FUNDAÇÃO GETULIO VARGAS ESCOLA DE MATEMÁTICA APLICADA CURSO DE GRADUAÇÃO EM MATEMÁTICA APLICADA

Dinâmica de Disseminação de Notícias em Redes Complexas

por

Elisa Mussumeci

Rio de Janeiro 2015

FUNDAÇÃO GETÚLIO VARGAS

FUNDAÇÃO GETULIO VARGAS ESCOLA DE MATEMÁTICA APLICADA CURSO DE GRADUAÇÃO EM MATEMÁTICA APLICADA

Dinâmica de Disseminação de Notícias em Redes Complexas

"Declaro ser o único autor do presente projeto de monografia que refere-se ao plano de trabalho a ser executado para continuidade da monografia e ressalto que não recorri a qualquer forma de colaboração ou auxílio de terceiros para realizá-lo a não ser nos casos e para os fins autorizados pelo professor orientador"

Elisa Mussumeci

Orientador: Flavio Codeço Coelho

Rio de Janeiro 2015

ELISA MUSSUMECI

Dinâmica de Disseminação de Notícias em Redes Complexas

"Monografia apresentada à Escola de Matemática Aplicada como requisito parcial para obtenção do grau de Bacharel em Matemática Aplicada"

Aprovado em ____ de ____ de ____ . Grau atribuido ao Projeto de Monografia: ____ .

Professor Orientador: Flávio Codeço Coelho Escola de Matemática Aplicada

Fundação Getulio Vargas

Conteúdo

1	Intr	ntrodução					
	1.1	O Projeto Media Cloud Brasil	4				
	1.2	Referencial Teórico	4				
		1.2.1 O espalhamento de notícias como um processo de contágio	4				
		1.2.2 Processos Epidemiológicos em Redes Complexas	5				
		1.2.3 Processamento de Linguagem Natural	5				
	1.3	Objetivo	7				
2	Met	odologia	8				
	2.1	Rede de Disseminação Real	8				
		2.1.1 Matriz de Documentos	9				
		2.1.2 Construção da Rede	10				
	2.2	ž	11				
			12				
		•	13				
3	Resi	ıltados	15				
	3.1		15				
	3.2		16				
_							
4	Con	clusão	16				
_	• .						
L	ista	de Figuras					
	1	Rede Real Genérica	8				
	2	Relação de Influência	10				
	3	Rede Completa	11				
	4		11				
	5	Pesos na Rede Completa	12				
	6	<u> •</u>	15				
	7		16				
	8	Distribuição de Similaridades Máximas	17				
	9		18				
	10	Rede Disseminação Real x Tempo	18				

Resumo

O processo de formação de opinião é fortemente influenciado pela mídia digital. Entretanto pouco se sabe sobre o processo de disseminação de notícias e os fatores que determinam o alcance de cada notícia.

A disseminação de uma notícia se dá por meio de um ou mais caminhos em uma rede desconhecida de influência entre formadores de opinião (produtores de notícias). Este padrão pode ser recuperado, com algum grau de incerteza, a partir de dados da sequência temporal das publicações sobre um mesmo tema, e dos links nelas contidos.

Este projeto tem como objetivo caracterizar as redes de interligação de veículos de mídia e modelar a dinâmica do espalhamento de notícias, a fim de prever tendências e mapear questões de interesse.

1 Introdução

Atualmente a internet é um dos principais meios de veiculação de notícias e informação do país. Com o crescente número de pessoas aderindo à redes sociais, o compartilhamento de notícias aumentou significamente, o que tornou fundamental o papel das mídias digitais no acesso à informação.

Consideramos como mídia digital todo e qualquer veículo difusor de informação contido na internet brasileira, como jornais, revistas e blogs independentes. Cada mídia presente na internet possui sua própria periodicidade, alcance, público e credibilidade, o que afeta diretamento no processo de disseminação da informação.

Utilizando do fato que essas mídias digitais são fundamentais na disseminação da informação, e que com isso possuem um forte papel influenciador no processo de formação de opinião, podemos definir como importante entender como as notícias se formam e se espalham na internet brasileira.

