#### **Paper Review**

## Reliable Post hoc Explanations: Modeling Uncertainty in Explainability

NeurlIPS 2021

Dylan Slack<sup>1</sup>, Sophie Hilgard<sup>2</sup>, Sameer Singh<sup>1</sup>, Himabindu Lakkaraju<sup>2</sup>

<sup>1</sup>UC Irvine <sup>2</sup>Harvard University

Min-Seok Yang

Natural Language Processing Lab

Department of Artificial Intelligence, Kyung Hee University

# Part 1. Background

### Explain machine learning model in deployment

- Model depolyment in domains such as healthcare, medicine, law, finance
  - Important to ensure that decision makers have a clear understanding of the behavior of these models
- Explain complex black box models by constructing interpretable local approximations
  - Post-hoc explanations construct interpretable local approximations
  - Lime, SHAP, MAPLE, Anchors

#### Post-hoc interpretability

Interpretability is achieved by applying methods that analyze the model after training

#### Local Method

Model-agnostic methods which focus on explaining individual prediction

# Part 1. Background

### Existing local explanation methods

- Lime, SHAP, MAPLE, Anchors
- Unstablility
  - Negligibly small perturbations to an instance can result in substantially different explanation
- Inconsistency
  - Multiple runs on the same input instance with the same parameter settings may result in vastly different explanations

# Part 1. Background

### Reliable metrics to ascertain the quality of the explanations

- Explanation fidelity rely heavily on the implementation details of explanation method
  - No guidance on determining the values of certain hyperparameters that are critical to the quality of the resulting local explanations (e.g., number of perturbations in case of LIME)
- Local explanation methods are also computationally inefficient
  - Typically require a large number of black box model queries to construct local approximations

#### **Explanation produced by LIME**

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Minimize  $\overline{\mathcal{L}(f,g,\pi_x)}$  while having  $\overline{\Omega(g)}$  be low enough to be interpretable by humans

#### **Formulation**

- Explanation family
- Fidelity function
- Complexity measure

 $\stackrel{\mathcal{L}}{\Omega}$ 

### Part 2. Introduction

# Bayesian framework for generating local explanations with uncertainty

- Generate consistent, stable, and reliable explanations with guarantees in a computationally efficient manner
- 1. Bayeslime & BayesSHAP: Bayesian versions of LIME and KernelSHAP





#### **Example Explanation**

- Dataset: COMPAS
- Vertical Lines: LIME
- Shaded Region: BayesLIME
- Red: Negative Effect
- Green: Positive Effect

(a) Explanation computed with 100 perturbations

(b) Explanation with 2000 perturbations

**LIME:** Contradictory feature importance for different number of perturbations

BayesLIME: Proveide more context (i.e., tighter uncertainty interval indicates importance)

### Part 2. Introduction

# Bayesian framework for generating local explanations with uncertainty

- Generate consistent, stable, and reliable explanations with guarantees in a computationally efficient manner
- 1. Bayeslime & BayesSHAP: Bayesian versions of LIME and KernelSHAP
- 2. Closed form expressions for the posteriors of the explanations
  - Eliminate the need for any additional computational complexity
- 3. Credible intervals produced by our framework
  - Make concrete inferences about the quality of the resulting explanations
  - Produce explanations that satisfy user specified levels of uncertainty (e.g., 95% confidence level)

#### Notation

- $f: \mathbb{R}^d \to [0,1]$ 
  - Black box classifier that takes a data point  $oldsymbol{x}$  with d features
  - ullet Returns the probability that  $oldsymbol{x}$  belongs to a certain class

$$\bullet \ \phi \in \mathbb{R}^d$$

- Explanation in terms of feature importances for the prediction  $\,f(x)\,$
- ullet i.e. coefficients  $\phi$  are treated as the feature contributions to the black box prediction
- $\circ$   $\phi$  captures the coefficients of a linear model
- $\circ$  Let  ${\mathcal Z}$  be a set of N randomly sampled instances (perturbations) around  ${\mathcal X}$
- $\circ$  Proximity between x and any  $z \in \mathcal{Z}$  is given by  $\pi_x(z) \in \mathbb{R}$
- $\circ$  Vector of these distances over N perturbations in  $\mathcal Z$  as  $\Pi_x(\mathcal Z)\in\mathbb R^N$
- Let  $Y \in [0,1]$  be the vector of the black box predictions f(z) corresponding to each of the N instances in  $\mathcal{Z}$

