Technika bezdrátové komunikace B2B17TBK

Část 1 - úvod

Přemysl Hudec

ČVUT-FEL katedra elektromagnetického pole

hudecp@fel.cvut.cz

verze 2025

Obsah

- Bezdrátové "wireless" komunikace
- Použití vysokých frekvencí
- Antény
- Dosažitelná šířka pásma
- Související předměty EK

Bezdrátové komunikace

- Komunikace = přenos informací hlas, video, data
- Bezdrátové = přenos informací pomocí elektromagnetických vln šířících se ve volném prostředí
- Drátové = přenos informací pomocí elektromagnetických vln šířících se podél vedení = speciálních metalických (optických) struktur
- Elektromagnetické vlny = opakování B2B17EMP, B2B17ELD
- Jakákoliv elektrická energie (na družici, z elektrárny, mezi µ-procesorem a pamětí, z baterie k LED, ...) se šíří výlučně pomocí min. 1 složky elektrického pole E a min. 1 složky magnetického pole H

Příklad vařič 2 kW

- Na nízkých frekvencích pole bez problémů prostupuje tkání
- Na 50 Hz prostupují 2 kW rukou bez povšimnutí

- Na vysokých frekvencích vznikají uvnitř tkáni intenzivní ztráty, tkáně se zahřívají
- Princip mikrovlnné trouby
- Na 1 GHz by došlo k velmi rychlému ohřátí - popálení

Elektromagnetické vlny

• Složky **E** a **H** jsou na sobě kolmé a tvoří Poyntingův vektor

$$\hat{\vec{S}} = \hat{\vec{E}} x \hat{\vec{H}}$$

- Vlna na vedení šíří se podél metalické struktury ("koleje", vlna se nerozptyluje)
- Uvnitř vodičů se žádná energie nešíří
- Vlna ve volném prostředí nepotřebuje "koleje" za cenu obrovského plýtvání, jen zcela zanedbatelná část vyslané energie je využita
- Ve volném prostředí versus na vedení úplně stejné elektromagnetické vlny jen s trochu jinou konfigurací
- V radiových zařízení se využívají oba typy vln a plynuje se mezi nimi přechází

Radiová "wireless" zařízení

- Mimořádně široké použití → R, TV, GPS, mobilní komunikace, radarová technika, satelitní komunikace, spojení s letadly, loděmi, WLAN, Wi-Fi...
- Příklad: Mobilní telefony → obsahují přijímače/vysílače GSM, DCS, UMTS, LTE, WiFi, GPS, FM-R, bluetooth
- **Nějaké "rádio" je již téměř v každém zařízení** → např. fotoaparáty (bluetooth, GPS), tlakoměry na pneumatikách, kartáčky na zuby (bluetooth), ...
- S nějakým "rádiem" bude dříve nebo později pracovat (navrhovat, nastavovat, ...) každý
- Pro efektivní návrh/používání je nutné znát základní principy, struktury a konfigurace

CAR

"Business"

- Objem bezdrátově přenášených dat se z 2-násobuje každých 1,5 roku
- Zabírají stále větší objem celkového světového datového toku
- Použití (velká řada různých služeb):
 - Je to NEZBYTNÉ → dané datové spojení není možné vytvořit jinak = komunikace se satelity, letadly, loděmi, mobilní komunikace , ...
 - Je to JEDNODUŠŠÍ, RYCHLEJŠÍ, POHODLNĚJŠÍ → náhrada metalických nebo optických spojů = Wi-Fi, bluetooth, WLAN, point-to-point, ...
- Radiové trasy "point-to-point" (bod-bod) → lze je instalovat a zprovoznit během hodin až dnů
- Metalická nebo optická propojení → plánování, schvalování, výkopy, instalace, ...
 mohou trvat měsíce až roky

Pracovní frekvence

- Běžně 100 MHz 100 GHz
 - Radio Frequency = RF
 - o Microwave = 300 MHz − 30 GHz
 - o Mm wave = 30 300 GHz
 - THz = nad 300 GHz
- Používají se stále vyšší a vyšší frekvence důvody:
 - Volnější pásma → jednodušeji získatelná, menší rušení (=interference)
 - Větší použitelné šířky pásem B (větší
 B = větší datový tok)
 - Menší rozměry antén
- Nižší frekvenční pásma (<6 GHz) → již víceméně plně obsazená

