

GRADUAÇÃO EM MATEMÁTICA APLICADA

infinitas

Fundamentos de Matemática - Teste 1-50 min

1.	O	valor	do	número	natur	al A	c para	О	qual	a	expressão)
----	---	-------	----	--------	-------	------	--------	---	------	---	-----------	---

$$\frac{k^2}{(1,001)^k}$$

:		1	/:	1
atınge	seu	valor	máximo	е

[a] 2001 B] 2000 C 2004 [d] 2002 C 200	a 20	001 b 200	c = 2004	d 2002	e 2003
--	------	-----------	----------	--------	--------

 ${f 2.}$ A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é ${f 25.}$ Diminuindo-se ${f 9}$ unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

- $\log N < 1$
- b N é par
- $\boxed{\mathbf{d}}$ N é primo
- $oxed{e}$ N é quadrado perfeito

3. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (ln representa o logaritmo na base e)

a 2 b 3 c 0 d 1

4. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

- a 15 b 7 c 10 d 14 e 8
- **5.** A sequência (a_k) é tal que

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n,sendo cuma constante desconhecida. Então a_k é igual a

- a $k^2 3^k$ b $2(k-1)^2 3^{k+1}$ c $2(k+1)^2 3^{k-1}$ d $2k(k-1)3^k$ e $2k^2 3^{k-1}$
- **6.** A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
 - a 72 b 40 c 48 d 36 e 21

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0 0 0 0 0 0 0 0 0
$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

1. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam doi entre eles cuja diferença é um múltiplo de 7?
a 14 b 10 c 15 d 8 e 7
2. O valor do número natural k para o qual a expressão
k^2
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2002 b 2003 c 2001 d 2004 e 2000
3. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 36 b 40 c 48 d 21 e 72
4. A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k(k-1)3^k$ b $2(k-1)^23^{k+1}$ c $2(k+1)^23^{k-1}$ d k^23^k e $2k^23^{k-1}$
${\bf 5.}~~{ m A}$ soma dos quadrados dos algarismos de um número $N,$ formado por dois algarismos, é $25.~{ m Diminuindo-s}$ 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que
a $\log N < 1$ b N é divisível por 9 c N é par d N é primo e N é quadrado perfeito
6. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$fantsime$ a infinitas $fbar{b}$ 3 $fcap{c}$ 2 $fdatsime$ 1 $featsime$ 0

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

1.	Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
	$fantsize{a}$ infinitas $fantsize{b}$ 3 $fantsize{c}$ 2 $fantsize{d}$ 1 $fantsize{e}$ 0
2. ent	Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois re eles cuja diferença é um múltiplo de 7?
	a 8 b 14 c 7 d 15 e 10
3.	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
	a 40 b 21 c 72 d 36 e 48
9 u	A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se nidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. de-se afirmar que
	N é par N é quadrado perfeito N é divisível por 9 N é primo
5.	A sequência (a_k) é tal que
•	$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
pai	ra todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
	a $2k(k-1)3^k$ b $2k^23^{k-1}$ c $2(k+1)^23^{k-1}$ d $2(k-1)^23^{k+1}$ e k^23^k
6.	O valor do número natural k para o qual a expressão
	$\frac{k^2}{(1,001)^k}$
ati	nge seu valor máximo é
	a 2004 b 2000 c 2001 d 2002 e 2003

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática — Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	\mathbf{d}	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

entre eles cuja diferença é um múltiplo de 7?

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois

a 8 b 14 c 10 d 15 e 7
2. A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2(k+1)^2 3^{k-1}$ b $2(k-1)^2 3^{k+1}$ c $2k^2 3^{k-1}$ d $k^2 3^k$ e $2k(k-1)3^k$
3. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$fantsymbol{a}$ $fantsymbol{3}$ $fantsymbol{b}$ $fantsymbol{0}$ $fantsymbol{c}$ $fantsymbol{2}$ $fantsymbol{d}$ infinitas $fantsymbol{e}$ $fantsymbol{1}$
4. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que
a N é quadrado perfeito b $\log N < 1$ c N é par
d N é divisível por 9 e N é primo
5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 36 b 72 c 21 d 40 e 48
6. O valor do número natural k para o qual a expressão
$\frac{k^2}{(1,001)^k}$
atinge seu valor máximo é
a 2004 b 2003 c 2000 d 2001 e 2002

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome	e sobre	enome:		

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

GRADUAÇÃO EM MATEMÁTICA APLICADA

1.	Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
	$fantsymbol{a}$ $fantsymbol{2}$ $fantsymbol{b}$ $fantsymbol{3}$ $fantsymbol{c}$ $fantsymbol{1}$ $fantsymbol{d}$ infinitas $fantsymbol{e}$ $fantsymbol{0}$
2. ent:	Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam doi cre eles cuja diferença é um múltiplo de 7?
	a 7 b 15 c 14 d 8 e 10
9 u	A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se nidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada de-se afirmar que
	N é divisível por 9 N é quadrado perfeito N é primo N
4.	A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2+n+1)3^n+c,$ ca todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
_	a $2k^23^{k-1}$ b $2k(k-1)3^k$ c $2(k+1)^23^{k-1}$ d k^23^k e $2(k-1)^23^{k+1}$
5.	O valor do número natural k para o qual a expressão
	$\frac{k^2}{\left(1,001\right)^k}$
atir	nge seu valor máximo é
	a 2004 b 2003 c 2001 d 2000 e 2002
6.	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
	a 48 b 36 c 40 d 72 e 21

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1	. : [\mathbf{a}	b	$^{\mathrm{c}}$	d	е

