Vorlesung Semantic Web

Vorlesung im Wintersemester 2012/2013 Dr. Heiko Paulheim Fachgebiet Knowledge Engineering

Semantic Web - Aufbau

Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Was bisher geschah

- Ontologien
 - liefern die Hintergrundinformation im Semantic Web
 - codieren Domänenwissen
 - ermöglichen Reasoning
- Ontology Engineering
 - wie baut man eine gute Ontologie?
 - Patterns & Anti-Patterns
- Ontologien bauen
 - ist aufwändig
 - besonders im großen Maßstab

Was könnte man daran noch verbessern?

- Menschen sind ja von Natur aus faul
- Automatisierung
 - Code-Generatoren
 - MDA
 - ...
- Wie lässt sich das auch im Semantic Web erreichen?

http://www.earthwave.com.au/blog/wp-content/uploads/2011/06/Homer-1.jpg

Ausflug ins Data Mining

- Was ist Data Mining?
 - "Data Mining is a non-trivial process of identifying
 - valid
 - novel
 - potentially useful
 - ultimately understandable patterns in data." (Fayyad et al. 1996)
 - "Data Mining is torturing the data until it confesses." (oft zitiert, genaue Quelle unbekannt)

Data Mining: Beispiel

- Anwendung: Optimierung von Supermärkten
- Ziel: häufig gemeinsam gekaufte Dinge gruppieren
- Datengrundlage:
 - Logfiles von Registrierkassen
- Häufig zitiertes Beispiel:
 - Windeln und Bier
 - wahrscheinlich ein Mythos...

Data Mining: Beispiel

- Populäre Anwendung im Netz
 - Recommender-Systeme
 - Kunden, die A kauften, kauften auch B

Wird oft zusammen gekauft

- ✓ Dieser Artikel: Semantic Web: Grundlagen (eXamen.press) von Pascal Hitzler Taschenbuch EUR 24,95
- ✓ Semantic Web: Wege zur vernetzten Wissensgesellschaft (X.media.press) von Tassilo Pellegrini Gebundene Ausgabe EUR 9,95
- ✓ Ontologien: Konzepte, Technologien und Anwendungen (Informatik im Fokus) von Heiner Stuckenschmidt Taschenbuch EUR 16,95

Data Mining: Assoziationsregeln

- Gegeben:
- Eine Menge von Einkäufen, z.B.
 - Nudeln, Tomaten, Basilikum, Tageszeitung
 - Brötchen, Tageszeitung
 - Nudeln, Tomaten, Hackfleisch, Basilikum, Zigaretten
 - ...
- Gesucht:
- Häufige Muster in Form von Regeln, z.B.
 - Nudeln → Tomaten
 - Hackfleisch, Basilikum → Nudeln, Tomaten
 - Brötchen → Tageszeitung
 - ...

Data Mining: Assoziationsregeln

- Assoziationsregeln beschreiben häufige Muster
 - nicht symmetrisch
 - warum?
- Populäre Ausreißer
 - z.B.: Verkaufsschlager
 - "Semantic Web" → "Harry Potter"
 - ist wahrscheinlicher als Rückrichtung

Data Mining: Assoziationsregeln

- Wie findet man Assoziationsregeln?
- Association Rule Mining
 - APRIORI-Algorithmus
 - Lernalgorithmus, der Assoziationsregeln lernt
- Folgende Folien teilweise übernommen von
 - J. Fürnkranz: Maschinelles Lernen Symbolische Ansätze

- Entwickelt in den frühen 90ern bei IBM von Agrawal & Srikant
- Motivation
 - Steigende Verbreitung von Bar-Code-Kassen

- Qualitätsmaße für Assoziationsregeln
- Support
 - Anzahl der Beispiele, die eine Regel insgesamt abdeckt
 - Relevanz der Regel

$$support(A \rightarrow B) = support(A \cup B) = \frac{n(A \cup B)}{n}$$

- Confidence
 - Verhältnis von Beispielen, die die Implikation erfüllen, zu Beispielen, die die Bedingung erfüllen
 - Stärke der Implikation

$$confidence(A \rightarrow B) = \frac{support(A \cup B)}{support(A)} = \frac{n(A \cup B)}{n(A)}$$

