Low Level Design

Flight Fair Prediction

Written By	Biswajit Jena
Document Version	0.3
Last Revised Date	26 – july -2024

Document Control

Change Record:

Version	Date	Author	Comments	
0.1	20 – July - 2024	Biswajit Jena	Introduction & Architecture defined	
0.2	23 – July - 2024	Biswajit Jena	Architecture & Architecture Description appended and updated	
0.3	26 – July - 2024	Biswajit Jena	Unit Test Cases defined and appended	

Reviews:

Version	Date	Reviewer	Comments

Approval Status:

Version	Review Date	Reviewed By	Approved By	Comments

Contents

1.	Introduction	1
1.	1. What is Low-Level design document?	1
1.	^{2.} Scope	1
2.	Architecture	2
3.	Architecture Description	3
3.	1. Data Collection	3
3.	2. Data Preprocessing	3
3.	3. Feature Engineering	3
3.	4. Splitting Data	3
3.	5. Model Selection	3
3.	6. Model Training	3
3.	7. Model Evaluation	3
10	D. Model Tuning	4
11	1. Final Model Selection	4
12	2. Model Deployment	4
13	3. Application Start	4
14	4. User Input	4
15	5. Data Validation	4
16	5. Prediction	4
17	7. Saving Output	4
18	8. Fare Recommendation	4
19	9. User Feedback	4
4.	Unit Test Cases	5

1. Introduction

1. What is Low-Level design document?

The goal of LLD or a low-level design document (LLDD) is to give the internal logical design of the actual program code for Food Recommendation System. LLD describes the class diagrams with the methods and relations between classes and program specs. It describes the modules so that the programmer can directly code the program from the document.

2. Scope

Low-level design (LLD) is a component-level design process that follows a step-bystep refinement process. This process can be used for designing data structures, required software

architecture, source code and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work

2. Architecture

3. Architecture Description

Data Collection

This step involves gathering the necessary data for building the model. This data can be sourced from various places such as web scraping, APIs, or available datasets. For a flight fare prediction project, this might include historical flight prices, flight schedules, airline information, and more.

Data Preprocessing

In this step, the collected data is cleaned and prepared for analysis. This involves handling missing values, removing duplicates, correcting errors, and normalizing or scaling numerical features. For example, if certain flight records have missing fare values, these need to be addressed to avoid inaccuracies in the model.

Feature Engineering

Feature engineering involves creating new features from existing data to improve the model's predictive power. This can include deriving new variables, such as the duration of the flight, the time of the day the flight departs, or creating binary variables for categorical data like airline names.

Splitting Data

The preprocessed data is split into training and testing sets. The training set is used to build the model, while the testing set is used to evaluate its performance. A common split is 80% for training and 20% for testing, ensuring the model generalizes well to unseen data.

Model Selection

Various machine learning models are considered for predicting flight fares, such as Linear Regression, Decision Trees, Random Forests, Gradient Boosting, or even more advanced methods like Neural Networks. The goal is to identify which model performs best for the given data and problem.

Model Training

The selected model(s) are trained on the training data. This involves feeding the features into the model and adjusting its parameters to minimize prediction errors. For example, training a Random Forest model would involve fitting multiple decision trees to the data.

Model Evaluation

The trained model is evaluated using the testing set to measure its performance. Common metrics include Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared. This step helps in understanding how well the model can predict unseen data.

Model Tuning

Hyperparameters of the model are fine-tuned to optimize performance. Techniques like Grid Search, Random Search, or Bayesian Optimization are used to find the best combination of hyperparameters. For instance, adjusting the number of trees in a Random Forest or the learning rate in a Gradient Boosting model.

Final Model Selection

After tuning, the best-performing model is selected as the final model. This model will be used for making predictions on new data. The selection is based on the model's evaluation metrics and its ability to generalize well to new data.

Model Deployment

The final model is deployed to a production environment where it can be used by end-users. This involves setting up the necessary infrastructure, such as servers and databases, to host the model and handle user requests.

Application Start

The application that uses the model is started, making it accessible to users. This might involve launching a web application, a mobile app, or any other interface through which users can interact with the model.

User Input

Users provide input data through the application. For flight fare prediction, this might include details such as departure and arrival locations, travel dates, preferred airlines, and so on.

Data Validation

The input data from users is validated to ensure it is complete, correctly formatted, and within expected ranges. For example, checking that the travel dates are valid and the locations exist.

Prediction

The validated data is fed into the deployed model to generate predictions. The model processes the input and outputs the predicted flight fare.

Saving Output

The predicted fare is saved to a database or any other storage system, ensuring the results are available for future reference or analysis.

Fare Recommendation

Based on the predicted fare, the application might provide recommendations to the user, such as suggesting alternative dates or airlines for better prices.

User Feedback

Users provide feedback on the prediction and recommendation. This feedback can be used to further improve the model. For example, if users consistently find the fare predictions inaccurate, the model might need retraining with additional or more relevant data.

4. Unit Test Cases

Test Case Description	Pre-Requisite	Expected Result
Verify whether the Application URL is	- Application URL	- Application URL should be
accessible to the user	should be defined	accessible to the user
Verify whether the Application loads	1.Application URL is	The Application should load
completely for the user when the URL is	accessible	completely for the user when the
accessed	2.Application is	URL is accessed
	deployed	
Verify whether the User is able to sign	1. Application is	The User should be able to sign up in
up in the application	accessible	the application
Verify whether user is able to	1.Application is	User should be able to successfully
successfully login to the application	accessible	login to the application
	2.User is signed up	
Verify whether user is able to see input	to the application 1. Application is	User should be able to see input
verify whether user is able to see input	accessible	Oser should be able to see input
	2. User is signed up	
	to the application	
	3. User is logged in	
fields on logging in	to the application	fields on logging in
Verify whether user is able to edit all	1. Application is	User should be able to edit all input
,	accessible	
	2. User is signed up	
	to the application	
	3. User is logged in	
input fields	to the application	fields
Verify whether user gets Submit	1. Application is	User should get Submit button to
	accessible	
	2. User is signed up	
	to the application	
	3. User is logged in	
button to submit the inputs	to the application	submit the inputs
Verify whether user is presented with	1. Application is	User should be presented with
	accessible	
	2. User is signed up	
	to the application	
recommended results on clicking	3. User is logged in	recommended results on clicking
submit	to the application	submit
Verify whether the recommended	1. Application is	The recommended results should
	accessible	
	2. User is signed up	
recults are in accordance to the	to the application	he in accordance to the colections
results are in accordance to the selections user made	3. User is logged in	be in accordance to the selections user made
Verify whether user has options to filter	to the application 1.Application is	User should have options to filter the
the recommended results as well	accessible	recommended results as well
die recommended results us wen	2.User is signed up	recommended results as well
	2.03ci i3 3igiicu up	

	to the application 3. User is logged in to the application	
Verify whether KPIs modify as per the	1. Application is accessible	KPIs should modify as per the user
	2. User is signed up	
	to the application	
	3. User is logged in	
user inputs for the Flight	to the application	inputs for the Flight
Verify whether the KPIs indicate details	1. Application is	The KPIs should indicate details of
	accessible	
	2. User is signed up	
	to the application	
	3. User is logged in	
of the suggested Flight Price	to the application	the suggested Flight Price