Calculus and Differential Equations

Queensland University of Technology

Dr Vivien Challis 2021, Semester 2

Tarang Janawalkar

This work is licensed under a Creative "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Contents

\mathbf{C}	Contents			
1	Integration Techniques1.1 Table of Derivatives1.2 Partial Fractions1.3 Integration by Parts1.4 Integration by Substitution1.5 Trigonometric Substitutions	2 3 3 3 3		
2	Limits, Continuity and Differentiability2.1 Limits2.2 Continuity2.3 Differentiability	4 4 4		
3	Definite Integrals3.1 Riemann Sums3.2 Fundamental Theorem of Calculus3.3 Taylor and Maclaurin Polynomials	5 5 5 7		
4	Taylor and Maclaurin Series4.1 Infinite Series4.2 Convergence4.3 Convergence Tests4.4 Table of Maclaurin Series	8 8 8 8 9		
5	Multivariable Calculus5.1Multivariable Functions5.2Level Curves5.3Limits and Continuity5.4Partial Derivatives5.5Multivariable Chain Rule	10 10 10 10 10 11		
6	Double and Triple Integrals	12		
7	Vector-Valued Functions			
8	First-Order Differential Equations			
a	Second-Order Differential Equations	15		

1 Integration Techniques

1.1 Table of Derivatives

Let f(x) be a function, and $a \in \mathbb{R}$ be a constant.

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
x^a	ax^{a-1}	a	0
\sqrt{x}	$\frac{1}{2\sqrt{\pi}}$	x	1
a^x	$\frac{\overline{2\sqrt{x}}}{\ln(a)a^x}$	$a_1 u(x) \pm a_2 v(x)$	$a_1 \frac{\mathrm{d}u}{\mathrm{d}x} \pm a_2 \frac{\mathrm{d}v}{\mathrm{d}x}$
\mathbf{e}^x	\mathbf{e}^x	u(x)v(x)	$\begin{bmatrix} a_1 \frac{\mathrm{d}u}{\mathrm{d}x} \pm a_2 \frac{\mathrm{d}v}{\mathrm{d}x} \\ \frac{\mathrm{d}u}{\mathrm{d}x} v + u \frac{\mathrm{d}v}{\mathrm{d}x} \\ \frac{\mathrm{d}u}{\mathrm{d}x} v - u \frac{\mathrm{d}v}{\mathrm{d}x} \end{bmatrix}$
$\log_a x, \ a \in \mathbb{R} \setminus \{0\}$	1	$\frac{u(x)}{v(x)}$	
$\frac{1}{\ln x}$	$\begin{array}{c c} a \ln x \\ \frac{1}{x} \end{array}$	u(v(x))	$\frac{v(x)^2}{\frac{\mathrm{d}u}{\mathrm{d}v}\frac{\mathrm{d}v}{\mathrm{d}x}}$

f	$\frac{\mathrm{d}f}{\mathrm{d}x}$	f	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\sin(ax)$	$\frac{1}{a\cos(ax)}$	$\sinh{(ax)}$	$a\cosh\left(ax\right)$
$\cos(ax)$	$-a\sin(ax)$	$\cosh\left(ax\right)$	$a\sinh\left(ax\right)$
$\tan(ax)$	$a \sec^2(ax)$	$\tanh\left(ax\right)$	$a\operatorname{sech}^{2}\left(ax\right)$
$\cot(ax)$	$-a\csc^2(ax)$	$\coth{(ax)}$	$-a\operatorname{csch}^{2}\left(ax\right)$
$\sec(ax)$	$a \sec(ax) \tan(ax)$	$\mathrm{sech}(ax)$	$-a\operatorname{sech}(ax)\tan(ax)$
$\csc(ax)$	$-a\csc(ax)\cot(ax)$	$\mathrm{csch}(ax)$	$-a \operatorname{csch}(ax) \cot(ax)$
$\arcsin(ax)$		$\mathrm{arcsinh}(ax)$	$\frac{a}{\sqrt{1+a^2x^2}}$
, ,	$\sqrt{1-a^2x^2}$	$\operatorname{arccosh}(ax)$	$\underline{}$
$\arccos\left(ax\right)$	$-\frac{1}{\sqrt{1-a^2x^2}}$. ,	$\sqrt{1-a^2x^2}$
$\arctan\left(ax\right)$	$\frac{a}{1+a^2x^2}$	$\operatorname{arctanh}(ax)$	$\overline{1 - a^2 x^2}$
$\operatorname{arccot}\left(ax\right)$	$-\frac{a}{1+a^2x^2}$	$\operatorname{arccoth}(ax)$	$1 - a_1^2 x^2$
$\operatorname{arcsec}\left(ax\right)$		$\operatorname{arcsech}\left(ax\right)$	$-\frac{1}{a(1+ax)\sqrt{\frac{1-ax}{1+ax}}}$
arccsc(ax)	$-\frac{x\sqrt{a^2x^2-1}}{x\sqrt{a^2x^2-1}}$	$\operatorname{arccsch}(ax)$	$-\frac{1}{ax^2\sqrt{1+\frac{1}{a^2x^2}}}$

