Motivation

Predicting the dynamics of SARS-Cov-2 infections is essential for quick and effective diagnosis of Covid19, public health planning and mitigating burden on healthcare systems.

Dataset Description

The John Hopkins University has a dedicated Github repository for Covid19 where it has been publishing time series data for confirmed, recovered and death cases every day for each country.

Project Overview

Two specific datasets - i.e. time based and country based are created from the JHU data. Exploratoy data analysis is performed on this data followed by modeling using bidirectional convolutional LSTM for forecasting.

References

1. Importing Libraries

```
1 import pandas as pd
 2 import numpy as np
 3 import matplotlib.pyplot as plt
 4 import seaborn as sns
 5 import plotly.express as px
 6 import plotly.graph_objects as go
 7 from plotly.subplots import make subplots
 8 pd.set_option('precision',0)
 9 from sklearn.preprocessing import MinMaxScaler
10 import tensorflow as tf
11 from tensorflow.keras.layers import Input, Conv1D, Dense, Flatten, Dropout, BatchNormaliza
12 from tensorflow.keras.models import Model, Sequential
13 from tensorflow.keras.optimizers import Adam
14 from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
15 import warnings
16 warnings.filterwarnings('ignore')
17
18
```

2. Creating dataset and preprocessing the dataset

We will create a time series data and country data of Covid19 cases with the data exracted from the JHU repository

▼ Extracting data from the JHU Github repository

```
1 url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data
2 df_confirmed = pd.read_csv(url)
3 url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data
4 df_deaths = pd.read_csv(url)
5 url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data
6 df_recovered = pd.read_csv(url)
7
```

1 df_confirmed.head(5)

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/2
0	NaN	Afghanistan	34	68	0	0	0	0	
1	NaN	Albania	41	20	0	0	0	0	
2	NaN	Algeria	28	2	0	0	0	0	
3	NaN	Andorra	43	2	0	0	0	0	
4	NaN	Angola	-11	18	0	0	0	0	

5 rows × 636 columns

1 df_deaths.head(5)

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/2
0	NaN	Afghanistan	34	68	0	0	0	0	
1	NaN	Albania	41	20	0	0	0	0	
2	NaN	Algeria	28	2	0	0	0	0	
3	NaN	Andorra	43	2	0	0	0	0	
4	NaN	Angola	-11	18	0	0	0	0	

5 rows × 636 columns

1 df_recovered.head(5)

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26/2
0	NaN	Afghanistan	34	68	0	0	0	0	
1	NaN	Albania	41	20	0	0	0	0	
2	NaN	Algeria	28	2	0	0	0	0	
3	NaN	Andorra	43	2	0	0	0	0	
4	NaN	Angola	-11	18	0	0	0	0	

5 rows × 636 columns

```
1 df_list = [df_confirmed,df_deaths,df_recovered]
2 cases = ['Confirmed', 'Deaths', 'Recovered', 'Active']
3 case_color = ['orange','red','green','blue']
4 case_dict = {cases[i]:case_color[i] for i in range(len(cases))}
```

Creating time series data from the extracted data

```
1 ## creating time series data
2
3 time_series_data = pd.DataFrame()
4 for i in range(len(cases)-1):
5     df = pd.DataFrame(df_list[i][df_list[i].columns[4:]].sum(),columns=[cases[i]])
6     time_series_data = pd.concat([time_series_data,df],axis = 1)
7 time_series_data.index = pd.to_datetime(time_series_data.index,format='%m/%d/%y')
8 time_series_data['Active'] = time_series_data['Confirmed'] - time_series_data['Deaths'] -
9 time_series_data= time_series_data.rename_axis('ObservationDate').reset_index()
```

1 time_series_data.head(10).style.background_gradient(cmap='PuBu')

ObservationDate Confirmed Deaths Recovered Active 0 2020-01-22 00:00:00 557 2020-01-23 00:00:00 655 2 2020-01-24 00:00:00 941 3 2020-01-25 00:00:00 1434 2020-01-26 00:00:00 2118 2020-01-27 00:00:00 2927 6 2020-01-28 00:00:00 5578 2020-01-29 00:00:00 6167 2020-01-30 00:00:00 8235 2020-01-31 00:00:00 9927

```
1 time_series_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 632 entries, 0 to 631
Data columns (total 5 columns):
     Column
                      Non-Null Count Dtype
     ObservationDate 632 non-null
                                      datetime64[ns]
 1
     Confirmed
                      632 non-null
                                      int64
 2
     Deaths
                                      int64
                      632 non-null
     Recovered
                      632 non-null
                                      int64
 3
 4
     Active
                      632 non-null
                                      int64
dtypes: datetime64[ns](1), int64(4)
memory usage: 24.8 KB
```

