IDL Library for Atomic Data of Ionized Nebulae

API Documentation for AtomNeb-idl

Contents

I	Overview	5
II	API	9
D^{i}	irectory: ./ 11	
	Overview	11
	atomneb_get_aeff_collection_reference_citation.pro	11
	atomneb_get_aeff_he_i_pfsd12_reference_citation.pro	12
	atomneb_get_aeff_n_ii_fsl13_reference_citation.pro	13
	atomneb_get_aeff_o_ii_ssb17_reference_citation.pro	15
	atomneb_get_aeff_ppb91_reference_citation.pro	16
	atomneb_get_aeff_sh95_reference_citation.pro	17
	atomneb_get_aij_reference_citation.pro	18
	atomneb_get_elj_reference_citation.pro	20
	atomneb_get_omij_reference_citation.pro	21
	atomneb_list_aeff_collection_references.pro	22
	atomneb_list_aeff_he_i_pfsd12_references.pro	23
	atomneb_list_aeff_n_ii_fsl13_references.pro	24
	atomneb_list_aeff_o_ii_ssb17_references.pro	25
	atomneb_list_aeff_ppb91_references.pro	26
	atomneb_list_aeff_sh95_references.pro	27
	atomneb_list_aij_references.pro	29
	atomneb_list_omij_references.pro	30
	atomneb_read_aeff_collection.pro	31
	atomneb_read_aeff_collection_list.pro	32
	atomneb_read_aeff_collection_references.pro	33
	atomneb_read_aeff_he_i_pfsd12.pro	34
	atomneb_read_aeff_he_i_pfsd12_list.pro	35
	atomneb_read_aeff_he_i_pfsd12_references.pro	36
	atomneb_read_aeff_n_ii_fsl13.pro	37
	atomneb_read_aeff_n_ii_fsl13_list.pro	38

4 IDL LIBRARY FOR ATOMIC DATA OF IONIZED NEBULAE

atomneb_read_aeff_n_ii_fsl13_references.pro		39
atomneb_read_aeff_o_ii_ssb17.pro		40
atomneb_read_aeff_o_ii_ssb17_list.pro		41
atomneb_read_aeff_o_ii_ssb17_references.pro		42
atomneb_read_aeff_ppb91.pro		43
atomneb_read_aeff_ppb91_list.pro		44
atomneb_read_aeff_ppb91_references.pro		45
atomneb_read_aeff_sh95.pro		46
atomneb_read_aeff_sh95_list.pro		47
atomneb_read_aeff_sh95_references.pro		48
atomneb_read_aij.pro		49
atomneb_read_aij_list.pro		50
atomneb_read_aij_references.pro		51
atomneb_read_elj.pro		51
atomneb_read_elj_list.pro		53
atomneb_read_elj_references.pro		53
atomneb_read_omij.pro		54
atomneb_read_omij_list.pro		55
atomneb_read_omij_references.pro		56
atomneb_search_aeff_collection.pro		57
atomneb_search_aeff_he_i_pfsd12.pro	•	58
atomneb_search_aeff_n_ii_fsl13.pro		59
atomneb_search_aeff_o_ii_ssb17.pro	•	61
atomneb_search_aeff_ppb91.pro		62
atomneb_search_aeff_sh95.pro		63
atomneb_search_aij.pro		64
		65
atomneb_search_omij.pro	•	05

Part I Overview

Overview

AtomNeb-idl is an IDL library for reading atomic data from the AtomNeb database for *collisionally excited lines* and *recombination lines* commonly observed in ionized nebulae.

- * AtomNeb database for collisionally excited lines contains energy levels (Ej), collision strengths (Îl'ij), and transition probabilities (Aij) of the most ions commonly observed in ionized nebulae:
- Collection dataset was compiled according to the atomic data used in pyNeb v1.0 and includes some improved atomic data from Cloudy v13.04 and the National Institute of Standards and Technology (NIST) Atomic Spectra Database, the CHIANTI atomic database.
- Chianti52, Chianti60, and Chianti70 datasets were compiled according to the atomic data used in the FORTRAN program MOCASSIN.
- * AtomNeb database for recombination lines contains effective recombination coefficient (Îseff), and Branching ratios (Br) of the most ions commonly observed in ionized nebulae.
- RC Collection dataset was compiled according to the atomic data used in the FORTRAN program MOCASSIN, and includes C II (Davey et al. 2000), N II (Escalante and Victor 1990), O II (Storey 1994; Liu et al. 1995), and Ne II ions (Kisielius et al. 1998).
- SH95 Collection dataset was compiled using hydrogenic ions for Z=1 to 8, namely H I, He II, Li III, Be IV, B V, C VI, N VII, and O VIII ions from Storey and Hummer (1995).
- PPB91 Collection dataset was compiled using the atomic data for H, He, C, N, O, Ne ions from Pequignot, Petitjean and Boisson (1991).
- PFSD12 He I dataset was compiled using effective He I recombination coefficients from Porter et al (2012) and (2013).
- FSL13 N II dataset was compiled using effective N II recombination coefficients from Fang, Storey and Liu (2011) and (2013).
- SSB17 0 II dataset was compiled using effective O II recombination coefficients from Storey, Sochi and Bastin (2017).

