MATH 722 TAKE HOME EXAM

MARIO L. GUTIERREZ ABED PROF. B. SHAY

Problem 1 (Exercise 1-4). Show that in the ring A[x], the Jacobson radical \mathfrak{J} is equal to the nilradical \mathfrak{R} .

Proof. $(\mathfrak{J} \supseteq \mathfrak{R})$ Since all maximal ideals are prime in any ring, it is clear that the Jacobson radical \mathfrak{J} contains the nilradical \mathfrak{R} .

 $(\mathfrak{J} \subseteq \mathfrak{R})$ Now on the other hand, if $f = a_0 + a_1 x + \cdots + a_n x^n$ is in the Jacobson radical \mathfrak{J} of A[x], then by a previous proposition we must have that 1 + gf is a unit in A[x] for all $g \in A[x]$. Now we are going to use results from the following proposition:

Proposition 1. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Then,

- i) f is a unit in $A[x] \iff a_0$ is a unit in A and a_1, \ldots, a_n are nilpotent;
- *ii)* f is nilpotent $\iff a_0, a_1, \ldots, a_n$ are nilpotent;
- *iii)* f is a zero-divisor \iff there exists $a \neq 0$ in A such that af = 0;
- iv) if $f, g \in A[x]$, then fg is primitive¹ \iff f and g are primitive.

Now letting g = x, note that $1 + xf = 1 + a_0x + a_1x^2 + \cdots + a_nx^{n+1}$. Hence we conclude that a_0, a_1, \ldots, a_n are all nilpotent, since by Proposition 1 part i), if 1 + fx is a unit, every nonconstant term's coefficient is nilpotent. But then $f = a_0 + a_1x + \cdots + a_nx^n$ is a nilpotent by Proposition 1, part ii), i.e. $f \in \mathfrak{R}$. Hence we conclude that $\mathfrak{J} = \mathfrak{R}$ in A[x], as desired.

Problem 2 (Exercise 1-7). Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.

Proof. Let \mathfrak{p} be an arbitrary prime ideal of A. We need to show that the only ideal of A properly containing \mathfrak{p} is $\langle 1 \rangle$. Let \mathfrak{a} be an ideal such that $\mathfrak{p} \subsetneq \mathfrak{a}$. Then there exists an element $x \in a \setminus \mathfrak{p}$. But by assumption, $x^n = x$ for some n > 1. That is, $x - x^n = x(1 - x^{n-1}) = 0 \in \mathfrak{p}$, which implies that $(1 - x^{n-1}) \in \mathfrak{p} \subsetneq \mathfrak{a}$ since \mathfrak{p} is prime and $x \not\in \mathfrak{p}$. But then we have $1 = (1 - x^{n-1}) + x^{n-1} \in \mathfrak{a}$. Hence $\mathfrak{a} = \langle 1 \rangle$ is the unit ideal and thus \mathfrak{p} must be maximal. Since \mathfrak{p} was arbitrary, we conclude that every prime ideal in A is maximal, as desired.

Alternative proof. Let \mathfrak{p} be an arbitrary prime ideal of A. Then to show that \mathfrak{p} is maximal, it suffices to prove that A/\mathfrak{p} is a field. Since there is a surjective ring homomorphism from A to A/\mathfrak{p} , every element $\bar{x} \in A/\mathfrak{p}$ satisfies $\bar{x}^n = \bar{x}$ for some n > 1 (depending on \bar{x}). But if $\bar{x} \neq 0 \in A/\mathfrak{p}$, then

$$\bar{x}^n = \bar{x} \implies \bar{x} - \bar{x}^n = \bar{x}(1 - \bar{x}^{n-1}) = 0 \in A/\mathfrak{p}.$$

¹Recall that $f = a_0 + a_1 x + \dots + a_n x^n$ is said to be **primitive** if $\langle a_0, a_1, \dots, a_n \rangle = \langle 1 \rangle$.

But this implies that $1 - \bar{x}^{n-1} = 0$ since A/\mathfrak{p} is an integral domain (it has no zero divisors). Hence we have that $\bar{x}^{n-1} = 1 \in A/\mathfrak{p}$ and thus \bar{x} is a unit. Since x (and hence \bar{x}) was chosen arbitrarily, we have that every nonzero element of A/\mathfrak{p} is a unit; thus A/\mathfrak{p} is a field and every prime ideal \mathfrak{p} is maximal.

Problem 3 (Exercise 1-11). A ring A is said to be **Boolean** if $x^2 = x$ for all $x \in A$. In a Boolean ring A, show that

- i) 2x = 0 for all $x \in A$;
- ii) every prime ideal $\mathfrak p$ is maximal, and $A/\mathfrak p$ is a field with two elements;
- iii) every finitely generated ideal in A is principal.

Proof of i). Note that
$$(x+1)^2 = x+1 \implies x^2+2x+1 = x+1 \implies x+2x+1 = x+1 \implies 2x=0$$
.

