

TNO-rapport
TM-96-A050

titel

**Geluidbelasting veroorzaakt door het
geweer Diemaco C7A1 en het mortier
60 mm Hotchkiss-Brandt**

DTIC USERS ONLY

TNO Technische Menskunde

07

Kampweg 5
Postbus 23
3769 ZG Soesterberg

Telefoon 0346 35 62 11
Fax 0346 35 39 77

auteur
A.W. Bronkhorst

datum
14 november 1996

Alle rechten voorbehouden.
Niets uit deze uitgave mag worden
vermenigvuldigd en/of openbaar gemaakt
door middel van druk, fotokopie, microfilm
of op welke andere wijze dan ook, zonder
vooraafgaande toestemming van TNO.

Indien dit rapport in opdracht werd
uitgebracht, wordt voor de rechten en
verplichtingen van opdrachtgever en
opdrachtnemer verwezen naar de
Algemene Voorwaarden voor onderzoeks-
opdrachten aan TNO, dan wel de
betreffende terzake tussen partijen
gesloten overeenkomst.
Het ter inzage geven van het TNO-rapport
aan direct belanghebbenden is toegestaan.

aantal pagina's : 23 (incl. bijlagen,
excl. distributielijst)

© 1996 TNO

DTIC QUALITY INSPECTED

19970130 017

TNO Technische Menskunde is onderdeel
van TNO Defensieonderzoek
waartoe verder behoren:
TNO Fysisch en Elektronisch Laboratorium
TNO Prins Maurits Laboratorium

Nederlandse Organisatie voor toegepast-
natuurwetenschappelijk onderzoek TNO

Managementuittreksel

TNO Technische Menskunde, Soesterberg

titel : Geluidbelasting veroorzaakt door het geweer Diemaco C7A1 en het mortier 60 mm Hotchkiss-Brandt
auteur : Dr. A.W. Bronkhorst
datum : 14 november 1996
opdrachtnr. : A96/KM/306
IWP-nr. : 786.3
rapportnr. : TM-96-A050

In opdracht van de Dienst Bedrijfsgezondheidszorg van de Koninklijke Marine is onderzocht welke geluidbelasting wordt veroorzaakt door het geweer Diemaco C7A1 en het mortier 60 mm Hotchkiss-Brandt. Daartoe zijn geluidsmetingen verricht bij de oren van de schutter (of lader) en in het vrije veld op diverse posities rondom het wapen.

Bij de Diemaco werden metingen voor staande en liggende schutter en voor microfoonposities op vergelijkbare hoogten uitgevoerd. Uit de meetresultaten blijkt dat deze factor enige invloed heeft op het piekniveau rondom het wapen, maar niet op de duur (τ_{-10}) van de impulsen of op de piekniveaus bij het oor van de schutter. Het gemiddelde piekniveau bij het oor was 153 dB SPL, met een impulsduur van 3,2 ms. Rondom het wapen traden hogere maximale piekniveaus op maar was de gemiddelde duur korter. Spectrale analyse van bij de oren van de schutter opgenomen schoten laat zien dat de maximale energie bij 1-2 kHz optreedt en dat het spectrum naar hoge en lage frequenties ca. 10 dB afvalt. Naarmate de afstand toeneemt schuift de piek in het spectrum naar lagere frequenties en wordt het spectrum vlakker.

Bij het 60 mm mortier werden metingen bij ladingen 0 en II verricht. Bij de grootste lading waren het piekniveau en de impulsduur bij het oor van de schutter (of de lader) respectievelijk 163 dB SPL en 9,7 ms. Rondom het wapen was zowel het maximale piekniveau als de gemiddelde duur lager. De impulsen bij lading 0 hadden 5 tot 10 dB lagere piekniveaus en ongeveer de halve duur.

Voor beide wapens werd nagegaan of berekening van de impulsduur uit het geïntegreerd geluidsniveau (lineair impuls- of expositienniveau) vergelijkbare resultaten opleverde als directe bepaling uit de golfvorm. Een goede overeenkomst werd gevonden voor de uit het impulsniveau berekende waarden.

	Blz.
INHOUD	
SAMENVATTING	3
SUMMARY	4
1 INLEIDING	5
2 GELUIDSMETINGEN	5
3 METHODE	7
3.1 Bepaling van piekniveaus	7
3.2 Bepaling van τ_{-10} -waarden	8
4 RESULTATEN	8
4.1 Diemaco	8
4.2 Mortier	11
4.3 Berekening van τ_{-10} op basis van L_{imp} en SEL	13
4.4 Spectrale analyse	15
5 CONCLUSIES	16
REFERENTIES	18
BIJLAGE 1	19
BIJLAGE 2	21
BIJLAGE 3	22
BIJLAGE 4	23

Rapport nr.: TM-96-A050

Titel: Geluidbelasting veroorzaakt door het geweer Diemaco C7A1 en het mortier 60 mm Hotchkiss-Brandt

