Intelligent Multi Agent Systems

Game Theory

Gerhard Neumann

Slides edited from Tom Lanaerts

Agenda

- →Introduction in Game Theory
- →Some Example Games
- **⇒**Solution Concepts:
 - **⇒** Dominance
 - → Pareto Optimality
 - Nash Equilibria
 - → Correlated Equilibrium
 - → MaxMin and MinMax strategies
 - **⇒** Rationalizability

Game Theory

- ⇒In a multi-agent system, the decision of an agent may affect other agents.
- →Typically, an agent will be uncertain about the actions of the other agents.
- →Game theory is the study of multi-agent decision making under uncertainty.

It is based on two premises:

- → The agents are rational.
- → The agents reason strategically.

Lets play a little game:

- Everyone gets two cards (red and black)
- You will be matched with a random person

Rules of the game:

- Hold your card against the chest, reveal it simultanously
- Red card: you get 2 points
- Black card: your partner gets 3 points

Pay-Off Table:

black Player

Player II

black red 0,5 3,3 5,0 2,2

Remixing partners...

Pay-Off Table, 2nd Round:

Player II

		black	red
Player	black	8,8	0,10
Í	red	10,0	2,2

Remixing partners...

Pay-Off Table, 3rd Round, now we play 3 games against the same partner

Player II

		black	red
Player	black	8,8	0,10
Í	red	10,0	2,2

This game is actually called "prisoner's dilema"

This game extends to a variety of situations:

- ⇒working on a joint project,
- **⇒**duopoly
- ⇒arms race
- ⇒use of a common property

Game Theory Premises

- →Simultaneous actions
- No communication
- Outcome depends on combination of actions

→Utility (payoff) encapsulates everything about preferences over

outcomes

⇒(Typically) no repeated games

Strategic Games: Formal Definition

A strategic game is the simplest game-theoretic model of agent interactions.

- ightharpoonup There are n > 1 agents in the world.
- ⇒Each agent i can choose an action a_i from his own action set A_i . The vector (a_1, \ldots, a_n) of individual actions is called a joint action or an action profile, and is denoted by a or (a_i) .
- The profile (a_{-i}, a_i) indicates that agent i plays a_i .
- The game is played on a fixed world state s. The state consists of the n agents, their action sets A_i , and their payoffs.

Strategic Games: Formal Definition

- ⇒Each agent *i* has his own payoff function $u_i(a)$ that measures the goodness of the joint action a for the agent *i*.
- → The state is fully observable to all agents.
- → Common knowledge: all agents know
 - ⇒each other
 - the action sets of each other
 - the payoff functions of each other.
- ⇒Each agent chooses a single action. All agents choose their actions simultaneously and independently of each other.

2 Player Games

In the special case of two agents, a strategic game can be graphically represented by a payoff matrix:

	Qı	uiet	F	ink	
		3		7	
Quiet			^		
	3		0		\Box
		0			I
Fink					
	7		ı		

→ A prisoner's dilema is any game with b < d < a < c</p>

C	a, a	b, c
D	c b	d

Some more games

Stag-hunt game:

⇒Players: 2 fishermen

→Actions: fish, whale

	whale	fish
whale	2	I
	2	0
fish	0	I
11311	I	I

Also known as coordination game

Some more games

Chicken game:

- →Players: 2 "brave" car drivers
- →Actions: straight, swerve

	swe	erve	sti	raigh	ıt
		0		+	
swerve					
	0		-1		
		-1		-10	
straight	+1		-10		

Some more games...

Matching Pennies:

⇒Player 1: Match

→Player 2: Dismatch

Zero-sum game

⇒Strictly competitive

head tail

head		-1		+
nead	+1		-1	
tail		+		-1
Lan	-1		+	

"Optimal" Action Selection

Which action will be chosen by each player?

- →Theory of rational choice states that each player chooses the best available action
- ⇒Since this choice depends on the actions of the other player, each player must form a **belief** about the other players' actions and preferences
- →This belief is formed based on the knowledge of the game and past experiences
- ⇒BUT! each play is considered in isolation (players do not know the selected actions of other players)

Which solution should we take

There are different solution concepts:

- **→**Dominance
- →Pareto Optimality
- Nash Equilibria
- → MaxMin and MinMax strategies

In any game, a player's action strictly dominates another action if it is superior, no matter what the other player does

Steal strictly dominates Split

- →If player 2 plays Split, then player 1 prefers Steal!
- → If player 2 plays Steal, then player 1 also prefers Steal!

