Family list

7 family members for:

W00204402

Derived from 6 applications.

**Ester derivatives** 

Publication info: AU7102701 A - 2002-01-21

**ESTER DERIVATIVES** 

Publication info: CA2415468 A1 - 2003-01-10

**ESTER DERIVATIVES** 

Publication info: EP1302458 A1 - 2003-04-16

**Ester derivatives** 

Publication info: **US6846835 B2** - 2005-01-25 US2003191316 A1 - 2003-10-09

**Ester derivatives** 

Publication info: US2005065211 A1 - 2005-03-24

**ESTER DERIVATIVES** 

Publication info: W00204402 A1 - 2002-01-17

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

#### (19) 世界知的所有権機関 国際事務局



# 

#### (43) 国際公開日 2002年1月17日(17.01.2002)

**PCT** 

#### (10) 国際公開番号 WO 02/04402 A1

C07C 219/10, 219/22, 219/24, (51) 国際特許分類7: 251/08, 251/18, C07D 211/46, 405/12, 451/02, 207/12, 207/08, 221/24, 209/52, 498/10, 471/10, 487/10, 211/22, 211/70, 295/125, 205/04, 239/06, A61K 31/452, 31/439, 31/435, 31/4409, 31/403, 31/222, 31/395, 31/40, 31/5386, 31/438, 31/407, A61P 11/00, 11/06, 43/00, 27/16, A61K 31/4525, 31/397, 31/55

(21) 国際出願番号:

PCT/JP01/05987

(22) 国際出願日:

2001年7月10日(10.07.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-210591 2000年7月11日(11.07.2000) JP

(71) 出願人 (米国を除く全ての指定国について): 萬有製薬 株式会社 (BANYU PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒103-8416 東京都中央区日本橋本町2丁目2 番3号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 荻野悦夫 (OGINO, Yoshio) [JP/JP]. 栗原秀樹 (KURIHARA, Hideki) [JP/JP]. 松田健司 (MATSUDA, Kenji) [JP/JP]. 沼澤智成 (NUMAZAWA, Tomoshige) [JP/JP]. 大嶽憲 ー (OTAKE, Norikazu) [JP/JP]. 野口和志 (NOGUCHI, Kazuhito) [JP/JP]; 〒300-2611 茨城県つくば市大久保 3番地 萬有製薬株式会社 つくば研究所内 Ibaraki (JP).

(74) 共通の代表者: 萬有製薬株式会社 (BANYU PHAR-MACEUTICAL CO., LTD.); 〒103-8416 東京都中央 区日本橋本町2丁目2番3号 Tokyo (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO,

/続葉有/

(54) Title: ESTER DERIVATIVES

(54) 発明の名称: エステル誘導体



$$-B^1-N^2$$

$$-R^2$$

$$(a_0)$$



(57) Abstract: Compounds of the general formula (1), which exhibit selective muscarinic M3 receptor antagonism, little have side effects, and are suitable for administration by inhalation and useful as therapeutic agents for respiratory system diseases or the like: (|) wherein A is a group of the general formula (a<sub>0</sub>) or (b<sub>0</sub>): (a<sub>0</sub>) (b<sub>0</sub>) Ar is aryl or heteroaryl, any of which may be substituted; B<sup>1</sup> and B<sup>2</sup> are each an aliphatic hydrocarbon group: B<sup>1</sup> is fluorized and B<sup>2</sup>. and B2 are each an aliphatic hydrocarbon group; R1 is fluorinated cycloalkyl; R2, R3 and R4 are each lower alkyl, or a single bond or alkylene, any of which is bonded to B1, or alternatively R2 and R3 may be united to form alkylene; R5 and R7 are each hydrogen, lower alkyl, or a single bond or alkylene, any of which is bonded to B2; R6 is hydrogen, lower alkyl, or N(R8)R9; and X is an anion.

NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

# 添付公開書類:

#### 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

#### (57) 要約:

本発明は、選択的ムスカリンM3受容体拮抗作用を有し、副作用が少なく、吸入投与法に適し、呼吸器系疾患等の処置剤として有用な、一般式(I)

$$HO \xrightarrow{Ar} C \xrightarrow{O} C \longrightarrow A$$
 (1)

[式中、Aは式(ao)又は(bo)

$$-B^{1}$$
 $R^{3}$ 
 $(a_{0})$ 
 $R^{5}$ 
 $R^{7}$ 
 $R^{7}$ 

Arは置換基を有していてもよい、アリール基又はヘテロアリール基を; B'及びB'は脂肪族炭化水素基を; R'はフッ素原子で置換されたシクロアルキル基を; R'、R'及びR'は低級アルキル基、B'と結合する単結合又はアルキレン基、若しくはR'及びR'が一緒になってアルキレン基を; R'及びR'は水素原子、低級アルキル基、若しくはB'と結合する単結合又はアルキレン基を; R'は水素原子、低級アルキル基又は-N(R') R'で表される基を; X-は陰イオンを意味する]で表される化合物等に関する。

# 明細書

エステル誘導体

### 5 技術分野

本発明は、新規なエステル誘導体、その製造方法、それを含む医薬及びその医薬としての使用、特に各種の呼吸器系疾患の処置のための使用に関する。

### 背景技術

20

25

10 ムスカリン受容体への拮抗は気管支拡張、胃腸運動抑制、酸分泌抑制、口渇、 散瞳、膀胱収縮抑制、発汗減少、頻脈等の作用を引き起こすことが古くから知ら れている [Basic and Clinical Pharmacology 4th Ed., (APPLETON & LANGE), PP83-PP92, (1989) 及びDrug News & Perspective, 5 (6), 15 PP345-PP352 (1992) 等参照]。

近年の研究により、ムスカリン受容体には少なくとも3種のサブタイプ( $M_1$  受容体、 $M_2$ 受容体、 $M_3$ 受容体)があり、これら受容体は各組識又は臓器に異なった分布で存在していることが明らかにされた。 $M_1$ 受容体は主に脳に、 $M_2$ 受容体は心臓等に、そして $M_3$ 受容体は平滑筋や腺組織に存在している。しかしながら、現在までに数多く知られているムスカリン受容体に拮抗作用を有する既存の化合物はいずれもこれら3種のサブタイプに対して非選択的に拮抗する。そのため、これらの化合物を、例えば呼吸器系疾患の治療剤又は予防剤として経口投与すると、口渇、悪心、散瞳等の副作用に加えて、特に $M_1$ 受容体に起因する痴呆等の中枢神経系及び $M_2$ 受容体に起因する心悸亢進等の心臓に関わる重篤な副作用が問題となる。

現在、非選択的ムスカリン拮抗剤については呼吸器系疾患の治療剤又は予防剤 として吸入投与法が臨床応用されている。しかしながら、それらの薬剤は作用持 続性が短く、1日あたり数回の吸入処置が必要であること、また受容体非選択性

10

に由来する心悸亢進及び口渇等の副作用を有すること等が問題となっている。

本発明化合物と構造的に近似する化合物としては、例えば特開平1-131145号公報記載の化合物;ファルマコ(Farmaco)、47巻9号、1133-1147頁(1992年)記載の化合物等が挙げられる。しかしながら、本発明化合物については何ら具体的に開示も示唆もされていない。

## 発明の開示

本発明の目的は、高選択的ムスカリン $M_3$ 受容体拮抗作用を有し、副作用が少なく安全で有効な、ムスカリン $M_3$ 受容体が関与する疾患の処置剤を提供することである。

本発明者らは、一般式(I)

$$HO \xrightarrow{Ar} C -O -A$$
 (1)

[式中、Aは式 (a<sub>o</sub>) 又は (b<sub>o</sub>)

で表される基を意味し; A r はハロゲン原子、低級アルキル基、低級アルケニル基及び低級アルコキシ基からなる群より選択される置換基を有していてもよい、アリール基又はヘテロアリール基を意味し; B¹及びB²は、それぞれ独立して、直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又は不飽和脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を介していてもよい基を意味し; R¹はフッ素原子で置換された炭素数4ないし6のシクロアルキル基であって、水酸基を有していてもよい基を意味し; R²、R³及びR⁴は、それぞれ独立して、フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味するか、R²及びR³は、一緒になって、酸素原子を介していてもよい炭素数2ないし5のアルキ

25

レン基を意味するか、又はR  $^4$ はB  $^1$ 上の結合可能な任意の部位と結合する、単結合若しくは炭素数  $^1$ ないし  $^3$ のアルキレン基を意味し;R  $^5$ は水素原子、若しくはフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を、R  $^7$ は水素原子若しくは低級アルキル基を意味するか、又はR  $^5$ 及びR  $^7$ のいずれか一方は、B  $^2$ 上の結合可能な任意の部位と結合する、単結合若しくは炭素数  $^1$ ないし  $^3$ 0アルキレン基を意味し;R  $^6$ は水素原子、低級アルキル基又は $^-$ N(R  $^6$ )R  $^9$ で表される基を意味し;R  $^6$ 及びR  $^9$ は、それぞれ独立して、水素原子又は低級アルキル基を意味し;X  $^-$ は陰イオンを意味する]で表される化合物が、高選択的ムスカリンM  $^3$ 受容体拮抗作用を有することから副作用が少なく安全であり、また、吸入投与法においても優れた薬理効果及びその作用持続性を示すことから、ムスカリンM  $^3$ 受容体が関与する各種の疾患、例えば慢性閉塞性肺疾患、慢性気管支炎、喘息、慢性気道閉塞、肺繊維症、肺気腫及び鼻炎等の呼吸器系疾患等の処置のために極めて有用であることを見出し、本発明を完成した。

15 本発明は、一般式(I)で表される化合物又はその塩並びにそれらの製造法及 び用途に関する。

更に本発明は、一般式(I)で表される化合物の製造中間体であって、高選択的ムスカリン $M_3$ 受容体拮抗作用を有する化合物、すなわち、一般式(II)

$$HO \xrightarrow{Ar} C \longrightarrow O \longrightarrow A^{p} \qquad (||)$$

20 [式中、A<sup>p</sup>は式 (a<sub>p</sub><sub>0</sub>) 又は (b<sub>n</sub><sub>0</sub>)

$$-B^{1} - N - R^{20} - B^{2} - NH - (b_{p0})$$

$$R^{40} - R^{5}$$

で表される基を意味し;R<sup>20</sup>は水素原子を意味するか、又はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味し;R<sup>40</sup>はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味するか、又はB<sup>1</sup>上の結合可能

な任意の部位と結合する、単結合若しくは炭素数 1 ないし 3 のアルキレン基を意味し、A r 、B  $^1$  、B  $^2$  、R  $^1$  及び R  $^5$  は前記の意味を有する] で表される化合物又はその塩に関する。

以下に、本明細書において用いられる用語の意味を記載し、本発明について更 5 に詳細に説明する。

「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子を意味する。

「低級アルキル基」とは、炭素数 1 ないし 6 の直鎖状又は分岐状のアルキル基を意味し、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、10 イソプチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソヘキシル基等が挙げられる。

「低級アルケニル基」とは、炭素数 2 ないし6 の直鎖又は分岐状のアルケニル基を意味し、例えばビニル基、1ープロペニル基、2ープロペニル基、イソプロペニル基、3ープテニル基、2ープテニル基、1ーブテニル基、1ーメチルー2ープロペニル基、1ーメチルー1ープロペニル基、1ーエチルー1ーエテニル基、2ーメチルー2ープロペニル基、3ーメチルー2ープテニル基、4ーペンテニル基等が挙げられる。

「低級アルコキシ基」とは、炭素数 1 ないし 6 の直鎖状若しくは分岐状のアルコキシ基又は炭素数 1 ないし 3 のアルキレンジオキシ基を意味し、例えばメトキ 20 シ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、sec‐ブトキシ基、イソブトキシ基、 t ert‐ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ヘキシルオキシ基、イソヘキシルオキシ基、メチレンジオキシ基、エチレンジオキシ基、トリメチレンジオキシ基等が挙げられる。

「アリール基」とは、炭素数6ないし11のアリール基を意味し、例えばフェ 25 ニル基、ナフチル基等が挙げられる。

「ヘテロアリール基」とは、窒素原子、酸素原子及び硫黄原子からなる群より、同一若しくは異なって選ばれる1若しくは2のヘテロ原子を含有する5員若しくは6員の単環式ヘテロアリール基又は該単環式ヘテロアリール基と前記アリール基が縮合した、若しくは同一若しくは異なる該単環式ヘテロアリール基が互いに

15

縮合した縮合環式へテロアリール基を意味し、例えば2-ピリジル基、3-ピリジル基、4-ピリジル基、2-チアゾリル基、4-チアゾリル基、2-チエニル基、3-チエニル基、1-イミダゾリル基、2-イミダゾリル基、4-イミダゾリル基、3-ピラゾリル基、4-ピラゾリル基、2-フリル基、3-フリル基、3-ピロリル基、3-ピロリル基、2-ピリミジニル基、4-ピリミジニル基、5-ピリミジニル基、2-ピラジニル基、3-ピリダジニル基、4-ピリダジニル基、2-キノリニル基、2-ベンゾチエニル基又は2-インドリル基等が挙げられる。

「直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又は不飽和脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を介していてもよい基」とは、直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又は不飽和脂肪族炭化水素基であって、当該飽和又は不飽和脂肪族炭化水素基上の置換可能な任意の位置に1又は2以上、好ましくは1の水酸基を有するか、又は有しない基、更に該基の炭化水素鎖の介在可能な任意の位置に1又は2以上、好ましくは1の窒素原子が介在するか、又は介在しない基を意味し、例えば式(11)

10

で表される基又は該基の置換可能な任意の位置に1又は2以上、好ましくは1の 水酸基を有する基が挙げられる。

「シクロアルキル基」とは、炭素数 3 ないし 7 のシクロアルキル基を意味し、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基が挙げられる。

「酸素原子を介していてもよい炭素数2ないし5のアルキレン基」とは、炭素数2ないし5のアルキレン基であって、当該アルキレン鎖の介在可能な任意の位置に1又は2以上、好ましくは1の酸素原子が介在するか、又は介在しない基を意味し、例えばエチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、2ーオキサテトラメチレン基、2ーオキサペンタメチレン基、3ーオキサペンタメチレン基等が挙げられる。

「炭素数 1 ないし 3 のアルキレン基」とは、例えばメチレン基、エチレン基、トリメチレン基等を意味する。

B<sup>11</sup>及びB<sup>12</sup> (又はB<sup>21</sup>及びB<sup>22</sup>) がそれぞれ意味する「炭素数1ないし6 の飽和又は不飽和脂肪族炭化水素基であって、互いに架橋されていてもよい基」 とは、炭素数1ないし6の飽和若しくは不飽和脂肪族炭化水素基であって、互い に架橋を有しないか、又は互いに単結合若しくは炭素数1ないし4の架橋を有す る基を意味する。

当該炭素数1ないし6の飽和若しくは不飽和脂肪族炭化水素基としては、例えばメタン、エタン、プロパン、プロペン、プタン、1ーペンテン又はヘキサン等から形成される2価又は3価の基が挙げられる。より具体的には、これらの基と隣接する窒素原子が一緒になって、架橋を有しない場合は、例えばアジリジン環、アゼチジン環、ピロリジン環、ピペリジン環、テトラヒドロピリジン環又は2ービニルピペリジン環等からなる単環式基を形成し、架橋を有する場合は、例えば25 8ーアザビシクロ[3.2.1]オクタン環、3ーアザビシクロ[3.3.0]オクタン環又は3ーアザビシクロ[3.3.1]ノナン環等からなる二環式基を形成する。

「陰イオン」とは、本発明化合物上のアンモニウムイオンと対をなし本発明化 合物を電気的に中和するものであって、医薬として許容されるものであれば特に

限定はされないが、*例えば* F<sup>-</sup>, Cl', Br<sup>-</sup>, l<sup>-</sup>,

 $\frac{1}{2} \text{SO}_4^{\ 2^{\text{-}}}, \quad \text{HSO}_4^{\ 2^{\text{-}}}, \quad \frac{1}{3} \text{PO}_4^{\ 3^{\text{-}}}, \quad \frac{1}{2} \text{HPO}_4^{\ 2^{\text{-}}}, \quad \text{H}_2 \text{PO}_4^{\ 2^{\text{-}}}, \quad \text{NO}_3^{\ 2^{\text{-}}}, \quad \text{CH}_3 \text{OSO}_3^{\ 2^{\text{-}}},$ 

 $CH_3SO_3^-$ ,  $CH_3CH_2SO_3^-$ ,  $CH_3CH_2SO_3^-$ 

等のハロゲン原子、無機酸、有機スルホン酸、カルボン酸等から形成される陰イオンが挙げられる。

5 一般式(I)で表される化合物の塩とは、例えば式中Aが式(b<sub>0</sub>)で表される化合物の医薬として許容されうる慣用的なものを意味し、そのような塩としては、例えば塩酸塩、硫酸塩、硝酸塩、リン酸塩、過塩素酸塩等の無機酸塩;例えば安息香酸塩、マレイン酸塩、フマル酸塩、コハク酸塩、酒石酸塩、クエン酸塩、アスコルビン酸塩等の有機カルボン酸塩;例えばメタンスルホン酸塩、エタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等の有機スルホン酸塩等が挙げられる。

「処置剤」とは、各種疾患に対して治療及び/又は予防の目的で供せられる薬 剤を意味する。

「吸入剤」とは、医療の分野でそれ自体よく知られた、用時に呼吸器から吸入 15 して使用する形態の薬剤であって、例えばエアロゾル剤、吸入用粉末剤、吸入用 液剤等として供せられる薬剤を意味する。

本発明の化合物は、その置換基の態様によって、光学異性体、ジアステレオ異性体、幾何異性体等の立体異性体又は互変異性体が存在する場合があるが、本発明の化合物はこれら全ての立体異性体、互変異性体及びそれらの混合物をも包含20 する。

本発明の化合物を更に具体的に開示するため、各種記号につき、その好適な具体例を挙げて更に詳細に説明する。

Aは式(a<sub>o</sub>)又は(b<sub>o</sub>)



で表される基を意味する。

B¹及びB²は、それぞれ独立して、直鎖状、分岐状及び/又は環状部からなる 炭素数 2 ないし 1 0 の飽和又は不飽和脂肪族炭化水素基であって、水酸基を有し ていてもよい、及び/又は窒素原子を介していてもよい基を意味する。

B<sup>1</sup>としては、例えば式 (12)



で表される基等が好適であり、中でも、例えば式(13)



10 で表される基等が好ましい。

B<sup>2</sup>としては、例えば式 (14)



で表される基等が好適であり、中でも、例えば式 (15)

WO 02/04402 PCT/JP01/05987

9



で表される基等が好ましい。

20

25

式( $a_0$ )において、 $R^2$ 、 $R^3$ 及び $R^4$ は、それぞれ独立して、フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味するか、 $R^2$ 及び $R^3$ は、一緒になって、酸素原子を介していてもよい炭素数 2ないし 5 のアルキレン基を意味するか、又は $R^4$ は $B^1$ 上の結合可能な任意の部位と結合する、単結合若しくは炭素数 1 ないし 3 のアルキレン基を意味し、 $X^-$ は陰イオンを意味する。

R<sup>2</sup>、R<sup>3</sup>又はR<sup>4</sup>の「フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基」とは、無置換の前記低級アルキル基又は置換可能な任意の位置に置換基を有する前記低級アルキル基を意味し、該置換基はフェニル基及びシクロアルキル基からなる群より、同一又は異なって1又は2以上、好ましくは1選択することができる。

該置換基のシクロアルキル基としては、例えばシクロヘキシル基、シクロヘプ 15 チル基等が好適である。

R<sup>2</sup>、R<sup>3</sup>又はR<sup>4</sup>の「低級アルキル基」としては、例えばメチル基、エチル基、 プロピル基、イソプロピル基等が好適である。

したがって、R<sup>2</sup>、R<sup>3</sup>又はR<sup>4</sup>の「置換基を有していてもよい低級アルキル基」 としては、それぞれ独立して、例えばメチル基、エチル基、プロピル基、イソプロピル基、シクロヘキシルメチル基、シクロヘプチルメチル基、ベンジル基等が 挙げられ、特にメチル基等が好適である。

R<sup>2</sup>及びR<sup>3</sup>が一緒になって形成する「酸素原子を介していてもよい炭素数2ないし5のアルキレン基」としては、例えばテトラメチレン基、ペンタメチレン基、3-オキサペンタメチレン基等が好適であり、中でも3-オキサペンタメチレン基等が好ましい。

R⁴がB¹上の結合可能な任意の部位と結合するとき、R⁴としては、単結合又はメチレン基若しくはエチレン基等が好適である。

 $R^2$ 、 $R^3$ 及び $R^4$ の好ましい態様としては、例えば $R^2$ 及び $R^3$ が、それぞれ独立して、フェニル基及びシクロアルキル基からなる群より選択される置換基を有

していてもよい低級アルキル基を意味するか、又はR<sup>2</sup>及びR<sup>3</sup>が一緒になって、酸素原子を介していてもよい炭素数2ないし5のアルキレン基を意味し、かつ、R<sup>4</sup>がB<sup>1</sup>上の結合可能な任意の部位と結合する、単結合若しくは炭素数1ないし3のアルキレン基を意味するとき等が挙げられる。

5 X<sup>-</sup>としては、例えば

Clī, Brī

10

15

20

等のハロゲン原子から形成される陰イオンが好適である。

一般式(I)の式中、Aが式( $a_0$ )で表される基である場合のより具体的な好ましい態様としては、Aが、例えば式( $a_1$ )

$$-(CH_2)_k-B_1^{11}$$
 $R^2$ 
 $R^3$ 
 $R^3$ 

[式中、 $B^{11}$ 及び $B^{12}$ は、それぞれ独立して、炭素数 1 ないし 6 の飽和又は不飽和脂肪族炭化水素基であって、互いに架橋されていてもよい基を意味し; k は 0、1 又は 2 を意味し、 $R^2$ 、 $R^3$ 及び $X^-$ は前記の意味を有する(ただし、 $B^{11}$ 及び $B^{12}$ の炭素数並びに架橋を形成する炭素原子の数並びに k の和は 1 3 を越えない)]で表される基であるとき等が挙げられ、中でも式( $a_2$ )

[式中、 $R^{21}$ 及び $R^{31}$ は、それぞれ独立して、低級アルキル基を意味し、k 及び  $X^-$ は前記の意味を有する]で表される基であるとき等が好適であり、特に式( $a_3$ )

$$-(CH_2)_k$$
  $R^{21}$   $(a_3)$ 

20

25

[式中、k、 $R^{21}$ 、 $R^{31}$ 及び $X^-$ は前記の意味を有する] 又は式 ( $a_4$ )



[式中、k、 $R^{21}$ 、 $R^{31}$ 及び $X^-$ は前記の意味を有する] で表される基であるとき等が好ましい。

5 式  $(a_1)$ 、 $(a_2)$ 、 $(a_3)$  又は $(a_4)$  において、kが0 であるときが好適である。

更には、式( $a_2$ )、( $a_3$ )又は( $a_4$ )において、 $R^{21}$ 及び $R^{31}$ がともにメチル基であるときが好適である。

式( $a_1$ )、( $a_2$ )、( $a_3$ )又は( $a_4$ )における $X^-$ としては、例えば 10 Cl , Br

等のハロゲン原子から形成される陰イオンが好適である。

式( $b_0$ )において、 $R^5$ は水素原子、若しくはフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を、 $R^7$ は水素原子若しくは低級アルキル基を意味するか、又は $R^5$ 及び $R^7$ のいずれか一方は、 $B^2$ 上の結合可能な任意の部位と結合する、単結合若しくは炭素数 1 ないし 3 のアルキレン基を意味する。

R<sup>5</sup>の「フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基」とは、前記、R<sup>2</sup>、R<sup>3</sup>又はR<sup>4</sup>の「フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基」と同様の意味を有し、また、具体例も同様の基が例示できる。該基の好ましい例としては、例えばメチル基、エチル基等が挙げられる。

 $R^7$ の低級アルキル基としては、例えばメチル基、エチル基等が好適である。  $R^5$ 及び $R^7$ のいずれか一方が $B^2$ 上の結合可能な任意の部位と結合するとき、  $R^5$ 又は $R^7$ としては、単結合又はメチレン基若しくはエチレン基等が好適である。  $R^6$ は水素原子、低級アルキル基又は-N( $R^8$ )  $R^9$ で表される基を意味する。  $R^6$ の低級アルキル基としては、例えばメチル基、エチル基、プロピル基、ブ

チル基等が好適である。

R<sup>8</sup>及びR<sup>9</sup>は、それぞれ独立して、水素原子又は低級アルキル基を意味する。 R<sup>8</sup>又はR<sup>9</sup>の低級アルキル基としては、例えばメチル基、エチル基、プロピル 基等が好適である。

5 R<sup>8</sup>又はR<sup>9</sup>としては、例えばともに水素原子であるとき等が好適である。 したがって、-N(R<sup>8</sup>)R<sup>9</sup>で表される基としては、例えばアミノ基、メチル アミノ基、ジメチルアミノ基、エチルメチルアミノ基、ジエチルアミノ基等が挙 げられ、中でもアミノ基等が好適である。

 $R^6$ としては、水素原子又は-N( $R^8$ ) $R^9$ で表される基、より好ましくは水 10 素原子が好適である。

 $R^5$ 、 $R^6$ 及び $R^7$ の好ましい態様としては、例えば $R^5$ が $B^2$ 上の結合可能な任意の部位と結合する、単結合若しくは炭素数 1 ないし 3 のアルキレン基を意味し、 $R^6$ が水素原子、低級アルキル基又は-N( $R^8$ )  $R^9$ で表される基、より好ましくは水素原子を意味し、かつ、 $R^7$ が水素原子を意味するとき等が挙げられる。

15 一般式 (I) の式中、Aが式  $(b_0)$  で表される基である場合のより具体的な好ましい態様としては、Aが、例えば式  $(b_0)$ 

$$-(CH_2)_m - B^{21} - N$$
 $N$ 
 $N$ 
 $(b_1)$ 
 $R^{71}$ 

[式中、 $B^{21}$ 及び $B^{22}$ は、それぞれ独立して、炭素数 1 ないし 6 の飽和又は不飽和脂肪族炭化水素基であって、互いに架橋されていてもよい基を意味し;mは 0、 1 又は 2 を意味し; $R^{71}$ は水素原子若しくは低級アルキル基を意味し、 $R^{6}$ は前記の意味を有する(ただし、 $B^{21}$ 及び $B^{22}$ の炭素数並びに架橋を形成する炭素原子の数並びにmの和は 1 3 を越えない)]で表される基であるとき、より好ましくは該基の $R^{71}$ が水素原子であるとき等が挙げられ、中でも式( $b_2$ )

$$-(CH_2)_m \longrightarrow N \longrightarrow NH \qquad -(CH_2)_m \longrightarrow NH \qquad -(CH_2)_m \longrightarrow NH \qquad (b_2)_m \longrightarrow NH \qquad (cH_2)_m \longrightarrow NH \qquad (b_2)_m \longrightarrow NH \qquad (cH_2)_m \longrightarrow NH \qquad (cH$$

[式中、m及びR<sup>6</sup>は前記の意味を有する]で表される基であるとき等が好適であり、特に式(b<sub>3</sub>)

$$-(CH_2)_m$$
  $N$   $NH$   $(b_3)$ 

5 [式中、m及びR<sup>6</sup>は前記の意味を有する]で表される基であるとき等が好ましい。

式  $(b_1)$ 、  $(b_2)$  又は  $(b_3)$  において、mが1 又は2であるときが好適である。

更には、式( $b_1$ )、( $b_2$ )又は( $b_3$ )において、 $R^6$ が水素原子であるとき 10 が好適である。

Arはハロゲン原子、低級アルキル基、低級アルケニル基及び低級アルコキシ 基からなる群より選択される置換基を有していてもよい、アリール基又はヘテロ アリール基を意味する。

「ハロゲン原子、低級アルキル基、低級アルケニル基及び低級アルコキシ基からなる群より選択される置換基を有していてもよい、アリール基又はヘテロアリール基」とは、無置換の前記アリール基若しくは前記ヘテロアリール基、又は置換可能な任意の位置に置換基を有する前記アリール基若しくは前記ヘテロアリール基を意味し、該置換基はハロゲン原子、低級アルキル基、低級アルケニル基及び低級アルコキシ基からなる群より、同一又は異なって1又は2以上、好ましくは1又は2選択することができる。

