Задача 2. До какой же степени..?

Простейшей моделью заряженного тела является точечный заряд. Помимо этой модели в прикладной электростатике широко используются и другие модели заряженных тел (диполи, квадруполи и т.д.), получившие название мультиполей.

Диполи электрически нейтральны, поскольку их суммарный заряд равен нулю. Но, несмотря на это, между ними возникают силы притяжения, рассмотрению которых и

посвящена эта задача.

Электрический диполь, представляет собой совокупность двух равных по величине разноименных точечных зарядов +q и -q, находящихся на некотором расстоянии l друг от друга.

Дипольным моментом p системы называется произведение заряда + q на расстояние l между зарядами

$$p = ql$$
.

Вектор \vec{p} дипольного момента направлен от отрицательного заряда к положительному.

1. Найдите напряженность электростатического поля E_1 , создаваемого диполем на больших расстояниях r(r>>l) вдоль линии, соединяющей заряды (см. рис.).

Выразите E_1 через дипольный момент системы p и расстояние r до центра диполя.

Примечание: при малых x ($x \to 0$) справедливо приближенное равенство $(1+x)^{\alpha} \approx 1 + \alpha \cdot x$.

- **2.** Пробный заряд q_0 находится в вакууме на расстоянии r от точечного заряда $-q_1$. Найдите силу притяжения между зарядами. Запишите полученную формулу в виде $F_1 \sim \frac{1}{r^n}$ и найдите значение n в данном пункте задачи.
- 3. Пробный заряд q_0 находится в вакууме на расстоянии r(r>>l) от центра диполя с моментом p (см. рис.). Найдите силу \vec{F}_2 взаимодействия пробного заряда с

диполем. Запишите полученную формулу в виде $F_2 \sim \frac{1}{r^n}$ и найдите значение n в данном пункте задачи.

4. Найдите силу взаимодействия \vec{F}_3 \bar{p} двух одинаковых диполей с дипольным моментом p каждый, расположенных на

расстоянии r(r >> l) друг от друга вдоль прямой, соединяющей заряды, так как показано на рисунке (см. рис.). Запишите полученную формулу в виде $F_3 \sim \frac{1}{n^n}$ и найдите значение n в данном пункте задачи.

5. Эксперименты показывают, что под действием внешнего электрического поля напряженностью $ec{E}$ диэлектрики (отдельные молекулы) поляризуются и приобретают наведенный (индуцированный) дипольный момент

$$p = \alpha \varepsilon_0 E$$
,

ориентированный по полю (см. рис.). Коэффициент α , имеющий в данном случае размерность объема, называется поляризуемостью молекулы диэлектрика.

Точечный заряд q_0 находится на расстоянии r от молекулы диэлектрика с поляризуемостью α . Найдите силу \vec{F}_4 взаимодействия заряда с молекулой. Запишите полученную формулу в виде $F_4 \sim \frac{1}{n}$ и найдите значение *n* в данном

Диполь с моментом находится на расстоянии r от молекулы с поляризуемостью α (см. рис.). Найдите

пункте задачи.

силу \vec{F}_5 взаимодействия заряда с молекулой. Запишите полученную формулу в виде $F_5 \sim \frac{1}{L^n}$ и найдите значение n в данном пункте задачи.