You submitted this quiz on **Mon 11 Nov 2013 5:41 PM PST**. You got a score of **3.75** out of **5.00**. You can attempt again in 10 minutes.

Question 1

Consider the following neural network which takes two binary-valued inputs $x_1, x_2 \in \{0, 1\}$ and outputs $h_{\Theta}(x)$. Which of the following logical functions does it (approximately) compute?

Your Answer		Score	Explanation
• OR	~	1.00	This network will output approximately 1 when either input is 1.
XOR (exclusive OR)			
© AND			
NAND (meaning "NOT AND")			
Total		1.00 /	
		1.00	

Question 2

Consider the neural network given below. Which of the following equations correctly computes the activation $a_1^{(3)}$? Note: g(z) is the sigmoid activation function.

Your Answer	Score	Explanation
-------------	-------	--------------------

$$a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(1)} + \Theta_{1,1}^{(2)}a_1^{(1)} + \Theta_{1,2}^{(2)}a_2^{(1)})$$

$$a_1^{(3)} = g(\Theta_{2,0}^{(2)}a_0^{(2)} + \Theta_{2,1}^{(2)}a_1^{(2)} + \Theta_{2,2}^{(2)}a_2^{(2)})$$

$$a_1^{(3)} = g(\Theta_{1,0}^{(2)}a_0^{(2)} + \Theta_{1,1}^{(2)}a_1^{(2)} + \Theta_{1,2}^{(2)}a_2^{(2)})$$
 1.00 This correctly uses the first row of $\Theta^{(2)}$ and includes the "+1" term of $a_0^{(2)}$.

$$a_1^{(3)} = g(\Theta_{1,0}^{(1)}a_0^{(2)} + \Theta_{1,1}^{(1)}a_1^{(2)} + \Theta_{1,2}^{(1)}a_2^{(2)})$$

Total 1.00 / 1.00

Question 3

You have the following neural network:

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the following Octave code:

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))

a2 = zeros (3, 1);
for i = 1:3
    for j = 1:3
        a2(i) = a2(i) + x(j) * Theta1(i, j);
    end
        a2(i) = sigmoid (a2(i));
end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

Your Answer		Score	Explanation
a2 = sigmoid (x * Theta1);	~	0.25	The order of the multiplication is important, this will not work as x is a vector of size 3×1 while Theta1 is a matrix of size $3x3$.
z = sigmoid(x); a2 = Theta1 * z ;	~	0.25	You should apply the sigmoid function after multiplying with $\Theta^{(1)},$ not before.
a2 = sigmoid (Theta1 * x);	~	0.25	In the lecture's notation, $a^{(2)}=g(\Theta^{(1)}x)$, so this version computes it directly, as the sigmoid function will act elementwise.

a2 = sigmoid (Theta2 * x);	~	0.25	$\boldsymbol{\Theta}^{(2)}$ specifies the parameters from the second to third layers, not first to second.
Total		1.00 / 1.00	

Question 4

You are using the neural network pictured below and have learned the parameters

$$\Theta^{(1)} = \begin{bmatrix} 1 & 0.5 & 1.9 \\ 1 & 1.2 & 2.7 \end{bmatrix} \text{ (used to compute } a^{(2)} \text{) and } \Theta^{(2)} = \begin{bmatrix} 1 & -0.2 & -1.7 \end{bmatrix} \text{ (used to compute } a^{(3)} \text{) as a function of } a^{(2)} \text{). Suppose you swap the parameters for the first hidden layer between its two units so } \Theta^{(1)} = \begin{bmatrix} 1 & 1.2 & 2.7 \\ 1 & 0.5 & 1.9 \end{bmatrix} \text{ and also swap the output layer so } \Theta^{(2)} = \begin{bmatrix} 1 & -1.7 & -0.2 \end{bmatrix}. \text{ How will this change the value of the output } h_{\Theta}(x)$$
?

Your Answer		Score	Explanation			
lt will stay the same.						
Insufficient information to tell: it may increase or decrease.	×	0.00	Swapping $\Theta^{(1)}$ swaps the hidden layers output $a^{(2)}$. But the swap of $\Theta^{(2)}$ cancels out the change, so we can be certain the output will remain unchanged.			
lt will increase.						
It will decrease						

Question 5

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
Any logical function over binary-valued (0 or 1) inputs x_1 and x_2 can be (approximately) represented using some neural network.	•	0.25	Since we can build the basic AND, OR, and NOT functions with a two layer network, we can (approximately) represent any logical function by composing these basic functions over multiple layers.
The activation values of the hidden units in a neural network, with the sigmoid activation function applied at every layer, are always in the range (0, 1).	~	0.25	The activation function $g(z)=rac{1}{1+exp(-z)}$ has a range of (0, 1).
If a neural network is overfitting the data, one solution would be to decrease the regularization parameter λ .	~	0.25	A smaller value of λ allows the model to more closely fit the training data, thereby increasing the chances of overfitting.
A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.	×	0.00	We must compose multiple logical operations by using a hidden layer to represent the XOR function.
Total		0.75 / 1.00	