#### Lime & KernelSHAP

- $^\circ$  Model-agnostic local explanation approaches that explain predictions of a classifier f by learning a linear model locally  $\phi$  around each prediction (i.e.  $y\sim\phi^Tz$ )
- Objective function
  - Explanation that approximates the behavior of the black box accurately in the vicinity (neighborhood) of  $\boldsymbol{x}$

$$\underset{\phi}{\operatorname{arg\,min}} \sum_{z \in \mathcal{Z}} [f(z) - \phi^T z]^2 \pi_x(z)$$

Closed form solution from objective function

$$\hat{\phi} = (\mathcal{Z}^T \operatorname{diag}(\Pi_x(\mathcal{Z}))\mathcal{Z} + \mathbb{I})^{-1}(\mathcal{Z}^T \operatorname{diag}(\Pi_x(\mathcal{Z}))Y)$$

- LIME
  - Chosen  $\pi_x(z)$  heuristically: Cosine or  $l_2$  distance
- KernelSHAP
  - Game theoretic principles to compute  $\pi_x(z)$ , guaranteeing that explanations satisfy certain properties

#### Constructing Bayesian Local Explanations

- $^\circ$  Model the black box prediction of each perturbation z as a linear combination of the corresponding feature values  $\phi^Tz$  plus an error term  $\epsilon$
- $\circ$  Weights of linear combination  $\phi$  capture feature importances & constitute explanation
- $\circ$   $\epsilon$  captures the error that arises due to mismatch between explanation  $\phi$  & local decision surface of the black box model f

$$y|z, \phi, \epsilon \sim \phi^T z + \epsilon$$
  $\epsilon \sim \mathcal{N}(0, \frac{\sigma^2}{\pi_x(z)})$   $\phi|\sigma^2 \sim \mathcal{N}(0, \sigma^2 \mathbb{I})$   $\sigma^2 \sim \text{Inv-}\chi^2(n_0, \sigma_0^2)$ 

### Constructing Bayesian Local Explanations

- $\circ$  Error term is modeled as a Gaussian whose variance relies on proximity function  $\pi_x(z)$
- $\circ$  Proximity function  $\pi_x(z)$ 
  - Perturbations closer to the data point  $oldsymbol{x}$  are modeled accurately
  - Allows more room for error in case of perturbations that are farther away
  - Cosine or  $l_2$  distance or game theoretic principles similar to LIME & KernelSHAP
- $\circ$  Distributions on error  $\epsilon$  and feature importance  $\phi$  both consider the parameter  $\sigma^2$
- $_{ ilde{\circ}}$  The prior on the feature importances considers  $\sigma^2$  has an intuitive interpretation
  - If we have prior knowledge that the error of the explanation is small
  - Expect to be more confident about the feature importances

$$y|z, \phi, \epsilon \sim \phi^T z + \epsilon$$
  $\epsilon \sim \mathcal{N}(0, \frac{\sigma^2}{\pi_x(z)})$   
 $\phi|\sigma^2 \sim \mathcal{N}(0, \sigma^2 \mathbb{I})$   $\sigma^2 \sim \text{Inv-}\chi^2(n_0, \sigma_0^2)$ 

### Constructing Bayesian Local Explanations

The weighted least squares formulation of LIME and KernelSHAP

$$\underset{\phi}{\operatorname{arg\,min}} \sum_{z \in \mathcal{Z}} [f(z) - \phi^T z]^2 \pi_x(z)$$

 Corresponds to the Bayesian version of that of LIME and KernelSHAP with additional terms to model uncertainty

$$\phi | \sigma^2 \sim \mathcal{N}(0, \sigma^2 \mathbb{I})$$
  $\sigma^2 \sim \text{Inv-}\chi^2(n_0, \sigma_0^2)$ 

- Feature importance uncertainty
  - The uncertainty associated with the feature importances  $\phi$
- Error uncertainty
  - The uncertainty associated with the error term  $\epsilon$  which captures how well our explanation  $\phi$  models the local decision surface of the underlying black box.

