Introduction à IPv6

Pr. Hafssa BENABOUD SMI S6- 2015

Allocation des adresses IPv4: Organisations

- IANA = Internet Assigned Numbers Authority
- RIR = Regional Internet Registry
- AFRINIC = African Network Information Centre
- APNIC = Asia-Pacific Network Information Centre
- ARIN = American Registry for Internet Numbers
- LACNIC = Latin American and Caribbean Internet Addresses Registry
- RIPE NCC = Réseaux IP Européens Network Coordination Centre
- NIR = National Internet Registry
- ISP = Internet Service Provider

Introduction à IPv6

- Allocation des adresses IPv4
- En-tête IPv6
- Adressage IPv6
- Sous adressage IPv6

.

Allocation des adresses IPv4: Flux

Site web IANA

- http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
- IANA a épuisé toutes ses adresses /8

IANA IPv4 Address Space Registry

Prefix 🖫	Designation 🖫	Date 🖫	WHOIS I	RDAP 🖫	Status [1] 🖫	Note 🖫
000/8	IANA - Local Identification	1981-09			RESERVED	[2]
001/8	APNIC	2010-01	whois.apnic.net		ALLOCATED	
002/8	RIPE NCC	2009-09	whois.ripe.net		ALLOCATED	
003/8	General Electric Company	1994-05	whois.arin.net		LEGACY	
004/8	Level 3 Communications, Inc.	1992-12	whois.arin.net		LEGACY	
005/8	RIPE NCC	2010-11	whois.ripe.net		ALLOCATED	
006/8	Army Information Systems Center	1994-02	whois.arin.net		LEGACY	
007/8	Administered by ARIN	1995-04	whois.arin.net		LEGACY	
008/8	Level 3 Communications, Inc.	1992-12	whois.arin.net		LEGACY	
009/8	IBM	1992-08	whois.arin.net		LEGACY	
010/8	IANA - Private Use	1995-06			RESERVED	[<u>3</u>]

Adresses IPv4

- · Epuisement des adresses IPv4
- Mondialisation
 - a) les entreprises passent aux marchés émergents
 - b) le Réseau a besoin de s'étendre et plusieurs adresses IP sont nécessaires pour soutenir cette extension
- L'augmentation du nombre de terminaux mobiles qui sont connectées à Internet
- Internet des objets (IoT): Comme le nombre de périphériques connectés à l'Internet augmente, le besoin de plusieurs adresses IP augmente aussi.
- Allocation et utilisation inefficaces d'adresses
- Virtualisation les systèmes nécessitant plus d'une adresse

Passez à l'IPv6 ...

Fn-tête IPv6

Champ version

IPv4 Header 16 20 28 31 Valeur = 4 Version IHL Type of Service Total Length Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source Address **Destination Address** IPv6 Header 20 32 40 24 28 36 44 48 52 Valeur = 6 Traffic Class Flow Label Payload Length Source Address **Destination Address**

Champ longueur de l'en-tête

10

12

Champs: type de service/classe de trafic

IPv4 Header

Type de service utilisé pour implémenter la Qualité de Service

Type de Service s'appelle Traffic Class

La fonction reste la même pour offrir la QoS

En-tête IPv6: Flow label/ étiquette de flux

Destination Address

Nouveau champ de 20 bits,

l'en-tête est fixe 40 octets

- Utilisé pour identifier le flux,
- Le flux peut être des sessions TCP d'une machine à une autre,
- Utilisé dans la QoS : certains flux peuvent être prioritaires par rapport aux autres.
- N'est pas trop utilisé, un peu expérimentale.

Champ: Total Length/Payload Length

IPv4 Header

Les champs de la fragmentation

IPv4 Header

Champ: Time to Live/Hop Limit

IPv4 Header

Champ: Protocol/Next Header

IPv4 Header

IPv6 Extension Header/ en-tête d'extensions

- Optionelle
- Suit la principale en-tête IPv6,
- Présence identifiée par le champ d'en-tête Suivant (next header)

IPv6 Extension Header/ en-tête d'extensions

Order	Header Type	Next Header Code
1	Basic IPv6 Header	-
2	Hop-by-Hop Options	0
3	Destination Options (with Routing Options)	60
4	Routing Header	43
5	Fragment Header	44
6	Authentication Header	51
7	Encapsulation Security Payload Header	50
8	Destination Options	60
9	Mobility Header	135
	No next header	59
Upper Layer	ТСР	6
Upper Layer	UDP	17
Upper Layer	ICMPv6	58

