Provide Insights to the Product Strategy Team in the Banking Domain

Problem Statement

Mitron Bank is a legacy financial institution headquartered in Hyderabad. They want to introduce a new line of credit cards, aiming to broaden its product offerings and reach in the financial market.

AtliQ Data Services came to know about this through an internal link and approached Mitron Bank with a proposal to implement this project. However, strategy director of Mitron Bank, Mr.Bashnir Rover is skeptical and asked them to do a pilot project with the sample data before handing them the full project. They provided a sample dataset of 4000 customers across five cities on their online spend and other details.

Peter Pandey is a data analyst at AtliQ Data Services and asked by his manager to take over this project. His role is to analyse the provided sample data and report key findings to the strategy team of Mitron Bank. This analysis is expected to guide them in tailoring the credit cards to customer needs and market trends.

The successful acquisition of this project depends on Peter's ability to provide actionable, data-driven recommendations and impress Mr. Bashnir Rover & his team. Peter requested support from his manager Tony Sharma, and he provided him with some ideas to generate insights based on the data provided.

Task: Imagine yourself as Peter Pandey and perform the following task:

- 1. Use "Insight Ideas from Tony.pdf". Create metrics and visuals accordingly.
- Design a dashboard with your metrics and analysis. The end users of this
 dashboard are top-level management and product strategy team hence the
 dashboard should be self-explanatory and easy to understand.
 codebasics.io
- Present your insights to Mr.Bashnir Rover & team. Be creative and concise with your presentation. Use your dashboard in the presentation along with the deck.
- Use additional data based on your own research to support your recommendations.

Note:

- 5. We recommend you create a video presentation of ideally 15 minutes or less for the business stakeholders. Additionally, make a LinkedIn post that includes relevant links, your video presentation, and a reflection on your experience while working on this challenge.
- 6. You can check out this example presentation to gain some inspiration: Sample Presentation Link

7. Submit your post link on the resume project challenge page of codebasics.

(https://codebasics.io/challenge/codebasics-resume-project-challenge)

Insight Ideas from Tony

Demographic classification:

Classify the customers based on available demography such as age group, gender, occupation etc. and provide insights based on them.

Avg income utilisation: Find the average income utilisation % of customers (avg_spends/avg_income). This will be your key metric. The higher the average income utilisation %, the more is their likelihood to use credit cards.

Spending Insights: Where do people spend money the most? Does it have any impact due to occupation, gender, city, age etc.? This can help you to add relevant credit card features for specific target groups.

Key Customer Segments: By doing above, you should be able to identify and profile key customer segments that are likely to be the highest-value users of the new credit cards. This includes understanding their demographics, spending behaviours, and financial preferences.

Credit Card Feature Recommendations: Provide recommendations on what key features should be included in the credit card which will improve the likelihood of credit card usage. This should be backed by the insights from data provided and also some secondary research on the internet for this.

Additional Thoughts: I added above insights based on my initial thoughts. However, you may get more valuable insights when you delve deep into the data.

Note: If you find any discrepancies in the data, include that in your presentation as a consideration.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

customer_data = pd.read_csv('https://raw.githubusercontent.com/Yash-Kavaiya/codebasics/

- customer_id: The unique identifier for each customer.
- age_group: The age group of the customer (e.g., 25-34, 35-45, etc.).
- city: The city where the customer lives.
- · occupation: The customer's occupation.
- gender: The customer's gender.

