SEQUENCE LISTING

```
<110> GOETSCH, Liliane
CORVAIA, Nathalie
       LEGER, Olivier
       DUFTOS, Alain
       BECK, Alain
    . HAEUW, Jean-François
<120> NOVEL ANTI-IGF-IR ANTIBODIES AND USES THEREOF
<130> D19919
<150> FR 03/08 538
<151> 2003-07-11 -
<150> PCT/FR 03/00 178
<151> 2003-01-20
<150> FR 02/00 653
<151> 2002-01-18
<150> FR 02/00 654
<151> 2002-01-18
<150> FR 02/05 753
<151> 2002-05-07
<160> 156
<170> PatentIn Ver. 2.1
<210> 1
<211> 48
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(48)
<400> 1
aga tot agt cag agc att gta cat agt aat gga aac acc tat tta caa Arg Scr Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Gln \,
                                           1.0
<210> 2
<211> 16
<212> PRT
<213> Mus musculus
Arg Ser Ser Glm Ser Ile Val His Ser Asn Gly Asn Thr. Tyr Leu Glm
                                           10
 1
<210> 3
<211> 21
<212> DNA
<213> Mus musculus
```

```
<220>
<221> CDS
<222> (1)..(21)
<400> 3
aaz gtt too aac oga ott tat
Lys Val Ser Asn Arg Leo Tyr
<210> 4 ·
<211> 7
<212> PRT
<213> Mus musculus
<400> 4
Lys Val Ser Asn Arg Leu Tyr
<210> 5
<211> 27
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(27)
<400> 5
ttt caa ggt tca cat gtt ccg tgg acg
Phe Gln Gly Ser His Val Pro Trp Thr
 1
<210> 6
<211> 9
<212> PRT
<213> Mus musculus
<400> 6
Phe Gln Cly Ser His Val Pro Trp Thr
ĺ
<210> 7
<211> 18
<212> DNA
<213> Mus musculus
<220>
```

<221> CDS <222> (1)..(18)

<400> 7

ggt ggt tat tta tgg aac Gly Gly Tyr Leu Trp Asn 18

27

```
<210> 3
<211> 6
<212> PRT
<213> Mus musculus
<400> 8
Gly Gly Tyr Leu Trp Asn
<210> 9
<211> 48
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1) .. (48)
<400> 9
tac ata ago tac gao ggt acc aat aac tac aaa cca tot oto aaa gat
Tyr ile Ser Tyr Asp Gly Thr Asn Asn Tyr Lys Pro Ser Leu Lys Asp
                                       10
<210> 10
<211> 16
<212> PRT
<213> Mus musculus
<400> 10
Tyr Ile Ser Tyr Asp Gly Thr Asn Asn Tyr Lys Pro Ser Leu Lys Asp
                                        10
<210> 11
<211> 24
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(24) ...
<400> 11
tac ggt agg gtc ttc ttt gac tac
Tyr Gly Arg Val Phe Phe Asp Tyr
                                                                        24
<210> 12
<211> 8
<21.2> PRT
<213> Mus musculus
<400> 12
Tyr Gly Arg Val Phe Phe Asp Tyr
                   5
```

<210> 13

<211> 26 <212> DNA <213> Mus musculus	
<100> 13 atgaaatgca gctgggtcat sttctt	26
<210> 14 <211> 26 <212> DNA <213> Mus musculus	
<400> 14 atgggatgga gctrtalcat sytctt	26
<210> 15 <211> 26 <212> DNA <213> Mus musculus	
<400> 15 atgaagwtgt ggttaaactg ggtttt	26
<210> 16 <211> 23 <212> DNA <213> Mus musculus	
<pre><%00> 16 atgractitg ggytcagctt grt</pre>	23
<210> 17 <211> 26 <212> DNA <213> Mus musculus	
<400> 17 atggaeteca ggeteaattt agtttt	. 26
<210> 16 <211> 26 <212> DNA <213> Mus musculus	
<400> 18 alggotgtcy trgsgotrot ottotg	
<210> 19 <211> 26 <212> DNA <213> Mus musculus	
<400> 19	

 \sim

atggratgga gckggrtctt tmtctt

	•		
•			
•			
•	b	•	
	•		
•			
<210> 20	•		
<211> 23		•	ř
<212> DNA	. •		
<213> Mus musculus			
<400> 20			
atgagagtgc tgattctttt qtq		23	
acyayayeye ayacccccc qeq			·
			:
~ <210> 21		ı	·
<211> 26			
<212> DNA			
<213> Mus musculus			
<400> 21			
algomttggg tgtggamett getatt	-	. 26	***
<210> 22			•
<211> 26			·
<212> DNA	•	•	
<213> Mus musculus	•		
<400> 22			
atgggcagac ttacattctc attcct	•	26	
•		•	
			•
<210> 23			•
<211> 28			•
<212> DNA			
<213> Mus musculus			
•			
<400> 23		. 28	
•	•	. 28	
<400> 23 atggattttg ggctgatttt ttttattg		. 28	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24	•	. 28	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26	•	. 28	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA		. 28	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26		. 28	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus		. 28	
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24			*
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus		28	
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24			*
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25			*
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29			*
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA			*
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29			
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus			
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25		26	
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus			
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25		26	
<400> 23 atggattttg ggctgattt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttgc ctgttaggct gliggtgct		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 21 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttgc ctgttagget gttggtgct <210> 25 atgaagttgc ctgttagget gttggtgct		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtcttct gtacct <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttgc ctgttaggct gllggtgct <210> 25 <211> 29 <212> DNA <213> Mus musculus		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtcttct gtacct <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttgc ctgttaggct gltggtgct <210> 25 atgaagttgc ctgttaggct gltggtgct <210> 26 <211> 29		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtcttct gtacct <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttgc ctgttaggct gllggtgct <210> 25 <211> 29 <212> DNA <213> Mus musculus		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	
<400> 23 atggattttg ggctgatttt ttttattg <210> 24 <211> 26 <212> DNA <213> Mus musculus <400> 24 atgatggtgt taagtettet gtacet <210> 25 <211> 29 <212> DNA <213> Mus musculus <400> 25 atgaagttge etgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget <210> 26 <211> 29 <212> DNA <313> Mus musculus <400> 25 atgaagttge otgttagget gliggtget		26	

alggagweag acacactect	gytatgggt	29
<210> 27		•
<211> 23		
<212> DNA		
<213> Mus musculus	•	
(213) 11d3 11d3 d41d3		
<400> 27		
atgagtgtgc tcactcaggt	cct	2.3
acgagagaga comotoagg.		
•		
<210> 28		
<211> 26		
<212> DNA .		
<213> Mus musculus		
AZIJA MAJOAINA	* ·	
<100> 20		
atgaggreec etgetcagwt	tyttaa	26
acyandroop prigoropy		
	•	
<210> 29		
<211> 29		
<212> CNA	•	
<213> Mus musculus		
<400> 29		
atggatttwc aggtgcagat	twtcagctt	29
,<210> 30		
<211> 29	•	
<212> DNA		
<213> Mus musculus		
<400> 30	• •	0.0
atggatttwc arglgcagat	twicagett	29
*•	•	
0105 D		
<210> 31		
<211> 26		
<212> DNA		
<213> Mus musculus	•	
<400> 31		
•	uctara	26
atgaggtkcy ytgytsagyt	Accard	
<210> 32		
<211> 23		
<211> 2.3 <212> DNA		
<213> Mus musculus	*	
ZZIJZ MUS MUSCUIUS	•	•
<400> 32		
atgggcwtca agatggagtc	aca	23
<210> 33		
<211> 29		
<212> DNA	•	
<213> Mus musculus		