- Beispiel-Datenset
 - Supermarktartikel: Nudeln, Tomaten, Hackfleisch, Basilikum, Bier, Rotwein, Weißwein, Tageszeitung
- Vorgeschlagene Regel:
 - Nudeln → Tomaten, Hackfleisch
- Support: #(Nudeln + Tomaten + Hackfleisch) / # alle Einkäufe
- Confidence: #(Nudeln + Tomaten + Hackfleisch) / #Nudeln

- Gegeben:
 - eine untere Schranke für Support (s_{min})
 - eine untere Schranke für Confidence (c_{min})
- Gesucht:
 - alle Assoziationsregeln, die diesen Schranken gehorchen
- APRIORI läuft in zwei Schritten
 - 1.: finde alle *frequent itemsets*
 - d.h., alle Produkte, die häufig gemeinsam auftreten
 - beachte dabei s_{min}
 - 2.: erzeuge Regeln aus diesen Item sets
 - beachte dabei c_{min}

- Erster Schritt: finde frequent itemsets
 - beachte dabei s_{min}
- Beispiel-Datenset
 - Supermarktartikel: Nudeln, Tomaten, Hackfleisch, Basilikum, Bier, Rotwein, Weißwein, Tageszeitung
- Gegeben: minimaler Support s_{min} = 1/3
- Finden wir die Frequent Itemsets...

- Beobachtungen:
 - Wenn ein Itemset größer wird, dann wird der Support nicht größer:

$$C \subseteq D \Rightarrow support(C) \ge support(D)$$

Grund: Definition von Support

$$support(A \rightarrow B) = support(A \cup B) = \frac{n(A \cup B)}{n}$$

- Das ermöglicht eine effiziente Suche:
 - beginne mit ein-Elementigen Itemsets
 - erzeuge im k-ten Durchgang k-elementige Itemsets
 - als Vereinigung von bereits gefundenen

Erster Schritt: finde frequent itemsets

- 1. k = 1
- 2. $C_1 = I$ (all items)
- 3. while $C_k > \emptyset$
 - (a) $S_k = C_k \setminus \text{all infrequent itemsets in } C_k \leftarrow \text{d.h., } s \leq s_{min}$
 - (b) $C_{k+1} = \text{all sets with } k+1 \text{ elements that can be formed by }$ uniting of two itemsets in S_k
 - (c) $C_{k+1} = C_{k+1} \setminus \text{itemsets that do not have all subsets of size } k \text{ in } S_k$
 - (d) $S = S \cup S_k$
 - (e) k++
- 4. return S

- Zweiter Schritt: Erzeuge Regeln aus frequent itemsets
 - beachte dabei c_{min}
- Beispiel-Datenset
 - Supermarktartikel: Nudeln, Tomaten, Hackfleisch, Basilikum, Bier, Rotwein, Weißwein, Tageszeitung
- Gegeben c_{min}=0.8:
 - Input: alle gefundenen frequent itemsets der Einfachheit halber nur zweielementige Itemsets
 - Output: Regeln

- Beobachtungen
 - Für jedes frequent itemset der Größe n gibt es n! mögliche Regeln
 - \blacksquare {A,B,C}: A→BC, B→AC, C→AB, AB→C, BC→A, CA→B
 - Problem: Skalierbarkeit
 - Verschieben von Elementen aus Wenn-Teil in Dann-Teil erhöht die Konfidenz nicht:

$$confidence(A \rightarrow B, C) \leq confidence(A, B \rightarrow C)$$

Grund: Definition von Konfidenz

$$confidence(A \rightarrow B) = \frac{support(A \cup B)}{support(A)} = \frac{n(A \cup B)}{n(A)}$$

- Das ermöglicht einen effizienteren Algorithmus
 - Beginne bei Regeln mit 1-elementigem Dann-Teil
 - Verschiebe jeweils ein Element vom Wenn- in den Dann-Teil
 - solange Konfidenz hoch genug ist

- Effizientes Auffinden von Assoziationsregeln
 - mit Mindest-Support und Mindest-Konfidenz
- Mehr Informationen:
 - Vorlesung "Maschinelles Lernen Symbolische Ansätze"

Was hat das jetzt mit Semantic Web zu tun?

