Lista de exercícios 1

Preparação de Dados de Entrada

Distribuições de Probabilidade
Testes de adequação χ² e KS
Correlação Linear
Geração de nos pseudo-randômicos

- 1. Dados os seguintes tempos (absolutos, em segundos) em um processo de chegada de clientes em um banco: 7, 9, 10, 15, 19, 29, 31, 34, 35, 38, 44, 46, 55, 59, 66, 69. Levando em consideração os tempos entre as chegadas (TECs) construa um gráfico a partir das classes a seguir, que mostram o número de ocorrências para cada intervalo: 0 a 3 seg, 3 a 6 seg, 6 a 9 seg, >9 seg. (considerar os intervalos fechados-abertos, i.e., a primeira classe vai de 0 a 2,99999 seg). Supondo que consideremos uma curva exponencial satisfatória para representar este conjunto de dados, encontre a média deste conjunto e calcule qual seria a chance de se obter um TEC menor ou igual a 12 seg.
- Supondo os seguintes tempos (absolutos, em segundos) em um processo de chegada de clientes em um caixa de banco: 0, 2, 7, 14, 16, 21, 30, 37, 43, 54, 60, 67, 72, 83, 90, 97, 106, 115, 122, 131. Levando em consideração os tempos entre as chegadas (TECs) construa um gráfico a partir das classes a seguir, que mostram o número de ocorrências para cada intervalo: $-\infty$ a 2 seg, 2 a 4 seg, 4 a 6 seg, 6 a 8 seg, 8 a 10 seg, 10 a 12 seg, 12 a $+\infty$ seg. (considerar os intervalos fechados-abertos, i.e., a primeira classe vai de $-\infty$ a 1,99999 seg). Supondo que consideremos uma curva normal satisfatória para representar este conjunto de dados, encontre a média e o desvio-padrão deste conjunto de dados. A seguir, teste a hipótese de que não há diferença significativa entre este conjunto em uma curva normal com esta média e desvio-padrão. Para isto, calcule a normal correspondente e faça o teste do χ^2 , supondo um nível de signif. de 5% (0,05).

 3. Considerando as seguintes freqüências para as 5 classes abaixo, testar se o conjunto
- 3. Considerando as seguintes freqüências para as 5 classes abaixo, testar se o conjunto de dados se adequa a uma curva exponencial; para isto encontre o valor médio deste conjunto (dentro destas classes), calcule a curva exponencial para estas classes (considerando esta média) e faça o teste do χ^2 , supondo um nível de signif. de 5% (0,05).

/\/		
# classe	f	
1	6	Obs.: Supondo que fosse possível
2	5	uma contagem fracionária
3	2	
4	0,5	
5	0,5	

- 4. Realize o teste de adequação $\overline{\text{KS}}$ para o seguinte conjunto de dados: 2.7 / 3.5 / 19.4 / 8.1 / 1.1 / 24.9 / 5.7 / 12.3 / 6.4 / 15.3; supor α = 10% (0,1); fazer a comparação com uma curva exponencial (lembrete: na construção da tabela usar a equação da distrib. acumulada F(x) da exponencial);
- 5. Dada a tabela a seguir, construa um gráfico <u>Tempo de Simul</u>. X <u>Tamanho da Fila</u>, e em seguida calcule a equação da reta que melhor descreve este conjunto de pontos. Finalmente encontre o coeficiente de correlação (r) destas duas variáveis. A variável independente é o tempo de simulação e a dependente o tamanho da fila.

Tempo de simulação (segs)	Tamanho da fila (nº de clientes)
100	37
80	29
220	41
340	47
90	25
5	10
71	32
150	39

6. Gere uma sequência de $12 \, n^{os}$ pseudo-randômicos usando a abordagem (o método) LCG aditiva. Depois disto verifique se a sequência gerada esta uniformemente distribuída, utilizando para isto o método do χ^2 com um nível de signif. de 5%. Para este teste, montar as classes a partir dos seguintes intervalos: 0-20, 20-40, 40-60, 60-80, 80-100. Os valores a seguir devem ser usados para a geração: Xo=7 a=2 c=2 m=100