

High-side driver

Datasheet - production data

Features

Туре	R _{DS(on)}	I _{OUT}	V _{CC}
VN750-E VN750PT-E VN750B5-E VN750-12-E	60 mΩ	6 A	36 V

- ECOPACK®: lead free and RoHS compliant
- Automotive Grade: compliance with AEC guidelines
- CMOS compatible input
- On-state open-load detection
- Off-state open-load detection
- Shorted load protection
- Undervoltage and overvoltage shutdown
- Protection against loss of ground
- Very low standby current
- Reverse battery protection

Description

The VN750-E is a monolithic device designed in STMicroelectronics[®] VIPower[®] M0-3 technology intended for driving any kind of load with one side connected to ground.

Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart help protect the device against overload.

The device detects open load condition in on-state and off-state. Output shorted to V_{CC} is detected in the off-state. Device automatically turns off in case of ground pin disconnection.

Table 1. Device summary

Package	Order codes		
rackaye	Tube	Tape and reel	
PENTAWATT	VN750-E	-	
P ² PAK	VN750B5-E	VN750B5TR-E	
PPAK	VN750PT-E	VN750PTTR-E	
PENTAWATT in-line	VN750-12-E	-	

Contents VN750-E

Contents

1	Bloc	k diagram and pin description	. 5
2	Elec	trical specifications	. 6
	2.1	Absolute maximum ratings	. 6
	2.2	Thermal data	. 7
	2.3	Electrical characteristics	. 7
	2.4	Electrical characteristics curves	13
	2.5	GND protection network against reverse battery	16
		2.5.1 Solution 1: resistor in the ground line (RGND only)	16
		2.5.2 Solution 2: diode (DGND) in the ground line	17
	2.6	Load dump protection	17
	2.7	Microcontroller I/Os protection	17
	2.8	Open-load detection in off-state	17
	2.9	PPAK/P ² PAK maximum demagnetization energy (VCC=13.5V)	19
3	Pacl	kage and PCB thermal data	20
	3.1	P ² PAK thermal data	20
	3.2	PPAK thermal data	22
4	Pacl	kage and packing information	25
	4.1	ECOPACK [®] packages	25
	4.2	PENTAWATT mechanical data	25
		4.2.1 PENTAWATT (in-line) mechanical data	27
	4.3	P ² PAK mechanical data	29
	4.4	PPAK mechanical data	31
	4.5	PENTAWATT packing information	33
	4.6	P ² PAK packing information	33
	4.7	PPAK packing information	35
5	Revi	ision history	37

VN750-E List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Suggested connections for unused and not connected pins	5
Table 3.	Absolute maximum ratings	6
Table 4.	Thermal data	7
Table 5.	Electrical characteristics	7
Table 6.	Truth table	10
Table 7.	Electrical transient requirements on V _{CC} pin (part 1/3)	10
Table 8.	Electrical transient requirements on V _{CC} pin (part 2/3)	11
Table 9.	Electrical transient requirements on V _{CC} pin (part 3/3)	11
Table 10.	P ² PAK thermal parameter	22
Table 11.	PPAK thermal parameter	24
Table 12.	PENTAWATT mechanical data	25
Table 13.	PENTAWATT (in-line) mechanical data	27
Table 14.	P ² PAK mechanical data	
Table 15.	PPAK mechanical data	32
Table 16	Document revision history	37

