RAJALAKSHMI ENGINEERING COLLEGE

RAJALAKSHMI NAGAR, THANDALAM - 602 105

AI23521 BUILD AND DEPLOYMENT OF MACHINE LEARNING APPLICATIONS

LABORATORY NOTEBOOK

NAME: SHRIRAM N

YEAR/BRANCH/SECTION: 3rd Yr/AIML

REGISTER NO. :2116-231501154

SEMESTERS: 5TH SEMESTER

ACADEMIC YEAR: 2025-2026s

RAJALAKSHMI ENGINEERING COLLEGE (AUTONOMOUS) RAJALAKSHMI NAGAR, THANDALAM – 602 105

BONAFIDE CERTIFICATE

NAME: _	SHRIRAM N	REGISTER NO.	2116-231501154
ACADEMIC	C YEAR 2025-26 SEME	ESTER- V BRANC	CH: B.Tech – AIML
S			
This Certific	cation is the Bonafide rec	ord of work done b	y the above
student in th	e AI23521-Build and D	eployment of ML	Applications
Laboratory o	during the year 2025 – 20	026.	
		Signature of	f Faculty -in – Charge
Submitted for	or the Practical Examinat	ion held on	

External Examiner

Internal Examiner

INDEX

EXP. NO	Date	Title	Page No	Signature
1	07-08-2025	2025 Setting Up The Environment And Preprocessing The Data		
2	2 14-08- Support Vector Machine (Svm) And Random Forest For Binary & Multiclass Classification			
3	14-08- 2025	Classification with Decision Trees		
4A	21-08-2025	Support Vector Machines (SVM)		
4B	21-08-2025	Ensemble Methods: Random Forest		
5	28-08-2025 Clustering with K-Means and Dimensionality Reduction with PCA			
6	11-09-2025	Feedforward and Convolutional Neural Networks		
7	25-09-2025	Generative Models with GANs:Creating and Training a Generative Adversarial Network		
8	09-10-2025	Model Evaluation and Improvement: Hyperparameter Tuning with Grid Search and Cross-Validation		
9	16-10-2025	Model Deployment: REST API with Flask and Containerization with Docker		

EXP NO: 1

SETTING UP THE ENVIRONMENT AND PREPROCESSING THE DATA

AIM:

To set up a fully functional machine learning development environment and to perform data preprocessing operations like handling missing values, encoding categorical variables, feature scaling, and splitting datasets.

ALGORITHM:

- 1. Install Required Libraries:
 - Install numpy, pandas, matplotlib, seaborn, and scikit-learn using pip.
- 2. Import Libraries.
- 3. Load Dataset:
 - Load any dataset (e.g., Titanic or Iris) using pandas.
- 4. Data Exploration:
 - Use df.info(), df.describe(), df.isnull().sum() to understand the data.
- 5. Handle Missing Values:
 - Use .fillna() or .dropna() depending on the strategy.
- 6. Encode Categorical Data:
 - Use pd.get_dummies() or LabelEncoder.
- 7. Feature Scaling:
 - Normalize or standardize the numerical features using StandardScaler or MinMaxScaler.
- 8. Split Dataset:
 - Use train_test_split() from sklearn to create training and testing sets.
- 9. Display the Preprocessed Data.

```
# 1. Install necessary libraries (if not already installed)
#!pip install numpy pandas matplotlib seaborn scikit-learn
# 2. Import libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
import seaborn as sns
import matplotlib.pyplot as plt
#3. Load dataset
df = sns.load_dataset('titanic') # Titanic dataset
df.head()
# 4. Explore the dataset
print(df.info())
print(df.describe())
print(df.isnull().sum())
# 5. Handle missing values
# Fill age with median, embark_town with mode
df['age'].fillna(df['age'].median(), inplace=True)
df['embark town'].fillna(df['embark town'].mode()[0], inplace=True)
df.drop(columns=['deck'], inplace=True) # too many missing values
# 6. Encode categorical variables
```

```
# Convert 'sex' and 'embark town' using LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit transform(df['sex'])
df['embark town'] = le.fit transform(df['embark town'])
# Drop non-informative or redundant columns
df.drop(columns=['embarked', 'class', 'who', 'alive', 'adult male', 'alone'], inplace=True)
#7. Feature Scaling
scaler = StandardScaler()
numerical_cols = ['age', 'fare']
df[numerical_cols] = scaler.fit_transform(df[numerical_cols])
#8. Split dataset
# Define features (X) and label (y)
X = df.drop(`survived', axis=1)
y = df['survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#9. Show final preprocessed data
print("Training Data Shape:", X train.shape)
print("Test Data Shape:", X test.shape)
X_train.head()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
# Column Non-Null Count Dty
```

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	category
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	203 non-null	category
12	embark_town	889 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool
dtyp	es: bool(2),	category(2), flo	at64(2), int64(

(4), object(5)

memory usage: 80.7+ KB

None

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

survived	0
pclass	0
sex	0
age	177
sibsp	0
parch	0
fare	0
embarked	2
class	0
who	0
adult_male	0
deck	688
embark_town	2
alive	0
alone	0
dtype: int64	

dtype: int64

231501154

AI23521 BUILD AND DEPLOY FOR MACHINE LEARNING APPLICATION

Training Data Shape: (712, 7)

Test Data Shape: (179, 7)

/tmp/ipython-input-4068659829.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['age'].fillna(df['age'].median(), inplace=True)
/tmp/ipython-input-4068659829.py:4: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

 $\label{lem:def_def} $$ df['embark_town'].$ fillna(df['embark_town'].$ mode()[0], inplace=True) $$$

	pclass	sex	age	sibsp	parch	fare	embark_town
331	1	1	1.240235	0	0	-0.074583	2
733	2	1	-0.488887	0	0	-0.386671	2
382	3	1	0.202762	0	0	-0.488854	2
704	3	1	-0.258337	1	0	-0.490280	2
813	3	0	-1.795334	4	2	-0.018709	2

RESULT:

The Python environment was successfully set up and the dataset was pre-processed by handling missing values, encoding categorical data, performing feature scaling, and splitting the data into training and testing sets. The dataset is now ready for model training and analysis.

EXP NO: 2

SUPPORT VECTOR MACHINE (SVM) AND RANDOM FOREST FOR BINARY & MULTICLASS CLASSIFICATION

AIM

To build classification models using **Support Vector Machines** (**SVM**) and **Random Forest**, apply them to a dataset, and evaluate the models using performance metrics like accuracy and confusion matrix.

ALGORITHM

Part A: SVM Model

- 1. Import necessary libraries
- 2. Load and explore the dataset
- 3. Handle missing values if any
- 4. Encode categorical variables
- 5. Split dataset into training and testing sets
- 6. Build SVM classifier using SVC()
- 7. Train and predict
- 8. Evaluate the model using accuracy and confusion matrix

Part B: Random Forest Model

- 1. Initialize Random Forest using RandomForestClassifier()
- 2. Train and predict
- 3. Evaluate and compare with SVM

CODE:

#1. Import libraries

import pandas as pd

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
# 2. Load dataset
iris = load iris()
X = iris.data
y = iris.target
# 3. Feature scaling
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 4. Train-test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
# ------
# Part A: SUPPORT VECTOR MACHINE
# 5. Initialize and train SVM
svm_model = SVC(kernel='linear') # You can also try 'rbf', 'poly'
svm_model.fit(X_train, y_train)
# 6. Predict and evaluate SVM
y_pred_svm = svm_model.predict(X_test)
print("SVM Accuracy:", accuracy_score(y_test, y_pred_svm))
print("SVM Confusion Matrix:\n", confusion_matrix(y_test, y_pred_svm))
```

```
# -----
# Part B: RANDOM FOREST
#7. Initialize and train Random Forest
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
# 8. Predict and evaluate Random Forest
y_pred_rf = rf_model.predict(X_test)
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
print("Random Forest Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
# -----
# 9. Visual comparison using seaborn heatmap
# ------
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
sns.heatmap(confusion_matrix(y_test, y_pred_svm), annot=True, cmap='Blues', fmt='d')
plt.title("SVM Confusion Matrix")
plt.subplot(1, 2, 2)
sns.heatmap(confusion_matrix(y_test, y_pred_rf), annot=True, cmap='Greens', fmt='d')
plt.title("Random Forest Confusion Matrix")
plt.tight_layout()
plt.show()
```


RESULT:

The Support Vector Machine (SVM) and Random Forest algorithms were successfully implemented for both binary and multiclass classification tasks. The models were trained and tested on the given dataset, and both achieved good accuracy.

EXPNO:3

CLASSIFICATION WITH DECISION TREES

AIM

To implement a Decision Tree classifier and evaluate its performance using **accuracy score** and **confusion matrix** on a real-world dataset.

ALGORITHM

- 1. Import necessary libraries
- 2. Load a classification dataset (e.g., Iris or Titanic)
- 3. Split the dataset into training and test sets
- 4. Preprocess data if needed
- 5. Train a DecisionTreeClassifier from sklearn.tree
- 6. Predict on test data
- 7. Evaluate using:
 - Confusion Matrix
 - o Accuracy Score
- 8. Visualize the Decision Tree (optional)

CODE:

Step 1: Import Libraries

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier, plot_tree

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix, accuracy_score

import matplotlib.pyplot as plt

import seaborn as sns

Step 2: Load Dataset

iris = load_iris()

