

МЕТОДЫ УПРАВЛЕНИЯ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ

Готовец Мария Алексеевна

Задача стабилизации

• Объект управления

$$\dot{x}(s) = f(x(s), u(s), s), \ x(0) = x_0, \ s \ge t$$
 (1)

 $x \in X \subseteq \mathbb{R}^n$ — вектор состояния объекта в момент времени t $u \in U \subseteq \mathbb{R}^r$ — вектор управляющего воздействия в момент времени t

ullet Множества X и U задают множества допустимых значений состояния и управления объекта:

$$x(s) \in X, \ u(s) \in U(s), \ s \ge t$$

• Пусть начало координат x = 0 является точкой равновесия (1) при тривиальном управлении u=0, т.е. имеет место

$$f(0,0,0) = 0$$

• Должно выполняться условие $(0, 0) \in X \times U$

2 / 11

$$P(t_i, x_{t_i}, T) = \int_t^{t+T} L(x(s), u(s), s) ds + W(t+T, x(t+T))$$

$$\dot{x}(s) = f(x(s), u(s), s), s \ge [t, t+T]$$

$$x(t) = x_t$$

$$u(s) \in U(s)$$

$$x(t+T) \in S$$

Алгоритм решения стратегией МРС

- Измерение текущего состояния объекта x_{t_i} .
- Вычисление оптимального программного управления, решение задачи оптимального управления в виде функции времени $\bar{u}\colon [t_i,t_{i+T}] o \mathbb{R}^n$ для задачи $P(t_i,x_{t_i},T)$
- Управление $u^*(t):=\bar{u}(t)$ на интервале $[t_i,t_i+\delta]$ применяется к объекту, (оставшееся управление $\bar{u}(t)$, $t\geq t_i+\delta$ отбрасывается).

Алгоритм решения стратегией МРС

Процедура повторяется, как показано на рисунке, для следующего момента t_{i+1} (индекс i увеличивается на одну единицу). В результате получим управление обратной связи.

Задача об экономическом росте технологического последователя

$$J(x,u) = \int_0^z e^{-\rho t} [\kappa \ln x(t) + \ln(b - u(t))] dt \to \max,$$

$$\dot{x}(t) = u(t)(x(t) + \gamma y(t)),$$

$$x(0) = x_0,$$

$$\dot{y}(t) = \nu y(t),$$

$$y(0) = y_0, u(t) \in [0, b].$$

где $b, \gamma, \rho, \nu, \kappa$ — положительные параметры, $\gamma < 1$; x_0 и y_0 — положительные начальные состояния фазовых переменных.

Готовец MPC ©2019-2020 6 / 11

МРС с параметрами: $\gamma = 0.1$, $\nu = 0.6$ b = 1, $\rho = 0.5$, $\kappa = 0.9$.

МРС с параметрами: $\gamma = 0.9$, $\nu = 0.5$ b = 1, $\rho = 0.5$, $\kappa = 0.5$.

МРС с параметрами: $\gamma = 0.1$, $\nu = 0.6$ b = 2, $\rho = 0.5$, $\kappa = 0.5$.

МРС с параметрами: $\gamma = 0.9$, $\nu = 0.6$ b = 1, $\rho = 0.5$, $\kappa = 0.9$.

Спасибо за внимание!