List of figures VN750-E

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	5
Figure 3.	Current and voltage conventions	
Figure 4.	Status timings	9
Figure 5.	Switching time waveforms	10
Figure 6.	Waveforms	12
Figure 7.	Off-state output current	
Figure 8.	High level input current	
Figure 9.	Input clamp voltage	13
Figure 10.	Status leakage current	13
Figure 11.	Status low output voltage	13
Figure 12.	Status clamp voltage	13
Figure 13.	On-state resistance Vs T _{case}	14
Figure 14.	On-state resistance Vs V _{CC}	14
Figure 15.	Open-load on-state detection threshold	14
Figure 16.	Input high level	14
Figure 17.	Input low level	14
Figure 18.	Input hysteresis voltage	14
Figure 19.	Overvoltage shutdown	15
Figure 20.	Open-load off-state voltage detection threshold	15
Figure 21.	Turn-on voltage slope	15
Figure 22.	Turn-off voltage slope	15
Figure 23.	I _{lim} Vs T _{case}	15
Figure 24.	Application schematic	
Figure 25.	Open-load detection in off-state	
Figure 26.	PPAK /P ² PAK maximum turn-off current versus inductance	
Figure 27.	P ² PAK PC board	
Figure 28.	P ² PAK Rthj-amb Vs. PCB copper area in open box free air condition	
Figure 29.	P ² PAK thermal impedance junction ambient single pulse	
Figure 30.	P ² PAK thermal fitting model of a single channel	
Figure 31.	PPAK PC board	
Figure 32.	PPAK Rthj-amb Vs. PCB copper area in open box free air condition	
Figure 33.	PPAK thermal impedance junction ambient single pulse	
Figure 34.	PPAK thermal fitting model of a single channel	
Figure 35.	PENTAWATT package dimensions	
Figure 36.	PENTAWATT (in-line) package dimensions	
Figure 37.	P ² PAK package dimensions	
Figure 38.	PPAK package dimensions	
Figure 39.	PENTAWATT tube shipment (no suffix)	
Figure 40.	P ² PAK tube shipment (no suffix)	33
Figure 41.	P ² PAK tape and reel (suffix "13TR")	34
Figure 42.	PPAK suggested pad layout	
Figure 43.	PPAK tube shipment (no suffix)	
Figure 11	PPAK tang and real	36

1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection/pin	Status	N.C.	Output	Input
Floating	Х	Х	Х	X
To ground		Х		Through 10 KΩ resistor

Electrical specifications 2

Figure 3. **Current and voltage conventions**

2.1 **Absolute maximum ratings**

Stress values that exceed those listed in the "Absolute maximum ratings" table can cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions greater than those, indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality documents.

Table 3.	Absolute	maximum	ratings

	_	Value			
Symbol	Parameter	PENTAWATT	P ² PAK	PPAK	Unit
V _{CC}	DC supply voltage	41			V
- V _{CC}	Reverse DC supply voltage	ge - 0.3		V	
- I _{gnd}	DC reverse ground pin current - 200		mA		
I _{OUT}	DC output current	Internally limited		Α	
- I _{OUT}	Reverse DC output current - 6		Α		
I _{IN}	C input current +/- 10		mA		
I _{STAT}	DC status current	+/- 10		mA	
V _{ESD}	Electrostatic discharge (human body model: R=1.5 KΩ; C=100pF) - Input - Status - Output - V _{CC}	4000 4000 5000 5000		V V V	

		Va			
Symbol	Parameter	PENTAWATT	P ² PAK	PPAK	Unit
E _{MAX}	Maximum switching energy (L=2.46 mH; R_L =0 $Ω$; V_{bat} =13.5 V; T_{jstart} =150 °C; I_L =9 A)		138	138	mJ
P _{tot}	Power dissipation T _C =25°C	60		W	
Tj	Junction operating temperature International		lly limited		°C
T _c	Case operating temperature	- 40 to 150		°C	
Teta	Storage temperature	- 55	- 55 to 150		°C

Table 3. Absolute maximum ratings (continued)

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Max.	Unit		
Symbol	Farameter	PENTAWATT	P ² PAK	PPAK	Ollit
R _{thj-case}	Thermal resistance junction-case	2.1	2.1	2.1	°C/W
R _{thj-lead}	Thermal resistance junction-lead	-	-	-	°C/W
D	D. Thermal register as it region ambien		52.1 ⁽¹⁾	77.1 ⁽¹⁾	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.1	37 ⁽²⁾	44 ⁽²⁾	°C/W

When mounted on a standard single-sided FR-4 board with 0.5cm² of Cu (at least 35μm thick). Horizontal mounting and no artificial air flow.

