(11) EP 0 834 567 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 08.04.1998 Bulletin 1998/15

(21) Application number: 97117067.5

(22) Date of filing: 01.10.1997

(51) Int. Cl.⁶: **C12N 15/30**, C07K 14/44, C12N 15/62, G01N 33/569, C12Q 1/68, C07K 16/20, A61K 39/018

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

(30) Priority: 01.10.1996 US 723142 24.04.1997 US 845258

(71) Applicant: CORIXA CORPORATION Seattle, WA 98104 (US)

(72) Inventors:

Reed, Steven G.
 Bellevue, Washington 98005 (US)

Lodes, Michael J.
 Seattle, Washington 98126 (US)

 Houghton, Raymond Bothell, Washington 98021 (US)

Sleath, Paul R.
 Seattle, Washington 98119 (US)

(74) Representative:
Gowshall, Jonathan Vallance et al
FORRESTER & BOEHMERT
Franz-Joseph-Strasse 38

80801 München (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54) Compounds and methods for the diagnosis and treatment of Babesia microti infection

(57) Compounds and methods for the diagnosis and treatment of *B. microti* infection are disclosed. The compounds provided include polypeptides that contain at least one antigenic portion of a *B. microti* antigen and DNA sequences encoding such polypeptides. Antigenic epitopes of such antigens are also provided, together with pharmaceutical compositions and vaccines comprising such polypeptides, DNA sequences or antigenic epitopes. Diagnostic kits containing such polypeptides, DNA sequences or antigenic epitopes and a suitable detection reagent may be used for the detection of *B. microti* infection in patients and biological samples. Antibodies directed against such polypeptides and antigenic epitopes are also provided.

Description

5

10

TECHNICAL FIELD

The present inventi n r lates generally to the detection of *Babesia microti* infection. In particular, the invention is related to polypeptides comprising a *B. microti* antigen, to antigenic epitopes of such an antigen and the us of such polypeptides and antigenic epitopes for the serodiagnosis and treatment of *B. microti* infection.

BACKGROUND OF THE INVENTION

Babesiosis is a malaria-like illness caused by the rodent parasite *Babesia microti* (*B. microti*) which is generally transmitted to humans by the same tick that is responsible for the transmission of Lyme disease and ehrlichiosis, thereby leading to the possibility of co-infection with babesiosis, Lyme disease and ehrlichiosis from a single tick bite. While the number of reported cases of *B. microti* infection in the United States is increasing rapidly, infection with *B. microti*, including co-infection with Lyme disease, often remains undetected for extended periods of time. Babesiosis is potentially fatal, particularly in the elderly and in patients with suppressed immune systems. Patients infected with both Lyme disease and babesiosis have more severe symptoms and prolonged illness compared to those with either infection alone.

The preferred treatments for Lyme disease, ehrlichiosis and babesiosis are different, with penicillins, such as doxycycline and amoxicillin, being most effective in treating Lyme disease, tetracycline being preferred for the treatment of ehrlichiosis, and anti-malarial drugs, such as quinine and clindamycin, being most effective in the treatment of babesiosis. Accurate and early diagnosis of *B. microti* infection is thus critical but methods currently employed for diagnosis are problematic.

All three tick-borne illnesses share the same flu-like symptoms of muscle aches, fever, headaches and fatigue, thus making clinical diagnosis difficult. Microscopic analysis of blood samples may provide false-negative results when patients are first seen in the clinic. Indirect fluorescent antibody staining methods for total immunoglobulins to *B. microti* may be used to diagnose babesiosis infection, but such methods are time-consuming and expensive. There thus remains a need in the art for improved methods for the detection of *B. microti* infection.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for the diagnosis and treatment of *B. microti* infection. In one aspect, polypeptides are provided comprising an immunogenic portion of a *B. microti* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment, the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of (a) sequences recited in SEQ ID NO: 1-17, 37, 40, 42, 45, 50 and 51; (b) the complements of said sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

In another aspect, the present invention provides an antigenic epitope of a B. microti antigen comprising the amino acid sequence $-X_1-X_2-X_3-X_4-X_5$ -Ser- (SEQ ID NO: 35), wherein X_1 is Glu or Gly, X_2 is Ala or Thr, X_3 is Gly or Val, X_4 is Trp or Gly and X_5 is Pro or Ser. In one embodiment of this aspect, X_1 is Glu, X_2 is Ala and X_3 is Gly. In a second embodim X_1 is Gly, X_2 is Thr and X_3 is Pro. The present invention further provides polypeptides comprising at least two of the above antigenic epitopes, the epitopes being contiguous.

In yet another aspect, the present invention provides an antigenic epitope of a *B. microti* antigen comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 36 and 39, together with polypeptides comprising at least two such antigenic epitopes, the epitopes being contiguous.

In a related aspect, DNA sequences encoding the above polypeptides, recombinant expression vectors comprising these DNA sequence and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising either a first and a second inventive polypeptide, a first and a second inventive antigenic epitope, or, alternatively, an inventive polypeptide and an inventive antigenic epitope.

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting *B. microti* infection in a patient. In one embodiment, the method comprises: (a) contacting a biological sample with at least one polypeptide comprising an immunogenic portion of a *B. microti* antigen; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide, thereby detecting *B. microti* infection in the biological sample. In other embodiments, the methods comprise: (a) contacting a biological sample with at least one of the above polypeptides or antigenic epitopes; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or antigenic epitope. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urin. The diagnostic kits comprise one or more of the above polypeptides or antigenic epitopes in combination with a detec-

tion reagent.

20

25

The present invention also provides methods for detecting *B. microti* infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In one embodiment, the oligonucleotide primer comprises at least about 10 contiguous nucleotides of a DNA sequence encoding the above polypeptides.

In a further aspect, the present invention provides a method for detecting *B. microti* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe. In one embodiment of this aspect, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA sequence encoding the above polypeptides.

In yet another aspect, the present invention provides antibodies, both polyclonal and monoclonal, that bind to the polypeptides described above, as well as methods for their use in the detection of *B. microti* infection.

Within other aspects, the present invention provides pharmaceutical compositions that comprise one or more of the above polypeptides or antigenic epitopes, or a DNA molecule encoding such polypeptides, and a physiologically acceptable carrier. The invention also provides vaccines comprising one or more of the inventive polypeptides or antigenic epitopes and a non-specific immune response enhancer, together with vaccines comprising one or more DNA sequences encoding such polypeptides and a non-specific immune response enhancer.

In yet another aspect, methods are provided for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above pharmaceutical compositions or vaccines.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the genomic sequence of the *B. microti* antigen BMNI-3 (SEQ ID NO: 3) including a translation of the putative open reading frame (SEQ ID NO: 49). An internal six amino acid repeat sequence (SEQ ID NO: 35) is indicated by vertical lines within the open reading frame.

Fig. 2a shows the reactivity of the *B. microti* antigens BMNI-3 and BMNI-6, and the peptides BABS-1 and BABS-4 with sera from *B. microti*-infected individuals and from normal donors as determined by ELISA. Fig. 2b shows the reactivity of the *B. microti* antigens BMNI-4 and BMNI-15 with sera from *B. microti*-infected individuals and from normal donors as determined by ELISA.

Fig. 3 shows the reactivity of the *B. microti* antigens MN-10 and BMNI-20 with sera from *B. microti*-infected patients and from normal donors as determined by ELISA.

Fig. 4 shows the results of Western blot analysis of representative B. microti antigens of the present invention.

Fig. 5 shows the reactivity of purified recombinant *B. microti* antigen BMNI-3 with sera from *B. microti*-infected patients, Lyme disease-infected patients, ehrlichiosis-infected patients and normal donors as determined by Western blot analysis.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the diagnosis and treatment of *B. microti* infection. In one aspect, the compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a *B. microti* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications.

As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an immunogenic portion of one of the above antigens may consist entirely of the immunogenic portion, or may contain additional sequences. The additional sequences may be derived from the native B. microti antigen or may be heterologous, and such sequences may (but need not) be immunogenic.

An "immunogenic portion" of an antigen is a portion that is capable of reacting with sera obtained from a *B. microti*-infected individual (*i.e.*, generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). Polypeptides comprising at least an immunogenic portion of one or more *B. microti* antigens as described herein may g_n_rally be used, alone or in combination, to detect *B. microti* in a patient.

The compositions and methods of this invention also encompass variants of the above polypeptides. A "variant,"

as used herein, is a polypeptide that differs from the native antigen only in conservative substitutions and/or modifications, such that the antigenic propinties of the polypeptide are retained. Such variants may generally be id intified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein.

A "conservative substitution" is on in which an amino acid is substituted for another amino acid that has similar properties, such that on skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

5

10

40

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In specific embodiments, the subject invention discloses polypeptides comprising at least an immunogenic portion of a *B. microti* antigen (or a variant of such an antigen), that comprises one or more of the amino acid sequences encoded by (a) a DNA sequence selected from the group consisting of SEQ ID NO: 1-17, 37, 40, 42, 45 50 and 51, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

The *B. microti* antigens provided by the present invention include variants that are encoded by DNA sequences which are substantially homologous to one or more of the DNA sequences specifically recited herein. "Substantial h mology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

In general, *B. microti* antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, DNA molecules encoding *B. microti* antigens may be isolated from a *B. microti* genomic or cDNA expression library by screening with sera from *B. microti*-infected individuals as described below in Example 1, and sequenced using techniques well known to those of skill in the art. DNA molecules encoding *B. microti* antigens may also be isolated by screening an appropriate *B. microti* expression library with anti-sera (*e.g.*, rabbit) raised specifically against *B. microti* antigens.

Antigens may be induced from such clones and evaluated for a desired property, such as the ability to react with sera obtained from a *B. microti*-infected individual as described herein. Alternatively, antigens may be produced recombinantly, as described below, by inserting a DNA sequence that encodes the antigen into an expression vector and expressing the antigen in an appropriate host. Antigens may be partially sequenced using, for example, traditional Edman chemistry. See Edman and Berg, Eur. J. Biochem. 80:116-132, 1967.

DNA sequences encoding antigens may also be obtained by screening an appropriate *B. microti* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied Bio-Systems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions.

Immunogenic portions of *B. microti* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunog nic properties. The representative ELISAs described herein may generally be mployed in these scr ens. An immunogenic portion of a polypeptide is a portion that, within such representative assays, gen rates a signal in such assays that is substantially

similar to that generated by the full length antigen. In other words, an immunogenic portion of a *B. microti* antigen genrates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

Portions and other variants of *B. microti* antigens may be generated by synthetic or recombinant means. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Secti ns of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In another aspect, the present invention provides epitope repeat sequences, or antigenic epitopes, of a *B. microti* antigen, together with polypeptides comprising at least two such contiguous antigenic epitopes. As used herein an "epitope" is a portion of an antigen that reacts with sera from *B. microti*-infected individuals (i.e. an epitope is specifically bound by one or more antibodies present in such sera). As discussed above, epitopes of the antigens described in the present application may be generally identified using techniques well known to those of skill in the art.

20

In one embodiment, antigenic epitopes of the present invention comprise the amino acid sequence $-X_1-X_2-X_3-X_4-X_5-Ser$ - (SEQ ID NO: 35), wherein X_1 is Glu or Gly, X_2 is Ala or Thr, X_3 is Gly or Val, X_4 is Trp or Gly, and X_5 is Pro or Ser. In another embodiment, the antigenic epitopes of the present invention comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 36 and 39. As discussed in more detail below, antigenic epitopes provided herein may be employed in the diagnosis and treatment of *B. microti* infection, either alone or in combination with other *B. microti* antigens or antigenic epitopes. Antigenic epitopes and polypeptides comprising such epitopes may be prepared by synthetic means, as described generally above and in detail in Example 2.

In general, regardless of the method of preparation, the polypeptides and antigenic epitopes disclosed herein are prepared in substantially pure form. Preferably, the polypeptides and antigenic epitopes are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure.

In a further aspect, the present invention provides fusion proteins comprising either a first and a second inventive polypeptide, a first and a second inventive antigenic epitope or an inventive polypeptide and an antigenic epitope of the present invention, together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the polypeptides or antigenic epitopes.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding, for example, the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., *Gene 40*:39-46, 1985; Murphy et al., *Proc. Natl. Acad. Sci. USA 83*:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separat the functional domains and prevent steric hindrance.

In another aspect, the present invention provides methods for using polypeptides comprising an immunog nic portion of a *B. microti* antigen and the antigenic epitopes described above to diagnose babesiosis. In this aspect, methods

ar provided for detecting *B. microti* infecti n in a biological sample, using one or more of the above polypeptides and antigenic epitopes, alon or in combination. For clarity, the term "polypeptide" will be used when describing specific embodiments of the inventive diagnostic methods. However, it will be clear to one of skill in the art that the antigenic epitopes of the present invention may also be employed in such methods.

As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urin. More preferably, the sample is a blood, serum or plasma sample obtained from a patient The polypeptides are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cutoff value. The presence of such antibodies indicates previous sensitization to *B. microti* antigens which may be indicative of babesiosis.

5

10

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with B. microti. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested.

A variety of assay formats are known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate, or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 µg, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin (BSA) or Tween 20^{TM} (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact tim (*i.e.*, incubation in tim) is that period of time that is sufficient to detect the presence of antibody within a *B. microti*-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of

that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20™. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-*B. microti* antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for babesiosis. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for babesiosis.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-B. microti antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides and antigenic epitopes of the present invention. The above descriptions are intended to be exemplary only.

In yet another aspect, the present invention provides antibodies to the polypeptides and antigenic epitopes of the present invention. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Hartow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. In ne such technique, an immunogen comprising the antigenic polypeptide of repitope is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). The polypeptides and antigenic epitopes

f this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immun response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedul incorporating on or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide or antigenic epitope may then be purified from such antisra by, for example, affinity chromatography using the polypeptide or antigenic epitope coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide or epitope of interest may be prepared, for example, using the technique of Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (*i.e.*, reactivity with the polypeptide or antigenic epitope of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide or antigenic epitope. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides or antigenic epitopes of this invention may be used in the purification process in, for example, an affinity chromatography step.

20

Antibodies may be used in diagnostic tests to detect the presence of *B. microti* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting *B. microti* infection in a patient.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify *B. microti*-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. lbid; Ehrlich, lbid). Primers or probes may thus be used to detect B. microti-specific sequences in biological samples, preferably sputum, blood, serum, saliva, cerebrospinal fluid or urine. DNA probes or primers comprising oligonucleotide sequences described above may be used alone or in combination with each other.

In another aspect, the present invention provides methods for using one or more of the above polypeptides, antigenic epitopes or fusion proteins (or DNA molecules encoding such polypeptides) to induce protective immunity against B. microti infection in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease and/or infection. In other words, protective immunity may be induced to prevent or treat babesiosis.

In this aspect, the polypeptide, antigenic epitope, fusion protein or DNA molecule is generally present within a pharmaceutical composition or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may comprise one r more of the above polypeptides and a n n-specific immune response enhancer, such as an adjuvant r a liposome (into which the polypeptide is incorporated). Such pharmaceutical compositions and vaccines may also contain other *B. microti* antigens, either incorporated into a combination polypeptide or present within a

separate polypeptide.

Alternatively, a vaccine may contain DNA encoding one or more polypeptides, antigenic epitopes or fusion proteins as described above, such that the polypeptide is generated *in situ*. In such vaccines, the DNA may be present within any of a variety of delivery systems known to thos of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriat nucleic acid expression syst ms contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (*e.g.*, vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science* 259:1745-1749, 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

In a related aspect, a DNA vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known *B. microti* antigen. For example, administration of DNA encoding a polypeptide of the present invention, either "naked" or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.

Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from B. microti infection for at least 1-2 years. In general, the amount of polypeptide present in a dose (or produced in situ by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 µg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's Complete Adjuvant (Difco Laboratories, Detroit, MI) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A and quil A.

The following Examples are offered by way of illustration and not by way of limitation.

5 EXAMPLE 1

ISOLATION OF DNA SEQUENCES ENCODING B. MICROTI ANTIGENS

This example illustrates the preparation of DNA sequences encoding *B. microti* antigens by screening a *B. microti* expression library with sera obtained from patients infected with *B. microti*.

B. microti genomic DNA was isolated from infected hamsters and sheared by sonication. The resulting randomly sheared DNA was used to construct a B. microti genomic expression library (approximately 0.5 - 4.0 kbp inserts) with EcoRl adaptors and a Lambda ZAP IVEcoRVCIAP vector (Stratagene, La Jolla, CA). The unamplified library (1.2 x 10⁶/ml) was screened with an E. coli lysate-absorbed B. microti patient serum pool, as described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Positive plaques wer visualized and purified with goat-anti-human alkaline phosphatase. Phagemid from the plaques was rescued and DNA sequence for positiv clones was obtained using forward, reverse, and specific int rnal primers on a Perkin Elmer/Applied Biosystems Inc. Automated Sequence r Model 373A (Foster City, CA).

Seventeen antigens (hereinafter referred to as BMNI-1 - BMNI-17) wer purified and thre were possibly redundant. The determined DNA sequences for BMNI-1 - BMNI-17 are shown in SEQ ID NO: 1-17, respectively. The deduced amino acid sequences for BMNI-1 - BMNI-6, BMNI-8 and BMNI-10 - BMNI-17 are shown in SEQ ID NO: 18-32, respectively, with the predicted 5' and 3' protein sequences for BMNI-9 being shown in SEQ ID NO: 33 and 34, respectively.

The isolated DNA sequences were compared to known sequences in the gene bank using the DNA STAR system. Nine of the seventeen antigens (BMNI-1, BMNI-2, BMNI-3, BMNI-5, BMNI-6, BMNI-7, BMNI-12, BMNI-13 and BMNI-16) share some homology, with BMNI-1 and BMNI-16 being partial clones of BMNI-3. All of these nine antigens contain a degenerate repeat of six amino acids (SEQ ID NO: 35), with between nine to twenty-two repeats occurring in each antigen. The repeat portion of the sequences was found to bear some similarity to a *Plasmodium falciparum* merozoite surface antigen (MSA-2 gene). Fig. 1 shows the genomic sequence of BMNI-3 including a translation of the putative open reading frame, with the internal six amino acid repeat sequence being indicated by vertical lines within the open reading frame.

A second group of five antigens bear some homology to each other but do not show homology to any previously identified sequences (BMNI-4, BMNI-8, BMNI-9, BMNI-10 and BMNI-11). These antigens may belong to a family of genes or may represent parts of a repetitive sequence. BMNI-17 contains a novel degenerate repeat of 32 amino acids (SEQ ID NO: 36). Similarly, the reverse complement of BMNI-17 (SEQ ID NO: 37) contains an open reading frame that encodes an amino acid sequence (SEQ ID NO: 38) having a degenerate 32 amino acid repeat (SEQ ID NO: 39).

The reverse complement of BMNI-3 (SEQ ID NO: 40) has an open reading frame which shows homology with the BMNI-4-like genes. The predicted amino acid sequence encoded by this open reading frame is shown in SEQ ID NO: 41. The reverse complement of BMNI-5 (SEQ ID NO: 42) contains a partial copy of a BMNI-3-like sequence and also an open reading frame with some homology to two yeast genes (*S. cerevisiae* G9365 ORF gene, and *S. cerevisiae* accession no. U18922). The predicted 5' and 3' amino acid sequences encoded by this open reading frame are shown in SEQ ID NO: 43 and 44, respectively. The reverse complement of BMNI-7 (SEQ ID NO: 45) contains an open reading frame encoding the amino acid sequence shown in SEQ ID NO: 46.

A telomeric repeat sequence, which is conserved over a wide range of organisms, was found in five antigens (BMNI-2, BMNI-5, BMNI-6, BMNI-7 and BMNI-16), indicating that many of the isolated genes may have a telomere-proximal location in the genome. BMNI-10 appears to include a double insert, the 3'-most segment having some homology to *E. coli* aminopeptidase N. In addition, BMNI-7 contains apparently random insertions of hamster DNA. One such insertion has characteristics of a transposible element (*i.e.*, poly A tail and flanked by a direct repeat).

In subsequent studies, two additional *B. microti* antigens were isolated by screening the *B. microti* genomic DNA expression library described above with a serum pool from *B. microti* infected patients that showed low reactivity with recombinant proteins generated from clones BMNI-2 - BMNI-17. The determined DNA sequences for these two clones, h reinafter referred to as MN-10 and BMNI-20, are provided in SEQ ID NO: 50 and 51, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 52 and 53. MN-10 was found to extend the sequence of BMNI-4 in the 3' direction and BMNI-20 was found to extend the sequence of BMNI-17 in the 5' direction.

EXAMPLE 2

SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugating or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol.thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.

This procedure was used to synthesize two peptides (hereinafter referred to as BABS-1 and BABS-4) made to the repeat region of the isolated *B. microti* antigen BMNI-3. The sequences of BABS-1 and BABS-4 are shown in SEQ ID NO: 47 and 48, respectively.

EXAMPLE 3

40

USE OF REPRESENTATIVE ANTIGENS AND PEPTIDES FOR SERODIAGNOSIS OF B. MICROTI INFECTION

A. Diagnostic Properties of Representative Antig ns and Peptides as determined by ELISA

The diagnostic properties of recombinant BMNI-3, BMNI-4, BMNI-6, BMNI-15, MN-10 and BMNI-20, and the BABS-1 and BABS-4 peptides were determined as follows.

Assays were performed in 96 well plates coated overnight at 4 °C with 200 ng antigen/well added in 50 µl of carbonate coating buffer. The plate contents were then removed and the wells were blocked for 2 hours with 200 µl of PBS/1% BSA. After the blocking step, the wells were washed six times with PBS/0.1% Tween 20™. Fifty microliters of sera, diluted 1:100 in PBS/0.1% Tween 20™/0.1% BSA, was then added to each well and incubated for 30 minutes at room temperature. The plates were then washed six times with PBS/0.1 % Tween 20™.

The enzyme conjugate (horseradish peroxidase-Protein A, Zymed, San Francisco, CA) was then diluted 1:20,000 in PBS/0.1% Tween $20^{\text{TM}}/0.1\%$ BSA, and 50 μ l of the diluted conjugate was added to each well and incubated for 30 minutes at room temperature. Following incubation, the wells were washed six times with PBS/0.1% Tween 20^{TM} . 100 μ l of tetramethylbenzidine peroxidase substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was added, undiluted, and incubated for 15 minutes. The reaction was stopped by the addition of 100 μ l of 1N H₂SO₄ to each well and the plates were read at 450 nm.

Fig. 2a shows the reactivity of the recombinant BMNI-3 and BMNI-6 antigens and the two peptides BABS-1 and BABS-4 in the ELISA assay. The recombinant antigens and the two peptides were negative in ELISA with all seven samples from normal (*B. microti* negative) individuals. In contrast, both BMNI-3 and BMNI-6 detected six of the nine *B. microti*-infected samples, as compared to two out of the nine for the BABS-1 and BABS-4 peptides. This would suggest that BMNI-3 and BMNI-6 may contain other antigenic epitopes in addition to those present in the repeat epitopes in BABS-1 and BABS-4, or that an insufficient number of repeats are available in the peptides to fully express the antigenic epitopes present in the recombinant antigens BMNI-3 and BMNI-6.

Fig. 2b shows the ELISA reactivity of the recombinant antigens BMNI-4 and BMNI-15. Both recombinants were negative with all fifteen samples from normal individuals. BMNI-4 detected four out of nine *B. microti*-infected samples and BMNI-15 detected six out of nine *B. microti*-infected samples. Both BMNI-4 and BMNI-15 detected a *B. microti*-infected sample which was not detected by BMNI-3 or BMNI-6, suggesting that BMNI-4 and BMNI-15 might be complementary to BMNI-3 and BMNI-6 in the ELISA test described herein.

The ELISA reactivity of recombinant MN-10 and BMNI-20 with sera from *B. microti*-infected patients and from normal donors is shown in Fig. 3. MN-10 and BMNI-20 were found to be reactive with *B. microti*-infected sera that were not reactive with recombinant BMNI-2 through BMNI-17. Therefore, MN-10 and BMNI-20 may be usefully employed in combination with other *B. microti* antigens of the present invention for the detection of *B. microti* infection.

B. Diagnostic Properties of Representative Antigens and Peotides as determined by Western Analysis

Western blot analyses were performed on representative B. microti antigens as follows.

Antigens were induced as pBluescript SK- constructs (Stratagene), with 2 mM IPTG for three hours (T3), after which the resulting proteins from time 0 (T0) and T3 were separated by SDS-PAGE on 15% gels. Separated proteins were then transferred to nitrocellulose and blocked for 1 hr in 0.1% Tween 20™/PBS. Blots were then washed 3 times in 0.1% Tween 20™/PBS and incubated with a *B. microti* patient serum pool (1:200) for a period of 2 hours. After washing blots in 0.1% Tween 20™/PBS 3 times, immunocomplexes were detected by the addition of Protein A conjugated to ¹²⁵I (1/25000; NEN-Dupont, Billerica, MA) followed by exposure to X-ray film (Kodak XAR 5; Eastman Kodak Co., Rochester, NY) at -70 °C for 1 day.

As shown in Fig. 4, resulting bands of reactivity with serum antibody were seen at 43 kDa for BMNI-1, 38 kDa for BMNI-2, 45 kDa for BMNI-3, 37 kDa for BMNI-4, 18 and 20 kDa for BMNI-5, 35 and 43 kDa for BMNI-7, 32 kDa for BMNI-9, 38 kDa for BMNI-11, 30 kDa for BMNI-12, 45 kDa for BMNI-15, and 43 kDa for BMNI-17 (not shown). Antigen BMNI-6, after reengineering as a pET 17b construct (Novagen, Madison, WI) showed a band of reactivity at 33 kDa (data not shown). Protein size standards, in kDa (Gibco BRL, Gaithersburg, MB), are shown to the left of the blots.

Western blots were performed on purified BMNI-3 recombinant antigen with a series of patient sera from *B. microti* patients and from patients with either Lyme disease or ehrlichiosis. Specifically, purified BMNI-3 (4 µg) was separated by SDS-PAGE on 12% gels. Protein was then transferred to nitrocellulose membrane for immunoblot analysis. The membrane was first blocked with PBS containing 1% Tween 20™ for 2 hours. Membranes were then cut into strips and incubated with individual sera (1/500) for two hours. The strips were washed 3 times in PBS/0.1% Tw n 20™ containing 0.5 M NaCl prior t incubating with Protein A-horseradish peroxidase conjugate (1/20,000) in PBS/0.1% Tween 20™/0.5 M NaCl for 45 minutes. After further washing three times in PBS/0.1% Tween 20™/0.5 M NaCl, ECL chemilu-

minescent substrate (Amersham, Arlington Heights, IL) was added for 1 min. Strips were then reass mbled and exposed to Hyperfilm ECL (Amersham) for 5-30 seconds.

Lanes 1-9 of Fig. 5 show the reactivity of purified recombinant BMNI-3 with sera from nine *B. microti*-infected patients, of which five were clearly positive and a further two were low positives detectable at higher exposure to the hyperfilm ECL. This correlates with the reactivity as determined by ELISA. In contrast, no immunoreactivity was seen with sera from patients with either ehrlichiosis (lanes 10 and 11) or Lyme disease (lanes 12-14), or with sera from normal individuals (lanes 15-20). A major reactive band appeared at 45 kDa and a small break down band was seen at approximately 25 kDa.

Although the present invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.