該置換基のハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子等 が好適である。

該置換基の低級アルキル基としては、例えばメチル基、エチル基、プロピル基、

イソプロピル基等が好適である。

該置換基の低級アルケニル基としては、例えばビニル基等が好適である。

該置換基の低級アルコキシ基としては、例えばメトキシ基、エトキシ基、メチレンジオキシ基等が好適である。

5 該置換基としては、ハロゲン原子等が好適である。

Arの「アリール基」としては、例えばフェニル基等が好適である。

Arの「ヘテロアリール基」としては、例えば2-ピリジル基、2-チアゾリル基、2-チエニル基、3-チエニル基等が好適である。

したがって、Arとしては、例えばフェニル基、2-フルオロフェニル基、3 - フルオロフェニル基、4-フルオロフェニル基、2-クロロフェニル基、3-10 クロロフェニル基、4-クロロフェニル基、2-プロモフェニル基、3-プロモ フェニル基、4-プロモフェニル基、2,4-ジフルオロフェニル基、3,4-ジフルオロフェニル基、2-クロロ-4-フルオロフェニル基、2-メチルフェ ニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、 3-エチルフェニル基、4-エチルフェニル基、2-ビニルフェニル基、3-ビ 15 ニルフェニル基、4-ビニルフェニル基、4-メトキシフェニル基、4-エトキ ・シフェニル基、3,4-メチレンジオキシフェニル基等が挙げられ、中でもフェ ニル基、4-フルオロフェニル基、2-クロロフェニル基、4-クロロフェニル 基、4-プロモフェニル基、3、4-ジフルオロフェニル基、4-メチルフェニ ル基、4-エチルフェニル基、4-ビニルフェニル基、3、4-メチレンジオキ 20 シフェニル基等が好適であり、特に、一般式(I)の式中、Aが式( $a_o$ )で表 される基である場合、4-クロロフェニル基等が好ましく、Aが式(b<sub>o</sub>)で表 される基である場合、無置換のフェニル基等が好ましい。

R<sup>1</sup>はフッ素原子で置換された炭素数 4 ないし 6 のシクロアルキル基であって、 25 水酸基を有していてもよい基を意味する。

「フッ素原子で置換された炭素数 4 ないし6 のシクロアルキル基であって、水酸基を有していてもよい基」とは、置換可能な任意の位置に1 又は2以上、好ましくは1 又は2、より好ましくは2のフッ素原子を有する前記炭素数 4 ないし6のシクロアルキル基であって、更に該シクロアルキル基上の置換可能な任意の位

WO 02/04402 PCT/JP01/05987

置に1又は2以上、好ましくは1の水酸基を有するか、又は有しない基を意味する。

R¹の「シクロアルキル基」としては、例えばシクロペンチル基等が好適である。

したがって、 $R^1$ としては、例えば1-フルオロシクロブチル基、1-フルオ 5 ロシクロペンチル基、2-フルオロシクロプチル基、2-フルオロシクロペンチ ル基、3-フルオロシクロブチル基、3-フルオロシクロペンチル基、2、2-ジフルオロシクロプチル基、2,2-ジフルオロシクロペンチル基、3,3-ジ フルオロシクロプチル基、3,3-ジフルオロシクロペンチル基、3,3-ジフ ルオロ-4-ヒドロキシシクロペンチル基、3,3,4,4-テトラフルオロシ 10 クロペンチル基、2,3-ジフルオロシクロプチル基、2,3-ジフルオロシク ロペンチル基、3,4-ジフルオロシクロペンチル基、2,2,3,3-テトラ フルオロシクロブチル基、2,2,3,3-テトラフルオロシクロペンチル基等 が挙げられ、中でも2-フルオロシクロプチル基、2-フルオロシクロペンチル 基、3-フルオロシクロプチル基、3-フルオロシクロペンチル基、2、2-ジ 15 フルオロシクロプチル基、2,2-ジフルオロシクロペンチル基、3,3-ジフ ルオロシクロプチル基、3,3-ジフルオロシクロペンチル基、3,3-ジフル オロー4ーヒドロキシシクロペンチル基、3、3、4、4ーテトラフルオロシク ロペンチル基、2,2,3,3-テトラフルオロシクロペンチル基等が好適であ り、特に3、3-ジフルオロシクロペンチル基等が好ましい。 20

一般式 (II) の式中、A<sup>p</sup>は式 (a<sub>p0</sub>) 又は (b<sub>p0</sub>)

$$-B^{1}-N^{R^{20}} -B^{2}-NH -B^{2}-NH -B^{5} -B^{5}$$

[式中、 $B^1$ 、 $B^2$ 、 $R^5$ 、 $R^{20}$ 及び $R^{40}$ は前記の意味を有する]で表される基を意味する。

25 一般式(II)で表される化合物の好ましい態様は、いうまでもなく一般式(I) で表される化合物の好ましい態様に対応する。

R<sup>20</sup>又はR<sup>40</sup>の「置換基を有していてもよい低級アルキル基」としては、それ

ぞれ独立して、例えばメチル基、エチル基、プロピル基、イソプロピル基、シクロヘキシルメチル基、シクロヘプチルメチル基、ベンジル基等が挙げられ、特にメチル基等が好適である。

R<sup>40</sup>としては、B<sup>1</sup>上の結合可能な任意の部位と結合する、単結合又は炭素数 5 1ないし3のアルキレン基、より好ましくは単結合又はメチレン基若しくはエチ レン基等が好適である。

 $A^p$ が式( $a_{p0}$ )で表される基である場合のより具体的な好ましい態様としては、 $A^p$ が、例えば式( $a_{p1}$ )

$$-(CH_2)_k-B_1^{11}-N-R^{20}$$
 (a<sub>p1</sub>)

10 [式中、 $B^{11}$ 、 $B^{12}$ 、k及び $R^{20}$ は前記の意味を有する]で表される基であるとき等が挙げられ、中でも式( $a_{p2}$ )

$$-(CH_2)_k$$
  $N-R^{20}$   $-(CH_2)_k$   $N-R^{20}$   $N-R^{$ 

[式中、k及びR  $^2$   $^0$  は前記の意味を有する] で表される基であるとき等が好適であり、特に式  $(a_{p3})$ 

$$-(CH_2)_k$$
  $-(CH_2)_k$   $(a_{p3})$ 

15

[式中、k及びR<sup>20</sup>は前記の意味を有する] 又は式(a<sub>p4</sub>)

$$N - R^{20}$$
 $(CH_2)_k$ 
 $(a_{p4})$ 

[式中、k及びR<sup>20</sup>は前記の意味を有する]で表される基であるとき等が好ましい。

20 A<sup>p</sup>が式(b<sub>p0</sub>)で表される基である場合のより具体的な好ましい態様として

は、APが、例えば式(bgi)

$$--(CH_2)_m - B^{21} - NH$$
 $B^{22}$ 
 $(b_{p1})$ 

[式中、 $B^{21}$ 、 $B^{22}$ 及びmは前記の意味を有する]で表される基であるとき等が挙げられ、中でも式( $b_{n2}$ )

17

$$(b_{p2})$$
 のH 又は  $-(CH_2)_m$  NH

[式中、mは前記の意味を有する]で表される基であるとき等が好適であり、特に式( $b_{n3}$ )

$$-(CH_2)_m$$
 NH  $(b_{p3})$ 

[式中、mは前記の意味を有する]で表される基であるとき等が好ましい。

10 一般式(I I)のAr又はR<sup>1</sup>としては、前記一般式(I)のAr又はR<sup>1</sup>と同様に例示することができ、好適な例もまた同様であり、式( $a_{p1}$ )、( $a_{p2}$ )、( $a_{p3}$ )、( $a_{p4}$ )、( $b_{p0}$ )、( $b_{p1}$ )、( $b_{p2}$ )又は( $b_{p3}$ )のB<sup>11</sup>、B<sup>12</sup>、B<sup>21</sup>、B<sup>22</sup>、k、m又はR<sup>5</sup>としては、前記式( $a_{1}$ )、( $a_{2}$ )、( $a_{3}$ )、( $a_{4}$ )、( $b_{0}$ )、( $b_{1}$ )、( $b_{2}$ )又は( $b_{3}$ )のB<sup>11</sup>、B<sup>12</sup>、B<sup>21</sup>、B<sup>22</sup>、k、m又はR<sup>5</sup>と同様に例示することができ、好適な例もまた同様である。

一般式(II)で表される化合物の「塩」とは、例えば塩基性窒素原子における酸付加塩の塩類を挙げることができる。

該酸付加塩としては、例えば塩酸塩、硫酸塩、硝酸塩、リン酸塩、過塩素酸塩等の無機酸塩;例えばマレイン酸塩、フマル酸塩、酒石酸塩、クエン酸塩、アスコルビン酸塩、トリフルオロ酢酸塩等の有機酸塩;例えばメタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩等が挙げられる。

次に、本発明に係る化合物の製造法について説明する。

本発明化合物(I)は、例えば下記の製造法又は実施例に示す方法等により製

造することができる。ただし、本発明化合物(I)の製造法はこれら反応例に限 定されるものではない。

#### 製造法1

5

一般式 (II-1)

$$HO = \begin{matrix} Ar & O \\ II \\ C & O - A^{pa} \end{matrix}$$

$$(II-1)$$

[式中、A<sup>pa</sup>は式 (a<sub>p0</sub>)

$$-B^{1}-N^{-R^{20}}$$
 $A^{40}$ 
 $A^{40}$ 

で表される基を意味し、Ar、 $B^1$ 、 $R^1$ 、 $R^2$  及び $R^4$  は前記の意味を有する]で表される化合物又はその塩と、一般式(III)

$$_{10}$$
  $R^{30}$ —L (III)

[式中、L は脱離基を意味し、 $R^{30}$ はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味する]で表される化合物とを反応させることにより、一般式(I-1)

15 [式中、 $R^{22}$ はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味し、Ar、 $B^1$ 、 $R^1$ 、 $R^{30}$ 、 $R^{40}$  及び $X^-$ は前記の意味を有する]で表される化合物を製造することができる。

一般式(II-1)で表される化合物の「塩」とは、アミノ基又はイミノ基における酸付加塩を意味し、例えば塩酸塩、硫酸塩、硝酸塩、りん酸塩、過塩素酸塩等の無機酸塩;例えばマレイン酸塩、フマール酸塩、酒石酸塩、くえん酸塩、アスコルビン酸塩、トリフルオロ酢酸塩等の有機酸塩;例えばメタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のス

WO 02/04402 PCT/JP01/05987

ルホン酸塩等が挙げられる。

5

10

15

Lで表される「脱離基」としては、例えば塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチルスルホニルオキシ基等のアルキルスルホニルオキシ基又はp-トルエンスルホニルオキシ基等のアリールスルホニルオキシ基等が挙げられる。

一般式(II-1)で表される化合物又はその塩と一般式(III)で表される化合物との反応は、通常、反応に悪影響を及ぼさない不活性溶媒中で行われる。 当該不活性溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;ベンゼン、トルエン、クロロベンゼン、キシレン等の芳香族炭化水素類;クロロホルム、ジクロロメタン等のハロゲン溶媒;アセトン、アセトニトリル等の非プロトン性極性溶媒、又はそれらの混合溶媒等が挙げられる。

一般式 (I I I) で表される化合物は、通常、化合物 (I I -1) 1 モルに対して、1 モル〜過剰モル、好ましくは1 $\sim$ 10 モルとすることができ、特に化合物 (I I -1) の $R^{20}$ が水素原子であるときは2 モル以上が使用される。

反応温度は、通常、約0℃~溶媒の沸点までの温度が用いられ、また反応時間は10分間~48時間とすることできるが、必要に応じてこれ以上又はこれ以下の条件を用いることもできる。

上記反応は、反応を円滑に進めるために塩基の存在下に行うこともできる。

20 当該塩基としては、例えば炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩;例えば炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;例えばトリメチルアミン、トリエチルアミン、N, Nージイソプロピルエチルアミン、Nーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルアニリン、1, 8ージアザビシクロ [5.4.0] ウンデカー7ーエン(DBU)、1,5ージアザビシクロ [4.3.0] ノナー5ーエン(DBN)等の第3級脂肪族アミン;例えばピリジン、4ージメチルアミノピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の芳香族アミンが挙げられる。

当該塩基の使用量は、通常、化合物(II-1)1モルに対して、1モル〜過 剰モル、好ましくは1~10モルとすることができる。 反応終了後、通常の処理を行い、一般式(I-1)で表される化合物を得ることができる。

### 製造法2

5

一般式 (II-2)



[式中、A<sup>pa1</sup>は式 (a<sub>p01</sub>)

$$-B^1-NH$$

$$\int_{R^{40}} (a_{p01})$$

で表される基を意味し、Ar、 $B^1$ 、 $R^1$ 及び $R^{40}$ は前記の意味を有する]で表される化合物又はその塩と、一般式(IV)

$$10 L^1 - R^{31} - L^2$$
 (IV)

[式中、 $L^1$ 及び $L^2$ は、それぞれ独立して、脱離基を意味し、 $R^{31}$ は酸素原子を介していてもよい炭素数 2ないし 5 のアルキレン基を意味する]で表される化合物とを反応させることにより、一般式(I-2)

$$HO = \begin{matrix} Ar & O & X^{-} \\ || & || \\ C - O - B^{1} - N^{+} \\ || & || \\ R^{40} \end{matrix}$$
 (I-2)

15 [式中、Ar、 $B^1$ 、 $R^1$ 、 $R^{31}$ 、 $R^{40}$ 及び $X^-$ は前記の意味を有する] で表される化合物を製造することができる。

一般式(II-2)で表される化合物の「塩」としては、前記製造法1における化合物(II-1)の塩と同様の塩を例示することができる。

L¹又はL²で表される「脱離基」としては、前記製造法1におけるLで表され 20 る脱離基と同様の脱離基を例示することができる。

一般式(II-2)で表される化合物又はその塩と一般式(IV)で表される化合物との反応は、前記製造法 1 における一般式(II-1)で表される化合物

WO 02/04402 PCT/JP01/05987

又はその塩と一般式(III)で表される化合物との反応に準じて行うことができる。

21

反応終了後、通常の処理を行い、一般式 (I-2) で表される化合物を得ることができる。

#### 5 製造法3

一般式 (II-3)

$$HO \xrightarrow{Ar} C -O -A^{pb}$$

$$(II-3)$$

[式中、A<sup>pb</sup>は式(b<sub>p0</sub>)

$$\begin{array}{ccc}
-B^2 - NH \\
\int \\
R^5
\end{array} (b_{p0})$$

10 で表される基を意味し、Ar、 $B^2$ 、 $R^1$ 及び $R^5$ は前記の意味を有する]で表される化合物又はその塩と、一般式 (V)

[式中、 $L^3$ は脱離基を意味し;  $R^{6p}$ は水素原子、低級アルキル基又は-N ( $R^{8p}$ )  $R^{9p}$ で表される基を意味し;  $R^{70p}$ はイミノ基の保護基、水素原子又は低級 P0 アルキル基を意味し;  $R^{8p}$ 及び $R^{9p}$ は、それぞれ独立して、P1 三ノ基若しくはイミノ基の保護基、水素原子又は低級アルキル基を意味する] で表される化合物又はその塩とを反応させ、一般式 (V1)

$$HO \xrightarrow{Ar} C -O -B^2 - N \xrightarrow{R^{6p}} N \qquad (VI)$$

[式中、Ar、B<sup>2</sup>、R<sup>1</sup>、R<sup>5</sup>、R<sup>6</sup>P及びR<sup>70</sup>Pは前記の意味を有する]で表さ

れる化合物又はその塩とし、所望により保護基を除去することにより、一般式(I -3)

$$HO \xrightarrow{Ar} C - O - B^2 - N \xrightarrow{R^6} N$$

$$\downarrow N$$

[式中、R<sup>70</sup>は水素原子又は低級アルキル基を意味し、Ar、B<sup>2</sup>、R<sup>1</sup>、R<sup>5</sup>及 びR 「は前記の意味を有する」で表される化合物又はその塩を製造することがで きる。

一般式(II-3)、(V)又は(VI)で表される化合物の「塩」としては、 前記製造法 1 における化合物(I I-1)の塩と同様の塩を例示することができ る。

L³で表される「脱離基」としては、例えば塩素原子、臭素原子、ヨウ素原子 10 等のハロゲン原子; 例えばメトキシ基、エトキシ基、プトキシ基、プロポキシ基、 イソプロポキシ基等の低級アルコキシ基;メチルチオ基、エチルチオ基等の低級 アルキルチオ基、1-イミダゾリル基、1-ピラゾリル基又は1-ベンゾトリア ゾリル基等が挙げられる。

上記反応において、反応物質中に反応に関与しないアミノ基又はイミノ基等が 15 存在する場合、当該アミノ基又はイミノ基は、適宜、アミノ基又はイミノ基の保 護基で保護した後に反応を行い、反応後に当該保護基を除去することができる。

「アミノ基又はイミノ基の保護基」としては、例えばペンジル基、p-メトキ シベンジル基、3,4-ジメトキシベンジル基、o-ニトロベンジル基、p-ニ トロベンジル基、ベンズヒドリル基、トリチル基等のアラルキル基;例えばホル 20 ミル基、アセチル基、プロピオニル基、プチリル基、ピバロイル基等の低級アル カノイル基;例えばベンゾイル基;例えばフェニルアセチル基、フェノキシアセ チル基等のアリールアルカノイル基;例えばメトキシカルボニル基、エトキシカ ルボニル基、プロピルオキシカルボニル基、 t e r t ープトキシカルボニル基等 の低級アルコキシカルボニル基;例えばベンジルオキシカルボニル基、p-ニト ロベンジルオキシカルボニル基、フェネチルオキシカルボニル基等のアラルキル

オキシカルボニル基;例えばトリメチルシリル基、tertーブチルジメチルシ リル基等の低級アルキルシリル基;例えばフタロイル基;例えばベンジリデン基、 pークロロベンジリデン基、oーニトロベンジリデン基等のアラルキリデン基; また、例えばアミジノ基上のイミノ基の保護基としてはニトロ基等が挙げられ、

5 特にアセチル基、ピバロイル基、ベンゾイル基、エトキシカルボニル基、ter tープトキシカルボニル基、ベンジルオキシカルボニル基等が好ましい。

一般式(II-3)で表される化合物又はその塩と一般式(V)で表される化合物又はその塩との反応は、通常、化合物(II-3)又はその塩1モルに対して、化合物(V)又はその塩を1モル~過剰モル、好ましくは1~2モル用いて、反応に悪影響を及ぼさない不活性溶媒中で行われる。

10

15

20

25

当該不活性溶媒としては、例えばメタノール、エタノール等のアルコール類; 例えばジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;ベ ンゼン、トルエン、クロロベンゼン、キシレン等の芳香族炭化水素類;ジメチル スルホキシド、N, Nージメチルホルムアミド、アセトニトリル、ヘキサメチル りん酸トリアミド等の非プロトン性極性溶媒、又はそれらの混合溶媒等が挙げら れる。

反応温度は、通常、-70  $\mathbb{C}$   $\sim$  反応に用いる溶媒の沸点、好ましくは-20  $\mathbb{C}$   $\sim$  100  $\mathbb{C}$  である。

反応時間は、通常、5分間~7日間、好ましくは10分間~24時間である。 上記反応は、反応を円滑に進めるために塩基の存在下に行うこともできる。

当該塩基としては、前記製造法1における化合物 (II-1) 又はその塩と化合物 (III) との反応で使用可能な塩基と同様の塩基を例示することができる。

当該塩基の使用量は、化合物(V)が保護基を有する化合物である場合、通常、 当該化合物1モルに対して、1モル〜過剰モル、好ましくは1~10モルとする ことができる。

一方、上記反応において、化合物(V)として無保護の化合物を使用する場合、 当該化合物の塩を使用することが好ましい。また、この場合、本反応系において は生成物に対して1等量の酸が存在することが好ましく、当該酸としては化合物 (V)の塩由来の酸を利用することができる。したがって、原料物質として、化 合物 (II-3) の遊離化合物を使用するときは、当該式 (II-3) の遊離化 合物と、化合物(V)の塩とを実質的に1:1の割合で反応させることが最も好 ましく、化合物(II-3)の塩を使用するときは、本反応系における過剰な酸 を中和するのに適当な量の塩基の存在下に反応を行うことが好ましい。

反応終了後、通常の処理を行い、一般式(VI)で表される化合物又はその塩 5 の粗生成物を得ることができる。このようにして得られた一般式(VI)で表さ れる化合物又はその塩を、常法に従って精製し、又は精製することなく、所望に よりアミノ基又はイミノ基の保護基の除去反応を行うことにより、一般式(I-3) で表される化合物又はその塩を製造することができる。

保護基の除去法は、当該保護基の種類及び目的化合物 (I-3) の安定性等に 10 より異なるが、それ自体公知の方法、例えばプロテクティブ・グループス・イン・ オーガニック・シンセシス (Protective Groups in Or ganic Synthesis)、T. W. グリーン (T. W. Greene) 著、John Wiley & Sons社 (1981年) 等に記載の方法又は それに準じる方法に従って、例えば酸又は塩基を用いる加溶媒分解、すなわち、 15 例えば0.01モル~大過剰の酸、好ましくはトリフルオロ酢酸、ギ酸、塩酸等、 又は等モル〜大過剰の塩基、好ましくは水酸化カリウム、水酸化カルシウム等を 作用させる方法;水素化金属錯体等を用いる化学的還元又はパラジウムー炭素触 媒、ラネーニッケル触媒等を用いる接触還元等により行われる。

#### 製造法4 20

一般式(VII)



[式中、Apb1は式(bp01)

で表される基を意味し、B<sup>23</sup>は直鎖状、分岐状及び/又は環状部からなる炭素数 25

15

20

25

2ないし10の飽和又は不飽和脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を介していてもよい基を意味し; $R^{71}$ は単結合又は炭素数1ないし3のアルキレン基を意味し;Zは硫黄原子又は $=N-NO_2$ で表される基を意味し、Ar及び $R^1$ は前記の意味を有する]で表される化合物又はその塩を還元した後、所望により該化合物に低級アルキル基を導入することにより、一般式(I-4)

$$HO = \begin{array}{c|c} Ar & O & & R^5 \\ \hline & & & \\ R^1 & & & \\ R^{71} & & & \\ R^{71} & & & \\ \end{array}$$

[式中、Ar、 $B^{23}$ 、 $R^1$ 、 $R^5$ 、 $R^6$ 及び $R^{71}$ は前記の意味を有する]で表される化合物又はその塩を製造することができる。

10 一般式 (VII) で表される化合物の「塩」としては、前記製造法1における 化合物 (II-1) の塩と同様の塩を例示することができる。

一般式(VII)で表される化合物の還元反応は、例えば特開平1-128970号公報に記載の方法又はそれに準じる方法に従って、例えば、Zが硫黄原子の場合、例えば塩化メチレン等の不活性溶媒中、ラネーニッケルで0℃~40℃の温度で処理することにより行うことができ、Zが=N-NO₂で表される基の場合、例えば水素供与体としてギ酸、ヒドラジン又はシクロへキセンを、及び触媒としてパラジウムを用いる移動水素化によって行うことができる。

所望により行われる低級アルキル基の導入反応は、例えばヨウ化アルキル又は 硫酸ジアルキル等を用いてそれ自体公知の方法又はそれに準じる方法によって行 うことができる。

反応終了後、通常の処理を行い、一般式 (I-4) で表される化合物又はその 塩を得ることができる。

上記の方法により得られた一般式 (I-1)、 (I-2)、 (I-3) 若しくは (I-4) で表される化合物又はその塩の単離・精製は、例えばシリカゲル、吸着樹脂等を用いるカラムクロマトグラフィー、液体クロマトグラフィー、溶媒抽出又は再結晶・再沈澱等の常用の分離手段を単独又は適宜組み合わせて行うこ

することができる。

10

とにより達成される。

一般式(I-1)又は(I-2)で表される化合物の $X^-$ で表される陰イオンは、常法により、別種の陰イオンへの変換を行うことが可能である。

上記の陰イオンの変換方法としては、例えばある種の陰イオンを有する一般式 (I-1)又は (I-2)で表される化合物を適当な担体を充填したカラムに吸着させ、これを過剰の所望の陰イオンを供給しうる酸の塩で処理した後、生成した所望の陰イオンを有する化合物を溶出する方法等が挙げられる。

一般式 (I-3) 若しくは (I-4) で表される化合物又はその塩は、常法により、遊離化合物から医薬として許容されうる塩とすることができ、また、塩から遊離化合物への変換を行うことも可能である。

一般式 (I-3) 又は (I-4) で表される化合物は、その塩として単離することが好ましく、したがってある種の塩として単離した後、当該塩を別種の所望の塩に変換することができる。

上記の塩の変換方法としては、例えば一般式(I-3) 又は(I-4)で表さ れる化合物の塩を適当な担体を充填したカラムに吸着させ、これを過剰の所望の 15 酸の塩で処理した後、生成した所望の化合物の塩を溶出する方法等が挙げられる。 一般式 (II-1)、 (III)、 (II-2)、 (IV)、 (II-3)、 (V) 又は(V I I) で表される化合物は、例えば市販品を用いるか、公知の方 法、文献記載の方法 [国際公開WO98/05641号公報、国際公開WO99 /40070号公報、国際公開WO00/31078号公報、アンゲバンテ・ケ 20 ミー・インターナショナル・エディション(Angew. Chem. Int. E dit.)、6巻、566頁(1967年);シンセティック・コミュニケーシ ョン (Synth. Commun.)、25巻、8号、1173頁 (1995年); 同、27巻、14号、2393頁(1997年);ジャーナル・オブ・オーガニ ック・ケミストリー (J. Org. Chem.)、52巻、1700頁 (198 25 7年);同、57巻、2497頁(1992年)等参照] 又はこれらの方法に準 じる方法、あるいは以下の方法又は実施例・参考例に記載する方法等により製造

PCT/JP01/05987

27

#### 製造法A

WO 02/04402









[式中、A<sup>pp</sup>は式 (a<sub>p0</sub>) 又は (b<sub>p0p</sub>)

$$-B^{1} - N - R^{20} - B^{2} - N - R^{p} - (b_{p0p})$$

$$= R^{5} - N - R^{p} - (b_{p0p})$$

5 で表される基を意味し; R<sup>p</sup>はアミノ基若しくはイミノ基の保護基、若しくは水 素原子を意味するか、又はフェニル基及びシクロアルキル基からなる群より選択 される置換基を有していてもよい低級アルキル基を意味し; A<sup>p</sup>、Ar、B<sup>1</sup>、B <sup>2</sup>、R<sup>1</sup>、R<sup>5</sup>、R<sup>20</sup>及びR<sup>40</sup>は前記の意味を有する]

本製造法は一般式(II)で表される化合物の製造法である。本製造法によれ 10 ば、一般式(II)で表される化合物は、一般式1で表されるカルボン酸又はそ

の反応性誘導体に一般式2で表される化合物を作用させ一般式3で表される化合物とし、所望により該化合物3の保護基を除去することにより製造することができる。

一般式(I I - 1)、(I I - 2)又は(I I - 3)で表される化合物は、- 6 般式(I I)で表される化合物に包含される。

一般式1で表されるカルボン酸又はその反応性誘導体と、一般式2で表される化合物との反応は、通常、化合物1又はその反応性誘導体1モルに対し、化合物2を $1\sim5$ モル、好ましくは $1\sim2$ モル用いて行われる。

一般式1で表されるカルボン酸の「反応性誘導体」としては、例えば混合酸無 10 水物、活性エステル、活性アミド等を挙げることができ、これらは例えば国際公開WO98/05641号公報記載の方法によって得ることができる。

上記反応において、一般式1で表されるカルボン酸を用いる場合には、例えばカルボニルジイミダゾール、N, N'ージシクロヘキシルカルボジイミド、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド、ジフェニルホスホリルアジド、ジピリジルジスルフィドートリフェニルホスフィン等、好ましくはカルボニルジイミダゾール等の縮合剤の存在下、反応を行うことが好ましい。

当該縮合剤の使用量は厳密に制限されるものではないが、通常、一般式1のカルボン酸1モルに対して $1\sim5$ モル、好ましくは $1\sim2$ モルの範囲内とすることができる。

20 反応は、通常、不活性溶媒中で行われ、当該不活性溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、N, N-ジメチルホルムアミド、ジオキサン、ベンゼン、トルエン、クロロベンゼン、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエチレン等、又はそれら溶媒の混合物が挙げられ、中でもジエチルエーテル、テトラヒドロフラン、N, N-ジメチルホルムアミド、ジオキサン等が好ましい。

反応温度は、通常、-70  $\mathbb{C}$ ~反応に用いる溶媒の沸点、好ましくは-20  $\mathbb{C}$   $\sim 100$   $\mathbb{C}$  である。

反応時間は、通常、5分間~7日間、好ましくは10分間~24時間である。 また、上記反応は反応を円滑に進めるために塩基の存在下に行うことができる。 当該塩基としては、例えば水素化ナトリウム;例えば炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属重炭酸塩;例えば炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;例えばトリメチルアミン、トリエチルアミン、N, Nージイソプロピルエチルアミン、Nーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルアニリン、1, 8ージアザビシクロ[5.4.0]ウンデカー7ーエン(DBU)、1,5ージアザビシクロ[4.3.0]ノナー5ーエン(DBN)等の第3級脂肪族アミン;例えばピリジン、4ージメチルアミノピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の芳香族アミンが挙げられ、特に水素化ナトリウムが好ましい。

