(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 November 2002 (28.11.2002)

PCT

(10) International Publication Number WO 02/095130 A1

(51) International Patent Classification7: D21H 21/28. 19/44, D06P 1/06

(21) International Application Number: PCT/US02/15857

(22) International Filing Date: 17 May 2002 (17.05.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 18 May 2001 (18.05.2001) 60/291,650

(71) Applicant (for all designated States except US): SUN CHEMICAL CORPORATION [US/US]; 222 Bridge Plaza South, Fort Lee, NJ 07024 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MOORE, James [US/US]; 206 Klotter Street, Apt. 2, Cincinnati, OH 45219

(US). PERRY, Charles, W. [US/US]; 1135 Pamela Road, Cincinnati, OH 45255 (US). LABAZZO, Joseph, P. [US/US]; 719 Eagleview Court, Mason, OH 45040 (US). RASMUSEN, Hans [DK/DK]; Tolstrupvej 68, DK-4330 Hvalso (DK). THORSSON, Jorn, R. [DK/DK]; Virumej 28A, DK-2830 Virum (DK).

(74) Agent: PERSLEY, Sidney; 222 Bridge Plaza South, Fort Lee, NJ 07024 (US).

(81) Designated States (national): CA, US.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD OF COLORING CELLULOSIC MATERIALS USING A CATIONIC PIGMENT DISPERSION

(57) Abstract: A method of coloring a cellulosic material which includes: a) dispersing pulped cellulosic material into water, and b) coloring the pulped cellulosic material by adding a cationic dispersion to the water, where the dispersion includes: (i) at least one pigment; (ii) water; and (iii) at least one quaternary salt of a styrene maleimide imide resin in an amount effective to disperse the pigment. The cationic dispersion may be prepared by (i) mixing, at 500 to 10,000 rpm, at least one pigment; water; and either (a) at least one a quaternary salt of a styrene maleimide imide resin or (b) at least one styrene maleimide imide resin in combination with at least one weak acid, thereby forming a dispersion premix; (ii) milling the dispersion premix in a mixer filled with ceramic, metal or glass beads for a period of time sufficient to reduce pigment agglomerates to primary particles, thereby forming a nonstandardized dispersion; and (iii) standardizing the dispersion against a color standard by adding water. The resulting cationic dispersion can be used to color cellulosic materials such as cotton and paper.

10

15

METHOD OF COLORING CELLULOSIC MATERIALS USING A CATIONIC PIGMENT DISPERSION

BACKGROUND OF THE INVENTION:

Field of the Invention

This invention relates to a method of coloring cellulosic materials such as paper pulp and cotton. More particularly, this invention relates to a method of coloring cellulosic materials using a cationic dispersion which contains at least one pigment, water, and at least one dispersing agent comprising a quaternary salt of a styrene maleimide imide resin.

Description of the prior art

Papermaking is a well-known process in which a cellulosic material, typically obtained from wood, is mechanically or chemically pulped, dispersed in water, formed into a planar sheet, dried and wound onto a roll for later use. The paper may be sized to modify its surface characteristics, particularly water penetration, which is important for writing and printing grades of paper. Additives such as fillers and optical brighteners may be added to the pulp prior to sheet formation. Colorants such as dyes or pigments may also be added during the papermaking process, either by coloring the paper pulp, or applying the colorant to the paper surface by dip coating, spraying or pad printing. Pulp coloration is the most widely used type of paper coloration.

"Substantivity" is the ability of a dye or pigment to be adsorbed by cellulose fibers from an aqueous medium.

"Affinity" is the capability of a dye or pigment to be bound to cellulose fibers.

Cellulosic materials are slightly anionic in water due to partly dissociated carboxylic acid and other functional groups. Some chemically treated pulps may also contain sulfonate groups.

The anionic character of cellulosic materials in water affects the substantivity and affinity of dyes and pigments for paper. Thus, anionic dyes such as acid and anionic direct dyes will typically require the addition of fixing agents to overcome electrostatic repulsion from the anionic cellulose fibers. Cationic dyes such as basic and cationic

PCT/US02/15857

10

15

20

25

30

35

direct dyes will be electrostatically attracted to the anionic cellulose fibers, but may still require fixing agents to achieve acceptable substantivity and affinity.