Proof of ii). Every prime ideal \mathfrak{p} must be maximal since, if A is Boolean, we are dealing with a special case of Exercise 1-7 (see result above). Now to show that A/\mathfrak{p} only has two elements, note that $x^2 - x = x(x-1) = 0$ holds for each $x \in A$. Hence (since there is a surjective ring homomorphism from A to A/\mathfrak{p}) we also have $\bar{x}(\bar{x}-1)=0$ for all $\bar{x} \in A/\mathfrak{p}$. Since A/\mathfrak{p} is an integral domain, each element \bar{x} must be either 0 or 1, and we are done.

Proof of iii). We induct on the number of generators. The one-generator case is trivial. For two generators x and y, we claim that $\langle x,y\rangle = \langle xy+x+y\rangle$. This is clear since $x\langle xy+x+y\rangle = xy+x+xy=2xy+x=x$, and similarly for y. Now the more general result follows from induction: Suppose every ideal generated by n elements is principal, and $\mathfrak{a} = \langle x_1, \ldots, x_n, y \rangle$. Let x generate $\langle x_1, \ldots, x_n \rangle$, and let z = x+y-xy. Then $xz = x^2+xy-x^2y=x$ and similarly yz = y, so $\mathfrak{a} = \langle x, y \rangle = \langle z \rangle$.

Problem 4 (Exercise 1-13 (Construction of an Algebraic Closure of a Field)). *i)* Let k be a field and let Σ be the set of all irreducible monic polynomials f in one indeterminate with coefficients in k. Let A be the polynomial ring over k generated by indeterminates x_f , one for each $f \in \Sigma$. Let \mathfrak{a} be the ideal of A generated by the polynomials $f(x_f)$ for all $f \in \Sigma$. Show that $\mathfrak{a} \neq \langle 1 \rangle$.

ii) Now let \mathfrak{m} be a maximal ideal of A containing \mathfrak{a} , and let $\mathbb{k}_1 = A/\mathfrak{m}$. Then \mathbb{k}_1 is an extension field of \mathbb{k} in which each $f \in \Sigma$ has a root. Repeat the construction with \mathbb{k}_1 in place of \mathbb{k} , obtaining a field \mathbb{k}_2 , and so on. Let $L = \bigcup_{n=1}^{\infty} \mathbb{k}_n$. Then L is a field in which each $f \in \Sigma$ splits completely into linear factors. Let $\overline{\mathbb{k}}$ be the set of all elements of L which are algebraic over \mathbb{k} . Then show that $\overline{\mathbb{k}}$ is an algebraic closure of \mathbb{k} .

Proof of i). If $\mathfrak{a} = \langle 1 \rangle$, then there exist finitely many $y_f \in A$ such that $1 = \sum y_f f(x_f)$. Then the set I of x_g occurring in this expression (not only those in the $f(x_f)$, but also those occurring in the y_f) is finite. Thus we may enumerate I as x_1, \ldots, x_n , corresponding to irreducible polynomials f_i , and suppose n is minimal such that such an equation holds. Now let

$$B = \mathbb{k}[x_1, \dots, x_{n-1}], \qquad C = B[x_n], \qquad \text{and} \qquad \mathfrak{b} = \langle f_1(x_1), \dots, f_{n-1}(x_{n-1}) \rangle \subsetneq B.$$

By minimality of n, the ideal \mathfrak{b} is proper, so the extension $\mathfrak{b}^e = \mathfrak{b}[x_n] \subsetneq C$ is properly contained as well, while $\mathfrak{b}^e + \langle f_n(x_n) \rangle = C$. Since $\mathfrak{b} \neq B$, we know that $B/\mathfrak{b} \neq 0$. Now let g be the image of

 $f_n(x_n)$ in $(B/\mathfrak{b})[x_n]$. Since f_n is irreducible in $\mathbb{k}[x_n]$, its degree $\deg_{x_n} f_n \geq 1$ and also $\deg_{x_n} g \geq 1$. Then putting all this together we have

$$0 = \frac{C}{\mathfrak{b}^e + \langle f_n(x_n) \rangle} \cong \frac{C/\mathfrak{b}[x_n]}{\langle g \rangle} = \frac{B[x_n]/\mathfrak{b}[x_n]}{\langle g \rangle} \cong \frac{(B/\mathfrak{b})[x_n]}{\langle g \rangle} \neq 0,$$

which is a contradiction. $(\Rightarrow \Leftarrow)$

Proof of ii). We show that $\overline{\mathbb{k}}$ is closed under addition (subtraction) and multiplication. Let $a, b \in \overline{\mathbb{k}}$ have conjugates a_i, b_j over \mathbb{k} . Then $\prod_{i,j} (x - (a_i + b_j))$ is symmetric in the a_i and the b_j , and so it has coefficients in \mathbb{k} ; thus $a - b \in \overline{\mathbb{k}}$. Similarly $\prod_{i,j} (x - a_i b_j)$ is symmetric, so $ab \in \overline{\mathbb{k}}$.

