Introduction to Machine Learning

Latent Variable Models

Mingchen Gao

Outline

Contents

1	Latent Variable Models 1.1 Latent Variable Models - Introduction	1
2	Mixture Models 2.1 Using Mixture Models	3
3	Parameter Estimation 3.1 Issues with Direct Optimization of the Likelihood or Posterior	4
4	Expectation Maximization 4.1 EM Operation	6
1	Latent Variable Models	
	\bullet Consider a probability distribution parameterized by ${\pmb \theta}$	
	• Generates samples (x) with probability $p(\mathbf{x} \boldsymbol{\theta})$	
2-:	step generative process	
	1 Distribution generates the hidden variable	

2. Distribution generates the observation, given the hidden variable

Magazine Example - Sampling an Article

- Assume that the editor has access to $p(\mathbf{x})$
- ullet x a random variable that denotes an article

Direct Model

• Sample from $p(\mathbf{x})$ for an article

Latent Variable Model

- 1. First sample a topic z from a topic distribution p(z)
- 2. Pick an article from the topic-wise distribution $p(\mathbf{x}|z)$

1.1 Latent Variable Models - Introduction

- \mathbf{z} is generated using a *prior* distribution $p(\mathbf{z})$
- \mathbf{x} is generated using $p(\mathbf{x}|\mathbf{z})$
- Different combinations of $p(\mathbf{z})$ and $p(\mathbf{x}|\mathbf{z})$ give different latent variable models
 - 1. Mixture Models
 - 2. Factor analysis
 - 3. Probabilistic Principal Component Analysis (PCA)
 - 4. Latent Dirichlet Allocation (LDA)

2 Mixture Models

• A latent discrete state

$$z \in \{1, 2, \dots, K\}$$

- $p(z) \sim Multinomial(\pi)$
- For every state k, we have a probability distribution for \mathbf{x}

$$p(\mathbf{x}|z=k) = p_k(\mathbf{x})$$

 \bullet Overall, probability for \mathbf{x}

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k p_k(\mathbf{x}|\boldsymbol{\theta})$$

- A convex combination of p_k 's
- π_k is the probability of k^{th} mixture component to be true
 - Or, contribution of the k^{th} component
 - Or, the mixing weight

2.1 Using Mixture Models

1. Black-box Density Model

- Use $p(\mathbf{x}|\boldsymbol{\theta})$ for many things
- Example: class conditional density

2. Clustering

- Soft clustering
 - 1. First learn the parameters of the mixture model
 - Each mixture component corresponds to a cluster \boldsymbol{k}
 - 2. Compute $p(z = k | \mathbf{x}, \boldsymbol{\theta})$ for every input point \mathbf{x} (Bayes Rule)

$$p(z = k | \mathbf{x}, \boldsymbol{\theta}) = \frac{p(z = k | \boldsymbol{\theta}) p(\mathbf{x} | z = k, \boldsymbol{\theta})}{\sum_{k'=1}^{K} p(z = k' | \boldsymbol{\theta}) p(\mathbf{x} | z = k', \boldsymbol{\theta})}$$

3 Parameter Estimation

Simple Parameter Estimation

• Given: A set of scalar observations

$$x_1, x_2, \ldots, x_n$$

- Task: Find the generative model (form and parameters)
- 1. Observe empirical distribution of x
- 2. Make choice of the form of the probability distribution (Gaussian)
- 3. Estimate parameters from the data using MLE or MAP (μ and σ)

In the above example we choose the random variable x to be distributed as a Gaussian random variable.

When Data has Multiple Modes

- Single mode is not sufficient
- In reality data is generated from two Gaussians
- How to estimate $\mu_1, \sigma_1, \mu_2, \sigma_2$?
- What if we knew $z_i \in \{1, 2\}$?
 - $-z_i = 1$ means that x_i comes from first mixture component
 - $-z_i = 2$ means that x_i comes from second mixture component

- ullet Issue: z_i 's are not known beforehand
- Need to explore 2^N possibilities

Obviously, if z_i 's were known, you can create two data sets corresponding to the two values that z_i can take, and then estimate parameters for each set.

3.1 Issues with Direct Optimization of the Likelihood or Posterior

- For direct optimization, we find parameters that maximize (log-)likelihood (or (log-)posterior)
- \bullet Easy to optimize if z_i were all known
- ullet What happens when z_i 's are not known
 - Likelihood and posterior will have multiple modes
 - Non-convex function harder to optimize

4 Expectation Maximization

• Recall the we want to maximize the log-likelihood of a data set with respect to θ :

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{maximize}} \ \ell(\boldsymbol{\theta})$$

• Log-likelihood for a mixture model can be written as:

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_i | \boldsymbol{\theta})$$
$$= \sum_{i=1}^{N} \log \left[\sum_{k=1}^{K} p(z_k) p_k(\mathbf{x}_i | \boldsymbol{\theta}) \right]$$

• Hard to optimize (a summation inside the log term)

Note that the above equation for log-likelihood is for mixture models only. In general, it maybe written as:

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_{i}|\boldsymbol{\theta})$$

$$= \sum_{i=1}^{N} \log \left[\sum_{\forall \mathbf{z}_{k}} p(\mathbf{x}_{i}, \mathbf{z}_{k}|\boldsymbol{\theta}) \right]$$

$$= \sum_{i=1}^{N} \log \left[\sum_{\forall \mathbf{z}_{k}} p(\mathbf{z}_{k}) p(\mathbf{x}_{i}|\mathbf{z}_{k}, \boldsymbol{\theta}) \right]$$

