15.094J: Robust Modeling, Optimization, Computation

Lecture 18: Constructing Utilities using RO

Learning Preferences

- Kahneman and Tversky [1979] proposed prospect theory as a psychologically more accurate description of preferences compared to expected utility theory
 - Human behavior is inconsistent
 - People are loss averse
 - Gain or loss of an extra unit has less impact (risk averse)
- Our Goal: algorithmize prospect theory to ask questions and compute preferences in a tractable manner

• Items are represented by vectors of attributes

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

• Assume a linear utility function

$$u(\mathbf{x}) = \mathbf{u}'\mathbf{x}, \quad \mathbf{u} \in \mathcal{U}^0 = [-1, 1]^n.$$

• If question is between x and y, either

$$\mathbf{u}'\mathbf{x} > \mathbf{u}'\mathbf{y}$$
 or $\mathbf{u}'\mathbf{x} < \mathbf{u}'\mathbf{y}$

2

Adaptive Questionnaires

• Initial feasible space $\mathcal{U}^0 = [-1, 1]^n$

- Initial feasible space $\mathcal{U}^0 = [-1, 1]^n$
- Each question will result in a linear inequality
 - \mathbf{x} or \mathbf{y} ?
 - If \mathbf{x} , $\mathbf{u}'\mathbf{x} > \mathbf{u}'\mathbf{y}$

4

Adaptive Questionnaires

- Initial feasible space $\mathcal{U}^0 = [-1,1]^n$
- Each question will result in a linear inequality
 - \mathbf{x} or \mathbf{y} ?
 - If \mathbf{x} , $\mathbf{u}'\mathbf{x} > \mathbf{u}'\mathbf{y}$
 - If y, u'x < u'y

- Initial feasible space $\mathcal{U}^0 = [-1,1]^n$
- Each question will result in a linear inequality
 - \mathbf{x} or \mathbf{y} ?
 - If \mathbf{x} , $\mathbf{u}'\mathbf{x} > \mathbf{u}'\mathbf{y}$
 - If y, u'x < u'y

6

Adaptive Questionnaires

- Initial feasible space $\mathcal{U}^0 = [-1, 1]^n$
- Each question will result in a linear inequality
 - \mathbf{x} or \mathbf{y} ?
 - If \mathbf{x} , $\mathbf{u}'\mathbf{x} > \mathbf{u}'\mathbf{y}$
 - If y, u'x < u'y
 - w or z ?
 - If w, $\mathbf{u}'\mathbf{w} < \mathbf{u}'\mathbf{z}$
 - If \mathbf{z} , $\mathbf{u}'\mathbf{w} > \mathbf{u}'\mathbf{z}$

- Initial feasible space $\mathcal{U}^0 = [-1, 1]^n$
- Each question will result in a linear inequality
 - \mathbf{x} or \mathbf{y} ?
 - If \mathbf{x} , $\mathbf{u}'\mathbf{x} > \mathbf{u}'\mathbf{y}$
 - $\bullet \ \ \text{If} \ y, \ u'x < u'y$
 - w or z ?
 - If w, $\mathbf{u}'\mathbf{w} < \mathbf{u}'\mathbf{z}$
 - $\bullet \ \ \text{If} \ \mathbf{z}, \ \ \mathbf{u}'\mathbf{w} > \mathbf{u}'\mathbf{z}$
- Pick the question that cuts \mathcal{U}^0 closest to the analytic center \mathbf{c}^*

Adaptive Questionnaires

• Add inequality with small $\epsilon > 0$

$$\mathbf{u}'\mathbf{x} \ge \mathbf{u}'\mathbf{y} + \epsilon$$
 or $\mathbf{u}'\mathbf{x} \le \mathbf{u}'\mathbf{y} - \epsilon$

- Compute analytic center of new polytope
- Select next question closest to analytic center
- Repeat until question limit or feasible space can not be reduced

- Introduced in marketing [Toubia et al. 2003, 2004]
- Results often suffer from response errors
 - Incorrect responses influence later questions
- We use integer and robust optimization

10

Self-Correcting Mechanism

- Accounts for inconsistencies and response errors
- Binary variable ϕ_i for each question i ($\mathbf{x}^i > \mathbf{y}^i$)

$$\mathbf{u}'(\mathbf{x}^i - \mathbf{y}^i) + (n + \epsilon)\phi_i \ge \epsilon$$
$$\mathbf{u}'(\mathbf{x}^i - \mathbf{y}^i) + (n + \epsilon)\phi_i \le n$$

- If $\phi_i = 0$, constraints are consistent with response
- If $\phi_i = 1$, a response error or inconsistency is assumed

Compute the Analytic Center

• For the next question, compute the analytic center of

$$\mathcal{U}^k = \{\mathbf{u} \in \mathbb{R}^n \mid \mathbf{u}'(\mathbf{x}^i - \mathbf{y}^i) + (\epsilon + n)\phi_i \ge \epsilon, \\ \mathbf{u}'(\mathbf{x}^i - \mathbf{y}^i) + (\epsilon + n)\phi_i \le n, \\ -1 \le u_j \le 1, \\ \\ \frac{1}{k} \sum_{i=1}^k \phi_k \le \gamma k \\ \text{fraction of the constraints to "flip"}$$

• After k questions, feasible utilities are given by the set $\mathcal{U}^k \subseteq \mathcal{U}^0$ • \mathcal{U}^k is the projection of a discrete set – union of polyhedra

12

Loss Averse Preferences

- Previously, the analytic center was taken to be the user's utility vector
- Instead, we solve

$$\max_{\mathbf{x} \in \mathbf{X}} \min_{\mathbf{u} \in \mathcal{U}^k} \mathbf{u}' \mathbf{x}$$

where the uncertainty set \mathcal{U}^k is the outcome of a dynamic questionnaire

Robust Optimization with CVaR

- We want to balance robustness and optimality
- Maximize Conditional Value at Risk (CVaR)
 - Definition: CVaR at level α is the expected value of the worst $\alpha\%$ of the utilities in \mathcal{U}^k
 - Example:
 - Utilities of 5 different items: (-0.75, -0.25, 0.1, 0.3, 0.8)
 - CVaR(40%) = -0.50
 - Compare to VaR (α -quantile) and Standard Deviation
 - VaR(40%) = -0.25

Doesn't account for -0.75!

