Chapter 8: Modelling accounting for data collection

Highly recommended to read. Very informative, but also dense chapter.

- We need to model the data collection unless it is ignorable
- We need to know when data collection is ignorable

Chapter 8: Modelling accounting for data collection

Highly recommended to read. Very informative, but also dense chapter.

- We need to model the data collection unless it is ignorable
- We need to know when data collection is ignorable
- Data collection
 - Sample surveys
 - Designed experiments
 - Randomization
 - Observational studies
 - Censoring and truncation

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)p(x|\phi)$ we can model just $p(y|x, \theta)$

- Justification of conditional modeling
 - if joint model factorizes $p(y, x | \theta, \phi) = p(y | x, \theta) p(x | \phi)$ we can model just $p(y | x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2

- Justification of conditional modeling
 - if joint model factorizes $p(y, x | \theta, \phi) = p(y | x, \theta) p(x | \phi)$ we can model just $p(y | x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed

- Justification of conditional modeling
 - if joint model factorizes $p(y, x | \theta, \phi) = p(y | x, \theta) p(x | \phi)$ we can model just $p(y | x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)

- Justification of conditional modeling
 - if joint model factorizes $p(y, x | \theta, \phi) = p(y | x, \theta) p(x | \phi)$ we can model just $p(y | x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)
- Assembling matrix of explanatory variables
 - identifiability, collinearity, nonlinear relations, indicator and categorical variables, interactions
 - variable selection is not much discussed (see lectures 9.2,9.3)

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)p(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)
- Assembling matrix of explanatory variables
 - identifiability, collinearity, nonlinear relations, indicator and categorical variables, interactions
 - variable selection is not much discussed (see lectures 9.2,9.3)
- Regularization
 - not much discussed (see more in lecture 9.3 and e.g. https://betanalpha.github.io/assets/case_studies/bayes_ sparse_regression.html)

- Justification of conditional modeling
 - if joint model factorizes $p(y, x|\theta, \phi) = p(y|x, \theta)p(x|\phi)$ we can model just $p(y|x, \theta)$
- Gaussian linear model with conjugate prior
 - the conditional posterior is multivariate normal
 - with fixed prior on weights, the joint posterior is N-Inv- χ^2
 - these properties are sometimes useful and thus good to know, but with probabilistic programming less often needed
- Bit on causal analysis (see much more in ROS)
- Assembling matrix of explanatory variables
 - identifiability, collinearity, nonlinear relations, indicator and categorical variables, interactions
 - variable selection is not much discussed (see lectures 9.2,9.3)
- Regularization
 - not much discussed (see more in lecture 9.3 and e.g. https://betanalpha.github.io/assets/case_studies/bayes_ sparse_regression.html)
- Unequal variances and correlations

 Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is increased, marginal modes of weak effects go to zero first

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is increased, marginal modes of weak effects go to zero first
 - when the amount of penalty is increased, also the relevant coefficients are shrunk towards zero

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is increased, marginal modes of weak effects go to zero first
 - when the amount of penalty is increased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is increased, marginal modes of weak effects go to zero first
 - when the amount of penalty is increased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is increased, marginal modes of weak effects go to zero first
 - when the amount of penalty is increased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty
 - but the Bayesian inference includes distribution for parameters and that distribution doesn't shrink to a point at zero, even if the mode would be at zero

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is increased, marginal modes of weak effects go to zero first
 - when the amount of penalty is increased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty
 - but the Bayesian inference includes distribution for parameters and that distribution doesn't shrink to a point at zero, even if the mode would be at zero
 - empirically better results obtained with more sparse priors

- Lasso is penalized maximum likelihood linear regression, with L1 one penalty where the amount penalty is adapted
 - penalized maximum likelihood finds the mode given the penalty parameter, and is almost the same as maximum a posteriori
 - when the amount of penalty is increased, marginal modes of weak effects go to zero first
 - when the amount of penalty is increased, also the relevant coefficients are shrunk towards zero
 - sometimes relaxed lasso is used, where after variable selection coefficients are re-estimated
- Bayesian lasso uses Laplace distribution as prior
 - Laplace prior is equivalent to L1 penalty
 - but the Bayesian inference includes distribution for parameters and that distribution doesn't shrink to a point at zero, even if the mode would be at zero
 - empirically better results obtained with more sparse priors
 - it's best to separate selection of sensible prior, good posterior inference, and the decision analysis of which variables are important

Sparse priors

from Carvalho, Polson, Scott (2009).

