

APPLICATION NOTE (DOC No. HX8347-A-AN)

^{>>}НХ8347-А

240RGB x 320 dot, 262K color, with internal GRAM, TFT Mobile Single Chip Driver *Version 01 September, 2007*

Himax Technologies, Inc. http://www.himax.com.tw

^{>>}НХ8347-А

List of Contents

September, 2007

1. Introduction	
2. HX8347-A Chip Block Diagram	5
3. HX8347-A PAD Assignment	6
3.1 Alignment mark	7
3.2 Bump size	8
3.2 Bump size	9
4. Pin Description	13
5.1 Command-parameter interface mode	13
5.1.1 MPU Interface	13
5.1.2 RGB interface	14
5.2 Register-content interface mode	15
5.2.1 MPU interface	15
5.2.2 RGB with Serial interface	16
6. LCD POWER GENERATION	18
6.1 LCD Power Generation Scheme	18
6.2 Various Boosting Steps	19
6.1 LCD Power Generation Scheme 6.2 Various Boosting Steps 7. Software Configuration 7.1 Features 7.1.1 Display 7.1.2 Display module 7.1.3 Display/Control interface 7.1.4 Others	20
7.1 Features	20
7.1.1 Display	20
7.1.2 Display module	20
7.1.3 Display/Control interface	20
7.1.4 Others	21
7.2 GRAM mapping	22
7.3 Scan Function	23
7.4 Interface Mode	24
7.4.1 Interface Mode Selection	24
7.4.2 Register-Content Interface Mode 7.4.3 Serial Data Transfer interface	24
7.4.3 Serial Data Transfer interface	33
7.4.4 Command-Parameter Interface Mode	35
7.4.5 RGB Interface7.5 Initial Procedure	4 1
7.5 Initial Procedure	44
7.5.1 Power Supply Setting Flow	44
7.5.2 Display on/off Setting Flow	45
7.5.3 Standby Mode Setting Flow	
7.6 Initial code for reference	47
7.6.1 The reference setting of Normal Display for Command-Parameter Interface Mode	47
7.6.2 The reference setting of Normal Display for Register-Content Interface Mode	48
7.6.2.1 The reference setting of CMO 3.2" Panel	48
7.6.2.2 The reference setting of CMO 2.4" Panel	50
7.6.2.3 The reference setting of CMO 2.8" Panel	
7.6.3 The reference setting of into Standby mode for Register-Content Interface Mode	
7.6.4 The reference setting of exit Standby mode for Register-Content Interface Mode	
	50

240RGB x 320 dot, 262K color, with internal GRAM, TFT Mobile Single Chip Driver

List of Figures

September, 2007

Figure 2. 1 HX8347-A block diagram	5
Figure 5. 1 Reference FPC circuit Command-parameter interface mode's MPU interface	. 14
Figure 6. 1 LCD power generation scheme	
Figure 7. 1 Memory Map. (240RGBx320)	
Figure 7. 4 Input Data Bus and GRAM Data Mapping in 16-Bit Bus System Interface with 16 Bit-Data In ("BS2, BS1, BS0"="000")	put . 25
Figure 7. 5 Input Data Bus and GRAM Data Mapping in 16-Bit Bus System Interface with 18(16+2) Bit-D Input ("BS2, BS1, BS0"="001"))ata . 25
Bit-Data Input ("BS2, BS1, BS0"="100")	. 26
BS0"="010" or "101")	. 26
Figure 7. 9 GRAM read/write Timing in 16-/18-bit Parallel Bus System Interface (for I80 series MPU) Figure 7. 10 GRAM read/write Timing in 8-bit Parallel Bus System Interface (for I80 series MPU)	. 28
Figure 7. 11 Register read/write Timing in Parallel Bus System Interface (for M68 series MPU)	. 30 . 31
Figure 7. 13 GRAM read/write Timing in 8-bit Parallel Bus System Interface (for M68 series MPU)	. 33
Figure 7. 15 Data Read Timing in Serial Bus System Interface	. 36
Figure 7. 17 GRAM Write Data Mapping for 8 bit interface	. 37
Figure 7. 20 GRAM Read/Write Timing in Parallel Bus System Interface (for I80 series MPU)	. 39
Figure 7. 22 RGB Interface Circuit Input Timing	. 41
Figure 7. 24 16 bit / pixel Data Input of RGB Interface	. 44
Figure 7. 26 Display On/Off Setting Flow	

^{>>}HX8347-A

List of Tables

September,	2007
------------	------

Table 5. 1 Connected Capacitor	17
Table 5. 2 Connected Schottkey diode	17
Table 7. 1 MY, MX, MV Setting	23
Table 7. 2 Interface Mode Selection	24
Table 7. 3 MPU selection in Register-content Interface Circuit	24
Table 7. 4 Interface Selection in Register-content Interface Mode	24
Table 7. 5 Data Pin Function for I80 Series CPU	24
Table 7. 6 Data Pin Function for M68 Series CPU	24
Table 7. 7 The Function of RS and R/W Bit bus	33
Table 7. 8 MPU selection in Command-Parameter Interface Circuit	
Table 7. 9 Interface Selection in Command-Parameter Interface Mode	3
Table 7. 10 Data Pin Function for I80 Series CPU	35
Table 7. 11 Data Pin Function for M68 Series CPU	
Table 7. 12 EPL bit Setting and Valid ENABLE Signal	4

[>] нх8347-а

240RGB x 320 dot, 262K color, with internal GRAM, TFT Mobile Single Chip Driver

Version 01

September, 2007

1. Introduction

This document describes Himax's HX8347-A 240RGBx320 dots resolution driving controller. The HX8347-A is designed to provide a single-chip solution that combines a gate driver, a source driver, power supply circuit for 262,144 colors to drive a TFT panel with 240RGBx320 dots at maximum.

The HX8347-A can be operated in low-voltage (1.65V) condition for the interface and integrated internal boosters that produce the liquid crystal voltage, breeder resistance and the voltage follower circuit for liquid crystal driver. In addition, The HX8347-A also supports various functions to reduce the power consumption of a LCD system via software control.

The HX8347-A is suitable for any small portable battery-driven and long-term driving products, such as small PDAs, digital cellular phones and bi-directional pagers.

The HX8347-A supports three interface modes: Command-Parameter interface mode, Register-Content interface mode and RGB interface mode. Command-Parameter interface mode and Register-Content interface mode are selected by the external pins IFSEL0 setting, and RGB interface mode is selected by internal bit RGB EN.

