# Министерство образования Российской Федерации Томский политехнический университет

| Утверждаю:     |   |
|----------------|---|
| Декан АВТФ     |   |
| Мельников Ю.С. | _ |
| 2002г.         |   |

# "Изучение лабораторного комплекса SDK - 1.1"

Методические указания для проведения лабораторной работы по курсу "Аппаратные и программные средства встраиваемых компьютеров" и микроконтроллеров для студентов специальности 220100 "Вычислительные машины, комплексы, системы и сети"

| Изучение основ микроконтроллеров на Метод. указ. для «Микропроцессорные "Вычислительные маши | базе учебного ла проведения ла системы» для | абораторного ком<br>бораторной рабо<br>студентов специа | плекса SDK -1.1<br>оты по курсу |
|----------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|---------------------------------|
| Составители: Столяров                                                                        | А.Г., Салит В.В.,                           | Меркулов С.В -                                          | Гомск: Изд. ТПУ,                |
| 2002- 10 c.                                                                                  |                                             |                                                         |                                 |
| Рецензент Ким В.Л.                                                                           |                                             |                                                         |                                 |
| Методические указани                                                                         | ія рассмотрены                              | и рекомендован                                          | ы методическим                  |
| семинаром кафедры Выч                                                                        | нислительной техни                          | ики протокол №_ о                                       | ТГ.                             |
| Зав. Кафедрой ВТ, проф                                                                       | . д.т.н                                     |                                                         | Н.Г. Марков                     |

## Цель работы:

Изучение методов архитектуры и методов проектирования систем на базе микропроцессоров, однокристальных микроЭВМ, встраиваемых контроллеров, систем сбора данных, периферийных блоков вычислительных систем, подсистем ввода-вывода встраиваемых систем.

## Задание на лабораторную работу:

Изучить структуру учебного лабораторного комплекса SDK-1.1 В соответствии с вариантом разработать функциональную спецификацию программного обеспечения, составить алгоритмы работы программы, закодировать и отладить программы на учебном макете SDK-1.1. При реализации вариантов задания необходимо использовать таймеры микроконтроллера AduC812 в режиме прерывания.

## Варианты задания на лабораторную работу:

| Варианты заданий                                                                                                                                                                                                                                                                                                                             | Графическое пояснение к<br>варианту                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1. Написать программу, обеспечивающую поочередное «зажигание» и «гашение» светодиодов, расположенных на учебном макете, таким образом, что бы получить визуальный эффект «перемещающегося огня». Интервал между гашением и повторным зажиганием 0.5 сек.                                                                                     | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0               |
| 2. Написать программу, обеспечивающую поочередное «зажигание» и «гашение» светодиодов, расположенных на учебном макете, таким образом, что бы получить визуальный эффект «перемещающегося огней» от концов светодиодной линейки к середине. Частота перемещения 3Гц.                                                                         | 1 <b>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</b>        |
| 3. Написать программу, обеспечивающую поочередное «зажигание» и «гашение» светодиодов, расположенных на учебном макете, таким образом, что бы получить визуальный эффект «перемещающегося огня» от одного края светодиодной линейки до другого и обратно. Частота «перемещения» 10 Гц.                                                       | 1                                                     |
| 4. Написать программу, обеспечивающую поочередное «зажигание» и «гашение» светодиодов, расположенных на учебном макете, таким образом, что бы получить визуальный эффект «перемещающегося огня» от одного края светодиодной линейки до середины и обратно. Вторая половина линейки должны быть инверсией первой. Частота «перемещения» 1 Гц. | 1                                                     |
| 5. Написать программу, обеспечивающую поочередное «гашение» светодиодов, расположенных на учебном макете, от середины к краям. Вторя половина линейки должны быть инверсией первой. Интервал «гашения» 1сек.                                                                                                                                 | 1 000000<br>2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

