MATH 20410. Analysis in \mathbb{R}^n II (accelerated)

Based on lectures by Prof. Donald Stull Notes taken by Andrew Hah

The University of Chicago - Winter 2025

Any proof or argument that has been filled in, expanded, or written out in detail by me is marked with a \blacksquare . All other material follows the lectures and any errors or omissions are entirely my own.

Contents

1	Differentiation	2
2	Differentiation in \mathbb{R}^n	2
3	Riemann-Stielties Integration	2

1 Differentiation

Definition 1.1. Let $f:[a,b] \to \mathbb{R}$ and $x \in [a,b]$. We say that f is differentiable at x if the limit

 $\lim_{t \to x} \frac{f(t) - f(x)}{t - x}$

exists. If the limit exists, we say it is the derivative of f at x, denoted by f'(x).

Extensions.

- (i) $f:[a,b]\to\mathbb{C}$. $f=f_{\mathrm{RE}}+if_{\mathrm{IM}}$ where $f_{\mathrm{RE}},f_{\mathrm{IM}}:[a,b]\to\mathbb{R}$. Then f is differentiable at $x \in [a, b] \iff f_{RE}, f_{IM}$ are differentiable at x. If f is differentiable at x then $f'(x) = f'_{RE}(x) + i f'_{IM}(x)$
- (ii) $f:[a,b]\to\mathbb{R}^n$. $f=(f_1,\ldots,f_n)$ where $f_1,\ldots,f_n:[a,b]\to\mathbb{R}$. Define the derivative of f at x by $f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$. The limit is the vector limit. By Theorem 4.10 of Rudin, this limit exists \iff the limit of each component exists, i.e. $f'(x) = (f'_1(x), \dots, f'_n(x)).$

Theorem 1.2. If $f:[a,b]\to\mathbb{R}$, $x\in[a,b]$, and f'(x) exists, then f is continuous at x.

Proof. Let $t \in [a, b]$, $t \neq x$. Then $f(t) - f(x) = \frac{f(t) - f(x)}{t - x} \cdot (t - x)$. As $t \to x$, the right hand side goes to $f'(x) \cdot 0 = 0$, so f is continuous at x.

Differentiation rules.

- (i) Let $f,g:[a,b]\to\mathbb{R}$, both differentiable at $x\in[a,b]$. Then $f+g,f\cdot g,\frac{f}{g}(g(x)\neq 0)$ 0) are all differentiable at x. Moreover, (f+g)'(x) = f'(x) + g'(x), (fg)' = f'(x)g(x) + f(x)g'(x), and $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{g^2(x)}$. (ii) $f: [a,b] \to \mathbb{R}, g: [c,d] \to \mathbb{R}, f([a,b]) \subseteq [c,d]$. Let $x \in [a,b]$ s.t. f'(x) exists and
- g'(f(x)) exists. Then $g \circ f$ is differentiable at x and $(g \circ f)'(x) = g'(f(x))f'(x)$.

Definition 1.3. Let (X,d) be a metric space and $f:X\to\mathbb{R}$. We say that f has a local maximum at $x \in X$ if there is an open ball $U \ni x$ such that $\forall y \in U$, $f(y) \leq f(x)$, and a local minimum if $\forall y \in U, f(y) \geq f(x)$.

Theorem 1.4. Let $f:[a,b] \to \mathbb{R}$ have a local maximum or local minimum at $x \in [a,b]$. If f'(x) exists, then f'(x) = 0.

Proof. Suppose x is a local maximum and f'(x) exists. Then if t < x, $\frac{f(t)-f(x)}{t-x} \ge 0$, and if t > x, $\frac{f(t)-f(x)}{t-x} \le 0$. Thus f'(x) = 0.

$\mathbf{2}$ Differentiation in \mathbb{R}^n

3 Riemann-Stieltjes Integration