Unit-2

Half addu

It is a combination cirvit which adds only 2 bits, and called sum and carry.

Draw strir using Basic gate & NAND gate also

Foll addel

It is a combinational cht which adds 3 bits givning x, y, and Cin from anothe cirwit-

Fill adder produces 2 outputs som & carry

7	TIP			0/1
los res	b	(1 5	Co
0	0	0	0	O
0	0	1	\ \	0
0	1	0	1	O
0	1	1	0	-1 -
1	0	0	1	0
1	0	1	0	P
1	1	0	0	1
1	1	J	1	1

Add 2 numbers of 2 digit (Parallel adder)

Parallel adder adds any 2 number, binary digit if three are 2 number with 4 digits each. It requires 4 full adder connected in castade. Such adder circuit on called as parallel adder or Ripple carry adder).

- 8) difference blu sequencial of combination logic gates.
- a) Advantages & disadvantages of sequencial of combination gates

Advantage: 8 easy to construct. A A3 A2 A1 A0 1100 B3 B2 B1 B0 11110

disadvatage:

- There might be delay in carry from I stage to another stage.
- .) If number is large, say 16 bits then 16 full adders shed be cascaded which may inhabite more propagation delay.

Subtactor

In digital systems subtraction & done using 2's compliment method.

eg: B subhact B from A

- -> generate 1's compliment of B
- 3 generate 2's compliment of B by adding I in LSB.
- gral answer.
-) If may & be in tous true form, else take 2's complement

If control = 0, then Addition control = 1, subtraction

eg. This a Addu/subhactor ctt

if control is I the X-OR gates do 1's complement and 1 is added in LSB to get 2's compliment. during subtraction the final carry is discarded.

HW: Hay subtractor

the Half subhactor is a combination circuit which subhactu B pom A. Full subhach B from A also borrows in from A. It general differ of bollow. B B B = A'. B diff borrio 6 Full subhactor subhach dei Foll Subhactor A B diff Cin Bon 0 0 0 0 D 0 0 0 1 1

B = A'cin + A'B+BGin

Dewder

has n'ip and 2° off decodes

devoter is a combination cht ni it selets of assigns code one of the input and assigns it to anyone of the output.

eg: If there are 4 inputs and niper souls of its 2:4 support

De multiplesser

anyon of ite code is selected at a time.

Emodes

The function of encoder is opp of decoder assigns a cody for any 1 of the input at a time. There is special encodes could as priority encoder.

$$2^{n} \rightarrow \text{enod} \qquad \qquad n$$

$$i|l^{n} \rightarrow 4:2 \qquad \qquad o|l^{n}$$

Multiplener

It is a combination cet which directs any one of input to output depends on state of select line

code convertes

converts I jour of code to another for

eg: BCD to 7 segment gray to BCD

Deco	der				
n	= 2			and the second second second second	
7	P	and the second s	OP		
n	y	Do	D,	Dz	B3
0	0	١	0	0	3
0	\	0	1.		0
	0	0	0	1	0
1	1	0	0	O	

$$D_0 = \overline{\chi} \overline{y}$$

$$D_1 = \overline{\chi} \overline{y}$$

$$D_2 = \chi \overline{y}$$

$$D_3 = \chi \overline{y}$$

De multiplexer

implement a full adder using De coder

$$S = \sum m(1,2, 4,7)$$

 $C_0 = \sum m(3,5,6,7)$

		7.1		7
	cd	cd	col	col
ab	0	0	1	
ab	1	\	1	T.
	ч		7	6
ay	0	0		0
at	0	٥		0

Y= Zm(4,5,6,7,3,15,11)

Application

- eral dewolf
-) booler exp can be inaplement
-) combination unt ordina, subtrache
-) mostof integrated cht have enable lines, therefore they can be heated as demultiple ner also

IJ b is input

X : 1	Jo	\mathcal{I}_{1}	I	L
b	(3)	1	4	5
b	2	3	6	
		0	1	Ь

Design Binary to grey code convertor

BIB	0			
BL	00	01	11	10
0	0	1	0	
1	S		J-D	

610

$$G_{0} = B_{1}B_{0} + B_{1}\overline{B}_{0}$$

$$G_{0} = B_{1}\Theta B_{0}$$

G,= B, DB2

BI= Gr.

Similary a 4bit opinary to gruy can be done

ilo wid 2 off

grey to binary

G ₂	7,60	0	11	10
0	0	0	11	7
1	I		0	5

$$B_1 = \overline{G_2} \, G_{11} + \overline{G_2} \, \overline{G_1}$$

Bray to BUD

a	b	C	d	B	B	B	В
0	0	0	0				D
O	0	0	1	0	0	O	(
0	0		0	0	0	0	-
0	0	l	1		0	١	D
O	ţ	0		٥	0	1	1
O	1		0	٥	١	0	O
	,	0	1	O	1	0	1 -
0	1		0	O	1	1	
D	1	1	1	O			0
l	0	U	+		-	1]
·			0	1	0	O	0
1	O	O	1	l	0	0]
1	0	1	D	χ	10		
1	0	1	1)	× ,	×.	X
,		0		1	1	· ·	
1	I,	0	0			(
r	1	0	1				
l	Φ	V	0				
1	1	1	1				

BCD 6	075	segmen	+		a (b			
BCD	1			d) c	1 3 1			E
1/P	a	b		d	1			,
0000	1	1	L	1	1	1	9	*
0001	0	(1	0	O	O	0	1,1
0010	1	1	0	1	1	6	1	2
0011	1	1	1	1	0	0	0	7
0 1 00	0	1	(U	O	t	18	1-1
0101	\r r	0	I	1	\circ	٨	1	-
0110	1	\circ	1	Ţ	1	l	1	1-1
0111	l	1	l	O	O	0	0	
1000)	J	J)))	0	(_)
1001	l		1	\circ	0	1	\	

FOR B

similarly K-MAP is ploted for output a, c, d, ef, g. once the expression is obtained implementation is done using suitable lugic gates

& COMPARATOR

Degign I bit compounter

comparator is combi that which compais 2 numbers adds and produce output of 2 numbers a=b, a=b by a>b.

2 68+

A, A. B, B.	1 A=B	A = B	A > B
0 0 0 0	1	0	0
00 01	0	1	6
0 0 1 0	0	1	0
00 1	0		
01 00	0		1
0 1 0 1	1	0	D
01 10	D	81	0
0 \ \ \	0	Y	0
10 00	0 0	0 0 0 1	0
1100	0	D	t
1101	0	0	
1110	0	0,	1
11 112	1	O	

similarly a n bit comparator can be designed

