IETF/T2TRG update

W3C WoT Open Day 2021-06-28

Carsten Bormann

IRTF and IETF

IRTF (Research) T2TRG: open research issues with IETF potential

Research Group

WG, Standards

WG, Informational

IETF
(Engineering)

CoRE: protocol engineering for RESTful environments ASDF: engineering a format for IoT model convergence

LWIG*: Informational guidance for implementers IOTOPS*: Discussion of IoT operational issues

IETF WGs and IRTF RGs

- IETF: ~14 IoT-related WGs (next slides), foundational WGs (e.g., TLS)
- IRTF: Research arm, work on more far-out issues, no standards
 - T2TRG: Thing-to-Thing Research Group (e.g., WISHI: wishi.space; Work on IoT Semantic/Hypermedia Interoperability)
 - DINRG: Decentralized Internet Infrastructure RG
 - COINRG: Computing in the Network RG
 - CFRG: Crypto Forum Research Group (e.g., HPKE, AEAD limits)

IoT-related IETF activities

- Adaptation layer: 6LO, 6TISCH (including join protocol), LPWAN, BOF: MADINAS (life goes on with random MAC addresses)
- Routing: ROLL (RPL), RAW* (Reliable and Available Wireless)
- Networks/operations:
 - ANIMA (e.g., BRSKI (RFC 8995) for automatable device identities)
 - IOTOPS*, a general discussion group about ops aspects of IoT (including onboarding)
- Application layer: CoRE (CoAP, discovery), CBOR (representation),
 ASDF (next slides), JSONPath ("XPath for JSON")
- Security: next slide
- Implementation advice: LWIG*

IoT-related IETF activities: Security

- COSE (signing/encryption formats, ~ concise JOSE)
- ACE (~ OAuth, CWT)
- SUIT: Secure firmware updates
- **RATS**: Attestation
- LAKE: lightweight authenticated key establishment
- SACM: Enabling Security Automation, including SBOM-related formats
- DANISH*: using DANE (DNSSEC-based security) in IoT (BOF)
- DRIP: Drone identification
- TEEP: Protocols for speaking with trusted execution environments

SDF (ASDF WG) Update

SDF: One Data Model

- IoT standardization is dominated by ecosystem-specific SDOs
 - Ecosystem-specific data/interaction models, ecosystem-specific ways to document them
- IoT applications may need to work with things from multiple ecosystems:
 No single ecosystem can supply the whole variety needed
 - Can build protocol translators; harder to translate hundreds of data models
- One Data Model liaison group: People from different SDOs meet informally
 - Express hundreds of ecosystem-specific data models in common format
 - Work on merging and harmonizing data models
 - Make harmonized data models available for all SDOs (BSD license!)
 - Working in the open: https://github.com/one-data-model

SDF: The Simple Definition Format

- https://github.com/ietf-wg-asdf/SDF
- Defines classes of things (sdfObject, combine into sdfThing)
- Things don't have data, they have interactions with their clients, provided by affordances, grouped into interaction patterns:
 For now, Property, Action, Event (Might add "data sheet" style affordances of electronic components.)
- Interactions input and output data (groupable into sdfData)
- Model = JSON text, can reference other models (JSON Pointer)

Composition: sdfThing, sdfProduct

- sdfObject definitions can be combined into top-level structures
- sdfThing can contain sdfObject and sdfThing
- sdfProduct similar, as a (not to be harmonized) top-level product definition

Interaction Patterns

•	SDF is about
	modeling data

 Interaction Patterns mostly defined along input and output data

Name	cf. REST	Initiative	Input	Output
Property	GET	Client		Data
Property (writable)	PUT	Client	Data	(Data)
Action	POST	Client	Input	Output
Event	?	Thing		Output

Action

- Actions can have different input and output data
- Some actions take time (not modeled): Initiative to return output moved to Thing (~ Event)

Name	cf. REST	Initiative	Input	Output
Property	GET	Client		Data
Property (writable)	PUT	Client	Data	Data
Action	POST	Client	Input	Output
Event	?	Thing		Output

Property

- Property is used for data items that can be read by the client
- Writable properties can also be "set" (no special output)
- Observable properties look like an Event

Name	cf. REST	Initiativ e	Input	Output
Property	GET	Client		Data
Property (writable)	PUT	Client	Data	(Data)
Property (observable)	GET (observe)	Client, Thing		Data
Event	?	Thing		Output

Event

- Least well-defined interaction pattern
- Is an Event just a notification (similar to observable property)?
- Are Events just status updates (temperature) or is any single one of them precious (coin insertion)?

