Projeções de curto prazo para número de hospitalizados por SRAG no município de São Paulo

Baseado nas notificações de SRAG Hospitalizados na base SIVEP Gripe

Observatório COVID-19 BR

30-04-2020 16h59min11s

Sumário executivo

- Este relatório usa notificações de casos de SRAG Hospitalizados na base SIVEP-Gripe do dia 30 de abril de 2020.
- Nesta base de dados, observamos 12858 casos hospitalizados de SRAG. Destes, 3373 estão hospitalizados em UTI. Corrigindo para o atraso de notificação, estimamos que o número de hospitalizados está entre 13707 e 15501, e número de casos em UTI está entre 3631 e 4133.
- No cenário pessimista, utilizando um crescimento **Exponencial**, a projeção para dia 06 de maio do total de casos hospitalizados é de entre 17036 e 29018, e de casos em UTI é de entre 4417 e 7330.
- No cenário otimista, utilizando um crescimento **Logístico**, a projeção para dia 06 de maio do total de casos hospitalizados é de entre 10905 e 16709, e de casos em UTI é de entre 2982 e 4490.

Projeções de número total de casos de SRAG hospitalizados

Tabela 1: Projeção do número de casos hospitalizados de SRAG para os próximos 6 dias no cenário pessimista.

Data	Previsto	Limite Inferior	Limite Superior
2020-05-01	19071	14556	24140
2020-05-02	19849	14818	25178
2020-05-03	20450	15516	25931
2020-05-04	21314	16043	26862
2020-05-05	22002	16629	27828
2020-05-06	22732	17036	29018

Tabela 2: Projeção do número de casos hospitalizados de SRAG pra os próximos 6 dias no cenário otimista.

Data	Previsto	Limite Inferior	Limite Superior
2020-05-01	13153	10578	16140
2020-05-02	13306	10664	16267
2020-05-03	13410	10712	16479
2020-05-04	13463	10809	16502
2020-05-05	13525	10856	16647
2020-05-06	13608	10905	16709

Gráfico das projeções

- Pontos pretos : número de casos hospitalizados observados a cada dia.
- Região e linha vermelha : correção para ao atraso de notificação dos casos hospitalizados. Média e intervalo de confiança de 95%.
- Região azul e linhas pontilhadas : Previsão usando modelos de curto prazo em diferentes cenários. Média de intervalo de confiança de 95%.

Figura 1: Estimativas de crescimento (A) exponencial e (B) logistico para os próximos 6 dias para número de internações por SRAG.

Projeções de número de casos de SRAG hospitalizados em leitos de UTI

Tabela 3: Projeção do número de casos hospitalizados de SRAG em leitos de UTI para os próximos 6 dias no cenário pessimista.

Data	Previsto	Limite Inferior	Limite Superior
2020-05-01	4992	3818	6270
2020-05-02	5175	3928	6527
2020-05-03	5329	4045	6684
2020-05-04	5444	4182	6942
2020-05-05	5661	4324	7098
2020-05-06	5829	4417	7330

Tabela 4: Projeção do número de casos hospitalizados de SRAG em leitos de UTI pra os próximos 6 dias no cenário otimista.

Data	Previsto	Limite Inferior	Limite Superior
2020-05-01	3560	2924	4384
2020-05-02	3574	2942	4390
2020-05-03	3611	2965	4434
2020-05-04	3617	2959	4459
2020-05-05	3615	2971	4491
2020-05-06	3661	2982	4490

Gráfico das projeções para número de casos de SRAG hospitalizados em leitos de UTI

- Pontos pretos : número de casos hospitalizados observados a cada dia.
- Região e linha vermelha : correção para ao atraso de notificação dos casos hospitalizados. Média e intervalo de confiança de 95%.
- Região azul e linhas pontilhadas : Previsão usando modelos de curto prazo em diferentes cenários. Média de intervalo de confiança de 95%.

Figura 2: Estimativas de crescimento (A) exponencial e (B) logistico para os próximos 6 dias para número de internações em UTI por SRAG.

Métodos

Correção do atraso de notificação pelo método de *Nowcasting*

Para corrigir o efeito de atraso da notificação de casos na tabela de notificações, nós utilizamos o método de nowcasting descrito em McGough et al. (2019). Esse método utiliza a diferença entre as datas de primeiro sintoma e notificação do caso no banco de dados para estimar o atraso de inclusão de novos casos no sistema de notificação. O pacote NobBS fornece o número de novos casos esperados por dia pelo modelo de atraso nas notificações.

