

AACC 四口多协议升降压移动电源 SOC

1. 概述

SW6306V 是一款高集成度的四口多协议升降压移动电源 SOC。 集成双向升降压控制器,支持 $2\sim6$ 节电 池 串 联 , 提 供 最 大 100W 功 率 输 入 输 出 ; 支 持 $A+A+C_{inout}+C_{inout}$ 任 意 口 快 充 ; 支 持 UFCS/PPS/PD/SVOOC/VOOC/SCP/FCP/QC/AFC/BC1.2 等多种输入输出快充协议;集成高精度电量计、数码 管/LED 显示驱动以及场景控制管理。

2. 应用领域

- 移动电源
- 户外电源

3. 规格

• 高效升降压开关充电

- ▶ 支持 2~6 节串联电芯充电,包含涓流、恒流、恒压、充电截止、复充完整的充电循环管理
- ▶ 支持 4.2V/4.3V /4.35V /4.4V 三元电池和 3.65V 磷酸铁锂电池
- ▶ 输入电压范围 4~26V
- ▶ 支持外部 PIN 配置充电功率,最高可达 100W
- ▶ 支持 I2C 设置充电目标电压和充电电流
- ➤ 支持 MPPT 功能
- ▶ 支持智能识别适配器最大电流,自动调整充电电流
- ▶ 升降压模式无缝切换

• 高效升降压开关放电

- ▶ 支持外部 PIN 配置放电功率,最高可达 100W
- ▶ 支持 3.3~27.3V 输出电压, 10mV 调压步进
- ▶ 支持 I2C 设置电池端和输出端限流
- > 支持 PD 规范 peak current 功能
- ▶ 根据负载大小自动切换 PWM 和 PSM 模式

系统

- ▶ AACinoutCinout 和 AACinoutLin 四口任意口快充
- ▶ 内置 Lightning 输入解密
- > 智能识别设备接入和拔出
- > 支持小电流模式和无线充模式
- ▶ A 口存在与否自动检测
- ▶ 待机功耗小于 50uA@14.8V
- ▶ PIN 配置电池类型/节数/容量
- ▶ PIN 配置 NTC 保护门限
- ➤ PIN 配置恒温环门限

• 按键

- ▶ 支持短按,双击,长按
- ➤ 按键支持小电流模式,关输出端口,WLED 开关功能

• 快充协议

- ▶ UFCS 输入/输出
- ▶ PD3.1 输入/输出
- > SVOOC/VOOC4.0/VOOC1.0 输入/输出
- ➤ SCP/FCP/AFC 输入/输出
- ➤ QC3+/QC3.0/QC2.0 输出
 - ▶ BC1.2 输入/输出

・电量计及显示

- 内置库仑计精准电量
- ▶ 支持双芯片电量计量
- ▶ 内置 12bit ADC
- ▶ 支持 5 PIN 各型号 188 数码和 6 PIN 定制数码管
- ▶ 支持 3~5 颗 LED 电量显示
- ▶ 支持快充指示灯
- ▶ 支持小电流和异常灯显
- ▶ 内置 WLED 照明驱动

• 保护机制

- ▶ 输入/输出过压保护
- ➤ 输出过流、短路保护
- ▶ 电池欠压、过压保护
- ➤ NTC 过温保护
- ▶ 芯片 Die 过温保护
- ▶ 充电超时保护

• 可靠性

- ➤ VBUS、VBAT 耐压>32V
 - DPDM、CC 耐压>28V

封装

QFN60 7mm x 7mm 0.4pitch

4. 引脚定义及功能描述

4.1. 引脚定义

4.2. 引脚描述

Pin	Name	Function Description
1	VBUS	芯片供电、VBUS 电压检测、VBUS 泄放电
2	CSN_VBUS	VBUS 端电流采样负极
3	CSP_VBUS	VBUS 端电流采样正极
4	GATEA1	Type-A1 口通路控制信号
5	GATEA2	Type-A2 口通路控制信号