```
X = iris.data
y = iris.target
# Step 3: Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 4: Train the Decision Tree Classifier
dt_model = DecisionTreeClassifier(criterion='gini', random_state=0)
dt_model.fit(X_train, y_train)
# Step 5: Predict
y_pred = dt_model.predict(X_test)
# Step 6: Evaluate the Model
cm = confusion_matrix(y_test, y_pred)
acc = accuracy_score(y_test, y_pred)
print("Confusion Matrix:\n", cm)
print("Accuracy Score:", acc)
# Step 7: Visualize Confusion Matrix
sns.heatmap(cm,
                          annot=True,
                                                cmap="Blues",
                                                                         xticklabels=iris.target_names,
yticklabels=iris.target_names)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
# Step 8: Visualize the Decision Tree
plt.figure(figsize=(12,8))
plot_tree(dt_model, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.title("Decision Tree Visualization")
```

plt.show()

RESULT:

The Decision Tree classification model was successfully implemented and tested on the given dataset. The model accurately classified the data by learning simple decision rules from the features.

The decision tree visualized the decision-making process through a hierarchical structure of nodes and branches, making it easy to interpret. The classification achieved good accuracy, demonstrating that Decision Trees are effective for both categorical and numerical data, providing clear and interpretable results.

AIM:

To build an SVM model for a binary classification task, tune its hyperparameters, and evaluate it using accuracy, precision, recall, F1-score, confusion matrix, and ROC-AUC.

ALGORITHM:

- 1. Import libraries: numpy, pandas, matplotlib, sklearn.
- 2. Load data: Use a standard binary dataset (Breast Cancer Wisconsin) from sklearn.datasets.
- 3. Train/Test split: 80/20 split with a fixed random_state.
- 4. Preprocess: Standardize features (StandardScaler).
- 5. SVMs are sensitive to feature scale.
- 6. Model selection: Use SVC (RBF kernel).
- 7. Hyperparameter tuning: Grid search on C and gamma with cross-validation (GridSearchCV).
- 8. Train final model: Fit on training data using best parameters.
- 9. Evaluate: Predict on test set; compute metrics and plot ROC curve.
- 10. Report: Best params, metrics, and brief observations.

===================================
EXPERIMENT 4A — SVM (RBF)
=====================================
1) Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer

```
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import (
  accuracy_score, precision_score, recall_score, f1_score,
  confusion_matrix, classification_report, roc_auc_score, roc_curve
# 2) Load dataset (binary classification)
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target, name="target") # 0 = malignant, 1 = benign
#3) Train/test split
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.20, random_state=42, stratify=y
# 4) Standardize features (important for SVMs)
scaler = StandardScaler()
X_train_sc = scaler.fit_transform(X_train)
X_{test\_sc} = scaler.transform(X_{test})
#5) Define model
svm = SVC(kernel='rbf', probability=True, random_state=42)
# 6) Hyperparameter grid & tuning
param_grid = {
  "C": [0.1, 1, 10, 100],
  "gamma": ["scale", 0.01, 0.001, 0.0001]
}
```

```
grid = GridSearchCV(
  estimator=svm,
  param_grid=param_grid,
  scoring='f1', # You can change to 'accuracy' or 'roc_auc'
  cv=5,
  n_jobs=-1,
  verbose=0
)
grid.fit(X_train_sc, y_train)
print("Best Parameters from Grid Search:", grid.best_params_)
best_svm = grid.best_estimator_
#7) Train final model & predict
best_svm.fit(X_train_sc, y_train)
y_pred = best_svm.predict(X_test_sc)
y_prob = best_svm.predict_proba(X_test_sc)[:, 1]
#8) Evaluation
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred, zero_division=0)
rec = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
auc = roc_auc_score(y_test, y_prob)
cm = confusion_matrix(y_test, y_pred)
print("\n=== SVM (RBF) — Test Metrics ===")
print(f"Accuracy: {acc:.4f}")
print(f"Precision: {prec:.4f}")
```

```
print(f"Recall : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC : {auc:.4f}")
print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification_report(y_test, y_pred, zero_division=0))
#9) Plot ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
plt.figure()
plt.plot(fpr, tpr, label=f"SVM (AUC = {auc:.3f})")
plt.plot([0, 1], [0, 1], linestyle="--", color='gray')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve — SVM (RBF)")
plt.legend()
plt.grid(True)
plt.show()
```

```
Best Parameters from Grid Search: {'C': 10, 'gamma': 0.01}
=== SVM (RBF) - Test Metrics ===
Accuracy: 0.9825
Precision: 0.9861
Recall : 0.9861
F1-Score : 0.9861
ROC-AUC : 0.9977
Confusion Matrix:
 [[41 1]
 [ 1 71]]
Classification Report:
                             recall f1-score
               precision
                                                 support
                    0.98
                              0.98
                                         0.98
    accuracy
                                         0.98
                                                    114
   macro avg
                    0.98
                              0.98
                                         0.98
                                                    114
weighted avg
                    0.98
                              0.98
                                         0.98
                                                    114
```


RESULT:

The Support Vector Machine (SVM) model was successfully implemented and evaluated on the given dataset. The model effectively classified the data by finding the optimal hyperplane that maximized the margin between different classes.

The SVM achieved high accuracy and demonstrated strong performance, especially in handling linearly and non-linearly separable data using kernel functions. This confirms that SVM is a powerful and reliable algorithm for classification tasks.

EXP NO: 4B	ENSEMBLE METHODS: RANDOM FOREST

AIM:

To implement a **Random Forest classifier** for a classification task, tune key hyperparameters, evaluate performance, and interpret **feature importance**.

ALGORITHM:

- 1. Import libraries.
- 2. Load data (use same dataset to compare with SVM).
- 3. Train/Test split with stratification.
- 4. (Optional) Preprocess: Random Forests don't require scaling; we'll use raw features.
- 5. Model: RandomForestClassifier.
- 6. Hyperparameter tuning: Grid search over n_estimators, max_depth, min_samples_split, min_samples_leaf.
- 7. Train the best model on training data.
- 8. Evaluate with accuracy, precision, recall, F1, confusion matrix, ROC-AUC.
- 9. Interpretation: Plot top feature importances.

=====================================
EXPERIMENT 4B — Random Forest Classifier
=====================================
1) Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, GridSearchCV

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import (
  accuracy_score, precision_score, recall_score, f1_score,
  confusion_matrix, classification_report, roc_auc_score, roc_curve
)
# 2) Load dataset (same as 4A for comparison)
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target, name="target")
# 3) Train/test split (no scaling needed for RF)
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.20, random_state=42, stratify=y
)
#4) Define model
rf = RandomForestClassifier(random_state=42, n_jobs=-1)
# 5) Hyperparameter grid & tuning
param_grid = {
  "n_estimators": [100],
  "max_depth": [None, 10],
  "min_samples_split": [2],
  "min_samples_leaf": [1]
}
grid = GridSearchCV(
  estimator=rf,
  param_grid=param_grid,
  scoring="f1",
  cv=3,
  n_{jobs}=-1,
```

```
verbose=0)
grid.fit(X_train, y_train)
print("Best Parameters (CV):", grid.best_params_)
best_rf = grid.best_estimator_
#6) Train final model & predict
best_rf.fit(X_train, y_train)
y_pred = best_rf.predict(X_test)
y_prob = best_rf.predict_proba(X_test)[:, 1]
#7) Evaluate
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred, zero_division=0)
rec = recall_score(y_test, y_pred)
f1 = f1\_score(y\_test, y\_pred)
auc = roc_auc_score(y_test, y_prob)
cm = confusion_matrix(y_test, y_pred)
print("\n=== Random Forest — Test Metrics ===")
print(f"Accuracy : {acc:.4f}")
print(f"Precision: {prec:.4f}")
print(f"Recall : {rec:.4f}")
print(f"F1-Score : {f1:.4f}")
print(f"ROC-AUC : {auc:.4f}")
print("\nConfusion Matrix:\n", cm)
print("\nClassification Report:\n", classification_report(y_test, y_pred, zero_division=0))
#8) Feature Importance (Top 10)
importances = pd.Series(best_rf.feature_importances_, index=X.columns)
top10 = importances.sort_values(ascending=False).head(10)
```

```
plt.figure()
top10[::-1].plot(kind="barh")
plt.xlabel("Importance")
plt.title("Top 10 Feature Importances — Random Forest")
plt.grid(axis="x", alpha=0.3)
plt.show()
#9) ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
plt.figure()
plt.plot(fpr, tpr, label=f"Random Forest (AUC = {auc:.3f})")
plt.plot([0, 1], [0, 1], linestyle="--", color='gray')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve — Random Forest")
plt.legend()
plt.grid(True)
plt.show()
```

```
Best Parameters (CV): {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}
=== Random Forest - Test Metrics ===
Accuracy : 0.9561
Precision: 0.9589
Recall : 0.9722
F1-Score : 0.9655
ROC-AUC : 0.9937
Confusion Matrix:
[[39 3]
[ 2 70]]
Classification Report:
                         recall f1-score support
              precision
                  0.95
                            0.93
                                     0.94
                                                 42
          1
                  0.96
                            0.97
                                     0.97
                                                 72
                                     0.96
                                                114
   accuracy
                  0.96
                            0.95
  macro avg
                0.96
weighted avg
                            0.96
                                     0.96
                                               114
```


RESULT:

The Random Forest ensemble model was successfully implemented and evaluated on the given dataset. The model combined multiple decision trees to improve prediction accuracy and reduce overfitting.

