What's Cooking?

利用食材組成預測美食種類

統計112 宋穎恩 統計112 劉恩兆 財金產碩112 丁豪

Problem Statement

利用食材組成(ingredients)預測對應的美食種類(cuisine)

Competition on Kaggle: https://www.kaggle.com/competitions/whats-cooking/overview

Solved Challenges

✓ 資料維度的疑慮:

經計算,不重複的食材有6,714種,若是直接使用 one-hot encoding 可能會使資料維度過大而造成硬體不足

✓ 資料處理:

處理 input 資料有很多種方法(如:詞向量、one-hot encoding、label encoding等),需多加試驗以找出最合適的處理方法

✓ 模型選擇:

此資料集有許多模型種類可以使用,如何挑選適合的模型種類,以及如何 調整模型以提高準確率都需要多加探索

Used Dataset

① 訓練集 (39,778 rows * 3 columns)

id	ingredients	cuisine
10259	[romaine lettuce, black olives, grape tomatoes, garlic, pepper, purple onion, seasoning]	Greek

② 測試集 (9944 rows * 2 columns)

id	ingredients	cuisine
18009	[baking powder, eggs, all-purpose flour, raisins, milk, white sugar]	To be predicted

Explorative Data Analysis

Cuisines 種類統計

- 總共有20種不同的 Cuisines
- 1. Italian
- 2. Mexican
- 3. Southern_us

Explorative Data Analysis

Ingredients 種類統計

- 1. Salt
- 2. Onions
- 3. Olive oil

Explorative Data Analysis

Ingredients 使用個數統計

大多數的 Cuisines 由5-15種 ingredients 構成

Proposed Methods

資料前處理:

TF-IDF \ One-Hot Encoding

基本演算法:

Logistic Regression \ Decision Tree \ Random Forest \ Support Vector Machine

嘗試其他演算法與調整模型參數:

LightGBM \ XGBoost \ Gradient Boosting

Data processing

Step 1: 資料整理

• 將 list 轉成 string,用 join()將字詞加入字串中,用空格做區隔

Step 2:檢查遺失值

• 使用is.null().sum()檢查是否有遺失值,於訓練集與測試集均未發現遺失值

Data processing

Step 3: 資料前處理 TF-IDF

- Term Frequency (TF) 詞頻:找到出現次數最多的詞
- Inverse Document Frequency (IDF) 逆文檔頻率:在詞頻的基礎上,對每個詞分配一個重要性的權重,最常見的詞給予最小的權重,較少見的詞給予較大的權重,也就是大小與一個詞的常見程度成反比
 E.g., 像是 a/an/the 等常出現的詞語就會被分配到最低的分數
- 公式: TF-IDF = TF * IDF
 其大小與一個詞在文檔的出現次數成正比,與該詞在整個語言中的出現次數成反比

Data processing

Step 3:資料前處理 TF-IDF

- 從 sklearn 套件 import CountVectorizer 和 TfidfVectorizer
- 創建詞袋數據結構,透過 CountVectorizer 中的 transform 函數將文本中的 的詞語轉換成詞頻矩陣
- 利用 TfidfVectorizer 建構一個計算 TF-IDF 的函式,停用詞使用英語內建 的停用詞列表,依詞頻給予各食材不同的權重,最終將詞頻矩陣轉換成 TF-IDF 權重矩陣
- 將文字資料轉為數字組成矩陣,方可以放進模型計算

Baseline Models

	Accuracy	
Model	TF-IDF	One-Hot Encoding
Logistic Regression	0.7856	0.1927
Decision Tree	0.6258	0.5413
Random Forest	0.7556	0.7098
SVM	0.7816	0.2358

註:參數皆使用預設參數

SVM 調整參數

- 根據上一頁 baseline models 的結果,我們挑選表現較佳的 SVM 來 進行參數調整,以追求更高的準確率
- 調整參數的方法為 GridSearchCV ,而最終使用的參數分別為:

```
C = 10
kernel = 'rbf'(Gaussian 高斯)
gamma = 'scale'
decision_function_shape = 'ovo'(one-vs-one 一對一)
```

• 最終結果 Score 從 0.7816 進步到 0.8108

Advanced Models

因為 baseline models 中 TF-IDF 表現明顯較 one-hot encoding 好,
 因此 advanced models 皆使用 TF-IDF 做資料前處理

Model	Accuracy
XGBoost	0.7325
LightGBM	0.7764
Gradient Boosting	0.7387

註:參數皆使用預設參數

LightGBM 調整參數

- 根據上一頁 advanced models 的結果,我們挑選表現結果較佳的 LightGBM 來進行參數調整,以追求更高的準確率
- LightGBM 主要調整的參數為 learning rate 以及 n_estimators , 而調參數方法為依上述順序一次調一種參數 , 同時其他參數固定不變 , 在最佳化此參數後即固定不動 , 依序調整完此兩種參數

LightGBM

Learning Rate

Learning rate	Accuracy	Precision
0.001	0.3094	0.314
0.01	0.6777	0.6774
0.05	0.7612	0.7618
0.1	0.7764	0.7788
0.25	0.7803	0.7785

LightGBM 調整 learning rate 的表現結果

LightGBM

n_estimators (learning rate = 0.25)

n_estimators	Accuracy	Precision	
10	0.7231	0.7206	
50	0.7721	0.7721	
100	0.7803	0.7785	
500	0.7845	0.7828	
1000	0.7862	0.7853	

Experimental Results and Analysis

- 由初步模型分析結果可以得知, SVM 與 Logistic Regression 的表現結果較其他模型佳(包含 advanced models)
- One-hot encoding 在模型分析中皆表現較差,推測是因為資料處理後 過於分散,較難抓到資料間的關聯性
- SVM 為表現最佳的模型,經參數調整後,LightGBM 最佳參數為 learning rate = 0.25 與 n_estimators = 1000,得到 0.7862 的分數,若再多嘗試其他參數的調整,有望達到更高的表現結果

Discussions

- 這個競賽排行榜最高分數為 0.8322, 而我們最高分數為 0.8108, 表示還有優化的空間。目前優化方向以選擇其他文字處理方法優先, 而非模型
- TF-IDF 優點:簡單易理解,運算速度快
- TF-IDF 缺點:詞頻衡量並沒有很全面,沒有考慮到類別間的偏差

	THAI Lemon	THAI Pepper	SU Pepper
出現次數	100	200	200
TF-IDF分數	100*1=1	200*1/2=1	200*1/2=1

若檸檬只出現在泰國菜,而胡椒只出現在泰國與南美洲菜,如表格情況所示,TF-IDF就會給予相同的權重,無法彰顯出檸檬對泰國菜獨特的重要性

Todo List for Final Reports

文字處理:

除了 one-hot encoding 跟 TF-IDF 以外,還可以嘗試 Word2Vec 跟
 Bert 來訓練 word embedding

模型:

- LightGBM可以新增調整的參數種類,像是 objective、max_bin以
 及 max_depth,以達到更好的表現結果
- 嘗試使用 Neural Network

THE END Thank You!