Dependencies

- * This package requires the following packages:
- The IDL Astronomy User's Library
- * To get this package with all the dependent packages, you can simply use git command as follows:

git clone --recursive https://github.com/atomneb/AtomNeb-idl.git

GDL Installation

* The GNU Data Language (GDL) can be installed on

```
    - Linux (Fedora):
        sudo dnf install gdl
    - Linux (Ubuntu):
        sudo apt-get install gnudatalanguage
    - OS X:
        brew install gnudatalanguage
```

- Windows: using the GNU Data Language for Win32 (Unofficial Version) or compiling the GitHub source with Visual Studio 2015 as seen in appveyor.yml.
- * To setup AtomNeb-idl in GDL, add its path to .gdl_startup in the home directory:

```
!PATH=!PATH + ':/home/AtomNeb-idl/pro/'
!PATH=!PATH + ':/home/AtomNeb-idl/externals/astron/pro/'
Set ''GDL_STARTUP'' in ''.bashrc'' (bash):
export GDL_STARTUP=~/.gdl_startup
or in .tcshrc (cshrc):
setenv GDL_STARTUP ~/.gdl_startup
```

- * This package needs GDL version 0.9.8 or later.
 - **IDL** Installation
- * To install AtomNeb-idl in IDL, add its path to your IDL path. For more information about the path management in IDL, read the IDL path management by Harris Geospatial or the IDL library installation by David Fanning.
 - * This package needs IDL version 7.1 or later.

Project statistics

Directories: 1
.pro files: 52
.sav files: 0
Routines: 52
Lines: 1,078

Part II

API

Directory: ./

Overview

```
atomneb_get_aeff_collection_reference_citation.pro
```

```
ATOMNEB_GET_AEFF_COLLECTION_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_collection.fits').

```
result = atomneb_get_aeff_collection_reference_citation(Atom_RC_file, atom, ion, /br,
    reference=string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_collection.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
br IN TYPE=boolean
set for the branching ratios (Br), may not necessary

reference IN TYPE=string
set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_collection.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='c'
IDL> ion='iii'; C III
IDL> citation=atomneb_get_aeff_collection_reference_citation(Atom_RC_file, atom, ion)
IDL> print, citation
    Davey, A. R., Storey, P. J. and Kisielius, R., Astron.Astrophys.Suppl., 142, 85, 2000
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aeff_he_i_pfsd12_reference_citation.pro

ATOMNEB_GET_AEFF_HE_I_PFSD12_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_he_ii_PFSD12.fits').

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_he_ii_PFSD12.fits')
```

```
atom IN REQUIRED TYPE=string
atom name e.g. 'he'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'PFSD13', may not necessary
```

Examples

For example:

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_get_aeff_n_ii_fsl13_reference_citation.pro

```
ATOMNEB_GET_AEFF_N_II_FSL13_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_n_iii_FSL13.fits').

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_n_iii_FSL13.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'n'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'FSL13', may not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='n'
IDL> ion='iii'; N II
IDL> reference='FSL13'
IDL> citation=atomneb_get_aeff_n_ii_fsl13_reference_citation(Atom_RC_file, atom, ion)
IDL> print, citation
Fang X., Storey P.J., and Liu X.-W., R. 2011, Astron.Astrophys. 530, A18; 2013, Astron.Astrophys. 55
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aeff_o_ii_ssb17_reference_citation.pro

```
ATOMNEB_GET_AEFF_O_II_SSB17_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_o_iii_SSB17.fits').

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_o_iii_SSB17.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'SSB17', may not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_o_iii_SSB17.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'; 0 II
IDL> reference='SSB17'
IDL> citation=atomneb_get_aeff_o_ii_ssb17_reference_citation(Atom_RC_file, atom, ion)
IDL> print, citation
Storey, P.J., Sochi, T. and Bastin, R. 2017, MNRAS, 470, 379; VizieR On-line Data Catalog: VI/150
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_get_aeff_ppb91_reference_citation.pro

```
ATOMNEB_GET_AEFF_PPB91_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_PPB91.fits').

```
result = atomneb_get_aeff_ppb91_reference_citation(Atom_RC_file, atom, ion, reference=
    string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'c'

ion IN REQUIRED TYPE=string ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_PPB91.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='c'
IDL> ion='iii'
```

IDL> citation=atomneb_get_aeff_ppb91_reference_citation(Atom_RC_file, atom, ion) IDL> print, citation Pequignot, D., Petitjean, P. and Boisson, C. Astron. Astrophys., 251, 680, 1991

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aeff_sh95_reference_citation.pro

ATOMNEB_GET_AEFF_SH95_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_SH95.fits').

result = atomneb_get_aeff_sh95_reference_citation(Atom_RC_file, atom, ion, reference= string, case1=string)

Returns

type=string. This function returns the Citation.

