

Universidad Nacional de Rosario

TESINA DE GRADO

PARA LA OBTENCIÓN DEL GRADO DE LICENCIADO EN CIENCIAS DE LA COMPUTACIÓN

Velocidad De Convergencia De Las Secuencias De Juego Ficticio Alternante

Autor: Federico Badaloni Directores: Ariel Arbiser Maximiliano Cristiá

Departamento de Ciencias de la Computación Facultad de Ciencias Exactas, Ingeniería y Agrimensura Av. Pellegrini 250, Rosario, Santa Fe, Argentina

31 de julio de 2021

Resumen

El proceso de aprendizaje de juego ficticio, propuesto por primera vez por Brown en 1951 [1] como un método para encontrar equilibrios de un juego finito de suma cero [2] a través de la repetición de este en un proceso iterativo, nos provee una posible racionalización a través de la cuál los jugadores pueden llegar a un equilibrio de Nash. Brown propuso dos variantes de juego ficticio: simultaneo y alternante, que se diferencian en la información que en cada iteración tienen los jugadores al momento de tomar su decisión.

Desde la teoría de juegos algorítmica, la utilidad del juego ficticio fue cuestionada en publicaciones que argumentan que si bien el proceso converge, puede requerir una cantidad de iteraciones exponencial en el tamaño de representación del juego y es por tanto menos eficiente que otros métodos para encontrar equilibrios de Nash, como las mecánicas de no arrepentimiento o la resolución del problema de optimización lineal equivalente. Sin embargo, estas publicaciones se refieren solo al juego ficticio simultaneo.

En este trabajo, extenderemos el estudio realizado en 2013 por Brandt, Fischer y Harrenstein sobre la velocidad de convergencia del juego ficticio simultaneo a la variante alternante y aportaremos algunos resultados que indican que esta variante podría tener una utilidad práctica superior a su contraparte simultanea como mecanismo para encontrar equilibrios de Nash puros.

cita

Índice general

Ín	ndice general	IV
1	Introducción 1.1. Organización de este trabajo	1 2
2	Estado del arte 2.1. Convergencia del juego ficticio	5 5 6
3	Conceptos previos 3.1. Juegos bimatriciales y equilibrios de Nash 3.2. Categorías de juegos 3.3. Juego ficticio 3.4. Ejemplos	7 7 8 9 11
4	Resultados 4.1. Equivalencia de las distintas definiciones	15 16 18 20
5 B;	Conclusiones 5.1. Trabajo futuro	27 27

Capítulo 1

Introducción

Creada por John Von Neumann y Oskar Morgenstern , la teoría de juegos surgió en ladécada de 1940 motivada en parte por la Segunda Guerra Mundial. Estudia una variedad de situaciones en las que diversos agentes interactúan y toman decisiones estratégicas con el fin de obtener beneficios con interdependencias. Para ello, la teoría estudia los comportamientos, la posibilidad de maximizar esas ganancias según variados criterios y los casos de equilibrio, a la vez que formula y analiza modelos.

La teoría de juegos ha estado también históricamente muy ligada a la economía. En esta ciencia, juega un rol fundamental en el estudio de la toma de decisiones y el modelado de actores económicos como agentes racionales. Tal es así que se han concedido más de 10 premios Nobel de Economía en reconocimiento a investigaciones sobre teoría de juegos. Hoy en día, la mayor parte de la investigación en teoría de juegos es publicada en revistas de ciencias económicas.

En la intersección entre la teoría de juegos y las ciencias de la computación se encuentra la teoría de juegos algorítmica. Esta rama, que se caracteriza por su enfoque más cuantitativo y concreto, típicamente modela aplicaciones como problemas de optimización y busca soluciones óptimas, resultados de imposibilidad, cotas de complejidad, garantías de aproximación, etc. La teoría de juegos algorítmica asume la necesidad de complejidades algorítmicas razonables (polinomiales) como condición necesaria sobre el comportamiento de los participantes de un sistema. Entre sus varias aplicaciones podemos mencionar el estudio de redes de tráfico, diseño de protocolos,

No hay una única forma de introducir la teoría de juegos. El enfoque clásico trata sobre juegos en forma normal (en particular los matriciales), estrategias puras y mixtas, la existencia de equilibrios y los procesos de negociación y arbitraje, especialmente a partir de planteos axiomáticos. Interesa asimismo el estudio abstracto de funciones de utilidad, loterías, modelos de subastas, esquemas de votación a partir de preferencias en la sociedad y, más recientemente, los juegos combinatorios, que se plantean algebraicamente (a partir de la idea del Nim , los juegos pueden sumarse y multiplicarse, también considerar fracciones de estos y compararlos mediante relaciones de orden, con consecuencia útiles para el análisis de las estrategias involucradas).

En este trabajo nos interesan particularmente los juegos de dos jugadores en forma

eitar

cita

cita

normal y el estudio de sus equilibrios. Existen en la literatura varios conceptos que capturan la noción de equilibrio, pero sin duda el más estudiado es el equilibrio de Nash: una combinación de jugadas en la que todos los jugadores están jugando lo mejor que pueden dadas las jugadas de los otros o, dicho de otra forma, ninguno tiene un incentivo para jugar de forma distinta, rompiendo este equilibrio. Sin embargo, una crítica muy común al equilibrio de Nash es que falla en capturar una noción sobre como jugadores racionales llegan a un estado estable a través de un proceso de deliberación.

El proceso de aprendizaje de juego ficticio, propuesto por primera vez por Brown en 1951 [1] como un método para encontrar equilibrios de un juego finito de suma cero [2] a través de la repetición de este en un proceso iterativo, nos provee una posible racionalización a través de la cuál los jugadores pueden llegar al equilibrio de Nash. El proceso consiste en que cada uno de ambos jugadores lleve una cuenta de la frecuencia de las jugadas realizadas por el otro, decidiendo la propia en cada turno como su mejor respuesta contra la jugada "media" del otro (tomando su historial de jugadas como una distribución empírica).

Brown propuso dos variantes de juego ficticio: simultaneo y alternante, que se diferencian en la información que en cada iteración tienen los jugadores al momento de tomar su decisión. En el simultaneo, ambos jugadores tienen el historial de jugadas hasta la iteración anterior, mientras que en el alternante, el historial del segundo jugador contiene también la jugada del primero en la iteración actual. Este segundo enfoque es un poco contra-intuitivo, pues rompe uno de los principios de la teoría de juegos: la toma de decisiones de cada jugador se considera siempre como procesos independientes uno del otro. Es quizás por este motivo que el estudio posterior en juego ficticio se focalizó en la variante simultanea. Así, se han encontrado varias categorías de juegos para los cuales este proceso converge al equilibrio de Nash. [Algunos hitos más?]

Desde la teoría de juegos algorítmica, la utilidad del juego ficticio fue cuestionada en publicaciones que argumentan que si bien el proceso converge, puede requerir una cantidad de iteraciones exponencial en el tamaño de representación del juego y es por tanto menos eficiente que otros métodos para encontrar equilibrios de Nash, como las mecánicas de no arrepentimiento o la resolución del problema de optimización lineal equivalente. Sin embargo, estos trabajos se refieren solo al juego ficticio simultaneo y no existe en la literatura actual un estudio exhaustivo sobre la utilidad del juego ficticio alternante como un mecanismo para encontrara equilibrios de Nash.

En este trabajo, presentaremos algunos resultados con los que proponemos que el juego ficticio alternante es, desde un punto de vista computacional, un mecanismo al menos tan eficiente como el simultaneo y en algunos casos incluso mejor.

1.1. Organización de este trabajo

En el capítulo 2 haremos un repaso de la literatura existente en juego ficticio, comenzando por el estudio de su convergencia y luego enfocándonos en los resultados sobre su velocidad de convergencia.

En el capítulo 3 presentaremos los conceptos teóricos fundamentales necesarios para este estudio. Definiremos los juegos en forma normal, los equilibrios de Nash, el juego ficticio en sus dos variantes y algunas de las categorías de juegos mas estudias en la literatura sobre el tema. Daremos también algunos ejemplos sobre juegos clásicos.

En el capítulo 4 presentaremos los resultados novedosos encontrados. Extenderemos el estudio que hicieron Brandt, Fischer y Harrenstein [3] sobre la velocidad de convergencia del juego ficticio simultaneo a la variante alternante. Para esto, comenzaremos por demostrar la equivalencia entre la definición de juego ficticio que ellos utilizan y la convencional que podemos encontrar en el resto de la literatura. Luego, presentaremos una demostración alternativa a un importante teorema sobre convergencia de de juego ficticio simultaneo . Además presentaremos dos lemas sobre la conservación del juego ficticio al expandir juegos que nos permitirán interpretar mejor los resultados.

z exteremos el mismo a la variante alternantei.

Capítulo 2

Estado del arte

2.1. Convergencia del juego ficticio

El proceso de aprendizaje de juego ficticio fue propuesto por primera vez por Brown en 1951 [1] como un algoritmo para encontrar el valor de un juego de suma cero finito. Hacia finales del mismo año, Robinson [4] demostró que el proceso converge para todos los juegos de esta clase.

Desde entonces, se han publicado numerosos trabajos analizando la convergencia del juego ficticio en juegos que no sean de suma cero. Miyazawa [5] demostró que esta propiedad vale para todos los juegos de 2×2 pero, su demostración depende de la incorporación de una regla de desempate particular sin la cual, Monderer y Sela [6] demostraron que no se cumple. Por su parte, Shapley [7] mostró un ejemplo de un juego de 3×3 el cuál no converge.

Además, la convergencia del juego ficticio fue demostrada para juegos de intereses idénticos [8], juegos potenciales con pesos [9], juegos no degenerados con estrategias complementarias y ganancias disminuyentes [10] y ciertas clases de juegos compuestos [11].

Por otro lado, se han estudiado muchas variantes del juego ficticio. Una de las mas analizadas es el juego ficticio continuo, definida originalmente en la publicación original de Brown [1], aunque este no la exploró en detalle. Monderer y Sela [12] demostraron que esta converge para juegos no degenerados de 2×3 y Berger luego extendió este resultado a $2\times N$ [13] y aportó la convergencia de los juegos de potencial ordinal y quasi-supermodulares con ganancias disminuyentes . Otros ejemplos de variantes propuestas pueden verse en [14] y [15].

La variante en la que nos enfocaremos particularmente en este trabajo es el juego ficticio con actualización alternante de creencias. Berger [16] planteó que esta versión alternante es en realidad la original que definió Brown en [1] y que si bien el proceso con actualización simultanea de creencias que usan todos los investigadores de teoría de juegos en la actualidad puede resultar mas intuitivo, es también menos potente y da como ejemplo la clase de los juegos no degenerados con potencial ordinal para la cuál la versión alternante converge, pero la simultanea no.

citar

quizas detallar estas

exapndir
con otros
trabajos que
mencionen
AFP o al
menos decir
que hay

2.2. Velocidad de convergencia del juego ficticio

Los trabajos mencionados hasta ahora se enfocan en el estudio de la eventual convergencia global a un equilibrio de Nash de las distintas clases de juegos. Otro enfoque de investigación es la velocidad de convergencia en los casos en la que esta ocurre. El interés por este se debe en gran medida a la equivalencia entre los juegos de suma cero y los problemas de programación lineal, demostrada por Dantzig, Gale y Von Neumann [17] [18].