Problem 5 (Exercise 1-15). Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- i) if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$;
- *ii)* $V(0) = X, V(1) = \emptyset;$
- iii) if $(E_i)_{i\in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i);$$

iv) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals, $\mathfrak{a}, \mathfrak{b}$ of A.

<u>Remark</u>: These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the **Zariski topology**. The topological space X is called the **prime spectrum** of A, and it is written $\operatorname{Spec}(A)$.

Proof of i). Since $E \subseteq \mathfrak{a} \subseteq r(\mathfrak{a})$, we have $V(r(\mathfrak{a})) \subseteq V(\mathfrak{a}) \subseteq V(E)$. Now for any prime ideal \mathfrak{p} of A such that $E \subseteq \mathfrak{p}$, by definition we have that $\mathfrak{p} \in V(E)$ and $\mathfrak{a} \subseteq \mathfrak{p}$, that is, $\mathfrak{p} \in V(\mathfrak{a})$. Also since $\mathfrak{a} \subseteq \mathfrak{p}$, we have $r(\mathfrak{a}) \subseteq r(\mathfrak{p})$. But since \mathfrak{p} is prime, we have that $r(\mathfrak{p}) = \mathfrak{p}$. Hence $r(\mathfrak{a}) \subseteq \mathfrak{p}$, that is, $\mathfrak{p} \in V(r(\mathfrak{a}))$. Thus we have concluded that $V(r(\mathfrak{a})) \supseteq V(\mathfrak{a}) \supseteq V(E)$ and hence $V(r(\mathfrak{a})) = V(\mathfrak{a}) = V(E)$, as desired.

Proof of ii). This part is trivial. For any prime ideal \mathfrak{p} of A, we know that $0 \in \mathfrak{p}$, and thus $\mathfrak{p} \in V(0)$. Hence V(0) = X, as desired. For V(1), we must have $V(1) = \emptyset$; otherwise there exists some prime ideal \mathfrak{p} of A such that $1 \in \mathfrak{p}$, which implies that $\mathfrak{p} = A$, a contradiction. Hence $V(1) = \emptyset$, and we are done.

Proof of iii). (\subseteq) Since for each $i \in I$ we have that $E_i \subseteq \bigcup_{i \in I} E_i$, then we must have that $V(\bigcup_{i \in I} E_i) \subseteq V(E_i)$ for all $i \in I$. Thus $V(\bigcup_{i \in I} E_i) \subseteq \bigcap_{i \in I} V(E_i)$, as desired.

 (\supseteq) On the other hand, notice that for all $\mathfrak{p} \in \bigcap_{i \in I} V(E_i)$ we have that $\mathfrak{p} \in V(E_i)$ for all $i \in I$, i.e., $E_i \subseteq \mathfrak{p} \ \forall i \in I$. But this implies that $\bigcup_{i \in I} E_i \subseteq \mathfrak{p}$; that is, $\mathfrak{p} \in V(\bigcup_{i \in I} E_i)$. Therefore we conclude that $V(\bigcup_{i \in I} E_i) = \bigcap_{i \in I} V(E_i)$, as desired.

Proof of iv). $(V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b}))$ For the second equality, suppose that $\mathfrak{ab} \subseteq \mathfrak{p}$ and $\mathfrak{b} \not\subseteq \mathfrak{p}$. Then there exists an element $b \in \mathfrak{b} \setminus \mathfrak{p}$, and $ab \in \mathfrak{p}$ for all $a \in \mathfrak{a}$, so the primality of \mathfrak{p} gives $a \in \mathfrak{p}$; thus $\mathfrak{a} \subseteq \mathfrak{p}$. Consequently, if $\mathfrak{p} \in V(\mathfrak{ab})$, we have shown that either $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$, so $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$.

On the other hand, if \mathfrak{p} contains either \mathfrak{a} or \mathfrak{b} , then it is clear that it must contain the subset \mathfrak{ab} . Thus $V(\mathfrak{ab}) = V(\mathfrak{a}) \bigcup V(\mathfrak{b})$, as desired.

 $(V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}))$ Now for the first equality, note that $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$; so if $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$, then $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{p}$. On the other hand, if $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{p}$ then, as we have shown for the second equality (see above), we must have that either $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$; consequently, since $\mathfrak{a} \cap \mathfrak{b}$ is a subset of both of these we have that $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{p}$. Thus $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b})$, as desired.