Betrachten wir folgende Aussagenmenge

```
:Julia a :Woman,:Person.
:Stephen a :Man,:Person.
:Marc a :Man,:Person.
:Anna a :Woman,:Person.
:Ann a :Woman.
:Tim a :Person.
```

Nehmen wir statt Warenkörbe die Klassen einer Instanz:

```
Julia: {Woman, Person}
Stephen: {Man, Person}
Marc: {Man, Person}
Anna: {Woman, Person}
Ann: {Woman}
Tim: {Person}
```


- Mögliche Assoziationsregeln:
 - Woman → Person (s=0.33, c=0.66)
 - Man \rightarrow Person (s=0.33, c=1.0)
 - Person → Woman (s=0.33, c=0.4)
 - Person → Man (s=0.33, c=0.4)
- Regeln können auch als Subklassenbeziehungen aufgefasst werden
- Mit einem geeigneten Satz Parameter können wir so eine Klasenhierarchie lernen
 - z.B. $s_{min} = 0.25$, $c_{min} = 0.5$

- Linked Open Data
 - oft nur schwache Ontologien als Schemata
 - können durch Lernen angereichert werden
 - viel Instanzinformation
 - das ist gut zum Lernen!
 - Resultat Völker&Niepert (2011):
 DBpedia-Klassenhierarchie mit 99% F-Measure lernbar
- Komplement zum Reasoning
- Reasoning: deduktives Schließen
 - Durch Fakten und Regeln zu neuen Fakten
- Ontology Learning: induktives Schließen
 - Durch Fakten zu Regeln

Betrachten wir noch einmal das Beispiel:

```
:Julia a :Woman,:Person.
:Stephen a :Man,:Person.
:Marc a :Man,:Person.
:Anna a :Woman,:Person.
:Ann a :Woman.
:Tim a :Person.
```

Gelernte Ontologie:

```
:Woman rdfs:subClassOf :Person .
:Man rdfs:subClassof :Person .
```

Reasoning mit dieser Ontologie liefert zusätzlich:

```
:Ann a :Person .
```


- Bis jetzt haben wir nur die Klassenhierarchie gelernt
- Was kann man noch mit Assoziationsregeln lernen?
- Z.B. Domain/Range von Relationen
- Numerische Restriktionen
- Disjointness

- Verwenden neuer Features
 - rel_in: es gibt eingehende Relationen vom Typ rel
 - rel_out: es gibt ausgehende Relationen vom Typ rel
- Was man daraus schließen kann:
 - Gelernte Regel: rel_out → C
 - d.h.: rel(X,Y) → C(X)
 - das ist gleichbedeutend mit rel rdfs:domain C
 - Gelernte Regel: rel_in → C
 - d.h.: rel(X,Y) → C(Y)
 - das ist gleichbedeutend mit rel rdfs:range C

Erweitern wir unser Beispiel:

```
:Julia a :Woman,:Person ; :knows :Stephen,:Marc .
:Stephen a :Man,:Person ; :fatherOf :Anna.
:Marc a :Man,:Person ; :knows :Ann ; :fatherOf :Julia .
:Anna a :Woman,:Person ; :knows :Tim ; :motherOf :Julia .
:Ann a :Woman ; :motherOf :Stephen .
:Tim a :Person ; :knows :Marc, :Anna, :Ann .
```

- Unsere "Warenkörbe" enthalten jetzt nicht nur Klassen
 - sondern auch Informationen über eingehende/ausgehende Relationen

Neuer "Warenkorb":

```
Julia: {Woman,Person,knows_out,fatherOf_in,motherOf_in} Stephen: {Man,Person,fatherOf_out,knows_in,motherOf_in} Marc: {Man,Person,knows_out,fatherOf_out,knows_in} Anna: {Woman,Person,knows_out,motherOf_out,fatherOf_in} Ann: {Woman,motherOf_out,knows_in} Tim: {Person,knows_out,knows_in}
```

Neue mögliche Regeln für domain/range von knows:

```
knows_out \rightarrow Person (s=0.66,c=1.0)
knows_out \rightarrow Man (s=0.33, c=0.25)
knows_out \rightarrow Woman (s=0.33, c=0.5)
knows_in \rightarrow Person (s=0.5, c=0.75)
knows_in \rightarrow Woman (s=0.16, c=0.25)
knows_in \rightarrow Man (s=0.33,c=0.5)
```

hier sind die besten Werte!

