Junk et al. Lead-Lag Input Filter Arrangement For Electro-Pneumatic Control Loops Attorney Docket No. 06005/561655 Sheet 1 of 5 (Figs. 1 and 2)

FIG. 1

FIG. 2 310 315 320 130 120 (00) Latency 360 囲 355 Q 350 345 自 340 230 335 220 228 Lead/Lag Ratio Options · Opening-Closing -Lag Time-Filter Response 2.0 O No Filter ▲ -150 210 O Lag -10.0 O Lead-Lag 200 1.5 1.5_ 3.7 O Aysm. Lead-Lag 0.0 0.0 5.0 time (sec) 1 1.4 205 Filter Coefficients 0.5 214 0.5 xxx sec 0.5 Lag Time: **Apply** Opening Ratio: xxx 0.2 -216 0 Reset Closing Ratio: xxx A 212 207 200 209 200

Junk et al.
Lead-Lag Input Filter Arrangement For Electro-Pneumatic
Control Loops
Attorney Docket No. 06005/561655
Sheet 2 of 5 (Fig. 3)

FIG. 3

Junk et al. Lead-Lag Input Filter Arrangement For Electro-Pneumatic Control Loops Attorney Docket No. 06005/561655 Sheet 3 of 5 (Figs. 4 and 7)

FIG. 4

○ValveLink Stimulus (Square Wave)
Nominal Set Point (%) Step Size (%) Step Hold Time (sec)

FIG. 7

Junk et al. Lead-Lag Input Filter Arrangement For Electro-Pneumatic Control Loops Attorney Docket No. 06005/561655 Sheet 4 of 5 (Fig. 5)

FIG. 5

Junk et al.
Lead-Lag Input Filter Arrangement For Electro-Pneumatic
Control Loops
Attorney Docket No. 06005/561655
Sheet 5 of 5 (Fig. 6)

LEAD/LAG RATIO **EAD/LAG RATIO** LEAD/LAG RATIO **LEAD/LAG RATIO** DISABLE USER DISABLE USER DISABLE USER **ENABLE USER** FOR CLOSING FOR CLOSING FOR CLOSING FOR CLOSING INTERFACE INTERFACE NTERFACE NTERFACE CONTROL CONTROL CONTROL CONTROL CLOSING -EAD/LAG RATIO VALUE STORED RATIO SET TO IN DATABASE **USER INPUTS** RATIO VALUE LEAD/LAG LEAD/LAG LEAD/LAG LEAD/LAG RATIO SET RATIO SET CLOSING CLOSING **CLOSING** CLOSING TO 0.0 TO 0.0 **.EAD/LAG RATIO .EAD/LAG RATIO** LEAD/LAG RATIO **EAD/LAG RATIO** DISABLE USER DISABLE USER **ENABLE USER ENABLE USER** FOR OPENING FOR OPENING FOR OPENING FOR OPENING INTERFACE NTERFACE INTERFACE NTERFACE CONTROL CONTROL CONTROL CONTROL OPENING LEAD/LAG RATIO VALUE STORED RATIO SET TO N DATABASE **USER INPUTS** RATIO VALUE LEAD/LAG RATIO SET LEAD/LAG RATIO SET LEAD/LAG LEAD/LAG OPENING **OPENING OPENING OPENING** TO 0.0 TO 0.0 FOR CHANGING FOR CHANGING FOR CHANGING FOR CHANGING DISABLE USER **ENABLE USER ENABLE USER ENABLE USER** INTERFACE INTERFACE INTERFACE INTERFACE AG TIME AG TIME CONTROL AG TIME AG TIME CONTROL CONTROL CONTROL LAG **USER INPUTS USER INPUTS USER INPUTS** VALUE FOR ▼ VALUE FOR **VALUE FOR VALUE SET** LAG TIME SECONDS LAG TIME LAG TIME LAG TIME TO 0.0 ASYMMETRIC LEAD-LAG **▼**LEAD-LAG NONE P LAG WHICH FILTER TYPE OPTION IS SELECTED DETERMINE