18

Champ: Header Checksum

IPv4 Header

Champs: Adresses

IPv4 Header

Résumé

Bénéfiques techniques de l'IPv6

- 340 trillions de trillions d'adresses IPv6 routables mondialement.
- Déploiement simple d'adresses
- Configuration statique, DHCP et auto-configuration
- Connectivité du réseau de bout en bout Pas de NAT, une communication si transparente de bout en bout du réseau est possible
- Prise en charge intégrée pour IPSec
- Étiquette de flux 20 bits qui peut être utilisé pour la QoS
- · Mobile IP amélioré

Adressage IPv6- Partie 1

Adresse IPv6: Notation

• Règle 1: Rassembler des 0

• Règle 2: Double points ::

• Les préfixes réseau

Adresse IPv6: Notation

- Les adresses IPv6 sont des adresses 128 bits représentés en:
 - Des blocs de 16 bits,
 - Hexadécimal entre 0000 et FFFF,
 - Séparés par deux points ':'
- Un chiffre hexadécimal = 4 bits

Rappel !!!!

Hex.	Binary	Dec.	Hex.	Binary
0	0000	8	8	1000
1	0001	9	9	1001
2	0010	10	A	1010
3	0011	11	В	1011
4	0100	12	C	1100
5	0101	13	D	1101
6	0110	14	E	1110
7	0111	15	F	1111
	0 1 2 3 4 5	0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110	0 0000 8 1 0001 9 2 0010 10 3 0011 11 4 0100 12 5 0101 13 6 0110 14	0 0000 8 8 1 0001 9 9 2 0010 10 A 3 0011 11 B 4 0100 12 C 5 0101 13 D 6 0110 14 E

Nombre d'adresses IPv6

2001:0DB8:AAAA:1111:0000:0000:0000:0100/64

- Combien d'adresses nous donnent 128 bits ??
 - 2¹²⁸= 340 trillions de trillions d'adresses,
 - "IPv6 pourrait fournir à chaque micromètre carré de la surface de la terre 5000 adresses uniques.

1 micromètre = 0,001 mm

26

Identifier les adresses correctes IPv6

2001.1111.2222.3333.4444.5555.6666.7777

Non, les blocs sont séparés par des points

2001:AAAA:BBBB:CCCC:DDDD:EEEE:FFFF:GGGG

Non, G n'est pas un chiffre hexadécimal

2001:FACE:ACE0:CAFE:1111:2222:3333:4444:5555:6666

Non, le nombre de bits est plus que 128 bits

2001:1111:2222:3333:44444:55555:6666:7777

Non, un bloc contient au maximum 4 chiffres hexadécimaux.

Règles pour écrire une adresse IPv6

- Deux règles pour réduire la taille de l'écriture des adresses IPv6:
 - Supprimer des 0 à gauche,
 - Double ':'

Règle 1: Rassembler les 0

Supprimer les '0' les plus à gauche pour chaque bloc16-bits

Optimisez l'écriture des adresses suivantes

2001:0000:0000:0000:0000:0000:0000

Réponse- 2001:0:0:0:0:0:0:0

2001:1000:1001:1010:1100:0001:0101:0011

Réponse-2001:1000:1001:1010:1100:1:101:11

0010:1010:1020:0001:1000:0A0A:00FF:FF00

Réponse- 10:1010:1020:1:1000:A0A:FF:FF00

29

30

Etendre l'écriture des adresses suivantes

2001:0:10:100:1000:AA:FF:101

Réponse- 2001:0000:0010:0100:1000:00AA:00FF:0101

0:1:10:100:1000:CC:CC0:CCC

Réponse- 0000:0001:0010:0100:1000:00CC:0CC0:0CCC

FF:0:0:0:0:0:A

Réponse-00FF:0000:0000:0000:0000:0000:0000

FE8:0:0:0:0:0:0:1

Réponse- 0FE8:0000:0000:0000:0000:0000:0001

Règle 2: Double 'deux points' '::'

La deuxième règle peut réduire cette adresse encore plus.

