NPTEL

NPTEL ONLINE COURSE

Discrete Mathematics

Let Us Count

Catalan Numbers - Part 4

Prof. S.R.S Iyengar

Department of Computer Science

IIT Ropar

So we have seen that,

total number of paths without crossing the diagonal from (0,0) to any (n,n)

$$= \binom{2n}{n} - \binom{2n}{n+1}.$$

This goes by the name the n^{th} Catalan number denoted as C_n . This was given by the mathematician Catalan.

$$C_n = {2n \choose n} - {2n \choose n+1}$$

After simplification we get:

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

So let us see how the sequence C_n goes.

$$C_0 = 1$$

$$C_1 = \frac{1}{2} \binom{2}{1} = 1$$

$$C_2 = \frac{1}{3} \binom{4}{2} = 2$$

$$C_3 = \frac{1}{4} \binom{6}{3} = 5$$

$$C_4 = \frac{1}{5} \binom{8}{4} = 14$$

And so no. So the Catalan numbers sequence is 1, 1, 2, 5, 14, 42, 132 and so on. Let us see some interesting examples of Catalan numbers.

IIT Madras Production

Funded by

Department of Higher Education

Ministry of Human Resource Development

Government of India

www.nptel.co.in