Тема 12. Повні системи функцій

12.1. Алгебра Жегалкіна

<u>Означення 12.1.</u> Система елементів $\{0,1\}$, на якій визначені операції \land (кон'юнкція) та \oplus (диз'юнктивна сума або додавання за модулем 2), для яких виконуються співвідношення

- 1) $x \oplus y = y \oplus x$;
- 2) $x \wedge (y \oplus z) = x \wedge y \oplus x \wedge z$;
- 3) $x \oplus x = 0$;
- 4) $x \oplus 0 = x$,

а також решта відношень булевої алгебри, які відносяться до кон'юнкції та констант, називається алгеброю Жегалкіна.

3 таблиці істинності операції додавання за модулем 2 слідує, що

5) $\bar{x} = x \oplus 1$.

Операцію диз'юнкції можна виразити через ⊕ та ∧ так:

6)
$$x \vee y = \overline{\overline{x} \wedge \overline{y}} = (x \oplus 1) \wedge (y \oplus 1) \oplus 1 = (x \wedge y) \oplus x \oplus y$$
.

<u>Означення 12.2.</u> Довільна формула алгебри Жегалкіна, яка має вигляд суми (за модулем 2) кон'юнкцій булевих змінних, називається **поліномом Жегалкіна**. Якщо у кожний член поліному Жегалкіна кожна змінна входить один раз та поліном не містить однакових членів, то такий поліном Жегалкіна називається **канонічним**.

<u>Теорема 12.1.</u> Довільна булева функція єдиним чином представляється у вигляді канонічного поліному Жегалкіна.

Доведення. Довільну булеву функцію можна представити у вигляді поліному Жегалкіна, використовуючи співвідношення (5) та (6). З (6) слідує, що якщо дві функції f_1 та f_2 такі, що $f_1 \land f_2 = 0$, то $f_1 \lor f_2 = f_1 \oplus f_2$. Звідси слідує правило для представлення булевої функції у вигляді поліному Жегалкіна: для булевої функції, яка задана у вигляді ДДНФ, достатньо замінити знак ∨ на знак ⊕, представити заперечення змінних як $\bar{x} = x \oplus 1$, розкрити дужки по закону дистрибутивності (2) та привести подібні члени за законами (3) та (4). ▶

Наприклад, зведемо до канонічного поліному Жегалкіна булеву функцію:

$$f(x, y, z) = (x \wedge \overline{y} \wedge z) \vee (x \wedge \overline{y} \wedge \overline{z}) \vee (x \wedge y \wedge z).$$

Оскільки функція знаходиться у ДДНФ, замінимо символи ∨ на ⊕, отримаємо:

$$f(x, y, z) = (x \land \overline{y} \land z) \oplus (x \land \overline{y} \land \overline{z}) \oplus (x \land y \land z) =$$

$$= (x \land (y \oplus 1) \land z) \oplus (x \land (y \oplus 1) \land (z \oplus 1)) \oplus (x \land y \land z) =$$

$$= (x \land y \land z) \oplus (x \land z) \oplus (x \land y \land z) \oplus (x \land y) \oplus (x \land z) \oplus x \oplus (x \land y \land z) =$$

$$= (x \land y \land z) \oplus (x \land y) \oplus x$$

12.2. Властивості булевих функцій

Означення 12.3. Функція, яка представляється поліномом Жегалкіна вигляду:

$$(\alpha_1 \wedge x_1) \oplus (\alpha_2 \wedge x_2) \oplus \dots \oplus (\alpha_n \wedge x_n) \oplus \gamma$$

де $\alpha_1, ..., \alpha_n$, $\gamma \in 0$ або 1, називається **лінійною**.

Усі функції однієї змінної лінійні. Лінійними функціями двох змінних ϵ $x \oplus y$ та $x \equiv y = x \oplus y \oplus 1$.

Означення 12.4. Для двох наборів $\alpha = (\alpha_1, ..., \alpha_n)$ та $\beta = (\beta_1, ..., \beta_n)$ виконується відношення передування, якщо $\alpha_1 \le \beta_1$, ..., $\alpha_n \le \beta_n$, тобто номер набору α не більше номеру набору β .

