

Austin Rueda, MS APHL-CDC Microbiology Fellow Arizona State Public Health Laboratory

Agenda

1. Introduction to rabies virus

- Impact
- Variants
- Phylogenetics

2. Rabies Surveillance

- Antigenic Methods
- Targeted Amplicon NGS
- Metagenomic WGS
- NGS Analysis Workflow

3. Case Study

Reanalyzing AZ Rabies Samples

Rabies Disease – Global Impacts

- Highest case fatality rate of any known disease (~100%)
- Global death rate: >59,000 / year
- 98% caused by canine rabies virus variant (CRVV)

Mass vaccination of Dogs led to significant reductions in human rabies infections

Rabies Disease – US Impacts

Myotis spp. (Bat Conservation Intl.)

Arizona Gray Fox (US FWS)

- <10 human cases / year</p>
- 70% caused by bat bites
- 4,000 annual animal cases
 - Mesocarnivores
 - Bats
 - Skunks

Striped Skunk (Vermont FWS)

Rabies Virus (RABV)

- Nonsegmented, Negative-stranded RNA Virus
- ~12knt 5 Genes
 - I. Nucleoprotein (N)
 - II. Phosphoprotein (P)
 - III. RNA polymerase (L)
 - IV. Matrix Protein (M)
 - V. Glycoprotein (G)

Rabies virion (Nat Rev Microbiol., 2010)

RABV Variants - US

& NCSK

Rabies variant territories (CDC, 2024)

& ERC

Canine Variant

- . Arctic Fox
- II. California Skunk
- III. Arizona Fox
- IV. South Central Skunk
- V. North Central Skunk
- VI. Eastern Raccoon
- VII. Mongoose

Bat Variant

- I. Silver-haired Bat
- II. Hoary Bat
- II. Western Yellow Bat
- IV. Big Brown Bat
- /. Pallid Bat
- VI. Myotis
- VII. Et al.

A.

B.

RABV Phylogenetics

Dog-Related

- I. Indian Sub
- II. Asian
- III. Africa-2
- IV. Africa-3
- V. Arctic-Related

VI. Cosmopolitan

- 22 subclades 3 US Circulating
- AM1 Skunk & Woodchucks
- Am2(b) US/ Mexico
 Wildlife
- AM4 CA Skunks

RABV Phylogenetics

Bat-Related

- I. Bats
 - I. EF-W1/2 Eptesicus fuscus (big brown bat)
 - II. MYu Myotis yumanensis (Yuma myotis)
 - III. LX *Lasiurus xanthinus* (Western yellow bat)
 - IV. LC *Lasiurus cinereus* (Hoary bat)
 - V. LB Lasiurus blosevila (Western red bat)
 - VI. TB *Tadarida brasiliensis* (Mexican freetail)
- II. RAC-SK
 - I. SCSK South Central Skunk
 - II. RAC Raccoon
 - III. MexSK-1 Mexican Skunk

DFA, rRT-PCR, & LFD

Direct Fluorescent Antibody (DFA) /

Direct Rapid Immunohistochemistry Test (DRIT)

- Gold-Standard of rabies testing
- Sensitive

- Subjective
- Time-Consuming

LN34 rRT-PCR

- Highly Sensitive
- Less hands-on time than DFA
- Confirmatory testing only

Lateral Flow Device (LFD)

- Rapid
- Cheap
- Simple

- Low sensitivity
- Not widely available

Antigenic Variant Typing

RABIES VARIANT TYPING CHART:

		Major Terrestrial Animal Reservoirs		Minor Terrestrial Animal Reservoirs			Insectivorous Bats		Other Reactivity		
Cat. No.	Clone No.	Raccoon E US	Skunk NC US & CA	Skunk SC US	Dog/ Coyote Texas	Fox TX	Fox New England	Fox AZ	Bat Migratory	Bat Resident	Non-Rabies Lyssavirus
MAB8716	C4-62-15-2	pos.	pos.	pos.	pos.	pos.	pos.	pos.	pos.	pos.	NEG.
MAB8717	CR54-62-29-54	pos.	NEG.	varies	NEG.	NEG.	NEG.	NEG.	NEG.	NEG.	varies
MAB8718	C1-62-3-1	NEG.	pos.	NEG.	pos.	pos.	NEG.	pos.	NEG.	varies	varies
MAB8719	C2-62-8-2	pos.	pos.	NEG.	pos.	pos.	pos.	pos.	pos.	varies	varies
MAB8722	C10-62-52-2	pos.	pos.	pos.	pos.	pos.	pos.	NEG.	pos.	varies	varies
MAB8723	C15-62-97-3	pos.	pos.	pos.	pos.	pos.	NEG.	pos.	NEG.	varies	varies
MAB8724	C18-62-143-2	pos.	NEG.	pos.	NEG.	NEG.	NEG.	NEG.	NEG.	varies	varies