Auteur: Dr. A.W. Bronkhorst

Instituut: TNO Technische Menskunde
Afd.: Waarneming

Datum: november 1996

DO Opdrachtnummer: A96/KM/306

Nummer in MLTP: 786.3

SAMENVATTING

Geluidsmetingen zijn verricht bij het geweer Diemaco C7A1 en het mortier 60 mm Hotchkiss-Brandt teneinde de door deze wapens veroorzaakte geluidbelasting in kaart te brengen. De meetposities lagen bij de oren van de schutter (of lader) en in het vrije veld rondom het wapen. Bij de Diemaco werden metingen voor staande en liggende schutter en voor microfoonposities op vergelijkbare hoogten uitgevoerd. Uit de meetresultaten blijkt dat deze factor enige invloed heeft op het piekniveau rondom het wapen, maar niet op de duur (τ_{10}) van de impulsen of op de piekniveaus bij het oor van de schutter. Het gemiddelde piekniveau bij het oor was 153 dB SPL, met een impulsduur van 3,2 ms. Rondom het wapen traden hogere maximale piekniveaus op maar was de gemiddelde duur korter. Bij het 60 mm mortier werden metingen bij ladingen 0 en II verricht. Bij de grootste lading waren het piekniveau en de impulsduur bij het oor van de schutter (of de lader) respectievelijk 163 dB SPL en 9,7 ms. Rondom het wapen was zowel het maximale piekniveau als de gemiddelde duur lager. De impulsen bij lading 0 hadden 5 tot 10 dB lagere piekniveaus en ongeveer de halve duur. Voor beide wapens werd nagegaan of berekening van de impulsduur uit het geïntegreerd geluidsniveau (lineair impuls- of expositienniveau) vergelijkbare resultaten opleverde als directe bepaling uit de golfvorm. Een goede overeenkomst werd gevonden voor de uit het impulsniveau berekende waarden.

Sound exposure caused by the automatic rifle Diemaco C7A1 and the mortar 60 mm Hotchkiss-Brandt

A.W. Bronkhorst

SUMMARY

Sound measurements were conducted for the Diemaco C7A1 automatic rifle and the mortar 60 mm Hotchkiss-Brandt in order to evaluate the sound exposure caused by these weapons. Measurements were performed at the ears of the gunner (or loader) and at various positions in the free field around the weapon. For the Diemaco, the gunner could be either standing or lying on the ground and the microphone was placed at heights corresponding to these positions. The results show that this factor has some effect on the peak levels around the weapon, but not on the impulse duration (τ_{-10}) or on the peak levels at the ears of the gunner. The average peak level and duration at the ears were 153 dB SPL and 3.2 ms, respectively. Around the weapon, maximum peak levels were somewhat higher but the durations were shorter. Two loads were used during the measurements for the 60 mm mortar: I and II. At the ear of the gunner or loader, peak level and duration for the largest load were 163 dB SPL and 9.7 ms, respectively. Around the weapon, lower values for both peak level and duration were found. When the smaller load was used, peak levels decreased by 5 to 10 dB and the duration was halved. For both weapons, it was investigated whether calculation of the impulse duration based on either (linear) impulse or sound exposure level yielded the same results as direct determination from the waveform. The best correspondence was obtained for durations that were calculated using the impulse level.

1 INLEIDING

In opdracht van de Koninklijke Marine zijn begin 1996 geluidsmetingen verricht aan twee wapens: het geweer Diemaco C7A1 en het mortier 60 mm Hotchkiss-Brandt type commando. De metingen hadden tot doel:

- a inzicht te verkrijgen in de richtings- en afstandsafhankelijkheid van het maximale geluidsniveau (L_{piek});
- b de duur (τ_{-10}) van de schoten te bepalen, teneinde dosisberekeningen m.b.v. de methode Smoorenburg (1977) mogelijk te maken (de τ_{-10} is gedefinieerd als de duur gedurende welke de omhullende van de golfvorm afneemt tot 10 dB onder het piekniveau);
- c de relatie vast te leggen tussen indirecte bepalingen van τ_{-10} , gebaseerd op impulsniveau (L_{imp}) of expositienniveau (SEL), en de uit de golfvorm afgeleide τ_{-10} ;
- d voor de Diemaco het spectrum van de geluidsimpulsen te bepalen om na te kunnen gaan of selectieve gehoorbescherming middels otoplastieken bij dit wapen zinvol is;
- e overdracht van kennis op het gebied van metingen van impulsawaai te realiseren zodat de Dienst Bedrijfsgezondheidszorg van de KM dergelijke metingen in de toekomst zelfstandig kan uitvoeren.

Bij de Diemaco werd met scherpe munitie, type 556, geschoten. Met het mortier werden granaten met twee typen lading, 0 en II, afgevuurd. De metingen zijn in nauwe samenwerking met de Dienst Bedrijfsgezondheidszorg van de KM uitgevoerd.