Um dos métodos de se estudar a disseminação da informação é utilizar modelos epidemiológicos. (referencia de artigo) em (ano do artigo) conseguiu modelar a disseminação de (tabela de alguma coisa) no tempo através de modelos epidemiológicos, como SIR, SIS entre outros. Ese tipo de abordagem vem sendo utilizada também para entender redes de contatos em redes sociais como (incluir referencia). MELHORAR PA-RAGRAFO

Neste trabalho utilizaremos redes complexas e modelos epidemiológicos para modelar a disseminação de notícias na mídia brasileira. Para isso estudaremos os caminhos percorridos em uma rede de disseminação criada através de modelos de recuperação de informação utilizados em cima da base de dados do Projeto MediaCloud Brasil **REFE-RENCIA**

1.1 O Projeto Media Cloud Brasil

Para a realização deste trabalho, foram utilizados os dados do projeto MediaCloud Brasil. O MediaCloud Brasil é um projeto concebido e mantido pelo NAMD/EMAp da Fundação Getúlio Vargas, e vem ao longo dos últimos três anos monitorando mais de cem mil veículos de mídia da internet brasileira. Possui em sua base de dados mais de 1.6 milhão de artigos capturados. **falar sobre o que e como o Media cloud captura os artigos** O projeto utiliza como banco de dados o MongoDB, um banco de dados de documentos open-source de alta performance. O MongoDB é classificado como um banco de dados 'NoSQL', uma vez que evita a tradicional estrutura baseada em tabela relacional e utiliza documentos JSON com esquemas dinâmicos para armazenamento dos documentos. A vantagem de utilizar o JSON é realizar a integração de dados em certos tipos de aplicações de forma mais fácil e mais rápida. **Falar que uma vez armazenado, o banco de artigos é indexado para permitir buscas textuais**

1.2 Referencial Teórico

1.2.1 O espalhamento de notícias como um processo de contágio

Uma epidemia é caracterizada pela incidência de grande número de casos de uma doença em um curto período de tempo. Sabemos que as doenças se espalham através do contágio entre infectados, mas como podemos definir esse contágio?

Cada doença possui uma forma própria de transmissão, por exemplo, a gripe é uma doença viral e se transmite a partir de vias orais, já a dengue é transmitida a partir da picada de um mosquisto, assim como a febre amarela. Saber a forma de contágio de uma doença é fundamental para que possamos entender sua disseminação e modelar sua epidemia.

Ao observar o comportamento de notícias, assuntos e histórias na mídia, podemos ver o surgimento de memes e histórias 'virais'. Esses tipos de notícias são chamadas de virais por se espalharem muito rápido e obterem um alcançe grande na população. Algumas dessas notícias se sustentam por um longo tempo na mídia, e outras são esquecidas rapidamente.

Se pensarmos que estamos lidando com um processo de disseminação, que possui uma taxa de espalhamento e uma taxa de esquecimento, podemos facilmente fazer uma comparação à modelos epidemiológicos, principalmente ao modelo SIR, que possui uma taxa de infecção e uma taxa de recuperação. Dessa forma, podemos estudar como uma notícia se espalha da mesma forma que modelamos uma epidemia.

Para modelar a disseminação de notícias da mesma forma que modelamos a de doenças, precisamos que nosso modelo seja compatível com o de uma epidemia, ou seja, precisamos definir os infectados, suscetíveis e o método de contágio.

Em nosso modelo, uma notícia/assunto é a doença, e os infectados são todos os artigos que falam sobre essa notícia. Para definir o contágio da nossa notícia, consideramos que um artigo infecta o outro quando ele influência o outro. Ou seja, definimos que quando um artigo exerceu influência sobre um outro, ele infectou esse outro artigo.

Dessa forma, podemos ver a similaridade entre ambas modelagens, o que deixa claro a possibilidade de modelar a disseminação de notícias através de modelos epidemiológicos. O que nos falta descobrir são os parâmetros que utilizaremos para realizar essa modelagem de forma que fique o mais verídica possível.

