LECTURE 8-D

LINES IN IR2: NORMAL FORM & GENTRAL FORM

Definition: Given a line l in \mathbb{R}^2 , a normal vector to (or for) l is a vector in $\neq \delta$ which is critical to l.

Idea: The information of

• the normal vector in and
• one point Pel

completely determines &.

Remark: Unlike for vectors, the position of a line matter, which is why we need P.

Let's hix Pel, and let X be any point.

Can we find properties of X in terms of P & \mathcal{A} that tell us whether X is on the line Q?

Write X = (x,y), $\overrightarrow{OX} = \hat{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, $\overrightarrow{OP} = \overrightarrow{P}$.

Now $X \in \mathbb{Q}$ \rightleftharpoons \overrightarrow{PX} is parallel to \mathbb{Q} $\rightleftharpoons \overrightarrow{PX}$ is armogenal to \overrightarrow{u} $\rightleftharpoons \overrightarrow{PX} \cdot \overrightarrow{u} = 0$

Now note that $\overrightarrow{PX} = \overrightarrow{OX} - \overrightarrow{OP} = \overrightarrow{x} - \overrightarrow{p}$

 $So \quad X \in \mathcal{Q} \iff (\vec{x} - \dot{\vec{p}}) \cdot \vec{x} = 0$

Definition: The normal form of the line l in IR2 is given ny me equation $(\hat{x} - \hat{p}) \cdot \hat{n} = 0$ or equivalently $\vec{k} \cdot \vec{m} = \vec{p} \cdot \vec{m}$.

What does it mean? $l = \{(x,y) \mid [x] \cdot \vec{n} = \vec{p} \cdot \vec{n} \}$ "I is the set of all points satisfying the equation"

Example

We can tell by looking that

$$Q = \{(x, 2)\}$$

But let's check using the normal form.

We can take P = (0,2) and $\vec{n} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$. (for example).

So
$$l = \{(x,y) \mid \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \end{bmatrix} \}$$

$$= \{(x,y) \mid -2y = -4 \}$$

$$= \{(x,y) \mid y = 2 \} \quad \text{os we saw before.}$$

Recall: In school you probably saw equations for lines that locked like " y= mx + b" or "ax + by = c",

We can rearrange the equation from the normal form to look like this.

• Suppose
$$\vec{x} = \begin{bmatrix} a \\ b \end{bmatrix}$$
 and $\vec{P} = (p_1, p_2), so $\vec{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$.$

Then $\vec{n} \cdot \vec{r} = \vec{n} \cdot \vec{p}$

becomes
$$\begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

$$\Leftrightarrow$$
 $ax + by = ap_1 + bp_2$

i.e. ax + by = c where
$$C = ap_1 + bp_2$$
.
$$= -\vec{n} \cdot \vec{p}$$

Definition: this equation is called the general equation for the line l in R?.

it tells us:
$$l = \{(x,y) \mid ax + by = c \}$$

Remark: can read off
$$\vec{n} = \begin{bmatrix} a \\ b \end{bmatrix}$$
.

· The two equations lock different, but they are just different ways of specifying the same line

Exercise: if I has general form given by the equation 8x - y = 9, what is a normal vector to 2?

Solution: we can take
$$\vec{x} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 or any scalar multiple $\lambda \vec{x} = \begin{bmatrix} 3\lambda \\ -\lambda \end{bmatrix}$.

Example: Let's find the normal and general forms of an equation of the line ℓ passing through the point (3.1) and perpendicular to the vector $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

Solution: We take
$$\vec{m} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $\vec{p} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

$$\zeta_{\rho}$$
 $\vec{\nabla} \cdot \vec{\rho} = 2 \times 3 + (-1) \times 1 = 2$

So the normal form of
$$l$$
 is $\begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 5$ and the general form is $ax - y = 5$.

Remark These equations aren't unique.

for example, we could replace
$$P$$
 by the point $Q = (0, -S)$ (since $\begin{bmatrix} 0 & 1 \\ -5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 5$) and we could replace in by $\hat{m} = \begin{bmatrix} 2TE \\ -TC \end{bmatrix}$.

Exercise Now what is the normal form for 2?

Solution
$$u\vec{m} \cdot \vec{q} = \begin{bmatrix} 2Tc \\ -Tc \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -S \end{bmatrix} = STc$$

So we have $\begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 2Tc \\ -Tc \end{bmatrix} = STc$

wand in general form: arex - Tey = 57c.

Remark: We can recover our first equation by dividing by π : 2x-y=5.

Summary of the lecture

- . To write down the equation of a line in \mathbb{R}^2 , it's enough to know
 - 1) the operationales of a point P on I

2) a normal vector in.

allows us to write day the equation in

> or in general form ax + by = c $conputents \qquad \overrightarrow{OP} \cdot \overrightarrow{n}.$ 龙边

You should be able to:

- · Given P and in, write down the normal form and deveral prw.
- · Given the equation in general or normal form
 - · read off a normal vector in
 - · find some points of l.