Name: Bhanu Dixit

Roll Number:- 2023DSS1009(MSDSM/01/08)

BSE200(2016-20)

1. Plat for BSE 200 data. As we can see that this plot has a trend initially as follows:

But after one logarithmic difference it plots is as follows:-

2. Descriptive statsistc as as follows:

Max:

This indicates that the maximum return in one day is 7.8 %

Min: -13.82776

• This indicates that the maximum negative return is one day is 13.8 %

Mean:

• The average value of log returns is 0.057 slightly positive, suggesting a small upward trend in returns over the observed period.

Median:

• The median is slightly higher than the mean, indicating a slight positive skew with value of 0.12.

Standard Deviation:

- Indicates a moderate level of volatility in the log returns with a value of 1.110742.
- 3. AR, MA, and ARIMA model are applicable to stationary series and we need to check the log returns are stationary or not. Therefore we will run a unit root test.

			t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic		-13.04945	0.0000
Test critical values:	1% level		-3.434695	
	5% level		-2.863346	
	10% level		-2.567780	
*MacKinnon (1996) on	e-sided p-value	es.		
Augmented Dickey-Fu Dependent Variable: D Method: Least Square Date: 11/21/24 Time:	O(LOG_RET) S 15:27			
Sample (adjusted): 1/1 Included observations: Variable			t-Statistic	Prob
Included observations:	1436 after adj	ustments	t-Statistic	Prob
Included observations: Variable	Coefficient	Std. Error		
Variable LOG_RET(-1) D(LOG_RET(-2)) D(LOG_RET(-2))	Coefficient -0.867834	Std. Error	-13.04945	0.000
Variable LOG_RET(-1) D(LOG_RET(-2)) D(LOG_RET(-3)) D(LOG_RET(-3))	-0.867834 -0.122615 -0.106198 -0.084517	Std. Error 0.066504 0.061410 0.057292 0.051498	-13.04945 -1.99664 -1.853615 -1.641172	0.000 0.046 0.064 0.101
Variable LOG_RET(-1) D(LOG_RET(-2)) D(LOG_RET(-3)) D(LOG_RET(-3)) D(LOG_RET(-4))	Coefficient -0.867834 -0.122615 -0.106198	Std. Error 0.066504 0.061410 0.057292	-13.04945 -1.996664 -1.853615	0.000 0.046 0.064 0.101
Variable	-0.867834 -0.122615 -0.106198 -0.084517 -0.087124 0.019993	Std. Error 0.066504 0.061410 0.057292 0.051498 0.045068 0.037112	-13.04945 -1.996664 -1.853615 -1.641172 -1.933191 0.538740	0.000 0.046 0.064 0.101 0.053
Variable LOG_RET(-1) D(LOG_RET(-2)) D(LOG_RET(-3)) D(LOG_RET(-3)) D(LOG_RET(-4))	Coefficient -0.867834 -0.122615 -0.106198 -0.084517 -0.087124	Std. Error 0.066504 0.061410 0.057292 0.051498 0.045068	-13.04945 -1.996664 -1.853615 -1.641172 -1.933191	0.000 0.046 0.064 0.101 0.053
Variable LOG_RET(-1) D(LOG_RET(-2)) D(LOG_RET(-3)) D(LOG_RET(-4)) D(LOG_RET(-4)) D(LOG_RET(-4))	-0.867834 -0.122615 -0.106198 -0.084517 -0.087124 0.019993	Std. Error 0.066504 0.061410 0.057292 0.051498 0.045068 0.037112	-13.04945 -1.996664 -1.853615 -1.641172 -1.933191 0.538740	0.000
Variable LOG_RET(-1) D(LOG_RET(-2)) D(LOG_RET(-4)) D(LOG_RET(-4)) D(LOG_RET(-5)) D(LOG_RET(-6)) D(LOG_RET(-6)) D(LOG_RET(-6))	-0.867834 -0.122615 -0.106198 -0.084517 -0.087124 0.019993 -0.111402	0.066504 0.061410 0.057292 0.051498 0.045068 0.037112 0.026272 0.028978	-13.04945 -1.996664 -1.853615 -1.641172 -1.933191 0.538740 -4.240395 1.847535	0.000 0.046 0.064 0.101 0.053 0.590
National National	- 1436 after adji Coefficient -0.867834 -0.1226198 -0.0867199 -0.087124 -0.019993 -0.111402 -0.053538	0.066504 0.061410 0.057292 0.051498 0.045068 0.037112 0.026272 0.028978	-13.04945 -1.996664 -1.853615 -1.641172 -1.933191 0.538740 -4.240395 1.847535	0.000 0.046 0.064 0.101 0.053 0.590 0.000
Variable LOG_RET(-1) D(LOG_RET(-2)) D(LOG_RET(-4)) D(LOG_RET(-4)) D(LOG_RET(-6)) D(LOG_RET(-6)) C RET(-6)) R-squared Adjusted R-squared	-0.867834 -0.122615 -0.106198 -0.084517 -0.087124 0.019993 -0.111402 0.053538	0.066504 0.061410 0.057292 0.051498 0.045068 0.037112 0.026272 0.028978	-13.04945 -1.996664 -1.853615 -1.641172 -1.933191 0.538740 -4.240395 1.847535	0.000 0.046 0.064 0.101 0.053 0.590 0.000
Variable Code Retriction	- 1436 after adji Coefficient -0.867834 -0.122615 -0.084519 -0.08451 -0.01993 -0.111402 0.053538 -0.531611 0.529315	Std. Error 0.066504 0.061410 0.057292 0.0571498 0.0437012 0.026272 0.028978 Mean deper S.D. depend	-13.04945 -1.996664 -1.853615 -1.641172 -1.933191 0.538740 -4.240395 1.847535 ident var lent var criterion	0.000 0.046 0.064 0.101 0.53 0.590 0.000 0.064

