Semantic similarity and machine learning with ontologies

Robert Hoehndorf and Maxat Kulmanov

Before the tutorial

See https://github.com/bio-ontology-research-group/ontology-tutorial:

- install Docker (e.g.: apt-get install docker)
- docker pull coolmaksat/embeddings:latest
- docker pull leechuck/ontology-ml:latest
- docker run -i -t -p 8888:8888
 leechuck/ontology-ml /bin/bash -c "jupyter notebook
 - --notebook-dir=/home/borg/ontology-tutorial/
 - --ip='0.0.0.0' --port=8888 --no-browser
 - --allow-root"

Ontologies, machine learning, and Al

- ontologies are ubiquitous
- rich formal characterization (axioms)
- how can they be used for (predictive) data analysis?
 - "fuzzy", similarity-based search
 - predictive analysis and machine learning
 - background knowledge

Learning goals

- machine learning with ontologies as features (or background knowledge)
- unsupervised or supervised:
 - ► here: mostly unsupervised *feature* learning
 - "deep" learning
- focus on existing tools and methods
 - Jupyter Notebooks and code examples
- not covered:
 - learning ontologies (axioms, definitions) from data
 - ► (most) natural language processing
 - reasoning with ontologies
 - ► learning on "knowledge graphs"
 - machine learning theory

Agenda

- Introduction: ontologies and graphs
- Semantic similarity
- Machine learning:
 - syntactic
 - ▶ graph-based
 - ► model-theoretic

Preliminaries: ontologies

- Specific artifacts expressing the intended meaning of a vocabulary in terms of primitive categories and relations describing the nature and structure of a domain of discourse
 - ▶ in order to account for the competent use of vocabulary in real situations (such as annotations in databases, etc.)
- the intended meaning of *primitive* categories and relations is expressed through axioms (axiomatic method, Tarski)

Preliminaries: axioms

- classes represent kinds of things in the world
 - Arm, Apoptosis, Influenza, Homo sapiens, Drinking behavior, Membrane
- instances of classes are individuals satisfying the classes' intension
 - my arm, the influenza I had last year, one ethanol molecule, etc.
- relations between instances arise from interactions, configurations, etc., of individuals
 - my arm is part of me, the duration of my influenza was 10 days
- axioms specify the conditions that instances of a class must satisfy
 - every instance of Hand is a part of an instance of Arm

Description Logics: overview

- TBox: axioms pertaining to the terminology of the domain (classes)
- ABox: axioms stating facts (assertions) about the world
- RBox: axioms holding for relations
- Reasoning: derive implicitly represented knowledge (e.g., subsumption)
- NB: a "knowledge graph" is an ABox + RBox

Manchester OWL Syntax

DL Syntax	Manchester Syntax	Example
$C \sqcap D$	C and D	Human and Male
$C \sqcup D$	C or D	Male or Female
$\neg C$	not C	not Male
∃ <i>R</i> . <i>C</i>	R some C	hasChild some Human
∀R.C	R only C	hasChild only Human
$(\geq nR.C)$	R min n C	hasChild min 1 Human
$(\leq nR.C)$	R max n C	hasChild max 1 Human
(= nR.C)	R exactly n C	hasChild exactly 1 Human
$\{a\} \sqcup \{b\} \sqcup$	{a b}	{John Robert Mary}

Ontologies provide background knowledge

Annotation	Value	
label	T cell aggregation	
definition	The adhesion of one T cell to one or more other T cells via adhesion molecules.	
class	http://purl.obolibrary.org/obo/GO_0070489	
ontology	GO-PLUS	
Equivalent	leukocyte aggregation and (has participant some T cell)	
SubClassOf	lymphocyte aggregation, has participant some T cell	
has_obo_namespace	biological_process	
Id	GO:0070489	
synonyms	T-cell aggregation, T lymphocyte aggregation, T-lymphocyte aggregation	

Ontologies provide background knowledge

Annotation	Value
label	T cell activation
definition	The change in morphology and behavior of a mature or immature T cell resulting from exposure to a mitogen, cytokine, chemokine, cellular ligand, or an antigen for which it is specific.
class	http://purl.obolibrary.org/obo/GO_0042110
ontology	GO-PLUS
Equivalent	cell activation and (has input some T cell)
SubClassOf	has input some T cell, lymphocyte activation
has_obo_namespace	biological_process
ld	GO:0042110
synonyms	T-lymphocyte activation, T lymphocyte activation, T-cell activation

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

• what relations, and when is a fact "new"?