Problem 6 (Exercise 1-17). For each $f \in A$, let X_f denote the complement of V(f) in $X = \operatorname{Spec}(A)$. The sets X_f are open². Show that they form a basis of open sets for the Zariski topology, and that

- i) $X_f \cap X_g = X_{fg};$
- ii) $X_f = \emptyset \iff f \text{ is nilpotent};$
- iii) $X_f = X \iff f \text{ is a unit;}$
- iv) $X_f = X_g \iff r(\langle f \rangle) = r(\langle g \rangle);$
- v) X is quasi-compact (that is, every open covering of X has a finite subcovering) [Hint: remark that it is enough to consider a covering of X by basic open sets X_{f_i} (for $i \in I$). Show that the f_i generate the unit ideal and hence that there is an equation of the form

$$1 = \sum_{i \in I} g_i f_i \qquad (for \ g_i \in A),$$

where J is some finite subset of I. Then the X_{f_i} (for $i \in J$) cover X.]

- vi) More generally, each X_f is quasi-compact.
- vii) An open subset of X is quasi-compact if and only if it is a finite union of sets X_f .

To see that the collection $\{X_f\}$ forms a basis for the topology of X, we can show that it contains, for each $\mathfrak{p} \in X_f \cap X_g$, a set X_h with $\mathfrak{p} \in X_h \subseteq X_f \cap X_g$. It also includes \emptyset , and it covers X. These results follow, respectively, from i), ii), and iii) below.

Proof of i). Taking complements, this equality is the same as saying $V(f) \cup V(g) = V(fg)$, or that a prime contains fg if and only if it contains either f or g. But this is precisely in the definition of a prime ideal, so the equality checks out.

Proof of ii).
$$X_f = \emptyset \iff V(f) = X \iff \forall \mathfrak{p} \in X$$
, we have $f \in \mathfrak{p} \iff f \in \mathfrak{R}$.

Proof of iii).
$$X_f = X \iff V(f) = \emptyset \iff \forall \mathfrak{p} \in X$$
, we have $f \notin \mathfrak{p} \iff f \in A^*$, where A^* denotes the set of units of the ring A . Hence f is a unit, as desired.

Proof of iv).
$$X_f = X_g \iff V(f) = V(g) \iff r(\langle f \rangle) = \bigcap_{\mathfrak{p} \in V(f)} \mathfrak{p} = \bigcap_{\mathfrak{p} \in V(g)} \mathfrak{p} = r(\langle g \rangle).$$
 Note that the last equality holds by Proposition 1.4³ from the text.

Proof of v). This follows from the more general result given in vi) below, taking f = 1 ($X_f = X$ if f = 1).

²These sets X_f are called **basic open sets** of X = Spec(A).

³The proposition states that the radical of an ideal \mathfrak{a} is the intersection of the prime ideals which contain \mathfrak{a} .

Proof of vi). Since $(X_g)_{g\in A}$ forms a basis of open sets for X, it suffices to show that if $X_f\subseteq \bigcup_{g\in E}X_g$ for some subset E of A, there exist finitely many elements $g_1,\ldots,g_n\in E$ such that $X_f\subseteq \bigcup_{i=1}^n X_{g_i}$. Since

$$\bigcup_{g \in E} X_g = \bigcup_{g \in E} (X \setminus V(g)) = X \setminus V(E),$$

we get that

$$X_f \subseteq \bigcup_{g \in E} X_g \implies V(E) \subseteq V(f) \implies V(\mathfrak{a}) \subseteq V(f),$$

where \mathfrak{a} is the ideal generated by E (we know that $V(E) = V(\mathfrak{a})$ by Exercise 1.15, part i) above). But $V(\mathfrak{a}) \subseteq V(f)$ implies that $f \in \bigcap_{\mathfrak{p} \in V(f)} \mathfrak{p} \subseteq \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p} = r(\mathfrak{a})$. Therefore $f^t \in \mathfrak{a}$ for some $t \in \mathbb{N}$; that is, there exist $g_1, \ldots, g_n \in E$ and $h_1, \ldots, h_n \in A$ such that $g_1h_1 + \cdots + g_nh_n = f^t$, which implies that $f \in r(\mathfrak{b})$, where \mathfrak{b} is the ideal generated by the subset $F = \{g_1, \ldots, g_n\} \subseteq E$. But then, since

$$\mathfrak{p}\supseteq F\iff \mathfrak{p}\supseteq \mathfrak{b}\implies \mathfrak{p}\ni f^t\iff \mathfrak{p}\ni f$$

for every prime ideal \mathfrak{p} of A, we have $V(F) = V(\mathfrak{b}) \subseteq V(f)$, which in turn implies that

$$\bigcup_{i=1}^{n} X_{g_i} = X \setminus \left(\bigcap_{i=1}^{n} V(g_i)\right) = X \setminus V(F) \supseteq X \setminus V(f) = X_f.$$

Proof of vii). (\Leftarrow) If an open subset U of X is a finite union of X_f , then U is evidently quasi-compact since each X_f is quasi-compact.

 (\Rightarrow) Conversely, suppose that an open subset U of X is quasi-compact. Then, as all the X_f form a basis of open sets, there exist a subset E of A such that $U = \bigcup_{f \in E} X_f$. Therefore there exist finitely many $f_1, \ldots, f_n \in E$ such that $U = \bigcup_{i=1}^n X_{f_i}$ by quasi-compactness.