| 6 Написать программу, выводящую на светодиоды, расположенных на учебном макете, значение 8-ми разрядного двоичного счетчика, инкрементирующегося с частотой 10Гц.                                                                                                                                        | 1 <b>2500000</b> 2 <b>256 256 256</b>                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 7. Написать программу, обеспечивающую поочередное «зажигание» и «гашение» светодиодов, расположенных на учебном макете, таким образом, что бы получить визуальный эффект «перемещающегося огня». Количество проходов — 10. Время каждого последующего прохода должно быть короче предыдущего на 0.1 сек. | 1                                                        |
| 8. Написать программу, обеспечивающую поочередное «зажигание» и «гашение» светодиодов, следующим образом.  1. Зажечь n=8 светодиодов 2. Потушить светодиоды 3. Зажечь n=n-1 светодиодов 4. Потушить светодиоды 5. Повторять пункты 3 и 4 до тех пор пока n>1 Частота переключения 10Гц                   | 11 00000000000000000000000000000000000                   |
| 9. Написать программу, обеспечивающую поочередное «зажигание» и светодиодов справа на лево и их «гашение» в том же порядке, с частотой 1Гц.                                                                                                                                                              | 15 2333333<br>16 17 233333333333333333333333333333333333 |
| 10. Написать программу, обеспечивающую поочередное «зажигание» светодиодов через один и их «гашение» в том же порядке, с частотой 1Гц.                                                                                                                                                                   | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                  |
| Примечание:                                                                                                                                                                                                                                                                                              |                                                          |



### Введение

Учебный лабораторный комплекс SDK-1.1 предназначен для освоения студентами архитектуры и методов проектирования:

- систем на базе микропроцессоров и однокристальных микроЭВМ;
- встраиваемых контроллеров и систем сбора данных;
- периферийных блоков вычислительных систем;
- подсистем ввода-вывода встраиваемых систем.

С использованием стенда SDK-1.1 для студентов высших учебных заведений могут проводиться лабораторные работы по курсам:

- Организация ЭВМ и вычислительных систем;
- Прикладная теория цифровых автоматов;
- Системы ввода-вывода;
- Информационно-управляющие системы;
- Распределенные управляющие системы;
- Операционные системы реального времени.

# Архитектура стенда SDK-1.1 Структура аппаратной части

В состав учебного стенда SDK 1.1 входят:

- микроконтроллер ADuC812BS;
- внешняя EEPROM объемом 256 байт;
- клавиатура AK1604A-WWB фирмы ACCORD;
- жидкокристаллический индикатор ЖКИ WH1602B-YGK-CP фирмы Winstar Display;
- часы реального времени РСF8583;
- 128К внешней SRAM с возможностью расширения до 512К;
- набор сигнальных светодиодов (8 шт.).



## Микроконтроллер ADuC812BS

Процессор ADuC812 является клоном Intel 8051 со встроенной периферией. Основные характеристики:

- рабочая частота 11.0592МГц;
- 8- канальный 12-битный АЦП со скоростью выборок 200К/С (в режиме ПДП);
- два 12-битных ЦАП (код-напряжение);
- внутренний температурный сенсор;
- 640 байт программируемого FLASH/EE со страничной организацией (256 страниц по 4 байта);
- 256 байт внутренней памяти данных;
- 16Мб адресное пространство;
- режим управления питанием;
- асинхронный последовательный ввод-вывод;
- І2С интерфейс;
- три 16-битных таймера/счетчика и таймер WatchDog.

#### Внешняя EEPROM

ЕЕРROМ является перепрограммируемым электрически стираемым постоянным запоминающим устройством. Объем памяти EEPROM, установленной в стенде SDK 1.1, составляет 128 байт (возможна установка EEPROM большего объема, до 32Кб). Микросхема EEPROM взаимодействует с процессором посредством интерфейса I2C.

|   | Адрес I2С |   |   |   |   |   |     |  |
|---|-----------|---|---|---|---|---|-----|--|
| 1 | 0         | 1 | 0 | 0 | 0 | 1 | R/W |  |

### Основные характеристики:

- возможность перезаписи до 1 млн. раз;
- возможность побайтной и постраничной записи (в текущей конфигурации размер страницы 8 байт).

## Матричная клавиатура AK1604A-WWB

Клавиатура организована в виде матрицы 4х4. Доступ к колонкам и рядам организован как чтение/запись определенного байта внешней памяти (4 бита соответствуют 4 колонкам, другие 4 бита - рядам).