Fig:- One root Unit Test

As we can see, the p-value is less than the significance level, which means it is stationary.

Date: 11/21/24 Time: 15:32

Sample (adjusted): 1/04/2016 11/19/2021 Included observations: 1443 after adjustments

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
10		1 -	0.021	-0.021	0.6176	0.432
ıþı		2	0.033	0.032	2.1663	0.339
ıþı		3	0.025	0.027	3.0978	0.377
ı ı		4 -	0.007	-0.007	3.1610	0.531
 		5	0.115	0.113	22.300	0.000
□ I	ļ	6 -	0.133	-0.130	47.931	0.000
 		7	0.118	0.111	68.099	0.000
ı ı		8	0.003	0.006	68.116	0.000
ı I	1 1	9 -	0.015	-0.013	68.431	0.000
ήÞ	l l	10	0.089	0.073	80.077	0.000
Щı	[11 -	0.077	-0.051	88.749	0.000
ή	l l	12	0.086	0.045	99.534	0.000
(I		13 -	0.033	-0.007	101.14	0.000
Ų١	<u> </u>	14 -	0.046	-0.058	104.23	0.000
ıþ	1)	15	0.052	0.034	108.24	0.000
(l	l I	16 -	0.047	-0.012	111.50	0.000

To find the value of p , for AR and MA model we need to plot the Correlogram As we can see I the above graph we p=5 or p=6 could be chosen.

a) p=5

Dependent Variable: LOG_RET

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 11/21/24 Time: 15:52 Sample: 1/04/2016 11/19/2021 Included observations: 1443

Convergence achieved after 135 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.056742	0.039379	1.440926	0.1498
AR(1)	-0.020012	0.015568	-1.285435	0.1988
AR(2)	0.030341	0.011486	2.641648	0.0083
AR(3)	0.022689	0.012302	1.844227	0.0654
AR(4)	-0.004289	0.014741	-0.290971	0.7711
AR(5)	0.113928	0.014299	7.967644	0.0000
SIGMASQ	1.214217	0.018300	66.35086	0.0000
R-squared	0.015147	Mean depen	dent var	0.057284
Adjusted R-squared	0.011032	S.D. depend	ent var	1.110742
S.E. of regression	1.104598	Akaike info criterion		3.041727
Sum squared resid	1752.115	Schwarz criterion		3.067314
Log likelihood	-2187.606	Hannan-Quinn criter.		3.051277
F-statistic	3.681052	Durbin-Watson stat		1.966834
Prob(F-statistic)	0.001237			
Inverted AR Roots	.66 53+.39i	.19+.60i	.1960i	5339i

1. Durbin-Watson Statistic:

- o Value = 1.966834
- This statistic is close to 2, indicating little evidence of autocorrelation in the residuals.

