Множественная регрессия Multiple regression

Множественная регрессия позволяет исследовать влияние сразу нескольких независимых переменных на одну зависимую переменную.

$$\hat{y} = 80 + 81 \times 1$$

$$\hat{y} = 80 + 81 \times 1 + 82 \times 2$$

$$\hat{y} = 80 + 81 \times 1 + 82 \times 2$$

$$\hat{y} = 80 + 81 \times 1 + + 8n \times n$$

Множественная регрессия Multiple regression

Множественная регрессия позволяет исследовать влияние сразу нескольких независимых переменных на одну зависимую переменную.

Требования к данным

Линейная зависимость переменных

Нормальное распределение остатков

Гетероскедастичность

Проверка на мультиколлинеарность

(желательно) 3 7

Нормальное распределение

переменных

Множественная регрессия

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	66.47	12.5	5.28	0.0000
metro_res	/-0.06/	0.02	-2.88	0.0060
white	/-0.05/	0.03	-1.46	0.1522
hs_grad	-0.55	0.1	-5.29	0.0000
female_house	0.05	0.24	0.21	0.8363

Multiple R-squared: 0.6416, Adjusted R-squared: 0.6104

F-statistic (4, 46) = 20.58, p-value < 0,01

Исправленный R - квадрат (adjusted R-squared) - скорректированный коэффициент детерминации. Рассчитывается при включении в модель дополнительных независимых переменных.

