$\label{eq:Matematuчeckas} \mbox{Математическая логика} - 2 \\ \mbox{V семестр}$

Лектор: Виктор Львович Селиванов Записывали: Глеб Минаев, Иван Кабашный Редактировал: Борис Алексеевич Золотов

МКН СПбГУ, осень 2022

Содержание

1	Лог	Логика предикатов			
	1.1	Истин	иность и доказуемость	1	
		1.1.1	Структура		
		1.1.2	Термы и формулы	4	
		1.1.3	Значение термов и формул	•	
		1.1.4	Ультрафильтры	2	
		1.1.5	Декартово и фильтрованное произведения структур	ļ	
		1.1.6	Теорема Гёделя о компактности	(
1.2 3 лекция			(
1.3 Лекция 4			ия 4	8	
3					
1	Л	огика	а предикатов		
1.	1 <i>V</i>	Істині	ность и доказуемость		
1.	1.1	Струк	стура		
	Бу	рбаки 1	классифицировал структуры как:		
]	l) or	іерации	1,		
2	2) ча) частичные порядки,			
ć	В) то	пологи	ические структуры.		

Последние не имеют приложения в логике — их мы рассматривать не будем. "Операции" — это структуры алгебраические, "частичные порядки" — это структуры, снабжённые каким-либо отношением.

Определение 1. *Сигнатура* — набор функциональных, предикатных и константных символов вместе с функцией, задающей арность этих символов.

Функциональные символы интерпретируются как функции $A^n \to A$, предикатные символы — как функции $A^m \to \{\mathbf{u}; \mathbf{n}\}$, а константы — как элементы A (или, что равносильно, функции $\{\varnothing\} \to A$).

Будем называть σ -структурой (структурой сигнатуры σ) пару (A, I), где A — непустое множество, а I — интерпретация сигнатурных символов σ в A.

Пример 1. Сигнатура упорядоченного кольца — $\langle +, \cdot; <; 0, 1 \rangle$. Можно добавить вычитание и взятие противоположного, но они выражаются в имеющейся сигнатуре.

Определение 2. \mathbb{A} , $\mathbb{B} - \sigma$ -структуры. Тогда отображение $\varphi : \mathbb{A} \to \mathbb{B}$ называется гомоморфизмом, если оно задаёт $\varphi : A \to B$, что для всякой функции f^n из сигнатуры σ и для всяких $a_1, \ldots, a_n \in A$

$$\varphi(f_A(a_1,\ldots,a_n))=f_B(\varphi(a_1),\ldots,\varphi(a_n)),$$

для всякого предиката P^m в сигнатуре σ и всяких $a_1,\ldots,a_m\in A$

$$P_A(a_1,\ldots,a_m) \implies P_B(\varphi(a_1),\ldots,\varphi(a_m))$$

и для всякой константы c сигнатуры σ

$$\varphi(c_A) = c_B.$$

 φ — изоморфизм, если φ — гомоморфизм, биективен, и φ^{-1} — гомоморфизм.

 $\mathbb A$ называется *подструктурой* $\mathbb B$ ($\mathbb A\subseteq\mathbb B$), если $A\subseteq B$ и $\varphi:A\to B, a\mapsto a$ гомоморфизм.

1.1.2 Термы и формулы

Определение 3. Фиксируем некоторое множество V — "множество переменных" — символы \land , \lor , \rightarrow , \neq и символы $\forall x$ и $\exists x$ для всякого $x \in V$.

Терм — это понятие, рекурсивно определяемое следующими соотношениями:

- переменная терм,
- константа терм,
- \bullet для всяких термов t_1, \ldots, t_n и функции f^n выражение $f(t_1, \ldots, t_n)$ терм.

 Φ ормула — это понятие, рекурсивно определяемое следующими соотношениями:

- для всяких термов t_1 , t_2 выражение $t_1 = t_2$ формула,
- для всяких предиката P^n из σ и термов t_1, \ldots, t_n выражение $P(t_1, \ldots, t_n)$ формула,
- для всяких формул φ и ψ выражения $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$, $\neq \varphi$ формулы,
- ullet для всяких формулы φ и переменной x выражения $\forall x \varphi$ и $\exists x \varphi$ формулы.

