COM307000 - Access Control

Dr. Anca Jurcut
E-mail: anca.jurcut@ucd.ie

School of Computer Science and Informatics University College Dublin, Ireland

Biometrics

Something You Are

- Biometric
 - o "You are your key" Schneier
- Examples
 - Fingerprint
 - Handwritten signature
 - Facial recognition
 - Speech recognition
 - Gait (walking) recognition
 - "Digital doggie" (odor recognition)
 - o Many more!

Why Biometrics?

- May be better than passwords
- But, cheap and reliable biometrics needed
 - Today, an active area of research
- Biometrics are used in security today
 - Thumbprint mouse
 - Palm print for secure entry
 - Fingerprint to unlock car door, etc.
- But biometrics not too popular
 - o Has not lived up to its promise/hype (yet?)

Ideal Biometric

- Universal applies to (almost) everyone
 - o In reality, no biometric applies to everyone
- Distinguishing distinguish with certainty
 - In reality, cannot hope for 100% certainty
- Permanent physical characteristic being measured never changes
 - o In reality, OK if it to remains valid for long time
- Collectable easy to collect required data
 - Depends on whether subjects are cooperative
- Also, safe, user-friendly, and ???

Identification vs Authentication

- □ Identification Who goes there?
 - o Compare one-to-many
 - Example: FBI fingerprint database
- Authentication Are you who you say you are?
 - o Compare one-to-one
 - o Example: Thumbprint mouse
- Identification problem is more difficult
 - More "random" matches since more comparisons
- We are (mostly) interested in authentication

Enrollment vs Recognition

- Enrollment phase
 - Subject's biometric info put into database
 - Must carefully measure the required info
 - OK if slow and repeated measurement needed
 - Must be very precise
 - May be a weak point in real-world use
- Recognition phase
 - Biometric detection, when used in practice
 - Must be quick and simple
 - But must be reasonably accurate

Cooperative Subjects?

- Authentication cooperative subjects
- Identification uncooperative subjects
- For example, facial recognition
 - Used in Las Vegas casinos to detect known cheaters (also, terrorists in airports, etc.)
 - o Often, less than ideal enrollment conditions
 - Subject will try to confuse in recognition phase
- Cooperative subject makes it much easier
 - We are focused on authentication
 - So, we can assume subjects are cooperative

Biometric Errors

- □ Fraud rate versus insult rate
 - Fraud Trudy mis-authenticated as Alice
 - Insult Alice not authenticated as Alice
- For any biometric, can decrease fraud or insult, but other one will increase
- For example
 - o 99% voiceprint match ⇒ low fraud, high insult
 - o 30% voiceprint match ⇒ high fraud, low insult
- □ Equal error rate: rate where fraud == insult
 - A way to compare different biometrics

Fingerprint History

- □ 1823 Professor Johannes Evangelist Purkinje discussed 9 fingerprint patterns
- □ 1856 Sir William Hershel used fingerprint (in India) on contracts
- 1880 Dr. Henry Faulds article in *Nature* about fingerprints for ID
- 1883 Mark Twain's Life on the Mississippi (murderer ID'ed by fingerprint)

Fingerprint History

- 1888 Sir Francis Galton developed classification system
 - His system of "minutia" can be used today
 - Also verified that fingerprints do not change
- Some countries require fixed number of "points" (minutia) to match in criminal cases
 - o In Britain, at least 15 points
 - In US, no fixed number of points

Fingerprint Comparison

- Examples of loops, whorls, and arches
- Minutia extracted from these features

Loop (double)

Whorl

Arch

Fingerprint: Enrollment

- Capture image of fingerprint
- Enhance image
- Identify "points"

Fingerprint: Recognition

- Extracted points are compared with information stored in a database
- □ Is it a statistical match?
- □ Aside: Do identical twins' fingerprints differ?

