3 Squared RSA

(a) Direct Proof

Proof. We proceed by a direct proof. Given that p is prime and a, p is coprime, let a = kp + r where $k \in \mathbb{Z}, 1 < r < p$ since $r \neq 0$, so $r \in \{1, 2, ..., p - 1\}$ and that $a \equiv r \pmod{p}$. Thus, using Fermat's Little Theorem, we have that $a^{p-1} \equiv r^{p-1} \equiv 1 \pmod{p}$, and so $a^p \equiv 1 \cdot p \equiv p \pmod{p}$.

Let A denote the set of non-zero integers mod p^2 , i.e. $A = \{0, 1, 2, ..., p^2 - 1\}$. Let S be the subset of A where we exclude the multiples of p, i.e. 0, p, 2p, 3p, ..., (p-1)p. There are p-1 such multiples of p, so S has $p^2 - p = p(p-1)$ elements, and contains all the elements from 0 to $p^2 - 1$ that are not multiples of p, i.e. $S = \{kp + r \mid k \in \{0, 1, 2, ..., p-1\}, r \in \{1, 2, ..., p-1\}\}$.

Consider the sequence of numbers as we multiply each element of S by a, given that a, p are coprime, which represents $S^* = \{a(kp+r) \mid k \in \{0, 1, 2, ..., p-1\}, r \in \{1, 2, ..., p-1\}\}$. We claim that these are all distinct modulo p^2 .

First, we provide the proof for a smaller claim, that none of these numbers could be a multiple of p. Since $\forall k,r \leq p-1,k \in \mathbb{N},r \in \mathbb{Z}^+$, we have that $a(kp+r)=akp+ar\equiv ar\pmod{p}$. Since p is prime and that $\gcd(p,a)=1,\gcd(p,r)=1$, so we have $\gcd(p,ar)=1$, which gives us that $a(kp+r)\equiv ar\not\equiv 0\pmod{p}$. Therefore, for any $e\in S^*$, then $p\nmid e$. Moreover, let $e\equiv x\pmod{p^2}$, so $e=qp^2+x,q\in\mathbb{Z}$. If $p\mid x$, then with the fact that $qp^2=(qp)p,qp\in\mathbb{Z}$, so $p\mid (qp^2)$, and so $p\mid (qp^2+x)=e$, which gives the contradiction. Thus, $p\nmid x$.

Thus, $\forall e \in S^*$, let $e \equiv x \pmod{p^2}$, then $p \nmid x$. So, there are $p^2 - p$ possible remainders modulo p^2 (just as how I proved the number of elements in S). Now, we claim that for all elements in S^* , they are distinct modulo p^2 .

Assume for a contradiction that $\exists e_1, e_2 \in S^*, e_1 \neq e_2$, and $e_1 \equiv e_2 \pmod{p^2}$. So, $p^2 \mid (e_1 - e_2)$. Let $e_1 = a(k_1p + r_1), e_2 = a(k_2p + r_2)$ where $k_1, k_2, r_1, r_2 \leq p - 1, k_1, k_2 \in \mathbb{N}, r_1, r_2 \in \mathbb{Z}^+$, and let $e_1 - e_2 = k_p p^2, k_p \in \mathbb{Z}$. So $e_1 - e_2 = a(k_1p + r_1) - a(k_2p + r_2) = a(k_1 - k_2)p + a(r_1 - r_2)$ Since $p^2 \mid (e_1 - e_2)$, so $p \mid (e_1 - e_2)$, and since $a, k_1, k_2 \in \mathbb{Z}$, so $a(k_1 - k_2) \in \mathbb{Z}$, so $p \mid a(k_1 - k_2)p$, so $p \mid a(r_1 - r_2)$, since $\gcd(p, a) = 1$, so $p \nmid a$, and with p being prime, so $p \mid (r_1 - r_2)$. If $r_1 \neq r_2$, then $0 < |r_1 - r_2| < p - 2$, which means that $p \nmid (r_1 - r_2)$, implying contradiction, so $r_1 = r_2$.

