C2 Algebra

Robin Adams

September 25, 2022

1 Groups

Definition 1 (Group). A *group* is a triple (G, \cdot, e) where G is a set, \cdot is a binary operation on G, and $e \in G$, such that:

, - ,
1. · is associative.
$2. \ \forall x \in G.xe = ex = x$
$3. \ \forall x \in G. \exists y \in G. xy = yx = e$
Lemma 2. The integers \mathbb{Z} form a group under $+$ and 0 .
Proof: Easy. \square
Lemma 3. In any group, inverses are unique.
PROOF: Suppose y and z are inverses to x . Then
y = ey = zxy = ze = z
Definition 4. We write x^{-1} for the inverse of x .

2 Abelian Groups

Definition 5 (Abelian Group). A group (G, +, 0) is *Abelian* iff + is commutative.

When using additive notation (i.e. the symbols + and 0) for a group, we write -y for the inverse of y, and x-y for x+(-y).

Lemma 6. The integers \mathbb{Z} are Abelian.
Proof: Easy. \square
Lemma 7. The rationals \mathbb{Q} form an Abelian group under $+$.
Proof: Easy.
Lemma 8. The non-zero rationals form an Abelian group under multiplication.
Proof: Easy. \square

3 Ring Theory

Definition 9 (Rng). A rng is a quintuple $(R, +, \cdot, 0)$ consisting of a set R, binary operations + and \cdot on R, and element $0 \in R$ such that:

- 1. (R, +, 0) is an Abelian group.
- 2. The operation \cdot is associative, and distributive over +.

Proposition 10. In any rng we have x0 = 0.

PROOF: x0 = x(0+0) = x0 + x0 and also x0 = x0 + 0. The result follows by the cancellation law. \square

Proposition 11. In any rng we have -(xy) = (-x)y = x(-y).

PROOF: The result -(xy)=(-x)y holds because $xy+(-x)y=(x+(-x))y=0y=0\ .$ We prove -(xy)=x(-y) similarly. \square

Corollary 11.1. *In any rng,* (-x)(-y) = xy.

Definition 12 (Ring). A *ring* consists of a rng R and an element $1 \in R$, the *unit element*, such that $\forall x \in R.x1 = 1x = x$.

Proposition 13. In a ring R, if 0 = 1 then R has only one element.

Definition 14 (Commutative Rng). A rng R is commutative iff $\forall x, y \in R.xy = yx$.

Definition 15 (Zero Divisor). A zero divisor in a rng is an element x such that $x \neq 0$ but there exists $y \neq 0$ such that $x \neq 0$.

Definition 16 (Integral Domain). An *integral domain* is a commutative ring with no zero divisors.

Proposition 17. The trivial ring is an integral domain.

Lemma 18. The integers form an integral domain.

Proof: Easy.

Proposition 19. Let R be a commutative ring. Then R is an integral domain if and only if, whenever xy = xz and $x \neq 0$, then y = z.

4 Ordered Integral Domains

Definition 20 (Ordered Integral Domain). An *ordered integral domain* is an integral domain D with a linear order < such that:

• Whenever x < y then x + z < y + z.

• Whenever x < y and 0 < z then xz < yz.

Proposition 21. In an ordered integral domain, if x < y and z < 0 then yz < xz.

Proposition 22. x < y iff -y < -x.

Definition 23 (Positive). In an integral domain, we say an element a is positive iff 0 < a and negative iff a < 0.

Proposition 24. x < y iff y - x is positive.

Proposition 25. x < y iff x - y is negative.

Proposition 26. x is positive iff -x is negative.

Proposition 27. x is negative iff -x is positive.

Proposition 28. The sum of two positive elements is positive.

Proposition 29. The product of two positive elements is positive.

Proposition 30. The product of two negative elements is positive.

Proposition 31. The product of a positive and a negative element is negative.

Proposition 32. If $x \neq 0$ then x^2 is positive.

Proposition 33. x^2 is always non-negative.

Proposition 34. 0 < 1

Proposition 35. -1 < 0

Theorem 36. Let R be an integral domain and $P \subseteq R$ be a set such that:

- $0 \notin P$
- For all $x \in R$ we have $x \in P$ or x = 0 or $-x \in P$
- For all $x, y \in P$ we have $x + y \in P$
- For all $x, y \in P$ we have $xy \in P$

Define < on R by x < y iff $y - x \in P$. Then R is an ordered integral domain under < with P the set of positive elements.

