Warm-Up-Aufgabe 1.4 [Eigenschaften regulärer Ausdrücke]

- a) Zeigen Sie durch strukturelle Induktion, dass es für jeden regulären Ausdruck α ohne Wiederholungsoperator die folgende Längenbeschränkung der von ihm erzeugten Wörter gibt: Für alle $w \in L(\alpha)$ gilt $|w| \leq |\alpha|$, falls in α kein Wiederholungsoperator vorkommt.
- b) Beweisen oder widerlegen Sie: Zu jedem regulären Ausdruck β gibt es einen regulären Ausdruck β' ohne Wiederholungsoperator, sodass $\beta \equiv \beta'$ ist.

Q)

|A: "Basisfalle" -> hies 1. o (1. Symbol des Alphabets), 2. € 63. D

Regulaire

O: |X| = 1 (Der Ausdruck ist o)

w=0 intes |w|=1 (nw ein Symbol (o-), hat eine Machtighein von 1)

E: (|x1=0, w= & implies |w1-0) implies |w1 < |x1 + Mathematish formale schreibsneise

OLON = or inches Trivialerweise eskillt/gilt offensichtlich /immer eskillt, da es hein Wort gibt dass die Bedingung werletten könnte

|S: Seien 13, γ = zwei beliebige RE von α verschieden. $b \in L(\beta)$, $c \in L(T)$ beliebig

Das ist nicht das α aus den |A, weil wir hier quasi $\alpha+1$ haben α in |A, haben wir α $\alpha + \alpha = \beta + \beta$ zh zeigen ist $\alpha + \alpha \in L(\alpha)$: $|\alpha| \leq |\alpha|$ da wir den $\alpha + \alpha = \beta$ oder $|\alpha| = |\alpha|$.

Das heißt $|\alpha| \leq |\beta|$ oder $|\alpha| = |\alpha|$.

Da $|\alpha| = |\beta| + |\beta|$, gilt $|\alpha| \leq |\alpha|$

o: $\alpha = \beta$ a $\epsilon L(\beta) \cdot L(\gamma)$ The larger werder ja bei der honkaderation angefright $|\alpha| = |\beta| |\beta| |\alpha| \leq |\beta| + |\beta| = |\alpha|, \text{ daher gilt } |\alpha| \leq |\alpha|$ $\leq |\beta| \leq |\alpha|$