En 1994, Gass y Zafra [19] planteaban que hasta la fecha, lo más eficiente para resolver un juego de suma cero era plantearlo como un problema de programación lineal y aplicar el método simplex. En el mismo artículo, plantean un meotodo mixto con simplex y una variante de juego ficticio y concluyen que permite acelerar la convergencia en ciertos problemas de programación lineal. Lambert y Smith [20] plantean también una variante (con muestreo) y discuten su eficiencia en problemas de optimización a gran escala.

Vale la pena mencionar en este punto lo que en la literatura del tema se conoce como la Conjetura de Karlin. En 1959, Samuel Karlin [21] conjeturó que la velocidad de convergencia del juego ficticio es $O(t^{-\frac{1}{2}})$ para todos los juegos. La idea proviene de que esta cota superior se corresponde con la de la velocidad de convergencia de otro método de aprendizaje muy relacionado con el juego ficticio, las dinámicas de no-arrepentimiento [22] [23]. Daskalakis y Pan [24] probaron falsa una versión fuerte de la Conjetura de Karlin (usando una regla de desempate arbitraria) pero dejaron abierta la pregunta sobre la versión general, que ellos llaman débil, de la conjetura.

La utilidad del juego ficticio como método para computar equilibrios de Nash fue puesta en duda cuándo Brandt, Fischer y Harrenstein [3] demostraron que para los juegos de suma cero, los no degenerados de $2 \times N$ y los potenciales (tres de las clases mas estudiadas), existen casos en los que el proceso de juego ficticio puede requerir una cantidad de rondas exponencial en el tamaño de representación en bits de las utilidades del juego antes de que se juegue algún equilibrio. En esta publicación, los autores mencionan brevement que sus resultados pueden ser extendido al juego ficticio alternante pero no profundizan en esto.

Capítulo 3

Conceptos previos

3.1. Juegos bimatriciales y equilibrios de Nash

Sea (A, B) un juego en forma bimatricial de $n \times m$, es decir un juego de dos jugadores finito en el que el jugador 1 (jugador fila) tiene acciones $i \in N = \{i_1, i_2, \dots, i_n\}$ y el jugador 2 (jugador columna) tiene acciones $j \in M = \{j_1, j_2, \dots, j_m\}$. $A, B \in \mathbb{R}^{n \times m}$ son las matrices de pago de los jugadores 1 y 2. Si el jugador 1 elige la acción i y el jugador 2 elige la acción j, la ganancia del jugador 1 será $a_{i,j}$ y la ganancia del jugador 2 será $b_{i,j}$. Describiremos los juegos en forma bimatricial con una matriz de pares como la siguiente:

Notaremos con $\Delta(X)$ al espacio de probabilidades sobre el conjunto X y llamaremos estrategias mixtas a los vectores de la forma $x \in \Delta(N)$ y $y \in \Delta(M)$. A las estrategias que asignan probabilidad 1 a una acción y 0 a todas las otras, las llamaremos estrategias puras. Notaremos con \tilde{h} a la estrategia pura correspondiente a la acción h.

La ganancia esperada del jugador 1 al jugar la acción i contra la estrategia mixta y del jugador 2 será $\widetilde{i}Ay$. Análogamente, la ganancia esperada del jugador 2 al jugar la acción j contra la estrategia mixta x del jugador 2 será $xB\widetilde{j}$. Si ambos jugadores juegan las estrategias mixtas x e y respectivamente, sus ganancias esperadas pueden calcularse como xAy para el jugador 1 e yB^tx para el jugador 2.

Si y es una estrategia mixta del jugador 2, definimos el **conjunto de mejores** respuestas a y como $BR_1(y) = argmax_{i \in N}\{\tilde{i}Ay\}$ y, análogamente, si x es una estrategia mixta del jugador 2, el conjunto de mejores respuestas a x será $BR_2(x) = argmax_{j \in M}\{xB\tilde{j}\}$. Es decir, son los conjuntos de índices que maximizan las ganancias esperadas contra una estrategia dada.

Este concepto puede expandirse de índices a estrategias mixtas. Si x es una estrategia mixta del jugador 1 e y es una estrategia mixta del jugador 2, decimos que $x \in BR_1(y)$ si $\forall i \in N, x_i > 0 \implies i \in BR_1(y)$.

Llamaremos **equilibrio de Nash** a todo perfil de estrategias mixtas $(x^*, y^*) \in \Delta(A) \times \Delta(B)$ tal que $x^* \in BR_1(y^*)$ e $y^* \in BR_2(x^*)$. En el caso particular de que las estrategias sean puras, al equilibrio lo llamaremos también **equilibrio de Nash puro**.

3.2. Categorías de juegos

Es útil clasificar a los juegos en distintas categorías según sus propiedades. Presentamos a continuación algunas de las categorías de juegos mas estudiadas en la literatura sobre juego ficticio.

Definición 3.2.1. Un juego (A, B) de tamaño $n \times m$ es un **juego de suma cero** si $\forall i \in N, j \in M : a_{ij} = -b_{ij}$. Para estos casos, nos referiremos al juego usando solo la matriz A.

Los juegos de suma cero son una de las categorías más estudiadas en teoría de juegos. Representan los juegos en los que un jugador siempre gana tanto como pierde el otro. Uno de los teoremas fundacionales del área, conocido como el Teorema de Minimax [25] establece que todos poseen al menos un equilibrio de Nash puro y a la ganancia para el jugador fila en un equilibrio la llamamos valor del juego (pues es la misma en todos los equilibrios).

Definición 3.2.2. Llamamos **degenerado** a un juego bimatricial (A, B) de tamaño $n \times m$ si se cumple alguna de las siguientes condiciones:

- Existen $i, i' \in N$ $y j \in M$ con $i \neq i'$ tales que $a_{ij} = a_{i'j}$
- Existen $j, j' \in M$ e $i \in N$ con $j \neq j$ ' tales que $b_{ij} = b_{ij'}$

En caso contrario, decimos que el juego es no degenerado.

Los juegos no degenerados son de particular interés porque capturan el concepto de un juego en el que, para cada acción del rival, no existen dos acciones con el mismo pago. Por lo tanto, el conjunto de mejor respuesta contra una acción dada es siempre unitario

Las siguientes definiciones corresponden a otras dos categorías de juegos que han sido muy estudiados por sus propiedades de convergencia en los procesos de juego ficticio. Nos serán útiles en la sección 4.4 cuando discutamos los resultados sobre su velocidad de convergencia.

Definición 3.2.3. Un juego bimatricial (A, B) de tamaño $n \times n$ es un juego simétrico $si \ \forall i, j \in N : a_{ij} = -b_{ji}$

Definición 3.2.4. Un juego (A, B) de tamaño $n \times m$ es un juego de intereses idénticos si $\forall i \in N, j \in M : a_{ij} = b_{ij}$. En este caso también nos referiremos al juego usando solo la matriz A.

aca pueden ir comentarios sobre cuales de los juegos ejemplo caen en cuales categorías

9

3.3. Juego ficticio

El algoritmo de juego ficticio consiste en una repetición iterada de un juego en la que en cada instancia los jugadores juegan una jugada que sea mejor respuesta a al historial de jugadas de su oponente, tomada como una distribución empírica. En esta sección presentaremos dos definiciones formales que podemos encontrar en la literatura sobre juego ficticio, a las cuales incorporaremos el concepto de **reglas de desempate**. Este concepto nos permitirá precisar las definiciones, removiendo una ambigüedad que ocurre en los casos en los que los conjuntos de mejor respuesta no son unitarios.

Definición 3.3.1. Llamamos **reglas de desempate** de un juego ficticio a un par de funciones $d_1: \mathbb{P}^+(N) \to N$ y $d_2: \mathbb{P}^+(M) \to M$ que a cada subconjunto de acciones de un jugador en un eventual empate le asignan la acción que elegirá el proceso, cumpliendo la condición de Hauthakker:

$$\forall N_a, N_b \in P^+(N), \text{ si } N_b \subseteq N_a, i \in N_b \text{ y } d_1(N_a) = i \text{ entonces } d_1(N_b) = i$$

 $\forall M_a, M_b \in P^+(M), \text{ si } M_b \subseteq M_a, j \in M_b \text{ y } d_2(M_a) = j \text{ entonces } d_2(M_b) = j$

Algunos autores como Berger, Monderer, Sela, Shapley, Daskalakis y Pan [16] [12] [6] [8] [24] utilizan una definición del estilo de la siguiente, que resulta cómoda para estudiar convergencia y es la que veremos primero. Presentaremos dos variantes, correspondientes a la versión simultanea y a la alternante.

Definición 3.3.2. Sean (A, B) un juego en forma bimatricial de $n \times m$ y una secuencia (i^{τ}, j^{τ}) con $i^{\tau} \in N$, $j^{\tau} \in M$ para todo $\tau \in \mathbb{N}$. Si d_1 y d_2 son reglas de desempate y tenemos unas secuencias de creencias x^{τ} e y^{τ} tales que para todo $\tau \in \mathbb{N}$:

$$x^{\tau} = \frac{\sum_{s=1}^{\tau} \widetilde{i}^{s}}{\tau}$$
$$y^{\tau} = \frac{\sum_{s=1}^{\tau} \widetilde{j}^{s}}{\tau}$$

Entonces:

- (i^{τ}, j^{τ}) es una secuencia de juego ficticio simultáneo si (i^1, j^1) es un elemento arbitrario de $N \times M$ y para todo $\tau \in \mathbb{N}$ se cumplen $i^{\tau+1} = d_1(BR_1(y^{\tau}))$ y $j^{\tau+1} = d_2(BR_2(x^{\tau}))$.
- (i^{τ}, j^{τ}) es una secuencia de juego ficticio alternante si i^0 es un elemento arbitrario de N y para todo $\tau \in \mathbb{N}$ se cumplen $i^{\tau+1} = d_1(BR_1(y^{\tau}))$ y $j^{\tau} = d_2(BR_2(x^{\tau}))$.

Vale la pena hacer algunos comentarios sobre esta primera definición. Para empezar, observando las secuencias de creencias, x^{τ} e y^{τ} , veremos que se componen de sumas de vectores unitarios, pero normalizados por el tiempo, por lo que son estrategias mixtas que se corresponden con la distribución empírica de las acciones de cada jugador. Por

otro lado, como los elementos iniciales son arbitrarios, un mismo juego puede tener tantos procesos de juego ficticio válidos como jugadas iniciales existan.

Las definiciones que usan autores previamente mencionados establecen una condición mas débil sobre las jugadas, pidiendo solo que pertenezcan al conjunto de menor respuesta a la estrategia mixta percibida. Esto implica, como mencionamos recientemente, que aparecen ambigüedades en los casos en los que el conjunto de menor respuesta no es unitario. Una forma de eliminar esta ambigüedad fue centrarse en el estudio de los juegos no degenerados [16]. En este trabajo, tomamos el enfoque alternativo de eliminar la ambigüedad introduciendo las reglas de desempate.