6	GATEC2/GATEBL	Type-C2 口通路控制信号,或 Micro-B/Lightning 口
		通路控制信号
7	GATEC1	Type-C1 口通路控制信号
8	CC11	Type-C1 □ CC1 信号
9	CC21	Type-C1 口 CC2 信号
10	DPC1	Type-C1 口 DP 信号
11	DMC1	Type-C1 □ DM 信号
12	CC12/CCL	Type-C2 口 CC1 信号,或 Lightning 口 CC 信号
13	CC22/DATA	Type-C2 口 CC2 信号,或 Lightning 口解密信号
14	DPC2/DPB	Type-C2 口 DP 信号,或 Micro-B 口 DP 信号
15	DMC2/DMB	Type-C2 口 DM 信号,或 Micro-B 口 DM 信号
16	DPA2	Type-A2 口 DP 信号
17	DMA2	Type-A2 □ DM 信号
18	DPA1	Type-A1 口 DP 信号
19	DMA1	Type-A1 □ DM 信号
20	IDA1	Type-A1 □ ID 信号
21	IDA2	Type-A2 □ ID 信号
22	101	独立 IO,推挽输出,默认下拉,可通过寄存器设置
22	IO1	上下拉。设置为上拉时,上拉到 VCC
22	CCW/DOCET	I2C 时钟信号;或输出功率设置引脚,通过下拉电阻
23	SCK/POSET	配置输出功率
2.4	CD A /DICETE	I2C 数据信号;或输入功率设置引脚,通过下拉电阻
24	SDA/PISET	配置输入功率
25	IDO ANAOD	中断信号;或电池保护温度门限设置引脚,通过下
25	IRQ/NMOD	拉电阻配置保护门限
26	IOC/EMOD	I2C 设置信号;或放电恒温环门限设置引脚,通过下
26	I2C/TMOD	拉电阻配置保护门限
27	NTC	电池温度检测
28	BCSET	电池节数设置引脚,通过下拉电阻配置电池节数
29	CSET	电池容量设置引脚,通过下拉电阻配置电池容量
30	COMP1	Buckboost 补偿网络 1
31	COMP2	Buckboost 补偿网络 2
32	VCC	内部供电电源
33	WLED	照明输出引脚
2.4		按键检测,及按键功能配置引脚,通过上拉电阻配
34	KEY/KMOD	置按键功能
2.5	ELED (DAYGES	快充指示灯,及电池充电目标电压设置引脚,通过
35	FLED/BVSET	上拉电阻配置充电目标电压
36	LED5	数码管显示接口 5
37	LED4/WLSSEG	LED 灯或数码管显示接口 4 及无线充数码管使能
38	LED3/SPSEG	LED 灯或数码管显示接口 3 及特殊数码管使能
39	LED2/BLUTH	LED 灯或数码管显示接口 2 及小电流模式使能
L	1	

40	LED1/WLSS	LED 灯或数码管显示接口 1 及无线充模式使能	
41	VBAT	电池端	
42	CSN_VBAT	电池端电流采样负端	
43	CSP_VBAT	电池端电流采样正端	
44	VOUTA1	Type-A1 口轻载电流检测端	
45	VBUSA1	Type-A1 口输出电压检测端	
46	VOUTA2	Type-A2 口轻载电流检测端	
47	VBUSA2	Type-A2 口输出电压检测端	
48	VOUTC1	Type-C1 口轻载电流检测端	
49	VBUSC1	Type-C1 口输入输出电压检测端	
50	VOUTC2	Type-C2 口轻载电流检测端	
51	VBUSC2/VBUSBL	Type-C2 口输入输出电压检测端,或 Micro-	
31	V BUSC2/ V BUSBL	B/Lightning 口输入电压检测端	
52	SW2	Buckboost 电池端开关节点	
53	HD2	Buckboost 电池端半桥上管驱动信号	
54	BST2	Buckboost 电池端半桥上管驱动自举信号	
55	LD2	Buckboost 电池端半桥下管驱动信号	
56	VDRV	内部驱动电源	
57	LD1	Buckboost VBUS 端半桥下管驱动信号	
58	BST1	Buckboost VBUS 端半桥上管驱动自举信号	
59	HD1	Buckboost VBUS 端半桥上管驱动信号	
60	SW1	Buckboost VBUS 端开关节点	
/	EPAD	接地,散热 PAD	

5. 极限参数

Parameters	Symbol	MIN	MAX	UNIT
输入电压	CSP_VBUS/CSN_VBUS/	-0.3	32	V
柳八电压	VBUS/VBUSBL	-0.5	32	V
	VOUTA1/VOUTA2/VOUTC1/			
输出电压	VOUTC2/VBUSA1/VBUSA2/	-0.3	32	V
	VBUSC1/VBUSC2	VBUSC1/VBUSC2		
电池端电压	VBAT/CSN_VBAT/CSP_VBAT	-0.3	32	V
SW管脚电压	SW1/SW2	-0.3	32	V
BST/HD 管脚电压	BST1/BST2/HD1/HD2	-0.3	38	V
通路控制电压	GATEA1/GATEA2/GATEC1/	-0.3	38	V
地附江州 电压	GATEC2/GATEBL	-0.3	38	V

端口信号管脚电压	CC11/CC21/DPC1/DMC1/ (CC12/CCL)/(CC22/DATA)/ (DPC2/DPB)/(DMC2/DMB)/ DPA2/DMA2/DPA1/DMA1	-0.3	28	V
其它管脚电压		-0.3	7	V
结温		-40	+150	°C
存储温度		-60	+150	°C
ESD (HBM)		-2	+2	KV

【备注】超过此范围的电压电流及温度等条件可能导致器件永久损坏。

6. 推荐参数

Parameters	Symbol	MIN	Typical	MAX	UNIT
输入电压	VBUSC1/VBUSC2/ VBUSBL	4		26	V
输出电压	VBUSA1/VBUSA2/ VBUSC1/VBUSC2	3.3		27.3	V
电池电压	VBAT	5.5		26	V

7. 电气特性

(T_A=25°C, 电池节数为 N, 除特别说明。)

Parameters	Symbol	Test Conditions	MIN	TYP	MAX	UNIT
供电电源						
VBUSC1/VBUSC2/VBU SBL 输入电源	V _{BUSC1/C2/BL}		4		26	V
		VBUS 5V		6		
	V _{BUS_OVP1}	VBUS 9V		10.8		
		VBUS 10V		13.6		
		VBUS 12V		13.6		V
VBUS 输入过压门限		VBUS 15V		18		V
		VBUS 20V		22		
		VBUS 24V		26.4		
	V _{BUS_OVP2}	VBUS 输入电压上升		29.2		