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

- what relations, and when is a fact "new"?
- what features are relevant?
 - depends on the relation!

Problem statement (first attempt):

Given a set of entities (instances) within an ontology (DL theory). Can we discover/predict *new* relations between the entities, or between entities and classes in the ontology?

- what relations, and when is a fact "new"?
- what features are relevant?
 - depends on the relation!
- finding new facts is only one (minor?) use case
 - other uses: encode background knowledge for machine learning models; add new classes; expand definition; constrained learning; etc.
 - computing "similarity"

Semantic similarity: some examples

- Are cyclin dependent kinases *functionally* more similar to lipid kinases or to riboflavin kinases? How about *phenotypically*?
- Which protein in the *mouse* is functionally most similar to the zebrafish *gustducin* protein?
- Which mouse knockout resembles Bardet-Biedl Syndrome 8?
- Are there mouse knockouts that resemble the side effects of diclofenac?
- Which genetic disease produces similar symptoms to ebola?
- Does functional similarity correlate with phenotypic similarity?

Semantic similarity

semantic similarity measures:

- for words, terms, classes
- role of background knowledge:
 - statistical/distributional semantics, large corpora
 - ontologies: (graph) topology
- similarity measures: hand-crafted or data-driven?

Semantic similarity or machine learning

- semantic similarity measures are mostly hand-crafted
 - ► capture certain intuition about what constitutes "similarity"
 - different measures for different kinds of similarity
 - usually interpretable (and explainable)

Semantic similarity or machine learning

- semantic similarity measures are mostly hand-crafted
 - ► capture certain intuition about what constitutes "similarity"
 - ▶ different measures for different kinds of similarity
 - usually interpretable (and explainable)
- machine learning methods are mostly data-driven
 - ▶ the architecture of the model is still hand-crafted
 - usually hard to interpret

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
 - ► graph-based: ontology as a graph
 - ► feature-based: extract (or obtain) features for classes/relations
 - ▶ model-based: define similarity within (special) Σ -structures

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
 - ► graph-based: ontology as a graph
 - feature-based: extract (or obtain) features for classes/relations
 - lacktriangle model-based: define similarity within (special) Σ -structures
- we may need to generate graphs from ontologies
 - ▶ is-a relations are easy (this is just owl:subClassOf)
 - ▶ how about *part-of*, *regulates*, *precedes*, etc.?
 - disjointness, universal vs. existential quantification, cardinality restrictions, intersection, union, negation?

Ontologies and graphs

- semantic similarity measures and machine learning models on ontologies can be graph-based, feature-based, or model-based
 - ► graph-based: ontology as a graph
 - feature-based: extract (or obtain) features for classes/relations
 - ightharpoonup model-based: define similarity within (special) Σ -structures
- we may need to generate graphs from ontologies
 - ▶ is-a relations are easy (this is just owl:subClassOf)
 - ▶ how about *part-of*, *regulates*, *precedes*, etc.?
 - disjointness, universal vs. existential quantification, cardinality restrictions, intersection, union, negation?
- relational patterns are implicit in OWL axioms
 - design patterns as "relations" between classes

Relations as patterns

Relations as patterns

• ...