2 GELUIDSMETINGEN

De metingen bij de Diemaco vonden plaats op 11 april 1996 op de Harskamp. Die bij het 60 mm mortier op 17 januari 1996 op het ASK. Bij de laatste metingen waren de omstandigheden relatief slecht: er was zware bewolking en mist bij een temperatuur van 3°C. De metingen werden verricht met twee sound-level meters, een B&K 2209 en een B&K 2231, beide uitgerust met een B&K 4135 1/4" microfoon. De signalen werden opgenomen op twee Sony TCD-D7 DAT-recorders. Calibratie vond plaats met een B&K 4220 pistonphone. Geverifieerd werd dat de piekniveaus die door beide sound-level meters werden aangegeven bij meting op dezelfde plek binnen ± 1 dB overeenkwamen.

Bij de Diemaco werden geluidsmetingen verricht voor 13 richtingen en 3 afstanden. Er werd op 33 posities gemeten die in Fig. 1 met nummers zijn aangegeven; de pijl in de figuur geeft de schietrichting aan. De afstanden van het wapen waren 2, 5 en 10 m en de hoek tussen opeenvolgende posities was 22.5° voor de twee grootste afstanden en 45° voor de kleinste afstand. Er werd een onveilige zone van $\pm 45^\circ$ ten opzichte van de schietrichting gehanteerd.

Omdat het Diemaco geweer zowel staand als liggend wordt gebruikt, zijn metingen voor vier condities uitgevoerd, aangegeven in Tabel I.

Fig. 1 Schematische weergave van de meetposities (door getallen aangegeven) voor het Diemaco geweer; de vetgedrukte pijl geeft de schietrichting aan.

Tabel I Condities gehanteerd bij de metingen aan het Diemaco geweer.

conditie	schutter	meetpositie
1	staand	1,7 m ('staand')
2	staand	0,2 m ('liggend')
3	liggend	1,7 m ('staand')
4	liggend	0,2 m ('liggend')

Naast de bovenstaande metingen, bedoeld voor het bepalen van de geluidcontouren, werden ook metingen uitgevoerd vlak bij het linker en rechter oor van de schutter, zowel in staande als in liggende positie.

Bij het mortier waren 39 meetposities uitgezet, schematisch weergegeven in Fig. 2. De afstanden waren 6, 12 en 18 m en de hoek tussen opeenvolgende posities was bij alle afstanden 22.5° . Bij dit wapen hoeftde niet met een onveilige zone rekening te worden gehouden. Er werden metingen voor twee ladingen, 0 en II, uitgevoerd. Door de slechte omstandigheden en de beperkte hoeveelheid munitie konden de metingen voor lading II enkel met een hoekresolutie van 45° worden verricht (d.w.z. posities 1, 3, ...; 14, 16, ..; 27, 29, ...). Bij lading 0 zijn de metingen op 12 m afstand tevens met een resolutie van 45° i.p.v. 22.5° uitgevoerd. Voor beide ladingen werden bovendien metingen uitgevoerd bij het naar het wapen toegewende oor van de lader en schutter op een hoogte van ca. 50 cm.

Fig. 2 Schematische weergave van de meetposities (door getallen aangegeven) voor het 60 mm mortier; de vetgedrukte pijl geeft de schietrichting aan.

Om de variabiliteit van de door beide wapens geproduceerde impulsen te beoordelen werden bij de Diemaco voor een aantal posities metingen voor twee schoten uitgevoerd; bij het mortier gebeurde dit zelfs voor vrijwel alle posities.

3 METHODE

3.1 Bepaling van piekniveaus

De lineaire piekniveaus in dB SPL werden bepaald met een B&K 2218 sound-level meter, elektrisch aangesloten op een Sony TCD-D7 DAT-recorder. De afwijkingen tussen de aldus gemeten piekniveaus en de niveaus die tijdens de veldmetingen waren genoteerd was gemiddeld minder dan 1 dB en maximaal 2 dB. Uit de herhaalde metingen op dezelfde positie bleek dat de variabiliteit in het piekniveau van de impulsen maximaal $\pm 0,5$ dB is bij de Diemaco en $\pm 1,5$ dB bij het mortier. Bij het mortier werden de piekniveaus van de herhaalde metingen gemiddeld.

Voor de berekening van de geluidcontouren werden de (in een polair stelsel gedefinieerde) meetpunten in een rechthoekige grid van 13×3 punten omgezet. Ontbrekende waarden in dit grid werden ingevuld op basis van tweedimensionale interpolatie met spline functies. Vervolgens werden, wederom via spline interpolatie, tussenliggende punten met een resolutie van 0,1 (dus 130×30 punten) berekend. Deze gegevens werden gebruikt om contourlijnen voor niveaus in stappen van 5 dB te bepalen. Tenslotte werden de contourlijnen terug

getransformeerd naar het originele polaire stelsel. Alle berekeningen werden uitgevoerd met het programma Matlab, Versie 4.0.

