Определение 1. Пусть n и k — целые числа, $k \neq 0$. Говорят, что n делится на k, если найдётся такое целое m, что $n = k \cdot m$. Обозначение: $n \, \vdots \, k$. При этом говорят ещё, что n кратно k или что k делит n ($k \mid n$).

Задача 1. а) Докажите, что m(m+1)(m+2) делится на 6 при любом целом m.

б) Докажите, что произведение любых n последовательных целых чисел делится на n!.

Задача 2. Верно ли, что **a)** если n
otin k и k
otin n, то n = k;

- **б)** если b : a и c : a, но $d \not : a$, то b + c : a, но $b + d \not : a$;
- **в)** если b
 otin a и c
 otin b, то c
 otin a;
- \mathbf{r}) если a и b не делятся на c, то ab не делится на c^2 ?

Задача 3. Пусть m, n — целые, и $5m + 3n \\\vdots \\11$. Докажите, что

- a) 6m + 8n : 11;
- **6)** 9m + n : 11.

Задача 4. Докажите, что **a)** \overline{aaa} делится на 37;

- **б)** $\overline{abc} \overline{cba}$ делится на 99 (где a, b, c цифры).
- Задача 5. а) Докажите, что целое число делится на 4 тогда и только тогда, когда две его последние цифры образуют число, кратное 4.
- б) Найдите и докажите признаки делимости на 2, 5, 8, 10.

Задача 6. а) Из натурального числа $\overline{a_n \dots a_1 a_0}$ вычли сумму его цифр $a_n + \dots + a_1 + a_0$. Докажите, что получилось число, делящееся на 9.

- б) Выведите из пункта а) признаки делимости на 3 и на 9.
- Задача 7. Сформулируйте и докажите признак делимости на 11.

Задача 8. Может ли n! оканчиваться ровно на 4 нуля? А ровно на 5 нулей?

Задача 9. Сколькими нулями оканчивается число $11^{100} - 1$?

Задача 10. Целые числа a и b различны. Докажите, что $a^n - b^n \\\vdots \\ a - b$ при любом натуральном n.

Задача 11. Найдите все целые n, при которых число $(n^3+3)/(n+3)$ целое.

Задача 12. Решите в натуральных числах уравнения:

- a) $x^2 y^2 = 31;$
- **6)** $x^2 y^2 = 303$.

Определение 2. Натуральное число p > 1 называется npocmым, если оно имеет ровно два натуральных делителя: 1 и p, в противном случае оно называется cocmaehum.

Задача 13. Докажите, что любое натуральное число, большее 1, либо само простое, либо раскладывается в произведение нескольких простых множителей.

Задача 14. а) Даны целые числа a_1, \ldots, a_n , большие 1. Придумайте целое число, большее 1, которое не делится ни на одно из чисел a_1, \ldots, a_n .

- б) Докажите, что простых чисел бесконечно много.
- в) Докажите, что простых чисел вида 3k+2 бесконечно много (k- натуральное).

Задача 15. а) Могут ли 100 последовательных натуральных чисел все быть составными?

б) Найдутся ли 100 последовательных натуральных чисел, среди которых ровно 5 простых?

Задача 16*. Из чисел 1, 2, 3, ..., 1000 выбрали произвольным образом 501 число. Докажите, что среди выбранных чисел найдутся два числа, одно из которых делится на другое.

ě	1 6	2 a	2 6	2 B	2 Г	3 a	3 6	$\begin{array}{ c c }\hline 4 \\ a \end{array}$	4 6	5 a	5 6	6 a	6	7	8	9	10	11	12 a	12 б	13	14 a	14 б	14 B	15 a	15 6	16