コンピュータシステム基礎

情報工学科阿部倫之

- 担当教員: 阿部倫之
 - abe@neptune.kanazawa-it.ac.jp
 - 講義資料
 配布資料、eシラバス
 - オフィスアワー

野々市キャンパス:月曜5限 21号館4階教員控え室

八束穂キャンパス: 65号館210室(要予約)

授業運営

- 日程: 1EP1, 1EP3
 - 第1週(9/25)
 - 第2週(10/2)
 - 第3週(10/16)
 - 第4週(10/23)レポート1出題
 - 第5週 (10/30) 小テスト1 実施、レポート1 提出
 - <u>第6週(11/5(月)5限補講23.221教室)</u>
 - 休講 11/6
 - 第7週(11/13)レポート2出題
 - <u>第8週(11/20)小テスト2実施、レポート2提出</u>
 - 第9週(11/27)
 - 第10週 (12/4) レポート3出題

授業運営

日程(つづき): 2EP1, 2EP3

- 第11週(12/11)レポート3提出
- 第12週 (12/18)
- 第13週(1/8)
- 第14週(1/15)
- 第15週(1/22) 期末試験、 最終レポート提出
- 第16週(1/29) 自己点検授業

第4週

- コンピュータシステム基礎(前編)
 - 第3章 ビットの実現と論理回路
 - ·算術演算回路
- コンピュータシステム基礎(補足編)
 - 2進数の16進表記、16進加減算

第3章 ビットの実現と論理回路

3.4 算術演算回路

 2進数の加算や減算(2の補数加算)などの算術演算 回路が<u>論理ゲートを組み合わせた論理回路</u>で実現される ことを学ぶ。

3.4.1 2進数加算の分析

1ビットの加算回路(FA)を8個結合して、 8ビットの加算回路を構成した例

$$(a_7 \, a_6 \, a_5 \, a_4 \, a_3 \, a_2 \, a_1 \, a_0)_2$$
 $+ (b_7 \, b_6 \, b_5 \, b_4 \, b_3 \, b_2 \, b_1 \, b_0)_2$
 $(s_7 \, s_6 \, s_5 \, s_4 \, s_3 \, s_2 \, s_1 \, s_0)_2$

3.4.2 1ビット分の加算回路(全加算器: Full Adder)

(1) 真理値表の作成				上への桁上げ		
	Cd	а	b	Cu	加算結果 S	
	0	0	0	0	0	
	0	0	1	0	1	
	0	1	0	0	1	
	0	1	1	1	0	
	1	0	0	0	1	
	1	0	1	1	0	
	1	1	0	1	0	
	1	1	1	1	1	

(2)論理式の作成

真理値表から論理式を求める方法: 積項の和形式(積和標準形)

$$s = \overline{c_d \cdot a \cdot b} + \overline{c_d \cdot a \cdot b} + c_d \cdot \overline{a \cdot b} + c_d \cdot \overline{a \cdot b}$$

$$c_u = \overline{c_d \cdot a \cdot b} + c_d \cdot \overline{a \cdot b} + c_d \cdot \overline{a \cdot b} + c_d \cdot \overline{a \cdot b}$$

(3)論理回路の作成

全加算器(Full Adder): 積項の和形式

論理式の否定をNOTゲート 論理積をANDゲート、 論理和をORゲート、 で表現する。

簡略化した全加算器 (Full Adder)

例題 3.5 なぜこのような簡略化が可能なのか真理値表を見て考えてみよ.

ヒント: 3入力 XOR ゲートは入力の3つの独立変数 c_a , a, bのうち奇数個(1 個または3 個)のビット値が'1'のとき出力の従属変数 sのビット値が'1'となる. 従属変数 c_a はどのようなとき'1'になるのか?

注) 簡略化した回路は1種類とは限らない.

8ビットの加算回路 (Byte Adder)

3.4.4 減算のための論理回路(2の補数回路)

引く数値の「2の補数」を求めて加算することで減算を実行している。

例)
$$(7)_{10}$$
 $(00000111)_2$ $-(4)_{10}$ $(00000100)_2$ $(0000011)_2$

補数加算による減算

切り捨てる

2の補数変換の分析

最下位ビット (LSB) から走査して、<u>最初の '1' までは</u>そのまま、 それ以上の桁はビットを反転させる。

最下位ビット(LSB)から走査して、最初の '1' まではそのまま、 それ以上の桁はビットを反転させる。

1ビット分の2の補数変換回路(Bit CMPL)

(1) 真理値表の作成

下位桁に'1'が出現していたか?

1 1211310 2	<u> </u>									
		<u>その桁または下位桁に'1'が出現していたか?</u>								
Cd	b	Cu	h							
0	0	0	0							
0	1	1	1							
1	0	1	1							
1	1	1	0							

(2) 論理式の作成

積項の和形式 (積和標準形)

$$h = \overline{c_d} \cdot b + c_d \cdot \overline{b} = c_d \oplus b$$
$$c_u = c_d + b$$

(3) 論理回路の作成

8ビットの2の補数変換回路(Bit CMPL)

$$(b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0)_2 \Rightarrow (h_7 h_6 h_5 h_4 h_3 h_2 h_1 h_0)_2$$

第1回レポート

- 前編問題集の5~7ページを印刷して提出しなさい。
 - 提出日:平成30年10月30日(火)授業時間
- ※最初のページにクラス、名列番号、名前を記載すること。
- ※授業開始前までに教卓に提出すること。
- ※当日は印刷機が混雑するため、余裕をもって印刷しておくこと。

<u>小テスト1</u>

- 実施日:平成30年10月30日(火)授業時間
- <u>出題範囲</u>:

第1章 コンピュータの基本構成

- ・現代のコンピュータ
- ・コンピュータの基本構成

第2章 コンピュータとコード化

- ・数の表現(2進数、10進数、16進数)
- ・文字の表現(文字コード)

第3章ビットの実現と論理回路

- ・真理値表、論理ゲート(7種類)、論理ゲートの組み合わせ回路
- ·算術演算回路:

全加算器(Full Adder), 2の補数回路