Applicazioni continue

Def. Siano X e Y spazi topologici. Un'applicazione $f: X \to Y$ è continua se $\forall V \subset Y$ aperto in Y si ha $f^{-1}(V) \subset X$ aperto in X.

In altre parole $f: X \to Y$ è continua \Leftrightarrow le preimmagini tramite f degli aperti sono aperti.

Oss. $f^{-1}(Y - V) = X - f^{-1}(V)$. Quindi $f: X \to Y$ continua $\Leftrightarrow \forall C \subset Y$ chiuso in Y si ha $f^{-1}(C) \subset X$ chiuso in X.

Prop. $f: X \to Y \ e \ g: Y \to Z \ continue \Rightarrow g \circ f: X \to Z \ continua.$

Dim. Segue subito dal fatto che $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \ \forall V \subset Z$. \square

Oss. $c: X \to Y$ costante $\Rightarrow c$ continua.

 $id_X: X \to X$ continua per ogni spazio topologico X.

 $Y \subset X$ sottospazio top. \Rightarrow mappa d'inclusione $i_Y : Y \hookrightarrow X$ continua.

Restrizioni di applicazioni continue a sottospazi del dominio o del codominio sono continue.

 $\forall f: X_{\text{dis}} \rightarrow Y \text{ è continua}.$

 $\forall f: X \rightarrow Y_{\text{ban}} \text{ è continua}.$

Def. $f: X \to Y$ è aperta se $\forall U \subset X$ aperto in X si ha f(U) aperto in Y. $f: X \to Y$ è chiusa se $\forall C \subset X$ chiuso in X si ha f(C) chiuso in Y.

 $f: X \to Y$ aperta $\Leftrightarrow f$ manda aperti in aperti.

 $f: X \to Y$ chiusa $\Leftrightarrow f$ manda chiusi in chiusi.

Oss. Una costante $c: \mathbb{R} \to \mathbb{R}$ è continua e chiusa, ma non aperta.

 $f: X \to Y$ aperta $\Rightarrow f(X) \subset Y$ aperto.

 $f: X \to Y$ chiusa $\Rightarrow f(X) \subset Y$ chiuso.

 $A \subset X$ aperto (risp. chiuso) \Leftrightarrow inclusione $i_A : A \hookrightarrow X$ aperta (risp. chiusa).

Esempio. $id_{\mathbb{R}} : \mathbb{R}_{dis} \to \mathbb{R}$ continua e biiettiva ma l'inversa non è continua.

Def. Siano X e Y spazi topologici. Un'applicazione $f: X \to Y$ è detta omeomorfismo se valgono le seguenti:

- (1) f è biiettiva
- (2) f è continua
- (3) f^{-1} è continua.

Diciamo che X e Y sono *omeomorfi* se esiste un omeomorfismo $f: X \to Y$ e in tal caso scriviamo $X \cong Y$.

N.B. Gli omeomorfismi si chiamano anche applicazioni bicontinue.

Oss. $id_X : X \to X$ omeomorfismo per ogni spazio X (stessa topologia).

 $f: X \to Y$ omeomorfismo $\Rightarrow f^{-1}: Y \to X$ omeomorfismo.

 $f: X \to Y \in g: Y \to Z$ omeomorfismi $\Rightarrow g \circ f: X \to Z$ omeomorfismo. L'omeomorfismo è una *relazione d'equivalenza* tra spazi topologici.

Oss. Data $f: X \to Y$ bijettiva, si ha f^{-1} continua $\Leftrightarrow f$ aperta $\Leftrightarrow f$ chiusa (attenzione, serve bijettiva).

 $f: X \to Y$ omeo $\Leftrightarrow f$ continua, bijettiva e aperta (o chiusa).

Cor. Per ogni spazio X l'insieme

$$Omeo(X) \stackrel{\text{def}}{=} \{ f : X \to X \mid f \text{ omeo} \}$$

è un gruppo rispetto a composizione, detto gruppo degli omeomorfismi.

N. B. In generale Omeo(X) è un gruppo molto grande e molto complicato, quasi mai abeliano (a parte alcuni casi banali).

Def. Una proprietà \mathcal{P} è detta *proprietà topologica* se $\forall X, Y$ spazi topologici, X ha \mathcal{P} e $Y \cong X \Rightarrow Y$ ha \mathcal{P} .

