

Mark Scheme (Results)

Summer 2025

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2025
Question Paper Log Number P76201A
Publications Code WST03_01 _2506_MS
All the material in this publication is copyright
© Pearson Education Ltd 2025

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer **Special notes for marking Statistics exams (for AAs only)**
 - Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
 - For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme Marks		
1 (a)	e.g. It reduces the potential of bias/favouritism in the selection of the players		
			(1)
(b)	[x =] 18		B1
			(1)
(c)	[Probabi	lity =] 0	B1
			(1)
		Notes	Total 3
(a)	A correct reason referring to reducing bias or favouritism. May say e.g. "will not be selected based on ability" or "everyone has the same chance of being selected". Condone e.g. "no bias" e.g. to make it fair Do not accept reasons relating to the benefits of taking a sample compared to a census e.g. "accurate", "fast" but do not withhold the mark if there is a valid reason which is not contradicted by it		"no bias" is e.g.
(b)	B1	Cao	
(c)	B1	0 oe e.g. 0%	

Question Number		Scheme	Marks
2 (a)	$\sum d^2 = 1 + 4 + 4 + 0 + 0 + 36 + 9 + 4 + 4 + 4 = 66$		M1
	$r_s = 1 - \frac{1}{1}$	$\frac{6 \times '66'}{0(10^2 - 1)} = 0.6$	M1 A1
	***		(3)
(b)		$0 H_1: \rho > 0$	B1
	Critical Value $r_s = 0.7455$ or CR: $r_s 0.7455$		B1
		not reject H_0 or e.g. not significant or e.g. does not lie in the critical region	M1
	e.g. there 1 and Ju	e is insufficient evidence of a positive correlation between the ranks of Judge idge 2	A1ft
			(4)
		Notes	Total 7
(a)	M1	For finding the difference between ranks of judge 1 and judge 2 and evaluating $\sum d$	² . May be
		implied by 66. (Allow one error). May be implied by 0.6 or 0.4	
	M1	For using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$ (this value cannot just be an attempt at addir	ng the
		differences). May be implied by 0.6	
	A1	0.6 oe (a correct answer scores 3/3)	
(b)	B1	For both hypotheses correct. Must be in terms of ρ or ρ_s (condone if it appears as p)
		Must be attached to H_0 and H_1 (do not accept h for H) Do not allow hypotheses in	words on
		their own.	
	B1	For CV of 0.7455 Allow \pm and do not be concerned by use of a strict or inclusive in a critical region is stated	nequality if
	M1	A correct statement independent of hypotheses ft part (a) $ r_s < 1$ and their CV where	CV < 1
		with compatible signs. No context needed but do not allow contradicting non context statements. Condone e.g. "accept H ₀ ", "reject H ₁ " lies in acceptance region. A correct contextual conclusion may imply this mark.	
		Dependent on previous method mark and $ r_s < CV < 1$. For a correct conclusion su	iggesting
	A1ft	that there is insufficient evidence of a positive correlation between the ranks of the jumention positive correlation, ranks and the judges of Condone e.g. "there isn't positive correlation between the ranks of the judges". Followheir r_s with 0.7455	idges. Must
		Note that M0A1ft is not possible. Note that a correct contextual conclusion on its own scores M1A1ft	
	Note	Two-tailed test	
	1,000	Applying a two-tailed test scores a maximum of B0B0M1A0 allowing access to the M1 mark of	nly

