NP-completeness

Victor Eijkhout

Notes for CS 594 - Fall 2004

Complexity theory

- What is the running time of an algorithm as function of its input?
- What is the memory need of an algorithm as function of its input?
- Best, worst, average, expected.
- ▶ Notation: $f(n) = O(g(n)), f(n) = \Theta(g(n))$

Tractable and intractable

▶ Tractable: polymomial complexity

$$f(n) = O(n^k)$$
 some k

Intractable: exponential complexity

$$f(n) = O(2^n)$$
 or something like that

Intractable problems

► They exist

Intractable problems

- ► They exist
- ▶ What do you tell your boss?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Bounds versus reality

- Ideal: algorithm and bound are similar
- ▶ NP: all known algorithms are intractable, but not provably

Bounds versus reality

- Ideal: algorithm and bound are similar
- ▶ NP: all known algorithms are intractable, but not provably
- Wrong way to approach your boss:

[&]quot;I can't find an efficient algorithm, I guess I'm just too dumb."

Some consolation

- ▶ Problems in NP are equivalent: solve one, solve them all
- ▶ You're not alone: no one knows an efficient algorithm

Some consolation

- ▶ Problems in NP are equivalent: solve one, solve them all
- You're not alone: no one knows an efficient algorithm
- What to tell your boss:

CS-594 Eijkhout, Fall 2004 NP-completeness

Optimization Language of a problem Turing machines Complexity classes

Decision problems

Optimization vs decision

- Many problems are optimization type:
- traveling salesman: what is the shortest route
- ► For complexity analysis more convenient decision problem
- ▶ translation needed: given a bound B, is there a route shorter than B

Language of a problem

- ▶ For a problem, there are 'instances'
- example: in traveling salesman problem, set of numbered cities $\{(i, c_i)\}_i$

Language of a problem

- For a problem, there are 'instances'
- ▶ example: in traveling salesman problem, set of numbered cities $\{(i, c_i)\}_i$
- 'Yes set' of a problem: Y_{Π} contains the instances that give a 'yes' decision
- Encoding e gives 'language of a problem':

```
L[\Pi, e] = \{ \text{the instances in } Y_{\Pi} \text{ encoded under } e \}
```

Language of a problem

- For a problem, there are 'instances'
- ▶ example: in traveling salesman problem, set of numbered cities $\{(i, c_i)\}_i$
- 'Yes set' of a problem: Y_{Π} contains the instances that give a 'yes' decision
- ► Encoding *e* gives 'language of a problem':

$$L[\Pi, e] = \{ \text{the instances in } Y_{\Pi} \text{ encoded under } e \}$$

• for traveling salesman: ordered list of cities $\langle c_1, c_2, \ldots \rangle$

Optimization Language of a problem Turing machines Complexity classes

Turing machines

Accepting strings

- ▶ A Turing machine can halt in 'yes' state q_y , 'no' state q_n , or not halt.
- The TM accepts a string if it halts in q_y
- ► The *language* is the set of all accepted strings

'Solving' a problem

A Deterministic Turing Machine (DTM) M solves a problem Π (equivalently: recognizes $L[\Pi, e]$) iff

- ▶ The DTM for all strings over the input alphabet
- $ightharpoonup L_M = L[\Pi, e]$

'Solving' a problem

A Deterministic Turing Machine (DTM) M solves a problem Π (equivalently: recognizes $L[\Pi, e]$) iff

- ▶ The DTM for all strings over the input alphabet
- $ightharpoonup L_M = L[\Pi, e]$
- Example: traveling salesman problem for network of cities and bound B,
- ► *M* always returns yes or no
- input is list of cities
- M returns yes if list satisfies bound

Solution checking vs generating

▶ In the traveling salesman problem, 'solving' means checking a solution

Solution checking vs generating

- In the traveling salesman problem, 'solving' means checking a solution
- Other example: primality testing
- Input is number, output is yes/no (this number is prime / not prime)
- ▶ ⇒ more intuitive notion of solving

Optimization Language of a problem Turing machines Complexity classes

Complexity classes

Definition in terms of languages:

