

UNIVERSITAS GADJAH MADA

Introduction

Wahyono, Ph.D.
Department of Computer Science and Electronics
Faculty of Mathematics and Natural Sciences
Universitas Gadjah Mada, Yogyakarta, Indonesia
Email: wahyo@ugm.ac.id

Course Profile

Class Name	Digital Image Processing	
Online Course	http://elisa.ugm.ac.id	
Credits	3 Credits	
Assessment	Assignment/Quiz (25%) Final Project (20%) Attendance (05%) Examination (50%)	
Course Topics	Introduction The Concept of Digital Image Colour Mode Image Enhancement Segmentation Morphological Processing Representation and Description Interpretation	

Assessment Detail

No.	CO	Evaluasi	Metode	Persentase
				Penilaian
1	CO1	Tugas 1	Formatif	5%
		Soal no 1 - Ujian Tengah Semester	Sumatif	7.5%
		Soal no 1 - Ujian Akhir Semester	Sumatif	10%
2	CO2	Tugas 2	Formatif	5%
		Soal no 2 - Ujian Tengah Semester	Sumatif	7.5%
		Soal no 2 - Ujian Akhir Semester	Sumatif	10%
3	CO3	Tugas 3	Formatif	5%
		Soal no 3 - Ujian Tengah Semester	Sumatif	7.5%
		Soal no 3 - Ujian Akhir Semester	Sumatif	10%
4	CO4	Tugas 4	Formatif	5%
		Soal no 4 - Ujian Tengah Semester	Sumatif	7.5%
		Soal no 4 - Ujian Akhir Semester	Sumatif	10%
5	CO5	Proyek akhir	Formatif	15%
		Kehadiran	Eormatif	5%

Grading Criteria

80 ≤ Nilai	А
75 ≤ Nilai < 80	A-
70 ≤ Nilai < 75	A/B
65 ≤ Nilai < 70	B+
60 ≤ Nilai < 65	В
55 ≤ Nilai < 60	B-
50 ≤ Nilai < 55	B/C

45 ≤ Nilai < 50	C+
40 ≤ Nilai < 45	С
35 ≤ Nilai < 40	C-
30 ≤ Nilai < 35	C/D
25 ≤ Nilai < 30	D+
20 ≤ Nilai < 25	D
Nilai < 20	E

Course Rules

- Please be on time (maximum 20 minutes late), otherwise you could not join the class.
- No mobile device/laptop during class
 - If you get caught using mobile phone, you will get -5 points.
- Individual assignment should be submitted before deadline otherwise you will not get score for that assignment.
- No substitution for quiz
- Examination is usually open book

Digital Image Processing Scope

What is an image?

- An artefact that depicts visual perception
 - A photo or a two-dimensional picture, that has a similar appearance to some subject
- Captured by optical devices.
- Image dimension
 - Two-dimensional: photograph
 - Three-dimensional: statue or hologram.

What is an image?

- Mathematically:
 - An image is a two-dimensional function f(x,y), where x and y are the spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x,y) is called the intensity of the image at that level.

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \dots & f(0,M-1) \\ f(1,0) & \dots & \dots & f(1,M-1) \\ \dots & \dots & \dots & \dots \\ f(N-1,0) & f(N-1,1) & \dots & f(N-1,M-1) \end{bmatrix}$$

Digital Image

Pixel intensity value

$$f(1,1) = 103$$
Pixel location

columns

rows

f(645:650,1323:1328) =

79 78 77 77 77 79 78 78 77 77

f(2724,2336) = 88

Consider the following image (2724x2336 pixels) to be 2D function or a matrix with rows and columns

In 8-bit representation
Pixel intensity values
change between 0 (Black)
and 255 (White)

What is a digital image?

- A digital image is a numeric representation, normally binary, of a two-dimensional image.
- Image dimension
 - Two-dimensional, such as a photograph or screen display
 - Three-dimensional, such as a statue or hologram.

Colour Components

R[x,y] = G[x,y] = B[x,y]

Color Images

Infrared Images

X-Ray Images

(a) Chest X-ray. (b) Aortic angiogram. (c) Head CT. (d) Circuit boards. (e) Cygnus Loop.

CT: Computer Tomography

Ultra Sound Images

surgeryencyclopedia.com

Fetal ultrasound during the second to third trimester.

Four chambers of the **heart** imaged as an echocardiogram.
fas.org

Gama Ray Image

a b c d

(a) Bone scan. (b) PET image. (c) Cygnus Loop.(d) Gamma radiation.

Digital Image Processing

Why do we process images?

