CME341 - October, 2019 Midterm Material up to end of Assignment 5

Date: Wednesday, October 9, 2019

Time = 1.00 hours

Text Books, Notes and Computer Files Only

1. Re-design prototype student_circuit to describe an 8-flip/flop ring counter.

Make the eight flip/flops as an 8-bit Verilog HDL vector called ring_counter.

ring_counter is to be synchronously set to ring_counter = 8'b1000_0000 when

clear==1'b1. Otherwise ring_counter is to count in the sequence given below:

8'b1000_0000

8'b0100_0000

8'b0010_0000

8'b0001_0000

8'b0000_1000

8'b0000_0100

8'b0000_0010

8'b0000_0001

8'b1000_0000

etcetera

Make cct_output = ring_counter.

Note this circuit does not use cct_input.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'HESD4.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(2) 2. Re-design prototype student_circuit to make it describe a combinational logic circuit that uses the input to do the following:

Sets cct_output to zero while clear is high. Otherwise

If cct_input is equal to 8'H14 cct_output is to be the ones complement of cct_input (i.e. all bits inverted).

If cct_input is greater than 66 (in decimal) cct_output is to be the sum of the least significant 4 bits of the input (the sum of the individual bits). This means cct_output will be between 8'd0 and 8'd4, inclusive.

Otherwise cct_output is to be cct_input.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H32BF.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(1) 3. Make an asynchronous circuit that sets cct_output to be the reverse order of the bits of cct_input. For example, if the input is 10100000, then the output should be 00000101.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'HCC7D.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

- (1) 4. Redesign prototype "student_circuit" to implement a sequential logic circuit that has:
 - a new clock called new_clock that has a frequency equal to $\frac{clk}{2}$
 - an 8-bit counter that is synchronously cleared when clear is high, and counts on the positive edge of new_clock.
 - cct_output equal to the 8-bit counter value.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H3767.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(1) 5. Design the circuit shown in Figure 1.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'HA18A.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

Figure 1: Question 5