Notes - CRR Models

Thursday, July 30, 2020 2:32 PM

Creditor ---- (% interest)--- Lender, banks make profit out of this interest rate

What is a credit risk?

- The likelihood that a borrower would not repay their loan to lender
- When a borrower fails to replay loan
- The lender will have to sustain substantial cost in an effort to recover outstanding debt cost

Risk based pricing

- Based on credit risk associated with the particular client, banks decide the % interest rate collateral
- Lending to borrowers with high probability default is one of the main reasons of financia 2008,
 - Factor high default rate of sub-prime mortgages; low interest rate; loans were pre-100% or more value of the home; demand for homes increased -> selling rice increased
 - Mortgage backed securities lost value
 - o Big banks holding this instruments got affected Le Mans Brother

Regulatory rule

- Lender must assess credit risk associated with each borrower
- Lenders know certain amount of credit risks is always associated with each/every client
- It is important to estimate expected loss amt of money a lender lose by lending to a bo
- There are many models but established credit risk model has 3 components
 - PD (Probability of default)
 - LGD (Loss given default)
 - EAD (Exposure at default)

PD (Probability of default):

- The borrower inability to repay his/her debt in full or on-time
- Estimate of a borrower to likelihood the borrower will default

Loss given default (LGD)

- Loss of an asset due to borrowers default

called collection

e and size of the

l crisis. Example

ovided with eased

rrower.

- The proportion of the total exposure that cannot be recovered by the lender once a defa **EAD (Exposure at default)**
 - Total value that a lender is exposed to when a borrower defaults i.e. maximum amount to lose if a borrower defaults

Example: A borrower wants to buy a house

Price = \$500,000

(Agreement) Bank funds 80% (loan to value) = \$400,000

Borrower repaid = \$40,000

Outstanding balance = \$400,000 - \$40,000 = \$360,000

When a borrower defaults, total value that a lender is exposed to is \$360,000. This is **Exposure** Assume that the banks can sell the house is at \$342,000, then

Loss given default = (EAD - \$342,000)/EAD

- Assume that there is an empirical evidence that one in four homeowners have defaulted PD = 1/4
- Expected Loss (EL) = PD * LGD * EAD, i.e. 25% * 5% * \$360,000 = \$4,500

Capital Adequacy/Regulations and Basel III accord

- Govt. regulators impose certain requirements for banks to make sure bank conduct their without risking the stability of the economy system
- Regulators set rules
 - Regulate bank operations & hence reduce bank risky behaviour
 - Guarantee to the public that banking system is in good health
- Capital Adequacy: Banks require to hold sufficient capital to absorb capital losses from d obligation is called "Capital Requirement"
- CAR(Capital Adequacy ratio) = Capital / Risk-weighted assets (loans)
- Basel III accord primary objective is to ensure capital allocation. Greater the risk the bar greater amount of capital it needs to hold
 - Three pillars of Basel III -
 - 1. Market discipline
 - 2. Supervisory review
 - 3. Minimum Capital Requirement

Two approaches

- Standardized approach
- Internal ratings based approach (IRB)
 - ♦ Foundation internal rating based (F-IRB)
 - ♦ Advanced internal rating based (A-IRB)

- Basel III accord prescribes regulators should allow banks to choose from 3 different appr calculate/modelling credit risk i.e. calculating & modelling each of the three components loss
 - Standardized approach
 - Foundation internal rating based (F-IRB)
 - Advanced internal rating based (A-IRB)
- Capital requirements are calculated differently in 3 approaches

	SA	F-IRB	A-IRB
PD	External data	Internally calculated	Internally calculated
LGD	External data	External data	Internally calculated
EAD	External data	External data	Internally calculated

- External data comes from credit rating agencies such as FICO, S&P, Moody's, Fitch (for fit
- Two major credit reporting agency that collects data from FICO
 - Equifax
 - TransUnion
- Credit score ranges from 300 to 800
- For firms, credit cards & consumer loans, banks should hold around 75% of the total exp (Capital adequacy ratio)
- For secured residential property, banks should hold around 35% of the total exposure * adequacy ratio)
- The more precise banks estimate expected -- Less capital is needed to hold -- more new can generate
- IRB approaches
 - Allows bank to establish their own credit rating
 - Precise calculations about the held capital for each individual exposure
 - Allocate resources to cover losses
 - o Be more profitable

Characteristics of the data for individual clients

Biological info	External data	Characteristic of data
Age	Credit rating	Fix term consumer loan
Sex	No. of recent enquiries	Life-span of product
Marital status		Purpose of the loan
Education		Interest rate

oaches to s of expected

rms)

osure * CAR

CAR (Capital

business bank

Credit limit utilization - the proportion of money spent on the credit card

Data availability

- Most of the variables are available at time of application
- Many of the variable/information is available after loan is granted & behaviour of the load be obtained for long sufficient

