

SEQUENCE LISTING

#7

<110> Irwin H. Gelman
Susan G. Jaken

<120> TUMOR SUPPRESSOR GENE

<130> A30558-A-FWC-A 070156.0597

<140> 09/902,432

<141> 2001-07-10

<150> 08/978,277

<151> 1997-11-25

<150> 08/665,401

<151> 1996-06-18

<150> 08/635,121

<151> 1996-04-19

<160> 35

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 5134

<212> DNA

<213> Rattus norvegicus

<400> 1

ggaaaagaca gagccagcct cggaggagca ggagccggca gaagacacag accaggccag
60

gttgtcagca gactacgaga aggtggagct gccttggaa gaccaggttg gtgacctgga
120

ggcatcgta gaggagaagt gtgcctctt ggcaacggaa gtgttgatg agaagatgga
180

agcccaccaa gaagttgtt cagaggtcca cgtgagcacc gtggagaaga cagaggagga
240

gcagggagga ggaggagagg ctgaaggggg cgtggtgta gaaggaacag gagaatcctt
300

gccccctgag aaactggctg agccccagga ggtccccag gaagctgagc ctgctgagga
360

gctgatgaag agcagagaga tgtgtgtctc tggaggagac cacactcaac tgacagacct
420

aagtccctgaa gagaagacgc tgcccaaaca cccagaaggc attgtcagtg aggtggagat
480

gctgtcctct caggaaagaa tcaaggtaca ggaaagtccc ttgaagaaac tcttcagtag
540
ctcaggctta aagaagctgt ctggaaagaa gcagaagggg aaacgaggag gtgggggaga
600
cgaagagcct ggagaataacc aacacattca caccgaatcc ccagagagtg ctgatgagca
660
gaagggagag agctctgcgt cgtccccga ggagcctgag gagaccacgt gtctggagaa
720
agggccgctg gaagcaccca gnatgggaa gctgaggaag gaactacttc gtggagagaa
780
gaagaggaag gatcaactccc tggcatcct tcaaaaagat ggtgacaccc aagaaacggt
840
ccgaagaccc tctgagagtg acaaggagga agagctggag aaggtcaaga gcgccaccc
900
gtcctccact gatagcacag tgtcagaaat gcaagatgaa gtcaaaactg ttggtgagga
960
acaaaagcca gaggeraccaa agcgtagggt ggatacttca gtgtcttggg aagcaactgat
1020
tttgtcggta tcattcaaga agagagcaag gaaggcatcc tcttcagata taagagggcc
1080
aaggacactg ggagggggac agtcacagag cagaggaggc cagcaaagac aaagaagccg
1140
aacagacgct gttcctgcca gcacccagga gcaggaccaa ggcgaaggaa gttcctcacc
1200
cgagccagcg ggaagccctt ccgaagggga aggtgtctcc acttggagt cattaaaag
1260
attagtcact ccaagaaaaa aatccaagtc aaaactggaa gagaaagaag ccggaaggac
1320
tctagttgtt ggagcaggtt gtccactgag atcgaaccgt gtagagaaga atcttgggtt
1380
tcatttataa aattcatccc cggacggcgg aagaaaaggc cagatggaa ggcaagaaca
1440
agccactgtg gaagactcag ggccagtggg gataaatgag gacgagcctg atgtcccagc
1500
cgtcgtgcct ctgtctgagt atgatgcagt ggagagggag aagatggaa cccagggaa
1560
tgcggagctg cccagctgct gggctgtgt agtgcggag gagctcagta agactctgg
1620
ccacactgtg agtgcgcag tcattgatgg gaccaggca gtcaccagt tcgaagagcg
1680
gtctccttcg tggatatccg cttccgtAAC agaacctttt gaacacacag cgggagaagc
1740
catgccaccc gttgaagagg tcactgaaaa agacatcatt gcagaagaaa ctcctgtgct
1800
caccacacg ttaccagagg gtaaagatgc ccatgacgc acgttcacca gtgaagtgg
1860
tttcacactca gaagctgtga cagccacaga gacctcagag gctctccgtc ctgaagaagt
1920

taccgaagca tcgggggccc aagagaccac agacatggtg tccgcagttt cccagctgac
1980
tgactcccc gacaccacag aggaagccac cccagttcag gaggttagagg gtggtgtgct
2040
agatacagaa gaagaggagc gccagacgca ggccatcctc caagccgttg cagacaaggt
2100
gaaagaggag tcccaggtgc ctgcaaccca gactgtgcag agaacgggtt caaaagcact
2160
ggagaaggtt gaggaggtag aggaggactc cgaagtgcgt gcttcggaga aagagaagga
2220
cggttatgccg aaaggacccg tgcaagggc tggagctgag catcttgac agggctctga
2280
gactggacag gctactccag agagccttga agttcctgaa gtcacacgc atgttagacca
2340
tgtcgccacg tgccaggtta tcaagctcca gcagctgatg gaacaggccg tggccctgaa
2400
gtcatccgaa accttgacag acagttagac aaatggaagc actcccttag cagattcaga
2460
cactgcagat gggacacagc aagatgaaac cattgacagc caggacagta aagccactgc
2520
agctgtcagg cagtcacagg tcacagaaga agaggcgct actgctcaga aagaggagcc
2580
ttcgacacta cctaataatg ttccagccca ggaagaacat ggggaagaac caggaagaga
2640
tggcttcaa cctacacagc aagagcttgc tgctgcagcc gtgcccgtct ggcaaaagac
2700
tgaggtgggt caagagggtg aggttgactg gttggatgga gaaaaagtca aagaagaaca
2760
ggaggtgtt gtacactctg gacccaaacag tcaaaaaggct gctgatgtga catatgacag
2820
tgaagtgtatg ggagtggccg ggtgtcagga aaaggaggt actgaagtgc agagtcttag
2880
cctggaggag ggagagatgg aaactgacgt tgaaaaggag aaaaggagaa caaagccaga
2940
gcaagtgtatg gaagaagggtg agcaggaaac agccgctcct gagcatgaaa ggaactacgg
3000
gaagccagtc ctgacacttg acatgcccag ctcagagagg gggaggcac tggaaagcct
3060
tggaggaagc cttctctcc cagaccaaga caaagcaggt tgcatagagg ttcaagttca
3120
aagcctggac acaacagtca ctcaaacagc agaagctgtg gaaaagggtca tagaaacggt
3180
tgtgatttca gagacaggtg aaagtccaga gtgttaggt gcacacttat taccagctga
3240
gaagtcctct gcaacgggtg gccactggac tcttcagcat gcagaggaca cggtacccct
3300
ggggcctgag tctcaggcag aatccatccc aatcatagta actcctgctc ctgaaagcac
3360