Himax Confidential

2. HX8347-A Chip Block Diagram

Figure 2. 1 HX8347-A block diagram

3. HX8347-A PAD Assignment

Figure 3. 1 HX8347-A pad assignment

3.1 Alignment mark

240RGB x 320 dot, 262K color, TFT Mobile Single Chip Driver

APPLICATION NOTE V01

3.2 Bump size

4. Pin Description

				Inp	out P	arts									
Signals	I/O	Pin Number	Connected with		Description										
		110						nterface mode as listed below							
								=1 Register-content interface							
				P68	BS2	BS1	BSC		DB pins						
				0	0	0	0	16-bit bus interface, 80-system, 65K-Color	D17-D16: Unused, D15-D0: Data						
				0	0	0	1	16-bit bus interface, 80-system, 262K-color	D17-D16: Unused, D15-D0: Data						
				0	0	1	0	18-bit bus interface, 80-system, 262K-color							
				0	0	1	1	8-bit bus interface, 80-system, 262-Color	D17-D8: Unused D7-D0: Data						
				0	1	0	0	16-bit bus interface, 80-system, 262-Color	D15-D0: Data						
				0	1	0	1	18-bit bus interface, 80-system, 262K-color	D17-D0. Data						
				1	0	0	0	16-bit bus interface, 68-system, 65K-Color	D15-D0: Data						
				1	0	0	1	16-bit bus interface, 68-system, 262K-color	D15-D0: Data						
P68, BS2,BS1,BS0	Ι	4	VSSD/ IOVCC	1	0	1	0	18-bit bus interface, 68-system, 262K-Color 8-bit bus interface, 68-system,	D17-D0: Data D17-D8:Unused						
, - ,- 3				1	0	1	1	262K-color 16-bit bus interface, 68-system,	D7-D0: Data						
				1	1	0	0	262K-Color	D15-D0: Data						
				1	1	0	1	18-bit bus interface, 68-system, 262K-color	D17-D0: Data						
				Х	1	1	lD	Serial bus IF	DNC_SCL, SDO,SDI						
								=0 Command-Parameter inter							
			P68	BS2	BS1	BSC	Interface mode	DB pins							
										0	0	1		16-bit bus interface, 80-system,	D15-D0: Data
			1	0	0	0	X	8-bit bus interface, 80-system,	D17-D8:Unused, D7-D0: Data D17-D16:Unused,						
			57	1	0	1	Х	16-bit bus interface, 68-system,	D15-D0: Data						
1 0 0 X 8-bit bus		8-bit bus interface, 68-system,	D17-D8:Unused, D7-D0: Data D17-D0:Unused												
					X	1	1	Х	Serial interface	SDI, SDO					
		(())		رب	-c.	_		(Other setting is inhibited)							
	X						nats	select pin	tion						
IFSEL0		1	MPU		<u>-SEI</u> 0	_U	C	Interface Format Select							
II JELU			IVII		1			gister-content interface mode							
			•	In th	nis ca	se.		FSEL0 has to be connected to							
								and set enable. (Only support							
								neter Interface mode → IFSEL							
EXTC	ı	1	MPU					mmand set is discarded							
LATO	•	1	IVII U					ommand set is accepted	. =\:==						
				If operate in Register-content interface mode, the EXTC can be											
								CC or VSSD.							
					sel			ı. accessed;							
NCS	I	1	MPU		n: ch			be accessed. Must be conne	ected to VSSD if not in						
						em: S	Serv	es as a write signal and writes	s data at the rising						
VIVALD DVIVA	ı	4	MOLL	edg				and with the signal and with							
NWR_RNW	I	1	MPU	M68	sys			Vrite, 1: Read.							
				Fix	it to I	OVC	Со	r VSSD level when using seria							
								es as a read signal and read of							
NRD_E		1	MPU					lead/Write disable, 1: Read/W							
		Fix it to IOVCC or VSSD level when using serial buss interface					ai buss interface.								

	Input Parts						
Signals	I/O	Pin Number	Connected with	Description			
BURN	I	1	MPU	Free Running mode If BURN=Hi, this can enable free running mode for burn in test. The display data alternates between full black and full white independent of input data in free running mode.			
SDI	I	1	MPU	Serial data input pin. If not used, please let it connected to IOVCC or VSSD.			
DNC_SCL	1	1	MPU	The signal for command or parameter select under parallel mode(i.e. Not serial interface): Low: command. High: parameter. When under serial interface, it servers as SCL.			
VSYNC	I	1	MPU Frame synchronizing signal. Has to be fixed to IOVCC level if i used.				
HSYNC	I	1	MPU	Frame synchronizing signal. Has to be fixed to IOVCC level if is not used.			
ENABLE	I	1	MPU	A data ENABLE signal in RGB I/F mode. Has to be fixed to VSSD level if unused (High active, if EPL=0).			
DOTCLK	I	1	MPU	Dot clock signal. Has to be fixed to VSSD level if is not used.			
NRESET	I	1	MPU or reset circuit	Reset pin. Setting either pin low initializes the LSI. Must be reset after power is supplied.			
OSC	I	1	Oscillation Resistor	Oscillator input for test purpose. If not used, please let it open or connected to VSSD.			
VCOMR	I	1	Resistor or open	A VcomH reference voltage. When adjusting VcomH externally, set registers to halt the VcomH internal adjusting circuit and place a variable resistor between VREG1 and VSSD. Otherwise, leave this pin open and adjust VcomH by setting the internal register of the HX8347-A.			
VGS	I	1	VSSD or external resistor	Connect to a variable resistor to adjusting internal gamma reference voltage for matching the characteristic of different panel used.			

	Output Part							
Signals	I/O	Pin Number	Connected with	Description				
S1~S720	0	720	LCD	Output voltages applied to the liquid crystal.				
G1~G320	0	320	LCD	Gate driver output pins. These pins output VGH, VGL.(If not used, should be open)				
VCOM	0		TFT common electrode	The power supply of common voltage in TFT driving. The voltage amplitude between VCOMH and VCOML is output. Connect this pin to the common electrode in TFT panel.				
TE	0	1	MPU	Tearing effect output. If not used, please open this pin.				
SDO	0	1	MPU	Serial data output. If not use, let it to open.				
NISD	0	1	Open	Image Sticking Discharge signal. This pin is used for monitoring image sticking discharge phenomena. When the NISD goes low, the VGL would be discharged to VSSA. When the NISD goes high, the VGL, Source and VCOM are normal operation.				

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed.

	Input/Output Part							
Signals	I/O	Pin Number	Connected with	Description				
C11A,C11B C12A,C12B	I/O	4	Step-up Capacitor	Connect to the step-up capacitors according to the step-up factor. Leave this pin open if the internal step-up circuit is not used.				
CX11A, CX11B	I/O	2	Step-up Capacitor	Connect to the step-up capacitors for step up circuit 1 operation. Leave this pin open if the internal step-up circuit is not used.				
C21A,C21B C22A,C22B	I/O	4	Step-up Capacitor	Connect these pins to the capacitors for the step-up circuit 2. According to the step-up rate. When not using the step-up circuit2, disconnect them.				
D17~0	I/O	18	MPU	1. 18-bit bi-directional data bus for system interface. 8-bit bus: use D7-D0 and D17-D8 unused. 16-bit bus: use D15-D0 and D17-D16 unused. 18-bit bus: use D17-D0 2. 18-bit data bus for RGB interface 16-bit bus: use D17-D13, D11-D1 and D12, D0 unused. 18-bit bus: use D17-D0 Connected unused pins to the VSSD level. Notice: When register RGB_EN=1 and pin ENABLE=1, D[17:0] is used as stream image data for display. It means MPU data bus and RGB data bus is shared.				