- Repeat until converged:
 - 1. Start with some guess for θ and compute the most likely value for $z_i, \forall i$
 - 2. Given $z_i, \forall i$, update $\boldsymbol{\theta}$
- Does not explicitly maximize the log-likelihood of mixture model
- Can we come up with a better algorithm?
 - Repeat until converged:
 - 1. Start with some guess for θ and compute the probability of $z_i = k, \forall i, k$
 - 2. Combine probabilities to update θ

Expectation Maximization Algorithm

- A principled approach to maximize a function with latent variables
- At iteration t, for a given value of $\boldsymbol{\theta}^{(t)}$, let Q be a convex function that is a lower bound of $l(\boldsymbol{\theta})$

Supplementary Figure 1 Convergence of the EM algorithm. Starting from initial parameters $\theta^{(t)}$, the E-step of the EM algorithm constructs a function g_t that lower-bounds the objective function $\log P(x;\theta)$. In the M-step, $\theta^{(t+1)}$ is computed as the maximum of g_t . In the next E-step, a new lower-bound g_{t+1} is constructed; maximization of g_{t+1} in the next M-step gives $\theta^{(t+2)}$, etc.

Steps in EM

- EM is an iterative procedure
- Start with some value for θ
- At every iteration t, update θ such that the log-likelihood of the data goes up

– Move from $\boldsymbol{\theta}^{t-1}$ to $\boldsymbol{\theta}$ such that:

$$\ell(\boldsymbol{\theta}) - \ell(\boldsymbol{\theta}^{t-1})$$

is maximized

• Complete log-likelihood for any LVM

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(\mathbf{x}_i, \mathbf{z}_i | \boldsymbol{\theta})$$

• Cannot be computed as we do not know \mathbf{z}_i

Expected complete log-likelihood

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{t-1}) = \mathbb{E}[\ell(\boldsymbol{\theta}|D, \boldsymbol{\theta}^{t-1})]$$

• Expected value of $\ell(\boldsymbol{\theta}|D,\boldsymbol{\theta}^{t-1})$ for all possibilities of \mathbf{z}_i

Recall that expected value of a function f(x) for a random variable x is given by:

$$\mathbb{E}[f(x)] = \sum_{x'} f(x')p(x')$$

If x is continuous, the sum is replaced by an integral

$$\mathbb{E}[f(x)] = \int f(x)p(x)dx$$

In the case of EM, we are interested in computing the expected value over all possibilities of \mathbf{z} . The probability of each possibility is computed using the current estimate $\boldsymbol{\theta}^{t-1}$.

4.1 EM Operation

- 1. Initialize θ
- 2. At iteration t, compute $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{t-1})$
- 3. Maximize Q() with respect to $\boldsymbol{\theta}$ to get $\boldsymbol{\theta}^t$
- 4. Goto step 2

4.2 EM for Mixture Models

- EM formulation is generic
- Calculating (E) and maximizing (M) Q() needs to be done for specific instances

Q for MM

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{t-1}) = \mathbb{E}\left[\sum_{i=1}^{N} \log p(\mathbf{x}_{i}, z_{i} | \boldsymbol{\theta})\right]$$

$$= \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log \pi_{k} + \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} \log p(\mathbf{x}_{i} | \boldsymbol{\theta}_{k})$$

$$r_{ik} \triangleq p(z_{i} = k | \mathbf{x}_{i}, \boldsymbol{\theta}^{t-1})$$

The quantity r_{ik} can be thoughts of as the responsibility that cluster k takes for data point \mathbf{x}_i in iteration t.

E-Step

• Compute $r_{ik}, \forall i, k$

$$r_{ik} = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}^{t-1})$$
$$= \frac{\pi_k p(\mathbf{x}_i | \boldsymbol{\theta}_k^{t-1})}{\sum_{k'} \pi'_k p(\mathbf{x}_i | \boldsymbol{\theta}_k^{t-1})}$$

• Compute Q()

M-Step

- Maximize Q() w.r.t. $\boldsymbol{\theta}$
- $\boldsymbol{\theta}$ consists of $\boldsymbol{\pi} = \{\pi_1, \pi_2, \dots, \pi_K\}$ and $\boldsymbol{\theta} = \{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_K\}$
- For Gaussian Mixture Model (GMM) $(\theta_k \equiv (\mu_k, \Sigma_k))$:

$$\pi_k = \frac{1}{N} \sum_i r_{ik} \tag{1}$$

$$\mu_{k} = \frac{\sum_{i} r_{ik} \mathbf{x}_{i}}{\sum_{i} r_{ik}}$$

$$\Sigma_{k} = \frac{\sum_{i} r_{ik} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{\sum_{i} r_{ik}} - \mu_{k} \mu_{k}^{\top}$$
(2)

$$\Sigma_k = \frac{\sum_i r_{ik} \mathbf{x}_i \mathbf{x}_i^{\top}}{\sum_i r_{ik}} - \boldsymbol{\mu}_k \boldsymbol{\mu}_k^{\top}$$
 (3)

K-Means as EM 4.3

- Similar to GMM
 - 1. $\Sigma = \sigma^2 \mathbf{I}_D$
 - 2. $\pi_k = \frac{1}{K}$
 - 3. The most probable cluster for \mathbf{x}_i is computed as the prototype closest to it (hard clustering)

References

Murphy Book Chapter 21.4

References