

Product Catalog

Packaged Rooftop Air Conditioners

IntelliPak® with Symbio™ 800 Including eFlex™/eDrive™ 20 to 75 Ton

Introduction

Transform your rooftop experience

The next generation IntelliPak® with Symbio™ 800 goes beyond the rooftop to impact the entire customer lifecycle, maximizing outcomes with minimal energy. Advanced selection tools make designing your project a breeze while extensive product testing and lean manufacturing principles ensure quality at the source. Installation is fast and flexible with application specific and field programmable controls and advanced diagnostics deliver real-time building information to keep performance optimal.

From project inception to product replacement, Trane delivers a holistic solution through the IntelliPak rooftop unit completely engineered around the customer experience.

Select

We make it easier to specify, select and engineer.

- Industry leading energy efficiency integrated with Trace™ 3D Plus modeling capability.
- Application specific and field programmable controller with expansion hardware.
- · Reengineered selection tools with the customer in mind.

Build

We have a culture of continuous improvement, committed to product quality.

- · Extensive design validation and product testing.
- Lean 3P Tools (Production, Preparation, Process) tools in manufacturing operation.
- Enhanced training program for shop floor leadership and manufacturing associates.

Install

We built a flexible system and simplified integration to minimize cost and time.

- Multiple communication protocol (BACnet® MSTP, BACnet® IP, Air-Fi™ Wireless, Modbus, LonTalk®).
- Unit specific points list included with submittal and shipped in unit.
- 7-inch user interface improves navigation, data viewing and ability to make operation changes.

Perform

We deliver reliable operation and service through the entire life cycle.

- The Adaptive Control pre-empts potential equipment disruptions during rapidly changing conditions.
- Validate performance with factory installed power meter and Trane Intelligent Services.
- Improved diagnostics and connected capability enhances service monitoring.

©2020 Trane RT-PRC086F-EN

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Revision History

- Updated Digit 6 and 7 in Model Number.
- Added data and information for 1200 MBh natural gas and SCR modulating electric heat.
- Updated static pressure drop data.
- Running edits included in this version.

Table of Contents

Features and Benefits	6
Cabinet	6
Refrigeration	7
Airflow	8
Electrical	. 10
Gas Heat	. 11
Electric Heat	. 12
Model Number Description	. 13
General Data	. 15
Symbio™ 800 Controls	. 21
Overview	. 21
Supply Air Pressure Control	. 22
Supply Air Temperature Controls	. 22
Zone Temperature Control	. 24
Single Zone Variable Air Volume (SZVAV) Only	. 25
Constant Volume (CV) Only	. 26
CV, SZVAV, and VAV	. 27
Specifications	. 33
Application Considerations	. 35
Clearance Requirements	. 35
Modulating Hot Gas Reheat for Dehumidification	. 35
Ventilation Control	. 35
Ventilation Override Sequences	. 36
Relief Fan Options	. 36
Acoustic Considerations	. 37
Corrosive Atmospheres	. 38
Natural Gas Heating Considerations	. 38
High Entering Return Temperatures	. 39
Performance Data	. 40
Performance Adjustment Factors	. 40
Gross Cooling Capacities	. 42
Heating Capacities	. 69
Fan Performance	. 70
Barometric Relief Damper Performance	. 82
Component Static Pressure Drops	. 82

Table of Contents

Electrical Data	
Electrical Service Sizing	85
Dimensional Data	91
Optional Configurations	99
Roof Curb	
Electrical Entry Details	105
Access Clearances	
Mechanical Specifications	108
General	108
Cabinet	108
Heating	108
Airflow	
Relief Option	
Refrigeration System	113
Electrical	115
Symbio™ 800 Controller	
Accessories	
Trane Startup	118
Certified AHRI Performance.	

Features and Benefits

Figure 1. IntelliPak® with Symbio™ 800 Controller

Cabinet

Features	Benefits
Double-wall foam injected panels (doors, base and roof) with thermal resistance of R-9	Quality construction enables industry leading efficiency and reliability
Thermal break in all door, roof and base panels	Eliminates degradation of the exterior cabinet due to sweating
Air infiltration (leakage rate) of 0.5% at 1 inch wg. static pressure	Reduces wasteful heating and cooling loss through the cabinet airstream, and improves energy efficiency
Unit cabinet that can operate at a static pressure of + 6 in wg. on the fan outlet and -4 in wg. on the fan inlet	Supports a wider range of applications and internal components
Size optimized cabinet with up to a 30% reduction in unit length	Increases flexibility for new construction applications, reduced weight of unit
Pre-painted exterior galvanized steel panels durable enough to withstand a minimum of 672 consecutive hours of salt spray application in accordance with standard ASTM B117	Exterior paint holds up in corrosive environments
Pitched roof over air handler section	Prevents water leakage in cabinet, pooling water on top of cabinet, as well as paint wear
Single point fastening hinged access doors with a latching mechanism	Holds door open during service and prevents unsafe closure from wind
Factory rain and wind tested units	Ensures water and cabinet integrity
Units undergo ASTM D4169 level II factory shake tests and full shipping tests	Thoroughly tested structural integrity of cabinet helps ensure the unit arrives at the job site in top condition

Refrigeration

Figure 2. Refrigeration piping

Features	Benefits				
Industry leading energy efficiency for the Large Rooftop HVAC market	Energy savings for any application – all unit tonnages meet the Consortium for Energy Efficiency (CEE) Advanced tier for both EER 8 IEER and IECC path 2 for cooling				
eFlex™ variable speed compressors available in all tonnages	Capacity control delivers industry leading energy efficiency, as well as more precise leaving air temperature control (+/- 1°F)				
Electronic expansion valve	Enables more accurate superheat reading and control				
	Provides a more consistent superheat setting that improves energy efficiency and compressor reliability				
	Adds compressor protection and reliability				
Refrigeration pressure constantly monitored by a transducer	Monitors compressor operation in real time to ensure it is functioning within reliability limits				
	Improves reading of system state points for better unit control and protection, as compared to temperature sensors. Temperature sensors indirectly measure pressure and are slow to respond as the reading lags actual unit performance.				
	Allows the service technician to read system pressure on the user interface, rather than attaching gauges.				
	Provides loss of charge protection				

Features and Benefits

Features	Benefits
Variable speed condenser fan	 Enables unit to start down at temperatures to 0°F and operate down to -10°F to while improving head pressure control at any ambient condition Minimizes fan cycling and maximizes part load efficiency by closer control to minimum head pressure
Corrosion protected condenser coil that will	Optimizes coil protection in more corrosive
withstand ASTM B117 salt spray test for 6,000 hours and ASTM G85 A2 Cyclic Acified Salt Fog test for 2,400 hours	environments
Compressors located at the edge of the unit	Reduces service time if repairs are needed
Discharge and compressor isolation valves	
Double sloped evaporator coil drain pan (galvanized or stainless steel)	Prevents standing water, eliminating harmful bacterial growth

Airflow

Figure 3. View of relief fans

Figure 4. Supply fans

Features	Benefits
Direct drive and variable speed fan solution (Supply and Relief)	No belts or sheaves to maintain or to clog filters
	More efficient, higher static capability and improved acoustics relative to forward curve fans
	Ability to quickly adjust the speed and therefore airflow without having to purchase different belts or sheaves
Tailored fan selection to meet unit application	Assortment of fan diameter and width options enable unit to meet customer's requirements - acoustics, performance, efficiency or cost

Features and Benefits

Features	Benefits
Fan motor design speed set in the factory	Ease of installation. Beltless design eliminates the need to adjust sheaves on site
Single inlet supply fan with airfoil shaped blades	Independently verified fan performance
 Two Supply fans per unit Variable frequency drive for each supply fan Electromechanical bypass for supply fan variable frequency drive 	System redundancy and improved serviceability from lighter components
Designed to meet CFM and static ranges of altitudes up to 8,000 feet	Able to support applications at higher elevations
Economizer meets ASHRAE 90.1-2016 requirements for leakage and economizer reliability	Reduces energy usage in both economizing and normal operating modes
Damper leakage rate down to 4 CFM/sq. ft. with fault detection and diagnostics	Energy efficiency and code compliance (ASHRAE 90.1, California Title 24)
Trane Air Quality (Traq [™]) Outside Air Measurement System	Measurement accuracy does not exceed 10% at minimum airflow and decreases to less than 5% at higher airflow, meeting requirements of LEED IE Q Credit 1 as defined by ASHRAE 62.1-2007
Statitrac™ direct space building pressurization control	Highly accurate and efficient method of maintaining building pressure control
Ventilation override mode	Flexibility to temporarily override airflow management during non-standard situations
Pre-Evaporator and Final Filter rating up to MERV 14 with filter status available at the user interface	Superior indoor air quality that meets ASHRAE 170 Healthcare facility requirement
Outside air intake validation and testing includes rain with 40 mph wind	Reliable outside air intake solution
42" from bottom of base rail to lowest point of the outside air intake	Adherence to codes and regulations

Electrical

Figure 5. Control panel

Features	Benefits
Wired and tested at the factory	Run test report ships with every unit detailing tests completed in the factory
Intelligent control components and multiple control boxes in unit	Easier troubleshooting due to minimized wiring and localized connections
High and low voltage wiring is separated in the raceway	Reduces signal interference and potential for a false signal sent to the controls
Variable frequency drives communicate via Modbus	Real time information available as the drive is connected directly to the building automated system
Exterior USB connection for controller access	Ability to access controller without opening the control panel

Gas Heat

Figure 6. Gas heat configuration

Features	Benefits				
Tubular heat exchangers with induced draft burners tested under UL 795	Meets product safety regulations				
81% steady state efficiency	All gas heaters meet the 2023 Department of Energy efficiency code				
Flue to exhaust above the unit	Removes hot air away from the unit and prevents recirculation with the combustion intake				
 Staged, modulating and ultra modulating offer for each MBh Low, medium and high heat offering 	Assortment of option combinations provides the best solution for a variety of applications, along with the ability to achieve turndown up to 20:1				
Air rise capability up to 60°F	Range of capacity to meet discharge air temperature requirement				

Electric Heat

Figure 7. Electric heat configuration

Features	Benefits
Full faced element coil	Creates a more consistent heat profile
High grade element wireLow watt density heater coils	Allows for increased reliability
30 to 190 kW range	Provides best solution for the application
Air rise capability up to 50°F	Range of capacity meets discharge air temperature requirements
SCR (Modulating) Electric Heat Capability	Meets discharge air temperature requirements with greater precision

Model Number Description

Digit 1 — Unit Type

R = Packaged Rooftop

Digit 2 — Unit Function

A = DX Cooling, No Heat

E = DX Cooling, Electric Heat

F = DX Cooling, Natural Gas Heat

X = DX Cooling, No Heat, Extended Casing

Digit 3, 4, 5 - Nominal Capacity

020 = 20 Tons

025 = 25 Tons

030 = 30 Tons

040 = 40 Tons

050 = 50 Tons

055 = 55 Tons

060 = 60 Tons

070 = 70 Tons

075 = 75 Tons

Digit 6— Heat Type & Capacity

0 = None

1 = Natural Gas — 250 MBh

2 = Natural Gas — 350 MBh

3 = Natural Gas - 500 MBh

 $\mathbf{4} = \text{Natural Gas} - 850 \text{ MBh}$

 $\mathbf{5} = \text{Natural Gas} - 1200 \, \text{MBh}$

7 = External Heat

A = Electric — 30 kW

 $\mathbf{B} = \text{Electric} - 60 \text{ kW}$

C = Electric — 90 kW

 $\mathbf{D} = \text{Electric} - 120 \text{ kW}$

 $\mathbf{E} = \text{Electric} - 150 \, \text{kW}$

F = Electric — 190 kW

Digit 7 — Heat Performance

0 = None

1 = Gas — Staged, Aluminized Steel

 $\mathbf{2} = \mathsf{Gas} - \mathsf{Staged}$, Stainless Steel

3 = Gas — Modulating, Stainless Steel

4 = Gas — Ultra Modulating, Stainless Steel

A = Electric — Staged

 $\mathbf{B} = \text{Electric} - \text{SCR Modulating}$

Digit 8 — Unit Voltage

 $\mathbf{E} = 200/60/3$

 $\mathbf{F} = 230/60/3$

4 = 460/60/3

5 = 575/60/3 (WYE)

Digit 9 — Refrigeration System Performance

1 = Standard Efficiency & Capacity

2 = High Efficiency & Capacity

3 = eFlex[™] – Variable Speed Compressor w/ High Capacity

Digit 10, 11- Design Sequence

AA = Current Design Sequence

Digit 12 - Development Sequence

A = Development Sequence

Digit 13 - Airflow Direction

A = Downflow Supply & Upflow Return

Digit 14 — System Control

0 = Constant Volume (Zone Temperature)

1 = Constant Volume (Discharge Air Temperature)

2 = Single Zone VAV (Zone Temperature)

3 = Multi Zone VAV (Discharge Air

Temperature)

Digit 15 — Dual Supply Fan - Direct Drive

A = 16.5 inch, 80% width

B = 16.5 inch, 100% width

D = 18.2 inch, 100% width

E = 20.0 inch, 80% width

F = 20.0 inch, 100% width

G = 22.2 inch, 80% width

H = 22.2 inch, 100% width **J** = 24.5 inch, 80% width

K = 24.5 inch, 100% width

M = 27.0 inch, 100% width

Digit 16 — Dual Supply Fan Motor Type

1 = ODP w/ RPM greater than or equal to

2 = ODP w/ RPM less than 1600

Digit 17 — Dual Supply Fan Motor

A = 3 hp (1.5 hp per)

B= 6 hp (3 hp per)

C = 10 hp (5 hp per)

D = 15 hp (7.5 hp per)

E = 20 hp (10 hp per)

F = 30 hp (15 hp per)

G = 40 hp (20 hp per)

H = 50 hp (25 hp per)

Digit 18 - Relief Option

 $\mathbf{0} = \mathsf{Non}$

1 = Barometric Relief

2 = Relief Fan - Direct Drive & Variable Speed

Digit 19 - Relief Fan Motor

0 = None

2 = 6 hp

3 = 8 hp

4 = 12 hp

5 = 15 hp

6 = 16 hp **7** = 23 hp

Digit 20 — Space Pressure Management

0 = None

1 = Statitrac

Digit 21 — Variable Frequency Drive (VFD) Bypass

0 = None

A = Supply

Digit 22 — Future Use

0 = None

Digit 23 — Ventilation Override Mode

0 = None

1 = Yes

Digit 24 — Pre-Evaporator Coil Filter

A = 2" MERV 4 Panel

B = 2" MERV 8 Panel

C = 4" MERV 8 Panel

D = 4" MERV 14 Panel **E** = 2" MERV 8 Panel & MERV 14 Cartridge

F = Rack Only - 2" Panel

G = Rack Only - 4" Panel

H = Rack Only - 2" Panel & Cartridge

Digit 25 — Final Filter

0 = None

1 = 2" MERV 8 Panel & MERV 14 Cartridge

2 = Rack Only - 2" Panel & Cartridge

Digit 26 — Filter Monitoring

0 = None

A = Pre-Evaporator Filter

C = Pre-Evaporator & Final Filter

Model Number Description

Digit 27 — Outside Air

0 = None

1 = 0-25% Manual Damper

2 = 0-100% Economizer

3 = 0-100% Economizer w/Demand Ctrl Ventilation (DCV)

4 = 0-100% Economizer w/Traq & DCV

Digit 28 - Outside Air Control

0 = None

A = Economizer w/Dry Bulb

B = Economizer w/Reference Enthalpy

C = Economizer w/Comparative Enthalpy

Digit 29 — Damper w/ Fault Detection Diagnostics

0 = None

1 = Low Leak

2 = Ultra Low Leak

Digit 30-35 — Future Use

0 = None

Digit 36 — Hinged Access Doors

A = Single Side

Digit 37-38 — Future Use

0 = None

Digit 39 — Ambient Control

0 = Standard

1 = Low Ambient w/Variable Speed

Condenser Fan

Digit 40 — Condenser Coil Coating

A = None

B = Corrosion Protected

Digit 41 — Modulating Hot Gas Reheat & Hot Gas Bypass

0 = None

1 = Hot Gas Reheat

3 = Hot Gas Bypass

4 = Hot Gas Reheat & Hot Gas Bypass

Digit 42 — Service Valves

A = Discharge

B = Compressor Isolation (Suction &

Discharge)

Digit 43 — Evaporator Coil Drain Pan

1 = Galvanized Steel

2 = Stainless Steel

3 = Galvanized Steel w/Condensate Overflow Switch

4 = Stainless Steel w/Condensate Overflow Switch

Digit 44 — Power Supply

1 = Single Point

Digit 45 — Unit Mounted Power Connection

A = Terminal Block

B = Non-Fused Disconnect

C = Non-Fused Disconnect w/Powered

Convenience Outlet

Digit 46 — Communication Protocol

0 = None

 $\mathbf{1} = \mathsf{BACNet} \ \mathbb{R}$

2 = Air-Fi™ Wireless

3 = LonTalk®

 $\mathbf{4} = \mathsf{Modbus}$

Digit 47 — Power Monitor

0 = None

1 = Yes

Digit 48 — Controls Expansion Hardware

0 = None

A = Expansion Module

Digit 49 — Rapid Restart

0 = None

1 = Yes

Digit 50-57 — Future Use

0 = None

Digit 58 — Agency Approval

1 = cULus Certification

Digit 59-60 — Future Use

0 = None

General Data

Table 1. General data -20 to 50 ton

	20	25	30	40	50
Compressor Data-Standard Capacity					
Number/Size (Nominal)	1/5, 2/7.5	1/6, 2/9	1/6, 2/10	4/9	2/10.5, 2/11.5
Model	Scroll	Scroll	Scroll	Scroll	Scroll
Unit Capacity Steps (%)	100/75/38/25	100/63/25	100/62/24	100/75/50/25	100/73/50/23
No. of Circuits	1	1	1	2	2
Compressor Data-High Capacity/High	-				
Efficiency	1/10 5 1/11 5	14454425	1405445	4.10	24052445
Number/Size (Nominal)	1/10.5, 1/11.5	1/11.5, 1/13.5	1/13.5, 1/15	4/9	2/10.5, 2/11.5
Model	Scroll	Scroll	Scroll	Scroll	Scroll
Unit Capacity Steps (%)	100/53/47	100/53/47	100/53/47	100/75/50/25	100/73/50/23
No. of Circuits	1	1	1	2	2
Compressor Data-eFlex™ Variable Speed	1/2 12 1/0	1/2 12/10 1/10 5	1/4 17 1/6 1/12 5	1/4 17 1/6 2/6	146 25 46 244 5
Number/Size (Nominal)	1/3-13 VS, 1/9		1/4-17 VS, 1/13.5	1/4-17 VS, 2/9	1/6-25 VS, 2/11.5
Model	Scroll	Scroll	Scroll	Scroll	Scroll
Unit Capacity Steps (%)	15-100	15-100	15-100	15-100	15-100
No. of Circuits Air-Cooled Condenser Coil-Standard	1	1	1	2	2
Capacity					
Face area (ft²)	58	58	58	116	116
Rows/Fin Series	1/252	1/252	1/252	1/252	1/252
Туре	Microchannel	Microchannel	Microchannel	Microchannel	Microchannel
Air-Cooled Condenser Coil-High Capacity/High Efficiency					
Face area (ft²)	58	58	58	116	116
Rows/Fin Series	1/252	1/252	2/252	1/252	2/252
Туре	Microchannel	Microchannel	Microchannel	Microchannel	Microchannel
Air-Cooled Condenser Coil-eFlex™ Variable Speed					
Face area (ft²)	58	58	58	116	116
Rows/Fin Series	1/252	2/252	2/252	1/252	2/252
Туре	Microchannel	Microchannel	Microchannel	Microchannel	Microchannel
Air-Cooled Condenser Fans					
Number/Size/Type	2/30"/Prop	2/30"/Prop	2/30"/Prop	4/30"/Prop	4/30"/Prop
Hp (each)	1.5	1.5	1.5	1.5	1.5
Evaporator Coil-Standard Capacity					
Face area (ft²)	30.2	30.2	30.2	35.7	35.7
Rows/Fin Series	3/168	2/168	4/168	3/168	4/168
Tube Diameter/Surface	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced
Evaporator Coil-High Capacity/High Efficiency					
Face area (ft²)	30.2	30.2	30.2	35.7	35.7
Rows/Fin Series	4/168	4/168	5/168	5/168	6/168
T. b Di					
Tube Diameter/Surface	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced
Tube Diameter/Surface Evaporator Coil-eFlex™ Variable Speed	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced
	1/2"/Enhanced 30.2	1/2"/Enhanced 30.2	1/2"/Enhanced 30.2	1/2"/Enhanced 35.7	1/2"/Enhanced 35.7
Evaporator Coil-eFlex™ Variable Speed					
Evaporator Coil-eFlex™ Variable Speed Face area (ft²) Rows/Fin Series Tube Diameter/Surface	30.2	30.2	30.2	35.7	35.7
Evaporator Coil-eFlex™ Variable Speed Face area (ft²) Rows/Fin Series	30.2 4/168 1/2"/Enhanced	30.2 5/168 1/2"/Enhanced	30.2 5/168 1/2"/Enhanced	35.7 6/168 1/2"/Enhanced	35.7 5/168 1/2"/Enhanced
Evaporator Coil-eFlex™ Variable Speed Face area (ft²) Rows/Fin Series Tube Diameter/Surface Supply Fans - eDrive™ Direct Drive	30.2 4/168 1/2"/Enhanced	30.2 5/168 1/2"/Enhanced	30.2 5/168 1/2"/Enhanced	35.7 6/168 1/2"/Enhanced	35.7 5/168 1/2"/Enhanced
Evaporator Coil-eFlex™ Variable Speed Face area (ft²) Rows/Fin Series Tube Diameter/Surface Supply Fans - eDrive™ Direct Drive Plenum (DDP)	30.2 4/168 1/2"/Enhanced	30.2 5/168 1/2"/Enhanced	30.2 5/168 1/2"/Enhanced	35.7 6/168 1/2"/Enhanced	35.7 5/168 1/2"/Enhanced

General Data

Table 1. General data — 20 to 50 ton (continued)

	20	25	30	40	50
Compressor Data-Standard Capacity					
CFM Range	4,000 - 9,000	5,000 - 11,250	6,000 - 14,000	8,000 - 18,000	10,000 - 22,500
Relief Fans - eDrive™ Motorized Impeller	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Number/Size	1/23"	1/23", 1/25.5"	1/25.5", 2/23"	1/25.5", 2/23"	2/23", 2/25.5"
Number of Motors	1	1	1 or 2	1 or 2	2
hp Range	6 or 8	6 or 8	8 or 12	8 or 15	12 or 16
CFM Range	2,000-8,000	2,000-10,000	3,000-13,500	4,000-18,000	5,000-21,500
Pre-Evap Filters	_,	_,		.,	
2" MERV 4 Panel					
2 Pierra and	4 - 16x20x2	4 - 16x20x2	4 - 16x20x2	3 - 20x20x2	3 - 20x20x2
Number/Size	6 - 20x20x2	6 - 20x20x2	6 - 20x20x2	7 - 20x24x2	7 - 20x24x2
Face area (ft²)	2 - 20x24x2 32.2	2 - 20x24x2 32.2	2 - 20x24x2 32.2	2 - 24x24x2 39.7	2 - 24x24x2 39.7
2" MERV 8 Panel	32.2	32.2	32.2	33.7	33.7
2 PILKY O Fallel	4 - 16x20x2	4 - 16x20x2	4 - 16x20x2	3 - 20x20x2	3 - 20x20x2
Number/Size	6 - 20x20x2	6 - 20x20x2	6 - 20x20x2	7 - 20x24x2	7 - 20x24x2
Face area (ft²)	2 - 20x24x2 32.2	2 - 20x24x2 32.2	2 - 20x24x2 32.2	2 - 24x24x2 39.7	2 - 24x24x2 39.7
4" MERV 8 Panel	32.2	32.2	32.2	39.7	39.7
T ITERY O FAILEI	4 - 16x20x4	4 - 16x20x4	4 - 16x20x4	3 - 20x20x4	3 - 20x20x4
Number/Size	6 - 20x20x4	6 - 20x20x4	6 - 20x20x4	7 - 20x24x4	7 - 20x24x4
Face area (ft²)	2 - 20x24x4	2 - 20x24x4	2 - 20x24x4 32.2	2 - 24x24x4 39.7	2 - 24x24x4 39.7
` '	32.2	32.2	32.2	39.7	39.7
4" MERV 14 Panel	4 - 16x20x4	4 - 16x20x4	I 4 - 16x20x4	3 - 20x20x4	1 3 - 20x20x4
Number/Size	6 - 20x20x4	6 - 20x20x4	6 - 20x20x4	7 - 20x24x4	7 - 20x24x4
Face area (#2)	2 - 20x24x4	2 - 20x24x4	2 - 20x24x4	2 - 24x24x4	2 - 24x24x4
Face area (ft²)	32.2	32.2	32.2	39.7	39.7
2" MERV 8 Panel & MERV 14 Cartridge	4 - 16x20x12	4 - 16x20x12	4 - 16x20x12	2 - 20x20x12	2 - 20x20x12
Cartridge - Number/Size	4 - 20x20x12	4 - 20x20x12	4 - 20x20x12	6 - 20x24x12	6 - 20x24x12
Face 2::00 (6:2)	4 - 20x24x12	4 - 20x24x12	4 - 20x24x12	4 - 24x24x12	4 - 24x24x12
Face area (ft²)	33.3 4 - 16x20x2	33.3 4 - 16x20x2	33.3 4 - 16x20x2	41.6 2 - 20x20x2	41.6 2 - 20x20x2
Panel - Number/Size	4 - 20x20x2	4 - 20x20x2	4 - 20x20x2	6 - 20x24x2	6 - 20x24x2
F (6.2)	4 - 20x24x2	4 - 20x24x2	4 - 20x24x2	4 - 24x24x2	4 - 24x24x2
Face area (ft²)	33.3	33.3	33.3	41.6	41.6
Final Filters					
2" MERV 8 Panel & MERV 14 Cartridge	4 - 16x20x12	4 - 16x20x12	4 - 16x20x12	4 - 20x20x12	4 - 20x20x12
Cartridge - Number/Size	4 - 10x20x12 4 - 20x20x12	4 - 10x20x12 4 - 20x20x12	4 - 10x20x12 4 - 20x20x12	6 - 20x20x12	6 - 20x24x12
(6.2)	4 - 20x24x12	4 - 20x24x12	4 - 20x24x12	2 - 24x24x12	2 - 24x24x12
Face area (ft²)	33.3 4 - 16x20x2	33.3 4 - 16x20x2	33.3 4 - 16x20x2	39.1 4 - 20x20x2	39.1 4 - 20x20x2
Panel - Number/Size	4 - 10x20x2 4 - 20x20x2	4 - 10x20x2 4 - 20x20x2	4 - 10x20x2 4 - 20x20x2	4 - 20x20x2 6 - 20x24x2	6 - 20x20x2
F (6:2)	4 - 20x24x2	4 - 20x24x2	4 - 20x24x2	2 - 24x24x2	2 - 24x24x2
Face area (ft²) Standard Unit Minimum Outside Air	33.3	33.3	33.3	39.1	39.1
Temperature for Mechanical Cooling					
Economizer - A/C Applications (fixed speed/	45°F/45°F	45°F/50°F	45°F/50°F	45°F/50°F	45°F/50°F
eFlex TM) No Economizer - 80/67°F design return air (fixed speed/eFlex TM)	45°F/45°F	45°F/55°F	45°F/55°F	45°F/55°F	45°F/55°F
No Economizer - 90/78°F design return air (fixed speed/eFlex TM)	55°F/55°F	55°F/70°F	55°F/70°F	55°F/70°F	55°F/70°F
Low Ambient Unit Minimum Outside Air Temperature for Mechanical Cooling					
Without Hot Gas Bypass	0°F	0°F	0°F	0°F	0°F
With Hot Gas Bypass	10°F	10°F	10°F	10°F	10°F

Table 2. General data — 55 to 75 ton

	FF	60	70	75
Compressor Data-Standard Capacity	55	60	70	75
	4/11 5	2/12 5 2/15	4/15	4/15
Number/Size (Nominal)	4/11.5	2/13.5, 2/15	4/15	4/15
Model Unit Capacity Steps (%)	Scroll 100/75/50/25	Scroll 100/73/50/23	Scroll 100/75/50/25	Scroll 100/75/50/25
		2	100/75/50/25	
No. of Circuits Compressor Data-High Capacity/High	2		Z	2
Efficiency				
Number/Size (Nominal)	2/10.5, 2/11.5	4/13.5	2/13.5, 2/15	4/15
Model	Scroll	Scroll	Scroll	Scroll
Unit Capacity Steps (%)	100/73/50/23	100/75/50/25	100/73/50/23	100/75/50/25
No. of Circuits	2	2	2	2
Compressor Data-eFlex™ Variable Speed				
Number/Size (Nominal)	1/6-25 VS, 2/11.5	1/6-25 VS, 2/15	1/6-25 VS, 2/15	1/6-25 VS, 1/15.5, 2/13.5
Model	Scroll	Scroll	Scroll	Scroll
Unit Capacity Steps (%)	15-100	15-100	15-100	15-100
No. of Circuits	2	2	2	2
Air-Cooled Condenser Coil-Standard				
Capacity Face area (ft²)	116	136	136	136
Rows/Fin Series	1/252	1/252	1/252	1/252
Type	Microchannel	Microchannel	Microchannel	Microchannel
Air-Cooled Condenser Coil-High	Priciochamilei	Priciochamilei	Pricrochamile	Pilciochanner
Capacity/High Efficiency				T
Face area (ft²)	116	136	136	136
Rows/Fin Series	2/252	1/252	2/252	2/252
Type Air-Cooled Condenser Coil-eFlex™	Microchannel	Microchannel	Microchannel	Microchannel
Variable Speed				
Face area (ft²)	116	136	136	136
Rows/Fin Series	2/252	1/252	2/252	2/252
Туре	Microchannel	Microchannel	Microchannel	Microchannel
Air-Cooled Condenser Fans				
Number/Size/Type	4/30"/Prop	6/26"/Prop	6/26"/Prop	6/26"/Prop
Hp (each)	1.5	1	1	1
Evaporator Coil-Standard Capacity				
Face area (ft²)	35.7	46.3	46.3	46.3
Rows/Fin Series	5/168	3/168	5/168	6/168
Tube Diameter/Surface	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced
Evaporator Coil-High Capacity/High Efficiency				
Face area (ft ²)	35.7	46.3	46.3	46.3
Rows/Fin Series	6/168	6/168	6/168	6/168
Tube Diameter/Surface	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced
Evaporator Coil-eFlex™ Variable Speed				
Face area (ft²)	35.7	46.3	46.3	46.3
Rows/Fin Series	5/168	6/168	6/168	6/168
Tube Diameter/Surface	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced	1/2"/Enhanced
Supply Fans - eDrive™ Direct Drive Plenum (DDP)				
Number/Size Options	2- 18.2", 20.0", 24.5"	2- 22.2", 27.0"	2- 22.2", 27.0"	2- 22.2", 27.0"
Number of Motors / VFDs	2	2	2	2
Hp Range	6, 10, 15, 20, 30, 40	6, 10, 15, 20, 30, 40, 50	6, 10, 15, 20, 30, 40, 50	6, 10, 15, 20, 30, 40, 50
CFM Range	11,000 - 24,750	12,000 - 27,000	14,000 - 30,000	15,000 - 30,000
Relief Fans - eDrive™ Motorized Impeller				
Number/Size	2/23", 2/25.5"	2/25.5", 3/23"	2/25.5", 3/23"	2/25.5", 3/23"

General Data

Table 2. General data -55 to 75 ton (continued)

	55	60	70	75
Compressor Data-Standard Capacity				
Number of Motors	2	2 or 3	2 or 3	2 or 3
hp Range	12 or 16	16 or 23	16 or 23	16 or 23
CFM Range	5,000-21,500	6,000-28,000	6,000-28,000	6,000-28,000
Pre-Evap Filters	, ,	, ,	, ,	, ,
2" MERV 4 Panel				
Number/Size	3 - 20x20x2 7 - 20x24x2 2 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2
Face area (ft²)	39.7	52.9	52.9	52.9
2" MERV 8 Panel		J.	L	I.
Number/Size	3 - 20x20x2 7 - 20x24x2 2 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2
Face area (ft²)	39.7	52.9	52.9	52.9
4" MERV 8 Panel				
Number/Size	3 - 20x20x4 7 - 20x24x4 2 - 24x24x4	2 - 20x20x4 7 - 20x24x4 6 - 24x24x4	2 - 20x20x4 7 - 20x24x4 6 - 24x24x4	2 - 20x20x4 7 - 20x24x4 6 - 24x24x4
Face area (ft²)	39.7	52.9	52.9	52.9
4" MERV 14 Panel Number/Size	3 - 20x20x4 7 - 20x24x4 2 - 24x24x4	2 - 20x20x4 7 - 20x24x4 6 - 24x24x4	2 - 20x20x4 7 - 20x24x4 6 - 24x24x4	2 - 20x20x4 7 - 20x24x4 6 - 24x24x4
Face area (ft²)	39.7	52.9	52.9	52.9
2" MERV 8 Panel & MERV 14 Cartridge				
Cartridge - Number/Size	2 - 20x20x12 6 - 20x24x12 4 - 24x24x12	2 - 20x20x12 7 - 20x24x12 6 - 24x24x12	2 - 20x20x12 7 - 20x24x12 6 - 24x24x12	2 - 20x20x12 7 - 20x24x12 6 - 24x24x12
Face area (ft²)	41.6	52.9	52.9	52.9
Panel - Number/Size	2 - 20x20x2 6 - 20x24x2 4 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2	2 - 20x20x2 7 - 20x24x2 6 - 24x24x2
Face area (ft²)	41.6	52.9	52.9	52.9
Final Filters				
2" MERV 8 Panel & MERV 14 Cartridge				
Cartridge - Number/Size	4 - 20x20x12 6 - 20x24x12 2 - 24x24x12	4 - 20x20x12 8 - 20x24x12 3 - 24x24x12	4 - 20x20x12 8 - 20x24x12 3 - 24x24x12	4 - 20x20x12 8 - 20x24x12 3 - 24x24x12
Face area (ft²)	39.1	49.8	49.8	49.8
Panel - Number/Size	4 - 20x20x2 6 - 20x24x2 2 - 24x24x2	4 - 20x20x2 8 - 20x24x2 3 - 24x24x2	4 - 20x20x2 8 - 20x24x2 3 - 24x24x2	4 - 20x20x2 8 - 20x24x2 3 - 24x24x2
Face area (ft²)	39.1	49.8	49.8	49.8
Standard Unit Minimum Outside Air Temperature for Mechanical Cooling Economizer - A/C Applications (fixed speed/		T .===.	T .=	I
eFlex TM)	45°F/50°F	45°F/45°F	45°F/45°F	45°F/45°F
No Economizer - 80/67°F design return air (fixed speed/eFlex TM) No Economizer - 90/78°F design return air	45°F/55°F	45°F/45°F	45°F/45°F	45°F/45°F
(fixed speed/eFlex TM)	55°F/70°F	55°F/55°F	55°F/55°F	55°F/55°F
Low Ambient Unit Minimum Outside Air Temperature for Mechanical Cooling				
Without Hot Gas Bypass	0°F	0°F	0°F	0°F
With Hot Gas Bypass	10°F	10°F	10°F	10°F

Table 3. Electric heating — general data

Electric Heat	20 - 30 Tons		40 - 55 Tons				60 - 75 Tons			
kW Range	30	60	90	60	90	120	150	90	120	190
Capacity Steps	2	4	3	4	3	4	4	3	4	5

Table 4. Natural gas heating — general data

Natural Gas Heat	2	20 - 30 Tons			40 - 55 Tons			60 - 75 Tons		
	Low	Med	High	Low	Med	High	Low	Med	High	
MBh Input	250	350	500	350	500	850	500	850	1200	
Efficiency (%)	81	81	81	81	81	81	81	81	81	
Standard:	Standard:									
Capacity Steps	2	2	2	2	2	4	2	4	4	
Modulating:										
Standard Turndown	5:1	5:1	10:1	5:1	10:1	10:1	10:1	10:1	11:1	
Ultra Turndown	9:1	11:1	16:1	11:1	16:1	20:1	16:1	20:1	21:1	
Gas Connection Pipe Size (in.)	1	1	1	1	1	1-1/4	1	1-1/4	1-1/2	

Table 5. EER/IEER ratings

	Refrigeration									
Tons	System		EER	ı		CV IEER	l	,	VAV IEEF	2
	Performance	460V_ CO	460V_ EH	460V_ GH	460V_ CO	460V_ EH	460V_ GH	460V_ CO	460V_ EH	460V_ GH
	Std	10.8	10.8	10.7	11.7	11.7	11.5	13.7	13.7	13.5
20	High Eff	11.4	11.4	11.3	15.0	14.9	14.8	15.0	15.0	15.0
20	Variable_Stage	11.4	11.4	11.3				16.5	16.5	16.4
	Variable_LA	11.4	11.4	11.3				17.2	17.2	17.2
	Std	10.3	10.2	10.1	11.7	11.7	11.5	13.9	13.9	13.7
25	High Eff	11.2	11.2	11.1	14.7	14.6	14.3	15.5	15.4	15.3
23	Variable_Stage	11.3	11.3	11.2				17.1	17.0	17.0
	Variable_LA	11.3	11.3	11.2				18.0	17.9	17.8
	Std	10.7	10.7	10.5	11.7	11.7	11.5	13.9	13.9	13.7
30	High Eff	11.1	11.1	10.9	14.4	14.2	13.9	15.8	15.8	15.6
30	Variable_Stage	11.1	11.0	10.9				17.3	17.2	17.1
	Variable_LA	11.1	11.0	10.9				18.1	18.0	17.9
	Std	10.3	10.2	10.0	11.7	11.7	11.5	14.4	14.4	14.2
40	High Eff	11.2	11.1	10.9	13.7	13.4	13.0	15.3	15.2	15.1
40	Variable_Stage	11.1	11.0	10.8				15.9	15.8	15.7
	Variable_LA	11.1	11.0	10.8				15.8	15.7	15.6
	Std	10.3	10.1	9.9	11.7	11.7	11.5	14.4	14.4	14.2
50	High Eff	11.2	11.1	10.9	13.6	13.2	12.7	15.2	15.1	14.9
30	Variable_Stage	11.2	11.0	10.7				16.8	16.7	16.5
	Variable_LA	11.1	11.0	10.7				16.9	16.8	16.6
	Std	10.3	10.1	9.9	11.7	11.7	11.5	14.1	14.1	13.9
55	High Eff	11.1	11.0	10.8	13.9	13.6	13.1	15.0	14.9	14.8
33	Variable_Stage	11.1	10.9	10.7				16.7	16.5	16.4
	Variable_LA	11.1	10.9	10.7				16.8	16.6	16.5
	Std	10.4	10.2	9.9	11.7	11.7	11.5	14.9	14.9	14.7
	High Eff	11.3	11.1	10.8	13.3	12.8	12.1	16.2	16.0	15.7
60	Variable_Stage	11.1	10.9	10.7				16.6	16.5	16.3
	Variable_LA	11.1	10.9	10.7				16.9	16.8	16.5
	Std	10.3	10.0	9.6	11.3	11.3	11.1	15.1	15.1	14.9
70	High Eff	11.6	11.3	10.7	14.1	13.2	12.0	17.0	16.7	16.1
	Variable_Stage	11.5	11.2	10.7				17.0	16.7	16.2
	Variable_LA	11.5	11.2	10.6				18.1	17.8	17.3

General Data

Table 5. EER/IEER ratings (continued)

Tons	Refrigeration System		EER			CV IEER		,	VAV IEER	
TOIIS	Performance	460V_ CO	460V_ EH	460V_ GH	460V_ CO	460V_ EH	460V_ GH	460V_ CO	460V_ EH	460V_ GH
	Std	10.4	10.1	9.6	11.3	11.3	11.1	14.7	14.7	14.5
75	High Eff	11.5	11.3	10.8	14.6	13.8	12.7	16.8	16.5	16.1
/ 3	Variable_Stage	11.5	11.3	10.9				17.9	17.7	16.7
	Variable_LA	11.5	11.3	10.9				17.8	17.6	17.3

Notes:

- L. CO = Cooling Only, EH = Electric Heat, GH = Gas Heat
- 2. Cooling performance is rated at 95°F ambient, 80°F entering dry bulb, 67°F entering wet bulb. Gross capacity does not include the effect of fan motor heat. AHRI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to +/- 20% of nominal CFM. Units are certified in accordance with the Unitary Air Conditioner Equipment certification program, which is based on AHRI Standard 340/360.
- 3. EER and/or IEER are rated at AHRI conditions and in accordance with DOE test procedures.
- **4.** For simplified verifiation of your specific unit EER/IEER, and capacity at operating conditions, it is strongly recommended that a TOPSS™ (Trane product selection program) report is run.
- 5. "Variable_Stage" means variable speed combined with standard ambient condenser fan control option. "Variable_LA" means variable speed combined with low ambient condenser fan control.

