T   | 512×1408   | C        | 0.417 | 0.349 | 0.637 | 0.269 | 0.490 | 0.914 | 0.268 |
| BEVDet4D [32]           | Swin-T   | 640×1600   | C        | 0.515 | 0.396 | 0.619 | 0.260 | 0.361 | 0.399 | 0.189 |
| Fast-BEV [56]           | R101     | 900×1600   | C        | 0.535 | 0.413 | 0.584 | 0.279 | 0.311 | 0.329 | 0.206 |
| SOLOFusion [57]         | R101     | 512×1408   | C        | 0.544 | 0.472 | 0.518 | 0.275 | 0.604 | 0.310 | 0.210 |
| BEVDepth [7]            | R50      | 256×704    | C&D      | 0.475 | 0.351 | 0.639 | 0.267 | 0.479 | 0.428 | 0.198 |
| BEVHeight++             | R50      | 256×704    | C&D      | 0.498 | 0.373 | 0.614 | 0.269 | 0.419 | 0.375 | 0.203 |
| BEVDepth [7]            | R101     | 512×1408   | C&D      | 0.535 | 0.412 | 0.565 | 0.266 | 0.358 | 0.331 | 0.190 |
| BEVHeight++             | R101     | 512×1408   | C&D      | 0.554 | 0.423 | 0.541 | 0.262 | 0.307 | 0.277 | 0.187 |

BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection

BEVerse: Unified Perception and Prediction in Birds-Eye-View for Vision-Centric Autonomous Driving

# 历史帧物体预测(HoP)Temporal Enhanced Training of Multi-view 3D Object Detector via Historical

## **Object Prediction**



首先,利用图片的backbone和视角转换网络得到从t到t-N时刻的BEV特征,并丢弃第t-k帧的BEV特征信息。

其次,设计了一种时间解码器,用来在剩余帧的BEV特征中提取有价值的信息,重建一个虚拟的t-k帧的BEV特征。

该时间解码器包括长期时序信息捕捉分支和短期时序信息捕捉分支。短期时序信息捕捉分支重点在于提取空间语义信息,主要利用t-k帧前后两帧;另一方面,长期时序信息捕捉分支则能够提取物体的运动信息,利用的是其余所有帧的信息。

在虚拟的t-k帧的BEV特征上,增加了一个轻量的BEV检测头来预测t-k帧的物体。

除了HoP,论文中还提出了历史帧Query融合(Historical Temporal Query Fusion),可以从Query层面融合历史帧的信息来帮助当前帧的检测。