Arrays

TABLE OF CONTENTS

- 1. Space Complexity
- 2. Questions on space complexity
- 3. Arrays Introduction and questions

Space complemity -> Gives an idea about entra space used

1. void fun(int N){

}

}

int
$$x = N$$
; $\longrightarrow 4B$

int
$$y = 2^*x$$
; $\longrightarrow 48$

long
$$z = x+y$$
; $\longrightarrow 83$

64 bit inleger

total entra space => 4+4+8= 16B whatever already given is NOT counted / O(1)

2. func(int N){ // 4 bytes

int arr[10]; //40 bytes

int x; // 4 bytes

int y; // 4 bytes

long z; // 8 bytes

int[] arr = new int[N]; // 4*N bytes

40+4+ 4+8+4N

4N + 56

=> 4N

 \Rightarrow O(N)

```
3. void fun(int N){
```

4. int maxArr(int arr[], int N){

```
int ans = arr[0]; 48

for(i=0; i<N; i++){ 48

ans = Max(ans, arr[i]);
}

return ans;
}
```

J O(N) X

Introduction to Arrays

< **Question** >: Print all elements of the array

for
$$i: O \rightarrow n-1$$

print (all [i])

print (arr
$$[53]$$
) \Rightarrow $O(1)$

2. Reverse the given array

50 40

D 10

3. Reverse part of an array

void reversePart(int []arr, int I, int r){

$$i=1$$
 $j=3c$

while $i < j$:

Swap $a[i]$ and $a[j]$
 $i+1$
 $j-1$
 $c(i)$
 $c(i)$
 $c(i)$
 $c(i)$
 $c(i)$
 $c(i)$

Rotate the allay right to left k times

N=7

1	2	3	4	5	6	7	
0	1	2	3	4	5	6	_

K=1

K=2

K=3

5	6	7	1	2	3	4
0	1	2	3	4	5	6

K=4

4	5	6	7	1	2	3
0	1	2	3	4	5	6

lest_wm=40

Ideas: Perform the shifting & times

for $i \quad O \rightarrow k-1$:

last_wm = ar[n-1]

for $(j n-2 \rightarrow 0, j--)$

ar[j+1] = ar[j]

al [0] = last_num

40 10 20 30 40 0 1 2 30 40

TC: O(nk)

Optimisation

Step-1

Sevese

reverse

first B

the away

R= 3 N=7 7 5671234 4 5 6 7 7654321 Step-2 5 6 7 4 3 2 1

Shp3 5671234 severse last n-k

Code
$$R = R \cdot / n$$

1) severse (ash, 0, n-1) N

2) remese (ash, 0, k-1) N

3) remese (ash, k, n-1) N

total time = N+N+N=3N=0(N)

1 2 3 4 R=0 0

4 1 2 3 R=1 1

3 4 1 2 R=2 2

2 3 4 1 R=3 3

1 2 3 7 1 R=5 1

R => RV·n

1) Dynamic allays.

Jana

Allay List < Integer>

all = new Augy List <>();

all. Clear ()

Python

my list = []

mylist. append (10)

mylist. Clear Co

(done)

6.1.4

10%-4

14% 4

2-1.4

18 / 4

1234

4321

7123