3.2 Bepaling van τ_{-10} -waarden

De τ_{-10} werd bepaald door een exponentieel aflopende curve op het oog te fitten aan de omhullende van de golfvorm. Hiervoor werd een bij TNO-TM ontwikkeld computerprogramma gebruikt dat de golfvorm direct digitaal kan inlezen vanuit een DAT-recorder. Voorbeelden van golfvormen voor beide wapens zijn weergegeven in Bijlage 1. De bij de Diemaco gemeten golfvormen illustreren dat deze, bij vrijwel gelijke duur, toch sterk kunnen verschillen afhankelijk van meetpositie. De duur van de mortierschoten was in een aantal gevallen, met name bij lading II, lastig te bepalen omdat ontsteking en mondingsknal separate of in elkaar overlopende impulsen produceerden. Bij lading 0 traden geen gescheiden impulsen op. Voor beide wapens geldt dat er grote verschillen tussen de op verschillende posities gemeten golfvormen werden geobserveerd. Het is derhalve niet mogelijk een 'representatieve' golfvorm aan te wijzen. De variabiliteit van de op één positie gemeten τ_{-10} -waarden is ten hoogste $\pm 0,1$ ms voor de Diemaco en $\pm 0,3$ ms voor het mortier. De resultaten voor de herhaalde metingen bij het mortier zijn gemiddeld.

4 RESULTATEN

4.1 Diemaco

De berekende geluidcontouren voor de Diemaco, uitgesplitst naar conditie, zijn weergegeven in Figuren 3 t/m 6. Om inzicht te krijgen in de variatie van impulsduur als functie van afstand, richting en meetconditie werden τ_{-10} waarden voor de Diemaco bepaald voor 8 meetposities (posities 1, 5, 9, 13, 27, 29, 31 en 33 conform Fig. 1) en vier condities (gegeven in Tabel I). Een variantie-analyse toonde aan dat de resultaten symmetrisch zijn ten opzichte van de schietrichting en niet afhangen van de meetconditie. Het blijkt dat op posities 27 en 33 (d.w.z. op 2 m afstand en onder een hoek van 45° t.o.v. de schietrichting) een significant kortere τ_{-10} optreedt dan op de andere posities. De gemiddelde waarde van τ_{-10} is op de twee eerstgenoemde posities 1,4 ms en op de andere posities 2,3 ms. Om aan de veilige kant te blijven, en tevens omdat het in de praktijk niet vaak zal voorkomen dat personen zich op een dergelijke korte afstand en zo dicht bij de onveilige zone zullen bevinden, dient bij de dosisberekeningen voor personen die zich in de buurt van de schutter bevinden van de laatste waarde te worden uitgegaan.

Fig. 3 Geluidcontouren van het piekniveau in dB SPL voor de Diemaco C7A1 met scherpe munitie voor een staande schutter en een hoge meetpositie (1,7 m). Afstanden zijn in meters.

Fig. 4 Als Fig. 3, maar voor een lage meetpositie (0,2 m).

Fig. 5 Als Fig. 3, maar voor een liggende schutter en een hoge meetpositie.

Fig. 6 Als Fig. 3, maar voor een liggende schutter en een lage meetpositie.

De geluidbelasting van de schutter kan worden bepaald aan de hand van de piekniveaus en τ_{-10} waarden die bij diens oren zijn gemeten. Deze resultaten zijn weergegeven in Tabel II.

Tabel II Piekniveaus en τ_{-10} waarden gemeten bij de oren van de schutter voor het Diemaco geweer.

positie schutter	oor	L_{piek} (dB SPL)	τ_{-10} (ms)
staand	links	153	2,8
staand	rechts	151	2,8
liggend	links	154	3,6
liggend	rechts	152	3,6
gemiddelde		153	3,2

De individuele resultaten voor alle meetposities zijn weergegeven in Bijlage 2.

4.2 Mortier

Bij de bewerking van de resultaten voor het 60 mm mortier bleek dat de piekniveaus op 4 posities (nummers 8, 10, 34 en 36) bij lading 0 sterk afwijken van de waarden voor naburige posities. Dit resulteerde in lokaal sterk gecurvde geluidcontouren die qua vorm duidelijk afwijken van de resultaten voor lading II. Er werd geconcludeerd dat deze metingen verstoord waren, wellicht doordat iemand zich in de lijn tussen microfoon en wapen bevond, en de resultaten werden vervangen door geïnterpolerde waarden. De berekende geluidcontouren voor beide ladingen zijn getekend in Figuren 7 en 8.

Fig. 7 Geluidcontouren van het piekniveau in dB SPL voor het 60 mm mortier met lading 0. Afstanden zijn in meters.

Fig. 8 Als Fig. 7, maar voor lading II.

De resultaten zijn enkel gebaseerd op het door het wapen geproduceerde impulsgeluid. De detonatieknallen die tijdens de opnamen optraden hadden veel lagere geluidsniveaus, en leverden daardoor geen significante bijdrage tot de totale geluidbelasting in de buurt van het wapen.

De τ_{-10} waarden van de mortierschoten werden voor 14 posities bepaald (posities 1, 3, ..., 13 en 27, 29, ..., 39 conform Fig. 2). Een variantie-analyse toonde aan dat de lading de enige factor is die de τ_{-10} significant beïnvloedt. De gemiddelde waarde is 3,8 ms voor lading 0 en 7,5 ms voor lading II. Tabel III toont de piekniveaus en τ_{-10} waarden die bij de oren van de schutter en lader werden gemeten.