10 当該塩基の使用量は、一般式<u>1</u>で表されるカルボン酸又はその反応性誘導体 1 モルに対して触媒量~5モル、好ましくは触媒量とすることができる。

上記反応において、反応物質中に反応に関与しないアミノ基又はイミノ基が存在する場合、当該アミノ基又はイミノ基は、適宜、アミノ基又はイミノ基の保護 基で保護した後に反応を行い、反応後に当該保護基を除去することが好ましい。

15 アミノ基又はイミノ基の保護基としては、前記製造法3に記載した保護基を挙 げることができる。

反応終了後、通常の処理を行い、一般式3で表される化合物の粗生成物を得ることができる。このようにして得られた化合物3を、常法に従って精製し、又は精製することなく、所望により、アミノ基又はイミノ基の保護基の除去反応を行うことにより、一般式(II)の化合物を製造することができる。

保護基の除去法は、前記製造法に記載した方法がそのまま適用できる。

また、上記製造法に準じて、一般式(II)のA<sup>p</sup>におけるR<sup>5</sup>、R<sup>20</sup>又はR<sup>4</sup> <sup>0</sup>に相当する基が水素原子である化合物を製造した後、該化合物にフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を導入することによっても一般式(II)で表される化合物を製造することができる。

上記低級アルキル基の導入反応は、一般式(II)のA<sup>p</sup>におけるR<sup>5</sup>、R<sup>20</sup> 又はR<sup>40</sup>に相当する基が水素原子である化合物と、(a) 一般式 5

 $R^{44} = 0$  5

20

25

[式中、R 44 はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキリデン基を意味する]で表されるアルデヒド又はケトンとを還元的アミノ化反応に付すか、又は(b)アミノ基又はイミノ基の保護基を除去した後、塩基の存在下、一般式 6

# $R^{45}L^4$ 6

5

10

15

[式中、L<sup>4</sup>は脱離基を意味し、R<sup>45</sup>はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味する]で表される化合物とを反応させることにより、一般式(II)で表される化合物のうち、R<sup>20</sup>、R<sup>40</sup>又はR<sup>5</sup>に相当する基が、それぞれ独立して、フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基である化合物を製造することができる。

R<sup>44</sup>の「フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキリデン基」とは、上記の反応終了後に対応する「フェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基」となりうる基を意味する。

L⁴で表される「脱離基」としては、例えば塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチルスルホニルオキシ基等のアルキルスルホニルオキシ基 又はpートルエンスルホニルオキシ基等のアリールスルホニルオキシ基等が挙げられる。

20 工程(a)におけるケトン又はアルデヒドとの還元的アミノ化反応は、通常、 反応に悪影響を及ぼさない不活性溶媒中で行われる。

当該不活性溶媒としては、例えばメタノール、エタノール等のアルコール類; 例えばジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;ベ ンゼン、トルエン等の芳香族炭化水素類、又はそれらの混合溶媒等が挙げられ、

25 特にメタノール、エタノール、テトラヒドロフラン、トルエン等が好ましい。

反応温度は、通常、約-30 $\mathbb{C}$ ~約200 $\mathbb{C}$ 、好ましくは約0 $\mathbb{C}$ ~約100 $\mathbb{C}$  とすることができ、また、反応時間は、通常、10分間~7日間、好ましくは10分間~24時間とすることができる。

また、上記還元的アミノ化反応は、例えば水素化ホウ素ナトリウム、シアノ水

WO 02/04402 PCT/JP01/05987

素化ホウ素ナトリウム、水素化リチウムアルミニウム、トリアセトキシ水素化ホウ素ナトリウム等の水素化金属錯体若しくはシアノ水素化ホウ素ナトリウムと塩化亜鉛との混合物等を用いるか、又は例えばパラジウムー炭素触媒、ラネーニッケル触媒等を用いた接触還元により行うことができる。

5 還元剤として水素化金属錯体を用いる場合、還元剤の使用量は、通常、原料化 合物1モルに対して、1モル〜過剰モル、好ましくは1~10モルとすることが できる。

工程(b)における一般式<u>6</u>で表される化合物との反応は、通常、塩基の存在下、反応に悪影響を及ぼさない不活性溶媒中で行われる。

10 当該塩基としては、例えば炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属単酸塩;例えば炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩;例えばトリメチルアミン、トリエチルアミン、N, Nージイソプロピルエチルアミン、Nーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルアニリン、1, 8ージアザビシクロ[5.4.0]ウンデカー7ーエン(DBU)、1,5ージアザビシクロ[4.3.0]ノナー5ーエン(DBN)等の第3級脂肪族アミン;例えばピリジン、4ージメチルアミノピリジン、ピコリン、ルチジン、キノリン、イソキノリン等の芳香族アミンが挙げられ、特にN, Nージイソプロピルエチルアミン、炭酸カリウムが好ましい。

当該塩基の使用量は、通常、原料化合物1モルに対して、1モル〜過剰モル、 20 好ましくは1~10モルとすることができる。

当該不活性溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;ベンゼン、トルエン、クロロベンゼン、キシレン等の芳香族炭化水素類;ジメチルスルホキシド、N, Nージメチルホルムアミド、アセトニトリル、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、又はそれらの混合溶媒等が挙げられる。

反応温度は、通常、約0℃~溶媒の沸点までの温度が用いられ、また反応時間は10分間~48時間とすることできるが、必要に応じてこれ以上又はこれ以下の条件を用いることもできる。

25

アミノ基又はイミノ基の保護基の導入又は除去はそれ自体公知の方法、例えば

前記製造法に記載の文献記載の方法又はそれに準じる方法に従って行うことができる。

#### 製造法B

HO 
$$\stackrel{Ar}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow}$$

5 [式中、A<sup>pb1</sup>、Ar及びR<sup>1</sup>は前記の意味を有する]

本製造法は一般式(VII)で表される化合物の製造法である。本製造法によれば、一般式(VII)で表される化合物は、一般式1で表されるカルボン酸又はその反応性誘導体に一般式4で表される化合物を作用させることにより製造することができる。

10 一般式<u>1</u>で表されるカルボン酸又はその反応性誘導体と一般式<u>4</u>で表される化合物との反応は、前記製造法Aにおける一般式<u>1</u>で表されるカルボン酸又はその反応性誘導体と一般式<u>2</u>で表される化合物との反応に準じて行うことができる。

反応終了後、通常の処理を行い、一般式(VII)で表される化合物を得ることができる。

15 なお、一般式<u>1、2、4、5</u>又は<u>6</u>で表される化合物は、市販品を用いるか、公知の方法、文献記載の方法 [国際公開WO98/05641号公報、国際公開WO99/40070号公報、国際公開WO00/31078号公報、特開平1-128970号公報等参照] 又はそれに準じる方法、あるいは実施例・参考例に記載する方法等を必要に応じ適宜組み合わせることにより製造することができ

る。

本発明の化合物の有用性は、以下に示すムスカリン受容体結合阻害試験及び各種ムスカリン受容体拮抗試験によって実証される。

### ムスカリン受容体結合阻害試験

ハーグリーブス(Hargreaves)らの方法 [Br. J. Pharma 5 col., 107巻, 494-501頁(1992年)] を改良して行った。す なわち、CHO細胞に発現させたm。及びm。のムスカリン性アセチルコリンレセ プター(Receptor Biology社製)、0.2nM「³H]-N-メチルスコポラミン (84Ci/mmol, New England Nucl ear製) 及び被験化合物を0.5mlの50mMトリス-塩酸、10mM M 10 gCl<sub>2</sub>, 1mM EDTA溶液 (pH7. 4) 中で室温 (約20~25℃)、 120分間インキュベートした後グラスフィルター (Packard ユニフィ ルタープレート GF/C)で吸引濾過し、1mlの氷冷したトリス-塩酸バッ ファーで4回洗浄した。フィルターを50℃で1時間乾燥後、シンチレーター (P ackard マイクロシンチ0)を加えてフィルターに吸着した[³H]-N 15 ーメチルスコポラミンの放射活性をマイクロプレートシンチレーションカウンタ ー (Packard トップカウント)で測定した。なお [³H] -N-メチル スコポラミンの受容体非特異的結合は、1μΜ Ν-メチルスコポラミンを添加 して求めた。本発明化合物のムスカリン受容体に対する結合親和性を、チェン及 20 びプルソフ (Cheng and Prusoff) の方法 [Biochem. Pharmacol., 22巻, 3099-3108頁(1973年)] に従っ て、標識リガンドである[3H]-N-メチルスコポラミンの結合を50%抑制 する被験化合物の濃度 (IC $_{50}$ ) より算出した解離定数 (Ki) により表した。

表1 ムスカリンm。及びm。受容体結合阻害作用

|           | Ki(nM)         |                |           |
|-----------|----------------|----------------|-----------|
|           | m <sub>2</sub> | m <sub>3</sub> | $m_2/m_3$ |
| 実施例6の化合物  | 29.1           | 0.425          | 68.5      |
| 実施例54の化合物 | 4.76           | 0.079          | 60.2      |

容体よりも $m_3$ 受容体に対してはるかに強い結合阻害活性を示した。 ムスカリン受容体拮抗試験( $in_vit_n$ )

1) 摘出ラット右心房におけるM2受容体拮抗試験

本試験法は常法に従い行った。SD系雄性ラット(300~500g)を脱血 致死させ、右心房を摘出した。標本を20m1のクレブスーヘンゼライト栄養液(95%O₂,5%CO₂通気,32℃)で満たしたマグヌス管内に初期張力0.5gにて等尺性に懸垂した。拍動数は心拍計を用いて記録した。30分間平衡化した後、カルパコール(1.7nM~36mM)を低濃度から3倍用量にて累積的に投与し、拍動数の減少を測定して、コントロールの用量反応曲線を得た。新 解液にて洗浄し拍動数が回復した後、被験化合物を投与し、その20分後に再びカルパコールを累積的に投与した。カルバコールによる反応は、カルバコール投与前の拍動数を100%として表した。本発明の化合物処置による用量反応曲線のシフトの程度から、被験化合物の拮抗効力(K<sub>B</sub>値)を求めた。

- 2) 摘出ラット気管における気道M<sub>3</sub>受容体拮抗試験
- 本試験法は常法に従い行った。SD系雄性ラット(300~500g)を脱血致死させ、気管を摘出した。気管を2mm幅のリング状にした後、腹側軟骨部分を切り開き横切標本を作成した。標本を5m1のクレブスーヘンゼライト栄養液(95%O₂,5%CO₂通気,32℃)で満たしたマグヌス管内に、初期張力1.0g、静止張力0.6gにて懸垂した。標本の張力は等尺性に記録した。1時間平衡化した後、10<sup>-4</sup>Mのカルバコールにより2回収縮させ、2回目のカルバコール収縮をリファレンスの収縮とした。新鮮液にて洗浄し基線に戻った後、同ー個体から作成した標本に、vehicleあるいは被験化合物を投与し、その20分後からカルバコール(1.7nM~36mM)を3倍用量で累積的に投与し、用量反応曲線を得た。用量反応曲線は各標本におけるリファレンスの収縮を100%として表した。被験化合物処置による用量反応曲線のシフトの程度から、被験化合物の拮抗効力(K<sub>R</sub>値)を求めた。

表2 ムスカリン受容体拮抗作用(in vitro)

|           | K <sub>B</sub> (nM) |                  |           |
|-----------|---------------------|------------------|-----------|
|           | 右心房M <sub>2</sub>   | 気管M <sub>3</sub> | $M_2/M_3$ |
| 実施例6の化合物  | 9.6                 | 0.044            | 218       |
| 実施例54の化合物 | 10.6                | 0.21             | 50        |

上記表 2 に示す結果から明らかなように、本発明の化合物は右心房 $M_2$ より気管 $M_3$ の受容体に対しはるかに強く拮抗した。したがって、本発明の化合物は気管 $M_3$ 受容体に、より選択的な化合物である。

## 5 <u>ムスカリンM<sub>3</sub>受容体拮抗試験(in vivo</u>)

## 1) 麻酔イヌにおける気管支拡張作用(吸入投与)

被験薬物吸入投与後の気管支拡張作用は、メサコリン吸入誘発試験における呼 吸抵抗上昇反応に対する抑制効果を測定することにより評価した。実験には、1 2~36ケ月齢(10~15kg)の雄性ビーグル犬を使用した。ペントバルビ タール(30mg/kg)静脈内投与により麻酔後、気管カニューレを挿入した。 10 呼吸状態が安定した後に、アストグラフ (TCK-6100H, チェスト社) に 接続、3Hzオシレーション法によるメサコリン吸入誘発試験を行った。吸入誘 発薬のメサコリンは、生理食塩水にて、40000μg/m1より順次2000 0, 10000, 5000, 2500, 1250, 625, 312, 5, 156, 78μg/mlの10段階の濃度に希釈した。このメサコリン溶液をアストグラ 15 フ中のネプライザー(噴霧器)を用い、低濃度より1分間ずつ吸入させ、呼吸抵 抗の変化を連続的に描記した。呼吸抵抗が初期値の2倍になるメサコリン濃度を メサコリン反応閾値とした。被験薬物評価前に、薬物無処置下のメサコリン反応 閾値1)を1週間以上の間隔で少なくとも2回測定し、再現性のある反応を示すイ ヌを選別した。 20

被験薬物(1 mg/m 1)の吸入投与は、ペントバルビタール麻酔下(30 mg/kg, i.v.)、アストグラフのネブライザーを用いて10 分間行った。吸入投与5 分及び 4時間後に、メサコリン吸入誘発試験を行い、被験薬物投与後のメサコリン反応閾値<sup>2)</sup>を測定した。24時間後の測定は、4時間における測定終了後、イヌを回復させてから実施した。

15

20

被験化合物の気管支拡張作用(shift值)は、次式より求めた。その結果を表3に示す。

被験薬物投与後のメサコリン反応閾値2)shift値 =被験薬物無処置下のメサコリン反応閾値1)

表3 イヌにおける気管支拡張作用

|           | shift値 |      |       |  |
|-----------|--------|------|-------|--|
|           | 5分後    | 4時間後 | 24時間後 |  |
| 実施例6の化合物  | >30    | >30  | 5.8   |  |
| 実施例54の化合物 | >30    | >30  | 3.9   |  |

5 上記表3に示す結果から明らかなように、本発明の化合物は強い気管支拡張作 用及び持続性を示した。

以上のとおり、本発明の式(I)の化合物は、強力かつ選択的なムスカリン M<sub>3</sub>受容体拮抗作用を示し、かつ、吸入投与法においても優れた薬理活性及び作用持続性を示す。したがって、副作用の少ない安全な医薬として、殊に、例えば慢性閉塞性肺疾患、慢性気管支炎、喘息、慢性気道閉塞、肺繊維症、肺気腫及び鼻炎等の呼吸器系疾患等の処置のために、患者に対し経口的又は非経口的に、より好ましくは吸入剤として投与することができる。

本発明の化合物は、上記の如き疾患の治療又は予防のために実際に使用するに際して、常法に従い、薬学的に許容されうる添加剤とともに、投与に適した剤形に製剤化することができる。該添加剤としては、製剤分野において通常用いられる各種の添加剤が使用可能であり、例えばゼラチン、乳糖、白糖、酸化チタン、デンプン、結晶セルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、トウモロコシデンプン、マイクロクリスタリンワックス、白色ワセリン、メタケイ酸アルミン酸マグネシウム、無水リン酸カルシウム、クエン酸、クエン酸三ナトリウム、ヒドロキシプロピルセルロース、ソルピトール、ソルピタン脂肪酸エステル、ポリソルベート、ショ糖脂肪酸エステル、ポリオキシエチレン、硬化ヒマシ油、ポリビニルピロリドン、ステアリン酸マグネシウム、軽質無水ケイ酸、タルク、植物油、ベンジルアルコール、アラビアゴム、プロピ

15

20

レングリコール、ポリアルキレングリコール、シクロデキストリン又はヒドロキシプロピルシクロデキストリン等が挙げられる。

これらの添加剤を用いて製剤化される剤形としては、例えば錠剤、カプセル剤、 顆粒剤、散剤若しくは坐剤等の固形製剤; 例えばシロップ剤、エリキシル剤、注射剤等の液体製剤等が挙げられ、これらは、製剤分野における通常の方法に従って調製することができる。なお、液体製剤は、用時に水又は他の適当な媒体に溶解又は懸濁させる形のものであってもよい。また、特に注射剤は、予め生理食塩水又はブドウ糖液に溶解又は懸濁させた形態であってもよく、又は用時に生理食塩水又はブドウ糖液に溶解又は懸濁させて用いる粉末形態であってもよく、更に場合によっては緩衝剤や保存剤を含有させてもよい。

また、吸入剤等の非経口投与製剤として、エアロゾル剤、吸入用粉末剤又は吸入用液剤とすることができ、当該吸入用液剤は用時に水又は他の適当な媒体に溶解又は懸濁させて使用する形態であってもよい。

これらの製剤は、本発明の化合物を全薬剤の1.0~100重量%、好ましくは1.0~60重量%の割合で含有することができる。これらの製剤は、また、 治療上有効な他の化合物を含んでいてもよい。

本発明の化合物を薬剤として使用する場合、その投与量及び投与回数は、患者の性別、年齢、体重、症状の程度及び目的とする治療効果の種類と範囲等により異なるが、一般に経口投与の場合、成人1日あたり、0.1~100mg/kgを1~数回に分けて、また非経口投与の場合は、0.001~10mg/kgを1~数回に分けて投与することができる。

# 発明を実施するための最良の形態

実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらによって何 25 ら限定されるものではない。

#### 実施例1

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノイル)オキシ)-1, 1-ジメチルピペリ ジニウム プロミド (工程1)

1ーメチルピペリジンー4ーイル (2R) -2-((1R) -3, 3ージフルオロシクロペンチル) -2-ヒドロキシー2-フェニルエタノエートの合成ピペリジン-4-イル (2R) - ((1R) -3, 3ージフルオロシクロペンチル) -2-ヒドロキシー2-フェニルエタノエート17mg、及びホルムアルデヒド(35%水溶液) 0.03mlのメタノール1ml溶液に、あらかじめ調製しておいた水素化シアノホウ素ナトリウムと塩化亜鉛(1:0.5)の0.3Mメタノール溶液0.3mlを室温にて加え、同温度にて、30分間攪拌した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム溶液、飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、表題化合物19mgを得た。

(工程2)

15

20

4-(((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノイル)オキシ)-1,1-ジメチルピペリジニウム プロミドの合成

1-メチルピペリジンー4-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシー2-フェニルエタノエート18mgに10%臭化メチルーアセトニトリル溶液0.5m1を室温にて加え、同温度にて15時間放置した。溶媒を減圧濃縮し、得られた残渣を逆相中圧液体クロマトグラフィー [ODS-AQ 120-S50 (YMC社製)] (溶出溶媒:テトラヒドロフラン/水=1/1)にて精製し、表題化合物17mgを無色固体として得た。

<sup>1</sup>H-NMR (D<sub>2</sub>O, δPPM): 1.78-2.36 (10H, m), 2.72-2.86 (1H, m), 3.02 (3H, s), 3.04 (3H, s), 3.18-3.61 (4H, m), 5.04-5.17 (1H, m), 7.40-7.60 (3H, m), 7.60-7.72 (2H, m) ESI-MS (m/e, (C<sub>20</sub>H<sub>28</sub>F<sub>2</sub>NO<sub>3</sub>) +として): 368 実施例2

4-(((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-

WO 02/04402 PCT/JP01/05987

2-ヒドロキシー2-(4-メチルフェニル)エタノイル)オキシ)-1,1-ジメチルピペリジニウム プロミド

39

ロペンチル) -2-ヒドロキシ-2-(4-メチルフェニル) エタノエートを用 い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として 得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 68-2. 25 (10H, m). 2. 32 (3H, s), 3. 12 (6H, s), 3. 13-3. 46 (5H, m), 4. 97-5. 08 (1H, m), 7. 21 (2H, d, J=8. 4Hz); 7. 49 (2H, d, J=8. 4Hz)

ESI-MS  $(m/e, (C_{21}H_{30}F_2NO_3)^{+} \ge LT) : 382$ 実施例3

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-ビニルフェニル) エタノイル) オキシ) -1, 1-

ジメチルピペリジニウム プロミド 15

10

ロペンチル) -2-ヒドロキシ-2-(4-ビニルフェニル) エタノエートを用 い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として 得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 67-2. 33 (10H, m), 20 3. 14 (6H, s), 3. 16-3. 46 (5H, m), 5. 02-5. 10 (1H, m), 5. 25 (1H, dd, J=1.8Hz, 11.7Hz), 5. 80 (1H, dd, J=1. 8Hz, 17. 7Hz), 6. 73 (1H, dd, J=11.7Hz, 17.7Hz), 7.46 (2H, d, J=8.4Hz). 25 7. 60 (2H, d, J=8.4Hz)

ESI-MS  $(m/e, (C_{22}H_{30}F_{2}NO_{3})^{+} \ge LT) : 380$ 実施例4

<u>4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-</u> 2-ヒドロキシー2-(4-エチルフェニル)エタノイル)オキシ)-1,1-

15

## ジメチルピペリジニウム プロミド

ピペリジン-4-イル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-エチルフェニル) エタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$ PPM): 1. 22 (3H, t, J=7.7Hz), 1. 60-2. 30 (10H, m), 2. 64 (2H, q, J=7.7Hz), 3. 12 (6H, s), 3. 09-3. 43 (5H, m), 5. 02-5. 10 (1H, m), 7. 24 (2H, d, J=8.5Hz), 7. 53 (2H, d, J=8.5Hz).

ESI-MS (m/e, ( $C_{22}H_{32}F_{2}NO_{3}$ ) †として) : 396 実施例 5

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-フルオロフェニル)エタノイル)オキシ)-1, 1 -ジメチルピペリジニウム プロミド

ピペリジン-4-イル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-フルオロフェニル) エタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体として得た。

- $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 0. 80-2. 35 (10H, m), 3. 05-3. 20 (1H, m), 3. 30 (3H, s), 3. 44-3. 75 (2H, m), 3. 62 (3H, s), 3. 95-4. 30 (2H, s), 5. 15-5. 25 (1H, m), 7. 03 (2H, t, J=8. 8Hz), 7. 6 8 (2H, dd, J=5. 4, 8. 8Hz)
- 25 ESI-MS (m/e, ( $C_{20}H_{27}F_{3}NO_{3}$ ) <sup>+</sup>として):386 実施例 6

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル) エタノイル) オキシ)-1, 1-ジメチルピペリジニウム ブロミド WO 02/04402 PCT/JP01/05987

41

ロペンチル) -2-ヒドロキシ-2-(4-クロロフェニル) エタノエートを用 い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体として得た。  $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 60-2. 32 (10H, m),

3. 15 (3H, s), 3. 18 (3H, s), 3. 20-3. 50 (5H, m), 5 5. 03-5. 12 (1H, m), 7. 39 (2H, d, J=8. 4Hz), 7. 63 (2H, d, J=8.4Hz).

ESI-MS  $(m/e, (C_{20}H_{27}ClF_{2}NO_{3}) + UT) : 402$ 実施例7

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) -10 2-ヒドロキシー2-(4-プロモフェニル) エタノイル) オキシ) -1, 1-ジメチルピペリジニウム ブロミド

ピペリジン-4-イル (2R)-2-((1R)-3, 3-ジフルオロシク ロペンチル) -2-ヒドロキシ-2-(4-プロモフェニル) エタノエートを用

- 15 い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体として得た。  $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 69-2. 33 (10H, m).
  - 3. 15 (3H, s), 3. 18 (3H, s), 3. 22-3. 45 (5H, m),
  - 5. 04-5. 11 (1H, m), 7. 52-7. 62 (4H, m).

ESI-MS  $(m/e, (C_{20}H_{27}BrF_{2}NO_{3}) + UT) : 446$ 

20 実施例8

> 2-ヒドロキシ-2-(2-クロロフェニル) エタノイル) オキシ) <math>-1, 1-ジメチルピペリジニウム プロミド

ピペリジン-4-イル (2R)-2-((1R)-3, 3-ジフルオロシク 25 ロペンチル)-2-ヒドロキシ-2-(2-クロロフェニル)エタノエートを用 い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体として得た。  $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  PPM) : 1. 52-2. 32 (10H, m), 3. 04(3H, s), 3. 09-3.45(5H, m), 3. 13(3H, s), 5. 05-5. 13 (1H, m), 7. 29-7. 43 (3H, m), 7. 76

-7.80(1H, m)

ESI-MS(m/e, ( $C_{20}H_{27}ClF_2NO_3$ ) †として): 402 実施例 9

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)5 2-ヒドロキシ-2-(2, 4-ジフルオロフェニル) エタノイル) オキシ)1, 1-ジメチルピペリジニウム ブロミド

ピペリジン-4-イル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(2,4-ジフルオロフェニル)エタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 70-2. 34 (10H, m), 3. 16 (3H, s), 3. 17 (3H, s), 3. 20-3. 52 (5H, m), 5. 06-5. 17 (1H, m), 6. 93-7. 09 (2H, m), 7. 68 -7. 80 (1H, m)

ESI-MS (m/e, ( $C_{20}H_{26}F_{4}NO_{3}$ ) +として) : 404 実施例10

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(1, 3-ベンゾジオキソール-5-イル) エタノイル) オキシ)-1, 1-ジメチルピペリジニウム プロミド

20 ピペリジン-4-イル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(1,3-ベンゾジオキソール-5-イル)エタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  PPM) : 1. 67-2. 33 (10H, m),

25 2. 95-3. 50 (5H, m), 3. 15 (3H, s), 3. 18 (3H, s), 5. 01-5. 11 (1H, m), 5. 95 (1H, q, J=1. 1Hz), 6. 84 (2H, dd, J=0. 8Hz, 7. 8Hz), 7. 11 (1H, d, J=7. 8Hz), 7. 13 (1H, s)

ESI-MS  $(m/e, (C_{21}H_{28}F_2NO_5) + LUT) : 412$ 

WO 02/04402

43

### 実施例11

20

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル))-2-ヒドロキシー2-フェニルエタノイル)オキシ)メチル)-1,1-ジメ チルピペリジニウム ブロミド

5 ロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用い、実施 例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}H-NMR$  (D<sub>2</sub>O,  $\delta$ PPM) : 1. 52-2. 26 (11H, m) . 2. 99 (3H, s), 3. 15 (3H, s), 3. 20-3. 51 (5H, m),

4. 02-4. 22 (2H, m), 7. 23-7. 42 (3H, m), 7. 58 10 -7.68(2H, m)

ESI-MS  $(m/e, (C_{21}H_{30}F_2NO_3) + \xi UT) : 382$ 実施例12

4-((((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル))

<u>-2-ヒドロキシ-2-(4-メチルフェニル)エタノイル)オキシ)メチル)</u> -1, 1-ジメチルピペリジニウム プロミド

ロシクロペンチル) -2-ヒドロキシ-2-(4-メチルフェニル) エタノエー トを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質 として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 59-2. 30 (11H, m), 2. 37 (3H, s), 3. 03 (3H, s), 3. 20 (3H, s), 3. 2 3-3.55 (5H, s), 4.15 (1H, dd, J=5.7Hz, 10.8 Hz), 4. 23 (1H, dd, J=6. 0Hz, 10. 8Hz), 7. 23 (2 H, d, J=8.2Hz), 7.53 (2H, d, J=8.2Hz).

25 ESI-MS  $(m/e, (C_{22}H_{32}F_{2}NO_{3}) + UT) : 396$ 実施例13

4-((((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)<u>-2-ヒドロキシ-2-(4-エチルフェニル)エタ</u>ノイル)オキシ)メチル)

## <u>-1, 1ージメチルピペリジニ</u>ウム ブロミド

ピペリジンー4ーイルメチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシー2-(4ーエチルフェニル) エタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  PPM) : 1. 21 (3H, t, J=7. 5Hz),

- 1. 52-2. 24 (11H, m), 2. 62 (2H, q, J=7. 5Hz),
- 2. 90-3.49 (5H, m), 2. 97 (3H, s), 3. 13 (3H, s),
- 4. 09 (1H, dd, J=6. 3Hz, 11. 4Hz), 4. 16 (1H, d
- 10 d, J=5.7 Hz, 11.4 Hz), 7.20 (2H, d, J=8.4 Hz),
  - 7. 50 (2H, d, J=8.4Hz)

ESI-MS (m/e, ( $C_{23}H_{34}F_{2}NO_{3}$ ) <sup>+</sup>として) : 410 実施例14

3-エンドー(((2R)-2-((1R)-3,3-ジフルオロシクロペン15チル)-2-ヒドロキシ-2-(4-クロロフェニル) エタノイル) オキシ)-8,8-ジメチル-8-アゾニアビシクロ[3.2.1] オクタン ブロミド 3-エンド-8-アザビシクロ[3.2.1] オクター3-イル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル) エタノエートを用い、実施例1と同様の方法で処理して 表題化合物を製造し、無色固体として得た、

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 57-2. 32 (12H, m), 2. 56-2. 72 (2H, m), 3. 06 (3H, s), 3. 14 (3H, s), 3. 21-3. 34 (1H, m), 3. 72-3. 82 (2H, m), 5. 06 (1H, t, J=5. 9Hz), 7. 40 (2H, d, J=8. 8Hz), 7.