Наприклад, набори $\alpha = (0,1,0,1)$ та $\beta = (1,1,0,1)$ знаходяться у відношенні передування. Набори (0,1,0) та (1,0,0) не знаходяться у відношенні передування. Вони ε незрівнянні.

<u>Означення 12.5.</u> Функція $f(x_1,...,x_n)$ називається **монотонною**, якщо для будь-яких двох наборів α і β , що знаходяться у відношенні передування (тобто номери наборів не зменшуються), справджується нерівність: $f(\alpha) \le f(\beta)$.

Серед булевих функцій однієї та двох змінних кон'юнкція, диз'юнкція, константи 0 та 1 — монотонні, а функції заперечення, імплікації, еквівалентності, штрих Шефера, стрілка Пірса — немонотонні. Наприклад, імплікація на наборі (0,0) дорівнює 1, а на наборі (1,0) — 0, а оскільки (0,0) передує (1,0), то отримуємо, що $f(0,0) \ge f(1,0)$, тобто властивість монотонності не виконується.

<u>Означення 12.6.</u> Булева функція називається функцією, що **зберігає 0**, якщо на нульовому наборі вона дорівнює 0, тобто f(0,...,0) = 0.

Неважко пересвідчитись, що функції $0, x, x \land y, x \lor y, x \oplus y$ зберігаються 0, а функції $1, \overline{x}, x \equiv y$ не зберігають 0.

<u>Означення 12.7.</u> Булева функція називається функцією, що **зберігає 1**, якщо на одиничному наборі вона дорівнює 1, тобто f(1,...,1) = 1.

Наприклад, функції 1, x, $x \wedge y$, $x \vee y$ зберігають 1, а 0, \bar{x} , $x \oplus y - \text{ні}$.

12.3. Функціонально замкнуті класи булевих функцій

<u>Означення 12.8.</u> Клас функцій називається **функціонально замкненим,** якщо суперпозиція цих функцій належить даному класу.

Теорема 12.2. Суперпозиція лінійних функцій є лінійною функцією.

Доведення. Якщо у лінійному поліномі Жегалкіна на місті довільної змінної підставити лінійну функцію, то знову отриманий поліном буде також лінійним. Візьмемо поліном ($\alpha_1 \wedge x_1$) \oplus ($\alpha_2 \wedge x_2$) \oplus ... \oplus ($\alpha_n \wedge x_n$) \oplus γ . Підставимо замість x_1 лінійним поліном ($\beta_1 \wedge y_1$) \oplus ($\beta_2 \wedge y_2$) \oplus ... \oplus ($\beta_m \wedge y_m$) \oplus δ . Отримаємо лінійний поліном:

$$(\alpha_1 \wedge \beta_1 \wedge y_1) \oplus (\alpha_1 \wedge \beta_2 \wedge y_2) \oplus \ldots \oplus (\alpha_1 \wedge \beta_m \wedge y_m) \oplus (\alpha_1 \wedge \delta) \oplus (\alpha_2 \wedge x_2) \oplus \ldots \oplus (\alpha_n \wedge x_n) \oplus \gamma$$

Відповідно, клас лінійних функцій функціонально замкнений.

<u>Теорема 12.3.</u> Суперпозиція монотонних функцій ϵ функція монотонна. Відповідно, клас монотонних функцій ϵ функціонально замкненим.

Доведення. Нехай функції $f(x_1,...,x_n)$, $g_1(y_1,...,y_k)$,..., $g_n(y_1,...,y_k)$ монотонні. Побудуємо суперпозицію функцій $\varphi = f(g_1,...,g_n)$. Нехай α та β - два набори значень змінних $y_1,...,y_k$, до того ж $\alpha \leq \beta$. Через те, що функції $g_1,...,g_n$ монотонні, маємо:

$$g_1(\alpha) \leq g_1(\beta), \dots, g_n(\alpha) \leq g_n(\beta),$$

тому набори значень функцій впорядковані:

$$(g_1(\alpha),...,g_n(\alpha)) \leq (g_1(\beta),...,g_n(\beta)),$$

а через монотонність функції f маємо:

$$f(g_1(\alpha),...,g_n(\alpha)) \leq f(g_1(\beta),...,g_n(\beta)).$$

Звідси отримуємо $\varphi(\alpha) \leq \varphi(\beta)$. \blacktriangleright

<u>Теорема 12.4.</u> Клас функцій, які зберігають нуль, ϵ функціонально замкненим.

