

## planetmath.org

Math for the people, by the people.

## truth-value semantics for propositional logic is sound

 $Canonical\ name \qquad Truthvalue Semantics For Propositional Logic Is Sound$ 

Date of creation 2013-03-22 19:33:01 Last modified on 2013-03-22 19:33:01

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771) Entry type Definition Classification msc 03B05 The soundness theorem of propositional logic says the following: every theorem is a tautology. In symbol:  $\vdash A$  implies  $\models A$  for any wff A.

**Theorem 1.** Propositional logic is sound with respect to truth-value semantics.

*Proof.* Basically, we need to show that every axiom is a tautology, and that the inference rule modus ponens preserves truth. Since theorems are deduced from axioms and by applications of modus ponens, they are tautologies as a result.

Using truth tables, one easily verifies that every axiom is true (under any valuation).

First, let us verify that  $(A \to B) \to (\neg B \to \neg A)$  is a tautology. The corresponding truth table is

| A                       | B            | $\neg A$     | $\neg B$ | $A \to B$    | $\neg B \to \neg A$ | $(A \to B) \to (\neg B \to \neg A)$ |
|-------------------------|--------------|--------------|----------|--------------|---------------------|-------------------------------------|
| $\overline{\mathrm{T}}$ | Т            | F            | F        | Τ            | Τ                   | $\overline{\mathrm{T}}$             |
| $\mathbf{T}$            | $\mathbf{F}$ | $\mathbf{F}$ | Τ        | $\mathbf{F}$ | F                   | ${ m T}$                            |
| F                       | Τ            | Τ            | F        | ${ m T}$     | ${ m T}$            | ${ m T}$                            |
| $\mathbf{F}$            | $\mathbf{F}$ | Τ            | Τ        | Τ            | ${ m T}$            | ${ m T}$                            |

Checking the truth values in the last column confirms that  $(A \to B) \to (\neg B \to \neg A)$  is a tautology.

Next, let us check that  $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$  is a tautology. This time, we use a "reduced" truth table.

| (A             | $\rightarrow$ | (B           | $\rightarrow$ | C))          | $\rightarrow$ | ((A          | $\rightarrow$ | B)           | $\rightarrow$ | (A        | $\rightarrow$ | C))          |
|----------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|-----------|---------------|--------------|
| $\overline{T}$ | Т             | Т            | Т             | Т            | Τ             | Т            | Т             | Т            | Т             | Т         | Т             | Т            |
| T              | $\mathbf{F}$  | T            | $\mathbf{F}$  | $\mathbf{F}$ | T             | Τ            | Τ             | ${ m T}$     | F             | ${\rm T}$ | F             | $\mathbf{F}$ |
| Τ              | $\mathbf{T}$  | $\mathbf{F}$ | Τ             | Τ            | T             | T            | F             | F            | T             | Τ         | Τ             | Τ            |
| Τ              | T             | F            | Τ             | F            | T             | T            | F             | F            | T             | T         | F             | F            |
| F              | T             | T            | Τ             | Τ            | T             | F            | T             | ${ m T}$     | T             | F         | T             | Τ            |
| $\mathbf{F}$   | T             | T            | $\mathbf{F}$  | F            | T             | F            | T             | T            | T             | F         | Τ             | F            |
| F              | T             | F            | Τ             | T            | T             | F            | T             | F            | T             | F         | T             | Τ            |
| F              | Τ             | F            | Τ             | $\mathbf{F}$ | Τ             | $\mathbf{F}$ | Τ             | $\mathbf{F}$ | Τ             | F         | Τ             | $\mathbf{F}$ |

Notice that the truth values under the third  $\to$  are all T, hence  $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$  is a tautology.

Finally, we check that  $A \to (B \to A)$  is a tautology. This can be done without truth tables. Let v be a valuation. We may assume v(A) = 1, since

 $v(A \to (B \to A)) = 1$  otherwise. If v(A) = 1, then  $v(B \to A) = 1$  no matter what v(B) is. Therefore,  $v(A \to (B \to A)) = 1$ , and  $A \to (B \to A)$  is a tautology.

Next, we show that modus ponens preserves truths. In other words,  $V(A) = V(A \to B) = 1$  imply V(B) = 1. But if not, then either V(A) = 0, or  $V(A \to B) = 0$ .

The soundness theorem can be used to prove that certain wff's of propositional logic are not theorems. For example, we show that the schema  $A \to (A \land B)$  is not a theorem schema (an instance of it is not a theorem). Pick two distinct propositional variables p and q, and use the truth table:

Since the second column contains an  $F, p \to (p \land q)$  is not true, and therefore  $\not\vdash A \to (A \land B)$  by the soundness theorem. As another example, we show that the *disjunction property* 

if 
$$\vdash A \lor B$$
, then  $\vdash A$  or  $\vdash B$ 

is not true in classical propositional logic (it is true, however, in intuitionistic logic). To see this, let A be  $p \to q$  and B be  $q \to p$ , where p,q are propositional variables. Then  $A \vee B$  is an instance of the theorem schema  $(C \to D) \vee (D \to C)$ . However, neither  $\vdash A$  nor  $\vdash B$ , as illustrated in the following truth table:

| p            | q            | $p \to q$    | $q \to p$    | $(p \to q) \lor (q \to p)$ |
|--------------|--------------|--------------|--------------|----------------------------|
| Τ            | Τ            | Τ            | Τ            | T                          |
| $\mathbf{T}$ | F            | $\mathbf{F}$ | ${ m T}$     | ${ m T}$                   |
| $\mathbf{F}$ | Τ            | ${ m T}$     | $\mathbf{F}$ | ${ m T}$                   |
| F            | $\mathbf{F}$ | Τ            | ${ m T}$     | T                          |

Notice that both the third and the fourth columns contain an F, and therefore by the soundness theorem, A and B are not theorems.