<400> 33 atgtggggay ctkttlycmm	ttttcaat	29
<210> 34 <211> 24 <212> DNA <213> Mus musculus		
<400> 34 atggtrtccw casctcagtt	cctt	24
<210> 35 <211> 26 <212> DNA <213> Mus musculus		
<400> 35 alglalata gtttgttgtc	tatttc	26
<210> 36 <211> 26 <212> DNA <213> Mus musculus		
<400> 36 atggaagece cageteaget	tctctt	26
<210> 37 <211> 26 <212> DNA <213> Mus musculus		
<400> 37 atgragtywc agacccaggt	cttyrt	2€
<210> 38 <211> 26 <212> DNA <213> Mus musculus		
<400> 38 atggagacac attctcaggt	ctttgt	26
<210> 39 <211> 26 <212> DNA <213> Mus musculus		
<400> 39 atggattcac aggeeeaggl	tcttat	26
<210> 40 <211> 20		

```
<212> DNA
<213> Mus musculus
<400> 40
                                                                 20
actggatggt gggaagatgg
<210> 41
<211> 42
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(42)
<400> 41
                                                                12.
got got got goa coa act gta too ato tto coa coa too agt
Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser
<210> 42
<211> 14 ·
<212> PRT
<213> Mus musculus
Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser
            10
<210> 43
<211> 20
<212> DNA
<213> Mus musculus
<400> 43
ccatcttccc accalccagt
                                                                 20
<210> 44
<211> 18
<212>. DNA
<213> Mus musculus
<400> 44
                                                                 18
ccagtggata gacagatg
        <210> 45
<211> 33
<212> DNA
<213> Mus musculus
<220>
<221> CDS
<222> (1)..(33)
<400> 45
                                                               . 33
gcc aaa acg aca ccc cca tot gtc tat cca ctg
```

```
Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu
<210> 46
<211> 11
<2]2> PRT
<213> Mus musculus
<400> 46
Ala Lys Thr Thr Pro Pro Ser Val Tyr Fro Leu
<210> 47
<211> 21
<212> DNA
<213> Mus musculus
<400> 47
                                                                    21
occopating total coact g
<210> 48
<211> 438
<212> DNA
<213> Mus musculus
<220>
<221> CD$
<222> (28)..(393)
<400> 48
atgaagttge etgttagget gttggtg etg atg tte tgg att eet get tee aga 54
                              Leu Met Phe Trp Ile Pro Ala Ser Arg
                                1
agt gat gtt ttg atg acc caa att cca etc tec etg eet gte agt ett
                                                                   102
Ser Asp Val Leu Met Thr Gln ile Pro Leu Ser Leu Pro Val Ser Leu
                    15
gga gat caa goo too ato tot ugo aga tot agt cac ago att gta cal
Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His
                 30
                                     35
agt ast gga had add tat the dae tgg tad dtg dag aaa dda ggt dag
                                                                   198
Ser Asn Gly Asn Thr Tyr Leu Gln Trp Tyr Leu Gln Lys Pro Gly Gln
          · . 45
tot oca aag oto otg ato tao aaa gut too aan oga ott tat ggg gto
Scr Fro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Leu Tyr Gly Val
cca gac agg ttc agt ggc agt gga tca ggg aca gat ttc aca ctc aag
Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Lou Lys
ato ago ago glo gag got gag gat otg gga gtt tat tao tgo tit caa
                                                                   342
Tie Ser Ser Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gin
                     95
                                        100
```

```
ggt toa cat git dog tgg adg the ggi gga ggd add aag dig gaa atd
Gly Ser His Val Pro Trp Thr Phc Gly Gly Gly Thr Lys Leu Glu Ile
                110
aaa cgg getgatgetg caccaactgt atecatette ccaccateca gt
                                                                   438
<210> 49
<211> 122
<212> PRT
<213> Mus musculus
<400> 49
Leu Met Phe Trp Ile Pro Ala Ser Arg Ser Asp Val Leu Met Thr Gln
The Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser the Ser
Cys Arg Ser Ser Gln Scr Ile Val His Ser Asn Cly Asn Thr Tyr Leu
Gln Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr
Lys Val Ser Asn Arg Leu Tyr Gly Val Pro Asp Arg Phe Ser Gly Ser
Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Ser Val Glu Ala Glu
                 85
Asp Leu Cly Val. Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Trp Thr
Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
        115
<210> 50
<211> 438
<212> DNA
<213> Mus musculus
<400> 50
tacttcaacq gachatooga caaccacgac tacaagacct aaygacgaag gtottcacta 60
cazzactact gggtttaagg tgaqagggac ggacagtcag aacctctagt tcggaggtag 120
agaacgtota gatcagtoto gtaacatgta toattacott tgt.ggataaa tgttaccatg 180
gacgtotttg gtocagtoag aggtttogag gactagatgt ttoaaaggtt ggotgaaata 240
occcagggto tgtocaagto accgtoacct agtocotgto taaagtgtga gttotagtog 300
togeacetee gactoctaga eceteaaata atgacgaaag ttecaagtgt acaaggcace 360
tgcaagcone etceqtggtt egacetttag tttgcccgae tacgaegtgg ttgacatagg 420
tagaagggtg gtaggtca
<210> 51 ·
<211> 438
<212> DNA
<213> Mus musculus
```

<220>

<221> CDS <222> (25)..(405) <400> 51 51 atgaiggigt taagtottot give old lig aca god att oot gyt ale otg Leu Leu Thr Ala Ile Pro Gly Ile Leu tot gat gla dag oft dag qag toa gga ool ggo oft gtg aaa oot tot Ser Asp Val Gln Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser caq tot elg tot etc acc tgc tot gtc acc ggc tac tcc atc acc ggt Gin Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Gly 195 ggt tat tta tgg aac tgg atc cgg cag ttt cca gga aac aaa ctc qaq Gly Tyr Len Trp Asn Trp lle Arg Gln Phe Pro Gly Asn Lys Len Giu tgg atg ggc tac ata agc tac gac ggt acc aat aac tac aaa cca tct Trp Mct Gly Tyr Ile Ser Tyr Asp Gly Thr Asn Asn Tyr Lys Pro Ser etc aaa gat ega ath tec ate act egt gae aca tet aag aac eag tit 291 Lou Lys Asp Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe €0 ttc ctg aag ttg aat lot gtg act aat gaa gac aca gct aca tat tac Phe Leu Lys Leu Asn Ser Val Thr Asn Glu Asp Thr Ala Thr Tyr Tyr 339 367 tgt gca aga tac ggt agg gtc ttc ttt gac lac tgg ggc caa ggc acc Cys Aln Arg Tyr Gly Arg Val Phe Phe Asp Tyr Trp Gly Cin Gly Thr 110 115 act etc aca gto tec tea gecaaaacga cacceccate tgtetateca etg 438 Thr Leu Thr Val Ser Ser 125 <210> 52 <211> 127 <212> PRT <213> Mus musculus <400> 52 Leu Leu Thr Ala Ile Pro Gly Ile Leu Ser Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln Scr Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Gly Gly Tyr Leu Trp Asn Trp Ile Arg Gin Phc Pro Gly Asn Lys Leu Glu Trp Met Gly Tyr Ile Ser Tyr

Asp Gly Thr Asn Asn Tyr Lys Pro Ser Leu Lys Asp Arg Ilc Ser Ile

Thr Arg Asp Thr Ser Lys Ash Gin Phe Phe Leu Lys Leu Ash Ser Val

Thr Asn Glu Asp Thr Ala Thr Tyr Tyr Cys Ala Arg Tyr Gly Arg Val 100 105 110

Phe Phe Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser 115 . 120 125

<210> 53

65

<211> 438

<212> DNA

<213> Mus musculus

<400> 53

tactaccaca attcagaaga catggacaac tgtcggtaag gaccatagga cagactacat 60 gtcgaagtcc tcagtcctgg accggagcac tttggaagag tcagagacag agagtggacg 120 agacagtggc cgatgaggta gtggccacca ataaatacct tgacctaggc cgtcaaaggt 180 cctttgtttg acctcaccta cccqatgtat tcgatgctgc catggttatt gatgtttggt 240 agagaggttc tagcttagag gtagtgagca ctgtgtagat tcttggtcaa aaaqqacttc 300 aacttaagac actgattact tctgtgtcga tgtataatga cacgttctat gccatcccag 360 aagaaactga tgaccccggt tccqtqgtga gagtgtcaga ggagtcggtt ttgctgtgg 420 ggtagacaga taggtgac

<210> 54

<211> 112

<212> PRT

<213> Mus musculus

<100> 54

Asp Val Leu Met Thr Gln 11e Pro Leu Ser Leu Pro Val Ser Leu Gly 1 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 20 25 30