 $\operatorname{For}_{\sigma}$ — множество всех формул с сигнатурой σ .

Пример 2. В кольцах всякий терм можно свести к полиному с целыми коэффициентами. В мультипликативных группа — моному с целым коэффициентов.

Задача 1. Семейства термов и формул задаются контекстно свободными грамматиками.

Определение 4. Переменная x называется csofodnoй в формуле φ , если есть вхождение x не покрывается никаким квантором $\forall x$ и никаким квантором $\exists x$. $\mathrm{FV}(\varphi)$ — множество всех свободных переменных формулы φ .

1.1.3 Значение термов и формул

Определение 5. Пусть t — терм в сигнатуре σ , а \mathbb{A} — σ -структура. Тогда $t^{\mathbb{A}} : A^n \to A$ — означивание t, некоторая функция, полученная подставлением вместо констант их значений в \mathbb{A} и последующим рекурсивным означиванием по синтаксическому дереву t. Аналогично получается означивание формулы $f^{\mathbb{A}} : A^n \to \{u; \pi\}$.

Определение 6. *Предложение* в сигнатуре σ — формула без свободных переменных.

$$\varphi^{\mathbb{A}} \in \{T, F\},$$

$$\varphi^{\mathbb{A}} = T \Longleftrightarrow \mathbb{A} \models \varphi.$$

Определение 7. *Моделью* данного множества предложения Γ называется структура, в которой все предложения из Γ истины. Если \mathbb{A} — это модель, то иногда пишут $\mathbb{A} \models \Gamma$.

Если Γ — множество предложений, φ — предложение. Говорят, что φ логически следует из Γ ($\Gamma \models \varphi$), если φ истино в любой модели Γ .

Определение 8. Предложение φ называется тождественно истино, если оно истино в любой структуре. Иногда пишут $\models \varphi$.

Утверждение 1.

- $\Gamma \models \varphi$ тогда и только тогда, когда $\Gamma \cup \{\neg \varphi\}$ не имеет модели.
- ullet φ тождественная истина тогда и только тогда, когда $\models \varphi$.
- Γ конечное; $\Gamma \models \varphi$ тогда и только тогда, когда $(\land \Gamma) \rightarrow \varphi$ тожественная истина.

1.1.4 Ультрафильтры

Определение 9. Пусть I — непустое множество. Φ ильтром на множестве I называется непустое множество $F \subseteq (I)$ (где (I) — множество всех подмножеств), которое не содержит $\emptyset \subset I$, а также замкнуто относительно пересечения:

$$\forall A, B \in F \ A \cap B \in F$$

и взятия надмножеств:

$$\forall A \in F \ A \subseteq B \subseteq I \implies B \in F.$$

Фильтр F называется yльтрафильтром, если $A \in F$ или $\overline{A} \in F$ для любого $A \subseteq I$.

Утверждение 2.

- 1) Фильтр F является ультрафильтром тогда и только тогда, когда он является максимальным по включению среди всех фильтров (то есть, нет фильтра, который бы его расширял).
- 2) Пусть F ультрафильтр u A, $B \subseteq I$, тогда

$$\begin{array}{ll} A \in F & \Longleftrightarrow & \overline{A} \notin F, \\ A \cup B \in F & \Longleftrightarrow & A \in F \text{ usu } B \in F. \end{array}$$

3) Любой фильтр содержится в некотором ультрафильтре.

Доказательство. Докажем 1.

Пусть F — ультрафильтр. Утверждается, что нет фильтра F', который содержал бы F ($F'\supseteq F$). Предположим противное, т.е. что существует такое A, что оно принадлежит F' и не принадлежит F. Раз $A\notin F$, то $\overline{A}\in F$. В силу того, что $F\subseteq F'$, то \overline{A} также принадлежит F'. Таким образом, $\emptyset=A\cap\overline{A}\in F'$, противоречие.

