

Outline

LDA

- Basic idea
- Assumptions
- How does it work?
- An example

NMF

Idea

LDA – basic idea

- Each document is made up of various words
- Each topic also has various words belonging to it
- Aim: Finding topics a document belongs to, based on the words in it. (Note that a document can have multiple topics)

An example:

Suppose we have 5 documents and 3 topics:

```
Doc1: word1, word3, word5, word45, word11, word 62, word88 ...

Doc2: word9, word77, word31, word58, word83, word 92, word49 ...

Doc3: word44, word18, word52, word36, word64, word 11, word20 ...

Doc4: word85, word62, word19, word4, word30, word 94, word67 ...

Doc5: word19, word53, word74, word79, word45, word 39, word54 ...
```

This tells us which words are in which documents.

	Word1	word2	word3	word4	
Topic1	0.01	0.23	0.19	0.03	
Topic2	0.21	0.07	0.48	0.02	
Topic3	0.53	0.01	0.17	0.04	

This table gives the prob of the words showing up in a specific topic.

LDA – basic idea

An example:

Now, suppose we have topics "Dog_related" and "Cat_related" Words in "Dog_related" are more likely: puppy, bark, and bone Words in "Cat_related" are more likely: milk, meow, and kitten

Hence, the document "Dogs like to chew on bones and fetch sticks. Puppies drink milk. Both like to bark." should be classified as "Dog_related".

LDA – Assumptions

- BOW: order of the words and the grammatical role of the words (subject, object, verbs, ...) are not considered in the model.
- Delete irrelevant words (like stop words)
- The number of topics is predefined
- All topic assignments except for the current word in question are correct, and then update the assignment of the current word using our model of how documents are generated

LDA – How does it work?

We need two parts:

- The words that belong to a document (already known)
- The words that belong to a topic or the probability of words belonging into a topic (unknown)

Algorithm:

- Go through each document and randomly assign each word in the document to one of k topics (k is chosen beforehand).
- For each document d, go through each word w and compute
 - p(topic t | document d): the proportion of words in document d that are assigned to topic t.
 (#words in d with t +alpha/ #words in d with any topic+ k*alpha) (smoothing)
 - p(word w | topic t): the proportion of assignments to topic t over all documents that come from this word w.
 (Tries to capture how many documents are in topic t because of word w)
- Update the probability for the word w belonging to topic t, as
 p(word w with topic t) = p(topic t | document d) * p(word w | topic t)

LDA – An example

Suppose we have various photographs(documents) with captions(words) The task is to categorize them on themes(topics)

Topics: Nature and city

Steps:

- 1. Assign the photographs which only have nature or city elements in them into their respective categories while randomly assign the rest.
- 2. Notice that tree is related to nature while building is related to city
- 3. Choose the caption "The tree is in front of the building and behind a car", the word "tree", the topic "nature", compute p(topic t | document d) \square low, because building and car are more likely to be city
- 4. Compute p(word w| topic t)

 high, because many nature photos contain tree
- 5. Multiply these two and we get a lower relation between tree and nature

Reference: https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2

Outline

LDA

- Basic idea
- Assumptions
- How does it work?
- An example

NMF

Idea

NMF - Idea

NMF: Non-negative matrix factorization

Given a matrix V, find non-negative W and H so that V = W * H

Reference: https://medium.com/analytics-vidhya/topic-modeling-with-non-negative-matrix-factorization-nmf-3caf3a6bb6da