Theory of Computation

MIEIC, 2nd Year

João M. P. Cardoso

Dep. de Engenharia Informática Faculdade de Engenharia (FEUP) Universidade do Porto Porto Portugal

Email: jmpc@acm.org

Outline

- ► Non-Deterministic Finite Automata (NFAs)
- Conversion between FAs

Example

- Let's consider the DFA to recognize strings over {0,1} with a '1' in the third from last position. (see, DFAs, exercise 3)
- ► Test input: 10101

Non-Deterministic Finite Automata (NFAs)

- ► A Non-Deterministic Finite Automaton (NFA)
 - It can be in more than a single state at the same time (we don't know which one, all the possibilities are open)
 - From a state, with an input, it can go to various states
 - In the end, it is enough that one of the states reached be an accept state
- Exercise 3 (cont.), now using an NFA

 To opt about the transition to follow in q₀, when arrives a 1, it is necessary to guess the rest of the input chain

Processing in an NFA

- ► Considering the input 10101
 - ▶ In order to avoid guessing, we analyze all the alternatives in parallel
 - Exchange the more simplicity of the FA by a higher computing complexity

Definition of an NFA

- ► NFA A = (Q, Σ , δ , q₀, F)
 - ▶ Equal to DFA, except that the state transition function δ returns a subset of Q, instead of a single state
- Example (exercise 3)
 - \triangleright A= ({q₀, q₁, q₂, q₃}, {0,1}, δ , q₀, {q₃})
- ► Transition table
 - ► Uses sets of states

	0	1
$\rightarrow q_0$	$\{q_0\}$	$\{q_0,q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2	$\{q_3\}$	$\{q_3\}$
*q ₃	Ø	Ø

Extended Transition Function $\widehat{\delta}$

- ▶ New definition inductive in |w|, dealing with composable states
 - ► Basis: $\hat{\delta}(q,\epsilon) = \{q\}$
 - ▶ Induction: let w=xa, supposing $\widehat{\delta}(q,x) = \{p_1, ..., p_k\}$ then we have

$$\hat{\delta}(q, w) = \bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$$

- Example: $\hat{\delta}(q_0, 10101) = \{q_0, q_1, q_3\}$
- Language of a NFA A
 - ►L(A) = {w | $\hat{\delta}$ (q₀,w) \cap F $\neq \emptyset$ }
 - Set of strings w such that $\hat{\delta}(q_0, w)$ contains at least an accept state

NFA – DFA Equivalence

- ► To convert an NFA N = $(Q_N, \Sigma, \delta_N, q_0, F_N)$ in a DFA D = $(Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ we use the subset construction technique
- \triangleright Q_D is the set of the subsets of Q_N
 - $\triangleright Q_D = \wp(Q_N)$
 - ▶ If Q_N has n states, Q_D has 2^n , while many might be eliminated because they are unreachable
- $ightharpoonup F_D$ is the set of the subsets S of Q_N such that $S \cap F_N \neq \emptyset$
- ▶ For each $S \subseteq Q_N$ and each $a \in \Sigma$

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

Construction of Subsets

	0	1
$\rightarrow q_0$	$\{q_0\}$	$\{q_0,q_1\}$
q_1	$\{q_2\}$	$\{q_2\}$
q_2	$\{q_3\}$	{q ₃ }
*q ₃	Ø	Ø

_	_	_
	0	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_1\}$	$\{q_2\}$	$\{q_2\}$
$\{q_2\}$	$\{q_3\}$	$\{q_3\}$
*{q ₃ }	Ø	Ø
$\{q_0,q_1\}$	$\{q_0,q_2\}$	$\left\{q_0,q_1,q_2\right\}$
$\{q_0,q_2\}$	$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$
$*\{q_0,q_3\}$	$\{q_0\}$	$\{q_0,q_1\}$