### ЖКИ WH1602B-YGK-CP

ЖКИ работает в текстовом режиме (2 строки по 16 символов), имеет подсветку (цвет: желтозеленый). Основные характеристики:

- габариты: 80х36х13.2 мм;
- активная область 56.21х11.5 мм;
- размеры точки 0.56x0.66 мм; размеры символа 2.96x5.56 мм;
- встроенный набор 256 символов (ASCII + кириллица);
- генератор символов с энергозависимой памятью на 8 пользовательских символов.

## Часы реального времени PCF8583

РСF8583 - часы/календарь с памятью объемом 256 байт, работающие от кварцевого резонатора с частотой 32.768 кГц. Питание осуществляется ионистором  $(0.1\varphi)$ . Из 256 байт памяти собственно часами используются только первые 16 (8 постоянно обновляемых регистров-защелок на установку/чтение даты/времени и 8 на будильник), остальные 240 байт доступны для хранения данных пользователя. Точность измерения времени - до сотых долей секунды. Взаимодействие с процессором осуществляется через интерфейс  $1^2$ C.

|   | Адрес I2С |   |   |   |   |   |     |  |  |
|---|-----------|---|---|---|---|---|-----|--|--|
| 1 | 0         | 1 | 0 | 0 | 0 | 0 | R/W |  |  |

### Распределение памяти в SDK-1.1

Память в SDK1.1 распределяется следующим образом:



Рис. 2. Карта памяти SDK-1.1

Стандартная для архитектуры 8051 структура внутренней памяти представлена четырьмя банками по 8 регистров общего назначения (диапазоны адресов 00h-07h, 08h-0Fh, 10h-17h, lFh-20h), битовым сегментом (20h-2Fh), свободным участком 30h-7Fh, областью размещения SFR (регистров специального назначения, 80h-FFh, доступна при прямой адресации) и свободной областью 80h-FFh, доступной при косвенной адресации.

Внешняя память SDK-1.1 разбита на следующие области.

ADuC812 **Flash/EE.** Это область, в которой располагается таблица векторов прерываний (см. раздел «Система прерываний») и резидентный загрузчик файлов в формате HEX в память SRAM (см. раздел «Резидентный загрузчик HEX202»).

**SRAM.** Статическая память SRAM в SDK-1.1 имеет страничную организацию (максимум 8 страниц по 64К) и условно разделяется на две области. Первая занимает младшие 64Кбайт (страница 0) и доступна для выборки команд микроконтроллером ADuC812. Таким образом, программы могут располагаться только в этих младших 64К адресного пространства. Остальные страницы доступны только для размещения данных. Для адресации ячейки памяти определенной страницы необходимо записать номер страницы в регистр специального назначения DPP ADuC812 (адрес 84h, см. руководство по ADuC812).

МАХ В младших адресах 8-й страницы адресного пространства (080000h-080007h) располагается 8 ячеек-регистров ПЛИС МАХ8064 (МАХ8128). Эта область предназначена для взаимодействия с периферийными устройствами стенда (см. раздел «Карта портов вводавывода»).

За вычетом 8K Flash-памяти ADuC8I2, которая отображается в самые младшие адреса (0000h-1FFFh). Фактически для размещения программ доступно 56K статической памяти.

### Карта портов ввода-вывода

В стенде SDK1.1 ввод-вывод данных осуществляется с помощью портов микроконтроллера и микросхемы ПЛИС, которая имеет 8 регистров, отображаемых во внешнее адресное пространство процессора.

Таблица 1. Порты ввода-вывода микроконтроллера

| Порт      | Назначение                                                           |
|-----------|----------------------------------------------------------------------|
| P0.7-P0.0 | Шина адреса/данных АD(7-0) системного интерфейса                     |
| P1.7-P1.0 | Аналоговый вход, линии которого мультиплексируются с линиями 7-0 АЦП |
| P2.7-P2.0 | Адресная шина системного интерфейса А( 15-8)                         |
| P3.0      | RxD входные данные приемопередатчика UART                            |
| P3.1      | TxD выходные данные приемопередатчика UART                           |
| P3.2      | #INTO сигнал внешнего прерывания 0, активный уровень-<br>лог. «0»    |
| P3.3      | #INT1 сигнал внешнего прерывания 1, активный уровень - лог. «0»      |
| P3.4      | Счетный вход таймера-счетчика ТО, активный уровень - лог. «0»        |
| P3.5      | Счетный вход таймера-счетчика T1, активный уровень - лог. «0»        |
| P3.6      | #WR сигнал записи во внешнюю память XRAM                             |
| P3.7      | #RD сигнал чтения из внешней памяти XRAM                             |

