STAT 401A - Statistical Methods for Research Workers Modeling assumptions

Jarad Niemi (Dr. J)

Iowa State University

last updated: September 15, 2014

Normality assumptions

In the paired t-test, we assume

$$D_i \stackrel{iid}{\sim} N(\mu, \sigma^2).$$

In the two-sample t-test, we assume

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2).$$

Paired t-test

Distribution

Difference

0

Two-sample t-test

Normality assumptions

In the paired t-test, we assume

$$D_i \stackrel{iid}{\sim} N(\mu, \sigma^2).$$

In the two-sample t-test, we assume

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2).$$

Key features of the normal distribution assumption:

- Centered at the mean (expectation) μ
- Standard deviation describes the spread
- Symmetric around μ (no skewness)
- Non-heavy tails, i.e. outliers are rare (no kurtosis)

Normality assumptions

Probability density function

t distribution

Probability density function, f(y)

Probability density function

Probability density function, f(y)

Skewness

Log-normal distribution

Probability density function, f(y)

у

Samples from skewed distributions

Robustness

Definition

A statistical procedure is robust to departures from a particular assumption if it is valid even when the assumption is not met.

Remark If a 95% confidence interval is robust to departures from a particular assumption, the confidence interval should cover the true value about 95% of the time.

Robustness to skewness and kurtosis

Percentage of 95% confidence intervals that cover the true difference in means in an equal-sample two-sample t-test with non-normal populations (where the distributions are the same other than their means).

sample size	strongly skewed	moderately skewed	mildly skewed	heavy-tailed	short-tailed
5	95.5	95.4	95.2	98.3	94.5
10	95.5	95.4	95.2	98.3	94.6
25	95.3	95.3	95.1	98.2	94.9
50	95.1	95.3	95.1	98.1	95.2
100	94.8	95.3	95.0	98.0	95.6

Differences in variances

Normal distribution

Differences in variances

Robustness to differences in variances

Percentage of 95% confidence intervals that cover the true difference in means in an equal-sample two-sample t-test $(r = \sigma_1/\sigma_2)$.

	<u></u> 2	. 1/1	" 1/O	<u>.</u> 1	. O	r=4
n.	l n2	r=1/4	r=1/2	r=1	r=2	r=4
10	10	95.2	94.2	94.7	95.2	94.5
10	20	83.0	89.3	94.4	98.7	99.1
10) 40	71.0	82.6	95.2	99.5	99.9
100	100	94.8	96.2	95.4	95.3	95.1
100	200	86.5	88.3	94.8	98.8	99.4
100	400	71.6	81.5	95.0	99.5	99.9

Outliers

Definition

A statistical procedure is resistant if it does not change very much when a small part of the data changes, perhaps drastically.

Identify outliers:

- 1 If recording errors, fix.
- ② If outlier comes from a different population, remove and report.
- If results are the same with and without outliers, report with outliers.
- If results are different, use resistant analysis or report both analyses.

Common ways for independence to be violated

- Cluster effect
 - e.g. pigs in a pen
- Serial effect
 - e.g. measurements in time with drifting scale
- Spatial effect
 - e.g. corn yield plots (drainage)

Common transformations for data

From: http://en.wikipedia.org/wiki/Data_transformation_(statistics)

Definition

In statistics, data transformation refers to the application of a deterministic mathematical function to each point in a data set that is, each data point y_i is replaced with the transformed value $z_i = f(y_i)$, where f is a function.

The most common transformations are

- If y is a proportion, then $f(y) = \sin^{-1}(\sqrt{y})$.
- If y is a count, then $f(y) = \sqrt{y}$.
- If y is positive and right-skewed, then $f(y) = \log(y)$, the natural logarithm of y.

Remark Since $\log(0) = -\infty$, the logarithm cannot be used directly when some y_i are zero. In these cases, use $\log(y+c)$ where c is something small relative to your data, e.g. half of the minimum non-zero value.

Log transformation

Consider two-sample data and let $z_{ij} = log(y_{ij})$. Now, run a two-sample t-test on the z's. Then we assume

$$Z_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$$

and the quantity $\overline{Z}_2 - \overline{Z}_1$ estimates the "difference in population means on the (natural) log scale". The quantity $\exp\left(\overline{Z}_2 - \overline{Z}_1\right) = e^{\overline{Z}_2 - \overline{Z}_1}$ estimates

Median of population 2

Median of population 1

on the original scale or, equivalently, it estimates the multiplicative effect of moving from population 1 to population 2.