■ Neue mögliche Regeln für domain/range von *fatherOf*:

```
fatherOf_out \rightarrow Person (s=0.33, c=1.0)
fatherOf_out \rightarrow Man (s=0.33, c=1.0)
fatherOf_in \rightarrow Person (s=0.33, c=1.0)
fatherOf_in \rightarrow Woman (s=0.33, c=1.0)
```

- Das ist allein nach support/confidence unentscheidbar
 - beides ist mit gleicher Wahrscheinlichkeit möglich
- Konfliktlösung nötig
 - z.B. allgemeinstes Konzept nehmen (Person)
 - das ist einmal korrekt (range von fatherOf)
 - und einmal zumindest nicht falsch (domain von fatherOf)
 - z.B. weitere Gütemaße definieren und berechnen

- Was wir jetzt gesehen haben
 - Ontologien kann man automatisiert lernen
 - z.B. aus Instanzmengen (Linked Open Data)
 - Lernen einfacher RDF-Schemata
- Grenzen des Ansatzes
 - Konflikte bei Bestimmung von domain/range
 - korrekte Lösung aber meist möglich
 - aber nicht immer genaueste
 - Man kann nur lernen, was man in Beispielen sieht
 - z.B. Man braucht : Tom a : Human, : Mammal .

 um zu lernen: : Human rdfs: subClassOf : Mammal .

Ontology Matching mit Assoziationsregeln

- In Linked Open Data werden oft mehrere Ontologien parallel genutzt
- Beispiel:

```
dbpedia:Nine_Inch_Nails
a dbpedia:Band, dbpedia:Organization,
yago:IndustrialRockMusicalGroups,
yago:MusicalGroupsEstablishedIn1988, ...
```

Was passiert, wenn wir hierauf Assoziationsregeln lernen?

Ontology Matching mit Assoziationsregeln

- Beispiel für gelernte Regel:
 - yago:IndustrialRockMusicalGroups → dbpedia:Band
 - entspricht:

```
yago:IndustrialRockMusicalGroups
rdfs:subClassOf dbpedia:Band .
```

- Merke:
 - Wir haben hier ein Mapping gelernt!
 - Ontology Learning mit mehreren Ontologien ist Ontology Matching!
 - und zwar aus der Klasse der instanzbasierten Verfahren

Ontology Matching mit Assoziationsregeln

Bei 1:1-Mappings zwischen zwei Klassen lernt man ein symmetrisches Regelpaar:

```
dbpedia:ProtectedArea → yago:Park yago:Park → dbpedia:ProtectedArea
```

Daraus folgt:

```
dbpedia:ProtectedArea rdfs:subClassof yago:Park .
yago:Park rdfs:subClassOf dbpedia:ProtectedArea .
```

und damit

```
dbpedia:ProtectedArea owl:equivalentClass yago:Park .
```

- Merke:
 - das funktioniert auch bei syntaktisch unähnlichen Klassennamen!

Komplexe Mappings mit Assoziationsregeln

- Rückblick Ontology Matching:
 - die meisten Verfahren suchen simple Mappings
 - komplexe Mappings werden in der Regel nicht gefunden
- Assoziationsregeln können hier mehr...
- Betrachten wir ein Beispiel:

Komplexe Mappings mit Assoziationsregeln

Gelernte Assoziationsregel:

```
o1:Person, o1:marriedTo_out → o2:MarriedPerson
```

■ Das heißt in OWL:

```
o2:MarriedPerson owl:subClassOf
owl:intersectionOf (
   o1:Person
   [ a owl:Restriction ;
    owl:onProperty o1:marriedTo ;
   owl:minCardinality 1^^xsd:integer ] ) .
```

Und das ist ein ziemlich präzises Mapping!