Parameters

```
Atom RC file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_SH95.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'h'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'ii'
```

Keywords

```
reference
              IN TYPE=string
     set for the reference, not necessary
case1
          IN TYPE=string
     set for the case 'a' or 'b', defualt 'b'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='h'
 IDL> ion='ii' ; H I
IDL> citation=atomneb_get_aeff_sh95_reference_citation(Atom_RC_file, atom, ion)
IDL> print, citation
    Storey, P. J. and Hummer, D. G., MNRAS, 272, 41S, 1995
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aij_reference_citation.pro

```
ATOMNEB_GET_AIJ_REFERENCE_CITATION
```

This function returns the reference citation for a transition probability (Aij) from the 2nd binary table extension of the FITS data file ('AtoAij.fits')

```
result = atomneb_get_aij_reference_citation(Atom_Aij_file, atom, ion, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_Aij_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('AtoAij.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
reference
              IN TYPE=string
     set for the reference e.g. 'FFT04'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Aij_file = filepath('AtomAij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> reference='FFT04'
IDL> citation=atomneb_get_aij_reference_citation(Atom_Aij_file, atom, ion, reference)
IDL> print, citation
    Froese Fischer et al 2004, ADNDT 87, 1
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

```
ATOMNEB_GET_ELJ_REFERENCE_CITATION
```

This function returns the reference citation for energy levels (Ej) from the 2nd binary table extension of the FITS data file ('Atom-Elj.fits').

```
result = atomneb_get_elj_reference_citation(Atom_Elj_file, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_Elj_file IN REQUIRED TYPE=string the FITS data file name ('AtomElj.fits')

reference IN TYPE=string set for the reference e.g. 'L7288'
```

Examples

For example:

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_get_omij_reference_citation.pro

```
ATOMNEB_GET_OMIJ_REFERENCE_CITATION
```

This function returns the reference citation for collision strengths (Omega ij) from the 2nd binary table extension of the FITS data file ('AtomOmij.fits').

```
result = atomneb_get_omij_reference_citation(Atom_Omij_file, atom, ion, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_Omij_file
                      IN REQUIRED TYPE=string
     the FITS data file name ('AtomOmij.fits')
         IN REQUIRED TYPE=string
atom
     atom name e.g. 'o'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
reference
              IN TYPE=string
     set for the reference e.g. 'SSB14'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
 IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> reference='SSB14'
 IDL> citation=atomneb_get_omij_reference_citation(Atom_Omij_file, atom, ion, reference)
 IDL> print, citation
    Storey, P. J., Sochi, T., and Badnell, N. R. 2014, Astron. Astrophys., 441, 3028
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_collection_references.pro

```
ATOMNEB_LIST_AEFF_COLLECTION_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_collection.fits').

```
result = atomneb_list_aeff_collection_references(Atom_RC_file, atom, ion, /br)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_collection.fits')
atom IN REQUIRED TYPE=string
atom name e.g. 'c'
ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
br IN TYPE=boolean set for the branching ratios (Br), may not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_collection.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='c'
IDL> ion='iii'; C III
IDL> list_cii_aeff_reference=atomneb_list_aeff_collection_references(Atom_RC_file, atom, ion)
IDL> print,list_cii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_list_aeff_he_i_pfsd12_references.pro

```
ATOMNEB_LIST_AEFF_HE_I_PFSD12_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_he_ii_PFSD12.fits').

```
result = atomneb_list_aeff_he_i_pfsd12_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the refer-

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_he_ii_PFSD12.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'he'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'ii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_he_ii_PFSD12.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='he'
```

```
IDL> ion='ii' ; He I
IDL> list_hei_aeff_reference=atomneb_list_aeff_he_i_pfsd12_references(Atom_RC_file, atom, ion)
IDL> print,list_hei_aeff_reference
    PFSD12 PFSD13
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_n_ii_fsl13_references.pro

ATOMNEB_LIST_AEFF_N_II_FSL13_REFERENCES

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_n_iii_FSL13.fits').

```
result = atomneb_list_aeff_n_ii_fsl13_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_n_iii_FSL13.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'n'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='n'
IDL> ion='iii' ; N II
IDL> list_nii_aeff_reference=atomneb_list_aeff_n_ii_fsl13_references(Atom_RC_file, atom, ion)
 IDL> print,list_nii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_o_ii_ssb17_references.pro

```
ATOMNEB_LIST_AEFF_O_II_SSB17_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb_list_aeff_o_ii_ssb17_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc o iii SSB17.fits')
```

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_o_iii_SSB17.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii' ; 0 II
IDL> list_oii_aeff_reference=atomneb_list_aeff_o_ii_ssb17_references(Atom_RC_file, atom, ion)
 IDL> print,list_oii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_ppb91_references.pro

```
ATOMNEB_LIST_AEFF_PPB91_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc PPB91.fits').

```
result = atomneb_list_aeff_ppb91_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom RC file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_PPB91.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'c'
       IN REQUIRED TYPE=string
ion
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_PPB91.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='c'
IDL> ion='iii'
IDL> list_cii_aeff_reference=atomneb_list_aeff_ppb91_references(Atom_RC_file, atom, ion)
IDL> print,list_cii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_sh95_references.pro

ATOMNEB_LIST_AEFF_SH95_REFERENCES

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_SH95.fits').

```
result = atomneb_list_aeff_sh95_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_SH95.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'h'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'ii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='h'
IDL> ion='ii' ; H I
 IDL> list_hi_aeff_reference=atomneb_list_aeff_sh95_references(Atom_RC_file, atom, ion)
IDL> print,list_hi_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_list_aij_references.pro

```
ATOMNEB_LIST_AIJ_REFERENCES
```

This function returns a list for all references of transition probabilities (Aij) for given element and ionic level from the FITS data file ('AtoAij.fits').