				Power Part	
Signals	I/O	Pin Number	Connected with	Description	
IOVCC	Р	1	Power Supply	Digital IO Pad power supply	
VCI	Р	1	Power Supply	Analog power supply	
VSSD	Р	1	Ground	Digital ground	
VSSA	Р	1	Ground	Analog ground	
VDDD	0	1	Stabilizing Capacitor	Output from internal logic voltage (1.6V). Connect to a stabilizing capacitor	
REGVDD	I	1	MPU	If REGVDD = high, the internal VDDD regulator will be turned on. If REGVDD = low, the internal VDDD regulator will be turned off, VDDD should connect to external power supply, the voltage range 1.65~1.95V. The REGVDD pin must be connected to IOVCC or VSSD.	
VBGP	-	1 (Open	Band Gap Voltage. Let it to be open.	
VREG1	Р	1	Stabilizing Capacitor	Internal generated stable power for source driver unit.	
VREG3	P		Stabilizing Capacitor	A reference voltage for VGH&VGL.	
VCOMH	P	1	Stabilizing capacitor	Connect this pin to the capacitor for stabilization. This pin indicates a high level of VCOM amplitude generated in driving the VCOM alternation.	
VCOML	Ω	1	Stabilizing capacitor	When the VCOM alternation is driven, this pin indicates a low leve of VCOM amplitude. Connect this pin to a capacitor for stabilization	
VCL	Р	1	Stabilizing capacitor	A negative voltage for VCOML circuit, VCL=-VCI	
DDVDH	Р	1	Stabilizing capacitor	An output from the step-up circuit1. Connect to a stabilizing capacitor between VSSA and DDVDH. Place a schotkey barrier diode (see "configuration of the power supply").	
VGH	Р	1	Stabilizing capacitor	An output from the step-up circuit2.or 4 ~ 6 time the VCI level. The step-up rate is determined with BT3-0 bits. Connect to a stabilizing capacitor between VSSD and VGH. Place a schottkey barrier diode between VCI and VGH. Place a schottkey barrier diode (see "configuration of the power supply").	
VGL	Р	1	Stabilizing capacitor	An output from the step-up circuit2.or $-3 \sim -5$ time the VCI level. The step-up rate is determined with BT3-0 bits. Connect to a stabilizing capacitor between VSSD and VGL. Place a schottkey barrier diode between VSSD and VGL. Place a schottkey barrier diode (see "configuration of the power supply").	

Test pin and others						
Signals	I/O	Pin Number	Connected with	Description		
TEST3-1	- 1	3	GND	Test pin input (Internal pull low)		
TS8~0	0	9	Open	A test pin. Disconnect it.		
VMONI	0	1	Open	A test pin. Disconnect it.		
VTEST	0	1	Open	Gamma voltage of Panel test pin output. Must be left open.		
TVCOMHI	0	1	Open	A test pin output. Must be left open.		
TVMAG	0	1	Open	A test pin output. Must be left open.		
DUMMYR14-15	-	2	Open	Dummy pads. Available for measuring the COG contact resistance. DUMMYR14 and DUMMYR15 are short-circuited within the chip.		
DUMMY1-13 DUMMY16-27	-	25	Open	Dummy pads		
IOGNDDUM	0	1	Open	Short-circuited within the chip		

5. HX8347-A Reference FPC circuit

(For CMO 3.2" / 2.4" / 2.8"LCD Panel)

5.1 Command-parameter interface mode

5.1.1 MPU Interface

Figure 5. 1 Reference FPC circuit Command-parameter interface mode's MPU interface

Himax Confidential -P.13-

5.1.2 RGB interface

Figure 5. 2 Reference FPC circuit of Command-parameter interface mode's Serial + RGB interface

5.2 Register-content interface mode

5.2.1 MPU interface

Figure 5. 3 Reference FPC circuit of Register-content interface mode's MPU interface

5.2.2 RGB with Serial interface

Figure 5. 4 Reference FPC circuit of Register-content interface mode's RGB interface

The specification of FPC circuit and pins connection is shown as following table:

Pad Name	Connection	Typical capacitance value (B characteristics)
VCOMH	Connect to Capacitor (Max 6V): VCOMH(+) (-) VSSA	1.0 uF
VCOML	Connect to Capacitor (Max 3V): VCOML(-) (+) VSSA	1.0 uF
VGL	Connect to Capacitor (Max 16V): VGL(-) (+) VSSA	1.0 uF
VGH	Connect to Capacitor (Max 21V): VGH(+) (-) VSSA	1.0 uF
VCL	Connect to Capacitor (Max 5V): VCL(-) (+) VSSA	1.0 uF
C22A - C22B	Connect to Capacitor (Max 7V): C22A(+) (-)C22B	1.0 uF
C21A - C21B	Connect to Capacitor (Max 7V): C21A(+) (-)C21B	1.0 uF
CX11A - CX11B	Connect to Capacitor (Max 7V): CX11A(+) (-)CX11B	2.2 uF
C11A - C11B	Connect to Capacitor (Max 5V): C11A(+) (-)C11B	2.2 uF
C12A - C12B	Connect to Capacitor (Max 5V): C12A(+) (-)C12B	1.0 uF
VREG1	Connect to Capacitor (Max 6V): VREG1(+) (-)VSSA	1.0 uF
VREG3	Connect to Capacitor (Max 16V): VREG3(+) (-)VSSA	1.0 uF
VDDD	Connect to Capacitor (Max 6V): VDDD(+) (-)VSSA	1.0 uF
DDVDH	Connect to Capacitor (Max 6V): DDVDH(+) (-)VSSA	1.0 uF
VCI	Connect to Capacitor (Max 6V): VCI(+) (-)VSSA	2.2 uF
IOVCC	Connect to Capacitor (Max 6V): IOVCC(+) (-)VSSA	1.0 uF

Note: The aforementioned capacitor must be connected otherwise it will cause poor display quality.

Table 5. 1 Connected Capacitor

Pins connection		Feature
1. VCI – VLCD 2. VCI – VGH 3. VSSD – VGL	@00	VF < 0.4V / 20mA at 25°C, VR ≥30V (Recommended diode: RB521S-30)

Table 5. 2 Connected Schottkey diode

6. LCD POWER GENERATION

6.1 LCD Power Generation Scheme

The boost voltage generated is shown as below.

Figure 6. 1 LCD power generation scheme

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed

6.2 Various Boosting Steps

The boost steps of each boosting voltage are selected according to how the external capacitors are connected. Different booster applications are shown as below.

Figure 6. 2 Various boosting steps

in whole or in part without prior written permission of Himax.

7. Software Configuration

7.1 Features

7.1.1 Display

- Resolution: 240(H) x RGB(H) x 320(V)
- Display Color modes
 - A. Normal Display Mode On
 - a. Command-Parameter interface mode
 - i. 262,144(R(6),G(6),B(6)) colors
 - b. Register-Content interface mode
 - i. 262,144(R(6),G(6),B(6)) colors
 - ii. 65,536(R(5),G(6),B(5)) colors
 - B. Idle Mode On
 - a. 8 (R(1),G(1),B(1)) colors.