Creating country wise data from the extracted data

```
[ ] 以3 cells hidden
```

3. Exploratory Data Analysis

```
1 country_wise_data = country_wise_data.sort_values(by='Confirmed',ascending=False).reset_in
2 country_wise_data.head(10).style.background_gradient(cmap='Oranges',subset=["Confirmed"])\
3 .background_gradient(cmap='Reds',subset=['Deaths'])\
4 .background_gradient(cmap='Greens',subset=["Recovered"])\
5 .background_gradient(cmap='Blues',subset=["Active"])
```

Country/Region	Confirmed	Deaths	Recovered	Active
0 US	11205587115	211002971	496971828	10497612316
1 India	7608281596	102130320	4859387857	2646763419
2 Brazil	5379691803	148754887	3412350387	1818586529
3 Russia	1799296853	40777360	1128064202	630455291
4 France	1738215841	38375644	96506536	1603333661
5 United Kingdom	1627917566	47085772	3447801	1577383993
6 Turkey	1456098884	14368097	919259007	522471780
7 Spain	1258730734	30503286	71183831	1157043617
8 Italy	1247523840	43752047	759237934	444533859
9 Argentina	1171933965	26403973	711610324	433919668

Comment: It seems as if the recovery data for US is missing. Based on the above table it can be said that US is the most affected country with respect to number of confirmed cases and fatalities.

```
b .backgrouna_gradient(cmap='Greens',subset=["kecovered"])\
```

6	background_	_gradient(cmap='	'Blues'	,subset=	["Active"]	1)	
---	-------------------------------	------------	--------	---------	----------	------------	----	--

Observation	Date	Confirmed	Deaths	Recovered	Active
0 2021-10-14 00	0:00:00	239608139	4882066	0	234726073
1 2021-10-13 00	0:00:00	239167859	4874258	0	234293601
2 2021-10-12 00	0:00:00	238705193	4865619	0	233839574
3 2021-10-11 00	00:00:00	238272643	4857420	0	233415223
4 2021-10-10 00	0:00:00	237879268	4851586	0	233027682
5 2021-10-09 00	0:00:00	237578599	4847106	0	232731493
6 2021-10-08 00	0:00:00	237249330	4842432	0	232406898
7 2021-10-07 00	0:00:00	236770669	4834866	0	231935803
8 2021-10-06 00	0:00:00	236338773	4826388	0	231512385
9 2021-10-05 00	0:00:00	235825585	4816933	0	231008652

Comment:

Some recovery cases are zero so we will fill with previous non-zero values

```
1 time_series_data['Recovered'] = time_series_data['Recovered'].replace(to_replace=0, method
2 time_series_data.head(10).style.background_gradient(cmap='Oranges',subset=["Confirmed"])\
3 .background_gradient(cmap='Reds',subset=['Deaths'])\
4 .background_gradient(cmap='Greens',subset=["Recovered"])\
5 .background_gradient(cmap='Blues',subset=["Active"])
```

ObservationDate Confirmed Deaths Recovered Active

```
0 2021-10-14 00:00:00 239608139 4882066 130899061 234726073
1 2021-10-13 00:00:00 239167859 4874258 130899061 234293601
2 2021-10-12 00:00:00 238705193 4865619 130899061 233839574
3 2021-10-11 00:00:00 238272643 4857420 130899061 233415223
4 2021-10-10 00:00:00 237879268 4851586 130899061 233027682
5 2021-10-09 00:00:00 237578599 4847106 130899061 232731493
6 2021-10-08 00:00:00 237249330 4842432 130899061 232406898
7 2021-10-07 00:00:00 236770669 4834866 130899061 231935803
8 2021-10-06 00:00:00 236338773 4826388 130899061 231512385
9 2021-10-05 00:00:00 235825585 4816933 130899061 231008652
```

Confirmed vs Recovered vs Deaths vs Active

Comment:

The numbers of deaths are pretty low and the recovery numbers are lesser than the confirmed numbers.