Pigments have not enjoyed the field of coloring paper. about 60% of the paper market, and acid dyes and pigments make up the remainder. See Murray, "Dyes and fluorescent Whitening Agents for Paper," Paper Chemistry 161-192 (2d ed. 1996). This lack of market penetration may be explained by the fact that pigments do not contain solubilizing functional groups and have little affinity for or substantivity to cellulose. In particular, the addition of a fixing agent, such as cationic starch, aluminum sulfate (alum) and cationic polymers, is typically required to fix pigments to cellulose fibers.

Aluminum sulfate is the most common fixing agent for pigments and can also serve as an acidic sizing agent. However, neutral sizing agents have gained in popularity over acidic sizing agents, and aluminum sulfate can interfere with neutral sizing agents.

An object of the invention is to provide a method for coloring cellulosic materials using an aqueous pigment dispersion which does not require fixing agents or alum.

A feature of the method of the present invention is the use of a cationic dispersion containing at least one pigment, water, and at least one dispersing agent comprising a quaternary salt of a styrene maleimide imide resin to color cellulosic materials such as paper.

An advantage of the method of the present invention is that it permits consistent coloring of cellulosic material over time, which is important in continuous and semi-continuous papermaking operations.

Yet another advantage of the method of the present invention is that it exhibits essentially 100 percent, rapid exhaustion of the pigment particles into the cellulosic material, and thus generates clear backwaters. This is vitally important both from an economical and environmental vantage point.

SUMMARY OF THE INVENTION:

In one aspect, the present invention relates to a method of coloring a cellulosic material, which includes

a) dispersing pulped cellulosic material into water; and b) coloring the pulped cellulosic material by adding a cationic dispersion to the water, where the dispersion includes:

WO 02/095130 PCT/US02/15857

3

- (i) at least one pigment;
- (ii) water; and
- (iii) at least one quaternary salt of a styrene maleimide imide resin in an amount effective to disperse the pigment.

In another aspect, the present invention relates to a colored cellulosic material, consisting essentially of pigment particles coated with a styrene maleimide imide resin; the coated particles fixed on fibers of a cellulosic material.

In yet another aspect, the present invention relates to a cationic dispersion, which includes

- (i) at least one pigment;
- (ii) at least one dispersing agent comprising a quaternary salt of a styrene maleimide imide resin; and
- 20 (iii) water.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS:

Inorganic and organic pigments may be used in the cationic dispersion of the present invention. Suitable inorganic pigments include red oxide, yellow oxide, black iron oxide, cobalt blue, carbon black and bismuth vanadate (yellow 184).

25

30

35

5

15

Suitable organic pigments may be chosen from azo pigments, such as azo lake, azo chelate and condensed azo pigments, and polycyclic pigments such as phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments, rhodamine pigments, arylide pigments, diarylide pigments and naphthol red pigments. Preferred organic pigments include phthalocyanine green, phthalocyanine blue, carbazole violet, toluidine red, perylene red, quinacridone red, quinacridone yellow, quinacridone violet, arylide yellow, Dalamar yellow, Watchung red, and diketopyrrolopyrrole (DPP red).

15

20

30

40

The cationic dispersion of the present invention comprises at least one quaternary salt of a styrene maleimide imide resin. Styrene maleimide imide resins may be prepared by reacting a styrene maleimide resin with a primary diamine, such as dime thylaminopropylamine, to form a styrene maleimide imide having tertiary amine functional groups. Further details on these styrene maleimide imide resins are found in "Technical Information - Styrene Maleimide Resins SMA X 1000 I, X 2000 I, X 3000 I, X 4000 I," Elf Atochem Brochure (1998), the disclosure of which is incorporated by reference herein in its entirety.

