DTFT

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \quad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Symmetry Properties

$X^*(e^{-j\omega})$	
TT 4 (a(1)	
$X^*(e^{j\omega})$	
Real Fourier Transform	
Imaginary Fourier	
$Re\{X(e^{j\omega})\} + jIm\{X(e^{j\omega})\}$	
Conjugate Symmetric	
Real part is even	
Imaginary part is odd	
Magnitude is even	

Theorems

x[n]	$X(e^{j\omega})$
$\alpha x[n] + \beta y[n]$	$\alpha X(e^{j\omega}) + \beta Y(e^{j\omega})$
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$
x[-n]	$X(e^{-j\omega})$
nx[n]	$j rac{dX(e^{j\omega})}{d\omega}$
x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
x[n]y[n]	$X(e^{j\omega})*Y(e^{j\omega})$
$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	
$\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	

Transform Pairs

Signal	Fourier Transform
$\delta[n]$	1
$\delta[n-n_0]$	$e^{-j\omega n_0}$
1	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
$a^n u[n](\alpha < 1)$	$\frac{1}{1-lpha e^{-j\omega}}$
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
$(n+1)a^{n}u[n]$ $\frac{\sin \omega_{c}n}{\pi n}$ $\begin{cases} 1 & \omega < \omega_{c}, \\ 0 & \omega_{c} < \omega \le \pi \end{cases}$	$ \begin{cases} \frac{1}{(1-\alpha e^{-j\omega})^2} \\ 1 & \omega < \omega_c, \\ 0 & \omega_c < \omega \le \pi \end{cases} $ $ \frac{\sin(\omega(M+1)/2)}{\sin[\omega]/2} e^{-j\omega M/2} $
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
$cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)$

Z - Transform

Theorems

Sequence	Transform	ROC	
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	$R_1 \bigcap R_2$	
$x[n-n_0]$	$z^{-n_0}X(z)$	R	
$z_0^n x[n]$	$X(\frac{z}{z_0})$	$ z_0 R$	
nx[n]	$-z\frac{dX(z)}{dz}$	R	
$x^*[n]$	$X^*(z^*)$	R	
$Re\{x[n]\}$	$\frac{1}{2} \left[X(z) + X^*(z^*) \right]$	Contains R	
$Im\{x[n]\}$	$\frac{1}{2j} \left[X(z) - X^*(z^*) \right]$	Contains R	
$x^*[-n]$	$X^*\left(\frac{1}{z^*}\right)$	$\frac{1}{R}$	
$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	$R_1 \bigcap R_2$	

Transforms

Sequence	Transform	ROC
$\delta[n]$	1	\mathbb{C}
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	$\mathbb C$ except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$r^n cos(\omega_0 n) u[n]$	$\frac{1 - r cos(\omega_0) z^{-1}}{1 - 2 r cos(\omega_0) z^{-1} + r^2 z^{-2}}$	z > r
$r^n sin(\omega_0 n) u[n]$	$\frac{rsin(\omega_0)z^{-1}}{1-2rcos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r
$\left\{ \begin{array}{ll} a^n & 0 \le n \le N-1 \\ 0 \end{array} \right\}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0

ROC properties

- 1. ROC is either $|z| \ge r$, $|z| \le r$, or $r_1 \le |z| \le r_2$
- 2. Fourier transform exists iff ROC includes unit circle
- 3. ROC contains no poles
- 4. If x[n] is finite, ROC is entire plane
- 5. If x[n] is right sided, ROC extends from outermost pole to ∞
- 6. If x[n] is left sided, ROC extends from innermost pole to 0
- 7. If x[n] is two sided, then ROC is an annulus
- 8. ROC is connected region

For LTI Systems

- 9. Stable \implies Causal if and only if right-sided ROC
- 10. Causal \implies Stable if and only if poles inside unit circle