Table 1: Derivatives of Elementary Functions

1.2 Partial Fractions

Definition 1.2.1 (Partial Fraction Decomposition). **Partial fraction decomposition** is a method where a rational function $\frac{P(x)}{Q(x)}$ is rewritten as a sum of fraction.

Factor in denominator	Term in partial fraction decomposition
$ax + b$ $(ax + b)^k, k \in \mathbb{N}$	$\frac{A_1}{ax+b} + \frac{A_2}{\left(ax+b\right)^2} + \dots + \frac{A_k}{\left(ax+b\right)^k}$
$ax^{2} + bx + c$ $(ax^{2} + bx + c)^{k}, k \in \mathbb{N}$	$\frac{A_{1}x + B_{1}}{ax^{2} + bx + c} + \frac{A_{2}}{(ax + b)^{2}} + \dots + \frac{A_{k}}{(ax + b)^{k}}$

Table 2: Partial Fraction Forms

1.3 Integration by Parts

Theorem 1.3.1.

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

1.4 Integration by Substitution

Theorem 1.4.1.

$$\int f(g\left(x\right))\frac{\mathrm{d}g(x)}{\mathrm{d}x}\,\mathrm{d}x = \int f(u)\,\mathrm{d}u\,,\; \text{where}\; u = g(x)$$

1.5 Trigonometric Substitutions

Form	Substitution	Result	Domain
	$x = \frac{a}{b}\sin\left(\theta\right)$		
	$x = \frac{\ddot{a}}{b}\tan\left(\theta\right)$		
$\left(b^2x^2-a^2\right)^n$	$x = \frac{a}{b}\sec(\theta)$	$a^{2}\tan^{2}\left(\theta\right)$	$\theta \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$

Table 3: Trigonometric substitutions for various forms.

2 Limits, Continuity and Differentiability

2.1 Limits

Theorem 2.1.1 (Limits). $\lim_{x\to x_0} f(x)$ exists if and only if $\lim_{x\to x_0^+} f(x)$ and $\lim_{x\to x_0^-} f(x)$ exist and are equal.

Definition 2.1.1 (Finite limits using the ε - δ definition).

$$\lim_{x\to x_0} f(x) = L \iff \forall \varepsilon > 0: \exists \delta > 0: \forall x \in I: 0 < |x-x_0| < \delta \implies |f(x)-L| < \varepsilon$$

Theorem 2.1.2 (L'Hôpital's Rule). For two differentiable functions f(x) and g(x). If $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$, or $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$, then $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ (as long as the limit exists, or diverges to $\pm \infty$).

2.2 Continuity

Theorem 2.2.1 (Continuity at a Point). f(x) is continuous at c iff $\lim_{x\to c} f(x) = f(c)$.

Theorem 2.2.2 (Continuity over an Interval). f(x) is continuous on I if f(x) is continuous for all $x \in I$.

- f(x) is continuous on I:(a,b) if it is continuous for all $x \in I$.
- f(x) is continuous on I : [a, b] if it is continuous for all $x \in I$, but only right continuous at a and left continuous at b.

If f(x) is continuous on $(-\infty, \infty)$, f(x) is continuous everywhere.

Theorem 2.2.3 (Intermediate Value Theorem). If f(x) is continuous on I : [a, b] and c is any number between f(a) and f(b), inclusive, then there exists an $x \in I$ such that f(x) = c.

2.3 Differentiability

Theorem 2.3.1 (Differentiability). f(x) is differentiable at $x = x_0$ iff

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists. When this limit exists, it defines the derivative

$$\frac{\mathrm{d}f}{\mathrm{d}x}|_{x=x_0} = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$$

Theorem 2.3.2. f(x) is differentiable on I if f(x) is differentiable for all $x_0 \in I$.

Theorem 2.3.3. Differentiability implies continuity.