2. F-statistic:

- o Value = 3.681052, with a p-value = 0.001237.
- o Indicates the model as a whole is statistically significant.

Now we will check residuals

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	9.67E+26	Prob. F(35,1407)	0.0000
Obs*R-squared	1443.000	Prob. Chi-Square(35)	0.0000
Scaled explained SS	15609.60	Prob. Chi-Square(35)	0.0000

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 11/21/24 Time: 16:02 Sample: 1/04/2016 11/19/2021 Included observations: 1443

This means this is heteroskedastic and we need to find some other model and we are getting similar results for p=6.

B) For MA model we take q= 6 based on correlogram

Dependent Variable: LOG RET

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 11/21/24 Time: 17:00 Sample: 1/04/2016 11/19/2021 Included observations: 1443

Convergence achieved after 111 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.057298	0.035102	1.632339	0.1028
MA(1)	0.014005	0.016883	0.829576	0.4069
MA(2)	0.012870	0.011351	1.133855	0.2570
MA(3)	0.024163	0.013621	1.773922	0.0763
MA(4)	0.009148	0.015786	0.579523	0.5623
MA(5)	0.087848	0.014737	5.961026	0.0000
MA(6)	-0.113537	0.014062	-8.074127	0.0000
SIGMASQ	1.201136	0.017642	68.08334	0.0000
R-squared	0.025758	Mean depen	ndent var	0.057284
Adjusted R-squared	0.021005	S.D. depend	lent var	1.110742
S.E. of regression	1.099014	Akaike info criterion		3.032317
Sum squared resid	1733.239	Schwarz criterion		3.061559
Log likelihood	-2179.817	Hannan-Quinn criter.		3.043232
F-statistic	5.419924	Durbin-Watson stat		2.019515
Prob(F-statistic)	0.000004			
Inverted MA Roots	.60	.39+.56i	.3956i	32+.65i
	3265i	75		

The model seems to be significant, but we need to check Residuals as well.

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	2.09F+26	Prob. F(44,1398)	0.0000
Obs*R-squared		Prob. Chi-Square(44)	0.0000
Scaled explained SS		Prob. Chi-Square(44)	0.0000

This means residuals are heteroskedastic.

C) For Arima we run auto arima and found results as follows:

Automatic ARIMA Forecasting

Selected dependent variable: LOG_RET

Date: 11/21/24 Time: 17:12 Sample: 1/01/2016 11/19/2021 Included observations: 1443

Forecast length: 0

Model maximums: (4,4)2(0,0)

Regressors: C

Number of estimated ARMA models: 25 Number of non-converged estimations: 0

Selected ARMA model: (2,4)(0,0) AIC value: 3.00765091016

ARMA Criteria Table

Model Selection Criteria Table Dependent Variable: LOG_RET Date: 11/21/24 Time: 17:12 Sample: 1/01/2016 11/19/2021 Included observations: 1443

Model	LogL	AIC*	BIC	HQ
(2,4)(0,0)	-2162.020132	3.007651	3.036893	3.018566
(4,4)(0,0)	-2160.235558	3.007949	3.044502	3.021593
(4,2)(0,0)	-2163.960728	3.010341	3.039582	3.021255
(2,3)(0,0)	-2166.201269	3.012060	3.037646	3.021610
	-2167.442511	3.013780	3.039367	3.023331
	-2165.846685	3.014341	3.047237	3.026620
	-2166 928519	3 015840	3 048737	3 028119

So we have some models with as(2,4),(4,4) and (4,2) as minimum value of AIC.

So will make an equation dor each of them then check if they are valis or not.