It achieved high classification accuracy and demonstrated strong generalization capability. The results confirmed that Random Forest provides stable and reliable predictions by leveraging the power of multiple decision trees through bagging and feature randomness.

EXP NO: 5

CLUSTERING WITH K-MEANS AND DIMENSIONALITY REDUCTION WITH PCA

AIM:

To demonstrate the application of Unsupervised Learning models, specifically K-Means clustering for grouping data points and Principal Component Analysis (PCA) for dimensionality reduction and visualization, using a suitable dataset.

ALGORITHM:

1. K-Means Clustering

K-Means is an iterative clustering algorithm that aims to partition \$n\$ observations into \$k\$ clusters, where each observation belongs to the cluster with the nearest mean (centroid).

Steps:

- 1. **Initialization:** Choose \$k\$ initial centroids randomly from the dataset.
- 2. **Assignment:** Assign each data point to the cluster whose centroid is closest (e.g., using Euclidean distance).
- 3. **Update:** Recalculate the centroids as the mean of all data points assigned to that cluster.
- 4. **Iteration:** Repeat steps 2 and 3 until the centroids no longer move significantly or a maximum number of iterations is reached.

2. Principal Component Analysis (PCA)

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

Steps:

- 1. **Standardization:** Standardize the dataset (mean = 0, variance = 1).
- 2. Covariance Matrix Calculation: Compute the covariance matrix of the standardized data.
- 3. **Eigenvalue Decomposition:** Calculate the eigenvalues and eigenvectors of the covariance matrix.
- 4. **Feature Vector Creation:** Sort the eigenvectors by decreasing eigenvalues and select the top \$k\$ eigenvectors to form a feature vector (projection matrix).
- 5. **Projection:** Project the original data onto the new feature space using the feature vector.

```
# EXPERIMENT — K-Means & PCA
# Import necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
# --- Part 1: K-Means Clustering ---
print("--- Part 1: K-Means Clustering ---")
# 1. Generate dataset
X, y = make_blobs(n_samples=300, centers=3, cluster_std=0.60, random_state=42)
df_kmeans = pd.DataFrame(X, columns=['Feature_1', 'Feature_2'])
print("\nOriginal K-Means Dataset Head:")
print(df_kmeans.head())
#2. Elbow Method
wcss = []
for i in range(1, 11):
  kmeans
                  KMeans(n_clusters=i, init='k-means++',
                                                               max_iter=300,
                                                                                  n_{init}=10,
random_state=42)
  kmeans.fit(X)
  wcss.append(kmeans.inertia_)
plt.figure(figsize=(10, 6))
plt.plot(range(1, 11), wcss, marker='o', linestyle='--')
plt.title('Elbow Method for Optimal K (K-Means)')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('WCSS')
plt.grid(True)
plt.show()
# 3. Apply K-Means with chosen K
```

```
optimal\underline{k} = \overline{3}
kmeans = KMeans(n_clusters=optimal_k, init='k-means++', max_iter=300, n_init=10,
random_state=42)
clusters = kmeans.fit_predict(X)
df_kmeans['Cluster'] = clusters
# 4. Visualize K-Means clusters
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Feature_1', y='Feature_2', hue='Cluster', data=df_kmeans, palette='viridis',
s=100, alpha=0.8)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=300, c='red',
marker='X', label='Centroids')
plt.title(f'K-Means Clustering with K={optimal_k}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.grid(True)
plt.show()
# 5. Silhouette Score
silhouette_avg = silhouette_score(X, clusters)
print(f"\nSilhouette Score for K-Means (K={optimal_k}): {silhouette_avg:.3f}")
# --- Part 2: Dimensionality Reduction with PCA ---
print("\n--- Part 2: Dimensionality Reduction with PCA ---")
# 1. Generate 4D dataset
X pca, y pca = make blobs(n samples=500, n features=4, centers=4, cluster std=1.0,
random_state=25)
df_pca_original
                        pd.DataFrame(X_pca, columns=[f'Feature_{i+1}'
                                                                                for
                                                                                     i
                                                                                           in
range(X_pca.shape[1])])
df_pca_original['True_Cluster'] = y_pca
print("\nOriginal PCA Dataset Head:")
print(df_pca_original.head())
print(f"Original PCA Dataset Shape: {df_pca_original.shape}")
# 2. Standardize
scaler = StandardScaler()
X_pca_scaled = scaler.fit_transform(X_pca)
# 3. PCA (4D \rightarrow 2D)
pca = PCA(n components=2)
principal_components = pca.fit_transform(X_pca_scaled)
df_principal_components
                                                       pd.DataFrame(principal_components,
columns=['Principal_Component_1', 'Principal_Component_2'])
```

```
df_principal_components['True_Cluster'] = y_pca
explained_variance = pca.explained_variance_ratio_
print("\nPrincipal Components Head:")
print(df_principal_components.head())
print(f"\nExplained Variance Ratio: {explained_variance}")
print(f"Total Explained Variance by 2 PCs: {explained_variance.sum():.3f}")
# 4. Visualize PCA result
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Principal_Component_1', y='Principal_Component_2', hue='True_Cluster',
         data=df_principal_components, palette='Paired', s=100, alpha=0.8)
plt.title('PCA - Dimensionality Reduction to 2 Components')
plt.xlabel(fPC1 ({explained_variance[0]*100:.2f}%)')
plt.ylabel(fPC2 ({explained_variance[1]*100:.2f}%)')
plt.grid(True)
plt.show()
# 5. K-Means on PCA-reduced data
kmeans_pca
              = KMeans(n_clusters=4,
                                            init='k-means++',
                                                                max_iter=300,
                                                                                 n_{init}=10,
random state=42)
clusters_pca = kmeans_pca.fit_predict(principal_components)
df_principal_components['KMeans_Cluster_on_PCA'] = clusters_pca
plt.figure(figsize=(10, 8))
sns.scatterplot(x='Principal Component 1',
                                                                y='Principal Component 2',
hue='KMeans_Cluster_on_PCA',
         data=df_principal_components, palette='viridis', s=100, alpha=0.8)
plt.scatter(kmeans_pca.cluster_centers_[:, 0], kmeans_pca.cluster_centers_[:, 1], s=300,
c='red', marker='X', label='Centroids')
plt.title('K-Means Clustering on PCA-Reduced Data')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend()
plt.grid(True)
plt.show()
# 6. Silhouette Score for PCA-reduced KMeans
silhouette avg pca = silhouette score(principal components, clusters pca)
print(f"\nSilhouette
                       Score
                                for
                                       K-Means
                                                          PCA-Reduced
                                                    on
                                                                             Data
                                                                                     (K=4):
{silhouette_avg_pca:.3f}")
```

--- Part 1: K-Means Clustering ---

Original K-Means Dataset Head:

Feature 1 Feature 2

0 -7.155244 -7.390016

1 -7.395875 -7.110843

2 -2.015671 8.281780

3 4.509270 2.632436

4 -8.102502 -7.484961

Silhouette Score for K-Means (K=3): 0.908

--- Part 2: Dimensionality Reduction with PCA ---

Original PCA Dataset Head:

	Feature_1	Feature_2	Feature_3	Feature_4	True_Cluster
0	-0.638667	1.110057	-6.400722	-0.204990	3
1	-2.951556	-7.657445	3.844794	0.903589	1
2	-0.253177	2.125103	-7.869801	0.559678	3
3	-2.151209	3.401400	-5.734930	0.965230	3
4	-2.347519	-7.230467	3.478891	-0.443440	1

PI	incipal components Head	1;	
	Principal_Component_1	Principal_Component_2	True_Cluster
0	0.455305	1.623917	3
1	-2.705622	0.375012	1
2	0.810234	1.966926	3
3	0.427139	2.149626	3
4	-2 497598	g ggg25g	1

Explained Variance Ratio: [0.57208431 0.33622342] Total Explained Variance by 2 PCs: 0.908

Silhouette Score for K-Means on PCA-Reduced Data (K=4): 0.776

RESULT:

The K-Means clustering and Principal Component Analysis (PCA) techniques were successfully implemented on the given dataset.

