פתרון תרגיל מספר 10־ חישוביות וסיבוכיות

שם: מיכאל גרינבאום, **ת.ז:** 211747639

16 ביוני 2020

שאלה 1

סעיף 1

 $L_1 \in \mathrm{NP}$ צ"ל:

הוכחה:

תחילה מהיות $L_2\in \mathrm{NP}$ קיימת N_2 לא דטרמניסטית שמכריעה את בזמן פולינומי. $L_1\subseteq \mathrm{NP}$ קיימת $L_2\in \mathrm{NP}$ שחשיבה בזמן פולינומי המקיימת בזמן קיימת $L_1\subseteq L_2\iff f$ שחשיבה בזמן פולינומי ב־ $L_1\subseteq L_2$ שחשיבת את בזמן פולינומי ב־ M_f . לא דטרמניסטית באופן הבא:

- x נקבל קלט.1
- M_f בעזרת $f\left(x
 ight)$ בעזרת .2
- ונענה כמוה $f\left(x
 ight)$ על N_{2} את 3.

תחילה נשים לב שזמן הריצה של N_1 הוא N_1 הוא N_1 הוא N_1 הוא N_1 עתה נשים לב כי N_1 עתה נשים לב עתה נשים לב שזמן הריצה של N_1 הוא N_1 הוא N_1 הוא N_1 בולינומי מההנחה וגם בין פולינומי (כי N_1 בולינומי ולכן גם מתקיים כי N_1 בולינומי מההנחה וגם בין פולינומים היא פולינומית. ולכן נקבל שזמן הריצה של N_1 פולינומי כי הרכבת פולינומים היא פולינומית. ולכן נקבל שזמן הריצה של N_1 פולינומים כי הרכבת פולינומים היא פולינומית. ולכן נקבל שזמן הריצה של N_1 פולינומים כי הרכבת פולינומים היא פולינומית.

 $x \in L(N_1) \iff \text{ exists an accepting run of } N_1 \text{ on } x$ $\iff \text{ exists an accepting run of } N_2 \text{ on } f(x)$ $\iff f(x) \in L_2 \iff x \in L_1$

 $L\left(N_{1}
ight)=L_{1}$ כלומר הראנו כי

כלומר הראנו שקיימת N_1 לא דטרמניסטית שמכריעה את בזמן פולינומי ולכן לא דטרמניסטית כלומר הראנו הראנו לא דטרמניסטית

מ.ש.ל.א.☺

2 סעיף

 $L_1 \leq_p L_3$ צ"ל:

הוכחה:

 $x\in L_1\iff f(x)\in L_2$ תחילה מהיות את המכונה $f:\Sigma^*\to \Sigma^*$ קיימת $f:\Sigma^*\to \Sigma^*$ שחשיבה בזמן פולינומי ב־ M_f . נסמן את המכונה שמחשבת את f בזמן פולינומי ב־ M_f שחשיבה בזמן פולינומי המקיימת $x\in L_2\iff g(x)\in L_3$ קיימת $x\in L_2\iff g(x)\in L_3$ שחשיבה בזמן פולינומי המקיימת $x\in L_2\iff g(x)\in L_3$ נסמן את המכונה שמחשבת את $x\in L_2$ בזמן פולינומי ב־ $x\in L_2$

$$x \in L_1 \iff f(x) \in L_2 \iff g(f(x)) \in L_3 \iff (g \circ f)(x) \in L_3$$

עתה נוכיח ש
י $g\circ f$ שיבה בזמן פולינומי. נבנה מכונה Mבאונ
הMבאונה מכונה מכונה לבנה מכונה אוני באופן הבא

- x נקבל קלט.1
- M_f בעזרת f(x) בעזרת 2
- M_{q} בעזרת $g\left(f\left(x
 ight)
 ight)$ את בעזרת .3
- על הסרט $g\left(f\left(x\right)\right)$ על את .4
 - 5. נקבל

 $g\circ f$ אכן מחשבת אכן אכן $M\left(x
ight)=g\left(f\left(x
ight)
ight)=\left(g\circ f
ight)\left(x
ight)$ תחילה נשים לב כי

עתה נשים לב כי זמן הריצה הכולל הוא $O(M_f$ run time on f(x))+O(|g(f(x))|) הוא הכולל הוא עתה נשים לב כי זמן הריצה הכולל הוא $O(M_f$ run time on $x)+O(M_g$ run time on x) פולינומי מההנחה וגם |f(x)| פולינומי מההנחה וגם $O(M_f$ run time on x) פולינומי (כי מתקיים כי $O(M_g$ run time on x) פולינומי כי הרכבת פולינומים היא פולינומית. גם נשים לב כי $O(M_g$ run time on A פולינומי (כי פולינומי) ולכן נקבל כי $O(A_g$ run time on A פולינומי, ולכן נקבל כי $O(A_g$ run time on A פולינומי, ולכן נקבל כי $O(A_g$ run time on A פולינומי, ולכן נקבל שזמן הריצה של A פולינומי.

