Problem session 4

Reza Mohammadpour
Department of Mathematics
Uppsala University, Sweden
reza.mohammadpour@math.uu.se

- 1. Let $g_n:[0,1]\to\mathbb{R}, n=0,1,2,\ldots$, be a sequence of differentiable functions such that the sequence $g_n':[0,1]\to\mathbb{R}$ is uniformly bounded.
 - a) Show that there is a sequence of constants $c_n \in \mathbb{R}$ such that the sequence of functions $h_n(x) = g_n(x) c_n$ on [0,1] has a uniformly convergent subsequence.
 - b) Show that if $\int_0^1 g_n$ is a bounded sequence in \mathbb{R} then the sequence g_n has a uniformly convergent subsequence.
 - 2. Let $a \leq b$. Prove, or disprove, that the space

$$M = \{ f \in C([a, b]) : |f(x) - f(y)| \le \sqrt{|x - y|} \text{ for every } x, y \in [a, b], f(a) = 0 \}$$

is a compact space under the metric $d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$.

- 3. Prove that the series $F(x) = \sum_{n=1}^{\infty} n^{-x} \cos n\pi x$ converges for all $x \in (1, \infty)$, and that the function F(x) is differentiable in the interval $(2, \infty)$.
 - 4. Give examples to illustrate that:
 - a) the pointwise limit of integrable functions is not necessarily integrable.
 - b) a bounded subset of $C([-1,1] \times [-1,1])$ is not equicontinuous.
- 5. Determine if the set \mathscr{R} of Riemann integrable functions on the interval [a,b], a < b, is a closed subset of the space of bounded real-valued functions $\ell^{\infty}([a,b],\mathbb{R})$
 - a) In the uniform topology? (where $f_n \to f$ iff $\sup_{x \in [a,b]} |f_n(x) f(x)| \to 0$).
 - b) In the pointwise topology? (where $f_n \to f$ iff $f_n(x) \to f(x)$ for all $x \in [a,b]$).