

现代控制理论

王陈亮

北京航空航天大学 自动化科学与电气工程学院

一阶系统控制

$$\dot{x} = u + \varphi(x)$$
$$y = x$$

目的:设计u,使得 $y \rightarrow y_d$

定义 $z = y - y_d$,则

$$\dot{z} = \dot{y} - \dot{y}_d = u + \varphi(x) - \dot{y}_d$$

构造准Lyapunov函数: $V = \frac{1}{2}z^2$

$$\dot{V} = z\dot{z} = z[u + \varphi(x) - \dot{y}_d]$$

设计: $u = -cz - \varphi(x) + \dot{y}_d$, 则 $\dot{V} = -cz^2 = -2cV$

可得: V以指数形式收敛到0, $z = y - y_d$ 以指数形式收敛到0。

二阶系统控制

$$\dot{x}_1 = x_2 + \varphi_1(x_1)
\dot{x}_2 = u + \varphi_2(x_1, x_2)
y = x_1$$

第1步

定义: $z_1 = y - y_d$

$$\dot{z}_1 = \dot{y} - \dot{y}_d = x_2 + \varphi_1(x_1) - \dot{y}_d$$

构造第1个准Lyapunov函数: $V_1 = \frac{1}{2}z_1^2$

$$\dot{V}_1 = z_1[x_2 + \varphi_1(x_1) - \dot{y}_d] = z_1[x_2 - \alpha_1 + \alpha_1 + \varphi_1(x_1) - \dot{y}_d]$$

 α_1 : 镇定函数

设计:
$$\alpha_1 = -c_1 z_1 - \varphi_1(x_1) + \dot{y}_d = \alpha_1(x_1, y_d, \dot{y}_d)$$

定义:
$$z_2 = x_2 - \alpha_1$$

$$\dot{V}_1 = z_1 z_2 - c_1 z_1^2$$

第2步

$$\dot{z}_2 = \dot{x}_2 - \dot{\alpha}_1 = u + \varphi_2(x_1, x_2) - \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d$$

构造第2个准Lyapunov函数: $V_2 = V_1 + \frac{1}{2}z_2^2$

$$\dot{V}_2 = \dot{V}_1 + z_2 \dot{z}_2$$

$$= z_1 z_2 - c_1 z_1^2 + z_2 \left[u + \varphi_2(x_1, x_2) - \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d \right]$$

设计:
$$u = -c_2 z_2 - \varphi_2(x_1, x_2) + \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 + \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d + \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d - z_1$$

$$\dot{V}_2 = -c_1 z_1^2 - c_2 z_2^2$$

$$\diamondsuit c = \min\{c_1, c_2\}$$

$$\dot{V}_2 \leq -2cV_2$$

 V_2 将指数衰减到0, z_1 、 z_2 将指数衰减到0。

三阶系统控制

$$\dot{x}_1 = x_2 + \varphi_1(x_1)$$

$$\dot{x}_2 = x_3 + \varphi_2(x_1, x_2)$$

$$\dot{x}_3 = u + \varphi_3(x_1, x_2, x_3)$$

$$y = x_1$$

第1步

$$\dot{z}_1 = y - y_d$$

$$\dot{z}_1 = \dot{x}_1 - \dot{y}_d = x_2 + \varphi_1(x_1) - \dot{y}_d$$

$$V_1 = \frac{1}{2}z_1^2$$

$$\dot{V}_1 = z_1(x_2 - \alpha_1 + \alpha_1 + \varphi_1(x_1) - \dot{y}_d)$$

设计第1个镇定函数: $\alpha_1 = -c_1 z_1 - \varphi_1(x_1) + \dot{y}_d$ 。则

$$\dot{V}_1 = z_1(x_2 - \alpha_1) - c_1 z_1^2$$

第2步

$$z_2 = x_2 - \alpha_1 = x_2 - \alpha_1(x_1, y_d, \dot{y}_d)$$

$$\dot{z}_2 = \dot{x}_2 - \dot{\alpha}_1 = \dot{x}_2 - \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d$$

$$\dot{z}_2 = x_3 + \varphi_2(x_1, x_2) - \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d$$

