### WOQ- Random Walks Brownian Movement (diffusion)

#### Brownian Mokan

Brown (1829) novements of particles inside paten seas

Ly so zyme s
$$\delta = 10^{-10}$$

$$\delta = 10^{-13} sec \quad (the between collisions)$$

$$c/y so zyme to this N= \frac{1}{5} = 10^{13} stens per second!$$

$$\langle x(t)^{2} \rangle = \delta^{2} \sqrt{kr}(m)$$

$$= \delta^{2} 4 pq N$$

$$= \delta^{2} 4 pq (\frac{t}{t})$$

$$= 4 (\frac{t}{t}) p.q. \delta^{2}$$

$$= t \frac{\delta^{2}}{t} = 2Dt$$

$$\langle \chi^{2}(t) \rangle = 2Dt$$

$$\sigma = \sqrt{2Dt}$$

$$-\frac{\chi^{2}}{4Dt}$$

$$P(\gamma | t) \simeq \frac{1}{4\pi Dt}$$

Generalize tim to 20, 30:

$$(x^{2})=(-1^{2})=(-1^{2})=20t$$
 $P(-1t)=\frac{1}{(4\pi Dt)}=\frac{e^{2}}{4\pi Dt}$ 
 $P(-1t)=\frac{1}{4\pi Dt}=\frac{e^{2}}{4\pi Dt}$ 

$$P_{30}(r|t) = \frac{1}{(4\pi Dt)^{3/2}}e^{-r^2/4Dt}$$

$$Gr = \frac{1}{2} \frac{5^2}{5} = \frac{15}{5} \frac{6m^2}{sec}$$

#### How fest is Brownian motion?

| ŧ      | (x2(6)  |                             |
|--------|---------|-----------------------------|
| 1      | 15 cm   | sizef backum                |
| lm 5   | 10°3 cm | size of neuron's all body   |
| 8mins  | o.lmm   | length of neuron's denduite |
| 6 days | ICM     | length of nemen's axon      |

#### In Snowian motion:

This is not a "relowh". Here is no a "relowh of diffusion".

The mean-square deviation of the displacement



is proportional to the It.

## The Diffusion equations

Random walk behaviour when Sto tto continues space and time displacements

Diffusion eq. deuted from the master eq.

$$P_{N+1}(m) = \frac{1}{2} P_N(m-i) + \frac{1}{2} P_N(m+1)$$

$$P_{N+1}(m) - P_N(N) = \frac{P_N(m-1) + P_N(m+1) - 2 P(m)}{2}$$

$$\frac{\delta P(x,t)}{\delta t} = \lim_{t \to 0} \frac{P(x,t+\epsilon) - P(x,t)}{\epsilon}$$

$$\frac{\delta P(x,t)}{\delta x^2} = \lim_{\delta \to 0} \frac{P(x+\delta,t) + P(x-\delta,t) - z P(x,t)}{\delta^2}$$

$$\tau \frac{\delta P(x_1 + 1)}{\delta t} = \delta \frac{1}{2} \frac{\delta^2 P(x_1 + 1)}{\delta x_2}$$

$$\frac{\mathcal{E}_{t}}{\mathcal{E}_{t}} = \frac{1}{2} \frac{\mathcal{E}_{t}}{\mathcal{E}_{t}} \frac{\mathcal{E}_{t}}{\mathcal{E}_{t}^{2}}$$

Introduce  $D = :\frac{1}{2} \frac{\delta^2}{\tau}$  " the diffusion coefficial

ten: 
$$\frac{\delta P(x_{i}t)}{\delta t} = D \frac{\delta^{2} P(x_{i}t)}{\delta x^{2}}$$

the diffusion equation

# Diffusion eq. takez. (Berg Chapkerz)



Mi = net crossing for i to i+1

DN: = conuntation change

 $M_{i} = \frac{1}{2} N_{i} - \frac{1}{2} N_{i+1}$ 

DN: = - Mi + Mi+1

· Fluy:  $J_i = \frac{M_i}{T}$ particles crossing per unit time

. Concentration

$$C_i = \frac{\delta}{N_i}$$

particles per unit length at position i

$$\begin{aligned}
\overline{J}_{i} &= \frac{M_{i}}{U} \\
&= -\frac{1}{2U} \left( N_{i+A} - N_{i} \right) \\
&= -\frac{1}{2U} \left( \delta C_{i+1} - \delta C_{i} \right) \\
&= -\frac{\delta^{2}}{2U} \left( C_{i+1} - C_{i} \right) \\
&= -\frac{\delta^{2$$

first Fick egation:

the net flux is proportional to the change in concentration and the D constant

The second eq

can be re-witten as

$$\frac{\Delta N_i}{\delta} = -\frac{1}{\delta} \left( M_i - M_{i-1} \right)$$

$$\Delta C_{i'} = -\frac{1}{\delta} \left( M_{i'} - M_{i'-1} \right)$$

$$\frac{\Delta C_i}{T} = -\frac{1}{\delta} \frac{M_i - M_{i-1}}{T}$$

$$\frac{\mathcal{L}^4}{\mathcal{L}^{c_i}} = -\frac{\mathcal{L}}{2i-2i-1} = -\frac{\mathcal{L}^{\times}}{\mathcal{L}^{\times}}$$

### the second fick eq

$$\frac{L^{x}}{2c_{i}} = -\frac{L^{x}}{2c_{i}}$$

$$\int_{C_{i}}^{C_{i}} = -D\frac{L^{x}}{2c_{i}}$$

mesite in

$$\frac{\delta c_i}{\delta t} = -\frac{c_x}{\delta x} \left( -D \frac{\delta c_i}{\delta x} \right) = D \frac{\delta^2 c_i}{\delta x^2}$$

$$\frac{\delta t}{\delta t} = D \frac{\delta x^2}{\delta x^2}$$

# Particular Solutions

Initical condition is a pulse

$$C(k^{+}f=0) = g(k=0)$$

$$C(k^{+}f=0) = g(k=0)$$

$$C(k^{+}f=0) = g(k=0)$$

$$C(Y_it) = NP(Y_it) = N \cdot w(Y_i) = 0, \sigma = 20t)$$

$$C(x_{it}) = \frac{N}{\sqrt{4\pi Dt}} e^{x^2/4Dt}$$

$$\rightarrow$$
 7m can veify that this  $C(x_1t)$  }  
i)  $C(x_1t=0)=N$  Sections

This initial conditions apply to a pipette filled with fluid, that injects are at too other properties

. He when hat in remains light at t=0

the concentration decays with

if 1D

if 1D

Light 13D

Light 13D

### Absorbtion and Reflection







Steady show
$$\frac{\delta C}{RL} = 0 \text{ or } \frac{\delta^2 C}{\delta x^2} = 0$$



. 
$$C(x,t) = c_0 + x \frac{c_1 - c_0}{L} \rightarrow J = -D \frac{\delta c}{\delta x} = -D \frac{Q - C_0}{L}$$