Definition 37 (Absolute Value). In any ordered integral domain, define

$$|x| = \begin{cases} x & \text{if } 0 \le x \\ -x & \text{if } x < 0 \end{cases}$$

Proposition 38. |x| is always non-negative.

Proposition 39. |x| = 0 iff x = 0

Proposition 40. |-x| = |x|

Proposition 41. |x - y| = |y - x|

Proposition 42. |xy| = |x||y|

Proposition 43. $-|x| \le x \le |x|$

Proposition 44. |x| < u iff -u < x < u

Proposition 45. $|x| \le u$ iff $-u \le x \le u$

Proposition 46 (Triangle Inequality). $|x + y| \le |x| + |y|$

Proposition 47. $||x| - |y|| \le |x - y|$

5 Greatest Common Divisor

Theorem 48 (Division Theorem). Let a and b be integers, a > 1. Then there exist unique integers q and r such that b = qa + r and $0 \le r < a$.

PROOF: For existence, prove the case $b \ge 0$ by induction on b. The case b < 0 follows.

For uniqueness, if qa + r = q'a + r' then a|r - r' and -a < r - r' < a, hence r - r' = 0. So r = r' and q = q'. \square

Definition 49 (Divisibility). We say a divides b, $a \mid b$, iff there exists c such that b = ac.

Proposition 50. For every integer a we have $a \mid 0$.

Proposition 51. For every integer a we have $1 \mid a$.

Proposition 52. For every integer a we have $a \mid a$.

Proposition 53. If $a \mid b$ and $b \mid c$ then $a \mid c$.

Proposition 54. If $a \mid c \text{ and } c \neq 0 \text{ the } |a| \leq |c|$.

Proposition 55. If $0 \mid a \text{ then } a = 0$.

Proposition 56. If $a \mid b$ and $b \mid a$ then a = b or a = -b.

Proposition 57. $a \mid ab$

Proposition 58. If $a \mid b$ and $a \mid c$ then $a \mid b + c$.

Proposition 59. If $a \mid b$ and $a \mid c$ then $a \mid b - c$.

Proposition 60. If $a \mid 1$ then a = 1 or a = -1.

Definition 61 (Greatest Common Divisor). The integer d is the *greatest common divisor* of a and b iff d is non-negative, $d \mid a$, $d \mid b$, and whenever $x \mid a$ and $x \mid b$ then $d \mid x$.

Proposition 62. Two integers have at most one gcd.

Theorem 63. Let a and b be integers that are not both 0. Then there exist integers x and y such that xa + yb is the greatest common divisor of a and b.

PROOF: Take the least positive member of $\{xa + yb : x, y \in \mathbb{Z}\}$.

Definition 64 (Relatively Prime). Two integers a and b are relatively prime iff their gcd is 1.

Definition 65 (Prime). An integer p is *prime* iff p > 1 and the only divisors of p are 1 and p.

An integer a is *composite* iff a > 1 and a is not prime.

Proposition 66. Every integer greater than 1 is divisible by a prime.

Theorem 67. There are infinitely many primes.

Proposition 68. *If* p *is prime and* $p \mid ab$ *then* $p \mid a$ *or* $p \mid b$.

Theorem 69 (Fundamental Theorem of Arithmetic). Every integer > 1 is the product of a unique multiset of primes.

6 Integers Modulo n

Definition 70 (Congruence). Two integers a and b are congruent modulo n, $a \equiv b \mod n$, iff $n \mid a - b$.

Proposition 71. Congruence modulo n is an equivalence relation.

Proposition 72. If $a \equiv b \mod n$ and $c \equiv d \mod n$ then $a + c \equiv b + d \mod n$.

Proposition 73. If $a \equiv b \mod n$ then $-a \equiv -b \mod n$.

Proposition 74. If $a \equiv b \mod n$ and $c \equiv d \mod n$ then $ac \equiv bd \mod n$.

Definition 75. The equivalence classes with respect to congruence modulo n are called *residue classes modulo* n.

Definition 76. The set of integers modulo n, \mathbb{Z}_n , is the quotient of \mathbb{Z} by congruence modulo n.

Proposition 77. If n > 0 then $|\mathbb{Z}_n| = n$.

Proposition 78. \mathbb{Z}_n is a commutative ring.

Proposition 79. \mathbb{Z}_n is an integral domain if and only if n is prime.

7 Field Theory

Definition 80 (Field). A *field* is an integral domain such that every non-zero element has a multiplicative inverse.