SEQUENCE LISTING

55

5	
	(1) GENERAL INFORMATION:
10	(i) APPLICANT: Corixa Corporation
	(ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR THE DIAGNOSIS AND TREATMENT OF B. MICROTI INFECTION
15	(iii) NUMBER OF SEQUENCES: 53
20	 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: FORRESTER & BOEHMERT (B) STREET: Franz-Joseph Strasse 38 (C) CITY: Munich (D) COUNTRY: DE (E) ZIP: D-80801
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
30	(vi) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER: EP 97117067.5(B) FILING DATE: 01-OCT-1997(C) CLASSIFICATION:
35	<pre>(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: GOWSHALL, Jon V.</pre>
	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: +49 89 34 70 80 (B) TELEFAX: +49 89 34 70 10 (C) TELEX: 524282 FORBO D
40	
45	
50	
	(2) INFORMATION FOR SEQ ID NO:1:

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 792 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
15	CACTCTTTTT AATGAGCGGT GCTGTCTTTG CAAGTGATAC CGATCCCGAA GCTGGTGGGC	60
	CTAGTGAAGC TGGTGGGCCT AGTGGAACTG TTGGGCCCAG TGAAGCTGGT GGGCCTAGTG	120
20	AAGCTGGTGG GCCTAGTGGA ACTGGTTGGC CTAGTGAAGC TGGTGGGCCT AGTGAAGCTG	180
	GTGGGCCTAG TGAAGCTGGT GGGCCTAGTG AAGCTGGTGG GCCTAGTGGA ACTGGTTGGC	240
25	CTAGTGGAAC TGGTTGGCCT AGTGAAGCTG GTTGGTCTAG TGAACGATTT GGATATCAGC	300
	TTCTTCCGTA TTCTAGAAGA ATAGTTATAT TTAATGAAGT TTGTTTATCT TATATATACA	360
30	AACATAGTGT TATGATATTG GAACGAGATA GGGTGAACGA TGGTCATAAA GACTACATTG	420
	AAGAAAAAAC CAAGGAGAAG AATAAATTGA AAAAAGAATT GGAAAAATGT TTTCCTGAAC	480
35	AATATTCCCT TATGAAGAAA GAAGAATTGG CTAGAATATT TGATAATGCA TCCACTATCT	540
	CTTCAAAATA TAAGTTATTG GTTGATGAAA TATCAAACAA GGCCTATGGT ACATTGGAAG	600
40	GTCCAGCTGC TGATAATTTT GACCATTTCC GTAATATATG GAAGTCTATT GTACTTAAAG	660
	ATATGTTTAT ATATTGTGAC TTATTATTAC AACATTTAAT CTATAAATTC TATTATGACA	720

ATACCGTTAA TGATATCAAG AAAAATTTTG ACGAATCCAA ATCTAAAGCT TTAGTTTTGA

780

792

(2) INFORMATION FOR SEQ ID NO:2:

GGGATAAGAT CA

50

55

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2732 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AAACCCTAAA	CCCTAAACCC	TAAACCCTAA	ACCCTAAACC	CCTAAACCCT	AAACCCTAAA	60
CCCTAAACCC	TAAACCCTAA	AACCCTAAAC	CCTAAACCCT	AAACCCTAAA	CCCTAAACCC	120
TAAACCCTAA	ACCCTAAACC	CTAAACCCTA	AACCCTAAAC	CCTAAACCCT	AAACCCTAAA	180
CCCTAAACCC	TAAACCCTAA	ACCCTAAACC	CTAAACCCCT	AAACCCTAAA	CCCTAAACCC	240
TAAACCCTAA	ACCCTAAACC	CTAAACCCTA	AACCCTAAAC	CCTAAACCCT	AAACCCTAAA	300
CCCTAAACCC	TAAACCCTAA	ACCCTAAACC	CTAAAACCCT	AAACCCTAAA	CCCTAAACCC	360
TAAACCCTAA	ACCCTAAACC	CCTAAACCCT	AAACCCTAAA	CCCTAAACCC	TAAACCCTAA	420
ACCCCTAAAC	CCTAAACCCC	TAAACCCTAA	ACCCTAAACC	CTAAACCCTA	AACCCTAAAC	480
CCTAAACCCT	AAACCCTAAA	CCCTAAACCC	TAAACCCCTA	AACCCTAAAC	CCTAAACCCT	540
AAACCCTAAA	CCCTAAACCC	TAAACCCTAA	ACCCTAACCC	TAACCCTAAC	CCTAACCCTA	600
ACCTAGCCTT	CATTGACGTC	TATCCCCAAT	CTTAGAAAAA	TCTTCAAATC	GATTCTAGAA	660
TAACTGGAAA	CAATTATCAG	AAATTGTATA	ACTGCTTATT	AGCTTATTAG	CTTATTAGTT	720
AGGATGTATG	CACATTGATG	ACAACTAGAT	GCAGCACCAC	AATCACTACC	ACGTACCAAT	780
CATATACCAA	TAATGTACTA	ATAATGTACC	AATAACTATG	GTTTATAAAG	ATGGTGTCAT	840
TTAAATCAAT	ATTAGTTCCT	TATATTACAC	TCTTTTTAAT	GAGCGGTGCT	GTCTTTGCAA	900
GTGATACCGA	TCCCGAAGCT	GGTGGGCCTA	GTGAAGCTGG	TGGGCCTAGT	GGAACTGTTG	960
GGCCCAGTGA	AGCTGGTGGG	CCTAGTGAAG	CTGGTGGGCC	TAGTGGAACT	GTTGGGCCCA	1020
CTCAACCTCC	TEECTTAGT	GAAGCTGGTG	GGCCTAGTGG	AACTGGTTGG	CCTAGTGAAG	1080

	CTGGTGGGCC	TAGTGAAGCT	GGTGGGCCTA	GTGGAACTGT	TGGGCCCAGT	GAAGCTGGTG	1140
	GGCCTAGTGA	AGCTGGTGGG	CCTAGTGGAA	CTGGTTGGCC	TAGTGAAGCT	GGTGGGCCTA.	1200
	GTGAAGCTGG	TGGGCCTAGT	GAAGCTGGTG	GGCCTAGTGA	AGCTGGTGGG	CCTAGTGGAA	1260
	CTGGTTGGCC	TAGTGGAACT	GGTTGGCCTA	GTGAAGCTGG	TTGGTCTAGT	GAACGATTTG	1320
	GATATCAGCT	TCTTCCGTAT	TCTAGAAGAA	TAGTTATATT	TAATGAAGTT	TGTTTATCTT	1380
	ATATATACAA	ACATAGTGTT	ATGATATTGG	AACGAGATAG	GGTGAACGAT	GGTCATAAAG	1440
	ACTACATTGA	AGAAAAAACC	AAGGAGAAGA	ATAAATTGAA	AAAAGAATTG	GAAAAATGTT	1500
	TTCCTGAACA	ATATTCCCTT	ATGAAGAAAG	AAGAATTGGC	TAGAATATTT	GATAATGCAT	1560
	CCACTATCTC	TTCAAAATAT	AAGTTATTGG	TTGATGAAAT	ATCAAACAAG	GCCTATGGTA	1620
	CATTGGAAGG	TCCAGCTGCT	GATAATTTTG	ACCATTTCCG	TAATATATGG	AAGTCTATTG	1680
,	TACTTAAAGA	TATGTTTATA	TATTGTGACT	TATTATTACA	ACATTTAATC	TATAAATTCT	1740
•	ATTATGACAA	TACCGTTAAT	GATATCAAGA	AAAATTTTGA	CGAATCCTGG	ACACAGACAT	1800
	TAAAAGAATA	AGCCTGCTTG	GGGGTTTCTG	GGCATCTCTT	CATGAGTGCC	AGTCACACAA	1860
	стсттстстс	AGCCTTCTAC	AATAAGGACT	TTGTGTGCTT	CGATATTTT	TTAGACTAAA	1920
	GTGAACTCTC	TCCTCCACCT	TTGGCTTCAG	TTAGTTATTT	CAAATGGCAA	AAGTTATTAA	1980
	AAATTCCAGT	GTGGAAACTG	GCTTAACCAA	CAGGAAAGGG	GTTTTGAGGT	CGCATCACTA	2040
	AGCATCAAGT	TTAACACCAA	CATGCCTGGA	GGATTGGCTT	AGCCGGTTGC	TAGGGCAGGC	2100
	CTGTGGCAGG	GTTCTTATCC	CAGCTATTAA	CGCTCCCTTC	CCACTCCTCC	AAGTCCTGCA	2160
	AGTCCTGGAT	ACAGTGAAAT	GTAATTGCAT	ATCCCATATC	CTTTGCTAGT	ATCAAATGGA	2220
	TAAAACCCAA	AATGGAGTCA	TACCAAATGA	TCTCATGTAT	ACAATACCTG	AATAGTCTTG	2280
	AACTGATGCA	CTGTTAGATA	GTATGCACTT	ACTCTTCAGC	TATTCATAGT	GTGCCTCTGC	2340
	ACAGTGATGG	AAAAGAGGAG	CACTGGGGA	GCTCGGTTTT	CAAGGGACAA	AGGAGAATAA	2400

	GACACACAAA GAAATCCAAG GTAGAGCAGA GAAAGGATGG AGACACAGAA GGTTTGCAGG	2460
5	AACAGGAAGC GAAGGATGCT CCAGTCTGAG GGGGAGGGGA	2520
	CAGCACCTGA ACTTGGCCTG GAAGCTTGGT GGATAAGGCA GGATAAAGGA GGTGTGGCCT	2580
10	CTTTGGTATC CTCCCATTGA TAAAGGAGCT CCCTGACCCT TCACTAGACC ATCATCAGTC	2640
	CTATGGTTCT TAGACCAATA GAACACAATG GAATTGATTT GTTCCACTTT CCAGGTTAAG	2700
	ACTTACAGTC AGGGAAGTTT GTTTTTCTTG CC	2732
15	(2) INFORMATION FOR SEQ ID NO:3:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2430 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25		
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	AACTAGATGC AGCACCACAA TCACTACCAC GTACCAATCA TATACCAATA ATGTACTAAT	60
<i>35</i>	AATGTACCAA TAACTATGGT TTATAAAGAT GGTGTCATTT AAATCAATAT TAGTTCCTTA	120
	TATTACACTC TTTTTAATGA GCGGTGCTGT CTTTGCAAGT GATACCGATC CCGAAGCTGG	180
40	TGGGCCTAGT GAAGCTGGTG GGCCTAGTGG AACTGTTGGG CCCAGTGAAG CTGGTGGGCC	240
40	TAGTGAAGCT GGTGGGCCTA GTGGAACTGG TTGGCCTAGT GAAGCTGGTG GGCCTAGTGA	300
	AGCTGGTGGG CCTAGTGAAG CTGGTGGGCC TAGTGAAGCT GGTGGGCCTA GTGGAACTGG	360
45	TTGGCCTAGT GGAACTGGTT GGCCTAGTGA AGCTGGTTGG TCTAGTGAAC GATTTGGATA	420
	TCAGCTTCTT CCGTATTCTA GAAGAATAGT TATATTTAAT GAAGTTTGTT TATCTTATAT	480

ATACAAACAT AGTGTTATGA TATTGGAACG AGATAGGGTG AACGATGGTC ATAAAGACTA

CATTGAAGAA AAAACCAAGG AGAAGAATAA ATTGAAAAAA GAATTGGAAA AATGTTTTCC

	TGAACAATAT TCCCTTATGA AGAAAGAAGA ATTGGCTAGA ATATTTGATA ATGCATCCAC	660
5	TATCTCTTCA AAATATAAGT TATTGGTTGA TGAAATATCA AACAAGGCCT ATGGTACATT	720
	GGAAGGTCCA GCTGCTGATA ATTTTGACCA TTTCCGTAAT ATATGGAAGT CTATTGTACT	780
10	TAAAGATATG TTTATATATT GTGACTTATT ATTACAACAT TTAATCTATA AATTCTATTA	840
,,,	TGACAATACC GTTAATGATA TCAAGAAAAA TTTTGACGAA TCCAAATCTA AAGCTTTAGT	900
	TTTGAGGGAT AAGATCACTA AAAAGGATGG AGATTATAAC ACTCATTTTG AGGACATGAT	960
15	TAAGGAGTTG AATAGTGCAG CAGAAGAATT TAATAAAATT GTTGACATCA TGATTTCCAA	1020
	CATTGGGGAT TATGATGAGT ATGACAGTAT TGCAAGTTTC AAACCATTTC TTTCAATGAT	1080
20	CACCGAAATC ACTAAAATCA CCAAAGTTTC TAATGTAATA ATTCCTGGAA TTAAGGCACT	1140
	AACTTTAACC GTTTTTTTAA TATTTATTAC AAAATAGATG TAATACCAGA TGTATACATT	1200
25	ATTATATT ACAAAATTTA CACATTATTT ATGTATGAAC GAACGAACAT CTCAGTCTTA	1260
	AATGAAGAAA TTGGGATAAA TATGGAAATA GATTAAAGTA ACATGAGAAA GATGAATATA	1320
30	ATATTAGAAT ATGAAATTTA ACAGAAATAA AATGAAGTAA AAGAGTGTAT TTTGTAATAA	1380
	TTTATAATAA ATTAGTATAC AATGATTATA TTACAGATGA CTATTGATTA TTGTATCAAT	1440
35	TAAATATTGA TTATTAATGA TATCATATAT GTATATGTTA ATGATTGATT TGTTATACGT	1500
	TGTGAATATG TTATATAATG ACATACTATA ATAATTAATA TAATGTAGAG GATATTTTTT	1560
40	TTAATAGTAT TTAATGAATA TTATAGTTAT AATTATAATA ATGTAGATAA AAATGACATT	1620
	AATTTGAATG TITAAATTGA AATGTATGTA AAAATATGTA TITATAATCT GAATTGATTA	1680
45	ATAATATAAT ATTCTACAAT TAATTATTTT TGTAATTATA ATAATTGATT ATATTAATCT	1740
	TTGAATTATT ATAAATAATA TTATACTTCA TTAAATTATT TCACATAAAT TTCCAAATTA	1800
50	TTATCCTTTA TCTTAATGTT ATCCAATTTT ACACATCTTT CTTCATTACA ATATTTTTTT	1860
	ACTANTECTE TATECTERTA TTENTATTET TTACANATAT ANCEANAATT ACATETAACT	1020

	TCGCCACTTA CAAGTAAACT ACCATCAATA TAATAATAAT GAATACCATT CATGTCCGTA	1980
5	TATTCTTTAT ATTTTTATC ATATTTTATT TTGTGATTAT TCCATTCATT TGTATCATTA	2040
	TTCAATGAGA GAAATAATAG CAGAAAGATC CTTCTATAGA AACATAAAAT TCAATTAATA	2100
10	CTGGATTATT ATGTTTGCAA GTATAGATGT TTAAATCAAT AACACTACCA GTTGGTAATT	2160
,,,	TAGCATTGTC ATCAAATTCA ATTATATAAT CAGAAATTTT GATTTTATCA ATTTTATTCG	2220
	GATGTGATAA TITATTTTGT TCTGATTCAT CGATCATGTA TACAAATACT ATTGTTAAAG	2280
15	GTTCCCTATC CTTATAATTA AAGTGGCCAA TAAGATTGGC ATTAATTACA TTAGTAGTGT	2340
	GTGTATTTGT AATAGTATCA TTAGTGGTAC TGACAGTTGT TATAGGTTTT GATTTCCATA	2400
20	ATGAAACATC ATTTTTATCT ACACAATACA	2430
	(2) INFORMATION FOR SEQ ID NO:4:	
25 30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1991 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	AATGTACAAG ATCAAAATTT CTGATTATAT AATTGAATTT GATGACAATG CTAAATTACC	60
40	AACTGATAAT GTTATTGGTA TATCCATCTA TACTTGTGAA CACAATAATC CAGTATTAAT	120
	TGAATTTTAT GTTTCTAAAA AAGGATCAAT CTGCTATTAT TTCTACTCAA TGAATAATGA	180
4 5	TACAAATAAA TGGAATAATC ACAAAATAAA ATATGACAAA AGATTTAATG AACATACTGA	240
	CATGAATGGT ATTCATTATT ATTATATTGA TGGTAGTTTA CTTGCGAGTG GCGAAGTTAC	300
50	ATCTAATTTT CGTTATATTT CTAAAGAATA TGAATATGAG CATACAGAAT TAGCAAAAGA	360
- -	GCATTGCAAG AAAGAAAAAT GTGTAAATGT GGATAACATT GAGGATAATA ATTTGAAAAT	420

	ATATGCGAAA	CAGTTTAAAT	CTGTAGTTAC	TACTCCAGCT	GATGTAGCGG	GTGTGTCAGA	480
5	TGGATTTTT	ATACGTGGCC	AAAATCTTGG	TGCTGTGGGC	AGTGTAAATG	AACAACCTAA	540
	TACTGTTGGT	ATGAGTTTAG	AACAATTCAT	CAAGAACGAG	CTTTATTCTT	TTAGTAATGA	600
10	AATTTATCAT	ACAATATCTA	GTCAAATCAG	TAATTCTTTC	TTAATAATGA	TGTCTGATGC	660
	AATTGTTAAA	CATGATAACT	ATATTTTAAA	AAAAGAAGGT	GAAGGCTGTG	AACAAATCTA	720
15	CAATTATGAG	GAATTTATAG	AAAAGTTGAG	GĠGTGCTAGA	AGTGAGGGGA	ATAATATGTT	780
	TCAGGAAGCT	CTGATAAGGT	TTAGGAATGC	TAGTAGTGAA	GAAATGGTTA	ATGCTGCAAG	840
20	TTATCTATCC	GCCGCCCTTT	TCAGATATAA	GGAATTTGAT	GATGAATTAT	TCAAAAAGGC	900
	CAACGATAAT	TTTGGACGCG	ATGATGGATA	TGATTTTGAT	TATATAAATA	CAAAGAAAGA	960
05	GTTAGTTATA	CTTGCCAGTG	TGTTGGATGG	TTTGGATTTA	ATAATGGAAC	GTTTGATCGA	1020
25	AAATTTCAGT	GATGTCAATA	ATACAGATGA	TATTAAGAAG	GCATTTGACG	AATGCAAATC	1080
	TAATGCTATT	ATATTGAAGA	AAAAGATACT	TGACAATGAT	GAAGATTATA	AGATTAATTT	1140
30	TAGGGAAATG	GTGAATGAAG	TAACATGTGC	AAACACAAAA	TTTGAAGCCC	TAAATGATTT	1200
	GATAATTTCC	GACTGTGAGA	AAAAAGGTAT	TAAGATAAAC	AGAGATGTGA	TTTCAAGCTA	1260
35	CAAATTGCTT	CTTTCCACAA	TCACCTATAT	TGTTGGAGCT	GGAGTTGAAG	CTGTAACTGT	1320
	TAGTGTGTCT	GCTACATCTA	ATGGAACTGA	ATCTGGTGGA	GCTGGTAGTG	GAACTGGAAC	1380
40	TAGTGTGTCT	GCTACATCTA	CTTTAACTGG	TAATGGTGGA	ACTGAATCTG	GTGGAACAGC	1440
	TGGAACTACT	ACGTCTAGTG	GAACTTGGTT	TGGAAAATGA	AAAATTAGCT	CTAGAAACAC	1500
45	TTTATTGTTA	ATTTTTAAAA	ACCTATTGAA	AAATCAGATT	GTAAAACATA	ATTCCACTTC	1560
	TAACCATGCT	ATGATTTAAC	TAATCAGGAC	AAAAAGAAAG	CATAATCAAC	ATTATTCATT	1620
50	CAGTGATGGT	GACATAATTC	AGAGAATGTG	GCAATTGCCT	CTTGAAGACC	AGAGTTCCAT	1680
	CCACAGGACC	CACATGGTTA	AAGGAGAGAG	CTAACTCCTG	AAAGTTGTCC	TCTGACTAAC	1740

	ACATTCAACT TTTGAGTGTC TCATTTATGT GTTGGCTTCT GTCTAATGTG GGAAAATCAT	1800
5	TAAGGGCTCT TAAATCAGAT CCTCATTCTC TCTATTAATA AACTATGTGA TAACATCCTT	1860
	CAGCTATGAA AATGTCAGGA GAGAGTCAGG AAAATGGAAG ATATTGTTCA GGACTTAACT	1920
10	AGGTGGTGGC ACACAGTTCC TTTACACAGA TTCCTCAGGA CAAGTTTTAG GTGAGGTTTT	1980
	GATCTATCCT G	1991
	(2) INFORMATION FOR SEQ ID NO:5:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1271 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
30	TTCACTAGGC CAACCAGCTT CACTAGGCCA ACCAGCTTCA CTAGGCCAAC CAGCTTCACT	60
•	AGGCCAACCA GCTTCACTAG GCCAACCAGC TTCACTAGGC CAACCAGTTC CACTAGGCCC	120
35	ACCAGCTTCA CTAGGCCCAC CAGCTTCACT AGGCCCACCA GCTTCACTAG GCCAACCAGT	180
	TCCACTAGGC CCACCAGCTT CACTAGGCCC ACCAGCTTCA CTAGGCCCAC CAGCTTCACT	240
_	AGGCCCACCA GCTTCACTAG GCCCACCAGC TTCACTAGGC CCACCAGCTT CACTAGGCCC	300
40	ACCAGCTTCA CTAGGCCCAC CAGCTTCACT AGGCCCAACA GTTCCACTAG GCCCACCAGC	360
٧	TTCGCGATCG GTATCACCTG CAAAGACAGC ACCGCTCATT AAAAAGAGTG TAATATAAGG	420
4 5	AACTAATATT GATTTAAATG ACACCATCTT TATAAACCAT AGTTATTGGT ACATTATTAG	480
	TACATTATTG GTATATGATT GGTACGTGGT AGTGATTGTG GTGCTGCATC TAGTTGTCAT	540
50	CAATGTGCAT ACATCCTAAC TAATAAGCTA ATAAGCTAAT AAGCAGTTAT ACAATTTCTG	600

ATAATTGCTT CCAGTTATTC TAGAATCGAT TTGAAGATTT TTCTAAGATT GGGGATAGAC

55

GTCAATGAAG	GCTAGGTTAG	GGTTAGGGTT	AGGGTTAGGG	TTAGGGTTTA	GGGTTTAGGG	720
TTTAGGGTTT	AGGGTTTAGG	GTTAGGGTTT	AGGGTTTAGG	GTTTAGGGTT	TAGGCTCCCA	780
AGTTGTCCCG	TGAAAGGCC	GTGTCTTTGA	TAAATTTTGC	CGTCCTGTAC	GTTTCCTTTC	840
TAGAATGCAC	AAAAACAAGA	ATTTGGCAGC	TAGAAACATC	GTTAATCACC	TCTTGGTAGA	900
GAATTTCGTT	GATTGCGTTG	AAACGTTTGA	TAGCCTTCTT	CTCCTTCACG	CCATAATACA	960
CCTGCTCCAA	GGGCACAGGC	CTAAAGTGGC	TGCCAAAGTA	GAAAAGCCCT	CGGTCTAGAT	1020
TAACAGTGAG	AAATCTAGCC	ACGTCTTCGT	AGTTTGGAAG	CGTGGCCGAT	AGACCAACTA	1080
GCCTTACGCG	TTCGGGCCTC	TGACTCAGGC	GGGCCACAAT	AGCCTCCAGC	ACTGGACCCC	1140
TAGTGTCATG	GAGTAGGTGT	ATTTCATCAA	TTATAACCAA	TCTAAGCCGC	TCAAGCAGGG	1200
GCTCATTGCC	TGTTTTACGT	GTAACTACGT	CAAACTTCTC	TGGCGTAGTT	ACAATTATAT	1260
GCGTTTTCTC	A	·				1271
,						

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1821 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

40

10

15

20

25

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TAAACCCTAAA ACCCCTAAACCCT AAACCCTAAA CCCTAAACCC TAAACCCCTAA 60

AACCCTAAAC CCTAAACCCT AAACCCTAAA CCCTAAACCCT AAACCCTAAA CCCTAAACCC

TAAACCCTAAA ACCCTAAACCC TAACCCTAAC CCTAACCCTA ACCTAGCCTT CATTGACGTC

180

TATCCCCAAT CTTAGAAAAA TCTTCAAATC GATTCTAGAA TAACTGGAAG CAATTATCAG

240

	AAATTGTATA A	CTGCTTATT	AGCTTATTAG	CTTATTAGTT	AGGATGTATG	CACATTGATG	300
5	ACAACTAGAT G	CAGCACCAC	AATCACTACC	ACGTACCAAT	CATATACCAA	TAATGTACTA	360
	ATAATGTACC A	ATAACTATG	GTTTATAAAG	ATGGTGTCAT	TTAAATCAAT	ATTAGTTCCT	420
10	TATATTACAC TO	CTTTTTAAT	GAGCGGTGCT	GTCTTTGCAG	GTGATACCGA	TCGCGAAGCT	480
70	GGTGGGCCTA G	TGGAACTGT	TGGGCCTAGT	GAAGCTGGTG	GGCCTAGTGA	AGCTGGTGGG	540
	CCTAGTGAAG C	TGGTGGGCC	TAGTGAAGCT	GGTGGGCCTA	GTGAAGCTGG	TGGGCCTAGT	600
15	GAAGCTGGTG G	GCCTAGTGA	AGCTGGTGGG	CCTAGTGAAG	CTGGTGGGCC	TAGTGGAACT	660
	GGTTGGCCTA G	TGAAGCTGG	TTGGCCTAGT	GAAGCTGGTT	GGCCTAGTGA	AGCTGGTTGG	720
20	CCTAGTGAAG C	TGGTTGGCC	TAGTGAAGCT	GGTTGGCCTA	GTGAACGATT	TGGATATCAG	780
	CTTCTTTGGT A	TTCTAGAAG	AATAGTTATA	TTTAATGAAA	TTTATTTATC	TCATATATAC	840
25	GAACATAGTG T	TATGATATT	GGAACGAGAT	AGGGTGAACG	ATGGTCATAA	AGACTACATT	900
	GAAGAAAAA C	CAAGGAGAA	GAATAAATTG	AAAAAAGAAT	TGGAAAAATG	TTTTCCTGAA	960
30	CAATATTCCC T	TATGAAGAA	AGAAGAATTG	GCTAGAATAA	TTGATAATGC	ATCCACTATC	1020
	TCTTCAAAAT A	TAAGTTATT	GGTTGATGAA	ATATCCAACA	AAGCCTATGG	TACATTGGAA	1080
35	GGTCCAGCTG C	TGATGATTT	TGACCATTTC	CGTAATATAT	GGAAGTCTAT	TGTACCTAAA	1140
	AATATGTTTC T	ATATTGTGA	CTTATTATTA	AAACATTTAA	TCCGTAAATT	CTATTGTGAC	1200
40	AATACCATTA A	TGATATCAA	GAAAAATTTT	GACGACATAG	AGAAATTGGG	CTGTTTTCAA	1260
40	GCTAGAAGCT T	CCTCCCTGT	TAACTAATGT	ATTCATGGTG	CCAGAAGGTG	CTATGCAGGT	1320
	TGCTAGGGAA T	CAAATTCAT	CAATAGTCCT	GCCCAAGAGT	AGTGTGTTAA	CTGGCGGTGC	1380
45	AAGATGTGCC C	TTTGATGCA	GTAGTGGCAT	GCTTGTTTGT	GGGGTAACCC	AGTGCTTTCT	1440
	GATTGAGGTC T	ACTCCACAG	GAGGAATAGA	TACCTGCTTC	TGTAAACTTG	GTCAAAACTT	1500
50	ATGACTGCAC A	TGAAGACAG	agtggaaaag	ACCTGAAAAC	ACACACGGGG	TCAGGACTGA	1560
	GGAAGACAGG G	TTAGTATTA	GAGAGATTTG	GGGAAAAAAA	GAGTTAGCAA	ATATAGAGTG	1620

	TGATAGTCTA ATGGGGGGAT GAATGGTATC AAAATGAATT ATTTATATGT ATAAAACTGA	1680
5	CAATTITITA ATTGTGAAAA GGAATGCAAT CCGACCCATC TGGGGGAATT CTAGCTAGCA	1740
	TCAGTGAGAG AAGAGGCAAG GTGTTAGGAA ATCGTGCAGA ACATGCTCAT CCAGGCTTTA	1800
10	TTTCTCCATT TACATCTAGA G	1821
	(2) INFORMATION FOR SEQ ID NO:7:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4223 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20		
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	CATCACAATT ATTGGCTGTT ACATCACTAT AGTGCTGTAT GTAAAAAATT ATAAAGTGTG	60
30	ACATCATTAT AATGCAATAT GACATCACAA TTATATACTG TGACTTCACT ATCTTGCACT	120
	TTAACATCAC AATTATACAT TGTGACATCA ATATACTGCA CTATGACATC ACGATTATTG	180
35	ACTGTGACAT CAATACATTC TCTATGAACA CAGTTATACA CTCTGACATC ACTAGCTTGC	240
	ACTGTGACAT GACAATTAAA AACTGTGACA TCAATATAAT GGACTGTGAC CTACAATTAT	300
40	TCACTGTGAA ACCACAACAC TGCAATTGTG TATAATTGGG ATGGGTACTG ATCTGCTGCC	360
	CGAGGCTCAA TAGATTACCT AGGCCTCCTC ACTGACACCC ACATTCAGGG GGTCTTGATC	420
45	AGTCCCATGA TGGATTCCCA GGCTGATGCC TGGGATTCAA GAGTTAACCT TTGTCTGGTC	480
	AGCTCTTTCT GGGGGTTAAA CGGATTAAAT GTTTTAATAA TAAGTCACAA TATAGAAACA	540
50	TATTTTTAGG TACAATAGAC TTCCATATAT TACGGAAATG GTCAAAATCA TCAGCAGCTG	600

55

GACCTTCCAA TGTACCATAG GCTTTGTTGG ATATTTCATC AACCAATAAC TTATATTTTG

	AAGAGATAGT GGATG	CATTA TCAATTATTO	TAGCCAATTC	пстпсттс	ATAAGGGAAT	720
5	ATTGTTCAGG AAAAC	ATTIT TCCAATTCTT	TTTCAATTT	ATTCTTCTCC	ТТGGТТТТТ	780
	CTTCAATGTA GTCTT	TATGA CCATCGTTCA	CCCTATCTCG	TTCCAATATC	ATAACACTAT	840
10	GTTCGTATAT ATGAG	ataaa taaatttcat	TAAATATAAC	TATTCTTCTA	GAATACCAAA	900
	GAAGCTGATA TCCAA	ATCGT TCACTAGGC	AACCAGCTTC	ACTAGGCCAA	CCAGCTTCAC	960
	TAGGCCAACC AGCTT	CACTA GGCCAACCAG	CTTCACTAGG	CCAACCAGCT	TCACTAGGCC	1020
15	AACCAGCTTC ACTAG	GCCCA CCAGCTTCAC	TAGGCCCACC	AGCTTCACTA	GGCCCACCAG	1080
	CTTCACTAGG CCCAA	CAGTT CCACTAGGCC	CACCAGCTTC	ACTAGGCCCA	CCAGCTTCAC	1140
20	TAGGCCCACC AGCTT	CACTA GGCCCACCAG	CTTCACTAGG	CCCACCAGCT	TCACTAGGCC	1200
	CACCAGCTTC ACTAG	GCCCA CCAGCTTCÁC	TAGGCCCAAC	AGTTCCACTA	GGCCCACCAG	1260
25	CTTCGCGATC GGTAT	CACCT GCAAAGACAG	CACCGCTCAT	TAAAAAGAGT	GTAATATAAG	1320
	GAACTAATAT TGATT	TAAAT GACACCATCT	TTATAAACCA	TAGTTATTGG	TACATTATTA	1380
30	GTACATTATT GGTATA	ATGAT TGGTACGTGG	TAGTGATTGT	GGTGCTGCAT	CTAGTTGTCA	1440
	TCAATGTGCA TACAT	CCTAA CTAATAAGCT	AATAAGCTAA	TAAGCAGTTA	TACAATTTCT	1500
35	GATAATTGCT TCCAG	ITATT CTAGAATCGA	TTTGAAGATT	TTTCTAAGAT	TGGGGATAGA	1560
-	CGTCAATGAA GGCTA	GTTA GGGTTAGGGT	TAGGGTTAGG	GTTAGGGTTT	AGGGTTTAGG	1620
	GTTTAGGGTT TAGGG	TTTAG GGTTAGGGTT	TAGGGTTTAG	GGTTTAGGGT	TTAGGGTTTA	1680
40	GGGGTTTAGG GTTTA	GGTT TAGGGTTTAG	GGTTTAGGGT	TTAGGGTTTA	GGGAAGGCTG	1740
	AGAACCACTG ACTTA	GACTT TCCAAGACTT	TGTCATCTTA	TGACTTGCCG	GTTGCCTCGT	1800
45	TTCTCCACAC AGCAA	CCTAT GTTCTCTCTT	ATTACAGTTT	CTGTGGGACA	TGTCATGCTT	1860
	CCAGCTTCGA GAATG	GAAGC CTATTGTCTT	AATGGGTGAG	CAAAGTGGGC	CCATTCATTA	1920
50	ATCACAGACT AATCC	AAAAG GAAATGTGAC	ACCTGACCTA	AGTCCGACCA	ATAGGAGCCA	1980
	CCAAACCTCA CTTCT	CAAT TETEACTTAG	ATATCACÉGA	TGCATACAGA	CTCTTTTTCC	2040

	TGCTGAAACA	AATGGTGAGG	ACCTGTCCAC	CCTTGTGGGA	AGCTTGCAGT	GTAAGATTCT	2100
5	AATCCATATT	GGGGAAATAA	GGCTGAGAAG	AGAGAGTTCC	AGGCCTTGTG	ACAGAATCTA	2160
	ATCCCTGGAT	AAAGTCTCTC	TTTTTACAAA	GAACATCAGT	GTTGCAAGCT	CCAAATTCCT	2220
10	GTTCTTACTT	TCTTGAGTCT	GTTTCTTTA	TGTATAACCC	AAAGCACTTT	AACTGACACA	2280
	GCTGTGAAGT	GAGAATATTT	CATAGAAATC	CTATTGTTTT	GATGTCTTCT	AAAAAAGAAA	2340
15	AAAAGCAATG	ATCTGTAACA	TTTTTTAACT	TAAATAATTA	GATTGATTTA	AGTGACATCA	2400
	AAACATCTGG	AAAATGGTGT	GGACACAAAT	TCACTAGAGA	GCCATATTTT	TTGCTAACTA	2460
20	ATTGAGAAAT	TAATCACTGG	CAAGTCTTTG	GTAAAAGTAT	CACCTCAGTC	ATGATCTCTC	2520
	CTGCCTTCAT	GACATTTTCC	TCATTGGTGT	GAGGATGCTA	TTCTGCTTTC	TATGTGACCA	2580
25	GGAAATAGTG	CTGTCTTCTG	TCTAGTTATG	ATTTAGGTTG	TACACCAGGT	TTTCACATAT	2640
23	GTTCCCTAAC	GTCTGTAGTA	GGACCAGGGA	CTGGTTGGCT	TCAAGTTGTT	GGATATGGTT	2700
	ACCTTAAGTC	ATTCATGTAC	AGGAACTCAT	TTGAGATGAT	AGGAAATGAA	GTGAAAGATT	2760
30	TTCTTGCCCC	TGTTAAGTAA	GATAAAAAGG	ATTGTTATGA	TGGGGCAGGA	GCAGATCTAT	2820
	TTCCAATAAA	CAGAATTTGA	AGTGTTTGTG	TGATATTCAG	ATACCTCATT	GTCATTTGAA	2880
35	TGAATTACTC	CTGCTCTCAG	TGAAGATGTC	TAAGCTGCAA	ATAAGAAATG	GAGAGCGCTG	2940
	TCAGAAGTCA	GATGGAATTG	AGAATAGGGG	CCTGGCTGCA	ATCTGTGGAG	ACTGCCTAAA	3000
40	GCAGCTAGAT	AAGAAACTAG	CAGCTGGGGA	GAGAAAGATC	GAATTTAGTC	GCCTGTTTT	3060
	ATATTTTCTT	ATAAAAAATA	ACTGCTTCGA	AATGTTTGAG	AAGATAGAGG	CAATGAGCAG	3120
45	AAAGTTGTTC	CTTAAATCAG	TTATAGAATG	AACACATACA	CGGGCACTCA	GATCAAGCCA	3180
	TGCTGAGCTT	GAGACACCGG	GTGACGCGTG	ACTTGTTTAT	TCCCAGGCTG	CAAAGGAGAG	3240
50	TAAATGAAGT	AACGGGAAGG	CCCGGTGTGG	TAGGCACACT	CCTGCCTGGC	ACCATCTGCT	3300
	GCTTTTGTCC	CTGTTACTCC	пспсспп	CCCTCCTTTT	CTCCCTCCCT	TCCTCCCTCC	3360

