Zedong Wang

Dunyu Road 600
310030 Hangzhou
China
+86 136 0259 1515
jackywang28@outlook.com
wangzedong@westlake.edu.cn
jacky1128.github.io

Google Scholar 🞓

Twitter **y**

OpenReview 🕋

LinkedIn in

GitHub 😱

Citations: 65, H-index: 4

Contribute: 2, Stars: 625

Short Biography

I am an HK-born researcher. I obtained my B.Eng. in Electronic and Information Engineering from HUST. My research interests center around visual representation learning from 3 aspects: (i) Data mixing augmentation and label efficient learning (Data-level); (ii) Efficient deep network architecture design (Network-level); (iii) Vector Quantized representation learning and generation (Framework-level). Moreover, I am also interested in AI for Genomics applications. Currently, I am a visiting student in CAIRI AI Lab under Chair Prof. Stan Z. Li (IEEE Fellow, IAPR Fellow) at Westlake University. Previously, I worked on few-shot semantic segmentation fortunately supervised by Prof. Xinggang Wang at HUST. I was a visiting student at MMLab, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) in 2021 summer. Before that, I conducted a research internship remotely at Key Lab of Digital Earth Science, CAS, 2020.

Education and Degrees

2019 – 2023 B.Eng. in Electronic and Information Engineering, Huazhong University of Science and Technology.

- Multiple High Quality Computer Vision Research Experience | Undergrad Supervisor: Prof. Xinggang Wang.
- Graduation Thesis: Efficient Visual Backbone Architecture Design | Grade: 92/100 (First-Tier, Full Novelty Scores)
 Advisor: Prof. Xinggang Wang | Co-advisor: Chair Prof. Stan Z. Li
- High GPA in Al-related core courses (90.0/100 in Average): Introduction to Green Communications (95/100), Engineering Training (94/100), Multimedia Retrieval (93/100), Graduation Thesis (92/100), Software Project (92/100), Principles and Applications of Sensors (90/100), Python programming (87/100), Capstone Project in Machine Intelligence (87/100), Deep Learning and Computer Vision (87/100), Machine Learning (85/100) etc.

Research Experience

Dec. 2023 Ph.D. Offer, Advisor: Chair Prof. Stan Z. Li, Al Division, School of Engineering, Westlake University.

Jun. 2023 China Society of Image and Graphics (CSIG) Student Member, CS/G

Dec. 2022 Ph.D. Offer (fail to enroll due to my HK origin), Al Division, School of Engineering, Westlake University.

Sep. 2022 – Visiting Student (visual representation learning), CAIRI AI Lab (Chair Prof. Stan Z. Li Lab), Westlake University.

Present

(i) Data Mixing for visual representation learning. | Co-first author: SAMix; Maintenance: OpenMixup (530 stars on GitHub).

(ii) Efficient Network Architecture Design for visual representation learning. | Co-first author: MogaNet (95 stars on GitHub).

(iii) Semi-supervised Learning & Vector Quantized Representation Learning. | SemiReward; OpenSTL (NeurlPS 2023).

(iv) Genomic Sequence Pre-training with Vector Quantization Network.

Jul. 2022 – Summer Research Studentship, School of Engineering, Westlake University.

Sep. 2022 Advisor: Chair Prof. Stan Z. Li (2 selected out of 100+ applicants) | Research Topic: Visual Representation Learning.

Sep. 2021 - Research Intern, HUST Vision Lab, School of EIC, Huazhong University of Science and Technology.

Jun. 2022 Advisor: Prof. Xinggang Wang | Research Topic: Efficient Visual Recognition & Few-shot Semantic Segmentation.

Jul. 2021 - Visiting Student, MMLab, Shenzhen Institute of Advanced Tech. (SIAT), Chinese Academy of Sciences.

Sep. 2021 Advisor: Dr. Bin Fu | Research Topic: Semantic Segmentation.

