Athreya Lahiri Chapter 1 Supplement

Arthur Chen

November 24, 2024

Theorem 1.1.2: The $\pi - \lambda$ Theorem

If C is a π -system, then $\lambda \langle C \rangle = \sigma \langle C \rangle$.

Proof: For the forward, every σ -algebra is a λ -system and $C \subset \sigma\langle C \rangle$ so $\lambda\langle C \rangle \subset \sigma\langle C \rangle$. Thus, it suffices to show that if C is a π -system, then $\lambda\langle C \rangle$ is a σ -algebra so that $\sigma\langle C \rangle \subset \lambda\langle C \rangle$.

Since $\lambda\langle C\rangle$ is a λ -system, it is closed under complementation and monotone increasing unions. By Proposition 1.1.1, showing that it is closed under intersection implies that it is a σ -algebra.

Let $\lambda_1(C) = \{A : A \in \lambda(C), A \cap B \in \lambda(C) \text{ for all } B \in C\}.$

Lemma 1 $C \subset \lambda_1(C)$.

Proof: Let $A \in C \subset \lambda \langle C \rangle$. Then for all $B \in C$, because C is a π -system, $(A \cap B) \in C \subset \lambda \langle C \rangle$. Thus $A \in \lambda_1(C)$.

Lemma 2 $\lambda_1(C)$ is a λ -system.

Proof: $\Omega \in \lambda_1(C)$ because $\Omega \in \lambda(C)$ by definition and for all $B \in C$, $(\Omega \cap B) = B \in C \subset \lambda(C)$. Thus $\Omega \in \lambda_1(C)$.

For closure under set compliment, let $A, X \in \lambda_1(C), X \subset A$. Then $A, X \in \lambda(C)$, and for all $B \in C$, $A \cap B, X \cap B \in \lambda(C)$. Then $(A \cap B) \setminus (X \cap B) = (A \setminus X) \cap B \in \lambda_1(C)$, because $\lambda(C)$ is a λ -system so $A \setminus X \in \lambda(C)$.

For closure under countable monotone increasing union, let $A_1, A_2 \cdots \in \lambda_1(C), A_1 \subset A_2 \subset \dots$ Then $A_n \in \lambda\langle C \rangle$ and $A_n \cap B \in \lambda\langle C \rangle$ for all $B \in C$. Let $A = \bigcup_{n=1} A_n$. Then $A \cap B = \bigcup_{n=1} (A_n \cap B)$, and by assumption $(A_n \cap B) \in \lambda\langle C \rangle$ for all n, so $\bigcup_{n=1} (A_n \cap B) \in \lambda\langle C \rangle$ for all $B \in C$. Thus $A \in \lambda_1(C)$.

Lemma 3 $\lambda_1(C) = \lambda \langle C \rangle$.

Proof: $\lambda_1(C)$ is a λ -system containing C, so $\lambda(C) \subset \lambda_1(C)$. However, by the definition of $\lambda_1(C)$, $\lambda_1(C) \subset \lambda(C)$.

Let $\lambda_2(C) = \{A : A \in \lambda(C), A \cap B \in \lambda(C) \text{ for all } B \in \lambda(C)\}.$ $\lambda_2(C)$ is a λ -system for the same reasons that $\lambda_1(C)$ is - the proofs are essentially unchanged.

Lemma 4 $C \subset \lambda_2(C)$.

Proof: Let $X \in C$ be arbitrary. Then $X \in \lambda(C) = \lambda_1(C)$. Thus by the definition of $\lambda_1(C)$, for all $B \in C$, $(X \cap B) \in \lambda(C)$. Flipping this around and letting $B \in C$ be arbitrary, we see that for all $X \in \lambda(C)$, $(B \cap X) \in \lambda(C)$. Thus $C \subset \lambda_2(C)$.

By the definition of $\lambda_2(C)$ and the above lemma we see that $C \subset \lambda_2(C) \subset \lambda(C)$, and taking the λ -systems shows that $\lambda_2(C) = \lambda(C)$. Thus from the definition of $\lambda_2(C)$, we see that $\lambda(C)$ is closed under finite intersection. Thus $\lambda(C)$ is a σ -algebra.

Theorem 1.2.4: Uniqueness of Measures

Let μ_1 and μ_2 be two finite measures on a measurable space (Ω, F) . Let $\mathcal{C} \subset F$ be a π -system such that $F = \sigma \langle \mathcal{C} \rangle$. If $\mu_1(C) = \mu_2(C)$ for all $C \in \mathcal{C}$ and $\mu_1(\Omega) = \mu_2(\Omega)$, then $\mu_1(A) = \mu_2(A)$ for all $A \in F$.

Proof: Let $L = \{A : A \in F, \mu_1(A) = \mu_2(A)\}.$

Lemma 5 L is a λ -system.

Proof: $\Omega \in L$ follows from the assumption that $\mu_1(\Omega) = \mu_2(\Omega)$. For closure under set compliment, let $A, B \in L, A \subset B$. Then $B \setminus A$ has measure $\mu_1(B) - \mu_1(A) = \mu_2(B) - \mu_2(A)$ and thus is in L. For closure under countable monotone increasing union, let $A_1, A_2 \dots$ have $A_n \subset A_{n+1}$ and $\mu_1(A_n) = \mu_2(A_n)$ for all $n \in \mathbb{N}$. By mcfb of measures,

$$\mu_1\left(\bigcup_{i\geq 1} A_i\right) = \lim_{n\to\infty} \mu_1(A_i) = \lim_{n\to\infty} \mu_2(A_i) = \mu_2\left(\bigcup_{i\geq 1} A_i\right)$$

and so
$$\left(\bigcup_{i\geq 1}A_i\right)\in L.$$

Since $C \subset L$, by the π - λ theorem, $F = \sigma \langle C \rangle \subset L$, and so by the definition of L, the measures are equal on F.