2.3 Electrical characteristics

Values specified in this section are for 8 V<V $_{CC}$ <36 V; -40 °C< Tj <150 °C, unless otherwise stated.

Table 5. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Power						
V _{CC}	Operating supply voltage		5.5	13	36	V
V _{USD}	Undervoltage shutdown		3	4	5.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		V
V _{OV}	Overvoltage shutdown		36			V
R _{ON}	On-state resistance	I _{OUT} =2 A; T _j =25 °C; V _{CC} > 8 V I _{OUT} =2 A; V _{CC} >8 V			60 120	mΩ

^{2.} When mounted on a standard single-sided FR-4 board with 6cm² of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow.

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		Off-state; V _{CC} =13 V; V _{IN} =V _{OUT} =0 V		10	25	μΑ
		Off-state; V _{CC} =13 V; V _{IN} =V _{OUT} =0 V;		10	20	μΑ
I _S	Supply current	T _j =25 °C On-state; V _{CC} =13 V; V _{IN} =5 V;		2	3.5	mA
		I _{OUT} =0 A		_	0.0	
I _{L(off1)}	Off-state output current	V _{IN} =V _{OUT} =0 V	0		50	μA
I _{L(off2)}	Off-state output current	V _{IN} =0V; V _{OUT} =3.5 V	-75		0	μA
I _{L(off3)}	Off-state output current	V _{IN} =V _{OUT} =0 V; Vcc=13 V; T _j =125 °C			5	μΑ
I _{L(off4)}	Off-state output current	V _{IN} =V _{OUT} =0 V; Vcc=13 V; T _j =25 °C			3	μΑ
Switching (\	/ _{CC} =13 V)		•		•	
t _{d(on)}	Turn-on delay time	$\rm R_L {=} 6.5~\Omega$ from $\rm V_{IN}$ rising edge to $\rm V_{OUT} {=} 1.3~V$		40		μs
t _{d(off)}	Turn-off delay time	$\rm R_{L}{=}6.5~\Omega$ from $\rm V_{IN}$ falling edge to $\rm V_{OUT}{=}11.7~V$		30		μs
dV _{OUT} /dt _(on)	Turn-on voltage slope	R _L =6.5 Ω from V _{OUT} =1.3 V to V _{OUT} =10.4 V	See Figure 21.		V/µs	
dV _{OUT} /dt _(off)	Turn-off voltage slope	R_L =6.5 Ω from V_{OUT} =11.7 V to V_{OUT} =1.3 V	See Figure 22.		V/µs	
Input pin						
V _{IL}	Input low level				1.25	V
I _{IL}	Low level input current	V _{IN} =1.25 V	1			μΑ
V_{IH}	Input high level		3.25			V
I _{IH}	High level input current	V _{IN} =3.25 V			10	μΑ
V _{hyst}	Input hysteresis voltage		0.5			V
V _{ICL}	Input clamp voltage	I _{IN} =1 mA I _{IN} =-1 mA	6	6.8 -0.7	8	V V
V _{CC} output o	diode		•		•	•
V _F	Forward on voltage	-I _{OUT} =1.3 A; T _j =150 °C			0.6	V
Status pin						.1
V _{STAT}	Status low output voltage	I _{STAT} =1.6 mA			0.5	V
I _{LSTAT}	Status leakage current	Normal operation; V _{STAT} =5 V			10	μΑ
C _{STAT}	Status pin input capacitance	Normal operation; V _{STAT} =5 V			100	pF
V _{SCL}	Status clamp voltage	I _{STAT} =1mA I _{STAT} =-1mA	6	6.8 -0.7	8	V
Protections ⁽	1)	1		1	1	
T _{TSD}	Shutdown temperature		150	175	200	°C

