

Eyecloud OpenNCC

User Manual

June 2021 Revision 1.0.0

Technical Support

You can contact us through the channel on the official website.

https://www.openncc.com/contact

Contact information

Tel: +1-408-219-6489

E-mail: service@eyecloud.tech

Copyright statement

The copyright of this manual belongs to Hangzhou EyeCloud Technologies Co., Ltd. Without the written permission of our company, no unit or individual has the right to copy, transmit, or reproduce any content of this manual in any form. Violators will be held legally responsible.

Revision History

Version	Date	Editor	Description
1.0.0	June 2021	Zed	

Directory

Technical Support	2
Contact information	2
Copyright statement	2
Revision History	3
Directory	4
1 Introduction	5
1.1 Overview	5
1.2 Functions	5
1.3 OpenNCC Series	6
1.3.1 OpenNCC Lite Series	7
1.3.2 OpenNCC USB	9
1.4 Hardware block diagram	11
1.5 Hardware Specification	12
1.5.1 Fixed focus lenses 6mm	12
1.5.2 Zoom lenses 2.8 – 12mm	13
1.5.3 Module Board SC2232H(Discontinued)	14
1.5.4 Module Board SC8238	15
1.5.5 Module Board AR0234	16
1.5.6 Module Board SC200AI	17
1.5.7 Core Board SoM	18
2 Getting Started Guide	21
2.1 Unboxing show	21
2.2 Start-up hardware	22
2.2 Download Software Development Kit(SDK)	23
2.3 Running software	23

1 Introduction

1.1 Overview

OpenNCC is an open-source programmable AI camera. It is powered by the Intel Movidius Myriad X Vision Processing Unit (VPU). It is a low-power System-on-Chip (SoC). It can be used for drones, smart cameras, VR/AR headsets and other devices for deep learning and other AI vision application acceleration. Myriad X will deliver ten times the deep neural network (DNN) performance compared to Myriad 2 at the same power consumption. Myriad X reaches over trillion times per second (TOPS) peak DNN throughput based on a theoretical computational power of 4+ TOPS.

OpenNCC is composed of a SENSOR board and a CORE board, while it is equipped with a 2 or 8 megapixel sensor. The OpenNCC core board uses CSI_MIPI_RX 4lane interface. It supports sensor resolution up to 20M@30fps, and also supports 3D module and IR module. CORE board output interface is USB2.0/3.0, can be equipped with 4G/8G/16G LPDDR4, 16M SPI FLASH.

1.2 Functions

Plug & Play

OpenNCC uses the USB-C data interface, just plug it into your computer and start developing, and it's as short as 30s to create your own versatile AI camera.

Openvino Standard Model Ready-to-Use

It has the advantage of the Intel VPU chip included in OpenNCC, which is compatible with the OpenVINO model.

Support for multiple deep learning frameworks

It supports Caffe, ONNX, TensorFlow, MX Net and other deep learning frameworks for user-friendly development and use.

High-quality image output

It has been factory video debugging, can support 1920x1080 or 4K resolution picture quality, as well as support YUV420, H.264, MJPEG and other video formats output.

Support secondary development

OpenNCC provides dedicated OpenNCC SDK development kit and related technical documentation, which supports C/C++/Python language, users can easily call the relevant API interface to realize camera parameter setting, model download, output video parameter setting, and quickly realize algorithm deployment of smart cameras. openNCC models support official models provided by openvino, and also support the deployment of custom algorithm models for rapid productization.

1.3 OpenNCC Series

According to different application scenarios, OpenNCC has launched different product series, among which there are mainly OpenNCC Lite series for developers, OpenNCC USB and OpenNCC IPC series for industrial application scenarios.

1.3.1 OpenNCC Lite Series

1.3.1.1 Introduction

OpenNCC Lite is mainly for developers, using USB interface, plug-and-play, convenient for developers to carry out rapid deployment of algorithm models.

OpenNCC Lite has built-in Intel Movidius Myriad X VPU with powerful arithmetic power to meet the computing needs of embedded AI. It is suitable for AI algorithm engineers, system integration engineers, and product managers for program pre-research, and for students, teachers, and researchers in the AI direction for research and study.