Theorem 2.3.4 (Mean Value Theorem). If f(x) is continuous on I : [a, b] and differentiable on I, then there exists a point $c \in I$ such that

$$\frac{\mathrm{d}f}{\mathrm{d}x}|_{x=c} = \frac{f(b) - f(a)}{b - a}$$

3 Definite Integrals

Theorem 3.0.1. If f(x) is continuous on an interval I:[a, b], then the net signed area A between the graph of f(x) and the interval I is

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

Properties of Definite Integrals

Theorem 3.0.2. Suppose that f(x) and g(x) are continuous on the interval I, with $a, b, c \in I \text{ and } k \in \mathbb{R} \text{ then}$

a)
$$\int_{a}^{a} f(x) \, \mathrm{d}x = 0.$$

b)
$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x.$$

c)
$$\int_a^b kf(x) \, \mathrm{d}x = k \int_a^b f(x) \, \mathrm{d}x.$$

$$d) \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$$

$$e) \int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

e)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

3.1Riemann Sums

Theorem 3.1.1. Let A be the area under f(x) on the interval [a, b], then

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(x_k) \Delta x_k$$

where n is the number of rectangles, x_k is the centre of the rectangle k, and Δx_k is the width of the rectangle k. If every rectangle has the same width, then

$$\forall k : \Delta x_k = \frac{b-a}{n}$$

Fundamental Theorem of Calculus

The fundamental theorem of calculus provides a logical connection between infinite series (definite integrals) and antiderivatives (indefinite integrals).

Theorem 3.2.1 (The Fundamental Theorem of Calculus: Part 1). If f(x) is continuous on [a, b] and F is any antiderivative of f on [a, b] then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Equivalently

$$\int_a^b \frac{\mathrm{d}}{\mathrm{d}x} F(x) \, \mathrm{d}x = F(b) - F(a) \equiv \left. F(x) \right|_a^b$$

Theorem 3.2.2 (The Fundamental Theorem of Calculus: Part 2). If f(x) is continuous on I then it has an antiderivative on I. In particular, if $a \in I$, then the function F defined by

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

is an antiderivative of f(x). That is,

$$\frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x) \iff \frac{\mathrm{d}}{\mathrm{d}x} = f(x)$$

Theorem 3.2.3. Differentiation and integration are inverse operations.

3.3 Taylor and Maclaurin Polynomials

Theorem 3.3.1 (Taylor Polynomials). If f(x) is a n differentiable function at x_0 , then the nth degree Taylor polynomial for f(x) near x_0 , is given by

$$f(x)\approx p_n(x)=\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}\left(x-x_0\right)^k$$

Theorem 3.3.2 (Maclaurin Polynomials). Evaluating a Taylor polynomial near 0, gives the nth degree Maclaurin polynomial for f(x)

$$f(x) \approx p_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

Theorem 3.3.3 (Error in Approximation). Let $R_n(x)$ denote the difference between f(x) and its nth Taylor polynomial, that is

$$R_n(x) = f(x) - p_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \left(x - x_0\right)^k = \frac{f^{(n+1)}(s)}{(n+1)!} \left(x - x_0\right)^{n+1}$$

where s is between x_0 and x.

4 Taylor and Maclaurin Series

4.1 Infinite Series

Definition 4.1.1 (Taylor Series). If f(x) has derivatives of all orders at x_0 , then the Taylor series for f(x) about $x = x_0$ is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Definition 4.1.2 (Maclaurin Series). If a Taylor series is centred on $x_0 = 0$, it is called a Maclaurin series, defined by

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Definition 4.1.3 (Power Series). Both Taylor and Maclaurin series are examples of **power series** defined as follows

$$\sum_{n=0}^{\infty} c_n \left(x - x_0 \right)^n$$

4.2 Convergence

Theorem 4.2.1 (Convergence of a Taylor Series). The equality

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

holds at a point x iff

$$\begin{split} \lim_{n \to \infty} \left[f(x) - \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \left(x - x_0 \right)^n \right] &= 0 \\ \lim_{n \to \infty} R_n(x) &= 0 \end{split}$$

Definition 4.2.1 (Interval of Convergence). The interval of convergence of a power series, is the set of x values for which that series converges.

4.3 Convergence Tests

For any infinite series of the form $\sum_{i=i_0}^{\infty} a_i$.