```
result = atomneb_list_aij_references(Atom_Aij_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_Aij_file
```

```
atom IN REQUIRED TYPE=string atom name e.g. 'o'

ion IN REQUIRED TYPE=string ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Aij_file = filepath('AtomAij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_aij_reference=atomneb_list_aij_references(Atom_Aij_file, atom, ion)
IDL> print,list_oiii_aij_reference
FFT04-SZ00 FFT04 GMZ97-WFD96 SZ00-WFD96
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

```
ATOMNEB_LIST_OMIJ_REFERENCES
```

This function returns a list for all references of collision strengths (Omega_ij) for given element and ionic level from the FITS data file ('AtomOmij.fits').

```
result = atomneb_list_omij_references(Atom_Omij_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string the FITS data file name ('AtomOmij.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'o'

ion IN REQUIRED TYPE=string ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_omij_reference=atomneb_list_omij_references(Atom_Omij_file, atom, ion)
IDL> print,list_oiii_omij_reference
AK99 LB94 Pal12-AK99 SSB14
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_collection.pro

```
ATOMNEB_READ_AEFF_COLLECTION
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_collection.fits').

```
result = atomneb_read_aeff_collection(Atom_RC_file, atom, ion, /br, reference=string)
```

Returns

```
type=an array of data. This function returns the effective recombination coefficients. aeff_data (c_iii_aeff) { Wavelength:o.o, a: o.o, b: o.o, c: o.o, d: o.o, f: o.o} aeff_data (n_iii_aeff) { a: o.o, b: o.o, c: o.o} aeff_data (n_iii_br) { Wavelength: o.o, BR: o.o, $ g1:o, g2:o, Mult1:", LowerTerm:", UpperTerm:" } aeff_data (o_iii_aeff) { Term: ", Case1: ", a2: o.o, a4: o.o, a5: o.o, a6: o.o, b: o.o, c: o.o, d: o.o} aeff_data (o_iii_br) { Wavelength:double(o.o), Br_A: o.o, Br_B: o.o, Br_C: o.o, g1: o, g2: o, Mult1: ", LowerTerm: ", UpperTerm: "} aeff_data (ne_iii_aeff) { Wavelength:o.o, a: o.o, b: o.o, c: o.o, d: o.o, f: o.o, br: o.o}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_collection.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
br IN TYPE=boolean set for the branching ratios (Br), may not necessary
```

```
reference IN TYPE=string set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_collection.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='c'
IDL> ion='iii' ; C III
 IDL> cii_rc_data=atomneb_read_aeff_collection(Atom_RC_file, atom, ion)
 IDL> temp=size(cii_rc_data.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,cii_rc_data[i].Wavelength, cii_rc_data[i].a, $
 IDL>
                                cii_rc_data[i].b, cii_rc_data[i].c, $
 IDL>
                                cii_rc_data[i].d, cii_rc_data[i].f
    914.00000
                                               -0.016300000
                                                                                   -0.88000000
                   0.69280000
                                  0.021400000
                                                                  -0.24310000
    962.00000
                   1.0998000
                                -0.0042000000
                                                 -0.027900000
                                                                  -0.22940000
                                                                                   -0.96560000
    . . .
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_collection_list.pro

ATOMNEB_READ_AEFF_COLLECTION_LIST

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_collection.fits')

private

result = atomneb_read_aeff_collection_list(Atom_RC_file)

Returns

type=an array of data. This function returns the aeff_data_list: { Aeff_Data:", Extention:o.o}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_collection.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_collection_references.pro

```
ATOMNEB_READ_AEFF_COLLECTION_REFERENCES
```

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_collection.fits').

```
result = atomneb_read_aeff_collection_references(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_reference: { Reference: ", Citation:"}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_collection.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_aeff_he_i_pfsd12.pro

```
ATOMNEB_READ_AEFF_HE_I_PFSD12
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_he_ii_PFSD12.fits').

result = atomneb_read_aeff_he_i_pfsd12(Atom_RC_file, atom, ion, /wavelength, reference= string)

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_he_ii_PFSD12.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'he'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Keywords

```
wavelength IN TYPE=boolean
set for returning the wavelengths
reference IN TYPE=string
set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_he_ii_PFSD12.fits', root_dir=base_dir, subdir=data_dir )
 IDL> atom='he'
IDL> ion='ii'; He I
IDL> hei_rc_data=atomneb_read_aeff_he_i_pfsd12(Atom_RC_file, atom, ion)
 IDL> hei_rc_data_wave=atomneb_read_aeff_he_i_pfsd12(Atom_RC_file, atom, ion, /wavelength)
 IDL> print,hei_rc_data[0].Aeff
    5000.0000
                    10.000000
                                                                     -25.948440
                                    -25.379540
                                                    -25.058970
 IDL> temp=size(hei_rc_data_wave.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,hei_rc_data_wave[i].Wavelength, hei_rc_data_wave[i].LowerTerm, hei_rc_data_wave[i].
    2945.00005p^{3}P2s^{3}S
    3188.00004p^{3}P2s^{3}S
    3614.00005p^{1}P2s^{1}S
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_he_i_pfsd12_list.pro

```
ATOMNEB_READ_AEFF_HE_I_PFSD12_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_he_ii_PFSD12.fits')

result = atomneb_read_aeff_he_i_pfsd12_list(Atom_RC_file)

Returns

type=an array of data. This function returns the aeff_data_list: { Aeff_Data:", Extention:o.o}

private

Parameters

Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_he_ii_PFSD12.fits')

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_he_i_pfsd12_references.pro

ATOMNEB_READ_AEFF_HE_I_PFSD12_REFERENCES

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_he_ii_PFSD12.fits').

