

Data Handling: Import, Cleaning and Visualization

Lecture 9:

Visualization

Aurélien Sallin, PhD

Cleaning and analytics

- 1. Stacking
- 2. Merging (joining) datasets
- 3. Data manipulation with tidyverse()
- 4. Aggregation of statistics

Merging (joining) datasets: R

Overview by Wickham and Grolemund (2017):

base::merge
(tidyverse)
dplyr (

Data manipulation

- · arrange()
- select()
 filter()
 mutate()
 group_by()
- . summarize()

Warm up and test LockDown browser

On Canvas, open the survey "LockDown browser test". Answer the questions.

You must install the LockDown browser on your computer

Joining

Consider the following code:

Select statements that are true:

- inner_join(temperature, temperature_conversions, by="scale") returns a data frame with 3 rows.
- left_join(temperature, temperature_conversions, by="scale") returns a data frame with 3 rows.
- full_join(temperature, temperature_conversions, by="scale") returns a data frame with

Data manipulation

Consider the following data frame:

Select statements that are true:

```
" main_dataset |> mutate(temp_celsius = ifelse(scale == "Fahrenheit", (temp-32) *
                                                                                                        conversion_factor, temp)) replaces the variable temp with temp_celsius
```

```
main_dataset |> mutate(temp_celsius = ifelse(scale == "Fahrenheit", (temp-32) *
                                                                conversion_factor, temp)) has 3 rows and 5 columns
```

```
main_dataset |> summarize(mean_temp = mean(temp), min_temp = min(temp)) returns a
                                                                           tibble containing 2 columns and 1 row
```

```
main_dataset |> summarize(mean_scale = mean(scale), sd_scale = sd(scale)) is a good
                                                                                    way to get summary statistics about the variable scale
```

Stacking: True or False

Consider the following code:

```
Region = c("St. Gallen", "Appenzell", "Appenzell"),
FavoriteBeverage = c("Schützengarten", "Quöllfrisch", "Appenzeller"),
                                                                                                                                                                                                                                                                                                                                                                                                                     FavoriteBeverage = c("Chasselas"),
                                                                                                                                                                                                                                      FavoriteBeverage = c("Fendant"),
Year = c(2021)
                                                                                       Year = c(2021, 2021, 2022)
Ostschwiz <- data.frame(
                                                                                                                                                                                                          Region = c("Valais"),
                                                                                                                                                                                                                                                                                                                                                                                       Region = c("Vaud"),
                                                                                                                                                                             Valais <- data.frame(
                                                                                                                                                                                                                                                                                                                                                          Vaud <- data.frame(
                                                                                                                                                                                                                                                                                                                                                                                                                                               Year = c(2021)
```

The statement nrow(rbind(Ostschwiz, Valais, Vaud)) == 5 returns FALSE

Stacking and reshaping: True or False

Consider the following data frame

```
Region = c("St. Gallen", "Appenzell", "Appenzell"), FavoriteBeverage = c("Schützengarten", "Quöllfrisch", "Appenzeller"),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         names_from = c(Year),
values_from = FavoriteBeverage)
                                                                                                                                                                                                                                                                                                                                                                                                                                   FavoriteBeverage = c("Chasselas"),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Ostschwiz <- pivot_wider(Ostschwiz,
                                                                                                                                                                                                                                                FavoriteBeverage = c("Fendant"),
                                                                                          Year = c(2021, 2021, 2022)
Ostschwiz <- data.frame(
                                                                                                                                                                                                                Region = c("Valais"),
                                                                                                                                                                                                                                                                                                                                                                                                    Region = c("Vaud"),
                                                                                                                                                                                   Valais <- data.frame(
                                                                                                                                                                                                                                                                                                                                                                      Vaud <- data.frame(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Year = c(2021)
                                                                                                                                                                                                                                                                            Year = c(2021)
```

The statement colnames(Ostschwiz)[2] returns "FavoriteBeverage

- · Final step of data pipeline/data science procedure!
- Convincingly communicating insights from data.
- Data visualization is all about telling a story.
- R is a very powerful tool to do this!

- · Data visualization is **THE** most important part of delivering results!
- Best way to convince people about your message (and about your competence 🗣)

Two ways: display data through tables or graphs.

Depends on the purpose.

- terms of visual objects (dots, lines, bars) and axes typically have scales or A chart typically contains at least one axis, the values are represented in
- If we are interested in exploring, analyzing or communicating patterns in the data, charts are more useful than tables.
- A table typically contains rows and columns, and the values are represented
- If we are interested in exploring, analyzing or communicating specific numbers in the data, tables are more useful than graphs.

Tables

- · Formatting data values for publication.
- \cdot Typical: String operations to make numbers and text look nicer.
- Before creating a table or figure...

Tables

```
# Load packages and data
library(tidyverse)
data("swiss")

# compute summary statistics
swiss_summary <- swiss |>
    swiss_summary <- swiss |>
    avg_fertility = mean(Education),
    avg_fertility = mean(Fertility),
    N = n()
)

swiss_summary

## avg_education avg_fertility N
## 1 10.97872 70.14255 47
```

Problems?