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

2000

atinge seu valor máximo é

a

2. A sequência (a_k) é tal que

2004

1. O valor do número natural k para o qual a expressão

2003

GRADUAÇÃO EM MATEMÁTICA APLICADA

2002

Fundamentos de Matemática — Teste 1 — 50 min

 $\frac{k^2}{\left(1,001\right)^k}$

c 2001

 $\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$

para todo inteiro	positivo n , send	o c uma const	ante desconhec	ida. Então a_k	é igual a		
a $2(k+1)^2 3$	b 2	$2(k-1)^2 3^{k+1}$	$\begin{bmatrix} \mathbf{c} \end{bmatrix}$ $k^2 3^k$	d 2	$k^2 3^{k-1}$	e $2k(k-1)$	$(-1)3^k$
3. A soma dos que que de se afirmar que pode-se afirmar que	nero dado obtém		,	-			
 a N é quadra b N é par c log N < 1 d N é divisíve e N é primo 	el por 9						
4. Quantas solu	ções reais tem a	equação sen(2	$2x) = \ln(x/2)?$	(ln representa	o logaritmo	na base e)	
	a 2	b 3	c infinitas	d 1	e 0		
5. A soma de to	odos os $n \in \mathbb{Z}$ (to	dos os inteiros	s, inclusive nega	ativos!) para o	os quais $\frac{6n}{n}$	$\frac{+1}{-8} \in \mathbb{Z} \text{ \'e:}$	
	a 72	b 36	c 48	d 40	e 21		
6. Qual é o núr entre eles cuja dif	nero mínimo po ferença é um mú		ros que um con	junto deve te	r para garar	ntir que exist	tam doi
	a 14	b 7	c 15	d 10	e 8		

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome	e sobre	enome:		

Questão 1:	a	b	\mathbf{c}	d	е
------------	---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

1. A	soma de to	odos os $n \in \mathbb{Z}$ (t	todos os inteir	os, inclusive neg	gativos!) para	os quais $\frac{6n+1}{n-8} \in$	\mathbb{Z} é:
		a 48	b 72	c 40	d 21	e 36	
2. A	sequência ((a_k) é tal que	$\sum_{k=1}^{n} a_{i}$	$k = (n^2 + n + 1)$	$3^n + c,$		
para t	odo inteiro	positivo n , sen	do c uma con	stante desconhe	cida. Então a	_k é igual a	
a	$2k^23^{k-1}$	$\boxed{b} 2k(k)$	$-1)3^{k}$		c-1 d	$2(k-1)^2 3^{k+1}$	$e k^2 3^k$
9 unid		nero dado obté				s algarismos, é 25. arismos, porém na	
b . c .	N é divisíve N é par N é primo N é quadra $\log N < 1$						
4. O	valor do nu	ímero natural	k para o qual	a expressão $\frac{k^2}{(1,001)^k}$			
atinge	seu valor r	náximo é					
		a 2003	b 2002	c 2001	d 2000	e 2004	
		mero mínimo p ferença é um m		eiros que um co	njunto deve te	er para garantir qı	ue existam dois
		a 7	b 10	c 15	d 8	e 14	
6. Q	uantas solu	ções reais tem	a equação sen	$\ln(2x) = \ln(x/2)?$	(ln representa	a o logaritmo na b	ase e)
		a 2	b 1	c infinitas	d 0	e 3	

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0000000000	
2 2 2 2 2 2 2 2 2	
3 3 3 3 3 3 3 3	
4 4 4 4 4 4 4 4	
5 5 5 5 5 5 5 5	
6 6 6 6 6 6 6 6	
7 7 7 7 7 7 7 7 7 7	
8 8 8 8 8 8 8 8	
999999999	

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

No	ome e	sobrer	nome:		

${f Quest ilde{a}o}$ 1: $begin{bmatrix} begin{bmatrix} m{q} \end{bmatrix}$	a b	\mathbf{c}	d	е
--	-----	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

a 0

atinge seu valor máximo é

b 3

O valor do número natural k para o qual a expressão

GRADUAÇÃO EM MATEMÁTICA APLICADA

infinitas

Fundamentos de Matemática — Teste 1-50 min

d

Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (ln representa o logaritmo na base e)

1

 $\overline{(1,001)^k}$

	a	2004	b	2000	c	2001	d	2003	[e]	2002	
3. A soma dos 9 unidades do nu Pode-se afirmar	ímer		_				_		_		
a N é divisí b N é primo c N é par d $\log N < 1$ e N é quadr)										
4. Qual é o nu entre eles cuja d		_			iros que	e um con	junto d	eve ter	para gar	antir que	e existam dois
		a 10		b 7	c	8	d 1	4	e 15		
5. A soma de t	todos	$s os n \in \mathbb{Z}$ (t	odos	os inteiro	os, inclu	sive nega	ativos!)	para os	s quais $\frac{6n}{n}$	$\frac{n+1}{n-8} \in \mathbb{Z}$	Ζé:
		a 36	[b 40	c	72	d	21	e 48		
6. A sequência	(a_k)	é tal que		$\sum_{k=1}^{n} a_k$	$= (n^2 -$	+n+1)3	n + c,				
para todo inteir	o pos	sitivo n , sen	do c	uma cons	tante d	esconheci	ida. En	tão a_k e	é igual a		
$\boxed{\mathbf{a}} k^2 3^k$	b	$ 2k^23^{k-1}$		c 2k((k-1)3	\mathbf{S}^k	d = 2(k)	$(-1)^2 3$	k+1	e 2($(k+1)^2 3^{k-1}$

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

d

3

a

infinitas

GRADUAÇÃO EM MATEMÁTICA APLICADA

0

Fundamentos de Matemática - Teste 1-50 min

A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se

Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (ln representa o logaritmo na base e)

b 1

9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que
a N é divisível por 9 b N é primo c N é par d N é quadrado perfeito e $\log N < 1$
3. A sequência (a_k) é tal que
$\sum_{k=1}^{\infty} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k(k-1)3^k$ b k^23^k c $2k^23^{k-1}$ d $2(k-1)^23^{k+1}$ e $2(k+1)^23^{k-1}$
4. O valor do número natural k para o qual a expressão
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2001 b 2003 c 2002 d 2000 e 2004
5. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?
a 10 b 14 c 15 d 7 e 8
6. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 72 b 36 c 40 d 21 e 48

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

1. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?
a 15 b 7 c 14 d 8 e 10
2. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$fantsum 0 \qquad fbar b 2 \qquad f c infinitas \qquad f d 1 \qquad f e 3$
3. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 48 b 21 c 72 d 36 e 40
4. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que
\fbox{a} N é quadrado perfeito
$\fbox{b}\ N$ é divisível por 9
$ \overline{c} \ N \ \mathrm{\acute{e}} \ \mathrm{par} $
$d \log N < 1$
$oxed{e}\ N$ é primo
5. A sequência (a_k) é tal que
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
6. O valor do número natural k para o qual a expressão
$\frac{k^2}{(1,001)^k}$
atinge seu valor máximo é
a 2004 b 2000 c 2003 d 2001 e 2002

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome	e sobre	enome:		

Questão 1: a b c d e	9
----------------------	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática - Teste 1-50 min

1. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada.