Доведення. Нехай функції $f(x_1,...,x_n), g_1(y_1,...,y_k), ..., g_n(y_1,...,y_k)$ зберігають нуль. Побудуємо суперпозицію функцій $\varphi = f(g_1,...,g_n)$. Тоді

$$\varphi(0,...,0) = f(g_1(0,...,0),...,g_n(0,...,0)) = f(0,...,0) = 0.$$

<u>Теорема 12.5.</u> Клас функцій, які зберігають одиницю, ϵ функціонально замкненим. Доведення аналогічно теоремі 12.4.

Нагадаємо, що за теоремою 10.1 клас самодвоїстих функцій є також функціонально замкненим.

Позначимо: T_0 – клас функцій, які зберігають 0; T_1 – клас функцій, які зберігають 1; S – клас самодвоїстих функцій; M – клас монотонних функцій; L – клас лінійних функцій.

12.4. Набори повних систем

<u>Означення 12.9.</u> Система функцій $(f_1,...,f_s)$ з P $(f_i \in P)$ називається **функціонально повною**, якщо будь-яка булева функція може бути записана у вигляді формули через функції цієї системи.

Наприклад, система P – множина всіх булевих функцій. Кількість функцій 2^{2^n} . Так, усі 16 функцій двох змінних утворюють повну систему. Система функцій $\{\neg, \land, \lor\}$ є також повною. Але система $\{0, 1\}$ не є повною. Звідси маємо таку теорему.

<u>Теорема 12.6.</u> Нехай задано дві системи функцій $A = \{f_1, ..., f_n\}$ та $B = \{g_1, ..., g_m\}$, відносно яких відомо, що система A повна і кожна її функція виражається у вигляді формули через функції системи B. Тоді система B також ϵ повною.

Доведення. Нехай h — довільна функція, h∈P. З урахуванням повноти системи A, h можна виразити як

$$h = C(f_1, \ldots, f_n),$$

де C – деяка формула. За умовою:

$$f_1 = C_1(g_1,...,g_m), ..., f_n = C_n(g_1,...,g_m).$$

Тому у формулі $h = C(f_1, ..., f_n)$ можна замінити f_i відповідно до цих рівностей і отримати наступне:

$$h = C(f_1,...,f_n) = C(C_1(g_1,...,g_m),...,C_n(g_1,...,g_m)).$$

Цей вираз визначає формулу B з будовою C':

$$C(C_1(g_1,...,g_m),...,C_n(g_1,...,g_m))=C'(g_1,...,g_m).$$

Таким чином, В належить до повних систем. ▶

Спираючись на цю теорему, можна встановити повноту ще кількох систем і таким чином розширити список повних систем.

Так система функцій $\{\neg, \land\}$ є повною. Це доводиться за допомогою теореми 12.6, де система $A = \{\neg, \land, \lor\}$, а функція диз'юнкцції виражається через \neg та \land наступним чином:

$$x \vee y = \overline{\overline{x} \wedge \overline{y}}$$
.

Так само можна довести, що система $\{\neg, \lor\}$ є повною.

Системи функції, що складаються лише з функції Шеффера або лише з функції стрілки Пірса ε також повними.

Функціонально повна система утворює базис у логічному просторі.

<u>Означення 12.10.</u> Система функцій називається **мінімально повним базисом**, якщо вилучення з неї будь-якої функції перетворює цю систему на неповну.

<u>Теорема 12.7</u> (Поста). Для того, щоб система функцій була повною, необхідно і достатньо, щоби вона містила хоча б одну немонотонну функцію, хоча б одну несамодвоїсту функцію, хоча б одну функцію, що не зберігає нуль, та хоча б одну функцію, що не зберігає одиницю.

