ZFS met RAID-Z als alternatief voor klassieke RAID-oplossingen

Jonas De Moor

Toegepaste Informatica - Systeem- en Netwerkbeheer Hogeschool Gent

jonas.demoor.v3741@student.hogent.be

15 juni 2017

Inhoud

- Achtergrond
 - Motivatie
 - Onderzoeksvragen
 - Opbouw van het onderzoek
 - Gehanteerde methodiek
- Onderzoek
 - Achtergrondinformatie m.b.t. ZFS
 - Architectuur van ZFS
 - VDEV's & Storage Pools
 - Benchmarks
- 3 Conclusie

Motivatie voor het voeren van dit onderzoek

- RAID5 'write hole'
- Relatie tussen BTRFS en ZFS
- ZFS On Linux (cf. Ubuntu 16.04 LTS)
- Interesses: Linux en Unix

Onderzoeksvragen

- Wat zijn de grootste verschillen tussen een klassieke RAID-oplossing en ZFS RAID-Z?
- Hoe is de architectuur van ZFS opgebouwd en op welke manieren tracht het oplossingen te vinden voor de problemen die zich voordoen bij andere bestandssystemen en RAID-opstellingen?
- Hoe staat het met data-integriteit en performantie¹ bij ZFS onder verschillende workloads en toepassingen?

 $^{^1}$ Met 'performantie' wordt het aantal I/O's per seconde en de globale CPU-belasting bedoeld.

Opbouw van het onderzoek

Twee grote onderdelen:

- Theoretisch gedeelte
 - Inleiding tot RAID-niveaus
 - Architectuur en ontwerpprincipes van ZFS
 - Interne datastructuren en transactiemodel
- Praktisch gedeelte
 - Storage Pools & VDEV's
 - Datasets
 - Performantie & Betrouwbaarheid

Gehanteerde methodiek

- Phoronix Benchmark: performantietesten op fysieke machine
 - FIO (Flexible I/O Tester): IOPS
 - FS-Mark: bestandssysteemoperaties
 - PostMark: simulatie van webserver/mailserver
 - SQLite: databankoperaties
- Virtuele Machine: betrouwbaarheidstesten
 - Wegvallen van een schijf (array van drie schijven)
 - Dataverlies door gebruikersfout
 - Bescherming tegen datacorruptie

Gehanteerde methodiek

Specificaties				
Fabrikant	HP			
Model	HP Pavilion Elite HPE-310be			
CPU	Intel Core i5 650 @ 3.2 GHz (2 Cores; 4 Threads)			
Geheugen	10GB DDR3 @ 1333MHz			
GPU	AMD Radeon HD 5570			
	SAMSUNG HD103SJ (1TB)			
Interne schijven	WDC WD1002FAEX-0 (1TB)			
	WDC WD5000AZRX-0 (500GB)			
Externe schijf	WD Elements 1078 (1TB)			
RAID Controller	Intel Corporation SATA RAID Controller			

Tabel: Specificaties van het fysieke systeem dat gebruikt werd doorheen de bachelorproef (data verkregen via lshw)

Gehanteerde methodiek

Specificaties Virtuele Machine					
OS	Fedora Server 25				
CPU	4x Host CPU (Intel Core i7-4712HQ CPU @ 2.30GHz)				
Geheugen	8GB				
OS-schijf	20GB (/dev/sda; SATA non-hot-pluggable)				
	40GB (/dev/sdb; SATA hot-pluggable)				
Zpool schijven	40GB (/dev/sdc; SATA hot-pluggable)				
	40GB (/dev/sdd; SATA hot-pluggable)				
NIC's	VirtualBox NAT-adapter (10.0.2.15/24)				
	VirtualBox Host-only Adapter (192.168.56.10/24)				

Tabel: Specificaties van de virtuele machine die gebruikt werd voor de betrouwbaarheidstesten

Inhoud

- Achtergrond
 - Motivatie
 - Onderzoeksvragen
 - Opbouw van het onderzoek
 - Gehanteerde methodiek
- Onderzoek
 - Achtergrondinformatie m.b.t. ZFS
 - Architectuur van ZFS
 - VDEV's & Storage Pools
 - Benchmarks
- 3 Conclusie

ZFS: een kort overzicht

- Copy-On-Write bestandssysteem
- Ontwikkeld door Sun Microsystems (begin jaren 2000)
- Oorspronkelijk onderdeel van Solaris
- Nu: verdere ontwikkeling via OpenZFS (en Oracle)
- Ondertussen ook beschikbaar op BSD en Linux (ZFS on Linux)
- Beschikt over RAID-Z (softwarematige RAID)

Architectuur van ZFS

Figuur: Een overzicht van de verschillende componenten van ZFS (Kendi, Onbekend)

Architectuur van ZFS

Figuur: Vergelijking tussen een 'traditionele' storage stack (links) en de ZFS storage stack (rechts) (Bonwick e.a., 2002)

Storage Pools

- Abstractie voor fysieke apparaten → gegroepeerd in VDEV's
- Dynamische allocatie van opslagruimte
- Schijven kunnen worden toegevoegd zonder downtime²

Figuur: Illustratie van ZFS pooled storage (rechts) t.o.v.volume-based storage (links) (Bonwick e.a., 2002)

²Afhankelijk van de situatie

VDEV's: Virtual Devices

- Bouwstenen van storage pools
- RAID-niveaus binnen ZFS:
 - Stripes, Mirrors, RAID-Z, etc.
- Speciale VDEV's:
 - SLOG, L2ARC

Figuur: Conceptuele voorstelling van VDEV's in een boomstructuur (Sun Microsystems, 2006)

15 juni 2017

Voorbeeld: zpool met een RAID-Z VDEV

\$ zpool create storage raidz1 /dev/sda /dev/sdb /dev/sdc

\$ zpool status
pool: storage
state: ONLINE

scan: none requested

config:

NAME	STATE	READ	WRITE	CKSUM
storage	ONLINE	0	0	0
raidz1-0	ONLINE	0	0	0
sda	ONLINE	0	0	0
sdb	ONLINE	0	0	0
sdc	ONLINE	0	0	0

errors: No known data errors

Inhoud

- Achtergrond
 - Motivatie
 - Onderzoeksvragen
 - Opbouw van het onderzoek
 - Gehanteerde methodiek
- Onderzoek
 - Achtergrondinformatie m.b.t. ZFS
 - Architectuur van ZFS
 - VDEV's & Storage Pools
 - Benchmarks
- 3 Conclusie

Benchmarks

FIO-benchmark: aantal IOPS (Invoer/Uitvoer-bewerkingen per seconde)

Referenties I

- Bonwick, J. e.a. (2002, Unknown). *The Zettabyte Filesystem*. Verkregen van http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1. 184.3704&rep=rep1&type=pdf
- Kendi, C. (Onbekend). ZFS: Enhancing the Open Source Storage System (and the Kernel). Verkregen van https://www.blackhat.com/presentations/bh-dc-10/Kendi_Christian/Blackhat-DC-2010-Kendi-Enhancing-ZFSslides.pdf
- Sun Microsystems. (2006). ZFS on-disk specification. Verkregen van http://www.giis.co.in/Zfs_ondiskformat.pdf

Zijn er nog vragen?