### Constructing Bayesian Local Explanations

- $\circ$  Inference process involves estimating the values of two key parameters:  $\phi$  and  $\sigma^2$ 
  - Compute the local explanation as well as the uncertainties associated with feature importances  $\phi$  and the error term  $\epsilon$
- $\circ$  Posterior distributions on  $\phi$  and  $\sigma^2$  are normal and scaled Inv- $\chi^2$ , respectively, due to the corresponding conjugate priors

$$\begin{split} &\sigma^{2}|\mathcal{Z}, Y \sim \text{Scaled-Inv-}\chi^{2}\left(n_{0}+N, \frac{n_{0}\sigma_{0}^{2}+Ns^{2}}{n_{0}+N}\right) \\ &\phi|\sigma^{2}, \mathcal{Z}, Y \sim \text{Normal}(\hat{\phi}, V_{\phi}\sigma^{2}) \\ &\hat{\phi} = V_{\phi}(\mathcal{Z}^{T} \text{diag}(\Pi_{x}(\mathcal{Z}))Y) \\ &V_{\phi} = \left(\mathcal{Z}^{T} \text{diag}(\Pi_{x}(\mathcal{Z}))\mathcal{Z} + \mathbb{I}\right)^{-1} \\ &s^{2} = \frac{1}{N}\left[(Y - \mathcal{Z}\hat{\phi})^{T} \text{diag}(\Pi_{x}(\mathcal{Z}))(Y - \mathcal{Z}\hat{\phi}) + \hat{\phi}^{T}\hat{\phi}\right] \end{split}$$

### Constructing Bayesian Local Explanations

Estimate of the posterior mean feature importances of LIME and KernelSHAP

$$\hat{\phi} = (\mathcal{Z}^T \operatorname{diag}(\Pi_x(\mathcal{Z}))\mathcal{Z} + \mathbb{I})^{-1}(\mathcal{Z}^T \operatorname{diag}(\Pi_x(\mathcal{Z}))Y)$$

Our Estimate of the posterior mean feature importances

$$V_{\phi} = \left(\mathcal{Z}^T \mathrm{diag}(\Pi_x(\mathcal{Z}))\mathcal{Z} + \mathbb{I} \right)^{-1}$$

 $\circ$  If use the same proximity function  $\pi_x(z)$  in our framework as in LIME & KernelSHAP, the posterior mean of the feature importance  $\hat{\phi}$  output by our framework will be equivalent to the feature importances output by LIME & KernelSHAP

### Constructing Bayesian Local Explanations

- Feature Importance Uncertainty
  - Compute the posterior mean of local feature importances  $\hat{\phi}$  using closed form expression
  - Estimate credible interval (measure of uncertainty) around the mean feature importances by repeatedly sampling from the posterior distribution

#### **Closed form expression**

$$s^{2} = \frac{1}{N} \left[ (Y - \mathcal{Z}\hat{\phi})^{T} \operatorname{diag}(\Pi_{x}(\mathcal{Z}))(Y - \mathcal{Z}\hat{\phi}) + \hat{\phi}^{T}\hat{\phi} \right]$$

### Constructing Bayesian Local Explanations

- Error Uncertainty
  - Error term  $oldsymbol{\epsilon}$  can serve as a proxy for explanation quality
  - Captures the mismatch between the constructed explanation and the local decision surface of the underlying black box

#### Equation $s^2$

$$s^{2} = \frac{1}{N} \left[ (Y - \mathcal{Z}\hat{\phi})^{T} \operatorname{diag}(\Pi_{x}(\mathcal{Z}))(Y - \mathcal{Z}\hat{\phi}) + \hat{\phi}^{T}\hat{\phi} \right]$$