构造第2个准Lyapunov函数: $V_2 = V_1 + \frac{1}{2}z_2^2$

$$\dot{V}_2 = z_1 z_2 - c_1 z_1^2 + z_2 [(x_3 - \alpha_2) + \alpha_2 + \varphi_2(x_1, x_2)]$$

$$-\frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d \right]$$

设计第2个镇定函数:

$$\alpha_2 = -c_2 z_2 - \varphi_2(x_1, x_2) + \frac{\partial \alpha_1}{\partial x_1} \dot{x}_1 + \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d + \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d - z_1$$

$$\dot{V}_2 = -c_1 z_1^2 - c_2 z_2^2 + z_2 (x_3 - \alpha_2)$$

第3步

$$z_3 = x_3 - \alpha_2 = x_3 - \alpha_2(x_1, x_2, y_d, \dot{y}_d, \ddot{y}_d)$$

$$\dot{z}_3 = \dot{x}_3 - \dot{\alpha}_2$$

$$= \dot{x}_3 - \frac{\partial \alpha_2}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_2}{\partial x_2} \dot{x}_2 - \frac{\partial \alpha_2}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_2}{\partial \dot{y}_d} \ddot{y}_d - \frac{\partial \alpha_2}{\partial \ddot{y}_d} \ddot{y}_d$$

$$= u + \varphi_3(x_1, x_2, x_3) - \frac{\partial \alpha_2}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_2}{\partial x_2} \dot{x}_2 - \frac{\partial \alpha_2}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_2}{\partial \dot{y}_d} \ddot{y}_d$$

$$-\frac{\partial \alpha_2}{\partial \ddot{y}_d}\ddot{y}_d$$

构造第3个准Lyapunov函数: $V_3 = V_2 + \frac{1}{2}z_3^2$

$$\dot{V}_3 = z_3 z_2 - c_1 z_1^2 - c_2 z_2^2 + z_3 \left[u + \varphi_3(x_1, x_2, x_3) \right]$$
$$-\frac{\partial \alpha_2}{\partial x_1} \dot{x}_1 - \frac{\partial \alpha_2}{\partial x_2} \dot{x}_2 - \frac{\partial \alpha_2}{\partial y_d} \dot{y}_d - \frac{\partial \alpha_2}{\partial \dot{y}_d} \ddot{y}_d - \frac{\partial \alpha_2}{\partial \dot{y}_d} \ddot{y}_d - \frac{\partial \alpha_2}{\partial \dot{y}_d} \ddot{y}_d \right]$$

设计:

$$u = -c_3 z_3 - \varphi_3(x_1, x_2, x_3) + \frac{\partial \alpha_2}{\partial x_1} \dot{x}_1 + \frac{\partial \alpha_2}{\partial x_2} \dot{x}_2$$
$$+ \frac{\partial \alpha_2}{\partial y_d} \dot{y}_d + \frac{\partial \alpha_2}{\partial \dot{y}_d} \ddot{y}_d + \frac{\partial \alpha_2}{\partial \ddot{y}_d} \ddot{y}_d - z_2$$