- Acquire an image
 - Correct aperture and color balance
 - Reconstruct image from projections
- Prepare for display or printing
 - Adjust image size
 - Color mapping
- Facilitate picture storage and transmission
 - Image compression
- Enhance and restore images
- Extract information from images
 - Edge
 - Border

Digital Image Processing (DIP)

- The use of computer algorithms to perform image processing on digital images
- Digital image processing goals:
 - To get an enhanced image
 - To extract some useful information from images
- It is a type of signal processing

DIP Steps

AESFERM

Acquisition

Enhancement

Segmentation

Feature
Extraction,
Representation,
and Matching

DIP Techniques

Low Level Process	Mid Level Process	High Level Process	
Input: Image	Input: Image	Input: Attributes	
Output: Image	Output: Attributes	Output: Understanding	
Examples: Noise removal, image sharpening	Examples: Object recognition, segmentation	Examples: Scene understanding, autonomous navigation	

DIP Techniques

- Image enhancement
- Image restoration
- Color image processing
- Image compression
- Morphological processing
- Segmentation
- Object recognition

Image Enhancement

 The process to improve image quality, both contrast and brightness.

Image Restoration

 The process of improving the image model, usually associated with the shape of the image

Color Image Processing

 A process that involves colored images, either in the form of image enhancements, image restoration, or others

Image Compression

 The process used to change the size of the data in the image so that the image size becomes smaller and does not occupy large storage memory

Morphological Processing

 Process to obtain information stating the description of a form in the image so that the image becomes easier to analyse.

Segmentation

 The process of distinguishing or separating objects in an image, such as separating objects with their background

Object Recognition

A process that is carried out to identify any objects in an image

DIP-based Applications

Image Snitching

source: M. Borgmann, L. Meunier, EE368 class project, spring 2000.

Google Jump

facebook 360

light.co

Face Morphing

Source: Yi-Wen Liu and Yu-Li Hsueh, EE368 class project, spring 2000.

Optical Character Recognition

Convert scanned docs to text

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers

http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Face Detection

- Digital Camera
- Snapchat Application
- Automatic Facebook Tagging

Login Without Password

Login Without Password

Style Transfer

Original photos

Elias Wang, Nicholas Tan, EE368, 2016/17

3D Reconstruction

Building Rome in a Day: Agarwal et al. 2009

Human Shape Capture

Human Shape Capture

Human Shape Capture

Special Effects: Shape Capture

Medical Imaging

3D imaging MRI, CT

Image guided surgery Grimson et al., MIT

Traffic Monitoring

 One of the application in traffic monitoring is vehicle classification in counting

https://www.youtube.com/watch?v=z1Cvn3_4yGo

Surveillance System

- Sample cases
 - Abandoned baggage detection
 - Smoke and fire detection

http://islab.ulsan.ac.kr/ISS2016/ResultVideo/AbandonedObjectDetection/AOD-D04Out.mp4

https://www.youtube.com/watch?v=sK7eVFU1hLs

https://www.youtube.com/watch?v=DtWQiDlnPuU

https://www.youtube.com/watch?v=DuRy-L5qWpc

Traffic Sign Recognition

Classify the type of traffic sign

https://www.youtube.com/watch?v=lr5_4XXgjDY

Reading

- Popular text books
 - William K. Pratt, "Introduction to Digital Image Processing," CRC Press, 2013.
 - I R. C. Gonzalez, R. E. Woods, "Digital Image Processing," 4th edition, Pearson, 2018
- Software-based books
 - R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing using Matlab," 2nd edition, Gatesmark Publishing, 2009.
 - I G. Bradski, A. Kaehler, "Learning OpenCV," O'Reilly Media, 2008.

Final Project

- Group project, ideally teams of 5-7 students
- Develop, implement and test/demonstrate an image processing algorithm
- Topics: DIP based Smart City Applications
 - Do not be overly ambitious in your project goals!
- Grade:
 - Technical quality, significance, and originality 50%
 - Written report 25%
 - Poster/demo 25%
- Schedules
 - Proposal submission: August 31, 2018
 - Report submission: November 10, 2018
 - Project presentation: Poster presentation and demo (Time: TBA)

Project Proposal

- Written project proposal in pdf format
- Submit by email to wahyo@ugm.ac.id
- Submit early for a head start, but no later than deadline otherwise your team will get -5 points/days.
- Proposal must contain:
 - Title
 - Names and email addresses of all team members
 - Description of the goals of the project (200-400 words)
 - Methodology
 - 3+ references
 - Indication whether you will use an Android device

Challenge Project (Optional)

- You may submit your group project to any competitions such as GEMASTIK.
- Your team will get following rewards according to achievements

Achievement	Reward	Notes
Finalist	A-	Attendance >= 9 meeting
Winner	Α	Attendance >= 9 meeting

 To get this reward, you should submit the certificate before Final-Term Examination

UNIVERSITAS GADJAH MADA

THANK YOU

Final Project

- Group project, ideally teams of 5-7 students
- Select following tasks
 - Fire/smoke detection
 - Flood detection
 - Cancer detection on medical image
 - Fish classification
 - Vehicle type classification (model, brand, color)
 - Skin disease detection
 - Pornography image classification
 - Facial expression recognition
 - Identification card recognition
 - Tourist object

Text Book

Computer Vision: Algorithms and Applications

© 2010 Richard Szeliski, Microsoft Research

http://szeliski.org/Book/