DFA positive for rabies virus (Tesfaye, 2017)

- Phenotypic, determined by Nucleoprotein
- 7 + monoclonal antibodies (MAB) tested against rabid brain tissue
- Results Limited
 - Arizona Gray Fox
 - South Central Skunk
 - Insectivorous Bat
 - Non-Endemic
- Sequencing send out to CDC required for further analysis

Next-Generation Sequencing

Targeted Amplicon

Metagenomic WGS

Targeted Amplicon

- ONT Long-Read Sequencing
- Modified from CDC
- Targets:
 - N Gene (~1.5kb)
 - G Gene (~2kb)
- Single Primer Set
 - All US Canine & Bat Variants
 - Non US-Variants TBD
- Two separate rounds of PCR
 - barcoding acts as nested PCR primers

Metagenomic WGS – Switching Mechanism At the 5' end of RNA Transcript (SMART-9N)

- ONT Long-Read Sequencing
- Variation of SMART method
 - dN first strand synthesis
 Opposed to dT SMART method targeting polyadenylated transcripts
- Metagenomic Approach
 - random priming (dN)
- Agnostic, Many Applications outside of RABV

Theiagen Genomics RefNAAP – WDL: <u>Automated Bioinformatics W</u>orkflow

Developed in Collaboration with Theiagen Genomics

Fully automated Workflow hosted on Terra.bio

- QC w/ Report
- Alignment to Reference Sequence
- Closest NCBI Full Genome Accession
- Major & Minor Clades
- Coding Sequence Coverage

Available – Currently in Development, Not Validated

Reference-based Nanopore Amplicon Analysis Pipeline (RefNAAP) – *Modified from Yao & Gigante, CDC*

- QC Reads
 - FastQC & MultiQC to generate Report
- Trim & Filter
 - 25b off left & right end of reads
 - Filter reads <50bp
- Generates assembly
 - Reference based gap fixing
 - Medaka Assembly
 - Aligns to 1 of 14 Reference Seqs

RABV-GLUE

- RABV centric bioinformatics resource & genotyping tool
 - Developed by University of Glasgow BETA
- Blasts against NCBI RABV isolates
- Provides Major / Minor Clades & closest full genome reference sequence

Automated Variant Typing Pipeline - Terra options

Parameters of Note:

- Blast E Value 1e⁻¹⁰ Default
- Minimum Gene Coverage 75% Default
- Minimum Percent Identity 75% Default
- Minimum Depth of Coverage 5x Default
- Medaka alignment Model
- Read Size
- Left and Right Read Trim

Correlating Antigenic Variant to Phylogenetic Clade

Variant = Result of Antigenic Testing

Major / Minor clade = Result of phylogenetic analysis via NGS

Variant of the Closest Reference Sequence determined by RABV-GLUE

Variant	Clade		
AZ Gray Fox	Cosmopolitan AM2b		
SC Skunk	RAC-SK		
	Bats EF-W1		
	Bats TB1		
Non-Endemic	Bats LX		
Tron Engenne	Bats MYu		
	Cosmopolitan Vac2		

- All tissue samples previously confirmed positive for RABV
 via DFA
- Variant typed via MAB immunofluorescence
 - Bat specimens were not variant typed

- 80 samples sequenced... And continuing
 - Targeted Amplicon & Metagenomic WGS
- Analyzed Using Automated variant typing pipeline Terra

Agreement to Antigenic Typing

Targeted Amplicon			
% Match	89% (67/75)		
% Mismatch	6.5% (5/75)		
% Rejected	4% (3/75)		
Removed from analysis	(5) Not Variant Typed		

SMART-9N WGS				
% Match	66% (44/68)			
% Mismatch	0			
% Rejected	35% (24/68)			
Removed from analysis	(12) Not Variant typed / Tested			

^{*}Rejected: RefNAPP-WDL unable to process sample

Percent Gene Coverage

Targeted Amplicon

- Complete coverage OR zero coverage
- Complete coverage of all N genes except failed sample

SMART-9N

- Bi-modal, more distributed than Amp.
- Genes with zero coverage normally distributed along genome
- Gene length * Transcription rate?