Ontology Matching mit Assoziationsregeln

- Valider Ansatz für Linked Open Data
 - wenn mehrere Ontologien verwendet werden
 - auch in zwei Datensets, mit owl:sameAs auf Instanzebene verknüpft
 - instanzbasiertes Matching
 - nicht-triviale und komplexe Mappings möglich
- Restriktionen ähnlich wie Ontology Learning
 - man kann nur Mappings finden, wenn die Elemente verwendet werden
 - manche Mehrdeutigkeiten lassen sich nicht trivial auflösen

Ontology Learning und Matching mit Assoziationsregeln

- Ausgangspunkt:
 - viele Instanzdaten
 - schwache Ontologien
 - fehlende Mappings auf Klassenebene
- Was wir gewinnen können
 - stärkere Ontologien
 - Mappings (auch komplexe und nicht-triviale)

Ontologien aus Text lernen

- Recap:
 - Ontologien sind formalisierte Beschreibungen einer Domäne
 - solche liegen oft in textueller Form vor
- Beispiel: Übungsblatt 2, Aufgabe 1:
 - Eine Bibliothek besitzt Bücher. Bibliotheken haben einen Namen, eine Adresse und eine Telefonnummer. Bücher haben einen Titel, einen oder mehrere Autoren, und eine ISBN-Nummer. Personen haben einen Namen, eine Adresse, eine Telefonnummer und eine E-Mailadresse. Bücher können von einer Person entliehen sein.

Ontologien aus Text lernen

- Kann man das nicht (teil-)automatisieren?
- Mögliche Tasks:
 - Konzepte finden
 - Synonyme finden
 - Domain/Range festlegen

- Automatische Erkennung von
 - Wortarten
 - syntaktischen Funktionen

http://cs.oberlin.edu/~jdonalds/333/lecture12.html

- Manchmal sind mehrere Taggings möglich
 - das deutet auf einen mehrdeutigen Satz hin

Charniak: Statistical techniques for natural language parsing (1997)

- Verfahren
 - Annotiertes Korpus verwenden
 - Menge von Sätzen, die bereits POS Tags besitzen
- Naiver Algorithmus von Charniak (1997)
 - Verwende für jedes Wort das häufigste Tag
 - Alle unbekannten Wörter werden als Nomen deklariert
 - Bei einem Korpus von 300.000 Wörten: 90% Accuracy!

Charniak: Statistical techniques for natural language parsing (1997)

Verbesserung: Übergangswahrscheinlichkeiten berücksichtigen

The	can	will	rust
det	modal-verb	modal-verb	noun
	noun	noun	\mathbf{verb}
	$\overline{\mathrm{verb}}$	verb	

- Damit sind 96-97% Genauigkeit möglich
- Obere Grenze: ca. 98%

Charniak: Statistical techniques for natural language parsing (1997)

- Grundidee:
 - Nomen stehen für Klassen
 - Verben stehen für Relationen

Erstes Ergebnis:

```
:Man a owl:Class .
:Book a owl:Class .
:read a owl:ObjectProperty .
```


- Verfeinerungen
 - Stemming
 - Books → Book, Bücher → Buch
 - Mindesthäufigkeit (Support)
 - wenig häufige Konzepte ausfiltern

- Synonyme erkennen
 - Wörter, die im ähnlichen Kontext verwendet werden
 - z.B.: als Objekt welcher Wörter?

	book	rent	drive	ride	join
Hotel	X				
Apartment	X	X			
Car	X	X	X		
Bike	X	X	X	X	
Excursion	X				X
Trip	X				X

Cimiano et al.: Ontology Learning. In: Handbook on Ontologies (2009)

Analyse

■ z.B. Jaccard-Koeffiizent: |A n B| / |A u B|

Ergebnis: Ähnlichkeitsmatrix

	Hotel	Apartment	Car	Bike	Excursion	Trip
Hotel	1.0	0.5	0.33	0.25	0.5	0.5
Apartment		1.0	0.66	0.5	0.33	0.33
Car			1.0	0.75	0.25	0.25
Bike				1.0	0.2	0.2
Excursion					1.0	(1.0)
Trip						1.0

Cimiano et al.: Ontology Learning. In: Handbook on Ontologies (2009)

Klassenhierarchien lernen

- Bis jetzt haben wir
 - Mengen von Klassen
 - Synonyme
 - d.h., owl:equivalentClass
- Viel häufiger ist aber rdfs:subClassOf
 - wie kommen wir da heran?