7.1.2 Display module

- AM-LCD glass 240xRGBx320
- Gamma correction (4 preset gamma curves)
- On module VCOM control (-2.0 to 5.5V Common electrode output voltage range)
- On module DC/DC converter
 - A. DDVDH = 4.6 to 6.0V (Source output voltage range)
 - B. VGH = +9.0 to +16.5V (Positive Gate output voltage range)
 - C. VGL = -6.0 to -13.5V (Negative Gate output voltage range)
- Frame Memory area 240 (H) x 320 (V) x 18 bit

7.1.3 Display/Control interface

- Display Interface types supported
 - A. Command-Parameter interface mode
 - 8-/16-bit MPU parallel interface.
 - Serial data transfer interface.
 - 16, 18 data lines parallel video (RGB) interface.
 - B. Register-Content interface mode
 - 8-/16-/18-bit MPU parallel interface.
 - Serial data transfer interface.
 - 16, 18 data lines parallel video (RGB) interface.
- Control Interface types supported
 - A. Command-Parameter interface mode.(IFSEL0= 0)
 - B. Register-Content interface mode (IFSEL0 = 1)
- Logic voltage (IOVCC):
 - A. HX8347-A00: 1.65V ~ 1.95V
 - B. HX8347-A01: 1.65V ~ 3.3V
- Driver power supply (VCI): 2.3 ~ 3.3V
- Color modes
 - A. 16 bit/pixel: R(5), G(6), B(5)
 - B. 18 bit/pixel: R(6), G(6), B(6)

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed

240RGB x 320 dot, 262K color, TFT Mobile Single Chip Driver

APPLICATION NOTE V01

7.1.4 Others

- Low power consumption, suitable for battery operated systems
- Image sticking eliminated function
- CMOS compatible inputs
- Optimized layout for COG assembly
- Temperature range: -40 ~ +85 °C
- Proprietary multi phase driving for lower power consumption
- Support external VDD for lower power consumption (such as 1.8 volts input)
- Support RGB through mode with lower power consumption
- Support normal black/normal white LCD
- Support wide view angle display
- Support burn-in mode for efficient test in module production
- On-chip OTP (one-time-programming) non-volatile memory

Himax Confidential

7.2 GRAM mapping

Note: RA = Row Address,

CA = Column Address

MX = Mirror X-axis (Column address direction parameter), D6 parameter of Memory Access Control command

MY = Mirror Y-axis (Row address direction parameter), D7 parameter of Memory Access Control command

BGR= Red, Green and Blue pixel position change, D3 parameter of Memory Access Control command

Figure 7. 1 Memory Map. (240RGBx320)

7.3 Scan Function

The data is written in the order illustrated above. The Counter which dictates where in the physical memory the data is to be written is controlled by "Memory Data Access Control" Command, Bits MY, MX, MV as described below.

Figure 7. 2 MY, MX, MV Setting

MY	MX	MV	CASET PASET	
0	0	0	Direct to Physical Column Pointer	Direct to Physical Page Pointer
0	0	1	Direct to Physical Column Pointer	Direct to (319-Physical Page Pointer)
0	1	0	Direct to (239-Physical Column Pointer)	Direct to Physical Page Pointer
0	1	1	Direct to (239-Physical Column Pointer)	Direct to (319-Physical Page Pointer)
1	0	0	Direct to Physical Page Pointer	Direct to Physical Column Pointer
1	0	1	Direct to (319-Physical Page Pointer)	Direct to Physical Column Pointer
1	1 0 Direct to Physical Page Pointer			Direct to (239-Physical Column Pointer)
1	1	1	Direct to (319-Physical Page Pointer)	Direct to (239-Physical Column Pointer)

Table 7. 1 MY, MX, MV Setting

7.4 Interface Mode

7.4.1 Interface Mode Selection

IFSEL0	RGB_EN	Register Data	Display Data
0	Command-parameter interface (Parallel interface) From SRAM		From SRAM
0	1	Command-parameter interface (Serial interface)	Sleep out Normal Display On : From RGB interface Sleep out Partial Mode On : From SRAM
1	0	Register-content interface (Parallel interface)	From SRAM
1	1	Register-content interface (Serial interface)	Normal display: From RGB interface Partial Mode: From SRAM

Table 7. 2 Interface Mode Selection

7.4.2 Register-Content Interface Mode

P68	Input signal format selection
0	Format for I80 series MPU
1	Format for M68 series MPU

Table 7. 3 MPU selection in Register-content Interface Circuit

BS2	BS1	BS0	Interface	Transferring Method of GRAM data	Transferring Method of Command
0	0	0	16-bit system interface	16-bit 65K-color	
0	0	0 1 16-bit system interface		18-bit 262K-color (16+2)	
0	1	0	18-bit system interface	18-bit 262K-color	
0	1 1 8-bit system interface 0 0 16-bit system interface		8-bit system interface	18-bit 262K-color (6+6+6)	8-bit collective
1			16-bit system interface	18-bit 262K-color (6+6+6)	
1	0	1	18-bit system interface	18-bit 262K-color	
1	1	ID	Serial interface	RGB_EN=0,Select by register 72h	

Table 7. 4 Interface Selection in Register-content Interface Mode

Parallel Bus System Interface

a. Data Pin Function for I80/M68 Series CPU

Operations	E_NWR	RW_NRD	DNC_SCL
Writes Indexes into IR	0	1	0
Reads internal status	1	0	0
Writes command into register or data into GRAM	0	1	1
Reads command from register or data from GRAM	1	0	1

Table 7. 5 Data Pin Function for I80 Series CPU

Operations	E_NWR	RW_NRD	DNC_SCL
Writes Indexes into IR	1	0	0
Reads internal status	1	1	0
Writes command into register or data into GRAM	1	0	1
Reads command from register or data from GRAM	1	1	1

Table 7. 6 Data Pin Function for M68 Series CPU

Himax Confidential

This information contained berein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed.

b. Bit mapping of one pixel data: Input Data (8-/16-/18-bit Interface) Written to GRAM through Write Data Register

Figure 7. 3 Input Data Bus and GRAM Data Mapping in 8-Bit Bus System Interface with 18(6+6+6)
Bit-Data Input ("BS2, BS1, BS0"="011")

65,536 Colors are avaliable

Figure 7. 4 Input Data Bus and GRAM Data Mapping in 16-Bit Bus System Interface with 16 Bit-Data Input ("BS2, BS1, BS0"="000")

262,144 Colors are avaliable

Figure 7. 5 Input Data Bus and GRAM Data Mapping in 16-Bit Bus System Interface with 18(16+2) Bit-Data Input ("BS2, BS1, BS0"="001")

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed.

262,144 colors are avaliable

Figure 7. 6 Input Data Bus and GRAM Data Mapping in 16-Bit Bus System Interface with 18(6+6+6)
Bit-Data Input ("BS2, BS1, BS0"="100")

262,144 Colors are avaliable

Figure 7. 7 Input Data Bus and GRAM Data Mapping in 18-Bit Bus System Interface ("BS2, BS1, BS0"="010" or "101")

i80- System Interface Timing

Figure 7. 8 Register read/write Timing in Parallel Bus System Interface (for I80 series MPU)

Figure 7. 9 GRAM read/write Timing in 16-/18-bit Parallel Bus System Interface (for I80 series MPU)

Figure 7. 10 GRAM read/write Timing in 8-bit Parallel Bus System Interface (for I80 series MPU)

in whole or in part without prior written permission of Himax.

m68- System Interface Timing

Figure 7. 11 Register read/write Timing in Parallel Bus System Interface (for M68 series MPU)

Figure 7. 12 GRAM read/write Timing in 16-/18-bit Parallel Bus System Interface (for M68 series MPU)

Figure 7. 13 GRAM read/write Timing in 8-bit Parallel Bus System Interface (for M68 series MPU)

7.4.3 Serial Data Transfer interface

RS	R/W	Function
0	0	Writes Indexes into IR
1	0	Writes command into register or data into GRAM
1	1	Reads command from register or data from GRAM

Table 7. 7 The Function of RS and R/W Bit bus

Figure 7. 14 Data Write Timing in Serial Bus System Interface

Himax Confidential

-P.33-

Figure 7. 15 Data Read Timing in Serial Bus System Interface

7.4.4 Command-Parameter Interface Mode

P68	Input signal format selection	
0	Format for I80 series MPU	
1	Format for M68 series MPU	

Table 7. 8 MPU selection in Command-Parameter Interface Circuit

BS2	BS1	BS0	Interface	Transferring Method of GRAM data	Transferring Method of Command
0	0	х	8-bit system interface	18-bit 262K-color (6 + 6 +6)	0.90>
0	1	х	16-bit system interface	18-bit 262K-color (6+6+6)	8-bit collective
1	1	ID	Serial interface	18-bit (6+6+6)	

X: Don't care.