cctacatcct gacctacaag gagaaataag cgcatcccag agagagcgat cagaggaaga
3420
ggacaagcca gatgctggtc ctgatgctga cggcaaggag agtacagcaa tcgacaaagt
3480
cctcaaggct gaacctgaga tcctggaact tgagagtaag agcaacaaga ttgtgctgaa
3540
cgtcattcag acagccgttg accagttcgc acgtacagaa acagccccg aaactcatgc
3600
ttatgattca cagacccagg ttcctgcaat gcgcttggac agcagggagc ccaacagatg
3660
ctggacaaaa atgaaaagttg ccaagatgaa acacccagtg ccgcagccca gagaggactt
3720
gcaagtccctg accgttctgg aggcatggct cagctcgaa atgcttgccg cgcttgcagt
3780
tggaaagcgcc ggtgtcaaag taagcattga gaagctgcct cctcaacccca aagatcaaaa
3840
ggagcatgct gctgatggcc ctcagctcca aagcttagcc caggcagagg cagtgtctgg
3900
aaacctaacc aaagaatccc cagacaccaa cggaccaaag ctaaccgagg agcgatgccc
3960
ccaaaagttg aggtccagga agaagaaaatg tctaccaagt cagtcaaaga gaacaaggcc
4020
cagggcagaag aggacctgca ggagccaaag ggagacctgg cagaatccta agatgttagt
4080
tgctcattgt acatctgtaa gaccagaatg tgaaaacaag tcacagaaca agatgctgct
4140
gttgggaccc tggaccaaga tttcagagcc catgagatcc agagagcagg gccgtccaat
4200
gatttccacc cagtagagca ccccgacaat tctgaggctt catcgggagc tagagccagc
4260
taacatttcc tcgtttcaag actgcctttg atttgcctt tgatgccgtc cgtgtatttc
4320
taacatttcc tcgtttcaag actgcctttg atttgcctt tgatgccgtc cgtgtatttc
4380
ggatttaagg tcctgcgttc tcaacctgga accaattctg ccataacctag ttccacttct
4440
caaactggag catcctcctt tatgtattta tatgtatgtt ttatgttagtc ctcctcctgt
4500
acctattgtt tattttttc taacgtttaa gcacatgctt tttgtattat gcaatatata
4560
acgggtgtgc agccatagcg acgccttgaa aagctccaag cctcaactgt aacctgcagc
4620
aaacagataa cattcctggc aagaagagac aagtctttt taaagttac tgatgcttag
4680
atctgtggc ttctagtcct ctgaaaagtgg ttgtttctt atgcacagcg agctcagaaa
4740
taaaaacccc atttgaaac atccaggatg tcccaatatt accatgattt ttccccccct
4800

tttgctaat ccagtccagg ttggaaagaa gtctcctctg tgcagatta agccctgtct
4860
cttaatgata tggacaaatg agtgcgccta aggccatgag atgttccta atgcagaagg
4920
aatctgttgt acgtttttt gattgtactc ttctatgctg gaccgaattc atatgcagat
4980
cgaagtgagt cctgttctt acagatggta tttgataga tactggagtt tgtctgtgtt
5040
atatctgtgc cccttcttta agaacaatgt tgcattatgt tccttggat aaattgtgat
5100
ttgacaactg attaaataa acatatttga ctac
5134

<210> 2
<211> 1346
<212> PRT
<213> Rattus norvegicus

<400> 2
Met Glu Ala His Gln Glu Val Val Ala Glu Val His Val Ser Thr Val
1 5 10 15
Glu Lys Thr Glu Glu Glu Gln Gly Gly Gly Glu Ala Glu Gly Gly
20 25 30
Val Val Val Glu Gly Thr Gly Glu Ser Leu Pro Pro Glu Lys Leu Ala
35 40 45
Glu Pro Gln Glu Val Pro Gln Glu Ala Glu Pro Ala Glu Glu Leu Met
50 55 60
Lys Ser Arg Glu Met Cys Val Ser Gly Gly Asp His Thr Gln Leu Thr
65 70 75 80
Asp Leu Ser Pro Glu Glu Lys Thr Leu Pro Lys His Pro Glu Gly Ile
85 90 95
Val Ser Glu Val Glu Met Leu Ser Ser Gln Glu Arg Ile Lys Val Gln
100 105 110
Gly Ser Pro Leu Lys Lys Leu Phe Ser Ser Ser Gly Leu Lys Lys Leu
115 120 125
Ser Gly Lys Lys Gln Lys Gly Lys Arg Gly Gly Gly Asp Glu Glu
130 135 140
Pro Gly Glu Tyr Gln His Ile His Thr Glu Ser Pro Glu Ser Ala Asp
145 150 155 160
Glu Gln Lys Gly Glu Ser Ser Ala Ser Ser Pro Glu Glu Pro Glu Glu
165 170 175
Thr Thr Cys Leu Glu Lys Gly Pro Leu Glu Ala Pro Arg Met Gly Lys
180 185 190
Leu Arg Lys Glu Leu Leu Arg Gly Glu Lys Lys Arg Lys Asp His Ser
195 200 205
Leu Gly Ile Leu Gln Lys Asp Gly Asp Thr Gln Glu Thr Val Arg Arg

210 215 220
Pro Ser Glu Ser Asp Lys Glu Glu Glu Leu Glu Lys Val Lys Ser Ala
225 230 235 240
Thr Leu Ser Ser Thr Asp Ser Thr Val Ser Glu Met Gln Asp Glu Val
245 250 255
Lys Thr Val Gly Glu Glu Gln Lys Pro Glu Glu Pro Lys Arg Arg Val
260 265 270
Asp Thr Ser Val Ser Trp Glu Ala Leu Ile Cys Val Gly Ser Ser Lys
275 280 285
Lys Arg Ala Arg Lys Ala Ser Ser Asp Ile Arg Gly Pro Arg Thr
290 295 300
Leu Gly Gly Gly Gln Ser Gln Ser Arg Gly Gly Gln Gln Arg Gln Arg
305 310 315 320
Ser Arg Thr Asp Ala Val Pro Ala Ser Thr Gln Glu Gln Asp Gln Ala
325 330 335
Gln Gly Ser Ser Ser Pro Glu Pro Ala Gly Ser Pro Ser Glu Gly Glu
340 345 350
Gly Val Ser Thr Trp Glu Ser Phe Lys Arg Leu Val Thr Pro Arg Lys
355 360 365
Lys Ser Lys Ser Lys Leu Glu Glu Lys Glu Ala Gly Arg Thr Leu Val
370 375 380
Val Gly Ala Gly Cys Pro Leu Arg Ser Asn Arg Val Glu Lys Asn Leu
385 390 395 400
Gly Phe Pro Leu Arg Asn Ser Ser Pro Asp Gly Gly Arg Lys Gly Gln
405 410 415
Met Gly Arg Gln Glu Gln Ala Thr Val Glu Asp Ser Gly Pro Val Glu
420 425 430
Ile Asn Glu Asp Glu Pro Asp Val Pro Ala Val Val Pro Leu Ser Glu
435 440 445
Tyr Asp Ala Val Glu Arg Glu Lys Met Glu Ala Gln Gly Asn Ala Glu
450 455 460
Leu Pro Ser Cys Trp Gly Cys Val Val Ser Glu Glu Leu Ser Lys Thr
465 470 475 480
Leu Val His Thr Val Ser Val Ala Val Ile Asp Gly Thr Arg Ala Val
485 490 495
Thr Ser Val Glu Glu Arg Ser Pro Ser Trp Ile Ser Ala Ser Val Thr
500 505 510
Glu Pro Leu Glu His Thr Ala Gly Glu Ala Met Pro Pro Val Glu Glu
515 520 525
Val Thr Glu Lys Asp Ile Ile Ala Glu Glu Thr Pro Val Leu Thr Gln
530 535 540
Thr Leu Pro Glu Gly Lys Asp Ala His Asp Asp Met Val Thr Ser Glu
545 550 555 560
Val Asp Phe Thr Ser Glu Ala Val Thr Ala Thr Glu Thr Ser Glu Ala
565 570 575
Leu Arg Thr Glu Glu Val Thr Glu Ala Ser Gly Ala Glu Glu Thr Thr
580 585 590
Asp Met Val Ser Ala Val Ser Gln Leu Thr Asp Ser Pro Asp Thr Thr