Table 6. Economizer outdoor air damper leakage (at rated airflow, cfm/sq ft)

ΔP Across Dampers (in. wc)	1.0
Low Leak	10
Ultra Low Leak	4

Notes:

- 1. Above data for Standard and Low Leak based on tests completed in accordance with AMCA Standard 500-D $\,$
- 2. All dampers meet California Title 24 requirements.

Symbio™ 800 Controls

Overview

The Symbio™ 800 controller is a factory-installed, application specific and programmable controller designed to control chillers and large packaged HVAC equipment. A 7" user interface features a touch-sensitive color screen that provides facility managers at-a-glance operating status, performance monitoring, scheduling changes, and operating adjustments. Other advanced features include automated controller back-up, and optional features such as secure remote connectivity, wireless building communications, mobile device connectivity, and custom programming with expandable I/O.

Symbio™ 800) Advantages	Benefits			
Connected	Convenient, on-the-go access to advanced monitoring, troubleshooting, and energy management	Minimum first cost Maximum comfort			
Flexible	Minimized installation hardware and labor costs – able to use existing devices for maximum convenience, lower controls upgrades and relocation	Minimized downtime Minimum operating costs			
Reliable	Maximum equipment uptime and life, minimized maintenance and troubleshooting cost	Superior building and occupant productivity			

Features and Benefits

Symbio™ 800 Feature	Benefits
Multiple, open standard protocol support • Air-Fi™ Wireless (BACnet/AirFi®, optional) • BACnet MS/TP • BACnet/IP • LON (Optional) • Modbus	Simplified, lower cost, and more flexible integration with all common open standard protocols using Trane or competitive BAS systems and controllers
Remote connection to building or equipment	Trane Connect™ provides an easy, secure option to connect remotely to a Tracer SC+ or directly to your Trane equipment
Common integration strategies and equipment specific points lists	Simplified, lower cost, and uncompromised integration
Application specific and configurable	Reduced project costs with superior reliability, comfort, performance - applications specific and configurable system ensures machine continues to run within operating envelope. Ability to upgrade firmware with a simple file transfer.
Smart Analytics	Smart analytics provide superior reliability through the life of the equipment with minimum downtime
Data logging	Standard, local or remote Intuitive review and analysis of equipment, zone, and building performance
Local scheduling	Capable of operating in stand-alone operation without a building automation system as a temporary back-up schedule for ongoing comfort and energy savings
Rugged, 7-inch color touch screen user interface	Easy, touch navigation for viewing data and making operational changes
Display preferences	Choose how to view dates, times, units (SI, IP), screen brightness, data format, and backlight timeout. 3 built-in languages are supported and selectable for all TD7 screens.
Intuitive navigation	Helps operators access data and alarms for quick and accurate response and resolution
At-a-glance status	Easily readable color display showing key operating parameters of major equipment components
Reports	Quickly summarizes data for clear understanding and interpretation to enable local monitoring of expected performance and operating efficiency

Symbio™ 800 Controls

Symbio™ 800 Feature	Benefits
Graphs	Easily visualize trend data for local troubleshooting and fine-tuning
Multiple language support	Suitable for operation in multiple geographies
Adaptive Control™ Algorithms	Pre-empts potential equipment disruptions during rapidly changing conditions – providing consistent equipment performance and building comfort
SD card backup/restore	Faster, lower cost repairs with reduced downtime
Modbus device support	Capable of integrating optional Modbus devices for local or remote diagnostics — provides faster, lower cost troubleshooting and increased equipment performance

Options

Symbio™ 800 Feature	Benefits
Remote connection to building or equipment	Trane Connect™ provides an easy, secure option to connect remotely to a Tracer SC+ or directly to your Trane equipment
Programmable	Equipment application flexibility and cost-reduced control of nearby equipment
Expandable I/O	Field or factory installed I/O for programmable feature - Reduced installation costs and increased installation flexibility
User security with audit trail support	Flexible and secure access for multiple users allows monitoring, overriding/releasing points, release of all overrides, custom report editing, and tracking changes by user
Wi-Fi Adapter	Enables the operation of wireless service tools for increased technician productivity and flexibility
LonTalk	
Air-Fi™ Wireless (BACnet, optional)	

Supply Air Pressure Control

Variable Frequency Drive (VFD) Control

Variable frequency drives are used for supply fan speed control. A pressure transducer measures duct static pressure, and the VFD is modulated to maintain the supply air static pressure within an adjustable user-defined range. The range is determined by the supply air pressure setpoint and supply air pressure deadband, which are set through the User Interface or BAS/Network.

The variable frequency drives provide supply fan motor speed modulation. The drive will accelerate or decelerate as required to maintain the supply static pressure setpoint.

Supply Air Static Pressure Limit

The opening of VAV terminals, and the amount of supply air provided by the variable frequency drive are coordinated during start up and transition to/from Occupied/Unoccupied modes to prevent over pressurization of the supply air ductwork. However, if for any reason the supply air pressure exceeds the user-defined supply air static pressure limit that was set at the User Interface, the supply fan and VFD are shut down. The unit is then allowed to restart three times. If the over pressurization condition occurs on the third restart, the unit is shut down and a manual reset diagnostic is set and displayed at the User Interface and BAS/Network.

Supply Air Temperature Controls

Cooling/Economizer

During Occupied cooling mode of operation, the economizer (if available) and mechanical cooling are used to control the supply air temperature. The supply air temperature setpoint and deadband are user-defined at the User Interface. The supply air temperature setpoint may be user-defined from the BAS/Network. If the conditions of the outside air are appropriate to use "free cooling," the economizer will be used first in an attempt to satisfy the supply air setpoint;

then, if required, the mechanical cooling will be staged on to maintain supply air temperature setpoint. Minimum On/Off timing of the mechanical cooling prevents rapid cycling.

On units with economizer, a call for cooling will modulate the outside air dampers open. The rate of economizer modulation is based on deviation of the supply air temperature from setpoint, i.e., the further away from setpoint, the faster the outside air damper will open. First stage of cooling will be allowed to start after the economizer reaches full open.

The economizer is only allowed to function freely if one of the following conditions is met:

- For dry bulb economizer control the ambient temperature must be below the dry bulb temperature control setting.
- For reference enthalpy economizer control, outdoor air enthalpy must be below the enthalpy control setting. At outdoor air conditions above the enthalpy control setting, mechanical cooling only is used and the outside air dampers remain at minimum position.
- For comparative enthalpy economizer control, outdoor air enthalpy must be below the enthalpy of the return air.

If the unit does not include an economizer, mechanical cooling only is used to satisfy cooling requirements. The outdoor air dampers may be set for a maximum of 25% outdoor air, through a manually operated damper.

Heating

Modulating Gas

Modulating the gas heat output provides an improved discharge air temperature control, giving customers improved zone control. Modulating gas heat consists of a modulating bank of heat, and up to three additional fixed stages of heat – providing continuous modulation across the heaters range of output. Status and diagnostic messages are communicated to the Symbio[™] 800 and presented to users on the user interface.

Electric Heating

The individual stages of electric heat will be sequenced on the zone demand. The number of available stages will depend on the unit voltage and heat capacity selected.

For units with SCR electric heat, the first stage is modulating. The modulating stage and the necessary additional stages are sequenced to precisely meet the zone demand.

Discharge Air Setpoint Reset

Figure 8. Supply air temperature reset

Discharge air setpoint reset can be used to adjust the discharge air temperature setpoint on the basis of a zone temperature or on outdoor air temperature. Discharge air setpoint reset adjustment is available from the User Interface for supply air heating and supply air cooling control.

Outdoor air cooling reset

Outdoor air cooling reset is sometimes used in applications where the outdoor temperature has a large effect on building load. When the outside air temperature is low and the building cooling load is low, the discharge air setpoint can be raised, thereby preventing sub-cooling of critical zones. This reset can lower usage of mechanical cooling, thus savings in compressor kW, but an increase in supply fan kW may occur.

Outdoor air heating reset

Outdoor air heating reset is the inverse of cooling, with the same principles applied. For both outdoor air cooling reset and heating reset, there are three user-defined parameters that are adjustable through the User Interface:

- · Beginning reset temperature
- Ending reset temperature
- · Amount of temperature reset

Zone reset

Zone reset is applied to the zone(s) in a building that tend to be overly cool or overly hot. The supply air temperature setpoint is adjusted based on the temperature of the critical zone(s). This can have the effect of improving comfort and/or lowering energy usage. The user-defined parameters are the same as for outdoor air reset.

Supply Air Tempering

A feature that is used with modulating gas option. Supply air tempering is enabled when the supply air temperature falls below the supply air temperature deadband low end. The heat valve is then modulated open to maintain the set minimum supply air temperature.

Zone Temperature Control

Unoccupied Zone Heating and Cooling

During Unoccupied mode, the unit is operated as a CV unit. Supply fan VFDs operate at 100% and VAV boxes are driven full open. The unit controls zone temperature within the Unoccupied zone cooling and heating (heating units only) setpoints.

Daytime Warm-up

This feature is available on all types of heating units. During Occupied mode, if the zone temperature falls to a preset, user-defined zone low limit temperature setpoint, the unit is put into Unoccupied mode and Daytime Warm-up is initiated. The system changes over to CV heating (full unit airflow), the VAV boxes are fully opened and full heating capacity is provided until the Daytime Warm-up setpoint is reached. The unit is then returned to normal Occupied mode.

Outside Air Measurement

Trane air quality (Traq[™]) outside air measurement system utilizes velocity pressure sensing rings. Based on unit design CFM, the Symbio[™] 800 monitors and controls the quantity of outside air entering the unit. The outside airflow can be calibrated to compensate for altitude.

An optional $\rm CO_2$ sensor may be connected to control outside air based on $\rm CO_2$ Demand Control Ventilation (DCV).

Unit Feedback – Supply and Relief Fan Speed Setpoints

Controls VAV Unit Feedback Setpoints BACnet® network points are available to allow for communication of the Supply and Relief Fan Speed Setpoints to the BAS. These points are only available for multi-zone VAV units. These setpoints will be overridden by equipment protection functionality, when applicable.

Outside Air Flow Compensation

As the supply fan modulates, this function proportionally adjusts the economizer minimum position to compensate for the change in total airflow, in order to maintain a constant percent of

outside air. The modified economizer minimum position is computed as a linear function, based on VFD position, given the two endpoints:

- Minimum Position with VFD @ 0%
- Minimum Position with VFD @ 100%

Both are user adjustable at the User Interface.

Single Zone Variable Air Volume (SZVAV) Only

The IntelliPak® controls platform will support Single Zone VAV as an optional unit control type in order to meet ASHRAE 90.1. The basic control will be a hybrid VAV/CV configured unit that provides discharge temperature control to a varying discharge air temperature target setpoint based on the space temperature and/or humidity conditions. Concurrently, the unit will control and optimize the supply fan speed to maintain the zone temperature to a zone temperature setpoint.

VFD Control

The VFD will modulate the supply fan motor speed, accelerating or decelerating as required to maintain the zone temperature to the zone temperature setpoint. When subjected to high ambient return conditions the VFD will reduce its output frequency to maintain operation.

Supply Fan Output Control

Units configured for Single Zone VAV control will utilize the same supply fan output control scheme as on traditional VAV units except the VFD signal will be based on zone heating and cooling demand instead of the supply air pressure.

Space Pressure Control

For units configured with Space Pressure Control with or without Statitrac, the new schemes implemented for economizer minimum position handling require changes to the existing Space Pressure Control scheme in order to prevent over/under pressurization. The overall scheme will remain very similar to VAV units with Space Pressure Control with the exception of the dynamic Relief Enable Setpoint.

For SZVAV a Relief Enable Setpoint must be selected during the 100% Fan Speed Command. Once selected, the difference between the Relief Enable Setpoint and Design OA Damper Minimum Position at 100% Fan Speed Command will be calculated. The difference calculated will be used as an offset and added to the Active Building Design OA Minimum Position Target in order to calculate the dynamic Relief Enable Target, which will be used throughout the Supply Fan Speed/OA Damper Position range.

The Relief Enable Target could be above or below the Active Building Design OA Minimum Position Target Setpoint, based on the Active Relief Enable Setpoint being set above or below the Building Design Minimum Position at 100% Fan Speed Command. Note that an Relief Enable Setpoint of 0% will result in the same effect on Relief Fan control as on VAV applications with and without Statitrac.

Occupied Cooling Operation

For normal cooling operation, cooling capacity will be staged or modulated in order to meet the calculated discharge air target setpoint. If the current active cooling capacity is controlling the discharge air within the deadband, no additional cooling capacity change will be requested. As the Discharge Air Temperature rises above the deadband, the algorithm will request additional capacity as required (additional compressors or economizer). As the Discharge Air Temperature falls below the deadband, the algorithm will request a reduction in active capacity.

Default Economizer Operation

By default, the unit will be setup to optimize the minimum supply fan speed capability during Economizer Only operation. If the economizer is able to meet the demand alone, due to desirable ambient conditions, the supply fan speed will be allowed to increase above the minimum prior to

utilizing mechanical cooling if discharge air setpoint falls below the discharge air Lower Limit (Cooling) setpoint.

Unoccupied Mode

In Unoccupied periods the unit will utilize setback setpoints, 0% Minimum OA Damper position, and Auto Fan Mode operation as on normal Constant Volume units. The Supply Fan speed will be forced to 100% for all active heating and cooling requests in this mode.

Occupied Heating Operation

Occupied heating operation will utilize two separate control methodologies based on heating configurations. For all "Staged" Heating types, the unit will utilize full airflow during all active heating periods exactly like traditional Constant Volume units. For "Modulating" Heating types the unit will have the ability to utilize SZVAV Heating, much like Active Cooling, in order to maintain the Zone Temperature to the Zone Heating setpoint. Also, on units configured with a Modulating Heat type, the customer will have the ability to select between SZVAV Heating control, or to utilize traditional Constant Volume, full airflow heating based on the associated unit setup.

Cooling Sequence

If the controller determines that there is a need for compressor stages in order to meet the calculated discharge air target setpoint, once supply fan proving has been made, the unit will begin to stage compressors accordingly.

Note: The compressor staging order will be based on unit configuration and compressor balanced starts status.

Once the discharge air target setpoint calculation has reached the user define Minimum Setpoint and compressors are being utilized to meet the demand, if the cooling demand increases, the discharge air target setpoint value will continue to lower past the minimum setpoint and begin to ramp the supply fan speed upward toward 100%.

Once the discharge air target setpoint calculation has reached the Minimum Setpoint and compressors are being utilized to meet the demand, as the discharge air target setpoint value continues to calculate lower the algorithm will begin to ramp the supply fan speed up toward 100%. Note that the supply fan speed will remain at the compressor stage's associated minimum value (as described below) until the discharge air target setpoint value is calculated below the discharge air temperature Minimum Setpoint (limited discharge air target setpoint).

As the cooling load in the zone decreases the zone cooling algorithm will reduce the speed of the fan down to minimum per compressor stage and control the compressors accordingly. As the compressors begin to de-energize, the supply fan speed will fall back to the Cooling Stage's associated minimum fan speed, but not below. As the load in the zone continues to drop, cooling capacity will be reduced in order to maintain the discharge air within the $\pm 1/2$ discharge air target deadband.

Constant Volume (CV) Only

Occupied Zone Temperature Control

Cooling/Economizer

During Occupied cooling mode, the economizer (if provided) and mechanical cooling are used to control zone temperature. The zone temperature cooling setpoint is user-defined at the User Interface or from the BAS/Network. If the conditions of outside air is appropriate to use "free cooling", the economizer will be first be used to attempt to satisfy the cooling zone temperature setpoint; then the compressors will be staged up as necessary. Minimum on/off timing of compressors prevents rapid cycling.

On units with economizer, a call for cooling will modulate the outside air dampers open. The rate of economizer modulation is based on deviation of the zone temperature from setpoint, i.e., the further away from setpoint, the faster the outside air damper will open. First stage of cooling will be allowed to start after the economizer reaches full open.

The economizer is only allowed to function freely if one of the following conditions is met:

- For dry bulb economizer control, the ambient temperature must be below the dry bulb temperature control setting.
- For reference enthalpy economizer control, outdoor air enthalpy must be below the enthalpy control setting. At outdoor air conditions above the enthalpy control setting, mechanical cooling only is used and the outdoor air dampers remain at minimum position.
- For comparative enthalpy economizer control, outdoor air enthalpy must be below the enthalpy of the return air.

If the unit does not include an economizer, mechanical cooling only is used to satisfy cooling requirements.

Heating

Gas Heating: Staged Heat

Up to four stages of gas heat will be sequenced based on zone demand. Status messages and diagnostics are communicated to the user interface.

Gas Heating: Modulating Gas

Modulating gas heat will consist of one modulating bank and up to 3 fixed stages of heat for precise heating control. The output will be modulated as the demand in the zone changes. Status and diagnostic messages are communicated to the user interface.

Electric Heating

The individual stages of electric heat will be sequenced on the zone demand. The number of available stages will depend on the unit voltage and heat capacity selected.

For units with SCR electric heat, the first stage is modulating. The modulating stage and the necessary additional stages are sequenced to precisely meet the zone demand.

Auto Changeover

When the System Mode is "Auto," the mode will change to cooling or heating as necessary to satisfy the zone cooling and heating setpoints. The zone cooling and heating setpoints can be as close as 2°F apart.

Unoccupied Zone Temperature Control

Cooling and Heating

Cooling and/or heating modes can be selected to maintain Unoccupied zone temperature setpoints. For Unoccupied periods, heating, economizer operation or compressor operation can be selectively locked out at the User Interface.

CV, SZVAV, and VAV

Note: SZVAV exceptions are noted in parenthesis.

Space Pressure Control - Statitrac

A pressure transducer is used to measure and report direct space (building) static pressure. The user-defined control parameters used in this control scheme are space static pressure setpoint, space pressure deadband and relief enable point. As the economizer opens, the building pressure rises and once above the relief enable point, enables the relief fan and dampers. The relief dampers or relief fan then modulate to maintain space pressure within the deadband.

Morning Warm-up Options (Not applicable to SZVAV)

This feature may be enabled on all types of factory installed heat units as well as cooling only units configured as "External Heat" (for example, VAV boxes with reheat). At the conclusion of Unoccupied mode, while the economizer (if supplied) is kept closed, the selected zone is heated

to the user-defined Morning Warm-up setpoint (see description below). The unit is then released to Occupied mode.

Cycling Capacity Morning Warm-up (MWU)

Cycling capacity Morning Warm-up provides a more gradual heating of the zone. Normal zone temperature control with varying capacity is used to raise the zone temperature to the MWU zone temperature setpoint. This method of warm-up is used to overcome the "building sink" effect. Cycling capacity MWU will operate until the MWU setpoint is reached or for 60 minutes, then the unit switches to Occupied mode. A control algorithm is used to increase or decrease the amount of heat in order to achieve the MWU zone temperature setpoint.

Note: When using the Morning Warm-up option in a VAV heating/cooling rooftop, airflow must be maintained through the rooftop unit. This can be accomplished by electrically tying the VAV boxes to the VAV box output relay contacts on the Symbio™ 800 Controls or by using changeover thermostats. Either of these methods will assure adequate airflow through the unit and satisfactory heating of the building.

Emergency Override

When a LonTalk® communication protocol or BACnet® control network is installed, the user can initiate from the Tracer® Ensemble™ building automation system (BAS), Tracer® SC+ or third party BAS one of five predefined, not available to configure, Emergency Override sequences. All compressors and condenser fans are de-energized for any Emergency Override sequence. Each Emergency Override sequence commands the unit operation as follows:

PRESSURIZE EMERG:

- Supply Fan VFD Max
- Relief Fan Off; Relief Dampers Closed (if so equipped)
- OA Dampers Open; Return Damper Closed
- Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- VOM Relay Energized (if so equipped)

EMERG_DEPRESSURIZE:

- Supply Fan VFD Min
- Relief Fan On; Relief Dampers Open/Max
- OA Dampers Closed; Return Damper Open
- Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- VOM Relay Energized

EMERG_PURGE:

- Supply Fan VFD Max
- Relief Fan On; Relief Dampers Open
- OA Dampers Open; Return Damper Closed
- Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- VOM Relay Energized

EMERG SHUTDOWN:

- Supply Fan VFD Min
- Relief Fan Off; Relief Dampers Closed (if so equipped)
- OA Dampers Closed; Return Damper Open
- · Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- VOM Relay Energized

EMERG_FIRE - Input from fire pull box/system:

- Supply Fan Off
- Supply Fan VFD Min
- Relief Fan Off; Relief Dampers Closed (if so equipped)

- OA Dampers Closed; Return Damper Open
- Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- · VOM Relay Energized

Ventilation Override (VOM)

The user can customize up to five different override sequences for purposes of ventilation override control. If more than one VOM sequence is being requested, the sequence with the highest priority is initiated first. Sequence hierarchy is the sequence "A" (UNIT OFF) is first, with sequence "E" (PURGE with Duct Pressure Control) last. A ventilation override mode can be initiated by closing any of the five corresponding binary inputs on the VOM module. A binary output is provided on the VOM module to provide remote indication of an active VOM mode. All compressors, condenser fans and the Humidification output are de-energized for any VOM sequence. The factory default definitions for each mode are as follows:

UNIT OFF sequence "A"

When complete system shutdown is required the following sequence can be used.

- Supply Fan VFD Min
- Relief Fan Off; Relief Dampers Closed (if so equipped)
- OA Dampers Closed; Return Damper Open
- Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Deenergized
- VOM Relay Energized

PRESSURIZE sequence "B"

Perhaps a positively pressurized space is desired instead of a negatively pressurized space. In this case, the supply fan should be turned on with VFD at 100% speed and relief fan should be turned off.

- Supply Fan On
- Supply Fan VFD Max
- Relief Fan Off; Relief Dampers Closed (if so equipped)
- OA Dampers Open; Return Damper Closed
- · Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- · VOM Relay Energized

RELIEF sequence "C"

With only the relief fans running (supply fan off), the space that is conditioned by the rooftop would become negatively pressurized. This is desirable for clearing the area of smoke from the now-extinguished fire, possibly keeping smoke out of areas that were not damaged.

- Supply Fan VFD Min
- Relief Fan On; Relief Dampers Open (if so equipped)
- OA Dampers Closed; Return Damper Open
- · Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Deenergized
- VOM Relay Energized

PURGE sequence "D"

Possibly this sequence could be used for purging the air out of a building before coming out of Unoccupied mode of operation on VAV units or for the purging of smoke or stale air if required after a fire.

- Supply Fan VFD Max
- Relief Fan On; Relief Dampers Open (if so equipped)
- OA Dampers Open; Return Damper Closed
- Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- VOM Relay Energized

PURGE with duct pressure control sequence "E"

This sequence can be used when supply air control is required for smoke control.

- Supply Fan VFD (If so equipped) Controlled by Supply Air Pressure Control function; Supply Air Pressure High Limit disabled
- Relief Fan On; Relief Dampers Open (if so equipped)
- Heat All heat stages off; Mod Heat output Off
- Occupied/Unoccupied/VAV box output Energized
- VOM Relay Energized

User Interface (UI)

A 7 inch user interface features a touch-sensitive color screen that provides operating status, performance monitoring, and scheduling changes and operating adjustments.

Demand Limit

This mode is used to reduce electrical consumption at peak load times. When demand limiting is needed, mechanical cooling and/or heating operation are either partially or completely disabled in order to save energy.

Frost Avoidance

Evaporator Coil Frost Protection - Frostat™

Temperature and pressure sensors on each refrigeration circuit are used to determine if the coil is approaching a freezing condition. Mechanical cooling capacity is shed as necessary to prevent icing. The Frostat™ system eliminates the need for hot gas bypass and utilizes the suction line surface temperature sensor to shed cooling when coil frosting conditions occur. The supply fans are not shut off and will de-ice the coil. Timers prevent the compressors from rapid cycling.

Occupied/Unoccupied Switching

There are two ways to switch Occupied/Unoccupied:

- Field-supplied contact closure (hard wired binary input to Symbio™ 800 Controls) (CV, SZVAV and VAV)This input accepts a field supplied switch or contacts closure such as a time clock.
- Tracer (or third party BAS with BACnet® or LON option)

Trane Tracer® Ensemble™ or BAS System

The Tracer® Ensemble™ building management system or a third party BAS (with BACnet® or LON option) can control the Occupied/Unoccupied status of the rooftop.

Timed Override Activation - ICS

This function is operational when the Zone Temperature Sensor is installed. When this function is initiated by the push of an override button on the ICS sensor, the Tracer Ensemble will switch the unit to the Occupied mode. Unit operation (Occupied mode) during timed override is terminated by a signal from Tracer.

Timed Override Activation - Non-ICS

This function is active whenever the Zone Temperature Sensoris installed. When this function is initiated by the push of an override button on the zone sensor, the unit will switch to the Occupied mode. Automatic Cancellation of the Timed Override Mode occurs after three hours of operation.

Economizer Controls

Comparative Enthalpy Control of Economizer

An optional comparative enthalpy system is used to control the operation of the economizer, and measures the temperature and humidity of both return air and outside air to determine which

source has lower enthalpy. This system allows true comparison of outdoor air and return air enthalpy by measurement of outdoor air and return air temperatures and humidities.

Reference Enthalpy Control of Economizer

The optional reference enthalpy compares outdoor air temperature and humidity to the economizer enthalpy control setpoint. If outdoor air temperature and humidity are below the economizer enthalpy control setpoint, the economizer will operate freely. This system provides more sophisticated control where outdoor air humidity levels may not be acceptable for building comfort and indoor air quality.

Dry Bulb Temperature Control of Economizer

The optional dry bulb system measures outdoor temperature comparing it to the economizer control temperature setpoint. If the outdoor temperature is below the economizer dry bulb temperature control setpoint, the economizer will operate freely. This system is best suited for arid regions where the humidity levels of outside air would not be detrimental to building comfort and indoor air quality.

Refrigeration Balanced Starts

Balanced starts is a user-selectable feature through the User Interface available on all units without the $\mathsf{eFlex}^\mathsf{TM}$ variable speed option. After each request for compressor operation, the lead refrigeration circuit switches, thereby causing a more equitable or balanced run time among compressors.

Emergency Stop Input

A binary input is provided for installation of field provided switch or contacts for immediate shutdown of all unit functions.

Anti-Short Cycle Protection

A standard feature provided to prevent excessive cycling and premature wear of the compressors, contactors and related components.

High Duct Temperature Limit

Two temperature sensors, Discharge Air and Return Air (if installed) are used to determine if duct temperatures are excessively high. If the discharge air temperature exceeds 200F or if the return air temperature exceeds 135F, the unit will be placed into Emergency Stop Mode.

CO₂ Control - Demand Control Ventilation (DCV)

A ventilation reset function that provides the necessary ventilation for occupants and reduces energy consumption by minimizing the outdoor air damper position (or the OA flow setpoint with Traq) below the Building Design Minimum, while still meeting the ASHRAE Std 62.1-2004 ventilation requirements.

- If the space CO₂ level is greater than or equal to the CO₂ Design Setpoint, the outdoor air damper will open to the Design Min Outdoor Air Damper (or OA Flow) Setpoint. If there is a call for economizer cooling, the outdoor air damper may be opened further to satisfy the cooling request.
- If the space CO₂ level is less than or equal to the CO₂ Minimum Setpoint, the outdoor air damper will close to the DCV Minimum Outdoor Air Damper (or OA Flow) Setpoint. If there is a call for economizer cooling, the outdoor air damper may be opened further to satisfy the cooling request.
- If the space CO₂ level is greater than the CO₂ Minimum Setpoint and less than the CO₂
 Design Setpoint, the outdoor air damper position is (or OA flow) modulated proportionally to
 the Space CO₂ level relative to a point between the CO₂ Min Setpoint and the CO₂ Design
 Setpoint. If there is a call for economizer cooling, the outdoor air damper may be opened
 further to satisfy the cooling request.

Note: CO₂ sensor used with Demand Control Ventilation must be powered from an external power source or separate 24 VAC transformer.

Space CO2 Level Design Min ŎA Damper Setpoint Min OA Damper Position Target DCV Min OA Damper Setpoint CO₂ Min CO2 Design Setpoint Setpoint CO₂ Level

Figure 9. CO₂ control

Low Charge Protection

A refrigerant charge estimate is calculated using a combination of measured temperatures, calculated saturated temperatures, refrigerant mass flow and the expansion valve opening. At the touch screen interface, a warning diagnostic is displayed when a low charge has been detected on the circuit, but is not critical enough to force a circuit shutdown. When a critical low charge has been detected on the circuit, a circuit shut down is triggered, and a shutdown diagnostic is displayed at the touch screen interface. Other diagnostic messages include the following:

- A diagnostic message displayed at the User Interface panel, warning of a low charge situation when the unit is just slightly undercharged. The unit will be allowed to run.
- A diagnostic message displayed at the User Interface panel, warning of a low charge situation
 when the unit is undercharged. The undercharged circuit will be locked out to protect the
 compressors.

Condenser Fan Cycling

The Symbio™ 800 controller cycles condenser fans based on ambient temperature and saturated condensing temperature to ensure the optimum operating conditions for the unit.

LonTalk® Building Automation System

The LonTalk® communication protocol for the Symbio™ 800 controller expands communications from the unit UCM network to a Tracer® Ensemble™ building automation system or third party building automation system. Utilizing LonTalk®, the BAS allows external setpoint and configuration adjustment and monitoring of status and diagnostics. The Symbio™ 800 utilizes an FTT-10A free topology transceiver, which supports non-polarity sensitive, free topology wiring—which in turn allows the system installer to utilize star, bus, and loop architectures. This controller works in standalone mode, peer-to-peer with one or more other units, or when connected to a Tracer® Ensemble™, Tracer SC+, or a third party building automation system that supports LonTalk®. The LON controller is available as a factory or field-installed kit.

BACnet® Building Automation Control Network

The BACnet® control network for Symbio™ 800 expands communications from the unit UCM network to the Tracer® Ensemble™ or Tracer SC+ building automation system or third party building automation system. Utilizing BACnet, the BAS allows external setpoint and configuration adjustment and monitoring of status and diagnostics. The Symbio 800 utilizes the BACnet defined MS/TP protocol as defined in ASHRAE standard 135-2004. This controller works

in standalone mode, with Tracer® Ensemble $^{\text{\tiny M}}$, Tracer SC+ or when connected to a third party building automation system that supports BACnet.

AirFi™ Wireless Communication Interface

Trane AirFi™ Wireless Comm replaces the BACnet communication link and sensor wire on Tracer® building automation systems for faster, easier, lower-risk installation and life-cycle savings.

Modulating Hot Gas Reheat

When space conditions allow, the modulating hot gas reheat function activates the reheat mode. The reheat valve and cooling valve are modulated to control the discharge air temperature to the discharge air temperature reheat setpoint (default 70 °F).

In reheat mode, the reheat valve is commanded (15 to 85%) to control to the discharge air reheat setpoint and the cooling valve mirrors the reheat valve position (85 to 15%).

Low Ambient Compressor Lockout

This function will lock out the compressor if the outdoor air temperature is below the low ambient compressor lock out temperature setpoint. The factory setpoint is 50°F on standard units and 0°F on low ambient units. This setpoint is adjustable at the User Interface. Compressors will be locked out when outdoor air temperatures fall below the selected temperature and will be allowed to start again when temperatures rise 5°F above the setpoint.

Specifications

Controller Specifications					
Input power	24 Vdc +/- 10%, 400mA max				
Storage temperature	-67°F to 185°F (-55°C to 85°C), Humidity: Between 5% to 100% (Condensing)				
Operating temperature	-40°F to 158°F (-40°C to 70°C)				
Environmental rating (enclosure)	IP3x				
Time clock	On-board real time clock with 10 year battery backup				
Mounting weight	Mounting surface must support 1.3 lb. (0.6 kg)				
Overall dimensions	5.65 in. (143.5 mm) wide x 4.00 in. (101.6 mm) high x 2.17 in. (55 mm) deep				

Agency Compliance

- UL916 PAZX, Open Energy Management Equipment
- UL94-5V Flammability
- CE
- FCC Part 15, Subpart B, Class B Limit
- BTL Listed—Advanced Application Profile (B-AAC)

User Interface Specifications	
Input power	24 Vac +/- 10%, 21 VA, 50, or 60 Hz
Storage temperature	-67°F to 203°F (-55°C to 95°C), Humidity: Between 5% to 100% (Condensing)
Operating temperature	-40°F to 158°F (-40°C to 70°C), Humidity: Between 5% to 100% (Condensing)
Environmental rating (enclosure)	IP56 (dust and strong water jet protected) with optional sealed Ethernet cable (PN: X19070632020)
Mounting weight	Mounting surface must support 1.6 lb. (0.74 kg)
Overall dimensions	8.3 in. (211.6 mm) wide x 6.3 in. (158.8 mm) high x 2.1 in. (53.2 mm) deep [bezel depth 0.4 in. (11.3 mm)]

Symbio™ 800 Controls

Agency Compliance

- UL916 PAZX, Open Energy Management Equipment
- UL94-5V, Flammability
- FCC CFR Title 47, Part 15.109: Class A Limit, (30 MHz—4 GHz)
- CE EMC Directive 2004/108/EC

Application Considerations

Clearance Requirements

The recommended clearances identified in unit dimensions should be maintained to assure adequate service capability, maximum capacity and peak operating efficiency. A reduction in unit clearance could result in condenser coil starvation or warm condenser air recirculation. If the clearances shown are not possible on a particular job, consider the following:

- Do the clearances available allow for major service work such as changing compressors or coils?
- Do the clearances available allow for proper outside air intake, relief air removal and condenser airflow?
- If screening around the unit is being used, is there a possibility of air recirculation from the relief to the outside air intake or from condenser exhaust to condenser intake?
- Do clearances meet all applicable codes?

Actual clearances which appear inadequate should be reviewed with a local Trane sales engineer.

When two or more units are to be placed side by side, the distance between the units should be increased to 150 percent of the recommended single unit clearance. The units should also be staggered for the following reasons:

- To reduce span deflection if more than one unit is placed on a single span. Reducing deflection discourages sound transmission.
- To assure proper diffusion of exhaust air before contact with the outside air intake of adjacent unit.

Modulating Hot Gas Reheat for Dehumidification

Modulating hot gas reheat involves adding a refrigerant-to-air heat exchanger downstream of the evaporator (cooling) coil. A valve diverts the hot refrigerant vapor leaving the compressor through this heat exchanger to reheat the dehumidified air leaving the evaporator coil. This allows the use of heat that is recovered from the refrigeration circuit of the rooftop unit to reduce system operating costs by avoiding the use of "new" energy for reheat.

The main function of the IntelliPak® rooftop unit is to provide zone temperature control. While modulating hot gas reheat will improve dehumidification performance at part-load conditions, it does not function as a standalone dehumidifier. In general, hot gas reheat requires a call for cooling to initiate. If there is a need for dehumidification when there is no need for sensible cooling, another solution may need to be investigated. IntelliPak packaged rooftop systems include non-standard solutions that might be considered for these applications.

Applications which should be investigated before using the standard modulating hot gas reheat option include:

- Process humidity control applications
- Makeup air or 100% outdoor air
- Zones with dramatically varying load conditions (sanctuaries, locker rooms, gymnasiums, etc.)

Ventilation Control

Ventilation is the process of delivering clean, fresh outdoor air into the building to dilute the build-up of contaminants and odors. ASHRAE Standard 62.1 defines the minimum ventilation rates and basic HVAC equipment and system requirements to provide "acceptable indoor air quality." Units with a variable-speed supply fan should either be equipped with the Traq™ outdoor air measurement system or use the "Outdoor Air Compensation" control sequence to ensure proper ventilation at all operating conditions:

Application Considerations

- The Traq™ outdoor air measurement system uses velocity pressure sensing rings to measure airflow in the outdoor air intake. This allows the outdoor airflow to be controlled to a desired setpoint, compensating for changing conditions.
- The Outdoor Air CFM Compensation sequence automatically adjusts the position of the OA dampers in proportion to the changing supply fan speed. This attempts to maintain the same CFM of outdoor airflow entering the unit, even as the supply fan speed changes.

Demand-controlled ventilation (DCV) is a control strategy that dynamically adjusts the outdoor airflow delivered to a zone based on the changing population in that zone, often by measuring the concentration of carbon dioxide (CO₂) in the zone. Zones that are densely-occupied and experience widely varying population—such as large conference rooms, auditoriums, and gymnasiums—are often good candidates for using CO₂-based DCV.

Ventilation Override Sequences

One of the benefits of using a relief fan rather than a return fan, in addition to the benefits of lower energy usage is that the rooftop can be used as part of a ventilation override system. Several types of sequences can be easily done when relief fans are a part of the rooftop system.

What would initiate the ventilation override control sequence? Typically, a manual switch is used and located near the fire protection control panel. This enables the fire department access to the control for use during or after a fire. It is also possible to initiate the sequence from a field-installed automatic smoke detector. In either case, a contact closure begins the ventilation override control sequence.

Trane can provide five (5) different ventilation override sequences on both CV and VAV IntelliPak® rooftops. For convenience, the sequences are factory preset but are fully field edited from the user interface or Tracer TU. Any or all five sequences may be "locked" in by the user at the user interface.

The user can customize up to five (5) different override sequences for purposes such as smoke control. The following parameters within the unit can be defined for each of the five sequences:

- Supply Fan on/off
- Variable Frequency Drives on (60 Hz)/off (0 Hz)/controlling
- Relief Fan on/off
- Relief Air Dampers open/closed
- Outdoor Air Dampers open/closed
- Heat off/controlling (output for) VAV Boxes open/controlling

Compressors and condenser fans are shut down for any Ventilation Override sequence. Factory preset sequences include unit Off, Exhaust, Purge, Purge with duct pressure control, and Pressurization. Any of the user-defined Ventilation Override sequences can be initiated by closing a field supplied switch or contacts connected to an input on the Ventilation Override Module. If more than one ventilation override sequence is being requested, the sequence with the highest priority is initiated. Refer to the Ventilation Override Mode (VOM) information in the Control section of this catalog for more details on each override sequence.