Table 7. 9 Interface Selection in Command-Parameter Interface Mode

Operations	E_NWR	RW_NRD	DNC_SCL
Writes command code	0		0
Reads internal status	1	0	0
Writes parameter into command or data into GRAM	0	1	1
Reads parameter from command or data from GRAM		0	1

Table 7. 10 Data Pin Function for I80 Series CPU

Operations	E_NWR	RW_NRD	DNC_SCL
Writes command code	1	0	0
Reads internal status) 1	1	0
Writes parameter into command or data into GRAM	1	0	1
Reads parameter from command or data from GRAM	1	1	1

Table 7. 11 Data Pin Function for M68 Series CPU

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed

X : Don't care

16-bit Parallel Bus System Interface

	DNC_SCL	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	GRAM Write
MEMWR	0	х	х	х	х	х	х	Х	х		GRA	M Wri	te com	mand	code (2Ch)		-
1 st write	1	R15	R14	R13	R12	R11	R10	Х	Х	G15	G14	G13	G12	G11	G10	Х	Х	-
2 nd write	1	B15	B14	B13	B12	B11,	B10	х	х	R25	R24	R23	R22	R21	R20	х	х	1st pixel (R1/G1/B1)
3 rd write	1	G25	G24	G23	G22	G2/1	G20	х	х	B25	B24	B23	B22	B21	B20	х	х	2nd pixel (R2/G2/B2)

Figure 7. 16 GRAM Write Data Mapping for 16 bit interface

8-bit Parallel Bus System Interface

	DNC_SCL	D7	D6	D5	D4	D3	D2	D1	D0	GRAM Write
MEMWR	0		GF	RAM W	-					
1st write	1	R15	R14	R13	R12	R11	R10	Х	Х	-
2nd write	1	G15	G14	G13	G12	G11	G10	Х	Х	-
3rd write	1	B15	B14	B13	B12	B11	B10	Х	Х	1st pixel (R1/G1/B1)
4th write	1	R2/5	R24	R23	R22	R21	R20	Х	Х	-
5th write	1	G25	G24	G23	G22	G21	G20	Х	Х	-
6th write	1	B25	B24	B23	B22	B21	,B20	Х	Х	2nd pixel (R2/G2/B2)

Figure 7. 17 GRAM Write Data Mapping for 8 bit interface

Command-Parameter Interface Mode Timing

CMD: command code

Figure 7. 18 Register Read/Write Timing in Parallel Bus System Interface (for I80 series MPU)

PA: parameter

Figure 7. 19 Register read/write Timing in Parallel Bus System Interface (for M68 series MPU)

Figure 7. 20 GRAM Read/Write Timing in Parallel Bus System Interface (for I80 series MPU)

Write to GRAM

Figure 7. 21 GRAM Read/Write Timing in Parallel Bus System Interface (for M68 series MPU)

7.4.5 RGB Interface

EPL	ENABLE	Display
0	0	Disable
0	1	Enable
1	0	Enable
1	1	Disable

Table 7. 12 EPL bit setting and Valid ENABLE Signal

Figure 7. 22 RGB Interface Circuit Input Timing

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed.

(1) 18 bit/pixel color order (R 6-bit, G 6-bit, B 6-bit), 262,144 colors (CSEL (2-0) = "110")

Figure 7. 23 18 bit / pixel Data Input of RGB Interface

(2) 16 bit/pixel color order (R 5-bit, G 6-bit, B 5-bit), 65,536 colors (CSEL (2-0) = "101")

Figure 7. 24 16 bit / pixel Data Input of RGB Interface

in whole or in part without prior written permission of Himax.

7.5 Initial Procedure

7.5.1 Power Supply Setting Flow

Figure 7. 25 Power Supply Setting Flow

in whole or in part without prior written permission of Himax.

7.5.2 Display on/off Setting Flow

Figure 7. 26 Display On/Off Setting Flow

7.5.3 Standby Mode Setting Flow

Figure 7. 27 Standby Mode Setting Flow

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed

in whole or in part without prior written permission of Himax.

-P.46-

7.6 Initial code for reference

7.6.1 The reference setting of Normal Display for Command-Parameter Interface Mode

```
void HX8347_Init(void)
    RESET();
    DelayX1ms(150); // After Inter-MicroP Program (load OTP)
    Set_NOKIA_CMD(0x11); // SLP out
    DelayX1ms(150);
    Set_NOKIA_CMD(0x29);
                           // Display on
    DelayX1ms(150);
}
```


7.6.2 The reference setting of Normal Display for Register-Content Interface Mode

7.6.2.1 The reference setting of CMO 3.2" Panel

```
void HX8347A Init CMO32(void)
{
    RESET();
    DelayX1ms(150);
                     // After Inter-MicroP Program (load OTP)
// Gamma for CMO 3.2"
   Set LCD 8B REG(0x0046,0x00A4);
   Set LCD 8B REG(0x0047,0x0053);
   Set LCD 8B REG(0x0048,0x0000);
   Set LCD 8B REG(0x0049,0x0044);
   Set_LCD_8B_REG(0x004A,0x0004);
   Set_LCD_8B_REG(0x004B,0x0067);
   Set LCD 8B REG(0x004C,0x0033);
   Set_LCD_8B_REG(0x004D,0x0077);
   Set_LCD_8B_REG(0x004E,0x0012);
   Set_LCD_8B_REG(0x004F,0x004C);
   Set LCD 8B REG(0x0050,0x0046);
   Set LCD 8B REG(0x0051,0x0044);
//240x320 window setting
   Set_LCD_8B_REG(0x0002,0x0000);
                                     // Column address start2
   Set_LCD_8B_REG(0x0003,0x0000);
                                     // Column address start1
   Set LCD 8B REG(0x0004,0x0000);
                                     # Column address end2
                                     // Column address end1
   Set_LCD_8B_REG(0x0005,0x00EF);
   Set_LCD_8B_REG(0x0006,0x0000);
                                     // Row address start2
   Set_LCD_8B_REG(0x0007,0x0000);
                                     // Row address start1
   Set LCD 8B REG(0x0008,0x0001);
                                     // Row address end2
                                     // Row address end1
   Set LCD 8B REG(0x0009,0x003F);
// Display Setting
   Set_LCD_8B_REG(0x0001,0x0006);
                                     // IDMON=0, INVON=1, NORON=1, PTLON=0
   Set_LCD_8B_REG(0x0016,0x0048);
                                      // MY=0, MX=0, MV=0, ML=1, BGR=0, TEON=0
   Set_LCD_8B_REG(0x0023,0x0095);
                                     // N_DC=1001 0101
                                     // PI DC=1001 0101
   Set LCD 8B REG(0x0024,0x0095);
   Set LCD 8B REG(0x0025,0x00FF);
                                     // I DC=1111 1111
   Set LCD 8B REG(0x0027,0x0002);
                                     // N BP=0000 0010
   Set LCD 8B REG(0x0028,0x0002);
                                     // N FP=0000 0010
   Set_LCD_8B_REG(0x0029,0x0002);
                                     // PI BP=0000 0010
   Set_LCD_8B_REG(0x002A,0x0002);
                                     // PI FP=0000 0010
   Set_LCD_8B_REG(0x002C,0x0002);
                                     // I BP=0000 0010
   Set LCD 8B REG(0x002D,0x0002);
                                     // I FP=0000 0010
   Set LCD 8B REG(0x003A,0x0001);
                                     // N RTN=0000, N NW=001
                                     // PI_RTN=0000, PI_NW=000
   Set LCD 8B REG(0x003B,0x0000);
   Set_LCD_8B_REG(0x003C,0x00F0);
                                     // I RTN=1111. I NW=000
   Set_LCD_8B_REG(0x003D,0x0000);
                                      // DIV=00
   DelayX1ms(20);
```