В обратную сторону, F — максимальный по включению фильтр. От противного, пусть есть множество $A\subseteq I$ такое, что $A,\overline{A}\notin F$. Рассмотрим

$$F' = \{X \subseteq I \mid \exists B \in F \ A \cap B \subseteq X\}.$$

F' должно быть фильтром (замкнутость вверх по включению понятна, замкнутость относительно пересечения также верна, так как если $X,Y\in F',\,A\cap B\subseteq X,\,A\cap C\subseteq Y$ для $B,C\in F$, то $A\cap B\cap C\subseteq (X\cap Y).\,B\cap C\in F$, а значит, $X\cap Y\in F'$. и последнее, если бы $\emptyset\in F'$, то получается очевидное противоречие из того, что $A\cap B$ всегда непусто).

Докажем 2. Пусть F — ультрафильтр. Одновременно A и \overline{A} принадлежать F не могут. Имеем $A \in F \vee \overline{A} \in F$, откуда понятно. Второе утверждение очевидно в левую сторону.

В другую сторону, имеем $A \cup B \in F$, предоположим противное. Пусть $A, B \notin F$, значит, $\overline{A}, \overline{B} \in F$, а тогда $\overline{A} \cap \overline{B} \in F$. По закону деМоргана, $\overline{A \cup B} \in F$, откуда $A \cup B \notin F$.

Докажем 3. Пусть имеется F. Утверждается, что существует ультрафильтр F^* , который сожержит F ($F^* \supseteq F$). Данное утверждение нетривиально и в каком-то смысле схоже с аксиомой выбора. Применим лемму Цорна.

Лемма 3 (Цорн). Пусть $(P; \leq)$ — частичный порядок, в котором всякая линейная цепь $A \supseteq P$ имеет верхнюю границу. Тогда в этом частичном порядке есть максимальный элемент.

Рассмотрим множество всех фильтров $P = \{G - \text{фильтр} \mid F \subseteq G\}$, и порядок \subseteq . Пусть \mathfrak{F} — множество фильтров $F_1 \subseteq F_2 \vee F_2 \subseteq F$, а $F' = \bigcup \mathfrak{F}$. F' — фильтр, что проверяется ручками. По лемме, существует F^* — максимальное расширение.

Пример 3.

- Пусть есть I, тогда $\{I\}$ фильтр.
- Пусть $\emptyset \neq A \subseteq I$, тогда $F = \{X \subseteq |A \subseteq X\}$ фильтр.

Задача 2. Если I бесконечное, то в P(I) есть неглавные ультрафильтры. Для доказательства рассматриваем $F = \{A \subseteq I | A - \text{коконечно}\}$, и существующий по доказанному ранее $F^* \supseteq F$.

1.1.5 Декартово и фильтрованное произведения структур

Пусть имеется некоторое проиндексированное семейство σ -структур $\{\mathbb{A}_i\}_{i\in I}$.

Определение 10 (Декартово произведение). Определим σ -структуру на декартовом произведении нескольких σ -структур. Мы будем обозначать её $\mathbb{A} = \prod_{i \in I} \mathbb{A}_i$.

Носителем структуры будет множество

$$A = \prod_{i \in I} A_i = \left\{ a \colon I \longrightarrow \bigsqcup_{i \in I} A_i \ \middle| \ a(i) \in A_i \right\}.$$

Константы, функции и предикаты интерпретируются следующим образом:

- 1) $c^{\mathbb{A}}(i) = c^{\mathbb{A}_i}$ отображение, возвращающее в каждой структуре соответствующую константу;
- 2) $(f^{\mathbb{A}}(a_1,\ldots,a_n))(i) = f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ действуем функцией в каждой структуре, собираем из образов элемент декартова произведения;
- 3) $P^{\mathbb{A}}(a_1,\ldots,a_n) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ выполнен для всех $i\in I.$

Определение 11 (Фильтрованное произведение). Пусть F — фильтр на множестве I. $Фильтрованное произведение нескольких структур (обозначается <math>\mathbb{A}_F$) получается факторизацией их декартова произведения по следующему отношению эквивалентности:

$$a \equiv_F b \iff \{i \in I \mid a(i) = b(i)\} \in F$$

(говорят, что a(i) = b(i) для F-большинства i).