Total number of Confirmed cases

Total number of Death cases

Total number of Active cases

Total number of Recovered cases

- 1 # Cases over time
- 2 time_series_data = time_series_data.sort_values('ObservationDate').reset_index(drop = True
- 3 time_series_data.iloc[:,1:] = time_series_data.iloc[:,1:].astype('int64')
- 4 time_series_data.head(10)

	ObservationDate	Confirmed	Deaths	Recovered	Active
0	2020-01-22	557	17	30	510
1	2020-01-23	655	18	32	605
2	2020-01-24	941	26	39	876
3	2020-01-25	1434	42	42	1350
4	2020-01-26	2118	56	56	2006
5	2020-01-27	2927	82	65	2780
6	2020-01-28	5578	131	108	5339
7	2020-01-29	6167	133	127	5907
8	2020-01-30	8235	171	145	7919
9	2020-01-31	9927	213	225	9489

^{1 #}cases_over_time moving average

² time_series_data_avg = time_series_data.copy()

³ time_series_data_avg.iloc[:,1:] = time_series_data_avg.iloc[:,1:].rolling(window = 7, min_

4 time_series_data_avg.head(20)

	ObservationDate	Confirmed	Deaths	Recovered	Active
0	2020-01-22	557	17	30	510
1	2020-01-23	606	18	31	558
2	2020-01-24	718	20	34	664
3	2020-01-25	897	26	36	835
4	2020-01-26	1141	32	40	1069
5	2020-01-27	1439	40	44	1354
6	2020-01-28	2030	53	53	1924
7	2020-01-29	2831	70	67	2695
8	2020-01-30	3914	92	83	3740
9	2020-01-31	5198	118	110	4970
10	2020-02-01	6713	149	145	6419
11	2020-02-02	8808	193	205	8411
12	2020-02-03	11231	242	285	10704
13	2020-02-04	13848	294	392	13163
14	2020-02-05	16916	355	535	16026
15	2020-02-06	20141	421	728	18991
16	2020-02-07	23637	494	984	22159
17	2020-02-08	27221	572	1317	25333
18	2020-02-09	30560	650	1712	28198
19	2020-02-10	33829	733	2187	30909

```
1 tplot = go.Figure()
 2 for case in cases:
       tplot.add_trace(
 3
           go.Scatter(
 4
               x = time_series_data['ObservationDate'],
               y = time_series_data[case],
               name = case,
               line = dict(color=case_dict[case]),
               hovertemplate ='<br><b>Date</b>: %{x}'+'<br><b>Count</b>: %{y}',
10
           )
11
12 for case in cases:
13
       tplot.add_trace(
```

```
10/15/21, 2:28 PM
                                           using-lstm-to-predict-covid-19.ipynb - Colaboratory
   14
               go.Scatter(
   15
                   x = time series data avg['ObservationDate'],
   16
                   y = time_series_data_avg[case],
                   name = case + " 7-day moving average",
   17
                   line = dict(dash = 'dash',color=case_dict[case]),
   18
                   hovertemplate ='<br><b>Date</b>: %{x}'+'<br>><b>Moving Average Count</b>: %{y}'
   19
    20
                   showlegend = False
   21
               )
    22
           )
   23
   24 tplot.update layout(
   25
           updatemenus=[
   26
               dict(
   27
               buttons=list(
                   [dict(label = 'All Cases',
   28
   29
                          method = 'update',
    30
                          args = [{'visible': [True, True, True, True, True, True, True, True]},
    31
                                  { 'title': 'All Cases',
   32
                                    'showlegend':True}]),
    33
                    dict(label = 'Confirmed',
                          method = 'update',
    34
   35
                          args = [{'visible': [True, False, False, False, True, False, False, False
    36
                                  { 'title': 'Confirmed',
                                    'showlegend':True}]),
    37
   38
                    dict(label = 'Active',
    39
                          method = 'update',
   40
                          args = [{'visible': [False, False, False, True, False, False, False, Tru
                                  { 'title': 'Active',
   41
   42
                                    'showlegend':True}]),
   43
                    dict(label = 'Recovered',
                          method = 'update',
   44
   45
                          args = [{'visible': [False, False, True, False, False, False, True, Fals
   46
                                  { 'title': 'Recovered',
                                    'showlegend':True}]),
   47
                    dict(label = 'Deaths',
   48
   49
                          method = 'update',
   50
                          args = [{'visible': [False, True, False, False, False, True, False, False
   51
                                  {'title': 'Deaths',
                                    'showlegend':True}]),
   52
   53
                   ]),type = 'buttons',
   54
                    direction="right",
   55
                    showactive = True,
   56
                    x = -0.25,
   57
                    xanchor="left",
   58
                    y=1.25,
   59
                    yanchor="top"
   60
               ),
               dict(
   61
               buttons=list(
    62
                   [dict(label = 'Linear Scale',
    63
                          method = 'relayout',
    64
                          args = [{'yaxis': {'type': 'linear'}},
```

```
{ 'title': 'All Cases',
66
67
                               'showlegend':True}]),
68
                dict(label = 'Log Scale',
                     method = 'relayout',
69
                     args = [{'yaxis': {'type': 'log'}},
70
                             {'title': 'All Cases',
71
72
                               'showlegend':True}]),
73
               ]),
74
                direction="right",
75
                x=-0.25,
76
                xanchor="left",
77
                y=1.39,
78
                yanchor="top"
79
           )
80
       ])
81
82 tplot.update layout(
       height=600, width=1100,
83
84
       title_text="<b>Global cases over time</b>", title_x=0.5, title_font_size=20,
85
                                legend=dict(orientation='h',yanchor='top',y=1.15,xanchor='righ
                                xaxis_title="Observation Date", yaxis_title="Number of Cases")
86
87 tplot.show()
88
```

