Electronics and Circuits

Problem Set

- 1. Write a Kirchhoff's voltage law equation for the circuit shown in the figure (Napisz równanie Kirchhoffa dla obwodu z rysunku)
- 2. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 3. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 4. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 5. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 6. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 7. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 8. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 9. Write a Kirchhoff's voltage law equation for the circuit shown in the figure (Napisz równanie Kirchhoffa dla obwodu z rysunku)
- 10. Solve the circuit shown in the figure (Rozwiąż obwód z rysunku)
- 11. Solve the circuit shown in the figure (Rozwiaż obwód z rysunku)
- 12. We have an electrical circuit consisting of an inductor with an inductance $L=0.5\,\mathrm{H}$ and a resistor with a resistance $R=4\,\Omega$, connected in series. The circuit is connected to a DC voltage source $V=12\,\mathrm{V}$.
 - a) Calculate the current flowing through the circuit in steady state.
 - b) Calculate the time it takes for the current in the circuit to reach 63% of its maximum value after the circuit is closed (time constant τ).
 - c) Draw a graph showing the changes in current over time from the moment the circuit is closed until it reaches a steady state.
 - Mamy obwód elektryczny składający się z cewki o indukcyjności $L=0.5\,\mathrm{H}$ i rezystora o rezystancji $R=4\,\Omega$, połączonych szeregowo. Obwód jest podłaczony do źródła napiecia stałego $V=12\,\mathrm{V}$.
 - a) Oblicz prąd płynący przez obwód w stanie ustalonym.
 - b) Oblicz czas, jaki upływa od zamknięcia obwodu do osiągnięcia przez prąd w obwodzie 63% swojej wartości maksymalnej (stała czasowa τ).
 - c) Narysuj wykres przedstawiający zmiany prądu w czasie od momentu zamknięcia obwodu do osiągnięcia stanu ustalonego.

- 13. We have an electrical circuit consisting of a capacitor with a capacitance $C=10\,\mu\mathrm{F}$ and a resistor with a resistance $R=2\,\Omega$, connected in series. The circuit is connected to a DC voltage source $V=5\,\mathrm{V}$.
 - a) Calculate the voltage across the capacitor in steady state.
 - b) Calculate the time it takes for the voltage across the capacitor to reach 63% of its maximum value after the circuit is closed (time constant τ).
 - c) Draw a graph showing the changes in voltage across the capacitor over time from the moment the circuit is closed until it reaches a steady state.

Mamy obwód elektryczny składający się z kondensatora o pojemności $C=10\,\mu{\rm F}$ i rezystora o rezystancji $R=2\,\Omega,$ połączonych szeregowo. Obwód jest podłączony do źródła napięcia stałego $V=5\,{\rm V}.$

- a) Oblicz napięcie na kondensatorze w stanie ustalonym.
- b) Oblicz czas, jaki upływa od zamknięcia obwodu do osiągnięcia przez napięcie na kondensatorze 63% swojej wartości maksymalnej (stała czasowa τ).
- c) Narysuj wykres przedstawiający zmiany napięcia na kondensatorze w czasie od momentu zamknięcia obwodu do osiągnięcia stanu ustalonego.