页码	位置	原文	勘误
1	正文倒数第6行	赫喇帕斯	赫拉帕斯 (注: 与上文统一)
17	(1)式下 1 行	将方程(1.3.10)和(1.3.11)合并之后	将方程(1.3.9)和(1.3.10)合并之后
19	(14)式	$\lim_{\varepsilon^* \to \infty} = \frac{\Sigma_1(\varepsilon^*)}{(\pi/6)\varepsilon^{*3/2}} = 1$	$\lim_{\varepsilon^* \to \infty} \frac{\Sigma_1(\varepsilon^*)}{(\pi/6)\varepsilon^{*3/2}} = 1$
20	倒数第3行	数 $\sum_N (oldsymbol{arepsilon}^*)$ 将渐近地等于	数 $\sum_N (E^*)$ 将渐近地等于
22	脚注 1	$\Delta/E = 0(E^{-1/2})$	$\Delta/E = O(E^{-1/2})$
26	(1.4.22a)式	$\cdots \exp\left(\frac{3S}{3Nk} - \frac{5}{3}\right)$	$\cdots \exp\left(\frac{2S}{3Nk} - \frac{5}{3}\right)$
27	第2行	我们从 (1.3.12b) 式和 (1.4.22a) 式求得	我们从 (1.3.12) 式和 (1.4.22a) 式求得
28	(2)式上5行	······把整序列的配容······	······把整个配容序列······
28	(2)式上 2 行	我们对于分布集合{n!}仍然采用了	我们对于分布集合 $\{n_i\}$ 仍然采用了 \cdots
28	(3)式上3行	而当给定系统的因子	而当给定的系统
28	(3)式下 1 行	偶而等于 1	偶尔等于1
30	习题 1.9	$\cdots + V \left(\frac{\partial S}{\partial V} \right)_{V,E} + \cdots$	$\cdots + V \left(\frac{\partial S}{\partial V}\right)_{N,E} + \cdots$
30	习题 1.15	考虑物质的量为 f_1 、 f_2 和······	考虑摩尔分数为 f_1 、 f_2 和
31	倒数第4行	······在6N维空间中看成为一个点.	······看成6N维空间中的一个点.

35	(14)式下 1 行	"来达到"后无换行。	
36	(2)式	$\omega \int' d\omega = \int' (d^{3N}q d^{3N}p)$	$\omega = \int' d\omega \equiv \int' (d^{3N}q d^{3N}p)$
26	(3)式下 5 行	正如由(2.2.13)式所给出的那样,系综的平均值	由(2.2.13)式所给出的系综平均值(f)获得了一个简单
36		〈f〉获得了一个简单的物理含义.	的物理含义.
37	倒数第8行	根据这个原理	根据这个假说
39	(7)式	最左边的a不加粗。	
50	(14)式	$\left\langle n_r \right\rangle = \omega_r \frac{\partial}{\partial \omega_r} \left(\ln \Gamma \right) \Big _{\text{fift } n_o = 1}$	$\left\langle n_{r}\right angle =\omega_{r}\left.rac{\partial}{\partial\omega_{r}}\left(\ln\Gamma ight) ight _{ m \mathfrak{M}_{7}\in\mathbb{N}}$
50	(15)式下 3 行	$\Gamma(N)$ 简单地就是 $(\omega_0 + \omega_1 + \cdots)^n$.	$\Gamma(N$)简单地就是 $\left(\omega_{0}+\omega_{1}+\cdots\right)^{N}$.
52	第 2 行	如果我们在垂直于实轴的方向上,通过 $z=x_0$ 点	如果我们在垂直于实轴的方向上行进通过 $z=x_0$ 点
		<mark>继续向前增加的话</mark>	的话
52	第 5 行	则被积函数在 $z=z_0$ 点出现一个最大值.	则被积函数在 $z=x_0$ 点出现一个最大值.
52	第8行	$\cdots \cdots x_0$ 点 <mark>极其邻近</mark> 区域	······x ₀ 点的紧近邻区域
53	(27)式	第二个约等号应为等号。	
54	(36)式	$\langle (\Delta n_r) \rangle^2 \equiv \cdots$	$\langle (\Delta n_r)^2 \rangle \equiv \cdots$
59	第4行	则系统 <mark>接连</mark> 的能量值······	则系统相邻的能量值

59	第7行	这将由相应的单态概率	这将由相关的单态概率
59	(8)式	$\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{e}^{\left(\beta' + \mathrm{i}\beta''\right)^{E}} Q(\beta' + \mathrm{i}\beta'') \mathrm{d}\beta''$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{(\beta' + i\beta'')E} Q(\beta' + i\beta'') d\beta''$
61	(7)式下1行	对于这些积分的任一个,我们都得到一个因子	我们得到因子
62	(14)式	$U \equiv -\left[\frac{\partial}{\partial \beta} (\ln Q)\right]_{\underline{E_r}} \equiv \cdots$	$U \equiv -\left[\frac{\partial}{\partial \beta} (\ln Q)\right]_{N,V} \equiv \cdots$
65	(8)式	$P(E) = e^{-\beta E} g(E) \cdots$	$P(E) \propto e^{-\beta E} g(E) \cdots$
67	3.7 节标题	两个定理——"均分"和"位力"	两个定理——"能量均分定理"和"位力定理"
70	(2)式下 1 行	"这里 $\hbar = h/2\pi$ "后漏译一句。	这表示对平均可及微观态数的经典计数——即 <i>kT</i> 除
			以量子谐振子的能量间隔。
71	第 2 行	它们本身就分布在各种不可分辨的振子能级上!	这些粒子自身分布在各个振子能级上,它们是不可 分辨的!
76	倒数第1行	Langevin, 1965a, b	Langevin, 1905a, b
79	(21)式	$M_z = M \bar{\mu}_z = \cdots$	$M_z = N\bar{\mu}_z = \cdots$
80	(25)式下1行		$\mathbb{P}_{\chi} \propto \frac{1}{T}$.
81	(27)式下1行	μ_{z} 几乎等于 μ_{B} .	$ar{\mu}_z$ 几乎等于 μ_B .