•	CTCTCTCCCT	CCTTCACACT	TCTGTCTTTA	TTTCCTCCTG	GGAGTTAATT	GGTGGTAGCC	3420
5	CCTCTGTGCT	GTTCTTTCGG	GGGTGCCTTT	AATTTCGACA	ATACAATGCC	ATCCATGGGG	3480
	GCATTTTATA	TACAGTAATA	ATTGTCATTG	ATGTGGCCAT	AAGGTACTTT	TTTGTGGTAC	3540
10	CCTTCTTGAA	CAGAACAGAC	ACAGAAGGGC	GTGCGTGCGT	GCGTGCGTGC	GTGCGTGCGT	3600
	GCGTGTGTGC	GTGTGTGCGT	GCGTGTGTGC	GTGTGTGCGT	GCGTGCGTGT	GTGCGTGCGT	3660
	GCGTGTGTGC	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTTGGG	3720
15	ATGGGGTGGG	GAGCGCTAGC	TTCCTACTTG	TTGTAGGGTG	ATGAGGTTTT	ATATAGTCTG	3780
	TTTCTGAGAC	AGTTACCAAA	TCCAGCTGGG	TTACTTTTTT	тпасттт	TATGAGACAG	3840
20	GGTTTCTCTG	TATTGTTTTG	GAGGCTGTCG	GTCCAGCCTG	GTCTCGAACT	CACAGAGATC	3900
	CGCCTGCCTC	TGCCTCCCGA	GTGCTGGGAT	TAAAGGTGTG	CGCCACCACC	GCCCGGCCCC	3960
25	AGCTGGGTTA	CTTATCACTC	AGTGGATCTT	тстстттст	TTGTAAGAAG	AACTTTGCAT	4020
	TGTGGGTCGT	CATGGAAGAA	CACTTGGAAA	GGTACCCTTT	CTGCCCCACC	CGTTTATTGA	4080
30	ATGAGTCTTT	ТПТПТПТТТ	ATTAAATAGC	AGAACTTTGG	GGAAAGATTT	AGAAAAGGCC	4140
	CTTTTCATAT	TATAATACGA	GGTATAGGAT	GGTTTAAGAT	AAGAGACTTT	TTGTTAGCTG	4200
35	TTATCAGTTG	AGAAAGGCAC	GAG				4223
~~							

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2287 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TTATAAACAT ATCTAAATAT TTTAATAATA ATGATGAAAT TTAACATAGA TAAGATAATA 60

55

40

45

	TTAATCAATT	TAATAGTATT	ATTGAATCGA	AATGTAGTGT	ATTGTGTGGA	TACAAATAAT	120
5	AGTTCATTAA	TTGAATCACA	ACCAGTAACA	ACTAACATTG	ACACTGATAA	TACAATTACA	180
	ACAAATAAAT	ACACTGGTAC	TATAATTAAT	GCCAATATTG	TTGAGTACCG	TGAATTTGAG	240
10	GATGAACCTT	TAACAATAGG	GTTTAGATAC	ACTATAGATA	AATCACAACA	AAATAAATTA	300
	TCACATCCAA	ATAAAATTGA	TAAAATCAAA	TTTTCTGATT	ATATAATTGA	ATTTGATGAC	360
15	AATGCTAAAT	TACCAACTGA	TAATGTTATT	TGTATATCCA	TCTATACTTG	CAAGCATAAT	420
	AATCCAGTAT	TAATTAGATT	CTCATGTTCT	ATAGAAAAAT	ATTACTACCA	TTACTTCTAC	480
20	TCAATGAATA	ATGATACAAA	TAAATGGAAT	AATCACAAAT	TAAAATATGA	TAAAACATAC	540
	AATGAATATA	CTGACAATAA	TGGTGTTAAT	TATTATAAAA	TCTATTATAG	TGATAAACAG	600
25	AATTCCCCTA	CTAATGGAAA	TGAATATGAG	GATGTAGCAT	TAGCAAGAAT	ACATTGTAAT	660
25	GAAGAAAGAT	GTGCAAATGT	AAAGGTAGAT	AAAATTAAAT	ATAAGAATTT	GGAAATTTAT	720
	GTGAAACAGT	TAGGTACTAT	AATTAATGCC	AATATTGTTG	AGTACCTTGT	ATTTGAGGAT	780
30	GAACCTTTAA	CAATAGGGTT	TAGATACACT	ATAGATAAAT	CACAACAAAA	TGAATTATCA	840
	CATCCAAATA	AAATTTATAA	AATCAAATTT	TCTGATTATA	TAATTGAATT	TGATGATGAT	900
35	GCTAAATTAA	CAACAATTGG	TACTGTTGAA	GATATAACCA	TCTATACTTG	CAAGCATAAT	960
	AATCCAGTAT	TAATTAGATT	CTCATGTTCT	ATAGAAAAAT	ATTACTACTA	TTACTTCTAC	1020
40	TCAATGAATA	ATAATACAAA	TAAATGGAAT	AATCACAACT	TAAAATATGA	TAATAGATTC	1080
	AAAGAACATA	GTGACAAGAA	TGGTATTAAT	TATTATGAAA	TCTCAGCTTT	CAAATGGAGT	1140
4 5	ттстсттатт	TTTTCGTTAA	TAAATATGAG	CATAAAGAAT	TAGCAAGAAT	ACATTGTAAT	1200
	GAAGAAAGAT	GTGCAAATGT	AAAGGTAGAT	AAAATTAAAT	ATAAGAATTT	GGAAATTTAT	1260
50	GTGAAACAGT	TAGGTACTAT	AATTAATGCC	AATATTGTTG	AGTACCTTGT	ATTTGAGGAT	1320
	GAACCTTTAA	CAATAGGGTT	TAGATACACT	ATAGATAAAT	CACAACAAAA	TGAATTATCA	1380

	CATCCAAATA AAATTTATAA AATCAAATTT TCTGATTATA TAATTGAATT TGATGATGAT	1440
5	GCTAAATTAA CAACAATTGG TACTGTTGAA GATATAACCA TCTATACTTG CAAGCATAAT	1500
	AATCCAGTAT TAATTAGATT CTCATGTTCT ATAGAAAAAT ATTACTACTA TTACTTCTAC	1560
10	TCAATGAATA ATAATACAAA TAAATGGAAT AATCACAACT TAAAATATGA TAATAGATTC	1620
	AAAGAACATA GTGACAAGAA TGGTATTAAT TATTATGAAA TCTCAGCTTT CAAATGGAGT	1680
15	TTCTCTTGTT TTTTCGTTAA TAAATATGAG CATAAAGAAT TAGCAAGAAT ACATTGTAAT	1740
	GAAGAAAAAT GTGTAAATGT AAAGGTAGAT AACATTGGGA ATAAAAATTT GGAAATTTAT	1800
20	GTGAAATAAT TTAATGAAGT ATAATATTAT TTATAATAAT TCAAAGATTA ATATAATTAA	1860
	TTATTATAAT TACAAAAATA ATTAATTGTA GAATATTATA TTATTAATCA ATTCAGATTA	1920
25	TAAATACATA TTTTTACATA CATTTCAATT TAAACATTCA AATTAATGTC ATTTTTATCT	1980
	ACATTATTAT AATTATAACT ATAATATTCA TTAAATACTA TTTAAAAAAA TATCCTCTAC	2040
	ATTATATCAA TCAATATAAT ATACAATTAT ATAATATATT CACAATGTAT AACAATCAAC	2100
30	CCTAACATGT ACATACATAA TATCATTACT AATCAATATT TAATTAAT	2160
	AGTCATCTGT AATATAATCA TTGTATACTA ATTTATTATA AATTATTACA AAATACACTC	2220
35	TTITACTICA TTITATTICT GITAAATITC ATATICTAAT ATTATATICA TCTTTCTCAT	2280
	GTTACTT	2287

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2784 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

55

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

5	CACTGCTTTC GCAGCGTTTC TTGCTTTTGG GAATATCTCA CCTGTACTTT CTGCTGGTGG	60
	TAGTGGTGGT AATGGTGGTA ATGGTGGTGG TCATCAAGAG CAAAATAATG CTAATGATAG	120
10	TAGTAATCCC ACCGGAGCCG GTGGACAACC CAATAACGAA AGTAAGAAAA AGGCAGTAAA	180
	ACTTGACTTG GACCTCATGA AAGAAACAAA GAATGTTTGC ACCACTGTTA ATACTAAACT	240
	AGTCGGAAAA GCAAAGAGCA AATTAAACAA ATTAGAAGGT GAATCCCATA AGGAGTATGT	300
15	AGCTGAGAAA ACGAAGGAGA TAGATGAGAA AAATAAGAAA TTTAACGAGA ATCTTGTTAA	360
	AATAGAGAAA AAGAAGAAAA TTAAGGTTCC TGCCGATACT GGTGCTGAAG TGGATGCTGT	420
20	TGATGATGGT GTTGCGGGTG CACTATCCGA TTTATCCTCC GATATCTCCG CTATTAAGAC	480
	TCTCACCGAC GATGTATCCG AGAAGGTTTC TGAAAACTTG AAAGATGATG AGGCCAGTGC	540
25	AACAGAACAC ACTGATATAA AAGAAAAAGC CACCCTGCTT CAAGAGTCTT GCAACGGAAT	600
	TGGCACTATC CTAGATAAGT TGGCCGAATA TTTAAATAAT GATACAACTC AAAATATCAA	660
30	GAAAGAATTT GATGAACGCA AGAAGAATCT CACCTCTTTG AAGACAAAGG TAGAAAATAA	720
	GGATGAAGAT TATGTTGATG TTACCATGAC ATCAAAAACA GATCTGATAA TACACTGTTT	780
35	AACTTGCACA AACGATGCAC ACGGACTGTT TGATTTCGAA TCGAAGAGCT TGATAAAACA	840
	AACCTTTAAA TTGAGGTCCA AAGATGAAGG TGAACTCTGC TAATTTAGAT TTTAGATGGG	900
40	CCATGTATAT GTTAAACAGC AAGATTCATC TTATAGAAAG CAGTTTGATC GATAACTTCA	960
40	CCTTGGATAA TCCATCCGCA TACGAAATTT TACGCGTTTC TTATAACTCA AATGAATTTC	1020
	AAGTACAATC ACCGCAGAAC ATTAACAATG AAATGGAATC TTCAACGCCC GAATCCAATA	1080
45	TCATTTGGGT TGTACATAGT GATGTTATAA TGAAAAGGTT CAACTGTAAA AATCGCAAAT	1140
	CTCTCAGTAC TCATTCACTC ACTGAAAATG ATATTCTCAA GTTTGGCCGT ATAGAACTCT	1200
50	CTGTTAAATG TATAATTATG GGCGCAGGTA TCACTGCATC TGATCTTAAT CTAAAGGGAT	1260
	TGGGGTTTAT TAGTCCAGAT AAACAATCAA CTAATGTATG TAACTATTTT GAAGATATGC	1320

30

	ATGAATCTTA	TCATATTCTT	GATACACAAA	GGGCCTCGGA	TTGTGTATCA	GATGATGGCG	1380
5	CTGATATTGA	TATATCCAAC	TTCGACATGG	TCCAAGACGG	TAACATAAAT	TCTGTTGACG	1440
	CTGATTCTGA	AACATGTATG	GCAAACTCTG	GCGTAACGGT	CAATAATACT	GAAAATGTTA	1500
10	GTAATAGTGA	GAATTTTGGA	AAATTAAAAT	CATTGGTAAG	CACCACCACT	CCTTTGTGCC	1560
	GTATTTGCCT	GTGTGGTGAA	TCAGACCCTG	GGCCACTAGT	AACCCCTTGC	AATTGCAAGG	1620
15	GGTCCCTAAA	TTATGTCCAT	CTTGAATGCC	TAAGGACTTG	GATTAAAGGG	CGGTTGTCAA	1680
	TTGTGAAGGA	TGATGATGCT	тссттттст	GGAAAGAGCT	ATCATGTGAG	CTATGCGGGA	1740
20	AGCCGTATCC	ATCGGTCCTA	CAAGTAGATG	ATACAGAGAC	TAATTTGATG	GATATAAAAA	1800
20	AACCGGATGC	ACCATATGTG	GTATTGGAAA	TGAGATCAAA	TTCTGGTGAT	GGGTGTTTCG	1860
	ттатттстат	AGCTAAAAAT	AAGGCGATTA	TTGGACGGGG	GCATGAAAGT	GACGTTAGGT	1920
25	TGAGTGATAT	TTCAGTGTCA	CGAATGCATG	CTTCTTTGGA	ATTGGATGGT	GGAAAAGTAG	1980
	TGATACATGA	CCAGCAATCT	AAGTTTGGTA	CACTCGTTAG	GGCCAAAGCG	CCTTTTTCAA	2040
30	TGCCTATAAA	GGGTCCCATC	TGTCTACAGG	TAAGCATTTT	CTTTTTGAAC	TTGAAAATAT	2100
	CTACTCATAG	TCTAACCATG	GAGAGGGCA	TGGAACATGT	CCTTCTCTAA	TATTTCCAAA	2160
35	AAGGATCTAT	GCCTGATAAC	CTTGGTATTG	AAGGTGGCTT	TCTCAAAGTG	AGACATTCCA	2220
	TTTCTGTTGT	TGGAGCTATC	CTATCTGAGG	TTAGTGTTCT	GGTAÁACATT	CCTAGAAAAC	2280
40	TCATAAAGCA	GAAATCTGTG	TGTATACTAA	ATTGCACAGA	GAACTCCACG	TGTGTGCTAG	2340
	ACTTCACAGA	GAACTCTGTG	TGTGTGCTAA	ACTGCATAGA	GAAGAACATG	TTGAGTGCAT	2400
45	CATGGTTGAG	GGAAATTGCT	TTATATAAAA	GATTIATTIT	CCTAAGGTAA	CTTAGGATTA	2460
	ATTTTTCTGA	AAGCTTAGTT	TTGGTGAGCA	CAATTGTGAT	сттисттст	CAGATGGTCG	2520
50	GGAAGGCACT	CCCAGAAAGC	AGGTGGATAC	ACACTACACT	GCATGCTACA	CTCTGTAGAC	2580
	TAGGAGTATC	GTTTTCACAC	TTATGAAATA	GTCACCATGC	TGGGCACAAA	TATCTTTTTA	2640

	TACACCATAT ATTGTTCATG TTCAGGTCCA CATTTCAATT TGTATGTGAA AAGCATCCGG	2700
5	GGCTGTCTGA TAAACACATA GAAATGAAGG AAACAGTGTA TGTAACTGAA GCCTTCAGTC	2760
	CTTTGCAATT TCTTTGATTC TTAG	2784
10	(2) INFORMATION FOR SEQ ID NO:10:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 3701 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	ACCTATTTAT AATATAGTAT ATTACTGGTT TGTTTTAAAT CGAAAAAATG TATTGTATTT	60
25	AAGAATGAAA TTATTTATTT ATCATGATTA TCATATTTCT AAATATTAAA ATCTAGTAAC	120
20	GGTTGCTTGA ATATTTATTT AAATTATATG TAGTAGTATT AAAATGTGTT ATATATAAGT	180
	AGTGTTCTAA ATCATCATTA GTAATATTGT ATAAATTAAT TGTAAAAATT GCGATACTAC	240
30	AATTAATCAA CAATTAAAAT ATATCAGTAT AGATAATTTA AATAAATAAT TAGATAAGAT	300
	CTTAAGGATT AAATGACGAA TTTAGAATGA TAAATAATCA TCATAGGCAT TTGTTATAAT	360
35	ATCATTAATT ATATTCATGT GGTTATAATT ATAAAAGTAT ATATAGTTTT GTAATTGTAA	420
	TGATATAAAA TTAGAACAGA TATAATTAAT AATTCAAATA TTATATTAAT TTTATTATAT	480
40	ATGATTATTA TTGATATTTA TATAATTACA TATTGTTATT GTATCATTTA ATGATTATAT	540
	ATCAATATCC ATATATATAT ATAATAATTG AATTATAATT AAATTAATT	600
4 5	TTTATAATAA TATATTATTA GTCAATATGA CATCATATTA TATTATCCAT CATGATTGTG	660
	AATGTAACTA GAACATTGAT TATTATATTA AATCACATAT TAATACTGAT TATAATAATA	720
50	TCATTGATAA TCTAATAATA TAGTATTATC TCTAATAATA TTGTATTATC TCTAATATTA	780
30	TGGTATAATA GATACTGTGA AAATAAATTC AACTGGAGAT AAGGAAACCA TTTTGTATAG	840

	ATATTITATA CAAATTATTA TGAAATAATC TAAATAAATG ACAAAAAATC GATTATACAA	900
5	ATCACATTAA TGACAAACAA ACTTGTATAC ATATATTGAT TAACATTACA AAACTAAATT	960
	ATAATATTTA GATTGATAAT TGTTATAATA CTTAACAATA TTCTACTTTT TAATATAATT	1020
10	TTTTATTCAA TAATATACTC TTTCATATTT TGTACTATTT TATATAATCA TATATATTAT	1080
	ATAATTATAT ATATTTGATA ATTGAATATA TCAATAATGA TGATATACAT GAATATGCAT	1140
15	ATATACCCCA TATAATGTTA TTATATTTAG TGCTTACATT ATTAATTATA AATATATTTA	1200
15	AATAATTAAA TAATAATGAA AATTAACATA GACAATATAA TATTAATCAA TTTGATAATA	1260
	TTATTGAATC GTAATGTAGT ATATTGTGTG GATAAAAATG ATGTTTCATT ATGGAAATCA	1320
20	AAACCTATAA CAACTGTCAG TACCACTAAT GATACTATTA CAAATAAATA CACTAGTACT	1380
	GTAATTAATG CCAATTITGC TAGCTACCGT GAATTTGAGG ATAGGGAACC TTTAACAATA	1440
25	GGATTTGAAT ACATGATCGA TAAATCACAA CAAGATAAAT TATCACATCC AAATAAAATT	1500
	GATAAAATCA AAATTTCTGA TTATATAATT GAATTTGATG ACAATGCTAA ATTACCAACT	1560
30	GGTAGTGTTA ATGATATATC CATCATTACT TGCAAGCATA ATAATCCAGT ATTAATTAGA	1620
	TTCTCATGTT TAATAGAAGG ATCTATCTGC TATTATTTCT ACTTATTGAA TAATGATACA	1680
35	AATAAATGGA ATAATCACAA ATTAAAATAT GATAAAACAT ACAATGAACA TACTGACAAT	1740
	AATGGTATTA ATTATTATAA AATCGATTAT AGTGAATCTA CAGAACCTAC TACCGAATCT	1800
40	ACTACCTGTT TTTGTTTTCG CAAAAAAAAT CATAAATCTG AGCGTAAAGA ATTAGAAAAT	1860
	TATAAATATG AGGGTACAGA ATTAGCAAGA ATACATTGTA ATAAAGGGAA ATGTGTAAAA	1920
4 5	TTGGGTGACA TTAAGATAAA GGATAAGAAT TTGGAAATTT ATGTGAAACA GTTAATGTCT	1980
	GTAAATACTC CAGTAAATTT TGACAACCCT ACATCGATTA ATCTACCAAC TGTCAGTACT	2040
	ACCAATGATA CTATTACAAA TAAATACACT GGTACTATAA TTAATGCCAA TATTGTTGAG	2100
50	TACTGTGAAT TTGAGGATGA ACCTTTAACA ATAGGGTTTA GATACACTAT AGATAAATCA	2160
	CAACAAAATA AATTATCACA TCCAAATAAA ATTGATAAAA TCAAATTTTT TGATTATATA	2220

	ATTGAATTTG ATGATGATGT TAAATTACCA ACAATTGGTA CTGTCAATAT TATATATATC	2280
5	TATACTTGCG AGCATAATAA TCCAGTATTA GTTGAATTTA TAGTTTCTAT AGAAGAATCT	2340
	TACTACTTTT ACTTCTACTC AATGAATAAT AATACAAATA AATGGAATAA TCACAAATTA	2400
10	AAATATGATA AAAGATTCAA AAAATATACT AAGAATGGTA TTAATTGTTA TGAATATGTA	2460
	CTTCGTAAAT GCAGTTCTTA TACTCGTAAA AATGAATATG AGCATAAAGA ATTAGCAAGA	2520
15	ATACATTGTA ATGAAGAAAA ATGTGTAAAT GTAAAGGTAG ATAACATTGA GAAAAAGAAT	2580
15	TTGGAAATTT ATGTAAAATA ATTTAACGAA GTGTAATATG TAAAATAGTT TAATGAAGTA	2640
	TAATATTATT TAAAATAATT CAAAATTTCA GAAATTAATA TAATTAATTA TTATAAATAC	2700
20	AAAATAATTA ATTACAAATG TGTATTGTTA GTTATTTCAG ATTGTAAATA CATATTTTAC	2760
	ATACATTTT ATTAAAACTT TCAAATTAAT ATTTTCATTT TTATAAGCAT TATTATAATT	2820
25	ATATACTATA ATTATCAGTC ATCAAATAAT ATCCAAAGTT ATCCTCTACA TTATATCAAT	2880
	CATACAGTAT ACAATTATAT AAAATATTAA CAACATATAA CAACCAAC	2940
30	ATAATATCTT TATTAATCAA TATTTAATCA ATACAATAAT TAATAGTTAA CTAACTATAC	3000
	ACATAGTGTA TACTAAATTA TTATAAATTA TATGTTATAA TTACAAAAAC GTCATTTACT	3060
35	TATTITATTI CAGTTATGTT TCATAGTCTA ATTTAGATTT GGTGAAACGC ATCTGGCTGA	3120
	TGTGCTGGTG AGCAAGCAGT TCCACGAAGC AAACAATATG ACTGATGCGC TGGCGGCGCT	3180
40	TTCTGCGGCG GTTGCCGCAC AGCTGCCTTG CCGTGACGCG CTGATGCAGG AGTACGACGA	3240
	CAAGTGGCAT CAGAACGGTC TGGTGATGGA TAAATGGTTT ATCCTGCAAG CCACCAGCCC	3300
45	GGCGGCGAAT GTGCTGGAGA CGGTGCGCGG CCTGTTGCAG CATCGCTCAT TTACCATGAG	3360
	CAACCCCGAA CCGTATTCGT TCGTTGATTG GCGCGTTTGC GGGCAGCAAT CCGGCAGCGT	3420
50	TCCATGCCGA AGATGGCAGC GGTTACCTGT TCCTGGTGGA AATGCTTACC GACCTCAACA	3480
	GCCGTAACCC GCAGGTGGCT TCACGTCTGA TTGAACCGCT GATTCGCCTG AAACGTTACG	3540

	ATGCCAAACG TCAGGAGAAA ATGCGCGCGG CGCTGGAACA GTTGAAAGGG CTGGAAAATC	3600
5	TCTCTGGCGA TCTGTACGAG AAGATAACTA AAGCACTGGC TTGATAAATA ACCGAATGGC	3660
	GGCAATAGCG CCGCCATTCG GGGAATTTAC CCCTGTTTTC T	3701
10		
,,	(2) INFORMATION FOR SEQ ID NO:11:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1287 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(D) TOPOLOGY: THEGS	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	CTCGTGCCGC TCGTGCCGAT TATTATAAAT ATTTAGTTGA TGAATATAGT TCTCCCAGGG	60
30	AGGAAAGAGA ATTAGCAAGA GTACATTGTA ATGAAGAAAA ATGTGTAAAA TTGGATGGCA	120
	TTAAGTTTAA GGATAAGAAT TTGGAAATTT ATGTGAAACA GTTAATGTCT GTAAATACTC	180
35	CAGTTGTATT TGACAACAAT ACATTGATTA ATCCAACTAG CAGCAGTGGT GCCACTGATG	240
ω	ACATAACATA TGAATTATCG GTGGAATCAC AACCTGTACC AACTAACATT GACACAGGTA	300
	ATAATATTAC AACAAATACA TCAAATAATA ATCTAATTAA AGCTAAATTT CTTTATAATT	360
40	TTAATCTTCC TGGTAAACCT TCAACAGGAC TATTTGAATA CACTATAGAT AAATCAGAAC	420
	AAAATAAATT ATCACATCCA AATAAAATTG ATAAAATCAA ATTTTCTGAT TATATAATTG	480
45	AATTTGATGA TGATGCTAAA TTACCAACAA TTGGTACTGT CAATATTATA TCCATCATTA	540
	CTTGCAAGCA TAATAATCCA GTATTAGTTG AATTTATAGT TTCTACAGAA ATATATTGCT	600
50	ACTACAATTA CTTCTACTCA ATGAATAATA ATACAAATAA ATGGAATAAT CACAAATTAA	660
	AATATGATAA AAGATATAAA GAAGAATATA CAGATGATAA TGGTATTAAT TATTATAAAT	720

TAAATGATAG TGAACCTACT GAATCTACAG AATCTACTAC CTGTTTTTGT TTTCGCAAAA	780
AAAATCATAA ATATGAAAAT GAGCGTACAG CATTAGCAAA AGAACATTGC AATGAAGAAA	840
GATGTGTAAA GGTAGATAAC ATTAAGGATA ATAATTTGGA AATTTATCTA AAATAATTTA	900
ACGAAGTATA ATATTATTTA TAATAATTCA AAATTTCAGA AATTAATATA ATTAATTATT	960
ATAAATACAA AATAATTAAT TACAAATGTG TATTGTTAGT TATTTCAGAT TGTAAATACA	1020
TATTITACAT ACATTITIAT TAAAACTITC AAATTAATAT TITCATTITT ATAAGCATTA	1080
TTATAATTAT ATACTATAAT TATCAGTCAT CAAATAATAT CCAAAGTTAT CCTCTACATT	1140
ATATCAATCA TACAGTATAC AATTATATAA AATATTAACA ACATATAACA ACCAACATTA	1200
ATATATACAT AATATCTITA TTAATCAATA TTTAATCAAT ACAATAATTA ATAGTTAACT	1260
AACTATACAC ATAGTGTATA CTAAATT	1287
(2) INFORMATION FOR SEQ ID NO:12:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 572 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

5

10

15

20

25

30

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: 40

> 60 CTTCATTGAC GTCTATCCCC AATCTTAGAA AAATCTTCAA ATCGATTCTA GAATAACTGG AAACAATTAT CAGAAATTGT ATAACTGCTT ATTAGCTTAT TAGCTTATTA GTTAGGATGT 120 ATGCACATTG ATGACAACTA GATGCAGCAC CACAATCACT ACCACGTACC AATCATATAC 180 240 CAATAATGTA CTAATAATGT ACCAATAACT ATGGTTTATA AAGATGGTGT CATTTAAATC AATATTAGIT CCTTATATTA CACTCTTTTT AATGAGCGGT GCTGTCTTTG CAAGTGATAC 300

	CGATCCCGAA GCTGGTGGGC CTAGTGAAGC TGGTGGGCCT AGTGAAGCTG GTGGGCCTAG	360
5	TGGAACTGTT GGGCCCAGTG AAGCTGGTGG GCCTAGTGAA GCTGGTGGGC CTAGTGGAAC	420
	TGGTTGGCCT AGTGAAGCTG GTGGGCCTAG TGAAGCTGGT GGGCCTAGTG GAACTGGTTG	480
	GCCTAGTGAA GCTGGTTGGT CTAGTGAACG ATTTGGATAT CAGCTTCTTC CGTATTCTAG	540
10	AAGAATAGTT ACATTTAATG AAGTTTGTTT AT	572
	(2) INFORMATION FOR SEQ ID NO:13:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 2338 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
•		
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
30	CTCGTGCCGA ATCTTAGAAA AATCTTCAAA TCGATTCTAG AATAACTGGA AACAATTATC	60
	AGAAATTGTA TAACTGCTTA TTAGCTTATT AGCTTATTAG TTAGGATGTA TGCACATTGA	120
	TGACAACTAG ATGCAGCACC ACAATCACTA CCACGTACCA ATCATATACC AATAATGTAC	180
35	TAATAATGTA CCAATAACTA TGGTTTATAA AGATGGTGTC ATTTAAATCA ATATTAGTTC	240
	CTTATATTAC ACTCTTTTTA ATGAGCGGTG CTGTCTTTGC AAGTGATACC GATCCCGAAG	300
40	CTGGTGGGCC TAGTGGAACT GTTGGGCCCA GTGAAGCTGG TGGGCCTAGT GAAGCTGGTG	360
	GGCCTAGTGG AACTGGTTGG CCTAGTGAAG CTGGTGGGCC TAGTGAAGCT GGTGGGCCTA	420
4 5	GTGGAACTGG TTGGCCTAGT GAAGCTGGTT GGTCTAGTGA ACGATTTGGA TATCAGCTTC	480
	TTCCGTATTC TAGAAGAATA GTTACATTTA ATGAAGTTTG TITATCTTAT ATATACAAAC	540
50	ATAGTGTTAT GATATTGGAA CGAGATAGGG TGAACGATGG TCATAAAGAC TACATTGAAG	600
	AAAAAACCAA GGAGAAGAAT AAATTGAAAA AAGAATTGGA AAAATGTTTT CCTGAACAAT	660

	ATTUCCTIAT GAAGAAAGAA GAATTGGUTA GAATATTTGA TAATGUATUU ACTATUTUTT	720
5	CAAAATATAA GTTATTGGTT GATGAAATAT CAAACAAGGC CTATGGTACA TTGGAAGGTC	780
	CAGCTGCTGA TAATTTTGAC CATTTCCGTA ATATATGGAA GTCTATTGTA CTTAAAGATA	840
10	TGTTTATATA TTGTGACTTA TTATTACAAC ATTTAATCTA TAAATTCTAT TATGACAATA	900
	CCATTAATGA TATCAAGAAA AATTTTGACG AATCCAAATC TAAAGCTTTA GTTTTGAGGG	960
4.5	ATAAGATCAC TAAAAAGGAC GTGTATGTAA ATGATCACTA AACGGGCTCC ACATATCTAT	1020
15	TACTGGGGTA GATATTATAA GTTATGGATA AGTAAATTTA TGGCGATAGA TTCCAACAAA	1080
	TTTGTGGTTA GTAGCGACAA TGATTATGGC TAGTGTGTGG AGTACTTATG AGTGAATGAT	1140
20	TGTAGTGGTG GCTAGCAGTG AGTATAGTTA GGTAATCCCT ACACACCCAT TTAAATAAGA	1200
	TGCAAATAGC ATTTAAATTG ACATATATTG TGTGTATGTC CACGTTTATT GCGTTTCCAT	1260
25	GACGTATCTG CTGAGGTGTG TCTTGTGTAT CTAAGTACCA GACACAGCAC TTAAATTGTT	1320
	ATGGGCATGA CGATGGATGT TAAAGGTTTA TACACTCCAA AGGCACGTTC TTCTGCTAGG	1380
30	GAAACGAGGG ACAAGTTCGA TTTTGCTATA CAAAGCAAGT TTCACTCCCT GGACTTTACA	1440
	CTGGATGACT TTGATATAGG TGCATTCGTG GTAAACCTCA AAATTTACTC AGGGCGATGG	1500
35	TGCCCATGGG CAGGTTTTTT TGGCAAGGGA ACGACGTACC GGTTTTATTT GCGTGTTAAA	1560
	ATGCATTTTT AAATCACAAC TTGTGAAGTA ATTGCCTAAT AATCACACAG AAATGGACAG	1620
40	GAAGCTATTT TCAAGCGGGA AATCGAATTG CACGGGCATC TGAGACATCC AAACATAGCA	1680
	TGGTATGTAC ATATTTATCC AGCTTGTATA CCTGGTTCAC TAGCCCTACT ATGATATTCA	1740
4 5	TAGTGATGGA ATATTGTTAC AATGGCGATC TATTTAATTA TATGTCAAAA CATGGCCAAC	1800
	TGAGTGAAGA AAGGGTATCA GAGTATACAG ATATTTACAT AGAATTTTGT TCGAAGTCAT	1860
50	TTGGGCCATT AGAAGCTGCC ACGACAAACG CATAGCGCAC TTGGATATTA AACCAGTAAG	1920
	CTTCTATCTT ACAGAGGAGA ATATATTATT GGACCATGAA AACAGGTGTA AATTGGCGGA	1980