• X SubClassOf: Y: $X \xrightarrow{\text{is-a}} Y$ • X SubClassOf: part-of some Y: $X \xrightarrow{\text{part-of}} Y$ • X SubClassOf: regulates some Y: $X \xrightarrow{\text{regulates}} Y$ • X DisjointWith: Y: $X \xleftarrow{\text{disjoint}} Y$ • X EquivalentTo: Y: $X \xleftarrow{\equiv} Y$, $\{X,Y\}$

NB: in bio-ontologies, the OBO Relation Ontology defines these patterns

Asserted and inferred

- relation patterns can be asserted or inferred
- X SubClassOf: part-of some Y
- Y SubClassOf: part-of some Z
- part-of o part-of SubPropertyOf: part-of
- $\bullet \vdash X \text{ SubClassOf: part-of some Z}$
- Therefore: $X \xrightarrow{\text{part-of}} Z$
- ullet \Rightarrow we should use deductive inference to generate these patterns

Tree models

- some languages have the finite model and tree model properties
 - ightharpoonup such as the Description Logic \mathcal{ALC}
 - generated through a tableaux algorithm
- nodes: individuals
 - node labels: concept names, concept descriptions
- edges: relations between individuals
- can be extended to more expressive languages (with blocking, cycles, etc.)

Methods and tools

- edges should be "meaningful": not merely syntax (why?)
 - the RDF serialization of OWL is a graph and contains all information but is a bad idea for semantic similarity or machine learning (more later)
 - conceptual graphs?
- OBO Format represents ontologies as graphs:
 - ► Protege/OWLAPI: OBO export
 - OBO toolsets (e.g., ROBOT)
 - https://github.com/bio-ontology-research-group/ Onto2Graph

Methods and tools

- edges should be "meaningful": not merely syntax (why?)
 - the RDF serialization of OWL is a graph and contains all information but is a bad idea for semantic similarity or machine learning (more later)
 - conceptual graphs?
- OBO Format represents ontologies as graphs:
 - ► Protege/OWLAPI: OBO export
 - ► OBO toolsets (e.g., ROBOT)
 - https://github.com/bio-ontology-research-group/ Onto2Graph
- but: a conversion of an ontologies into a graph will almost always lead to a loss of information

Semantic similarity

- We want to use background knowledge in ontologies to
 - ▶ determine similarity between classes,
 - instances,
 - and entities with ontology annotations

- semantic similarity measures similarity between classes
- semantic similarity measures similarity between instances of classes
- semantic similarity measures similarity between entities annotated with classes
- ullet \Rightarrow reduce all of this to similarity between classes

What properties do we want in a similarity measure? A function $sim: D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

What properties do we want in a similarity measure? A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

• non-negative: $sim(x, y) \ge 0$ for all x, y

What properties do we want in a similarity measure? A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

- non-negative: $sim(x, y) \ge 0$ for all x, y
- symmetric: sim(x, y) = sim(y, x)

What properties do we want in a similarity measure?

A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

- non-negative: $sim(x, y) \ge 0$ for all x, y
- symmetric: sim(x, y) = sim(y, x)
- reflexive: $sim(x, x) = max_D$

What properties do we want in a similarity measure? A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

- non-negative: $sim(x, y) \ge 0$ for all x, y
- symmetric: sim(x, y) = sim(y, x)
- reflexive: $sim(x, x) = max_D$
 - weaker form: sim(x, x) > sim(x, y) for all $x \neq y$

What properties do we want in a similarity measure? A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

- non-negative: $sim(x, y) \ge 0$ for all x, y
- symmetric: sim(x, y) = sim(y, x)
- reflexive: $sim(x, x) = max_D$
 - weaker form: sim(x, x) > sim(x, y) for all $x \neq y$
- sim(x,x) > sim(x,y) for $x \neq y$

What properties do we want in a similarity measure?

A function $sim : D \times D$ is a similarity on D if, for all $x, y \in D$, the function sim is:

- non-negative: $sim(x, y) \ge 0$ for all x, y
- symmetric: sim(x, y) = sim(y, x)
- reflexive: $sim(x, x) = max_D$
 - weaker form: sim(x, x) > sim(x, y) for all $x \neq y$
- sim(x,x) > sim(x,y) for $x \neq y$
- ullet sim is a normalized similarity measure if it has values in [0,1]

 distance on shortest path (Rada et al., 1989)

- distance on shortest path (Rada et al., 1989)
- $dist_{Rada}(u, v) = sp(u, isa, v)$

