10.2.2.4.5 Render - Blender Render Engine - Textures - Texture types - Volume Textures

Volume Textures	1
Voxel Data	
Settings	
Point Density Texture	
Options	
Turbulence	

Volume Textures

Blender has two textures that can be applied to volumetric data:

Voxel Data

Voxel data renders a voxel source. It can be used for rendering Blender's internal smoke simulations. Other sources include binary raw formats, and Image Sequence, which can be used to stack a sequence of images into a 3D representation

Point Density

Point density renders a given point cloud (object vertices or particle system) as a 3D volume

- Voxel Data
- Point Density Texture

Voxel Data

Voxel data renders a voxel source, working very similarly to an image texture, but in 3d. Various input data source types are available (such as smoke voxel data, or external files), as well as various interpolation methods.

The voxels are stored in a flat z/y/x grid of floats. Functions for sampling this based on location within the (0,1) bounds are available in:

source/blender/blenlib/intern/voxel.c

The default voxel data source, Smoke, is used for rendering Blender's internal smoke simulations. Other sources include binary raw formats, and Image Sequence, which can be used to stack a sequence of images into a 3D representation, which is a common format for medical volume data such as CT scans.

Settings

File Format

Blender Voxel

Default binary voxel file format.

8 bit RAW

8 bit grayscale binary data.

Image Sequence

Generate voxels from a sequence of image slices.

Smoke

Render voxels from a Blender smoke simulation.

Source Path

The external source data file to use for 8 bit Raw data and Blender Voxel formats

Domain Object (Smoke)

Object used as the smoke simulation domain

Source

Smoke

Use smoke density and color as texture data.

Flame

Use flame temperature as texture data.

Heat

Use smoke heat as texture data. Values from -2.0 to 2.0 are used.

Velocity

Use smoke velocity as texture data.

Resolution

Resolution of the voxel grid when using 8 bit Raw data.

Interpolation

Nearest Neighbor

No interpolation, fast but blocky and low quality.

Linear

Good smoothness and speed.

Quadratic

Mid-range quality and speed.

Cubic Catmull-Rom

Smoothed high quality interpolation, but slower.

Extension

Extend

Extend by repeating edge pixels of the image.

Clip

Clip to image size and set exterior pixels as transparent.

Repeat

Cause the image to repeat horizontally and vertically.

Intensity

Multiplier for intensity values

Point Density Texture

Point density renders a given point cloud (object vertices or particle system) as a 3D volume, using a user-defined radius for the points. Internally, the system uses a BVH data structure for fast range lookups.

The rendered points are spherical by default, with various smooth falloff options, as well as simple Turbulence options for displacing the result with noise, adding fine detail. When using Point Density with a particle system, additional particle info such as particle velocity, age, and speed, can be visualized using a color/alpha ramp gradient.

Options

Particle System

Particle System, Generate point density from a particle system.

Object Vertices

Object Vertices, Generate point density from an object's vertices.

Object Radius System Falloff

Standard Smooth Soft Softness

Constant

Density is constant within lookup radius.

Root Particle Age Particle Velocity Velocity Scale

Falloff Curve

Use a custom falloff

Cache

Coordinate system to cache particles in Global Space Emit Object Space Emit Object Location **Color Source**

Data to derive the color results from

Constant

Constant color

Particle Age

Lifetime mapped as 0.0 - 1.0 intensity.

Particle Speed

Particle speed (absolute magnitude of velocity) mapped as 0.0-1.0 intensity.

Scale

Multiplier to bring particle speed within an acceptable range.

Particle Velocity

XYZ velocity mapped to RGB colors.

Scale

Multiplier to bring particle speed within an acceptable range.

Turbulence

Adds directed noise to the density at render time

Influence

Method for driving added turbulent noise

Static

Noise patterns will remain unchanged, faster and suitable for stills.

Particle Velocity

Turbulent noise driven by particle velocity.

Particle Age

Turbulent noise driven by the particle's age between birth and death.

Global Time

Turbulent noise driven by the global current frame.

Noise Basis

See Here

Size

Scale of the turbulent noise

Depth

Level of detail in the added turbulent noise

Turbulence Strength

Strength of the added turbulent noise