. כלומר קיימת מכונה M שמחשבת את $g\circ f$ בזמן פולינומי ולכן ולכן שמחשבת שמחשבת את שמחשבת את בזמן פולינומי

 $x\in L_1\iff h\left(x
ight)\in L_3$ סלומר הראנו שקיימת פונקציה $h=g\circ f$ חשיבה חשיבה לומר הראנו הראנו הראנו היימת פונקציה ה

ולכן $L_1 \leq_p L_3$, כנדרש

מ.ש.ל.ב.☺

3 סעיף

 $\mathrm{NP}-HARD$ צ"ל: A_{TM} היא

הוכחה:

. בזמן פולינומי בזמן שמכריעה את לא דטרמניסטית מכונה N אזי קיימת מכונה $L \in \mathrm{NP}$

נעשה דטרמניזציה למכונה M ונקבל מכונה M דטרמניסטית שמכריעה למכונה למכונה למכונה לעשה דטרמניזציה למכונה אדטרמניזציה למכונה ונקבל מכונה אדטרמניסטית המכונה אדטרמניזציה למכונה אדטרמניזני למכונה אדטרמניים למכונה איניים למכונה אדטרמניים למכונה אדטרמ

 $f\left(x
ight)=\left\langle \left\langle M
ight
angle ,x
ight
angle$, ניצור את הרדוקציה הבאה:

 $O\left(1
ight) + O\left(|x|
ight)$ נשים לב ש־ f חשיבה בזמן פולינומי כי היא כותבת על הסרט מכונה קבועה M ואז את הקלט, אז זמן הריצה הוא שהוא פולינומי.

עתה נשים לב כי

$$x \in L \iff x \in L(N) \iff x \in L(M) \iff M \text{ accepts } x$$

$$\iff \langle \langle M \rangle, x \rangle \in A_{TM} \iff f(x) \in A_{TM}$$

 $L \leq_p A_{TM}$ כלומר הראנו שקיימת פונקציה f חשיבה בזמן פולינומי כך ש־ $x \in L \iff f(x) \in A_{TM}$ חשיבה בזמן פולינומי כך בזמן א חשיבה חשיבה על מתקיים $L \in \mathrm{NP}$ מההגדרה. $L \leq_p A_{TM}$ מתקיים בזמן שלכל כלומר הראנו שלכל

מ.ש.ל.ג.©

4 סעיף

P-HARD צ"ל: L היא

הוכחה

. בזמן בזמן את שמכריעה את דטרמניסטית דטרמניסטית ב־ R בזמן פולינומי. תהי $K \in P$

(קיימים בגלל ש־ לא טריוויאלית) $w_1 \notin L, w_2 \in L$ יהיו

נבנה רדוקציה
$$f\left(x
ight) = egin{cases} w_2 & M ext{ accepts } x \\ w_1 & else \end{cases}$$
 נבנה רדוקציה

$$M \text{ accepts } x \Rightarrow f(x) = w_2 \in L$$
$$M \text{ doesn't accept } x \Rightarrow f(x) = w_1 \notin L$$

ולכן $f\left(x\right)\in L\iff M \text{ accepts } x$ ולכן

$$x \in K \iff x \in L(M) \iff M \text{ accepts } x \iff f(x) \in L$$

 $O\left(M \text{ runtime on } x\right)+$ עתה נשים לב שניתן אהסרט. או על w_1,w_2 על אואז על x על אידי הרצה אל f על אידי הרצה של w_1,w_2 על הסרט. או ייקח או הרצה על ידי הרצה של $O\left(\max\left\{M \text{ runtime on } x,w_1,w_2\right\}\right)$

מכריעה בזמן M שב לב ש־ w_1,w_2 קבועים ולכן נקבל כי זמן הריצה הוא וא הריצה $O\left(M \text{ runtime on } x\right)$ וזה פולינומי בגלל ש־ מכריעה מכריעה פולינומי.

 $K \leq_p L$ ולכן , $x \in K \iff f\left(x
ight) \in L$ ולכן פולינומי פולינומי פולינומי חשיבה אנו f חשיבה פולינומי פולינומי אתקיים אולכן ת $K \in P - HARD$ היא הראנו שלכל אתקיים אולכן אתקיים אולכן אתקיים ווא פולינומי הראנו שלכל אתקיים אולכן אתקיים ווא פולינומי אתקיים אולכן אתקיים אתקיים אתקיים אתקיים ווא פולינומי אתקיים את

מ.ש.ל.ד.☺