Definition 5.2 Linear Combinations and Span in \mathbb{R}^n

The set of all such linear combinations is called the **span** of the x_i and is denoted

$$\operatorname{span} \{ \mathbf{x}_1, \ \mathbf{x}_2, \ \dots, \ \mathbf{x}_k \} = \{ t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \dots + t_k \mathbf{x}_k \mid t_i \text{ in } \mathbb{R} \}$$

If $V = \text{span}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$, we say that V is **spanned** by the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$, and that the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ span the space V.

 $\mathbb{R}^n = \operatorname{span} \{ \mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n \}$ where $\mathbf{e}_1, \, \mathbf{e}_2, \, \dots, \, \mathbf{e}_n$ are the columns of I_n .

Definition 5.3 Linear Independence in \mathbb{R}^n

With this in mind, we call a set $\{x_1, x_2, ..., x_k\}$ of vectors **linearly independent** (or simply **independent**) if it satisfies the following condition:

If
$$t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \dots + t_k \mathbf{x}_k = \mathbf{0}$$
 then $t_1 = t_2 = \dots = t_k = 0$

As for square matrices, if $A = [a_{ij}]$ is an $m \times n$ matrix, the elements a_{11} , a_{22} , a_{33} , ... form the **main diagonal** of A. Then A is called **upper triangular** if every entry below and to the left of the main diagonal is zero. Every row-echelon matrix is upper triangular, as are the matrices

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A is an $n \times n$ matrix, a number λ is called an eigenvalue of A if

$$A\mathbf{x} = \lambda \mathbf{x}$$
 for some column $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n

In this case, **x** is called an **eigenvector** of A corresponding to the eigenvalue λ , or a λ -**eigenvector** for short.

Definition 1.3 Row-Echelon Form (Reduced)

A matrix is said to be in **row-echelon form** (and will be called a **row-echelon matrix**) if it satisfies the following three conditions:

- 1. All **zero rows** (consisting entirely of zeros) are at the bottom.
- The first nonzero entry from the left in each nonzero row is a 1, called the leading 1 for that row.
- 3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in **reduced row-echelon form** (and will be called a **reduced row-echelon matrix**) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

Definition 1.4 Rank of a Matrix

The **rank** of matrix A is the number of leading 1s in any row-echelon matrix to which A can be carried by row operations.

A square matrix is called a **diagonal matrix** if all the entries off the main diagonal are zero.