CSE616

Assignment 2

Abdullah Aml, 2101398

Question1

• **Without bias:** W of size = (750000×100)

• **With bias:** W of size = (750001×100)

Question2

Filter sizes = $10 \times 5 \times 5 = 250$

Question3

• First Image: vertical edge filter:

1	0	-1
1	0	-1
1	0	-1

• Second Image: horizontal edge filter:

1	1	1
0	0	0
-1	-1	-1

Question4 (not a clear answer)

The second momentum (exponential moving average) will tend too use old second momentum therefore conserves the old direction.

Qustion5

$$mean = \frac{1}{m} \sum_{k=1}^{m} z^{(m)}$$

$$var = \frac{1}{m} \sum_{k=1}^{m} (z^{(m)} - mean)^{2}$$

$$\hat{Z^{(i)}} = \frac{z^{(i)} - mean}{\sqrt{var + \varepsilon}} \quad \text{ε is avoid dividing by zero}$$

$$y^{(i)} = \gamma \hat{Z^{(i)}} + \beta; \ \gamma, \beta \text{: are learnalble parameters}$$

we use batch-normalization to:

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization

Qustion6

We have:

input image (256x256x3)
$$\rightarrow$$
 10 @ (3x3x3) filters ,stride=1 \rightarrow pooling (3x3), stride=2
256x256x3 \rightarrow (256-3+1) x (256-3+1) \rightarrow (254-3+1)/2 x (254-3+1)/2
256x256x3 \rightarrow (254) x (254) \rightarrow 126 x 126

receptive field size = 126x126

Question7

Output size =
$$128 \times \text{ceil}((128-7+(2x3)+1)/2) \times \text{ceil}((128-7+(2x3)+1)/2)$$

= $128 \times (64 \times 64)$

Question9

- Much more number of parameters:
 - o more computaion time
- does not have local receptive field if the object position is moved within the image the FCNN will not be able to classify the image

Question10

	4	1	-1	3	
1	-2				
	1	-2			
		1	-2		
			1	-2	
				1	-2

|--|

output -8	2	3	-7	3
-----------	---	---	----	---

Question11

Decreasing learning rate

Question12

- It preserves local receptive field
- due to shred weights
- it is translation invariant

Question13

• **In train:** we multiply weights matrix by a matrix with ones and zeros to turnoff some weights with p.

• **In test:** we multiply the output of the weights by p.

Question14

Nesterov conservesk more the direction of the old gradient because it multiplies by learning rate before adding to \boldsymbol{v}

picture form slide:

Question15

 $grad = grad + dx^2$; dx is the gradient of SGD

$$lr_{new} = \frac{lr}{\sqrt{grad + \varepsilon}}$$