

Spis treści

1.	\mathbf{St}	treszczenie zarządcze	4
2.	\mathbf{M}	Ietodologia	6
2	2.1.	Omówienie opracowywanych danych	6
2	2.2.	Chain-Ladder	6
	2.2	2.1. Wprowadzenie	6
	2.2	2.2. Opis matematyczny	7
2	2.3.	Munich Chain-Ladder	8
	2.3	3.1. Wprowadzenie	8
	2.3	3.2. Opis matematyczny	8
2	2.4.	Bornhuetter-Ferguson	10
	2.4	4.1. Wprowadzenie	10
	2.4	4.2. Opis matematyczny	11
2	2.5.	Cape Cod	12
	2.5	5.1. Wprowadzenie	12
	2.5	5.2. Opis matematyczny	12
2	2.6.	Bootstrap	12
	2.6	6.1. Wprowadzenie	12
	2.6	6.2. Opis matematyczny	13
2	2.7.	Dyskontowanie	13
3.	In		15
9	3.1.	Agregacja danych	15
ç	3.2.	Konstrukcja trójkątów skumulowanych	15
:	3.3.	Współczynniki rozwoju i klasyczna metoda Chain-Ladder	17
Ę	3.4.	Munich Chain-Ladder	19
5	3.5.	Bornhuetter-Ferguson i Cape-Cod	24

Modelowanie ryzyka rezerw szkodowych

3.6. Bo	ootstrap
3.6.1.	Wstęp 24
3.6.2.	Dopasowanie metody Chain-Ladder
3.6.3.	Residua
3.6.4.	Próbka Bootstrap
3.6.5.	Wyznaczanie parametrów rozkładu
4. Anali	za wyników
4.1. Po	rówanie metod
4.2 W	vniki Bootstrap 35

1. Streszczenie zarządcze

Celem poniższego projektu było oszacowanie rezerw szkodowych za pomocą kilku metod, aby następnie ocenić każdą z nich i wybrać odpowiednie rozwiązanie dla zakładu ubezpieczeń.

Ryzyko rezerw szkodowych oznacza ryzyko, że rezerwy utworzone przez zakład ubezpieczeniowy będą zbyt małe w stosunku do rzeczywistych roszczeń, które będą musiały zostać zaspokojone. Oznacza to, że jeśli jako ubezpieczyciel popełnimy błąd w ocenie ryzyka lub nie przewidzimy wszystkich możliwych roszczeń, rezerwy mogą okazać się niewystarczające, co może prowadzić do finansowych trudności dla zakładu.

Aby zmniejszyć to ryzyko, musimy dokładnie przeanalizować ryzyko, którego dotyczy ubezpieczenie i przewidzieć wszystkie możliwe roszczenia, jakie mogą pojawić się w przyszłości. Musimy również regularnie aktualizować i korygować swoje rezerwy, aby upewnić się, że są one adekwatne do rzeczywistych roszczeń. Jest w istocie wiele czynników, które mogą wpłynąć na złe oszacowanie rezerw szkodowych w zakładzie ubezpieczeń. Są to m.in.:

- Szacowanie rezerw na podstawie nieaktualnych danych.
- Błędy w metodologii i modelach służących do wyznaczania rezerw.
- Zmiany rozkładu ryzyk na rynku.
- Brak odpowiedniego nadzoru nad rezerwami.
- Niedostateczne dostosowanie do regulacji prawnych i zmian w prawie finansowym.
- Niepoprawne dobranie wykorzystywanych parametrów.

Rezerwy szkodowe IBNR (ang. Incurred But Not Reported) są nam potrzebne, ponieważ pozwalają na uwzględnienie szkód, które już zostały popełnione, ale jeszcze nie zgłoszone. Dzięki temu jako ubezpieczyciele jesteśmy w stanie lepiej przewidzieć i planować swoje przyszłe koszty. Rezerwy te pozwalają również na zabezpieczenie przed nieprzewidzianymi wydatkami związanymi z roszczeniami, które mogą pojawić się w przyszłości.

W swoich analizach braliśmy pod uwagę metody Chain-Ladder, jej modyfikację Munich oraz metody Bornhuettera-Fergusona i Cape-Cod.

2. Metodologia

2.1. Omówienie opracowywanych danych

Poniżej przedstawiamy próbkę z wykorzystanych do analiz danych.

LoB	AccidentQ	ReportingQ	Payment_incremental	RBNS_reported	Nr_claims_incremental	NR_open_claims_reported	AccidentY	ReportingY
GTPL	201201	201201	78 146,63 zł	376 018,12 zł	4602	2944	2012	2012
GTPL	201201	201202	172 668,05 zł	542 308,49 zł	2653	3037	2012	2012
GTPL	201201	201203	99 192,79 zł	601 991,93 zł	648	2640	2012	2012
GTPL	201201	201204	82 529,67 zł	662 534,03 zł	330	2269	2012	2012
GTPL	201201	201301	80 490,86 zł	616 737,86 zł	194	2100	2012	2013
GTPL	201201	201302	54 995,21 zł	637 505,47 zł	135	1854	2012	2013
GTPL	201201	201303	42 455,07 zł	665 389,03 zł	67	1739	2012	2013
GTPL	201201	201304	33 367,72 zł	696 406,34 zł	56	1460	2012	2013
GTPL	201201	201401	32 168,77 zł	661 368,00 zł	59	1370	2012	2014
GTPL	201201	201402	73 308,70 zł	610 756,07 zł	38	1234	2012	2014
GTPL	201201	201403	24 278,08 zł	593 868,93 zł	37	1176	2012	2014
GTPL	201201	201404	15 099,51 zł	642 998,71 zł	36	1003	2012	2014
GTPL	201201	201501	19 689,92 zł	634 632,01 zł	23	887	2012	2015
GTPL	201201	201502	11 751,32 zł	638 453,06 zł	28	822	2012	2015
GTPL	201201	201503	23 589,45 zł	633 334,29 zł	24	771	2012	2015
GTPL	201201	201504	19 352,49 zł	599 241,31 zł	17	660	2012	2015
GTPL	201201	201601	24 837,39 zł	568 650,22 zł	13	586	2012	2016
GTPL	201201	201602	21 138,22 zł	629 596,34 zł	27	599	2012	2016

Rysunek 2.1: Próbka danych

Podczas pracy korzystaliśmy głównie z danych zawartych w kolumnach $Payment_incemental$ - wypłaty odszkodowań, $RBNS_reported$ - szkody zgłoszone i do tej pory nie rozliczone, AccidentY i ReportingY - lata zajścia szkody i zgłoszenia szkody. Co więcej, rezerwy zostały oszacowane dla każdego lobu dyrektywy $Wypłacalność\ II$ oddzielnie.

2.2. Chain-Ladder

2.2.1. Wprowadzenie

Chain-Ladder to metoda szacowania rezerw IBNR (Incurred But Not Reported), która polega na przewidywaniu przyszłych roszczeń na podstawie historii roszczeń zgłoszonych w przeszłości. Metoda ta opiera się na założeniu, że roszczenia zgłoszone w przeszłości będą miały podobny rozkład w czasie jak roszczenia, które jeszcze nie zostały zgłoszone. W metodzie Chain-Ladder podążamy za kolejnymi kroki:

- Określenie liczby roszczeń zgłoszonych w danym okresie czasu (standardowo jest to rok).
- Określenie średniej długości czasu potrzebnego na rozpatrzenie roszczenia.
- Wyznaczenie rezerw na podstawie liczby roszczeń zgłoszonych w danym okresie i średniej długości czasu potrzebnej na rozpatrzenie roszczenia.

Chain ladder jest jednym z popularnych metod szacowania rezerw IBNR, jednak ma ona swoje ograniczenia i nie jest odpowiednia dla wszystkich rodzajów ryzyk. Przede wszystkim opiera się na fundamentalnym założeniu niezmienniczości rozkładu roszczeń w czasie.

2.2.2. Opis matematyczny

Niech $C_{i,j}$ będą zmiennymi losowymi o nieznanym rozkładzie, oznaczającymi skumulowane straty, które wystąpiły w roku i i zostały zlikwidowane z opóźnieniem nie większym niż j lat. Zdefiniujmy ponisze σ -ciało:

$$\mathcal{F}_i(s) = \sigma(\{C_{i,1}, C_{i,2}, \dots, C_{i,s}\})$$

W metodzie Chain-Ladder zakładamy, że istnieją współczynniki Chain-Ladder f_j , dla których:

$$\mathbb{E}\left[\frac{C_{i,j+1}}{C_{i,j}}\middle|\mathcal{F}_i(j)\right] = f_j \tag{2.1}$$

i nie zależą one od roku wystąpienia szkody, i. W kwestii oszacowania tych współczynników, najczęściej używanym estymatorem jest:

$$\hat{f}_{j} = \frac{\sum_{i=1}^{n-j+1} C_{i,j}}{\sum_{i=1}^{n-j+1} C_{i,j-1}}$$
(2.2)

Na podstawie tych estymatorów szacowane są przyszłe szkody:

$$\hat{C}_{i,j} = C_{i,j-k} \cdot \tilde{f}_k, \tag{2.3}$$

gdzie \tilde{f}_k wyznacza się wzorem:

$$\tilde{f}_k = \prod_{i=1}^k \hat{f}_i. \tag{2.4}$$

2.3. Munich Chain-Ladder

2.3.1. Wprowadzenie

Chain-Ladder polega na analizie historii odszkodowań i ich rozkładu w czasie. Jest metodą prostą i łatwą do zastosowania, jednak nie zawsze dostarcza dokładnych prognoz. Jej modyfikacja Munich Chain-Ladder, polega na uwzględnieniu dodatkowych czynników, takich jak zmiana wskaźników wypłat odszkodowań w czasie, w celu uzyskania bardziej dokładnych prognoz. Munich Chain-Ladder jest zatem bardziej skomplikowana niż metoda Chain-Ladder, ale dostarcza bardziej dokładnych prognoz.

Na obcenym rynku Munich Chain-Ladder (MCL) jest jednym z popularniejszych sposobów wyznaczania rezerw szkodowych IBNR. MCL opiera się na analizie danych historycznych dotyczących zgłoszonych i wypłaconych szkód, które są używane do prognozowania przyszłych szkód.

Sposób działania polega na porównaniu stosunku wypłaconych szkód do zgłoszonych w różnych okresach czasowych, a następnie przewidywaniu, jak ten stosunek będzie się zmieniał w przyszłości. W ten sposób, prognozowana liczba przyszłych szkód jest mnożona przez bieżący stosunek wypłaconych szkód do zgłoszonych, aby uzyskać rezerwę IBNR.

2.3.2. Opis matematyczny

Niech $C_{i,j}^P$, $C_{i,j}^I$ będą zmiennymi losowymi o nieznanym rozkładzie. Niech $C_{i,j}^P$ oznacza skumulowane straty, które wystąpiły w roku i i zostały zlikwidowane z opóźnieniem nie większym niż j lat. Natomiast niech $C_{i,j}^I$ oznacza skumulowane straty po j latach szkód, które wystąpiły w roku i. Dla takich danych definiujemy iloraz Q(i,j) będący stosunkiem strat zlikwidowanych do zaistniałych.

$$Q(i,j) = \frac{C_{i,j}^{P}}{C_{i,j}^{I}}$$
 (2.5)

Uwaga 2.1. Iloraz Q(i,j) będziemy również nazywać ilorazem (P/I), natomiast wielkość $\frac{1}{Q(i,j)}$ będziemy nazywać ilorazem (I/P).