Sobre la variante alternante vale aclarar que efectivamente, el jugador columna toma su decisión incorporando en sus creencias la información sobre qué jugó el jugador fila en la ronda actual, si bien esto puede resultar poco intuitivo ya que normalmente en teoría de juegos se representa jugadores eligiendo simultánea e independientemente. Otra observación relevante es que su acción inicial no es arbitraria sino que ya se encuentra fijada por la mejor respuesta o mejores respuestas a la acción del jugador fila.

Diremos que un proceso de juego ficticio (simultaneo o alternante) converge de forma pura en la iteración k si (i^k, j^k) es un equilibrio de Nash puro. En el capítulo 4 veremos que cuando esto ocurre, (i^k, j^k) se repetirá infinitamente desde este punto en el tiempo. Diremos también que el proceso converge de forma mixta si existe un equilibrio de Nash mixto tal que para todo $\epsilon > 0$ existe un $k \in \mathbb{N}$ tal que $|x^* - x^k| < \epsilon$ y $|y^* - y^k| < \epsilon$.

Alternativamente, Brandt, Fischer y Harrenstein utilizan una definición similar a la de Robinson [4] pero simplificada. Es más cómoda para estudiar velocidades de convergencia en juegos que se sabe que convergen. A continuación, presentamos también esta definición.

Definición 3.3.3. Sea (A, B) un juego en forma bimatricial de $n \times m$:

■ Una secuencia de juego ficticio simultaneo en (A, B) es una secuencia $(p^{\tau}, q^{\tau})_{\tau \in \mathbb{N}}$ de pares de vectores no negativos $(p^i, q^i) \in \mathbb{N}^n \times \mathbb{N}^m$ tal que:

$$p^{0} = 0, q^{0} = 0$$

$$p^{\tau+1} = p^{\tau} + \widetilde{i} \text{ donde } i = d_{1}(argmax_{i' \in N}\{\widetilde{i'}Aq^{\tau}\})$$

$$q^{\tau+1} = q^{\tau} + \widetilde{j} \text{ donde } j = d_{2}(argmax_{j' \in M}\{p^{\tau}B\widetilde{j'}\})$$

■ Una secuencia de juego ficticio alternante en (A, B) es una secuencia $(p^{\tau}, q^{\tau})_{\tau \in \mathbb{N}}$ de pares de vectores no negativos $(x^i, y^i) \in \mathbb{N}^n \times \mathbb{N}^m$ tal que:

$$p^{0} = 0, q^{0} = 0$$

$$p^{\tau+1} = p^{\tau} + \widetilde{i} \text{ donde } i = d_{1}(argmax_{i' \in N}\{\widetilde{i'}Aq^{\tau}\})$$

$$q^{\tau+1} = q^{\tau} + \widetilde{j} \text{ donde } j = d_{2}(argmax_{j' \in M}\{p^{\tau+1}B\widetilde{j'}\})$$

Como podemos observar, la principal diferencia con la primera definición es que mientras en aquella se define una secuencia de jugadas que cumple una condición contra

3.4. EJEMPLOS

Iteración (t,	j) x	а	xB	y	Ay
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0, 2) $(0, 2)$ $(0, 2)$,50, 0,50) (,33, 0,67) ((1,00, 2,00) (0,67, 1,67)	$ \begin{array}{c} (1,00, 0,00) \\ (0,50, 0,50) \\ (0,33, 0,67) \\ (0,25, 0,75) \end{array} $	(1,00, 2,00) (0,67, 1,67)

Tabla 3.1: Proceso de juego ficticio simultaneo sobre el Dilema del Prisionero

un historial de creencias sobre la estrategia mixta del otro jugador, en esta la secuencia es de pares de contadores de jugadas (sin normalizar, por lo que no son estrategias mixtas), que cumplen en cada iteración una condición de maximizar el producto de la matriz de pagos contra el contador del rival (sin ser este tampoco la ganancia esperada por no estar el resultado normalizado). En el capítulo 4 se demostrará que estas dos definiciones son equivalentes.

3.4. Ejemplos

Veamos como se aplican todos estos conceptos a algunos juegos clásicos de la literatura. Comenzaremos por el Dilema de los Prisioneros:

$$\begin{array}{c|cc} & j_1 & j_2 \\ i_1 & (2,2) & (0,3) \\ i_2 & (3,0) & (1,1) \end{array}$$

Este juego es muy estudiado por su propiedad de que si bien la mayor ganancia para ambos jugadores se encuentra en que se juegue el perfil (i_1, j_1) , su único equilibrio de Nash puro es el perfil (i_2, j_2) . En la tabla 3.1 podemos observar como se desarrolla un proceso de juego ficticio simultáneo sobre este juego, comenzando desde (i_1, j_1) . Para las primeras 5 iteraciones, se muestra el perfil jugado, cómo se actualizan las creencias sobre la estrategia de los jugadores y las consecuentes ganancias esperadas de cada jugador para sus jugadas a lo largo de la secuencia.

Como vemos, si ambos jugadores empiezan cooperando, en la segunda ronda la mejor respuesta individualmente para cada uno será desviarse de este perfil, jugando respectivamente i_2 y j_2 . Las creencias, que como mencionamos previamente son observaciones empíricas de una estrategia mixta supuesta según el historial del oponente, ahora indican que cada jugador juega cada una de las acciones con probabilidad 0,5. Como veremos en la sección 4.2, dado que (i_2,j_2) es un equilibrio de Nash puro, podemos asegurar que se jugará infinitamente.

La tabla 3.2 muestra el mismo juego pero en un proceso de juego ficticio alternante. Como vemos, ya en la primera iteración el jugador 2 reacciona a i_1 jugando j_2 como

Iteración	(i,j)	x	xB	y	Ay
1 2 3 4	(1, 2) (2, 2) (2, 2) (2, 2)	(1,00, 0,00) (0,50, 0,50) (0,33, 0,67) (0,25, 0,75) (0,20, 0,80)	(0,67, 1,67) (0,50, 1,50)	(0,00, 1,00) (0,00, 1,00) (0,00, 1,00) (0,00, 1,00) (0,00, 1,00)	(0,00, 1,00) (0,00, 1,00)

Tabla 3.2: Proceso de juego ficticio alternante sobre el Dilema de los Prisioneros

mejor respuesta. El proceso continúa de forma similar, aunque el jugador fila cree que el jugador columna está siguiendo una estrategia pura.

Pasando al siguiente ejemplo, vemos en esta matriz el clásico juego de Piedra, Papel o Tijera. Dado que es un juego de suma cero, lo representamos solamente con las ganancias del jugador 1. Además, para facilitar la lectura, nombramos las jugadas con R, P y S (por las iniciales en inglés).

En las tablas 3.3 y 3.4 respectivamente podemos ver respectivamente un desarrollo de juego ficticio simultáneo y alternante. Para el caso simultáneo, el proceso comienza con el jugador fila jugando piedra y el columna jugando papel. Inmediatamente el jugador fila cambia su estrategia a jugar tijera, mientras el columna se mantiene en papel porque lo proyecta exitoso. En la tercera iteración el jugador 2, esperando que el jugador 1 juegue piedra o tijera con iguales probabilidades pero descartando que pueda jugar papel, maximizará su ganancia esperada jugando piedra. Estos cambios continuaran infinitamente pero lentamente, las creencias convergen al único equilibrio de Nash mixto de esto juego, que consiste en que cada jugador juegue cada acción con $\frac{1}{3}$ de probabilidad.

ajustar tamaño de

El caso alternante es similar, aunque con una clara ventaja del jugador columna, que comienza ya reaccionando a la piedra del jugador fila con papel. Esta ventaja sin embargo va disminuyendo con el paso de las iteraciones y eventualmente también converge en creencias.

Veamos por último un ejemplo bien conocido en la literatura de juego ficticio.

$$\begin{array}{c|cccc} j_1 & j_2 & j_3 \\ i_1 & (1,0) & (0,-1) & (0,1) \\ i_2 & (0,1) & (1,0) & (0,-1) \\ i_3 & (0,0) & (0,1) & (1,0) \end{array}$$

3.4. EJEMPLOS

	(i,j)	x	xB	y	Ay
Iteración					
1	(i_R, j_P)	(1,00, 0,00, 0,00)	(0,00, 1,00, -1,00)	(0,00, 1,00, 0,00)	(-1,00, 0,00, 1,00)
2	(i_S, j_P)	(0,50, 0,00, 0,50)	(0,50, 0,00, -0,50)	(0,00, 1,00, 0,00)	(-1,00, 0,00, 1,00)
3	(i_S, j_R)	(0,33, 0,00, 0,67)	(0,67, -0,33, -0,33)	(0,33, 0,67, 0,00)	(-0.67, 0.33, 0.33)
4	(i_P, j_R)	(0,25, 0,25, 0,50)	(0,25, -0,25, 0,00)	(0,50, 0,50, 0,00)	(-0.50, 0.50, 0.00)
5	(i_P, j_R)	(0,20, 0,40, 0,40)	(0,00, -0,20, 0,20)	(0,60, 0,40, 0,00)	(-0.40, 0.60, -0.2)
6	$(i_P,\ j_S)$	(0,17, 0,50, 0,33)	(-0.17, -0.17, 0.33)	(0,50, 0,33, 0,17)	(-0.17, 0.33, -0.1
7	$(i_P,\ j_S)$	(0.14, 0.57, 0.29)	(-0.29, -0.14, 0.43)	(0,43, 0,29, 0,29)	(0.00, 0.14, -0.14)
8	$(i_P,\ j_S)$	(0,12, 0,62, 0,25)	(-0.38, -0.12, 0.50)	(0,38, 0,25, 0,38)	(0,12, 0,00, -0,12)
9	$(i_R,\ j_S)$	(0,22, 0,56, 0,22)	(-0.33, 0.00, 0.33)	(0,33, 0,22, 0,44)	(0,22, -0.11, -0.1)
10	$(i_R,\ j_S)$	(0,30, 0,50, 0,20)	(-0.30, 0.10, 0.20)	(0,30, 0,20, 0,50)	(0,30, -0.20, -0.1)

Tabla 3.3: Proceso de juego ficticio simultaneo sobre Piedra, Papel o Tijera

	(i, j)	x	xB	y	Ay
Iteración					
1	(i_R, j_P)	(1,00, 0,00, 0,00)	(0,00, 1,00, -1,00)	(0,00, 1,00, 0,00)	(-1,00, 0,00, 1,00)
2	(i_S, j_R)	(0,50, 0,00, 0,50)	(0,50, 0,00, -0,50)	(0,50, 0,50, 0,00)	(-0.50, 0.50, 0.00)
3	(i_P, j_R)	(0,33, 0,33, 0,33)	(0,00, 0,00, 0,00)	(0,67, 0,33, 0,00)	(-0.33, 0.67, -0.3
4	(i_P, j_S)	(0,25, 0,50, 0,25)	(-0.25, 0.00, 0.25)	(0,50, 0,25, 0,25)	(0,00, 0,25, -0,25)
5	(i_P, j_S)	(0,20, 0,60, 0,20)	(-0.40, 0.00, 0.40)	(0,40, 0,20, 0,40)	(0,20, 0,00, -0,20)
6	(i_R, j_S)	(0,33, 0,50, 0,17)	(-0.33, 0.17, 0.17)	(0,33, 0,17, 0,50)	(0,33, -0.17, -0.1
7	(i_R, j_P)	(0,43, 0,43, 0,14)	(-0.29, 0.29, 0.00)	(0,29, 0,29, 0,43)	(0.14, -0.14, 0.00)
8	(i_R, j_P)	(0,50, 0,38, 0,12)	(-0.25, 0.38, -0.12)	(0,25, 0,38, 0,38)	(0,00, -0.12, 0.12)
9	(i_S, j_P)	(0,44, 0,33, 0,22)	(-0.11, 0.22, -0.11)	(0,22, 0,44, 0,33)	(-0.11, -0.11, 0.2)
10	(i_S, j_P)	(0,40, 0,30, 0,30)	(0,00, 0,10, -0,10)	(0,20, 0,50, 0,30)	(-0.20, -0.10, 0.3)

Tabla 3.4: Proceso de juego ficticio alternante sobre Piedra, Papel o Tijera

Este el juego de Shapley [7]. Es muy conocido por por ser el primer ejemplo publicado de un juego que no converge, de forma pura ni mixta, tanto para juego ficticio simultáneo como alternante. En las tablas 3.5 y 3.6 vemos como se desarrollan estos procesos.

