Topic 11

Memory Hierarchy

- **Cache (3)**

Improve Performance – Associative Caches

- n-way set associative cache
 - Each set contains n blocks
 - A main memory block can use any of the blocks within the corresponding set
 - Each address maps to a unique set (not block)
 - Set index = (Block address) % (number of sets in cache)
 - However, to locate a block in a set, we need to search n times in the n blocks
 - all n tags in a set must be checked and compared
 - n comparators (more effective faster)

Associative Caches

- Fully associative opposite extreme of direct mapped
 - Entire cache is just one set
 - A block can go in any of the cache blocks
 - Must search all entries to find a hit
 - One comparator each block
 - # of comparator = cache size (block number)

Associative Cache Example

Associative Cache Example

Locating a Block

Memory address Tag Index Word & Byte offset

- Memory address decomposition
 - Index locate a set in cache
 - Tag upper address bits to locate block
 - Word and Byte offset to locate a word/byte in a block
- Size of index field
 - Increasing degree of associativity decreases the number of sets, decreases number of bits for index, increases tag field
 - Doubling # of blocks by 2 halves # of set by 2
 - Reduce index bits by 1
 - Increase tag bits by 1
- All blocks in a set must be searched
 - Tag field compared in parallel
 - Extra hardware and extra access (hit) time

Set Associative Cache Organization

Spectrum of Associativity

For a cache with 8 blocks

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

Tag	Data														

- Compare caches of 4 two-word blocks
 - Direct mapped, 2-way set associative, fully associative, write back
 - Block access sequence: 0, 8, 0, 12, 8

Direct mapped (1-way associative)

Word Addr Data

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

3 233 4 36

Indx			Tag	Data
00	N			
01	N			
10	N			
11	N			
• •				
		M	iss	

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

lw	R3←mem[0]		
lw	R4←mem[8]	R0	20
SW		R1	23
lw sw	R6←mem[12] R7→mem[8]	R2	36
O W	it, inem[0]	R3	23
		R4	87
		R5	62
		R6	99
		R7	135

Indx	V	D	Tag	Data	
00	Y	0	00	110	
·				120	
01	N				
10	N				
11	N				
		F	etcl	า	

Word Addr

Data

m

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	hit	00

1w R3←mem[0] lw R4 \leftarrow mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

CPU

Indx	V	D	Tag	Data
00	Υ	0	00	110
				120
01	N			
10	N			
11	N			
	L	08	ad a	again

Word Addr

Data

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

lw	R3 ← mem[0]		
lw		R0	20
SW	R5 → mem [0]	R1	23
lw sw	R6←mem[12] R7→mem[8]	R2	36
0 %		R3	110
		R4	87
		R5	62
		R6	99
		R7	135
		•••	•••

Indx	٧	D	Tag	Data		
00	Υ	0	00	110		
				120		
01	N					
10	N					
11	N					
miss						

Word Addr

Data

m m

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ 20 sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 sw R7 \rightarrow mem[8] R2 **R3** 110 R4 87 **R5** 62 R6 99 135 R7

m

Indx	V	ח	Tag	Data	5	23
Ī	V				6	615
00	Υ	0	01	110→3	7	712
				120→300	8	3
01	N				9	300
					10	62
10	N				11	99
44	N				12	234
11	N				13	912
					14	0
		R	epla	ace	15	10

Word Addr

Data

110

120

133

233

36

4

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	hit	00

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] **R3** R4 **R5** R6 R7

Indx	V	D	Tag	Data
00	Y	0	01	3
				300
01	2			
10	Z			
11	Z			
		L	oad	again

Word Addr

Data

m

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

lw	R3 ← mem[0]		
lw	R4←mem[8]	R0	20
sw lw	R5→mem[0] R6←mem[12]	R1	23
SW		R2	36
		R3	110
		R4	3
		R5	62
		R6	99
		R7	135

m

m

m

Indx	V	D	Tag	Data	
00	Υ	0	01	3	
				300	
01	N				
10	N				
11	N				
Miss					

Word Addr

Data

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	miss	00

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] **R3** R4 **R5** R6 R7

m

m

Indx	V	D	Tag	Data	
00	Υ	0	00	3→110	
				300→12	
01	Z				
10	N				
11	N				
		· · · · · ·			
Replace					

