URI Online Judge | 1466

Percurso em Árvore por Nível

Por Neilor Tonin, URI ■ Brasil

Timelimit: 2

Em uma árvore binária, o percurso por nível é um percurso denominado breadth first search (BFS) ou em português, busca em largura, a qual seria não-recursiva por natureza. Este percurso utiliza uma fila ao invés de pilha para armazenar os próximos 2 nodos que devem ser pesquisados (filho à esquerda e à direita). Esta é a razão pela qual você deve percorrer os nodos na ordem FIFO ao invés da ordem LIFO, obtendo desta forma a recursão.

Portanto nossa tarefa aqui, após algumas operações de inserção sobre uma árvore binária de busca (pesquisa), é imprimir o percurso por nível sobre estes nodos. Por exemplo, uma entrada com a sequência de valores inteiros: 8 3 10 14 6 4 13 7 1 resultará na seguinte árvore:

Com a saída de uma listagem por nível: 8 3 10 1 6 14 4 7 13.

Entrada

A entrada contém vários casos de teste. A primeira linha da entrada contém um inteiro \mathbf{C} ($\mathbf{C} \le 1000$), indicando o número de casos de teste que virão a seguir. Cada caso de teste é composto por 2 linhas. A primeira linha contém um inteiro \mathbf{N} ($1 \le \mathbf{N} \le 500$) que indica a quantidade de números que deve compor cada árvore e a segunda linha contém \mathbf{N} inteiros distintos e não negativos, separados por um espaço em branco.

Saída

Para cada caso de teste de entrada você deverá imprimir a mensagem "Case \mathbf{n} :", onde \mathbf{n} indica o número do caso de teste seguido por uma linha contendo a listagem por nível dos nodos da árvore, conforme o exemplo abaixo.

Obs: Não deve haver espaço em branco após o último item de cada linha e há uma linha em branco após cada caso de teste, inclusive após o último. A árvore resultante não terá nodos repetidos e também não terá mais do que 500 níveis.

Sample Input	Sample Output
2	Case 1:
3	5 2 7
5 2 7	
9	Case 2:
8 3 10 14 6 4 13 7 1	8 3 10 1 6 14 4 7 13