Functional Analysis

Closed Graph Theorem

Purushottam Priyam Rathaur

Roll No: 222123039

M.Sc. in Mathematics and Computing
Department of Mathematics
Indian Institute of Technology Guwahati

Nov 11th, 2023

Definition and Theorem that required in proof of Closed Graph Theorem

Banach space: A Normed Linear Space X is called a **Banach space** if it is complete with respect to the given norm $\|\cdot\|_X$. In other words, every Cauchy sequence in X converges to a limit in X.

Open Map:

Let X and Y be topological spaces. A function $f: X \to Y$ is called an **open map** if, for every open set U in X, the image f(U) is an open set in Y. In other words, f preserves the openness of sets.

Thorem

Theorem (Bounded Inverse Theorem)

Let X and Y be Banach spaces, and $T: X \to Y$ be a bounded linear operator. If T is bijective, then its inverse $T^{-1}: Y \to X$ is also a bounded linear operator.

Theorem (A)

Let X and Y be NLS, and $T: X \to Y$ be a linear operator. Ker(T) is Null space of T. Define $\overline{T}: X/ker(T) \to Y$ by $\overline{T}([x]) = Tx$ for $x \in X$. Then T is an open map if and only if \overline{T} is an open map.

The Closed Graph Theorem

Theorem (The Closed Graph Theorem)

Let X and Y be Banach spaces, and $T: X \to Y$ be a linear transformation such that the graph of T, denoted by $G(T) = \{(x, Tx) \in X \times Y \mid x \in X\} \subseteq X \times Y$, is closed. Then T is continuous.

Proof:

X, Y: Banach spaces $\Rightarrow X \times Y$ is a Banach space, G(T) is closed $\Rightarrow G(T)$ is also a Banach space. Define map $P:G(T) \rightarrow X$ by P(x,Tx)=x.

To show that P is a bijection, linear, and bounded

One-One: Suppose
$$P(x_1, Tx_1) = P(x_2, Tx_2)$$
.
 $\Rightarrow x_1 = x_2,$
 $\Rightarrow (x_1, Tx_1) = (x_2, Tx_2).$
Therefore, P is One-One.
Onto: For $x \in X$
we have $(x, Tx) \in G(T)$
s.t. $P(x, Tx) = x$
hence P is onto

Linear: Let (x_1, Tx_1) and (x_2, Tx_2) be in G(T) and α in K.

$$P((x_1, Tx_1) + (x_2 + Tx_2)) = P(x_1 + x_2, T(x_1 + x_2))$$

$$= x_1 + x_2$$

$$= P(x_1, T(x_1)) + P(x_2, T(x_2))$$

$$P(\alpha(x_1, T(x_1))) = P(\alpha x_1, \alpha T(x_1))$$

$$= P(\alpha x_1, T(\alpha x_1))$$

$$= \alpha x_1$$

$$= \alpha P(x_1, T(x_1))$$

Hence P is linear.

Bdd:
$$||P(x, T(x))||_X = ||x||_X$$

 $\leq \max\{||x||_X, ||Tx||_Y\}$
 $= ||(x, T(x))||_*$

Hence, P is bounded. $\|\cdot\|_*$ denote the norm defined on $X\times Y$.

So, P is linear, bijective, and bounded. Hence, by the Bounded Inverse Theorem, $P^{-1}:X\to G(T)$ is continuous.

Now, define $Q: G(T) \rightarrow Y$ by Q(x, Tx) = Tx.

Linear: Let (x_1, Tx_1) and (x_2, Tx_2) be in G(T) and α in K.

$$Q((x_1, Tx_1) + (x_2, Tx_2)) = Q(x_1 + x_2, T(x_1 + x_2))$$

$$= Tx_1 + Tx_2$$

$$= Q((x_1, T(x_1))) + Q((x_2, T(x_2)))$$

$$Q(\alpha(x_1, Tx_1)) = Q(\alpha x_1, \alpha T(x_1))$$

$$= T(\alpha x_1)$$

$$= \alpha x_1$$

$$= \alpha Q((x_1, T(x_1)))$$

Hence Q is linear.

Bdd:
$$||Q((x, T(x))||_Y = ||T(x)||_Y \le \max\{||x||_X, ||T(x)||_Y\} = ||(x, T(x))||_*$$

Hence, Q is **bounded**, and Q is **continuous** as Q is **linear**.

 $Q \circ P^{-1}: X \to Y$ is a composition of two continuous functions, and as the composition of two continuous functions is again continuous, we conclude that

 $Q \circ P^{-1}$ is a continuous function.