1 # Cases over time

```
Linear Scale ►

All Cases Confirmed Active Recovered Deaths
```

Global cases over time

```
2 time series data increase = time series data.copy()
 3 time_series_data_increase.iloc[:,1:] = time_series_data_increase.iloc[:,1:].diff(1)
 4 time_series_data_increase_avg = time_series_data_increase.copy()
 5 time series data increase avg.iloc[:,1:] = time series data increase avg.iloc[:,1:].rollin
 1 fig = make subplots(rows=len(cases), cols=1, vertical spacing=0.2, horizontal spacing=0.04
                              subplot titles=('<b>Confirmed</b>','<b>Active</b>','<b>Recovere
 3
                               x_title="Observation Date", y_title="Number of Cases")
 4
 6 for i in range(len(cases)):
 7
 8
      fig.add trace( go.Bar(
 9
                   x = time series data increase['ObservationDate'],
                   y = time_series_data_increase[cases[i]],
10
                   name = cases[i],
11
                   hovertemplate ='<br><b>Date</b>: %{x}'+'<br><b>Count</b>: %{y}',
12
13
                   marker = dict(color = case dict[cases[i]])
14
               ), row = i+1, col = 1)
15
16
      fig.add trace( go.Scatter(
                   x = time_series_data_increase_avg['ObservationDate'],
17
18
                   y = time_series_data_increase_avg[cases[i]],
19
                   name = cases[i],
20
                   hovertemplate ='<br><b>Date</b>: %{x}'+'<br>>b>7-day average</b>: %{y}',
21
                   showlegend=False,
22
                   line=dict(dash="dash", color=case_color[i])
23
               ), row = 1+i, col = 1)
24 fig.update layout(
25
      height=800, width=1100,
26
      title text="<b>Daily increase in global cases over time</b>", title x=0.5, title font
27
                               legend=dict(orientation='h',yanchor='top',y=1.15,xanchor='righ
28 fig.show()
29
30
```

Daily increase in global cases over

Deaths

```
1 fig,ax = plt.subplots(1,4,figsize = (20,5))
2 for i in range(len(cases)):
3     sns.set_style('whitegrid')
4     sns.distplot(time_series_data[cases[i]], kde = True, rug = True, bins = 25,ax =ax[i],c
5     ax[i].set_xlabel( cases[i]+ ' cases')
6    ax[i].set_ylabel('Density')
7     ax[i].set_title('Distribution plot for ' + cases[i]+ ' cases')
8 fig.tight_layout()
9 plt.suptitle('Distribution of Cases',fontsize = 15,y = 1.1)
10 plt.show()
11
```

Distribution of Cases

Comment:

