

.

Coaching Report

Participant	Student Ljubljanski	Student detail	User_52
Group	ntc.at ats.at	Status	Ended normally
Assessment n	name Physical Chemistry 3 - EN V4	Final Score	32
Time Used	00:09:41	Time limit (min)	10
Date taken	15-09-2016 18:25:52		

Questions - presented: 30, answered: 30

The small table below lists the pressure and temperature of some substances kept in commercial cylinders. Using this information and the second table, indicate the state of oxygen in the cylinder.

Question type Multiple Choice

Topic State of Matter

Difficulty 1/3

Score 3.30

Score max 1

Answer choosen Gas state

Answer 0) Solid state

1) Liquid state

2) Supercritical fluid

- 3) Gas state
- 4) Gas-liquid equilibrium
- Calculate the number of degrees of freedom from the phase rule for a mixture of liquid benzene, benzene vapour and helium gas.

Question type	Multiple Choice
Topic	Phase Equilibria
Difficulty	1/3
Score	3.30
Score max	1
Answer choosen	2
Answer	0) 0
	1) 1
	2) 2
	3) 3

2

Consider the following atomic orbitals for the hydrogen atom. Which orbital has the highest energy?

Question type	Multiple Choice
Topic	Atomic Structure
Difficulty	1/3
Score	0.00
Score max	1
Answer choosen	1s
Answer	0) 1s
	1) 2s

- 2) 2px
- 3) 3py
- 4) 3dz2
- 5) 4s

4

Suppose you have to neutralize one liter of a 0.1molar solution of acetic acid (a weak acid having only 1.3% of its molecules dissociated in this solution), how much sodium hydroxide will you need?

Question type Multiple Choice

Topic Chemical Equilibria

Difficulty 1/3

Score 3.30

Score max 1

Answer choosen 0.1 mol

Answer 0) Less than 0.1 mol

1) 0.1 mol

2) More than 0.1 mol

5 During an experiment the rate of the following reaction was measured 2 A + 3

B C + 3 D and the following results were obtained: [A]o [B]o initial rate

0.32 mol/L 0.42 mol/L 1.56 mol 0.32 mol/L 0.21 mol/L 0.39 mol 0.25 mol/L 0.21

mol/L 0.39 mol Which of the following statements is correct?

Question type Multiple Choice

Topic Kinetics

Difficulty 1/3

Score 3.30

Score max 1

Answer choosen The reaction has order 2 with respect to B

Answer 0) The total reaction order is 5

1) The reaction has order 2 with respect to B

2) The reaction has order 1 with respect to A

3) The reaction has order 1 with respect to B-1

1 mol of an ideal gas expands isothermally and reversibly at 298 K from p1 = 106 Pa to p2 = 105 Pa. What is the change in entropy of the system plus the surroundings in JK-1 ?JK-1

Question type Numeric

Text

7

6

Topic Thermodynamics

Difficulty 1/3

Score 0.0

Score max 1

Answer choosen a CH2=CH- group

Answer 0) 0.0

Given that dU = TdS - pdV + m dn (for an open system of a single component) A = U - TS and G = U + pV - TS which three of the following Maxwell type expressions are thermodynamically correct?

Question typeMultiple Response

Topic Thermodynamics

Difficult	V
-----------	---

1/3

Score

0.99

Score max

1

Answer choosen

$$(dm / dV)T,n = - (dp / dn)V,T$$

Answer

0)
$$(dT / dV)S,n = - (dp / dS)V,n$$

1)
$$(dV / dn)p,T = -(dm / dp)T,n$$

2)
$$(dm / dV)T,n = - (dp / dn)V,T$$

3)
$$(dS / dV)p,n = (dT / dp)V,n$$

4)
$$(dV / dT)p,n = (dS / dp)T,n$$

8

The classical transition state theory assumes that when the system reaches

the transition state

Question type Multiple Choice

Topic Catalysis

Difficulty 1/3

Score 3.30

Score max 1

Answer choosen it can only go ahead

Answer 0) it can only go back

- 1) it can stay there for ever
- 2) it can only go ahead
- 3) it can recross back
- 4) it can tunnel

9

The kinetics of enzyme action are described by the Michaelis-Menten mechanism. Some substances may interact with the enzyme reducing its catalytic activity. They are called inhibitors. Which of the following sentences

Question type Multiple Choice

Topic Catalysis

Difficulty 1/3

Score 0.00

Score max 1

Answer choosen In non-competitive inhibition, the catalytic

activity is reduced because the inhibitor

reduces the speed of reaction

Answer 0) In non-competitive inhibition, an inhibitor

attaches to a remote site of the enzyme and

couses a structural change that bars the

substrate from the active site

1) In non-competitive inhibition, the substrate

and the inhibitor attach the enzyme to two

different active sites

2) In non-competitive inhibition, the inhibitor

attaches to the substrate but not to the

enzyme

3) In non-competitive inhibition, the catalytic

activity is reduced because the inhibitor

reduces the speed of reaction

The equilibrium constant of the reaction which takes place in a Daniell cell

Zn | Zn2+ || Cu2+ | Cu

is:

Question type Multiple Choice

Topic Electrochemistry

Difficulty 1/3

Score 3.30

1 Score max

4.641036 **Answer choosen**

Answer 0) 4.641036

1) 6.021023

2) 4.6410-36

3) 4.61017

4) 5.6710-12

11 The solubility of Mg(OH)2 is 710-2 molL-1Data: Ksp(Mg(OH)2) = 1.810-11

Question type Multiple Choice

Topic Electrochemistry

Difficulty 1/3

0.00 **Score**

1 Score max

Answer choosen at pH = 13

Answer 0) at pH = 9

1) at pH = 3

2) at pH = 5

3) at pH = 7

4) at pH = 13

molecule?