Word Addr

Data

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	00 00 0	hit	00

lw R3←mem[0] R4 ← mem [8] R0 $R5 \rightarrow mem[0]$ **R1** R6←mem[12] R7→mem[8] R2 R3 R4 **R5** R6 R7

m

m

Word Addr

Data

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	01 10 0	miss	10

lw	R3 ← mem [0]		
lw	R4←mem[8]	R0	20
SW lw		R1	23
	R7→mem[8]	R2	36
		R3	110
		R4	3
		R5	62
		R6	99
		R7	135

m

m

m

m

Indx	V	D	Tag	Data	
00	Υ	1	00	62	
				120	
01	N				
10	N				
11	N				
Miss					

Word Addr

CPU

Data

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	01 10 0	miss	10

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ 20 sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 sw R7 \rightarrow mem[8] R2 **R3** 110 R4 3 **R5** 62 R6 99 135 R7

m

m

m

Indx	V	n	Tag	Data	5	23
i	V				6	615
00	Υ	1	00	62	7	712
				120		
01	Ν				8	3
O I	IN				9	300
					10	62
10	Υ	0	01	234	11	99
				912		
11	N				12	234
''	IN				13	912
				•	14	0
Fetch				15	10	

Word Addr

Data

110

120

133

233

36

4

CPU

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	01 10 0	hit	10

 $lw R3 \leftarrow mem[0]$ 1w R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 $R7 \rightarrow mem [8]$ **R3** R4 **R5** R6 R7

m

m

m

Indx	V	D	Tag	Data	
00	Υ	1	00	62	
				120	
01	N				
10	Υ	0	01	234	
				912	
11	N				
Load again					

Word Addr Data

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

lw	R3 ← mem [0]		
lw	R4←mem[8]	R0	20
SW	R5 → mem [0]	R1	23
1w	R6←mem[12]	R2	36
SW	R7→mem[8]	ΚZ	30
		R3	110
		R4	3
		R5	62
		R6	234
		R7	135

Indx	V	D	Tag	Data	
00	Υ	1	00	62	
				120	
01	Ν				
10	Υ	0	01	234	
				912	
11	N				
Micc					

Word Addr

Data

m m m

m

m

Word Addr

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

lw R3←mem[0]		
lw R4←mem[8]	R0	20
sw R5 \rightarrow mem[0] lw R6 \leftarrow mem[12]	R1	23
sw R7→mem[8]	R2	36
	R3	110
	R4	3
	R5	62
	R6	234
	R7	135

m

m

m

m

m

Indx	V	D	Tag	Data	
00	Υ	1	00	62	
				120	
01	Ν				
10	Υ	0	01	234	
				912	
11	N				
Write back					

Data

110→62

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

R3 ← mem [0]		
R4 ← mem [8]	R0	20
R5→mem[0] R6←mem[12]	R1	23
R7→mem[8]	R2	36
	R3	110
	R4	3
	R5	62
	R6	234
	R7	135

m

m

m

m

m

Indx	V	D	Tag	Data	5	23
Í	V				6	615
00	Υ	0	01	62→3	7	712
				120→300		
01	Ν				8	3
0.1					9	300
40	V		04	004	10	62
10	Υ	0	01	234	11	99
				912	12	234
11	N					
!					13	912
					14	0
Replac			pla	ce	15	10

Word Addr

Data

62

120

133

233

Direct mapped (1-way associative)

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	01 00 0	miss	00

m

m

m

m

m

Word Addr

Data

CPU

2-way associative

Word Addr Data

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	miss	0

m

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	miss	0

lw R3←mem[0] lw R4 \leftarrow mem[8] R₀ sw R5 \rightarrow mem[0] R1 lw R6←mem[12] sw R7 \rightarrow mem[8] R2 R3 R4 R5 R6 R7

Indx	V	D	Tag	Data	
0	Υ	0	000	110	
				120	
	N				
1	N				
	Ν				
'		F	etcl	 า	•

Word Addr

Data

m

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	hit	0

1w R3←mem[0] lw R4 \leftarrow mem[8] R₀ 20 sw R5 \rightarrow mem[0] R1 23 lw R6←mem[12] 36 sw R7 \rightarrow mem[8] R2 R3 1104 R4 87 **R5** 62 R6 99 R7 135