Definition 81 (Field of Fractions). Let R be an integral domain. The *field of fractions* of R is $(R \times (R - \{0\}))/\sim$, where $(a,b) \sim (c,d)$ iff ad = bc, under the following operations:

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$
$$[(a,b)][(c,d)] = [(ac,bd)]$$
$$0 = [(0,1)]$$
$$1 = [(1,1)]$$

It is routine to check that \sim is an equivalence relation and the operations are well-defined and form a field. The additive inverse of [(a,b)] is [(-a,b)], and the multiplicative inverse of [(a,b)] is [(b,a)].

Definition 82 (Rational Numbers). The field of rational numbers \mathbb{Q} is the field of fractions of the integers.

8 Rational Numbers

Lemma 83. If $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ and b,b',d,d' are all positive then ad < bc iff a'd' < b'c'.

Proof: Easy.

Definition 84. The ordering on the rationals is defined by: if b and d are positive then [(a,b)] < [(c,d)] iff ad < bc.

Theorem 85. The relation < is a linear ordering on \mathbb{Q} .

Proof: Easy.

Definition 86 (Positive). A rational q is positive iff 0 < q.

Definition 87 (Absolute Value). The *absolute value* of a rational q is the rational |q| defined by

$$|q| = \begin{cases} q & \text{if } q \ge 0\\ -q & \text{if } q \le 0 \end{cases}$$

Theorem 88. For any rational s, the function that maps q to q + s is strictly monotone.

Proof: Easy.

Theorem 89. For any positive rational s, the function that maps q to qs is strictly monotone.

Proof: Easy.

Theorem 90. Define $E: \mathbb{Z} \to \mathbb{Q}$ by E(a) = [(a,1)]. Then E is one-to-one and:

- 1. E(a+b) = E(a) + E(b)
- 2. E(ab) = E(a)E(b)
- 3. E(0) = 0
- 4. E(1) = 1
- 5. a < b iff E(a) < E(b)

Proof: Easy.

9 Ordered Fields

Definition 91 (Ordered Field). An ordered field is a sextuple $(D, +, \cdot, \cdot, 0, 1, <)$ such that $(D, +, \cdot, 0, 1)$ is a field, < is a linear ordering on D, and:

$$\forall x, y, z.x < y \Leftrightarrow x + z < y + z$$
$$\forall x, y, z.0 < z \Rightarrow (x < y \Leftrightarrow xz < yz)$$

10 The Real Numbers

Definition 92 (Dedekind Cut). A real number or Dedekind cut is a subset x of \mathbb{Q} such that:

- 1. $\emptyset \neq x \neq \mathbb{Q}$
- 2. x is closed downwards, i.e. for all $q \in x$, if $r \in \mathbb{Q}$ and r < q then $r \in x$.
- 3. x has no largest member.

Let \mathbb{R} be the set of all real numbers.

Definition 93. Given real numbers x and y, we write x < y iff $x \subset y$.

Theorem 94. The relation < is a linear ordering on \mathbb{R} .

PROOF: The only hard part is proving that, for any reals x and y, either $x \subseteq y$ or $y \subseteq x$.

Suppose $x \nsubseteq y$. Pick $q \in x$ such that $q \notin y$. Let $r \in y$. Then $q \not< r$ (since y is closed downwards) therefore r < q. Hence $r \in x$ (because x is closed downwards). \square

Theorem 95. Any nonempty set A of reals bounded above has a least upper bound.

PROOF: We prove that $\bigcup A$ is a Dedekind cut. It is then the least upper bound of A.

The set $\bigcup A$ is nonempty because A is nonempty. Pick an upper bound r for A, and a rational $q \notin r$; then $q \notin \bigcup A$, so $\bigcup A \neq \mathbb{Q}$.

 $\bigcup A$ is closed downwards because every member of A is closed downwards.

 $\bigcup_{\square} A$ has no largest member because every member of A has no largest member.

Definition 96 (Addition). *Addition* + on \mathbb{R} is defined by:

$$x + y = \{q + r \mid q \in x, r \in y\}$$
.

We prove this is a Dedekind cut.

PROOF:

 $\langle 1 \rangle 1. \ x + y \neq \emptyset$

PROOF: Pick $q \in x$ and $r \in y$. Then $q + r \in x + y$.

