

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

ANALYST'S LABORATORY COMPANION

ALFRED E. JOHNSON

REESE LIBRARY

UNIVERSITY OF CALIFORNIA.

Received June . 180 9. Accession No. 76/01 . Chass No.

ANALYST'S LABORATORY COMPANION

THE ANALYST'S

LABORATORY COMPANION:

A COLLECTION OF TABLES AND DATA FOR THE USE
OF PUBLIC AND GENERAL ANALYSTS, AGRICULTURAL, BREWERS' AND WORKS'
CHEMISTS, AND STUDENTS

BY

ALFRED E. JOHNSON, A.R.C.S.I., F.I.C.

SECOND EDITION, ENLARGED AND IMPROVED

LONDON

J. & A. CHURCHILL

7 GREAT MARLBOROUGH STREET
1897

QD75

PREFACE TO SECOND EDITION.

In this Edition numerous additions and improvements have

been made, of which the following are the chief:-

The list of multipliers required in gravimetric analysis has been largely extended and entirely re-cast. Five-figure logarithms have, after consideration, been adopted in place of the seven-figure logarithms given in the first edition, as they have been found to be quite sufficient for all practical purposes. As an improvement in detail it may be pointed out that, to facilitate reference, the factors have now been printed in sets of two or three, instead of en bloc. My thanks are due to Mr E. W. T. Jones, F.I.C., for kindly supplying several of the new factors given.

Instead of the table of seven-figure logarithms of numbers 1 to 1000 only, a table of five-figure logarithms is given, by means of which percentages can readily be obtained correctly to two decimal places. This will probably be considered one of the most important improvements in the book. The table given is taken, by kind permission of the authors, from Geipel & Kilgour's Pocket Book of Electrical Engineering Formulæ; the stereotype plates were supplied by the Electrician

Publishing Company.

The section devoted to weights and measures has been entirely re-written, the new values adopted being those given in H. J. Chaney's standard work on Our Weights and

Measures (1897).

The pages dealing with the specific rotatory and cupric reducing powers of the carbohydrates have also been entirely re-written and much extended. The papers by O'Sullivan & Stern (1896), and especially the valuable series by Brown, Morris, and Millar (1897), all published in the *Jour. Chem. Soc.*, have been freely drawn upon in the compilation of this part of the book.

The table for conversion of nitrogen into albuminoids has been re-calculated, using the modern factor 6.25 in place of the ancient 6:33.

The new table for the Kjeldahl process will be found a time-saver by all who use that beautiful method of determining nitrogen.

The Baume's hydrometer table 'for liquids heavier than water' has been replaced by an abridged form of the very complete table given in Lunge & Hurter's Alkali Makers'

Handbook.

At p. 80A will be found two simple and useful rules for obtaining the degree of dilution in the case of watered spirits; and at p. 80B an exceedingly useful table for correcting the sp. gr. of dilute alcohol for temperature,

This latter table—by J. F. Liverseege—has just appeared in the Analyst (June, 1897), and it has fortunately been found possible to insert it, with an additional column giving the

correction for 1° C.

The sp. gr. tables, pp. 81-84, remain as in the first edition. If anything further than these is required, the exhaustive tables given in Lunge & Hurter's Alkali Makers' Handbook should be consulted.

The tables for butter analysis are new. The milk table on p. 93 is taken from Dr Muter's Manual of Analytical

Chemistry.

The "table of reciprocals" (p. 94) will be found of great value in numerous calculations, as by it division becomes converted into simple multiplication.

The glycerine table is new.

The table on p. 96 will be of service in all exact volumetric work.

In addition to the above, the whole book has been very carefully revised throughout, and several other additions and improvements in detail have been made, which will, no doubt, be appreciated by those who use the book regularly.

I trust, therefore, that this Second Edition may be found distinctly more useful to chemical workers than its pre-

decessor.

A. E. JOHNSON.

155 LEA ROAD, WOLVERHAMPTON, August, 1897.

CONTENTS.

									PAG
Atomic Weights,		•		•	•	•			
Notes on Indicators,	•	•	•		•	•			
Precipitating Powers	of Co	mmor	Reag	gen ts ,				•	
Molecular Weights a occurring Compo			tage	Com	positi	on o	f con	nmon]	ly
Weight of one Litre		•	ases.						. 1
Multipliers and their					n Gra	vimet	ric Aı	nalvsi	s. 1
Multipliers and their									
Notes on Logarithms,				•	•	•			. 2
Table of Logarithms,									. 2
Useful Factors, .				•					. 33.
Weights and Measure	s.	•	•						. 3
Signs used in Medical	Pres	scripti	ons,						. 3
Useful Data (areas an		-	•	lies),					. 3
Percentage into cwts.						••			. 4
Drams per lb. into Pe	-	•	-	•		•			. 4
Tables required in Wa			-						. 4
Estimation of Nitrate	s in	Water							. 4
Volume and Density				ous T	empe	ratur	88,		. 5
Barometric Tables,							•		. 5
Correction of Volume	s of C	ases 1	or Te	mper	ature,	,			. 5
Tension of Mercury V						•			. 5
Tables for Beer Analy	sis,								. 5
Specific Rotatory Pov	ers c	f the	Carbo	hydr	ates,				. 6
Cupric Reducing Pow	ers o	f the (Carbo	hydra	tes,				. 6
Phosphate Table,			•	•					. 6
Ammonia and Album	inoid	s Tabl	le,						. 7
Kjeldahl Process,			•						. 72
Quinine,									. 7
Chicory in Coffee, est	imat	ion of,							. 7

CONTENTS.

										PAGE
Quinine Sulphat	Β,		•	•		•	•	•	•	73A
Baumé's Hydron	ete	r,			•		•		•	75
Alcohol Tables,		•							•	76
Specific Gravity	Tal	oles (1	OS ₂ E	, HC	l, etc	.), .	•			81
Thermometric Sc				•						85
Butter Analysis,										91
Milk Analysis,										93
Reciprocals,					•					94
Glycerine,			•							95
Correction of Sta	nde	ard Sc	lutio	ns for	Tem	perat	ure,			96
Index, .						- •				97

ANALYST'S LABORATORY COMPANION.

Symbols and Atomic Weights of the Elements as used in this Work.

Arsenic,	Names of Elements.	Symbols.	Atomic Weights.	Names of Elements.	Symbols.	Atomic Weights.
Cerium, Ce 139 °9 Rubidium, . Rb 85 °Chlorine, . Cl 35 °5 Ruthenium, . Ru 104 °Chromium, . Cr 52 °5 Selenium, . Se 78 °Chlorine, . Co 59 Silicon, . Si 28 °Chlorine, . Cu 63 °2 Silver, . Ag 107 °Chlorine, . E 166 Strontium, . Na 23 °Chlorine, . F 19 Sulphur, . S 32 °Chlorine, . F 19 Sulphur, . S 32 °Chlorine, . Gallium, . Ga 69 Tantalum, . Ta 182 °Chlorine, . Tallurium, . Ta 182 °Chlorine, . Tallurium, . Ta 182 °Chlorine, . Tallurium, . Ta 136 °Chlorine, . Tallurium, . Ta 136 °Chlorine, . Tallurium, . Ta 137 °Chlorine, . Tallurium, . Ta 138 °Chlorine, . Tallurium, . Ta 138 °Chlorine, . Tallurium, . Tallu	Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Bromine, Cadmium, Cæsium, Calcium, Carium, Chlorine, Chromium, Cobalt, Copper, Didymium, Erbium, Fluorine, Gallium, Gold, Hydrogen, Indium, Iodine, Iron, Lanthanum, Lead, Lithium, Magnesium,	Al Sb As Ba Be Bi Br Cd Cs Ca CC Cu Di E F Ga Au H In I Ir Fe La Pb Li Mg	27 120 75 137 9·1 208 11 80 112 132·7 40 12 139·9 35·5 52·5 59 63·2 144 196 196·8 1 113·4 126·5 192·5 56 138 206·5 7 24	Molybdenum, Nickel, Niobium, Nickel, Niobium, Nitrogen, Osmium, Osygen, Palladium, Phosphorus, Platinum, Potassium, Rubidium, Rubidium, Ruthenium, Selenium, Silver, Sodium, Strontium, Sulphur, Tantalum, Thellium, Thorium, Tin, Tin, Titanium, Tungsten, Uranium, Vanadium, Yttrium, Zinc,	Hgo Ni Nb No O Pd P Pt Rbu Si Aga Nr Th Sn W V Y Zn	200 95·8 58·6 94 14 193 16 106·2 31 197·2* 39 104·4 78·8 28·3 107·7 23 182 125 203·7 231·9 118 48 48 51·6 51·7 51

^{*} The true atomic weight of platinum appears to be 194.3. The value Pt=197.2 is, however, the one adopted by all the German potash makers, because it gives the most accurate results in analysis: hence it is used in this book. See note on p. 19.

NOTES ON INDICATORS.

I. Litmus solution.—A solution of a carbonate whilst being titrated should be boiled to expel the free CO₂, otherwise it is easy to overstep the exact point of neutrality. The titration cannot be done by gas-light.

According to R. Reinitzer (see Abstract Analyst, 1894, p. 255) litmus is the most serviceable indicator when properly prepared. Good litmus should be taken, and the aqueous solution, which contains alkaline carbonate boiled for seven or eight minutes and then neutralized with HCl, so that the wine-red colour remains even on further boiling. The solution is then cooled, and an equal volume of strong alcohol added. The stock solution should be kept in a bottle with a delivery pipette inserted through the cork. The final change of colour is sharpest when the liquid to be titrated is hoiled for seven or eight minutes and then well cooled.

II. Methyl orange (para-dimethylaniline-azo-benzone-sulphonic acid).

Solution .- One gram in a litre of distilled water.

Unlike litmus, this indicator is unaffected by CO₂, SH₂, boric, arsenious, hydrocyanic, and carbolic acids, &c. It must not be used for organic acids; nor in the presence of nitrous acid or nitrites, which decompose it. It acts admirably with mineral acids and with ammonia and its salts. Ordinary temperatures should be observed.

Colour reaction.—Faint yellow if alkaline, pink if acid.

III.—Phenol-phthalein $(C_{20}H_{14}O_4)$.

Solution.—Dissolve 4 grams * in half a litre of strong alcohol, then add gradually with constant stirring an equal volume of distilled water.

It is useless for the titration of free ammonia or its compounds, or for the fixed alkalies when salts of ammonia are present. Unlike methyl orange, it is specially useful in titrating all varieties of organic acids—viz., oxalic, acetic, citric, tartaric, &c. It may be used either in alcoholic solutions or in mixtures of alcohol and ether.

Colour reaction.—Colourless in neutral or acid liquids, but rendered purple-red by faint excess of caustic alkali.

IV.—Cochineal solution.

Solution.—Digest one part of powdered cochineal with 10

parts of 25 per cent. alcohol.

It is not very much modified in colour by CO₂, and may be used by gas-light. Most useful in titrating solutions of the alkaline earths, such as lime and baryta-water. Inapplicable in the presence of even traces of Fe or Al compounds or acetates.

Colour reaction.—Turned violet by alkalies; the original vellowish-red colour being restored by mineral acids.

V.—Phenacetolin.

Solution.—Two grams in a litre of alcohol.

* F. Sutton (Volumetric Analysis) recommends a stronger solution, viz., 10 grams instead of 4.

This indicator may be used to estimate the amount of KHO or NaHO in the presence of K₂CO₃ or Na₂CO₃, or of CaO in the presence of CaCO₃.

Colour reaction—

With NH₃ and normal alkaline carbonates—dark pink, bicarbonates—intense pink,

mineral acids —golden yellow.

VI.—Rosolic Acid $(C_{20}H_{16}O_3)$.

Solution.—Two grams in a litre of 50 per cent, alcohol.

This indicator is excellent for all the mineral, but useless for the organic acids, except oxalic. It may be relied on for the neutralization of SO₂ with ammonia to normal sulphite.

Colour reaction.—The pale yellow colour is unaffected by acids, but changed to violet-red by alkalies.

THE PRECIPITATING POWERS OF A FEW COMMON REAGENTS.

Ammonic oxalate. (NH₄)₂C₂O₄, OH₂.
 40 grams per litre.

For 1 gram taken

10 c.c. will precipitate 15.78 per cent. CaO.

2. Baric chloride. BaCl, 2OH,

100 grams per litre.

For 1 gram taken

10 c.c. will precipitate 13:11 per cent. S.

Hydric disodic phosphate. Na₂HPO₄, 12OH₂.
 100 grams per litre.

For 1 gram taken

10 c.c. will precipitate 11.17 per cent. MgO.

,, 33·51 ,, MgCO₃.

4. Prepared magnesia solution.

Dissolve 40 grams of "Magnesia" in HCl, and add a solution of 150 grams of NH₂Cl in the least possible quantity of water. Add 0.960 NH₄HO till a slight precipitate forms, and filter. Make the clear filtrate up to 1500 c.c. with distilled water, and add 750 c.c. 0.960 NH₄HO. Allow the liquid to stand and filter for use.

The strength of this solution is usually such that for 1

gram taken

10 c.c. will precipitate 30 per cent. Ca₃P₂O₈.

FORMULE, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONIX OCCURRING COMPOUNDS.

Name,	Formula,	Molecular Weight.	Percentage Composition.
ALUMINIUM (Al=27)	5	400	24 CH 25 CO CO LT
Aluminic chloride, hydrate,	Al ₂ H ₆ O ₆		A1 20 22; CI 79 78 A1 20 65 38; H20 34 62
sulphate.	Al ₂ O ₈ Al ₂ (SO.), 18OH,	102 342+324 -6 66	Al 52.94; O 47.06 Al.O. 15.32; SO, 36.03; OH, 48.65
Alum (ammonia),	Al2(SO,)3, (NH4,)2SO.		Algo, 11:26; NH, 3.75; SO, 35:32;
" (potash),	Al ₂ (SO ₄) ₃ , K ₂ SO ₄ , 24OH ₂	566 + 432 - 948	Al ₂ O ₃ 10.76; K ₂ O 9.91; SO ₃ 33.76; OH, 45.57
AMMONIUM (NH ₄ =18)		į	
Ammonia,	H0'HN	17 35	NH, 48.57; OH, 51.43
" bromide,	NH, Br	86	NH3 17 34; HBr 82 66
,, chloride, .	NH,CI OU OU OU	53.5 . 10	NH ₃ 31·78; HCl 68·22
bichromate.	(NH,),Or,O,	252	
" molybdate,	(NH4)6Mo,00, 40H2	1232.5	
,, nitrate,	NH, NO, OH,	80 124 + 18 142	NH ₃ 21:25; HNO ₃ 78:75 (anhydr.) NH ₂ 27:42; H.C.O. 79:58
sesquicarbonate,	2(NH4),0. 3CO.	236	NH, 28.81; CO, 55.93; OH, 15.26
,, sulphate, .	OS'(*HN)	132	NH ₃ 25 76; H ₂ SO ₂ 74 24
,, sodic hydric phosphate, hydric sulphide	NH,NaHPO,40H,	137 + 72 = 209	,
sulphocyanate, .	NHCNS	192	NH ₃ 22.37; H 1.31; CN 34.21; S 42.11

Sb 52.98; Cl 47.02 Sb 83.33; O 16.67 Sb 78.95; O 21.05 Sb 71.43; S 28.57 Sb 60.00; S 40.00	As 41·32; Cl 58·68 As 75·76; O 24·24	As 65.22; O 34.78 As 60.98; S 39.02 As 48.39; S 51.61	BaO 77.67; CO ₂ 22.33 (anhydrous) Ba 65.86; Cl 34.14 (cryst.) BaCl ₁ 85.25; OH ₂ 14.75	DaO 56 '02 ; N ₂ U ₆ 41 50 Ba 89 54; O 10 46 BaO 65 66; SO ₈ 34 34	Bi 89·63; O 10·87
226.5 297.5 288 320 304 836 400	664 181.5	230 246 310 289	197 208 + 36 – 244	201 153 169 238 169	314
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2C ₄ H ₄ K(SbO)O ₆ , OH ₃ AsCl ₃ As ₂ O ₃	As, Os As, Ss As, Sk NH, MgAsO, 60H,	BaCO ₃ BaCl ₃ , 20H ₉ P. oN O	Dazznog Bao Bao Baso Baso Bas	Bio.
Antimonic sulpide, Antimonic sulpide, Antimonic sulpide, Antimonic sulpide, Biantimonic tetroride, Antimonic sulpide, Antimonic sulpide, Antimonic sulpide, Antimonic sulpide,	r-emetic). RRENIC (As = 75) so chloride,	ate,	m (Ba-137) te,	nitrate, oxide, peroxide, sulphate,	Bismuthous chloride,

FORMULE, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONIX OCCURRING COMPOUNDS—continued.

Percentage Composition.		B 31-43; O 68-57 B ₂ O ₃ 56-45; OH ₂ 43·5 5	Cd 87·50; O 12·50 Cd 77·78; S 22·22	(anhydr.) Ca 36·03; Cl 63·97 Ca 51·28; F 48·72 Ca 71·43; O 28·57 Ca O 56; CO ₂ 44	CaO 75 68; OH ₂ 24:32 Ca 55:56; S 44:44 CaO 41:18; SO ₂ 58:82 CaSO ₄ 79:07; OH ₂ 20:93 CaO 54:19; P ₂ O ₆ 45:81	C 42.86; O 57.14
Molecular Weight.	393.5+90-483.5	70 B 62 B ₂	183+86-219 172 128 Cd 144	-219	74 Co	28
Formula.	Bi(NO ₃) ₃ , 50H ₂	B,O, H,BO,	CdCl ₂ , 20 H ₂ CdCO ₃ CdO CdS	CaCl., 60H., CaF., CaO.	(2,84,0,4 (2,85) (2,850,4 (2,800,20H,4 (2,800,1),2,40H,4 (3,81,0,8)	8
Name.		Boric anhydride, ,, acid,	Cadmic chloride,	Ca = 40)	", hydrate, ", sulphide, ", sulphate, ", intrate, Tricalcic phosphate,	Carbonic oxide,

C 27-27; O 72-78	Cr 68·68; O 81·37	Co 78·67; O 21·88	Cu 64.03; Cl 35.97 Cu 88.76; O 11.24 Cu 79.80; S 20.20 Cu 47.09; Cl 52.91 Cu 79.80; O 20.20 Cu 66.39; S 33.61 cuystals) CuO 31.84; SO ₃ 82.07; OH ₂	Cl 97-26; H 2-74 N ₂ O ₂ 86-72; OH ₂ 14-28 SO ₃ 81-64; OH ₂ 18-36	Fe 44.09; Cl 55.91 Fe 77.78; O 22.22 Fe 63.64; S 36.36 (crystals) FeO 25.90; SO ₅ 28.78; OH ₅
7	818 158 893	180 75 188+108-291	197.4 142.4 158.4 184.2 79.2 96.2 159.2+90=249.2 187.2+108=296.2	88 88 68 68 68	127 72 88 162+126-278
. 002	Cr.O., Cr.O., Cr.(80,),	CoCl ₂ CoO Co(NO ₃) ₂ , 60H ₂	Cu ₂ Cl ₂ Cu ₃ O Cu ₃ O Cu ₃ CuCl ₃ CuCl ₃ CuSO ₆ 5OH ₃	HCI HNO, H-SO,	FeCl. FeO FeS FeSO ₄ , 70H ₂
	Chromic chloride,	COBALT (Co=59) Cobaltous chloride, oxide,	Coppers (Cu=63.2) Cuprous chloride, ,, oxide, ,, sulphide, ,, sulphide, ,, sulphide, ,, sulphide, ,, sulphide, ,, sulphide,	Hydrio "	IRON (Fe-56) HILL STATE

FORMULE, MOLEOULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONIX OCCURRING COMPOUNDS—continued.

Name.	Formula.	Molecular Weight,	Percentage Composition.
Ferrous ammonic sulphate, "" nitrate, "" carbonate, Ferric chloride, "" oxide, "Triferric tetroxide, Ferric disulphide, " sulphate,	Fe(NH ₄) ₂ SO ₄ , 60H ₂ Fe(NO ₃) ₃ , 60H ₃ Fe ₂ O ₃ Fe ₂ O ₃ Fe ₂ O ₄ Fe ₃ O ₄	284+108=392 180+108=288 116 325 160 232 120 400	Contains 4th of its weight of iron, or 14.286 per cent. Fe 48.27 or FeO 62.07; CO ₂ 37.93 Fe 34.46; Cl 65.54 Fe 70; O 30 Fe 72.41; O 27.59 Fe 46.67; S 53.83
LEAD (Pb=206·5) Plumbic chloride, oxide, dioxide, sulphide, sulphide, nitrate, acetate, chromate,	PbC1, Pb0 Pb0 Pb0 Pb8 Pb8 Pb8 Pb80, Pb8(0,4), Pb(0,4),	277.5 222.5 238.5 238.5 302.5 530.5 524.5	Pb 74.46; Cl 25.54 Pb 92.81; O 7.19 Pb 86.58; O 13.42 Pb 86.58; S 13.42 Pb 73.55; SO ₃ 26.45 Pb 67.32; N ₂ O ₅ 32.68 Pb 68.99 (-Pb 64.03); GrO ₃ 31.01
MAGNESIUM (Mg = 24) Magnesic chloride, oxide,	. MgO. . MgCO. . MgSO., 70H,	95 40 84 120+126-246	Mg 25·26; Cl 74·74 Mg 60; O 40 Mg 04; Co ₂ 52·38 (cryst.) MgO16·26; SO ₃ 32·52; OH ₆ 51·22 (anhydrous) Mg O 33·33; SO ₃ 66·67

MgO 36 04; P ₂ O ₆ 63 96	(anhydr.) Mn 48·65; Cl 56·35 Mn 77·47; O 22·58 (anhydr.) MnO 47·02; SO ₈ 52·98 Mn 68·22; O 36·78 Mn 69·62; O 30·38 Mn 72·05; O 27·95	Hg 84.93; Cl 15-07 Hg 96·15; O 8·85 Hg 73·80; Cl 26·20 Hg 44·05; I 55·95 Hg 92·59; O 7·41 Hg 86·21; O 18·79	Ni 78·67; O 21·88
274 + 216 - 490 222	115 126+72-198 71 151+90-241 87 158 229	471 416 $524 + 36 - 560$ 271 453.2 216 232 296 $2 \times 324 + 18 - 666$	$ \begin{array}{c} 180 \\ 75 \\ 166 + 126 - 281 \\ 82 \\ 82 \end{array} $
Mg ₂ (NH ₄) ₂ (PO ₄) ₂ , 120H ₂ Mg ₂ P ₂ O ₇	MnCO ₃ MnCl ₂ , 40H ₃ MnO MnO ₃ Mn ₂ O ₄ Mn ₂ O ₃ Mn ₃ O ₄	Hg,Cl3 Hg,Cl3 Hg,Ll3 Hg,Ll3 Hg,G Hg,S Hg,S Hg,S Hg,S Hg,No ₃ , OH ₂	NiCl. NiO NiSO ₄ , 70H, HPH,O ₃ H,PHO ₃
Magnesic ammonic phosphate, . pyrophosphate, .	MANGANESE (Mn = 55) Manganous carbonate, ,, chloride, ,, sulphate, ,, sulphate, Manganic dioxide, , sesquioxide, , sesquioxide,	MERCURY (Hg = 200) Mercurous chloride, " oxide, " nitrate, " iodide, " sulphide, " sulphate, " nitrate,	NICKEL (Ni-59) Nickelous chloride. oxide. sulphate. PHOSPHORUS (P-31) Hypophosphorous acid, Phosphorous

FORMULE, MOLEOULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONLY OCCURRING COMPOUNDS—continued.

Name.	Formula.	Molecular Weight.	Percentage Composition.
Phosphoric acid, Metaphosphoric acid, Pyrophosphoric, Phosphoric anhydride,	H.PO. H.PO. H.P.O. P.O.	98 80 178 142	P ₂ O ₅ 72·45; OH ₂ 27·55 P ₂ O ₅ 88·75; OH ₂ 11·25 P ₂ O ₅ 79·77; OH ₂ 20·23 P 43·66; O 56·34
Platinic chloride, Ammonic platinic chloride, Potassic platinic chloride,	Ptcl. Ptcl., 2NH,Cl Ptcl., 2KCl	839 ·2 446 ·2 488 ·2	Pt 58·12; Cl 41·88 Pt 44·18; NH ₃ 7·62 (N 6·28) Pt 40·39; Cl 43·63; K 15·98 (- K ₂ O 19·25 or KCl 30·52)
Potassic arbonate, bicarbonate, bicarbonate, chlorate, chlorate, chloride,	K,CO, KHCO, KCIO, KCI	188 100 122·5 74·5	$ \begin{array}{c} K_2O \; 68 \cdot 12 \; ; \; CO_2 \; 31 \cdot 88 \\ K_2O \; 47 \cdot 00 \; ; \; CO_2 \; 44 \cdot 90 \; ; \; OH_2 \; 9 \cdot 00 \\ K_2O \; 38 \cdot 42 \; ; \; Cl_2O_3 \; 61 \cdot 58 \\ K \; 52 \cdot 38 \; ; \; Cl \; 47 \cdot 62 \end{array} $
", chromate, bichromate,	Kacro, Kacro, Kon Kon Kaco N	194 · 5 295 65 65	K ₂ O 31.86; OrO ₃ 68.14 U 97.09; To 19.08; ON 98.09; OH
ferricyanide, ReFeaCiaNis hydrate, RI KHO hydro metantimoniate, Karo Karo hydro metantimoniate, Karo Karo 60H, hydro metantimoniate, Karo Karo 60H, karo 60H	KeFes C13 N 13 KHO	658 66 165-6 185-6 482+108	K ₂ O 88 ·98 · OH ₂ · ON 47 ·42 K ₂ O 88 ·98 · OH ₂ · ON 47 ·42 K ₂ O 88 ·98 · OH ₂ · OF K 28 ·51 · I 76 ·49

					
K 82-98; O 17-02 K ₃ O 29-75; Mn ₃ O ₇ 70-25 K ₂ O 54-03; SO ₃ 45-97 K ₂ O 34-56; SO ₃ 58-83; OH ₂ 6-62 K 32-80; Br 67-20	Si 46·93; O 53·07	Ag 75·21; Cl 24·79 Ag 57·88; Br 42·62 Ag ₆ O 68·18 or Ag 63·47; N ₂ O ₆ 31·82 Ag ₅ O 74·81; SO ₅ 25·69	Na ₂ O 64·36; Al ₂ O ₃ 35·64 (anhydr.) Na ₂ O 30·69; B ₂ O ₃ 69·31 (cryst.) Na ₂ O 16·23; B ₂ O ₃ 86·65;	OH ₂ 47·12 (anhydr.) Na ₂ O 58·49; CO ₂ 41·51 (cryst.) Na ₂ O 21·68; CO ₂ 15·39;	N ₂ O 36 90. Co. 52.38; OH ₂ 10.71 Na. 39.82; Cl 60.68 Na. 74.19; O 25.81 Na ₂ O 77.50; OH ₂ 22.50 N 16.47 N ₂ O 17.32; P ₂ O ₅ 19.84; OH ₂ 62.84
85 94 316 174 136 119	8.09	143.2 187.7 169.7 311.4	289 202+180=382	106+180=286	84, 58.6 62 62 40 86 164+216 142+216
KNO ₃ K ₂ Mn ₃ O ₃ K ₂ SO ₄ KHSO ₄ KBr	SiO _s	AgCI AgBr AgNOs AgsSOs	Na ₂ B ₄ O ₇ , Na ₂ B ₄ O ₇ , 10OH ₂	Na2CO2 100H2	NaHCO, NaCl Na ₂ O NaHO NaNO, Na ₂ PO, 120H, Na ₂ HPO, 120H,
		4444	_ XX	ž	ZZZZZZZ
	•		- zz	ř	ZZZZZZZ

FORMULM, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITIONS OF COMMONIX OCCUBRING COMPOUNDS—continued.

Percentage Composition.	(anhydr.) Na ₂ O 43.67; SO ₂ 56.33 (cryst.) Na ₂ O 19.26; SO ₂ 24.84; OH ₂	Na ₂ O 25.83; SO ₂ 66.67; OH ₂ 7.50 Na ₂ O 25.00: S1 2.90: SO ₂ 86:00: OH ₂	86.30	Sro 70·15; CO, 24·86 Sro 56·41: SO, 43·59	Sn 52.44; Cl 31.56; OH ₂ 16.00 Sn 78.66; O 21.34	Zn 47 79; Cl 52-21 Zn 80-25; O 19-75 (anhydr.) Zn O 50-31; SO ₃ 49-69 Zn O 64-80; CO ₂ 35-20 or Zn 52; CO ₃ 48.
Molecular Weight.	142+180-322	$ \begin{array}{r} 120 \\ 126 + 180 \\ 262 + 36 \\ 158 + 90 - 248 \end{array} $	158.4+108	147.4 211.4 183.4	225 150	$136 \\ 81 \\ 81 \\ 161 + 126 \\ 125$
Formula.	. Na ₃ SO ₄ , 100H ₂	Na.HSO. Na.SO., 100H. Na.S.O.) Fecy., 20H.	SrCl. 60H.	SrCO, SrNO, SrSO,	SnCl ₂ , 20H ₂ SnO ₂	ZnCl. ZnO ZnSO ₄ , 7OH ₂ ZnCO ₃
Name.	Sodic sulphate,	", bisulphate, sulphite, nitroprusside, thickniphate	-87.4)	" carbonate, " nitrate, " sulphate.	118)	ZING (Zn=65) Zingic chloride, ,, oxide, ,, sulphate, ,, carbonate,

THE MOLECULAR WEIGHTS AND WEIGHTS OF ONE LITTE OF VARIOUS GASES.

Name.	Formula.	Molecular Weight.	Weight of 1 litre at 0° C. and 760 mm. Bar.
Ammonia, . Carbon monoxide, ,, dioxide, Methane, . Cyanogen, . Chlorine, . Hydrogen bromide, ,, chloride, ,, fluoride, ,, iodide, . ,, sulphide, Nitrous oxide, Nitric ,,, peroxide, Oxygen, . Sulphur dioxide, . Atmospheric air,	NH ₈ CO CO ₂ CH ₄ C ₂ N ₂ Cl ₂ HBr HCl HF HI H ₂ S N ₂ O NO NO SO SO	17 28 44 16 52 71 2 81 36·5 20 127·6 34 28 44 30 46 32 64	grammes. 0·7616 1·2544 1·9774 0·7168 2·3296 3·1808 0·0896 3·6288 1·6352 0·8960 5·7165 1·5475 1·2562 1·9774 1·3440 2·0608 1·4298 2·8672 1·2932

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS.

Ele- ment.		Frac- tional Multi- plier.*	Decimal Multiplier.	Logarithm (to be added).	
	Alumi				
Al	Al ₂ O ₃	into Al_2 ,, ammonia-alum	707 107 208	0·5294 8·8824	Ī·72379 0·94853
"	Al2(PO4)2	,, potash-alum Al ₂ O ₃	948 162 102	9·2941 0·4180	0.96821 1.62121
,,	Milligrams of	ammonia-alum Al ₂ P ₂ O ₈ per 100 grams	122	8.7181	0.56974
,,	alum per	o grains of ammonia- 4 lb. loaf,		1.0397	0.01690

^{*} The figures given in this column are the molecular weights unreduced.

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To conver	t .	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).
Sb	Sh ₂ O ₄ Sh ₂ S ₃				0·7895 0·7148	1·89734 1·85387
As ,,	•	ARSENIC (As = 75) 2NH ₄ MgAsO ₄ , OH ₂ into As ₂ ,, ,, As ₂ O ₃ ,, ,, As ₂ O ₅			0·8947 0·5211 0·6053	Ī·59631 Ī·71689 Ī·78194
,, ,,	Mg ₂ As ₂ (O ₇ ,:	As_2O_3	150 198 198 198 198 198 198 198	0.4839 0.6387 0.7419	Ī·68473 Ī·80530 Ī·87037
"	As ₂ O ₃ As ₂ S ₃	9: 9:	A ~	158 158	0.7576 0.6098	1 87942 1 78516
"	", "	9:	A = 0°	128 230 248	0.8049 0.9350	1·90573 1·97079
Ba ,,	BaSO ₄	BARIUM (Ba- into	-137) Ba BaO BaCO ₃	187 233 153 283 197 238	0.5880 0.6567 0.8455	1·76936 1·81734 1·92711
,,	" "	" "	BaCl ₂ , BaCl ₂ S	208 288 244 258 258	0·8927 1·0472 0·1373	Ī·95071 0·02008 Ī·13779
" "	", "	>> >> >>	SO_3 SO_4 H_2SO_4	80 933 96 233 98 98 98	0·3434 0·4120 0·4206	1·53573 1·61492 1·62387
,, ,,	" "	** ** **	$\begin{array}{c} \operatorname{CaSO_4} \\ \operatorname{CaSO_4}, \ 2\operatorname{OH_2} \\ \operatorname{K_2SO_4} \end{array}$	136 233 172 233 174 288	0.5837 0.7382 0.7468	Ī·76618 Ī·86817 Ī·87319
" "	", ",	" "	$Na_{2}SO_{4} \ (NH_{4})_{2}SO_{4} \ 2KHO$	148 188 188 188 118	0.6094 0.5665 0.4807	1·78493 1·75322 1·68186
"	$\begin{array}{c} 2\mathrm{BaSO_4} \\ \mathrm{BaCO_3} \end{array}$	"	FeS ₂ Ba	188 187	0·2575 0·6954	1·41080 1·84225
"	,, ,,))	BaO CO ₃	157 60 197	0.7767 0.3046	1·89023 1·48369

WINIVERSITY

THE ANALYST'S LABORATORY COMPAN

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To convert	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).	
Bi	$\mathrm{Bi_2O_3}_{\mathrm{Bi_2S_3}}$	Bismuth (Bi- into	208) Bi ₂ Bi ₂	112 11 2	0·8966 0·8125	<u>Ī</u> •95258 <u>Ī</u> ∙90982
B	$\mathrm{B_2O_3}$	Boron (B=)	11) B ₂	78	0.3143	ī·49782
Cd "	CdO CdS	CADMIUM (Cd = into	-112) Cd Cd CdO	1128 1128 1144 128 144	0.8750 0.7778 0.8889	1·94201 1·89086 1·94885
Ca .,	CaO	CALCIUM (Ca- into	-40) CaCO ₃ CaSO ₄	40 88 100 88 158	0.7143 1.7857 2.4286	1.85387 0.25181 0.38535
" "	cãO	"; "	$\begin{array}{c} \text{CaSO}_4,\ 2\text{OH}_2\\ \text{CaCl}_2\\ \text{CaH}_2\text{O}_2 \end{array}$	178 111 111 188 188	3·0714 1·9822 1·3214	0·48734 0·29714 0·12104
,, ,,	CaCl ₂ CaCO ₃	" "	CaO Cl ₂ Ca	111 111 100	0.5045 0.6396 0.4	1·70287 1·80594 1·60206
" "	" "	" "	CaO CO ₂ CO ₃	100 100 100 100	0.56 0.44 0.6	1·74819 1·64345 1·77815
"	" CaŠO₄	" "	CaSO ₄ , 2OH ₂ Ca	136 172 173 186	1·36 1·72 0·2941	0·13354 0·23553 1·46852
"	>> >> >>	" "	${\rm CaO} \atop {\rm CaCO_3} \atop {\rm CaSO_4,\ 2OH_2}$	186 186 186 186 172 186	0.4118 0.7353 1.2647	Ī·61465 Ī·86646 0·10199
,,	Ca ₃ P ₂ O ₈	"	${\rm SO_3\atop CaP_2O_6}$	\$0 136 198 810	0.5882 0.6387	Ī·76955 Ī·80530
,,	"	33 33	P ₂ O ₅ P ₂	113 10 10	0·4581 0·2	I·66093

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To conver	t	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be <i>added</i>).
С	CO ₂	BON (Cointo	-12) CaCO,	11 122	0·2727 2·2727	1·43573 0·35655
" "	" 2°°O ₂	"	Na ₂ CO ₃ MnO ₂	106 44 86 88	2·4091 0·9773	0·38185 1·99002
Cl	Chlor Cl "	RINE (Cl into	-35.5) HCl NaCl	36:55 55:55 35:55	1·0282 1·6479	0·01206 0·21693
,, ,,	Cl ₂	" "	$MgCl_2$ O $CaCl_2$	₩ ₩ ₩	1.3380 0.2254 1.5634	0·12647 1·35286 0·19406
Cr	Cr ₂ O ₃	into	Cr ₂	188	0.6863	T·83650
Со	СоО	ALT (Co into	—59) Co	78	0.7867	I·89579
Cu	Copp CuO 2CuO	ER (Cu= into	-63·2) Cu Cu ₂ O	#8:4 118:1	0·7980 0·8990	Ī·90199 Ī·95375
"	Cu ₂ O Cu ₂ (CNS) ₂	"	2CuO Cu ₂	128:4 128:4	1·1124 0·5215	0.04625 1.71721
F	FLUC CaF ₂	orin e (F into	'-19) F ₂	38	0.4872	T·68769
н		BOGEN (H=1) 2HCl	7.8	0.7449	Ī·87210
н "	H ₂ SO ₄	into	(NH ₄) ₂ SO ₄	138 138	1.3470	0.12935
,, ,,	HCl HNO ₃	"	Cl N	\$8:8 83	0·9726 0·2222	I·98794 I·34679
_		on (Fe-	56)			
Fe ,,	Fe ,,	into	FeO FeSO ₄ , 7OH ₂	13 173	1·2857 4·9643	0.10914 0.69586
<u> " </u>	**	"	FeS ₂	ŵ	2.1429	0.33099

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To convert		Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).
Fe ,,	Fe ₂ ",	Fe = 56)—co into	$rac{ ext{MnO}_2}{ ext{Fe}_2(ext{PO}_4)_2} \\ ext{Fe}_2 ext{O}_3$	87 112 302 112 160 113	0.7768 2.6964 1.4286*	T·89030 0·43079 0·15490
"	Fe ₂ O ₃ 3Fe ₂ O ₃	>> >> >>	${f Fe_2}\ {f Fe_2}\ ({f PO_4})_2\ 2{f Fe_3}O_4$	188 388 488	0.7 1.8875 0.9667	T·84510 0·27589 T·98528
,,	FeS ₂ FeS	"	S ₂ Fe	5 6 5 6 8 8	0·5333 0·6364	Ī·72700 Ī·80371
"	2FeS 2Fe(NH ₄) ₂ (SO ₄) ₂ , 60H ₂	Fe_2O_3 into MnO_2	158 87 784	0.9091 0.1110	1.95861 1.04520
Pb ",	PbSO ₄	EAD (Pb = 20 into ","	6·5) PbO Pb	2002 2002 2002 2002 2002 2002 2002 200	0·8658 0·9329 0·6826	1·93743 1·96984 1·83419
"	PiCrO4	"	PbO Pb	\$ 2 2 5 \$ 0 6 5 \$ 3 2 8	0.7355 0.6393	1.86660 1.80572
,,	2PbCrO₄	"	$\begin{array}{c} {\rm PbO} \\ {\rm K_2Cr_2O_7} \end{array}$	322:5 325 646	0.6889 0.4567	Ī·83813 Ī·65959
Mg ,,	MgCl ₂ MgO	into	MgO Cl ₂ MgCO ₃	#8 ##	0·4210 0·7474 2·1	T·62434 T·87353 0·32222
,, ,,	" "	99 33 99	$MgCl_2$ $MgSO_4$ $Mg(NO_3)_2$	## 148 148	2·375 3 3·7	0:37566 0:47712 0:56820
"	Mg ₂ P ₂ O ₇	?? ?? ??	${{\rm Mg_2}\atop { m 2MgO}\atop { m 2MgCO_3}}$	48 222 80 222 168 222	0.2162 +0.3604 0.7568	Ī·33489 Ī·55674 Ī·87896
" "	" "	,, 2(M	$2MgSO_4$ gSO_4 , $7OH_2$) $CaH_4P_2O_8$	이 아이 아이 수 하 수 하 수 하 수 하 수 하 수 하 수 하 수 하 수 하 수	1.0811 2.2162 1.0541	0:03386 0:34561 0:02286

* Or divide by 0.7. † Or use the Phosphate Table, pp. 64-71, subtracting from the Mg₂ P₂O₇ found the P₂O₅ in it.

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS-continued.