CTTTGGATTC TCTGCACACA TAGGGCATTT GTACCGCTCA AACGGAGTGC TCATCATCGT	2040
GGCACGCATG GTAACACGCA ATTWATGGCA GATTATTGGT CTCCGGAGCA GTGTGCCAAA	2100
CATTTGGGTC TGGGGTTGAA GTATGGGGAG TATGATGAAC AAAGCGACAT ATGGGCGTTG	2160
GGCATATTGG CAGTTGAATT GTTTATTGGA TACCCTCCAT TTGGATCTAC TACTGAAGAG	2220
CCCAACAATG TGATTATGAA CAGAATCCAC ACTTACCACT GGACCAAACA TGTACTTTTA	2280
TCTATTACGC AGATTTTTGA AATGAAGAGG GAAAAACATC TACTCTCGTC GACGCCTG	2338
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 729 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

25

30

40

45

10

15

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TTGCCTGGAC CTTCTCTGTC CTAGAATTAC AGGAATTCTC TTATACTGTT TAATACAAAA 60 CACTTGGAAG AATTTCACCA ATTGCATATG AAACATGGAA TCCAAGAGAC CAAAATTTAA 120 AACCTTGAAA TAGAAGCACT TATGCCAATA TTGGAAATTA CTTAGTGAAG TGATCCAAAG 180 TACTGATTTG GTCAGAAGAC ATCACCAGGG CACTAGCTGG CCTAGTGACC TGAGTATTTG 240 TGAAAGCTGA TTTTAATGTT GAGAACATGA AGGAAGCAGT ATTGAGGTAA TGGAATCTTG 300 TAGATTATAG TAGAAGCCAA CTGAGACCAA GAAATGTACG GTAGGAATGA AATAAGGTCT 360 420 TGGGTGGTCA TTGCATGGAG CTGTGAAAGT GAAGCGTTGT TGGGGTATAG ATTCGCAAGT CTTGGGGCAT GACTATGTGG GGTTACCAAG GTTAGGTTAA CTGAGGTGGA AAGATCCACT 480 CTAAATGGGG GAGTTACCAT TTCATGTGCT GGGATCCCAG AGATGTCAAA GGAGAAAATA 540 AGCTATTGAA TAAGAGCATC TATATCCCTT GCTTCTTGGC TATGGATGTT ATGTGACTAG 600

	TCATCTCTTA GTCTTACCTT CACCATTATA ACAAGATTTT CTAGAACTTT GGGTTAAATT	660
5	AAATCCTTTA TTCCTCACGT TGCTGTCTTA GTTACTTTCC TGTTGCTTTG ATAAAGCATT	720
	CTGGCCAAG	729
10	(2) INFORMATION FOR SEQ ID NO:15:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1448 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
25	ACATGTTGAC TTTTGGAAAT ATACGTTTTC ATAATATAAA TCTCCCACCA TTTTCATTGG	60
	GCATAATTCA CTCGATTACG GTAGAAAAGG CGATTAACTC TGAAGATTTT GACGGAATAC	120
30	AAACACTTTT ACAAGTGTCT ATCATTGCTA GTTACGGTCC ATCTGGCGAT TACAGTAGTT	180
	TTGTGTTCAC TCCAGTTGTA ACAGCAGACA CCAACGTTTT TTACAAATTA GAGACGGATT	240
35	TCAAACTTGA TGTTGATGTT ATTACTAAGA CATCACTAGA ATTGCCCACA AGTGTTCCTG	300
-	GCTTTCACTA CACCGAAACT ATTTACCAAG GCACAGAATT GTCAAAATTT AGCAAGCCTC	360
40	AGTGCAAACT TAACGATCCT CCTATTACAA CAGGATCGGG GTTGCAAATA ATACATGATG	420
	GTTTGAATAA TTCGACAATT ATAACCAACA AAGAAGTTAA TGTGGATGGA ACAGATTTAG	480
45	TTTTTTTGA ATTGCTCCCT CCATCGGATG GCATTCCCAC CTTGCGATCA AAATTATTTC	540
4 5	CCGTCCTGAA ATCAATTCCA ATGATATCTA CCGGGGTTAA TGAATTACTG TTGGAAGTAC	600
	TCGAGAACCC CTCTTTCCCT AGTGCAATTA GCAATTACAC CGGACTGACA GGCCGACTTA	660
50	ACAAATTACT TACAGTTTTA GACGGTATTG TTGATAGCGC CATTAGTGTC AAGACTACAG	720

	AAACTGTCCC TGACGACGCA GAAACTTCTA TITCTTCATT GAAATCATTG ATAAAGGCAA	/80
5	TACGAGATAA TATTACTACC ACTCGAAACG AAGTTACCAA AGATGATGTT TATGCATTGA	840
	AGAAGGCCCT CACTTGTCTA ACGACACACC TAATATATCA TTCAAAAGTA GATGGTATAT	900
10	CATTCGACAT GCTGGGAACA CAAAAAAATA AATCTAGCCC ACTAGGCAAG ATCGGAACGT	960
10	CTATGGACGA TATTATAGCC ATGTTTTCGA ATCCCAATAT GTATCTTGTG AAGGTGGCGT	1020
	ACTTGCAAGC CATTGAACAC ATTTTTCTCA TATCAACCAA ATACAATGAT ATATTTGATT	1080
15	ACACCATTGA TTTTAGTAAG CGTGAAGCTA CTGATTCTGG ATCATTTACC GATATATTGC	1140
	TCGGAAACAA GGTGAAGGAA TCTTTGTCAT TTATTGAGGG TTTGATTTCT GACATAAAAT	1200
20	CTCACTCATT GAAAGCTGGG GTTACAGGAG GTATATCAAG TTCATCATTA TTTGATGAAA	1260
	TCTTCGACGA GTTAAATTTG GATCAAGCAA CAATTAGAAC CCTTGTTGCA CCATTAGATT	1320
25	GGCCACTTAT CTCAGACAAA AGCCTCCACC CTTCACTGAA GATGGTTGTG GTCCTGCCAG	1380
	GATTTTTCAT AGTTCCTTAA TAACATGACA TTTCATAGTC CCTTCAGTCC TGATGACAAG	1440
30	ACGGTGAA	1448
	(2) INFORMATION FOR SEQ ID NO:16:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1350 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40		
4 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	GCCTAAGCCC AAATGGGATT TAAGCAGGAG GGGATAAAAC AGATGACCTC CACCATGCCC	60
50	TACTAACTCT AAGCTAAGGA AATCCAGCCT GCTGGCTATT TACCTGCTTT CCTCGAAGTG	120

AAAGGCCAGA GTCACCCCCA ATCTTTCCCA AAAGATTGAA GTCACTCTCT CCATGCCGGC

240	A ATTITACICI	GIAGIAGACA	IAIICAIAAG	IGGACAIGGA	GGTGCGAGGC	AAAGGTAGAT	
300	C ACCTTGATGA	TACATTAATC	ATCTCTGGCC	TTGACCAGAA	CTGGACTCTG	GGATGTAGTC	
360	T CTGAAACTAG	GTCAGAAAAT	CAATTTTATG	GTAGAAAGAG	CTAGGACAGA	AGACAGATCC	
420	A GCACTTAGAA	GACAATCCCA	AGCACCTAGT	CAAGGCTATC	AGCAAGGGGG	GAGTGTGGCA	
480	C ATATGAAAAG	ACAAATGAAC	CTGACTCAAG	AGGTTTGACC	GAAGGGGCTT	GGCTTAGCTG	
540	с сттстстссс	TCAGCTATTC	TAGGGCCTCA	TATTGACTGG	ATGATCTGTG	TATGGGGAGA	
600	T AAACCCTAAA	CCGAAACCCT	CGAGCTCGTG	GAATTCGGCA	ATCTCGTGCC	TGTCACTGCC	
660	A CCCTAAACCC	AAACCCTAAA	CCTAAACCCT	AACCCTAAAC	CTAAACCCTA	CCCCTAAACC	
720	C CTAAACCCTA	ACCCTAAACC	TAAACCCTAA	CCCTAAACCC	AACCCCTAAA	TAAACCCCTA	
780	T CTATCCCCAA	TCATTGACGT	AACCTAGCCT	CCCTAACCCT	CTAACCCTAA	AACCCTAACC	
840	A GAAATTGTAT	ACAATTATCA	ATAACTGGAA	CGATTCTAGA	ATCTTCAAAT	TCTTAGAAGA	
900	T GACAACTAGA	GCACATTGAT	TAGGATGTAT	GCTTATTAGT	TAGCTTATTA	AACTGCTTAT	
960	T AATAATGTAC	ATAATGTACT	TCATATACCA	CACGTACCAA	CAATCACTAC	TGCAGCACCA	
1020	C TTATATTACA	TATTAGTTCC	TTTAAATCAA	GATGGTGTCA	GGTTTATAAA	CAATAACTAT	
1080	C TGGTGGGCCT	ATCCCGAAGC	AGTGATACCG	TGTCTTTGCA	TGAGCGGTGC	CTCTTTTTAA	
1140	g gcctagtgaa	AAGCTGGTGG	GGGCCCAGTG	TGGAACTGTT	GTGGGCCTAG	AGTGAAGCTG	
1200	g tgaagctggt	GTGGGCCTAG	AGTGAAGCTG	TGGTTGGCCT	CTAGTGGAAC	GCTGGTGGGC	
1260	C TGGTTGGCCT	CTAGTGGAAC	GCTGGTGGGC	GCCTAGTGAA	AAGCTGGTGG	GGGCCTAGTG	
1320	g atatcagctt	AACGATTTGG	TGGTCTAGTG	TGAAGCTGGT	GTTGGCCTAG	AGTGGAACTG	
1350				AGTTATATTT	CTAGAAGAAT	CTTCCGTATT	

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1820 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

- 40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

60	ATGGCAATGT	AATTGCAGCC	AAATAGTAAA	GGGAATAATG	AAACATGCAT	GGAAAGCCTT	
120	C TTGTAGTCAA	GAGTGTTGTC	TCTTTAACAA	GTCTTGAGGC	GGATGTTTCA	AATAATGAGT	
180	C GACGACGGGT	ATCATCAGGC	AGCCACCATC	CCGCATTCGC	ATTCGTCATG	AGACAAAGTG	
240	A CAAAAGTCTT	CCCTTCTTTA	AACCATGACA	TTATTATTGC	ATCCTCGGGC	CTCTTTCATT	
300	A CTTTTATTCT	AGCCTTCCCA	ATTITATTCC	GTATTATGCG	CGGTGTCTGA	TTTTTTCAG	
360	r gtctgagtat	TTCCTGCGGT	CGTCACTTGT	TCTTCATGAG	GCCATGCTCT	TATTGAGATT	
420	A TGCCCTTCTT	GATTTTGTCA	TATTCTTATT	TTTCCACTTT	TATTCCAGCA	CATACGATTT	
480	T TCAGCCTTCT	CGATTTTCTT	GAGTATCATG	TGCGTTGTCT	ACATATTTCT	CACACTCTTC	
540	F GTTTCCTGCG	AGCGTCACTT	CTTCTTCATG	TTGTCATGCC	CGTATTGATT	CACTTTTATT	
600	A TTGATTTTGT	TTTATTCTTA	CATTTCCACT	TTTATTCCAG	ATCATACGAT	GTGTCTGAGT	
660	A TACGATTITA	CTGAGTATCA	CTTGCGTTGT	TCACATATTT	TTCACACTCT	CATGCCCTTC	
720	A CACTCTTCAC	CCCTTCTTCA	TTTTGTCATG	TTCTTATTGA	TCCACTTTTA	TTCCAGCATT	
780	A CTITTATTCG	AGCCTTCTCA	ATTTCTTTC	GTATCATGCG	CGTTGTCTGA	ATATTTCTTG	
840	C GTTAGTCTCA	TTCTTGTGCC	CTTCATATAT	TCTTTACGCT	GCCATGCCCT	TATTGGGTTT	
900	GATTTTCTTT	AGTATCATGC	GCGGTGTCTG	TATATTTCTT	AAGCTCTTCA	GTAAGTTGTC	
960	A TCGTCACTTG	TTCTTCATGA	TGCCATTCCC	GTATTGAGTT	ACTTTTATTC	CAGTCTTCTC	
1020	T GAATGGTATG	ATCATCTATT	CAAGCTCTTC	ATTAAGTTGT	CGTTAGTCTC	TTTCTTGCGC	
1080	A AATGATGGTT	GCCGATTTTA	TGTCATTCTC	GGTTGAATTA	TTCCCAGGGT	GAGCTGTATC	

	CTTCATCATT	TATATCAGAT	GCCATGTCTG	AGTGGTGCCC	TAATCTAGAG	AATTGGTGTG	1140
	GTACCCCCTC	ATCCAAACTT	TCGGGCAACA	CCCTGGTATC	AGAATCCATT	TGTTCGAGCG	1200
	GCTCACTATC	GCAAGCGTCT	TGTGGATTGA	TGTTATCATG	TTCCTGGATT	TCAACATGTA	1260
	CAGATTCTGA	ATCCGCATTG	GGTTCTGGAA	TATAGTTGGT	AACTACATTT	GTTTCTAGAG	1320
	AAGTATCATT	CTTATATTAA	TTCATCTAAG	ATCTGTGCTT	стттсттст	ACACATACAG	1380
	GGTGTCTCTT	TTCCCAACAT	AATATCTGTA	AATTCTTCCC	AGAAGCAGAA	CCTTGTTGGT	1440
	ACCAGACAGC	ATCGGGTCTC	TGTGAGTTTC	TATTCAGGCA	ACAGGTGTAT	TCTGTTTGCC	1500
	AGTCCAAGTG	CATCCTGTAT	TCTAGTACTG	GCTTACTACC	CCAAGCAAAT	CACTGGCATC	1560
•	AACATCTAGC	ACTGAGTGAA	GCATGATCTC	TTCTACAAGG	TGTTTTTCCA	TTGTGTTGTA	1620
	AGCCCGTATA	CAAGGCTGTT	CCCACTCAAC	AATGAAGAGA	CCTCTTAGCA	TGAATGGCCA	1680
	GATGTCTGTT	CTTTAAATTA	AATCAATATG	TTTTGCTCAA	TATGTCAGAC	TTGTTTGTGG	1740
	TGGAGCCAAA	ATTGGAGGTC	CCATCGAGAT	TTGGAGAAAC	TTGAAATGAA	TGCAAAAGAT	1800
	GGTGGGGGCT	ACTCGTGCCG					1820

(2) INFORMATION FOR SEQ ID NO:18:

5

10

15

20

25

30

35

40

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 263 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Leu Phe Leu Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp Pro Glu $1 \hspace{0.1in} 1 \hspace{0.1in}$

Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro

				20					25					30		
5	Ser	Glu	A1a 35	Gly	Gly	Pro	Ser	G1u 40	Ala	Gly	Gly	Pro	Ser 45	Gly	Thṛ	Gly
	Trp	Pro 50	Ser	Glu	Ala	Gly	G1y 55	Pro	Ser	Glu	Ala	Gly 60	Gly	Pro	Ser	Glu
	A1a 65	Gly	Gly	Pro	Ser	G1u 70	Ala	Gly	Gly	Pro	Ser 75	Gly	Thr	Gly	Trp	Pro 80
15	Ser	Gly	Thr	Gly	Trp 85	Pro	Ser	Glu	Ala	G1y 90	Trp	Ser	Ser	Glu	Arg 95	Phe
20	Gly	Tyr	G1n	Leu 100	Leu	Pro	Tyr	Ser	Arg 105	Arg	Ile	Val	Ile	Phe 110	Asn	Glu
	Va1	Cys	Leu 115	Ser	Tyr	Пe	Tyr	Lys 120	His	Ser	Val	Met	Ile 125	Leu	Glu	Arg
25	Asp	Arg 130	Val	Asn	Asp	Gly	His 135	Lys	Asp	Tyr	Пe	Gገս 140	Glu	Lys	Thr	Lys
30	Glu 145	Lys	Asn	Lys	Leu	Lys 150	Lys	Glu	Leu	Glu	Lys 155	Cys	Phe	Pro	Glu	G1n 160
	Tyr	Ser	Leu	Met	Lys 165	Lys	Glu	Glu	Leu	Ala 170	Arg	Пe	Phe	Asp	Asn 175	Ala
35	Ser	Thr	Ile	Ser 180	Ser	Lys	Tyr	Lys	Leu 185	Leu	Val	Asp	G1u	Ile 190	Ser	Asn
40	Lys	Ala	Tyr 195		Thr	Leu	Glu	G1y 200	Pro	Ala	Ala	Asp	Asn 205		Asp	His
	Phe	Arg 210		Ile	Trp	Lys	Ser 215		Val	Leu	Lys	Asp 220	Met	Phe	Пe	Tyr
45	Cys 225	•	Leu	Leu	Leu	G1n 230		Leu	Ile	Tyr	Lys 235	Phe	Tyr	Tyr	Asp	Asn 240
50	Thr	Val	Asn	Asp	11e 245		Lys	Asn	Phe	Asp 250	Glu	Ser	Lys	Ser	Lys 255	Ala
	Leu	Val	Leu	Arg	Asp	Lys	Пe			٠						

260

(2) INFORMATION FOR SEQ ID NO:19:

o	(i)	(A) (B) (C)	LEM TYF STF	IGTH: PE: a Rande	ARACT 310 amino EDNES GY: 1) ami baci SS:	ino a id		5							
5																
	(xi)	SEQ	JENCE	DES	CRIF	OIT	1: SE	Q 10	ON C	19:						
o	Met 1	Ser	Gly	Ala	Val 5	Phe	Ala	Ser	Asp	Thr 10	Asp	Pro	Glu	Ala	Gly 15	Gly
5	Pro	Ser	Glu	A1a 20	Gly	Gly	Pro	Ser	G1y 25	Thr	Val	Gly	Pro	Ser 30	Glu	Ala
	Gly	Gly	Pro 35	Ser	Glu	Ala	Gly	Gly 40	Pro	Ser	Gly	Thr	Va1 45	Gly	Pro	Ser
o o	Glu	A1a 50	Gly	Gly	Pro	Ser	Glu 55	Ala	Gly	Gly	Pro	Ser 60	Gly	Thr	G1y	Trp
, 2 5	Pro 65	Ser	Glu	Ala	Gly	Gly 70	Pro	Ser	Glu	Ala	G1 y 75	Gly	Pro	Ser	Gly	Thr 80
	Val	Gly	Pro	Ser	Glu 85	Ala	Gly	Gly	Pro	Ser 90	Glu	Ala	Gly	Gly	Pro 95	Ser
10	Gly	Thr	Gly	Trp 100	Pro	Ser	Glu	Ala	Gly 105	Gly	Pro	Ser	Glu	Ala 110	Gly	Gly
15	Pro	Ser	Glu 115	Ala	Gly	Gly	Pro	Ser 120	Glu	Ala	Gly	Gly	Pro 125	Ser	Gly	Thr
	Gly	Trp 130	Pro	Ser	Gly	Thr	Gly 135	Trp	Pro	Ser	Glu	Ala 140	Gly	Trp	Ser	Ser
50	Glu 145	Arg	Phe	Gly	Tyr	G1n 150	Leu	Leu	Pro	Tyr	Ser 155	Arg	Arg	Ile	Val	Ile 160

		Phe	Asn	Glu	Va1	Cys 165	Ļeu	Ser	Tyr	Ile	Tyr 170	Lys	His	Ser	Val	Met 175	Ile
5		Leu	Glu	Arg	Asp 180	Arg	Val	Asn	Asp	Gly 185	His	Lys	Asp	Tyr	Ile 190	Glu	Glu
10		Lys	Thr	Lys 195	Glu	Lys	Asn	Lys	Leu 200	Lys	Lys	Glu	Leu	G1u 205	Lys	Cys	Phe
15		Pro	G1u 210	Gln	Tyr	Ser	Leu	Met 215	Lys	Lys	Glu	Glu	Leu 220	Ala	Arg	Πe	Phe
		Asp 225	Asn	Ala	Ser	Thr	Ile 230	Ser	Ser	Lys	Tyr	Lys 235	Leu	Leu	Val	Asp	G1u 240
20		Ile	Ser	Asn	Lys	A1a 245	Tyr	Gly	Thr	Leu	G1u 250	Gly	Pro	Ala	Ala	Asp 255	Asn
<i>2</i> 5		Phe	Asp	His	Phe 260	Arg	Asn	Ile	Trp	Lys 265	Ser	Ile	Val	Leu	Lys 270	Asp	Met
		Phe	Ile	Tyr 275	Cys	Asp	Leu	Leu	Leu 280	Gln	His	Leu	Ile	Tyr 285	Lys	Phe	Tyr
30		Tyr	Asp 290	Asn	Thr	Val	Asn	Asp 295	Ile	Lys	Lys	Asn	Phe 300	Asp	Glu	Ser	Trp
35		Thr 305	Gln	Thr	Leu	Lys	Glu 310										
	(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:20	:								
40		(i)					TERIS 7 am [.]			5							
) TYI) STI			o ac [.] SS:	id								•	
45							line	ar					,				•
50																	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

	Leu 1	Trp	Phe	Ile	Lys 5	Met	Va1	Ser	Phe	Lys 10	Ser	He	Leu	Val	Pro 15	Tyr
5	Ile	Thr	Leu	Phe 20	Leu	Met	Ser	Gly	A1a 25	Val	Phe	Ala	Ser	Asp 30	Thr	Asp
10	Pro	Glu	A1a 35	Gly	Gly	Pro	Ser	G1u 40	Ala	Gly	Gly	Pro	Ser 45	Gly	Thr	Val
	Gly	Pro 50	Ser	Glu	Ala	Gly	Gly 5 5	Pro	Ser	Glu	Ala	G1y 60	Gly	Pro	Ser	Gly
15	Thr 65	Gly	Trp	Pro	Ser	Glu 70	Ala	Gly	Gly	Pro	Ser 75	Glu	Ala	Gly	Gly	Pro 80
20	Ser	Glu	Ala	Gly	G1y 85	Pro	Ser	Glu	Ala	G1y 90	Gly	Pro	Ser	Gly	Thr 95	Gly
25	Trp	Pro	Ser	Gly 100	Thr	Gly	Trp	Pro	Ser 105	Glu	Ala	G1y	Trp	Ser 110	Ser	G1u
	Arg	Phe	Gly 115	Tyr	Gln	Leu	Leu	Pro 120	Tyr	Ser	Arg	Arg	11e 125	Val	Ile	Phe
30	Asn	G1u 130	Val	Cys	Leu	Ser	Tyr 135	IJе	Tyr	Lys	His	Ser 140	Val	Met	Ile	Leu
35	Glu 145	Arg	Asp	Arg	Val	Asn 150	Asp	Gly	His	Lys	Asp 155	Tyr	Ile	Glu	Glu	Lys 160
	Thr	Lys	Glu	Lys	Asn 165	Lys	Leu	Lys	Lys	G1u 170	Leu	Glu	Lys	Cys	Phe 175	Pro
40	Glu	Gln	Tyr	Ser 180	Leu	Met	Lys	Lys	G1u 185	G1u	Leu	Ala	Arg	Ile 190	Phe	Asp
45	Asn	Ala	Ser 195	Thr	Ile	Ser	Ser	Lys 200	Tyr	Lys	Leu	Leu	Va1 205	Asp	Glu	Ile
	Ser	Asn 210	Lys	Ala	Tyr	Gly	Thr 215	Leu	G1u	Gly	Pro	A1a 220	Ala	Asp	Asn	Phe
50	Asp 225	His	Phe	Arg	Asn	11e 230	Trp	Lys	Ser	Пе	Va1 235	Leu	Lys	Asp	Met	Phe 240

	Ile	Tyr	Cys	Asp	Leu 245	Leu	Leu	Gln	His	Leu 250	Ile	Tyr	Lys		Tyr 255	Tyr
5	Asp	Asn	Thr	Va1 260	Asn	Asp	Пe	Lys	Lys 265	Asn	Phe	Asp	Glu	Ser 270	Lys	Ser
10	Lys	Ala	Leu 275	Val	Leu	Arg	Asp	Lys 280	Ile	Thr	L y s	Lys	Asp 285	Gly	Asp	Tyr
	Asn	Thr 290	His	Phe	Glu	Asp	Met 295	Ile	Lys	Glu	Leu	Asn 300	Ser	Ala	Ala	Glu
15	G1u 305	Phe	Asn	Lys	Ile	Va1 310	Asp	Ile	Met	Ile	Ser 315	Asn	Ile	Gly	Asp	Tyr 320
20	Asp	Glu	Tyr		Ser 325	Пе	Ala	Ser	Phe	Lys 330	Pro	Phe	Leu	Ser	Met 335	Ile
	Thr	Glu		Thr 340	Lys	Ile	Thr	Lys	Va1 345	Ser	Asn	Val	Ile	Ile 350	Pro	Gly
25	Ile	Lys	A1a 355	Leu	Thr	Leu	Thr	Va 1 360	Phe	Leu	Ile	Phe	11e 365	Thr	Lys	
30	2) INFOR	SEQU (A)	ENCE Len	CHA GTH:	RACT 492		TICS no a	:								
35		(C)	STR	ande	DNES											
40	(vi)	כבטו וו	-NOF	DEC	coro	TION	c.r	0.70	NO	01						
	(xi)													•		
4 5	Met 1	Tyr I	_ys		Lys 5	Ile :	Ser	Asp `		11e 10	Ile i	Glu	Phe		Asp 15	Asn
50	Ala	Lys l		Pro [*] 20	Thr .	Asp /	Asn '		11e (25	Gly	Ile:	Ser		Tyr 30	Thr	Cys
50	Glu	His A	Asn /	Asn 1	Pro '	Va7 I	_eu	He (Glu I	Phe '	Tyr	Val	Ser	Lys	Lys	Gly

			35					40					45			
5	Ser	I1e 50	Cys	Tyr	Tyr	Phe	Tyr 55	Ser	Met	Asn	Asn	Asp 60	Thr	Asn	Lys	Trp
10	Asn 65	Asn	His	Lys	Ile	Lys 70	Tyr	Asp	Lys	Arg	Phe 75	Asn	Glu	His	Thr	Asp 80
	Met	Asn	Gly	Пe	His 85	Tyr	Tyr	Tyr	Ile	Asp 90	Gly	Ser	Leu	Leu	A1a 95	Ser
15	Gly	Glu	Val	Thr 100	Ser	Asn	Phe	Arg	Tyr 105	Ile	Ser	Lys	G1u	Tyr 110	Glu	Tyr
20	Glu	His	Thr 115	Glu	Leu	Ala	Lys	Glu 120	His	Cys	Lys	Lys	Glu 125	Lys	Cys	Val
	Asn	Va1 130	Asp	Asn	Пe	Glu	Asp 135	Asn	Asn	Leu	Lys	I1e 140	Tyr	Ala	Lys	G1n
<i>2</i> 5	Phe 145	Lys	Ser	Val	Val	Thr 150	Thr	Pro	Ala	Asp	Val 155	Ala	Gly	Val	Ser	Asp 160
30	Gly	Phe	Phe	Ile	Arg 165	Gly	G1n	Asn	Leu	Gly 170	Ala	Val	Gly	Ser	Va1 175	Asn
	Glu	Gln	Pro	Asn 180	Thr	Val	Gly	Met	Ser 185	Leu	Glu	G1n	Phe	11e 190	Lys	Asn
35	Glu	Leu	Tyr 195	Ser	Phe	Ser	Asn	G1u 200	Пe	Tyr	His	Thr	I1e 205	Ser	Ser	G1n
40	Ile	Ser 210	Asn	Ser	Phe	Leu	I le 215	Met	Met	Ser	Asp	A1a 220	Пе	Val	Lys	His
	Asp 225	Asn	Tyr	Пе	Leu	Lys 230	Lys	Glu	Gly	Glu	G1 y 235	Cys	Glu	Gln	Пе	Tyr 240
45	Asn	Tyr	G 1u	G1u	Phe 245	IÌе	Glu	Lys	Leu	Arg 250	Gly	Ala	Arg	Ser	G 1u 255	Gly
50	Asn	Asn	Met	Phe 260	G1n	Glu	Ala	Leu	I1e 265	Arg	Phe	Arg	Asn	A1a 270	Ser	Ser
	Glu	G1u	Met	Val	Asn	Ala	Ala	Ser	Tyr	Leu	Ser	Ala	Ala	Leu	Phe	Arg

				275					280					285			
5		Tyr	Lys 290	Glu	Phe	Asp	Asp	G1u 295	Leu	Phe	Lys	Lys	A1a 300	Asn	Asp	Asn	Phe
10		G1y 305	Arg	Asp	Asp	Gly	Tyr 310	Asp	Phe	Asp	Tyr	I le 315	Asn	Thr	Lys	Lys	G1u 320
		Leu	Val	Ile	Leu	A1a 325	Ser	Val	Leu	Asp	Gly 330	Leu	Asp	Leu	Ile	Met 335	Glu
15		Arg	Leu	Ile	G1u 340	Asn	Phe	Ser	Asp	Va 1 345	Asn	Asn	Thr	Asp	Asp 350	Пe	Lys
20		Lys	Ala	Phe 355	Asp	Glu	Cys	Lys	Ser 360	Asn	Ala	Пe	Ile	Leu 365	Lys	Lys	Lys
		Ile	Leu 370	Asp	Asn	Asp	Glu	Asp 375	Tyr	Lys	Ile	Asn	Phe 380	Arg	Glu	Met	Val
25		Asn 385	Glu	Val	Thr	Cys	A7a 390	Asn	Thr	Lys	Phe	G1u 395	Ala	Leu	Asn	Asp	Leu 400
30		Ile	Пе	Ser	Asp	Cys 405	Glu	Lys	Lys	Gly	Ile 410	Lys	Ile	Asn	Arg	Asp 415	۷a٦
		Ile	Ser	Ser	Tyr 420	Lys	Leu	Leu	Leu	Ser 425	Thr	Ile	Thr	Tyr	Ile 430	Val	Gly
35		Ala	Gly	Va 1 435	G1u	Ala	Val	Thr	Va1 440	Ser	Val	Ser	Ala	Thr 445	Ser	Asn	Gly
40		Thr	G1u 450	Ser	Gly	Gly	Ala	G1y 455	Ser	Gly	Thr	Gly	Thr 460	Ser	Val	Ser	Ala
45		Thr 465	Ser	Thr	Leu	Thr	G1y 470	Asn	Gly	Gly	Thr	G1u 475	Ser	Gly	Gly	Thr	A1a 480
45		Gly	Thr	Thr	Thr	Ser 485	Ser	Gly	Thr	Trp	Phe 490	Gly	Lys				
50	(2)	INFOR															
		(i)	SEQL (A)			RACT 138				;							

