Matière : Physique-Chimie Professeur : Zakaria HAOUZAN

Unité : Travail Mécanique et Energie Établissement : Lycée SKHOR qualifiant

Niveau: 1BAC-SM-X Heure: 6H

Leçon $N^{\circ}6$: Les réactions acido-basiques

I Notion d'acide et base selon de Bronsted :

I.1 Exemple de réaction acido-basique :

• Réaction entre l'acide nitrique et l'eau : La réaction entre l'acide nitrique HNO_3 et l'eau produit des ions nitrate NO_3^- et des ions oxonium H_3O^+ selon la réaction suivante

$$HNO_{3(l)} + H_2O_{(l)} \rightarrow NO_{3\ aq}^- + H_3O^+_{(aq)}$$

• On constate au cours de cette équation que l'espèce chimique HNO_3 a perdu un proton H^+ alors que l'espèce H_2O a gagné ce proton.

I.2 Définition de l'acide et de base selon Bronsted :

On appelle acide une espèce chimique capable de céder un ou plusieurs protons H^+ .

Exemple: H_2O ; H_3O^+ ; NH_4^+ ; HCOOH.

On appelle base une espèce chimique capable de capter un ou plusieurs protons H^+ HO^- ; H_2O ; NH_3 ; $HCOO^-$

II Couples acide / base :

Deux espèces chimiques constituent un couple acide / base s'il est possible de passer de l'un à l'autre par perte ou gain d'un proton H^+ .

Exemples: acide/base NH_4^+/NH_3 ; H_2O/HO^- ; H_3O^+/H_2O

II.1 Demi-équation acido-basique:

Soit AH/A^- un couple acide/base.

- Si AH est l'un des réactifs il va donner sa base conjuguée : $AH \to A^- + H^+$
- Si A^- est l'un des réactifs il va donner son acide conjugué : $A^- + H^+ \to AH$
- $\bullet\,$ La demi-équation du couple acide/base AH/A^- s'écrit :

$$AH \rightleftharpoons A^- + H^+$$

Exemple :
$$NH_4^+ \rightleftharpoons NH_3 + H^+$$

II.2 Couple acide- base de l'eau :

L'eau a des propriétés acido-basiques :

*c'est un acide :
$$H_2O \Longrightarrow HO^-_{lon\ hydroxyde} + H^+$$
 *c'est une base : $H_3O^+_{lon\ oxonium} \Longrightarrow H_2O + H^+$

II.3 Notion d'ampholyte:

L'eau se comporte comme un acide dans le couple H_2O/HO^- et comme une base dans le couple H_3O/H_2O , on l'appelle ampholyte (ou amphotère).

III L'équation chimique d'une réaction acido-basique :

Si l'acide A_1H réagit avec la base A_2^- , On écrit directement les demi-équations dans le sens où elles se produisent.

$$A_1H \Longrightarrow A_1^- + H^+$$

$$A_2^- + H^+ \Longrightarrow A_2 H$$

La combinaison de ces 2 demi-équations donne l'équation de la réaction :

$$A_1H + A_2 \longrightarrow A_1 + A_2H$$

III.1 Application 1:

La base NH_3 réagit avec l'acide éthanoïque CH3COOH. 1- Ecrire les couples qui participent dans cette réaction. 2- Ecrire l'équation de la réaction.

IV Indicateurs colorés acido-basiques :

Un indicateur coloré est un couple acide-base dont l'acide HIn et la base In^- n'ont pas la même couleur. Son couple est noté : HIn/In^-

En présence de l'acide HA, la base de l'indicateur réagit selon la réaction :

$$In^- + HA \longrightarrow HIn + A^-$$

Le mélange prend la couleur de l'espèce acide HIn.

En présence de la base A^- , l'acide de l'indicateur réagit selon la réaction :

$$HIn + A^{-} \longrightarrow In^{-} + HA$$

Le mélange prend la couleur de l'espèce basique In^- .

Indicateur coloré	Couleur de l'espèce acide	Couleur de l'espèce base
BBT	Jaune	Bleue
Hélianthine	Rose	Jaune
Phénolphtaléine	inclore	rose

IV.1 Exemples de couple acido-basique :

demi-équation	L'acide	sa base conjuguée	couple acido-basique
$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$			
			$\mathrm{HNO_{3/}NO_{3}}^{-}$
			$\mathrm{NH_4}^+/\mathrm{NH_3}$

IV.2 Application 2:

- 1- Ecrire les demi-équations de réactions acido-basiques relatives à :
 - a- L'acide nitreux HNO₂(aq)
 - b- L'ammoniac NH_3 (aq)
 - 2- En déduire l'équation de la réaction entre l'acide nitreux et l'ammonic.

V Exercice:

On mélange un volume V1 = 12,0 mL d'une solution d'acide méthanoïque HCOOH(aq) de concentration C_1 =0,16 mol/L avec un volume V_2 = 23,0 mL d'une solution basique de l'ammoniac NH₃ (aq) de concentration C_2 = 510^{-3} mol/L.

1- Avec quelle verrerie a-t-on pu mesurer les volumes indiqués ?

Pipettes graduées de 25 mL ou burette de 25 mL

2- Ecrire les couples acide/base étudiés et la demi-équation de chaque couple. 3- Ecrire l'équation de la réaction qui peut se produire. 4- Etablir la composition finale du système en quantité de matière, puis en concentrations (construire le tableau d'avancement).