It is possible to prepare copolymer resins having a styrene/ maleimide ratio ranging from 1/1 to 1/4 depending on the base resin employed in the imidization reaction. A particularly preferred styrene maleimide imide resin is prepared by reacting dimethylaminopropylamine with a styrene maleimide resin, commercially available from ATOFINA Chemicals, Inc., Philadelphia, PA (formerly known as Elf Atochem, Inc.). Imidization can be performed using a non-reactive diluent, the desired amine, and the styrene maleimide resin. Typical reaction conditions are 150-180°C for 30-40 minutes. The generalized reaction scheme is set forth below:

10

20

30

35

where n may be 1-3 and m is 6-8.

These styrene maleimide imide resins are insoluble in water. However, they may be converted to their corresponding quaternary salts, which are water soluble, by reaction with a weak acid. The weak acid may have an acid dissociation constant Ka of 1×10^{-2} to 1×10^{-7} . Illustrative weak acids include acetic acid, citric acid, hydrofluoric acid, oxalic acid and nitrous acid, preferred. The pH of the cationic than 7, preferably between 4 and 6.

The cationic dispersion of the present invention typically 10% by weight pigment. The dispersing agent is in an amount of from 1-20%, preferably 3-8%, by weight. A slight excess of the weak acid may be present to ensure that the quaternary salt of the styrene maleimide imide remains solubilized. When acetic acid is employed, a ratio of about 1:5 acetic acid/resin is normally sufficient to ensure the solubility of the styrene maleimide imide resin quaternary salt.

Other additives may be present in any amount which does not detract from the cationic dispersion's cellulosic materials such as paper. Suitable additives include viscosity control agents, surfactants and biocides. Suitable viscosity control agents include hydroxyalkyl celluloses, such as hydroxyethylcellulose, which are preferably added to the cationic dispersion to increase its viscosity to a 10,000 centipoise, preferably 1,000 to 2,000 centipoise, at 25° C. The amount of viscosity control agent will depend on the relative amounts of dispersing agent, pigment and water forming the dispersion, and may range from 0.05% to 2% by weight of the dispersion.

One or more surfactants may optionally be added to the dispersion to aid in its manufacture if the surfactant does not create foam. For example, non-ionic surfactants having a hydrophobic/ lipophobic balance (HLB) less than 13, also known as grind aids, may be added to the dispersion to decrease milling time by reducing the surface tension of the pigment/water interface. An illustrative grind aid is an acetylenic diol with an HLB of 3 which is commercially available under the trademark SURFYNOL 104 from Air Products, Inc., Allentown, PA.

Surfactants may also be added to the cationic dispersion to reduce foaming during mixing of the dispersion. Suitable defoaming agents include mineral oils, silicone polymers and acetylenic diols. A defoaming agent comprising a mixture of dipropylene

WO 02/095130 PCT/US02/15857

glycol and tetramethyl-6-dodecyne-5,8-diol, commercially available from Air Products, Inc. under the trademark DF110D, is preferred. A concentration of about 0.1 weight percent is normally sufficient to ensure the dispersion does not foam during mixing. A biocide may also be added to the cationic dispersion. Suitable biocides include octhilinone, bromonitroalcohol, formaldehyde and formaldehyde-based derivatives. A concentration of about 0.1 weight percent is normally sufficient to ensure no harmful or objectionable bacteria colonize the dispersion.

10

15

20

30

The cationic dispersion of the present invention may be prepared by a three-stage process. In the first stage, the pigment, styrene maleimide imide quaternary salt, and water, together with any desired optional additives such as a surfactant and/or biocide, are mixed together in the desired amounts to form a dispersion premix. Conventional high speed mixing equipment may be used without modification. A mixing speed of from 500 to 10,000 rpm for a time period of from 1 minute to 2 hours, preferably 10-25 minutes, may be used depending on the size of the batch.

One of ordinary skill in the art will readily understand that the dispersion of the present invention can also be prepared using a styrene maleimide resin rather than its corresponding quaternary salt, if a weak acid is also added to solubilize the styrene maleimide imide resin per se.

In the second stage, the dispersion premix is media milled, typically using ceramic, metal or glass beads, to reduce pigment agglomerates to primary particles, thereby forming a non standardized dispersion. Media milling can be performed using conventional milling equipment without modification.