In altre parole \mathcal{P} è una proprietà topologica se valendo per uno spazio X vale anche per tutti gli spazi omeomorfi a X, ovvero \mathcal{P} è *invariante* a meno di omeomorfismi. Studieremo in seguito importanti proprietà topologiche.

La Topologia studia le proprietà topologiche degli spazi. Un problema fondamentale è capire se due spazi topologici X e Y sono omeomorfi.

Prop. La metrizzabilità è una proprietà topologica.

Dim. Diamo solo un'idea, lasciando i dettagli per Esercizio.

X metrizzabile e $Y \cong X \Rightarrow \exists d_X$ metrica su X che ne induce la topologia e $\exists f: Y \to X$ omeo $\sim \rightarrow$

$$d_Y:Y imes Y o \mathbb{R}$$
 $d_Y(y_1,y_2)=d_X(f(y_1),f(y_2))$

metrica su Y che induce la topologia di Y.

Def. Dati gli spazi X e Y definiamo l'insieme delle applicazioni continue

$$C(X,Y) \stackrel{\text{def}}{=} \{f: X \to Y \mid f \text{ continua}\}.$$

Oss. $C(X,Y) \neq \emptyset$ (contiene almeno le costanti). Omeo $(X) \subset C(X,X)$.

Prop. $f: X \to Y$ è continua $\Leftrightarrow \forall x \in X, \forall V \subset Y$ intorno di $f(x) \in Y$, $\exists U \subset X$ intorno di x in X t.c. $f(U) \subset V$.

Dim. Non è restrittivo limitarci a considerare solo intorni aperti.

 \Rightarrow $\forall V \subset Y$ intorno aperto di $f(x) \Rightarrow x \in U := f^{-1}(V) \subset X$ aperto.

 $\forall V \subset Y$ aperto, se $f^{-1}(V) = \emptyset$ allora è aperto.

Se $f^{-1}(V) \neq \emptyset$, $\forall x \in f^{-1}(V) \Rightarrow V$ intorno di f(x) in $Y \Rightarrow \exists U \subset X$ intorno di x t.c. $f(U) \subset V \Rightarrow x \in U \subset f^{-1}(V) \Rightarrow f^{-1}(V)$ aperto in $X \Rightarrow f$ continua.

Oss. Nella Prop. possiamo limitarci a considerare intorni U e V aperti e/o basici (se abbiamo preventivamente fissato basi di intorni in X e Y). La dimostrazione richiede solo piccole modifiche.

 \Box

Continuità negli spazi metrici

Cor. Siano (X, d_X) e (Y, d_Y) spazi metrici. Allora $f: X \to Y$ è continua $\Leftrightarrow \forall x_0 \in X, \forall \varepsilon > 0, \exists \delta > 0 \text{ t.c. } \forall x \in X \text{ si abbia che}$

$$d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \varepsilon$$
.

Dim. Segue subito dalla Prop. e dall'Oss. usando come intorni basici le bocce aperte $V = B_{d_Y}(f(x), \varepsilon)$ e $U = B_{d_X}(x_0, \delta)$.

Oss. In generale δ dipende da x_0 e da ε .

La definizione di funzione continua generalizza quella studiata in Analisi. Le funzioni reali di variabili reali la cui continuità è nota dall'Analisi saranno considerate continue senza bisogno di dimostrazione.

Oss. Applicazioni affini reali $f: \mathbb{R}^n \to \mathbb{R}^m$, f(x) = Ax + b con $A \in M_{m,n}(\mathbb{R})$ e $b \in \mathbb{R}^m$, sono continue.

Idem per applicazioni affini complesse $\mathbb{C}^n \to \mathbb{C}^m$.

<u>Affinità reali</u> $f: \mathbb{R}^n \to \mathbb{R}^n$, f(x) = Ax + b con $A \in GL_n(\mathbb{R})$ e $b \in \mathbb{R}^n$, sono omeomorfismi (l'inversa è anch'essa affinità quindi continua).

Idem per affinità complesse $\mathbb{C}^n \to \mathbb{C}^n$.