- marital status: The customer's marital status.
- avg_income: The customer's average income.

customer_data

	customer_id	age_group	city	occupation	gender	marital status	avg_income
0	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523
1	ATQCUS0809	25-34	Hyderabad	Salaried Other Employees	Male	Married	39922
2	ATQCUS0663	25-34	Chennai	Salaried Other Employees	Male	Married	37702
3	ATQCUS0452	25-34	Delhi NCR	Government Employees	Male	Married	54090
4	ATQCUS3350	21-24	Bengaluru	Freelancers	Male	Single	28376
3995	ATQCUS3035	45+	Delhi NCR	Business Owners	Female	Married	72805
3996	ATQCUS2585	35-45	Mumbai	Salaried Other Employees	Female	Married	41343
3997	ATQCUS1229	35-45	Bengaluru	Salaried IT Employees	Male	Married	65948
3998	ATQCUS0581	25-34	Bengaluru	Government Employees	Male	Married	52589
3999	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541

4000 rows × 7 columns

```
customer_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4000 entries, 0 to 3999
Data columns (total 7 columns):
# Column Non-Null Count Dtype
```

#	Column	Non-Null Count	υтуре
0	customer_id	4000 non-null	object
1	age_group	4000 non-null	object
2	city	4000 non-null	object
3	occupation	4000 non-null	object
4	gender	4000 non-null	object
5	marital status	4000 non-null	object
6	avg_income	4000 non-null	int64

dtypes: int64(1), object(6)
memory usage: 218.9+ KB

```
for column in customer_data.columns:
    print(f"{column}: {customer_data[column].unique()}")
```

```
customer_id: ['ATQCUS1825' 'ATQCUS0809' 'ATQCUS0663' ... 'ATQCUS1229' 'ATQCUS0581'
   'ATQCUS3477']
age_group: ['45+' '25-34' '21-24' '35-45']
city: ['Bengaluru' 'Hyderabad' 'Chennai' 'Delhi NCR' 'Mumbai']
```

```
occupation: ['Salaried IT Employees' 'Salaried Other Employees' 'Government Employees' 'Freelancers' 'Business Owners']
gender: ['Male' 'Female']
marital status: ['Married' 'Single']
avg_income: [73523 39922 37702 ... 65948 52589 73541]
```

```
customer_data.age_group.value_counts()
```

```
25-34 1498
35-45 1273
21-24 691
45+ 538
Name: age_group, dtype: int64
```

..ame. ago_g.oap, acype. into

!pip install Plotly

Requirement already satisfied: Plotly in /opt/conda/lib/python3.9/site-packages (5.18.0)

Requirement already satisfied: tenacity>=6.2.0 in /opt/conda/lib/python3.9/site-packages (from Plotly) (8.2.3)

Requirement already satisfied: packaging in /opt/conda/lib/python3.9/site-packages (from Plotly) (21.2)

Requirement already satisfied: pyparsing<3,>=2.0.2 in /opt/conda/lib/python3.9/site-packages (from packaging->Plotly) (2.4.7)

```
import plotly.express as px
fig = px.pie(customer_data['age_group'].value_counts(), values=customer_data['age_group
fig.update_traces(hovertemplate='Age Group: %{label}<br>Fount: %{value}<br/>fig.show()
```

fig = px.pie(customer_data['city'].value_counts(), values=customer_data['city'].value_c
fig.update_traces(hovertemplate='city : %{label}
Count: %{value}
Percentage: %{pe
fig.show()

fig = px.pie(customer_data['occupation'].value_counts(), values=customer_data['occupati
fig.update_traces(hovertemplate='occupation : %{label}
Fount: %{value}
fig.show()

```
plt.figure(figsize=(10,6))
sns.histplot(customer_data['avg_income'], bins=200, kde=True)
plt.title('Distribution of Average Income')
plt.xlabel('Average Income')
plt.ylabel('Count')
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

# Create a box plot
plt.figure(figsize=(10,6))
sns.boxplot(x=customer_data['avg_income'])
plt.title('Box Plot of Average Income')
```

```
plt.xlabel('Average Income')
plt.show()
```



```
gender_counts = customer_data['gender'].value_counts()
fig = px.bar(gender_counts, x=gender_counts.index, y=gender_counts.values, labels={'x':
fig.show()
```

marital_status_counts = customer_data['marital status'].value_counts()
fig = px.bar(marital_status_counts, x=marital_status_counts.index, y=marital_status_cou
fig.show()

fact_spends = pd.read_csv('https://raw.githubusercontent.com/Yash-Kavaiya/codebasics/ma

