B.E. Fourth Semester (Computer Science Engineering) (C.B.S.)

Theoretical Foundations of Computer Science

P. Pages: 3
Time: Three Hours

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Due credit will be given to neatness and adequate dimensions.
 - 9. Assume suitable data whenever necessary.
 - 10. Illustrate your answers whenever necessary with the help of neat sketches.

8

5

6

1. a) With the help of Mathematical Induction, prove that

1)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- 2) 1.1!+2.2!+3.3!+...+n.n!=(n+1)!-1
- b) Explain Pigeonhole principle with example. Also explain Generalised pigeonhole principle.

OR

- **2.** a) Explain in detail Chomsky Hierarchy of languages.
 - b) What is Countability & Diagonalization.
 - c) Let $R = \{(1,2), (2,3), (3,1)\}$ & $A = \{1, 2, 3\}$. Find Reflexive, Symmetric & transitive closure of R.
- 3. a) Design DFA over $\Sigma = \{0, 1\}$ to accept strings containing even number of 0's and 1's.
 - b) Consider \in -NFA.

Q^{Z}	€	a	b	с
$\rightarrow p$	-	p	q	r
q	p	q	r	ф
*r	q	r	ф	p

- i) Compute \in -closure of each state
- ii) Compute all the strings of length 3 or less accepted by the automata
- iii) Convert to DFA.

OR

4. a) Construct Mealy Machine to compute 2's complement of binary number. Also convert this machine to Moore Machine.

6

8

13

4

5

10

b) Construct Minimum state automata equivalent to given automata.

State	0	1	
$\rightarrow q_0$	q_1	q_5	
q_1	q_6	q_2	
$\overline{q_2}$	q_0	q_2	
q_3	q_2	q_6	
q_4	q_7	q ₅	
q_5	q_2	q_6	
q_6	q_6	q_4	
q ₇	q_6	q_2	

5. Construct F.A. to accept strings over $\Sigma = \{a, b\}$ containing at least one aba and not containing bbb.

OR

6. a) Check whether given grammar is ambiguous or not.

 $S \rightarrow a/Sa/bSS/SbS$

b) Reduce the grammar & find equivalent grammar.

 $S \rightarrow aA/aBB$

 $A \rightarrow aaA / \in$

 $B \rightarrow bB/bbC$

 $C \rightarrow B$

c) Convert the following CFG into CNF.

 $S \rightarrow bA/aB$

 $A \rightarrow bAA/aS/a$

 $B \rightarrow aBB/bS/b$

7. a) Construct CFG from following PDA.

 $\delta(q_0, 1, Z_0) \rightarrow (q_0, XZ_0)$

 $\delta(q_0, 1, X) \rightarrow (q_0, XX)$

 $\delta(q_0, 0, X) \rightarrow (q_1, X)$

 $\delta(q_0, \in, Z_0) \rightarrow (q_0, \in)$

 $\delta(q_1, 1, X) \!\rightarrow\! (q_1, \in)$

 $\delta(q_1, 0, Z_0) \rightarrow (q_0, Z_0)$

b) Explain the model of PDA.

OR

8. Convert the CFG into PDA. 6 a) $E \rightarrow aAB/d$ $A \rightarrow BA / a$ $B \rightarrow Ead/C$ b) Design PDA for 8 $h = \left\{ WW^R / W \in \left\{ a, b \right\}^* \right\}$ 9. Explain in detail, types of Turing Machines. 6 a) Design Turing Machine for 7 b) $h = \left\{ a^n b^n c^n / n \ge 1 \right\}$ OR Design a Turing Machine for multiplication of unary numbers. 9 **10.** a) Give the model of LBA and define it formally. b) 11. What is Post Correspondence Problem? Explain with example. a) 6 Also explain modified PCP. Define Ackermann's function. 7 b) Compute A (1, 1), A (2, 1), A (2, 2) OR **12.** Explain properties of Recursively Enumerable Languages. 5 a) Write a note on Recursive function. 3 b) Explain Halting Problem. 3 c)

2

Define Decidability & Undecidability.

d)