AACC 四口多协议升降压移动电源 SOC

			BUS ^{电压下降}		26.4		
7700 th 11 th 15		开机			5		V
VCC 输出电压	V_{CC}	э			3.8		V
VCC 输出电流	Ivcc	Ŧ	 F机		50		mA
VCC 棚田 电机	TVCC	э			50		mA
充电模式							
涓流截止电压	$ m V_{TC}$		锂电池 5数为 N		N*3		V
捐机 似止电压	VTC		快锂电池 芍数为 N	7	N*2.75		v
退运大山山运	Ţ		锂电池 < N*3V		200		mA
涓流充电电流	${ m I}_{ m BAT_TC}$		失锂电池 N*2.75V		200		mA
		V _{BUSC} =5V	PD 输入功率 30W 以上		3		
		V _{BUSC} =9V	PD 输入功率 30W 以上		3		
		V 10V	PD 输入功率 30W		2.5		
		V _{BUSC} =12V	PD 输入功率 65W、100W		3		
恒流充电电流		V _{BUSC} =15V	PD 输入功率 30W		2	A	A
但机尤电电机	Icc		PD 输入功率 65W、100W		3		
			PD 输入功率 30W		1.5		
		V _{BUSC} =20V	PD 输入功率 65W (emarker 线)		3.25		
			PD 输入功率 100W (emarker 线)	_	5		
截止充电电流	${ m I}_{ m BAT_END}$				200		mA

AACC 四口多协议升降压移动电源 SOC

充电模式最大输入功率	Pmax			100		W
		电池节数为 N 3.6V 电池类型		3.6*N		
		电池节数为 N 3.65V 电池类型		3.65*N		
充电目标电压	$ m V_{BAT_FULL}$	电池节数为 N 4.2V 电池类型		4.2*N		V
		电池节数为 N 4.35V 电池类型		4.35*N		
		电池节数为 N 4.4V 电池类型		4.4*N		
复充电电压	V _{BAT_RECH}			充电目标电 压*97%		V
开关频率	F_{CHG}			300		KHz
涓流充电超时	t _{TC_OT}			40		Min
恒流恒压充电超时	tcc_ot			33		Hour
恒温温度值	T _{REGU_CHG}	R _{TMOD} =5.1K		100		$^{\circ}$
	V _{HOLD}	$V_{BUSB}/V_{BUSC}/V_{BUSL} = 5V$		4.5		V
		$V_{BUSB}/V_{BUSC}/V_{BUSL} = 9V$		8.5		V
限压环门限		$V_{BUSB}/V_{BUSC}/V_{BUSL} = 12V$		11.5		V
		$V_{BUSC}/V_{BUSL} = 15V$		14.5		V
		$V_{BUSC}/V_{BUSL} = 20V$		19.0		V
放电模式		/				
VBAT 输入电压	V_{BAT}	电池节数 N	N*2.75		26	V
	V _{BAT_UVLO}	VBAT 输入电压下降 磷酸铁锂电池		N*2.75		
VBAT 输入欠压门限		VBAT 输入电压下降 三元锂电池		N*3		V
VBAT 输入欠压门限迟 滞	V _{BAT_UVLO_HYS}	VBAT 输入电压上升 电池节数为 N		0.4V*N		V
		V _{BUS} =5V, I _{BUS} =0A		5.1		
VBUS 输出电压	$ m V_{BUS}$	V _{BUS} =9V, I _{BUS} =0A		9.1		V
		V _{BUS} =12V, I _{BUS} =0A		12.1		

		V _{BUS} =15	V, I _{BUS} =0A		15.1		
		V _{BUS} =20	V, I _{BUS} =0A		20.1		
		V _{BUS} =5V	PD 输出功率 30W 以上		3.3		
		V _{BUS} =9V	PD 输出功率 30W 以上		3.3		
		101/	PD 输出功率 30W		2.8)	
		V _{BUS} =12V	PD 输出功率 65W、100W		3.3		
满载输出电流	т	1517	PD 输出功率 30W		2.3		
7两	I _{BUS}	V _{BUS} =15V	PD 输出功率 65W、100W		3.3	A	
			PD 输出功率 30W		1.8		
			V _{BUS} =20V	PD 输出功率 65W (emarker 线)		3.55	
			PD 输出功率 100W (emarker 线)		5.3		
松料市流补加门阳佑		$R_{DS_PATH} = 10 \text{m} \Omega$ $V_{BUS} = 5V$			60	mA	
轻载电流检测门限值	I _{LIGHT_} LOAD	$R_{DS_PATH}=10m \Omega$ $V_{BUS}=9V/12V/15V/20V$			30	mA	
坛共协调学担叶 简		单口	1输出		32	S	
轻载检测关机时间	tlight_load	多口输出	多口输出或边充边放		16	S	
电池端待机电流	I_{STB}	V _{BAT} =14.8V			42	uA	
线损补偿	V_{BUS_WDC}				60	mV/A	
放电模式最大输出功率	Pmax				100	W	
开关频率	F _{DCHG}				300	KHz	
热控制环路门限值	T_{REGU_DCHG}	R_{TMO}	_D =5.1K		100	$^{\circ}$	

