<u>Lecture 3</u> 2025 - 09-02

Last time: propagating ODEs

Today: smooth, unconstrained optimization

$$\min_{x} f(x)$$

subject to: $g_{\tilde{\epsilon}}(x) \leq 0$ $c = 1, ..., n_{\tilde{\epsilon}}$ $h_{\tilde{\epsilon}}(x) = 0$ $\tilde{\epsilon} = 1, ..., n_{eq}$

gradient: if
$$f: \mathbb{R}^n \to \mathbb{R}$$
 and $\underline{f} \in \underline{\mathcal{C}}$

i.e., \underline{f} has a $|\underline{f}|$
 $derivative$

$$\nabla \underline{f} = \begin{pmatrix} \vdots \\ \partial f/\partial x_n \end{pmatrix} \in \mathbb{R}^n$$

Hessran: if f: IRn → IR and fe ez F has 2nd dernative

Symmetric matrix in 12 nxn

usage: construct 2rd-order approximation about \overline{x}

 $f(x) \approx f(x) + \nabla_x f(x)^T \delta_x + \frac{1}{2} \delta_x^T \nabla_{xx} f(x)$ δ_x

+ higher order terms

e.g. $f(x) = c^T x$ where $c \in \mathbb{R}^n$

Jacobren: if
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 and $f \in \mathcal{C}'$

$$J = \frac{\partial f_1/\partial x}{\partial f_m/\partial x} \frac{\partial f_m/\partial x}{\partial x_m \partial x_n} \frac{\partial f_m/\partial x}{\partial x_m \partial x_n}$$

e.g. if
$$A = \begin{pmatrix} -a, - \\ \vdots \\ -a_m - \end{pmatrix} \in \mathbb{R}^{m \times n}$$

$$f(x) = A_X \rightarrow \frac{2f}{8x} = A$$

min
$$f(x)$$

 $f(x) = 0$ $z = 1, ..., nineq$
 $f(x) = 0$ $z = 1, ..., neq$

feasible set for P:

$$\int = \{ x \in \mathbb{R}^n \mid g_i(x) \leq O \ \forall i \in [1, n_{eq}] \}$$
and $h_i(x) = O \ \forall i \in [1, n_{eq}] \}$

E- ball:

$$B_{\varepsilon}(x) = \xi y \in \mathbb{R}^n | \lambda(x,y) \leq \varepsilon$$

scalar case (x)

Local manimizer: X* E SL is a local minamizer of

P if $\exists B_{\varepsilon}(x^{*})$ for $\varepsilon>0$ such that: $f(y) \geq f(x^{*}) \quad \forall y \in B_{\varepsilon}(x^{*})$

(lobal minimizer: $x^* \in JL$ is a global minimizer of P if $f(y) \ge f(x^*)$ $\forall y \in JL$

Salrent guestions:

- 1. How to determine if x* is a local manager?
- 2. How many local minima are there?
- 3. Is a local manamizer the global one?

Categories:

- Convex Vs. non-convex

- Continuous vs. discrete XEIR" XEZI
- Constrained us un constrained
- Determinastic vs. stochastic

Today's focus: smooth and unconstrained

P

 $\min_{x} f(x)$

x ETR" (unconstrained)

fe C2 (smooth)

Comment on

notation:

we've used

subscripts to denote "I'me"

we'll now use supersurpt to denote Heratron:

How does our definition of a local manamazer pertam to solving ??

we want $f(x^*)$ such that $f(x^* + 6x) \ge f(x^*)$ "close" $f(x^*) + \nabla f(x^*) + \nabla f(x^*)$

we want this to be true $\forall Sx \rightarrow \nabla f(x^*) = 0$

How to solve for this? Use rtenative approach pseudo-code: given $x^{(k)} = x^{(k)} - a \nabla f(x^{(k)})$ if $\|\nabla f(x^{(k)})\|_2 \le \varepsilon_{01}$ terminate

- a is the step size or learning rate
- -> two ways we'll discuss today:
 - 1. Newton's method
 - 2. Badracking Ine search
- 1. Newton's method: use 2rd-order Taylor expansion

 $f(\overline{x} + \delta_{x}) \approx f(\overline{x}) + \nabla f(\overline{x})^{T} \delta_{x} + \frac{1}{2} \delta_{x}^{T} \nabla_{xx} f(\overline{x}) \delta_{x} H$ $= f(\overline{x}) + \nabla f(\overline{x})^{T} \delta_{x} + \frac{1}{2} \delta_{x}^{T} H \delta_{x} := \overline{f}$

$$\neg \nabla_{x} \mathcal{F} = \nabla f(\overline{x}) + H \delta_{x} = 0$$

$$\Rightarrow \delta x = -H^{-1} \nabla f(\overline{x}) = - (\nabla_{xx} f(\overline{x}))^{-1} \delta x$$

$$d = (\nabla_{xx} f(\overline{x}))^{-1}$$

 \rightarrow if f(x) is quadratic, Newton method will converge in one iteration.

Since Newton method computes inverse of $\nabla_{xx} \mathcal{S}(\bar{x})$ requires $\Theta(n^3)$ flops \Rightarrow intractable for large n

2. backtracking line search: ptok largest a>0 such that $f(\overline{x}-a\nabla f(\overline{x})) < f(\overline{x})$

two stronger alternatives include:

Wolfe conditions: if d(h) is descent direction:

1.
$$f(x^{(k)} + a d^{(k)}) \leq f(x^{(k)}) + c_1 a d^{(k)} \nabla f(x^{(k)})$$
 Condition

2.
$$-d^{(R)T}\nabla f(x^{(R)}+ad^{(R)}) \leq -c_2d^{(R)T}\nabla f(x^{(R)})$$

Strong Wolfe conditions: includes preceding two conditions (Aimijo + curvature) and adds:

3.
$$|\lambda^{(n)T} \nabla f(x^{(n)} + a\lambda^{(n)})| \leq c_2 |\lambda^{(n)T} \nabla f(x^{(n)})|$$

Going back to P, pseudo-code:

given
$$x^{(0)}$$

for $k=1,...,N_{max}d^{(k)}=-\nabla_{x}f(x^{(k-1)})$
where $x^{(k-1)}$ is the search $x^{(k-1)}$ is $x^{(k-1)}$. The search $x^{(k-1)}$ is $x^{(k-1)}$ in $x^{(k-1)}$ is $x^{(k-1)}$ is $x^{(k-1)}$ in $x^{(k-1)}$ is $x^{(k-1)}$ in $x^{(k-1)}$ is $x^{(k-1)}$ in $x^{(k-1)}$ in $x^{(k-1)}$ in $x^{(k-1)}$ is $x^{(k-1)}$ in $x^$