Tabel III Piekniveaus en τ_{-10} waarden voor het 60 mm mortier gemeten bij het naar het wapen toegewende oor van de schutter en de lader. Deze bevonden zich respectievelijk aan de linker en rechter zijde van het wapen (wanneer men meekijkt met de schietrichting).

lading	zijde van wapen	L_{piek} (dB SPL)	τ_{-10} (ms)
0	links	158	3,6
	rechts	157	5,3
gemiddelde		158	4,5
II	links	162	6
	rechts	163	13,3
gemiddelde		163	9,7

In Bijlage 3 zijn de individuele meetresultaten voor alle meetposities opgenomen.

4.3 Berekening van τ_{-10} op basis van L_{imp} en SEL

Indien directe bepaling van τ_{-10} uit de golfvorm niet mogelijk is kan een schatting worden gemaakt op basis van de geïntegreerde energie van de golfvorm. Wanneer wordt uitgegaan van een sinusvormige golfvorm met een amplitude die exponentieel afneemt kan de volgende relatie tussen τ_{-10} en de geïntegreerde energie worden afgeleid:

$$\tau_{-10} = 2K \ln(10) \tau_L 10^{\frac{L - L_{\text{piek}}}{10}}$$

Hierbij is L het geïntegreerde geluidsniveau, τ_L de integratieduur en K een constante die afhangt van de frequentie van de sinus. Wanneer de frequentie groot is vergeleken met $1/\tau_{-10}$ (dus wanneer er een dichte ‘vulling’ van de golfvorm is) geldt $K = 1$; bij lagere frequenties neemt K toe. Ter illustratie zijn in Fig. 9 golfvormen met een hoge en lage frequentie weergegeven. In eerdere rapporten zijn, voor pistoolschoten op schietbanen, waarden van 1,5 (Smoorenburg & De Laat, 1981) en 2 (Versfeld & Geurtsen, 1993) voor K gehanteerd.

Fig. 9 Exponentieel aflopende golfvormen met een hoge en een lage frequentie, in verhouding tot de inverse tijdconstante.

Sound-level meters bieden i.h.a. twee mogelijkheden om het geïntegreerde geluidsniveau van een golfvorm te bepalen. Voor korte impulsen kan dit middels het impulsniveau (L_{imp}), dat gebaseerd is op een integratieduur van 35 ms. Wanneer de impuls een langere duur heeft of wanneer sprake is van nagalm (bij schieten in een afgesloten ruimte) kan het expositienniveau (SEL) worden gebruikt. Hierbij wordt de gehele golfvorm geïntegreerd en wordt de energie omgerekend naar een integratieduur van 1 s.

Om de bovenstaande formule te verifiëren en de optimale waarde voor K te bepalen zijn voor beide wapens zowel L_{imp} als SEL gemeten voor alle posities en condities waarvoor de τ_{-10} uit de golfvorm was afgeleid. Hiervoor werden drie typen sound-level meters gebruikt: een B&K 2218 en een B&K 2230 voor de SEL-metingen en een B&K 2209 voor de L_{imp} metingen. De sound-level meters werden elektrisch gevoed met het signaal van een Sony TCD-D7 DAT-recorder en waren ingesteld op de stand lineair. In totaal 36 metingen van de Diemaco en 32 metingen van het mortier werden geanalyseerd. Bij het toepassen van de formule is voor K een waarde tussen 1 en 3 gekozen die het kleinste gekwadrateerde verschil tussen de gemeten en berekende τ_{-10} waarden opleverde. De resultaten van de berekening staan in Tabel IV.

Tabel IV Standaarddeviaties (sd) van de verschillen tussen uit de golfvorm afgeleide en de op basis van de geïntegreerde energie berekende τ_{-10} waarden. De bijbehorende waarden van K , die de beste fit (kleinste sd) opleverden zijn tevens aangegeven.

wapen	meting	sd (ms)	K
Diemaco	L_{imp}	0,8	1,2
Diemaco	SEL	0,9	1
Mortier	L_{imp}	1,9	1,5
Mortier	SEL	47,5	1

Fig. 10 Relatie tussen op basis van L_{imp} berekende, en uit de golfvorm afgeleide τ_{-10} waarden voor schoten van het 60 mm mortier.

De derde kolom geeft de standaarddeviatie aan van het verschil tussen de uit de golfvorm afgeleide en de op basis van de geïntegreerde energie berekende τ_{-10} waarden, berekend over alle metingen. De laatste kolom bevat de waarden van K waarbij de standaarddeviatie

minimaal is. De resultaten laten zien dat bij beide wapens de τ_{-10} waarden het beste worden benaderd wanneer uitgegaan wordt van L_{imp} . Fig. 10 toont, ter illustratie, de individuele meetpunten voor de mortierschoten, waarbij τ_{-10} berekend is op basis van L_{imp} , met $K = 1,5$.

