Unit-I

[L:3; T:1; P:0 (4 credits)]

8L+4T

Atomic and molecular structure: Schrodinger equation. Interpratation of psi. Molecular orbitals treatment for homonuclear and heteronuclear diatomic molecules (H_2 to F_2).and (NO, HF, HCl). Pi-molecular orbitals of butadiene.

Crystal field theory and the energy level diagrams for transition metal ions(tetrahedral and octahedral) and their magnetic properties.

Unit-II 9L+3T

Spectroscopic techniques and applications: Principles of spectroscopy. Origin of Electronic spectroscopy. Fluorescence, Phosphorescence. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Nuclear magnetic resonance and magnetic resonance imaging.

Unit-III 8L+2T

Use of free energy in chemical equilibria: Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. cell potentials, the Nernst equation and applications. Acid base, oxidation reduction and solubility equilibria.

Unit-IV 6L +2T

Periodic properties: Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries.

Unit-V 8L+2T

Stereochemistry: Introduction, Basic concept in stereochemistry, optical isomerism, diastereomers, meso compounds, recemic mixture, and enatiomeric excess. Configuration, geometrical isomerism. Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Conformation analysis of ethane and n-butane.

Unit-VI 6L+2T

Organic reactions and synthesis of a drug molecule: Introduction of substitution, addition, elimination reaction. Mechanism of Industrially important organic reactions: Clemmensen reduction, Baeyer villigers, Diels Alder. Synthesis of a commonly used drug molecule(aspirin).

Reference Books

- 1. University chemistry, by B. H. Mahan, Narosa Book Distributors (1998)
- 2. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, McGraw-Hill; 3rd edition (1980)
- 3. Fundamentals of Molecular Spectroscopy, by C. N. Banwell, McGraw-Hill Inc., US; 3rd edition (1983)
- 4. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 5. Physical Chemistry, by P. W. Atkins, Oxford; 9th edition (2009)
- 6. Organic Chemistry: Structure and Function by K. P. C. Volhardt and N. E. Schore, W. H. Freeman; 7th edition (2014)

CY 103: Engineering Chemistry Laboratory

List of Experiments

[L:0; T:0; P:2 (1credit)]

S. No.	Name of Experiment.
1	To determine the total hardness of the water sample.
2	To determine the alkalinity of the water sample.
3	To determine the total residual chlorine in the given water sample.
4	To determine the dissolved oxygen in given sample of water.
5	To determine the total iron (Fe ²⁺ and Fe ³⁺ ion) in the given mixture solution by
	KMnO ₄ .
6	To determine the Ferrous (Fe ²⁺) and Ferric ions (Fe ³⁺) ions in the given mixture
	solution by K ₂ Cr ₂ O ₇ using internal indicator method.
7	To determine the saponification/acid value of an oil
8	To determine the rate of reaction.
9	To determination of the partition coefficient of a substance between two immiscible
	liquids
10	To determine the amount of Cu ⁺⁺ by iodometric titration.
11	To determine the cell constant and conductance of solutions
12	To find the normality of an acid solution by conductometrically.
13	Synthesis of a polymer/drug
14	Adsorption of acetic acid by charcoal

Note: Out of fourteen experiments, ten experiments are to be performed.

Reference Books:

- 1. Lab Manual by School of Vocational Studies and Applied Sciences
- 2. Applied Chemistry: Theory and Practice by O.P. Vermani and A.K. Narula, New Age International Pvt. Ltd. Publishers ,2008
- 3. Vogels Textbook of Quatitative Chemical Analysis, Revised by G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney. ELBS, Longman, Essex U. K, 5th edn. 1996
- 4. Laboratory Manual on Engg. Chemistry by S.K.Bhasin and Sudha Rani, Dhanpat Rai Publishing Co. (P) Ltd., 2009