	(i, j)	x	xB	y	Ay
Iteración					
1	(i_1, j_2)	(1,00, 0,00, 0,00)	(0,00, 0,00, 1,00)	(0,00, 1,00, 0,00)	(0,00, 1,00, 0,00)
2	(i_2, j_3)	(0,50, 0,50, 0,00)	(0,50, 0,00, 0,50)	(0,00, 0,50, 0,50)	(0,00, 0,50, 0,50)
3	(i_2, j_1)	(0,33, 0,67, 0,00)	(0,67, 0,00, 0,33)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)
4	(i_1, j_1)	(0,50, 0,50, 0,00)	(0,50, 0,00, 0,50)	(0,50, 0,25, 0,25)	(0,50, 0,25, 0,25)
5	(i_1, j_1)	(0,60, 0,40, 0,00)	(0,40, 0,00, 0,60)	(0,60, 0,20, 0,20)	(0,60, 0,20, 0,20)
6	(i_1, j_3)	(0,67, 0,33, 0,00)	(0,33, 0,00, 0,67)	(0,50, 0,17, 0,33)	(0,50, 0,17, 0,33)
7	(i_1, j_3)	(0.71, 0.29, 0.00)	(0,29, 0,00, 0,71)	(0,43, 0,14, 0,43)	(0,43, 0,14, 0,43)
8	(i_1, j_3)	(0,75, 0,25, 0,00)	(0,25, 0,00, 0,75)	(0,38, 0,12, 0,50)	(0,38, 0,12, 0,50)
9	(i_3, j_3)	(0,67, 0,22, 0,11)	(0,22, 0,11, 0,67)	(0,33, 0,11, 0,56)	(0,33, 0,11, 0,56)
10	(i_3, j_3)	(0,60, 0,20, 0,20)	(0,20, 0,20, 0,60)	(0,30, 0,10, 0,60)	(0,30, 0,10, 0,60)

Tabla 3.5: Proceso de juego ficticio simultaneo en el ejemplo de Shapley, comenzando por (i_1,j_2) .

	(i,j)	x	xB	y	Ay
Iteración					
1	(i_1, j_3)	(1,00, 0,00, 0,00)	(0,00, 0,00, 1,00)	(0,00, 0,00, 1,00)	(0,00, 0,00, 1,00)
2	(i_3, j_2)	(0,50, 0,00, 0,50)	(0,00, 0,50, 0,50)	(0,00, 0,50, 0,50)	(0,00, 0,50, 0,50)
3	(i_2, j_1)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)
4	(i_1, j_3)	(0,50, 0,25, 0,25)	(0,25, 0,25, 0,50)	(0,25, 0,25, 0,50)	(0,25, 0,25, 0,50)
5	(i_3, j_2)	(0,40, 0,20, 0,40)	(0,20, 0,40, 0,40)	(0,20, 0,40, 0,40)	(0,20, 0,40, 0,40)
6	(i_2, j_1)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)
7	(i_1, j_3)	(0,43, 0,29, 0,29)	(0,29, 0,29, 0,43)	(0,29, 0,29, 0,43)	(0,29, 0,29, 0,43)
8	(i_3, j_2)	(0,38, 0,25, 0,38)	(0,25, 0,38, 0,38)	(0,25, 0,38, 0,38)	(0,25, 0,38, 0,38)
9	(i_2, j_1)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)	(0,33, 0,33, 0,33)
10	(i_1, j_3)	(0,40, 0,30, 0,30)	(0,30, 0,30, 0,40)	(0,30, 0,30, 0,40)	(0,30, 0,30, 0,40)

Tabla 3.6: Proceso de juego ficticio alternante en el ejemplo de Shapley, comenzando por i_1 .

Capítulo 4

Resultados

4.1. Equivalencia de las distintas definiciones

Como mencionamos en la sección 3.3, existen dos formas de definir el juego ficticio entre los distintos autores de la literatura. Ambas simplifican de distintas formas la definición original de Brown y si bien son similares, su equivalencia no es inmediatamente evidente, por lo que uno podría dudar de si un teorema expresado para una de las definiciones es válido con la otra. Por lo tanto, presentamos a continuación dos lemas sobre esta equivalencia, para el caso simultáneo y alternante respectivamente. La idea será probar que los historiales de la definición 3.3.3 suman en cada iteración la estrategia pura correspondiente a la acción elegida por la definición 3.3.2. Comenzamos con el caso simultáneo.

Lema 4.1.1. Sea (A,B) un juego en forma bimatricial de $n\times m,\ (\widetilde{i^{\tau}},\widetilde{j^{\tau}})_{\tau\in\mathbb{N}}$ una secuencia de juego ficticio simultáneo (según la definición 3.3.2) con secuencias de creencias y^{τ} , x^{τ} y sea $(p^{\tau}, q^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de juego ficticio simultáneo (según la definición 3.3.3), tales que $p^1 = \widetilde{i^1}$, $q^1 = \widetilde{j^1}$ y ambas usan las mismas reglas de desempate (d_1, d_2) . Entonces, $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ y $(p^{\tau}, q^{\tau})_{\tau \in \mathbb{N}}$ representan el mismo proceso de aprendizaje. Es decir, $\forall \tau \in \mathbb{N}$, se cumplen:

$$p^{\tau} = \sum_{s=1}^{\tau} \widetilde{i^s}$$

$$q^\tau = \sum_{s=1}^\tau \widetilde{j^s}$$

Demostración. Procederemos por inducción sobre τ .

Para $\tau=1$, tenemos $p^1=\widetilde{i^1}=\sum_{s=1}^1\widetilde{i^s}$ y $q^1=\widetilde{j^1}=\sum_{s=1}^1\widetilde{j^s}$. Veamos ahora el caso de un $\tau>1$, suponiendo que $p^{\tau-1}=\sum_{s=1}^{\tau-1}\widetilde{i^s}$ y $q^{\tau-1}=\sum_{s=1}^{\tau-1}\widetilde{j^s}$. Por la definición 3.3.3, $p^{\tau}=p^{\tau-1}+\widetilde{i}$ donde $i=d_1(argmax_{i\in N}\{\widetilde{i}Ap^{\tau-1}\})$. Pero también sabemos, por la definición 3.3.2 que $i^{\tau} = d_1(BR_1(y^{\tau-1})) = d_1(BR_1(\frac{\sum_{s=1}^{\tau-1} \tilde{j^s}}{\tau-1})) = d_1(BR_1(\frac{\sum_{s=1}^{\tau-1} \tilde{j^s}}{\tau-1}))$

 $d_1(argmax_{i\in N}\{A^{\frac{\sum_{s=1}^{\tau-1}\tilde{j^s}}{\tau-1}})\})=d_1(argmax_{i\in N}\{A^{q^{\tau-1}}_{\tau-1})\})$. Como escalar un vector no afecta la relación de orden entre sus componentes, podemos afirmar también que $i^{\tau}=$ $d_1(argmax_{i\in N}\{Aq^{\tau-1})\})$. Luego, aplicando esto a la definición 3.3.3, $p^{\tau}=p^{\tau-1}+\widetilde{i}^{\tau}=\sum_{s=1}^{\tau-1}\widetilde{i}^s+\widetilde{i}^{\tau}=\sum_{s=1}^{\tau}\widetilde{i}^s$. Análogamente, $q^{\tau} = \sum_{s=1}^{\tau} \widetilde{j}^s$.

En el caso alternante, la jugada del jugador columna ya no es análoga a la del jugador fila, y el análisis es un poco mas complejo.

Lema 4.1.2. Sea (A,B) un juego en forma bimatricial de $n \times m$, $(i^{\tau},j^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de juego ficticio alternante (según la definición 3.3.2) con secuencias de creencias y^{τ} , x^{τ} y sea $(p^{\tau}, q^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de juego ficticio alternante (según la definición 3.3.3), tales que $p^1 = \tilde{i}^1$ y ambas usan las mismas reglas de desempate (d_1, d_2) . Entonces, $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ $y(p^{\tau}, q^{\tau})_{\tau \in \mathbb{N}}$ representan el mismo proceso de aprendizaje. Es decir, para todo $\tau \in \mathbb{N}$, se cumplen:

$$p^{\tau} = \sum_{s=1}^{\tau} \widetilde{i}^s$$

$$q^\tau = \sum_{s=1}^\tau \widetilde{j^s}$$

Demostración. Nuevamente, procederemos por inducción sobre τ . Para $\tau=1$, sabemos que $p^1=\widetilde{i^1}=\sum_{s=1}^1\widetilde{i^s}$. Por la definición 3.3.3, $q^1=q^0+\widetilde{j}$ donde q^0 es el vector nulo y $j=d_2(argmax_{j\in M}\{p^1B\widetilde{j}\})=d_2(argmax_{j\in M}\{\widetilde{i^1}B\widetilde{j}\}).$ Además, por la definición 3.3.2, sabemos que $j^1 = d_2(BR_2(x^1)) = d_2(BR_2(\frac{\sum_{s=1}^1 i^s}{i^s})) =$ $d_2(BR_2(i^1)) = d_2(argmax_{j \in M}\{\widetilde{i^1}B\widetilde{j}\}). \text{ Luego, } q^1 = \widetilde{j^1} = \sum_{s=1}^1 \widetilde{j^s}.$ Veamos ahora el caso de $\tau > 1$, suponiendo que $p^{\tau-1} = \sum_{s=1}^{\tau-1} \widetilde{i^s}$ y $q^{\tau-1} = \sum_{s=1}^{\tau-1} \widetilde{j^s}.$

Podemos afirmar, con el mismo argumento que en el caso inductivo del lema 4.1.1, que $p^{\tau} = \sum_{s=1}^{\tau} \widetilde{i^s}$. Por otro lado, $q^{\tau} = y^{\tau} + \widetilde{j}$ donde $j = d_2(argmax_{j' \in M} \{p^{\tau+1}B\widetilde{j'}\}) = 0$ $d_2(argmax_{j'\in M}\{\sum_{s=1}^{\tau}\widetilde{i^s}B\widetilde{j'}\})$. Sabemos además, por la definición 3.3.2, que $j^{\tau}=d_2(BR_2(x^{\tau}))=0$ $d_2(BR_2(\frac{\sum_{s=1}^{\tau}\widetilde{i^s}}{\tau})) = d_2(argmax_{j'\in N}\{\frac{\sum_{s=1}^{\tau}\widetilde{i^s}}{\tau}B\widetilde{j}\}) = d_2(argmax_{j'\in N}\{\frac{p^{\tau}}{\tau}B\widetilde{j}\}).$ Como escalar un vector no afecta la relación de orden entre sus componentes, podemos afirmar también que $j^{\tau} = d_2(argmax_{j' \in N}\{p^{\tau}B\widetilde{j}\})$. Luego, aplicando esto a la definición 3.3.3, $q^{\tau} = q^{\tau-1} + j^{\tau} = \sum_{s=1}^{\tau-1} \widetilde{j}^s + j^{\tau} = \sum_{s=1}^{\tau} \widetilde{j}^s$.