# Регистры ПЛИС

Таблица 2 Перечень регистров ПЛИС

| Адрес   | Регистр  | Доступ       | Назначение                               |  |  |  |
|---------|----------|--------------|------------------------------------------|--|--|--|
| 080000H | KB       | R/W          | Регистр клавиатуры                       |  |  |  |
| 080001  | DATA IND | R/W          | Регистр шины данных ЖКИ                  |  |  |  |
| 080002  | EXT LO   | R/W          | Регистр данных параллельного порта       |  |  |  |
|         |          |              | (разряды 07)                             |  |  |  |
| 080003  | EXT HI   | R/W          | Регистр данных параллельного порта       |  |  |  |
|         |          |              | (разряды 815)                            |  |  |  |
| 080004  | ENA      | $\mathbf{W}$ | Регистр управления портами ввода-вывода, |  |  |  |
|         |          |              | звуком и сигналом INT0                   |  |  |  |
| 080006  | C IND    | W            | Регистр управления ЖКИ                   |  |  |  |
| 080007  | SV       | W            | Регистр управления светодиодами          |  |  |  |

# Регистр клавиатуры КВ

Адрес 080000Н. Значение после сброса 00000000В.

| 7 | 6  | 5  | 4 | 3 | 2  | 1  | 0 |
|---|----|----|---|---|----|----|---|
| R | R  | R  | R | W | W  | W  | W |
|   | RC | )W |   |   | CC | DL |   |

| Биты | Поле | Описание                                                                                                       |
|------|------|----------------------------------------------------------------------------------------------------------------|
| 03   | COL  | Поле предназначено для сканирования клавиатуры (колонки матрицы). Сканирование производится посредством записи |
|      |      | логического «0» в один из разрядов поля.                                                                       |
|      |      | Поле предназначено для считывания данных с клавиатурной                                                        |
|      |      | матрицы (строки). Если ни одна из кнопок в строке не нажата все                                                |
| 47   | ROW  | биты поля ROW содержат логические «1». Если кнопка нажата и                                                    |
|      |      | на ее колонку подан логический «О», то в поле RAW также                                                        |
|      |      | появится логический «О».                                                                                       |

# Таблица соответствия пересечений строк и столбцов клавиатуры и значения клавиш.

|             |   |   | CO | OL |   |
|-------------|---|---|----|----|---|
|             |   | 0 | 1  | 2  | 3 |
|             | 4 | 1 | 2  | 3  | A |
| $\geqslant$ | 5 | 4 | 5  | 6  | В |
| RC          | 6 | 7 | 8  | 9  | C |
|             | 7 | * | 0  | #  | D |

# Регистр шины данных ЖКИ DATA\_IND

Адрес 080001Н. Значение после сброса 00000000В.

| 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| R/W |
| D7  | D6  | D5  | D4  | D3  | D2  | D1  | D0  |

| Биты | Поле | Описание                                                                                                                                                                                                                      |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07   | D0D7 | Регистр DATA_IND позволяет устанавливать данные на шине данных ЖКИ и считывать их оттуда. Для организации взаимодействия с ЖКИ (для формирования временных диаграмм чтения и записи) необходимо использование регистра С IND. |

## Регистр данных параллельного порта EXT\_LO

Адрес 080002Н. Значение после сброса 00000000В.