#### Student's t distribution

$$\epsilon | \mathcal{Z}, Y \sim t_{(\mathcal{V}=n_0+N)}(0, \frac{n_0 \sigma_0^2 + N s^2}{n_0 + N})$$

- Evaluate the probability density function of the above posterior at 0, i.e.,  $P(\epsilon=0)$
- Substituting the value of s 2 computed using equation  $s^2$  into the Student's t distribution
- Perfectly captures the local decision surface underlying the black box
- Operation in constant time, adding minimal overhead to non-Bayesian LIME & SHAP

#### BayesLIME

- Obtain the Bayesian version of LIME by setting the proximity function
- $\circ$  D Distance metric (e.g. cosine or  $l_2$  distance) ,  $n_0$  &  $\sigma_0^2$  to small values (  $10^{-6}$  )
- Prior is uninformative
- Compute feature importance uncertainty & error uncertainty for LIME's feature importances

#### **Proximity function**

$$\pi_x(z) = \exp(-D(x,z)^2/\sigma^2)$$

#### BayesSHAP

- Obtain the Bayesian version of KernelSHAP by setting uninformative prior on  $\sigma^2$  ,  $\pi_x(z)$
- SHAP method views the problem of constructing a local linear model as estimating the Shapley values corresponding to each of the features
- Shapley values represent the contribution of each of the features to the black box prediction
- The measures of uncertainty output by our method BayesSHAP capture the reliability of the estimated variable contributions

#### **Proximity function**

$$\pi_x(z) = \frac{d-1}{(d \operatorname{choose}|z|)|z|(d-|z|)}$$

|z| The number of the variables in the variable combination represented by the data point z

#### BayesLIME & BayesSHAP

- Encourage BayesLIME and BayesSHAP explanations to be sparse
  - Use dimensionality reduction or feature selection techniques as used by LIME and SHAP to obtain the top K features
  - Construct our explanations using the data corresponding to these top K features

### Estimating the Number of Perturbations

- Major drawbacks of approaches such as LIME and KernelSHAP
  - Do not provide any guidance on how to choose the number of perturbations, a key factor in obtaining reliable explanations in an efficient manner
- $\circ$  Leverage the uncertainty estimates output by our framework to compute perturbations-to-go G
- $\circ$  Perturbations-to-go G: Estimate of how many more perturbations are required to obtain explanations that satisfy a desired level of certainty
  - Predicts the computational cost of generating an explanation with a desired level of certainty and can help determine whether it is even worthwhile to do so
  - The user specifies the confidence level of the credible interval (denoted as lpha ) and the maximum width of the credible interval W

e.g. "width of 95% credible interval should be less than 0.1" corresponds to  $\alpha$  = 0.95 and W = 0.1.

#### Estimating the Number of Perturbations

- $\circ$  Estimate G for the local explanation of a data point  $oldsymbol{x}$ 
  - Generate S perturbations around  $oldsymbol{\mathcal{X}}$  (where S is small and chosen by the user)
  - Fit a local linear model using our method
  - Provides initial estimates of various parameters shown in equations

#### **Equations**

$$\hat{\phi} = V_{\phi}(\mathcal{Z}^T \operatorname{diag}(\Pi_x(\mathcal{Z}))Y)$$

$$V_{\phi} = \left(\mathcal{Z}^T \operatorname{diag}(\Pi_x(\mathcal{Z}))\mathcal{Z} + \mathbb{I}\right)^{-1}$$

$$s^{2} = \frac{1}{N} \left[ (Y - \mathcal{Z}\hat{\phi})^{T} \operatorname{diag}(\Pi_{x}(\mathcal{Z}))(Y - \mathcal{Z}\hat{\phi}) + \hat{\phi}^{T}\hat{\phi} \right]$$

### Estimating the Number of Perturbations

- Given S seed perturbations,
- $\circ$  The number of additional perturbations required G to achieve credible interval width Wof feature importance for a data point x at user-specified confidence level  $\alpha$  can be computed as:

