Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods

Authors: Dylan Slack*, Sophie Hilgard*, Emily Jia, Sameer Singh, Himabindu Lakkaraju

Presented by: Chelsea (Zixi) Chen, Xin Tang, Prayaag Venkat

Motivation

- ML has been applied for critical decision making
 - Healthcare
 - Criminal justice
 - O Finance
- The decision makers must clearly understand the model behavior to
 - O Diagnose the error and potential biases
 - O Decide when and how much these ML models should be trusted

Motivation

- Trade-off between interpretability and accuracy
 - Simple models can be easily interpreted (e.g., linear regression)
 - Complex but also black-box model has much better performance (e.g., deep neural network)
- Can a ML method be both interpertable and accurate?
- **Post hoc** explanation can seemingly solve this problem:
 - First build complex and accurate ML models for good performance
 - O Then use post hoc explanation for model **interpretation**
- The question is:
 - How robust and reliable is the *post hoc* explanation methods?

Contribution: A framework to 'fool' the post hoc explanation method

- A novel framework that can effectively mask the discriminatory biases of any black box classifier
 - Fooling the perturbation based post hoc explanation method
 - LIME and SHAP
- Allowing an adversarial entity to control and generate an arbitrary desired explanation
- Demonstration using real-world datasets with extremely biased classifier
- Existing post hoc explanation techniques are NOT sufficiently robust for ascertaining discriminatory behavior of classifiers in sensitive applications

Perturbation-based post hoc explanation method

Preliminaries & Background

$$\underset{g \in \mathcal{G}}{\arg \min} L(f, g, \pi_X) + \Omega(g)$$

where the loss function L is defined as:

$$L(f, g, \pi_x) = \sum_{x' \in X'} [f(x') - g(x')]^2 \pi_x(x')$$

- f is the original classifier and x is the datapoint we want to explain
- g is the explanation we want to learn, $\Omega(g)$ is the "complexity" of g
- π is the proximity measure
- X' is a synthetic dataset, consisting of perturbations of x

Intuition

Approach: Set-up

Adversary would like to deploy a biased classifier f!

- Background: the biased model **f** uses sensitive attributes to make critical decisions
- Requirement: give access of black-box models to customers and regulators who use post-hoc explanations
- Goal: hide bias of the classifier f

Approach: Set-up

What do we need?

- Input: dataset sampled from real-world distribution
- Target Product: an adversarial classifier e
 - \circ f is the biased model to be explained, while ψ is an unbiased model

$$e(x) = \begin{cases} f(x), & \text{if } x \in X_{dist} \\ \psi(x), & \text{otherwise} \end{cases}$$

Approach: OOD Detection

Which of the inputs belong to the real-world distribution?

- Build another classifier for OOD detection
 - Assign label "False" (not OOD) to all instance in the dataset X
 - Perturb all instances in X and assign them label "True" (OOD)
 - Exceptions: instances too close to observations from X
 - Combine data and train OOD detection classifier

$$e(x) = \begin{cases} f(x), & \text{if } x \in X_{dist} \\ \psi(x), & \text{otherwise} \end{cases}$$

Experiment: Set-up

90% training & 10% test

Dataset	Size	Features	Positive Class	Sensitive Feature
COMPAS	6172	criminal history, demographics, COMPAS risk score, jail and prison time	High Risk (81.4%)	African-American (51.4%)
Communities & Crime	1994	race, age, education, police demographics, marriage status, citizenship	Violent Crime Rate (50%)	White Population (continuous)
German Credit	1000	account information, credit history, loan purpose, employment, demographics	Good Customer (70%)	Male (69%)

Biased classifier f makes predictions purely based on sensitive attributes (<u>race</u>, <u>gender</u>)

Unbiased classifier ψ uses only features uncorrelated with the sensitive attributes

Experiment: Results - COMPAS

LIME

Experiment: Results - Communities and Crime

LIME

% Occurrence

SHAP

ncorrelated Feature 1 Uncorrelated

% Occurrence

Others

Experiment: Results - German credit

Takeaway from experiments

- 1. Accuracy of the OOD classifier -> success of the adversarial attack
- 2. Adversarial classifiers to LIME are ineffective against SHAP explanations
 - a. Any sufficiently accurate OOD classifier is sufficient to fool LIME, while fooling SHAP requires more accurate classifiers
- 3. SHAP less successful when using two features <- local accuracy property
 - a. Distribute attributions among several features

$$e(x) = \begin{cases} f(x), & \text{if } x \in X_{dist} \\ \psi(x), & \text{otherwise} \end{cases}$$

Conclusions

- Main contribution: A framework for converting any black-box classifier into a scaffolded classifier that fools perturbation-based post-hoc explanation techniques like LIME and SHAP
- Effectiveness of this framework demonstrated on sensitive real-world data (criminal justice and credit scoring)
- Perturbation-based post-hoc explanation techniques are not sufficient to test whether classifiers discriminate based on sensitive attributes

Related Works

- Issues with post-hoc explanations:
 - [Doshi-Velez and Kim] identify explainability of predictions as a potentially useful feature of interpretable models.
 - [Lipton] and [Rudin] argues post-hoc explanations can be misleading and are not trustworthy for sensitive applications.
 - [Ghorbani et al.] and [Mittelstadt et al.] identified further weaknesses of post-hoc explanations.
- Adversarial explanations
 - O [Dombrowski et al.] and [Heo et al.] show how to change saliency maps in arbitrary ways by imperceptibly changing inputs.

Q&A

- Are the experimental results sufficient to justify the conclusions?
 - In particular, how can we explain the discrepancy in results for LIME vs. SHAP?
- What about fooling other classes of post-hoc explanation methods?
 - O Past work: gradient-based methods
- Alternatively, can one design post-hoc explanations that are adversarially robust?