

TD n° 3 Géométrie Algorithmique

Problème de fenêtrage

Dans de nombreux cas, on se trouve confronté à la problématique suivante :

On a un polygone Π et une fenêtre rectangulaire (par exemple), comment trouver les parties du polygone qui sont à l'intérieur de la fenêtre R?

Exercice

Soit R la fenêtre rectangulaire dont les sommets sont les points A_0 =(1,1), A_1 =(7,1), A_2 =(7,5), A_3 =(1,5). On pose A_4 = A_0

Soit Π le polygone de 6 segments dont la liste de sommets est la suivante $P_0=(5,3)$, $P_1=(5,0)$, $P_2=(3,0)$, $P_3=(0,3)$, $P_4=(3,6)$, $P_5=(9,3)$. On pose $P_6=P_0$

Correction

Pour calculer le polygone Π ' intersection de Π avec R, il faut calculer les sommets du polygone Π '

Pour cela il faut parcourir toutes les arêtes s_i avec i=1 à n du polygone Π et ajouter au fur et à mesure des sommets dans la liste des sommets du polygone Π '.

Pour l'arête s_i, 4 cas peuvent se présenter :

- Cas 1: P_{i-1 et} P_i sont tous les deux dans le demi-plan F
 On ajoute P_i à la liste des sommets de Π'
- Cas 2 : P_{i-1} est dans le demi-plan F

P_i n'est pas dans le demi-plan F

On calcule I_i le point d'intersection de l'arête s_i avec la droite D et on l'ajoute à la liste des sommets de Π '

• Cas 3 : P_i est dans le demi-plan F

P_{i-1} n'est pas dans le demi-plan F

On calcule I_i le point d'intersection de l'arête s_i avec la droite D et on ajoute à la liste des sommets de Π ' le point I_i et le point P_i

Cas 4 : Ni P_{i-1} ni P_i ne sont dans le demi-plan F
 On ne fait rien

Rappel pour le calcul du point d'intersection

Le point I sur le segment [PQ] est un point de la forme
$$M_t = (1\text{--}t).P + t.Q \label{eq:matter}$$

En d'autres termes, pour t appartient à [0,1] t=0, le point M_t est égal au point P t=1, le point M_t est égal au point Q

I est un point de segment [PQ] : I=(1-t).P + t.Q

Et I doit vérifier l'équation F(x,y)=0 de la droite D contenant [AB]

$$F(x,y) = dy(x-x_A) - dx(y-y_A)$$

$$F(x_1 = (1-t) x_P + t x_Q$$

$$y_1 = (1-t) y_P + t y_Q$$

$$F(x_1, y_1) = dy(x_1-x_A) - dx(y_1-y_A) = 0$$

$$F(x_1, y_1) = dy((1-t) x_P + t x_Q-x_A) - dx((1-t) y_P + t y_Q-y_A) = 0$$

$$F(x_1, y_1) = dy(x_P - x_A) - dx(y_P - y_A) + t [dy(x_Q-x_P) - dx(y_Q-y_P)] = 0$$

$$F(x_1, y_1) = dy(x_P - x_A) - dy(x_P - x_A) / dy(x_Q-x_P) - dx(y_Q-y_P)$$

D'où I = (1-t) P + t Q = (1-t)
$$(x_p, y_p) + t (x_q, y_q)$$

$$I_x = ((1-t) x_p + t x_q)$$

 $I_y = ((1-t) y_p + t y_q)$

Calculer le polygone Polygone Π ' intersection de Π avec R