Type-C 接口	Г			1	1	T
CC 管脚输出电流	I_{CC_SOURCE}	Power Level=3.0A		330		uA
CC 管脚端接电阻	R_{D}			5.1		kΩ
BC1.2						
DP/DM 电压	DP	Apple 2.4A Mode		2.7		V
DF/DM 电压	DM	Apple 2.4A Mode		2.7		V
PE						
电流门限	I_{REF}			250		mA
退出时间	t _{PLUG_OUT}			200		mS
LED 电量指示						
数码管驱动电流	I_{SEG}	4	6/	10		mA
电量指示 LED 驱动电流	I _{LED}			4		mA
LED 闪烁频率	$f_{ m LED}$			1		Hz
LED 照明						
WLED 驱动	I_{WLED}	WLED 最大驱动电流		30		mA
KEY						
短按键	T _{SHORT}		32		500	mS
长按键	T_{LONG}			500		mS
双击	T _{DOUBLE}	发生两次短按键的最长时 间		800		mS
12C						
速率	f_{CLK}			100	400	Kbit/S
热关机保护						
过热关机门限	T_{SHDT}	温度上升		120		$^{\circ}$
过热关机迟滞	T _{SHDT_HYS}			20		$^{\circ}\!$

8. 功能描述

8.1. 充电模式

SW6306V 集成了高效率升降压开关充电模块,其支持 3.6V/3.65V/4.2V/4.35V/4.4V 多种电池类型,开关 频率 300KHz,搭配 4.7uH 电感使用,支持 I2C 或烧码配置为 10uH 电感。

充电流程分为如下三个过程:涓流模式、恒流模式、恒压模式。当电池电压低于涓流充电门限时,充电模块处于涓流模式,充电电流为涓流充电电流。当电池类型为三元锂电池时,涓流和恒流切换门限为 N*3.0V。当电池类型为磷酸铁锂电池时,涓流和恒流切换门限为 N*2.75V。当电池电压大于该切换门限时,充电模块进入恒流模式,此时按照设定的目标电流全速充电;当电池电压上升到充电目标电压时,充电模块进入恒压模式,此时电流逐渐减小,而电池端电压保持不变,当充电电流减小到充电截止电流,充电结束;充满后如果电池电压降低到复充门限下,开始自动重新充电。

电池类型可通过 FLED/BSET Pin 设置。

FLED/BSET 上拉电阻	电池类型
悬空/20K	4.2V
13K	4.4V
9.1K	4.35V
5.6K	3.65V
3K	3.6V

电池节数可通过 BCSET Pin 对地接电阻进行电池节数设置。

BCSET 对地电阻	电池节数
0 Ω	2
33K	3
24K	4
15K	5
9.1K(电池类型为 3.6V/3.65V/4.2V)	6
5.1K(电池类型为 3.6V/3.65V)	7

输入功率可通过 SDA/PISET Pin 对地接电阻进行输入功率设置。

是 821111 1821 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SDA/PISET 对地电阻	输入功率	
悬空	30W	
33K	35W	
24K	45W	
15K	60W	
9.1K	65W	
5.1K	100W	

1K	27W	

恒流充电电压根据输入功率、适配器支持的电压挡位、电池类型、电池节数智能调整快充输入充电,以 实现更高的充电效率。快充输入电压最大支持 20V。

恒流充电电流根据快充输入电压设置,为输入端的恒流电流。当处于普通 5V 输入电压时,对于 Micro-B 及 Lightning 口,充电电流设置为 2A;对于 Type-C 口,充电电流设置为 3A;当处于快充输入电压时,充电电流根据当前充电电压挡位、输入功率、适配器功率智能调整,其中 Micro-B 及 Lightning 口输入功率最大支持 18W, TypeC 输入功率最大支持 100W,恒流充电电流最大可达 5A。

充电模块支持 NTC 保护及 62368 规范, NTC 保护门限及 62368 规范做法可通过 IRQ/NMOD Pin 悬空或对地接电阻来配置。NTC 温度保护模块会一直监测电池温度,当电池温度处于异常温度时,减小充电电流或者降低充电目标电压或者关闭充电。当电池温度回到正常温度时,恢复正常充电电流、充电目标电压。

IRQ/NMOD 对地电阻	NTC 温度范围		
日於	正常充电 NTC 范围: 0℃~45℃		
悬空	正常放电 NTC 范围: -10℃~60℃		
	无 62368 充电		
	无 62368 放电		
33K	正常充电 NTC 范围: 0℃~55℃		
33K	正常放电 NTC 范围: -20°C~60°C		
	62368 充电:		
	0°C~15°C: 0.2* ICHG		
	15°C~45°C: ICHG		
	45℃~55℃: 0.3* ICHG, VCHG 降低 0.25V 62368 放电:		
	02308		
	0°C~60°C: IDISCHG		
	正常充电 NTC 范围: 0℃~55℃		
24K	正常放电 NTC 范围: -20°C~60°C		
	62368 充电:		
	0°C~15°C: 0.4* ICHG		
	15°C~45°C: ICHG		
	45°C~55°C: 0.3* ICHG		
	无 62368 放电		
15K	正常充电 NTC 范围: 10℃~45℃		
13.1	正常放电 NTC 范围: -10℃~60℃		
	62368 充电:		
	10°C~20°C: 0.4* ICHG		
	20°C~45°C: ICHG		
	无 62368 放电		
0.117	正常充电 NTC 范围: 0℃~60℃		
9.1K	正常放电 NTC 范围: -20℃~60℃		
	无 62368 充电		
	无 62368 放电		
	正常充电 NTC 范围: 0℃~45℃		
5.1K	1170 1110 1110 10 10 0 10 C		