1- Une chaîne continue d'un ou plusieurs blocs de 16 bits, comprenant des zéros peut être représentée par une double ':' càd '::'

Règle 2: Double 'deux points' '::'

2- <u>Une seule</u> chaîne continue de tous les blocs de zéro peut être représentée par un double deux points. On ne peut évidement supprimer qu'un seul groupe de blocs consécutifs.

```
2001 : 0d02 : 0000 : 0000 : 0014 : 0000 : 0000 : 0095

→ Ces deux écritures sont correctes:

2001 : d02 :: 14 : 0 : 0 : 95

2001 : d02 : 0 : 0 : 14 :: 95

2001 : d02 : 0 : 0 : 14 :: 95
```

Règle 2: Double 'deux points' '::'

3- L'utilisation du '::' plus d'une fois dans une adresse IPv6 peut créer une ambiguïté à cause de l'ambiguïté du nombre de 0.

```
2001::14::95
```

Cette adresse peut être traduite en 2 écritures:

```
2001:0000:0000:0014:0000:0000:0000:0095
2001:0000:0000:0000:0014:0000:0000:0095
```

Optimisez l'écriture des adresses suivantes

2001:1111:0000:0000:1111:2222:1111:A1A1

Réponse- 2001:1111::1111:2222:1111:A1A1

3001:0000:0000:0000:0000:0000:0000:1111

Réponse- 3001::1111

3001:0000:0000:0000:1111:0000:0000:1111

Réponse- 3001::1111:0:0:1111

FF02:0000:0000:0000:0001:FF00:0001

Réponse-FF02::1:FF00:1

Etendre l'écriture des adresses suivantes

2001:0101::A:B

Réponse-2001:0101:0000:0000:0000:0000:000A:000B

FF02::1:FF12:1

Réponse- FF02:0000:0000:0000:0000:0001:FF12:0001

FE80::1

Réponse- FE80:0000:0000:0000:0000:0000:0001

::1

Réponse- 0000:0000:0000:0000:0000:0000:0001

::

Réponse- 0000:0000:0000:0000:0000:0000:0000

Préfixes de réseau

 IPv4- le préfixe – la partie réseau de l'adresse – peut être identifiée par le masque écrit en décimal ou par nombre de bits.

255.255.255.0 ou /24

 Préfixes IPv6 sont toujours identifiés par nombre de bits (longueur de préfixe).

64 bits

3ffe:1944:100:a::/64

48

32

37

Préfixes de réseau

2001:DB8:CAFE:1111::1/64

Nbre bits pour réseau= 64, Nbre bits pour hôtes= 64

Partie réseau = 2001:DB8:CAFE:1111

Partie hôte = 0000:0000:0000:0001

2001::1/96

Nbre bits pour réseau= 96, Nbre bits pour hôtes= 32

Partie réseau = 2001:0:0:0:0:0

Partie hôte = 0:1

Préfixes de réseau

2001::1/80

16

Nbre bits pour réseau= 80, Nbre bits pour hôtes= 48

Partie réseau = 2001:0:0:0:0

Partie hôte = 0:0:1

2001::1/16

Nbre bits pour réseau= 16, Nbre bits pour hôtes= 112

Partie réseau = 2001

Partie hôte = 0:0:0:0:0:0:1

2001::1/8

Nbre bits pour réseau= 8, Nbre bits pour hôtes= 120

Partie réseau = 20

Partie hôte = NN01:0:0:0:0:0:1

2001::1/4

Nbre bits pour réseau= 4, Nbre bits pour hôtes= 124

Partie réseau = 2

Partie hôte = N001:0:0:0:0:0:0:1

39

2001:1/3

3 bits pour la partie réseau et 125 bits pour la partie hôte

- Le premier segment 16-bits (2001) en binaire: 0010 0000 0000 0001
- Les 3 premiers bits sont dans la partie réseau et les bits restants sont dans la partie hôte:

0010 0000 0000 0001

FE80/10

Les 10 premiers bits sont pour la partie réseau et les 118 bits restants sont pour la partie hôte.

- Le premier segment 16-bits (FE80) en binaire: 1111 1110 10 00 0000
- Les 10 premiers bits (FE8 en hexadécimal) est la partie réseau

1111 1110 10 00 0000

41

42

Adressage IPv6- Partie 2

- Structure d'une adresse IPv6 globale unicast,
- Adresse globale unicast et la règle 3-1-4,
- Adresse globale unicast statique
- EUI-64 modifiée

Types d'adresses IPv6-1- Globale unicast

Note: Pas de broadcast dans IPv6

Types d'adresse globale unicast

Structure d'une adresse globale unicast

 Les adresses globales unicast sont similaires aux adresses IPv4 publiques: Routables et Uniques

4

Allocation IANA de l'espace des adresses IPv6:

The remaining portion of IPv6 address space are reserved by IETF for future use.

