$12a_{0104} (K12a_{0104})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.99116 \times 10^{67} u^{83} + 1.87216 \times 10^{67} u^{82} + \dots + 3.81065 \times 10^{67} b + 1.15565 \times 10^{68}, \\ -5.13819 \times 10^{68} u^{83} - 8.03748 \times 10^{68} u^{82} + \dots + 1.52426 \times 10^{68} a + 6.32981 \times 10^{69}, \ u^{84} + u^{83} + \dots - 20u - 20u$$

$$I_1^v = \langle a, \ v^2 + b - 2v + 1, \ v^3 - 2v^2 + v - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 87 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 1.99 \times 10^{67} u^{83} + 1.87 \times 10^{67} u^{82} + \dots + 3.81 \times 10^{67} b + 1.16 \times 10^{68}, \ -5.14 \times 10^{68} u^{83} - 8.04 \times 10^{68} u^{82} + \dots + 1.52 \times 10^{68} a + 6.33 \times 10^{69}, \ u^{84} + u^{83} + \dots - 20u + 8 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 3.37094u^{83} + 5.27304u^{82} + \dots + 31.2513u - 41.5271 \\ -0.522525u^{83} - 0.491296u^{82} + \dots + 6.19371u - 3.03269 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2.79271u^{83} + 4.41807u^{82} + \dots + 23.1737u - 32.5566 \\ -0.137145u^{83} + 0.0275366u^{82} + \dots + 13.3625u - 9.78925 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.79356u^{83} - 2.91487u^{82} + \dots - 26.3707u + 29.3430 \\ -1.57738u^{83} - 2.35817u^{82} + \dots - 4.88066u + 12.1841 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.41045u^{83} - 2.14536u^{82} + \dots - 1.96825u + 16.7853 \\ -1.10477u^{83} - 1.62406u^{82} + \dots - 14.3843u + 13.7098 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 3.89508u^{83} + 6.34816u^{82} + \dots + 35.8388u - 48.8808 \\ 1.62411u^{83} + 2.53617u^{82} + \dots + 13.9325u - 10.6569 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2.67160u^{83} - 4.37994u^{82} + \dots - 30.3466u + 37.6237 \\ -1.28352u^{83} - 1.99642u^{82} + \dots - 5.14258u + 10.5210 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $8.77740u^{83} + 13.2937u^{82} + \cdots + 81.5455u 75.6360$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{84} + 48u^{83} + \dots + 32u + 1$
c_2, c_4	$u^{84} - 4u^{83} + \dots + 8u - 1$
c_3, c_8	$u^{84} + u^{83} + \dots - 20u + 8$
<i>c</i> ₅	$u^{84} + 2u^{83} + \dots - 34883u - 5113$
c_6, c_{11}	$u^{84} - 2u^{83} + \dots + 3u - 1$
c_{7}, c_{9}	$u^{84} - 21u^{83} + \dots - 1232u + 64$
c_{10}, c_{12}	$u^{84} - 26u^{83} + \dots + 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{84} - 20y^{83} + \dots - 396y + 1$
c_2, c_4	$y^{84} - 48y^{83} + \dots - 32y + 1$
c_3, c_8	$y^{84} - 21y^{83} + \dots - 1232y + 64$
c_5	$y^{84} + 30y^{83} + \dots - 376788467y + 26142769$
c_6, c_{11}	$y^{84} - 26y^{83} + \dots + 5y + 1$
c_{7}, c_{9}	$y^{84} + 79y^{83} + \dots - 101632y + 4096$
c_{10}, c_{12}	$y^{84} + 66y^{83} + \dots + 53y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.944843 + 0.334613I		
a = -0.979009 - 0.114566I	0.240350 + 0.971453I	0
b = 0.193593 - 0.054360I		
u = 0.944843 - 0.334613I		
a = -0.979009 + 0.114566I	0.240350 - 0.971453I	0
