Amino Acid Models and Deep-Time Phylogenetic Inference

Edward Susko

Department of Mathematics and Statistics, Dalhousie University

Dalhousie University (Halifax, Nova Scotia)

🖿 Joe Bielawski

- Codon Models
- Adaptive Evolution
- Non-adaptive Evolution
- Multi-level Selection

Andrew Roger

- Amino Acid Models
- Phylogenetic Estimation
- Deep Divergences

Eukaryogenesis Questions

Phylogenetic Relationship of Eukaryotes to Archaea

Root of the Tree of Eukaryotes

Mitochondrial Origins

Difficulties with Deep Divergences (> 500Mya)

- Saturation of sequence changes over time
- Rapid radiations within clades
 - ⇒ Enormous differences between taxa

Amino acid data rather than DNA									
GTG	CTG	CCT	GCC	GAC	AAG				
		G.C	•••						
		C	Т						
	C	G.A	.AT		A				
	C	GA.	T						
becomes									
G	С	L	V	Α	K				
G	С	V	V	Α	K				
G	С	L	V	Α	K				
G	С	V	Α	Α	K				
G	С	Α	V	Α	K				

- Saturation of sequence changes over time (loss of information)
- Process variation over time and genomic location
 - Phlyogenomic approaches: concatenation of multiple genes/proteins
- Gene tree vs species tree discrepancies
 - Incomplete lineage sorting
 - Lateral (horizontal) gene transfer

Brinkman et al. (2005). Syst. Biol. 54:743–757.

Concatenated Protein Set								
	Site							
	1	2	3		n			
Homo	S	Е	S		-			
Enceph	Υ	Е	K		S			
Schizo	1	Ε	Ν		S			
Saccha	1	D	Ν		S			

- Each protein has n ≈ 300. 133 proteins
- Concatenated sets large n = 24291
- Observational unit (x_h): vector of data at a site

Usually data at sites are treated as independent. Likelihood

Likelihood =
$$L(\tau, t, \theta) = \prod_{h} p(x_h; \tau, t, \theta)$$

- au topology
- t edge lengths
- θ other parameters

- Evolution is assumed independent across sites.
- Evolution along edge is conditionally independent, given ancestral node data.
- Evolution along edge is according to a stationary, time-reversible, continuous-time Markov Chain.

Likelihood Calculation

- x observed data at tips
- a unobserved ancestral data

Complete Data Site Likelihood

$$p(x, a; \tau, t, \theta) = \pi_E P_{EE}(t_M) P_{EE}(t_{HF}) P_{EE}(t_F) P_{EE}(t_{Sc}) P_{ED}(t_{Sa})$$

- Site Likelihood $P(x; \tau, t, \theta) = \sum_{a} P(x, a; \tau, t, \theta)$
 - Pruning algorithm (Felsentstein 1981) for efficient computation

Ed Susko Amino Acid Models June 2022 12/48

• Substitution matrix: P(t) (20 × 20) $P(t)_{ij} = P(X(t) = j | X(0) = i)$

$$X(0)=A$$
 V I L $X(t)=L$

$$P(t) = \exp[Qt] = \sum_{k=0}^{\infty} (Qt)^k / k!.$$

 $P[\text{Next amino acid} = j | \text{Current} = i] \propto Q_{ij}$

- Q: Empirically derived from large data base and then fixed. PAM (1979), JTT (1999), WAG (2001), LG (2008)
 - PAM Parsimony
 - LG ML estimation with rate variation

Rate Matrix Comparison - P[Next amino acid = j|Current = i]

Exchangeabilities

- LG comes with frequencies
- Data set frequencies often differ
- Data set frequencies: simple proportion over all sites and taxa

- Stationary, time-reversible model $\iff Q_{ij} = S_{ij}\pi_j$ where $S_{ij} = S_{ji}$ • $S_{ij} = Q_{ij}/\pi_j$ - exchangeabilities
- ullet Model with data set frequencies: $\hat{m{Q}}_{ij} = m{S}_{ij} \hat{m{\pi}}_j$