There are five columns in the dataset:

- customer_id: The unique identifier for each customer.
- month: The month in which the transaction occurred.
- category: The category of the spending (e.g., groceries, health & wellness, electronics).
- payment_type: The method used for payment (e.g., credit card, debit card, UPI).
- spend: The amount spent in the transaction.

fact_spends

_		customer_id	month	category	payment_type	spend
	0	ATQCUS1371	July	Health & Wellness	Credit Card	1114
	1	ATOCUS0368	October	Groceries	Credit Card	1466

	customer_id	month	category	payment_type	spend
2	ATQCUS0595	May	Health & Wellness	Credit Card	387
3	ATQCUS0667	October	Electronics	Credit Card	1137
4	ATQCUS3477	September	Bills	UPI	2102
•••					
863995	ATQCUS1993	June	Bills	Debit Card	897
863996	ATQCUS1063	September	Bills	Credit Card	2680
863997	ATQCUS0416	August	Others	Credit Card	270
863998	ATQCUS3361	September	Bills	UPI	446
863999	ATQCUS1736	September	Apparel	UPI	242

864000 rows × 5 columns

```
fact_spends.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 864000 entries, 0 to 863999

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	customer_id	864000 non-null	object
1	month	864000 non-null	object
2	category	864000 non-null	object
3	payment_type	864000 non-null	object
4	spend	864000 non-null	int64

 ${\tt dtypes: int64(1), object(4)}$

memory usage: 33.0+ MB

fig = px.pie(fact_spends['category'].value_counts(), values=fact_spends['category'].val
fig.update_traces(hovertemplate='category : %{label}
Count: %{value}
Percentage:
fig.show()

```
fig = px.pie(fact_spends['payment_type'].value_counts(), values=fact_spends['payment_ty
fig.update_traces(hovertemplate='payment_type : %{label}<br>Count: %{value}<br>Fercenta
fig.show()
```