Relief Fan Options

When the rooftop unit brings in outdoor air for ventilation, the same quantity of air must leave the building. Typically, some of this air is exhausted by dedicated fans from restrooms or other spaces. Some air also leaks out through the building envelope as a result of the pressure inside the building being maintained slightly higher than the pressure outside the building ("positive" building pressurization).

Particularly when the rooftop unit is equipped with an airside economizer, a properly-designed relief system should be used to avoid over-pressurizing the building when the outdoor-air dampers open to bring in a larger quantity of air from outside. A relief fan is often included in the rooftop unit to help control building pressure. The Trane modulating relief fan (with Statitrac $^{\text{TM}}$) is an excellent choice for controlling building pressure in the majority of applications.

In a unit with a relief fan, the supply fan motor and drives must be sized to create a high enough pressure at the supply fan outlet to overcome the pressure losses associated with the supply-air

path, and also create a low enough pressure at the supply fan inlet to overcome the pressure losses associated with the return-air path and components inside the rooftop unit.

Barometric Relief Dampers

This approach uses non-motorized, gravity-operated relief dampers that are located in the returnair section of the rooftop unit. When the building pressure increases, the pressure inside the return-air section also increases, eventually forcing open the relief dampers and allowing air to leave the building.

Barometric relief dampers are typically used in small buildings that use an open ceiling plenum for the return-air path. They are relatively inexpensive and require no sensors or controls, but they may require the building pressure to increase significantly before relieving sufficient airflow.

Modulating Relief Fan with Statitrac™

This approach uses a powered relief fan located inside the return-air section of the rooftop unit. The fan is sized to relieve up to 100 percent of the nominal supply fan airflow, and its capacity is modulated to maintain measured building pressure at a desired setpoint.

The Trane Statitrac™ control system uses a differential pressure transducer to compare indoor (building) static pressure to atmospheric (outdoor) static pressure. The relief fan is turned on whenever needed to relieve air, then modulates the speed of the relief fan (or modulates the position of discharge dampers) to control the building pressure within the adjustable deadband, which can be set at the user interface.

The Trane modulating relief fan with Statitrac provides efficient control of building pressure in both constant-volume and VAV applications. The relief fan operates only when needed to lower building pressure, meaning that in some buildings it may only need to operate when the unit is airside economizing. By directly measuring building pressure, the modulating relief fan can respond to pressure changes caused by wind, stack effect, the intermittent operation of local relief fans, and demand-controlled ventilation.

Modulating Relief Fan without Statitrac (CV Units Only)

The difference with this approach is that a transducer is not used to directly measure building pressure. The relief fan is turned on whenever the outdoor air dampers are open beyond a set position. The relief fan operates at a constant speed and the relief fan discharge dampers are modulated in proportion to the position of the outdoor-air dampers; as the outside air dampers open further, the discharge dampers on the relief fan open further to allow for more relief air. When the relief fan starts, the discharge dampers are fully closed, resulting in relief airflow equal to about 15% to 20% of relief fan capacity.

Acoustic Considerations

The best time to make provisions to reduce sound transmission to the occupied space is during the project design phase. Proper placement of rooftop equipment is critical to reducing sound transmitted into the building. The most economical means of avoiding an acoustical problem is to locate rooftop equipment away from acoustically-sensitive areas. If possible, locate rooftop equipment above corridors, utility rooms, restrooms, or other areas where higher sound levels are acceptable.

It is not possible to totally quantify the effect of the building structure on sound transmission, since this depends on the response of the roof and building members to the sound and vibration of the unit components. However, the following guidelines have been proven through experience to help reduce sound transmission through the building structure:

- Never cantilever the condensing section of the rooftop unit; a structural cross member must support this end of the unit.
- Locate the unit's center of gravity close to (or over) a column or main support beam to minimize roof deflection and vibration-related noise.
- If the roof structure is very light, roof joists should be replaced by a structural shape in the critical areas described above.

Application Considerations

 If several units are to be placed on one span, they should be staggered to reduce deflection over that span.

For more information:

- ASHRAE. 2015. ASHRAE Handbook HVAC Applications (Chapter 48: Noise and Vibration Control). Atlanta, GA: ASHRAE.
- ASHRAE. 2011. Practical Guide to Noise and Vibration Control for HVAC Systems. Atlanta, GA: ASHRAE.
- Guckelberger, D. 2000. "Controlling Noise From Large Rooftop Units," ASHRAE Journal (May): pp. 55-62.
- Trane. Guckelberger, D. and Bradley, B. 2006. Acoustics in Air Conditioning, ISS-APM001-EN. La Crosse, WI: Inland Printing Company.
- Trane. Murphy, J. and Harshaw, J. 2012. Rooftop VAV Systems, SYS-APM007-EN. La Crosse, WI: Inland Printing Company.

In addition, the Trane TAP™ Acoustics Program allows for modeling of various sound paths to predict sound levels in the occupied space. The software models airborne sound from supply-and return-air paths, as well as duct breakout and roof transmission sound, so that the designer can identify potential sound problems and make design alterations before equipment installation. TAP is also capable of modeling the effect of outdoor sound on adjacent properties. This program is available from Trane's Customer Direct Service Network (C.D.S.), ask your local Trane representative for additional information.

Corrosive Atmospheres

Trane's IntelliPak® Rooftops are designed and built to industrial standards and will perform to those standards for an extended period depending on the hours of use, the quality of maintenance performed, and the regularity of that maintenance.

One factor that can have an adverse effect on unit life is operation in a corrosive environment. Since the Microchannel condenser coil is an all-aluminum design, it provides a high level of corrosion protection on its own. Uncoated, it withstands a salt spray test in accordance with ASTM B117 for 1,000 hours. When rooftops are operated in highly corrosive environments, Trane recommends the corrosion protected condenser coil option.

This corrosion protection option meets the most stringent testing in the industry, including ASTM B117 Salt Spray test for 6,000 hours and ASTM G85 A2 Cyclic Acidified Salt Fog test for 2,400 hours. The acid fog test is the most stringent available today. This coating is added after coil construction covering all tubes, headers, fins and edges. The design provides superior protection from any corrosive agent.

IntelliPak paint innately handles harsh weather, including most coastal and salt environments and direct sun. The unit paint was salt spray tested in accordance with ASTM B117 and UV weathering resistance tested in accordance with ASTM G155 Test cycle 1 for 2000 hours. For further detail on the paint testing, refer to PROD-SLB034*-EN

Note: Field coating is not allowed on Microchannel coils.

Natural Gas Heating Considerations

Trane offers heavy gauge 409 stainless steel throughout the construction of ETL recognized, natural gas tubular exchangers. These heat exchangers can be applied with confidence, particularly with full modulation control, when mixed air temperatures are below 50°F, and low ambient temperatures can cause condensation to form on the heat exchanger. The IntelliPak® natural gas heat exchangers are not recommended for applications with mixed air conditions entering the heat exchanger below 30°F to ensure adequate leaving air heating temperature.

Application Considerations

High Entering Return Temperatures

Some applications may have high mixed-air temperatures, such as data centers. It is recommended that the entering dry bulb temperatures in any application not exceed 95°F for extended periods of time. If this is a requirement, please work with your local Trane office in developing a specific assessment. Other factors, such as wet bulb and ambient temperatures, will also affect the system's reaction.

Performance Adjustment Factors

Table 7. Enthalpy of saturated air

Wet Bulb Temperature	Btu Per Lb.
40	15.23
41	15.70
42	16.17
43	16.66
44	17.15
45	17.65
46	18.16
47	18.68
48	19.21
49	19.75
50	20.30
51	20.86
52	21.44
53	22.02
54	22.62
55	23.22
56	23.84
57	24.48
58	25.12
59	25.78
60	26.46
61	27.15
62	27.85
63	28.57
64	29.31
65	30.06
66	30.83
67	31.62
68	32.42
69	33.25
70	34.09
71	34.95
72	35.83
73	36.74
74	37.66
75	38.61

Altitude/Temperature Correction Sea Level 1000 1.0 **2000** 3000 4000 Air Density 5000 Ratio (Density at New Air 6000 Density)
Condition/Std. .8 7000 8000 9000 10000 .7

40

50

Figure 10. Air density ratios

Table 8. Cooling capacity altitude correction factors

				А	ltitude (f	t)			
	Sea Level	1000	2000	3000	4000	5000	6000	7000	8000
Cooling Capacity Multiplier	1.00	1.00	0.99	0.99	0.99	0.98	0.98	0.97	0.97
kW Correction Multiplier	1.00	1.00	1.00	1.00	1.01	1.01	1.01	1.02	1.02
Sensible Heat Ratio Correction Multiplier	1.00	0.97	0.94	0.92	0.89	0.87	0.84	0.81	0.79

60

Rooftop Leaving Air Temperature (°F)

70

80

90

Table 9. Gas heating capacity altitude correction factors

	Sea Level to 2000	2001 to 2500	2501 to 3500	3501 to 4500	4501 to 5500	5501 to 6500	6501 to 7500
Capacity Multiplier	1.00	.92	.88	.84	.80	.76	.72

Gross Cooling Capacities

Gross cooling capacities - 20 ton - standard efficiency Table 10.

											Ambi	ent T	embe	Ambient Temperature ($^{\circ}$ F)	(°F)									
				82						92					-7	105					115	2		
	T T	Ū	nterir	Entering Wet Bulb (°F	Bulb	(°F)		Ent	ering	Entering Wet Bulb	Bulb	(°F)		Ente	Entering V	Wet Bulb (°F)	1∘) qır	(·	Ū	nterir	Entering Wet Bulb	t Bull	(°F)	
	DB	61	1	29		73		61		29		73		61		29		73	61	1	6 7		73	
CFM	(°F)	CAP	SHC	CAP SI	SHC C	CAP SI	SHC C	CAP SI	SHC C	CAP SI	SHC	CAP SI	SHC C/	CAP SHC	C CAP	P SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP 9	SHC
	75	207	144	234 1:	119 2	264 9	92 19	196 13	137 2	222 1:	112 2	251 8	85 18	184 129	9 210	104	237	78	172	122	196	26	222	70
7007	80	207	166	235 14	141 2	264 11	15 1	.96 1!	59 2	223 13	34 2	251 10	18	85 151	1 210	127	237	100	173	144	197	119	222	93
0004	85	208	188	235 16	163 2	264 13	.37	197 18	.81	223 1	56 2	251 13	.30 18	185 173	3 210	149	237	123	173	165	197	141	223	115
	90	500	208	235 18	185 2	264 15	59 1	198 19	98 2	224 1	178 2	251 1	52 18	.87 187	7 211	171	238	145	177	177	198	163	223	137
	75	223	163	251 13	131 2	280 9	96 2	210 1	155 2	238 1.	123 2	265 8	89 15	197 148	8 223	3 116	250	81	184	140	208	107	233	73
000	80	224	191	252 15	159 2	280 12	124 2	211 18	.83	238 1	51 2	265 1	17 19	98 175	5 224	143	250	109	185	167	209	135	233	101
0000	85	225	217	252 18	186 2	280 15	52 2	213 20	209 2	239 1	179 2	266 1	145 20	200 200	0 225	5 171	250	137	187	187	210	163	234	129
	90	231	231	253 2:	214 2	281 18	180 2	221 23	221 2	240 20	206 2	266 1	172 21	210 210	0 225	5 198	251	165	198	198	211	189	234	156
	22	235	181	263 14	142 2	290 9	99 2:	221 13	173 2	248 13	134 2	274 9	91 20	207 164	4 233	3 125	257	83	192	156	216	117	239	75
	80	236	212	264 17	175 2	290 13	.33 2.	222 20	204 2	249 10	167 2	274 13	.25 20	208 195	5 234	159	258	117	193	187	217	150	240	108
0000	85	239	239	264 20	208 2	291 16	166 2	226 23	226 2	250 20	200	275 1	58 21	214 214	4 234	192	258	150	201	201	218	183	240	141
	90	252	252	265 24	241 2	291 19	199 2	240 24	240 2	251 23	231 2	275 19	91 22	722 722	7 236	5 222	259	183	214	214	220	214	241	174
	22	243	198	271 15	152 2	296 10	101 2	229 18	189 2	256 14	143 2	280 9	93 21	213 180	0 239	135	797	85	197	169	221	126	243	9/
0002	80	245	234	272 19	190 2	297 14	140 2	231 23	225 2	256 18	182 2	280 1	32 21	216 216	6 240	173	263	124	200	200	222	164	243	115
000/	85	253	253	273 23	229 2	297 17	179 2	241 24	241 2	257 23	220 2	281	171 22	722 722	7 241	1 209	263	163	213	213	224	200	244	154
	90	268	268	275 26	264 2	298 21	217 2	255 2	255 2	260 2	256 2	281 20	209 24	241 241	1 244	1 244	263	201	226	226	227	227	244	192
	75	250	214	277 16	161 3	301 10	103 2:	234 2(203 2	261 1	152 2	284 9	95 21	218 193	3 243	3 143	265	87	202	184	225	134	245	78
0000	80	253	253	278 20	205 3	302 14	148 2	238 23	238 2	262 19	196 2	284 1	39 22	223 223	3 244	187	265	131	500	209	226	178	245	122
0000	85	592	266	279 24	246 3	302 19	192 2	252 2	252 2	263 2:	237 2	284 18	.83 23	238 238	8 246	5 228	266	175	222	222	228	218	245	166
	90	280	280	282 28	282 3	302 23	236 2	266 20	266 2	266 20	266 2	284 2.	227 25	251 251	1 250) 250	266	219	235	235	235	235	246	206
	75	255	227	282 17	170 3	305 10	105 2:	239 2:	218 2	265 10	161 2	287 9	97 22	222 208	8 246	5 152	267	88	202	198	227	142	247	79
0000	80	260	260	283 2:	219 3	305 15	155 2	246 24	246 2	265 2:	210 2	286 1	147 23	231 231	1 247	7 198	267	138	215	215	228	188	246	128
0000	85	276	276	284 26	265 3	306 20	205 2	261 20	261 2	267 2!	256 2	286 1	196 24	246 246	6 250) 246	267	187	229	229	231	231	246	178
	90	290	290	289 28	289 3	307 25	251 2	274 2	274 2	275 27	275 2	288 2	242 25	258 258	8 258	3 258	267	232	240	240	240	240	246	222
Notes:	Allcan	All capacities shown are gro	chown	are dross	d bue	ave not	ronsir	Jered ir	ndoorf	ed ue	+ T	htain n	ilooja	ss and have not considered indoor fan heat. To obtain net cooling sultract indoor fan heat	act ind	oor fan	heat							

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities — 20 ton — high efficiency and high capacity (60 Hz) Table 11.

											Am	bient	Ambient Temperature (°F)	ratur	(°F)										
				8	85					95						105						115			
	Ent		Enter	Entering Wet Bulb (°F)	et Bul	b (°F)			Enteri	ng We	Entering Wet Bulb (°F)	(°F)		ū	Entering Wet Bulb (°F)	g Wet	Bulb	(°F)		Д	ıterin	Entering Wet Bulb (°F)	Bulb ((e)	
	DB		61	9	29	7	3	61	1	67		73		61		6 2		73		61		6 2		73	
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHCC	CAP S	SHC	CAP S	SHC	CAP S	SHC
	75	234	158	264	133	297	106	222	150	251	125	283	98 2	208	141 2	236 1	116 2	266 9	90 1	195 1	133 2	221 1	108 2	249	81
000	80	234	180	265	155	297	128	222	172	251	147	283	121 2	209	163 2	237 1	139	267 1	112 1	195 1	.55	221 1	30 2	249 1	103
1000	85	234	202	265	177	297	151	222	194	252	169	283 1	143 2	209	185 2	237 1	191	267 1	134 1	195 1	177 2	222 1	.52 2	249 1	125
	90	235	224	265	199	298	173	223	215	252	191	283	165 2	210 2	207 2	237 1	183	267 1	56 1	197 1	.97	222 1	174 2	250 1	147
	75	254	178	285	146	317	111	240	170	270	137	301	102 2	224 1	160 2	253 1	128 2	282	93 2	208 1	151 2	235 1	119 2	263	84
	80	254	206	286	174	317	139	240	197	271	165	301	130 2	225	188	254 1	156	283 1	121 2	209 1	178 2	236 1	146 2	263 1	112
0000	85	255	233	286	201	318	166	241	225	271	193	301	158 2	226	214 2	254 1	183	283 1	149 2	210 2	205 2	237 1	174 2	264 1	140
	90	257	257	287	229	318	194	245	245	272	220	302	186 2	233 2	233 2	255 2	211 2	284 1	177 2	219 2	219 2	237 2	201 2	264 1	167
	75	268	197	300	157	330	114	253	187	283	148	312	105 2	236 1	178 2	265 1	138	293 9	96 2	218 1	168 2	245 1	128 2	271	98
	80	269	230	300	190	330	147	254	220	284	181	313	139 2	237	211 2	265 1	171	293 1	129 2	219 1	199 2	246 1	161 2	272 1	120
0000	85	271	262	301	223	331	181	256	252	284	214	313	172 2	240 2	240 2	266 2	204	294 1	163 2	224 2	224 2	246 1	194 2	272	153
	90	280	280	301	256	331	214	267	267	285	247	314	205 2	253	253 2	267 2	238	294 1	196 2	238 2	238 2	248 2	226 2	273 1	186
	22	279	214	310	167	339	116	262	204	292	158	320 1	107 2	244 1	194 2	272 1	148	5 667	98 2	225 1	183 2	251 1	137 2	277	88
7000	80	280	252	310	205	339	155	264	241	293	196	321	146 2	246 2	231 2	273 1	186	300 1	137 2	227 2	220 2	252 1	176 2	277 1	127
000	85	284	284	311	244	339	194	270	270	294	235	321 1	185 2	255 2	255 2	274 2	225	300 1	176 2	238 2	238 2	253 2	214 2	278 1	165
	90	299	299	312	281	340	232	285	285	295	272	321	224 2	269	269 2	276 2	261	301 2	214 2	252 2	252 2	256 2	251 2	278 2	204
	22	287	230	317	176	345	118	569	220	588	167	326 1	109 2	250 2	210 2	278 1	156	304 1	100 2	230 1	197	256 1	146 2	280	06
0000	80	289	273	318	220	345	163	272	263	299	211	326 1	154 2	253 2	252 2	279 2	200	304 1	144 2	234 2	234 2	257 1	190 2	281 1	134
0000	85	299	299	319	264	346	207	284	284	301	255	326 1	198 2	267	267 2	280 2	243	305 1	188 2	249 2	249 2	258 2	231 2	281 1	178
	90	314	314	321	306	346	251	299	299	303	596	327	242 2	282	282 2	283 2	283	305 2	232 2	263 2	263 2	264 2	264 2	282	222
	75	293	246	323	185	350	120	275	234	303	175	330 1	111 2	255	223 2	282 1	165	307 1	102 2	234 2	211 2	259 1	154 2	283	91
000	80	297	294	324	235	350	170	279	279	304	225	330 1	161 2	261	261 2	283 2	214	308 1	51 2	242 2	242 2	260 2	203 2	283 1	141
0006	82	311	311	325	282	350	220	295	295	306	272	330	211 2	277	277 2	285 2	261	308 2	201 2	257 2	257 2	262 2	250 2	283 1	190
	90	326	326	328	328	350	269	310	310	310	310	330	260 2	292	292 2	292 2	292	308 2	250 2	271 2	271 2	272 2	272 2	284	237
Notes:																									

Gross cooling capacities -20 ton eFlex $^{\rm IM}$ variable speed - high capacity (60 Hz) Table 12.

												Ambient Temperature (°F)	Tempe	ratur	e (°F)									
				85	2					95						105					1	115		
	Ent		Enter	Entering Wet Bulb (°F)	et Bull	6 (°F)		_	Entering	ng We	Wet Bulb (°F)	(°F)		ū	Entering Wet Bulb (°F)	ı Wet	Bulb (°F)		Ente	ring V	Entering Wet Bulb (°F)	(°F)	
	DB		61	29	7		8	61	1	29		73		61		6 2		73		61		29	_	73
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC C	CAP S	SHC C	CAP S	SHC C/	CAP SHC	CAP	SHC	CAP	SHC	CAP	SHC
	22	224	153	253	127	284	101	212	145	240	120	271	93 2	200	137 2	227 1	112 25	256 86	5 188	130	213	104	241	78
0007	80	224	175	253	150	284	123	212	167	241	142	271 1	116 2	200	.59 2.	227 1	134 25	256 108	8 188	152	214	126	241	100
0001	85	224	196	253	172	284	145	213	189	241	164	271 1	138 2	201	181 2	228 1	156 25	256 130	0 188	173	214	149	241	122
	90	225	218	254	194	285	167	214	210	241	186	271 1	160 2	202	202	228 1	178 25	257 152	2 190	190	214	170	241	144
	22	242	172	272	140	305	105	229	164	258	132	287	97 2	215 1	156 2·	242 1	124 27	270 89	9 201	147	227	115	253	80
000	80	242	200	272	168	302	133	229	192	258	160	287 1	125 2	215 1	183 2	243 1	151 27	271 117	7 201	175	227	143	253	108
0000	85	243	226	273	195	302	160	230	218	259	187	287 1	153 2	217 2	210 2	244 1	179 2.	271 145	5 203	201	228	170	254	136
	90	247	247	273	223	303	188	237	237	259	215	288 1	180 2	225 2	225 2	244 2	206 27	272 172	2 213	213	229	198	254	164
	75	255	190	285	151	313	107	240	182	569	142	297 1	100 2	225 1	173 2	253 1	134 27	279 91	1 209	164	235	124	260	82
	80	255	223	285	184	313	141	241	215	270	175	297 1	133 2	226 2	205 2	254 1	167 28	280 125	5 211	195	236	158	261	116
0000	85	258	255	286	217	314	174	244	244	271	509	298 1	166 2	231 2	231 2	254 2	200 28	280 158	8 218	218	237	191	261	149
	90	270	270	287	250	314	207	258	258	272	242	298 1	199 2	245 2	245 2	256 2	233 28	281 191	1 231	231	239	222	262	182
	75	264	207	294	160	320	110	249	198	277	152	303 1	102 2	232 1	189 2	260 1	143 28	285 93	3 216	180	241	133	265	84
2000	80	266	244	294	199	320	149	251	235	278	190	304 1	140 2	235 2	226 2	261 1	181 28	285 132	2 218	216	242	172	265	123
000/	85	273	273	295	238	321	187	259	259	279	529	304 1	179 2	245 2	245 2	262 2	220 28	286 170	0 231	231	243	209	266	161
	90	287	287	297	274	321	226	274	274	281	266	304 2	218 2	260 2	260 2	264 2	256 28	286 209	9 244	244	246	246	266	200
	75	272	224	300	170	325	112	255	214	283	161	308 1	103 2	238 2	203 2	265 1	151 28	289 95	5 220	193	245	142	268	82
0008	80	274	266	301	214	325	156	259	257	284	205	308 1	148 2	242 2	242 2	266 1	196 28	289 139	9 226	226	246	186	268	129
0000	85	286	286	302	258	325	200	272	272	285	247	308 1	192 2	257 2	257 2	267 2	237 28	289 183	3 241	241	248	227	268	173
	90	301	301	305	299	326	244	287	287	288	288	308 2	235 2	271 2	271 2	271 2	271 28	289 227	7 254	254	255	255	268	217
	75	277	238	302	179	329	114	261	228	288	169	311 1	105 2	243 2	218 2	268 1	160 29	291 96	5 224	207	248	150	270	87
	80	282	282	306	228	329	163	566	266	288	219	311	155 2	251 2	251 2	269 2	209 29	291 146	6 234	234	249	199	269	136
0006	85	297	297	307	275	329	213	282	282	290	566	310 2	204 2	266 2	266 2	272 2	256 29	291 195	5 249	249	251	245	269	185
	90	312	312	312	312	330	262	296	296	297	297	311 2	253 2	279 2	279 2	280 2	280 29	291 242	2 261	261	261	261	270	231
Notes:																								

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities — 25 ton — standard efficiency (60Hz) Table 13.

							Ī					bient	Ambient Temperature (°F)	eratui	re (°F,	_			ŀ						
				ø	85					95						105						115			
	Ent		Enter	Entering Wet Bulb (°F)	et Bul	(°F)		ì	Enteri	ng We	Entering Wet Bulb (°F)	(°F)		ш	Entering	g Wet	Wet Bulb (°F)	(°F)		Ē	Entering Wet Bulb	g Wet	Bulb ((°F)	
	DB		61	9	29	7	73	19	1	6 7		73		61		29		73		61		6 2		73	
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP 9	SHC	CAP 9	SHC	CAP 5	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC
	75	244	174	275	142	308	109	231	166	261	134	293	101	218	158	246	126	275	92 2	203 1	149 2	230 1	117 2	256	82
2000	80	244	201	275	170	309	137	232	194	261	162	293	129	218	185	246	154	275 1	120 2	204 1	177 2	230 1	145 2	256 1	110
0000	85	245	229	276	197	309	164	232	221	262	190	293	156	219	213	247	181	276 1	147	205 2	202 2	231 1	172 2	257 1	138
	90	246	246	276	225	309	192	234	234	262	217	293	184	221	221	247	506	276 1	175 2	208 2	208 2	231 2	200	257 1	166
	75	262	198	294	157	327	114	248	189	278	149	309	105	232	180	261	139	586	7 96	216 1	171 2	242 1	129 2	267	85
6250	80	263	232	295	192	328	149	249	224	279	183	310	140	233	214	261	174	289 1	130	217 2	205 2	243 1	164 2	267 1	120
0520	85	264	264	295	226	328	184	250	250	280	218	310	175	235	235	797	508	290 1	165	219 2	219 2	243 1	198 2	268 1	.55
	90	269	269	296	261	328	218	258	258	280	252	310	500	245	245	263	243	290 2	200	231 2	231 2	244 2	233 2	268 1	189
	75	276	220	308	171	340	118	097	211	290	161	319	109	242	201	271	151	562	86	225 1	191 2	250 1	141 2	272	87
7	80	277	261	308	212	340	160	261	252	291	203	320	150	244	239	271	193	297 1	140	226 2	226 2	251 1	182 2	273 1	129
0067	85	280	280	309	253	341	202	265	265	292	244	320	192	249	249	272	234	298 1	182	234 2	234 2	252 2	224 2	273 1	170
	90	293	293	310	294	341	243	279	279	293	285	321	233	264	264	274	272	299 2	223 2	247 2	247 2	253 2	253 2	274 2	212
	75	286	241	317	183	348	121	897	231	298	173	326	111	250	221	277	162	302 1	100	230 2	211 2	255 1	151 2	275	68
0750	80	287	286	318	231	348	170	270	270	299	221	326	160	252	252	278	211	302 1	149	233 2	233 2	256 2	200	275 1	137
06/9	85	294	294	319	279	349	219	278	278	300	270	327	208	264	264	279	259	303 1	197	246 2	246 2	257 2	248 2	276 1	186
	90	311	311	321	321	350	267	296	296	302	302	328	257	278	278	282	282	303 2	246	259 2	259 2	260 2	260 2	277 2	234
	75	293	261	325	195	353	124	275	251	304	184	330	113	255	240	282	173	304 1	102	234 2	225 2	258 1	162 2	276	06
1000	80	296	296	326	250	354	180	278	278	302	240	331	169	259	259	283	526	305 1	158	239 2	239 2	259 2	217 2	277 1	146
7000	85	309	309	327	305	355	235	292	292	306	295	332	225	274	274	284	279	305 2	213 2	255 2	255 2	261 2	261 2	277 2	201
	90	325	325	330	330	356	290	308	308	310	310	332	280	588	586	588	586	306 2	268	267 2	267 2	266 2	266 2	277 2	256
	75	299	281	330	206	357	126	087	266	309	195	333	115	259	255	285	184	306 1	104	237 2	237 2	260 1	172 2	276	91
11250	80	304	304	331	268	358	189	285	285	310	257	334	178	566	266	786	246	306 1	166	247 2	247 2	261 2	234 2	277 1	154
06711	85	320	320	333	325	359	251	302	302	312	312	334	240	283	283	288	788	307 2	228	261 2	261 2	263 2	263 2	278 2	216
	90	337	337	338	338	360	313	318	318	317	317	335	302	297	297	295	295	307 2	290	273 2	273 2	273 2	273 2	279 2	271
Notes:																									

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity Notes: 1. 2.

Gross cooling capacities— 25 ton—high efficiency and high capacity (60 Hz) Table 14.

					2					9	1	nbient	Ambient Temperature (°F)	eratu	re (°F	105	Ľ					115			
	Ž L		Enter	Entering Wet Bulb (°F)	et Bul	р (°F)			Entering	ing W	Wet Bulb (°F)	(°F)		ш	Entering Wet Bulb (°F)	ng We	t Bulb	(°F)		ш	Entering	g Wet	Wet Bulb (°F)	(eF)	
	DB		61	9	29	7	73	61	1	9	29	73	~	61		9		73		61		67		73	
CFM	E)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC	CAP S	SHC
	75	275	189	310	157	345	122	260	180	293	148	327	113	244	170	276	138	308	103	228	161	. 257	128	586	93
0004	80	275	217	310	185	345	150	261	208	294	176	327	141	245	198	276	166	308	131	228	188	258	156	287	121
0000	85	276	244	310	213	345	178	261	235	294	203	328	169	245	225	277	193	308	159	576	216	258	183	287	149
	90	277	271	311	240	346	206	263	262	295	231	328	197	248	248	277	221	309	187	235	235	259	211	288	176
	75	296	213	330	172	363	126	627	203	312	162	344	117	260	192	292	151	322	106	242	182	271	140	298	96
0300	80	296	248	331	206	364	161	280	238	313	196	344	152	261	227	293	186	322	141	243	216	271	175	299 1	130
0520	85	298	281	331	241	364	196	282	271	313	231	345	186	264	260	293	220	323	176	246	246	272	500	299 1	165
	90	305	305	332	275	364	230	291	291	314	265	345	221	276	276	294	255	323	210	760	7 097	273	244	300	200
	75	310	235	344	184	374	129	767	224	324	174	353	119	271	213	302	163	330	109	251	202	279	151	305	26
7500	80	312	276	345	226	375	171	293	266	325	215	354	161	273	253	303	204	331	150	253	241	280	193	305 1	139
0067	85	315	315	345	267	375	212	298	298	326	257	354	202	281	281	304	246	331	192	263	263	281	234	306 1	181
	90	330	330	347	308	376	254	315	315	327	298	355	244	297	297	306	285	331	233	278	278	283	273	306	222
	75	321	256	353	196	382	131	301	245	332	185	360	121	279	233	309	174	335	111	257	219	285	162	309	66
0750	80	323	302	354	244	382	180	304	291	333	233	360	170	283	279	310	222	336	159	261	261	285	210	309	147
06/0	85	333	333	355	292	382	228	316	316	334	282	360	218	297	297	311	270	336	207	277	. 772	287	256	309	196
	90	349	349	357	338	383	276	332	332	337	327	361	566	312	312	315	315	336	255	291	291	291	291	310	244
	75	329	276	360	207	387	134	808	264	338	196	364	123	285	250	314	184	339	112	797	787	288	172	311	101
1000	80	332	328	361	262	387	189	312	312	339	251	364	179	291	291	315	239	339	167	271	271	789	227	311 1	156
0000	82	347	347	362	315	387	244	329	329	341	303	364	234	308	308	317	291	339	222	586	786	291	278	311	211
	90	364	364	366	366	388	299	345	345	345	345	365	289	324	324	324	324	339	277	300	300	301	301	312 2	292
	75	332	293	365	218	391	136	313	281	342	506	367	126	290	267	317	194	341	114	265	254	: 067	182	313 1	102
11250	80	341	341	366	280	391	198	322	322	343	268	367	187	301	301	318	256	340	176	278	278	291	240	312	164
11700	82	359	359	368	338	392	260	339	339	345	326	367	249	317	317	321	314	340	238	294	294	295	295	312 2	526
	90	374	374	375	375	393	323	354	354	355	355	368	308	331	331	332	332	341	295	306	306	307	307	312 2	282
Notes:																									

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities -25 ton eFlex $^{\text{\tiny TM}}$ variable speed - high capacity (60 Hz) Table 15.

											Am	bient T	empe	Ambient Temperature (°F)	(°F)									
				82						92						105					115	2		
	Ent	En	tering	Entering Wet Bulb (°F)) qıng	°F)		ш	ıterin	Entering Wet Bulb (°F)	Bulb	(°F)		Ent	Entering Wet Bulb (°F)	Vet Bu	(°F)			interi	Entering Wet Bulb (°F)	t Bulb	(°F)	
	DB	61		29		73		61		6 2		73		61		29	7	73	61	_	6 7		73	
CFM	(°F)	CAP SI	SHC C	CAP SF	SHC CA	CAP SI	SHC C	CAP S	SHC	CAP S	SHC	CAP SI	SHC C/	CAP SHC	C CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC
	75	268 18	186 3	303 15	155 34	342 1.	122 2	254 1	177 2	288 1	146	325 1	113 2:	239 168	8 271	136	307	104	224	158	254	127	288	94
0001	80		214 3		183 34	342 1	.50 2	255 2	205 2	288 1	173	325 1	141 2	240 195	5 272	164	307	132	224	186	255	155	288	122
0000	85		241 3	304 21	210 34	343 1	178 2	256 2	32 2	289 2	201	326 1	169 2	241 222	2 272	192	307	159	226	213	255	182	289	150
	90		268 3	305 23	238 34	343 20	205 2	258 2	58 2	89 2	229	326 1	96 2	245 245	5 273	219	308	187	233	233	256	210	290	178
	75	288 2:	210 3	325 17		364 1.	128 2	272 2	200 3	307 1	€ 09:	345 1	119 2	255 190	0 288	150	324	109	238	180	569	140	303	66
6250	80					365 10	163 2	73 2	235 3	308 1	.95	345 1	53 2	256 225	5 289	185	325	144	239	213	270	175	304	134
0520	85	292 2	278 3	326 23	239 36	366 19	198 2	276 2	268 3	309 2	229	346 1	188 2	259 258	8 290	219	326	178	244	244	271	209	305	168
	90		302 3		274 36	366 2:	232 2	288 2	288 3	310 2	264	347 2	223 2	274 274	4 291	253	327	213	259	259	273	243	306	203
	75			340 18		380 1	133 2	285 2	222 3	321 1	173	358 1	123 20	266 211	1 300	163	336	112	247	200	279	152	314	102
7500	80			341 22	225 38	380 1	175 2	287 2	261 3	322 2	215	359 1	165 26	269 251	1 301	204	337	154	250	240	281	194	315	144
0067	85	310 33			266 381		216 2	295 2	295 3	323 2	256	361 2	206 2	279 279	9 303	246	339	196	263	263	282	234	317	186
	90			345 30	306 38		258 3	313 3	313 3	326 2	396	362 2	248 29	297 297	7 306	285	340	238	280	280	286	274	318	227
	75	314 2	253 3			390 1	137 2	295 2	242 3	330 1	185	368 1	126 2.	275 229	308	174	344	115	254	218	586	163	321	105
0750	80	317 29	299 3				185 2	298 2	288 3	332 2	234	369 1	175 2	279 277	7 310	223	346	164	260	260	288	212	323	154
200	85				291 39	393 2:	234 3	314 3	314 3	334 2	280	371 2	224 29	296 296	6 312	269	347	213	279	279	291	258	325	203
	90			358 33			282 3	333 3	333 3	338 3	328	372 2	272 3:	315 315	5 317	317	349	262	297	297	298	298	326	251
	75	323 2	271 3		208 39	398 1	140 3	302 2	260 3	338 1	: 16:	375 1	129 28	281 248	8 315	185	320	118	760	236	291	174	326	108
1000	80	328 33	326 3	361 26	263 40	400 19	196 3	309 3	309 3	339 2	252	377 1	185 29	290 290	0 317	241	352	174	272	272	293	227	329	163
10001	85	347 34		364 31	316 40	401 2	251 3	329 3	329 3	343 3	305	378 2	241 3:	310 310	0 320	293	354	230	291	291	297	281	330	219
	90	368 30	368 3		370 40		307 3	350 3	3 3	50 3	350	380 2	296 33	330 330	0 331	331	356	283	311	311	312	312	333	271
	75	330 29	291 3	366 22	220 40		143 3	309 2	278 3	343 2	208	380 1	132 28	287 266	6 319	196	354	121	597	254	295	185	330	110
11250	80	340 34	340 3		282 40	407 20	206 3	321 3	321 3	346 2	268	382 1	195 3(301 301	1 322	256	357	184	281	281	298	243	332	173
11230	85			372 34		408 20	268 3	342 3	342 3	350 3	329	384 2	257 33	322 322	2 327	317	359	246	302	302	304	304	334	235
	90	383 38	383 3		384 41		328 3	364 3	364 3	364 3	364	386 3	316 34	343 343	3 344	344	362	305	323	323	323	323	337	293

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities—30 ton—standard efficiency (60Hz) Table 16.

						Ī					An	nbient	Ambient Temperature (°F)	eratu	re (°F	<u>. </u>		1							
				80	85					92	5					105	2					115			
	Fr		Ente	Entering Wet Bulb (°F)	et Bull	(°F)			Enter	ing We	Entering Wet Bulb	(°F)			Enteri	ng We	Entering Wet Bulb (°F)	(°F)			Entering Wet Bulb (°F)	ng Wet	: Bulb	(°F)	
	DB		61	9	29		73	61	1	29	7	73		61		29		73		61		67		73	
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC
	75	299	212	332	173	371	130	282	202	317	163	351	120	264	192	297	152	329	110	247	181	277	142	305	66
0009	80	300	245	336	206	371	164	283	235	318	196	351	154	265	225	298	186	329	143	247	214	278	175	306	132
0000	85	301	278	337	239	371	197	285	267	318	229	352	187	267	257	299	219	330	176	250	246	278	208	306	166
	06	305	305	337	272	372	230	291	291	319	262	352	220	276	276	588	252	330	210	261	261	279	241	307	199
	22	319	239	354	189	382	133	008	228	334	178	364	123	279	217	311	167	340	112	259	205	288	155	314	101
7500	80	320	281	355	230	386	175	301	270	335	219	364	165	281	257	312	208	340	154	261	245	588	197	315	142
0067	85	323	321	356	271	386	217	305	305	335	261	365	206	288	288	313	249	341	195	270	270	290	238	315	184
	06	338	338	357	313	387	258	322	322	337	302	365	248	304	304	315	289	341	237	285	285	292	277	315	225
	75	332	264	366	203	394	136	311	253	344	192	371	125	588	241	320	180	346	114	267	229	295	168	318	103
0000	80	334	312	367	252	395	186	314	300	345	241	371	175	293	288	321	229	346	164	271	271	596	217	318	152
0006	85	344	344	368	302	395	236	326	326	346	291	372	225	307	307	322	279	346	214	287	287	298	264	319	202
	90	361	361	370	349	395	285	343	343	349	338	372	274	323	323	326	326	346	263	305	302	302	302	319	251
	22	341	288	374	216	400	138	320	274	351	204	376	128	596	261	325	192	349	116	272	248	568	180	321	104
1050	80	346	343	374	274	400	196	325	325	351	262	376	186	303	303	326	250	349	174	282	282	300	237	320	162
001	85	361	361	376	332	400	254	342	342	353	317	375	243	321	321	329	304	348	232	298	298	305	291	320	219
	06	378	378	380	380	400	312	358	358	358	358	376	301	336	336	336	336	349	589	311	311	312	312	320	277
	22	349	309	379	229	404	141	326	562	322	217	379	130	301	282	329	204	351	118	276	569	301	191	322	106
1 2000	80	356	356	380	295	403	207	336	336	356	283	378	196	314	314	330	271	320	184	290	290	305	254	320	171
12000	85	374	374	382	357	404	274	353	353	329	345	377	262	330	330	333	331	349	250	305	305	306	306	319	237
	06	390	390	390	390	406	340	368	368	368	368	379	328	343	343	344	344	320	311	316	316	316	316	319	297
	75	354	331	383	242	407	144	331	318	358	229	381	133	302	304	331	217	352	120	280	280	305	203	322	108
12500	80	367	367	384	316	407	219	345	345	329	300	379	206	321	321	332	286	320	194	596	296	303	272	320	181
00001	85	384	384	387	384	408	293	361	361	363	363	380	281	337	337	336	336	320	268	310	310	310	310	319	255
	90	398	398	398	398	410	363	374	374	374	374	382	350	347	347	347	347	351	336	318	318	318	318	319	319
Notes:																									

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities—30 ton—high efficiency and high capacity (60 Hz) Table 17.