Rate Variation

Rates of evolution vary substantially across sites

Data for Two Sites (Low and High Rate)

Simple Approach: Include them as parameters. Likelihood

$$L(\tau, \boldsymbol{t}, \boldsymbol{\theta}) = \prod_{h} p(\boldsymbol{x}_h; \tau, \boldsymbol{t}, \boldsymbol{\theta})$$

becomes

$$L(\tau, \boldsymbol{t}, \boldsymbol{\theta}, \boldsymbol{r}) = \prod_{h} p(\boldsymbol{x}_{h}; \tau, r_{h}\boldsymbol{t}, \boldsymbol{\theta})$$

- Additional parameters: r₁,..., r_n
 - ▶ Number of parameters $\rightarrow \infty$ as $n \rightarrow \infty$

Neyman-Scott Problem

- Observed Weights $X_{ij} \sim N(\mu_i, \sigma^2)$
- \bullet μ_i True Weight
- σ^2 Variance of Scale
- Additional parameters:
 μ₁,...,μ_n
- Number of parameters $\rightarrow \infty$ as $n \rightarrow \infty$

- Want variability of X_{ij} about μ . Instead estimate variability of X_{ij} about \bar{X}_i .
- As $n \to \infty$,

$$\hat{\sigma}^2 \rightarrow \sigma^2/2$$

Ed Susko Amino Acid Models June 2022 17/48

Mixture Models Neyman Scott Problem

- Observed Weights $X_{ij} \sim N(\mu_i, \sigma^2)$
- Mixture Model: Assume μ_i i.i.d. from G (eg. $G \sim N(\mu_0, \tau_0^2)$)

$$p(x_{ij},\mu_i;\sigma^2,G)=p(x_{ij}|\mu_i;\sigma^2)g(\mu_i;\mu_0,\tau_0)$$

• ML estimation: $(\hat{G}, \hat{\sigma}^2)$ maximize

$$L(G,\sigma^2) = \prod_{ij} \int p(x_{ij}|\mu_i;\sigma^2) g(\mu_i;\mu_0,\tau_0) d\mu_i.$$

• Even if μ_i are fixed constants satisfying that $|\mu_i| \leq M$,

$$\hat{\sigma}^2 \rightarrow \sigma^2$$

• General Mixture: $X_i | \theta_i \sim p(x_i | \theta_i, \zeta)$ and $\theta_1, \dots, \theta_n$ iid from G

$$L(G,\zeta) = \prod_{i} \int p(x_{i}|\theta,\zeta)g(\theta) d\theta$$

• Finite Mixture: G is a finite distribution: w_c is probability of θ_c , c = 1, ..., K.

$$L(\boldsymbol{w}, \boldsymbol{\theta}, \zeta) = \prod_{i} \sum_{c} w_{c} p(x_{i} | \theta_{c}, \zeta)$$

- Lindsay (1983): Maximizer of $L(G,\zeta)$ will always be the same as $L(\mathbf{w},\theta,\zeta)$ for some choice of K.
- Kiefer and Wolfowitz (1956): 'Usually' $(\hat{G}, \hat{\zeta}) \to (G, \zeta)$ as $n \to \infty$.

June 2022

19/48

▶ Note: $K \to \infty$ if G is continuous

- As a space of functions,
 - space of polynomials are large
 - space of distribution functions are small

Rates Across Sites

- Rates of evolution usually vary substantially across sites
- Mixture Approach: r_1, \ldots, r_n i.i.d. w_c probability that rate is r_c

$$L(\tau, \boldsymbol{t}, \boldsymbol{\theta}, \boldsymbol{w}, \boldsymbol{r}) = \prod_{h} \sum_{c} w_{c} p(\boldsymbol{x}_{h}; \tau, r_{c} \boldsymbol{t}, \boldsymbol{\theta})$$

- Finite mixtures are necessary. Integration breaks the pruning algorithm
- Gamma model (Yang 1994)
- $w_c = 1/K$ and $r_c(\alpha)$ conditional mean of Gamma (α, α)
- $L(\tau, t, \theta, w, r)$ becomes $L(\tau, t, \theta, \alpha)$