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _R	Reset temperature		135			°C
T _{hyst}	Thermal hysteresis		7	15		°C
t _{SDL}	Status delay in overload condition	T _j >T _{jsh}			20	ms
I _{lim}	Current limitation	9 V <v<sub>CC<36 V 5 V<v<sub>CC<36 V</v<sub></v<sub>	6	9	15 15	A A
V _{demag}	Turn-off output clamp voltage	I _{OUT} =2 A; V _{IN} =0 V; L=6 mH	V _{CC} -41	V _{CC} -48	V _{CC} -55	V
Open-load o	letection					
I _{OL}	Open-load on state detection threshold	V _{IN} = 5 V	50		200	mA
t _{DOL(on)}	Open-load on state detection delay	I _{OUT} = 0 A			200	μs
V _{OL}	Open-load off state voltage detection threshold	V _{IN} = 0 V	1.5		3.5	V
t _{DOL(off)}	Open-load detection delay at turn-off				1000	μs

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals
must be used together with a proper software strategy. If the device operates under abnormal conditions this software must
limit the duration and number of activation cycles.

Figure 5. Switching time waveforms

Table 6. Truth table

able 6. Truth table			
Conditions	Input	Output	Status
Normal operation	L	L	Н
	Н	Н	Н
	L	L	Н
Current limitation	Н	X	$(T_j < T_{TSD}) H$
	Н	X	$(T_j > T_{TSD}) L$
Over temperature	L	L	Н
Over temperature	Н	L	L
Undervoltage	L	L	Х
Ondervollage	Н	L	X
Overveltage	L	L	Н
Overvoltage	Н	L	Н
Output valtage > \/	L	Н	L
Output voltage > V _{OL}	Н	Н	Н
Output ourront al	L	L	Н
Output current < I _{OL}	Н	Н	L

Table 7. Electrical transient requirements on V_{CC} pin (part 1/3)

ISO T/R 7637/1	Test levels				
test pulse	1	11	III	IV	Delays and impedance
1	-25 V	-50 V	-75 V	-100 V	2 ms 10 Ω
2	+25 V	+50 V	+75 V	+100 V	0.2 ms 10 Ω
3a	-25 V	-50 V	-100 V	-150 V	0.1 μs 50 Ω

10/38 Doc ID 10891 Rev 7

Table 7. Electrical transient requirements on V_{CC} pin (part 1/3) (continued)

ISO T/R 7637/1			Test levels		
test pulse	I	II	III	IV	Delays and impedance
3b	+25 V	+50 V	+75 V	+100 V	0.1 μs 50 Ω
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω
5	+26.5 V	+46.5 V	+66.5 V	+86.5 V	400 ms, 2 Ω

Table 8. Electrical transient requirements on V_{CC} pin (part 2/3)

			, , , , , , , , , , , , , , , , , , , 			
ISO T/R 7637/1		Test levels results				
test pulse	ı	11	III	IV		
1	С	С	С	С		
2	С	С	С	С		
3a	С	С	С	С		
3b	С	С	С	С		
4	С	С	С	С		
5	С	E	E	E		

Table 9. Electrical transient requirements on V_{CC} pin (part 3/3)

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
Е	One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

12/38 Doc ID 10891 Rev 7

2.4 Electrical characteristics curves

Figure 7. Off-state output current

IL(off1) (uA)

3
2.5
Off state
Vcc=36V
Vin=Vout=0V

1.5
1
0.5
0
-0.5
-1
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)

Figure 8. High level input current

Figure 9. Input clamp voltage

Vicl (V)

8
7.8
7.6
7.4
7.2
7
6.8
6.6
6.4
6.2
6
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)