Steal

Split

Definition:

In a strategic game player i's action a_i'' strictly dominates another action a_i' if

 $\Rightarrow u_i(a_i'',a_{-i}) > u_i(a_i',a_{-i})$ for every list a_{-i} of the other player's action

We say that a_i is strictly dominated

Definition:

In a strategic game player i's action a_i " weakly dominates another action a_i if

- $\Rightarrow u_i(a_i'',a_{-i}) >= u_i(a_i',a_{-i})$ for every list a_{-i} of the other player's action
- $\Rightarrow u_i(a_i'',a_{-i}) > u_i(a_i',a_{-i})$ for some list a_{-i} of the other player's action

We say that a_i is weakly dominated

No matter what the column player does...

- → M weakly dominates T
- → B weakly dominates M
- ⇒BUT: B strictly dominates T

Dominance is not a real solution concept but can be used to eliminate actions.

	whale	fish
whale	2	I
	2	0
fish	0	I
	I	1

⇒Dominance?

⇒Dominance?

Neither whale nor fish strictly or weakly dominates the other player's action

⇒Dominance?

Neither whale nor fish strictly or weakly dominates the other player's action

Neither swerve nor straight strictly or weakly dominates the other player's action

Identifying dominated strategies

However, actions can also be dominated by mixed strategies:

- → M is not dominated by U or D
- → But M is dominated by a mixed strategy that takes D and U with equal probability.

U	3,1	0, 1
M	1,1	1,1
D	0,1	4,1

Which solution should we take

There are different solution concepts:

- **⇒**Dominance
- →Pareto Optimality
- Nash Equilibria
- → MaxMin and MinMax strategies

Pareto Optimality

"An outcome of a game is Pareto optimal if there is no other outcome that makes every player at least as well off and at least one player strictly better off. That is, a Pareto Optimal outcome cannot be improved upon without hurting at least one

player. "

Which solution should we take

There are different solution concepts:

- **⇒**Dominance
- →Pareto Optimality
- Nash Equilibria
- → MaxMin and MinMax strategies

Best Response and Nash Equilibrium

If you knew what everyone else was going to do, it would be easy to pick your own action

ightharpoonup Actions of other agents: a_{-i}

Best-response for player *i* given a_{-i} :

$$a_i^* \in B_i(a_{-i}) \text{ iff } \forall a_i \in A_i, \ u_i(a_i^*, a_{-i}) \ge u_i(a_i, a_{-i})$$

 $ightharpoonup a_i^*$ optimizes the utility of agent i given a_{-i}

Nash Equilibrium (pure strategy)

Idea: look for stable action profiles!

$$a = (a_1, \ldots, a_n)$$
 is a ("pure strategy") Nash equilibrium iff a_i is the best response for all agents i , i.e, $\forall i, a_i \in BR(a_{-i})$

 $\Rightarrow u_i(a^*) \ge u_i(a_i, a_{-i}^*)$ for every action a_i of player i

A NE corresponds to a stable "social norm": if everyone follows it, no person will wish to deviate from this

Assume the profile :

(Quiet, Quiet)
$$u_1 \rightarrow 3$$
 $u_2 \rightarrow 3$ (Fink, Quiet) $u_1 \rightarrow 7$

(Fink, Fink)
$$u_1 \rightarrow I$$
 $u_2 \rightarrow I$

Assume the profile:

	Qu	iet	Fir	nk
Quiet		3		7
	3		0	
		0		_
Fink	7		_	

(Quiet, Quiet)
$$u_1 \rightarrow 3$$
 $u_2 \rightarrow 3$
(Fink, Quiet) $u_1 \rightarrow 7$
(Quiet, Fink) $u_2 \rightarrow 7$

(Fink, Fink) $u_1 \rightarrow I$ $u_2 \rightarrow I$

The prisoner's dilemma

Any deviation of this NE results in a worse outcome

This NE is a strict Nash Equilibrium

(Fink, Fink)
$$u_1 \rightarrow I$$
 $u_2 \rightarrow I$ (Quiet, Fink) $u_1 \rightarrow 0$ (Fink, Quiet) $u_2 \rightarrow 0$

The prisoner's dilemma

Any deviation of this NE results in a worse outcome

→ This NE is a strict Nash Equilibrium

Comparison to Pareto Optimal Solutions

➡ Prisoner's dilemma paradoxon: Nash equilibrium is the only solution that is not Pareto Optimal!