											Am	bient	Tempe	Ambient Temperature (°F)	(9°) e									
				85						95						105						115		
	Ent	ш	Entering Wet Bulb	g We	t Bulb	(°F)			interii	Entering Wet Bulb (°F)	t Bulb	(°F)		En	Entering Wet Bulb (°F)	Wet	gnlb (°F)		Ente	ring \	Entering Wet Bulb (°F)	lb (°F)	
	DB	61		67		73	~	61		67		73		61		29		73		61		29	_	73
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC	CAP SI	SHC CA	_	SHC C/	CAP SHC	C CAP	SHC	CAP	SHC	CAP	SHC
	22	325	526	366	188	410	147	308	215	347	177	389	137 2	289 2	204 32	325 16	166 36	366 125	5 269	193	304	. 154	343	115
0009	80	326	259	367	221	411	181	308	248	347	210	389	170 2	289 2	237 33	326 19	199 36	366 159	9 270) 226	305	187	344	148
0000	85	327	292	367	254	411	214	309	282	348	243	390 2	203 2	291 2	269 33	327 23	232 36	367 192	2 272	258	306	221	344	181
	90	329	324	368	287	412	247	313	313	349	276	390 2	237 2	297 2	297 33	328 26	265 36	367 225	5 281	. 281	306	254	345	215
	22	349	255	391	206	435	154	329	243	698	194	411 1	142	307 2	230 34	345 18	182 38	386 131	1 285	5 218	322	170	361	119
7500	80	350	596	392	247	435	196	330	284	370	235	411 1	184	309 2	271 3	346 22	223 38	387 173	3 287	, 258	323	211	362	161
0067	85	353	336	393	288	436	237	333	324	371	277	412 2	226	312 3	312 34	347 26	264 38	388 214	4 293	3 293	324	. 253	363	203
	06	365	365	394	330	437	279	348	348	372	318	413 2	267	329 3	329 34	348 30	306 38	389 256	6 311	311	326	293	364	244
	75	366	281	408	221	451	158	344	268	384	508	426 1	147	320 2	255 35	358 19	196 39	399 135	5 296	5 241	333	184	372	123
0000	80	368	329	409	271	452	209	346	316	385	259	427 1	197	323 3	303 35	359 24	246 4(400 185	5 300) 290	335	234	373	173
0006	85	374	374	410	321	453	258	355	355	386	308	428 2	247	335 3	335 36	361 29	296 40	401 235	5 315	315	337	282	374	223
	06	395	395	413	369	454	308	376	376	389	356	429 2	297	355 3	355 36	365 34	343 40	402 285	5 335	335	341	331	376	273
	22	378	306	420	236	463	163	355	293	394	223	436 1	151	329 2	277 36	368 2:	210 40	408 139	302	5 263	341	198	379	126
1050	80	382	361	422	294	464	221	359	348	396	281	438 2	209	335 3	334 36	369 26	268 40	409 197	7 312	312	343	256	381	185
1000	85	397	397	424	350	465	279	377	377	398	337	439 2	268	355 3	355 37	372 32	324 41	411 255	5 333	333	346	310	382	243
	90	419	419	428	407	466	337	398	398	403	394	440 3	326	376 3	376 37	378 37	378 41	412 313	3 354	354	355	355	384	301
	22	388	328	430	250	471	166	363	314	402	237	444 1	154	337 2	299 37	375 23	224 41	414 142	2 311	285	347	, 211	384	129
1000	80	394	393	431	316	473	233	371	371	404	303	445 2	221 3	348 3	348 37	377 29	290 41	416 208	8 326	326	349	274	386	196
17000	85	416	416	434	379	474	299	394	394	408	366	447	288	371 3	371 38	381 35	352 41	417 275	5 348	348	354	. 339	387	262
	06	439	439	440	440	475	366	417	417	417	417	448	351	393 3	393 39	394 39	394 41	419 338	8 370	370	370	370	390	324
	75	396	350	437	264	478	170	370	336	409	250	450 1	158	343 3	321 38	380 23	237 41	419 145	5 317	908 ,	351	223	388	132
12500	80	407	407	438	338	479	245	384	384	411	322	451 2	233 3	360 3	360 38	383 30	307 42	421 220	0 336	336	354	. 293	390	207
T 2200	85	431	431	443	408	480	320	408	408	416	395	452 3	307	384 3	384 38	388 38	381 42	422 295	5 359	359	361	361	391	282
	90	455	455	455	455	482	390	432	432	432	432	455	377 4	407 4	407 40	407 40	407 42	424 364	4 381	. 381	382	382	394	350
Noto:																								

Gross cooling capacities — 30 ton eFlex™ variable speed — high capacity (60 Hz) Table 18.

ID5 FOT Ag FMC EAP AB AB AB AB AB AB AB AB AB <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Am</th><th>Ambient Temperature (°F)</th><th>Temp</th><th>eratui</th><th>'e (°F)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>												Am	Ambient Temperature (°F)	Temp	eratui	'e (°F)									
FM Entering Met Builb (°F) Entering Met Builb (°F) Entering Met Builb (°F) Factor Met Builb (°F) A for a colspan="8">A for a colspan="8">Entering Met Builb (°F) A for a colspan="8">A for a					8	10					95						105					115			
61 67 73 61 73 61 67 73 61 73 61 73 61 67 845 CAP SHC		T T		Enteri	ng We	t Bulk	(°F)			Enteri	ng We	t Bulb	(°F)		Ш	nterin	g Wet	Bulb	(°F)	ū	Entering Wet Bulb (°F)	g Wet	Bulb	(°F)	
(4) CAP SHC CAP SHC <th></th> <th>1 B</th> <th>9</th> <th></th> <th>.9</th> <th>2</th> <th>7.</th> <th></th> <th>6]</th> <th></th> <th>67</th> <th></th> <th>73</th> <th></th> <th>61</th> <th></th> <th>67</th> <th></th> <th>73</th> <th>61</th> <th></th> <th>62</th> <th></th> <th>73</th> <th></th>		1 B	9		.9	2	7.		6]		67		73		61		67		73	61		6 2		73	
7. 3.2. 1.2. 3.6. 1.6. 4.0. 1.4. 3.0. 2.1. 3.6. 1.8. 4.0. 1.1. 3.0. 2.0. 3.6. 1.0. 3.6. 1.0. 3.6. 1.0. 3.0. 2.0. 3.6. 1.0. 3	CFM	(°F)		SHC		_		SHC		SHC								_			_	CAP S	SHC	CAP S	SHC
80 322 257 362 219 405 179 305 247 344 209 385 169 286 268 236 259 268 355 198 365 199 265 367 367		75	321	224	362	186	405	145	305	214	343	176								П		304 1	154	344	115
45 325 363 363 363 466 212 307 214 385 286 385 385 385 385 385 385 385 385 385 385 386 386 387 387 387 389 389 389 388 389 388 430 387 387 389 388 430 387 387 389 388 430 387 389 388 389 388 430 387 389 388 389 388 389 388 389 388 430 389 389 388 430 389 386 380 380 389 388 389 388 389 388 389 389 388 389	0000	80	322	257	362	219	405	179	305	247	344	209	385		•				-			305 1	188	344	148
90 326 326 362	0000	82	323	290	363	252	406	212	307	279	345	242								 		306 2	221	345	182
7. 3.44 2.52 3.86 2.03 4.29 1.52 3.64 2.03 4.04 1.52 3.04 1.05 3.04 2.05 4.04 1.05 3.04 2.05 3.04 3.05 2.04 3.05 3.04 3.04 3.05 3.04 3		96	326	323	363	285	406	245	310	310	345	275										307 2	254	346	215
80 346 249 387 245 430 193 327 283 366 234 407 183 307 200 344 224 381 284 387 286 430 225 408 224 311 311 345 284 387 286 430 282 387 387 286 400 266 388 328 347 365 264 386 27 380 286 387 409 266 388 387 387 387 388 387 400 266 388 387 387 400 266 388 387 400		7.5	344	252	386	203	429	152	325	241	365	192	407									322 1	120	361	120
48 349 348 349 348 341 277 345 348 347 349 368 347 348 349 340 440 340	7500	8	346	294	387	245	430	193	327	283	366	234	407						•			323 2	212	362	162
90 361 361 389 389 431 477 445 445 445 445 445 445 445 446	0000	82	348	334	387	286	430	235	330	323	367	275										324 2	253	363	203
55 361 278 402 219 445 156 340 267 380 207 425 146 318 267 380 207 425 146 318 361 367 426 367 343 314 381 257 429 318 367 368 369		6	361	361	389	328	431	277	345	345	368	317										326 2	293	364	245
80 363 326 403 269 446 206 343 31 321 403 364 365 446 206 343 31 321 403 324		7.5	361	278	402	219	445	156	340	267	380	207	422									334 1	184	372	124
85 370 370 405 318 447 256 353 383 307 424 246 334 334 359 354 354 359 354 354 359 365 407 366 447 306 373 373 386 354 425 256 354 354 365 400 235 316 336 367 367 367 367 366 367 367 367 367 367 367 368 367 368 367 367 367 367 367 367 367 367 367 367 368 367 368 367 368 368 369	0000	8	363	326	403	569	446	206	343	314	381	257	423									335 2	234	374	174
90 391 391 497 366 447 306 373 373 386 354 425 354 354 354 364 342 364 364 369 373 368 364 405 369 373 368 364 369 374 368 374 369 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 375 376 376 377 377 470 373 376 375 376 375 376 375 376 375 376 377 377 377 470 377 377 377 377 377 377 377 377 377 377 377 377 377 377 378 378 378 378 378 378 378 378 378 378 378 378	0006	82	370	370	405	318	447	256	353	353	383	307										337 2	282	375	224
75 373 304 414 234 456 160 351 289 392 282 432 149 366 210 406 135 346 352 489 322 483 368 266 353 368 268 408 137 312 305 346 375 345 345 368 353 368 268 368 368 408 137 312 312 312 368 368 368 368 468 468 478 373 373 373 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 375 374 375 374 375 374 375 374 375 374 375 375 375 374 375		90	391	391	407	366	447	306	373	373	386	354										341 3	331	376	273
80 377 359 416 292 457 219 355 346 380 433 333 368 268 433 333 368 268 409 373 312 375 346 352 436 352 368 353 353 368 468 468 468 277 373 373 373 373 373 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375 374 375		7.5	373	304	414	234	456	160	351	588	390	222	432									342 1	198	380	127
85 393 418 448 458 277 373 373 375 436 435 456 355 357 377 377 410 255 334 90 415 415 422 405 335 395 395 395 326 436 375 375 377 377 410 313 355 80 415 415 426 164 359 312 436 153 375 375 377 410 313 355 80 389 425 426 467 367 406 364 441 220 346 346 369	1010	8	377	359	416	292	457	219	355	346	392	280										344 2	256	382	185
90 415 415 422 405 435 395 395 392 436 441 220 346 346 346 441 220 346 346 346 441 244 246 346 346 442 286 369 369 369 349 346 346 347 347 346 347 347 346 347 347 346 347 346 346 347 346 347 347 347 347 348 348 348 348 348 348 348 348 348 348 348 348 348 348 348 348	7070	82	393	393	418	348	458	277	373	373	394	335										347 3	311	383	243
75 383 3.25 4.25 4.25 4.35 4.		90	415	415	422	405	459	335	395	395	399	392										356 3	356	384	301
80 389 425 314 466 231 367 367 367 441 220 346 347 347 347 347 347 347 347 348 348 348 348 348 348 348 348 348		75	383	325	423	248	465	164	329	312	398	235	439									348 2	211	385	130
85 411 418 428 377 467 297 390 390 404 364 442 286 369	12000	80	389	389	425	314	466	231	367	367	400	302										350 2	274	387	196
90 434 435 435 435 435 435 435 393 393 393 417 377 370 75 391 348 436 413 413 413 414 444 449 350 341 320 447 321 359 359 381 417 144 317 445 156 341 317 419	17000	82	411	411	428	377	467	297	390	390	404	364										355 3	339	388	263
75 391 348 430 261 471 168 366 334 404 249 445 156 341 320 437 378 236 417 144 317 80 402 402 402 402 402 407 320 447 231 359 383 381 30 419 317 85 426 436 473 317 405 405 412 393 448 306 383 383 380 420 294 360 90 449 449 450 450 478 429 450 450 406 406 406 423 363 382		90	434	434	435	435	468	364	413	413	414	414										371 3	371	390	325
80 402 402 426 432 333 472 243 381 381 407 320 447 231 359 359 381 307 419 219 337 85 426 426 436 450 450 450 388 428 428 428 450 450 376 465 465 450 369 383 383 387 380 420 294 360 90 449 449 450 450 450 378 388 428 428 429 450 376 450 405 406 406 423 363 382		75	391	348	430	261	471	168	366	334	404	249	445									352 2	224	389	132
85 426 426 436 406 473 317 405 405 412 393 448 306 383 387 380 420 294 360 90 449 449 450 450 475 388 428 428 429 429 450 376 405 405 406 406 423 363 382	12500	80	402	402	432	333	472	243	381	381	407	320							•			355 2	294	390	207
449 449 450 450 475 388 428 428 429 450 450 376 405 405 406 406 423 363 382 3	00661	82	426	426	436	406	473	317	405	405	412	393										361 3	361	392	282
		96	449	449	450	450	475	388	428	428	429	429										382 3	382	394	350

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity Notes: 1. 2.

Gross cooling capacities - 40 ton - standard efficiency (60Hz) Table 19.

											Amk	ient	Temp	Ambient Temperature (°F)	re (°F	ت.								
				8	35					92						105						115		
	Fut	Ш	Entering W		et Bulb (°F)	р (°F	(ш	nterin	Entering Wet Bulb (°F)	t Bulk	(°F)		E	terinç	Entering Wet Bulb (°F)	Bulb	(°F)		Ente	Entering Wet Bulb (°F)	Net I) qıns	۰F)
	DB	61	1	9	57	73	3	61		67		73		61		6 2		73		61		29		73
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP 9	SHC	CAP 9	энс (CAP S	знс с	CAP SI	знс с	CAP SI	SHC CAP	NP SHC	C CAP	P SHC	IC CAP	P SHC
	22	368	289	944	238	498	182	380	280	426	227	475	172	360 2	269 4	404 2	216 4	449 10	161 339	9 258	8 380	0 205	12 421	1 149
0000	80	399	333	447	282	498	227	381	323	427	272	475	217	361 3	313 4	404 2	261 4	449 20	206 340	10 302	2 380		249 422	2 194
0000	85	400	377	447	326	498	271	382	365	427	316	475	261	363 3	354 4	405 3	305 4	450 2	250 343	13 342	2 381	1 293	3 422	2 238
	90	405	405	448	370	498	315	389	389	428	359	476	305	373 3	373 4	406 3	349 4	450 29	294 356	6 356	6 382	2 337	17 423	3 282
	22	425	326	474	260	524	190	405	316	451	249	498	179	382 3	304 4	426 2	238 4	470 10	167 359	9 292	2 399	9 225	5 438	8 155
0000	80	426	381	475	315	524	245	406	371	452	305	499	235	384 3	356 4	427 2	293 4	470 23	223 361	344	4 400	0 281	11 439	9 210
10000	82	430	430	476	370	525	301	411	411	453	360	499	290	390 3	390 4	428 3	348 4	471 2	278 370	0 370	0 401		336 439	9 266
	90	447	447	477	425	525	356	430	430	454	415	200	345	411 4	411 4	430 4	401 4	471 33	334 391	1 391	1 403		386 440	0 321
	75	444	361	493	281	541	196	422	350	468	569	513	184	398	338 4	441 2	257 4	482 1	172 37;	,2 325	5 412	2 244	448	8 159
1 2000	80	447	423	494	347	541	262	425	412	469	336	514	251	402 3	399 4	442 3	323 4	483 23	239 37	7 377	7 413	3 311	.1 449	9 226
12000	85	457	457	495	413	542	329	438	438	471	402	514	318	418 4	418 4	443 3	390 4	483 30	305 395	395	5 414	4 374	449	9 292
	90	481	481	498	474	543	395	462	462	474	463	515	384	440 4	440 4	448 4	448 4	484 3	371 416	.6 416	6 419	9 419	.9 450	0 358
	22	459	362	205	300	223	200	435	381	481	288	523	189	409 3	365 4	452 2	276 4	491 1	176 382	352	2 421	1 263	3 455	5 163
7	80	464	464	208	377	553	278	441	441	482	366	524	797	416 4	416 4	453 3	353 4	491 2	254 392	392	2 422	2 340	10 455	5 241
14000	82	482	482	209	454	554	356	462	462	484	437	524	344	439 4	439 4	455 4	424 4	492 33	332 414	414	4 425	5 410	.0 456	6 318
	90	202	507	515	515	554	433	486	486	490	490	525	421	462 4	462 4	463 4	463 4	492 4(409 43	5 435	5 435	5 435	456	6 395
	22	470	422	212	319	561	205	445	409	490	307	530	193	419 3	395 4	460 2	294 4	497 18	181 391	1 381	1 427	7 281	459	9 167
16000	80	478	478	518	407	561	294	455	455	491	395	531	787	431 4	431 4	461 3	382 4	497 20	269 406	904 90	6 428	365	92 460	0 256
7000	85	503	503	521	488	562	382	480	480	494	476	531	370	455 4	455 4	464 4	462 4	497 3	358 428	8 428	8 433	3 433	3 460	0 344
	90	528	528	529	529	562	470	504	504	202	505	532	459	478 4	478 4	478 4	478 4	498 4	442 447	17 447	7 448	8 448	18 460	0 423
	22	479	452	272	337	267	209	454	439	497	325	236	197	427 4	425 4	466 3	312 5	501 18	185 397	7 397	7 432	2 298	8 463	3 171
0000	80	492	492	526	436	268	309	470	470	498	421	236	297	444 4	444	467 4	403 5	501 28	284 417	7 41	7 433		388 462	2 270
Топо	85	519	519	530	526	268	409	495	495	203	503	536	397	468 4	468 4	472 4	472 5	501 38	384 439	9 439	9 439	9 439	9 462	2 369
	90	544	544	544	544	268	504	518	518	519	519	537	486	489 4	489 4	490 4	490 5	501 4	472 456	6 456	456	5 456	99 462	2 456
Note:																	1		1					

Gross cooling capacities — 40 ton — high efficiency and high capacity (60 Hz) Table 20.

											Am	bient	Ambient Temperature (°F)	eratu	re (°F										Г
				œ	85					95						105						115			
	±u±		Enter	Entering Wet Bulb (°F)	et Bul	р (°F)		_	Enteri	Entering Wet Bulb	t Bulb	(°F)			nterir	Entering Wet Bulb (°F)	Bulb	(°F)		面	Entering Wet Bulb (°F)	g Wei	: Bulb	(°F)	
	0B	9	61	9	29	7	73	61	1	67		73	-	61		6 2		73		61		6 2		73	
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP 5	SHC	CAP S	SHC	CAP S	SHC	CAP	SHC	CAP	SHC
	75	423	302	474	250	230	195	403	291	453	239	909	184	381	279	429	, 722	479 1	173	359 2	797	403	215	450	160
0000	80	424	346	475	294	530	240	404	335	453	283	909	529	382	323	429	271	479 2	217	360	311 4	404	259	450	205
0000	85	425	390	475	338	530	284	405	378	454	327	202	273	384	366	430	315	480 2	261	362	353 4	405	303	451	249
	90	430	430	476	382	530	328	414	414	454	371	207	317	396	396	431	359	481	306	378	378 4	406	347	452	293
	75	452	339	504	273	259	203	429	327	480	261	532	192	405	315	453	249	503 1	179	380	302 4	425	236	470	166
7	80	453	394	202	328	559	258	431	382	481	317	533	247	407	370	455	304	503 2	235	382	355 4	426	291	471	222
попот	85	457	448	909	383	559	314	436	435	482	372	533	303	415	415	456	329	504	290	394	394 4	427	346	472	277
	90	477	477	202	438	260	369	458	458	484	427	534	358	438	438	458 ,	413	505	346 4	416 4	416 4	430	399	472	332
	75	473	374	272	294	222	208	449	362	499	282	549	197	422	349	470	697	517 1	185	395	335 4	439	255	483	171
1,000	80	475	438	526	360	578	275	452	426	501	348	220	264	427	412	472	335	518 2	251 4	400	398	441	321	484	238
12000	85	488	488	528	426	578	342	468	468	502	414	220	330	446	446	474	401	519	318 4	422 4	422 4	443	386	484	304
	90	514	514	531	490	579	408	494	494	206	478	551	396	471	471	478	464	520	384 4	446 4	446 4	448	448	485	370
	75	488	407	540	313	290	213	463	395	513	301	561	202	436	378	483	788	527 1	189 4	407	364 4	450	274	491	176
17000	80	493	482	541	390	290	291	470	469	514	378	561	280	444	444	484	365	528 2	797	419 4	419 4	451	351	492	253
000+T	85	516	516	544	468	591	368	495	495	517	452	295	357	471	471	487	438	529	344 4	444	444	455	424	493	330
	90	543	543	549	541	591	445	521	521	524	524	562	434	496	496	497	497	530 4	421 4	468 4	468 4	469	469	494	408
	75	501	437	225	332	665	218	475	423	523	319	269	706	446	409	492	306	535 1	194 4	416 3	394 2	457	262	497	180
16000	80	510	510	553	420	299	306	488	488	525	408	269	295	463	463	493	394	535 2	282 4	436 4	436 4	459	376	498	268
попот	85	539	539	929	504	299	395	516	516	529	491	269	383	490	490	498 ,	477	536	370 4	461 4	461 4	465	462	498	356
	90	266	266	292	267	009	483	542	542	543	543	220	471	515	515	516	216	537 4	454 4	484 4	484 4	485	485	200	439
	75	511	467	099	350	909	222	485	454	531	338	275	211	455	439	498	324	540 1	198 4	424 4	423 4	463	310	502	184
18000	80	528	528	295	449	909	322	202	505	533	435	575	310	478	478	200	418	540 2	767	449 4	449 4	466	403	205	283
10000	85	557	557	999	543	909	421	533	533	538	530	575	409	202	202	202	202	540 3	396	474 4	474 4	475	475	502	382
	90	584	584	285	585	209	515	258	558	559	559	929	205	529	529	230	230	542 4	488	7 96	7 964	497	497	504	473
Notes.																									l

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities — 40 ton eFlex™ variable speed — high capacity (60 Hz) Table 21.

							-				¥	ופוור	בווום	Ambient Temperature (* r.)				-						
				82						92						105					115	2		
	T T	Ш	nterin	Entering Wet Bulb (°F)) qıns	۰F)		ū	Entering	g Wet	Wet Bulb (°F)	(°F)		Ent	ering ∿	Entering Wet Bulb (°F)	(°F)		_	nteri	ng We	Entering Wet Bulb (°F)	(°F)	
	DB	61		29		73		61		6 2		73		61		29	_	73	61		29		73	3
CFM	(°F)	CAP 9	SHC	CAP SI	SHC C	CAP S	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC C	CAP SHC	C CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC
	22	418	, 662	468 24	247 5	522 1	192	398 2	7 887	447 2	237	500 1	182 3	378 277	7 425	226	475	171	358	597	402	214	449	160
0008	80	418	343	468 29	291 5	522 2	237	399	332 4	448 2	281	500 2	226 3	379 321	1 426	270	475	216	359	310	403	259	449	204
0000	85	420	386	469 33	335 5	522 2	281 4	401 3	375 4	448 3	325	500 2	271 3	381 364	4 426	314	476	260	361	353	403	303	450	249
	90	426	426	470 3	379 5	523 3	325 4	411 4	411 4	449 3	369	501 3	315 3	394 394	4 427	358	477	304	378	378	405	347	451	293
	75	445	988	497 2	270 5	549 1	7 661	424 3	325 4	474 2	259	525 1	189 4	401 313	3 449	247	498	178	378	301	423	235	469	166
1000	80	447	391	498 3;	325 5	550 2	255	426 3	378 4	475 3	314	526 2	245 4	404 366	5 450	303	499	233	381	354	425	291	470	222
10001		452	444	499 38	380 5	550 3	310 4	432 4	429 4	476 3	369	526 3	300 4	413 413	3 452	358	200	289	394	394	426	346	471	277
	90	472	472	500 4	434 5	551 3	365 4	455 4	455 4	478 4	422	527 3	355 4	436 436	5 454	411	200	344	417	417	429	398	471	332
	75	465	371	517 29	290 5	567 2	205	442 3	358 4	493 2	279	541 1	195 4	418 346	994 9	797	513	183	394	332	438	255	482	171
1 2000	80	469	434	518 3	356 5	567 2	272 4	447 4	422 4	494 3	345	542 2	261 4	423 410	0 467	333	514	250	399	396	440	321	483	238
12000	85	483	483	520 4	422 5	568 3	338 4	464 4	464 4	496 4	410	542 3	327 4	444 444	4 470	397	514	316	422	422	442	384	483	304
	90	209	209	523 48	486 5	568 4	404	490 4	490	500 4	474	543 3	393 4	469 469	9 474	462	515	382	446	446	448	445	484	370
	22	481	401	531 3:	310 5	579 2	210 4	457 3	389	506 2	367	552 1	199 4	432 376	5 478	286	523	188	406	362	449	273	490	176
1,4000		487	478	532 38	387 5	579 2	287	465 4	460	507 3	375	553 2	277 4	442 442	2 480	363	523	265	419	419	450	349	491	253
T 4000		511	511		460 5	579 3	364 4	490 4	490	510 4	449	553 3	354 4	468 468	8 483	436	524	342	444	444	454	423	492	330
	90	238	538	541 5.	532 5	580 4	441	517 5	517	519 5	517	553 4	429 4	494 494	494	494	524	416	468	468	469	469	492	403
	22	493	432	542 3;	328 5	588 2	214 4	469 4	420	516 3	317	561 2	204 4	442 406	5 487	304	230	192	415	392	456	291	497	180
16000	80	202	202	543 4:	415 5	588 3	303 4	484 4	484	517 4	403	560 2	292 4	460 460	0 489	388	530	280	436	436	459	374	497	268
10001		533	533	547 49	499 5	587 3	390	511 5	511	522 4	487	560 3	380 4	487 487	7 494	474	530	369	462	462	464	460	497	354
	90	529	559		560 5	588 4	474	537 5	537	537 5	537	561 4	463 5	512 512	2 513	513	531	450	484	484	485	485	498	437
	75	203	463	220 3	346 5	595 2	219	478 4	450	523 3	335	567 2	208 4	451 436	5 493	322	236	197	424	421	462	309	502	184
1000		522	525	552 4	441 5	594 3	318	500 5	200	525 4	428	266 3	307 4	476 476	5 496	415	535	296	449	449	465	401	501	283
10000	85	551	551	557 53	537 5	593 4	417	528 5	528	531 5	523	565 4	404 5	502 502	2 504	503	535	389	475	475	475	475	501	375
	90	275	575	576 5	576 5	594 5	209	551 5	551	552 5	552	565 4	497 5	525 525	5 525	525	535	484	495	495	496	496	501	471

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities - 50 ton - standard efficiency (60Hz) Table 22.

											Amp	lent	emb	Ambient Temperature (.е (°F,									
				85	ıc					95						105					115	2		
	Fnt	Ш	Entering W		et Bulb (°F)	(°F)	_	됴	terin	Entering Wet Bulb (°F)	Bulb	(°F)		Ent	ering	Entering Wet Bulb (°F)	_։) գլու	F)	Ш	Entering	ng We	Wet Bulb	(°F)	(
	DB	61	1	49	_	73	~	61		6 2		73		61		29		73	61	1	6 7		73	3
CFM	(°F)	CAP	SHC	CAP	SHC	CAP 9	SHC	CAP 5	SHC	CAP S	SHC	CAP S	SHC	CAP SI	SHC CA	CAP SHC	C CAP	P SHC	CAP	SHC	CAP	SHC	CAP	SHC
	75	203	365	263	300	625	529	480	352	536 2	286	594 2	216 4	453 33	338 50	506 272	2 561	202	426	324	475	257	524	186
1000	80	504	420	564	355 (624	285	481 ,	407	537	342	594 2	272 4	455 39	393 20	507 327	7 561	257	427	379	476	312	524	242
70000	85	202	473	564	410	625	340	484	460	538	397	595	327 4	458 44	446 50	508 382	2 561	313	432	431	477	367	525	297
	90	515	515	292	465	625	396	, 964	496	239 4	452	965	382 4	475 47	475 51	510 437	7 562	368	452	452	478	423	525	352
	75	232	411	262	327 (654	237	209	397	265	313 (620 2	223 4	479 38	382 53	532 298	8 583	3 208	448	366	496	282	542	192
12500	80	537	478	296	396	654	307	511 '	463	999	382 (621 2	293 4	482 4	447 53	533 367	7 583	3 278	452	431	498	351	542	262
12300	85	544	544	265	464	655	376	519	519	2 299	451 6	621	362 4	494 49	494 53	534 435	5 584	347	468	468	499	420	543	331
	06	269	569	299	533	655	445	546	546	570	518	622 4	431 5	520 5	520 53	538 500	0 584	416	492	492	503	484	543	400
	75	258	453	219	351 (672	243	, 629	439	285	337 (989	229 4	497 42	421 54	549 321	1 596	5 214	464	402	511	305	552	197
1 5000	80	263	532	618	434 (673	327	534	517	7 985	420	637	313 5	504 50	501 55	550 404	4 597	, 297	471	471	512	388	553	280
00000	85	579	579	619	517	673	410	554	554	588	502 (638	395 5	527 52	527 55	552 482	2 597	380	496	496	515	464	553	363
	06	609	609	624	594	674	492	283	583	593	226	7 889	478 5	553 5	553 55	559 559	9 298	3 462	521	521	522	522	554	446
	75	275	490	632	375 (982	249	545 ,	474	298	360	647	234 5	511 45	457 56	560 344	4 605	219	476	440	520	327	260	202
17500	80	583	583	633	471 (685	346	554	554 (7 009	457 6	648	332 5	522 52	522 56	562 441	1 605	316	491	491	521	424	260	299
000	85	609	609	989	295	989	443	585	582 (603	246 (648 4	428 5	551 5	551 56	566 529	909 6	5 412	517	517	526	511	260	395
	90	639	639	644	644 (989	539	610	610 (612 (612 (649	525 5	578 57	578 57	578 578	8 606	505	541	541	542	542	260	483
	75	289	528	644	398	694	254	222	512 (€ 809	383 (2 5 5 5	240 5	522 49	495 56	998 699	6 611	224	486	476	527	349	564	207
00000	80	601	601	645	208	694	365	572	572 (610 4	493 (655	350 5	541 54	541 57	571 470	0 611	334	202	202	529	451	564	317
2000	85	632	632	649	610	694	476	603	603	614	294 (655 4	461 5	269 56	269 57	576 576	6 611	445	533	533	535	535	263	427
	90	662	662	662	662	695	582	630	630	631 (631 (929	567 5	595 59	595 59	595 595	5 612	545	554	554	555	555	564	525
	75	009	266	652	420	701	260	295	549 (919	405 (661 2	245 5	531 53	531 57	575 388	8 616	5 229	494	494	532	371	268	212
22500	80	619	619	654	237	701	384	289	289 (617	521 (661	369	556 55	556 57	577 503	3 616	353	519	519	534	483	267	336
77700	85	650	650	099	. 29	701	208	619	619	624 (624 (7 099	493 5	583 58	583 58	585 585	5 615	5 477	544	544	544	544	266	454
	90	629	629	089	089	702	622	645	645 (646 6	949	962	9 209	9 209	9 209	209 209	7 616	587	263	563	263	563	267	267
Notes:							l																	

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities—50 ton—high efficiency and high capacity (60 Hz) Table 23.

											Am	bient .	Ambient Temperature (°F)	ratur	e (°F)										
				Ø	85					92						105						115			
	Fnt		Enter	Entering Wet Bulb (°F)	et Bul	6 (°F)			Enteri	Entering Wet Bulb	t Bulb	(°F)		ш	ıterin <u>ç</u>	y Wet	Entering Wet Bulb (°F)	°F)		Ent	tering	Entering Wet Bulb (°F)	ı₀) qın	ت. ا	Π
	DB		61	9	29	73	8	61	_	67		73		61		6 2		73		61		29		73	Π
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC C	CAP S	SHC C	CAP S	SHC C/	CAP SHC	IC CAP	P SHC	IC CAP	P SHC	C CAP	SHC	٠,
	75	208	368	268	302	633	233	483	354	540	288	602 2	219 4	455 3	339 5	510 2	274 56	568 205	15 427	7 324	477	7 258	3 531	189	l
1000		509	423	269	357	633	288	484	409	541	344	602 2	275 4	457 3	394 5	511 3	329 56	568 260	0 428		378 479	9 314	1 532	245	
T 0000	82	511	476	570	412	633	344	487	462	542	399	603	330 4	461 4	448 5	512 3	384 56	569 316	6 433	3 432	32 480	0 369	9 533	301	
	90	522	522	571	467	634	399	502	502	544	454	604	386 4	480 4	480 5	514 4	439 57	570 371	1 456		456 482	2 422	2 534	356	
	75	540	413	601	329	664	242	512	398	220	315	631 2	228 4	481 3	383 5	536 3	300 26	593 213	3 449	9 367	57 501	1 284	1 553	197	
1250	80	543	3 480	602	398	999	311	515	465	572	384	632 2	297 4	485 4	449 5	538 3	369 56	594 282	454	4 432	32 502	2 353	3 554	266	
12300	85	549	549	604	467	999	380	525	525	573	453	633	367 5	500 5	500 5	540 4	438 59	596 351	1 473	3 473	73 504	4 419	9 226	336	
	06	577	, 577	209	534	299	449	554	554	222	519	634 4	436 5	528 5	528 5	544 5	503 56	597 421	1 500		200 209	9 487	7 557	405	
	75	263	3 455	624	354	685	249	533	439	591	340	649	234 5	500 4	421 5	554 3	324 60	609 219	9 466		404 516	9 307	295 2	203	l
1		268	3 535	625	437	989	332	539	519	592	422	651 3	318 5	507 5	503 5	556 4	407 6:	611 302	12 476	6 476	76 518	8 390) 569	286	
13000		588	3 588	628	517	289	415	263	563	262	505	652 4	401 5	535 5	535 5	560 4	485 6:	613 386	504		504 522	2 468	3 571	369	
	06	620) 620	633	599	689	498	594	594	602	584	654 4	484 5	564 5	564 5	567 5	267 6:	614 469	69 533		533 534	4 534	4 572	451	
	75	581	. 493	640	378	200	255	549	477	909	363	663 2	241 5	515 4	459 5	567 3	347 62	621 225	5 479	9 441	11 527	7 330	222	209	
17500		589	288	642	475	701	352	260	260	809	460	664	338 5	531 5	531 5	570 4	440 62	623 322	2 499	9 499	99 530	0 422	579	306	
11,300	82	621	. 621	646	267	702	449	593	593	612	551	7 999	435 5	562 5	562 5	575 5	534 62	625 419	9 529		529 536	6 516	5 581	403	
	06	653	8 653	929	929	704	545	625	625	979	979	899	527 5	593 5	593 5	594 5	594 62	627 510	.0 558	8 558	58 559	9 559	583	493	
	75	262	5 531	653	401	711	261	295	514	617	386	672 2	246 5	527 4	497 5	577 3	370 62	629 231	1 490	0 478	8 535	5 353	3 584	214	l
0000		612	612	655	507	712	372	583	583	619	491	674 3	357 5	551 5	551 5	580 4	474 63	632 342	.2 517		517 539	9 455	5 587	325	
70007	82	646	646	661	615	713	482	617	617	979	299	675 4	468 5	584 5	584 5	588 5	582 63	633 452	2 548		548 549	9 549	9 288	430	
	06	629	629 (089	089	715	286	649	649	650	920	678 5	571 6	614 6	614 6	615 6	615 63	636 554	577	7 577	77 578	8 578	3 592	537	
	75	909	92 9	662	424	719	267	573	552	625	409	2 089	252 5	537 5	534 5	584 3	392 63	636 236	902 9		500 541	.1 375	2 589	220	l
יישרר	80	632	632	999	541	721	391	602	602	629	525	682	377 5	568 5	568 5	589 5	207 63	638 361	1 532		532 546	6 488	3 592	344	
00622	85	299	799 ,	673	663	721	515	989	989	638	928	683 4	495 6	601 6	601 6	602 6	602 64	640 478	8 563		563 564	4 564	1 594	459	
	06	700) 700	701	701	724	630	899	899	699	699	989	615 6	631 6	631 6	632 6	632 64	644 598	8 592		592 593	3 593	3 599	280	
Notes:																									1

Gross cooling capacities — 50 ton eFlex™ variable speed — high capacity (60 Hz) Table 24.