Indx	V	D	Tag	Data	
0	Υ	0	000	110	
				120	
	N				
1	N				
	N				
	L	.08	ad a	again	

Word Addr Data
0 110

120

133

233

36

5 23 6 615

712

3

300

10 62

99

0

11

12 234

13 912

14

15 10

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] R1 lw R6←mem[12] sw R7 \rightarrow mem[8] R2 R3 R4 R5 R6 R7

Indx		D	Tag	Data	
0	Υ	0	000	110	
				120	
	N				
1	N				
	Ν				
miss					

Word Addr

Data

m m

Word Addr Data 110

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

36 5 23

120

133

233

m

m

110 R4 87

R5 62

R6 99 135 R7

Fetch, not replace

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	hit	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] R1 lw R6←mem[12] sw R7 \rightarrow mem[8] R2 R3 R4 **R5** R6 R7

m

Indx	V	D	Tag	Data
0	Υ	0	000	110
			_	120
	Υ	0	010	3
				300
1	N			
	N			
Load again				

Word Addr

Data

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	000 0 0	hit	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 R5 R6 R7

m

h

ndx	V	D	Tag	Data
0	Υ	1	000	110→62
				120
	Y	7	010	3
				300
1	N			
	N			
Write, set dirty				

Word Addr

Data

CPU

Word Addr

Data

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	011 0 0	miss	0

m m h m

lw	R3←mem[0]		
lw	R4←mem[8]	R0	20
SW	R5→mem[0]	R1	23
lw	R6←mem[12]		
SW	R7→mem[8]	R2	36
		R3	110
		R4	3
		R5	62
		R6	99
		R7	135

Indx	V	D	Tag	Data
0	Υ	1	000	62
				120
	Υ	0	010	3
				300
1	N			
	N			
Miss				

Replacement Policy

- Direct mapped: no other choices
- Set associative
 - Prefer non-valid entry, if there is one
 - Otherwise, choose to replace a block in the set
- Choosing policy
 - Least-recently used (LRU)
 - Choose the one unused for the longest time
 - Need a tracking mechanism for usage
 - Simple for 2-way, manageable for 4-way, too hard beyond that
 - Random
 - Gives approximately the same performance as LRU for high associativity

Word Addr Data

13

14

15

110 120

133

233

36

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	011 0 0	miss	0

5 23 Tag Indx V Data D 615 6 000 62 712 120 3 8 011 $3 \rightarrow 234$ 0 9 300 **LRU** 300→912 62 N 99 234 N

Replace

lw R3←mem[0] R4←mem[8] 20 R0 $R5 \rightarrow mem [0]$ **R1** 23 R6←mem[12] 36 R2 $R7 \rightarrow mem [8]$ R3 110 R4 3 **R5** 62 R6 99 R7 135

m

h

m

CPU

912

0

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	011 0 0	hit	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 20 sw R5 \rightarrow mem[0] R1 23 lw R6←mem[12] 36 R2 sw R7 \rightarrow mem[8] R3 110 R4 3 R5 62 234 R6 135 R7

m

h

m

Indx	V	D	Tag	Data	
0	Υ	1	000	62	
				120	
	Υ	0	011	234	
				912	
1	1				
	Ν				
Load again					

Word Addr Data
0 110

120

133 233

36

23

5

615

8 3

9 300

10 62

99

234

0

11

12 _

13 912

14

15 10

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R0 sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw $R7 \rightarrow mem[8]$ R3 R4 **R5** R6 R7

m

m

m

Indx	V	D	Tag	Data	
0	Υ	1	000	62	
				120	
	Υ	0	011	234	
				912	
1	N				
	N				
Miss					