Asn Gly Asn Thr Tyr Leu Gln Trp Tyr Leu Gln Lys Pro Gly Gln Ser

Fro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Leu Tyr Gly Val Pro

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80

Ser Ser Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 95

Ser His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

<210> 55

<211> 112

<212> PRT

<213> Mus musculus

<400> 55

Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly

Asp Cin Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser

Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 95

Ser His Val Pro Fhe Thr Phe Gly Scr Gly Thr Lys Leu Asp Tle Lys 100 105 110

<210> 56

<211> 112

<212> PRT

<213> Mus musculus

<400> 56

Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser 20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45

Pro Lys Leu Ilc Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Ciy Thr Asp Phe Thr Leu Lys Ile 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phc Gln Gly
85 90 95

Ser His Val Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

<210> 57

<211> 112

<212> PRT

<213> Mus musculus

<400> 57

Asp Val Val Met Thr Cln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly

Asp Gln Ale Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Scr

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser . 35 40 45

Pro Lys Leu Ile Tyr Lys Val Scr Asn Arg Phe Ser Gly Val Pro 50. 55

Asp Arg Phe Ser Gly Ser Gly Scr Gly Thr Asp Phe Thr Leu Lys Ilc 65 70 75 80

Ser Arg Val Clu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 95

Thr His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Lou Glu Ile Lys 100 105 110

<210> 58

<211> 112

<212> PRT

<213> Homo sapiens

<400> 58

Asp Ile Val Met Thr Cln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30

Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40

Pro Gin Leu Leu ile Tyr Leu Gly Scr Asn Arg Ala Ser Gly Val Pro 50 55 . 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala 85 90 95

Leu Gln Thr Pro Gln Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105 110

<210> 59

<211> 100

<212> PRT

<213> Homo sapiens.

<400> 59

Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Lou Leu His Ser 20 25 30

Asn Gly Tyr Asn Tyr Lou Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala Leu Gln Thr Pro 100 <210> 60 <211> 112 <212> PRT <213> Homo sapiens <220> <221> VARIANT <222> (35)..(36) <223> XAA is any of the amino acid <220> <221> VARIANT . <222> (39) . <223> XAA is any of the amino acid <220> <221> VARIANT <222> (99) <223> XAA is any of the amino acid <400> 60 Asp Ile Val Mct Thr Gln Ser Pro Leu Scr Leu Pro Val Thr Pro Gly Ciu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Lou His Ser Asp Gly Xaa Xaa Tyr Leu Xaa Trp Tyr Leu Gln Lys Pro Gly Gln Ser **, 40** Pro Gln Leu Leu Ile-Tyr Leu Val Ser Asn Arg Ala Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 70 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala Leu Gln Xaa Pro Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 <210> 61

Pro Gin Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro

<211> 112 <212> PRT

<213> Homo sapiens

```
<400> 61
Asp Vai Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
Clu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser
Asn Gly Asn Thr Tyr Leu Gln Trp Tyr Leu Gin Lys Pro Gly Gln Ser
Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Leu Tyr Gly Val Pro
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly
Ser His Val Pro Trp Thr Phe Cly Gln Gly Thr Lys Val Glu Ile Lys
           100
                                105
<210> 62
<211> 433
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (22)..(414)
gtcagaacgc gtgccgccac c atg aag ttg cot gtt agg ctg ttg gtg ctg
                        Met Lys Leu Pro Val Arg Leu Leu Val Leu
atg ttc tgg ttt cct gct tcc agc agt gat gtt glg atg act cag tct
Met Phe Trp Fhe Pro Ala Ser Ser Ser Asp Val Val Met Thr Gln Ser
                 15
coa etc tee etg eee gte ace eet gga gag eeg gee tee ate tee tge
Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser 1le Ser Cys
             30
agg tot agt cag age att gua cat agt aat gga aac acc tat tig caa
                                                                   195
Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Gin
tgg tac ctg cag mag cca ggg cag tot cca cag ctc ctg ato tat ama
Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys
                       65
gtt tot aat ogg ott tat ggg gto oot gac agg tto agt ggc agt gga
Val Ser Asn Arg Leu Tyr Gly Val Pro Asp Arg Phe Ser Gly Ser Gly
toa ggc aca gat ttt aca ctg aaa atc agc aga gtg gag gct gag gat
Ser Gly Thr Asp The Thr Lcu Lys Ile Ser Arg Val Glu Ala Glu Asp
                                    100
```

387 gtt ggg gtt tat tad lgd ttt daa ggt toa dat gtt dog tgg adg ttd Val Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Fro Trp Thr Phe ggo caa ggg aco aag gbg gaa ato aaa ogt gagtggatoo totgog 433 Gly Gln Gly Thr Lys Val Glu Ile Lys 130 <210> 63 <211> 131 <212> PRT <213> Homo sapiens <400> 63 Met Lys Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Phe Pro Ala 10 Ser Ser Ser Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Cly Clu Pro Ala Ser Tle Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Cln Trp Tyr Leu Gln Lys Pro 55 Gty Gln Ser Pro Gln Leu Leu Ilo Tyr Lys Val Ser Asn Arg Leu Tyr Gly Val Pro Asp Arg Phc Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Vai Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys 105 Phe Gln Gly Ser His Val Pro Trp Thr Phe Gly Gln Gly Thr Lys Val 120 Glu Ile Lys 130 <210> 64 <211> 433 <212> DNA <213> Homo sapiens <400> 64 cagtettgeg caeggeggtg gtactteaac ggacaateeg acaaccaega etacaagaee 60 panggacgaa ggtcgtcact acaacaactac tqagtcagag gtgagaggga cggqcagtgg 120 ggacototog googgaggta gaggaogton agathagtot ogtaacatgt atcattacet 180 ttqtqgabaa acqttaccat qqacqtette qqtcqcqtca qaqqtqteqa qqactagata 240 tttclmagat tayccgaaat accccaggga ctgtccaagt caccgtcacc tagtccgtgt 300 ctabaatgtg actittagto giotoaccio ogaciociae aacccaaat aaigacgaaa 360 gttocaagtg tacaaggeac etgcaágdeg gttocotggt tocacettta gtttgcacte 420 acctaggaga cgc

<210> 65 <211> 112

<212> PRT <213> Homo sapiens (<400> 65 Asp Ile Val Met Thr Gln Ser Pro Lcu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr Leu Gin Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Leu Tyr Gly Val Pro Asp Arg Phe Ser-Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly Ser His Val Pro Trp Thr Phc Gly Gln Gly Thr Lys Val Glu Ile Lys <210> 66 <211> 433 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (22)..(414) <400> 66 gleagaacge gigeegeeac c atg ang tig ect git agg etg tig gig etg Met Lys Leu Pro Val Arg Leu Leu Val Lou atg tto tgg ttt cot got loo ago agt gat att glg atg act cag tot Met Phe Trp Phe Pro Ala Ser Ser Ser Asp Ilc Val Met Thr Gln Ser 20 coa cto tec etg coe qto ace cot gga gag cog gee toc ate tee tge Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys 30 agg tot agt hag ago att gta cat agt aat gga aac acc tat ttg caa Arg Ser Ser Gln Ser Tle Val His Ser Asn Gly Asn Thr Tyr Leu Gln tgg tac ctg cag aag cca ggg cag tot oca cag ctc ctg atc tat aaa Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys 60 gtt tot aat ogg ott tat ggg gto oot gac agg tto agt ggc agt gga 291 .