1.3.1.2 Technical Specification

Technical Parameters	Basic Information	
Product Name	OpenNCC Lite Programmable AI Camera	
Dimensions	LxHxD::40 mm x 40 mm x 35 mm	
Weight	Net weight of the camera is about 80 grams	
Standard Certifications	CE,FCC,RoHS,PSE	
	Al Performance and Features	
Inference Engine	1/2	
Supported Models	OpenVINO compatible models	
Support Frameworks	ONNX, TensorFlow, Caffe, MX Net, Kaldi, PaddlePaddle	
	Software Functions	
Image Signal Processing	V	
	Camera development kit OpenNCC SDK, development	
Open Source Materials	technical documentation, configuration tool OpenNCC	
	View	
Supported Development	C/C++/Python	
languages	C/C++/Python	
	1. get video stream	
SDK Support Features	2. AI model download and replacement	
3DK Support reatures	3. get model calculation results	
	4. camera photography, reset, etc.	
OpenView Function	Configure camera parameters, configure camera local AI	
Openview Function	model	
OpenNCC SDK Supported	Linux, Windows, RaspberryPi OS, etc.	
OS	Emax, windows, haspberry 11 03, etc.	
	Hardware specification parameters	
Operating Temperature	0-50℃	
VPU	Intel Movidius Myriad X MV2085	
Memory	4Gb / 8Gb	
Data Interface	USB Type-C 2.0/3.0	
Power Supply	5V / 2A	
Camera Module	2MP / 8MP	
Resolution	1920 x 1080(2K) / 3872 × 2180 (4K)	
Frame Rate	30Hz	
Horizontal Field of View	60°	

1.3.2 OpenNCC USB

1.3.2.1 Introduction

OpenNCC

OpenNCC USB is a series of endpoint AI cameras for industrial application scenarios with a plug-and-play USB interface to facilitate field deployment of commercial AI vision solutions by deep learning vision system developers.

OpenNCC USB series cameras are developed based on the Intel Movidius Myriad X VPU and support the Intel® OpenVINO toolbox.

1.3.2.2 Technical Specifications

	Basic Information	
Product Name	OpenNCC USB Programmable AI Camera	
Dimensions	50 mm*50 mm*50 mm	
Weight	Net weight of the camera is 150g	
Standard Certifications	CE,FCC,RoHS,PSE	
	Al Performance and Features	
Inference Engine	2	
Supported Models	OpenVINO compatible models	
Support Frameworks	ONNX, TensorFlow, Caffe, MX Net, Kaldi, PaddlePaddle	
	Software Features	
Image Signal Processing	V	
Open Source Materials	Camera development kit OpenNCC SDK, development technical documentation, configuration tool OpenNCC View	
Supported Development Languages C/C++/Python		
SDK Support Features	 get video stream Al model download and replacement get model calculation results camera photography, reset, etc. 	
OpenView Function	Configure camera parameters, configure camera local AI model	
OpenNCC SDK Supported OS	Linux, Windows, Raspberry Pi OS	
OpenNCC View Supported OS	Linux, Windows	
	Hardware specification parameters	
Operating Temperature	0-50℃	
VPU	Intel Movidius Myriad X MV2085	
Memory	8Gb	
Data Interface	USB Type-C 2.0/3.0	
Power Supply	5V / 2A	
Camera Module	2MP / 8MP roll-up exposure camera;2MP global exposure camera	
Resolution	1920 x 1080(2K);3840 × 2160 (4K)	
Frame Rate	30Hz;120Hz	
Lens	C-Mount, diagonal FOV: 50 - 115°/ 45 - 125°	

1.4 Hardware block diagram

1.5 Hardware Specification

1.5.1 Fixed focus lenses 6mm

1.5.2 Zoom lenses 2.8 – 12mm

类 别(Category)	规格参数(Parameters)	
1. 型号 (Model No)	CW-VM2812-3MP	
2. 焦距 (Focal Length)	2.8-12mm	
3. 像面规格 (Format)	1/2.5"	
4. 相对孔径 (D/f')	1:1.4	
5. 接口(Mount)	cs	
6. 视场角 (F. O. V) (H/V) 1/2.5"	112° x 34°	
7. 后截距 (BFL)	12.53mm	
8. 光圈 (iris)	手动/锁紧(W/Lock)	
9. 变焦 (Zoom)	手动/锁紧(W/Lock)	
10. 分辨率 (MTF)	3Mega Pixel	
11. 近摄距(M. O. D)(m)	0. 2m	
12. 外形尺寸 (Dimension)	Ф30x41.50mm	
13. 重量(Weight)(g)	55g	
14. 产品构成(Structure)	铝合金+9G	
15. 工作温度(Operating temperature)	-20℃~+60℃	

1.5.3 Module Board SC2232H(Discontinued)

1.5.3.1 Basic parameters

SENSOR Model: SC2232H

Resolution: 1920*1080(2MP)