25 60 (2H, d, J=8.8Hz) ESI-MS (m/e. (CasHasCIF.NO) +>1.7)

ESI-MS  $(m/e, (C_{22}H_{29}C1F_2NO_3)$  +として) : 428 実施例15

3-エンドー(((2R)-2-((1R)-3,3-ジフルオロシクロペン チル)-2-ヒドロキシ-2-(4-プロモフェニル)エタノイル)オキシ)-

- 8,8-ジメチル-8-アゾニアビシクロ[3.2.1]オクタン プロミド 3-xンド-8-yザビシクロ [3.2.1] オクタ-3-yル (2R) -y2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-プロモフェニル) エタノエートを用い、実施例1と同様の方法で処理して 表題化合物を製造し、無色固体として得た、
- $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 75-2. 30 (12H, m), 2. 57-2.72 (2H, m), 3. 05 (3H, s), 3. 14 (3H, s), 3. 20-3. 34 (1H, m), 3. 72-3. 80 (2H, m), 5. 07(1H, t, J=5.7Hz), 7.55(4H, s)
- ESI-MS (m/e, (C,,H,,BrF,NO,) +として):472,47 10 4

#### 実施例16

- (3R) -3-(((2R) -2-((1R) -3, 3-ジフルオロシクロペ ンチル) -2-ヒドロキシ-2-(4-メチルフェニル) エタノイル) オキシ)
- <u>-1,1-ジメチルピロリジ</u>ニウム プロミド 15
  - (3R) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフ ルオロシクロペンチル) -2-ヒドロキシ-2-(4-メチルフェニル) エタノ エートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状 物質として得た。
- 20  $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 65-2. 30 (7H, m), 2. 31 (3H, s), 2. 67-2. 82 (1H, m), 3. 03 (3H, s). 3. 19 (3H, s), 3. 20-3. 34 (1H, m), 3. 53-3. 88 (4H, m), 5. 44-5. 53 (1H, m), 7. 20 (2H, d, J=8)6 Hz), 7. 46 (2H, d, J=8. 6Hz)
- ESI-MS (m/e, (C20H28F2NO3) +として):386 25 実施例17
  - (3R) 3 (((2R) 2 ((1R) 3, 3 ジフルオロシクロペ<u>ンチル) -2-ヒドロキシ-2-(4-フルオロフェニル) エタノイル) オキシ)</u> <u>-1,1-ジメチ</u>ルピロリジニウム プロミド

- (3R) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-フルオロフェニル)エタノエートを用い、実施例 1 と同様の方法で処理して表題化合物を製造し、無色固体として得た。
- 10 ESI-MS (m/e, ( $C_{19}H_{25}F_{3}NO_{3}$ ) <sup>+</sup>として) : 372 実施例18
  - (3R) 3 (((2R) 2 ((1R) 3, 3 ジフルオロシクロペンチル) 2 ヒドロキシ 2 (4 クロロフェニル) エタノイル) オキシ) <math>-1, 1 ジメチルピロリジニウム プロミド
- 15 (3R) ーピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-クロロフェニル) エタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体として得た。
- $^{1}$ H-NMR (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 62-2. 35 (7H, m), 2. 20 70-2. 85 (1H, m), 3. 12 (3H, s), 3. 18-3. 28 (1 H, m), 3. 22 (3H, s), 3. 56-3. 69 (2H, m), 3. 70 -3. 82 (1H, m), 3. 84-3. 93 (1H, m), 5. 52 (1H, bfs), 7. 39 (2H, d, J=8. 7Hz), 7. 61 (2H, d, J=8. 7Hz)
- 25 ESI-MS (m/e, (C<sub>19</sub>H<sub>25</sub>ClF<sub>2</sub>NO<sub>3</sub>) <sup>+</sup>として):388 実施例19
  - (3R) 3 (((2R) 2 ((1R) 3, 3 ジフルオロシクロペンチル) 2 ヒドロキシー2 (4 プロモフェニル) エタノイル) オキシ) <math>-1, 1 ジメチルピロリジニウム プロミド

- (3R) -ピロリジン-3-イル (2R) -2- ((1R) -3, 3-ジフ ルオロシクロペンチル) -2-ヒドロキシ-2-(4-プロモフェニル) エタノ エートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体 として得た。
- $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 64-2. 35 (7H, m), 2. 5 70-2.85 (1H, m), 3.11 (3H, s), 3.17-3.26 (1 H, m), 3. 21 (3H, s), 3. 57-3. 68 (2H, m), 3. 88(1H, dd, J=6.3Hz, 13.8Hz), 5.48-5.56 (1H,m), 7.54 (4H, s)
- ESI-MS  $(m/e, (C_{19}H_{25}BrF_2NO_3) + UT) : 432, 43$ 10 4 .

### 実施例20

15

- (3S) 3 (((2R) 2 ((1R) 3, 3 ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-フルオロフェニル) エタノイル) オキシ) -1,1-ジメチルピロリジニウム ブロミド
- (3S) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフ ルオロシクロペンチル) -2-ヒドロキシ-2-(4-フルオロフェニル) エタ ノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色固 体として得た。
- $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  PPM) : 1. 57-2. 30 (7H, m), 2. 20 68-2.86 (1H, m), 3.11 (3H, s), 3.22 (3H, s), 3. 13-3. 39 (1H, m), 3. 51-3. 94 (4H, m), 5. 47-5.67 (1H, br), 7.03-7.17 (2H, m), 7.57-7. 70 (2H, m)
- 25 ESI-MS (m/e, (C, H25F, NO) †として):372 実施例21
  - (3S) -3-(((2R) -2-((1R) -3, 3-ジフルオロシクロペ ンチル) -2-ヒドロキシ-2-(4-クロロフェニル) エタノイル) オキシ) <u>-1,1-ジメチルピロリジニウム</u> プロミド

- (3S) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル)エタノエートを用い、実施例 1と同様の方法で処理して表題化合物を製造し、無色固体として得た。
- $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 62-2. 30 (7H, m) , 2. 67-2. 83 (1H, m) , 3. 11 (3H, s) , 3. 07-3. 27 (1 H, m) , 3. 22 (3H, s) , 3. 53-3. 93 (4H, m) , 5. 46 -5. 57 (1H, m) , 7. 39 (2H, d, J=8. 7Hz) , 7. 60 (2 H, d, J=8. 7Hz)
- ESI-MS(m/e, ( $C_{19}H_{25}ClF_{2}NO_{3}$ ) †として):388 実施例22
  - (3S) 3 (((2R) 2 ((1R) 3, 3 ジフルオロシクロペンチル) 2 ヒドロキシ 2 (4 ブロモフェニル) エタノイル) オキシ) <math>-1, 1 ジメチルピロリジニウム ブロミド
- 15 (3S) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-ブロモフェニル) エタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体として得た。
- <sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 61-2. 31 (7H, m), 2. 20 70-2. 85 (1H, m), 3. 11 (3H, s), 3. 16-3. 26 (1 H, m), 3. 23 (3H, s), 3. 56-3. 89 (3H, m), 3. 90 (1H, dd, J=6. 3Hz, 13. 6Hz), 5. 47-5. 57 (1H, m), 7. 54 (4H, s)

ESI-MS (m/e, ( $C_{19}H_{25}BrF_{2}NO_{3}$ ) +として) : 432, 4325 4

#### 実施例23

4-((((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノイル) オキシ) メチル) -1, 1-ジメチル-1, 2, 3, 6-テトラヒドロピリジニウム プロミド

- 1,2,3,6-テトラヒドロピリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。
- $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 58-2. 45 (m, 8H), 3. 06 (s, 3H) 3. 07 (s, 3H), 3. 19-3. 48 (m, 2H), 3. 45 (t, J=6. 3Hz, 2H), 3. 89 (brs, 2H), 4. 66 (ABq, J=13. 1Hz, 1H), 4. 71 (ABq, J=13. 1Hz, 1H), 5. 62 (brs, 1H), 7. 22-7. 43 (m, 3H), 7. 55-7.
- 10 68 (m, 2H)

ESI-MS (m/e, ( $C_{21}H_{28}F_{2}NO_{3}$ ) †として) : 380 実施例24

- ジメチルー1, 2, 3, 6ーテトラヒドロピリジニウム プロミド
   2ー(1, 2, 3, 6ーテトラヒドロピリジンー4ーイル) エチル (2 R)
   -2ー((1 R) -3, 3ージフルオロシクロペンチル) -2ーヒドロキシー2
   -フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。
- 20  $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 50-2. 53 (10H, m) , 2. 98 (3H, s) , 3. 02 (3H, s) , 3. 10-3. 68 (5H, m) , 4. 21-4. 47 (2H, m) , 5. 04 (1H, brs) , 7. 23-7. 50 (3H, m) , 7. 50-7. 77 (2H, m) ESI-MS (m/e,  $(C_{22}H_{30}F_{2}NO_{3})^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$   $^{+}$

25 実施例25

9-((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2 -ヒドロキシ-2-フェニルエタノイル)オキシ-3, 3-ジメチル-3-アゾ ニアピシクロ[3, 3, 1]ノナン ヨージド

(工程1)

10 一体と命名した表題化合物を、高極性物質として、便宜上、(9 e x o \*) 一体 と命名した表題化合物をそれぞれ得た。

(工程2)

15

20

9-((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノイル)オキシ-3,3-ジメチル-3-アゾニアビシクロ[3,3,1]ノナン ヨージドの合成

3-メチルー3-アザビシクロ  $[3.\ 3.\ 1]$  ノナー9-イル (2R)-2-0 (1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシー2-フェニルエタノエートのそれぞれのジアステレオマーをヨウ化メチル $0.\ 5m1$ に溶解し、12時間加熱環流した後、過剰の試薬を減圧留去した。残渣を分取用薄層クロマトグラフィー( $Aluminimaxide^{TM}60F_{254}$ 、Art5713(メルク社製)、クロロホルム/メタノール=<math>20/1)にて精製することにより表題化合物を製造し、 $(9endo^*)$  -体からは  $(9endo^*)$  -体からは  $(9endo^*)$  -体をそれぞれ無色油状物質として得た。

25 (9 e n d o \*\*) -体

 $^{1}$ H-NMR (CDC1<sub>3</sub>,  $\delta$ PPM) : 1. 21-2. 37 (12H, m), 2. 37-2. 56 (1H, br), 2. 56-2. 74 (1H, br), 3. 17-3. 33 (1H, m), 3. 57-3. 83 (2H, m), 3. 70 (3H, s), 3. 72 (3H, s), 3. 92 (1H, d, J=3. 3Hz), 4.

27 (1H, dd, J=9.4, 13.9Hz), 4.35-4.50 (1H. m), 5. 42-5. 53 (1H, m), 7. 20-7. 42 (3H, m), 7. 50-7.66 (2H, d, J=7.0Hz)

ESI-MS (m/e, (C23H3,F2NO3) +として):408

(9 e x o \* \*) 一体 ` 5

> $^{1}H-NMR$  (CDC1<sub>3</sub>,  $\delta$ PPM) : 1. 41-2. 43 (13H, m), 2. 60-2. 71 (1H, br), 3. 10-3. 42 (2H, m), 3. 3 1 (3H, s), 3.42-3.65 (2H, m), 3.60 (3H, s), 3.90-4.02 (1H, m), 4.54 (1H, s), 4.92-5.00 (1

H, m), 7. 22-7. 45 (3H, m), 7. 53-7. 64 (2H, m) 10 ESI-MS  $(m/e, (C_{23}H_{32}F_{2}NO_{3})^{+} \ge LT) : 408$ 実施例26

3-エキソー((((2R)-2-((1R)-3, 3-ジフルオロシクロペ ンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) メチル) -8,

- 8-ジメチル-8-アゾニアビシクロ[3.2.1]オクタン プロミド 15 3-エキソー8-アザビシクロ[3.2.1]オクター3-イルメチル R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ-2-フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合 物を製造し、無色固体として得た。
- $^{1}H-NMR$  (CDCl<sub>3</sub>,  $\delta$ PPM) : 1. 50-2. 55 (15H, m), 20 3. 10-3.40 (1H, m), 3. 24 (3H, s), 3. 31 (3H, s), 4. 14-4. 35 (4H, m), 7. 20-7. 42 (3H, m), 7. 50 -7.65 (2H, m)

ESI-MS  $(m/e, (C_{23}H_{32}F_{2}NO_{3}) + LUT) : 408$ 

25 実施例27

> (3S) - 3 - (((2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) メチル) <math>-1, <u>1ージメチルピロリジニウム</u> プロミド

(3S) -ピロリジン-3-イルメチル (2R) - 2- ((1R) - 3, 3

20

25

ージフルオロシクロペンチル) - 2 - ヒドロキシー 2 - フェニルエタノエートを用い、実施例 1 と同様の方法で処理して表題化合物を製造し、無色固体として得た。

 $^{1}$ H-NMR(CD $_{3}$ OD, $\delta$  PPM):1.60-2.41(9H,m),2.5 92-3.44(3H,m),3.11(6H,s),4.22-4.28(2H,m),7.27-7.45(3H,m),7.57-7.67(2H,m) ESI-MS(m/e,(C $_{20}$ H $_{28}$ F $_{2}$ NO $_{3}$ )+として):368 実施例28

(3 R) -3-(2-((2 R) -2-((1 R) -3, 3-ジフルオロシク 10 ロペンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) エチル) -1, 1-ジメチルピロリジニウム プロミド

2-((3R)-ピロリジン-3-イル) エチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 60-2. 30 (10H, m), 2. 38-2. 52 (1H, m), 2. 99 (3H, s), 3. 13 (3H, s), 3. 20-3. 38 (2H, m), 3. 48-3. 56 (3H, m), 4. 14 -4. 25 (2H, m), 7. 28-7. 42 (3H, m), 7. 57-7. 6 4 (2H, m)

ESI-MS (m/e, ( $C_{21}H_{30}F_{2}NO_{3}$ ) +として) : 382 実施例29

(3S) - 3 - (2 - ((2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノイル) オキシ) エチル) - 1, 1 - ジメチルピロリジニウム プロミド

2-((3S)-ピロリジン-3-イル)エチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

WO 02/04402 PCT/JP01/05987

53

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM): 1. 60-2. 30 (10H, m), 2. 38-2. 52 (1H, m), 3. 03 (3H, s), 3. 14 (3H, s), 3. 20-3. 38 (2H, m), 3. 48-3. 56 (3H, m), 4. 14 -4. 25 (2H, m), 7. 28-7. 42 (3H, m), 7. 57-7. 6 4 (2H, m)

ESI-MS (m/e, (C<sub>21</sub>H<sub>30</sub>F<sub>2</sub>NO<sub>3</sub>) + として):382 実施例30

5

15

20

49-7.62(2H, m)

ミド

(3 a R, 6 a S) - オクタヒドロシクロペンタ(c) ピロール- 5 - 4 - 4 - 2 - 6 - 4 - 4 - 5 - 4 - 5 - 4 - 5 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 7 - 7 - 7 - 7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 50-2. 20 (12H, m), 2. 68 (1H, t, J=10. 6Hz), 2. 98 (3H, s), 3. 02 (3 H, s), 3. 03-3. 45 (3H, m), 3. 46-3. 58 (1H, m), 5. 41 (1H, t, J=4. 5Hz), 7. 30-7. 49 (3H, m), 7.

ESI-MS  $(m/e, (C_{22}H_{30}F_2NO_3)^+$ として):394 実施例31

2, 4-c i s-4-(((2R)-2-((1R)-3, 3-ジフルオロシ クロペンチル)-2-ヒドロキシ-2-フェニルエタノイル)オキシ)-1, 1 25 -ジメチル-2-ビニルピペリジニウム プロミド

2、4-c i s-2-ビニルピペリジン-4-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用い、実施例 1 と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 53-1. 71 (1H, m), 1. 79-2. 29 (9H, m), 3. 05 (3H, s), 3. 10 (3H, s), 3. 14-3. 34 (1H, m), 3. 46-3. 70 (2H, m), 4. 06 -4. 19 (1H, m), 4. 99-5. 12 (1H, m), 5. 59-5. 7 0 (2H, m), 5. 83-6. 00 (1H, m), 7. 22-7. 41 (3H, m), 7. 56-7. 66 (2H, m)

ESI-MS  $(m/e, (C_{22}H_{30}F_{2}NO_{3})$  +として) : 394 実施例32

2-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) - 2-ヒドロキシ-2-フェニルエタノイル) オキシ) エチルトリメチルアンモニウム プロミド

2-アミノエチル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシー2-フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 60-2. 30 (6H, m), 3. 03 (9H, s), 3. 18-3. 49 (1H, m), 3. 60-3. 80 (2 H, m), 4. 50-4. 70 (2H, m), 7. 22-7. 50 (3H, m), 7. 55-7. 68 (2H, m)

ESI-MS  $(m/e, (C_{18}H_{26}F_2NO_3) + LT) : 342$ 

20 実施例33

3-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) - 2-ヒドロキシ-2-フェニルエタノイル) オキシ) プロピルトリメチルアンモニウム ブロミド

3-アミノプロピル (2R)-2-((1R)-3, 3-ジフルオロシクロ 25 ペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR (CDC1<sub>3</sub>,  $\delta$  PPM) : 1. 50-2. 38 (8H, m), 3. 08-3. 35 (1H, m), 3. 23 (9H, s), 3. 55-3. 82 (2H, m), 4. 10-4. 24 (1H, m), 4. 30-4. 45 (1H, m),

WO 02/04402

4. 82 (1H, brs), 7. 22-7. 42 (3H, m), 7. 58-7. 70 (2H, m)

55

ESI-MS (m/e, (C10H20F2NO2) +として):356 実施例34

- 1, 3-t r a n s -3-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) シク ロプチルトリメチルアンモニウム プロミド
- 1, 3-t r ans -3-アミノシクロブチル (2R) -2-((1R) -3. 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエ ートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色固体と して得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 54-1. 71 (1H, m) . 1. 80-2.29 (5H, m), 2. 32-2.52 (2H, m), 2. 81-3.0.0 (2H, m), 3. 0.7 (9H, s), 3. 1.9 - 3. 40 (1H, m).

- 4. 28-4. 41 (1H, m), 5. 06-5. 16 (1H, m), 7. 23 15 -7.41 (3 H, m), 7.58-7.66 (2 H, m) ESI-MS  $(m/e, (C_{20}H_{28}F_{2}NO_{3})^{+} \ge LT) : 368$ 実施例35
- 1, 3-cis-3-(((2R)-2-((1R)-3, 3-ジフルオロシ 20 クロペンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) シクロブ チルトリメチルアンモニウム プロミド
  - 1, 3-c is -3-r  $\geq 1$   $\geq 2-(1R)-3$ 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート を用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質と して得た。

25

 $^{1}\text{H-NMR}$  (CD<sub>3</sub>OD,  $\delta$  PPM) : 1. 54-2. 24 (6H, m), 2. 32-2.54 (2H, m), 2.72-2.90 (2H, m), 3.04 (9 H. s), 3.12-3.35 (1H, m), 3.78-4.00 (1H, m), 4. 72-4. 92 (1H, m), 7. 24-7. 45 (3H, m), 7. 56

15

20

-7.68(2H, m)

ESI-MS  $(m/e, (C_{20}H_{28}F_{2}NO_{3})$  +として) : 368 実施例36

(1S, 4S) - 4 - (((2R) - 2 - ((1R) - 3, 3 - ジフルオロシ クロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノイル) オキシ) - 2 - シクロペンテニルトリメチルアンモニウム プロミド

(1S, 4S) -4-アミノ-2-シクロペンテニル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用い、実施例1と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 52-2. 28 (7H, m) , 2. 63-2. 78 (1H, m) , 3. 07 (9H, s) , 3. 08-3. 30 (1 H, m) , 4. 75-4. 92 (1H, m) , 5. 82-5. 91 (1H, m) , 6. 30-6. 50 (2H, m) , 7. 22-7. 40 (3H, m) , 7. 52 -7. 62 (2H, m)

ESI-MS (m/e, ( $C_{21}H_{28}F_{2}NO_{3}$ ) <sup>+</sup>として) : 380 実施例 37

 $(1\,S,\,3\,S) - 3 - 7$ ミノシクロペンチル  $(2\,R) - 2 - ((1\,R) - 3,\,3 - 3$ フルオロシクロペンチル) -2 - Eドロキシ-2 - 2エニルエタノエートを用い、実施例 1 と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

25 <sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM): 1. 55-2. 30 (12H, m), 3. 07 (9H, s), 3. 18-3. 35 (1H, m), 3. 91-4. 09 (1H, m), 5. 25-5. 33 (1H, m), 7. 25-7. 42 (3H, m), 7. 54-7. 66 (2H, m)

ESI-MS  $(m/e, (C_{21}H_{30}F_2NO_3) + LC) : 382$ 

WO 02/04402 PCT/JP01/05987

#### 実施例38

4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル) エタノイル) オキシ)-1, 1-ジエチルピペリジニウム ヨージド

#### 5 (工程1)

1-エチルピペリジンー4-イル (2R)-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル)エタノエートの合成

ピペリジンー4ーイル (2R) ー ((1R) ー 3, 3ージフルオロシクロペンチル)ー2ーヒドロキシー2ー(4ークロロフェニル)エタノエート25mgのメタノール1ml溶液に、アセトアルデヒド50mg及び水素化シアノホウ素ナトリウム10mgを室温にて加え、同温度にて、2時間攪拌した。反応液をクロロホルムにて希釈し、飽和炭酸水素ナトリウム溶液、飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した後、残渣を分取用薄層クロマトグラフィー(Kieselgel<sup>TM</sup>60F<sub>254</sub>、Art5744(メルク社製)、クロロホルム/メタノール=10/1)にて精製し、表題化合物を得た。

#### (工程2)

25

4-(((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-20 2-ヒドロキシ-2-(4-クロロフェニル)エタノイル)オキシ)-1,1-ジエチルピペリジニウム ヨージドの合成

 $^{1}$ H-NMR (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 23-1. 34 (6H, m), 1. 50-2. 30 (10H, m), 3. 09-3. 57 (9H, m), 5. 04-

5. 12 (1 H, m), 7. 30-7.43 (2 H, m), 7. 57-7.67 (2 H, m)

ESI-MS  $(m/e, (C_{22}H_{31}ClF_2NO_3)$  †として):430 実施例39

 $\frac{1-\nu}{2}$   $\frac{1$ 

(工程1)

1-(シクロヘプチルメチル) ピペリジン-4-イル (2R)-((1R)

10 -3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノ エートの合成

ピペリジンー4ーイル (2R) - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシー2 - フェニルエタノエート9.3 mgのメタノール1m1溶液に、シクロヘプタンカルバルデヒド10mg、次いであらかじめ調製した水素化シアノホウ素ナトリウムと塩化亜鉛(1:0.5)の0.3 Mメタノール溶液0.5 m1を室温にて加え、同温度にて、30分間攪拌した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム溶液、飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した後、残渣を分取用薄層クロマトグラフィー(Kieselgel<sup>TM</sup>60F<sub>254</sub>、Art5744(メルク社製)、クロロホルム/メタノール=10/1)にて精製し、表題化合物を得た。

(工程2)

1-シクロヘプチルメチルー4-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノイル)オキシ)

25 -1-メチルピペリジニウム ヨージドの合成

1-(シクロヘプチルメチル) ピペリジン-4-イル (2R)-((1R)-3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートをヨウ化メチル0.3m に室温にて溶解し、同温度にて12時間放置した後、過剰の試薬を減圧留去し、残渣を分取用薄層クロマトグラフィー(Kie

 $selgel^{TM}60F_{254}$ 、Art5744(メルク社製)、クロロホルム/メタノール=5/1)にてジアステレオマーを分離し、それぞれ3.8 mg(低極性物質)、2.8 mg(高極性物質)の無色油状物質として、表題化合物を得た。(低極性物質)

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM): 0, 75-2. 31 (23H, m), 2. 98-3. 67 (7H, m), 3. 09 (3H, s), 4. 52-5. 01 (1H, m), 7. 25-7. 45 (3H, m), 7. 59-7. 69 (2H, m)

ESI-MS  $(m/e, (C_{27}H_{40}F_{2}NO_{3})^{+} \ge LT) : 464$ 

10 (高極性物質)

WO 02/04402

 $^{1}$ H-NMR (CD<sub>3</sub>OD,  $\delta$  PPM) : 1. 00-2. 35 (23H, m), 2. 95-3. 43 (7H, m), 3. 06 (3Hx6/7, s), 3. 08 (3 Hx1/7, s), 5. 00-5. 10 (1H, m), 7. 30-7. 48 (3 H, m), 7. 57-7. 68 (2H, m)

15 ESI-MS (m/e, ( $C_{27}H_{40}F_{2}NO_{3}$ ) †として) : 464 実施例40

20 (3R) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用い、 実施例39と同様の方法で処理して表題化合物を製造し、2つのジアステレオマーをそれぞれ無色油状物質として得た。

(低極性物質)

 $^{1}$ H-NMR (CD<sub>3</sub>OD, δPPM) : 1. 10-2. 30 (21H, m), 2. 80-3. 03 (1H, m), 3. 03 (3H, s), 3. 03-3. 22 (1H, m), 3. 48-3. 62 (2H, m), 3. 73-3. 86 (1H, m), 3. 95-4. 10 (2H, m), 4. 28-4. 40 (1H, m), 5. 02-5. 65 (1H, m), 7. 22-7. 40 (3H, m), 7. 50-7.