Wartość szkód zaistniałych możemy natomiast wyrazić jako sumę spłaconych (tj. zlikwidowanych) oraz rezerwy szkód, R^{claim} . Tym samym iloraz Q(i, j) możemy zapisać jako:

$$Q(i,j) = \frac{C_{i,j}^{P}}{C_{i,j}^{P} + R_{i,j}^{\text{claim}}}$$
(2.6)

Łatwo zauważyć, że iloraz $Q(i,j) \in (0,1]$, ponieważ zakładamy że rezerwy szkód zawsze będą dodatnie, a nie będą w postaci długu. Kolejnym założeniem jakie czynimy w metodzie Munich Chain-Ladder jest, aby iloraz ten wraz z czasem j dążącym do nieskończoności, dążył do 1. Chcemy zatem aby w horyzoncie nieskończonym wszystkie (lub prawie wszystkie) szkody z roku i zostały zgłoszone, a rezerwy szkodowe były coraz mniejsze.

Od tej pory będziemy stosować poniższe oznaczenia:

$$P_{i,j} = C_{i,j}^P, \quad I_{i,j} = C_{i,j}^I$$
 (2.7)

Na potrzeby modelu definiujemy poniższe σ -ciała:

$$\mathcal{P}_{i}(s) = \sigma(\{P_{i,1}, P_{i,2}, \dots, P_{i,s}\})$$

$$\mathcal{I}_{i}(s) = \sigma(\{I_{i,1}, I_{i,2}, \dots, I_{i,s}\})$$

$$\mathcal{B}_{i}(s) = \sigma(\{P_{i,1}, P_{i,2}, \dots, P_{i,s}, I_{i,1}, I_{i,2}, \dots, I_{i,s}\})$$
(2.8)

Standaryzowane rezyduum warunkowe zmiennej losowej X pod warunkiem σ -ciała zadaje wzór:

$$\mathbf{Res}(X|\mathcal{B}) = \frac{X - \mathbb{E}[X|\mathcal{B}]}{\mathrm{Var}[X|\mathcal{B}]}$$
(2.9)

Podobnie jak w metodzie klasycznego wariantu Chain-Ladder, zakładać będziemy istnienie współczynników Chain-ladder pod warunkiem przeszłości, tj:

$$\mathbb{E}\left[\frac{P_{i,j+1}}{P_{i,j}}\middle|\mathcal{P}_i(j)\right] = f_j^P \quad \text{oraz} \quad \mathbb{E}\left[\frac{I_{i,j+1}}{I_{i,j}}\middle|\mathcal{I}_i(j)\right] = f_j^I$$
 (2.10)

Zakładamy również (założenie modelu Macka wariantu Chain-Ladder), że istnieją współczynniki proporcjonalności σ_i^P oraz σ_i^I , dla których:

$$\operatorname{Var}\left[\frac{P_{i,j+1}}{P_{i,j}}\middle|\mathcal{P}_{i}(j)\right] = \frac{\left(\sigma_{j}^{P}\right)^{2}}{P_{i,j}} \quad \operatorname{oraz} \quad \operatorname{Var}\left[\frac{I_{i,j+1}}{I_{i,j}}\middle|\mathcal{I}_{i}(j)\right] = \frac{\left(\sigma_{j}^{I}\right)^{2}}{I_{i,j}}$$
(2.11)

Powyższe założenia występują w podobnej formie w podstawowym Chain-Ladder. W wariancie Munich dodajemy do nich analogiczne założenia dla ilorazów (P/I) i (I/P).

$$\mathbb{E}\left[\frac{Q_{i,j+1}}{Q_{i,j}}\Big|\mathcal{B}_i(j)\right] = q_j \quad \text{oraz} \quad \text{Var}\left[\frac{Q_{i,j+1}}{Q_{i,j}}\Big|\mathcal{B}_i(j)\right] = \frac{\left(\sigma_j^Q\right)^2}{Q_{i,j}}$$
(2.12)

$$\mathbb{E}\left[\frac{Q_{i,j}}{Q_{i,j+1}}\middle|\mathcal{B}_i(j)\right] = q_j^{\text{inv}} \quad \text{oraz} \quad \text{Var}\left[\frac{Q_{i,j}}{Q_{i,j+1}}\middle|\mathcal{B}_i(j)\right] = \frac{\left(\sigma_j^{Q_{\text{inv}}}\right)^2}{Q_{i,j}}$$
(2.13)

Trezcim założeniem jest niezależność zmiennych $\{P_{1,j}, P_{2,j}, \dots P_{h,j}\}$ oraz niezależność zmiennych $\{I_{1,j}, I_{2,j}, \dots I_{h,j}\}$, gdzie h to liczba lat, w których zaszły szkody, a j to lata do zlikwidowania szkody.

Ostatnim założeniem jest istnienie współcznynników (MCL) pod warunkiem σ -ciała $\mathcal{B}_i(j)$.

$$\mathbb{E}\left[\frac{P_{i,j+1}}{P_{i,j}}\middle|\mathcal{B}_i(j)\right] = f_{\text{MCL}}^P(i,j) = f_j^P + \lambda^P \cdot \frac{\sigma_j^P}{\sigma_j^{Q_{\text{inv}}}} \cdot \left(\frac{1}{Q(i,j)} - q_j^{inv}\right)$$
(2.14)

$$\mathbb{E}\left[\frac{I_{i,j+1}}{I_{i,j}}\middle|\mathcal{B}_i(j)\right] = f_{\text{MCL}}^I(i,j) = f_j^I + \lambda^I \cdot \frac{\sigma_j^I}{\sigma_j^Q} \cdot \left(Q(i,j) - q_j\right)$$
(2.15)

Powyższy warunek jest równoważny (przy założeniu poprzednich trzech warunków) istnieniu takich współczynników kierunkowych λ^P oraz λ^I , które spełniają powyższe równości. Równości w warunku czwartym możemy również sformułować jako:

$$\mathbb{E}\left[\frac{P_{i,j+1}}{P_{i,j}}\middle|\mathcal{B}_i(j)\right] = f_{\text{MCL}}^P(i,j) = f_j^P + \Delta f_{i,j}^P, \tag{2.16}$$

oraz:

$$\mathbb{E}\left[\frac{I_{i,j+1}}{I_{i,j}}\middle|\mathcal{B}_i(j)\right] = f_{\text{MCL}}^I(i,j) = f_j^I + \Delta f_{i,j}^I, \tag{2.17}$$

gdzie:

$$\Delta f_{i,j}^P = \lambda^P \cdot \frac{\sigma_j^P}{\sigma_j^{Q_{\text{inv}}}} \cdot \left(\frac{1}{Q(i,j)} - q_j^{inv}\right), \tag{2.18}$$

$$\Delta f_{i,j}^{I} = \lambda^{I} \cdot \frac{\sigma_{j}^{I}}{\sigma_{j}^{Q}} \cdot \left(Q(i,j) - q_{j} \right). \tag{2.19}$$

Metodę wyznaczania tych współczynników kierunkowych omówimy w sekcji z implementacjami.

2.4. Bornhuetter-Ferguson

2.4.1. Wprowadzenie

Metoda Bornhuettera-Fergusona jest połączeniem dwóch standardowych metod estymacji rezerwy szkodowej: wskaźnika szkodowości oraz Chain-Ladder. Zakładamy w niej, że pozostałe niezaraportowane straty są pewną funkcją łącznych oczekiwanych strat. Rezerwa wyliczana jest na podstawie współczynników rozwoju z metody Chain-Ladder oraz przyjętego a priori współczynnika szkodowości, który może pochodzić między innymi z pricingu, bądź może być wyznaczony na podstawie danych dotyczących składek.

Uwaga 2.2. Z uwagi na postać danych, przyjęto, że współczynnik szkodowości pochodzi z pricingu i wynosi 75% niezależnie od opóźnienia w rozliczeniu szkody. Przyjęto również, że średnio składka zarobiona za dany rok (przy opóźnieniu 0 lat) wynosi dla każdego lobu pięciokrotność wypłat z tytułu odszkodowań dla danej linii.

2.4.2. Opis matematyczny

Niech $Y_{i,j}$, $C_{i,j}$ będą zmiennymi losowymi o nieznanym rozkładzie. Niech $Y_{i,j}$ oznacza łączną szkodę, która wystąpiła w roku i i została zlikwidowana z opóźnieniem j lat. Natomiast niech $C_{i,j}$ oznacza skumulowane straty, które wystąpiły w roku i i zostały zlikwidowane z opóźnieniem nie większym niż j lat. Innymi słowy, $C_{i,j} = \sum_{k=0}^{j} Y_{i,k}$. Ogólna zasada Bornhuettera-Fergusona zakłada istnienie parametrów $\alpha_1, \ldots, \alpha_n > 0$ oraz $\gamma_1, \ldots, \gamma_n > 0$, takich, że:

$$\mathbb{E}[C_{i,j}] = \alpha_i \gamma_j, i, j \in \{1, 2, \dots, n\}, \tag{2.20}$$

gdzie $\alpha_i = \mathbb{E}[C_{i,n}], \gamma_j = \frac{\mathbb{E}[C_{i,j}]}{\mathbb{E}[C_{i,n}]}$. Zatem nieznane wartości $C_{i,j}$ są przewidywane estymatorem:

$$\hat{C}_{i,j} = \hat{\alpha}_i \hat{\gamma}_j, i + j > n,$$

gdzie $\hat{\alpha}_i = \pi_i \hat{\kappa}_i$ - π_i oznacza składkę zarobioną w danym roku, a $\hat{\kappa}_i$ jest estymatorem współczynnika szkodowości , natomiast $\hat{\gamma}_j = \prod_{k=j+1}^n \frac{1}{\lambda_k^*}$, gdzie λ_k są współczynnikami z metody Chain-Ladder. Różnica $R_i = C_{i,n} - C_{i,n-1}$ jest roczną rezerwą szkodową oraz jej wartość oczekiwaną możemy zapisać jako: $\mathbb{E}[R_i] = \mathbb{E}[C_{i,n}] - \mathbb{E}[C_{i,n-1}]$. Zatem korzystając z 2.20 otrzymujemy postać rezerwy w języku parametrów α i γ : $\mathbb{E}[R_i] = \alpha_i (1 - \gamma_{n-i})$. Do estymacji rezerwy korzystamy z estymatorów α i γ :

$$\hat{R}_i = \hat{\alpha}_i (1 - \hat{\gamma}_{n-i}) \tag{2.21}$$

W analogiczny sposób możemy wyznaczyć estymator łącznej szkody w roku k, dla i+k>n:

$$\hat{C}_{i,k}^{BF} = C_{i,n-i} + \hat{\alpha}(\hat{\gamma}_k - \hat{\gamma}_{n-i})$$

2.5. Cape Cod

2.5.1. Wprowadzenie

Metoda Cape-Cod jest w zasadzie analogiczna do metody Bornhuettera-Fergusona. Również będziemy korzystać z efektów metody Chain-Ladder, a różnice pojawią się w doborze współczynnika szkodowości. Tym razem będziemy go szacować na podstawie posiadanych danych na temat składek w konkretnym roku szkodowym.

2.5.2. Opis matematyczny

Przez π_i oznaczmy przyjęte przez nas wartości składek w roku i, a przez $\hat{\kappa}^{CC}$ oznaczmy tzw. współczynnik straty Cape-Cod. Wyliczamy go za pomocą wzoru

$$\hat{\kappa}^{CC} = \frac{\sum_{j=0}^{n} C_{j,n-j}}{\sum_{j=0}^{n} \hat{\gamma}_{n-j} \pi_{j}}.$$

Przy powyższych oznaczeniach, przewidywane przyszłe straty wyznaczamy zgodnie ze wzorem

$$\hat{C}_{i,k}^{CC} = C_{i,n-i} + \pi_i \kappa^{\hat{C}C} (\hat{\gamma}_k - \hat{\gamma}_{n-i}).$$

Widzimy, że jest to dokładnie to samo co w metodzie Bornhuettera-Fergusona ze współczynnikiem $\hat{\alpha} = \pi_i \kappa^{\hat{C}C}$.

