A. Question one: Could you please calculate your best estimate of the TOSMHT for the $M_J = 1$ state?

TABLE I: The convergence test for the tune-out wavelengths of TOSMHT polarizability $\left[\alpha^S(\omega) - \frac{1}{2}\alpha^T(\omega)\right]$ for $M_J = \pm 1$ states of ⁴He.

(ℓ_{max},N)	$\alpha(\omega) = \alpha^S(\omega) - \frac{1}{2}\alpha^T(\omega)$				
	$\lambda_{\scriptscriptstyle TO}(nm)$	$\omega_{\scriptscriptstyle TO}(a.u.)$	$\frac{d\alpha(\omega)}{d\omega} _{\omega=\omega_{TC}}$		
(10, 30)	413.083 0819	0.110 300 6986	7134.656		
(10, 40)	413.082 9492	$0.110\ 300\ 7341$	7134.621		
(10, 50)	$413.083\ 0025$	$0.110\ 300\ 7198$	7134.600		
Extrap.	413.082 98(2)	$0.110\ 300\ 73(1)$	7134.59(1)		
QED Corr.	0.004 26(1)				
Total in nm	413.087 24(3)				
Total in MHz	725 736 428(53)				

Answer: The detailed results are listed in the Table I. The columns 2 and 3 are the tune-out wavelength in nm and in a.u. units for the TOSMHT polarizability. The first-order derivative of polarizability $\frac{d\alpha(\omega)}{d\omega}|_{\omega=\omega_{TO}}$ at the tune-out wavelength is also given in the column 4. The QED correction (QED Corr.) includes the α^3 -order with $\partial_{\varepsilon}^2 \ln k_0$ term and α^4 -order QED corrections. The final value of the TOSMHT for the $M_J=\pm 1$ state is 725 736 428(53) MHz.

B. Question two: How bad is the approximation of the "method part 2"?

Answer: In order to estimate the effectiveness of the approximate method, Table II lists our ab-initio calculations of the tune-out wavelength for the scalar polarizability, the first-order derivative of the scalar polarizability $\frac{d\alpha^S(\omega)}{d\omega}|_{\omega=\omega_{TO}^S}$ and the tensor polarizability $\alpha^T(\omega_{TO}^S)$ at the tune-out wavelength of ω_{TO}^S . Using the values of ω_{TO}^S , $\frac{d\alpha^S(\omega)}{d\omega}|_{\omega=\omega_{TO}^S}$, and $\alpha^T(\omega_{TO}^S)$ in Table I, we can get the tune-out wavelength by using the approximate formula of $\omega_{TO}=\omega_{TO}^S+\frac{1}{2}\alpha^T(\omega_t^S)/\frac{d\alpha(\omega)}{d\omega}$, please see the last column of Table II. You will see the values from the approximated formula in the last column of Table II are the same with the ab-initio values in the third-column of Table I. So we can draw that the approximation of the "method part 2" is reasonable.

TABLE II: Convergence test for the effectiveness of the approximate method of $\omega_{TO} = \omega_{TO}^S + \frac{1}{2}\beta^T$, where $\beta^T = \alpha^T(\omega_t^S)/\frac{d\alpha(\omega)}{d\omega}$ for $M_J = \pm 1$ states of ⁴He. Where ω_{TO}^S represents the tune-out wavelength for the scalar polarizability $\alpha^S(\omega)$.

$\alpha^S(\omega)$					
(ℓ_{max}, N)	$\lambda_{\scriptscriptstyle TO}^S(nm)$	$\omega_{\scriptscriptstyle TO}^S(a.u.)$	$\frac{d\alpha^S(\omega)}{d\omega} _{\omega=\omega_{TO}^S}$	$\alpha^T(\omega_{\scriptscriptstyle TO}^S)$	$\omega_{TO} = \omega_{TO}^S + \frac{1}{2} \frac{\alpha^T(\omega_t^S)}{\frac{d\alpha(\omega)}{d\omega}} _{\omega = \omega_{TO}^S}$
(10, 30)	413.084 0595	0.110 300 4376	7134.442	3.724 543[-3]	0.110 300 698 6255294
(10, 40)	413.0839279	$0.110\ 300\ 4727$	7134.406	3.728 913[-3]	$0.110\ 300\ 734\ 0331089$
(10, 50)	413.0839775	$0.110\ 300\ 4595$	7134.386	3.714 754[-3]	0.110 300 719 8415346
Extrap.	413.083 96(2)	0.110 300 46(2)	7134.37(1)	3.71(1)[-3]	0.110 300 73(1)