\$ iqtree -s microsporidia.phy -m LG+F+G

June 2022

Evolution of chaperonin 60 over ~1.5 billion years

• Similar problem and solution as for rates across sites: $\pi^{(1)}, \ldots, \pi^{(n)}$ i.i.d. w_c probability that frequency vector is $\pi^{(c)}$.

$$L(\tau, \boldsymbol{t}, \alpha, \boldsymbol{w}, \boldsymbol{\pi}) = \prod_{h} \sum_{c} w_{c} p(\boldsymbol{x}_{h}; \tau, \boldsymbol{t}, \alpha, \pi^{(c)})$$

- \bullet Each frequency vector, $\pi^{(c)},$ is 20-dimensional. ML estimation difficult
- Similar to Exchangeablility. Use fixed $\pi^{(c)}$ estimated from a large data base and fix throughout.

$$L(\tau, \boldsymbol{t}, \alpha, \boldsymbol{w}) = \prod_{h} \sum_{c} w_{c} p(\boldsymbol{x}_{h}; \tau, r_{c} \boldsymbol{t}, \alpha, \pi^{(c)})$$

• C-series models (Le et al. 2012). C10, C20, ... C60

C20 Frequencies & LG Frequencies (Class 21)

\$ iqtree -s microsporidia.phy -m LG+C20+F+G

$$L(\tau, \boldsymbol{t}, \alpha, \boldsymbol{w}, \boldsymbol{\pi}) = \prod_{h} \sum_{c} w_{c} p(\boldsymbol{x}_{h}; \tau, r_{c}\boldsymbol{t}, \alpha, \pi^{(c)})$$

- Estimation using data at hand?
- C classes $\Longrightarrow C * 19 + C 1$ additional parameters
- ML estimation infeasible in practice

Composite Likelihood

- Setting: $P(Full Data; \theta)$ difficult to calculate or maximize
- Events E_k can be found where $P(E_k; \theta)$ is easily calculated

$$L_C(\theta) = \prod_k P(E_k; \theta)^{w_k}$$

- Each $P(E_k; \theta)$ is a partial likelihood.
- Often produces consistent estimation
- Composite likelihoods implicit in phylogenetics.
- Model for full data: Markov chain of sequences not sites
- E_k event x_k is observed at site k

Frequency Setting:

- $p(x|\pi^{(c)})$ is difficult calculate or maximize
- Let E_k be event Taxa k has amino acid x_k : $P(E_k|\pi^{(c)}) = \pi^{(c)}_{x_k}$ & composite likelihood contribution becomes

$$\prod_{k} \pi_{x_{k}}^{(c)}$$

Composite Likelihood for Frequency Variation

- Replace $p(x|\pi^{(c)})$ with product of conditional marginals, $\prod_s \pi^{(c)}_{\chi_s}$
- Site likelihood using marginals for single taxa:

$$\sum_{c} w_{c} \prod_{s} \pi_{x_{s}}^{(c)}$$

Maximize

$$\sum_{h} \log[\sum_{c} w_{c} \prod_{s} \pi_{x_{hs}}^{(c)}]$$

Software available at https://www.mathstat.dal.ca/ tsusko/software.html under Susko, Lincker & Roger (2018)

```
$ mammal -s microsporidia.phy
-t microsporidia.phy.treefile -c 20
```

Creates a nexus file, esmodel.nex that can be used with iqtree

```
$ iqtree -s microsporidia.phy
-mdef esmodel.nex -m LG+ESmodel+G
```

Microsporidia - Likelihood Improvement

△LnL (Correct Tree - Default Tree)

Platyhelminths Example

Likelihood Improvement

△LnL (Correct Tree - Default Tree)

Heterotachy (Gene-wise)