| <br>-Ap | 0000 <b>=11. 0</b> 1100 | 1011110 110 0110 | topota ooo. |     |     |     |     |
|---------|-------------------------|------------------|-------------|-----|-----|-----|-----|
| 7       | 6                       | 5                | 4           | 3   | 2   | 1   | 0   |
| R/W     | R/W                     | R/W              | R/W         | R/W | R/W | R/W | R/W |
| D7      | D6                      | D5               | D4          | D3  | D2  | D1  | D0  |

| Биты | Поле | Описание                                                                                                                                                                                                                                                                |
|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07   | D0D7 | Регистр EXT_LO позволяет считывать и записывать биты 07 параллельного порта. Для того, чтобы данные из регистра попали на выход необходимо установить бит EN_LO в логическую «1» (см. регистр ENA). Для чтения данных необходимо установить бит EN_LO в логический «0». |

## Регистр данных параллельного порта EXT\_HI

Адрес 080003Н. Значение после сброса 00000000В.

| TAPEC COCCUSTI. Sha terme noccie copoca coccoccis. |     |     |     |     |     |     |     |
|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| 7                                                  | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| R/W                                                | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| D7                                                 | D6  | D5  | D4  | D3  | D2  | D1  | D0  |

| Биты | Поле | Описание                                                                                                                                                                                                                                                                 |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 07   | D0D7 | Регистр ЕХТ_НІ позволяет считывать и записывать биты 815 параллельного порта. Для того, чтобы данные из регистра попали на выход необходимо установить бит EN_НІ в логическую «1» (см. регистр ENA). Для чтения данных необходимо установить бит EN_НІ в логический «0». |

# Регистр управления ENA

Адрес 080004Н. Значение после сброса XX000000В.

| - '- | 1 |   |      |      |      |      |       |       |
|------|---|---|------|------|------|------|-------|-------|
|      | 7 | 6 | 5    | 4    | 3    | 2    | 1     | 0     |
|      | - | - | W    | W    | W    | W    | W     | W     |
|      | - | - | INT0 | SND2 | SND1 | SND0 | EN HI | EN LO |

| Биты | Поле           | Описание                                                                                                                                                                                                                                                                                                                                                                                         |
|------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | EN_LO          | Бит EN_LO нужен для управления младшими 8-ю разрядами (биты 07) 16-ти разрядного порта ввода-вывода. Если записать в EN_LO логический «0», то порт ввода-вывода переводится в Z состояние и появляется возможность чтения данных из EXT_LO. При записи в данный бит логической «1» порт EXT_LO переключается на вывод и данные записанные в регистр EXT_LO попадают на выход порта ввода-вывода. |
| 1    | EN_HI          | Полностью аналогичен EN_LO. Управляет старшей частью 16-ти разрядного порта ввода-вывода {биты 815}.                                                                                                                                                                                                                                                                                             |
| 24   | SND0 –<br>SND2 | Выход звукового ЦАП. Задает уровень напряжения на динамике. Позволяет формировать звуковые сигналы различной тональности и громкости.                                                                                                                                                                                                                                                            |
| 5    | INT0           | При записи логического «0» в этот бит, на вход INT0 ADuC812 также попадает логический «0». Бит можно использовать для формирования внешнего прерывания для микроконтроллера.                                                                                                                                                                                                                     |

# Регистр управления ЖКИ C\_ND

Адрес 080006Н. Значение после сброса XXXXX000В.

| 7 | 6 | 5 | 4 | 3 | 2  | 1  | 0 |
|---|---|---|---|---|----|----|---|
| - | - | - | - | - | W  | W  | W |
| - | - | - | - | - | RS | RW | Е |

| Биты | Поле | Описание                                                                                                                                                                                      |  |  |  |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0    | E    | Бит управления входом «Е» ЖКИ. Наличие положительного импульса на входе «Е» позволяет зафиксировать данные на шине ЖКИ (данные, сигналы RW и RS к этому моменту должны быть уже установлены). |  |  |  |
| 1    | RW   | Бит переключения шины данных ЖКИ на чтение или запись. 0 - запись, 1 - чтение.                                                                                                                |  |  |  |
| 2    | RS   | Бит переключения режимов команды/данные ЖКИ. 1-данные, 0 – команды.                                                                                                                           |  |  |  |

### Регистр управления светодиодами SV

Адрес 080007Н. Значение после сброса 00000000В.