Problem 7 (Exercise 1-21). Let $\phi: A \to B$ be a ring homomorphism. Let $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$. If $\mathfrak{q} \in Y$, then $\phi^{-1}(\mathfrak{q})$ is a prime ideal of A, i.e., a point of X. Hence ϕ induces a mapping $\phi_*: Y \to X$. Show that

- i) If $f \in A$, then $\phi_*^{-1}(X_f) = Y_{\phi(f)}$, and hence ϕ_* is continuous.
- ii) If \mathfrak{a} is an ideal of A, then $\phi_*^{-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$.
- iii) If \mathfrak{b} is an ideal of B, then $\overline{\phi_*(V(\mathfrak{b}))} = V(\mathfrak{b}^c)$.
- iv) If ϕ is surjective, then ϕ_* is a homeomorphism of Y onto the closed subset $V(\text{Ker}(\phi))$ of X. (In particular, Spec(A) and $\text{Spec}(A/\Re)$ (where \Re is the nilradical of A) are naturally homeomorphic.)
- v) If ϕ is injective, then $\phi_*(Y)$ is dense in X. More precisely, $\phi_*(Y)$ is dense in X if and only if $Ker(\phi) \subseteq \mathfrak{R}$.
- vi) Let $\psi \colon B \to C$ be another ring homomorphism. Then $(\psi \circ \phi)_* = \phi_* \circ \psi_*$.
- vii) Let A be an integral domain with just one nonzero prime ideal \mathfrak{p} , and let \mathbb{k} be the field of fractions of A. Let $B = (A/\mathfrak{p}) \times \mathbb{k}$. Define $\phi \colon A \to B$ by $\phi(x) = (\widetilde{x}, x)$, where \widetilde{x} is the image of x in A/\mathfrak{p} . Show that ϕ_* is bijective but not a homeomorphism.

Proof of i). For a prime ideal $\mathfrak{q} \in Y = \operatorname{Spec}(B)$, we have

$$\mathfrak{q} \in \phi_*^{-1}(X_f) \iff \phi_*(\mathfrak{q}) = \mathfrak{q}^c \in X_f \iff \mathfrak{q}^c \not\ni f = \phi^{-1}(\mathfrak{q}) \iff \mathfrak{q} \not\ni \phi(f) \iff \mathfrak{q} \in Y_{\phi(f)},$$

which proves that $\phi_*^{-1}(X_f) = Y_{\phi(f)}$, and hence that ϕ_* is continuous since the X_f form a basis of open sets for X.

Proof of ii). Similarly, for a prime ideal $\mathfrak{q} \in Y = \operatorname{Spec}(B)$, we have

$$\begin{split} \mathfrak{q} &\in \phi_*^{-1}(V(\mathfrak{a})) \iff \phi_*(\mathfrak{q}) = \mathfrak{q}^c \in V(\mathfrak{a}) \\ &\iff \mathfrak{a} \subseteq \mathfrak{q}^c = \phi^{-1}(\mathfrak{q}) \\ &\iff \phi(\mathfrak{a}) \subseteq \mathfrak{q} \\ &\iff \mathfrak{a}^e \subseteq \mathfrak{q} \\ &\iff \mathfrak{q} \in V(\mathfrak{a}^e), \end{split}$$

which proves that $\phi_*^{-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$, and, once again, that ϕ_* is continuous.

Proof of iii). $(\overline{\phi_*(V(\mathfrak{b}))} \subseteq V(\mathfrak{b}^c))$ For any $\mathfrak{p} \in \phi_*(V(\mathfrak{b}))$, there exists a prime ideal $\mathfrak{q} \in V(\mathfrak{b}) \subseteq \operatorname{Spec}(B)$ (i.e., $\mathfrak{b} \subseteq \mathfrak{q})$ such that $\phi_*(\mathfrak{q}) = \mathfrak{q}^c = \mathfrak{p}$, which implies that $\mathfrak{b}^c \subseteq \mathfrak{q}^c = \mathfrak{p}$, i.e., $\mathfrak{p} \in V(\mathfrak{b}^c) \subseteq \operatorname{Spec}(A)$. Therefore $\phi_*(V(\mathfrak{b})) \subseteq V(\mathfrak{b}^c)$, which implies that $\overline{\phi_*(V(\mathfrak{b}))} \subseteq V(\mathfrak{b}^c)$, as $V(\mathfrak{b}^c)$ is closed.