Klassenhierarchien lernen durch Clusterbildung

- Idee: semi-automatisches Verfahren
- Annahme: ähnliche Klassen haben eine gemeinsame Superklasse
- Bilde Superklassen
 - lasse diese vom Nutzer benennen

Klassenhierarchien lernen durch Clusterbildung

Bottom-Up-Verfahren:

- Marti A. Hearst (1992):
 - bestimmte Wendungen deuten auf Hyponym-/Hyperonym-Beziehung hin
- Beispiel:
 - Säugetiere, wie zum Beispie Hunde oder Katzen, bringen ihre Jungen lebend zur Welt.
- Abgeleitete Beziehungen:

```
:Katze rdfs:subClassOf :Säugetier .
:Hund rdfs:subClassOf :Säugetier .
```


- Beispiel:
 - Säugetiere, wie zum Beispiel Hunde oder Katzen, bringen ihre Jungen lebend zur Welt.
- Verallgemeinertes Muster:
 - NPO, wie zum Beispiel NP1, NP2 (und|oder) Npn
 - Daraus folgt:

```
Concept(NP1) rdfs:subClassOf Concept(NP0)
...
Concept(NPn) rdfs:subClassOf Concept(NP0)
```


- Beispiel-Muster für englische Texte:
 - NP_{hyper} such as {NP_{hypo},}* {(and|or)} NP_{hypo}
 - such NP_{hyper} as {NP_{hypo},}* {(and|or)} NP_{hypo}
 - NP_{hypo} {,NP_{hypo}}*, (and|or) other NP_{hyper}
 - NP_{hyper} including {NP_{hypo},}*, (and|or) {other} NP_{hypo}
 - NP_{hyper} especially {NP_{hypo},}*, (and|or) NP_{hypo}

Cimiano et al.: Ontology Learning. In: Handbook on Ontologies (2009)

- Geläufiges Problem:
 - Instanzen und Klassen unterscheiden
- Vergleiche:
 - Mammals, such as cats, dogs, and cows
 - Writers, such as Shakespeare, Goethe, and Schiller
- Besonders bei unbekannten Domänen ein nicht-triviales Problem

Instanzen und Klassen unterscheiden

- Verschiedene Ansätze:
 - Syntaktische Eigenschaften
 - Nomen mit Artikeln sind Klassen
 - Der Stör ist ein Fisch. Paul ist ein Mensch.
 - aber: Der Irak ist ein Land.
 - Pluralnomen sind Klassen
 - Elefanten und Giraffen sind Säugetiere.
 - aber: *Die Ärzte* sind *eine Band*.
 - Großgeschriebene Nomen sind Instanzen (englisch, außer Satzanfang)
 - Lookup-Lösungen
 - Named Entity Recognition → Instanzen
 - funktionieren nicht für "exotische" Domänen

Domain/Range von Relationen aus Sätzen lernen

- Betrachten wir diesen Satz:
 - Darmstadt liegt in Hessen
- Angenommen, wir wissen schon

```
:liegtIn a ObjectProperty .
:Darmstadt a :Stadt .
:Hessen a :Land .
```

■ Dann können wir bei hinreichend vielen solchen Sätzen folgern:

```
:liegtIn rdfs:domain :Stadt .
:liegtIn rdfs:range :Land .
```


Beispiel: NELL

http://rtw.ml.cmu.edu/rtw/

Beispiel: NELL

- Das NELL-System
 - Läuft seit Januar 2010
 - Nutzt 25TB Web-Crawl
 - Pro Durchlauf 1,5 Tage
- Ziel:
 - Neue Patterns auf Basis von Fakten extrahieren
 - Auf Basis von Pattern neue Fakten finden
- Seed:
 - Pro Klasse fünf Patterns und 15 Fakten
 - Pro Relation 15 Positiv- und fünf Negativbeispiele
- Stand:
 - 50 Millionen extrahierte Fakten
 - Davon zwei Millionen mit sehr hoher Konfidenz

Zusammenfassung

- Ontologien bauen ist aufwändig
- Verschiedene Verfahren zum (semi-)automatischen Ontologiebau existieren
 - Ontology Learning
- Aus Instanzmengen
 - z.B. mit Assoziationsregeln
- Aus Text
 - Part of Speech Tagging
 - Kolokationsanalyse
 - Textmuster

Aktuelle Forschung

- Lernen von mächtigeren Konstrukten
 - Transitive, symmetrische, funktionale Properties
 - Restriktionen
 - Disjunkte Klassen
 - ...

Semantic Web - Aufbau

Berners-Lee (2009): Semantic Web and Linked Data http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Vorlesung Semantic Web

Vorlesung im Wintersemester 2012/2013 Dr. Heiko Paulheim Fachgebiet Knowledge Engineering

