California State University Sacramento Electrical and Computer Science Department

EEE 108L Lab - Section 05 Laboratory Experiment Number 6: Lab Report

MOS Device Characteristics

Author: John Jimenez

Table of Contents

Abstract	3
Part 1: Preliminary Calculations	3
STEP 1: Proving the Condition	3
STEP 2: Calculate In	3
STEP 3: Solve for VTH	5
Part 2: SPICE Simulation	5
STEP 4: Construct Circuit	5
STEP 5: Change circuit by removing Ro	6
STEP 6: (No Step 6 for this lab)	6
STEP 7: Find Value for	
VTH8	
Part 3: Laboratory Experiment	9
STEP 8: Construct Circuit	9
STEP 9: Collect data to find the Value of VTH	10
STEP 10: Record VGS and Collect data for RD	10
STEP 11: Connect the Bulk Terminal of the transistor to find the new VTH	11
CONCLUSION:	12
ITEM 1:	12
ITEM 2:	12
ITEM 3:	12
ITEM 4:	12
ITEM 5:	12

ADDENDUM

Abstract

For this laboratory experiment we will be exploring the characteristics of a MOS transistor. In this lab we are using the CD4007 MOS transistor.

Part 1: Preliminary Calculations

STEP 1:

Vds > (Vgs - Vth)

Vds = (Vgs + Vgd) > (Vgs - Vth)

Vgd > -Vth

Vgs > Vth, happens when the FET transistor is in the forward active region

STEP 2:

$$Vds = Vdd - Id Rd = Vdd - R (k (Vgs - Vth)^2)$$

Vdd = 5V and $R = 4.7k\Omega$

From Appendix A12.1 in Moodle

$$Vth = 1.6 V, k = 8.2 \times 10^{-4}$$

$$Id=8.2\times10^{-4} (Vgs-1.6v)^2$$

$$Vds = 5 - 4700 (8.2 \times 10^{-4} (Vgs - 1.6 v)^{2})$$

When VGS = 1,

$$Id = (8.2 \times 10^{-4})(1-1.6)^2 = 2.95 \times 10^{-4}$$

$$Vds = (5-4700)(2.95 \times 10^{-4}) = -1.362$$

When VGS = 2,

$$Id = (8.2 \times 10^{-4})(2-1.6)^2 = 1.3 \times 10^{-4}$$

$$Vds = (5-4700)(1.3x10^{-4}) = -0.610$$

When VGS = 4,

$$Id = (8.2 \times 10^{-4})(4-1.6)^2 = 4.72 \times 10^{-3}$$

$$Vds = (5-4700)(4.72x10^{-3}) = -22.160$$

VGS	ld	Vds	Region
1	2.95×10^-4	-1.362	Cut Off
2	1.3×10^-4	-0.610	Triode
4	4.72×10^-3	-22.160	Saturation

STEP 3:

Solve for Vth and the transconductance parameter

$$k = (\mu Cox W)/ 2L$$

$$Id = k (Vgs-Vth)^2$$

To find k and Vth, solve for 2 equations with 2 unknowns

$$35 \text{ uA} = \text{k} (1.46 - \text{Vth})^2$$

$$430 \text{ uA} = \text{k} (2.18 - \text{Vth})^2$$

Finding Vth,

$$Sqrt(35/430) = (1.46 - Vth)/(2.18 - Vth)$$

$$Vth = (1.46 - 0.2853(2.18))/(1-0.2853)$$

$$Vth = 1.173V$$

Part 2: Spice Calculations

STEP 4: Construct circuit in figure 1 into Pspice.

Page 5 of 20

DC Sweep of Id

Current + Cox

STEP 5: Remove the R

Page 6 of 20

DC Sweep of Id

Forward Active Region (a little before the green cursor) and Saturation Region(red cursor)

STEP 7: Construct Circuit

DC Sweep of VTH

Part 3: Laboratory Calculations

STEP 8: Construct Figure 1 Circuit

Vgs	Vds	Id	
0	4.96V	8.51×10^-6	
1	4.96V	8.51×10^-6	
1.5	4.96V	8.51×10^-6	
1.6	4.95V	1.06×10^-5	<-expected cut off
1.8	4.92V	1.70×10^-5	
2	4.81V	4.04×10^-5	
2.2	4.56V	9.36x10^-5	
2.4	4.21V	1.68×10^-4	
2.6	3.77V	2.62×10^-4	
2.8	3.23V	3.77×10^-4	
3	2.61V	5.09×10^-4	
3.2	1.93V	6.53×10^-4	
3.4	1.24V	8.00×10^-4	
3.6	840mV = 0.84V	8.85×10^-4	
3.8	695mV = 0.695V	9.16×10^-4	
4	617mV = 0.617V	9.34×10^-4	
5	443mV = 0.443V	9.70×10^-4	

STEP 9: Determine the value for Vth and K

 $Id = 1.06 \times 10 \land -5$

Vgs = 1.6

 $Id = 4.04 \times 10^{-5}$

Vgs = 2

 $(1.6 - Vth)/(2 - Vth) = sqrt(1.06x10^-5/4.04x10^-5)$

(1.6 - Vth) = 0.512(2 - Vth)

0.512-1 = 1.6 + (0.512)(2)

Vth = 2.624/0.488

Vth = 5.377

 $K = (1.06 \times 10^{-5})/(1.6 - 5.377)^{2}$

 $K = 7.43 \times 10 \wedge -7$

Data from steps 10 and 11 were given from fellow team members and classmates. STEP 10:

		Step 10	
Vdd	Vds		Ids
0	0.03		0.00097451
1	0.152		0.000950588
2	0.316		0.000918431
3	0.54		0.00087451
4	1.08		0.000768627
5	2.01		0.000586275
6	2.99		0.000394118
7	3.94		0.000207843

STEP 11:

	St	ep 11	
Vdd=5	Vgs	Vds	Ids
	0	4.96	7.84314E-06
	1	4.96	7.84314E-06
	1.5	4.96	7.84314E-06
	1.6	4.96	7.84314E-06
	1.8	4.96	7.84314E-06
	2	4.96	7.84314E-06
	2.2	4.96	7.84314E-06
	2.4	4.96	7.84314E-06
	2.6	4.92	1.56863E-05
	2.8	4.73	5.29412E-05
	3	4.4	0.000117647
	3.2	3.93	0.000209804
	3.4	3.32	0.000329412
	3.6	2.59	0.000472549
	3.8	1.76	0.000635294
	4	1	0.000784314
	5	0.48	0.000886275

CONCLUSION:

- ITEM 1: There is no difference between the values measured. The low = below 1.6 and the high = above 2.
- ITEM 2: For the K values they were significantly different.
- ITEM 3: For Id values I see that they are fairly similar but with some differences in values. I think that is due to our circuit on the live board giving us strange values.
- ITEM 4: For the values of Vds/Id in step 5 I found that it
- ITEM 5: The value does change when comparing Vsb = 0V to Vsb = -1V, as the value of the Vth increases slightly.