| 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----|----|----|----|----|----|----|----|
| W  | W  | W  | W  | W  | W  | W  | W  |
| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

| Биты | Поле | Описание                                                                 |  |  |  |
|------|------|--------------------------------------------------------------------------|--|--|--|
| 07   | D0D7 | Биты управления светодиодами. Подача логической «1» зажигает светодиоды. |  |  |  |

## Доступ к регистрам ПЛИС

Для доступа к регистрам ПЛИС нужно переключить страничный регистр DPP на 8-ую страницу памяти. Адреса регистров внутри страницы находятся в диапазоне от 0 до 7. Доступ к регистрам возможен через указатель: unsigned char xdata 'regnum

Ниже приведен пример функций для доступа к регистрам ПЛИС (вывод на светодиодную сборку непосредственных данных 55h).

| CSEG          |                   |                |                                 | ;описание сегмента программы                                                                                |
|---------------|-------------------|----------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|
|               | ORG<br>LJMP       | 2000H<br>START |                                 | ;переход на начало программы                                                                                |
| DPP<br>START: | EQU<br>ORG        | 84h<br>2100H   |                                 | ;DPP ставится в соответствие число 84h ;Aдрес начала основной программы                                     |
|               | MOV<br>MOV<br>MOV |                | DPP,#08<br>DPTR, #7h<br>A, #55h | ;выбор страницы адресов ПЛИС ;установка адреса светодиодной сборки ;подготавливаем данные для ;высвечивания |
|               | MOVX              | :              | @DPTR, A                        | ; загрузка данных в регистр ПЛИС ; содерж. А по адресу в DPTR                                               |
|               | LJMP              | )              | START                           |                                                                                                             |

### Проблемы, часто возникающие при доступе к регистрам ПЛИС

Необходимо помнить, что при переключении страниц становятся недоступными все данные размещенные в странице 0.

Во-первых, для того, чтобы избежать проблем со страничным регистром DPP используйте специальные функции для доступа к ПЛИС. Эти функции будут запоминать старое значение страничного регистра, работать с регистрами ПЛИС и возвращать обратно старое значение DPP.

Во-вторых, следите, чтобы передаваемые в регистры ПЛИС значения хранились во внутренней памяти микроконтроллера (DATA, IDATA). Убедиться, что передаваемая информация не содержится во внешней памяти контроллера (XBATA) достаточно просто. Для доступа к внешней памяти в микроконтроллерах семейства С51 используется регистр DPTR. Загляните в листинг программы и убедитесь в том, что для доступа к переменным компилятор не использует DPTR.

### Система прерываний

Микроконтроллер ADuC812 обеспечивает восемь источников и два уровня приоритета прерываний (см. табл. 1). Соответствующий определенному прерыванию приоритет можно установить в регистре специального назначения IP (адрес B8h, см. руководство по ADuC812).

Таблица 3. Прерывания ADuC812

| Прерывание | Наименование                                       | Адрес   | Приори |
|------------|----------------------------------------------------|---------|--------|
|            |                                                    | вектора | тет    |
| PSMI       | Источник питания ADuCS12                           | 43H     | 1      |
| IEO        | Внешнее прерывание INTO                            | 03H     | 2      |
| ADCI       | Конец преобразования АЦП                           | 33H     | 3      |
| TFO        | Переполнение таймера 0                             | OBH     | 4      |
| IE1        | Внешнее прерывание INT1                            | 13H     | 5      |
| TF1        | Переполнение таймера 1                             | 1BH     | 6      |
| I2CI/ISPI  | Прерывание последовательного интерфейса (I2C, SPI) | ЗВН     | 7      |
| RI/TI      | Прерывание UART                                    | 23H     | 8      |
| TF2/EXF2   | Переполнение таймера 2                             | 2BH     | 9      |

Прерывания ADuC812 имеют вектора в диапазоне 0003h-0043h, которые попадают в область младших адресов памяти программ. Это пространство соответствует 8Кб (0000h-2000h) флэш-памяти. Следовательно, пользователь, не имеющий возможности записи во флэш-память, не может подставить свои процедуры обработки прерываний (точнее команды перехода к процедурам) по адресам, соответствующим векторам прерываний.

