5MCAEC23: SYSTEM MODELING AND SIMULATION

Total No. of Hours: 52 Hours/Week: 04

<u>Course Objective:</u> To provide strong foundation on concept of simulation and modelling and practice to design simulation models for various case studies like inventory, traffic flow networks.

	Modeling and Simulation: Nature of Simulation systems, Models and Simulation,	
Unit I	Continuous and Discrete Systems, System Modeling, Concept of Simulation,	10 hrs
	Components of modeling, Static and Dynamic physical models, Static and	
	Dynamic Mathematical models. Introduction to Static and Dynamic System	
	Simulation, Advantages, Disadvantages and pitfalls of Simulation.	
	System Simulation and Continuous System: Simulation Types of System	
Unit II	Simulation, Monte Carlo Method, Comparison of analytical and Simulation	10 hrs
	methods, Numerical Computation techniques for Continuous and Discrete	
	Models, Distributed Lag Models, Cobweb Model, Continuous System Models,	
	Analog and Hybrid computers, Digital-Analog Simulators, Continuous system	
	simulation languages, Hybrid simulation, Real Time Simulations.	
	System Dynamics & Probability Concepts in Simulation: Exponential growth	
Unit III	and decay models, logistic curves, Generalization of growth models, System	11 hrs
	dynamics Representation of Time Delays, Discrete and Continuous Probability	
	functions, Continuous Uniformly Distributed Random Numbers, Generation	
	of Random Numbers, Generating Discrete Distributions, Non-Uniform	
	Continuously Distributed Random Numbers, Rejection Method.	
	Simulation of Queuing Systems and Discrete System: Simulation Poisson	
Unit IV	arrival patterns, Exponential Distribution, Service Times, Normal Distribution	11 hrs
	Queuing Disciplines, Simulation of Single and Two Server Queue. Application of	
	queuing theory in computer system, Discrete Events. Generation of arrival	
	patterns, Simulation Programming tasks, Gathering Statistics, Measuring	
	Occupancy and Utilization, Recording Distribution and Transmit Times	
	Introduction to Simulation Languages and Analysis of Simulation Output	
Unit V	GPSS: Action Times, Succession of events, Choice of paths, Conditional	10 hrs
	Transfers, Program Control Statements, SIMSCRIPT: Organization of	
	SIMSCRIPT Program, Names & Labels, SIMSCRIPT statements Estimation	
	Methods, Replication of Runs, Batch Means, Regenerative Techniques, Time	
	Series Analysis, Spectral Analysis and Autoregressive Processes	

REFERENCE BOOKS

- [1] Jerry Banks, John S Carson, "Discrete event System Simulation", Pearson Education
- [2] Gordon G., "System Simulation", PHI Learning India
- [3] DrShailendra Jain, "Modeling & Simulaion Using Matlab and Simulink", Wiley
- [4] David Cloud, Larry Rainey, "Applied Modeling and Simulation", TMGH
- [5] Frank L Severence, "System Modeling and Simulation An Introduction", Wiley
- [6] Thomas J Sciber, "Simulation using GPSS", Wiley & Sons
- [7] James Harrington, KerimTumay, "Simulation Modeling Methods", TMGH