Himax Confidential

-P.48-


```
Set LCD 8B REG(0x0035,0x0038);
                                     // EQS=38h
                                     // EQP=78h
   Set LCD 8B REG(0x0036,0x0078);
   Set LCD 8B REG(0x003E,0x0038);
                                     // SON=38h
   Set LCD 8B REG(0x0040,0x000F);
                                     // GDON=0Fh
   Set_LCD_8B_REG(0x0041,0x00F0);
                                     // GDOFF
// Power Supply Setting
                                     // CADJ=0100, CUADJ=100(FR:60Hz), OSD
   Set_LCD_8B_REG(0x0019,0x0049);
   Set LCD 8B REG(0x0093,0x000F);
                                     // RADJ=1111, 100%
   DelayX1ms(10);
   Set_LCD_8B_REG(0x0020,0x0040);
                                      // BT=0100
   Set LCD 8B REG(0x001D,0x0007);
                                      // VC1=111
   Set LCD 8B REG(0x001E,0x0000);
                                      // VC3=000
   Set_LCD_8B_REG(0x001F,0x0004);
                                      // VRH=0100
// VCOM Setting for CMO 3.2" Panel
   Set LCD 8B REG(0x0044,0x004D);
                                       // VCM=100 110
   Set LCD 8B REG(0x0045,0x0011);
                                      // VDV=1 0001
   DelayX1ms(10);
   Set LCD 8B REG(0x001C,0x0004);
                                      // AP=100
   DelayX1ms(20);
   Set LCD 8B REG(0x001B,0x0018);
                                      // GASENB=0, PON=1, DK=1, XDK=0, VLCD TRI=0, STB=0
   DelayX1ms(40);
   Set LCD 8B REG(0x001B,0x0010);
                                      // GASENB=0, PON=1, DK=0, XDK=0, VLCD TRI=0, STB=0
   DelayX1ms(40):
   Set LCD 8B REG(0x0043,0x0080);
                                     //Set VCOMG=1
   DelayX1ms(100);
// Display ON Setting
   Set_LCD_8B_REG(0x0090,0x007F)
                                      // SAP=0111 1111
   Set_LCD_8B_REG(0x0026,0x0004);
                                     //GON=0, DTE=0, D=01
   DelayX1ms(40);
   Set LCD 8B REG(0x0026,0x0024);
                                     //GON=1, DTE=0, D=01
   Set LCD 8B REG(0x0026,0x002C);
                                      //GON=1, DTE=0, D=11
   DelayX1ms(40);
   Set LCD 8B REG(0x0026,0x003C);
                                      //GON=1, DTE=1, D=11
// Internal register setting
   Set_LCD_8B_REG(0x0057,0x0002);
                                     //Test_Mode Enable
   Set LCD 8B REG(0x0095,0x0001);
                                     // Set Display clock and Pumping clock to synchronize
   Set LCD 8B REG(0x0057.0x0000);
                                     // Test Mode Disable
```

Himax Confidential

}

-P.49-

7.6.2.2 The reference setting of CMO 2.4" Panel

```
void HX8347A_Init_CMO24(void)
    RESET();
                     // After Inter-MicroP Program (load OTP)
    DelayX1ms(150);
// Gamma for CMO 2.4"
   Set_LCD_8B_REG(0x0046,0x0094);
   Set_LCD_8B_REG(0x0047,0x0041);
   Set LCD 8B REG(0x0048,0x0000);
   Set_LCD_8B_REG(0x0049,0x0033);
   Set_LCD_8B_REG(0x004A,0x0023);
   Set_LCD_8B_REG(0x004B,0x0045);
   Set LCD 8B REG(0x004C,0x0044);
   Set_LCD_8B_REG(0x004D,0x0077);
   Set LCD 8B REG(0x004E,0x0012);
   Set LCD 8B REG(0x004F,0x00CC);
   Set_LCD_8B_REG(0x0050,0x0046);
   Set_LCD_8B_REG(0x0051,0x0082);
//240x320 window setting
                                     // Column address start2
   Set_LCD_8B_REG(0x0002,0x0000);
                                     // Column address start1
   Set LCD 8B REG(0x0003,0x0000);
   Set LCD 8B REG(0x0004,0x0000);
                                     // Column address end2
   Set_LCD_8B_REG(0x0005,0x00EF);
                                     // Column address end1
                                     // Row address start2
   Set LCD 8B REG(0x0006,0x0000);
                                     // Row address start1
   Set LCD 8B REG(0x0007,0x0000);
   Set_LCD_8B_REG(0x0008,0x0001);
                                     // Row address end2
   Set_LCD_8B_REG(0x0009,0x003F);
                                     // Row address end1
// Display Setting
   Set LCD 8B REG(0x0001,0x0006);
                                       IDMON=0, INVON=1, NORON=1, PTLON=0
   Set LCD 8B REG(0x0016,0x0048);
                                      // MY=0, MX=0, MV=0, ML=1, BGR=0, TEON=0
   Set LCD 8B REG(0x0023,0x0095);
                                     // N DC=1001 0101
   Set LCD 8B REG(0x0024,0x0095);
                                     // PI DC=1001 0101
   Set_LCD_8B_REG(0x0025,0x00FF);
                                     // I DC=1111 1111
   Set_LCD_8B_REG(0x0027,0x0002);
                                     // N BP=0000 0010
   Set_LCD_8B_REG(0x0028,0x0002);
                                     // N FP=0000 0010
   Set_LCD_8B_REG(0x0029,0x0002);
                                     // PI BP=0000 0010
   Set LCD 8B REG(0x002A,0x0002);
                                     // PI FP=0000 0010
   Set LCD 8B REG(0x002C,0x0002);
                                     // I BP=0000 0010
   Set LCD 8B REG(0x002D,0x0002);
                                     // I FP=0000 0010
   Set LCD 8B REG(0x003A,0x0001);
                                     // N RTN=0000, N NW=001
   Set LCD 8B REG(0x003B,0x0000);
                                     // PI RTN=0000, PI NW=000
   Set_LCD_8B_REG(0x003C,0x00F0);
                                      // I RTN=1111, I NW=000
   Set LCD 8B REG(0x003D,0x0000);
                                     // DIV=00
   DelayX1ms(20);
   Set LCD 8B REG(0x0035,0x0038);
                                     // EQS=38h
   Set LCD 8B REG(0x0036,0x0078);
                                     // EQP=78h
```

