Introduction to Bayesian Networks

Assoc Prof Dr. Ting Choo Yee

Objectives

- Towards the end of this knowledge sharing, you should be able to
 - Define the properties of Bayesian Networks.
 - Apply Bayesian Networks to solve real world problems.

PART 1

(Introduction to Bayesian Networks)

Examples of Applications of Bayesian Networks

- Anti-spam filter- SpamBayes (http://spambayes.sourceforge.net/index.html)
- Medical diagnostic systems
- Intel processor fault diagnosis (Intel);
- Generator monitoring expert system (General Electric);
- Software troubleshooting (Microsoft office assistant, Win98 print troubleshooting)
- Space shuttle engines monitoring(Vista project)
- Biological sequences analysis and classification
- ...

Characteristics of Problems...

- Suitable for problems dealing with Classification to predict a particular grouping or segmentation.
- Works well under the following scenario:
 - Expert Input is sufficient
 - Expert Input + data
 - Only dataset available (no expert)

Domains that can be represented by variables.

1

- E.g.:
 - ► The domain = Country risk
 - ► The variables = "political instable", "corruption", "stock market performance"
 - ▶ The states (values) can be both discrete or continuous

2

- Variables can be represented through a set of causeand-effect relations.
 - If you eat a lot of "nasi lemak", there is a chance for you get fat!
 - ▶ That is "nasi lemak" is a cause to fatness.

evidence can be captured.

3

- ▶ In an election, Party A has a high chance to win because *statistics results*, *a lot of "likes" to Party A*, and etc .
- ▶ The patient has Dengue Fever because rashes, high-fever, bleeding, and etc.

May involve properties that evolve over time

▶ After 3 days of medical attention, the patient is predicted slowly recovering from dengue fever because the platelet level increases, the body temperature drops to 37.5°C, body pain reduces…etc

- Need to have decision making given uncertain events.
 - What are the most probable choices given that a patient is in this condition?

Tools to Create a Bayesian Networks

- ▶ Tools to create a BN, not limited to:
 - Commercialized Products:
 - Hugin
 - Netica
 - Bayesia
 - Research Products:
 - BNT for MathLab
 - GeNIe and SMILE (for .NET and Java)
 - JavaBayes
 - ► MSBNx

Constructing a Bayesian Network

- Arcs in a Bayesian Network are interpreted as indicating cause-effect relationships
- Build a causal network:
 - Choose a set of variables that describes the domain.
 Variables (chance nodes) are represented by oval / round shapes.
 - Draw an arc to a variable from each of its direct causes (Domain knowledge required)
- E.g. A causes B

Probability Scale

Verbal description of probability	Probability interval
high	0.7 - 1.0
moderate	0.3 - 0.7
low	0.05 - 0.3
very low	0.001 - 0.05
extremely low	10 ⁻⁶ - 0.001
negligible	0 - 10 ⁻⁶

An Example – Alarm

▶ The scenario:

Assuming that <u>burglary</u> and <u>earthquake</u> can cause <u>alarm</u>. In case of alarm, two neighbors <u>John</u> and <u>Mary</u> may call

An Example – Alarm

Problem:

 Estimate the probability of a burglary based who has or has not called

Variables:

- Burglary (B), Earthquake (E), Alarm (A), JohnCalls (J), MaryCalls (M)
- ▶ Each variable has only two states **y** or **n**.

An Example – Alarm

"Map" the scenario into BN

Why using a BN, not Joint Probability

If using a full joint probability distribution, we need 32 numbers.

Defining this table is tedious!

P(B, E, A, J, M)											
В	Е	Α	J	М	Prob	В	Е	Α	J	М	Prob
у	у	у	у	у	.00001	n	У	у	у	у	.0002
У	У	У	У	n	.000025	n	у	у	У	n	.0004
У	у	У	n	у	.000025	n	У	у	n	у	.0004
У	у	у	n	n	.00000	n	у	у	n	n	.0002
У	У	n	у	у	.00001	n	у	n	У	у	.0002
у	У	n	у	n	.000015	n	У	n	У	n	.0002
у	У	n	n	у	.000015	n	У	n	n	у	.0002
У	У	n	n	n	.0000	n	У	n	n	n	.0002
у	n	у	у	у	.00001	n	n	у	у	у	.0001
у	n	у	у	n	.000025	n	n	у	у	n	.0002
у	n	у	n	у	.000025	n	n	у	n	у	.0002
У	n	У	n	n	.0000	n	n	у	n	n	.0001
У	n	n	у	у	.00001	n	n	n	У	у	.0001
у	n	n	у	n	.00001	n	n	n	У	n	.0001
У	n	n	n	у	.00001	n	n	n	n	у	.0001
у	n	n	n	n	.00000	n	n	n	n	n	.996

- When we observe of some variables, we would like to condition upon the new information.
- ▶ The process of conditioning (also called *probability propagation* or *inference* or *belief updating*) is performed via a "flow of information" through the network.
- ▶ The information flow is *NOT* limited to the directions of the arcs.

- ▶ A BN can perform two types of reasoning:
 - Diagnostic Reasoning
 - Predictive Reasoning

- Diagnostic Reasoning
 - Reasoning from symptoms (effects) to cause(s).
 - The symptoms are *evidence* to infer the cause. That is, to obtain the *posterior probability* of the cause.
 - ▶ The leave nodes are observable (evidential) nodes.

- Predictive Reasoning
 - Reasoning from new information about *causes* to new beliefs about *effects*.
 - The symptoms are *evidence* to infer the cause. That is, to obtain the *posterior probability* of the cause.

PART₂

(Hands-On: Creating the Alarm BN)

Steps to Create the Alarm BN

Identify nodes Determine the arrow directions Fill in the probability values Set auto-update networks

Hands-On: Create the Structure

Hands-On: Specifying the Probability

Hands-On: Auto Update Network

Hands-On: Answering Queries

- Query 1: Who has the highest chance to call you first if burglary happens? We don't know whether earthquake happens.
- Query 2: If burglary and earthquake does not happen, who will still call you?
- Query 3: If you know for sure that the alarm has been triggered, whose call is more important to you? WHY?.
- Query 4: If John calls but not Marry, what is the chance that burglary happens?
- Query 5: If the alarm is triggered, does it matter if I don't pick up John's call?