```
fact_spends.customer_id.value_counts()
```

```
ATQCUS1371 216
ATQCUS2876 216
ATQCUS0139 216
ATQCUS3635 216
ATQCUS3171 216
...
ATQCUS1464 216
```

ATQCUS3380 216 ATQCUS3340 216 ATQCUS2075 216 ATQCUS0890 216

Name: customer_id, Length: 4000, dtype: int64

df = pd.merge(customer_data, fact_spends, on='customer_id')

df

	customer_id	age_group	city	occupation	gender	marital status	avg_income	month	category	paym
0	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	May	Electronics	Net
1	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	May	Groceries	Dı
2	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	June	Bills	Cr
3	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	September	Apparel	Dı
4	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	May	Food	Dı
•••	•••									
863995	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	May	Bills	Net
863996	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	October	Apparel	
863997	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	September	Food	D١
863998	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	June	Apparel	Net
863999	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	September	Health & Wellness	Crı

864000 rows × 11 columns

df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 864000 entries, 0 to 863999

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	customer_id	864000 non-null	object
1	age_group	864000 non-null	object
2	city	864000 non-null	object
3	occupation	864000 non-null	object
4	gender	864000 non-null	object

5 marital status 864000 non-null object 6 864000 non-null int64 avg_income 7 month 864000 non-null object 864000 non-null object 8 category 9 payment_type 864000 non-null object 864000 non-null int64 10 spend

dtypes: int64(2), object(9)
memory usage: 79.1+ MB

spending_insights = df.groupby(['customer_id'])['spend'].mean().reset_index()
spending_insights.columns = ['customer_id', 'avg_spends']

spending_insights

	customer_id	avg_spends
0	ATQCUS0001	789.560185
1	ATQCUS0002	780.157407
2	ATQCUS0003	729.324074
3	ATQCUS0004	753.032407
4	ATQCUS0005	728.222222
•••		
3995	ATQCUS3996	461.060185
3996	ATQCUS3997	260.481481
3997	ATQCUS3998	276.666667
3998	ATQCUS3999	310.842593
3999	ATQCUS4000	247.912037

4000 rows × 2 columns

customer_data

	customer_id	age_group	city	occupation	gender	marital status	avg_income
0	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523
1	ATQCUS0809	25-34	Hyderabad	Salaried Other Employees	Male	Married	39922
2	ATQCUS0663	25-34	Chennai	Salaried Other Employees	Male	Married	37702
3	ATQCUS0452	25-34	Delhi NCR	Government Employees	Male	Married	54090
4	ATQCUS3350	21-24	Bengaluru	Freelancers	Male	Single	28376
•••							
3995	ATQCUS3035	45+	Delhi NCR	Business Owners	Female	Married	72805
3996	ATQCUS2585	35-45	Mumbai	Salaried Other Employees	Female	Married	41343
3997	ATQCUS1229	35-45	Bengaluru	Salaried IT Employees	Male	Married	65948
3998	ATQCUS0581	25-34	Bengaluru	Government Employees	Male	Married	52589

	customer_id	age_group	city	occupation	gender	marital status	avg_income
3999	ATOCUS3477	25-34	Mumbai	Business Owners	Male	Sinale	73541

4000 rows × 7 columns

new_df = pd.merge(customer_data, spending_insights, on='customer_id')

new_df

	customer_id	age_group	city	occupation	gender	marital status	avg_income	avg_spends
0	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519
1	ATQCUS0809	25-34	Hyderabad	Salaried Other Employees	Male	Married	39922	458.851852
2	ATQCUS0663	25-34	Chennai	Salaried Other Employees	Male	Married	37702	319.916667
3	ATQCUS0452	25-34	Delhi NCR	Government Employees	Male	Married	54090	566.245370
4	ATQCUS3350	21-24	Bengaluru	Freelancers	Male	Single	28376	340.305556
3995	ATQCUS3035	45+	Delhi NCR	Business Owners	Female	Married	72805	545.800926
3996	ATQCUS2585	35-45	Mumbai	Salaried Other Employees	Female	Married	41343	582.277778
3997	ATQCUS1229	35-45	Bengaluru	Salaried IT Employees	Male	Married	65948	1144.861111
3998	ATQCUS0581	25-34	Bengaluru	Government Employees	Male	Married	52589	497.009259
3999	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852

4000 rows × 8 columns

new_df['income_utilization'] = new_df['avg_spends']*100 / new_df['avg_income']

new_df.describe()

	avg_income	avg_spends	income_utilization
count	4000.000000	4000.000000	4000.000000
mean	51657.032250	614.464994	1.193001
std	14690.140645	254.574848	0.342039
min	24816.000000	163.263889	0.396965
25%	38701.000000	420.989583	0.933414
50%	50422.000000	557.372685	1.163884
75%	64773.250000	755.150463	1.434777
max	86600.000000	1459.263889	2.149305

df = pd.merge(new_df, fact_spends, on='customer_id')

	customer_id	age_group	city	occupation	gender	marital status	avg_income	avg_spends	income_utilizatio
0	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
1	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
2	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
3	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
4	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
•••								•••	
863995	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863996	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863997	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863998	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863999	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233

864000 rows × 13 columns

Top 500 Customer

```
grouped_df = df.groupby('customer_id').agg({'spend': 'sum', 'avg_income': 'mean'})
top_spend_customers = grouped_df['spend'].nlargest(4000)
top_income_customers = grouped_df['avg_income'].nlargest(4000)
top_spend_customers_df = top_spend_customers.to_frame().reset_index()
top_income_customers_df = top_income_customers.to_frame().reset_index()
```

top_spend_customers_df

	customer_id	spend
0	ATQCUS0918	315201
1	ATQCUS0914	309425
2	ATQCUS0922	306975
3	ATQCUS0944	304288
4	ATQCUS0943	300422
•••		
3995	ATQCUS3887	40570
3996	ATQCUS3885	40500

	customer_id	spend
3997	ATQCUS3883	37650
3998	ATQCUS2066	36410
3999	ATQCUS2067	35265

4000 rows × 2 columns

top_income_customers_df

	customer_id	avg_income
0	ATQCUS2990	86600.0
1	ATQCUS1982	86327.0
2	ATQCUS1985	85593.0
3	ATQCUS1694	85416.0
4	ATQCUS1864	85082.0
3995	ATQCUS3224	25289.0
3996	ATQCUS0102	25159.0
3997	ATQCUS2053	24995.0
3998	ATQCUS3345	24888.0
3999	ATQCUS3392	24816.0

4000 rows × 2 columns

Demographic classification:

Classify the customers based on available demography such as age group, gender, occupation etc. and provide insights based on them.

