MONTCLAIR STATE UNIVERSITY **DEPARTMENT OF MATHEMATICAL SCIENCES**

MASTER OF SCIENCE COMPREHENSIVE EXAMINATION

STATISTICS

····· 1 Hour ·····

STUDY GUIDE:

The following questions are representative of the type of content that can be expected in this ONE (1) hour examination. Note that some questions may combine concepts from more than one course.

Instructions:

In this comprehensive examination you must answer a total of THREE (3) questions. Probability Tables, Graphs and SAS / JMP output will be provided as needed.

Methodology: Significance testing, confidence intervals, analysis of variance, contrasts, multiple comparisons, assumptions, blocking designs, model evaluation, residual diagnostics, correlation, simple and multiple linear regression, polynomial regression, sequential and partial sums-of-squares (Type I and III analyses), collinearity, interpretation of output from statistical software such as SAS, JMP and graphing calculators.

Courses: STAT 541, STAT 548

References:

The candidate's lecture notes and textbook from each of the required courses

Moore and McCabe, Introduction to the Practice of Statistics Ott, An Introduction to Statistical Methods and Data Analysis Kutner, Nachtsheim and Neter, Applied Linear Regression Models Draper and Smith, Applied Regression Analysis Montgomery, Design and Analysis of Experiments

The following ANOVA table was obtained from a balanced completely randomized design:

Source	df 	SS 	MS 	F
Treatment Error	20	126	16	
Total	23			

- (a) By completing the ANOVA table above determine:
 - (i) The number of treatments.
 - (ii) The number of replications per treatment.
- (b) Hence state the model and the assumptions needed for inference purposes.
- (c) Test whether there is a difference between the true mean responses to the treatment.
- (d) Determine the P-value of this test and explain what it represents.

Question 2

In a study of fitness, researchers were interested in the effects of weight and oxygen capacity on the time to run 1.5 miles in working adults. Data were collected on 31 individuals. Weight was measured in kg and Runtime in minutes. Higher values of oxygen capacity (Oxy) are associated with better aerobic fitness.

- (a) Figure 1 and Table 1 give the results from fitting different Simple Linear Regressions (SLR's). What conclusions are suggested by each SLR?
- (b) Based on your conclusions from Figure 1 and Table 1, find a 95% confidence interval for the mean time for an individual whose oxygen capacity is 51 to run 1.5 miles.
- (c) Can the correlation between Runtime and Oxy be determined from Table 1? If so, compute it; if not, explain why.
- (d) If both weight and oxygen capacity are used as explanatory variables, would you expect your conclusions as to the usefulness of weight and oxygen capacity to explain average running time to be the same as those in part (a)? Explain.

Figure 1: Plots for Question 2

Table 1: SAS Output for Question 2

Dependent Va	riable: Runtime				
-		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	42.92405	42.92405	83.97	<.0001
Error	29	14.82349	0.51115		
Corrected To	tal 30	57.74754			
	Root MSE	0.71495	R-Square	0.7433	
	Dependent Mean		<i>J</i> 1	0.7345	
	Dependent Mean Coeff Var	10.58613 6.75366	Adj R-Sq	0.7345	

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	21.22219	1.16775	18.17	<.0001
Oxy	1	-0.22450	0.02450	-9.16	<.0001

Dependent	Variable: Ru	ntime				
-			Sum of	Mea	n	
Source		DF	Squares	Squar	e F Value	Pr > F
M 1 7		4	4 40000	4 4000	0 0 01	0 4440
Model		1	1.18928	1.1892	8 0.61	0.4412
Error		29	56.55826	1.9502	8	
Corrected	Total	30	57.74754			
	Root MSE		1.39653	R-Square	0.0206	
	Dependent	Mean	10.58613	Adj R-Sq	-0.0132	
	Coeff Var		13.19204			

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	8.73472	2.38411	3.66	0.0010
Weight	1	0.02391	0.03061	0.78	0.4412

A randomized complete block design was employed to study the effects of three diets on the *reduction* of total lipid (fat) level in blood plasma. Data and SAS output from fifteen male subjects who were within 20% of their ideal body weight is given in **Table 2** below.

Table 2: Lipid Readings

Age	Fat Content of Diet								
Group	Extremely Low	Moderately Low							
15 - 24	0.73	0.67	0.15						
25 - 34	0.86	0.75	0.21						
35 - 44	0.94	0.81	0.26						
45 - 54	1.40	1.32	0.75						
55 - 64	1.62	1.41	0.78						

		Sum of	Mean
Source	DF	Squares	Square
AGE	4	1.41896	0.354740
FAT	2	1.32028	0.660140
Error	8	0.01932	0.002415
Corrected Total	14	2.75856	

Level of				Level of		Y-	
AGE	N	Mean	SD	FAT	N	Mean	SD
15-24	3	0.51666667	0.31895663	ext_low	5	1.11000000	0.38078866
25-34	3	0.60666667	0.34789845	fair_low	5	0.99200000	0.34557199
35-44	3	0.67000000	0.36097091	mod_low	5	0.43000000	0.30846394
45-54	3	1.15666667	0.35444793				
55-64	3	1.27000000	0.43714986				

- (a) Write the model and assumptions for this experiment.
- (b) Use the SAS output to explain why two of the assumptions appear to be satisfied.
- (c) Use the ANOVA results to state "appropriate" conclusions about the two factors.
- (d) Give two orthogonal contrasts that could be used to compare the FAT levels.