Log transformation interpretation

If we have a randomized experiment:

Remark It is estimated that the response of an experimental unit to treatment 2 will be $\exp\left(\overline{Z}_2-\overline{Z}_1\right)$ times as large as its response to treatment 1.

If we have an observational study:

Remark It is estimated that the median for population 2 is $\exp\left(\overline{Z}_2 - \overline{Z}_1\right)$ times as large as the median for population 1.

Confidence intervals with log transformation

If $z_{ij} = log(y_{ij})$ and we assume

$$Z_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2),$$

then a $100(1-\alpha)\%$ two-sided confidence interval for $\mu_2-\mu_1$ is

$$(L, U) = \overline{Z}_2 - \overline{Z}_1 \pm t_{n_1+n_2-2}(1 - \alpha/2)SE(\overline{Z}_2 - \overline{Z}_1).$$

A $100(1-\alpha)\%$ confidence interval for

Median of population 2 Median of population 1

is (e^L, e^U) .

Miles per gallon data

Untransformed:

Logged:

Miles per gallon data

Untransformed:

Logged:

Equal variances?

We might also be concerned about the assumption of equal variances.

Untransformed:

country	n	mean	sd
Japan	79	30.48	6.11
US	249	20.14	6.41

the ratio of sample standard deviations is around 1.05 and there are 3 times as many observations in the US.

Logged:

country	n	mean	sd
Japan	79	3.40	0.21
US	249	2.96	0.31

Now the ratio of standard deviations is 1.5 which argues for not using the logarithm.

95% two-sample CI for the ratio by hand

country	n	mean	sd
Japan	79	3.40	0.21
US	249	2.96	0.31

Choose group 2 to be Japan and group 1 to be the US:

$$\begin{array}{lll} \alpha & = 0.05 \\ n_1 + n_2 - 2 & = 249 + 79 - 2 = 326 \\ t_{n_1 + n_2 - 2}(1 - \alpha/2) & = t_{326}(0.975) = 1.96 \\ \overline{Z}_2 - \overline{Z}_1 & = 3.40 - 2.96 = 0.44 \\ s_p & = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{(249 - 1)0.31^2 + (79 - 1)0.21^2}{249 + 79 - 2}} = 0.29 \\ SE\left(\overline{Z}_2 - \overline{Z}_1\right) & = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = 0.29 \sqrt{\frac{1}{249} + \frac{1}{79}} = 0.037 \end{array}$$

Thus a 95% two-sided confidence interval for the difference (on the log scale) is

$$\begin{array}{ll} (\mathit{L},\mathit{U}) & = \overline{Z}_2 - \overline{Z}_1 \pm t_{n_1 + n_2 - 2} (1 - \alpha/2) \mathit{SE} \left(\overline{Z}_2 - \overline{Z}_1 \right) \\ & = 0.44 \pm 1.96 \times 0.037 \\ & = (0.37, 0.51) \end{array}$$

and a 95% two-sided confidence interval for the ratio (on the original scale) is

$$\left(e^{L},e^{U}\right)=\left(e^{0.37},e^{0.51}\right)=(1.45,1,67)$$

Using R for t-test using logarithms

```
t = t.test(log(mpg)~country, d, var.equal=TRUE)
t$estimate # On log scale
mean in group Japan mean in group US
             3.396
                                 2.955
exp(t$estimate) # On original scale
mean in group Japan mean in group US
             29.85
                                 19.21
exp(t$estimate[1]-t$estimate[2]) # Ratio of medians (Japan/US)
mean in group Japan
              1.554
exp(t$conf.int) # Confidence interval for ratio of medians
[1] 1.445 1.672
attr(, "conf.level")
[1] 0.95
```

SAS code for t-test using logarithms

```
DATA mpg;
INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
INPUT mpg country $;

PROC TTEST DATA=mpg TEST=ratio;
CLASS country;
VAR mpg;
run;
```