	正常放电 NTC 范围: -20℃~60℃
	无 62368 充电
	无 62368 放电
0	正常充电 NTC 范围: 0℃~45℃
U	正常放电 NTC 范围: 20℃~60℃
	62368 充电:
	0°C~15°C: 0.1* ICHG
	15°C~45°C: ICHG
	无 62368 放电

充电模块支持充电电流随温度自适应变化。当芯片温度超过自适应温度门限时,充电电流开始下降,如果芯片温度继续上升超过 120℃,则芯片进入过温关机模式。

I2C/TMOD 对地电阻	充放电自适应温度门限
悬空	110℃
33K	60°C
24K	70°C
15K	80°C
9.1K	90℃
5.1K	100℃

充电模块支持 I2C 灵活控制充电目标电压、电池端电流、输入限压、输入端电流。 充电模块包含了涓流充电超时、恒流充电超时、芯片过温、NTC 过温、电池过压、输入端过压保护。

8.2. 放电模式

SW6306V集成了高效率升降压开关放电模块,开关频率 300KHz。升降压放电模块包括 PSM/PWM 两种模式,轻载下,工作于 PSM 模式;在较大负载下工作于 PWM 模式。当负载接入时,系统自动检测并启动放电模块;当负载移出后,系统监测到超过一定时间后,关闭放电输出。

放电模块支持线损补偿功能,随输出负载变化自适应调整输出电压。

输出功率可通过 SCK/POSET Pin 对地接电阻进行输出功率设置。

SCK/POSET 对地电阻	输出功率
悬空	30W
33K	35W
24K	45W
15K	60W

9.1K	65W
5.1K	100W
1K	27W

放电模块支持 NTC 保护及 62368 规范, NTC 保护门限及 62368 规范做法可通过 IRQ/NMOD Pin 悬空或对地接电阻来配置。NTC 温度保护模块会一直监测电池温度, 当电池温度处于异常温度时, 减小放电电流或者关闭放电。当电池温度回到正常温度时, 恢复正常放电电流。

放电模块支持放电电压随温度自适应变化。自适应温度门限通过 I2C/TMOD Pin 设置。当芯片温度超过 自适应温度门限时,放电电压开始下降,如果芯片温度继续上升超过 120℃,则芯片进入过温关机模式。

放电模块支持 I2C 灵活控制电池欠压、电池端限流、输出电压、输出端限流。

放电模块包含电池欠压、电池过压、输出过压、输出过载、输出短路保护、芯片过温、NTC 过温等保护。

8.3. 通路控制

SW6306V 支持 AACinoutCinout、AACinoutLin 、AACinoutBin 四口任意口快充口。

端口	输入协议	输出协议
Type-A1 Type-A2	/	UFCS/SuperVOOC/VOOC4.0/VOOC1.0/PE1.1/
		PE2.0/QC3+/QC3.0/QC2.0/AFC/FCP/SCP/SFCP
Type-C1、Type-C2	PD3.1/ UFCS/SuperVOOC/	PPS/PD3.1/UFCS/SuperVOOC/VOOC4.0/PE1.1/
	VOOC4.0/VOOC1.0/AFC/FCP/	PE2.0/VOOC1.0/QC3+/QC3.0/QC2.0/AFC/FCP/SCP
	SCP	/SFCP
Micro-B	UFCS/SuperVOOC/VOOC4.0/	1
	VOOC1.0/AFC/FCP/SCP	
Lightning	PD3.1	/

短按键及负载接入可打开 Type-A1/Type-A2 口对外放电,轻载检测将关闭 Type-A1/Type-A2/Type-C1/Type-C2 输出口,轻载检测电流门限与通路管内阻相关,在通路管内阻 10mΩ 时, 5V 输出及高压输出时对应的轻载电流约 60mA/30mA; DFP 接入可打开 Type-C1/Type-C2 口进行充电, UFP 接入将打开 Type-C1/Type-C2 口对外放电,另外 Type-C 口支持轻载检测,在 UFP 设备轻载时,也将关闭 Type-C 口,进入低功耗模式;适配器接入可打开 Micro-B/Lightning 口进行充电。

当单输出口的输出电流小于空载检测电流超过 32s 时,认为该输出口的设备充满或者拔出,关闭输出口。当多输出口或者边充边放时,若有输出口电流小于空载检测电流超过 16s 时,认为该输出口的设备充满或者拔出,关闭该输出口。

SW6306V 支持边充边放。在单口工作时支持快充输入输出,多口工作时支持 5V 输入输出。 边充边放时,输入口电源在为电池充电时,也同时向输出口进行放电。边充边放功能可根据需求禁止。边充边放时,优先给输出口放电,充电模块的限压环门限设置为 4.8V,当输入口电源被输出口设备抽电后,如果输入电源供电不足导致输入电压低于 4.8V 时,充电模块将减小充电电流,使得输入口电压保持在 4.8V,输入口电源优先给输出口设备供电。