For (2,4)

Dependent Variable: LOG RET

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 11/21/24 Time: 17:20 Sample: 1/04/2016 11/19/2021 Included observations: 1443

Convergence achieved after 30 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.056480	0.034515	1.636398	0.1020
AR(1)	0.019759	0.182516	0.108260	0.9138
AR(2)	0.763570	0.145224	5.257882	0.0000
MA(1)	-0.029096	0.184648	-0.157575	0.8748
MA(2)	-0.749300	0.145501	-5.149776	0.0000
MA(3)	0.076928	0.029444	2.612689	0.0091
MA(4)	-0.041223	0.037596	-1.096480	0.2731
R-squared	0.014168	Mean dependent var		0.057284
Adjusted R-squared	0.010049	S.D. depend	ent var	1.110742
S.E. of regression	1.105146	Akaike info o	riterion	3.042739
Sum squared resid	1753.857	Schwarz criterion		3.068325
Log likelihood	-2188.336	Hannan-Quinn criter.		3.052289
F-statistic	3.439694	Durbin-Watson stat		2.000430
Prob(F-statistic)	0.002237			
Inverted AR Roots	.88	86		
Inverted MA Roots	.86	.05+.22i	.0522i	92

And Residuals

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

For (4,4)

Dependent Variable: LOG_RET

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 11/21/24 Time: 17:22 Sample: 1/04/2016 11/19/2021 Included observations: 1443

Convergence achieved after 21 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.056587	0.034518	1.639318	0.1014
AR(1)	-1.202635	0.225425	-5.334967	0.0000
AR(2)	0.127374	0.330827	0.385017	0.7003
AR(3)	1.099704	0.241921	4.545723	0.0000
AR(4)	0.481655	0.131447	3.664262	0.0003
MA(1)	1.237727	0.222081	5.573320	0.0000
MA(2)	-0.040657	0.347250	-0.117082	0.9068
MA(3)	-1.052663	0.275170	-3.825502	0.0001
MA(4)	-0.546540	0.125758	-4.345956	0.0000
R-squared	0.052036	Mean deper	ndent var	0.057284
Adjusted R-squared	0.046747	S.D. depend	dent var	1.110742
S.E. of regression	1.084469	Akaike info	3.006566	
Sum squared resid	1686.488	Schwarz criterion		3.039463
Log likelihood	-2160.237	Hannan-Quinn criter.		3.018845
F-statistic	9.839408	Durbin-Watson stat		2.026966
Prob(F-statistic)	0.000000			
Inverted AR Roots	.91	60	76+.56i	7656i
Inverted MA Roots	.89	70+.59i	7059i	73
	-	<u> </u>		

And Residuals

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic Obs*R-squared	982.6984	Prob. F(54,1388) Prob. Chi-Square(54)	0.0000
Scaled explained SS	9535.457	Prob. Chi-Square(54)	0.0000

For (4,2)

Dependent Variable: LOG_RE1

Method: ARMA Generalized Least Squares (Gauss-Newton)

Date: 11/21/24 Time: 17:25 Sample: 1/04/2016 11/19/2021 Included observations: 1443

Convergence achieved after 32 iterations

Coefficient covariance computed using outer product of gradients

d.f. adjustment for standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.057461	0.028397	2.023497	0.0432
AR(1)	-1.409358	0.053859	-26.16745	0.0000
AR(2)	-0.762008	0.063750	-11.95316	0.0000
AR(3)	-0.004384	0.047449	-0.092401	0.9264
AR(4)	-0.079291	0.030573	-2.593446	0.0096
MA(1)	1.425240	0.048033	29.67220	0.0000
MA(2)	0.806191	0.045600	17.67950	0.0000
R-squared	0.047099	Mean dependent var		0.057284
Adjusted R-squared	0.043118	S.D. depend	ent var	1.110742
S.E. of regression	1.086531	Akaike info criterion		3.008957
Sum squared resid	1695.271	Schwarz criterion		3.034544
Log likelihood	-2163.963	Hannan-Quinn criter.		3.018507
F-statistic	11.82956	Durbin-Watson stat		1.984237
Prob(F-statistic)	0.000000			
Inverted AR Roots Inverted MA Roots	.07+.29i 7155i	.0729i 71+.55i	7855i	78+.55i

For residuals

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	20.56558	Prob. F(35,1407)	0.0000
Obs*R-squared	488.3707	Prob. Chi-Square(35)	0.0000
Scaled explained SS	5265.806	Prob. Chi-Square(35)	0.0000

In all the above combinations of p and q, we got a provability value less than significant level but they are heteroskedastic

4.