In particulare, per b=0, le applicazioni lineari $\mathbb{R}^n \to \mathbb{R}^m$ sono continue e gli automorfismi lineari $\mathbb{R}^n \to \mathbb{R}^n$ sono omeomorfismi (idem su \mathbb{C}).

Esempio. exp: $\mathbb{R} \to [0, +\infty[$, $\exp(x) = e^x$ è continua e infatti è omeo

con inversa
$$\log:]0, +\infty[\to \mathbb{R}, \text{ pure essa continua} \Rightarrow \mathbb{R} \cong]0, +\infty[.$$
 $g:]0, 1[\to]0, +\infty[, g(x) = \frac{x}{1-x} \text{ omeo con inversa } g^{-1}(y) = \frac{y}{1+y}.$

]0, 1[
$$\cong$$
] a , b [\cong] a , $+\infty$ [\cong] $-\infty$, a [\cong \mathbb{R} .

$$[0,1[\cong [a,b[\cong]a,b]\cong [0,+\infty[\cong [a,+\infty[\cong]-\infty,a].$$

 $[0,1] \cong [a,b]$ ma $[0,1] \ncong \mathbb{R}$ (lo vedremo più avanti).

Chiusura e frontiera negli spazi metrici

Def. Dato (X, d) spazio metrico, $\forall x \in X$ e $\forall A, B \subset X$ non vuoti, definiamo la distanza tra x e A

$$d(x, A) := \inf\{d(x, a) \mid a \in A\} \geqslant 0$$

e la distanza tra A e B

$$d(A, B) := \inf\{d(a, b) \mid a \in A, b \in B\} \ge 0.$$

Oss. $x \in A \not\leftarrow \Rightarrow d(x, A) = 0$.

 $A \cap B \neq \emptyset \not \Leftrightarrow d(A, B) = 0.$

L'inf non è necessariamente un minimo.

Esempio. In \mathbb{R} con la distanza Euclidea d(0,]0, 1[) = 0.

Prop. (X, d) spazio metrico, $\emptyset \neq A \subset X \Rightarrow$

$$d_A:X\to\mathbb{R}$$

$$d_A(x) = d(x, A)$$

funzione continua.

Oss. In altre parole la distanza da un sottoinsieme è continua.

 $Dim. \ \forall x_0, x \in X, \ \forall a \in A \ per \ la \ disuguaglianza triangolare e passando all'inf si ha$

$$d(x, a) \leqslant d(x, x_0) + d(x_0, a) \implies d_A(x) - d_A(x_0) \leqslant d(x, x_0)$$

da cui scambiando x con x_0 si deduce

$$|d_A(x)-d_A(x_0)|\leqslant d(x,x_0).$$

Si ottiene quindi la continuità ponendo $\delta = \varepsilon$.

Oss. $f: X \to \mathbb{R}$ continua \Rightarrow i sottoinsiemi di X definiti da un'equazione continua $f(x) = \alpha$, o da una disequazione $f(x) \geqslant \alpha$ o $f(x) \leqslant \alpha$, con $\alpha \in \mathbb{R}$, sono chiusi in X in quanto preimmagini di chiusi.

Analogamente i sottoinsiemi di X definiti da $f(x)>\alpha$ o da $f(x)<\alpha$ o da $f(x)\neq\alpha$ sono aperti in X.

Prop. Siano (X, d) uno spazio metrico e $\emptyset \neq A \subset X$. Allora

$$Cl_X A = \{x \in X \mid d(x, A) = 0\}.$$

Dim. Poniamo $C = \{x \in X \mid d(x, A) = 0\}$ e dimostriamo $Cl_X A = C$.

 \subset C chiuso in X perché definito da un'equazione continua.

 $A \subset C \Rightarrow \operatorname{Cl}_X A \subset C$.

Cor. $\forall x \in X$ si ha $x \in \operatorname{Cl}_X A \Leftrightarrow d(x, A) = 0$.

Cor. $\forall x \in X$ si ha $x \in \operatorname{Fr}_X A \Leftrightarrow d(x, A) = d(x, X - A) = 0$.

Cor. $A \subset X$ chiuso, $x \in X$ e $d(x, A) = 0 \Rightarrow x \in A$.

N. B. $\emptyset \neq A$, $B \subset X$ chiusi e $d(A, B) = 0 \Rightarrow A \cap B \neq \emptyset$.