Figure 10. Status leakage current

Figure 11. Status low output voltage

Figure 12. Status clamp voltage

477

Ron (mOhm) Ron (mOhm) 110 lout=2A lout=2A 100 Tc= 150°C Vcc=8V; 13V; 36V 100 90 80 Tc= 125°C 70 60 60 50 Tc= 25°C Tc= - 40°C 20 30 20 75

Figure 13. On-state resistance Vs T_{case} Figure 14. On-state resistance Vs V_{CC}

Figure 15. Open-load on-state detection Figure 16. Input high level threshold

Tc (°C)

Figure 17. Input low level

Figure 18. Input hysteresis voltage

Vcc (V)

Doc ID 10891 Rev 7 14/38

Figure 19. Overvoltage shutdown

Figure 20. Open-load off-state voltage detection threshold

Figure 21. Turn-on voltage slope

Figure 22. Turn-off voltage slope

Figure 23. I_{lim} Vs T_{case}

577

Figure 24. Application schematic

2.5 GND protection network against reverse battery

2.5.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following is an indication on how to size the R_{GND} resistor.

- 1. $R_{GND} \leq 600 \text{mV} / (I_{S(on)max})$.
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $-I_{GND}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power Dissipation in R_{GND} (when V_{CC}<0: during reverse battery situations) is:

$$P_D = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} produces a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift varies depending on how many devices are ON in case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (2.5.2: Solution 2: diode (DGND) in the ground line).

2.5.2 Solution 2: diode (D_{GND}) in the ground line

A resistor (R_{GND}=1 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

Series resistor in input and status lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating.

The safest configuration for unused input and status pin is to leave them unconnected.

2.6 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} max DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO 7637-2: 2004(E) table.

2.7 Microcontroller I/Os protection

If a ground protection network is used and negative transient are present on the V_{CC} line, the control pins are pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μC I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of μ C and the current required by the HSD I/Os (Input levels compatibility) with from latching-up limit of μ C I/Os.

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{lHmax}$

Calculation example:

For V_{CCpeak} = - 100 V and $I_{latchup} \ge 20$ mA; $V_{OH\mu C} \ge 4.5$ V

 $5 k\Omega \le R_{prot} \le 65 k\Omega$.

Recommended values: $R_{prot} = 10 \text{ k}\Omega$.

2.8 Open-load detection in off-state

Off-state open-load detection requires an external pull-up resistor (R_{PU}) connected between output pin and a positive supply voltage (V_{PU}) like the +5 V line used to supply the microprocessor.

The external resistor has to be selected according to the following requirements:

- 1. no false open-load indication when load is connected: in this case we have to avoid V_{OUT} to be higher than V_{Olmin} ; this results in the following condition $V_{OUT} = (V_{PU}/(R_L + R_{PU}))R_L < V_{Olmin}$.
- 2. no misdetection when load is disconnected: in this case the V_{OUT} has to be higher than V_{OLmax} ; this results in the following condition $R_{PU} < (V_{PU} V_{OLmax})/I_{L(off2)}$.

Because $I_{s(OFF)}$ may significantly increase if V_{out} is pulled high (up to several mA), the pull-up resistor R_{PU} should be connected to a supply that is switched off when the module is in standby.

The values of V_{OLmin} , V_{OLmax} and $I_{L(off2)}$ are available in the electrical characteristics section.

Figure 25. Open-load detection in off-state

2.9 PPAK/P²PAK maximum demagnetization energy (V_{CC}=13.5V)

Note:

Values are generated with $R_L = 0$ Ω .In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

3 Package and PCB thermal data

3.1 P²PAK thermal data

Figure 27. P²PAK PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 60 mm x 60 mm, PCB thickness = 2 mm, Cu thickness=35 μ m, Copper areas: 0.97 cm², 8 cm²).