Ele- ment.	To convert		Frac- tional Multi- plier.	Decimal Multiplier,	Logarithn (to be added)
Mg ,,	Magnesium (Mg-24 Mg ₂ P ₂ O ₇ ,,)—continued. P_2 P_2O_5 CaP_2O_6	6 2 40 000 000 100 100 100 100 100 100 100	0·2793 0·6396 0·8919	Ī·44604 Ī·80594 Ī·95031
"	MgSO ₄ ",	$egin{array}{c} { m Ca_3P_2O_8} \\ { m Mg} \\ { m MgO} \end{array}$	120 120 120	1·3964 0·2 0·3333	0·14501 1·30103 1·52288
Mn ,,	MANGANESE (M Mn into MnO ,, MnO ₂ ,,	In = 55) MnO Mn Mn Mn	7 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1·2909 0·7747 0·6322	0·11090 1·88910 1·80084
"	Mn ₃ O ₄ ,, Mn'S ,,	3Mn 3MnO Mn	165 229 229 529 55	0.7205 0.9301 0.6322	1.85765 1.96854 1.80084
,, ,,	MnSO ₄ ,,	MnO Mn MnO	77 781 781	0.8161 0.3642 0.4702	Ī·91174 Ī·56139 Ī·67228
Hg ,,	MERCURY (Hg HgS into	Hg HgO	200 232 216 232	0·8621 0·9310	1.93554 1.96897
"	Hg ₂ °l ₂ ,, ,, Molybdent		499 418 471	0.8493 0.8832	1·92904 1·94607
Mo	Ammonic phosphomol	into P_2O_5 ,, $Ca_3P_2O_8$		0.0163 0.0373 0.0815	2·21219 2·57208 2·91116
Ni	NICKEL (Ni = NiO into	Ni	58: 6 74:8	0.7855	Ī·89516
N ,,	N into	NH ₃ HNO ₃ NaNO ₃	17 63 14 85 14	1·2143 4·5 6·0714	0·08432 0·65321 0·78329
,,	" " "	KNO ₃ Albuminoids	쌲	7·2142 6·25	0.85819 0.79588

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.	Т	o conver	i.	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).
	Nitrogen ani					
₃₇		ontinue	d.	100	0.0550	0.50005
N	N ₂	into	N_2O_5	108	3.8572	0.58627 1.41373
"	N_2O_5	,,	$\frac{N_2}{2KNO_3}$	108 108	0.2593 1.8704	0.27193
,,	,,	,,	Co(NO)	903 108 164	1.5185	0.18142
"	,,	,,	$Ca(NO_3)_2$	188	1.9109	0 10142
			Ma(NO.)	188	1.3704	0.13684
"	NH ₈	"	$Mg(NO_3)_3$	108	0.8235	1.91568
,,		**	NH₄ĈÌ	53.6 17	3.1470	0.49790
"	,,	**	212202	17	0 2270	* 20,00
١,, ١	2NH,	,,	$(NH_4)_2 SO_4$	132	3.8824	0.58910
<i>"</i> ,	NH₄C1	"	N N	K8. K	0.2617	1·41777
١,,	,,	"	NH,	88 B	0.3178	Ī·50210
"	"	••				
٠,,	(NH₄) ₂ SO₄	,,	H ₂ SO ₄	98	0.7424	1.87065
,,	` ,,	,,	$2NH_s$	34	0.2576	Ī·41091
,,	,,	,,	N_2	28	0.2121	I·32658
,,	Ammonia-alun	n ,,	Potash-alum	848	1.0464	0.01968
						i i
l _	Рноврн					
P	P ₂	into	P_2O_5	142	2.2903	0.35990
,,	P_2O_5	,,	P ₂	149	0.4366	I.64010
,,	,,	,,	$Ca_3P_2O_8$	310	2·1831	0.33907
1	_	(T)	****			
- D.	PLATIN		– 197°2)	0.8	0.0000	5.70740
Pt	(NH ₄) ₂ PtC ₁₆	into		440.2	0.0628 0.0762	2·79763 2·88195
,,	,,	**	2NH ₃	34 34 107		1·37985
"	,,	,,	2NH₄Ci	448.2	0.2398	1.9/900
			2NH4	448.7	0.0807	2.90677
,,	,,	,,	$(NH_4)_9SO_4$	448.2	0.2958	1.47104
,,	Kartcia	"	$(N \Pi_4)_2 SO_4 K_2$	448.7 488.7	0.1600	1.20350
₩	1x2: to16	"	17.3	£88.3	0 1000	1 20050
1			2KC1*	149	0.3052	1·48459
,,,	"	"	K ₀ O	488.2	0.1925	1.28453
,,,	"	"	K ₂ SO ₄	488-2 174 488-2	0.3564	Ī·55195
"	,,	**	119004	488-7	3 0001	
l '	Pt	,,	2NH₄Cl	197.3	0.5426	Ī·73448
"	,,	"	(NH ₄) ₂ SO ₄	197 2	0.6694	1.82567
<u>,,,</u>	. ,,		12.224/3	197.9		

^{*} Using Tatlock's method of determining potash, the following empirical factors have

Using latiock's method of determining potasin, the following empirical factors have been obtained and are frequently used:—

 Tatlock's own factor is platinochloride pp. ×0.3056 = KCl.
 Dr Dittmar (see Jour. Soc. Chem. Ind., 1887, p. 801) found platinochloride pp. ×30627 = KCl. and Pt. × 76016 = KCl.
 Dr Dyer, as the result of his own determinations, uses the factors:—

Platinochloride pp. \times 1955 = K_2O . \times 3094 = KCl.

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued,

Ele- ment.		To convert	:	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).
		Potassium (K	= 30)			
ĸ	K	into	KCl	74:5	1.9103	0.28109
,,	K,	"	K ₂ O	9 <u>4</u>	1.2051	0.08103
,,	2ŘCl	,,	$K_2^{-}O$	149	0.6309	1.79994
١,,	KCl	,,	Cl	3 5:8	0.4765	Ī·67807
,,	,,	"	KHT	74.8 140	2.5235	0.40200
,,	K²₀O	,,	2KCl	140	1.5851	0.20006
٠,,	,,	,,	K ₂ SO ₄	174	1.8511	0.26742
,,	,,	"	2KNO,	303	2.1490	0.33222
,,	**	,,	Rochelle salt	654	6.0	0.77815
,,	,,	,.	K ₂ CO ₃	138	1.4681	0.16675
,,	22	,,,	2KHO	ψ	1.1915	0.07609
,,	,,	,,	2KHC ₄ H ₄ O ₆	¥ 7. ₽	4.0	0.60206
,,	K ₂ SO ₄	,,	K ₂ O	94 174	0.5402	<u>1</u> ·73258
,,	KNO ₃	"	N	101	0.1386	Ī·14181
.		Silicon (Si -	28.3)			_
Si	SiO ₂	into	Si	80:8 80:8	0.4693	Ī·67147
		SILVER (Ag=	107·7)			
Ag	AgBr	into	Br	187.7	0.4262	<u>I</u> ·62963
,,	AgCl	,,	Ag	188:4	0.7521	<u>1</u> ·87627
"	**	"	Cí	148.9	0.2479	1·39429
,,	,,	**	H Cl	36.5 143.9	0.2549	1·40635
,,	AgI	"	I	1284:5 284:5	0.2401	Ī·73250
- 1		Sodium (Na			•	
Na	Na	into	NaCl	58:5 93	2.5435	0.40543
٠,,	Na ₂	,,	Na ₂ O	₹8	1.3478	0.12963
"	Na ₂ O	"	2NaCl	₩	1.8871	0.27579
,,	"	,,	Na ₂ SO ₄	144	2.2903	0.35990
,,	,,	,,,	Na ₂ CO ₃	1026	1.7097	0.23291
"	"	,,	2NaNO ₃	1,7,0	2.7419	0.43806
,,	NaCl	,,	2NaHO	89	1.2903	0.11070
,,	NaCl	,,	N HCC	88:8	0.6068	I·78307
,,	,,	,,	NaHCO ₃	88.8 8.8	1.4359	0.15712

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.		To conver	t	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).
Na ,,	2NaCl	M (Na=23)- into	-continued. Na ₂ O Na ₂ CO ₃	117 117	0.5299 0.9060	T·72421 T·95712
,,	NaNO ₃	"	Ŋ	88	0.1647	Ī·21671
,, ,,	Na ₂ CO ₃ Na ₂ SO ₄	,, N	a ₂ CO ₃ , 10OH ₂ Na ₂ Na ₂ O	168 169 169	2.6981 0.3239 0.4366	0·43106 1·51047 1·64010
"		rontium (Sr		•••		
Sr	SrCO,	into	Sr	87:8	0.5927	Ī·77281
,,	SrSO ₄	,,	Sr	87.3 188.8	0.4763	Ī·67785
		SULPHUR (S	- 32)			
S	SO ₃	intò	S	88	0.4	Ī·60206
"	"	,,	CaSO ₄	138 80	1.7	0.23045
,,	,,	,,	CaSO ₄ , 2OH ₂	172	2.15	0.33244
"	"	,,	Na ₂ SO ₄	₩ ³	1.775	0.24920
		TIN (Sn - 1	18)			
Sn	SnO ₂	into	Sn	118	0.7867	I·89579
,,	Sn	"	SnO ₂	118	1.2712	0.10421
		ZINC (Zn =	65)			
Zn	$\mathbf{Z}\mathbf{n}$	into	ZnO	88	1.2462	0.09557
,,	"	"	ZnCl ₂	136	2.0923	0.32063
,,	ZnO	"	Zn	85 85 87	0.8025	<u>1</u> ·90443
	ZuS	,,	Zn	85	0.6701	Ī·82614

Example.—1.327 grams of a substance gave 0.8470 gram BaSO4: to

find the percentages of SO₃ and S present respectively.

Since 1.327 grams give 0.847 gram BaSO₄ 100 grams will give *847 × 100 84 70

1.327 = 1.327Log. 84.70 =1.92788 Taking logs. 1.327 = 0.12287(subtracting) 1.80501 Add log. (Ba SO₄ into SO₃) I.53573 1.34074 = 21.92 per cent. SO₃. Add log. (SO₃ into S.) 1.60206 0.94280 = 8.77 per cent. S.

Rule. -- First find the weight of the pp. that 100 parts of substance would give, then add the log. of the multiplier to get percentage of substance sought.

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIC ANALYSIS—continued.

Ele- ment.	To convert	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).
	·			
		ı		
	·			

MULTIPLIERS AND THEIR LOGARITHMS REQUIRED IN GRAVIMETRIO ANALYSIS—continued.

Ele- ment.	To convert	Frac- tional Multi- plier.	Decimal Multiplier.	Logarithm (to be added).
	•			
	-			

MULTIPLIERS REQUIRED IN VOLUMETRIC ANALYSIS.

•				1	Logarithms.
Normal H ₂ SO ₄	1 c.c. = 0.049	gram	H ₂ SO ₄		2 ·690 1961
	,, -0 ·048	••	SO₄		2.681 2412
	,, - 0.040	,,	SO ₃		<u>2</u> ·602 0600
Normal HCl	1 c.c. = 0.0365	,,	HCl		2.562 2929
	,, -0.0355	,,	Cl .		2.550 2284
Normal HNO ₃	1 c.c. = 0.063	,,	HNO ₃	• •	2.799 3405
	,, -0.062	,,	NO.		2.792 3917
Normal II C O	,, =0.054	"	N ₂ O ₅	, TTO	2.732 3938
Normal H ₂ C ₂ O ₄	1 c.c. = 0.063	"	H ₂ C ₂ O ₄	ZUIIg	2.799 3405 2.653 2125
Normal NaHO	,, =0.045 1 c.c. =0.040	**	H ₂ C ₂ O ₄ NaHO		2.602 0600
Normal Name	= 0.031	"	Na ₂ O	•	2.491 3617
Normal KHO	1 c.c. = 0.056	,,	KHO		2.748 1880
Tiormar IEIIO	,, =0.047	,,	K ₂ O	•	2.672 0979
Normal Na ₂ CO ₃	1 c.c. = 0.053	**	Na ₂ CO ₃	•	2.724 2759
210.220.2102008	,, =0.030	"	CO	: :	$\frac{1}{2} \cdot 477 1213$
	,, -0.022	"	CO,	: :	2.342 4227
Decinormal AgNOs	1 c.c. = 0.0108	"	Åg.		2.033 4238
	,, =0.017	"	AgNO ₈		$\bar{2}$ ·230 4489
	,, =0.00355	,,	ci .		3.550 2284
Decinormal NaCl	1 c.c. = 0.00585	,,	NaCl		3.767 1559
CALCIUM (Ca-40)					
1 c.c. $\frac{N}{10}$ permang	anata =0.0028 o	ram C	aΩ .		3.447 1580
"	-0.0050 g -0.0086 g	ram C	BCO8		3.698 9700
" "	=0.0086 g exalic acid = 0.02	ram Ca	380, 20.	н ₂ .	$\frac{3.934}{2.447}$ 1580
Cryst. oxalic acid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ov gra	m CaU		1.647 3830
Double iron salt			•	• •	2.853 8807
		•	•	• •	2 000 0007
CHLORINE (Cl = 35	B 7)				Ì
1 c.c. $\frac{N}{10}$ silver so	Intion = 0:003532	oram	CI .		3.548 6351
	-0.005837				3.766 1897
" N "	-0 000007	gram	NaCi		3 700 1097
1 c.c. $\frac{N}{10}$ arseniou	s or hyposulph	ite sol	lution = 0	.003537	
gram	Cl	_			3.548 6351
1 litre of chlorine	at 0° C. and 760	mm. v	veighs 3·1	7 grams	0.501 0593
CHROMIUM (Cr = 52 Metallic iron × 0					T.101 F700
		•	• •	• •	1.494 5720
,, XU	5981 - CrO ₃ .	•	• •		1.776 7738
,, XU	$8784 = K_2 Cr_2 O_7$ $926 = Pb Cr O_4$	•	• •	• •	1.943 6923
Double iron salt:	ν 0·0446 — C»	•	•		0.284 6563 2.649 3349
		•	· · ·		2·931 4579
"	x 0·1255 = K.Cr. (· ·	• •	• •	1.098 6437
**	$\times 0.0854 - \text{CrO}_3$ $\times 0.1255 - \text{K}_2\text{Cr}_2\text{O}$ $\times 0.275 - \text{PbCrO}$	5. ⁷	•		1.439 3327
N				• •	1
1 c.c. $\frac{1}{10}$ solution	-0.003349 gra	m CrO	в •		3.524 9151
" "	-0:00492 gram	K ₂ Cr ₂	O, .		3.691 9651

MULTIPLIERS REQUIRED IN VOLUMETRIC ANALYSIS—continued.

COPPER (Cu = 63)	1	Logarithma.
1 c.c. $\frac{N}{10}$ solution = 0.0063 gram Cu		3·799 3405
	•	0.051 1525
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Ī·206 0159
CYANOGEN (CN = 26)		
1 c.c. $\frac{N}{10}$ silver solution = 0.0052 gram CN .		3·716 0033
,, ,, = 0.0054 gram HCN . ,, = 0.01302 gram KCN .		3 .732 39 38
	•	2 ·114 6110
", $\frac{10}{10}$ iodine = 0.003255 gram KCN .	•	3 ⋅512 5510
Potassic Ferrocyanide (K ₄ FeCy ₆ , 3OH ₂ =422)		
Metallic iron $\times 7.541$ = cryst. potassic ferrocyanide		0.877 4289
Double iron salt $\times 1.077 = ,, ,, ,,$		0.032 2157
Potassic Ferriovanide (K_e Fe ₂ Cy ₁₂ =658) Metallic iron ×5.88 = potassic ferricyanide . Double iron salt ×1.68 = ,, ,,		
Double iron × 5.88 = potassic ferricyanide .	•	0.769 3773 0.225 3093
N Hymanylphita v 0:0900		2 ·517 1959
10 Hyposurphice x 0 0525 = ,, ,,	•	2 517 1858
GOLD (Au = 196.5) 1 c.c. normal oxalic acid = 0.0655 gram gold		<u>2</u> ·816 2413
IODINE (I=126.5)		
1 c.c. $\frac{N}{10}$ hyposulphite = 0.01265 gram iodine.	•	₹.102 0905
Iron (Fe - 56)		
1 c.c. No permanganate, bichromate,		
or hyposulphite $= 0.0056$ Fe.		3·748 1880
,, -0.0002 FeO.	•	$\frac{3}{8}$ 857 3325
,, =0 0000 re ₂ O ₈	•	3·903 0 900
LEAD (Pb=206.4) N		
1 c.c. $\frac{1}{10}$ permanganate = 0.01032 gram lead.		2 ·013 6797
1 c.c. normal oxalic acid = 0 1032 gram lead . Metallic iron ×1.842 = lead .		Ī·013 6797
Double iron salt × 0.263 =	•	0.265 2896 1.419 9557
,	•	
Manganese (Mn = 55) MnO = 71 . MnO ₂ = 87 .		
		Ī·691 0815
Metallic iron $\times 0.491$ - Mn	•	1.802 0413 1.890 3092
.,	•	1 - 222 2302

MULTIPLIERS REQUIRED IN VOLUMETRIC ANALYSIS—continued.

MULTIPLIERS REQUIRED IN VOLUMET.	RIO .	ANAL	YSIS-	-co	пиниес	4.
				- 1	Logarit	thms.
Manganese (Mn $=$ 55)—continued.						
Double iron salt $\times 0.0911 - MnO$	•	•		٠	<u>2</u> ⋅959	5184
$,, \times 0.111 - MnO_2$	•	•	•	٠ ا	1.045	3230
Cryst. oxalic acid $\times 0.6916 - \text{MnO}_2$.		•	•	٠	2·959 1·045 1·839	8550
1 c c N solution - 0:00355 gram MnO				i	3.550	2284
1 c.c. No solution = 0.00355 gram MnO		•	•	٠,	=	
$,, , = 0.00435 \text{ gram MnO}_2$	•	•	•	٠١	3 ⋅638	4893
				ı		
MERCURY (Hg=200)		'		- 1		
Double iron salt × 0.5104 = Hg				- 1	T-707	9107
	•	•	•	•	T-839	7294
N N N N N N N N N N N N N N N N N N N		•	•	.	_	
1 c.c. $\frac{N}{10}$ solution = 0.0200 gram Hg , , = 0.0208 gram Hg ₂ O , , , = 0.0271 gram HgCl ₂				.	2 ⋅301	0300
=0.0208 gram Hg.O					2.318	0633
=0.0271 gram HgCl.	•	•	•	: 1	2.432	9693
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		•	•	١.		
				- 1		
NITROGEN AS NITRATES AND NITRITES				- 1		
$N_2O_3 = 108$. $N_2O_3 = 76$.				- 1		
Normal acid $\times 0.0540 = N_2O_5$		•		.	$\bar{2}.732$	3938
			•	٠ ا	1.004	7512
Metallic iron $\times 0.3750 - HNO_3$.				٠ ا	1.004 1.574 1.779 1.507	0313
$,, \times 0.6018 = KNO_8 \qquad .$		•	•	٠١	1.779	4522
Normal acid $\times 0.0540 = N_0O_5$,	•	•	٠١	1.207	0459
				-		
SILVER (Ag = 107.66)				- 1		
37				- 1		
1 c.c. $\frac{N}{10}$ NaCl = 0.010766 gram Ag	,			٠ ا	$\bar{2}.032$	05 44
-0.018088 A ~NO				į	<u>2</u> ·229	5705
,, =0 010900 ,, AgnO ₃ .		•	•	٠,	2 220	0100
				ı		
SULPHURETTED HYDROGEN (H ₂ S = 34)				- 1		
		. ~		ł	5.400	
1 c.c. $\frac{N}{10}$ arsenious solution = 0.00255 gra	m H	28	•	•	3.406	5402
				- }		
				- [
Tin (Sn = 118)				- 1		
Metallic iron × 1.0536 = tin		•	•	٠	0.022 1.177	6758
Factor for $\frac{N}{10}$ iodine or permanganate sol	ntio	0.00	59	- 1	3.770	8520
1 actor for 10 fourth of permanganate sor	uuoi		,,,,	٠	0	0020
				Ì		
ZINC $(Zn = 65)$				-		
Metallic iron $\times 0.5809 = Zn$					T-764	1014
Metallic iron × 0·5809 = Zn			•		T-859	7386
Double iron salt $\times 0.08298 = Zn$		•		-1	$\frac{1}{2} \cdot 918$	9734
0.724 - ZnO				. 1	$ \begin{array}{r} \hline{1.764} \\ \hline{1.859} \\ \hline{2.918} \\ \hline{1.014} \end{array} $	5205
N"		-				
1 c.c. $\frac{N}{10}$ solution = 0.00325 gram Zn .				.	3·511	8834
10				,		

NOTES ON LOGARITHMS.

Definition.—The logarithm of a number N is the value of x which

satisfies the equation a=N, where a is some given number.

Thus if a be 10 (which is the base of Briggs' or the ordinary logarithms), the logarithm of 100 is 2, that of 1000 is 3; and that of any number between 100 and 1000 will be greater than 2 and less than 3, so that it may be represented by 2 followed by places of decimals.

By means of a table of logarithms two numbers may be multiplied together by adding their logarithms and divided by subtracting their logarithms, the result in each case being the number corresponding to the logarithm thus obtained. Also Involution, or raising of powers, is performed by multiplication of the logarithm of the number by the index of the power; and Evolution, or extraction of roots, by division of the logarithm of the number by the index of the root.

The integral part of a logarithm is called the *characteristic*, the decimal part the *mantissa*. The characteristic may be either positive or negative (e.g., 2, 2),* but the mantissa is always positive. The mantisse only are registered in the tables, the characteristics always being found by the following simple rules:—

(1) For numbers greater than unity, the characteristic is one less

than the number of digits, and is positive.

(2) For numbers less than unity, the characteristic is one greater than the number of ciphers which precede the first significant figure, and is negative.*

Ex.	Log.	437:58	-2.6410575
	Log.	43.758	-1.6410575
	Log.	4.3758	-0.6410575
	Log.		$-\overline{1}.6410575$
	Log.	.043758	$-\overline{2}.6410575$

Negative characteristics are calculated according to the ordinary rules of algebraic addition and subtraction. A few examples will show the methods employed.

(1) Addition—

Add	5·3468541 3·2685427	∆ dd	$\frac{6.3874654}{2.9245636}$
	0.41 50040		F-010000
	2.6153968		5 ·3120290

+5 added to $\overline{3}$ gives +2.

+6 is increased to +7 by the 1 carried over from the mantissæ, and +7 added to 2 gives +5.

^{*}The negative sign is placed over the characteristic to indicate that it alone is negative. If placed in front, like an ordinary negative sign, both characteristic and mantissa would become negative.

NOTES ON LOGARITHMS-continued.

(1) Addition-continued.

Add 2.5632874 3.2465281 Add 3:3010300 2:9020029

5·8098155

4·2030329

Here the +1 carried over from the mantissæ is added to $\overline{3}$ giving $\overline{2}$, and $\overline{2}$ added to $\overline{2}$ gives $\overline{4}$.

(2) Subtraction—

Rule.—Change the sign of the characteristic in the lower line, and add as above.

From 2:6847658 Subtract 3:2468543 From 2:3468537 Subtract 5:7654626

2.5813911

5.4379115

8 becomes, on changing its sign, +3, and this added to +2 gives +5.

Here 1 is carried over from the mantisse, and has to be subtracted from 2, giving 3: then changing the 5 into +5, and adding this to 3, we have +2.

From <u>5</u>.6843252 Subtract <u>3</u>.7856310

3.8986942

Here the 1 carried over subtracted from 5 gives 6; then changing 3 into +3 and adding it to 6, we have 3.

Proportional Parts.—When the logarithm of a number consisting of five figures or less is required, it can be found immediately in the tables; but if the numbers consist of more than five figures, a little calculation is required in order to find its correct logarithm. This calculation is greatly facilitated by the use of a table of proportional parts. It will be seen, on reference to the tables, that the differences between the logarithms of numbers differing by 1 in the figure remain remarkably constant for a great many successive numbers, except at the beginning of the tables, where the changes are rather rapid. Thus, from 66500 to 67500 the difference between any two consecutive logarithms is uniformly 65: e.g., log. 66511 (=4*8228935) subtracted from log. 66512 (=4*8229000) gives 65. Suppose, then, we require the logarithm of a number consisting of six or seven figures, as for instance 66511:37, how do we proceed to find it?

NOTES ON LOGARITHMS-continued.

This is done as follows:—First write down the next lower logarithm.

$$Log. 66511 - 4.8228935$$

then, since the difference of 1 in the fifth figure makes a difference of 65 in the logarithm, a difference of $\cdot 37$ will make a difference of $65 \times \cdot 37 = 24$.

$$\therefore$$
 Log. $66511.37 = 4.8228935 + 24 = 4.8228959$.

In the table of proportional parts, however, the amount to be added for every tenth of a unit is recorded, and by this table the above result may be easily found thus:—

Conversely, the number to six, seven, or more figures corresponding to a given logarithm, is found by a method exactly the converse of that given above.

Example.—Find the number whose log. is 2.9324547.

855 9624 the number required.

In the above example the difference between the given log. and the next lower in the tables being 12, the required number will evidently lie between 855 962 and 855 963, since the proportional part for 2 is 10 and that for 3 is 15. Subtracting that for 2, namely 10, we have 2 left. Annex a cipher to the 2, since the figure to be found will occupy the next decimal place, and the number 20 thus obtained is the proportional part for the figure 4.

COMMON LOGARITHMS.

	0	1	2	B	4	5	6	7	8	9	1	2	8	4	5	6	7	8	9
10		00432	00860	01284	01703	02119	02531	02938	03342	03743	_		_						_
11	04139	04532	04922	05308	05690	06070	06446	06819	07188	07555							1		
12	11904	08279	08636	08991	09342	09691	10037	10380	10721	11059									
14	14619	11727	12057	12385	12710	13033	13354	13672	13988	14301									
								16732											i
15	17609	17898	18184	18469	18752	19033	19312	19590	19866	20140			1	1					
16	20412	20683	20952	21219	21484	21748	22011	22272	22531	22789									
17	23045	23300	23553	23805	24055	24304	24551	24797	25042	25285				ĺ					
18	25527	25768	26007	26245	26482	26717	26951	27184	27616	27646									
18	27875	28103	28330	28556	28780	29003	29226	29447	29667	29885							ľ		
20	80103	30320	30535	30750	30963	31175	31387	81597	81806	32015	21	42	64	85	106	127	148	170	191
21	32222	32428	32634	32838	33041	33244	33445	33646	33846	34044	20	40	61	81	101	121	141	162	182
22	34242	34439	34635	34830	35025	35218	35411	35603	3 5793	35984	19	39	58	77	97	116	135	154	174
23	36173	36361	36549	36736	36922	37107	37291	37475	37658	37840	18	37	55	74	92	111	129	148	166
24	38021	38202	38382	38561	38739	38917	39094	89270	39445	3962 0	18	35	53	71	89	106	124	142	160
25	39794	39967	40140	40819	40488	40854	40894	40998	41169	41990	17	94	51	RΩ	25	109	110	126	159
26	41497	41664	41830	41996	42160	42325	49488	42651	42813	42975	าล	33	40	RR	82	98	115	131	148
27	43136	43297	43457	43616	43775	48988	44091	44248	44404	44560	16	32	47	63	79		111		
28	44716	44871	45025	45179	45332	45484	45637	45788	45939	46090	15	30			76		107		
29	46240	46389	46538	46687	46835	46982	47129	47276	47422	47567	15	29	44	59	74	88	103	118	132
	,	1											-	-	-	-			

COMMON LOGARITHMS - (continued).

	0	1	2	3	4	5	6	7	8	9	1	2	8	4	5	6	7	8	9
30	47712			48144						48996									
31 32		49276 50651		49554 50920	49693 51055	49831 51188				50379 51720									124 120
33 34	51851 53148	51983 53275			52375 53656	52504 53782				53020 54283							91	104	117 113
35	54407				54900					55509									110
36 37		55751 56937	55871 57054		56110 57287	56229	56348	56467	56585	56703 57864	12	24	36	48	59	71	83	95	107 104
38	57978	58092	58206	58320	58433	58546	58659	58771	58883	58995	11	23	34	45	56	68	79	90	102
39 40	59106 60908				59550 60638	59660 60746		59879 60050			1		33			66 . RA			99
41	61278	61384	61490	61595	61700	61805	61909	62014	62118	62221	10	21	31	42	52	63	73	84	94
42 43	63347	63448	63548	63649	62737 637 3	63849	63949	64048	64147	63246 64246	10	20	30	40	50	60	70	80	90
44			64542	1	64738					65225	1			39					
45 46	66276	66370	66464	66558	65706 66652	66745	66839	66932	67025	67117	٤	18	28	38 37	47	56	65	78	84
47 48	67210 68124		67394 68305		67578 68485									37 36					
49					69373	69461	69548	69636	69723	69810				35					

THE ANALYST'S LABORATORY COMPANION.

COMMON LOGARITHMS-(continued).

5 6	7	8	9
		0 69	
		9 67 8 66	
41 49	57	7 65	
40 48 5	56	6 64	72
		5 63	
		4 61 3 60	
		2 58	
36 44 8	51	1 58	8 66
			65
			3 64 3 63
			5 62
			61
33 40	46	6 53	3 60
			2 59
32 39 32 38 31 37	3	4	45 51 44 51 44 50

COMMON LOGARITHMS-(continued).

	0	1	2	8	4	5	6	7	8	9	1	2	8	4	5	6	7	8	9
70 71 72	84510 85126 85733	85187	85248	85309	85370	85431	85491	85552	85612	85065 85673 86273	61	12	18 18	25 24	30	36	43	49	55 55
73 74	86332 86923	86392	86451	86510 87099		86629			86806	86864	6	12	18 18 17	24 24 23	30		41	47	54 53 52
75 76 77	87506 88081 88649	88138	88195	88252	87737 88209 88874	88366	88423		88536	88024 88593 89154	6:	11	17 17 17	23	28	35 34 34	40	45	52 51 50
78 79	89209 89763	89265 89818	89321 89873	89376 89927	89432 89982	89487 90037	89542 90091	89597 90146	89653 90200	89708 90255	6 : 5 :	11	17 16	22	27	33 38	38	44	50 49
80 81 82	90849 91381	90902 91434	90956 91487	91009 91540	91062 91593	91116 91645	91169 91698	91222 91751	91275 91803	90795 91328 91855	5 5	11 11	16 16	21 21	27 26	32 32 32	37 37	43 42	49 48 47
83 84 85	91908 92428 92942	92480	92531	92583	92117 92634 93146	92686	92737	92788	92840	92376 92891 93399	5	10	16 15 15	21	26	31 31 30	36	41	47 46 46
86 87 88	93450	93500 94002	93551 94052	93601 94101		93702 94201	93752 94250	93802 94300	93852 94349	93902 94399	5 5	10	15 15 15	20 20	25 25	30 30 29	35	40	45 45 44
89	94939				95134								15			29			44

THE ANALYST'S LABORATORY COMPANION.

COMMON LOGARITHMS-(continued).

	0	1	2	8	4	5	6	7	8	9	1	2	8	4	5	6	7	8	9
90	95424	95472	95521	95569	95617	95665	95713	95761	95809	95856	5:	10	14	19	24	29	34	38	43
91	95904	95952	95999	96047	96095	96142	96190	96237	96284	96332	5	9	14	19	24	28	33	38	43
92	96379	96426	96473	96520	96567	96614	96661	96708	96755	96802	5	9	14	19	23	28	33	38	42
93	96848	96895	96942	96988	97035	97081	97128	97174	97220	97267	5	9	14	19	23	28	33	37	42
94										97727				18			32		
95	97772	97818	97864	97909	97955	98000	98046	98091	98137	98182	5	9	14	18	23	27	32	36	41
96	98227	98272	98318	98363	98408	98453	98498	98543	98588	98632	5	9	14	18	23	27	32	36	41
97	98677	98722	98767	98811	98856	98900	98945	98989	99034	99078	4	9	13	18	22	27	31	36	40
98	99123	99167	99211	99255	99300	99344	99388	99432	99476	99520	4	9	13	18	22	26	31	35	40
99	99564	99607	99651	99695	99739	99782	99826	99870	99913	99957	4	9	13	17	22	26	31	35	39
100	0	00043	00087	00130	00173	00217	00260	00303	00346	00389	4	9	13	17	22	26	30	35	39
101	00432	00475	00518	00561	00604	00647	00689	00732	00775	00817	4	9	13	17	21	26	30	34	39
102	00860	00903	00945	00988	01030	01072	01115	01157	01199	01242	4	8	13	17	21	25	30	34	38
103	01284	01326	01368	01410	01452	01494	01536	01578	01620	01662	4	8	13	17	21	25	29	84	38
104	01703	01745	01787	01828	01870	01912	01953	01995	02036	02078	4	8	12	17	21	25	29	33	37
105	02119	02160	02202	02243	02284	02325	02366	02407	02449	02490	4	8	12	16	21	25	29	33	37
106	02531	02572	02612	02653	02694	02735	02776	02816	02857	02898	4	8	12	16	20	24	29	33	37
107	02938	02979	03019	03060	03100	03141	03181	03222	03262	03302	14	8	12	16	20	24	28	32	36
108	03342	03383	03423	03463	03503	03543	03583	03623	03663	03703	14	8	12	16	20	24	28	32	36
109										04100									36
	1					1					ľ						-	_	

COMMON LOGARITHMS-(continued).

	0	1	2	8	4	5	6	7	8	9	1	2 3	4	5	6	7	8	9
110										04493								
111										04883								35
112										05269					23			35
118	05308									05652		811	15					34
114	05690	05729	05767	05805	U5843	05881	09918	05956	00994	06032	4	8 11	12	19	23			
115										06408					23			34
116										06781					22			34
117										07151		711			22			33
118										07518		711			22			83
119	07666	07591	07628	07664	07700	07737	07778	07809	07846	07882	4	7 11	15	Tg	22	25	zy	33
120										08243	4	7 11	14	18	22			32
121					08422					08600			14					32
122										08955			14					32
123					09132					09307		711						32
124	09342	09377	09412	09447	09482	08913	09552	09587	09021	09656	3	7 10	14	17	ZI	24	Zō	31
125										10003								31
126										10346						24		
127										10687						24		
128										11025						24		
129	11028	11082	11150	11160	11193	11227	11261	11294	11327	11361	3	7 10	12	17	20	23	Z(30

COMMON LOGARITHMS-(continued).

	0	1	2	8	4	5	6	7	8	9	1 :	2 3	4	5	6	7	8	9
130	11394	11428	11461	11494	11528	11561	11594	11628	11661	11694	37	10	13	17	20	23	27	30
131	11727	11760	11793	11826	11860	11893	11926	11959	11992	12024	37	10	13	17	20	23	26	30
132	12057	12090	12123	12156	12189	12222	12254	12287	12320	12352	37	10	13	16	20	23	26	29
133	12385	12418	12450	12483	12516	12548	12581	12613	12646	12678	37	10			20	23		
134	12710	12743	12775	12808	12840	12872	12905			13001		10	13			23		
135	13033	13066	13098	13130	13162	18194	13226	13258	13290	13322	3 6	10	13	16	19	22	26	29
136	13354	13386	13418	13450	13481	13513	13545	13577	13609	13640	3 6	10	13	16	19	22		
137	13672	13704	13735	13767	13799	13830	13862	13893	13925	13956	36	9	13	16	19	22	25	28
138	13988	14019	14051	14082	14114	14145	14176	14208	14239	14270	36	9	13	16	19	22	25	28
139	14301	14333	14364	14395	14426	14457	14489	14520	14551	14582	36	9	12			22		
140	14613	14644	14675	14706	14737	14768	14799	14829	14860	14891	3 6	9	12	15	19	22	25	28
141	14922	14953	14983	15014	15045	15076	15106	15137	15168	15198	36	9	12	15	18	21	25	28
142	15229	15259	15290	15320	15351	15381	15412	15442	15473	15503	36	9	12	15	18	21	24	27
143	15534	15564	15594	15625	15655	15685	15715	15746	15776	15806	36	9	12	15	18	21		
144	15836	15866	15897	15927	15957	15987	16017	16047	16077	16107	36	9	12			21		
145	16137	16167	16197	16227	1625 6	16286	16316	16346	16376	16406	36	9	12	15	18	21	24	27
146	16435	16465	16495	16524	16554	16584	16613	16643	16673	16702	36	9	12			21		
147	16732	16761	16791	16820	16850	16879	16909	16938	16967		36		12			21		
148	17026	17056	17085	17114	17143	17173	17202	17231	17260	17289	36	9	12			20		
149	17319	17348	17377	17406	17435	17464	17493	17522	17551	17580	36	9	12			20		
														_				

COMMON LOGARITHMS—(continued).

	0	1	2	8	4	5	6	7	8	9	123	4	5 6	7 8 9
150 151	17898	17926	17955	17984	17725 18013	18041	18070	18099	18127	18156	369 369	11	14 17 14 17	20 23 26 20 23 26
152 153 154	18469	18498	18526	18554	18298 18583 18865	18611	18355 18639 18921	18667		18724	369 368 368	11	14 17 14 17 14 17	20 23 26 20 23 25 20 22 25
155 156 157	19312	19340	19368	19396	19145 19424 19700	19451	19479	19507	19585	19562	368 368 368	11	14 17 14 17 14 17	20 22 25 19 22 25 19 22 25
158 159	19866	19893	19921	19948	19976 20249	20003	20030 20303	20058	20085	20112	858 858	11	14 16 14 16	19 22 25 19 22 25
160 161 162	20683	20710	20737	20763	20520 20790 21059	20817	20844	20871	20898		358 358 358	11	14 16 13 16 13 16	19 22 24 19 22 24 19 21 24
163 164	21484	21511	21537	21564	21325 21590	21617	21643	21669	21696	21458 21722	358 358	11	13 16 13 16	19 21 24 18 21 24
165 166 167	22011 22272	22037 22298	22063 22324	22089 22350	22376	22141 22401	22167 22427	22194 22453	22220 22479	22246 22505	358 358 358	10 10	13 16 13 16 13 16	18 21 24 18 21 23 18 21 23
168 169	22531 22789		22583 22840		22634 22891		22686 22943				858 858		13 15 13 15	18 21 23 18 20 23

COMMON LOGARITHMS .- (continued).

	0	1	2	8	4	5	6	7	8	9	1	2 3	1		5	6	7	8	9
170 171 172 173	23300 23553	23325 23578	23350 23603	23376 23629	23147 23401 23654 23905	23426 23679	23198 23452 23704 23955	23477 23729	23502 23754	23779	3	58 58 58	1	0 1 0 1	8 1	15 15	18 18 18 18	20 20	23 23
174 175 176	24055 24304 24551	24080 24329 24576	24105 24353 24601	24130 24378 24625	24155 24408 24650	24180 24428 24674	24204 24452 24699	24229 24477 24724	24254 24502 24748	24279 24527 24773	2 2 2	57 57	1 1 1	01 01 01	2 1 2 1 2 1	15 15 15	17 17 17	20 20 20	22 22 22
177 178 179 180	25285	25066 25310	25091 25334	25115 25358	25139 25382	25164 25406	25188 25431	25212 25455	25237 25479	25018 25261 25503 25744	2	57 57 57	1	01	21	15 15	17 17 17 17	19 19	22 22
181 182 183 184	25768	25792 26031 26269	25816	25840 26079 26316	25864 26102	25888 26126 26364	25912 26150 26387	25935 26174 26411	25959 26198 26435	25983 26221 26458	2 2	57 57 57		91 91 91	21	14 14	17 17 17 16	19 19 19	22 21 21
185 186 187	26717 26951 27184	26741 26975 27207	26764 26998 27231	26788 27021 27254	26811 27045 27277	26834 27068 27300	26858 27091 27823	26881 27114 27346	26905 27138 27370	26928 27161 27393	2 2	57 57 57		91 91 91	21	14 14	16 16 16	19 19 19	21 21 21
188 189					27508 27738					27623 27852		57			11		16 16		

COMMON LOGARITHMS-(continued).

	0	1	2	8	4	5	6	7	8	9	128	١,	4	5	6	7	8	9
190 191 192 193 194 195 196 197 198 199	28103 28320	29026 29248 29469 29688	28149 28375 28601 28825 29048 29270 29491 29710	28398 28623 28847 29070 29292	28194 28421 28646 28870 29092 29314 29535 29754	28217 28443 28668 28892 29115 29336 29557 29776	28240 28466 28691 28914 29137 29358 29579 29798	28262 28488 28713 28937 29159 29380 29601 29820	28285 28511 28785 28959 29181 29403	28533 28758 28981 29203 29425 29645 29863	257 257 247 247 247 247 247		91 91 91 91 91		14 14 14 13 13 13 13 13	16 16 16 16 16 15 15	18 18 18 18 18 18	21 20 20 20 20 20 20 20 20 20 20
]	Base of Common Logarithms = 10. Hyp. Log. $z = \frac{1}{M}$ Com. Log. 2.									bolic I	_						18:	28.
	Num	ber.		Co	m. Lo	g.		Nu	mber.				Co	m	. L	og.		
	€=2.71	828		0.	434 294	5		7=	3.1415	,			0.	19	7 14	199		
1	$\frac{1}{M} = 2.30259 \qquad 0.362 \ 2157$					4	0-78539				T	89	5 08	3 99				
	M=0.434294 T.637 7843					$\frac{\pi}{6}$ =	0·5 235 9	,		•	T.	71	8 99	86				
l							1	√ <u>π</u> =	1.7724	5		•	0.	24	8 57	749	_	

UNIVERSITY

OF CALIFORNIA

VARIOUS USEFUL FACTORS.

To convert	:				Multi	olier.	Logar	ithm.
Grams per l	litre int	o grains	per cubic	foot	437.0		2.640	
,,	,,	ounces (av.) "		0.998		1.999	
,,	,,	lb.	,,		0.062		2.795	
,,	,,	grains per	fluid oz.		0.438		Ī·641	
,,	,,	grains per	gallon		70.15	5	1.846	0591
Grains per	gallon i	nto cwts. per		_	1.275		0.105	
,,	,,	grams pe	r mtre	•••	0.014	204	2 ·153	9409
Percentage	into gra	ains per fluid	oz.	•••	4.375	,	0.640	9781
Litres into	cubic fe	et	•••	•••	0.035	315	2.547	9562
		7·2331 foot-p -0·13825 kilo		res			0·859 1·140	

WEIGHTS AND MEASURES.

