

Operating Systems Experiment # 09

Experiment Title

CPU Scheduling Algorithm Priority-Based scheduling , Round Robin Scheduling Algorithm

Assessment of CLO(s): 04

Performed on	
--------------	--

Student Name:		
Roll No.	Group	
Semester	Session	

Total (Max)	Performance (03)	Viva (03)	File (04)	Total (10)
Marks Obtained				
Remarks (if any)				

Experiment evaluated by

	Instructor's Name	Engr. Bushra Aziz		
	Date			
			Signature	
١				

PRIORITY SCHEDULING ALGORITHM

In priority scheduling algorithm each process has a priority associated with it and as each process hits the queue, it is stored in based on its priority so that process with higher priority is dealt first. It should be noted that equal priority processes are scheduled in FCFS order.

Implementation -

- 1. First input the processes with their arrival time, burst time and priority.
- 2. Sort the processes, according to arrival time if two process arrival time is same then sort according process priority if two process priority are same then sort according to process number.
- 3. Now simply apply FCFS algorithm.

Each process will be executed according to its priority. Calculate the waiting time and turnaround time of each of the processes accordingly.

Priority Bases scheduling (non-Preemptive) Example

Process	Arrival time	Burst time	Priority
P1	0 ms	5 ms	1
P2	1 ms	3 ms	2
P3	2 ms	8 ms	1
P4	3 ms	6 ms	3

NOTE: In this example, we are taking higer priority number as higher priority.

Gantt Chart

	P1	F	P4	P	2	P	3
0ms	5ms	5ms	11ms	11ms	14ms	14ms	22ms

Calculate the waiting time and turnaround time of each of the processes accordingly.

Process	Waiting	Time	Turnaround	Time
P1	0ms		5ms	
P2	10ms	3	13ms	
Р3	12ms	3	20ms	
P4	2ms		8ms	

Lab Experiment 9

Total waiting time: (0 + 10 + 12 + 2) = 24ms

Average waiting time: (24/4) = 6ms

Total turnaround time: (5 + 13 + 20 + 8) = 46ms Average turnaround time: (46/4) = 11.5ms

Round Robin Scheduling Algorithm

Round Robin scheduling algorithm is one of the most popular scheduling algorithms which can actually be implemented in most of the operating systems. The Algorithm focuses on Time Sharing. In this algorithm, every process gets executed in a **cyclic way**. A certain time slice is defined in the system which is called time **quantum**. Each process present in the ready queue is assigned the CPU for that time quantum, if the execution of the process is completed during that time, then the process will **terminate** else the process will go back to the **ready queue** and waits for the next turn to complete the execution.

Implementation

For round robin scheduling algorithm, read the number of processes/jobs in the system, their CPU burst times, and the size of the time slice. Time slices are assigned to each process in equal portions and in circular order, handling all processes execution. This allows every process to get an equal chance. Calculate the waiting time and turnaround time of each of the processes accordingly.

Steps to find Completion times of all processes:

```
Create an array rem bt[] to keep track of
burst time of processes. This array is initially a
   copy of bt[] (burst times array)
2-
     Create another array ct[] to store completion
times of processes. Initialize this array as 0.
     Initialize time : t = 0
     Keep traversing the all processes while all
4-
processes are not done. Do following for i'th process
if it is
not done yet. a- If rem bt[i] > quantum
       (i) t = t + quantum
(ii) bt_rem[i] -= quantum;
    c- Else // Last cycle for this process
(ii) ct[i]=t;
(iii) bt_rem[i] = 0; // This process is
```

Round Robin Scheduling Example

Process					Arrival time				Burst time							
P1						0 1	ms					10	ms			
P2					0 1	ms			5 ms							
	F	3					0 1	ms					8 1	ms		
ntt Ch	art															
ntt Ch			P2			P3			P1			P2			P3	
	art 2	2	P2	4	4	Р3	6	6	P1	8	8	P2	10	10	Р3	1:
		2	P2	4	4	P3	6	6	<u>P1</u>	8	8	P2	10	10	P3	1

Lab Experiment 9

Calculate the waiting time and turnaround time of each of the processes accordingly.

	Process		Waiting Time	Turnaround Time	
1	P1		13ms	23ms	
1	P2	1	10ms	15ms	
	P3		13ms	21ms	

Total waiting time: (13 + 10 + 13) = 36ms Average waiting time: (36/3) = 12ms

Total turnaround time: (23 + 15 + 21) = 59ms Average turnaround time: (59/3) = 19.66ms

Exercises:

- 1. Write a Python program to implement Round Robin Algorithm.
- 2. Write a Python program to implement Priority Algorithm.
- 3. Modify both algorithms for the different arrival time.