Solving Rubik's Cube

- With Denso and DC Motor

OVERVIEW

Motivation

1. Flexibility in Functionality:

Blind robots need reprogramming for application with different location, size and funtion

2. Collaborative Work

vision system is typically necessary for safety reasons

Application

- Pick and Place (Locate, Read, Guide)
- Assembly (Locate, Read, Guide, Check)
- Quality Inspection (Check, Measure, Read)
- Packaging and Palletizing (Locate, Read, Guide, Check)
- Lab Analysis and Testing (Locate, Measure, Read, Guide, Check)
- Screw Driving (Locate, Guide, Check)
- Labeling (Locate, Read/Verify)
- Gluing, Dispensing and Welding (Guide, Check)
- Polishing (Check)
- Injection Molding (Check, Measure)

Purpose

A web camera acts as a set of eyes that detect color and position of a randomly shuffled Rubik's cube. Corresponding solve method and related motion commands are processed and sent to denso robotic arm.

Objective

- Color detection which is immune of position and intensity of light and environment error.
- Trajectory following and pose maintenance of Denso robotic arm.
- Real-time Gripper's force control to grasp Rubik's Cube.
- Precise rotation of Rubik's Cube mounted on DC motor

System Review

Hardware

3D Printed Mount

Logitech HD Webcam C310

MyRio

Denso Robotic Arm

DC motor

METHODS

How does it all work?

Color detection & Noise immunity

- 1. Transfer RGB to YCrCb for better color distinction at low resolution
- 2. Apply median filter to remove salt and pepper noise which is generated by image sensor & transmission channel
- 3. Assign color to sample areas of 9 grids in each surface of Rubik's Cube basing on different threshold value (brightness Y and color difference CrCb)

Control Methods

- Trajectory following and pose maintenance of the center the Rubik's cube by position control of Denso robotic arm using inverse dynamics.
 - Use color detection program to get the solution
 - > Put the face to be rotated in the bottom for each step
- Use DC motor to control the mount of Rubik's cube to conduct rotation of each step of solution.
 - > Based on PID controller to eliminate the steady state error
- Use Gripper's force sensor to control the force when grasping object

Kinematics of Denso Robot Arm

DH Parameters:

i	alpha	a	d	theta
1	0	0	280	θ1
2	-90°	0	0	θ2
3	0	-210	0	θ3
4	90°	-75	210	θ4
5	-90°	0	0	θ5
6	90°	0	70	θ6

Robotic Arm Trajectories for Each Rotation

Controller

Use PID controller to control the mount for rotating to certain degree

Rotation command from Labview

Tune PID to reduce steady error: large P vibrate

Tune PID to reduce steady error: small P

Tune PID to reduce steady error: good P

Tune PID to reduce steady error: PD

Tune PID to reduce steady error: With PID

Simple Video Demonstration

Future works

- Improve the accuracy of hardware to ensure more accurate position control.
 - > especially the gripper and the mount.
- Design a model-based controller so that we could do logical analysis of the whole system.
 - such as state-feedback observer control
- Use two denso robotic arm instead of motor to complete the cube solving task.
- Add computer vision as feedback into the controller design.
 - > use the vision part to check whether each step is perfectly complete.
 - such as position detection of edges.

Thank You!

Q&A