Insurers classification and prediction

Why Insurers classification?

What we are looking for?

Understand auto insurers features

Make Predictions

How to proceed?

Data Collection

```
import pandas as pd
```

```
auto15=pd.read_excel(r'C:\Users\hamit\Desktop\Project_final\BASEAUTO.xls', sheet_name='DATA_2015')
auto16=pd.read_excel(r'C:\Users\hamit\Desktop\Project_final\BASEAUTO.xls', sheet_name='DATA_2016')
auto17=pd.read_excel(r'C:\Users\hamit\Desktop\Project_final\BASEAUTO.xls', sheet_name='DATA_2017')
auto18=pd.read_excel(r'C:\Users\hamit\Desktop\Project_final\BASEAUTO.xls', sheet_name='DATA_2018')
auto19=pd.read_excel(r'C:\Users\hamit\Desktop\Project_final\BASEAUTO.xls', sheet_name='DATA_2019')
```

```
lst=[auto15,auto16,auto17,auto18,auto1
for i in lst:
    print(i.shape)

(9662, 19)
(15373, 19)
(11981, 19)
(9768, 19)
(8044, 19)
```


19 potential variables

Analysing Dataframe

Dtypes

for i in 1st:

CSP

K8000

```
print(i.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9662 entries, 0 to 9661
Data columns (total 19 columns):
    # Column Non-Null Count Dtype
--- 0 NUMCNT 9662 non-null int64
1 NBAP 9662 non-null float64
```

CHARGETOT 9662 non-null

9662 non-null

9662 non-null

int64

float64

object

Duplicales

```
for i in lst:
    print(i.duplicated().sum())

2
2
3
0
0
```



```
for i in lst:
    i.drop_duplicates(inplace=True)

for i in lst:
    print(i.duplicated().sum())

0
0
0
0
0
0
```

Missing Values

```
for i in 1st:
    print(i.isnull().sum())
NUMCNT
              0
NBAP
CSP
CHARGETOT
K8000
STATUT
USAGE
ENE
ACV
SEXE
AGECOND
PERMIS
CRM
GARAGE
SEGM
ALI
VITMAX
CAR
CLAPRIX
              0
dtype: int64
```

Check the unique values

```
['AGECOND'].unique()

y(['21-25 ANS', '<= 20 ANS', '26-30 ANS', '51-60 ANS', '41-50
    '31-40 ANS', '61-65 ANS', '71 ANS ET PLUS', '66-70 ANS'],
    dtype=object)</pre>
```



```
auto.loc[auto['AGECOND']== '21-25 ANS', 'AGECOND_T']=21
auto.loc[auto['AGECOND']== '<= 20 ANS', 'AGECOND_T']=20
auto.loc[auto['AGECOND']== '26-30 ANS', 'AGECOND_T']=26
auto.loc[auto['AGECOND']== '51-60 ANS', 'AGECOND_T']=51
auto.loc[auto['AGECOND']== '41-50 ANS', 'AGECOND_T']=41
auto.loc[auto['AGECOND']== '31-40 ANS', 'AGECOND_T']=31
auto.loc[auto['AGECOND']== '61-65 ANS', 'AGECOND_T']=61
auto.loc[auto['AGECOND']== '71 ANS ET PLUS', 'AGECOND_T']=71
auto.loc[auto['AGECOND']== '66-70 ANS', 'AGECOND_T']=66</pre>
```

Columns

```
auto.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51293 entries, 0 to 51292
Data columns (total 15 columns):
                             Non-Null Count Dtype
    Column
                             51293 non-null float64
    Amount paid
    Limited Milesage option 51293 non-null object
    Marital status
                             51293 non-null object
    Vehicle use
                             51293 non-null object
    Energy type
                             51293 non-null object
    Vehicle age
                             51293 non-null float64
    Sex
                             51293 non-null object
    Driver age
                             51293 non-null float64
    License issuance
                             51293 non-null float64
    Bonus malus
                             51293 non-null float64
    Garage
                             51293 non-null object
    Vehicle_segment
                             51293 non-null object
12 Max_speed
                             51293 non-null float64
13 Car type
                             51293 non-null object
14 Price_class_vehicle
                             51293 non-null object
dtypes: float64(6), object(9)
memory usage: 5.9+ MB
```

Numerical columns

uto.describe()

