Отчет по лабораторной работе №3

Доп. задание №2

Аксенова Валерия, Коваленко Александр, Шустров Андрей

Постановка задачи:

Pассмотрим постановку задачи оптимизации в методе обучения support vector machine (метод опорных векторов):

Для классификации бинарных образов мы хотим провести такую гиперплоскость, которая будет корректно отделять один класс от другого, ориентируясь только на распределение обучающей выборки и по возможности без дополнительных предположений о распределении образов в классах.

С точки зрения *SVM*, *оптимальная разделяющая гиперплоскость* – это та, которая образует наиболее широкую полосу между объектами двух классов. При этом сама разделяющая гиперплоскость будет точно проходить посередине этой полосы.

Задача оптимизации для общего случая:

$$\begin{cases} \frac{1}{2} \|\omega\|^2 \to \min_{\omega, b} \\ M_i(\omega, b) \ge 1, \quad i = 1, 2, ..., l \end{cases}$$

Верхнее выражение определяет ширину полосы, нижнее - расстояние от разделяющей гиперплоскости до выбранного образа (margin)

В случае нелинейного разделения вводим slack variables - некоторый штраф за нарушение исходного неравенства:

$$\begin{cases} \frac{1}{2} \|\omega\|^{2} + C \cdot \sum_{i=1}^{l} \xi_{i}^{t} \to \min_{\omega, b, \xi} \\ M_{i}(\omega, b) \ge 1 - \xi_{i}^{t}, & i = 1, 2, ..., l \\ \xi_{i} \ge 0, & i = 1, 2, ..., l \end{cases}$$

где C – гиперпараметр, определяющий степень минимизации величин $\{\zeta_i\}$.

Описание методов:

- 1. prepare_data(x) добавляет столбец единиц (bias) к каждому элементу входных данных х. Это необходимо для корректного обучения модели.
- 2. train_svm(x_train, y_train) обучает линейную модель SVM с использованием библиотеки sklearn. Возвращает обученный классификатор.
- 3. plot_svm(x_train, y_train, support_vectors, line_coords=None) строит график данных, включая точки классов, опорные векторы и (при наличии) разделяющую линию. Использует библиотеку matplotlib.

Для линейно разделимого случая возьмем датасет:

Nº	Width	Length	Class	
1	10	50	blue	-1
2	20	30	red	+1
3	25	30	red	+1
4	20	60	blue	-1
5	15	70	blue	-1
6	40	40	red	+1
7	30	45	red	+1
8	20	45	blue	-1

9	40	30	red	+1
10	7	35	blue	-1

Для линейно не разделимого случая добавим в существующий датасет:

Nº	Width	Length	Class	SS	
11	30	10	blue	-1	
12	15	50	red	+1	

и будем использовать класс SVC, так как прежний LinearSVC не применим к новой выборке.

Результаты:

После запуска программы Linear SVM увидим следующие значения:

- коэффициентов вектора ω : [0.24371833 -0.13071248 0.01218592]
- список опорных векторов, для которых $\lambda \neq 0$:

Разделяющая линия действительно проходит по центру полосы, образованной опорными векторами.

После запуска Nonlinear SVM мы увидим качество классификации:

[-2 2 0 0 0 0 0 0 0 0 0 0] (нули соответствуют верной классификации).

Кроме того, видим список опорных векторов:

[[30. 10. 1.] [20. 60. 1.] [20. 45. 1.] [7. 35. 1.] [15. 50. 1.] [20. 30. 1.] [25. 30. 1.] [30. 45. 1.]] их стало заметно больше предыдущего случая.

Классификатор ошибся только на двух первых наблюдениях, в которые мы прописали выбросы, то есть, он корректно построил разделяющую гиперплоскость.