Tables: round numeric values

```
swiss_summary_rounded <- round(swiss_summary, 2)
swiss_summary_rounded

## avg_education avg_fertility N
## 1 10.98 70.14 47</pre>
```

Tables: detailed formatting of numbers

- · Coerce to text.
- String operations.
- Decimal marks, units (e.g., currencies), other special characters for special formats (e.g. coordinates).
- format()-function

Tables: format() example

See also the helpful functions for formatting text-strings

```
    Uppercase/lowercase: toupper()/tolower().
```

```
    Remove white spaces: trimws(),
```

```
string <- "AbCD "
toupper(string)
## [1] "ABCD "

tolower(string)
## [1] "abcd "

trimws(tolower(string))
## [1] "abcd"</pre>
```

Get creative with tables: gtExtras and sparklines

head(USArrests, 10)

Rape	21.2	44.5	31.0	19.5	40.6	38.7	11.1	15.8	31.9	25.8
UrbanPop	58	48	80	50	91	78	77	72	80	99
Murder Assault	236	263	294	190	276	204	110	238	335	211
Murder	13.2	10.0	8.1	∞ ∞	9.6	7.9	3.3	5.9	15.4	17.4
##	## Alabama	## Alaska	## Arizona	## Arkansas	## California	## Colorado	## Connecticut	## Delaware	## Florida	## Georgia

Problems?

Get creative with tables: gtExtras and sparklines

```
UrbanPop > 0 \sim "Low")) |>
                                 USArrests_summary <- USArrests |>
                                                                                                                                        "Mean murder" = mean(Murder),
"SD murder" = sd(Murder),
                                                                                                                                                                            Density = list(Murder),
                                                                                                         group_by(UrbanPop) |>
                                                                                                                                                                                             "doup" = squong.
library(gtExtras)
                                                                                                                            summarize(
```

Get creative with tables: gtextras and sparklines

```
gt() |>
tab_header(
tab_header(
    title = md("Murder rates"),
    subtitle = md("Per high, middle, and low urban population ")
USArrests_summary |>
```

Murder rates Per high, middle, and low urban population UrbanPop Mean murder SD murder Density High 8.07 3.80 Low 7.41 5.20 Middle 7.89 4.18

Get creative with tables: other sources

- kable() for html / Markdown reports
- · stargazer for your LaTeX reports or for your Office Word reports

Get creative with tables: kable()

knitr::kable(head(USArrests, 5), format = "markdown")

	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	28	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	∞. ⊗.	190	20	19.5
California	0.6	276	91	40.6

Get creative with tables: kable()

knitr::kable(head(USArrests, 5), format = "html")

	Murder	Assault	UrbanPop	Rape	
Alabama	13.2	236	58	21.2	
Alaska	10.0	263	48	44.5	
Arizona	8.1		80	31.0	
Arkansas	∞.∞	190		19.5	
California	9.0	276		40.6	

Graphs with R (ggplot2)

Three main approaches:

1. The original **graphics** package ((R Core Team 2018); shipped with the base R installation).

Three main approaches:

- 1. The original graphics package ((R Core Team 2018); shipped with the base R installation).
- 2. The lattice package (Sarkar 2008), an implementation of the original Bell Labs 'Trellis' system.

Three main approaches:

- 1. The original graphics package ((R Core Team 2018); shipped with the base R installation).
- 2. The lattice package (Sarkar 2008), an implementation of the original Bell Labs 'Trellis' system.
- 3. The ggplot2 package (Wickham 2016), an implementation of Leland Wilkinson's 'Grammar of Graphics'.

Three main approaches:

- 1. The original graphics package ((R Core Team 2018); shipped with the base R installation).
- 2. The lattice package (Sarkar 2008), an implementation of the original Bell Labs 'Trellis' system.
- 3. The ggplot2 package (Wickham 2016), an implementation of Leland Wilkinson's 'Grammar of Graphics'.

ggplot2 is so good that it has become THE reference [In python, use plotnine to apply the grammar of graphics.]

Using **ggplot2** to generate a basic plot in R is quite simple. Basically, it involves three key points:

1. The data must be stored in a data.frame/tibble (in tidy format!).

Using **ggplot2** to generate a basic plot in R is quite simple. Basically, it involves three key points:

- 1. The data must be stored in a data.frame/tibble (in tidy format!).
- 2. The starting point of a plot is always the function ggplot().

