1 x86-64 Assembly Language

1.1 Registers & operand indicators

Table 1: x86-64 registers & operand indicators

63	31	15	7	function
%rax	%eax	%ax	%al	return value
$% \operatorname{rbx}$	$\%\mathrm{ebx}$	%bx	%bl	preserved by callee
%rcx	%ecx	%cx	$\% \mathrm{cl}$	4th argument
$% \operatorname{rdx}$	%edx	%dx	%dl	3rd argument
%rsi	%esi	$\% \mathrm{si}$	%sil	2nd argument
%rdi	%edi	$\% \mathrm{di}$	%dil	1st argument
%rbp	$\%{ m ebp}$	%bp	%bpl	preserved by callee
%rsp	%esp	%sp	%spl	stack pointer
%r8	%r8d	%r8w	%r8b	5th parameter
%r9	%r 9 d	% r9w	%r9b	6th parameter
%r10	%r $10d$	%r 10 w	%r10b	preserved by caller
%r11	%r11d	%r 11 w	%r11b	preserved by caller
%r12	%r12d	%r 12 w	%r12b	preserved by callee
%r13	%r13d	%r13w	%r13b	preserved by callee
%r14	%r14d	%r 14 w	%r14b	preserved by callee
%r15	%r15d	%r15w	%r15b	preserved by callee
\$Imm	Immediate number	Imm		
r_a	Value of register r_a	$R[r_a]$		
$Imm(r_b, r_s, s)$	Value at memory		$a+R[r_b]+$	$R[r_s]*s], s = 1, 2, 4, 8$

1.2 Data movement

- Direct move: MOV S D, D←S. S is immediate number, register or memory position. D is register or memory position. S,D cannot both be memory positions.
- Move with zero expansion: MOVZ S R, R←Zero expansion(S). S can be register or memory
 position. D must be register. There is no movzlq because movl can set upper bits to 0, which
 is equivalent to zero expansion from 32 bits to 64 bits.
- Move with sign expansion: MOVS S R, R←Sign expansion(S). S can be register or memory position. D must be register.
- Push/pop stack: push 4 words (64 bits) on or pop 4 words from the stack. Special cases: pushq %rsp pushes the original value of %rsp on the stack; popq %rsp puts the value read from memory in %rsp.

Table 2: Data movement instructions

movb	Move byte $(1B = 8bit, char)$
movw	Move word $(2B = 16bit, short)$
movl	Move long word (4B = 32bit, int). Also set upper 32 bits of the register to 0
movq	Move quad word (8B = 64bit, long, pointer). When S is immediate number, only expansion of 32-bit 2's component can be used. For 64-bit immediate value, use movabsq
movabsq	move 64-bit immediate number to register
movzbw	byte \rightarrow word (1B \rightarrow 2B)
movzbl	byte \rightarrow long word (1B \rightarrow 4B)
movzbq	byte \rightarrow quad word (1B \rightarrow 8B)
movzwl	word \rightarrow long word (2B \rightarrow 4B)
movzwq	$word \rightarrow quad word (2B \rightarrow 8B)$
movsbw	byte \rightarrow word (1B \rightarrow 2B)
movsbl	byte \rightarrow long word (1B \rightarrow 4B)
movsbq	byte \rightarrow quad word (1B \rightarrow 8B)
movswl	word \rightarrow long word $(2B\rightarrow 4B)$
movswq	$word \rightarrow quad \ word \ (2B \rightarrow 8B)$
movslq	$long word \rightarrow quad word (4B \rightarrow 8B)$
cltq	$\mbox{\ensuremath{\mbox{\sc N}}} = \mbox{\ensuremath{\mbox{\sc N}}} = \ensurem$
pushq S popq D	R[%rsp]←R[%rsp]-8; M[R[%rsp]]←S D←M[R[%rsp]]; R[%rsp]←R[%rsp]+8

1.3 Arithmetic & logical operations

- Load address (only 1 version, q)
- Unary operations, binary operations, bitwise shifts (4 versions, bwlq)
- 128-bit integer manipulation

Table 3: Arithmetic & logical operation instructions

leaq S D	D ← &S		
inc D	D ← D + 1	dec D	D ← D − 1
neg D	D ← -D	not D	D ← ~D
add S D	$D \leftarrow D + S$	sub S D	$D \leftarrow D - S$
imul S D	$D \leftarrow D * S$	or S D	$\mathtt{D} \leftarrow \mathtt{D} \mid \mathtt{S}$
and S D	$D \leftarrow D \& S$		
sal k D	$D \leftarrow D \ll k$	shl k D	$D \leftarrow D \ll k$

