CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives

Chitchanok Chuengsatiansup

The University of Klagenfurt, Austria

Joint work with A. Chlipala, O. Conoly, A. Erbsen, D. Genkin, J. Gross, J. Kuepper, C. Sun, S. Tian, M. Wagner, D. Wu and Y. Yarom

2006

Bachelor's Student: Chulalongkorn University, Thailand

efficient implementation

cryptanalysis

security

CWY22 CM18 CIS12 BCK+15 C12 KEGa+23 KEGb+23

"CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives" Distinguished Paper (PLDI 2023), Humies GOLD Award (GECCO 2023), German IT Prize (2024)

HSC+23

KFC+24 r

1 L+23

• Correct: produce expected output

• Correct: produce expected output

Efficient: high-speed high-security

Correct: produce expected output

Efficient: high-speed high-security

• Correct: produce expected output

Efficient: high-speed high-security

• Correct: produce expected output

Efficient: high-speed high-security

• Correct: produce expected output

Efficient: high-speed high-security

• Correct: produce expected output

Efficient: high-speed high-security

• Correct: produce expected output

Efficient: high-speed high-security

• Correct: produce expected output

Efficient: high-speed high-security

Portability

Correct: produce expected output

• Efficient: high-speed high-security

Portability

Observation

Observation

• Compilers are general-purpose

Observation

• Compilers are general-purpose

• Cryptographic code has "special" structures

No secret-dependent control flow

No secret-dependent control flow

No secret-dependent memory access

• No secret-dependent control flow

• No secret-dependent memory access

No secret-dependent variable-time instruction

- No secret-dependent control flow
 - CryptOpt: straight-line code

• No secret-dependent memory access

No secret-dependent variable-time instruction

- No secret-dependent control flow
 - CryptOpt: straight-line code

- No secret-dependent memory access
 - CryptOpt: fixed memory offset

• No secret-dependent variable-time instruction

- No secret-dependent control flow
 - CryptOpt: straight-line code

- No secret-dependent memory access
 - CryptOpt: fixed memory offset

- No secret-dependent variable-time instruction
 - CryptOpt: constant-time instruction

Optimization Strategies

• Straight-line code in static single assignment (SSA)

- Straight-line code in static single assignment (SSA)
 - ensure constant-time code

- Straight-line code in static single assignment (SSA)
 - ensure constant-time code

Combinatorial optimization

- Straight-line code in static single assignment (SSA)
 - ensure constant-time code

- Combinatorial optimization
 - search for best-performing implementation

- Straight-line code in static single assignment (SSA)
 - ensure constant-time code

- Combinatorial optimization
 - search for best-performing implementation

• Random local search (RLS) with bet-and-run heuristic

- Straight-line code in static single assignment (SSA)
 - ensure constant-time code

- Combinatorial optimization
 - search for best-performing implementation

- Random local search (RLS) with bet-and-run heuristic
 - "bet" explores up to budget then "run" continues from the best

Initial code

mov rax, [X] clc adcx rax, [Y]

mov rax, [X]
clc
adcx rax, [Y]
mov rdx, [Z]
mulx r8, r9, rax

mov rax, [X]
clc
adcx rax, [Y]
mov rdx, [Z]
mulx r8, r9, rax
mulx r10, r11, [Z]

mov rax, [X] clc adcx rax, [Y] mov rdx, [Z] mulx r8, r9, rax mulx r10, r11, [Z] add r11, r9

mov [out], r11

Example Function: $(X + Y) \cdot Z + Z^2$ [reorder]

mov [out], r11

Example Function: $(X + Y) \cdot Z + Z^2$ [template]

Example Function: $(X + Y) \cdot Z + Z^2$ [template]

Optimization Progress

Random Local Search with Bet-and-Run

Random Local Search with Bet-and-Run

Random Local Search with Bet-and-Run

Bet-and-Run in Action

Fiat Cryptography Erbsen et al. IEEE S&P 2019

Fiat Cryptography
Erbsen et al.
IEEE S&P 2019

Performance: Field Arithmetic

Geometric Mean (4x AMD, 6x Intel)						
	Multiply		Square			
Curve	Clang	GCC	Clang	GCC		
Curve25519						
P-224						
P-256						
P-384						
SIKEp434						
Curve448						
P-521						
Poly1305						
secp256k1						

Performance: Field Arithmetic

Geometric Mean (4x AMD, 6x Intel)							
	Multiply			Square			
Curve	Clang	GCC		Clang	GCC		
Curve25519	1.19	1.14		1.14	1.18		
P-224							
P-256							
P-384							
SIKEp434							
Curve448							
P-521							
Poly1305							
secp256k1							

Performance: Field Arithmetic

Geometric Mean (4x AMD, 6x Intel)

	Multiply		Square	
Curve	Clang	GCC	 Clang	GCC
Curve25519	1.19	1.14	1.14	1.18
P-224	1.31	1.87	1.24	1.84
P-256	1.27	1.79	1.30	1.85
P-384	1.12	1.66	1.08	1.60
SIKEp434	1.30	1.70	1.29	1.83
Curve448	1.02	0.95	1.00	0.99
P-521	1.20	1.06	1.25	1.11
Poly1305	1.10	1.15	1.09	1.16
secp256k1	1.34	1.73	1.32	1.74

Performance: Scalar Multiplication

Geometric Mean (4x AMD, 6x Intel)

• CryptOpt: automatic cryptographic code optimizer

- CryptOpt: automatic cryptographic code optimizer
- Competitive performance with hand-written assembly

- CryptOpt: automatic cryptographic code optimizer
- Competitive performance with hand-written assembly
- Verified compilation of the generated code

- CryptOpt: automatic cryptographic code optimizer
- Competitive performance with hand-written assembly
- Verified compilation of the generated code
- Resistant to timing side channels

- CryptOpt: automatic cryptographic code optimizer
- Competitive performance with hand-written assembly
- Verified compilation of the generated code
- Resistant to timing side channels

- CryptOpt: automatic cryptographic code optimizer
- Competitive performance with hand-written assembly
- Verified compilation of the generated code
- Resistant to timing side channels

• Distinguished Paper (PLDI 2023) & Humies GOLD Award (GECCO 2023)

- CryptOpt: automatic cryptographic code optimizer
- Competitive performance with hand-written assembly
- Verified compilation of the generated code
- Resistant to timing side channels
- Distinguished Paper (PLDI 2023) & Humies GOLD Award (GECCO 2023)
- Won the first prize of the 10th Deutschen IT-Sicherheitspreis

- CryptOpt: automatic cryptographic code optimizer
- Competitive performance with hand-written assembly
- Verified compilation of the generated code
- Resistant to timing side channels
- Distinguished Paper (PLDI 2023) & Humies GOLD Award (GECCO 2023)
- Won the first prize of the 10th Deutschen IT-Sicherheitspreis
- Integrated in Google's products including Chromium-base browsers