I. IMPERIAL SYSTEM.

Avoirdupois Weight.

```
16 drams -1 ounce (oz.) - 437.5 grains* | log. 437.5 - 2.640 9781 16 ounces -1 pound (lb.) - 7000 ,, | log. 7000 - 3.845 0980 14 pounds -1 stone 28 pounds -1 quarter (qr.) 4 quarters -1 hundredweight (cwt.) -112 lbs. | log. 112 - 2.049 2180 20 cwt. -1 ton -2240 lbs. | log. 2240 - 3.350 2480 1 dram (avoirdupois) -27.34375 grains (log. 1.436 8581).
```

Troy Weight ..

```
24 grains* —1 pennyweight (dwt.)
20 pennyweights—1 ounce (oz.)=480 grains
12 ounces —1 pound (lb.)=5760 ,,
To convert lbs, avoirdupois into lbs, troy
1bs, troy into lbs, avoirdupois
1convert lbs, avoi
```

Apothecaries' Weight.

```
20 grains (gr.) —1 scruple (9)

3 scruples or 60 grains —1 drachm (3).

8 drachms or 480 grains—1 ounce (3)

12 ounces or 5760 grains—1 pound (lb.)
```

Apothecaries' Measures.

```
60 minims (min.) - 1 fluid drachm (fl. dr. or f 3).

8 fluid drachms - 1 fluid ounce (fl. oz. or f 3).

20 fluid ounces - 1 pint (O) +

8 pints - 1 gallon (C) ‡
```

Relations of Apothecaries' Measures to Weights.

(All liquids to be measured at 60° Fah.)

	_						Logari	
1 minim is th	e measure of	0.91	grain v	weight	of wate	er	1.959	0414
1 fluid drachr	n ,,	54.68	grains	•	,,		1.737	8285
1 fluid ounce		437.5	٠,,		,,		2.640	9781
1 pint	"	1.25	pound	В	,,		0.096	9100
•		750	grains		,,		3.942	0081
1 gallon	70	000 8	٠,,		,,		4.845	0980
1 pint - 34	·6829 cubic in	ches		•••	···	•••	1.540	1149
1 millon - 977	.469		•••	•••			2.443	2049
$\frac{1}{2} \operatorname{gallon} = 0.1$	6057 cubic foo	t	•••	•••	•••		Ī·205	6612
To convert cu	bic inches into	pints	multi	ply by	0.0288	3	$\bar{2}$ ·459	8851
		gallor		,,	0.0036		3.556	7951
,, cu	bic feet into	gallo		"	6.228	-	0.794	
,,		0		••			, , ,	

^{*} The grain is common to both Avoirdupois and Troy Weights.

```
One gallon once distilled water weighs 70000.5 grains.

"twice", 70000.0 ",

"well water weighs 70066.6 "...
```

^{† 0=}octarius, i.e., one-eighth. ‡ C=(Roman) Congins.

According to H. J. Chaney

Long Measure.

12 lines	-1 inch
	-1 foot
3 feet	-1 yard
6 feet	=1 fathom
5⅓ yards	-1 rod, pole, or perch
	-1 chain
40 poles	-1 furlong
8 furlong	s=1 mile=1760 vards

Square Measure.

144	squa	are inches - 1	square	foot
9	٠,,	feet 1	-,,	yard
3 0‡	,,	yards – 1		rod, pole, or perch
40	,,	poles = 1		
		4 roods = 1	acre -	4840 square yards
		640 acres - 1	mile	• •

Cubic or Solid Measure.

		es = 1 cubic = 1 ,,	foot log. 1728 log. 27	-3·237 5437 -1·431 3638
				Logarithms.
1 cubic inch of	f water* at	62° Fahr.	weighs 252.286 grains	2.401 8931
,,	,,	,,	0.57665 ozs. (av.)	1·760 9150
	,,	,,	0.036041 lbs. ,,	$\overline{2}$ 556 7951
1 cubic foot	,,	,,	996·458 ozs. ,,	2.998 4587
,,	,,	,,	62.2786 lbs. ,,	1.794 3388
"	,,	,,	28.2491 kilograms	1.451 0046
1 cubic yard	,,	"	0.75068 tons	I 1·875 4546

Wine and Spirit Measure.

```
4 gills —1 pint
2 pints —1 quart
4 quarts —1 gallon
63 gallons —1 hogshead
84 gallons —1 puncheon
2 hogsheads—1 pipe or butt—126 gallons
4 hogsheads—1 tun —252 gallons
```

Ale, Beer, and Porter Measure.

```
4 gills -1 pint
2 pints -1 quart
4 quarts -1 gallon
9 gallons -1 firkin
2 firkins -1 kilderkin - 18 gallons
2 kilderkins -1 barrel - 36
3 , -1 hogshead - 54
3 hogsheads -1 butt -108
```

^{*} i.e., distilled water freed from air.

Dry Measure.

4 gills = 1 pint
2 pints = 1 quart
4 quarts = 1 gallon
2 gallons = 1 peck
4 pecks = 1 bushel
8 bushels = 1 quarter
4 quarters = 1 chaldron
5 , = 1 weigh or horse-load
2 weighs = 1 last

II. WEIGHTS AND MEASURES OF THE METRIC SYSTEM.

Weights.

1 milligram 1 centigram	= the thousandth part = the hundredth	of one gram	or 0.001 0.01	
1 decigram	= the tenth	"	0.1	,,
1 gram	= the weight of a cubi	c centimetre	of U I	"
- 8	water at 4° C.	o commission	1.0	
1 decagram	= ten grams		10.0	"
1 hectogram	=one hundred grams		100.0	",
1 kilogram	=one thousand ,,		1000.0	"
U	••			,,

Measures of Capacity.

1 millilitre	= 1	cubic centimetre	or the measure	of 1	gram of wa	ater
1 centilitre		"	,,	10	grams ,,	,
1 decilitre	= 100	"	,,	100		,
1 litre	=1000	,,	,,	1000	,, ,,	,

Measures of Length.

1 millime	tre = the	thousandth	part of one	e metre o	r 0.001	metre
1 centime	tre = the	hundredth	٠,,		0.01	,,
1 decimet	re = the	tenth	•		0.1	,,

1 metre = the ten-millionth part of a quarter of the meridian of the

Tables for the Conversion of Metric into Imperial Measures and vice versa.

A. Linear Measure.

Metric into Imperial.		Logarithms.
1 millimetre (mm.) = 0.0393701 inches	•••	1 2·595 1666
1 centimetre (cm.) = 0.393701 ,,		Ī·595 1666
1 decimetre (dm.) = 3.937011 ,,	•••	0.595 1666
1 metre (m.) $= 39.370113$,	•••	1.595 1666
,, = 3.280843 feet	•••	0.515 9855
$= 1.093614 \text{ yards} \dots$	•••	0.038 8642
1 kilometre (km.) = 1093.61426 ,	•••	3.038 8642
0.601970 mile		T.709 9515
_ 33 cm. = 13 inches, correct to 1 par	t in	1630.

Note.—A micron (denoted by μ) is one-thousandth of a millimetre (or nearly 0.00004 inch).

Imperial into Metric.			Logarithms.
1 inch = 2.5399978 centimetres	•••	•••	 0.404 8333
1 foot = 30.47997			 1.484 0146
1 yard = 0.9143992 metre			 Ī·961 1359
1 mile = 1.6093426 kilometres			 0.404 8333 1.484 0146 1.961 1359 0.206 6484
* * 13 inches = 33 centimetre	es. co	rrect to	

mm. Inches.	Metres. Feet.	Inches. mm.	Feet. Metres.
1 = .03937	1 = 3.2808	1 = 25.4	1 = 0.3048
2= 07874	2 = 6.5616	2 = 50.8	2 = 0.6096
3=:11811	3 = 9.8424	3 = 76.2	3 = 0.9144
4 = .15748	4 = 13.1232	4 = 101.6	4 = 1.2192
5= 19685	5=16.4040	5 = 127.0	5 = 1.5240
6 = 23622	6=19.6848	6 = 152.4	6 = 18288
7 = .27559	7 = 22.9656	7=177.8	7 = 2.1336
8 = .31496	8=26.2464	$8 = 203 \cdot 2$	8 = 2.4384
9 = .35433	9 = 29.5272	9 = 228.6	9 = 2.7432

B. Square Measure.

Metric into	Imperial.	Logarithms.
1 square decimetre (dm ² .)	= 15.50006 square in	nches 1.190 3333
1 square metre (m2.) or centi		
•	= 1.195992 square	vards 0.677 7283
1 are (100 square metres)	=119.59921	2.077 7283
,, ,,	= 0.0247106 acres	
Imperial in 1 square inch = 6.451589 squ 1 square foot = 9.29029 squa 1 square yard = 0.836126 squ 1 acre = 0.40468 hecta	are centimetres re decimetres are metres	0.809 6667 0.968 0298 1.922 2717 1.607 1117

C. Cubic Measure and Measures of Capacity.

Metri	c into Imperial, etc.			
1 cubic centimetre* (c.c	.)= 0.061024 cubic inches		2.785	500 0
,,	=16.891 minims		1.227	6564
"	= 0.28152 fluid drachms		1.449	5051
"	= 0.03519 fluid ounce		$\bar{2}.546$	4151
1 litre	=61.0349 cubic inches		1.785	5782
,,	=35.1960 fluid ounces	'	1.546	4933
"	= 1.75980 pints		0.245	4633
	= 0.219975 gallons		1.342	3733
1 cubic metre (m³.)	= 35.31476 cubic feet		1.547	9562
,,	= 1.307954 cubic yards	•••	0.116	5924

^{*} The standard litre is the volume of a kilogram of pure water at 4° C. It was origi ally intended to be a cubic decimetre, but is actually somewhat greater. Hence parts of a litre—decilitre, centilitre and millilitre (ml.)—are not strictly equivalent to 100, 10 and 1 c.c. respectively.

c.c. Cubic Inches.	Litres. Fluid Ounces. Pints. Gallons.
1 = 0.061024	1 = 35.1960 = 1.7598 = 0.22000
2 = 0.122048	2 = 70.3920 = 3.5196 = 0.43995
3 = 0.183072	3 = 105.5880 = 5.2794 = 0.65993
4 = 0.244096	4 = 140.7840 = 7.0392 = 0.87990
5 = 0.305120	5=175.9800= 8.7990=1.09988
6 = 0.366144	$6 = 211 \cdot 1760 = 10 \cdot 5588 = 1 \cdot 31985$
7 = 0.427168	7 = 246 · 3720 = 12 · 3186 = 1 · 53983
8 = 0.488192	8=281.5680=14.0784=1.75980
9 = 0.549216	9=316.7640=15.8382=1.97978

	Impe	erial into Metric.		- 1	Logarit	hms.
1 cubic inch	= :	16.38702 cubic centimetres	•••		1.214	5000.
1 cubic foot	=	28.31677 cubic decimetres	•••		1.452	0437
1 cubic yard	=	0.76455285 cubic metre	•••		Ī·883	4075
1 minim	=	0.05919 cubic centimetres	•••		$\bar{2}.772$	2483
1 fluid drachn	a ==	3.55153 cubic centimetres	•••		0.550	
1 fluid ounce	=	28.4123 cubic centimetres			1.453	5064
1 pint	=5	68.25 cubic centimetres	•••		2.754	5394
		1.13649 litres	•••		0.055	
1 gallon		4.5459631 litres	•••		0.657	

Cubic Inches. Cubic Centimetres.	Fluid Ounces. Cubic Centimetres.
1 = 16.387	1 = 28.4123
2 = 32.774	2 = 56.8246
3 = 49.161	3 = 85.2369
4 = 65.548	4=113.6492
5 = 81.935	5=142.0615
6 = 98.322	6=170.4738
7=114.709	7=198.8861
8=131.096	8 = 227 · 2984
9=147.483	9=255.7107

Pints. Litres.	Gallons. Litres.
1 = 0.56825	1 = 454596
2 = 1.13650	2 = 9.09192
3=1.70475	3=13.63788
4 = 2.27300	4=18.18384
5 = 2.84125	5 = 22.72980
6=3.40950	6 = 27 27576
7 = 3.97775	7=31.82172
8=4.54600	8=36.36768
9=5.11425	9=40.91364

Matria Into Transactol		l Tamanishma
Metric into Imperial 1 milligram = 0.01543 grain		$\frac{\text{Logarithms.}}{2.188}$ 4324
1 centigram = 0.15432 grain	•••	T-100 4004
1 decigram = 0.134324 grains $1 decigram = 1.54324 grains$	•••	0.100 4004
1 crom - 15:49096 croins	•••	1.100 4904
1 gram = 15.43236 grains ,, = 0.564383 dram s	maindunaia	7.751 5700
		Q.E.47 4E.47
0.035274 ounce a 0.25721 drachm	-	T. 170 0070
	··· ···	0.E07 100E
= 0.0321507 ounce		4.100 4004
1 kilogram = 15432:35639 grain		1.547 4547
,, = 35.2740 ounces at		0.040 0047
,, = 2.2046223 lbs. a		0.343 3341
,, = 32.15074 ounces t		1.507 1910
= 2.67923 lbs. troy	7	0.428 0100
Grams. Grains. Ozs. (Av.). Oz	s. (Troy). 1	Kilograms. Pounds.
1 = 15.43236 = 0.035274 = 0.035274	0321507	1 = 2.20462
2 = 30.86472 = 0.070548 = 0.0	0643014	2 = 4.40924
3 = 46.29708 = 0.105822 = 0.0	0964521	3 = 6.61386
4 = 61.72944 = 0.141096 = 0.141096	1286028	4 = 8.81848
5= 77·16180=0·176370=0·	1607535	5 = 11.02310
6 = 92.59416 = 0.211644 = 0.216444 = 0.21644 = 0.21644 = 0.21644 = 0.21644 = 0.21644 = 0.21644 = 0.21644 = 0.21644 = 0.21644	1929042	$6 = 13 \cdot 22772$
7 = 108.02652 = 0.246918 = 0.3	2250549	7 = 15.43234
$8 = 123 \cdot 45888 = 0 \cdot 282192 $	2572056	8=17.63696
9 = 138.89124 = 0.317466 = 0.31	2893563	9 = 19.84158
	•	
Imperial into Metric		Logarithms.
	9 9 gram	2.811 5683
1 drachm = 3.8879	4 grams	0.589 7196
1 ounce troy = 31:1034	8 grams	1.492 8090
	6 grams	2.571 9903
r pound troj — oro riir		
	. 8	
1 dram avoirdunois - 1:7718		0.949 4970
1 dram avoirdupois = 1.77186	grams	0.248 4270
1 ounce avoirdupois = 28.34953	grams	0.248 4270 1.452 5459
1 ounce avoirdupois = 28.34953 1 pound avoirdupois = 453.5924	grams grams grams	0.248 4270 1.452 5459 2.656 6658
1 ounce avoirdupois = 28:34955 1 pound avoirdupois = 453:5924 1 stone (14 lbs.) = 6:3502	5 grams 3 grams 3 grams 9 kilograms	0.248 4270 1.452 5459 2.656 6658 0.802 7935
1 ounce avoirdupois = 28:34955 1 pound avoirdupois = 453:5924 1 stone (14 lbs.) = 6:3502 1 quarter (28 lbs.) = 12:7005	5 grams 3 grams 3 grams 9 kilograms 9 kilograms	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240
1 ounce avoirdupois = 28°3495°3 1 pound avoirdupois = 458°5924° 1 stone (14 lbs.) = 6°3502° 1 quarter (28 lbs.) = 12°7005° 1 cwt. = 50°8028°3	5 grams 8 grams 8 grams 9 kilograms 9 kilograms 5 kilograms	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838
1 ounce avoirdupois = 28:34955 1 pound avoirdupois = 453:5924 1 stone (14 lbs.) = 6:3502 1 quarter (28 lbs.) = 12:7005	5 grams 8 grams 8 grams 9 kilograms 9 kilograms 5 kilograms	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240
1 ounce avoirdupois = 28°3495°3 1 pound avoirdupois = 453°5924°3 1 stone (14 lbs.) = 6°3502°3 1 quarter (28 lbs.) = 12°7005°3 1 cwt. = 50°8023°3 1 ton = 1016°0470°3	o grams o grams o grams o grams o kilograms o kilograms o kilograms o kilograms o kilograms	0.248 4270 1.452 5459 2.656 6658 0.802 7985 1.103 8240 1.705 8838 3.006 9138
1 ounce avoirdupois = 28°3495°31 pound avoirdupois = 458°5924°1 stone (14 lbs.) = 6°350°1 quarter (28 lbs.) = 12°7005°1 cwt. = 50°8023°1 ton = 1016°0470°1 Grains. Grams.	6 grams 8 grams 9 kilograms 9 kilograms 5 kilograms 4 kilograms	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138
1 ounce avoirdupois = 28°3495°1 1 pound avoirdupois = 453°3926°1 1 stone (14 lbs.) = 6°3502°1 1 quarter (28 lbs.) = 12°7005°1 1 cwt. = 50°8023°1 1 ton = 1016°0470°1 Grains. Grams. 1 = 0°06480	6 grams 8 grams 9 kilograms 9 kilograms 5 kilograms 4 kilograms Ounces. (4	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 Av.) Grams. 28.3495
1 ounce avoirdupois = 28°3495°1 1 pound avoirdupois = 453°392°1 1 stone (14 lbs.) = 6°3502°1 1 quarter (28 lbs.) = 12°7005°1 1 cwt. = 50°8028°1 1 ton = 1016°0470°1 Grains. Grams. 1 = 0°06480 2 = 0°12960	6 grams 8 grams 9 kilograms 9 kilograms 6 kilograms 6 kilograms 6 kilograms 1 kilograms 2 cunces. (A	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 Av.) Grams. 28.3495 56.6990
1 ounce avoirdupois = 28°3495°1 1 pound avoirdupois = 453°5924°1 1 stone (14 lbs.) = 6°3502°1 1 cutter (28 lbs.) = 12°7005°1 1 cwt. = 50°8023°1 1 ton = 1016°0470°1 Grains. Grams. 1 = 0°06480 2 = 0°12960 3 = 0°19440	6 grams 8 grams 9 kilograms 9 kilograms 9 kilograms 4 kilograms 4 kilograms Ounces. (1	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 Av.) Grams. 28.3495 56.6990 85.0485
1 ounce avoirdupois = 28°3495°3 1 pound avoirdupois = 458°5924° 1 stone (14 lbs.) = 6°350°2 1 quarter (28 lbs.) = 12°7005°1 1 cwt. = 50°8023°3 1 ton = 1016°0470°3 Grains. Grams. 1 = 0°06480 2 = 0°12960 3 = 0°19440 4 = 0°25920	6 grams 3 grams 3 grams 9 kilograms 9 kilograms 5 kilograms 4 kilograms Ounces. (4 2 = 5 2 = 5 4 = 1)	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 av.) Grams. 28.3495 66.6990 55.0485 13.3980
1 ounce avoirdupois = 28°3495°1 1 pound avoirdupois = 453°3924 1 stone (14 lbs.) = 6°3502 1 quarter (28 lbs.) = 12°7005°1 1 cwt. = 50°8023°1 1 ton = 1016°0470° Grains. Grams. 1 = 0°06480 2 = 0°12960 3 = 0°12940 4 = 0°25920 5 = 0°32399	6 grams 8 grams 9 kilograms 9 kilograms 6 kilograms 7 kilograms 6 kilograms 7 kilograms 8 kilograms 9 kilograms 6 kilograms 7 kilograms 8 kilograms 9 kilograms 1 kilograms 1 kilograms 1 kilograms 6 kilograms 7 kilograms 8 kilograms 9 kilograms 1 kilograms 2 kilograms 1 kilograms 2 kilograms 2 kilograms 3 kilograms 3 kilograms 3 kilograms 4 kilograms 4 kilograms 5 kilograms 6 kilograms 7 kilograms 8 kilo	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 Av.) Grams. 28.3495 66.6990 855-0485 13.3980 41.7475
1 ounce avoirdupois = 28°3495°1 1 pound avoirdupois = 453°5926°1 1 stone (14 lbs.) = 6°3502°1 1 quarter (28 lbs.) = 12°7005°1 1 cwt. = 50°8028°1 1 ton = 1016°0470° Grains. Grams. 1 = 0°06480 2 = 0°12960 3 = 0°19440 4 = 0°25920 5 = 0°32399 6 = 0°38879	6 grams 3 grams 3 grams 9 kilograms 9 kilograms 5 kilograms 4 kilograms Ounces. (A	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 Av.) Grams. 28.3495 56.6990 95.0485 13.3980 11.7475
1 ounce avoirdupois = 28°3495°1 1 pound avoirdupois = 453°5924°1 1 stone (14 lbs.) = 6°3502°1 1 quarter (28 lbs.) = 12°7005°1 1 cwt. = 50°8028°1 1 ton = 1016°0470°1 Grains. Grams. 1 = 0°06480 2 = 0°12960 3 = 0°19440 4 = 0°25920 5 = 0°32399 6 = 0°38879 7 = 0°45359	o grams grams grams gkilograms kilograms kilograms kilograms ounces. (A 1 = 1 2 = 3 4 = 1 5 = 1 7 = 1	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 Av.) Grams. 28.3495 56.6990 55.0485 13.3980 41.7475 70.0970 98.4465
1 ounce avoirdupois = 28°3495°1 1 pound avoirdupois = 453°5926°1 1 stone (14 lbs.) = 6°3502°1 1 quarter (28 lbs.) = 12°7005°1 1 cwt. = 50°8028°1 1 ton = 1016°0470° Grains. Grams. 1 = 0°06480 2 = 0°12960 3 = 0°19440 4 = 0°25920 5 = 0°32399 6 = 0°38879	Ounces. (A 1 = 1	0.248 4270 1.452 5459 2.656 6658 0.802 7935 1.103 8240 1.705 8838 3.006 9138 Av.) Grams. 28.3495 56.6990 95.0485 13.3980 11.7475

Pounds to Kilograms.	Hundredweights to Kilograms.
1 = 0.45359	1 = 50.8024
2 = 0.90718	2=101.6048
3-1:36077	3-152.4072
4=1.81436	4 = 203 · 2096
5 = 2.26795	5 = 254.0120
6 = 2.72154	6=304.8144
7 = 3.17513	7 = 355.6168
8 = 3.62872	8 = 406.4192
9 = 4.08231	9 - 457 2216

Table showing the Signs used in writing Medical Prescriptions.

½ grain	••	½ gr.	1 drachm		••	3 i, or 3 j.
1 ,,	••	gr. j, or gr. i.	11/2 ,,	••	••	3 iss.
1½,,	••	gr. iss.	2 drachms	••	••	3 ii, or 3 ij.
2 grains	••	gr. ii, or gr. ij.	3 ,,	••	••	3 iii, or 3 iij.
$2\frac{1}{2}$,,	••	gr. iiss.	$3\frac{1}{2}$,,	••	••	3 iiiss.
4 ,,	••	gr. iv.	71/2 ,,	••		3 viiss.
8 ,,	••	gr. viii, or gr. viij.	ounce	••	••	ž ss.
🕹 scruple		Э 88.	1 ,,	••		🕇 i, or 🎖 j.
1 ,,	••	Эi, orЭj.	11/2 ,,	••	••	3 iss.
$1\frac{1}{2}$,,		Э iss.	j pint	••	••	Ŏss.
2 scruples	••	Э ii, or Э ij	l 1 ,,	••	••	0.

USEFUL DATA.

I. Areas and Volumes of Boo		garithms.
Area of a circle = 1		
Alea of a choice — 7		197 1499
Volume of a sphere -	$\frac{4}{3}\pi r^3 \qquad \frac{4}{3}\pi = 4.1888 \qquad 0.9$	622 0886
Volume of a cylinder -	$r^{2}h$ r = radius of a base h = height	
Surface of sphere =		099 2099
II. Specific Gravity.		
To convert—		
(1) Degrees of Twaddle's = 1000)—multiply	hydrometer into sp. gr. (water by 5 and add 1000	
	o) into degrees of Twaddle's let 1000 and divide by 5	
	sp. gr. $(H=1)$ —multiply by	159 5079
(4) Sp. gr. $(H-1)$ to a 0.06926	p. gr. (air-1)—multiply by	840 4825

USEFUL DATA-continued.

III. Various useful Factors.

11. Various asejut raccors.	1
To convert—	Logarithms.
(1) Grams per litre into grains per gallon—multiply by 70	1.845 0980
(2) Grains per gallon into grams per litre—multiply by 0.014286	2 ·154 9020
(3) Parts per 100,000 into grains per gallon—multiply by 0.7	1.845 0980
(4) Grains per gallon into parts per 100,000—divide by 0.7	T·845 0980
(5) Grams per fluid drachm into grains per fluid ounce—multiply by 123.46	2.091 5221

Table for the Conversion of Percentage into cwts., Qrs., and lb. per ton, and into Qrs. and lb. per cwt.

Per cent.]	Per ton.		Pe	r cwt.	Per cent.] :	Per to	n.	Pe	r cwt.
	cwt.	qrs.	lb.	qrs.	lb.		cwt.	qrs.	lb.	qrs.	lb.
1			22.4		1.12	26	5	l	22.4	1	1.12
2		1	16.8		2.24	27	5	1	16.8	1	2.24
3		2	11.2	١	3.36	28	5	2	11.2	1	3.36
4		3	5.6		4.48	29	5	3	5.6	1	4.48
5	1				5.60	30	6			1	5.60
			22.4		6.72	31	6		22.4	1	6.72
6 7	1	1	16.8	•••	7.84	32	6	1	16.8	1	7.84
8		2	11.2		8.96	33	6	2	11.2	1	8.96
9	1 1 2	3	5.6		10.08	34		3	5.6	1	10.08
10	2	•••		•••	11.20	35	6 7	l		1	11.20
11	2	•••	22.4	•••	12.32	36	7		22.4	ī	12.32
12	2	1	16.8		13.44	37		1	16.8	ı	13.44
13	2	2	11.2		14.56	38	7	2	11.2	ī	14.56
14	2	3	5.6		15.68	39	7	3	5.6	1	15.68
15	2 2 3 3				16.8	40	8			ī	16.8
16	3		22.4		17.92	41	8		22.4	ī	17.92
17	3	1	16.8		19.04	42	8	i	16.8	ī	19.04
18	3 3 8	2	11.2		20.16	43	8	2	11.2	ī	20.16
19	3	3	5.6		21.28	44	8	3	5.6	ī	21.28
20	4			•••	22.40	45	9	l		ī	22.40
21	4		22.4		23.52	46	9		22.4	ī	23.52
22	4	ï	16.8		24.64	47	9	ï	16.8	ī	24.64
23	4	2	11.5		25.76	48	9	2	11.2	ī	25.76
24	4	3	5.6	•••	26.88	49	9	3	5.6	i	26.88
25	5			ï		50	10			2	

Table for the Conversion of Percentage into cwts., qrs., and lb. per ton, and into qrs. and lb. per cwt.—continued.

	Per ton.		Per ton. Per cwt.		Per cent.		Per tor	n.	Pe	er cwt.	
	cwt.	qrs.	lb.	qrs.	lb.		cwt.	qrs.	lb.	qrs.	lb.
51	10		22.4	2	1.12	76	15		22.4	3	1.12
52	10	1	16.8	2	2.24	77	15	1	16.8	3	2.24
53	10	2	11.2	2	3.36	78	15	2	11.2	3 3	3.36
54	10	3	5.6	2	4.48	79	15	3	5.6	3	4.48
55	11	١		2	5.60	80	16			3	5.60
56	11		22.4	2	6.72	81	16		22.4	3 3	6.72
57	11	1	16.8	2	7.84	82	16	1	16.8	3	7.84
5 8	11	2	11.2	2	8.96	83	16	2	11.2	3	8.96
59	11	3	5.6	2	10.08	84	16	3	5.6	3 3 3	10.08
60	12			2	11.20	85	17			3	11.20
61	12	١	22.4	2	12.32	86	17		22.4	3	12.32
62	12	1	16.8	2	13.44	87	17	1	16.8	3	13.44
63	12	2	11.2	2	14.56	88	17	2	11.2	3	14.56
64	12	3	5.6	2	15.68	89	17	3	5.6	3	15.68
65	13			2 2	16.8	90	18	l		3 3	16.8
66	13		22.4	2	17.92	91	18	l l	22.4	3	17.92
67	13	1	16.8	2	19.04	92	18	1	16.8	3	19.04
68	13	2	11.2	2	20.16	93	18	2	11.2	3	20.16
69	13	3	5.6	2	21.28	94	18	3	5.6	3	21.28
70	14	•••		2 2	22.40	95	19			3 3	22.40
71	14		22.4	2	23.52	96	19		22.4	3	23.52
72	14	1	16.8	2	24.64	97	19	1	16.8	3	24.64
73	14	2	11.2	2	25.76	98	19	2	11.2	3	25.76
74	14	3	5.6	2	26.88	99	19	3	5.6	3	26.88
75	15			3		100	20			4	•••

Per cent. lb. per cwt.									·9 1·008
lb. per ton	2.24	4.48	6.72	8.96	11.2	13.44	15.68	17.92	20.16

Table for the Conversion of Drachms per lb. into Percentage and into lb. per ton.

Drachms per lb. (av.)	Per cent.	Lb. per ton (2240 lb.).	Drachms per lb. (av.)	Per cent.	Lb. per ton (2240 lb.).
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.097656 (or 0.1 nearly) .195 .293 .390625*	2·187494 4·37 6·56 8·75†	11 11 11 11 2 2	·488 ·586 ·683 ·781 ·879	10:94 13:12 15:31 17:50 19:68

^{*} Log. 1.5917600.

[†] Log. 0.9420000.

TABLE FOR THE CONVERSION OF DRACHMS PER LB. INTO PERCENTAGE AND INTO LB. PER TON—continued.

Drachms per lb. (av.)	Per cent.	Lb. per ton (2240 lb.).	Drachms per lb. (av.)	Per cent.	Lb. per ton (2240 lb.).
223 3 14 14 19 19 4 4 4 19 19 19 19 19 19 19 19 19 19 19 19 19	-976 1-074 1-172 1-269 1-367 1-465 1-562 1-660 1-758 1-855	21 ·87 24 ·06 26 ·25 28 ·43 30 ·62 32 ·81 35 ·00 37 ·19 39 ·38 41 ·56	5 10 15 20 25 30 35 40 45 50	1.953 3.906 5.859 7.812 9.765 11.719 13.672 15.625 17.578	43 · 75 87 · 50 131 · 25 175 · 00 218 · 75 262 · 50 306 · 25 350 · 00 393 · 75 437 · 50

TABLES REQUIRED IN WATER ANALYSIS.

I. Tension of Aqueous Vapour in Millimetres of Mercury from 0° to 35° C.

1 2 3 ·4 0·5	·633 ·667 ·700 ·733 ·767	·6 ·7 ·8 ·9	5·491 ·530 •569 ·608	5·0 ·1 ·2	6·534 ·580	7·5 ·6	7·751 804	10.0	9·165 ·227
2 ·3 ·4 0·5	·667 ·700 ·733 ·767	.8 .9	•569 •608	•2		 ∙6	-804	•1	•007
3 ·4 0·5	·700 ·733 ·767 3	·8	· 6 08						ZZI
0.5	·733 3	.9			·625	.7	·857	.2	•288
0.5	767 3			•3	·671	-8	·910	.3	•350
			·647	•4	•717	.9	.964	'4	.412
			5.687	5.5	·763	8.0	8.017	10.5	.474
	·801	•1	.727	-6	·810	•1	.072	.6	•537
7	·836	·2	.767	.7	·857	.2	·126	.7	· 6 01
	.871 ∥	•3	·807	•8	.904	.3	·181	•8	·665
.9	·905	•4	·848	.9	•951	•4	.236	.8	728
		3.2	.890	6.0	6.998	8.5	•291	11.0	9.792
1 1	∙975	.6	.930	.1	7.047	.6	.347	1	·857
	·011	.7	.972	•2	.095	.7	•404	•2	•923
3	.047 ∥		6 014	.3	144	·8	'461	.3	•989
4	082	.9	.056	•4	193	.9	.517	•4	10.054
1.5			6.097	6.5	.242	9.0	8.574	11.5	.120
-6	·155	.1	.140	•6	•292	•1	.632	.6	·187
.7	·191	•2	·183	.7	*342	•2	.690	•7	•255
·8	•228	.3	•226	•8	.392	.3	'748	•8	*322
.8	·265	•4	.270	.9	'442	•4	·807	.9	•389
		1.2	·313	7.0	7.492	9.5	*865	12.0	10.457
1 1	340	.6	•357	.1	.544	6.	•925	•1	.526
.2	·378	.7	· 4 01	•2	•595	.7	.985	•2	.596
.3	416	-8	.445	.3	647	∥ •8	9.045	.3	.665
•4	454	•9	· 4 90	•4	.699	.9	.105	•4	.734

TABLES REQUIRED IN WATER ANALYSIS. TABLE I.—continued.

				1	1	1	1	11	1 .
· c.	mm.	• c.	mm.	• c.	mm.	• c.	mm.	• c.	mm.
"		J		0.		٠.		J	
-						 			
12.5	10.804	17.1	14.513	21.7	19.305	26.3	25.438	30.9	33.215
.6	.875	•2	·605	•8	423	•4	•588	31.0	33.405
.7	•947	.3	·697	.9	.541	26.5	·738	•1	•596
.8	11.019	•4	790	22.0	19.659	•6	·891	•2	·787
.9	·090	17.5	.882	.1	·780	.7	26.045	.3	.980
13.0	11.162	.6	977	•2	•901	•8	·198	•4	34.174
1 '1	•235	.7	15.072	.3	20.022	.9	•351	31.5	.368
.2	.309	-8	167	'4	.143	27.0	26.505	.6	.564
.3	.383	.9	262	22.5	265	1	.663	.7	.761
•4	·456	18.0	15.357	.6	.389	.2	*820	•8	.959
13.5	530	.1	.454	.7	.514	.3	•978	.9	35.159
6	·605	•2	.552	8	.639	•4	27.136	32.0	35.359
7	·681	•3	.650	.9	.763	27.5	·294	.1	.559
.8	•757	•4	747	23.0	20.888	-6	·455	•2	.760
9	.832	18.2	*845	1	21 016	.7	617	.3	.962
14.0	11.908	.6	.945	-2	144	-8	•778	•4	36.165
1 1	.986	.7	16.045	.3	.272	.9	•939	32.2	.370
.2	12.064	-8	145	.4	•400	28.0	28.101	.6	.576
3	142	.9	246	23.5	.528	•1	.267	.7	.783
4	220	19.0	16.346	.6	21.659	•2	•433	•8	.991
14.5	298	.1	.449	.7	.790	.3	.599	.9	37.200
.6	378	•2	.552	.8	.921	•4	.765	33.0	37.410
.7	· 4 58	.3	.655	.9	22.053	28.5	•931	.1	.621
8.	.538	.4	.758	24.0	22.184	.6	29.101	•2	.832
9	.619	19.5	'861	.1	.319	.7	.271	•3	38.045
15.0	12.699	6	.967	.2	.453	.8	·441	•4	.258
1 1	781	7	17.073	'3	.588	.9	612	33.2	'473
2	864	-8	179	.4	.723	29.0	29.782	.6	·689
.3	947	9.9	285	24.5	*858	.1	.956	'7	.906
15.5	13.029	20.0	17:391	.6	996	.2	30.131	8.	39.124
15.5	112	1 .2	.500	.7	23.135	.3	·305	9	344
1 .7	197	•3	1608	·8	273	•4	·479	34.0	39.565
8	·281 ·366	.4	.717	25.0	411	29.5	.654	1	.786
9	451	20.5	*826	25.0	23.550	-	.833	.2	40.007
16.0	13.536	20.5	935	•2	*692	.7	31.011	.3	.230
10.0	623	.7	18·047 -159	.3	·834 ·976	·9	·190 ·369	24.5	·455 ·680
.2	710	.8	271	.4	24.119	30.0	31.548	34.5	907
.3	.797	.9	383	25.5	24 119	30.0	: - :	.7	41.135
.4	885	21.0	18.495	25.8	406	•2	·729 ·911	.8	364
16.5	.972	1	610	1.7	-552	•3	32.094	.9	-595
10.5	14.062	.2	.724	.8	-697	•4	278	35.0	827
.7	14 002	.3	.839	.9	842	30.5	463	30.0	021
8	241	.4	954	26.0	24.988	90.9	·650	l	
9.9	•331	21.5	19.069	20.0	25.138	.7	-837	l	
17.0	14.421	1.6	187	.2	288	-8	33.026	ll .	1
1-"		"	107	-	200	"	35 020	l	}
<u>'</u>		<u> </u>		<u> </u>	' '	1	L	11	<u> </u>

TABLES REQUIRED IN WATER ANALYSIS-continued.

II. Reduction of Cubic Centimetres of Nitrogen to Grams.

 $\rm Log.\frac{0\cdot0012562}{(1+\cdot00367\,t)\,760}$ for each tenth of a degree from 0° to 30° C.

t C. 0·0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 o 6·21824 808 793 777 761 745 729 713 697 681 1 665 649 633 617 601 586 570 554 538 522 2 507 491 475 459 443 427 412 396 380 364 3 349 333 318 302 286 270 255 239 223 208 4 192 177 161 145 130 114 098 083 067 051 5 035 020 004 *989 *973 *957 *942 *926 *911 *895 6 6·20879 864 848 833 817 801 786 770 7555 739 7 7				,	,						
0 \$\overline{6}\$\cdot 21824 808 793 777 761 745 729 713 697 681 1 665 649 633 617 601 586 570 554 538 522 2 507 491 475 459 443 427 412 396 380 364 3 349 333 318 302 286 270 255 239 223 208 4 192 177 161 145 130 114 098 083 067 051 5 035 020 004 *989 *973 *957 *942 *926 *911 *895 6 6*20879 864 848 833 817 801 786 770 755 739 7 723 708 692 676 661 645 629 614 598 583 8	tC.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1 665 649 633 617 601 586 570 554 538 522 2 507 491 475 459 443 427 412 396 380 364 3 349 333 318 302 286 270 255 239 223 208 4 192 177 161 145 130 114 098 083 067 051 5 035 020 004 *989 *973 *957 *942 *926 *911 *895 6 6.20879 864 848 833 817 801 786 770 755 739 7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274				-							
1 665 649 633 617 601 586 570 554 538 522 2 507 491 475 459 443 427 412 396 380 364 3 349 333 318 302 286 270 255 239 223 208 4 192 177 161 145 130 114 098 083 067 051 5 035 020 004 *989 *973 *957 *942 *926 *911 *895 6 6.20879 864 848 833 817 801 786 770 755 739 7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274	0	6.21824	808	793	777	761	745	729	713	697	681
3 349 333 318 302 286 270 255 239 223 208 4 192 177 161 145 130 114 098 083 067 051 5 035 020 004 *989 *973 *957 *942 *926 *911 *895 6 6:20879 864 848 833 817 801 786 770 755 739 7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274 10 259 244 228 213 198 182 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969											
4 192 177 161 145 130 114 098 083 067 051 *895 5 035 020 004 *989 *973 *957 *942 *926 *911 *895 6 6 *20879 864 848 833 817 801 786 770 755 739 7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274 10 259 244 228 213 198 182 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846											
5 035 020 004 *989 *973 *957 *942 *926 *911 *895 6 6·20879 864 848 833 817 801 786 770 755 739 7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274 10 259 244 228 213 198 182 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846 831 816 13 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
6 6·20879 864 848 833 817 801 786 770 755 739 7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274 10 259 244 228 213 198 182 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846 831 816 13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 15 497 482 467 452 437 422 407 392 377 362 16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 663 648 634 619 605 590 28 576 561 547 532 518 503 489 475 460 446											
7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274 10 259 244 228 213 198 182 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846 831 816 13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 16 346 <td>, p</td> <td>035</td> <td>020</td> <td>004</td> <td>-989</td> <td>-9/3</td> <td>957</td> <td>942</td> <td>-926</td> <td>911</td> <td>*895</td>	, p	035	020	004	-989	-9/3	957	942	-926	911	*895
7 723 708 692 676 661 645 629 614 598 583 8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274 10 259 244 228 213 198 182 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846 831 816 13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 16 346 <td></td> <td>7.000F0</td> <td>224</td> <td>۵۲۵</td> <td>000</td> <td>015</td> <td></td> <td>700</td> <td></td> <td></td> <td></td>		7.000F0	224	۵۲۵	000	015		700			
8 567 552 536 521 505 490 427 459 443 428 9 413 397 382 366 351 335 320 304 289 274 10 259 244 228 213 198 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846 831 816 13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 15 497 482 467 452 437 422 407 392 377 362 16 346 331 <td>7</td> <td></td>	7										
9											
10 259 244 228 218 198 182 167 151 136 121 11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846 831 816 13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 15 497 482 467 452 437 422 407 392 377 362 16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046<											
11 106 090 075 060 045 029 014 *999 *984 *969 12 6·19953 938 923 907 892 877 862 846 831 816 13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 15 497 482 467 452 437 422 407 392 377 362 16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21											
13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 15 497 482 467 452 437 422 407 392 377 362 16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 6	11	106	090	075	060	045	029	014	*999	*984	
13 800 785 770 755 740 724 709 694 679 664 14 648 633 618 603 588 573 558 543 528 513 15 497 482 467 452 437 422 407 392 377 362 16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 6			ł								
14 648 633 618 603 588 573 558 543 528 513 15 497 482 467 452 437 422 407 392 377 362 16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 4	12	6·19953	938	923	907	892	877	862	846	831	816
15 497 482 467 452 487 422 407 392 377 362 16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 3	13	800	785	770	755	740	724	709	694	679	664
16 346 331 316 301 286 271 256 241 226 211 17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 1											
17 196 181 166 157 136 121 106 091 076 061 18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 0											
18 046 031 016 001 *986 *971 *956 *941 *926 *911 19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26											
19 6·18897 882 867 852 837 822 807 792 777 762 20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 306 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 663 648 634 619 605 590 28 576 561 547 532 518 503 489 475 460 446											
20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 668 648 634 619 605 590 28 <t< td=""><td>10</td><td>040</td><td>031</td><td>010</td><td>001</td><td> 300</td><td>3/1</td><td>330</td><td>941</td><td>320</td><td>911</td></t<>	10	040	031	010	001	300	3/1	330	941	320	911
20 748 733 718 703 688 673 659 644 629 614 21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 668 648 634 619 605 590 28 <t< td=""><td>10</td><td>Z·19907</td><td>999</td><td>987</td><td>250</td><td>997</td><td>200</td><td>807</td><td>709</td><td>777</td><td>769</td></t<>	10	Z·19907	999	987	250	997	200	807	709	777	769
21 600 585 570 555 540 526 511 496 481 466 22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 663 648 634 619 605 590 28 576 561 547 532 518 503 489 475 460 446											
22 452 437 422 408 393 378 363 349 334 319 23 305 290 275 261 246 231 216 202 187 172 24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 663 648 634 619 605 590 28 576 561 547 532 518 503 489 475 460 446											
24 158 143 128 114 099 084 070 055 041 026 25 012 *997 *982 *968 *953 *938 *924 *909 *895 *880 26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 663 648 634 619 605 590 28 576 561 547 532 518 503 489 475 460 446	22	452	437		408			363	349		
26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 663 648 634 619 605 590 28 576 561 547 532 518 503 489 475 460 446											
26 6·17866 851 837 822 808 793 779 764 750 735 27 721 706 692 677 663 648 634 619 605 590 28 576 561 547 532 518 503 489 475 460 446											
27	25	012	- 997	-982	- 968	* 953	938	924	-909	- 895	*880
27		T - -					 				
28 576 561 547 532 518 503 489 475 460 446											
20 302 311 300 000 012 000 032 301 010 002											
	20	704	311	400	000	014	300	040	201	910	302
						1					

TABLES REQUIRED IN WATER ANALYSIS-continued.

