Relations and transitive closure

Arno Pauly

February 2, 2021

Definition

Definition

A *relation* between sets X, Y is a subset $R \subseteq X \times Y$. A relation on X is a subset $R \subseteq X \times X$.

Properties of relations

```
A relation R on X is ^1
Reflexive if \forall a \in X \ (a,a) \in R
Symmetric if \forall a,b \in X \ (a,b) \in R \Rightarrow (b,a) \in R
Anti-reflexive if \forall a \in X \ (a,a) \notin R
Anti-symmetric if \forall a,b \in X \ ((a,b) \in R \land (b,a) \in R) \Rightarrow a = b
Total if \forall a,b \in X \ (a,b) \in R \lor (b,a) \in R
Transitive if \forall a,b,c \in X \ ((a,b) \in R \land (b,c) \in R) \Rightarrow (a,c) \in R
```

 $^{^{1}}$ ∧ denotes *and*, and ∨ denotes *or*.

Examples

Example

The relation < on $\mathbb N$ is anti-reflexive, anti-symmetric and transitive.

Example

The relation \leq on $\mathbb N$ is reflexive, anti-symmetric, total and transitive.

Exercises

Example

Let $R \subseteq \{0,1,2,3\} \times \{0,1,2,3\}$ be defined as $R = \{(0,1),(2,3)\}$. Which properties does R have?

Example

Let $|\subseteq \mathbb{N} \times \mathbb{N}$ be defined as $(n, m) \in |$ iff n divides m. Which properties does | have?

Particular names

Definition

A *linear order* is a reflexive, anti-symmetric, total and transitive relation.

Definition

An *equivalence relation* is a reflexive, symmetric and transitive relation.

Composition of relations

Definition

Given $R \subseteq X \times Y$ and $Q \subseteq Y \times Z$, let $(R \circ Q) \subseteq X \times Z$ be defined as²:

$$(R \circ Q) = \{(x, z) \in X \times Z \mid \exists y \in Y (x, y) \in R \land (y, z) \in Q\}$$

²∃ means there exists.

Transitive closure

Definition

Let R be a relation on X. We define $R^1 := R$, and $R^{n+1} := R^n \circ R$, and then $R^+ = \bigcup_{n \ge 1} R^n$.

Theorem

The relation R^+ is the smallest transitive relation extending R, and we thus call it the transitive closure of R.

Example

Let $S = \{(n, n+1) \mid n \in \mathbb{N}\}$. Then $S^+ = <$.

Outlook

Next time, we shall use the notion of transitive closure to formally define the derivation process for the language described by a formal grammar.