1.2.2 Processos Epidemiológicos em Redes Complexas

O termo Redes Complexas se refere a um grafo que apresenta uma estrutura topográfica não trivial, composto por um conjunto de vértices (nós) que são interligados por meio de arestas (Barabási, 2003). A teoria das Redes Complexas está relacionada com a modelagem de redes reais, através da análise de dados empíricos. Redes Complexas não são estáticas (evoluem no tempo alterando sua estrutura), e constituem estruturas onde processos dinâmicos (como disseminação de virus ou opiniões) podem ser simulados.

1.2.3 Processamento de Linguagem Natural

explicar aqui a teoria por trás de todas as técnicas de NLP que vc usa: Tokenização, TF-IDF, etc.

Tokenização

TF-IDF

O modelo Tf-Idf (term frequency-inverse document frequency), é uma medida estatística que tem o intuito de indicar a importância de uma palavra de um documento em relação a um corpus linguístico muito usada para rankeamento de documentos em uma consulta. O Tf-Idf trata-se do produto entre as estatísticas $Tf_{d,t}$ e Idf_t .

Dado um conjunto de N documentos, $Tf_{d,t}$ é a frequência do termo t no documento d, ou seja, o número de vezes em que t ocorre em d. Usamos o termo Tf para computar escores de correspondência consulta-documento, porém, o Tf nos dá a frequência absoluta dos termos, o que faz com que um termo que possua Tf = 10 seja 10 vezes mais relevante do um que possua Tf = 1.

Podemos concordar que um documento com Tf=10 é mais relevante do que um com Tf=1, porém não necessariamente 10 vezes mais relevante. A relevância não aumenta em proporção com a frequência do termo. Para contornar isso, é comum usar ao invés da frequência absoluta uma ponderação pelo Log da frequência. Dessa forma, o peso log da frequência do termo t em d é definido como:

$$W_{t,d} = \begin{cases} 1 + logT f_{t,d} & \text{se } T f_{t,d} > 0 \\ 0 & \text{caso contrário} \end{cases}$$
 (1)

Exemplificamos abaixo a correspondência de valores $T f_{t,d}$ absoluto com a ponderação $W_{t,d}$:

$Tf_{t,d}$	$W_{t,d}$
0	0
1	1
2	1.3
10	2
1000	4

Sabemos que nem todo termo frequente em um documento pode ser considerado muito relevante. Consideramos uma consulta com dois termos: um frequente no conjunto de documentos e outro raro. Não queremos que um documento que possua o termo frequente seja mais relevante do que o documento que possua o termo raro.

Inferimos então que termos raros são mais informativos do que termos frequentes. Dessa forma, queremos dar uma maior relevância para termos raros do que para termos muito frequentes. Para incluir isso em nossa medida usamos o termo Idf.

O termo Idf_t é uma medida de informatividade do termo t, que afeta o rankeamento de documentos para consultas com pelo menos dois termos. Com ele aumentamos o peso relativo de termos raros e diminuimos o peso relativo de termos muito frequentes. O definimos da seguinte maneira:

$$Idf_t = log \frac{N}{df_t}$$

Onde df_t é a frequência de documento, o número de documentos em que t ocorre. Consideramos df_t uma medida inversa da informatividade do termo t.

Ao multiplicarmos o termo Idf ao nosso peso ponderado $W_{t,d}$, temos a medida Tf-Idf. O peso Tf-Idf aumenta com o número de ocorrências dentro de um documento e com a raridade do termo na coleção. É considerado o melhor esquema de ponderação em recuperação da informação.

$$W_{t,d} = (1 + logTf_{t,d}) \cdot log \frac{N}{Df_t}$$

Bag-of-Words

Skipgram

Explicar pq é um modelo adequado para o meu problema

1.3 Objetivo

Esse trabalho tem como principal objetivo caracterizar a dinâmica de disseminação das notícias no país através de redes complexas.