Himax Confidential


```
Set LCD 8B REG(0x003E,0x0038);
                                     // SON=38h
   Set LCD 8B REG(0x0040.0x000F):
                                     // GDON=0Fh
   Set LCD 8B REG(0x0041,0x00F0);
                                     // GDOFF
// Power Supply Setting
   Set_LCD_8B_REG(0x0019,0x0049);
                                     // CADJ=0100, CUADJ=100(FR:60Hz), OSD_EN=1
   Set_LCD_8B_REG(0x0093,0x000F);
                                     // RADJ=1111, 100%
   DelayX1ms(10);
   Set LCD 8B REG(0x0020,0x0040);
                                      // BT=0100
   Set LCD 8B REG(0x001D,0x0007);
                                      // VC1=111
   Set LCD 8B REG(0x001E,0x0000);
                                      // VC3=000
   Set_LCD_8B_REG(0x001F,0x0004);
                                      // VRH=0100
// VCOM Setting for CMO 2.4" Panel
   Set_LCD_8B_REG(0x0044,0x0040);
                                      // VCM=100 0000
   Set_LCD_8B_REG(0x0045,0x0012);
                                      // VDV=1 0001
   DelayX1ms(10);
   Set LCD 8B REG(0x001C,0x0004);
                                      // AP=100
   DelayX1ms(20):
   Set LCD 8B REG(0x001B,0x0018);
                                      // GASENB=0. PON=
                                                                XDK=0, VLCD_TRI=0, STB=0
   DelayX1ms(40);
   Set LCD 8B REG(0x001B,0x0010);
                                      // GASENB=0, PON=1, DK=0, XDK=0, VLCD TRI=0, STB=0
   DelayX1ms(40);
   Set LCD 8B REG(0x0043,0x0080);
                                     //Set VCOMG
   DelayX1ms(100);
// Display ON Setting
   Set LCD 8B REG(0x0090,0x007F);
                                       ASAP=0111 1111
   Set LCD 8B REG(0x0026,0x0004);
                                     //GON=0, DTE=0, D=01
   DelayX1ms(40);
   Set_LCD_8B_REG(0x0026,0x0024);
                                     //GON=1, DTE=0, D=01
   Set LCD 8B REG(0x0026,0x002C);
                                      //GON=1, DTE=0, D=11
   DelayX1ms(40);
   Set LCD 8B REG(0x0026,0x003C);
                                      //GON=1, DTE=1, D=11
// Internal register setting
   Set LCD 8B REG(0x0057,0x0002);
                                     //Test Mode Enable
   Set LCD 8B REG(0x0095,0x0001);
                                     // Set Display clock and Pumping clock to synchronize
   Set LCD 8B REG(0x0057,0x0000);
                                     // Test Mode Disable
}
```

Himax Confidential

7.6.2.3 The reference setting of CMO 2.8" Panel

```
void HX8347A Init CMO28(void)
    RESET();
    DelayX1ms(150);
                     // After Inter-MicroP Program (load OTP)
// Gamma for CMO 2.8
   Set LCD 8B REG(0x46,0x95);
   Set LCD 8B REG(0x47,0x51);
   Set LCD 8B REG(0x48,0x00);
   Set LCD 8B REG(0x49,0x36);
   Set LCD 8B REG(0x4A,0x11);
   Set LCD 8B REG(0x4B,0x66);
   Set LCD 8B REG(0x4C,0x14);
   Set LCD 8B REG(0x4D,0x77);
   Set LCD 8B REG(0x4E,0x13);
   Set LCD 8B REG(0x4F,0x4C);
   Set LCD 8B REG(0x50,0x46);
   Set LCD 8B REG(0x51,0x46);
//240x320 window setting
   Set LCD 8B REG(0x02,0x00);
                                   // Column address start2
                                   // Column address start1
   Set_LCD_8B_REG(0x03,0x00);
                                    Column address end2
   Set LCD 8B REG(0x04.0x00);
   Set LCD 8B REG(0x05,0xEF);
                                    Column address end1
   Set LCD 8B_REG(0x06,0x00);
                                   // Row address start2
   Set LCD 8B REG(0x07,0x00);
                                   // Row address start1
   Set LCD 8B REG(0x08,0x01);
                                   // Row address end2
   Set LCD 8B REG(0x09,0x3F);
                                   // Row address end1
// Display Setting
   Set_LCD_8B_REG(0x01,0x06);
                                   // IDMON=0, INVON=1, NORON=1, PTLON=0
   Set LCD 8B REG(0x16,0x48);
                                   // MY=0, MX=0, MV=0, ML=1, BGR=0, TEON=0
   Set LCD 8B REG(0x23,0x95);
                                   // N DC=1001 0101
   Set LCD 8B REG(0x24,0x95);
                                   // P DC=1001 0101
   Set LCD 8B REG(0x25,0xFF);
                                   // I DC=1111 1111
   Set LCD 8B REG(0x27,0x06);
                                  // N BP=0000 0110
   Set LCD 8B REG(0x28,0x06);
                                  // N FP=0000 0110
   Set LCD 8B REG(0x29,0x06);
                                   // P BP=0000 0110
                                  // P FP=0000 0110
   Set LCD 8B REG(0x2A,0x06);
   Set LCD 8B REG(0x2C,0x06);
                                   // I BP=0000 0110
   Set LCD 8B REG(0x2D,0x06);
                                  // I FP=0000 0110
   Set LCD 8B REG(0x3A,0x01);
                                  // N RTN=0000, N NW=001
                                  // P_RTN=0000, P NW=000
   Set LCD 8B REG(0x3B,0x00);
   Set LCD 8B REG(0x3C,0xF0);
                                  // I RTN=1111, I_NW=000
   Set LCD 8B REG(0x3D,0x00);
                                   // DIV=00
   DelayX1ms(20);
   Set LCD 8B REG(0x35,0x38);
                                   // EQS=38h
   Set_LCD_8B_REG(0x36,0x78);
                                   // EQP=78h
```



```
Set LCD 8B REG(0x3E,0x38);
                                   // SON=38h
   Set LCD 8B REG(0x40.0x0F):
                                   // GDON=0Fh
   Set_LCD_8B_REG(0x41,0xF0):
                                   // GDOFF
// Power Supply Setting
   Set_LCD_8B_REG(0x19,0x49);
                                   // OSCADJ=10 0000, OSD_EN=1 //60Hz
   Set_LCD_8B_REG(0x93,0x0C);
                                   // RADJ=1100
   DelayX1ms(10);
   Set LCD 8B REG(0x20,0x40);
                                   // BT=0100
   Set LCD 8B REG(0x1D.0x07):
                                   // VC1=111
   Set LCD 8B REG(0x1E,0x00);
                                   // VC3=000
   Set_LCD_8B_REG(0x1F,0x04);
                                   // VRH=0100
// VCOM Setting for CMO 2.8" Panel
   Set_LCD_8B_REG(0x44,0x4D);
                                   // VCM=101 0000
   Set_LCD_8B_REG(0x45,0x11);
                                   // VDV=1 0001
   DelayX1ms(10);
   Set LCD 8B REG(0x1C,0x04);
                                   // AP=100
   DelayX1ms(20);
                                   // GASENB=0, PON=1, DK=1,
   Set LCD 8B REG(0x1B,0x18);
                                                             XDK=0, DDVDH TRI=0, STB=0
   DelayX1ms(40);
   Set_LCD_8B_REG(0x1B,0x10);
                                    GASENB=0, PON=1, DK=0, XDK=0, DDVDH TRI=0, STB=0
   DelayX1ms(40);
                                   //Set VCOMG=1
   Set LCD 8B REG(0x43,0x80);
   DelayX1ms(100);
// Display ON Setting
                                   // SAP=0111 1111
   Set LCD 8B REG(0x90,0x7F);
   Set_LCD_8B_REG(0x26,0x04);
                                   //GON=0, DTE=0, D=01
   DelayX1ms(40);
   Set LCD 8B REG(0x26,0x24);
                                   //GON=1, DTE=0, D=01
   Set LCD 8B REG(0x26,0x2C);
                                   //GON=1, DTE=0, D=11
   DelayX1ms(40);
   Set LCD 8B REG(0x26,0x3C);
                                   //GON=1, DTE=1, D=11
// Internal register setting
   Set LCD 8B REG(0x0057,0x0002);
                                     //Test Mode Enable
   Set_LCD_8B_REG(0x0095,0x0001);
                                     // Set Display clock and Pumping clock to synchronize
   Set LCD 8B REG(0x0057,0x0000);
                                     // Test Mode Disable
}
```

