Cálculo

______ folha 2 ______ 2015'16 _____

Generalidades sobre funções reais de variável real.

 $\textbf{1.} \ \ \mathsf{O} \ \mathsf{n\'umero} \ \mathsf{de} \ \mathsf{estr\'idulos} \ \mathsf{por} \ \mathsf{m\'inuto} \ \mathsf{\'e}, \ \mathsf{no} \ \mathsf{caso} \ \mathsf{dos} \ \mathsf{grilos}, \ \mathsf{uma} \ \mathsf{fun\'e\~ao} \ \mathsf{da} \ \mathsf{temperatura} \ \mathsf{ambiente}, \ \mathsf{a} \ \mathsf{saber}$

c(T) = 4T - 160,

- $\mathsf{com}\ T$ expresso $\mathsf{em}\ \mathsf{graus}\ \mathsf{Fahrenheit}.$
- (a) Esboce graficamente esta função, real de uma variável real, c.
- (b) Defina o domínio e o contradomínio da função c.
- 2. As alturas (em "polegadas") atingidas, na modalidade de salto à vara, nos Jogos Olímpicos de 1900, 1904, de 1908 e de 1912 tabelam-se a seguir:

t	1900	1904	1908	1912
\overline{a}	130	138	146	154

- (a) Esboce graficamente a função a, real de uma variável real t.
- (b) Defina o domínio e o contradomínio da função a.
- (c) Se a característica linear da função a se tivesse mantido após 1912 qual teria sido o recorde de salto com vara (masculino) atingido nos últimos Jogos Olímpicos?
- **3.** Faça corresponder a cada uma das situações descritas uma representação gráfica. Descreva uma situação adequada à representação gráfica restante.
 - (a) Tinha acabado de sair de casa quando me apercebi que tinha esquecido uns livros e por isso tive de voltar.

- (b) A viagem estava a correr bem até que tive um furo.
- (c) Seguia calmamente quando me apercebi que estava a ficar atrasado.

- 4. Em 1999 a população mundial atingiu os $6\,000$ milhões de pessoas e crescia a uma taxa de 1.3% por ano.
 - (a) Mostre que a população mundial P, depois de 1999, se representa por uma função exponencial do tipo $P(t) = P_0 a^t$, com P_0 uma constante inicial (quando t = 0) e a o factor segundo o qual P se altera, quando t aumenta 1 unidade.
 - (b) Identifique os valores de a, na equação da alínea anterior, que caracterizam um crescimento exponencial
 - (c) Assumindo que no caso concreto do crescimento da população mundial o crescimento se manteve, depois de 1999, constante encontre uma fórmula que defina a função P.
 - (d) Use a fórmula encontrada na alínea anterior para estimar a população do mundo, em 2020.
 - (e) Esboce graficamente a função P definida nas alíneas anteriores e, a partir desse esboço, estime o ano de duplicação (em relação a 1999) da população mundial.
- **5.** Sem recurso a uma calculadora gráfica, nem a um computador, faça corresponder cada uma das fórmulas $y=e^x$, $y=\ln x$, $y=x^2$ e $y=\sqrt{x}$ a cada uma das curvas esboçadas.

6. Determine o maior domínio onde é válida cada uma das seguintes regras:

(a)
$$f(x) = \frac{1}{x^2 - 1}$$

(c)
$$f(x) = \sqrt{1 - \cos(3x^3 + x)}$$

(b)
$$f(x) = \sqrt{2 - 3x} + \sqrt{x}$$

(d)
$$f(x) = \frac{\sqrt{4x-3}}{x^2-4}$$

7. Determine o domínio das funções f+g, f-g, fg, f/g quando

(a)
$$f(x) = \sqrt{x+5}$$
, $g(x) = \sqrt{x+5}$

(c)
$$f(x) = \frac{2x}{x-4}$$
, $g(x) = \frac{x}{x+5}$

(b)
$$f(x) = \sqrt{3-2x}$$
, $g(x) = \sqrt{x+4}$

(d)
$$f(x) = \frac{x}{x-2}$$
, $g(x) = \frac{3x}{x+4}$

8. Determine $f \circ g$ e $g \circ f$ e, em cada caso, o respetivo domínio, quando

(a)
$$f(x) = x^2 - 3x$$
, $g(x) = \sqrt{x+2}$

(c)
$$f(x) = \sqrt{x-2}$$
, $g(x) = \sqrt{x+5}$

(b)
$$f(x) = \sqrt{x+15}$$
, $g(x) = x^2 + 2x$

(b)
$$f(x) = \sqrt{x+15}$$
, $g(x) = x^2 + 2x$ (c) $f(x) = \sqrt{25-x^2}$, $g(x) = \sqrt{x-3}$

9. Para cada uma das funções h dadas indique duas funções $f \in g$ (diferentes da identidade) tais que $h = g \circ f$:

(a)
$$h(x) = \operatorname{sen}\left(\frac{x}{x^2 - 3}\right)$$

(a)
$$h(x) = \operatorname{sen}\left(\frac{x}{x^2 - 3}\right)$$
 (b) $h(x) = \sqrt{x^2 + 1} + \frac{2}{x^2 + 1}$ (c) $h(x) = \sqrt{2x - 2} - 4x + 4$

(c)
$$h(x) = \sqrt{2x-2} - 4x + 4$$

- 10. Se f e g são funções pares, o que se pode dizer de $f \circ g$? E se forem ímpares? E se uma função for par e a outra ímpar?
- 11. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por f(x) = |x|. Esboce o gráfico de g quando:

(a)
$$g(x) = f(x) - 1$$

(c)
$$g(x) = \max\{f(x), 1\}$$

(b)
$$q(x) = f(x+2)$$

(d)
$$q(x) = \min\{f(x), 2\}$$

- **12.** Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = x^2 + 2x + 3$.
 - (a) Defina uma restrição de f que admita inversa.
 - (b) Defina a função inversa da função da alínea (a).
 - (c) Esboce graficamente a função f e a sua função inversa.
- **13.** Defina funções $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ nas condições indicadas
 - (a) f contínua, g descontínua, $g \circ f$ contínua
 - (b) f descontínua, g contínua, $g \circ f$ contínua
 - (c) f e g descontínuas, $g \circ f$ e $f \circ g$ contínuas

Haverá alguma contradição com o teorema sobre a continuidade da função composta?

14. Considere a função contínua definida por

$$f(x) = \begin{cases} x+1, & 0 \le x < 1 \\ x, & 2 \le x \le 3 \end{cases}$$

- (a) A função f é bijectiva. Justifique.
- (b) Determine a função inversa de f.
- (c) f^{-1} é contínua?
- (d) O teorema da continuidade da função inversa foi posto em causa?