III. Loss of Nitrogen by Evaporation of NH₃ with Sulphurous Acid. Parts per 100,000.

NH3	Loss of N	NH ₃	Loss of N	NH ₃	Loss of N	NH ₃	Loss of N	NH ₃	Loss of N	NH ₃	Loss of N
6·0 5·9 5·8 5·7 5·6 5·5 5·4	1.727 1.707 1.688 1.668 1.648 1.628 1.609 1.589	4·8 4·7 4·6 4·5 4·4 4·3 4·2 4·1	1.451 1.411 1.372 1.332 1.293 1.253 1.214 1.174	3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9	•977 •937 •898 •858 •819 •779 •740	2·4 2·3 2·2 2·1 2·0 1·9 1·8 1·7	·503 ·463 ·424 ·384 ·345 ·333 ·321 ·309	1·2 1·1 1·0 0·9 ·8 ·7 ·6 ·5	•250 •238 •226 •196 •166 •136 •106	·09 ·08 ·07 ·06 ·05 ·04 ·03 ·02	·014 ·013 ·012 ·010 ·009 ·007 ·006 ·004
5·2 5·1 5·0 4·9	1.569 1.549 1.530 1.490	4·0 3·9 3·8 3·7	1.135 1.095 1.056 1.016	2·8 2·7 2·6 2·5	.661 .621 .582 .542	1.6 1.5 1.4 1.3	·297 ·285 ·274 ·262	·4 ·3 ·2 ·1	·062 ·047 ·032 0·17	·01 ·009	·003

IV. Loss of Nitrogen by Evaporation of NH_3 with Hydric Metaphosphate. Parts per 100,000.

Volume evaporated.	NH3	Loss of N	Volume evaporated.	NH ₃	Loss of N	Volume evaporated.	NH ₃	Loss of N
100 c.c.	10·0 9·9 9·8 9·7 9·6 9·5 9·4 9·3 9·2 9·1 9·0 8·9 8·8 8·7	483 480 476 473 469 466 462 459 455 452 448 4441 438	100 c.c.	8·3 8·2 8·1 8·0 7·9 7·6 7·5 7·4 7·3 7·2 7·1	*424 *421 *417 *414 *410 *407 *403 *400 *396 *393 *389 *389 *386 *382 *379	100 c.c.	6.6 6.5 6.3 6.2 6.1 6.0 5.9 5.7 5.5 5.4 5.3	365 361 358 354 351 348 345 347 337 333 326 326 322 318
"	8·6 8·5 8·4	·434 ·431 ·428	,, ,,	6·9 6·8 6·7	·375 ·372 ·368	" " "	5·2 5·1 5·0	·314 ·310 ·306

TABLES REQUIRED IN WATER ANALYSIS. TABLE IV .- continued.

Volume evaporated.	NH ₈	Loss of N	Volume evaporated.	NH ₃	Loss of N	Volume evaporated.	NH ₃	Loss of N
100 c.c.	4.9 4.6 4.5 4.4 4.0 9.3 3.7 6.5 4.3 3.9 3.7 3.5 3.3 3.7 3.3 3.7 3.7 3.7 3.7 3.7 3.7 3.7	302 -298 -294 -291 -287 -287 -275 -271 -267 -252 -247 -242 -231 -226 -221 -216	100 c.c.	2.9 2.8 2.7 2.6 2.5 2.4 2.2 2.1 2.0 1.9 1.7 1.6 1.5 1.4 1.3 1.2 1.1	·211 ·205 ·200 ·195 ·190 ·184 ·179 ·164 ·153 ·148 ·143 ·132 ·127 ·122 ·117 ·112	250 c.c. ", 500 c.c. 1000 c.c. ", ", ", ", ", ", ", ", ", ", ", ", ",	·9 ·8 ·7 ·6 ·5 ·4 ·3 ·2 ·1 ·09 ·08 ·07 ·06 ·05 ·04 ·03 ·02 ·01	.096 .080 .070 .060 .050 .030 .020 .010 .009 .008 .007 .006 .005 .004 .003 .002

V. Loss of Nitrogen by Evaporation of NH_3 with Sulphurous Acid. Parts per 100,000.

N as Loss		Loss	N as	Loss	N as	Loss	N as	Loss	N as	Loss
NH ₃ of N		of N	NH ₈	of N	NH ₃	of N	NH ₃	of N	NH ₃	of N
5·0 1·74 4·9 1·71 4·8 1·69 4·7 1·66 4·6 1·64 4·5 1·62 4·4 1·59 4·3 1·57 4·1 1·52 4·0 1·47	7 3·8 3 3·7 9 3·6 5 3·5 1 3·4 8 3·3 4 3·2 0 3·1 1 3·0	1·425 1·378 1·330 1·282 1·234 1·186 1·138 1·090 1·042 ·994	2·9 2·8 2·7 2·6 2·5 2·4 2·3 2·2 2·1 2·0	*946 *898 *850 *802 *754 *706 *658 *610 *562 *514	1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1	·466 ·418 ·370 ·338 ·324 ·309 ·295 ·280 ·266 ·252	.9 .8 .7 .6 .5 .4 .3 .2 .1	·237 ·217 ·181 ·145 ·109 ·075 ·057 ·038 ·020 ·018	·08 ·07 ·06 ·05 ·04 ·03 ·02 ·01 ·008 ·007	·017 ·015 ·013 ·011 ·009 ·007 ·005 ·003 ·002 ·001

TABLES REQUIRED IN WATER ANALYSIS-continued.

VI. Loss of Nitrogen by Evaporation of NH₃ with Hydric Metaphosphate.

Parts per 100,000.

			1			1		1
Volume	N as	Loss	Volume	N as	Loss	Volume	Nas	Loss
evaporated.	NH ₃	of N	evaporated.	NH ₈	of N	evaporated.	NH ₃	of N
100 c.c.	8.2	•482	100 c.c.	5.1	.352	100 c.c.	2.1	.192
1	8.1	•477		5.0	*347		2.0	.186
,,	8.0	473	,,,	4.9	*343	"	1.9	180
"	7.9	469	,,	4.8	338	"	1.8	•173
,,	7.8	465	"	4.7	•334	"	1.7	167
"	7.7	•461	"	4.6	-329	"	1.6	•161
,,	7.6	456	,,,	4.5	324	,,	1.5	.154
,,	7.5	•452	"	4.4	319	,,	1.4	•148
,,	7.4	*448	,,,	4.3	•315	"	1.3	140
,,			,,			"		
,,		*444	,,	4.2	310	"	1.2	136
,,	7.2	*440	,,,	4.1	305	"	1.1	129
,,	7.1	'435	,,	4.0	•301	,,	1.0	123
,,	7.0	*431	,,	3.9	.296	,,	.9	.117
,,	6.9	•427	,,	3.8	-291	250 c.c.	•8	•111
,,	6.8	.423	,,	3.7	286	250 c.c.	•7	.038
,,	6.7	·419	,,	3.6	•281	,,	•6	.073
,,	6.6	•414	,,	3.2	•277	,,	•5	.061
,,	6.5	· 4 10	,,	3.4	-272	500 c.c.	•4	.049
,,	6.4	•4 06	,,	3.3	267	,,	•3	.036
,,	6.3	· 4 02	,,	3.2	261	1000 c.c.	•2	.024
,,	6.2	•398	2,	3.1	.255	,,	•1	.012
,,	6.1	.394	,,	3.0	-249	"	.09	.011
,, `	6.0	•389	,,	2.9	.242	",	.08	.010
,,	5.9	385	,,	2.8	*236	,,	.07	.008
,,	5.8	•381	,,	2.7	230	,,	.06	.007
",,	5.7	•377	"	2.6	-223	",	.05	.006
",	5.6	•373	,,	2.5	217	,,	.04	.005
	5.5	•368	1	2.4	•211		.03	.004
"	5.4	364	,,	2.3	205	"	.02	.002
"	5.3	.360	,,	2.2	198	,,	.01	•001
,,	5.2	•356	,,,		100	,,	01	001
,	0 4	000	1		1 1			

VII. Table of Hardness. (50 c.c. of water used.)

Volume of Soap solu- tion.	CaCO ₃ per 100,000	Degrees of Hard- ness.*	Volume of Soap solu- tion.	CaCO ₃ per 100,000	Degrees of Hard- ness.	Volume of Soap solu- tion,	CaCO ₃ per 100,000	Degrees of Hard- ness.
c.c. 0·7 0·8 0·9	0.00 0.16 0.32	0·00 0·11 0·22	c.c. 1·3 ·4 ·5	0.95 1.11 1.27	0.67 0.78 0.89	c.c. 1·9 2·0 ·1	1·82 1·95 2·08	1·27 1·37 1·46
1:0	0.48 0.63 0.79	0.34 0.44 0.55	·6 ·7 ·8	1.43 1.56 1.69	1:00 1:09 1:18	·2 ·3 ·4	2·21 2·34 2·47	1.55 1.64 1.73

^{*} Each degree of hardness indicates one grain of CaCO2 per gallon.

TABLES REQUIRED IN WATER ANALYSIS. TABLE VII.—continued.

Volume of Soap	CaCO _s	Degrees of Hard-	Volume of Soap	CaCO ₃	Degrees of Hard-	Volume of Soap	CaCO ₃	Degrees of Hard-
solu- tion.	100,000	ness.*	solu- tion.	100,000	ness.	solu- tion.	100,000	ness.
			<u> </u>			<u> </u>		
C.C.			c.c.	0.00	0.00	c.c.	15.05	17.17
2.5	2.60	1.82	7.1	9.00	6.30	11.7	15.95	11.17
6	2.73	1.91	·2 ·3	9.14	6.40	9	16·11 16·27	11·28 11·39
7	2.86	2.00	•4	9·29 9·43	6.60	12.0	16.43	11.20
·8 ·9	2.99	2·09 2·18	•5	9.57	6.70	12.0	16.29	11.61
3.0	3·12 3·25	2.28	•6	9.71	6.80	.2	16.75	11.73
1 1	3.38	2.37	.7	9.86	6.90	.3	16.90	11.83
1.2	3.51	2.46	-8	10.00	7.00	.4	17.06	11.94
1 .3	3.64	2.55	•9	10.15	7.11	-5	17.22	12.05
1 .4	3.77	2.64	8.0	10.30	7.21	-6	17:38	12.17
-5	3.90	2.73	·1	10.45	7.32	.7	17.54	12.28
1 6	4.03	2.82	·2	10.60	7.42	-8	17.70	12.39
1 .7	4.16	2.91	•3	10.75	7.53	9	17.86	12.50
1 .8	4.29	3.00	•4	10.90	7.63	13.0	18.02	12.61
1 .9	4.43	3.10	•5	11.05	7.74	•1	18.17	12.72
4.0	4.57	3.20	-6	11.20	7.84	•2	18.33	12.83
1	4.71	3.30	.7	11.35	7.95	.3	18.49	12.94,
-2	4.86	3.40	•8	11.20	8.05	'4	18.65	13.06
•3	5.00	3.20	.9	11.65	8.16	•5	18.81	13.17
•4	5.14	3.60	9.0	11.80	8.26	•6	18.97	13.28
•5	5.29	3.70	'1	11.95	8:37	'7	19.13	13.39
•6	5.43	3.80	.2	12.11	8.48	·8	19.29	13.20
•7	5.57	3.30	-3	12.26	8.58	.9	19.44	13.61
•8	5.71	4.00	•4	12.41	8.69	14.0	19.60	13.72
.9	5.86	4.10	•5	12.56	8.79	1 1	19.76	13.83
5.0	6.00	4.20	.6	12.71	8.90	.2	19.92	13.94
'1	6.14	4.30	.7	12.86	9.00	3	20.08	14.06
1 .2	6.29	4.40	8	13.01	9.11	4	20.24	14.17
.3	6.43	4.50	.9	13.16	9.21	.5	20:40	14.28
1 •4	6.57	4.60	10.0	13.31	9.32	·6 ·7	20.56	14·39 14·50
.5	6.71	4.70	•2	13.46	9·42 9·53	8	20·71 20·87	14.61
6	6·86 7·00	4·80 4·90	.3	13.61 13.76	9.63	👸	21.03	14.72
1 .8	7.14	5.00	.4	13.91	9.74	15.0	21.19	14.83
.9	7.29	5.10	.5	14.06	9.84	13 0	21.35	14.95
6.0	7.43	5.20	-6	14.21	9.95	.2	21.51	15.06
00	7.57	5.30	·7	14.37	10.06	.3	21.68	15.18
.2	7.71	5.40	-8	14.52	10.16	4	21.85	15.30
1 .3	7.86	5.50	.ğ	14.68	10.28	.5	22.02	15.41
1 .4	8.00	5.60	11.0	14.84	10.39	.6	22.18	15.53
1 .5	8.14	5.70	i	15.00	10.50	-7	22.35	15.65
·ĕ	8.29	5.80	·2	15.16	10.61	·8	22.52	15.76
·ř	8.43	5.90	·3	15.32	10.72	9	22.69	15.88
-8	8.57	8.00	•4	15.48	10.84	16.0	22.86	16.00
9	8.71	6.10	•5	15.63	10.94			
1 7.0	8.86	6.20	-6	15.79	11.05	1		l

^{*} Each degree of hardness indicates one grain of CaCO₃ per gallon.

TABLES REQUIRED IN WATER ANALYSIS—continued.

VIII. Clark's Table of Hardness of Water.

Degrees of Hardness.	Measures of Soap solution.	Differences for the next 1° of Hardness.	Degrees of Hardness.	Measures of Soap solution.	Differences for the next 1° of Hardness.
0 (distilled water) 1 2 3 4 5 6 7	1·4 3·2 5·4 7·6 9·6 11·6 13·6 15·6	1·8 2·2 2·2 2·0 2·0 2·0 2·0 1·9	8 9 10 11 12 13 14 15	17.5 19.4 21.3 23.1 24.9 26.7 28.5 30.3 32.0	1.9 1.8 1.8 1.8 1.8 1.8 1.8

Each measure equals 10 grains, the quantity of water operated upon equals 1000 grains, and each "degree of hardness" indicates 1 grain of calcic carbonate per gallon.

THE ESTIMATION OF NITRATES IN WATER BY SPRENGEL'S METHOD.

Solutions required.

(1) Phenol-Sulphonic Acid.—Mix together 2 parts by measure of phenol and 5 parts of pure concentrated sulphuric acid, and heat in a porcelain basin on the water-bath for about 8 hours. When cool, add 1½ volumes of water and ½ volume strong hydrochloric acid to each volume of the phenol-sulphonic acid.

Convenient quantities are \$0 c.c. phenol, 200 c.c. H₂SO₄; 420 c.c. water and 140 c.c. HCl, producing 840 c.c. of a light brown solution, which is ready for immediate use.

(2) Standard Potassium Nitrate.—0.0722 gram KNO₃ crystals are

dissolved in a litre of water.*

10 c.c. = 0 0001 gram N, or 1 part of N in 100,000 of water when

10 c.c. are evaporated.

The estimation is made as follows:—10 c.c. of the water under examination and 10 c.c. standard KNO₃ are pipetted into two small beakers and evaporated nearly to dryness on a hot iron plate, the operation being completed on the top of a water-oven. As this operation usually takes about an hour and a half, it is better, when time is an object, to evaporate to dryness in a platinum dish over steam. The residue in each case is treated with 1 c.c. of the phenol-sulphonic acid, which is brought into contact with the whole of the residue, and the beakers are placed on the top of the water-

^{*} The best plan is to dissolve 0.7220 gram KNO_3 in a litre of distilled water; then, keeping this as a stock strong solution, dilute 100 c.c. of it to 1 litre for use as required.

When nitrates are present in quantity, the liquid speedily assumes a red colour, which, in the case of a good water, will not appear for about 10 minutes. After 15 minutes' standing, the beakers are removed, the contents of each washed out successively into a 100 c.c. graduated measure, a slight excess (about 20 c.c. of 0.96) of ammonia added, the 100 c.c. made up by the addition of water and the yellow liquid transferred to a Nessler glass (6 in. x 11 in.). The more strongly coloured liquid is then partly transferred to the measure again and the tints compared a second time. In this way the tints are adjusted, the volume of the stronger liquid being, for final comparison, made up to 100 c.c.

In the case of very good waters, 20, 50, or more c.c. should be evaporated in a short, wide beaker to a small bulk, rinsed into a small beaker, and evaporated to dryness and treated as above—only 5 c.c. of the standard potassium nitrate (=0.5 N in 100,000 of water on the basis of 10 c.c. water taken) being used for comparison. In the case of very bad waters, 10 c.c. should be pipetted into a 100 c.c. measuring flask and made up to the mark with distilled water: then 10 c.c. of the well mixed liquid (=1 c.c. original

water) are withdrawn and treated as above.

According to A. H. Gill, this process does not estimate the nitrogen present as nitrite, as the action of nitrous acid results in the formation of nitrosophenol C₆H₄ (NO)(OH), which is colourless in dilute solutions (see abstract in Jour. Soc. Chem. Ind., 1895, p. 711.

TABLES REQUIRED IN WATER ANALYSIS-continued.

IX. Estimation of Nitrogen as Nitrates by Sprengel's Method (for waters containing more than one part of N in 100,000).

No. of c.c. of yellow solu-	Nitrogen a	as Nitrates.	No. of c.c. of yellow solu-	Nitrogen as Nitrates.			
tion equal to the standard 100 c.c.	Parts per 100,000.	Grains per gallon.	tion equal to the standard 100 c.c.	Parts per 100,000.	Grains per gallon.		
100	1.00	0.70	50	2.00	1.40		
95	1.05	0.74	48	2.08	1.46		
90	1.11	0.78	46	2.17	1.52		
85	1.18	0.83	45	2.22	1.55		
80	1.25	0.88	44	2.23	1.56		
78	1.28	0.90	42	2.38	1.67		
76 i	1.32	0.92	40	2.50	1.75		
75	1.33	0.93	38	2.63	1.84		
74	1:35	0.95	36	2.78	1.95		
72	1.39	0.97	35	2.86	2.00		
70	1.43	1.00	34	2.94	2.06		
68	1.47	1.03	32	3.13	2.19		
66	1.51	1.06	30	3.33	2.33		
65	1.54	1.08	28	3.57	2.50		
64	1.55	1.09	26	3.85	2.70		
62	1.61	1.13	25	4.00	2.80		
60	1.67	1.17	24	4.17	2.92		
58	1.72	1.20	22	4.55	3.19		
56	1.78	1.25	20	5.00	3.50		
55	1.82	1.27	18	5.55	3.89		
54	1.85	1.30	16	6.25	4.38		
52	1.92	1.34	15	6.67	4.67		

X. Table for the Conversion of Parts per 100,000 into Grains per Gallon.

Parts per	Grains per						
100,000.	gallon.	100,000.	gallon.	100,000.	gallon.	100,000.	gallon.
1	0·7	9	6:3	17	11·9	25	17.5
2	1·4	10	7:0	18	12·6	26	18.2
3	2·1	11	7:7	19	13·3	27	18.9
4	2·8	12	8:4	20	14·0	28	19.6
5	3·5	13	9:1	21	14·7	29	20.3
6	4·2	14	9:8	22	15·4	30	21.0
7	4·9	15	10:5	23	16·1	31	21.7
8	5·6	16	11:2	24	16·8	32	22.4

TABLES REQUIRED IN WATER ANALYSIS. TABLE X .- continued.

Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains per gallon.	Parts per 100,000.	Grains pe gallon.
33	23.1	78	54.6	123	86.1	168	117.6
34	23.8	79	55.3	124	86.8	169	118.3
35	24.5	80	56.0	125	87.5	170	119.0
36	25.2	81	56.7	126	88.2	171	119.7
37	25.9	82	57.4	127	88.9	172	120.4
38 .	26.6	83	58.1	128	89.6	173	121.1
39	27.3	84	58.8	129	90.3	174	121.8
40	28.0	85	59.5	130	91.0	175	122.5
41	28.7	86	60.2	131	91.7	176	123.2
42	29.4	87	60.9	132	92.4	177	123.9
43	30.1	88	61.6	133	93.1	178	124.6
44	30.8	89	62.3	134	93.8	179	125.3
45	31.5	90	63.0	135	94.5	180	126.0
46	32.2	91	63.7	136	95.2	181	126.7
47	32.9	92	64.4	137	95.9	182	127.4
48	33.6	93	65.1	138	96.6	183	128.1
49	34.3	94	65.8	139	97.3	184	128.8
50	35.0	95	66.5	140	98.0	185	129.5
51	35.7	96	67.2	141	98.7	186	130.2
52	36.4	97	67.9	142	99.4	187	130.9
53	37.1	98	68.6	143	100.1	188	131.6
54	37.8	99	69.3	144	100 1	189	132.3
55	38.5	100	70.0	145	101.5	190	133.0
56	39.2	101	70.7	146	102.2	191	133.7
57	39.9	102	71.4	147	102.9	192	134.4
58	40.6	103	72.1	148	103.6	193	135.1
59	41.3	104	72.8	149	104.3	194	135.8
60	42.0	105	73.5	150	105.0	195	136.5
61	42.7	106	74.2	151	105.7	196	137.2
62	43.4	107	74.9	152	106.4	197	137.9
63	44.1	108	75.6	153	107.1	198	138.6
64	44.8	109	76.3	154	107.8	199	139.3
65	45.5	110	77.0	155	108.5	200	140.0
66	46.2	111	77.7	156	109.2	201	140.7
67	46.9	1112	78.4	157	109.9	201	141.4
68	47.6	113	79.1	158	110.6	203	142.1
69	48.3	114	79.8	159	111.3	204	142.8
70	49.0	115	80.5	160	112.0	205	143.5
71	49.7	116	81.2	161	112.7	206	144.2
72	50.4	117	81.9	162	113.4	207	144.9
73	51.1	118	82.6	163	114.1	207	145.6
74 74	51.8	119	83.3	164	114.8	209	146.3
75	52.5	120	84.0	165	115.5	210	147.0
76	53.2	121	84.7	166	116.2	211	147.7
77	53.9	122	85.4	167	116.2	212	148.4
• • •	000	122	1 00 4	101	1109	414	1 110 4

TABLES REQUIRED IN WATER ANALYSIS. TABLE X. -continued.

Parts per	Grains per	Parts per	Grains per	Parts per	Grains per	Parts per	Grains per
100,000.	gallon.	100,000.	gallon.	100,000.	gallon.	100,000.	gallon.
213 214 215 216 217 218 219 220 221 222	149·1 149·8 150·5 151·2 151·9 152·6 153·3 154·0 154·7 155·4	223 224 225 226 227 228 229 230 231 232	156·1 156·8 157·5 158·2 159·6 160·3 161·0 161·7 162·4	233 234 235 236 237 238 239 240 241 242	163·1 163·8 164·5 165·9 166·6 167·3 168·0 168·7 169·4	243 244 245 246 247 248 249 250	170·1 170·8 171·5 172·2 172·9 173·6 174·3 175·0

CALCULATION OF THE RESULTS OF WATER ANALYSIS.

Substance estimated.	Quantity of Water taken.	To get Grains per gallon.	Logarithms
N as NHOa(Crum)	250 c.c.	*c.c. of NO×0·175=N	Ī·243 0380
NH ₂ (copper zinc)	100 c.c.	grams of $NH_3 \times 576.45 = N$	2.760 7616
" (aluminium)	50 c.c.	,, ×1152·9 = N	3.061 7916
Free or alb. NH ₃	500 c.c.	e.c. standard NH ₄ Cl× 0014 = NH ₃	3.146 1280
O absorbed	250 c.c.+10 c.c. K ₂ Mn ₂ O ₈	$0.28 \left(\frac{S-W}{S}\right)^{\dagger}$	
**	250 c.c.+15 c.c. K ₂ Mn ₂ O ₈	$0.28 \left(\frac{1.5S-W}{S}\right)^{\dagger}$	
Total solids	250 c.c.	grams×280	2.447 1580

^{*} Or thus. Let v = vol. of NO obtained from 250 c.c. of the water. b = height of Bar.

w=tension of aqueous vapour at the observed temperature (see Table L).

Then N in grains per gallon = $v \times \frac{.0012562}{760(1+.00367\ t)} \times (b-w) \times 140$.

For logs, of $\frac{.0012562}{760(1+.00367\ t)}$ for different values of t see Table II. Log. $140=2\cdot146\cdot1280$.

† S=c.e of $Na_2S_2O_3$ corresponding to 10 c.c. $K_2Mn_2O_3$.

W= ,, required by the water under examination,

VOLUME AND DENSITY OF WATER AT DIFFERENT TEMPERATURES.

Temp.	Sp. gr. of Water (at 0°=1).	Vol. of Water (at 0°=1).	Sp. gr. of Water (at 4°=1).	Vol. of Water (at 4°=1).
0°	1.000000	1.000000	•999871	1.000129
1	1.000057	0.999943	•999928	1.000072
2	1.000098	999902	•999969	1.000031
3	1.000120	.999880	•999991	1.000009
4	1.000129	999871	1.000000	1.000000
5	1.000119	999881	0.999990	1.000010
6	1.000099	999901	•999970	1.000030
7	1.000062	•999938	.999933	1.000067
8	1.000015	999985	.999886	1.000114
9	0.999953	1.000047	•999824	1.000176
10	999876	1.000124	.999747	1.000253
11	999784	1.000216	•999655	1.000345
12	999678	1.000322	•999549	1.000451
13	999559	1.000441	999430	1.000570
14	999429	1.000572	999299	1.000701
15	999289	1.000712	•999160	1.000841
16	999131	1.000870	999002	1.000999
17	998970	1.001031	998841	1.001160
18	998782	1.001219	998654	1.001348
19	998583	1.001413	998460	1.001542
20	998388	1.001615	998259	1.001744
21	998176	1.001828	998047	1.001957
22	997953	1.002049	997826	1.002177
23	997730	1.002276	997601	1.002405
24	997495	1.002511	997367	1.002641
25	997249	1.002759	997120	1.002888
26	996994	1.003014	996866	1.003144
27	996732	1 003278	•996603	1.003408
28	996460	1.003553	996331	1.003682
29	996179	1.003835	•996051	1.003965
80	995894	1.004123	995765	1.004253
35	99431	1.00572	99418	1.00586
40	99248	1.00757	99235	1.00770
50	98833	1.01181	98820	1.01195
60	98351	1.01677	98338	1.01691
70	97807	1.02243	97794	1.02256
80	97206	1.02874	97194	1.02887
90	96568	1.03554	96556	1.03567
100	95878	1.04300	95865	1.04312
1	••••	2 02000	"""	

THE BAROMETER.

I. Inches into Millimetres.

Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.
27·5 ·6 ·7 ·8 ·9	698·49 701·03 703·57 706·11 708·65	28·4 ·5 ·6 ·7 ·8 ·9	721:35 723:89 726:43 728:97 731:51	29·3 ·4 ·5 ·6 ·7	744·21 746·75 749·29 751·83 754·37	30·2 ·3 ·4 ·5 ·6 ·7	767·07 769·61 772·15 774·69 777·23 779·77
28·0 ·1 ·2 ·3	711·19 713·73 716·27 718·81	29.0	734·05 736·59 739·13 741·67	30·0 1	756.91 759.45 761.99 764.53	·8 ·9	782·31 784·85
Inc Mil	hes, lime tres,	·01 ·25	·02 ·03 ·51 ·76		·05 ·06 ·27 1·52		·08 ·09 ·03 2·29

II. Millimetres into Inches.

Mm.	Inches.	Mm.	Inches.	Mm.	Inches.	Mm.	Inches.	Mm.	Inches.
700 701 702 703 704 705 706 707 708 709 711 711 712 713 714	27:56 :60 :64 :68 :72 :76 :80 :84 :88 :91 :95 :99 28:03 :07 :11	718 719 720 721 722 723 724 725 726 727 728 729 730 731 782	28·27 ·31 ·35 ·39 ·43 ·50 ·54 ·58 ·66 ·70 ·74 ·78 ·82	735 736 737 738 739 740 741 742 743 744 745 746 747 748 749	28:94 98 29:02 06 10 13 17 21 -25 -29 -33 -37 -41 -45	752 753 754 755 756 757 758 759 760 761 762 763 764 765 766	29·61 ·65 ·69 ·73 ·76 ·80 ·84 ·88 ·92 ·96 80·00 ·04 ·04 ·12 ·16	769 770 771 772 773 774 775 776 777 788 779 780 781 782 783	30·28 ·32 ·36 ·39 ·43 ·47 ·51 ·55 ·59 ·63 ·67 ·71 ·75 ·79 ·83
715 716 717	·15 ·19 ·23	733 734	·86 ·90	750 751	•53 •57	767 768	·20 ·24	784 785	*87 *91

Table for Correction of Volumes of Gases for Temperature, giving the Divisor for the Formula.

$$\nabla^1 = \frac{\nabla \times B}{760 \times (1 + \delta t)} \delta = 003665$$

	760× (1+δε).	$\begin{array}{c} \text{Log. } [760 \times \\ (1+\delta t)]. \end{array}$	ŧ	$760 \times (1+\delta t)$.	Log. [760× (1+δt)].
° C.			° C.		
0.0	760.0000	2.8808136	4.0	771.1416	2.8871341
1 1	760.2785	9727	•1	771.4201	2909
•2	760.5571	2.8811318	•2	771.6987	4477
.3	760.8356	2908	-3	771.9772	6045
•4	761.1142	4498	•4	772.2558	7612
0.5	761.3927	6087	4.5	772.5343	9178
•6	761.6712	7675	•6	772.8128	2.8880743
'7	761.9498	9263	•7	773.0914	2308
·8	762.2283	2.882 0850	•8	773:3699	3872
.9	762.5069	2437	.9	773.6485	5436
1.0	762.7854	2.8824024	5.0	773.9270	2 ·888700 0
1 1	763.0639	5610	1	774.2055	8563
.2	763 3425	7195	•2	774 4841	2.8890125
.3	763.6210	8779	.3	774.7626	1687
.4	763.8996	2.8830363	·4	775.0412	3248
1.5	764 1781	1946	5.2	775:3197	4808
6	764.4566	3528	.6	775.5982	6368
'7	764.7352	5111	.7	775.8768	7927
.8	765.0137	6692	-8	776.1553	9486
6.	765 2923	8273	6.0	776.4339	2.8901044
2:0	765:5708	2.8839854		776.7124	2.8902602
1 .2	765·8493 766·1279	2.8841434	·1 ·2	776·9909 777·2695	4159 5716
3	766-1279	8013 4591	•3	777.5480	7272
1 .4	766.6850	6169	•4	777 8266	8828
2.5	766.9635	7747	6.5	778.1051	2.8910383
1 .6	767.2420	2.8849324	.6	778.3836	1938
1 .7	767.5206	2.8850901	•7	778.6622	3492
1 .8	767.7991	2 3030301	-8	778 9407	5045
.9	768.0777	4052	.9	779.2193	6597
3.0	768:3562	2.8855626	7.0	779.4978	2.8918149
1.1	768.6347	7199	l 'i	779.7763	9701
1 -2	768.9133	8772	•2	780.0549	2.8921252
.3	769.1918	2.8860345	.3	780.3334	2802
•4	769.4704	1918	•4	780.6120	4352
3.5	769.7489	3490	7.5	780 .8905	5901
-6	770.0274	5062	1 ⋅6	781.1690	7450
.7	770.3060	6633	•7	781 4476	8998
.8	770.5845	8203	•8	781 7261	2.8930546
.8	770.8631	9772	.8	782.0047	2093
	_!	l	II	<u> </u>	l

TABLE FOR CORRECTION OF VOLUMES OF GASES—continued.

	760× (1+δ <i>t</i>).	Log. [760× (1+&)].	t	760× (1+δt).	$\begin{array}{c} \text{Log.} [760 \times \\ (1+\delta t)]. \end{array}$
° C.			° C.		
8.0	782.2832	2.8933640	12.5	794.5175	2.9002674
1	782.5617	5186	.6	795.0960	4196
.2	782.8403	6732	.7	795:3746	5717
.3	783.1188	8277	·8	795.6531	7238
•4	783:3974	9821	.9	795 9317	8758
8.5	783.6959	2.8941365	13.0	796.2102	2.9010277
.6	783.9544	2908	•1	796.4887	1796
.7	784.2330	4451	•2	796.7673	3315
8	784.5115	5993	•3	797:0458	4833
9	784.7901	7535	•4	797:3244	6350
9.0	785.0686	2.8949076	13.5	797.6029	7867
•1	785:3471	2.8950617	•6	797:8814	9384
.2	785.6257	2157	.7	798.1600	2·9020900
-3	785.9042	3697	•8	798.4385	2415
·4	786 1828	5236	.9	798.7171	3930
9.5	786.4613	6774	14.0	798 9956	2.9025444
-6	786.7398	8311	•1	799:2741	6957
•7	787.0184	9848	•2	799.5527	8470
- 8	787 - 2969	2.8961385	-3	799.8312	9983
1 .9	787 .5755	2921	•4	800:1098	2.9081495
10.0	787 . 8540	2.8964457	14.5	800:3883	2.9033007
1	788.1325	5993	-6	800.6668	4518
•2	788-4111	752 8	.7	800.9454	6029
-3	788.6896	9062	•8	801.2239	7539
•4	788.9682	2.8970595	-9	801 . 5025	9049
10.5	789 2467	2128	15.0	801.7810	2.9040558
-6	789.5252	3660	•1	802.0595	2066
-7	789 · 8038	5192	•2	802.3381	3574
·8	790.0823	6723	-3	802.6166	5081
9	790.3609	825 4	•4	802.8952	6588
11.0	790.6394	2.8979784	15.5	803.1737	8095
1	790.9179	2.8981314	∙6	803.4522	9601
.2	791 ·1965	2843	.7	803 7308	2.9051106
.3	791 • 4750	4372	∙8	804.0093	2611
·4	791 7536	2.8985900	.9	804.2879	4115
11.5	792.0321	7428	16.0	804 5664	2.9055619
.6	792:3106	8955	•1	804.8449	7122
.7	792.5892	2.8990482	.2	805.1235	8625
·8	792.8677	2008	•3	805.4020	2.9060127
9	793 1463	3533	•4	805.6806	1628
12.0	793.4248	2·899 5058	16.5	805.9591	2.9063129
1 1	793.7033	6582	.6	806.2376	4630
•2	793.9819	8106	.7	806.5162	6130
	794.2604				7630
'4	794.5390	2.9001152	9	807:0733	9129
.3	794.2604	8106 9629 2·9 001152	·7 ·8 ·9	806·5162 806·7947 807·0733	7

TABLE FOR CORRECTION OF VOLUMES OF GASES-continued.

	760× (1+δℓ).	$\begin{array}{c} \text{Log.} [760 \times \\ (1+\delta t)]. \end{array}$		$760 \times (1+\delta t).$	Log. [760× $(1+\delta t)$].
° C.			° C.		
17.0	807:3518	2.9070628	21.5	819.8861	2.9137535
1 1	807.6303	2126	•6	820.1646	9010
•2	807:9089	3624	•7	820.4432	2.9140485
•3	808.1874	5121	-8	820.7217	1960
•4	808:4660	6618	:9	821.0003	3434
17.5	808.7445	8114	22.0	821 • 2788	2.9144907
•6	809.0230	2.9079609	•1	821.5573	6380
7	809:3016	2.9081104	•2	821 .8859	7852
·8	809.5801	2598	-3	822.1144	9323
9	809 8587	4092	•4	822:3930	2·9150794
18.0	810.1372	2 9085586	22.5	822.6715	2265
1 .1	810.4175	7079	.6	822.9500	3735
.2	810.6943	8571	.7	823 2286	5205
-3	810.9728	2.9090063	•8	823.5071	6674
•4	811 2514	155 4	-9	823.7857	8143
18.5	811.5299	3045	23.0	824.0642	2.9159611
•6	811.8084	4535	.1	824.3427	2.9161079
.7	812:0870	6025	•2	824.6213	2546
·8	812.3655	7515	•3	824.8998	4013
.9	812.6441	9004	•4	825 1784	5479
19.0	812.9226	2.9100492	23.5	825 4569	6945
1	813.2011	1980	•6	825.7354	8410
•2	813 4797	3467	.7	826.0140	9875
•3	813.7582	4954	-8	826 2925	2.9171339
4	814.0368	6440	.8	826.5711	2802
19.5	814.3153	7926	24.0	826.8496	2.9174265
-6	814.5938	9411	•1	827 1281	5728
.7	814.8724	2.9110896	•2	827 4067	7190
-8	815.1500	2380	-3	827.6852	8652
9	815.4925	3864	•4	827 .9638	2.9180114
20.0	815.7080	2.9115347	24.5	828.2423	1575
·1	815.9865	6830	•6	828.5208	3035
•2	816.2651	8312	•7	828.7994	4495
3	816.5436	9794	∙8	829:0779	5954
•4	816 8222	2.9121275	.9	829:3565	7412
20.5	817.1007	2756	25.0	829:6350	2.9188870
.6	817.3792	4236	•1	829 9135	2.9190328
.7	817.6578	2.9125716	• 2	830.1921	1785
-8	817 9363	7195	-3	830.4706	3242
.9	818.2149	8674	•4	830.7492	4699
21.0	818.4934	2.9130152	25.5	831:0277	2.9196155
1 1	818.7719	1630	.6	831.3062	7610
.2	819.0505	3107	.7	831.5848	9065
3	819.3290	4583	•8	831.8633	2.9200520
'4	819.6076	6059	'9	831.1419	1974
•4	819.6076	6059	.8	831-1419	1974

: •

TABLE FOR CORRECTION OF VOLUMES OF GASES-continued.

•	760× (1+ δt). Log. [760× t 760× (1+ δt)].		760× (1+δt).	Log. $[760 \times (1+\delta t)]$.	
° C.			° C.		
26.0	832.4204	2.9203427	28.1	838-2697	2.9233838
·1	832 6989	4880	•2	838.5483	5281
•2	832.9775	6333	.3	838 8268	6723
•3	833.2560	7785	•4	839 1054	8165
•4	833.5346	9237	28.5	839.3839	2.9239606
26.5	833.8131	2.9210688	•6	839.6624	2.9241047
•6	834.0916	2139	.7	839.9410	2488
٠7	834.3702	3589	-8	840.2195	3928
•8	834.6487	5038	.9	840 4981	5368
•9	834.9273	6487	29.0	840.7766	2.9246807
27.0	835.2058	2·9217936	·1	841.0551	8246
•1	835.4843	9384	.2	841 · 3337	9684
•2	835.7629	2·92 20832	•3	841.6122	2 ·9251122
.3	836.0414	2279	•4	841.8908	2559
•4	836.3200	3725	29.5	842.1693	3995
27.5	836.5985	5171	•6	842.4478	5431
•6	836.8770	6617	.7	842.7264	6866
•7	837.1556	8062	•8	843.0049	8301
٠8	837 · 4341	9507	-9	843 2835	9736
•9	837.7127	2.9230951	30.0	843.5620	2.9261171
28.0	837 9912	2.9232395	1		

TABLE SHOWING THE TENSION OF MERCURY VAPOUR.

• c.	Millim.	٠c.	Millim.	° C.	Millim.	• c.	Millim.
100 110 120 130	.746 1.073 1.534 2.175	210 220 230 240	26·35 34·70 45·35 58·82	320 330 340 350	368·73 450·91 548·35 663·18	430 440 450 460	2533 2934 3384:35 3888
140 150 160 170 180 190	3.059 4.266 5.900 8.091 11.000 14.84 19.90	250 260 270 280 290 300 310	75·75 96·73 123·01 155·17 194·46 242·15 299·69	360 370 380 390 400 410 420	797·74 954·65 1195·65 1346·71 1587·96 1864 2178	470 480 490 500 510 520	4450 5062 5761 6520:25 7354 8265

TABLES REQUIRED IN THE ANALYSIS OF BEER.

Spirit Indication, with corresponding Degrees of Gravity lost in Malt Worts, by the "Distillation Process."