Val Ser Asn Arg Leu Tyr Cly Val Pro Asp Arg Phe Ser Gly Ser Gly

tea gge aca gat tit aca etg aaa ate age aga git gag get gag gat - 339

Ser Gly Thr Asp Phe Thr Lou Lys Ile Ser Arg Val Glu Ala Glu Asp

```
gtt ggg glt hat tac tgc ttt caa ggt tca cat gtt ccg tgg acg ttc
                                                                   367
Val Gly Val Tyr Tyr Cys Pho Gln Gly Ser His Val Pro Trp Thr Phe
                                115
                                                                   433
ggc caa ggg acc aag gtg gaa atc aaa cgt gagtggatcc totgeg
Gly Gin Gly Thr Lys Val Glu Ile Lys
<210> 67
<211> 131
<212> PRT
<213> Homo sapiens
<400> 67
Mot Lys Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Pho Pro Ala
Ser Ser Ser Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val
Thr Pro Gly Glu Pro Ala Scr Ile Ser Cys Arg Ser Ser Gln Ser Ile
                             40
Val His Ser Asm Gly Asm Thr Tyr Leu Glm Trp Tyr Leu Glm Lys Pro
                         55
Gly Gln Ser Pro Gln Leu Leu Ile Tyr Lys Val Ser Asn Arg Leu Tyr
Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
Leu Lys IIc Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys
Phe Gln Gly Ser His Val Pro Trp Thr Phe Gly Gln Gly Thr Lys Val
                            120
Glu Ile Lys
    130
<210> 68
<211> 433
<212> DNA
<213> Homo sapiens
<400> 68
cagtottgcg cacggcggtg gtacttcasc ggacaatccg acaaccacga ctacaagacc 60
anaggacgaa ggtcgtcact acaacactac tgagtcagag gtgagaggga cgggcagtgg 120
ggacctotog googgaggta gaggacgtoc agateagtot ogtaacatgt atcattacct 180
tigtggataa acgitaccat ggacgtcttc ggtcccqtca gaggtgtcga ggactagata 240
tttcaaagat tagccgaaat accccaggga ctgtccaagt caccgtcacc tagtccgtgt 300
ctaaaatgig acttilagic gictcaccic cgactcctac aaccccaaat aatgacgaaa 360
gliccoagtg tacaaggeac etgenageeg gtteeetggt tecacettta gtttgeacte 420
                                                                   433
acctaggaga cgc
```

<210> 69

<211> 117

<212> PRT

<213> Mus musculus

<400> 69

Asp Val Gln Lcu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
l 10 15

Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Gly Gly
20 25 30

Tyr Leu Trp Asn Trp Ile Arg Gln Phe Fro Gly Asn Lys Leu Giu Trp 35 40

Met Gly Tyr 11e Ser Tyr Asp Gly Thr Asn Asn Tyr Lys Pro Scr Leu 50 60

Lys Asp Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe Phe 65 70 75 80

Leu Lys Leu Asn Ser Val Thr Asn Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95

Ala Arg Tyr Gly Arg Val Phe Phe Asp Tyr Trp Gly Gln Gly Thr Thr 100 105 110

Leu Thr Val Ser Ser 115

<210> 70

<211> 118

<212> PRT .

<213> Mus musculus

<400> 70

Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Scr Gln 1 10 15

Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Ser Gly

Tyr Tyr Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp 35 40 45

Met Gly Tyr Tle Asn Tyr Asp Gly Asn Asn Tyr Asn Pro Ser Leu 50 60

Lys Asn Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe Phe 65 70 75 80

Leu Lys Lou Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90

Ala Arg Glu Gly Tyr Cly Tyr Phe Phe Asp Tyr Trp Gly Gln Gly Thr 100 105

Thr Leu Thr Val Ser Ser

```
<210> 71
<211> 118
<212> PRT
<213> Mus musculus
```

<400> 71

Glu Val Gln Leu Gln Glu Ser Gly Pro Ser Leu Val Lys Pro Ser Gln 1 10 15

Thr Leu Ser Leu Thr Cys Ser Val Thr Gly Asp Ser Ile Thr Ser Gly
20 25 30

Tyr Trp Asn Asn Trp Tle Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
35 40 45

Met Gly Tyr Ile Ser Tyr Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu 50 60

Lys Ser Arg Ile Scr Ilc Thr Arg Asp Thr Ser Lys Asn Gln Tyr Phc 65 70 75 80

Leu Gln Leu Asn Scr Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys
65 90 95

Ala Arg Gly Cly Tyr Gly Tyr Gly Phe Asp Tyr Trp Gly Gln Gly Thr 100 105

Thr Val Thr Val Ser Ser

<210> 72 <211> 117 <212> PRT

<213> Homo sapiens

<400> 72 -

Gln Val Gln Lec Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Val Ser Ser Tyr 20 25 30

Trp Ser Trp Asn Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp 35 40 45

Ile Cly Arg Ile Tyr Tyr Ser Gly Ser Thr Xaa Tyr Asn Pro Ser Leu 50 60

Lys Ser Arg Val Thr Ile Scr Val Asp Thr Ser Lys Asn Gln Phe Ser 65 70 75 80

Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Glu Leu Pro Gly Gly Tyr Asp Val Trp Gly Gln Gly Thr Leu 100 105 110 Val Thr Val Ser Ser 115

<210> 73

<211> 123

<212> PRT

<213> Homo sapiens

<400> 73

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile Ser Ser Gly
20 25 30

Tyr Tyr Trp Ser Trp Tle Arg Gln Pro Pro Gly Lys Gly Lou Glu Trp
35 40 45

Ile Gly Ser Met Phe His Ser Gly Ser Ser Tyr Tyr Asn Pro Ser Leu 50 60

Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser 65 70 75 80

Leu Gln Leu Arg Scr Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Trp Gly Gin Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 74

<211> 98

<212> PRT

<213> Homo sapiens

<400> 74

Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
1 10 15

The Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile Ser Ser Gly 20 25

Tyr Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp 35 40 45

Ile Gly Ser Ile Tyr His Ser Gly Ser Thr Tyr Tyr Asn Pro Ser Leu 50 60

Lys Scr Arg Val Thr Ile Ser Val Asp Thr Ser Lys Ash Gin Phe Ser 65 70 75 80

Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ala Arg

<213> Homo sapiens <400> 75 Gin Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Scr Glu 10 Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile Thr Gly Gly Tyr Leu Trp Asn Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Met Gly Tyr Ile Ser Tyr Asp Gly Thr Asn Asn Tyr Lys Pro Ser Leu Lys Asp Arg Ile Thr Ilc Scr Arg Asp Thr Ser Lys Asn Gln Phe Ser Lou Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Tyr Gly Arg Val Phe Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 <210> 76 <211> 445 <212> DNA <213> Homo sapiens <220> <221> CD5 <222> (22)..(426) <400> 76 gtcagaacge gtgccyccae c atg aaa gtg ttg agl etg ttg tae ete ttg Met Lys Val Leu Ser Leu Leu Tyr Leu Leu aca gon att cot ggt atc ctg tot dag gtg dag ott dag gag tog ggd Thr Ala Tie Pro Gly Ile Leu Ser Gln Val Gln Leu Gln Glu Ser Gly cca gga ctg gtg aag cot teg gag acc ctg tee etc acc tgc act gtc Pro Gly Leu Val Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val 195 tot ggt tac too ato acc ggt ggt tat tta tgg aac tgg ata cgg cag Ser Gly Tyr Ser Ile Thr Gly Cly Tyr Lou Trp Asn Trp Ile Arg Gln 50 ccc cca ggg aag gga ctg gag tgg atg ggg tat atc agc tac gac ggt Pro Pro Gly Lys Gly Leu Glu Trp Met Gly Tyr Ile Ser Tyr Asp Gly

<210> 75 <211> 117 <212> PRT

										cça Arg 85	Ile				cgt Arg 90	291
										ctg Leu						339
										tac Tyr						387
								Val		gtc Val			ggt	gagt	. egg	436
teet	tctg	cg		•	٠			•		•						445
<21:	0> 7 1> 1: 2> PI 3> Ho	35 RĽ	sapi	ens			•									
<400	0> 7 °	7								,						S
Met l	Lys	Val	Leu	Scr 5	Leu	Leu	Tyr	Leu	Leu 10	Thr	Ala	Ile	Pro	Gly 15	Ile	
Leu	Ser	Gln	va1 20	Gln	Leu	Gln	Glu	Ser 25	_	Pro	Gly	Leu	Val 30	tys	Pro	· .
Ser-	Glu	Thr 35	Leu	Ser	Leu	Thr	Cys 40	Thr	Val	Ser	Gly	Тут 45	Ser	Ile	Thr	
Cly	Gly 50	Tyr	Leu	Trp	Asn	Trp 55	Ile	Arg	Gln	Pro	Pro 60	еŕл	Lys	Gly	Leu	
Glu 65	Trp	Met	Gİy	Tyr	Ile 70	Ser	Tyr	Asp	Gly	Thr 75	Asn	Asn	Tyr	Lys	Pro 80	
Ser	Leu	Lys	Asp	Arq 65	Ile	Thr	lle	Ser	Arg 90	Asp	Thr	Ser	Lys	Asn 95	Gln	
Phe	Ser	Leu	Lys 100	Leu	Ser	Ser	Val	Thr 105	Ala	Ala	Asp	Thr	Ala 110	Val	Tyr	
Tyr	Cys	Ala 115	Arç	Tyr	Gly	Ąrg	Va 1 120	Phe	Fhe	qeA	Tyr	Trp 125	Gly	Gln	Gly	

