Sistemas de Inteligencia Artificial Eternity 2

Algoritmos de búsqueda informados y no informados

Cristian Pereyra – Esteban Pintos – Matías De Santi

Eternity 2

- Tablero cuadrado de *n* piezas de ancho
- Las piezas tienen un color en cada lado
- El color gris en cualquier pieza debe ser adyacente a un borde
- Dos piezas adyacentes deben tener el mismo color en el borde que comparten

Definición del problema

- **Estado inicial**: tablero vacío
- Conjunto de posibles acciones: dado un estado, se puede colocar sobre el tablero cualquier ficha siempre y cuando esta no haya sido colocada antes y no haya una ficha en la posición que se quiere colocar.
- Modelo de transición: colocar una pieza en una posición del tablero da como resultado un nuevo tablero con todas las fichas que tenía el anterior más la que ha sido colocada
- Condición de solución: un tablero es solución del problema si las fichas con color gris han sido colocadas con el color gris del lado del borde y para toda ficha adyacente en el tablero, los colores de los bordes que comparten son iguales.

Representación del problema Estados y piezas

Cada estado guarda:

- La pieza colocada a partir del estado anterior y la posición.
- Una referencia al estado padre

Cada pieza guarda:

- El color que corresponde a cada borde
- Si esta rotada y cuántas veces

Representación del problema Acciones posibles

Reglas del juego

- Rotar una pieza

Reglas que representamos

Representación del problema Modelo de transición

▲ Al aplicar una regla a un nodo, se obtiene otro nodo en cuyo estado se encuentra el mismo tablero que en el estado padre pero con la regla aplicada

Representación del problema Condición de terminación

El tablero debe estar completo y las piezas deben cumplir las siguientes condiciones:

- Si la pieza contiene color 0, entonces este color debe estar pegado a un borde del tablero.
- Las piezas adyacentes deberán tener los mismos colores en los bordes que tienen en común

Algoritmos implementados

Algoritmos no informados:

- DFS
- BFS
- Iterative Deepening

Algoritmos iformados:

- Greedy

Heurísticas Heurística basada en distancias Manhattan

• Es más fácil resolver el juego empezando desde los bordes

4	3	2	3	4
3	2	1	2	3
2	1	0	1	2
3	2	1	2	3
4	3	2	3	4

Distancias mahnattan para un tablero de 5x5

4	3		3	4
			1	2
	2	1		
	3			4

Distancias mahnattan para un tablero de 5x5 con algunas piezas colocadas

•
$$h(n) = 60 - 27 = 33$$

Heurísticas Heurística basada en el orden de colocación

Intenta que las piezas sean colocadas en orden de espiral. Primero en (0,0), luego en (0,1) y así hasta completar la primer fila. Luego desciende por la última columna y así sucesivamente

1	2	3	4	5
16	17	18	19	6
15	24	25	20	7
14	23	22	21	8
13	12	11	10	9

Recorrido en espiral para un tablero de 5x5

Heurísticas Heurística basada en colores

▲ Intenta evaluar si quedan colores para continuar con un tablero. En caso de que no haya, los sucesivos tableros generados a partir del actual van a ser inválidos.

Funciones de costo

Se desarrollaron 3 funciones de costo:

- Costo uniforme
- Costo basado en rotaciones
- Costo basado en distancia al centro

Factor de ramificación

- ♦ Reglas generadas: 4×n⁴
- Un nodo del árbol ubicado a una profundidad p tiene un factor de ramificación $4 \times n^4 4p$
- ♦ Unos ejemplos...

$$2x2 => 11182080$$

3x3 = 24817428680914501632000

4x4 = 905703814554358516996854857467489926355353600000

Resultados

Conclusiones

- La representación del problema es importante a la hora de ahorrar memoria.
- Conocer el factor de ramificación es importante para saber con qué tipo de problemas uno esta lidiando.
- Los algoritmos no informados no dan buenos resultados ya que exploran una gran cantidad de nodos.