The number of pounds of steam used per month at a plant is thought to be related to the average monthly ambient temperature. The past year's usages and temperature follow:

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Temperature	21	24	32	47	50	59	68	74	62	50	40	30
Usage	19	21	29	42	46	54	62	67	56	45	37	28

- (a) Fit a simple linear regression model to the data (with Usage as the response).
- (b) Is there a linear association between Temperature and Usage?
- (c) Management believes that an increase in average ambient temperature of 1 degree will increase average monthly steam consumption by 1 (thousand) lbs.

 Do the data support this statement?
- (d) Construct a 95% prediction interval on steam usage in a month with average ambient temperature of 58 degrees.

Question 5

SAS output from fitting three regression models to the data below is given in **Table 3**.

Y	X_1	X_2
28	3	49
33	4	41
42	7	33
55	8	31
75	16	7
91	21	5

- (a) From the SAS output in **Table 3**, write down the three regression models that were fitted to the dataset above.
- (b) (i) For each regression, what are your conclusions?

Be specific: discuss the quality of the regression, the overall significance, and the significance of the explanatory variable(s) in the regression model.

- (ii) What "conflict" appears to arise between the three regression results?
- (c) (i) Do a rough sketch of X_1 versus X_2
 - (ii) Why does this plot help explain the apparent conflict between the results?

Table 3: SAS Output for Question

		2 . 2			
Source	DF	Sum of Squares	Mean Square		Pr > F
Model	1	3004.41465	3004.41465		0.0002
Error	4	67.58535	16.89634		
Corrected Tota	.1 5	3072.00000			
R	oot MSE	4.1105	52 R-Square	0.9780	
D	ependent Me	ean 54.0000	00 Adj R-Sq	0.9725	
		Parameter	Standard		
Variable	DF	Estimate	Error t	Value Pr	> t
Intercept	1	20.23610	3.03764	6.66	0.0026
X1	1	3.43362	0.25749	13.33	0.0002
 Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	2913.36198	2913.36198	73.46	0.0010
Error	4	158.63802	39.65950		
Corrected Tota	1 5	3072.00000			
R	oot MSE	6.2975	58 R-Square	0.9484	
D	ependent Me	ean 54.0000	-		
		Parameter	Standard		
Variable	DF	Estimate	Error t	Value Pr	> t
Intercept	1	91.17851	5.04245	18.08	<.0001
Х2	1	-1.34380	0.15679	-8.57	0.0010
 Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	3009.92646			0.0029
Error	3	62.07354	20.69118		
Corrected Tota	.1 5	3072.00000			
R	oot MSE	4.5487	76 R-Square	0.9798	
D	ependent Me	ean 54.0000	-	0.9663	
		Parameter	Standard		
Variable	DF	Estimate	Error t	Value Pr	> t
Intercept	1	33.93210	26.74829	1.27	0.2941
X1	1	2.78476	1.28906	2.16	0.1195
X2	1	-0.26442	0.51232	-0.52	0.6414

A study to investigate possible causes for high serum phosphate levels in adults with sickle cell anemia included three groups: five sickle cell patients with high serum phosphate levels (> 4.5 mg/dliter), four sickle cell patients with normal serum phosphate levels (3 - 4.5 mg/dliter), and 7 controls. The response variable was tubular reabsorptive capacity for phosphate (TRCP). [TRCP is a measure of the phosphate reabsorption rate in the kidney.]

- (a) In planning your pre-ANOVA analysis determine appropriate orthogonal contrasts that would help experimenters analyze the experiment. State the contrasts in words and give the coefficients for the contrast.
- (b) State the ANOVA model and state the necessary assumptions.
- (c) What methods would you use to test the assumptions of part b). [Note: Do not perform any tests, just discuss the methods.]
- (d) What options would you consider if these assumptions are violated?
- (e) Use the SAS Output given in **Table 4** to analyze the data. Summarize the results and conclusions of your analysis.

Table 4: SAS Output for Question 6

Group N	Mean	Std Dev	Minimum	Maximum
Control NonS 7 High Serum 5 Normal Serum 4	3.3071429	0.5498398	2.6000000	4.0800000
	4.6420000	0.4506884	4.1200000	5.3600000
	3.5750000	0.2998333	3.1800000	3.8900000

Dependent Variable: TRCP

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	5.44645214	2.72322607	12.22	0.0010
Error	13	2.89612286	0.22277868		
Corrected Total	15	8.34257500			

Table 4 Continued: SAS Output for Question 6

	R-Square	C.V.	Root MSE		TRCP Mean	
	0.652850	12.44957	0.471994		3.791250	
Source	DF	Anova SS	Mean Square	F Value	Pr > F	
GROUP	2	5.44645214	2.72322607	12.22	0.0010	

Analysis of Variance Procedure

Level of		TRO	CP
GROUP	N	Mean	SD
Control NonS	7	3.30714286	0.54983980
High Serum	5	4.64200000	0.45068836
Normal Serum	4	3.57500000	0.29983329

Duncan's Multiple Range Test for variable: TRCP

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 13 MSE= 0.222779 WARNING: Cell sizes are not equal. Harmonic Mean of cell sizes= 5.060241

> Number of Means 2 3 Critical Range .6411 .6714

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	GROUP
A	4.6420	5	High Serum
В	3.5750	4	Normal Serum
В	3.3071	7	Control NonS