2.6. Bootstrap

2.6.1. Wprowadzenie

Modele deterministyczne są najprostszą i w związku z tym najpopularniejszą metodą wyznaczania rezerwy szkodowej, jednak skorzystanie ze znanej statystycznej metody Bootstrap jest również często spotykane w literaturze. Głównym problemem modelowania wyżej wymienionymi metodami jest niewielka próbka danych historycznych - trójkąty strat zawierają zazwyczaj kilkanaście bądź kilkadziesiąt obserwacji. Zatem pomysł Bootstrapu polega na generowaniu nowych losowych próbek na podstawie danych, które mamy. Produkujemy sztuczne próbki wielokrotnie i dzięki temu jesteśmy w stanie uzyskać rzetelną reprezentację zadanego problemu. Dodatkowym plusem Bootstrapu jest tworzenie nowych próbek przy braku konkretnych założeń o postaci rozkładu.

2.6.2. Opis matematyczny

Zacznijmy od skonstruowania modelu autoregresyjnego, który pozwoli na opisanie relacji pomiędzy $C_{i,j}$ i $C_{i,j+1}$:

$$C_{i,j+1} = \lambda_j C_{i,j} + \sigma_j \sqrt{C_{i,j}} \mathcal{E}_{i,j+1},$$

gdzie $\mathcal{E}_{i,j+1}$ oznacza rezydua losowe, λ_j jest pewnym współczynnikiem, natomiast σ_j jest odchyleniem standardowym przy opóźnieniu j lat. Jesteśmy w stanie krok po kroku wyznaczyć estymatory powyższych wartości:

$$\hat{\lambda}_{j} = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}}, \hat{\sigma}_{j} = \sqrt{\frac{1}{n-j-1}} \sum_{i=0}^{n-j-1} C_{i,j} \left(\frac{C_{i,j+1}}{C_{i,j}} - \hat{\lambda}_{j} \right), \hat{\mathcal{E}}_{i,j+1} = \hat{\sigma}_{j}^{-1} \left(\frac{C_{i,j+1}}{C_{i,j}} - \hat{\lambda}_{j} \right) \sqrt{C_{i,j}}$$

Wyznaczamy dodatkowo wartość rezyduum dostosowanego:

$$z_{i,j+1} = \hat{\mathcal{E}}_{i,j+1} \left(1 - C_{i,j} \left(\sum_{i=0}^{n-j-1} C_{i,j} \right)^{-1} \right)^{-\frac{1}{2}}$$

Kopia z Boostrapu $C_{i,j+1}^*$ powstaje przy pomocy następującego wzoru:

$$C_{i,j+1}^* = \hat{\lambda}_j C_{i,j}^* + \hat{\sigma}_j \sqrt{C_{i,j}^*} z_{i,j+1}$$

Po powstaniu kopii analogicznie wyznaczamy współczynniki rozwoju Chain-Ladder: $\hat{\lambda}_{j}^{*} = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}^{*}}{\sum_{i=0}^{n-j-1} C_{i,j}^{*}}$. Dzięki temu, w modelu Bornhuettera-Fergusona jesteśmy w stanie wyznaczyć Bootstrap kopie współczynników γ :

$$\gamma_j^* = \prod_{k=j+1}^n \frac{1}{\lambda_k^*}$$

2.7. Dyskontowanie

Istotnym czynnikiem wyznaczania rezerw jest uwzględnienie zmiany wartości pieniądza w czasie. W naszym badania uwzględniliśmy w ostatecznych wynikach dyskontowanie z użyciem stóp wyznaczonych przez EIOPA [7]. Na 12.2022 prezentowały się ono następująco:

Poland
PL_31_12_2022_G VT_LLP_10_EXT_5 0_UFR_3.45
0 10 50 3,45 0,118825
6,401% 6,602%
6,719% 6,751% 6,744%
6,722% 6,693% 6,669%
6,658%

3. Implementacja

3.1. Agregacja danych

Z uwagi na strukturę danych i przyjęte standardy aktuarialne, wszystkie metody rozważaliśmy oddzielnie dla każdego lobu dyrektywy Wypłacalność II: GTPL, MH oraz MTPL.

Wyliczenia opierały się przede wszystkim na trójkątach szkodowych. Pierwszym krokiem było utworzenie dla każdego lobu trójkątów wzrostowych. Poniżej przykład takiego zestawienia dla lobu GTPL.

GTPL										
	ile lat później rozliczo	na szkoda								
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9
2012	1088980,621	1042687	443328,2	304590,8	265969,8	365086,3	224441,3	116540,3	67827,49	128442
2013	1306152,792	1116945	651920	401606,6	318266,3	489235,1	228598,9	363587,3	321467,2	0
2014	1249812,588	1246575	610788	580126,2	453542,5	219878	172987,1	274393,3	0	0
2015	1189810,006	1341060	566114,9	780861,9	926162,2	450487,4	314815,2	0	0	0
2016	1306513,605	1467184	753851	597794,8	396515,1	420343,7	0	0	0	0
2017	1300441,176	1620547	779361,8	742564,7	370408,5	0	0	0	0	0
2018	1397368,093	1846122	721028,7	697186,5	0	0	0	0	0	0
2019	1570945,768	1668730	1045490	0	0	0	0	0	0	0
2020	1381532,668	1649835	0	0	0	0	0	0	0	0
2021	1346802,354	0	0	0	0	0	0	0	0	0

Rysunek 3.1: Trójkat wzrostowy dla lobu GTPL dyrektywy Wypłacalność II

3.2. Konstrukcja trójkątów skumulowanych

Kolejnym krokiem było skonstruowanie trójkątów skumulowanych. Ich kalkulacja nie jest problematyczna - wystarczy do wypłat z danego roku szkodowego dodać wszystkie

wypłaty, które miały miejsce w latach poprzednich. Poniżej przedstawimy trójkąty skumulowane, które posłużyły nam w dalszych obliczeniach we wszystkich metodach.

GTPL										
	ile lat później rozlicz	1306152,792 2423098 1249812,588 2496387 1189810,006 2530870 1306513,605 2773697 1300441,176 2920988 1397368,093 3243490								
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9
2012	1088980,621	2131667	2574995	2879586	3145556	3510642	3735084	3851624	3919451	4047893
2013	1306152,792	2423098	3075018	3476625	3794891	4284126	4512725	4876312	5197779	0
2014	1249812,588	2496387	3107175	3687302	4140844	4360722	4533709	4808103	0	0
2015	1189810,006	2530870	3096984	3877846	4804009	5254496	5569311	0	0	0
2016	1306513,605	2773697	3527548	4125343	4521858	4942202	0	0	0	0
2017	1300441,176	2920988	3700350	4442914	4813323	0	0	0	0	0
2018	1397368,093	3243490	3964519	4661705	0	0	0	0	0	0
2019	1570945,768	3239676	4285166	0	0	0	0	0	0	0
2020	1381532,668	3031367	0	0	0	0	0	0	0	0
2021	1346802,354	0	0	0	0	0	0	0	0	0

Rysunek 3.2: Trójkąty Skumulowane dla lobu GTPL dyrektywy Wypłacalność II

ile lat później rozlicz	ona szkoda								
0	1	2	3	4	5	6	7	8	9
4262147,38	5171041	5206528	5217735	5216422	5213475	5212027	5211044	5210426	5209988
4103976,849	5000493	5029836	5040327	5040099	5038647	5038526	5038187	5037518	0
4144525,289	5009318	5047661	5052631	5050444	5048338	5048061	5046848	0	0
4297632,848	5191643	5228063	5234465	5234678	5233856	5233393	0	0	0
4725123,086	5836983	5873044	5883071	5884627	5886582	0	0	0	0
5597984,108	6970614	7066846	7068831	7067692	0	0	0	0	0
5550939,886	6821264	6865981	6881034	0	0	0	0	0	0
5825184,461	7002248	7032173	0	0	0	0	0	0	0
6735078,069	7976473	0	0	0	0	0	0	0	0
6428313,276	0	0	0	0	0	0	0	0	0
	0 4262147,38 4103976,849 4144525,289 4297632,848 4725123,086 5597984,108 5550939,886 5825184,461 6735078,069	0 1 4262147,38 5171041 4103976,849 5000493 4144525,289 5009318 4297632,848 5191643 4725123,086 5836983 5597984,108 6970614 5550939,886 6821264 5825184,461 7002248 6735078,069 7976473	4103976,849 5000493 5029836 4144525,289 5009318 5047661 4297632,848 5191643 5228063 4725123,086 5836983 5873044 5597984,108 6970614 7066846 5550939,886 6821264 6865981 5825184,461 7002248 7032173 6735078,069 7976473 0	0 1 2 3 4262147,38 5171041 5206528 5217735 4103976,849 5000493 5029836 5040327 4144525,289 5009318 5047661 5052631 4297632,848 5191643 5228063 5234465 4725123,086 5836983 5873044 5883071 5597984,108 6970614 7066846 7068831 5550939,886 6821264 6865981 6881034 5825184,461 7002248 7032173 0 6735078,069 7976473 0 0	0 1 2 3 4 4262147,38 5171041 5206528 5217735 5216422 4103976,849 5000493 5029836 5040327 5040099 4144525,289 5009318 5047661 5052631 5050444 4297632,848 5191643 5228063 5234465 5234678 4725123,086 5836983 5873044 5883071 5884627 5597984,108 6970614 7066846 7068831 7067692 5550939,886 6821264 6865981 6881034 0 5825184,461 7002248 7032173 0 0 6735078,069 7976473 0 0 0	0 1 2 3 4 5 4262147,38 5171041 5206528 5217735 5216422 5213475 4103976,849 5000493 5029836 5040327 5040099 5038647 4144525,289 5009318 5047661 5052631 5050444 5048338 4297632,848 5191643 5228063 5234465 5234678 5233856 4725123,086 5836983 5873044 5883071 5884627 5886582 5597984,108 6970614 7066846 7068831 7067692 0 5825184,461 7002248 7032173 0 0 0 6735078,069 7976473 0 0 0 0	0 1 2 3 4 5 6 4262147,38 5171041 5206528 5217735 5216422 5213475 5212027 4103976,849 5000493 5029836 5040327 5040099 5038647 5038526 4144525,289 5009318 5047661 5052631 5050444 5048338 5048061 4297632,848 5191643 5228063 5234465 5234678 5233856 5233393 4725123,086 5836983 5873044 5883071 5884627 5886582 0 5597984,108 6970614 7066846 7068831 7067692 0 0 5550939,886 6821264 6865981 6881034 0 0 0 5825184,461 7002248 7032173 0 0 0 0 6735078,069 7976473 0 0 0 0 0	0 1 2 3 4 5 6 7 4262147,38 5171041 5206528 5217735 5216422 5213475 5212027 5211044 4103976,849 5000493 5029836 5040327 5040099 5038647 5038526 5038187 4144525,289 5009318 5047661 5052631 5050444 5048338 5048061 5046848 4297632,848 5191643 5228063 5234465 5234678 5233856 5233393 0 4725123,086 5836983 5873044 5883071 5884627 5886582 0 0 5597984,108 6970614 7066846 7068831 7067692 0 0 0 5825184,461 7002248 7032173 0 0 0 0 0 6735078,069 7976473 0 0 0 0 0 0	0 1 2 3 4 5 6 7 8 4262147,38 5171041 5206528 5217735 5216422 5213475 5212027 5211044 5210426 4103976,849 5000493 5029836 5040327 5040099 5038647 5038526 5038187 5037518 4144525,289 5009318 5047661 5052631 5050444 5048338 5048061 5046848 0 4297632,848 5191643 5228063 5234465 5234678 5233856 5233393 0 0 4725123,086 5836983 5873044 5883071 5884627 5886582 0 0 0 5597984,108 6970614 7066846 7068831 7067692 0 0 0 0 5825184,461 7002248 7032173 0 0 0 0 0 0 6735078,069 7976473 0 0 0 0 0 0 0 0

