Musterlösung: Ex10, Kategorientheorie

Funktionale Programmierung WS 2013/14

Luminous Fennell

Aufgabe 1

Eine Komposition zweier Pfeile $f:m\to n$ und $g:n\to p$ ist die Matrixmultiplikation _* _:

$$g \circ f := g * f$$

Die Identitätspfeile id_n sind die Einheitsmatrizen I_n . Die Assoziativität von $_\circ_$ und die Identitäten von id_n folgen aus der Assoziativität der Matrixmultiplikation und der Identitätseigenschaft der Einheitsmatrizen.

Aufgabe 2

Es ist zunächst zu prüfen ob die Komposition von $g:(B',\pi_{B'})\to (B'',\pi_{B''})$ und $f:(B',\pi_{B'})\to (B'',\pi_{B''})$ in $\mathcal{C}_{\downarrow A}$

$$g_{\downarrow A} \circ_{\downarrow A} f_{\downarrow A} = g \circ f$$

auch tatsächlich ein $\mathcal{C}_{\downarrow A}$ Pfeil ist (und nicht einfach nur ein \mathcal{C} Pfeil).

Dazu ist zu zeigen, dass im folgenden Diagramm $D_{g \circ f}$, das äußere Dreieck kommutiert, wenn die beiden inneren Dreiecke kommutieren.

Zu zeigen: $\pi_{B''} \circ g \circ f = \pi_B$. Voraussetzungen:

$$\pi_{B'} \circ f = \pi_B \tag{1}$$

$$\pi_{B''} \circ g = \pi_{B'} \tag{2}$$

$$\begin{array}{rll} \pi_{B^{\prime\prime}}\circ g\circ f &=\pi_{B^\prime}\circ f & \mathrm{mit}\ (2) \\ &=\pi_B & \mathrm{mit}\ (1) \end{array}$$

Eine mögliche Interpretation eines Objekts (B, π_B) von $(\mathbf{Set} \downarrow \{0, 1\})$ ist das eines (einstelligen) Prädikates $P_{(B,\pi_B)}$ auf der Menge B: Falls für ein $b \in B$ gilt dass $\pi_B(b) = 1$ interpretiert man $P_{(B,\pi_B)}(b)$ als "wahr", ansonsten gilt $\neg P_{(B,\pi_B)}(b)$. Ein Pfeil $f: P_{(B,\pi_B)} \to P_{(B',\pi_{B'})}$ gibt dann eine Reduktion an, die es erlaubt, eine atomare Aussage $P_{(B,\pi_B)}(b)$ alternativ in B' als $P_{(B',\pi_{B'})}(f(b))$ zu betrachten, zu beweisen, oder zu wiederlegen.

Aufgabe 3

Wenn f, g monisch dann $f \circ g$ monisch Zu zeigen: $(f \circ g) \circ h = (f \circ g) \circ h' \Rightarrow h = h'$.

$$(f \circ g) \circ h = (f \circ g) \circ h'$$

$$\Rightarrow f \circ (g \circ h) = f \circ (g \circ h') \quad \text{Assoziativit\"at}$$

$$\Rightarrow (g \circ h) = (g \circ h') \quad f \text{ ist monisch}$$

$$\Rightarrow h = h' \quad g \text{ ist monisch}$$

Wenn $f \circ g$ monisch dann g monisch Zu zeigen: $g \circ h = g \circ h' \Rightarrow h = h'$.

$$\begin{array}{ll} g \circ h = g \circ h' \\ \Rightarrow & f \circ (g \circ h) = f \circ (g \circ h') \quad \text{erweitern} \\ \Rightarrow & (f \circ g) \circ h = (f \circ g) \circ h' \quad \text{Assoziativit\"at} \\ \Rightarrow & h = h' \qquad \qquad f \circ g \text{ ist monisch} \end{array}$$

Aufgabe 4

Lösung 1: In der Kategorie 2

$$id_A \subset A \xrightarrow{f} B \supset id_B$$

ist der Pfeil f monisch und episch: die einzigen Möglichkeiten zur Komposition sind $f \circ \mathrm{id}_A$ und $\mathrm{id}_B \circ f$. Es sind also alle Pfeile, die links an f komponiert werden können, identisch; f ist trivialerweise episch. Genauso sind alle Pfeile die rechts an f komponiert werden können identisch; f ist auch monisch.

Da es in ${\bf 2}$ keinen Pfeil von B nach A gibt, kann es auch keinen inversen Pfeil zu f geben.

Lösung 2: Es wurde bereits in der Vorlesung gezeigt, dass in **Mon** der Pfeil $f:(\mathbb{N},+) \to (\mathbb{Z},+)$) mit f(x)=x existiert, der monisch und episch ist. Ein $f^{-1}:(\mathbb{Z},+) \to (\mathbb{N},+)$) für dass gilt $f(f^{-1}(x))=x$ existiert aber offensichtlich nicht.