<210> 78 <211> 445 <212> DNA <213> Homo sapiens

<400> 78

cagtottgcg cacggcggtg qtactlleac aactcagaca acatggagaa ctgtcggtaa 60

ggaccatagg acagagtoca ogtogangto otcaçocogg gtoctgacca ottoggaago 120 ctctgggaca gggagtggac gtgacagaga ccaatgaggt agtggccacc aataaatacc 180 ttgacctatg cogtogggg tocottocct gacctoacct accocatata gtogatgotg 240 ccatggttat tgatguitgg gagggagtto ctagottagl ggtatagtgc actgtgcagg 300 ttettggtea agagggaett egaetegaga eactggegae geetgtgaeg teacataatg 360 acacgotota tgccatocca gaagaaactg atgaccoogg tocottygga ccagtggcag 420 aggagtedae teacetagga gaege <210> 79 <211> 117 <212> PRT <213> Homo sapiens <400> 79 Gin Val Gin Leu Gin Giu Ser Gly Pro Gly Leu Var Lys Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val Ser Cly Tyr Ser Ile Thr Gly Gly Tyr Leu Trp Asn Trp Ilc Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Ile Gly Tyr Ile Ser Tyr Asp Gly Thr Asn Asn Tyr Lys Pro Ser Leu Lys Asp Arg Val Thr Ile Ser Arg Asp Thr Ser Lys Asn Gln Phe Ser Leu Lys Leu Ser Ser val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Ala Arg Tyr Gly Arg Val Phe Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 <210> 80 <211> 445 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (22) .. (426) <400> 80 gleagaacge gigeegeeae e aig aan gig tig agt elg tig tae ete tig Met Lys Val Lou Ser Leu Leu Tyr Leu Leu 99 aca god att bot ggt atc otg tot dag gtg dag ott dag gag tog ggd Thr Ala Ile Pro Gly Ilc Lcu Ser Gln Val Gln Leu Gln Glu Ser Gly coa gua ctg gtg aag oot tog gag aco otg too oto aco tgc act gto

Pro Gly Leu Val Lys Pro Ser Glu Thr Lou Ser Leu Thr Cys Thr Val

tct Ser	ggt Gly	tac Tyr 45	tcc Ser	atc Ile	acc Thr	ggt Gly	ggt Gly 50	tat Tyr	tta Leu	tgg Trp	aac Asn	tgg Trp 55	ata Ile	Arg Cgg	cag Gln	195
ecc Pro	cca Pro 60	ggg Gly	ràs 593	gga Cly	ctg Leu	gag Glu 65	tgg Trp	atc Ile	G1y ggg	tat Tyr	atc Ilc 70	agc Ser	tac Tyr	gac Asp	ggt Gly	243
acc Thr 75	aat Asn	aaç Asn	tac Tyr	aaa Lys	ccc Pro 80	tcc Ser	ctc Leu	Lys	gat Asp	cga Arg 85	gtc Val	acc Thr	ata Ile	tca Ser	cgt Arg 90	291
									aag Lys 100							339
gcg	gac Asp	act Thr	gca Ala 110	Val	tat Tyr	tac Tyr	tgt Cys	gcg Ala 115	aga Arg	tac Tyr	ggt Gly	agg Arg	gtc Val 120	ttc Phe	ttt Phe	387
									acc Thr				ggt	gagt	gga	436
toci	ictgo	-g														445
)> 81 l> 13							٠.								
	2> PI 3> Ho	RT	sapi	ens												
<213		e omo	sapi	ens				٠	. •						•	
<213	3> Ho 0> 81	RT omo :	, .		.Leu	Leu	Туг	Leu	Leu 10	Thr	Ala	Ile	Pro	Gly 15	Ţle	
<213 <400 Met 1	3> Ho 0> 81 Lys	RT omo s L Val	Leu	Ser 5										15		·
<213 <400 Met 1 Leu	3> Ho D> 81 Lys Ser	RT como s l Val Gln	Leu Val	Ser 5 Gln	Leu	Gln	Glu	Ser 25	10	Pro	Gly	Leu	Val 30	15 Lys	Pro	
<213 <400 Met 1 Leu Ser	3> Ho D> 81 Lys Ser Glu	Val Gln Thr 35	Leu Val 20 Leu	Ser 5 Gln Ser	Leu Leu	Gln	Glu Cys 40	Ser 25 Thr	Gly	Pro	Gly	Leu Tyr 45	Val 30 Ser	Lys	Pro Thr	
<400 Met 1 Leu Ser	3> Ho D> 81 Lys Ser Glu Gly 50	Val Gln Thr 35	Leu Val 20 Leu Leu	Ser 5 Gln Ser	Leu Leu Asn	Gln Thr Trp 55	Glu Cys 40	Ser 25 Thr	10 Gly Val	Pro Ser Fro	Gly Gly Pro 60	Leu Tyr 45 Gly	Val 30 Ser Lys	15 Lys Ile Gly	Pro Thr Leu	
<213 <400 Met 1 Leu Ser Gly Glu 65	Ser Glu Gly Trp	Val Gln Thr 35 Tyr	Leu Val 20 Leu Leu	Ser 5 Gln Ser Trp	Leu Leu Asn	Gln Thr Trp 55 Ser	Glu Cys 40 Ile	Ser 25 Thr Arg	10 Gly Val Gln	Pro Ser Fro Thr	Gly Gly Pro 60 Asn	Leu Tyr 45 Gly	Val 30 Ser Lys Tyr	Lys Ile Gly Lys	Pro Thr Leu Pro 80	
<213 <400 Met 1 Leu Ser Gly Glu 65 Ser	Ser Glu Gly 50 Trp	Val Gln Thr 35 Tyr Ile	Leu Val 20 Leu Leu Gly	Ser 5 Gln Ser Trp Tyr Arg 85	Leu Leu Asn Tie 70 Val	Gln Thr Trp 55 Ser	Glu Cys 40 Ile Tyr	Ser 25 Thr Arq Asp	10 Gly Val Gln Gly Arg	Pro Ser Pro Thr 75	Gly Gly Pro 60 Asn	Leu Tyr 45 Gly Asn	Val 30 Ser Lys Tyr	Lys Lys Lys Asn 95	Pro Thr Leu Pro 80 Gln	
<213 <400 Met 1 Leu Ser Gly Glu 65 Ser Fhe	Ser Glu Gly 50 Trp Leu Ser	Thr 35 Tyr Ile Lys Leu	Leu Val 20 Leu Leu Gly Asp	Ser 5 Gln Ser Trp Tyr Arg 85 Lou	Leu Leu Asn Tie 70 Val	Gln Thr Trp 55 Ser Thr	Glu Cys 40 Ile Tyr Ile Val	Ser 25 Thr Arq Asp Ser Thr 105	10 Gly Val Gln Gly Arg 90	Pro Ser Fro Thr 75 Asp	Gly Gly Pro 60 Asn Thr	Leu Tyr 45 Gly Asn Ser	Val 30 Ser Lys Tyr Lys Ala 110	Lys Ile Gly Lys Asn 95 Val	Pro Thr Leu Pro 80 Cln	

```
<210> 82
<211> 445
<212> DNA
<213> Homo sapiens
<400> 82
caqtettgeg caeggeggtg gtacttteae aacteagaea acatggagaa etgteggtaa 60
qqaccataqq acagagtcca cgtcgaagtc ctcagcccgg gtcctgacca cttcggaagc 120
ctctgggaca qqqaqtygac gtgacagaga ccaatgaggt agtcgccacc aataaatacc 180
ttgacctatg ccgtcqqqqq tcccttcccl gacctcacct agcccatata gtcgatgctg 240
ccatagettat tgatgtttqq qaqqqaqttc ctagctcagt ggtatagtgc actgtgcagg 300
ttottggtca agagggactt cgactcgaga cactggcgac gcctgtgacg tcacataatq 360
acangninia igocatocca gaagaaacig aigaccccgg toccitiggga ccagiiggcag 420
aggagtocac toacctagga gacgo
<210> 83
<211> 117
<212> PRT
<213> Homo sapiens
<400> 83
Gin Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Glu
Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Tyr Ser Ile Ser Gly Gly
Tyr Leu Trp Asn Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp
Ile Gly Tyr Ile Ser Tyr Asp Gly Thr Asn Asn Tyr Lys Prc Ser Leu
Lys Asp Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln Phe Ser
Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Tyr Gly Arg Val Phe Phe Asp Tyr Trp Gly Gln Gly Thr Leu
            100
                                105
Val Thr Val Ser Ser
        115
<210> 84
<211> 445
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (22)..(426)
```