(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: linear

5

10			c F OI	IENIOE	· DEC	·corn	TION	ı. cr	·	NO.	22.						
	•	(xi)	SEUL	JENUE	DES	CKIP	TION	i: 3E	LŲ IL	, NO.	۷۷.						
15		Ser 1	Leu	Gly	Gln	Pro 5	Ala	Ser	Leu	Gly	G1n 10	Pro	Ala	Ser	Leu	Gly 15	Gln
		Pro	Ala	Ser	Leu 20	Gly	Gln	Pro	Ala	Ser 25	Leu	Gly	Gln	Pro	A1a 30	Ser	Leu
20		Gly	Gln	Pro 35	۷a٦	Pro	Leu	Gly	Pro 40	Pro	Ala	Ser	Leu	G1y 45	Pro	Pro	Ala
25			Leu 50	Gly	Pro	Pro	Ala	Ser 55	Leu	Gly	Gln	Pro	Va1 60	Pro	Leu	Gly	Pro
30		Pro 65	Ala	Ser	Leu	Gly	Pro 70	Pro	Ala	Seŗ	Leu	G1y 75	Pro	Pro	Ala	Ser	Leu 80
٠		Gly	Pro	Pro	Ala	Ser 85	Leu	Gly	Pro	Pro	A1a 90	Ser	Leu	Gly	Pro	Pro 95	Ala
35		Ser	Leu	Gly	Pro 100	Pro	Ala	Ser	Leu	Gly 105	Pro	Pro	Ala	Ser	Leu 110	Gly	Pro
40		Thr	Val	Pro 115	Leu	Gly	Pro	Pro	Ala 120	Ser	Arg	Ser	Val	Ser 125	Pro	Ala	Lys
		Thr	Ala 130	Pro	Leu	Ile	Lys	Lys 135	Ser	Val	Ile						
45	(2)	INFO	RMAT	ION	FOR :	SEQ	ID N	0:23	:								
50		(i)	(A (B (C) LE) TY) ST	ngth Pe: Rand	: 30 amin EDNE	TERIS 3 am o ac SS: line	ino id		S							

	(xi)	SEQ	JENCE	DES	CRIP	PTION	i: SE	Q II) NO:	23:						
5	Leu 1	Trp	Phe	Ile	Lys 5	Met	Val	Ser	Phe	Lys 10	Ser	Ile	Leu	Val	Pro 15	Tyr
10	Ile	Thr	Leu	Phe 20	Leu	Met	Ser	Gly	A1a 25	Val	Phe	Ala	Gly	Asp 30	Thr	Asp
15	Arg	Glu	A1a 35	Gly	Gly	Pro	Ser	G1y 40	Thr	Val	Gly	Pro	Ser 45	G1u	Ala	Gly
	Gly	Pro 50	Ser	Glu	Ala	Gly	G1y 55	Pro	Ser	Glu	Ala	G1y 60	Gly	Pro	Ser	Glu
20	A1a 65	Gly	Gly	Pro	Ser	G1u 70	Ala	Gly	Gly	Pro	Ser 75	Glu	Ala	Gly	Gly	Pro 80
25	Ser	Glu	Ala	Gly	G1y 85	Pro	Ser	Glu	Ala	G1y 90	Gly	Pro	Ser	Gly	Thr 95	Gly
<i>30</i>	Trp	Pro	Ser	Glu 100	Ala	G1y	Trp	Pro	Ser 105	Glu	Ala	Gly	Trp	Pro 110	Ser	Glu
	Ala	Gly	Trp 115	Pro	Ser	Glu	Ala	Gly 120	Trp	Pro	Ser	Glu	A1a 125	Gly	Trp	Pro
35	Ser	Glu 130	Arg	Phe	Gly	Tyr	G1n 135	Leu	Leu	Trp	Tyr	Ser 140	Arg	Arg	Ile	Val
40	Ile 145	Phe	Asn	Glu	Ile	Tyr 150	Leu	Ser	His	Ile	Tyr 155	Glu	His	Ser	Val	Met 160
_	Ile	Leu	Glu	Arg	Asp 165	Arg	Val	Asn	Asp	Gly 170	His	Lys	Asp	Tyr	Ile 175	Glu
45	Glu	Lys	Thr	Lys 180	Glu	Lys	Asn	Lys	Leu 185	Lys	Lys	Glu	Leu	Glu 190	Lys	.Cys
50	Phe	Pro	Glu 195	Gln	Tyr	Ser	Leu	Met 200	Lys	Lys	Glu	Glu	Leu 205	Ala	Arg	He

		Ile	Asp 210	Asn	Ala	Ser	Thr	11e 215	Ser	Ser	Lys	Tyr	Lys 220	Leu	Leu	Val	Asp
5		G1u 225	Пe	Ser	Asn	Lys	A1a 230	Tyr	Gly	Thr	Leu	G1u 235	Gly	Pro	Ala	Ala	Asp 240
10		Asp	Phe	Asp	His	Phe 245	Arg	Asn	Ile	Trp	Lys 250	Ser	Ile	Val	Pro	Lys 255	Asn
		Met	Phe	Leu	Tyr 260	Cys	Asp	Leu	Leu	Leu 265	Lys	His	Leu	Пe	Arg 270	Lys	Phe
15		Tyr	Cys	Asp 275	Asn	Thr	Ile	Asn	Asp 280	Ile	Lys	Lys	Asn	Phe 285	Asp	Asp	Ile
20		Glu	Lys 290	Leu	Gly	Cys	Phe	G1n 295	Ala	Arg	Ser	Phe	Leu 300	Pro	Val	Asn	
25	(2)	INFO	RMAT:	ION I	FOR S	SEQ 1	(D NO):24:	:								
		(i)	(A)) LEI	VGTH	: 592	TERIS 2 ami 3 aci	ino a		5							
30							SS: s linea	_	le						•		
			(-														
		(xi)			E DES	SCRI	PTIO	v: SI	EQ II	O NO:	24:						
35			SEQ	JENCI								Leu	Ile	Asn	Leu	Ile 15	Val
35		Met 1	SEQ!	JENCI Lys	Phe	Asn 5	Ile	Asp	Lys	Ile	Ile 10						
		Met 1 Leu	SEQI Met Leu	JENCI Lys Asn	Phe Arg 20 Ser	Asn 5 Asn G1n	Ile Val	Asp Val	Lys Tyr Thr	Ile Cys 25 Thr	Ile 10 Val	Asp Ile	Thr Asp	Asn	Asn 30 Asp	15 Ser	
		Met 1 Leu Leu	SEQUENT SEQUEN	JENCI Lys Asn Glu 35	Phe Arg 20 Ser	Asn 5 Asn G1n	Ile Val Pro	Asp Val Val	Lys Tyr Thr 40	Ile Cys 25 Thr	Ile 10 Val	Asp Ile	Thr Asp	Asn Thr 45	Asn 30 Asp	15 Ser	Ser Thr
40		Met 1 Leu Leu	SEQUENTE SEQ	JENCI Lys Asn Glu 35 Thr	Phe Arg 20 Ser Asn	Asn 5 Asn Gln Lys	Ile Val Pro Tyr	Asp Val Val Thr 55	Lys Tyr Thr 40 Gly	Ile Cys 25 Thr	Ile 10 Val Asn Ile	Asp Ile Ile	Thr Asp Asn 60	Asn Thr 45 Ala	Asn 30 Asp Asn	15 Ser Asn Ile	Ser Thr
40 45		Met 1 Leu Leu Ile Glu 65	SEQU Met Leu Ile Thr 50	Lys Asn Glu 35 Thr	Phe Arg 20 Ser Asn	Asn 5 Asn Gln Lys	Ile Val Pro Tyr Glu 70	Asp Val Thr 55 Asp	Lys Tyr Thr 40 Gly	Ile Cys 25 Thr Thr	Ile 10 Val Asn Ile	Asp Ile Ile Thr 75	Thr Asp Asn 60	Asn Thr 45 Ala Gly	Asn 30 Asp Asn Phe	15 Ser Asn Ile	Ser Thr Val Tyr 80

					85					90					95	
5	Asp	Lys	Пe	Lys 100	Phe	Ser	Asp	Tyr	Ile 105	Ile	Glu	Phe	Asp	Asp 110	Asn	Ala
10	Lys	Leu	Pro 115	Thr	Asp	Asn	Va1	Ile 120	Cys	Ile	Ser	Пе	Tyr 125	Thr	Cys	Lys
10	His	Asn 130	Asn	Pro	Val	Leu	Ile 135	Arg	Phe	Ser	Cys	Ser 140	Ile	Glu	Lys	Tyr
15	Tyr 145	Tyr	His	Tyr	Phe	Tyr 150	Ser	Met	Asn	Asn	Asp 155	Thr	Asn	Lys	Trp	Asn 160
20	Asn	His	Lys	Leu	Lys 165	Tyr	Asp	Lys	Thr	Tyr 170	Asn	Glu	Tyr	Thr	Asp 175	Asn
-	Asn	Gly	Val	Asn 180	Tyr	Tyr	Lys	Ile	Tyr 185	Tyr	Ser	Asp	Lys	G1n 190	Asn	Ser
25	Pro	Thr	Asn 195	Gly	Asn	Glu	Tyr	G1u 200	Asp	Va1	Ala	Leu	A1a 205	Arg	He	His
30	Cys	Asn 210		Glu	Arg	Cys	A1a 215	Asn	Val	Lys	Val	Asp 220	Lys	Ile	Lys	Tyr
	Lys 225	Asn	Leu	Glu	Пе	Tyr 230	Val	Lys	G1n	Leu	G1y 235	Thṛ	Ile	Ile	Asn	A1a 240
35	Asn	Ile	Val	Glu	Tyr 245	Leu	Val	Phe	Glu	Asp 250	Glu	Pro	Leu	Thr	11e 255	Gly
40	Phe	Arg	Tyr	Thr 260	IÌе	Asp	Lys	Ser	G1n 265	G1n	Asn	G1u	Leu	Ser 270	His	Pro
	Asn	Lys	I 1e 275	Tyr	Lys	Пе	Lys	Phe 280	Ser	Asp	Tyr	Ile	I1e 285	Glu	Phe	Asp
45	Asp	Asp 290	Ala	Lys	Leu	Thr	Thr 295	Ile	Gly	Thr	Val	G1u 300	Asp	Ile	Thr	Ile
50	Tyr 305	Thr	Cys	Lys	His	Asn 310	Asn	Pro	Val	Leu	I 1e 315	Arg	Phe	Ser	Cys	Ser 320
	Пе	Glu	Lys	Tyr	Tyr	Tyr	Tyr	Tyr	Phe	Tyr	Ser	Met	Asn	Asn	Asn	Thr
55																

					325					330					335	
5	Asn	Lys	Trp	Asn 340	Asn	His	Asn	Leu	Lys 345	Tyr	Asp	Asn	Arg	Phe 350	Lys	Glu
	His	Ser	Asp 355	Lys	Asn	Gly	Ile	Asn 360	Tyr	Tyr	Glu	Пе	Ser 365	Ala	Phe	Lys
10	Trp	Ser 370	Phe	Ser	Cys	Phe	Phe 375	Val	Asn	Lys	Tyr	G1u 380	His	Lys	G lu	Leu
15	A1a 385	Arg	Ile	His	Cys	Asn 390	Glu	Glu	Arg	Cys	A1a 395	Asn	Val	Lys	Val	Asp 400
20	Lys	Ile	Lys	Tyr	Lys 405	Asn	Leu	Glu	Пe	Tyr 410	Val	Lys	Gln	Leu	G1y 415	Thr
·	Ile	Ile	Asn	A1a 420	Asn	Ile	Val	Glu	Tyr 425	Leu	Val	Phe	Glu	Asp 430	Glu	Pro
25	Leu	Thr	I1e 435	Gly	Phe	Arg	Tyr	Thr 440	Ile	Asp	Lys	Ser	G1n 445	Gln	Asn	Glu
30	Leu	Ser 450	His	Pro	Asn	Lys	I1e 455	Tyr	Lys	Пe	Lys	Phe 460	Ser	Asp	Tyr	Ile
	I1e 465	Glu	Phe	Asp	Asp	Asp 470	Ala	Lys	Leu	Thr	Thr 475	Пe	Gly	Thr	Val	G1u 480
35	Asp	Пe	Thr	Пe	Tyr 485	Thr	Cys	Lys	His	Asn 490	Asn	Pro	Val	Leu	I le 495	Arg
40	Phe	Ser	Cys	Ser 500	Ile	Glu	Lys	Tyr	Tyr 505	Tyr	Tyr	Tyr	Phe	Tyr 510	Ser	Met
	Asn	Asn	Asn 515	Thr	Asn	Lys	Trp	Asn 520	Asn	His	Asn	Leu	Lys 525	_	Asp	Asn
45	Arg	Phe 530	Lys	Glu	His	Ser	Asp 535	Lys	Asn	Gly	Ile	Asn 540	Tyr	Tyr	Glu	Ile
50	Ser 545	Ala	Phe	L y s	Trp	Ser 550	Phe	Ser	Cys	Phe	Phe 555	Val	Asn	Lys	Tyr	G1u 560
	His	Lys	Glu	Leu	Ala	Arg	Ile	His	Cys	Asn	Glu	Glu	Lys	Cys	Val	Asn
55																

						565					570					575	
5		Val	Lys	Val	Asp 580	Asn	Ile	Gly	Asn	Lys 585	Asn	Leu	Glu	Пe	Tyr 590	Val	Lys
10	(2)																
15		(1)	(A) (B) (C)	LEI TYI STI	E CHANGTH: PE: a RANDE POLOG	: 460 amino EDNES	3 am ² 5 ac ² SS: 5	ino a id sing	acids	5				٠			
	(xi)	SEQL	JENCI	DES	SCRIF	PTIO	N: SI	Q 10	O NO:	25:	•						
20		Ile 1	Пe	Met	Lys	Ile 5	Asn	Ile	Asp	Asn	Ile 10	Ile	Leu	Ile	Asn	Leu 15	Ile
25		Пе	Leu	Leu	Asn 20	Arg	Asn	Val	Va 1	Tyr 25	Cys	Val	Asp	Lys	Asn 30	Asp	Val
		Ser	Leu	Trp 35	Lys	Ser	Lys	Pro	Ile 40	Thr	Thr	Val	Ser	Thr 45	Thr	Asn	Asp
30		Thr	11e 50	Thr	Asn	Lys	Tyr	Thr 55	Ser	Thr	Val	He	Asn 60	Ala	Asn	Phe	Ala
35		Ser 65	Tyr	Arg	Glu	Phe	Glu 70	Asp	Arg	Glu	Pro	Leu 75	Thr	Ile	Gly	Phe	G1u 80
		Tyr	Met	Ile	Asp	Lys 85	Ser	Gln	Gln	Asp	Lys 90	Leu	Ser	His	Pro	Asn 95	Lys
40		Ile	Asp	Lys	11e 100	Lys	Ile	Ser	Asp	Tyr 105	Ile	Ile	Glu	Phe	Asp 110	Asp	Asn
45		Ala	Lys	Leu 115	Pro	Thr	G1y	Ser	Va1 120	Asn	Asp	Ile	Ser	I le 125	Пe	Thr	Cys
50		Lys	His 130	Asn	Asn	Pro	Val	Leu 135	Пe	Arg	Phe	Ser	Cys 140	Leu	Ile	Glu	Gly
50		Ser 145	Пе	Cys	Tyr	Tyr	Phe 150	Tyr	Leu	Leu	Asn	Asn 155	Asp	Thr	Asn	Lys	Trp 160

	Asn	Asn	His	Lys	Leu 165	Lys	Tyr	Asp	Lys	Thr 170	Tyr	Asn	Glu	His	Thr 175	Asp
5	Asn	Asn	Gly	Ile 180	Asn	Tyr	Tyr	Lys	Ile 185	Asp	Tyr	Ser	Glu	Ser 190	Thr	Glu
10	Pro	Thr	Thr 195	Glu	Ser	Thr	Thr	Cys 200	Phe	Cys	Phe	Arg	Lys 205	Lys	Asn	His
15	Lys	Ser 210	Glu	Arg	Lys	Glu	Leu 215	Glu	Asn	Tyr	Lys	Tyr 220	Glu	Gly	Thr	Glu
,,	Leu 225	Ala	Arg	Ile	His	Cys 230	Asn	Lys	Gly	Lys	Cys 235	Val	Lys	Leu	Gly	Asp 240
20	Пe	Lys	Пe	Lys	Asp 245	Lys	Asn	Leu	Glu	Ile 250	Tyr	Val	Lys	G1n	Leu 255	Met
25	Ser	Val	Asn	Thr 260	Pro	Val	Asn	Phe	Asp 265	Asn	Pro	Thr	Ser	I1e 270	Asn	Leu
	Pro	Thr	Va 1 275	Ser	Thr	Thr	Asn	Asp 280	Thr	Пе	Thr	Asn	Lys 285	Tyr	Thr	Gly
30	Thr	Ile 290	Пе	Asn	Ala	Asn	11e 295	Val	Glu	Tyr	Cys	G1u 300	Phe	Glu	Asp	G1u
35	Pro 305	Leu	Thr	Пе	Gly	Phe 310	Arg	Tyr	Thr	Пe	Asp 315	Lys	Ser	G1n	Gln	Asn 320
	Lys	Leu	Ser		Pro 325	Asn	Lys	Пe	Asp	Lys 330	Ile	Lys	Phe	Phe	Asp 335	Tyr
40	Ile	Пе	Glu	Phe 340	Asp	Asp	Asp	Val	Lys 345	Leu	Pro	Thr	Ile	G1y 350	Thr	Va 1
45	Asn	Пe	11e 355	Tyr	Ile	Tyr	Thr	Cys 360	G1u	His	Asn	Asn	Pro 365	Va 1	Leu	Val
	Glu	Phe 370	Пe	Val	Ser	Ile	G1u 375	Glu	Ser	Tyr	Tyr	Phe 380	Tyr	Phe	Tyr	Ser
50	Met 385	Asn	Asn	Asn	Thr	Asn 390	Lys	Trp	Asn	Asn	His 395	Lys	Leu	Lys	Tyr	Asp 400

		Lys	Arg	Phe	Lys	Lys 405	Tyr	Thr	Lys	Asn	Gly 410	Ile	Asn	Cys	Tyr	G1u 415	Tyr
5		Va 1	Leu	Arg	Lys 420	Cys	Ser	Ser	Tyr	Thr 425	Arg	Lys	Asn	Glu	Tyr 430	Glu	His
10		Lys	Glu	Leu 435	Ala	Arg	Пe	His	Cys 440	Asn	Glu	Glu	Lys	Cys 445	Val	Asn	Val
15		Lys	Va1 450	Asp	Asn	Ile	Glu	Lys 455	Lys	Asn	Leu	Glu	I1e 460	Tyr	Val	Lys	
20	(2) I		SEQL	JENCE	E CHA	ARACT	TERIS	STICS	S:								
25			(B)	TYF STF	PE: a	amino EDNES	7 ami 5 aci 5S: linea	d	acids	5							
30														•			
	(xi)	SEQL	JENCE	E DES	SCRIF	PTION	I: SE	Q II) NO:	26:						
35		Arg 1	Ala	Ala	Arg	Ala 5	Asp	Tyr	Tyr	Lys	Tyr 10	Leu	Val	Asp	Glu	Tyr 15	Ser
40		Ser	Pro	Arg	G1u 20	Glu	Arg	G1u	Leu	A1a 25	Arg	Val	His	Cys	Asn 30	Glu	Glu
		Lys	Cys	Va 1 35	Lys	Leu	Asp		I1e 40		Phe	Lys		Lys 45	Asn	Leu	Glu
45		Ile	Tyr 50	Val	Lys	Gln	Leu	Met 55	Ser	Val	Asn	Thr	Pro 60	Val	Val	Phe	Asp
50		Asn 65	Asn	Thr	Leu	Ile	Asn [.] 70	Pro	Thr	Ser	Ser	Ser 75	Gly	Ala	Thr	Asp	Asp 80
		He	Thr	Tyr	Glu	Leu	Ser	Val	Glu	Ser	Gln	Pro	Val	Pro	Thr	Asn	Пе
55																	

•					85					90					95	
5	Asp	Thr	Gly	Asn 100	Asn	Пе	Thr	Thr	Asn 105	Thr	Ser	Asn	Asn	Asn 110	Leu	Ile
10	Lys	Ala	Lys 115	Phe	Leu	Tyr	Asn	Phe 120	Asn	Leu	Pro	G1y	Lys. 125	Pro	Ser	Thr
	G1y	Leu 130	Phe	Glu	Tyr	Thr	I1e 135	Asp	Lys	Ser	Glu	G1n 140	Asn	Lys	Leu	Ser
15	His 145	Pro	Asn	Lys	Ile	Asp 150	Lys	Ile	Lys	Phe	Ser 155	Asp	Tyr	Ile	Ile	G1u 160
20	Phe	Asp	Asp	Asp	Ala 165	Lys	Leu	Pro	Thr	Ile 170	Gly	Thr	Val	Asn	Ile 175	Пe
25	Ser	Пe	Ile	Thr 180	Cys	Lys	His	Asn	Asn 185	Pro	Val	Leu	Val	Glu 190	Phe	Ile
	Val	Ser	Thr 195	G1u	Ile	Tyr	Cys	Tyr 200	Tyr	Asn	Tyr	Phe	Tyr 205	Ser	Met	Asn
30	Asn	Asn 210	Thr	Asn	Lys	Trp	Asn 215	Asn	His	Lys	Leu	Lys 220	Tyr	Asp	Lys	Arg
35	Tyr 225	Lys	Glu	Glu	Tyr	Thr 230	Asp	Asp	Asn	Gly	Ile 235	Asn	Tyr	Tyr	Lys	Leu 240
40	Asn	Asp	Ser	Glu	Pro 245	Thr	Glu	Ser	Thr	G1u 250	Ser	Thr	Thr	Cys	Phe 255	Cys
•	Phe	Arg	Lys	Lys 260	Asn	His	Lys	Tyr	G1u 265	Asn	Glu	Arg	Thr	A1a 270	Leu	Ala
45	Lys	Glu	His 275	Cys	Asn	Glu	Glu	Arg 280	Cys	Val	Lys	Val	Asp 285	Asn	Ile	Lys
50	Asp	Asn 290	Asn	Leu	Glu	Ile	Tyr 295	Leu	Lys							

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 121 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

15

20

25

30

35

40

45

50

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Leu Trp Phe Ile Lys Met Val Ser Phe Lys Ser Ile Leu Val Pro Tyr 1 5 10 15

Ile Thr Leu Phe Leu Met Ser Gly Ala Val Phe Ala Ser Asp Thr Asp 20 25 30

Pro Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly 35 40 45

Gly Pro Ser Gly Thr Val Gly Pro Ser Glu Ala Gly Gly Pro Ser Glu 50 55 60

Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Gly Pro 65 70 75 80

Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly 85 90 95

Trp Ser Ser Glu Arg Phe Gly Tyr Gln Leu Leu Pro Tyr Ser Arg Arg 100 105 110

Ile Val Thr Phe Asn Glu Val Cys Leu 115 120

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 267 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

	(xi)	SEQ	JENCE	DES	SCRIF	OIT	V: SE	Q IC) NO:	28:						
5	Leu 1	Trp	Phe	Ile	Lys 5	Met	Val	Ser	Phe	Lys 10	Ser	Ile	Leu	Val	Pro 15	Tyr
10	Ile	Thr	Leu	Phe 20	Leu	Met	Ser	G1y	A1a 25	Val	Phe	Ala	Ser	Asp 30	Thr	Asp
	Pro	Glu	A1a 35	Gly	Gly	Pro	Ser	G1y 40	Thr	Va1	Gly	Pro	Ser 45	Glu	Ala	Gly
15	Gly	Pro 50	Ser	Glu	Ala	Gly	G1y 55	Pro	Ser	Gly	Thr	Gly 60	Trp	Pro	Ser	Glu
20	A1a 65	Gly	Gly	Pro	Ser	G1u 70	Ala	Gly	Gly	Pro	Ser 75	Gly	Thr	Gly	Trp	Pro 80
25	Ser	Glu	Ala	Gly	Trp 85	Ser	Ser	Glu	Arg	Phe 90	Gly	Tyr	Gln	Leu	Leu 95	Pro
	Tyr	Ser	Arg	Arg 100	Ile	Val	Thr	Phe	Asn 105	Glu	Val	Cys	Leu	Ser 110	Tyr	Ile
3 0	Tyr	Lys	His 115	Ser	Val	Met	Ile	Leu 120	Glu	Arg	Asp	Arg	Va1 125	Asn	Asp	Gly
35	His	Lys 130	Asp	Tyr	Пe	Glu	Glu 135	Lys	Thr	Lys	Glu	Lys 140	Asn	Lys	Leu	Lys
40	Lys 145	Glu	Leu	Glu	Lys	Cys 150	Phe	Pro	Glu	Gln	Tyr 155	Ser	Leu	Met	Lys	Lys 160
	Glu	Glu	Leu	Ala	Arg 165	Пе	Phe	Asp	Asn	Ala 170	Ser	Thr	Ile	Ser	Ser 175	Lys
4 5	Tyr	Lys	Leu	Leu 180	Va1	Asp	Glu	Ile	Ser 185	Asn	Lys	Ala	Tyr	Gly 190	Thr	Leu
50	Glu	Gly	Pro 195	Ala	Ala	Asp	Asn	Phe 200	Asp	His	Phe	Arg	Asn 205	Ile	Trp	Lys

		Ser	Ile 210	Va1	Leu	Lys	Asp	Met 215	Phe	Пe	Tyr	Cys	Asp 220	Leu	Leu	Leu	G1n
		His 225	Leu	Ile	Tyr	Lys	Phe 230	Tyr	Tyr	Asp	Asn	Thr 235	Пe	Asn	Asp	Ile	Lys 240
10		Lys	Asn	Phe	Asp	G1u 245	Ser	Lys	Ser	Lys	Ala 250	Leu	Val	Leu	Arg	Asp 255	Lys
15		Ile	Thr	Lys	Lys 260	Asp	Val	Tyr	Val	Asn 265	Asp	His					
	(2)	INFO	RMAT:	ION I	FOR S	SEQ	ID N	0:29	:								
20		(i)	(B (C) LEI) TYI) STI	NGTH PE: 6 RAND	: 16 amin EDNES	amin o act SS:	no ao id									
25			(D) ТО	POLO	GY:	line	ar									
30		(xi)	SEQ	UENCI	E DE S	SCRI	PTIO	N: SI	EQ II	O NO:	:29:						
35		Ala 1	Trp	Thr	Phe	Ser 5	Val	Leu	Glu	Leu	Gln 10	Glu	Phe	Ser	Tyr	Thr 15	Val
	(2)	INFO	RMAT	ION I	FOR :	SEQ	ID N	0:30	:								
40		(i)	-) LEI	NGTH	: 46	5 am	ino		5							
45			(C) STI	RAND	EDNE:	o ac SS: line										
50																	
		(xi)	SEQ	UENC	E DE	SCRI	PTI0	N: S	EQ II	O NO	:30:						
55																	

	Met 1	Leu	Thr	Phe	Gly 5	Asn	Ile	Arg	Phe	His 10	Asn	He	Asn	Leu	Pro 15	Pro
5	Phe	Ser	Leu	G1y 20	Ile	Пе	His	Ser	11e 25	Thr	Val	Glu	Lys	A1a 30	Ile	Asn
10	Ser	Glu	Asp 35	Phe	Asp	Gly	Ile	G1n 40	Thr	Leu	Leu	Gln	Va 1 45	Ser	Ile	Ile
15	Ala	Ser 50	Tyr	Gly	Pro	Ser	G1y 55	Asp	Tyr	Ser	Ser	Phe 60	Va1	Phe	Thr	Pro ·
	Va1 65	Val	Thr	Ala	Asp	Thr 70	Asn	Val	Phe	Tyr	Lys 75	Leu	Glu	Thr	Asp	Phe 80
20	Lys	Leu	Asp	Val	Asp 85	Val	Ile	Thr	Lys	Thr 90	Ser	Leu	Glu	Leu	Pro 95	Thr
25	Ser	Val	Pro	Gly 100	Phe	His	Tyr	Thr	G1u 105	Thr	Ile	Tyr	Gln	Gly 110	Thr	Glu
	Leu	Ser	Lys 115	Phe	Ser	Lys	Pro	G1n 120	Cys	Lys	Leu	Asn	Asp 125	Pro	Pro	Ile
30	Thr	Thr 130	Gly	Ser	Gly	Leu	G1n 135	Ile	Пe	His	Asp	Gly 140	Leu	Asn	Asn	Ser
35	Thr 145	Пе	Ile	Thr	Asn	Lys 150	G1u	Val	Asn	Val	Asp 155	Gly	Thr	Asp	Leu	Va 1 160
40	Phe	Phe	G1u	Leu	Leu 165	Pro	Pro	Ser	Asp	Gly 170	Ile	Pro	Thr	Leu	Ar g 175	Ser
•	Lys	Leu	Phe	Pro 180	Val	Leu	Lys	Ser	I le 185	Pro	Met	Пе	Ser	Thr 190	Gly	Va ₁
45	Asn	Glu	Leu 195	Leu	Leu	Glu	Val	Leu 200	Glu	Asn	Pro	Ser	Phe 205	Pro	Ser	Ala
50	Пе	Ser 210	Asn	Tyr	Thr	Gly	Leu 215	Thr	Gly	Arg	Leu	Asn 220	Lys	Leu	Leu	Thr
	Va1 225	Leu	Asp	Gly	Пе	Va1 230	Asp	Ser	Ala	Пе	Ser 235	Val	Lys	Thr	Thr	G1u 240

	Thr	Val	Pro	Asp	Asp 245	Ala	Glu	Thr	Ser	Ile 250	Ser	Ser	Leu	Lys	Ser 255	Leu
5	Ile	Lys	Ala	Ile 260	Arg	Asp	Asn	Ile	Thr 265	Thr	Thr	Arg	Asn	G1u 270	Val	Thr
10	Lys	Asp	Asp 275	Val	Tyr	Ala	Leu	Lys 280	Lys	Ala	Leu	Thr	Cys 285	Leu	Thr	Thr
15	His	Leu 290	Ile	Tyr	His	Ser	Lys 295	Val	Asp	Gly	Ile	Ser 300	Phe	Asp	Met	Leu
	Gly 305	Thr	Gln	Lys	Asn	Lys 310	Ser	Ser	Pro	Leu	G1y 315	Lys	He	Gly	Thr	Ser 320
20	Met	Asp	Asp	Пe	I le 325	Ala	Met	Phe	Ser	Asn 330	Pro	Asn	Met	Tyr	Leu 335	Val
25	Lys	Val	Ala	Tyr 340	Leu	Gln	Ala	Пе	G1u 345	His	Ile	Phe	Leu	11e 350	Ser	Thr
	Lys	Tyr	Asn 355	Asp	Пе	Phe	Asp	Tyr 360	Thr	Пe	Asp	Phe	Ser 365	Lys	Arg	Glu
30	Ala	Thr 370	Asp	Ser	Gly	Ser	Phe 375	Thr	Asp	Пе	Leu	Leu 380	Gly	Asn	Lys	Val
35	Lys 385	Glu	Ser	Leu	Ser	Phe 390	Пе	G1u	Gly	Leu	I1e 395	Ser	Asp	Ile	Lys	Ser 400
40	His	Ser	Leu	Lys	A1a 405	Gly	Val	Thr	Gly	Gly 410	Ile	Ser	Ser	Ser	Ser 415	Leu
40	Phe	Asp	Glu	11e 420	Phe	Asp	Glu	Leu	Asn 425	Leu	Asp	Gln	Ala	Thr 430	Пе	Arg
45	Thr	Leu	Va1 435	Ala	Pro	Leu	Asp	Trp 440	Pro	Leu	Пе	Ser	Asp 445	Lys	Ser	Leu
50	His	Pro 450	Ser	Leu	Lys	Met	Va 1 455	Va1	Va1	Leu	Pro	G1y 460	Phe	Phe	Пe	Val
	Pro 465															

(2) INFORMATION FOR SEQ ID NO:31:

