Life Cycle of Stars: Atomic History

projects.wwtambassadors.org/star-life-cycle

What to do:

Н

Hydrogen

Li

Na

Fr

11

Be

Mg

Ra

12

- 1. Consider a single atom of helium (He).
- **2.** Using information collected from the *Life Cycle of Stars* interactive, explore how this atom might have evolved and migrated over the past 13.8 billion years since the big bang (which produced only **H** and **He** and a tiny amount of **Li**).

Provide an example where this atom might be today (e.g., your body, Mt. Rushmore, the Arctic Ocean, etc.).

Ar

- **3.** Repeat **step 2** with one of the elements from the second row.
- **4.** Repeat **step 2** with one of the elements from the third or fourth row.

B C N O Oxygen	F	Neon
----------------	---	------

16

S

15

P

14

Al

Si

Life Cycle of Stars: Element Formation

projects.wwtambassadors.org/star-life-cycle

What could it form from?	ELEMENT	This reaction occurs in	What is happening in the star that makes this reaction possible?
(Hydrogen)	Helium	☑ Sun-like main-sequence stars ☑ Massive main-sequence stars ☑ Red giants ☑ Red supergiants	Gas compression raises the core temperature and density until hydrogen atoms start fusing to helium.
	6 C Carbon	□ Sun-like main-sequence stars□ Massive main-sequence stars□ Red giants□ Red supergiants	
	8 O Oxygen	☐ Sun-like main-sequence stars☐ Massive main-sequence stars☐ Red giants☐ Red supergiants	

Life Cycle of Stars: Schematic

projects.wwtambassadors.com/star-life-cycle

Life Cycle of Stars: Stages and Transitions

projects.wwtambassadors.org/star-life-cycle

What causes transition (A)?

Gravity's compression eventually increases the temperature and

density enough to trigger deuterium fusion in the core of the gas

and dust clump, forming a new protostar.

core).

form around protostar to form planets.) Role of fusion: Deuterium fusion heats up inside of protostar and increases outward pressure. Balance of gravity and fusion: Radiation pressure created by deuterium fusion in the core can counteract the inward force of the gravity, and the protostar can remain stable for some time. What causes **transition** (**B**)? Eventually, gravity compresses the core until the temperature and density are high enough to fuse H to He. **Sun-Like Main-Sequence Star** Role of gravity: Role of fusion: Balance of gravity and fusion:

Gravity compresses protostar. When temperature and

Red Giant

Planetary Nebula + White Dwarf

Sun-Like Main-sequence Star

Life Cycle of a Sun-Like Star

Star-Forming Nebula

Protostar

What causes transition (C) ?	

Role of gravity: Compresses star until H->He fusion ignites in shell around core and He->C fusion ignites in core.

Role of fusion: H->He fusion in shell triggers expansion and cooling of star to become a red giant. Energy from fusion in core and shell makes star shine.

Balance of gravity and fusion: Star stays in balance while fusion in core and shell is ongoing.

what causes transition D ?		
Planetary Nebula + White Dwarf Role of gravity: Compresses core until it becomes a white dwarf. (Ste		
winds blow the outer layers of the star away to form the nebula.)		
Role of fusion:		
(quantum physics) stops complete collapse of star under gravity.		
What causes transition (E)?		