60 (2H, m)

ESI-MS  $(m/e, (C_{26}H_{38}F_2NO_3)$  +として) : 450 (高極性物質)

 $^{1}$ H-NMR(CD $_{3}$ OD, $\delta$ PPM):1. 18-2. 30(2 1H,m),5 2. 88-3. 08(1H,m),3. 38(3H,s),3. 08-3. 42(2H,m),3. 70-3. 92(2H,m),4. 00-4. 15(1H,m),4. 41-4. 60(1H,m),5. 01-5. 14(1H,m),7. 21-7. 40(3H,m),7. 50-7. 60(2H,m) ESI-MS(m/e,(C $_{26}$ H $_{38}$ F $_{2}$ NO $_{3}$ )+として):450

10 実施例41

3-エンドー(((2R) -2-((1R) -3,3-ジフルオロシクロペン チル) -2-ヒドロキシー2-フェニルエタノイル)オキシ)-8-イソプロピ ルー8-メチルーアゾニアビシクロ [3. 2. 1] オクタン ブロミド (工程1)

- 3-エンド-8-イソプロピル-8-アザビシクロ [3. 2. 1] オクタ-3 -イル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) -2 -ヒドロキシ-2-フェニルエタノエートの合成
  - 3-エンド-8-アザビシクロ  $\begin{bmatrix} 3. & 2. & 1 \end{bmatrix}$  オクタ-3-イル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-
- 20 フェニルエタノエート2.13gのメタノール50ml溶液に対し、アセトン1ml、次いであらかじめ調製した水素化シアノホウ素ナトリウムと塩化亜鉛(1:0.5)の0.3Mメタノール溶液30mlを室温にて加え、同温度にて、3日間攪拌した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム溶液、飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した
- 25 後、残渣を分取用薄層クロマトグラフィー(Kieselgel $^{TM}$ 60F $_{254}$ 、Art5744(メルク社製)、クロロホルム/メタノール=10/1)にて精製し、表題化合物 2. 25gを得た。

(工程2)

3-エンドー ( ( (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペン

チル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) -8-イソプロピル-8-メチルーアゾニアビシクロ[3.2.1] オクタン ブロミドの合成 3-エンド-8-イソプロピル-8-アザビシクロ[3.2.1] オクター3-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート2.25gに10%臭化メチルーアセトニトリル溶液10mlを室温にて加え、同温度にて15時間放置した。析出した固体を濾取し、表題化合物963mgを無色結晶として製造した。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$  PPM) : 1. 34 (3H, d, J=6. 3Hz), 1. 35 (3H, d, J=6. 3Hz), 1. 67-2. 28 (12H, m),

10 2. 50-2. 73 (2H, m), 2. 81 (3H, s), 3. 21-3. 42 (1H, m), 3. 80-3. 98 (2H, m), 4. 00-4. 19 (1H, m), 5. 05-5. 19 (1H, m), 7. 28-7. 50 (3H, m), 7. 55-7. 68 (2H, m)

ESI-MS  $(m/e, (C_{24}H_{34}F_{2}NO_{3})^{+} \ge LT) : 422$ 

15 実施例42

5

3-xンドー(((2 R) -2 – ((1 R) -3, 3-yフルオロシクロペン チル) -2-ヒドロキシー2 – (2, 4-yフルオロフェニル) xタノイル) オキシ) -8-イソプロピルー8-メチルーアゾニアビシクロ [3. 2. 1] オクタン プロミド

20 3-xンド-8-yザビシクロ[3.2.1]オクタ-3-tル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(2,4-ジフルオロフェニル)xタノx-トを用い、実施例41と同様の方法で処理することにより表題化合物を製造し、無色結晶として得た。

### 実施例43

3-(((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) - 2-ヒドロキシ-2-フェニルエタノイル) オキシ) プロピル (ベンジル) ジメチルアンモニウム プロミド

5 3-(ベンジルアミノ)プロピル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用い、 実施例1と同様の方法で処理することにより表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CDCl<sub>3</sub>, δPPM): 1. 52-2. 3.0 (8H, m), 2. 10 98-3. 22 (1H, m), 3. 08 (3H, s), 3. 09 (3H, s), 3. 60-3. 90 (2H, m), 4. 09-4. 22 (1H, m), 4. 28 -4. 41 (1H, m), 4. 84 (2H, s), 7. 18-7. 65 (10H, m)

ESI-MS  $(m/e, (C_{25}H_{32}F_{2}NO_{3}) + LUT) : 432$ 

15 実施例44

ピペリジン-4-イル (2R)-2-(4―クロロフェニル)-2-((1 20 R)-3-フルオロシクロペンチル)-2-ヒドロキシエタノエートを用いて、 実施例1と同様の方法で処理することにより、表題化合物を製造し、無色固体と して得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δPPM): 1. 45-2. 10 (8H, m), 2. 10-2. 35 (2H, m), 3. 06-3. 49 (5H, m), 3. 15 (3 H, s), 3. 19 (3H, s), 4. 70-5. 18 (2H, m), 7. 38 (2H, d, J=8. 6Hz), 7. 65 (2H, d, J=8. 6Hz) ESI-MS (m/e, (C<sub>20</sub>H<sub>28</sub>C1FNO<sub>3</sub>) +として): 384 実施例45

(2R) -2-(((2R) -2-((1R) -3, 3-ジフルオロシクロペ

- ンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) -8-オキサー 5-アゾニアスピロ[4.5] デカン クロリド
- ルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート11mg5 のアセトニトリル溶液に、1-クロロ-2-(2-クロロエトキシ)エタン30 mgを室温にて加えた後、12時間加熱環流した。溶媒を減圧留去した後、分取 用薄層クロマトグラフィー (Aluminiumoxide<sup>TM</sup>60F<sub>254</sub>、Ar t5713 (メルク社製)、クロロホルム/メタノール=10/1) にて精製す ることにより、表題化合物2.8mgを無色油状物質として得た。
- $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ PPM) : 1. 50-2. 80 (8H, m) . 3. 10 00-4.03 (13H, m), 5.45-5.60 (1H, m), 7.24-7. 70 (5H, m)

ESI-MS  $(m/e, (C_{21}H_{28}F_2NO_4)^{+} \ge LT) : 396$ 実施例46

- (2R) 2 ((2R) 2 ((1R) 3, 3 ジフルオロシクロペ15 ンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) -5-アゾニア スピロ [4.5] デカン ブロミド
  - 1. 5-ジプロモペンタンを用い、実施例45と同様の方法で処理することに より、表題化合物を製造し、無色油状物質として得た。
- 20  $^{1}H-NMR$  (CDCl<sub>3</sub>,  $\delta$ PPM) : 1. 48-2. 40 (13H, m), 2. 83-3. 35 (4H, m), 3. 66-4. 40 (6H. m), 5. 50-5.68(1H, m), 7.20-7.41(3H, m), 7.48-7.65 (2H, m)

ESI-MS  $(m/e, (C_{22}H_{30}F_2NO_3) + LUT) : 394$ 

25 実施例47

(2R) - 2 - (((2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノイル) オキシ) -5-アゾニア スピロ [4.4] ノナン ブロミド

1. 4-ジプロモプタンを用い、実施例45と同様の方法で処理することによ

り、表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR (CDCl<sub>3</sub>, δPPM) : 1. 50-2. 40 (11H, m), 2. 75-2. 94 (1H, m), 3. 10-3. 25 (1H, m), 3. 35-4. 03 (7H, m), 4. 32-4. 45 (1H, m), 4. 75-5. 05 (1H, m), 5. 50-5. 62 (1H, m), 7. 22-7. 40 (3H, m), 7. 50-7. 64 (2H, m)

ESI-MS (m/e, ( $C_{21}H_{28}F_{2}NO_{3}$ ) <sup>+</sup>として) : 380 実施例48

 $\frac{1-(イミノメチル) ピペリジン-4-イル (2R)-2-((1R)-3,}{3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-プロモフェニル)}$  エタノエート・一塩酸塩

ピペリジンー4ーイル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシー2-(4-ブロモフェニル) エタノエート13 mgの無水エタノール1m1溶液に、ホルムイミド酸エチル塩酸塩4mgを加え、

15 室温にて13時間攪拌した。反応液を濃縮乾固し、粗物質をシリカゲルカラムクロマトグラフィー(溶出溶媒:クロロホルム/メタノール=10/1)にて精製し、表題化合物9mgを無色固体として得た。

 $^{1}$ H-NMR (CD<sub>3</sub>OD, δppm) : 1. 63-2. 25 (10H, m), 3. 20-3. 77 (5H, m), 5. 09-5. 17 (1H, m), 7. 49 -7. 60 (4H, m), 7. 86 (1H, s)

ESI-MS (m/e,  $(C_{19}H_{23}BrF_{2}N_{2}O_{3})$  +  $\geq$  LT) : 445, 4

#### 実施例49

20

(1-(イミノメチル) ピペリジン-4-イル) メチル (2R)-2-((128)-3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

ピペリジンー4ーイルメチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシー2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

PCT/JP01/05987

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 05-2. 27 (11H, m), 3. 00-3. 45 (3H, m), 3. 66-3. 82 (1H, m), 3. 89 -4. 18 (3H, m), 7. 21-7. 44 (3H, m), 7. 53-7. 6 4 (2H, m), 7. 81 (1H, s)

5 ESI-MS (m/e, ( $C_{20}H_{26}F_{2}N_{2}O_{3}+H$ ) <sup>+</sup>として):381 実施例50

(1-(イミノメチル) ピペリジン-4-(1) メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-エチルフェニル) エタノエート・一塩酸塩

10 ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-エチルフェニル)エタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 16-1. 42 (2H, m), 1, 15 22 (3H, t, J=7. 5Hz), 1. 66-2. 2 (9H, m), 2. 63 (2H, q, J=7. 5Hz), 3. 002-3. 44 (3H, m), 3. 73 -3. 83 (1H, m), 3. 89-4. 14 (3H, m), 7. 19 (2H, d, J=8. 4Hz), 7. 49 (2H, d, J=8. 4Hz), 7. 83 (1 H, s)

20 ESI-MS (m/e, ( $C_{22}H_{30}F_{2}N_{2}O_{3}+H$ ) <sup>+</sup>として):409 実施例51

(1-(イミノメチル) ピペリジン-4-イル) メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-ビニルフェニル) エタノエート・一塩酸塩

25 ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-ピニルフェニル)エタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ ppm) : 1. 16-1. 42 (2H, m), 1,

22 (3H, t, J=7.5Hz), 1.66-2.2 (9H, m), 2.63 (2H, q, J=7.5Hz), 3.002-3.44 (3H, m), 3.73-3.83 (1H, m), 3.89-4.14 (3H, m), 7.19 (2H, d, J=8.4Hz), 7.49 (2H, d, J=8.4Hz), 7.83 (1H, s)

ESI-MS (m/e, ( $C_{20}H_{26}F_{2}N_{2}O_{3}+H$ ) +として) : 409 実施例 52

(1-(イミノメチル) ピペリジン-4-イル) メチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-クロ

10 ロフェニル)エタノエート・一塩酸塩

ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル)エタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 0.80-2.22 (11H, m), 2.89-3.49 (3H, m), 3.70-4.17 (4H, m), 7.36 (2H, d, J=8.6Hz), 7.60 (2H, d, J=8.6Hz), 7. 84 (1H, s)

ESI-MS (m/e, ( $C_{20}H_{25}C1F_2N_2O_3+H$ ) +として) : 415 20 実施例53

(1-(イミノメチル) ピペリジン-4-イル) メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル) <math>-2-ヒドロキシ-2-(4-プロモフェニル) エタノエート・一塩酸塩

ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオ 25 ロシクロペンチル)-2-ヒドロキシ-2-(4-ブロモフェニル)エタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  p pm) : 1. 18-1. 43 (2H, m), 1. 62-2. 25 (9H, m), 3. 03-3. 46 (3H, m), 3. 74-3.

WO 02/04402 PCT/JP01/05987

84 (1H, m), 3. 92-4. 14 (3H, m), 7. 47-7. 62 (4 H, m), 7. 83 (1H, s)

ESI-MS (m/e,  $(C_{20}H_{25}BrF_{2}N_{2}O_{3}+H)$  +  $\mathcal{E}$ UT) : 459, 461

5 実施例54-1

2-(ピペリジン-4-イル)エチル (2R)-2-((1R)-3,3-10 ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 00-2. 25 (13H, m), 2. 82-3. 02 (1H, m), 3. 10-3. 40 (2H, m), 3. 65 15 -3. 80 (1H, m), 3. 85-4. 00 (1H, m), 4. 10-4. 3 0 (2H, m), 7. 25-7. 45 (3H, m), 7. 58-7. 70 (2H, m), 7. 80 (1H, s)

ESI-MS (m/e, ( $C_{21}H_{28}F_2N_2O_3+H$ ) †として):395 実施例54-2 (塩交換)

20 2-(1-(イミノメチル) ピペリジン-4-イル) エチル (2R) -2- ((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェ ニルエタノエート・一臭化水素酸塩

2-(1-(イミノメチル) ピペリジン-4-イル) エチル (2R) -2-(1R) -3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェ25 ニルエタノエート・一塩酸塩50mgの超純水2ml溶液を、逆相中圧液体クロマトグラフィー[ODS-AQ 120-S50(YMC社製)]上に展開し、0.2M臭化ナトリウム60ml水溶液を流した。超純水100mlにて洗浄し、テトラヒドロフラン/水=1/5より表題化合物を溶出、濃縮乾固にて35mgを無色固体として得た。

実施例54-3(塩交換)

2-(1-(イミノメチル) ピペリジン-4-(1) エチル (2R)-2-(1R)-3 (1R)-3 (2R)-2-(1R)-3 (1R)-3 (1R)-

5 2-(1-(イミノメチル) ピペリジン-4-イル) エチル (2R) -2-((1R) -3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩7.0gの超純水50ml溶液を、逆相中圧液体クロマトグラフィー[ODS-AQ 120-S50(YMC社製)]上に展開し、1.0Mリン酸2水素1ナトリウム水溶液300ml、0.2Mリン酸300ml及び超純水300mlを順次流した後、テトラヒドロフラン/水=1/9より溶出した。溶媒を減圧留去し、得られた残渣をエタノール中で結晶化した後、濾取することで表題化合物6.5gを無色固体として得た。

実施例54-4(塩交換)

 2-(1-(イミノメチル) ピペリジン-4-イル) エチル (2R) -2 

 (15 (1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・フマル酸塩

2-(1-(イミノメチル) ピペリジン-4-イル) エチル (2R) -2-(1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩75mgの超純水2ml溶液を、逆相中圧液体クロマトグラフィー[ODS-AQ 120-S50(YMC社製)]上に展開し、

0.2Mフマル酸 1ナトリウム水溶液 6.0 m 1、フマル酸水溶液 6.0 m 1、超純水 1.0 0 m 1 を順次流した後、テトラヒドロフラン/水 = 1 / 4 より表題化合物を溶出、濃縮乾固にて 4.1 m g を無色固体として得た。

実施例55

20

2-(1-(イミノメチル) ピペリジン-4-イル) エチル (2R) -2- ((1R) -3, 3-ジフルオロシクロペンチル) <math>-2-ヒドロキシ-2-(4 -クロロフェニル) エタノエート・一塩酸塩

 $2-( ^{\ell} ^{\ell} ^{\ell} ^{\ell} ^{\ell} ^{\ell} ) - 4- ^{\ell} ^{\ell} )$  エチル (2R)-2-((1R)-3,3-2) ジフルオロシクロペンチル)  $-2- ^{\ell} ^{\ell} ^{\ell} ^{\ell} ^{\ell}$  エ

69

タノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、 無色油状物質として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  ppm) : 1. 10-2. 23 (13H, m), 2. 89-3. 30 (3H, m), 3. 70-3. 80 (1H, m), 3. 90 -4.00 (1H, m), 4.16-4.30 (2H, m), 7.35-7.40 (2H, m), 7. 58-7. 63 (2H, m), 7. 81 (1H, brs) ESI-MS (m/e,  $(C_{21}H_{27}C1F_2N_2O_3+H)$  +  $\xi$ LT) : 429 実施例56

2-(1-(イミノメチル) ピペリジン-4-イル) エチル (2R) -2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-ブロモフェニル) エタノエート・一塩酸塩

2-(ピペリジン-4-イル) エチル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-ブロモフェニル) エ タノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、

無色油状物質として得た。 15

> $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ ppm) : 1. 12-2. 24 (13H, m), 2. 90-3. 03 (1H, m), 3. 16-3. 28 (2H, m), 3. 70-3.81 (1H, m), 3.90-4.01 (1H, m), 4.16-4.3 0 (2H, m), 7. 54 (4H, brs), 7. 81 (1H, s)

ESI-MS  $(m/e, (C_{21}H_{27}BrF_2N_2O_3+H) + UT) : 473,$ 20 475

実施例57

3-(1-(イミノメチル) ピペリジン-4-イル) プロピル (2R) - 2-((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フ

25 エニルエタノエート・一塩酸塩

3-(ピペリジン-4-イル) プロピル (2R) <math>-2-((1R)-3, 3)-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを 用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体とし て得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  p pm) : 0. 85-2. 30 (15H, m), 2. 99-3. 44 (3H, m), 3. 71-4. 01 (2H, m), 4. 16 (2H, t, J=6. 3Hz), 7. 23-7. 65 (5H, m), 7. 83 (1H, s)

5 ESI-MS (m/e, ( $C_{22}H_{30}F_2N_2O_3+H$ ) †として): 409 実施例58

1,2,3,6-テトラヒドロピリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1.50-2.26 (8H, m), 3. 15 15-3.39 (1H, m), 3.64 (2H, t, J=6.0Hz), 3.9 5 (2Hx5/7, brs), 4.12 (2Hx2/7, brs), 4.54-4.71 (2H, m), 5.65 (1Hx5/7, brs), 5.68-5.7 3 (1Hx2/7, m), 7.23-7.47 (3H, m), 7.54-7.7 3 (2H, m), 7.59 (1Hx5/7, s), 7.97 (1Hx2/7, s) ESI-MS (m/e, (C<sub>20</sub>H<sub>24</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub>+H) +として): 379 実施例59

(4-ヒドロキシ-1-(イミノメチル) ピペリジン-4-イル) メチル (2 R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ -2-フェニルエタノエート・一塩酸塩

25 (4-ヒドロキシピペリジン-4-イル)メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta ppm$ ): 1. 10-2. 30 (10H, m),

3. 00-3. 50 (3H, m), 3. 50-3. 3. 90 (3H, m), 3. 90-4. 11 (2H, m), 7. 23-7. 46 (3H, m), 7. 58-7. 76 (2H, m), 7. 85 (1H, d, J=4. 6Hz)

ESI-MS  $(m/e, (C_{20}H_{26}F_2N_2O_4+H) + LUT) : 397$ 

5 実施例60

15

25

(1R) -1-(ピペリジン-4-イル)エチル (2R) -2-((1R) 10 -3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm) : 0. 80-1. 40 (6H, m), 1. 54-2. 30 (10H, m), 2. 90-3. 15 (1H, m), 3. 60-4. 02 (2H, m), 4. 70-5. 05 (1H, m), 7. 22-7. 46 (3H, m), 7. 50-7. 70 (2H, m), 7. 72-7. 85 (1H, m)

ESI-MS (m/e, (C<sub>21</sub>H<sub>28</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub>+H) <sup>†</sup>として):395 実施例61

20 2-(1-(イミノメチル)-4-ピペリジニリデン) エチル (2R)-2 -((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

2-(4-ピペリジニリデン) エチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 50-2. 53 (12H, m), 3. 00-3. 65 (5H, m), 4. 62-4. 77 (2H, m), 5. 49 -5. 60 (1H, m), 7. 22-7. 42 (3H, m), 7. 54-7. 6 10

15

25

実施例 6 4

- 6 (2H, m), 7. 92 (1H, d, J=5. 5Hz)  $ESI-MS (m/e, (C_{21}H_{26}F_2N_2O_3+H) + として) : 393$  実施例 6 2
- $2-(1-T \le J \ne N-1, 2, 3, 6-F + F \le N-1 \le N-1$ 
  - 2-(1, 2, 3, 6-テトラヒドロピリジン-4-イル) エチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2 -フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。
  - $^{1}$ H-NMR(CD $_{3}$ OD, $\delta$ ppm):1.52-2.48(10H,m),3.10-3.29(1H,m),3.46-3.92(4H,m),4.19-4.40(2H,m),5.20(1H,brs),7.23-7.42(3H,m),7.54-7.64(2H,m),7.85-8.00(1H,m) ESI-MS(m/e,(C $_{21}$ H $_{26}$ F $_{2}$ N $_{2}$ O $_{3}$ +H) $^{+}$ として):393 実施例63
  - 2-(4-(イミノメチル) ピペラジノ) エチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノ エート・一塩酸塩
- 20 2-ピペラジノエチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシー2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。
  - 38-2.60 (4H, m), 2.65 (2H, t, J=6.0Hz), 3.1 4-3.50 (5H, m), 4.20-4.42 (2H, m), 7.22-7. 42 (3H, m), 7.58-7.70 (2H, m) 7.83 (1H, s) ESI-MS (m/e, (C<sub>20</sub>H<sub>27</sub>F<sub>2</sub>N<sub>3</sub>O<sub>3</sub>+H) +として):396

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ ppm) : 1. 54-2. 30 (6H, m), 2.

((3R) - 1 - (イミノメチル) ピペリジン<math>-3 - 4ル) メチル (2R)

-フェニルエタノエート・一塩酸塩

73

 $(3R) - \mathcal{C}^{(1R)} - 3 - \mathcal{C}^{(1R)} - 3 - \mathcal{C}^{(1R)} - 3$ ージフルオロシクロペンチル)ー2ーヒドロキシー2ーフェニルエタノエートを 用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体とし て得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ ppm) : 1. 20-2. 28 (11H, m), 2. 80-3. 38(3H, m), 3.60-3. 80(1H, m), 3.80-4.24 (3H, m), 7.24-7.45 (3H, m), 7.55-7.6 5 (2H, m), 7.65-7.94 (1H, m)

ESI-MS  $(m/e, (C_{20}H_{26}F_2N_2O_3+H) + UT) : 381$ 実施例65

**2-((3S)-1-(イミノメチル)ピペリジン-3-イル)エチル (2** R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ

-2-フェニルエタノエート・一塩酸塩 15

> 2- ((3S) -ピペリジン-3-イル) エチル (2R) -2- ((1R) -3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノ エートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色 油状物質として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ ppm) : 0. 80-2. 25 (13H, m). 20 2. 70-3. 12 (2H, m), 3. 18-3. 40 (1H. m), 3. 50 -3.92 (2H, m), 4.13-4.35 (2H, m), 7.22-7.4 0 (3H, m), 7.54-7.90 (3H, m)

ESI-MS  $(m/e, (C_{21}H_{28}F_{2}N_{2}O_{3}+H) + 2UT) : 395$ 

25 実施例 6 6

10

2-((3R)-1-(イミノメチル) ピペリジン-3-イル) エチル (2)R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ-2-フェニルエタノエート・一塩酸塩

2-((3R)-ピペリジン-3-イル)エチル (2R)-2-((1R)

15

20

25

た。

-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR(CD $_{3}$ OD, $\delta$ ppm):1. 10-2. 25(13H,m), 2. 70-3. 12(2H,m),3. 18-3. 40(1H,m),3. 510 - 3. 90(2H,m),4. 15-4. 32(2H,m),7. 22-7. 40(3H,m),7. 56-7. 90(3H,m) ESI-MS(m/e,(C $_{20}$ H $_{26}$ F $_{2}$ N $_{2}$ O $_{3}+H)<math>^{+}$ として):381 実施例 67

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm) : 1. 05-2. 27 (11H, m), 3. 00-3. 45 (3H, m), 3. 66-3. 82 (1H, m), 3. 89 -4. 18 (3H, m), 7. 21-7. 44 (3H, m), 7. 53-7. 6 4 (2H, m), 7. 81 (1H, s)

ESI-MS (m/e, ( $C_{21}H_{28}F_2N_2O_3+H$ ) <sup>+</sup>として) : 3'95 実施例 68

(3R)-1-(イミノメチル) ピロリジン-3-イル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル) <math>-2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

(3R) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、 実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$  ppm) : 1. 58-2. 43 (8H, m), 3. 15-3. 96 (5H, m), 5. 35-5. 55 (1H, m), 7. 24-7. 42 (3H, m), 7. 55-7. 62 (2H, m), 7. 93, 8. 06 (1H, 2\*s)

- 5 ESI-MS (m/e, ( $C_{18}H_{23}F_{2}N_{2}O_{3}+H$ ) <sup>+</sup>として):353 実施例69
- 10 ((3R)ーピロリジン-3ーイル)メチル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート を用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物 質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 50-2. 26 (8H, m), 2. 15 57-2. 84 (1H, m), 3. 01-3. 85 (5H, m), 4. 08-4. 36 (2H, m), 7. 24-7. 40 (3H, m), 7. 56-7. 63 (2H, m), 7. 92-8. 03 (1H, m)

ESI-MS (m/e, ( $C_{19}H_{25}F_2N_2O_3+H$ ) <sup>+</sup>として):367 実施例70

- - ((3S)-ピロリジン-3-イル)メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。

25

 $^{1}$ H-NMR (CD<sub>3</sub>OD,  $\delta$  p pm) : 1. 59-2. 28 (8H, m), 2. 62-2. 86 (1H, m), 3. 08-3. 90 (5H, m), 4. 13-4. 35 (2H, m), 7. 26-7. 45 (3H, m), 7. 57-7. 66 (2

76

H, m), 7. 93-8. 07 (1H, m)

ESI-MS (m/e, ( $C_{20}H_{26}F_2N_2O_3+H$ ) <sup>+</sup>として):367 実施例71

 2-((3S)-1-(イミノメチル)ピロリジン-3-イル)エチル (2

 5 R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシー2-フェニルエタノエート・一塩酸塩

2-((3S)-ピロリジン-3-イル)エチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色10 油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$ ppm) : 1. 50-2. 27 (11H, m), 2. 89-3. 30 (3H, m), 3. 40-3. 83 (2H, m), 4. 17 -4. 25 (2H, m), 7. 25-7. 40 (3H, m), 7. 57-7. 6 6 (2H, m), 7. 92, 7. 98 (1H, 2\*s)

15 ESI-MS (m/e, ( $C_{20}H_{26}F_{2}N_{2}O_{3}+H$ ) <sup>+</sup>として):381 実施例72

2-((3R)-1-(イミノメチル) ピロリジン-3-イル) エチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

20 2-((3R)-ピロリジン-3-イル)エチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 50-2. 28 (11H, m),
25 2. 88-3. 84 (5H, m), 4. 13-4. 28 (2H, m), 7. 24
-7. 41 (3H, m), 7. 57-7. 64 (2H, m), 7. 88, 7. 9
7 (1H, 2\*s)

ESI-MS (m/e, ( $C_{20}H_{26}F_{2}N_{2}O_{3}+H$ ) <sup>+</sup>として) : 381 実施例73

((2R)-1-(イミノメチル) ピロリジン-2-イル) メチル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル) <math>-2-ヒドロキシ-2 -フェニルエタノエート・一塩酸塩

((2R) -ピロリジン-2-イル)メチル (2R) -2-((1R) -3,
 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 57-2. 23 (10H, m), 3. 14-3. 43 (3H, m), 4. 15-4. 26 (2H, m), 4. 31 0 -4. 39 (1H, m), 7. 28-7. 42 (3H, m), 7. 54-7. 5 9 (2H, m), 7. 93 (1H, s)

ESI-MS (m/e, ( $C_{19}H_{25}F_{2}N_{2}O_{3}+H$ ) <sup>+</sup>として):367 実施例74

1-(イミノメチル) アゼチジン-3-イル (2R)-2-((1R)-3, 15 <u>3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエー</u>ト・一塩酸塩

アゼチジン-3-イル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

- $^{1}$ H-NMR (CD<sub>3</sub>OD, δppm) : 1. 55-2. 25 (6H, m), 3. 17-3. 29 (1H, m), 4. 10-4. 20 (1H, m), 4. 33-4. 40 (1H, m), 4. 55-4. 65 (1H, m), 4. 72-4. 81 (1H, m), 5. 32-5. 40 (1H, m), 7. 26-7. 41 (3H, m), 7. 58-7. 64 (2H, m), 7. 89 (1H, s)
- 25 ESI-MS (m/e, ( $C_{17}H_{20}F_2N_2O_3+H$ ) <sup>+</sup>として) : 339 実施例75

(1-(イミノメチル) アゼチジン-3-イル) メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

アゼチジン-3-イルメチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1. 60-2. 26 (6H, m), 3. 5 10-3. 36 (2H, m), 3. 77-3. 96 (1H, m), 3. 99-4. 16 (1H, m), 4. 17-4. 48 (4H, m), 7. 25-7. 43 (3 H, m), 7. 55-7. 66 (2H, m), 7. 69, 7. 72 (1H, 2\*s)

ESI-MS  $(m/e, (C_{18}H_{23}F_2N_2O_3+H) + UT) : 353$ 

10 実施例76

2-(アゼチジン-3-イル)エチル (2R)-2-((1R)-3,3-5 ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR(CD<sub>3</sub>OD, $\delta$ ppm):1.55-2.25(8H,m),2.71-2.87(1H,m),3.14-3.30(1H,m),3.84-3.20 92(1H,m),3.97-4.07(1H,m),4.13-4.28(3H,m),4.32-4.42(1H,m),7.26-7.39(3H,m),7.56-7.63(2H,m),7.74(1H,brs) ESI-MS(m/e,(C<sub>19</sub>H<sub>24</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub>+H)+として):367 実施例77

25 (3aR, 6aS) - 2 - (イミノメチル) オクタヒドロシクロペンタ (c) ピロール-5-イル (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノエート・一塩酸塩

(3 a R, 6 a S) - オクタヒドロシクロペンタ(c) ピロールー <math>5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -

-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題 化合物を製造し、無色固体として得た。

79

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δ p pm) : 1. 50-2. 40 (10 H, m), 2. 78-3. 40 (5 H, m), 3. 58-3. 73 (1 H, m), 3. 79 -3. 90 (1 H, m), 5. 16-5. 38 (1 H, m), 7. 24-7. 4 0 (3 H, m), 7. 50-7. 63 (2 H, m), 7. 80 (1 H, d, J= 18. 9 Hz)

ESI-MS (m/e, ( $C_{21}H_{26}F_2N_2O_3+H$ ) †として):393 実施例78

10  $\frac{1, 3-t rans-3-((イミノメチル) アミノ) シクロブチル (2R)}{-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2}$ -フェニルエタノエート・一塩酸塩

1,3-trans-3-アミノシクロプチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}$ H-NMR(CD<sub>3</sub>OD, $\delta$ ppm):1.51-2.22(6H,m),2.35-2.62(4H,m),3.10-3.40(1H,m),4.13-4.35(1H,m),5.00-5.21(1H,m),7.20-7.40(3 20 H,m),7.50-7.65(2H,m),7.70-7.88(1H,m) ESI-MS(m/e,(C<sub>18</sub>H<sub>22</sub>F<sub>2</sub>N<sub>2</sub>O<sub>3</sub>+H)+として):353 実施例79

 $\frac{1, 4-\text{trans}-4-((イミノメチル) アミノ) シクロヘキシル (2)}{R)-2-((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ}$ 25 -2-フェニルエタノエート・一塩酸塩

1, 4-trans-4-アミノシクロヘキシル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色固体として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$  p pm) : 1. 00-2. 28 (m, 15H), 3. 00-3. 70 (m, 3H), 4. 66-5. 07 (m, 1H), 7. 22 -7. 43 (m, 3H), 7. 55-7. 68 (m, 2H), 7. 74 (d, J =0. 8Hz, 1Hx7/10), 7. 92 (s, 1Hx1/7), 8. 02 (s, 1Hx2/10)

5 1 Hx 2/10

ESI-MS (m/e, ( $C_{20}H_{26}F_{2}N_{2}O_{3}+H$ ) †として):381 実施例80

 $\frac{1, 4-c i s-4-((イミノメチル) アミノ) シクロヘキシル (2R)}{-2-((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2}$ 