5 .	(1	(B	UENCI) LEI) TYI) STI) TOI	ngth Pe: 6 Randi	: 128 emino EDNES	Bami baci SS:	ino a id		5							
15	(xi	i) SEQ	UENC	E DES	SCRII	OITC	v: Si	EQ II) NO:	:31:						
20	Le 1	eu Trp	Phe	Ile	Lys 5	Met	Val	Ser	Phe	Lys 10	Ser	Ile	Leu	Val	Pro 15	Tyr
	Il	le Thr	Leu	Phe 20	Leu	Met	Ser	Gly	A1a 25	Val	Phe	Ala	Ser	Asp 30	Thr	Asp
25	Pr	ro Glu	A1a 35	Gly	Gly	Pro	Ser	G1u 40	Ala	Gly	Gly	Pro	Ser 45	Gly	Thr	Val
30	Gl	y Pro 50	Ser	Glu	Ala	Gly	G1y 55	Pro	Ser	Glu	Ala	G1y 60	Gly	Pro	Ser	G1y
	T1 65	nr Gly 5	Trp	Pro	Ser	G1u 70	Ala	Gly	Gly	Pro	Ser 75	Glu	Ala	Gly	Gly	Pro 80
35	Se	er Glu	Ala	Gly	G1y 85	Pro	Ser	Glu	Ala	G1y 90	G1y	Pro	Ser	Gly	Thr 95	Gly
40	Tr	rp Pro	Ser	Gly 100	Thr	Gly	Trp	Pro	Ser 105	Glu	Ala	Gly	Trp	Ser 110	Ser	Glu
	Ar	rg Phe	Gly 115	Tyr	Gln	Leu	Leu	Pro 120	Tyr	Ser	Arg	Arg	Ile 125	Val	Пe	Phe
45	(2) TNF	TAMOO	TON	ron (° F O	T D. M/	1. 22	_								
50	(2) INF	i) SEQ (A		E CH/ NGTH PE: 6	ARAC : 24! amin	TERIS 5 am ² 5 ac ²	STICS	S:	5							

(D) TOPOLOGY: linear

5

10	(xi)	SEQU	JENCE	E DES	CRIE	PTION	I: SE	Q II) NO:	:32:						
•	G1n 1	G1u	Cys	Cys	Leu 5	Va1	Val	Lys	Asp	Lys 10	Val	Ile	Arg	His	Ala 15	Ala
15	Phe	Ala	Ala	Thr 20	Пe	Ile	Ile	Arg	Arg 25	Arg	Arg	Val	Ser	Phe 30	Пе	Ile
20	Leu	Gly	Leu 35	Ile	Ile	Ala	Thr	Met 40	Thr	Pro	Phe	Phe	Thr 45	Lys	Val	Phe
	Phe	Phe 50	Gln	Arg	Cys	Leu	Ser 55	Ile	Met	Arg	Phe	Tyr 60	Ser	Ser	Leu	Pro
25	Thr 65	Phe	Пe	Leu	Ile	G1u 70	Ile	Ala	Met	Leu	Phe 75	Phe	Met	Seŗ	Val	Thr 80
30	Cys	Phe	Leu	Arg	Cys 85	Leu	Ser	Ile	Ile	Arg 90	Phe	Tyr	Ser	Ser	11e 95	Ser
	Thr	Phe	Ile	Leu 100	Пе	Asp	Phe	Val	Met 105	Pro	Phe	Phe	Thr	Leu 110	Phe	Thr
35	Tyr	Phe	Leu 115	Arg	Cys	Leu	Ser	Ile 120	Met	Arg	Phe		Phe 125	Ser	Leu	Leu
40	Thr	Phe 130	Пe	Arg	He	Asp	Phe 135	Val	Met	Pro	Phe	Phe 140	Met	Ser	Val	Thr
	Cys 145	Phe	Leu	Arg	Cys	Leu 150	Ser	Ile	Пe	Arg	Phe 155	Tyr	Ser	Ser	Ile	Ser 160
45	Thr	Phe	Пe	Leu	Ile 165	Asp	Phe	Val	Met	Pro 170	Phe	Phe	Thr	Leu	Phe 175	Thr
50	Tyr	Phe	Leu	Arg 180	Cys	Leu	Ser	Ile	I le 185	Arg	Phe	Tyr	Ser	Ser 190	Пе	Ser
	Thr	Phe	Пe	Leu	Пе	Asp	Phe	Val	Met	Pro	Phe	Phe	Thr	Leu	Phe	Thr

				195					200					205			
5		Tyr	Phe 210	Leu	Arg	Cys	Leu	Ser 215	Ile	Met	Arg	Phe	Ser 220	Phe	Ser	Leu	Leu
10		Thr 225	Phe	Ile	Arg	Пе	G1y 230	Phe	Ala	Met	Pro	Phe 235	Phe	Thr	Leu	Phe	I1e 240
		Tyr	Phe	Leu	Cys	Arg 245											
15	(2)	INFO	ORMAT	LION	FOR	SEQ	ID I	10:30	3:								
20		(i)	(A) (B) (C)	LEN TYP STP	ngth Pe: a Randi	ARACT : 293 amino EDNES GY:	3 ami 5 aci 5S:	ino a id		S							
25																	
	,	(xi)	SEQ	JENCE	E DES	SCRI	PTĬ0	1: SI	Q II	D NO	:33:						
30		Thr 1	Ala	Phe	Ala	Ala 5	Phe	Leu	Ala	Phe	Gly 10	Asn	Пe	Ser	Pro	Va1 15	Leu
35		Ser	Ala	Gly	G1y 20	Ser	Gly	Gly	Asn	G1y 25	Gly	Asn	Gly	Gly	Gly 30	His	Gln
		Glu	G1n	Asn 35	Asn	Ala	Asn	Asp	Ser 40	Ser	Asn	Pro	Thr	G1y 45	Ala	Gly	Gly
40		Gln	Pro 50	Asn	Asn	Glu	Ser	Lys 55	Lys	Lys	Ala	Va7	Lys 60	Leu	Asp	Leu	Asp
45		Leu 65	Met	Lys	Glu	Thr	Lys 70	Asn	Val	Cys	Thr	Thr 75	Val	Asn	Thr	Lys	Leu 80
50		Va1	Gly	Lys	Ala	Lys 85	Ser	Lys	Leu	Asn	Lys 90	Leu	Glu	Gly	Glu	Ser 95	His
50		Lys	Glu	Tyr	Val 100	Ala	Glu	Lys	Thr	Lys 105	Glu	Пe	Asp	Glu	Lys 110	Asn	Lys
55					-				•								

5	Lys	Phe	Asn 115	Glu	Asn	Leu	Val	Lys 120	Ile	Glu	Lys	Lys	Lys 125	Lys	Ile	Lys
3	Val	Pro 130	Ala	Asp	Thr	Gly	Ala 135	Glu	Va1	Asp	Ala	Va1 140	Asp	Asp	Gly	Val
10	Ala 145	Gly	Ala	Leu	Ser	Asp 150	Leu	Ser	Ser	Asp	Ile 155	Ser	Ala	Пе	Lys	Thr 160
15	Leu	ı Thr	Asp	Asp	Va7 165	Ser	Glu	Lys	Val	Ser 170	Glu	Asn	Leu	Lys	Asp 175	Asp
	Glu	ı Ala	Ser	A1a 180	Thr	Glu	His	Thr	Asp 185	Ile	Lys	Glu	Lys	Ala 190	Thr	Leu
20	Leu	ı G1n	Glu 195	Ser	Cys	Asn	Gly	Ile 200	Gly	Thr	Пe	Leu	Asp 205	Lys	Leu	Ala
25	Glu	Tyr 210	Leu	Asn	Asn	Asp	Thr 215	Thr	Gln	Asn	He	Lys 220	Lys	Glu	Phe	Asp
20	G1u 225	Arg	Lys	Lys	Asn	Leu 230	Thr	Ser	Leu	Lys	Thr 235	L y s	Val	Glu	Asn	Lys 240
30	Asp	G1u	Asp	Tyr	Va1 245	Asp	Val	Thr	Met	Thr 250	Ser	Lys	Thr	Asp	Leu 255	Ile
35	ΙΊϵ	His	Cys	Leu 260	Thr	Cys	Thr	Asn	Asp 265	Ala	His	Gly	Leu	Phe 270	Asp	Phe
40	Glu	Ser	Lys 275	Ser	Leu	Пе	Lys	G1n 280	Thr	Phe	Lys	Leu	Arg 285	Ser	Lys	Asp
	Glu	Gly 290	Glu	Leu	Cys											
45	(2) INFO	RMAT	ION F	FOR S	SEQ I	ID NO):34:	•								
50	(i)	(B (C	UENCI) LEI) TYI) STI) TOI	NGTH: PE: & RANDE	433 amino EDNES	l ami o aci SS:	ino a id		;							

	(X1)	SEQU	JENCE	DES	CKIF	'I I UN	1: St	וו עונ) NU:	:34:						
5	Gly 1	Pro	Lys	Met	Lys 5	Va 1	Asn	Ser	Ala	Asn 10	Leu	Asp	Phe	Arg	Trp 15	Ala
10	Met	Tyr	Met	Leu 20	Asn	Ser	Lys	Пe	His 25	Leu	Пе	G1u	Ser	Ser 30	Leu	Ile
	Asp	Asn	Phe 35	Thr	Leu	Asp	Asn	Pro 40	Ser	Ala	Tyr	G1u	Ile 45	Leu	Arg	Val
15	Ser	Tyr 50	Asn	Ser	Asn	Glu	Phe 55	Gln	Val	Gln	Ser	Pro 60	Gln	Asn	Ile	Asn
20	Asn 65	Glu	Met	Glu	Ser	Ser 70	Thr	Pro	Glu	Ser	Asn 75	Ile	Ile	Trp	Val	Va1 80
25	His	Ser	Asp	Va1	I1e 85	Met	Lys	Arg	Phe	Asn 90	Cys	Lys	Asn	Arg	Lys 95	Ser
	Leu	Ser	Thr	His 100	Ser	Leu	Thr	Glu	Asn 105	Asp	Ile	Leu	Lys	Phe 110	Gly	Arg
30	Ile	Glu	Leu 115	Ser	Val	Lys	Cys	Ile 120	Ile	Met	Gly	Ala	Gly 125	Ile	Thr	Ala
35	Ser	Asp 130		Asn	Leu	Lys	Gly 135	Leu	Gly	Phe	Пe	Ser 140	Pro	Asp	Lys	Gln
40	Ser 145		Asn	Val	Cys	Asn 150	Tyr	Phe	Glu	Asp	Met 155	His	Glu	Ser	Tyr	His 160
40	Ile	Leu	Asp	Thr	G1n 165		Ala	Ser	Asp	Cys 170		Ser	Asp	Asp	Gly 175	ala
45	Asp	Ile	Asp	Ile 180		Asn	Phe	Asp	Met 185		Gln	Asp	Gly	Asn 190		Asn
50	Ser	Val	Asp 195		Asp	Ser	Glu	Thr 200		Met	Ala	Asn	Ser 205		Val	Thr

	Val	Asn 210	Asn	Thr	Glu	Asn	Va1 215	Ser	Asn	Ser	G1u	Asn 220	Phe	Gly	Lys	Leu
5	Lys 225	Ser	Leu	Val	Ser	Thr 230	Thr	Thr	Pro	Leu	Cys 235	Arg	Ile	Cys	Leu	Cys 240
10	Gly	Glu	Ser	Asp	Pro 245	Gly	Pro	Leu	Va1	Thr 250	Pro	Cys	Asn	Cys	Lys 255	Gly
15	Ser	Leu	Asn	Tyr 260	Val	His	Leu	Glu	Cys 265	Leu	Arg	Thr	Trp	I1e 270	Lys	Gly
	Arg	Leu	Ser 275	Ile	Val	Lys	Asp	Asp 280	Asp	Ala	Ser	Phe	Phe 285	Trp	Lys	Glu
20	Leu	Ser 290	Cys	Glu	Leu	Cys	Gly 295	Lys	Pro	Tyr	Pro	Ser 300	Val	Leu	G1n	Val
25	Asp 305	Asp	Thr	Glu	Thr	Asn 310	Leu	Met	Asp	Ile	Lys 315	Lys	Pro	Asp	Ala	Pro 320
	Tyr	Val	Va1	Leu	G1u 325	Met	Arg	Ser	Asn	Ser 330	Gly	Asp	Gly	Cys	Phe 335	Val
	Va1	Ser	Val	A1a 340	Lys	Asn	Lys	Ala	11e 345	Ile	Gly	Arg	Gly	His 350	Glu	Ser
35	Asp	Val	Arg 355	Leu	Ser	Asp	Ile	Ser 360	Val	Ser	Arg	Met	His 365	Ala	Ser	Leu
40	Glu	Leu 370	Asp	Gly	Gly	Lys	Va1 375	Val	Ile	His	Asp	G1n 380	Gln	Ser	Lys	Phe
	G1y 385	Thr	Leu	Val	Arg	A1a 390	Lys	Ala	Pro	Phe	Ser 395	Met	Pro	Ile	Lys	G1y 400
45	Pro	Ile	Cys	Leu	G1n 405	Val	Ser	Пe	Phe	Phe 410	Leu	Asn	Leu	Lys	11e 415	Ser
50	Thr	His	Ser	Leu 420	Thr	Met	Glu	Arg	G1y 425	Met	Glu	His	Val	Leu 430	Leu	

	(2) INFORMATION FOR SEQ ID NO:35:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS:
10	(D) TOPOLOGY: linear
15	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 1 (D) OTHER INFORMATION: /note= "Residue can be either GLU or GLY"</pre>
20	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 2</pre>
25	(D) OTHER INFORMATION: /note= "Residue can be either ALA or THR"
30	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 3 (D) OTHER INFORMATION: /note= "Residue can be either GLY or VAL"</pre>
35	(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 4 (C) OTHER INCOMMATION: (note: "Posidue can be either TRUE
4 0	(D) OTHER INFORMATION: /note= "Residue can be either TRP or GLY"(ix) FEATURE: (A) NAME/KEY: Modified-site
45	<pre>(B) LOCATION: 5 (D) OTHER INFORMATION: /note= "Residue can be either PRC or SER"</pre>
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:
	Xaa Xaa Xaa Xaa Ser 1 5

	(2) INFORMATION FOR SEQ ID NO:36:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
10	(b) Tol occur. Tilled
	(ix) FEATURE:
15	(A) NAME/KEY: Modified-site
	<pre>(B) LOCATION: 6 (D) OTHER INFORMATION: /note= "Residue can be either Met</pre>
	or Ile"
20	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
	(B) LOCATION: 9
OE.	(D) OTHER INFORMATION: /note= "Residue can be either Tyr
25	or Ser"
	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
30	(B) LOCATION: 10
	(D) OTHER INFORMATION: /note= "Residue can be either Ser or Phe"
	OI FIIC
35	(ix) FEATURE:
35	(A) NAME/KEY: Modified-site
	(B) LOCATION: 12
	(D) OTHER INFORMATION: /note= "Residue can be either Leu or Ile"
40	Of The
	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
Ť	(B) LOCATION: 13 (D) OTHER INFORMATION: /note= "Residue can be Pro, Ser or
45	Leu"
	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
50	(B) LOCATION: 17
	(D) OTHER INFORMATION: /note= "Residue can be either Leu

	or Arg"
5	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 19 (D) OTHER INFORMATION: /note= "Residue can be Glu. Asp or</pre>
10	Gly"
15	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 20 (D) OTHER INFORMATION: /note= "Residue can be either Ile</pre>
	or Phe"
20	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 21 (D) OTHER INFORMATION: /note= "Residue can be either Ala</pre>
	or Val"
25	(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 23
<i>30</i>	(D) OTHER INFORMATION: /note= "Residue can be either Leu or Pro"
35	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 26 (D) OTHER INFORMATION: /note= "Residue can be either Met or Thr"</pre>
4 0	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 27 (D) OTHER INFORMATION: /note= "Residue can be either Ser"</pre>
	or Leu"
45	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 28 (D) OTHER INFORMATION: /note= "Residue can be either Val</pre>
50	or Phe"
	(ix) FEATURE:

5	<pre>(A) NAME/KEY: Modified-site (B) LOCATION: 29 (D) OTHER INFORMATION: /note= "Residue can be either Thr or Ile"</pre>	
10	<pre>(ix) FEATURE:</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
00	Arg Cys Leu Ser Ile Xaa Arg Phe Xaa Xaa Ser Xaa Xaa Thr Phe Ile 1 5 10 15	
20	Xaa Ile Xaa Xaa Xaa Met Xaa Phe Phe Xaa Xaa Xaa Xaa Phe Leu 20 25 30	
25	(2) INFORMATION FOR SEQ ID NO:37:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1820 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
35	CGGCACGAGT AGCCCCCACC ATCTTTTGCA TTCATTTCAA GTTTCTCCAA ATCTCGATGG	60
	GACCTCCAAT TTTGGCTCCA CCACAAACAA GTCTGACATA TTGAGCAAAA CATATTGATT	120
40	TAATTTAAAG AACAGACATC TGGCCATTCA TGCTAAGAGG TCTCTTCATT GTTGAGTGGG	180
	AACAGCCTTG TATACGGGCT TACAACACAA TGGAAAAACA CCTTGTAGAA GAGATCATGC	240
45	TTCACTCAGT GCTAGATGTT GATGCCAGTG ATTTGCTTGG GGTAGTAAGC CAGTACTAGA	300
	ATACAGGATG CACTTGGACT GGCAAACAGA ATACACCTGT TGCCTGAATA GAAACTCACA	360
50	GAGACCCGAT GCTGTCTGGT ACCAACAAGG TTCTGCTTCT GGGAAGAATT TACAGATATT	420
	ATGTTGGGAA AAGAGACACC CTGTATGTGT AGAAACAAAG AAGCACAGAT CTTAGATGAA	480

	TTAATATAAG	AATGATACTT	CTCTAGAAAC	AAATGTAGTT	ACCAACTATA	TTCCAGAACC	540
5	CAATGCGGAT	TCAGAATCTG	TACATGTTGA	AATCCAGGAA	CATGATAACA	TCAATCCACA	600
	AGACGCTTGC	GATAGTGAGC	CGCTCGAACA	AATGGATTCT	GATACCAGGG	TGTTGCCCGA	660
10	AAGTTTGGAT	GAGGGGTAC	CACACCAATT	CTCTAGATTA	GGGCACCACT	CAGACATGGC	720
	ATCTGATATA	AATGATGAAG	AACCATCATT	TAAAATCGGC	GAGAATGACA	TAATTCAACC	780
15	ACCCTGGGAA	GATACAGCTC	CATACCATTC	AATAGATGAT	GAAGAGCTTG	ACAACTTAAT	840
13	GAGACTAACG	GCGCAAGAAA	CAAGTGACGA	TCATGAAGAA	GGGAATGGCA	AACTCAATAC	900
	GAATAAAAGT	GAGAAGACTG	AAAGAAAATC	GCATGATACT	CAGACACCGC	AAGAAATATA	960
20	TGAAGAGCTT	GACAACTTAC	TGAGACTAAC	GGCACAAGAA	ATATATGAAG	AGCGTAAAGA	1020
	AGGGCATGGC	AAACCCAATA	CGAATAAAAG	TGAGAAGGCT	GAAAGAAAAT	CGCATGATAC	1080
25	TCAGACAACG	CAAGAAATAT	GTGAAGAGTG	TGAAGAAGGG	CATGACAAAA	TCAATAAGAA	1140
	TAAAAGTGGA	AATGCTGGAA	TAAAATCGTA	TGATACTCAG	ACAACGCAAG	AAATATGTGA	1200
30	AGAGTGTGAA	GAAGGCATG	ACAAAATCAA	TAAGAATAAA	AGTGGAAATG	CTGGAATAAA	1260
	ATCGTATGAT	ACTCAGACAC	CGCAGGAAAC	AAGTGACGCT	CATGAAGAAG	GGCATGACAA	1320
35	AATCAATACG	AATAAAAGTG	AGAAGGCTGA	AAGAAAATCG	CATGATACTC	AGACAACGCA	1380
	AGAAATATGT	GAAGAGTGTG	AAGAAGGGCA	TGACAAAATC	AATAAGAATA	AAAGTGGAAA	1440
40	TGCTGGAATA	AAATCGTATG	ATACTCAGAC	ACCGCAGGAA	ACAAGTGACG	CTCATGAAGA	1500
	AGAGCATGGC	AATCTCAATA	AGAATAAAAG	TGGGAAGGCT	GGAATAAAAT	CGCATAATAC	1560
4 5	TCAGACACCG	CTGAAAAAA	AAGACTTTTG	TAAAGAAGGG	TGTCATGGTT	GCAATAATAA	1620
	GCCCGAGGAT	AATGAAAGAG	ACCCGTCGTC	GCCTGATGAT	GATGGTGGCT	GCGAATGCGG	1680
50	CATGACGAAT	CACTTTGTCT	TTGACTACAA	GACAACACTC	TTGTTAAAGA	GCCTCAAGAC	1740
	TGAAACATCC	ACTCATTATT	ACATTGCCAT	GGCTGCAATT	TTTACTATTT	CATTATTCCC	1800

ATGCATGTTT AAGGCTTTCC	1820

5	(2)	INFOF	(TAMS	ION F	OR S	SEQ 1	D NO	0:38:	:								
10	*	(i)	(A) (B) (C)	JENCE) LEN) Tyf) Stf) Tof	IGTH: PE: & RANDE	445 amino EDNES	ami aci SS:	ino a id		5	•						
15																	
		(xi)	SEQ	JENCE	E DES	SCRIF	PTIO	v: SE	Q II) NO:	:38:						
20		Tyr 1	Lys	Asn	Asp	Thr 5	Ser	Leu	Glu	Thr	Asn 10	Val	Val	Thr	Asn	Tyr 15	Ile
25		Pro	Glu	Pro	Asn 20	Ala	Asp	Ser	Glu	Ser 25	Val	His	Val	Glu	Ile 30	G1n	Glu
30		His	Asp	Asn 35	Ile	Asn	Pro	Gln	Asp 40	Ala	Cys	Asp	Ser	G1u 45	Pro	Leu	Glu
		Gln	Met 50	Asp	Ser	Asp	Thr	Arg 55	Val	Leu	Pro	Glu	Ser 60	Leu	Asp	Glu	Gly
35		Va1 65	Pro	His	Gln	Phe	Ser 70	Arg	Leu	GÌy	His	His 75	Ser	Asp	Met	Ala	Ser 80
40		Asp	Ile	Asn	Asp	G1u 85	Glu	Pro	Ser	Phe	Lys 90	Ile	Gly	Glu	Asn	Asp 95	Ile
		Ile	Gln	Pro	Pro 100	Trp	Glu	Asp	Thr	A1a 105	Pro	Tyr	His	Ser	Ile 110	Asp	Asp.
45		Glu	Glu	Leu 115	Asp	Asn	Leu	Met	Arg 120	Leu	Thr	Ala	Gln	Glu 125	Thr	Ser	Asp
50		Asp	His 130	Glu	Glu	Gly	Asn	Gly 135	Lys	Leu	Asn	Thr	Asn 140	Lys	Ser	Glu	Lys
		Thr	Glu	Arg	Lys	Ser	His	Asp	Thr	Gln	Thr	Pro	Gln	Glu	Ile	Tyr	Glu

	145					150					155					160
5	G1u	Leu	Asp	Asn	Leu 165	Leu	Arg	Leu	Thr	Ala 170	Gln	Glu	Пe	Tyr	G1u 175	Glu
10	Arg	Lys	Glu	Gly 180	His	Gly	Lys	Pro	Asn 185	Thr	Asn	Lys	Ser	G1u 190	Lys	Ala
70	Glu	Arg	Lys 195	Ser	His	Asp	Thr	G1n 200	Thr	Thr	Gln	Glu	I1e 205	Cys	Glu	Glu
15	Cys	G1u 210	Glu	Gly	His	Asp	Lys 215	Пe	Asn	Lys	Asn	Lys 220	Ser	G1y	Asn	Ala
20	G1y 225	IJе	Lys	Ser	Tyr	Asp 230	Thr	Gln	Thr	Thr	G1n 235	Glu	Ile	Cys	G1u	G1u 240
	Cys	G1u	Glu	Gly	His 245	Asp	Lys	Ile	Asn	Lys 250	Asn	Lys	Ser	Gly	A sn 255	Ala
25	Gly	He	Lys	Ser 260	Tyr	Asp	Thr	Gln	Thr 265	Pro	Gln	Glu	Thr	Ser 270	Asp	Ala
30	His	Glu	G1u 275	Gly	His	Asp	Lys	Ile 280	Asn	Thr	Asn	Lys	Ser 285	G 1u	Lys	Ala
	Glu	Arg 290	Lys	Ser	His	Asp	Thr 295	Gln	Thr	Thr	Gln	G1u 300	Пe	Cys	Glu	Glu
35	Cys 305	G1u	Glu	Gly	His	Asp 310	Lys	Ile	Asn	Lys	Asn 315	Lys	Ser	Gly	Asn	Ala 320
40 .	Gly	Пe	Lys	Ser	Tyr 325	Asp	Thr	Gln	Thr	Pro 330	Gln	Glu	Thr	Ser	Asp 335	Ala
	His	Glu	Glu	G1u 340	His	Gly	Asn	Leu	Asn 345	Lys	Asn	Lys	Ser	G1y 350	Lys	Ala
45	Gly	Ile	Lys 355	Ser	His	Asn	Thr	G1n 360	Thr	Pro	Leu	Lys	Lys 365	Lys	Asp	Phe
50	Cys	Lys 370	Glu	Gly	Cys	His	G1y 375	Cys	Asn	Asn	Lys	Pro 380	Glu	Asp	Asn	Glu
	Arg	Asp	Pro	Ser	Ser	Pro	Asp	Asp	Asp	Gly	Gly	Cys	Glu	Cys	Gly	Met
55																

	385				390					395					400
5	Thr	Asn Hi	s Phe	Va1 405	Phe	Asp	Tyr	Lys	Thr 410	Thr	Leu	Leu	Leu	Lys 415	Ser
10	Leu	Lys Th	r Glu 420		Ser	Thr	His	Tyr 425	Tyr	Ile	Ala	Met	Ala 430	Ala	Ιle
	Phe	Thr I1 43		Leu	Phe	Pro	Cys 440	Met	Phe	Lys	Ala	Phe 445			
15	(2) INFO	RMATION	FOR	SEQ :	ID NO	0:39	:								
20	(i)	(B) T	CE CH ENGTH YPE: TRAND OPOLO	: 32 amino EDNES	amir o aci SS:	no ao id									
25															
30	(ix) or Asp	(B) L	E: AME/K OCATI THER	ON: 3	3				"Res	idue	can	be	eith	er G	۱y
35	(ix)	(B) L (D) C	E: AME/K OCATI THER	ON:	5				"Res	i due	can	be	eith	er P	ro
40	(ix)	(B) L	AME/K OCATI	ON:	7				#D	• 4			- 211	1	
45	or Thr		THER	INFU	KMAI.	IUN:	/no	re=	res	1 aue	can	bе	eitn	er L	ys
50	(ix)	(B) L (D) (E: IAME/K OCATI ITHER	ON:	11				"Res	idue	can	be	eith	er G	lu

	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
	(B) LOCATION: 12
5	(D) OTHER INFORMATION: /note= "Residue can be either Lys
	or Asn"
	01 7501
	(ix) FEATURE:
10	(A) NAME/KEY: Modified-site
	(B) LOCATION: 14
	(D) OTHER INFORMATION: /note= "Residue can be either Glu
	or Gly"
	o. dij
15	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
	(B) LOCATION: 15
	(D) OTHER INFORMATION: /note= "Residue can be either Ile
20	or Arg"
	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
25	(B) LOCATION: 18
	(D) OTHER INFORMATION: /note= "Residue can be either His
	or Tyr"
	•
	(ix) FEATURE:
30	(A) NAME/KEY: Modified-site
	(B) LOCATION: 23
	(D) OTHER INFORMATION: /note= "Residue can be either Thr
	or Pro"
35	
	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
	(B) LOCATION: 26
40	(D) OTHER INFORMATION: /note= "Residue can be either Ile
	or Thr"
	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
4 5	(B) LOCATION: 27
	(D) OTHER INFORMATION: /note= "Residue can be either Cys
	or Ser"
50	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
	(B) LOCATION: 28

	(D) OTHER INFORMATION: /note= "Residue can be either Asp or Glu"	
5	<pre>(ix) FEATURE: (A) NAME/KEY: Modified-site (B) LOCATION: 29 (D) OTHER INFORMATION: /note= "Residue can be either Glu or Ala"</pre>	
15	<pre>(ix) FEATURE:</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
<i>2</i> 5	Gly His Xaa Lys Xaa Asn Xaa Asn Lys Ser Xaa Xaa Ala Xaa Xaa Lys 1 5 10 15	
	Ser Xaa Asp Thr Gln Thr Xaa Gln Glu Xaa Xaa Xaa Xaa Xaa Glu Glu 20 25 30	
30	(2) INFORMATION FOR SEQ ID NO:40:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2430 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40		
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
	TGTATTGTGT AGATAAAAAT GATGTTTCAT TATGGAAATC AAAACCTATA ACAACTGTCA	60
50	GTACCACTAA TGATACTATT ACAAATACAC ACACTACTAA TGTAATTAAT GCCAATCTTA 1	20
	TTGGCCACTT TAATTATAAG GATAGGGAAC CTTTAACAAT AGTATTTGTA TACATGATCG 1	.80

	ATGAATCAGA /	ACAAAATAAA	TTATCACATC	CGAATAAAAT	TGATAAAATC	AAAATTTCTG	240
5	ATTATATAAT	TGAATTTGAT	GACAATGCTA	AATTACCAAC	TGGTAGTGTT	ATTGATTTAA	300
	ACATCTATAC	TTGCAAACAT	AATAATCCAG	TATTAATTGA	ATTTTATGTT	TCTATAGAAG	360
	GATCTTTCTG	CTATTATTTC	TCTCATTGAA	TAATGATACA	AATGAATGGA	ATAATCACAA	420
.10	AATAAAATAT (GATAAAAAAT	ATAAAGAATA	TACGGACATG	AATGGTATTC	ATTATTATTA	480
	TATTGATGGT	AGTTTACTTG	TAAGTGGCGA	AGTTACATCT	AATTTTCGTT	ATATTTCTAA	540
15	AGAATATGAA	TATGAGCATA	CAGGATTAGT	AAAAAAATAT	TGTAATGAAG	AAAGATGTGT	600
	AAAATTGGAT A	aacattaaga	TAAAGGATAA	TAATTTGGAA	ATTTATGTGA	AATTAATTAA	660
20	TGAAGTATAA	TATTATTTAT	AATAATTCAA	AGATTAATAT	AATCAATTAT	TATAATTACA	720
	AAAATAATTA A	ATTGTAGAAT	ATTATATTAT	TAATCAATTC	ÄGATTATAAA	TACATATTTT	780
25	TACATACATT	TCAATTTAAA	CATTCAAATT	AATGTCATTT	TTATCTACAT	TATTATATT	840
	ATAACTATAA	TATTCATTAA	ATACTATTAA	AAAAAATATC	CTCTACATTA	TATTAATTAT	900
30	TATAGTATGT	CATTATATAA	CATATTCACA	ACGTATAACA	AATCAATCAT	TAACATATAC	960
	ATATATGATA	TCATTAATAA	TCAATATTTA	ATTGATACAA	TAATCAATAG	TCATCTGTAA	1020
35	TATAATCATT (GTATACTAAT	TTATTATAAA	TTATTACAAA	ATACACTCTT	TTACTTCATT	1080
~	TTATTTCTGT	TAAATTTCAT	ATTCTAATAT	TATATTCATC	TTTCTCATGT	TACTTTAATC	1140
	TATTTCCATA	TTTATCCCAA	TTTCTTCATT	TAAGACTGAG	ATGTTCGTTC	GTTCATACAT	1200
40	AAATAATGTG	TAAATTTTGT	AATATATAAT	AATGTATACA	TCTGGTATTA	CATCTATTTT	1260
	GTAATAAATA	TTAAAAAAAC	GGTTAAAGTT	AGTGCCTTAA	TTCCAGGAAT	TATTACATTA	1320
45	GAAACTTTGG	TGATTTTAGT	GATTTCGGTG	ATCATTGAAA	GAAATGGTTT	GAAACTTGCA	1380
	ATACTGTCAT	ACTCATCATA	ATCCCCAATG	TTGGAAATCA	TGATGTCAAC	ATTTTTAA	1440
50	AATTCTTCTG	CTGCACTATT	CAACTCCTTA	ATCATGTCCT	CAAAATGAGT	GTTATAATCT	1500
	CCATCCTTTT	TAGTGATCTT	ATCCCTCAAA	ACTAAAGCTT	TAGATTTGGA	TTCGTCAAAA	1560

.