Rysunek 3.3: Trójkąty Skumulowane dla lobu MH dyrektywy Wypłacalność II

MTPL										
	ile lat później rozlicz	ona szkoda								
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9
2012	5581442,658	8206653	8898202	9220575	9425854	9531753	9602551	9664785	9744191	9836885
2013	5411379,555	7900594	8452810	8739591	8882282	9021859	9101997	9177705	9232133	0
2014	5125655,485	7419676	8035195	8311294	8485839	8612753	8705090	8790192	0	0
2015	4937863,181	7280219	7761059	8070595	8357687	8508734	8597299	0	0	0
2016	4897019,639	7246289	7830053	8169946	8399470	8553302	0	0	0	0
2017	5014791,957	7473356	8051606	8381434	8539007	0	0	0	0	0
2018	5289023,955	7765444	8242777	8468153	0	0	0	0	0	0
2019	5361675,026	7552270	8066189	0	0	0	0	0	0	0
2020	5311015,511	7383877	0	0	0	0	0	0	0	0
2021	5299650,841	0	0	0	0	0	0	0	0	0

Rysunek 3.4: Trójkąty Skumulowane dla lobu MTPL dyrektywy Wypłacalność II

3.3. Współczynniki rozwoju i klasyczna metoda Chain-Ladder

Współczynniki rozwoju (LDF) to najczęściej używane estymatory metody Chain-Ladder. Dla danych szkodowych $C_{i,j}$ oznaczających skumulowane straty, które wystąpiły w roku i i zostały zlikwidowane z opóźnieniem nie większym niż j lat, współczynniki rozwoju zadają się następującym wzorem:

$$\widehat{f}_{j} = \frac{\sum_{i=1}^{n-j+1} C_{i,j}}{\sum_{i=1}^{n-j+1} C_{i,j-1}}$$

Na podstawie tych współczynników wyznaczane są współczynniki skumulowane oraz szacowane są przyszłe szkody:

$$\widehat{C}_{i,j} = C_{i,j-k} \cdot \widetilde{f}_k,$$

gdzie \tilde{f}_k oznaczają LDF skumulowane i wyznaczają się wzorem:

$$\tilde{f}_k = \prod_{i=1}^k \hat{f}_i.$$

Poniżej przedstawiamy zastosowanie klasycznej metody Chain-Ladder dla trzech rozważanych lobów dyrektywy Wypłacalność II.

GTPL											
	ile lat później rozliczona szkoda										
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9	Rezerwa
2012	1 088 981 zł	2 131 667 zł	2 574 995 zł	2 879 586 zł	3 145 556 zł	3 510 642 zł	3 735 084 zł	3 851 624 zł	3 919 451 zł	4 047 893 zł	0 z
2013	1 306 153 zł	2 423 098 zł	3 075 018 zł	3 476 625 zł	3 794 891 zł	4 284 126 zł	4 512 725 zł	4 876 312 zł	5 197 779 zł	5 368 113 zł	170 333 z
2014	1 249 813 zł	2 496 387 zł	3 107 175 zł	3 687 302 zł	4 140 844 zł	4 360 722 zł	4 533 709 zł	4 808 103 zł	0 zł	5 187 151 zł	379 049 z
2015	1 189 810 zł	2 530 870 zł	3 096 984 zł	3 877 846 zł	4 804 009 zł	5 254 496 zł	5 569 311 zł	0 zł	0 zł	6 363 057 zł	793 746 z
2016	1 306 514 zł	2 773 697 zł	3 527 548 zł	4 125 343 zł	4 521 858 zł	4 942 202 zł	0 zł	0 zł	0 zł	5 951 714 zł	1 009 512 zł
2017	1 300 441 zł	2 920 988 zł	3 700 350 zł	4 442 914 zł	4 813 323 zł	0 zł	0 zł	0 zł	0 zł	6 348 982 zł	1 535 659 zł
2018	1 397 368 zł	3 243 490 zł	3 964 519 zł	4 661 705 zł	0 zł	0 zł	0 zł	0 zł	0 zł	6 895 650 zł	2 233 945 zł
2019	1 570 946 zł	3 239 676 zł	4 285 166 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	7 467 623 zł	3 182 457 z
2020	1 381 533 zł	3 031 367 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	6 635 360 zł	3 603 992 z
2021	1 346 802 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	6 198 075 zł	4 851 273 z
											17 759 966 zł
LDF		2,102456855	1,256062295	1,1781058	1,121427791	1,095311188	1,054040388	1,059032182	1,044603293	1,032770404	
Skumulowane LDF	4,602067544	2,188899873	1,742668243	1,479212005	1,31904347	1,204263669	1,14252137	1,078835365	1,032770404	1	

Rysunek 3.5: Metoda Chain-Ladder dla lobu GTPL dyrektywy Wypłacalność II

MH											
	ile lat później rozliczona szkoda										
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9	Rezerwa
2012	4 262 147 zł	5 171 041 zł	5 206 528 zł	5 217 735 zł	5 216 422 zł	5 213 475 zł	5 212 027 zł	5 211 044 zł	5 210 426 zł	5 209 988 zł	0 z
2013	4 103 977 zł	5 000 493 zł	5 029 836 zł	5 040 327 zł	5 040 099 zł	5 038 647 zł	5 038 526 zł	5 038 187 zł	5 037 518 zł	5 037 095 zł	-423 zł
2014	4 144 525 zł	5 009 318 zł	5 047 661 zł	5 052 631 zł	5 050 444 zł	5 048 338 zł	5 048 061 zł	5 046 848 zł	0 zł	5 045 790 zł	-1 058 zł
2015	4 297 633 zł	5 191 643 zł	5 228 063 zł	5 234 465 zł	5 234 678 zł	5 233 856 zł	5 233 393 zł	0 zł	0 zł	5 231 429 zł	-1 964 zł
2016	4 725 123 zł	5 836 983 zł	5 873 044 zł	5 883 071 zł	5 884 627 zł	5 886 582 zł	0 zł	0 zł	0 zł	5 883 712 zł	-2 871 zł
2017	5 597 984 zł	6 970 614 zł	7 066 846 zł	7 068 831 zł	7 067 692 zł	0 zł	0 zł	0 zł	0 zł	7 062 809 zł	-4 883 zł
2018	5 550 940 zł	6 821 264 zł	6 865 981 zł	6 881 034 zł	0 zł	0 zł	0 zł	0 zł	0 zł	6 875 645 zł	-5 390 zł
2019	5 825 184 zł	7 002 248 zł	7 032 173 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	7 037 145 zł	4 972 zł
2020	6 735 078 zł	7 976 473 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	8 040 960 zł	64 487 zł
2021	6 428 313 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	7 875 024 zł	1 446 711 zł
											1 499 582 zł
LDF		1,215228272	1,007372403	1,001491495	0,999907529	0,999796723	0,999887532	0,999834341	0,999874339	0,999916018	
Skumulowane LDF	1,225052999	1,008084676	1,00070706	0,999216733	0,99930914	0,999512318	0,999624744	0,999790368	0,999916018	1	

Rysunek 3.6: Metoda Chain-Ladder dla lobu MH dyrektywy Wypłacalność II

MTPL											
	ile lat później rozliczona szkoda										
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9	Rezerwa
2012	5 581 443 zł	8 206 653 zł	8 898 202 zł	9 220 575 zł	9 425 854 zł	9 531 753 zł	9 602 551 zł	9 664 785 zł	9 744 191 zł	9 836 885 zł	0 zł
2013	5 411 380 zł	7 900 594 zł	8 452 810 zł	8 739 591 zł	8 882 282 zł	9 021 859 zł	9 101 997 zł	9 177 705 zł	9 232 133 zł	9 319 956 zł	87 823 zł
2014	5 125 655 zł	7 419 676 zł	8 035 195 zł	8 311 294 zł	8 485 839 zł	8 612 753 zł	8 705 090 zł	8 790 192 zł	0 zł	8 936 840 zł	146 648 zł
2015	4 937 863 zł	7 280 219 zł	7 761 059 zł	8 070 595 zł	8 357 687 zł	8 508 734 zł	8 597 299 zł	0 zł	0 zł	8 811 856 zł	214 557 zł
2016	4 897 020 zł	7 246 289 zł	7 830 053 zł	8 169 946 zł	8 399 470 zł	8 553 302 zł	0 zł	0 zł	0 zł	8 848 306 zł	295 004 zł
2017	5 014 792 zł	7 473 356 zł	8 051 606 zł	8 381 434 zł	8 539 007 zł	0 zł	0 zł	0 zł	0 zł	8 970 890 zł	431 882 zł
2018	5 289 024 zł	7 765 444 zł	8 242 777 zł	8 468 153 zł	0 zł	0 zł	0 zł	0 zł	0 zł	9 105 642 zł	637 489 zł
2019	5 361 675 zł	7 552 270 zł	8 066 189 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	8 989 917 zł	923 728 zł
2020	5 311 016 zł	7 383 877 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	8 837 217 zł	1 453 340 zł
2021	5 299 651 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	9 221 341 zł	3 921 690 zł
											8 112 162 zł
LDF		1,453837015	1,07385037	1,03649072	1,023513949	1,015551148	1,009301631	1,008137462	1,007102779	1,009512745	
Skumulowane LDF	1,73999022	1,196826193	1,114518583	1,075280813	1,050577585	1,034490076	1,024956311	1,016683091	1,009512745	1	

Rysunek 3.7: Metoda Chain-Ladder dla lobu MTPL dyrektywy Wypłacalność II

3.4. Munich Chain-Ladder

Metoda wyznaczania estymatorów współczynników kierunkowych $\hat{\lambda}^P$ oraz $\hat{\lambda}^I$ opierała się na [3]. Będziemy posługiwać się współczynnikami rozwoju w metodzie Chain-Ladder z poprzedniej sekcji (Paid). Analogiczne współczynniki LDF wyznaczamy dla strat łącznych (Incurred), które wyznaczamy z sumy kolumn z pierwotnych danych - payment incremental oraz RBNS reported. Poniżej przedstawiamy te dane oraz ich współczynniki LDF.

GTPL					Incurred						
	ile lat później rozliczona szkoda										
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9	Rezerwa
2012	6 001 987 zł	15 550 843 zł	23 964 367 zł	31 346 792 zł	37 796 754 zł	42 841 898 zł	46 602 177 zł	49 618 282 zł	52 196 181 zł	54 510 117 zł	
2013	6 886 572 zł	18 139 091 zł	29 109 254 zł	39 577 125 zł	48 851 755 zł	56 396 657 zł	62 357 061 zł	67 925 869 zł	72 606 234 zł	0 zł	
2014	7 657 928 zł	20 172 829 zł	32 072 875 zł	42 652 731 zł	51 350 890 zł	57 532 383 zł	63 108 304 zł	68 755 655 zł	0 zł	0 zł	
2015	7 728 655 zł	21 348 249 zł	34 289 219 zł	46 885 827 zł	57 499 993 zł	65 787 925 zł	73 227 999 zł	0 zł	0 zł	0 zł	
2016	7 932 442 zł	22 809 842 zł	37 109 394 zł	48 808 519 zł	57 963 837 zł	66 088 400 zł	0 zł	0 zł	0 zł	0 zł	
2017	8 635 929 zł	23 056 343 zł	35 690 240 zł	47 015 697 zł	58 066 891 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2018	9 775 805 zł	25 813 920 zł	39 565 306 zł	52 621 525 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2019	9 208 164 zł	24 671 832 zł	40 334 697 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2020	8 861 576 zł	23 039 119 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2021	4 460 807 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
LDF		2.677185235	1.586212828	1.332646012	1,215553242	1.138813172	1.102160286	1.08271325	1.061749251	1.044331504	
Skumulowane LDF	10,36572549	3,871874594	,		1,506853512	,	,	,		1	

Rysunek 3.8: Trójkaty Skumulowane Strat Łącznych dla lobu GTPL.