Moreover:

$$Q \circ P^{-1}(x) = Q(P^{-1}(x))$$

$$= Q((x,T(x))) = T(x)$$

$$\Rightarrow Q \circ P^{-1} = T$$

 \Rightarrow T is continuous as $Q \circ P^{-1}$ is continuous.

CLOSED GRAPH THEOREM IMPLIES OPEN MAPPING THEOREM

Theorem (Open Mapping Theorem)

Suppose X and Y are Banach spaces, and $T: X \to Y$ is a surjective (onto) bounded linear operator. Then, T is an open map, meaning that for any open set U in X, the image T(U) is an open set in Y.

Proof:

CASE I: T is ONE-ONE :

T is one-one $\Rightarrow T^{-1}$ exists

By the Bounded Inverse Thoerem \mathcal{T}^{-1} is bounded , i.e. continuous

Hence for any open set U in X $(T^{-1})^{-1}(U)$ is open .

 \Rightarrow T(U) is open ,i.e T is an open map.

CASE II: T is not ONE-ONE:

Define
$$\bar{T}: X/\ker(T) \to Y$$
 by $\bar{T}([x]) = Tx$ for $x \in X$.
Linear:

$$\text{let } [x_1], [x_2] \in X/\ker(T), \text{ and let } a \in \mathbb{K}. \text{ Then,}$$

$$\bar{T}(a[x_1] + [x_2]) = \bar{T}([ax_1 + x_2])$$

$$= T(ax_1 + x_2)$$

$$= aTx_1 + Tx_2$$

$$= a\bar{T}([x_1]) + \bar{T}([x_2]).$$

Hence, \bar{T} is linear.

One-One:

Assume $\bar{T}([x_1]) = \bar{T}([x_2])$ for some $[x_1], [x_2] \in X/\ker(T)$. $\Rightarrow Tx_1 = Tx_2$ $\Rightarrow x_1 - x_2 \in \ker(T)$ which means $[x_1] = [x_2]$. Therefore, \bar{T} is One-One.

Onto:

Let $y \in Y$. Since T is surjective, there exists $x \in X$ such that Tx = y. Consider $[x] \in X/\ker(T)$. Then, $\bar{T}([x]) = Tx = y$. Thus, \bar{T} is surjective.

Therefore, \bar{T} is a linear, injective, and surjective map.

Hence Inverse on \bar{T} exists , $\bar{T}^{-1}: Y \to X/\ker(T)$ For any $y_1, y_2 \in Y$, let $[x_1] = \bar{T}^{-1}(y_1)$ and $[x_2] = \bar{T}^{-1}(y_2)$. Let.

For any
$$y_1, y_2 \in Y$$
, let $[x_1] = T^{-1}(y_1)$ and Let,

$$\bar{T}^{-1}(y_1 + y_2) = [x]$$

$$\Rightarrow [x_1] + [x_2] = \bar{T}^{-1}(y_1) + \bar{T}^{-1}(y_2)$$

$$\Rightarrow \bar{T}([x_1] + [x_2]) = \bar{T}(\bar{T}^{-1}(y_1) + \bar{T}^{-1}(y_2))$$

$$\Rightarrow \bar{T}([x_1] + [x_2]) = y_1 + y_2$$

$$\Rightarrow [x_1] + [x_2] = \bar{T}^{-1}(y_1 + y_2)$$

$$\Rightarrow \bar{T}^{-1}(y_1 + y_2) = \bar{T}^{-1}(y_1) + {}^{-1}(y_2).$$

$$\Rightarrow \bar{T}^{-1}(y_1+y_2) = \bar{T}^{-1}(y_1) +^{-1}(y_2).$$

For any $y \in Y$ and scalar α , let $[x] = \overline{T}^{-1}(y)$. Then,

$$\alpha[x] = \alpha \bar{T}^{-1}(y)$$

$$\Rightarrow [\alpha x] = \alpha \bar{T}^{-1}(y)$$

$$\Rightarrow \bar{T}([\alpha x]) = \alpha \bar{T}(\bar{T}^{-1}(y))$$

$$\Rightarrow \bar{T}([\alpha x]) = \alpha y$$

$$\Rightarrow \alpha[x] = \bar{T}^{-1}\alpha y.$$

Hence $\bar{\mathcal{T}}^{-1}$ is Linear .

Therefore, \bar{T}^{-1} is a linear, injective, and surjective map.

Also Graph of \bar{T}^{-1} is closed . Hence by Closed Graph Theorem , \bar{T}^{-1} is bounded , that is \bar{T} is Open map . Hence by THEOREM(A) . T is open Map.

This concludes the proof. Thank You