	TTTTCTTGA	TATCATTAAC	GGTATTGTCA	TAATAGAATT	TATAGATTAA	ATGTTGTAAT	1620
5	AATAAGTCAC	AATATATAAA	CATATCTTTA	AGTACAATAG	ACTTCCATAT	ATTACGGAAA	1680
	TGGTCAAAAT	TATCAGCAGC	TGGACCTTCC	AATGTACCAT	AGGCCTTGTT	TGATATTTCA	1740
10	TCAACCAATA	ACTTATATTT	TGAAGAGATA	GTGGATGCAT	TATCAAATAT	TCTAGCCAAT	1800
	тсттстттст	TCATAAGGGA	ATATTGTTCA	GGAAAACATT	TTTCCAATTC	TTTTTCAAT	1860
15	TTATTCTTCT	CCTTGGTTTT	TTCTTCAATG	TAGTCTTTAT	GACCATCGTT	CACCCTATCT	1920
	CGTTCCAATA	TCATAACACT	ATGTTTGTAT	ATATAAGATA	AACAAACTTC	ATTAAATATA	1980
	ACTATTCTTC	TAGAATACGG	AAGAAGCTGA	TATCCAAATC	GTTCACTAGA	CCAACCAGCT	2040
20	TCACTAGGCC	AACCAGTTCC	ACTAGGCCAA	CCAGTTCCAC	TAGGCCCACC	AGCTTCACTA	2100
	GGCCCACCAG	CTTCACTAGG	CCCACCAGCT	TCACTAGGCC	CACCAGCTTC	ACTAGGCCAA	2160
25	CCAGTTCCAC	TAGGCCCACC	AGCTTCACTA	GGCCCACCAG	CTTCACTGGG	CCCAACAGTT	2220
	CCACTAGGCC	CACCAGCTTC	ACTAGGCCCA	CCAGCTTCGG	GATCGGTATC	ACTTGCAAAG	2280
30	ACAGCACCGC	TCATTAAAAA	GAGTGTAATA	TAAGGAACTA	ATATTGATTT	AAATGACACC	2340
	ATCTTTATAA	ACCATAGTTA	TTGGTACATT	ATTAGTACAT	TATTGGTATA	TGATTGGTAC	2400
35	GTGGTAGTGA	TTGTGGTGCT	GCATCTAGTT	•			2430

(2) INFORMATION FOR SEQ ID NO:41:

40

45

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 128 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

	Tyr 1	Cys	Val	Asp	Lys 5	Asn	Asp	Va1	Ser	Leu 10	Trp	Lys	Ser	Lys	Pro 15	Ile	
5	Thr	Thr	Va1	Ser 20	Thr	Thr	Asn	Asp	Thr 25	Ile	Thr	Asn	Thr	His 30	Thr	Thr	
10	Asn	Val	11e 35	Asn	Ala	Asn	Leu	11e 40	Gly	His	Phe	Asn	Tyr 45	Lys	Asp	Arg	
	Glu	Pro 50	Leu	Thr	Пe	Val	Phe 55	Va1	Tyr	Met	Ile	Asp 60	Glu	Ser	G1u	Gln	
15	Asn 65	Lys	Leu	Ser	His	Pro 70	Asn	Lys	Ile	Asp	Lys 75	Ile	Lys	Ile	Ser	A sp 80	
20	Tyr	Пе	Ile	Glu	Phe 85	Asp	Asp	Asn	Ala	Lys 90	Leu	Pro	Thr	Gly	Ser 95	Val	
25	Ile	Asp	Leu	Asn 100	Ile	Tyr	Thr	Cys	Lys 105	His	Asn	Asn	Pro	Val 110	Leu	Ile	
	Glu	Phe	Tyr 115	Val	Ser	Пе	Glu	Gly 120	Ser	Phe	Cys	Tyr	Tyr 125	Phe	Ser	His	
30	(2) INFO	RMAT]	EON F	OR S	SEQ 1	D NO):42:										
35	(1)	(B)	JENCE) LEN) TYF) STF) TOF	IGTH: PE: r RANDE	127 nucle DNES	'1 ba eic a SS: s	se p cid ingl	airs	;								
40										•							
4 5	(xi)	SEQL	JENCE	DES	CRIP	OIT	I: SE	Q IC	NO:	42:							
	TGAGAAAA	CG CA	ATATA	ATTO	TA4	CTAC	GCC	AGAG	AAGT	TT G	iACG1	AGT	ΓA CA	ACGTA	WAA(;	60
50	AGGCAATG/																120
	CCATGACA	CT AG	GGGT	CCAG	TGC	TGGA	GGC	TATT	GTGG	CC C	GCCT	[GAG]	rc ac	GAGG(CCG/	A	180

	ACGCGTAAGG	CTAGTTGGTC	TATCGGCCAC	GCTTCCAAAC	TACGAAGACG	TGGCTAGATT	240
5	TCTCACTGTT	AATCTAGACC	GAGGGCTTTT	CTACTTTGGC	AGCCACTTTA	GGCCTGTGCC	300
	CTTGGAGCAG	GTGTATTATG	GCGTGAAGGA	GAAGAAGGCT	ATCAAACGTT	TCAACGCAAT	360
10	CAACGAAATT	CTCTACCAAG	AGGTGATTAA	CGATGTTTCT	AGCTGCCAAA	тсттеттт	420
	TGTGCATTCT	AGAAAGGAAA	CGTACAGGAC	GGCAAAATTT	ATCAAAGACA	CGGCCCTTTC	480
	ACGGGACAAC	TTGGGAGCCT	AAACCCTAAA	CCCTAAACCC	TAAACCCTAA	CCCTAAACCC	540
15	TAĄACCCTAA	ACCCTAAACC	CTAAACCCTA	ACCCTAACCC	TAACCCTAAC	CCTAACCTAG	600
	CCTTCATTGA	CGTCTATCCC	CAATCTTAGA	AAAATCTTCA	AATCGATTCT	AGAATAACTG	660
20	GAAGCAATTA	TCAGAAATTG	TATAACTGCT	TATTAGCTTA	TTAGCTTATT	AGTTAGGATG	720
	TATGCACATT	GATGACAACT	AGATGCAGCA	CCACAATCAC	TACCACGTAC	CAATCATATA	780
25	CCAATAATGT	ACTAATAATG	TACCAATAAC	TATGGTTTAT	AAAGATGGTG	TCATTTAAAT	840
	CAATATTAGT	TCCTTATATT	ACACTCTTTT	TAATGAGCGG	TGCTGTCTTT	GCAGGTGATA	900
30	CCGATCGCGA	AGCTGGTGGG	CCTAGTGGAA	CTGTTGGGCC	TAGTGAAGCT	GGTGGCCTA	960
	GTGAAGCTGG	TGGGCCTAGT	GAAGCTGGTG	GGCCTAGTGA	AGCTGGTGGG	CCTAGTGAAG	1020
35 .	CTGGTGGGCC	TAGTGAAGCT	GGTGGGCCTA	GTGAAGCTGG	TGGGCCTAGT	GAAGCTGGTG	1080
	GGCCTAGTGG	AACTGGTTGG	CCTAGTGAAG	CTGGTGGGCC	TAGTGAAGCT	GGTGGGCCTA	1140
40	GTGAAGCTGG	TGGGCCTAGT	GGAACTGGTT	GGCCTAGTGA	AGCTGGTTGG	CCTAGTGAAG	120
.•	CTGGTTGGCC	TAGTGAAGCT	GGTTGGCCTA	GTGAAGCTGG	TTGGCCTAGT	GAAGCTGGTT	126
	GGCCTAGTGA	Α					127

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 166 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

55

45

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:																
5		Glu 1	Lys	Thr	His	Ile 5	Ile	Val	Thr	Thr	Pro 10	Glu	Lys	Phe	Asp	Va1 15	Val
10		Thr	Arg	Lys	Thr 20	Gly	Asn	Glu	Pro	Leu 25	Leu	G1u	Arg	Leu	Arg 30	Leu	Val
		Ile	Ile	Asp 35	Glu	Ile	His	Leu	Leu 40	His	Asp	Thr	Arg	G1y 45	Pro	Val	Leu
15		Glu	A1a 50	Ile	Va1	Ala	Arg	Leu 55	Ser	Gln	Arg	Pro	G1u 60	Arg	Val	Arg	Leu
20		Va1 65	Gly	Leu	Ser	Ala	Thr 70	Leu	Pro	Asn	Tyr	G1u 75	Asp	Val	Ala	Arg	Phe 80
25		Leu	Thr	Val	Asn	Leu 85	Asp	Arg	Gly	Leu	Phe 90	Tyr	Phe	G1y	Ser	His 95	Phe
		Arg	Pro	Val	Pro 100	Leu	Glu	Gln	Val	Tyr 105	Tyr	Gly	Val	Lys	Glu 110	Lys	Lys
30		Ala	Ile	Lys 115	Arg	Phe	Asn	Ala	Ile 120	Asn	Glu	Пe	Leu	Tyr 125	Gln	Glu	Val
35		Ile	Asn 130	Asp	Va1	Ser	Ser	Cys 135	Gln	Ile	Leu	Val	Phe 140	Va1	His	Ser	Arg
40 .		Lys 145	Glu	Thr	Tyr	Arg	Thr 150	Ala	Lys	Phe	Ile	Lys 155	Asp	Thr	Ala	Leu	Ser 160
		Arg	Asp	Asn	Leu	Gly 165	Ala										
45	(2)	INFO	RMAT	ION 1	FOR S	SEQ :	ID N	0:44	:								
50		(i)	(A	UENCI) LEI) TYI	NGTH	: 154	4 am	ino a		5							
50			(D	, 111	- L. (um i (N	Jac	ıu.									

(C) STRANDEDNESS:
(D) TOPOLOGY: linear

5

		(רבט	ILMOI	- 05	COL	OT LO		-0.71	. 40	44						
10		(xi) Leu 1										Ser	Ile	Leu	Val	Pro 15	Tyr
15		Пе	Thr	Leu	Phe 20	Leu	Met	Ser	Gly	A1a 25	Val	Phe	Ala	Gly	Asp 30	Thr	Asp
20		Arg	Glu	A1a 35	Gly	Gly	Pro	Ser	Gly 40	Thr	Va1	Gly	Pro	Ser 45	Glu	Ala	Gly
a -		Gly	Pro 50	Ser	Glu	Ala	Gly	Gly 55	Pro	Ser	Glu	Ala	Gly 60	Gly	Pro	Ser	Glu
<i>2</i> 5		A1a 65	Gly	Gly	Pro	Ser	Glu 70	Ala	Gly	Gly	Pro	Ser 75	Glu	Ala	Gly	Gly	Pro 80
30		Ser	Glu	Aļa	Gly	G1y 85	Pro	Ser	Glu	Ala	G1y 90	Gly	Pro	Ser	Gly	Thr 95	Gly
35		Trp	Pro	Ser	Glu 100	Ala	Gly	Gly	Pro	Ser 105	Glu	Ala	Gly	Gly	Pro 110	Ser	Glu
		Ala	Gly	Gly 115	Pro	Ser	Gly	Thr	Gly 120	Trp	Pro	Ser	Glu	A1a 125	Gly	Trp	Pro
40		Ser	Glu 130	Ala	Gly	Trp	Pro	Ser 135	Glu	Ala	Gly	Trp	Pro 140	Ser	Glu	Ala	Gly
45		Trp 145	Pro	Ser	Glu	Ala	Gly 150	Trp	Pro	Ser	Glu						
	(2)	INFO	RMAT:	ION F	FOR S	SEQ :	ID NO):45	:								
50		(i)	(B)	LEI TYI	NGTH PE: 1	: 42 nucle	TERIS 23 ba eic a SS: s	ase p acid	oairs	5							

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

10	
15	
20	
25	
30	
35	
40	
45	

CTCGTGCCTT TCTCAACTGA TAACAGCTAA CAAAAAGTCT CTTATCTTAA ACCATCCTAT 60 ACCTCGTATT ATAATATGAA AAGGGCCTTT TCTAAATCTT TCCCCAAAGT TCTGCTATTT 120 AATTAAAAAA AAAAAAGACT CATTCAATAA ACGGGTGGGG CAGAAAGGGT ACCTTTCCAA 180 GTGTTCTTCC ATGACGACCC ACAATGCAAA GTTCTTCTTA CAAAGAAAAG AGAAAGATCC 240 ACTGAGTGAT AAGTAACCCA GCTGGGGCCG GGCGGTGGTG GCGCACACCT TTAATCCCAG 300 CACTCGGGAG GCAGAGGCAG GCGGATCTCT GTGAGTTCGA GACCAGGCTG GACCGACAGC 360 CTCCAAAACA ATACAGAGAA ACCCTGTCTC ATAAAAAAACC AAAAAAAAAG TAACCCAGCT 420 GGATTTGGTA ACTGTCTCAG AAACAGACTA TATAAAACCT CATCACCCTA CAACAAGTAG 480 540 600 660 720 TGTGTCTGTT CTGTTCAAGA AGGGTACCAC AAAAAGTAC CTTATGGCCA CATCAATGAC AATTATTACT GTATATAAAA TGCCCCCATG GATGGCATTG TATTGTCGAA ATTAAAGGCA 780 CCCCGAAAG AACAGCACAG AGGGGCTACC ACCAATTAAC TCCCAGGAGG AAATAAAGAC 840 900 AGAAGTGTGA AGGAGGGAGA GAGGGAGGGA GGAAGGGAGG GAGAAAAGGA GGGAAAAGGAA 960 CAAGGAGTAA CAGGGACAAA AGCAGCAGAT GGTGCCAGGC AGGAGTGTGC CTACCACACC GGGCCTTCCC GTTACTTCAT TTACTCTCCT TTGCAGCCTG GGAATAAACA AGTCACGCGT 1020 CACCCGGTGT CTCAAGCTCA GCATGGCTTG ATCTGAGTGC CCGTGTATGT GTTCATTCTA 1080 TAACTGATTT AAGGAACAAC TITCTGCTCA TTGCCTCTAT CTTCTCAAAC ATTTCGAAGC 1140

55

	AGTTATTTT	TATAAGAAAA	TATAAAACAG	GCCGACTAAA	TTCGATCTTT	CTCTCCCCAG	1200
5	CTGCTAGTTT	CTTATCTAGC	TGCTTTAGGC	AGTCTCCACA	GATTGCAGCC	AGGCCCCTAT	1260
	TCTCAATTCC	ATCTGACTTC	TGACAGCGCT	CTCCATTTCT	TATTTGCAGC	TTAGACATCT	1320
10	TCACTGAGAG	CAGGAGTAAT	TCATTCAAAT	GACAATGAGG	TATCTGAATA	TCACACAAAC	1380
	ACTTCAAATT	CTGTTTATTG	GAAATAGATC	TGCTCCTGCC	CCATCATAAC	AATCCTTTTT	1440
	ATCTTACTTA	ACAGGGCAA	GAAAATCTTT	CACTTCATTT	CCTATCATCT	CAAATGAGTT	1500
15	CCTGTACATG	AATGACTTAA	GGTAACCATA	TCCAACAACT	TGAAGCCAAC	CAGTCCCTGG	1560
	TCCTACTACA	GACGTTAGGG	AACATATGTG	AAAACCTGGT	GTACAACCTA	AATCATAACT	1620
20	AGACAGAAGA	CAGCACTATT	TCCTGGTCAC	ATAGAAAGCA	GAATAGCATC	CTCACACCAA	1680
	TGAGGAAAAT	GTCATGAAGG	CAGGAGAGAT	CATGACTGAG	GTGATACTTT	TACCAAAGAC	1740
25	TTGCCAGTGA	TTAATTTCTC	AATTAGTTAG	CAAAAAATAT	GGCTCTCTAG	TGAATTTGTG	1800
	TCCACACCAT	TTTCCAGATG	TTTTGATGTC	ACTTAAATCA	ATCTAATTAT	TTAAGTTAAA	1860
30	AAATGTTACA	GATCATTGCT	пппспп	TTTAGAAGAC	ATCAAAACAA	TAGGATTTCT	1920
	ATGAAATATT	CTCACTTCAC	AGCTGTGTCA	GTTAAAGTGC	TTTGGGTTAT	ACATAAAGAA	1980
35	AACAGACTCA	AGAAAGTAAG	AACAGGAATT	TGGAGCTTGC	AACACTGATG	TTCTTTGTAA	2040
	AAAGAGAGAC	TTTATCCAGG	GATTAGATTC	TGTCACAAGG	CCTGGAACTC	TCTCTTCTCA	2100
40	GCCTTATTTC	CCCAATATGG	ATTAGAATCT	TACACTGCAA	GCTTCCCACA	AGGGTGGACA	2160
	GGTCCTCACC	ATTTGTTTCA	GCAGGAAAAA	GAGTCTGTAT	GCATCCGTGA	TATCTAAGTC	2220
45	ACAATTCCAG	AAGTGAGCTT	TCCTGGCTCC	TATTGGTCGG	ACTTAGGTCA	GGTGTCACAT	2280
	TTCCTTTTGG	ATTAGTCTGT	GATTAATGAA	TGGGCCCACT	TTGCTCACCC	ATTAAGACAA	2340
	TAGGCTTCCA	TTCTCGAAGC	TGGAAGCATG	ACATGTCCCA	CAGAAACTGT	AATAAGAGAG	2400
50	ΔΑΓΑΤΑΓΩΤΤ	GCTGTGTGG∆	GAAACGAGGC	AACCGCCAAG	TCATAAGATG	ΔΓΔΔΔGTCTT	2460

	GGAAAGTCTA	AGTCAGTGGT	TCTCAGCCTT	CCCTAAACCC	TAAACCCTAA	ACCCTAAACC	2520
5	CTAAACCCTA	AACCCTAAAC	CCCTAAACCC	TAAACCCTAA	ACCCTAAACC	CTAAACCCTA	2580
	ACCCTAAACC	CTAAACCCTA	AACCCTAAAC	CCTAAACCCT	AACCCTAACC	CTAACCCTAA	2640
10	CCCTAACCTA	GCCTTCATTG	ACGTCTATCC	CCAATCTTAG	AAAAATCTTC	AAATCGATTC	2700
,,	TAGAATAACT	GGAAGCAATT	ATCAGAAATT	GTATAACTGC	TTATTAGCTT	ATTAGCTTAT	2760
	TAGTTAGGAT	GTATGCACAT	TGATGACAAC	TAGATGCAGC	ACCACAATCA	CTACCACGTA	2820
15	CCAATCATAT	ACCAATAATG	TACTAATAAT	GTACCAATAA	CTATGGTTTA	TAAAGATGGT	2880
	GTCATTTAAA	TCAATATTAG	TTCCTTATAT	TACACTCTTT	TTAATGAGCG	GTGCTGTCTT	2940
20	TGCAGGTGAT	ACCGATCGCG	AAGCTGGTGG	GCCTAGTGGA	ACTGTTGGGC	CTAGTGAAGC	3000
	TGGTGGGCCT	AGTGAAGCTG	GTGGGCCTAG	TGAAGCTGGT	GGGCCTAGTG	AAGCTGGTGG	3060
25	GCCTAGTGAA	GCTGGTGGGC	CTAGTGAAGC	TGGTGGGCCT	AGTGAAGCTG	GTGGGCCTAG	3120
	TGGAACTGTT	GGGCCTAGTG	AAGCTGGTGG	GCCTAGTGAA	GCTGGTGGGC	CTAGTGAAGC	3180
30	TGGTGGGCCT	AGTGAAGCTG	GTTGGCCTAG	TGAAGCTGGT	TGGCCTAGTG	AAGCTGGTTG	3240
	GCCTAGTGAA	GCTGGTTGGC	CTAGTGAAGC	TGGTTGGCCT	AGTGAAGCTG	GTTGGCCTAG	3300
35	TGAACGATTT	GGATATCAGC	TTCTTTGGTA	TTCTAGAAGA	ATAGTTATAT	TTAATGAAAT	3360
	TTATTTATCT	CATATATACG	AACATAGTGT	TATGATATTG	GAACGAGATA	GGGTGAACGA	3420
	TGGTCATAAA	GACTACATTG	AAGAAAAAC	CAAGGAGAAG	AATAAATTGA	AAAAAGAATT	3480
40	GGAAAAATGT	TTTCCTGAAC	AATATTCCCT	TATGAAGAAA	GAAGAATTGG	CTAGAATAAT	3540
	TGATAATGCA	TCCACTATCT	CTTCAAAATA	TAAGTTATTG	GTTGATGAAA	TATCCAACAA	3600
4 5	AGCCTATGGT	ACATTGGAAG	GTCCAGCTGC	TGATGATTTT	GACCATTTCC	GTAATATATG	3660
	GAAGTCTATT	GTACCTAAAA	ATATGTTTCT	ATATTGTGAC	TTATTATTAA	AACATTTAAT	372
50	CCGTTTAACC	CCCAGAAAGA	GCTGACCAGA	CAAAGGTTAA	CTCTTGAATC	CCAGGCATCA	378
	GCCTGGGAAT	CCATCATGGG	ACTGATCAAG	ACCCCCTGAA	TGTGGGTGTC	AGTGAGGAGG	384

	CCTAGGTA	AT C	TATT	GAGC	с то	GGGC	AGCA	GAT	CAGT	ACC	CATC	CCAA	TT A	TACA	CAAT	Τ.	3900
5	GCAGTGTT	GT G	GTT	CACA	G TG	AATA	ATTG	TAG	GTCA	CAG	TCCA	TTAT	AT T	GATG	TCAC	A	3960
	GTTTTTAA	TT G	TCAT	GTCA	C AG	TGCA	AGCT	AGT	GATG	TCA	GAGT	GTAT	AA C	TGTG	TTCA	T	4020
10	AGAGAATG	TA T	TGAT	GTCA	C AG	TCAA	TAAT	CGT	GATG	TCA	TAGT	GCAG	ΓΑ Τ	ATTG/	ATGT	C	4080
	ACAATGTA	TA A	TTGT	GATG [*]	T TA	AAGT	GCAA	GAT	AGTG/	AAG	TCAC	AGTA	ΓΑ Τ	AATT	GTGA	Τ	4140
15	GTCATATT	GC A	TTAT	AATG/	A TG	TCAC	ACTT	TAT	AATT	П	TACA	TACA	GC A	CTAT	AGTG/	4	4200
	TGTAACAG	CC A	ATAA [*]	TTGT	G ATO	G											4223
	(2) INFO	RMAT	ION	FOR S	SEQ	ID N	D:46	:									
20	(i)	SEQ							_								
		(B) Lei) Tyi) Sti	PE: a	amino	o ac		aCTU:	5								
25) TO				ar										
30																	
	(xi)	SEQ	JENCI	E DES	SCRII	PTIO	N: SI	EQ I	NO:	46:							
35	Leu 1	Trp	Phe	Ile	Lys 5	Met	Val	Ser	Phe	Lys 10	Ser	Ile	Leu	Val	Pro 15	Tyr	
40	Ile	Thr	Leu	Phe 20	Leu	Met	Ser	Gly	A1a 25	Va1	Phe	Ala	Gly	Asp 30	Thr	Asp	
	Arg	G1u	A1a 35	Gly	Gly	Pro		Gly 40	Thr	Val	Gly	Pro	Ser 45	Glu	Ala	Gly	
45	Gly	Pro 50	Ser	Glu	Ala	Gly	G1y 55	Pro	Ser	Glu	Ala	G1y 60	Gly	Pro	Ser	Glu	
50	A1a 65	Gly	Gly	Pro	Ser	G1u 70	Ala	Gly	Gly	Pro	Ser 75	Glu	Ala	Gly	Gly	Pro 80	
	Ser	Glu	Ala	Gly	Gly	Pro	Ser	Gly	Thr	Val	Gly	Pro	Ser	Glu	Ala	Gly	

					85					90					95	
5	Gly	Pro	Ser	Glu 100	Ala	Gly	Gly	Pro	Ser 105	Glu	Ala	Gly	Gly	Pro 110	Ser	Glu
10	Ala	Gly	Trp 115	Pro	Ser	Glu	Ala	Gly 120	Trp	Pro	Ser	Glu	Ala 125	Gly	Trp	Pro
10	Ser	Glu 130	Ala	Gly	Trp	Pro	Ser 135	Glu	Ala	Gly	Trp	Pro 140	Ser	Glu	Ala	Gly
15	Trp 145	Pro	Ser	Glu	Arg	Phe 150	Gly	Tyr	Gln	Leu	Leu 155	Trp	Tyr	Ser	Arg	Arg 160
20	Ile	Val	Ile	Phe	Asn 165	Glu	Ile	Tyr	Leu	Ser 170	His	Пe	Tyr	Glu	His 175	Ser
	Val	Met	Ile	Leu 180	Glu	Arg	Asp	Arg	Va1 185	Asn	Asp	Gly	His	Lys 190	Asp	Tyr
25	Ile	Glu	G1u 195	Lys	Thr	Lys	Glu	Lys 200	Asn	Lys	Leu	Lys	Lys 205	Glu	Leu	Glu
30	Lys	Cys 210	Phe	Pro	Glu	G1n	Tyr 215	Ser	Leu	Met	Lys	Lys 220	Glu	Glu	Leu	Ala
	Arg 225	Ile	Пе	Asp	Asn	A1a 230	Ser	Thr	Пe	Ser	Ser 235	Lys	Tyr	Lys	Leu	Leu 240
35	Val	Asp	Glu	Пe	Ser 245	Asn	Lys	Ala	Tyr	G1y 250	Thr	Leu	Glu	Gly	Pro 255	Ala
40	Ala	Asp	Asp	Phe 260	Asp	His	Phe	Arg	Asn 265	Ile	Trp	Lys	Ser	I1e 270	Val	Pro
	Lys	Asn	Asn 275	Phe	Leu	Tyr	Cys	Asp 280	Leu	Leu	Leu	Lys	His 285	Leu	Ile	Arg
45	Leu	Thr 290	Pro	Arg	Lys	Ser							,			
	(2) INFO	RMATI	ON F	OR S	SEQ 1	ID NO):47	:								
50	(i)	SEQU (A)				TERIS amir										

(B) TYPE: amino acid

(C) STRANDEDNESS: (D) TOPOLOGY: linear 5 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47: Ser Glu Ala Gly Gly Pro Ser Glu Ala Gly Gly Pro Ser Gly Thr Gly 15 Trp Thr Ser Gly Thr Gly Trp Pro Ser Glu Ala Gly Trp Ser 25 20 (2) INFORMATION FOR SEQ ID NO:48: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids 25 (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear 30 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48: Glu Ala Gly Gly Pro Ser Gly Thr Val Gly Pro Ser Gly Thr Gly Trp 10 40 Pro Ser Glu Ala Gly Trp Gly Ser Glu Ala Gly Trp Ser Ser (2) INFORMATION FOR SEQ ID NO:49: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 367 amino acids 50 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

	(xi) SEO	QUEN	CE DI	ESCR:	IPTI(ON: S	SEQ :	ID N	0:49	:					
5	Met 1	Va1	Ser	Phe	Lys 5	Ser	Пe	Leu	Val	Pro 10	Tyr	He	Thr	Leu	Phe 15	Leu
10	Met	Ser	Gly	A1a 20	Val	Phe	Ala	Ser	Asp 25	Thr	Asp	Pro	Glu	A1a 30	Gly	Gly
	Pro	Ser	G1u 35	Ala	Gly	Gly	Pro	Ser 40	Gly	Thr	Va1	Gly	Pro 45	Ser	Glu	Ala
15	Gly	Gly 50	Pro	Ser	Glu	Ala	G1 y 55	Gly	Pro	Ser	Gly	Thr 60	Gly	Trp	Pro	Ser
20	Glu 65	Ala	Gly	Gly	Pro	Ser 70	Glu	Ala	Gly	Gly	Pro 75	Ser	Glu	Ala	Gly	G1y 80
	Pro	Ser	Glu	Ala	G1y 85	Gly	Pro	Ser	Gly	Thr 90	Gly	Ser	Glu	Ala	G1y 95	Gly
25	Trp	Pro	Ser	Gly 100	Thr	Gly	Trp	Pro	Ser 105	Glu	Ala	Gly	Trp	Ser 110	Ser	Glu
30	Arg	Phe	Gly 115	Tyr	G1n	Leu	Leu	Pro 120	Tyr	Ser	Arg	Arg	Ile 125	Va1	Пe	Phe
	Asn	Glu 130	Val	Cys	Leu	Ser	Tyr 135	Пe	Tyr	Lys	His	Ser 140	Val	Met	Пе	Leu
35	Glu 145	Arg	Asp	Arg	Val	A sn 150	Asp	Gly	His	Lys	Asp 155	Tyr	Ile	Glu	Glu	Lys 160
40	Thr	Lys	Glu	Lys	Asn 165	Lys	Leu	Lys	Lys	G1u 170	Leu	Glu	Lys	Cys	Phe 175	.Pro
	Glu	Gln	Tyr	Ser 180	Leu	Met	Lys	Lys	G1u 185	Glu	Leu	Ala	Arg	Ile 190	Phe	Asp
45	Asn	Ala	Ser 195	Thr	Пe	Ser	Ser	Lys 200	Tyr	Lys	Leu	Leu	Va 1 205	Asp	Glu	Пe
50	Ser	Asn 210	Lys	Ala	Tyr	Gly	Thr 215	Leu	Glu	Gly	Pro	A1a 220	Ala	Asp	Asn	Phe
	Asp	His	Phe	Arg	Asn	Пе	Trp	Lys	Ser	Пе	Val	Leu	Lys	Asp	Met	Phe

	225	230	235	240
5	Ile Tyr Cys Asp Leu 245	Leu Leu Gln His Leu 250	Ile Tyr Lys Phe Tyr 255	
10	Asp Asn Thr Val Asn 260	Asp Ile Lys Lys Asn 265	Phe Asp Glu Ser Lys 270	Ser
	Lys Ala Leu Val Leu 275	Arg Asp Lys Ile Thr 280	Lys Lys Asp Gly Asp 285	Tyr
15	Asn Thr His Phe Glu 290	Asp Met Ile Lys Glu 295	Leu Asn Ser Ala Ala 300	Glu
20	Glu Phe Asn Lys Ile 305	Val Asp Ile Met Ile 310	Ser Asn Ile Gly Asp 315	Tyr 320
	Asp Glu Tyr Asp Ser 325	Ile Ala Ser Phe Lys 330	Pro Phe Leu Ser Met 335	
25	Thr Glu Ile Thr Lys	Ile Thr Lys Val Ser 345	Asn Val Ile Ile Pro 350	Gly
3 <i>0</i>	Ile Lys Ala Leu Thr 355	Leu Thr Val Phe Leu 360	Ile Phe Ile Thr Lys 365	:
35	(2) INFORMATION FOR SEQ (i) SEQUENCE CHARA (A) LENGTH: 1 (B) TYPE: nuc (C) STRANDEDN (D) TOPOLOGY:	CTERISTICS: 908 base pairs leic acid ESS: single		
40	(ii) MOLECULE TYPE:	DNA (genomic)		
4 5	(vi) ORIGINAL SOURC (A) ORGANISM:	E: Babesia Microti		
50		IPTION: SEQ ID NO:50:		
	AAAAGATTTA ATGAACATAC T	GACATGAAT GGTATTCATT	ATTATTATAT TGATGGTA	AGT 60

