MPEI 2023-2024

Variáveis Aleatórias

Motivação

- A probabilidade é uma função sobre eventos (conjuntos)
- Utilização das ferramentas da análise matemática (ex: derivação) não é imediata
 - Especialmente se os resultados da experiência não forem números
- Se conseguirmos mapear o espaço de amostragem (S) para a reta real facilita o uso das ferramentas de análise e aritmética
- Na maioria dos casos o mapeamento não é artificial
 - Muitas vezes não nos interessa os eventos mas uma grandeza numérica relacionada
 - Exemplo: número de caras em N lançamentos de uma moeda

Conceito de variável aleatória

 Uma função que mapeia o espaço de amostragem na recta real é designada de VARIÁVEL ALFATÓRIA

Random Variable em Inglês

- Numa definição "informal":
- uma Variável Aleatória é o resultado numérico das nossas experiências (aleatórias)

Exemplos de Variáveis aleatórias

Variável Aleatória - Definição

• Uma variável aleatória escalar X é formalmente definida como sendo um

mapeamento de um espaço amostral S para a

recta real

– A qualquer elemento ω de S associa-se uma imagem $X(\omega)$ na recta real

Caso contínuo

 Se os conjuntos que representam os eventos forem contínuos, o mapeamento é para um segmento da recta real

A e B são acontecimentos equivalentes

Tipos de Variáveis aleatórias

Discretas

- se os valores que a variável aleatória pode assumir forem finitos → Não exide limites
 - ou infinitos mas contáveis
 - Exemplo: número de acessos por minuto a uma página web

Contínuas

- se os valores que pode assumir formarem um ou vários intervalos disjuntos
 - Exemplo: Duração de uma aula no Zoom

Mistas

- onde se verificam os atributos que definem os 2 tipos anteriores () ex: a chegada dos pessos às aulos

Tipos

• Discreta/contínua ou mista?

VA	Tipo ? (D,/C,/M)
Número de palavras com erro numa página	C
Atraso com que chega às aulas TP	H C: primeiros mi
Número de caixas abertas no supermercado	C
Tempo de espera numa caixa de supermercado	D
Número de páginas relevantes para uma procura num motor de pesquisa (ex: Google)	D
Número de "bugs" num módulo de código	D

Caracterização das variáveis aleatórias Parte 1

Distribuição de probabilidades

- As variáveis aleatórias são caracterizáveis por:
 - Conjunto de valores que podem assumir
 - E as probabilidadesassociadas

Ou seja pela
 "distribuição de probabilidades"

Digito

1

Probabilidade

30,1

Função (massa) de probabilidade

- Uma variável aleatória discreta escalar X é especificada por:
- 1. Conjunto de valores que pode assumir: x_i , i = 1,2,...
- 2. Probabilidade associada a cada um desses valores: $p_X(x_i)$
 - Denominada de função massa de probabilidade
 - Probability Mass Function em Inglês
 - ou mais simplesmente função de probabilidade

$$p_X(x_i) = P(X = x_i) \rightarrow \bigcap_{x_1 = x_2 = x_3} \bigcap_{x_2 = x_3} \bigcap_{x_3 = x_3 = x_3} \bigcap_{x_1 = x_2 = x_3} \bigcap_{x_2 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3 = x_3 = x_3} \bigcap_{x_3 = x_3$$

Função de probabilidade

Os axiomas da probabilidade implicam:

•
$$p_X(x_i) \geq 0$$

•
$$\sum_i p_X(x_i) = 1$$
 $ightharpoonup$ confirmor sempre

Exemplo de função de probabilidade

- Lançamento de dado equilibrado e X igual ao número que sai
- X :Variável aleatória discreta
- Função de probabilidade $x_i = \{1,2,3,4,5,6\}$ $p_X(x_i) = 1/6$
- %% Matlab xi = 1:6; p=ones(1,6)/6; stem(xi,p), xlabel('x'), ylabel('px(x)');

Outro exemplo de função massa de probabilidade

variável aleatória representando o número de "caras" em 4 lançamentos de uma moeda

Função distribuição acumulada (discreta)

 Uma variável aleatória (discreta) pode ser também especificada pela sua função distribuição acumulada (fda), definida como

•
$$F_X(x) = p_X(X \le x) = \sum_{i:x_i \le x} p_X(x_i)$$

Dos axiomas e corolários:

É uma função não decrescer

$$\lim_{x\to-\infty}F_X(x)=0$$

$$\lim_{x\to\infty}F_X(x)=1$$

Exemplo de função de distribuição

 Para uma variável aleatória discreta a função distribuição acumulada é uma função em

Variáveis aleatórias contínuas

- Também pode ser especificada pela sua função distribuição acumulada
- A definição é idêntica para o caso contínuo e discreto $F_X(x) = Prob(X \le x)$
- $F_X(x)$ é agora contínua
- Propriedades:

$$0 \le F_X(x) \le 1$$
$$\lim_{x \to \infty} F_X(x) = 1$$

$$\lim_{x\to-\infty}F_X(x)=0$$

$$a < b \Rightarrow F_X(a) \leq F_X(b) \rightarrow$$
 Função mão de cruscente

$$P[a < X \le b] = F_X(b) - F_X(a)$$
 \longrightarrow Pora fozer intervalos!

