

Olimpiada Națională de Matematică Etapa Județeană/a Sectoarelor Municipiului București, 16 martie 2019

CLASA a XI-a

Problema 1. Fie $(a_n)_{n\geq 1}$ un şir de numere reale strict pozitive, cu proprietatea că şirul $(a_{n+1}-a_n)_{n\geq 1}$ este convergent, cu limita nenulă. Calculați limita

$$\lim_{n\to\infty}\left(\frac{a_{n+1}}{a_n}\right)^n.$$

Gazeta Matematică

Problema 2. Fie $n \in \mathbb{N}$, $n \geq 2$, şi $A, B \in \mathcal{M}_n(\mathbb{R})$. Arătaţi că există un număr complex z, cu |z| = 1, având proprietatea că

$$\operatorname{Re}(\det(A+zB)) \ge \det(A) + \det(B)$$
,

unde Re(w) reprezintă partea reală a numărului complex w.

Problema 3. Fie n un număr natural impar și $A, B \in \mathcal{M}_n(\mathbb{C})$, cu proprietatea că $(A-B)^2 = O_n$. Arătați că $\det(AB-BA) = 0$.

Problema 4. Fie $f:[0,\infty) \longrightarrow [0,\infty)$ o funcție continuă, cu f(0)>0, având proprietatea că pentru orice $0 \le x < y$ au loc inegalitățile $x-y < f(y)-f(x) \le 0$. Arătați că:

- a) Există un unic număr $\alpha \in (0, \infty)$ cu proprietatea că $(f \circ f)(\alpha) = \alpha$.
- b) Sirul $(x_n)_{n>1}$, definit prin $x_1 \ge 0$ și $x_{n+1} = f(x_n)$, oricare ar fi $n \in \mathbb{N}^*$, este convergent.

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.