OTE Domácí úkol 3a - Rozdílový zesilovač

Vojtěch Michal

6. dubna 2022

V simulacích pro tuto úlohu bylo použito nastavení parametrů operačního zesilovače uvedené v tabulce 1. Symbolem u_3 označuji napětí na výstupu operačního zesilovače proti zemi, napětí u_2 a u_1 jsou po řadě napětí kladného a záporného vstupu rozdílového zesilovače proti zemi (konvence použitá v zadání).

parametr	symbol	hodnota	jednotka	poznámka
Vstupní napěťový offset	U_0	1	mV	
Vstupní klidový proud	$I_{ m B}$	50	$_{ m nA}$	$(I_{\rm BP} + I_{\rm BN})/2$
Vstupní zbytkový proud	I_0	20	$_{ m nA}$	$I_{ m BP}-I_{ m BN}$
Zesílení v otevřené smyčce	$A_{ m D}$	200	$\rm kVV^{-1}$	
Tranzitní kmitočet	f_T	1	MHz	

Tabulka 1: Parametry operačního zesilovače použité pro simulaci

1 Zbytková napětí

Obrázek 1: Zapojení pro změření zbytkového výstupního napětí rozdílového zesilovače

Multimetrem byly změřeny hodnoty zbytkových výstupních napětí uvedené v tabulce 2, použité zapojení je na obrázku 1.

jmenovité rozdílové zesílení G_{D}	výstupní zbytkové napětí
2	-3,4 mV
4	$-5.8~\mathrm{mV}$
8	$-10.6~\mathrm{mV}$
16	-20.2 mV

Tabulka 2: Naměřená výstupní zbytková napětí rozdílového zesilovače v závislosti na zesílení

1.1 Odvození vstupních zbytkových napětí

Předpokládám $u_1=u_3=0$ V. Kvůli klidovému proudu $I_{\rm BN}$ je napětí na invertující svorce OZ rovno

$$u_{-} = -(R_1||R_2)I_{\rm BN} = -\frac{R_1R_2}{R_1 + R_2}I_{\rm BN}.$$
 (1)

Aby byl splněn předpoklad $u_3 = 0V$, potřebují na neinvertující vstup dostat napětí

$$u_{+} = u_{-} + U_{0}, \tag{2}$$

kde U_0 je vstupní zbytkové napětí samotného OZ dle 1. Protože dále dle Kirchhoffova zákona proudů, aplikovaného na uzel u neinvertující svorky, platí

$$\frac{u_2 - u_+}{R_3} = I_{\text{BP}} + \frac{u_+}{R_4},
u_2 = u_+ + R_3(I_{\text{BP}} + \frac{u_+}{R_4}),
u_2 = R_3I_{\text{BP}} + \frac{R_3 + R_4}{R_4}u_+,$$
(3)

je vstupní zbytkové napětí rozdílového zesilovače rovno

$$u_2 = R_3 I_{\rm BP} + \frac{R_3 + R_4}{R_4} (U_0 - \frac{R_1 R_2}{R_1 + R_2} I_{\rm BN}). \tag{4}$$

S použitím diagonalizační podmínky ${\cal R}_1 = {\cal R}_3$ a ${\cal R}_2 = {\cal R}_4$ po úpravách platí

$$u_{2} = R_{1}I_{BP} + \frac{R_{1} + R_{2}}{R_{2}}(U_{0} - \frac{R_{1}R_{2}}{R_{1} + R_{2}}I_{BN}),$$

$$u_{2} = R_{1}I_{BP} + \frac{R_{1} + R_{2}}{R_{2}}U_{0} - R_{1}I_{BN}.$$
(5)

Výsledky dosazení různých hodnot odporu R_2 do rovnice (5) jsou v tabulce 3, kde jsou porovnány s hodnotami ze simulací při fixovaném $R_1 = 10 \mathrm{k}\Omega$. Výpočty byly prováděné v prostředí MATLAB vyhodnocením výrazu R2 = 10e3; R1 = 10e3; IBP = 60e-9; IBN = 40e-9; U0 = 1e-3; R1 * IBP + (R1 + R2) / R2 * U0 - R1 * IBN. Simulačně bylo vstupní zbytkové napětí získáno zapojením záporné zpětné vazby dle schématu 2 regulující výstupní napětí rozdílového zesilovače na nulu. Vypočtená napětí dokonale odpovídají výsledkům simulace.

