Measurement of the Top Quark Mass in the $t\bar{t} \rightarrow lepton+jets channel$ form $\sqrt{s} = 13$ TeV ATLAS data

Sebastian Schulte, Andrea Knue, StefanKluth, Richard Nisius

(Werner-Heisenberg-Institut)

Why Measuring the Top-Quark mass?

Measurement is based on a 3D-Template method:

- Variable 1: m_{top}^{reco} from reconstructed Events
- Variable 2: m_{W}^{reco} from chosen jet permutation, sensitive to JSF
- Variable 2: R_{ba}^{reco} from chosen jet permutation, sensitive to bJSF

$$R_{bq}^{\text{reco},1b} = \frac{\rho_{T}^{b_{tag}}}{(\rho_{T}^{W_{\text{jet1}}} + \rho_{T}^{W_{\text{jet2}}})/2} \qquad \qquad R_{bq}^{\text{reco},2b} = \frac{\rho_{T}^{b_{had}} + \rho_{T}^{b_{lep}}}{\rho_{T}^{W_{\text{jet1}}} + \rho_{T}^{W_{\text{jet2}}}}$$

Determination of m_{top} :

- Need fully reconstruction of $t\bar{t}$ -finale state
- Template parametrisation of the 3 variables
- Unbinned likelihood fit is performed

Workflow

1.png

- At least one good primary vertex with five associated tracks
- Exactly one isolated high p_T lepton
- At least 4 central jets with high p_T
- 1 or 2 b-tagged jets
- ullet Cuts on E_T^{miss} , m_T^W or $E_T^{miss}+m_T^W$
- W+jets normalization and HF fraction estimated from data
- Multijet background obtained from data in control region

Event yields after preselection

	One <i>b</i> -tagged jet		Two b-tagged jets		1+2 b-tagged jets	
Data	168417		96105		264522	
$t\bar{t}$ signal	121900 \pm	7400	85100 ±	5500	207000 ±	12000
Single-top-quark signal	9300 \pm	500	4220 ±	250	13490 \pm	730
NP/fake leptons (data)	7400 \pm	3700	700 ±	350	$8100 \pm$	4100
W+jets (data)	23600 \pm	7200	2780 ±	850	$26000 \pm$	8000
Z+jets	3500 \pm	1100	430 ±	130	4000 ±	1200
WW/WZ/ZZ	1033 \pm	49	63.0 ±	6.1	1097 \pm	53
Signal+background	168000 \pm	11000	93300 ±	5500	260000 ±	15000
Expected background fraction	0.21 \pm	0.07	0.04 ±	0.06	0.15 ±	0.06
Data/(Signal+background)	1.01 \pm	0.07	1.03 ±	0.06	1.02 ±	0.06

- ullet Background contamination dominated by W + Jets
- ullet Mass dependence of single-top \Rightarrow include in signal
- Reduction of background via cuts on 2 b-tagged jets
- Good Data/MC agreement

Data/MC agreement

$t\bar{t}$ -final state

- ullet 4 jet event \Rightarrow 24 possible jet-parton assignments
- 12 permutations left since light jets from W are indistinguishable
- Kinematic liklihood fit with KLFitter
 - \Rightarrow Chose best permutations for calculation

Reconstruction with KLFitter

- KLFitter input: charged lepton, missing E_T and at least four jets
 - \Rightarrow one or two b-tagged jets + untagged jets with highest p_T
- Definition of kinematic Likelihood:
 - W: transfer functions for detector response
 - BW:Breit-Wigner distributions
 - different options to use b-tagging information

Likelihoodfunction

$$\begin{split} L &= BW(m_{q_{1}q_{2}}|m_{W},\Gamma_{W}) \cdot BW(m_{l\nu}|m_{W},\Gamma_{W}) \\ &BW(m_{q_{1}q_{2}b_{had}}|m_{top},\Gamma_{top}) \cdot BW(m_{l\nu b_{lep}}|m_{top},\Gamma_{top}) \\ &W(\tilde{E}_{jet_{1}}|E_{b_{had}})W(\tilde{E}_{jet_{2}}|E_{b_{lep}})W(\tilde{E}_{jet_{3}}|q_{1})W(\tilde{E}_{jet_{4}}|q_{2}) \\ &W(\tilde{E}_{x}^{miss}|p_{x,\nu})W(\tilde{E}_{y}^{miss}|p_{y,\nu}) \left\{ \begin{array}{c} W(\tilde{E}_{l}|E_{l}) \\ W(\tilde{p}_{T,l}|p_{T,l}) \end{array} \right\} \end{split}$$

3D-template technique

determination of m_{top} , JSF and bJSF

- absorb data/MC mean deviations into the JEF and bJSF
- JES/bJES induced uncertainties, become an additional statical component
- different masses in the range 170?175.5 GeV + independent input for JSF/bJSF 0.96-1.04

template construction

- templates are derived for m_{top}^{reco} , m_{top}^{reco} and R_{ba}^{reco}
- fit of signal and background with different functions

fit-functions (signal)

- m_{top}^{reco} : gauss+ landau + $landau^{-1}$
- m_W^{reco} : gauss + gauss
- R_{ba}^{reco} : gauss + gauss + landau

signal templates $t\bar{t}$ only for 170 GeV & 171.5 GeV

Next steps

- \bullet single top contains additional information \Rightarrow add to signal
- Several fits with variation of JFS and bJSF
- Repetition of the parametrisation for the different Background processes
 - \Rightarrow Dependes of m_{top}^{reco} , m_{top}^{reco} and R_{bq}^{reco} on mtop, JSFbJSF
- Probability density functions for signal and background are used for the unbined Likelihood fit

Summery

Backup

Object definition for 2016 data

Electrons

- $E_T > 28$ GeV, $|\eta| < 2.47$
- Gradient isolation, TightLH
- HLT_e26_lhtight_nod0_ivarloos, HLT_e60_lhmedium_nod0. HLT e140 lhloose nod0

Muons

- $E_T > 28$ GeV, $\eta < 2.47$
- Medium. Gradient isolation
- HLT_mu26_ivarmedium, HIT mu50

Small-R jets

- antiKt R = 0.4. EM-Jets
- JVT >0.59 for $p_T <$ 60GeV and $|\eta| < 2.4$
- b-tagging: MV2_c10, 77% WP

MET/MTW

- \bullet $E_{\tau}^{miss} > 20 \text{GeV}$
- $E_T^{miss} + m_T^W > 60 \text{GeV}$

AnalysisTop-02-04-27, with 25 fb-1 for 2016 data → Top Mass Ntuple production

Signal templates $t\bar{t}$ only for 173.5 GeV & 175 GeV

