· From now on, I'll use the term "vector space" without lecturing on that:

L7 o For a definition, see the handout

o In your mind, think "subspace of some IR"" everytime you encounter that word!

Recall. A basis for of vector space V is a set $B = 2b_1...,b_n 3$ which is linearly independent & which satisfies span ? b, ,..., b, 3 = V.

L> BK span $\overline{2b_1}$ $\overline{b_n}$ = V, every vector $\overline{x} \in V$ is a linear combo $\overline{X} = C$, $\overline{b_1}$ +...+ C_n by of elements of B. These C_1Cn are unique.

Ex: ? (1), (1) is a basis for IR2. (Check this!) WRT this besis,

we can write (1) EIR2:

write
$$\begin{bmatrix} 1 \end{bmatrix} \in \mathbb{R}^{2}$$
:
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2c_2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 2c_2 \end{bmatrix} \Rightarrow$$

So
$$\binom{0}{1} = \frac{-1}{2} \binom{1}{0} + \frac{1}{2} \binom{1}{2}$$

· we can imagine these values $C_{11}C_{2}$ as "coordinates" for $\binom{0}{1}$ wet the basis B:

$$\begin{bmatrix} \begin{pmatrix} c \\ 1 \end{pmatrix} \end{bmatrix} \begin{array}{l} \text{def} \\ \text{E} \end{array} \begin{array}{l} \text{Coordinate} \end{array} \begin{array}{l} \text{vector} \end{array} \begin{array}{l} \text{of} \\ \begin{pmatrix} c \\ 1 \end{pmatrix} \\ \text{WRT} \end{array} \begin{array}{l} \text{basis} \end{array} \begin{array}{l} \mathcal{B} \\ \text{basis} \end{array} \begin{array}{l} \mathcal{B} \\ \text{vector} \end{array} \begin{array}{l} \mathcal{C}_1 \\ \mathcal{C}_2 \end{array} \begin{array}{l} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 1/2 \end{pmatrix}.$$

standard basts for

Bosis B for 122

So: 1851, ..., bn3 8 x∈ V,

- If B is a basis for V.S. VA there exists unique constants C.,..., Cn & IR s.t. X=C, b,+...+ Cnbn.
- Def: The coordinates of $\overline{\chi}$ war B (alca B-coords of $\overline{\chi}$)
 are the vals $C_1,...,C_n$

 $\begin{bmatrix} \overrightarrow{x} \end{bmatrix}_{\mathcal{B}} \stackrel{\text{det}}{=} \begin{pmatrix} \overrightarrow{c}_1 \\ \overrightarrow{c}_n \end{pmatrix}.$ $\begin{bmatrix} \overrightarrow{x} \end{bmatrix}_{\mathcal{B}} \stackrel{\text{det}}{=} \begin{pmatrix} \overrightarrow{c}_1 \\ \overrightarrow{c}_n \end{pmatrix}.$ $\begin{bmatrix} \overrightarrow{x} \end{bmatrix}_{\mathcal{B}} \stackrel{\text{det}}{=} \begin{pmatrix} \overrightarrow{c}_1 \\ \overrightarrow{c}_n \end{pmatrix} \begin{pmatrix} -3 \\ 4 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} \begin{pmatrix} 3 \\ 7$

Ex: Find [x] B where $B = \frac{7}{3} \left(\frac{1}{3} \right), \left(\frac{3}{4} \right), \left(\frac{2}{3} \right) \frac{7}{3}$ & $x = \begin{pmatrix} 8 \\ -9 \\ 6 \end{pmatrix}$ want c_{1}, c_{2}, c_{3} s.t. $\begin{pmatrix} 8 \\ -9 \\ 6 \end{pmatrix} = c_{1} \left(\frac{1}{3} \right) + c_{2} \left(\frac{3}{4} \right) + c_{3} \left(\frac{2}{4} \right)$

 $= \begin{pmatrix} 1 & -3 & 2 \\ -1 & 4 & -2 \\ -3 & 9 & 4 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix} = A \vec{c}$ Int to solve $A \vec{C} = \vec{x}$.

2

Ex (Cont.cl) • In terms of augmented matrices,

1 -3 2 8

-1 4 -2 -9

-3 9 4 6 REEF 6 0 10 30 $= 7 \quad C_3 = 3 \\ C_2 = -1$ $= 7 \quad C_1 - 3(-1) + 2(3) = 8$ $= 7 \quad C_1 + 3 + 6 = 8$ => c1+9=8 => c1=-1 So $\begin{bmatrix} \vec{X} \end{bmatrix} \vec{B} = \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix}$.

Note: This eq. (#) had the form $\vec{x} = AB \begin{bmatrix} \vec{X} \end{bmatrix} \vec{B}$ where LHS is wer standard basis & $\begin{bmatrix} \vec{X} \end{bmatrix} \vec{B}$ is • In the previous example, note that we could augment any vector $\vec{y} = \begin{pmatrix} \vec{y}_1 \\ \vec{y}_2 \end{pmatrix} \in \mathbb{R}^3$ to form $(A:\vec{y})$ and the result would be the weights C1, C2, C3 needed to write if (wer the standard basis) as [y] to (wer the basis e in that particular example. B= {\vec{b}_1 = (\frac{1}{3}), \vec{b}_2 = (\frac{1}{4}), \vec{b}_3 = (\frac{12}{4}) \vec{z}} This has a name! Def: Given a basis for the n-dim V.S. V. F The matrix $A_B = [b_1 | \cdots | b_n]$ converts the & B-coordinades for a vector $\mathbf{x} \in \mathbf{r} \mathbf{r}^n$ into the standard coordinates & vice versa; $\vec{x} = A_{\mathcal{B}} [\vec{x}]_{\mathcal{B}} \iff [\vec{x}_{\mathcal{B}}] = A_{\mathcal{B}} [\vec{x}].$ As is called the change of coordinates matrix. HA B to