In the third and final stage, water is added to the nonstandardized dispersion until the color of the dispersion matches a color standard. Generally from 5 to 10% by weight water is required to standardize the dispersion.

The cationic dispersion of the present invention may be used to color cellulosic materials such as paper and cotton using conventional techniques and apparatus. For example, the cationic dispersion may be added to conventional paper pulp, such as mechanical pulp or chemical pulp, as it is being made into paper. Thus, for example, from 0.05% to 10% by weight, preferably 2-3% by weight, of the cationic dispersion may be added to an aqueous solution of paper pulp, and homogenized for a time sufficient to completely exhaust the pigment into the cellulosic fibers of the paper prior to paper sheet formation.

10

15

20

25

35

The styrene maleimide imide quaternary salt is only soluble in an acidic solution, and becomes insoluble in an alkaline environment. Those of ordinary skill in the papermaking arts know that water quality can vary tremendously, particularly if river water is used rather than municipal water. In particular, pH can range from 4 to 9. Accordingly, it may be necessary to monitor and, if necessary, adjust the pH below 7 to ensure optimum performance of the cationic dispersion.

Without intending to be bound by theory, the inventors currently believe that the cationic styrene maleimide imide quaternary salt coats the pigment particles, thereby allowing them to disperse in water. When the dispersion is mixed with an aqueous solution of anionic cellulosic materials such as paper pulp, the cationic styrene maleimide imide quaternary salt is electrostatically attracted to the anionic, partially dissociated carboxylic groups of the cellulosic fibers, fixing the coated pigment thereon.

The method of the present invention provides a colored cellulosic material which does not require a fixing agent for the pigment. Yet another advantage of the essentially complete exhaustion of the pigment into the cellulosic material and a correspondingly clear backwater.

EXAMPLES

The following examples illustrate preferred embodiments of the invention, and are not intended to limit the scope of the invention in any manner whatsoever.

Example 1

Formulation of a Cationic Dispersion

Containing Blue Pigment

A high speed mixer was used to mix acetic acid, phthalocyanine blue pigment, styrene maleimide imide resin (SMA x 2000 I, commercially available from ATOFINA Chemicals, Inc., Philadelphia, PA), a defoaming agent comprising a mixture of dipropylene glycol and tetramethyl-6-dodecyne-5,8-diol, commercially available from Air Products, Inc. under the trademark DF110D, a biocide comprising octhilinone, commercially available from Thomson Research Associates, Toronto, Canada, under the trademark ULTAFRESH DM-25, and water to form a dispersion premix, which was then media milled (Eiger mixer) to disperse and incorporate the pigment into the dispersion had a total solids percentage of percentage of 48.7. The weight percentage composition of this cationic dispersion is set forth below in Table I:

TABLE 1

MATERIALS	WEIGHT PERCENTAGES
Styrene Maleimide Imide	5.50
Pigment (Phthalo Blue)	43.00
Weak Acid (Acetic Acid)	1.00
Defoamer	0.10
Biocide	0.10
Water	50.30
TOTAL	100%

10

Example 2 Formulation of a Cationic Dispersion Containing Yellow Pigment

A second cationic dispersion was formulated using the general procedures of
Example I. The weight percentage composition of the resulting cationic dispersion is set forth below in Table 2:

TABLE 2

MATERIALS	WEIGHT PERCENTAGES
Styrene Maleimide Imide	5.50
Pigment (Phthalo Blue)	43.00
Weak Acid (Acetic Acid)	1.00
Defoamer	0.10
Biocide	0.10
Water	50.30
TOTAL	100%

20

25

30

Example 3 Coloring of Paper Pulp

The cationic dispersions of Examples 1 and 2 were each individually used to color paper pulp in accordance with the following procedure: 4 grams of a 50/50 blend of hard and soft wood fibers were added to a beaker containing 100 grams of water and mixed for approximately 5 minutes using a flat mixing blade operating at a speed of at least 100 rpm to produce an aqueous suspension of cellulosic fibers.

