Contents

0.1	Calculus of sine and cosine		1
	0.1.1	Unity	1
	0.1.2	Sine and cosine are linked by their derivatives	1
	0.1.3	Both sine and cosine oscillate	2
	0.1.4	Relationship between $\cos(\theta)$ and $\sin(\theta)$	3
	015	Calculus of trig	3

0.1 Calculus of sine and cosine

0.1.1 Unity

Note that with imaginary numbers we can reverse all is. So:

$$\begin{split} e^{i\theta} &= \cos(\theta) + i\sin(\theta) \\ e^{-i\theta} &= \cos(\theta) - i\sin(\theta) \\ e^{i\theta} e^{-i\theta} &= (\cos(\theta) + i\sin(\theta))(\cos(\theta) - i\sin(\theta)) \\ e^{i\theta} e^{-i\theta} &= \cos(\theta)^2 + \sin(\theta)^2 \\ e^{i\theta} e^{-i\theta} &= e^{i\theta - i\theta} = e^0 = 1 \\ \text{So:} \\ \cos(\theta)^2 + \sin(\theta)^2 &= 1 \end{split}$$

Note that if $cos(\theta)^2 = 0$, then $sin(\theta)^2 = \pm 1$

That is, if the real part of $e^{i\theta}$ is 0, the imaginary part is ± 1 . And visa versa.

Similarly if the derivative of the real part of $e^{i\theta}$ is 0, the imaginary part is ± 1 . And visa versa.

0.1.2 Sine and cosine are linked by their derivatives

Note that these functions are linked in their derivatives.

$$\frac{\delta}{\delta\theta}\cos(\theta) = \sum_{j=0}^{\infty} \frac{(\theta)^{(4j+3)}}{(4j+3)!} - \sum_{j=0}^{\infty} \frac{(\theta)^{4j+1}}{(4j+1)!}$$
$$\frac{\delta}{\delta\theta}\cos(\theta) = -\sin(\theta)$$
Similarly:
$$\frac{\delta}{\delta\theta}\sin(\theta) = \cos(\theta)$$

0.1.3 Both sine and cosine oscillate

$$\frac{\delta^2}{\delta\theta^2}\sin(\theta) = -\sin(\theta)$$

$$\frac{\delta^2}{\delta\theta^2}\cos(\theta) = -\cos(\theta)$$

So for either of:

$$y = \cos(\theta)$$

$$y = \sin(\theta)$$

We know that

$$\frac{\delta^2}{\delta\theta^2}y(\theta) = -y(\theta)$$

Consider $\theta = 0$.

$$e^{i.0} = \cos(0) + i\sin(0)$$

$$1 = \cos(0) + i\sin(0)$$

$$\sin(0) = 0$$

$$\cos(0) = 1$$

Similarly we know that the derivative:

$$\sin'(0) = \cos(0) = 1$$

$$\cos'(0) = -\sin(0) = 0$$

Consider $\cos(\theta)$.

As $\cos(0)$ is static at $\theta = 0$, and is positive, it will fall until $\cos(\theta) = 0$.

While this is happening, $sin(\theta)$ is increasing. As:

$$\cos(\theta)^2 + \sin(\theta)^2 = 1$$

 $\sin(\theta)$ will equal 1 where $\cos(\theta) = 0$.

Due to symmetry this will repeat 4 times.

Let's call the length of this period τ .

Where $\theta = \tau * 0$

•
$$\cos(\theta) = 1$$

•
$$\sin(\theta) = 0$$

Where $\theta = \tau * \frac{1}{4}$

•
$$cos(\theta) = 0$$

•
$$\sin(\theta) = 1$$

Where
$$\theta = \tau * \frac{2}{4}$$

•
$$cos(\theta) = -1$$

•
$$\sin(\theta) = 0$$

Where
$$\theta = \tau * \frac{3}{4}$$

•
$$\cos(\theta) = 0$$

•
$$\sin(\theta) = -1$$

0.1.4 Relationship between $cos(\theta)$ and $sin(\theta)$

Note that $\sin(\theta + \frac{\tau}{4}) = \cos(\theta)$

Note that $sin(\theta) = cos(\theta)$ at

•
$$\tau * \frac{1}{8}$$

•
$$\tau * \frac{5}{8}$$

And that all these answers loop. That is, add any integer multiple of τ to θ and the results hold.

$$e^{i\theta} = e^{i\theta + n\tau}$$

$$n\in \mathbb{N}$$

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

$$e^{i\theta} = \cos(\theta + n\tau) + i\sin(\theta + n\tau)$$

$$e^{i\theta} = e^{i(\theta + n\tau)}$$

0.1.5 Calculus of trig

Relationship between cos and sine

$$\sin(x + \frac{\pi}{2}) = \cos(x)$$

$$\cos(x + \frac{\pi}{2}) = -\sin(x)$$

$$\sin(x+\pi) = -\sin(x)$$

$$\cos(x+\pi) = -\cos(x)$$

$$\sin(x+\tau) = \sin(x)$$

$$\cos(x+\tau) = \cos(x)$$