```
result = atomneb_read_aeff_he_i_pfsd12_references(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_reference: { Reference:", Citation:"}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_he_ii_PFSD12.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_n_ii_fsl13.pro

```
ATOMNEB_READ_AEFF_N_II_FSL13
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_n_iii_FSL13.fits').

result = atomneb_read_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength_range, /wavelength , reference=string)

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_n_iii_FSL13.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'n'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
wavelength_range
                      IN REQUIRED TYPE=array
     wavelength range e.g. [4400.0, 7100.0]
```

Keywords

```
wavelength
                IN TYPE=boolean
     set for returning the wavelengths
reference
              IN TYPE=string
     set for the reference, not necessary
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
  IDL> data_rc_dir = ['atomic-data-rc']
  IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_dir )
  IDL> atom='n'
  IDL> ion='iii' ; N II
  IDL> wavelength_range=[4400.0, 7100.0]
   IDL> nii_rc_data=atomneb_read_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength_range)
   IDL> nii_rc_data_wave=atomneb_read_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength_range, /wavelength_range, /wavelength_ra
   IDL> print,nii_rc_data[0].Aeff
             255.000
                                                       79.5000
                                                                                                   47.3000
                                                                                                                                              12.5000
   IDL> temp=size(nii_rc_data_wave.Wavelength,/DIMENSIONS)
   IDL> n_line=temp[0]
   IDL> for i=0,n_line-1 do print,nii_rc_data_wave[i].Wavelength, nii_rc_data_wave[i].Tr, nii_rc_data_wave
             6413.236g - 4f2p6g G[9/2]o4 - 2p4f F[7/2]e3
             6556.326g - 4f2p6g G[9/2]o5 - 2p4f G[7/2]e4
             6456.976g - 4f2p6g G[9/2]o5 - 2p4f F[7/2]e4
```

private

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_n_ii_fsl13_list.pro

```
ATOMNEB_READ_AEFF_N_II_FSL13_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_n_iii_FSL13.fits')

result = atomneb_read_aeff_n_ii_fsl13_list(Atom_RC_file)

Returns

type=an array of data. This function returns the aeff_data_list: {Aeff_Data:", Extention:o, \$ IND:long(o), Wavelength: float(o.o), \$ Tr:", Trans: ", T_X: "}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_n_iii_FSL13.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_n_ii_fsl13_references.pro

```
ATOMNEB_READ_AEFF_N_II_FSL13_REFERENCES
```

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_n_iii_FSL13.fits').

```
result = atomneb_read_aeff_n_ii_fsl13_references(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_reference: { Reference:", Citation:"}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc n iii FSL13.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_aeff_o_ii_ssb17.pro

```
ATOMNEB_READ_AEFF_O_II_SSB17
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb_read_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength_range, /
    wavelength, reference=string)
```

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_o_iii_SSB17.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'

wavelength_range IN REQUIRED TYPE=array
wavelength range e.g. [5320.0, 5330.0]
```

Keywords

```
wavelength IN TYPE=boolean set for returning the wavelengths
```

```
reference
              IN TYPE=string
     set for the reference, not necessary
```

Examples

```
For example:
```

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
 IDL> Atom_RC_file= filepath('rc_o_iii_SSB17.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
 IDL> ion='iii' ; 0 II
 IDL> case1='B'
 IDL> wavelength_range=[5320.0, 5330.0]
 IDL> oii_rc_data=atomneb_read_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength_range)
 IDL> oii_rc_data_wave=atomneb_read_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength_range, /w
IDL> print,oii_rc_data[0].Aeff
    1.64100e-30 1.60000e-30 1.56400e-30 1.54100e-30 ...
IDL> temp=size(oii_rc_data_wave.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,oii_rc_data_wave[i].Wavelength, oii_rc_data_wave[i].lower_term, oii_rc_data_wave[i].
    5327.172s22p2(1S)3p 2Po
    5325.422s22p2(1S)3p 2Po
    5327.182s22p2(1D)3d 2Ge
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_o_ii_ssb17_list.pro

```
ATOMNEB_READ_AEFF_O_II_SSB17_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_o_iii_SSB17.fits')

private

```
result = atomneb_read_aeff_o_ii_ssb17_list(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_list:
{Aeff_Data:", Extention:o, $ IND:long(o), Wavelength: float(o.o),
$ Case1:", lower_term: ", upper_term: "}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_o_iii_SSB17.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_o_ii_ssb17_references.pro