Проблема использования прерываний в пользовательских программах решается следующим образом:

- 1. По адресам (0003h-0043h) векторов прерываний во флэш-памяти SDK-1.1 располагаются команды переходов на вектора пользовательской таблицы, которая располагается в адресах 2003h-2043h.
- 2. По адресам векторов пользовательской таблицы пользователем указываются команды переходов на процедуры обработки прерываний.



Рис. 3 Использование прерывании в SDK-1.1

Приведем пример помещения собственного вектора в пользовательскую таблицу. Пусть требуется осуществить обработку прерываний от таймера 0 (прерывание OBh). В программу можно вставить следующий код:

В таблице векторов, находящейся во FLASH, перед переходом в пользовательскую таблицу в порт PO записывается значение 0. Это связано с аппаратной ошибкой в процессоре ADuC812, которая заключается в некорректной выпорке команд при передаче управления из младших **8К** памяти команд в старшие адреса. Ошибка устраняется путем обнуления регистра защелки порта 0 (P0) непосредственно перед передачей управления. Рекомендуем обратиться к документу **ADuC812** Errata Sheet на редакцию чипа со штампом даты больше 9933.

```
ORG 200bh
                   ; описание вектора прерывания
      LJMP t0_0
                   ;от таймера 0
CSEG
                   ; сегмент кода программ
      DPP EQU 84h
      ORG 2100H
start:
                   ;Далее идет текст основной программы
      LJMP $
                   ;команда перехода по тому же
                   ;адресу ("программная ловушка")
t0_0:
              ; далее идет текст подпрограммы обработки
             ;прерывания от таймера/счетчика 0
      RETI
             ; команда выхода из подпрограммы
             ;обработки прерывания
END
```

## Программирование и отладка

Для программирования стенда может использоваться любой транслятор ассемблера или С для ядра 8051, например, пакет uVision (Keil Software). До начала программирования на языке С рекомендуется внимательно ознакомиться с документацией по используемому компилятору (т.к. компиляторы для микроконтроллеров имеют нестандартные расширения).

Основными этапами в программировании стенда являются:

- подготовка программы в текстовом редакторе (или среде программирования);
- транслирование исходного текста и получение загрузочного hex-модуля программы;
- подготовка и загрузка hex-модуля в стенд через интерфейс RS232C с помощью поставляемых инструментальных систем. Под подготовкой понимается добавление в конец модуля строчки со стартовым адресом программы, т.е. адреса, по которому передается управление после загрузки в стенд;
- прием и обработка hex-модуля резидентным загрузчиком НЕХ202, передача управления загруженной программе.



Рис. 4 Этапы программирования стенда SDK-1.1

В соответствующих разделах главы «Программное обеспечение стенда SDK-1.1» и в главе «Инструментальные средства фирмы Keil Software» дано описание основных инструментальных средств, участвующих в каждом этапе программирования стенда.

### Программное обеспечение стенда SDK-1.1

## Резидентный загрузчик НЕХ202

Резидентный загрузчик HEX202 располагается во Flash-памяти ADuC812, начиная с адреса 0100h. Он обеспечивает начальную инициализацию системы, загрузку программ в hexформате в память SDK-1.1 и передачу им управления.

Начальная инициализация. При включении питания (или при передаче управления на ячейку с адресом 0) происходит повторная инициализация всех регистров специального назначения их значениями по умолчанию. Это сделано для того, чтобы при случайной передаче управления на ячейку с адресом 0 вследствие возможной ошибки в пользовательской программе не происходило сбоя системы, а сама система вела себя как при включении питания. Эта же процедура повторяется непосредственно перед передачей управления загруженной программе. В случае успешной инициализации на ЖКИ на мгновение выводится надпись «SDK-1.1, 2001 ©LMT Ltd» и на резонатор выдается короткий сигнал.