		Scheme	Marks		
3 (a)	36×35		M1		
3 (a)	250				
	5.04				
	II . The	re is no association between when the car first experienced an engine prob	(2)		
(b)	and the type of engine H_1 : There is an association between when the car first experienced an engine problem and the type of engine				
	Obse	$\frac{E}{(10-15.04!)^2}$	M1		
	$X^2 = 7.4$	44 + '4.881'	dM1		
,	= 12.	325 awrt	12.3 A1		
		$\chi^2(0.05) = 9.488 \Rightarrow CR: X^2 9.488$	B1 B1ft		
	[In the C	R/Significant/Reject H ₀] There is evidence of an association between whe experienced an engine problem and the type of engine			
			(7)		
		Notes	Total 9		
(a)	M1	For a correct method for finding the expected value (ignore other values if four			
	A1	5.04 oe isw e.g. if they attempt to find other expected frequencies as well. 5.04 working seen is 2/2			
(b)	B1	Both hypotheses correct. Engine problems and type of engine mentioned at lea (may be written in terms of independence (or association) e.g. H_0 : When the car first experienced an engine problem and the type of engine H_1 : When the car first experienced an engine problem and the type of engine independent	are independent		
	M1	For a correct method for finding the contribution to the X^2 value (seen or implin (a) or by the table	ied). May be seen		
	dM1	Dependent on the previous method mark. For finding the test statistic X^2 . Usually by adding			
	A1	awrt 12.3 (sight of awrt scores M1dM1A1)			
	B1	v = 4 If not seen then may be implied by 9.488 or 11.143			
	B1ft	9.488 or better or ft their DoF (e.g. $v = 2$, 5.991 or better or $v = 8$,15.507 or v better)			
		Dependent on all previous method marks and their X^2 must lie in the critical regions.	on		
		i.e. $X^2 > 9.488$ " (where $X^2 > 7.444$) A correct contextualised conclusion where	nich is rejecting		
	A1	H_0 Must mention engine problem and type of engine oe			
		If hypotheses are the wrong way round, then A0 here. Do not withhold this hypotheses are in terms of ρ . Contradictory statements score A0. Condone "round" here but not "correlation".			

(b) H	$\begin{bmatrix} s_y^2 = \end{bmatrix} \frac{6^\circ}{}$ $= 169$ $H_0: \mu_x - \mu$	$\frac{500}{500} \Rightarrow \overline{y} = 290$ $\frac{741351 - 80(290)^{2}}{80 - 1} \text{ or } \left[s_{y}^{2} = \right] \frac{80}{79} \left(\frac{6741351}{80} - \left(\frac{23200}{80} \right)^{2} \right)$ $u_{y} = 200 \qquad H_{1}: \mu_{x} - \mu_{y} > 200 \text{oe}$	B1 M1 A1	
(b) H	$= 169$ $H_0: \mu_x - \mu$		A1	
z	$H_0: \mu_x - \mu_x$	$u_{y} = 200$ $H_{1}: \mu_{y} - \mu_{y} > 200$ oe		
z		$u_v = 200$ $H_1: \mu_v - \mu_v > 200$ oe		
z		$u_{v} = 200$ $H_{1}: \mu_{v} - \mu_{v} > 200$ oe	(3)	
	$z = \pm \frac{500}{5}$		B1	
	7. = ± -	0-'290'-200		
	' l'	169' 1156	M1 A1ft	
	$\sqrt{}$	$\frac{0 - '290' - 200}{169' + \frac{1156}{80}}$		
O	=2.457		A1	
	One taile	d c.v. $Z = 1.6449$ or CR: $Z 1.6449$	B1	
e.	e.g. In CI	R/Significant/Reject H ₀	M1	
S	Sufficien	t evidence to support the research student's belief	A1	
			(7)	
(c) A	Assume t	hat $s^2 = \sigma^2$	B1 (1)	
		Notes	(1) Total 11	
(a)	B1	For $\overline{y} = 290$	10(a) 11	
	M1 A correct method for s_y^2 . May be implied by 169 on its own (not within a calculation)			
<u> </u>	A1	169 do not isw		
(b)		Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ . Use of	of $\overline{\overline{Y}} - \overline{\overline{Y}}$ is	
	B1 B0. Allow g for x and r for y but use of any other letters must be defined.			
	An attempt at $\pm \frac{500 - a - 200}{\sqrt{\frac{b}{80} + \frac{1156}{80}}}$ oe with at least 1 of a or b correct using their 290 or their 169 May be implied by awrt ± 2.46 or may state e.g. $N\left(\pm 200, \frac{'169'}{80} + \frac{1156}{80}\right)$ (μ may be 0)			
	A1ft	A correct expression [se $\sqrt{\frac{265}{16}} = 4.0697$] or imp by awrt ± 2.46 or p -value of awrt	0.0072	
	A1	awrt $z = 2.46$ (possibly \pm) or $P(\overline{X} - \overline{Y} > 210) = \text{awrt } 0.00716$ Correct answer scores M1A1ftA1 but $200 - (500 - 290) \rightarrow -10$ loses this 2nd A mar	k	
	B1	awrt \pm 1.6449 or better seen or a comparison of <i>p</i> -value awrt 0.007 < 0.05 oe		
		Dep. on $1 < z < 3$ or $0 < P(\overline{X} - \overline{Y} > 210') < 0.5$ A correct statement ft on their z value and CV,		
	M1	with compatible signs, or prob. Context not needed but do not accept contradicting no contextual comments		
	Dep on all previous M and A marks but independent of hypotheses. A correct contextual statement e.g. the mean weight of grey squirrels is more than 200g greater than (the mean weight) of red squirrels o.e. Must mention mean weight at least once if they mention weight or weights. Condone the difference (in mean weights) is greater than 200g			
(c)	B1	Assume that sample variance = population variance oe (but not e.g. $s_x = s_y$).		