- distance on shortest path (Rada et al., 1989)
- $dist_{Rada}(u, v) = sp(u, isa, v)$

distance on shortest path

- distance on shortest path
- distance(green, red)2
- $sim_{Rada}(green, red) = \frac{1}{3}$

- distance on shortest path
- distance(square, round) = 2
 - $sim_{Rada}(square, round) = \frac{1}{3}$

- distance on shortest path
- distance(orange, color) = 2
 - $sim_{Rada}(orange, color) = \frac{1}{3}$

• shortest path is not always intuitive

- shortest path is not always intuitive
- we need a way to determine *specificity* of a class
 - number of ancestors
 - number of children
 - ▶ information content

- shortest path is not always intuitive
- we need a way to determine specificity of a class
 - number of ancestors
 - number of children
 - ▶ information content
- density of a branch in the ontology
 - number of siblings
 - ▶ information content

- shortest path is not always intuitive
- we need a way to determine specificity of a class
 - number of ancestors
 - number of children
 - ▶ information content
- density of a branch in the ontology
 - number of siblings
 - ▶ information content
- account for different edge types
 - non-uniform edge weighting

• term specificity measure $\sigma: C \mapsto \mathbb{R}$:

- term specificity measure $\sigma: C \mapsto \mathbb{R}$:
 - $ightharpoonup x \sqsubseteq y o \sigma(x) \ge \sigma(y)$
- intrinsic:
 - $ightharpoonup \sigma(x) = f(depth(x))$
 - $ightharpoonup \sigma(x) = f(A(x))$ (for ancestors A(x))
 - $\sigma(x) = f(D(x))$ (for descendants D(x))
 - many more, e.g., Zhou et al.:

$$\sigma(x) = k \cdot \left(1 - \frac{\log |D(x)|}{\log |C|}\right) + (1 - k) \frac{\log depth(x)}{\log depth(G_T)}$$

- term specificity measure $\sigma: C \mapsto \mathbb{R}$:
 - $ightharpoonup x \sqsubseteq y o \sigma(x) \geq \sigma(y)$
- intrinsic:

 - $ightharpoonup \sigma(x) = f(A(x))$ (for ancestors A(x))
 - $\sigma(x) = f(D(x))$ (for descendants D(x))
 - many more, e.g., Zhou et al.:

$$\sigma(x) = k \cdot \left(1 - \frac{\log |D(x)|}{\log |C|}\right) + (1 - k) \frac{\log depth(x)}{\log depth(G_T)}$$

- extrinsic:
 - $ightharpoonup \sigma(x)$ defined as a function of instances (or annotations) I
 - note: the number of instances monotonically decreases with increasing depth in taxonomies
 - ► Resnik 1995: $elC_{Resnik}(x) = -\log p(x)$ (with $p(x) = \frac{|I(x)|}{|I|}$)
 - in biology, one of the most popular specificity measure when annotations are present

 Resnik 1995: similarity between x and y is the information content of the most informative common ancestor

 Resnik 1995: similarity between x and y is the information content of the most informative common ancestor

 Resnik 1995: similarity between x and y is the information content of the most informative common ancestor

- Resnik 1995: similarity between x and y is the information content of the most informative common ancestor
 - $sim_{Resnik}(Green,Red) = 1.0$

- Resnik 1995: similarity between x and y is the information content of the most informative common ancestor
 - sim_{Resnik} (Green, Orange) = 1.0

- Resnik 1995: similarity between x and y is the information content of the most informative common ancestor
 - sim_{Resnik} (Square, Orange) 0.0

- (Red, Green) and (Orange, Green) have the same similarity
- need to incorporate the specificity of the compared classes

- Lin 1998: $sim_{Lin}(x, y) = \frac{2 \cdot IC(MICA(x,y))}{IC(x) + IC(y)}$
- $sim_{Lin}(Green, Red) = 0.5$

• Lin 1998:

$$sim_{Lin}(x, y) =
\frac{2 \cdot IC(MICA(x,y))}{IC(x) + IC(y)}$$

 $sim_{Lin}(Green, Orange) = 0.4$

- many(!) others:
 - ▶ Jiang & Conrath 1997
 - ► Mazandu & Mulder 2013
 - ► Schlicker et al. 2009
 - ▶ ..

