Universidad del Valle de Guatemala

Proyecto: UniMatch - Recomendaciones Inteligentes para tu Vida Universitaria

Curso: Algoriitmos y Estructura de Datos

Proyecto 2: Sistema de Recomendaciones Usando Grafos

Fase 1 Entrega Final - Diseño del Algoritmo de Recomendación

Integrantes:

Diego Guevara, Julio Orellana, JuanJose Rivas

1. Área del Proyecto

Sistema de recomendación personalizado para actividades extracurriculares en estudiantes universitarios.

2. Justificación del Uso de Grafos

El uso de grafos permite modelar relaciones complejas entre usuarios, intereses y actividades, lo cual sería difícil con bases de datos relacionales. Neo4j permite consultas como 'recomiéndame actividades que disfrutaron personas con intereses similares', lo cual sería costoso computacionalmente con SQL tradicional.

3. Algoritmo de Recomendación Detallado

El sistema usará un enfoque híbrido de filtrado colaborativo y basado en contenido sobre grafos:

- Se analizarán intereses y participación previas.
- Se calculará la similitud entre usuarios por intereses compartidos.
- Se priorizarán actividades con alta participación y cercanas geográficamente.
- Se utilizará un score ponderado por afinidad, ubicación y popularidad.

4. Pseudocódigo del Algoritmo

```
func recomendarActividades(usuario):
```

```
intereses = obtenerIntereses(usuario)
similares = usuariosConInteresesSimilares(intereses)
actividades = actividadesDeUsuarios(similares)
actividadesFiltradas = filtrarPorUbicacionYHorario(actividades, usuario)
return ordenarPorScore(actividadesFiltradas)
```

5. Design Thinking

Empatía: Se realizó una encuesta a 20 estudiantes en la cual de obtuvo como resultado que el 70%
 no participa en actividades recreativas por falta de información.

- Definición: El problema es la desconexión entre actividades disponibles e intereses personales.
- Ideación: Se propusieron filtros de intereses, horarios, geolocalización, popularidad y recomendaciones de amigos.
- Prototipo: Se diseñará un prototipo interactivo en la Fase 2.
- Testing: Se planea realizar pruebas con usuarios reales tras la implementación inicial.

6. Modelo de Base de Datos en Neo4j

- Nodos: Usuario, Actividad, Categoría
- Relaciones:

```
(Usuario)-[:INTERESADO_EN]->(Categoría)
(Actividad)-[:PERTENECE_A]->(Categoría)
(Usuario)-[:PARTICIPO_EN]->(Actividad)
(Usuario)-[:RECOMIENDA]->(Actividad)
```

7. Explicacion de la Base de Datos Inicial

Un nodo Usuario se conecta a Categoría mediante INTERESADO_EN, y a Actividad por PARTICIPO_EN. Las Actividades se agrupan por Categoría, lo que permite recomendaciones según comunidad e intereses compartidos.

8. Plan de Testing

- Se crearán perfiles de prueba.
- Se simularán consultas de recomendación para verificar precisión y eficiencia.
- Se recolectará retroalimentación de estudiantes para mejorar el modelo.

9. Repositorio GitHub

Repositorio: https://github.com/Julio-orellana/Proyecto-2-DSA

Referencias

Jannach, D., Adomavicius, G., & Tuzhilin, A. (2011). Recommender systems: An introduction. Cambridge University Press.

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2021). A survey of recommender systems based on graph neural networks. ACM Computing Surveys (CSUR), 54(5), 1–38.

https://doi.org/10.1145/3458445

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph databases (2nd ed.). O'Reilly Media.

https://neo4j.com/graph-databases-book/

Neo4j. (n.d.). Neo4j Java Developer Manual.

https://neo4j.com/docs/java-reference/current/

Neo4j. (n.d.). Neo4j Documentation.

https://neo4j.com/docs/

Neo4j Examples. (n.d.). GitHub – neo4j-examples.

https://github.com/neo4j-examples