	595	600	605												
Glu	Glu	Ala	Thr	Pro	Val	Gln	Glu	Val	Glu	Gly	Gly	Val	Leu	Asp	Thr
	610					615			620						
Glu	Glu	Glu	Glu	Arg	Gln	Thr	Gln	Ala	Ile	Leu	Gln	Ala	Val	Ala	Asp
	625					630			635						640
Lys	Val	Lys	Glu	Glu	Ser	Gln	Val	Pro	Ala	Thr	Gln	Thr	Val	Gln	Arg
						645			650						655
Thr	Gly	Ser	Lys	Ala	Leu	Glu	Lys	Val	Glu	Glu	Val	Glu	Glu	Asp	Ser
					660			665							670
Glu	Val	Leu	Ala	Ser	Glu	Lys	Glu	Lys	Asp	Val	Met	Pro	Lys	Gly	Pro
	675					680			685						
Val	Gln	Glu	Ala	Gly	Ala	Glu	His	Leu	Ala	Gln	Gly	Ser	Glu	Thr	Gly
	690					695			700						
Gln	Ala	Thr	Pro	Glu	Ser	Leu	Glu	Val	Pro	Glu	Val	Thr	Ala	Asp	Val
	705					710			715						720
Asp	His	Val	Ala	Thr	Cys	Gln	Val	Ile	Lys	Leu	Gln	Gln	Leu	Met	Glu
						725			730						735
Gln	Ala	Val	Ala	Pro	Glu	Ser	Ser	Glu	Thr	Leu	Thr	Asp	Ser	Glu	Thr
						740			745						750
Asn	Gly	Ser	Thr	Pro	Leu	Ala	Asp	Ser	Asp	Thr	Ala	Asp	Gly	Thr	Gln
						755			760						765
Gln	Asp	Glu	Thr	Ile	Asp	Ser	Gln	Asp	Ser	Lys	Ala	Thr	Ala	Ala	Val
						770			775						780
Arg	Gln	Ser	Gln	Val	Thr	Glu	Glu	Glu	Ala	Ala	Thr	Ala	Gln	Lys	Glu
	785					790			795						800
Glu	Pro	Ser	Thr	Leu	Pro	Asn	Asn	Val	Pro	Ala	Gln	Glu	Glu	His	Gly
						805			810						815
Glu	Glu	Pro	Gly	Arg	Asp	Val	Leu	Glu	Pro	Thr	Gln	Gln	Glu	Leu	Ala
						820			825						830
Ala	Ala	Ala	Val	Pro	Val	Trp	Gln	Lys	Thr	Glu	Val	Gly	Gln	Glu	Gly
						835			840						845
Glu	Val	Asp	Trp	Leu	Asp	Gly	Glu	Lys	Val	Lys	Glu	Glu	Gln	Glu	Val
						850			855						860
Phe	Val	His	Ser	Gly	Pro	Asn	Ser	Gln	Lys	Ala	Ala	Asp	Val	Thr	Tyr
	865					870			875						880
Asp	Ser	Glu	Val	Met	Gly	Val	Ala	Gly	Cys	Gln	Glu	Lys	Glu	Ser	Thr
						885			890						895
Glu	Val	Gln	Ser	Leu	Ser	Leu	Glu	Glu	Gly	Glu	Met	Glu	Thr	Asp	Val
						900			905						910
Glu	Lys	Glu	Lys	Arg	Glu	Thr	Lys	Pro	Glu	Gln	Val	Ser	Glu	Glu	Gly
						915			920						925
Glu	Gln	Glu	Thr	Ala	Ala	Pro	Glu	His	Glu	Arg	Asn	Tyr	Gly	Lys	Pro
						930			935						940
Val	Leu	Thr	Leu	Asp	Met	Pro	Ser	Ser	Glu	Arg	Gly	Lys	Ala	Leu	Gly
	945					950			955						960
Ser	Leu	Gly	Gly	Ser	Pro	Ser	Leu	Pro	Asp	Gln	Asp	Lys	Ala	Gly	Cys
						965			970						975
Ile	Glu	Val	Gln	Val	Gln	Ser	Leu	Asp	Thr	Thr	Val	Thr	Gln	Thr	Ala