Figure 28. $P^2PAKR_{thj-amb}$ Vs. PCB copper area in open box free air condition

Figure 29. P²PAK thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where } \delta &= t_P / T \end{split}$$

Table 10. P²PAK thermal parameter

Area/island (cm ²)	0.5	6
R1 (°C/W)	0.15	
R2 (°C/W)	0.7	
R3 (°C/W)	0.7	
R4 (°C/W)	4	
R5 (°C/W)	9	
R6 (°C/W)	37	22
C1 (W·s/°C)	0.0006	
C2 (W·s/°C)	0.0025	
C3 (W·s/°C)	0.055	
C4 (W·s/°C)	0.4	
C5 (W·s/°C)	2	
C6 (W·s/°C)	3	5

3.2 PPAK thermal data

Figure 31. PPAK PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 60 mm x 60 mm, PCB thickness = 2 mm, Cu thickness=35 μ m, Copper areas: 0.44 cm², 8 cm²).

Figure 32. PPAK R_{thi-amb} Vs. PCB copper area in open box free air condition

Equation 2: pulse calculation formula

$$\begin{split} &Z_{TH\delta} \ = \ R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ &\text{where } \delta = t_P / T \end{split}$$

Figure 34. PPAK thermal fitting model of a single channel

Table 11. PPAK thermal parameter

Area/island (cm ²)	0.5	6
R1 (°C/W)	0.15	
R2 (°C/W)	0.7	
R3 (°C/W)	1.6	
R4 (°C/W)	2	
R5 (°C/W)	15	
R6 (°C/W)	61	24
C1 (W·s/°C)	0.0006	
C2 (W·s/°C)	0.0025	
C3 (W·s/°C)	0.08	
C4 (W·s/°C)	0.3	
C5 (W·s/°C)	0.45	
C6 (W·s/°C)	0.8	5

Package and packing information 4

ECOPACK[®] packages 4.1

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

4.2 **PENTAWATT** mechanical data

L1 υţ L2 L5 L3 옆 5 L7 L6

Figure 35. PENTAWATT package dimensions

Table 12. **PENTAWATT** mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
A			4.8	
С			1.37	
D	2.4		2.8	

Table 12. PENTAWATT mechanical data (continued)

Direc		mm	
Dim.	Min.	Тур.	Max.
D1	1.2		1.35
E	0.35		0.55
F	0.8		1.05
F1	1		1.4
G	3.2	3.4	3.6
G1	6.6	6.8	7
H2			10.4
H3	10.05		10.4
L		17.85	
L1		15.75	
L2		21.4	
L3		22.5	
L5	2.6		3
L6	15.1		15.8
L7	6		6.6
М		4.5	
M1		4	
Diam.	3.65		3.85

4.2.1 PENTAWATT (in-line) mechanical data

Figure 36. PENTAWATT (in-line) package dimensions

Table 13. PENTAWATT (in-line) mechanical data

Compleal		millimeters	
Symbol	Min	Тур	Max
А	4.3		4.8
С	1.17		1.37
D	2.4		2.8
Е	0.35		0.55
F	0.8		1.05
F2	1.1		1.4
F3	1.25		1.55
G	3.2		3.6
G1	6.6		7
H1	9.3		9.7
H2			10.4
H3	10.05		10.4
L2	23.05		23.8
L3	25.3		26.1

Table 13. PENTAWATT (in-line) mechanical data (continued)

Symbol	millimeters				
	Min	Тур	Max		
L4	0.9		2.9		
L5	2.6		3		
L6	15.1		15.8		
L7	6		6.6		
V4		90°			
Diam.	3.65		3.85		

4.3 P²PAK mechanical data

Table 14. P²PAK mechanical data

Dim	mm			
Dim.	Min.	Тур.	Max.	
А	4.30		4.80	
A1	2.40		2.80	
A2	0.03		0.23	
b	0.80		1.05	
С	0.45		0.60	
c2	1.17		1.37	
D	8.95		9.35	
D2		8.00		
E	10.00		10.40	
E1		8.50		
е	3.20		3.60	
e1	6.60		7.00	
L	13.70		14.50	
L2	1.25		1.40	
L3	0.90		1.70	
L5	1.55		2.40	
R		0.40		
V2	Oo		80	
Package weight	1.40 Gr. (typ)			