Sep. 2020 - Research Intern, Key Lab of Digital Earth Science, Chinese Academy of Sciences.

Apr. 2021 Advisor: Dr. Xiaoping Du | Research Topic: High Resolution Remote Sensing Building Semantic Segmentation.

Languages and Strengths

Chinese (native), English (fluent). **IELTS 7.5 (2023)** overall grades, **CET-4 646** overall grades. Python DL Libraries, PyTorch, Git, Anaconda, Linux (basic), $I^{AT}E^{X}$, All-round Research Skills. Great Research **Taste**, **Enthusiasm**, Recognized **Writing & Story Telling** Skills.

■ Publications (*: Equivalent Contribution. †: Corresponding Author. Links are provided)

NeurIPS 2023 OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning.

Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, **Zedong Wang**, Zicheng Liu, Lirong Wu, Stan Z. Li[†]

- The first comprehensive benchmarking study for spatio-temporal predictive learning that categorized prevalent approaches into recurrent-based and recurrent-free models.
- The first modular and extensible framework implementing various state-of the art methods. Impartial evaluations and analysis are conducted across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow, weather forecasting.
- Surprisingly, we find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
- All positive ratings in NeurIPS 2023 (6,6,7,7) | Accepted as Poster by NeurIPS 2023

to ICLR 2024 Efficient Multi-order Gated Aggregation Network.

Siyuan Li*, **Zedong Wang***, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin Zheng, Stan Z. Li[†]

- The first network backbone design through the lens of multi-order game-theoretic interaction, which portrays inter-variable interaction effects w.r.t. varying scale of context via game theory.
- The most representative interaction strengths are emphasized by the proposed spatial gated aggregation and channel reallocation module, leading to better representation learning quality.
- Impressive scalability and superior performance with a more efficient use of model parameters than state-of-the-art ViTs and ConvNets on various computer vision benchmarks.
- Spontaneously forwarded by world-wide media (Twitter, Zhihu, Wechat) with high appraisal.
- Two Weak Accept ratings in CVPR 2023, One Strong Accept rating in ICCV 2023.

to CVPR 2024 Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup. Siyuan Li*, Zicheng Liu*, Zedong Wang*, Di Wu, Zihan Liu, Stan Z. Li†

- A unified online-optimizable mixup framework that first addresses the two remaining critical issues at once: (i) Drastic performance variation over different scenarios caused by trivial solutions; (ii) Self-supervised learning (SSL) dilemma for online-optimizable mixup policies.
- To reduce the computational cost from online training, a pre-trained version is presented.
- Exceptional performance and generalizability across 12 SL and SSL image benchmarks.

to ICLR 2024 OpenMixup: Open Mixup Toolbox for Visual Representation Learning. Siyuan Li*, Zedong Wang*, Zicheng Liu*, Di Wu, Stan Z. Li[†]

- The first comprehensive mixup visual classification benchmark. where 16 representative mixup algorithms are impartially evaluated from scratch across 12 visual classification datasets, ranging from classical iconic scenarios to fine-grained, long-tail, and scenic cases.
- The first standardized mixup-based vision model design and training codebase framework OpenMixup for customized visual classification.
- Interesting observations are derived through extensive empirical analysis on various scenarios.
- Spontaneously retweeted by Prof. Sebastian Raschka (Twitter) with high appraisal.
- Spontaneously reported by Lightning Al official account (Twitter) as 'weakly highlights in Al'. (the same session as pytorch's departure of facebook)

to ICLR 2024 SemiReward: A General Reward Model for Semi-supervised Learning.

Siyuan Li*, Weiyang Jin*, **Zedong Wang**, Fang Wu, Zicheng Liu, Cheng Tan, Stan Z. Li[†]

- The first online-optimizable reward model that predicts reward scores to filter out high-quality pseudo labels for semi-supervised representation learning (both classification and regression).
- State-of-the-art across 12 classification and regression semi-supervised learning benchmarks.