Application models	Behaviour models
Most of the variables are	- Most of the variables are available at time of applicati
available at time of application	- Many of the variable/information is available after loa
	behaviour of the loan borrower can be obtained for lo

- Behaviour model is used to calculate probability of default or expected loss after loan is
- If a customer holds credit card, banks can use behaviour model to grant or reject loan ap

Understanding the data

Dependent variables

Independent variables - predictor/features

PD model: Logistic regression

 Non-statistically savvy user example: front office workers, present in a simplified manner cards

LGD model: Beta regression

• How much loan has been recovered after the client defaulted

EAD model: Beta regression

Different data types

- Discrete
- Continuous

Based on data types data-preprocessing technique varies

Distinctive feature of PD model is --- all the independent variables have to be categorical - the is much easier to present a model in a simplified form and turn into score card - we transform independent variable into categorical variable/dummy variable

an borrower can

ion an is granted & ong sufficient

granted plication

r such as score

reason is that it all the

Fine Classing: We slice the independent variable into equally sized intervals or classes **Coarse classing**: we find how well each of the intervals discriminate b/w defaulted and non-de adjacent discrete variables discriminate each other very well, then we can merge them.

PD Model

- Established dependent variable
- Binary
 - 0 = Bad loan
 - 1 = Good loan
- "Default definition": If a borrower is more than 90 days past due on a loan
- Statistical methodology to model PD is a logistic regression where dependent variable is customer is defaulter or not
- Logistic regression estimates the relationships b/w 2 things
 - Odds of an outcome (dependent variable) --- linear combination (Independent ∑vapredictors
- Logistic regression
 - $\qquad \text{In(Non-default/default)} = \sum \beta_j X_j = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n$
- "Weight of evidence" The ability of each category to predict the dependent variable.
 - To what extent an independent variable would predict a dependent variable
 - In(%Good/%Bad)

Variable Categories	Good	Bad	Proportion of good	Proportion of bad	Weight of evidence
Higher education	4000	600	4000/16000 =25%	600/4000 = 15%	In(25/15) = 0.51
No Higher education	12000	3400	12000/16000 = 75%	3400/4000 =85%	In(75/85) = -0.13
Total	16000	4000			

"Information value" - shows how much information the original independent variable break explaining the dependent variable

Range 0 - 1	Predictive power
IV < 0.02	No predictive power
0.02 <= IV =< 0.1	Weak predictive power
0.1 <= IV =< 0.3	Medium predictive power

	·
0.3 <= IV =< 0.5	Strong predictive power
0.05 < IV	Suspiciously high, too good to be true

Variable Categories	Good	Bad	Proportion of good	Proportio n of bad	Weight of evidence	%good-% bad	Infor
Higher education	4000	600	4000/1600 0 =25%	600/4000 = 15%	In(25/15) = 0.51	0.25-0.15 = 0.1	0.51
No Higher education	12000	3400	12000/160 00 = 75%	3400/400 0 =85%	In(75/85) = -0.13	0.75-0.85 = -0.1	0.13
Total	16000	4000					0.064 pred

Overfitting: A substantial issue we might face when statistical model has focused on a passo much that it missed the point

Underfitting: is under fitting when model fails to capture the underlying logic of data that learn well so it doesn't know what to do and therefore it provides inaccurate answers

ROC - Receiver operating curve

for tor thresholds = roc curve(df actual predicted probs['loan data targets test'], df actual

<mark>mation Value</mark>

*0.1 511

*0.1 13

4 = weak ictive power

articular dataset

it is it didn't

ual predicted probsi'v hat test proba'l)

Here we store each of the three arrays in a separate variable.

Interpretation	Area under the curve
Bad	50-60%
Poor	60-70%
Fair	70-80%
Good	80-90%
Excellent	90-100%

from sklearn.metrics import roc_curve, roc_auc_score

AUROC = roc_auc_score(df_actual_predicted_probs['loan_data_targets_test'], df_actual_pre

Gini = AUROC *2 -1

Population Stability Index

Values of PSI: 0-1	Population difference
PSI = 0	No difference
PSI < 0.1	Little no difference
0.1 > PSI > 0.25	Little difference (no action is taken)
PSI > 0.25	Big difference (Action is taken)
PSI = 1	Absolute difference

LGD and EAD model

Dependent variables

RECOVERY RATE = amt_recovered/total_fund_amt

CREDIT CONVERSION FACTOR = (total_fund_amt - total_rec_principal) / total_fund_amt