We have check ar for 3 ,odels as (1,1) (1.,0) and (0,1) and results are as follows.

Dependent Variable: LOG_RET

Method: ML ARCH - Normal distribution (BFGS / Marguardt steps)

Date: 11/21/24 Time: 17:39

Sample (adjusted): 1/05/2016 11/19/2021 Included observations: 1442 after adjustments Convergence achieved after 32 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: 1/04/2016

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.085942	0.022726	3.781627	0.0002
AR(1)	-0.029006	0.380403	-0.076250	0.9392
MA(1)	0.102203	0.379444	0.269350	0.7877
	Variance E	Equation		
С	0.028813	0.006719	4.288214	0.0000
RESID(-1)^2	0.106509	0.011324	9.405422	0.0000
GARCH(-1)	0.864213	0.015759	54.83967	0.0000
R-squared	-0.009428	Mean dependent var		0.058601
Adjusted R-squared	-0.010831	S.D. dependent var		1.110000
S.E. of regression	1.115995	Akaike info criterion		2.593417
Sum squared resid	1792.195	Schwarz criterion		2.615361
Log likelihood	-1863.854	Hannan-Quinn criter.		2.601608
Durbin-Watson stat	2.189595			
Inverted AR Roots	03			
Inverted MA Roots	10			
Heteroskedasticity Test				
F-statistic	18386.85	Prob. F(27,	1414)	0.0000
Obs*R-squared	1437.904	Prob. Chi-S		0.0000
Scaled explained SS	1993.238	Prob. Chi-S		0.0000

Dependent Variable: LOG_RET

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 11/21/24 Time: 17:48

Sample (adjusted): 1/05/2016 11/19/2021 Included observations: 1442 after adjustments Convergence achieved after 23 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
С	0.085890	0.022786	3.769468	0.0002		
AR(1)	0.072126	0.028968	2.489846	0.0128		
Variance Equation						
С	0.028884	0.006728	4.293033	0.0000		
RESID(-1)^2	0.106433	0.011106	9.583142	0.0000		
GARCH(-1)	0.864174	0.015690	55.07751	0.0000		
R-squared	-0.008708	Mean dependent var		0.058601		
Adjusted R-squared	-0.009409	S.D. dependent var		1.110000		
S.E. of regression	1.115210	Akaike info criterion		2.592130		
Sum squared resid	1790.918	Schwarz criterion		2.610416		
Log likelihood	-1863.926	Hannan-Quinn criter.		2.598956		
Durbin-Watson stat	2.186521					
Inverted AR Roots	.07					
Heteroskedasticity Test Null hypothesis: Homos						
F-statistic	25318.04	Prob. F(20,1	1421)	0.0000		
Obs*R-squared	1437.965	Prob. Chi-So	•	0.0000		
Scaled explained SS	1997.299	Prob. Chi-So		0.0000		

Dependent Variable: LOG_RET

Method: ML ARCH - Normal distribution (Newton-Raphson / Marquardt

steps)

Date: 11/21/24 Time: 17:50

Sample (adjusted): 1/04/2016 11/19/2021 Included observations: 1443 after adjustments Convergence achieved after 11 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: 1/01/2016

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
С	0.085637	0.022600	3.789277	0.0002			
MA(1)	0.073219	0.029176	2.509572	0.0121			
Variance Equation							
С	0.028992	0.006703	4.325248	0.0000			
RESID(-1) ²	0.106301	0.011097	9.578828	0.0000			
GARCH(-1)	0.863915	0.015633	55.26241	0.0000			
R-squared	-0.009303	Mean dependent var		0.057284			
Adjusted R-squared	-0.010003	S.D. dependent var		1.110742			
S.E. of regression	1.116283	Akaike info criterion		2.592798			
Sum squared resid	1795.614	Schwarz criterion		2.611074			
Log likelihood	-1865.704	Hannan-Quinn criter.		2.599620			
Durbin-Watson stat	2.187355						
Inverted MA Roots	07						
Heteroskedasticity Test: ARCH							
F-statistic	0.032775	Prob. F(1,1440)		0.8564			
Obs*R-squared	0.032820	Prob. Chi-Sq	•	0.8562			

Only the (0 1) model is able to justify homoscedastic. Else. All others are there heteroskedastic even after having a p-value less than the significance level.