• StdDev = 0.62

Increases for gains and loses!

CVaR captures the amount of losses

14

Robust Optimization with CVaR

- Challenge: \mathcal{U}^k is the union of polyhedra
 - Fix ϕ to the optimal values in the final computation of the analytic center

 $\Longrightarrow \mathcal{U}^k$ becomes a polyhedron

- Challenge: CVaR of \mathcal{U}^k is defined by an integral
 - Approximate \mathcal{U}^k with random sampling
 - We use "Hit-and-Run," starting from \mathbf{c}^* to sample N utility vectors $\{\mathbf{u}^1,\mathbf{u}^2,\dots,\mathbf{u}^N\}\in\mathcal{U}^k$
 - Polynomial time algorithm, fast in practice [Lovász, Vempala 2006]

Robust Optimization with CVaR

• Given $\{\mathbf{u}^1, \mathbf{u}^2, \dots, \mathbf{u}^N\} \in \mathcal{U}^k$, solve

$$\max_{\mathbf{x} \in X} \quad \min_{\mathbf{y}} \quad \frac{1}{\alpha N} \sum_{j=1}^{N} (\mathbf{u}_{j}' \mathbf{x}) y_{j}$$
s.t.
$$\sum_{j=1}^{N} y_{j} = \alpha N$$

$$0 \le y_{j} \le 1$$

• Robust approach: $\alpha = \frac{1}{N}, N \to \infty$

16

Empirical Evidence

- Experiment
 - Randomly select a "true" utility vector $\mathbf{u}^* \in \mathcal{U}^0$
 - Answer questions according to \mathbf{u}^* with normally distributed noise $\zeta \sim N(0,\sigma)$

$$(\mathbf{u}^*)'(\mathbf{x}^i - \mathbf{y}^i) + \zeta \ge 0 \Longrightarrow \mathbf{x}^i > \mathbf{y}^i$$

 $(\mathbf{u}^*)'(\mathbf{x}^i - \mathbf{y}^i) + \zeta < 0 \Longrightarrow \mathbf{y}^i > \mathbf{x}^i$

Empirical Evidence

Rank all items according to u* (from 1 to 102)

- Solve for the best 5 items according to our algorithm
 - We assume the user will be given choices
 - Example: Items 2, 5, 7, 8, 9
- Compute the average true rank of the solutions we found
 - Example: 10.2
 - Smaller is better

18

Average Value of the True Ranks

CVaR(5%) of the True Ranks

Obesity Trends Among U.S. Adults

Source: Behavioral Risk Factor Surveillance System, Centers for Disease Control and Prevention

Obesity and Diabetes in the US

- The incidence of type II diabetes is increasing with obesity
 - 25.8 million people in the US (8.3% of the population)
 - 35% of adults have prediabetes, 50% of adults 65+
- Leading causes of heart disease, stroke, blindness, amputation and kidney failure
- On average,
 - Obesity costs \$1,429 more per person in medical costs each year
 - Diabetes costs more than twice as much per person

22

Diabetes and Dietary Adherence

- "Patients with good diabetes self-care behaviors can attain excellent glycemic control...patients with diabetes are especially prone to substantial regimen adherence problems"
 - American Diabetes Association
- "There was substantial agreement by health professionals and patients alike that diet and diet-related issues constituted the most difficult problem faced by persons with diabetes and by health professionals caring for those persons."
 - Michigan Diabetes Research and Training Center
- "One way to improve dietary adherence rates in clinical practice may be to use a broad spectrum of diet options, to better match individual patient food preferences"
 - Dansinger et al., JAMA 2005

Our Approach

- We have developed a personalized, comprehensive, and dynamic system for diabetes management
- Learn food preferences to improve diet adherence
 - Self-Correcting Adaptive Questionnaires
 - A Robust CVaR Approach
- Model blood glucose dynamics
 - People respond differently to different foods
- Propose a daily food and exercise plan

24

Blood Glucose Dynamics

- Blood glucose level is measured in milligrams per decilitre (mg/dL)
- Blood glucose levels follow a trajectory (BG curve)

Blood Glucose Modeling

- We model the blood glucose levels as a function of
 - Fasting level
 - Food consumed
 - Classify foods into categories using the glycemic index
 - Measures the effects of carbohydrates on blood glucose levels
 - Exercise performed
- BG measurements can be used to learn the BG curve
 - Regression to update
 - Robust optimization to account for error

26

Plan Generation with MIO

- Maximize preferences
 - Penalties for high blood glucose levels, nutritional violations
- Bounds on max/min blood glucose levels
- Nutritional requirements
 - Calories, carbs, protein, fat, etc.
- Food group requirements
 - Fruits, vegetables, dairy, meat, starch
- "Appeal" constraints
 - Variety, timing, balanced meals

Summary

- Learn preferences consistent with human behavior
 - Self-Correcting Mechanism
 - A Robust CVaR approach
- An overall system to improve diabetes and diet management