	980	985	990
Glu Ala Val Glu Lys Val Ile Glu Thr Val Val Ile Ser Glu Thr Gly			
995	1000	1005	
Glu Ser Pro Glu Cys Val Gly Ala His Leu Leu Pro Ala Glu Lys Ser			
1010	1015	1020	
Ser Ala Thr Gly Gly His Trp Thr Leu Gln His Ala Glu Asp Thr Val			
1025	1030	1035	1040
Pro Leu Gly Pro Glu Ser Gln Ala Glu Ser Ile Pro Ile Ile Val Thr			
1045	1050	1055	
Pro Ala Pro Glu Ser Thr Leu His Pro Asp Leu Gln Gly Glu Ile Ser			
1060	1065	1070	
Ala Ser Gln Arg Glu Arg Ser Glu Glu Glu Asp Lys Pro Asp Ala Gly			
1075	1080	1085	
Pro Asp Ala Asp Gly Lys Glu Ser Thr Ala Ile Asp Lys Val Leu Lys			
1090	1095	1100	
Ala Glu Pro Glu Ile Leu Glu Leu Glu Ser Lys Ser Asn Lys Ile Val			
1105	1110	1115	1120
Leu Asn Val Ile Gln Thr Ala Val Asp Gln Phe Ala Arg Thr Glu Thr			
1125	1130	1135	
Ala Pro Glu Thr His Ala Tyr Asp Ser Gln Thr Gln Val Pro Ala Met			
1140	1145	1150	
Arg Leu Asp Ser Arg Glu Pro Asn Arg Cys Trp Thr Lys Met Lys Val			
1155	1160	1165	
Ala Lys Met Lys His Pro Val Pro Gln Pro Arg Glu Asp Leu Gln Val			
1170	1175	1180	
Leu Thr Val Leu Glu Ala Trp Leu Ser Ser Glu Met Leu Ala Ala Leu			
1185	1190	1195	1200
Ala Val Glu Ser Ala Gly Val Lys Val Ser Ile Glu Lys Leu Pro Pro			
1205	1210	1215	
Gln Pro Lys Asp Gln Lys Glu His Ala Ala Asp Gly Pro Gln Leu Gln			
1220	1225	1230	
Ser Leu Ala Gln Ala Glu Ala Val Ser Gly Asn Leu Thr Lys Glu Ser			
1235	1240	1245	
Pro Asp Thr Asn Gly Pro Lys Leu Thr Glu Glu Arg Cys Pro Gln Lys			
1250	1255	1260	
Leu Arg Ser Arg Lys Lys Cys Leu Pro Ser Gln Ser Lys Arg Thr			
1265	1270	1275	1280
Arg Pro Arg Gln Lys Arg Thr Cys Arg Ser Gln Arg Glu Thr Trp Gln			
1285	1290	1295	
Asn Pro Lys Met Leu Val Ala His Cys Thr Ser Val Arg Pro Glu Cys			
1300	1305	1310	
Glu Asn Lys Ser Gln Asn Lys Met Leu Leu Leu Gly Pro Trp Thr Lys			
1315	1320	1325	
Ile Ser Glu Pro Met Arg Ser Arg Glu Gln Gly Arg Pro Met Ile Ser			
1330	1335	1340	
Thr Gln			
1345			

<210> 3
<211> 6160
<212> DNA
<213> Rattus norvegicus

<400> 3
cggccggcg ggagtagaaag agccactgag ccatggcgcc aggcatgtcc accgagcagg
60
ggagccccga gcagccggcg gggagcgaca cgccgagcga gctggtgctc agtggccatg
120
ggccgcagc tgaagcctcg ggagcagctg gagacccgc cgacgcggac cccgccacca
180
agctcccaca gaagaatggc cagctgttt ctgtcaacgg cgtagctgaa caaggagatg
240
tccatgtcca agaggaaaac caggaggggc aggaggaaga agtcgttgat gaggatgtt
300
gacagcgaga gtcagaagat gtgagagaaa aagaccgagt tgaagaaatg gcggccaaact
360
ccacagctgt tgaagatatc acaaaggatg ggcaggagga gacatcagaa ataattgaac
420
agatccctgc ttcaagaaaac aatgtggaaag aaatggtaca gcctgctgag tcccaggcta
480
atgatgttgg cttaagaaaa gtatttaaat ttgttggtt taaattcacg gtgaagaagg
540
ataaaaaatga aaagtcagat actgtccaac tactcactgt caagaaggat gaaggcgaag
600
ggcagaagc ctctgtcggc gctggagacc accaggagcc cagtgtggag actgccgtcg
660
gagagtcagc atccaaagaa agttagctga agcaatccac agagaagcaa gaaggcaccc
720
tgaagcaaga acagagcagc acagaaatcc ccattcaagc cgaatctgat caagcggctg
780
aggaagaagc caaagatgaa ggagaagaaa aacaagagaa agagcccacc aagtccccag
840
aatccccgag cagccagtc aacagtgaga caacattttc cttaagaag ttcttcactc
900
acggttgggc cggtggcg aagaagacca gttcaagaa atcaaaagag gatgatctgg
960
aaactgccga gaagagaaaag gagcaagagg cagaaaaagt agacgaggaa gaaaaggaaa
1020
agacagagcc agcctcgag gagcaggagc cgccagaaga cacagaccag gccaggttgt
1080
cagcagacta cgagaaggta gagctgcctt tgaaagacca gttgggtgac ctggaggcat
1140
cgtcagagga gaagtgtgct ctttgccaa cggaaatgtt tggatgagaag atggaagccc
1200
accaagaagt tgtgcagag gtccacgtga gcaccgtgga gaagacagag gaggagcagg

1260
gaggaggagg agaggctgaa gggggcgtgg tggtagaagg aacaggagaa tccttgcccc
1320
ctgagaaaact ggctgagccc caggaggtcc cccaggaagc tgagcctgct gaggagctga
1380
tgaagagcag agagatgtgt gtctctggag gagaccacac tcaactgaca gacctaagtc
1440
ctgaagagaa gacgctgccccc aaacacccag aaggcattgt cagttaggtg gagatgctgt
1500
cctctcagga aagaatcaag gtacagggaa gtcccttgaa gaaactcttc agtagctcag
1560
gcttaaagaa gctgtctggg aagaagcaga agggaaacg aggagggtggg ggagacgaag
1620
agcctggaga ataccaacac attcacacccg aatccccaga gagtgctgat gagcagaagg
1680
gagagagctc tgcgtcgccccc cccgaggagc ctgaggagac cacgtgtctg gagaaagggc
1740
cgcttggaaagc accccaggat ggggaagctg aggaaggaac tacttccgat ggagagaaga
1800
agagagaagg gatcaactccc tggcatcct tcaaaaagat ggtgacaccc aagaaacggg
1860
tccgaagacc ttctgagagt gacaaggagg aagagctgga gaaggtcaag agcgccaccc
1920
tgtcctccac tgatagcaca gtgtcagaaa tgcaagatga agtcaaaaact gttggtgagg
1980
aacaaaagcc agaggaacca aagcgttaggg tggatacttc agtgtcttgg gaagcactga
2040
tttgggttcgg atcatccaag aagagagcaa ggaaggcatc ctcttcagat gatgaaggag
2100
ggccaaggac actgggaggg gacagtcaca gagcagagga ggccagcaaa gacaaagaag
2160
ccggaacaga cgctgttcct gccagcaccc aggagcagga ccaagcgcaa ggaagttcct
2220
cccccgagcc agcgggaagc cttccgaag gggaaagggtgt ctccacttgg gagtcattta
2280
aaagattagt cactccaaga aaaaaatcca agtcaaaaact ggaagagaaa gccgaagact
2340
ctagtgtaga gcagttgtcc actgagatcg aaccgagtag agaagaatct tgggtttcca
2400
ttaagaaatt catccccgga cggcggaaaga aaagggcaga cgggaagcaa gaacaagcca
2460
ctgttggaaaga ctcagggcca gtggagataa atgaggacga ccctaattgtc ccagccgtcg
2520
tgctctgtc tgagtataat gcagtggaga gggagaagat ggaagccca gggaaatacgg
2580
agctgccccca gctgctgggg gctgtgtacg tgtccgagga gctcagtaag actctggtcc
2640
acactgtgag tgtcgcagtc attgatggga ccagggcagt caccagtgtc gaagagcggt