Règle de 3-1-4

- * 64-bit partie machine nous donne 18 quintillion (18,446,744,073,709,551,616) hôtes/sous réseau.
- * 16-bit de la partie sous réseau nous donne 65,536 sous réseaux. (OUI, vous pouvez utiliser tout à 0 et tout à 1 aussi) ☺

48

Règle 3-1-4

Tailles du global Routing prefix

* C'est l'allocation minimale

52

Divisez ces adresses par la règle 3-1-4

2001:1111:2222:3333:4444:5555:6666:7777

Réponse-

Global Routing Prefix=2001:1111:2222 (3 blocs de 16bits (Hextet))

Subnet ID = 3333 (1 Hextet)

Interface ID = 4444:5555:6666:7777 (4 Hextets)

2001::1

Réponse-

Global Routing Prefix = 2001:0000:0000 (3 Hextets)

Subnet ID = 0000(1 Hextet)

Interface ID =0000:0000:0000:0001 (4 Hextets)

Adresse globale unicast statique

Adresse globale unicast statique

La configuration d'une adresse globale unicast statique se fait de la même manière que celle d'une adresse IPv4 statique.

```
R1# conf t
R1(config)# interface fastethernet 0/0
R1(config-if)# ipv6 address 2001:0db8:cafe:0001::1/64
R1(config-if)# no shutdown
R1(config-if)# exit
R1(config)#
```

Pas d'espace entre l'adresse IPv6 et la longueur du préfixe Tout à 0 et tout à 1 sont des adresses machines valides dans IPv6

Adresse globale unicast statique

La configuration d'une adresse globale unicast statique se fait de la même manière que celle d'une adresse IPv4 statique.

53

Adresse globale unicast: EUI-64

<u>EUI-64 modifiée</u>: Créer les 64-bits de la partie machine depuis les 48-bits de l'adresse MAC.

IEEE définie un mécanisme pour créer un EUI-64 depuis une adresse IEEE 802 MAC (Ethernet et FDDI) pour avoir la IID EUI-64 en modifiant le bit u (Universal). Le bit U/L est mit à 1 pour indiquer la portée universelle et à 0 pour indiquer la portée locale.

Pourquoi invertir le bit U/L ?? La réponse est dans la section 2.5.1 du RFC 2373

Adresse globale unicast: EUI-64

58

Adresse globale unicast: EUI-64

R1(config)# interface fastethernet 0/0
R1(config-if)# ipv6 address 2001:0db8:cafe:0001::/64 ?
eui-64 Use eui-64 interface identifier
<cr> <<<< Al10's address is okay!

R1(config-if)# ipv6 address 2001:0db8:cafe:0001::/64 eui-64
R1(config-if)#

Adresse globale unicast: EUI-64

Configuration de l'adresse IPv6 en utilisant le format EUI-64

 Dérivez l'adresse EUI-64 depuis l'adresse MAC 0101:ABAB:EDED

Réponse:

0101AB et ABEDED 0101AB FFFE ABEDED 0101:ABFF:FEAB:EDED 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 = 0 3 in Hex 0003:ABFF:FEAB:EDED = 3:ABFF:FEAB:EDED Adresse globale unicast:
StateLess Address AutoConfiguration
(SLAAC)

StateLess Address AutoConfiguration (SLAAC)

- Les systèmes connectés au réseau devraient être "Plug&Play" (contrairement à IPv4 sans DHCP)
- SLAAC est une méthode automatique qui permet à un équipement de se créer une adresse IPv6 globale,
- Ne concerne que les "End-nodes", pas les routeurs ,
- Pas besoin d'un serveur DHCPv6,
- Utilise ICMPv6 (ND, RS, RA) « voir diapo qui suit »
- Les routeurs <u>activés en IPv6</u> envoient périodiquement des paquets "Router Advertisement" qui contiennent certaines informations qui aident à configurer une adresse.
- L'adresse du DNS n'est pas inclut dans les messages RA.
- Grâce au SLAAC, seul les routeurs doivent être manuellement configurés

StateLess Address AutoConfiguration (SLAAC)

Neighbor Discovery Protocol (NDP).

Les équipements IPv6 partageant le même lien physique peuvent:

- Découvrir leur présence mutuelle;
- Apprendre les adresses "Link" de leurs voisins;
- Trouver les routeurs;
- Acquérir les paramètres du liens (MTU, hop limit);
- Connaître les préfixes v6 utilisés sur ce liens;
- Résolution ARP;
- Détermination du Next Hop...

Le Neighbor Discovery d'IPv6 est une syntèse de:
ARP, ICMP Redirect, etc... de IPv4.

