Problem 4.9

The received signal is, essentially, the same. The received power will increase by a factor of 4.

Problem 4.13

$$L_{dB} = 20 \log(f_{MHz}) + 120 + 20 \log(d_{km}) + 60 - 147.56$$

= 20 log (f_{MHz}) +20 log (d_{km}) + 32.44

Problem 4.14

a. Power dBW = 10 log (Power W) = 10 log (50) = 17 dBW Power dBm = 10 log (Power mW) = 10 log (50,000) = 47 dBm

b. Using Equation (4.3),

$$L_{dB} = 20 \log(900.10^6) + 20 \log(100) - 147.56 = 120 + 59.08 + 40 - 147.56$$

= 71.52 dB

Therefore, received power in dBm = 47 - 71.52 = -24.52 dBm

c.
$$L_{dB} = 120 + 59.08 + 80 - 147.56 = 111.52$$
; $P_{r,dBm} = 47 - 111.52 = -64.52$ dBm

d. The antenna gain results in an increase of 3 dB, so that P_r , dBm = -61.52 dBm

Problem 4.16

By the Pythagorean Theorem: $d^2 + r^2 = (r + h)^2$ Or, $d^2 = 2rh + h^2$. The h^2 term is negligible with respect to 2rh, so we use $d^2 = 2rh$.

Then,
$$d_{km} = \sqrt{(2r_{km}}h_{km}) = \sqrt{(2r_{km}}h_m/1000) = 2 \times 6.37 \times h_m = 3.57 h_m$$

Problem 5.6

Problem 5.7

Problem 5.11

Problem 5.13

Each signal element conveys two bits. First consider NRZ-L. It should be clear that in this case, D = R/2. For the remaining codes, one must first determine the

average number of pulses per bit. For example, for Biphase-M, there is an average of 1.5 pulses per bit. We have a pulse rate of P, which yields a data rate of R = P/1.5

$$D = P/2 = (1.5 \times R)/2 = (0.75).R$$

Problem 5.20

From the text, $(SNR)_{dB} = 6.02 \text{ n} + 1.76$, where n is the number of bits used for quantization. In this case, $(SNR)_{dB} = 60.2 + 1.76 = 61.96 \text{ dB}$.

Problem 5.21

a. $(SNR)_{dB} = 6.02 \text{ n} + 1.76 = 30 \text{ dB}$ n = (30 - 1.76)/6.02 = 4.69Rounded off, n = 5 bits This yields $2^5 = 32$ quantization levels

b. R = 7000 samples/s * 5 bits/sample = 35 Kbps