The Role of Differential Privacy in GDPR Compliance

Rachel Cummings and Deven Desai, Georgia Tech (talk by Yatharth Dubey) FATREC – Oct. 6, 2018

EU General Data Protection Regulation (GDPR)

GDPR asserts that individuals "shall have the right to obtain [...] the erasure of personal data concerning him or her without undue delay"

Compliance?

Disconnect between legal language and machine learning: What algorithms can I run on my data?

Personal data vs aggregates

- Personal data must be deleted upon user request
- Aggregates may be stored longer for "collection and the processing of personal data necessary for statistical surveys or for the production of statistical results"

Aggregate data must be anonymous

Former Chief Privacy Officer of Microsoft asserted that GDPR-compliant aggregate data:

- must not be "directly linked to identifying data"
- must not be a "known, systemic way to (re)identify data"
- 3. must not "relate to a specific person"

Alternative: pseudonymization

- Pseudonymization is "processing of personal data in such a manner that the personal data can no longer be attributed to a specific data subject without the use of additional information"
- GDPR allows for pseudonymization of aggregate data
- Allows for linkage attacks, hopes they don't happen

Memoization in ML

- Many learning algorithms memoize individual data entries during training inadvertently by imbedding personal data in the learned model
- Deep learning algorithms for word prediction leaked SSNs from the training corpus [CLKES '18]
 - Complete: "My Social Security Number is..."

Unsurprising for ML, bad for privacy

Memoization and GDPR

- Machine learned model that memoizes personal data cannot be an aggregate
- Individual data has not been de-identified and/or can be re-identified
 - Can extract Personally Identifying Information (PII) from model

Need formal guarantee to prevent memoization

Differential privacy [DMNS '06]

Bound the "maximum amount" that one person's data can change the output of a computation

An algorithm $M: T^n \to R$ is (ϵ, δ) -differentially private if \forall neighboring $x, x' \in T^n$ and $\forall S \subseteq R$, $P[M(x) \in S] \leq e^{\epsilon} P[M(x') \in S] + \delta$

$$(t_1, \dots, t_i, \dots, t_n) \\ (t_1, \dots, t'_i, \dots, t_n) \Longrightarrow$$

- S as set of "bad outcomes"
- Worst-case guarantee

Differential privacy [DMNS '06]

$$(t_1, \dots, t_i, \dots, t_n) \\ (t_1, \dots, t'_i, \dots, t_n) \Longrightarrow$$

"You will not be affected... by allowing your data to be used... no matter what other information sources are available.

DP addresses the paradox of learning nothing about an **individual** while learning useful information about a **population**."

The Algorithmic Foundations of Differential Privacy, Dwork and Roth.

DP formally prevents memoization

- Constrained to learn the same thing without your data
 - e.g., won't output your SSN if it wasn't in corpus
- Theorem [DFHPRR '15][CLNRW '16]*: An ϵ -differentially private algorithm cannot overfit its training set by more than ϵ .

Future policy challenges

1. How to set ϵ ?

- Theory: ϵ is small constant $\ll 1$ (e.g., 0.01) or diminishing in n (e.g., $O(1/\sqrt{n})$)
- Practice: ϵ is large (e.g., Apple uses ϵ =42, Census uses $\epsilon \approx 9$)
- Trade-off between privacy and accuracy

2. How to set δ ?

- δ is failure probability of privacy guarantee
- Allowing $\delta = o(\exp(-n))$ can significantly reduce ϵ for same accuracy level
- Practical GDPR-compliant data erasures = encrypt data and delete key
- Cryptographically small failure probability acceptable?

The Role of Differential Privacy in GDPR Compliance

Rachel Cummings and Deven Desai, Georgia Tech (talk by Yatharth Dubey) FATREC – Oct. 6, 2018