- K-Means Clustering effectively grouped the data into distinct clusters based on feature similarity, minimizing intra-cluster distance and maximizing inter-cluster separation.
- PCA (Principal Component Analysis) successfully reduced the dimensionality of the dataset while retaining most of the variance, improving visualization and computational efficiency.

The combined results showed that PCA enhances clustering performance by simplifying high-dimensional data, and K-Means efficiently identifies underlying patterns and group structures.

EXP NO: 6	FEEDFORWARD AND CONVOLUTIONAL NEURAL NETWORKS

AIM:

To demonstrate the construction and application of a simple Feedforward Neural Network (FNN) for classification and a Convolutional Neural Network (CNN) for image classification, utilizing the Keras API with TensorFlow backend.

ALGORITHM:

1. Feedforward Neural Network (FNN)

A Feedforward Neural Network is the simplest type of artificial neural network where connections between the nodes do not form a cycle. It consists of an input layer, one or more hidden layers, and an output layer. Information flows only in one direction—forward—from the input nodes, through the hidden nodes (if any), and to the output nodes.

Steps:

- 1. Define Network Architecture: Specify the number of layers (input, hidden, output) and the number of neurons in each layer.
- 2. Choose Activation Functions: Select activation functions for hidden layers (e.g., ReLU) and the output layer (e.g., Sigmoid for binary classification, Softmax for multi-class classification).
- 3. Define Loss Function: Choose a loss function appropriate for the task (e.g., Binary Crossentropy for binary classification, Categorical Cross-entropy for multi-class classification).
- 4. Choose Optimizer: Select an optimization algorithm (e.g., Adam, SGD) to update network weights during training.
- 5. Training: Feed forward data through the network to get predictions, calculate the loss, and then backpropagate the error to update weights.
- 6. Evaluation: Assess the model's performance on unseen data using metrics like accuracy.

2. Convolutional Neural Network (CNN)

A Convolutional Neural Network is a specialized type of neural network primarily designed for processing data with a grid-like topology, such as images. Key components include convolutional layers, pooling layers, and fully connected layers.

Steps:

- 1. Convolutional Layers: Apply filters (kernels) to input data to extract features. Each filter detects a specific pattern (e.g., edges, textures).
- 2. Activation Function (ReLU): Apply a non-linear activation function after convolution to introduce non-linearity.
- 3. Pooling Layers: Downsample feature maps to reduce dimensionality, computational cost, and prevent overfitting (e.g., Max Pooling).
- 4. Flattening: Convert the 2D pooled feature maps into a 1D vector to be fed into a fully connected layer.
- 5. Fully Connected Layers: Standard neural network layers for classification based on the extracted features.
- 6. Output Layer: Final layer with an activation function (e.g., Softmax) to output class probabilities.
- 7. Training and Evaluation: Similar to FNNs, train the CNN using backpropagation and evaluate its performance.

```
# Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist, fashion mnist
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
# Suppress TensorFlow warnings for cleaner output
tf.keras.utils.disable interactive logging()
# --- Part 1: Building a Simple Feedforward Neural Network ---
print("--- Part 1: Building a Simple Feedforward Neural Network ---")
# 1. Load and Preprocess Dataset (Using Fashion MNIST for FNN)
(x_train_fnn, y_train_fnn), (x_test_fnn, y_test_fnn) = fashion_mnist.load_data()
print(f"\nOriginal FNN training data shape: {x_train_fnn.shape}")
print(f"Original FNN test data shape: {x_test_fnn.shape}")
# Flatten images to 1D array
```

```
x_train_fnn_flat = x_train_fnn.reshape(-1, 28 * 28)
x_test_fnn_flat = x_test_fnn.reshape(-1, 28 * 28)
# Normalize pixel values
x_train_fnn_norm = x_train_fnn_flat / 255.0
x_{test_fnn_norm} = x_{test_fnn_flat} / 255.0
print(f"Flattened & Normalized FNN training data shape: {x_train_fnn_norm.shape}")
print(f"Flattened & Normalized FNN test data shape: {x_test_fnn_norm.shape}")
# 2. Build FNN Model
model fnn = keras.Sequential([
  layers.Dense(128, activation='relu', input_shape=(784,)),
  layers.Dropout(0.2),
  layers.Dense(64, activation='relu'),
  layers.Dense(10, activation='softmax')
1)
# 3. Compile Model
model_fnn.compile(optimizer='adam',
           loss='sparse_categorical_crossentropy',
           metrics=['accuracy'])
print("\n--- FNN Model Summary ---")
model_fnn.summary()
# 4. Train Model
print("\n--- Training FNN Model ---")
history_fnn = model_fnn.fit(x_train_fnn_norm, y_train_fnn, epochs=10,
                 validation_split=0.1, verbose=1)
#5. Evaluate Model
print("\n--- Evaluating FNN Model ---")
loss_fnn, accuracy_fnn = model_fnn.evaluate(x_test_fnn_norm, y_test_fnn, verbose=0)
print(f"FNN Test Loss: {loss_fnn:.4f}")
print(f"FNN Test Accuracy: {accuracy_fnn:.4f}")
# Classification report & confusion matrix
y_pred_fnn = np.argmax(model_fnn.predict(x_test_fnn_norm), axis=-1)
print("\n--- FNN Classification Report ---")
```

```
print(classification_report(y_test_fnn, y_pred_fnn))
print("\n--- FNN Confusion Matrix ---")
cm_fnn = confusion_matrix(y_test_fnn, y_pred_fnn)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_fnn, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.title("FNN Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
# Plot Accuracy & Loss
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(history_fnn.history['accuracy'], label='Training Accuracy')
plt.plot(history_fnn.history['val_accuracy'], label='Validation Accuracy')
plt.title('FNN Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(history_fnn.history['loss'], label='Training Loss')
plt.plot(history_fnn.history['val_loss'], label='Validation Loss')
plt.title('FNN Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
# --- Part 2: Convolutional Neural Network (CNN) ---
print("\n--- Part 2: Implementing a CNN ---")
# 1. Load MNIST for CNN
(x_train_cnn, y_train_cnn), (x_test_cnn, y_test_cnn) = mnist.load_data()
print(f"\nOriginal CNN training data shape: {x_train_cnn.shape}")
print(f"Original CNN test data shape: {x_test_cnn.shape}")
```

```
# Reshape for channel dimension
x_train_cnn = x_train_cnn.reshape(x_train_cnn.shape[0], 28, 28, 1)
x test cnn = x test cnn.reshape(x test cnn.shape[0], 28, 28, 1)
# Normalize
x_train_cnn = x_train_cnn.astype('float32') / 255.0
x_test_cnn = x_test_cnn.astype('float32') / 255.0
print(f"Reshaped & Normalized CNN training data shape: {x_train_cnn.shape}")
print(f"Reshaped & Normalized CNN test data shape: {x_test_cnn.shape}")
num_classes_cnn = 10
# 2. Build CNN Model
model_cnn = keras.Sequential([
  layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
  layers.MaxPooling2D((2, 2)),
  layers.Conv2D(64, (3, 3), activation='relu'),
  layers.MaxPooling2D((2, 2)),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dropout(0.5),
  layers.Dense(num_classes_cnn, activation='softmax')
])
# 3. Compile Model
model_cnn.compile(optimizer='adam',
           loss='sparse_categorical_crossentropy',
           metrics=['accuracy'])
print("\n--- CNN Model Summary ---")
model_cnn.summary()
#4. Train Model
print("\n--- Training CNN Model ---")
history_cnn = model_cnn.fit(x_train_cnn, y_train_cnn, epochs=10,
                 validation_split=0.1, verbose=1)
# 5. Evaluate Model
```

```
print("\n--- Evaluating CNN Model ---")
loss_cnn, accuracy_cnn = model_cnn.evaluate(x_test_cnn, y_test_cnn, verbose=0)
print(f"CNN Test Loss: {loss_cnn:.4f}")
print(f"CNN Test Accuracy: {accuracy_cnn:.4f}")
# Classification report & confusion matrix
y_pred_cnn = np.argmax(model_cnn.predict(x_test_cnn), axis=-1)
print("\n--- CNN Classification Report ---")
print(classification_report(y_test_cnn, y_pred_cnn))
print("\n--- CNN Confusion Matrix ---")
cm_cnn = confusion_matrix(y_test_cnn, y_pred_cnn)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_cnn, annot=True, fmt="d", cmap="Blues", cbar=False)
plt.title("CNN Confusion Matrix")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()
# Plot Accuracy & Loss
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(history_cnn.history['accuracy'], label='Training Accuracy')
plt.plot(history_cnn.history['val_accuracy'], label='Validation Accuracy')
plt.title('CNN Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.subplot(1, 2, 2)
plt.plot(history_cnn.history['loss'], label='Training Loss')
plt.plot(history_cnn.history['val_loss'], label='Validation Loss')
plt.title('CNN Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```

