চতুর্ভুজ

১. সামন্তরিকের জন্য নিচের কোনটি সঠিক?

- ক. বিপরীত বাহুগুলো অসমান্তরাল
- খ. একটি কোণ সমকোণ হলে, তা আয়ত
- গ. বিপরীত বাহুদ্বয় অসমান
- ঘ. কর্ণদ্বয় পরস্পর সমান

উত্তরঃ খ

২. নিচের কোনটি রম্বসের বৈশিষ্ট্য?

- ক. কর্ণদ্বয় পরস্পর সমান
- খ. প্রত্যেক কোণই সমকোণ
- গ. বিপরীত কোণদ্বয় অসমান
- ঘ. প্রত্যেকটি বাহুই সমান

উত্তরঃ ঘ

- ৩. i. চতুর্ভুজের চার কোণের সমষ্টি চার সমকোণ।
- ii. আয়তের দুইটি সন্নিহিত বাহু সমান হলে তা একটি বর্গ।
- iii. প্রত্যেকটি রম্বস একটি সামন্তরিক।

উপরের তথ্য অনুসারে নিচের কোনটি সঠিক?

ক.iওii খ.iওiii গ.iiওiii ঘ.i,iiওiii

উত্তরঃ ঘ

৪. নিচের চিত্রটি লক্ষ্য করঃ

PAQC চতুর্ভুজের PPA=CQ এবং PAIICQ.

∠A ও ∠C এর সমদ্বিখন্ডক যথাক্রমে AB ও CD হলে ABCD ক্ষেত্রটির নাম কী?

ক্. সামন্তরিক খ. রম্বস গ. আয়ত ঘ. বর্গ

উত্তরঃ ক

৫. দেওয়া আছে, △ABC এর মধ্যমা BO কে D পর্যন্ত এমনভাবে বর্ধিত করি যেন BO=OD
হয়।

প্রমাণ করতে হবে যে. ABCD একটি সামন্তরিক।

সমাধানঃ

বিশেষ নির্বচনঃ

দেওয়া আছে, △ABC এর মধ্যমা BO কে D পর্যন্ত এমনভাবে বর্ধিত করি যেন BO=OD হয়। প্রমাণ করতে হবে যে, ABCD একটি সামন্তরিক।

প্রমাণঃ

△ABC এ

CO=AO [BO মধ্যমা বলে]

এখন, △COB ও △DOA এ

CO=AO [BO মধ্যমা বলে]

BO=DO শির্তানুসারো

∠COB=∠DOA |বিপ্রতীপ কোণ|

 $\triangle COB \cong \triangle DOA$

তাহলে, AD=CB

অনুরুপভাবে পাই, CD=AB

: ABCD একটি সামন্তরিক (প্রমাণিত)

৬. প্রমাণ কর যে, সামন্তরিকের একটি কর্ণ একে দুইটি সর্বসম ব্রিভুজে বিভক্ত করে। সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, ABCD একটি সামন্তরিক যার একটি কর্ণ AC. প্রমাণ করতে হবে যে, AC কর্ণ ABCD সামন্তরিককে সমান দুই ভাগে ভাগ করে অর্থাৎ △ABC ≅ △ADC.

প্রমাণঃ

যেহেতু ABCD সামন্তরিক সেহেতু ABIIDC ও ADIIBC

এখন, ABIIDC ও AC তাদের ছেদক

∴∠BAC=∠DCA [একান্তর কোণ]

আবার, ADIIBC ও AC তাদের ছেদক

∴∠DAC=∠BCA [একান্তর কোণ]

এখন, 🛆 ADC ও 🛆 ABC এ

∠BAC=∠DCA

∠DAC=∠BCA

AC সাধারণ বাহু

∴△ADC ≅ △ABC (প্রমাণিত)

৭. প্রমাণ কর যে, চতুর্ভুজের বিপরীত বাহুগুলো পরস্পর সমান ও সমান্তরাল হলে, তা একটি সামন্তরিক।

সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, ABCD একটি চতুর্ভুজ। এর AD=BC, AB=CD এবং ADIIBC, ABIICD. প্রমাণ করতে হবে যে, ABCD একটি সামন্তরিক।

অঙ্কনঃ

A, C যোগ করি।

প্রমাণঃ

ABIIDC ও AC তাদের ছেদক

∴∠BAC=∠DCA একান্তর কোণা

আবার, ADIIBC ও AC তাদের ছেদক

∴∠DAC=∠BCA [একান্তর কোণ]