StateLess Address AutoConfiguration (SLAAC)

ND spécifie 5 types de paquets ICMPv6:

1- Router Advertisment (RA):

Annonces à intervalle régulier d'un routeur contenant:

la liste des préfixes utilisés sur le lien et leurs longueurs, la valeur du Max Hop Limit (TTL d'IPv4), la MTU.

2- Router Solicitation (RS):

Une station demande l'envoi d'un RA immédiatement. Par exemple au démarrage, pour son auto-configuration.

65

StateLess Address AutoConfiguration (SLAAC)

3- Neighbor Solicitation (NS):

Pour découvrir l'adresse physique d'un voisin, vérifier sa présence ou détecter la présence d'une adresse dupliquée sur le réseau (DAD: Duplicate Address Detection).

4- Neighbor Advertisment (NA):

Réponse aux paquets NS, pour publier le changement d'une adresse physique.

5- Redirect:

Utilisé par un routeur pour informer une station de la possibilité d'utiliser une meilleure route pour une destination donnée.

66

StateLess Address AutoConfiguration (SLAAC)

Valeurs du champ « type » dans le paquet ICMPv6

Туре	Signification
133	Router Solicitation
134	Router Advertisement
135	Neighbor Solicitation
136	Neighbor Advertisement
137	Redirect

StateLess Address AutoConfiguration (SLAAC)

Activation du routage IPv6 sur un routeur

R1(config)# ipv6 unicast-routing

- Les interfaces d'un routeur peuvent être activées en IPv6 (en leur attribuant une adresse IPv6) comme n'importe quel autre équipement dans le réseau.
- Pour qu'un routeur fonctionne comme un routeut IPv6, il doit être activé en IPv6 par la commande **ipv6 unicast-routing**.
- Cette commande permet au routeur de:
 - Envoyer les messages RA;
 - · Activer l'acheminement des paquets IPv6;
 - Participe aux protocoles de routage IPv6: RIPng, EIGRP for IPv6, OSPFv3

StateLess Address AutoConfiguration (SLAAC)

StateLess Address AutoConfiguration (SLAAC)

70

72

StateLess Address AutoConfiguration (SLAAC)

Windows et l'identifiant de l'interface

PC1> ipconfig Windows IP Configuration Ethernet adapter Local Area Connection: IPv6 Address. : 2001:DB8:AAAA:1:0219:D2FF:FE8C:E04C Link-local IPv6 Address . . . : fe80::50a5:8a35:a5bb:66e1%11 Default Gateway : fe80::1

- Les systèmes d'exploitation Windows, Windows XP et Server 2003 utilisent EUI-64.
- Windows Vista et les nouvelles versions n'utilisent pas EUI-64, Ils créent les 64-bits aléatoirement pour identifier l'interface.

La valeur qui suit % identifie une zone Windows et ne fait pas partie à l'adresse IPv6

StateLess Address AutoConfiguration (SLAAC)

Les bits M (Managed) et O (Other) RFC 4861.

- M Managed Address Configuration Flag:
 0 (n'utilise pas DHCPv6 pour la construction d'adresse, autoconfiguration possible),
 1 (l'obtention d'adresse doit se faire par DHCPv6).
- O Other Configuration Flag:
 O (aucune information à prendre sur DHCPv6),
 1 (des informations complémentaires sont à récupérer via DHCPv6).

Si le drapeau **M** est définit (1), le drapeau **O** est redondant et peut être ignoré car DHCPv6 renvoie toutes les informations de configuration disponibles.

StateLess Address AutoConfiguration (SLAAC)

Les bits M (Managed) et O (Other) RFC 4861.

M	0	Désignation
0	0	SLAAC et config statique pour DNS
0	1	SLAAC et DHCP config pour DNS Stateless DHCP, ne maintient aucun état
1	0	DHCP config pour toutes les informations Statefull DHCP , maintient tous les états.
1	1	Invalid

73

StateLess DHCP

74

Adresse Link-Local Unicast

Adresse Link-Local unicast (1)

Adresse Link-Local unicast (2)

77

Adresse Link-Local unicast (3)

- L'adresse link-locale est utilisée pour communiquer avec d'autres périphériques sur le lmême lien (même réseau),
- Non routable hors du lien,
- Un périphérique IPv6 doit avoir au moins une adresse linklocale
- L'adresse link-locale est utilisée par:
 - une machine pour communiquer sur un réseau IPv6 avant d'avoir une adresse globale unicast,
 - une machine comme une adresse de passerelle par défaut,
 - les routeurs adjacents pour échanger les mises à jour de routage,

Adresse Link-Local unicast (4)

- L'adresse Link-local est créée automatiquement pendant (ou avant) la configuration de l'adresse globale unicast.
- FE80 + 64-bit Interface ID
 - EUI-64 Format
 - Générée aléatoirement
 - peut aussi être créée statiquement.
- Les adresses Link-local créées dynamiquement sont difficiles à identifier.
- Les adresses Link-local créées manuellement sont faciles à retenir et à identifier.
- Les adresses Link-local doivent être uniques seulement dans un même lien.