gtcaqaacgc glgccgccac c atg aaa gtg ttg agt ctg ttg tac ctc ttg

Met Lys Val Leu Ser Leu Leu Tyr Leu Leu

<400> 84

aca Thr	gcc Ala	att Ile	cct Pro	ggt Gly 15	atc Ile	ctg Leu	tct Ser	cag Gln	gtg Val 20	cag Gln	ctt Leu	cag Gln	gag Glu	t.cg Ser 25	eră ààc	. 99
cca Pro	gga Gly	cty Leu	gtg Val 30	aag Lys	cct Pro	tcg Ser	gag Glu	acc Thr 35	ctg Leu	tcc Ser	ctc Leu	acc Thr	lgc Cys 40	act Thr	gtc Val	147
tct Ser	ggt Gly	tac Tyr 45	tcc Ser	ațc Ile	agc Ser	ggt Gly	qqt Gly 50	tat Tyr	tta Leu	tgg Trp	aac Asn	tgg Trp 55	ata Ile	cgg Arg	cag Gln	195
ccc Pro	cca Pro 60	C1 Å ddd	aag Lys	Gly gga	ctg Leu	gag Glu 65	tqq Trp	atc Tle	Gly Gly	tat Tyr	atc Ile 70	agc Ser	tac. Tyr	gac Asp	ggt Gly	243
acc Thr 75	aat Aen	aac Asn	tac Tyr	aaa Lys	CCC Fro	ccc Ser	ctc Leu	aag Lys	gat Asp	cga Arg 85	gtc Val	acc Thr	ata Ile	tca Ser	gtg Val 90	291
gac Asp	acg Thr	tcc Ser	aag Lys	aac Asn 95	eyr	ttc Phe	lcc Ser	ctg Leu	aag Lys 100	ctg Leu	agc Scř	cct Ser	gtg Val	acc Thr 105	gct Ala	339
Ala Geg	gac Asp	act Thr	gca Ala 110	gtg Val	tat Tyr	tac Tyr	lgl Cys	gcg Ala 115	aga Arg	tac Tyr	ggt [°] Gly	agg Arg	gtc Val 120	ttc Phe	ttt Phe	387
gac Asp	tac Tyr	tgg Trp 125	ggc Gly	cag Gln	gga Gly	acc Thr	ctg Leu 130	gtc Val	acc Thr	gtc Val	tcc Ser	lca Ser	ggt	gagto	gga	436
tect	ctg	∍g `		•	-											445
<21:	0> 95 L> 13 2> PF 3> Ho	35 RT		, .			.*									· .
			· cp··	-11.3												
	Lys		Leu	Ser 5	Leu	Leu	Tyr	Leu	Leu 10	Thr	Ala	Ile	Fro	Gly 15	Ile	
Tien	Ser	Gln	Val 20	Gln	Leu	Gln	Gļu	Ser 25	Gly	Prc	Gly	Leu	Val. 30	Lys	Pro	
Ser	Glu	Thr 35	Leu	Ser	Leu	Thr	Суз 40	Thr	Val	Ser	Gly	Tyr 45	Ser	Ilc	Ser	
Gly	Gly 50	Tyr	Tieu	Trp	Asn	Trp 55		Arg	Gju	Pro	Pro 60	G1 y	Lys	Gly	Leu	
Glu 6S		Ilc	Glγ	Tyr	Ile 70	Ser	Tyr	Λsp	Gly	Thr 75	Asn	Asr.	Tyr	Lys	Pro 80	
Ser	Leu	Lys	Asp	Arg	Val	Thr	Ile	Ser	Val	Asp	Thr	Ser	Lys	Asn 95	Gln	

```
The Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr
                                105
Tyr Cys Ala Arg Tyr Gly Arg Val Phe Phe Asp Tyr Trp Gly Gln Gly
                                                 125
                            120
Thr Leu Val Thr Val Ser Ser
    130
<210> 86
<211> 445
<212> DNA
<213> Homo sapiens
<400> 86
cagnettgeg caeggeggtg gractiteae aachoagada acatggagaa etgteggtaa 60
ggaccatagg acagagteca egtegaagte eteageoogg gtootgacca etteggaage 120
ctctgggaca gggagtggac gtgacagaga ccaatgaggt agtcgccacc aataaatacc 180
ttgacctatg cogtogggg teeetteet gaccteacet ageceatata gtcgatgetg 240
ccatggttat tgatgtttgg gagggagttc ctagctcagt ggtatagtca cctgtgcagg 300
ttettggtea agagggaett egaetegaga eaetggegae geetgtgaeg teaeataatg 360
acacgeteta tgecatecca gaagaaactg atgacceegg tecettggga ecagtggeag 420
aggagtocac tcacctagga gacgo
                                                                   115
<210> 87
<211> 18
<212> DNA
<213> Artificial sequence
<223> Description de la Artiticial sequence:
     Oligonucleotide
<400> 97
                                                                   18
gtcagaacgc gtgccgcc
<210> 88
<211> 32
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
     Oligonucleotide
<400> 88
                                                                   32
accatgaagt tgoctgttag gotgttggtg ct
<210> 89
<211> 32
<212> DNA
```

<213> Artificial sequence

Oligonucleotide

<223> Description of artificial sequence:

<220>

<400>	> \$9	
gatgt	ttolgg titcotgott coagoagiga tg	32
<210>	•	
<211>		`
<212>	•	, · .
<213>	> Artificial sequence	-
<220>	•	•
<223>	> Description of artificial sequence:	
	Oligonucleotide	3.
		•
<400>	·	,
ttgtg	gatgac teagteteca etetecetge de	32
٠.		• • •
<210>	·	
<211>		
<212>		• •
<213>	> Artificial sequence	
	•	
<220>	>	•
<223>	> Description of artificial sequence:	•
	Oligonucleotide	
<400>	> 91	
gtcac	eccetg gagageegge elecatetee tg	32
•		
<210>	> 92	•
<211>		•
<212>	> DNA	
<213>	> Artificial sequence	
<220>	>	
<223>	> Description of artificial sequence:	
	Oligonucleotide	
<400>	> 92	•
caggt	totagt cagaccatta tacataglaa tg	32
<210>	> 93	
<211>		•
<212>	·	
	> Artificial sequence	
<220>	•	•
	> Description of artificial sequence:	
	Oligonucleotide	
	* 1-3	
<400>	> 93	•
	caccta titggualgg taccigcaga	30
92000	Same and and an accidental	
<210>	> 94	•
<211>		: .
<211>		
	r war	