Aufgabe 5:

Die initialen Objekt von Set × **Set** sind die Paare der initialen Objekte von **Set**, also nur (\emptyset, \emptyset) : Zu jedem Objekt (A, B) existiert der Pfeil (f, g) mit den eindeutigen leeren Funktionen $f: \emptyset \to A$ und $g: \emptyset \to B$.

Es gibt auch keine weiteren initialen Objekte: Seien (A, B) und (C, D) Objekte in **Set** × **Set** und, o.B.d.A. $A \neq \emptyset$ und somit *nicht* initiales Objekt von **Set**. Es existieren also entweder keine Pfeile von A nach C oder mindestens zwei Pfeile f, g von A nach C. Für jeden Pfeil $h: B \to D$ gibt es also entweder keinen Pfeil von (A, B) nach (C, D), oder mindestens zwei: (f, h) und (g, h). Das disqualifiziert (A, B) als initiales Objekt.

Die terminalen Objekte von Set sind die Paare der einelementigen Mengen, da diese die terminalen Objekte von **Set** bilden. Die Begründung verläuft analog zu der für die initialen Objekte.

Das einzige initiale Objekt von Set $^{\rightarrow}$ ist die leere Identitätsfunktion $\mathrm{id}_{\emptyset}: \emptyset \rightarrow \emptyset$: zu jedem Set $^{\rightarrow}$ Objekt $f: A \rightarrow B$ gibt es genau den Pfeil $(a_{\emptyset}, b_{\emptyset})$ mit den beiden leeren Funktionen $a: \emptyset \rightarrow A$ und $b: \emptyset \rightarrow B$. Da Verkettungen mit leeren Funktionen wieder leere Funktionen ergeben gilt $f \circ a_{\emptyset} = b_{\emptyset} \circ \mathrm{id}_{\emptyset}$.

Es gibt auch keine weiteren initialen Objekte: Angenommen $f:A\to B$ wäre ein initiales Objekt und $f\neq \mathrm{id}_\emptyset$. Es muss also genau einen Pfeil von f zu $\mathrm{id}_\emptyset:\emptyset\to\emptyset$ geben und somit die Funktionen $a:A\to\emptyset$ und $b:B\to\emptyset$. Demzufolge muss gelten $A=B=\emptyset$ und somit $f=\mathrm{id}_\emptyset$ was ein Widerspruch zur Annahme $f\neq\mathrm{id}_\emptyset$ ist.

Die terminalen Objekte von Set \to sind die konstanten Funktionen mit ein-elementigem Definitionsbereich const_{1,c} : $\{x\} \to B$ mit const_{1,c}(x) = c. Von jedem **Set** \to Objekt $f: A \to B$ gibt es den Pfeil $(a_x, b_c): f \to \text{const}_{1,c}$ mit den konstanten Funktionen $a_x(z) = x$ und $b_c(z) = c$. Es gilt $(\text{const}_{1,c} \circ a_x)(z) = c = (b_c \circ f)(z)$.

Dies sind auch die einzigen terminalen Objekte: Sei $f: A \to B$ ein terminales Objekt.

- Wenn $A = \emptyset$ dann dann gibt es keinen Pfeil von $\operatorname{const}_{1,c} : \{x\} \to C$ zu f, da in **Set** kein Pfeil $\{x\} \to \emptyset$ existiert: f kann somit nicht terminal sein.
- Ansonsten existieren für jedes $\mathbf{Set}^{\rightarrow}$ Objekt $x_a \in A$ die konstanten Funktionen $a(z) = x_a$ und $b(z) = f(x_a)$. Für jedes Objekt $g: C \rightarrow D, C \neq \emptyset$ gilt $(f \circ a)(z) = f(x_a) = b(g(z)) = (b \circ g)(z)$. Es gibt also mindestens so viele Pfeile zwischen f und g wie Elemente in A. Damit f terminal ist muss A also eine ein-elementige Menge sein und damit eine konstante Funktion.

Aufgabe 6:

• Die Kategorie **0** hat offensichtlich weder initiale, noch terminale Objekte.

- Die Kategorie der partiellen Ordnung (\mathbb{N}, \leq) hat keine terminalen Objekte: es existiert zu jeder natürlichen Zahl eine größere. Genauso hat (\mathbb{N}, \geq) keine initialen Objekte.
- Jede Quasiordnung (transitive und reflexive, aber nicht unbedingt antisymmetrische Relation) kann (analog zu partiellen Ordnungen) als Kategorie aufgefasst werden.
 Die Äquivalenzrelation (N, =) hat weder initiale, noch terminale Objekte. Genauso die Kongruenz (N, _ = _(mod k)).

Aufgabe 7:

Es folgt aus der Definition von $\langle f, g \rangle$, dass $f = \pi \circ \langle f, g \rangle$ und somit $f \circ h = \pi_1 \circ \langle f, g \rangle \circ h$. Ebenso gilt $f \circ g = \pi_2 \circ \langle f, g \rangle \circ h$. Folglich kommutiert das blaue Dreieck zusammen mit dem Pfeil $\langle f, g \rangle \circ h$. Der Pfeil $\langle f \circ h, g \circ h \rangle$ ist definiert als der einzige Pfeil, mit dem das blaue Dreieck kommutiert. Somit muss gelten $\langle f, g \rangle \circ h = \langle f \circ h, g \circ h \rangle$.