Himax Confidential

7.6.3 The reference setting of into Standby mode for Register-Content Interface Mode

```
void HX8347A_STB_INTO (void)
// Display Off
       Set LCD 8B REG(0x0026,0x0038);
                                         //GON=1, DTE=1, D=10
       DelayX1ms (40);
       Set LCD 8B REG(0x0026,0x0028);
                                         //GON=1, DTE=0, D=10
       DelayX1ms (40);
       Set LCD 8B REG(0x0026,0x0000);
                                         //GON=0, DTE=0, D=00
// Power Off
       Set_LCD_8B_REG(0x0043,0x0000);
                                         // VCOMG=0
       DelayX1ms(10);
                                         // GASENB=0, PON=0, DK=0, XDK=0
       Set LCD 8B REG(0x001B,0x0000);
                                         // VLCD TRI=0, STB=0
       DelayX1ms(10);
                                         // GASENB=0, PON=0, DK=1
       Set LCD 8B REG(0x001B,0x0008);
                                         // VLCD_TRI=0, STB=0
       DelayX1ms(10);
       Set LCD 8B REG(0x001C,0x0000);
                                         // AP=000
       DelayX1ms(10);
       Set_LCD_8B_REG(0x0090,0x0000);
                                         // SAP=00000000
       DelayX1ms(10);
// Into STB mode
       Set LCD 8B REG(0x001B,00009);
                                         // GASSENB=0, PON=0, DK=1, XDK=0,
                                          #VLCD_TRI=0, STB=1
       DelayX1ms(10);
// Stop Oscillation
       Set_LCD_8B_REG(0x0019,0x0048);
                                         // CADJ=0100, CUADJ=100, OSD EN=0
}
```

in whole or in part without prior written permission of Himax.

7.6.4 The reference setting of exit Standby mode for Register-Content Interface Mode

```
void HX8347A_STB_EXIT (void)
// Start Oscillation
       Set LCD 8B REG(0x0019,0x0049);
                                         // OSCADJ=100 010(FR:60Hz), OSD EN=1
       DelayX1ms(10);
// Exit STB mode
       Set LCD 8B REG(0x001B,0x0008);
                                         // NIDSENB=0, PON=0, DK=1
                                         // VLCD TRI=0, STB=0
// Power Supply Setting
       Set LCD 8B REG(0x0020,0x0040);
                                         // BT=0100
       Set LCD 8B REG(0x001D,0x0007);
                                         // VC1=111
       Set LCD 8B REG(0x001E,0x0000);
                                         // VC3=000
       Set LCD 8B REG(0x001F.0x0003);
                                         // VRH=0011
       Set LCD 8B REG(0x0044,0x0020);
                                         // VCM=010 0000
       Set LCD 8B REG(0x0045,0x000E);
                                         // VDV=0 1110
       DelayX1ms(10);
       Set LCD 8B REG(0x001C,0x0004);
                                          // AP=100
       DelayX1ms(20);
       Set LCD 8B REG(0x001B,0x0018);
                                         // NIDSENB=0, PON=1, DK=1, XDK=0,
                                         // VLCD TRI=0, STB=0
       DelayX1ms(40);
                                         // NIDSENB=0, PON=1, DK=0, XDK=0,
       Set LCD 8B REG(0x001B,0x0010);
                                         // VLCD_TRI=1, STB=0
       DelayX1ms(40);
       Set LCD 8B REG(0x0043,0x0080);
                                         // VCOMG=1
       DelayX1ms(100);
// Display ON Setting
       Set LCD 8B REG(0x0090,0x007F);
                                         // SAP=01111111
       DelayX1ms(40):
       Set LCD 8B REG(0x0026,0x0004);
                                         //GON=0, DTE=0, D=01
       DelayX1ms(40);
       Set LCD 8B REG(0x0026,0x0024);
                                         //GON=1, DTE=0, D=01
       Set LCD 8B REG(0x0026,0x002C);
                                         //GON=1, DTE=0, D=11
       DelayX1ms(40);
       Set LCD 8B REG(0x0026,0x003C);
                                         //GON=1, DTE=1, D=11
}
```

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed

-P.55-

8. Revision History

Version	Date	Description of changes						
01	2007/04/24	New setup						
	2007/05/22	1. Update Table 7.7.(P.33)						
		2. Update 5. HX8347-A Reference FPC circuit for CMO 3.2"						
		LCD Panel.(P.13~P.16)						
	2007/06/05	Update Initial code for Normal Display in Register-Content						
		Interface mode.(P.48~P.49)						
		2. Add Normal Display Initial code for CMO 2.4" LCD in						
		Register-Content Interface mode.(P.50~P51)						
		3. Modify Pin name in Figure 7.8~7.15 and. Figure						
		7.18~7.21.(P.21~P.40)						
		4. Modify SPI read GRAM timing.(P.33~P.34)						
	2007/06/28	Update Initial code for Normal Display in Register-Content						
		Interface mode. (Add VDC_SEL setting). (P.48~P.53)						
		2. Modify IOVCC input voltage range from 3.0V to 3.3V. (P.13~P.16)						
	2007/07/25	Update Initial code for ESD protection in Register-Content						
	2001101123	Interface mode.(P.48~P.53)						
	2007/07/26	1. Update Initial code. (P.48~P.53)						
	2007/08/16	1. Add Normal Display Initial code for CMO 2.8" LCD in						
		Register-Content Interface mode.(P.52~P.53)						
		2. Add Register R95h command for setting Display clock and						
		Pumping clock to synchronize(P.48~P.53)						
	2007/08/21	1. Update Reference FPC circuit.(P.13~P.16)						
	2007/09/06	1. Update Initial code.(P.48~P.53)						