SAS output for t-test using logarithms

	Variable: mpg									
			Geometric	Co	effic	ient				
	country	N	Mean	n of	Varia	tion	Mir	nimum	Maximum	
	Japan	79	29.8525	5	0.	2111	18	.0000	47.0000	
	US	249	19.2051	L	0.	3147	9.	.0000	39.0000	
	Ratio (1/2)		1.5544	1	0.	2928				
		G	eometric				Coe	efficient		
country	Method		Mean	95% C	L Mea	n		Variation	95% 0	L CV
Japan			29.8525	28.4887	31.	2817		0.2111	0.1820	0.2514
US			19.2051	18.4825				0.3147		
Ratio (1/2)	Pooled		1.5544			6719		0.2928		0.3183
Ratio (1/2)	Satterthwaite		1.5544	1.4636		6508				
				Coe	ffici	ents				
	Method		of Variatio		DF		Value	Pr > 1	tl	
	Pooled		Equal		326		11.91	<.000	01	
	Satterthwaite Unequal		193.33		14.46	<.000				
	·									
Equality of Variances										
	Method Num DF Den DF F V					Value	e Pr	> F		

Folded F

248

2.17

0.0001

78

Conclusion

Japanese median miles per gallon is 1.55~[95%~Cl~(1.46,1.65)] times as large as US median miles per gallon.

OR

Japenese median miles per gallon is 55% [95% CI (46%,65%)] larger than US median miles per gallon.

Unequal standard deviations

The two-sample t-test tools assume either

$$Y_{ij} \overset{ind}{\sim} N(\mu_j, \sigma^2)$$
 or $Z_{ij} \overset{ind}{\sim} N(\mu_j, \sigma^2)$

depending on whether we were working on the original scale (Y) or log scale (Z), respectively.

But what if we don't believe the variances in the two populations are equal, e.g. in the log transformed miles per gallon data set?

Instead compare

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma_j^2)$$
 or $Z_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma_j^2)$,

i.e. the populations have unequal variances. But still test H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$ or construct a confidence interval for $\mu_2 - \mu_1$.

Visualization of two normals with unequal standard deviations

```
curve(dnorm, -3, 6, 1wd=2)
curve(dnorm(x, 2, 2), 1wd=2, col=2, 1ty=2, add=TRUE)
```


Welch's SE with Satterthwaite's approximation to df

Estimate of $(\mu_2 - \mu_1)$:

$$\overline{Y}_2 - \overline{Y}_1$$

Standard error:

$$SE_W(\overline{Y}_2 - \overline{Y}_1) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Degrees of freedom using the Satterthwaite's approximation:

$$df_W = \frac{SE_W \left(\overline{Y}_2 - \overline{Y}_1\right)^4}{\frac{SE(\overline{Y}_2)^4}{n_2 - 1} + \frac{SE(\overline{Y}_1)^4}{n_1 - 1}}$$

where

$$SE\left(\overline{Y}_{2}\right)=rac{s_{2}}{\sqrt{n_{2}}} \qquad ext{and} \qquad SE\left(\overline{Y}_{1}\right)=rac{s_{1}}{\sqrt{n_{1}}}$$

(which is the same formula as in the paired t-test)

Welch's t-test and CI

Welch's t-test has test statistic:

$$t = \frac{\left(\mathsf{Estimate\text{-}Parameter}\right)}{\mathsf{SE}(\mathsf{Estimate})} = \frac{\overline{Y}_2 - \overline{Y}_1 - (\mu_2 - \mu_1)}{\mathit{SE}_W\left(\overline{Y}_2 - \overline{Y}_1\right)}$$

which has a t distribution with (approximately) df_W degrees of freedom if the null hypothesis is true. Calculate the pvalue

- Two-sided $(H_1 : \mu_2 \neq \mu_1)$: $p = 2P(t_{df_W} < -|t|)$
- One-sided $(H_1: \mu_2 > \mu_1)$: $p = P(t_{df_M} < -t)$
- One-sided $(H_1 : \mu_2 < \mu_1)$: $p = P(t_{df_W} < t)$

Two-sided $100(1-\alpha)\%$ confidence interval for $\mu_2 - \mu_1$:

$$\overline{Y}_2 - \overline{Y}_1 \pm t_{df_W} (1 - \alpha/2) SE_W \left(\overline{Y}_2 - \overline{Y}_1 \right)$$

Are the variances equal?

Suppose

$$Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma_j^2)$$

and you want to test H_0 : $\sigma_1 = \sigma_2$ vs H_1 : $\sigma_1 \neq \sigma_2$.

You can use an F-test and its associated pvalue. If the pvalue is small, e.g. less than 0.05, then we reject H_0 . If the pvalue is not small, then we fail to reject H_0 , but this does not mean the variances are not equal.