```
# Optional: Visualize predictions
print("\n--- Sample CNN Predictions ---")
class\_names\_mnist = [str(i) for i in range(10)]
plt.figure(figsize=(10, 10))
for i in range(25):
  plt.subplot(5, 5, i + 1)
  plt.xticks([])
  plt.yticks([])
  plt.grid(False)
  plt.imshow(x_test_cnn[i].reshape(28, 28), cmap=plt.cm.binary)
  true_label = y_test_cnn[i]
  predicted_label = y_pred_cnn[i]
  color = 'green' if true_label == predicted_label else 'red'
  plt.xlabel(f"True:
                                                       {class_names_mnist[true_label]}\nPred:
{class_names_mnist[predicted_label]}", color=color)
plt.suptitle("Sample CNN Predictions (Green: Correct, Red: Incorrect)", y=1.02, fontsize=16)
plt.tight_layout(rect=[0, 0, 1, 0.98])
plt.show()
```

OUTPUT:

FNN Test Loss: 0.3404

accuracy

macro avg

weighted avg

FNN Test Accuracy: 0.8824 --- FNN Classification Report --precision recall f1-score support 0.81 0.83 0.96 0.98 1000 0 0.85 1000 1 1.00 0.79 0.80 1000 2 0.81 0.88 1000 3 0.85 0.92 4 0.83 0.77 0.80 1000 0.97 0.97 5 0.97 1000 6 0.72 0.69 1000 0.67 0.94 0.95 7 0.95 1000 8 0.97 0.98 0.97 1000 0.97 0.95 0.96 1000

0.88

0.88

0.88

0.88

0.88

0.88

0.88

10000

10000

10000

CNN Test Loss: 0.0285 CNN Test Accuracy: 0.9913

CNN Class	ification Re	eport		
	precision	recall	f1-score	support
0	1.00	1.00	1.00	980
1	0.99	1.00	0.99	1135
2	0.99	0.99	0.99	1032
3	1.00	0.99	0.99	1010
4	0.99	0.99	0.99	982
5	0.98	0.99	0.99	892
6	0.99	0.99	0.99	958
7	0.98	0.99	0.99	1028
8	0.99	0.99	0.99	974
9	0.99	0.98	0.99	1009
accuracy			0.99	10000
macro avg	0.99	0.99	0.99	10000
weighted avg	0.99	0.99	0.99	10000

AI23521 BUILD AND DEPLOY FOR MACHINE LEARNING APPLICATION

--- Sample CNN Predictions ---

True: 7
Pred: 7
Pred: 7
Pred: 2
Pred: 2
Pred: 1

True: 1
Pred: 1

True: 1
Pred: 1

True: 4
Pred: 4

True: 9
Pred: 5

True: 5
Pred: 5

True: 6
Pred: 6

True: 9
Pred: 9

True: 0
Pred: 0

True: 6
Pred: 6

True: 9
Pred: 9

True: 0
Pred: 0

True: 1
Pred: 1

True: 3
Pred: 5

True: 4
Pred: 4

CNN Predictions (Green = Correct, Red = Incorrect)

RESULT:

The Feedforward Neural Network (FNN) and Convolutional Neural Network (CNN) models were successfully implemented and evaluated on the given dataset.

- Feedforward Neural Network (FNN): The model accurately learned input—output mappings through multiple fully connected layers, achieving good performance on structured data.
- Convolutional Neural Network (CNN): The model effectively extracted spatial features from image data using convolution and pooling layers, leading to higher accuracy and better generalization for image classification tasks.

The results demonstrated that both FNN and CNN are powerful deep learning models, with CNN performing exceptionally well for image-based datasets due to its ability to capture spatial patterns.

EXP NO: 7

GENERATIVE MODELS WITH GANS: CREATING AND TRAINING A GENERATIVE ADVERSARIAL NETWORK

AIM:

To construct and train a Generative Adversarial Network (GAN) using the TensorFlow/Keras framework. The objective is to train the GAN on the MNIST dataset to generate new, synthetic images of handwritten digits that are indistinguishable from the original training data.

ALGORITHM:

Generative Adversarial Networks (GANs)

GANs are a class of generative models that learn a training distribution by pitting two neural networks against each other in a zero-sum game: a Generator and a Discriminator.

- **1. The Generator (\$G\$):** This network takes a random noise vector as input (often called a "latent vector") and transforms it into a synthetic data sample, in this case, an image. The Generator's goal is to learn to produce increasingly realistic images to fool the discriminator.
- **2. The Discriminator (\$D\$):** This is a binary classifier network. It is trained to distinguish between real data (from the training dataset) and fake data (generated by the generator). Its goal is

to get better at identifying which images are real and which are fake.

3. The Adversarial Process:

Step A (Training the Discriminator): The discriminator is trained on a batch of both real images (labeled as "real" or 1) and fake images from the generator (labeled as "fake" or 0). The discriminator's weights are updated to minimize the classification error.

Step B (Training the Generator): The generator is trained while the discriminator's weights are frozen. The generator creates fake images and feeds them to the discriminator. The generator's weights are updated to maximize the discriminator's error, essentially tricking the discriminator into classifying its fake images as "real" (or 1).

This iterative process continues, with both networks improving, until the generator can produce

images so realistic that the discriminator can no longer reliably tell the difference between real and

fake.

CODE:

```
# Import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist
import os
# Suppress TensorFlow warnings for cleaner output
tf.keras.utils.disable_interactive_logging()
# --- Part 1: Dataset Loading and Preprocessing ---
print("--- Part 1: Loading and Preprocessing the MNIST Dataset ---")
(x_train, _), (_, _) = mnist.load_data()
x_{train} = x_{train.reshape}(x_{train.shape}[0], 28, 28, 1).astype('float32')
x_{train} = (x_{train} - 127.5) / 127.5 # Normalize to [-1, 1]
print(f"Normalized training data shape: {x_train.shape}")
print("Example of a normalized pixel value:", x_train[0, 0, 0, 0])
# --- Part 2: Building the Generator and Discriminator Models ---
print("\n--- Part 2: Building the GAN Components ---")
latent_dim = 100
# Generator
def build_generator():
  model = keras.Sequential(name="generator")
  model.add(layers.Dense(7 * 7 * 256, use_bias=False, input_shape=(latent_dim,)))
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
  model.add(layers.Reshape((7, 7, 256)))
  model.add(layers.Conv2DTranspose(128,
                                               (5, 5), strides=(1, 1),
                                                                             padding='same',
use_bias=False))
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
```

```
(5, 5),
  model.add(layers.Conv2DTranspose(64,
                                                         strides=(2,
                                                                       2),
                                                                             padding='same',
use bias=False))
  model.add(layers.BatchNormalization())
  model.add(layers.LeakyReLU())
  model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same',
                       use_bias=False, activation='tanh'))
  return model
generator = build_generator()
print("\n--- Generator Model Summary ---")
generator.summary()
# Discriminator
def build discriminator():
  model = keras.Sequential(name="discriminator")
  model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28,
1]))
  model.add(layers.LeakyReLU())
  model.add(layers.Dropout(0.3))
  model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
  model.add(layers.LeakyReLU())
  model.add(layers.Dropout(0.3))
  model.add(layers.Flatten())
  model.add(layers.Dense(1, activation='sigmoid'))
  return model
discriminator = build_discriminator()
print("\n--- Discriminator Model Summary ---")
discriminator.summary()
# --- Part 3: Training Setup ---
cross_entropy = keras.losses.BinaryCrossentropy(from_logits=False)
def discriminator_loss(real_output, fake_output):
  real_loss = cross_entropy(tf.ones_like(real_output), real_output)
  fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
  return\ real\_loss + fake\_loss
def generator_loss(fake_output):
  return cross_entropy(tf.ones_like(fake_output), fake_output)
```

```
generator optimizer = tf.keras.optimizers.Adam(learning rate=1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
@tf.function
def train_step(images, latent_dim=latent_dim):
  noise = tf.random.normal([batch_size, latent_dim])
  with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
     generated_images = generator(noise, training=True)
     real_output = discriminator(images, training=True)
     fake_output = discriminator(generated_images, training=True)
     gen_loss = generator_loss(fake_output)
     disc_loss = discriminator_loss(real_output, fake_output)
  gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
  gradients of discriminator
                                                                  disc_tape.gradient(disc_loss,
discriminator.trainable_variables)
  generator_optimizer.apply_gradients(zip(gradients_of_generator,
generator.trainable_variables))
  discriminator optimizer.apply gradients(zip(gradients of discriminator,
discriminator.trainable_variables))
  return gen_loss, disc_loss
def generate_and_save_images(model, epoch, test_input):
  predictions = model(test input, training=False)
  predictions_rescaled = (predictions * 0.5) + 0.5 # Scale back to [0, 1]
  fig = plt.figure(figsize=(4, 4))
  for i in range(predictions.shape[0]):
     plt.subplot(4, 4, i + 1)
     plt.imshow(predictions_rescaled[i, :, :, 0], cmap='gray')
     plt.axis('off')
  plt.suptitle(f"Epoch {epoch}", fontsize=16)
  if not os.path.exists('images'):
     os.makedirs('images')
  plt.savefig(f'images/image_at_epoch_{epoch:04d}.png')
  plt.show()
# Training parameters
EPOCHS = 200
batch size = 256
num_examples_to_generate = 16
```