```
ATOMNEB_READ_AEFF_O_II_SSB17_REFERENCES
```

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb_read_aeff_o_ii_ssb17_references(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_reference: { Reference:", Citation:"}

private

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_o_iii_SSB17.fits')
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_ppb91.pro

```
ATOMNEB_READ_AEFF_PPB91
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_PPB91.fits').

```
result = atomneb_read_aeff_ppb91(Atom_RC_file, atom, ion, reference=string)
```

Returns

```
type=an array of data. This function returns the effective
recombination coefficients: { Ion: ' ' Case1:" Wavelength:o.o,
a: o.o, b: o.o, c: o.o, d: o.o, br: o.o, y: o.o}
```

Parameters

```
Atom RC file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_PPB91.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'c'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
reference
              IN TYPE=string
     set for the reference, not necessary
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_PPB91.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='c'
IDL> ion='iii' ; C II
IDL> cii_rc_data=atomneb_read_aeff_ppb91(Atom_RC_file, atom, ion)
 IDL> temp=size(cii_rc_data.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,cii_rc_data[i].Ion,cii_rc_data[i].Case1, $
 IDL>
                                cii_rc_data[i].Wavelength, cii_rc_data[i].a, $
 IDL>
                                cii_rc_data[i].b, cii_rc_data[i].c, $
 IDL>
                                cii_rc_data[i].d, cii_rc_data[i].br, $
 IDL>
                                cii_rc_data[i].Q, cii_rc_data[i].y
    C2+A
              9903.4600
                              0.69700000
                                             -0.78400000
    C2+A
              4267.1500
                               1.0110000
                                             -0.75400000
                                                               . . .
```

private

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_ppb91_list.pro

```
ATOMNEB_READ_AEFF_PPB91_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_PPB91.fits')

```
result = atomneb_read_aeff_ppb91_list(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_list: { Aeff_Data:", Extention:o.o}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_ppb91_references.pro

ATOMNEB_READ_AEFF_PPB91_REFERENCES

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_PPB91.fits').

```
result = atomneb_read_aeff_ppb91_references(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_reference: { Reference: ", Citation:"}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

```
atomneb_read_aeff_sh95.pro
```

```
ATOMNEB_READ_AEFF_SH95
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_SH95.fits').

```
result = atomneb_read_aeff_sh95(Atom_RC_file, atom, ion, reference=string, case1=string)
```

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_SH95.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'h'

ion IN REQUIRED TYPE=string ionic level e.g 'ii'
```

Keywords

```
reference IN TYPE=string
set for the reference, not necessary

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='h'
IDL> ion='ii' ; H I
IDL> hi_rc_data=atomneb_read_aeff_sh95(Atom_RC_file, atom, ion)
IDL> print,hi_rc_data[0].Aeff
```

500,00000 0.0000000 4.2140000e-27 1.7560000e-27 ... 100.00000

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_sh95_list.pro

ATOMNEB_READ_AEFF_SH95_LIST

private

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_SH95.fits')

```
result = atomneb_read_aeff_sh95_list(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_list: { Aeff_Data:", Extention:o.o}

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_SH95.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_sh95_references.pro

ATOMNEB_READ_AEFF_SH95_REFERENCES

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_SH95.fits').

```
result = atomneb_read_aeff_sh95_references(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_reference: { Reference: ", Citation: "}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_SH95.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aij.pro

```
ATOMNEB_READ_AIJ
```

This function returns the transition probabilities (Aij) from the table extensions of the FITS data file ('AtomAij.fits').

```
result = atomneb_read_aij(Atom_Aij_file, atom, ion, reference=string, level_num=string)
```

Returns

```
type=an array of data. This function returns the aij_data: { Aij:dblarr(n_level,n_level) }.
```

Parameters

```
Atom\_Aij\_file
```

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string
set for the reference, not necessary

level_num IN TYPE=string
set for the maximum level number.
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
 IDL> data_dir = ['atomic-data', 'collection']
 IDL> Atom_Aij_file = filepath('AtomAij.fits', root_dir=base_dir, subdir=data_dir )
 IDL> atom='o'
 IDL> ion='iii'
 IDL> reference='FFT04'
 IDL> oiii_aij_data=atomneb_read_aij(Atom_Aij_file, atom, ion, reference=reference)
 IDL> print,oiii_aij_data.Aij[*,*]
    0.0000000
                2.5960000e-05
                                3.0300000e-11
                                                2.3220000e-06
                                                                     0.0000000
                                                                                  0.0021910000
    0.0000000
                                9.6320000e-05
                    0.0000000
                                                  0.0069510000
                                                                    0.22550000
                                                                                     230.80000
    0.0000000
                    0.0000000
                                    0.0000000
                                                  0.020290000
                                                                 0.00069980000
                                                                                     576.50000
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     1.6850000
                                                                                  0.0057770000
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     0.0000000
                                                                                 3.7600000e-11
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     0.0000000
                                                                                     0.000000
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aij_list.pro

```
ATOMNEB\_READ\_AIJ\_LIST
```

This function returns the list of transition probabilities (Aij) from the 1st binary table extension of the FITS data file ('AtomAij.fits').