	Amount_paid	Vehicle_age	Driver_age	License_issuance	Bonus_malus	Max_speed
count	51293.000000	51293.000000	51293.000000	51293.000000	51293.000000	51293.000000
mean	207.911114	7.569045	36.137465	16.385832	3.054569	165.932837
std	178.466435	3.792030	13.462191	10.388156	3.425185	20.677004
min	0.180000	0.000000	20.000000	0.000000	-1.000000	140.000000
25%	87.650000	4.000000	26.000000	7.000000	0.000000	151.000000
50%	171.750000	8.000000	31.000000	17.000000	1.000000	161.000000
75%	273.160000	11.000000	41.000000	24.500000	6.000000	181.000000
max	3329.600000	11.000000	71.000000	30.000000	9.000000	220.000000

What about outliers?

Column 'Amount_paid"

auto.loc[auto['Amount_paid']>1800, 'Amount_paid']=1780

Numerical columns correlation

Now... ready for visualization!

Selected columns for unsupervised

Categorical columns

'Limited_Milesage_option'
'Vehicle_use'
'Energy_type'
'Garage'
'Price_class_vehicle'

Numerical columns

'Amount_paid'
'Vehicle_age'
'Driver_age'
'License_issuance'
'Max_speed'

Insurers clustering

[unsupervised Learning]

Which algorithm should be use?

Source:

<u>Customer Segmentation Project using K-prototypes with Code Source - AI decoder</u> (decoderai.com)

K-prototypes technique

Scale the numerical columns (MinMaxScaler)

from sklearn.preprocessing import MinMaxScaler
from sklearn.compose import make_column_transformer

	Amount_paid	Vehicle_age	Driver_age	License_issuance	Max_speed
0	0.034600	1.0	0.019608	0.100000	0.1375
1	0.002194	1.0	0.019608	0.100000	0.1375
2	0.015220	1.0	0.000000	0.000000	0.1375
3	0.015623	1.0	0 117647	ი ევვვვვ	0.1375

Keep the categorical data in raw format

b=auto[['Limited_Milesage_option', 'Vehicle_use', 'Energy_type', 'Garage', 'Price_class_vehicle']]

auto_scal=pd.concat([a,b], axis=1)
auto_scal.head()

	Amount_paid	Vehicle_age	Driver_age	License_issuance	Max_speed	Limited_Milesage_option	Vehicle_use	Energy_type	Garage	Price_class_vehicle
0	0.034600	1.0	0.019608	0.100000	0.1375	N	PRIVE	ESSENCE	AUTRES	Е
1	0.002194	1.0	0.019608	0.100000	0.1375	N	PRIVE	ESSENCE	AUTRES	E
2	0.015220	1.0	0.000000	0.000000	0.1375	N	PRIVE	ESSENCE	AUTRES	С
3	0.015623	1.0	0.117647	0.233333	0.1375	N	PRIVE	DIESEL	AUTRES	н
4	0.088742	1.0	0.117647	0.233333	0.1375	N	PRIVE	DIESEL	AUTRES	н

Get the position of the categorical data

Convert dataframe into matrix format

```
import numpy as np
auto array=auto scal.to numpy()
auto_array
array([[0.03459992610920165, 1.0, 0.019607843137254888, ..., 'ESSENCE',
        'AUTRES', 'E'],
       [0.0021943327996775674, 1.0, 0.019607843137254888, ..., 'ESSENCE',
        'AUTRES', 'E'],
       [0.015220384903885987, 1.0, 0.0, ..., 'ESSENCE', 'AUTRES', 'C'],
       [0.16478767591048019, 1.0, 0.11764705882352938, ..., 'DIESEL',
        'INDIVIDUEL CLOS', 'J'],
       [0.03946440366767054, 1.0, 0.11764705882352938, ..., 'DIESEL',
        'INDIVIDUEL CLOS', 'J'],
       [0.02089094389897113, 1.0, 0.11764705882352938, ..., 'DIESEL',
        'INDIVIDUEL CLOS', 'J']], dtype=object)
```

Fix the optimal cluster(usig the elbow method)

```
from kmodes.kprototypes import KPrototypes

cost = []
for cluster in range(1, 10):
    try:
        kprototype = KPrototypes(n_jobs = -1, n_clusters = cluster, init = 'Huang', random_state = 0)
        kprototype.fit_predict(auto_array, categorical = catColumnsPos)
        cost.append(kprototype.cost_)
        print('Cluster initiation: {}'.format(cluster))
    except:
        break

plt.plot(cost)
plt.xlabel('K')
plt.ylabel('cost')
```