4.4 Spectrale analyse

De metingen die bij het Diemaco geweer zijn uitgevoerd zijn tevens onderworpen aan een spectrale analyse. Deze werd beperkt tot de opnamen die waren gemaakt op posities 1, 5, 9, 13, 27, 29, 31 en 33 (zie Fig. 1), voor alle vier condities, en de opnamen bij de oren van de (staande en liggende) schutter. De spectra werden bepaald door een Fourier transformatie toe te passen op de eerste 40 ms van de golfvorm. Hiervoor werd bij TNO-TM ontwikkelde software gebruikt, die de golfvorm via een digitaal interface uit de DAT-recorder inleest.

De resultaten voor de opnamen bij de oren zijn grafisch weergegeven in Fig. 11 en in tabelvorm in Bijlage 4. Het blijkt dat het spectrum nauwelijks van de zijde of de positie van de schutter afhangt. Het spectrum piekt tussen de 1 en 2 kHz en loopt naar beide zijden geleidelijk af.

Fig. 11 Octaaf spectrum van schoten opgenomen bij het oor van de schutter van het Diemaco geweer.

Op de overige 32 spectra werd een variantie-analyse toegepast om na te gaan hoe het spectrum afhangt van de afstand, de richting en de positie van schutter en microfoon. Het bleek dat alleen de afstand en de hoek t.o.v. de schietrichting een significant effect hadden ($p < 0.05$) op het spectrum. De gemiddelde spectra voor de twee afstanden en hoeken die in de analyse zijn meegenomen zijn afgebeeld in Fig. 12. De getalwaarden zijn weergegeven in Bijlage 4. Een vergelijking met Fig. 10 toont aan dat de piek in het spectrum daalt naarmate

de afstand toeneemt. Voor een afstand van 2 m ligt het maximum bij 1 kHz. Op 10 m en onder 45° ligt het bij 500 Hz.

Fig. 12 Gemiddelde spectra van schoten van de Diemaco, opgenomen op twee afstanden en twee hoeken t.o.v. de schietrichting.

5 CONCLUSIES

Bij de Diemaco C7A1 en het 60 mm mortier zijn geluidsmetingen verricht om piekniveaus, τ_{-10} waarden en, in het geval van de Diemaco, frequentiespectra van de schoten te bepalen. Bij de Diemaco werden metingen voor staande en liggende schutter en microfoonposities op vergelijkbare hoogten uitgevoerd. De afstand van het wapen werd gevareerd tussen 2 en 10 m. Bij het mortier werden metingen voor twee ladingen, 0 en II, verricht en werden afstanden tussen 6 en 18 m gehanteerd.

Piekniveaus voor de Diemaco liggen tussen de 130 dB SPL, voor een positie op 10 m afstand recht achter de schutter en 161 dB SPL, voor posities op 2 m afstand vlak bij de onveilige zone van $\pm 45^\circ$ t.o.v. de schietrichting. Bij deze laatste posities is de impulsduur (τ_{-10}) relatief kort: 1,4 ms. Echter, bij dosisberekeningen dient rekening gehouden te worden met een gemiddelde τ_{-10} van 2,3 ms die voor de overige afstanden en richtingen wordt gevonden. Het blijkt dat de relatieve hoogtes van schutter en meetpositie een meetbare invloed hebben op de piekniveaus rondom het wapen (er treden verschillen van maximaal 2 à 3 dB op). De impulsduur en het piekniveau bij het oor worden echter niet significant beïnvloed. De gemiddelde waarden van piekniveau en τ_{-10} bij het oor van de schutter zijn respectievelijk 153 dB SPL en 3,2 ms. Spectrale analyse van bij de oren van de schutter opgenomen schoten laat zien dat de maximale energie bij 1-2 kHz optreedt en dat het spectrum naar hoge en lage frequenties ca. 10 dB afvalt. Naarmate de afstand toeneemt schuift de piek in het spectrum naar lagere frequenties en wordt het spectrum vlakker.

Bij het 60 mm mortier treden bij lading 0 piekniveaus op tussen de 120 dB SPL, op 18 m afstand schuin achter aan de kant waar lader en commandant zich bevonden, en 148 dB SPL, op 6 m afstand recht vóór het wapen. Bij lading II treden op dezelfde posities minimale en maximale niveaus van respectievelijk 129 en 155 dB SPL op. De gemiddelde τ_{-10} voor afstanden van 6 tot 18 m is 3,8 ms bij lading 0 en 7,5 ms bij lading II. Bij het oor van de schutter of lader zijn piekniveau en τ_{-10} bij lading 0 respectievelijk 158 dB SPL en 4,5 ms, en bij lading II respectievelijk 163 dB SPL en 9,7 ms.

Uit een vergelijking van τ_{-10} waarden die direct uit de golfvorm van het impulsgeluid zijn afgeleid met waarden die zijn berekend op basis van het lineaire impuls- of expositienniveau blijkt, dat bij deze (veld)metingen de beste overeenkomst wordt gevonden wanneer wordt uitgegaan van impulsniveau (L_{imp}). Voor de constante K in de formule die de relatie tussen L_{imp} en τ_{-10} geeft zijn de optimale waarden 1,2 (voor de Diemaco) en 1,5 (voor het mortier).