Носителем фильтрованного произведения будет фактор-множество A/\equiv_F , состоящее из классов эквивалентности $\{[a] \mid a \in A\}$. Константы, функции и предикаты интерпретируются следующим образом:

- 1) $c^{\mathbb{A}_F} = [c^{\mathbb{A}}]$ класс элемента, собранного из соответствующих констант во всех структурах;
- 2) $f^{\mathbb{A}_F}([a_1],\ldots,[a_n]) = [f^{\mathbb{A}}(a_1,\ldots,a_n)]$ надо проверить, что определено однозначно (потому что пересечение множеств фильтра принадлежит фильтру);
- 3) $P^{\mathbb{A}_F}([a_1],\ldots,[a_n]) \iff P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$ для F-большинства i.

Если F — ультрафильтр, то \mathbb{A}_F называется ультрапроизведением.

Теорема 4 (об ультрапроизведениях). Пусть F — ультрафильтр на множестве I, \mathbb{A}_i — семейство стркутур, $\varphi(x_1, \ldots, x_k)$ — σ -формула и пусть $a_1, \ldots, a_k \in \prod_i A_i$. Тогда $\mathbb{A}_F \models \varphi([a_1], \ldots, [a_k])$ тогда и только тогда, когда $\mathbb{A}_i \models \varphi(a_1(i), \ldots, a_n(i))$ для F-большинства индексов.

1.1.6 Теорема Гёделя о компактности

Теорема 5. Бесконечное множество предложений Γ имеет модель, если каждое его конечное подмножество Γ' имеет модель.

1.2 3 лекция

Утверждение 6.

$$\varphi([a_1], \dots, [a_k]) \iff \{i | \mathbb{A} \models \varphi(a_1(i), \dots, a_k(i))\} \in F.$$

Утверждение 7 (Следствие).

$$\mathbb{A}_F \models \varphi \iff \{i | \mathbb{A}_i \models \varphi\} \in F.$$

Ультрапроизведения. Доказательство приведём индукцией по построению формулы. Простейшие формулы в виде предиката и равенства двух термов рассматриваются очевидно, это - база. Обратим внимание на функциональный символ $f \in \sigma$. Как он интерпретируется?

$$f^{\mathbb{A}_F}([a_1], \dots, [a_k]) := [\lambda_i f^{\mathbb{A}_i}(a_1(i), \dots, a_k(i))]$$

Из определения декартового у нас было

$$f^{\mathbb{A}}([a_1], \dots, [a_k]) := \lambda_i f^{\mathbb{A}_i}(a_1(i), \dots, a_k(i)),$$

где $i \mathbb{A} pstof^{\mathbb{A}_i}(a_1(i),\ldots,a_k(i))$, и $\lambda x f(x)=f$. Причём согласно фильтру

$$a_1 \equiv_F a'_1$$

$$\vdots$$

$$a_k \equiv_F a'_k$$

$$f^{\mathbb{A}}(a_1, \dots, a_k) \equiv_F f^{\mathbb{A}}(a'_1, \dots, a'_k).$$

 $J_i\{i|a_1(i)=a_1'(i)\}\in F,\ f^{\mathbb{A}_i}(a_1(i),\dots,a_k(i))=J_1\cap\dots,\cap J_k\in F=f^{\mathbb{A}}(a_1',\dots,a_k').$ Константы $c^{\mathbb{A}}$ интерпретируются как $\lambda_i c^{\mathbb{A}_i}$, переменные означиваются каким-то образом $x_j\mathbb{A}pstoa_j(i),\ t^{\mathbb{A}_i}=f^{\mathbb{A}_i}(t_1^{\mathbb{A}_i},\dots,t_k^{\mathbb{A}_i}),\$ значит, $t^{\mathbb{A}}(a_1,\dots,a_k)=f^{\mathbb{A}}(t_1^{\mathbb{A}}(\overline{a}),\dots,t_k^{\mathbb{A}}(\overline{a})).$ Соответственно, из определения это верно для простейших формул. Перейдём теперь к сложным формулам.