Hand Geometry

- A popular biometric
- Measures shape of hand
 - Width of hand, fingers
 - Length of fingers, etc.
- Human hands not so unique
- Hand geometry sufficient for many situations
- OK for authentication
- Not useful for ID problem

Hand Geometry

- Advantages
 - Quick 1 minute for enrollment,
 5 seconds for recognition
 - o Hands are symmetric so what?
- Disadvantages
 - Cannot use on very young or very old
 - Relatively high equal error rate

Iris Patterns

- Iris pattern development is "chaotic"
- □ Little or no genetic influence
- Even for identical twins, uncorrelated
- Pattern is stable through lifetime

Iris Recognition: History

- □ 1936 suggested by ophthalmologist
- 1980s James Bond film(s)
 - o Bond film: Never Say Never Again
- □ 1986 first patent appeared
- 1994 John Daugman patents newand-improved technique
 - Patents owned by Iridian Technologies

Iris Scan

- Scanner locates iris
- Take b/w photo
- Use polar coordinates...
- 2-D wavelet transform
- □ Get 256 byte iris code

Measuring Iris Similarity

- Based on Hamming distance
- Define d(x,y) to be
 - # of non-match bits / # of bits compared
 - o d(0010,0101) = 3/4 and d(101111,101001) = 1/3
- Compute d(x,y) on 2048-bit iris code
 - Perfect match is d(x,y) = 0
 - For same iris, expected distance is 0.08
 - At random, expect distance of 0.50
 - Accept iris scan as match if distance < 0.32

Iris Scan Error Rate

distance Fraud rate

0.29	1 in 1.3*10 ¹⁰
0.30	1 in 1.5*10 ⁹
0.31	1 in 1.8*10 ⁸
0.32	1 in 2.6*10 ⁷
0.33	1 in 4.0*10 ⁶
0.34	1 in 6.9*10 ⁵
0.35	1 in 1.3*10 ⁵

Attack on Iris Scan

- Good photo of eye can be scanned
 - Attacker could use photo of eye
- Afghan woman was authenticated by iris scan of old photo
 - Story can be found <u>here</u>
- □ To prevent attack, scanner could use light to be sure it is a "live" iris

Equal Error Rate Comparison

- Equal error rate (EER): fraud == insult rate
- □ Fingerprint biometrics used in practice have EER ranging from about 10⁻³ to as high as 5%
- □ Hand geometry has EER of about 10⁻³
- □ In theory, iris scan has EER of about 10⁻⁶
 - Enrollment phase may be critical to accuracy
- Most biometrics much worse than fingerprint!
- □ Biometrics useful for authentication...
 - ...but for identification, not so impressive today

Biometrics: The Bottom Line

- Biometrics are hard to forge
- But attacker could
 - Steal Alice's thumb
 - Photocopy Bob's fingerprint, eye, etc.
 - Subvert software, database, "trusted path" ...
- And how to revoke a "broken" biometric?
- □ Biometrics are not foolproof
- Biometric use is relatively limited today
- That should change in the (near?) future

Something You Have

- Something in your possession
- Examples include following...
 - Car key
 - Laptop computer (or MAC address)
 - Password generator (next slide)
 - ATM card, smartcard, etc.

Password Generator

- Alice receives random "challenge" R from Bob
- Alice enters PIN and R in password generator
- Password generator hashes symmetric key K with R
- Alice sends "response" h(K,R) back to Bob
- Bob verifies response
- Note: Alice has pwd generator and knows PIN

2-factor Authentication

- Requires any 2 out of 3 of
 - Something you know
 - Something you have
 - Something you are
- Examples
 - ATM: Card and PIN
 - Credit card: Card and signature
 - Password generator: Device and PIN
 - Smartcard with password/PIN

Single Sign-on

- A hassle to enter password(s) repeatedly
 - Alice would like to authenticate only once
 - "Credentials" stay with Alice wherever she goes
 - Subsequent authentications transparent to Alice
- Kerberos a single sign-on protocol
- Single sign-on for the Internet?
 - o Microsoft: Passport
 - o Everybody else: Liberty Alliance
 - Security Assertion Markup Language (SAML)

Web Cookies

- Cookie is provided by a Website and stored on user's machine
- Cookie indexes a database at Website
- Cookies maintain state across sessions
 - o Web uses a stateless protocol: HTTP
 - Cookies also maintain state within a session
- Sorta like a single sign-on for a website
 - But, very, very weak form of authentication
- Cookies also create privacy concerns

Next...Authorization