												Ambient Temperature (°F)	Tempe	ratur	e (°F)				_					
				œ	85					95						105					1;	115		
	T T		Ente	Entering Wet Bulb (°F)	et Bul	(°F)			Enteri	ng We	Entering Wet Bulb (°F)	(°F)		Ē	Entering		Wet Bulb (°F)	F)		Enter	ing Wa	Entering Wet Bulb	(°F)	
	DB		61	9	29	73	8	61	1	6 2		73		61		29		73	9	61	9	29	73	_
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC C	CAP S	SHC C/	CAP SHC	IC CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC
	75	514	1 371	925	306	644	238	491	329	220	293	615 2	225 4	466 3	345 5.	522 279	.6 583	3 211	440	331	493	597	551	197
1000		515	5 426	222	361	644	293	492	413	551	348	615 2	280 4	468 4	400 5	523 335	5 584	1 267	442	386	494	321	551	253
1000	85	517	7 481	222	416	644	349	495	468	552	403	615	336 4	471 4	454 5;	524 390	0 585	322	446	437	495	376	552	308
	90	528	3 526	578	471	645	404	208	508	553	458	616	391 4	488 4	488 5	525 445	.5 585	378	467	467	497	431	553	364
	75	547	7 417	611	334	629	248	521	403	582	320	647	234 4	493 3	389 5	250 306	6 612	220	465	374	518	291	226	205
12500	80	550	485	612	403	089	317	524	471	583	389	647	304 4	496 4	457 5	552 375	5 613	3 289	468	441	520	360	277	275
12300	85	557	7 545	613	472	681	386	534	529	584	458	649	373 5	509	509 5	553 444	4 614	359	485	485	522	429	579	344
	90	582	2 582	616	540	682	456	561	561	287	526	650 2	442 5	537 5	537 5	557 512	2 616	5 428	512	512	526	496	280	414
	75	571	1 460	635	359	704	255	543	445	604	345	Z 699	241 5	513 4	429 5.	570 330	0 631	227	482	414	236	315	293	212
1	80	216	5 541	637	442	705	339	548	525	605	428	670	325 5	520 5	507 5	572 413	.3 633	3 310	491	485	538	398	595	296
13000		594	1 594	639	525	206	422	570	570	809	511	672 4	408 5	545 5	545 5	575 494	635	394	518	518	541	479	262	379
	90	627	7 627	644	605	707	505	602	602	614	591	673 4	491 5	576 5	576 58	583 569	989 69	5 477	548	548	552	547	299	462
	75	290	499	653	384	721	797	260	484	620	369	684 2	248 5	528 4	469 58	584 354	4 645	5 233	496	451	548	338	909	218
17500		298	3 584	655	480	723	360	571	564	622	466	989	346 5	542 5	542 58	587 451	1 647	331	513	513	551	435	209	316
1/200	85	628	3 628	629	575	724	457	602	602	979	260	7 889	443 5	574 5	574 59	592 543	3 649	428	545	545	557	527	609	413
	90	663	8 663	670	655	726	554	989	989	640	989	069	540 6	9 209	9 209	809 809	8 652	525	576	576	577	577	613	208
	75	604	t 539	299	407	734	569	573	521	632	392	969	254 5	540 5	505 59	595 377	7 655	5 239	202	488	228	361	613	224
0000	80	620) 620	699	518	736	380	592	592	635	503	869	366 5	563 5	563 59	598 485	5 658	351	533	533	561	469	617	336
70007	85	655	5 655	675	623	738	491	627	627	642	809	7007	477 5	597 5	297 60	606 589	099 68	462	266	266	571	564	619	447
	90	692	2 692	694	694	741	602	663	663	664	664	704	585 6	632 6	632 63	633 633	3 664	1 570	599	599	009	009	624	554
	75	617	925 /	8/9	431	745	275	282	260	642	415	705 2	260 5	551 5	238 60	604 400	699 0	3 245	517	513	292	384	620	230
טטביר	80	640	0 640	681	552	747	400	611	611	645	537	708	386 5	581 5	581 60	608 520	999 0:	370	549	549	269	200	624	355
00622	85	678	8 678	069	299	749	525	649	649	929	642	710 5	511 6	616 6	616 6	621 618	899 8	3 495	583	583	282	585	627	480
	90	716	5 716	717	717	753	647	989	989	989	989	715 6	632 6	652 6	652 6	653 653	3 674	612	618	618	618	618	633	969
Notes:																								

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity 년 2

Gross cooling capacities - 55 ton - standard efficiency (60Hz) Table 25.

					1						Amb	ient 1	emp	Ambient Temperature (°F)	.е (°F	_								
				8	2					95						105					1	115		
	Ent	Ш	nteri	Entering We	et Bulb (°F)	6 (°F)		Ē	Entering Wet Bulb (°F)	g We	t Bulb	(°F)		Ent	ering	Wet	Entering Wet Bulb (°F)	°F)		Entering Wet Bulb	ing W	et Bu	(°F)	•
	DB	61	1	/9	7	73	~	61		67		73		61		6 2		73		61	9	29	2	73
CFM	(°F)	CAP	SHC	CAP	SHC	CAP :	энс (CAP 5	знс (CAP S	энс с	CAP S	энс с	CAP S	знс с	CAP SI	SHC CAP	P SHC	CCAP	SHC	CAP	SHC	CAP	SHC
	75	552	401	614	327	9/9	247	525	386	584	312 (643 2	733 7	496 3	370 5	551 29	296 605	5 217	7 465	354	516	280	292	200
1	80	553	461	615	388	9/9	308	, 97	447	585	373 (643	294 7	497 4	431 5	552 35	357 606	6 278	3 467	415	517	341	265	261
00011		226	521	616	448	9/9	369	230	909	286	433 (644	355	501 4	490 5	553 41	418 606	6 339	9 472	472	518	401	266	322
	90	268	568	617	508	677	430	546	546	587 4	494 (644 4	416	522 5	522 5	555 47	478 607	7 400	0 495	495	520	462	267	383
	75	282	449	949	355	203	254	, 555	434 (613	340 (? 299	239	522 4	417 5	576 32	323 626	6 223	3 488	400	233	306	585	206
12750	80	287	525	647	431	703	331	258	207 (614 4	416 (£ 299	316	526 4	490 5	577 39	399 656	6 299	9 492	473	538	382	582	282
13/30		262	595	648	207	703	408	269	969	615 4	491 (£ 299	392	541 5	541 5	579 47	475 627	7 375	5 511	511	540	458	583	358
	90	623	623	651	583	704	482	298	965	618	999	, 299	469	2 699	269 5	583 54	547 627	7 451	1 537	537	544	529	583	434
	75	809	495	299	381	719	260	, 925	479 (631	998	681	245	540 4	462 5	592 34	348 638	8 228	3 503	442	551	331	265	211
16500		613	583	299	472	720	351	585	267 (632 4	456 (681	336	548 5	548 5	593 43	439 638	8 320	513	513	552	422	592	302
00001	82	633	633	699	263	720	442	909	909	635	547 (681 4	427	574 5	574 5	23 965	526 638	8 411	1 541	541	555	507	592	393
	90	664	664	675	650	720	533	635	635 (641 (634 (682	518 (602 6	602 6	604 60	604 639	9 502	2 565	565	266	266	592	484
	75	624	538	189	406	731	265	591	519 (644	390 (691	250	554 5	501 6	603 37	373 646	6 234	4 516	481	260	355	298	219
10250	80	634	634	682	512	730	372	602	602 (645 4	496	069	357	570 5	220 6	605 47	479 646	6 340	534	534	561	461	298	322
19230	82	663	663	685	613	730	478	633 (633 (649	265	7 069	463	599 5	299 66	609 57	578 645	5 446	5 561	561	266	559	262	428
	90	663	693	694	694	731	584	661	661 (662 (662 (691	269 (624 6	624 6	625 62	625 646	6 549	9 584	584	584	584	298	527
	75	889	578	169	431	739	271	603	561 (2 659	415 (869	256 E	265 5	542 6	611 39	397 652	2 239	9 256	522	995	379	603	222
22000	80	654	654	692	552	738	392	623	623 (655	236 (697	377	588 5	9 885	613 51	512 651	1 360) 550	550	268	492	601	345
77000	82	989	989	269	999	738	514	653 (653 (099	649 (7 969	498	616 6	919	619 61	619 650	0 481	1 576	226	226	576	009	463
	90	714	714	714	714	741	989	629	629	089	089	869	919	9 689	9 689	640 64	640 651	1 593	3 595	595	595	595	601	573
	75	649	619	669	455	745	277	613	601 (7 099	439 7	703	261	575 5	275 6	617 421	21 657	7 245	5 534	534	220	402	209	227
24750		672	672	701	288	745	414	639	639	662	268	701	398	602 6	602 6	619 54	548 654	4 380) 562	562	573	528	604	363
06/42	82	703	703	707	707	745	220	899	899	9 0/9	670 7	701	534 (629 6	629 63	629 62	629 623	3 517	2 586	286	286	586	602	494
	90	729	729	730	730	748	681	692	692 (693 (693 7	705 (099	649 6	649 6	9 059	929 029	6 641	1 603	603	603	603	605	605
Notes:																								

Gross cooling capacities—55 ton—high efficiency and high capacity (60 Hz) Table 26.

											Am	Ambient Temperature (°F)	Temp	eratur	'e (°F)	_									
				85	5					95	,,					105						115			
	Ent		Enteri	ing We	Entering Wet Bulb	(°F)			Enteri	Entering Wet Bulb	t Bulb	(°F)		Ш	Entering Wet Bulb (°F)	g Wet	: Bulb	(°F)		Ē	Entering	g Wet	Wet Bulb (°F)	(J。	
	DB	61	1	29	7	73	8	61	1	67		73		61		6		73		61		6 2		73	
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP 5	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC	CAP S	SHC
	7.5	543	397	809	325	829	249	516	382	278	310	644	235 4	487	367	545	294 (607 2	219 4	456 3	351	510 2	278 5	2 895	203
11000	80	545	458	609	386	829	310	518	443	579	371	645	7 962	489 ,	426	. 946	355 (608 2	280 4	458 4	409	511	339 5	2 699	264
00011	82	548	516	610	446	629	371	522	502	280	432	949	357	494 ,	486	547 ,	416 (€ 609	341 4	465 4	465	513 4	400	570	325
	90	563	563	612	507	089	432	541	541	582	492	647	418	517	517	549 4	477 (610 4	402 4	491 4	491	515 4	458 5	571	386
	22	222	446	642	355	711	259	547	431	609	339	674	244	514	414	572	323 (633 2	227 4	479 3	395	534	306 5	2 069	211
12750	80	280	519	644	431	712	335	551	504	610	415	929	320	518 4	487	574	399 (635 3	304 4	485 4	469	535	382 5	592 2	287
06/61	85	230	290	949	206	714	412	292	265	613	491	229	397	537	537	, 9/5	475 (637 3	380 5	508 5	508	538 4	455 5	594	364
	06	621	621	649	580	715	487	969	296	617	564	, 829	473	267	267	581	547 (638 4	456 5	537 5	537	544	529 5	7 965	440
	22	601	493	999	382	734	267	268	473	630	366	694	251	233 4	455	591	349 (650 2	234 4	497 4	437	250	332 6	605	217
16500	80	209	580	899	473	735	358	216	563	632	457	969	343	545	542	293 4	440	653 3	326 5	510 5	510 5	552 4	423 6	909	309
0000	82	632	632	671	561	737	450	604	604	989	544	, 869	435	574	574	297	527 (655 4	418 5	541 5	541 5	557	208	610 2	401
	90	299	299	8/9	651	738	541	638	638	644	635	200	226 (909	909	209	209	657 5	509 5	572 5	572 5	573 5	573 6	612 4	488
	22	619	533	684	408	749	274	282	516	646	392	208	258	548 4	497 (. 604	375 (663 2	241 5	510 4	478	561	357 6	615 2	224
10250	80	631	631	989	515	752	381	009	009	648	498	711	365	268	999	, 209	476 (999	348 5	534 5	534	265 4	457 6	619	331
00761	82	999	999	691	615	753	487	989	989	654	298	713	472 (602 (602 (614	280	668 4	455 5	567 5	267	572 5	561 6	621 4	438
	90	702	702	704	704	755	592	671	671	672	672	715	573 (989	636 (637 (637 (671 5	555 5	599 5	299 (9 009	9 009	625	537
	22	634	575	969	434	192	280	299	222	657	417	719	265	561	238 (614	400	672 2	247 5	521 5	519	€ 699	381 6	624	230
22000	80	929	929	669	550	764	403	624	624	661	532	722	387	289	289 (618	513 (675 3	370 5	553 5	553	574 4	494 6	628	353
00077	82	694	694	707	699	292	524	661	661	699	651	723	209	625 (625 (979	979	677 4	489 5	587 5	587	588	588 6	630 2	467
	90	731	731	732	732	292	639	269	697	869	869	727	622 (099	9 (99	099	099	682 6	604 6	620 6	620 (621 (621 6	989	585
	22	647	617	90/	459	177	287	610	299	999	442	727	271	572	572 (, 779	424 (679	254 5	533 5	233	276	9 868	630 2	236
24750	80	677	677	711	588	773	424	644	644	671	570	, 082	409	(09	607 (627	550	682 3	391 5	568 5	568	582	530 6	634 3	374
00/47	82	716	716	721	721	774	558	682	682	683	683	732	238 (643 (643 (644 (644 (685 5	519 6	9 609	603 6	604 6	604 6	637 5	200
	06	753	753	754	754	779	889	718	718	719	719	737	671 (929	678 (629	629	691 6	652 6	9 / 29	637 6	638 (638 6	644 6	633
Note:																									l

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities — 55 ton eFlex™ variable speed — high capacity (60 Hz) Table 27.

							ŀ					Dielic		Ambient Temperature (* r.)	(-'-)									
				82						92						105					115	2		
	Ent	Ш	nterin	Entering Wet Bulb (°F)) qını	F)		Ш	Entering	g Wet	Wet Bulb (°F)	(°F)		Ent	tering	Entering Wet Bulb (°F)	aه) qın	(:		Enteri	Entering Wet Bulb (°F)	t Bulb	(°F)	
	DB	61		29		73		61		29		73		61		29		73	9	61	29		73	8
CFM	(°F)	CAP S	о онѕ	CAP SHC	IC CAP		SHC C	CAP S	SHC	CAP S	SHC	CAP S	SHC C	CAP SH	SHC CAP	P SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC
	75	239	395 6	603 323	23 673		247 5	515 3	382 5	576 3	309 (642 2	234 4	489 36	368 546	6 295	5 610	220	461	354	516	281	929	206
11000	80	541 '	456 6	604 383	33 673		308 5	516 4	442 5	577 3	370 (643 2	295 4	490 42	428 547	7 356	610	281	463	414	517	342	929	267
11000	82	544	516 6	605 444	14 674		370 5	520 5	501 5	577 4	431 (644 3	356 4	495 487	37 548	8 417	611	342	470	468	518	402	218	328
	90	559	559 6	606 505)5 675		430 5	539 5	539 5	579 4	491 (645 4	417 5	517 517	17 550	0 477	612	403	495	495	521	463	579	389
	22	225	444 6	637 352	52 708		257 5	544 4	430 6	909	338 (674 2	243 5	515 41	415 574	4 323	8 637	229	485	400	540	309	009	214
12750	80	575	519 6	638 428	28 709		334 5	548 5	205 6	608 4	414 (675 3	320 5	519 48	488 575	.5 399	638	305	490	473	542	385	602	291
13/30	82	286	584 6	640 504)4 710		410 5	561 5	561 6	610 4	490 (676 3	396 5	537 537	37 577	7 475	5 640	382	512	512	545	461	603	367
	90	616 (616 6	644 579	79 711		486 5	592 5	265	614 5	265 (677 4	472 5	567 567	57 582	2 548	9 641	458	541	541	220	533	909	443
	75	262	490 6	661 380	30 732		266 5	565 4	476 6	628 3	365 (695 2	251 5	534 45	459 593	3 350	929 (236	502	441	222	335	919	221
16500	80	601	578 6	662 471	733		358 5	573 5	295	630 4	456 (969	343 5	543 540	10 595	5 441	1 658	328	514	514	559	426	619	313
00001	82	979	979	665 562	52 734		449 6	9 009	9 009	633 5	546 (698 4	435 5	573 573	73 599	9 531	1 660	420	545	545	564	513	621	405
	90	099	9 099	673 650	50 736		541 6	634 6	634 6	642 6	631	700 5	526 6	909	606 610	0 607	7 662	511	577	577	218	578	623	497
	22	613	533 6	678 406)6 749		273 5	582 5	216 6	643 3	391	710 2	258 5	549 49	499 607	376	99 9	243	516	483	269	360	628	228
10250	80	625 (623 6	680 513			380 5	597 5	297 6	646 4	498	712 3	366 5	567 567	92 29	9 482	672	350	538	538	572	467	631	335
19230	82	629	9 659	685 617	17 752		487 6	632 6	632 6	652 5	2669	714 4	473 6	602 602)2 616	6 583	8 674	457	572	572	280	999	633	442
	90	969	969	700 700	00 755		594 6	9 899	899	9 699	699	717 5	580 6	637 637	37 638	8 638	8 677	562	605	605	909	909	637	546
	22	628	574 6	691 432	32 761		280 5	2 969	228 6	655 4	417	721 2	265 5	562 541	11 617	7 401	629 1	250	528	522	218	385	989	234
00000	80	648 (648 6	694 554	54 764		403 6	620 6	620 6	658 5	236	724 3	388 5	589 58	589 621	1 519	9 682	372	558	558	582	200	640	357
77000		(82)	687 7	702 669	992 69		525 6	657 6	657 6	9 /99	652	726 5	510 6	625 62	625 631	1 627	684	495	593	593	595	595	643	479
	90	726	726 7	727 727	27 770		644 6	695 6	695 6	9 969	969	731 6	629 6	662 66	662 663	3 663	3 690	609	628	628	629	629	649	593
	75	640 (616 7	702 457	57 771		287 6	2 209	262 (664 4	442	730 2	272 5	573 57	572 625	5 426	989 9	256	238	538	282	409	643	240
24750		699	699	706 591	91 774		425 6	9 689	9 689	9 699	572	733 4	410 6	209 209	029 20	0 554	t 690	394	574	574	591	537	647	379
00/47	85				9// 01		562 6	9 829	678 6	682 6	682	736 5	547 6	645 64	645 646	6 646	5 693	532	610	610	611	611	651	512
	90	750	750 7	751 751	51 782		969	717 7	717 7	718 7	718	742 6	9 929	682 682	32 683	3 683	3 700	629	647	647	648	648	629	643

Gross cooling capacities — 60 ton — standard efficiency (60Hz) Table 28.

										A	mbie	nt Ten	npera	Ambient Temperature (°F)	(°F)									
				82						92					1	105					115	2		
	Ent	En	Entering W	ng Wet	et Bulb (°F)	(°F)		Ent	Entering Wet Bulb (°F)	Wet B) qını) (J		Enter	Entering Wet Bulb (°F)	et Bu	<u>р (°F)</u>		Er	ıterin	Entering Wet Bulb (°F)	t Bulk	(°F)	
	DB	61		6 2		73		61		29		73		61	9	29	73	~	61		9		73	8
CFM	(°F)	CAP S	SHC		SHC C	CAP SI	SHC CA	CAP SF	SHC CAP	P SHC	C CAP	P SHC	CAP	P SHC	CAP	SHC	CAP	SHC	CAP 9	SHC	CAP	SHC	CAP	SHC
	75			670 3	356 7	743 27	272 57	571 420	20 638	8 340	0 707	7 256	240	403	602	323	299	239	909	385	564	305	623	220
1 2000	80				423 7	743 33	339 57	572 48	486 638	8 407	7 707	7 323	541	469	603	389	299	305	208	451	292	371	623	287
12000	85		268		489 7	744 40	405 57	575 552	52 639	9 473	3 707	7 389	545	532	604	455	299	372	513	513	999	437	624	353
	90			672 5	554 7	744 47	472 58	586 58	586 640	0 538	8 708	3 456	560	560	605	521	899	438	533	533	268	503	624	420
	75	7 889			389 7	780 28	282 60	605 473	73 672	2 372	2 739	9 265	220	454	632	353	694	247	532	435	290	334	645	227
1	80				472 7	780 36	396 60	608 55	555 673	3 455	5 740	349	573	537	633	436	694	330	536	519	591	417	949	311
00061	85	647 (647		554 7	781 44	449 61	617 617	17 675	5 537	7 740	3 432	583	583	635	519	695	413	551	551	592	499	646	394
	90				637 7	782 53	532 64	644 644	44 677	7 620	0 741	1 515	613	613	638	602	969	496	280	280	262	280	647	476
	75				419 8	804 29	290 62	629 52	523 696	6 401	1 760) 273	591	504	652	382	711	253	220	484	909	361	629	233
10000	80		641		518 8	804 39	390 63	635 617	17 697	7 500	0 760	373	298	597	654	481	712	354	258	558	809	461	629	333
Топпо	85				617 8	805 49	490 65	653 653	53 699	9 599	9 761	1 472	621	621	929	580	713	453	285	585	610	260	099	433
	90				717 8	806 58	289 68	889 889	688 705	5 693	3 762	2 572	653	653	693	663	714	552	615	615	619	619	661	532
	52				447 8	820 29	79 267	647 572	72 712	2 429	9 774	4 279	209	, 552	999	409	722	259	564	278	617	388	299	239
21000	80				263 8	821 41	414 65	657 657	57 713	3 544	4 774	4 396	618	8 618	899	525	723	376	277	277	619	504	899	355
71000	85				8 629	822 53	230 68	39 989	686 717	7 661	1 775	5 512	649	649	672	637	724	492	610	019	624	611	699	472
	90		756		767 8	823 64	646 72	721 721	21 727	7 727	7 776	5 628	682	682	684	684	725	809	639	639	639	639	670	587
	75) 102			475 8	832 30	304 66	662 620	20 724	4 455	5 784	4 285	619	591	9/9	435	730	265	275	268	625	414	673	244
24000	80				8 209	833 43	437 67	929	676 726	6 588	8 784	4 419	636	989	829	268	731	398	262	265	627	546	674	377
74000	85				740 8	834 57	570 71	712 71	712 731	1 716	6 785	5 551	672	672	685	685	732	531	628	628	635	635	674	510
	90	784 7		787 7	787 8	835 70	703 74	747 74	747 746	6 746	6 787	7 684	704	704	705	705	734	664	657	657	658	658	677	643
	22		989		502 8	841 31	310 67	673 657	57 733	3 482	2 791	1 291	629	629	683	461	736	271	584	584	631	440	229	249
00020	80		731		9 059	842 46	460 69	692 66	695 735	5 631	1 792	2 441	655	655	989	610	736	421	611	611	634	584	829	400
27,000	85			787 7	787 8	843 61	610 73	732 73	732 743	3 743	3 792	2 591	689	689 (695	695	737	570	643	643	644	644	829	549
	90	807	807		807 8	845 75	.29 76	92 992	766 767	7 767	7 795	5 740	721	. 721	721	721	740	720	029	029	671	671	682	680
Notes.																								

Gross cooling capacities— 60 ton—high efficiency and high capacity (60 Hz) Table 29.

				8						7.0		bient	Ambient Temperature (°F)	rature	(⁷ F)	105					7	115		
	Ė L		Entering Wet Bulb (°F)	ng We	t Bulb	(°F)			interii	Entering Wet Bulb (°F)	t Bulb	(°F)		En	tering	Wet	Entering Wet Bulb (°F)	F)		Enteri	ing We	Entering Wet Bulb (°F)	(°F)	
	DB	61	1	67		73	3	61		29		73		61		29		73	9	61	29		73	_
CFM	(P)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHCC	CAP SI	SHC CA	CAP SF	SHC CAP	P SHC	CAP	SHC	CAP	SHC	CAP	SHC
	75	635	452	208	373	781	586	603	434	673	355	744 2	269 5	568 4	415 63	634 33	336 701	1 251	533	397	594	317	929	232
1 2000		989	518	200	439	781	353	604	200	674	421	744	336 5	569 48	481 63	636 402	702	2 318	532	463	262	383	657	298
12000	82	638	584	710	202	781	419	909	292	675	487	745 4	402 5	572 54	546 63	637 46	468 703	3 384	538	527	296	449	658	365
	90	645	645	711	571	782	485	620	620	929	553	745 4	469 5	591 59	591 63	638 534	34 703	3 450	562	562	298	515	658	431
	75	929	202	748	405	815	294	640	488	710	386	775 2	277 6	601 46	468 66	96 299	366 729	9 258	561	447	622	346	089	239
1		829	290	749	487	815	377	642	571	711	469	775 3	360 6	604 5	548 66	668 44	449 730	0 342	564	527	623	429	681	322
00061	85	684	670	750	570	816	460	650	648	712	552	7 9//	443 6	617 6	617 67	670 532	32 730	0 424	583	583	625	511	681	405
	90	713	713	752	652	816	543	683	683	715	634	3776	526 6	9 059	650 67	673 612	12 731	1 507	614	614	629	290	682	487
	75	704	228	774	433	836	301	999	238	733	415	794 2	283 6	624 5	217 68	38 33	394 746	5 265	280	494	049	373	695	245
1000	80	209	654	775	532	836	400	671	634	735	514	794	383 6	9 089	612 68	689 494	94 746	5 364	588	588	641	473	695	344
1000	85	727	727	777	631	836	499	695	695	737	613	794 4	482 6	9 659	629 63	692 58	589 746	5 463	621	621	644	267	695	443
	90	762	762	780	726	836	298	729	729	741	707	794	581 6	692 69	692 66	869 887	37 747	7 562	652	652	653	653	695	542
	75	725	209	792	461	851	307	982	283	750	442	807	290 6	641 50	260 70	702 421	21 758	8 271	262	537	652	400	202	251
21000	80	733	717	793	929	820	422	694	694	751	557	7 908	405 6	655 6	655 70	704 537	37 757	7 386	615	615	654	516	704	366
71000	85	764	764	795	687	849	538	730	730	754	899	806	521 6	9 069	069 70	708 64	646 756	5 502	648	648	658	624	703	481
	06	798	798	802	800	820	653	292	763	764	764	908	636 7	722 7:	722 72	723 723	23 757	7 617	678	678	629	629	704	290
	75	741	649	802	487	862	313	200	879	761	468	817 2	596	654 60	605 71	712 44	448 766	5 277	209	581	099	426	712	257
24000	80	756	756	908	619	861	445	720	720	762	009	815 4	427 6	9 629	679 71	714 574	764	4 408	989	989	693	550	710	388
7 1000	85	792	792	608	744	861	277	755	755	292	724	813 5	559 7	714 7	714 72	720 70	702 763	3 540	899	899	029	670	200	520
	90	825	825	826	826	863	707	787	787	788	788	814 6	684 7	744 74	744 74	744 744	14 763	3 663	969	969	269	269	402	641
	75	754	694	814	514	871	319	712	672	770	495	824	302 6	9 599	648 72	720 474	773	3 283	617	617	999	452	717	262
0000	80	778	778	816	655	870	468	740	740	771	635	821 4	449 6	9 869	869	722 613	13 769	9 430	652	652	699	589	714	410
7 000	85	814	814	821	800	871	617	775	775	778	777	820	598 7	731 7.	731 731	31 731	31 768	8 575	683	683	684	684	712	548
	90	845	845	846	846	875	757	804	804	805	805	823 7	736 7	758 7	758 75	758 75	758 768	8 714	708	708	708	708	713	691
Notes.																								

Gross cooling capacities — 60 ton eFlex™ variable speed — high capacity (60 Hz) Table 30.

					L					5		Ambient Temperature (°F)	lempe	ratur	e ('F)						•	L		
				· [20	í				,	ָ ֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓	í		ı		COT		í			.	CT	í	
	Ent		Ente	ring M	Entering Wet Bulb (°F)	(°F)			Enteri	Entering Wet Bulb (°F)	t Bulb	(°F)		Ē	tering	Wet	Entering Wet Bulb (°F)	F)		Enter	ing W	Entering Wet Bulb (°F)	b (°F)	
	DB	•	61	_	67	7	73	61	1	67		73		61		6 2		73	_	61	•	67	73	3
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHCC	CAP S	SHC C	CAP SI	SHC CAP	P SHC	CAP	SHC	CAP	SHC	CAP	SHC
	75	635	453	202	372	775	284	909	436	675	326	741 2	268 5	575 4	419 64	640 33	339 704	4 252	546	403	604	321	664	235
1 2000		989	519	707	438	775	350	209	502	675	422	742	335 5	576 4	485 64	641 4(402 704	4 319	9 547	469	605	387	999	301
12000	85	638	584	708	504	276	417	609	267	9/9	488	742 4	402 5	579 5	250 64	642 47	471 705	5 385	5 550	532	909	453	999	368
	90	648	639	709	570	276	483	622	620	229	554	743 4	468 5	2 969	296 64	643 53	537 706	6 451	571	571	809	519	999	434
	75	675	202	744	403	807	291	642	489	710	386	770 2	275 6	607 4	471 67	672 36	369 730	0 259	573	453	632	320	989	241
1 5000		677	588	745	486	807	374	645	571	711	469	770	359 6	610 5	552 67	673 45	451 730	0 342	576	534	633	433	687	324
00061	85	685	662	746	268	807	457	655	641	712	552	771 4	441 6	623 6	618 67	674 53	534 730	0 424	1 592	592	635	515	687	407
	06	711	711	748	649	807	539	683	683	714	633	771	524 6	654 6	654 67	9 229	614 731	1 507	622	622	638	296	889	489
	75	703	557	269	431	826	297	899	539	732	414	788	281 6	630 5	518 69	692 39	396 745	5 264	1 592	499	649	377	200	247
0000	80	707	654	770	530	826	396	673	635	733	513	787	381 6	9 989	611 69	693 49	495 745	5 364	009 t	585	650	476	700	346
T 9000		724	724	771	628	825	495	695	695	735	610	787	480 6	9 699	693 69	695 59	592 745	5 462	629	629	653	573	669	445
	06	758	758	775		826	594	728	728	739	704	787	578 6	9 569	695 70	702 67	677 744	4 561	1 659	629	693	652	669	543
	75	723	603	785	458	839	303	989	282	747	441	800	287 6	646 5	263 70	705 42	422 756	6 270	909 (542	661	403	602	252
0	80	731	705	786	573	840	419	269	681	748	256	7 862	402 6	9 099	929	706 53	538 754	4 385	5 623	623	662	516	707	367
71000	85	760		788	989	840	535	728	728	751	899	797	517 6	693 6	693 7:	710 64	647 753	3 500	(655	655	999	627	902	482
	90	791	791	797	775	842	648	759	759	762	752	797 (630 7	722 7	722 73	723 73	723 753	3 612	683	683	684	684	902	594
	75	738	647	797	484	851	309	200	628	758	467	808	293 6	9 659	202 7:	714 44	448 764	4 276	5 618	286	899	429	716	258
24000	80	753	749	798	613	852	442	718	718	759	969	805 4	424 6	682 6	682 7:	716 57	277 760	0 407	644	644	670	554	712	389
74000	85	786	786	801	740	853	575	752	752	763	722	805	556 7	714 7	714 73	721 69	691 758	8 538	8 674	674	678	664	710	516
	06	816	816	817	817	856	703	780	780	781	781	808	684 7	741 7	741 74	741 74	741 759	9 661	1 698	869	669	669	200	641
	75	750	692	908	510	098	316	712	672	292	493	815 2	9 667	9 029	644 72	721 47	474 770	0 281	1 628	614	674	454	721	263
00020	80	773	773	806	654	862	465	738	738	767	989	812 4	447 7	7007	700 72	723 6:	613 764	4 428	8 659	629	9/9	592	715	410
7,000	85	802	802	812	777	863	611	69/	692	774	753	813	592 7	730 7	730 73	732 73	727 762	2 572	687	687	889	889	712	552
	90	837	837	838	838	867	755	797	797	798	798	817 7	734 7	754 7	754 75	754 75	754 766	6 713	3 707	707	708	708	713	683
Notes:																								1

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities - 70 ton - standard efficiency (60Hz) Table 31.

											Amb	ient]	remp	Ambient Temperature (°F)	re (°F	_								
				82						95						105						115		
	Ent	Ē	Entering W		et Bulb (°F)	(°F)		Er	ıterin	Entering Wet Bulb (°F)	t Bulk	(°F)		Ent	Entering Wet Bulb (°F)	Wet	Bulb	(°F)		Ente	ring	Entering Wet Bulb	。) qın	(°F)
	DB	61	_	67		73		61		67		73		61		6 2		73		61		29		73
CFM	(°F)	CAP	SHC	CAP 9	энс (CAP 9	знс (CAP 9	SHC	CAP S	SHC	CAP S	знс с	CAP SI	SHC C	CAP SI	знс с	CAP SI	SHC CAP	P SHC	C CAP	P SHC	CAP	э энс
	22	716	519	, 962	423	928	320	629	466	7 95/	403	832	300	640 4	478 7	712 3	382 78	783 28	280 601	1 458	8 667	7 361	1 732	259
17000	80	717	298	762	502	928	399	681	278	757 4	482 8	832	380	642 5	557 7	13 4	461 7	784 3!	359 604	4 537	2 668	8 440	733	338
74000	85	721	929	262	581	, 228	478	685	654	758	561	833 4	429 (647 6	633 7	14 5	540 78	785 4	438 610	0 610	699 0	9 518	3 734	417
	90	737	737	800	629	878	557	707	707	760 (639	834	538 (674 6	674 7	717 6	618 7	786 5	517 640	0 640	0 672	2 597	735	496
	5/	755	222	834 ,	457	606	328	714	. 955	7 062	436	861	308	671 5	533 7	742 4	414 8	809 28	287 627	7 511	1 692	2 392	754	592
17200	80	758	674	832	553	, 606	426	718	. 129	791	533 8	862 4	406	675 6	627 7	743 5	511 8	809 38	385 632	2 604	4 694	4 489	9 755	363
17200	85	298	767	837	650	910	523	731	731	793 (629	863	203 (694 6	694 7	745 6	8 209	810 48	482 657	7 657	969 2	6 585	5 755	460
	90	803	803	840	747	910	619	89/	292	797	723 8	863 (2 009	730 7	730 7	750 7	700	811 5	578 691	1 691	1 702	2 677	7 756	557
	5/	283	631	, 098	487	086	335	739	609	813 4	466	880	315 (693 5	2 989	761 4	444 8.	825 29	294 646	9 559		709 421	192 1	, 272
00700	80	789	742	861	602	, 086	451	747	719	814	581	7 088	431 7	701 6	2 969	763 5	559 8.	825 40	409 657	7 657	7 71	1 536	5 768	387
20400	85	813	813	863	717	931	265	9//	9//	817 (969	881	545 7	735 7	735 7	9 /9/	8 699	826 53	524 693	3 693	3 71	5 645	5 768	502
	90	852	852	870	826	931 (089	814	814	824 8	802	882 (2 099	7 277	7 277	7 9//	776 8.	827 63	639 727	7 727	_	727 727	2 769	617
	52	804	684	878	217	945	342	758	(22)	7 678	496	893	322 7	710 6	632 7	775 4	473 8.	836 30	300 660	209 0'		720 449	9// 6	278
22600	80	814	811	879	650	945 ,	475	771	771	830 (879	893 4	455 7	7 7 7	727 7	9 ///	605 83	836 43	433 683	3 683	3 722	2 582	2 776	411
23000	85	850	850	883	777	945 (809	810	810	835	754 8	893	2888	7 997	2 992	783 7	730 8:	836 50	566 719	9 719	''	729 706	5 776	544
	90	889	889	893	893	946	740	848	848	848	848	894	720	8018	801 8	802 8	802 8:	837 69	699 752	2 752	7	53 753	3 778	672
	52	820	729	891	246	926	348	773	907	840	524	305	328 7	723 6	2 089	785 5	501 8	844 30	306 672	2 655	5 728	8 478	3 783	284
00090	80	838	838	893	697	955	499	96/	962	842 (675	905 4	479 7	751 7	751 7	788 6	649 8	843 4!	457 70	704 704	4 731	1 620	782	435
00007	85	879	879	868	839	955	650	836	836	849 8	816	901 (630 7	789 7	789 7	7 967	792 8	843 60	608 73	739 739	9 741	1 741	1 782	582
	90	917	917	918	918	926	801	873	873	874 8	874	903	3 9//	823 8	823 8	824 8	824 8	845 74	748 770	0.77	0 771	1 771	1 784	723
	52	834	178	901	275	964	355	982	754	849	553	606	335 7	734 7	728 7	792 5	529 8	850 33	313 682	2 682	_	34 506	2 788	3 290
	80	861	861	. 606	744	963	524	817	817	852	713	308	503 7	7 697	2 69/	9 96,	889	848 48	481 719	9 719	_	38 662	2 786	459
2000	85	905	905	911	006	962	693	857	857	861 8	861	907 (672 8	807 8	807 8	807 8	807 8	848 6	650 754	4 754		55 755	5 786	622
	90	938	938	939	939	296	851	891	891	892 8	892	910 8	828	838 8	838 8	839 8	839 8	850 80	804 782	2 782	2 783	3 783	3 788	3 778
Notes.																					-			

Gross cooling capacities - 70 ton - high efficiency and high capacity (60 Hz) Table 32.

											Am	Ambient Temperature (°F)	Tempe	ratur	e (°F)									
				85						95						105						115		
	Į,	Ш	Entering Wet Bulb (°F)	ng We	t Bulb	(°F)			nteri	Entering Wet Bulb	t Bulb	(°F)		ū	Entering Wet Bulb (°F)	Wet I	<u>3) qın</u>	F)		Ente	ring \	Entering Wet Bulb (°F)	(°F)	
	DB	61	_	6 7	_	73	~	61		29		73		61		29		73		61		29	7	73
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC	CAP S	SHC C/	CAP SI	SHC CAP	N SHC	C CAP	SHC	CAP	SHC	CAP	SHC
	75	208	515	794	422	688	324	671	495	753	402	845	305 6	632 4	474 7:	710 38	381 797	7 285	5 592	453	199	360	749	265
7,000	80	209	593	795	501	889	404	673	573	755	481	845	385 6	633 5	552 7:	712 46	460 798	364	4 593	531	. 668	439	750	344
14000	85	710	671	96/	579	890	483	674	650	756	559	846 4	464 6	9 989	628 7:	713 53	539 799	9 444	4 598	598	699	518	751	424
	90	726	726	797	658	890	562	969	969	757	638	847	543 6	664 6	664 7:	714 61	617 800	0 523	3 632	632	671	296	752	503
	22	748	273	836	457	931	337	707	552	792	436	883	316 6	9 29	529 7	744 4]	415 831	1 295	5 620	208	269	393	279	274
17200	80	750	699	837	554	932	434	200	648	794	533	884 4	414 6	9 999	624 74	746 51	512 832	393	3 623	900	669	490	780	372
1/200	85	757	755	839	650	933	532	721	721	795	630	886	512 6	9 589	685 74	748 60	608 834	14 491	1 650	(650	701	587	782	470
	90	794	794	841	747	935	679	761	761	797	726	887 (609	725 7	725 7	751 70	703 836	98 288	8 689	689	704	629 .	784	267
	22	<i>LLL</i>	628	998	490	961	346	733	909	819	469	910	326 6	989	583 76	768 44	446 854	304	4 640	561	718	424	262	283
00700	80	781	741	898	909	962	462	738	716	821	584	911 4	442 6	9 669	691 7	771 56	561 856	6 420	0 649	649	720	539	801	399
20400	85	805	802	870	719	964	578	692	692	824	869	913	557 7	731 7	731 7.	773 67	676 858	8 536	6 692	692	723	652	804	514
	06	850	850	874	830	965	692	814	814	829	808	915 (672 7	774 7	774 78	781 78	781 860	651	1 734	734	735	735	806	629
	22	662	682	688	521	982	355	753	629	839	200	928	334 7	704 6	633 78	786 477	77 870	0 312	2 656	909	733	454	812	290
22600	80	807	807	891	654	984	489	292	292	842	633	931 4	468 7	722 7	722 78	789 61	610 873	3 446	6 681	. 681	736	587	816	424
73000	85	848	848	894	787	982	622	810	810	846	992	933 (602 7	768 7	768 79	793 73	736 876	,6 580	0 725	725	742	713	819	558
	90	968	896	904	904	286	755	857	857	860	860	935	735 8	814 8	814 8:	815 81	815 878	8 713	3 770	770	771	771	821	691
	75	817	732	206	552	866	363	69/	202	855	530	942	342 7	719 6	8 089	800 50	507 882	319	699 6	655	745	484	823	297
00896	80	834	834	606	703	1000	515	794	794	828	681	945 4	494 7	750 7	750 80	803 6	988 899	36 472	2 707	707	748	635	827	450
70007	85	884	884	914	847	1002	299	843	843	864	824	948 (646 7	7 867	798 8:	811 80	800 889	89 623	3 753	753	758	758	830	601
	06	934	934	936	936	1004	818	892	892	894	894	950	8 161	846 8	846 8	847 84	847 892	2 775	5 799	799	800	800	833	744
	75	832	6//	921	582	1010	371	783	754	298	260	953	349 7	732 7	729 8:	810 53	236 835	327	7 682	685	754	. 513	831	304
00000	80	862	862	923	751	1013	541	820	820	871	729	957	520 7	774 7	774 8:	814 70	701 896	6 497	7 728	3 728	758	229	836	475
20005	85	915	915	931	911	1015	710	871	871	881	881	926 (8 689	824 8	824 8.	828 82	828 899	667	2 776	9//	777	777	838	644
	90	996	996	296	296	1017	880	921	921	923	923	962 8	854 8	872 8	872 8	874 87	874 903	3 826	6 823	823	824	. 824	843	802
Notes.																								