Data

Word Addr

Word Addr Data

> 110→62 120

> > 133

233

36

23

615

712

3

300

62

99

234

912

0

10

8

9

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

 $lw R3 \leftarrow mem[0]$ R4←mem[8] 20 R0 $R5 \rightarrow mem[0]$ **R1** 23 R6←mem[12] 36 R2 $R7 \rightarrow mem[8]$ R3 110 R4 3 **R5** 62 R6 234 135 R7

m

h

m

m

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

lw R3←mem[0]		
lw R4←mem[8]	R0	20
sw R5 \rightarrow mem[0] lw R6 \leftarrow mem[12]	R1	23
sw R7→mem[8]	R2	36
	R3	110
	R4	3
	R5	62
	R6	234
	R7	135

m

m

m

m

Indx	V	n	Tag	Data	5	23
	V				6	615
0	Υ	0	010	62→3	7	712
		LR	U	120→300		
	Υ	0	011	234	8	3
				912	9	300
4				912	10	62
1	N				11	99
	N				12	234
	IN				13	912
					14	0
	F	Re	pla	ce	15	10

Word Addr

Data

62

120

133

233

36

CPU

2-way associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	010 0 0	miss	0

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw $R7 \rightarrow mem[8]$ R3 R4 **R5** R6 R7

m

m

m

Indx	V	D	Tag	Data		
0	Υ	1	010	→ 3→135		
				300		
	Υ	0	011	234		
				912		
1	N					
	N					
V	Write, set dirty					

Data

Word Addr

Fully associative (4-way associative)

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	miss	-

1w R3←mem[0] lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	V	D	Tag	Data	
	N				
	N				
	N				
	N				
Miss					

Word Addr

Data

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	miss	-

1w R3←mem[0] lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] **R1** lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	V	D	Tag	Data	
	Υ	0	0000	110	
		-		120	
	N				
	N				
	N				
		F	etch		•

Word Addr

Data

m

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	hit	-

1w R3←mem[0] lw R4 \leftarrow mem[8] R₀ sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	V	D	Tag	Data	
	Υ	0	0000	110	
				120	
	N				
	N				
	N				
	L	.08	ad a	gain	

Word Addr

Data

m

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	miss	-

 $lw R3 \leftarrow mem[0]$ 1w R4 - mem [8] R₀ sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

Indx	٧	D	Tag	Data
	Υ	0	0000	110
				120
	N			
	N			
	N			
'		m	iss	

Word Addr

Data

m m

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	miss	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ 20 sw R5 \rightarrow mem[0] R1 23 lw R6←mem[12] 36 sw R7 \rightarrow mem[8] R2 R3 110 R4 87 **R5** 62 R6 99 R7 135

m

Indx	V	D	Tag	Data	5	23
IIIUX	V				6	615
	Υ	0	0000	110	7	712
				120	8	3
	Υ	0	0100	3		
				300	9	3 00
	N			000	10	62
	IN				11	99
	N				12	234
	IN				13	912
				_	14	0
Fet	ch	۱, ۱	not r	eplace	e 15	10

Word Addr

Data

110

120

133

233

36

CPU

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	hit	-

 $lw R3 \leftarrow mem[0]$ 1w R4 \(\text{mem [8]} R₀ sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] R3 R4 **R5** R6 R7

m

Indx	V	D	Tag	Data
	Υ	0	0000	110
				120
	Υ	0	0100	3
				300
	N			
	N			
'		L	oad	again

Data

Word Addr

Word Addr

Data

	4-way	(fully)	associat	tive cac	he
--	-------	---------	----------	----------	----

Requested mem addr	Word addr	Hit/miss	Cache set
00000 00	0000 0	hit	-

 $lw R3 \leftarrow mem[0]$ R4 ← mem [8] R₀ $R5 \rightarrow mem[0]$ **R1** R6←mem[12] R2 $R7 \rightarrow mem [8]$ **R3** R4 **R5** R6 R7

m

m

h

CPU

Word Addr _

Data

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	0110 0	miss	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 sw R7 \rightarrow mem[8] **R3** R4 **R5** R6

m

h

m

Indx	V	D	Tag	Data		
	Υ	1	0000	62		
				120		
	Υ	0	0100	3		
				300		
	N					
	N					
Miss						

CPU

R7

CPU

Data

110

120

133

233

36

23

615

712

3

300

62

99

234

912

0

10

14

15

Fetch

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01100 00	0110 0	hit	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ sw R5 \rightarrow mem[0] R1 lw R6←mem[12] R2 $R7 \rightarrow mem [8]$ **R3** R4 **R5** R6 R7

m

h

m

Indx	V	D	Tag	Data		
	Υ	1	0000	62		
				120		
	Υ	0	0100	3		
				300		
	Υ	0	0110	234		
			912			
	Z					
Load again						