10 ーフェニルエタノエート・一塩酸塩

1,4-cis-4-アミノシクロヘキシル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

15  $^{1}$ H-NMR (CD<sub>3</sub>OD, δppm) : 1. 21-2. 36 (15H, m), 3. 20-3. 40 (1H, m), 3. 40-3. 70 (1H, br), 5. 0 1 (1H, brs), 7. 23-7. 48 (3H, m), 7. 50-7. 60 (2 H, m), 7. 60-8. 36 (1H, m)

ESI-MS  $(m/e, (C_{20}H_{26}F_2N_2O_3+H) + UT) : 381$ 

20 実施例81

3-((イミノメチル) アミノ) プロピル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

3-アミノプロピル (2R)-2-((1R)-3, 3-ジフルオロシクロ 25 ペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48 と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$  ppm) : 1. 50-2. 26 (8H, m), 3. 10-3. 42 (3H, m), 4. 23 (2H, d, J=6. 2Hz), 7. 2 2-7. 48 (3H, m), 7. 54-7. 90 (3H, m)

ESI-MS  $(m/e, (C_{17}H_{22}F_2N_2O_3+H) + UT) : 341$ 実施例82

3- ((イミノメチル) (メチル) アミノ) プロピル (2R) -2- ((1 R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエ

81

PCT/JP01/05987

タノエート・一塩酸塩

WO 02/04402

3-(メチルアミノ) プロピル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、 実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得 た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ ppm) : 1. 55-2. 30 (8H, m), 2. 10 95 (9/4H, s), 3. 07 (3/4H, s), 3. 15-3. 50 (3H. m), 4. 10-4. 34 (2H, m), 7. 25-7. 48 (3H, m), 7. 56-7.80(3H, m)

ESI-MS  $(m/e, (C_{18}H_{24}F_{2}N_{2}O_{3}+H)^{+} \ge UT) : 355$ 

15 実施例83

25

ージフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート・ 一塩酸塩

4-アミノブチル (2R) - 2 - ((1R) - 3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と 20 同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$ ppm) : 1. 17-2. 30 (10H, m). 3. 14-3. 40 (3H, m), 4. 12-4. 26 (2H, m), 7. 22 -7.40 (3H, m), 7.55-7.66 (2H, m), 7.75-7.86 (1 H, m)

ESI-MS  $(m/e, (C_{18}H_{24}F_2N_2O_3+H) + UT) : 355$ 実施例84

(1-(イミノメ<u>チル)</u>ピペリジン-4-イル)メチル (2R)-2-((<sub>1</sub> R) -3, 3-ジフルオロ-4-ヒドロキシシクロペンチル) -2-ヒドロキシ 5

10

15

20

25

# -2-フェニルエタノエート・一塩酸塩

ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロ-4-ヒドロキシシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用いて、実施例48と同様の方法で処理して表題化合物を製造し、無色油状物質として得た。

<u>(1-アミジノピペリジン-4-イル)メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート・一</u>塩酸塩

ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート14mgの無水ジメチルホルムアミド0.020ml溶液に、1H-ピラゾール-1-カルボキサミジン塩酸塩6.3mg及びジイソプロピルエチルアミン0.008mlを加え、室温にて12時間攪拌した。反応液を濃縮乾固し、粗物質をシリカゲルカラムクロマトグラフィー(溶出溶媒:クロロホルム/メタノール=10/1)にて精製し、表題化合物11mgを無色固体として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD,  $\delta$  p pm) : 1. 08-2. 22 (11H, m), 3. 01 (2H, t, J=13. 57Hz), 3. 24 (1H, m), 3. 82 (2H, m), 4. 02 (1H, dd, J=6. 12, 10. 95Hz), 4. 10 (1H, dd, J=6. 12, 10. 95Hz), 7. 31 (3H, m), 7. 60 (2H, d, J=7. 10Hz)

ESI-MS (m/e, (C<sub>20</sub>H<sub>27</sub>F<sub>2</sub>N<sub>3</sub>O<sub>3</sub>+H) <sup>+</sup>として):396 実施例86

ピペリジン-4-イル (2R)-2-((1R)-3,3-ジフルオロシク ロペンチル)-2-ヒドロキシ-2-フェニルエタノエートを用い、実施例85と同様の方法で処理して表題化合物を製造し、無色固体として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  ppm) : 1. 61-1. 82 (3H, m), 1. 82-2. 23 (7H, m), 3. 22-3. 52 (6H, m), 5. 08 (1H, m), 7. 35 (3H, m), 7. 63 (2H, dd, J=1. 56, 7. 05Hz)

ESI-MS (m/e, ( $C_{19}H_{25}F_2N_3O_3+H$ ) †として) : 382 実施例87

1, 4, 5, 6-テトラヒドロピリミジン-5-イル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) <math>-2-ヒドロキシ-2-フェニルエ

15 タノエート・一塩酸塩

10

20

25

2-チオキソヘキサヒドロピリミジン-5-イル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート18.6mgのエタノール1m1溶液に、ラネーニッケルを加え、水素雰囲気下、常温常圧にて6時間撹拌した。反応液をセライト濾過し、濾液に10%塩酸-メタノールを加えた後、溶媒を減圧留去することにより表題化合物15.4mgを製造し、白色固体として得た。

 $^{1}$ H-NMR (CD<sub>3</sub>OD,  $\delta$  ppm) : 1. 55-2. 20 (9H, m), 2. 69 (1H, s), 3. 20-3. 40 (2H, m), 3. 80 (1H, s), 4. 23 (1H, dd, J=4. 29, 11. 8Hz), 4. 39 (1H, dd, J=4. 29, 11. 8Hz), 7. 36 (3H, m), 7. 59 (2H, d, J=7. 10Hz), 7. 97 (1H, s)

ESI-MS  $(m/e, (C_{18}H_{22}F_2N_2O_3+H) + として) : 353$  実施例88

(4S)-1, 4, 5, 6-テトラヒドロピリミジン-4-イルメチル (2)

R) -2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

((4S) - 2 - チオキソヘキサヒドロピリミジン- 4 - イル) メチル (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシー 2 - フェニルエタノエートを用いて、実施例87と同様の方法で処理して表題 化合物を製造し、無色油状物質として得た。

 $^{1}H-NMR$  (CD<sub>3</sub>OD,  $\delta$  ppm) : 1. 50-2. 22 (9H, m), 3. 20-3. 40 (2H, m), 4. 11-4. 47 (2H, m), 7. 33 (3H, m), 7. 61 (2H, d, J=7. 1Hz), 7. 98 (1H, s)

ESI-MS (m/e, ( $C_{18}H_{22}F_2N_2O_3+H$ ) <sup>+</sup>として):353 実施例89

(4R) -1, 4, 5, 6-テトラヒドロピリミジン-4-イルメチル (2R) <math>-2-((1R) -3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート・一塩酸塩

15 ((4R) - 2 - チオキソヘキサヒドロピリミジン-4-イル)メチル (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシー2 - フェニルエタノエートを用いて、実施例87と同様の方法で処理して表題化合物を製造し、無色固体として得た。

<sup>1</sup>H-NMR (CD<sub>3</sub>OD, δppm): 1.54-2.26 (6H, m), 3. 20 05-3.75 (5H, m), 5.39-5.48 (1H, m), 7.20-7. 47 (3H, m), 7.53-7.69 (2H, m), 7.93-8.18 (1 H, m)

ESI-MS  $(m/e, (C_{17}H_{20}F_2N_2O_3+H) + 2UT) : 339$ 

## 25 参考例1

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド ロキシー 2 - フェニル酢酸

# (工程1)

(2R, 5R) - 2 - (t - プチル) - 5 - ((1R) - 3 - オキソシクロペ

ンチル)-5-7ェニル-1, 3-ジオキソラン-4-オン及び(2R, 5R)-2-(t-プチル)-5-((1S)-3-オキソシクロペンチル)-5-フェニル-1, 3-ジオキソラン-4-オンの合成

### (工程2)

(2R, 5R) - 2 - (t - プチル) - 5 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 5 - フェニル - 1, 3 - ジオキソラン - 4 - オンの合成

(2R, 5R) -2-(t-ブチル) -5-((1R) -3-オキソシクロペ 20 ンチル) -5-フェニル-1, 3-ジオキソラン-4-オン2.8gのクロロホ ルム30ml溶液に、氷冷下、三フッ化ジエチルアミノ硫酸4.89mlを加え、 室温にて20時間撹拌した。反応液をクロロホルムにて希釈し、水、飽和食塩水 で順次洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた 残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル 25 =20/1)にて精製し表題化合物2.4gを得た。

# (工程3)

(2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニル酢酸の合成

(2R, 5R) - 2 - (t - プチル) - 5 - ((1R) - 3, 3 - ジフルオロ

シクロペンチル)-5-フェニル-1,3-ジオキソラン-4-オン2.4gのメタノール30m1溶液に、1N水酸化ナトリウム水溶液10m1を加え、室温にて3時間撹拌した。メタノールを減圧留去後、反応液を水にて希釈し、ジエチルエーテル洗浄した。水層を1N塩酸にて酸性としてジエチルエーテル抽出し、

5 有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去することにより表題化 合物1.66gを得た。

## 参考例2

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド ロキシー 2 - (4 - クロロフェニル) 酢酸

10 (工程1)

(2R, 5R) -2-(t-ブチル) -5-(4-クロロフェニル) -1,3 -ジオキソラン-4-オンの合成

(2R) -2-(4-クロロフェニル) -2-ヒドロキシ酢酸16g(特開平6-165695記載)のヘキサン及びトルエン(10:1)440ml溶液に、

ピバルアルデヒド23ml、pートルエンスルホン酸・一水和物326mgを順次加え、生成してくる水をディーンーシュタークトラップにより除去しながら12時間加熱環流した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去することにより表題化合物14gを得た。

20 (工程2)

15

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ-2 - (4 - クロロフェニル) 酢酸

(2R, 5R) - 2 - (t - プチル) - 5 - (4 - クロロフェニル) - 1, 3 - ジオキソラン - 4 - オンを用い、参考例 <math>1 と同様の方法にて表題化合物を製造した。

## 参考例3

25

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド ロキシー 2 - (4 - フルオロフェニル) 酢酸

(2R) - 2 - (4 - フルオロフェニル) - 2 - ヒドロキシ酢酸 (特開平6 - 1)

87

165695記載)を用い、参考例2と同様の方法にて表題化合物を製造した。 参考例4

(2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒド ロキシー2-(4-プロモフェニル)酢酸

(2R) -2-(プロモフェニル) -2-ヒドロキシ酢酸(特開平6-165 5 695記載)を用い、参考例2と同様の方法にて表題化合物を製造した。 参考例5

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ-2-(4-メトキシフェニル) 酢酸

10 (工程1)

15

(2R) -2-メトキシフェニル-2-ヒドロキシ酢酸の合成

メチル (2R) -2-(メトキシフェニル) -2-ヒドロキシエタノエート (Journal of chemical society, Parkin trans 1, 2253-2255 (1992年) 記載) 19gのメタノール 50ml溶液に、3N水酸化ナトリウム水溶液50mlを加え、室温にて12時 間攪拌した。メタノールを減圧留去後、反応液を1N塩酸にて酸性として、クロ ロホルムで抽出した後、有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去 することにより表題化合物11gを得た。

(工程2)

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド20 ロキシー2-(4-メトキシフェニル)酢酸の合成

(2R) - 2 - (メトキシフェニル) - 2 - ヒドロキシ酢酸を用いて、参考例2と同様の方法にて表題化合物を製造した。

参考例6

25 **\_(2 R)-2-((1 R)-3,3-ジフルオロシクロペンチル)-2-ヒド** ロキシー2-(2-クロロフェニル) 酢酸

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシー2-(2-クロロフェニル) 酢酸 (特開平6-165695記載) を用 い、参考例2と同様の方法にて表題化合物を製造した。

WO 02/04402

88

## 参考例7

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド ロキシー 2 - (2, 4 - ジフルオロフェニル) 酢酸

(工程1)

5 メチル (2R) - 2 - (2, 4 - ジフルオロフェニル) - 2 - ヒドロキシエ タノエートの合成

T. ミヤザワらの方法 [Journal of chemical society, Parkin trans 1, 2253-2255 (1992年)] の手法を用いた。2-(2, 4-ジフルオロフェニル)-2-ヒドロキシ酢酸3.

10 9gのジイソプロピルエーテル20ml溶液に、酢酸ビニル20ml及びリパーゼAK2gを加え、室温にて13日間攪拌した。沈殿物をセライト濾過にて除去した後、濾液の溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン~ヘキサン/酢酸エチル=2/1)にて精製し、表題化合物2.4gを得た。

15 (工程2)

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ-2 - (2, 4 - ジフルオロフェニル) 酢酸の合成

(2R)-2-(2,4-ジフルオロフェニル)-2-ヒドロキシ酢酸を用い、 参考例5と同様の方法にて表題化合物を製造した。

20 参考例 8

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド ロキシ-2 - (1, 3 - ペンゾジオキソール - 5 - イル) 酢酸

(2R) -2-(1,3-ベンゾジオキソール-5-イル) -2-ヒドロキシ 酢酸 (特開平6-165695記載)を用い、参考例2と同様の方法にて表題化合物を製造した。

参考例9

25

(2R) - 2 - ((1R) - 3 - 7)ルオロシクロペンチル) - 2 - Eドロキシ - 2 - 7ェニル酢酸

(工程1)

(2R, 5R) - 2 - (t - プチル) - 5 - ((1R) - 3 - ヒドロキシシク ロペンチル) -5-フェニル-1,3-ジオキソラン-4-オンの合成

89

PCT/JP01/05987

参考例1工程1で得た(2R, 5R)-2-(t-ブチル)-5-((1R) -3-オキソシクロペンチル) -5-フェニル-1、3-ジオキソラン-4-オ ン169mgのメタノール2m1溶液に、氷冷下、水素化ホウ素ナトリウム71 mgを加え、同温度にて30分間撹拌した。反応液をジエチルエーテルにて希釈 し、水、飽和食塩水にて洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧 留去し、表題化合物 157mgを無色油状物質として得た。

(工程2)

WO 02/04402

(2R) - 2 - ((1R) - 3 - 7) フルオロシシクロペンチル) - 2 - 1 ドロキ 10 シー2ーフェニル酢酸の合成

 $(2R, 5R) - 2 - (t - \vec{J} + \vec$ ロペンチル) -5-フェニル-1, 3-ジオキソラン-4-オンを用い、参考例 1工程2及び3と同様の方法にて表題化合物を製造した。

15 参考例10

> (2R) −2−((1S) −3−フルオロシクロペンチル) −2−ヒドロキシ -2-(4-クロロフェニル) 酢酸

参考例2で得た(2R,5R)-2-(t-ブチル)-5-((1S)-3-オキソシクロペンチル) -5-(4-クロロフェニル) -1, 3-ジオキソラン -4-オンを用い、参考例9と同様の方法にて表題化合物を製造した。

参考例11

20

ロペンチル)-2-ヒドロキシ-2-フェニル酢酸

(工程1)

(4R) -4-((2R, 4R) -2-(t-プチル) -5-オキソ-4-フ 25 エニルー1, 3-ジオキソランー4-イル) -1-シクロペンテニル アセテー ト及び(3R) -3-((2R, 4R) -2-(t-プチル) -5-オキソ-4 -フェニル-1, 3-ジオキソラン-4-イル)-1-シクロペンテニル アセ テートの合成

(2R, 5R) -2-(t-ブチル) -5-((1R) -3-オキソシクロペンチル) -5-フェニル-1, 3-ジオキソラン-4-オン185mgの酢酸ピニル1m1溶液に、p-トルエンスルホン酸・一水和物10mgを加え、12時間加熱環流した。溶媒を減圧留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン〜ヘキサン/酢酸エチル=15/1)にて精製し、表題化合物184mgを2化合物の混合物として得た。

(工程2)

(2R, 5R) -2-(t-ブチル) -5-((1R, 3R) -3-ヒドロキシ-4-オキソシクロペンチル) -5-フェニル-1, 3-ジオキソラン-4-10 オンの合成

(4R) -4-((2R, 4R) -2-(t-ブチル) -5-オキソ-4-フェニル-1, 3-ジオキソラン-4-イル) -1-シクロペンテニル アセテート169mgのアセトニトリル及び水(2:1)7.5ml溶液に、N-メチル モルホリン-オキシド80mg、及び2%4酸化オスミウム水溶液0.2mlを0℃にて順次加え、同温度にて3時間攪拌した。反応液に亜硫酸ナトリウムを加え、更に30分間攪拌した後、酢酸エチルで希釈し、水、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン〜ヘキサン/酢酸エチル=2/1)にて精製し表題化合物32mgを無色固体として得た。

20 (工程3)

(1R, 4R) - 4 - ((2R, 4R) - 2 - (t - ブチル) - 5 - オキソー 4 - フェニル - 1, 3 - ジオキソラン - 4 - イル) - 2 - オキソシクロペンチル アセテートの合成

(2R, 5R) -2-(t-プチル) -5-((1R, 3R) -3-ヒドロキ
 シー4-オキソシクロペンチル) -5-フェニルー1, 3-ジオキソラン-4-オン32mgのピリジン1ml溶液に、無水酢酸0.5mlを加え、室温にて1時間攪拌した。反応液を酢酸エチルで希釈し、水、1N塩酸、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣を分取用薄層クロマトグラフィー(Kieselgel<sup>TM</sup>60F<sub>254</sub>、Art574

4 (メルク社製)、クロロホルム/アセトン=20/1)にて精製し、表題化合物27mgを無色油状物質として得た。

(工程4)

(2R)-2-((1R, 4R)-3, 3-ジフルオロ-4-ヒドロキシシクロペンチル)-2-ヒドロキシ-2-フェニル酢酸の合成

工程3で得た(1R, 4R) -4-((2R, 4R) -2-(t-プチル) -5-オキソー4-フェニルー1, 3-ジオキソラン-4-イル)-2-オキソシクロペンチル アセテートを用いて、実施例1工程2、工程3と同様の方法で処理することにより、表題化合物を製造した。

10 参考例12

 $\frac{\mathbb{C}^{2}}{\mathbb{C}^{2}} = \frac{\mathbb{C}^{2}}{\mathbb{C}^{2}} = \mathbb{C}^{2} = \mathbb{C}^{2}$ 

(工程1)

4-ヒドロキシ-1-t-ブトキシカルボニルピペリジンの合成

15 4-ヒドロキシピペリジン10gのクロロホルム300ml溶液に氷冷下ジー tープチルジカーボネイト20gを加え、室温にて2時間攪拌した。反応液を酢 酸エチルにて希釈し、水及び飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで 乾燥した。溶媒を減圧留去することにより表題化合物18gを得た。

(工程2)

20 t-プチル 4-((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノイルオキシ)テトラヒドロピリジン-1(2H)-カルボキシレートの合成

(2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニル酢酸128mgのジメチルホルムアミド3m1溶液に、カルボニルジイミダゾール81mgを加え、30分間攪拌した後、4-ヒドロキシー1-t-プトキシカルボニルピペリジン121mg、及び水素化ナトリウム10mgを順次加え、更に30分間攪拌した。反応液を酢酸エチルにて希釈し、水、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢

酸エチル=3/1) にて精製し表題化合物121mgを得た。

(工程3)

ピペリジン-4-イル (2R) - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ-2 - フェニルエタノエートの合成

5 tーブチル 4-((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノイルオキシ)テトラヒドロピリジン-1(2H)-カルボキシレート162mgを10%塩酸-メタノール5mlに溶解し、12時間攪拌した後、溶媒を減圧留去した。残渣を水で希釈し、ジエチルエーテルで洗浄した後、水層に飽和炭酸水素ナトリウム水溶液を加え、アルカリ性とした。酢酸エチルで抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、表題化合物104mgを無色泡状物質として得た。

### 参考例13

 $\frac{ \mathbb{C}^2 \mathbb{$ 

(工程1)

15

25

N-t-ブトキシカルボニルイソニペコチン酸エチルの合成 イソニペコチン酸エチルを用い、参考例12工程1と同様の方法にて表題化合 物を製造した。

20 (工程2)

N-t-ブトキシカルボニル-4-ピペリジンメタノールの合成

N-t-ブトキシカルボニルイソニペコチン酸エチル516mgのテトラヒドロフラン30m1溶液に、氷冷下、水素化リチウムアルミニウム200mgを加え、同温度にて20分間攪拌した。反応液に硫酸ナトリウム・10水和物を加え、30分間攪拌してセライトろ過した。溶媒を減圧留去することにより表題化合物

(工程3)

414mgを得た。

ピペリジン-4-イルメチル (2R)-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシー2-フェニルエタノエートの合成

N-t-ブトキシカルボニルー4-ピペリジンメタノールを用いて、参考例1 2工程2及び3と同様の方法にて表題化合物を製造した。

93

### 参考例14

t ーブチル 4 ー (2 ーエトキシー 2 ーオキソエチリデン) テトラヒドロピリジンー1(2H) ーカルボキシレートの合成

# (工程2)

t-プチル 4-(2-エトキシー2-オキソエチル)テトラヒドロピリジン-1(2H)-カルボキシレートの合成

t ープチル 4-(2-エトキシ-2-オキソエチリデン) テトラヒドロピリ 20 ジン-1 (2H) -カルボキシレート355mgのメタノール10ml溶液に、 10%パラジウム-炭素触媒50mgを加え、3気圧の水素雰囲気下、13時間 攪拌した。触媒を遮去後、溶媒を減圧留去することにより表題化合物334mg を得た。

## (工程3)

25 t ープチル 4-(2-ヒドロキシエチル)テトラヒドロピリジン-1(2H) -カルポキシレートの合成

間攪拌した。反応液に硫酸ナトリウム・10水和物を加え、30分間攪拌してセライトろ過した。溶媒を減圧留去することにより表題化合物207mgを得た。(工程4)

2-(ピペリジン-4-イル)エチル (2R)-((1R)-3,3-ジフ ルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートの合成 tープチル 4-(2-ヒドロキシエチル)テトラヒドロピリジン-1(2H)-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化 合物を製造した。

## 参考例15

10 3-(ピペリジン-4-イル) プロピル (2R)-2-((1R)-3,3) -ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート (T程1)

t-ブチル 4-(3-エトキシ-3-オキソプロピル) テトラヒドロピリジン-1(2H)-カルボキシレートの合成

### 20 (工程2)

t ープチル 4 ー (3 ーヒドロキシプロピル) テトラヒドロピリジンー1 (2 H) ーカルボキシレートの合成

t ープチル 4ー(3-エトキシー3-オキソプロピル)テトラヒドロピリジン-1(2H)-カルボキシレートを用いて、参考例14工程3と同様の方法にて表題化合物を製造した。

## (工程3)

25

t ープチル 4-(3-ヒドロキシプロピル)テトラヒドロピリジン-1(2H)-カルポキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

## 参考例16

 $1, 2, 3, 6 - \overline{r} + \overline{r} +$ 

t ープチル 4ー(ヒドロキシメチル)ー3,6ージヒドロピリジンー1(2
 H)ーカルボキシレート(WO9806720記載)を用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

## 参考例17

 $2-(4- \frac{2}{3} - \frac{2}{3}$ 

t ープチル 4ー(2ーヒドロキシエチリデン)テトラヒドロピリジン-1(2H) ーカルポキシレート(WO9940070記載)を用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

### 参考例 1 8

15 2-(1, 2, 3, 6-F)トラヒドロピリジン-4-(1) エチル (2R) -2-((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2 -フェニルエタノエート

t ープチル 4ー(2ーヒドロキシエチル) -3,6ージヒドロピリジン-1 (2H) ーカルボキシレート(WO9806720記載)を用いて、参考例12 工程2及び3と同様の方法にて表題化合物を製造した。

### 参考例19

20

 $(3R) - \frac{2}{12} - \frac{3}{12} - \frac$ 

t ープチル (3R) - 3 - (ヒドロキシメチル) テトラヒドロピリジン- 1 25 (2H) - カルボキシレート (Tetrahedron Asymmetry, 3巻, 1049頁 (1992年) 記載) を用いて、参考例12工程2及び3と同 様の方法にて表題化合物を製造した。

# 参考例20

2-((3R)-ピペリジン-3-イル) エチル (2R)-2-((1R)

<u>-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノ</u> エート

(工程1)

t ーブチル (3R) - 3 - (2 - エトキシ- 2 - オキソエチル) テトラヒド c ロピリジン- 1 (2H) - カルボキシレートの合成

エチル 2-((3R)-ピペリジン-3-イル)アセテート L-(+)-マンデル酸 (特開平10-508321記載) 1.15gのジオキサン20m1溶液に、ジーt-ブチルージカーボネート780mg及び10%炭酸カリウム水溶液10m1を加え、室温にて30分間攪拌した。反応液をジエチルエーテルにて希釈し、飽和食塩水にて洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、表題化合物985mgを得た。

(工程2)

10

t-ブチル (3R) -3- (2-ヒドロキシエチル) テトラヒドロピリジン -1 (2H) -カルボキシレートの合成

(工程3)

25 t-プチル (3R) -3-(2-ヒドロキシエチル) テトラヒドロピリジン -1 (2H) - カルボキシレートを用いて、参考例12 工程2 及び3 と同様の方 法にて表題化合物を製造した。

# 参考例21

2-((3S)-ピペリジン-3-イル) エチル (2R)-2-((1R)

<u>-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノ</u> エート

97

エチル 2-((3S)-ピペリジン-3-イル)アセテート D-(-)-マンデル酸(特開平10-508321記載)を用いて、参考例20と同様の方法にて表題化合物を製造した。

参考例22

t-ブチル (3R)-3-ヒドロキシピロリジン-1-カルボキシレート(S

10 yn. Commun., 15巻, 587頁(1985年)記載)を用いて、参考 例12工程2及び3と同様の方法にて表題化合物を製造した。

参考例23

15 t - ブチル (3S) - 3 - ヒドロキシピロリジン- 1 - カルボキシレート(S yn. Commun., 15巻, 587頁(1985年)記載)を用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

参考例 2 4

(3R) ピロリジン-3-イルメチル(2R) -2-((1R) -3, 3-20ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートtープチル(3R) -3-(ヒドロキシメチル) ピロリジン-1-カルボキシレート(JP96-107364記載) を用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

参考例25

25 <u>(3S) -ピロリジン-3-イルメチル (2R) -2-((1R) -3, 3</u> <u>-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート</u> t-ブチル (3S) -3-(ヒドロキシメチル) ピロリジン-1-カルボキ シレート(JP96-107364記載)を用いて、参考例12工程2及び3と 同様の方法にて表題化合物を製造した。 参考例26

2-((3S)-ピロリジン-3-イル) エチル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノ エート

5 (工程1)

メチル 2-(3S)-5-オキソー1-((1R)-1-フェニルエチル)ピロリジン-3-イルアセテートの合成

(4R) -4- (ヒドロキシメチル) -1- ((1R) -1-フェニルエチル) ピロリジン-2-オン (Heterocycles, 51巻, 2463-247 0 (1999年)) 100mgのクロロホルム2ml溶液に、トリエチルアミン 10 0.075m1及び塩化メタンスルホニル0.041m1を加え、室温にて2時 間攪拌した。反応液をクロロホルムにて希釈し、飽和炭酸水素ナトリウム水溶液、 飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、 得られた残渣のジメチルスルホキシド2m1溶液に、シアン化ナトリウム49m gを加え、80℃にて3時間攪拌した。反応液をクロロホルムにて希釈し、飽和 15 食塩水にて洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られ た残渣を濃塩酸2m1に溶解し、20時間加熱環流した後、水を減圧除去した。 残渣に10%塩酸-メタノール5m1を加え、更に12時間加熱環流した後、溶 媒を減圧留去した。残渣に炭酸水素ナトリウム水溶液を加え、アルカリ性にした 後、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒 20 を減圧留去することにより、表題化合物90mgを得た。

(工程2)

2- ((3S) -1- ((1R) -1-フェニルエチル) ピロリジン-3-イル) エチル アセテートの合成

PCT/JP01/05987 WO 02/04402

ルアミン0.060ml及び無水酢酸0.040mlを加え、室温にて5時間放 置した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム水溶液、飽和 食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得 られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:クロロホルム/ メタノール=10/1)にて精製し表題化合物64mgを得た。

99

(工程3)

tーブチル (3S)-3-(2-(アセチルオキシ)エチル)ピロリジン-1-カルボキシレートの合成

2-((3S)-1-((1R)-1-フェニルエチル) ピロリジン-3-イ ル) エチル アセテート 6 4 m g の メタノール 5 m l 溶液に、水酸化パラジウム 10 - 炭素64mgを加え、常温3気圧の水素雰囲気下、21時間攪拌した。反応液 をセライト濾過した後、溶媒を減圧留去し、得られた残渣のクロロホルム1m1 溶液に、ジーt-プチルージカーボネート78mg及びトリエチルアミン0. 0 35mlを加え、室温にて3時間攪拌した。反応液をクロロホルムにて希釈し、

水、飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 15 去し、得られた残渣をシリカゲルカラムクロマトグラフィー (溶出溶媒:酢酸エ チル/ヘキサン=2/1)にて精製し表題化合物34mgを得た。