b = 0.193593 + 0.054360I		
u = 1.007490 + 0.174190I		
a = -0.175011 - 0.158006I	1.82802 + 0.02599I	0
b = 0.257564 - 0.954127I		
u = 1.007490 - 0.174190I		
a = -0.175011 + 0.158006I	1.82802 - 0.02599I	0
b = 0.257564 + 0.954127I		
u = -0.919921 + 0.321774I		
a = -0.112585 + 0.178270I	0.34357 - 3.75775I	0
b = -0.175048 - 1.006520I		
u = -0.919921 - 0.321774I		
a = -0.112585 - 0.178270I	0.34357 + 3.75775I	0
b = -0.175048 + 1.006520I		
u = -1.015960 + 0.163473I		
a = 0.823134 + 0.144319I	5.40644 - 0.91414I	0
b = 0.048860 + 0.382909I		
u = -1.015960 - 0.163473I		
a = 0.823134 - 0.144319I	5.40644 + 0.91414I	0
b = 0.048860 - 0.382909I		
u = -1.033450 + 0.006740I		
a = 0.530218 - 0.247157I	2.19629 - 4.45888I	0
b = -0.069544 - 0.793657I		
u = -1.033450 - 0.006740I		
a = 0.530218 + 0.247157I	2.19629 + 4.45888I	0
b = -0.069544 + 0.793657I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.020110 + 0.312867I		
a = 1.044500 + 0.003066I	1.06655 - 6.25067I	0
b = 0.0427561 - 0.0679166I		
u = -1.020110 - 0.312867I		
a = 1.044500 - 0.003066I	1.06655 + 6.25067I	0
b = 0.0427561 + 0.0679166I		
u = 0.337186 + 0.860218I		
a = 0.348190 + 0.078579I	-3.13667 - 6.26179I	2.84623 + 7.67334I
b = 0.437219 - 0.299567I		
u = 0.337186 - 0.860218I		
a = 0.348190 - 0.078579I	-3.13667 + 6.26179I	2.84623 - 7.67334I
b = 0.437219 + 0.299567I		
u = 0.794131 + 0.728423I		
a = -0.974458 - 0.845826I	-0.337519 - 0.141011I	0
b = 1.51142 + 0.01992I		
u = 0.794131 - 0.728423I		
a = -0.974458 + 0.845826I	-0.337519 + 0.141011I	0
b = 1.51142 - 0.01992I		
u = -0.388919 + 0.818219I		
a = -0.528494 + 0.151733I	-3.73082 + 0.85271I	1.01297 - 1.85902I
b = -0.219537 - 0.303501I		
u = -0.388919 - 0.818219I		
a = -0.528494 - 0.151733I	-3.73082 - 0.85271I	1.01297 + 1.85902I
b = -0.219537 + 0.303501I		
u = 1.046740 + 0.346528I		
a = 0.304682 - 0.142438I	4.27583 + 5.51191I	0
b = 0.289616 - 0.826402I		
u = 1.046740 - 0.346528I		
a = 0.304682 + 0.142438I	4.27583 - 5.51191I	0
b = 0.289616 + 0.826402I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.019520 + 0.464975I $a = -0.631007 + 0.059771I$	-1.53401 - 5.48411I	0
$\frac{b = -0.040704 - 0.556867I}{u = -1.019520 - 0.464975I}$		
a = -0.631007 - 0.059771I $b = -0.040704 + 0.556867I$	-1.53401 + 5.48411I	0
u = -0.832540 + 0.791010I $a = -1.38296 + 1.38107I$ $b = 1.67649 + 0.32338I$	-3.97085 - 1.54693I	0
u = -0.832540 - 0.791010I $a = -1.38296 - 1.38107I$ $b = 1.67649 - 0.32338I$	-3.97085 + 1.54693I	0
u = 0.849652 + 0.031157I $a = -0.593491 - 0.039522I$ $b = 0.386490 + 0.580423I$	1.276520 - 0.101763I	8.75991 - 0.18259I
u = 0.849652 - 0.031157I $a = -0.593491 + 0.039522I$ $b = 0.386490 - 0.580423I$	1.276520 + 0.101763I	8.75991 + 0.18259I
u = 1.064990 + 0.457286I $a = 0.658207 - 0.090830I$ $b = 0.215968 - 0.486348I$	-0.60235 + 10.99640I	0
u = 1.064990 - 0.457286I $a = 0.658207 + 0.090830I$ $b = 0.215968 + 0.486348I$	-0.60235 - 10.99640I	0
u = 0.790207 + 0.858708I $a = -0.96570 - 1.11724I$ $b = 2.16628 + 0.31658I$	-6.55489 - 4.86996I	0