```
result = atomneb_read_aij_list(Atom_Aij_file)
```

Returns

type=an array of data. This function returns the aij_data_list: { Aij_Data:", Extention:o.o}

Parameters

```
Atom_Aij_file IN REQUIRED TYPE=string the FITS data file name ('AtomAij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

private

atomneb_read_aij_references.pro

```
ATOMNEB_READ_AIJ_REFERENCES
```

private

This function returns the reference list of transition probabilities (Aij) from the 1nd binary table extension of the FITS data file ('AtomAij.fits').

```
result = atomneb_read_aij_references(Atom_Aij_file)
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}
```

Parameters

```
Atom_Aij_file IN REQUIRED TYPE=string the FITS data file name ('AtomAij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_elj.pro

```
ATOMNEB_READ_ELJ
```

This function returns the energy levels (Ej) from the table extensions of the FITS data file ('AtomElj.fits').

```
result = atomneb_read_elj(Atom_Elj_file, atom, ion, level_num=string)
```

Returns

```
type=an array of data. This function returns the elj_data: { Configuration:", Term:", J:", J_v:o.o, Ej:o.o, Reference:"}.
```

Parameters

```
Atom_Elj_file IN REQUIRED TYPE=string
the FITS data file name ('AtomElj.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
level_num IN TYPE=string set for the maximum level number.
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Elj_file = filepath('AtomElj.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
 IDL> ion='iii'
IDL> oiii_elj_data=atomneb_read_elj(Atom_Elj_file, atom, ion, level_num=6)
IDL> print,oiii_elj_data.J_v
                             2.00000
   0.00000
                1.00000
                                          2.00000
                                                       0.00000
                                                                    2.00000
IDL> print,oiii_elj_data.Ej
                   113.17800
                              306.17400
                                                   20273.270
                                                                   43185.740
   0.0000000
                                                                                   60324.790
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_elj_list.pro

```
ATOMNEB_READ_ELJ_LIST
```

private

This function returns the list of energy levels (Ej) from the 1st binary table extension of the FITS data file ('AtomElj.fits')

```
result = atomneb_read_elj_list(Atom_Elj_file)
```

Returns

```
type=an array of data. This function returns the elj_data_list: { Elj_Data:", Extention:o.o}
```

Parameters

```
Atom_Elj_file IN REQUIRED TYPE=string the FITS data file name ('AtomElj.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_elj_references.pro

```
ATOMNEB_READ_ELJ_REFERENCES
```

private

This function returns the reference list of energy levels (Ej) from the 2nd binary table extension of the FITS data file ('AtomElj.fits').

```
result = atomneb_read_elj_references(Atom_Elj_file)
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}
```

Parameters

```
Atom_Elj_file IN REQUIRED TYPE=string the FITS data file name ('AtomElj.fits')
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_omij.pro

```
ATOMNEB_READ_OMIJ
```

This function returns the collision strengths (omega_ij) from the table extensions of the FITS data file ('AtomOmij.fits').

```
result = atomneb_read_omij(Atom_Omij_file, atom, ion, reference=string, level_num=string)
```

Returns

```
type=an array of data. This function returns the omij_data: { level1:0, level2:0, strength:dblarr(temp_steps)}.
```

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string
the FITS data file name ('AtomOmij.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'SSB14'
```

level_num IN TYPE=string

set for the maximum level number.

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
 IDL> reference='SSB14'
 IDL> oiii_omij_data=atomneb_read_omij(Atom_Omij_file, atom, ion, reference=reference)
 IDL> print,oiii_omij_data.level1
            1
                    1
                                    1
                                            2
                                                            2
                                                                    3
 IDL> print,oiii_omij_data.level2
                                    5
                                            3
                                                            5
                                                                             5
                                                                                     5
            2
                    3
IDL> print,oiii_omij_data[0].strength
                    125.89254
                                    158.48932
                                                    199.52623
    100.00000
                                                                    251.18864
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_omij_list.pro

```
ATOMNEB_READ_OMIJ_LIST
```

This function returns the list of collision strengths (omega_ij) from the 1st binary table extension of the FITS data file ('Atom-Omij.fits').

result = atomneb_read_omij_list(Atom_Omij_file)

private

Returns

```
type=an array of data. This function returns the omij_data_list: { Omij_Data:", Extention:o.o}
```

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string the FITS data file name ('AtomOmij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_omij_references.pro

```
ATOMNEB_READ_OMIJ_REFERENCES
```

private

This function returns the reference list of collision strengths (omega_ij) from the 2nd binary table extension of the FITS data file ('AtomOmij.fits').

