Module 5 - Pricing & Scaling Models

- 7 Debate
- 8 Subscription model
- 29 Classical Scaling model
- 30 **✓ Cloud Scaling** model = Elasticity
- 31 Cost economics Classical model
- 2 Cost economics Cloud model
- 33 Scaling in Google & AWS
- 34 Vertical/Specialized vs Horizontal/Commodity
- 35 Virtualization
- 6 A typical application stack
- 37 Virtualized stack
- 38 Cloud VM characteristics
- 9 Virtualization drawbacks

Cloud Scaling model = Elasticity

Modern applications can leverage laaS or PaaS for scaling only the layers that demand it!

30

Module 5 - Pricing & Scaling Models

Scaling in Google & AWS

Total number of instances Averag 37 stac 8 177			eringe GPS*	Average Latency* 579-5 ms		Average Memory 72 0 HBytes	
			FT				
testances 3							
CPT	Laterop*	Requests	Service	Age	Marrary	Analistatiny	
\$300	347.7 ms	227		0.00.29	THE RELIGION	O Dynamic	
1300	329.5 mis	247		8.5824	EE S Milyles	O Dynamic	
6217	343-6 mm	212		040.27	70:1 Httyree	O Dynamic	
0.317	354.1 mm	234	1	01025	75.0 100yrses	O Oynamic	
£ 100	370.0 mg	227		0.00.24	71.2 985/km	O Dynamic	
6.362	218.2 798	218		8 63 22	75.7 HByles	O Dynamic	
5.400	341.3 ms	236		8 69 19	71.0 90lytes	O Dynamic	
6.167	346.6 mi	166		0.6026	472 90lyles	O Dynamic	
0.390	343.9 ms	67		9.01.26	66.6 VDytes	O Syramic	
0.258	366.2 996	56:	4	0.01.10	45.6 MBytes	O Dynamic	
0.300	300.0 ms	97		0.01.33	SE I Hilyton	O Dynamic	
8.106	376.6 ms	37		20116	66.1 MB/ms	○ Dynamic	
8.017	200 il ma	76		0.0129	45.5 Hityles	O Dynamic	
A 7011	258 Tax	65		0.01.00	\$7 x 100 mm	Pi hassi	

A script simulated load and Google spun up instances to handle it automatically.

AWS configuration allowing 1 min 4 max instances of certain type with specific rules of scalability

Instances
Instance type: tl.micro
Availability Zones: Any

Module 6 - Introduction to Virtualization

- 7 Debate
- 8 Subscription model
- 9 Classical Scaling model
- 30 Cloud Scaling model = Elasticity
- Cost economics Classical model
- 2 Cost economics Cloud model
- 33 Scaling in Google & AWS
- 34 Vertical/Specialized vs Horizontal/Commodity
- 35 Virtualization
- 36 A typical application stack
- 37 Virtualized stack
- 38 Cloud VM characteristics
- 39 Virtualization drawbacks

Virtualization

- Virtualization of the computing resources, including servers, network, and storage, allows dynamic flexibility.
- · Capacity can be more efficiently utilized.
- Quickly add new servers without delay due to procurement or installation.
- Easy to turn on or off virtual servers to handle scalability.
- Physical connectivity is done up front and configuration is done in software at provisioning time.
- Networking equipment and storage is virtualized as well.