 $(\overline{\phi_*(V(\mathfrak{b}))} \supseteq V(\mathfrak{b}^c))$ On the other hand, as $\overline{\phi_*(V(\mathfrak{b}))} \subseteq V(\mathfrak{b}^c)$ is closed, we have $\overline{\phi_*(V(\mathfrak{b}))} = V(\mathfrak{a})$ for some ideal \mathfrak{a} of A. Using the above result of part ii), we get

$$V(\mathfrak{a}^e) = \phi_*^{-1}(V(\mathfrak{a})) = \phi_*^{-1}\left(\overline{\phi_*(V(\mathfrak{b}))}\right) \supseteq \phi_*^{-1}(\phi_*(V(\mathfrak{b}))) \supseteq V(\mathfrak{b}).$$

Therefore, we have

$$\mathfrak{a}^e \subseteq \bigcap_{\mathfrak{q} \in V(\mathfrak{a}^e)} \mathfrak{q} \subseteq \bigcap_{\mathfrak{q} \in V(\mathfrak{b})} \mathfrak{q} = r(\mathfrak{b}).$$

So for any $x \in \mathfrak{a} \subseteq A$, we have $\phi(x) \in \mathfrak{a}^e \subseteq r(\mathfrak{b})$, which means that $\phi(x^n) = (\phi(x))^n \in \mathfrak{b}$ for some integer $n \in \mathbb{N}$; this in turn implies that $x^n \in \phi^{-1}(\mathfrak{b}) = \mathfrak{b}^c$. Therefore $\mathfrak{a} \subseteq r(\mathfrak{b}^c)$, which proves that

$$\overline{\phi_*(V(\mathfrak{b}))} = V(\mathfrak{a}) \supseteq V(r(\mathfrak{b}^c)) = V(\mathfrak{b}^c)$$

by our results from Exercise 1.15. Hence $\overline{\phi_*(V(\mathfrak{b}))} = V(\mathfrak{b}^c)$, as we set out to prove.

Proof of iv). By Proposition 1.1⁴ from the text (generalized to the case of $\phi: A \to B$ where ϕ is surjective), we know that $\phi_*(Y) = V(\ker(\phi))$ and ϕ_* induces a bijective map from $Y = \operatorname{Spec}(B)$ to the closed subspace $V(\ker(\phi))$ of $X = \operatorname{Spec}(A)$ (which we still called ϕ_* by abuse of notation). We already know that ϕ_* is continuous by part i). To show that $\phi_*: Y \to V(\ker(\phi))$ is a homeomorphism, we only need to show that, for every closed subset K_Y of Y, we have that $\phi_*(K_Y)$ is closed in X (hence in $V(\ker(\phi))$). Now for every closed subset K_Y of Y, there exists an ideal \mathfrak{b} of B such that $K_Y = V(\mathfrak{b})$ (see Exercise 1.15). Let $\mathfrak{a} = \phi^{-1}(\mathfrak{b})$. Then, for a prime ideal \mathfrak{p} of A, we have

$$\mathfrak{p} \in \phi_*(K_Y) = \phi_*(V(\mathfrak{b}))$$

$$\iff \mathfrak{p} = \phi_*(\mathfrak{q}) \text{ for some } \mathfrak{q} \in V(\mathfrak{b}) \quad \text{(i.e., } \mathfrak{b} \subseteq \mathfrak{q})$$

$$\iff \mathfrak{p} = \phi^{-1}(\mathfrak{q}) \supseteq \phi^{-1}(\mathfrak{b}) = \mathfrak{b}^c$$

$$\iff \mathfrak{p} \in V(\mathfrak{b}^c),$$

which means that $\phi_*(K_Y) = V(\mathfrak{b}^c)$ is closed in X (hence in $V(\ker(\phi))$). Therefore $\phi_*: Y \to V(\ker(\phi))$ is a homeomorphism, as desired.

⁴The proposition states that there is a 1-1 correspondence between the ideals \mathfrak{b} containing the ideal \mathfrak{a} and the ideals $\bar{\mathfrak{b}}$ of A/\mathfrak{a} , given by $\mathfrak{b} = \phi^{-1}(\bar{\mathfrak{b}})$.

In particular, let \mathfrak{R} be the nilradical of A. Then there is a natural surjective homomorphism $\phi \colon A \to A/\mathfrak{R}$. Therefore $\phi_* \colon \operatorname{Spec}(A/\mathfrak{R}) \to V(\ker(\phi)) = V(\mathfrak{R}) \operatorname{Spec}(A)$ is a homeomorphism. \square

Proof of v). We will prove the general statement that " $\phi_*(Y)$ is dense in $X \iff \operatorname{Ker}(\phi) \subseteq \mathfrak{R}$." (This more general statement does imply the first, because if ϕ is injective, then indeed $\operatorname{ker}(\phi) = 0 \subseteq \mathfrak{R}$). By our results from part iii), we have

$$\overline{\phi_*(Y)} = \overline{\phi_*(V(0))} = V(0^c) = V(\ker(\phi)).$$

Therefore,

$$\phi_*(Y)$$
 is dense in $X \iff \overline{\phi_*(Y)} = V(\ker(\phi)) = X$
 $\iff \ker(\phi) \subseteq \mathfrak{p} \text{ for every prime ideal } \mathfrak{p} \text{ in } A$
 $\iff \ker(\phi) \subseteq \mathfrak{R}.$

Proof of vi). For any prime ideal $\mathfrak{q} \in \operatorname{Spec}(C)$, we have $(\psi \circ \psi)_*(\mathfrak{q}) = (\psi \circ \phi)^{-1}(\mathfrak{q})$ and $\phi_* \circ \psi_*(\mathfrak{q}) = \phi^{-1}(\psi^{-1}(\mathfrak{q}))$. Then the desired result $(\psi \circ \phi)_* = \phi_* \circ \psi_*$ follows immediately from the fact that $(\psi \circ \phi)_*(\mathfrak{q}) = \phi^{-1}(\psi^{-1}(\mathfrak{q}))$.