4.2. Convergencia de juego ficticio

En su publicación de 1997, Monderer y Sela [12] enuncian un resultado que nos da una intuición interesante sobre el comportamiento del juego ficticio. Al ser el este un mecanismo utilizado para encontrar equilibrios de Nash, uno esperaría observar un comportamiento estable alrededor de los mismos. Monderer y Sela llaman a esto el Principio de Estabilidad. La demostración que presentan es mediante otros principios y conceptos que desarrollan en esa publicación, pero este resultado puede probarse de forma más directa. Presentaremos entonces a continuación una demostración alternativa.

Lema 4.2.1. Sea $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de aprendizaje de juego ficticio simultáneo en el juego en forma bimatricial (A, B) de tamaño $n \times m$, con secuencias de creencias $(x^{\tau}, y^{\tau})_{\tau \in \mathbb{N}}$ y reglas de desempate (d_1, d_2) . Si en la iteración k se jugó el equilibrio de Nash puro (i^*, j^*) , entonces $i^* \in BR_1(y^k)$ y $j^* \in BR_2(x^k)$.

Demostraci'on. Comencemos con el caso del jugador fila. Queremos probar que i^* es una mejor respuesta a las creencias del jugador fila sobre la estrategia del jugador columna. Veamos primero entonces que forma tienen estas creencias según como se actualizan.

$$y^k = \frac{\sum_{s=1}^{k-1} \widetilde{j^s} + \widetilde{j^*}}{k} = \frac{\sum_{s=1}^{k-1} \widetilde{j^s}}{k} + \frac{\widetilde{j^*}}{k} = \frac{\sum_{s=1}^{k-1} \widetilde{j^s} (k-1)}{k(k-1)} + \frac{\widetilde{j^*}}{k} = \frac{k-1}{k} y^{k-1} + \frac{\widetilde{j^*}}{k}$$

Luego, tendremos que el conjunto de mejor respuesta será

$$\begin{split} BR_1(y^k) &= BR_1(\frac{k-1}{k}y^{k-1} + \frac{j^*}{k}) \\ &= \operatorname*{argmax}\{\widetilde{i}A(\frac{(k-1)y^{k-1}}{k} + \frac{j^*}{k})\} \\ &= \operatorname*{argmax}\{\frac{(k-1)}{k}\widetilde{i}Ay^{k-1} + \frac{1}{k}\widetilde{i}Aj^*\} \end{split}$$

Como en la iteración k se jugó el perfil (i^*,j^*) , por la definición $\ref{identification}$, sabemos que $i^* \in BR_1(y^{k-1}) = \underset{i \in N}{\operatorname{argmax}}_{i \in N}\{\widetilde{i}Ay^{k-1}\}$. Es decir que para cualquier $i \in N$, podemos afirmar que $\widetilde{i^*}Ay^{k-1} \geq \widetilde{i}Ay^{k-1}$ y también (multiplicando en ambos lados por una constante positiva) que $\frac{(k-1)}{k}\widetilde{i^*}Ay^{k-1} > \frac{(k-1)}{k}\widetilde{i}Ay^{k-1}$.

Sabemos también, al ser un equilibrio de Nash, que $i^* \in BR_1(\widetilde{j^*}) = \underset{i \in N}{\operatorname{argmax}}_{i \in N} \{\widetilde{i}Aj^*\}$. Es decir que para cualquier $i \in N$, $\widetilde{i^*}Aj^* \geq \widetilde{i}Aj^*$ y consecuentemente $\frac{1}{k}\widetilde{i^*}Aj^* \geq \frac{1}{k}\widetilde{i}Aj^*$.

Podemos sumar estas dos desigualdades para afirmar que $\frac{(k-1)}{k}\tilde{i}^*Ay^{k-1} + \frac{1}{k}\tilde{i}^*Aj^* \geq \frac{(k-1)}{k}\tilde{i}Ay^{k-1} + \frac{1}{k}\tilde{i}Aj^*$ para cualquier $i \in N$ y por lo tanto $i^* \in BR_1(y^k)$.

Razonando análogamente para el jugador columna, podemos afirmar también que $j^* \in BR_2(x^k)$.

Lema 4.2.2. Sea $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de aprendizaje de juego ficticio simultáneo en el juego en forma bimatricial (A, B) de tamaño $n \times m$, con secuencias de creencias $(x^{\tau}, y^{\tau})_{\tau \in \mathbb{N}}$ y reglas de desempate (d_1, d_2) . Si en la iteración k se jugó el equilibrio de Nash puro (i^*, j^*) , entonces $BR_1(y^k) \subseteq BR_1(y^{k-1})$ y $BR_2(x^k) \subseteq BR_2(x^{k-1})$.

Demostración. Comencemos por el caso del jugador fila. Para probar que $BR_1(y^k) \subseteq BR_1(y^{k-1})$, debemos probar que para todo $i \in N$, se cumple que $i \in BR_1(y^k) \implies i \in$

 $BR_1(y^{k-1})$, o por contra-recíproco, que $i \notin BR_1(y^{k-1}) \implies i \notin BR_1(y^k)$. Supongamos entonces un $i' \in N$ tal que $i' \notin BR_1(y^{k-1})$.

Como $BR_1(y^{k-1}) = \operatorname{argmax}_{i \in N}\{\widetilde{i}Ay^{k-1}\}, \text{ si } i^* \in BR_1(y^{k-1}) \text{ pero } i' \notin BR_1(y^{k-1}),$ entonces podemos afirmar que $\widetilde{i}Ay^{k-1} > \widetilde{i}Ay^{k-1}$ y luego (multiplicando ambos lados por una constante positiva) que $\frac{(k-1)}{k}\widetilde{i}^*Ay^{k-1} > \frac{(k-1)}{k}\widetilde{i}'Ay^{k-1}$.

Además, como (i^*,j^*) es equilibrio de Nash puro, sabemos que $i^* \in BR_1(\widetilde{j^*}) = \operatorname{argmax}_{i \in N}\{\widetilde{i}Aj^*\}$. Es decir que $\widetilde{i^*}Aj^* \geq \widetilde{i'}Aj^*$ y también $\frac{k-1}{k}\widetilde{i^*}A\widetilde{j^*} \geq \frac{k-1}{k}\widetilde{i'}A\widetilde{j^*}$.

Entonces, podemos razonar de la siguiente manera:

$$\begin{split} \widetilde{i}^*Ay^k &= \widetilde{i}^*A(\frac{k-1}{k}y^{k-1} + \frac{\widetilde{j}^*}{k}) = \frac{(k-1)}{k}\widetilde{i}^*Ay^{k-1} + \frac{1}{k}\widetilde{i}^*A\widetilde{j}^* \\ &> \frac{(k-1)}{k}\widetilde{i}'Ay^{k-1} + \frac{1}{k}\widetilde{i}'A\widetilde{j}^* = \widetilde{i}'A(\frac{k-1}{k}y^{k-1} + \frac{\widetilde{j}^*}{k}) = \widetilde{i}'Ay^k \end{split}$$

Puesto que sabemos por el lema anterior, que $i^* \in BR_1(y^k) = \operatorname{argmax}_{i \in N} \{\widetilde{i}Ay^k\},$ podemos afirmar que $i' \notin BR_1(y^k)$. Podemos razonar análogamente para el jugador columna para demostrar también que $BR_2(x^k) \subseteq BR_2(x^{k-1})$.

Teorema 4.2.1. Sea $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de aprendizaje de juego ficticio simultáneo en el juego en forma bimatricial (A, B) de tamaño $n \times m$, con secuencias de creencias $(x^{\tau}, y^{\tau})_{\tau \in \mathbb{N}}$ y reglas de desempate (d_1, d_2) . Si en la iteración k se jugó el equilibrio de Nash puro (i*, j*), entonces este perfil se repetirá en la iteración siquiente.

Demostración. Nuevamente, comencemos por el jugador fila. Sabemos que en la iteración k se jugó (i*, j*), lo cual nos asegura que $d_1(BR_1(y^{k-1})) = i^*$. Pero sabemos también por los lemas anteriores que $i^* \in BR_1(y^k)$ y que $BR_1(y^k) \subseteq BR_1(y^{k-1})$. Luego, por la definición de reglas de desempate, debe ser que $d_1(BR_1(y^k)) = i^*$. Es decir, volverá a jugar i^* .

Análogamente, podemos afirmar también que el jugador columna jugará i^* .

4.3. Preservación del juego ficticio

En su publicación de 1997, Monderer y Sela [12] enuncian un resultado que nos da una intuición interesante sobre el comportamiento del juego ficticio. Al ser el este un mecanismo utilizado para encontrar equilibrios de Nash, uno esperaría observar un comportamiento estable alrededor de los mismos. Monderer y Sela llaman a esto el Principio de Estabilidad. La demostración que presentan es mediante otros principios y conceptos que desarrollan en esa publicación, pero este resultado puede probarse de forma más directa. Presentaremos entonces a continuación una demostración alternativa. Agregamos además, una prueba para el caso del juego ficticio alternante e incluimos consideraciones sobre los posibles empates.

Lema 4.3.1. Sea $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de aprendizaje de juego ficticio simultáneo párrafo en el juego en forma bimatricial (A,B) de tamaño $n \times m$, con secuencias de creencias

hay que reescribir este $(x^{\tau}, y^{\tau})_{\tau \in \mathbb{N}}$ y reglas de desempate (d_1, d_2) . Si en la iteración k se jugó el equilibrio de Nash puro (i^*, j^*) , entonces $i^* \in BR_1(y^k)$ y $j^* \in BR_2(x^k)$.