Tempos de hospitalização em leito comum e UTI

Para modelar a ocupação dos hospitais, nós estimamos a distribuição de tempos entre aparecimento de sintomas e internação, internação e evolução, entrada e saída da UTI, e probabilidade de internação em UTI.

Estimando número de hospitalizados

O número estimado de hospitalizados por dia é dado pelos indivíduos notificados na tabela original do Sivep-Gripe + indivíduos não-observados mas esperados pelo *nowcast*, que são incluídos na tabela com datas de entrada e evolução simuladas a partir das distribuições de tempos. Esse modelo permite uma avaliação dinâmica da curva de hospitalizações já corrigida pelo atraso de notificação e tempos de permanência no hospital.

Projeções de curto prazo utilizando modelos estatísticos

Para realizar as projeções de curto prazo, nós ajustamos duas curvas ao número de casos hospitalizados. As curvas representam cenários diferentes: uma curva exponencial generalizada, que é adequada para modelar o começo de uma epidemia, com crescimento rápido, sendo portanto um cenário pessimista; e uma curva logística generalizada, que apresenta um crescimento que se desacelera com o tempo, representando um cenário otimista. Ambos os modelos são descritos em Wu et al. (2020).

Os modelos usados são dados pelas seguintes equações diferenciais, nas quais C(t) representa o número de hospitalizados, e os parâmetros são definidos como: r taxa de crescimento, p parâmetro de modulação do crescimento (pode variar entre 0 e 1, valores mais baixos correspondem a curvas de crescimento mais lento), e, no caso da logística, K, um parâmetro de assíntota da curva.

• Exponencial generalizada:

$$\frac{dC(t)}{dt} = rC(t)^p$$

• Logística generalizada:

$$\frac{dC(t)}{dt} = rC(t)^p \left(1 - \frac{C(t)}{K}\right)$$

Limitações

- O método de nowcasting utilizado assume que a dinâmica de inclusão de novos casos no banco de dados é parecida com o passado. Se o atraso de inclusão aumenta muito, o modelo vai subestimar quantidade de novos casos. O mesmo se aplica aos modelos de distribuição dos tempos de hospitalização e probabilidade de internação em UTI.
- As previsões de curto prazo utilizam curvas fenomenológicas que não se prestam a previsões de longo prazo, portanto não são adequadas para prever a dinâmica da epidemia numa escala de tempo maior. Em particular, o uso de uma curva logística não implica que uma assintota no número de hospitalizações é sugerida pelos dados.

Referências

McGough, Sarah , Michael A. Johansson, Marc Lipsitch, Nicolas A. Menzies (2019). Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking. bioRxiv 663823; doi: https://doi.org/10.1101/663823

McGough, Sarah, Nicolas Menzies, Marc Lipsitch and Michael Johansson (2020). NobBS: Nowcasting by Bayesian Smoothing. R package version 0.1.0. https://CRAN.R-project.org/package=NobBS

Wu, Ke, Didier Darcet, Qian Wang, and Didier Sornette (2020). Generalized Logistic Growth Modeling of the COVID-19 Outbreak in 29 Provinces in China and in the Rest of the World. arXiv [q-bio.PE]. arXiv. http://arxiv.org/abs/2003.05681.

Observatório COVID-19 BR

O Observatório Covid-19 BR é uma iniciativa independente, fruto da colaboração entre pesquisadores com o desejo de contribuir para a disseminação de informação de qualidade baseada em dados atualizados e análises cientificamente embasadas.

Criamos um sítio com códigos de fonte aberta que nos permite acompanhar o estado atual da epidemia de Covid-19 no Brasil, incluindo análises estatísticas e previsões. Modelos estatísticos e matemáticos para previsões da epidemia estão em preparação

Site: https://covid19br.github.io/ Contato: obscovid19br@gmail.com

Comparação com previsões anteriores

Validação das previsões usando a base do dia 2020-04-29 contra observados atuais

Validação das previsões usando a base do dia 2020-04-28 contra observados atuais

Validação das previsões usando a base do dia 2020-04-27 contra observados atuais

Validação das previsões usando a base do dia 2020-04-26 contra observados atuais

Validação das previsões usando a base do dia 2020-04-25 contra observados atuais

Validação das previsões usando a base do dia 2020-04-24 contra observados atuais

Validação das previsões usando a base do dia 2020-04-23 contra observados atuais