Question type Multiple Choice

Topic Molecular Structure

Difficulty 1/3

Score 0.00

Score max 1

Answer choosen 3 translational + 3 rotational + 4 vibrational

Answer 0) 3 translational + 2 rotational + 4 vibrational

1) 3 translational + 3 rotational + 3 vibrational

2) 3 translational + 2 rotational + 3 vibrational

3) 3 translational + 3 rotational + 4 vibrational

The interaction between two H2O molecules is stronger than that between two

CO2 molecules. Which of the following is the best explanation?

Question type Multiple Choice

Topic Molecular Structure

Difficulty 1/3

Score 3.30

Score max 1

Answer choosen The dipole moment of H2O is bigger than that

of CO2

Answer 0) The dipole moment of H2O is bigger than

that of CO2

- 1) H2O is a bent molecule but CO2 is linear
- 2) H is less electronegative than C

14 The nuclear spin of both 31P and 19F is I = 1/2. Which two of the following statements are true concerning the NMR spectra of PF3 which has C3v symmetry?

Question type Multiple Response

Topic Spectroscopy

1/3 **Difficulty**

Score 0.00

1 Score max

Answer choosen The 19F spectrum is a singlet

0) The 31P spectrum is a singlet **Answer**

1) The 31P spectrum is a doublet

2) The 31P spectrum is a quartet

3) The 19F spectrum is a singlet

4) The 19F spectrum is a doublet

5) The 19F spectrum is a quartet

15 In which part of the spectrum is the Balmer series of lines observed?

Question type Multiple Choice

Topic Spectroscopy

1/3 **Difficulty**

Score 0.00

1 Score max

Answer choosen Ultraviolet

Answer 0) Visible

- 1) Infrared
- 2) Far infrared
- 3) Ultraviolet

A 'rule of thumb' says that a temperature increase from 20C to 30C leads to a doubling of many reaction rates. Calculate the activation energy in kJ/mol for which the 'rule of thumb' would be exact.Data: R = 8.314 Jmol-1K-1 kJ/mol

Question type Numeric

Text

Topic Kinetics

Difficulty 2/3

Score 0.0

Score max 1

Answer choosen tempera

Answer 0) 51.16

Given the reaction aA +bB pP + qQ to define vA as (-1/a)d[A] / dt, with [A] being the concentration of A, one can assume that...

Question type Multiple Choice

Topic Kinetics

Difficulty 2/3

Score 0.00

Score max 1

Answer choosen the amount of substance is constant

Answer 0) temperature is constant

- 1) volume is constant
- 2) pressure is constant
- 3) energy is constant
- 4) the amount of substance is constant
- 18 Consider the reduction of permanganate by oxalic acid at 298 K

2MnO4- + 6H+ + 5H2C2O4 2Mn2+ + 8H2O + 10CO2

If the two half-reactions and the corresponding standard electrode potentials

are

2MnO4- + 16H+ + 10e- 2Mn2+ + 8H2O E = 1.51 V

10CO2 + 10H+ + 10e- 5H2C2O4 E = - 0.49 V

what is the equilibrium constant of the reduction of permanganate by oxalic

acid?

Data: R = 8.3144 JK-1mol-1, F = 96484 Cmol-1

Question type Multiple Choice

Topic Electrochemistry

Difficulty 2/3

Score 0.00

Score max 1

Answer choosen 103.39

Answer 0) 10339

1) 1033.9

2) 103.39

3) 10-33.9

4) 10-3.39

This dehydrogenation reaction is believed to occur via a series of steps involving successive removal of H as temperature is increased from room temperature. In a study of the decomposition of methiylamine-d3(CD3NH2), H2, HD and D2 are evolved successively at 410, 425 and 435 K respectively, in a 1:2:1 ratio. There is NO isotopic scrambling between these species. Which two of the following are compatible intermediates in the dehydrogenation of methylamine?

Question typeMultiple Response

Topic Catalysis

Difficulty 2/3

Score 1.65

Score max 1

Answer choosen CH2N

Answer 0) CH2NH

1) CH2NH2

2) CH3N

3) CH3NH

4) CH2N

Consider the molecular energy-level diagrams for the diatomic molecules C2 and O2 in their respective ground states. For which molecule(s) will the bond in the cation X2+ be weaker than that in the neutral molecule X2?