এখন, ADC ও ABC এ

∠BAC=∠DCA

∠DAC=∠BCA

AC সাধারণ বাহু

 $\triangle ADC \cong \triangle ABC$

তাহলে. ∠ABC=∠ADC

অনুরুপভাবে, ∠BAD=∠BCD

:ABCD একটি সামন্তরিক।

৮. প্রমাণ কর যে, সামন্তরিকের কর্ণদ্বয় পরস্পর সমান হলে, তা একটি আয়ত।

সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, ABCD সামন্তরিকের কর্ণ AC=কর্ণ BD প্রমাণ করতে হবে যে, ABCD একটি আয়ত।

প্রমাণঃ

△ABC ও △ADB এর মধ্যে

BC=AD

AC=BD

AB সাধারন বাহু।

∴∆ABC≅∆ADB

তাহলে, ∠ABC=∠BAD

এখন, যেহেতু ADIIBC এবং AB তাদের ছেদক।

∴∠ABC+∠BAD=2 সমকোণ।

::ABCD একটি আয়ত (প্রমাণিত)

৯. প্রমাণ কর যে, চতুরভুজের কর্ণদ্বয় পরস্পর সমান হলে এবং পরস্পরকে সমকোণে সমদ্বিখন্ডিত করলে, তা একটি বর্গ।

সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, ABCD চতুর্ভুজের AC ও BD কর্ণ পরস্পপর সমান এবং পরস্পরকে O বিন্দুতে সমকোণে সমদ্বিখন্ডিত করেছে। অর্থাৎ AC=BD, OA=OC, OB=OD

এবং ∠AOB=∠BOC=∠COD=∠AOD=90º

প্রমাণ করতে হবে যে, ABCD একটি বর্গ।

প্রমাণঃ

△AOB 3 △AOD এ

OB=OD [শর্তানুসারে]

∠AOB=∠AOD [শর্তানুসারে সমকোণ]

AO সাধারণ বাহু

∴ △AOB ≅ △AOD

তাহলে, AB=AD

অনুরুপভাবে পাই, AD=DC: DC=BC

অর্থাৎ, AB=AD=DC=BC

এখন, △AOB এ

∠AOB=90°

এবং OA=OB

∴∠OAB=∠OBA=450

অনুরুপভাবে, <mark>△AOD এ</mark> ∠0AD=∠0DA=450

 $\therefore \angle BAD = \angle OAB + \angle OAD = 45^{\circ} + 45^{\circ} = 90^{\circ}$

::ABCD একটি বর্গ।

১০. প্রমাণ কর যে, আয়তের সন্নিহিত বাহুর মধ্যবিন্দুসমূহের যোগে যে চতুর্ভুজ হয়, তা একটি রম্বস।

সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, ABCD আয়ত। P, Q, R ও S যথাক্রমে AB, BC, CD ও AD এর মধ্যবিন্দু। P,Q; Q,R; R,S ও S, P যোগ করি। প্রমাণ করতে হবে যে, PQRS একটি রম্বস।

অঙ্কনঃ

A,C; B,D এবং S,Q; P,R যোগ করি।

প্রমাণঃ

△ABD এ AB ও AD এর মধ্যবিন্দু D ও S

:DSIIBD এবং DS=1/2BD

একইভাবে পাই, QR=PS; QR= 1/2BD

∴ PS=QR এবং PS||QR

তাহলে আমরা একইভাবে পাই, PQ=SR; PQIISR

∴ PQRS একটি রম্বস (প্রমাণিত)

১১. প্রমাণ কর যে, সামন্তরিকের যেকোনো দুইটি বিপরীত কোণের সমদ্বিখন্ডক পরস্পর সমান্তরাল।

সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, ABCD একটি সামন্তরিক। এর ১৫ এর সমদ্বিখন্ডক AE ও CF যথাক্রমে DC ও AB কে Eও F বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, AEIICF.