Degrees of Spirit Indi- cation.	•0	-1	-2	-3	•4	•5	•6	7	-8	-9
0 1 2 8 4 5 6 7 8 9 10 11 12 13 14	0·0 3·0 6·6 10·7 15·1 19·5 24·1 28·8 33·7 39·1 44·2 49·0 54·3 59·4 64·8 70·5	0·3 3·3 7·0 11·1 15·5 19·9 24·6 29·2 34·3 39·7 44·7 49·6 54·9 60·0 65·4 71·1	0.6 3.7 7.4 11.5 16.0 29.7 34.8 40.2 45.1 55.4 60.5 71.7	0.9 4.1 7.8 12.0 16.4 20.9 25.5 30.2 35.4 40.7 45.6 50.6 55.9 61.1 66.5 72.3	1·2 4·4 8·2 12·4 16·8 21·3 26·0 30·7 35·9 41·2 46·0 51·2 56·4 61·6 67·1 72·9	1.5 4.8 8.6 12.9 17.3 21.8 26.4 31.2 36.5 41.7 46.5 51.7 56.9 62.2 67.6 73.5	1.8 5.1 9.0 13.3 17.7 22.2 26.9 31.7 37.0 42.2 47.0 52.2 57.4 62.7 74.1	2·1 5·5 9·4 13·2 22·4 32·2 37·5 42·7 47·5 52·9 63·3 74·7	2·4 5·9 9·8 14·2 18·6 23·1 27·8 32·7 38·0 43·2 48·0 53·3 58·4 69·3 75·3	2·7 6·2 10·2 11·2 19·1 23·6 28·3 33·2 38·6 43·7 48·5 53·8 69·9 75·9

Spirit Indication, with corresponding Degrees of Gravity lost in Malt Worts, by the "Evaporation Process."

Degrees of Spirit Indi- cation.	0	-1	-2	•3	٠4	•5	•6	•7	-8	.9
0		.3	.7	1.0	1 4	1.7	2.1	2.4	2.8	3.1
0 1	3.2	3.8	4.2	4.6	5.0	5.4	5.8	6.2	6.6	7.0
2	7.4	7.8	8.2	8.7	9.1	9.5	9.9	10.3	10.7	11.1
2 3	11.5	11.9	12.4	12.8	13.2	13.6	14.0	14.4	14.8	15.3
4	15.8	16.2	16.6	17.0	17.4	17.9	18.4	18.8	19.3	19.8
4 5	20.3	20.7	21.2	21.6	22.1	22.5	23.0	23.4	23.9	24.3
6	24.8	25.2	25.6	26.1	26.6	27.0	27.5	28.0	28.5	29.0
6 7 8 9	29.5	30.0	30.4	30.9	31.3	31.8	32.3	32.8	33.3	53.8
8	34.3	34.9	35.5	36.0	36.6	37.1	37.7	38.3	38.8	39.4
9	40.0	40.5	41.0	41.5	42.0	42.5	43.0	43.5	44.0	44.4
10	44.9	45.4	46.0	46.5	47.1	47.6	48.2	48.7	49.3	49.8
11	50.3	50.9	51.4	51.9	52.5	53.0	53.5	54.0	54.5	55.0
12	55.6	56.2	56.7	57.3	57.8	58.3	58.9	59.4	59.9	60.5
13	61.0	61.6	62.1	62.7	63.2	63.8	64.3	64.9	65.4	66.0
14	66.5	67.0	67.6	68.1	68.7	69.2	69.8	70.4	70.9	71.4
15	72.0					1			1	

TABLE FOR ASCERTAINING THE VALUE OF THE ACETIC ACID.

Corresponding Degrees of "Spirit Indication."

Excess per cent. of Acetic Acid in the Beer.	-00	•01	-02	-08	•0 4	•05	-06	-07	-08	-09
•0		.02	•04	.06	•07	.08	•09	·11	·12	•13
•1	•14	.15	.17	•18	·19	•21	.22	•23	•24	.26
·2 ·3	.27	.28	•29	•31	.32	.33	.34	.35	•37	.38
-3	.39	.40	•42	· 4 3	•44	·46	.47	·48	•49	.51
·4 ·5	.52	.53	•55	•56	·57	.59	.60	•61	.62	.64
•5	.65	•66	•67	•69	·70	.71	.72	.73	.75	.76
·6 ·7	.77	.78	.80	•81	•82	*84	.85	.86	-87	.89
.7	.90	•91	.93	•94	.95	•97	•98	.99	1.10	1.02
•8	1.03	1.04	1.05	1.07	1.08	1.09	1.10	1.11	1.13	1.14
-9	1.15	1.16	1.18	1.19	1.21	1.22	1.23	1.25	1.26	1.28
1.0	1.29	1.31	1.33	1.35	1.36	1.37	1.38	1.40	1.41	1.42

TABLE FOR SALT IN BEER.

Salt in Grains per Gallon, corresponding to c.c.'s of Decinormal AgNO₃.

25 c.c. of Beer to be employed.

c.c. NAgNO3	Grains NaCl per gallon.	c.c. NAgNO3	Grains NaCl per gallon.	c.c. $\frac{N}{10}$ AgNO ₃	Grains NaCl per gallon.
0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 1·0 1·1 1·2 1·3 1·4 1·5 1·6	1 · 64 3 · 28 4 · 91 6 · 55 8 · 19 9 · 83 11 · 47 13 · 10 14 · 74 16 · 38 18 · 02 19 · 66 21 · 29 22 · 93 24 · 57 26 · 21	2·2 2·3 2·4 2·5 2·6 2·7 2·8 2·9 3·0 3·1 3·3 3·4 3·5 3·6 3·7	36 · 04 37 · 67 39 · 31 40 · 95 42 · 59 44 · 50 49 · 14 50 · 78 52 · 42 54 · 05 55 · 69 57 · 38 57 · 60 · 61	4·2 4·3 4·4 4·5 4·6 4·7 4·8 4·9 5·0 5·2 5·3 5·6 5·7	68 · 80 70 · 43 72 · 07 73 · 71 75 · 35 76 · 99 78 · 62 80 · 26 81 · 90 83 · 54 86 · 81 88 · 81 88 · 81 89 · 09 91 · 73 93 · 37
1.7 1.8 1.9 2.0 2.1	27.85 29.48 31.12 32.76 34.40	3·8 3·9 4·0 4·1	62·24 63·88 65·52 67·16	5·8 5·9 6·0 6·1	95.00 96.64 98.28 99.92

SPECIFIC ROTATORY POWERS OF THE CARBOHYDRATES.

Definition—The specific rotatory power of an optically active substance in solution may be defined as the angle through which a plane polarized ray of light of definite refrangibility is rotated by a column one decimetre in length of a solution containing one gram of the substance in 1 c.c.

If the rotation is observed through a tube l decimetres in length and the solution contains c grams of substances in 100 c.c., then, if a be the angle of rotation, the "specific rotatory power" is given

by the formula.

$$[a] = \frac{a.\ 100}{l.\ c.}$$

Observations are usually made either with a polarimeter, such as that of Laurent, for which a sodium flame is used as the means of illumination; or with a Ventzke-Scheibler instrument, which is adapted for use with white light illumination from oil or gas lamps. Specific rotatory power as determined with reference to the ray D of the solar spectrum (sodium flame) is indicated by [a]: whilst, as determined by the Ventzke-Scheibler instrument, it is indicated by $[a]_j$, where j is the transition tint (i.e. from the blue to the red) and is the ray complementary to the medium yellow or jaune moyen—hence the j. This jaune moyen ray is the true medium yellow of the solar spectrum: its wave-length is 0.0005608 millimetres (or λ 0.0005608).

The Ventzke-Scheibler polarimeter is adjusted to the Ventzke scale, which is such that 100 divisions of the scale equal the amount of rotation caused by passing through a solution of pure cane-sugar 200 mm. in length, containing 26.048 grams of pure cane-sugar per 100 c.c. at 17.5° C. Such a solution has a sp. gr. of almost exactly 1100 (water at 17.5° C=1000). The readings for cane-sugar in this instrument consequently correspond to the sp.

gr. of the solution less 1000.

Relation of
$$[a]_j$$
 to $[a]_p$.—The relation $[a]_p : [a]_j :: 21.67^\circ : 24^\circ :: 1 : 1.107$

holds for substances whose rotatory dispersion does not differ sensibly from that of cane-sugar. Cane-sugar, however, appears to be slightly less dispersive than maltose, dextrose, etc.: hence it has been very carefully determined by experiment* that 1:111 is the more correct factor for converting $[a]_p$ into $[a]_j$. We have, therefore, the following rules :-

To convert $[a]_p$ into $[a]_i$ multiply by 1.111 (log. 0.04571), or simply add one-ninth.

To convert [a], into [a], multiply by 0.900 (log. $\overline{1}.95429$), or simply deduct one-tenth. Thus, if $[\alpha]_0 = 202.0$, then $[\alpha]_j = 202 + 22.4 = 224.4$

 $^{[\}alpha]_i = 57$, then $[\alpha]_p = 57 - 5.7 = 51.3$. * See series of papers by Brown, Morris, and Millar in the Jour. Chem. Soc., 1897.

			•

SPECIFIC ROTATORY POWERS OF THE CARBOHYDRATES—continued.

In the Ventzke-Scheibler polarimeter 100 divisions of the scale equal 38.43° of arc or

1 scale-division = 0.3843° aj. (log. 1.58467).

The values representing specific rotation vary directly as the sp. gr. divisor (D) used. Thus, if 150° be the specific rotation of maltose for [a], 3.86 (that is, on the basis of the 3.86 divisor) the specific rotation where the divisor 3.93 is used must be taken as $150 \times 3.93 = 152.7^{\circ}$.

3.86

The number of grams per 100 c.c. of a solution of a carbohydrate of which the sp. gr. (water=1000) is known is found by dividing the sp. gr. minus 1000 by a constant given in the subjoined table. This constant is usually denoted by D.

TABLE SHOWING THE SPECIFIC ROTATORY POWERS OF THE CARBOHYDRATES.

Substance.	Formula.	Divisor to get grams per 100 c.c.*		rotatory bsolute).	power red	rotatory uced to the ivisor 3-86.
Dextrin Sucrose Maltose Lactose (anhyd.) Lactose (cryst.) Dextrose Laevulose Invert Sugar	$(C_{12}H_{20}\cap_{10})_n$ $C_{12}H_{22}O_{11}$ " $C_{12}H_{22}O_{11}$ " $C_{12}H_{22}O_{11}$ $C_{6}H_{12}O_{6}$ " $C_{6}H_{12}O_{6}$	3.85 3.92 3.99 3.99 3.83 3.93	[a]; +221 + 73.8 +153.3 + 61.6 + 58.5 + 57 - 106 at 15.5°C. - 24.5 at 15.5°C.	+ 138·0 + 55·4	[a];3·86 + 216 + 74 + 151 + 59·6 + 56·6 + 57·4 - 104·1 at 15·5°C.	[\alpha] _{n3.86} + 194.4 + 66.8 + 135.9 + 53.6 + 50.9 + 51.7 - 93.7 - 21.9

Bi-rotation.—In some cases a freshly-prepared solution of a sugar turns the plane of polarization almost twice as much as one which has been kept for some hours or heated to boiling. This phenomenon is known as bi-rotation.

		Multiplier.	Logarithm.
To conve	rt $C_{12}H_{22}O_{11}$ into $C_{12}H_{24}O_{12}$	$\frac{20}{19} = 1.053$	0.02228
,,	$C_{12}H_{24}O_{12}$,, $C_{12}H_{22}O_{11}$	$\frac{19}{20} = 0.95$	1.97773
,,	$C_{12}H_{20}O_{10}$,, $C_{12}H_{24}O_{12}$	$\frac{10}{9} = 1.111$	0.04576
,,	$C_{12}H_{24}O_{12}$,, $C_{12}H_{20}O_{10}$	$\frac{9}{10} = 0.90$	1.95424

^{*} The figures given in this column are such as will be found most useful in actual work. For a complete series of absolutely correct divisors for various concentrations the valuable papers by Brown, Morris, and Millar in the Jour. Chem. Soc., 1897, must be consulted.

SPECIFIC ROTATORY POWERS OF THE CARBOHYDRATES—continued.

				Ventzke-Scheibler Saccharimeter.
1 gram in	100 c.	c. of abe	olute	Number of scale-divisions of deviation with 200 mm. tube (transition tint)*
Dextrin				 +11.55
Sucrose .	,	•		+ 3.84†
Maltose .				+ 7.98
		•		+ 2.97
				- 5.52
Invert sugar				- 1.28
Lactose (crys		•		+ 3.04

Formula for calculating the amount of cane-sugar present in a mixture of cane-sugar and dextrose when the specific rotatory power before and after inversion are known.

Let R_b be the specific rotatory power before inversion R_a be the specific rotatory power after inversion

x be the percentage of cane-sugar present. Then $100 R_b = 73.8x + (100 - x)57$,

Then 100 R_b= 73.8x+(100-x)57,
and 100 R_a= -24.5x+(100-x)57

$$\therefore$$
 100 (R_b-R_a)=98.3x.
 $x = \frac{R_b - R_a}{.983}$.

.983

Similarly to find the amount of cane-sugar present in a mixture of cane-sugar and dextrose from the scale degrees before and after inversion, the 200 mm, tube being used-

Grams of cane-sugar per 100 c.c. of solution = $\frac{D_b - D_a}{6.12}$.

† When inverted this becomes - 1.85.

^{*} The figures given in this column are obtained by dividing the [a]j by 19.215 (log.

.

CUPRIC OXIDE REDUCING POWERS OF THE CARBOHYDRATES.

Definition.—" Dextrose being the type of reducing bodies and the substance for which the amount of cupric oxide reduced was first determined, I use it as the standard to which to refer all other reducing carbohydrates or mixtures of reducing with non-reducing ones. I take the cupric oxide reducing power (or 'cupric reducing power') of a body or mixture to be the amount of cupric oxide, calculated as dextrose, which 100 parts reduce: it is designated by the letter K."—(O'Sullivan).

Briefly, we may define "K" as the specific cupric reducing power of a substance referred to dextrose as standard (100). The divisor is often added: thus $K_{3\cdot 86}=25$ means that the cupric reducing power of the substance is one-fourth that of dextrose when the solid

matter is determined by the 3.86 divisor.

Preparation of Fehling's Solution for Gravimetric Estimations.— Dissolve 34.6 grams of pure recrystallized copper sulphate in distilled water and make up the volume to 500 c.c. Then dissolve 173 grams Rochelle salt and 65 grams anhydrous sodium hydroxide in separate beakers, mix the solutions, and make up the volume with distilled water to 500 c.c. These two solutions are kept in separate bottles and are mixed in equal volumes, to form Fehling's solution, immediately before use.

Method of making an estimation of cupric reducing power.—Fifty c.c. of the freshly mixed Fehling's solution are placed in a beaker of about 250 c.c. capacity, and having a diameter of 7.5 cm. (=3 inches). This is placed in a boiling water bath, and when the solution has attained the temperature of the water, the accurately weighed or measured volume of the sugar solution is added, and the whole made up to 100 c.c. with boiling distilled water. The beaker, which is covered with a clock glass, is then returned to the water bath and the heating continued for exactly twelve minutes. The precipitated cuprous oxide is now rapidly filtered off through a Soxhlet tube, washed first with hot water, then with alcohol and ether, and finally dried. When dry, the cuprous oxide is reduced to metallic copper by gently heating in a stream of hydrogen, and weighed; or it may be oxidized in a stream of oxygen and weighed as CuO. Sometimes the Cu₂O is weighed as such, after being dried in a water oven (see O'Sullivan and Stern, Jour. Chem. Soc., 1896, p. 1692).

As spontaneous reduction of Fehling's solution invariably takes place, the amount of this must be carefully determined for every fresh batch of the solution and allowed for in each determination of cupric reducing power. It usually amounts to 0.002 to 0.003 gram CuO per 50 c.c. of Fehling's solution used.

It is of great importance, in making the above estimation, that an amount of the reducing sugar is taken that will give a weight of

CuO lying between 0.15 and 0.35 gram.

It must be carefully borne in mind that the values given in the following tables are correct only when the preparation of the

Fehling's solution, and the manner of carrying out the determination of cupric reducing power conform exactly with the directions given on p. 63. It has been shown that the amount and nature of the alkali in Fehling's solution exercises a great influence on the quantity of copper reduced by a given weight of maltose or of the starch-transformation products; but with dextrose and laevulose the influence is far less. Glendinning has proved that an equivalent amount of potassium hydroxide may be substituted for the sodium compound without causing any alteration in the reducing power. In the case of dextrose and laevulose the variant which has the greatest influence is the state of dilution of the Fehling's solution. When the dilution is greater than that prescribed in the standard method, the reducing power is appreciably lower, and the greater the dilution the greater the difference.

In the two following tables the values adopted are such as will be found to give correct results when the quantities of carbohydrates taken are those most commonly used in actual determinations.

FACTORS FOR THE DETERMINATION OF THE CARBOHYDRATES FROM THE AMOUNTS OF CUO REDUCED BY THEM OR BY THEIR EQUIVALENTS ON HYDROLYSIS.

TARKE I .- ABSOLITTE VALITES.*

K Absolute.			Logarithms.	1 Gram	1 Gram of Absolute.	Logarithms.
		(Cu=68.2) =Cu × 0.5127		Sucrose	(grams) =1.950 Cu =2.444 CuO	0.29013
67-13	Malbose	= Cu ₂ O × 0 ± 20 ± 1 = Cu × 0 ± 14 ± 1 = Cu × 0 × 0 ± 20 ± 1		Maltose ,,	= 1.94 Cu = 1.871 CuO	0.03903
72-36	<u>:</u>	= Cu ₂ × 0.7216 = Cu ₀ × 0.5768 = Cu ₀ × 0.6406	I-86828 I-76027 I-80652	Lactose (anhydr.)	= 1.86 Cu = 1.787 CuO = 1.661 CuoO	0.14172 0.28978 0.19848
68.76	yat.)	$= Cu \times 0.7596$ $= Cu 0 \times 0.9061$ $= Cu2 0 \times 0.6742$	1.88056 1.78255 1.82890	at.)	=1.817 Cu =1.650 CuO =1.483 Cu ₂ 0	0.21745 0.217150
001	Dextrose	= Cu × 0.5223 = CuO × 0.4167 = Cu ₂ O × 0.4685			=1.916 Cu =2.400 CuO =2.158 Cu ₂ O	0.282% 0.88021 0.88396
99.20		= Cu × 0.5585 = Cu 0 × 0.4456 = Cu 0 × 0.4967			=1.791 Cu =2.244 Cu0	0.25301 0.35102 0.30477
87.28	Invert Sugar	= Cu x 0.6897 = Cu 0 x 0.4897 = Cu 0 x 0.4791 = Cu 0 x 0.7769 = Cu 0 x 0.7769 = Cu 0 x 0.7769	1.78216 1.68414 1.68089 1.67204 1.57408 1.62028	Invert Sugar " Starch or Dextrin "	= 1-668 Cu = 2-968 Cu	0.26785 0.36586 0.31961 0.42597 0.37972

The numbers given in this table are the absolute values or the values based on the true divisor to get grams per 100 c.c. Thus 1.871 grams
 GuO=1 gram absolute maltose,—that is maltose as deformined by the true divisor 3.92. For 1 gram of 3.86 maltose we should have
 3.66
 1.871 x 3.79 = 1.850 gram CuO.

FACTORS FOR THE DETERMINATION OF THE CARBOHYDRATES FROM THE AMOUNTS OF CUO REDUCED BY THEM OR BY THEIR EQUIVALENTS ON HYDROLYSIS.

TABLE II.-VALUES REDUCED TO THE COMMON DIVISOR (D) 3.86.

K8-96		Logarithms.	1 Gra	l Gram of 3·86.		Logarithms.
	(Cu = 63.2) Sucrose = Cu × 0.5114		Sucrose	(grams) =1.956 Cu		0.29126
			2 :	=2.451 Cu0 =2.203 Cu ₂ 0		0.88927 0.84302
26.32	Maltose = Cu × 0.9283		Maltose	=1.077 Cu =1.850 Cu0		0.03233 0.13034
70-01	$= \frac{1}{1 \text{ arther (anhadr.)}} = \frac{1}{1 \text{ arther (anhadr.)}$. I-91591	Lactose (anhydr.)	\sim		0.08409
100	;	1.82091	*	=1.680 Cu0		0.22584
66.50	:yst.)		Lactose (cryst.)	=1.274 Cu		0.10505
9,000	= CtaO × 0.56	.,-,-	n. Daxtrose	=1.485 Cu ₂ 0		0.15681
			=		•	0.88360
91.83	Lacyulose = CD × 0.4587		Laevulose	=1.759 Cu		0.24520
96-25	$\lim_{n \to \infty} \sup_{n \to \infty} \sum_{n \to \infty} \sum_{n$	I-70804 I-78489	Invert Sugar	=1.981		0.29696
	", = CuO ×0.4829	1.63638 1.68263	of the state of th	=2.810 Cu0 =2.077 Cu ₂ 0		0.81787
	= CuO × 0.8837	1.58404 1.68029	3000 CH DEALLIN	= 2.606		0.41596 0.86971

To find K absolute from K_{3.96}.—Let the true divisor (D) to get grams per 100 c.c. be M, then $\frac{K_{3.96} \times M}{K_{3.96}} = K$ absolute.

 $\frac{-3.96}{3.96} \sim \text{K absolute}.$ **Example.** -Let K_{3.98} = 61·1, and let M be 8·92, then K absolute = $\frac{-3.96}{3.96}$ = 62·05.

•		
, .		

TABLE FOR PHOSPHATES.

Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P2O2	P ₂	Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	$\mathbf{P_2}$
0.1	0.14	0.09	0.06	0.028		5.73	3.66	2.62	1.145
•2	0.28	0.18	0.13	0.056	.2	5.87	3.75	2.69	1.173
•3	0.42	0.27	0.19	0.084	.3	6.00	3.84	2.75	1.201
•4	0.56	0.36	0.26	0.112	•4	6.14	3.93	2.82	1.229
•5	0.70	0.45	0.32	0.140	1 ⋅5	6.28	4.01	2.88	1.257
.6	0.84	0.54	0.38	0.168	.6	6.42	4.10	2.94	1.285
•7	0.98	0.62	0.45	0.196	.7	6.26	4.19	3.01	1.313
•8	1.12	0.71	0.21	0.223	-8	6.70	4.28	3.07	1.341
•9	1.26	0.80	0.58	0.251	.9	6.84	4.37	3.14	1.369
1.0	1.40	0.89	0.64	0.279	5.0	6.98	4.46	3.20	1:396
·1	1.24	0.98	0.70	0.307	1	7.12	4.55	3.26	1.424
•2	1.68	1.07	0.77	0.335	•2	7.26	4.64	3.33	1.452
•3	1.82	1.16	0.83	0.368	.3	7.40	4.73	3.39	1.480
•4	1.96	1.25	0.90	0.391	•4	7.54	4.82	3.45	1.508
•5	2.09	1.34	0.96	0.419	•5	7.68	4.91	3.52	1.536
•6	2.23	1.43	1.02	0.447	∙6	7.82	5.00	3.58	1.564
.7	2.37	1.52	1.09	0.475	.7	7.96	5.08	3.65	1.592
-8	2.51	1.61	1.15	0.203	-8	8.10	5.17	3.71	1.620
.9	2.65	1.70	1.22	0.531	.9	8.24	5.26	3.77	1.648
2.0	2.79	1.78	1.28	0.559	6.0	8.38	5.35	3.84	1.676
~i	2.93	1.87	1.34	0.587	ı 'ı	8.52	5.44	3.90	1.704
$\cdot \bar{2}$	3.07	1.96	1.41	0.614	1.2	8.66	5.53	3.97	1.732
-3	3.21	2.05	1.47	0.642	3	8.80	5.62	4.03	1.760
•4	3.35	2.14	1.54	0.670	1 .4	8.94	5.71	4.09	1.787
.5	3.49	2.23	1.60	0.698	.5	9.08	5.80	4.16	1.815
.6	3.63	2.32	1.66	0.726	.6	9.22	5.89	4.22	1.843
·ř	3.77	2.41	1.73	0.754	·7	9.36	5.98	4.29	1.871
-8	3.91	2.50	1.79	0.782	.8	9.50	6.07	4.35	1.899
.9	4.05	2.59	1.86	0.810	9	9.64	6.15	4.41	1.927
3.0	4.19	2.68	1.92	0.838	7.0	9.77	6.24	4.48	1.955
°i	4.33	2.77	1.98	0.866	'·i	9.91	6.33	4.54	1.983
.2	4.47	2.85	2.05	0.894	.2	10.05	6.42	4.61	2.011
.3	4.61	2.94	2.11	0.922	3	10.19	6.51	4.67	2.039
•4	4.75	3.03	2.18	0.950	4	10.33	6.60	4.73	2.067
.5	4.89	3.12	2.24	0.978	.5	10.47	6.69	4.80	2.095
.6	5.03	3.21	2.30	1.006	.6	10.61	6.78		
.7	5.17	3.30	2.30	1.033	.7	10.75	6.87	4·86 4·93	2·123 2·151
.8					8				
.9	5·31 5·45	3·39 3·48	2·43 2·50	1.061	9	10·89 11·03	6·96 7·05	4·99 5·05	2.178
4.0		3.57			8.0	11.17			2.206
40	5.59	9.91	2.56	1.117	**	11.17	7.14	5.12	2.234
Mg ₂ P ₂ C	0, 0	1 02	2 08	3 .04	.05	-06	•07	•08	-09
Ca ₂ P ₂ O	. 01	1 08	3 •04	4 ∙06	•07	.08	10	111	13
CaP_2O_8	01				•05	-05	.06	.07	∙08
P_2O_5	.01					.04	.05	.05	.06
P_2	-00					.017	.020	.022	

TABLE FOR PHOSPHATES—continued.

Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	P ₂	Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	P ₂
8.1	11.31	7.22	5.18	2.262	12.7	17.73	11.33	8.12	3.547
•2	11.45	7.31	5.25	2.290	•8	17.87	11.42	8.19	3.575
•3	11.59	7.40	5.31	2.318	-9	18.01	11.51	8.25	3.603
•4	11.73	7.49	5.37	2.346	13.0	18.15	11.60	8.32	3.631
•5	11.87	7.58	5.44	2.374	·1	18.29	11.68	8.38	3.659
•6	12.01	7.67	5.20	2.402	•2	18.43	11.77	8.44	3.687
•7	12.15	7.76	5.57	2.430	.3	18.57	11.86	8.51	3.714
.8	12.29	7.85	5.63	2.458	•4	18.71	11.95	8.57	3.742
•9	12.43	7.94	5.69	2.486	•5	18.85	12.04	8.64	3.770
8.0	12.57	8.03	5.76	2.514	•6	18.99	12.13	8.70	3.798
•1	12.71	8.12	5.82	2.541	.7	19.13	12.22	8.76	3.826
•2	12.85	8.21	5.89	2.569	•8	19.27	12:31	8.83	3.854
•3	12.99	8.30	5.95	2.597	.9	19.41	12.40	8.89	3.882
•4	13.13	8:38	6.01	2 625	14.0	19.55	12.49	8.96	3.910
•5	13.27	8.47	6.08	2.653	'1	19.69	12.58	9.02	3.938
.6	13.41	8.56	6.14	2.681	-2	19.83	12.67	9.08	3.966
·7	13.55	8.65	6.21	2.709	.3	19.97	12.76	9.15	3.994
•8	13.69	8.74	6.27	2.737	•4	20.11	12.84	9.21	4.022
.9	13.83	8.83	6.33	2.765	-5	20.25	12.93	9.28	4.050
10.0	13.96	8.92	6.40	2.793	-6	20.39	13.02	9.34	4.078
•1	14.10	9.01	6.46	2.821	.7	20 53	13.11	9.40	4.105
•2	14.24	9.10	6.52	2.849	∙8	20.67	13.20	9.47	4.133
.3	14.38	9.19	6.29	2.877	.9	20.81	13.29	9.58	4.161
•4	14.52	9 28	6.65	2.905	15.0	20.95	13.38	9.60	4.189
•5	14.66	9.37	6.72	2.932	'1	21.09	13.47	9.66	4.217
•6	14.80	9.45	6.78	2.960	•2	21.23	13.56	9.72	4.245
•7	14.94	9.54	6.84	2.988	.3	21.37	13.65	9.79	4.273
•8	15.08	9.63	6.91	3.016	•4	21.50	13.74	9.85	4.301
.9	15.22	9.72	6.97	3.044	•5	21.64	13.83	9.92	4.329
11.0	15.36	9.81	7.04	3.072	.6	21.78	13.91	9.98	4.357
•1	15.50	9.90	7.10	3.100	.7	21.92	14.00	10.04	4.385
•2	15.64	9.99	7.16	3.128	-8	22.06	14.09	10.11	4.413
.3	15.78	10.08	7.23	3.156	.9	22.20	14.18	10.17	4.441
•4	15.92	10.17	7.29	3.184	16.0	22.34	14.27	10.23	4.469
.2	16.06	10.26	7:36	3.212	1 1	22.48	14:36	10.30	4.496
.6	16.20	10.35	7.42	3.240	.2	22.62	14.45	10.36	4.524
.7	16.34	10.44	7:48	3.268	.3	22.76	14.54	10.43	4.552
·8	16.48	10.53	7.55	3.296	.4	22.90	14.63	10.49	4.580
.9	16.62	10.61	7.61	3.324	.5	23.04	14.72	10.55	4.608
12.0	16.76	10.70	7.68	3.351	·6 ·7	23·18 23·32	14·81 14·89	10.62 10.68	4.636 4.664
.1	16.90	10.79	7.74	3.379		23.32	14.98	10.08	4.692
·2 ·3	17:04	10.88	7.80	3.407	·9	23.40	15.07	10.75	4.720
.3	17.18	10.97	7.87	3.435				10.81	
•4	17.32	11·06 11·15	7·93 8·00	3·463 3·491	17·0 ·1	23·74 23·88	15·16 15·25	10.87	4·748 4·776
·5 ·6	17:46		8.06	8.219	•2	24.02	15.84	11.00	4.804
.0	17.60	11.24	0 00	O DIA	•	42 VZ	10.04	11 00	2 002

TABLE FOR PHOSPHATES—continued.

Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P2O2	P2	Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	P ₂
17:3	24.16	15.43	11.07	4.832	21.3	29.74	19.00	13.62	5.949
•4	24.30	15.52	11.13	4.860	•4	29.88	19.09	13.69	5.977
.5	24.44	15.61	11.19	4.887	•5	30.02	19.18	13.75	6.002
.6	24.58	15.70	11.26	4.915	.6	30.16	19.27	13.82	6.033
.7	24.72	15.79	11.32	4.943	.7	30.30	19.35	13.88	6.060
•8	24.86	15.88	11.39	4.971	∙8	30.44	19.44	13.94	6.088
.9	25.00	15.97	11.45	4.999	.9	30.28	19.53	14 .01	6.116
18.0	25.14	16.05	11.51	5.027	22.0	30.72	19.62	14.07	6.144
'1	25.27	16.14	11.58	5.055	'1	36.86	19.71	14.14	6.172
2	25.41	16.23	11.64	5.083	∥ ·2	31.00	19.80	14.20	6.500
.3	25.55	16.32	11.71	5.111	.3	31.14	19.89	14.26	6.228
•4	25.69	16.41	11.77	5.139	•4	31 28	19.98	14.33	6.256
.2	25.83	16.50	11.83	5.167	•5	31.42	20.07	14.39	6.284
•6	25.97	16.59	11.90	5.195	6	31.56	20.16	14.46	6.312
7	26.11	16.68	11.96	5.223	.7	31.70	20.25	14.2	6.340
-8	26.25	16.77	12.03	5.250	•8	31 84	20.34	14.58	6.368
.9	26:39	16.86	12.09	5.278	.9	31.98	20.43	14.65	6.396
19.0	26.53	16.95	12.15	5.306	23.0	32.12	20.51	14.71	6.423
1	26.67	17.04	12.22	5.334	'1	32 26	20.60	14.78	6.451
.2	26.81	17.12	12.28	5.362	•2	32.40	20.69	14.84	6.479
-3	26 95	17.21	12.35	5.390	.3	32 54	20.78	14 90	6.507
•4	27.09	17.30	12.41	5.418	•4	32.68	20.87	14.97	6.535
•5	27.23	17.39	12.47	5.446	.5	32.82	20.96	15.03	6.263
.6	27.37	17.48	12.54	5.474	1 .6	32.96	21.05	15.10	6.591
.7	27.51	17.57	12.60	5.502	.7	33.09	21.14	15.16	6.619
.8	27.65	17.66	12.67	5.530	8	33.23	21.23	15.22	6.647
.9	27.79	17.75	12.73	5.558	.9	33.37	21.32	15.29	6.675
20.0	27.93	17.84	12.79	5.586	24.0	33.21	21.41	15.35	6.703
1	28.07	17.93	12.86	5.614	'1	33.65	21.50	15.42	6.731
. 2	28.21	18.02	12.92	5.642	.2	33.79	21.58	15.48	6.759
'3	28.35	18.11	12.99	5.669	.3	33.93	21.67	15.24	6.787
.4	28:49	18.20	13.05	5.697	•4	34.07	21.76	15.61	6.814
•5	28.63	18.28	13.11	5.725	.5	34.21	21.85	15.67	6.842
6	28.77	18:37	13.18	5.753	6	34.35	21.94	15.74	6.870
.7	28.91	18:46	13.24	5.781	.7	34.49	22.03	15.80	6.898
·8	29.05	18.55	13.31	5.809	18	34.63	22.12	15.86	6.926
21.0	29.19	18.64	13.37	5.837	.9	34.77	22.21	15.93	6.954
	29.32	18.73	13.43	5.865	25.0	34.91	22:30	15.99	6.982
1 .2	29.46	18.82	13.50	5.893	•1	35.05	22:39	16.06	7.010
2	29.60	18.91	13.56	5.921	-2	35.19	22.48	16.12	7.038
Mg ₂ P ₂ (0, 0	1 0	2 0	3 04	05	-06	-07	08	-09
Ca,P,O	. ∙0:					∙08	•10	11	13
CaP ₂ O	. 0					.05	.06	.07	•08
P ₂ O ₅	0.					.04	.05	.05	.06
P ₂	.00			08 01		.017	.020	.022	.025
P ₂ 5									

TABLE FOR PHOSPHATES—continued.

Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	P ₂	Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P208	P ₂
25.3	35.33	22.57	16.18	7.066	29.9	41.75	26.67	19.13	8.351
•4	35.47	22.66	16.25	7.094	30.0	41.89	26.76	19.19	8.378
•5	35.61	22.74	16.31	7.122	•1	42.03	26.85	19.25	8.406
.6	35.75	22.83	16.38	7.150	•2	42.17	26.94	19.32	8.434
•7	35.89	22.92	16.44	7.178	.3	42.31	27.03	19.38	8.462
-8	36.03	23.01	16.50	7.205	•4	42.45	27 ·11	19.45	8.490
•9	36.17	23.10	16.57	7.233	•5	42.59	27 20	19.51	8.518
26.0	36.31	23.19	16.63	7:261	•6	42.73	27.29	19.57	8.546
•1	36.45	23.28	16.70	7:289	•7	42.87	27:38	19.64	8.574
•2	36.59	23.37	16.76	7:317	•8	43.01	27.47	19.70	8.602
•3	36.73	23.46	16.82	7.345	•9	43.15	27.56	19.77	8.630
•4	36.87	23.55	16.89	7:373	31.0	43.29	27.65	19.83	8.658
•5	37.00	23.64	16.95	7.401	•1	43.43	27.74	19.89	8.686
•6	37.14	23.72	17.02	7.429	•2	43.57	27.83	19.96	8.714
•7	37.28	23.81	17.08	7.457	-3	43.71	27.92	20.02	8.742
.8	37.42	23.90	17.14	7.485	•4	43.85	28.01	20.09	8.769
.9	37 56	23.99	17.21	7.513	•5	43.99	28.10	20.15	8.797
27.0	37.70	24.08	17.27	7.541	•6	44.13	28.18	20.21	8.825
•1	37.84	24.17	17:33	7.569	•7	44.27	28.27	20.28	8.853
•2	37.98	24.26	17.40	7.597	•8	44.41	28.36	20.34	8.881
•3	38.12	24.35	17.46	7.624	.9	44.55	28.45	20.41	8.909
•4	38.26	24.44	17.53	7.652	32.0	44.69	28.54	20.47	8.937
•5	38.40	24.53	17.59	7.680	•1	44.82	28.63	20.53	8.965
.6	38.54	24.62	17.65	7.708	•2	44.96	28.72	20.60	8.993
.7	38.68	24.71	17.72	7.736	•3	45.10	28.81	20.66	9.021
.8	38.82	24.80	17.78	7.764	•4	45.24	28.90	20.72	9.049
.9	38.96	24.88	17.85	7.792	•5	45.38	28.99	20.79	9.077
28.0	39.10	24.97	17.91	7.820	•6	45.52	29.08	20.85	9.105
.1	39.24	25.06	17.97	7.848	.7	45.66	29.17	20.92	9.133
•2	39.38	25.15	18.04	7.876	-8	45.80	29.26	20.98	9.160
•3	39.52	25.24	18.10	7.904	.9	45.94	29.34	21.04	9.188
•4	39.66	25.33	18.17	7.932	83.0	46.08	29.43	21.11	9.216
•5	39.80	25.42	18.23	7.959	'1	46.22	29.52	21.17	9.244
•6	39.94	25.21	18.29	7.987	•2	46.36	29.61	21.24	9.272
.7	40.08	25.60	18.36	8.015	.3	46.20	29.70	21.30	9.300
•8	40.22	25.69	18.42	8.043	·4	46.64	29.79	21.36	9.328
.9	40.36	25.78	18.49	8.071	•5	46.78	29.88	21.43	9.356
29.0	40.50	25.87	18.55	8.099	.6	46.92	29.97	21.49	9.384
.1	40.64	25.95	18.61	8.127	.7	47.06	30.06	21.56	9.412
•2	40.78	26.04	18.68	8.155	•8	47.20	30.15	21.62	9.440
•3	40.92	26.13	18.74	8.183	.9	47:34	30.24	21.68	9.468
·4	41.06	26.22	18.81	8.211	34.0	47:48	30.33	21.75	9.496
•5	41.19	26:31	18.87	8.239	1	47.62	30.41	21.81	9.523
·6	41.33	26.40	18.93	8.267	.2	47.76	30.50	21.88	9.551
.7	41.47	26.49	19.00	8.295	.3	47.90	30.59	21.94	9.579
•8	41.61	26.58	19.06	8.323	•4	48.04	30.68	22.00	9.607

TABLE FOR PHOSPHATES—continued.

Mg2P2O7	Ca ₈ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	P ₂	Mg ₂ P ₂ O ₇	Ca ₈ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	P ₂
34.5	48.18	30.77	22.07	9.635	38.5	53.76	34.34	24.63	10.752
-6	48.32	30.86	22.13	9.663	∥ ∙6	53.90	34.43	24.69	10.780
.7	48.46	30.95	22.20	9.691	.7	54.04	34.52	24.75	10.808
-8	48.60	31.04	22.26	9.719	∥ •8	54.18	34.61	24.82	10.836
.9	48.74	31.13	22.32	9.747	∥ ∙9	54.32	34.70	24.88	10.864
35.0	48.87	31.22	22.39	9.775	39∙0	54.46	34.78	24.95	10.892
1	49.01	31.31	22.45	9.803	1	54.60	34.87	25.01	10.920
.2	49.15	31.40	22.52	9.831	∥ •2	54.74	34.96	25.07	10.948
.3	49.29	31.49	22.58	9.859	8 ∙	54.88	35.05	25.14	10.976
•4	49.43	31.57	22.64	9.887	·4	55.02	35.14	25.20	11.004
•5	49.57	31.66	22.71	9.914	∥ •5	55.16	35.23	25.27	11.032
.6	49.71	31.75	22.77	9.942	.6	55.30	35.32	25.33	11.060
·7	49.85	31.84	22.84	9.970	.7	55.44	35.41	25.39	11.087
·8	49.99	31.93	22.90	9.998	⊩ ∙8	55.58	35.50	25.46	11.115
•9	50.13	32.02	22.96	10.026	∥ ∙9	55.72	35.59	25.52	11.143
36.0	50.27	32.11	23.03	10.054	40.0	55.86	35.68	25.59	11.171
'1	50.41	32.20	23.09	10.082	·1	56.00	35.77	25.65	11.199
•2	50.55	32.29	23.16	10.110	.2	56.14	35.85	25.71	11.227
.3	50.69	32.38	23.22	10.138	.3	56.28	35.94	25.78	11.255
•4	50.83	32.47	23.28	10.166	•4	56.42	36.03	25.84	11.283
•5	50.97	32.55	23.35	10.194	•5	56.55	36:12	25.91	11.311
-6	51.11	32.64	23.41	10.222	∥ •6	56.69	36.21	25.97	11.339
.7	51.25	32.73	23.48	10.250	∥ •7	56.83	36.30	26.03	11.367
•8	51.39	32.82	23.54	10.278	∥ •8	56.97	36.39	26.10	11.395
.9	51.53	32.91	23.60	10.306	∥ ∙9	57.11	36.48	26.16	11.423
37.0	51.67	33 00	23.67	10.333	41.0	57.25	36.57	26.23	11.451
•1	51.81	33.09	23.73	10.361	•1	57:39	36.66	26.29	11.478
•2	51.95	33.18	23.80	10.389	.2	57.53	36.75	26.35	11.506
.3	52.09	33.27	23.86	10.417	•3	57:67	36.84	26.42	11.534
·4	52.23	33.36	23.92	10.445	'4	57.81	36.93	26.48	11.562
•5	52.37	33.45	23.99	10.473	.5	57:95	37.01	26.55	11.590
.6	52.51	33.24	24.05	10.501	.6	58.09	37.10	26.61	11.618
.7	52.64	33.62	24.12	10.529	·7	58.23	37.19	26.67	11.646
•8	52.78	33.71	24.18	10.557	'8	58.37	37.28	26.74	11.674
9	52.92	33.80	24.24	10.585	•9	58.51	37.37	26.80	11.702
38.0	53.06	33.89	24.31	10.613	42.0	58.65	37.46	26.87	11.730
1	53.20	33.98	24.37	10.641	.1	58.79	37.55	26.93	11.758
•2	53.34	34.07	24.43	10.669	•2	58.93	37.64	26.99	11.786
•3	53.48	34.16	24.50	10.696	•3	59.07	37.73	27.06	11.814
•4	53.62	34.25	24.56	10.724	•4	59.21	37.82	27.12	11.842
Mg_2P_2	0.	1 .0	2 0	3 .04	.05	06	1 .07	08	.09
Ca,P.O	0 0	- 1 -				.08	10	111	.13
Ca ₃ P ₂ O	° I ŏ					.05	.06	.07	1.08
P_2O_5	' ·ŏ					.04	.05	.05	.06
P			- -	08 01		017	.020	.022	.025
				0-			1 330		1

TABLE FOR PHOSPHATES-continued.

Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	{P ₂ O ₅	P ₂	Mg ₂ P ₂ O ₇	Ca ₈ P ₂ O ₈	CaP ₂ O ₆	P2O2	P ₂
42.5	59.35	37 .91	27.19	11.869	47.1	65.77	42.01	30.13	13.154
.6	59.49	38.00	27.25	11 .897	•2	65.91	42.10	30.19	13.182
•7	59.63	38.08	27:31	11.925	.3	66.05	42.19	30.26	13-210
٠8	59.77	38.17	27:38	11.953	-4	66.19	42.28	30.32	13.238
.9	59.91	38.26	27.44	11.981	•5	66.33	42.37	30.38	13.266
43.0	60.05	38.35	27.51	12.009	.6	66.47	42.45	30.45	13.294
•1	60.18	38.44	27.57	12.037	•7	66.61	42.54	30.21	13:322
•2	60.32	38.53	27.63	12.065	•8	66.75	42.63	30.58	13.350
•3	60.46	38.62	27.70	12.093	.9	66.89	42.72	30.64	13.378
•4	60.60	38.71	27.76	12.121	48.0	67.03	42.81	30.70	13.405
•5	60.74	38.80	27.83	12.149	•1	67:17	42.90	30.77	13.433
•6	60.88	38.89	27.89	12.177	•2	67:31	42.99	30.83	13.461
•7	61.02	38.98	27.95	12.205	.3	67.45	43.08	30.90	13.489
•8	61.16	39.07	28.02	12.232	•4	67.59	43.17	30.96	13.517
•9	61.30	39.16	28.08	12.260	•5	67.73	43.26	31.02	13.545
44.0	61.44	39.24	28.14	12.288	.6	67.87	43.35	31.09	13.573
•1	61.58	39.33	28.21	12.316	٠7	68.00	43.44	31.15	13.601
•2	61.72	39.42	28.27	12:344	•8	68.14	43.53	31.22	13.629
•3	61 86	39.51	28:34	12:372	-9	68.28	43.61	31.28	13.657
•4	62.00	39.60	28.40	12.400	49.0	68.42	43.70	31.34	13.685
•5	62.14	39.69	28.46	12.428	·1	68.56	43.79	31.41	13.713
•6	62.28	39.78	28.53	12.456	.2	68.70	43.88	31.47	13.741
•7	62.42	39.87	28.59	12.484	•3	68.84	43.97	31.53	13.769
•8	62.56	39.96	28.66	12.512	•4	68.98	44.06	31.60	13.796
•9	62.70	40.05	28.72	12.540	-5	69.12	44.15	31.66	13.824
45.0	62.84	40.14	28.78	12.568	-6	69.26	44.24	31.73	13.852
·i	62 98	40.23	28.85	12.596	.7	69.40	44.33	31.79	13.880
·2	63.12	40.31	28.91	12.624	-8	69.54	44.42	31.85	13.908
•3	63.26	40.40	28.98	12.651	.9	69.68	44.51	31.92	13.936
•4	63.40	40.49	29.04	12.679	50.0	69.82	44.60	31.98	13.964
•5	63.24	40.58	29.10	12.707	1	69.96	44.68	32.05	13.992
.6	63.68	40.67	29.17	12.735	•2	70.10	44.77	32.11	14.020
· 7	63.82	40.76	29.23	12.763	-3	70.24	44.86	32.17	14.048
.8	63.96	40.85	29:30	12.791	•4	70.38	44.95	32.24	14.076
·9	64.10	40.94	29.36	12.819	•5	70.52	45.04	32.30	14.104
46.0	64.23	41.03	29.42	12.847	-6	70.66	45.13	32.37	14.132
·1	64.37	41.12	29.49	12.875	•7	70.80	45.22	32.43	14.160
.2	64.21	41.21	29.55	12.903	-8	70.94	45.31	32.49	14.187
.3	64.65	41.30	29.62	12.931	·9	71.08	45.40	32.56	14.215
•4	64.79	41.38	29.68	12.959	51.0	71.22	45.49	32.62	14.243
•5	64.93	41.47	29.74	12.987	1	71.36	45.58	32.69	14.271
.6	65.07	41.56	29.81	13.015	.2	71.50	45.67	32.75	14.299
.7	65.21	41.65	29.87	13.042	•3	71.64	45.76	32.81	14.327
.8	65.35	41.74	29.94	13.070	•4	71.78	45.84	32.88	14.355
·9	65.49	41.83	30.00	13.098	-5	71.91	45.93	32.94	14.383
47.0	65.63	41.92	30.06	13.126	•6	72.05	46.02	33.01	14.411
±1 0	00 00	-1 02	50 00	10 120		. 2 00	-0 02	JU 01	

TABLE FOR PHOSPHATES—continued.

Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	:	P ₂	Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P ₂ O ₅	P ₂
51.7	72.19	46.11	33.07		·439	55.7	77.78	49.68	35.63	15.556
∙8	72.33	46.20	83.13		·467	-8	77.92	49.77	35.69	15.584
.9	72.47	46.29	33.20		·495	.9	78.06	49.86	35.76	15.612
52.0	72.61	46.38	33.26		523	56.0	78<20	49.95	35.82	15.640
'1	72.75	46.47	33.33		551	•1	78.34	50.04	35.88	15.668
•2	72.89	46.56	33.39		∙579 ∥	•2	78.48	50.12	35.95	15.696
.3	73.03	46.65	33.45		606	•3	78.62	50.21	36.01	15.724
·4	73.17	46.74	33.52		·634	•4	78.76	50.30	36.08	15.751
•5	73.31	46 83	33.58		·662	•5	78.90	50.39	36.14	15.779
6	73.45	46.91	33 65		690	•6	79.04	50.48	36.50	15.807
7	73.59	47.00	33.71		·718	•7	79.18	50.57	36.27	15.835
-8	73.73	47.09	33.77		746	-8	79.32	50.66	36.33	15.863
.9	73.87	47.18	33.84		.774	.9	79.46	50.75	36.40	15.891
53.0	74.01	47.27	33.90		·802	57.0	79.60	50.84	36.46	15.919
•1	74.15	47.36	33.97		·830	1	79.74	50.93	36.52	15.947
•2	74.29	47.45	34.03		.858 ∥	•2	79.87	51.02	36.59	15.975
-3	74.43	47.54	34.09		·886	.3	80.01	51.11	36.65	16.003
•4	74.57	47 63	34.16		.914	·4	80.15	51.20	36.72	16.031
•5	74.71	47.72	34.22		941	•5	80.29	51.28	36.78	16.059
•6	74.85	47.81	34.29		.969	.6	80.43	51.37	36.84	16.087
.7	74.99	47.90	34.35		997	•7	80.57	51.46	36.91	16.115
8	75.13	47.99	34.41		025	.8	80.71	51.55	36.97	16.142
9	75.27	48.07	34.48		.053	.9	80.85	51.64	37.04	16.170
54.0	75.41	48.16	34.54		.081	58.0	80.99	51.73	37.10	16.198
1	75.55	48.25	34.61		109	.1	81.13	51.82	37.16	16.226
.2	75.69	48.34	34.67		137	.2	81 .27	51.91	37.23	16.254
.3	75.83	48.43	34.73		165	.3	81.41	52.00	37.29	16.282
:4	75.97	48.52	34.80		193	4	81.55	52.09	37:36	16:310
.5	76.10	48.61	34.86		221	•5	81.69	52.18	37.42	16:338
·6 ·7	76.24	48.70	34.93		249	.6	81 83	52.27	37 48	16.366
	76:38	48.79	34.99		277	.7	81.97	52.35	37.55	16:394
.8	76.52	48.88	35.05		305	•8	82.11	52.44	37.61	16:422
55·0	76.66	48.97	35.12		333	-9	82.25	52.53	37.68	16.450
35.0	76.80	49·06 49·14	35.18		360	59.0	82.39	52.62	37.74	16:478
.2	76·94 77·08		35.24		388	1	82.53	52.71	37.80	16.505
.3	77.22	49·23 49·32	35·31 35·37		416	·2 ·3	82·67 82·81	52·80 52·89	37·87 37·93	16·533 16·561
.4					444					
.5	77.36	49·41 49·50	35·44 35·50		·472	·4	82·95 83·09	52·98 53·07	38.00	16.589 16.617
-6	77.64					·5 ·6			38.06	
"	17 04	49.59	35.56	19	.528	70	83.23	53.16	38.12	16.645
Mg ₂ P ₂ ($O_7 \mid \cdot 0$	1 0	2 0	3	•04	-05	.06	-07	-08	.09
Ca ₃ P ₂ O	9 0			4	.06	.07	.08	•10	.11	13
CaP ₂ O		1 0	2 0	3	.04	.05	.05	.06	.07	•08
P ₂ O ₅	' .0	1 0	1 0	2	.03	.03	•04	.05	.05	•06
P	.0	03 0	06 00	08	.011	.014	.017	.020	.022	.025
		!		!		_1	<u> </u>	<u> </u>	<u> </u>	

TABLE FOR PHOSPHATES—continued.

Mg ₂ P ₂ O ₇	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P208	P ₂	Mg ₂ P ₂ O;	Ca ₃ P ₂ O ₈	CaP ₂ O ₆	P2O5	P ₂
59·7 ·8	83:37	53.25	38.19	16:673	61.0	85.18	54.41	39.02	17:036
.9	83·51 83·65	53·34 53·43	38·25 38·32	16·701 16·729	62 63	86·58 87·97	55·30 56·19	39.66 40.30	17·315 17·595
60·0 ·1	83·78 83·92	53·51 53·60	38·38 38·44	16·757 16·785	64 65	89·37 90·77	57·08 57·97	40·94 41·58	17·874 18·153
·2 ·3	84.06	53.69	38.51	16.813	66	92.16	58.87	42·22 42·86	18.433
•4	84·20 84·34	53·78 53·87	38·57 38·63	16·841 16·869	67 68	93·56 94·96	59·76 60·65	43.50	18·712 18·991
·5 ·6	84·48 84·62	53·96 54·05	38·70 38·76	16.896 16.924	69 70	96·35 97·75	61 ·54 62 ·43	44·14 44·78	19·270 19·550
.7	84.76	54.14	38.83	16.952	71	99.14	63.33	45.41	19.829
.8 .8	84·90 85·04	54·23 54·32	38·89 38 · 95	16.980 17.008		100.00	63.87	45.81	20·00C

Table for the Conversion of Nitrogen into Ammonia and Albuminoids (= $N \times 6.25$).

N.	NH3.	Albumin- oids (N×6-25).	N.	NH,	R.	bumin- oids ×6°25).	N.	NH ₃ .	Albumin- olds (N×6·25).
0.1	0.12	0.63	1.9	2.3		11.88	3.7	4.49	23.13
•2	•24	1.25	2.0	2.4		12.20	·8	4.61	23.75
•3	•36	1.88	'1	2.5	5 :	13:13	! •9	4.73	24.38
•4	.49	2.50	•2	2.6	7	13.75	4.0	4.86	25.00
•5	•61	3.13	.3	2.7	9 :	14.38	.1	4.98	25.63
·6 ·7	•73	3.75	•4	2.9	1 1	15.00	.2	5.10	26.25
•7	•85	4.38	-5	3.0	4 1	15.63	.3	5.22	26.88
•8	97	5.00	•6	3.1	6 :	16.25	•4	5.34	27.50
.8	1.09	5.63	•7	3.2	8 3	16.88	•5	5.46	28.13
1.0	1.21	6.25	·8	3.4	0 1	17.50	•6	5.58	28.75
•1	1.34	6.88	.9	3.2	2	18.13	.7	5.71	29.38
•2	1.46	7.50	8.0	3.6	4	18·75 i	•8	5.83	30.00
.3	1.58	8.13	•1	3.7	6	19•38	-9	5.95	30.63
•4	1.70	8.75	•2	3.8	8	20.00	5.0	6.07	31.25
•5	1.82	9.38	·8	4.0	11:	20.63	1 .1	6.19	31.88
-6	1.94	10.00	•4	4.1	3	21.25	.2	6.31	32.50
•7	2.06	10.63	•5	4.2	5	21.88	.3	6.43	33.13
•8	2.19	11.25	•6	4.3	7	22.50	•4	6.56	33.75
	ŀ	1			- 1			1	
N		01	.02	.03	•04	05	-06	.07	08 09
NH.		01	.02	.04	.05	.06	.07		
	a£ionin	.06	.13		25				10 11
	11110178	00	10	.19	20	'31	.38	•44	·50 ·56

TABLE FOR THE CONVERSION OF NITROGEN INTO AMMONIA AND ALBUMINOIDS—continued.

N.	NH ₃ .	Albumin- oids (N×6-25).	N.	NH ₃ .	Albumin- oids (N × 6·25).	N.	NH3.	Albumin- oids (N×6·25).
5.5	6.68	34.38	9.1	11.05	56.88	12.6	15.30	78.75
6	6.80	35.00	•2	11.17	57.50	12.7	15.42	79.38
.7	6.92	35.63	•3	11.29	58.13	-8	15.54	80.00
-8	7.04	36.25	•4	11.41	58.75	•9	15.66	80.63
.9	7.16	36.88	•5	11.23	59.38	13.0	15.78	81.25
6.0	7.28	37.50	.6	11.65	60.00	13.0	15.90	81.88
1	7.41	38.13	.7	11.78	60.63	.2	16.02	82.50
.2	7.53	38.75	-8	11.90	61.25	.3	16.15	83.13
•3	7.65	39.38	.9	12.02	61.88	•4	16.27	83.75
•4	7.77		11 -		62.20	•5	16.39	84.38
		40.00	10.0	12.14	63.13	1 -		85.00
•5	7.89	40.63 41.25	·1 ·2	12·26 12·38	63.75	•6	16.63	85.63
6	8.01							
7	8 13	41.88	•3	12.50	64.38	•8	16.75	86.25
•8	8.26	42.50	•4	12.63	65.00	.9	16.87	86.88
.9	8.38	43 13	•5	12.75	65.63	14.0	17:00	87.50
7:0	8.50	43.75	6	12.87	66.25	1	17.12	88.13
'1	8.62	44.38	.7	12.99	66.88	•2	17.24	88.75
•2	8.74	45.00	•8	13.11	67.50	.3	17.36	89.38
•3	8.86	45.63	.9	13.23	68.13	·4	17.48	90.00
'4	8.98	46.25	11.0	13.35	68.75	•5	17.60	90.68
•5	9.11	46.88	.1	13.48	69.38	.6	17.72	91.25
.6	9.23	47 50	.2	13.60	70.00	.7	17.85	91.88
•7	9.35	48 13	.3	13.72	70.63	•8	17.97	92.50
•8	9.47	48 75	-4	13.84	71.25	.8	18.09	93.13
.9	9.59	49 38	•5	13.96	71.88	15.0	18.21	93.75
8.0	9.71	50.00	•6	14.08	72.50	'1	18:33	94.38
'1	9.83	50.63	•7	14.20	73.13	•2	18.45	95·0 0
•2	9.95	51.25	·8	14.33	73.75	.8	18.57	95.63
•3	10.08	51.88	.9	14.42	74.38	•4	18.70	96.25
•4	10.20	52.50	12.0	14.57	75.00	•5	18.82	96.88
•5	10.32	53.13	•1	14.69	75.63	.6	18.94	97.50
•6	10.44	53.75	•2	14.81	76.25	•7	19.06	98.13
•7	10.56	54.38	.3	14.93	76.88	•8	19.18	98.75
•8	10.68	55.00	•4	15.05	77.50	.9	19:31	99.38
.9	10.80	55.63	•5	15.18	78.13	16.0	19.43	100.00
9.0	10.93	56.25						
N		01	02	·03 ·	04 .05	•06	·67 ·	08 .09
NH.		01	.02		05 06	.07		10 11
	ninoids	.06	13		25 31	.38		50 .56
		1			••			

Table for Kjeldahl Process: 1 Gram of Substance being Used.

1 c.c. $\frac{N}{5}$ acid = '0028 gram N = '0034 gram NH₈.

No. of c.c. No. 5 acid used.	% N.	% NH ₈ .	No. of c.c. No. 5 acid used.	7.	N.	% NH3.	No. of c.c. No. of acid used.	%	N.	°/, NH3.
1 2 3 4	0.28 0.56	0.34 0.68 1.02	21 22 23	6	88 16 44	7·14 7·48 7·82	41 42 43	111	76	13·94 14·28
4 5	0.84 1.12 1.40	1.36 1.70	23 24 25	6	72	8·16 8·50	44 44 45	12 12 12	32	14.62 14.96 15.30
6 7	1.68 1.96	2.04 2.38	26 27	7.	28 56	8·84 9·18	46 47	12 13	88	15.64 15.98
8 9 10	2·24 2·52 2·80	2·72 3·06 3·40	28 29 30	8	12 40	9.52 9.86 10.20	48 49 50	13 13 14	72	16.32 16.66 17.00
11 11 12	3·08 3·36	3·74 4·08	31 32	8	68	10.20 10.54 10.88	51 52	14	28	17.34 17.68
13 14	3.64 3.92	4·42 4·76	33 34	9	24 52	11·22 11·56	53 54	14 15	12	18·02 18·36
15 16 17	4.20 4.48 4.76	5·10 5·44 5·78	35 36 37	10 10		11 90 12 24 12 58	55 56 57	15 15 15	68	18.70 19.04 19.38
18 19	5·04 5·32	6·12 6·46	38 39	10	64	12·92 13·26	58 59	16 16	24	19·72 20·06
20	5.60	6.80	40	11.	20	13.60	60	16	80	20.40
C.c.	$\frac{N}{5}$ acid	0.1	0.2	0.8	0.4	0.5	0.6	0.7	0.8	0.9
% N		.03	.06	•08	•11	•14	·17	•20	•22	.25
% N	H ₈	•03	.07	·10	•14	17	•20	•24	•27	·31

log. $0028 - \overline{3} \cdot 44716$. log. $0034 - \overline{3} \cdot 53148$.

. .

•

NOTE ON CRYSTALLIZED QUININE SULPHATE.

When crystallized quinine sulphate is freely exposed to air at the ordinary temperature, it rapidly effloresces until it attains the composition of a sulphate containing 2 (instead o: $7\frac{1}{2}$) molecules of water, or 4.6 per cent. This air-dried sulphate has the following composition:—

				Molecular Weight.	Per Cent.
$(C_{20}H_{24}N$	₂ O ₂) ₂		•	648	82.87
H_2SO_4		•		98	12.53
$2 { m H_2O}^{3}$	•	•	•	36	4.60
				782	100.00

Freshly crystallized quinine sulphate contains $7\frac{1}{2}$ molecules of water of crystallization, which are expelled at a temperature of 100° C. When the dehydrated sulphate is freely exposed to air at the ordinary temperature, it rapidly absorbs water until it has the composition of a sulphate with 2 molecules of water; but when access of air is retarded, the amount of water of crystallization in the salt is variable, and bears no constant relation to the dry sulphate until 2 molecules of water have been absorbed.—(A. J. Cownley in *Pharm. Jour.*, 19th Dec. 1896.)

QUININE.

$Hydrochlo C_{20}H_{24}N_{2}G = 324 + 3$	O ₂ , H	Cl, 2	OH ₂ .	Sulpha $2[(C_{20}H_{24}N_{2}C_{4})]$ = 1296 +)2)2. H2	ŠO₄],	150H ₂ .
Percentag	e con	aposi	tion.	Percenta	ge con	isogn	tion.
C ₂₀ H ₂₄ N ₂ O ₂	•		81.715	C ₂₀ H ₂₄ N ₂ O ₂	•	-F	73.55
HČl			9.205	H ₂ SO ₄ .			11.12
OH_2 .	•		9.080	OH_2	•		15.33
			100.000				100.00

To convert $C_{20}H_{24}N_2O_2$ into $C_{20}H_{24}N_2O_2$, HCl, 2OH ₂ , , , $2[(C_{20}H_{24}N_2O_2)_2, H_2SO_4]$, 15OH ₂ Grams of Quinine per fluid drachm into grains of	Multiplier. 1 ·224 1 ·360	Log. to be added. 0.087 6982 0.133 4009
Hydrochlorate of Quinine per fluid ounce	151.09	2.179 2203

Tincture of Quinine, B.P., contains 8 grains of hydrochlorate of quinine in the fluid ounce.

E. W. T. Jones's Method for the Estimation of Chicory in Mixtures of Coffee and Chicory.

The sample is dried in the water-oven, and 5 grams are weighed into a large porcelain dish. About 200 c.c. of water are added, and boiled for 15 minutes. After allowing a minute or two for settling, the liquid is strained through a piece of copper gauze placed in a funnel into a 250 c.c. measuring flask, care being taken to disturb the grounds as little as possible. The latter are now treated with about 50 c.c. of water, boiled for 5 minutes, and the liquid strained off as before. The flask is then cooled, made up to the mark, well agitated and filtered, the liquid being poured on a dry filter; 50 c.c. of the filtrate (=1 gram of the coffee mixture) are then pipetted into a weighed, flat-bottomed glass dish, evaporated to dryness over a steam-bath, and finally dried in the water-oven. The results are returned to the nearest percentage of chicory (see Table on p. 74).

Treated as above, chicory gives a mean percentage extract of 70; while coffee gives a remarkably constant percentage extract of 24.

To determine the percentage of chicory from the weight of extract obtained, we proceed as follows:—

Let
$$x = \text{percentage of chicory.}$$

100 - $x = \text{ coffee.}$
and let $E = \text{ extract found.}$

107 $x + 24(100 - x) = E$.

107 $x + 24 = 24x = E$.

16 $x = E - 24$.

 $x = \frac{E - 24}{246}$

Putting x=1, we find E=24.46, and the table on page 74 is in this way easily calculated.

TABLE SHOWING THE PERCENTAGE OF CHICORY WITH COFFEE FROM THE PERCENTAGE OF AQUEOUS EXTRACT.

Extract per cent.	Chicory per cent.	Extract per cent.	Chicory per cent.	Extract per cent.	Chicory per cent.
24.46	1	40.10	35	55.28	68
.92	2	.56	36	.74	69
25.38	3	41.02	37	56.20	70
*84	4	· 4 8	38	.66	71.
26.30	5	.94	39	57.12	72
.76	6	42.40	40	•58	73
27.22	7	.86	41	58.04	74
•68	8	43.32	42	•50	75
28.14	9	·78	43	•96	76
.60	10	44.24	44	59.42	77
29.06	11	.70	45	·88	78
.52	12	45.16	46	60.34	79
.98	13	.62	47	.80	80
30.44	14	46.08	48	61 .26	81
.90	15	•54	49	.72	82
31.36	16	47.00	50	62.18	83
.82	17	· 4 6	51	·6 4	84
32.28	18	.92	52	63.10	85
.74	19	48.38	53	•56	86
33.20	20	.84	54	64.02	87
•66	21	49.30	55	. 48	88
34.12	22	.76	56	•94	89
.58	23	50.22	57	65.40	90
35.04	24	•68	58	·8 6	91
•50	25	51.14	59	66.32	∂ 2
.96	26	.60	60	.78	i 93 i
36.42	27	52.06	61	67.24	94
.88	28	•52	62	•70	95
37.34	29	•98	63	68.16	96
.80	30	53.44	64	.62	97
38.26	31	.90	65	69.08	98
.72	32	54.36	66	•54	99
39.18	33	.82	67	70.00	100
•64	34		i		
			<u> </u>		

BAUMÉ'S HYDROMETER. - Table for Liquids heavier than Water.*

• в.	• Tw.	Sp. gr.	• в.	° Tw.	Sp. gr.	• в.	° Tw.	Sp. gr.
1	1.4	1.007	23	38	1.190	45	90.6	1.453
2 3	2.8	1.014	24	40	1.200	46	93.6	1.468
3	4.4	1.022	25	42	1.210	47	96.6	1.483
4	5.8	1.029	26	44	1.220	48	99.6	1.498
4 5	7.4	1.037	27	46.2	1.231	49	103	1.515
6	9	1.045	28	48.2	1.241	50	106	1.530
8	10.2	1.052	29	50.4	1.252	51	109.2	1.546
8	12	1.060	30	52.6	1.263	52	112.6	1.563
9	13.4	1.067	31	54.8	1.274	53	116	1.580
10	15	1.075	32	57	1.285	54	119.4	1.597
11	16.6	1.083	33	59.4	1.297	55	123	1.615
12	18.2	1.091	34	61.6	1.308	56	127	1.635
13	20	1.100	35	64	1.320	57	130.4	1.652
14	21.6	1.108	36	66.4	1.332	58	134.2	1.671
15	23.2	1.116	37	69	1.345	59	138.2	1.691
16	25	1.125	38	71.4	1.357	60	142	1.710.
17	26.8	1.134	39	74	1.370	61	146.4	1.732
18	28.4	1.142	40	76.6	1.383	62	150.6	1.753
19	30.4	1.152	41	79.4	1.397	63	155	1.775
20	32.4	1.162	42	82	1.410	64	159	1.795
21	34.2	1.171	43	84.8	1.424	65	164	1.820
_ 22	36	1.180	44	87.6	1.438	66	168.4	1.842

^{*} This is the Baumé's hydrometer mostly used on the Continent of Europe: but other scales are in use there as well, and quite another scale for Baumé's hydrometer is used in America (Lunge & Hurter, Aikali Makers' Handbook).

Table for Liquids lighter than Water.

° B.	Sp. gr.	° В.	Sp. gr.	° В.	Sp. gr.
10	1.000	27	0.896	44	0.811
11	0.993	28	0.890	45	0.807
12	0.986	29	0.885	46	0.802
13	0.980	30	0.880	47	0.798
14	0.973	31	0.874	48	0.794
15	0.967	32	0.869	49	0.789
16	0.960	33	0.864	50	6.785
17	0.954	34	0.859	51	0.781
18	0.948	35	0.854	52	0.777
19	0.942	36	0.849	53	0.773
20	0.936	37	0.844	54	0.768
21	0.930	38	0.839	55	0.764
22	0.924	39	0.834	56	0.760
23	0.918	40	0.830	57	0.757
24	0.913	41	0.825	58	0.753
25	0.907	42	0.820	59	0.749
26	0.901	43	0.816	60	0.745
20	0 901	1 40	0 010	ll on l	0 740

Twaddell's Hydrometer.—To convert degrees Twaddell into specific gravity (water = 1000): multiply the number by 5, and add 1000 to the product.

To reduce specific gravity (water=1000) to Twaddell: deduct 1000, and divide the

remainder by 5

ALCOHOL TABLE.

Sp. gr. at 60° F.		Per cent. of Alcohol by volume.	Per cent. under Proof.	Sp. gr. at 60° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent under Proof.
1.0000	0.00	0.00	100.00	9775	15.25	18.78	67:10
9995	0.26	0.33	99.42	9770	15.67	19.28	66.20
.9990	0.23	0.66	98.84	.9765	16.08	19.78	65.34
9985	0.79	0.99	98.26	.9760	16.46	20.24	64.23
.9980	1.06	1.34	97.66	.9755	16.85	20.71	63.72
9975	1.37	1.73	96.97	.9750	17.25	21.19	62.87
9970	1.69	2.12	96.29	9745	17.67	21.69	62.00
9965	2.00	2.51	95.60	9740	18.08	22.18	61.13
.9960	2.28	2.86	95.00	.9735	18.46	22.64	60.32
.9955	2.56	3.21	94.40	•9730	18.85	23.10	59.52
9950	2.83	3.55	93.78	.9725	19.25	23.58	58.67
9945	3.12	3.90	93.16	•9720	19.67	24.08	57.80
9940	3.41	4.27	92.50	.9715	20.08	24.58	56.93
9935	3.71	4.63	91.87	.9710	20.50	25.07	56.06
.9930	4.00	5.00	91.23	·9705	20.92	25.57	55.20
.9925	4.31	5.39	90.55	.9700	21.31	26.04	54.37
.9920	4.62	5.78	89.87	.9695	21.69	26.49	53.57
.9915	4.94	6.17	89 20	·9690	22.08	26.95	52.77
.9910	5.25	6.55	88.50	9685	22.46	27.40	51.98
.9905	5.56	6.94	87.84	.9680	22.85	27.86	51.18
.9900	5.87	7.32	87.16	.9675	23.23	28.31	50.38
.9895	6.21	7.74	86.43	.9670	23.62	28.77	49.60
.9890	6.57	8.18	85.65	.9665	24.00	29.22	48.80
.9885	6.93	8.63	84.88	.9660	24.38	29.67	48.00
.9880	7.27	9.04	84.15	•9655	24.77	30.13	47.20
.9875	7.60	9.45	83.43	•9650	25.14	30.5%	46.44
.9870	7.93	9.86	82.70	•9645	25.50	30.98	45.70
·98 65	8.29	10.30	81.96	.9640	25.86	31.40	44.97
9860	8.64	10.73	81.20	.9635	26.20	31.80	44.27
·98 55	8.00	11.17	80.42	9630	26.23	32.19	43.60
.9850	9.36	11.61	79.65	9625	26.87	32.58	42.90
·9845	9.71	12.05	78.90	9620	27.21	32.98	42.20
9840	10.08	12.49	78.10	9615	27.57	33.39	41.47
9835	10.46	12.96	77:30	9610	27.93	33.81	40.74
.9830	10.85	13.43	76.46	9605	28.25	34.18	40.10
9825	11.23	13.90	75.64	.9600	28.56	34.54	39.47
9820	11.62	14.37	74.82	9595	28.87	34.90	38.84
.9815	12.00	14.84	74.00	9590	29.20	35.28	38.18
9810	12:38	15.30	73.18	9585	29.53	35.66	37.50
9805	12.77	15.77	72.36	*9580 *9575	29.87	36·04 36·39	36·83 36·23
·9800	13.15	16.24	71.54	,	30.17		35.68
9795	13.54	16.70	70.73	9570	30.44	36.70	35.13
9790	13.92	17.17	69·90 68·97	•9565 •9560	30·72 31·00	37·02 37·34	34.57
9785	14·36 14·82	17·70 18·25	68.00	9555	31.31	37.69	33.95
.9780	14.92	10.20	00.00	9000	91.91	91.08	99.89

ALCOHOL TABLE—continued.

Sp. gr. at 60° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent, under Proof.	Sp. gr. at 60° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent. under Proof.
·9550	81.62	38:04	33.32	.9325	43.48	51.07	10.20
9545	31.94	38.40	32.70	9320	43.71	51.32	10.05
9540	32.25	38.75	32.08	9315	43.95	51.58	9.60
9535	32.56	39.11	31.46	9310	44.18	51.82	9.20
9530	32.87	39 11	30.84	9305	44.41	52.06	8.77
9525	33.18	39.81	30.24	9300	44.64	52·29	8.36
·9520			29.66	9295	44.86	52.53	7.94
	33.47	40·14 40·47	29.08	9290	45.09	52.77	7.52
9515	33.76	40.79	28.52	9290	45.32	53.01	7.10
9510	34.05				45.55	53.24	
9505	84.29	41.05	28.06	9280 9275			6.70
9500	34.52	41.32	27.60	9275	45.77	53.48	6.27
9495	34.76	41.58	27.13		46.00	53.72	5.86
9490	35.00	41.84	26.67	9265	46.23	53.95	5.45
9485	35.25	42.12	26.20	9260	46.46	54.19	5.03
9480	35.50	42.40	25.70	9255	46.68	54.43	4.62
9475	35.75	42.67	25.22	9250	46.91	54.86	4.20
9470	36.00	42.95	24.74	9245	47.14	54.90	3.80
9465	36.28	43.26	24.20	9240	47.36	55.13	3.38
9460	36.56	43.56	23.66	9235	47.59	55.37	2.97
9455	36.83	43.87	23.12	9230	47.82	55.60	2.56
9450	37.11	44.18	22.58	9225	48.05	55.83	2.15
9445	37.39	44.49	22.04	9220	48.27	56.07	1.74
9440	37.67	44.79	21.50	9215	48.50	56.30	1.33
9435	37.94	45.10	20.96	9210	48.73	56.54	0.92
•9430	38.22	45.41	20.43	9205	48.96	56.77	0.20
9425	38.50	45.71	19.89	.9200	49.16	56.98	0.14
9420	38.78	46.02	19.36	9198	49.24	57.06	Proof
9415	39.05	46.32	18.83	9195	49.39	57.20	0.25
·9410	39.30	46.59	18.36	.9190	49.64	57.45	0.68
9405	39.55	46.86	17.88	9185	49.86	57.69	1.10
.9400	39.80	47.13	17.40	9180	50.09	57.92	1.51
9395	40.05	47.10	16.93	9175	50.30	58.14	1.89
.9390	40.30	47.67	16.46	.9170	50.52	58.36	2.28
9385	40.55	47.94	15.98	9165	50.74	58.58	2.66
.9380	40.80	48.21	15.50	·9160	50.96	58.80	3.05
·93 75	41.05	48.48	15.04	•9155	51.17	59.01	3.41
9370	41.30	48.75	14.57	.9150	51.38	59.22	3.78
9365	41.55	49.02	14.10	•9145	51.58	59.43	4.14
.9360	41.80	49.29	13.63	·9140	51.79	59.63	4.50
9355	42.05	49.55	13.16	•9135	52.00	59.84	4.87
9350	42.29	49.81	12.70	.9130	52.23	60.07	5.27
9345	42.52	50.06	12.27	.9125	52.45	60.30	5.67
9340	42.76	50.31	11.82	9120	52.68	60.52	6.07
9335	43.00	50.57	11.38	.9115	52.91	60.74	6.47
•9330	43.24	50.82	10.94	9110	53.13	60.97	6.86

ALCOHOL TABLE -continued.

	1		· I				1
Sp. or	Per cent.	Per cent.	Per cent.	Sn. or	Per cent.	Per cent.	Per cent.
Sp. gr. at 60° F.	of Alcohol by weight.	of Alcohol by volume.	over Proof.	Sp. gr. at 60° F.	of Alcohol	of Alcohol by volume.	orer Proof.
- '}	n' merRitte	o, rotume.		-	2) Height.	J, Torume.	
							
•9105	53.35	61.19	7.23	·8880	63 26	70.77	24.02
9100	53.57	61.40	7.61	.8875	63.48	70.97	24.37
.9095	53.78	61.62	7.99	·8870	63.70	71.17	24.73
.9090	54.00	61.84	8.36	*8865	63.91	71.38	25.09
9085	54.24	62.07	8.78	·8860	64.13	71.58	25.44
9080	54.48	62.31	9.20	*8855	64.35	71.78	25.79
9075	54.71	62.55	9.62	·8850	64.57	71 98	26.15
.9070	54.95	62.79	10.03	*8845	64.78	72.18	26.50
9065	55.18	63.02	10.44	'8840	65.00	72.38	26.85
.9060	55.41	63.24	10.84	.8835	65.21	72.58	27.19
9055	55.64	63.46	11.24	*8830	65.42	72.77	27.52
9050	55.86	63.69	11.64	*8825	65.63	72.96	27.85
9045	56.09	63.91	12.03	*8820	65.83	73.15	28.19
9040	56.32	64.14	12.41	*8815	66.04	73.34	28.52
9035	56.55	64.36	12.80	8810	66.26	73.54	28.87
9030	56.77	64.58	13.18	*8805	66.48	73.73	29.22
9025	57.00	64.80	13.57	·8800	66.70	73.93	29.57
9020	57.22	65.01	13.92	*8795	66.91	74.13	29.92
9015	57.42	65.21	14.27	8790	67.13	74.33	30.26
9010	57.63	65.41	14.62	8785	67:33	74.52	30.59
9005	57.83	65.61	14.97	·8780	67·54 67·75	74·70 74·89	30.92
9000	58.05	65.81	15.33	·8775 ·8770	67.75	74.89	31.25
8990	58.27	66.03 66.25	15·72 16·11	·8770 ·8765	68.17	75 08 75 27	31.58
*8985	58.20	66.47	16.11	8760	68.38	75.45	32.28
8980	58.73	66.69	16.88	8755	68.58	75.64	32.28
8975	59.17	66.90	17.25	8750	68.79	75.83	32.89
8970	59.39	67.11	17.61	8745	69.00	76.01	33.21
8965	59.61	67.32	17.98	8740	69.21	76.20	33.21
8960	59.83	67.53	18.34	8735	69.42	76.39	33.86
-8955	60.04	67.73	18.70	·8730	69.63	76.57	34.19
8950	60.26	67.93	19.05	8725	69.83	76.76	34.21
*8945	60.46	68.13	19.39	8720	70.04	76.94	34.84
8940	60.67	68.33	19.74	8715	70.24	77.12	35.14
8935	60.88	68.52	20.08	.8710	70.44	77.29	35.45
.8930	61.08	68.72	20.42	.8705	70.64	77.46	35.76
*8925	61.29	68.91	20.77	*8700	70.84	77.64	36.07
·8920	61.50	69.11	21.11	.8695	71.04	77.82	36.37
8915	61.71	69:30	21.45	*8690	71.25	78.00	36 69
.8910	61.92	69.50	21.79	*8685	71.46	78.18	37.01
·8905	62.14	69.71	22.16	.8680	71.67	78:36	37:33
•8900	62.36	69.92	22.53	.8675	71.88	78.55	37.65
.8895	62.59	70.14	22.91	.8670	72.09	78.73	37.98
.8890	62.82	70.35	23.29	8665	72.30	78.93	38.32
·888 5	63.04	70.57	23.66	·8660	72.52	79.12	38.65
l	<u></u>		<u> </u>				1

ALCOHOL TABLE—continued.