Proof of vii). By assumption, A has exactly two prime ideals, namely 0 and \mathfrak{p} . Therefore \mathfrak{p} is a maximal ideal of A, which implies A/\mathfrak{p} must be a field. Hence we conclude that the ring $B=(A/\mathfrak{p})\times \mathbb{k}$ also has exactly two ideals, namely $\mathfrak{q}_1=\{(\overline{x},0)\mid x\in A\}$ and $\mathfrak{q}_2=\{(\overline{0},k)\mid k\in \mathbb{k}\}$. It is easy to check that \mathfrak{q}_1 and \mathfrak{q}_2 are prime ideals and there is no other prime ideal of B. Now we can see that $\phi\colon A\to B$, defined by $\phi(x)=(\overline{x},x)$, is a ring homomorphism. A straight computation then shows that $\phi_*(\mathfrak{q}_1)=\phi^{-1}(\mathfrak{q}_1)=0$ and $\phi_*(\mathfrak{q}_2)=\phi^{-1}(\mathfrak{q}_2)=\mathfrak{p}$. Therefore ϕ_* is bijective (and is always continuous), as desired.

However, ϕ_* is not a homeomorphism. Indeed, in the topological space $\operatorname{Spec}(B) = \{\mathfrak{q}_1, \mathfrak{q}_2\}$, we have $\{\mathfrak{q}_1\} = V(\mathfrak{q}_1)$ is closed as $\mathfrak{q}_1 \subsetneq \mathfrak{q}_2$. But $\phi_*(\{\mathfrak{q}_1\}) = \{0\}$ is not closed in $\operatorname{Spec}(A)$ since 0 is not a maximal ideal of A.

Problem 8 (Exercise 2-6). For any A-module M, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

$$m_0 + m_1 x + \dots + m_r x^r$$
 $(m_i \in M).$

Defining the product of an element of A[x] and an element of M[x] in the obvious way, show that M[x] is an A[x]-module. Show that $M[x] \cong A[x] \otimes_A M$.

Proof. We first show that M[x] is an A[x]-module. As an A-module, we have $M[x] \cong \bigoplus_{n \in \mathbb{N}} Mx^n$. We define the action of A[x] on M[x] by $(\sum a_i x^i) (\sum m_j x^j) = \sum c_k x^k$, where $c_k = \sum_{i+j=k} a_i m_j$. It is easy to see that M[x] is an additive group, and the above scalar multiplication by A[x] is well defined. Hence we only need to check distributivity and associativity. Let $f(x) = \sum_i a_i x^i$ and $g(x) = \sum_j b_j x^j$ (where $f, g \in A[x]$), and let $f(x) = \sum_k m_k x^k$ and $g(x) = \sum_k n_k x^k$ (where

 $\mathfrak{f},\mathfrak{g}\in M[x]$). Associativity is then given by

$$[f(x)g(x)]\mathfrak{f}(x) = \left[\sum_{\ell} \left(\sum_{i+j=k} a_i b_j\right) x^k\right] \left(\sum_{\ell} m_{\ell} x^{\ell}\right)$$

$$= \sum_{p} \left(\sum_{k+\ell=p} \left(\sum_{i+j+k=p} a_i b_j\right) m_k\right) x^p$$

$$= \sum_{p} \left(\sum_{i+j+k=p} a_i b_j m_k\right) x^p;$$

$$f(x)[g(x)\mathfrak{f}(x)] = \left(\sum_{i} a_i x^i\right) \left[\sum_{\ell} \left(\sum_{j+k=\ell} b_j m_k\right) x^{\ell}\right]$$

$$= \sum_{p} \left(\sum_{i+\ell=p} a_i \left(\sum_{j+k=\ell} b_j m_k\right)\right) x^p$$

$$= \sum_{p} \left(\sum_{i+\ell=p} a_i b_j m_k\right) x^p.$$

Now that associative checks out, we check distributivity:

$$[f(x) + g(x)]\mathfrak{f}(x) = \left(\sum_{i} (a_i + b_i)x^i\right) \left(\sum_{k} m_k x^k\right)$$