```
import plotly.graph_objects as go
```

```
fig1 = go.Figure(data=go.Bar(x=grouped_df.index, y=grouped_df['spend'], name='Total Spe
fig1.update_layout(title='Total Spend by Occupation', xaxis_title='Occupation', yaxis_t
fig1.show()
```

```
# Create a bar chart for average income
fig2 = go.Figure(data=go.Bar(x=grouped_df.index, y=grouped_df['avg_income'], name='Aver
fig2.update_layout(title='Average Income by Occupation', xaxis_title='Occupation', yaxi
```

fig2.show()

grouped_df = df.groupby(['occupation', 'gender', 'marital status'])['spend'].sum().rese

Create a sunburst chart

fig = px.sunburst(grouped_df, path=['occupation', 'gender', 'marital status'], values='
fig.show()

```
# Classify the customers based on age group, gender, and occupation
grouped_df = df.groupby(['age_group', 'gender', 'occupation']).size().reset_index(name=
```

```
# Calculate the mean average income and total spend for each demographic group
grouped_df = df.groupby(['age_group', 'gender', 'occupation']).agg({'avg_income': 'mean
```

```
fig1 = px.bar(grouped_df, x='occupation', y='avg_income', color='age_group', barmode='g
fig1.show()
```

Create a bar chart for total spend
fig2 = px.bar(grouped_df, x='occupation', y='spend', color='age_group', barmode='group'
fig2.show()

Avg income utilisation: Find the average income utilisation % of customers (avg_spends/avg_income). This will be your key metric. The higher the average income utilisation %, the more is their likelihood to use credit cards.

```
import matplotlib.pyplot as plt
import seaborn as sns

# Create a histogram of income utilization
plt.figure(figsize=(10,6))
sns.histplot(df['income_utilization'], bins=50, kde=True)
plt.title('Distribution of Average Income Utilization')
plt.xlabel('Average Income Utilization (%)')
plt.ylabel('Count')
plt.show()
```


Spending Insights: Where do people spend money the most? Does it have any impact due to occupation, gender, city, age etc.? This can help you to add relevant credit card features for specific target groups.

```
# Group by category and calculate the total spend for each category
total_spend_by_category = df.groupby('category')['spend'].sum()
```

```
import matplotlib.pyplot as plt

# Data
categories = ['Apparel', 'Bills', 'Electronics', 'Entertainment', 'Food', 'Groceries',
spend_values = [34036001, 104912768, 79562220, 41289162, 44013470, 86303761, 65599867,

# Sort the data in descending order
sorted_data = sorted(zip(spend_values, categories), reverse=True)
spend_values, categories = zip(*sorted_data)

# Create a horizontal bar chart
plt.figure(figsize=(10, 6))
plt.barh(categories, spend_values, color='skyblue')
```

```
plt.xlabel('Total Spend')
plt.title('Total Spend by Category')
plt.gca().invert_yaxis() # Invert y-axis to show categories in descending order
plt.show()
```


Group by occupation, gender, city, age_group, and category, and calculate the total s
total_spend_by_group = df.groupby(['occupation', 'gender', 'city', 'age_group', 'catego
Print the DataFrame
print(total_spend_by_group)

occupation	gender	city	age_group	category	
Business Owners	Female	Bengaluru	21-24	Apparel	67515
				Bills	9021
				Electronics	29876
				Entertainment	38900
				Food	39123
Salaried Other Employees	Male	Mumbai	45+	Food	145681
				Groceries	394299
				Health & Wellness	222111
				Others	58136
				Travel	263040

Name: spend, Length: 1800, dtype: int64