		1		 1		1		
		Per cent.	Per cent.	Per cent.	_	Per cent.	Per cent.	Per cent.
Sp.	gr. 0° F.	of Alcohol	of Alcohol	over	Sp. gr. at 60° F.	of Alcohol	of Alcohol	over
at o	UF.	by weight.	by volume.	Proof.	at ou r.	by weight.	by volume.	Proof.
<u> </u>								
.ه. ا	655	72.74	79:31	38.99	·8430	82.15	87.24	52.90
	650	72.96	79.50	39.32	*8425	82.35	87.40	53.16
N 8	645	73.17	79.68	39.64	8420	82.54	87.55	53.43
14°	640	73.38	79.86	39.96	·8415	82.73	87.70	53.70
	635	73.58	80.04	40.27	·8410	82.92	87.85	53.96
	630	73.79	80.22	40.60	·8405	83.12	88.00	54.23
	625	74.00	80.40	40.91	·8400	83.31	88.16	54.50
	620	74.23	80.60	41.26	-8395	83.50	88.31	54.75
	615 .	74.45	80.80	41.61	-8390	83.69	88.46	55.02
	610	74.68	81.00	41.96	.8385	83.88	88.61	55.28
	605	74.91	81.20	42.31	·8380	84.08	88.76	55.55
	600	75.14	81.40	42.66	·8375	84.28	88.92	55.83
	595	75.36	81.60	43.00	.8370	84.48	89.08	56.10
	590	75.59	81.80	43.35	8365	84.68	89.24	56.38
	585	75.82	82.00	43.70	.8360	84.88	89.39	56.66
	580	76.04	82.19	44.04	*8355	85.08	89.55	56.93
	575	76.25	82.37	44.35	.8350	85.27	89.70	57.20
	570	76.46	82.54	44.66	.8345	85.46	89.84	57.45
	565	76.67	82.72	44.97	·8340	85.65	89.99	57.71
	560	76.88	82.90	45.28	.8335	85.85	90.14	57.97
-	555	77.08	83.07	45.60	.8330	86.04	90.29	58.23
	550	77.29	83.25	45.90	.8325	86.23	90.43	58.48
	545	77.50	83.43	46.20	.8320	86.42	90.58	58.74
-8	540	77.71	83.60	46.51	·8315	86.62	90.73	59.00
1.8	535	77.92	83.78	46.82	·8310	86.81	90.88	59.26
-8	530	78.12	83.94	47.11	·8305	87.00	91.02	59.51
1 .8	525	78.32	84.11	47.40	·8300	87.19	91.17	59.77
1 .8	520	78.52	84 27	47.70	·8295	87:38	91:31	60.02
1 .8	515	78.72	84.44	47.98	·8290	87.58	91.46	60.28
1 .8	510	78.92	84.60	48.27	*8285	87.77	91.60	60.53
1 .8	505	79.12	84.77	48.56	*8280	87.96	91 .75	60.79
1 .85	500	79.32	84.93	48.84	.8275	88.16	91.90	61.05
	195	79.52	85.10	49.13	·8270	88 ·36	92.05	61.32
	190	79.72	85.26	49.38	·8265	88.56	92.21	61.60
	185	79.92	85.42	49.67	*8260	88.76	92.36	61.86
	180	80.13	85.59	50.00	.8255	88.96	92.51	62.12
	175	80.33	85.77	50.31	.8250	89.16	92.66	62.38
	170	80.54	85.94	50.61	*8245	89.35	92.80	62.63
	165	80.75	86.11	50.91	*8240	89.54	92.94	62.88
	160	80.96	86.28	51.21	*8235	89.73	93.09	63.13
	155	81.16	86.45	51.50	*8230	89.92	93.23	63.38
	150	81.36	86.61	51.78	*8225	90.11	93.36	63.62
	145	81.56	86.77	52.06	*8220	90.29	93.49	63.84
	140	81.76	86.93	52:34	8215	90.46	93.62	64.96
1 .84	135	81.96	87 .09	52.62	·8210	90.64	93.75	64.30
				l	l		1	

80

ALCOHOL TABLE-continued.

a	Sp. gr. t 60° F.	Per cent, of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent. over Proof.	Sp. gr. at 60° F.	Per cent. of Alcohol by weight.	Per cent. of Alcohol by volume.	Per cent. over Proof.
	*8205 *8200 *8195 *8190 *8185 *8180 *8175 *8160 *8155 *8150 *8145 *8140 *8135 *8135	90·82 91·00 91·18 91·36 91·54 91·71 91·89 92·07 92·26 92·44 92·63 92·81 93·37 93·37	93·87 94·00 94·13 94·26 94·38 94·51 94·64 94·76 94·76 95·08 95·16 95·29 95·42 95·55 95·82	64·51 64·74 64·96 65·140 65·62 65·85 66·07 66·53 66·76 67·00 67·26 67·46 67·70 67·92	*8065 *8060 *8055 *8050 *8040 *8035 *8030 *8025 *8020 *8015 *8010 *8000 *7995	95·86 96·03 96·20 96·37 96·53 96·70 96·87 97·20 97·37 97·53 97·70 97·87 98·03 98·19 98·34	97·39 97·51 97·62 97·73 97·83 97·94 98·05 98·16 98·27 98·37 98·48 98·59 98·80 98·89	70.67 70.88 71.07 71.26 71.45 71.64 71.83 72.02 72.20 72.40 72.58 72.77 72.77 73.14 73.30 73.47
	*8125 *8120 *8115 *8110 *8105 *8100 *8095 *8090 *8085 *8080 *8075	93.74 93.92 94.10 94.28 94.45 94.62 94.80 94.97 95.14 95.32 95.50 95.68	95 95 96 08 96 20 96 32 96 43 96 55 96 67 96 78 96 90 97 02 97 15 97 27	68·15 68·38 68·60 68·80 69·00 69·40 69·61 69·82 70·03 70·25 70·46	·7985 ·7980 ·7975 ·7970 ·7965 ·7960 ·7955 ·7950 ·7945 ·7940 ·7938	98.50 98.66 98.81 98.97 99.13 99.29 99.45 99.61 99.78 99.94 Absolute 100.00	99·07 99·16 99·26 99·35 99·45 99·55 99·65 99·75 99·86 99·96 Alcohol 100·00	73·64 73·81 73·97 74·14 74·31 74·66 74·66 74·83 75·01 75·18

According to the provisions of "The Sale of Food and Drugs Act, 1875," Brandy, Whisky, and Rum may be 25° U.P. and Gin 35° U.P.

25° U.P. = 0.9473 sp. gr., 35.85 per cent. alcohol, by weight; 42.78 per cent. alcohol by volume.

 35° U.P. -0.9564 sp. gr., 30.78 per cent. alcohol by weight; 37.08 per cent. alcohol by volume.

"Rectified spirit, B.P.," is alcohol with 16 per cent. water. sp. gr. 0.8380; 55°.55 over Proof. It contains 84.08 per cent. by weight and 88.76 per cent. by volume of alcohol.

[&]quot;Proof spirit" has the sp. gr. 0.9198. It contains 49.24 per cent. by weight and 57.06 per. cent. by volume of alcohol.

Simple rules for finding the percentages of added water in the case of diluted spirits.

I. Brandy, Whisky, or Rum (25° U. P. allowed).

Let a sample be N° U. P.

Therefore in 100 volumes we have N volumes of water, and

(100 - N) volumes of proof-spirit.

Let x be the percentage of water by volume added to spirit of 25° U. P. to produce a sample N° U. P. Then equating amounts of water we have—

$$(100-x)\frac{25}{100} + x = N.$$

$$25 - \frac{x}{4} + x = N.$$

$$\frac{3}{4}x = N - 25.$$

$$x = \frac{4(N-25)}{3}.$$

Hence we have the following rule:—

To get percentage of added water by volume in the case of diluted brandy, whisky, or rum, increase the excess of degrees U. P. above 25 by one-third.

II. Gin (35° U. P. allowed).

Reasoning exactly as in I., we have-

$$(100 - x_1)\frac{35}{100} + x_1 = N_1.$$

$$85 - \frac{7}{20}x_1 + x_1 = N_1.$$

$$\frac{13}{20}x_1 = N_1 - 35.$$

$$x_1 - \frac{20}{13}(N_1 - 35).$$

$$x_2 = 1.54(N_1 - 35).$$

Hence the rule :-

To get percentage of added water by volume in diluted gin, multiply the excess of degrees U. P. above 35 by 1.54.

 $^{^*}$ The above rules I owe to Mr E. W. T. Jones, who discovered them empirically and used them simply for checking results obtained by the usual method of calculation from the percentage of alcohol present. The proofs I have given above established the accuracy of Rule I., and gave the correct factor 1.54 in Rule II. in place of the $1\frac{1}{2}$ previously used for checking.—A. E. J.

CORRECTION OF SPECIFIC GRAVITY OF DILUTE ALCOHOL FOR TEMPERATURE.

Specific Gravity.	1° Fah.	1° C.	Specific Gravity.	1° Fah.	1° C.
·794-·864	0.00046	0.00083	·965- ·966	0.00026	0.00047
·864-·889	45	81	·966- ·967	25	45
·889902	44	79	·967- ·968	24	43
·902-·912	43	77	·968- ·969	23	41
·912-·921	42	76	·969- ·970	22	40
·921-·928	41	74	·970- ·971	21	38
·928-·935	40	72	971- 973	20	36
·935-·940	39	70	973- 974	19	34
940-943	38	68	·974- ·975	18	32
·943-·946	37	67	·975- ·976	17	31
·946·949	36	65	·976- ·977	16	29
·949-·951	35	63	·977- ·978	15	27
·951-·953	34	61	·978- ·980	14	25
·953-·955	33	59	·980- ·981	13	23
·955-·957	32	58	·981- ·983	12	22
·957-·959	31	56	·983- ·985	111	20
·959-·961	30	54	·985- ·987	10	18
·961-·962	29	52	·987- ·990	•00009	16
962-963	28	50	990- 995	8	14
963-965	27	49	•995-1•000	7	13

Rule.—To obtain correct sp. gr. at 60° Fah. (-15.5° C.), multiply the factor given in the table opposite to the observed sp. gr. by the difference in temperature, and add if the recorded temperature is above 60° F., or substract if it is below 60°.

Ex.—The sp. gr. at 60° Fah. of dilute alcohol of sp. gr. 0.952 at 64° Fah. is $0.952 + (0.00034 \times 4) = 0.95336$.

VARIOUS METHODS OF STATING ALCOHOLIC STRENGTHS.

Based on Squibb's absolute alcohol of sp. gr. 0.7935,

Proof spirit containing 49.2 % of this alcohol, and having a sp. gr. of 0.9198,

and using c.c. to indicate the volume of 1 gram of water at 60° F., we have the formulæ given below.

Let S-sp. gr. at 60°/60° F.

 $^{\circ}$ / $_{\circ}$ - grams of absolute alcohol per 100 grams. v/v - c.c. absolute alcohol per 100 c.c.

w/v = grams of absolute alcohol per 100 c.c.

P=c.c. proof spirit per 100 c.c.

then

°/_o =
$$\frac{v/v \times .7935}{S} = \frac{w/v}{S} = \frac{P \times .4525}{S}$$

 $\frac{v/v = °/_o \times 1.262}{S} = 1.262 \frac{w/v = 0.5703}{S} P$
 $\frac{v/v = °/_o \times 1.262}{S} = 1.753 \frac{v/v = 0.4525}{S} P$
 $\frac{v/v = °/_o \times 2.21}{S} = 1.753 \frac{v/v = 2.21}{S} \frac{v/v = 0.4525}{S} P$
grains per fluid ounce = $\frac{v/v}{S} \times \frac{4.3756}{S}$.

Otto's Table showing the Percentages of $\rm H_2SO_4$ corresponding to the Dilute Acid of various Specific Gravities at 15° C.

Per cent. of H ₂ SO ₄ .	Specific Gravity.	Per cent. of H ₂ SO ₄ .	Specific Gravity.	Per cent. of H ₂ SO ₄ .	Specific Gravity.	Per cent. of H ₂ SO ₄ .	Specific Gravity.
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86	1.8426 1.8420 1.8406 1.8406 1.8400 1.8384 1.8376 1.8356 1.8340 1.8310 1.8270 1.8220 1.8160 1.8090 1.7940	75 74 73 72 71 70 69 68 67 66 65 64 63 62 61	1.6750 1.6680 1.6510 1.6390 1.6270 1.6150 1.6040 1.5920 1.5860 1.5570 1.5450 1.5450 1.5280 1.5280 1.5280	50 49 48 47 46 45 44 43 42 41 40 39 38 37 36	1·3980 1·3866 1·3790 1·3700 1·3610 1·3510 1·3420 1·3240 1·3150 1·3060 1·2976 1·2980 1·2810 1·2720	25 24 28 22 21 20 19 18 17 16 15 14 13 12	1·1820 1·1740 1·1670 1·1590 1·1516 1·1440 1·1860 1·1290 1·1210 1·1136 1·1060 1·0980 1·0980 1·0980 1·0956
85 84 83 82 81 80 79 78 77 76	1·7860 1·7770 1·7670 1·7560 1·7450 1·7840 1·7220 1·7100 1·6980 1·6860	60 59 58 57 56 55 54 53 52 51	1.5010 1.4900 1.4800 1.4690 1.4586 1.4480 1.4380 1.4280 1.4180 1.4080	35 34 32 31 30 29 28 27 26	1·2640 1·2560 1·2476 1·2390 1·2310 1·2230 1·2150 1·2066 1·1980 1·1900	10 9 8 7 6 5 4 3 2	1.0680 1.0610 1.0536 1.0464 1.0390 1.0320 1.0256 1.0190 1.0130 1.0064

Table showing the Strength of HCl of different Specific Gravities at 15° C. (Dr Ure.)

Specific Gravity.	Per cent. of HCl	Per cent. of Acid of 1.20 sp. gr.	Specific Gravity.	Per cent. of HCl	Per cent. of Acid of 1.20 sp. gr.	Specific Gravity.	Per cent. of HCl	Per cent. of Acid of 1.20 sp. gr.
1·2000	40.777	100	1·1857	37:516	92	1·1701	34·252	84
1·1982	40.369	99	1·1846	37:108	91	1·1681	33·845	83
1·1964	39.961	98	1·1822	36:700	90	1·1661	33·437	82
1·1946	39.554	97	1·1802	36:292	89	1·1641	33·029	81
1·1928	39.146	96	1·1782	35:884	88	1·1620	32·621	80
1·1910	38.738	95	1·1762	35:476	87	1·1599	32·213	79
1·1893	38.330	94	1·1741	35:068	86	1·1578	31·805	78
1·1875	37.923	93	1·1721	34:660	85	1·1557	31·398	77

Table showing the Strength of HCl of imprerent Specific Gravities at 15° C.—continued.

Specific Gravity.	Per cent. of HCl	Per cent. of Acid of 1.20 sp. gr.	Specific Gravity.	Per cent. of HCl	Per cent, of Acid of 1.20 sp. gr.	Specific Gravity.	Per cent. of HCl	Per cent. of Acid of 1.20 sp. gr.
1·1536 1·1515 1·1494 1·1473 1·1452 1·1431 1·1410 1·1389 1·1369 1·1349 1·1328 1·1308 1·1287	30·990 30·582 30·174 29·767 29·359 28·951 28·544 28·136 27·728 27·321 26·505 26·098 25·690	76 75 74 73 72 71 70 68 67 66 65 64 63	1·1000 1·0980 1·0960 1·0939 1·0919 1·0899 1·0859 1·0859 1·0838 1·0798 1·0778 1·0778	20·388 19·980 19·572 19·165 18·757 18·349 17·534 17·126 16·718 16·310 15·902 15·494 15·087	50 49 48 47 46 45 44 43 42 41 40 39 38 37	1·0477 1·0457 1·0457 1·0417 1·0397 1·0357 1·0357 1·0338 1·0298 1·0259 1·0259 1·0239 1·0220	9·786 9·379 8·971 8·563 8·155 7·747 7·340 6·932 6·524 6·116 5·709 5·301 4·893 4·486	24 23 22 21 20 19 18 17 16 15 14 13 12 11
1.1247 1.1226 1.1206 1.1185 1.1164 1.1143 1.1123 1.1102 1.1082 1.1061 1.1041 1.1020	25·282 24·847 24·466 24·058 23·650 23·242 22·834 22·426 22·019 21·611 21·203 20·796	62 61 60 59 58 57 56 55 54 53 52 51	1.0718 1.0697 1.0677 1.0657 1.0637 1.0617 1.0597 1.0577 1.0557 1.0537 1.0517 1.0497	14 · 679 14 · 271 13 · 863 13 · 456 13 · 049 12 · 641 12 · 233 11 · 825 11 · 418 11 · 010 10 · 602 10 · 194	36 35 34 33 32 31 30 29 28 27 26 25	1.0200 1.0180 1.0160 1.0140 1.0120 1.0100 1.0080 1.0060 1.0040 1.0020	4·078 3·670 3·262 2·854 2·447 2·039 1·631 1·224 ·816 ·408	10 9 8 7 6 5 4 3 2

Table showing the Strength of $\mathrm{HNO_3}$ of various Specific Gravities.

The numbers marked * are the results of direct observations; the others are obtained by interpolation.

HNO ₈	Specific	Gravity	HNO ₃	Specific	Gravity	HNO ₂	Specific	Gravity
per cent.	At 0°	At 15°	per cent.	At 0°	At 15°	per cent.	At 0°	At 15°
100·00	1.559	1:530	93·01*	1·533*	1·506*	84·00	1:499	1:474
99·84*	1.559*	1:530*	92·00	1·529	1·503	83·00	1:495	1:470
99·72*	1.558*	1:530*	91·00	1·526	1·499	82·00	1:492	1:467
99·52*	1.557*	1:529*	90·00	1·522	1·495	80·96*	1:488*	1:463
97·89*	1.551*	1:523*	89·56*	1·521*	1·494*	80·00	1:484	1:460
97.00	1.548	1.520	88:00	1·514	1·488	79·00	1·481	1·456
96.00	1.544	1.516	87:45*	1·513*	1·486*	77·66	1·476	1·451
95.27*	1.542*	1.514*	86:17*	1·507*	1·482*	76·00	1·469	1·445
94.00	1.537	1.509	85:00	1·503	1·478	75·00	1·465	1·442

Table showing the Strength of HNO₃ of various Specific Gravities—continued.

THE ANALYST'S LABORATORY

HNO ₃	Specific	Gravity	HNO ₃	Specific	Gravity	HNO ₂	Specific	Gravit y
per cent.	At 0°	At 15°	per cent.	At 0°	At 15°	per cent.	At 0°	At 15°
74.01*	1.462*	1.438*	55.00	1.365	1.346	33.86*	1.226*	1.211*
73.00	1.457	1.435	54.00	1.359	1.341	32.00	1.214	1.198
72.39*	1.455*	1.432*	53.81	1.358	1.339	31.00	1.207	1.192
71.24*	1.450*	1.429*	53.00	1.353	1.335	30.00	1.200	1.185
69.96	1.444	1.423	52.33*	1.349*	1.331*	29.00	1.194	1.179
69.20*	1.441	1.419*	50.99*	1.341*	1 323*	28.00*	1.187*	1.172*
68.00	1.435	1.414	49.97	1.334	1.317	27.00	1.180	1.166
67.00	1.430	1.410	49.00	1.328	1.312	25.71*	1.171*	1.157*
66.00	1.425	1.405	48.00	1.321	1.304	23.00	1.153	1.138
65.07*	1.420*	1.400*	47.18*	1.315*	1.298*	20.00	1.132	1.120
64.00	1.415	1.395	46.64	1.312	1.295	17 .47*	1.115*	1.105*
63.59	1.413	1.393	45.00	1.300	1.284	15.00	1.099	1.089
62.00	1.404	1.386	43.53*	1.291*	1.274*	13.00	1.085	1.077
61 .21*	1.400*	1.381*	42.00	1.280	1.264	11.41*	1.075	1.067*
60.00	1.393	1.374	41.00	1.274	1.257	7 · 22*	1.050	1.045*
59.59*	1.391*	1.372*	40.00	1.267	1.251	4.00	1.026	1.022
58.88	1.387	1.368	39.00	1.260	1.244	2.00	1.013	1.010
58.00	1.382	1.363	37.95*	1.253*	1.237*	0.00	1.000	0.999
57.00	1.376	1.358	36.00	1.240	1.225			
56.10*	1.371*	1.353*	35.00	1.234	1.218			
			t l		I	l		

Table showing the Percentage of K₂O and KHO in Solutions of Caustic Potash of various Specific Gravities at 15° C.*

Per cent. of K ₂ O	Per cent. of KHO	Specific Gravity.	Per cent. of K ₂ O	Per cent. of KHO	Specific Gravity,
.5658	0.674	1.0050	23.764	28:303	1.2648
1.697	2.021	1.0153	24.895	29.650	1.2805
2.829	3.369	1.0260	26.027	30.998	1.2966
3.961	4.717	1.0369	27.158	32.345	1.3131
5.002	5.957	1.0478	28.290	33.693	1.3300
6.224	7.412	1.0589	29.34	34.94	1.30
7.355	8.760	1.0703	30.74	36.61	1.32
8.487	10.108	1.0819	32.14	38.28	1.34
9.619	11.456	1.0938	33.46	39.85	1.36
10.750	12.803	1.1059	34.74	41.37	1.38
11.882	14.151	1.1182	35.99	42.86	1.40
13.013	15.498	1.1308	37 .97	45.22	1.42
14.145	16.846	1.1437	40.17	47.84	1.44
15.277	18.195	1.1568	42.31	50.39	1.46
16.408	19.542	1.1702	44.40	52.88	1.48
17.540	20.890	1.1839	46.45	55.32	1.20
18.671	22.237	1.1979	48.46	57.71	1.52
19.803	23.585	1.2122	50.09	59.65	1.54
20.935	24.933	1.2268	51.58	61.43	1.56
21.500	25.606	1.2342	53.06	63.19	1.58
22.632	26.954	1.2493		1	1

Table showing the Percentage of Na₂O in Solutions of Caustic Soda of various Specific Gravities at 15° C.*

Per cent. of Na ₂ O	Specific Gravity.	Per cent. of Na ₂ O	Specific Gravity.	Per cent. of Na ₂ O	Specific Gravity.
302	1.0040	10.879	1.1630	21 ·154	1:3053
604	1.0081	11.484	1.1734	21.758	1.3125
1.209	1.0163	12.088	1.1841	21.894	1.3143
1.813	1.0246	12.692	1.1948	22:363	1.3198
2.418	1.0330	13.297	1.2058	22.967	1.3273
3.022	1.0414	13.901	1.2178	23.572	1.3349
3.626	1.0500	14.506	1.2280	24.176	1.3426
4.231	1.0587	15.110	1.2392	24.780	1.3505
4.835	1.0675	15.714	1.2453	25.385	1.3586
5.440	1.0764	16.319	1.2515	25.989	1.3668
6.044	1.0855	16.923	1.2578	26.594	1.3751
6.648	1.0948	17.528	1.2642	27 · 200	1.3836
7.253	1.1042	18.132	1.2708	27.802	1.3923
7.857	1.1137	18.730	1.2775	28.407	1.4011
8.462	1.1233	19.341	1.2843	29.011	1.4101
9.066	1.1330	19.945	1.2912	29.616	1.4193
9.670	1.1428	20.550	1.2982	30.220	1.4285
10.275	1.1528				

Table showing the Percentage of $\rm NH_3$ in Aqueous Solutions of the Gas of various Specific Gravities at 14° C. (Carius.)

Specific Gravity.	NH ₃ per cent.	Specific Gravity.	NH ₃ per cent.	Specific Gravity.	NH ₃ per cent.
0.8844	36	0.9133	24	0.9520	12
0.8864	35	0.9162	23	0.9556	11
0.8885	34	0.9191	22	0.9593	10
0.8907	33	0.9221	21	0.9631	9
0.8929	32	0.9251	20	0.9670	8
0.8953	31	0.9283	19	0.9709	7
0.8976	30	0.9314	18	0.9749	6
0.9001	29	0.9347	17	0.9790	5
0.9026	28	0.9380	16	0.9831	4
0.9052	27	0.9414	15	0.9873	3
0.9078	26	0.9449	14	0.9915	2
0.9106	25	0.9484	13	0.9959	1

Rules for the Conversion of Thermometric Degrees from one Scale into another.

To Convert	Rules.
° F. into ° C. ° F. into ° R. ° C. into ° F. ° C. into ° R. ° R. into ° F. ° R. into ° C.	Multiply by 9 and divide by 4, then add 32.

^{*} Tünnermann.

Conversion of the different Thermometric Scales, Table I.

FAHR.	Reaum.	Cent.	FAHR.	Reaum.	Cent.	FAHR.	Reaum.	Cent.
500	208	260	452	186.7	233.3	404	165.3	206.7
499	207.6	259.4	451	186.2	232.8	403	164.9	206.1
498	207.1	258.9	450	185.8	232.2	402	164.4	205.6
497	206.7	258.3	449	185.3	231.7	401	164	205
496	206.2	257.8	448	184.9	231.1	400	163.6	204.4
495	205.8	257.2	447	184.4	230.6	399	163.1	203.9
494	205.3	256.7	446	184	230	398	162.7	203.3
493	204.9	256.1	445	183.6	229.4	397	162.2	202.8
492	204.4	255.6	444	183.1	228.9	396	161.8	202.2
491	204	255	443	182.7	228.3	395	161.3	201.7
490	203.6	254.4	442	182.2	227.8	394	160.9	201.1
489	203.1	253.9	441	181.8	227 · 2	393	160.4	200.6
488	202.7	253.3	440	181.3	226.7	392	160	200
487	202.2	252.8	439	180.9	226.1	391	159.6	199.4
486	201.8	252.2	438	180 4	225.6	390	159.1	198.9
485	201.3	251.7	437	180	225	389	158.7	198.3
484	200.9	251.1	436	179.6	224.4	₹ 388	158.2	197.8
483	200.4	250.6	435	179.1	223.9	387	157.8	197.2
482	200	250	434	178.7	223.3	386	157.3	196.7
481	199.6	249.4	433	178.2	222.8	385	156.9	196.1
4 80	199.1	248.9	432	177.8	222.2	384	156.4	195.6
479	198.7	248.3	431	177:3	221.7	383	156	195
478	198.2	247.8	430	176.9	221.1	382	155.6	194.4
477	197.8	247.2	429	176.4	220.6	881	155.1	193.9
476	197:3	246.7	428	176	220	380	154.7	193.3
475	196.9	246.1	427	175.6	219.4	379	154.2	192.8
474	196.4	245.6	426	175.1	218.9	378	153.8	192.2
473	196	245	425	174.7	218.3	377	153.3	191.7
472	195.6	244.4	424	174.2	217.8	376	152.9	191.1
471	195.1	243.9	423	173.8	217.2	375	152.4	190.6
470	194.7	243.3	422	173.3	216.7	874	152	190
469	194.2	242.8	421	172.9	216.1	373	151.6	189.4
468	193.8	242.2	420	172.4	215.6	372	151.1	188.9
467	193.3	241.7	419	172	215	371	150.7	188.3
466	192.9	241.1	418	171.6	214.4	370	150.2	187.8
465	192·4 192	240.6	417	171.1	213.9	369	149.8	187.2
464 463	192 191.6	240 239·4	416	170.7	213.3	368	149.3	186.7
			415	170.2	212·8 212·2	367	148.9	186.1
462	191.1	238.9	414	169.8		866	148.4	185.6
461	190·7 190·2	238.3	413	169.3	211.7	365	148	185
460 459	189.8	237·8 237·2	412 411	168.9	211.1	364	147.6	184.4
458	189.3	236.7		168.4	210.6 210	363	147.1	183.9
457	188.9	236.1	410 409	168 167·6	209.4	362 361	146.7	183·3 182·8
456	188.4	235.6	409	167.1	209.4	360	146.2 145.8	182.8
455	188	235 6	407	166.7	208.3	359	145.8	181.7
454	187.6	234.4	406	166.2	207.8	358	144.9	181.1
453	187.1	233.9	405	165.8	207.2	357	144.4	180.6
400	10, 1	200 8	700	100 0	201 2	007	144 4	100 0

CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES, TABLE I,—continued.

FAHR.	Reaum.	Cent.	FA B	Reaum.	Cent.	FAHR.	Reaum.	Cent.
356	144	180	308	122.7	153.3	260	101.3	126.7
355	143.6	179 4	307	122.2	152.8	259	100.9	126.1
354	143.1	178.9	306	121.8	152.2	258	100.4	125.6
353	142.7	178.3	805	121.3	151.7	257	100	125
352	142.2	177.8	304	120.9	151.1	256	99.6	124.4
351	141.8	177.2	303	120.4	150.6	255	99.1	123.9
350	141.3	176.7	302	120	150	254	98.7	123.3
349	140.9	176.1	301	119.6	149.4	253	98.2	122.8
348	140.4	175.6	300	119.1	148.9	252	97.8	122.2
347	140	175	299	118.7	148.3	251	97.3	121.7
346	139.6	174.4	298	118.2	147.8	250	96.9	121.1
345	139.1	173.9	297	117.8	147.2	249	96.4	120.6
344	138.7	173.3	296	117.3	146.7	248	96	120
343	138.2	172.8	295	116.9	146.1	247	95.6	119.4
342	137.8	172.2	294	116.4	145.6	246	95.1	118.9
341	137.3	171.7	293	116	145	245	94.7	118.3
340	136.9	171.1	292	115.6	144.4	244	94.2	117.8
339	136.4	170.6	291	115.1	143.9	243	93.8	117.2
338	136	170	290	114.7	143.3	242	93.3	116.7
337	135.6	169.4	289	114.2	142.8	241	92.9	116.1
336	135.1	168.9	288	113.8	142.2	240	92.4	115.6
335	134.7	168.3	287	113.3	141.7	239	92	115
334	134.2	167.8	286	112.9	141.1	238	91.6	114.4
333	133.8	167.2	285	112.4	140.6	237	91.1	113.9
332	133.3	166.7	284	112	140	236	90.7	113.3
331	132.9	166.1	283	111.6	139.4	235	90.2	112.8
330	132.4	165.6	282	111.1	138.9	234	89.8	112.2
329	132	165	281	110.7	138.3	233	89.3	111.7
328	131.6	164.4	280	110.2	137.8	232	88.9	111.1
827	131.1	163.9	279	109.8	137.2	231	88.4	110.6
326	130.7	163.3	278	109.3	136.7	230	88	110
325	130.2	162.8	277	108.9	136.1	229	87.6	109.4
324	129.8	162.2	276	108.4	135.6	228	87.1	108.9
323	129.3	161.7	275	108	135	227	86.7	108.3
322	128.9	161.1	274	107.6	134.4	226	86.2	107.8
321	128.4	160.6	273	107.1	133.9	225	85.8	107.2
320	128	160	272	106.7	133.3	224	85.3	106.7
319	127.6	159.4	271	106.2	132.8	223	84.9	106.1
318	127.1	158.9	270	105.8	132.2	222	84.4	105.6
317	126.7	158.3	269	105.3	131.7	221	84	105
316	126.2	157.8	268	104.9	131.1	220	83.6	104.4
315	125.8	157.2	267	104.4	130.6	219	83.1	103.9
314	125.3	156.7	266	104	130	218	82.7	103.3
313	124.9	156.1	265	103.6	129.4	217	82.2	102.8
312	124.4	155.6	264	103.1	128.9	216	81.8	102.2
311	124	155	263	102.7	128.3	215	81.3	101.7
310	123.6	154.4	262	102.2	127.8	214	80.9	101.1
309	123.1	153.9	261	101.8	127.2	213	80.4	100.6

Conversion of the different Thermometric Scales. TABLE I.—continued.

211	FAHR.	Reaum.	Cent.	FAHR.	Reaum.	ent.	FAHR.	Reaum.	Cent.
211	212	80.0	100.0	164	58.7	73.3	116	37:3	46.7
210		79.6	99.4	163	58.2	72.8			46.1
209		79.1	98.9						45.6
208		78.7	98.3	161					45.0
2006	208			160		71.1			44.4
206	207	77.8	97.2	159		70.6			43.9
205		77.3		158	56.0				43.3
204		76.9	96.1	157					42.8
203		76.4	95.6	156	55.1	68.9			42.2
202		76.0	95.0						41.7
201			94.4	154		67.8			41.1
200		75.1		153	53.8				40.6
199		74.7	93.3	152					40.0
198	199	74.2	92.8	151	52.9				39.4
197				150					38.9
196		73.3	91.7						38.3
195		72.9	91.1	148	51.6				37.8
194			90.6	147	51.1				37.2
193		72.0	90.0	146	50.7				36.7
192		71.6	89.4	145					36.1
191			88.9						35.6
190		70.7	88.3	143					35.0
189 69.8 87.2 141 48.4 60.6 93 27.1 33.188 69.3 86.7 140 48.0 60.0 92 26.7 33.187 68.9 86.1 139 47.6 59.4 91 26.2 33.2 186 68.4 85.6 138 47.1 58.9 90 25.8 32 185 68.0 85.0 137 46.7 58.3 89 25.8 32 184 67.6 84.4 136 46.2 57.8 88 24.9 31 183 67.1 83.9 135 45.8 57.2 87 24.4 30 182 66.7 88.3 134 45.3 56.7 86 24.0 30 181 66.2 82.8 133 44.9 56.1 85 22.6 29 180 65.8 82.2 132 44.4 55.6 84 23.1 28 179 65.3 81.7 181 44.0 55.0 83 <td></td> <td>70.2</td> <td>87.8</td> <td>142</td> <td></td> <td></td> <td></td> <td></td> <td>34.4</td>		70.2	87.8	142					34.4
188 69·3 86·7 140 48·0 60·0 92 26·7 33 187 68·9 86·1 139 47·6 59·4 91 26·2 32 186 68·4 85·6 138 47·1 58·9 90 25·8 32 185 68·0 85·0 137 46·7 58·3 89 25·3 31 184 67·6 84·4 136 46·2 57·8 88 24·9 31 183 67·1 83·9 135 45·8 57·2 87 24·4 30 181 66·7 88·3 134 45·3 56·7 86 24·0 30 181 66·2 82·8 133 44·9 56·1 85 22·6 29 180 65·8 82·2 132 44·4 55·6 84 23·1 28 179 65·3 81·7 131 44·0 55·0		69.8	87.2	141					33.9
187 68.9 86.1 139 47.6 59.4 91 26.2 32 186 68.4 85.6 138 47.1 58.9 90 25.8 32 184 67.6 84.4 136 46.7 58.3 89 25.8 31 184 67.6 84.4 136 46.2 57.8 88 24.9 31 183 67.1 83.9 135 45.8 57.2 87 24.4 30 181 66.2 82.8 133 44.9 56.7 86 24.0 30 181 66.2 82.8 133 44.9 56.1 85 22.6 22.8 179 65.3 81.7 131 44.0 55.0 83 22.7 28 177 64.4 80.6 12.9 43.1 53.9 81 21.8 26.2 27 176 64.0 80.0 12.8 42.7	188			140	48.0				33.3
186 68·4 85·6 188 47·1 58·9 90 25·8 32 185 68·0 85·0 137 46·7 58·3 89 25·3 31 184 67·6 84·4 136 46·2 57·8 88 24·9 30 183 67·1 83·9 135 45·8 57·2 87 24·4 30 182 66·7 83·3 134 45·3 56·7 86 24·0 30 180 65·8 82·2 132 44·4 55·6 84 23·1 28 179 65·3 81·7 131 44·0 55·0 83 22·7 28 178 64·9 81·1 130 43·6 54·4 82 22·2 27 177 64·4 80·6 129 43·1 53·9 81 21·8 26·1 175 63·6 79·4 127 42·2 52·8									32.8
185 68·0 85·0 187 46·7 58·3 89 25·3 31 184 67·6 84·4 186 46·2 57·8 88 24·9 31 183 67·1 83·9 135 45·8 57·2 87 24·4 30 181 66·2 88·8 134 45·3 56·7 86 24·0 30 181 66·2 82·8 133 44·9 56·1 85 22·6 29 180 65·8 82·2 132 44·4 55·6 84 23·1 28 179 65·3 81·7 131 44·0 55·0 83 22·7 28 178 64·9 81·1 130 43·6 54·4 82 22·2 28 177 64·4 80·6 129 43·1 53·9 81 21·8 27 176 64·0 80·0 128 42·7 53·3		68.4	85.6		47.1	58.9			32.2
184 67.6 84.4 186 46.2 57.8 88 24.9 31 183 67.1 83.9 135 45.8 57.2 87 24.4 30 181 66.7 88.8 134 45.3 56.7 86 24.0 30 181 66.2 82.8 133 44.9 56.1 85 26 29 180 65.8 82.2 132 44.4 55.6 84 23.1 28 179 65.3 81.7 131 44.0 55.0 83 22.7 28 178 64.9 81.1 130 48.6 54.4 82 22.2 22.7 28 176 64.0 80.0 128 42.7 53.3 80 21.8 27 176 64.0 80.0 128 42.7 53.3 80 21.8 26 175 63.6 79.4 127 42.2	185	68.0		137	46.7				31.7
183 67·1 83·9 135 45·8 57·2 87 24·4 30 181 66·7 88·3 134 45·3 56·7 86 24·0 30 181 66·2 82·8 138 44·9 56·1 85 2£ 6 22.6 22.6 28.8 138 44·9 55·6 84 23·1 28 179 65·3 81·7 131 44·0 55·0 83 22·7 28 22·1 27 28 177 64·4 80·6 129 43·1 53·9 81 21·8 22·2 27 177 64·4 80·6 129 43·1 53·9 81 21·8 26·2 178 21·8 26·2 27 28 175 63·6 79·4 127 42·2 52·8 79 20·9 26·2 178 20·4 25 173 62·7 78·3 125 41·3 51·7 77 20·9 26·2 178 <		67.6		136	46.2	57.8			31.1
182 66·7 88·8 184 45·8 56·7 86 24·0 30 181 66·2 82·8 133 44·9 56·1 85 2£ 6 29 180 65·8 82·2 132 44·4 55·6 84 23·1 28 179 65·3 81·7 131 44·0 55·0 83 22·7 28 178 64·9 81·1 130 48·6 54·4 82 22·2 27 177 64·4 80·6 129 43·1 53·9 81 21·8 27 176 64·0 80·0 128 42·7 58·3 80 21·3 26 175 63·6 79·4 127 42·2 52·8 79 20·9 26·1 174 63·1 78·9 126 41·8 52·2 78 20·4 25 172 62·2 77·8 124 40·9 51·1	183				45.8	57.2			30.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	182	66.7			45.3	56.7	86		30.0
180 65·8 82·2 132 44·4 55·6 84 23·1 28 179 65·3 81·7 131 44·0 55·0 83 22·7 28 178 64·9 81·1 130 48·6 54·4 82 22·2 28 177 64·4 80·6 129 43·1 53·9 81 21·8 27 176 64·0 80·0 128 42·7 53·3 80 21·3 26 175 63·6 79·4 127 42·2 52·8 79 20·9 26 174 63·1 78·9 126 41·8 52·2 78 20·4 25 173 62·7 78·3 125 41·3 51·7 77 20·0 25 172 62·2 77·8 124 40·9 51·1 76 19·6 24 171 61·8 77·2 123 40·4 50·6	181					56.1	85		29.4
179 65·8 81·7 131 44·0 55·0 88 22·7 28 178 64·9 81·1 130 48·6 54·4 82 22·2 27 176 64·4 80·6 129 43·1 53·9 81 21·8 26 176 64·0 80·0 128 42·7 53·3 80 21·3 26 175 63·6 79·4 127 42·2 52·8 79 20·9 26 174 63·1 78·9 126 41·8 52·2 78 20·4 25 173 62·7 78·8 125 41·3 51·7 77 20·0 26 171 61·8 77·2 123 40·4 50·6 75 19·1 23 170 61·8 76·7 122 40·0 50·6 75 19·1 23 169 60·9 76·1 121 39·6 49·4	180					55.6			28.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				131	44.0	55.0	83		28.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				130		54.4		22.2	27.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	177						81		27.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						53.3	80		26.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							79	20.9	26.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	174		78.9				78	20.4	25.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	173				41.3		77	20.0	25.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	172			124					24.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									23.9
169 60·9 76·1 121 39·6 49·4 73 18·2 22 168 60·4 75·6 120 39·1 48·9 72 17·8 22 167 60·0 75·0 119 38·7 48·3 71 17·3 21								18.7	23.3
168 60.4 75.6 120 39.1 48.9 72 17.8 22. 167 60.0 75.0 119 38.7 48.3 71 17.3 21.									22.8
167 60.0 75.0 119 38.7 48.3 71 17.3 21								17.8	22.2
									21.7
166 59.6 74.4 118 38.2 47.8 70 16.9 21									21.1
165 59.1 73.9 117 37.8 47.2 69 16.4 20	165	59.1	73.9	117	37.8	47.2	69	16.4	20.6

CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES. TABLE I.—continued.

FAHR.	Reaum.	Cent.	FAHR.	Reaum.	Cent.	FAHR.	Reaum.	Cent.
68	16.0	20.0	34	0.9	1.1	0	- 14.2	-17.8
67	15.6	19.4	33	0.4	0.6	- 1	-14.7	-18.3
66	15.1	18.9	32	0.0	0.0	- 2	-15.1	-18.9
65	14.7	18.3	31	- 0.4	- 0.6	- 3	- 15.6	- 19.4
64	14.2	17.8	30	- 0.9	- 1:1	- 4	-16.0	- 20.0
63	13.8	17.2	29	- 1.3	- 1.7	- 5	-16.4	- 20.6
62	13.3	16.7	28	- 1.8	- 2.2	- 6	-16.9	- 21.1
61	12.9	16.1	27	- 2.2	- 2.8	- 7	-17:3	- 21.7
60	12.4	15.6	26	- 2.7	- 3.3	- 8	-17.8	- 22.2
59	12.0	15.0	25	- 3.1	- 3.9	- 9	-18.2	- 22.8
58	11.6	14.4	24	- 3.6	- 4.4	-10	- 18.7	- 23 · 3
57	11.1	13.9	32	- 4.0	- 5.0	-11	- 19:1	- 23 9
56	10.7	13.3	22	- 4.4	- 5.6	-12	- 19.6	- 24.4
55	10.2	12.8	21	- 4.9	- 6.1	-13	- 20.0	- 25.0
54	9.8	12.2	20	- 5.3	- 6.7	-14	- 20.4	- 25.6
53	9.3	11.7	19	- 5.8	- 7.2	-15	- 20.9	- 26.1
52	8.9	11.1	18	- 6.2	- 7.8	-16	- 21 · 3	-26.7
51	8.4	10.6	17	- 6.7	- 8.3	-17	- 21 .8	- 27:2
50	8.0	10.0	16	- 7.1	- 8.9	-18	- 22.2	- 27.8
49	7.6	9.4	15	- 7.6	- 9.5	-19	- 22.7	- 28.3
48	7.1	8.9	14	- 8.0	- 10.0	- 20	- 23.1	- 28.9
47	6.7	8.3	13	- 8.4	-10.6	- 21	- 23.6	-29.4
46	6.2	7.8	12	- 8.9	- 11 · 1	- 22	- 24 0	-30.0
45	5.8	7.2	11	- 9.3	-11.7	- 23	- 24.4	- 30.6
44	5.3	6.7	10	- 9.8	- 12.2	- 24	- 24.9	- 31 1
43	4.9	6.1	9	-10.2	-12.8	- 25	- 25·3	-31.7
42	4.4	5.6	8	- 10.7	-13.3	- 26	- 25.8	- 32.2
41	4.0	5.0	7	-11:1	- 13.9	- 27	- 26.2	- 32.8
40	3.6	4.4	6	-11.6	-14.4	- 28	- 26 7	- 33.3
39	3.1	3.9	5	-12.0	-15.0	- 29	- 27 1	- 33.9
38	2.7	3.3	4	- 12 · 4	-15.6	- 30	- 27.6	-34.4
37	2.2	2.8	3	- 12.9	- 16.1	- 31	- 28.0	- 35.0
36	1.8	2.2	2	- 13.3	-16.7			
35	1.3	1.7	1	-13.8	-17:2			

Conversion of the different Thermometric Scales. Table II.

CENT.	Reaum.	Fahr.	CENT.	Reaum.	Fahr.	CENT.	Reaum.	Fahr.
260	208	500	252	201.6	485.6	244	195.2	471.2
259	207.2	498.2	251	200.8	483.8	243	194.4	469.4
258	206.4	496.4	250	200	482	242	193.6	467.6
257	205.6	494.6	249	199.2	480.2	241	192.8	465.8
256	204.8	492.8	248	198.4	478.4	240	192	464
255	204	491	247	197.6	476.6	239	191.2	462.2
254	203.2	489.2	246	196.8	474.8	238	190.4	460.4
253	202.4	487.4	245	196	473	237	189.6	458.6

THE ANALYST'S LABORATORY COMPANION.

CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES. TABLE II.—continued.

235 188 455 187 149.6 368.6 139 111.2 234 187.2 463.2 186 148.8 366.8 138 110.4 233 186.4 451.4 185 148 365.2 136 108.8 231 184.8 447.8 183 146.4 361.4 135 108.8 230 184 446. 182 145.6 359.6 134 107.2 229 183.2 244.2 181 144.8 357.8 133 106.4 229 183.2 444.2 180 144 356 132 105.6 227 181.6 440.6 179 143.2 354.2 131 104.8 226 180.8 438.8 178 142.4 352.4 130 104 225 180 437 177 141.6 350.6 129 103.2 224 179.2 435.2 176 </th <th>Fahr.</th>	Fahr.
235 188 455 187 149.6 368.6 139 111.2 234 187.2 453.2 186 148.8 366.8 138 110.4 233 186.4 451.4 185 148 365 137 109.6 232 185.6 449.6 184 147.2 363.2 136 108.8 231 184.8 447.8 183 146.4 361.4 135 108 230 184 446 182 145.6 359.6 134 107.2 229 183.2 444.2 181 144.8 357.8 133 106.4 222 180.8 438.8 179 143.2 354.2 131 104.8 2226 180.8 438.8 178 142.4 352.4 130 104 225 180 437 177 141.6 350.6 129 103.2 224 179.2 435.2 176 </td <td>284</td>	284
234 187-2 458-2 186 148-8 366-8 138 110-4	282.2
233	280.4
232	278.6
231 184*8 447.8 183 146*4 361*4 135 108 230 184 446 182 145*6 359*6 134 107*2 229 183*2 444*2 180 144 356*8 132 105*6 227 181*6 440*6 179 143*2 354*2 131 104*8 226 180*8 438*8 178 142*4 352*4 130 104 225 180 437 177 141*6 350*6 129 103*2 224 179*2 435*2 176 140*8 348*8 128 102*4 223 178*4 433*4 175 140 347 127 101*6 2221 176*6 429*8 173 138*4 343*4 125 100*8 221 176*8 429*8 173 138*4 343*4 125 100*8 221 176*2 426*2 171	276.8
230 184 446 182 145·6 359·6 134 107·2 229 188·2 444·2 181 144·8 357·8 133 106·4 228 182·4 442·4 180 144 356 132 105·6 227 181·6 440·6 179 143·2 354·2 131 104·8 226 180·8 438·8 178 142·4 352·4 130 104 225 180 437 177 141·6 350·6 129 103·2 224 179·2 435·2 176 140·8 348·8 128 102·4 223 176·4 431·6 174 139·2 345·2 126 100·8 221 176·8 429·8 173 138·4 343·4 125 100·8 2210 176·8 429·8 172 137·6 341·6 124 99·2 219 175·2 426·2	275
229	273.2
228 182'4 442'4 180 144 356 132 105'6	271.4
227 181'6 440'6 179 143'2 354'2 131 104'8 226 180'8 438'8 178 142'4 352'4 130 104'8 225 180 437 177 141'6 350'6 129 103'2 224 179'2 435'2 176 140'8 348'8 128 102'4 223 178'4 433'4 175 140 347 127 101'6 2221 176'8 429'8 178 138'4 343'4 125 100'8 221 176'8 429'8 178 138'4 343'4 125 100'8 2210 176 428 172 136'6 34'6 124 99'2 219 175'2 426'2 171 136'8 339'8 123 98'4 218 174'4 424'4 170 136 338'2 121 96'8 216 172' 419 167 </td <td>269.6</td>	269.6
225 180 437 177 1416 3506 129 103·2 224 179·2 435·2 176 140·8 348·8 128 102·4 223 178·4 433·4 175 140 347 127 101·6 222 176·8 429·8 174 139·2 345·2 126 100·8 220 176 428 172 137·6 341·6 124 99·2 219 175·2 426·2 171 136·8 339·8 123 98·4 218 174·4 424·4 170 136 338 122 97·6 217 178·6 422·6 169 135·2 336·2 121 96·8 216 172·8 420·8 168 134·4 334·4 120 96 215 172 419 167 133·6 332·6 119 95·2 214 171·2 417·2 166	267 8
225 180 437 177 141·6 350·6 129 103·2 224 179·2 435·2 176 140·8 348·8 128 102·4 223 178·4 433·4 175 140 347 127 101·6 222 177·6 431·6 174 139·2 345·2 126 100·8 221 176·8 429·8 173 138·4 343·4 125 100 220 176 428 172 137·6 341·6 124 99·2 219 175·2 426·2 171 136·8 339·8 123 98·4 218 174·4 424·4 170 136 338 122 97·6 217 173·6 422·6 169 135·2 336·2 121 96·8 216 172·8 420·8 168 134·4 334·4 120 96 215 172 419 167	266
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	264.2
222 177-6 431-6 174 139-2 345-2 126 100-8 221 176-8 429-8 173 138-4 343-4 125 100 220 176 428 172 137-6 341-6 124 99-2 219 175-2 426-2 171 136-8 339-8 123 98-4 218 174-4 424-4 170 136 338 122 97-6 217 173-6 420-8 168 134-4 334-4 120 96-8 216 172-8 420-8 168 134-4 334-4 120 96-8 215 172 419 167 133-6 332-6 119 95-2 214 171-2 417-2 166 132-8 330-8 118 94-4 213 170-4 415-4 165 132 329 117 93-6 212 169-6 413-6 164	262.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.092
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	258.8
219 175·2 426·2 171 136·8 339·8 123 98·4 218 174·4 424·4 170 136 338 122 97·6 217 173·6 422·6 169 135·2 336·2 121 96·8 216 172·8 420·8 168 134·4 334·4 120 96 215 172 419 167 133·6 332·6 119 95·2 214 171·2 417·2 166 132·8 330·8 118 94·4 213 170·4 415·4 165 132 329 117 93·6 212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·4 115 92 210 168·8 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161	257
218 174·4 424·4 170 136 338 122 97·6 217 173·6 422·6 169 135·2 336·2 121 96·8 216 172·8 420·8 168 134·4 334·4 120 96·8 216 172 419 167 133·6 332·6 119 95·2 214 171·2 417·2 166 132·8 330·8 118 94·4 213 170·4 415·4 165 132 329 117 93·6 212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159	255.2
217 173·6 422·6 169 135·2 336·2 121 96·8 216 172·8 420·8 168 134·4 334·4 120 96 215 172 419 167 133·6 332·6 119 96·2 214 171·2 417·2 166 132·8 380·8 118 94·4 213 170·4 415·4 165 132 329 117 93·6 212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·4 115 92 210 168 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159	253 4
216 172·8 420·8 168 134·4 334·4 120 96 216 172 419 167 133·6 332·6 119 95·2 214 171·2 417·2 166 132·8 330·8 118 95·2 213 170·4 415·4 165 132 329 117 93·6 212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·4 115 92 210 168 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159 127·2 318·2 111 88·8 206 164·8 402·8 158	251.6
215 172 419 167 133·6 332·6 119 95·2 214 171·2 417·2 166 132·8 330·8 118 94·4 213 170·4 415·4 165 132 329 117 93·6 212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·4 115 92 210 168 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159 127·2 318·2 111 88·8 206 164·8 402·8 158 126·4 316·4 110 88 205 164 401 157 <td< td=""><td>249.8</td></td<>	249.8
214 171·2 417·2 166 132·8 330·8 118 94·4 213 170·4 415·4 165 132 329 117 93·6 212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·4 115 92 210 168 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159 127·2 318·2 111 88·8 206 164·8 402·8 158 126·4 316·4 110 88 205 164 401 157 125·6 314·6 109 87·2 204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	248
213 170·4 415·4 165 132 329 117 93·6 212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·4 115 92 210 168 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159 127·2 318·2 111 88·8 206 164·8 402·8 158 126·4 316·4 109 87·2 204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	246.2
212 169·6 413·6 164 131·2 327·2 116 92·8 211 168·8 411·8 163 130·4 325·4 115 92 210 168 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159 127·2 318·2 111 88·8 206 164·8 402·8 158 126·4 316·4 110 88 205 164 401 157 125·6 314·6 109 87·2 204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	244.4
211 168·8 411·8 163 130·4 325·4 115 92 210 168 410 162 129·6 323·6 114 91·2 209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159 127·2 318·2 111 88·8 206 164·8 402·8 158 126·4 316·4 110 88 205 164 401 157 125·6 314·6 109 87·2 204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	242.6
210	240.8
209 167·2 408·2 161 128·8 321·8 113 90·4 208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·6 159 127·2 318·2 111 88·8 206 164·8 402·8 158 126·4 316·4 110 88 205 164 401 157 125·6 314·6 109 87·2 204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	239
208 166·4 406·4 160 128 320 112 89·6 207 165·6 404·8 159 127·2 318·2 111 88·8 206 164·8 402·8 158 126·4 316·4 110 88 205 164 401 157 125·6 314·6 109 87·2 204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	237 · 2
207	235.4
206	33.6
205 164 401 157 125·6 314·6 109 87·2 204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	231.8
204 163·2 399·2 156 124·8 312·8 108 86·4 203 162·4 397·4 155 124 311 107 85·6	230
203 162.4 397.4 155 124 311 107 85.6	228.2
	226·4 224·6
1 2. 1 2. 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2	222·8 221
1	219·2
1 _	217.4
	215.6
1	213.8
1	212
	210.2
	208.4
	206.6
1	204.8
	203
	201.2
	99.4

CONVERSION OF THE DIFFERENT THERMOMETRIC SCALES. TABLE II.—continued.

CENT.	Reaum.	Fahr.	CENT.	Reaum.	Fahr.	CENT.	Reaum.	Fahr.
92	73.6	197 .6	49	39.2	120.2	6	4.8	42.8
91	72.8	195.8	48	38.4	118.4	5	4	41
90	72	194	47	37.6	116.6	4	3.2	39.2
89	71.2	192.2	46	36.8	114.8	3	2.4	37.4
88	70.4	190.4	45	36	113	2	1.6	35.6
87	69.6	188.6	44	35.2	111.2	1	0.8	33.8
86	68.8	186.8	43	34.4	109.4	0	0	32
85	68	185	42	83.6	107.6	-1	-0.8	30.2
84	67.2	183.2	41	32.8	105.8	-2	-1.6	28.4
83	66.4	181.4	40	32	104	-3	- 2.4	26.6
82	65.6	179 ช	39	31.2	102.2	-4	-3.2	24.8
81	64.8	177.8	88	30.4	100.4	-5	-4	23
80	64	176	37	29.6	98.6	-6	-4.8	21.2
79	63.2	174.2	36	28.8	96.8	-7	-5.6	19.4
78	62.4	172.4	35	28	95	-8	-6·4	17.6
77	61.6	170.6	34	27.2	93.2	- 9	-7.2	15.8
76	60.8	163.8	33	26.4	91.4	- 10	-8	14
75	60	167	32	25.6	89.6	-11	-8.8	12.2
74	59.2	165.2	31	24.8	87.8	-12	-9.6	10.4
73	58.4	163.4	30	24	86	-13	-10.4	
72	57.6	161.6	29	23.2	84.2	-14	-11.2	6.8
71	56.8	159.8	28	22.4	82.4	- 15	-12	5
70	58	158	27	21.6	80.6	-16	-12.8	3.2
69	55.2	156.2	26	20.8	78.8	-17	-13.6	1.4
68	54.4	154.4	25	20	77	-18	-14.4	-0.4
67	53.6	152.6	24	19.2	75.2	-19	-15.2	- 2.2
66	52.8	150.8	23	18.4	73.4	- 20	-16	-4
65	52	149	22	17.6	71.6	- 21	-16.8	-5.8
64	51.2	147.2	21	16.8	69.8	- 22	- 17.6	-7.6
63	50.4	145.4	20	16	68	- 23	-18.4	-9.4
62	49.6	143.6	19	15.2	66.2	-24	-19.2	-11.2
61	48.8	141.8	18	14.4	64.4	- 25	- 20	-18
60	48	140	17	13.6	62.6	-26	-20.8	-14.8
59	47.2	138.2	16	12.8	60.8	- 27	- 21.6	- 16.6
58	46.4	136.4	15	12	59	- 28	- 22.4	-18.4
57	45.6	134.6	14	11.2	57.2	- 29	-23.2	- 20.2
56	44.8	132.8	13	10.4	55.4	- 30	24	- 22
55	44	131	12	9.6	53.6	31	-24.8	-23.8
54	43.2	129.2	11	8.8	51.8	- 32	-25.6	- 25.6
53	42.4	127.4	10	8	50	- 33	- 26.4	- 27:4
52	41.6	125.6	9	7.2	48.2	- 34	- 27 · 2	-29.2
51	40.8	123.8	8 7	6.4	46.4	- 35	- 28	- 31
50	40	122	′ ′	5.6	44.6			

BUTTER ANALYSIS. 5 Grams Butter Fat being taken for Saponification.

+ 1 c.c. = +0.6	c.c. $\frac{N}{2}$ acid used (1 c.c.= 028 gram KHO.).	Grams of KHO required for 1000 grams of Fat.	Saponification Equivalent.*	°/, Margarine.†
35·0 196·0 285·7 98·3 ·2 197·1 284·1 94·8 ·4 198·2 282·5 91·3 ·6 199·4 280·9 87·5 ·8 200·5 279·3 84·0 36·0 201·6 277·8 80·5 ·2 202·7 276·2 77·0 ·4 203·8 274·7 73·5 ·6 205·0 278·2 69·7 ·8 206·1 271·7 66·3 ·8 206·1 271·7 66·3 ·8 206·1 271·7 66·3 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 265·9 52·0 ·8 211·7 264·5 48·5 38·0 212·8 268·2 45·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 <		+ ·1 c.c. = +0·6		+ ·1 c.c. = -1·8
-2 197·1 284·1 94·8 ·4 198·2 282·5 91·3 ·6 199·4 280·9 87·5 ·8 200·5 279·3 84·0 86·0 201·6 277·8 80·5 ·2 202·7 276·2 77·0 ·4 203·8 274·7 73·5 ·6 205·0 278·2 69·7 ·8 206·1 271·7 66·3 87·0 207·2 270·3 62·8 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 265·9 52·0 ·8 211·7 264·5 48·5 ·8 211·7 264·5 48·5 ·8·0 212·8 268·2 45·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 <	34.9	195.4	286.5	
198.2 282.5 91.3 6 199.4 280.9 87.5 8 200.5 279.3 84.0 86.0 201.6 277.8 80.5 2 202.7 276.2 77.0 4 203.8 274.7 73.5 6 205.0 273.2 69.7 8 206.1 271.7 66.3 87.0 207.2 270.3 62.8 .2 208.3 268.8 59.3 .4 209.4 267.4 55.8 .6 210.6 265.9 52.0 .8 211.7 264.5 48.5 38.0 212.8 268.2 45.0 .2 213.9 261.8 41.5 .4 215.0 260.5 38.0 .6 216.2 259.0 34.2 .8 217.3 257.7 30.7 39.0 218.4 256.4 27.3 .6	35·0	196.0	285.7	98.3
*6 199.4 280.9 87.5 *8 200.5 279.3 84.0 86.0 201.6 277.8 80.5 *2 202.7 276.2 77.0 *4 203.8 274.7 73.5 *6 205.0 278.2 69.7 *8 206.1 271.7 66.3 *8.7.0 207.2 270.3 62.8 *2 208.3 268.8 59.3 *4 209.4 267.4 55.8 *6 210.6 265.9 52.0 *8 211.7 264.5 48.5 *8.0 212.8 263.2 45.0 *2 213.9 261.8 41.5 *4 215.0 260.5 38.0 *6 216.2 259.0 34.2 *8 217.3 257.7 30.7 *89.0 218.4 256.4 27.3 *8 216.2 259.0 34.2	•2	197•1	284.1	94.8
*8 200·5 279·3 84·0 36·0 201·6 277·8 80·5 *2 202·7 276·2 77·0 *4 203·8 274·7 78·5 ·6 205·0 273·2 69·7 ·8 206·1 271·7 66·3 87·0 207·2 270·3 62·8 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 265·9 52·0 ·8 211·7 264·5 48·5 38·0 212·8 263·2 45·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 ·8 217·8 257·7 30·7 39·0 218·4 256·4 27·3 ·2 219·5 255·1 23·8 ·4 220·6 253·9 20·3	•4	198-2	282.5	91.3
86·0 201·6 277·8 80·5 ·2 202·7 276·2 77·0 ·4 203·8 274·7 73·5 ·6 205·0 278·2 69·7 ·8 206·1 271·7 66·3 87·0 207·2 270·3 62·8 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 265·9 52·0 ·8 211·7 264·5 48·5 ·8·0 212·8 268·2 45·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 ·8 217·3 257·7 30·7 ·89·0 218·4 256·4 27·3 ·9·0 218·4 256·4 27·3 ·9·1 225·1 23·8 ·4 220·6 253·9 20·3	•6	199.4	280 9	87.5
-2 202*7 276*2 77*0 *4 203*8 274*7 73*5 *6 205*0 273*2 69*7 *8 206*1 271*7 66*3 \$7*0 207*2 270*3 62*8 *2 208*3 268*8 59*3 *4 209*4 267*4 55*8 *6 210*6 265*9 52*0 *8 211*7 264*5 48*5 38*0 212*8 263*2 45*0 *2 213*9 261*8 41*5 *4 215*0 260*5 38*0 *6 216*2 259*0 34*2 *8 217*3 257*7 30*7 39*0 218*4 256*4 27*3 *2 219*5 255*1 23*8 *4 220*6 253*9 20*3 *6 221*8 252*5 16*5 *8 222*9 251*2 13*0 <	•8	200.5	279.3	84.0
-4 203·8 274·7 73·5 ·6 205·0 278·2 69·7 ·8 206·1 271·7 66·8 ·8 206·1 271·7 66·8 ·8 207·2 270·3 62·8 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 265·9 52·0 ·8 211·7 264·5 48·5 ·8 211·7 264·5 48·5 ·8 212·8 263·2 45·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 ·8 217·8 257·7 30·7 ·89·0 218·4 256·4 27·3 ·2 219·5 255·1 23·8 ·4 220·6 253·9 20·3 ·6 221·8 252·5 16·5	86.0	201.6	277.8	80.5
•4 203·8 274·7 73·5 ·6 205·0 273·2 69·7 ·8 206·1 271·7 66·8 ·8 206·1 271·7 66·8 ·8 207·2 270·3 62·8 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 265·9 52·0 ·8 211·7 264·5 48·5 ·8 211·7 264·5 48·5 ·8 211·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 ·8 217·3 257·7 30·7 ·8 217·3 257·7 30·7 ·8 218·4 256·4 27·3 ·4 220·6 253·9 20·3 ·6 221·8 252·5 16·5 ·8 222·9 251·2 13·0	•2	202.7	276.2	77.0
*6 205 0 273 *2 69 *7 *8 206 1 271 *7 66 *3 \$7 0 207 *2 270 *3 62 *8 *2 208 *3 268 *8 59 *3 *4 209 *4 267 *4 55 *8 *6 210 *6 265 *9 52 *0 *8 211 *7 264 *5 48 *5 38 *0 212 *8 263 *2 45 *0 *2 213 *9 261 *8 41 *5 *4 215 *0 260 *5 38 *0 *6 216 *2 259 *0 34 *2 *8 217 *3 257 *7 30 *7 *8 217 *3 257 *7 30 *7 *9 213 *4 256 *4 27 *3 *2 219 *5 225 *1 23 *8 *4 220 *6 253 *9 20 ·3 *6 221 *8 252 *5 16 *5 *8 222 *9 251 *2 13 *0 *0 224 *0		203.8	274.7	73.5
87·0 207·2 270·3 62·8 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 266·9 52·0 ·8 211·7 264·5 48·5 ·8·0 212·8 263·2 45·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 ·8 217·3 257·7 30·7 89·0 218·4 256·4 27·3 ·2 219·5 255·1 23·8 ·4 220·6 255·9 20·3 ·6 221·8 255·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 24·8 6·0 ·4 226·2 24·7·6 2·5 ·6 227·4 24·8	•8	205 0		
87·0 207·2 270·3 62·8 ·2 208·3 268·8 59·3 ·4 209·4 267·4 55·8 ·6 210·6 266·9 52·0 ·8 211·7 264·5 48·5 ·8 211·7 264·5 48·5 ·8 211·7 260·5 38·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 ·8 217·3 257·7 30·7 89·0 218·4 256·4 27·3 ·2 219·5 255·1 23·8 ·4 220·6 253·9 20·3 ·6 221·8 252·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5	•8	206.1	271.7	66.3
.2 208·3 268·8 59·3 .4 209·4 267·4 55·8 .6 210·6 265·9 52·0 .8 211·7 264·5 48·5 38·0 212·8 263·2 45·0 .2 213·9 261·8 41·5 .4 215·0 260·5 38·0 .6 216·2 259·0 34·2 .8 217·3 257·7 30·7 39·0 218·4 256·4 27·3 .2 219·5 255·1 23·8 .4 220·6 253·9 20·3 .6 221·8 252·5 16·5 .8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 .2 225·1 248·8 6·0 .4 226·2 247·3 2·5 .6 227·4 248·8 .8 228·5 245·1		207.2		
-4 209 4 267 4 55 8 -6 210 6 265 9 52 0 -8 211 7 264 5 48 5 88 0 212 8 263 2 45 0 -2 213 9 261 8 41 5 -4 215 0 260 5 38 0 -6 216 2 259 0 34 2 -8 217 3 257 7 30 7 89 0 213 4 256 4 27 3 -2 219 5 255 1 23 8 -4 220 6 253 9 20 3 -6 221 8 252 5 16 5 -8 222 9 251 2 13 0 40 0 224 0 250 0 9 5 -2 225 1 248 8 6 0 -4 226 2 247 6 2 5 -6 227 4 246 8 -8 228 5 245 1 -8 228 5 245 1		208:3	268.8	59.3
*6 210*6 265*9 52*0 *8 211*7 264*5 48*5 38*0 212*8 263*2 45*0 *2 213*9 261*8 41*5 *4 215*0 260*5 38*0 *6 216*2 259*0 34*2 *8 217*3 257*7 30*7 39*0 218*4 256*4 27*3 *2 219*5 225*1 23*8 *4 220*6 253*9 20*3 *6 221*8 252*5 16*5 *8 222*9 251*2 13*0 40*0 224*0 250*0 9*5 *2 225*1 248*8 6*0 *4 226*2 247*6 2*5 *6 227*4 246*8 *8 228*5 245*1 *8 228*5 245*1 *1 0 229*6 243*9				
*8 211 *7 264 *5 48 *5 38 *0 212 *8 263 *2 45 *0 ·2 213 *9 261 *8 41 *5 ·4 215 *0 260 *5 38 *0 ·6 216 *2 259 *0 34 *2 ·8 217 *3 257 *7 30 *7 39 *0 213 *4 256 *4 27 *3 ·2 219 *5 255 *1 23 *8 ·4 220 *6 253 *9 20 ·3 *6 221 *8 252 *5 16 *5 *8 222 *9 251 *2 13 *0 40 *0 224 *0 250 *0 9 *5 *2 225 *1 248 *8 6 *0 *4 226 *2 247 *6 2 *5 *6 227 *4 246 *8 *8 228 *5 245 *1 *8 228 *5 245 *1 *8 228 *5 245 *1		1		
38·0 212·8 263·2 45·0 ·2 213·9 261·8 41·5 ·4 215·0 260·5 38·0 ·6 216·2 259·0 34·2 ·8 217·3 257·7 30·7 89·0 218·4 256·4 27·3 ·2 219·5 255·1 23·8 ·4 220·6 253·9 20·3 ·6 221·8 252·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
•2 213 •9 261 •8 41 •5 •4 215 •0 260 •5 38 •0 •6 216 •2 259 •0 34 •2 •8 217 •3 257 •7 30 •7 89 •0 218 •4 256 •4 27 •3 •2 219 •5 255 •1 23 ·8 •4 220 •6 253 •9 20 ·3 •6 221 ·8 252 •5 16 •5 •8 222 •9 251 •2 13 ·0 40 •0 224 •0 250 •0 9 ·5 •2 225 •1 248 ·8 6 ·0 •4 226 •2 247 ·6 2 ·5 •6 227 •4 246 ·8 ·8 228 ·5 245 ·1 *8 228 ·5 245 ·1 41 ·0 229 ·6 243 ·9				
*4 215.0 260.5 38.0 *6 216.2 259.0 34.2 *8 217.3 257.7 30.7 *9.0 218.4 256.4 27.3 *2 219.5 225.1 23.8 *4 220.6 253.9 20.3 *6 221.8 252.5 16.5 *8 222.9 251.2 13.0 40.0 224.0 250.0 9.5 *2 225.1 248.8 6.0 *4 226.2 247.6 2.5 *6 227.4 246.8 *8 228.5 245.1 41.0 229.6 243.9				
-6 216·2 259·0 34·2 ·8 217·3 257·7 30·7 89·0 218·4 256·4 27·3 ·2 219·5 255·1 23·8 ·4 220·6 253·9 20·3 ·6 221·8 252·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 256·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
*8 217*3 257*7 30*7 89*0 218*4 256*4 27*3 *2 219*5 255*1 23*8 *4 220*6 255*9 20*3 *6 221*8 252*5 16*5 *8 222*9 251*2 13*0 40*0 224*0 250*0 9*5 *2 225*1 248*8 6*0 *4 226*2 247*6 2*5 *6 227*4 226*8 *8 228*5 245*1 41*0 229*6 243*9				
89·0 218·4 256·4 27·3 *2 219·5 255·1 23·8 ·4 220·6 253·9 20·3 ·6 221·8 252·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
*2 219·5 255·1 23·8 *4 220·6 253·9 20·3 ·6 221·8 252·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
-4 220·6 253·9 20·3 ·6 221·8 252·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
-6 221·8 252·5 16·5 ·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
·8 222·9 251·2 13·0 40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
40·0 224·0 250·0 9·5 ·2 225·1 248·8 6·0 ·4 226·2 247·6 2·5 ·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
•2 225·1 248·8 6·0 •4 226·2 247·6 2·5 •6 227·4 246·8 •8 228·5 245·1 41·0 229·6 243·9				1
*4 226.2 247.6 2.5 *6 227.4 246.8 *8 228.5 245.1 *41.0 229.6 243.9				
·6 227·4 246·8 ·8 228·5 245·1 41·0 229·6 243·9				
·8 228·5 245·1 41·0 229·6 243·9				1 20
41.0 229.6 243.9				
				•••
4 400 444				•••
•4 231.8 241.6	_			
*6 233*0 241*6				•••

^{*}That is, the number of grams of fat that would be saponified by 1 litre of a normal solution of any alkali. It is the quotient obtained by dividing 56000 by "grams of KHO required by 1000 grams of fat."
† The figures given in this column are useful approximate values, calculated from Koettstorfer's formula, $x=3\cdot17$ (227-n), where x= percentage of margarine sought, and n=number of grams of KHO required for 1000 grams of fat. According to Koettstorfer n may lie between 2324 and 221.5 for butter, the mean being 227, whilst for margarine the value may be taken to be 195.5.

BUTTER ANALYSIS.
5 Grams Butter Fat being taken.

c.c. N Alkali.	*/. Soluble or Volatile Acids.*	c.c. N Alkali.	°/. Soluble or Volatile Acids.	c.c. N Alkali.	°/. Soluble or Volatile Acids.
1.0 1.5 2.0 2.5 8.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5	0·18 0·26 0·35 0·44 0·53 0·62 0·70 0·79 0·88 0·97 1·06 1·14 1·23 1·32 1·32	18·5 14·0 14·5 15·0 16·5 16·0 17·5 18·0 18·5 19·0 19·5 20·0 20·5 21·0	2:38 2:46 2:55 2:64 2:73 2:82 2:90 2:99 3:08 3:17 3:26 3:34 3:43 3:52 3:61 3:70	26·0 26·5 27·0 27·5 28·5 29·0 29·5 30·0 30·5 31·5 32·0 32·5 33·0 33·5	4.58 4.66 4.75 4.84 4.93 5.02 5.10 5.19 5.28 5.37 5.46 5.54 5.63 5.72 5.81
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0	1.58 1.67 1.76 1.85 1.94 2.02 2.11 2.20 2.29	21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5	3.78 3.87 3.96 4.05 4.14 4.22 4.31 4.40 4.49	34·0 34·5 35·0 0·1 0·2 0·3 0·4	5·98 6·07 6·16 0·02 0·04 0·05 0·07

^{*} Calculated as Butyric Acid, C₄H₈O₂=88.

MILK ANALYSIS.

Table to find the an. or. of Milk at 60° Bah. from its an. or. at any Temperature between 50° and 70° Bah. (water=1000).

																				٠		
1035	33.6	ŵ	ģ	34.0	ņ	တဲ့	ė	é	ŗ.	ġ	35.0	çı	မဲ့	ė	÷	ŵ	တဲ့	36.1	ij	7	ö	
1034	82.7	ġ	93.0		Ġ	တ့	ů	ė	ŗ	ġ	34.0	Ġ	တ့	'n	ô	œ	ġ	35.0	?7	စံ့ာ	ά	
1033	81.8	Ģ	35.0	÷	တ့	4.	ņ	9.	۲.	င့	93.0	?7	မ်ာ	ö	÷	åo	ç	34.0	ů	တဲ့	÷ċ	
1032	80.8	31.0	-	ç	က့	4	÷	9	ŗ	တဲ့	32.0	Ġ	စ္	ö	ė	ļ.	ç	33.0	çı	က်	'	
1031	29.9	30.0	·	ç	က္	•4	÷	9.	ŵ	တဲ့	31.0	Ġ	က်	•	÷	۲٠	œ	32.0	•	Ģ	7.	
1030	29.0	÷	ŗ	Ġ	တံ		9	۲.	ŵ	Ġ	30.0	÷	က္	4	ċ	۲.	œ	Ģ.	31.1	ċι	တ္	1
1029	28.0	ŗ	ċ1	စ္နာ	₹.	÷	9.	Ļ	ŵ	ġ	29.0	ŗ	မဲ့	*	÷	9	œ	Ģ	30.1	ċΔ	မဲ့	
1028	27.0		ç	င့	₹.	÷	9.	Ŀ.	ŵ	Ģ	58.0	·	ŵ	4.	ċ	9.	Ŀ	œ	29.0	ŗ	ċ1	
1027	26.1	Ģ	;	ů	7.	÷	÷	<i>!</i> -	œ	ç	27.0		င့	7.	•	9.	۲٠	œ	28.0	·	ċ1	
1026	25.1	ģ	çı	ů	7"	÷	÷	٠,	ŵ	ô	26.0	7	Ģ	မံ	÷ċ	စ္	4	å	27.0		Ċ,	
1025	24.1	Ģ	တံ	7.	÷	٠	÷		ŵ	Ģ	22.0		Ģ	တဲ့	7.	•	9.	۲٠	6.	26.0		•
1024	23.5	တ္	မဲ့	4.	÷	9.	9.	.7	œ́	6.	24.0		ç	တံ	7.	÷	9.	۲٠	6.	25.0	·	
1023	25.5	÷	တဲ့	7.	÷	é	ŗ	å	åo	ġ	23.0	ŗ	Ġ	ŵ	7.	ċ	9.	4.	œ	24.0		
1022	21.5	င့	င့	7	ů	9	٠.	œ	ġ.	Ģ	22.0		çı	က္	.4	÷	9.	٠.	œ	23.0		
1021	20.5	ŵ	တဲ့	₹.	÷	9	٠.	άn	ġ	Ģ	21.0	-	Ģ	တ္	*	÷	9.		œ	22.0	÷.	
1020	19.5	ů	7.	7.	÷	9	۲.	åo	Ģ	Ģ	20.0		çı	ĊĮ	တဲ့	*	÷	9	٠,	å	21.0	
Fah.	22	21	52	53	54	22	26	22	28	28	9	61	62	63	64	65	99	29	89	69	2	

The observed sp. gr. is given at the top of each column, and the number in the column opposite to the temperature at which the sp. gr. was determined added to 1000 gives the sp. gr. at 60° F. Ex. 1. Milk of which the sp. gr. is 1032 at 54° F. is 1031.3 at 60° F. Ex. 2. Milk of which the sp. gr. is 1028 of at 63° F. becomes 1000 + (28·4 + 0·6) = 1029 at 60° F.

TABLE OF RECIPROCALS.

No.	Reciprocal.	No.	Reciprocal.	No.	Reciprocal.	No.	Reciprocal
1	1	81	•03226	61	•01639	91	.01099
2	1.5	32	•03125	62	.01613	92	•01087
3	33333	33	•03030	63	01587	93	•01075
4	•25	34	•02941	64	.01563	94	.01064
4 5 6 7 8	1 •2	35	.02857	65	.01539	95	.01053
6	16667	36	•02778	66	*01515	96	*01042
7	14286	37	02703	67	.01493	97	.01031
8	125	38	•02632	68	*01471	98	.01020
9	111111	39	.02564	69	*01449	99	.01010
10	1 1	40	.025	70	01429	100	.01
11	.09091	41	.02439	71	*01409	101	·009 90
12	.08333	42	.02381	72	01389	102	.00980
13	.07692	43	.02326	73	.01370	103	.00971
14	07143	44	.02273	74	.01351	104	.00962
15	.06667	45	.02222	75	•01333	105	.00952
16	.0625	46	.02174	76	•01316	106	.00943
17	.05882	47	.02128	77	.01299	107	.00935
18	05556	48	02083	78	.01282	108	00926
19	.05263	49	*02041	79	·01266	109	.00917
20	•05	50	02	80	.0125	110	.00909
21	04762	51	•01961	81	01235	111	·00 901
22	.04545	52	•01923	82	01220	.112	·00893
23	04348	53	·01887	83	*01205	113	*008 85
24	04167	54	•01852	84	.01191	114	.00877
25	*04	55	•01818	8 5	•01177	115	.00870
26	03846	56	·01786	86	.01163	116	·008 62
27	.03704	57	1 .01754	87	.01149	117	*00855
28	03571	58	•01724	88	*01136	118	*00847
29	*03448	59	01695	89	.01124	119	.00840
30	•03333	60	.01667	90	•01111	120	·00833

Ex. 1.
$$\frac{100}{17} \times .01 = \frac{1}{17} = 0.05882$$

Ex. 1.
$$\frac{100}{17} \times 01 = \frac{1}{17} = 0.05882$$
.
Ex. 2. $\frac{100}{48} \times 02 = \frac{1}{43} \times 2 = 0.0326 \times 2 = 0.04652$.

Ex. 3.
$$\frac{100}{82} \times .005 = \frac{1}{82} \times \frac{1}{2} = \frac{0.0122}{2} = 0.0061$$
.

GLYCERINE TARLE.

Per cent. Glycer- ine.	Sp. gr. 15° C. = 59° F. 15° = 59°	Sp. gr. 20° C. 68° F. 20° = 68°	Per cent. Glycer- ine.	Sp. gr. 15° C. 15°.	Per cent. Glycer- ine.	Sp gr. 15° C. 15°.
100 99 98 97 96 95 94 93 92	1·26596 1·26335 1·26072 1·25809 1·25547 1·25285 1·25021 1·24756 1·24487	1:26348 1:26085 1:25822 1:25560 1:25297 1:25034 1:24771 1:24508 1:24246	74 73 72 71 70 69 68 67 66	1·19583 1·19309 1·19035 1·18761 1·18487 1·18212 1·17937 1·17662 1·17387	40 85 80 25 20 15 10	1·10253 1·08908 1·07564 1·06236 1·04930 1·03652 1·02409 1·01189
91 90 89 88 87 86 85	1.24217 1.23945 1.23673 1.23400 1.23128 1.22855 1.22583	1.23983 1.23720 1.23449 1.23178 1.22907 1.22636 1.22365	65 64 63 62 61 60 59	1.17113 1.16837 1.16561 1.16286 1.16011 1.15737 1.15462		Sp. gr. 20° C. 20°
84 83 82 81 80 79 78 77	1 · 22310 1 · 22038 1 · 21766 1 · 21493 1 · 21221 1 · 20949 1 · 20677 1 · 20404 1 · 20131	1-22094 1-21823 1-21552 1-21281 1-21010 1-20737 1-20464 1-20190 1-19917	58 57 56 55 54 53 52 51	1·15187 1·14912 1·14637 1·14362 1·14088 1·13814 1·13539 1·13265 1·12990	70 60 50 40 30 20	1·18298 1·15561 1·12831 1·10118 1·07469 1·04884 1·02391

The above table is a combination of W. W. J. Nicol's excellent tables for the two temperatures above specified, as given in the United States Dispensatory, p. 653, and in Watts's Dictionary of Chemistry (most recent edition in each case). In the former work a complete table from 1-100°/o, glycerine, at 15° C. is given.

The following formula is useful:—
sp. gr. of dilute glycerine—1 '000 - % by weight of glycerine. .002665

The divisor '00261 is more accurate, however, for mixtures containing between 30 and 60%, glycerine, and '0025 for those below 80%.

	For use in Instru	Calibrating ments.	For use with Standard Solutions.				
Tempera- ture ° C.	Weight of 1 Litre of Water.	Volume of 1 Gram of Water.	Volume corresponding with 1 Litre at 15° C.	Volume of 1 c.c. reduced t 15° C.			
	grams.	c.c.	c.c.	c.c.			
5	998.6	1.0014	998.3	1.0017			
6 7 8 9	,,	,,	•4	1.0016			
7	,,	,,	•5	1.0014			
8	,,	,,	•7	1.0013			
	,,	,,	.9	1.0011			
10	998.5	1.0012	999.0	1.0010			
11	,,	,,	•2	1.0008			
12	998.4	1.0016	·4	1.0006			
13	•3	1.0017	•6	1.0004			
14	•2	1.0018	•8	1.0002			
15	•1	1.0019	1000.0	1.0000			
16	997.9	1.0021	•2	0.9998			
17	·8	1.0022	•4	0.9996			
18	•7	1.0023	.6	0.9994			
19	•5	1 0025	•8	0.9992			
20	•3	1.0027	1001.1	0.9988			
21	•2	1.0028	3	0.9987			
22	997.0	1.0030	.6	0.9984			
2 3	996.8	1.0032	•8	0.9982			
24	•6	1.0034	1002.0	0.9980			
25	-3	1.0037	•3	0.9977			

INDEX.

								PAGE
Acetic Acid in Beer, Value	of,	•						60
Albuminoids, Table for,		•						71
Alcohol Tables,								76
Alcohol, Correction for Ten	perat	ure,						80в
Ammonia, sp. gr. Table,	•							84
Aqueous Vapour, Tension of	f,							42
Areas and Volumes of Bodie								39
Atomic Weights, .	•							1
Barometric Tables, .								54
Baumé's Hydrometer .								75
Bi-rotation,								62
Butter Analysis Tables,								91
Calibrating Instruments, T	able f	or.						96
Chicory in Coffee, .								73
Cupric reducing Power,								63
Data, Useful (Areas and Vo	lume	of B	odies).				39
Drams per lb. into Percente			•	•				41
Factors, Various Useful,		. ′					33A	, 40
Fehling's Solution, .								63
Gases, Correction of Volum	es for	Tem	perati	ure.				55
Gases, Weight of one Litre				. ′				13
Glycerine, sp. gr. Table,			.					95
Hardness of Water, .								47
Hydrochloric Acid, sp. gr.	Table							81
Indicators, Notes on, .								2
Kjeldahl Table,								72A
Logarithms, Notes on,								25
Logarithms, Table of, .								28
Mercury Vapour, Tension	of.							58
Micron,							35 (1	note)
Milk Analysis,								93
Multipliers required in Gra	vime	tric A	nalvs	is.				13
Multipliers required in Vo						•	•	22

98 (whole number 108) INDEX.

						PA	/GE
Nitrates in Water, Estimation of,							49
Nitric Acid, sp. gr. Table,							82
Nitrogen into Ammonia	•						71
Nitrogen, Loss by Evaporation of NH	s witl	h SO ₂	, etc.	,		. 45-	-47
Nitrogen, Reduction of c.c. to Grams,	•	•	•				44
Parts per 100,000 into Grains per Gall	lon,	•					50
Percentage into Cwts. per Ton, etc.,	•						40
Percentage Composition of Compounds	3,						4
Phosphate Table,	•						64
Potash, sp. gr. Table,							83
Precipitating Powers of Reagents,							3
Prescriptions, Signs used in,							3£
Proof Spirit,							80
Quinine,						73, 7	3A
Reciprocals,	•						94
Rectified Spirit,							80
Salt in Beer,							60
Soda, sp. gr. Table,							84
Specific Gravity of Gases, Factors for,							39
Specific Rotatory Power,							61
Spirit Indication in Beer,							59
Spirits, Rules for finding Dilution of,						. 8	AO.
Standard Solutions, Correction of Volu	ıme o	f.					96
Sulphuric Acid, sp. gr. Table, .							81
Thermometric Tables,							84
Twaddell's Hydrometer,						. 39,	
Water Analysis, Calculation of Results	в of.					•	52
Water, Volume and Density at differen			tures				53
Water, Weight of 1 Cubic Inch, Foot,							34
Weights and Massansa			,	-	-	•	00

14 DAY USE

RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

Renewed books are subj	ect to immediate recall.
7 Apr'60FK	
REC'D LD	F 1
MAR 24 1960	
2Jun'60VD	
REC'D L	5
MAY 19 196	0
2Jun'61CK	
REC'D LD	
MAY 2 8 1961	

