Statistical Analysis on Student Performance - Probability & Stats Project

Himanshu - Jaival - Shalini

2025-06-13

Set working directory and clear environment
setwd('/Users/shalini/Desktop/P&S Project')

```
rm(list=ls())
# Load the dataset
# The dataset is from kaggle.
# Link : https://www.kaqqle.com/datasets/spscientist/students-performance-in-exams/
student_data <- read.csv('StudentsPerformance.csv', stringsAsFactors = TRUE)</pre>
head(student data)
     gender race.ethnicity parental.level.of.education
                                                                lunch
## 1 female
                                      bachelor's degree
                                                             standard
                   group B
## 2 female
                   group C
                                           some college
                                                             standard
## 3 female
                   group B
                                        master's degree
                                                             standard
## 4
      male
                                     associate's degree free/reduced
                   group A
       male
                                           some college
## 5
                   group C
                                                             standard
## 6 female
                                     associate's degree
                                                             standard
                   group B
     test.preparation.course math.score reading.score writing.score
## 1
                                      72
                                                     72
                        none
## 2
                   completed
                                      69
                                                     90
                                                                   88
## 3
                                      90
                                                    95
                                                                   93
                        none
## 4
                        none
                                      47
                                                     57
                                                                   44
## 5
                                      76
                                                    78
                                                                   75
                        none
## 6
                        none
# 1. Descriptive Statistics
# We have 5 categorical columns and 3 numercial columns. Some key insights are there are more women.
# Group C ethnicity has the highest count. Most parents have attended college.
```

```
##
                                     parental.level.of.education
                                                                           lunch
       gender
                 race.ethnicity
                 group A: 89
    female:518
                                 associate's degree:222
                                                                  free/reduced:355
    male :482
                                                                  standard
                                                                               :645
##
                 group B:190
                                 bachelor's degree :118
##
                 group C:319
                                 high school
                                                    :196
##
                 group D:262
                                 master's degree
                                                    : 59
##
                                 some college
                 group E:140
                                                    :226
##
                                 some high school :179
```

The mean score of math is 66.1, reading is 69.2 and writing is 68.1.

summary(student data)