4.4 PPAK mechanical data

Figure 38. PPAK package dimensions

Table 15. PPAK mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
A	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
В	0.40		0.60	
B2	5.20		5.40	
С	0.45		0.60	
C2	0.48		0.60	
D1		5.1		
D	6.00		6.20	
E	6.40		6.60	
E1		4.7		
е		1.27		
G	4.90		5.25	
G1	2.38		2.70	
Н	9.35		10.10	
L2		0.8	1.00	
L4	0.60		1.00	
L5	1			
L6		2.80		
R		0.2		
V2	O _o		80	
Package weight	Gr. 0.3			

4.5 PENTAWATT packing information

The devices can be packed in tube or tape and reel shipments (see the *Device summary on page 1*).

Base Q.ty 50
Bulk Q.ty 1000
Tube length (± 0.5) 532
A 18
B 33.1
C (± 0.1) 1

All dimensions are in mm.

Figure 39. PENTAWATT tube shipment (no suffix)

4.6 P²PAK packing information

The devices can be packed in tube or tape and reel shipments (see the *Device summary on page 1*).

Figure 40. P²PAK tube shipment (no suffix)

Figure 41. P²PAK tape and reel (suffix "13TR")

4.7 PPAK packing information

The devices can be packed in tube or tape and reel shipments (see the *Device summary on page 1*).

Figure 42. PPAK suggested pad layout

Figure 43. PPAK tube shipment (no suffix)

REEL DIMENSIONS All dimensions are in mm. at slot location Base Q.ty 2500 Bulk Q.ty 2500 330 A (max) B (min) 1.5 C (± 0.2) 13 20.2 G (+ 2 / -0) 16.4 N (min) 60 T (max) 22.4 in core for tape start 2.5mm min. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 TOP COVER TAPE Tape width W 16 Tape Hole Spacing 4 P0 (± 0.1) **Component Spacing** Р 8 Hole Diameter D (± 0.1/-0) 1.5 Hole Diameter D1 (min) 1.5 Hole Position F (± 0.05) 7.5 User Direction of Feed Compartment Depth K (max) 2.75 P1 (± 0.1) 2 Hole Spacing All dimensions are in mm. 0 0 0 0 0 0 0 0 Components No components cover 500mm min 500mm min saled with cover tape. User direction of feed User Direction of Feed GAPGRI00204

Figure 44. PPAK tape and reel

VN750-E Revision history

5 Revision history

Table 16. Document revision history

Date	Revision	Changes
07-Oct-2004	1	Initial release.
24-Nov-2008	2	Document reformatted and restructured. Added content, list of figures and tables. Added ECOPACK® packages information. Updated Figure 41: P ² PAK tape and reel (suffix "13TR"): - changed component spacing (P) in tape dimensions table from 16 mm to 12 mm.
12-May-2009	3	Removed SO-8 package into the following tables: Table 1, Table 3 and Table 4. Figure 2: Removed SO-8 package top view. Removed SO-8 package information in the following sections: Section Note:: Values are generated with $R_L = 0$ W.In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B. and Section 4: Package and packing information Modified Section 2.1: Absolute maximum ratings and Section 4.1: $ECOPACK^{(g)}$ packages.
23-Nov-2009	4	Updated features list. Added PENTAWATT in-line package into the document: - Updated Table 1: Device summary - Added Section 4.2.1: PENTAWATT (in-line) mechanical data.
17-Nov-2010	5	Updated following tables: – Table 3: Absolute maximum ratings – Table 4: Thermal data
11-May-2012	6	Update entire document following ST template.Update <i>Table 15</i> and <i>Figure 38</i>.
19-Sep-2013	7	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

38/38 Doc ID 10891 Rev 7