 $P = \{L : \text{there is DTM that recognizes } L \text{ in polynomial time}\}$

▶ Definition in terms of languages:

 $P = \{L : \text{there is DTM that recognizes } L \text{ in polynomial time}\}$

▶ in terms of problems:

 $\Pi \in P \equiv L[\Pi, e] \in P$ for some encoding e $\equiv \text{ there is a polynomial time DTM that recognizes } L[\Pi, e]$

Definition in terms of languages:

$$P = \{L : \text{there is DTM that recognizes } L \text{ in polynomial time}\}$$

in terms of problems:

$$\Pi \in P \equiv L[\Pi, e] \in P$$
 for some encoding e
 \equiv there is a polynomial time DTM that recognizes $L[\Pi, e]$

▶ Interpretation: $\Pi \in P$ means is a polynomial time Turing machine Mthat recognizes Y_{Π} for strings not in Y_{Π} : it halts in state q_N

- Certificate: guessed solution (e.g. list of cities for traveling salesman)
- Non-Deterministic Turing Machine: first generate certificate by ε-moves then check correctness

- Certificate: guessed solution (e.g. list of cities for traveling salesman)
- Non-Deterministic Turing Machine: first generate certificate by ε-moves then check correctness
- ▶ Let NDTM M, then L_M is the set of decision problems for which M can generate a certificate
- ► Certificate exists ⇔ decision problem has 'true' answer

- Certificate: guessed solution (e.g. list of cities for traveling salesman)
- Non-Deterministic Turing Machine: first generate certificate by ε-moves then check correctness
- ▶ Let NDTM M, then L_M is the set of decision problems for which M can generate a certificate
- ► Certificate exists ⇔ decision problem has 'true' answer
- ▶ $\Pi \in NP$ iff there is NDTM M that recognizes $L[\Pi]$ in polynomial time

- Certificate: guessed solution (e.g. list of cities for traveling salesman)
- Non-Deterministic Turing Machine: first generate certificate by ε-moves then check correctness
- ▶ Let NDTM M, then L_M is the set of decision problems for which M can generate a certificate
- ► Certificate exists ⇔ decision problem has 'true' answer
- ▶ $\Pi \in NP$ iff there is NDTM M that recognizes $L[\Pi]$ in polynomial time
- ▶ Π is in NP iff there is a polynomial time function $A(\cdot, \cdot)$ such that

$$w \in Y_{\Pi} \Leftrightarrow \exists_C : A(w,C) = \text{true}.$$

▶ Trivially in P: given a, b, n, check whether $a \times b = n$

- ▶ Trivially in *P*: given a, b, n, check whether $a \times b = n$
- Non-trivially in P: given n, check whether a, b exist

- ▶ Trivially in P: given a, b, n, check whether $a \times b = n$
- Non-trivially in P: given n, check whether a, b exist
- Not in P: actually find a, b

$$\Theta(\exp((n \cdot 64/9)^{1/3})(\log n)^{2/3})$$

- ▶ Trivially in P: given a, b, n, check whether $a \times b = n$
- Non-trivially in P: given n, check whether a, b exist
- Not in P: actually find a, b

$$\Theta(\exp((n \cdot 64/9)^{1/3})(\log n)^{2/3})$$

Provably exponential time: best move in chess

- ▶ Trivially in P: given a, b, n, check whether $a \times b = n$
- Non-trivially in P: given n, check whether a, b exist
- ▶ Not in P: actually find a, b

$$\Theta(\exp((n \cdot 64/9)^{1/3})(\log n)^{2/3})$$

- Provably exponential time: best move in chess
- Unclear: traveling salesman

NP-completeness

Definition of Polynomial transformation

- ▶ L_1 and L_2 languages over alphabets \sum_1^* and \sum_2^*
- ▶ $f: \sum_{1}^{*} \mapsto \sum_{2}^{*}$ is called polynomial transformation of problem 1 into problem 2 if
 - ▶ There is DTM that computes f(x) in time $T_f(x) \le p_f(|x|)$ for polynomial p_f , and
 - For all $x \in \sum_{1}^{*}$, $x \in L_1$ iff $f(x_1) \in L_2$.
- 'many-to-one polynomial transformation'