New dataframe with columns 'clusters'

ergy_type	Vehicle_age	Sex	Driver_age	License_issuance	Bonus_malus	Garage	Vehicle_segment	Max_speed	Car_type	Price_class_vehicle	clusters
ESSENCE	11.0	HOMME	21.0	3.0	8.0	AUTRES	В	151.0	BERLINE	E	2
ESSENCE	11.0	HOMME	21.0	3.0	8.0	AUTRES	В	151.0	BERLINE	E	2
ESSENCE	11.0	FEMME	20.0	0.0	9.0	AUTRES	В	151.0	BERLINE	С	2
DIESEL	11.0	HOMME	26.0	7.0	8.0	AUTRES	M1	151.0	BERLINE	н	2
DIESEL	11.0	HOMME	26.0	7.0	8.0	AUTRES	M1	151.0	BERLINE	н	2
DIESEL	11.0	HOMME	51.0	30.0	0.0	AUTRES	M2	161.0	BERLINE	н	0
DIESEL	11.0	HOMME	51.0	30.0	0.0	AUTRES	M2	161.0	BERLINE	н	0
DIESEL	11.0	HOMME	26.0	7.0	3.0	INDIVIDUEL CLOS	M1	171.0	BERLINE	J	2
DIESEL	11.0	HOMME	26.0	7.0	2.0	INDIVIDUEL CLOS	M1	171.0	BERLINE	J	2
DIESEL	11.0	HOMME	26.0	7.0	2.0	INDIVIDUEL CLOS	M1	171.0	BERLINE	J	2

PCA

Standardization + Encoding

import labraryit the model

```
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
pca.fit_transform(auto_pca)

rray([[ 2.56460001e+04,  3.85091894e+00, -1.17654940e+00],
       [ 2.56450001e+04,  3.85093560e+00, -1.17655897e+00],
       [ 2.56440001e+04,  5.80542371e+00, -1.30701998e+00],
       ...,
       [-2.56440000e+04, -6.73823509e-01, -1.45212727e+00],
       [-2.56450000e+04, -6.62071937e-01, -1.42101803e+00],
       [-2.564600000e+04, -6.71719297e-01, -1.48043853e+00]])
```

PCA (3D visualization)

Cluster 0
Cluster 1
Cluster 2

Clusters(Labels) visulization

clusters	Amount_paid	Limited_Milesage_option	Vehicle_use	Energy_type	Vehicle_age	Driver_age	License_issuance	Bonus_malus	Garage	Max_speed	Pric
0	48.52	N	PRIVE	ESSENCE	11.0	41.0	30.0	0.0	AUTRES	140.0	
1	1780.00	N	PRIVE	DIESEL	0.0	31.0	30.0	0.0	AUTRES	181.0	
2	1.14	N	PRIVE	DIESEL	11.0	21.0	7.0	9.0	AUTRES	161.0	

Cluster 1: Medium Charges 57.7%

Insurers Classification [Supervised Learning]

Classification technique

Encoding

	Amount_paid	Limited_Milesage_option	Vehicle_use	Energy_type	Vehicle_age	Driver_age	License_issuance	Garage	Max_speed	Price_class_vehic
0	61.99	N	PRIVE	ESSENCE	11.0	21.0	3.0	AUTRES	151.0	
1	4.10	N	PRIVE	ESSENCE	11.0	21.0	3.0	AUTRES	151.0	
2	27.37	N	PRIVE	ESSENCE	11.0	20.0	0.0	AUTRES	151.0	
3	28.09	N	PRIVE	DIESEL	11.0	26.0	7.0	AUTRES	151.0	
4	158.71	N	PRIVE	DIESEL	11.0	26.0	7.0	AUTRES	151.0	
		***					***			
51288	49.10	0	PRIVE	DIESEL	11.0	51.0	30.0	AUTRES	161.0	
51289	39.94	0	PRIVE	DIESEL	11.0	51.0	30.0	AUTRES	161.0	
51290	294.56	0	PRIVE	DIESEL	11.0	26.0	7.0	INDIVIDUEL	171.0	

from sklearn.preprocessing import LabelEncoder

b=x[categorical_features].apply(LabelEncoder().fit_transform)
b

	Limited_Milesage_option	Vehicle_use	Energy_type	Garage	Price_class_vehicle
0	0	0	2	0	4
1	0	0	2	0	4
2	0	0	2	0	2
3	0	0	0	0	7
4	0	0	0	0	7