Word Addr

Data

CPU

4-way (fully) associative cache

Requested mem addr	Word addr	Hit/miss	Cache set
01000 00	0100 0	hit	-

 $lw R3 \leftarrow mem[0]$ lw R4←mem[8] R₀ 20 sw R5 \rightarrow mem[0] **R1** 23 lw R6←mem[12] 36 R2 $R7 \rightarrow mem[8]$ R3 110 R4 3 **R5** 62 234 R6 135 R7

m

h

m

h

Indx	٧	D	Tag	Data	
	Υ	1	0000	62	
				120	
	Υ	1	0100	3→135	
				300	
	Y	7	0110	234	
				912	
	N				
Write, set dirty					

14 0

15 10

CPU

How Much Associativity

- Increased associativity decreases miss rate
 - But with diminishing improvement
- Simulation of a system with 64KB
 D-cache, 16-word blocks, SPEC2000

1-way: 10.3%

2-way: 8.6%

4-way: 8.3%

8-way: 8.1%

How Much Associativity

Exercise

- 2K blocks in cache
- 4-way associative
- 8 words in each block
- 32-bit byte address 0x810023FE requested by CPU, for example

```
lui x10, 0x81002
addi x10, x10, 0x3FE //x10=0x810023FE
lb x5, 0(x10)
```

 Show address and organization of the target cache block, and locate the requested data

Exercise

2K blocks in cache, 4-way: 4 blocks/set, 512 sets, set index 9 bits 8 words in each block: word offset 3 bits, byte offset 2 bits 0x810023FE = 100000010000000000 100011111 111 10

Set Index	V	Tag	Data							
Set muex	V	Tag	W0	W1	W2	W3	W4	W5	W6	W7
000000000										
(0)										
100011111										
(287)										
111111111										
(511)										

Improve Performance – Multilevel Caches

- Multilevel cache decreases miss penalty
- Primary (L-1) cache attached to CPU
 - Small, but fast
- Level-2 (secondary) cache services misses from primary cache
 - Larger, slower, but still faster than main memory
- Main memory services L-2 cache misses
- Some high-end systems include L-3 cache

Multi-level Cache

Intel Haswell Processor, 2013

Image: cs.cornell.edu/courses/cs3410/

Multilevel Cache Example

Given

- CPU base CPI = 1, clock rate = 4GHz
- Miss rate (misses/instruction) = 2%
- Main memory access time = 100ns
 - As miss penalty, ignoring other times
- With one-level cache
 - Miss penalty = 100ns/0.25ns = 400 cycles
 - Effective CPI = $1 + 0.02 \times 400 = 9$

Example (cont.)

- Now add L-2 cache
 - Access time = 5ns (L-1 miss penalty)
 - Miss rate for L-2 = 25% of L1 misses (have to access main memory)
 - L-1 cache miss have a miss on L-2
- Primary (L-1) cache miss with L-2 hit
 - Miss penalty = 5ns/0.25ns = 20 cycles
- Primary cache miss with L-2 miss main memory hit
 - Extra penalty = 400 cycles
- CPI = base CPI + L-1 miss L-2 hit (cycles per instruction)
 + L-1 miss L-2 miss (cycles per instruction)
 - CPI = 1 + 0.02 × 75% × 20 + 0.02 × 25% × (20+400) = 3.4
- Performance ratio = 9/3.4 = 2.6

Multilevel Cache Considerations

Primary cache

- Focus on minimal hit time because miss penalty is smaller
- And to reduce CPU clock cycle
- Secondary cache
 - Focus on low miss rate to avoid main memory access
 - Hit time has less overall impact

Multilevel Cache Considerations

- Comparison with single level cache
 - L-1
 - Smaller cache size
 - Smaller block size, because of
 - Smaller total cache size
 - Reduced search time -> reduced hit time
 - Reduced miss penalty -> less time to fetch
 - L-2
 - Cache and block size much larger
 - because of less critical hit time
 - Higher associativity and block size to reduce miss rate
 - Because miss penalty is more severe