প্রমাণঃ

যেহেতু, AE, ∠BAD এর সমদ্বিখন্ডক

∴∠EAF=½∠BAD

অনুরুপভাবে, ∠ECF=½∠BCD

এখন, ∠BAD=∠BCD [সামন্তরিকের বিপরীত কোণ পরস্পর সমান]

∴∠EAF=∠ECF

এখন, AECF চতুর্ভুজ এ

∠EAF=∠ECF যারা পরস্পপর বিপরীত কোণ।

তাহলে, AECF চতুর্ভুজ এ ∠AEC=∠AFC

: AECF একটি সামন্তরিক।

∴ AE HFC (প্রমাণিত))

১২. প্রমাণ কর যে, সামন্তরিকের যেকোনো দুইটি সন্নিহিত কোণের সমদ্বিখন্ডক পরস্পর লম্ব।

সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, ABCD একটি সামন্তরিক। এর ∠BAD ও ∠ABC এর সমদ্বিখন্ডকদ্বয় পরস্পর O বিন্দুতে ছেদ করেছে। প্রমাণ কর যে, AO ও BO পরস্পরের উপর লম্ব।

প্রমাণঃ

ABCD সামন্তরিকে.

∠BAD+∠BCD+∠ABC+ADC=3600

বা, ∠BAD+∠BAD+∠ABC+∠ABC=3600 |সামন্তরিকের বিপরীত কোণগুলো পরস্পর সমান হয়|

বা, 2∠BAD+2∠ABC=3600

 $\overline{\text{II}}$, $\angle BAD + \angle ABC = 180^{\circ}$

বা, 2∠0AB+2∠0BA=180⁰[∠BAD ও ∠ABC এর সমদ্বিখন্ডক শর্তানুসারে]

 $\overline{\text{II}}$, $\angle \text{OAB} + \angle \text{OBA} = 90^{\circ}$(i)

এখন.

△ABO এ

 $\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$

বা, 900+∠A0B=1800 [(i) নং ইতে]

বা, ∠AOB=1800-900

বা, ∠AOB=900

অর্থাৎ, AO ও BO পরস্পরের উপর লম্ব (প্রমাণিত)

১৩. চিত্রে, ABC একটি সমবাহু ব্রিভুজ। D, E ও F যথাক্রমে AB, BC ও AC এর মধ্যবিন্দু।

ক. প্রমাণ কর যে, ∠BDF+∠DFE+∠FEB+∠EBD=চার সমকোণ।

সমাধানঃ

মনে করি, চিত্রে, ABC একটি সমবাহু ত্রিভুজ। D, E ও F যথাক্রমে AB, BC ও AC এর মধ্যবিন্দু। প্রমাণ করতে হবে যে, ∠BDF+∠DFE+∠FEB+∠EBD=চার সমকোণ।

প্রমাণঃ

△BDE এ

∠DBE+∠BED+∠BDE=দুই সমকোণ.....(i)

আবার, △DEF এ

∠DEF+∠EFD+∠FDE=দুই সমকোণ.....(ii) (i)+(ii) করে, ∠DBE+∠BED+∠BDE+∠DEF+∠EFD+∠FDE=চার সমকোণ বা, ∠DBE+(∠BED+∠DEF)+(∠BDE+∠FDE)+ ∠EFD= চার সমকোণ বা, ∠DBE+∠BEF+∠BDF+ ∠EFD= চার সমকোণ (প্রমাণিত) খ. প্রমাণ কর যে, DFI IBC এবং DF= ½BC

সমাধানঃ

বিশেষ নির্বচনঃ

মনে করি, △ABC এর D ও F যথাক্রমে AB ও AC এর মধ্যবিন্দু। D ও F যোগ করে G পর্যন্ত এমনভাবে বর্ধিত করি যেন DF=FG হয়। G, C যোগ করি। প্রমাণ করতে হবে যে, DFIIBC এবং DF= ½BC

প্রমাণঃ

△ADF 3 △CGF এ

DF=FG [অঙ্কনানুসারে]

AF=FC [শর্তানুসারে]

∠DFA=∠CFG |বিপ্রতীপ কোণ|

 $\therefore \triangle ADF \cong \triangle CGF$

তাহলে, AD=CG

বা, BD=CG [AD=BD: শর্তানুসারে]

এবং, ∠DAF=∠FCG যার ছেদক AC

∴ AD I ICG

বা. BDIICG

এখন, যেহেতু BD=CG ও BDIICG

সেহেতু, BDGC একটি সামন্তরিক।

তাহলে, DGIIBC

বা, DFIIBC

এবং, DG=BC

বা, 2DF=BC [DF=FG বলে]

বা. DF= ½BC

∴ DFIIBC এবং DF= ½BC (প্রমাণিত)