continue sar k D	$ extsf{D} \leftarrow extsf{D} \gg_A extsf{k}$ sh	nr k D	$\mathtt{D} \leftarrow \mathtt{D} \gg_L \mathtt{k}$
imulq S	$R[\mbox{\ensuremath{\texttt{R}}}\m$	ax]	signed multiplication
mulq S	$R[\%rdx]:R[\%rax] \leftarrow S \times R[\%rax]$	ax]	unsigned multiplication
cqto	$R[\%rdx]:R[\%rax] \leftarrow Signed$ expansion $(R[\%rax])$		4 words to 8 words
idivq S	$R[\sqrt[n]{r}dx] \leftarrow R[\sqrt[n]{r}dx] : R[\sqrt[n]{r}ax] m$ $R[\sqrt[n]{r}ax] \leftarrow R[\sqrt[n]{r}dx] : R[\sqrt[n]{r}ax] \div$		signed division
divq S	$\begin{array}{l} \texttt{R[\%rdx]} \; \leftarrow \; \texttt{R[\%rdx]} : \texttt{R[\%rax]} \; \text{ m} \\ \texttt{R[\%rax]} \; \leftarrow \; \texttt{R[\%rdx]} : \texttt{R[\%rax]} \; \div \end{array}$		unsigned division

1.4 Control flow

- All arithemtic & logical operations except leaq can make changes to condition codes CF, ZF, SF, OF.
- cmp and test instructions set the condition codes without changing values of registers. Both have 4 versions(bwlq).
- set instructions can set a byte to 0 or 1 according to different combinations condition codes.
- jump instructions can make the execution jump to a specified position according to different combinations of condition codes
- cmov (conditional move) instructions can move the value at the source (memory position or register) to the destination register. They can be applied to 16, 32 or 64 bits (i.e. single byte conditional move is not supported!).
- For set, jump and cmov instructions, g/l (greater/less) are for signed integers, while a/b (above/below) are for unsigned integers.

Table 4: Condition codes & control flow instructions

CF ZF SF OF	carry zero sign overflow	Unsigned overflow (carry at highest bit). Most recent result is 0. Most recent result is negative. Complement overflow (+ or -).		
$\begin{array}{c} \texttt{cmp} \ \texttt{S}_1 \texttt{S}_2 \\ \texttt{test} \ \texttt{S}_1 \texttt{S}_2 \end{array}$		Change condition codes according to $S_2 - S_1$. Change condition codes according to $S_1 \& S_2$.		
	jmp		1	Unconditional jump
sete setz setne setnz	je jz jne jnz	cmove cmovz	== !=	ZF ~ZF
sets setns	js jns	cmovs cmovns	negative not negative	SF ~SF
setg setnle	jg jnle	cmovg cmovnle	>	~(SF^OF) & ~ZF

continue					
setge setnl	jge jnl	cmovge cmovnl	>=	~(SF^OF)	
setl setnge	jl jnge	cmovl cmovnge	<	SF^OF	
setle setng	jle jng	cmovle cmovng	<=	(SF^OF) ZF	
seta setnbe	ja jnbe	cmova cmovnbe	>	~CF & ~ZF	_
	J ~ J ~ ~				
setae setnb	jae jnb	cmovae cmovnb	>=	~CF	
	5 5	cmovae cmovnb	>= <	~CF CF	

Using $\verb"jump"$ and $\verb"cmov"$ instructions, we can translate C structs into structures easier to implement with assembly language.

Table 5: Translation of C constructs

C construct	Assembly code logic	Implementation details
<pre>if (test-expr) then-statement else else-statement</pre>	<pre>t = test-expr; if (!t) goto false; then-statement goto done; false: else-statement done:</pre>	Use jump instructions.
if (test-expr) then-statement else else-statement	<pre>t = test-expr; v = then-statement; ve = else-statement; if(!t) v = ve;</pre>	Use cmov instructions. Typically only when both statements are easy to calculate and have no side effect.
<pre>do body-statement while (test-expr);</pre>	<pre>loop: body-statement; t = test-expr; if(t) goto loop;</pre>	Use jump instructions.
<pre>while (test-expr) body-statement;</pre>	<pre>goto test; loop: body-statement; test: t = test-expr; if(t) goto loop;</pre>	Use jump instructions.

```
t = test-expr;
                             if(!t) goto done;
                           loop:
while (test-expr)
                             body-statement;
                                                      Use jump instructions.
  body-statement;
                             t = test-expr;
                             if(t) goto loop;
                           done:
                           init-expr;
                           while(test-expr) {
for(init-expr;
                                                      Use
                                                            jump
                                                                    instructions.
  test-expr;
                             body-statement;
                                                      update is useful only when
                           update:
  update-expr)
                                                      body-statement contains
  body-statement;
                             update-expr;
                                                      continue.
                           }
                           static void *jt[5] = {
                             &&loc_0,&&loc_1,
                             \&\&loc_def,\&\&loc_34,
switch(n) {
                             &&loc_34
case 100:
                           };
                                                         1. && (pointer to code
  statement-0; break;
                           unsigned long i = n - 100;
                                                           location) is an exten-
                           if(i > 4) goto loc_def;
case 101:
                                                           sion defined by GCC.
                           goto *jt[i];
  statement-1;
case 103:
                           loc_0:
                                                         2. unsigned long han-
case 104:
                             statement-0; goto done;
                                                           dles the case of n <
  statement-4; break;
                           loc_1:
                                                           100 (n - 100 overflows
default:
                             statement-1;
                                                           to a large integer.)
                           loc_34:
  statement-default;
                             statement-4; goto done;
                           loc_def:
                             statement-default;
                           done:
```

1.5 Procedure

Procedure is an important abstraction having different forms: function, subroutine, method, handler, etc. Each procedure has its own stack frame. For most procedures, stack frames are aligned to 16.