Transcription gradient

(Kip, 2017)

Depth of Coverage

Factors to Consider

1. Can <u>LN34 Ct</u> value predict gene coverage and/or depth of coverage?

- 2. Does the proportion of <u>viral reads</u>: host reads affect gene coverage and / or depth of coverage?
 - Signal (RABV Reads) : Noise (Host Reads)

- 1. Can <u>PCR product mass</u> predict gene coverage and / or depth of coverage?
 - Used for library pooling normalization
 - TBD

Gene / Depth of Coverage

Gene / Depth of Coverage

Gene / Depth of Coverage

LN34 Ct

LN34 Ct is not significantly correlated to Genome coverage / Depth of Coverage

% Reads Mapped

% Reads Mapped to Ref Seq is significant predictor of genome coverage & SMRT-9N WGS Depth of Coverage

Viral reads : Host reads

Mismatched Samples

Targeted Amplicon					
	Count	Avg. Genome Coverage	Avg. Depth of Coverage		
Match	91% (69/75)	36%	112,040 x		
Mismatch	7% (5/75)	24%	92,039 x		
Rejected	2% (2/75)	NA	2.5x		
Removed from analysis	(4)	NA	NA		
SMART-9N WGS					
	Count Avg. Genome Avg. Depth of Coverage Coverage				
% Match	66% (44/68)	34%	7x		
% Mismatch	0	NA	NA		
% Rejected	35% (24/68)	NA	1x		
Removed from analysis	(12)	NA	NA		

- Genome Coverage: 36% 24%
 - N gene is fully sequenced in all cases
- Massive Depth of Coverage in both cases
- Other Factors:
 - 1. Bioinformatics Error
 - 2. User Error

Rejected Samples

Targeted Amplicon					
	Count	Avg. Genome Coverage	Avg. Depth of Coverage		
Match	91% (69/75)	36%	112,040 x		
Mismatch	7% (5/75)	24%	92,039 x		
Rejected	2% (2/75)	NA	2.5x		
Removed from analysis	(4)	NA	NA		
SMART-9N WGS					
	Count	Avg. Genome Coverage	Avg. Depth of Coverage		
% Match	66% (44/68)	34%	7x		
% Mismatch	0	NA	NA		
% Rejected	35% (24/68)	0	1x		
Removed from analysis	(12)	NA	NA		

- Significantly lower depth of coverage in rejected samples
- Proportion Host reads: Viral Reads Influences
 Depth of Coverage
- Targeted Amplicon Sequencing reliably sequenced more samples than SMART-9N WGS
- LN34 Ct value is not a useful predictor of sequencing success

Key Takeaways

Antigenic variant typing & NGS Phylogenetics

- Antigenic variant typing provides limited results
- Sequencing provides more detailed view RABV diversity, w/out CDC sendout

Target Amplicon VS SMART-9N WGS

- Both methods are strongly influenced by % reads mapped (viral signal : host noise), especially SMART-9N
- LN34 Ct is NOT suitable for determining sequence success
- Targeted Amplicon more reliably sequenced RABV than SMART-9N

Theiagen Genomics RefNAAP-WDL

- Fully automated bioinformatics workflow for rabies sequencing
- Both Targeted Amplicon & Metagenomic
 WGS data
- Provides QC, Major & Minor clades, Closest NCBI full genome accession, CDS Coverage

Next Steps

- 1. Re-sequence Mismatched Samples
 - Evidence of Cross contamination
 - Eliminate Analyst Error

- 2. Increase percent reads mapped for SMART-9N WGS method
 - Increase RABV RNA signal Decrease Host RNA noise
 - Hybrid Capture (Target Enrichment)
 - Target polyadenylated transcripts using SMART Primers

Hybrid Capture

Acknowledgments

- Drew Francis, M(ASCP) ASPHL
- Crystal Gigante, PhD CDC
- Inês Mendes, PhD Theigen Genomics
- Michelle Scribner, PhD Theigen Genomics

Cost Analysis

Targeted Amplicon

Reagent	Cost / Unit	Rxn / Unit	Cost / Rxn
ONT Ligation Sequencing Kit	3,920	576	6.81
PCR Barcoding Kit	311.64	72	4.33
NEB Companion Module	985.99	288	3.42
SSIV Master Mix	1,150.56	250	4.60
TaKaRa LA Taq	1,605.75	200	8.03
Ampure XP Beads	1,821.25	360	5.06
Qubit dsDNA HS	404	500	0.81
Flow Cells	<u>4,900</u>	<u>96</u>	<u>51.04</u>
Primers	191.78	1000	0.19
Total Co		\$84.29	

Representative of 12 samples / library. 96 sample / library options available.

SMART-9N WGS

Reagent	Cost / Unit	Rxn / Unit	Cost / Rxn
Turbo Dnase	155.04	500	.31
RNA Clean XP	1106.33	440	2.52
dNTPs	685.92	1000	.66
SSIV RT	1762.56	200	8.81
Rnase OUT	230.05	125	1.84
TaKaRa LA Taq	1605.75	400	4.01
AMPure XP Beads	1821.25	1200	1.52
Qubit dsDNA HS	404	500	0.81
Flow Cells	<u>4900</u>	<u>96</u>	<u>51.04</u>
Rapid PCR Barcoding Kit	685.02	144	4.76
Primers	80.36	1000	0.08
Total Co	\$76.36		