BLOQUE L

MÓDULO: TÉCNICAS DE MACHINE LEARNING

ALGORITMOS SUPERVISADOS

LORENZO MARTÍNEZ MANERO

Ingeniero Industrial Superior por la Universidad Politécnica de Valencia.

RETURNIE EDI

ÍNDICE

Objetivos Específicos

Algoritmos supervisados

Ideas clave

TEMA 1. ÁRBOLES DE DECISIÓN

- Comprender su funcionamiento interno.
- Entender la diferencia entre los dos tipos de cálculo de "impurezas": Gini y Entropy.
- Saber cómo utilizar los parámetros del algoritmo para evitar el overfitting.
- Saber cuáles son las funciones de coste a minimizar en Clasificación y en Regresión.
- Realizar y comprender los grafos.
- Aplicar este tipo de algoritmos a diferentes tipos de datos usando la librería Scikit-Learn de Python.
- Comprender cuándo vale la pena usarlos, sus ventajas y sus desventajas.

TEMA 2. KNN (K-NEAREST-NEIGHBORS)

- Comprender su funcionamiento interno.
- Saber cómo utilizar el parámetro K del algoritmo para evitar el overfitting y el underfitting.
- Aplicar este tipo de algoritmos a diferentes tipos de datos usando la librería Scikit-Learn de Python.
- Aprender a realizar el escalado antes de aplicar el algoritmo.
- Conocer algunos tipos de cálculo de distancias.
- Comprender cuándo vale la pena usarlos, sus ventajas y sus desventajas.

TEMA 3. NAÏVE-BAYES

- Comprender su funcionamiento interno.
- Saber cómo utilizar el parámetro alpha del algoritmo para mejorar su "performance".
- Conocer los tres tipos de algoritmos más usados basados en Naive-Bayes.
- Saber cuándo es más conveniente usar cada uno de ellos.
- Aplicar este tipo de algoritmos a diferentes tipos de datos usando la librería Scikit-Learn de Python.
- Comprender cuándo vale la pena usarlos, sus ventajas y sus desventajas.
- Aprender a trabajar (de manera introductoria) con datos de tipo texto.

ALGORITMOS SUPERVISADOS

En el mundo del Aprendizaje Automático (Machine Learning), existen muchos algoritmos, con diferentes fines y diferentes formas de funcionamiento. La forma más genérica de dividirlos es la siguiente:

Algoritmos supervisados

Son aquellos que tratan de realizar una predicción/estimación de valores de una variable objetivo:

- Clasificación: cuando la variable objetivo es discreta (spam/no-spam, perro/gato, etc.).
- Regresión: cuando la variable objetivo es continua (precios de productos, etc.)

Algoritmos no-supervisados:

Son aquellos que no tratan de realizar una predicción/estimación de valores de una variable objetivo:

- Clustering (kmeans, clustering jerárquico, etc.).
- Reducción de dimensionalidad (PCA, etc.).

En este tema, vamos a ver tres algoritmos supervisados en tres temas diferentes:

- **Árboles de decisión:** que pueden trabajar tanto en Clasificación como en Regresión.
- **KNN:** que, también, pueden trabajar en Clasificación y Regresión.
- Naive Bayes: aunque existan variantes basados en Bayes (como Bayesian Ridge Regression), el algoritmo que vamos a ver sólo trabaja en modo Clasificación.

A partir de este punto, vamos a trabajar con Colab donde alternaremos teoría con ejemplos programados en Python.

TEMA 1: ÁRBOLES DE DECISIÓN

- Los Árboles de decisión son unos algoritmos muy utilizados hoy día debido a la posibilidad de entenderlos: WhiteBox.
- Deben ser bien parametrizados para regularizarlos y evitar overfitting.
- Son capaces de darnos información sobre la importancia de las diferentes variables predictoras, lo cual ayuda a entender mejor el problema que se trata de resolver.
- Son la base de los Algoritmos ensamblados de la segunda parte del módulo, que tan buen resultado dan en muchos contextos dentro del mundo del dato.

TEMA 2: KNN (K-NEAREST-NEIGHBORS)

- El principal aspecto a resaltar es su sencillez de funcionamiento y de aplicación, que nos ayuda, en muchas ocasiones, a usarse como un "baseline" a partir del cual ir mejorando.
- Es muy importante el escalado o estandarización de los datos para su buen funcionamiento.
- Pueden ser usados tanto para supervisado en clasificación y regresión como para el cálculo de distancias entre todos los puntos de un dataset.
- Tiene una gran gama de cálculo de distancias que puede ser interesante conocer según el caso de uso.

TFMA 3: NAIVF-BAYFS

- Se trata de algoritmos que funcionan razonablemente bien cuando disponemos de muchas variables predictoras o cuando los datos tienen muchos ceros (sparse data).
- Son ideales como baseline en la clasificación de textos.
- Es interesante saber distinguir el funcionamiento de los tres algoritmos que se ven en el tema y cuándo es mejor usar cada uno de ellos.