CS663: Digital Image Processing - Homework 3

Harsh | Pranav | Swayam

October 1, 2024

1 Homework 3 - Question 2

Part 1. Correlation of Two Continuous 2D Signals in the Continuous Domain

Definition of Correlation in the Continuous Domain

Given two continuous 2D signals f(x, y) and g(x, y), the correlation between these two signals is defined as:

$$h(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')g(x'+x,y'+y) dx' dy'$$

This is an integral that shifts the signal g(x, y) over f(x, y) and computes their similarity at each point.

Fourier Transform of Correlation in the Continuous Domain

The Fourier transform $\mathcal{F}\{f(x,y)\}$ of a continuous signal f(x,y) is defined as:

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-i2\pi(ux+vy)} dx dy$$

We can convert x to -x and we get h(x,y) as:

$$h(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x',y')g(x'-(-x),y'-(-y)) dx' dy'$$

Applying the Fourier Transform to both sides of the correlation equation for h(x,y), we use the Convolution Theorem. Then we get:

$$\mathcal{F}\{h(x,y)\} = \mathcal{F}\{f(x,y)\} \cdot \mathcal{F}\{g(-x,-y)\}$$

The term g(-x, -y) represents the flipped version of g(x, y). Using the property that the Fourier transform of a flipped function is the complex conjugate of the original Fourier transform, we get:

$$H(u,v) = F(u,v) \cdot G^*(u,v)$$

Where F(u, v) and G(u, v) are the Fourier transforms of f(x, y) and g(x, y), and $G^*(u, v)$ is the complex conjugate of G(u, v).

Part 2. Correlation of Two Discrete 2D Signals in the Discrete Domain

Definition of Correlation in the Discrete Domain

Consider two discrete 2D signals f[m,n] and g[m,n]. The correlation in the discrete domain is defined as:

$$h[m, n] = \sum_{m'} \sum_{n'} f[m', n'] g[m' + m, n' + n]$$

This is a summation over all possible shifts of g[m, n] relative to f[m, n].

2D Discrete Fourier Transform (DFT)

The 2D Discrete Fourier Transform (DFT) of a discrete signal f[m,n] is defined as:

$$F[k,l] = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-i2\pi \left(\frac{km}{M} + \frac{ln}{N}\right)}$$

Similarly, the DFT of g[m, n] is:

$$G[k,l] = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} g[m,n] e^{-i2\pi \left(\frac{km}{M} + \frac{ln}{N}\right)}$$

Fourier Transform of Correlation in the Discrete Domain

h(m,n) can be written as:

$$h[m,n] = \sum_{m'} \sum_{n'} f[m',n'] g[m' - (-m), n' - (-n)]$$

By applying Fourier on both sides and using the Discrete Convolution Theorem, we get the following relationship between the correlation and Fourier transforms:

$$H[k, l] = F[k, l] \cdot G[-k, -l]$$

Which turns to the following due to the flipping property:

$$H[k,l] = F[k,l] \cdot G^*[k,l]$$

Where H[k, l] is the 2D DFT of the correlation h[m, n], and F[k, l] and G[k, l] are the 2D DFTs of f[m, n] and g[m, n], with $G^*[k, l]$ being the complex conjugate of G[k, l].