Более сложные формулы строятся из простых при помощи логических связок и кванторов. Достаточно рассматривать только конъюнкцию, отрицанию и существование (остальные выражаются через них). Пусть мы хотим проверить

$$\mathbb{A}_F \models (\varphi \wedge \psi)(a_1, \dots, a_k).$$

Это означает, что $\mathbb{A}_F \models \varphi([\overline{a}])$ и $\mathbb{A} \models \psi([\overline{a}])$. $J = \{i | \mathbb{A}_i \models \varphi(\overline{a(i)})\} \in F$. Проверяется $i \in J \cap K$,

$$\{\mathbb{A}_i \models (\varphi \wedge \psi)(a_1(i), \dots, a_k(i))\} \in F.$$

Отрицание также легко проверяется для ультрафильтров, так как есть свойство дополнения.

$$\mathbb{A}_F \models \neg \varphi([\overline{a}])$$
$$\neg (\mathbb{A}_F \models \varphi([\overline{a}]))$$

• • •

Существование проверяется следующим образом:

$$arphi=arphi(x_1,\ldots,x_k),$$
 $arphi=\exists x heta(x,x_1,\ldots,x_k).$ $\mathbb{A}_F\models arphi([a_1],\ldots,[a_k]),$ $\mathbb{A}_F\models heta([b],[a_1],\ldots,[a_k])$ для некоторого $b\in\mathbb{A}.$

И нам нужно доказать в две стороны. Для этого рассматриваем

$$J = \{i | \mathbb{A}_i \models \theta(b(i), a_1(i), \dots, a_k(i))\},$$

$$K = \{i | \mathbb{A}_i \models \varphi(a_1(i), \dots, a_k(i))\}.$$

Это – элементы F, которые в разных случаях лежат друг в друге. Не уловил суть, надо будет дописать и переписать. \Box

Теорема 8. Бесконечное множество Γ имеет модель, если каждое его конечное поднмонжество Γ имеет модель.

Доказательство. Пусть $I = \{i | i$ – конечное подмножество $\Gamma \}$. Для каждого $i \in I \mapsto \mathbb{A}_i$ существует своя структура. Тогда можно построить следующее семейство структур $\{\mathbb{A}_i\}_{i\in I}$, где $\mathbb{A}_i \models i$. Рассмтрим декартово произведение $\mathbb{A} = \prod_i \mathbb{A}_i$ и $G_i = \{j \in I | i \subseteq j\}$. Если $k \in I$, то $G_i \cap G_k = G_{i \cup k}$ (I - бесконечно). Утверждается, что $F = \{A \subseteq I | \exists_i (G_i \subseteq A)\}$ - ультрафильтр. Свойства проверяются очевидно.

Определение 12.

- $\mathbb{A} \subseteq \mathbb{B}$ iff значения простых формул в \mathbb{A} и \mathbb{B} совпадают;
- $\mathbb{A} \leq \mathbb{B}$, если $\mathbb{A} \subseteq \mathbb{B}$ и значения любых формул в A и B совпадают (элементарная подструктура);
- $\mathbb{A} \equiv \mathbb{B}$, если они удовлетворяют одни и те же предложения (элементарная эквивалентность).

Утверждение 9. $\mathbb{A} \leq \mathbb{B}$, $mor\partial a \mathbb{A} \subseteq \mathbb{B}$ $u \mathbb{A} \equiv \mathbb{B}$.

Теорема 10 (Лёвингейма-Сколема, понижение). Пусть есть \mathbb{A} , $X \subseteq \mathbb{A}$, $|X| \leq |For_{\sigma}|$. Тогда существует $\mathbb{B} \leq \mathbb{A}$: $X \subseteq \mathbb{B}$ $u \mid \mathbb{B} \mid \leq |For_{\sigma}|$.

1.3 Лекция 4

Доказательство. Построим последовательность $X = S_0 \subseteq S_1 \subseteq ...,$ где

$$S_{n+1} = S_n \cup \{ \eta(e) | e \in E_n \},$$

где E_n и $\eta:E_n\to A$ определены следующим образом:

$$E_n = \{(\overline{a}, \varphi(\overline{x}, y)) | \overline{a} \in S_n \text{ и } \mathbb{A} \models \exists y \varphi(\overline{a}, y) \}$$

и $\mathbb{A} \models \varphi(\overline{a}, \eta(e)) \ (e \in E)$. В качестве B просто возьмём $\bigcup_n S_n$. Нужно проверить, что $|B| \leq |\operatorname{For}_{\sigma}|$ – это делается по индукции по S_i . E_n по мощности не превосходит $\operatorname{For}_{\sigma}$ посредством сравнения через $\operatorname{For}_{\sigma}^2$, откуда и получаем требуемое.

