CALCULUS DEGREE IN SOFTWARE ENGINEERING WORKSHEET 2. DIFFERENTIATION

1. Calculate the derivative of the following fuctions

(a)
$$y = x^5 + 6x^4 - 3x^3 + 2x^2 + 10x + 1$$

(b)
$$y = \frac{x^2 + 3x}{x + 5}$$

(c)
$$y = \sqrt{x^3 + 3x^2 + 5x}$$

(d)
$$y = x^x$$

(e)
$$y = cscx$$

(f)
$$y = \sin(\cos(x^2 + 2))$$

(g)
$$y = \sqrt{\sin^{-1}(x-1)}$$

(h)
$$y = \cos^{-1} \frac{2x}{5+x}$$

(i)
$$y = x \tan x$$

$$(j) \ \ y = \frac{x + \sin x}{x - \sin x}$$

2. Given the function $f(x) = \frac{|x^2 - 4x| + 16}{x^2}$

- (a) Study the differentiability of f(x). (Use the definition at $x_0 = 4$).
- (b) Determine the derivative function where it exists.
- (c) Analyse the intervals of increase-decrease of the function. Has it got an absolute maximum or minimum in its domain? Find its absolute maximum and minimum in the interval [1, 6].
- 3. Find the points at which $f(x) = |x^2 + 6x + 8|$ has no derivative. Give reasons for the answer.
- 4. We know that $f:[0, 5] \to \mathbf{R}$

$$f(x) = \left\{ \begin{array}{ll} bx^2 + ax & 0 \le x \le 2 \\ c + \sqrt{x-1} & 2 < x \le 5 \end{array} \right.$$

is differentiable in (0,5) and f(0)=f(5). What are the values of a, b and c?

5. Calculate the following limits, applying a suitable method:

$$\begin{array}{ll} \text{I)} & \lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right) & \text{II)} & \lim_{x \to +\infty} \frac{e^x + \cos x}{e^x} \\ \text{III)} & \lim_{x \to 0} \frac{e^{3x} - e^x}{\sin 2x} & \text{IV)} & \lim_{x \to 0^+} \frac{\ln(\sin 2x)}{\ln(\sin x)} \\ \text{V)} & \lim_{x \to 0} \frac{\sin 5x}{\sin 2x} & \text{VI)} & \lim_{x \to 1} \frac{\tan(x^2 - 1)}{x - 1} \\ \text{VII)} & \lim_{x \to 1} \frac{2^{x-1} - 1}{x - 1} & \text{VIII)} & \lim_{x \to \frac{1}{2}} \frac{\ln(4x - 1)}{2x - 1} \\ \text{IX)} & \lim_{x \to 0} \frac{\ln(2x^2 + 1)}{2x} & \text{X)} & \lim_{x \to \pi/2} e^{\tan x} \end{array}$$

- 6. Find the extreme values (absolute and local) of the functions and where they occur
 - (a) $y = x^2 6x + 7$
 - (b) $x(4-x)^3$
 - (c) $x^2 + \frac{2}{x}$
 - (d) $\sqrt{2x x^2}$
- 7. Show that these functions have exactly one zero in the given interval
 - (a) $f(x) = x^4 + 3x + 1$ [-2, -1]
 - (b) $f(x) = x^3 + \frac{3}{x^2} + 7 \quad (-\infty, 0)$
 - (c) $f(x) = \tan x \cot x x$ $(0, \frac{\pi}{2})$
 - (d) $f(x) = \frac{1}{1-x} + \sqrt{1+x} 3$ (-1,1)
- 8. Find the value or values of c that satisfy f(b) f(a) = f'(c)(b-a) for the following functions and intervals
 - (a) $x^{\frac{2}{3}}$ [0, 1]
 - (b) $x + \frac{1}{x}$ [0.5, 2]
 - (c) $x^{\frac{2}{3}}$ [-1,8]
 - (d) $x^{\frac{4}{5}}$ [0, 1]

In one case you cannot apply the Mean Value Theorem. In which case and why not?

- 9. Write the Taylor expansion of the following functions at x=0 with a remainder of order three (MacLaurin)
 - (a) $\sin x$
 - (b) e^x
 - (c) $\cos x$
 - (d) ln(1+x)
 - (e) $\tan^{-1} x$