Algoritmo PageRank (ranking de página) de Google

La importancia de estar bien conectado.

Dado un conjunto de páginas web $P_1, P_2, ..., P_N$ con enlaces entre ellas se pretende definir un ranking de pagina de forma que:

"El ranking de la página rp_i es la media de los rankings de las páginas que llegan a ella"

- El conjunto de distribuciones Δ . Distribuciones propias.
- Matriz de enlaces E y matriz de enlaces normalizada M.
- Vector de ranking $\vec{r} = (rp_1, rp_2, ..., rp_N)$ (en los calculos se toma como una columna. Ademas $\vec{r} \in \Delta$.

Ejemplo

Solución

$$\vec{r} = \vec{0}$$
.

- ullet Matriz de enlaces extendida (normalizada) $ilde{M}$.
- Matriz estocástica.

Segundo ejemplo

Solución

$$\vec{r} = (0, 0, 0.5, 0.5).$$

La matriz de Google

- Matriz de unos, 1.
- Matriz de Google $\mathbb{G}_{\alpha} = \alpha \tilde{M} + \frac{1-\alpha}{N} \mathbb{1}$.

Ecuación de Google

$$\vec{r} = \mathbb{G}_{\alpha} \cdot \vec{r}, \qquad \vec{r} \in \Delta$$

- La ecuacion de Google tiene una única solución, y es siempre una distribucion propia.
- Serbey Brin y Larry Page, creadores de PageRank, sugieren $\alpha = 0.85$.