Input: Observation $\mathcal{Y} \in \mathbb{R}^{p \times \cdots \times p}$, cluster number r, relaxation factor $\eta > 1$ in k-means clustering. 1: Compute factor matrix $U_{\text{pre}} = \text{SVD}_r(\text{Mat}(\mathcal{Y}))$ and the (K-1)-mode projection $\mathcal{X}_{\text{pre}} = \mathcal{Y} \times_1 U_{\text{pre}} U_{\text{pre}}^T \times_2 \cdots \times_{K-1} U_$ $U_{ m pre}U_{ m pre}^T$.

2: Compute factor matrix $\hat{\boldsymbol{U}} = \text{SVD}_r(\text{Mat}(\mathcal{X}_{\text{pre}}))$ and denoised tensor $\hat{\mathcal{X}} = \mathcal{Y} \times_1 \hat{\boldsymbol{U}} \hat{\boldsymbol{U}}^T \times_2 \cdots \times_K \hat{\boldsymbol{U}} \hat{\boldsymbol{U}}^T$. 3: Let $\hat{\boldsymbol{X}} = \operatorname{Mat}(\hat{\mathcal{X}})$ and $S_0 = \{i \in [p] : ||\hat{\boldsymbol{X}}_{i:}|| = 0\}$. Set $\hat{z}(i)$ randomly in [r] for $i \in S_0$.

4: For all
$$i \in S_0^c$$
, compute normalized rows $\hat{\boldsymbol{X}}_{i:}^s := \|\hat{\boldsymbol{X}}_{i:}\|^{-1}\hat{\boldsymbol{X}}_{i:}$.
5: Solve the clustering $\hat{z} : [p] \to [r]$ and centroids $(\hat{\boldsymbol{x}}_j)_{j \in [r_k]}$ using weighted k -means, such that

$$\sum_{i \in S_0^c} \lVert \hat{\boldsymbol{X}}_{i:} \rVert^2 \lVert \hat{\boldsymbol{X}}_{i:}^s - \hat{\boldsymbol{x}}_{\hat{z}(i)} \rVert^2 \leq \eta \min_{\bar{\boldsymbol{x}}_j, j \in [r], \bar{z}(i), i \in S_0^c} \sum_{i \in S^c} \lVert \hat{\boldsymbol{X}}_{i:} \rVert^2 \lVert \hat{\boldsymbol{X}}_{i:}^s - \bar{\boldsymbol{x}}_{\bar{z}(i)} \rVert^2.$$

Algorithm: Multiway spherical clustering for degree-corrected tensor block model

Output: Initial clustering $z^{(0)} \leftarrow \hat{z}$.

Sub-algorithm 1: Weighted higher-order initialization

Sub-algorithm 2: Angle-based iteration

Input: Observation
$$\mathcal{Y} \in \mathbb{R}^{p \times \cdots \times p}$$
, initialization $z^{(0)} : [p] \to [r]$ from Sub-algorithm 1, iteration number T .

nput: Observation
$$\mathcal{Y} \in \mathbb{R}^{p \times \cdots \times p}$$
, initializat

nput: Observation
$$\mathcal{Y} \in \mathbb{R}^{p \times \cdots \times p}$$
, initialization

6: **for** t = 0 to T - 1 **do** Update the block tensor $\mathcal{S}^{(t)}$ via $\mathcal{S}^{(t)}(a_1,...,a_K) = \text{Ave}\{\mathcal{Y}(i_1,...,i_K) : z^{(t)}(i_k) = a_k, k \in [K]\}.$ Calculate reduced tensor $\mathcal{Y}^{d} \in \mathbb{R}^{p \times r \times \cdots \times r}$ via

$$\mathcal{Y}^{\mathrm{d}}(i, a_2, \dots, a_K) = \text{Ave}\{\mathcal{Y}(i, i_2, \dots, i_K) : z^{(t)}(i_k) = a_k, k \neq 1\}.$$

9: Let
$$\mathbf{Y}^{d} = \text{Mat}(\mathcal{Y}^{d})$$
 and $J_{0} = \{i \in [p] : ||\mathbf{Y}_{i:}^{d}|| = 0\}$. Set $z^{(t+1)}(i)$ randomly in $[r]$ for $i \in J_{0}$.

Let $\mathbf{S}^{(t)} = \operatorname{Mat}(\mathbf{S}^{(t)})$. For all $i \in J_0^c$ update the cluster assignment by

Let
$$\mathbf{S}^{(t)} = \operatorname{Mat}(\mathcal{S}^{(t)})$$
 and $S_0 = \{i \in [p] : ||\mathbf{I}_{i:}|| = 0\}$. Set $z = (i)$ rand Let $\mathbf{S}^{(t)} = \operatorname{Mat}(\mathcal{S}^{(t)})$. For all $i \in J_0^c$ update the cluster assignment by

10:

$$z(i)^{(t+1)} = rg \max_{a \in [-1]} \cos \left(oldsymbol{Y}_{i:}^{ ext{d}}, \ oldsymbol{S}_{a:}^{(t)}
ight).$$

11: end for

Output: Estimated clustering $z^{(T)} \in [r]^p$.

7:

8: