Ковальков Антон 577гр

Упражнение 1.

Пусть у нас есть два КС языка L_1 и L_2 . Без ограничения общности положим, что множества нетерминальных символов у них не пересекаются. Пусть стартовый символы S1 и S2. Тогда построим Грамматику для языка $L=L_1\cup L_2$ добавил к правилам для L_1 и L_2 ещё два: $S\to S_1\mid S_2$, где S стартовый символ для языка L. Из нетерминала S_1 выводимы все слова языка L_1 и только они. То же справедливо для языка L_2 и нетерминала S_2 . Получаем что из S выводимы слова языка $L_1\cup L_2$ и только они.

Задача 1.

Пусть язык L задан МП-автоматом принимающим по допускающему состоянию.

 $\mathcal{A} = (Q_L, \Sigma, \Gamma, \sigma_L, q_{0L}, Z_0, F_L)$

Пусть язык R задан детерминированным конечным автоматом

 $\mathcal{B} = (Q_R, \Sigma, \sigma_R, q_{0R}, F_R).$

Построим пересечение этих автоматов:

 $\mathcal{C} = (Q_L \times Q_R, \Sigma, \Gamma, \sigma_{\cap}, (q_{0L}, q_{0R}), Z_0, F_L \times F_R)$

Функцию переходов определим так:

 $\sigma_{\cap}((q_1,q_2),\omega,\alpha) = (\sigma_L(q_1,\omega,\alpha),\sigma_R(q_2,\omega))$ Мы построили МП автомат для языка пересечения, значит язык пересечения КС язык.

Задача 3.

Предположим, что $L \in \mathsf{CFL}$, тогда для некоторого числа p выполнена лемма о накачке. Рассмотрим слово $w = a^p b^p c^p$. Тогда подслово uyv из разбиения слова w, существующего по лемме о накачке, либо состоит из одинаковых букв $(a^l$ или b^l или c^l) или имеет вид $a^l b^r$ или $b^l c^r$. Три различные буквы подслово uyv содержать не может, поскольку его длина ограниченна числом p. Но тогда uv – слово, в котором нет одной из трёх букв. Пусть это будет буква c для определённости. Взяв i=0, получаем,

что по лемме о накачке $w_0 = a^{p-k}b^{p-m}c^p \in L$, при этом $k+m \geqslant 1$, откуда следует, что слово w_0 не принадлежит языку L.

Задача 4.

```
Нет, это не верно, так как abc \notin \Sigma^* \setminus \{a^nb^nc^n \mid n \geqslant 0\}. a \in \{a^ib^jc^k \mid i \neq j \lor i \neq k\}, при i = 1, j = k = 0. b \in \{a^ib^jc^k \mid i \neq j \lor i \neq k\}, при i = 0, j = 1, k = 0. c \in \{a^ib^jc^k \mid i \neq j \lor i \neq k\}, при i = 0, j = 0, k = 1. Значит abc \in \{a^ib^jc^k \mid i \neq j \lor i \neq k\}^3 \subset \{a^ib^jc^k \mid i \neq j \lor i \neq k\}^*.
```

Задача 5.

```
Да, это верно. Построим грамматику для L=\{a^mb^mb^nc^n\mid n,m\geqslant 0\}: S\to AB A\to aAb\mid \varepsilon B\to bBc\mid \varepsilon.
```

Если слово было выведено из грамматики, то сначала было применено правило $S \to AB$. Затем n раз правило $A \to aAb$ и правило $A \to \varepsilon$.Затем k раз правило $B \to bBc$ и правило $B \to \varepsilon$. Получившиееся слово имеет вид $a^nb^nb^kc^k$ и лежит в языке.

Любое слово из языка можно вывести из грамматики сначала надо применить правило $S \to AB$. Затем m раз правило $A \to aAb$ и правило $A \to \varepsilon$. Затем n раз правило $B \to bBc$ и правило $B \to \varepsilon$.

Заметим, что язык L совдадает с языком из условия задачи, так как $b^nb^m=b^{n+m}=b^{m+n}=b^mb^n$.

Задача 6.

Предположим, что $L \in \mathsf{CFL}$, тогда для некоторого числа p выполнена лемма о накачке. Рассмотрим слово $w = a^p b^p a^p b^p$. Тогда подслово uyv из разбиения слова w, существующего по лемме о накачке имеет вид: 1) a^l , взяв i=2 по лемме о накачке получаем, что $a^{p+k}b^p a^p b^p \in L$, если подслово uyv лежит в первой части слова, и $a^p b^p a^{p+k} b^p \in L$, если подслово uyv лежит в первой части слова. Получаем противоречие так как $k \geqslant 1$ 2) b^l , аналогично пункту 1) получаем противоречие.

- $3)a^lb^m$, взяв i=2 по лемме о накачке получаем, что $a^{p+k}b^{p+n}a^pb^p\in L$, если подслово uyv лежит в первой части слова, и $a^pb^pa^{p+k}b^{p+n}\in L$, если подслово uyv лежит в первой части слова. Получаем противоречие так как $k+n\geqslant 1$
- 4) $b^m a^l$, взяв i=2 по лемме о накачке получаем, что $a^p b^{p+k} a^{p+n} b^p \in L$. Получаем противоречие, так как $k\geqslant 1$.

Значит $L \notin \mathsf{CFL}$