```
seed = tf.random.normal([num_examples_to_generate, latent_dim])
train_dataset
                                                                                           =
tf.data.Dataset.from tensor slices(x train).shuffle(x train.shape[0]).batch(batch size)
# Training loop
def train(dataset, epochs):
  print("\n--- Beginning GAN Training ---")
  for epoch in range(epochs):
    gen_loss_list = []
    disc_loss_list = []
    for image_batch in dataset:
       gen_loss, disc_loss = train_step(image_batch)
       gen_loss_list.append(gen_loss.numpy())
       disc_loss_list.append(disc_loss.numpy())
    avg_gen_loss = np.mean(gen_loss_list)
    avg_disc_loss = np.mean(disc_loss_list)
    print(f"Epoch
                   \{epoch + 1\}/\{epochs\}
                                                 - Generator Loss: {avg_gen_loss:.4f},
Discriminator Loss: {avg_disc_loss:.4f}")
    if (epoch + 1) \% 20 == 0:
       generate_and_save_images(generator, epoch + 1, seed)
  print("\n--- Training complete. Generating final images. ---")
  generate_and_save_images(generator, epochs, seed)
# Run training
train(train dataset, EPOCHS)
```

OUTPUT:

--- Part 1: Loading and Preprocessing the MNIST Dataset ---Normalized training data shape: (60000, 28, 28, 1) Example normalized pixel value: -1.0

```
--- Beginning GAN Training ---
Epoch 1/20 - Generator Loss: 0.7877, Discriminator Loss: 1.0228
Epoch 2/20 - Generator Loss: 0.8148, Discriminator Loss: 1.2225
Epoch 3/20 - Generator Loss: 0.8448, Discriminator Loss: 1.3034
Epoch 4/20 - Generator Loss: 0.8534, Discriminator Loss: 1.2366
Epoch 5/20 - Generator Loss: 0.8372, Discriminator Loss: 1.2497
```

Epoch 5


```
Epoch 6/20 - Generator Loss: 0.8516, Discriminator Loss: 1.2705
Epoch 7/20 - Generator Loss: 0.8888, Discriminator Loss: 1.3028
Epoch 8/20 - Generator Loss: 0.8739, Discriminator Loss: 1.2512
Epoch 9/20 - Generator Loss: 0.8691, Discriminator Loss: 1.3130
Epoch 10/20 - Generator Loss: 0.8862, Discriminator Loss: 1.2320
```

Epoch 10


```
Epoch 11/20 - Generator Loss: 0.9361, Discriminator Loss: 1.2244
Epoch 12/20 - Generator Loss: 0.9946, Discriminator Loss: 1.1719
Epoch 13/20 - Generator Loss: 0.9948, Discriminator Loss: 1.1944
Epoch 14/20 - Generator Loss: 0.9786, Discriminator Loss: 1.1809
Epoch 15/20 - Generator Loss: 1.0420, Discriminator Loss: 1.1079
```

Epoch 15


```
Epoch 16/20 - Generator Loss: 1.2020, Discriminator Loss: 1.0483

Epoch 17/20 - Generator Loss: 1.2648, Discriminator Loss: 1.0605

Epoch 18/20 - Generator Loss: 1.1657, Discriminator Loss: 1.0404

Epoch 19/20 - Generator Loss: 1.1644, Discriminator Loss: 1.0897

Epoch 20/20 - Generator Loss: 1.1770, Discriminator Loss: 1.0938
```

Epoch 20

--- Training complete. Generating final images. ---

Epoch 20

RESULT:

The Generative Adversarial Network (GAN) was successfully implemented and trained on the dataset. The Generator created synthetic data, while the Discriminator learned to differentiate real and fake samples.

After training, the GAN produced realistic synthetic outputs, showing that it effectively learned the underlying data patterns

Exp No: 8

MODEL EVALUATION AND IMPROVEMENT: HYPERPARAMETER TUNING WITH GRID SEARCH AND CROSS-VALIDATION

AIM:

To demonstrate key techniques for model evaluation and improvement:

- **1. Hyperparameter Tuning with Grid Search :** Systematically searching for the optimal combination of hyperparameters for a machine learning model.
- **2.** Cross-Validation Techniques: Implementing k-fold cross-validation to get a more robust estimate of model performance and to prevent overfitting to a specific train-test split.

ALGORITHM:

1. Hyperparameter Tuning with Grid Search

Hyperparameters are external configuration properties of a model whose values cannot be estimated from data. Examples include the learning rate for a neural network, the number of trees in a Random Forest, or the `C` and `gamma` parameters in an SVM. Tuning these parameters is crucial for optimal model performance.

Grid Search is an exhaustive search method for hyperparameter optimization. **Stens:**

- 1. Define Parameter Grid: Specify a dictionary where keys are hyperparameter names and values are lists of discrete values to be tested for each hyperparameter.
- 2. Instantiate Model: Choose a machine learning model.
- 3. Perform Search: Train the model for every possible combination of hyperparameters defined in the grid.
- 4. Evaluate: For each combination, evaluate the model's performance using a specified scoring

metric (e.g., accuracy, F1-score) and often in conjunction with cross-validation.

5. Select Best Model: Identify the hyperparameter combination that yields the best performance.

2. Cross-Validation Techniques

Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. The goal is to estimate how accurately a predictive model will perform in practice. It's especially useful for reducing overfitting and providing a more reliable estimate of generalization performance compared to a single train-test split.

k-Fold Cross-Validation:

Steps:

- 1. Divide Data: The entire dataset is randomly partitioned into \$k\$ equally sized subsamples (or "folds").
- 2. Iterate \$k\$ Times:

In each iteration, one fold is used as the validation (or test) set, and the remaining \$k-1\$ folds are used as the training set. The model is trained on the training set and evaluated on the validation set.

- 3. Aggregate Results: The performance metric (e.g., accuracy) from each of the \$k\$ iterations is collected.
- 4. Compute Mean and Standard Deviation: The mean and standard deviation of these \$k\$ performance scores are calculated to provide a more robust estimate of the model's performance and its variability.

CODE:

Import necessary libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.datasets import load_iris # A classic dataset for classification

 $from \ sklearn.model_selection \ import \ train_test_split, \ KFold, \ cross_val_score, \ GridSearchCV$

from sklearn.svm import SVC # Support Vector Classifier, a common model for tuning

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

from sklearn.preprocessing import StandardScaler

--- Part 1: Hyperparameter Tuning with Grid Search ---

print("--- Part 1: Hyperparameter Tuning with Grid Search ---")

- # 1. Load a Dataset (Iris Dataset for classification)
- # The Iris dataset is a classic and simple dataset for classification tasks.
- # It contains measurements of iris flowers (sepal length, sepal width, petal length, petal width)

and their corresponding species (Setosa, Versicolor, Virginica).

iris = load iris()

X = iris.data

y = iris.target

feature_names = iris.feature_names

target_names = iris.target_names

```
print(f"\nDataset Features (X) shape: {X.shape}")
print(f"Dataset Labels (y) shape: {y.shape}")
print(f"Feature Names: {feature_names}")
print(f"Target Names: {target_names}")
# 2. Split Data into Training and Testing Sets
# It's crucial to split the data before scaling to prevent data leakage.
# The test set will be used for final model evaluation, after tuning.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42,
stratify=y)
print(f"\nTraining set size: {X_train.shape[0]} samples")
print(f"Test set size: {X_test.shape[0]} samples")
#3. Standardize Features
# Scaling features is important for SVMs as they are sensitive to feature scales.
# Fit scaler only on training data to prevent data leakage.
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_{test\_scaled} = scaler.transform(X_{test})
print("\nFeatures standardized.")
# 4. Define the Model and Hyperparameter Grid
# We'll use a Support Vector Classifier (SVC) as our model.
# Common hyperparameters for SVC are 'C' (regularization parameter) and 'gamma' (kernel
coefficient).
# 'kernel' also can be tuned (e.g., 'linear', 'rbf').
# Define the parameter grid for Grid Search
param_grid = {
  'C': [0.1, 1, 10, 100],
                          # Regularization parameter
  'gamma': [1, 0.1, 0.01, 0.001], #Kernel coefficient for 'rbf', 'poly' and 'sigmoid'
  'kernel': ['rbf', 'linear']
                             # Type of kernel function
}
print("\nHyperparameter grid defined:")
for param, values in param_grid.items():
  print(f" {param}: {values}")
```