Доведення. Необхідність умови теореми випливає з функціональної замкненості та неповноти класів монотонних, лінійних, самодвоїстих функцій та функцій, які зберігають 0 та 1. Доведено (теореми 10.1, 12.2-12.5), що функція, яка не належить даному функціональному замкненому класові, не може бути побудована шляхом суперпозиції функцій цього класу.

Для доведення достатності покажемо, що за допомогою функцій, які не належать деяким з класів T_0 , T_1 , S, M, L, можна побудувати деяку повну систему функцій. Такою повною систему ϵ , наприклад, заперечення та кон'юнкція. Дійсно, довільна булева функція може бути представлена у вигляді ДДНФ, тобто як суперпозиція \neg , \wedge , \vee . Відповідно, система $\{\neg, \wedge, \vee\}$ ϵ функціонально повною. Можна виключити з неї \vee , так що вона може бути представлена як суперпозиція \neg та \wedge : $x \vee y = \overline{x} \wedge \overline{y}$.

Спочатку побудуємо константи. Почнемо з константи 1. Нехай $\varphi(x) = f_0(x,...,x)$, де f_0 — функція, що не зберігає нуль. Тоді $\varphi(0) = f_0(0,...,0) \neq 0$, тобто $\varphi(0) = 1$. Можливі два випадки:

- 1) φ (1) = 1. В цьому випадку формула φ реалізує 1.
- 2) $\varphi(1) = 0$. Тоді формула φ реалізує заперечення. В цьому випадку розглянемо несамодвоїсту функцію f_* . Маємо:

$$\exists \alpha_1,...,\alpha_n \ f_*(\alpha_1,...,\alpha_n) \neq \overline{f_*(\overline{\alpha}_1,...,\overline{\alpha}_n)}.$$

Відповідно:
$$f_*(\alpha_1,...,\alpha_n) = f_*(\overline{\alpha}_1,...,\overline{\alpha}_n)$$
. Нехай тепер $\psi(x) = f_*(x^{\alpha_1},...,x^{\alpha_n})$. Тоді: $\psi(0) = f_*(0^{\alpha_1},...,0^{\alpha_n}) = f_*(\overline{\alpha}_1,...,\overline{\alpha}_n) = f_*(\alpha_1,...,\alpha_n) = f_*(1^{\alpha_1},...,1^{\alpha_n}) = \psi(1)$.

Таким чином, $\psi(0) = \psi(1)$, звідки $\psi = 1$ або $\psi = 0$. Якщо $\psi = 1$, то ми побудували константу 1. В іншому випадку ψ реалізує 0, а тому, $\varphi(\psi(x)) = 1$.

Константа 0 будується аналогічно, тільки замість f_0 треба брати f_1 – функцію, що не зберігає 1.

За допомогою немонотонної функції підстановкою в неї констант можна побудувати заперечення. Дійсно, нехай f_M — немонотонна функція. Тоді існують набори α та β , такі, що α передує β , тобто $\alpha \leq \beta$, а $f_M(\alpha) = 1$, $f_M(\beta) = 0$. Оскільки $\alpha \leq \beta$, то у α є декілька, наприклад, k елементів, які рівні 0, в той час як у β ті ж самі елементи рівні 1. Візьмемо набір α та замінимо в ньому перший такий нульовий елемент на 1, отримаємо набір $\alpha^!$: $\alpha \leq \alpha^!$, який відрізняється від α тільки одним елементом (такі набори мають назву сусідніх). Повторюючи цю операцію k разів, отримаємо послідовність наборів $\alpha \leq \alpha^! \leq \dots \leq \alpha^{k-1} \leq \beta$, в якій кожні два сусідніх набори відрізняються один від одного тільки одним елементом. В цьому ланцюжку знайдуться два таких набори α^i , α^{i+1} , що α^i , α^i , а решта елементів однакові. Підставимо у α^i щі значення. Тоді отримаємо функцію α^i , α^i , яка залежить тільки від α^i . Тоді α^i , α^i , яка залежить тільки від α^i . Тоді α^i , α^i , яка залежить тільки від α^i . Тоді α^i , α^i