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Gross cooling capacities — 70 ton eFlex™ variable speed — high capacity (60 Hz) Table 33.

							-					bient	Ambient Temperature (°F)	ratur	e (°F)									
				82						92						105						115		
	T _n	3	:nterir	Entering Wet Bulb (°F)	Bulb ((•F)		Ш	Entering Wet Bulb (°F)	g Wet	Bulb	(°F)		Er	Entering Wet Bulb (°F)	Wet	Bulb (۰F)		Ente	ا	Entering Wet Bulb (°F)	(a°) di	
	DB	61	_	6 2		73		61		6 2		73		61		6 2		73		61		29	7	73
CFM	(°F)	CAP	SHC	CAP SI	SHC C	CAP S	SHC	CAP 5	SHC	CAP 5	SHC	CAP S	знс с	CAP S	SHC C/	CAP SI	SHC CA	CAP SHC	IC CAP	P SHC	CAP	SHC	CAP	SHC
	22	203	512	787 4	418 8	879	321	, 029	464	, 05/	400	840	303 6	635 4	475 7:	712 38	382 79	798 285	909 5	457	674	364	756	267
17000		704	290	788 4	497 8	7 628	400	671	572	752 ,	479	840	383 6	635 5	553 7:	14 4	461 79	799 365	12 601	535	929	443	757	347
14000	85	705	299	789 5	276 8	7 088	479	673	649	753	258	841 4	462 6	640 6	623 7:	15 5	540 80	800 444	.4 608	3 601	677	, 522	758	426
	90	721	721	790 6	654 8	881	258	694	. 694	753 (989	842	541 6	9 999	999	716 6	618 80	801 523	3 638	8 638	629	009	760	505
	75	741	220	827 4	453 9	920	332	704	220	, 181	435	877	314 6	999	531 74	746 4	415 831	31 295	15 628	3 512	202	397	786	277
17200	80	743	999	829 5	550	920 4	430	902	645	189	532	878	412 6	9 899	625 74	748 5	512 83	833 393	13 631	909	707	, 494	788	375
1/200	85	754	743	830 6	647 9	922	257	720	720	791 (879	880	209 6	9 289	74 289	749 61	609	835 491	1 656	959	709	590	790	472
	90	788	788	832 7	743 9	923 (624	. 85/	758	793	723	881 (909	726 7	726 75	752 7	704 83	836 588	8 695	695	712	685	791	269
	75	692	625	856 4	486 9	948	345	730	902	814 4	467	902	323 6	689	584 77	770 4	447 85	854 304	948	3 562	726	427	908	285
0.400	80	773	737	858 6		949 4	458	734	711 8	816	285	904 4	439 6	9 /69	681 77	772 5	562 85	856 420	099 0	959 (728	543	809	401
70407	85	798	798	2 098	715 9	951 5	273	. 99/	99/	818 (969	906	555 7	732 7	732 7.	774 6	674 85	859 536	99 99	869 8	731	. 655	811	517
	90	842	842	865 8	828 9	952 (889	810	810	825	662	908	670 7	775 7	775 78	785 7	768 86	860 651	1 740	740	745	744	813	632
	22	062	9/9	878 5	517 9	896	. 058	749 (922	834 4	498	921	331 7	9 902	634 78	787 4	477 87	870 312	.2 664	613	741	. 457	820	293
00366	80	801	785	9 088	620 9	7 026	484	. 292	759	836 (631	923 4	466 7	724 7	724 79	9 062	610 87	873 446	9.	889	744	1 590	823	427
23000	85	840	840	883 7	780 9	972 6	618	802	805 8	840	160	926	266	7 697	692	794 7	740 87	876 580	732	2 732	749	716	826	260
	90	887	887	898	882 9	974 7	751	852	852 8	828	857	928 7	732 8	814 8	814 8:	816 8	816 87	878 713	3 776	3 776	777	777 '	828	694
	22	808	727	895 5	548 9	984	. 858	. 59/	902	849	278	934	339 7	721 6	681 80	801 5	202 88	882 319	829 6	8 659	753	487	830	300
00000	80	828	828	9 268	6 669	986	210	. 682	8 682	852 (629	938 4	491 7	751 7	751 80	804 6	88 859	886 472	713	3 713	756	634	834	452
70007	85	875	875	903 8	846 9	988	99	838	838	858	822	940 (643 7	7 667	.8 662	812 7	28 062	888 623	3 760) 760	768	757	837	604
	90	924	924	927 9.	927 9	3 066	813	887	887	888	888	942 7	794 8	846 8	846 84	847 8	847 89	891 770	0 805	805	908	908	840	750
	75	823	778	.5 806	828	€ 966	. 998	. 622	751 8	861	222	945	347 7	734 7	718 8:	811 5	536 891	326	9:	685	292	516	838	307
0000	80	854	854	911 7		666	536	815	815 8	864	722	949	517 7	775 7	775 8:	815 7	701 89	896 497	7 735	735	992	629	842	477
2000	85	905	902	920 8	892 10	1000 7	902	998	998	877 8	828	951 (8 289	824 8	824 83	831 8.	830 86	868	783	3 783	785	785	845	647
	90	955	955	6 926	956 10	1003	870	915	915	916	916	955 8	851 8	872 8	872 87	873 8	873 90	903 830	829	829	830	830	850	804
Noto:																								

Gross cooling capacities—75 ton—standard efficiency (60Hz)

Table 34.

											Amt	Ambient Temperature (${}^{\circ}$ F)	embe	eratui	'e ('F,									
				82						92						105					1	115		
	Fnt	Ш	nterii	Entering Wei	t Bulb	(°F)		ū	Entering		Wet Bulb	(°F)		Ent	Entering	Wet Bulb) qıng	(°F)		Entering	ing W	Wet Bulb	(°F)	_
	DB	61	1	6 2		73		61	_	67		73		61		6 2		73		61		29	73	8
CFM	(°F)	CAP	SHC	CAP 9	SHC	CAP 5	SHC	CAP	SHC	CAP 5	SHC	CAP S	SHC C	CAP SI	SHC C/	CAP SH	SHC CAP	P SHC	CAP	SHC	CAP	SHC	CAP	SHC
	22	746	546	827	442	902	329	902	272	, 587	421	€ 098	9 608	664 5	503 73	738 399	99 810	0 288	625	483	169	378	222	267
15000	80	747	631	828	527	905	414	208	019	386	909	860	395 6	667 5	288 74	740 484	34 810	374	. 628	265	693	463	758	352
12000	82	752	713	829	611	906	499	714	692	787	165	861 4	480 6	674 6	670 74	741 569	811	1 459	638	638	694	547	759	438
	90	774	774	831	969	906	584	742	742	789 (675	862	565 7	7 707	707	744 654	54 812	2 544	. 671	671	697	629	260	522
	22	780	009	098	472	932	336	737	829	814 4	451	884	316 6	692 5	555 76	764 429	831	1 295	647	533	714	406	922	273
10000	80	783	700	861	574	932	438	742	929	816	223	885 4	419 6	9 269	653 76	766 531	31 832	2 397	653	630	715	208	276	376
10000	85	794	794	862	9/9	933	540	759	759	817 (655	885	521 7	720 7	720 76	768 632	32 832	2 499	681	681	718	610	777	477
	90	833	833	998	9//	933	642	797	797	821	753	885 (622 7	757 7	757 77	773 729	833	3 601	716	716	724	206	778	579
	75	802	651	882	501	950	342	260	879	834 4	480	006	323 7	712 6	82 209	782 457	57 845	5 301	664	216	729	434	788	280
21000	80	811	765	883	970	950	461	298	742	836	298	7 006	442 7	721 7	718 78	784 57	575 845	5 420	677	677	731	552	788	398
71000	85	838	838	885	738	950	280	800	8008	839	715	900	2 099	758 7	758 78	787 689	39 845	5 539	714	714	735	999	788	517
	90	877	877	891	851	950	869	838	838	846 8	829	901 (679 7	795 7	795 79	796 79	796 846	6 657	749	749	750	750	789	635
	22	824	869	868	229	964	349	278	672	849	202	912	329 7	728 6	647 79	795 484	34 856	5 307	829	621	739	461	262	285
0007	80	834	830	899	664	963	484	791	791	850 (643	912 4	464 7	747 7	747 79	797 620	20 855	5 443	702	702	741	593	96/	421
24000	82	872	872	903	793	962	619	832	832 8	855	771	911 (2 009	786 7	786 80	802 747	17 854	4 578	739	739	747	722	795	226
	90	910	910	912	915	963	755	869	869	870 8	870	911 7	735 8	822 8	822 82	823 823	23 855	5 707	772	772	773	773	962	683
	22	840	742	910	929	974	355	792	718	098	234	921	335 7	741 6	80 80	804 511	11 864	4 313	689	999	747	487	804	291
00020	80	828	828	911	208	972	202	816	816	861 (289	7 076	487 7	7 077	770 80	807 65	656 862	2 465	722	722	750	630	801	443
7,000	82	899	899	916	851	972	629	856	826	867 8	829	918 (639 8	808	808 81	814 804	94 860	0 618	758	758	759	759	800	595
	90	935	935	936	936	974	812	891	891	892	892	919 7	782 8	841 8	841 84	842 842	12 861	1 759	788	788	789	789	801	735
	22	853	788	920	283	985	361	804	292	898	261	929	341 7	752 7.	737 811	11 537	37 870	320	669	669	753	513	608	297
0000		880	880	921	745	086	530	836	836	870	721	976	510 7	788 7	788 81	814 69	969 867	7 488	737	737	756	670	802	466
20000	85	920	920	927	606	086	200	875	875 8	878	878	924 (679 8	825 8	825 82	825 82	825 865	5 657	772	772	773	773	804	624
	90	954	954	955	955	985	859	806	806	606	606	976	836 8	855 8	855 84	842 842	12 866	5 811	800	800	800	800	802	786
Noto:															١									1

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity Notes: 1. 2.

Gross cooling capacities—75 ton—high efficiency and high capacity (60 Hz) Table 35.

											Am	Ambient Temperature (°F)	Tempe	erature	(9F)									
				85						95						105					-	115		
	Ent	ũ	Entering Wet Bulb	g Wet	t Bulb	(°F)		۳	nterir	Entering Wet Bulb (°F)	Bulb	(°F)		En	Entering Wet Bulb (°F)	Wet	3) qıng	F)		Entering	ring W	Wet Bulb (°F)	(°F)	
	DB	61		6		73		61		29		73		61		29		73		61		29	7	73
CFM	(°F)	CAP S	SHC	CAP S	SHC	CAP	SHC	CAP	SHC	CAP 9	SHC	CAP S	SHC	CAP SI	SHC CA	_	SHC CAP	P SHC	CAP	SHC	CAP	SHC	CAP	SHC
	22	753	3 055	843 ,	449	942	344	714	529	801	428	968	323 6	672 5	507 75	755 4(406 845	.5 302	630	485	209	382	794	281
1 5000	80	754 (634 8	844	534	942	429	715	613	805	513	7 968	409 6	673 5	591 75	757 49	492 845	5 388	632	269	711	470	795	366
000CT	85	756	718 8	845 (619	943	515	717	695	803	298	7 268	494 6	9 229	673 75	758 57	576 847	.7 473	9 640	640	712	555	797	452
	90	774	774 8	846	703	944	600	742	742	805	682	868	579 7	709 7	709 75	759 66	661 848	8 558	8 675	675	714	639	798	537
	75) 062	604	887 ,	482	086	354	747	582	988	461	930	333 7	702 5	32 655	786 43	438 875	5 311	929	236	737	416	821	289
1000	80			884	584	086	457	749	683	838	263	931 4	436 7	704 6	82 659	788 54	540 876	6 414	099	634	739	518	822	392
10000	85	799	3 662	885 (989	985	559	761	761	839	664	932	539 7	724 7.	724 79	9 062	642 878	8 517	/ 687	687	741	619	824	495
	90	837 8	837 8	887	787	983	661	803	803	842	992	934 (641 7	765 7	765 79	793 74	743 880	0 619	727	727	745	717	826	597
	22	817 (5 959	911	513	1007	363	772	633	862	491	954	342 7	724 6	610 80	809 46	468 896	913	929 6	286	757	445	839	297
21000	80	821	771 9	913 (632	1008	483	9//	747	864	910	955 2	462 7	730 7.	723 81	811 58	587 898	8 439	989	989	759	564	841	417
71000	85	844 8	844	915	750	1009	602	807	807	998	729	957	581 7	767	767 81	814 70	705 900	0 559	726	726	762	683	843	536
	90	8 068	680	919	867	1011	721	852	852	871	842	959 7	200	811 8	811 82	821 8:	818 902	2 678	3 770	770	774	774	845	655
	22	838	5 202	633	543	1027	371	791	684	881	520	971	349 7	741 6	657 82	826 49	496 911	.1 326	691	629	772	473	852	304
00070	80	846 8	837 9	935 (679	1028	208	801	801	884	929	973 4	486 7	756 7	756 82	829 63	632 914	4 463	3 713	713	774	609	855	441
700047	85	885 8	885	937 8	814	1030	644	845	845	887	792	975 6	623 8	802 8	802 83	833 76	765 916	9.	759	759	779	737	857	577
	90	934	934 6	946	944	1031	780	893	893	868	868	7 / 1	759 8	849 8	849 85	850 85	850 918	8 736	804	804	802	802	859	713
	22	2 958	5 22	620	572	1042	378	807	730	268	549	385	357 7	755 7	701 83	839 52	524 923	3 333	704	675	783	501	862	311
00026	80	871 8	871 9	952	724	1044	532	828	828	668	701	987	511 7	783 7	783 87	842 67	677 926	6 487	738	738	786	654	998	465
7,000	85	920	920	926	874	1045	685	878	878	904	851	9 686	664 8	832 8	832 84	849 82	822 928	8 641	786	786	794	794	898	618
	90	971	971 9	974	974	1046	838	927	927	676	929	991	817 8	880 8	88 088	881 88	881 931	1 794	832	832	833	833	870	767
	22	871 8	803	963 (009	1054	386	821	774	606	222	966	364 7	768 7	747 85	850 5	552 932	2 340	716	716	792	528	870	317
00000	80	897	6 268	. 996	770	1056	256	854	854	912	746	366	535 8	807 8	807 85	853 72	722 936	6 511	760	760	795	693	874	488
20000	85	950	950	973	931	1057	727	902	902	920	907	1000 7	705 8	857 8	857 86	864 86	864 938	8 682	808	808	811	811	875	658
	90	1001	1001	1003 1	1003	1059	968	955	955	957	957	1003 8	875 9	905 9	905 90	907 90	907 941	.1 847	854	854	856	856	880	817
, of 0																								

Gross cooling capacities — 75 ton eFlex™ variable speed — high capacity (60 Hz) Table 36.

											Am	Ambient Temperature (°F)	Tempe	ratur	e (°F)									
				85						95						105						115		
	Ent	_	Enteri	Entering Wet Bulb (°F)	t Bulk	(°F)			interi	Entering Wet Bulb (°F)	t Bulb	(°F)		Er	Entering Wet Bulb (°F)	Wet	Bulb (°F)		Ent	ering	Entering Wet Bulb (°F)	∃∘) qır	_
	DB	61	1	67	_	73	~	61		67		73		61		6 2		73		61		29		73
CFM	(°F)	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP	SHC	CAP S	SHC	CAP S	SHC C	CAP SI	SHC CA	CAP SHC	IC CAP	P SHC	C CAP	P SHC	CAP	SHC
	75	755	551	846	451	942	344	718	531	802	430	868	325 (679 5	510 7	762 4	410 85	850 304	4 639	9 489	9 718	8 389	800	284
1	80	756	635	847	535	942	430	719	615	908	515	868	410 (679 5	594 7	763 4	494 85	850 390	0 640	0 571	1 720	0 474	. 801	369
00000	85	757	717	848	620	943	515	720	689	807	009	668	495 (685 6	629	764 5	579 851	51 475	5 650	0 634	4 721	1 558	803	454
	90	774	774	849	704	944	599	745	745	808	684	006	580 7	713 7	713 7	765 6	663 85	853 560	0 681	1 681	1 722	2 641	804	539
	22	792	605	884	483	826	354	752	584	840	462	930	334 7	2 602	262 7	793 4	441 87	878 313	3 666	6 541	1 746	6 419	825	291
1 0000	80	794	206	988	585	626	457	753	683	841	564	931 4	437 7	711 6	661 7	795 5	543 87	879 415	5 669	9 633	3 748	8 521	826	394
1000	85	803	782	887	989	086	559	767	754	843	999	932	539 7	729 7	729 7	9 962	644 88	881 517	7 694	4 694	4 749	9 622	828	496
	06	839	839	889	787	981	099	802	802	845	764	934 (640 7	7 0//	770 7	799 7	742 88	882 619	9 734	4 734	4 753	3 711	829	298
	75	820	657	912	514	1003	362	777	635	865	492	952	342 7	731 6	613 8	815 4	470 89	897 320	0 685	5 588	8 765	5 448	840	298
21000	80	823	773	914	632	1004	482	781	745	867	611	953 4	461 7	738 7	902	818 5	289 85	899 439	697	7 675	2 767	7 567	842	417
71000	85	845	845	916	750	1005	009	810	810	698	729	955	280	772 7	772 8.	820 7	707 90	900 558	8 733	3 733	3 770	0 682	844	536
	90	891	891	920	998	1006	719	855	855	875	833	926	8 669	816 8	816 8.	829 7	795 90	902 677	7 776	9// 9	5 784	4 762	845	655
	22	842	208	933	543	1020	369	96/	982	884	521	296	348 7	748 6	8 629	832 4	498 91	910 326	6 701	1 635	2 779	9 476	851	304
24000	80	849	816	935	829	1022	206	808	784	887	657	, 696	485 7	764 7	753 8:	834 6	634 91	912 463	3 721	1 721	1 782	2 611	853	440
24000	85	887	887	938	813	1023	641	848	848	890	788	971 (621 8	807 8	807 8:	838 7	765 91	914 599	9 765	5 765	5 787	7 740	855	576
	90	934	934	948	913	1024	777	895	895	904	881	972	3 952	853 8	853 8	857 8	850 91	915 734	4 808	808	8 809	608 6	856	711
	22	829	754	950	571	1033	376	812	731	668	549	626	355 7	763 7	902	845 5	256 95	920 333	3 714	4 673	3 790	0 503	859	310
00026	80	875	862	952	724	1035	529	832	832	901	702	086	208	788 7	788 8	847 6	629 92	922 486	6 746	6 746	5 793	3 655	861	463
7/000	85	921	921	926	872	1036	682	880	880	906	849	982 (8 199	8368	836 8	854 8	811 92	923 638	8 791	1 791	1 802	2 767	862	615
	90	970	970	975	968	1037	834	928	928	930	930	983 8	813 8	882 8	882 8	883 8	883 92	925 791	1 834	4 834	4 835	5 835	864	762
	75	874	802	896	299	1043	382	826	778	910	222	886	361 7	7 977	738 8:	855 5	223 92	927 339	9 726	969 9	962 9	8 530	865	316
2000	80	868	868	965	298	1045	552	857	857	913	746	686	531 8	812 8	812 8	857 7	718 92	929 509	992 6	992 9	5 801	1 694	. 866	486
20005	85	950	950	971	923	1045	722	206	206	921	885	686	701	8 098	8 098	870 8	841 93	930 678	8 812	2 812	2 817	7 807	867	655
	90	866	866	1000	1000	1046	891	954	954	955	955	991	864	905 9	905 91	6 906	906	932 841	1 853	3 853	3 843	3 843	870	812
Notes:																								

All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling subtract indoor fan heat CAP = Total Gross Capacity, SHC = Sensible Heat Capacity

Heating Capacities

Table 37. Electric heat kW ranges

Tons		Nomina	Voltage	
ions	208	230	460	575
20	22.5-45-67.5	30-60-90	30-60-90	30-60-90
25	22.5-45-67.5	30-60-90	30-60-90	30-60-90
30	22.5-45-67.5	30-60-90	30-60-90	30-60-90
40	45-67.5-84	60-90-112	60-90-120-150	60-90-120-150
50	45-67.5-84	60-90-112	60-90-120-150	60-90-120-150
55	45-67.5-84	60-90-112	60-90-120-150	60-90-120-150
60	67.5-84	90-112	90-120-187	90-120-190
70	67.5-84	90-112	90-120-187	90-120-190
75	67.5-84	90-112	90-120-187	90-120-190

Notes:

- Actual limits may be + or the values shown; to accurately calculate capacities, contact 1. the local Trane Sales Office or utilize TOPSS.
- 2. Follow the supply CFM ranges posted in the General Data for each case size.

Table 38. Electric heat air temperature rise (°F)

kW Input	Total					CF	-M				
KW Input	MBh	4000	6000	9000	12000	15000	18000	21000	24000	27000	30000
30	102.5	23.6	15.7	10.5	7.9						
60	204.9	47.2	31.5	21.0	15.7	12.6	10.5	9.0			
90	307.4		47.2	31.5	23.6	18.9	15.7	13.5	11.8	10.5	9.4
120	409.8			41.9	31.5	25.2	21.0	18.0	15.7	14.0	12.6
150	512.3			52.4	39.3	31.5	26.2	22.5	19.7		
190	648.9				49.8	39.8	33.2	28.5	24.9	22.1	19.9

Notes:

- 1. Air temperature rise = $kW \times 3415 \div (scfm \times 1.085)$
- 2.
- See Electrical Data for electrical sizing information.
 200 and 230 volt electric heat rooftops require dual power supplies to the control box. All other rooftops have single power connections.

Table 39. Natural gas heating capacities

						Air T	empera	ture Ri	se (°F)	vs. Uni	t CFM		
Tons	Gas Heat Modules	Heat Input (MBh)	Heat Output (MBh)					CI	™				
				4000	5000	6000	6250	7000	8000	9000	10000	10625	11000
	LOW	250	203	46.7	37.3	31.1	29.9	26.7	23.3	20.7			
20	MEDIUM	350	284			43.5	41.8	37.3	32.7	29.0			
	HIGH	500	405				59.7	53.3	46.7	41.5			
	LOW	250	203		37.3	31.1	29.9	26.7	23.3	20.7	18.7	17.6	17.0
25	MEDIUM	350	284			43.5	41.8	37.3	32.7	29.0	26.1	24.6	23.8
	HIGH	500	405				59.7	53.3	46.7	41.5	37.3	35.1	33.9
	LOW	250	203			31.1	29.9	26.7	23.3	20.7	18.7	17.6	17.0
30	MEDIUM	350	284			43.5	41.8	37.3	32.7	29.0	26.1	24.6	23.8
	HIGH	500	405				59.7	53.3	46.7	41.5	37.3	35.1	33.9
	LOW	350	284						32.7	29.0	26.1	24.6	23.8
40	MEDIUM	500	405						46.7	41.5	37.3	35.1	33.9
	HIGH	850	689									59.7	57.7
	LOW	350	284								26.1	24.6	23.8
50	MEDIUM	500	405								37.3	35.1	33.9
	HIGH	850	689									59.7	57.7
	LOW	350	284										23.8
55	MEDIUM	500	405										33.9
	HIGH	850	689										57.7

Table 39. Natural gas heating capacities (continued)

		Heat	Heat			Air T	empera	ture Ri	se (°F)	vs. Unit	: CFM		
Tons	Gas Heat Modules	Input (MBh)	Output (MBh)					CF	М				
				4000	5000	6000	6250	7000	8000	9000	10000	10625	11000
	LOW	500	405										
60	MEDIUM	850	689										
	HIGH	1200	972										
	LOW	500	405										
70	MEDIUM	850	689										
	HIGH	1200	972										
	LOW	500	405										
75	MEDIUM	850	689										
	HIGH	1200	972										
						Aiı	Tempe	erature	Rise vs	. Unit C	FM		
	Gas Heat	Heat	Heat										
Tons	Modules	Input	Output					CF	М				
	Houdies	(MBh)	(MBh)										
				11250	12000	13500	14000	15000	18000	22500	24000	27000	30000
	LOW	250	203										
20	MEDIUM	350	284										
	HIGH	500	405										
	LOW	250	203	16.6									
25	MEDIUM	350	284	23.2									
	HIGH	500	405	33.2									
	LOW	250	203	16.6	15.6								
30	MEDIUM	350	284	23.2	21.8	19.4	18.7						
	HIGH	500	405	33.2	31.1	27.6	26.7						
	LOW	350	284	23.2	21.8	19.4	18.7	17.4	14.5				
40	MEDIUM	500	405	33.2	31.1	27.6	26.7	24.9	20.7				
	HIGH	850	689	56.4	52.9	47.0	45.3	42.3	35.3				
	LOW	350	284	23.2	21.8	19.4	18.7	17.4	14.5				
50	MEDIUM	500	405	33.2	31.1	27.6	26.7	24.9	20.7	16.6			
	HIGH	850	689	56.4	52.9	47.0	45.3	42.3	35.3	28.2			
	LOW	350	284	23.2	21.8	19.4	18.7	17.4	14.5	100	45.6		
55	MEDIUM	500	405	33.2	31.1	27.6	26.7	24.9	20.7	16.6	15.6		
	HIGH	850	689	56.4	52.9	47.0	45.3	42.3	35.3	28.2	26.4		
60	LOW	500	405		31.1	27.6	26.7	24.9	20.7	16.6	15.6	22.5	
60	MEDIUM	850	689		52.9	47.0	45.3	42.3	35.3	28.2	26.4	23.5	20.0
	HIGH	1200	972				64.0 26.7	60.0	50.0 20.7	40.0	38.0 15.6	33.0	30.0
70	LOW	500 850	405				-	24.9 42.3	-	16.6		72 E	21.2
/0	MEDIUM	850	689				45.3		35.3	28.2	26.4	23.5	21.2
<u> </u>	HIGH LOW	1200 500	972 405				64.0	60.0 24.9	50.0	40.0 16.6	38.0 15.6	33.0	30.0
75	MEDIUM	850	689				26.7 45.3	42.3	20.7 35.3	28.2	26.4	23.5	21.2
/3	HIGH	1200	972				64.0	60.0	50.0	40.0	38.0	33.0	30.0
Notes:	підп	1200	7/2				04.0	00.0	30.0	40.0	30.0	33.0	30.0

Notes:

- 1. Actual limits may be + or the values shown; to accurately calculate capacities, contact the local Trane Sales Office or utilize TOPSS.
- 2. Follow the supply CFM ranges posted in the General Data for each case size.
- 3. All heaters are 81% efficient.
- 4. CFM values below the minimum and above the maximum shown in this table are not cULus approved.
- **5**. Air temperature rise = heat output (Btu) \div (CFM x 1.085).

Fan Performance

Supply Fan Curves

Please see notes below for all supply fan curves. For additional information or support, contact your local Trane sales office or Trane representative.

Important:

- 1. Shaded area represents selectable area.
- 2. Supply fan performance curve includes internal resistance of rooftop. To determine total static pressure, add system external static pressure to appropriate component static pressure drops (evaporator coil, filters, economizer, reheat coil, heating system, final filters).
- 3. Motor horsepower offerings are designated by horsepower lines shown on fan performance map.

Figure 11. 20, 25 and 30 ton, 16.5 inch - 9 Blade - 80% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 20 ton - 9000 CFM, 25 ton - 11,250 CFM, 30 ton - 13,500 CFM

8.0 7.5 3000 RPM 7.0 6.5 6.0 2600 RPM 5.0 2400 RPM 4.5 **Pressure**, 1.0 2200 RPM 2000 RPM 3.0 1800 RPM 2.0 1.5 1200 RPM 1.0 0.5 0.0 10000 11000 1000 2000 4000 5000 6000 7000 8000 9000 12000 13000 Airflow, CFM

Figure 12. 20, 25 and 30 ton, 16.5 inches - 9 blade - 100% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 20 ton - 9000 CFM, 25 ton - 11,250 CFM, 30 ton - 13,500 CFM

Figure 13. 20, 25 and 30 ton, 20.0 inch - 9 blade - 80% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 20 ton - 9000 CFM, 25 ton - 11,250 CFM, 30 ton - 13,500 CFM

Figure 14. 20, 25 and 30 ton, 20.0 inch - 9 blade - 100% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 20 ton - 9000 CFM, 25 ton - 11,250 CFM, 30 ton - 13,500 CFM

Figure 15. 20, 25 and 30 ton, 22.2 inch - 9 blade - 80% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 20 ton - 9000 CFM, 25 ton - 11,250 CFM, 30 ton - 13,500 CFM

7.5 2700 RPM 7.0 2500 RPM -6.0 5.5 2100 RPM ~ 4.0 3.5 3.0 1700 RPM 1500 RPM 2.0 1.5 1100 RPM 1.0 0.0 2500 5000 7500 10000 12500 15000 17500 20000 22500 Airflow, CFM

Figure 16. 40, 50 and 55 ton, 18.2 inch - 9 blade - 100% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 40 ton - 18,000 CFM, 50/55 ton - 24,750 CFM

Figure 17. 40, 50 and 55 ton, 20.0 inch - 9 blade - 100% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 40 ton - 18,000 CFM, 50/55 ton - 24,750 CFM

8.0 7.5 7.0 6.0 1800 RPM 5.5 5.0 😸 <u>-</u> 4.0 3.5 3.5 1400 RPM 3.0 3.0 1100 RPM 2.0 1.5 1.0 0.5 0.0 2500 10000 12500 15000 17500 20000 22500 25000 Airflow, CFM

Figure 18. 40, 50 and 55 ton, 24.5 inch - 9 blade - 80% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 40 ton - 18,000 CFM, 50/55 ton - 24,750 CFM

Figure 19. 40, 50 and 55 ton, 24.5 inch - 9 blade - 100% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 40 ton - 18,000 CFM, 50/55 ton - 24,750

8.0 7.5 2200 RPM 2100 RPM 6.0 5.5 4.5 3.5 3.0 2.5 1200 RPN 2.0 1.0 0.5 0.0 2500 10000 12500 15000 17500 20000 22500 Airflow, CFM

Figure 20. 60 and 75 ton, 22.2 inch - 9 blade - 100% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 60 ton - 27,000 CFM, 70/75 ton - 30,000 CFM

Figure 21. $\,$ 60 and 75 ton, 27.0 inch - 9 blade - 100% width supply fan

Note: Maximum airflow (for cULus approval) as follows: 60 ton - 27,000 CFM, 70/75 ton - 30,000 CFM

Relief Fan Curves

Please see notes below for all supply fan curves. For additional information or support, contact your local Trane sales office or Trane representative.

Important:

- 1. Shaded area represents selectable area. Contact your local Trane representative for more information.
- 2. Relief fan performance curve includes internal resistance of rooftop. To determine total static pressure, add return static pressure and relief damper pressure drop.
- 3. EC motors are not offered in integral horsepower increments. All fans will be offered with nominal motor power rated to cover the operating envelope of the fan. Power limitation is indicated on fan map.

Figure 22. 20 to 25 ton, 6 hp relief fan, single fan

6.0 ZZOO RPM STORAN 2000 RPM 5.5 1900 RPM 5.0 4.5 1700 RPM 4.0 Static Pressure, Inches w.c. 1600 RPM 1500 RPM 1400 RPM 1200 RPM 2.0 90% Wocfm 1100 RPM 1.5 1000 RPM 900 RPM 0.5

12000

Figure 23. 20 ton, 8 hp relief fan, single fan

Figure 24. 30 ton, 12 hp relief fan, two-fan array

3000

4000

5000

6000

Airflow, CFM

7000

8000

9000

10000

11000

0.0

1000

Figure 25. 25, 30 and 40 ton, 8 hp relief fan, single fan

Figure 26. 40 ton, 15 hp relief fan, two-fan array

Figure 27. 50 and 55 ton, 12 hp relief fan, two-fan array

Figure 29. 60, 70 and 75 ton, 16 hp relief fan, two-fan array

Barometric Relief Damper Performance

Figure 31. Barometric Relief Damper Performance

Component Static Pressure Drops

Table 40. Static pressure drops — relief dampers

Nominal Tons	CFM	Relief Damper Pressure Drop (in w.c.)
	2,000	0.04
	4,000	0.16
20-40 Single Fan	6,000	0.37
	8,000	0.65
	10,000	1.02
	4,000	0.04
	6,000	0.09
	8,000	0.16
	10,000	0.26
30-55 Dual Fan	12,000	0.37
30 33 Duai Faii	14,000	0.5
	16,000	0.65
	18,000	0.83
	20,000	1.02
	22,000	1.24
	6,000	0.07
	8,000	0.12
	10,000	0.19
	12,000	0.27
	14,000	0.37
60-75 Dual or Three-Fan Array	16,000	0.48
oo is saa. s. inice runiiniy	18,000	0.61
	20,000	0.75
	22,000	0.91
	24,000	1.08
	26,000	1.27
Notos	28,000	1.47

Notes:

- ${\bf 1.} \quad \text{Relief damper static pressure drop is used only for relief fan selections.}$
- Use Relief CFM to determine pressure drop to add to return duct static pressure for relief fan selection.

Table 41. Component static pressure drops (in. H₂O)

			Evap Coil					Heatin	Heating System	em				Filters	irs			Ec	Economizer	er
Tons	CFM	Standard	High Ffficien- cy	Variable	HGRH		Ü	Gas			Electric	_	re Eva	Pre Evap Panel		Pre	Final	Re-		Out- side
	3	Dry Wet	t Dry Wet	t Dry Wet		250 MBh	350 MBh	500 MBh	850 MBh	1200 MBh	All kW	2" Merv 4	2" Merv 8	4" Merv 8	4" Merv 14	Cart	Cart		Air W/ O Traq	Air W/ Traq
	4000	0.06 0.06	5 0.08 0.08	0.08		80.0	0.05	0.04			0.03	0.03	0.05	ł	0.09	80.0	80.0	0.05	0.03	0.05
	2000	0.08 0.09	0.11	0.11		0.12	0.08	90.0			0.04	0.05	0.07		0.14	0.12	0.12	0.07	0.05	0.07
ć	0009	0.10 0.12	0.14	0.14		0.17	0.11	0.09			90.0	0.07	0.10	0.10	0.20	0.18	0.18	0.10	0.08	0.10
70	7000	0.12 0.15	0.17	0.16		0.23	0.15	0.12			0.08	0.10	0.14	0.13	0.28	0.24	0.24	0.14	0.10	0.14
	8000		0.19	0.19		0.30	0.20	0.16			0.11	0.13	0.18	0.17	0.36	0.32	0.32	0.18	0.13	0.18
	0006		0.23	0.23		0.38	0.25	0.20			0.13	0.17	0.23	0.22	0.46	0.40	0.40	0.23	0.17	0.23
	2000		0.11	_		0.12	60.0	0.07			0.04	50'0	0.07	0.07	0.14	0.12	0.12	0.07	0.05	0.07
	6250		0.15	0.19		0.19	0.13	0.10			90.0	0.08	0.11	0.10		0.19	0.19	0.11	0.08	0.11
25	7500		0.19	0.24 0.28		0.28	0.19	0.15			0.09	0.12	0.16	0.15		0.28	0.28	0.16	0.12	0.16
	8/20	0.12 0.14	0.22	0.28		0.58	0.70	0.20			0.13	0.Tb	0.22	0.20	44.0	0.78	0.38	0.22	0.T6	0.22
	11250		0.33 0.43	0.42		0.50	0.34	0.34			0.21	0.26	0.36	0.34		0.62	0.62	0.36	0.27	0.36
	0009		0.19	0.18		0.17	0.13	0.10			90.0	0.07	0.10	ŀ	+	0.18	0.18	0.10	0.08	0.10
	7500		0.25			0.26	0.21	0.15			0.09	0.12	0.16			0.28	0.28	0.16	0.12	0.16
30	0006		0.32	0.31		0.38	0.30	0.22			0.13	0.17	0.23			0.40	0.40	0.23	0.17	0.23
2	10500		0.37	0.37		0.52	0.40	0.30			0.18	0.23	0.32		0.63	0.54	0.54	0.31	0.23	0.32
	12000			0.46		0.68	0.53	0.39			0.24	0.30	0.41			0.71	0.71	0.41	0.30	0.41
	14000		0.59	0.59		0.92	0.72	0.53			0.33	0.41	0.56			0.97	0.97	0.56	0.41	0.56
	8000	0.14 0.14		0.20 0.22			0.24	0.16	0.19		0.09	0.05	0.08		0.20	0.16	0.19	0.08	0.22	0.27
	00001		0.30	0.31			0.37	0.25	0.30		0.14	0.08	0.13			0.26	0.29	0.13	0.34	0.43
40	12000		0.36	0.45			0.53	0.37	0.43		0.20	0.11	0.19	0.1/		0.3/	0.42	0.19	0.49	0.62
	14000	0.27 0.33	1.0 7.0	0.01			7.0	0.50	60.0		0.20	0.10	0.23			10.0	5.0	0.40	90.0	10.0
	18000	0.41 0.53	0.58 0.72	1.00			1.19	0.83	0.97		0.38	0.25	0.55		1.02	0.84	0.94	0.43	1.09	1.39
	10000	25	0.38	0.31	4		0.38	0.25	0.32		0.14	0.08	0.13	ł	+-	0.26	0.29	0.13	0.34	0.43
	12500			0.42			0.59	0.39	0.50		0.22	0.12	0.20	0.18	_	0.40	0.45	0.21	0.53	0.67
C	15000		09.0	0.52			0.85	0.57	0.72		0.32	0.17	0.29	0.26		0.58	0.65	0.30	0.76	96.0
2	17500		0.77	0.65			1.16	0.77	0.98		0.43	0.23	0.40	0.35		0.79	0.89	0.41	1.03	1.31
	20000	0.64 0.83	3 0.96 1.22	0.80 1.02			1.51	1.01	1.29		0.57	0.31	0.52	0.46		1.03	1.16	0.53	1.35	1.71
	11000		0.43	0.36			0.46	0.31	0.39		0.17	60.0	0.16	ŀ	+	0.31	0.35	0.16	0.41	0.52
	13750		0.57	0.47			0.71	0.48	0.61		0.27	0.14	0.24			0.49	0.55	0.25	0.64	0.81
7.	16500		0.70	0.59			1.03	0.69	0.88		0.39	0.21	0.35			0.70	0.79	0.36	0.92	1.17
)	19250		0.91	0.75			1.40	0.94	1.19		0.52	0.28	0.48	0.43		96.0	1.08	0.49	1.25	1.59
	22000	0.94 1.18	1.13 1.42	0.94 1.19	0.11		1.83	1.22	1.56		0.68	0.37	0.63	0.56	1.52	1.25	1.41	0.64	2.07	2.07
	12000		0.34	0.33	+-			0.36	0.44	0.40	0.17	0.05	0.09	ł	-	0.22	0.25	0.14	0.37	0.46
	15000		0.45	0.44				0.56	69.0	0.63	0.26	0.08	0.14			0.34	0.38	0.22	0.57	0.72
9	18000		0.53	0.56				0.80	1.00	0.90	0.38	0.11	0.21	ω ι	0.55	0.49	0.55	0.32	0.82	1.04
	21000	λ (0.68	0.68				1.10	1.36	1.23	0.52	0.15	0.28	0.25		0.66	رد/.U	0.44	1.12	1.42
	24000	0.43 0.55	1 03 1 28	10.85 1.07				1.43	1./8 2.75	1.60 2.03	0.68	0.20	0.37	0.33	1.97	1.87	2,7	0.57	1.40 1 0 L	1.85
	7,000	72	1.00.1	1.00	4			1.01	6.43	2.03	00.0	0.43	÷:	11.0	-	7.10	1.27	0.,0	1.00	1.5

Performance Data

Table 41. Component static pressure drops (in. H₂O) (continued)

			Eva	Evap Coil						Heatin	Heating System	em				Filters	ers			Ec	Economizer	er
			H 22	High	;	:			(i	-	L							
Tons	CFM	Standard Efficien- Variable cy	<u> </u>	icien- cy	Vari		HGRH		פֿט	Gas			Electric	.	Pre Evap Panel	p Pane	_	Pre	Final	Re-	side	side
	30						1	250	250	001	OEO	1000		7	2	4	4"	Evap	Cart			Air W/
		Dry Wet Dry Wet Dry Wet	it Dr,	/ Wet	Dry	Wet		MBh	MBh	MBh	MBh	MBh	All kW	Merv 4	Merv 8	Merv 8	Merv 14	Car				Traq
	14000	0.35 0.38 0.21 0.24 0.21 0.24	8 0.2.	1 0.24	0.21	_	0.03			0.48	0.61	0.55	0.23	0.07	0.13	0.11	0.33	0.29	0.33	0.20	0.50	0.63
	17200	0.46 0.53 0.27 0.33 0.26 0.33	3 0.2,	7 0.33	0.26	0.33	0.04			0.73	0.92	0.82	0.35	0.10	0.19	0.17	0.50	0.45	0.50	0.29	0.75	0.95
7	20400	0.54 1.4	4 0.30	0.43	0.32	0.43	0.05			1.03	1.30	1.16	0.49	0.14	0.27	0.24	0.70	0.63	0.71	0.41	1.06	1.34
2	23600	0.69 0.8	8 0.38	3 0.54	0.38	0.54	0.07			1.37	1.74	1.55	0.65	0.19	0.36	0.32	0.94	0.84	0.95	0.55	1.41	1.79
	26800	0.85 1.0	7 0.48	3 0.66	0.48	99.0	0.09			1.77	2.24	2.00	0.84	0.25	0.46	0.41	1.21	1.08	1.22	0.72	1.82	2.31
	30000	0 1.02 1.26 0.57 0.78 0.57 0.78 0	6 0.5;	7 0.78	0.57	0.78	0.12			2.22	2.81	2.50	1.06	0.31	0.58	0.51	1.52	1.35	1.53	06.0	2.28	2.89
	15000	0.47 0.5	1 0.2	4 0.26	0.24	0.26	0.03			0.56	0.70	0.63	0.26	0.08	0.14	0.13	0.38	0.34	0.38	0.22	0.57	0.72
	18000	0.58 0.00	0 0.25	9 0.35	0.28	0.35	0.04			0.80	1.01	06.0	0.38	0.11	0.21	0.18	0.55	0.49	0.55	0.32	0.82	1.04
7	21000	0.68 0.8	8 0.3	2 0.45	0.34	0.45	90.0			1.09	1.38	1.23	0.52	0.15	0.28	0.25	0.74	99.0	0.75	0.44	1.12	1.42
	24000	0.85 1.08 0.39 0.55 0.39 0.55	8 0.35	9 0.55	0.39		0.08			1.42	1.80	1.60	0.68	0.20	0.37	0.33	0.97	0.87	96.0	0.57	1.46	1.85
	27000	1.03 1.29	9 0.48	3 0.67	0.48		0.10			1.80	2.28	2.03	98.0	0.25	0.47	0.41	1.23	1.10	1.24	0.73	1.85	2.34
	30000	1.22 1.51 0.57 0.79 0.57 0.79	1 0.5	7 0.79	0.57		0.12			2.22	2.81	2.50	1.06	0.31	0.58	0.51	1.52	1.35	1.53	06.0	2.28	2.89
Votes:																						

-i α κ

Static pressure drops of accessory components must be added to determine total static pressure for fan selections.
Gas heat section maximum temperature rise of 60°F.
Economizer static pressure value for sizing supply fan is the highest of the following: a) Return air static pressure drop plus customer return duct static pressure and b) Outside air static pressure drop.