(Fink, Fink)
$$u_1 \rightarrow 1$$
 $u_2 \rightarrow 1$ (Quiet, Fink) $u_1 \rightarrow 0$ (Fink, Quiet) $u_2 \rightarrow 0$

Examples: Chicken Game

Assume the profile :

	Swe	erve	Str	aight
_		0		+1
Swerve				
	0		-	
		-		-10
Straight				
	+		-10	

(swerve, swerve) $u_1 \rightarrow 0$ $u_2 \rightarrow 0$

(straight, straight)
$$u_1 \rightarrow -10$$
 $u_2 \rightarrow -10$

Examples: Chicken Game

Assume the profile :

(swerve, swerve)
$$u_1 \rightarrow 0$$
 $u_2 \rightarrow 0$
(straight, swerve) $u_1 \rightarrow +1$
(swerve, straight) $u_2 \rightarrow +1$
(straight, straight) $u_1 \rightarrow -10$ $u_2 \rightarrow -10$
(swerve, straight) $u_1 \rightarrow -1$
(straight, swerve) $u_2 \rightarrow -1$

Both profiles are unstable!

Examples: Chicken Game

Assume the profile:

	Swe	erve	Str	aight
_		0		+1
Swerve				
	0		•	
				-10
Straight				
	+1		-10	

(straight, swerve) $u_1 \rightarrow +1 \ u_2 \rightarrow -1$

(swerve, straight)
$$u_1 \rightarrow -1$$
 $u_2 \rightarrow +1$

Examples: Chicken Game

Assume the profile:

	Swe	erve	Str	aight
		0		+1
Swerve				
	0		-	
				-10
Straight	+1		-10	

```
(straight, swerve) u_1 \rightarrow +1 u_2 \rightarrow -1

(swerve, swerve) u_1 \rightarrow 0 Both profiles are stable!

(straight, straight) u_2 \rightarrow -10 stable!

(swerve, straight) u_1 \rightarrow -1 u_2 \rightarrow +1

(straight, straight) u_1 \rightarrow -10

(swerve, swerve) u_2 \rightarrow 0
```

Examples: Chicken Game

Both profiles are strict NE!

Swerve Straight 0 +1 Swerve 0 Straight +1 -10

Assume the profile:

(straight, swerve)
$$u_1 \rightarrow +1$$
 $u_2 \rightarrow -1$
(swerve, swerve) $u_1 \rightarrow 0$
(straight, straight) $u_2 \rightarrow -10$
(swerve, straight) $u_1 \rightarrow -1$ $u_2 \rightarrow +1$
(straight, straight) $u_1 \rightarrow -10$
(swerve, swerve) $u_2 \rightarrow 0$

Examples: Stag hunt

Assume the profile :

	whale	fish
whale	2	Ι
	2	0
fish	0	I
11311	I	1

(whale, whale)
$$u_1 \rightarrow 2 \quad u_2 \rightarrow 2$$

(fish, fish)
$$u_1 \rightarrow I$$
 $u_2 \rightarrow I$

Examples: Stag hunt

Both profiles are Assume the profile : strict NE!

(whale, whale)
$$u_1 \rightarrow 2 \quad u_2 \rightarrow 2$$

(fish, whale)
$$u_1 \rightarrow I$$

(whale, fish)
$$u_2 \rightarrow I$$

(fish, fish)
$$u_1 \rightarrow I$$
 $u_2 \rightarrow I$

(whale, fish)
$$u_1 \rightarrow 0$$

(fish, whale)
$$u_2 \rightarrow 0$$

Examples: Matching Pennies

Best response analysis

head tail

head tail

head

-I +I

tail

-I -I

tail

Examples: Matching Pennies

Best response analysis

Mixed Strategies

It would be a pretty bad idea to play any deterministic strategy in matching pennies

Idea: confuse the opponent by playing randomly

- ightharpoonup Define a strategy α_i for agent i as any probability distribution over the actions A_i .
- \Rightarrow pure strategy a: only one action is played with positive probability
- \rightarrow mixed strategy α : more than one action is played with positive probability
 - $\Rightarrow \alpha(a_k) \dots$ probability of choosing action a_k
 - ➡ These actions are called the support of the mixed strategy
 - → Aka. Lottery

von Neumann/Morgenstern Preferences

Preferences regarding distributions/lotteries α

ightharpoonup Given utility function u compute expected utility

$$U(\alpha) = \sum_{a} \alpha(a)u(a)$$

Mixed Strategy Nash Equilibrium

Assume that (α_i', α_{-i}) is the **mixed** strategy profile in which every player j except i chooses its mixed strategy α_i as specified by α , whereas player i deviates to α_i'

Definition:

The mixed strategy profile α^* in a strategic game is a **mixed strategy Nash Equilibrium** if for every player i and for every mixed strategy α_i of player i, the expected payoff to i in α^* is at least as large as the expected payoff to i in $(\alpha_i, \alpha_{-i}^*)$ according to a payoff function that represents player i's preferences over lotteries.