REFERENTIES

Smoorenburg, G.F. (1977). *Grenswaarden voor impulsieve geluidbelasting ter voorkoming van gehoorverliesen* (Rapport IZF 1977-19). Soesterberg: Instituut voor Zintuigfysiologie TNO.

Smoorenburg, G.F. & Laat, J.A.P.M. de (1981). *Lawaaibelasting van schutters en instructeurs op politieschietbanen* (Rapport IZF 1981 C-23). Soesterberg: Instituut voor Zintuigfysiologie TNO.

Versfeld, N.J. & Geurtsen, F.W.M. (1993). *Bepaling van de geluidbelasting van instructeurs voor een aantal schietkelders in Drenthe* (Rapport IZF 1993 C-22). Soesterberg: Instituut voor Zintuigfysiologie TNO.

Soesterberg, 14 november 1996

Dr. A.W. Bronkhorst
(auteur, projectleider)

BIJLAGE 1

Voorbeelden van golfvormen van schoten opgenomen bij het Diemaco geweer en het mortier 60 mm Hotchkiss-Brandt

Fig. B1 Golfvorm voor de Diemaco, gemeten op positie 1 bij een staande schutter en een hoge meetpositie.

Fig. B2 Golfvorm voor de Diemaco, gemeten bij het linker oor van een staande schutter.

Fig. B3 Golfvorm voor het 60 mm mortier, gemeten op positie 1 bij lading II.

Fig. B4 Golfvorm voor het 60 mm mortier, gemeten aan het linker oor van de schutter bij lading 0.

BIJLAGE 2

Individuele piekniveaus (in dB SPL), τ_{-10} -waarden (in ms) en impulsniveaus (in dB) voor het Diemaco geweer

pos.nr.	staand – staand			staand – liggend			liggend – staand			liggend – liggend		
	L_{piek}	τ_{-10}	L_{imp}									
links	153	2,8	134							154	3,6	134
rechts	151	2,9	135							151	3,6	135
1	148	2,5	128	146	2,3	127	145	2,1	126	144	3,6	128
2	145			146			146			146		
3	142			142			142			142		
4	139			138			139			139		
5	135	2,4	113	134	2,2	113	136	1,9	114	136	2,2	113
6	132			132			133,5			131,5		
7	131			131			131			126		
8	130			131			132			128		
9	134	2,2	111	134	2,5	113	134	2	111	132	2,3	110
10	136			137			137			135		
11	142			142			142			141		
12	146			146			143			141		
13	148	2,5	128	148	2,4	127	148	2	126	144	1,9	126
14	153			153			153			154		
15	152			151			152			152		
16	147			147			148			147		
17	145			145			145			145		
18	142			141			151			152		
19	139			138			139			138		
20	134			134			136			134		
21	137			135			139			136		
22	140			140			141			138		
23	143			142			143			142		
24	146			146			147			146		
25	151			152			150			151		
26	154			155			153,5			154,5		
27	163	0,9	141	159	1,4	138	159	2,1	139	164	1,1	142
28	152			152			154			154		
29	147	1,8	126	146	2,2	126	148	1,8	126	146	2,1	125
30	139			136			143			138		
31	146	2	125	145	2,9	123	146	2,3	125	145	2,3	124
32	152			151			152			152		
33	161	0,9	138	159	1,9	137	158,5	2	137	161	1,1	139

BIJLAGE 3

Individuele piekniveaus (in dB SPL), τ_{-10} -waarden (in ms) en impulsniveaus (in dB) voor het mortier Hotchkiss-Brandt (*: aangepaste waarden).

pos.nr.	lading II			lading O		
	L _{pick}	τ_{-10}	L _{imp}	L _{pick}	τ_{-10}	L _{imp}
links	162	6	146	158	3,6	138
rechts	163	13,3	148	157	5,3	138
1	143	5,3	128	135	3,3	118
3	142	4,9	126	133,5	3,7	115
4				131		
5	136	7,2	120	129	3,7	110
6				127		
7	130	13,3	117	123,5	4,5	107
8				123 *		
9	128,5	13,3	115	123,5	3,4	106
10				123 *		
11	131	10	118	123,5	4,5	107
12				127		
13	136,5	6,7	122	128,5	3,3	111
14	148			141		
16	146			137,5		
18	140,5			133,5		
20	134			126,5		
22	134,5			126		
24	135			126		
26	141,5			132		
27	154,5	5,3	138	148	2,6	127
28				148		
29	154,5	4	137	144	3,5	125
30				143		
31	147	6,7	130	140	3,2	119
32				140		
33	142	7,4	127	133	4,3	116
34				131 *		
35	140	7,4	126	130,5	4,5	113
36				132 *		
37	143,5	6,1	129	135	4,7	118
38				138,5		
39	147,5	6,3	131	140	3,8	121