Variáveis aleatórias contínuas

• Podem ser especificada pela sua função de densidade de probabilidade $f_X(x)$

Probability density function (pdf) em Inglês

Obtém-se derivando a função de distribuição

$$f_X(x) = \frac{dF_X(x)}{dx}$$

$$\int_{\xi_{x}(x)=0}^{\xi_{x}(x)} \frac{f(x=x)=0}{\xi_{x}(x)=0} \lim_{\xi_{x}(x)=0} \frac{f(x=x)=0}{\xi_{x}(x)=0}$$

Relações entre funções de densidade e de distribuição (caso contínuo)

•
$$F_X(x) = \int_{-\infty}^x f_X(x) dx$$

 Exemplo de par de funções de densidade e de distribuição

Função de DENSIDADE de probabilidade

- $f_X(x)$ não é uma probabilidade ...
 - Apenas define os valores de probabilidade quando integrada num intervalo

•
$$p(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

• $f_X(x)dx$ é a probabilidade da variável X pertencer ao intervalo (x, x + dx), sendo dx um acréscimo infinitesimal

•
$$f_X(x) \equiv \frac{prob}{dx}$$
 \rightarrow daí o nome "densidade"

Probabilidades e função de densidade

•
$$P(a < X \le b) = \int_a^b f_X(x) dx$$

- A probabilidade é a área debaixo da curva
- Área total da curva =1

Caracterização das variáveis aleatórias Parte 2

Motivação

 As funções apresentadas anteriormente fornecem uma descrição completa de uma variável aleatória

- Mas em muitos casos não necessitamos de toda a informação
 - Exemplo:
 - no caso dos "bugs" em módulos de código saber o valor médio pode ser suficiente

Média ou Valor esperado

Consideremos N lançamentos de um dado

Pora um dodo equilibrodo:

média = $\frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \cdots$ = $\frac{1}{6} \times 21 = 3.5$ For mertido!

Assumindo que N tende para infinito

$$= p(1) \times 1 + p(2) \times 2 + p(3) \times 3 \dots + p(6) \times 6$$

=
$$\sum_{i} p(x_i) x_i$$
 com $x_i = 1, 2, ... 6$

Valor esperado

- Formalizemos um pouco mais ...
- Dizemos que o valor esperado de X é o valor médio de X ao repetirmos as experiências indefinidamente
 - É representado por E[X]
- Sendo X_i o valor da v. a. X na experiência i, este valor é:

$$\lim_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{n}$$

Valor esperado (continuação)

• Representando por x_i os m diferentes valores que X_i pode assumir e por $K_{i,n}$ o número de vezes que ocorre cada x_i , o nosso limite passa a:

$$\lim_{n\to\infty} \frac{x_1 K_{1,n} + x_2 K_{2,n} + \dots + x_m K_{m,n}}{n}$$

$$\sum_{i=1}^{m} x_i \lim_{n \to \infty} \frac{K_{i,n}}{n} = \sum_{i=1}^{m} x_i P(X = x_i)$$

Valor esperado

Só existe valor esperado se existir o limite

- O limite existe se X_i tiver limite inferior e superior finitos, o que é verdade no mundo real
 - Ex: o peso de uma pessoa nunca é negativo

Valor esperado

- O termo "valor esperado" é algo enganador...
- Não é na realidade algo que devemos esperar que ocorra

 Apesar desta dificuldade com o seu nome, o valor esperado desempenha um papel central em Probabilidades e Estatística

Valor esperado : E[X]

• No caso discreto:
$$E[X] = \sum_i x_i p(x_i)$$

• No caso contínuo: $E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx$

$$E[X] = \int_{-\infty}^{+\infty} x \, f_X(x) dx$$

Propriedades do valor esperado

• E[X] é um operador linear

Sendo a e c constantes ($\in R$) e X e Y variáveis aleatórias:

$$E[aX] = a E[X]$$

$$E[X+Y] = E[X] + E[Y]$$

$$E[X+c] = E[X] + c$$

Exemplo de cálculo de E[X]

x_i	$p_X(x_i)$	$x_i p_X(x_i)$	
-1	0 .1	1	
0	0.2	.0	
1	0.4	.4	
2	0.2	.4	
3	+0.1	.3	
	1.0 Verificação	1.0	