2700
ctccttcgtg gataatccgct tccgtAACAG aacctttGA acacacAGCG ggagaAGCCa
2760
tgccacCTGT tgaAGAGGTC actgaaaaAG acatcattGC agaAGAAact CCTGTGCTCA
2820
cccAGACGT accAGAGGGT aaAGATGCCC atgACGACAT ggtcaccAGT gaAGTGGATT
2880
tcacCTCAGA agCTGTGACA GCCACAGAGA CCTCAGAGGC tCTCCGTACT gaAGAAGTTA
2940
ccGAAGCAtC gggggccgaa gagACCACAG acatGGTGTC CGCAGTTCC cAGCTGACTG
3000
actccccAGA caccACAGAG gaAGGCCACCC cAGTTCAgGA ggtAGAGAGT ggtGTGCTAG
3060
atACAGAAGA agAGGAGCgc cAGACGcAGG ccATCCTCCA AGCCGTTGCA gacaAGGTGA
3120
aAGAGGAGTC ccAGGTGcCT gcaACCCAGA CTGTGAGAG aACGGGGTCA aaAGCActGG
3180
agaAGGTTGA ggAGGTTAGAG gaggACTCCG aAGTGTGTC ttCGGAGAAA gagaAGGACG
3240
ttatGCCGAA aggACCCGTG cAGGAAGCTG gagCTGAGCA tCTTGACAG ggCTCTGAGA
3300
ctggacAGGC tactCCAGAG agCCTTAgaG ttCCCTGAAGT cacGGCAGAT gtagACCATG
3360
tcGCCACGTG ccAGGTTATC aAGCTCCAGC agCTGATGGA acAGGGCGTG gcccCTGAGT
3420
catCCGAAAC cttGACAGAC agtGAGACAA atGGAAGCAC tCCCTTAGCA gattCAGACA
3480
ctGcAGATGG gacACAGCAA gatGAAACCA ttGACAGCCA ggACAGTAAA gCCACTGcAG
3540
ctGTCAGGCA gTCACAGGTC acAGAAGAAG aggCGGCTAC tgCTCAGAAA gaggAGCCTT
3600
cgacACTACC taATAATGTT ccAGCCCAGG aAGAACATGG ggaAGAACCA ggaAGAGATG
3660
ttCTTGAACC tacACAGCAA gagCTTACTG ctGcAGCGT gcccGTTCTG gcaaAGACTG
3720
aggtGGGTCA agAGGGTgAG gttGACTGGT tggatGGAGA AAAAGTCAAa gaAGAACAGG
3780
aggtGTTGT acACTCTGGA cccAACAGTC AAAAGGCTGC tGATGTGACA tatGACAGTG
3840
aagtGATGGG agtGGCCGGG tGTCAGGAAA aggAGAGTAC tGAAGTGCAG agtCTTAGCC
3900
tggaggAGGG agAGATGGAA actGACGTTG AAAAGGAGAA aAGGGAGACA aAGCCAGAGC
3960
aagtGAGTGA agaAGGTGAG cAGGAAACAG ccGCTCCTGA gcatGAAGGA acTACGGGA
4020
agccAGTCCT gacACTTGAC atGCCCAGCT cAGAGGGGG gaAGGCACTG ggaAGCCTG
4080
gagGAAGCCC ttCTCTCCCA gacCAAGACA aAGCAGGTTG catAGAGGTT caAGTTCAAa

4140
gcctggacac aacagtcact caaacagcag aagctgtgga aaaggcata gaaacggttg
4200
tgatttcaga gacaggtgaa agtccagagt gtgttaggtgc acacttatta ccagctgaga
4260
agtccctctgc aacgggtggc cactggactc ttcagcatgc agaggacacg gtaccctgg
4320
ggcctgagtc tcagggcagaa tccatcccaa tcatacgtaac tcctgctcct gaaagcaccc
4380
tacatcctga cctacaagga gaaataagcg catcccagag agagcgatca gaggaagagg
4440
acaaggccaga tgctggcct gatgctgacg gcaaggagag tacagcaatc gaaaaagtcc
4500
tcaaggctga acctgagatc ctggaacttg agagtaagag caacaagatt gtgctgaacg
4560
tcattcagac agccggttgc cagttcgac gtacagaaac agccccgaa actcatgctt
4620
atgattcaca gacccaggtt cctgcatgca ggcttgacag cagggagccc aacagatgct
4680
ggacaaaaat gaaagatgcc aagatgaaac acccagtgcc gcagcccaga gaggacttgc
4740
aagtccctgac cgttctggag gcatgggctc agcctcgaa atgcttgccg cgcttgcagt
4800
tcaaagcgcc ggtgtcaaag taagcattga gaagctgcct cctcaaccca aagatccaaa
4860
aggagcatgc tgctgatggc cctcagctcc aaagcttagc ccagggcagag gccagtgcct
4920
ctggaaacct aaccaaagaa tccccagaca ccaacggacc aaagctaacc gaggagggcg
4980
atcccccaaa agttgaggtc caggaagaag aaatgtctac caagtcagtc aaagagaaca
5040
aggcccaggc agaagaggac ctgcaggagc caaagggaga cctggcagaa tcctaagatg
5100
ttagttgctc attgtacatc tgtaagacca gaatgtgaaa acaagtcaca gaacaagatg
5160
ctgctgttgg gaccttgaga ccaagatttc agagccatg agatccagag agcagggccg
5220
tccaatgatt tccacccagt agagcacccc gacaattctg aggcttcatc gggagctaga
5280
gccagctaac atttcctcggt ttcaagactg cctttgattt gccccttgat gccgtccgtg
5340
tatttctaac atttcctcggt ttcaagactg cctttgattt gccccttgat gccgtccgtg
5400
tatttcggat ttaaggtcct gcgttctcaa cctggaacca attctgccat acctagttcc
5460
acttctcaaa ctggagcatc ctcccttatg tatttatatg tatgttttat gtatgcctcc
5520
tcctgtacct attgtatatt ttttctaac gtttaagcac atgcttttg tattatgcaa

5580 tatataacgg gtgtgcagcc atagcgacgc tttgaaaagc tccaaggcctc aactgtaacc
5640 tgcagcaaac agataaacatt cctggcaaga agagacaagt ctttttaaa gtttactgat
5700 gcttagatct gtgggcttct agtcctctga aagtgggtgt ttccttatgc acagcgagct
5760 cagaaataaaa aaccccattt tgaaacatcc agatgtccc aatattacca tgatttttc
5820 cccccctttt gctaattccag tccaggttgg aaagaagtct cctctgtgtc agattaagcc
5880 ctgtctctta atgatatgga caaatgagtg tgcctaaggc catgagatgt ttcctaattgc
5940 agaaggaatc tgttgtacgt tttttgatt gtactcttct atgctggacc gaattcatat
6000 gcagatcgaa gtgagtcctg ttctttacag atggtattt gatagatact ggagttgtc
6060 tgtgttatat ctgtgcccct tcttaagaa caatgttgca ttatgttcct ttggataaaat
6120 tgtgatttga caactgattt aaataaacat atttgactac
6160