<213> Artificial sequence

```
<220>
<223> Description of artificial sequence:
      Oligonucleotide
<400> 94
ggcaacitca tggtggcqgc acgcgttctg ac
                                                                    32
<210> 95
<211> 32
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
      Oligonuclectide
<400> 95
                                                                    32
gaaaccagaa catcagcacc aacagcctaa ca
<210> 96
<211> 32
<212> DNA
<213> Artificial sequence
<223> Description of artificial sequence:
   Oligonucleotide
<4'00> 96
                                                                   32
ctgagtcatc acaacatcac tgctggaagc ag
<210> 97
<211> 32
<212> DNA
<213> Artificial sequence
<223> Description of artificial sequence:
    Oligonucleotide
<400> 97
                                                                    32
totocagggg tgacgggcag ggagaglgga ga
<210> 98
<211> 32
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
      Oligonucleotide
                                                                   32
tetgaetaga cetgeaggag atggaggeeg ge
```

<210> 99

```
<211> 31
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> Description of artificial sequence:
       Oligonuclectide
 <400> 99
                                                                    31
 asataqqtqt ttccattacl atgtacaatg c
 <210> 100
 <211> 32
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> Description of artificial sequence:
     Oligonucleotide
 <400> 100
 cagggeagte tecacagete etgatetata aa
                                                                   32
 <210> 101
 <211> 32
 <212> DNA
 <213> Artificial sequence
<220>
<223> Description of artificial sequence:
      Oligonucleotide
<100> 101
gittetaate ggetttatgg ggteeetgae ag
                                                                   32
<210> 102
<211> 32
<212> DNA
<213> Artificial sequence
<223> Description of artificial sequence:
      Oligonucleotide
<400> 102
                                                                   32
gttcagtggc agtggatcag gcacagattt ta
<210> 103
<211> 32
<212> DNA
<213> Artificial sequence
<223> Description of artificial sequence:
      Oligonucleotide
<400> 103
```

<210> 108 <211> 21 <212> DNA

<220>

<213> Artificial sequence

<223>	Description of artificial soligonucleotide	sequence:		
<400>	108			
	tggta cctgcagaag c		· · · · · · · · · · · · · · · · · · ·	21
			•	
<210>	109			
<211>	32	•		
<212>	DNA		•	
<213>	Artificial sequence		•	
			. 00	
<220>		•		
<223>	Description of artificial soligonucleotide	sequence:		
<400>	109		•	
	good goottotgoa ggtaccattg	Ca		32
agace.	geote ggetteligen ggenetatty			
<210>	110	•	•	
<211>				
<212>			•	
	Artificial sequence			
<220>	•			
<223>	Description of artificial s	equence:	-	•
	Oligonucleotide	•		
<400>	110			
cgatt	agaaa ctttatagat caggagctgt	aa		32
			•	
	· · · · · · · · · · · · · · · · · · ·			
<210>				
<211>		* 2		
<212>				
<213>	Artificial sequence	-		
	•	•	•	
<220> <223>	Description of artificial s Oligonucleotide	equence:		•
<400>	-			22
тдссас	ctgaa cotgloaggg accocataaa	gc		32
<210>	. 112	•	• •	
<211>		:	• ,	
<212>				
	Artificial sequence	•		
-4134	urcitionar seducines			
<220>	<u>.</u>			
	Description of artificial s	equence:		
	Oligonucleotide			
	,,			
<400>	112			
	cagi glaaaatotg tgootgatoo	ac ·		32
			•	

<210> 113 <211> 32

	DNA		
<213>	Artificial sequence		
<220>			
<223>	Description of artificial sequence:	•	
	Oligonucleotide		
<400>			. 32
taaac	ccaa catecteage etecactety et		52
	•		
<210>	114	. :	
<211>			
<212>		•	
	Artificial sequence		
<220>		9	
<223>	Description of artificial sequence:		
	Oligonucleotide		
		. •	
<400>	111	•	
tecace	gaac atgtgaacct tgaaagcagt aa	, 8	32
		•	
	•		
<210>			
<211><212>		•	
			-
<213>	Artificial sequence		
<220>		•	
	Description of artificial sequence:		
	Oligonucleotide		
•			
<400>	115	•	
		· ·	
tttgat	ttcc accttqgtcc cttggccgaa c	•	31
tttgat	ttcc accttqgtcc cttggccgaa c	· .	31
			31
<210>	116		31
<210> <211>	116 19		31
<210><211><211><212>	116 19 CNA		31
<210><211><211><212>	116 19		31
<210><211><212><212><213>	116 19 CNA		31
<210> <211> <212> <213>	116 19 ONA Artificial sequence		31
<210> <211> <212> <213>	116 19 DNA Artificial sequence Description of artificial sequence:		
<210> <211> <212> <213>	116 19 ONA Artificial sequence		31
<210> <211> <212> <213>	116 19 (NA Artificial sequence Description of artificial sequence: Oligonucleotide		31
<210><211><211><212><213><223><400>	116 19 CNA Artificial sequence Description of artificial sequence: Cligonucleotide		31
<210><211><211><212><213><223><400>	116 19 (NA Artificial sequence Description of artificial sequence: Oligonucleotide		
<210><211><211><212><213><223><400>	116 19 CNA Artificial sequence Description of artificial sequence: Cligonucleotide		
<210><211><212><213><223><400> <gcage< th=""><th>116 19 0NA Artificial sequence Description of artificial sequence: Oligonucleotide 116 ggat ccactcacg</th><th></th><th></th></gcage<>	116 19 0NA Artificial sequence Description of artificial sequence: Oligonucleotide 116 ggat ccactcacg		
<210><211><212><213><223><223><400><223><4100><211><211>	116 19 0NA Artificial sequence Description of artificial sequence: Oligonucleotide 116 ggat ccactcacg		
<210><211><212><213><223><223><223><400><223><4100><211><211><211><212>	116 19 CNA Artificial sequence Description of artificial sequence: Cligonucleotide 116 ggat ccactcacg 117 18 DNA		
<210><211><212><213><223><223><223><400><223><4100><211><211><211><212>	116 19 0NA Artificial sequence Description of artificial sequence: Oligonucleotide 116 ggat ccactcacg		
<210><211><211><212><213><220><223><223><400><221><211><211><211><211><211><211><2	116 19 CNA Artificial sequence Description of artificial sequence: Cligonucleotide 116 ggat ccactcacg 117 18 DNA		
<210><211><212><213><222><213><220><223><400><221><211><211><211><212><213><	116 19 (NA Artificial sequence Description of artificial sequence: Oligonucleotide 116 ggat ccactcacg 117 18 DNA Artificial sequence		
<210><211><212><213><222><213><220><223><400><221><211><211><211><212><213><	116 19 (NA Artificial sequence Description of artificial sequence: Oligonucleotide 116 ggat ccactcacg 117 18 DNA Artificial sequence Description of artificial sequence:		
<210><211><212><213><222><213><220><223><400><221><211><211><211><212><213><	116 19 (NA Artificial sequence Description of artificial sequence: Oligonucleotide 116 ggat ccactcacg 117 18 DNA Artificial sequence		

gtcagaacgc gtgccgcc

<210><211>			
<211>			
	Artificial sequence		
<220>			
<223>	Description of artificial sequence:		
	Oligonucleotide	•	
· - 400>	110		
<400>	yaaag tgttgagtet gttgtacete ttga		3
accac	'		٦
		•	
<210>		•	
<211>		.	
<212>		-	
<213>	Artificial sequence		
<220>		,	
	Description of artificial sequence:	•	
1000	Oligonucleotide		
<400>		•	
cadeca	attee tggtateetg teteagglge agel	•	, 3·
<210>	120.		
<211>			
<212>		•	
<213>	Artificial sequence		
<220>			
	Description of artificial sequence:		
•	Oligonucleotide		
<400>	120		
	ngteg gguecaggae tggtgzagee tteg		3
<210>	·		
<211> <212>			
	Artificial sequence		
	THE CITY OF THE COURT OF THE CO	•	
<220>			
<223>	Description of artificial sequence:		,
	Oligonucleotide		
		•	
<400>			٠.
gagaco	ctgt cocteacety castgtetet ggt		3.
<210>	122		
<211>			
<212>	DNA		
<213>	Artificial sequence		
<220>	manuscript of the section of the	•	
<1.4.3>	Description of artificial sequence:		

