РЕФЕРАТ

Выпускная квалификационная работа содержит 34 страницы, 10 рисунков, 10 таблиц. Список использованных источников содержит 21 позицию.

ДИСКРЕТНАЯ СИСТЕМА УПРАВЛЕНИЯ, ОПТИМАЛЬНОЕ ПО-ЗИЦИОННОЕ УПРАВЛЕНИЕ, ЗАДАЧА БЫСТРОДЕЙСТВИЯ, ПРИН-ЦИП МАКСИМУМА, МЕТОД ДИНАМИЧЕСКОГО ПРОГРАММИРО-ВАНИЯ, КОРРЕКЦИЯ ОРБИТЫ СПУТНИКА

В работе рассмотрена задача оптимальной по быстродействию коррекции движения спутника, находящегося на круговой орбите. Коррекция выполняется с помощью двигателей малой тяги, создающих ускорение в радиальном и трансверсальном направлении. Управляющие воздействия предполагаются импульсными либо релейными, также идеальными. В работе показывается, что исходная задача сводится к задаче быстродействия для линейной нестационарной системы с дискретным временем и ограниченным управлением. Излагается два критерия оптимальности управления для задачи быстродействия — сформулированный в виде принципа динамического программирования и сформулированный в виде принципа максимума, и проводится сравнение результатов, полученных для каждого из типов управляющих воздействий и для каждого из критериев.

СОДЕРЖАНИЕ

	BBI	ЕДЕНИЕ	4
	OCI	НОВНАЯ ЧАСТЬ	6
1	ТЕОРЕТИЧЕСКАЯ ЧАСТЬ		
	1.1	Постановка задачи	7
	1.2	Принцип максимума	Ć
	1.3	Частный случай множества допустимых управлений в фор-	
		ме эллипсоида	12
	1.4	Метод динамического программирования	13
2	ПРАКТИЧЕСКАЯ ЧАСТЬ		
	2.1	Модель спутника	16
	2.2	Численные расчёты	20
		2.2.1 Принцип максимума	20
		2.2.2 Метод динамического программирования	22
	ЗАН	КЛЮЧЕНИЕ	30
CI	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	33

ВВЕДЕНИЕ

Задача коррекции орбиты спутника – давно известная и достаточно широко рассмотренная в различных монографиях [1–6] задача. Необходимость в управлении движением спутниковой системы можно обусловить двумя группами факторов. К первой группе относятся факторы, связанные с невозможностью вывести спутник точно на расчётную орбиту из-за технических ограничений. Ко второй – факторы, связанные с внешними возмущениями, которые оказывают негативное влияние на эволюцию его траектории. По причине тех или иных факторов из этих групп спутник попадает в некоторую малую окрестность расчётной траектории, и в связи с этим возникает необходимость коррекции его фактической орбиты и его удержания в орбитальной структуре.

Коррекция движения спутника производится с помощью двигателей малой тяги. Известны различные подходы к построению математической модели движения спутника по круговой орбите, которые соответственно приводят к различным задачам оптимизации. В [3–5] излагается стохастический подход, согласно которому все факторы возмущений рассматриваются как случайные процессы. Результаты для вероятностного критерия изложены в [7]. Возможна постановка задачи с квантильным критерием, её решение изложено в [5]. В работах [1, 2], напротив, рассматривается детерминистический подход и излагается решение задачи определения оптимальных моментов времени для проведения коррекции.

Во всех рассмотренных работах делается предположение о конечном числе корректирующих импульсов. Предположение об их произвольном числе приводит к задаче быстродействия, в которой задаётся терминальное состояние и цель заключается в минимизации числа включений двигателя. Наиболее хорошо освещены результаты для задачи быстродействия для линейных автономных систем с выпуклым множеством до-

пустимых управлений и непрерывным временем [8–10], в которой оптимальное управление релейно (кусочно-постоянно) и имеет конечное количество точек переключения. Задачи оптимального управления системами с дискретным временем по ряду черт принципиально отличаются от задач для систем с непрерывным временем. Наиболее часто задачи для систем с дискретным временем сводятся к решению задач нелинейного программирования [11–14].

Задача быстродействия для дискретной системы управления специфична: при её решении достаточно трудно использовать классические методы, такие как динамическое программирование [15] и принцип максимума [14]. В связи с этим, в работах [16–19] предлагается решение задачи быстродействия для дискретных линейных автономных систем с ограниченным управлением. Такое решение основано на свойствах класса множеств 0-управляемости, позволяющих сформулировать критерий оптимальности управления и траектории.

В настоящей работе проводится построение двух принципиально различных математических моделей управления движением спутника, расположенного на круговой орбите, посредством двигателей малой тяги. В основу математических моделей легли принцип максимума и метод динамического программирования. Также разрабатываются алгоритмы, позволяющие провести коррекцию орбиты при наименьшем числе включений двигателя. Задача решается как в предположении, что коррекция является идеальной и импульсной, так и в предположении, что она идеальна и релейна. Оба предположения приводят к задаче быстродействия для линейной дискретной системы с ограниченным множеством допустимых управлений. Целью работы является сравнение и анализ этих двух методов решения задачи.