$$= \sum_{\ell} \left(\sum_{i+k=\ell} (a_i m_k + b_i m_k)\right) x^{\ell}$$

$$= \left(\sum_{i} a_i x^i\right) \left(\sum_{k} m_k x^k\right) + \left(\sum_{i} b_i x^i\right) \left(\sum_{k} m_k x^k\right)$$

$$= f(x)\mathfrak{f}(x) + g(x)\mathfrak{f}(x);$$

$$f(x)[\mathfrak{f}(x) + \mathfrak{g}(x)] = \left(\sum_{i} a_{i}x^{i}\right) \left(\sum_{k} (m_{k} + n_{k})x^{k}\right)$$

$$= \sum_{\ell} \left(\sum_{i+k=\ell} (a_{i}m_{k} + a_{i}n_{k})\right) x^{\ell}$$

$$= \left(\sum_{i} a_{i}x^{i}\right) \left(\sum_{k} m_{k}x^{k}\right) + \left(\sum_{i} a_{i}x^{i}\right) \left(\sum_{k} n_{k}x^{k}\right)$$

$$= f(x)\mathfrak{f}(x) + f(x)\mathfrak{g}(x).$$

Hence we have that M[x] is an A[x]-module, as desired.

Now to show that $M[x] \cong A[x] \otimes_A M$, define $\phi \colon M[x] \to A[x] \otimes_A M$ by $\mathfrak{f}(x) = \sum m_j x^j \mapsto \sum (x^j \otimes m_j)$. It is obviously additive, and is A[x]-linear, for if $f(x) = \sum a_i x^i \in A[x]$, then

$$\phi(f(x)\mathfrak{f}(x)) = \sum_{k} \sum_{i+j=k} \phi(a_i m_j x^k)$$

$$= \sum_{k} \sum_{i+j=k} (x^k \otimes a_i m_j)$$

$$= \sum_{i} \sum_{j} (x^i x^j \otimes a_i m_j)$$

$$= \sum_{j} \left(\left(\sum_{i} a_i x^i \right) x^j \otimes m_j \right)$$

$$= \left(\sum_{i} a_i x^i \right) \left(\sum_{j} x^j \otimes m_j \right)$$

$$= f(x) \phi(\mathfrak{f}(x)).$$

Now define $\psi: A[x] \times M \to M[x]$ by $\psi(\sum a_i x^i, m) = \sum (a_i m) x^i$. It is clearly bi-additive and A-bilinear, and so it induces a linear map $\Psi: A[x] \otimes_A M \to M[x]$ sending $(\sum a_i x^i) \otimes m \mapsto \sum (a_i m) x^i$. Now ϕ and Ψ are inverse, for

$$\Psi(\phi(m_i x^i)) = \Psi(x^i \otimes m_i) = m_i x^i$$

and

$$\phi(\Psi(a_i x^i \otimes m)) = \phi((a_i m) x^i) = x^i \otimes a_i m = a_i x^i \otimes m.$$

Hence the map $\phi \colon M[x] \to A[x] \otimes_A M$ is an isomorphism and thus we have that $M[x] \cong A[x] \otimes_A M$, as we set out to prove.

Problem 9 (Exercise 2-7). Let \mathfrak{p} be a prime ideal in A. Show that $\mathfrak{p}[x]$ is a prime ideal in A[x]. If \mathfrak{m} is a maximal ideal in A, is $\mathfrak{m}[x]$ a maximal ideal in A[x]?

Proof. We denote the quotient ring A/\mathfrak{p} by \bar{A} and denote an element $a+\mathfrak{p} \in \bar{A}$ by \bar{a} . Then there is a ring homomorphism $\phi \colon A[x] \to \bar{A}[x]$ defined by $\phi(c_0 + \cdots + c_r x^r) = \overline{c_0} + \cdots + \overline{c_r} x^r$. Now notice that $\bar{A} = A/\mathfrak{p}$ is an integral domain since \mathfrak{p} is a prime ideal in A. Now in general, we know that if \mathcal{R} is an integral domain, then $\mathcal{R}[x]$ is also an integral domain. Therefore $\ker(\phi)$ is a prime ideal in A[x] since $\bar{A}[x]$ is an integral domain. But it is easy to check that $\ker(\phi)$ is exactly $\mathfrak{p}[x]$. Hence $\mathfrak{p}[x]$ is a prime ideal in A[x]. Also notice that ϕ is surjective, so that $A[x]/\mathfrak{p}[x] \cong \bar{A}[x]$.

Now suppose that \mathfrak{m} is a maximal ideal in A. Let $\mathbb{k} = A/\mathfrak{m}$ (which is a field). Applying the above discussion to the case of $\mathfrak{p} = \mathfrak{m}$, we get that $A[x]/\mathfrak{m}[x] \cong \mathbb{k}[x]$. As $\mathbb{k}[x]$ is never a field (for example, $x \neq 0$ is never a unit in $\mathbb{k}[x]$), we conclude that $\mathfrak{m}[x]$ is never a maximal ideal in A[x].