- we only looked at comparing pairs of classes
- mostly, we want to compare sets of classes
 - set of GO annotations
 - set of signs and symptoms
 - set of phenotypes
- two approaches:
 - compare each class individually, then merge
 - directly set-based similarity measures

 similarity between a square-and-orange thing and a round-and-red thing

- similarity between a square-and-orange thing and a round-and-red thing
- Pesquita et al., 2007: $simGIC(X, Y) = \sum_{c \in A(X) \cap A(Y)} IC(c) \sum_{c \in A(X) \cup A(Y)} IC(c)$

- similarity between a square-and-orange thing and a round-and-red thing
- Pesquita et al., 2007: $simGIC(X, Y) = \sum_{c \in A(X) \cap A(Y)} IC(c) \sum_{c \in A(X) \cup A(Y)} IC(c)$
- $simGIC(so, rr) = \frac{2}{11}$

- alternatively: use different merging strategies
- common: average, maximum, best-matching average

▶ Average:
$$sim_A(X, Y) = \frac{\sum_{x \in X} \sum_{y \in Y} sim(x, y)}{|X| \times |Y|}$$

Max average: $sim_{MA}(X, Y) = \frac{1}{|X|} \sum_{x \in X} max_{y \in Y} sim(x, y)$

▶ Best match average: $sim_{BMA}(X,Y) = \frac{sim_{MA}(X,Y) + sim_{MA}(Y,X)}{2}$

- Semantic Measures Library:
 - comprehensive Java library
 - ▶ http://www.semantic-measures-library.org/
- R packages: GOSim, GOSemSim, HPOSim, LSAfun, ontologySimilarity,...
- Python: sematch, fastsemsim (GO only)

Applications of semantic similarity

- no obvious choice of similarity measure
- depends on application
 - e.g., predicting PPIs in different organisms through similarity may benefit from a different similarity measure!
- different similarity measures may react differently to biases in data
- needs some testing and experience

Applications of semantic similarity

Recommendations:

- use Resnik's information content measure
- use Resnik's similarity
- use Best Match Average
- use the full ontology
- classify your ontology using an automated reasoner before applying semantic similarity
 - although many ontologies come pre-classified
- ⇒ but there are many exceptions
 - ▶ similar location ⇒ use location subset of GO
 - ▶ developmental phenotypes ⇒ use developmental branch of phenotype ontology

Machine learning with ontologies: approaches

- syntactic: treat axioms as "sentences" using language models
- graph-based: treat ontologies as graphs (like in semantic similarity)
- model-theoretic: encode model-theoretic semantics in optimization

Ontologies: axioms, not graphs!

Overview	Browse DLQuery Download			
Annotation	Value			
label	B cell apoptotic process			
definition	Any apoptotic process in a B cell, a lymphocyte of B lineage with the phenotype CD19-positive and capable of B cell mediated immunity.			
class	http://purl.obolibrary.org/obo/GO_0001783			
ontology	GO-PLUS			
Equivalent	apoptotic process and (occurs in some B cell)			
SubClassOf	bClassOf occurs in some B cell, lymphocyte apoptotic process			
id	GO:0001783			
has_obo_name	espace biological_process			

Ontologies: axioms, not graphs!

Gene Ontology:

- behavior DisjointWith: 'developmental process'
- behavior SubclassOf: only-in-taxon some metazoa
- 'cell proliferation' DisjointWith: in-taxon some fungi
- 'cell growth' EquivalentTo: growth and ('results in growth of' some cell)

• ...

Ontology embeddings

Definition

Let $O = (\Sigma = (C, R, I); ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbb{R}^n$ (or $\Sigma(O) \mapsto \mathbb{R}^n$.