- $\langle 1 \rangle 2. \ x + y \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $q \in \mathbb{Q} x$ and $r \in \mathbb{Q} y$
 - $\langle 2 \rangle 2$. For all $q' \in x$ we have q' < q'
 - $\langle 2 \rangle 3$. For all $r' \in y$ we have r' < r
 - $\langle 2 \rangle 4$. For all $q' \in x$ and $r' \in y$ we have q' + r' < q + r
 - $\langle 2 \rangle 5. \ q + r \notin x + y$
- $\langle 1 \rangle 3$. x + y is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in x$ and $r \in y$
 - $\langle 2 \rangle 2$. Let: s < q + r
 - $\langle 2 \rangle 3. \ s q < r$
 - $\langle 2 \rangle 4. \ s q \in y$
- $\langle 2 \rangle 5.$ $s = q + (s q) \in x + y$
- $\langle 1 \rangle 4$. x + y has no largest member.
 - $\langle 2 \rangle 1$. Let: $q \in x$ and $r \in y$
 - $\langle 2 \rangle 2$. Pick $q' \in x$ with q < q'
 - $\langle 2 \rangle 3$. Pick $r' \in y$ with r < r'
 - $\langle 2 \rangle 4$. $q' + r' \in x + y$ and q + r < q' + r'

Theorem 97. Addition is associative and commutative.

Proof: Easy.

Definition 98 (Zero). The real number zero is $0 = \{q \in \mathbb{Q} : q < 0\}$. It is easy to check this is a Dedekind cut.

Theorem 99. For every real x we have x + 0 = x.

Proof:

 $\langle 1 \rangle 1$. $x + 0 \subseteq x$

PROOF: Let $q \in x$ and $r \in 0$. Then q + r < q so $q + r \in x$.

 $\langle 1 \rangle 2$. $x \subseteq x + 0$

PROOF: Let $q \in x$. Pick $r \in x$ such that q < r. Then $q - r \in 0$ and $q = r + (q - r) \in x + 0$.

Definition 100. For any real x, define

$$-x = \{ r \in \mathbb{Q} : \exists s > r . - s \notin x \} .$$

We prove this is a Dedekind cut.

Proof:

 $\langle 1 \rangle 1. -x \neq \emptyset$

PROOF: Pick s such that $s \notin x$. Then $-s - 1 \in -x$.

- $\langle 1 \rangle 2. -x \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $r \in x$

Prove: $-r \notin -x$

- $\langle 2 \rangle 2$. Assume: for a contradiction $-r \in -x$
- $\langle 2 \rangle 3$. Pick s > -r such that $-s \notin x$
- $\langle 2 \rangle 4$. -s < r
- $\langle 2 \rangle 5. -s \in x$
- $\langle 2 \rangle 6$. Q.E.D.

Proof: This is a contradiction.

 $\langle 1 \rangle 3$. -x is closed downwards.

Proof: Easy.

- $\langle 1 \rangle 4$. -x has no largest element.
 - $\langle 2 \rangle 1$. Let: $r \in -x$
 - $\langle 2 \rangle 2$. Pick s > r such that $-s \notin x$
 - $\langle 2 \rangle 3$. Pick q such that r < q < s
- $\langle 2 \rangle 4$. r < q and $q \in -x$

Lemma 101. For any positive integer a and integer b, there exists a natural number k such that b < ak.

PROOF: Take k = |b| + 1.

Lemma 102. For any positive rational p and rational r, there exists a natural number k such that r < pk.

PROOF: Let p=a/b and r=c/d where a,b and d are positive. By Lemma 101, pick k such that bc < adk. Then r < pk. \square

Lemma 103. Let p be a positive real number. For any real x, there exists $q \in x$ such that $p + q \notin x$.

Proof:

- $\langle 1 \rangle 1$. PICK rationals $r_1 \in x$ and $r_2 \notin x$
- $\langle 1 \rangle 2$. There exists a natural number k such that $kp > r_2 r_1$ PROOF: By Lemma 102.

```
\langle 1 \rangle 3. Let: k be least such that r_1 + kp \notin x
```

 $\langle 1 \rangle 4. \ k \neq 0$

PROOF: Since $r_1 \in x$.

- $\langle 1 \rangle 5$. Let: $q = r_1 + (k-1)p$
- $\langle 1 \rangle 6. \ q \in x$

PROOF: By minimality of k.

 $\langle 1 \rangle 7. \ q + p \notin x$

Theorem 104. For any real x we have x + (-x) = 0.