Šířka pásma

- Frequency bandwidth $B=f_{horni}-f_{dolni}$
- Přímý vztah s datovým tokem C, teoreticky až $C = B \log_2(1 + SNR)$
- Běžně C > B
- Příklad: NOKIA realizovala 10 Gbps v *B*=100 MHz @28 GHz
- Při použití stejné modulace 2B poskytuje 2C
- Frekvenční šířky pásma:
 - Na nižší frekvencích < 6 GHz velmi omezené
 - Je to téměř stejná "komodita" jako voda, uhlí, …
 - Prodávají se za miliardy CZK, Euro
- Často v %:

Frekvence (GHz)	B _{1%} (MHz)	B _{10%} (MHz)
0,1	1	10
1	10	100
10	100	1000
100	1000	10000

Vysoké GHz frekvence

- 30 300 GHz, označení mm-wave
 - Vlnová délka 10 až 1 mm
 - Poskytuje velmi široká B řádově GHz
 - Umožňuje Gbps
 - Stále ještě velmi málo obsazené
 - Antény mohou být přímo na čipu 122 GHz

- Obecně velké útlumy
- Obvykle malý dosah
- Doposud drahé (ceny rychle klesají)
- 5G komunikace → 27-80 GHz, 5 Gbps při dosahu do cca 100 m

Frekvence (GHz)	B _{10%} (MHz)	FSL (dB) @ 100m
0,1	10	52
1	100	72
10	1000	92
100	10000	112

Antény

- Jedny ze základních komponent všech radiových tras
- Mnoho různých typů
- Rozměry přímo souvisí s f, λ
- Základní rozměr je λ/2
- Na vyšších frekvencích jsou tedy rozměry vždy menší ($\lambda = c/f$)
- Mohou být i $>> \lambda/2$, např. parabolické antény

Frekvence	λ	λ/2
1 MHz	300 m	150 m
10 MHz	30 m	15 m
100 MHz	3 m	1,5 m
1 GHz	30 cm	15 cm
10 GHz	3 cm	1,5 cm
100 GHz	3 mm	1,5 mm

Malé antény

- Velmi důležité např. v mobilních komunikacích
- Rozměry $<\lambda/2$ (5 10x)
- Ale obvykle nižší účinnost
- Přímo na čipu v pásmech mm nebo THz
- Podrobnosti dále v kurzu

Tento předmět → B2B17TBK

- Úvod to techniky bezdrátových radiových komunikací
- Zaměřen na:
 - Fyzikální základy
 - Používané komponenty a obvody
 - Důležité systémové výpočty
 - Běžně používané struktury vysílačů (TX) a přijímačů (RX)
 - Nejčastěji používané měřicí přístroje (v rámci semináře) a laboratoří
 - Šíření elektromagnetických vln v různých prostředích (volné prostředí, město, vnitřky budov, ...)
- Velký rozsah problematiky omezený počet hodin
- Další podrobnosti v souvisejících resp. navazujících předmětech

Související / navazující předměty - Bc.

- B2B17EMP Elektromagnetické pole
 - Teorie elektromagnetického pole je základem všech bezdrátových přenosů
- B2B17ELD Elektrodynamika
 - Běží paralelně, teoretické základy bezdrátových komunikací, velmi důležité !!!
- B2B32TSI Telekomunikační systémy a sítě
 - Popis komunikačních systémů zejména s ohledem na protokoly
- B2B37SAS Signály a soustavy
 - Velmi důležité popisy signálů
- B2B17VPD Vedení pro datové přenosy
 - Bližší popis metalických vedení používají se i pro konstrukci pasivních i aktivních radiových obvodů
 - o Podrobněji telegrafní rce, Smithův diagram, impedanční přizpůsobování, ...
- B2B37ROZ Rádiové obvody a zařízení
 - o Podrobnější popis radiových obvodů
 - Podrobnější popis používaných modulací

Související / navazující předměty - Mgr.

B2M32MKS Buňkové mobilní sítě

o Podrobný popis struktur a protokolů mobilních sítí

B2M37DKM Digitální komunikace

Detailní popis modulací a metod zpracování signálů

B2M17ANT Antény

Podrobný popis návrhu různých typů antén

B2M17SBS Šíření vln pro bezdrátové spoje

 Analýza šíření elektromagnetických vln v různých prostředích - volné prostředí, uvnitř měst, uvnitř budov, ...

B2M17MIO Mikrovlnné obvody

- Návrh všech důležitých aktivních i pasivních mikrovlnných obvodů
- Cvičení = praktické návrhy konkrétních obvodů s využitím profi SW

B2M17MIM Mikrovlnná měření

Podrobný popis důležitých VF a mikrovlnných měřicích přístrojů a metod
 Řada praktických měření s použitím moderních přístrojů