Heterotachy over Genes

- Unlinked Branch Length Model (UBL): Each gene has its own set of edge-lengths
- Linked Branch Length Model (LBL): Single different rate multipliers for each gene
- Heterotachy over Sites: Free Rates Model: Each site has its own set of edge-lengths.
 - Mixture model: t₁,..., t_n i.i.d. w_c probability of edge-length class t_c (IQ-TREE: LG+F+H4 in place of LG+F+G4)
- UBL & LBL models
 - ▶ Estimate t_a or r_a separately for each gene g
 - No mixture (n ≈ 300)

Rates Across Sites (RAS) and Linked Branch Length (LBL)

Rates Vary	over Genes
------------	------------

Gene 1	Gene 2
TNKQE	TGHLI
LEKAE	TGHLI
TARTE	TGHLI
TAKAE	TGHLI
MSEAE	TGHLI
MSKAE	TGHLI
LSKSE	TGHLI
LEKAD	TGHLI
FEKAE	TGHT.T

Permutation (Vary within)

		-	
Gene	1	Gene	2
TTNGK		HQLEI	
LTEGK		HALEI	
TTAGR		HTLEI	
TTAGK		HALEI	
MTSGE.		HALEI.	
MTSGK		HALEI	
LTSGK		HSLEI	
LTEGK		HALDI	
FTEGK		HALEI	

RAS model: r_i, site i

Order doesn't matter for RAS. Same LnL for both.

• LBL model: r_i , site i. r_i constant for gene g

LBL model: Richer r_i variation

Microsprodia Example

Microsprodia Example (Long Branch Attraction)

- Empirical-based simulation study
- Extracted estimated 4-taxon gene trees from Microsporidia.
 ⇒ UBL model
- Compared fitted partitioned models and frequency mixtures
- Included results for PartitionFinder (Lanfear et al. (2012). 29:1695)
- Included results for PMSF (single set of frequencies/site)
- All estimation methods included +F+G
 - All methods available in IQTREE

LG+F+Gamma+UBL Simulating Model

- Almost all methods do well at estimating correct tree
- UBL is the correct model??
- PF.UBL does well

LG+C20+F+Gamma+UBL Simulating Model

- Frequency mixture do well
- Partition models do very poorly
- UBL+C20 is the correct model??
- PF.UBL+C20 does well

42/48

Why is LBA so prevalent?

Evolution of chaperonin 60 over ~1.5 billion years

- Rate not small at 'V or L'/'D or E' site
- Single matrix models expect more amino acids
 under-estimate number of substitutions
- Greater underestimation for larger edge-lengths than shorter

Long Branch Attraction (Single Matrix Model)

- Distance between M and A inferred shorter.
- Distance between F and E roughly same
- LBA tree accomodates

C20+UBL is the correct model

Long Branch Attraction - No Misspecification

- Similar to reason for ASTRAL inconsistency
- Need small distance between F and E
- Small middle edge-lengths for Correct Tree
- Large middle edge-lengths possible for LBA Tree
- Greater model flexibility for LBA Tree ⇒
 - ▶ Bias E[I_g(LBA) I_g(Correct)] > 0
 - ▶ Bias should go away with large *n* (Correct Model)

Long Branch Attraction - No Misspecification

- ullet UBL maximizes separately over genes. $\mathit{LnL} = \sum_{g} \mathit{l}_{g}, \mathit{l}_{g}$ max LnL.
- Slight bias $E[I_g(LBA) I_g(Correct)] = 0.2$
- Single gene $Var[I_g] = 1$ more important than bias
- G = 133 genes: Largest Average LnL wins

$$E[ave_g l_g(LBA) - avel_g(Corr)] = E[l_g(LBA) - l_g(Corr)] = 0.2$$

so same slight bias. But $Var[\sum_q I_g/G] = Var[I_g]/G = 0.008$.

• Large G, bias more important than variance

- Amino acid data minimizes problems with saturation
- Frequency and rate variation are important to adjust for
- Long branch attraction is a common problem.
- Partition Models
 - Linked branch models reasonable but Gamma adjusts to some degree
 - Unlinked branch lengths with PartitionFinder