SW6306V 支持所有输出口同时对外放电,此时输出电压为 5V。

8.4. 模式设置

SW6306V 支持无线充模式,Type-A2 口接无线充模块,针对无线充模块的供电做了特殊优化,如短按键打开 Type-A2 口, 5V 输出及高压输出时轻载检测电流设置为 60mA/30mA,轻载检测时间设置为 32s。无线充模式下,支持高压边充边放。无线充模式通过 LED1/WLSS Pin 设置,对地接 100K 电阻时,设置为无线充模式; 否则为非无线充模式。

SW6306V 支持小电流模式,可对蓝牙耳机、手环等小电流设备充电,通过长按进入或退出小电流模式。进入小电流模式后,电量显示也会变化,提示处于小电流模式。在小电流模式下,在 2 小时内不进行轻载检测,双击关机时也可退出小电流模式。小电流模式通过 LED2/BLUTH Pin 设置,对地接 100K 电阻时,设置为小电流模式;否则为非小电流模式。

8.5. TYPE-C 接口

SW6306V 集成 Type-C 接口控制器,不但支持输入输出双向,还支持 try.SRC 角色。当适配器连接时,芯片自动开机并进行充电;适配器拔除时,自动停止充电。用电设备接入时,将会在 CC 引脚上广播 3A 电流能力,同时放电模块打开工作,如果用电设备拔除,则自动关闭放电模块。

8.6. PD 快充

SW6306V 集成了 PPS/PD3.1 快充协议,最大支持 100W 快充输出 20V@5A、3.3~21V@5A;最大支持 100W 快充输入 20V@5A。

8.7. UFCS 快充

SW6306V 集成了 UFCS 快充协议, 最大支持 100W UFCS 快充输出 3.4~21V@5A; 最大支持 60W UFCS 快充输入 20V@3A。

8.8. VOOC 快充

SW6306V 集成了 VOOC1.0/VOOC4.0/SuperVOOC 快充协议, VOOC1.0 输入输出最大支持 5V@4A, VOOC4.0 输入输出最大支持 5V@6A, SuperVOOC 输入输出最大支持 10V@6.5A。

8.9. QC 快充

SW6306V 集成了 QC 快充输出协议,支持 QC3+/QC3.0/QC2.0,支持 ClassA/ClassB。QC2.0 支持 5V/9V/12V/20V。QC3.0 支持 3.6V~20V, 200mV/step。QC3+支持 3.6V~20V, 20mV/step。

OC2.0/OC3.0 根据 DP/DM 电压请求相应的输出电压,如下表:

接入设备		SW6306V	
DP	DM	VBUS	Note
3.3V	3.3V	20V	
0.6V	0.6V	12V	
3.3V	0.6V	9V	
0.6V	3.3V	连续模式	200mV/step
0.6V	GND	5V	A

8.10. AFC 快充

SW6306V 集成了 AFC 快充协议,输入输出支持 5V/9V/12V。

8.11. FCP 快充

SW6306V 集成了 FCP 快充协议,输入输出支持 5V/9V/12V。

8.12. SCP 快充

SW6306V 集成了 SCP 快充协议,输出支持 3.3~12V。输入支持 5V/9V/10V/12V。

8.13. PE 快充

SW6306V 集成了 PE2.0 及 PE1.1 输出快充协议, PE2.0 支持 5V~12V, 500mV/step。PE1.1 支持 5V/7V/9V/12V。

8.14. SFCP 快充

SW6306V 集成了 SFCP 快充协议,输出支持 5V/9V/12V。

8.15. BC1.2 功能

SW6306V 包含了 USB 智能自适应功能模块,其不仅支持 BC1.2 功能,以及中国手机充电器标准,还能很好的兼容苹果和三星的大电流输出识别:

Apple 2.4A mode:DP=2.7V,DM=2.7V; Samsung 2A mode: DP=1.2V,DM=1.2V;

8.16. Lightning 口解密

SW6306V 支持 Lightning 口解密功能,支持内部解密和外部解密模式。当选用内部解密模式时,将 CC22/DATA Pin 直接连接 Lightning 口的 DATA Pin 端;当选用外部解密模式时,CC22/DATA Pin 直接连接到 VCC,然后使用外部解密芯片对 Lightning 口进行解密。

8.17. 电量计量

SW6306V 集成高精度电量计量系统,内置库仑计,可精确获取电池电量。电量计支持电池容量自学习功能,一次完整的充电过程即可学习当前电池容量。电池的初始容量可通过 CSET Pin 对地电阻的设置,初始 Cset 和电阻 Reset 的关系为:

$$Rcset = \frac{33Cset + 110}{32}$$

其中 Cset 单位为 KmAh, Rcset 的单位为 K Ω 。SW6306V 设置单节电池容量范围是 2000-50000mAh。电池总容量=单节电池容量*电池节数,例如电池节数为 2,总容量为 10000mAh,则单节电池容量为 5000mAh,Rcst=8.59K Ω 。