Ontology embeddings

Definition

Let $O = (\Sigma = (C, R, I); ax; \vdash)$ be an ontology with a set of classes C, a set of relations R, a set of instances I, a set of axioms ax and an inference relation \vdash . An ontology embedding is a function $f_{\eta}: C \cup R \cup I \mapsto \mathbb{R}^n$ (or $\Sigma(O) \mapsto \mathbb{R}^n$.

For example, we can use co-occurrence within ax^{\vdash} to constrain the embedding function, where the constraints on co-occurrence are formulated using the Word2Vec skipgram model.

Onto2Vec

Word2Vec

Maximize:

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{-c \le j \le c, j \ne 0} \log p(w_{n+j}|w_n) \tag{1}$$

with

$$p(w_o|w_i) = \frac{\exp(v_{w_o}^{\prime T} v_{w_i})}{\sum_{w=1}^{W} \exp(v_w^{\prime T} v_{w_i})}$$
(2)

(at least conceptually; different strategies are used to approximate Eqn. 2)

Word2Vec

Predicting PPIs: trainable similarity measures

Smaili et al. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.

Visualizing embeddings

Combination with text

- ontologies contain more than axioms:
 - ▶ labels, synonyms, definitions, authors, etc.
- Description Logic axioms != natural language
- transfer learning: learn on one domain/task, apply to another
 - e.g.: learn on literature, apply to ontologies
 - words have "meaning" in literature, Description Logic symbols have "meaning" in ontology axioms
- Ontologies Plus Annotations 2 Vec (OPA2Vec) combines both

Ontologies Plus Annotations 2 Vec

Axioms contribute to prediction tasks: GO and GO-PLUS

	Human	Yeast	Arabidopsis
GO_Onto2Vec	0.7660	0.7701	0.7559
GO_Onto2Vec_NN	0.8779	0.8711	0.8364
GO_plus_Onto2Vec	0.7880	0.7943	0.7889
$GO_plus_Onto2Vec_NN$	0.9021	0.8937	0.8834

Evaluating individual axioms

Testing how much each ontologies' axioms contribute to predictions:

	Hu	ıman	Arabidopsis		
	Onto2Vec	Onto2Vec_NN	Onto2Vec	Onto2Vec_NN	
GO (Baseline)	0.7660	0.8779	0.7559	0.8364	
ChEBI	0.7899(+0.0239)	0.8914(+0.0135)	0.7703(+0.0144)	0.8518(+0.0154	
PO	0.7752(+0.0092)	0.8776(-0.0003)	0.7671(+0.0112)	0.8469(+0.0105)	
CL	0.7743(+0.0083)	0.8810(+0.0031)	0.7612(+0.0053)	0.8371(+0.0007)	
PATO	0.7657(-0.0003)	0.8768(-0.0011)	0.7563(+0.0004)	0.8380(+0.0016)	

Evaluating definitions

Testing how much each ontologies' annotation properties contribute to predictions:

	Ho	ıman	Arabidopsis		
	Onto2Vec	Onto2Vec_NN	Onto2Vec	Onto2Vec_NN	
GO (Baseline)	0.8727	0.9033	0.8613	0.8903	
ChEBI	0.8571(-0.0156)	0.8801(-0.0232)	0.8601(-0.0012)	0.8880(-0.0023)	
PO	0.8680(-0.0047)	0.8824(-0.0209)	0.8632(+0.0019)	0.8908(+0.0005)	
CL	0.8811(+0.0084)	0.9037(+0.0004)	0.8614(+0.0001)	0.8899(-0.0004)	
PATO	0.8562(-0.0165)	0.8711(-0.0322)	0.8544(-0.0069)	0.8860(-0.0043)	

OPA2Vec

- https:
 //github.com/bio-ontology-research-group/opa2vec
- command line tool
 - input: OWL ontology, set of entities with annotations/associations
 - output: vectors for each class and entity
- includes Elk and HermiT
- limitations: word-based
 - ► still ignores semantics!

OPA2Vec Jupyter excercise

- open the notebook OPA2Vec.ipynb
- run the whole notebook
 - this should be relatively fast and not take too much time on a modern laptop
- play with the prediction methods (cosine similarity)