Figure 1: Stack frame structure

1.5.1 Transferring control

Return address is the address of the instruction after call.

Table 6: Control transfer instructions

call	Push return address onto stack; Set PC(%rip) to starting address of callee.
ret	Pop return address off stack; Set PC(%rip) to return address.

1.5.2 Passing arguments

- Arguments 1-6 are respectively put inside registers %rdi, %rsi, %rdx, %rcx, %r8, %r9 or their counterparts of smaller sizes.
- Other arguments are on the stack, with argument 7 at the top. All on-stack arguments are aligned to 8.
- Argument k (k>6) is at address %rsp+8*(k-6).

1.5.3 Local storage

Local data needs to be stored on stack in the following cases:

- registers are not enough to hold all local data;
- the & operator is used on a variable;
- arrays or structs are used as local variables.

On-stack local variables do not have to be aligned to 8. In general, basic variables (integers, pointers) of size K bytes should be aligned to K.

Callee-preserved registers (%rbx, %rbp, %r12-%r15) should be saved on stack before being used inside the callee. Other registers are caller-preserved, i.e. if the caller expects their values to be available after calling a procedure, the caller should save them on stack before calling the procedure.

1.6 Floating point instructions

- 16 %ymm registers, each of 256 bits, are used to store floating pointer numbers.
- When dealing with scalar FP numbers, we use %xmm registers, i.e. lowest 128 bits of %ymm registers to store them. Only the lowest 32 (float) or 64 (double) bits are used.
- %xmm0 is used to store the FP return value.
- %xmm0-7 are used to store 1st-8th FP arguments.
- \bullet %xmm8-15 are caller-preserved registers.
- aps = aligned packed single, apd = aligned packed double.
- vcvttss2si = Vector ConVerT Truncation Scalar Single-precision 2 Signed Int.
- Floating point comparison sets 3 condition codes: CF, ZF and PF (P = parity). If at least one of the two arguments is NaN, then there is no order, and PF is set to 1.

Table 7: Condition codes of FP comparison

	CF	ZF	PF
No order	1	1	1
$S_2 < S_1$	1	0	0
$S_2 = S_1$	0	1	0
$S_2 > S_1$	0	0	0

Table 8: Floating point instructions

	vmovss	M_{32}		X	float, memory \rightarrow register
	vmovss	X		M_{32}	float, register \rightarrow memory
	vmovsd	M_{64}		X	double, memory \rightarrow register
	vmovsd	X		M_{32}	double, register \rightarrow memory
	vmovaps	X		X	float, register \rightarrow register.
	vmovapd	X		X	double, register \rightarrow register.
Ī	vcvttss2si	X/M_{32}		R_{32}	$float \rightarrow int.$
	vcvttsd2si	$\rm X/M_{64}$		R_{32}	double \rightarrow int.
	vcvttss2siq	X/M_{32}		R_{64}	float \rightarrow long.
	vcvttsd2siq	X/M_{64}		R_{64}	double \rightarrow long.
_	vcvtsi2ss	M_{32}/R_{32}	X	X	$int \rightarrow float.$
	vcvtsi2sd	M_{32}/R_{32}	X	X	$int \rightarrow double.$
	vcvtsi2ssq	M_{64}/R_{64}	X	X	$long \rightarrow float.$
	vcvtsi2sdq	M_{64}/R_{64}	X	X	$long \rightarrow double.$
	<pre>vunpcklps %xmm0</pre>)		float \rightarrow double (weird but it is what
	vcvtps2pd %xmm0	%xmmO			gcc does)
					to be continued

continue vmovddup %xmm0 %xmm0 vcvtpd2psx %xmm0 %xmm0	double \rightarrow float(weird but it is what gcc does)
vaddss vaddsd	$D \leftarrow S_2 + S_1$
vsubss vsubsd	$D \leftarrow S_2 - S_1$
vmulss vmulsd	$D \leftarrow S_2 \times S_1$
vdivss vdivsd	$D \leftarrow S_2 \div S_1$
vmaxss vmaxsd	$D \leftarrow \max(S_2, S_1)$
vminss vminsd	$D \leftarrow \min(S_2, S_1)$
sqrtss sqrtsd	$D \leftarrow \sqrt{S_1}$
vxorps vxorpd	$D \leftarrow S_2 \hat{\ } S_1$
vandps vandpd	$D \leftarrow S_2 \& S_1$
ucomiss	compare float according to $S_2 - S_1$
ucomisd	compare double according to $S_2 - S_1$