(Section 4.5.3) discusses another approach called Levene's test

Welch's test and CI using R

```
var.test(mpg~country,d) # F-test
F test to compare two variances
data: mpg by country
F = 0.9066, num df = 78, denom df = 248, p-value = 0.6194
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.6423 1.3246
sample estimates:
ratio of variances
            0.9066
(t=t.test(mpg~country, d, var.equal=FALSE))
Welch Two Sample t-test
data: mpg by country
t = 12.95, df = 136.9, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 8 758 11 915
sample estimates:
mean in group Japan mean in group US
              30.48
                                  20.14
```

SAS code for two-sample t-test

```
DATA mpg;
    INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
    INPUT mpg country $;
PROC TTEST DATA=mpg;
    CLASS country;
    VAR mpg;
    RUN;
```

SAS output for t-test

The TTEST Procedure

Variable: mpg

			Mean	Std Dev	Std Err	Minimum	Maximum		
			30.4810 20.1446	6.1077 6.4147			47.0000 39.0000		
	Diff (1-2)		10.3364	6.3426	0.8190	9.0000		
country	7	Method		Mean	95% CI	Mean	Std Dev	95% CL S	Std Dev
Japan				30.4810	29.1130	31.8491	6.1077	5.2814	7.2429
US				20.1446	19.3439	20.9452	6.4147	5.8964	7.0336
Diff (1	L-2)	Pooled		10.3364	8.7252	11.9477	6.3426	5.8909	6.8699
Diff (1		Satterthwaite		10.3364	8.7576	11.9152			
		Metho	od	Variance	es c	if t Valu	e Pr > t		
		Poole	ed	Equal	32	26 12.6	2 <.0001		
		Satte	erthwaite	e Unequal	136.8	37 12.9	5 <.0001		
			Equali	ty of Vari	iances				
			Method	Num df	Den df	F Value	Pr > F		
			Folded I	248	78	1.10	0.6194		

```
var.test(log(mpg)~country,d)
F test to compare two variances
data: log(mpg) by country
F = 0.4617, num df = 78, denom df = 248, p-value = 0.0001055
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.3271 0.6745
sample estimates:
ratio of variances
            0.4617
(t = t.test(log(mpg)~country, d, var.equal=FALSE))
Welch Two Sample t-test
data: log(mpg) by country
t = 14.46, df = 193.3, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.3809 0.5013
sample estimates:
mean in group Japan mean in group US
              3.396
                                  2.955
exp(t$conf.int)
```

Γ17 1.464 1.651

SAS code for t-test using logarithms

```
DATA mpg;
  INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
  INPUT mpg country $;
PROC TTEST DATA=mpg TEST=ratio;
CLASS country;
VAR mpg;
run;
```

SAS output for t-test using logarithms

Variable: mpg

			Vall	able.	шbg				
		Geo	metric	Co	efficier	ıt			
	country	N	Mean	of	Variatio	on	Minimum	Maximum	
	Japan	79 2	9.8525		0.211	11	18.0000	47.0000	
	US	249 1	9.2051		0.314	17	9.0000	39.0000	
	Ratio (1/2)		1.5544		0.292	28			
		Geometri	c				Coefficient		
country	Method	Mea	n	95% C	L Mean		of Variation	95% (CL CV
Japan		29.852	5 2	8.4887	31.281	17	0.2111	0.1820	0.2514
บร		19.205	1 1	8.4825	19.956	30	0.3147	0.2882	0.3467
Ratio (1/2)	Pooled	1.554	4	1.4452	1.671	19	0.2928	0.2712	0.3183
Ratio (1/2)	Satterthwaite	1.554	4	1.4636	1.650	8			
				Coe	fficient	ts			
	Method	of Va	riation		DF	t Val	ue Pr >	tl	
	Pooled	Equal			326	11.	91 <.00	001	
	Satterthwait	-		19	3.33	14.	46 <.00	001	
		Eq	uality	of Var	iances				
	Method	d Num	DF D	en DF	F Val	Lue	Pr > F		

Method Num DF Den DF F Value Pr > FFolded F 248 78 2.17 0.0001

Summary

Two-sample t tools assumptions

- Normality
 - No skewness (take logs?)
 - No heavy tails
- Equal variances
 - Test: F-test or Levene's test
 - Use Welch's two-sample t-test and CI
- Independence (use random effects or avoid)
 - Cluster
 - Serial
 - Spatial