```
# Create a bar chart for total spend by category
fig1 = px.bar(total_spend_by_category, x=total_spend_by_category.index, y=total_spend_b
fig1.show()
```

Create a bar chart for total spend by group
fig2 = px.bar(total_spend_by_group.reset_index(), x='category', y='spend', color='occup
fig2.show()

Key Customer Segments: By doing above, you should be able to identify and profile key customer segments that are likely to be the highest-value users of the new credit cards. This includes understanding their demographics, spending behaviours, and financial preferences.

```
grouped = df.groupby(['age_group', 'gender', 'occupation', 'city'])

# Calculate statistics for each group
grouped_stats = grouped.agg({
    'spend': ['mean', 'sum', 'count'],
    'avg_income': ['mean', 'sum'],
    'income_utilization': ['mean']
})

# Sort the groups by total spend
grouped_stats.sort_values(('spend', 'sum'), ascending=False, inplace=True)

# Print the grouped statistics
print(grouped_stats)
```

				spend	\
				mean	sum
age_group	gender	occupation	city		
35-45	Male	Salaried IT Employees	Mumbai	1307.337384	18072632
25-34	Male	Salaried IT Employees	Mumbai	1195.502792	16268402
			Delhi NCR	1082.226935	13090617
35-45	Female	Salaried IT Employees	Mumbai	1097.948906	13043633
	Male	Salaried IT Employees	Delhi NCR	1188.705864	11554221
21-24	Female	Freelancers	Chennai	198.734568	128780
45+	Female	Freelancers	Hyderabad	279.627315	120799
21-24	Female	Business Owners	Chennai	272.976852	117926
45+	Female	Freelancers	Chennai	255.435185	110348
		Government Employees	Chennai	250.444444	108192
				avg.	_income \
				count	mean
age_group	gender	occupation	city		
35-45	Male	Salaried IT Employees	Mumbai	13824 65851	.343750

25-34	Male	Salaried IT	Employees	Mumbai	13608	62115.777778
				Delhi NCR	12096	62329.946429
35-45	Female	Salaried IT	Employees	Mumbai	11880	66004.690909
	Male	Salaried IT	Employees	Delhi NCR	9720	66357.755556
21-24	Female	Freelancers		Chennai	648	27117.333333
45+	Female	Freelancers		Hyderabad	432	38384.000000
21-24	Female	Business Ow	ners	Chennai	432	53405.000000
45+	Female	Freelancers		Chennai	432	40656.500000
		Government	Employees	Chennai	432	58801.500000

income_utilization

				sum	mean
age_group	gender	occupation	city		
35-45	Male	Salaried IT Employees	Mumbai	910328976	1.985270
25-34	Male	Salaried IT Employees	Mumbai	845271504	1.925157
			Delhi NCR	753943032	1.736347
35-45	Female	Salaried IT Employees	Mumbai	784135728	1.663736
	Male	Salaried IT Employees	Delhi NCR	644997384	1.791401
21-24	Female	Freelancers	Chennai	17572032	0.733993
45+	Female	Freelancers	Hyderabad	16581888	0.728602
21-24	Female	Business Owners	Chennai	23070960	0.510851
45+	Female	Freelancers	Chennai	17563608	0.628042
		Government Employees	Chennai	25402248	0.424423

[200 rows x 6 columns]

```
# Reset the index to make 'age_group', 'gender', 'occupation', and 'city' into columns
grouped_stats.reset_index(inplace=True)

# Create a new column for the demographic group
grouped_stats['demographic_group'] = grouped_stats['age_group'] + ', ' + grouped_stats[
# Select the top 10 groups by total spend
top_groups = grouped_stats.nlargest(10, ('spend', 'sum'))