MH					Incurred						
	ile lat później rozliczona szkoda										
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9	Rezerwa
2012	7 350 424 zł	9 616 116 zł	10 257 600 zł	10 550 466 zł	10 668 401 zł	10 692 269 zł	10 698 501 zł	10 698 350 zł	10 698 555 zł	10 698 977 zł	
2013	7 242 551 zł	9 567 345 zł	10 185 830 zł	10 464 024 zł	10 504 626 zł	10 502 704 zł	10 498 245 zł	10 493 269 zł	10 489 003 zł	0 zł	
2014	7 271 513 zł	9 581 161 zł	10 316 489 zł	10 570 703 zł	10 627 832 zł	10 642 154 zł	10 643 973 zł	10 644 471 zł	0 zł	0 zł	
2015	7 540 076 zł	10 064 372 zł	10 878 311 zł	11 144 157 zł	11 190 559 zł	11 195 179 zł	11 196 569 zł	0 zł	0 zł	0 zł	
2016	8 552 966 zł	11 634 930 zł	12 561 428 zł	12 831 067 zł	12 873 523 zł	12 893 455 zł	0 zł	0 zł	0 zł	0 zł	
2017	10 208 950 zł	13 845 419 zł	14 980 521 zł	15 248 250 zł	15 376 140 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2018	9 641 581 zł	12 801 932 zł	13 525 131 zł	13 996 478 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2019	9 602 240 zł	12 272 672 zł	12 983 607 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2020	10 957 458 zł	16 138 709 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2021	7 577 748 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
LDF		1,346505982	1,070538055	1,025389347	1,006106811	1,001088708	1,000115784	0,999854597	0,999808316	1,000039475	
Skumulowane LDF	1,488458968	1,105423212	1,032586564	1,007019009	1,000906662	0,999818151	0,999702402	0,999847783	1,000039475	1	

Rysunek 3.9: Trójkaty Skumulowane Strat Łącznych dla lobu MH.

Ponadto, krok po kroku omówimy postępowanie wyprowadzania kolejnych estymatorów potrzebnych do wyznaczenia rezerw metodą Munich Chain-Ladder. Omówimy schemat

MTPL					Incurred						
	ile lat później rozliczona szkoda										
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9	Rezerwa
2012	17 391 660 zł	34 147 138 zł	44 738 678 zł	52 809 502 zł	59 263 511 zł	64 738 772 zł	70 517 976 zł	76 130 475 zł	81 310 530 zł	86 200 670 zł	
2013	17 085 147 zł	32 025 972 zł	41 289 321 zł	47 809 410 zł	52 539 340 zł	56 967 591 zł	60 858 280 zł	64 337 239 zł	67 888 793 zł	0 zł	
2014	16 829 045 zł	32 890 028 zł	43 121 410 zł	50 515 343 zł	56 543 109 zł	61 731 483 zł	66 424 812 zł	70 921 125 zł	0 zł	0 zł	
2015	17 715 183 zł	35 177 030 zł	47 204 551 zł	56 394 231 zł	63 057 229 zł	68 410 551 zł	73 321 762 zł	0 zł	0 zł	0 zł	
2016	17 267 511 zł	34 654 527 zł	46 076 191 zł	53 911 201 zł	59 638 093 zł	64 523 123 zł	0 zł	0 zł	0 zł	0 zł	
2017	17 530 724 zł	35 405 743 zł	46 720 145 zł	54 478 589 zł	60 871 042 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2018	18 111 593 zł	33 208 207 zł	42 068 103 zł	49 076 342 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2019	17 082 391 zł	30 970 956 zł	40 620 599 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2020	16 303 862 zł	32 712 305 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
2021	9 011 794 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	0 zł	
LDF		1,939206148	1,310486885	1,172792551	1,11393468	1,087033141	1,076531885	1,068694126	1,062160973	1,060141525	
Skumulowane LDF	4,675358017	2,410964931	1,83974747	1,568689593	1,408241993	1,295491314	1,203393352	1,126040954	1,060141525	1	

Rysunek 3.10: Trójkąty Skumulowane Strat Łącznych dla lobu MTPL.

dla lobu GTPL dyrektywy Wypłacalność II, a dla pozostałych lobów pokażemy wyniki otrzymane w analogiczny sposób. Zaczniemy od przedstawienia wzorów na estymatory współczynników q_j oraz q_j^{inv} dla ilorazów (P/I) oraz (I/P), a także współczynników proporcjonalności.

$$\widehat{q}(j) = \frac{\sum_{n=1}^{J-j+1} P_{n,j}}{\sum_{n=1}^{J-j+1} I_{n,j}} \quad \text{oraz} \quad \widehat{q}_{inv}(j) = \frac{\sum_{n=1}^{J-j+1} I_{n,j}}{\sum_{n=1}^{J-j+1} P_{n,j}}$$
(3.1)

Przy czym J oznacza liczbę rozważanych lat wstecz - dla naszych danych jest to 9 lat. Estymatory współczynników proporcjonalności zadają wzory:

$$\widehat{\sigma}^{P}(j) = \sqrt{\frac{1}{J-j-1} \sum_{n=1}^{J-j} P_{n,j} \left(\frac{P_{n,j+1}}{P_{n,j}} - \widehat{f}_{j}^{P} \right)^{2}}$$
(3.2)

$$\widehat{\sigma}^{I}(j) = \sqrt{\frac{1}{J - j - 1} \sum_{n=1}^{J - j} I_{n,j} \left(\frac{I_{n,j+1}}{I_{n,j}} - \widehat{f}_{j}^{I} \right)^{2}}$$
(3.3)

$$\hat{\sigma}^{Q}(j) = \sqrt{\frac{1}{J-j} \sum_{n=1}^{J-j+1} I_{n,j} \left(Q_{n,j} - \hat{q}(j) \right)^{2}}$$
(3.4)

$$\widehat{\sigma}^{Q_{\text{inv}}}(j) = \sqrt{\frac{1}{J-j} \sum_{n=1}^{J-j+1} P_{n,j} \left(\frac{1}{Q_{n,j}} - \widehat{q}_{\text{inv}}(j) \right)^2}$$
(3.5)

Poniżej przedstawiamy powyższe estymatory wyznaczone w kolejnych latach dla lobu GTPL. Dla ostatniego okresu w estymatorach σ^P oraz σ^I ustalamy je sztucznie na pułapie

[stymatory											
	0	1	2	3	4	5	6	7	8	9		
q	0,317835	0,226528	0,185704	0,162637	0,14802	0,139799	0,132807	0,13072	0,127188	0,114116		
q_inv	3,146284	4,414467	5,384915	6,148667	6,755834	7,15313	7,529739	7,649957	7,862393	8,763005		
sigma_P	77,03443	23,71397	15,31708	20,24587	8,604109	4,576682	5,000885	4,958884	0,10	<- założ	enie dla ost	tatnieg
sigma_I	328,6968	135,3242	80,10148	64,31462	36,09774	72,84948	90,90564	75,81864	0,1	<- założ	enie dla ost	tatnieg
sigma_Q	286,682	88,8089	103,5559	103,5576	102,5034	103,5327	109,2704	82,14517	98,23291			
sigma_Qinv	1243,207	827,7182	1310,399	1587,686	1777,955	1974,183	2270,984	1701,925	2157,66			

Rysunek 3.11: Estymatory współczynników

0.1, co również czynią autorzy w pracy [3]. Kolejnym krokiem jest wyznaczenie macierzy rezyduów F^P , F^I , Q, oraz Q^{inv} w następujący sposób:

$$\widehat{\mathbf{Res}}(F_{i,j}^P) = \mathbf{Res}\left(\frac{P_{i,j+1}}{P_{i,j}}\middle|\mathcal{P}_i(j)\right) = \frac{F_{i,j}^P - \widehat{f}_j^P}{\widehat{\sigma}^P(j)}\sqrt{P_{i,j}},\tag{3.6}$$

$$\widehat{\mathbf{Res}}(F_{i,j}^{I}) = \mathbf{Res}\left(\frac{I_{i,j+1}}{I_{i,j}}\middle|\mathcal{I}_{i}(j)\right) = \frac{F_{i,j}^{I} - \widehat{f}_{j}^{I}}{\widehat{\sigma}^{I}(j)}\sqrt{I_{i,j}},\tag{3.7}$$

$$\widehat{\mathbf{Res}}(Q_{i,j}) = \mathbf{Res}\left(Q_{i,j}\middle|\mathcal{B}_i(j)\right) = \frac{Q_{i,j} - \widehat{q}(j)}{\widehat{\sigma}^Q(j)}\sqrt{I_{i,j}},\tag{3.8}$$

$$\widehat{\mathbf{Res}}(Q_{i,j}^{\mathrm{inv}}) = \mathbf{Res}\left(\frac{1}{Q_{i,j}}\middle|\mathcal{B}_i(j)\right) = \frac{\frac{1}{Q_{i,j}} - \widehat{q}_{\mathrm{inv}}(j)}{\widehat{\sigma}^Q(j)}\sqrt{P_{i,j}}.$$
(3.9)

Powyższe dla lobu GTPL wyznaczają się następująco: Mając te wszystkie estymatory

Fvb	0	1	2	3	4	5	6	7	8	9
0	0,51	1,26	-0,05	-0,19	-1,54	-1,26	-1,03	0,70	0,00	0,00
1	0,19	-0,47	-0,49	-1,05	0,06	-0,27	0,11	-0,72	0,00	0,00
2	-0,18	1,05	-0,39	-0,36	-0,20	0,91	0,97	0,00	0,00	0,00
3	0,59	-0,89	0,62	1,69	0,85	0,71	0,00	0,00	0,00	0,00
4	0,74	0,76	1,26	0,65	0,93	0,00	0,00	0,00	0,00	0,00
5	1,06	0,41	0,83	-0,67	0,00	0,00	0,00	0,00	0,00	0,00
6	0,43	-1,45	-1,71	0,00	0,00	0,00	0,00	0,00	0,00	0,00
7	-1,36	-0,67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
8	-1,90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
9	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Rysunek 3.12: Macierz rezyduów ${\cal F}^P$

EvI	0	1	2	3	4	5	6	7	8	9	
(0,31	-0,01	0,64	0,94	1,14	1,41	1,01	0,68	0,00	0,00	
	-0,81	-0,89	-1,19	-1,61	-0,55	-0,85	-0,99	-0,74	0,00	0,00	
	0,19	0,03	-0,11	0,60	0,98	-0,05	-0,09	0,00	0,00	0,00	
:	0,60	1,38	1,88	0,49	-0,47	-0,54	0,00	0,00	0,00	0,00	
	0,86	0,83	-0,23	-0,88	-1,10	0,00	0,00	0,00	0,00	0,00	
Į.	5 1,02	0,40	-0,57	0,39	0,00	0,00	0,00	0,00	0,00	0,00	
	-1,37	-1,86	-0,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
	7 -1,59	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
	3 0,83	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
9	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