2 Metodologia

2.1 Rede de Disseminação Real

Nesta primeira parte do trabalho, iremos construir uma rede complexa que descreva o processo epidemiológico de uma notícia. O objetivo da construção dessa rede, é conseguir aproximar a rede de interligação real entre os artigos selecionados do banco MediaCloud, de forma a torná-la observável.

Primeiramente, selecionamos todos os artigos do banco referentes a uma determinada notícia, criando assim, nosso corpus linguístico. Depois ,a partir desse corpus, utlizamos métodos de PLN para representar matricialmente nosso conjunto de dados. A partir da matriz criada construímos nossa rede direcionada de disseminação, onde cada vértice ou nó da rede é um artigo.

Para construir a rede de disseminação precisamos definir a relação de contágio entre artigos, ou seja, o que conecta um artigo ao outro na rede. No nosso caso, definimos que o contágio se dá através de uma relação de influência, porém como definir essa relação? Partindo do pressuposto de que se um artigo influênciou outro então esses artigos são necessariamente similares, consideramos a **similaridade** entre os artigos o fator principal para definir se eles possuem uma conexão em nossa rede.

Possuindo uma conexão, ainda precisamos saber quem influênciou e quem foi o influenciado. Para definir isso, utilizamos o **tempo**. Assim, dado que dois artigos são similares, definimos como influenciador o artigo que fui publicado primeiro e influenciado o artigo publicado depois. No caso de um artigo ter mais de um similar publicado anteriormente a ele, definimos como influenciador o artigo mais similar à ele. Dessa forma todos os vértices de nossa rede possuem um grau de entrada igual à 1 e podem possuir um grau de saída maior do que 1.

A seguir, podemos ver um exemplo do que esperamos da nossa rede de disseminação real:

Figura 1: Rede Real Genérica

No exemplo acima, temos que o artigo A é similar aos artigos B e C e possui uma data de publicação mais antiga do que os dois. Sendo assim, foi definido como o influenciador dos dois, ou seja, foi o artigo que os contagiou com a notícia.

2.1.1 Matriz de Documentos

Selecionamos no banco de dados do MediaCloud todos os artigos referentes a uma determinada notícia, formando o corpus linguístico que utilizaremos para criar a matriz de documentos, representação vetorial dos artigos selecionados.

Para representar vetorialmente nosso conjunto de dados utilizamos o *Word2Vec*, ferramenta que promove uma implementação eficiente do modelo *skip-gram* e *bag-of-words* contínuo (inserir referencia).

Para gerar nosso modelo Word2Vec, fornecemos como entrada nosso corpus linguístico e o modelo nos retorna uma matriz, onde as linhas $p_1, p_2, ..., p_n$ são as palavras contidas no corpus e as colunas $t_1, t_2, ..., t_n$ são os atributos gerados pelo modelo para cada palavra:

Dessa forma, temos uma matriz de palavras, ou seja, uma representação de todas as palavras presentes em nosso corpus. Porém, queremos representar documentos e não apenas palavras. Para criar uma matriz que represente documentos, fazemos, para cada documento, uma soma dos vetores referentes a cada palavra presente no documento, criando assim um vetor representativo do documento em questão.

Podemos exemplificar da seguinte forma: dado um documento D, sabemos que ele é composto pelo seguinte conjunto de palavras $P: \{1,2,3,4,5\}$. Para cada termo, buscamos o seu vetor representativo p_i , $i = \{1,2,3,4,5\}$ na matriz de palavras e somamo-os, criando o vetor v_D que representa o vetor referente ao documento D:

$$v_D = p_1 + p_2 + p_3 + p_4 + p_5 \tag{2}$$

Ao representar um documento dessa forma, não levamos em consideração a relevância de cada palavra para o documento, o que faz da nossa representação pouco eficiente. Para melhorar nossa eficiência, antes de somar os vetores de palavras p_i , iremos multiplicar cada um deles pelo valor TF-IDF da palavra ao qual ele representa.