Most of the students use standard lunch. Most of them have not taken the test prep course.

```
## test.preparation.course math.score
                                            reading.score
                                                             writing.score
## completed:358
                           Min. : 0.00
                                            Min. : 17.00
                                                            Min. : 10.00
## none
            :642
                           1st Qu.: 57.00
                                            1st Qu.: 59.00
                                                            1st Qu.: 57.75
##
                           Median : 66.00
                                            Median : 70.00
                                                             Median : 69.00
##
                           Mean : 66.09
                                            Mean : 69.17
                                                             Mean : 68.05
##
                           3rd Qu.: 77.00
                                            3rd Qu.: 79.00
                                                             3rd Qu.: 79.00
##
                           Max.
                                  :100.00
                                                  :100.00
                                                            Max.
                                                                  :100.00
                                            Max.
# We can see from the correlation matrix that math and reading, math and writing has a high correlation
cor(student_data[, c(6, 7, 8)])
##
                math.score reading.score writing.score
## math.score
                 1.0000000
                               0.8175797
                                             0.8026420
                               1.0000000
                                             0.9545981
## reading.score 0.8175797
## writing.score 0.8026420
                               0.9545981
                                             1.0000000
# 2. One Sample and Two Sample T-Test
# One-sample t-tests
# p is high → null will fly: Null hypothesis is accepted.
# sample mean is close to population mean
t.test(student_data$math.score, mu = 66.5)
##
## One Sample t-test
##
## data: student_data$math.score
## t = -0.85715, df = 999, p-value = 0.3916
## alternative hypothesis: true mean is not equal to 66.5
## 95 percent confidence interval:
## 65.14806 67.02994
## sample estimates:
## mean of x
     66.089
##
# p is low → null will go: Null hypothesis is rejected.
# sample mean is significantly different
t.test(student_data$math.score, mu = 70)
##
## One Sample t-test
##
## data: student_data$math.score
## t = -8.1564, df = 999, p-value = 1.029e-15
## alternative hypothesis: true mean is not equal to 70
## 95 percent confidence interval:
## 65.14806 67.02994
## sample estimates:
## mean of x
     66.089
##
```

```
# Two-sample t-test
# p is low → null will go: Null hypothesis is rejected.
# Means differ significantly between genders
t.test(math.score ~ gender, data = student_data)
## Welch Two Sample t-test
##
## data: math.score by gender
## t = -5.398, df = 997.98, p-value = 8.421e-08
## alternative hypothesis: true difference in means between group female and group male is not equal to
## 95 percent confidence interval:
## -6.947209 -3.242813
## sample estimates:
## mean in group female
                        mean in group male
               63.63320
                                    68.72822
# 3. One-Way ANOVA
# ANOVA: math score ~ parental education level
# We are comparing math scores across 6 levels of parental education (hence df = 5).
# The F-statistic is 6.522, and the p-value is 5.59e-06 (very small).
# Conclusion: The difference in mean math scores is statistically significant
# across different parental education levels.
aov_test1 <- aov(math.score ~ parental.level.of.education, data = student_data)</pre>
summary(aov_test1)
                                Df Sum Sq Mean Sq F value
                                                            Pr(>F)
## parental.level.of.education
                                    7296 1459.1
                                                    6.522 5.59e-06 ***
                                5
## Residuals
                               994 222394
                                            223.7
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
# ANOVA: math score ~ gender
# We are comparing math scores between 2 gender groups (df = 1).
# The F-statistic is 28.98, and the p-value is 9.12e-08.
# Conclusion: There is a statistically significant difference in
# math scores between genders.
aov_test2 <- aov(math.score ~ gender, data = student_data)</pre>
summary(aov_test2)
##
                Df Sum Sq Mean Sq F value
## gender
                     6481
                             6481
                                    28.98 9.12e-08 ***
                 1
## Residuals
               998 223208
                              224
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# ANOVA: math score ~ race/ethnicity
# We are comparing math scores across 5 racial/ethnic groups (df = 4).
# The F-statistic is 14.59, and the p-value is 1.37e-11.
# Conclusion: There is a highly significant difference in mean math scores
```

```
# between at least some race/ethnicity groups.
aov_test3 <- aov(math.score ~ race.ethnicity, data = student_data)</pre>
summary(aov_test3)
                   Df Sum Sq Mean Sq F value
                                              Pr(>F)
## race.ethnicity
                   4 12729
                               3182
                                      14.59 1.37e-11 ***
## Residuals
                 995 216960
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# 4. Linear Regression
# Simple Linear Regression
# We fitted a simple linear regression model to examine the effect of parental level of education on ma
#While the model is statistically significant overall (F(5, 994) = 6.52, p < 0.001),
#parental education alone is not a strong predictor of math performance.
#Only the lowest education categories show significant negative effects,
#suggesting that students with less-educated parents may be at a disadvantage,
#but other variables likely play a much larger role in explaining student math scores.
data.lm = lm(math.score ~ parental.level.of.education, data = student_data)
summary(data.lm)
##
## Call:
## lm(formula = math.score ~ parental.level.of.education, data = student_data)
## Residuals:
      Min
               1Q Median
                                3Q
                   0.186 10.503 36.862
## -63.497 -9.138
## Coefficients:
##
                                                Estimate Std. Error t value
                                                            1.0039 67.619
## (Intercept)
                                                 67.8829
## parental.level.of.educationbachelor's degree
                                                 1.5069
                                                             1.7041 0.884
## parental.level.of.educationhigh school
                                                             1.4661 -3.919
                                                 -5.7451
## parental.level.of.educationmaster's degree
                                                  1.8629
                                                             2.1909 0.850
## parental.level.of.educationsome college
                                                 -0.7546
                                                             1.4134 -0.534
## parental.level.of.educationsome high school
                                                 -4.3857
                                                             1.5026 -2.919
##
                                                Pr(>|t|)
## (Intercept)
                                                 < 2e-16 ***
## parental.level.of.educationbachelor's degree 0.37674
## parental.level.of.educationhigh school
                                                9.51e-05 ***
## parental.level.of.educationmaster's degree
                                                 0.39537
## parental.level.of.educationsome college
                                                 0.59356
## parental.level.of.educationsome high school
                                                 0.00359 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 14.96 on 994 degrees of freedom
## Multiple R-squared: 0.03176,
                                   Adjusted R-squared: 0.02689
```

```
## F-statistic: 6.522 on 5 and 994 DF, p-value: 5.592e-06
# Multiple Linear Regression
# We then fitted a multiple linear regression model including parental education, gender, test preparat
#This model shows that gender and test preparation completion are strong predictors of math scores,
#while parental education continues to show a negative impact at lower levels.
#Although the explanatory power is still limited (Adjusted R^2 = 0.086), the model gives a more
#nuanced picture than using parental education alone. The p value is very low at <2e-16 and we reject t
#Parental.level.of.education, gender, test.preparation.course has an influence on math score.
data.mlm = lm(math.score ~ parental.level.of.education + gender + test.preparation.course, data = stude
summary(data.mlm)
##
## Call:
## lm(formula = math.score ~ parental.level.of.education + gender +
       test.preparation.course, data = student_data)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -58.517 -9.803
                    0.261 10.033 41.203
##
## Coefficients:
##
                                                Estimate Std. Error t value
                                                             1.2287 55.998
## (Intercept)
                                                 68.8034
## parental.level.of.educationbachelor's degree
                                                  1.4552
                                                             1.6513
                                                                     0.881
## parental.level.of.educationhigh school
                                                 -5.5143
                                                             1.4233 -3.874
## parental.level.of.educationmaster's degree
                                                             2.1245
                                                  2.4965
                                                                    1.175
## parental.level.of.educationsome college
                                                             1.3698 -0.437
                                                 -0.5993
## parental.level.of.educationsome high school
                                                 -4.7949
                                                             1.4571 - 3.291
## gendermale
                                                  5.3257
                                                             0.9188 5.796
## test.preparation.coursenone
                                                 -5.4920
                                                             0.9606 -5.717
                                                Pr(>|t|)
## (Intercept)
                                                 < 2e-16 ***
## parental.level.of.educationbachelor's degree 0.378402
## parental.level.of.educationhigh school
                                                0.000114 ***
## parental.level.of.educationmaster's degree
                                                0.240230
## parental.level.of.educationsome college
                                                0.661844
## parental.level.of.educationsome high school 0.001035 **
                                                9.10e-09 ***
## gendermale
## test.preparation.coursenone
                                                1.43e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 14.49 on 992 degrees of freedom
## Multiple R-squared: 0.09284,
                                   Adjusted R-squared: 0.08644
## F-statistic: 14.5 on 7 and 992 DF, p-value: < 2.2e-16
# 5.Chi-Square test
#Check if two categorical varaiables are related to each other.
# Create contingency table
```

```
data.chi <- table(student_data$gender, student_data$test.preparation.course)

# Perform Chi-Square Test of Independence
#Here we get the p value as 0.9. P value is high, null will fly.Null hypothesis will be accepted.
#These two categorical variables are no related to each other.
chisq.test(data.chi)

##

## Pearson's Chi-squared test with Yates' continuity correction
##

## data: data.chi
## X-squared = 0.015529, df = 1, p-value = 0.9008</pre>
```