به نام خدا

نام: فاطمه زهرا بخشنده اود آبادی

شماره دانشجویی: 98522157

گزارش تمرین 3:

سوال اول:

عملیات کانولوشن دو بعدی به صورت زیر است:

$$S(i,j) = (I \star K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

ابتدا کرنل را 180 درجه می چرخانیم (این کرنل چون متقارن است، با خودش یکی می شود):

1	1	1
1	-8	1
1	1	1

ابتدا با توجه به ابعاد کرنل، به تصویر zero padding اضافه می کنیم.

0	0	0	0	0	0	0
0	0	0	10	0	0	0
0	0	0	10	0	0	0
0	0	0	10	0	0	0
0	0	0	10	0	0	0
0	0	0	10	0	0	0
0	0	0	0	0	0	0

سپس از خانه (0, 0) شروع کرده و کرنل را روی تصویر حرکت می دهیم. طبق فرمول بالا، اعدادی که روی هم قرار میگیرند در هر ضرب شده و باهم جمع می شوند. و نتیجه convolution تصویر با کرنل بدست میآید.

0	20	-70	20	0
0	30	-60	30	0
0	30	-60	30	0
0	30	-60	30	0
0	20	-70	20	0

تحلیل نتیجه: کرنل استفاده شده، کرنل لاپلاسین است، که در واقع مشتق دوم تصویر را به صورت تقریبی محاسبه می کند.

$$\Delta^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

لاپلاسین تغییرات شدت روشنایی را برجسته میکند و لبه ها و تغییرات تصویر را تشخیص می دهد. همانطور که دیدیم این تصویر دارای یک لبه عمودی بود که این کرنل آن را پیدا کرده است. و جاهایی که تغییرات بیشتر است (با توجه به zero padding)، مقادیر بزرگتر شده اند.