Détection de structures communautaires dans des réseaux

SENE, CÔME, PRALON

- 1 Modularité
- 2 Méthode de Louvain
- 3 Expériences numériques
- 4 Bibliographie

Définitions et hypothèses

Représentation

Soit
$$G = (V, E)$$
, un graphe simple tel que

 $V = \{v_1, \cdots, v_p\}$ l'ensemble des nœuds

 $E \subset \{(v_i, v_j)_{i,j \in \{1, \dots, p\}} | i \neq j\} = V \times V$ l'ensemble des arêtes du graphe

Densité d'un graphe

On appelle densité d'un graphe la valeur

$$D_G = \frac{|E|}{\frac{p^2 - p}{2}}$$

Correspond à la fréquence d'arêtes dans le graphe, elle rend compte de la connexion entre les nœuds

Définitions et hypothèses

Degré d'un noeud

On appelle degré d'un nœud i la valeur

$$d_i = |\{(v_i, v_i) \in E | j \in \{1, \dots, p\}\}|$$

et correspond au nombre de voisins du noeud i.

Modèle nul

On appelle modèle nul d'un graph G, le graph G^* dont les |E| = marêtes ont été distribuées aléatoirement entre les nœuds de G

Le modèle nul joue un modèle de référence pour lequel il n'existe aucune structure communautaire dans le réseau.

Figure – Détection d'une bonne partition en 2 classes

Modularité

Modularité

Soit (C_1, \dots, C_K) une partition de V. On définit la modularité Q de la partition comme

$$Q(C_1, \cdots, C_K) = \frac{1}{2m} \sum_{k=1}^K \sum_{(v_i, v_j) \in C_k} (1_{(v_i, v_j) \in E} - P_{i,j})$$

avec
$$2m = \sum_{i=1}^{p} d_i$$
 et $P_{i,j} = \frac{d_i d_j}{2m}$

la probabilité que v_i et v_j soient connectés sous le modèle nul

- 1 Modularité
- 2 Méthode de Louvain
- 3 Expériences numériques
- 4 Bibliographie

Méthode de Louvain

Etape 1 de l'algorithme

Il s'agit d'un algorithme itératif approchant la partition de modularité maximale en compléxité temporelle $\mathcal{O}(nlog(n))$

- Choix d'un parcours aléatoire
- Affécter chaque noeud à sa propre communauté
- Agrégation de i à la communauté du voisin j si

$$\Delta Q = Q(C_1, \cdots, C_i, \cdots, C_j, \cdots, C_p) - Q(C_1, \cdots, C_{i,j}, \cdots, C_p) > 0$$

et plus grand que les autres voisins de i

itération sur le chemin

Méthode de Louvain

Etape 2 de l'algorithme

- Agrégation des noeuds en communauté
- On obtient un nouveau réseau, pondéré
- Itération de l'étape 1
- Arrêt lorsque $\Delta Q = 0$

Figure – Exemple d'application de la méthode de Louvain

- 1 Modularité
- 2 Méthode de Louvain
- 3 Expériences numériques
- 4 Bibliographie

Expériences numériques

Environnement et librairies utilisées

- Langage: Python 3.9
- Environnement : Spyder
- Librairies : igraph, matplotlib, random

Graphes utilisés

- Graphe du club de karaté de Zachary
- Graphe généré aléatoirement avec le modèle de Erdos Rényi

12 / 17

La fonction DetectCommunities

Son objectif

Détecter les communautés d'un graphe donné

Ses arguments

Un objet de type igraph. Graph (graphe donné par l'utilisateur)

Ce qu'elle retourne

Un graphe avec ses communautés mises en évidence par des couleurs

13 / 17

la fonction community_edge_betweenness de igraph

Figure – Exemple d'arête ayant une centralité élevée

14 / 17

Expériences numériques

(a) communautés détectées pour le graphe "Zachary"

(b) communautés détectées pour le graphe généré aléatoirement

- 1 Modularité
- 2 Méthode de Louvain
- 3 Expériences numériques
- 4 Bibliographie

- WikiStat. An introduction to network inference and mining, Article http: //www.nathalievialaneix.eu/doc/pdf/wikistat-network_compiled.pdf
- PNAS. Modularity and community structure in networks (2015), Article https://www.pnas.org/doi/10.1073/pnas.0601602103#abstract
- Wikipédia (2022). Méthode de Louvain, Article https://fr.wikipedia.org/wiki/Methode_de_Louvain
- 4 igraph, Documentation
 https://igraph.org/python/versions/latest/
- igraph, Documentation
 https://igraph.org/python/versions/latest/tutorials/visualize_
 communities/visualize_communities.html
- 6 igraph, Tutoriel
 https://igraph.org/python/api/latest/igraph._igraph.GraphBase.html#
 Erdos_Renyi

