Neural Computation

The Decoder - Part 1

Autoregressive Generative Models

The Transformer

Decoder

Probability Density Estimation

One of the main aims of unsupervised approaches and Generative Modelling.

Goal of Density Estimation:

We could try to fit a probabilistic model $p_{\theta}(x)$ to the data, to learn their underlying distribution $p_{data}(x)$. How? By learning its parameters θ so that: $p_{\theta}(x) \approx p_{data}(x)$

But we cannot always do that directly. Perhaps we cannot compute $p_{data}(x)$ or $p_{\theta}(x)$. Instead, we could do PDE indirectly: Enforce samples from model to be similar to real data instead:

Both VAEs and GANs can be seen as following this approach.

Autoregressive Models

Problem:

Model high dimensional difficult distribution

$$p_{\theta}(\mathbf{x}) = p_{\text{data}}(\mathbf{x})$$
, with $\mathbf{x} = (x_1, ..., x_n)$

Idea:

Factorise distribution

- Parameters θ
- Input $x_1, ..., x_{i-1}$
- Output dist. over x_i

Aäron van den Oord	Sander Dieleman	Heiga Zen [†]	
Karen Simonyan	Oriol Vinyals	Alex Graves	

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

 $\{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk\} @google.com\\ Google DeepMind, London, UK$

[†] Google, London, UK

Aäron van den Oord Sander Dieleman Heiga Zen[†]

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

 $\{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk\} @google.com\\ Google DeepMind, London, UK$

† Google, London, UK

• Predict dist. for next audio sample

Aäron van den Oord Sander Dieleman Heiga Zen[†]

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

 $\{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk\} @ google.com Google DeepMind, London, UK$

- Predict dist. for next audio sample
- Fully conv architecture:
 - Simultaneous pred. for all timepoints

[†] Google, London, UK

Aäron van den OordSander DielemanHeiga Zen†Karen SimonyanOriol VinyalsAlex GravesNal KalchbrennerAndrew SeniorKoray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com Google DeepMind, London, UK

- Predict dist. for next audio sample
- Fully conv architecture:
 - Simultaneous pred. for all timepoints

[†] Google, London, UK

Aäron van den OordSander DielemanHeiga Zen†Karen SimonyanOriol VinyalsAlex GravesNal KalchbrennerAndrew SeniorKoray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com Google DeepMind, London, UK

- † Google, London, UK
- Predict dist. for next audio sample
- Fully conv architecture:
 - Simultaneous pred. for all timepoints

Sampling from the Model

- Predict dist. for next audio sample
- Sample from distribution
- Append new sample
- Repeat

Sampling from the Model

- Predict dist. for next audio sample
- Sample from distribution
- Append new sample
- Repeat

Pixel Recurrent Neural Networks

Aäron van den Oord Nal Kalchbrenner Koray Kavukcuoglu

Google DeepMind

x_1				$ x_n $
		x_i		
				x_{n^2}

AVDNOORD@GOOGLE.COM NALK@GOOGLE.COM KORAYK@GOOGLE.COM

Pixel Recurrent Neural Networks

Aäron van den Oord Nal Kalchbrenner Koray Kavukcuoglu

Google DeepMind

Image Generation:

- Sample one pixel
- Apply network
- Repeat

AVDNOORD@GOOGLE.COM NALK@GOOGLE.COM KORAYK@GOOGLE.COM

Summary

- Interpret data as sequence
- Train neural network
 - Input: previous values $(x_1, ..., x_{i-1})$
 - Distribution of possible next values $p_{\theta}(x_i|x_1,...,x_{i-1})$
 - E.g. as histogram
 - Or Parametric dist.

• Ensure correct receptive field, e.g. special convolutions

 $p_{\theta}(\mathbf{x}) = \prod_{i} p_{\theta}(x_i|x_1, \dots, x_{i-1})$

- Sampling:
 - One sample at a time
 - Slow, involves repeated application of model

The Transformer

Decoder