U

Oligonucleotide

<400> 122	
Lactocatca coggtogtta tttatggaac tgg	33
· ·	
<210> 123	
<211> 33	
<212> DNA	•
<213> Artificial sequence	
•	•
<220>	
<223> Description of artificial sequence	e:
Oligonucleotide	•
<400> 123	
atacggcage ccccagggaa gggactggag tgg	33
·	
<210> 124	•
<211> 33	
<212> DNA	• ,
<213> Artificial sequence	
	•
<220>	•
<223> Description of artificial sequence	e:
Oligonucleotide	
	• • •
<400> 124	
atggggtata tcagctacga cggtacchnt aac	. 33
:	
*	
<210> 125	·
<211> 34	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Description of artificial sequence	:e:
Oligonucleotide	
<400> 125-	
teaacacttt catggtggcg geacgcgtte tgac	34
	•
<210> 126	
<211> 34	•
<212> DNA	· •
<213> Artificial sequence	
	·
<220>	
<223> Description of artificial sequence	e:
Oligonucleotide	·5.1 ·
<400> 126	
ataccaccaa todototona dadotacaac adac	34
ataccaççaa tggctgtcaa gaggtacaac agac	34
ataccaççaa togotottona gaggtacaac agac	
	. 34
<210> 127	34
	34

```
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
      Oligonucleotide
<400> 127
                                                                    34
tgggcccqac tcctqaaqct gcacctgaga cagg
<210> 128
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
      Oligonucleotide
<400> 128
tgagggacag ggtctccgaa ggcttcacca gtcc
                                                                    34
<210> 129
<211> 34 -
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
      Oligonucleotide
<400> 129
                                                                   34
ccaccggtga tggagtaacc agagacagtg cagg
<210> 130
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
    Oligonuclectide
<400> 130
                                                                   34
contgggggn tgccgtatco agttocataa ataa
<210> 131
<211> 32
<212> DNA
<213> Artificial sequence
<220>
<223> Description of artificial sequence:
      Oligonucleotide
```

32

<400> 131

tagotgatat accocatoca otocagtoco tl

<210	> 152			
<211	> 16			
<212	> DNA			
	> Artificial sequence			
1213 .	> Artificial Sequence		•	
			•	
<220:				
<223	> Description of artificial seq	uence:		
	Oligonucleotide	•		
	O. Igomiciedelae		•	
			•	
<400	> 132		•	•
actai	ttggta ccgtcg	÷	•	16
•		•		
		•		
	> 133			
<211:	> 21	·		
<21.23	> DNA	• 4		
	> Artificial sequence			
	> Attititual Sequence		•	
			•	
<220:				
<2233	> Description of artificial seq	ucnce:		
	Oligonucleotide		•	
	On a going a core and			
<4000	> 133			•
Lacq	acggla ccaataacta c			21
-	:			
	•	•	,	
			A Company	•
	> 134			
<211:	> 32			
<212	> DNA		•	
	> Artificial sequence .			
1220	ALCELIQUE OCCUPATION .			•
<220:				
<223	Description of artificial seq	uence:		
	Oligonucleotide			
<4002	134			
				. 22
aaaco	octodo logaggatog aatoaccata to			32
	•			
		•		
· <210°	> 135		*	
				•
<211:	- -	•		
<212				
<213	> Artificial sequence	•	•	
<220>				•
<22.32	> Description of artificial seq	uence:	•	
	Oligonucleotide .			•
•				
<400	. 135		•	
		•		32
augus	pacang topaagaabo agttotopot ga			J.
			•	
<210:	> 136			
<211:				•
<212>				
<213:	· Artificial sequence			
	,	.,	•	
<2203	•	. ,		
	Description of artificial seq	uence		
1443		GE1106	•	
	Oligonucleotide			

)> 136		32
aget	gagete tytyaceyet geggaeacty ca		•••
)> 137		
	1> 32		•
	2> DNA		
<21.	3> Artificial sequence	· · · · · · · · · · · · · · · · · · ·	
<220			
	3> Description of artificial sequence:	·	*
	Oligonucleotide	•	
	122 your		
<400)> 137		
gtgi	attact gtgcgagata çqqtagggtc tt		32
			·
)> 138		
	.> 32	•	
	2> DNA		
<21.	<pre>?> Artificial sequence</pre>		
<220			
	Description of artificial sequence:		
122.	Oligonucleotide		
٠	2	• •	
<400	2> 138	• .	
	gactac tggggccagg gaaccctggt ca		32
	0> 139		
	1> 30	•	
	2> DNA 3> Artificial sequence	•	
\Z1.	ov Alciliciai sequence	•	
<220	>	•	
	> Description of artificial sequence:	•	
	Oligonucleotide	•	
		•	
)> 139		2.0
ccgt	ctecte angiganing atectetors		30
2017)> 140		
	> 32	• .	
	> DNA		
	> Artificial sequence		
-	•		
<220			•
<223	3> Description of artificial sequence:	• • •	
	Oligonuclectide		
)> 140		32
aggg	gagggtt tgtagttatt ggtaccgtcg ta		JE
•		•	
231)> 141		
	l> 32	·	
	2> DNA		
	3> Artificial sequence		
	-		

<223>	Description of artificial sequence: Oligonucleotide			
<400> acgtg	141 tracg tgatatggtg attrgatert tg			32
	*			
<210> <211>	32			•
<212> <213>	DNA Artificial sequence			
<220>				
<223>	Description of artificial sequence: Cligonucleotide			
<400>	112			
	teage tteagggaga actggttett gg			32
<210>	1.43			
<211>		. (• •	
<212>	DNA			
<213>	Artificial sequence			
<220>		•• *		
	Description of artificial sequence: Oligonucleotide			
<100>	143		•	
	ataca ctgcagtgtc cgcaguggtc ac			32
_				
		•		•
<210><211>				
<212>			•	
	Artificial sequence	. "		
<220>	Description of artificial sequence:	•		
	Oligonucleotide		•	
<400>	144			
agtag	teaaa gaagaeeeta eegtateteg ea			3.2
			·	
<210>	145			
<211>		-	•	
<21.2>				
<213>	Artificial sequence			
<220>				
	Description of artificial sequence: Oligonucleotide	:		
-100-	1.46	•	1	•
<400>	145 gagac gglgaccagg gttccctggc ccc		:	33

<210><211><211><212><213>	18 DNA	ficial sequ	cnce		· ·			
		ription of onuclectide	artificial	sequen	ce:			
<400>	146						•	•
cgcaga	ıçgat	ccactcac					4.	18
	•							
<210>	147		•				•	
<211>				• • •				
<212>			•		-		٠.	
<213>	Homo	sapiens :	٠.			•		•
<100>	147	·						. `
		catcagoogt	ggttatttat	g	-			. 31
•								
<210>	140			•				
<211>								
<212>		•						
		sapiens			•			•
<400>	140		•		·	•		
		caccoctoat	ggagtaacca	a				31
			3305					
					•			•
<210> <211>		•	•	•			• •	
<212>								
<213>	Ното	sapiens				•		•
					•			•
<400>		tggatcgggt	atatçageta	٠.	٠.			31
,,,,,,,	9949	-59559					•	
				•		•		
<210>							•	
<211>				•				
		sapiens	•	•			*	
			-		•			
<400>							•	21
gtaget	gata	taccogator	actccagtcc	C		٠.	•	31
•				•	٠.			
<210>					•			
<211>		•			•		•	
<212>		sapiens						
		Saprans			*			
<100>		•						
recete	aagg	atcgagtcac	catatcacgt	g	•		•	31
<210>	152.				•			
(211>		. :	-			,	•	

<213> Homo sapiens		
<400> 152 cacgtgatat ggtgactcga	a teettgaggg a	31
<210> 153 <211> 39 <212> UNA <213> Homo sapiens		
<400> 153 gatcgagtca ccatatcagt	ggacacytcc aagaaccag	39
<210> 154 <211> 39 <212> DNA <213> Homo sapiens		
<100> 154	cigatatggt gactcgatc	. 39
<210> 155 <211> 31 <212> DNA <213> Homo sapiens		
<400> 155 gcttccagca gtgatattgt	gatgactcag t	31
<210> 156 <211> 31 <212> DNA <213> Homo sapiens		
<400> 156 actgagtcat cadaatatca	. ctgctggaag c	31