Physique

Semestre d'automne 2018

Simon Bossoney Guido Burmeister

moodle.epfl.ch

Série 1

Exercice 1

Exprimez

- un m^3 en ℓ ,
- un $m\ell$ en mm^3 ,
- un cm³ en m ℓ ,
- un cm en km,
- un $g \ell^{-1}$ en $kg m^{-3}$.

Exercice 2

La Terre est approximativement une boule de rayon $R=6370\,\mathrm{km}$. Quel est son volume en m³ ?

Exercice 3

Calculer le rayon de la terre en-dessous duquel elle serait un trou noir de même masse $M_T = 5.97 \cdot 10^{24}$ kg. Ce rayon, appelé rayon de Schwarzschild, est donné par

$$r_{\rm S} = \frac{2GM_T}{c^2} \,,$$

avec

 $G=6.67\cdot 10^{-11}\,\rm N\,m^2\,kg^{-2}$, constante de la gravitation universelle $c=3\cdot 10^8\,\rm m\,s^{-1}$, vitesse de la lumière où 1 N = 1 kg m s^{-2} .

Exercice 4

Calculez

- la masse de $0.6 \,\mathrm{m}^3$ d'air $(\rho_{\rm air} = 1.3 \,\mathrm{kg} \,\mathrm{m}^{-3})$,
- le volume de 65 g de chlore ($\rho_{\rm Cl} = 3.21 \, {\rm kg \, m^{-3}}$).

Exercice 5

On connaît la masse d'un bijou : $m=25.50\,\mathrm{g}$. On plonge ce dernier dans une éprouvette graduée contenant de l'eau. On observe que le bijou déplace $2.3\,\mathrm{cm}^3$ de liquide. Ce bijou est-il en or ? $(\rho_{\mathrm{Au}}=1.89\cdot 10^4\,\mathrm{kg\,m}^{-3})$

Exercice 6

Calculer la masse volumique des alliages obtenus en fondant

- (a) 40 g d'or ($\rho_{\rm Au} = 1.89 \cdot 10^4 \, \rm kg \, m^{-3}$) et 60 g d'argent ($\rho_{\rm Ag} = 1.05 \cdot 10^4 \, \rm kg \, m^{-3}$);
- (b) $40 \,\mathrm{cm}^3$ d'or et $60 \,\mathrm{cm}^3$ d'argent.

Préciser les hypothèses émises pour le calcul.

Exercice 7

Un câble d'acier ($\rho = 7.85 \cdot 10^3 \,\mathrm{kg} \,\mathrm{m}^{-3}$) de section circulaire (diamètre 5 cm) et de longueur 250 m doit être enroulé autour d'une bobine (diamètre 2 m).

- (a) Quelle est la masse du câble?
- (b) Combien de fois le câble s'enroule-t-il autour de la bobine?

Préciser les hypothèses faites pour justifier les calculs.

Réponses

 $\mathbf{Ex.\,1} \ \ 10^3\,\ell\,,\, 10^3\,\mathrm{mm}^3\,,\, 1\,\mathrm{m}\ell\,,\, 10^{-5}\,\mathrm{km}\,,\, 1\,\mathrm{kg}\,\mathrm{m}^{-3}\,.$

Ex. 2 $1.08 \cdot 10^{21} \,\mathrm{m}^3$.

Ex. 3 8.84 mm.

 $\mathbf{Ex.\,4} \ \ M_{\rm air} = 0.78\,{\rm kg}\,,\, V_{\rm Cl} = 2.02\cdot 10^{-2}\,{\rm m}^3.$

Ex. 5 Non.

Ex. 6 (a) $\rho_{\text{all}} \cong 12.77 \cdot 10^3 \,\text{kg m}^{-3}$ (b) $\rho_{\text{all}} = 13.86 \cdot 10^3 \,\text{kg m}^{-3}$.

Ex. 7 (a) $M = 3.85 \cdot 10^3 \,\mathrm{kg}$ (b) $N_{\mathrm{tours}} = 38.82$.