<210> 4
<211> 1596
<212> PRT
<213> Rattus norvegicus

<400> 4
Met Gly Ala Gly Ser Ser Thr Glu Gln Arg Ser Pro Glu Gln Pro Ala
1 5 10 15
Gly Ser Asp Thr Pro Ser Glu Leu Val Leu Ser Gly His Gly Pro Ala
20 25 30
Ala Glu Ala Ser Gly Ala Ala Gly Asp Pro Ala Asp Ala Asp Pro Ala
35 40 45
Thr Lys Leu Pro Gln Lys Asn Gly Gln Leu Ser Ser Val Asn Gly Val
50 55 60
Ala Glu Gln Gly Asp Val His Val Gln Glu Glu Asn Gln Glu Gly Gln
65 70 75 80
Glu Glu Glu Val Val Asp Glu Asp Val Gly Gln Arg Glu Ser Glu Asp
85 90 95
Val Arg Glu Lys Asp Arg Val Glu Glu Met Ala Ala Asn Ser Thr Ala
100 105 110
Val Glu Asp Ile Thr Lys Asp Gly Gln Glu Glu Thr Ser Glu Ile Ile
115 120 125
Glu Gln Ile Pro Ala Ser Glu Asn Asn Val Glu Glu Met Val Gln Pro
130 135 140

Ala Glu Ser Gln Ala Asn Asp Val Gly Phe Lys Lys Val Phe Lys Phe
145 150 155 160
Val Gly Phe Lys Phe Thr Val Lys Lys Asp Lys Asn Glu Lys Ser Asp
165 170 175
Thr Val Gln Leu Leu Thr Val Lys Lys Asp Glu Gly Glu Gly Ala Glu
180 185 190
Ala Ser Val Gly Ala Gly Asp His Gln Glu Pro Ser Val Glu Thr Ala
195 200 205
Val Gly Glu Ser Ala Ser Lys Glu Ser Glu Leu Lys Gln Ser Thr Glu
210 215 220
Lys Gln Glu Gly Thr Leu Lys Gln Glu Gln Ser Ser Thr Glu Ile Pro
225 230 235 240
Leu Gln Ala Glu Ser Asp Gln Ala Ala Glu Glu Glu Ala Lys Asp Glu
245 250 255
Gly Glu Glu Lys Gln Glu Lys Glu Pro Thr Lys Ser Pro Glu Ser Pro
260 265 270
Ser Ser Pro Val Asn Ser Glu Thr Thr Ser Ser Phe Lys Lys Phe Phe
275 280 285
Thr His Gly Trp Ala Gly Trp Arg Lys Lys Thr Ser Phe Lys Lys Ser
290 295 300
Lys Glu Asp Asp Leu Glu Thr Ala Glu Lys Arg Lys Glu Gln Glu Ala
305 310 315 320
Glu Lys Val Asp Glu Glu Glu Lys Glu Lys Thr Glu Pro Ala Ser Glu
325 330 335
Glu Gln Glu Pro Ala Glu Asp Thr Asp Gln Ala Arg Leu Ser Ala Asp
340 345 350
Tyr Glu Lys Val Glu Leu Pro Leu Glu Asp Gln Val Gly Asp Leu Glu
355 360 365
Ala Ser Ser Glu Glu Lys Cys Ala Pro Leu Ala Thr Glu Val Phe Asp
370 375 380
Glu Lys Met Glu Ala His Gln Glu Val Val Ala Glu Val His Val Ser
385 390 395 400
Thr Val Glu Lys Thr Glu Glu Glu Gln Gly Gly Gly Glu Ala Glu
405 410 415
Gly Gly Val Val Val Glu Gly Thr Gly Glu Ser Leu Pro Pro Glu Lys
420 425 430
Leu Ala Glu Pro Gln Glu Val Pro Gln Glu Ala Glu Pro Ala Glu Glu
435 440 445
Leu Met Lys Ser Arg Glu Met Cys Val Ser Gly Gly Asp His Thr Gln
450 455 460
Leu Thr Asp Leu Ser Pro Glu Glu Lys Thr Leu Pro Lys His Pro Glu
465 470 475 480
Gly Ile Val Ser Glu Val Glu Met Leu Ser Ser Gln Glu Arg Ile Lys
485 490 495
Val Gln Gly Ser Pro Leu Lys Lys Leu Phe Ser Ser Ser Gly Leu Lys
500 505 510
Lys Leu Ser Gly Lys Lys Gln Lys Gly Lys Arg Gly Gly Gly Asp
515 520 525

Glu Glu Pro Gly Glu Tyr Gln His Ile His Thr Glu Ser Pro Glu Ser
530 535 540
Ala Asp Glu Gln Lys Gly Glu Ser Ser Ala Ser Ser Pro Glu Glu Pro
545 550 555 560
Glu Glu Thr Thr Cys Leu Glu Lys Gly Pro Leu Glu Ala Pro Gln Asp
565 570 575
Gly Glu Ala Glu Glu Gly Thr Thr Ser Asp Gly Glu Lys Lys Arg Glu
580 585 590
Gly Ile Thr Pro Trp Ala Ser Phe Lys Lys Met Val Thr Pro Lys Lys
595 600 605
Arg Val Arg Arg Pro Ser Glu Ser Asp Lys Glu Glu Glu Leu Glu Lys
610 615 620
Val Lys Ser Ala Thr Leu Ser Ser Thr Asp Ser Thr Val Ser Glu Met
625 630 635 640
Gln Asp Glu Val Lys Thr Val Gly Glu Glu Gln Lys Pro Glu Glu Pro
645 650 655
Lys Arg Arg Val Asp Thr Ser Val Ser Trp Glu Ala Leu Ile Cys Val
660 665 670
Gly Ser Ser Lys Lys Arg Ala Arg Lys Ala Ser Ser Ser Asp Asp Glu
675 680 685
Gly Gly Pro Arg Thr Leu Gly Gly Asp Ser His Arg Ala Glu Glu Ala
690 695 700
Ser Lys Asp Lys Glu Ala Gly Thr Asp Ala Val Pro Ala Ser Thr Gln
705 710 715 720
Glu Gln Asp Gln Ala Gln Gly Ser Ser Ser Pro Glu Pro Ala Gly Ser
725 730 735
Pro Ser Glu Gly Glu Gly Val Ser Thr Trp Glu Ser Phe Lys Arg Leu
740 745 750
Val Thr Pro Arg Lys Lys Ser Lys Ser Lys Leu Glu Glu Lys Ala Glu
755 760 765
Asp Ser Ser Val Glu Gln Leu Ser Thr Glu Ile Glu Pro Ser Arg Glu
770 775 780
Glu Ser Trp Val Ser Ile Lys Lys Phe Ile Pro Gly Arg Arg Lys Lys
785 790 795 800
Arg Ala Asp Gly Lys Gln Glu Gln Ala Thr Val Glu Asp Ser Gly Pro
805 810 815
Val Glu Ile Asn Glu Asp Asp Pro Asn Val Pro Ala Val Val Pro Leu
820 825 830
Ser Glu Tyr Asn Ala Val Glu Arg Glu Lys Met Glu Ala Gln Gly Asn
835 840 845
Thr Glu Leu Pro Gln Leu Leu Gly Ala Val Tyr Val Ser Glu Glu Leu
850 855 860
Ser Lys Thr Leu Val His Thr Val Ser Val Ala Val Ile Asp Gly Thr
865 870 875 880
Arg Ala Val Thr Ser Val Glu Glu Arg Ser Pro Ser Trp Ile Ser Ala
885 890 895
Ser Val Thr Glu Pro Leu Glu His Thr Ala Gly Glu Ala Met Pro Pro
900 905 910