Standardization

	Amount_paid	Limited_Milesage_option	Vehicle_use	Energy_type	Vehicle_age	Driver_age	License_issuance	Garage	Max_speed	Price_class_vehic
0	61.99	N	PRIVE	ESSENCE	11.0	21.0	3.0	AUTRES	151.0	
1	4.10	N	PRIVE	ESSENCE	11.0	21.0	3.0	AUTRES	151.0	
2	27.37	N	PRIVE	ESSENCE	11.0	20.0	0.0	AUTRES	151.0	
3	28.09	N	PRIVE	DIESEL	11.0	26.0	7.0	AUTRES	151.0	
	450.74	K1	DDIVE	DIECEI	44.0	20.0	7.0	AUTOEC	454.0	

from sklearn.preprocessing import StandardScaler
from sklearn.compose import make_column_transformer

transformer1=make_column_transformer((StandardScaler(), ['Vehicle_age', 'Driver_age', 'License_issu a=transformer1.fit_transform(x)

	Vehicle_age	Driver_age	License_issuance	Max_speed
0	0.90479	-1.124454	-1.288579	-0.722202
1	0.90479	-1.124454	-1.288579	-0.722202
2	0.90479	-1.198737	-1.577373	-0.722202
3	0.90479	-0.753040	-0.903522	-0.722202
4	0.90479	-0.753040	-0.903522	-0.722202
7	0.50475	-0.733040	-0.303322	-0.122202

Define the features and the target

Features

	Vehicle_age	Driver_age	License_issuance	Max_speed	Limited_Milesage_option	Vehicle_use	Energy_type	Garage	Price_class_vehi
0	0.90479	-1.124454	-1.288579	-0.722202	0	0	2	0	
1	0.90479	-1.124454	-1.288579	-0.722202	0	0	2	0	
2	0.90479	-1.198737	-1.577373	-0.722202	0	0	2	0	
3	0.90479	-0.753040	-0.903522	-0.722202	0	0	0	0	
4	0.90479	-0.753040	-0.903522	-0.722202	0	0	• 0	0	
18	0.90479	1.104031	1.310560	-0.238569	1	0	0	0	
19	0.90479	1.104031	1.310560	-0.238569	1	0	0	0	
)0	0.90479	-0.753040	-0.903522	0.245065	1	0	0	2	
)1	0.90479	-0.753040	-0.903522	0.245065	1	0	0	2	

Target

```
y=auto[['clusters']]
```

у	
cl	usters
0	1
1	1
2	1
3	1
4	1
51288	1

Slpit the data into train and test

from sklearn.model_selection import train_test_split
x_train, x•test, y_train, y_test= train_test_split(x,y, test_size=0.2)

Imbalanced data

BalancedRandomForestClassifier

Fit the model

from imblearn.ensemble import BalancedRandomForestClassifier
clf = BalancedRandomForestClassifier(max_depth=3, random_state=0)
clf.fit(x_train, y_train)
BalancedRandomForestClassifier(...)

from imblearn.metrics import classification_report_imbalanced

Check the metrics y_true=y_test

```
y_true=y_test
y_pred=clf.predict(x_test)
```

print(classification report imbalanced(y true, y pred))

Results

	pre	rec	spe	f1	geo	iba	sup
0	0.89	0.92	0.95	0.90	0.94	0.88	2918
1	0.91	0.93	0.96	0.92	0.95	0.90	2968
2	0.96	0.92	0.97	0.94	0.94	0.89	4373
avg / total	0.92	0.92	0.96	0.92	0.94	0.89	10259

Metrics formula

$$\begin{aligned} \text{precision} &= \frac{tp}{tp + fp} \\ \text{recall} &= \frac{tp}{tp + fn} \\ \text{accuracy} &= \frac{tp + tn}{tp + tn + fp + fn} \\ F_1 \text{ score} &= 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \end{aligned}$$

Results

 The insurers risk can be segmented in 3 groups according to the charge that they could generate.

 To do prediction for the future risks we can use BalancedRandomForestCalssifier, which provided significant metrics.

Improvements

- Geographical situation
- Weather

- Psychological state of the driver
- Drunk driven state
- Lack of visibility

Data bases SQL vs NoSQL

Let's define the concepts!