则:
$$\dot{V}_3 = -c_1 z_1^2 - c_2 z_2^2 - c_3 z_3^2$$

取
$$c = \min\{c_1, c_2, c_3\}$$

则:
$$\dot{V}_3 \leq -2cV_3$$

可得: V_3 将指数衰减到0, z_1 、 z_2 、 z_3 将指数衰减到0。

简化的反步控制—动态面控制

三阶系统控制

$$\dot{x}_1 = x_2 + \varphi_1(x_1)$$

$$\dot{x}_2 = x_3 + \varphi_2(x_1, x_2)$$

$$\dot{x}_3 = u + \varphi_3(x_1, x_2, x_3)$$

第1步

定义:
$$z_1 = y - y_d$$
, 其导数

$$\dot{z}_1 = x_2 + \varphi_1(x_1) - \dot{y}_d$$

定义:
$$V_1 = \frac{1}{2} z_1^2$$
。微分 V_1 有

$$\dot{V}_1 = z_1(x_2 + \varphi_1 - \dot{y}_d)$$

选取

$$\alpha_1 = -c_1 z_1 - \varphi_1 + \dot{y}_d$$

然后有

$$\dot{V}_1 = -c_1 z_1^2 + z_1 (x_2 - \alpha_1)$$

 $\phi \alpha_1$ 通过时间常数为 τ_1 的一阶低通滤波器:

$$\tau_1 \dot{\varepsilon}_1 + \varepsilon_1 = \alpha_1$$

第2步

定义:
$$z_2 = x_2 - \varepsilon_1$$
, 其导数满足

$$\dot{z}_2 = x_3 + \varphi_2 - \dot{\varepsilon}_1$$

定义:
$$V_2 = \frac{1}{2} z_2^2$$
。微分 V_2 有

$$\dot{V}_2 = z_2(x_3 + \varphi_2 - \dot{\varepsilon}_1)$$

选取

$$\alpha_2 = -c_2 z_2 - \varphi_2 + \dot{\varepsilon}_1$$

然后有

$$\dot{V}_2 = -c_2 z_2^2 + z_2 (x_3 - \alpha_2)$$

 $\phi \alpha_2$ 通过时间常数为 τ_2 的一阶低通滤波器:

$$\tau_2 \dot{\varepsilon}_2 + \varepsilon_2 = \alpha_2$$

第3步

定义: $z_3 = x_3 - \varepsilon_2$, 其导数满足

$$\dot{z}_3 = u + \varphi_3 - \dot{\varepsilon}_2$$

定义: $V_3 = \frac{1}{2} z_3^2$ 。微分 V_3 有

$$\dot{V}_3 = z_3(u + \varphi_3 - \dot{\varepsilon}_2)$$

选取

$$u = -c_3 z_3 - \varphi_3 + \dot{\varepsilon}_2$$

代入得

$$\dot{V}_3 = -c_3 z_3^2$$

定义滤波器误差: $Y_1 = \varepsilon_1 - \alpha_1$, $Y_2 = \varepsilon_2 - \alpha_2$

容易验证

$$\dot{\varepsilon}_1 = -\frac{1}{\tau_1} Y_1, \dot{\varepsilon}_2 = -\frac{1}{\tau_2} Y_2$$

$$x_2 = (x_2 - \varepsilon_1) + (\varepsilon_1 - \alpha_1) + \alpha_1 = z_2 + Y_1 + \alpha_1$$

$$x_3 = (x_3 - \varepsilon_2) + (\varepsilon_2 - \alpha_2) + \alpha_2 = z_3 + Y_2 + \alpha_2$$

微分Y1得

$$\dot{Y}_1 = \dot{\varepsilon}_1 - \dot{\alpha}_1 = -\frac{1}{\tau_1} Y_1 - \dot{\alpha}_1$$

由于 α_1 是 (z_1, y_d, \dot{y}_d) 的光滑函数,故而

$$\dot{\alpha}_1 = \frac{\partial \alpha_1}{\partial z_1} \dot{z}_1 + \frac{\partial \alpha_1}{\partial y_d} \dot{y}_d + \frac{\partial \alpha_1}{\partial \dot{y}_d} \ddot{y}_d$$

