OR gate

AND gate

COL gate

BILL gates

LOGIC GATES

CHAPTER 3

Sumaiyah Zahid

INVERTER OR NOT GATE

TABLE 3-1

Inverter truth table.

Input	Output	
LOW (0)	HIGH (1)	
HIGH (1)	LOW (0)	

Complementation

INVERTER TIMING DIAGRAM

A timing diagram shows how two or more waveforms relate in time.

FIGURE 3–6 The inverter complements an input variable.

Α	В	
0	0	0
1	0	0
0	1	0
1	1	1

AND Gate = Boolean Multiplication

- (a) Develop the truth table for a 3-input AND gate.
- (b) Determine the total number of possible input combinations for a 4-input AND gate.

- (a) Develop the truth table for a 3-input AND gate.
- (b) Determine the total number of possible input combinations for a 4-input AND gate.

TAI	BLE 3-	3	
	Inputs		Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Boolean multiplication is the same as the AND function.

FIGURE 3–15 Boolean expressions for AND gates with two, three, and four inputs.

AND GATE APPLICATION

FIGURE 3-17 A simple seat belt alarm circuit using an AND gate.

OR GATE

OR Gate = Boolean Addition

INPUT		OUTDUT
А	В	оитрит
0	0	0
1	0	1
0	1	1
1	1	1

OR GATE TIMING DIAGRAM

OR GATE TIMING DIAGRAM

OR GATE TIMING DIAGRAM

OR GATE

Boolean addition is the same as the OR function.

FIGURE 3–24 Boolean expressions for OR gates with two, three, and four inputs.

OR GATE APPLICATION

FIGURE 3-25 A simplified intrusion detection system using an OR gate.

NAND = Not AND

Also known as Universal Gate

TABLE 3-7

Truth table for a 2-input NAND gate.

Inp	outs	Output
\boldsymbol{A}	В	X
0	0	1
0	1	1
1	0	1
1	1	0

$$\begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

$$= \begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

 $X = \overline{AB}$

TAB	LE 3-8	
\boldsymbol{A}	В	$\overline{AB} = X$
0	0	$\overline{0 \cdot 0} = \overline{0} = 1$
0	1	$\overline{0\cdot 1} = \overline{0} = 1$
1	0	$\overline{1 \cdot 0} = \overline{0} = 1$
1	1	$\overline{1 \cdot 1} = \overline{1} = 0$

NOR GATE

NOR = Not OR

TABLE 3-9

Truth table for a 2-input NOR gate.

Inputs		Output
\boldsymbol{A}	\boldsymbol{B}	X
0	0	1
0	1	0
1	0	0
1	1	0

NOR GATE

NOR GATE

$$X = A + B$$

TABLE 3-10

\boldsymbol{A}	В	$\overline{A + B} = X$
0	0	$\overline{0+0} = \overline{0} = 1$
0	1	$\overline{0+1} = \overline{1} = 0$
1	0	$\overline{1+0} = \overline{1} = 0$
1	1	$\overline{1+1} = \overline{1} = 0$

EXCLUSIVE OR GATE

Exclusive or XOR Gate

Performs modulo-2 addition

TABLE 3-11

Truth table for an exclusive-OR gate.

In	puts	Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{X}
0	0	0
0	1	1
1	0	1
1	1	0

EXCLUSIVE OR GATE TIMING DIAGRAM

EXCLUSIVE OR GATE TIMING DIAGRAM

XOR APPLICATION

TABLE 3-13

An XOR gate used to add two bits.

Inpu	t Bits	Output (Sum)
\boldsymbol{A}	\boldsymbol{B}	Σ
0	0	0
0	1	1
1	0	1
1		0 (without the 1 carry bit)

EXCLUSIVE NOR GATE

Exclusive NOT OR or XNOR Gate

Performs modulo-2 addition

TABLE 3-12

Truth table for an exclusive-NOR gate.

Inputs		Output	
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{X}	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

XNOR GATE TIMING DIAGRAM

Note: Active states are shown in yellow.

FIGURE 3-75