u = 0.790207 - 0.858708I $a = -0.96570 + 1.11724I$ $b = 2.16628 - 0.31658I$	-6.55489 + 4.86996I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.885911 + 0.768881I		
a = 1.17335 - 0.91320I	-3.28211 - 2.90476I	0
b = -1.81844 - 0.42053I		
u = -0.885911 - 0.768881I		
a = 1.17335 + 0.91320I	-3.28211 + 2.90476I	0
b = -1.81844 + 0.42053I		
u = -0.772200 + 0.886697I		
a = -0.96527 + 1.39186I	-3.85417 + 4.39341I	0
b = 1.68660 - 0.53395I		
u = -0.772200 - 0.886697I		
a = -0.96527 - 1.39186I	-3.85417 - 4.39341I	0
b = 1.68660 + 0.53395I		
u = -0.815259 + 0.851759I		
a = 1.02235 - 1.10450I	-7.26044 - 1.06497I	0
b = -2.19830 + 0.15039I		
u = -0.815259 - 0.851759I		
a = 1.02235 + 1.10450I	-7.26044 + 1.06497I	0
b = -2.19830 - 0.15039I		
u = 0.826391 + 0.857345I		
a = 1.16777 + 1.50281I	-7.12683 - 1.45321I	0
b = -1.95683 - 0.11611I		
u = 0.826391 - 0.857345I		
a = 1.16777 - 1.50281I	-7.12683 + 1.45321I	0
b = -1.95683 + 0.11611I		
u = 0.946159 + 0.729920I		
a = -1.29420 - 0.80499I	0.12413 + 5.72559I	0
b = 1.58522 - 0.79508I		
u = 0.946159 - 0.729920I		
a = -1.29420 + 0.80499I	0.12413 - 5.72559I	0
b = 1.58522 + 0.79508I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.179453 + 0.777420I		
a = 0.311303 - 0.375412I	1.30918 - 1.58416I	9.83805 + 4.37635I
b = 0.438005 + 0.193021I		
u = 0.179453 - 0.777420I		
a = 0.311303 + 0.375412I	1.30918 + 1.58416I	9.83805 - 4.37635I
b = 0.438005 - 0.193021I		
u = -0.883068 + 0.821610I		
a = -1.54150 + 1.07663I	-10.29460 + 0.43264I	0
b = 2.76029 - 0.11644I		
u = -0.883068 - 0.821610I		
a = -1.54150 - 1.07663I	-10.29460 - 0.43264I	0
b = 2.76029 + 0.11644I		
u = -0.710190 + 0.347281I		
a = -2.27716 + 0.25838I	-4.43275 + 1.24589I	2.27933 + 1.64914I
b = -0.234211 + 0.619343I		
u = -0.710190 - 0.347281I		
a = -2.27716 - 0.25838I	-4.43275 - 1.24589I	2.27933 - 1.64914I
b = -0.234211 - 0.619343I		
u = -0.937545 + 0.765953I		
a = -1.47040 + 0.78920I	-3.64552 - 4.32145I	0
b = 1.99452 + 0.20653I		
u = -0.937545 - 0.765953I		
a = -1.47040 - 0.78920I	-3.64552 + 4.32145I	0
b = 1.99452 - 0.20653I		
u = 0.742303 + 0.267678I		
a = 2.46612 + 0.22285I	-4.02469 + 4.17427I	4.30501 - 7.15131I
b = 0.453650 + 0.593662I		
u = 0.742303 - 0.267678I		
a = 2.46612 - 0.22285I	-4.02469 - 4.17427I	4.30501 + 7.15131I
b = 0.453650 - 0.593662I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.910182 + 0.812566I		
a = -1.49098 + 1.66207I	-10.20980 - 6.53851I	0
b = 2.25259 + 0.65273I		
u = -0.910182 - 0.812566I		
a = -1.49098 - 1.66207I	-10.20980 + 6.53851I	0
b = 2.25259 - 0.65273I		
u = 0.899767 + 0.828154I		
a = 1.59727 + 1.03673I	-10.97060 + 5.59094I	0
b = -2.77141 + 0.08624I		
u = 0.899767 - 0.828154I		
a = 1.59727 - 1.03673I	-10.97060 - 5.59094I	0
b = -2.77141 - 0.08624I		
u = 0.901036 + 0.828606I		
a = 1.42088 + 1.67116I	-10.96750 + 0.58518I	0
b = -2.30109 + 0.49063I		
u = 0.901036 - 0.828606I		
a = 1.42088 - 1.67116I	-10.96750 - 0.58518I	0
b = -2.30109 - 0.49063I		
u = 0.822519 + 0.932893I		
a = 0.91684 + 1.64748I	-10.83780 - 3.57887I	0
