Tarea 1. Espacios Vectoriales

Careaga Carrillo Juan Manuel

22 de febrero de 2019

- 1. Sean \mathbb{C} el campo de los números complejos, \mathbb{R} el campo de los números reales y \mathbb{Q} el campo de los números racionales. Determine cuál de los siguientes es un espacio vectorial, en caso de ser espacio vectorial obtenga una base. Argumente su respuesta.
 - i. \mathbb{C} sobre \mathbb{C}
 - ii. \mathbb{C} sobre \mathbb{R}
 - iii. $\mathbb R$ sobre $\mathbb C$
 - iv. \mathbb{R} sobre \mathbb{Q}
 - v. \mathbb{Q} sobre \mathbb{R}
 - vi. $\mathbb Q$ sobre $\mathbb Z$ donde $\mathbb Z$ es el conjunto de números enteros.
 - vii. $S = \{a + b\sqrt{2} + c\sqrt{5} | a, b, c \in \mathbb{Q}\}$ sobre \mathbb{Q} .
 - viii. $S = \{a + b\sqrt{2} + c\sqrt{5} | a, b, c \in \mathbb{Q} \}$ sobre \mathbb{R} .
 - ix. $S = \{a + b\sqrt{2} + c\sqrt{5} | a, b, c \in \mathbb{Q}\}$ sobre \mathbb{C} .
- 2. Sea $\mathbb{R}^+ \cup \{0\}$ el conjunto de todos los números reales positivos. Defina las siguientes operaciones:

$$x \boxplus y = xy$$
 para cualquiera $x, y \in \mathbb{R}^+$

у

$$a \boxdot x = x^a$$
 para $x \in \mathbb{R}^+$ y $a \in \mathbb{R}$

- i. Demuestre que $(\mathbb{R}^+ \cup \{0\}, \boxplus, \boxdot)$ es un espacio vectorial sobre \mathbb{R} .
- ii. Obtenga su dimensión y una base
- iii. Si se definiera $a \boxtimes x = a^x$ para $x \in \mathbb{R}^+$ y $a \in \mathbb{R}$ como la multiplicación por escalares, $i_{\mathbb{R}}(\mathbb{R}^+ \cup \{0\})$?
- 3. Sea V un F espacio vectorial, $\{x,y,z\}\subseteq_F V$ un conjunto linealmente independiente. Determine el valor de $k\in F$ para el cual

$$\{y-x,kz-y,x-z\}$$

es un conjunto linealmente independiente.

- 4. Sea $\{x_1, x_2, \dots, x_n\}$ una base para el espacio vectorial FV, con $n \geq 2$.
 - a. Demuestre que

$$\left\{x_1, x_1 + x_2, x_1 + x_2 + x_3, \dots, \sum_{i=1}^{n} x_i\right\}$$

es una base para $_FV$

b. El conjunto

$$\{x_1 + x_2, x_2 + x_3, x_3 + x_4, \dots, x_{n-1} + x_n, x_n + x_1\}$$

¿es base para $_FV$?

c. Si $\{x_1 + x_2, x_2 + x_3, x_3 + x_4, \dots, x_{n-1} + x_n, x_n + x_1\}$ es base para FV, $\{x_1, x_2, \dots, x_n\}$ es base para FV?

5.