 $\sum p(z_i) = 1$

E[X] = 1.0

Exemplo: lançamento de 1 dado

 Função de probabilidade para o resultado do lançamento de uma dado e respetivo valor esperado

Lo desvio = $\sqrt{2}$

A Média pode não ser suficiente

- Se pretendermos comparar as classificações de duas turmas práticas de MPEI é suficiente sabermos a média ?
- Posso ter a mesma média e turmas muito diferentes:
 - Uma turma com a generalidade dos alunos próximos dessa média
 - Outra turma com classificações muito mais dispersas entre 0 e 20
- Uma medida dessa "dispersão" é dada pela variância

Variância

Ideia base:

Usar a diferença dos valores da variável para a média (valor esperado) e fazer a sua média

 Para evitar o cancelamento de diferenças negativas e positivas, em vez de usar diretamente o valor da diferença utilizar o seu valor ao quadrado

•
$$Var(X) = E[(X - E(X))^2]$$

Variância

Aplicando a definição de valor esperado temos:

•
$$\operatorname{var}(X) = \sigma^2 = \sum_{i} [x_i - E(X)]^2 p(x_i)$$

Propriedade importante:

$$var(X) = E[X^2] - E^2[X]$$

- Demonstra-se facilmente de $E[(X E(X))^2]$ usando as propriedades de E[X]
- Facilita muitos cálculos, evitando uso direto da definição

Desvio padrão

A raiz quadrada da variância é o desvio padrão

Muitas vezes representado por σ

Exemplo (discreto)

хi	p(xi)	(xi-μ)	$(xi-E(X))^2$	$(xi-E(X))^2$ $p(xi)$
0	.37	-1.15	1.32	.49
1	.31	-0.15	0.02	.01
2	.18	0.85	0.72	.13
3	.09	1.85	3.42	.31
4	.04	2.85	8.12	.32
5	.01	3.85	14.82	.15
				1.41

Variância - propriedades

 Sendo X uma variável aleatória e c uma constante :

• Soma de uma constante:

$$var(X+c)=var(X)$$

Multiplicação por um factor de escala

Média e variância - interpretação

- E[X] pode ser interpretado como:
 - Valor médio de X
 - Centro de gravidade da função massa de probabilidade (caso discreto) ou função de densidade de probabilidade
 - $\rightarrow F_{x}(z;)$
- Desvio padrão / Variância dá uma medida da dispersão da variável aleatória
 - Pequenos valores indicam var. aleatória muito concentrada em torno da média
 - Se for zero não temos var. aleatória (todos valores iguais à média)

Momentos de ordem *n*

- Os conceitos de média e variância podem ser generalizados ...
- Momento de ordem n (caso discreto):

$$m_n = E[X^n] = \sum_i x_i^n p_X(x_i)$$

Exemplo (dados)

$$E[X^{2}] = 1^{2} \times \frac{1}{6} + 2^{2} \frac{1}{6} + 3^{2} \frac{1}{6} + \dots$$
$$= \frac{1+2+4+9+16+25+36}{6} = 15,1667$$

Apareceu em $var(X) = E[X^2] - E^2[X]$

Momentos centrados de ordem *n*

 A generalização da variância resulta nos momentos centrados de ordem n

•
$$E[(X - E[X])^n] = \sum_i (x_i - E[X])^n p_X(x_i)$$

A variância é o momento centrado de 2ª ordem

Exemplo de aplicação

 Qual o valor da variância dos valores obtidos no lançamento de um dado honesto?

- var(X) ?
- $var(X) = E[X^2] E^2[X]$
- $E[X^2] = ?$
- $E^{2}[X] = ?$

$$E(x) = \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6} = \frac{21}{6} = 3.5$$

$$E(x^2) = \frac{1}{6} + \frac{4}{6} + \frac{9}{6} + \frac{16}{6} + \frac{25}{6} + \frac{36}{6} = \frac{91}{6} \approx 15.17$$

$$E(x) = 12.25$$

$$Von(x) = 15.17 - 12.25 \approx 2.67$$

Tópicos da aula (resumo)

- Variável aleatória (conceito e definição)
- Função massa de probabilidade e função densidade de probabilidade
- Função de distribuição acumulada
- Valor esperado
- Média e Variância
- Momentos

Para saber mais...

 Capítulo 4 do livro "<u>Métodos Probabilísticos</u> <u>para Engenharia Informática</u>", F. Vaz e A. Teixeira, Ed. Sílabo, set 2021.

• Link(s)

http://www.stat.berkeley.edu/~stark/SticiGui/Text/r andomVariables.htm