Separately, 1 gram of the cationic dispersion was diluted with 250 grams of water. 25 milliliters of the diluted dispersion were pipetted into the aqueous

WO 02/095130 PCT/US02/15857

suspension, which was mixed for another 5 minutes using the same mixing conditions and equipment, thus resulting in an aqueous suspension of colored cellulosic fibers.

The aqueous suspension was then put in a small sheet mold having a forming screen on the bottom, and the water was extracted, thereby forming a sheet of colored paper on the forming screen. Both of the cationic dispersions completely exhausted their pigments into the paper pulp, and gave crystal clear backwaters. The colored paper was blotted and dried on a small paper drier.

10

15

The completely dry colored paper was evaluated for color continuity, two sidedness, color matching to a standard, and color strength. Samples of colored paper made from the cationic dispersion of Example 1, and samples of colored paper made from the cationic dispersion of Example 2, passed all tests.

5 CLAIMS:

We claim:

- 1. A method of coloring a cellulosic material, comprising
- a) dispersing pulped cellulosic material into water; and
- b) coloring said pulped cellulosic material by adding a cationic dispersion into said water, wherein said dispersion comprises: (i)at least one pigment;
 - (ii) at least one dispersing agent comprising a quaternary salt of a styrene maleimide imide resin; and
 - (iii) water.
 - A cationic dispersion, comprising:
 - (i) at least one pigment;
 - (ii) at least one dispersing agent comprising a quaternary salt of a styrene maleimide imide resin; and
 - (iii) water.
- 3. The cationic dispersion of claim 2, wherein said pigment is at least one organic pigment selected from the group consisting of phthalocyanine green, phthalocyanine blue, carbazole violet, toluidine red, Dalamar yellow, Watchung red and diketopyrrolopyrrole, quinacridone red, quinacridone yellow, quinacridone violet and arylide yellow.

25

30

15

- 4. The cationic dispersion of claim 2, wherein said organic pigment is a phthalocyanine.
- 5. The cationic dispersion of claim 2, wherein said pigment is at least one inorganic pigment selected from the group consisting of red oxide, yellow oxide, black iron oxide, cobalt blue, carbon black and bismuth vanadate.

- 6. The cationic dispersion of claim 2, further comprising at least one member of the group consisting of a surfactant, a biocide and a viscosity control agent.
- 7. The cationic dispersion of claim 2, wherein said pigment comprises primary particles.
- 8. A colored cellulosic material, consisting essentially of pigment particles coated with a styrene maleimide imide resin; said coated particles fixed on fibers of a cellulosic material.
- 9. The colored cellulosic material of claim 8, wherein said cellulosic material is selected from at least one member of the group consisting of paper and cotton.

International Application No PCT/US 02/15857

			101, 20 02, 2000,
A. CLASS IPC 7	SIFICATION OF SUBJECT MATTER D21H21/28 D21H19/44 D06P1/	/ 06	
According	to International Patent Classification (IPC) or to both national class	sification and IPC	
B. FIELDS	SEARCHED		
Minimum d IPC 7	ocumentation searched (classification system followed by classifi D21H D06P	cation symbols)	
Documenta	ation searched other than minimum documentation to the extent th	at such documents are inch	ided in the fields searched
	data base consulted during the international search (name of data iternal, PAJ, WPI Data	base and, where practical,	search terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to dalm No.
Α .	EP 0 307 795 A (MD PAPIER GMBH) 22 March 1989 (1989-03-22) the whole document		1–9
A	US 3 869 439 A (SCHUNDEHUTTE KA 4 March 1975 (1975-03-04) the whole document	RL-HEINZ)	1–9
A	GB 1 422 834 A (BAYER AG) 28 January 1976 (1976-01-28) the whole document		1–9
A	US 5 266 622 A (MAZANEK JAN ET 30 November 1993 (1993-11-30) the whole document	AL)	1–9
		-/	
χ Furth	er documents are listed in the continuation of box C.	X Patent family n	nembers are listed in annex.
Special cat	legories of cited documents:	"T" later document publi	shed after the international filing date
	nt defining the general state of the art which is not ered to be of particular relevance	or priority date and cited to understand invention	not in conflict with the application but the principle or theory underlying the
	ocument but published on or after the International	"X" document of particular	ar relevance; the claimed invention ed novel or cannot be considered to
Lª documer	nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another	involve an inventive	e step when the document is taken alone ar relevance; the claimed invention
citation	or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	cannot be consider document is combi	ed to Involve an inventive step when the ned with one or more other such docu-
other m		ments, such combi in the art.	nation being obvious to a person skilled
later th	an the priority date claimed	*&" document member of	
Date of the a	actual completion of the international search	Date of mailing of the	ne international search report
21	August 2002	30/08/20	002
Name and m	uailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Karlssor	ı, L

