Advanced Algorithms in Bioinformatics (P4) Sequence and Structure Analysis

Freie Universität Berlin, Institut für Informatik Knut Reinert, Sandro Andreotti Sommersemester 2012

> 4. Exercise sheet, 8. May 2012 Discussion: 23. May 2012

Exercise 1.

The following lemma is central to the PEX algorithm:

Lemma 1. Let Occ match P with k errors, $P = p^1, \ldots, p^j$ be a concatenation of subpatterns, and a_1, \ldots, a_j be nonnegative integers such that $A = \sum_{i=1}^{j} a_i$. Then, for some $i \in 1, \ldots, j$, Occ includes a substring that matches p^i with $\lfloor a_i k/A \rfloor$ errors.

- 1. Following this Lemma show by formal substitution:
 - (a) Let Occ match P with k errors and $P=p^1,\ldots,p^{k+1}$ be a concatenation of subpatterns. Then at least one of the p^i matches Occ exactly, for some $i\in 1,\ldots,k+1$.
 - (b) Let Occ match P with 2k+1 errors and $P=p^1,\ldots,p^{k+1}$ be a concatenation of subpatterns. Then at least one of the p^i matches Occ with at most one error, for some $i\in 1,\ldots,k+1$.
- 2. Prove Lemma 1.

Exercise 2.

Find the pattern P= filter in the text T= pex_hierarchical_verification_filter with at most k=2 errors. Compare the verification costs of non-hierarchical filtering directly following Lemma 1 (split pattern into k+1 subpatterns and search for perfect matches) and the PEX algorithm.

Exercise 3.

The following (q-gram) Lemma is central to the (ungapped) Quasar algorithm. Prove it.

Lemma 2. Let P and S be strings of length w with at most k differences. Then P and S share at least w + 1 - (k + 1)q common q-grams.

Exercise 4.

Find a gapped shape of size at least fore and value of w such that the generalization of the q-gram Lemma for gapped shapes does not yield a tight threshold (>= 0)