Using ggplot2 to generate a basic plot in R is quite simple. Basically, it involves three key points:

- 1. The data must be stored in a data.frame/tibble (in tidy format!).
- 2. The starting point of a plot is always the function ggplot().
- 3. The first line of plot code declares the data and the 'aesthetics' (e.g., which variables are mapped to the x-/y-axes):

Using ggplot2 to generate a basic plot in R is quite simple. Basically, it involves three key points:

- 1. The data must be stored in a data.frame/tibble (in tidy format!).
- 2. The starting point of a plot is always the function ggplot().
- 3. The first line of plot code declares the data and the 'aesthetics' (e.g., which variables are mapped to the x-/y-axes):

```
ggplot(data = my_dataframe, aes(x= xvar, y= yvar))
```

Example data set: swiss

library(tidyverse) # automatically loads ggplot2

Load the data
data(swiss)
head(swiss)

#	Fertility	Agriculture	Examination	Education	Catholic	Fertility Agriculture Examination Education Catholic Infant.Mortality	
## Courtelary	80.2	17.0	15	12	9.96	22.2	
## Delemont	83.1	45.1	9	6	84.84		
## Franches-Mnt	92.5		5	5	93.40		
## Moutier	85.8	36.5	12	7	33.77		
## Neuveville	76.9		17	15	5.16	20.6	
## Porrentruy	76.1			7	90.57	26.6	

Add indicator variable

Code a province as 'Catholic' if more than 50% of the inhabitants are catholic:

```
Religion =
   ifelse(50 < Catholic, 'Catholic', 'Protestant'))</pre>
                                                                                                                                                                                                                            swiss$Religion[50 < swiss$Catholic] <- 'Catholic'</pre>
                                                                                                                                                                                                                                                                                                                      swiss$Religion <- as.factor(swiss$Religion)</pre>
                                                                                                                                                                                            swiss$Religion <- 'Protestant'</pre>
                                                                                                                                                           # 'old school' alternative
# via tidyverse/mutate
                                   swiss <- mutate(swiss,</pre>
                                                                                                                                                                                                                                                                                          # set to factor
```

Data and aesthetics

ggplot(data = swiss, aes(x = Education, y = Examination))

Geometries (~the type of plot)

Facets

Additional layers and statistics

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point() +
    geom_smooth(method = 'loess') +
    facet_wrap(~Religion)
```


Additional layers and statistics

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point() +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion)
```


Additional aesthetics

Change coordinates

```
Agriculture
                                                                                                               80
                                                                                                                              09
                                                                                                                                                            20
                                                                                                                                             40
                                                                                                                                                                                              - 20
ggplot(data = swiss, aes(x = Education, y = Examination)) +
   geom_point(aes(color = Agriculture)) +
                                                                                                                                                                                              - 04
                                                                                                                                                                                             30
                                                                    Protestant
                                                                                                                                                                                                          Examination
                                                                                                                                                                                              20
                                                                                                                                                                                           - 04
                   geom_smooth(method = 'lm')
facet_wrap(~Religion) +
coord_flip()
                                                                                                                                                                                             30-
                                                                    Catholic
                                                                                                                                                                                             - 20
                                                                                                                                                                                                 10
                                                                                                         40-
                                                                                                                  Education 5
```

Themes

```
theme(legend.position = "bottom", axis.text=element_text(size=12) )
                                                                                                                                                                                                                                     - 9
                                                                                                          Protestant
ggplot(data = swiss, aes(x = Education, y = Examination)) +
   geom_point(aes(color = Agriculture)) +
                                                                                                                                                                                                                                      20
                                                                                                                                                                                                                                                           Education
                                                                                                                                                                                                                                                                                                          Agriculture
                             geom_smooth(method = 'lm') +
facet_wrap(~Religion) +
                                                                                                                                                                                                                                      - 94
                                                                                                          Catholic
                                                                                                                                                                                                                                     -20
                                                                                                                                           noitenimex∃
6 0 0 0
1 0 0 0
                                                                                                                    -09
```

80

09

20 40

Themes

Themes

```
library(ggthemes)
```

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point() +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion) +
    theme_economist()
```


Cheat sheet

Link: https://rstudio.github.io/cheatsheets/html/data-visualization.html

Data visualization

- · Values are represented by their **position relative to the axes**: line charts and scatterplots.
- · Values are represented by the size of an area: bar charts and area charts.
- · Values are continuous: use chart type that visually connects elements (line chart).
- Values are categorical: use chart type that visually separates elements (bar

(Source: https://hhsievertsen.github.io/EconDataBook/data-visualizationbasics.html)

- · Two pieces of advice I personally received:
- fit your whole story in one graph.
- your audience should understand your graph without the need of listening to you or reading your text.
- Be simple and avoid fanciness.
- · Avoid pie charts and 3D charts.

Recommendations from Tufte

We can quantify the Lie Factor of a graph

Lie Factor =
size of effect shown in graphic
size of effect in data

Thou shalt not truncate the Y axis.

Only what matters should be reported (Data-ink Ratio):

Data-ink Ratio = $\frac{\text{ink used for data}}{\text{total ink used to print the graphic}}$

Conclusion

Data visualization is an art of story-telling, deception, and scientific exactitude 🥸 .

References

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Sarkar, Deepayan. 2008. Lattice: Multivariate Data Visualization with r. New York: Springer. http://lmdvr.r-forge.r-project.org. Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. http://ggplot2.org.

Wickham, Hadley, and Garrett Grolemund. 2017. Sebastopol, CA: O'Reilly. http://r4ds.had.co.nz/.