Pode-se afirmar que
$\log N < 1$
b N é par
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$oxed{d} N$ é primo
$oxed{e}\ N$ é divisível por 9
2. O valor do número natural k para o qual a expressão
k^2
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2000 b 2004 c 2003 d 2002 e 2001
3. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
fantsum 0 $fbar b$ infinitas $f c$ 2 $f d$ 3 $f e$ 1
4. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?
a 14 b 15 c 10 d 7 e 8
5. A sequência (a_k) é tal que
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
6. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 40 b 48 c 21 d 36 e 72

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

entre eles cuja diferença é um múltiplo de 7?

a 3

O valor do número natural k para o qual a expressão

GRADUAÇÃO EM MATEMÁTICA APLICADA

e 1

Fundamentos de Matemática - Teste 1-50 min

c 7

Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

b infinitas

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois

c 2

d 15

d = 0

atinge seu valor máximo é a 2000 b 2002 c 2003 d 2001 e 2004 4. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que a N é primo b N é par c N é quadrado perfeito d N é divisível por 9 e $\log N < 1$ 5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
 4. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que a N é primo b N é par c N é quadrado perfeito d N é divisível por 9 e log N < 1 5. A soma de todos os n ∈ Z (todos os inteiros, inclusive negativos!) para os quais ⁶ⁿ⁺¹/_{n-8} ∈ Z é:
9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que a N é primo b N é par c N é quadrado perfeito d N é divisível por 9 e $\log N < 1$ 5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
b N é par c N é quadrado perfeito d N é divisível por 9 e $\log N < 1$ 5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
© N é quadrado perfeito d N é divisível por 9 e $\log N < 1$ 5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
d N é divisível por 9 e $\log N < 1$ 5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
e $\log N < 1$ 5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 48 b 26 c 21 d 40 e 72
6. A sequência (a_k) é tal que
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k^23^{k-1}$ b $2k(k-1)3^k$ c $2(k-1)^23^{k+1}$ d k^23^k e $2(k+1)^23^{k-1}$

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	$\boxed{4}$	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

	FUNDAMENTOS DE MATEMATICA — TESTE 1 — 50 MIN
1. ent	Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois re eles cuja diferença é um múltiplo de 7?
	a 7 b 10 c 14 d 8 e 15
2.	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
	a 48 b 36 c 72 d 21 e 40
3.	O valor do número natural k para o qual a expressão
	$\frac{k^2}{\left(1,001\right)^k}$
atiı	nge seu valor máximo é
	a 2000 b 2003 c 2002 d 2004 e 2001
4.	Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
	$fantsymbol{a}$ $fantsymbol{0}$ $fantsymbol{b}$ $fantsymbol{3}$ $fantsymbol{c}$ $fantsymbol{2}$ $fantsymbol{d}$ $fantsymbol{1}$ $fantsymbol{e}$ infinitas
9 u	A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se nidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada de-se afirmar que
[} (N é quadrado perfeito N é divisível por 9 $\log N < 1$ N é par N é primo
6.	A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
par	a todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
	a $2k^23^{k-1}$ b $2(k-1)^23^{k+1}$ c $2k(k-1)3^k$ d k^23^k e $2(k+1)^23^{k-1}$

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	$ \mathbf{a} $	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

1. Qual é o número entre eles cuja diferen		_			s que	um conju	into o	deve ter j	para į	garantir que existam dois
	a	14	b	7	c	15	d	10	e	8
2. A soma de todos	os n	$\in \mathbb{Z}$ (t	odos os	inteiros, i	inclus	ive negat	ivos!)	para os	quais	$\frac{6n+1}{n-8} \in \mathbb{Z} \text{ \'e:}$
	a	48	b	21	c	36	d	72	e	40
-			_				_		_	emos, é 25. Diminuindo-se porém na ordem trocada.
a N é primo b N é quadrado p c $\log N < 1$ d N é par	erfeit	50								
$\stackrel{\square}{=} N$ é divisível po	or 9									
4. Quantas soluções	reais	tem a	a equaçã	o $sen(2x)$	$= \ln$	(x/2)? (1	n rep	resenta o	logai	ritmo na base e)
	a	3	b 1		in	finitas	C	0	e	2
5. A sequência (a_k)	é tal	que		n						
				$\sum_{k=1}^{n} a_k =$	$(n^2 +$	$(n+1)3^n$	+c,			
para todo inteiro posi	itivo 1	n, sen	do c um	a constar	nte de	sconhecid	la. Eı	ntão a_k é	igual	a
a $2(k+1)^2 3^{k-1}$		b	$k^2 3^k$	\mathbf{c}	2k(k -	$-1)3^{k}$	($\frac{1}{2}$ 2(k –	$(-1)^2 3$	$k+1$ e $2k^23^{k-1}$
6. O valor do númer	o nat	tural A	k para o	qual a ex	xpress	são				
					$\frac{k^2}{(1,00)}$	$\frac{2}{(01)^k}$				
atinge seu valor máxi	mo é									
a	2000		b 20	04	[c]	2003	d	2001		e 2002

Fundamentos de Matemática - Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	е