Demostraci'on. Comencemos con el caso del jugador fila. Queremos probar que i^* es una mejor respuesta a las creencias del jugador fila sobre la estrategia del jugador columna. Veamos primero entonces que forma tienen estas creencias según como se actualizan.

$$y^k = \frac{\sum_{s=1}^{k-1} \widetilde{j^s} + \widetilde{j^*}}{k} = \frac{\sum_{s=1}^{k-1} \widetilde{j^s}}{k} + \frac{\widetilde{j^*}}{k} = \frac{\sum_{s=1}^{k-1} \widetilde{j^s} (k-1)}{k(k-1)} + \frac{\widetilde{j^*}}{k} = \frac{k-1}{k} y^{k-1} + \frac{\widetilde{j^*}}{k}$$

Luego, tendremos que el conjunto de mejor respuesta será

$$BR_{1}(y^{k}) = BR_{1}(\frac{k-1}{k}y^{k-1} + \frac{j^{*}}{k})$$

$$= \underset{i \in N}{\operatorname{argmax}} \{\widetilde{i}A(\frac{(k-1)y^{k-1}}{k} + \frac{j^{*}}{k})\}$$

$$= \underset{i \in N}{\operatorname{argmax}} \{\frac{(k-1)}{k}\widetilde{i}Ay^{k-1} + \frac{1}{k}\widetilde{i}Aj^{*}\}$$

Como en la iteración k se jugó el perfil (i^*, j^*) , por la definición $\ref{inición}$, sabemos que $i^* \in BR_1(y^{k-1}) = \mathop{\mathrm{argmax}}_{i \in N} \{\widetilde{i}Ay^{k-1}\}$. Es decir que para cualquier $i \in N$, podemos afirmar que $\widetilde{i^*}Ay^{k-1} \geq \widetilde{i}Ay^{k-1}$ y también (multiplicando en ambos lados por una constante positiva) que $\frac{(k-1)}{k}\widetilde{i^*}Ay^{k-1} > \frac{(k-1)}{k}\widetilde{i}Ay^{k-1}$.

Sabemos también, al ser un equilibrio de Nash, que $i^* \in BR_1(\widetilde{j^*}) = \underset{i \in N}{\operatorname{argmax}}_{i \in N}\{\widetilde{i}Aj^*\}$ Es decir que para cualquier $i \in N$, $\widetilde{i^*}Aj^* \geq \widetilde{i}Aj^*$ y consecuentemente $\frac{1}{k}\widetilde{i^*}Aj^* \geq \frac{1}{k}\widetilde{i}Aj^*$.

Podemos sumar estas dos desigualdades para afirmar que $\frac{(k-1)}{k}\widetilde{i^*}Ay^{k-1} + \frac{1}{k}\widetilde{i^*}Aj^* \geq \frac{(k-1)}{k}\widetilde{i}Ay^{k-1} + \frac{1}{k}\widetilde{i}Aj^*$ para cualquier $i \in N$ y por lo tanto $i^* \in BR_1(y^k)$.

Razonando análogamente para el jugador columna, podemos afirmar también que

Razonando análogamente para el jugador columna, podemos afirmar también que $j^* \in BR_2(x^k)$.

Lema 4.3.2. Sea $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de aprendizaje de juego ficticio simultáneo en el juego en forma bimatricial (A, B) de tamaño $n \times m$, con secuencias de creencias $(x^{\tau}, y^{\tau})_{\tau \in \mathbb{N}}$ y reglas de desempate (d_1, d_2) . Si en la iteración k se jugó el equilibrio de Nash puro (i^*, j^*) , entonces $BR_1(y^k) \subseteq BR_1(y^{k-1})$ y $BR_2(x^k) \subseteq BR_2(x^{k-1})$.

Demostración. Comencemos por el caso del jugador fila. Para probar que $BR_1(y^k) \subseteq BR_1(y^{k-1})$, debemos probar que para todo $i \in N$, se cumple que $i \in BR_1(y^k) \implies i \in BR_1(y^{k-1})$, o por contra-recíproco, que $i \notin BR_1(y^{k-1}) \implies i \notin BR_1(y^k)$. Supongamos entonces un $i' \in N$ tal que $i' \notin BR_1(y^{k-1})$.

Como $BR_1(y^{k-1}) = \operatorname{argmax}_{i \in N}\{\widetilde{i}Ay^{k-1}\}$, si $i^* \in BR_1(y^{k-1})$ pero $i' \notin BR_1(y^{k-1})$, entonces podemos afirmar que $\widetilde{i^*}Ay^{k-1} > \widetilde{i'}Ay^{k-1}$ y luego (multiplicando ambos lados por una constante positiva) que $\frac{(k-1)}{k}\widetilde{i^*}Ay^{k-1} > \frac{(k-1)}{k}\widetilde{i'}Ay^{k-1}$.

Además, como (i^*,j^*) es equilibrio de Nash puro, sabemos que $i^* \in BR_1(\widetilde{j^*}) = \operatorname{argmax}_{i \in N}\{\widetilde{i}Aj^*\}$. Es decir que $\widetilde{i^*}Aj^* \geq \widetilde{i'}Aj^*$ y también $\frac{k-1}{k}\widetilde{i^*}A\widetilde{j^*} \geq \frac{k-1}{k}\widetilde{i'}A\widetilde{j^*}$. Entonces, podemos razonar de la siguiente manera:

$$\begin{split} \widetilde{i^*}Ay^k &= \widetilde{i^*}A(\frac{k-1}{k}y^{k-1} + \frac{\widetilde{j^*}}{k}) = \frac{(k-1)}{k}\widetilde{i^*}Ay^{k-1} + \frac{1}{k}\widetilde{i^*}A\widetilde{j^*} \\ &> \frac{(k-1)}{k}\widetilde{i'}Ay^{k-1} + \frac{1}{k}\widetilde{i'}A\widetilde{j^*} = \widetilde{i'}A(\frac{k-1}{k}y^{k-1} + \frac{\widetilde{j^*}}{k}) = \widetilde{i'}Ay^k \end{split}$$

Puesto que sabemos por el lema anterior, que $i^* \in BR_1(y^k) = \operatorname{argmax}_{i \in N} \{\tilde{i}Ay^k\}$, podemos afirmar que $i' \notin BR_1(y^k)$. Podemos razonar análogamente para el jugador columna para demostrar también que $BR_2(x^k) \subseteq BR_2(x^{k-1})$.

Teorema 4.3.1. Sea $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ una secuencia de aprendizaje de juego ficticio simultáneo en el juego en forma bimatricial (A, B) de tamaño $n \times m$, con secuencias de creencias $(x^{\tau}, y^{\tau})_{\tau \in \mathbb{N}}$ y reglas de desempate (d_1, d_2) . Si en la iteración k se jugó el equilibrio de Nash puro (i*, j*), entonces este perfil se repetirá en la iteración siguiente.

Demostración. Nuevamente, comencemos por el jugador fila. Sabemos que en la iteración k se jugó (i*, j*), lo cual nos asegura que $d_1(BR_1(y^{k-1})) = i^*$. Pero sabemos también por los lemas anteriores que $i^* \in BR_1(y^k)$ y que $BR_1(y^k) \subseteq BR_1(y^{k-1})$. Luego, por la definición de reglas de desempate, debe ser que $d_1(BR_1(y^k)) = i^*$. Es decir, volverá a jugar i^* .

Análogamente, podemos afirmar también que el jugador columna jugará i^* .

4.4. Velocidad de convergencia del juego ficticio alternante

En esta sección nos enfocaremos en estudiar más detalladamente los resultados de Brandt, Fischer y Harrenstein [3]. En su paper, los autores presentan cotas superiores para la velocidad de convergencia del juego ficticio simultáneo en clases de juegos que se estabe que siempre convergen de forma pura. Como dijimos en el capítulo 2, los autores mencionan la posibilidad de expandir sus resultados a la variante alternante de juego ficticio. Presentamos a continuación nuestro análisis para los casos de los juegos de suma constante simétricos y los no degenerados de intereses idénticos. Por claridad, aprovecharemos el hecho de que todos los casos analizados en esta sección resultan en conjuntos de mejores respuestas unitarios para omitir las reglas de desempate, ya que no afectarán los resultados.

Veamos primero que para el caso de los juegos de suma constante simétricos, el teorema de estos autores efectivamente es expandible de forma bastante directa a la variante alternante. Vale la pena notar que formulamos el teorema en términos de que el último perfil no sea un equilibrio de Nash puro, en vez de pedir que ninguno en la secuencia lo sea como hacen Brandt, Fischer y Harrenstein ya que por el principio de estabilidad, si alguno de los perfiles jugados en la secuencia fuera un equilibrio de Nash puro, todos los siguientes lo serían.

checkear esto

4.4. VELOCIDAD DE CONVERGENCIA DEL JUEGO FICTICIO ALTERNANTZI

Teorema 4.4.1. Existe un juego simétrico A representable en O(k) bits, con al menos un equilibrio de Nash puro y una secuencia de juego ficticio alternante $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ sobre A tal que (i^{2^k}, j^{2^k}) no es un equilibrio de Nash puro.

Demostración. Consideremos un juego en forma bimatricial con la siguiente matriz de pagos:

Si $\epsilon < 1$, vemos que (i^3, j^3) es el único equilibrio de Nash puro por ser el único perfil restante luego de realizar eliminación iterada de estrategias estrictamente dominadas.

Consideremos un número k > 1 arbitrario y sea $\epsilon = 2^{-k}$. Para estos valores, ϵ puede codificarse en O(k) bits, mientras que las otras utilidades del juego son constantes, por lo que podemos afirmar que la representación del juego será tambien del orden de O(k)bits. Por lo tanto, si probamos que un proceso de juego ficticio alternante puede requerir 2^k rondas antes de que se juegue (i^3, j^3) , el teorema estará demostrado.

Si el proceso comienza con el jugador fila jugando i^1 , entonces las utilidades esperadas del jugador columna serán $-x^1A = (0, 1, \epsilon)$ y elegirá j_2 .

