

Corail, ROS2 temps réel

Benoit Varillon, Jean-Baptiste Chaudron, David Doose, Charles Lesire

ONERA/ISAE-Supaero, Université de Toulouse, France

> ROSConFR Juin 2021

- 1 Programmation Temps Réel
- 2 ROS2
- 3 Corail
- 4 Conclusion

Programme Temps Réel

- Interactions avec
 l'environnement extérieur
- La qualité du résultat dépend du temps de calcul
- → Contraintes temporelles fortes
 - échéances de réponses
 - fréquences de traitements

\triangle

Répondre à temps \neq Répondre vite

Programme temps réel

⇒ Vérification fonctionnelle et Vérification temporelle

Vérification Temporelle

Vérifier que Toutes les échéances soient respectées Déterminer le pire temps de réponse de chaque tâche du système

- Être capable de calculer/borner les temps de réponses
 - → Théorie de l'ordonnancement
- Prévoir le comportement du programme
 - → Déterminisme de l'exécution

- 1 Programmation Temps Rée
- 2 ROS2
 - Tâches périodiques
 - Subscriptions et Services
- 3 Corai
- 4 Conclusion

ROS et le Temps Réel

Gestion de la communication :

- Qualité de Service (QoS)
- DDS
- Inter-process communication

Gestion de l'exécution :

- Tâches périodiques
- Comportements réactifs (subscriptions/services)

Théorie vs ROS2

- ex. 2 tâches périodiques
- paramètres suivants :

	Т	С	r	Р
$ au_1$	10	5	0	1
$ au_2$	50	15	0	2

Timeline théorique :

Code ROS2:

Timeline réelle :

Problèmes

Execution par défaut (un seul nœud)

- Un seul thread
- Pas de synchronisation des tâches
- Pas de gestion des priorités
- Pas de préemption
 - → non respect des échéances
 - → début d'exécution chaotique
 - → analyse (précise) impossible

Théorie vs ROS2

- une tâche périodique
- une subscription

	Т	С	r	Р
timer	15	10	0	1
subscription	Ø	10	0	2

Code ROS2:

Timeline théorique :

Timeline ROS2:

Exemples d'exécutions

Problèmes

- Un seul thread
- Pas de synchronisation des tâches
- Pas de gestion des priorités
- Pas de préemption
 - → début d'exécution chaotique
 - → non respect des échéances
 - → analyse (précise) impossible

- Model réactifs non compatible avec l'analyse RT
- Surcharge si trop de messages
- Priorité entre tâches/subscriptions/services figés par l'exécuteur

Début de solution

les exécuteurs ROS2

Fonctionnement de ROS2

rclcpp::Executor

- SingleThreadExecutor
- MultiThreadExecutor

rclcpp::spin()

→ SingleThreadExecutor

Utilisation de plusieurs threads :

- MultiThreadExecutor (thread pool) → parallélisation multicœurs
- → Création des threads "à la main"

- 1 Programmation Temps Rée
- 2 ROS2
- 3 Corail
 - Tâches périodiques
 - Subscriptions et Services
- 4 Conclusion

Corail vs ROS2

Code Corail:

Code ROS2:

Timeline Corail:

Timeline théorique :

Fonctionnement Corail

- Nouvel exécuteur
- Une tâche ⇔ un thread (POSIX) → priorités(SCHED_FIFO) et cpu
- Diagramme d'état :

Corail vs ROS2

Code Corail:

Code ROS2:

Timeline Corail:

Timeline théorique :

Details subscriptions et services

Deux periodes différentes :

- jitter : période de polling
- period : temps minimal entre deux exécution
- → Plus de model réactifs

RealTimeExecutor

- POSIX (pthread)
- Un thread par tâche
- Synchronisation des tâches via des barrières
- Gestion des priorités
- Utilisation de l'ordonnanceur temps réel (SCHED FIFO)
 - → Respect des échéances
 - → Exécution déterministe
 - → Méthode d'analyse disponible

- 1 Programmation Temps Réel
- 2 ROS2
- 3 Corail
- 4 Conclusion

Conclusion/Perspectives

- API simple et proche de rclcpp
- Exécution temps réel robuste et déterministe
- Traces LTTng permettant l'étude et la validation du système
- Outils d'analyses temps réel
 - Analyse des traces
 - Analyse de l'ordonnançabilité
- Autres stratégies d'exécution (process au lieu de thread)
- Gestion de systèmes distribués

```
https://corail1.gitlab.io/
```

https://gitlab.com/corail1/roscon_fr_21