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática - Teste 1-50 min

1. ()	valor	. do	número	natural	k	para	o	qual	a expressão	О
------	---	-------	------	--------	---------	---	------	---	------	-------------	---

$$\frac{k^2}{\left(1,001\right)^k}$$

atinge seu valor máximo é

a	2002	b 2001	c 2004	d 2000	e 2003
\Box	2002	2001		2000	

2. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

3.	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais	$\frac{6n+1}{n-8} \in \mathbb{Z} \text{ \'e:}$

a 40 b 72 c 48 d 36 e 21

4. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

- $\boxed{\mathbf{a}} \ N \ \text{\'e par}$
- b N é primo
- $\log N < 1$
- e N é quadrado perfeito

5. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

- $fant{a}$ 0 $fbox{b}$ 1 $fcom{c}$ infinitas $fdot{d}$ 2 $fdot{e}$ 3
- **6.** A sequência (a_k) é tal que

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n, sendo c uma constante desconhecida. Então a_k é igual a

a $2k^23^{k-1}$ b k^23^k c $2(k-1)^23^{k+1}$ d $2(k+1)^23^{k-1}$ e $2k(k-1)3^k$

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão	1:	a	b	\mathbf{c}	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

1. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que
e N é divisível por 9
2. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 21 b 36 c 48 d 40 e 72
3. A sequência (a_k) é tal que $\sum_{k=0}^{n} a_k = (n^2 + n + 1)2^n + a$
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2(k+1)^2 3^{k-1}$ b $k^2 3^k$ c $2k(k-1)3^k$ d $2(k-1)^2 3^{k+1}$ e $2k^2 3^{k-1}$
4. O valor do número natural k para o qual a expressão
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2000 b 2004 c 2002 d 2003 e 2001
5. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?
a 7 b 15 c 10 d 8 e 14
6. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$oxed{a}$ 2 $oxed{b}$ 0 $oxed{c}$ infinitas $oxed{d}$ 1 $oxed{e}$ 3

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

GRADUAÇÃO EM MATEMÁTICA APLICADA

1.	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
	a 36 b 48 c 21 d 72 e 40
9 u	A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. de-se afirmar que
	a N é quadrado perfeito b N é divisível por 9 c N é primo d $\log N < 1$ e N é par
3.	A sequência (a_k) é tal que
	$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
pai	ra todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
	a $2(k-1)^2 3^{k+1}$ b $2k(k-1)3^k$ c $k^2 3^k$ d $2(k+1)^2 3^{k-1}$ e $2k^2 3^{k-1}$
4. ent	Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois tre eles cuja diferença é um múltiplo de 7?
	a 15 b 10 c 14 d 8 e 7
5.	O valor do número natural k para o qual a expressão
	$\frac{k^2}{\left(1,001\right)^k}$
ati	nge seu valor máximo é
	a 2000 b 2001 c 2003 d 2004 e 2002
6.	Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
	a 3 b 2 c 1 d 0 e infinitas

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome	e sobre	enome:		

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

entre eles cuja diferença é um múltiplo de 7?

Pode-se afirmar que

 $\log N < 1$

a

GRADUAÇÃO EM MATEMÁTICA APLICADA

e 7

Fundamentos de Matemática - Teste 1-50 min

 \mathbf{c}

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois

14

2. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada.

d 10

	b N é par
	lacksquare N é quadrado perfeito
	$oxed{d} N$ é primo
	$oldsymbol{e}\ N$ é divisível por 9
3.	O valor do número natural k para o qual a expressão
	k^2
	$\frac{k^2}{(1,001)^k}$
at	inge seu valor máximo é
	a 2000 b 2001 c 2002 d 2003 e 2004
4.	Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
	fantsize a $fantsize 2$ $fantsize b$ infinitas $fantsize c$ $fantsize 1$ $fantsize d$ $fantsize 3$ $fantsize e$ $fantsize 0$
5 .	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
	a 72 b 36 c 40 d 48 e 21
6.	A sequência (a_k) é tal que
	$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
рa	ara todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática – Teste 1-50 min

1. A	A sequ	iência	(a_k)	é	tal	que
1. A	A sequ	iência	(a_k)	é	tal	que

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n, sendo c uma constante desconhecida. Então a_k é igual a

 $k^{2}3^{k}$ a

 $2k^23^{k-1}$

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

14

10

d 8

15

O valor do número natural k para o qual a expressão

$$\frac{k^2}{(1,001)^k}$$

atinge seu valor máximo é

2000

2002

2001

2004

2003

A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

21

b 72 \mathbf{c}

d 36 40

Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

a 0 2

3 c

infinitas

e 1

6. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

 $\log N < 1$

 $|\mathbf{b}| N$ é primo

C N é quadrado perfeito

 $d \mid N \text{ \'e par}$

e Né divisível por 9

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a b c d	e
Questão 2:	a b c d	е

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

$ \textbf{1.} \text{Qual \'e o n\'umero m\'inimo poss\'ivel de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença \'e um m\'ultiplo de 7? } $
a 10 b 15 c 8 d 14 e 7
$\bf 2.~~A$ soma dos quadrados dos algarismos de um número $N,$ formado por dois algarismos, é $\bf 25.~$ Diminuindo-se $\bf 9$ unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que
a N é primo b N é par c N é divisível por 9 d $\log N < 1$ e N é quadrado perfeito
3. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
a 3 b 2 c 1 d 0 e infinitas
4. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 21 b 40 c 48 d 72 e 36
5. A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k(k-1)3^k$ b $2k^23^{k-1}$ c k^23^k d $2(k-1)^23^{k+1}$ e $2(k+1)^23^{k-1}$
6. O valor do número natural k para o qual a expressão
$\frac{k^2}{(1,001)^k}$
atinge seu valor máximo é
a 2000 b 2001 c 2003 d 2002 e 2004

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0 0 0 0 0 0 0 0 0
$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

1.	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
	a 48 b 40 c 72 d 21 e 36
2.	Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
	$fantsum 2 \qquad fbegin{bmatrix} b & 0 & C & 3 & d & 1 & e & infinitas \\ \hline \end{cases}$
3.	A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
para	a todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a	
4.	O valor do número natural k para o qual a expressão
	$\frac{k^2}{(1,001)^k}$
atin	ge seu valor máximo é
	a 2001 b 2002 c 2004 d 2003 e 2000
9 un	A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se idades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada e-se afirmar que
c	$ \begin{bmatrix} N \text{ \'e quadrado perfeito} \\ N \text{ \'e divis\'ivel por 9} \\ \log N < 1 \\ N \text{ \'e primo} \\ N \text{ \'e par} $
6. entr	Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois e eles cuja diferença é um múltiplo de 7?
	a 15 b 10 c 7 d 14 e 8

