1. Importing Required Package

import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as pt

%matplotlib inline

1. Loading the Dataset

df=pd.read_csv('/content/Churn_Modelling.csv')
df

۸۵۵	RowNumb	er Custome	erId	Surname	CreditScore	Geography	Gender
Age 0	\	1 15634	1602	Hargrave	619	France	Female
42 1		2 15647	311	Hill	608	S Spain	Female
41 2		3 15619	304	Onio	502	? France	Female
42 3		4 1570	354	Boni	699	France	Female
39 4 43		5 15737	888	Mitchell	856	Spain	Female
9995	99	96 15606	5229	0bijiaku	771	. France	Male
39 9996	99	97 15569	892	Johnstone	516 709	France	Male
35 9997	99	98 15584	1532	Liu		France	Female
36 9998	99	99 15682	2355	Sabbatini	772	Germany	Male
42 9999 28	100	00 15628	319	Walker	792	: France	Female
0 1 2 3 4	Tenure 2 1 8 1 2	Balance 0.00 83807.86 159660.80 0.00 125510.82	Num	OfProducts 1 1 3 2 1	HasCrCard 1 0 1 0 1	IsActiveMem	ber \ 1
9995 9996 9997 9998 9999	5 10 7 3 4	0.00 57369.61 0.00 75075.31 130142.79		2 1 1 2 1	1 1 0 1		0 1 1 0 0

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]

1. Visualizations

3.1 Univariate Analysis

sns.displot(df.Tenure)

<seaborn.axisgrid.FacetGrid at 0x7fc35cdb3e10>

3.2 Bi-Variate Analysis

df.plot.line()

<matplotlib.axes._subplots.AxesSubplot at 0x7fc359e7c410>

3.3 Multi - Variate Analysis

sns.lmplot("Age","NumOfProducts",df,hue="NumOfProducts",
fit reg=False);

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y, data. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Perform descriptive statistics on the dataset df.describe()

CustomerId	CreditScore	Age				
1 000000 0.4	10000 000000	10000 00000				
1.000000e+04	10000.000000	10000.000000				
1.569094e+07	650.528800	38.921800				
7.193619e+04	96.653299	10.487806				
1.556570e+07	350.000000	18.000000				
1.562853e+07	584.000000	32.000000				
1.569074e+07	652.000000	37.000000				
1.575323e+07	718.000000	44.000000				
75% 7500.25000 1.575323e+07 718.000000 44.000000 7.000000						
1.581569e+07	850.000000	92.000000				
	1.000000e+04 1.569094e+07 7.193619e+04 1.556570e+07 1.562853e+07 1.569074e+07 1.575323e+07	1.000000e+04 10000.000000 1.569094e+07 650.528800 7.193619e+04 96.653299 1.556570e+07 350.000000 1.562853e+07 584.000000 1.569074e+07 652.000000 1.575323e+07 718.000000				

```
10000.000000
                         10000.000000
                                        10000.00000
                                                         10000.000000
count
        76485.889288
                             1.530200
                                            0.70550
                                                             0.515100
mean
std
        62397.405202
                             0.581654
                                            0.45584
                                                             0.499797
             0.000000
                             1.000000
                                            0.00000
                                                             0.000000
min
25%
             0.000000
                             1.000000
                                            0.00000
                                                             0.000000
50%
        97198.540000
                             1.000000
                                            1.00000
                                                             1.000000
75%
       127644.240000
                                             1.00000
                                                             1.000000
                             2.000000
       250898.090000
                             4.000000
                                            1.00000
                                                             1.000000
max
       EstimatedSalarv
                                Exited
           10000.000000
                          10000.000000
count
mean
          100090.239881
                              0.203700
           57510.492818
                              0.402769
std
min
              11.580000
                              0.000000
25%
           51002.110000
                              0.000000
50%
          100193.915000
                              0.00000
75%
          149388.247500
                              0.000000
         199992.480000
                              1.000000
max
  1.
     Handle the Missing values
data = pd.read csv('/content/Churn Modelling.csv')
pd.isnull(data["Gender"])
0
        False
1
        False
2
        False
3
        False
4
        False
         . . .
9995
        False
9996
        False
9997
        False
9998
        False
9999
        False
Name: Gender, Length: 10000, dtype: bool
     Find the outliers and replace the outliers
df["Tenure"] = np.where(df["Tenure"] >10, np.median,df["Tenure"])
df["Tenure"]
         2
0
1
         1
2
         8
3
         1
4
         2
         . .
         5
9995
9996
        10
9997
         7
         3
9998
```