The distribution plots are skewed. So appropriate normalization techniques need to be applied before modelling.

```
1
 2 # m = np.mean(time_series_data.iloc[:,1:], axis=0) # array([16.25, 26.25])
 3 # std = np.std(time series data.iloc[:,1:], axis=0) # array([17.45530005, 22.18529919])
 4 # md = np.median(time_series_data.iloc[:,1:],axis = 0)
 5 # p75 = np.percentile(time_series_data.iloc[:,1:],75,axis = 0)
 6 # p25 = np.percentile(time series data.iloc[:,1:],25,axis = 0)
 1 # time_series_normalized = time_series_data.copy()
 2 # time_series_normalized.iloc[:,1:] = np.tanh((time_series_normalized.iloc[:,1:] - md) / (
 1 # fig,ax = plt.subplots(1,4,figsize = (20,5))
 2 # for i in range(len(cases)):
        sns.set style('whitegrid')
         sns.distplot(time series normalized[cases[i]], kde = True, rug = True, bins = 25,ax
        ax[i].set_xlabel( cases[i]+ ' cases')
 5 #
        ax[i].set ylabel('Density')
 6 #
        ax[i].set title('Distribution plot for ' + cases[i]+ ' cases')
 8 # fig.tight layout()
 9 # plt.suptitle('Distribution of Normalized time series data', fontsize = 15, y = 1.1)
10 # plt.show()
```

4.Predictive modelling using CNN + Bi-Directional LSTM

Creating dataset for predictive modelling

```
1 dataset = time_series_data.iloc[:,1].values #using only confirmed cases
 2 dataset.shape
     (632,)
 1 #Feature scaling
 2 split = round(0.8*len(dataset))
 3 dataset = dataset.reshape(-1,1)
 4 scaler = MinMaxScaler(feature range=(0,1))
 5 scaler.fit(dataset[:split]) #fit only on the training data which is the first 80%
 6 dataset_n = scaler.transform(dataset).flatten()
 7 dataset n.shape
     (632,)
 1 def create_dataset(df,previous,split_ratio):
      X, Y = [], []
      for i in range(len(df)-previous):
 3
 4
           a = df[i:(i+previous)]
 5
          X.append(a)
           y = df[i+previous]
 6
 7
          Y.append(y)
      X = np.array(X).reshape(-1,T,1)
 8
 9
      Y = np.array(Y)
10
      N = len(X)
      split = round(split_ratio*len(df))
11
      X train = X[:split]
12
      X_test = X[split:]
13
      Y train = Y[:split]
14
15
      Y test = Y[split:]
16
      print("X.shape", X.shape, "Y.shape", Y.shape)
17
      print("X train.shape", X train.shape, "Y train.shape", Y train.shape)
      print("X_test.shape", X_test.shape, "Y_test.shape", Y_test.shape)
18
19
       return X,X train,X test,Y,Y train,Y test
 1 T = 30 #number of past days used to predict the value for the current day
 2 X,X train,X test,Y,Y train,Y test = create dataset(dataset n,T,0.8) #80% of data for train
    X.shape (602, 30, 1) Y.shape (602,)
    X train.shape (506, 30, 1) Y train.shape (506,)
    X_test.shape (96, 30, 1) Y_test.shape (96,)
```

▼ Building the model architecture

```
1 def plotLearningCurve(history,epochs,text):
https://colab.research.google.com/drive/1o7avE4YD89seKy98bjFbidX KLdmif4x#scrollTo=DjTHcC4Y2DS3&printMode=true
```

```
epochRange = range(1,epochs+1)
    plt.figure(figsize = (5,5))
 3
    plt.plot(epochRange,history.history['loss'])
    plt.plot(epochRange, history.history['val_loss'])
    plt.title('Model Loss for ' + text)
    plt.xlabel('Epoch', fontsize = 20)
 7
 8
    plt.ylabel('Loss', fontsize = 20)
 9
    plt.legend(['Training set','Validation set'])
10
    plt.show()
 1 def lstm model(previous):
       i = Input(shape=(previous,1)) #input shape is n-timesteps x n-features
      x = Conv1D(filters=32, kernel_size= 3, strides=2, padding="causal", activation="relu")
 3
      x = LSTM(64, return sequences=True)(x)
      x = Dropout(0.4)(x)
 6
      x = LSTM(64, return sequences=True)(x)
      x = Dropout(0.4)(x)
      x = LSTM(64)(x)
 8
 9
      x = Dropout(0.2)(x)
10
      x = Dense(1)(x)
11
      model = Model(i, x)
      model.summary()
12
      return model
13
```

$1 \mod el = 1 stm \mod el(T)$

Model: "model"