Alternating Series

$$\begin{split} \textbf{Conditions} \ a_i &= \left(-1\right)^i b_i \ \text{or} \ a_i = \left(-1\right)^{i+1} b_i. \ b_i > 0. \\ \text{Is} \ b_{i+1} &\leqslant b_i \ \& \ \lim_{i \to \infty} b_i = 0? \ \begin{cases} \text{YES} & \sum a_i \ \text{Converges} \\ \text{NO} & \text{Inconclusive} \end{cases} \end{split}$$

Ratio Test

$$\textbf{Conditions} \ \forall i: a_i > 0 \ \text{and} \ \lim_{i \to \infty} \frac{a_{i+1}}{a_i} \neq 1.$$

$$\text{Is } \lim_{i \to \infty} \frac{a_{i+1}}{a_i} < 1? \ \begin{cases} \text{YES} & \sum a_i \text{ Converges} \\ \text{NO} & \sum a_i \text{ Diverges} \end{cases}$$

Is
$$\lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right| < 1$$
? $\begin{cases} \text{YES} & \sum a_i \text{ Converges Absolutely } \\ \text{NO} & \sum a_i \text{ Diverges} \end{cases}$

4.4 Table of Maclaurin Series

Function	Series	Interval of Convergence
\mathbf{e}^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$-\infty < x < \infty$
\mathbf{e}^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$-\infty < x < \infty$

5 Multivariable Calculus

5.1 Multivariable Functions

Definition 5.1.1. A function is multivariable if its domain consists of several variables. In the reals, these functions are defined

$$f: \mathbb{R}^n \to \mathbb{R}$$

5.2 Level Curves

Definition 5.2.1. Level curves or *contour curves* of a function of two variables is a curve along which the function has constant value.

$$L_c(f) = \{(x, y) : f(x, y) = c\}$$

The level curves of a function can be determined by substituting z = c, and solving for y.

5.3 Limits and Continuity

Definition 5.3.1 (Finite Limit of Multivariable Functions using the ε - δ Definition).

$$\begin{split} &\lim_{(x,\,\ldots,\,x_n)\to(c_1,\,\ldots,\,c_n)} f(x_1,\,\ldots,\,x_n) = L \\ &\iff \forall \varepsilon > 0: \exists \delta > 0: \forall (x_1,\,\ldots,\,x_n) \in I: \\ &0 < |x_1-c_1,\,\ldots,\,x_n-c_n| < \delta \implies |f(x_1,\,\ldots,\,x_n)-L| < \varepsilon \end{split}$$

Theorem 5.3.1 (Limits along Smooth Curves). If $f(x, y) \to L$ as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} = L$ along any smooth curve.

Theorem 5.3.2 (Existence of a Limit). If the limit of f(x, y) fails to exist as $(x, y) \to (x_0, y_0)$ along some smooth curve, or if f(x, y) has different limits as $(x, y) \to (x_0, y_0)$, then $\lim_{(x, y) \to (x_0, y_0)} does not exist.$

Theorem 5.3.3 (Continuity of Multivariable Functions). A function $f(x_1, ..., x_n)$ is continuous at $(c_1, ..., c_n)$ iff

$$\lim_{(x,\,\ldots,\,x_n)\to(c_1,\,\ldots,\,c_n)} f(x_1,\,\ldots,\,x_n) = f(c_1,\,\ldots,\,c_n)$$

Recognising continuous functions:

- A sum, difference or product of continuous functions is continuos.
- A quotient of continuous functions is continuous expect where the denominator is zero.
- A composition of continuous functions is continuos.

5.4 Partial Derivatives

Definition 5.4.1 (Partial Differentiation). The partial derivative of a multivariable function is its derivative with respect to one of those variables, while the others are held constant.

$$\frac{\partial f}{\partial x_i}|_{(c_1,\,\ldots,\,c_n)} = \lim_{h\to 0} \frac{f(x_1,\,\ldots,\,x_{i-1},\,x_i+h,\,x_{i+1},\,\ldots,\,x_n) - f(x_1,\,\ldots,\,x_i,\,\ldots,\,x_n)}{h}$$

5.5 Multivariable Chain Rule

Theorem 5.5.1 (Multivariable Chain Rule). Let $f = f(\boldsymbol{x}(t_1, \ldots, t_n))$ be the composition of f with $\boldsymbol{x} = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}$, then the partial derivative of f with respect to t_i is given by

$$\frac{\partial f}{\partial t_i} = \nabla f \cdot \partial_{t_i} \boldsymbol{x}$$

${\bf 6}\quad {\bf Double\ and\ Triple\ Integrals}$

7 Vector-Valued Functions

First-Order Differential Equations 8

9 Second-Order Differential Equations