Electrical Data

Electrical Service Sizing

To correctly size electrical service wiring for a unit, find the appropriate calculations listed below. Each type of unit has its own set of calculations for MCA (Minimum Circuit Ampacity) and MOP (Maximum Overcurrent Protection). Read the load definitions that follow and then find the appropriate set of calculations based on unit type.

Note: Set 1 is for cooling only and cooling with gas heat units, and set 2 is for cooling with electric heat units.

Load Definitions: (To determine load values, see the Electrical Service Sizing Data Tables on the following page.)

Load Definitions	
LOAD 1	Current of the largest motor (compressor or fan motor)
LOAD 2	Sum of the currents of all remaining motors
LOAD 3	Current of electric heaters
LOAD 4	Any other load rated at 1 amp or more

Set 1: Cooling Only Rooftop Units and Cooling with Gas Heat Rooftop Units

 $MCA = (1.25 \times LOAD1) + LOAD2 + LOAD4$

 $MOP = (2.25 \times LOAD1) + LOAD2 + LOAD4$

Select a fuse rating equal to the MOP value. If the MOP value does not equal a standard fuse size as listed in NEC 240-6, select the next lower standard fuse rating.

Note: If selected MOP is less than the MCA, then select the lowest standard maximum fuse size which is equal to or larger than the MCA, provided the selected fuse size does not exceed 800 amps.

Set 2: Rooftop units with Electric Heat

Single Source Power units (460V and 575V)

To arrive at the correct MCA and MOP values for these units, two sets of calculations must be performed. First calculate the MCA and MOP values as if the unit was in cooling mode (use the equations given in Set 1). Then calculate the MCA and MOP values as if the unit were in heating mode as follows. (Keep in mind when determining LOADS that the compressors and condenser fan motors don't run while the unit is in heating mode).

For units using heaters less than 50 kW:

 $MCA = 1.25 \times (LOAD1 + LOAD2 + LOAD4) + (1.25 \times LOAD3)$

For units using heaters equal to or greater than 50 kW:

 $MCA = 1.25 \times (LOAD1 + LOAD2 + LOAD4) + (1.0 \times LOAD3)$

The nameplate MCA value will be the larger of the cooling mode MCA value or the heating mode MCA value calculated above.

 $MOP = (2.25 \times LOAD1) + LOAD2 + LOAD3 + LOAD4$

The selection MOP value will be the larger of the cooling mode MOP value or the heating mode MOP value calculated above.

Select a fuse rating equal to the MOP value. If the MOP value does not equal a standard fuse size as listed in NEC 240-6, select the next lower standard fuse rating. If the selected MOP value is less than 125 percent of the current rating of the electric heat load, select the next higher standard fuse rating.

Note: If selected MOP is less than the MCA, then select the lowest standard maximum fuse size which is equal to or larger than the MCA, provided the selected fuse size does not exceed 800 amps.

Dual Source Power units (200V and 230V)

These units will have two circuit values shown on the nameplate. The first circuit value will be the refrigeration (cooling mode) values calculated per Set 1. The second set of circuit values shown on the nameplate will be for the electric heating circuit as follows.

For units using heaters less than 50 kW:

 $MCA = (1.25 \times LOAD3)$

For units using heaters equal to or greater than 50 kW:

 $MCA = (1.0 \times LOAD3)$

 $MOP = (1.25 \times LOAD3)$

Select a fuse rating for the electric heating circuit that is equal to the MOP value obtained in the equation above. If the MOP value does not equal a standard fuse size as listed in NEC 240-6, select the next lower standard fuse rating (see note below for exception). If the selected MOP value is less than 125 percent of the current rating of the electric heat load, select the next higher standard fuse rating.

Note: If the available MOP option is less than the MCA obtained in the equation above, then reselect the lowest standard maximum fuse size which is equal to, or larger, than the MCA, provided the reselected fuse size does not exceed 800 amps.

Service Sizing Data

Table 42. Compressor electrical service sizing data (20 to 75 ton)

Tons		No. of	20	0 V	23	0 V	46	0 V	57	5 V
20 Std	Tons		RLA (ea.)	LRA (ea.)						
2 28.4 208.0 28.4 208.0 11.9 98.0 99.9 AS 20 HIEFF 1 40.6 304.0 42.3 304.0 19.8 147.0 15.8 103 20 Vari Spd 1 335.5 267.0 30.8 267.0 15.3 142.0 15.2 103 25 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 25 SHEFF 1 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 25 SH EFF 1 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 35.5 Wari Spd 1 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 19.1 136 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 30 HIEFF 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 40 Std 4 35.5 267.0 30.8 267.0 19.1 142.0 15.8 103 40 Std 4 35.5 267.0 30.8 267.0 19.1 142.0 15.8 103 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 40 Vari Spd 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 40 Vari Spd 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Std 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 4 56.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 4 56.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 4 56.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 4 56.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Std 4 56.6 304.0 42.3 304.0 19.8 147.0 17.2 122 57 Std 4 56.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 HIEFF 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 HIEFF 4 60.5 345.	20 Std						_			60.0
20 Vari Spd	20 3tu						1			75.0
1 45.6 304.0 42.3 304.0 19.8 144.0 17.2 122 20 Vari Spd 1 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 25 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 15.2 103 25 Std 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 25 Hi Eff 1 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 25 Vari Spd 1 46.4 NA 40.2 NA 20.1 NA 16.9 NA 20.1 14.0 15.8 103 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 30 Hi Eff 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 40 Std 4 35.5 267.0 30.8 267.0 19.1 142.0 15.8 103 40 Vari Spd 1 60.5 345.0 45.6 315.0 22.7 158.0 19.1 136 40 Vari Spd 1 60.5 246.0 40.3 267.0 15.3 142.0 15.2 103 40 Vari Spd 1 60.5 246.0 40.3 267.0 15.3 142.0 15.5 103 40 Vari Spd 1 50.4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 40.3 267.0 30.8 267.0 15.3 142.0 15.5 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.5 103 40 Vari Spd 1 50.4 35.5 267.0 30.8 267.0 15.3 142.0 15.5 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 40 Vari Spd 1 70.5 4.4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 1 60.5 345.0 36.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 1 60.5 345.0 36.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0	20 Hi Fff									103.0
25 Std 1 27.7 203.0 27.0 203.0 15.3 142.0 15.2 103 25 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 25 Hi Eff 1 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 25 Vari Spd 1 46.4 NA 40.2 NA 20.1 NA 16.9 NV 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 19.1 36 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 19.1 136 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 19.1 136 30 Hi Eff 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 30 Hi Eff 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 30 Vari Spd 1 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 30 Vari Spd 1 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Hi Eff 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 1 1 55.4 NA 48.0 NA 23.0 NA 19.3 NA 19.3 NA 40 Vari Spd 1 1 55.4 NA 48.0 NA 24.0 NA 20.2	201111211									122.0
25 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 15.5 84 25.5 M2 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 25.8 Hieff 1 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 15.4 315.0 45.6 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 22.7 158.0 19.1 136 25.4 315.0 25.7 158.0 19.1 136 25.5 15.0 25.1 15.3 142.0 15.2 15.0 15.1 315 25.5 15.0 15.3 142.0 15.2 15.1 315 25.5 15.0 15.3 142.0 15.2 15.1 315 25.5 15.0 15.3 142.0 15.2 15.1 315 25.5 15.1 315 25.1 315	20 Vari Spd									NA
25 Std										103.0
2 35.5	25 Std									84.0
25 HIEFT 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136. 25 Vari Spd 1 0.0 46.4 NA 40.2 NA 20.1 NA 16.9 NV. 25 Vari Spd 1 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103. 30 Std 1 27.7 203.0 27.0 203.0 14.5 98.0 12.5 84. 30 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103. 30 HiEFT 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136. 30 Vari Spd 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136.	25 5 tu									103.0
1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 25 25 25 25 25 25 25 2	25 Hi Eff									122.0
1							1			136.0
30 Std 1 27.7 203.0 27.0 203.0 19.1 142.0 15.8 103 30 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 30 Hi Eff 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 30 Vari Spd 1 6 35.5 267.0 30.8 267.0 19.1 142.0 15.8 103 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 1 6 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 57 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 58 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 59 Vari Spd 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Std 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Nai Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126	25 Vari Spd									NA
30 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 30 Hi Eff 1 60.5 345.0 52.4 345.0 26.2 158.0 19.1 136 30 Vari Spd 1 (a) 52.9 NA 45.9 NA 23.0 NA 19.3 NV 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Hi Eff 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 50 Hi Eff 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Std 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126										103.0
30 Hi Eff 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136.8 103 30 Hi Eff 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 30 Vari Spd 1 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Hi Eff 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.8 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 34	30 Std									84.0
1							1			103.0
1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 30 Vari Spd 1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Hi Eff 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 15.3 142.0 15.2 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 57 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 58 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 58 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 59 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 50.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 50 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Vari Spd 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 50 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126	30 Hi Fff									136.0
1 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136	30111211						1			126.0
40 Std 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Hi Eff 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Hi Eff 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Std 4 5.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Std 4 5.6 304.0 42.3 304.0 19.8 147.0 17.2 122 56 Std 4 5.6 304.0 42.3 304.0 19.8 147.0 17.2 122 57 Std 4 5.6 304.0 42.3 304.0 19.8 147.0 17.2 122 57 Std 50 Std 2 50.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 60 Vari Spd 1(a) 84.2 NA 63.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 1(a) 84.2 NA 63.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Std 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Std 3 5.0 52.4 345.0 26.2 155.0 23.1 126 60 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 32.5 NA 37.0 32.1 126	30 Vari Spd	_								NA
40 Hi Eff 4 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 40 Vari Spd 16a 55.4 NA 48.0 NA 24.0 NA 20.2 NV 50 Std 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 16a 74.8 NA 63.6 NA 32.5 NA 27.3 NV 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 16a 74.8 NA 63.6 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>136.0</td>	•									136.0
1(a) 55.4 NA 48.0 NA 24.0 NA 20.2 NA 20.0 NA 20.0 15.2 103 1										103.0
40 Vari Spd 2 35.5 267.0 30.8 267.0 15.3 142.0 15.2 103 50 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NV 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA	40 Hi Eff									103.0
50 Std 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 5 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 27.3 NA 60.5 NA 32.5 NA 27.3 NA 27.3 NA 60.5 NA 32.5 NA 27.3 NA 27.3 NA 32.5	40 Vari Snd	1(a)	55.4	NA	48.0	NA	24.0	NA	20.2	NA
50 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Hi Eff 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NV 50 Std 2 51.4 315.0	40 Vall Spa				30.8	267.0		142.0		103.0
50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NV 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NV 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 122 122 122 122 122 122	EU C+4	2		267.0	40.3	267.0	19.1	142.0	15.8	103.0
50 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 50 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NW 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NV 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 51.4 315.0 52.4	30 Stu	2	45.6	304.0	42.3	304.0	19.8	147.0	17.2	122.0
1	50 Hi Eff	2	40.3	267.0	40.3	267.0	19.1	142.0	15.8	103.0
50 Vari Spd 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NV 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 1(a) 76.4 NA 6	30 III EII		45.6	304.0	42.3	304.0	19.8	147.0	17.2	122.0
55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Std 4 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NV 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 </td <td>50 Vari Snd</td> <td>1^(a)</td> <td>74.8</td> <td></td> <td>63.6</td> <td>NA</td> <td>32.5</td> <td>NA</td> <td>27.3</td> <td>NA</td>	50 Vari Snd	1 ^(a)	74.8		63.6	NA	32.5	NA	27.3	NA
55 Hi Eff 2 40.3 267.0 40.3 267.0 19.1 142.0 15.8 103 55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 <td></td> <td></td> <td>45.6</td> <td></td> <td>42.3</td> <td>304.0</td> <td>19.8</td> <td>147.0</td> <td>17.2</td> <td>122.0</td>			45.6		42.3	304.0	19.8	147.0	17.2	122.0
55 Hi Eff 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4	55 Std	4	45.6	304.0	42.3	304.0	19.8	147.0	17.2	122.0
55 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 60 Std 2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NV 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 70 Vari Spd 1(a) 84.2 NA 73.0 <td>FF 11: F#</td> <td>2</td> <td>40.3</td> <td>267.0</td> <td>40.3</td> <td>267.0</td> <td>19.1</td> <td>142.0</td> <td>15.8</td> <td>103.0</td>	FF 11: F#	2	40.3	267.0	40.3	267.0	19.1	142.0	15.8	103.0
2 45.6 304.0 42.3 304.0 19.8 147.0 17.2 122 60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 70 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	סט חו בוו	2		304.0	42.3	304.0	19.8	147.0		122.0
60 Std 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.0 51.5 320.0 26.0 160.0 21.9 135 60 Vari Spd 1 60.0 51.5 60 Vari Spd	EE Vari Cad	1(a)	74.8	NA	63.6	NA	32.5	NA	27.3	NA
60 Std 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	33 vari Spu	2	45.6	304.0	42.3	304.0	19.8	147.0	17.2	122.0
60 Hi Eff 4 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1 (a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 (a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	60 C+d	2	51.4	315.0	45.6	315.0	22.7	158.0	19.1	136.0
60 Vari Spd 1(a) 76.4 NA 64.3 NA 35.9 NA 29.4 NA 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 60.5 345.0 52.4 345.0	บบ วเน			345.0	52.4	345.0	26.2	155.0	23.1	126.0
60 Vari Spd 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	60 Hi Eff	4	51.4	315.0	45.6	315.0	22.7	158.0	19.1	136.0
70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 51.4 315.0 45.6 315.0 26.2 155.0 23.1 126 70 Vari Spd 1 (a) 84.2 NA 73.0 NA 36.5 NA 30.6 N/ 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 (a) 74.8 NA 63.6 NA 32.5 NA 27.3 N/ 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	60 Vari Snd	1(a)		NA	64.3		35.9	NA	29.4	NA
70 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Hi Eff 2 51.4 315.0 45.6 315.0 22.7 158.0 19.1 136 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 60.1 320.0 51.5 <t< td=""><td>oo vari spu</td><td>2</td><td>60.5</td><td>345.0</td><td>52.4</td><td>345.0</td><td>26.2</td><td>155.0</td><td>23.1</td><td>126.0</td></t<>	oo vari spu	2	60.5	345.0	52.4	345.0	26.2	155.0	23.1	126.0
70 Hi Eff 2 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 70 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	70 Std	4		345.0	52.4		26.2			126.0
70 Vari Spd	70 H: E#	2	51.4	315.0	45.6	315.0	22.7	158.0	19.1	136.0
70 Vari Spd 1(a) 84.2 NA 73.0 NA 36.5 NA 30.6 NA 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	/U HI EIT	2	60.5	345.0	52.4	345.0		155.0	23.1	126.0
75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	70 Vari Cad					NA	36.5		30.6	NA
75 Std 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 75 Hi Eff 4 60.5 345.0 52.4 345.0 26.2 155.0 23.1 126 1(a) 74.8 NA 63.6 NA 32.5 NA 27.3 NA 75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	70 varī Spū	2	60.5	345.0	52.4	345.0		155.0		126.0
75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	75 Std	4	60.5	345.0	52.4	345.0	26.2	155.0		126.0
75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135	75 Hi Eff	4	60.5	345.0	52.4	345.0	26.2	155.0	23.1	126.0
75 Vari Spd 1 60.1 320.0 51.5 320.0 26.0 160.0 21.9 135										NA
	75 Vari Spd									135.0
1 2 19.1 19.0 19.0 19.0 19.1 19.1 19.0	•	2	51.4	315.0	45.6	315.0	22.7	158.0	19.1	136.0

⁽a) Variable Speed Compressor

Electrical Data

Table 43. Condenser fan electrical service sizing data (20-75 ton)

Tonnage	No. of	200 V	230 V	460 V	575 V
Tomlage	Motors	FLA (ea.)	FLA (ea.)	FLA (ea.)	FLA (ea.)
20 Std	2	5.4	5.4	2.7	2.2
20 Low Ambient	1(a)	5.6	5.6	2.9	2.4
20 Low Ambient	1	5.4	5.4	2.7	2.2
25 Std	2	5.4	5.4	2.7	2.2
25 Low Ambient	1 ^(a)	5.6	5.6	2.9	2.4
23 Low Ambient	1	5.4	5.4	2.7	2.2
30 Std	2	5.4	5.4	2.7	2.2
30 Low Ambient	1 ^(a)	5.6	5.6	2.9	2.4
30 LOW AITIDIETIC	1	5.4	5.4	2.7	2.2
40 Std	4	5.4	5.4	2.7	2.2
40 Low Ambient	2 ^(a)	5.6	5.6	2.9	2.4
40 LOW AITIBLETT	2	5.4	5.4	2.7	2.2
50 Std	4	5.4	5.4	2.7	2.2
50 Low Ambient	2(a)	5.6	5.6	2.9	2.4
30 LOW AITIBLETT	2	5.4	5.4	2.7	2.2
55 Std	4	5.4	5.4	2.7	2.2
55 Low Ambient	2(a)	5.6	5.6	2.9	2.4
33 LOW AITIBLETIC	2	5.4	5.4	2.7	2.2
60 Std	6	4.1	4.1	1.8	1.4
60 Low Ambient	2(a)	5.6	5.6	2.9	2.4
60 Low Ambient	4	4.1	4.1	1.8	1.4
70 Std	6	4.1	4.1	1.8	1.4
70 Low Ambient	2(a)	5.6	5.6	2.9	2.4
70 Low Ambient	4	4.1	4.1	1.8	1.4
75 Std	6	4.1	4.1	1.8	1.4
75 Low Ambient	2(a)	5.6	5.6	2.9	2.4
73 Low Ambient	4	4.1	4.1	1.8	1.4

⁽a) Variable Speed Fan

Table 44. Electrical service sizing data - electric heat module (electric heat units only) - 20 to 75 tons

Module		Voltage	(Amps)	
kW	200 V	230 V	460 V	575 V
30	62.5	72.2	36.1	28.9
60	124.9	144.3	72.2	57.7
90	187.4	216.5	108.3	86.6
120	233.2	269.4	144.3	115.5
150	NA	NA	180.4	144.3
190	NA	NA	224.9	182.8

Note: Electric heat FLA are determined at 208, 240, 480 and 600 volts.

Electrical service sizing data - Supply fan motors - 20 to 75 tons

	200 V	230 V	460 V	575 V
	FLA (ea.)	FLA (ea.)	FLA (ea.)	FLA (ea.)
Motor Horsepower	Sup	ply Fan Motor (4 p		pass
1.5	5.6	5.6	3.5	3.7
3	14.1	14.1	4.7	3.7
5	21.0	14.1	8.3	5.3
7.5	41.0	21.0	11.2	8.7
10	41.0	41.0	15.1	11.9
15	41.0	41.0	22.1	16.5
20	56.1	52.7	29.9	22.5
25	70.1	65.0	32.2	27.0
Motor Horsepower	Sup	ply Fan Motor (6 p	•	pass
1.5	6.1	5.6	3.5	3.7
3	14.1	14.1	4.7	3.7
5	21.0	14.8	8.3	5.6
7.5	41.0	22.0	11.2	11.9
10	41.0	41.0	22.1	16.5
15	52.7	41.0	22.1	16.5
20	65.0	54.0	29.9	27.0
Motor Horsepower	Suppl	y Fan Motor (4 po		Sypass
1.5	5.6	5.6	3.5	3.7
3	14.1	14.1	4.7	3.7
5	21.0	14.1	8.3	5.0
7.5	41.0	21.0	11.2	8.7
10	41.0	41.0	15.1	11.9
15	52.7	41.0	22.1	16.5
20	52.7	52.7	29.9	22.5
25	65.0	65.0	35.2	27.0
Motor Horsepower	Suppl	y Fan Motor (6 po	le) with out VFD B	ypass
1.5	5.6	5.6	3.5	3.7
3	14.1	14.1	4.7	3.7
5	21.0	14.1	8.3	5.0
7.5	41.0	21.0	11.2	11.9
10	41.0	41.0	22.1	16.5
15	52.7	41.0	22.1	16.5
20	52.7	52.7	29.9	27.0

FLA is for individual motors by HP, not total unit supply and relief fan HP
 Supply fans selected under 1,600 RPM will have 6-pole motors

Table 46. Electrical service sizing data — Relief fan motors — 20 to 75 tons

			200 V	230 V	460 V	575 V
Tonnage	HP (Total)	No. of Motors	FLA (ea.)	FLA (ea.)	FLA (ea.)	FLA (ea.)
20	6	1	12.8	12.8	6.3	N/A
20	8(a)	1	19.5	19.5	9.0	N/A
25	6	1	12.8	12.8	6.3	N/A
25	8(p)	1	18.2	18.2	9.3	N/A
30	8(p)	1	18.2	18.2	9.3	N/A
30	12	2	12.8	12.8	6.3	N/A
40	8(p)	1	18.2	18.2	9.3	N/A
40	15(a)	2	19.5	19.5	9.0	N/A
50	12	2	12.8	12.8	6.3	N/A
50	16(b)	2	18.2	18.2	9.3	N/A
55	12	2	12.8	12.8	6.3	N/A
55	16 ^(b)	2	18.2	18.2	9.3	N/A
60	16 ^(b)	2	18.2	18.2	9.3	N/A
60	23 ^(a)	3	19.5	19.5	9.0	N/A
70	16 ^(b)	2	18.2	18.2	9.3	N/A
70	23 ^(a)	3	19.5	19.5	9.0	N/A
75	16(b)	2	18.2	18.2	9.3	N/A
75	23(a)	3	19.5	19.5	9.0	N/A

(a) 23" fan diameter (b) 25.5" fan diameter

Electrical Data

Table 47. Electrical service sizing data (amps) - control power transformer heating and cooling modes - 20 to 75 tons

			Volt	age	
Nom Tons	Digit 2 Unit Function	200	230	460	575
		FLA	FLA	FLA	FLA
All	All	10	10	4.5	3.5

Table 48. Voltage utilization range

Unit Voltage	Voltage Utilization Range
200/60/3	180-220
230/60/3	207-253
460/60/3	414-506
575/60/3 (WYE)	517-633

Dimensional Data

Table 49. Unit Dimensions

Tons	Refrigera Syste Perform	m	Unit Fur		Relief Op		Outs	ide Air		orator Coil Iter	Overall Length	Foot- print Length	H (in)	W (in)
	Туре	Digit 9	Туре	Digit 2	Туре	Digit 18	Туре	Digit 27	Туре	Digit 24	(in.)	(in.)	()	
					Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	220.88	213.00		
						_		, ,-,	Cartridge	E,H	239.86	232.00		
	All	1,2,3	No Heat	Α	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	220.85	182.01		
		' '			Relief				Cartridge	E,H	239.95	201.01		
					None	0	None	0	Panel	A,B,C,D,F,G	182.01	182.01		
20-30			Electric						Cartridge	E,H	201.01	201.01	81.59	90.63
			Electric Heat,		Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	270.61	262.72		
			Gas						Cartridge	E,H	289.58	281.72		
	All	1,2,3	Heat,	EFX	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	270.61	231.74		
			No Heat -		Relief				Cartridge	E,H	289.68	250.74		
			Extended		None	0	None	0	Panel Cartridge	A,B,C,D,F,G	231.74	231.74		
			Casing							E,H	250.74	250.74		
					Relief Fan	2	Yes	1,2,3,4	Panel Cartridge	A,B,C,D,F,G E,H	268.56	260.64		
									,	,	287.56	279.64 229.66		
	All	1,2,3	No Heat	Α	Barometric Relief	1	Yes	1,2,3,4	Panel Cartridge	A,B,C,D,F,G E,H	268.56 287.56			
					Reliei				Panel	A,B,C,D,F,G	287.56	248.66 229.66		
					None	0	None	0	Cartridge	E,H	248.66	248.66		
40-55			Electric						Panel	A,B,C,D,F,G	320.79	312.87	81.59	90.63
			Heat,		Relief Fan	2	Yes	1,2,3,4	Cartridge	E,H	339.79	331.87		
			Gas		Barometric				Panel	A,B,C,D,F,G	320.79	281.88	1	
	All	1,2,3	Heat,	EFX	Relief	1	Yes	1,2,3,4	Cartridge	E,H	339.79	300.88		
			No Heat - Extended Casing			_			Panel	A,B,C,D,F,G	281.88	281.88		
					None	0	None	0	Cartridge	E,H	300.88	300.88		
				ing		_	.,	1 2 2 4	Panel	A,B,C,D,F,G	268.50	266.15		
					Relief Fan	2	Yes	1,2,3,4	Cartridge	E,H	287.50	285.15		
		1 2 2	No Heek		Barometric	-1	V	1 2 2 4	Panel	A,B,C,D,F,G	268.50	229.66		
	All	1,2,3	No Heat	Α	Relief	1	Yes	1,2,3,4	Cartridge	E,H	287.50	248.66		
					None	0	None	0	Panel	A,B,C,D,F,G	229.66	229.66		
60					None	U	None	U	Cartridge	E,H	248.66	248.66	01 50	116.13
60			Electric		Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	320.73	318.37	81.59	116.13
			Heat,		Reliei Fali		165	1,2,5,7	Cartridge	E,H	339.73	337.37		
	All	1,2,3	Gas Heat,	EFX	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	320.73	281.88	1	
	All	1,2,3	No Heat -	LFA	Relief		162	1,2,3,4	Cartridge	E,H	339.73	300.88]	
			Extended		None	0	None	0	Panel	A,B,C,D,F,G	281.88	281.88		
			Casing		None	U	None	U	Cartridge	E,H	300.88	300.88		

Dimensional Data

Table 49. Unit Dimensions (continued)

Tons	Refrigeration System Performance		Unit Function		-		Outside Air		Pre-Evaporator Coil Filter		Overall Length	Foot- print Length	H (in)	W (in)
	Туре	Digit 9	Туре	Digit 2	Туре	Digit 18	Туре	Digit 27	Туре	Digit 24	(in.)	(in.)	(111)	
					Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	268.50	266.15		
									Cartridge	E,H	287.50	285.15		
			No Heat	Α	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	268.50	229.66		
					Relief			, ,-,	Cartridge	E,H	287.50	248.66		
					None	0	None	0	Panel	A,B,C,D,F,G	229.66	229.66		
	Standard	1	Electric						Cartridge	E,H	248.66	248.66		
			Electric Heat,		Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	320.73	318.37		
			Gas						Cartridge	E,H	339.73	337.37		
			Heat,	EFX	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	320.73	281.88		116.13
			No Heat -		Relief				Cartridge	E,H	339.73	300.88		
			Extended Casing		None	0	None	0	Panel	A,B,C,D,F,G	281.88	281.88	81.59	
									Cartridge	E,H	300.88	300.88		
	High Efficiency	2	No Heat	А	Relief Fan	2	Yes	1,2,3,4	Panel Cartridge	A,B,C,D,F,G E,H	316.50	314.15		
					Barometric Relief	1	Yes	1,2,3,4		A,B,C,D,F,G	347.50	345.15		
									Panel Cartridge	E,H	316.50 347.50	277.65 308.65		
					None				Panel	A,B,C,D,F,G	277.65	277.65		
						0	None	0	Cartridge	E,H	308.65	308.65		
70			Electric Heat, Gas Heat, No Heat - Extended Casing				Yes	1,2,3,4	Panel	A,B,C,D,F,G	368.70	366.35		
					Relief Fan	2			Cartridge	E,H	399.70	397.35		
					Barometric Relief	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	368.70	329.86		
				EFX					Cartridge	E,H	399.70	360.86	1	
				1				0	Panel	A,B,C,D,F,G	329.86	329.86	1	
					None	0	None		Cartridge	E,H	360.86	360.86		
									Panel	A,B,C,D,F,G	316.50	314.15		
					Relief Fan	2	Yes	1,2,3,4	Cartridge	E,H	347.50	345.15		
					Barometric			4 2 2 4	Panel	A,B,C,D,F,G	316.50	277.65	1	
			No Heat	Α	Relief	1	Yes	1,2,3,4	Cartridge	E,H	347.50	308.65	1	
								_	Panel	A,B,C,D,F,G	277.65	277.65		
	EI TM	_			None	0	None	0	Cartridge	E,H	308.65	308.65		
	eFlex™	3	Electric		D !: 65	_	.,	1 2 2 4	Panel	A,B,C,D,F,G	368.70	366.35		
			Heat,		Relief Fan	2	Yes	1,2,3,4	Cartridge	E,H	399.70	397.35		
			Gas	FEV	Barometric Relief	-	V	1 2 2 4	Panel	A,B,C,D,F,G	368.70	329.86		
			Heat, No Heat -	EFX		1	Yes	1,2,3,4	Cartridge	E,H	399.70	360.86		
			Extended		None	0	None	0	Panel	A,B,C,D,F,G	329.86	329.86		
			Casing		None	U	None	U	Cartridge	E,H	360.86	360.86		

Table 49. Unit Dimensions (continued)

Tons	Performance		Unit Function		Relief Option		Outside Air		Pre-Evaporator Coil Filter		Overall Length	Foot- print Length	H (in)	W (in)
	Туре	Digit 9	Туре	Digit 2	Туре	Digit 18	Туре	Digit 27		Digit 24	(in.)	(in.)	(111)	
					Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	268.50	266.15		
					Renerran		103		Cartridge	E,H	287.50	285.15		
			No Heat	Α	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	268.50	229.66		
			Noricat	'`	Relief	-	105		Cartridge	E,H	287.50	248.66		
					None	0	None	0	Panel	A,B,C,D,F,G	229.66	229.66		
	Standard	1				Ů			Cartridge	E,H	248.66	248.66		
	Staridard	1	Electric Heat,		Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	320.73	318.37		
			Gas						Cartridge	E,H	339.73	337.37		
			Heat,	EFX	Barometric	1	Yes	1 1 1 3 4 1 1 1	A,B,C,D,F,G	320.73	281.88			
			No Heat -		Relief	_	1 163	, ,-,	Cartridge	E,H	339.73	300.88		116.13
			Extended Casing		None	None 0	None	0	Panel	A,B,C,D,F,G	281.88	281.88	81.59	
						,			Cartridge	E,H	300.88	300.88		
	High Efficiency	2	No Heat Electric Heat, Gas Heat, No Heat -	А	Relief Fan		Yes	1,2,3,4	Panel	A,B,C,D,F,G	316.50	314.15		
									Cartridge	E,H	347.50	345.15		
					Barometric	1 Yes	Yes	1,2,3,4	Panel	A,B,C,D,F,G	316.50	277.65		
					Relief				Cartridge	E,H	347.50	308.65		
					None	0	None	0	Panel	A,B,C,D,F,G	277.65	277.65		
75									Cartridge	E,H	308.65	308.65		
					Relief Fan		Yes	1,2,3,4	Panel	A,B,C,D,F,G	368.70	366.35		
									Cartridge	E,H	399.70	397.35		
				EFX	Barometric		Yes	1,2,3,4	Panel	A,B,C,D,F,G	368.70	329.86		
					Relief				Cartridge	E,H	399.70	360.86		
			Extended		None	0	None	0	Panel	A,B,C,D,F,G	329.86	329.86		
			Casing				140110		Cartridge	E,H	360.86	360.86		
					Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	316.50	314.15		
			No Heat						Cartridge	E,H	347.50	345.15		
				Α	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	316.50	277.65		
					Relief				Cartridge	E,H	347.50	308.65		
					None	0	None	0	Panel	A,B,C,D,F,G	277.65	277.65		
	eFlex™	3	Electric						Cartridge	E,H	308.65	308.65		
			Heat,		Relief Fan	2	Yes	1,2,3,4	Panel	A,B,C,D,F,G	368.70	366.35		
			Gas						Cartridge	E,H	399.70	397.35		
			Heat,	EFX	Barometric	1	Yes	1,2,3,4	Panel	A,B,C,D,F,G	368.70	329.86		
			No Heat -		Relief	1 .cs			Cartridge	E,H	399.70	360.86		
			Extended		None	0	None	0	Panel	A,B,C,D,F,G	329.86	329.86		
Notos			Casing						Cartridge	E,H	360.86	360.86		

Notes:

- Difference between overall length and footprint length is outside air hood.
 Refrigeration System Performance impacts length in 70 and 75 ton due to staggered coil configuration

Dimensional Data

Figure 32. 20 to 30 ton — front view (inches)

FRONT VIEW 20-30T

Figure 33. 20 to 30 ton — left view of sample configuration (inches)

LEFT SIDE VIEW 20-30T / NO HEAT / RELIEF FANS / PANEL FILTERS

Dimensional Data

Figure 34. 40 to 55 ton — front view (inches)

Figure 35. 40 to 55 ton — left view of sample configuration (inches)

40-55T / ELECT. HT. / CART. FILTERS

Figure 36. 60 to 75 ton — front view (inches)

Dimensional Data

Figure 37. 60 to 75 ton — left view of sample configuration (inches)

LEFT SIDE VIEW 60-75T / GAS HEAT / BAROMETRIC RELIEF / PANEL FILTERS

Optional Configurations

Figure 38. 20 – 30 ton options

А	В	С	D	Е	F	G
Relief Option	Return / Economizer	Filter	DX Coil	Supply Fan	Heat	Condenser / Control Panel
None	Return Opening Only	Panel	Slab	DDP Fan	No Heat	Condenser
0.0" Outside Air 39.0" Barometric Relief 39.0" Relief Fan	30.0" 0-25% Manual 30.0" Economizer 30.0"	5.0" Cartridge	24.5"	59.5"	3.5" Natural Gas 53.0" Electric 53.0" Final Filter/Extended	59.0*

Dimensional Data

Figure 39. 40 – 55 ton options

А	В	С	D	E	F	G
/ \	D	0	D		'	9
Relief Option	Return / Economizer	Filter	DX Coil	Supply Fan	Extended Casing	Condenser / Control Panel
None	Return Opening Only	Panel	Slab	DDP Fan	No Heat	Condenser
0.0"	38.0"	5.0"	24.5"	59.5"	3.5"	99.5"
Outside Air	0-25% Manual	Cartridge			Natural Gas	
39.0"	38.0°	21.0"			55.5"	
Barometric Relief	Economizer				Electric	
39.0" Relief Fan	38.0"				55.5" Final Filter/Extended	
Kellet Fan					Final Filter/Extended	
39.0"					55.5"	

Figure 40. 60 – 75 ton options

А	В	С	D	E	F	G
Relief Option	Return / Economizer	Filter	DX Coil	Supply Fan	Extended Casing	Condenser / Control Panel
None	Return Opening Only	Panel	Slab	DDP Fan	No Heat	Condenser
0.0"	38.0"	5.0"	24.5"	59.5"	3.5"	99.5"
Outside Air	0-25% Manual	Cartridge*	Staggered 72.5°		Natural Gas	
Barometric Relief	Economizer	Cartridge*			Electric	
Relief Fan	Economizer 38.0°	30.0			Final Filter/Extended	

Roof Curb

Figure 41. Service clearance

Figure 42. Roof curb dimensions (inches)

Table 50. Roof curb dimensional data (inches)