# Plot a bar graph of total spend for the top groups
plt.figure(figsize=(10, 6))
sns.barplot(x=('spend', 'sum'), y='demographic_group', data=top_groups)
plt.title('Total Spend by Top Demographic Groups')
plt.xlabel('Total Spend')
plt.ylabel('Demographic Group')
plt.show()
```


df

	customer_id	age_group	city	occupation	gender	marital status	avg_income	avg_spends	income_utilizatio
0	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
1	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
2	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
3	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
4	ATQCUS1825	45+	Bengaluru	Salaried IT Employees	Male	Married	73523	900.018519	1.22413
•••			•••						
863995	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863996	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863997	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863998	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233
863999	ATQCUS3477	25-34	Mumbai	Business Owners	Male	Single	73541	876.851852	1.19233

864000 rows × 13 columns

df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 864000 entries, 0 to 863999

Data columns (total 13 columns):

Column Non-Null Count Dtype

```
864000 non-null object
 2
    city
 3
                         864000 non-null object
    occupation
                         864000 non-null object
 4
     gender
 5
                         864000 non-null object
    marital status
                         864000 non-null int64
 6
    avg_income
 7
                         864000 non-null float64
    avg_spends
     income_utilization 864000 non-null float64
 8
 9
                         864000 non-null object
    month
 10
    category
                         864000 non-null object
    payment_type
                         864000 non-null object
 11
                         864000 non-null int64
 12
    spend
dtypes: float64(2), int64(2), object(9)
memory usage: 92.3+ MB
import pandas as pd
def apply_one_hot_encoding(df, columns_to_encode):
    Function to apply one-hot encoding to specified columns in a DataFrame.
    Parameters:
    - df: DataFrame containing the columns to be encoded.
    - columns_to_encode: List of column names to be one-hot encoded.
    Returns:
    - DataFrame with one-hot encoded columns.
    return pd.get_dummies(df, columns=columns_to_encode)
# Example usage:
# List of columns to be one-hot encoded
columns_for_encoding = ['age_group', 'city', 'occupation', 'gender', 'marital status',
```

864000 non-null object

864000 non-null object

df_encoded

0

1

customer_id

age_group

	customer_id	avg_income	avg_spends	income_utilization	spend	age_group_21- 24	age_group_25- 34	age_group_
0	ATQCUS1825	73523	900.018519	1.224132	405	0	0	
1	ATQCUS1825	73523	900.018519	1.224132	1096	0	0	
2	ATQCUS1825	73523	900.018519	1.224132	2765	0	0	
3	ATQCUS1825	73523	900.018519	1.224132	363	0	0	

Apply one-hot encoding to the specified columns in your DataFrame (let's assume your

df_encoded = apply_one_hot_encoding(df, columns_for_encoding)

	customer_id	avg_income	avg_spends	income_utilization	spend	age_group_21- 24	age_group_25- 34	age_group_
	4 ATQCUS1825	73523	900.018519	1.224132	334	0	0	
86399	5 ATQCUS3477	73541	876.851852	1.192331	548	0	1	
86399	6 ATQCUS3477	73541	876.851852	1.192331	174	0	1	
86399	7 ATQCUS3477	73541	876.851852	1.192331	346	0	1	
86399	8 ATQCUS3477	73541	876.851852	1.192331	54	0	1	
86399	9 ATQCUS3477	73541	876.851852	1.192331	1155	0	1	

864000 rows × 42 columns

df_encoded.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 864000 entries, 0 to 863999

Data columns (total 42 columns):

#	Column	Non-Null Count	Dtype
0	customer_id	864000 non-null	object
1	avg_income	864000 non-null	int64
2	avg_spends	864000 non-null	float64
3	income_utilization	864000 non-null	float64
4	spend	864000 non-null	int64
5	age_group_21-24	864000 non-null	uint8
6	age_group_25-34	864000 non-null	uint8
7	age_group_35-45	864000 non-null	uint8
8	age_group_45+	864000 non-null	uint8
9	city_Bengaluru	864000 non-null	uint8
10	city_Chennai	864000 non-null	uint8
11	city_Delhi NCR	864000 non-null	uint8
12	city_Hyderabad	864000 non-null	uint8
13	city_Mumbai	864000 non-null	uint8
14	occupation_Business Owners	864000 non-null	uint8
15	occupation_Freelancers	864000 non-null	uint8
16	occupation_Government Employees	864000 non-null	uint8
17	occupation_Salaried IT Employees	864000 non-null	uint8
18	occupation_Salaried Other Employees	864000 non-null	uint8
19	gender_Female	864000 non-null	uint8
20	gender_Male	864000 non-null	uint8
21	marital status_Married	864000 non-null	uint8
22	marital status_Single	864000 non-null	uint8
23	month_August	864000 non-null	uint8
24	month_July	864000 non-null	uint8

