

Robot Sensors

1

YDLIDAR X3/X3 Pro Lidar TOF 360°

http://www.yahboom.net/study/YDLIDAR-X3

Lidar for advanced driver assistance systems

Principle of LiDAR range finder

Principle of LiDAR range finder

Calibration of LiDAR odometry

Odometry is the use of data from motion (odometry) <u>sensors</u> to estimate change in position over time. It is used to estimate robots position relative to a starting location. This method is sensitive to errors due to the integration of velocity measurements over time to give position estimates.

Odometry 里程計

Egomotion estimations in visual odometry

LiDAR-based odometry pipeline

Odometry in ROS


```
fi
export LIDAR_TYPE= x3  #x3,4ros  
echo -e "LIDAR_TYPE: \033[32m$LIDAR_TYPE\033[0m"
source /opt/ros/melodic/setup.bash
source ~/ydlidar_ws/devel/setup.bash --extend
```

\$ sudo apt install ros-noetic-slam-gmapping

\$ scp @:rf2o_laser_odometry ~/ros_test/src/rf2o_laser_odometry

\$ cd ros_test && catkin_make

\$ roslaunch ydlidar_ros_driver test_gmapping.launch

Range flow 2D odom

Range flow 2D odom

Grid-based scan-to-scan matching

Grid-based SLAM with Rao-Blackwellized Particle Filters, RBPF by Adaptive Proposals and Selective Resampling

GMapping SLAM

GMapping SLAM

Parameters	Default	Description			
	value				
Group (1): Coordinate system parameters			Group (4): Motion model parameters		
base_frame odom_frame	Base link	The coordinate system of the mobile robot platform	srr	0.1	
	frame		str	0.1	Covariance of sampling
	Odometry		str	0.2	motion noise
	frame		stt	0.2	
map_frame	Map frame		Group (5.1): Scan matching and LiDAR parameters		
transform_publ		The publishing rate of data	maxRange	-	LiDAR maximum distance
ish_period		among frames			range
Group (2): OGM parameters			maxUrange	-	The usable LiDAR range
xmin	-100 m	The initial map dimensions	throttle_scans	1	The number of throttle
ymin	-100 m	represented a rectangular			scans
xmax	100 m	region defined by two	sigma	0.05	the Standard deviation (σ)
ymax	100 m	opposite corners	Isigma	0.075	of the score and likelihood
delta	0.05 m	The length of one side of	ISIGINA	0.073	functions of a single beam
		the grid cell in meters			of the LiDAR
occ_thresh	0.25	The threshold is used to	kernelSize	1	The size of the kernel's
		determine whether a cell is			search window for
		an obstacle or not.			matching scans
Group (3): N	Group (3): Measurement Update Parameters			0.05 m	Linear and Angular
linearUpdate	1.0 m	The translational and	astep	0.05 m	displacement step
angularUpdate	0.5 rad	rotational threshold of			increment size
		measurement update	iterations	1	The number of refinement
temporalUpdate	-1.0	The time threshold of the			steps used in the scan
		Measurement update			matches
			Iskip	0	The number of beams
					skipped in each scan

Parameters	Default value	Description				
Group (5.2): Likelihood sampling parameters						
llsamplerange	0.01	Translation sampling range				
		of scan matching				
llsamplestep	0.01	Translation sampling step				
		of scan matching				
lasamplerange	0.005	Rotational sampling range				
		of scan matching				
lasamplestep	0.005	Rotational sampling step of				
		scan matching				
Group (6): PF parameters						
particles	30	the number of particles				
map_update_	5.0	the map update period				
interval						
		The lowest score that a				
		scan-matching algorithm				
minimumScore	0	must achieve for the				
		outcome of the scan to be				
		considered valid				
		the gain of weight				
ogain	3.0	normalizer function for				
овани	3.0	smoothing the resampling				
		step				
resampleThresh old	0.5	Resampling threshold				

GMapping parameters

Microdia KD-USB Camera 1280/720

ROS USB camera driver

Format Video Capture: Crop Capability Video Capture: Selection Video Capture: Streaming Parameters Video Capture:

ROS USB camera driver

\$ v4l2-ctl -d /dev/video0 --all \$ v4l2-ctl --list-ctrls --device /dev/video0 \$ v4l2-ctl -d 0 --list-formats-ext

\$ roslaunch usb_cam usb_cam-test.launch
\$ rosrun rqt_image_view rqt_image_view

\$ rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108 image:=/usb_cam/image_raw camera:=/usb_cam

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

Horiz FoV =
$$2 \tan^{-1} \frac{sensor_{width}}{2EFL}$$

Camera horizontal FOV

Streaming Parameters Video Capture: Capabilities : timeperframe

Frames per second: 30.000 (30/1)

Read buffers : 0

brightness 0x00980900 (int) : min=-64 max=64 step=1 default=0 value=0 contrast 0x00980901 (int) : min=0 max=95 step=1 default=4 value=4 saturation 0x00980902 (int) : min=0 max=100 step=1 default=72 value=72 hue 0x00980903 (int) : min=-2000 max=2000 step=100 default=0 value=0

white_balance_temperature_auto 0x0098090c (bool) : default=1 value=1

gamma 0x00980910 (int) : min=100 max=300 step=1 default=100 value=100 power_line_frequency 0x00980918 (menu) : min=0 max=2 default=1 value=1

0: Disabled

1: 50 Hz

2: 60 Hz

white_balance_temperature 0x0098091a (int) : min=2800 max=6500 step=1 default=4600 value=4600 flags=inactive sharpness 0x0098091b (int) : min=1 max=7 step=1 default=2 value=2 backlight_compensation 0x0098091c (int) : min=0 max=3 step=1 default=0 value=0

exposure_auto 0x009a0901 (menu) : min=0 max=3 default=3 value=3

1: Manual Mode

3: Aperture Priority Mode

exposure_absolute 0x009a0902 (int) : min=78 max=10000 step=1 default=312 value=312 flags=inactive focus_absolute 0x009a090a (int) : min=0 max=15 step=1 default=0 value=0 flags=inactive

focus_auto 0x009a090c (bool) : default=1 value=1

Programming Python threading

