1.6 AULA 7- Área de Superfície de Revolução

Da geometria clássica sabemos que a área lateral de um tronco de cone com raios das bases r e R e geratriz l é dada por $A = \pi(r+R)l$.

Utilizaremos essa informação para deduzirmos a área de uma superfície de revolução.

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua e positiva, diferenciável em (a,b), com derivada contínua. Considere uma partição do intervalo [a,b] dada por $a=x_0< x_1< \cdots < x_n=b$. Para cada subintervalo $[x_{i-1},x_i]$ consideramos o segmento que une os pontos $(x_{i-1},f(x_{i-1}))$ e $(x_i,f(x_i))$. Ao girarmos essa curva em torno do eixo Ox, cada segmento l_i que aproxima a curva gerará uma tronco de cone. Veja figura:

Observação 1. Para cada subintervalo $[x_{i-1}, x_i]$ da partição temos um tronco de cone com raios iguais a $f(x_{i-1})$ e $f(x_i)$ e geratriz $g = l_i$. Logo, para cada $i \in \{1, 2, \dots, n\}$, o volume do tronco será:

$$V_i = \pi(f(x_{i-1}) + f(x_i))l_i$$

Como f é contínua, todos os valores no intervalo $[f(x_{i-1}), f(x_i)]$ são assumidos pela função f. Em particular existe $c_i \in [x_{i-1}, x_i]$ de modo que $f(c_i) = \frac{f(x_{i-1}) + f(x_i)}{2}$. Lembrando que $l_i = \sqrt{1 + (f'(c_i))^2} \Delta x_i$, temos que volume do tronco torna-se:

$$V_i = 2\pi f(c_i) \sqrt{1 + (f'(c_i))^2} \Delta x_i$$

Agora, somando todos os volumes V_i dos troncos de cones e tomando o limite dessas somas de Riemann, chegamos a definição:

Definição 4. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua e positiva, diferenciável em (a,b), com derivada contínua. A área da superfície gerada pela rotação do gráfico de f, em torno do eixo Ox é dada por:

Área =
$$2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^2} dx$$

Exemplo 14. Calcule a área da superfície esféria de raio r.

A esfera pode ser obtida pela rotação, em torno do eixo Ox, do gráfico de $f(x) = \sqrt{r^2 - x^2}$.

No exemplo anterior vimos que a derivada de f(x) é $f'(x) = \frac{-x}{\sqrt{r^2 - x^2}}$. Portanto,

Área =
$$2\pi \int_{a}^{b} f(x)\sqrt{1 + (f'(x))^{2}} dx$$
 = $2\pi \int_{-r}^{r} \sqrt{r^{2} - x^{2}} \cdot \frac{r}{\sqrt{r^{2} - x^{2}}} dx$
= $2\pi r \int_{-r}^{r} dx$
= $2\pi r (r + r)$
= $4\pi r^{2}$

Exemplo 15. Encontre a área da superfície gerada pela rotação, em torno do eixo *Oy*, do gráfico da função $x = \sqrt{2y-1}$, no intervalo $\frac{5}{8} \le y \le 1$.

Solução:

Observe que temos
$$x = f(y) = \sqrt{2y - 1}$$
. Assim, $f'(y) = \frac{1}{\sqrt{2y - 1}}$.

Portanto

Abaixo você encontrará duas sugestões de exercícios. Faça-os como treinamento!

Exercício 15. Utilizando a fórmula para cálculo da área de superfície de revolução comprove que área lateral do cone de revolução de base com raio r e altura h é $A = \pi r(\sqrt{r^2 + h^2})$.

Exercício 16. Determine a área da superfície gerada pela rotação da curva $x = \frac{e^y + e^{-y}}{2}$, em torno do eixo Oy, no intervalo $0 \le y \le ln(2)$.