Esiee-Paris - cours d'algorithmique - feuille d'exercices numéro 2

Septembre 2023 – R. Natowicz, I. Alamé, A. Çela, X. Hilaire, T. Wu, W. Xu

La solution de chaque exercice doit être programmée en langage Java, voir l'ébauche de programme.

Exercice 4. Deux sacs. Nous avons deux sacs S_0 et S_1 de contenances C_0 et C_1 . Il y a n objets, l'objet i est de valeur v_i et de taille t_i . Nous voulons deux sacs de valeur totale maximum construits sur cet ensemble d'objets.

Nous savons déjà construire un sac de valeur maximum. « *Du coup* » chacune et chacun de nous a une première idée: « *Je calcule le premier sac de valeur maximum sur les n objets puis le second sac de valeur maximum sur le sous-ensemble des objets qui restent après avoir construit le premier sac.* » C'est une idée. Mais cette méthode séquentielle – un sac puis l'autre – ne résout pas le problème posé. Donner un exemple sur lequel cette méthode ne retourne pas un couple de sacs de valeur totale maximum.

Comment résoudre le problème ? Supposons le problème résolu! Et, magie de la programmation dynamique, trois cas se présentent: 1) le n-ème objet n'est dans aucun des deux sacs 2) le n-ème objet est dans le premier sac 3) le n-ème objet est dans le second sac. Il n'y a pas d'autre cas.

Notons $m(n, C_0, C_1)$ la somme maximum des valeurs des objets présents dans les sacs S_0 et S_1 de contenances C_0 et C_1 contenant un sous-ensemble des n objets.

- Quelle est la valeur maximum $m(n,C_0,C_1)$ si le n-ème objet n'est dans aucun des deux sacs?
- même question s'il est dans le premier sac;
- même question s'il est dans le second sac.

En déduire la valeur $m(n,C_0,C_1)$.

- Généralisation: 1) pour tous k, c_0 et c_1 , $1 \le k < n+1$, $0 \le c_0 < C_0+1$, $0 \le c_1 < C_1+1$, donner l'expression de la valeur maximum $m(k,c_0,c_1)$ des deux sacs de contenance c_0 et c_1 dont les contenus sont un sous-ensemble des k premiers objets.
- Base de la récurrence: donner la valeur $m(0,c_0,c_1)$ pour toutes contenances c_0 et c_1 , $0 < c_0 < C_0 + 1$, $0 < c_1 < C_1 + 1$.
- Les valeurs et tailles des objets sont dans deux tableaux, V[0:n] et T[0:n] de termes généraux v_i et t_i .

Écrire une fonction int[][][] calculerM(int[] V, int[] T, int CO, int C1) qui calcule et retourne un tableau $M[0:n+1][0:C_0+1][0:C_1+1]$ de terme général $M[k][c_0][c_1]=m(k,c_0,c_1)$.

-Écrire une procédure acsm(int[][][]M, int[]V, int[]T, int k, int c0, int c1) qui affiche les contenus des sacs de valeur maximum, de contenances c_0 et c_1 , contenant un sous-ensemble des k premiers objets (acsm = afficher les contenus des sacs de valeur maximum). Appel principal: acsm(M,V,T,n,C0,C1).

Exercice 5. Un trajet de coût minimum. Les villes 0,1,...,n-1 sont desservies par deux lignes de bus. Au départ de la ville i vous pouvez aller à la ville i+1 avec un coût $d_1(i)$ ou directement à la ville i+2 avec un coût $d_2(i)$. Les coûts $d_1(i)$ et $d_2(i)$ sont dans les tableaux d'entiers D1[0:n] et D2[0:n].

Remarque: dans ces tableaux les valeurs D1[n-1] et D2[n-2] et D2[n-1] sont quelconques, ci-dessous fixées à -1. On veut connaître le coût minimum m(n-1) d'un trajet allant de la ville 0 à la ville n-1 et connaître le trajet.

Exemple avec n = 5:

- -D1 = [10,20,100,30,-1] // 0--(10)-->1, 1--(20)-->2, 2--(100)-->3, 3--(30)-->4
- -D2 = [40,50,60,-1,-1] // 0--(40)-->2, 1--(50)-->3, 2--(60)-->4
- Trajet de coût minimum: 0--(10)-->1--(50)-->3--(30)-->4
- Coût de ce trajet: 90.
- 1) Donner l'expression de la valeur m(n-1).
- 2) Équation de récurrence: donner les valeurs m(0) et m(1) et l'expression de la valeur m(j), $\forall j, 2 \leq j < n$.
- 3) Écrire une fonction int[] calculerM(int[] D1, int[] D2) qui calcule et retourne le tableau M[0:n] de terme général M[j] = m(j).
- 4) Écrire une fonction afficher Trajet Minimum (int [] M, int [] D1, int [] D2, int j) qui affiche un chemin de coût minimum de la ville 0 à la ville j. L'affichage du chemin de la ville 0 à la ville n-1 tel que dans l'exemple ci-dessus s'obtient par l'appel de fonction afficher Trajet Minimum (M, D1, D2, n-1).

Exercice 6. Un trajet de coût minimum (encore plus fort!). Pour tout couple de villes (i,j), $0 \le i < j < n$, il existe une ligne directe pour aller de la ville i à la ville j. Ce trajet direct coûte d(i,j). Ces coûts directs sont dans un tableau D[0:n][0:n] de terme général D[i][j] = d(i,j) pour tous indices i et j, $0 \le i < j < n$. Les autres valeurs du tableau sont quelconques. Ainsi:

- -d(0,1) est le coût direct pour aller de la ville 0 à la ville 1, d(0,2) de la ville 0 à la ville 2, ..., d(0,n-1) de la ville 0 à la ville n-1; -d(1,2) est le coût direct pour aller de la ville 1 à la ville 2, d(1,3) de la ville 1 à la ville 3, ... d(1,n-1) de la ville 1 à la ville n-1;
- ... -d(n-3,n-2) est le coût direct pour aller de la ville n-3 à la ville n-2, d(n-3,n-1) de la ville n-3 à n-1;
- -d(n-3,n-2) est le cout direct pour aller de la ville n-3 a la ville n-2, d(n-3,n-1) de la ville n-3 a n-1 -d(n-2,n-1) coût direct de n-2 à n-1.
- 1) Donner l'expression de la valeur m(n-1).
- 2) Équation de récurrence : donner la valeur m(0) et l'expression de la valeur m(j), $\forall j, 1 \leq j < n$.
- 3) Écrire une fonction $\mathtt{int}[][]$ calculerM($\mathtt{int}[][]$ D) qui calcule et retourne le tableau M[0:n] de terme général M[j] = m(j) et le tableau A[0:n] de terme général $A[j] = \arg m(j)$.
- 4) Écrire une fonction afficherTrajetMinimum(int[] M, int[][] D, int j) qui affiche un chemin de coût minimum de la ville 0 à la ville j.

L'appel principal de cette fonction est afficherTrajetMinimum(M, D, n-1). Sur l'exemple ci-contre: 0-(40)->2-(40)->3-(50)->4