Рассмторим теперь $\mathbb{B}=(B,I)$ с сигнатурой σ и проверим, что B замкнуто относительно интерпретаций элементов сигнатуры. Это получается несложно, а предикаты мы зададим как

$$P^{\mathbb{B}}(b_1,\ldots,b_n) \Longrightarrow P^{\mathbb{A}}(b_1,\ldots,b_n) = T.$$

Осталось лишь проверить, что для любой формулы $\varphi(x_1,\ldots,x_k)$ и для любых значений переменных $(a_1,\ldots,a_k)=\overline{a}\in B$, тогда значение на этих элементах в $\mathbb B$ будет совпадать со занчением в $\mathbb A$:

$$\mathbb{B} \models \varphi(\overline{a}) \Longleftrightarrow \mathbb{A} \models \varphi(\overline{a}).$$

Проверяется это, конечно, индукцией по построению формулы. Рассмотрим \land, \neg и \exists , через них всё выражается и провреим для них. Конъюнкция – очевидна, ровно как и отрицание. Интерес представляет существование. Пусть $\psi(\overline{x}) = \exists y \varphi(\overline{x}, y)$. Пусть для φ уже доказано, что $\mathbb{B} \models \varphi(\overline{a}, c) \iff \mathbb{A} \models (\overline{a}, c)$. Слева направо требуемое очевидно, а справа налево я проспал.

Замечание. На этом месте могло бы быть лирическое отступление про ZFC.

Пусть теперь $\mathbb{A} \equiv \mathbb{B}$, $\mathbb{A} \preceq \mathbb{B}$. τ называется *обогащением* структуры σ , если последняя лежит в первой и дополнение непусто.

Определение 13.

- 1) Пусть $\mathbb{A} \sigma$ -структура. $\sigma_{\mathbb{A}} = \sigma \cup \{c_a | a \in A\}, c_a$ новые константные символы, причём $c_a \neq c_b$ при $a \neq b$. $D(\mathbb{A})$ множество атомарных формул сигнатуры $\sigma_{\mathbb{A}}$ и их отрицаний, истинных в \mathbb{A} при интерпретации $\sigma_a \models a$. ($\partial uarpamma \ \mathbb{A}$)
- 2) Элементарная диаграмма \mathbb{A} это множество $D^*(\mathbb{A})$ всех предлжений $\sigma_{\mathbb{A}}$, истинных в \mathbb{A} . $(D(\mathbb{A}) \subseteq D^*(\mathbb{A}))$

Утверждение 11.

- 1) Если $\mathbb{B} \models D(\mathbb{A})$, то $\mathbb{B}|_{\sigma}$ содержит подструктуту $\mathbb{A}' \subseteq \mathbb{B}|_{\sigma}$, такую что $\mathbb{A}' \simeq \mathbb{A}$.
- 2) Если $\mathbb{B}\models D^*(\mathbb{A})$, то $\mathbb{B}|_{\sigma}$ содержит элементарную подструктуру, изоморфную \mathbb{A}

Доказательство. *на доске рисуются картинки*

Теорема 12. Пусть имеется бесконечная \mathbb{A} – σ -структура и $H \ge \max(|A|, |For_{\sigma}|)$. Тогда найдётся $\mathbb{B} \succeq \mathbb{A}$ можности хотя бы H.

Доказательство. Рассмотрим $\sigma\mapsto\sigma_{\mathbb{A}}\models\tau=\sigma_{\mathbb{A}}\cup\{d_x|x\in H\}$ так, что $x\neq x'\Rightarrow d_x\neq d_{x'}$. И построим

$$\Gamma = D^*(A) \cup \{ \neg (d_x = d_{x'} | x, x' \in H, x \neq x') \}$$

множество предложений сигнатуры τ . Любое конечное $\Gamma_0 \subseteq \Gamma$ имеет модель, являющуюся τ -расширением структуры \mathbb{A} (легко проверяется). По теореме о компактности существует $\mathbb{C} - \tau$ -структура, такая, что $\mathbb{C} \models \Gamma$. И как-то завершаем доказательство. \square

Определение 14. *Теория* (T) – множество всех предложений в структуре σ .

2 Неразрешимость и неполнота

3 Введение в вычислимость