Aufgabe 8:

Das Produkt $A \times B$ ist genau die $gr\ddot{o}\beta te$ untere Schranke ($_{\square}\Box$) von A und B (falls diese existiert), also $A \sqcap B = x$, so dass $x \leq A$ und $x \leq B$ und $\forall y.y \leq A \land y \leq B \Rightarrow y \leq x$. Die Projektionen π_i , $i \in \{1,2\}$ sind dann genau die Relationspaare $A \sqcap B \leq A$ und $A \sqcap B \leq B$ aus der Definition von $_{\square}\Box$. Der Pfeil $\langle f,g \rangle$ ist genau das Relationspaar $Y \leq A \sqcap B$ aus der Definition.

Aufgabe 9:

Das Koprodukt A+B ist die disjunkte Vereinigung der Mengen, $\{(1,a) \mid a \in A\} \cup \{(2,b) \mid b \in B\}$ zusammen mit einer Ordnung $_- \leq_{A+B}_- := \{((i,x),(j,y)) \mid i < j \lor (i=j \land x \leq y)\}$ (auch andere Definitionen von \leq_{A+B} sind möglich). Weiterhin sind $\iota_1(a) := (1,a)$ und $\iota_2(b) := (2,b)$ die monotonen Injektionsfunktionen. Der Pfeil [f,g] wendet f auf die 1-indizierten Elemente von A+B an und g auf die 2-indizierten:

$$[f,g](x) = \begin{cases} f(a) & \text{falls } x = (1,a) \\ g(b) & \text{falls } x = (2,b) \end{cases}$$

Aufgabe 10:

Die Aufgabenstellung war missverständlich. Es ist nicht möglich für alle beliebigen Pfeile f und g einen Koequalizer zu finden. Die Funktionen und Mengen müssen entsprechend gewählt werden.

Ein Pfeil $e: B \to X$ ist ein Koequalizer für zwei Pfeile $f: A \to B$ und $g: A \to B$ wenn es für jedes Objekt X' und Pfeil $e': B \to X'$ es einen eindeutigen Pfeil $k: X \to X'$ gibt, so dass folgendes Diagramm kommutiert:

Sei B eine Menge. Seien weiterhin $A \subseteq B \times B$ eine Äquivalenzrelation auf B und $f(b_1, b_2) = b_1$ und $g(b_1, b_2) = b_2$.

Die Äquivalenzklasse eines Punktes $b \in B$ ist:

$$[b] = \{x \mid x \sim_{f,g} b\}$$

Jede Äquivalenzklasse hat einen willkürlich gewählten Repräsentanten $rep(x) \in [b]$. Der Pfeil $e: B \to X$, mit

$$X = \{ [b] \mid b \in B \}$$

und

$$e(b) = [b]$$

ist nun ein Koequalizer für f und g, der die Punkte in B auf ihre Äquivalenzklassen abbildet. (Seine Kodomäne X ist dabei die Quotientenmenge B/A)

- Für $(b_1, b_2) \in A$ liegen f(a) und g(a) (per Definition) in derselben Äquivalenzklasse [f(a)] = [g(a)]. Somit gilt auch $(e \circ f)(a) = [f(a)] = [g(a)] = (e \circ g)(a)$
- Für jeden Pfeil $e':A\to X'$, für den das Koequalizer-Diagram kommutiert, existiert auch der Pfeil $k:X\to X'$ mit

$$k(x) := e'(\operatorname{rep}(x))$$

• Der oben definierte Pfeil k ist eindeutig: Angenommen es existierte $k' \neq k$. Dann existiert $x \in X$ so dass $k'(x) \neq e'(\operatorname{rep}(x))$. Da das Diagramm kommutiert, muss $k'(e(\operatorname{rep}(x))) = e'(\operatorname{rep}(x))$ gelten und somit $k'([\operatorname{rep}(x)]) = e'(\operatorname{rep}(x))$. Für Äquivalenzklassen gilt aber $[\operatorname{rep}(x)] = x$, was zum Widerspruch $k'(x) = e'(\operatorname{rep}(x))$ führt.

Aufgabe 11:

Das folgende kommutierende Diagramm definiert den Equalizer e.

Es gilt also $f\circ e=g\circ e$. Da e episch ist, gilt somit f=g. Es existiert demnach für jedes X' und $e':X'\to A$ ein eindeutiges $k:X'\to X$ so dass

kommutiert. Insbesondere gilt dies für X' = A und $e' = \mathrm{id}_A$ und das folgende Diagramm kommutiert (hier mit explizitem Identitätspfeil von X):

$$\operatorname{id}_{X} \subset X \xrightarrow{k} A \xrightarrow{f} B$$

Daher gilt $e \circ k = \mathrm{id}_X$ und $k \circ e = \mathrm{id}_A$ und k ist der inverse Pfeil zum Isomorphismus e'.