9999

2

Name: Tenure, Length: 10000, dtype: object

1. Check for Categorical columns and perform encoding pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"]).head()

RowNumb		Custom	erId	Surname	CreditSc	core	Geography	Tenure	
Balance \ 0 0.00	1	1563	4602	Hargrave		619	France	2	
1 83807.86	2	1564	7311	Hill		608	Spain	1	
2 159660.80	3	1561	.9304	Onio		502	France	8	
3 0.00	4	1570	1354	Boni		699	France	1	
4 125510.82	5	1573	7888	Mitchell		850	Spain	2	
NumOfPr	oduc	ts Ha	sCrCa	rd IsActi	LveMember		Gender_7	78 Gend	er_79
0		1		1	1			0	0
1		1		0	1			0	0

3	Z	U	0	U	U
4	1	1	1	0	0

0 ...

1

0

	Gender_80	Gender_81	Gender_82	Gender_83	Gender_84	Gender_85 `
0	_ 0	_ 0	_ 0	_ 0	_ 0	_ 0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	Θ	Θ	Θ	Θ	0	0

	Gender_88	Gender_92
0	_ 0	_ 0
1	0	0
2	0	0
3	0	0
4	0	0

3

[5 rows x 84 columns]

1. Split the data into dependent and independent variables

```
8.1 Split the data into Independent variables
```

X = df.iloc[:, :-2].values

```
print(X)

[[1 15634602 'Hargrave' ... 1 1 1]
  [2 15647311 'Hill' ... 1 0 1]
  [3 15619304 'Onio' ... 3 1 0]
  ...
  [9998 15584532 'Liu' ... 1 0 1]
  [9999 15682355 'Sabbatini' ... 2 1 0]
  [10000 15628319 'Walker' ... 1 1 0]]

8.2 Split the data into Dependent variables
import pandas as pd
df = pd.read_csv('/content/Churn_Modelling.csv')
Y = df.iloc[:, -1].values
print(Y)

[1 0 1 ... 1 1 0]
```

1. Scale the independent variables

from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()

```
df[["RowNumber"]]=scaler.fit_transform(df[["RowNumber"]])
print(df)
```

A	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
Age 0 42	0.0000	15634602	Hargrave	619	France	Female
1 41	0.0001	15647311	Hill	608	Spain	Female
2 42	0.0002	15619304	Onio	502	France	Female
3 39	0.0003	15701354	Boni	699	France	Female
4 43	0.0004	15737888	Mitchell	850	Spain	Female
9995 39	0.9996	15606229	0bijiaku	771	France	Male
9996 35	0.9997	15569892	Johnstone	516	France	Male
9997 36	0.9998	15584532	Liu	709	France	Female
9998 42	0.9999	15682355	Sabbatini	772	Germany	Male
9999	1.0000	15628319	Walker	792	France	Female

```
Tenure
                 Balance
                           NumOfProducts
                                            HasCrCard
                                                         IsActiveMember
                     0.00
0
            2
                                         1
                                                     1
                                                                        1
1
            1
                83807.86
                                         1
                                                     0
                                                                        1
2
            8
               159660.80
                                         3
                                                     1
                                                                        0
3
                                         2
            1
                                                     0
                                                                        0
                     0.00
            2
4
                                         1
                                                     1
                                                                        1
               125510.82
          . . .
                      . . .
                                                    . . .
                                         2
9995
            5
                     0.00
                                                     1
                                                                       0
9996
           10
                57369.61
                                         1
                                                     1
                                                                        1
            7
                                         1
                                                     0
                                                                        1
9997
                     0.00
9998
            3
                75075.31
                                         2
                                                     1
                                                                       0
            4
                                         1
                                                     1
                                                                       0
9999
               130142.79
      EstimatedSalary
                         Exited
0
             101348.88
                               1
1
                               0
             112542.58
2
             113931.57
                               1
3
              93826.63
                               0
4
              79084.10
                               0
9995
              96270.64
                               0
9996
             101699.77
                               0
                               1
9997
              42085.58
                               1
9998
              92888.52
9999
              38190.78
                               0
[10000 \text{ rows } \times 14 \text{ columns}]
      Split the data into training and testing
from sklearn.model selection import train test split
train size=0.8
X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test size = 0.5
X valid, X test, y valid, y test = train test split(X rem, y rem,
test size=0.5)
print(X_train.shape), print(y_train.shape)
print(X valid.shape), print(y valid.shape)
print(X test.shape), print(y test.shape)
(8000, 13)
(8000,)
(1000, 13)
(1000,)
(1000, 13)
(1000,)
```

(None, None)