Sendo assim, sabendo que para cada palavra i temos um vetor p_i que a representa na matriz de palavras, e um valor $w_{i,d}$ referente ao valor TF-IDF da palavra i no documento D, representamos o vetor v_D da seguinte forma:

$$v_D = \sum_{i=1}^5 p_i \cdot w_{t,D} \tag{3}$$

Sendo assim, ficamos com a matriz de documentos abaixo, onde cada linha v_i é um documento, e cada coluna t_i é a soma do atributo i em todas as palavras do documento i:

2.1.2 Construção da Rede

Construimos a rede de disseminação a partir da matriz de documentos gerada na sessão anterior, onde cada vetor consiste em um documento/artigo.

Ao construir a rede dos nossos documentos, consideramos como contágio sofrer influência de outro artigo, ou seja, um artigo A contamina um artigo B se o artigo A influenciou o artigo B.

Dessa forma, em nossa rede, os vértices representam os artigos, e as arestas a relação de influência entre eles, isto é, dado um nó e_i e um nó e_j , existe uma aresta a_{ij} , que sai de i e vai para j, se o artigo i influênciou o artigo j.

Para definir quando um artigo influência outro em nossa rede, foram usadas duas heurísticas: *similaridade* e *temporalidade*.

Similaridade

Para definir similaride entre dois artigos, utilizamos a *Similaridade de Cosseno*. A similaridade de cosseno mede a semelhança entre dois vetores através da distância de cosseno do ângulo que eles formam. Para calcular a distância de cosseno d(A,B) entre um vetor A e B, fazemos:

$$d(A,B) = cos(\theta) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$
 (4)

A similaridade de cosseno se dá por 1-d(A,B). Utilizando essa equação, calculamos a similaridade de cosseno para cada par de vetor de nossa matriz de documentos, criando assim, uma matriz de similaridades. Se similaridade entre dois vetores for grande o suficiente, os definimos como similares.

Para saber o quão grande a similaridade de cosseno entre dois artigos deve ser para considerarmo-os similares, fazemos a distribução das similaridade e realizamos um corte em suas extremidades.

Temporalidade

Após definir dois artigos como similares, inferimos uma relação de influência entre eles. Porém, ainda precisamos saber quem influeciou e quem foi influenciado. Para descobrir isso, olhamos a data de publicação de cada artigo. Se dois artigos A e B foram considerados similares, e o artigo A foi publicado antes do artigo B, então definimos que A influenciou B, logo temos em nossa rede:

Figura 2: Relação de Influência

Porém, pode acontecer de termos um outro artigo C, também considerado similar ao artigo B e que também publicado anteriormente. Em nosso modelo, definimos que um artigo só pode ter sido influênciado por um único artigo. Dessa forma, como definir quem de fato influênciou B? Para resolver esse impasse utilizamos a similaridade de cosseno. Consideramos influênciador o artigo publicado anteriormente, e que possui a **maior** similaridade com B.

Consideramos, também, que um artigo deixa de ser influente com o passar do tempo, assim como uma pessoa infectada por um vírus deixa de ser infecciosa após se curar da doença. Dessa forma, precisamos calcular o tempo máximo em que um artigo é influente em nossa rede. Para isso, calculamos a diferença entre as datas de publicação de cada par de artigos e fazemos a distribuição dessas diferenças. Assim como na distribuição de similaridades, realizamos um corte nas extremidades e pegamos os valores limites.

2.2 Simulação Rede de Disseminação

Na segunda parte do trabalho, temos como objetivo simular a disseminação de nossa rede real utilizando um modelo epidemiológico, com o intuito de validarmos nossa rede e conseguirmos caracterizá-la.