In......lonal Application No PCT/US 02/15857

ategory *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
alegory "	Citation of dominant with indication where appropriate of the relevant bassades	Tootan to olamino.
1	EP 0 632 105 A (NIPPON KAYAKU KK) 4 January 1995 (1995-01-04) the whole document	1-9
l	US 4 775 420 A (GONNET OLIVIER ET AL) 4 October 1988 (1988-10-04) the whole document	1–9
.	EP 0 525 365 A (GOODRICH CO B F) 3 February 1993 (1993-02-03) the whole document	1–9
		·
	·	
	·	
	•	
1		

Information on patent family members

PCT/US 02/15857

		<u> </u>	101703	02/1585/
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0307795	A 22-03-1	989 DE EP FI JP	3730833 A1 0307795 A2 884222 A 1097296 A	23-03-1989 22-03-1989 15-03-1989 14-04-1989
US 3869439	A 04-03-1	975 DE AT AT BE CA CH CS DD DK ES FR GB IT JP NL	2064093 A1 310321 B 310319 B 777303 A1 967953 A1 586268 A5 164771 B2 96076 A5 138429 B 398359 A1 2121048 A5 1336686 A 945614 B 52025408 B 7117899 A	06-07-1972 15-08-1973 15-08-1973 27-06-1972 20-05-1975 31-03-1977 28-11-1975 05-03-1973 04-09-1978 01-09-1974 18-08-1972 07-11-1973 10-05-1973 07-07-1977 30-06-1972
GB 1422834	A 28-01-19		2256485 A1 322060 B 807382 A1 1003157 A1 584275 A5 109653 A5 2207172 A1 139416 A1 1001776 B 991057 C 49081436 A 54027853 B 7315760 A	22-05-1974 12-05-1975 16-05-1974 11-01-1977 31-01-1977 12-11-1974 14-06-1974 19-06-1976 30-04-1976 27-03-1980 06-08-1974 12-09-1979 21-05-1974
US 5266622 A		DE DK EP ES JP JP NO	3815239 A1 58905011 D1 216789 A 0340583 A2 2058377 T3 2014095 A 2912380 B2 891627 A	16-11-1989 02-09-1993 06-11-1989 08-11-1989 01-11-1994 18-01-1990 28-06-1999 06-11-1989
EP 0632105 A	04-01-19	95 JP CN EP	7018192 A 1103083 A 0632105 A1	20-01-1995 31-05-1995 04-01-1995
US 4775420 A	04-10-19	FR AT AU AU BR CA DE EP FI JP	2603042 A1 59069 T 604251 B2 7668387 A 8704323 A 1289288 A1 3766679 D1 0261039 A1 873622 A ,B, 63059497 A	26-02-1988 15-12-1990 13-12-1990 25-02-1988 19-04-1988 17-09-1991 24-01-1991 23-03-1988 23-02-1988 15-03-1988

Information on patent family members

In onel Application No
PCT/US 02/15857

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 4775420	Α		ZA	8705892 A	12-02-1988
EP 0525365	A	03-02-1993	US AU CA EP JP MX	5298558 A 1843292 A 2071362 A1 0525365 A2 5247450 A 9203225 A1	29-03-1994 07-01-1993 26-12-1992 03-02-1993 24-09-1993 01-07-1993