b = -2.25077 - 0.72210I		
u = 0.822519 - 0.932893I		
a = 0.91684 - 1.64748I	-10.83780 + 3.57887I	0
b = -2.25077 + 0.72210I		
u = -0.810693 + 0.944952I		
a = -0.85275 + 1.63282I	-10.04530 + 9.52899I	0
b = 2.19212 - 0.87271I		
u = -0.810693 - 0.944952I		
a = -0.85275 - 1.63282I	-10.04530 - 9.52899I	0
b = 2.19212 + 0.87271I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.066113 + 0.750316I		
a = 0.110116 - 0.634486I	-2.03059 + 2.74891I	4.68139 - 1.77818I
b = 0.213608 + 0.726049I		
u = -0.066113 - 0.750316I		
a = 0.110116 + 0.634486I	-2.03059 - 2.74891I	4.68139 + 1.77818I
b = 0.213608 - 0.726049I		
u = -0.968832 + 0.798968I		
a = 1.37635 - 0.95784I	-6.78392 - 5.08439I	0
b = -2.05317 - 0.97229I		
u = -0.968832 - 0.798968I		
a = 1.37635 + 0.95784I	-6.78392 + 5.08439I	0
b = -2.05317 + 0.97229I		
u = 0.965716 + 0.805863I		
a = 1.65828 + 0.77345I	-6.69081 + 7.64283I	0
b = -2.23791 + 0.67188I		
u = 0.965716 - 0.805863I		
a = 1.65828 - 0.77345I	-6.69081 - 7.64283I	0
b = -2.23791 - 0.67188I		
u = 0.985942 + 0.791492I		
a = -1.41550 - 0.93253I	-5.94934 + 11.01360I	0
b = 1.99222 - 1.10077I		
u = 0.985942 - 0.791492I		
a = -1.41550 + 0.93253I	-5.94934 - 11.01360I	0
b = 1.99222 + 1.10077I		
u = -0.647382 + 0.314500I		
a = 0.331197 + 0.827943I	-4.64480 - 3.92489I	3.17496 + 9.60631I
b = -0.58409 - 1.80025I		
u = -0.647382 - 0.314500I		
a = 0.331197 - 0.827943I	-4.64480 + 3.92489I	3.17496 - 9.60631I
b = -0.58409 + 1.80025I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.004740 + 0.795428I		
a = -1.69928 + 0.61945I	-3.12969 - 10.62390I	0
b = 1.90772 + 0.99106I		
u = -1.004740 - 0.795428I		
a = -1.69928 - 0.61945I	-3.12969 + 10.62390I	0
b = 1.90772 - 0.99106I		
u = 0.164668 + 0.688630I		
a = -0.154369 - 0.645027I	-2.20909 + 2.50520I	4.04658 - 4.39330I
b = 0.037509 + 0.772539I		
u = 0.164668 - 0.688630I		
a = -0.154369 + 0.645027I	-2.20909 - 2.50520I	4.04658 + 4.39330I
b = 0.037509 - 0.772539I		
u = 1.008710 + 0.840149I		
a = 1.86319 + 0.69471I	-10.2365 + 10.1066I	0
b = -2.33246 + 1.32376I		
u = 1.008710 - 0.840149I		
a = 1.86319 - 0.69471I	-10.2365 - 10.1066I	0
b = -2.33246 - 1.32376I		
u = -1.020970 + 0.838580I		
a = -1.88269 + 0.64828I	-9.3654 - 16.0858I	0
b = 2.23100 + 1.44321I		
u = -1.020970 - 0.838580I		
a = -1.88269 - 0.64828I	-9.3654 + 16.0858I	0
b = 2.23100 - 1.44321I		
u = 0.618250 + 0.265447I		
a = -0.514034 + 0.791465I	-4.45560 - 1.93655I	4.71213 - 4.39943I
b = 0.89045 - 1.74001I		
u = 0.618250 - 0.265447I		
a = -0.514034 - 0.791465I	-4.45560 + 1.93655I	4.71213 + 4.39943I
b = 0.89045 + 1.74001I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.622760		
a = 2.68748	0.0915949	15.1660
b = 0.499429		
u = -0.273077 + 0.514248I		
a = -1.087230 - 0.760616I	-1.66765 + 0.61770I	-3.60063 - 1.02986I
b = -0.102496 + 0.170604I		
u = -0.273077 - 0.514248I		
a = -1.087230 + 0.760616I	-1.66765 - 0.61770I	-3.60063 + 1.02986I
b = -0.102496 - 0.170604I		
u = 0.458074		
a = -0.459214	0.847284	12.0560
b = 0.469056		

II.