Rysunek 3.13: Macierz rezyduów ${\cal F}^I$

Q	0	1	2	3	4	5	6	7	8	9	
0	0,04	0,91	0,85	0,84	0,83	0,58	0,26	-0,40	-0,67	0,00	
1	-0,02	1,28	1,18	1,35	1,49	1,35	1,20	1,16	0,74	0,00	
2	-0,19	-0,06	0,04	0,13	0,15	-0,02	-0,13	-0,69	0,00	0,00	
3	-0,57	-1,31	-1,41	-1,42	-1,20	-1,23	-1,22	0,00	0,00	0,00	
4	-0,50	-1,16	-1,03	-0,79	-0,54	-0,56	0,00	0,00	0,00	0,00	
5	-0,46	-1,04	-0,88	-0,63	-0,59	0,00	0,00	0,00	0,00	0,00	
6	-0,38	0,47	0,64	0,67	0,00	0,00	0,00	0,00	0,00	0,00	
7	-0,06	1,09	0,79	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
8	0,11	-0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
9	2,83	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
			Suma ^2	45,00							

Rysunek 3.14: Macierz rezyduów ${\cal Q}$

Q_inv	0	1	2	3	4	5	6	7	8	9	
0	-0,06	-0,88	-0,81	-0,81	-0,81	-0,56	-0,25	0,41	0,70	0,00	
1	0,02	-1,23	-1,11	-1,26	-1,41	-1,28	-1,12	-1,14	-0,72	0,00	
2	0,25	0,06	-0,04	-0,13	-0,15	0,02	0,13	0,73	0,00	0,00	
3	0,79	1,36	1,48	1,50	1,28	1,31	1,29	0,00	0,00	0,00	
4	0,68	1,20	1,07	0,81	0,56	0,58	0,00	0,00	0,00	0,00	
5	0,63	1,07	0,90	0,64	0,61	0,00	0,00	0,00	0,00	0,00	
6	0,51	-0,46	-0,62	-0,65	0,00	0,00	0,00	0,00	0,00	0,00	
7	0,07	-1,04	-0,76	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
8	-0,14	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
9	-2,68	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
			Suma ^2	45,00							

Rysunek 3.15: Macierz rezyduów Q^{inv}

jesteśmy w stanie dobrać estymatory współczynników kierunkowych λ^P oraz λ^I w nastę-

pujący sposób:

$$\widehat{\lambda}^{P} = \frac{\sum_{(i,j)} \widehat{\mathbf{Res}}(Q_{i,j}^{\mathrm{inv}}) \cdot \widehat{\mathbf{Res}}(F_{i,j}^{P})}{\sum_{(i,j)} \widehat{\mathbf{Res}}(Q_{i,j}^{\mathrm{inv}})^{2}},$$
(3.10)

$$\widehat{\lambda^I} = \frac{\sum_{(i,j)} \widehat{\mathbf{Res}}(Q_{i,j}) \cdot \widehat{\mathbf{Res}}(F_{i,j}^I)}{\sum_{(i,j)} \widehat{\mathbf{Res}}(Q_{i,j})^2},$$
(3.11)

Powyższe estymatory w przypadku lobu GTML wyznaczają się następująco: Pozostaje

Lambda^P	0,40019698	
Lambda^I	-0,236694545	

Rysunek 3.16: Estymatory współczynników kierunkowych

jeszcze użyć estymator $\widehat{\lambda^P}$ do wyznaczenia nowych współczynników LDF zgodnie ze wzorem 2.18 i uzupełnienie trójkątów skumulowanych dla szkód opłaconych, aby wyznaczyć rezerwy.

GTPL						Paid					
	ile lat później rozliczona szkoda										
rok zajścia szkody	0	1	2	3	4	5	6	7	8	9	Rezerwa
2012	1 088 981 zł	2 131 667 zł	2 574 995 zł	2 879 586 zł	3 145 556 zł	3 510 642 zł	3 735 084 zł	3 851 624 zł	3 919 451 zł	4 047 893 zł	0 z
2013	1 306 153 zł	2 423 098 zł	3 075 018 zł	3 476 625 zł	3 794 891 zł	4 284 126 zł	4 512 725 zł	4 876 312 zł	5 197 779 zł	5 368 153 zł	170 374 z
2014	1 249 813 zł	2 496 387 zł	3 107 175 zł	3 687 302 zł	4 140 844 zł	4 360 722 zł	4 533 709 zł	4 808 103 zł	5 055 368 zł	5 221 074 zł	412 971 z
2015	1 189 810 zł	2 530 870 zł	3 096 984 zł	3 877 846 zł	4 804 009 zł	5 254 496 zł	5 569 311 zł	5 886 012 zł	6 188 711 zł	6 391 566 zł	822 254 z
2016	1 306 514 zł	2 773 697 zł	3 527 548 zł	4 125 343 zł	4 521 858 zł	4 942 202 zł	5 222 225 zł	5 519 189 zł	5 803 023 zł	5 993 236 zł	1 051 034 z
2017	1 300 441 zł	2 920 988 zł	3 700 350 zł	4 442 914 zł	4 813 323 zł	5 246 490 zł	5 543 754 zł	5 859 002 zł	6 160 312 zł	6 362 236 zł	1 548 913 z
2018	1 397 368 zł	3 243 490 zł	3 964 519 zł	4 661 705 zł	5 215 204 zł	5 684 539 zł	6 006 622 zł	6 348 191 zł	6 674 659 zł	6 893 442 zł	2 231 736 z
2019	1 570 946 zł	3 239 676 zł	4 285 166 zł	5 005 388 zł	5 599 693 zł	6 103 629 zł	6 449 458 zł	6 816 209 zł	7 166 745 zł	7 401 658 zł	3 116 492 z
2020	1 381 533 zł	3 031 367 zł	3 785 947 zł	4 422 263 zł	4 947 332 zł	5 392 560 zł	5 698 100 zł	6 022 125 zł	6 331 823 zł	6 539 369 zł	3 508 001 z
2021	1 346 802 zł	2 701 686 zł	3 374 200 zł	3 941 313 zł	4 409 277 zł	4 806 084 zł	5 078 394 zł	5 367 179 zł	5 643 196 zł	5 828 170 zł	4 481 367 z
										SUMA	17 343 143 z
LDF		2,102456855	1,256062295	1,1781058	1,121427791	1.095311188	1,054040388	1,059032182	1.044603293	1.032770404	
Skumulowane LDF	4,602067544	,	1,742668243			1,204263669		1,078835365			

Rysunek 3.17: Munich Chain-Ladder dla lobu GTPL (pola żółte stanowią estymacje).

3.5. Bornhuetter-Ferguson i Cape-Cod

Ze względu na stosunkowo prostą implementację dla tych dwóch metod, nie będziemy jej omawiać w tym dokumencie. Końcowe wyniki i nasze komentarze są przedstawione w następnych rozdziałach. Zainteresowanych odsyłamy również do pliku z kalkulacjami dostarczonego wraz z omawianą dokumentacją.

3.6. Bootstrap

3.6.1. Wstęp

Implementacja metody Bootstrap opierała się na [6]. Celem tej metody było wyznaczenie 100 losowych próbek trójkątów wzrostowych z metody Chain-Ladder. Dzięki temu wyznaczono podstawowe parametry estymowanego rozkładu rezerw (średnia, odchylenie standardowe, procentowy udział odchylenia standardowego w średniej). Poniżej przedstawiamy metodę dla danych lobu GTPL.

3.6.2. Dopasowanie metody Chain-Ladder

W pierwszej kolejności wyznaczono trójkąty wzrostowe i skumulowane oraz współczynniki rozwoju, analogicznie jak w poprzednich sekcjach. Następnie na podstawie współczynników rozwoju dopasowano wartości do trójkąta skumulowanego. Warto zaznaczyć, że dopasowanie działało również wstecz, mianowicie punktem wyjścia były wartości na przekątnej, odpowiadające aktualnemu rokowi.

$f_X =$	J66/I\$57									
	С	D	Е	F	G	Н	1	J	K	L
	0	1	2	3	4	5	6	7	8	9
0	879 581	1 849 282	2 322 814	2 736 520	3 068 810	3 361 302	3 542 948	3 752 096	3 919 451	4 047 893
1	1 166 457	2 452 425	3 080 399	3 629 035	4 069 701	4 457 589	4 698 479	4 975 841	5 197 779	5 368 113
2	1 127 135	2 369 753	2 976 557	3 506 699	3 932 510	4 307 322	4 540 091	4 808 103	5 022 560	5 187 151
3	1 382 652	2 906 966	3 651 330	4 301 653	4 823 993	5 283 774	5 569 311	5 898 080	6 161 154	6 363 057
4	1 293 270	2 719 044	3 415 288	4 023 571	4 512 144	4 942 202	5 209 280	5 516 796	5 762 863	5 951 714
5	1 379 593	2 900 536	3 643 253	4 292 138	4 813 323	5 272 086	5 556 992	5 885 033	6 147 525	6 348 982
6	1 498 381	3 150 281	3 956 950	4 661 705	5 227 766	5 726 030	6 035 467	6 391 754	6 676 848	6 895 650
7	1 622 667	3 411 587	4 285 166	5 048 379	5 661 393	6 200 987	6 536 090	6 921 930	7 230 671	7 467 623
8	1 441 821	3 031 367	3 807 586	4 485 739	5 030 433	5 509 889	5 807 646	6 150 484	6 424 816	6 635 360
9	1 346 802	2 831 594	3 556 658	4 190 120	4 698 917	5 146 776	5 424 910	5 745 154	6 001 407	6 198 075

Rysunek 3.18: Wartości nad główną przekątną są wyznaczane poprzez podzielenie komórki sąsiadującej z prawej strony przez odpowiadający współczynnik rozwoju. Przykład dla komórki I66.

W kolejnym kroku wyznaczony jest trójkąt wzrostowy i po zsumowaniu wartości ostatniej kolumny od drugiego wiersza otrzymujemy oszacowanie rezerwy.

3.6.3. Residua

Następnym etapem jest wyznaczenie kolejno: nieskalowanych residuów Pearsona, ich kwadratu, przeskalowanych residuów Pearsona oraz ich korekty średnią. Na koniec budujemy losowy model korzystający z wyznaczonych residuów.

3.6.4. Próbka Bootstrap

Mając postać losowych residuów jesteśmy w stanie wyznaczyć próbkę Bootstrap dla wartości wzrostowych. Do danych z próbki właściwej dodajemy losowe residuum pomnożone przez pierwiastek z wartości prawdziwej mnożonej przez wyznaczoną dyspersję Pearsona Chi-kwadrat. Kolejnym krokiem będzie wyznaczenie trójkąta wartości skumulowanych oraz współczynników rozwoju, analogicznie jak w metodzie Chain-Ladder. Na koniec wyznaczamy rezerwę dla danej próbki. Proces powtarzamy określoną liczbę razy w naszym wypadku 100 razy.