Then, since $e_1 \neq e_2$, so $k_1 \neq k_2$. With a similar argument as above, so $p \nmid (k_1 - k_2)$, and let R be this assertion. However, with $r_1 = r_2$, so $a(r_1 - r_2) = 0$, so $k_p p^2 = e_1 - e_2 = a(k_1 - k_2)p$. Since $p \neq 0$, divide both sides by p and we have $k_p p = a(k_1 - k_2)$, so $p \mid a(k_1 - k_2)$. Again, since $\gcd(p, a) = 1$, so $p \nmid a$, and since p is prime, so $p \mid (k_1 - k_2)$, which implies $\neg R$. So, $R \land \neg R$ holds, reaching a contradiction, so for all elements in S^* , they are distinct modulo p^2 .

Thus, the set of numbers $S' = S^* \mod p^2 = \{a(kp+r) \mod p^2 \mid k \in \{0,1,2,...,p-1\}, r \in \{1,2,...,p-1\}\}$ includes every element of S exactly once, so it should be exactly the same as S, with possibly different order.

Now, first take the product of all elements of S, mod p^2 , would give us:

$$1 \cdot 2 \cdot \cdot \cdot (p-1) \cdot (p+1) \cdot \cdot \cdot (2p-1) \cdot (2p+1) \cdot \cdot \cdot \cdot \cdot (p^2-1) = \prod_{e \in S} e \pmod{p^2}.$$

On the other hand, take the product of all elements of S', mod p^2 , would give us:

$$a \cdot 2a \cdot \dots \cdot (p-1)a \cdot (p+1)a \cdot \dots \cdot (2p-1)a \cdot (2p+1)a \cdot \dots \cdot (p^2-1)a = \prod_{e \in S} ea = a^{|S|} \cdot \prod_{e \in S} e$$
$$= a^{p(p-1)} \cdot \prod_{e \in S} e \pmod{p^2}.$$

Thus, we have:

$$\prod_{e \in S} e \equiv a^{p(p-1)} \cdot \prod_{e \in S} e \pmod{p^2}.$$

Then, since every element of S is coprime with p^2 , so they would each have an inverse mod p^2 , and thus, $\prod_{e \in S} e$ would have an inverse mod p^2 . Therefore, multiplying both sides of the above equation by the inverse of $\prod_{e \in S} e \pmod{p^2}$, we have that $a^{p(p-1)} \equiv 1 \pmod{p^2}$, as desired. Q.E.D.

(b) Direct Proof

Proof. We proceed by a direct proof.

Consider the new RSA scheme where the public key is $(N = p^2q^2, e)$ with e being relatively prime to p(p-1)q(q-1), and the private key being $d = e^{-1} \pmod{p(p-1)q(q-1)}$. Also, we have our message x being relatively prime to both p and q, i.e. $x^{ed} \equiv x \pmod{N}$. To prove that the scheme is correct, We have to show that $D(E(x)) \equiv x \pmod{N}$ for every possible message $x \in \{0, 1, ..., N-1\}$.

By definition of RSA, since we didn't change the definition of encyprtion/decryption functions, so the encrypted message $y = E(x) \equiv x^e \pmod{N}$, so $D(y) = D(E(x)) \equiv (x^e)^d \equiv x^{ed} \pmod{N}$. Then, since we are given that x is relatively prime to both p and q, i.e. $x^{ed} \equiv x \pmod{N}$, so $D(E(x)) \equiv x^{ed} \equiv x \pmod{N}$, as desired.

Thus, the new scheme is correct $\forall x$ relatively prime to both p and q. Q.E.D.

(c) Direct Proof

Proof. We proceed by a direct proof. Suppose that we can break the new squared RSA scheme, i.e. if given p^2q^2 , then we can deduce p(p-1)q(q-1).

Then, if we're given pq, by squaring it, we can calculate $(pq)^2 = p^2q^2$. Now, we know that given p^2q^2 , we can deduce p(p-1)q(q-1). Since p(p-1)q(q-1) = (pq)(p-1)(q-1), so dividing p(p-1)q(q-1) by pq would give us (p-1)(q-1). Since the information pq is given to us, so we can deduce (p-1)(q-1) in this situation.

Thus, if the new scheme, squared RSA, can be broken (i.e. if given p^2q^2 , then we can deduce p(p-1)q(q-1)), then if we're given pq, we can also deduce (p-1)(q-1), which implies that the normal RSA would also be broken, as desired. Q.E.D.