Olympic Birds Química

Introdução à Química Orgânica

Autor: Anna Késsya

História da Química Orgânica

A história da Química Orgânica começou séculos atrás, com a primeira citação feita pelo químico sueco **Torbern Olof Bergman**. Desde então, diversas teorias foram desenvolvidas para melhor definir essa área, até a Química Orgânica evoluir para o que conhecemos atualmente. A seguir, um resumo dessa trajetória:

Bergman (Século XVIII)

Bergman acreditava que os compostos orgânicos incluíam substâncias provenientes de organismos vivos, enquanto os compostos inorgânicos eram substâncias do reino mineral.

Jöns Jakob Berzelius (1803)

Berzelius propôs a teoria da força vital (vitalismo), sugerindo que todos os compostos de carbono só podiam ser formados em organismos vivos. Essa teoria predominou por aproximadamente 20 anos.

Friedrich Wöhler (1828)

Wöhler realizou a **síntese da ureia**, transformando um composto inorgânico (cianato de amônio) em um composto orgânico (ureia). Essa descoberta foi um marco importante, pois refutou a teoria da força vital.

Figure 1: Síntese da ureia por Friedrich Wöhler.

Kekulé (1858)

Kekulé fez três importantes postulados para o desenvolvimento da Química Orgânica:

1. **Tetravalência do carbono**: O carbono pode formar quatro ligações químicas, que podem ser simples, duplas ou triplas.

Figure 2: Representação da tetravalência do carbono.

2. Valências livres: As quatro valências do carbono são iguais entre si.

Valência: Refere-se à presença de quatro elétrons livres na camada de valência de um átomo, disponíveis para formar ligações.

Figure 3: Valências do carbono.

3. Formação de cadeias carbônicas: O carbono pode se ligar a outros átomos de carbono, formando cadeias.

Van't Hoff e Le Bel (1874)

Van't Hoff e Le Bel são conhecidos por iniciarem a **estereoquímica**. Eles contribuíram para o estudo das estruturas espaciais das moléculas, como a **geometria tetraédrica** do metano (CH₄). A geometria espacial é crucial para entender a diversidade estrutural das moléculas, explicando, por exemplo, que o clorometano (CH₃Cl) possui uma única estrutura possível, enquanto o diclorometano (ClCH=CHCl) pode existir em duas formas isoméricas.

Figure 4: Estereoquímica.

Nas duas figuras, representam-se o mesmo composto, já que uma rotação simples pode confundir essa afirmação de compostos iguais. Isso destaca a importância do estudo da geometria espacial na Química Orgânica.

Figure 5: Dicloroeteno cis e trans.

Na figura, estão representados dois compostos diferentes devido à ligação dupla não ser rotacional. Esses compostos têm propriedades diferentes, sendo o *cis-dicloroeteno* polar e o *trans-dicloroeteno* apolar.

A Química Orgânica Atual

A Química Orgânica moderna, também conhecida como a **química do carbono**, estuda os compostos que contêm carbono em combinação com outros elementos. Entre os principais elementos envolvidos estão:

- Carbono (C)
- Hidrogênio (H)
- Oxigênio (O)
- Nitrogênio (N)
- Fósforo (P)
- Enxofre (S)
- Halogênios (X)

Esses elementos formam a base da Química Orgânica, amplamente referida pela sigla **CHONPSX**, em que X representa os elementos pertencentes à família dos halogênios.

Representação Linear de Compostos Orgânicos

Existem inúmeras maneiras de representar compostos orgânicos, seja no plano, no espaço, com linhas ou com elementos químicos. A representação com linhas, além de ser muito usual, facilita a representação de grandes cadeias carbônicas. Nessa representação, cada vértice representa um carbono, e as linhas representam as ligações, que podem ser σ ou π . Além disso, os hidrogênios estão implícitos. Para contá-los, basta considerar quantas ligações o carbono está fazendo e completar com hidrogênios até atingir quatro ligações. Veja os exemplos a seguir:

Exemplo 1

Figure 6: Propano

Neste exemplo, cada vértice representa três carbonos, e completando as ligações que faltam com hidrogênios, temos um total de oito hidrogênios.

Exemplo 2

Figure 7: Trans-Buteno

Aqui, é perceptível que há uma ligação dupla entre dois carbonos. Ao completar com hidrogênios, considera-se também a ligação dupla.

Exemplo 3

Figure 8: Propanona.

Este exemplo demonstra esse tipo de representação com a inclusão do oxigênio, muito comum na Química Orgânica. O composto representado é a propanona, também conhecida popularmente como acetona.

Exercícios Complementares

01) Qual a fórmula molecular correta da molécula abaixo?

- a) C_5H_{14}
- b) C_5H_{12}
- c) C_4H_{12}
- d) C_6H_{14}
- **02)** Marque a opção que contém a fórmula molecular correta da molécula popularmente conhecida como NanoKid.