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7
888888888
9 9 9 9 9 9 9 9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	$ \mathbf{a} $	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

a

2

b 3

GRADUAÇÃO EM MATEMÁTICA APLICADA

infinitas

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

d 1

1. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

2. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 72 b 21 c 36 d 48 e 40
3. O valor do número natural k para o qual a expressão
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2000 b 2004 c 2001 d 2002 e 2003
4. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocac Pode-se afirmar que
a N é divisível por 9 b N é quadrado perfeito c N é par d N é primo e $\log N < 1$
5. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam de entre eles cuja diferença é um múltiplo de 7?
a 14 b 8 c 15 d 10 e 7
6. A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2(k+1)^2 3^{k-1}$ b $k^2 3^k$ c $2k(k-1)3^k$ d $2k^2 3^{k-1}$ e $2(k-1)^2 3^{k+1}$

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	е

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática - Teste 1-50 min

I UNDAMENTOS DE MATEMATICA — TESTE I — 50 MIN
1. A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $k^2 3^k$ b $2(k+1)^2 3^{k-1}$ c $2k^2 3^{k-1}$ d $2k(k-1)3^k$ e $2(k-1)^2 3^{k+1}$
2. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam doi entre eles cuja diferença é um múltiplo de 7?
a 8 b 7 c 10 d 15 e 14
3. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 48 b 40 c 21 d 36 e 72
4. O valor do número natural k para o qual a expressão
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2000 b 2001 c 2003 d 2002 e 2004
5. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que
a $N \neq par$ b $\log N < 1$
C N é divisível por 9 d N é quadrado perfeito
e N é primo

b 1

c 0

d 3

a infinitas

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

No	ome e	sobrer	nome:		

${f Quest ilde{a}o}$ 1: $begin{bmatrix} begin{bmatrix} m{q} \end{bmatrix}$	a b	\mathbf{c}	d	е
--	-----	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática - Teste 1-50 min

1.	O	valor	do	número	natura	ıl /	k	para	О	qual	a	expressão
----	---	-------	----	--------	--------	------	---	------	---	------	---	-----------

$$\frac{k^2}{(1,001)^k}$$

atinge seu valor máximo é

a 2003

b 2004

c 2002

d 2000

e 2001

2. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

a 36

b 48

c 21

d 40

e 72

 $\bf 3.~~A$ soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é $\bf 25.~$ Diminuindo-se $\bf 9$ unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

- $\log N < 1$
- b N é quadrado perfeito
- © N é primo
- $\boxed{\mathrm{d}}$ N é divisível por 9
- lacksquare N é par

4. A sequência (a_k) é tal que

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n, sendo c uma constante desconhecida. Então a_k é igual a

a $2(k+1)^2 3^{k-1}$

b $2k^23^{k-1}$

 $\boxed{ c } 2(k-1)^2 3^{k+1}$

 $\boxed{\mathbf{d}} \quad k^2 3^k$

e $2k(k-1)3^k$

5. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

a 15

b 8

c 10

d 7

e 14

6. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

a infinitas

b 1

c

d (

e 2

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome	e sobre	enome:		

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

entre eles cuja diferença é um múltiplo de 7?

Graduação em Matemática Aplicada

10

Fundamentos de Matemática — Teste 1-50 min

c 15

2. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada.

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois

d 14

Pode-se afirmar que
a N é divisível por 9
$\overline{\mathbf{b}}$ N é primo
$c \log N < 1$
$\boxed{\mathrm{d}}\ N$ é par
3. O valor do número natural k para o qual a expressão
k^2
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2000 b 2004 c 2002 d 2001 e 2003
4. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 36 b 21 c 72 d 40 e 48
5. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$fantsymbol{a}$ $fantsymbol{0}$ $fantsymbol{b}$ $fantsymbol{3}$ $fantsymbol{c}$ $fantsymbol{1}$ $fantsymbol{d}$ infinitas $fantsymbol{e}$ $fantsymbol{2}$
6. A sequência (a_k) é tal que
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k^23^{k-1}$ b $2(k-1)^23^{k+1}$ c k^23^k d $2k(k-1)3^k$ e $2(k+1)^23^{k-1}$

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	е

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática - Teste 1-50 min

1.	C	valo	r do	número	natura	1 /	c pa	ıra	О	qual	a	express	ìO
----	---	------	------	--------	--------	-----	------	-----	---	------	---	---------	----

$$\frac{k^2}{(1,001)^k}$$

atinge seu valor máximo é

a 2002 b 2001

c 2000

d 2003

е 2004

Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

a 0

infinitas

d 1

e

A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

a 72

36

d 21 e 40

A sequência (a_k) é tal que

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n, sendo c uma constante desconhecida. Então a_k é igual a

 $2k^23^{k-1}$

b $2k(k-1)3^k$ c $2(k+1)^23^{k-1}$

d $k^2 3^k$ e $2(k-1)^2 3^{k+1}$

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

a

10 b

|c|14 $|\mathbf{d}| 8$

15

6. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

a Népar

 $\mid \mathbf{b} \mid N$ é quadrado perfeito

d N é divisível por 9

e N é primo

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

_	
1.	Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
	a infinitas b 2 c 1 d 3 e 0
2.	A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
	a 72 b 36 c 21 d 40 e 48
3.	O valor do número natural k para o qual a expressão
	$\frac{k^2}{(1,001)^k}$
atin	nge seu valor máximo é
	a 2000 b 2001 c 2003 d 2002 e 2004
4.	A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2+n+1)3^n + c,$
par	a todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
ä	$2k^23^{k-1}$ \boxed{b} $2(k+1)^23^{k-1}$ \boxed{c} $2(k-1)^23^{k+1}$ \boxed{d} $2k(k-1)3^k$ \boxed{e} k^23^k
9 uı	A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se nidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada de-se afirmar que
b	N é quadrado perfeito N é primo N é par $\log N < 1$
ϵ	N é divisível por 9
6. enti	Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois ce eles cuja diferença é um múltiplo de 7?
	a 14 b 10 c 7 d 15 e 8