Frame rate: 30fps
Image element: 2.8um
Imaging size: 1/2.9inch

1.5.3.2 Structure size

1.5.4 Module Board SC8238

1.5.4.1 Basic parameters

SENSOR Model: SC8238

Resolution: 3872*2180(8MP)

Frame rate: 30fps
Image element: 1.5um
Optical size: 1/2.7

1.5.4.2 Structure size

1.5.5 Module Board AR0234

1.5.5.1 Basic parameters

SENSOR Model: AR0234CS

Resolution: 1920*1080(2MP) Global shutter

Frame rate: 30fps
Image element: 3um

Imaging size: 1/2.6inch

1.5.5.2 Structure size

1.5.6 Module Board SC200AI

1.5.6.1 Basic parameters

SENSOR Model: SC200AI

Resolution: 1920*1080(2MP)

Frame rate: 30fps
Image element: 3um

Imaging size: 1/2.6inch

1.5.6.2 Structure size

1.5.7 Core Board SoM

1.5.7.1 Basic parameters

Size:38mm*38mm

Interface: MIPI, USB3.1 TYPE-C

1.5.7.2 Structure size

38mm*38mm (Standard 38 board, space spacing 34mm)

1.5.7.3 Interface Definition

USB interface: TYPE C (the direction of the picture supports USB3.0, when the reverse is inserted to identify as USB2.0)

FPC connector J3

Serial number	Pin Definitions	Description	Electrical Characteristics
1	VDD_5V	5V power output	Output current ≤1A
2	VDD_5V	5V power output	2
3	VDD_5V	5V power output	3
4	GND	Reference ground	/
5	GND	Reference ground	/
6	GND	Reference ground	/
7	CAM_A_AUX	General Purpose GPIO	1.8V
8	CAM_A_RST	General purpose GPIO/reset	1.8V

Serial number	Pin Definitions	Description	Electrical Characteristics
9	I2C1_SCL	I2C clock line	1.8V
10	COM_IO1	General Purpose GPIO	1.8V
11	CAM_A_CLK	General Purpose GPIO/Clock	1.8V
12	CAM_B_AUX	General Purpose GPIO/Breakdown	1.8V
13	COM_IO2	General Purpose GPIO	1.8V
14	CAM_A_PWM/RST	Universal GPIO	1.8V
15	I2C1_SDA	I2C Data Line	1.8V
16	GND	Reference ground	/
17	CAM_A_D1_P	MIPI data pair 1 Differential signal +	/
18	CAM_A_D1_N	MIPI data pair 1 Differential signal -	/
19	GND	Reference ground	/
20	CAM_A_D0_P	MIPI data pair 0 Differential signal +	/
21	CAM_A_D0_N	MIPI data to 0 differential signal -	/
22	GND	Reference ground	/
23	CAM_A_L_C_P	MIPI clock line Differential signal +	/
24	CAM_A_L_C_N	MIPI clock line Differential signal -	/
25	GND	Reference ground	/
26	CAM_A_D2_P	MIPI data pair 2	/

Serial number	Pin Definitions	Description	Electrical Characteristics
		Differential signal +	
27	CAM_A_D2_N	MIPI data pair 2 Differential signal-	/
28	GND	Reference ground	/
29	CAM_A_D3_P	MIPI data pair 3 differential signal +	/
30	CAM_A_D3_N	MIPI data pair 3 Differential signal -	/

2 Getting Started Guide

This chapter describes how to use OpenNCC and download the official OpenNCC software development kit.

2.1 Unboxing show

The sticker on the box provides the official website address of OpenNCC (www.openncc.com.cn) for downloading relevant technical documentation and development kits.

When you open the box, you can see OpenNCC and the standard USB TPYE-C interface data cable.

2.2 Start-up hardware

Use the official USB cable provided by OpenNCC to connect the computer to the OpenNCC's USB 3.0 port. As shown in the figure below.

Tip: How to distinguish between computer USB ports.

2.2 Download Software Development Kit(SDK)

- Go to official website http://www.openncc.com.
- Click Documentation.

 Click Download to access the SDK repository at https://github.com/EyecloudAi/openncc.

OpenNCC SDK - Open Source

This document introduces the basic concepts of OpenNCC deployment, OpenNCC CDK and OpenVINO, and the method of using OpenNCC CDK to develop and deploy OpenNCC DK independent operation mode and mixed mode with OpenVINO.

Home

Download the zip file or copy the address and use Git to clone it

2.3 Running software

Details of how to run the software can be found in OpenNCC_Getting_Started.pdf in the SDK.