Queremos então, conseguir modelar a disseminação de uma notícia em uma rede genérica e conseguir um resultado semelhante à nossa rede de disseminação real. Dessa forma, dado uma rede completa com N nós, queremos traçar o espalhamento da infecção nesses N nós, ou seja, definir as relações de influencia entre eles, utilizando os resultados de uma simulação epidemiológica:

Figura 3: Rede Completa Figura 4: Disseminação na Rede Completa

2.2.1 Criação Rede Completa

Para simular nossa rede, construimos primeiramente uma rede completa com os mesmos nós de nossa rede real, onde os pesos das arestas são as probabilidades dessa aresta existir no caminho de disseminação da notícia, ou seja, a probabilidade de um artigo influenciar um outro. Podemos exemplificar da seguinte forma, dado duas vértices de nossa rede completa, $A \in B$. Teremos como peso para as duas arestas que conectam esses nós a probabilidade de cada uma existir:

Figura 5: Pesos na Rede Completa

Onde P_{CA} e P_{AC} são as probabilidades do nó C ter influenciado o nó A, e do no A ter influenciado o nó C, respectivamente.

Calculamos essas probabilidades através da infomação do **veículo** responsável por cada artigo. Para cada nó presente em nossa rede completa, buscamos o veículo que publicou o artigo referente ao nó (exemplos de veículos são oglobo.com, folha.com.br). Possuindo o veículo de cada nó presente na rede, podemos saber qual a chance de um artigo do veículo X ser influenciado por um artigo do veículo Y. Dessa forma, considerando X e Y, os veículos dos nós A e C, respectivamente, calculamos a probabilidade P_{AC} da seguinte forma:

$$P_{AC} = \frac{N_{XY}}{NY} \tag{5}$$

Onde N_{XY} é o número de vezes que um artigo do veículo X influenciou um artigo do veículo Y, e NY represnta o número de vezes em que um artigo do veículo Y foi influenciado em nossa rede de disseminação real.

Construímos então uma matriz de pesos, onde calculamos as probabilidades para cada par de veículos. É esperado em um conjunto de dados possuirmos mais de um artigo publicado pelo mesmo veículo, sendo assim, considerando que temos n artigos em nosso corpus linguístico, possuimos nele m veículos responsáveis pela publicação desses n artigos.

Dessa forma, nossa matriz de pesos possui tamanho mxm, e cada posição a_{ij} temos a probabilidade do veículo i ser influenciado pelo veículo j. Considerando que um veículo não influencia a si mesmo, teremos a matriz a seguir:

Utilizando a matriz de pesos acima, atribuiremos os valores para cada aresta de a rede completa criada acima. Para isso, criamos uma matriz de adjacência, onde cada valor a_{ij} , contém a probabilidade dessa aresta existir. Sendo assim, para cada par de artigos d_i, d_j de nossa rede completa, descobrimos seus veículos x e y, e buscamos a probabilidade de conexão entre eles na matriz de pesos. Dessa forma, ficamos com uma matriz nxn documentos, que descreve a probabilidade da conexão entre cada par de vértices da rede completa, e que será essencial para a simualação da disseminação da notícia na rede.

$$d_1 \quad d_2 \quad \dots \quad d_n
 d_1 \quad \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ a_{21} & 0 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & 0 \end{bmatrix}_{nxn}$$

2.2.2 Simulação

Nesta seção, iremos simular a disseminação da notícia em nossa rede completa. Para isso, simularemos um modelo epidemiológico de forma que possamos obter o estado de nossa rede em cada passo de contágio, ou seja, queremos saber quais artigos foram infectados em cada passo q de nossa simulação, e quais artigos foram responsáveis por infectá-los.

Modelo utilizado

O modelo epidemiológico que iremos simular foi proposto por [1] [consertar referencia, incluido pagina]. Nele, simulamos a probabilidade de cada artigo estar infectado em um tempo t:

$$\frac{d\rho_i^I}{dt} = -\rho_i^I(t) + \lambda[1 - \rho_i^I(t)] \sum_{j=1}^N a_{ij} \rho_j^I(t)$$
 (6)