- a) $C_{40}H_{44}O_2$
- b) $C_{39}H_{41}O_2$
- c) $C_{38}H_{40}O_2$
- d) $C_{39}H_{42}O_2$
- $\bf 03)$ Obtido principalmente da cana-de-açúcar, o etanol (CH $_3$ CH $_2$ OH) é um composto orgânico da família dos alcoóis. Calcule a porcentagem em massa aproximada do carbono nesse composto.

Dados: MM(C)=12 g/mol; MM(H)=1 g/mol; MM(O)=16 g/mol

- a) 42,8%
- b) 50,7%
- c) 52,1%
- d) 49,4%

04) (UFRGS-RS) A síntese da ureia a partir de cianato de amônio, segundo a equação abaixo representada, desenvolvida por Wöhler, em 1828, foi um marco na história da Química porque:

$$NH_4^+CNO^- \xrightarrow{\Delta} O = C \xrightarrow{NH_2} NH_2$$

Cianato de amônio Ureia (orgânica) (orgânica)

- a) Provou que o sal de amônio possui estrutura interna covalente.
- b) Provou a possibilidade de se sintetizarem compostos orgânicos a partir de inorgânicos.
- c) Demonstrou que os compostos iônicos geram substâncias moleculares quando aquecidos.
- d) Se trata do primeiro caso de equilíbrio químico homogêneo descoberto.
- e) Foi a primeira síntese realizada em laboratório.
- 05) A razão pela qual existe um número tão elevado de compostos de carbono é:
 - a) O carbono reage vigorosamente com muitos elementos.
 - b) O átomo de carbono tem uma valência variável.
 - c) Os átomos de carbono podem unir-se formando cadeias.
 - d) Os átomos de carbono formam ligações iônicas facilmente.
- **06)** (URCA 2017) A equação química abaixo representa a combustão de um dos hidrocarbonetos componentes da gasolina, identificado como X. Observe atentamente a equação e marque a opção que indica a estrutura química de X:

$$X + \frac{25}{2}O_2 \longrightarrow 8CO_2 + 9H_2O$$

- a) $H_3C-CH_2-CH_2-CH_2-CH_2-CH_3$
- b) $H_3C CH_2 CH_2 CH_2 CH_2 CH_2 CH_3$
- c) $H_3C CH = CH CH_2 CH_2 CH_2 CH_2 CH_3$
- d) $H_3C C \equiv C CH_2 CH_2 CH_2 CH_2 CH_3$
- e) $CH_3 C(CH_3)_2 CH_2 CH(CH_3)_2$
- **07)** (UFSC) Observe as estruturas orgânicas incompletas e identifique o(s) item(itens) correto(s):

- (01) Na estrutura I falta uma ligação simples entre os átomos de carbono.
- (02) Na estrutura II falta uma ligação tripla entre os átomos de carbono.
- (04) Na estrutura III faltam duas ligações simples entre os átomos de carbono e uma tripla entre os átomos de carbono e nitrogênio.
- (08) Na estrutura IV faltam duas ligações simples entre os átomos de carbono e os halogênios e uma dupla entre os átomos de carbono.
- (16) Na estrutura V falta uma ligação simples entre os átomos de carbono e uma simples entre os átomos de carbono e oxigênio.
- 08) Leia atentamente as seguintes afirmações:
 - I) O carbono é tetravalente.
 - II) Wöhler, em 1828, obteve ureia em laboratório, por meio de uma reação que abalou profundamente a teoria da força vital. E tal obtenção, ele partiu do aquecimento de cianeto de amônio.
 - III) Atualmente, a Química Orgânica estuda apenas os compostos sintetizados por seres vivos.

Marque a alternativa que possui somente as afirmações ERRADAS:

- a) I e II
- b) I
- c) II e III
- d) III
- **09)** (UEL-PR) Na fórmula $H_2C...x...CH-CH_2-C...y...N$, x e y representam, respectivamente, ligações:
 - (a) simples e dupla.
 - (b) dupla e dupla.
 - (c) tripla e simples.
 - (d) tripla e tripla.
 - (e) dupla e tripla.
- 10) (PUC-RJ) Uma forma de verificar se um composto apresenta dupla ligação carbono-carbono (C=C) é reagi-lo com soluções diluídas de permanganato de potássio (uma solução violeta), pois essas causam o seu descoramento. Assim, das possibilidades abaixo, assinale aquela que contém APENAS compostos que vão descorar uma solução diluída de permanganato de potássio.
 - (a) CH₃CH₂CH₃ e CH₃CH₂CH₂OH
 - (b) CH₃CHCH₂ e CH₃CH₂CH₂OH
 - (c) CH₃CHCH₂ e CH₃COCH₃

- (d) $\mathrm{CH_3CH_2CH_3}$ e $\mathrm{CH_3COCH_3}$
- (e) CH_3CHCH_2 e CH_2CHCH_2OH

Questão	Gabarito
1	A
2	D
3	С
4	В
5	С
6	E
7	02+04+08=14
8	С
9	Е
10	E