Regularized horseshoe

for more see

- Piironen and Vehtari (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. In Electronic Journal of Statistics, 11(2):5018-5051. Online
- https://betanalpha.github.io/assets/case_studies/bayes_ sparse_regression.html

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3, n = 50, p = 500, $p_{rel} = 150$, $\rho = 0.5$

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3, n = 50, p = 500, $p_{rel} = 150$, $\rho = 0.5$

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3, n = 50, p = 500, $p_{rel} = 150$, $\rho = 0.5$

See projpred in lecture 9.3

Same simulated regression data as in lecture 9,3,

$$n = 50$$
, $p = 500$, $p_{rel} = 150$, $\rho = 0.5$

Chapter 15: Hierarchical linear models

- Since you know hierarchical models, theory is easy
- With probabilistic programming computation is also easy
 - BDA3 discusses some other computational issues
 - section on transformations for HMC is relevant (see also Stan user guide 21.7 Reparameterization)

Chapter 15: Hierarchical linear models

- Since you know hierarchical models, theory is easy
- With probabilistic programming computation is also easy
 - BDA3 discusses some other computational issues
 - section on transformations for HMC is relevant (see also Stan user guide 21.7 Reparameterization)
- Fixed, random, and mixed effects models
 - we don't recommend using these terms, but they are so popular that it's useful to know them

Chapter 15: Hierarchical linear models

- Since you know hierarchical models, theory is easy
- With probabilistic programming computation is also easy
 - BDA3 discusses some other computational issues
 - section on transformations for HMC is relevant (see also Stan user guide 21.7 Reparameterization)
- Fixed, random, and mixed effects models
 - we don't recommend using these terms, but they are so popular that it's useful to know them

ANOVA in section 15.6 (see also stan_aov)

Bioassay model is an example of GLM

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - the distribution can also depend on dispersion parameter ϕ

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization
 - after MCMC made computation easy, GLM can refer to models where outcome distribution is not part of exponential family and dispersion parameter may have its own latent linear predictor

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization
 - after MCMC made computation easy, GLM can refer to models where outcome distribution is not part of exponential family and dispersion parameter may have its own latent linear predictor
 - Hierarchical GLM natural extension

- Bioassay model is an example of GLM
- Components:
 - 1. The linear predictor $\eta = X\beta$
 - 2. The link function $g(\cdot)$ and $\mu = g^{-1}(\eta)$
 - 3. Outcome distribution model with location parameter μ
 - the distribution can also depend on dispersion parameter ϕ
 - originally just exponential family distributions (e.g. Poisson, binomial, negative-binomial), which all have natural location-dispersion parameterization
 - after MCMC made computation easy, GLM can refer to models where outcome distribution is not part of exponential family and dispersion parameter may have its own latent linear predictor
 - Hierarchical GLM natural extension
 - 16.3 Weakly informative priors section is excellent although the recommendation on using Cauchy has changed (see https://github.com/stan-dev/stan/wiki/ Prior-Choice-Recommendations)

Chapter 17: Models for robust inference

For example

normal \rightarrow *t*-distribution

Poisson \rightarrow negative-binomial

 $\text{binomial} \quad \rightarrow \quad \text{beta-binomial}$

 $probit \qquad \rightarrow \quad logistic \ / \ robit$

Chapter 17: Models for robust inference

For example

normal \rightarrow *t*-distribution

Poisson \rightarrow negative-binomial

binomial \rightarrow beta-binomial

probit \rightarrow logistic / robit

- Computation with MCMC easy
 - posterior can be multimodal

Chapter 17: Models for robust inference

For example

normal \rightarrow *t*-distribution

Poisson \rightarrow negative-binomial

binomial \rightarrow beta-binomial

probit \rightarrow logistic / robit

- Computation with MCMC easy
 - posterior can be multimodal
 - rstanarm doesn't have t-distribution for outcome, but brms has