Побудуємо кон'юнкцію за допомогою підстановки у нелінійну функцію констант та використання заперечення. Дійсно, нехай f_L — нелінійна функція. Тоді в її поліномі Жегалкіна існує нелінійний доданок, який містить кон'юнкцію принаймні двох змінних. Нехай, для визначеності, це x_1 та x_2 . Тоді:

$$f_L = (x_1 \wedge x_2 \wedge f_a(x_3,...,x_n)) \oplus (x_1 \wedge f_b(x_3,...,x_n)) \oplus (x_2 \wedge f_c(x_3,...,x_n)) \oplus f_d(x_3,...,x_n),$$
 до того ж $f_a(x_3,...,x_n) \neq 0$. Відповідно, $\exists \alpha_3,...,\alpha_n$ $f_a(\alpha_3,...,\alpha_n) = 1$. Нехай $b = f_b(\alpha_3,...,\alpha_n)$, $c = f_c(\alpha_3,...,\alpha_n)$, $d = f_d(\alpha_3,...,\alpha_n)$ та

$$\varphi(x_1, x_2) = f_L(x_1, x_2, \alpha_3, \dots, \alpha_n) = (x_1 \land x_2) \oplus (x_1 \land b) \oplus (x_2 \land c) \oplus d.$$

Тоді нехай

$$\psi(x_1, x_2) = \varphi(x_1 \oplus c, x_2 \oplus b) \oplus (b \wedge c) \oplus d$$
.

Тоді

$$\psi(x_1, x_2) = (x_1 \oplus c) \land (x_2 \oplus b) \oplus b \land (x_1 \oplus c) \oplus c \land (x_2 \oplus b) \oplus d \oplus (b \land c) \oplus d =$$

$$= (x_1 \land x_2) \oplus (c \land x_2) \oplus (b \land x_1) \oplus (b \land c) \oplus (b \land x_1) \oplus (b \land c) \oplus (c \land x_2) \oplus (b \land c) \oplus d \oplus (b \land c) \oplus d =$$

$$= x_1 \land x_2.$$

(Функція $x \oplus \alpha$ можна виразити, так як $x \oplus 1 = \overline{x}$, $x \oplus 0 = x$). \blacktriangleright

Наприклад, перевіримо повноту системи $\{\neg, \rightarrow\}$. Для цього укладемо таблицю Поста (табл. 12.1). Якщо функція входить у функціонально замкнений клас, то в таблиці Поста у відповідній комірці ставиться знак "+", інакше - знак "-".

	T_0	T_1	S	M	L
1	_	_	+	_	+
\rightarrow	_	+	_	_	_

Табл. 12.1. Таблиця Поста для системи $\{\neg, \to\}$.

Функція \bar{x} не зберігає 0 та 1, так як на нульовому наборі вона приймає значення 1, а на одиничному — значення 0. Очевидно, що дана функція немонотонна. Функція є самодвоїстою, так як на протилежних наборах вона приймає протилежні значення. Функція лінійна — її поліном Жегалкіна: $\bar{x} = x \oplus 1$.

Функція $x \rightarrow y$ не зберігає 0 та зберігає 1. Ця функція немонотонна, так як набір (0,0) передує наборові (1,0), але $0 \rightarrow 0 = 1$, а $1 \rightarrow 0 = 0$. На протилежних наборах (0,0) та (1,1) функція

приймає значення 1, відповідно, вона несамодвоїста. Для перевірки лінійності $x \rightarrow y$ побудуємо її канонічний поліном Жегалкіна:

$$x \to y = (\overline{x} \land \overline{y}) \lor (\overline{x} \land y) \lor (x \land y) = ((x \oplus 1) \land (y \oplus 1)) \oplus ((x \oplus 1) \land y) \oplus (x \land y) =$$
$$= (x \land y) \oplus x \oplus 1.$$

Функція нелінійна, так як містить елемент $x \wedge y$.

Система функцій $\{\neg, \rightarrow\}$ повна, так як в кожному стовпці таблиці Поста 12.1 ϵ хоча б один знак "—".