Devoir maison 10 - Géométrie et nombres complexes

Dans l'ensemble du problème on se place dans le plan complexe rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

PARTIE I : Préliminaires

Soient IJK un triangle équilatéral direct non réduit à un point, et Γ son cercle circonscrit.

On note IJ l'arc de cercle de Γ d'extrémités I et J incluses, ne contenant pas le point K.

On note r_1 la rotation de centre I qui transforme J en K.

Soient M un point du plan, et $M_1 = r_1(M)$.

- **1a.** Montrer que $MI + MJ = MM_1 + M_1K$.
 - **b.** En déduire que $MI + MJ \ge MK$.
- **2a.** Montrer que MI + MJ = MK si, et seulement si M_1 appartient au segment [MK].
- **b.** Montrer que MI + MJ = MK si, et seulement si M appartient à \widehat{IJ} .

PARTIE II

Soient a, b et c des réels strictement positifs, et A, B et C les points d'affixes respectives -a, b et ic. On suppose que la mesure principale de l'angle orienté $\left(\overrightarrow{CA}, \overrightarrow{CB}\right)$ est dans l'intervalle $\left[0, \frac{2\pi}{3}\right]$.

On note j le nombre complexe $j = e^{\frac{2i\pi}{3}}$.

Soient A', B' et C' les points du plan tels que CBA', ACB' et $\overrightarrow{BAC'}$ soient des triangles équilatéraux directs. On note ω, ω' et ω'' les affixes respectives des vecteurs $\overrightarrow{AA'}, \overrightarrow{BB'}$ et $\overrightarrow{CC'}$.

- **1a.** Calculer $1 + j + j^2$.
- **b.** Démontrer que $\omega = a bj^2 cji$.
- **c.** Montrer que $\omega' = \omega j$ et $\omega'' = \omega j^2$.
- **d.** Justifier que $(\overrightarrow{AA'}, \overrightarrow{BB'}) = \frac{2\pi}{3}[2\pi]$ et que AA' = BB' = CC'.
- **2a.** Montrer que toute droite passant par un point M_0 d'affixe z_0 admet une équation complexe de la forme

$$u(\overline{z} - \overline{z_0}) - \overline{u}(z - z_0) = 0$$

où $u \in \mathbb{C}$.

b. Démontrer que les droites (AA'), (BB') et (CC') ademttent pour équations respectives :

$$\omega(\overline{z} + a) - \overline{\omega}(z + a) = 0$$

$$\omega \mathbf{j}(\overline{z} - b) - \overline{\omega} \mathbf{j}^2(z - b) = 0$$

$$\omega j^2(\overline{z} + ic) - \overline{\omega} j(z - ic) = 0$$

c. Montrer que les droites (AA'), (BB') et (CC') sont concourantes en un point F.

PARTIE III

On admet que le point F est situé à l'intérieur du triangle ABC.

- **1a.** Démontrer que $(\overrightarrow{FB}, \overrightarrow{FA'}) = \frac{\pi}{3}[2\pi]$.
 - **b.** En déduire que le point F appartient au cercle circonscrit au triangle CBA'.

Dans la suite on pourra utiliser les résultats établis dans la partie I.

- 2. Soit f l'application définie pour tout point du plan M par f(M) = MA + MB + MC.
 - **a.** Montrer que f(F) = AA'.
- **b.** Montrer que pour tout point M du plan , $f(M) \ge AA'$, puis que si M n'appartient pas à la droite (AA') alors f(M) > AA'.
- **c.** En déduire que pour tout point M du plan distinct de F, f(M) > AA'.
- 3. Démontrer que f admet un minimum, atteint en un seul point.