X ✓ fx	=H69*H\$57									
В	С	D	Е	F	G	Н	1	J	K	L
	0	1	2	3	4	5	6	7	8	9
0	879 581	1 849 282	2 322 814	2 736 520	3 068 810	3 361 302	3 542 948	3 752 096	3 919 451	4 047 893
1	1 166 457	2 452 425	3 080 399	3 629 035	4 069 701	4 457 589	4 698 479	4 975 841	5 197 779	5 368 113
2	1 127 135	2 369 753	2 976 557	3 506 699	3 932 510	4 307 322	4 540 091	4 808 103	5 022 560	5 187 151
3	1 382 652	2 906 966	3 651 330	4 301 653	4 823 993	5 283 774	5 569 311	5 898 080	6 161 154	6 363 057
4	1 293 270	2 719 044	3 415 288	4 023 571	4 512 144_	4 942 202	5 209 280	5 516 796	5 762 863	5 951 714
5	1 379 593	2 900 536	3 643 253	4 292 138	4 813 323	5 272 086	5 556 992	5 885 033	6 147 525	6 348 982
6	1 498 381	3 150 281	3 956 950	4 661 705	5 227 766	5 726 030	6 035 467	6 391 754	6 676 848	6 895 650
7	1 622 667	3 411 587	4 285 166	5 048 379	5 661 393	6 200 987	6 536 090	6 921 930	7 230 671	7 467 623
8	1 441 821	3 031 367	3 807 586	4 485 739	5 030 433	5 509 889	5 807 646	6 150 484	6 424 816	6 635 360
9	1 346 802	2 831 594	3 556 658	4 190 120	4 698 917	5 146 776	5 424 910	5 745 154	6 001 407	6 198 075
	Współczynniki i	rozwoju na dop	oasowanym tró	ijkącie						
inkrementalnie	2,102	1,256	1,178	1,121	1,095	1,054	1,059	1,045	1,033	
narastająco	4,602	2,189	1,743	1,479	1,319	1,204	1,143	1,079	1,033	

Rysunek 3.19: Wartości pod główną przekątną są wyznaczane poprzez pomnożenie komórki sąsiadującej z lewej strony przez odpowiadający współczynnik rozwoju. Przykład dla komórki I69.

3.6.5. Wyznaczanie parametrów rozkładu

Tworzymy tabelę z wynikami każdej kolejnej próbki Bootstrap, której kolumny składają się z rezerw w danym roku wypadku. Na koniec wyznaczamy średnią i odchylenie standardowe dla każdego z lat wypadkowych osobno oraz łącznie przy pomocy wbudowanych funkcji Excela (średnia arytmetyczna oraz odchylenie standardowe próbki).

Rysunek 3.20: Odejmujemy od prawdziwych wartości wartość wyznaczoną przy pomocy współczynników rozwoju i dzielimy przez pierwiastek wartości modelowanej.

fx	=D100^2									
	С	D	Е	F	G	Н	1	J	K	L
	Kwadrat residud	ów								
	0	1	2	3	4	5	6	7	8	9
0	49 850,98	5 493,39	1 926,45	28 779,44	13 236,40	18 017,41	10 082,41	41 005,29	59 190,58	0,00
1	16 730,14_	22 215,76	913,15	39 402,94	33 997,72	26 479,87	627,12	26 805,77	44 633,40	
2	13 352,27	12,60	26,15	4 712,73	1 806,10	64 044,34	15 353,92	151,96		
3	26 896,12	22 031,01	42 684,57	26 202,95	312 195,37	187,83	3 002,06			
4	135,63	1 202,69	4 766,29	180,83	17 345,83	219,42				
5	4 541,25	6 522,96	1 807,93	13 524,69	43 618,90					
6	6 809,75	22 835,53	9 091,88	81,29						
7	1 648,57	8 075,11	33 830,47							
8	2 520,93	2 286,65								
9	0,00									

Rysunek 3.21: Wyznaczamy kwadrat residuów.

	А	В	С	D	Е
1					
2					
3			Rozkład na dru	ıgim poziomie	1
4			Wyłaczyć res	idua zerowe?	PRAWDA
5		Czy śred	dnia residuuów	ma być zero?	PRAWDA
6			Licz	ba obserwacji	55
7			Liczb	a parametrów	19
8			Sto	pnie swobody	36
9		Dysp	ersja Pearson'	a Chi-kwadrat	32 030,4

Rysunek 3.22: Parametry do skalowania: wyznaczamy liczbę obserwacji z danych, liczba parametrów to dwukrotność liczby obserwacji w pierwszj kolumnie odjąć 1, natomiast dyspersja Pearsona to suma kwadratów residuów dzielona przez liczbę stopni swobody.

В	С	D	Е	F	G	Н		J	K	L
	Trójkąt 5 - Przesł	kalowane resid	ua Pearson'a							
	0	1	2	3	4	5	6	7	8	
0	1,54	0,51	-0,30	-1,17	-0,79	0,93	0,69	-1,40	-1,68	0,0
1	0,89	-1,03	0,21	-1,37	-1,27	1,12	-0,17	1,13	1,46	
2	0,80	0,02	0,04	0,47	0,29	-1,75	-0,86	0,09		
3	-1,13	-1,03	-1,43	1,12	3,86	-0,09	0,38			
4	0,08	0,24	0,48	-0,09	-0,91	-0,10				
5	-0,47	0,56	0,29	0,80	-1,44					
6	-0,57	1,04	-0,66	-0,06						
7	-0,28	-0,62	1,27							
8	-0,35	0,33								
9	0,00									
esiduów	53									
średnia	-0,007117									

Rysunek 3.23: Skalujemy residua przy pomocy powyższej formuły.

Rysunek 3.24: Dokonujemy korekty średnią.

=WYSZUKAJ.PIO	ONOWO(E272;	\$C\$272:\$D\$32	26;2)
С	D	Е	F
	Residua		
Indeks	Pearson'a	Losowo	Wylosowany
1	1,535	38	3,831
2	0,892	45	-0,094
3	0,798	49	0,382
4	-1,115	40	-1,422
5	0,087	6	-0,454
6	-0,454	3	0,798

Rysunek 3.25: Przyporządkowujemy losowo residua ze zwracaniem do miejsc w trójkącie.

fx	=F284									
	С	D	Е	F	G	Н	1	J	K	L
	Trójkąt 7 - Wylo	sowane resid	ua (F9 aby raz	wylosować)						
	0	1	2	3	4	5	6	7	8	9
0	-0,06	0,56	-0,06	1,13	-0,09	-0,10	-1,13	0,81	0,34	0,30
1	0,52_	-0,56	-1,02	0,03	3,87	-1,42	1,14	0,09	0,01	
2	-0,85	-0,27	1,13	-0,85	-0,79	-1,27	0,22	0,81		
3	0,30	0,01	-0,46	-0,56	-1,44	0,09	1,13			
4	1,28	-0,46	-1,42	-1,02	1,14	0,09				
5	-0,65	-1,74	3,87	0,81	-0,27					
6	-1,02	0,03	0,48	1,05						
7	0,30	-0,34	0,90							
8	-1,39	0,25								
9	-0,85									

Rysunek 3.26: Postać wylosowanych residuów.

fx	=D167*PIERWIA	STEK(\$E\$9*D8	5)+D85							
	С	D	Е	F	G	Н	1	J	K	L
	Trójkąt 8 - Pseu	do wartości in	krementalnie							
	0	1	2	3	4	5	6	7	8	9
0		1 069 259	466 739	543 896	323 443	283 279	95 794	275 469	192 057	147 734
1	1 266 775_	1 171 745	483 599	552 830	899 968	229 637	340 839	285 613	222 539	
2	965 885	1 188 094	764 476	419 554	333 847	236 064	251 404	342 612		
3	1 445 948	1 525 887	673 599	569 096	336 690	470 405	393 696			
4	1 553 259	1 327 836	484 226	466 189	630 916	440 885				
5	1 242 659	1 136 744	1 339 005	764 962	485 873					
6	1 275 367	1 659 177	884 023	862 628						
7	1 691 237	1 707 619	1 024 197							
8	1 142 808	1 645 195								
9	1 170 538									

Rysunek 3.27: Formuła na wartości wzrostowe z Bootstrapu.

В	С	D	E	F	G	Н		J	K	L
	Trójkąt 9 - Pseu	do wartości na	rastająco							
	0	1	2	3	4	5	6	7	8	
0	870 324	1 939 583	2 406 322	2 950 218	3 273 661	3 556 939	3 652 733	3 928 202	4 120 259	4 267 993
1	1 266 775	2 438 521	2 922 119	3 474 950	4 374 917	4 604 554	4 945 393	5 231 006	5 453 545	
2	965 885	2 153 978	2 918 454	3 338 008	3 671 855	3 907 919	4 159 323	4 501 935		
3	1 445 948	2 971 835	3 645 434	4 214 530	4 551 219	5 021 624	5 415 320			
4	1 553 259	2 881 095	3 365 320	3 831 509	4 462 425	4 903 310				
5	1 242 659	2 379 403	3 718 408	4 483 370	4 969 244					
6	1 275 367	2 934 544	3 818 566	4 681 195						
7	1 691 237	3 398 856	4 423 053							
8	1 142 808	2 788 004								
9	1 170 538									
	Współczynniki r	ozwoju z wylos	sowanej próbki	•						
krementalnie	2,085	1,290	1,183	1,135	1,082	1,063	1,071	1,045	1,036	
narastająco	4,775	2,290	1,775	1,500	1,321	1,222	1,149	1,073	1,036	

Rysunek 3.28: Trójkąt skumulowany z Bootstrapu.

	0	1	2	3	4	5	6	7	8	9		Rezerwy
0												0
1									5 453 545	195 540		195 540
2								4 501 935	203 782	168 726		372 508
3							5 415 320	383 603	262 491	217 335		863 428
4						4 903 310	310 342	369 317	252 716	209 241		1 141 617
5					4 969 244	405 737	340 195	404 844	277 025	229 369		1 657 170
6				4 681 195	632 221	433 838	363 758	432 883	296 212	245 255		2 404 168
7			4 423 053	810 920	706 877	485 068	406 712	484 000	331 190	274 216		3 498 984
8		2 788 004	808 719	659 421	574 816	394 446	330 729	393 578	269 316	222 986		3 654 011
9	1 170 538	1 270 410	708 048	577 335	503 262	345 345	289 559	344 584	235 791	195 229		4 469 562
											Razem	13 787 425

Rysunek 3.29: Rezerwy z pojedynczej próbki Bootstrap.

					Rok o	późnienia				
Losowanie	1	2	3	4	5	6	7	8	9	Razem
1	201 459	501 366	981 986	1 200 532	1 849 456	2 471 571	2 689 702	3 598 387	5 046 454	13 494 460
2	132 003	265 028	1 009 853	1 000 953	1 421 975	2 201 373	3 388 811	3 495 592	5 019 095	12 915 588
3	194 355	473 553	819 687	1 110 622	1 834 586	2 143 412	3 059 917	4 013 393	4 038 052	13 649 524
4	214 796	416 255	802 438	931 118	1 514 999	2 000 340	3 255 021	2 983 861	5 770 211	12 118 828
5	289 174	542 300	881 337	1 457 729	1 969 756	2 323 040	3 197 107	3 518 120	5 330 273	14 178 563
6	29 552	229 363	645 762	1 089 878	1 793 884	2 068 606	3 144 171	2 821 377	4 799 210	11 822 593
7	117 681	466 329	892 980	1 354 872	1 543 297	2 566 022	3 319 657	4 084 622	5 694 262	14 345 461
8	162 132	486 569	887 488	980 206	1 400 684	2 453 710	3 176 276	3 614 980	6 244 124	13 162 045
9	169 948	308 967	797 386	1 083 230	1 463 569	1 735 039	2 940 298	3 181 212	5 243 807	11 679 649
10	265 120	416 611	968 352	1 082 696	1 493 618	2 275 638	3 788 403	4 413 477	6 863 704	14 703 915

Rysunek 3.30: Tabela pomocnicza z rezerwami dla danej próbki Bootstrap.

	Obliczenia do E	Bootstrap'u								
Rezerwa	272 145	329 745	714 021	768 189	1 433 796	2 096 385	3 297 310	3 541 524	4 209 315	16 662 430
Średnia	174 867	392 197	835 362	1 052 575	1 569 350	2 261 880	3 261 888	3 710 982	4 949 594	18 208 696
SD	94 706	131 235	173 575	191 187	222 378	319 176	367 094	438 813	811 775	1 815 503
SD%	54,2%	33,5%	20,8%	18,2%	14,2%	14,1%	11,3%	11,8%	16,4%	10,0%
Rok	1	2	3	4	5	6	7	8	9	Razem

Rysunek 3.31: Wyznaczone parametry dla wszystkich próbek Bootstrap.