```
25
    month_June
                                          864000 non-null uint8
 26
                                          864000 non-null uint8
    month_May
27
    month_October
                                          864000 non-null uint8
                                          864000 non-null uint8
28
    month_September
                                          864000 non-null uint8
29
    category_Apparel
30
    category_Bills
                                          864000 non-null uint8
                                          864000 non-null uint8
31
    category_Electronics
32
                                          864000 non-null uint8
    category_Entertainment
33
                                          864000 non-null uint8
    category_Food
                                          864000 non-null uint8
 34
    category_Groceries
35
    category_Health & Wellness
                                          864000 non-null uint8
                                          864000 non-null uint8
    category_Others
 36
                                          864000 non-null uint8
37
    category_Travel
                                          864000 non-null uint8
38
    payment_type_Credit Card
39
    payment_type_Debit Card
                                          864000 non-null uint8
40
    payment_type_Net Banking
                                          864000 non-null uint8
    payment_type_UPI
                                          864000 non-null uint8
dtypes: float64(2), int64(2), object(1), uint8(37)
```

memory usage: 70.0+ MB

```
from sklearn.cluster import KMeans
# Assuming df_encoded is your DataFrame with the encoded columns
# Remove non-numeric columns like 'customer_id' before clustering
customer_id = df_encoded['customer_id'] # Save the customer_id column
df_numeric = df_encoded.drop(columns=['customer_id']) # Remove non-numeric columns
# Apply K-means clustering with 5 clusters
kmeans = KMeans(n_clusters=5, random_state=42)
kmeans.fit(df_numeric)
# Get the cluster labels
cluster_labels = kmeans.labels_
# Assign the cluster labels back to the DataFrame
df_encoded['Cluster'] = cluster_labels
# Add customer id back to the DataFrame
df_encoded['customer_id'] = customer_id
# Display the counts of customers in each cluster
print(df_encoded['Cluster'].value_counts())
```

```
def get_waitlist_days(customer_id):
    # Assuming 'df_encoded' is your DataFrame containing 'customer_id' and 'Cluster' cd
    cluster = df_encoded[df_encoded['customer_id'] == customer_id]['Cluster'].values
```

```
# Dictionary mapping clusters to waitlist days
    waitlist_mapping = {
        0:1,
        1: 2,
       3:6,
        4:8
        # Add more clusters and corresponding waitlist days if needed
    }
    if len(cluster) > 0:
        cluster = int(cluster[0])
        if cluster in waitlist_mapping:
            return waitlist_mapping[cluster]
        else:
           return "Cluster exists but waitlist days not defined."
    else:
        return "Customer ID not found or does not belong to any cluster."
# Example usage:
user_input_customer_id = 'ATQCUS1234' # Replace this with the user's input
waitlist_days = get_waitlist_days(user_input_customer_id)
if isinstance(waitlist_days, int):
    print(f"Cluster {df_encoded[df_encoded['customer_id'] == user_input_customer_id]['0
    # Customize your message based on the cluster and waitlist days
    if waitlist_days == 1:
        print("You are eligible for the credit card. You'll receive it within 1 day.")
        print(f"You are in the waitlist. Expected waitlist days: {waitlist_days}")
else:
    print(waitlist_days) # Print message if customer ID not found or cluster not defir
```