```
result = atomneb_read_omij_references(Atom_Omij_file)
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}
```

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string the FITS data file name ('AtomOmij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_search_aeff_collection.pro

```
ATOMNEB_SEARCH_AEFF_COLLECTION
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_collection.fits'), and returns the data entry.

```
result = atomneb_search_aeff_collection(Atom_RC_file, atom, ion, /br)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_collection.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'c'
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
br
      IN TYPE=boolean
     set for the branching ratios (Br), may not necessary
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_collection.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='c'
IDL> ion='iii'; C III
IDL> list_cii_aeff_data=atomneb_search_aeff_collection(Atom_RC_file, atom, ion)
IDL> print,list_cii_aeff_data
    c_iii_aeff
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aeff_he_i_pfsd12.pro

```
ATOMNEB_SEARCH_AEFF_HE_I_PFSD12
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_he_ii_PFSD12.fits'), and returns the data entry.

```
result = atomneb_search_aeff_he_i_pfsd12(Atom_RC_file, atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom RC file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_he_ii_PFSD12.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'he'
```

```
ion in required type=string ionic level e.g 'ii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_he_ii_PFSD12.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='he'
IDL> ion='ii' ; He I
IDL> list_hei_aeff_data=atomneb_search_aeff_he_i_pfsd12(Atom_RC_file, atom, ion)
IDL> print,list_hei_aeff_data
    he_ii_aeff_PFSD12 he_ii_aeff_PFSD13
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aeff_n_ii_fsl13.pro

```
ATOMNEB_SEARCH_AEFF_N_II_FSL13
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_n_iii_FSL13.fits'), and returns the data entry.

```
result = atomneb_search_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_n_iii_FSL13.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'n'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
wavelength
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='n'
IDL> ion='iii' ; N II
 IDL> wavelength=5679.56
 IDL> list_nii_aeff_data=atomneb_search_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength)
 IDL> print,list_nii_aeff_data.Wavelength
    5679.56
 IDL> print,list_nii_aeff_data.Aeff
    7810.00
                 1780.00
                              850.000
                                           151.000
                                                         74.4000
                                                                      53.1000
                                                                                   47.4000
    7370.00
                 1700.00
                              886.000
                                           206.000
                                                         110.000
                                                                      80.1000
                                                                                   70.8000
                              900.000
    7730.00
                 1680.00
                                           239.000
                                                         138.000
                                                                      103.000
                                                                                   92.9000
                              905.000
                                           244.000
                                                         142.000
                                                                      107.000
                                                                                   97.0000
    8520.00
                 1710.00
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aeff_o_ii_ssb17.pro

```
ATOMNEB_SEARCH_AEFF_O_II_SSB17
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_o_iii_SSB17.fits'), and returns the data entry.

```
result = atomneb_search_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom RC file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_o_iii_SSB17.fits')
         IN REQUIRED TYPE=string
atom
     atom name e.g. 'o'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
case1
          IN TYPE=string
     set for the case 'a' or 'b', defualt 'b'
wavelength
                IN TYPE=float
     set the wavelengths
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
 IDL> Atom_RC_file= filepath('rc_o_iii_SSB17.fits', root_dir=base_dir, subdir=data_rc_dir )
 IDL> atom='o'
 IDL> ion='iii' ; 0 II
 IDL> case1='B'
 IDL> wavelength=5325.42
 IDL> list_oii_aeff_data=atomneb_search_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength)
 IDL> print,list_oii_aeff_data.Wavelength
   5325.42
 IDL> print,list_oii_aeff_data.Aeff
   3.41800e-32 3.33300e-32 3.25700e-32 3.20900e-32 3.16800e-32 ...
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_search_aeff_ppb91.pro

```
ATOMNEB_SEARCH_AEFF_PPB91
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_PPB91.fits'), and returns the data entry.

```
result = atomneb_search_aeff_ppb91(Atom_RC_file, atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'c'

ion IN REQUIRED TYPE=string ionic level e.g 'iii'
```

Examples

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_search_aeff_sh95.pro

```
ATOMNEB_SEARCH_AEFF_SH95
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_SH95.fits'), and returns the data entry.

```
result = atomneb_search_aeff_sh95(Atom_RC_file, atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom RC file
                    IN REQUIRED TYPE=string
     the FITS data file name ('rc_SH95.fits')
         IN REQUIRED TYPE=string
     atom name e.g. 'h'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'ii'
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='h'
IDL> ion='ii' ; H I
```

```
IDL> list_hi_aeff_data=atomneb_search_aeff_sh95(Atom_RC_file, atom, ion)
IDL> print,list_hi_aeff_data
h_ii_aeff_a h_ii_aeff_b
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aij.pro

```
ATOMNEB_SEARCH_AIJ
```

This function searches transition probabilities (Aij) for given element and ionic levels in the FITS data file ('AtomAij.fits'), and returns the data entry.

```
result = atomneb_search_aij(Atom_Aij_file, atom, ion)
```

Returns

type=array of data. This function returns the Aij_Data.

Parameters

```
Atom_Aij_file IN REQUIRED TYPE=string
the FITS data file name ('AtoAij.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_omij.pro

```
ATOMNEB_SEARCH_OMIJ
```

This function searches collision strengths (omega_ij) for given element and ionic levels in the FITS data file ('AtomOmij.fits'), and returns the data entry.

```
result = atomneb_search_omij(Atom_Omij_file, atom, ion)
```

Returns

type=array of data. This function returns the Omij_Data.

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string the FITS data file name ('AtomOmij.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'o'
```

```
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_omij_data=atomneb_search_omij(Atom_Omij_file, atom, ion)
IDL> print,list_oiii_omij_data
    o_iii_omij_AK99 o_iii_omij_LB94 o_iii_omij_Pal12-AK99 o_iii_omij_SSB14
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1