根据上式可以验证 $\dot{\alpha}_1 = \eta_1(z_1, z_2, Y_1, y_d, \dot{y}_d, \ddot{y}_d)$, 其中 η_1 是光滑函数, 于是

$$\dot{Y}_1 = -\frac{1}{\tau_1} Y_1 - \eta_1$$

微分Y2得

$$\dot{Y}_2 = -\frac{1}{\tau_2} Y_2 - \dot{\alpha}_2$$

由于 α_2 是(z_1 , z_2 , Y_1 , y_d , \dot{y}_d)的光滑函数,可以验证 $\dot{\alpha}_2 = \eta_2(z_1, z_2, z_3, Y_1, Y_2, y_d, \dot{y}_d, \ddot{y}_d)$,其中 η_2 是光滑函数。 定义如下准Lyapunov函数:

$$V = \sum_{i=1}^{3} V_i + \frac{1}{2} \sum_{i=1}^{2} Y_i^2$$

定理2.1:对于任意的常量 b_1 和 b_2 ,若

$$y_d^2 + \dot{y}_d^2 + \ddot{y}_d^2 \le b_1 V(0) \le b_2$$

则存在设计参数使得闭环系统内所有信号有界,且 z_1 可收敛至一任意小的残集内。

证明: 微分1/可得

$$\dot{V} = -\sum_{i=1}^{3} c_i z_i^2 + z_1 (x_2 - \alpha_1) + z_2 (x_3 - \alpha_2) + \sum_{i=1}^{2} Y_i \dot{Y}_i$$

$$= -\sum_{i=1}^{3} c_i z_i^2 + z_1 (z_2 + Y_1) + z_2 (z_3 + Y_2)$$

$$+ \sum_{i=1}^{2} Y_i (-\frac{1}{\tau_i} Y_i - \eta_i)$$

利用以下关系式:

$$z_1(z_2 + Y_1) \le \frac{1}{2}z_1^2 + z_2^2 + Y_1^2$$

 $z_2(z_3 + Y_2) \le \frac{1}{2}z_2^2 + z_3^2 + Y_2^2$

可得

$$\dot{V} \leq -\sum_{i=1}^{3} \left(c_{i} - \frac{3}{2}\right) z_{i}^{2} - \sum_{i=1}^{2} \left(\frac{1}{\tau_{i}} - 1\right) Y_{i}^{2} + \sum_{i=1}^{2} |Y_{i}| |\eta_{i}|$$

定义如下紧集:

$$\Xi_1 = \left\{ y_d^2 + \dot{y}_d^2 + \ddot{y}_d^2 \le b_1 \right\}$$

$$\Xi_2 = \left\{ \sum_{i=1}^3 z_i^2 + \sum_{i=1}^2 Y_i^2 \le 2b_2 \right\}$$

连续函数 $|\eta_1|$ 和 $|\eta_2|$ 在 $\Xi_1 \times \Xi_2$ 上有最大值,分别记为 M_1 和 M_2 ,则对于任意的常数 λ_1 和 λ_2 ,有

$$|Y_i||\eta_i| \le \frac{M_i^2}{4\lambda_i} Y_i^2 + \lambda_i, i = 1,2$$

进而可得

$$\dot{V} \le -\sum_{i=1}^{3} \left(c_i - \frac{3}{2}\right) z_i^2 - \sum_{i=1}^{2} \left(\frac{1}{\tau_i} - 1 - \frac{M_i^2}{4\lambda_i}\right) Y_i^2 + D$$

其中 $D = \lambda_1 + \lambda_2$ 。

选取设计参数使得

$$c_i \ge \frac{3}{2} + k, i = 1,2,3$$

 $\frac{1}{\tau_i} \ge 1 + \frac{M_i^2}{4\lambda_i} + k, i = 1,2$

于是

$$\dot{V} \le -2kV + D$$

令 $k > \frac{D}{2b_2}$,则当 $V = b_2$ 时, $\dot{V} \le 0$ 。因此 $V \le b_2$ 是不变集,即若 $V(0) \le b_2$,则 $V(t) \le b_2$,∀ $t \ge 0$ 。由此可知闭环系统全半局稳定。此外

$$0 \le V(t) \le \frac{D}{2k} + \left[V(0) - \frac{D}{2k} \right] e^{-2kt}$$

进而

$$\lim_{t \to +\infty} |z_1(t)| \le \lim_{t \to +\infty} \sqrt{2V(t)} \le \sqrt{\frac{D}{k}}$$

因此, 增大k可使得跟踪误差收敛至一任意小的残集内。