(工程4)

t ーブチル (3S)-3-(2-ヒドロキシエチル)ピロリジン-1-カル 20 ボキシレートの合成

tープチル (3S) -3-(2-アセチルオキシエチル) ピロリジン-1-カルボキシレート34mgのメタノール1ml溶液に、炭酸カリウム54mgを 加え、室温にて2.5時間攪拌した。反応液をクロロホルムにて希釈し、水、飽 和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、

(工程5)

表題化合物29mgを得た。

25

2-((3S)-ピロリジン-3-イル) エチル (2R)-2-((1R) -3,3-ジフルオロシクロペンチル)-2-ヒドロキシー2-フェニルエタノ エートの合成

tープチル (3S) -3- (2-ヒドロキシエチル) ピロリジン-1-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

### 参考例27

5 <u>2-((3R)-ピロリジン-3-イル)エチル (2R)-2-((1R)</u> -3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノ エート

(4S) - 4 - (ヒドロキシメチル) - 1 - ((1R) - 1 - フェニルエチル)ピロリジン- 2 - オンを用いて、参考例<math>26と同様の方法にて表題化合物を製造 した。

## 参考例28

10

(2R) -ピロリジン-2-イルメチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートt-ブチル (2R) -2-(ヒドロキシメチル) ピロリジン-1-カルボキ15 シレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

# 参考例29

<u>アゼチジン-3-イル (2R)-2-((1R)-3,3-ジフルオロシク</u> ロペンチル)-2-ヒドロキシ-2-フェニルエタノエート

20 t - プチル 3 - ヒドロキシアゼチジン- 1 - カルボキシレート(WO 9 7 4 2 1 8 9 記載)を用いて、参考例 1 2 工程 2 及び 3 と同様の方法にて表題化合物を製造した。

### 参考例30

 $\underline{Y}$ ゼチジン-3-イルメチル (2R)-2-((1R)-3, 3-ジフルオ 25 ロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート

tープチル 3-(ヒドロキシメチル)アゼチジン-1-カルボキシレート(Eur. J. Med. Chem., 34巻, 363-380(1999年))を用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

### 参考例31

2-(アゼチジン-3- (1R) - 3 - (1R) - 3 - (1R) - 3 - (1R) - 3 - (1R) -

t - ブチル 3-(2-ヒドロキシエチル)アゼチジン-1-カルボキシレート(WO9412181記載)を用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

# 参考例32

3-xンド-8-yザビシクロ [3.2.1] オクタ-3-4ル (2R) -20 (1R) -30, 3-ジフルオロシクロペンチル) <math>-2-ヒドロキシ-2-フェニルエタノエート

10 tープチル 3-エンド-3-ヒドロキシ-8-アザビシクロ [3.2.1] オクタン-8-カルボキシレート (Drug Metab. Dispos., 2 0巻, 596-602 (1992年)) を用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

# 参考例33

15 <u>3-アザビシクロ[3.3.1] ノナー9ーイル (2R) -2-((1R) -3,3-ジフルオロシクロペンチル) -2-ヒドロキシー2-フェニルエタノ</u>エート

tーブチル 9ーヒドロキシー3ーアザビシクロ[3.3.1] ノナンー3ーカルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

### 参考例 3 4

20

3-x+y-8-yザビシクロ [3. 2. 1] オクター3-4ルメチル (2 R) -2-((1 R) -3, 3-yフルオロシクロペンチル) -2-ヒドロキシ -2-フェニルエタノエート

# 25 (工程1)

3-エキソ-8-ペンジル-8-アザビシクロ[3.2.1] オクタン-3-カルボニトリルの合成

8-ペンジル-8-アザビシクロ [3.2.1] オクター3-オン332mgのジメトキシエタン9m1溶液に、0  $\mathbb{C}$  にてトシルメチルイソシアネート550

mg、エタノール0.25m1及びカリウム t - ブトキシドを順次加えた後、50℃にて5時間攪拌した。反応液を酢酸エチルにて希釈し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1)にて精製し表題化合物236mgを得た。

# (工程2)

メチル 3-エキソー8-ベンジルー8-アザビシクロ[3.2.1]オクタ ン-3-カルボキシレートの合成

8-ベンジル-8-アザビシクロ[3.2.1]オクタン-3-カルボニトリル236mgを濃塩酸3m1に溶解し、12時間加熱環流した後、水を減圧留去した。得られた残渣を10%塩酸-メタノールに溶解し、2時間加熱環流した。溶媒を減圧留去した後、酢酸エチルにて希釈し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1)にて精製し表題化合物225mgを得た。

### (工程3)

(3-x+y-8-ペンジル-8-アザビシクロ [3.2.1] オクター3- イル) メチル (2R) <math>-2-((1R)-3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートの合成

20 メチル 3-エキソー8-ベンジルー8-アザビシクロ[3.2.1]オクタン-3-カルボキシレートを用いて、参考例13工程2及び参考例12工程2と同様の方法にて表題化合物を製造した。

### (工程4)

3-エキソー8-アザビシクロ[3.2.1]オクター3-イルメチル (2 25 R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ -2-フェニルエタノエートの合成

(3-エキソ-8-ペンジ)ル-8-アザビシクロ[3.2.1]オクタ-3-イル)メチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート82mgのメタノール5m1溶液

に、水酸化パラジウムー炭素触媒15mgを加え、水素雰囲気下、常温常圧にて2時間撹拌した。反応液をセライト濾過した後、溶媒を減圧留去し、表題化合物55mgを得た。

103

### 参考例35

参考例36

5 (3aR, 6aS)-オクタヒドロシクロペンタ(c)ピロールー5ーイル (2 R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ -2-フェニルエタノエート

t ープチル (3 a R, 6 a S) - 5 - ヒドロキシヘキサヒドロシクロペンタ [c] ピロールー2(1 H) - カルボキシレート(WO9806720記載)を 用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

2, 4-c i s -2-ビニルピペリジン-4-イル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート

### 参考例37

t ープチル 4 ーメチレンテトラヒドロピリジンー1 (2H) ーカルボキシレートの合成

臭化メチルトリフェニルホスホニウム 986 mgのテトラヒドロフラン 20 m 25 l 溶液に、氷冷下、 1.63 M n - プチルリチウム/ヘキサン溶液 1.87 m 1 を0 ℃にて滴下し、ただちに室温に昇温し 5 0 分間攪拌した。反応液を再び 0 ℃ とした後、 t - ブチル 4 - オキソテトラヒドロピリジン-1 (2 H) - カルボキシレート 5 0 0 mgのテトラヒドロフラン 5 m 1 溶液を滴下し、同温度にて 1 時間攪拌した。反応液を酢酸エチルにて希釈し、飽和塩化アンモニウム水溶液、

飽和食塩水にて洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得 られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸 エチル=5/1) にて精製し、表題化合物192mgを得た。

(工程2)

tープチル 4ーヒドロキシー4ー (ヒドロキシメチル) テトラヒドロピリジ 5 ン-1 (2H) -カルボキシレートの合成

tーブチル 4ーメチレンテトラヒドロピリジン-1 (2H) ーカルボキシレ ート98mgのテトラヒドロフランー水(1:1)2ml溶液に、Nーメチル モ ルホリン-オキシド88mg、及び2%四酸化オスミウム0.1mlを0℃にて 加え、同温度にて2時間攪拌した。反応液に亜硫酸ナトリウムを加え、更に30 分間攪拌した後、酢酸エチルで希釈し、水、飽和食塩水で順次洗浄後、無水硫酸 ナトリウムで乾燥した。溶媒を減圧留去し、表題化合物 1 1 5 m g を得た。

(工程3)

10

15

(4-ヒドロキシピペリジン-4-イル) メチル (2R)-((1R)-3,3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノエート の合成

t ープチル 4ーヒドロキシー4ー (ヒドロキシメチル) テトラヒドロピリジ ン-1 (2H) -カルボキシレートを用い、参考例12工程2及び3と同様の方 法にて表題化合物を製造した。

20 参考例38

(1R) - 1 - ピペリジン-4 - イルエチル (2R) - 2 - ((1R) - 3,3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート (工程1)

t ープチル 4ー ((1S) -1-ヒドロキシエチル) テトラヒドロピリジン -1 (2H) -カルボキシレートの合成 25

 $(R) - (+) - \alpha - メチル-4 - ピリジンメタノール 103 m g の 2% 塩酸$ -メタノール6ml溶液に、酸化白金10mgを加え、4気圧の水素雰囲気下、 室温にて1.5時間攪拌した。反応液をセライト濾過した後、溶媒を減圧留去し、 得られた残渣のジオキサン6ml溶液に、ジーtーブチルージカーボネート78

105

mg及び1N水酸化ナトリウム4mlを加え、室温にて1時間攪拌した。反応液をクロロホルムにて希釈し、水、飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン=2/1)にて精製し表題化合物46mgを得た。

(工程2)

5

15

t ープチル 4ー((1S) -1-ヒドロキシエチル)テトラヒドロピリジン-1(2H) -カルボキシレートを用い、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

10 参考例39

 $2-\frac{2-\frac{2}{2}}{2}$   $(2R)-2-((1R)-3, 3-\frac{2}{2})$   $(2R)-2-((1R)-3, 3-\frac{2}{2})$   $(2R)-2-((1R)-3, 3-\frac{2}{2})$   $(2R)-2-((1R)-3, 3-\frac{2}{2})$ 

t ープチル 4ー(2ーヒドロキシエチル)テトラヒドロピラジン-1(2H) ーカルボキシレートを用い、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

参考例40

2-アミノエチル (2R) -2-((1R) -3, 3-ジフルオロシクロペ -ンチル) -2-ヒドロキシ-2-フェニルエタノエート

t -ブチル 2-ヒドロキシエチルカーバメートを用い、参考例12工程2及 20 び3と同様の方法にて表題化合物を製造した。

参考例41

t ープチル 3 ーヒドロキシプロピルカーパメートを用い、参考例12工程2 25 及び3と同様の方法にて表題化合物を製造した。

参考例42

3-(メチルアミノ) プロピル (2R) -2-((1R) -3, 3-ジフル オロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート (工程1)

3- (ベンジルアミノ) プロピル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエートの合成 3-アミノプロピル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート87mgのメタノール 溶液にベンズアルデヒド35mgを室温にて加え、同温度にて30分間攪拌した後、水素化ホウ素ナトリウムを加え、30分間攪拌した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム溶液、飽和食塩水にて順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した後、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒、クロロホルム/メタノール=50/1)にて精製し、表題化合物を得た。

(工程2)

3-(ベンジル (メチル) アミノ) プロピル (2R) <math>-2-((1R)-3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート の合成

15 3-(ベンジルアミノ)プロピル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートに対し、 実施例1工程1と同様の方法にて表題化合物を製造した。

(工程3)

3-(メチルアミノ)プロピル (2R)-2-((1R)-3,3-ジフル
 20 オロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエートの合成 3-(ベンジル(メチル)アミノ)プロピル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート 41mgのメタノール2ml溶液に、水酸化パラジウムー炭素触媒10mgを加え、水素雰囲気下、常温常圧にて2時間撹拌した。反応液をセライト濾過した後、溶媒を減圧留去し、表題化合物32mgを得た。

参考例43

t ープチル 4-ヒドロキシブチルカーバメートを用い、参考例12工程2及

107

び3と同様の方法にて表題化合物を製造した。

#### 参考例44

 1, 4 - t r a n s - 4 - T > J > D D へ キシル (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシー 2 - フェニルエタノ

#### 5 エート

tープチル Nー(trans-4-ヒドロキシシクロヘキシル)カーバメート(WO9424093記載)を用い、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### **参考例45**

101,4-cis-4-アミノシクロヘキシル (2R)-2-((1R)-3,<br/>3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート<br/>tープチル N-(cis-4-ヒドロキシシクロヘキシル)カーバメート(W<br/>O9424093記載)を用い、参考例12工程2及び3と同様の方法にて表題<br/>化合物を製造した。

#### 15 参考例 4 6

1, 3-trans-3-アミノシクロプチル (2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニルエタノエート

t - プチル N-(trans-3-ヒドロキシシクロプチル)カーバメート 20 (WO9424093記載)を用い、参考例12工程2及び3と同様の方法にて 表題化合物を製造した。

#### 参考例47

1,3-cis-3-アミノシクロプチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシー2-フェニルエタノエート25tープチル N-(cis-3-ヒドロキシシクロプチル)カーバメート(W<br/>09424093記載)を用い、参考例12工程2及び3と同様の方法にて表題<br/>化合物を製造した。

#### 参考例48

R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノエート

t - プチル N- ((1S, 4S) - 4-ヒドロキシ-2-シクロペンテニル) カーバメート(Journal of medicinal chemistry, 35巻, 3196 (1992年) 記載) を用い、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例 4 9

(1R, 3R) - 3 - アミノシクロペンチル (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノエート

10 (工程1)

t-プチル (1 R, 3 R) -3- ((2 R) -2- ((1 R) -3, 3 - ジ フルオロシクロペンタン) -2-ヒドロキシ-2-フェニルエタノイルオキシ) シクロペンチル-1-カルボキシレートの合成

参考例48で得た t ープチル (1R, 3R) -3-((2R) -2-((1 R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-フェニルエタノイルオキシ) -2-シクロペンテニル-1-カルボキシレート66mgのメタノール2m1溶液に、パラジウムー炭素触媒10mgを加え、水素雰囲気下、常温常圧にて1時間撹拌した。反応液をセライト濾過し、溶媒を減圧留去し、表題化合物28mgを得た。

20 (工程2)

(1R, 3R) - 3 - アミノシクロペンチル (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノエート の合成

t ープチル (1 R, 3 R) - 3 - ((2 R) - 2 - ((1 R) - 3, 3 - ジ 25 フルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノイルオキシ) シクロペンタン - 1 - カルボキシレートを用い、参考例12工程3と同様の方法 にて表題化合物を製造した。

#### 参考例 5 0

ピペリジン-4-イル (2R)-((1R)-3, 3-ジフルオロシクロペ

109

#### ンチル)-2-ヒドロキシ-2-(4-フルオロフェニル)エタノエート

(2R) −2−((1R) −3, 3−ジフルオロシクロペンチル) −2−ヒド ロキシー2ー(4ーフルオロフェニル)酢酸を用い、参考例12工程2及び3と 同様の方法にて表題化合物を製造した。

#### 5 参考例 5 1

ンチル) -2-ヒドロキシ-2-(4-クロロフェニル) エタノエート

(2R) −2−((1R) −3, 3−ジフルオロシクロペンチル) −2−ヒド ロキシー2-(4-クロロフェニル)酢酸を用い、参考例12工程2及び3と同 10 様の方法にて表題化合物を製造した。

#### 参考例52

ンチル)\_-2-ヒドロキシ-2-(4-プロモフェニル)エタノエ-ト

(2R) −2−((1R) −3, 3−ジフルオロシクロペンチル) −2−ヒド ロキシー2-(4ープロモフェニル)酢酸を用い、参考例12工程2及び3と同 15 様の方法にて表題化合物を製造した。

#### **参考例53**

20

ンチル) -2-ヒドロキシ-2-(2, 4-ジフルオロフェニル) エタノエート (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシー2-(2,4-ジフルオロフェニル)酢酸を用い、参考例12工程2及 び3と同様の方法にて表題化合物を製造した。

#### 参考例54

25 ンチル) - 2 - ヒドロキシ- 2 - (2 - クロロフェニル) エタノエート

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシー2-(2-クロロフェニル)酢酸を用い、参考例12工程2及び3と同 様の方法にて表題化合物を製造した。

#### 参考例55

 $\frac{\mathbb{C}^2}{\mathbb{C}^2} = \frac{\mathbb{C}^2}{\mathbb{C}^2} = \frac{\mathbb$ 

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド 5 ロキシ-2 - (1, 3 - ベンゾジオキソール - 5 - イル) 酢酸を用い、参考例 1 2 工程 2 及び 3 と同様の方法にて表題化合物を製造した。

#### 参考例 5 6

10 (工程1)

t-プチル 4-((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-ピニルフェニル)エタノイルオキシ)テトラヒドロピリジン-1(2H)-カルポキシレートの合成

参考例 5 2 で得た t - ブチル 4 - ((2R) - 2 - ((1R) - 3, 3 - 9) 7ルオロシクロペンチル)-2 - ヒドロキシ-2 - (4 - ブロモフェニル)エタ ノイルオキシ)テトラヒドロピリジン-1 (2H) - カルボキシレート 1 2 5 m g のジオキサン 4 m 1 溶液に、室温にてビニルトリn - ブチルスズ 0 1 0 m 1 、テトラキストリフェニルパラジウム 2 0 m g を加え、窒素雰囲気下 1 1 0  $\infty$  にて 2 4 時間加熱環流した。溶媒を減圧留去し、残渣を酢酸エチルにて希釈し、水、

飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、 得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢 酸エチル=4/1)にて精製し表題化合物90mgを得た。

(工程2)

20

t ープチル 4ー((2R) -2-((1R) -3, 3-ジフルオロシクロペ 25 ンチル) -2-ヒドロキシ-2-(4-ピニルフェニル) エタノイルオキシ) テトラヒドロピリジン-1(2H) -カルボキシレートを用い、参考例12工程3と同様の方法にて表題化合物を製造した。

#### 参考例57

ピペリジン-4-イル (2R)-((1R)-3, 3-ジフルオロシクロペ

111

## <u>ンチル)-2-ヒドロキシ-2-(4-エチルフェニル)エタノエート</u> (工程1)

t-プチル 4-((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-エチルフェニル)エタノイルオキシ)テトラヒドロピリジン-1(2H)-カルポキシレートの合成

参考例 5 6 で得た t - ブチル 4 - ((2R) - 2 - ((1R) - 3 , 3 - ジ フルオロシクロペンチル) - 2 - ヒドロキシ- 2 - (4 - ビニルフェニル) エタ ノイルオキシ) テトラヒドロピリジン- 1 (2H) - カルボキシレート 5 0 mg のメタノール 3 m 1 溶液に、パラジウムー炭素触媒 1 0 mg を加え、水素雰囲気下、常温常圧にて 6 時間撹拌した。反応液をセライト濾過し、溶媒を減圧留去し、表題化合物を得た。

#### (工程2)

5

10

15

25

tープチル 4-((2R)-2-((1R)-3, 3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-エチルフェニル)エタノイルオキシ)テトラヒドロピリジン-1(2H)-カルボキシレートを用い、参考例12工程3と同様の方法にて表題化合物を製造した。

#### 参考例 5 8

 $\frac{\mathbb{C}^{2}}{\mathbb{C}^{2}} = \frac{\mathbb{C}^{2}}{\mathbb{C}^{2}} = \frac{\mathbb$ 

#### 20 (工程1)

tープチル 4-((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-(ヒドロキシメチル)フェニル)エタノイルオキシ)テトラヒドロピリジン-1(2H)-カルボキシレートの合成参考例56で得たtープチル 4-((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-ビニルフェニル)エタノイルオキシ)テトラヒドロピリジン-1(2H)-カルボキシレート69mgのテトラヒドロフラン-水(1:1)2ml溶液に、過ヨウ素酸ナトリウム85mg、及び2%四酸化オスミウム0.1mlを0℃にて加え、同温度にて1時間

攪拌した。 反応液に亜硫酸ナトリウムを加え、更に30分間攪拌した後、酢酸エ

15

20

チルで希釈し、水、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。 溶媒を減圧留去し、得られた残渣のメタノール1m1溶液に、水素化ホウ素ナトリウム10mgを加え、10分間攪拌した後、アセトンを加えた。反応液を酢酸エチルにて希釈し、水、飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣を分取用薄層クロマトグラフィー(Kieselgel $^{\text{TM}}60$ F $_{254}$ 、Art5744(メルク社製)、ヘキサン/酢酸エチル=1/1)にて精製し、表題化合物42mgを無色油状物質として得た。(工程2)

t-ブチル 4- ((2R)-2-((1R)-3,3-ジフルオロシクロペ 10 ンチル)-2-ヒドロキシ-2-(4-((アセチルオキシ)メチル)フェニル)エタノイルオキシ)テトラヒドロピリジン-1(2H)-カルボキシレートの合成

(工程3)

t-ブチル 4- ((2R)-2-((1R)-3,3-ジフルオロシクロペ 25 ンチル) -2-ヒドロキシ-2-(4-メチルフェニル) エタノイルオキシ) テトラヒドロピリジン-1(2H)-カルポキシレートの合成

t-プチル 4-((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-((アセチルオキシ)メチル)フェニル) エタノイルオキシ)テトラヒドロピリジン-1(2H)-カルボキシレート42

mgのメタノール1ml溶液に、水酸化パラジウムー炭素触媒20mgを加え、水素雰囲気下、常温常圧にて16時間撹拌した。反応液をセライト濾過し、溶媒を減圧留去し、表題化合物37mgを得た。

(工程4)

5 ピペリジン-4-イル (2R) - ((1R) - 3, 3-ジフルオロシクロペンチル) - 2-ヒドロキシ-2-(4-メチルフェニル) エタノエートの合成 t-ブチル 4-((2R) - 2-((1R) - 3, 3-ジフルオロシクロペンチル) - 2-ヒドロキシ-2-(4-メチルフェニル) エタノイルオキシ) テトラヒドロピリジン-1(2H) -カルボキシレートを用い、参考例12工程310 と同様の方法にて表題化合物を製造した。

#### 参考例 5 9

ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル)エタノエート

15 (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-クロロフェニル) 酢酸及びN-t-ブトキシカルボニル-4-ピペリジンメタノールを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例60

(2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-プロモフェニル) 酢酸及びN-t-プトキシカルボニル-4-ピペリジンメタノールを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例61

25

 $\frac{\mathbb{C}^2}{\mathbb{C}^2} \frac{\mathbb{C}^2}{\mathbb{C}^2} \frac{\mathbb{C}^2}$ 

WO 02/04402

114

ト

5

参考例 6 0 で得た t - ブチル 4 - (((2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ- 2 - (4 - ブロモフェニル) エタノイルオキシ) メチル) テトラヒドロピリジン- 1 (2H) - カルボキシレートを用い、参考例 5 6 と同様の方法にて表題化合物を合成した。

#### 参考例62

ピペリジン-4-イルメチル (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-メチルフェニル) エタノエート

10 参考例61で得た t ープチル 4- (((2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-ビニルフェニル)エ タノイルオキシ)メチル)テトラヒドロピリジン-1(2H)-カルボキシレー トを用い、参考例58と同様の方法にて表題化合物を合成した。

#### 参考例63

15 ピペリジン-4-イルメチル (2R)-2-((1R)-3,3-ジフルオ ロシクロペンチル)-2-ヒドロキシ-2-(4-エチルフェニル)エタノエート

参考例 6 1 で得た t ープチル 4 ー (((2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - (4 - ビニルフェニル) エタノイルオキシ) メチル) テトラヒドロピリジン - 1 (2H) - カルボキシレートを用い、参考例 5 7 と同様の方法にて表題化合物を合成した。

#### 参考例 6 4

20

 $\frac{\mathbb{C}^2}{\mathbb{C}^2} \frac{\mathbb{C}^2}{\mathbb{C}^2} \frac{\mathbb{C}^2}$ 

#### 25 タノエート

(2R) -2-((1R, 4R) -3, 3-ジフルオロ-4-ヒドロキシシクロペンチル) <math>-2-ヒドロキシ-2-フェニル酢酸及びN-t-ブトキシカルボニル-4-ピペリジンメタノールを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例65

5 (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-クロロフェニル) 酢酸及び t -プチル 4-(2-ヒドロキシエチル) テトラヒドロピリジン-1(2H) -カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例66

10 <u>2-(ピペリジン-4-イル)エチル (2R)-((1R)-3,3-ジフ</u> ルオロシクロペンチル)-2-ヒドロキシ-2-(4-プロモフェニル)エタノ エート

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ-2 - (4 - プロモフェニル) 酢酸及び <math>t - プチル 4 - (2 - ヒドロキシエチル) テトラヒドロピリジン-1 (2H) - カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例 6 7

15

20

(2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-クロロフェニル) 酢酸及び <math>t-プチル 3-エンド-3-ヒドロキシ-8-アザビシクロ <math>[3.2.1] オクタン-8-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 25 参考例 68

3-x > -8-y = 2-y = 3-2 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-4 = 3-

(2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒド

ロキシー2-(4-ブロモフェニル) 酢酸及び t-ブチル 3-エンド-3-ヒドロキシ-8-アザビシクロ[3.2.1]オクタン-8-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

116

#### 参考例69

3-xンド-8-yザビシクロ [3.2.1] オクタ-3-1ル (2R)-22-((1R)-3,3-yフルオロシクロペンチル) -2-ヒドロキシ-2-(2,4-ジフルオロフェニル) xタノx-ト

(2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(2, 4-ジフルオロフェニル) 酢酸及び t ープチル 3-エンド 3-ヒドロキシ-8-アザビシクロ[3.2.1] オクタン-8-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例70

 $(2R) - 2 - ((1R) - 3, 3 - \Im 7)$  ルオロシクロペンチル) - 2 - LF ロキシー 2 - (4 - 7) 小オロフェニル)酢酸及び t - 7 チル (3R) - 3 - LF ドロキシピロリジン - 1 - 7 ルボキシレートを用いて、参考例 1 2 TR 2 DO び 3 CD と同様の方法にて表題化合物を製造した。

#### 参考例71

20

25 (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-クロロフェニル) 酢酸及び t-ブチル (3R) -3-ヒドロキシピロリジン-1-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例72

(2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-(4-プロモフェニル)酢酸及びt-プチル (3R)-3-ヒドロキシピロリジン-1-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例73

参考例72で得た t ープチル (3R) -3-(((2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-プロモフェニル) エタノイル) オキシ) ピロリジン-1-カルボキシレートを用い、参考例56工程1及び参考例57と同様の方法にて表題化合物を合成した。

#### 参考例74

15

- 20 (2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-フルオロフェニル) 酢酸及び t -ブチル (3S) -3-ヒドロキシピロリジン-1-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例75

- - (2R) 2 ((1R) 3, 3 ジフルオロシクロペンチル) 2 ヒドロキシ-2 (4 クロロフェニル) 酢酸及び<math>t プチル (3S) 3 ヒド

ロキシピロリジン-1-カルボキシレートを用いて、参考例12工程2及び3と 同様の方法にて表題化合物を製造した。

#### 参考例76

(3S) -ピロリジン-3-イル (2R) -2-((1R) -3, 3-ジフ ルオロシクロペンチル) -2-ヒドロキシ-2-(4-プロモフェニル) エタノ エート

(2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒドロキシ-2-(4-ブロモフェニル) 酢酸及びt-ブチル (3S) -3-ヒドロキシピロリジン-1-カルボキシレートを用いて、参考例12工程2及び3と同様の方法にて表題化合物を製造した。

#### 参考例77

10

20

((4S) - 2 - F オキソヘキサヒドロピリミジン<math>- 4 - Tル)メチル (2 R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノエート

#### 15 (工程1)

2-((4R)-2,2-ジメチル-1,3-ジオキソラン-4-イル) エタン-1-オールの合成

メチル 2-((4R)-2, 2-ジメチル-1, 3-ジオキソラン-4-イル) アセテート1.0gのジエチルエーテル29ml溶液に、氷冷下、水素化リチウムアルミニウム110mgを加え、同温度にて12時間攪拌した。反応液に硫酸ナトリウム・10水和物を加え、30分間攪拌してセライトろ過した。溶媒を減圧留去することにより表題化合物782mgを得た。

#### (工程2)

1, 2-((4R)-2, 2-ジメチル-1, 3-ジオキソラン-4-イル) 25 エチルアジドの合成

2-((4R)-2,2-i)メチルー1、3-iジオキソランー4-iイル)エタンー1-iオール782mgの酢酸エチル21ml溶液に、トリエチルアミン1.5ml及び塩化メタンスルホニル643mgを加え、室温に730分間攪拌した。反応液を酢酸エチルにて希釈し、飽和炭酸水素ナトリウム水溶液及び飽和食塩水

で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残 渣のジメチルホルムアミド25ml溶液に、アジ化ナトリウム670mgを加え、 90℃にて12時間攪拌した。反応液を酢酸エチルにて希釈し、飽和塩化アンモ ニウム水溶液及び飽和食塩水で順次洗浄後、無水硫酸マグネシウムで乾燥した。

5 溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:  $^{+}$  やキサン/酢酸エチル=  $^{5}$   $^{1}$  )にて精製し表題化合物  $^{7}$  0  $^{2}$   $^{1}$  の  $^{2}$  に工程  $^{3}$  )

1-((3R)-4-t-プチル(ジメチル)シリル)オキシ-3-ヒドロキシプチル)アジドの合成

1,2-((4R)-2,2-ジメチル-1,3-ジオキソラン-4-イル)
エチルアジド2.2gのテトラヒドロフラン15m1溶液に、2N塩酸6m1を加え、室温にて2時間攪拌した。溶媒を減圧留去した後、得られた残渣のジメチルホルムアミド25m1溶液に、tープチルージメチルシリルクロリド2.0g及びイミダゾール1.8gを加え、室温にて19時間攪拌した。反応液を酢酸エチルにて希釈し、水及び飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=30/1)にて精製し表題化合物1.6gを得た。