Mixed Strategy Nash Equilibrium

Definition:

Equivalently, for every player i, $U_i(\alpha^*) \ge U_i(\alpha_i, \alpha_{-i}^*)$ for every mixed strategy α_i of player i, where $U_i(\alpha)$ is the player's i expected payoff to the mixed strategy profile α

Every finite game has at least one (mixed) Nash equilibrium! [Nash, 1950]

Best-response

To find the mixed strategy NE, we can again make use of the notion of a Best-response.

The mixed strategy profile α^* in a strategic game is a mixed strategy Nash Equilibrium if and only if α_i^* is in $B_i(\alpha_{-i}^*)$ for every player i

Definition:

 $\Rightarrow B_i(\alpha_{-i})$ is the set of all player i's best mixed strategies when the list of the other players' mixed strategy is α_{-i}

Two Player Games

What is the set of best responses of player 1 to a mixed strategy of player 2?

	L (q)	R (1-q)
T (p)	pq	<i>p(1-q)</i>
B (I-p)	(1-p)q	(1-p) (1-q)

48

Two Player Games

What is the set of best responses of player 1 to a mixed strategy of player 2?

T (p)
$$pq$$
 $p(1-q)$

B (1-p) $(1-p)q$ $(1-p)$ $(1-q)$

$$U_1(\alpha) = p \left(q u_1(T, L) + (1 - q) u_1(T, R) \right) +$$

$$(1 - p) \left(q u_1(B, L) + (1 - q) u_1(B, R) \right)$$

$$U_1(\alpha) = p U_1(T, \alpha_{-1}) + (1 - p) U_1(B, \alpha_{-1})$$

→ the expected payoff of player 1, given player 2's mixed strategy is a linear function of p

Two Player Games

The linearity implies 3 possible outcomes:

- 1. player 1's unique best response is the pure strategy T
 - ⇒ (when $U_1(T, \alpha_{-1}) > U_1(B, \alpha_{-1})$)
- 2. player 1's unique best response is the pure strategy B
 - ⇒ (when $U_1(T, \alpha_{-1}) < U_1(B, \alpha_{-1})$)
- 3. all player 1's mixed strategies are all best responses
 - \Rightarrow (when $U_1(T, \alpha_{-1}) = U_1(B, \alpha_{-1})$)

player 1's expected payoff for the pure strategy *Head* (p) is

player 1's expected payoff for the pure strategy Tail(1-p) is

	head	tail	
head	-1		+
	+	-1	
tail	+1		-1
	-1	+1	

player 1's expected payoff for the pure strategy *Head* (p) is

$$q \cdot 1 + (1 - q) \cdot (-1) = 2q - 1$$

player 1's expected payoff for the pure strategy *Tail* (1-p) is $q\cdot (-1)+(1-q)\cdot 1=1-2q$

	head	tail	
head	-1		+
	+	-1	
tail	+1		-1
	-1	+1	

player 1's expected payoff for the pure strategy *Head* (p) is

$$q \cdot 1 + (1 - q) \cdot (-1) = 2q - 1$$

player 1's expected payoff for the pure strategy Tail(1-p) is

$$q \cdot (-1) + (1-q) \cdot 1 = 1 - 2q$$

- 1. 2q-1 < 1-2q when q < 1/2 for any value of p > 0.0
- \Rightarrow Thus best response set is {Tail} or p=0
- 2. 2q-1 > 1-2q when q > 1/2 for any value of (1-p) > 0.0
- ⇒Thus best response set is {Head} or p=1
- 3. 2q-1 = 1-2q when q = 1/2 for any mixed strategy
- → Thus best response set is the set of all mixed strategies

	head	tail	
head	-1		+
	+1	-1	
tail	+1		-1
	-1	+1	

player 2's expected payoff for the pure strategy H

$$p \cdot 1 + (1-p) \cdot (-1) = 2p - 1$$

player 2's expected payoff for the pure strateg

$$p \cdot (-1) + (1-p) \cdot 1 = 1 - 2p$$

- 1. 2p-1 < 1-2p when p < 1/2 for any value of q > 0.0
- \Rightarrow Thus best response set is {Tail} or q=0
- 2. 2p-1 > 1-2p when p > 1/2 for any value of (1-q) > 0.0
- \Rightarrow Thus best response set is {Head} or q=1
- 3. 2p-1 = 1-2p when p = 1/2 for any mixed strategy
- → Thus best response set is the set of all mixed strategies

The only stable equilibrium point is

$$p = q = \frac{1}{2}$$

Interpreting mixed strategies

What does it mean to play a mixed strategy?