Layer (type)	Output Shape	Param #
<pre>input_1 (InputLayer)</pre>	======================================	 0
conv1d (Conv1D)	(None, 15, 32)	128
lstm (LSTM)	(None, 15, 64)	24832
dropout (Dropout)	(None, 15, 64)	0
lstm_1 (LSTM)	(None, 15, 64)	33024
dropout_1 (Dropout)	(None, 15, 64)	0
lstm_2 (LSTM)	(None, 64)	33024
dropout_2 (Dropout)	(None, 64)	0
dense (Dense)	(None, 1)	65
Total params: 91,073	=======================================	

Trainable params: 91,073
Non-trainable params: 0

```
1 model.compile(loss = 'mse',
          optimizer = 'adam')
1 batchsize = 64
2 \text{ epochs} = 100
3 learning rate reduction = ReduceLROnPlateau(monitor='val loss',
                            patience=3,
5
                            verbose=1,
6
                            factor=0.8,
                            min_lr=1e-10)
7
8 early stop = EarlyStopping(monitor='val loss',patience=15,restore best weights=True)
9 r = model.fit(X train,
10
             Y train,
11
             batch_size=batchsize,
12
             epochs=epochs,
13
             validation split=0.2,
14
             shuffle=False, #time series
15
             callbacks=[learning rate reduction,early stop])
   Epoch 1/100
  7/7 [=============== ] - 7s 221ms/step - loss: 0.0454 - val loss: 0.1453
   Epoch 2/100
   Epoch 3/100
  Epoch 4/100
  Epoch 5/100
  Epoch 6/100
  Epoch 7/100
  7/7 [============= ] - 0s 46ms/step - loss: 0.0046 - val loss: 1.1991e-6
   Epoch 8/100
  Epoch 9/100
  7/7 [============= ] - 0s 45ms/step - loss: 0.0019 - val loss: 2.2199e-6
   Epoch 10/100
  7/7 [============= ] - 0s 44ms/step - loss: 0.0023 - val loss: 2.3604e-6
   Epoch 00010: ReduceLROnPlateau reducing learning rate to 0.000800000037997961.
   Epoch 11/100
  Epoch 12/100
  7/7 [============= ] - 0s 45ms/step - loss: 0.0014 - val loss: 5.0023e-6
   Epoch 13/100
  Epoch 00013: ReduceLROnPlateau reducing learning rate to 0.0006400000303983689.
   Epoch 14/100
  7/7 [=============== ] - 0s 47ms/step - loss: 0.0015 - val loss: 8.0936e-6
   Epoch 15/100
   Epoch 16/100
```

```
7/7 [=========== ] - 0s 44ms/step - loss: 0.0015 - val_loss: 0.0030
Epoch 00016: ReduceLROnPlateau reducing learning rate to 0.0005120000336319208.
Epoch 17/100
Epoch 18/100
Epoch 19/100
7/7 [============ ] - 0s 43ms/step - loss: 0.0012 - val_loss: 0.0038
Epoch 00019: ReduceLROnPlateau reducing learning rate to 0.00040960004553198815.
Epoch 20/100
7/7 [============ ] - 0s 44ms/step - loss: 9.1699e-04 - val loss: 0.002
Epoch 21/100
Epoch 22/100
Epoch 00022: ReduceLROnPlateau reducing learning rate to 0.00032768002711236477.
```

```
Model Loss for CNN+LSTM model
                          ____
1 r.history['loss']
    [0.045422572642564774,
     0.025905705988407135,
    0.016938544809818268,
     0.007742736488580704,
     0.014860113151371479,
     0.0018392590573057532,
     0.004579311702400446,
     0.006305883638560772,
     0.0018983760382980108,
     0.002292555756866932,
     0.0023065414279699326,
     0.0014067406300455332,
     0.0012126350775361061,
     0.0014814937021583319,
     0.0013433381682261825,
     0.0015455055981874466,
     0.0013058619806542993,
     0.0013411532854661345,
     0.0012355889193713665,
     0.0009169915574602783,
     0.0012460516300052404,
     0.00127340666949749]
```

Predicting test data

```
1 Y_pred = model.predict(X_test)
2 Y_pred = scaler.inverse_transform(Y_pred)
3 Y_test = scaler.inverse_transform(Y_test.reshape(-1,1))
4 plt.plot(Y_pred, color='red')
5 plt.plot(Y_test, color='blue')
6 plt.title('Actual vs. Predicted Covid Cases (Test Data)')
7 plt.ylabel('Number of Cases')
8 plt.xlabel('Day')
9 plt.legend(['predicted', 'actual'])
```

<matplotlib.legend.Legend at 0x7f0b2c584150>

✓ 1s completed at 2:25 PM

X