## Microelectronics Circuit Analysis and Design Homework(10th)

Yuejin Xie U202210333

Oct 23rd, 2023

8.24 Consider the class-B output stage with complementary MOSFETs shown in Figure P8.24. The transistor parameters are  $V_{TN} = V_{TP} = 0$  and  $K_n = K_p = 0.4 \text{mA}/N^2$ . Let  $R_L = 5 \text{ k}\Omega$ . (a) Find the maximum output voltage such that  $M_n$  remains biased in the saturation region. What are the corresponding values of  $i_L$  and  $v_I$  for this condition? (b) Determine the conversion efficiency for a symmetrical sine-wave output signal with the peak value found in part (a).



Figure 1: Problem 8.24

8.29 An enhancement-mode MOSFET class-AB output stage is shown in Figure P8.29. The threshold voltage of each transistor is  $V_{TN} = -V_{TP} = 1$ V and the conduction parameters of the output transistors are  $K_{n1} = K_{p2} = 5$  mA/V<sup>2</sup>. Let  $I_{\text{Bias}} = 200 \ \mu$  A. (a) Determine  $K_{n3} = K_{p4}$  such

that the quiescent drain currents in  $M_1$  and  $M_2$  are 5 mA. (b) Using the results of part (a), find the small-signal voltage gain  $A_v = dv_O/dv_I$  evaluated at: (i)  $v_O = 0$ , and (ii)  $v_O = 5$ V.



Figure 2: Problem 8.29