Proof:

 $\langle 1 \rangle 1. \ x + (-x) \subseteq 0$

- $\langle 2 \rangle 1$. Let: $q \in x$ and $r \in -x$
- $\langle 2 \rangle 2$. Pick s > r such that $-s \notin x$
- $\langle 2 \rangle 3. \ q < -s$
- $\langle 2 \rangle 4. \ q < -r$
- $\langle 2 \rangle 5.$ q+r < 0
- $\langle 1 \rangle 2$. $0 \subseteq x + (-x)$
- - $\langle 2 \rangle 1$. Let: p < 0
 - $\langle 2 \rangle 2$. Pick $q \in x$ such that $q p/2 \notin x$

PROOF: By Lemma 103.

- $\langle 2 \rangle 3$. Let: s = p/2 q
- $\langle 2 \rangle 4. -s \notin x$
- $\langle 2 \rangle 5. \ p-q \in -x$

PROOF: Since p - q < s and $-s \notin x$.

 $\langle 2 \rangle 6. \ p = q + (p - q) \in x + (-x)$

Theorem 105. The reals form an Abelian group under addition.

Proof: Easy.

Theorem 106. For any real z, the function that maps x to x + z is strictly monotone.

Proof:

 $\langle 1 \rangle 1$. Assume: x < y

 $\langle 1 \rangle 2$. $x + z \subseteq y + z$

PROOF: From the definition.

 $\langle 1 \rangle 3. \ x + z \neq y + z$

Proof: By cancellation.

Definition 107 (Absolute Value). The absolute value of a real number x is

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x \le 0 \end{cases}$$

Definition 108 (Multiplication). Given real numbers x, y, define the real xy by:

• If $x \ge 0$ and $y \ge 0$ then

$$xy = 0 \cup \{rs : 0 \le r \in x, 0 \le s \in y\}$$

- If $x \ge 0$ and y < 0 then xy = -(x(-y))
- If x < 0 and $y \ge 0$ then xy = -((-x)y)
- If x < 0 and y < 0 then xy = (-x)(-y)

We prove this is a Dedekind cut.

Proof:

- $\langle 1 \rangle 1$. Let: $x \geq 0$ and $y \geq 0$
- $\langle 1 \rangle 2. \ xy \neq \emptyset$

PROOF: Since $-1 \in xy$

- $\langle 1 \rangle 3. \ xy \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $r \in \mathbb{Q} x$ and $s \in \mathbb{Q} y$
 - $\langle 2 \rangle 2$. For all r' with $0 \le r' \in x$ and s' with $0 \le s' \in y$ we have r' < r and s' < s so r's' < rs
 - $\langle 2 \rangle 3$. $rs \notin xy$
- $\langle 1 \rangle 4$. xy is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in xy$ and r < q
 - $\langle 2 \rangle 2$. Assume: $0 \le r$
 - $\langle 2 \rangle 3$. PICK rationals a, b with $0 \le a \in x$ and $0 \le b \in y$ such that q = ab
 - $\langle 2 \rangle 4$. $a \neq 0$ or $b \neq 0$

PROOF: Since $q \neq 0$ because $0 \leq r < q$.

- $\langle 2 \rangle$ 5. Assume: w.l.o.g. $a \neq 0$
- $\langle 2 \rangle 6$. r/a < b
- $\langle 2 \rangle 7. \ r/a \in y$
- $\langle 2 \rangle 8. \ r = a(r/a) \in xy$
- $\langle 1 \rangle 5$. xy has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in xy$

PROVE: There exists $r \in xy$ such that q < r

- $\langle 2 \rangle 2$. Assume: w.l.o.g. $0 \le q$
- $\langle 2 \rangle 3$. PICK rationals a and b with $0 \le a \in x$ and $0 \le b \in y$ such that q = ab
- $\langle 2 \rangle 4$. PICK rationals a' and b' with $a < a' \in x$ and $b < b' \in y$
- $\langle 2 \rangle 5. \ q < a'b' \in xy$

Theorem 109. Multiplication is commutative and associative.

Proof: Easy. \square

Theorem 110. Multiplication is distributive over addition.

Proof: See E. Mendelson. Number Systems and the Foundations of Analysis. Appendix F. \square

Definition 111. The real number *one* is $1 = \{q \in \mathbb{Q} : q < 1\}$. It is easy to check this is a Dedekind cut.

Theorem 112. $0 \neq 1$

PROOF: $0 \in 1$ and $0 \notin 0$. \square

Theorem 113. For any real x, x1 = x.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \mathbb{R}$ Prove: x1 = x $\langle 1 \rangle 2$. Case: $0 \le x$ $\langle 2 \rangle 1. \ x1 \subseteq x$ $\langle 3 \rangle 1$. Let: $q \in x1$
 - Prove: $q \in x$

 $\langle 3 \rangle 2$. Case: q < 0

PROOF: Then $q \in x$ because $0 \le x$.