Adresse Link-Local unicast (5)

```
R1# show ipv6 interface brief
FastEthernet0/0
                             [qu/qu]
                                            Link-local unicast address
    FE80::203:6BFF:FEE9:D480
                                       Global unicast address
    2001:DB8:CAFE:1::1
Serial0/0/0
                             [up/up]
    FE80::203:6BFF:FEE9:D480
    2001:DB8:CAFE:A001::1
Serial0/0/1
                             [up/up]
    FE80::203:6BFF:FEE9:D480
    2001:DB8:CAFE:A003::1
R1#
```

Adresse Link-Local unicast (6)

- Les adresses link-local sont automatiquement créées même si une adresse globale unicast n'est pas configurée. <u>Il faut activer tout simplement IPv6 sur</u> <u>une interface</u> avec la commande ipv6 enable.
- Cette commande maintient aussi cette adresse même si l'adresse globale unicast est supprimée.

```
Router(config) # interface fastethernet 0/1
Router(config-if) # ipv6 enable
Router(config-if) # end
Router# show ipv6 interface brief
FastEthernet0/1 [up/up]
FE80::20C:30FF:FE10:92E1 ← Link-local unicast address only
Router#
```

Adresse Link-Local unicast (7) Dynamique

Adresse Link-Local unicast (8) Statique

0.3

Adresse Link-Local unicast (9) Statique

```
R1(config) # interface fastethernet 0/0
                                                  Static Link-local Address
R1(config-if)# ipv6 address fe80::1 ?
 link-local Use link-local address
R1(config) # interface fastethernet 0/0
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if)# exit
R1(config) # interface serial 0/0/0
R1(config-if) # ipv6 address fe80::1 link-local
R1(config-if)# exit
R1# show ipv6 interface brief
FastEthernet0/0
   FE80::1
    2001: DB8: CAFE: 1::1 Même adresse link-local unicast (bonne practique)
Serial0/0/0
   FE80::1
    2001:DB8:CAFE:A001::1
```

Adresse Link-Local unicast (10) Commande ping

La commande **ping** pour une adresse *link-locale* doit inclure une interface de sortie car une même adresse link-locale peut être utilisée sur plusieurs segments différents.

```
R1# ping fe80::2
Output Interface: serial0/0/0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to FE80::2, timeout is 2 secs:
!!!!!
```

86

Adresse Link-Local unicast (11)

 Par défaut, les IOS des routeurs utilisent le format FUI-64 modifié

```
R1# show interface fastethernet 0/0
FastEthernet0/0 is up, line protocol is up
Hardware is AmdFE, address is 0003.6be9.d480 (bia 0003.6be9.d480) (Ethernet MAC address)
<output omitted for brevity>

R1# show ipv6 interface fastethernet 0/0
FastEthernet0/0 is up, line protocol is up
IPv6 is enabled, link-local address is
FE80::203:6BFF:FEE9:D480 (Link-local address using EUI-64 format)
Global unicast address(es):
2001:DB8:AAAA:1::1, subnet is 2001:DB8:AAAA:1::/64
<output omitted for brevity>
```

Adresse Link-Local unicast (12)

Sur Windows

```
PC1> ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
    Connection-specific DNS Suffix .:
    IPv6 Address. . . . . . . . . . . . . . . 2001:db8:cafe:1::100
    Link-local IPv6 Address . . . . . . . . . fe80::50a5:8a35:a5bb:66e1%11
    Default Gateway . . . . . . . . . . . . . . . . . 2001:db8:cafe:1::1
```

- Les systèmes d'exploitation Windows, Windows XP et Server 2003 utilisent EUI-64.
- Windows Vista et les nouvelles versions n'utilisent pas EUI-64, Ils créent les 64-bits aléatoirement pour identifier l'interface.

La valeur qui suit % identifie une zone Windows et ne fait pas partie à l'adresse IPv6