Name	cf. REST	Initiative	Input	Output
Property	GET	Client		Data
Property (writable)	PUT	Client	Data	Data
Action	POST	Client	Input	Output
Event	?	Thing		Output

Data

- Data is defined by their shape (as in data definition/"schema" languages)
- Data definitions can be made inline in an affordance definition or separately, for later reference
- Definitions can use curated **subset** of <u>json-schema.org</u> terms, and/or SDF-specific terms such as contentFormat, nullable, scale...
- Mapping information (protocol bindings) helps bind these data to ecosystem specific formats and encodings

SDF: Status 2021-06-28

- SDF 1.1 has been stable since March (draft-ietf-asdf-sdf-05)
- Since, draft-ietf-asdf-sdf-06 (June) defines:
 - (1) derived items (referencing and overriding qualities),
 - (2) array-like sdfObjects ("outlet strip")
- ~ 200 data models in playground, exploratory, unit_test repos
 - Ecosystem SDOs have developed tools to convert their corpus to SDF
 - Recent: Tools for converting to and from:
 Azure DTDL (Digital Twin Definition Language),
 IETF YANG

6

"info": { "title": "OMA LwM2M Accelerometer (Object ID 3313)",

"version": "2021-02-11", "copyright": "Copyright (c) 2018-2020 IPSO",

"license": "https://github.com/one-data-model/oneDM/blob/master/LICENSE"

"sdfObject": { "Accelerometer": {

"label": "Accelerometer", "description": "This IPSO object can be used to represent a 1-3 axis accelerometer.",

"sdfProperty": { "X_Value": {

> "label": "X Value", "description": "The measured value along the X axis.",

"writable": false,

"type": "number"

"Y_Value": { "label": "Y Value",

"description": "The measured value along the Y axis.",

"writable": false, "type": "number"

"Z_Value": { "label": "Z Value",

"description": "The measured value along the Z axis.",

"writable": false, "type": "number"

"Sensor_Units": { "label": "Sensor Units",

"description": "Measurement Units Definition.",

"writable": false, "type": "string"

"Min_Range_Value": {

"label": "Min Range Value",

"description": "The minimum value that can be measured by the sensor.", "writable": false,

"type": "number"

"Max_Range_Value": {

```
Azure DTDL
    "@context": "dtmi:dtdl:context;2",
    "@type": "Interface",
    "@id": "dtmi:com:ericsson:sdfobject:Accelerometer;1",
    "displayName": "Accelerometer",
    "description": "This IPSO object can be used to represent a 1-3 axis
accelerometer.",
    "contents": [
        "@type": "Property",
        "name": "X Value",
        "description": "The measured value along the X axis.",
        "schema": "double"
        "@type": "Property",
        "name": "Y Value",
        "description": "The measured value along the Y axis.",
        "schema": "double"
        "@type": "Property",
        "name": "Z Value",
        "description": "The measured value along the Z axis.",
        "schema": "double"
        "@type": "Property",
        "name": "Sensor Units",
        "description": "Measurement Units Definition.",
        "schema": "string"
        "@type": "Property",
        "name": "Min_Range_Value",
        "description": "The minimum value that can be measured by the
sensor.",
         schema": "double"
        "@type": "Property",
        "name": "Max Range Value",
        "description": "The maximum value that can be measured by the
```

sensor."

"schema": "double"

Converter Demo at sdf-yang-converter.org

ASDF/WISHI Hackathon Week

- 2021-07-19..-23, starting with WISHI call on 2021-07-19 (1400Z?) (Week before IETF111 → register for hackathon: \$0 and get a T-Shirt:-)
- Continue work on converters for SDF

 → other, such as:
 - DTDL converter (http://wishi.nomadiclab.com:8083/odm2dtdl)
 - sdf-yang-converter.org
 - WoT TD
- continue development of semantic additions (the "mapping files")