Val Glu Glu Val Thr Glu Lys Asp Ile Ile Ala Glu Glu Thr Pro Val
915 920 925
Leu Thr Gln Thr Leu Pro Glu Gly Lys Asp Ala His Asp Asp Met Val
930 935 940
Thr Ser Glu Val Asp Phe Thr Ser Glu Ala Val Thr Ala Thr Glu Thr
945 950 955 960
Ser Glu Ala Leu Arg Thr Glu Glu Val Thr Glu Ala Ser Gly Ala Glu
965 970 975
Glu Thr Thr Asp Met Val Ser Ala Val Ser Gln Leu Thr Asp Ser Pro
980 985 990
Asp Thr Thr Glu Glu Ala Thr Pro Val Gln Glu Val Glu Ser Gly Val
995 1000 1005
Leu Asp Thr Glu Glu Glu Arg Gln Thr Gln Ala Ile Leu Gln Ala
1010 1015 1020
Val Ala Asp Lys Val Lys Glu Glu Ser Gln Val Pro Ala Thr Gln Thr
1025 1030 1035 1040
Val Gln Arg Thr Gly Ser Lys Ala Leu Glu Lys Val Glu Glu Val Glu
1045 1050 1055
Glu Asp Ser Glu Val Leu Ala Ser Glu Lys Glu Lys Asp Val Met Pro
1060 1065 1070
Lys Gly Pro Val Gln Glu Ala Gly Ala Glu His Leu Ala Gln Gly Ser
1075 1080 1085
Glu Thr Gly Gln Ala Thr Pro Glu Ser Leu Glu Val Pro Glu Val Thr
1090 1095 1100
Ala Asp Val Asp His Val Ala Thr Cys Gln Val Ile Lys Leu Gln Gln
1105 1110 1115 1120
Leu Met Glu Gln Ala Val Ala Pro Glu Ser Ser Glu Thr Leu Thr Asp
1125 1130 1135
Ser Glu Thr Asn Gly Ser Thr Pro Leu Ala Asp Ser Asp Thr Ala Asp
1140 1145 1150
Gly Thr Gln Gln Asp Glu Thr Ile Asp Ser Gln Asp Ser Lys Ala Thr
1155 1160 1165
Ala Ala Val Arg Gln Ser Gln Val Thr Glu Glu Ala Ala Thr Ala
1170 1175 1180
Gln Lys Glu Glu Pro Ser Thr Leu Pro Asn Asn Val Pro Ala Gln Glu
1185 1190 1195 1200
Glu His Gly Glu Glu Pro Gly Arg Asp Val Leu Glu Pro Thr Gln Gln
1205 1210 1215
Glu Leu Thr Ala Ala Ala Val Pro Val Leu Ala Lys Thr Glu Val Gly
1220 1225 1230
Gln Glu Gly Glu Val Asp Trp Leu Asp Gly Glu Lys Val Lys Glu Glu
1235 1240 1245
Gln Glu Val Phe Val His Ser Gly Pro Asn Ser Gln Lys Ala Ala Asp
1250 1255 1260
Val Thr Tyr Asp Ser Glu Val Met Gly Val Ala Gly Cys Gln Glu Lys
1265 1270 1275 1280
Glu Ser Thr Glu Val Gln Ser Leu Ser Leu Glu Glu Gly Glu Met Glu
1285 1290 1295

Thr Asp Val Glu Lys Glu Lys Arg Glu Thr Lys Pro Glu Gln Val Ser
1300 1305 1310
Glu Glu Gly Glu Gln Glu Thr Ala Ala Pro Glu His Glu Gly Thr Tyr
1315 1320 1325
Gly Lys Pro Val Leu Thr Leu Asp Met Pro Ser Ser Glu Arg Gly Lys
1330 1335 1340
Ala Leu Gly Ser Leu Gly Gly Ser Pro Ser Leu Pro Asp Gln Asp Lys
1345 1350 1355 1360
Ala Gly Cys Ile Glu Val Gln Val Gln Ser Leu Asp Thr Thr Val Thr
1365 1370 1375
Gln Thr Ala Glu Ala Val Glu Lys Val Ile Glu Thr Val Val Ile Ser
1380 1385 1390
Glu Thr Gly Glu Ser Pro Glu Cys Val Gly Ala His Leu Leu Pro Ala
1395 1400 1405
Glu Lys Ser Ser Ala Thr Gly Gly His Trp Thr Leu Gln His Ala Glu
1410 1415 1420
Asp Thr Val Pro Leu Gly Pro Glu Ser Gln Ala Glu Ser Ile Pro Ile
1425 1430 1435 1440
Ile Val Thr Pro Ala Pro Glu Ser Thr Leu His Pro Asp Leu Gln Gly
1445 1450 1455
Glu Ile Ser Ala Ser Gln Arg Glu Arg Ser Glu Glu Glu Asp Lys Pro
1460 1465 1470
Asp Ala Gly Pro Asp Ala Asp Gly Lys Glu Ser Thr Ala Ile Glu Lys
1475 1480 1485
Val Leu Lys Ala Glu Pro Glu Ile Leu Glu Leu Glu Ser Lys Ser Asn
1490 1495 1500
Lys Ile Val Leu Asn Val Ile Gln Thr Ala Val Asp Gln Phe Ala Arg
1505 1510 1515 1520
Thr Glu Thr Ala Pro Glu Thr His Ala Tyr Asp Ser Gln Thr Gln Val
1525 1530 1535
Pro Ala Cys Arg Leu Asp Ser Arg Glu Pro Asn Arg Cys Trp Thr Lys
1540 1545 1550
Met Lys Asp Ala Lys Met Lys His Pro Val Pro Gln Pro Arg Glu Asp
1555 1560 1565
Leu Gln Val Leu Thr Val Leu Glu Ala Trp Ala Gln Pro Arg Lys Cys
1570 1575 1580
Leu Pro Arg Leu Gln Leu Lys Ala Pro Val Ser Lys
1585 1590 1595

<210> 5

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Myristylation site for src protein