En la siguiente ronda, el jugador 1 reaccionará con i_3 , dando que el jugador 2 tendrá una creencia sobre su estrategia de $x^2=(\frac{1}{2},0,\frac{1}{2})$, por lo que las utilidades esperadas del jugador 2 serán $-x^2A=(\frac{-\epsilon}{2},\frac{1-\epsilon}{2},\frac{\epsilon}{2})$ y volverá a elegir j_2 . Este perfil (i_3,j_2) se repetirá 2^k-1 rondas, ya que tendremos que mientras $2 \le \tau \le$

 2^k , se cumplirán:

$$x^{\tau} = \frac{\widetilde{i_1} + (\tau - 1)\widetilde{i_3}}{\tau} = (\frac{1}{\tau}, 0, \frac{\tau - 1}{\tau})$$
$$-x^{\tau} A = (-\frac{(\tau - 1)\epsilon}{\tau}, \frac{1 - (\tau - 1)\epsilon}{\tau}, \frac{\epsilon}{\tau})$$
$$y^{\tau} = \widetilde{j_2} = (0, 1, 0)$$
$$Ay^{\tau} = (-1, 0, \epsilon)$$

La tabla 4.1, muestra como se desarrolla este proceso. Para el jugador fila, justificar su decisión es trivial ya que la estrategia percibida de su oponente es pura e i_3 es la única acción con utilidad esperada positiva. Para entender por qué el jugador columna no cambia su estrategia, debemos notar que:

Ronda	(i,j)	x	$x^{\tau}B$	y	$Ay^{ au}$
1 2 3	(i_3, j_2)	$ \begin{array}{c} (1, \ 0, \ 0) \\ (\frac{1}{2}, \ 0, \ \frac{1}{2}) \\ (\frac{1}{3}, \ 0, \ \frac{2}{3}) \end{array} $	$(0,1,2^{-k}) -2^{-(k+1)}, \frac{1-2^{-k}}{2}, 2^{-(k+1)}) (-\frac{2^{-k+1}}{3}, \frac{1-2^{-k+1}}{3}, \frac{2^{-k}}{3})$	(0, 1, 0)	$(-1, 0, 2^{-k})$ $(-1, 0, 2^{-k})$ $(-1, 0, 2^{-k})$
au	(i_3, j_2) :	$(\frac{1}{\tau}, 0, \frac{\tau-1}{\tau})$	$\left(-\frac{(\tau-1)2^{-k}}{\tau}, \frac{1-(\tau-1)2^{-k}}{\tau}, \frac{2^{-k}}{\tau}\right)$	(0, 1, 0)	$(-1, 0, 2^{-k})$
2^k	(i_3, j_2)	$2^{-k}, 0, \frac{2^k-1}{2^k}$	$(-1, \frac{1+2^{-k}}{2^k}, 1)$	(0, 1, 0)	$(-1, 0, 2^{-k})$

Tabla 4.1: Proceso de juego ficticio alternante en el juego del teorema 4.4.1

$$\tau \le 2^k = \frac{1}{\epsilon}$$

$$\epsilon \tau \le 1$$

$$\epsilon (\tau - 1 + 1) \le 1$$

$$(\tau - 1)\epsilon + \epsilon \le 1$$

$$1 - (\tau - 1)\epsilon \ge \epsilon$$

$$\frac{1 - (\tau - 1)\epsilon}{\tau} \ge \frac{\epsilon}{\tau}$$

Esto podemos interpretarlo como que si bien en las iteraciones recientes el jugador 1 jugó i_3 , el incentivo resultante de la única vez que jugó i_1 es muy fuerte por la gran diferencia de utilidades para el jugador 2 entre (i_1, j_2) e (i_2, j_3) , por lo que deberán pasar 2^{k-1} iteraciones de i_3 luego de ese único i_1 para que las utilidades esperadas se compensen.

Concluimos entonces que la secuencia

$$(i_1, j_2), \underbrace{(i_3, j_2), \dots (i_3, j_2)}_{2^k - 1 \text{ veces}}$$

es una secuencia de aprendizaje de juego ficticio alternante válida de este juego que es exponencialmente larga en k y en la cual no se juega ningún equilibrio de Nash puro.

Por su parte, la demostración para el caso de los juegos no degenerados de 2×3 es un poco menos directa y requiere plantear una ligera variante del juego originalmente propuesto por Brandt, Fischer y Harrenstein.

discutir un poco como afecta el cambio de

4.4. VELOCIDAD DE CONVERGENCIA DEL JUEGO FICTICIO ALTERNANT23

Teorema 4.4.2. Existe un juego no degenerado de intereses idénticos A representable en O(k) bits, con al menos un equilibrio de Nash puro y una secuencia de juego ficticio alternante $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ sobre A tal que para todo $\tau < 2^k$, (i^{τ}, j^{τ}) no es un equilibrio de Nash puro.

Demostración. Consideremos un juego en forma bimatricial con la siguiente matriz de pagos:

$$\begin{array}{c|cccc}
 & j^1 & j^2 & j^3 \\
 & i^1 & 1 & 2 & 0 \\
 & i^2 & 0 & 2 + \epsilon & 2 + 2\epsilon
\end{array}$$

Si $\epsilon < 1$, vemos que (i^2, j^3) es el único equilibrio de Nash puro por ser el único perfil restante luego de realizar eliminación iterada de estrategias estrictamente dominadas.

Consideremos un número k > 1 arbitrario. Mostraremos que para $\epsilon = 2^{-k}$, un proceso de juego ficticio alternante puede tomar 2^k rondas antes de que se juegue (i^2, j^3) . Al igual que en la demostración anterior, el juego puede codificarse en O(k) bits, por lo que esto demuestra el teorema.

Si el proceso comienza con el jugador fila jugando i^1 , entonces $x^1B = (1, 2, 0)$ y por lo tanto el jugador columna elegirá j_2 .

En la siguiente ronda, el jugador 1 reaccionará con i_2 , dando que el jugador 2 tendrá una creencia sobre su estrategia de $x^2=(\frac{1}{2},\frac{1}{2})$, por lo que las utilidades esperadas del jugador 2 serán $-x^2A=(\frac{1}{2},2+\frac{\epsilon}{2},1+\epsilon)$ y volverá a elegir j_2 .

Este perfil (i_2, j_2) se repetirá $2^k - 1$ rondas, ya que tendremos que mientras $2 \le \tau \le 2^k$, se cumplirán:

$$\begin{split} x^{\tau} &= \frac{\widetilde{i_1} + (\tau - 1)\widetilde{i_2}}{\tau} = (\frac{1}{\tau}, \frac{\tau - 1}{\tau}) \\ x^{\tau} A &= (\frac{1}{\tau}, \frac{2 + (\tau - 1)(2 + \epsilon)}{\tau}, \frac{(\tau - 1)(2 + 2\epsilon)}{\tau}) \\ y^{\tau} &= \widetilde{j_2} = (0, 1, 0) \\ Ay^{\tau} &= (2, 2 + \epsilon) \end{split}$$

La tabla 4.2, muestra como se desarrolla este proceso. Para el jugador fila, justificar su decisión es trivial ya que la estrategia percibida de su oponente es pura y la utilidad esperada de i_2 es siempre marginalmente mayor que la de i_1 . Para entender por qué el jugador columna no cambia su estrategia, debemos notar que:

	(i,j)	x	$x^{\tau}B$	y	Ay
Ronda					
1	(i_1, j_2)		(1, 2, 0)	(0, 1, 0)	$(2,2+\epsilon)$
2	(i_2, j_2)		$(\frac{1}{2}, 2 + \frac{\epsilon}{2}, 1 + \epsilon)$	(0, 1, 0)	$(2, 2 + \epsilon)$
3	(i_2, j_2)	$\left(\frac{1}{3},\frac{2}{3}\right)$	$(\frac{1}{3}, 2 + \frac{2}{3}\epsilon, \frac{4+4\epsilon)}{3})$	(0, 1, 0)	$(2, 2 + \epsilon)$
	:				
au	(i_2, j_2)	$\left(\frac{1}{\tau}, \frac{\tau-1}{\tau}\right)$	$\left(\frac{1}{\tau}, \frac{2+(\tau-1)(2+\epsilon)}{\tau}, \frac{(\tau-1)(2+2\epsilon)}{\tau}\right)$	(0, 1, 0)	$(2, 2 + \epsilon)$
	:	•			
2^k	(i_2, j_2)	$(\epsilon, 1 - \epsilon)$	$(\epsilon, 1 - \epsilon - \epsilon^2, 2 - \epsilon^2)$	(0, 1, 0)	$(2,2+\epsilon)$

Tabla 4.2: Proceso de juego ficticio alternante en el juego del teorema 4.4.2

$$\tau \le 2^k = \frac{1}{\epsilon}$$

$$\tau \le \frac{2}{\epsilon} + 1$$

$$\frac{2}{\epsilon} \ge \tau - 1$$

$$\frac{2}{\tau - 1} \ge \epsilon$$

$$\frac{2}{(\tau - 1)} + 2 + \epsilon \ge 2 + 2\epsilon$$

$$2 + (\tau - 1)(2 + \epsilon) \ge (\tau - 1)(2 + 2\epsilon)$$

Similarmente al teorema anterior, esto podemos interpretarlo como que si bien en las iteraciones recientes el jugador 1 jugó i_2 , el incentivo resultante de la única vez que jugó i_1 es muy fuerte por la gran diferencia de utilidades para el jugador 2 entre (i_1, j_2) $e(i_2, j_3)$, por lo que deberán pasar 2^{k-1} iteraciones de i_3 luego de ese único i_1 para que las utilidades esperadas se compensen.

Concluimos entonces que la secuencia

$$(i_1, j_2), \underbrace{(i_2, j_2), ...(i_2, j_2)}_{2^k - 1 \text{ veces}}$$

es una secuencia de aprendizaje de juego ficticio alternante válida de este juego que es exponencialmente larga en k y en la cual no se juega ningún equilibrio de Nash puro.

El detalle de que el juego originalmente propuesto por Brandt, Fischer y Harrenstein no nos sirva para demostrar el teorema anterior no es para nada menor. En efecto, como

checkear esto

veremos en el siguiente teorema, es un ejemplo de un juego en el que un proceso de juego ficticio simultáneo puede requerir una cantidad de rondas exponenciales mientras que, toda secuencia de juego ficticio alternante convergerá rápidamente.

Teorema 4.4.3. Existe un juego no degenerado de intereses idénticos A representable en O(k) bits y una secuencia de juego ficticio simultáneo $(i^{\tau}, j^{\tau})_{\tau \in \mathbb{N}}$ sobre A y una constante C tal que

- Para todo $\tau < 2^k$, (i^{τ}, j^{τ}) no es un equilibrio de Nash puro.
- Para todo proceso de juego ficticio alternante $(\hat{i}^{\tau}, \hat{j}^{\tau})_{\tau \in \mathbb{N}}$ en A, $(\hat{i}^{C}, \hat{j}^{C})$ es un equilibrio de Nash puro.

Demostración. Consideremos el juego en forma bimatricial con la siguiente matriz de pagos:

Si $\epsilon < 1$, (i^2, j^3) es el único equilibrio de Nash puro por ser el único perfil restante luego de realizar eliminación iterada de estrategias estrictamente dominadas.

Consideremos un número k > 1 arbitrario. Mostraremos que para $\epsilon = 2^{-k}$, un proceso de juego ficticio simultáneo puede tomar 2^k rondas antes de que se juegue (i^2, j^3) , mientras que todo proceso de juego ficticio alternante converge de forma pura en un número constante de rondas. Al igual que los teoremas anteriores, el juego puede codificarse en O(k) bits, por lo que esto demuestra el teorema.

Veamos primero el caso alternante. Existen dos posibles secuencias de juego ficticio alternante para este juego, dado que el jugador 1 elegirá primero y el jugador 2 reaccionara según esta decisión.