Description	Α	В	С	E	F	G	K	L	М	N	R	S	U	V
RX, 20-30 T, PANEL FILTER, RELFAN	200.97	84.50	33.05	26.13	76.49	3.60	27.00	67.50	111.19	18.97	95.94	94.50	201.29	84.82
RX, 20-30 T, CART FILTER	188.99	84.50	3.58	24.62	76.49	3.60	27.00	67.50	130.19	18.97	95.94	94.50	189.31	84.82
RX, 20-30 T, CART FILTER, RELFAN	219.97	84.50	33.05	26.13	76.49	3.60	27.00	67.50	130.19	18.97	95.94	94.50	220.29	84.82
RA, 20-30 T, PANEL FILTER	120.26	84.50	3.58	24.62	76.49	23.85	28.50	76.49	39.72	18.97	95.94	94.50	120.58	84.82
RA, 20-30 T, PANEL FILTER, RELFAN	151.25	84.50	33.05	26.13	76.49	23.85	28.50	76.49	39.72	18.97	95.94	94.50	151.57	84.82
RA, 20-30 T, CART FILTER	139.26	84.50	3.58	24.62	76.49	23.85	28.50	76.49	58.72	18.97	95.94	94.50	139.58	84.82
RA, 20-30 T, CART FILTER, RELFAN	170.25	84.50	33.05	26.13	76.49	23.85	28.50	76.49	58.72	18.97	95.94	94.50	170.57	84.82
RX, 40-55 T, PANEL FILTER	179.99	84.50	3.58	32.12	76.49	3.60	29.50	67.50	111.19	59.12	95.94	94.50	180.31	84.82
RX, 40-55 T, PANEL FILTER, RELFAN	210.97	84.50	33.05	33.63	76.49	3.60	29.50	67.50	111.19	59.12	95.94	94.50	211.29	84.82
RX, 40-55 T, CART FILTER	198.99	84.50	3.58	32.12	76.49	3.60	29.50	67.50	130.19	59.12	95.94	94.50	199.31	84.82
RX, 40-55 T, CART FILTER, RELFAN	229.97	84.50	33.05	33.63	76.49	3.60	29.50	67.50	130.19	59.12	95.94	94.50	230.29	84.82
RA, 40-55 T, PANEL FILTER	127.76	84.50	3.58	32.12	76.49	23.85	28.50	76.49	39.72	59.12	95.94	94.50	128.08	84.82
RA, 40-55 T, PANEL FILTER, RELFAN	158.75	84.50	33.05	33.63	76.49	23.85	28.50	76.49	39.72	59.12	95.94	94.50	159.07	84.82
RA, 40-55 T, CART FILTER	146.76	84.50	3.58	32.12	76.49	23.85	28.50	76.49	58.72	59.12	95.94	94.50	147.08	84.82
RA, 40-55 T, CART FILTER, RELFAN	177.75	84.50	33.05	33.63	76.49	23.85	28.50	76.49	58.72	59.12	95.94	94.50	178.07	84.82
RX, 60-75 T, PANEL FILTER	179.99	110.00	3.58	32.12	101.99	3.60	29.50	93.00	111.19	59.12	121.44	120.00	180.31	110.32
RX, 60-75 T, PANEL FILTER, RELFAN	216.48	110.00	38.56	33.63	101.99	3.60	29.50	93.00	111.19	59.12	121.44	120.00	216.80	110.32
RX, 60-75 T, CART FILTER	198.99	110.00	3.58	32.12	101.99	3.60	29.50	93.00	130.19	59.12	121.44	120.00	199.31	110.32
RX, 60-75 T, CART FILTER, RELFAN	235.48	110.00	38.56	33.63	101.99	3.60	29.50	93.00	130.19	59.12	121.44	120.00	235.80	110.32
RA, 60-75 T, PANEL FILTER	127.76	110.00	3.58	32.12	101.99	22.85	29.50	101.99	39.72	59.12	121.44	120.00	128.08	110.32
RA, 60-75 T, PANEL FILTER, RELFAN	164.25	110.00	38.56	33.63	101.99	22.85	29.50	101.99	39.72	59.12	121.44	120.00	164.57	110.32
RA, 60-75 T, CART FILTER	146.76	110.00	3.58	32.12	101.99	22.85	29.50	101.99	58.72	59.12	121.44	120.00	147.08	110.32
RA, 60-75 T, CART FILTER, RELFAN	183.25	110.00	38.56	33.63	101.99	22.85	29.50	101.99	58.72	59.12	121.44	120.00	183.57	110.32
RX, 60-75 T, PANEL FILTER, STGEV	227.99	110.00	3.58	32.12	101.99	3.60	29.50	93.00	159.19	59.12	121.44	120.00	228.31	110.32
RX, 60-75 T, PANEL FILTER, RELFAN, STGEV	264.48	110.00	38.56	33.63	101.99	3.60	29.50	93.00	159.19	59.12	121.44	120.00	264.80	110.32
RX, 60-75 T, CART FILTER, STGEV	258.99	110.00	3.58	32.12	101.99	3.60	29.50	93.00	190.19	59.12	121.44	120.00	259.31	110.32
RX, 60-75 T, CART FILTER, RELFAN, STGEV	295.48	110.00	38.56	33.63	101.99	3.60	29.50	93.00	190.19	59.12	121.44	120.00	295.80	110.32
RA, 60-75 T, PANEL FILTER, STGEV	175.76	110.00	3.58	32.12	101.99	22.85	29.50	101.99	87.72	59.12	121.44	120.00	176.08	110.32
RA, 60-75 I, PANEL FILTER, RELFAN, STGEV	212.25	110.00	38.56	33.63	101.99	22.85	29.50	101.99	87.72	59.12	121.44	120.00	212.57	110.32
RA, 60-75 T, CART FILTER, STGEV	206.76	110.00	3.58	32.12	101.99	22.85	29.50	101.99	118.72	59.12	121.44	120.00	207.08	110.32
FILTER, RELFAN, STGEV	243.25	110.00	38.56	33.63	101.99	22.85	29.50	101.99	118.72	59.12	121.44	120.00	243.57	110.32

 $\textbf{Note:} \ \ \text{High efficiency and eFlex} \textbf{TM} \ \text{refrigeration system performance for both 70 and 75 tons have a staggered evaporator coil (STGEV)}.$

Dimensional Data

Figure 43. Base and pedestal

(END VIEW OF PEDESTAL)

(SIDE VIEW OF PEDESTAL)

Electrical Entry Details

Figure 44. Electrical connections (inches)

Access Clearances

Figure 45. Minimum access clearances – 20 to 30 ton

PLAN VIEW 20-30T DOOR LAYOUT

Figure 46. Minimum access clearances - 40 to 55 ton

PLAN VIEW 40-55T DOOR LAYOUT

Figure 47. Minimum access clearances - 60 to 75 ton

PLAN VIEW 60-75T DOOR LAYOUT

Mechanical Specifications

General

Units shall be specifically designed for outdoor rooftop installation on a roof curb and be completely factory assembled and tested, piped, internally wired, fully charged with R-410A compressor oil, factory run tested and shipped in one piece. Units shall be available for direct expansion cooling only, or direct expansion cooling with natural gas or electric. Filters, outside air system, relief air system, optional non-fused disconnect switches and all operating and safety controls shall be furnished factory installed.

All units shall be UL listed to US and Canadian Safety Standards. Cooling capacity shall be rated in accordance with AHRI Standard 340/360. All units shall have decals and tags to aid in service and indicate caution areas. Electrical diagrams shall be printed on long life water resistant material and shall ship attached to control panel doors.

Cabinet

Casing

Exterior panels shall be zinc coated galvanized steel painted with a slate gray baked enamel finish durable enough to withstand a minimum of 672 hours consecutive salt spray application in accordance with standard ASTM B117. Screws shall be magnigard coated.

Refrigeration components and compressor shall be accessible through removable louvered panels as standard.

Unit air handling section shall have a pitched roof and laminated double-wall construction with polyurethane foam core injected between sheet metal panels. Insulation value shall be R9. All interior surfaces shall be suitable for cleaning per ASHRAE 62. All access doors and panels shall have closed cell gaskets. All door, roof and base panels shall have a thermal break.

Unit base shall be watertight with heavy gauge formed load-bearing members and curb overhang. Unit lifting lugs shall accept chains or cables for rigging. Lifting lugs shall also serve as unit tie down points.

Access Doors

Access doors shall be hinged with a single, exterior mounted, height and tension adjustable handle to provide positive latching at three points. Access doors shall provide a door stop mechanism to latch the door in the open position to prevent unsafe door closure by wind. Serviceable compartments in the air handler such as filters, evaporator coil, supply fan and variable frequency drives shall have doors of laminated, double-wall construction. This construction shall use a polyurethane foam core between the exterior sheet metal pane and the interior line, with an insulating value of R9. Three single wall doors shall be provided for access to the control panel.

Heating

Electric Heating

All electric heat models shall be completely assembled and wired. Electric heat control shall be fully integrated with the unit controls. Heavy duty nickel chromium elements internally wired with a maximum density of 35.5 watts per square inch shall be provided. Heater circuits shall be 45 amps or less, each individually fused. Automatic reset high limit control shall operate through heater .

The 200 and 230 volt electric heating models shall have separate power supply to heating section with an optional factory mounted nonfused disconnect, located in the electric heat control panel.

Modulating Electric Heat

Modulating electric heat is an orderable option for all electric heat sizes. Modulating electric heat provides improved control over the amount of heat being generated by varying the time the heat

is energized. The cycling of the heating elements adjusts the level of heat output. The heater is capable of fully modulating the capacity from 0 to 100 percent.

Gas-Fired Heating

All gas-fired units shall be completely assembled, wired, and fire tested prior to shipment. Units shall be cULus approved specifically for outdoor applications downstream from refrigerant cooling coils.

All gas heaters shall have 81% steady state efficiency, meeting the 2023 Department of Energy efficiency code. Gas-fired heating system control shall be fully integrated with the unit controls. Gas safety controls shall include electronic flame sensing capability. Combustion air shall be proven prior to ignition and during operation. All gas piping shall be threaded connection with a pipe cap provided. Gas supply connection shall be provided through the side or bottom of unit.

Heat exchangers shall have a tubular design with in-shot burners. Direct spark ignition shall be provided. All tubes shall be dimpled for proper heat transfer. Heating system shall incorporate induced draft fans and include a chimney that exhausts away from the air intake.

Heat exchanger shall be pressure and leak tested.

Staged Gas Heat

Heat exchanger material shall be corrosion-resistant aluminized or stainless steel. Sixty second delay shall be provided between first and second stage gas valve operation on two-stage heaters. Continuous electronic flame supervision shall be provided as standard. Staged gas heat units shall be suitable for use with Natural Gas only.

Modulating Gas Heat

Modulating and ultra-modulating gas heaters shall be made from grades of stainless steel suitable for condensing situations. Burner shall be linkage-less for easy setup and use a variable speed motor for modulation. The modulating heater shall have turn down ratios of 5:1 for 250 MBh & 350 MBh, 10:1 for 500 MBh & 850 MBh, and 21:1 for 1200 MBh. The ultra modulating turn down ratios will have 10:1 for 250 MBh & 350 MBh, 16:1 for 500 MBh, 20:1 for 850 MBh, and 21:1 for 1200 MBh.

External Heat

Controller shall support standard heating operations with customer applied heat sources.

Airflow

System Control

Constant Volume (Zone Temperature)

Option shall provide all the necessary controls to operate rooftop from a zone sensor, including CV microprocessor unit control module, a microprocessor compressor controller and a unit mounted User Interface Panel. Includes factory installed and tested VFDs to simplify supply fan motor speed adjustment.

Constant Volume (Discharge Air Temperature)

Option shall provide all the necessary controls to operate a CV rooftop with discharge air temperature control, including discharge air controller and discharge air sensor. The controller shall coordinate the economizer control and the stages of cooling with zone or outdoor air reset capabilities and an adjustable control band to fine-tune the control to specific applications. Includes factory installed and tested VFDs to simplify supply fan motor speed adjustment.

Multi Zone Variable Air Volume (Discharge Air Temperature)

Option shall provide all necessary controls to operate a VAV rooftop from the discharge air temperature, including discharge air microprocessor controller and discharge air sensor.

The controller shall coordinate the economizer control and the stages of cooling with discharge air temperature reset capabilities. Option shall include factory installed and tested VFDs to provide supply fan motor speed modulation.

Single Zone Variable Air Volume (Zone Temperature)

Single zone VAV option shall provide all necessary controls to operate a rooftop unit based on maintaining two temperature setpoints; the discharge air and zone. Option shall include factory-installed variable frequency drive (VFD) to provide supply fan motor speed modulation. During Single Zone VAV cooling, the unit shall maintain zone cooling setpoint by modulating the supply fan speed more or less to meet zone load demand, and the unit shall maintain discharge temperature to the discharge cooling setpoint by modulating economizer if available and staging DX cooling.

Dual Supply Fan - Direct Drive & Variable Speed

The eDrive[™] direct drive plenum supply fan shall be two single width, single inlet 9-blade plenum fans. Fan blades shall be aluminum airfoil. Plenum fans shall be direct-driven. Entire assembly shall be completely isolated from unit and fan board by 2" deflection spring isolation. Multiple fan widths shall be available to optimize efficiency. Beltless fan shall not require routine maintenance such as fan bearing lubrication, belt tensioning and replacement, sheave alignment, and setscrew torque checks.

Dual Supply Fan Motor

Supply fan motors shall be open drip-proof. All supply fans shall be dynamically balanced in factory. Each motor shall have its own Variable Frequency Drive. Supply fan shall be test run in unit and shall reach rated rpm. All 60 Hz supply fan motors shall meet the Energy Independence Security Act of 2007 (EISA).

Variable Frequency Drive (VFD) Bypass

Supply fan bypass control shall provide airflow at 60Hz in the event of drive failure.

Relief Option

No Relief

Relief air opening shall be sealed with panel and made watertight.

Barometric Relief

Gravity dampers shall open to relieve positive pressure in the return air section of the rooftop. Barometric relief dampers shall relieve building overpressurization, when that overpressurization is great enough to overcome the return duct pressure drops.

Relief Fan - Direct Drive & Variable Speed

The eDrive[™] relief fan shall be [one] [two] [three] single-width, single-inlet, 5-blade direct-drive plenum fan(s) with backward inclined, high efficiency welded aluminum impeller that is dynamically balanced as an assembly. Fan shall be beltless and maintenance free throughout its operating life. Fans shall be balanced to G6.3 per ISO 21940. No external vibration isolation shall be necessary.

Motor shall be electronically commutated (ECM) and contain power electronics for speed control. Motor modulation shall be managed by the equipment controller. Discharge dampers at unit outlet shall modulate with relief airflow in response to outside air damper position.

Relief Fan - Direct Drive & Variable Speed with Statitrac™ Control

The eDrive[™] relief fan shall be [one] [two] [three] single-width, single-inlet, 5-blade direct-drive plenum fan(s) with backward inclined, high efficiency welded aluminum impeller that is dynamically balanced as an assembly. Fan shall be beltless and maintenance free throughout its operating life. Fan shall be balanced to G6.3 per ISO 21940. No external vibration isolation is

necessary. Motor shall be electronically commutated (ECM) and contain power electronics for speed control. Motor modulation shall be managed by the equipment controller.

The modulating relief discharge dampers and ECM shall be modulated in response to building pressure. A differential pressure control system, (Statitrac™), shall use a differential pressure transducer to compare indoor building pressure to outdoor ambient atmospheric pressure. The relief fan shall be turned on when required to lower building static pressure setpoint.

The (Statitrac[™]) control system shall then modulate the discharge dampers and ECM to control the building pressure to within the adjustable, specified dead band that shall be adjustable at the User Interface.

Ventilation Override Mode

With the ventilation override option installed, the unit shall be programmed to transition to up to 5 different programmed sequences for Smoke Purge, Evacuation, Pressurization, Purge, Purge with duct control sequence and Unit off. The transition shall occur when a binary input on the VOM is closed (shorted); this would typically be a hard wired relay output from a smoke detector or fire control panel.

Filters

General

Filter options shall mount integral within unit and be accessible by hinged access panels.

Pre-Evaporator Filter Options (Available for all units)

MERV 4 Panel Filters

Panel filters shall be 2-inch thick, MERV 4 disposable fiberglass media, and shall slide into an extruded aluminum rack.

MERV 8 Panel Filters

Filters shall be [2-inch][4-inch] thick, MERV 8 disposable synthetic media, and shall slide into an extruded aluminum rack.

MERV 14 Panel Filters

Filters shall be 4-inch thick, MERV 14 microglass media attached to 24 ga aluminized steel frame, and shall slide into an extruded aluminum rack.

MERV 14 Cartridge Filters

Cartridge filters shall be 12-inch thick, MERV 14 microglass paper media attached to 24 ga galvanized steel frame, and shall slide into a galvanized steel rack. Option shall also include 2-inch thick, MERV 8 panel pre-filters of disposable synthetic media to provide extended cartridge life.

Filter Rack Only

Option shall provide an extruded aluminum rack (less filter media) with [2-inch][4-inch] nominal thickness filter channels to accommodate applications which require field supplied panel filters.

Cartridge Filter Rack Only

Option shall provide a galvanized steel rack (less filter media) with 2-inch nominal thickness and 12-inch nominal thickness filter channels to accommodate applications which require field supplied cartridge filters with panel pre-filters.

Final Filter Options (Available for RX Units only)

Final filter options shall mount integral within the blank section unit casing and be accessible by hinged access doors.

MERV 14 Cartridge Filters, Final Filter

Cartridge final filters shall be 12-inch thick, MERV 14 microglass paper media attached to 24 ga galvanized steel frame, and shall slide into a galvanized steel rack. Option shall also include 2-

inch thick, MERV 8 panel pre-filters of disposable synthetic media to provide extended cartridge life.

Cartridge Filter Rack Only, Final Filter

Option shall provide a galvanized steel rack (less filter media) in the final filter position with 2-inch nominal thickness and 12-inch nominal thickness filter channels to accommodate applications which require field supplied final cartridge filters with panel pre-filters.

Filter Monitoring - Differential Pressure Transducer

A factory-installed, differential pressure transducer shall be piped to both sides of the [pre evaporator filter] [final filter] to indicate status. Transducer shall maintain a +/- 5 percent accuracy within operating temperature limits of -20°F to 120°F. Transducer shall be mounted in a unit control box and report status through unit control display.

Outside Air

0-25% Manual Damper

Manually controlled outside air damper shall provide up to 25 percent outside air. Manual outside air damper shall be set at desired position at unit start-up.

0-100% Modulating Economizer

Economizer option shall be operated through the primary temperature controls to automatically utilize outside air for "free" cooling. Automatically modulated return and outside air dampers shall maintain proper temperature in the conditioned space. Economizer shall be equipped with an automatic lockout when the outdoor high ambient temperature is too high for proper cooling.

Minimum position control shall be standard and adjustable at the user interface or with a remote potentiometer or through the building management system. A spring return motor shall ensure closure of OA dampers during unit shutdown or power interruption.

Demand Control Ventilation

When equipped with a CO_2 sensor, the outside air damper position shall modulate in response to a CO_2 sensor in the conditioned space, in order to minimize the unit energy consumption and simultaneously meet the ventilation requirements of ASHRAE Std 62.1. If ordered, the $Traq^{TM}$ airflow monitoring solution shall augment the system, allowing for measurement and control of outside airflow.

Outside Air Measurement (Trag[™])

A factory mounted airflow measurement station (Traq[™]) shall be provided in the outside air opening to measure airflow. The airflow measurement station shall measure from 40 CFM/ton to maximum airflow. The airflow measurement station shall adjust for temperature variations. Measurement accuracy does not exceed 10% at minimum airflow and decreases to less than 5% at higher airflows, meeting requirements of LEED IE Q Credit 1 as defined by ASHRAE 62.1-2007.

Economizer Control with Dry Bulb

An outdoor temperature sensor shall be included for comparing the outdoor dry bulb temperature to a locally adjustable temperature setpoint. The setpoint shall be programmed at the human interface, or remote human interface, to determine if outdoor air temperature is suitable for economizer operation.

Economizer Control with Reference Enthalpy

An outdoor enthalpy sensor shall be provided to compare the total heat content of outdoor air to a locally adjustable setpoint. The setpoint shall be programmed at the user interface to determine if the outdoor enthalpy condition is suitable for economizer operation.

Economizer Control with Comparative Enthalpy

Two enthalpy sensors shall be provided to compare total heat content of the indoor air and outdoor air to determine the most efficient air source when economizing.

Low-Leak Economizer Damper

Low leak dampers shall be provided with rolled stainless steel jamb seals to the sides of the damper assembly. Low leak economizer dampers shall have a leakage rate of 10 CFM/sq ft or less tested in accordance with AMCA Standard 500.

Fault Detection and Diagnostic (FDD) control shall also be provided with Low Leak Economizers. FDD control shall monitor the commanded position of the economizer compared to the feedback position of the damper. If the damper position is outside +/- 10% of the commanded position, a diagnostic shall be generated.

The economizer shall have a functional life of 60,000 opening and closing cycles, thus meeting the requirements of California Title 24. IntelliPak® units ordered 0-100% economizer and dry bulb control shall be listed on the California Energy Commission Registry for factory compliance with Title 24 Economizer and FDD requirements. A label shall be applied to the unit identifying construction with the ultra low leak economizer and FDD controls.

Ultra Low-Leak Economizer Damper

Economizer return and outside air dampers shall be provided with chlorinated polyvinyl chloride gasketing added to the damper blades and rolled stainless steel jamb seals to the sides of the damper assembly. The economizer shall have a functional life of 60,000 opening and closing cycles, thus meeting the requirements of California Title 24. Dampers shallhave a maximum leakage rate of 4 CFM/sq-ft at 1.0 inch wg. pressure differential thus meeting requirements of ASHRAE 90.1-2013 and IECC-2012.

Fault Detection and Diagnostic (FDD) control shall also be provided with ultra low leak economizers. FDD control shall monitor the commanded position of the economizer compared to the feedback position of the damper. If the damper position is outside +/- 10% of the commanded position, a diagnostic shall be generated.

IntelliPak® units ordered with 0-100% economizer with dry bulb control shall be listed on the California Energy Commission Registry for factory compliance with Title 24 Economizer and FDD requirements. A label shall be applied to the unit identifying construction with the ultra low leak economizer and FDD controls.

Refrigeration System

Fixed Speed Compressors

Fixed speed compressors shall be industrial grade, energy efficient direct drive 3600 RPM speed scroll type with suction gas-cooled hermetic motor design. Compressor shall have a centrifugal oil pump with dirt separator, and oil charging valve. Each compressor shall have a crankcase heater installed and properly sized to minimize the amount of liquid refrigerant present in the oil sump during off cycles.

Compressor shall be provided with motor winding temperature control to protect against excessive motor temperatures resulting from over-/under-voltage or loss of charge, high and low pressure protection.

eFlex™ Variable Speed Compressors

Trane® eFlex™ variable speed compressors shall be capable of speed modulation from 25 Hz to a maximum of 100 Hz. The minimum unit capacity shall be 15% of full load or less. The compressor motor shall be a permanent magnet type. Each compressor shall have a crankcase heater installed, properly sized to minimize the amount of liquid refrigerant present in the oil sump during off cycles. Compressors shall be equipped with a bearing oil injection system that optimizes bearing and scroll set lubrication, sealing, and controls the oil circulation rate. Optimal bearing lubrication shall be provided by a gear oil pump.

Each variable speed compressor shall be matched with a specially designed variable frequency drive which modulates the speed of the compressor motor and provides several compressor protection functions. Control of the variable speed compressor and inverter shall be integrated with the Symbio™ 800 unit controller to ensure optimal equipment reliability and efficiency.

High Efficiency Units

Unit shall meet ASHRAE 189.1-2011 and Consortium for Energy Efficiency (CEE) Advanced Tier Commercial Unitary AC and HP Specification for utility rebate requirements.

Air-Cooled Condenser Coil

Condenser coils shall have all aluminum microchannel coils, enabling all units to meet LEED EA Credit 4 requirements. All coils shall be leak tested at the factory to ensure pressure integrity. The condenser coil shall be pressure tested to 650 psig. Subcooling circuit(s) shall be provided as standard.

Air-Cooled Condenser Fans & Motors

All condenser fans shall be vertical discharge, direct drive fans, statically balanced, with aluminum blades and zinc plated steel hubs. Condenser fan motors shall be three-phase motors with permanently lubricated ball bearings, built-in current and thermal overload protection and weather-tight slingers over motor bearings.

Ambient Control

Low ambient variable speed condenser fan control shall be provided to allow the unit to start down to 0°F and operate down to -10°F.

Corrosion Protected Condenser Coil

Optional protection on the all aluminum, micro-channel condenser coil shall consist of a corrosion resistant coating that shall withstand ASTM B117 Salt Spray test for 6,000 hours and ASTM G85 A2 Cyclic Acidified Salt Fog test for 2,400 hours. This coating shall be added after coil construction covering all tubes, headers and fin edges, therefore providing optimum protection in more corrosive environments.

Evaporator Coil

Evaporator coil shall have internally enhanced copper tubing of 3/8 or 1/2-inch O.D. mechanically bonded to heavy-duty aluminum fins of configured design. All coils shall be equipped with electronic expansion valves and factory pressure and leak tested.

Electronic Expansion Valve

Expansion valves shall be electronically controlled by the Symbio[™] 800 unit controller. This fully integrates expansion valve control with unit operation to ensure optimal equipment reliability and efficiency. Expansion valves shall be 2500 step valves for precise refrigerant control and shall be driven closed during off cycles to minimize refrigerant migration and protect compressors. Valve position shall be displayed at the user interface to assist field diagnostics.

Pressure Transducer

Stainless steel pressure transducer shall provide accurate measurement of high and low side refrigeration system pressure over the entire operating range. System pressures and saturation temperatures shall be displayed at the user interface to improve field diagnostics. The transducer is accessible as it shall be located close to the compressor manifold set. Durable weather proof automotive grade electrical connectors shall be used to ensure reliability.

Modulating Hot Gas Reheat Control

A reheat condenser coil shall be factory installed downstream of the unit evaporator coil. Modulating electronic valves shall control the flow of refrigerant between the indoor reheat and outdoor condensers in response to the unit discharge air temperature in order to dehumidify the space. Modulating reheat shall be included in circuit 1.

Modulating reheat valves shall be electronically controlled by the Symbio[™] 800 unit controller. This fully integrates reheat valve control with unit operation to ensure optimal equipment reliability and efficiency. Modulating reheat valves shall be stepper type valves for precise

refrigerant control. Valve position shall be displayed at the user interface to assist field diagnostics.

Hot Gas Bypass

Electronic Hot Gas Bypass valve piping and controls shall all be included on circuit 1 to allow operation at low airflow, avoiding coil frosting and damage to compressor. When suction pressure falls below valve adjustable setpoint, the valve shall modulate hot gas to the inlet of the evaporator. Valves sized to meet ASHRAE 90.1.

Modulating hot gas bypass valves shall be electronically controlled by the Symbio[™] 800 unit controller, and shall integrate the hot gas bypass valve control with unit operation. Modulating hot gas bypass valves shall be stepper type valves for precise refrigerant control. Valve position shall be displayed at the user interface to assist field diagnostics.

Compressor Isolation (Suction & Standard Discharge Valves)

Factory installed valves both upstream and downstream of each compressor set shall enable isolation of compressors from the rest of the refrigeration system if service is required.

Evaporator Coil Drain Pan

Drain pan shall be double sloping [galvanized] [stainless] steel and promote runoff of standing water from condensation inside the unit. Drain pipe connection shall be installed through the side of the unit and connector size is 1.25 NPTI.

Condensate Overflow Switch

Condensate overflow switch shall shut the unit down in the event that a clogged condensate drain line prevents proper condensate removal from the unit.

Electrical

Unit shall be completely factory wired with necessary control and contactor pressure lugs or terminal block for power wiring. Units shall provide an internal location for a non-fused disconnect with external handle for safety.

Unit Voltage

Rooftops shall be available with 200, 230, 460, and 575 voltage, 3 phase, 60 Hz power supplies.

Unit Interrupt Rating (Short Circuit Current Rating-SCCR)

A 5,000 Amp rating shall be applied to the unit enclosure using a non-fused circuit breaker for disconnect switch purposes. Fan motors, compressors, and electric heat circuits shall be provided with protective devices that will provide an elevated level of fault protection.

Phase Monitor

Phase monitor shall protect 3-phase equipment from phase loss, phase reversal and phase imbalance. Any fault condition shall produce a Failure Indicator LED and send the unit into an auto stop condition.

Non-Fused Disconnect

An external handle mounted on the control box door shall be provided to disconnect unit power with the control box door closed for safety.

Powered Convenience Outlet

A 15A, 115V Ground Fault Interrupter convenience outlet shall be factory installed. It shall be wired and powered from a factory mounted transformer. Unit-mounted, non-fused disconnect with external handle shall be furnished with factory powered outlet.

Symbio™ 800 Controller

The Symbio™ 800 controller is an application-specific, programmable controller that is factory installed and designed to control packaged HVAC equipment. A 7" user interface features a touch-sensitive color screen that provides facility managers with at-a-glance operating status, performance monitoring, scheduling changes and operating adjustments. Other advanced features include automated controller backup and optional features such as secure remote connectivity, wireless building communications, mobile device connectivity and custom programming with expandable I/O.

BACnet® Communication Protocol

The Symbio™ 800 controller shall support standard BACnet communication protocol through a RS485, two-wire communication link or BACnet/IP.

AirFi™ Wireless Communication Interface Module (WCI)

Trane AirFi™ Wireless Communication interface shall provide wireless communication between the Tracer SC+ and Symbio™ 800 controller.

Trane LonTalk® Communication Interface Module

The LonTalk module shall provide an interface to a Tracer building automation system or other control system that supports LonTalk and shall be factory installed, allowing for control and monitoring of the unit through a RS485, two-wire communication link. Requires an additional LonTalk® Communication Kit be installed.

Modbus Communication Protocol

The Symbio™ 800 controller shall support standard Modbus® RTU communication protocol through an RS485, two-wire communication link.

Power Monitor

Factory installed power meter shall measure unit energy usage to 0.2% accuracy (ANSI C12.20) and communicate through the Symbio[™] 800 controller enabling viewing through user interface or building automation system.

Controls Expansion Hardware

Symbio[™] 800 shall have field applied controls capability. Factory installed expansion hardware (XM70) shall have 19 inputs/outputs. Additional expansions may be added in the field.

Rapid Restart

Option shall provide immediate start up upon power failure. A backup generator shall be required on site before unit start up. Rapid Restart shall begin immediately after recovery from a power loss and work by restarting the compressors and supply fan quickly to provide full cooling within two to three minutes.

Accessories

Roof Mounting Curb

Roof mounting curb shall be heavy gauge zinc coated steel with nominal two-inch by four-inch nailer setup. Supply/return air opening gasketing shall be provided. Curb shall ship knocked down for easy assembly. Curb shall be manufactured to National Roofing Contractors Association guidelines.

Wall Mounted CO₂ Sensor

The CO_2 (Carbon Dioxide) sensor shall have the ability to monitor space occupancy levels within the building by measuring the parts per million of CO_2 in the air. As the CO_2 levels increase, the outside air damper modulates to meet the CO_2 space ventilation requirements.

Duct Mounted CO₂ Sensor

The CO_2 (Carbon Dioxide) sensor shall have the ability to monitor space occupancy levels within the building by measuring the parts per million of CO_2 in the air. As the CO_2 levels increase, the outside air damper modulates to meet the CO_2 space ventilation requirements.

Air-Fi™ Wireless Communication

Air-Fi™ Wireless Communication Interface (WCI Indoor)

Factory installed wireless interface shall allow wireless communication to Air-Fi™ wireless sensors, service tools, equipment controls, and building controller.

Air-Fi™ Wireless Communication Sensor – WCS-SB (temperature only)

Wall mounted wireless temperature sensor shall allow wireless communication to Air-Fi Wireless network, communicating space temperature to Symbio™ 800 equipment controller. Controls shall allow up to 6 WCS models to be used per IntelliPak® RTU.

Air-Fi™ Wireless Communication Sensor – WCS-SD (temperature with display)

Wall mounted wireless temperature sensor shall allow wireless communication to Air-Fi Wireless network, communicating space temperature and occupancy status to Symbio™ 800 equipment controller. Digital interface with pushbuttons shall enable Heat, Cool, Auto operation mode settings and two fan mode settings. Dual temperature set points shall allow for automatic control of the zone temperature heating and cooling requirements when in the Automatic Changeover mode. Controls shall allow up to 6 WCS models to be used per IntelliPak® RTU.

Air-Fi[™] Wireless Communication Sensor - WCS-SO (temperature and occupancy)

Wall mounted wireless temperature sensor shall allow wireless communication to Air-Fi Wireless network, communicating space temperature and occupancy status to Symbio™ 800 equipment controller. Controls shall allow up to 6 WCS models to be used per IntelliPak® RTU.

Air-FiTM Wireless Communication Sensor - WCS-SCO₂ (temperature, occupancy, and CO_2)

Wall mounted wireless temperature sensor shall allow wireless communication to Air-Fi Wireless network, communicating space temperature, occupancy status, and CO₂ level to Symbio™ 800 equipment controller. Controls shall allow up to 6 WCS models to be used per IntelliPak® RTU.

Air-Fi™ Wireless Communication Module - WCS-SH (relative humidity module for use with all WCS models)

2% accuracy relative humidity module shall be field installed in the Wall mounted WCS models for wireless communication of relative humidity level to Symbio™ 800 equipment controller.

Trane WiFi Adapter

The Trane Wi-Fi adapter kit (equipped with a USB cable) shall enable communication among devices on a Wi-Fi network to facilitate the wireless integration of client devices such as touch-screen displays and technician laptops as an access point.

Zone Sensors

Remote Zone Temperature Sensor with Timed Override

Electronic sensor shall be used in conjunction with a Trane ICS system. The Timed Override button shall allow the system to operate at the occupied setpoints while in an unoccupied status.

Remote Zone Temperature Sensor w/ Timed Override & Temperature Setpoint

Electronic sensor shall be used in conjunction with a Trane ICS system with zone temperature setpoint capability. The timed override button shall allow the system to operate at the occupied setpoints while in an unoccupied status.

Remote Zone Sensor

Thermistor shall be encased in a decorative wall mountable enclosure. It shall be used in conjunction with a Zone Temperature Sensor when remote sensing is desired. The sensor shall communicate temperature changes within a zone to the unit UCP.

Dual Set Point Temperature Sensor

Electronic sensor shall have Heat, Cool, Auto operation mode settings and two fan mode settings. Dual temperature setpoints shall allow for automatic control of the zone temperature heating and cooling requirements when in the Automatic Changeover mode.

Dual Set Point Zone Temperature Sensor with LED Lights

Electronic sensor shall have Heat, Cool and Auto operation mode settings with two Fan mode settings. Dual temperature setpoints shall allow for automatic control of the zone's heating and cooling requirements when in the Automatic Changeover mode. The sensor shall have Heat, Cool, System On, and Service LED's as standard. Should a system malfunction occur, the appropriate Heat, Cool or Service LED shall function as a system failure indicator.

Dual Set Point Display (BAYSENS131A)

Wall mounted zone sensor, communicating space temperature and occupancy status to Symbio™ 800 equipment controller. Digital interface with push buttons enables Heat, Cool, Auto operation mode settings and two fan mode settings. Dual temperature setpoints allow for automatic control of the zone temperature heating and cooling requirements when in the Automatic Changeover mode.

Humidity Sensor

A wall or duct-mounted humidity sensor shall be used to control activation of the hot gas reheat dehumidification option. The humidity sensor shall be set for humidity levels between 40% and 60% relative humidity

Duct-Mounted Humidity Sensor

Shall monitor the humidity levels in the space for 1) Humidification and/or 2) Modulating Hot Gas Reheat

Wall-Mounted Humidity Sensor

Shall monitor the humidity levels in the space for 1) Humidification and/or 2) Modulating Hot Gas Reheat

Temperature Sensor

Bullet or pencil type sensor shall be used for temperature input such as return air duct temperature

LonTalk® Communication Kit

For future opportunities and upgrade flexibility, this kit shall contain a LonTalk® Communication Interface module for communication with a building automation system.

Trane Startup

A Trane technician shall provide unit startup after the unit is properly installed. The installation shall include:

- Unit and all ship-with items installed
- All utilities and drain pipes connected
- All refrigerant piping reconnected and all refrigerant charge adequately distributed throughout the system
- All ductwork attached to the unit

Prior to Trane Unit Startup

Prior to Trane startup, the following work should be inspected and verified:

Unit inspection - Cabinet

Review the overall unit for exterior damage (dents, bends, missing panels, doors working properly, etc). Verify the unit interior is free from debris/obstructions, the panels and doors are secured properly, the unit clearances are adequate to avoid air recirculation, and that the unit drain lines and traps are properly installed.

Wiring

Review the unit main power to ensure that the unit is properly grounded, the main power feed wire gauge is adequately sized, the correct voltage is supplied to the unit and electric heaters (if applicable), and the incoming voltage is phase balanced. Verify that all wiring connections are tight, all field installed control wiring is landed on correct terminals, and that all automation and remote controls, along with control wiring for CV and VAV controls, are correctly installed/wired.

Refrigeration system

Review the refrigeration system to ensure the coil fins are straightened, shipping hardware and plastic covers for compressors have been removed, compressors contain the correct oil level, service valves are in the correct position, and the crankcase heaters have been operational for at least 12 hours prior to Trane startup.

Fans

Check the unit fans to ensure the condenser fan blade set-screws to the motor shaft are tight, hold down bolts and channels from fan sections have been removed, proper adjustment of fan section spring isolators, proper fan rotation, and proper fan motor amperage.

Economizer

Check all damper linkages for proper adjustment. Verify proper damper operation and outside air pressure sensors.

Electric Heat

On units equipped with electric heaters, check to ensure the heating system matches the unit nameplate and verify that the correct voltage is supplied to the heaters.

Gas Heat

On units equipped with gas heaters, check to ensure that the flue assembly is secure and properly installed, sufficient gas pressure exists at the unit, no leaks exist in gas supply line, the gas heat piping includes a drip leg, and condensate line is run if required.

Trane Unit Startup

After the unit installation has been fully completed, a Trane technician shall do the following:

- Verify and log supply fan operation, proper compressor operation, and condenser fan operation, as well as correct levels of superheat and subcooling.
- Verify operation of all VAV modes per job requirements, which include: Supply Air Cooling and Heating, Daytime Warmup, Morning Warmup, and Supply Air Tempering.

Space pressure control – Verify that unit is sensing field installed building pressure input.

Ventilation override — Verify that sequences are set up and functional per customer requirement.

Economizer — Adjust outside air or return air travel and verify all sensor inputs.

Dehumidification — Verify that dehumidification mode operates correctly and is set up per job requirements.

Outside Air Measurement — Verify that Demand Flow Ventilation function is correct.

 ${\it Gas Heat} - {\it Startup}$ gas heat per the unit Installation, Operation, Maintenance Manual (IOM) and record ${\it CO}_2$ and ${\it O}_2$ levels.

All units — Verify User Interface programming, including setpoints and sensor sources per customer requirements. Leave the unit in a running state or off per customer requirement. Once

the IntelliPak® unit startup is complete, provide a startup activities communication and the associated operating log.

Certified AHRI Performance

Packaged Rooftop units cooling, heating capacities and efficiencies shall be rated within the scope of the Air-Conditioning, Heating & Refrigeration Institute (AHRI) Certification Program and display the AHRI Certified® mark as a visual confirmation of conformance to the certification sections of AHRI Standard 340-360 (I-P) and ANSIZ21.47 and 10 CFR Part 431 pertaining to Commercial Warm Air Furnaces. The applications in this catalog specifically excluded from the AHRI certification program are:

- Ventilation modes
- Heat Recovery
- Units larger than nominal 63 tons

Notes

The AHRI Certified mark indicates Trane U.S. Inc. participation in the AHRI Certification program. For verification of individual certified products, go to ahridirectory.org.

Trane - by Trane Technologies (NYSE: TT), a global innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com.

Trane has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.