Question type Multiple Choice

Topic Molecular Structure

Difficulty 2/3

20

Score 0.00

Score max

Answer choosen None

Answer 0) C2

1) O2

2) None

3) Both C2 and O2

The molar absorptivity of chlorobenzene in n-heptane solution at 256 nm is = 1.22103m2mol-1. Calculate the concentration of chlorobenzene in a n-heptane solution if its transmission coefficient at 256 nm in a 2 cm cell is 0.296.10-5 M

Question type Numeric

Text

Topic Spectroscopy

Difficulty 2/3

Score 0.0

Score max 1

Answer choosen acrylics

Answer 0) 2.17

Consider an ideal solution formed by 3.00 mol of benzene and 2.00 mol of toluene. Calculate the ratio between the fugacity of pure benzene and the fugacity of benzene in the ideal solution. Consider all quantities at constant temperature and pressure.

Question type Multiple Choice

Topic Thermodynamics

Difficulty	2/3
Score	3.30
Score max	1
Answer choosen	1.67
Answer	0) 0.60
	1) 1.67
	2) 0.40
	3) 2.50
	4) 1.00

Consider two atoms A and B, both from the second period (Li-Ne). If A is

substantially more electronegative than B, which two of the following

statements are correct?

Question type	Multiple Response
Topic	Atomic Structure
Difficulty	2/3
Score	0.00
Score max	1
Answer choosen	The atomic radius is larger for A than for B
	The atomic number is higher for A than for B
Answer	0) The atomic radius is larger for A than for B
	1) The atomic number is higher for A than for
	В
	2) The first ionization energy (or ionization
	potential) is higher for A than for B
	3) The effective nuclear charge, Zeff or Z*, is

24 The ionization energy (or ionization potential) of H is 13.6 eV. What is the second ionization energy of He ?eV

Question type Text

Topic Atomic Structure

Difficulty 2/3

0.0 **Score**

1 Score max

Answer choosen acrylics

Answer 0) 54.4

1) 54.4

2) 54.40

3) 54.40

4) 54.400

5) 54.400

6) 54

N molecules of an ideal gas are restricted to move within the two-dimensional area S. If d is the collision diameter of these molecules and the relative speed of the colliding molecules is equal to the mean speed multiplied by 21/2, then the mean free path is given by

Question type Multiple Choice

Topic State of Matter

Difficulty 2/3

Score 0.00 Score max 1

Answer choosen S / (21/2 Nd)

Answer 0) S / (23/2 Nd)

1) S / (23/2 Nd)

2) S / (23/2 Nd2)

3) S / (21/2 Nd2)

4) S / (21/2 Nd)

26 When a gas obeys the Berthelot equation of state P = RT / (Vm - b) - a / TVm2

where a, b are constants, then its critical molar volume, Vm,c, is equal to

Question type Multiple Choice

Topic State of Matter

Difficulty 2/3

Score 0.00

Score max 1

Answer choosen b/3

Answer 0) 3b

1) 2b

2) b

3) b/2

4) b/3

Consider the dissociation of H2(g) to hydrogen atoms at a certain high temperature. The degree of dissociation depends upon the total pressure P.

Which of the following plots is linear?

Topic Chemical Equilibria

Difficulty 2/3

Score 0.00

Score max 1

Answer choosen (1 -) / P vs.

Answer 0) (1 -) / P vs.

1) 1 / P vs.

2) (1 - 2) / P vs. 2

3) 1 / P vs. 2

4) (1 -) / P vs. 2

28 If HCI(aq) is treated as a strong electrolyte, what can be said about rG and the

equilibrium constant for the reaction: HCl(aq) H+(aq) + Cl- (aq)

Question type Multiple Choice

Topic Chemical Equilibria

Difficulty 2/3

Score 0.00

Score max 1

Answer choosen rG = 0 and K = 1 at any temperature

Answer 0) rG = 0 and K = 1 at any temperature

1) rG = 0 and K = 1 at 1 bar and K is

undefined

- 2) K is undefined
- 3) There is not enough information
- 4) rG = 0 and K = 1 at 1 bar and any

temperature

29

A mixture of the immiscible liquids bromobenzene (BB) and water boils, at 1 atm and 368 K, where the vapour pressure of water is 635 Torr. What is the ratio xBB / xwater of the mole fractions of the two components in the vapour at the same temperature if the vapour behaves like a mixture of two ideal gases ?xBB / xwater =

Question type Numeric

Text

Topic Phase Equilibria

Difficulty 2/3

Score 0.0

Score max 1

Answer choosen not ok

Answer 0) 0.197

30

Which of the following magnitudes are null in a phase transition of second order or higher ?

Question typeMultiple Choice

Topic Phase Equilibria

Difficulty 2/3

Score 3.30

Score max 1

Answer choosen trsH = 0; trsS = 0; trsV = 0 and trsG = 0

Answer 0) trsH = 0; trsS = 0; trsV = 0 and trsG = 0

1) trsCv = 0; trsS = 0; trsV = 0 and trsG = 0

2) trsCp = 0; trsS = 0; trsV = 0 and trsG = 0

- 3) only trsV = 0 and trsH = 0
- 4) trsCp = 0; trsS = 0; trsH = 0 and trsG = 0