Onde $\rho_i^I(t)$ é a probabilidade de um vértice i estar infectado no tempo t. O parâmetro λ é a taxa de trasmissão, obtida através da divisão da taxa de infecção β pela taxa de recuperação μ . Dessa forma, o fator

$$\frac{d\rho_i^S}{dt} = -\lambda \rho_i^S(t) \sum_{j=1}^N a_{ij} \rho_j^I(t)$$
 (7)

$$\begin{cases}
\frac{d\rho_i^I}{dt} = -\rho_i^I(t) + \lambda \rho_i^S(t) \sum_{j=1}^N a_{ij} \rho_j^I(t) \\
\frac{d\rho_i^S}{dt} = -\lambda \rho_i^S(t) \sum_{j=1}^N a_{ij} \rho_j^I(t)
\end{cases}$$
(8)

Temos como resultado da simulação, uma matriz de estados. Cada posição a_{ij} da matriz se refere à probabilidade do artigo d_j estar contaminado no passo t_i da simulação. Para determinar os artigos infectados no passo t_i , utilizamos a distribuição de bernoulli para cada probabilidade p_{ij} . Assim, ficamos com uma matriz booleana de estados, onde temos bem definidos quais vértices estão infectados em cada passo da simulação.

Após definir quais nós estão infectados em cada passo da simulação, precisamos definir as relações de influências entre eles, ou seja, definir quais arestas existem em nossa rede completa.

Para definir as relações de influência, a cada novo artigo contaminado no passo t_i , consideramos como possíveis influenciadores todos os artigos infectados no passo t_{i-1} . Por exemplo, possuindo a matriz booleana abaixo:

Temos que, em t_1 apenas o artigo d_2 está infectado. Logo, ele obrigatóriamente influenciará qualquer novo artigo infectado no tempo t_2 .

No tempo t_2 possuimos apenas d_3 como um novo artigo infectado, sendo assim, sabemos que d_2 influenciou d_3 , e logo, teremos em nossa rede simulada uma aresta a_{23} .

No próximo passo t_3 podemos observar que o artigo d_3 continua infectado, e que possuimos dois novos artigos infectados: d_1 e d_4 . Porém no passo anterior temos dois artigos infectados, como saber qual deles influenciou os novos infectados? Para definir o influenciador de cada novo infectado, buscaremos em nossa matriz de pesos, a probabilidade de cada artigo infectado no passo anterior ter infectado novos artigos. A partir dessas probabilidades, utilizamos novamente a *Bernoulli* e definimos as relações de influência.

No diagrama abaixo podemos ver como o algoritmo se comporta em t_3 , utilizando $P(d_i,d_j)$ como a probabilidade do artigo d_i influenciar o artigo d_j , e supondo uma ordem de grandeza entre eles.:

Nesse caso, utilizando os valores do exemplo acima, encontramos que o artigo d_2 influenciou d_1 e que d_3 influenciou d_4 .

Realizando esse procedimento para cada passo da simulação, construímos a disseminação na rede completa.

 d_4

 d_4

Figura 6: Diagrama Definição de Influência

3 Resultados

Todos os resultados a seguir foram obtidos utilizando o conjunto de dados referente às notícias do atentado ao Charlie Hebdo na mídia brasileira. Esse conjunto de dados contêm 2129 artigos, abaixo temos um gráfico da quantidade de artigos pelo tempo:

Observamos que o crescimento de artigos por tempo dessa notícia foi bem alto durante o mês de janeiro, e que após atingir seu máximo, começou a cair gradativamente.

3.1 Rede de Disseminação Real

Utilizando as metodologias descritas na seção incluir label para o conjunto de dados da notícia escolhida, construímos uma rede de disseminação onde podemos observar o espalhamento da notícia escolhida.

Após calcular a matriz de documentos e a matriz de similaridades, precisamos definir o tempo máximo de influencia de um artigo, e a similaridade de cosseno mínima para definir similaridade. Para isso calculamos a distribuição de cada uma dessas métricas:

Figura 7: Notícias x Tempo

3.2 Simulação Rede de Disseminação

4 Conclusão

Figura 8: Distribuição de Similaridades Máximas

Referências

[1] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epidemic processes in complex networks. *arXiv preprint arXiv:1408.2701*, 2014.

Figura 9: Rede Disseminação Real x Passo

Figura 10: Rede Disseminação Real x Tempo