PR-squared: −0.009303-0.009303-0.009303

• Indicates poor explanatory power for the mean equation. This is common in financial return models where the focus is on modeling volatility rather than returns.

Log-likelihood: -1865.704-1865.704-1865.704

• Used to compare model fit across specifications.

Akaike (AIC) and Schwarz Criterion (SIC):

- AIC = 2.592798, SIC = 2.611074
- Lower values indicate better model fit.

Durbin-Watson Stat (2.18):

• Close to 2, indicating little to no autocorrelation in residuals.

This output summarizes the results of a GARCH (1,1) model for the dependent variable LOG_RET\text{LOG_RET}LOG_RET, which appears to be a time series of log returns. Here's the interpretation of the key results:

Mean Equation

The mean equation is modeled as:

```
\label{log_RET} $$LOG_RET=C+MA(1)+\epsilon \star \{LOG\setminus_RET\}=C+\star \{MA(1)\}+ \epsilon t + C+MA(1)+\epsilon t $$
```

- C (Constant):
 - Coefficient = 0.085637
 - o ppp-value = **0.0002** (significant at the 1% level).
 - Interpretation: The constant term is positive and statistically significant, indicating a positive average return over the period.
- MA(1) (Moving Average):
 - o Coefficient = **0.073219**
 - o ppp-value = **0.0121** (significant at the 5% level).
 - Interpretation: The MA(1) term is significant, suggesting that the model accounts for short-term dependencies in the time series data.

Variance Equation (GARCH Model)

The variance equation is modeled as:

$$\label{eq:continuous} \begin{split} &\sigma t 2 = C + \alpha \cdot \epsilon t - 12 + \beta \cdot \sigma t - 12 \cdot \sin(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot \sigma t - 12 \cdot \cos(t-1)^2 + \beta \cdot$$

Where:

- $\epsilon t-12 \epsilon_{t-1}^2 \epsilon_{t-1}$: Lagged squared residual (ARCH term)
- σt-12\sigma_{t-1}^2σt-12: Lagged conditional variance (GARCH term)
- C (Constant in variance):
 - Coefficient = 0.028992
 - o ppp-value = **0.0000** (significant).
 - Interpretation: This represents the long-term variance. It is positive and statistically significant, indicating the baseline level of volatility.
- RESID(-1)^2 (ARCH term):
 - Coefficient = 0.106301
 - o ppp-value = **0.0000** (significant).
 - Interpretation: The ARCH effect is significant, meaning that past shocks to returns influence current volatility.
- GARCH(-1) (GARCH term):
 - Coefficient = **0.863915**
 - o ppp-value = **0.0000** (significant).
 - Interpretation: The GARCH effect is dominant, suggesting a strong persistence of volatility over time.

Sum of ARCH and GARCH coefficients ($\alpha+\beta$ \alpha + \beta $\alpha+\beta$):

- $\alpha+\beta=0.106301+0.863915=0.970216$ \alpha + \beta = 0.106301 + 0.863915 = 0.970216 $\alpha+\beta=0.106301+0.863915=0.970216$
- This is less than 1, satisfying the stationarity condition of the GARCH model. However, the high value indicates persistent volatility.

Model Diagnostics

• R-squared: -0.009303-0.009303-0.009303

- Indicates poor explanatory power for the mean equation. This is common in financial return models where the focus is on modeling volatility rather than returns.
- Log-likelihood: -1865.704-1865.704-1865.704
 - Used to compare model fit across specifications.
- Akaike (AIC) and Schwarz Criterion (SIC):
 - o AIC = 2.592798, SIC = 2.611074
 - Lower values indicate better model fit.
- Durbin-Watson Stat (2.18):
 - o Close to 2, indicating little to no autocorrelation in residuals.

Conclusion

- The mean equation shows a significant constant and MA(1) term, indicating modest predictability in returns.
- GARRCH is better than ARIMA as it id homoscsdic.
- The variance equation effectively captures volatility clustering, with significant ARCH and GARCH terms and persistent volatility.
- Diagnostic statistics suggest that the model is well-specified for modeling volatility but has limited explanatory power for returns, as expected in financial time series analysis.