Lecture hours 3-4

Definitions

Definition (Rank of a matrix). The rank of a matrix is the number of leading ones in the rref of that matrix.

Definition (Linear Combination). A linear combination of the vectors $\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n$ is an expression of the form $c_1\bar{v}_1 + c_2\bar{v}_2 + \dots + c_n\bar{v}_n$ where c_1, c_2 , through c_n are real numbers. So it's just a sum of multiples of the vectors $\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n$.

Definition (Span). The span of the vectors $\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n$ is all possible linear combinations of these vectors, and it is denoted by $span(\bar{v}_1, \bar{v}_2, \dots, \bar{v}_n)$.

Definition (Homogeneous System). A homogeneous system of linear equations is a system in which each equation has no constant term.

Problem 6 (Rank of a coefficient matrix). Suppose you have a system of three linear equations for two unknowns.

- a) What is the largest possible rank the coefficient matrix could have? What is the smallest possible rank?
- b) If the system is consistent, what is the largest possible number of free variables in the solution? What is the smallest possible number?
- c) What are the possibilities for the number of solutions?

Now suppose you have a different system, this time there are three linear equations for four unknowns.

- d) What is the largest possible rank the coefficient matrix could have? What is the smallest possible rank?
- e) If the system is consistent, what is the largest possible number of free variables in the solution? What is the smallest possible number?
- f) What are the possibilities for the number of solutions?

Solution 6 (Rank of a coefficient matrix) Remember that in the augmented matrix of a linear system, rows correspond to equations, and columns correspond to variables in the system. For this problem, try giving examples for each one of the cases.

- a) The largest possible rank is 2, the smallest is 0.
- b) The largest number is 2, the smallest is 0.
- c) There could be zero, one, or infinitely many solutions.
- d) The largest possible rank is 3, the smallest is 0.
- e) The largest number is 4, the smallest is 1.
- f) There could be zero or infinitely many solutions.

Problem 7 (Linear systems with parameters). For the linear system

$$x - y + 2z = 4,$$

 $3x - 2y + 9z = 14,$
 $2x - 4y + az = b,$

find real numbers a and b such that:

- a) The system has a unique solution.
- b) The system has infinitely many solutions.
- c) The system is inconsistent.

Solution 7 (Linear systems with parameters) We can solve the system by Gaussian elimination:

$$\begin{bmatrix} 1 & -1 & 2 & | & 4 \\ 3 & -2 & 9 & | & 14 \\ 2 & -4 & a & | & b \end{bmatrix} \begin{array}{c} -3R_1 \\ -2R_1 \end{array} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & 4 \\ 0 & 1 & 3 & | & 2 \\ 0 & -2 & a - 4 & | & b - 8 \end{bmatrix} \begin{array}{c} +2R_2 \\ +2R_2 \end{array} \rightarrow \begin{bmatrix} 1 & -1 & 2 & | & 4 \\ 0 & 1 & 3 & | & 2 \\ 0 & 0 & a + 2 & | & b - 4 \end{bmatrix}.$$

- a) If we want an unique solution: to get a leading 1 for the third row in the rref, we need to be able to multiply by $\frac{1}{a+2}$. Thus we can take any $a \neq -2$.
- b) For infinitely many solutions: we need the third row in the rref to be a row of zeros. Thus we can take a=-2 and b=4.
- c) For an inconsistent system: take a = -2 and $b \neq 4$.

Problem 8 (Span 1). Is the vector

$$\left[\begin{array}{c}1\\0\end{array}\right]$$

in the span of the vectors

$$\vec{u}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \ \vec{u}_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
?

Are there vectors in \mathbb{R}^2 that are not in the span of \vec{u}_1 and \vec{u}_2 ? Explain why or why not.

Solution 8 (Span 1) To determine if this vector is in the span of \vec{u}_1 and \vec{u}_2 we ask if we can find x and y such that

$$x\vec{u}_1 + y\vec{u}_2 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right].$$

This becomes the system of linear equations

$$x + 3y = 1,$$
$$-2x + 5y = 0,$$

which can be solved by the usual method to give x = 5/11, y = 2/11. So the vector is in the span of \vec{u}_1 and \vec{u}_2 . Every vector is in the span of \vec{u}_1 and \vec{u}_2 , because these two vectors do not lie on the same line.

Problem 9 (Span 2). Consider the three vectors in \mathbb{R}^3 :

$$ec{v}_1 = \left[egin{array}{c} 1 \ 1 \ 0 \end{array}
ight], \ ec{v}_2 = \left[egin{array}{c} 1 \ t \ 0 \end{array}
ight], \ ec{v}_3 = \left[egin{array}{c} -1 \ -1 \ s \end{array}
ight],$$

where $s,t \in \mathbb{R}$. What are the values of s and t so that $\vec{v}_1,\vec{v}_2,$ and \vec{v}_3 span:

- a) A line.
- b) A plane.
- c) All of \mathbb{R}^3 .

Solution 9 (Span 2)

- a) To span a line, \vec{v}_1 and \vec{v}_2 must lie on the same line, and thus must be multiples of each other, so t=1. We also must have \vec{v}_1 and \vec{v}_3 multiples of each other, so s=0.
- b) If $s \neq 0$, then \vec{v}_3 is definitely not in the span of \vec{v}_1 and \vec{v}_2 , so the only way to have the span of all three be a plane is if the span of \vec{v}_1 and \vec{v}_2 is a line, i.e. if t=1. If s=0, then the span of \vec{v}_1 and \vec{v}_3 is a line, so the span of all three will be a plane if v_2 does not lie on this line, i.e. if $t\neq 1$. So there are two possibilities: $s=0, t\neq 1$, and $s\neq 0, t=1$.
- c) The span of three non-zero vectors is either a line, plane or all of \mathbb{R}^3 , and we just analysed the other two possibilities. Thus, the condition is $s \neq 0, t \neq 1$.

Problem 10 (Homogeneous systems). Suppose you have a *homogeneous* system of three equations for three unknowns x, y, and z. The coefficient matrix of this system has rank 3. What is the solution? Why?

Solution 10 (Homogeneous systems)

A consistent system will have a unique solution if the rank equals the number of columns. For this problem, the system has three equations and is rank 3, so we know there is a unique solution. We also know that x=y=z=0 is a solution, because the system is homogeneous. Thus, the only solution is x=y=z=0

Problem 11. (Linear combinations) The vectors \vec{x} and \vec{y} are in the span of the vectors \vec{w}_1 and \vec{w}_2 . The vector \vec{z} is a linear combination of \vec{x} and \vec{y} . Is \vec{z} in the span of \vec{w}_1 and \vec{w}_2 ? Why or why not?

Solution 11 (Linear combinations) It is in the span of \vec{w}_1 and \vec{w}_2 , because we know:

$$\vec{z} = c_1 \vec{x} + c_2 \vec{y},$$

 $\vec{x} = c_3 \vec{w}_1 + c_4 \vec{w}_2,$
 $\vec{y} = c_5 \vec{w}_1 + c_6 \vec{w}_2,$

for some $c_1, \ldots, c_6 \in \mathbb{R}$, so

$$\vec{z} = (c_1c_3 + c_2c_5) \vec{w}_1 + (c_1c_4 + c_2c_6) \vec{w}_2.$$