<400> 5
Met Gly Ser Ser Lys Ser Lys Pro Lys Asp
1 5 10

<210> 6
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Myristylation and palmitylation site for yes
protein

<400> 6
Met Gly Cys Ile Lys Ser Lys Glu Asp Lys
1 5 10

<210> 7
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Myristylation and/or palmitylation site for SSeCKS
protein

<400> 7
Met Gly Ala Gly Ser Ser Thr Glu Gln Arg
1 5 10

<210> 8
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Myristylation site for G protein

<400> 8
Met Gly Ala Gly Ala Ser Ala Glu Glu Lys
1 5 10

<210> 9
<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Myristylation and palmitylation site for G protein

<400> 9

Met Gly Cys Thr Leu Ser Ala Glu Asp Lys
1 5 10

<210> 10

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Palmitylation site for GAP-43 protein

<400> 10

Met Leu Cys Cys Met Arg Arg Thr Lys Gln
1 5 10

<210> 11

<211> 23

<212> PRT

<213> Bos taurus

<400> 11

Lys Arg Phe Ser Ser Lys Lys Ser Phe Lys Leu Ser Gly Phe Ser Phe
1 5 10 15
Lys Lys Asn Lys Lys Glu Ala
20

<210> 12

<211> 23

<212> PRT

<213> Mus musculus

<400> 12

Lys Arg Phe Ser Ser Lys Lys Ser Phe Lys Leu Ser Gly Phe Ser Phe
1 5 10 15
Lys Lys Ser Lys Lys Glu Ala
20

<210> 13
<211> 17
<212> PRT
<213> Unknown

<220>
<223> Phosphorylation consensus site for MacMARCKS/F52 protein

<400> 13
Lys Lys Phe Ser Ser Lys Lys Pro Phe Lys Leu Ser Gly Phe Ser Phe
1 5 10 15
Arg

<210> 14
<211> 20
<212> PRT
<213> Unknown

<220>
<223> Calmodulin binding domain for myosin light chain kinase protein

<400> 14
Lys Arg Arg Trp Lys Lys Ala Phe Ile Ala Val Ser Ala Ala Ala Arg
1 5 10 15
Phe Lys Lys Cys
20

<210> 15
<211> 23
<212> PRT
<213> Rattus norvegicus

<400> 15
Glu Thr Thr Ser Ser Phe Lys Lys Phe Phe Thr His Gly Thr Ser Phe
1 5 10 15
Lys Lys Ser Lys Glu Asp Asp
20

<210> 16
<211> 23
<212> PRT
<213> Rattus norvegicus

<400> 16
Lys Leu Phe Ser Ser Ser Gly Leu Lys Lys Leu Ser Gly Lys Lys Gln
1 5 10 15
Lys Gly Lys Arg Gly Gly Gly
20

<210> 17
<211> 23
<212> PRT
<213> Rattus norvegicus

<400> 17
Glu Gly Ile Thr Pro Trp Ala Ser Phe Lys Lys Met Val Thr Pro Lys
1 5 10 15
Lys Arg Val Arg Arg Pro Ser
20

<210> 18
<211> 23
<212> PRT
<213> Rattus norvegicus

<400> 18
Glu Gly Val Ser Thr Trp Glu Ser Phe Lys Arg Leu Val Thr Pro Arg
1 5 10 15
Lys Lys Ser Lys Ser Lys Leu
20

<210> 19
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> SSeCKS phosphorylation consensus sequence

<221> VARIANT
<222> (3)...(3)
<223> valine or isoleucine

<221> VARIANT
<222> (4)...(5)
<223> any amino acid

<221> VARIANT
<222> (7) ... (7)
<223> any amino acid

<221> VARIANT
<222> (11) ... (11)
<223> lysine or arginine

<221> VARIANT
<222> (12) ... (12)
<223> any amino acid

<221> VARIANT
<222> (16) ... (16)
<223> lysine or arginine

<221> VARIANT
<222> (18) ... (18)
<223> lysine or arginine

<221> VARIANT
<222> (19) ... (19)
<223> any amino acid

<221> VARIANT
<222> (20) ... (20)
<223> lysine or arginine

<400> 19
Glu Gly Xaa Xaa Xaa Trp Xaa Ser Phe Lys Xaa Xaa Val Thr Pro Xaa
1 5 10 15
Lys Xaa Xaa Xaa
20

<210> 20
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> consensus sequence

<400> 20
Trp Ala Gly Trp Arg Lys Lys
1 5

<210> 21
<211> 54
<212> PRT
<213> Notophthalmus viridescens

<220>
<221> VARIANT
<222> (20) ... (46)
<223> any amino acid

<400> 21
Ser Pro Leu Lys Ser Pro Tyr Lys His Pro Glu Gly Leu Leu Ser Pro
1 5 10 15
Thr Lys Met Xaa
20 25 30
Xaa Leu Ser
35 40 45
Ser Ser Glu Arg Leu Arg
50

<210> 22
<211> 14
<212> PRT
<213> Rattus norvegicus

<220>
<221> VARIANT
<222> (6) ... (9)
<223> any amino acid

<400> 22
Lys Lys Leu Phe Ser Xaa Xaa Xaa Lys Lys Leu Ser Gly
1 5 10

<210> 23
<211> 10
<212> PRT
<213> Rattus norvegicus

<400> 23
Met Gly Ala Gly Ser Ser Thr Glu Gln Arg
1 5 10

<210> 24
<211> 26

<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 24
gtgactggtg aggctcaac caagtc
26

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 25
gtgactggtg agtactcaac caagtc
26

<210> 26
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 26
ggaagtccct tgcgaggcct cttcagtagc
30

<210> 27
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 27
gctcaggcct aagctcgctg tctggg
26

<210> 28
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 28
cccttgaaga aaagcttcag tagc
24

<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 29
ggcttaaaga agtcgtctgg gaag
24

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 30
cccttgtcga gcagcttcag tagc
24

<210> 31
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 31
ggcttaagct cgtcgtctgg gaag
24

<210> 32
<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Penetratin peptide

<400> 32

Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys Lys
1 5 10 15

<210> 33

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> SSeCKS cyclin binding site

<400> 33

Leu Lys Lys Leu Phe Ser Ser Ser Gly Leu Lys Lys Leu Ser Gly Lys
1 5 10 15

<210> 34

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> SSeCKS mutated cyclin binding site

<400> 34

Leu Ser Ser Ser Phe Ser Ser Ser Gly Leu Ser Ser Ser Ser Gly Lys
1 5 10 15

<210> 35

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> SSeCKS mutated phosphoserine cyclin binding site

<221> VARIANT

<222> (6)...(6)

<223> phosphatidyl serine

<221> VARIANT

<222> (14) ... (14)

<223> phosphatidyl serine

<400> 35

Leu Lys Lys Leu Phe Ser Ser Ser Gly Leu Lys Lys Leu Ser Gly Lys
1 5 10 15