

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra I Cuestionario I

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Granada, 2023-2024

Asignatura Álgebra I.

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor María Pilar Carrasco Carrasco.

Descripción Cuestionario I.

Ejercicio 1. Si A es un conjunto finito arbitrario, la afirmación "|P(A)| > |A|" es:

- Siempre verdadera.
- Verdadera o falsa, depende de A.
- Siempre falsa.

Ejercicio 2. Si A, B, C son conjuntos cualesquira con B y C disjuntos, selecciona la afirmación verdadera:

- $\bullet (A \cup B) \cap C = A.$
- $\bullet (A \cup B) \cap (A \cup C) = A.$
- $(A \cap B) \cup (A \cap C) = A.$

Ejercicio 3. Si A y B son subconjuntos de un conjunto, la afirmación " $c(A) \cap c(B) = c(A \cap B)$ " es:

- Siempre cierta.
- Siempre falsa.
- \blacksquare A veces verdadera y a veces falsa, depende de A y B.

Ejercicio 4. Sean $P ext{ y } Q$ las propiedades referidas a los elementos de un conjunto. Las proposiciones $P \Rightarrow \neg Q ext{ y } Q \Rightarrow \neg P$ son:

- Siempre equivalentes.
- Nunca equivalentes.
- \blacksquare A veces equivalentes y a veces no, depende de P y de Q.

Ejercicio 5. Sean P, Q y R propiedades referidas a los elementos de un conjunto tal que $P \Rightarrow Q \lor R$, entonces (seleccionar la afirmación correcta):

- $P \Rightarrow Q y P \Rightarrow R.$
- $P \Rightarrow Q \circ P \Rightarrow R.$
- $P \Rightarrow Q$ siempre que $R \Rightarrow Q$.

Ejercicio 1. Si A es un conjunto finito arbitrario, la afirmación "|P(A)| > |A|" es:

- Siempre verdadera.
- Verdadera o falsa, depende de A.
- Siempre falsa.

Justificación: Si $A = \emptyset$, entonces $P(A) = \{\emptyset\}$ y |P(A)| = 1 > 0 = |A|. Si $A \neq \emptyset$, entonces P(A) contiene a todos los subconjuntos unitarios $\{a\}$, con $a \in A$ (luego, el cardinal de P(A) es, como mínimo, igual al de |A|) y, además, contiene el subconjunto vacío, luego tiene al menos tantos elementos como A más uno.

Ejercicio 2. Si A, B, C son conjuntos cualesquira con B y C disjuntos, selecciona la afirmación verdadera:

- $\bullet (A \cup B) \cap C = A.$
- $\bullet (A \cup B) \cap (A \cup C) = A.$
- $(A \cap B) \cup (A \cap C) = A.$

Justificación:

$$(A \cup B) \cap (A \cup C) = A \cup (B \cap C) = A \cup \emptyset = A$$

Ejercicio 3. Si A y B son subconjuntos de un conjunto, la afirmación " $c(A) \cap c(B) = c(A \cap B)$ " es:

- Siempre cierta.
- Siempre falsa.
- \blacksquare A veces verdadera y a veces falsa, depende de A y B.

Justificación: Por las Leyes de Morgan: $c(A \cap B) = C(A) \cup C(B)$, por lo que podemos intuir que la afirmación no siempre es cierta. Podemos dar un contraejemplo para ilustrarlo:

Sea $X = \{1, 2, 3, 4, 5\}$, sean $A = \{1, 2, 3\}$, $B = \{4, 5\} \subseteq X$:

$$c(A) = B$$
 $c(B) = A$

$$c(A \cap B) = c(\emptyset) = X \neq c(A) \cap c(B) = \emptyset$$

Además, como no impone nada sobre los conjuntos, podemos ver que si A = B, es cierta la afirmación. Supongamos que A = B:

$$c(A \cap B) = c(A \cap A) = c(A) = c(A) \cup c(A) = c(A) \cup c(B)$$

Ejercicio 4. Sean P y Q las propiedades referidas a los elementos de un conjunto. Las proposiciones $P \Rightarrow \neg Q$ y $Q \Rightarrow \neg P$ son:

- Siempre equivalentes.
- Nunca equivalentes.
- ullet A veces equivalentes y a veces no, depende de P y de Q.

Justificación: $Q \Rightarrow \neg P$ es el contrarrecíproco de $P \Rightarrow \neg Q$.

Ejercicio 5. Sean P, Q y R propiedades referidas a los elementos de un conjunto tal que $P \Rightarrow Q \lor R$, entonces (seleccionar la afirmación correcta):

- $P \Rightarrow Q y P \Rightarrow R.$
- $P \Rightarrow Q \circ P \Rightarrow R.$
- $P \Rightarrow Q$ siempre que $R \Rightarrow Q$.

Justificación: Por hipótesis, $X_P \subseteq X_Q \cup X_R$. Si $X_R \subseteq X_Q \Rightarrow X_P \subseteq X_Q$.