第一章 计算机系统概述

第一章 计算机系统概述

- 二、计算机的发展历程
 - 1. 计算机的软硬件
 - 2. 计算机硬件的发展
 - 3. 计算机软件的发展
 - 4. 计算机的分类与发展方向
- 三、计算机硬件的基本组成(课程重点)
 - 1. 计算机硬件的基本组成
 - 2. 计算机组成功能部件: 存储器
 - 3. 计算机组成功能部件: 运算器与控制器
 - 4. 计算机组成功能部件: I/o设备
- 四、计算机系统的层次结构
- 五、计算机系统性能指标
 - 1. 性能指标概览
 - 2. 容量
 - 3. 速度

二、计算机的发展历程

1. 计算机的软硬件

2. 计算机硬件的发展

计算机硬件的发展 							
发展阶段 时	间 逻辑元件	速度(次/秒)	内存	外存			
第一代 1946-	1957 电子管	几千-几万	汞延迟线、磁鼓	穿孔卡片、纸袋			
第二代 1958-	1964 晶体管	几万-几十万	磁芯存储器	磁带			
第三代 1964-	1971 中小规模集成 电路	几十万-几百万	半导体存储器	磁带、磁盘			
第四代 1972-	现在 大规模、超大 规模集成电路	上千万-万亿	半导体存储器	磁盘、磁带、光盘、 半导体存储器			
	CPU						

- 第一代计算机: 使用机器语言;
- 第二代计算机: 使用高级语言;
- 第三代计算机: 高级语言迅速发展, 出现了分时操作系统;
- 第四代计算机: 出现了微处理器,以及并行、流水线、高速缓存、虚拟存储器等概念;
- **摩尔定律**:集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,整体性能也将提升一倍;

		计算机硬件的第				
微处理器的发展 微型计算机的发展以微处理器技术为标志						
微处理器	机器字长	年份	晶体管数目			
8080	8位	1974		机器字长: 计 算机一次整数 运算所能处理 的二进制位数		
8086	16位	1979	2.9万			
80286	16位	1982	13.4万			
80386	32位	1985	27.5万			
80486	32位	1989	120.0万			
Pentium	64位(准)	1993	310.0万			
Pentium pro	64位(准)	1995	550.0万			
Pentium II	64位(准)	1997	750.0万			
Pentium III	64位(准)	1999	950.0万			
Pentium IV	64位	1000	3200.0万			

• 16位的运算,如果机器字长也是16位,则需要一次运算;如果机器字长是8位,则需要两次运算,高8位与低8位分开运算;

3. 计算机软件的发展

- 编译程序与解释程序:
 - 编译程序是整体编译完了,再一次性执行。而解释程序是一边解释,一边执行。 解释一句后就提交计算机执行一句,并不形成目标程序。
 - 编译器是把源程序的每一条语句都编译成机器语言,并保存成二进制文件,这样运行时计算机可以直接以机器语言来运行此程序,速度很快。而解释器则是只在执行程序时,才一条一条的解释成机器语言给计算机来执行,所以运行速度是不如编译后的程序运行的快的。

- 高级语言的出现才真正促进了软件的发展;
- 高级语言的发展:用于科学计算与工程计算的Fortran -> 结构化程序设计的Pascal -> 面向对象的C++ -> 适应网络环境的JAVA

4. 计算机的分类与发展方向

注:

- 指令流与数据流分类:
 - 单指令流&单数据流(SISD): 冯诺依曼体系结构;
 - 单指令流&多数据流(SIMD): 阵列处理器、向量处理器;
 - 单指令流&单数据流(MISD):不存在;
 - 。 多指令流&多数据流(MIMD): 多处理器、多计算机;

三、计算机硬件的基本组成(课程重点)

1. 计算机硬件的基本组成

注:

- 冯诺依曼计算机"存储程序":指令和数据以同等地位存储于存储器中,并可按地址寻访;
- 冯诺依曼计算机以运算器为中心,现代计算机系统组成以存储器为中心;

2. 计算机组成功能部件: 存储器

- 基本概念:存储元、存储字、存储字长、存储单元、存储体;
- 机器字长一般是存储字长的整数倍,这也决定着CPU访存的次数;

- 地址寄存器(MAR)与数据寄存器(MDR)逻辑上是主存里的,实际上是放到CPU 里的;
- 同一个时刻只能有一个存储单元被选通,该单元将数据传输到数据寄存器中,即上图中右边最上面一串数字的位置;

3. 计算机组成功能部件: 运算器与控制器

注:

- MQ为乘商寄存器, X为操作数寄存器;
- MDR中可以存放数据也可以存放指令;

4. 计算机组成功能部件: I/o设备

四、计算机系统的层次结构

五、计算机系统性能指标

1. 性能指标概览

2. 容量

3. 速度

- 这里的指令指的是二进制指令;
- 一次整数运算,默认不管多少位,一次处理时间都相同;
- 这也导致计算机内部寄存器的大小不但影响着运算精度,也影响着运算速度;

MIPS(Million Instructions Per Second),即每秒执行<mark>多少百万条</mark>指令。 MIPS=指令条数/(执行时间×10⁶)=主频/CPI

MFLOPS(Mega Floating-point Operations Per Second),即每秒执行多少百万次浮点运算。MFLOPS=浮点操作次数/(执行时间×10⁶)。

GFLOPS(Giga Floating-point Operations Per Second),即每秒执行多少十亿次浮点运算。MFLOPS=浮点操作次数/(执行时间× 10°)。

TFLOPS(Tera Floating-point Operations Per Second),即每秒执行多少万亿次浮点运算。MFLOPS=浮点操作次数/(执行时间×10¹²)。

王道考研/CSKAOYAN.COM

速度

数据通路带宽:数据总线一次所能并行传送信息的位数

吞吐量: 指系统在单位时间内处理请求的数量。

它取决于信息能多快地输入内存,CPU能多快地取指令,数据能多快地从内存取出或存入,以及所得结果能多快地从内存送给一台外部设备。这些步骤中的每一步都关系到主存,因此,系统吞吐量主要取决于主存的存取周期。

响应时间:指从用户向计算机发送一个请求,到系统对该请求做出响应并获得它所需要的结果的等待时间。

通常包括CPU时间(运行一个程序所花费的时间)与等待时间(用于磁盘访问、存储器访问、I/O操作、操作系统开销等时间)。

王道考研/CSKAOYAN.COM

- 数据总线一定是并行的;
- 主存存取周期(memory cycle time): 连续启动两次读或写操作所需间隔的最小时间,通常用访问周期T(又称存取周期等)表示,主要受系统命中率影响;
- 存取时间: CPU读或写内存内数据的过程时间;
- 存取周期 = 存取时间 + 恢复时间;