Problem 1.40. Recall that string x is a **prefix** of string y if a string z exists where xz = y, and that x is a proper prefix of y if in addition $x \neq y$. In each of the following parts, we define an operation on a language A. Show that the class of regular languages is closed under that operation.

Part a. $NOPREFIX(A) = \{w \in A \mid no \ proper \ prefix \ of \ w \ is \ a \ member \ of \ A\}.$

Proof Idea. Let the regular expression R = 0*10* describe the language A.

$$A = \{1, 01, 10, 010, 001, \dots\}$$

 $NOPREFIX(A) = \{1, 01, 001, \dots\}$

State diagrams of finite automata that recognize A (a) and NOPREFIX(A) (b). Take the finite automaton that recognizes A, and remove all transitions from accept states to any other state to construct the finite automaton to recognize NOPREFIX(A).

Proof. The proof is by construction. Let $N=(Q,\Sigma,\delta,q_0,F)$ be the DFA that recognizes A. Construct the NFA $N'=(Q',\Sigma,\delta',q_0',F')$ to recognize NOPREFIX(A):

1. Q' = Q

2. $q'_0 = q_0$

3. F' = F

4. Define $\delta'(q, a)$ so that for any $q \in Q'$ and any $a \in \Sigma$:

$$\delta'(q, a) = \begin{cases} \{\delta(q, a)\} & q \notin F \\ \phi & q \in F \end{cases}$$

Part b. $NOEXTEND(A) = \{w \in A \mid w \text{ is not the proper prefix of any string in } A\}.$

Proof Idea. Let $A = \{aa, aab\}$, then $NOEXTEND(A) = \{aab\}$

State diagrams of finite automata that recognize A (a) and NOEXTEND(A) (b). Take the finite automaton that recognizes A, and change any accept state q into non-accept state, if there exists a sequence of transitions from q to any accept state (including q itself).

Proof. The proof is by construction. Let $N = (Q, \Sigma, \delta, q_0, F)$ be the DFA that recognizes A. Construct the DFA $N' = (Q, \Sigma, \delta, q_0, F')$ to recognize NOEXTEND(A):

- 1. N' has the same states Q, start state q_0 and δ as N.
- 2. $F' = \{q \mid q \in F \text{ and there is no sequence of transitions from } q \text{ to any accept state } \}$