Internet Security

Network Layer (IP and ICMP Protocols)

IP Address

Responsibility of IP Layer

How Traceroute Works

Attacks on IP Fragmentation

DEFINITION

protocol

In information technology, a protocol is the special set of rules that end points in a telecommunication connection use when they communicate. Protocols specify interactions between the communicating entities.

Questions: Attacks Using Fragmentation

Q1: Can you use a small amount of bandwidth to tie up a target machine's

significant amount of resources?

Q2: Can you create an IP packet that is larger than 65,536 bytes?

Q3: Can you create some abnormal conditions using "offset" and "payload size"?

Goal: Test whether a computer can handle these "unreal" conditions.

Attack 1: Tie Up Target's Resources

Can you use a small amount of bandwidth to tie up a target machine's significant amount of resources?

Attack 2: Create a Super-Large Packet

Can you create an IP packet that is larger than 65,536 bytes?

-		: 3	2 bits ———				
4-bit version	4-bit hdr length	Type of service	16-bit total length (in bytes)				
	16 bit identi	fication (ID)	3-bit flags	13-bit fragment offset			
8-bit time t	to live (TTL)	8-bit protocol	16-bit header checksum				
	-	32-bit so	urce IP address	1			
		32-bit des	tination IP addre	ess			
		Header option	s, if any (0-40 b	oytes)			
		Data (variable length)				

Attack 3: Create Abnormal Situation

Can you create some abnormal conditions using "offset" and "payload size"? Test whether a computer can handle these "unreal" conditions.

ICMP: Internet Control Message Protocol

> control }

echo

ICMP Header

ICMP Header

JP JIMP.

ICMP Echo Request/Reply

ICMP Time Exceeded

Type must be set to 11

Code specifies the reason for the time exceeded message, include the following:

	Code	Description	
_	0	Time-to-live exceeded in transit.	
_	1	Fragment reassembly time exceeded.	7

TTL = X 2

the

ICMP Destination Unreachable

00 01 02 03 04 05 06 07	08 09 10 11 12 13 14 15	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31					
Type = 3	Code	Header checksum					
unu	sed	Next-hop MTU					
IP header and first 8 bytes of original datagram's data							

0	Destination network unreachable '	_
1	Destination host unreachable -	
2	Destination protocol unreachable	
3	Destination port unreachable	
4	Fragmentation required, and DF flag set	
5	Source route failed	
6	Destination network unknown	
7	Destination host unknown	
8	Source host isolated	
9	Network administratively prohibited	
10	Host administratively prohibited	
11	Network unreachable for TOS	
12	Host unreachable for TOS	
13	Communication administratively prohibited	
14	Host Precedence Violation	
15	Precedence cutoff in effect	

ICMP Redirect and Attacks

Routing

Routing Table on a Host

seed@ubuntu:~\$	route -n 🗲					
Kernel IP routing table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use Iface
0.0.0.0	10.0.2.1	0.0.0.0	UG	0	0	0 eth18
10.0.2.0	0.0.0.0	255.255.255.0	U	1	0	0 eth18
169.254.0.0	0.0.0.0	255.255.0.0	U	1000	0	0 eth16
192.168.56.0	0.0.0.0	255.255.255.0	U	1	0	0 eth16

Change Routing Table

seed@ubuntu:~\$	route -n						
Kernel IP routi	ng table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
0.0.0.0	10.0.2.1	0.0.0.0	UG	0	0	0	eth18
10.0.2.0	0.0.0.0	255.255.255.0	U	1	0	0	eth18
169.254.0.0	0.0.0.0	255.255.0.0	U	1000	0	0	eth16
192.168.56.0	0.0.0.0	255.255.255.0	U	1	0	0	eth16
seed@ubuntu:~\$	sudo route add -	net 128.230.0.0/	16 gw :	10.0.2.	1		
[sudo] password	for seed:						
seed@ubuntu:~\$	route -n						
Kernel IP routin	ng table						
Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
0.0.0.0	10.0.2.1	0.0.0.0	UG	0	0	0	eth18
10.0.2.0	0.0.0.0	255.255.255.0	U	1	0	0	eth18
128.230.0.0	10.0.2.1	255.255.0.0	UG	0	0	0	eth18
169.254.0.0	0.0.0.0	255.255.0.0	U	1000	0	0	eth16
192.168.56.0	0.0.0.0	255.255.255.0	U	1	Θ	0	eth16

How Do Routers and Host Get Routing Information? BGR Border Gatheway