Práctico 2: Especificación, Derivación y Verificación de Programas Funcionales

Algoritmos y Estructuras de Datos I 2^{do} cuatrimestre 2022

Esta guía tiene como objetivo obtener las habilidades necesarias para llevar adelante un proceso de derivación o verificación de programas recursivos a partir de especificaciones formales.

Los ejercicios de cálculo de programas tienen una dificultad creciente: en los primeros, la derivación o verificación se obtiene de manera directa a través de una demostración inductiva. Los ejercicios sucesivos son más complejos y requieren el uso de modularización.

Es importante que recuerdes, al finalizar la derivación, escribir la definición de la función con su tipo y todas sus claúsulas, como en el Ejercio 1.

1. Dado el **programa**

$$\boxed{\begin{array}{c} \operatorname{sum}:[Num]\to Num\\ \hline \operatorname{sum}.[] \doteq 0\\ \operatorname{sum}.(x \triangleright xs) \doteq x + sum.xs \end{array}}$$

- a) ¿Qué hace esta función? Escriba en lenguaje natural el **problema** que resuelve.
- b) Escriba una especificación de la función con una expresión cuantificada.
- c) Verifique que esta especificación vale para toda lista xs.
- d) Ahora **derive** la definición de la función a partir de su especificación. ¿Esta derivación es parecida a la demostración en el punto 1c?
- 2. A partir de las siguientes especificaciones, dar el tipo de cada función y derivar las soluciones algorítmicas correspondientes.
 - a) sum_cuad. $xs = \langle \sum i : 0 \le i < \#xs : xs!i * xs!i \rangle$
 - b) iga. $e.xs = \langle \forall i : 0 \le i < \#xs : xs! i = e \rangle$
 - c) $\exp x \cdot n = x^n$
 - d) sum_par. $n = \langle \sum i : 0 \le i \le n \land par.i : i \rangle$ donde $par.i \doteq i \mod 2 = 0$.
 - e) cuántos. $p.xs = \langle N | i : 0 \le i < \#xs : p.(xs!i) \rangle$
 - f) busca. $e.xs = \langle \text{Min } i : 0 \le i < \#xs \land xs! i = e : i \rangle$
- 3. Para todos los ítems del ejercicio anterior, dar un ejemplo de uso de la función, es decir: elegir valores concretos para los parámetros y calcular el resultado usando la solución algorítmica obtenida. Las listas deben tener por lo menos tres elementos.
- 4. Derivar las siguientes funciones.
 - a) sum
_pot : $Num \to Nat \to Num$ computa la suma de potencias de un número, esto es

sum_pot.
$$x.n = \langle \sum i : 0 \le i < n : x^i \rangle$$
.

b) cos': $Nat \rightarrow Num \rightarrow Num$ computa la aproximación del coseno del segundo argumento.

$$\cos'.n.x \doteq \left\langle \sum i : 0 \le i \le n : (-1)^i * \frac{x^{2*i}}{(2*i)!} \right\rangle$$

Ayuda: Modularizar dos veces. La segunda con la función exp del ejercicio 2c y factorial.

c) cubo : $Nat \rightarrow Nat$ computa el cubo (cubo. $x = x^3$) de un número natural x utilizando únicamente sumas

Ayuda: Usar inducción y modularización una o más veces.

d) prod_suf: $[Num] \rightarrow Bool$ decide si existe un elemento igual al producto de los elementos que le siguen:

$$\operatorname{prod_suf}.xs = \left\langle \exists i : 0 < i \leq \#xs : \left\langle \prod j : 0 \leq j < \#(xs \downarrow i) : (xs \downarrow i)! j \right. \right\rangle = xs!(i-1) \right\rangle$$

- 5. Especificar formalmente utilizando cuantificadores cada una de las siguientes funciones descriptas informalmente. Luego, *derivar* soluciones algorítmicas para cada una.
 - a) iguales : $[A] \to Bool$, que determina si los elementos de una lista de tipo A son todos iguales entre sí. Suponga que el operador = es la igualdad para el tipo A.
 - b) minimo : $[Int] \rightarrow Int$, que calcula el mínimo elemento de una lista **no vacía** de enteros.

Nota: 1 La función no debe devolver $\pm \infty$.

- c) creciente : $[Int] \rightarrow Bool$, que determina si los elementos de una lista de enteros están ordenados en forma creciente.
- d) prod : $[Num] \rightarrow [Num] \rightarrow Num$, que calcula el producto entre pares de elementos en iguales posiciones de las listas y suma estos resultados (producto punto). Si las listas tienen distinto tamaño se opera hasta la última posición de las más chica.
- 6. Para complementar el ejercicio 4b. Considerando que Punto = (Num, Num) y Seg = (Punto, Punto), defina las siguientes funciones:
 - a) punto: $(Num \to Num) \to Num \to Punto$ que dada una función y un valor nos da el punto correspondiente a (x, fx).
 - b) dist: $(Num \to Num) \to (Num \to Num) \to Num \to Seg$ que dadas dos funciones f, g y un valor nos da el segmento de recta dados por los puntos en f y g.
 - c) curva: $(Num \to Num) \to [Num] \to [Punto]$ que dada una función f y una lista xs de valores devuelve la lista de puntos (x, fx) para cada elemento x de la lista xs.
 - d) angulos: $Nat \to [Num]$ que en el argumento n devuelve la lista de 2n+1 ángulos entre $-2*\pi$ y $2*\pi$: $[-2\pi, -2\pi\frac{n-1}{n}, \ldots, 0, 2\pi\frac{1}{n}, \ldots, 2\pi\frac{n-1}{n}, 2\pi]$.

Ayuda: No hay nada difícil y son más del estilo de cosas que hicieron en IntroAlg.