O'REILLY[®]

Mathematical Algorithms

Optimizing Mathematical Computations

- Mathematical algorithms can noticeably improve number crunching performance
 - I will show you one such example
 - Numerical Recipes (<u>www.nr.com</u>) offers complete solutions so you can avoid writing your own

Surprising Optimizations

- Consider computing $x^n = x * x * \dots * x$
 - Can you produce same computation with fewer than n – 1 multiplications?
 - Consider $x^6 = (x * x * x)^2$ which uses only 3!
- Identify algorithm to produce minimal for all n
 - EXPONENTIATIONBYSQUARING
 - Surprisingly versatile algorithm

Demonstrate Small Example

Let's compute 2^{13} as follows

$$2^{13} = 2 * (2*2)^6 = 2 * 4^6$$

= $2 * (4*4)^3 = 2 * 16^3$
= $2 * 16 * (16*16)^1$

5 multiplications in total

Identifying proper sub-problems is key to this algorithm

= 2 * 16 * 256 = 8192

Algorithm Pseudocode

Reduce problem in half with each recursive call

EXPONENTIATION BY SQUARING		
Best case	Average case	Worst case
O(log n)	O(log n)	O(log n)

```
def exponent(x, n):

if n == 0: return 1

if n == 1: return x

if n % 2:

return x * exponent(x*x, [n/2])

return exponent (x*x, n/2)
4^6 = (4*4)^3
```

Matrix Exponentiation

- Matrices are two-dimensional structures
 - When a matrix is squared, it can be raised to the nth degree
 - Here matrix $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix}$ is squared to produce another matrix

- Same approach works
 - Let's review in code

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} \times \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 4 & 4 & 4 \\ 6 & 7 & 6 \\ 6 & 5 & 6 \end{vmatrix}$$

Mathematical Problem

622288097498926496141095869268883999563096063592498055290461

- Is a given number prime?
- Costly prime factorization proves exact answer
 - Fermat's little theorem suggests probabilistic probe
 - if p is a prime number, then for any integer a, the number $a^p a$ is an integer multiple of p
 - In other words, $a^p = a \mod p$ or $a^{p-1} = 1 \mod p$
- An estimate which can be run multiple times