(工程4)

20 1-((1S)-1-((t-ブチル(ジメチル)シリル)オキシメチル)-3-トリアザー1,2-ジエン-2-イウミルプロピル)アジドの合成1-((3R)-4-t-ブチル(ジメチル)シリル)オキシ-3-ヒドロキシブチル)アジドを用い、工程2と同様の方法にて表題化合物を製造した。(工程5)

25 (3S)-4-(t-ブチル(ジメチル)シリル)オキシブタン-1,3-ジ アミンの合成

-1-((1S)-1-((t-プチル(ジメチル)シリル)オキシメチル)-3-トリアザー1,2-ジエン-2-イウミルプロピル)アジド379mgのメタノール8ml溶液に、<math>10%パラジウムー炭素触媒80mgを加え、水素雰囲

気下、1時間攪拌した。触媒を濾去後、溶媒を減圧留去することにより表題化合物306mgを得た。

(工程6)

(4S) -4-(ヒドロキシメチル)テトラヒドロピリミジン-2(1H)-5 チオンの合成

(3S) -4-(t-ブチル(ジメチル)シリル)オキシブタン-1,3-ジアミン98mgのアセトニトリル20ml溶液に、テトラメチルチオラム モノスルフィド65mgを加え、6時間加熱環流した。溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/酢酸エチル=1/1)にて精製し、得られた化合物のテトラヒドロフラン2ml溶液にテトラブチルアンモニウムフロリドの1.0Mテトラヒドロフラン溶液0.16mlを加え、室温にて1時間放置した。反応液を酢酸エチルにて希釈し、水及び飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し表題化合物51mgを得た。

15 (工程7)

((4S) - 2 - F オキソヘキサヒドロピリミジン- 4 - イル)メチル (2R) - 2 - ((1R) - 3, 3 - ジフルオロシクロペンチル) - 2 - ヒドロキシ - 2 - フェニルエタノエートの合成

(2R) -2-((1R) -3, 3-ジフルオロシクロペンチル) -2-ヒド
 ロキシ-2-フェニル酢酸及び(4S) -4-(ヒドロキシメチル) テトラヒドロピリミジン-2(1H) -チオンを用いて、参考例12工程2と同様の方法にて表題化合物を製造した。

#### 参考例78

メチル 2-((4S)-2, 2-ジメチル-1, 3-ジオキソラン-4-イル) アセテートを用い、参考例77と同様の方法にて表題化合物を製造した。 参考例79

(2R)-2-((1R)-3,3-ジフルオロシクロペンチル)-2-ヒドロキシ-2-フェニル酢酸及び5-ヒドロキシテトラヒドロピリミジン-2(1H)-チオン(特開平01-128970記載)を用いて、参考例12工程2と同様の方法にて表題化合物を製造した。

#### 製剤例1

実施例1の化合物0.1gを生理食塩水900mlに溶解し、更に生理食塩水10 を加えて全量を1000mlとした後、孔径0.25μmのメンプランフィルターで除菌濾過した。この溶液を1mlずつ滅菌処理したアンプルに分注し、吸入液剤とした。

#### 製剤例2

実施例1の化合物10gと乳糖70gを均一に混合し、混合末100mgを専 15 用の粉末吸入器に充填し、粉末吸入製剤(1吸入400μg)とした。

#### 産業上の利用可能性

本発明の化合物は選択的ムスカリンM<sub>3</sub>受容体拮抗作用を有することから副作用が少なく安全であり、また、吸入投与法においても優れた薬理効果及びその作 20 用持続性を示すことから、呼吸器系疾患等の処置剤として有用である。

15

20

122

## 請求の範囲



5 [式中、Aは式 (a<sub>0</sub>) 又は (b<sub>0</sub>)

で表される基を意味し; Arはハロゲン原子、低級アルキル基、低級アルケニル 基及び低級アルコキシ基からなる群より選択される置換基を有していてもよい、 アリール基又はヘテロアリール基を意味し; $B^1$ 及び $B^2$ は、それぞれ独立して、 直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又は不飽和 脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を 介していてもよい基を意味し; $R^1$ はフッ素原子で置換された炭素数4ないし6のシクロアルキル基であって、水酸基を有していてもよい基を意味し;R²、R³ 及びR<sup>4</sup>は、それぞれ独立して、フェニル基及びシクロアルキル基からなる群よ り選択される置換基を有していてもよい低級アルキル基を意味するか、R<sup>2</sup>及び R³は、一緒になって、酸素原子を介していてもよい炭素数2ないし5のアルキ レン基を意味するか、又はR<sup>4</sup>はB<sup>1</sup>上の結合可能な任意の部位と結合する、単結 合若しくは炭素数1ないし3のアルキレン基を意味し; R⁵は水素原子、若しく はフェニル基及びシクロアルキル基からなる群より選択される置換基を有してい てもよい低級アルキル基を、R<sup>7</sup>は水素原子若しくは低級アルキル基を意味する か、又はR<sup>5</sup>及びR<sup>7</sup>のいずれか一方は、B<sup>2</sup>上の結合可能な任意の部位と結合す る、単結合若しくは炭素数1ないし3のアルキレン基を意味し;R<sup>6</sup>は水素原子、 低級アルキル基又は $-N(R^8)R^9$ で表される基を意味し;  $R^8$ 及び $R^9$ は、それ

ぞれ独立して、水素原子又は低級アルキル基を意味し;X<sup>-</sup>は陰イオンを意味す る〕で表される化合物又はその塩。

123

- (2) R<sup>1</sup>がフッ素原子で置換されたシクロペンチル基である請求項1記載の化 合物。
- (3) R<sup>1</sup>が3, 3-ジフルオロシクロペンチル基である請求項2記載の化合物。 5 (4) Aが式(a<sub>n</sub>)

$$-B^{1}-N^{+}$$
 $R^{2}$ 
 $R^{3}$ 
 $R^{3}$ 

[式中、B<sup>1</sup>は直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の 飽和又は不飽和脂肪族炭化水素基であって、水酸基を有していてもよい、及び/ 又は窒素原子を介していてもよい基を意味し; R<sup>2</sup>、R<sup>3</sup>及びR<sup>4</sup>は、それぞれ独 立して、フェニル基及びシクロアルキル基からなる群より選択される置換基を有 していてもよい低級アルキル基を意味するか、R<sup>2</sup>及びR<sup>3</sup>は、一緒になって、酸 素原子を介していてもよい炭素数2ないし5のアルキレン基を意味するか、又は R<sup>4</sup>はB<sup>1</sup>上の結合可能な任意の部位と結合する、単結合若しくは炭素数1ないし 3のアルキレン基を意味し; X-は陰イオンを意味する] で表される基である請 求項1、2又は3記載の化合物。

#### (5) Aが式(a<sub>1</sub>)

10

15

$$-(CH_2)_k-B_1^{11}$$
 $B_1^{12}$ 
 $R^2$ 
 $R^3$ 

[式中、 $B^{11}$ 及び $B^{12}$ は、それぞれ独立して、炭素数1ないし6の飽和又は不飽 20 和脂肪族炭化水素基であって、互いに架橋されていてもよい基を意味し; kは0、 1又は2を意味し;R<sup>2</sup>及びR<sup>3</sup>は、それぞれ独立して、フェニル基で置換されて いてもよい低級アルキル基を意味するか、又はR<sup>2</sup>及びR<sup>3</sup>は、一緒になって、酸 素原子を介していてもよい炭素数2ないし5のアルキレン基を意味し;X-は陰 イオンを意味する(ただし、B<sup>11</sup>及びB<sup>12</sup>の炭素数並びに架橋を形成する炭素原

子の数並びにkの和は13を越えない)]で表される基である請求項1、2又は 3記載の化合物。

(6) Aが式(a<sub>2</sub>)

[式中、kは0、1又は2を意味し;  $R^{21}$ 及び $R^{31}$ は、それぞれ独立して、低級 5 アルキル基を意味し; X<sup>-</sup>は陰イオンを意味する] で表される基である請求項1、 2又は3記載の化合物。

(7) Aが式(a<sub>3</sub>)

$$-(CH_2)_k$$
  $N^+$   $R^{21}$   $(a_3)$ 

- [式中、kは0、1又は2を意味し;  $R^{21}$ 及び $R^{31}$ は、それぞれ独立して、低級 10 アルキル基を意味し; X-は陰イオンを意味する] で表される基である請求項1、 2又は3記載の化合物。
  - (8) Aが式(a<sub>4</sub>)

$$X^{-}$$
 $R^{21}$ 
 $R^{31}$ 
 $(CH_2)_k$ 
 $(a_4)$ 

- [式中、kは0、1又は2を意味し;  $R^{21}$ 及び $R^{31}$ は、それぞれ独立して、低級 15 アルキル基を意味し; $X^-$ は陰イオンを意味する]で表される基である請求項1、 2又は3記載の化合物。
  - (9) kが0である請求項5、6、7又は8記載の化合物。
  - (10) R<sup>21</sup>及びR<sup>31</sup>が、ともにメチル基である請求項6、7、8又は9記載の

化合物。

10

15

(11)  $A r が ハロゲン原子、低級アルキル基、低級アルケニル基及び低級アルコキシ基からなる群より選択される置換基を有するフェニル基である請求項4、<math>5 \times 6 \times 7 \times 8 \times 9$  又は10記載の化合物。

5 (12) Arが4-クロロフェニル基である請求項11記載の化合物。

(13) Aが式(b<sub>0</sub>)

$$-B^2 - N \qquad N \qquad (b_0)$$

[式中、B²は直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の 飽和又は不飽和脂肪族炭化水素基であって、水酸基を有していてもよい、及び/ 又は窒素原子を介していてもよい基を意味し; R⁵は水素原子、若しくはフェニ ル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい 低級アルキル基を、R¹は水素原子若しくは低級アルキル基を意味するか、又は R⁵及びR¹のいずれか一方は、B²上の結合可能な任意の部位と結合する、単結 合若しくは炭素数1ないし3のアルキレン基を意味し; R°は水素原子、低級ア ルキル基又は-N(R³) R³で表される基を意味し; R°及びR³は、それぞれ独 立して、水素原子又は低級アルキル基を意味する]で表される基である請求項1、 2又は3記載の化合物。

(14) Aが式(b<sub>1</sub>)

20 [式中、 $B^{21}$ 及び $B^{22}$ は、それぞれ独立して、炭素数 1 ないし 6 の飽和又は不飽和脂肪族炭化水素基であって、互いに架橋されていてもよい基を意味し; mは 0、 1 又は 2 を意味し;  $R^{6}$ は水素原子、低級アルキル基又は-N( $R^{8}$ )  $R^{9}$ で表される基を意味し;  $R^{8}$ 及び $R^{9}$ は、それぞれ独立して、水素原子又は低級アルキル

基を意味し; R<sup>71</sup>は水素原子若しくは低級アルキル基を意味する(ただし、 B<sup>21</sup>及びB<sup>22</sup>の炭素数並びに架橋を形成する炭素原子の数並びにmの和は13 を越えない)] で表される基である請求項1、2又は3記載の化合物。

(15) R<sup>71</sup>が水素原子である請求項14記載の化合物。

#### (16) Aが式(b<sub>2</sub>) 5

 $[式中、mは0、1又は2を意味し;R^6は水素原子、低級アルキル基又は$ -N  $(R^8)$   $R^9$ で表される基を意味し;  $R^8$ 及び $R^9$ は、それぞれ独立して、水素 原子又は低級アルキル基を意味する]で表される基である請求項1、2又は3記 載の化合物。 10

### (17) Aが式(b<sub>3</sub>)

$$-(CH_2)_m$$
  $N$   $NH$   $(b_3)$ 

[式中、mは0、1又は2を意味し; R<sup>6</sup>は水素原子、低級アルキル基又は -N  $(R^8)$   $R^9$ で表される基を意味し;  $R^8$ 及び $R^9$ は、それぞれ独立して、水素 原子又は低級アルキル基を意味する]で表される基である請求項1、2又は3記 15 載の化合物。

- (18) mが1又は2である請求項14、15、16又は17記載の化合物。
- (19) R<sup>6</sup>が水素原子である請求項13、14、15、16、17又は18記 載の化合物。
- (20) Arがハロゲン原子、低級アルキル基、低級アルケニル基及び低級アル 20 コキシ基からなる群より選択される置換基を有していてもよいフェニル基である 請求項13、14、15、16、17、18又は19記載の化合物。
  - (21) Arが無置換のフェニル基である請求項20記載の化合物。

127

(22) 一般式(II)

$$HO \xrightarrow{Ar} C \xrightarrow{O} O \xrightarrow{Ap} (II)$$

[式中、A<sup>p</sup>は式 (a<sub>no</sub>) 又は (b<sub>no</sub>)

$$-B^{1}$$
  $R^{20}$   $R^{20}$   $R^{5}$   $R^{5}$ 

- で表される基を意味し;Arはハロゲン原子、低級アルキル基、低級アルケニル 5 基及び低級アルコキシ基からなる群より選択される置換基を有していてもよい、 アリール基又はヘテロアリール基を意味し;B¹及びB²は、それぞれ独立して、 直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又は不飽和 脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を 介していてもよい基を意味し; R1はフッ素原子で置換された炭素数4ないし6 10 のシクロアルキル基であって、水酸基を有していてもよい基を意味し: R 20 は水 素原子を意味するか、又はフェニル基及びシクロアルキル基からなる群より選択 される置換基を有していてもよい低級アルキル基を意味し; R 40 はフェニル基及 びシクロアルキル基からなる群より選択される置換基を有していてもよい低級ア ルキル基を意味するか、又はB<sup>1</sup>上の結合可能な任意の部位と結合する、単結合 15 若しくは炭素数1ないし3のアルキレン基を意味し:R5は水素原子、若しくは フェニル基及びシクロアルキル基からなる群より選択される置換基を有していて もよい低級アルキル基を意味するか、又はB<sup>2</sup>上の結合可能な任意の部位と結合 する、単結合若しくは炭素数1ないし3のアルキレン基を意味する]で表される 20 化合物又はその塩。
  - (23) R<sup>1</sup>がフッ素原子で置換されたシクロペンチル基である請求項22記載 の化合物。
  - (24) R<sup>1</sup>が3, 3-ジフルオロシクロペンチル基である請求項23記載の化 合物。
- (25) A<sup>p</sup>が式(a<sub>n</sub>) 25

10

15

$$-B^{1}$$
  $N$   $R^{20}$   $(a_{p0})$ 

[式中、 $B^1$ は直鎖状、分岐状及び/又は環状部からなる炭素数 2 ないし 1 0 の 飽和又は不飽和脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を介していてもよい基を意味し; $R^{20}$ は水素原子を意味するか、又はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味し; $R^{40}$ はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味するか、又は $B^1$ 上の結合可能な任意の部位と結合する、単結合若しくは炭素数 1 ないし3 のアルキレン基を意味する] で表される基である請求項 2 2 3 又は 2 4 記載の化合物。

(26) A<sup>p</sup>が式(a<sub>p1</sub>)

$$-(CH_2)_k-B_{12}^{11}-N-R^{20}$$
 (a<sub>p1</sub>)

[式中、 $B^{11}$ 及び $B^{12}$ は、それぞれ独立して、炭素数 1 ないし 6 の飽和又は不飽和脂肪族炭化水素基であって、互いに架橋されていてもよい基を意味し;k は 0 、 1 又は 2 を意味し; $R^{20}$  は水素原子を意味するか、又はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味する(ただし、 $B^{11}$  及び $B^{12}$  の炭素数並びに架橋を形成する炭素原子の数並びにk の和は 1 3 を越えない)]で表される基である請求項 2 2 3 又は 2 4 記載の化合物。

20 (27) A<sup>p</sup>が式(a<sub>p2</sub>)

$$-(CH_2)_k$$
  $N-R^{20}$   $-(CH_2)_k$   $N-R^{20}$   $N-R^{$ 

[式中、kは0、1又は2を意味し; $R^{20}$ は水素原子を意味するか、又はフェニ

15

ル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい 低級アルキル基を意味する]で表される基である請求項22、23又は24記載 の化合物。

(28) A<sup>p</sup>が式(a<sub>n3</sub>)

$$-(CH_2)_k$$
  $-(CH_2)_k$   $(a_{p3})$ 

[式中、kは0、1又は2を意味し; R<sup>20</sup>は水素原子を意味するか、又はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味する]で表される基である請求項22、23又は24記載の化合物。

10 (29) A<sup>p</sup>が式(a<sub>n4</sub>)

$$N-R^{20}$$
 $(CH_2)_k$ 
 $(a_{p4})$ 

[式中、kは0、1又は2を意味し; $R^2$ 0は水素原子を意味するか、又はフェニル基及びシクロアルキル基からなる群より選択される置換基を有していてもよい低級アルキル基を意味する]で表される基である請求項22、23又は24記載の化合物。

- (30) kが0である請求項26、27、28又は29記載の化合物。
- (31) Arがハロゲン原子、低級アルキル基、低級アルケニル基及び低級アルコキシ基からなる群より選択される置換基を有するフェニル基である請求項25、26、27、28、29又は30記載の化合物。
- 20 (32) Arが4-クロロフェニル基である請求項31記載の化合物。
  - (33) A<sup>p</sup>が式(b<sub>p0</sub>)

$$-B^2-NH$$

$$\int_{R^5} (b_{p0})$$

[B<sup>2</sup>は直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又

(34) A<sup>p</sup>が式(b<sub>p1</sub>)

$$-(CH_2)_m - B_2^{21} - NH$$
 $B_2^{22}$ 
 $(b_{p1})$ 

[式中、 $B^{21}$ 及び $B^{22}$ は、それぞれ独立して、炭素数 1 ないし 6 の飽和又は不飽 10 和脂肪族炭化水素基であって、互いに架橋されていてもよい基を意味し; mは 0、 1 又は 2 を意味する(ただし、 $B^{21}$  及び  $B^{22}$  の炭素数並びに架橋を形成する炭素 原子の数並びにmの和は 1 3 を越えない)]で表される基である請求項 2 2 、 2 3 又は 2 4 記載の化合物。

(35) A<sup>p</sup>が式(b<sub>n2</sub>)

$$-(CH_2)_m \longrightarrow NH \qquad -(CH_2)_m \longrightarrow NH \qquad (b_{p2})$$

$$-(CH_2)_m \longrightarrow NH \qquad \forall i \downarrow \qquad -(CH_2)_m \longrightarrow NH$$

[式中、mは0、1又は2を意味する]で表される基である請求項22、23又は24記載の化合物。

(36) A<sup>p</sup>が式(b<sub>n3</sub>)

15

$$-(CH_2)_m$$
- $NH$  (  $b_{p3}$  )

20 [式中、mは0、1又は2を意味する]で表される基である請求項22、23又 は24記載の化合物。

- (37) mが1又は2である請求項34、35又は36記載の化合物。
- (38) Arがハロゲン原子、低級アルキル基、低級アルケニル基及び低級アルコキシ基からなる群より選択される置換基を有していてもよいフェニル基である

WO 02/04402

131

請求項33、34、35、36又は37記載の化合物。

(39) Arが無置換のフェニル基である請求項38記載の化合物。

(40) 一般式(I)

$$HO \xrightarrow{Ar} C \xrightarrow{O} O \xrightarrow{C} O \xrightarrow{O} A$$
 (1)

[式中、Aは式(a<sub>o</sub>) 又は(b<sub>o</sub>) 5

で表される基を意味し;Arはハロゲン原子、低級アルキル基、低級アルケニル 基及び低級アルコキシ基からなる群より選択される置換基を有していてもよい、 アリール基又はヘテロアリール基を意味し;B<sup>1</sup>及びB<sup>2</sup>は、それぞれ独立して、 直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又は不飽和 10 脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を 介していてもよい基を意味し; R1はフッ素原子で置換された炭素数4ないし6 のシクロアルキル基であって、水酸基を有していてもよい基を意味し; R<sup>2</sup>、R<sup>3</sup> 及びR<sup>4</sup>は、それぞれ独立して、フェニル基及びシクロアルキル基からなる群よ り選択される置換基を有していてもよい低級アルキル基を意味するか、R2及び 15 R³は、一緒になって、酸素原子を介していてもよい炭素数2ないし5のアルキ レン基を意味するか、又はR<sup>4</sup>はB<sup>1</sup>上の結合可能な任意の部位と結合する、単結 合若しくは炭素数1ないし3のアルキレン基を意味し;R<sup>5</sup>は水素原子、若しく はフェニル基及びシクロアルキル基からなる群より選択される置換基を有してい てもよい低級アルキル基を、R<sup>7</sup>は水素原子若しくは低級アルキル基を意味する 20 か、又はR<sup>5</sup>及びR<sup>7</sup>のいずれか一方は、B<sup>2</sup>上の結合可能な任意の部位と結合す る、単結合若しくは炭素数1ないし3のアルキレン基を意味し; R 6は水素原子、 低級アルキル基又は $-N(R^8)R^9$ で表される基を意味し;  $R^8$ 及び $R^9$ は、それ ぞれ独立して、水素原子又は低級アルキル基を意味し:X-は陰イオンを意味す

る] で表される化合物又はその塩を有効成分とするムスカリン $M_3$ 受容体が関与する疾患の処置剤。

### (41) 一般式(I)

10

15

20

$$\begin{array}{c|cccc}
Ar & O \\
& & \parallel \\
HO & C & O & A
\end{array} \tag{1}$$

5 [式中、Aは式 (a₀) 又は (b₀)

で表される基を意味し;Arはハロゲン原子、低級アルキル基、低級アルケニル 基及び低級アルコキシ基からなる群より選択される置換基を有していてもよい、 アリール基又はヘテロアリール基を意味し;B¹及びB²は、それぞれ独立して、 直鎖状、分岐状及び/又は環状部からなる炭素数2ないし10の飽和又は不飽和 脂肪族炭化水素基であって、水酸基を有していてもよい、及び/又は窒素原子を 介していてもよい基を意味し; $R^1$ はフッ素原子で置換された炭素数4ないし6のシクロアルキル基であって、水酸基を有していてもよい基を意味し; R²、R³ 及びR<sup>4</sup>は、それぞれ独立して、フェニル基及びシクロアルキル基からなる群よ り選択される置換基を有していてもよい低級アルキル基を意味するか、R<sup>2</sup>及び  $R^3$ は、一緒になって、酸素原子を介していてもよい炭素数 2 ないし 5 のアルキ レン基を意味するか、又はR<sup>4</sup>はB<sup>1</sup>上の結合可能な任意の部位と結合する、単結 合若しくは炭素数1ないし3のアルキレン基を意味し;R<sup>5</sup>は水素原子、若しく はフェニル基及びシクロアルキル基からなる群より選択される置換基を有してい てもよい低級アルキル基を、R<sup>7</sup>は水素原子若しくは低級アルキル基を意味する か、又はR<sup>5</sup>及びR<sup>7</sup>のいずれか一方は、B<sup>2</sup>上の結合可能な任意の部位と結合す る、単結合若しくは炭素数1ないし3のアルキレン基を意味し;R<sup>6</sup>は水素原子、 低級アルキル基又は-N(R®)R®で表される基を意味し;R®及びR®は、それ ぞれ独立して、水素原子又は低級アルキル基を意味し; X-は陰イオンを意味す

133

る]で表される化合物又はその塩を有効成分とする、慢性閉塞性肺疾患、慢性気管支炎、喘息、慢性気道閉塞、肺繊維症、肺気腫又は鼻炎の処置剤。

(42) 吸入剤である請求項40又は41記載の処置剤。

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/05987

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FC1/6161/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLASSIFICATION OF SUBJECT MATTER  Int.Cl <sup>2</sup> C07C219/10, 219/22, 219/24, 251/08, 251/18, C07D211/4  221/24, C07D209/52, 498/10, 471/10, 487/10, 211/22,  A61K31/452, 31/439, A61K31/435, 31/4409, 31/403, 31/2  31/407, A61P11/00, 11/06, A61P43/00, 27/16, A61K31/45  cording to International Patent Classification (IPC) or to both national classification a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 525, 31/397, 31/55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FIELDS SEARCHED  inimum documentation searched (classification system followed by classification symminimum documentation searched (classification system followed by classification symminimum documentation searched (classification system)  Int.Cl7 C07C219/10, 219/22, 219/24, 251/08, 251/18, C07D211/2 221/24, C07D209/52, 498/10, 471/10, 487/10, 211/22 A61K31/452, 31/439, A61K31/435, 31/4409, 31/403, 31/407, A61K31/409, 11/06, A61P43/00, 27/16, A61K31/4 31/407, A61P11/00, 11/06, A61P43/00, 27/16, A61K31/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , 21, 31/392, 31/40, 31/5386, 31/438, 222, 31/397, 31/55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 31/407, A61P11/00, 11/06, A61P43/00, 27/16, A61R3/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | amond at a live and a |
| lectronic data base consulted during the international search (name of data base and, v<br>CAPLUS (STN), CAOLD (STN), REGISTRY (STN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | where practicable, search terms used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C. DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C. L. with indication where appropriate, of the re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | evant passages Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Category* Citation of document, with induction, which is a constant of the property of | 1~42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| & JP 2001-504459 A & M 35.751  EP 140434 A2 (Prodotti Formaenti S.R.L.), 08 May, 1985 (08.05.85), & JP 60-115516 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1~42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A FR 1352332 A1 (SPOFA, Sdruzeni Podniku Pro Z<br>Vyrobu),<br>06 January, 1964 (06.01.64),<br>& CZ 109517 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zdravotnickou 1~42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| * Special categories of cited documents:  "A" Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other combined combined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at family annex.  ment published after the international filing date or the and not in conflict with the application but cited to d the principle or theory underlying the invention of particular relevance; the claimed invention cannot be downed or cannot be considered to involve an inventive the document is taken alone to f particular relevance; the claimed invention cannot do involve an inventive step when the document is d with one or more other such documents, such ion being obvious to a person skilled in the art at the member of the same patent family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and document published prior to the international tring and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| document published prior to the international range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng of the international search report<br>ctober, 2001 (23.10.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| document published prior to the international search  Date of mailing  The school completion of the international search  Date of mailing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctoper, 2001 (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### 国際調查報告

#### A. 発明の属する分野の分類(国際特許分類 (IPC))

Int. Cl<sup>1</sup> C07C219/10, 219/22, 219/24, 251/08, 251/18, C07D211/46, 405/12, 451/02, 207/12, 207/08, 221/24, C07D209/52, 498/10, 471/10, 487/10, 211/22, 211/70, 295/125, 205/04, 239/06, A61K31/452, 31/439, A61K31/435, 31/409, 31/403, 31/222, 31/395, 31/40, 31/5386, 31/438, 31/407, A61P11/00, 11/06,

#### B. 調査を行った分野

#### 調査を行った最小限資料(国際特許分類(IPC))

Int. C1<sup>1</sup> C07C219/10, 219/22, 219/24, 251/08, 251/18, C07D211/46, 405/12, 451/02, 207/12, 207/08, 221/24, C07D209/52, 498/10, 471/10, 487/10, 211/22, 211/70, 295/125, 205/04, 239/06, A61K31/452, 31/439, A61K31/435, 31/4409, 31/403, 31/222, 31/395, 31/40, 31/5386, 31/438, 31/407, A61P11/00, 11/06,

最小限資料以外の資料で調査を行った分野に含まれるもの

#### 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), CAOLD (STN), REGISTRY (STN)

C. 関連すると認められる文献

| し、              |                                                                                                           |                  |
|-----------------|-----------------------------------------------------------------------------------------------------------|------------------|
| 引用文献の<br>カテゴリー* | 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示                                                                         | 関連する<br>請求の範囲の番号 |
| Α .             | WO 98/21183 Al(NOE, Chirstian, R.)<br>22.5月.1998(22.05.98) & JP 2001-504459 A & EP 937041 Al              | 1~42             |
| Α               | EP 140434 A2(PRODOTTI FORMAENTI S.r.l.)<br>8.5月.1985(08.05.85) & JP 60-115516 A                           | 1~42             |
| A               | FR 1352332 A1<br>(SPOFA, SDRUZENI PODNIKU PRO ZDRAVOTNICKOU VYROBU)<br>6.1月.1964(06.01.64) & CZ 109517 A1 | 1~42             |
|                 | 1                                                                                                         | 1                |

#### □ C欄の続きにも文献が列挙されている。

#### \* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に官及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

#### の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

10.10.01

国際調査報告の発送日

23.10.01

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 本営 裕司



4H 9049

電話番号 03-3581-1101 内線 3443

# A. 発明の属する分野の分類(国際特許分類(IPC))の続き

Int. Cl<sup>7</sup> A61P43/00, 27/16, A61K31/4525, 31/397, 31/55

## B. 調査を行った分野 調査を行った最小限資料(国際特許分類 (IPC)) の続き

Int. Cl<sup>7</sup> A61P43/00, 27/16, A61K31/4525, 31/397, 31/55