Relations

- ▶ Let f polynomial transformation from L_1 to L_2 ,
- ▶ then

$$L_2 \in P \Rightarrow L_1 \in P$$

Relations

- ▶ Let f polynomial transformation from L_1 to L_2 ,
- then

$$L_2 \in P \Rightarrow L_1 \in P$$

▶ Proof: Let $M_2: L_2 \to \{0,1\}$ DTM that recognizes L_2 , then $M_2 \circ f$ is DTM that recognizes L_1 ,

Relations

- ▶ Let f polynomial transformation from L_1 to L_2 ,
- ▶ then

$$L_2 \in P \Rightarrow L_1 \in P$$

- ▶ Proof: Let $M_2: L_2 \rightarrow \{0,1\}$ DTM that recognizes L_2 , then $M_2 \circ f$ is DTM that recognizes L_1 ,
- composite recognizer runs in time

$$T_{M_2 \circ f}(x) \leq p_{T_2}(|p_f(|x|)|)$$

which is polynomial

Relations'

Notation: L_1 transforms to L_2 (in polynomial time):

$$L_1 \leq L_2$$

• (suggested reading: L_1 is easier than L_2 .)

Relations'

Notation: L_1 transforms to L_2 (in polynomial time):

$$L_1 \leq L_2$$

- (suggested reading: L_1 is easier than L_2 .)
- ► Transitivity:

$$L_1 \leq L_2 \wedge L_2 \leq L_3 \Rightarrow L_1 \leq L_3$$

NP-complete

Definition

- L is NP-complete if
 - $L \in NP$, and
 - ▶ for all $L' \in NP$: $L' \leq L$

Definition

- ► *L* is NP-complete if
 - $L \in NP$, and
 - ▶ for all $L' \in NP$: $L' \leq L$
- First condition: NDTM has to halt.
- Without that: NP-hard
- Example: halting problem

Relations"

▶ If $L_1, L_2 \in NP$, L_1 is NP-complete, and $L_1 \leq L_2$, then L_2 is NP-complete.

Relations"

- ▶ If $L_1, L_2 \in NP$, L_1 is NP-complete, and $L_1 \leq L_2$, then L_2 is NP-complete.
- ▶ Proof: need to check $\forall_{L_2 \in NP} : L' \leq L_2$
- ▶ L_1 is NP-complete, so $L' \leq L_1$. Now use transitivity

Proof of NP-completeness

Bootstrap problem

- ▶ Have one NP-complete problem, construct translation, have another
- ▶ Where to begin? How to check that every other problem is easier?

Bootstrap problem

- ▶ Have one NP-complete problem, construct translation, have another
- ▶ Where to begin? How to check that every other problem is easier?
- Strategy: for NP-complete problem, NDTM exists
- encode that NDTM in some specific problem

Bootstrap problem

- ▶ Have one NP-complete problem, construct translation, have another
- ▶ Where to begin? How to check that every other problem is easier?
- Strategy: for NP-complete problem, NDTM exists
- encode that NDTM in some specific problem
- ► First done for SAT, boolean satisfiability Cook, 1971

Satisfiability

▶ Problem statement: given boolean variables $x_1 ... x_n$ and a logical formula $F(x_1,...,x_n)$ is there is an assignment $x_i \mapsto \{0,1\}$ such that $F(x_1,...) = 1$.