Perturbations-to-go G

$$\left[\frac{W}{\Phi^{-1}(\alpha)}\right]^2 = \operatorname{Var}(\phi_i) = \frac{4s_S^2}{\bar{\pi}_S \times (G+S)} \quad \Longrightarrow \quad \frac{G(W,\alpha,x) = \frac{4s_S^2}{\bar{\pi}_S \times \left[\frac{W}{\Phi^{-1}(\alpha)}\right]^2} - S$$

- $\circ$  Average proximity  $\pi_x(z)$  for the S perturbations  $\bar{\pi}_S$
- · Empirical sum of squared errors between black box & local linear model predictions  $s_S^2$
- The two-tailed inverse normal CDF at confidence level  $\alpha$

#### Focused Sampling of Perturbations

- $\circ$  If Perturbations-to-go G is large, Need to reduce this cost
  - Focused sampling which leverages uncertainty estimates to query the black box in a more targeted fashion (instead of querying randomly)
- Inspired by active learning, focused sampling strategically prioritizes perturbations whose predictions the explanation is most uncertain about
  - Query the black box only for the predictions of the most informative perturbations
  - Learn an accurate explanation with far fewer queries to the black box
- $^{\circ}$  Determine how uncertain our explanation  $\phi$  is about the black box label for any given instance Query z
  - Compute the posterior predictive distribution for z given as  $\hat{y}(z)|\mathcal{Z}$ ,  $Y \sim t_{(\mathcal{V}=N)} (\hat{\phi}^T z, (z^T V_{\phi} z + 1)s^2)$
- The variance of this three parameter student's t distribution

$$var(\hat{y}(z)) = ((z^T V_{\phi} z + 1)s^2)(N/(N-2))$$

#### Focused Sampling of Perturbations

The variance of this three parameter student's t distribution

$$\operatorname{var}(\hat{y}(z)) = ((z^T V_{\phi} z + 1)s^2)(N/(N-2))$$

- $\circ$  Refer to this variance as the predictive variance  $\operatorname{var}(\hat{y}(z))$
- $\circ$  Captures how uncertain our explanation  $\phi$  is about the black box prediction

#### **Algorithm 1** Focused sampling for local explanations **Require:** Model f, Data instance x, Number of perturbations N, Number of seed perturbations S, Batch size B, Pool size A, tempurature $\tau$ 1: **function** FOCUSED SAMPLE Initialize $\mathcal{Z}$ with S seed perturbations. Fit $\hat{\phi}$ on $\mathcal{Z}$ 3: ▶ Using Eqn (6) for $i \leftarrow 1$ to N - S in increments of B do $Q \leftarrow$ Generate A candidate perturbations 6: Compute $var(\hat{y}(z))$ on Q $\triangleright$ Using Eqn (11) Define $Q_{\text{dist}}$ as $\propto \exp(\text{var}(\hat{y}(z))/\tau)$ $Q_{\text{new}} \leftarrow \text{Draw } B \text{ samples from } Q_{\text{dist}}$ $\mathcal{Z} \leftarrow \mathcal{Z} \cup \mathcal{Q}_{\text{new}}$ ; Fit $\hat{\phi}$ on $\mathcal{Z}$ ▶ Using Eqn (6) 10: end for return $\phi$ 11: 12: end function

#### Process

- Evaluate proposed framework by first analyzing the quality of our uncertainty estimates
  - i.e., feature importance uncertainty and error uncertainty
- $\circ$  Assess our estimates of required perturbations G
- Evaluate the computational efficiency of focused sampling
- Describe user study with 31 subjects to assess the informativeness of the explanations output by our framework

#### Dataset

- COMPAS
  - Criminal history, jail and prison time, and demographic attributes of 6172 defendants
- German Credit
  - Financial and demographic information for 1000 loan applications, each labeled as a "good" or "bad" customer
- MNIST
  - Handwritten digits dataset
- Imagenet
  - Select a sample of 100 images of classes French Bulldog, Scuba Diver, Corn, and Broccoli