BIJLAGE 4

Octaafniveaus in dB van de knallen van het Diemaco geweer gemeten bij de oren van de (staande of liggende) schutter en op punten op 2 en 10 m afstand, en onder hoeken van 45° en 135° t.o.v. de schietrichting. Tevens zijn vermeld de gemiddelde niveaus bij het oor van de schutter.

conditie	octaaffrequentie (Hz)						
	125	250	500	1000	2000	4000	8000
staand, li	118,0	121,0	124,0	127,5	128,0	123,5	121,5
staand, re	115,0	119,5	122,0	127,5	130,0	124,0	115,5
liggend, li	118,0	122,0	119,5	128,0	128,0	124,0	120,0
liggend, re	117,0	123,5	121,0	127,5	131,0	121,5	119,0
<i>gemiddelde</i>	<i>117,0</i>	<i>121,5</i>	<i>121,6</i>	<i>127,6</i>	<i>129,3</i>	<i>123,3</i>	<i>119,0</i>
2 m, 45°	122,6	127,5	131,6	133,5	131,1	126,9	122,3
2 m, 135°	106,0	114,4	113,0	118,4	117,0	115,5	112,4
10 m, 45°	114,2	118,0	123,4	118,5	117,1	114,8	111,0
10 m, 135°	81,3	81,5	83,5	82,6	84,2	82,2	80,7

REPORT DOCUMENTATION PAGE

1. DEFENCE REPORT NUMBER (MOD-NL) RP 96-0191	2. RECIPIENT'S ACCESSION NUMBER	3. PERFORMING ORGANIZATION REPORT NUMBER TM-96-A050
4. PROJECT/TASK/WORK UNIT NO. 786.3	5. CONTRACT NUMBER A96/KM/306	6. REPORT DATE 14 November 1996
7. NUMBER OF PAGES 23	8. NUMBER OF REFERENCES 3	9. TYPE OF REPORT AND DATES COVERED Final
10. TITLE AND SUBTITLE Geluidbelasting veroorzaakt door het geweer Diemaco C7A1 en het mortier 60 mm Hotchkiss-Brandt (Sound exposure caused by the automatic rifle Diemaco C7A1 and the mortar 60 mm Hotchkiss-Brandt)		
11. AUTHOR(S) A.W. Bronkhorst		
12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) TNO Human Factors Research Institute Kampweg 5 3769 DE SOESTERBERG		
13. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Director of Navy Research and Development P.O. Box 20702 2500 ES DEN HAAG		
14. SUPPLEMENTARY NOTES		
15. ABSTRACT (MAXIMUM 200 WORDS, 1044 BYTE) Sound measurements were conducted for the Diemaco C7A1 automatic rifle and the mortar 60 mm Hotchkiss-Brandt in order to evaluate the sound exposure caused by these weapons. Measurements were performed at the ears of the gunner (or loader) and at various positions in the free field around the weapon. For the Diemaco, the gunner could be either standing or lying on the ground and the microphone was placed at heights corresponding to these positions. The results show that this factor has some effect on the peak levels around the weapon, but not on the impulse duration (τ_{-10}) or on the peak levels at the ears of the gunner. The average peak level and duration at the ears were 153 dB SPL and 3.2 ms, respectively. Around the weapon, maximum peak levels were somewhat higher but the durations were shorter. Two loads were used during the measurements for the 60 mm mortar: 0 and II. At the ear of the gunner or loader, peak level and duration for the largest load were 163 dB SPL and 9.7 ms, respectively. Around the weapon, lower values for both peak level and duration were found. When the smaller load was used, peak levels decreased by 5 to 10 dB and the duration was halved. For both weapons, it was investigated whether calculation of the impulse duration based on either (linear) impulse or sound exposure level yielded the same results as direct determination from the waveform. The best correspondence was obtained for durations that were calculated using the impulse level.		
16. DESCRIPTORS Impulse Noise		IDENTIFIERS Sound Exposure
17a. SECURITY CLASSIFICATION (OF REPORT)	17b. SECURITY CLASSIFICATION (OF PAGE)	17c. SECURITY CLASSIFICATION (OF ABSTRACT)
18. DISTRIBUTION/AVAILABILITY STATEMENT Unlimited availability		17d. SECURITY CLASSIFICATION (OF TITLES)

VERZENDLIJST

1. Directeur M&P DO
2. Directie Wetenschappelijk Onderzoek en Ontwikkeling Defensie
Hoofd Wetenschappelijk Onderzoek KL
3. {
Plv. Hoofd Wetenschappelijk Onderzoek KL
4. Hoofd Wetenschappelijk Onderzoek KLu
Hoofd Wetenschappelijk Onderzoek KM
5. {
Plv. Hoofd Wetenschappelijk Onderzoek KM
- 6, 7 en 8. Bibliotheek KMA, Breda
- 9 t/m 13. Mevrouw Ir. M.C. Veerman, Dienst Bedrijfsgezondheidszorg KM, Den Haag

Extra exemplaren van dit rapport kunnen worden aangevraagd door tussenkomst van de HWOs of de DWO.