Different interpretations:

- →Randomize to confuse your opponent
- ⇒Players randomize when they are uncertain about the other's action
- ➡Mixed strategies are a concise description of what might happen in repeated play: count of pure strategies in the limit

Which solution should we take

There are different solution concepts:

- **⇒**Dominance
- →Pareto Optimality
- Nash Equilibria
- → MaxMin and MinMax strategies

MaxMin Strategies

Player i's maxmin strategy is a strategy that maximizes i's worst-case payoff, where all the other players -i play the strategies which cause the greatest harm to i.

Why would player *i* want to play a maxmin strategy?

- →a conservative agent maximizing worst-case payoff
- a paranoid agent who believes everyone hates him

Definition (MaxMin):

The maxmin strategy for player i is $\arg \max_{\alpha_i} \min_{\alpha_{-i}} u_i(\alpha_1, \alpha_2)$ and the maxmin value for player i is $\max_{\alpha_i} \min_{\alpha_{-i}} u_i(\alpha_1, \alpha_2)$

MinMax Strategies

Player i's minmax strategy against player -i in a 2-player game is a strategy that minimizes -i's best-case payoff

Why would player *i* want to play a minmax strategy?

to punish the other agent as much as possible (he really hates him)

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against player -i is $\arg\min_{\alpha_i} \max_{\alpha_{-i}} u_{-i}(\alpha_i, \alpha_{-i})$ and player -i's minmax value is $\min_{\alpha_i} \max_{\alpha_{-i}} u_{-i}(\alpha_i, \alpha_{-i})$

MaxMin and MinMax in Zero Sum Games

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- ⇒Each player's maxmin value is equal to his minmax value. By convention, the maxmin value for player 1 is called the value of the game.
- ⇒For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector.

Summary

What we learned today:

- → Definition of a game in normal form
- → Rational Agents
- ⇒Solution Concepts: Pareto Optimality, Nash, ...
- ⇒Best Responses and Nash Equilibrium
- → Mixed and Pure Nash Strategies

Consider the following "traffic" game:

→ What are the Nash equilibria?

What is the natural solution here?

go	wait
-100, -100	10,0
0, 10	-10, -10

go

Consider the following "traffic" game:

⇒What are the Nash equilibria?

go

go	waii
-100, -100	10, 0
0, 10	-10, -10

 $\alpha \alpha$

What is the natural solution here?

→ Traffic lights: a fair randomizing device that tells one of the agents to go and the other to wait.

Benefits:

- the negative payoff outcomes are completely avoided
- → fairness is achieved
- the sum of social welfare might exceed that of any Nash equilibrium

- Our example presumed that everyone perfectly observes the random event; not required.
- More generally, some random variable v with a commonly known distribution, and a private signal to each player about the outcome.
 - ⇒v can be used for coordination
 - ⇒signal doesn't determine the outcome or others' signals;
 - however, correlated
- ⇒For every Nash equilibrium there exists a corresponding correlated equilibrium.
- Not every correlated equilibrium is equivalent to a Nash equilibrium
 - ⇒ Weaker notion than Nash

We can view the problem now as finding a set of correlated strategies

 \Rightarrow The strategies of all agents can be expressed by a joint distribution p(a)

Some convenient notation:

Expected Utility for action
$$a_i^j$$
: $U_i(a_i^j, p_{-i}) = \sum_{a_{-i} \in A_{-i}} p(a_{-i}|a_i^j) u_i(a_i^j, a_{-i})$
Expected Utility for agent i : $U_i(p) = \sum_{a_i^j} p(a_i^j) U_i(a_i^j, p_{-i})$

$$= \sum_{a_i^j} \sum_{a_{-i} \in A_{-i}} p(a_i^j) p(a_{-i}|a_i^j) u_i(a_i^j, a_{-i})$$

$$= \sum_{a \in A} p(a) u_i(a)$$

Rationalizability

Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent

- assumes opponent is rational
- assumes opponent knows that you and the others are rational

Rationalizable Strategy: Can we find a belief under which the strategy is rational?

Examples:

- ⇒ is heads rational in matching pennies?
- → is cooperate rational in prisoner's dilemma?

Will there always exist a rationalizable strategy?

→ Yes, equilibrium strategies are always rationalizable.

Definition (Correlated Equilibrium)

$$U_{i}(p) \ge U_{i}(a'_{i}, p_{-i}) \qquad \forall i \in N, \ a'_{i} \in A_{i}$$
$$p(a) \ge 0 \qquad \forall a \in A$$
$$\sum p(a) = 1$$

The expected utility for player i given the joint strategy profile p needs to be at least as high as the utility the player could get with another action a'_i (given profile p_{-i} of the other players)