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

1. A sequência (a_k) é tal que

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

 $\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$

para todo inteiro positivo n,sendo cuma constante desconhecida. Então a_k é igual a

a $2k(k-1)3^k$	$ b k^2 3^k $	c 2	$2(k-1)^2 3^{k+1}$	d $2(k -$	$(+1)^2 3^{k-1}$	[e] $2k^23^k$	k-1
2. A soma de todos	$s os n \in \mathbb{Z} (todo)$	os os inteiros	, inclusive nega	tivos!) para os	s quais $\frac{6n+1}{n-8}$	- ∈ ℤ é:	
	a 21	b 36	c 40	d 72	e 48		
3. A soma dos quad 9 unidades do númer Pode-se afirmar que			,	-	,		
a $\log N < 1$ b N é quadrado : c N é primo d N é par e N é divisível p							
4. O valor do núme	ero natural k pa	ara o qual a	expressão				
			$\frac{k^2}{\left(1,001\right)^k}$				
atinge seu valor máx	rimo é						
a	2000 b	2001	c 2003	d 2004	e 200	12	
5. Qual é o númer entre eles cuja difere	_		os que um conj	unto deve ter	para garantir	que existam	ı dois
	a 10	b 15	c 14	d 8	e 7		
6. Quantas soluções	s reais tem a ec	quação sen(2	$x) = \ln(x/2)? $	ln representa	o logaritmo na	a base e)	
	a infinitas	b 0	<u>c</u> 3	d 1	e 2		

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1	. : [\mathbf{a}	b	$^{\mathrm{c}}$	d	е

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

d

d 72

2

infinitas

a

a

21

3. O valor do número natural k para o qual a expressão

GRADUAÇÃO EM MATEMÁTICA APLICADA

 $\left[\mathrm{e}\right]$

e 48

3

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

1. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (ln representa o logaritmo na base e)

A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

 \mathbf{c}

36

b 1

b

40

						$\frac{R}{(1,0)}$	$\frac{c^2}{001)^k}$								
atinge seu valor	máxi	mo é													
	a	2001	b	2000		c	2003		d	2004		e	2002		
4. A soma dos q 9 unidades do nú Pode-se afirmar o	mero														
$\boxed{\text{a}} \log N < 1$															
b N é divisív	el po	or 9													
d N é quadra	ado p	erfeito													
e N é primo															
5. A sequência	(a_k)	é tal que		n											
				$\sum_{k=1}^{n}$	$a_k =$	$(n^2 -$	$\vdash n+1)$	$3^{n} +$	c,						
para todo inteiro	posi	itivo n , sen	do c	uma co	onstar	nte d	esconhec	cida.	En	tão a_k	é ig	ıal a			
a $2k^23^{k-1}$		$\boxed{b} k^2 3^k$		c 2	2(k +	$1)^{2}3$	k-1	d] 2	(k-1)	$(2)^{2}3^{k}$	+1	e	2k(k -	$-1)3^{k}$
6. Qual é o nú entre eles cuja di						s que	um coi	njunt	to de	eve te	r par	a gar	antir c	que exis	tam doi
		a 10		b 14	4	c] 15	[d	8	e	7			

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática - Teste 1-50 min

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n, sendo c uma constante desconhecida. Então a_k é igual a

2. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

a 14 b 10 c 8 d 15 e 7

3. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (ln representa o logaritmo na base e)

 $fantsymbol{a}$ $fantsymbol{0}$ $fantsymbol{b}$ $fantsymbol{3}$ $fantsymbol{c}$ $fantsymbol{2}$ $fantsymbol{d}$ infinitas $fantsymbol{e}$ $fantsymbol{1}$

4. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

- a Né primo
- b N é quadrado perfeito
- $\boxed{\mathrm{d}} N \neq \mathrm{par}$

5. O valor do número natural k para o qual a expressão

$$\frac{k^2}{\left(1,001\right)^k}$$

atinge seu valor máximo é

a 2001 b 2002 c 2003 d 2000 e 2004

6. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

a 40 b 48 c 72 d 36 e 21

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

a 3

atinge seu valor máximo é

b 1

O valor do número natural k para o qual a expressão

GRADUAÇÃO EM MATEMÁTICA APLICADA

infinitas

Fundamentos de Matemática — Teste 1-50 min

 $\overline{(1,001)^k}$

1. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

	a	2000	b	2001	$oxed{c}$	2002	d	2004		e	2003		
3. A soma dos 9 unidades do r Pode-se afirma	ıúmer		_				_		_				
a N é divis b N é prim c $\log N < 1$	10	or 9											
$\begin{array}{ c c }\hline d & N \text{ \'e par}\\\hline e & N \text{ \'e quac}\\\hline\end{array}$	lrado	perfeito											
4. Qual é o rentre eles cuja			_		eiros que	e um co	onjunto d	eve ter	r para	gara	antir qu	ue exista	am dois
		a 7		b 15	c	14	d	10	e	8			
5. A sequênci	$a(a_k)$) é tal que	:	$\sum_{k=1}^{n} a_{k}$	$k = (n^2 -$	+ n + 1	$)3^n+c,$						
para todo intei	ro pos	sitivo n , se	endo c	uma con	stante d	esconh	ecida. En	tão a_k	é igua	al a			
a $2k^23^{k-1}$	Ł	b 2(k	$(+1)^2 3$	3^{k-1}		$c^2 3^k$	d 2	2k(k -	$1)3^{k}$		e 2	$2(k-1)^{2}$	$^{2}3^{k+1}$
6. A soma de	todos	s os $n \in \mathbb{Z}$	(todos	os inteir	os, inclu	sive ne	egativos!)	para o	s quai	$s \frac{6n}{n}$	$\frac{a+1}{-8} \in$	\mathbb{Z} é:	
		a 21	[b 72	c	36	d	48	e	40			