$$I_1^v = \langle a, \ v^2 + b - 2v + 1, \ v^3 - 2v^2 + v - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -v^{2} + 2v - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} v \\ -v^{2} + 2v - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ v^{2} - 2v + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -v^2 + v + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v^2 - 2v + 1 \\ -v + 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v^2 - 2v + 1 \\ v^2 - 2v + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} c & 2c + 1 \\ -v + 1 & b \end{pmatrix}$$
$$(v^2 - 2v + 1)$$

$$a_6 = \begin{pmatrix} v^2 - 2v + 1 \\ v^2 - 2v + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2v^2 + 5v 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_7, c_8 c_9	u^3
c_4	$(u+1)^3$
c_5,c_{10}	$u^3 + u^2 + 2u + 1$
<i>C</i> ₆	$u^3 - u^2 + 1$
c_{11}	$u^3 + u^2 - 1$
c_{12}	$u^3 - u^2 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
$c_3,c_7,c_8 \ c_9$	y^3
c_5, c_{10}, c_{12}	$y^3 + 3y^2 + 2y - 1$
c_6, c_{11}	$y^3 - y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.122561 + 0.744862I		
a = 0	-4.66906 - 2.82812I	0.69240 + 3.35914I
b = -0.215080 + 1.307140I		
v = 0.122561 - 0.744862I		
a = 0	-4.66906 + 2.82812I	0.69240 - 3.35914I
b = -0.215080 - 1.307140I		
v = 1.75488		
a = 0	-0.531480	1.61520
b = -0.569840		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{84} + 48u^{83} + \dots + 32u + 1)$
c_2	$((u-1)^3)(u^{84} - 4u^{83} + \dots + 8u - 1)$
c_3, c_8	$u^3(u^{84} + u^{83} + \dots - 20u + 8)$
c_4	$((u+1)^3)(u^{84} - 4u^{83} + \dots + 8u - 1)$
	$(u^3 + u^2 + 2u + 1)(u^{84} + 2u^{83} + \dots - 34883u - 5113)$
<i>c</i> ₆	$(u^3 - u^2 + 1)(u^{84} - 2u^{83} + \dots + 3u - 1)$
c_7, c_9	$u^3(u^{84} - 21u^{83} + \dots - 1232u + 64)$
c_{10}	$(u^3 + u^2 + 2u + 1)(u^{84} - 26u^{83} + \dots + 5u + 1)$
c_{11}	$(u^3 + u^2 - 1)(u^{84} - 2u^{83} + \dots + 3u - 1)$
c_{12}	$(u^3 - u^2 + 2u - 1)(u^{84} - 26u^{83} + \dots + 5u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1	$((y-1)^3)(y^{84} - 20y^{83} + \dots - 396y + 1)$	
c_2, c_4	$((y-1)^3)(y^{84} - 48y^{83} + \dots - 32y + 1)$	
c_3, c_8	$y^3(y^{84} - 21y^{83} + \dots - 1232y + 64)$	
c_5	$(y^3 + 3y^2 + 2y - 1)(y^{84} + 30y^{83} + \dots - 3.76788 \times 10^8 y + 2.61428 \times 10^8 y + 2.6$) ⁷)
c_6, c_{11}	$(y^3 - y^2 + 2y - 1)(y^{84} - 26y^{83} + \dots + 5y + 1)$	
c_7, c_9	$y^3(y^{84} + 79y^{83} + \dots - 101632y + 4096)$	
c_{10}, c_{12}	$(y^3 + 3y^2 + 2y - 1)(y^{84} + 66y^{83} + \dots + 53y + 1)$	