Lecture 33: Simple and Variational Autoencoders

Instructor: Sergei V. Kalinin

Autoencoders

Loss: reconstruction loss

The AE reconstructs data

Input data

Decoded data

Why are AE important?

Geoffrey Hinton

FOLLOW

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Verified email at cs.toronto.edu - $\underline{\mathsf{Homepage}}$

machine learning psychology artificial intelligence cognitive science computer science

TITLE	CITED BY	YEAR
Imagenet classification with deep convolutional neural networks A Krizhevsky, I Sutskever, GE Hinton Communications of the ACM 60 (6), 84-90	130318	2017
Deep learning Y LeCun, Y Bengio, G Hinton Nature 521 (7553), 436-44	62790	2015
Dropout: a simple way to prevent neural networks from overfitting N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov The journal of machine learning research 15 (1), 1929-1958	42078	2014
Visualizing data using t-SNE L van der Maaten, G Hinton Journal of Machine Learning Research 9 (Nov), 2579-2605	35035	2008
<u>Learning representations by back-propagating errors</u> DE Rumelhart, GE Hinton, RJ Williams Nature 323 (6088), 533-536	32239	1986
Learning internal representations by error-propagation DE Rumelhart, GE Hinton, RJ Williams Parallel Distributed Processing: Explorations in the Microstructure of	30711	1986
Schemata and sequential thought processes in PDP models. D Rumelhart, P Smolenksy, J McClelland, G Hinton Parallel distributed processing: Explorations in the microstructure of	28073 *	1986
Learning multiple layers of features from tiny images A Krizhevsky, G Hinton	21876	2009
Rectified linear units improve restricted boltzmann machines V Nair, GE Hinton Proceedings of the 27th international conference on machine learning (ICML	21050	2010
Reducing the dimensionality of data with neural networks GE Hinton, RR Salakhutdinov Science 313 (5786), 504-507	19930	2006

Reducing the dimensionality of data with neural networks

Authors Geoffrey E Hinton, Ruslan R Salakhutdinov

Publication date 2006/7/28

Journal Science

Volume 313

Issue 5786

Pages 504-507

Total citations Cited by 19930

Publisher American Association for the Advancement of Science

Description High-dimensional data can be converted to low-dimensional codes by training a

multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

Encoding: Image → Latent Space

7

Latent distribution: Encoding the data via low dimensional vector

Decoding: Latent Space → Image

Latent representation: Decoding images from uniform grid in latent space

Image Reconstruction Test color images (Ground Truth)

Test gray images (Input)

Image Reconstruction Test color images (Ground Truth)

Colorized test images (Predicted)

Image Reconstruction

Test color images (Ground Truth)

Test gray images (Input)

Colorized test images (Predicted)

- **Training:** pairs of the grayscale and color images
- **Application:** new grayscale images (from the same distribution)
- **Concern:** has to be from the same distribution

Image Denoising

Ground truth

Noisy input

Reconstruction

- **Training:** pairs of the high-noise and low-noise images
- **Application:** new high noise images (from the same distribution)
- **Concern:** has to be from the same distribution

Variational Autoencoders

Diederik P. Kingma

Other names >

Research Scientist, <u>Google</u> Brain Verified email at google.com - <u>Homepage</u>

Machine Learning Deep Learning Neural Networks Generative Models Variational Inference

FOLLOW

TITLE	CITED BY	YEAR
Adam: A Method for Stochastic Optimization DP Kingma, J Ba Proceedings of the 3rd International Conference on Learning Representations	141306	2014
Auto-Encoding Variational Bayes DP Kingma, M Welling arXiv preprint arXiv:1312.6114	26540	2013
Semi-Supervised Learning with Deep Generative Models DP Kingma, S Mohamed, DJ Rezende, M Welling Advances in Neural Information Processing Systems, 3581-3589	2946	2014

- Variational Autoencoder (VAE): uses "reparameterization trick" to sample from the latent space
- Can be used for same tasks as AE
- Have a much better-behaved latent space: disentanglement of the representations

VAE Training

Latent manifold → Image space

Image space → Latent space

Autoencoder latent representation

```
0000000000000000000066665555555333
0000000000000000000666666
000000000000000000000
```

Autoencoder latent representation (digit 7)

VAE latent representation

```
77777799999994446666666666666666666
    9994666666666666666000000
      666666600000000000
  779944442226666600000000000000
  885533333333000000000000
  1111111111111
```

VAE latent representation (digit 7)

VAE latent representation (digit 8)

```
888888888888888888888888888888888888
88888888888888888888888888888888888
```

Word Embeddings

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations that are good at predicting the nearby words.

https://medium.com/geekculture/word-embeddings-in-ai-10a9e430cb59

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Word Embeddings

https://medium.com/geekculture/word-embeddings-in-ai-10a9e430cb59

Word Vectors

Skip Gram Architecture

https://medium.com/analytics-vidhya/word-embeddings-in-nlp-word2vec-glove-fasttext-24d4d4286a73

Making Deep Fakes with VAE

During training, the labels of the face masks are used too, which replaces the background of the reconstructed image such that the loss function is applied only over the face pixels.

https://rtoledo.me/post/2021-05-31-edit-face-attributes-using-vae/edit-face-attributes-using-vae/

Making Deep Fakes with VAE

In the prediction mode, the background replacement is done by the predicted mask itself, not requiring any extra input but a sample image.

https://rtoledo.me/post/2021-05-31-edit-face-attributes-using-vae/edit-face-attributes-using-vae/

Reconstruction

https://rtoledo.me/post/2021-05-31-edit-face-attributes-using-vae/edit-face-attributes-using-vae/

Changing Attributes

https://rtoledo.me/post/2021-05-31-edit-tace-attributes-using-vae/edit-tace-attributes-using-vae/

Changing Attributes

https://rtoledo.me/post/2021-05-31-edit-face-attributes-using-vae/edit-face-attributes-using-vae/

Changing Attributes

https://rtoledo.me/post/2021-05-31-edit-face-attributes-using-vae/edit-face-attributes-using-vae/

Conditional VAE

Note the trends in the latent representation for each digit: disentanglement of the representations