	TTACTTGCGA	GTGGCGAAGT	TACATCTAAT	TTTCGTTATA	TTTCTAAAGA	ATATGAATAT	120
5	GAGCATACAG	AATTAGCAAA	AGAGCATTGC	AAGAAAGAAA	AATGTGTAAA	TGTGGATAAC	180
	ATTGAGGATA	ATAATTTGAA	AATATATGCG	AAACAGTTTA	AATCTGTAGT	TACTACTCCA	240
	GCTGATGTAG	CGGGTGTGTC	AGATGGATTT	TTTATACGTG	GCCAAAATCT	TGGTGCTGTG	300
10	GGCAGTGTAA	ATGAACAACC	TAATACTGTT	GGTATGAGTT	TAGAACAATT	CATCAAGAAC	360
	GAGCTTTATT	CTTTTAGTAA	TGAAATTTAT	CATACAATAT	CTAGTCAAAT	CAGTAATTCT	420
15	TTCTTAATAA	TGATGTCTGA	TGCAATTGTT	AAACATGATA	ACTATATTTT	AAAAAAAGAA	480
	GGTGAAGGCT	GTGAACAAAT	CTACAATTAT	GAGGAATTTA	TAGAAAAGTT	GAGGGGTGCT	540
20	AGAAGTGAGG	GGAATAATAT	GTTTCAGGAA	GCTCTGATAA	GGTTTAGGAA	TGCTAGTAGT	600
	GAAGAAATGG	TTAATGCTGC	AAGTTATCTA	TCCGCCGCCC	TTTTCAGATA	TAAGGAATTT	660
25	GATGATGAAT	TATTCAAAAA	GGCCAACGAT	AATTTTGGAC	GCGATGATGG	ATATGATTTT	720
	GATTATATAA	ATACAAAGAA	AGAGTTAGTT	ATACTTGCCA	GTGTGTTGGA	TGGTTTGGAT	780
30	TTAATAATGG	AACGTTTGAT	CGAAAATTTC	AGTGATGTCA	ATAATACAGA	TGATATTAAG	840
	AAGGCATTTG	ACGAATGCAA	ATCTAATGCT	ATTATATTGA	AGAAAAAGAT	ACTTGACAAT	900
	GATGAAGATT	ATAAGATTAA	TTTTAGGGAA	ATGGTGAATG	AAGTAACATG	TGCAAACACA	960
35	AAATTTGAAG	CCCTAAATGA	TTTGATAATT	TCCGACTGTG	AGAAAAAAGG	TATTAAGATA	1020
	AACAGAGATG	TGATTTCAAG	CTACAAATTG	CTTCTTTCCA	CAATCACCTA	TATTGTTGGA	1080
40	GCTGGAGTTG	AAGCTGTAAC	TGTTAGTGTG	TCTGCTACAT	CTAATGGAAC	TGAATCTGGT	1140
	GGAGCTGGTA	GTGGAACTGG	AACTAGTGTG	TCTGCTACAT	CTACTTTAAC	TGGTAATGGT	1200
45	GGAACTGAAT	CTGGTGGAAC	AGCTGGAACT	ACTACGTCTA	GTGGAACTGA	AGCTGGTGGA	1260
	ACTAGTGGAA	CTACTACGTC	TAGTGGAGCT	GCTAGTGGTA	AAGCTGGAAC	TGGAACAGCT	1320
50	GGAACTACTA	CGTCTAGTGA	AGGTGCTGGT	AGTGATAAAG	CTGGAACTGG	AACTAGTGGA	1380
	ACTACTACGT	CTAGTGGAAC	TGGTGCTGGT	GGAGCTGGTA	GTGGTGGACC	TAGTGGACAT	1440

	GCTTCTAATG CAAAAATTCC TGGAATAATG ACACTAACTC TATTTGCATT ATTAACATTT	1500
5	ATTGTAAATT GAATGAAACA CATGATTTAT ACATTATTAT ATATTACAAA ATTTACACAT	1560
	TATTTATGTA TGAACGAACG AACATCTTGC TCTTAAATAA AGAAATTGAG ATATATATGG	1620
10	AAATAGATTA AAGTAACATG AGAAAGATGA ATATAATATT AGAATATGAA ATTTAACAGA	1680
,,,	AATAAAATGA AGTAAAAGAG TGTATTTTGT AATAATTTAT AATAAATTAG TATACAATGA	1740
	TTATATTACA AATGCTATT AAATATTITA TTAATTAAAT ATTGATTAGT AATGATATTA	1800
15	TGTATGTACA TGTTAGGGTT GATTGTTATA CATTGTGAAT ATATTATATA ATTGTATATT	1860
	ATATTGATTG ATATAATGTA GAGGATATTT TTTTAAATAG TATTTAAT	1908
20	(2) INFORMATION FOR SEQ ID NO:51:	
<i>2</i> 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1460 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Babesia Microti</pre>	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
40	AATCCAACAT CTAGCCTAGT TAGTATATAT AGGTTAATAT CACATTATAG ATTATCTTTG	60
	GATGATTGGT TATTATATAA CATGTCGCTG AATGACGATT ATTTTGCTAG ATAATATAAC	120
4 5	TACCGGTGAT TCTGAGGACC TACTTTAAAG AGAATAATTA ACATATCTAC CAGAATCAGT	180
	TCCAATTTAT GTATTTTAAA GCTAATCACT ACTCGAAAAC TACGGTGAAA ATGGAAAAAC	240
50	AAGTGGAAGC TGTATGTCGT GGAAAGTCAC TACATTTTAT GTGGGCAAAT TTAATAATTC	300
•	TAAATACTAT GTTTTTGATG TTAAAAAGCG AAAAACACAC TTTAATGCAC ATTTTAACAT	360

CAICIGIAIA	AIAIAIAIAI	CAGCGTTGAA	AICAIAIGGC	AAAGGIAAIA	AAGCGTTACA	420
TTTTGAGCGA	ATAAAGGCAC	ATATGCAAAC	GTATGAAGCC	TTGTATATTT	GTGGAATTAT	480
ATTATGCTAG	TAATTTGTGA	TTAATAATGG	CAATATTTAT	ATACAAATAT	TCGAGCGTTC	540
TATTATATGC	ATGCACATAA	TTAATCACAA	ACTCTCATAT	CATGGGGCGG	TTTCGCCCAT	600
CATAAACATT	ACTGTTAGCA	CTCTGGTAGA	TTAGCATGGT	GAATCTCTCG	ATACCTGGGC	660
TACTGTTGCT	TTCCGCATAT	TCCTTAAATT	CTGCAAGTGC	GGGGGATGTA	TATGAGATAT	720
CTTCTGGTAA	TCCACCCGAC	ATAGAGCCAA	CATCTACTTC	TCTAGAAACA	AATGTAGTTA	780
CCAACTATAT	TCCAGAACCC	AATGCGGATT	CAGAATCTGT	ACATGTTGAA	ATCCAGGAAC	840
ATGATAACAT	CAATCCACAA	GACGCTTGCG	ATAGTGAGCC	GCTCGAACAA	ATGGATTCTG	900
ATACCAGGGT	GTTGCCCGAA	AGTTTGGATG	AGGGGTACC	ACACCAATTC	TCTAGATTAG	960
GGCACCACTC	AGACATGGCA	TCTGATATAA	ATGATGAAGA	ACCATCATTT	AAAATCGGCG	1020
AGAATGACAT	AATTCAACCA	CCCTGGGAAG	ATACAGCTCC	ATACCATTCA	ATAGATGATG	1080
AAGAGCTTGA	CAACTTAATG	AGACTAACGG	CGCAAGAAAC	AAGTGACGAT	CATGAAGAAG	1140
GGAATGGCAA	ACTCAATACG	AATAAAAGTG	AGAAGACTGA	AAGAAAATCG	CATGATACTC	1200
AGACACCGCA	AGAAATATAT	GAAGAGCTTG	ACAACTTACT	GAGACTAACG	GCACAAGAAA	1260
TATATGAAGA	GCGTAAAGAA	GGGCATGGCA	AACCCAATAC	GAATAAAAGT	GAGAAGGCTG	1320
AAAGAAAATC	GCATGATACT	CAGACAACGC	AAGAAATATG	TGAAGAGTGT	GAAGAAGGC	1380
ATGACAAAAT	CAATAAGAAT	AAAAGTGGAA	ATGCTGGAAT	AAAATCGTAT	GATACTCAGA	1440
CACCGCAGGA	AACAAGTGAC					1460

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 503 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

5

		(U)	101	ULU	aY:	inea	ır			•						
5	(ii)	MOLE	CULE	E TY	PE: [ONA (geno	omic))							
	(vi)					: Babes	sia M	licro	oti							
10																
	(xi)	SEQL	JENCE	DES	SCRI	PTION	I: SE	Q 10) NO:	:52:		,				
15	Lys 1	Arg	Phe	Asn	Glu 5	His	Thr	Asp	Met	Asn 10	Gly	Пe	His	Tyr	Tyr 15	Tyr
20	Ile	Asp	G1y	Ser 20	Leu	Leu	Ala	Ser	G1y 25	Glu	Val	Thr	Ser	Asn 30	Phe	Arg
	Tyr	Ile	Ser 35	Lys	Glu	Tyr	Glu	Tyr 40	Glu	His	Thr	Glu	Leu 45	Ala	Lys	Glu
25	His	Cys 50	Lys	Lys	Glu	Lys	Cys 5 5	Val	Asn	Val	Asp	Asn 60	Пe	Glu	Asp	Asn
30	Asn 65	Leu	Lys	Пe	Tyr	A1a 70	Lys	Gln	Phe	Lys	Ser 75	Val	Val	Thr	Thr	Pro 80
	Ala	Asp	Val	Ala	G1 <i>y</i> 85	Val	Ser	Asp	Gly	Phe 90	Phe	Ile	Arg	Gly	G1n 95	Asn
35	Leu	Gly	Ala	Va1 100	Gly	Ser	Va1	Asn	G1u 105	Gln	Pro	Asn	Thr	Val 110	Gly	Met
40	Ser	Leu	Glu 115	Gln	Phe	Ile	Lys	Asn 120	Glu	Leu	Tyr	Ser	Phe 125	Ser	Asn	Glu
·	Ile	Tyr 130	His	Thir	Ile	Ser	Ser 135	Gln	Ile	Ser	Asn	Ser 140	Phe	Leu	Пe	Met
45	Met 145	Ser	Asp	Ala	Ile	Va1 150	Lys	His	Asp	Asn	Tyr 155	Пe	Leu	Lys	Lys	Glu 160
50	Gly	Glu	Gly	Cys	Glu 165	Gln	Ile	Tyr	Asn	Tyr 170	Glu	Glu	Phe	Ile	Glu 175	Lys
	Leu	Arg	Gly	Ala	Arg	Ser	Glu	Gly	Asn	Asn	Met	Phe	Gln	Glu	Ala	Leu

				180					185					190		
5	Ile	Arg	Phe 195	Arg	Asn	Ala	Ser	Ser 200	Glu	Glu	Met	Val	Asn 205	Ala	Ala	Ser
10	Tyr	Leu 210	Ser	Ala	Ala	Leu	Phe 215	Arg	Tyr	Lys	G1u	Phe 220	Asp	Asp	Glu	Leu
	Phe 225	Lys	Lys	Ala	Asn	Asp 230	Asn	Phe	Gly	Arg	Asp 235	Asp	Gly	Tyr	Asp	Phe 240
15	Asp	Tyr	Пe	Asn	Thr 245	Lys	Lys	Glu	Leu	Va1 250	Ile	Leu	Ala	Ser	Va 1 255	Leu
20	Asp	Gly	Leu	Asp 260	Leu	Ile	Met	Glu	Arg 265	Leu	Пe	Glu	Asn	Phe 270	Ser	Asp
	Val	Asn	Asn 275	Thr	Asp	Asp	Ile	Lys 280	Lys	Ala	Phe	Asp	G1u 285	Cys	Lys	Ser
25	Asn	A1a 290	Ile	Пe	Leu	Lys	Lys 295	Lys	Пe	Leu	Asp	Asn 300	Asp	Glu	Asp	Tyr
30	Lys 305		Asn	Phe	Arg	G1u 310	Met	Val	Asn	G1u	Val 315	Thr	Cys	Ala	Asn	Thr 320
	Lys	Phe	Glu	Ala	Leu 325		Asp	Leu	Ile	11e 330	Ser	Asp	Cys	Glu	Lys 335	Lys
35	Gly	Ile	Lys	11e 340		Arg	Asp	Va1	11e 345		Ser	Tyr	Lys	Leu 350	Leu	Leu
40	Ser	Thr	11e 355		Tyr	Ile	Val	G1y 360		Gly	Val	G1u	A1a 365	Val	Thr	Val
	Ser	Va 1 370		· Ala	Thr	Ser	Asr 375		Thr	Glu	Ser	Gly 380	Gly	A la	Gly	Ser
45	G1y 385		· Gly	' Thr	Ser	Va 1		· Ala	Thr	Ser	Thr 395	Leu	ı Thr	· Gly	A sr	400
50	Gly	/ Thr	· G1ı	ı Ser	G1y 405		/ Thi	^ Ala	Gly	/ Thr 410	· Thr	· Thr	Ser	Ser	Gly 415	Thr
	Glu	ιAla	a Gly	/ G1)	/ Thr	· Sei	· Gly	y Thi	· Thi	r Thr	· Sei	· Sei	- G1)	/ Alá	Alá	ser Ser
55																

			420				425					430		
5	Gly	Lys Ala 435	Gly ∏	hr Gly	Thr	A1a 440	Gly	Thr	Thr	Thr	Ser 445	Ser	G1u	Gly
	Ala	Gly Ser 450	Asp L	ys Ala	Gly 455	Thr	Gly	Thr	Ser	G1y 460	Thr	Thr	Thr	Ser
10	Ser 465	Gly Thr	Gly A	la Gly 470		Ala	Gly	Ser	G1y 475	Gly	Pro	Ser	G1y	His 480
15	Ala	Ser Asn		ys I10 85	e Pro	G1y		Met 490	Thr	Leu	Thr	Leu	Phe 495	Ala
	Leu	Leu Thr	Phe I 500	le Va	l Asn									
<i>20</i>	(2) INFO	RMATION (FOR SE	Q ID	NO:53	:	-							
25	(i)	SEQUENC (A) LE (B) TY (C) ST (D) TO	NGTH: PE: am RANDED	275 an nino a NESS:	nino cid sing	acids	5							
30	(ii)	MOLECUL	E TYPE	: DNA	(gen	omic))							
	(vi)	ORIGINA (A) OR			esia	Micro	oti .							
35				•										
	(xi)	SEQUENC	E DESC	CRIPTI	ON: S	EQ II	D NO	:53:						
40	Met 1	Val Asn	_	Ser Il	e Pro	Gly	Leu	Leu 10	Leu	Leu	Ser	Ala	Tyr 15	Ser
45	Leu	Asn Ser	Ala 9 20	Ser Al	a Gly	Asp	Va1 25	Tyr	Glu	Пe	Ser	Ser 30	Gly	Asn
	Pro	Pro Asp 35	lle (Glu Pr	o Thr	Ser 40	Thr	Ser	Leu	Glu	Thr .45	Asn	Val	Val
50	Thr	Asn Tyr 50	· Ile	Pro G1	u Pro 55	Asn	Ala	Asp	Ser	Glu 60	Ser	· Val	His	Val

	G1u 65	Пе	Gln	Glu	His	Asp 70	Asn	Пе	Asn	Pro	G1n 75	Asp	Ala	Cys	Asp	Ser 80
5	Glu	Pro	Leu	Glu	G1n 85	Met	Asp	Ser	Asp	Thr 90	Arg	Val	Leu	Pro	G1u 95	Ser
10	Leu	Asp	Glu	Gly 100	Val	Pro	His	Gln	Phe 105	Ser	Arg	Leu	Gly	His 110	His	Ser
15	Asp	Met	Ala 115	Ser	Asp	Ile	Asn	Asp 120	Glu	Glu	Pro	Ser	Phe 125	Lys	Ile	Gly
	Glu	Asn 130	Asp	Пe	Пe	Gln	Pro- 135	Arg	Trp	Glu	Asp	Thr 140	Ala	Pro	Tyr	His
20	Ser 145	Ile	Asp	Asp	Glu	Glu 150	Leu	Asp	Asn	Leu	Met 155	Arg	Leu	Thr	Ala	G1n 160
25	Glu	Thr	Ser	Asp	Asp 165	His	Glu	Glu	Gly	Asn 170	Gly	Lys	Leu	Asn	Thr 175	Asn
30	Lys	Ser	Glu	Lys 180	Thr	Glu	Arg	Lys	Ser 185	His	Asp	Thr	Gln	Thr 190	Pro	Gln
	Glu	Ile	Tyr 195	Glu	Glu	Leu	Asp	Asn 200	Leu	Leu	Arg	Leu	Thr 205	Ala	Gln	G1u
35	Ile	Tyr 210	Glu	Glu	Arg	Lys	Glu 215	Gly	His	Gly	Lys	Pro 220	Asn	Thr	Asn	Lys
40	Ser 225		Lys	Ala	Glu	Arg 230	Lys	Ser	His	Asp	<u>Thr</u> 235	Gln	.Thr.	.Thr	Gln	G1u 240
45	Ile	Cys	G1u	Glu	Cys 245	Glu	Glu	Gly	His	Asp 250	Lys	Ile	Asn	Lys	Asn 255	
-	Ser	Gly	Asn	A1a 260	Gly	Ile	Lys	Ser	Tyr 265	Asp	Thr	Gln	Thr	Pro 270	Gln	Glu
50	Thr	Ser	Asp 275													

Claims

55

1. A polypeptid comprising an immunogenic portion of a B. microti antigen, or a variant of said antig n that differs

only in conservative substitutions and/or modifications, wherein said antigen comprises an amin acid sequence encoded by a DNA sequence selected from the group consisting of sequences recited in SEQ ID NO: 1-17, 37, 40, 42, 45, 50 and 51 the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID NO: 1-17, 37, 40, 42, 45, 50 and 51, or a complement thereof under moderately string int conditions.

- An antigenic epitope of a B. microti antigen comprising the amino acid sequence -X₁-X₂-X₃-X₄-X₅-Ser-, wherein X₁ is Glu or Gly, X₂ is Ala or Thr, X₃ is Gly or Val, X₄ is Trp or Gly and X₅ is Pro or Ser.
 - 3. An antigenic epitope according to claim 2 wherein X_1 is Glu, X_2 is Ala and X_3 is Gly.
- 4. An antigenic epitope according to claim 2 wherein X_1 is Gly, X_2 is Thr and X_5 is Pro.

10

25

30

35

40

45

50

- 5. A polypeptide comprising at least two contiguous antigenic epitopes according to claim 2.
- 15 6. An antigenic epitope of a B. microti antigen comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 36 and 39.
 - 7. A polypeptide comprising at least two contiguous antigenic epitopes according to claim 6.
- 20 8. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to claims 1, 5 or 7.
 - 9. A recombinant expression vector comprising a DNA molecule according to claim 8.
 - 10. A host cell transformed with an expression vector according to claim 9.
 - 11. The host cell of claim 10 wherein the host cell is selected from the group consisting of E. coli, yeast and mammalian cells.
 - 12. A fusion protein comprising two or more polypeptides according to claims 1, 5 or 7.
 - 13. A fusion protein comprising two or more antigenic epitopes according to claims 2 or 6.
 - 14. A fusion protein comprising at least one polypeptide according to claims 1, 5 or 7 and at least one antigenic epitope according to claims 2 or 6.
 - 15. A method for detecting B. microti infection in a patient, comprising:
 - (a) contacting a sample from a patient with at least one polypeptide comprising an immunogenic portion of a *B. microti* antigen; and
 - (b) detecting the presence of antibodies that bind to the polypeptide.
 - 16. A method for detecting B. microti infection in a patient, comprising:
 - (a) contacting a sample from a patient with at least one antigenic epitope according to claims 2 or 6; and
 - (b) detecting the presence of antibodies that bind to the antigenic epitope.
 - 17. The method of claim 16 wherein the antigenic epitope is bound to a solid support.
 - 18. The method of claim 17 wherein the solid support comprises nitrocellulose, latex or a plastic material.
 - 19. A method for detecting B. microti infection in a patient, comprising:
 - (a) contacting a sample from a patient with at least one polypeptide according to claims 1, 5 or 7; and
 - (b) detecting the presence of antibodies that bind to the polypeptide.
 - 20. A method for detecting B. microti infection in a patient, comprising:
 - (a) contacting a sample fr m a patient with at least one polypeptid according to claims 1, 5 or 7 and at least

- on antigenic epitope according to claims 2 or 6; and
- (b) detecting the presence of antibodies that bind to the polypeptide or antigenic epitope.
- 21. A method for detecting B. microti infection in a patient, comprising:
 - (a) obtaining a sample from the patient;

5

20

30

40

45

50

- (b) contacting the sample with a fusion protein according to any one of claims 12-14; and
- (c) detecting the presence of antibodies that bind to the fusion protein.
- 22. The method of claims 15, 16, 19, 20 or 21 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.
 - 23. The method of claim 22 wherein the biological sample is whole blood.
- 24. A method for detecting B. microti infection in a biological sample, comprising:
 - (a) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotide primers is specific for a DNA molecule according to claim 8; and
 - (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers.
 - 25. The method of claim 24 wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule according to claim 8.
- 25. A method for detecting B. microti infection in a biological sample, comprising:
 - (a) contacting the sample with one or more oligonucleotide probes specific for a DNA molecule according to claim 8; and
 - (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe.
 - 27. The method of claim 26 wherein the probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 8.
- 28. The method of claims 24 or 26 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
 - 29. A method for detecting B. microti infection in a biological sample, comprising:
 - (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide comprising an immunogenic portion of a *B. microti* antigen; and
 - (b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.
 - 30. A method for detecting B. microti infection in a biological sample, comprising:
 - (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide according to claims 1, 5 or 7; and
 - (b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.
 - 31. A method of detecting B. microti infection in a biological sample, comprising:
 - (a) contacting the biological sample with a binding agent which is capable of binding to an antigenic epitope according to claims 2 or 6; and
 - (b) detecting in the sample an antigenic epitope that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.
 - 32. A method of detecting B. microti infection in a biological sample, comprising:

- (a) contacting the biological sampl with a first binding agent which is capable of binding to a polypeptid according to claims 1, 5 or 7 and a second binding agent which is capable of binding to an antigenic epitope according to claims 2 or 6; and
- (b) detecting in the sample a polypeptide that binds to the first binding agent r an antigenic epitope that binds to the second binding agent, the reby detecting B. microti infection in the biological sample.
- 33. A method of detecting B. microti infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a fusion protein according to any one of claims 12-14; and
 - (b) detecting in the sample a polypeptide that binds to the binding agent, thereby detecting *B. microti* infection in the biological sample.
- 34. The method of claims 30, 31, 32 or 33 wherein the binding agent is a monoclonal antibody.
- 35. The method of claims 30, 31, 32 or 33 wherein the binding agent is a polyclonal antibody.
- 36. A diagnostic kit comprising:

5

10

15

20

25

35

- (a) at least one polypeptide comprising an immunogenic portion of a B. microti antigen; and
- (b) a detection reagent.
- 37. A diagnostic kit comprising
 - (a) at least one polypeptide according to claims 1, 5 or 7; and
 - (b) a detection reagent.
- 38. The kit of claims 36 or 37 wherein the polypeptide is immobilized on a solid support.
- 39. The kit of claim 38 wherein the solid support is selected from the group consisting of nitrocellulose, latex, and plastic materials.
 - 40. A diagnostic kit comprising:
 - (a) at least one antigenic epitope according to claims 2 or 6; and
 - (b) a detection reagent.
 - 41. The kit of claim 40 wherein the antigenic epitope is immobilized on a solid support.
- 40. The kit of claim 41 wherein the solid support is selected from the group consisting of nitrocellulose, latex, and plastic materials.
 - 43. A diagnostic kit comprising:
 - (a) at least one antigenic epitope according to claims 2 or 6;
 - (b) at least one polypeptide according to claims 1, 5 or 7; and
 - (c) a detection reagent.
- 44. The kit of claims 36, 37, 40 or 43 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
 - **45.** The kit of claim 44 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 46. The kit of claim 44 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, nzymes, biotin and dy particles.
 - 47. A diagnostic kit comprising at least on polymerase chain reaction primers, specific for a DNA m lecule according

to claim 8.

5

15

25

- **48.** The kit of claim 47 wherein the polymerase chain reaction primer comprises at least about 10 contiguous nucleotides of a DNA molecule according to claim 8.
- 49. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe being specific for a DNA molecule according to claim 8.
- 50. The kit of claim 49 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule according to claim 8.
 - 51. A monoclonal antibody that binds to a polypeptide according to claims 1, 5 or 7.
 - 52. A monoclonal antibody that binds to an antigenic epitope according to claims 2 or 6.
 - 53. A polyclonal antibody that binds to a polypeptide according to claims 1, 5 or 7.
 - 54. A polyclonal antibody that binds to an antigenic epitope according to claims 2 or 6.
- 55. A pharmaceutical composition comprising at least one polypeptide according to claims 1, 5 or 7 and a physiologically acceptable carrier.
 - 56. A pharmaceutical composition comprising at least one DNA molecule according to claim 8 and a physiologically acceptable carrier.
 - 57. A pharmaceutical composition comprising at least one antigenic epitope according to claims 2 or 6 and a physiologically acceptable carrier.
- **58.** A vaccine comprising at least one polypeptide according to claims 1, 5 or 7 and a non-specific immune response enhancer.
 - 59. A vaccine comprising at least one DNA molecule according to claim 8 and a non-specific immune response enhancer
- 35 60. A vaccine comprising at least one antigenic epitope according to claims 2 or 6 and a non-specific immune response enhancer.
 - 61. The vaccine of any one of claims 58-60-56 wherein the non-specific immune response enhancer is an adjuvant.
- 40 62. A pharmaceutical composition according to any one of claims 55-57, for use in the manufacture of a medicament for inducing protective immunity in a patient.
 - 63. A vaccine according to any one of claims 58-60, for use use in the manufacture of a medicament for inducing protective immunity in a patient.

50

45

AACTAGATGCAGCACCACATCACTACCACGTACCAATCATATACCAATAATGTACTAATAATGTACCAATAACTATGGTTTATAAAGATGGTGTCATTTAAATCAATATTAGTTCCTT	ATATTA 125
HVSFKSILVP	Y I
CACTOTTTTTAATBAGCGGTBCTGTCTTTGCAAGTGATACCGATCCCGAAGCTGGTGGGCCTAGTGAAGCTGGTGGGCCTAGTGGAACTGTTGGGCCCAGTGAAGCTGGTGGGCCTAGT	GAAGCT 250
Repeat Sequences	
T L F L N S G A V F A S D T D P E A G G P S E A G G P S G T V G P S E A G G P S	E A
GETGGGCCTAGTGGAACTGGTTGGCCTAGTGAAGCTGGTGGGCCTAGTGAAGCTGGTGGGCCTAGTGAAGCTGGTGGGCCTAGTGGAACTGGTTGGCCTAG	TGGAAC 375
Repeal Sequences GGPSGTGWPSEAGGPSEAGGPSEAGGPSGTGWPS	G T
TGGTTGGCCTAGTGAGCTGGTTGGTCTAGTGAACCATTTGGATATCAGCTTCTTCCGTATTCTAGAAGATAGTTATATTTAATGAAGTTTGTTT	TTATGA 500
Repeat Sequences GWPSEAGWSSERFGYQLLPYSRRIVIFMEVCLSYIYKHS	V W
TATTEGAACGAGATAGGGTGAACGATGGTCATAAAGACTACATTGAAGAAAAAAACCAAGGAGAATAAATTGAAAAAAAGAATTGGAAAAAATGTTTTCCTGAACAATATTCCCTTATC	MAGAMA 625
I LERDRYN DGHKDY I EEKTKEKHKŁKKELEKCFPEQYSL H	K K
CANGANTTGGCTAGANTATTTGATAATGCATCCACTATCTCTTCAAAATATAAGTTATTGGTTGATGAATATCAAACAAGGCCTATGGTACATTGGAAGGTCCAGCTGCTGATAATT	TGACCA 750
EELARIFDHASTISSKYKLLYDEISHKAYGTLEGPAADN	F D H
	117770 075
TTTCCSTAATATATGGAAGTCTATTGTACTTAAAGATATGTTTATATATTGTGACTTATTATTATACACATTTAATCTATAATTCTATTATGACAATACCGTTAATGATATCAAGAAA	ATTTTG 875
FR H I W K S I V L K D N F I Y C D L L Q H L I Y K F Y Y D N T V N D I K K	N F
ACSAATCCAAATCTAAAGCTTTASTTTTSAGGGATAAGATCACTAAAAAGGATGGAGATTATAACACTCATTTTGAGGACATGATTAAGGAGTTGAATAGTGCAGCAGAAGAATTTAA	TAMAATT 1000
DESKSKALVLR DKITKK DG DYNTHFED MIKELN SAAEEFN	K I
GTTGACATCATGATTTCCAACATTGGGGATTATGATGAGTATGACAGTATTGCAAGTTTCAACCATTTCTTTC	TANTICC 1125
V D I N I S N I G D Y D E Y D S I A S F K P F L S N I T E I T K I T K V S N V	I I P
TGGAATTAAGGCACTAACTTTAACQGTTTTTTTAATATTTATTACAAAATAGATGTAATACCAGATGTATACAATTATTATATATTACAAAATTTACACATTATTTATGTATG	CGAACAT 1250
	
GIKALTLIVFLIFITK	

Fig. 1A

cicagtottaaatgaagaaatteggataaatatggaaataagattaaagtaacatgagaaagatgaatataatattagaatatgaaatttaacagaaataaaatgaagtaaaagagtgtattttgt	1375
MATAATTTATAATAAATTAGTATACAATGATTATATTACAGATGACTATTGATTATTGTATCAATTAAATATTGATTATTAATGATATCATATATGATATGATTAATGATTGAT	1500
IGTGAATATGTTATATAATGACATACTATAATAATTAATATAATGTAGAGGATATTTTTTTT	1625
SAATGITTAAATTGAAATGTATGTAAAATATGTATTTATAATCTGAATTGATTAATAATATATAT	1750
ATAMATANTATAKTICATTAMATTATTICACATAMATTICCAMATTATTATCCTITTATCTTAMTGITATCCAMTITTACACATCTTTCTTCATTACAATATTTTTTTACTAATCCTGTATGC	1875
TCATATTCATATTCTTTAGAAATATAACGAAAATTAGATGTAACTTOGCCACTTACAAGTAAACTACCATCAATATAATAATGAATACCATTCATGTCCGTATATTCTTTATATTTTTTTATC	2000
ATATTITATTITISTGATTATTCCATTCATTIGTATCATTATCAATGAGAGAATAATAGCAGAAAGATCCTTCTATAGAACATAAAATTCAATTAATACTGGATTATTATGTTTGCAAGTATA	2125
gatetttaaatcaataacagtaccasttegtaatttagcattetcatcaaattcaattatataatcasaaatttigattttatcaattttatttattcegatetgataatttattttetttegttctgattcat	2250
CGATÇATGTATACAAATACTATTGTTAAAGGTTCCCTATCCTTATAATTAAAGTGSCCAATAAGATTGSCATTAATTACATTAGTAGTGTGTGTATTTGTAATAGTATCATTAGTGGTACTGACA	2375
GTTGTTATAGGTTTTGCATAATGAAACATCATTTTTATCTACACAATACA 2430	

Fig. 1B

Fig. 4

Fig. 5