84	图 3.12 纵轴	$\frac{M}{N\mu}$	$rac{M}{N\mu_{ m B}}$
85	倒数第7行	U>0的区域 (因而 $T<0$)	U>0 (因而 $T<0$) 的区域······
87	(12)式	$\cdots + \frac{1}{2}\beta^2(\overline{\varepsilon^2} - \overline{\overline{\varepsilon}^2})$].	$\cdots + \frac{1}{2}\beta^2(\overline{\varepsilon^2} - \bar{\varepsilon}^2)$].
95	第3行	$C_H - C_M = -T \left(\frac{\partial H}{\partial T} \right)_M \left(\frac{\partial M}{\partial T} \right)_h$	$C_H - C_M = -T \left(\frac{\partial H}{\partial T}\right)_M \left(\frac{\partial M}{\partial T}\right)_H$
97	(6)式	$\ln \Omega'(N^{(0)}, E^{(0)}) - \frac{\mu'}{kT'} N_r - \frac{1}{kT'} E_s$	$\ln \Omega'(N^{(0)}, E^{(0)}) + \frac{\mu'}{kT'} N_r - \frac{1}{kT'} E_s$
134	(2)式下1行	$m{r}_i^\prime$ 应加粗。	
145	(19)式	$\frac{s}{k} \approx \cdots$	$\frac{S}{k} \approx \cdots$
150	(8)式	$\frac{\langle n_{\varepsilon}^{2} \rangle - \langle n_{\varepsilon} \rangle^{2}}{\langle n_{\varepsilon} \rangle^{2}} = \left(\frac{1}{\beta} \frac{\partial}{\partial \varepsilon}\right) \left\{\frac{1}{\langle n_{\varepsilon} \rangle}\right\} z^{-1} e^{\beta \varepsilon}$	$\frac{\langle n_{\varepsilon}^{2} \rangle - \langle n_{\varepsilon} \rangle^{2}}{\langle n_{\varepsilon} \rangle^{2}} = \left(\frac{1}{\beta} \frac{\partial}{\partial \varepsilon}\right) \left\{\frac{1}{\langle n_{\varepsilon} \rangle}\right\} = z^{-1} e^{\beta \varepsilon}$
152	(2)式	$\cdots = \frac{4\pi V}{h^2} \int_0^\infty \frac{1}{z^{-1} e^{\beta \varepsilon(p)} + a} p^2 dp$	$\cdots = \frac{4\pi V}{h^3} \int_0^\infty \frac{1}{z^{-1} e^{\beta \varepsilon(p)} + a} p^2 dp$
153	(5)式	"所有的 u "中, u 应加粗。	
163	(28)式	$j_{$ 核-转动 $}^{(F,D,)}(T)=\cdots$	$j_{$ 核-转动 $}^{(F.D.)}(T)=\cdots$
196	(3)式	$u(\omega)d\omega = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3 d\omega}{e^{\hbar_{\omega}/kT} - 1}$	$u(\omega)d\omega = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3 d\omega}{e^{\hbar \omega/kT} - 1}$
266	图 9.1 中	<i>V</i> > 5000 km/s	$v > 5000 \mathrm{km/s}$

329	(2b)式	$\{\psi(r), \psi(r')\} = \{\psi^{\dagger}(r), \psi^{\dagger}(r')\} = 0$	$\{\psi(\mathbf{r}),\psi(\mathbf{r}')\}=\{\psi^{\dagger}(\mathbf{r}),\psi^{\dagger}(\mathbf{r}')\}=0$
330	(10)式	$\widehat{N}_{m{\psi}}(m{r}) \Psi_{NE} angle$	$\widehat{N}\psi(m{r}) \Psi_{NE} angle$
391	(5)式下1行	式子中出现了能量差(3)	此式与能量差(3)是一致的
393	(17)式	$N = N N_+$	$N_{-}=N-N_{+}$
473	第3行	张家骅证明了	张承修证明了
602	(3)式	$\sum_{q'} P_{\text{\tiny $\#$}}(q') W(q' \to q) = P_{\text{\tiny eq}}(q) \sum_{q'} W(q' \to q)$	$\sum_{q'} P_{\text{Pff}}(q') W(q' \to q) = P_{\text{Pff}}(q) \sum_{q'} W(q' \to q)$
615	(3)式	等号左边的k不应加粗。	
634	(9)式	$N \approx \frac{L^3}{\lambda^3} \left[g_{3/2} \left(e^{-\alpha} \right) + \pi^{1/2} \alpha^{1/2} s \left(y \right) \right]$	$N \approx \frac{L^3}{\lambda^3} \left[g_{3/2} \left(e^{-\alpha} \right) + \pi^{1/2} \alpha^{1/2} S(y) \right]$