4. Analiza wyników

4.1. Porówanie metod

Poniżej przedstawiamy tabele prezentujące oszacowania rezerw dla każdej z metod (Chain-Ladder, Munich Chain-Ladder, Bornhuetter-Ferguson, Cape Cod, Chain-Ladder Bootstrap) dla wszystkich linii osobno.

GTPL						
		Metoda				
Rezerwa (rok opóźnienia)	Współczynnik dyskontowy	Chain-Ladder	Munich Chain-Ladder	Bornhuetter-Ferguson	Cape Cod	Bootstrap
1	0,939840791	160 086,22 zł	160 124,05 zł	146 069 zł	177 062,60 zł	164 594,35 zł
2	0,879972894	333 552,42 zł	363 403,34 zł	301 378 zł	365 326,05 zł	345 368,16 zł
3	0,822763011	653 064,73 zł	676 520,57 zł	457 930 zł	555 096,61 zł	686 803,75 zł
4	0,770038061	777 362,89 zł	809 336,09 zł	639 922 zł	775 704,33 zł	810 499,73 zł
5	0,721576922	1 108 096,23 zł	1 117 659,80 zł	851 129 zł	1 031 726,63 zł	1 127 614,72 zł
6	0,676824806	1 511 989,50 zł	1 510 494,40 zł	1 148 988 zł	1 392 787,62 zł	1 521 781,27 zł
7	0,635401905	2 022 139,08 zł	1 980 224,66 zł	1 595 222 zł	1 933 705,73 zł	2 056 976,67 zł
8	0,596615058	2 150 196,02 zł	2 092 926,49 zł	1 678 827 zł	2 035 051,00 zł	2 194 039,78 zł
9	0,559833752	2 715 906,39 zł	2 508 820,74 zł	2 213 059 zł	2 682 639,73 zł	2 742 048,67 zł
Łącznie		11 432 393,49 zł	11 219 510,17 zł	9 032 524,73 zł	10 949 100,30 zł	11 649 727,11 zł

Rysunek 4.1: Oszacowanie rezerw dla lobu GTPL.

MH						
		Metoda				
Rezerwa (rok opóźnienia)		Chain-Ladder	Munich Chain-Ladder	Bornhuetter-Ferguson	Cape Cod	Bootstrap
1	0,939840791	-397,61 zł	-362,46 zł	-1 215 zł	- 396,87 zł	- 384,84 z
2	0,879972894	-930,99 zł	-887,76 zł	-2 868 zł	- 936,83 zł	- 1 050,25 z
3	0,822763011	-1 615,79 zł	-1 470,51 zł	-4 978 zł	- 1 626,16 zł	- 1 743,50 z
4	0,770038061	-2 210,61 zł	-1 896,25 zł	-6 657 zł	- 2 174,92 zł	- 2 362,75 z
5	0,721576922	-3 523,30 zł	-2 810,08 zł	-10 472 zł	- 3 421,16 zł	- 3 668,92 z
6	0,676824806	-3 647,87 zł	-3 272,87 zł	-11 044 zł	- 3 607,96 zł	- 3 803,77 z
7	0,635401905	3 159,33 zł	2 167,95 zł	9 807 zł	3 203,88 zł	2 894,09 z
8	0,596615058	38 474,03 zł	41 350,02 zł	120 846 zł	39 479,47 zł	38 807,59 z
9	0,559833752	809 917,75 zł	772 959,81 zł	2 479 233 zł	809 943,72 zł	805 357,16 z
łącznie		839 224,92 zł	805 777,86 zł	2 572 653 zł	840 463 zł	834 044,80 :

Rysunek 4.2: Oszacowanie rezerw dla lobu MH.

MTPL						
		Metoda				
Rezerwa (rok opóźnienia)		Chain-Ladder	Munich Chain-Ladder	Bornhuetter-Ferguson	Cape Cod	Bootstrap
1	0,939840791	82 539,57 zł	82 457,68 zł	179 716 zł	83 469,22 zł	83 826,20 zł
2	0,879972894	129 045,89 zł	132 780,68 zł	277 550 zł	128 907,94 zł	128 852,60 zł
3	0,822763011	176 529,45 zł	186 305,18 zł	370 954 zł	172 289,53 zł	177 973,61 zł
4	0,770038061	227 164,35 zł	238 800,63 zł	471 458 zł	218 968,63 zł	228 236,52 zł
5	0,721576922	311 636,35 zł	327 300,70 zł	653 276 zł	303 413,95 zł	314 696,78 zł
6	0,676824806	431 468,67 zł	435 500,68 zł	939 822 zł	436 499,99 zł	434 159,05 zł
7	0,635401905	586 938,85 zł	585 418,28 zł	1 312 710 zł	609 688,06 zł	587 068,17 zł
8	0,596615058	867 084,76 zł	866 568,64 zł	1 954 136 zł	907 598,20 zł	869 873,09 zł
9	0,559833752	2 195 494,31 zł	2 067 688,90 zł	4 731 695 zł	2 197 634,91 zł	2 191 060,13 zł
Łącznie		5 007 902,19 zł	4 922 821,36 zł	10 891 318 zł	5 058 470 zł	5 015 746,17 zł

Rysunek 4.3: Oszacowanie rezerw dla lobu MTPL.

Pierwszą obserwacją, którą należy dokonać patrząc na wyniki, to niepokojąco duże różnice w oszacowaniach rezerw dla lobów MH i MTPL. Podczas, gdy wszystkie metody dają zbliżone do siebie wyniki, dla metody Bornhuetter-Ferguson'a otrzymujemy killkukrotnie wyższy przewidywany stan. Uważamy jednak, że przyczyna takiego stanu rzeczy jest dosyć oczywista. Założenia dostarczone przez dział pricingu na temat współczynnika szkodowości są zbyt dużym uproszczeniem. Sztywne ustalenie wartości tego współczynnika na 75% jest dla lobów MH i MTPL skrajnie pesymistycznym podejściem. Takie przypuszczenia mogą potwierdzać wyliczone współczynniki straty w metodzie Cape-Cop. Wynoszą one 0.9091, 0.2450, 0.3483 kolejno dla lobów GTPL, MH, MTPL. Wartości te

sugerują także, zbyt optymistyczne oszacowanie dla lobu GTPL. Potwierdza to również niższa o prawie 20% rezerwa dla tejże linii.

Kolejnym uproszczeniem, było przyjęcie wartości wpływającej składki przy metodzie Bornhuetter-Ferguson'a i Cape-Cod. Nie jesteśmy w stanie ocenić wpływu tego akurat założenia dla pierwszej z metod, ze względu na zbyt duży wpływ niepoprawnego współczynnika szkodowości. Wyniki uzyskane metodą Cape-Cod sugerują jednak, że założenie jest przyzwoite, bądź też nie ma wielce negatywnego wpływu na wynik. Różnice między tą metodą, a metodami Chain-Ladder i jej pochodnymi niekorzystającymi z wartości wpływających składek mieszczą się w granicach dopuszczalnych błędów.

Warto także zwrócić uwagę, na ujemne stany rezerw niektórych lat dla lobu MH. Uważamy, że możliwe są w danym lobie znaczące regresy i to właśnie one są przyczyną, takich wyników. W celu weryfikacji tej tezy należy się skontaktować z działem raportowania i dokonać sprawdzenia poprawności dostarczonych danych. Podsumowując uzyskane wyniki sugerujemy wykorzystanie wyników metody Chain-Ladder, Munich Chain-Ladder lub Bootstrapowej wersji Chain-Ladder. Z racji na największą możliwość statystycznej analizy wyników naszym głównym wyborem byłaby metoda Bootstrap. W procesie wyliczeń tą metodą, uzyskujemy przyzwoite uśrednione wyniki czy możliwość uzyskania przydatnych parametrów takich jak odchylenie standardowe. Oczywiście w przypadku dostarczenia większej ilości danych, w tym wpływających składek oraz zaktualizowania współczynników szkodowości przez dział pricingu należy powtórzyć badanie i ponownie przeprowadzić analize wyników.

4.2. Wyniki Bootstrap

Na koniec, ponieważ uważamy metodę Bootstrap za najpewniejsze oszacowanie, chcielibyśmy jeszcze omówić dokładniej wyznaczone przez nią parametry. Wykonaliśmy 100 próbek Bootstrap i średnie przewidywane wyniki przedstawiają się następująco

Średnia	164 594	345 368	686 804	810 500	1 127 615	1 521 781	2 056 977	2 194 040	2 742 049	11 649 727
SD	89 142	115 565	142 707	147 203	159 784	214 740	231 493	259 439	449 719	1 211 243
SD%	54,2%	33,5%	20,8%	18,2%	14,2%	14,1%	11,3%	11,8%	16,4%	10,4%
Rok	1	2	3	4	5	6	7	8	9	Razem

Rysunek 4.4: Parametry oszacowania dla lobu GTPL.

Średnia	-385	-1 050	-1 744	-2 363	-3 669	-3 804	2 894	38 808	805 357	834 045
SD	1 099	1 387	1 660	1 786	2 311	2 218	2 882	4 631	26 698	31 746
SD%	-285,6%	-132,1%	-95,2%	-75,6%	-63,0%	-58,3%	99,6%	11,9%	3,3%	3,8%
Rok	1	2	3	4	5	6	7	8	9	Razem

Rysunek 4.5: Parametry oszacowania dla lobu MH.

Średnia	83 826	128 853	177 974	228 237	314 697	434 159	587 068	869 873	2 191 060	5 015 746
SD	24 567	26 263	26 449	24 752	25 194	29 351	31 176	38 273	93 247	215 374
SD%	29,3%	20,4%	14,9%	10,8%	8,0%	6,8%	5,3%	4,4%	4,3%	4,3%
Rok	1	2	3	4	5	6	7	8	9	Razem

Rysunek 4.6: Parametry oszacowania dla lobu MTPL.

Miara ryzyka Value-at-Risk na poziomie 95% z Bootstrapu wynosi dla kolejnych lobów 13 747 025zł, 889 647zł oraz 5 411 904zł. Z racji na fakt, że odchylenia standardowe wynoszę nawet kilkanaście procent całkowitej wartości rezerwy sugerujemy zarządowi podejście asekuracyjne. Naszą propozycją jest ustalenie stanu rezerw na wartość średnią powiększoną o wartość jednego odchylenia standardowego, bądź wartość wyznaczonej przez miarę Value-at-Risk.

Bibliografia

- [1] B. Linda, J. Kubanova, Bootstrap application of the BornhuetterFerguson method, Proceedings of 30th International Conference Mathematical Methods in Economics, 2012, 524-529.
- [2] B. Linda, J. Kubanova, P. Jindrova, INSURANCE RESERVES ESTIMATION BY BOOTSTRAP, Scientific Papers 21 University of Pardubice, 3/2011, 127-138.
- [3] T. Mack, G. Quarg, Munich Chain Ladder: A Reserving Method that Reduces the Gap between IBNR Projections Based on Paid Losses and IBNR Projections Based on Incurred Losses, Variance, Volume 2, Number 2, 2008, 266-299.
- [4] V. Sundberg, Application and Bootstrappig of the Munich Chain Ladder Method, Royal Institute of Technology, SCI School of Engineering Sciences, 2016, 9-24.
- [5] M. Pesta, Bootstrapping the triangles, 2012.
- [6] P. Dygas, Zadanie 7 ZRU 2022 9, 2022.
- [7] https://www.eiopa.europa.eu/tools-and-data/risk-free-interest-rate-term-structures-en, 2022