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Questão 1: a b c d [е	
----------------------	---	--

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática – Teste 1-50 min

1.	A sequência	(a_k)) é tal que	
----	-------------	---------	-------------	--

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n, sendo c uma constante desconhecida. Então a_k é igual a

a $k^2 3^k$	
-------------	--

$$b = 2k^2 3^{k-1}$$

$$2k^23^{k-1}$$
 c $2(k+1)^23^{k-1}$ d $2(k-1)^23^{k+1}$ e $2k(k-1)3^k$

e
$$2k(k-1)3^k$$

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

14

d 10 8

3. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

- a $\log N < 1$
- b N é par
- © N é divisível por 9
- $|\mathbf{d}| N$ é primo
- e N é quadrado perfeito

4. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

infinitas

|c|

 $|\mathbf{d}|$

e

A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

b 36 |c|

d 72

O valor do número natural k para o qual a expressão

$$\frac{k^2}{(1,001)^k}$$

atinge seu valor máximo é

2002

2004

2001

2000

2003

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0000000000	
2 2 2 2 2 2 2 2 2	
3 3 3 3 3 3 3 3	
4 4 4 4 4 4 4 4	
5 5 5 5 5 5 5 5	
6 6 6 6 6 6 6 6	
7 7 7 7 7 7 7 7 7 7	
8 8 8 8 8 8 8 8	
999999999	

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

1. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 72 b 48 c 21 d 40 e 36
2. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-s 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que
a N é quadrado perfeito b N é primo c N é par d N é divisível por 9 e $\log N < 1$
3. A sequência (a_k) é tal que
$\sum_{k=1} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k^23^{k-1}$ b $2(k-1)^23^{k+1}$ c $2k(k-1)3^k$ d k^23^k e $2(k+1)^23^{k-1}$
4. O valor do número natural k para o qual a expressão
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2004 b 2003 c 2002 d 2001 e 2000
5. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam doi entre eles cuja diferença é um múltiplo de 7?
a 7 b 8 c 14 d 10 e 15
6. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$fantsymbol{a}$ $fantsymbol{2}$ $fbox{b}$ $fantsymbol{1}$ $fcolor{c}$ $fcolor{d}$ $fantsymbol{3}$ $fcolor{e}$ infinitas

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1: a b c d [е	
----------------------	---	--

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

1. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

	a 1	b	infinitas	$lue{c}$	3	d 2	e	0		
2. A soma dos quad 9 unidades do númer Pode-se afirmar que		_				_	_			
a N é primo b $\log N < 1$ c N é par d N é quadrado g e N é divisível p	_									
3. O valor do núme	ero natura	al k para	o qual a	expressão						
				$\frac{k^2}{\left(1,001\right)^k}$						
atinge seu valor máx	imo é									
lacksquare	2000	b	2001	c 2004	d	2003	ϵ	2002		
4. A soma de todos	$s os n \in \mathbb{Z}$	(todos o	os inteiros,	inclusive i	negativos	!) para	os quais	$\frac{6n+1}{n-8} \in$	≣ ℤ é:	
	a 48	ŀ	_	c 40	d			21		
5. Qual é o númer entre eles cuja difere		_		os que um	conjunto	deve te	er para g	arantir o	que existar	n doi
	a 1.	5 [b 14	c 7	d	10	e	8		
6. A sequência (a_k)	é tal que	e	$\sum_{k=1}^{n} a_k =$	$= (n^2 + n +$	$1)3^n + \epsilon$	· · · · · · · · · · · · · · · · · · ·				
para todo inteiro pos	sitivo n , s	endo c u	ıma consta	inte descon	hecida. 1	Então a_k	, é igual	a		
a $2(k-1)^2 3^{k+1}$	b] 2k(k)	$-1)3^{k}$	c 2()	$(k+1)^2 3^k$	-1	d k^2	23^k	e $2k^2$	3^{k-1}

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

1. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 48 b 40 c 72 d 21 e 36
2. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?
a 7 b 8 c 14 d 10 e 15
3. A sequência (a_k) é tal que $\sum_{k=1}^n a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2(k+1)^2 3^{k-1}$ b $k^2 3^k$ c $2(k-1)^2 3^{k+1}$ d $2k^2 3^{k-1}$ e $2k(k-1)3^k$
 4. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que a N é divisível por 9 b N é primo c log N < 1 d N é quadrado perfeito e N é par
5. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$fantsum a = 3$ $fbegin{array}{c c c c c c c c c c c c c c c c c c c $
6. O valor do número natural k para o qual a expressão
$\frac{k^2}{(1,001)^k}$
atinge seu valor máximo é
a 2001 b 2002 c 2003 d 2004 e 2000

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	е

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática – Teste 1-50 min

1	Λ	goguônaia	(a.)	ó + o1	0110
	A	sequência	(a_k)	e tai	que

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n,sendo cuma constante desconhecida. Então a_k é igual a

 $2(k+1)^2 3^{k-1}$ b $2(k-1)^2 3^{k+1}$ c $2k(k-1)3^k$ d $k^2 3^k$

 $2k^23^{k-1}$

Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

|c| infinitas

 $|\mathbf{d}| = 0$

A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

a 36 b 48

72

 $|\mathbf{d}|$ 21

O valor do número natural k para o qual a expressão

$$\frac{k^2}{(1,001)^k}$$

atinge seu valor máximo é

2000

b 2004 2003

 $|\mathbf{d}|$ 2001 2002

Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

15

b 10 |c|

 $|\mathbf{d}|$ 14 e | 7

6. A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

 $\log N < 1$

|b| N é divisível por 9

C N é quadrado perfeito

 $d \mid N \text{ \'e par}$

e Né primo

Fundamentos de Matemática - Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	\mathbf{c}	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática – Teste 1 – 50 min