- Extends the data collection modelling from Chapter 8
- Useful terms

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR) missingness does not depend on missing values or other observed values (including covariates)

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR)
 missingness does not depend on missing values or other
 observed values (including covariates)
 - Missing at random (MAR)
 missingness does not depend on missing values but may
 depend on other observed values (including covariates)

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR)
 missingness does not depend on missing values or other
 observed values (including covariates)
 - Missing at random (MAR)
 missingness does not depend on missing values but may
 depend on other observed values (including covariates)
 - Missing not at random (MNAR) missingness depends on missing values

- Extends the data collection modelling from Chapter 8
- Useful terms
 - Missing completely at random (MCAR) missingness does not depend on missing values or other observed values (including covariates)
 - Missing at random (MAR)
 missingness does not depend on missing values but may
 depend on other observed values (including covariates)
 - Missing not at random (MNAR) missingness depends on missing values
- Multiple imputation
 - 1. make a model predicting missing data
 - sample repeatedly from the missing data model to generate multiple imputed data sets
 - 3. make usual inference for each imputed data set
 - 4. combine results

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim \mathbb{N}\left(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n)\right)$

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim N(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n))$
- Often a priori $\mu = 0$

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim \mathbb{N}\left(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n)\right)$
- Often a priori $\mu = 0$
- Prior for smooth non-linear functions, e.g. with $k(x, x') = \tau^2 \exp\left(-\frac{|x-x'|^2}{2l^2}\right)$

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim \mathbb{N}\left(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n)\right)$
- Often a priori $\mu = 0$
- Prior for smooth non-linear functions, e.g. with

$$k(x, x') = \tau^2 \exp\left(-\frac{|x - x'|^2}{2l^2}\right)$$

 $\tau = 1/2, l = 2$ $\tau = 1/4, l = 1/2$

 $\tau = 1/2$, I = 1/2

- Gaussian process is
 - infinite dimensional extension of normal distribution
 - useful prior for non-linear functions
 - for any finite number of variables, the marginal is multivariate normal $f_1, \ldots, f_n \sim \mathbb{N}\left(\mu(x_1, \ldots, x_n), K(x_1, \ldots, x_n)\right)$
- Often a priori $\mu = 0$
- Prior for smooth non-linear functions, e.g. with

$$k(x, x') = \tau^2 \exp\left(-\frac{|x - x'|^2}{2l^2}\right)$$

 $\tau = 1/2, I = 2$

×

 $\frac{1}{8}$

Х

 $\tau = 1/2$, I = 1/2

- Conditional on covariance function parameter the posterior is just multivariate normal
 - need to make inference for covariance function parameters given the marginal likelihood
 - the exact computation of the marginal likelihood scales $O(N^3)$

Easy to make additive models

- For non-Gaussian outcome models similar extension as GLMs
- Survival model example:

GPs in Stan

- GP specific software (e.g. GPy, GPflow, GPyTorch) scale computationally better for GPs than Stan
- Stan has some built-in covariance functions (and soon GPU support)
- In case of non-Gaussian outcome models, sampling of latent variables can be slow (Laplace integration over the latents coming)

GPs in Stan

- GP specific software (e.g. GPy, GPflow, GPyTorch) scale computationally better for GPs than Stan
- Stan has some built-in covariance functions (and soon GPU support)
- In case of non-Gaussian outcome models, sampling of latent variables can be slow (Laplace integration over the latents coming)
- Instead of covariance matrix based approach, for low dimensional cases faster to use basis function representation
 - e.g. stan_glm(y \sim s(x, bs="gp"))