 $\langle 3 \rangle 3$. Case: There exist nonnegative rationals $r \in x$, $s \in 1$ such that q = rsPROOF: Then $q < r \in x$ so $q \in x$.

- $\langle 2 \rangle 2$. $x \subseteq x1$
 - $\langle 3 \rangle 1$. Let: $q \in x$
 - $\langle 3 \rangle 2$. Assume: w.l.o.g. $0 \leq q$
 - $\langle 3 \rangle 3$. Pick $r \in x$ with q < r
 - $\langle 3 \rangle 4$. $0 \le q/r < 1$
 - $\langle 3 \rangle 5.$ $q = r(q/r) \in x1$
- $\langle 1 \rangle 3$. Case: x < 0

PROOF: Then x1 = -((-x)1) = -(-x) = x.

Theorem 114. For any nonzero real x, there is a nonzero real y such that xy = 1.

PROOF: See E. Mendelson. Number Systems and the Foundations of Analysis. Appendix F. \square

Theorem 115. For any positive real z, the function that maps x to xz is strictly monotone.

PROOF: See E. Mendelson. Number Systems and the Foundations of Analysis. Appendix F. \square

11 Complete Ordered Fields

Definition 116 (Complete Ordered Field). An ordered field is *complete* iff it has the least upper bound property.

```
Theorem 117. The reals form a complete ordered field.
```

PROOF: From the results above. \square

Theorem 118. Any two complete ordered fields are isomorphic.

PROOF: See A. Gleason. Fundamentals of Abstract Analysis p. 110.

Theorem 119. Define $E: \mathbb{Q} \to \mathbb{R}$ by $E(q) = \{p \in \mathbb{Q} : p < q\}$. Then E is one-to-one and

- 1. E(q+r) = E(q) + E(r)
- 2. E(qr) = E(q)E(r)
- 3. E(0) = 0
- 4. E(1) = 1
- 5. q < r iff E(q) < E(r)

Proof:

 $\langle 1 \rangle 1$. For all $q \in \mathbb{Q}$, E(q) is a Dedekind cut.

Proof: Easy.

- $\langle 1 \rangle 2. \ \forall q, r \in \mathbb{Q}.E(q+r) = E(q) + E(r)$
 - $\langle 2 \rangle 1$. Let: $q, r \in \mathbb{Q}$
 - $\langle 2 \rangle 2$. $E(q+r) \subseteq E(q) + E(r)$
 - $\langle 3 \rangle 1$. Let: $t \in E(q+r)$
 - $\langle 3 \rangle 2$. Let: $\epsilon = (r+s-t)/2$
 - $\langle 3 \rangle 3. \ \epsilon > 0$
 - $\langle 3 \rangle 4$. Let: $p = r \epsilon$
 - $\langle 3 \rangle 5$. Let: $q = s \epsilon$
 - $\langle 3 \rangle 6. \ p < r$
 - $\langle 3 \rangle 7. \ q < s$
 - $\langle 3 \rangle 8. \ p+q=t$
 - $\langle 3 \rangle 9. \ t \in E(r) + E(s)$
 - $\langle 2 \rangle 3$. $E(q) + E(r) \subseteq E(q+r)$

PROOF: If p < q and s < r then p + s < q + r.

 $\langle 1 \rangle 3. \ \forall q, r \in \mathbb{Q}.E(qr) = E(q)E(r)$

PROOF: TODO

- $\langle 1 \rangle 4$. E(0) = 0
 - PROOF: By definition.
- $\langle 1 \rangle 5. \ E(1) = 1$

PROOF: By definition.

 $\langle 1 \rangle 6$. E is strictly monotone.

PROOF: If q < r then $E(q) \subseteq E(r)$ by transitivity of < on \mathbb{Q} , and $E(q) \neq E(r)$ because $q \in E(r)$ and $q \notin E(q)$.

Theorem 120 (Cantor 1873). The set ω is not equinumerous with \mathbb{R} .

Proof:

- $\langle 1 \rangle 1$. Let: $f : \omega \to \mathbb{R}$
 - Prove: f is not surjective.
- $\langle 1 \rangle 2$. Let: z be the real number between 0 and 1 whose n+1st decimal place is 7 unless the n+1st decimal place of f(n) is 7, in which case it is
- $\langle 1 \rangle 3. \ \forall n \in \omega. f(n) \neq z$