Satisfiability

- ▶ Problem statement: given boolean variables $x_1 ... x_n$ and a logical formula $F(x_1, ..., x_n)$ is there is an assignment $x_i \mapsto \{0, 1\}$ such that $F(x_1, ...) = 1$.
- ► Examples: $x_1 \lor \neq x_1$ is always true; $x_1 \land \neq x_1$ is always false $x_1 \land \neq x_2$ is only true for $(x_1 = T, x_2 = F)$.
- second example not satisfiable

Satisfiability

- ▶ Problem statement: given boolean variables $x_1 ... x_n$ and a logical formula $F(x_1, ..., x_n)$ is there is an assignment $x_i \mapsto \{0, 1\}$ such that $F(x_1, ...) = 1$.
- ▶ Examples: $x_1 \lor \neq x_1$ is always true; $x_1 \land \neq x_1$ is always false $x_1 \land \neq x_2$ is only true for $(x_1 = T, x_2 = F)$.
- second example not satisfiable
- SAT is in NP

Transformations into SAT

- Let Π be NP-complete; M an NDTM that solves it
- construct logical formula such that

formula true ⇔ successful TM run

The Turing machine

$$M = \langle Q, s, \Sigma, F, \delta \rangle$$

where

Q is the set of states, and $s \in Q$ the initial state,

 Σ the alphabet of tape symbols,

 $F \subset Q$ the set of accepting states, and

 $\delta \subset Q \times \Sigma \times Q \times \Sigma \times \{-1, +1\} \;$ the set of transitions,

Assume M accepts or rejects instances in time p(n) where n is the size of the instance and $p(\cdot)$ is a polynomial.

Variables

For $q \in Q$, $-p(n) \le i \le p(n)$, $j \in \Sigma$, $0 \le k \le p(n)$:

$\frac{1}{1}$	- / (/
/ariables Intended interpretation	
True iff tape cell i contains sym-	$O(p(n)^2)$
bol j at step k of the computa-	
tion	
True iff the M 's read/write head	$O(p(n)^2)$
is at tape cell i at step k of the	
computation.	
True iff M is in state q at step k	O(p(n))
of the computation.	
	True iff tape cell i contains symbol j at step k of the computation True iff the M 's read/write head is at tape cell i at step k of the computation. True iff M is in state q at step k

Expression

Conjunction of whole bunch of clauses

$$(-p(n) \le i \le p(n), j \in \Sigma, \text{ and } 0 \le k \le p(n))$$

Initial conditions

For all:	Add the clauses	Interpretation	How many clauses?
Tape cell <i>i</i> of the input <i>I</i> contains symbol <i>j</i> .	T_{ij0}	Initial contents of the tape.	O(p(n))
	Q _{s0} H ₀₀	Initial state of <i>M</i> Initial position of read/write head.	O(1) O(1)

Constraint clauses

	For all:	Add the clauses	Interpretation	How many
				clauses?
ĺ	symbols	$T_{ijk} \rightarrow \neg T_{ij'k}$	One symbol per tape	$O(p(n)^2)$
	$j \neq j'$		cell.	
	states	$Q_{qk} ightarrow eg Q_{q'k}$	Only one state at a	O(p(n))
	q eq q'		time.	
	cells	$H_{ik} ightarrow eg H_{i'k}$	Only one head posi-	O(p(n))
	$i \neq i'$		tion at a time.	

Turing machine clauses

For all:	Add the clauses	Interpretation	How many
			clauses?
i, j, k	$T_{ijk} = T_{ij(k+1)} \vee$	Tape remains un-	$O(p(n)^2)$
	H_{ik}	changed unless writ-	
		ten.	
$f \in F$	The disjunction of	Must finish in an ac-	O(1)
	the clauses $Q_{f,p(n)}$	cepting state.	
	,		

Transition table clauses

For all:	Add the clauses		Interpretation	How many clauses?
(q,σ,q',σ',d) $\in \delta$	the clauses $(H_{ik} \land Q_{qk} \land T_{i\sigma k})$	$\stackrel{\wedge}{\rightarrow}$	Possible transitions at computation step k when head is at position i .	$O(p(n)^2)$

Equivalence

If there is an accepting computation for M on input I, then B is satisfiable, by assigning T_{ijk} , H_{ik} and Q_{ik} If B is satisfiable, then there is an accepting computation for M on input I: follows the steps indicated by the assignments to the variables.

Polynomial time

- ▶ $O(p(n)^2)$ Boolean variables, each encodable in space $O(\log p(n))$
- ▶ Number of clauses $O(p(n)^2)$
- ► Total size of B is $O((\log p(n))p(n)^2)$