```
# 5. Perform Grid Search with Cross-Validation
# GridSearchCV automatically performs k-fold cross-validation for each combination.
# cv=5 means 5-fold cross-validation.
# scoring='accuracy' means we want to optimize for accuracy.
grid_search = GridSearchCV(SVC(), param_grid, cv=5, scoring='accuracy', verbose=1,
n_{jobs}=-1
print("\nStarting Grid Search with 5-fold Cross-Validation...")
# Fit GridSearchCV on the scaled training data
grid_search.fit(X_train_scaled, y_train)
print("\nGrid Search completed.")
# 6. Get the Best Parameters and Best Score
print(f"\nBest hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy: {grid_search.best_score_:.4f}")
# 7. Evaluate the Best Model on the Test Set
# The best_estimator_ attribute provides the model trained with the best parameters.
best_model = grid_search.best_estimator_
y_pred_tuned = best_model.predict(X_test_scaled)
test_accuracy_tuned = accuracy_score(y_test, y_pred_tuned)
print(f"\nTest set accuracy with tuned model: {test_accuracy_tuned:.4f}")
print("\n--- Classification Report for Tuned Model ---")
print(classification_report(y_test, y_pred_tuned, target_names=target_names))
print("\n--- Confusion Matrix for Tuned Model ---")
cm tuned = confusion matrix(y test, y pred tuned)
plt.figure(figsize=(8, 6))
sns.heatmap(cm_tuned,
                         annot=True, fmt='d', cmap='Blues', xticklabels=target_names,
yticklabels=target_names)
plt.title('Confusion Matrix (Tuned SVM)')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.show()
# Visualize Grid Search results (optional, but good for understanding)
```

```
# Convert results to a DataFrame for easier analysis
results_df = pd.DataFrame(grid_search.cv_results_)
print("\n--- Top 5 Grid Search Results ---")
print(results_df[['param_C',
                                 'param_gamma',
                                                        'param_kernel',
                                                                             'mean_test_score',
'rank_test_score']].sort_values(by='rank_test_score').head())
# --- Part 2: Cross-Validation Techniques (k-fold) ---
print("\n--- Part 2: Cross-Validation Techniques (k-fold) ---")
# We will demonstrate k-fold cross-validation on a simple SVM without explicit tuning for
clarity,
# to focus solely on the CV process.
# 1. Instantiate a Model (using default or chosen parameters)
model_cv = SVC(random_state=42) # Using default parameters for simplicity
# 2. Define k-fold Cross-Validation Strategy
# We'll use 5-fold cross-validation.
# KFold ensures that each fold is distinct.
# shuffle=True means the data will be randomly shuffled before splitting into folds.
# random_state for reproducibility.
k_folds = 5
kf = KFold(n_splits=k_folds, shuffle=True, random_state=42)
print(f"\nPerforming {k folds}-fold cross-validation...")
# 3. Perform Cross-Validation and Get Scores
# cross val score performs the KFold splitting, training, and evaluation automatically.
# It returns an array of scores, one for each fold.
cv_scores = cross_val_score(model_cv, X_train_scaled, y_train, cv=kf, scoring='accuracy')
print(f"\nCross-validation scores for each fold: {cv_scores}")
print(f"Mean cross-validation accuracy: {np.mean(cv_scores):.4f}")
print(f"Standard deviation of cross-validation accuracy: {np.std(cv_scores):.4f}")
# 4. Visualize Cross-Validation Scores
plt.figure(figsize=(8, 5))
plt.bar(range(1, k_folds + 1), cv_scores, color='skyblue')
plt.axhline(y=np.mean(cv_scores),
                                       color='r',
                                                   linestyle='--',
                                                                    label=f'Mean
                                                                                     Accuracy
```

```
({np.mean(cv_scores):.4f})')
plt.title(f'{k_folds}-Fold Cross-Validation Accuracy Scores')
plt.xlabel('Fold Number')
plt.ylabel('Accuracy')
plt.ylim(0.8, 1.0) # Set y-axis limits for better visualization
plt.legend()
plt.grid(axis='y', linestyle='--')
plt.show()

# 5. Discuss why CV is useful
print("\n--- Why is Cross-Validation Important? ---")
print("1. More Reliable Performance Estimate: Reduces bias from a single train-test split.")
print("2. Better Generalization: Helps ensure the model performs well on unseen data.")
print("3. Efficient Data Usage: All data points are used for both training and validation across different folds.")
print("4. Detects Overfitting/Underfitting: Variability in scores can indicate instability.")
```

OUTPUT:

```
--- Part 1: Hyperparameter Tuning with Grid Search ---
Dataset Features (X) shape: (150, 4)
Dataset Labels (y) shape: (150,)
Feature Names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
Target Names: ['setosa' 'versicolor' 'virginica']
Training set size: 105 samples
Test set size: 45 samples
Features standardized.
Hyperparameter grid defined:
  C: [0.1, 1, 10, 100]
  gamma: [1, 0.1, 0.01, 0.001]
kernel: ['rbf', 'linear']
Starting Grid Search with 5-fold Cross-Validation...
Fitting 5 folds for each of 32 candidates, totalling 160 fits
Grid Search completed.
Best hyperparameters found: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
Best cross-validation accuracy: 0.9810
Test set accuracy with tuned model: 0.9111
--- Classification Report for Tuned Model ---
                           recall f1-score support
              precision
                            1.00
      setosa
  versicolor
                     0.82
                               0.93
                                          0.88
                  0.92 0.80
   virginica
                                          0.86
                                                      15
                                          0.91
                                                       45
    accuracy
                    0.92
                            0.91
   macro avg
                                          0.91
                                                       45
weighted avg
                    0.92
                              0.91
                                          0.91
                                                       45
```


RESULT:

The model was successfully evaluated and improved using **Grid Search** and **Cross-Validation** techniques. Grid Search identified the best combination of hyperparameters, while Cross-Validation ensured reliable performance estimation.

The optimized model achieved higher accuracy and better generalization, confirming that systematic tuning and validation significantly enhance model performance.

EXP NO: 9

MailGuard – Intelligent Spam Email Classification and Deployment using DistilBERT, Flask

AIM:

To develop an AI-powered email classification system using a pre-trained DistilBERT model, which can automatically identify and classify emails as SPAM or NOT SPAM, and expose this functionality through a REST API for real-time predictions.

ALGORITHM:

Step 1: Data Preparation

Collect a labeled dataset of emails (spam and non-spam).

Preprocess the text: lowercase, remove unnecessary spaces, tokenize using DistilBERT tokenizer.

Step 2: Model Initialization

Load the pre-trained DistilBERT model (distilbert-base-uncased) for sequence classification.

Adjust the classifier layer for 2 output labels: spam (1) and not spam (0).

Step 3: Training

Split the dataset into training and test sets.

Feed tokenized inputs to the model.

Train the model over several epochs using GPU if available.

Calculate loss and optimize weights using backpropagation.

Step 4: Evaluation

Evaluate the trained model on the test dataset.

Calculate metrics like accuracy to check model performance.

Step 5: Saving the Model

Save the trained model weights to a file (.pth) for later use.

Step 6: Deployment via Flask API

Load the saved model and tokenizer at API startup.

Accept email text via POST requests to the /predict endpoint.

Tokenize the input email and pass it through the trained model.

Return a JSON response with the predicted label (SPAM / NOT SPAM) and confidence score.

Step 7: Real-time Prediction

Users can send new email texts to the API.

The API responds instantly with a prediction using the trained DistilBERT model.

CODE:

```
App.py
```

```
# app.py - MailGuard Flask REST API
from flask import Flask, request, jsonify
import torch
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
app = Flask(__name__)
# -----
# Load model and tokenizer once
# -----
def load_model():
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  # Load tokenizer
  tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
  # Load model structure
  model = DistilBertForSequenceClassification.from pretrained(
    "distilbert-base-uncased", num_labels=2
  )
  # Load trained weights
  model.load state dict(torch.load("models/distilbert spam model.pth", map location=device))
  model.to(device)
  model.eval()
  return tokenizer, model, device
tokenizer, model, device = load model()
# -----
```

```
# Prediction function
# -----
def predict(email_text, tokenizer, model, device):
  inputs = tokenizer(
    email_text,
    return tensors="pt",
    truncation=True,
    padding=True,
    max length=256
  )
  # Move inputs to the correct device
  inputs = {k: v.to(device) for k, v in inputs.items()}
  with torch.no_grad():
    outputs = model(**inputs)
    probs = torch.softmax(outputs.logits, dim=-1)
    pred = torch.argmax(probs, dim=-1).item()
    confidence = probs[0][pred].item()
  label = "♥ SPAM" if pred == 1 else "♥ NOT SPAM"
  return {"label": label, "confidence": round(confidence*100, 2)}
# -----
# Routes
# -----
@app.route('/')
def home():
  return jsonify({"message": "MailGuard API (DistilBERT) is running successfully!"})
@app.route('/predict', methods=['POST'])
def classify():
  try:
    data = request.get_json()
    if not data or 'email' not in data:
       return jsonify({"error": "Missing 'email' field in request."}), 400
    email_text = data['email']
    prediction = predict(email_text, tokenizer, model, device)
    return jsonify({
       "status": "success",
       "prediction": prediction,
       "input": email_text
    })
  except Exception as e:
    return jsonify({
       "status": "error",
       "message": str(e)
```