#### Model

- Random forest classifier (sklearn implementation with 100 estimators) as black box models for COMPAS, German Credit
- 2-layer CNN to predict the digits for MNIST
- The off-the-shelf VGG16 model as the black box

#### Baseline

- Generating explanations
  - LIME and KernelSHAP with default settings
- Images
  - Construct super pixels as described in LIME
  - Use them as features (number of super pixels is fixed to 20 per image)
- Parameter
  - The desired level of certainty is expressed as the width of the 95% credible interval

### Quality of Uncertainty Estimates

- Well calibrated
- Highly reliable in capturing the uncertainty of the feature importances

#### 95% credible intervals with 100 perturbations include their true values (estimated on 10,000 perturbations)

|                 | BayesLIME | BayesSHAP |         | BayesLIME | BayesSHAP |
|-----------------|-----------|-----------|---------|-----------|-----------|
| TABULAR DATASET | ΓS        |           | MNIST   |           |           |
| COMPAS          | 95.5      | 87.9      | Digit 1 | 95.8      | 98.4      |
| German Credit   | 96.9      | 89.6      | Digit 2 | 95.8      | 97.4      |
| IMAGENET        |           |           | Digit 3 | 95.2      | 96.3      |
| Corn            | 94.6      | 91.8      | Digit 4 | 97.2      | 90.1      |
| Broccoli        | 91.4      | 89.2      | Digit 5 | 95.2      | 95.6      |
| French Bulldog  | 94.8      | 89.9      | Digit 6 | 96.7      | 96.8      |
| Scuba Diver     | 92.4      | 94.6      | Digit 7 | 95.7      | 95.3      |

#### Correctness of Estimated Number of Perturbations

- Leverage these estimates to compute G for 6 different certainty levels
- Perturbations, where G is computed using the desired credible interval width (x-axis),
- Compare desired levels to the observed credible interval width (y-axis)
- Blue line indicates ideal calibration
- Provides a good approximation of the additional perturbations needed

#### Perturbations-to-go (G) is averaged over 100 MNIST images of the digit "4"





$$\hat{L}(x_i) = \underset{x_j \in N_{\epsilon}(x_i)}{\operatorname{argmax}} \frac{||\phi_i - \phi_j||_2}{||x_i - x_j||_2}$$
 $N_{\epsilon}(x_i) x_i \phi_i^{\delta}$ 

### Efficiency of Focused Sampling

- Results in faster convergence to reliable and high quality explanations
- Stabilizes within a couple hundred model queries while random sampling takes over 1,000



### Stability of BayesLIME & BayesSHAP

Use the local Lipschitz metric for explanation stability

$$\hat{L}(x_i) = \underset{x_j \in N_{\epsilon}(x_i)}{\operatorname{argmax}} \frac{||\phi_i - \phi_j||_2}{||x_i - x_j||_2}$$

 Clear improvement (on average 53%) in stability in all cases except German Credit for BayesSHAP

#### Assessing the % increase in stability of BayesLIME and BayesSHAP over LIME and SHAP respectively





# Conclusion

### Bayesian framework as solution of previous local explanations

| Problem                                             | Solution                 |
|-----------------------------------------------------|--------------------------|
| Difficult to set hyperparameters                    | PTG(Perturbations-to-go) |
| Unclear when you have a good explanation            | Credible Intervals       |
| Unstable, re-reruns lead to different explanation s | Credible Intervals       |
| Often naive sampling : Focused sampling             | Focused sampling         |

# Thank you

2023. 05. 15.