$R_2 [k\Omega]$	vypočtené vstupní zbytkové U	simulované vstupní zbytkové U
10	2.2 mV	2,2 mV
20	$1.7 \mathrm{mV}$	1.7 mV
40	$1{,}45~\mathrm{mV}$	1,45 mV
80	$1{,}325~\mathrm{mV}$	$1{,}325 \text{ mV}$
160	$1,26~\mathrm{mV}$	1,263 mV

Tabulka 3: Vypočítaná a změřená vstupní zbytková napětí rozdílového zesilovače

2 Frekvenční charakteristika rozdílového zesílení $G_{\mathbf{D}}$

S pomocí zapojení na schématu 3 a funkce AC sweep byly získány frekvenční charakteristiky rozdílového zesílení pro $G_D \in \{4,16\}$, které jsou vykresleny na obrázkách 4 a 5. Mezní kmitočty pro jednotlivá rozdílová zesílení jsou zanesena v tabulce 4 a odpovídají analytickému vztahu pro gain-bandwidth product $f_m \cdot (G_D + 1) = f_T$.

Obrázek 2: Zpětnovazební zapojení pro zjištění vstupního zbytkového napětí rozdílového zesilovače

Obrázek 3: Zapojení pro získání frekvenční charakteristiky rozdílového zesílení $G_{\rm D}$

rozdílové zesílení $G_{\rm D}$	mezní kmitočet f_m [kHz]
1	500
2	330
4	200
8	112
16	58

Tabulka 4: Závislost mezní frekvence na rozdílovém zesílení

3 Frekvenční charakteristika souhlasného zesílení $G_{\mathbf{C}}$

S pomocí zapojení na schématu 6 a funkce AC sweep byly získány frekvenční charakteristiky souhlasného zesílení pro $G_D \in \{4, 16\}$, které jsou vykresleny na obrázkách 7 a 8.

Mezní kmitočty jsou stejné jako u rozdílových zesílení (viz tabulka 4), frekvenční charakteristika má derivační charakter - vyšší kmitočty jsou propouštěny lépe než nižší. Srovnání CMRR pro různá zesílení a frekvence je v tabulce 5. Hodnoty souhlasného zesílení $G_{\rm C}$ jsou uvedeny v decibelech a tedy platí CMRR = $G_{\rm D}-G_{\rm C}$.

Stejnosměrné souhlasné rušení lépe potlačuje méně zesilující rozdílový zesilovač (pro $G_{\rm D}=4=12{\rm dB}$ je CMRR = 164dB), naopak na vyšších frekvencích léep potlačuje více zesilující zesilovač (pro $G_{\rm D}=16=24{\rm dB}$ je CMRR = 109dB).

Obrázek 4: Frekvenční charakteristika rozdílového zesílení pro $G_{\rm D}=4$

Obrázek 5: Frekvenční charakteristika rozdílového zesílení pro $G_{\rm D}=16$

Obrázek 6: Zapojení pro získání frekvenční charakteristiky souhlasného zesílení $G_{\rm C}$

$$\begin{array}{c|cccc} & G_{\rm D} = 12 {\rm dB} & G_{\rm D} = 24 {\rm dB} \\ \hline f \rightarrow 0 & -152 \ {\rm dB} & -136 \ {\rm dB} \\ f \rightarrow \infty & -73 \ {\rm dB} & -85 \ {\rm dB} \\ \end{array}$$

Tabulka 5: Závislost souhlasného zesílení $G_{\rm C}$ na frekvenci fa $G_{\rm D}$

Obrázek 7: Frekvenční charakteristika souhlasného zesílení pro $G_{\rm D}=4$

Obrázek 8: Frekvenční charakteristika souhlasného zesílení pro $G_{\rm D}=16$

4 Doba náběhu

S pomocí generátoru obdélníkového signálu a osciloskopu zapojeného dle schématu 9 byly zachyceny časové průběhy vykreslené na obrázkách 10a a 10b. Pomocí kurzorů byly odečteny doby náběhu $T_n=1,858$ µs pro $G_{\rm D}=4$ a $T_n=6,068$ µs pro $G_{\rm D}=16$. Oba odpovídají očekávaným dobám náběhu vypočteným dle vztahu $T_n\approx 0,35/f_m$.

Obrázek 9: Zapojení pro měření doby náběhu

Obrázek 10: Měření doby náběhu ${\cal T}_n$ rozdílového zesilovače