Загрузка программ в память SDK-1.1. После процедуры инициализации системы последовательный канал настраивается в режим 9600 бит/сек, 8 бит данных, 1 стоп-бит, без контроля по четности и в него выдается строчка «НЕХ202-ХХ», где XX — номер версии загрузчика. Далее с интервалом примерно в 200мс выдается символ V и ожидается появление символа со стороны инструментальной системы на РС. При появлении символа, если это первый символ строки в hex-формате, то есть двоеточие (':'), выдача символа V прекращается и производится прием остальной части hex-строки. По завершении приема очередной hex-строки вычисляется ее контрольная сумма. Если она не совпадает с принятой, то в последовательный канал выдается символ '-', сигнализирующий об ошибке приема. В противном случае выдается '+' и принятая строка обрабатывается в соответствии с указанной в ней командой (запись данных в память, конец блока или передача управления). Далее, если не было команды передачи управления, вывод в последовательный канал символа '.' возобновляется и ожидается следующая hex-строка.

**Передача управления загруженной программе.** Передача управления происходит по приему hex-строки вида :02AAAA060000SS < cr>, где AAAA есть hex-адрес, по которому необходимо передать управление, SS есть контрольная сумма hex-строки, <cr> - символ возврата каретки. Такая строчка должна быть добавлена в конец каждого hex-файла, загружаемого в SDK-1.1. Для этого в поставляемых с SDK-1.1 инструментальных системах есть команда addhexstart (см. соответствующие разделы).

### Инструментальная среда для Win9x/NT – t2.exe

Инструментальная среда Т2.ехе призвана решать следующие задачи:

- 1. Преобразование HEX и BIN файлов
- 2. Передача загрузочных модулей различных форматов в целевую систему с протоколами различного уровня сложности
- 3. Получение информации из целевой системы
- 4. Обеспечение элементарных операций с последовательным каналом (прием и передача байта, эмуляция терминала, настройка скорости)
- 5. Обеспечение быстрой адаптации к целевой системе

| Команда           | Действие                                                         |  |
|-------------------|------------------------------------------------------------------|--|
| OPENCHANNEL       | Открытие COM порта с установкой сигнала RTS                      |  |
| OPENCOM1,OPENCOM2 | Открытие портов COM1 или COM2 с установкой сигнала RTS           |  |
| CLOSECHANNEL      | Закрытие СОМ порта                                               |  |
| TERM              | Включение эмулятора терминала                                    |  |
| +ECHO             | Включение режима копирования консольного вывода в файл echo.txt  |  |
| -ECHO             | Выключение режима копирования консольного вывода в файл echo.txt |  |
| LOADHEX           | НЕХ загрузка                                                     |  |
| ADDHEXSTART       | Добавление стартового адреса в конец НЕХ-файла                   |  |
| BYE               | Выход из Т2                                                      |  |
| LFILE             | Интерпретация командного файла                                   |  |

OPENCHANNEL (baud -> com) - Открытие последовательного порта на заданной скорости Числовой параметр baud определяет скорость в бодах, например 19200 Параметр сом может иметь два значения «com1» или «com2».

Пример: 9600 openchannel com1

OPENCOM1, OPENCOM2 — открытие COM1 или COM2 на скорости 9600 бод Пример: opencom1

TERM (w ->) Включение эмулятора терминала. w=0 – бинарный, w=1 – HEX. Пример: 0 term

LOADHEX (-> filename.hex) Загрузка НЕХ- файла в целевую систему по протоколу НЕХ202. Этот протокол предполагает последовательную пересылку строк из НЕХ- файла filename.hex. После посылки очередной строки ожидается подтверждение со стороны НЕХ202 в виде символа «+» или запрос на повторную посылку в виде «-». Необходимо заметить, что перед посылкой НЕХ- файла сгенерированного в какой либо среде разработки, необходимо добавить в его конец стартовый адрес командой addhexstart.

Пример: loadhex myfile.hex

ADDHEXSTART (addr,seg->) filename.hex - Добавление в конец файла filename.hex строчки, которая нужна для передачи управления загрузчиком HEX202 по адресу addr после загрузки в целевую систему. Поле seg необходимо указывать на в настоящее врем оно не используется

Пример: 0x200 0x0 addhexstart myfile.hex

ВҮЕ - выход из программы Т2.ехе

LFILE – filename.ext Интерпретация командного файла filename.ext. Файл представляет набор строк текста, содержащих команды T2.exe в том же виде, в котором они представлены в командной строке T2.