	1	I
	0	1
$\{q_1,q_2\}$	$\{q_2,q_3\}$	$\{q_2,q_3\}$
*{q ₁ ,q ₃ }	$\{q_2\}$	$\{q_2\}$
*{q ₂ ,q ₃ }	$\{q_3\}$	{q ₃ }
$\{q_0,q_1,q_2\}$	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_2,q_3\}$
$*\{q_0,q_1,q_3\}$	$\{q_0,q_2\}$	$\{q_0,q_1,q_2\}$
$*\{q_0,q_2,q_3\}$	$\{q_0, q_3\}$	$\{q_0,q_1,q_3\}$
*{q ₁ ,q ₂ ,q ₃ }	$\{q_2, q_3\}$	$\{q_2,q_3\}$
$*\{q_0,q_1,q_2,q_3\}$	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_2,q_3\}$

State \varnothing (dead state) is essencial to guarantee that the resultant DFA all the alphabet symbols have a transition from each of the DFA states.

Equivalent DFA

This example is a worse case for the subsets construction:

- It results in an exponential number of states of the DFA (2ⁿ) for an NFA with n+1 states
- It needs to memorize the last n symbols of the input
- In many cases the number of states of the DFA is not too higher than the number of states of the NFA

Dead States

- ► A dead state is a non-accepting state with self transitions for all the symbols of the alphabet
 - It is used to capture errors in a DFA
 - ▶ If the automaton has a maximum of one transition for each state/alphabet symbol, even if it is not complete can be considered a DFA (sometimes referred as an incomplete DFA): to be a DFA it is only needed to add the dead state (w/ self transitions) to where all the missing transitions will go

Theorem NFA – DFA

- ► **Theorem**: if D = (Q_D , Σ , δ_D , { q_0 }, F_D) for a DFA built from NFA N = (Q_N , Σ , δ_N , q_0 , F_N) by the subsets constructions techniques then L(D) = L(N).
- ▶ **Proof**: start by proving by induction in |w| that $\widehat{\delta}_D(\{q_0\}, w) = \widehat{\delta}_N(q_0, w)$
 - ▶ Both functions return sets of states, although one of them interpret them as simple/single states
 - ▶ Basis step: |w|=0, $w=\varepsilon$; by the basic rule of the definitions of $\hat{\delta}$ in both cases the result is $\{q_0\}$
 - ► Induction step: |w|=n+1; considering w=xa
 - ▶ By the hypothesis: $\hat{\delta}_D(\{q_0\},x) = \hat{\delta}_N(q_0,x) = \{p_1, ..., p_k\}$

Theorem NFA – DFA (cont.)

The induction part of the $\hat{\delta}$ definition for the NFA says:

$$\delta_N^{\hat{}}(q_0, w) = \bigcup_{i=1}^k \delta_N(p_i, a)$$

The subsets construction defines

$$\delta_D(\{p_1,...,p_k\},a) = \bigcup_{i=1}^k \delta_N(p_i,a)$$
 Using the hypothesis

$$\hat{\delta}_{D}(\{q_{0}\}, w) = \delta_{D}(\hat{\delta}_{D}(\{q_{0}\}, x), a) = \delta_{D}(\{p_{1}, ..., p_{k}\}, a) = \bigcup_{i=1}^{k} \delta_{N}(p_{i}, a)$$

Theorem of the NFA Language

► **Theorem**: the language L is accepted by a DFA, <u>iff</u> L is accepted by an NFA.

► Proof:

- ► The **if** part is the subsets construction
- ► The **only if** part is based on the recognition that a DFA can be thought as an NFA with only an option

Exercise 4

► Convert the following NFA to a DFA

	0	1
→p	{p,q}	{p}
q	{r}	{r}
r	{s }	Ø
*s	{s}	{s}

Exercise 5

▶ Obtain an NFA, using as much as possible the non-determinism, to accept the language of the strings over the alphabet {0, ..., 9} such that the last digit has appeared before.

Summary

- ► Non-Deterministic Automata (NFAs)
- ► Conversion of NFAs to DFAs
- ► Languages of DFAs and NFAs