Minseok Yang (msyang0809@khu.ac.kr)
Natural Language Processing Lab
Department of AI, Kyung Hee University

### • LIME (Marco Tulio Ribeiro et al., 2016)

 Algorithm that can explain the predictions of any classifier or regressor in a faithful way, by approximating it locally with interpretable model



#### **Explanation produced by LIME**

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

#### Formulation

- Explanation family
- Fidelity function
- Complexity measure

Toy example to present intuition

- Blue/pink background
  - Black-box model's complex decision function (unknown to LIME)
- Red cross
  - Instance being explained
- Dashed line
  - The learned explanation that is locally (but not globally) faithful

Minimize  $\mathcal{L}(f,g,\pi_x)$  while having  $\Omega(g)$  be low enough to be interpretable by humans

### KernelSHAP (Scott M Lundberg et al., 2017)

 Game theory results guaranteeing a unique solution apply to th the class of additive feature attribution methods for model explanation



- SHAP (SHapley Additive exPlanation) values
  - Attribute to feature change in expected model prediction when conditioning on that feature
- To get from the base value E[f(z)]
  - Predict if we did not know any features to the current output
- $\circ$  When the model is non-linear or the input features are not independent f(x)
  - The order in which features are added to the expectation matters
  - SHAP values arise from averaging the  $\phi_i$  values across all possible orderings

#### LIME & KernelSHAP

- LIME (Local Interpretable Model-agnostic Explanations)
  - Available on Tabular, Text, Image and even embedding Data
  - Instability because of variation on model explanation
- SHAP (Shapley Additive Explanations)
  - Based on Shapley Values as notion of game theory
  - Kernel SHAP ignore dependence among features



#### VGG16 (Karen Simonyan et al., 2015)

- $\circ$  Use very small 3 imes 3 receptive fields throughout the whole net, which are convolved with the input at every pixel
- All hidden layers are equipped with the rectification ReLU non-linearity



Table 3: ConvNet performance at a single test scale.

| ConvNet config. (Table 1) | smallest image side |         | top-1 val. error (%) | top-5 val. error (%) |
|---------------------------|---------------------|---------|----------------------|----------------------|
|                           | train(S)            | test(Q) |                      |                      |
| A                         | 256                 | 256     | 29.6                 | 10.4                 |
| A-LRN                     | 256                 | 256     | 29.7                 | 10.5                 |
| В                         | 256                 | 256     | 28.7                 | 9.9                  |
|                           | 256                 | 256     | 28.1                 | 9.4                  |
| C                         | 384                 | 384     | 28.1                 | 9.3                  |
|                           | [256;512]           | 384     | 27.3                 | 8.8                  |
|                           | 256                 | 256     | 27.0                 | 8.8                  |
| D                         | 384                 | 384     | 26.8                 | 8.7                  |
|                           | [256;512]           | 384     | 25.6                 | 8.1                  |
|                           | 256                 | 256     | 27.3                 | 9.0                  |
| E                         | 384                 | 384     | 26.9                 | 8.7                  |
|                           | [256;512]           | 384     | 25.5                 | 8.0                  |

#### COMPAS

- Northpointe's tool, called COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)
  - Discover the underlying accuracy of their recidivism algorithm
  - Test whether the algorithm was biased against certain groups
- Data production
  - Looked at more than 10,000 criminal defendants in Broward County, Florida
  - Compared their predicted recidivism rates with the rate that actually occurred over a twoyear period



#### Risk of Recidivism

 Black defendants were often predicted to be at a higher risk of recidivism than they actually were

#### Risk of Violent Recidivism

 To see this analysis result, please visit https://github.com/propublica/compas -analysis

Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

#### German Credit

- Classifies people described by a set of attributes as good or bad credit risks
- Data form
  - Form provided by Prof. Hofmann, contains categorical/symbolic attributes
  - Form provided by Strathclyde University, is used for algorithms that need numerical attributes



#### Row

• The actual classification and the columns the predicted classification

#### Data Sample

• It is worse to class a customer as good when they are bad (5), than it is to class a customer as bad when they are good (1)

#### MNIST (LeCun et al., 1998)

- Task: Image Classification
- Handwritten number image data
  - Image & label from 0 to 9
  - Image: 28 X 28 pixel
  - Training Data: 60,000 / Test Data: 10,000

### • ImageNet (J. Deng et al., 2009)

- Task: Image Classification
- Object recognition, image classification and object localization
- 12 "subtrees": mammal, bird, fish, reptile, amphibian, vehicle, furniture, musical instrument, geological formation, tool, flower, fruit