8.18. ADC

SW6306V 内部集成了 12bitADC,可采集 VBUS 电压/IBUS 电流/电池电压/NTC 电压

ADC 通道	范围	Step
VBUS 电压	0V~32.768V	8mV
IBUS 电流	0A~16.384A	4mA
VBAT 电压	0~28.672V	7mV
IBAT 电流	0A~20.48A	5mA
NTC 电压	0V∼4.506V	1.1mV
芯片温度	-100℃~200℃	1/6.82℃

8.19. NTC 功能

SW6306V 集成 NTC 功能,可实时监测电池温度,当出现温度异常时,进行保护。NTC Pin 通过放出一定电流到 NTC 电阻,然后采集 NTC 电压来计算当前电池温度。NTC 功能支持 103AT 电阻 (B 值 3435K),在低电阻阻值时,放出 80uA,以保证检测精度;在高电阻阻值时,放出 20uA,以保证检测范围。默认放出 80uA 电流,在 NTC 电压高于 1.764V 时,切换到 40uA;放出 40uA 时,在 NTC 电压高于 1.699V 时,切换到 20uA。放出 20uA 时,在 NTC 电压低于 0.678V 时,切换到 40uA;放出 40uA 时,NTC 电压低于 0.718V 切换到 80uA。

使用典型的 103AT (B 值 3435K) 电阻,放电时,保护门限及对应 NTC 参数如下:

AACC 四口多协议升降压移动电源 SOC

	门限描述	NTC 温度/℃	NTC 电压/V	NTC 电流/uA
放电 NT	C低温保护	-20	1.355	20
放电 NT	C 高温保护	60	0.242	80

充电时,保护门限及对应的NTC参数如下:

	门限描述	NTC 温度/℃	NTC 电压/V	NTC 电流/uA
	充电 NTC 低温保护	0	1.091	40
Ī	充电 NTC 高温保护	45	0.393	80

在实际的应用中可通过串/并联电阻的方式改变温度范围。如果不需要 NTC 保护功能,将 NTC Pin 接 10K 到地或直接接地。

8.20. 数码管显示

SW6306V 支持数码管显示。支持普通 188 数码管,带快充指示及百分比的 188 数码管,带快充指示及 无线充指示的 188 数码管。

可自动识别普通 188 数码管,结构图及内部连接方式为:

5Pin 188 数码管连接方式型号: YFT1412SW-5D

可自动识别带%及快充指示的快充 188 数码管,结构图及内部连接方式为:

5Pin 188+%+快充 数码管连接方式 型号: YFT1508SWPG-5D

支持带快充指示及无线充指示的 188 数码管,通过 LED4/WLSSEG Pin 对地接 100K 电阻设置,结构图及内部连接方式为:

5Pin 快充+无线充+异物显示 数码管连接方式 型号: YFTD2342SW-51

支持带%及快充指示的定制数码管,通过 LED3/SPSEG Pin 对地接 100K 电阻设置,结构 图及内部连接方式为:

放电时,数码管常亮显示当前电量;当电量低于 5%时,数码管以 1HZ 闪烁提示电量不足;在低电状态下,数码管显示 0%闪烁 5 次后系统关机。

充电时,数码管个位闪烁显示当前电量。

异常时,如输出过流、输出短路、输入过压、芯片过温、NTC 保护等,数码管全闪 5 次提示异常后系统关机。

8.21. LED 灯显示

SW6306V 支持 LED 灯显示。LED 灯驱动支持 $3\sim5$ 个灯,可自动识别 LED 灯个数,闪烁频率为 500 ms 亮,500 ms 灭。

5 灯状态下其连接方式如下:

5 灯放电状态下电池电量指示表:

电量 C(%)	LED1	LED2	LED3	LED4	LED5
80% <c≤100%< td=""><td>亮</td><td>亮</td><td>亮</td><td>亮</td><td>亮</td></c≤100%<>	亮	亮	亮	亮	亮
60% <c≤80%< td=""><td>亮</td><td>亮</td><td>亮</td><td>亮</td><td>灭</td></c≤80%<>	亮	亮	亮	亮	灭
40% <c≤60%< td=""><td>亮</td><td>亮</td><td>亮</td><td>灭</td><td>灭</td></c≤60%<>	亮	亮	亮	灭	灭
20% <c≤40%< td=""><td>亮</td><td>亮</td><td>灭</td><td>灭</td><td>灭</td></c≤40%<>	亮	亮	灭	灭	灭
C≤20%	亮	灭	灭	灭	灭
C≤5%	闪	灭	灭	灭	灭

5 灯充电状态下电池电量指示表:

1 74 74 B (48.1 B B B B B B B B B B B B B B B B B B B					
电量 C(%)	LED1	LED2	LED3	LED4	LED5
充满	亮	亮	亮	亮	亮
80%≤C<100%	亮	亮	亮	亮	闪
60%≤C<80%	亮	亮	亮	闪	灭
40%≤C<60%	亮	亮	闪	灭	灭
20%≤C<40%	亮	闪	灭	灭	灭
C<20%	闪	灭	灭	灭	灭

4 灯状态下其连接方式如下:

4 灯充放电状态下电池电量指示表:

