Redes y comunicaciones 2023 - 2do semestre - 3ra fecha (07/02/2024)

El parcial debe ser resuelto con lapicera de cualquier color. Deberá justificar debidamente todas las respuestas, en caso contrario serán consideradas incorrectas; Además deberá dejar constancia del procedimiento / análisis que utilizó para llegar a los resultados que presente en cada enunciado demostrando dominio del área evaluada. No debe tener en cuenta ninguna suposición propia por fuera de lo que se enuncia en cada inciso.

Al comenzar cada ejercicio todas las tablas cachés están vacías, salvo que se indique lo contrario.

Para referirse a la dirección MAC de un dispositivo utilice la notación: MAC_dev_iface. Ej.: la MAC de PC-B será MAC_PC-B_eth0.

- 1) Dada la topología,
 - a) Utilizando el bloque de red 192.168.20.0/23, realice la asignación de todas las direcciones de red y dispositivos faltantes desperdiciando la menor cantidad de direcciones IP posibles.
 - b) PC-A realiza un requerimiento HTTP a WebServer1 solicitando un archivo "importante.zip" de la raíz de uno de los sitios alojados por el servidor, "acme.org.ar", utilizando la versión HTTP/1.1 del protocolo. Utilizando un esquema, indique la información de direccionamiento (headers) de capa 2, 3, 4 y requerimiento HTTP cuando ingresa a RouterE en la interfaz eth0.

2) Dada la siguiente salida del comando ss en un servidor:

State	Recv-Q Send-Q		Local Address:Port	Peer Address:Port
LISTEN	0	128	*:22	* • *
LISTEN	0	50	127.0.0.1:3306	* • *
UNCONN	0	0	*:53	* * *
LISTEN	0	128	:443	* • *
ESTABLISHED	0	128	10.100.25.135:443	200.10.12.210:42394

Indicar la respuesta a cada una de las siguientes comunicaciones que arriban al servidor, indicar de manera completa el siguiente mensaje (respuesta) de la secuencia.

a) IP 200.10.12.210:21323 > 10.100.25.135:22 UDI

UDP, length 100

b) IP 200.10.12.210:57178 > 10.100.25.135:443

Flags [S], seq 6772, length 0

- c) IP 10.100.25.135:35132 > 10.100.25.135:3306 Flags [S], seq 5423, length 0
- d) IP 200.10.12.210:42394 > 10.100.25.135:443 Flags [F], seq 2300, ack 4000, length 0
- 3) Se presentan 3 casos independientes a, b y c. En todos los casos que se presentan, según corresponda debe completar: flags, número de secuencia y ack.

- a. Referido al diagrama A. ¿Qué parte de una sesión TCP se está ejecutando?
- b. Referido al diagrama B. Considere que el host A envía 100 bytes.
- c. Referido al diagrama C. ¿Qué es posible inferir en base a la respuesta de host B?
- 4) Indique la tabla de Ruteo de **RouterE**, debe llegar a todas las redes de la topología. Eligiendo siempre la ruta más corta y sumarizando siempre que sea posible.
- 5) Asumiendo que las tablas de ruteo y ARP están completas y consistentes, pero las de los switches están vacías. Indique cómo quedaría solamente la tabla CAM de SWT-04, luego de que se realiza la siguiente secuencia de mensajes:

- a) PC-A realiza un ping satisfactorio a PC-G
- b) PC-B realiza un ping satisfactorio a PC-D
- c) PC-F realiza un ping satisfactorio a PC-E
- 6) Indique para cada afirmación, si es verdadera o falsa.
 - a) En una comunicación, el protocolo HTTP/1.1 permite mantener la información intercambiada en los diferentes requerimientos y respuestas entre el cliente y el servidor.
 - b) Cuando un extremo inicia control de congestión, el otro extremo de la sesión también deberá hacerlo.
 - c) Si falla el cálculo del checksum de un segmento TCP en el receptor, éste descarta el segmento y enviará un mensaje ICMP al emisor informando el número de secuencia del segmento perdido.
 - d) Dos PC en redes diferentes podrían tener la misma dirección MAC y comunicarse entre sí sin ningún problema.