SQL----> Structured Query Langage

NoSQL----> Not Only SQL

ERD using draw.io

MySQL

Queries and stored procedures

```
SELECT * FROM final_project.vehicle;
select count(Energy_type) as total_Energy_type_2016, Energy_type as Energy_type, Price_class_vehicle from vehicle
where Year= 2016
group by Energy_type
order by count(Energy_type);
```

Re	Result Grid 1										
	total_Energy_type_2016	Energy_type	Price_dass_vehide								
+	1	ELECTRIQUE	OAV								
	6923	ESSENCE	C								
	7664	DIESEL	H								

select insurer.Sex , vehicle.Garage
from insurer
left join vehicle
on insurer.ID=vehicle.ID
group by Sex;


```
select insurer.Driver_age, vehicle.Vehicle_use
from insurer
left join vehicle
on insurer.ID=vehicle.ID
group by Vehicle_use
order by Driver_age desc;
```

Result Grid										
	Driver_age	Vehicle_use								
•	31	TOURNEES								
	21	PRIVE								
	21	PROFESSIONNEL								

call get_insurer_info;

esult Grid Filter Rows: Export: Wrap Cell Content: Fetch rows:												
ID	Year	NUMCNT	Limited_Mlesage_option	Vehide_use	Energy_type	Vehicle_age	License_issuance	Bonus_malus	Garage	Max_speed	Car_type	Price_dass_vehide
1	2015	2846378304	N	PRIVE	ESSENCE	11	3	8	AUTRES	151	BERLINE	E
2	2015	2846378304	N	PRIVE	ESSENCE	11	3	8	AUTRES	151	BERLINE	E
3	2015	2846378604	N	PRIVE	ESSENCE	11	0	9	AUTRES	151	BERLINE	C
4	2015	2846380204	N	PRIVE	DIESEL	11	7	8	AUTRES	151	BERLINE	Н
5	2015	2846380204	N	PRIVE	DIESEL	11	7	8	AUTRES	151	BERLINE	н
6	2015	2846381304	N	PRIVE	ESSENCE	11	0	9	AUTRES	141	BERLINE	D
7	2015	2846381504	M	DDTVE	DIEGE	11	0	ġ.	ALITTRES	151	CAMIONNETTE	E

```
    CREATE PROCEDURE `get_energy_type_info`(in Energy_type char)
    ⇒ BEGIN
    select * from vehicle
    where vehicle.Energy_type= Energy_type;
    END
```

ID	Year	NUMCNT	Limited_Milesage_option	Vehide_use	Energy_type	Vehide_age	License_issuance	Bonus_malus	Garage	Max_speed	Car_type	Price_class_vehicle
1	2015	2846378304	N	PRIVE	ESSENCE	11	3	8	AUTRES	151	BERLINE	E
2	2015	2846378304	N	PRIVE	ESSENCE	11	3	8	AUTRES	151	BERLINE	E
3	2015	2846378604	N	PRIVE	ESSENCE	11	0	9	AUTRES	151	BERLINE	С
5	2015	2846381304	N	PRIVE	ESSENCE	11	0	9	AUTRES	141	BERLINE	D
3	2015	2846381604	N	PRIVE	ESSENCE	5	30	3	AUTRES	141	BERLINE	С
Э	2015	2846382104	N	PRIVE	ESSENCE	11	25	0	AUTRES	151	COUPÃ "	F
10	2015	2846383004	N	PRIVE	ESSENCE	11	7	2	AUTRES	171	BERLINE	G
11	2015	2846383004	N	PRIVE	ESSENCE	11	7	2	AUTRES	171	BERLINE	G

```
CREATE PROCEDURE `insurance_charge_year`( in Year int)

BEGIN

select * from vehicle

where vehicle.Year = Year

group by Garage;

END
```

call insurance_charge_year(2015);

6	Result Grid Filter Rows: Export: Export: Wrap Cell Content: A												
	ID	Year	NUMCNT	Limited_Mlesage_option	Vehide_use	Energy_type	Vehide_age	License_issuance	Bonus_malus	Garage	Max_speed	Car_type	Price_dass_vehide
Þ	1	2015	2846378304	N	PRIVE	ESSENCE	11	3	8	AUTRES	151	BERLINE	E
	18	2015	2846385904	0	PRIVE	ESSENCE	6	30	0	INDIVIDUEL CLOS	220	CABRIOLET	W A Z5
	26	2015	2846390804	0	PRIVE	ESSENCE	0	7	5	CLOS COLLECTIF	171	CABRIOLET	K

END