电量 C(%)	LED1	LED2	LED3	LED4
75% <c≤100%< td=""><td>亮</td><td>亮</td><td>亮</td><td>亮</td></c≤100%<>	亮	亮	亮	亮
50% <c≤75%< td=""><td>亮</td><td>亮</td><td>亮</td><td>灭</td></c≤75%<>	亮	亮	亮	灭
25% <c≤50%< td=""><td>亮</td><td>亮</td><td>灭</td><td>灭</td></c≤50%<>	亮	亮	灭	灭
C≤25%	亮	灭	灭	灭
C≤5%	闪	灭	灭	灭

4 灯充放电状态下电池电量指示表:

电量 C(%)	LED1	LED2	LED3	LED4
充满	亮	亮	亮	亮
75%≤C<100%	亮	亮	亮	闪
50%≤C<75%	亮	亮	闪	灭
25% < C < 50%	亮	闪	灭	灭
C<25%	闪	灭	灭	灭

3 灯状态下其连接方式如下

3 灯放电状态下电池电量指示表:

电量 C(%)	LED1	LED2	LED3
66% <c≤100%< td=""><td>亮</td><td>亮</td><td>亮</td></c≤100%<>	亮	亮	亮

33% <c≤66%< th=""><th>亮</th><th>亮</th><th>灭</th></c≤66%<>	亮	亮	灭
C≤33%	亮	灭	灭
C≤5%	闪	灭	灭

3 灯充电状态下电池电量指示表:

电量 C(%)	LED1	LED2	LED3
充满	亮	亮	亮
66%≤C<100%	亮	亮	闪
33%≤C<66%	亮	闪	灭
C<33%	闪	灭	灭

低电状态下, LED1 闪烁 5 次后系统关机。

异常时,如输出过流,输出短路,输入过压,芯片过温,NTC 保护等,全部 LED 全闪 5 次提示异常后系统关机。

8.22. 照明驱动

SW6306V内部集成照明 LED 驱动,通过长按键打开和关闭照明。

8.23. 快充指示灯

SW6306V 内部集成快充指示灯驱动 FLED/BVSET Pin,在快充输入或输出时,FLED/BVSET 拉低,打开快充指示灯

8.24. 按键

SW6306V 支持机械按键,内部弱拉高、支持短按、长按键及双击。 短按功能可通过 KEY/KMOD Pin 设置。

)===::::::::::::::::::::::::::::::::::		
KEY/KMOD 上拉电阻	短按功能	
20k	打开有设备的口,如所有口都没打开,则打开 Type-A1 口	
13k	打开 Type-A1、Type-A2 和有设备的口	
9.1k	打开 Type-A1 和有设备的口	
5.6k	打开 Type-A2 和有设备的口	
3k	显示电量并打开有设备的口,如果所有口没有设备,则只打开 5s 电量显示	

长按动作时,打开或关闭 WLED;在小电流模式时,进入或退出小电流模式。

双击动作时,关闭 A 口及 C 口输出口,电量显示;如果外部电源存在,则只关闭输出。

8.25. I2C 接口

SW6306V 支持 I2C 接口,支持 100K/400K 通信速率, Master 可通过 I2C 接口读取芯片的状态信息。 I2C 配置引脚与和充放电恒温环门限设置引脚共用,当设置 I2C/TMOD 引脚接地。在 I2C 模式下,充放电恒温环门限、输入功率、输出功率通过寄存器设置。

读操作:

Slave address: 0x3C Register address: 0xB0

连续读操作:

写操作:

Slave address: 0x3C Register address: 0xB0

连续写操作:

9. 应用参考

9.1. SW6306V_A+A+C+C 典型应用

9.2. SW6306V_A+A+BL+C 典型应用

10. 机械尺寸

10.1. 封装图

10.2. 封装尺寸

	Dimension in Millimeters			
Symbol	MIN	NOM	MAX	
A	0.7	0.75	0.8	
A1	0	0.02	0.05	
A2		0.55 REF		
A3		0.20 REF		
b	0.15	0.2	0.25	
D	7 BSC			
Е	7 BSC			
e		0.4 BSC		
D2	5.2	5.4	5.6	
E2	5.2	5.4	5.6	
L	0.3	0.4	0.5	
K	0.3			

11. 订货信息

*可选信息1: 与客户特定需求相关的备注

12. 版本历史

版本	日期	详细说明
V0.1.0	2023.9.20	初始版本;
V0.1.1	2023.10.23	修改字体格式;
V0.2.0	2023.11.23	删除首页 ESD/I2C 接口描述、增加 A 口存在与否自动检测描述、
		调整放电电压范围、LED4 Pin 引脚调整为 LED4/WLSSEG 并增
		加无线充数码管设置描述、调整满载输出电流和线补典型值、修
		改原理图 LED4/WLSSEG 引脚连接和去掉输入输出 220uF 为固
		态电容的描述、增加 Micro-B 及 Lightning 口最大功率 18W 描述

免责声明

珠海智融科技股份有限公司(以下简称"本公司")将按需对本文件内容作相应修改,且不 另行通知。请客户自行在本公司官网下载最新文本。

本文件仅供客户参考,本公司不对客户产品的设计、应用承担任何责任。客户应保证在将本公司产品集成到任何产品中,不会侵犯第三方知识产权,如客户产品发生侵权行为,本公司将不承担任何责任。

客户转售本公司产品所做的任何虚假宣传,本公司将对此不承担任何责任;如本文件被第三方篡改,篡改后的文本对本公司不产生任何约束力。