Si el jugador fila juega i^2 , el jugador columna responderá con j^3 , siendo este el equilibrio puro. Si el jugador fila comienza con i^1 , el jugador columna responderá con j^2 . Esto hará que el jugador fila juegue i^2 en la segunda ronda por ser $A\widetilde{j^2}=(2,2+\epsilon)$, mientras que el jugador continuará fila continuara jugando j^2 . Esta situación se repetirá una ronda más, tras la cuál, la jugador columna se verá incentivado a jugar j^3 . Los desarrollos de estos dos procesos pueden verse en las tablas 4.4 y 4.3. Vemos entonces que, independientemente del valor de k, ambos procesos convergen de forma pura en 4 rondas o menos.

Pasemos ahora al caso simultáneo, para el cual nos basaremos en la prueba de Brandt, Fischer Y Harrenstein. Si el proceso comienza con el perfil (i^1, j^1) , entonces las utilidades esperadas serán $Ay^1=(1,0)$ e $x^1B=(1,2,0)$ respectivamente. Luego, en la segunda iteración el jugador fila elegirá i^1 y el jugador columna j^2 . Las utilidades esperadas se actualizarán entonces como $Ay^2=(\frac{3}{2},\frac{2+\epsilon}{2})$ y $x^2B=(1,2,0)$.

A continuación, por al menos 2^k rondas, los jugadores elegirán las mismas jugadas que en la iteración 2, dado que para todo τ tal que $2 \le i \le 2^k$, tendremos $Ay^{\tau} = (2 - \frac{1}{\tau}, 2 - \frac{2+\epsilon}{\tau})$ e $x^{\tau}B = (1, 2, 0)$. La tabla 4.5 muestra como se desarrolla este proceso.

Itanasián	(i, j)	x	xB	y	Ay
Iteración					
1	(i_2,j_3)	(0, 1)	$(0, 2 + \epsilon, 3)$	(0, 0, 1)	(0, 3)

Tabla 4.3: Proceso de juego ficticio alternante sobre el juego del teorema 4.4.3 comenzando por i_2

Iteración	(i,j)	x	xB	y	Ay
Tteracion					
1	(i_1, j_2)	(1,0)	(1, 2, 0)	(0, 1, 0)	$(2,2+\epsilon)$
2	(i_2, j_2)	$(\frac{1}{2}, \frac{1}{2})$	$(\frac{1}{2}, 2 + \frac{1}{2}, \frac{3}{2})$	(0, 1, 0)	$(2, 2 + \epsilon)$
3	(i_2, j_2)	$(\frac{1}{3}, \frac{2}{3})$	$(\frac{1}{3}, 2 + \frac{2}{3}, 2)$	(0, 1, 0)	$(2, 2 + \epsilon)$
4	(i_2, j_3)	$\left(\frac{1}{4}, \frac{3}{4}\right)$	$(\frac{1}{4}, 2 + \frac{3}{4}, \frac{9}{4})$	$(0,\tfrac34,\tfrac14)$	$\left(\frac{3}{2}, \frac{3(2+\epsilon)}{4}\right)$

Tabla 4.4: Proceso de juego ficticio alternante sobre el juego del teorema 4.4.3 comenzando por i_1

	(i,j)	$x x^{\tau} B$	y	Ay	
Iteración					
1	(i_1, j_1)	(1,0)	(1, 2, 0)	(1,0,0)	(1,0)
2	(i_1,j_2)	(1,0)	(1, 2, 0)	$(\frac{1}{2}, \frac{1}{2}, 0)$ $(\frac{1}{3}, \frac{2}{3}, 0)$	$(\frac{3}{2}, \frac{2+\epsilon}{2})$
3	(i_1,j_2)	(1,0)	(1, 2, 0)	$(\frac{1}{3}, \frac{2}{3}, 0)$	(0, 3)
	:				
au	(i_1, j_2)	(1,0)	(1, 2, 0)	$(\frac{1}{\tau}, \frac{\tau-1}{\tau}, 0)$	$(2 - \frac{1}{\tau}, 2 - \frac{2+\epsilon}{\tau})$
	:				
2^k	(i_1, j_2)	(1,0)	(1, 2, 0)	$(\tfrac{1}{2^k},\tfrac{2^k-1}{2^k},0)$	$(2-\tfrac{1}{2^k},2-\tfrac{2+\epsilon}{2^k})$

Tabla 4.5: Proceso de juego ficticio simultáneo sobre el juego del teorema 4.4.3 comenzando por (i_1,j_1)

Concluimos entonces que la secuencia de perfiles

$$(i_1, j_1), \underbrace{(i_1, j_2), ...(i_1, j_2)}_{2^k \text{ veces}}$$

es una secuencia de aprendizaje de juego ficticio simultáneo válida de este juego que es exponencialmente larga en k y en la cual no se juega ningún equilibrio de Nash puro.

Capítulo 5

Conclusiones

Hemos probado que el juego ficticio alternante puede requerir una cantidad exponencial de rondas antes de alcanzar un equilibrio de Nash puro, pero también puede converger en tiempos razonables para juegos en los que el simultaneo es exponencial. Para esto, hemos definido juegos minimales en tamaño que pueden ser extendidos manteniendo la misma propiedad.

5.1. Trabajo futuro

Hay mucho para profundizar en esta diferencia hallada sobre la velocidad de convergencia de las variantes de juego ficticio. Dado un juego que converge en un número exponencial de iteraciones en el juego ficticio simultaneo, ¿Qué propiedad debe cumplir para converger en un número constante o lineal de iteraciones en el alternante? Caracterizar mejor los juegos que cumplen esta propiedad puede avanzar la posibilidad de la utilización práctica del juego ficticio alternante en protocolos reales que requieren el alineamiento de incentivos de distintos sistemas.

Otra línea de trabajo involucra generalizar el juego ficticio considerando $BR(x^{\tau-k})$ con k una constante, es decir, que los jugadores observen las decisiones varias rondas atrás.

Por último, interesan también otras nociones de convergencia y equilibrios mixtos, así como juegos de más jugadores.

Bibliografía

- [1] G. Brown. «Iterative solution of games by fictitious play». En: Activity Analysis of Production and Allocation 13 (ene. de 1951).
- [2] M. Osborne y A. Rubinstein. A course in Game Theory. Vol. 63. Enc. de 1994. DOI: 10.2307/2554642.
- [3] F. Brandt, F. Fischer y P. Harrenstein. «On the Rate of Convergence of Fictitious Play». En: *Theory of Computing Systems* 53.1 (jul. de 2013), págs. 41-52. ISSN: 1433-0490. DOI: 10.1007/s00224-013-9460-5. URL: https://doi.org/10.1007/s00224-013-9460-5.
- [4] J. Robinson. «An Iterative Method of Solving a Game». En: Annals of Mathematics. Second Series 54 (sep. de 1951). DOI: 10.2307/1969530.
- [5] K. Miyasawa. «On the Convergence of Learning Processes in a 2x2 Non-Zero-Person Game». En: (oct. de 1961).
- [6] D. Monderer y A. Sela. «A 2x2 Game without the Fictitious Play Property». En: Games and Economic Behavior 14 (feb. de 1996), págs. 144-148. DOI: 10.1006/game.1996.0045.
- [7] L. Shapley. «Some Topics in Two-Person Games». En: Annals of Mathematics Studies. 52 (ene. de 1964).
- [8] D. Monderer y L. Shapley. «Fictitious Play Property for Games with Identical Interests». En: Journal of Economic Theory 68 (feb. de 1996), págs. 258-265. DOI: 10.1006/jeth.1996.0014.
- [9] D. Monderer y L. S. Shapley. «Potential Games». En: Games and Economic Behavior 14.1 (1996), págs. 124-143. ISSN: 0899-8256. DOI: https://doi.org/ 10.1006/game.1996.0044. URL: http://www.sciencedirect.com/science/ article/pii/S0899825696900445.
- [10] U. Berger. «Learning in games with strategic complementarities revisited». En: Journal of Economic Theory 143 (nov. de 2008), págs. 292-301. DOI: 10.1016/j.jet.2008.01.007.
- [11] A. Sela. «Fictitious play in 'one-against-all' multi-player games». En: *Economic Theory* 14 (nov. de 1999), págs. 635-651. DOI: 10.1007/s001990050345.

30 BIBLIOGRAFÍA

[12] D. Monderer y A. Sela. Fictitious play and-no-cycling conditions. Sonderforschungsbereich 504 Publications 97-12. Sonderforschungsbereich 504, Universität Mannheim; Sonderforschungsbereich 504, University of Mannheim, jun. de 1997. URL: https://ideas.repec.org/p/xrs/sfbmaa/97-12.html.

- [13] U. Berger. «Fictitious play in 2xn games». En: (abr. de 2003).
- [14] R. Chu y G. Vreeswijk. «Extending fictitious play with pattern recognition». En: CEUR Workshop Proceedings 1113 (ene. de 2013), págs. 40-53.
- [15] A. Washburn. «A new kind of fictitious play». En: Naval Research Logistics (NRL) 48 (jun. de 2001), págs. 270-280. DOI: 10.1002/nav.7.
- [16] U. Berger. «Brown's original fictitious play». En: Journal of Economic Theory 135 (feb. de 2007), págs. 572-578. DOI: 10.1016/j.jet.2005.12.010.
- [17] G. B. Dantzig. *Linear Programming and Extensions*. Santa Monica, CA: RAND Corporation, 1963. DOI: 10.7249/R366.
- [18] G. Dantzig. «A proof of the equivalence of the programming problem and the game problem». En: Activity Analysis of Production and Allocation (oct. de 2020), págs. 330-335.
- [19] S. I. Gass y P. M. Zafra. «Modified fictitious play for solving matrix games and linear-programming problems». En: Computers & Operations Research 22.9 (1995), págs. 893-903. ISSN: 0305-0548. DOI: https://doi.org/10.1016/0305-0548(94)00075-J. URL: http://www.sciencedirect.com/science/article/pii/030505489400075J.
- [20] T. III, M. Epelman y R. Smith. «A Fictitious Play Approach to Large-Scale Optimization». En: *Operations Research* 53 (jun. de 2005), págs. 477-489. DOI: 10.1287/opre.1040.0178.
- [21] S. Karlin. Mathematical Methods and Theory in Games. Vol. 1-2. Addison-Wesley, 1959.
- [22] Y. Viossat y A. Zapechelnyuk. «No-regret Dynamics and Fictitious Play». En: Journal of Economic Theory 148 (jul. de 2012). DOI: 10.1016/j.jet.2012.07.003.
- [23] A. Jafari, A. Greenwald, D. Gondek y G. Ercal. «On No-Regret Learning, Fictitious Play, and Nash Equilibrium». En: (jul. de 2001).
- [24] C. Daskalakis y Q. Pan. «A Counter-Example to Karlin's Strong Conjecture for Fictitious Play». En: Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS (dic. de 2014). DOI: 10.1109/FOCS.2014.10.
- [25] J. Nash. «Non-Cooperative Games». En: Annals of Mathematics 54.2 (1951), págs. 286-295. ISSN: 0003486X. URL: http://www.jstor.org/stable/1969529.