```
231501154
                              AI23521 BUILD AND DEPLOY FOR MACHINE LEARNING APPLICATION
    }), 500
# -----
# Run Flask app
# -----
if __name__ == '__main__':
  app.run(host='0.0.0.0', port=5000, debug=True)
model.py
# model.py - MailGuard DistilBERT Model
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from torch.optim import AdamW
from sklearn.model selection import train test split
import pandas as pd
from tqdm import tqdm
import os
import random
import numpy as np
# -----
# CONFIGURATION
# -----
MODEL DIR = "models"
MODEL_PATH = os.path.join(MODEL_DIR, "distilbert_spam_model.pth")
DATA_PATH = os.path.join("dataset", "SMSSpamCollection")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
NUM LABELS = 2
BATCH SIZE = 8
EPOCHS = 5
LR = 2e-5
MAX LEN = 256
SEED = 42
# -----
# REPRODUCIBILITY
# -----
torch.manual_seed(SEED)
random.seed(SEED)
np.random.seed(SEED)
if torch.cuda.is_available():
  torch.cuda.manual_seed_all(SEED)
# -----
# DATASET CLASS
```

```
class SpamDataset(Dataset):
  """Custom dataset for SMS Spam classification using DistilBERT"""
  def __init__(self, texts, labels, tokenizer, max_len=MAX_LEN):
    self.texts = texts
    self.labels = labels
    self.tokenizer = tokenizer
    self.max_len = max_len
  def len (self):
    return len(self.texts)
  def __getitem__(self, idx):
    text = str(self.texts[idx])
    label = int(self.labels[idx])
    encoding = self.tokenizer(
       text,
       truncation=True,
       padding='max length',
       max_length=self.max_len,
      return_tensors='pt'
    )
    return {
       "input ids": encoding["input ids"].squeeze(),
       "attention mask": encoding["attention mask"].squeeze(),
       "labels": torch.tensor(label, dtype=torch.long)
    }
# -----
# TRAIN FUNCTION
# -----
def train_model():
  print(" Loading dataset...")
  data = pd.read_csv(DATA_PATH, sep="\t", header=None, names=["label", "message"])
  data["label"] = data["label"].map({"ham": 0, "spam": 1})
  X_train, X_test, y_train, y_test = train_test_split(
    data["message"], data["label"], test_size=0.2, random_state=SEED
  )
  tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
  train_dataset = SpamDataset(X_train.tolist(), y_train.tolist(), tokenizer)
  test_dataset = SpamDataset(X_test.tolist(), y_test.tolist(), tokenizer)
  train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
  test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE)
  model = DistilBertForSequenceClassification.from_pretrained(
    "distilbert-base-uncased", num_labels=NUM_LABELS
  ).to(DEVICE)
```

```
optimizer = AdamW(model.parameters(), lr=LR)
# -----
# TRAINING LOOP
# -----
print(" Training started...")
model.train()
for epoch in range(EPOCHS):
  total loss = 0
  for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{EPOCHS}"):
    optimizer.zero_grad()
    input_ids = batch["input_ids"].to(DEVICE)
    attention_mask = batch["attention_mask"].to(DEVICE)
    labels = batch["labels"].to(DEVICE)
    outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
    loss = outputs.loss
    loss.backward()
    optimizer.step()
    total_loss += loss.item()
  avg loss = total loss / len(train loader)
  print(f" ✓ Epoch {epoch+1} completed | Avg Loss: {avg_loss:.4f}")
# EVALUATION LOOP
# -----
print("\n Evaluating model...")
model.eval()
correct, total = 0, 0
with torch.no_grad():
  for batch in test_loader:
    input_ids = batch["input_ids"].to(DEVICE)
    attention_mask = batch["attention_mask"].to(DEVICE)
    labels = batch["labels"].to(DEVICE)
    outputs = model(input_ids, attention_mask=attention_mask)
    preds = torch.argmax(outputs.logits, dim=1)
    correct += (preds == labels).sum().item()
    total += labels.size(0)
accuracy = correct / total
print(f" ✓ Test Accuracy: {accuracy:.4f}")
# -----
# SAVE MODEL
# -----
print("\n Saving model...")
os.makedirs(MODEL DIR, exist ok=True)
torch.save(model.state_dict(), MODEL_PATH)
```

```
231501154
   print(f" ✓ Model saved successfully at: {MODEL_PATH}")
# LOAD FUNCTION (for inference)
# -----
def load model():
   print(" C Loading trained DistilBERT model...")
   tokenizer = DistilBertTokenizerFast.from pretrained("distilbert-base-uncased")
   model = DistilBertForSequenceClassification.from pretrained(
     "distilbert-base-uncased", num_labels=NUM_LABELS
   model.load state dict(torch.load(MODEL PATH, map location=DEVICE))
   model.to(DEVICE)
   model.eval()
   print(" Model loaded and ready for inference.")
   return tokenizer, model
# -----
# PREDICT FUNCTION
# -----
def predict(text, tokenizer, model):
   """Make prediction using loaded model."""
   inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True,
max_length=MAX_LEN).to(DEVICE)
   with torch.no_grad():
     outputs = model(**inputs)
     pred = torch.argmax(outputs.logits, dim=1).item()
     label = "Spam" if pred == 1 else "Not Spam"
   return label
# -----
# MAIN (TRAIN WHEN RUN DIRECTLY)
# -----
if __name__ == "__main__":
  print(torch.cuda.is_available())
   print(torch.cuda.get device name(0))
   train model()
index.html
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <title>MailGuard - Spam Email Detector</title>
   <link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
</head>
<body>
   <div class="container">
     <h1>MailGuard</h1>
```

```
231501154
                                    AI23521 BUILD AND DEPLOY FOR MACHINE LEARNING APPLICATION
    Spam Email Detection using DistilBERT
    <textarea id="emailInput" placeholder="Paste your email content here..."></textarea>
    <button id="predictBtn">Predict</button>
    <div id="resultBox" class="hidden">
       <h2>Result:</h2>
       </div>
  </div>
  <script src="{{ url_for('static', filename='script.js') }}"></script>
</body>
</html>
style.css
body {
  font-family: 'Segoe UI', sans-serif;
  background: #f5f7fa;
  display: flex;
  justify-content: center;
  align-items: center;
  height: 100vh;
}
.container {
  width: 500px;
  background: #fff;
  padding: 30px;
  border-radius: 16px;
  box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
  text-align: center;
}
h1 {
  color: #2c3e50;
  margin-bottom: 5px;
}
p {
  color: #666;
  font-size: 14px;
  margin-bottom: 20px;
}
textarea {
  width: 100%;
```

height: 150px;

```
231501154
  resize: none;
  padding: 10px;
  font-size: 14px;
  border-radius: 8px;
  border: 1px solid #ccc;
  outline: none;
}
button {
  margin-top: 15px;
  background: #3498db;
  color: white;
  border: none;
  padding: 10px 25px;
  border-radius: 8px;
  cursor: pointer;
  transition: 0.3s;
}
button:hover {
  background: #2980b9;
}
#resultBox {
  margin-top: 20px;
  padding: 15px;
  background: #ecf0f1;
  border-radius: 10px;
}
.hidden {
  display: none;
#predictionLabel {
  font-weight: bold;
  font-size: 18px;
}
#predictionConfidence {
  color: #555;
Script.js
document.getElementById("predictBtn").addEventListener("click", async () => {
  const emailText = document.getElementById("emailInput").value.trim();
  if (!emailText) {
     alert("Please enter email content first!");
     return;
  }
```

```
const response = await fetch("/predict", {
    method: "POST",
    headers: { "Content-Type": "application/json" },
    body: JSON.stringify({ email: emailText })
});

const data = await response.json();

const resultBox = document.getElementById("resultBox");
    document.getElementById("predictionLabel").textContent = `Prediction: ${data.label}`;
    document.getElementById("predictionConfidence").textContent = `Confidence:
${data.confidence}%`;
    resultBox.classList.remove("hidden");
});
```

OUTPUT:-

```
C. (Usern tersib Desktop) Wail Guard very (Libos its expackages) transformers tokenization_utils_base.py:1601: FutureWamning: 'Clean_up_tokenization_paces' was not set. It will be set to 'True' by default. This behavior will be depracted in transformers' vs.45, and will be then set to 'False' by default. For more details check this issue: https://github.com/hugging fack/trunsformers/issues/31804

Value of the common of
```


RESULT:-

The DistilBERT model was successfully loaded and deployed as a Flask API for spam detection. It effectively classified emails as SPAM or NOT SPAM with high confidence.

The predictions closely matched expected labels, demonstrating the model's accuracy in identifying spam content.