1.	Ο	valor	do	número	natural	k	para	o	qual	a	expressã	o
----	---	-------	----	--------	---------	---	------	---	------	---	----------	---

$$\frac{k^2}{\left(1,001\right)^k}$$

atinge seu valor máximo é

a 2001

b 2000

c 2004

d 2003

e 2002

2. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:

a 21

b 72

c 36

d 48

e 40

3. Quantas soluções reais tem a equação sen(2x) = ln(x/2)? (In representa o logaritmo na base e)

a 3

b 2

c infinitas

d 1

e 0

4. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

a 8

b 15

 $\overline{\mathbf{c}}$

d 10

e 14

5. A sequência (a_k) é tal que

$$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$$

para todo inteiro positivo n, sendo c uma constante desconhecida. Então a_k é igual a

a $2(k+1)^2 3^{k-1}$

 $b 2(k-1)^2 3^{k+1}$

c $2k(k-1)3^k$

 $|\mathbf{d}| k^2 3$

e $2k^23^{k-1}$

 ${f 6.}$ A soma dos quadrados dos algarismos de um número N, formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que

a Népar

b N é divisível por 9

 $\boxed{\mathbf{d}}$ N é quadrado perfeito

e N é primo

GRADUAÇÃO EM MATEMÁTICA APLICADA

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome	e sobre	enome:		

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

1. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam do entre eles cuja diferença é um múltiplo de 7?
a 15 b 10 c 8 d 7 e 14
2. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 48 b 21 c 40 d 72 e 36
3. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
a 1 b infinitas c 2 d 3 e 0
4. A sequência (a_k) é tal que
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k^23^{k-1}$ b $2(k-1)^23^{k+1}$ c k^23^k d $2k(k-1)3^k$ e $2(k+1)^23^{k-1}$
5. O valor do número natural k para o qual a expressão
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2004 b 2002 c 2000 d 2001 e 2003
6. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindos 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada Pode-se afirmar que
lacksquare N é primo
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
d N é quadrado perfeito
e N é divisível por 9

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	\mathbf{a}	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

Fundamentos de Matemática — Teste $1-50~\mathrm{min}$

1. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 36 b 21 c 40 d 72 e 48
2. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
fantsize a infinitas $fantsize b$ 1 $fantsize c$ 3 $fantsize d$ 2 $fantsize e$ 0
3. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?
a 7 b 14 c 8 d 10 e 15
4. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que
a N é quadrado perfeito b $\log N < 1$ c N é par
d N é divisível por 9 e N é primo
5. A sequência (a_k) é tal que
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2(k+1)^2 3^{k-1}$ b $k^2 3^k$ c $2k(k-1)3^k$ d $2(k-1)^2 3^{k+1}$ e $2k^2 3^{k-1}$
6. O valor do número natural k para o qual a expressão
$\frac{k^2}{(1,001)^k}$
atinge seu valor máximo é
a 2003 b 2002 c 2004 d 2001 e 2000

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome	e sobre	enome:		

$\mathbf{Quest ilde{ao}}$ 1: \mathbf{a}	b	\mathbf{c}	d	e
---	---	--------------	---	---

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e

a 15

b 8

Graduação em Matemática Aplicada

Fundamentos de Matemática – Teste 1 – 50 min

FUNDAMENTOS DE MATEMATICA — LESTE I — 30 MIN
1. A soma dos quadrados dos algarismos de um número N , formado por dois algarismos, é 25. Diminuindo-se 9 unidades do número dado obtém-se um número formado pelos mesmos algarismos, porém na ordem trocada. Pode-se afirmar que
f a N é quadrado perfeito
$\stackrel{-}{\overline{b}}$ N é divisível por 9
$rac{c}{c}$ N é primo
$\overline{\mathrm{d}}\ N$ é par
$e \log N < 1$
2. O valor do número natural k para o qual a expressão
k^2
$\frac{k^2}{\left(1,001\right)^k}$
atinge seu valor máximo é
a 2002 b 2001 c 2000 d 2003 e 2004
3. A sequência (a_k) é tal que
$\sum_{k=1}^{n} a_k = (n^2 + n + 1)3^n + c,$
para todo inteiro positivo n , sendo c uma constante desconhecida. Então a_k é igual a
a $2k^23^{k-1}$ b $2k(k-1)3^k$ c $2(k-1)^23^{k+1}$ d k^23^k e $2(k+1)^23^{k-1}$
4. Quantas soluções reais tem a equação $sen(2x) = ln(x/2)$? (ln representa o logaritmo na base e)
$oxed{a}$ 2 $oxed{b}$ 3 $oxed{c}$ 0 $oxed{d}$ infinitas $oxed{e}$ 1
5. A soma de todos os $n \in \mathbb{Z}$ (todos os inteiros, inclusive negativos!) para os quais $\frac{6n+1}{n-8} \in \mathbb{Z}$ é:
a 72 b 36 c 40 d 21 e 48
6. Qual é o número mínimo possível de inteiros que um conjunto deve ter para garantir que existam dois entre eles cuja diferença é um múltiplo de 7?

c 10

d 7

Fundamentos de Matemática – Teste 1-50 min

1.	As questões serão corrigidas por leitura óptica; preencha os quadrados por completo com caneta
	preta ou azul (não basta fazer um"X"). Confira o DIA da "data" no topo das folhas; ele deve ser
	igual nas folhas de questões e respostas (o "mês" e o "ano" são diferentes). Por exemplo, um conjunto
	válido de "datas" de uma mesma prova é

- 2. Responda todas as questões, você **NÃO** perde pontos por respostas incorretas. Entregue **APENAS** a folha de respostas, você pode levar a folha de questões para casa.
- 3. Este é um teste individual, nenhuma colaboração será permitida. Não é permitido o uso de calculadora, computador ou celular (que deve permenecer desligado durante a prova). Não é permitida a consulta a qualquer material escrito. O não cumprimento deste item implica automaticamente em nota final 0 no semestre, juntamente com um processo administrativo.

Boa prova!

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

← Preencha seu número de matrícula FGV ao lado e escreva o seu nome e sobrenome abaixo.

Nome e sobrenome:	

Questão 1:	a	b	$^{\mathrm{c}}$	d	e

Questão 2: a b c d e

Questão 3: a b c d e

Questão 4: a b c d e

Questão 5: a b c d e