MATH 339: LINEAR ALGEBRA

Public Notes for Any Linear Algebra Course

EDITED BY
TREVOR BUSHNELL

Contents

1	Lin	ear Equations	2		
	1.1	Systems of Linear Equations	2		
	1.2		2		
	1.3		2		
	1.4	The Matrix Equation	2		
	1.5	Solution Sets of Linear Systems	2		
	1.6	Linear Independence	2		
	1.7	Introduction to Linear Transformations	2		
	1.8	The Matrix of a Linear Transformation	2		
2	Ma	trix Algebra	3		
	2.1	Matrix Operations	3		
	2.2	The Inverse of a Matrix	3		
	2.3	Characterizations of Invertible Matrices	3		
	2.4	Partitioned Matrices	3		
	2.5	Matrix Factorizations	3		
	2.6	The Leontief Input-Output Model	3		
	2.7	Applications to Computer Graphics	3		
	2.8	Subspaces of \mathbb{R}^n	3		
3	Determinants 4				
	3.1	Introduction to Determinants	4		
	3.2	Properties of Determinants	4		
	3.3	Cramer's Rule, Volume, and Linear Transformations	4		
4	Vec	tor Spaces	5		
	4.1	Vector Spaces and Subspaces	5		
	4.2	Null Spaces, Column Spaces, and Linear Transformations	5		
	4.3	Linearly Independent Sets and Bases	5		
	4.4	Coordinate Systems	5		
	4.5		5		
	4.6	Rank	5		
	4.7	Change of Basis	5		
5	Eigenvectors 6				
	5.1	Eigenvectors and Eigenvalues	6		
	5.2	The Characteristic Equation	6		
	5.3	Diagonalization	6		

Linear Equations

$\S 1.1$	Systems of Linear Equations
$\S 1.2$	Row Reduction and Echelon Form
$\S 1.3$	Vector Equations
$\S 1.4$	The Matrix Equation
$\S 1.5$	Solution Sets of Linear Systems
$\S 1.6$	Linear Independence
$\S 1.7$	Introduction to Linear Transformations
$\S 1.8$	The Matrix of a Linear Transformation

Matrix Algebra

$\S 2.1$	Matrix Operations
$\S 2.2$	The Inverse of a Matrix
$\S 2.3$	Characterizations of Invertible Matrices
$\S 2.4$	Partitioned Matrices
$\S 2.5$	Matrix Factorizations
$\S 2.6$	The Leontief Input-Output Model
$\S 2.7$	Applications to Computer Graphics
$\S 2.8$	Subspaces of \mathbb{R}^n

Determinants

- $\S 3.1$ Introduction to Determinants
- §3.2 Properties of Determinants
- §3.3 Cramer's Rule, Volume, and Linear Transformations

Vector Spaces

- $\S 4.1$ Vector Spaces and Subspaces
- §4.2 Null Spaces, Column Spaces, and Linear Transformations
- §4.3 Linearly Independent Sets and Bases
- §4.4 Coordinate Systems
- $\S 4.5$ The Dimension of a Vector Space
- §4.6 Rank
- §4.7 Change of Basis

Eigenvectors

- $\S 5.1$ Eigenvectors and Eigenvalues
- $\S 5.2$ The Characteristic Equation
- §5.3 Diagonalization