Question Number		Scheme	Marks
	, 0×2	$2+1\times40+2\times90+3\times85+4\times30+5\times3$	
	p =	$\frac{2+1\times40+2\times90+3\times85+4\times30+5\times3}{250\times5}$ or	
5 (a)			M1
	p =	$\frac{-180 + 255 + 120 + 15}{250 \times 5} \left(= \frac{610}{1250} = \frac{122}{250} \right)$	
	= 0.48		A1
	5110		(2)
(b)	250 – (4	1.92 + + 6.92	M1
	= 8.79		A1
			(2)
(c)		omial distribution is suitable/sensible (model) omial distribution is not suitable/sensible (model)	B1
	(2-8.8)	$\left[= 5.25 \right]$	M1
	- 0.0	_	
	$\sum \frac{(O-1)^{-1}}{2}$	$\frac{-E)^2}{E} = \left 5.70 + 5.25 \right = 10.95$	dM1 A1
	v = 6 - 1	J	B1
		$(-1-4)$ $= 9.488 \Rightarrow CR9.488$	B1ft
			DIII
	_	Significant/Reject H ₀] ant evidence to suggest that a binomial distribution is not a suitable model	A1
	Significa	ant evidence to suggest that a binonnar distribution is not a suitable model	(7)
		Notes	Total 11
(a)	M1	For a correct method to find \hat{p} May be implied by 0.488. Allow one error or omission for products.	one of their
		•	
	A1	0.488 oe e.g. $\frac{61}{125}$	
(b)	M1	For a correct method to find r (Allow $0.512^5 \times 250$) May be implied by 8.79 (or 8.8(0)
	A1	Allow 8.8(0)	
(c)	B1	Both Hypotheses correct. Must be attached to H ₀ and H ₁ Do not allow B(5, 0.488) i model	s a suitable
	M1	For use of $\frac{(O-E)^2}{E}$ ft their part (b). If no value is found in (b) or they use 5.7 then	n M0.
		May be implied by awrt 5.25 or awrt 10.95 or 10.9 or 11.0	
		Dependent on the first method mark. For 5.70 + '5.25' ft their 5.25 May correctly a	_
	dM1	$\sum \frac{(O-E)^2}{E}$ or $\sum \left(\frac{O^2}{E}\right) - 250$. May be implied by awrt 10.95 or allow 10.9 or	11.0
	A1	awrt 10.95 (allow 10.9 or 11.0)	
	B1	4 [degrees of freedom] If not seen then may be implied by 9.488 or 11.143 (or bette	er)
	B1ft	9.488 or better or ft on their dof e.g. 2: 5.991, 3: 7.815, 5: 11.07(0), 6: 12.592	,
		Dependent on all previous method marks and a critical value > 5 where $X^2 > CV$	
I			

Question Number		Scheme	Marks
6 (a)	e.g. base	ed solely on known observations or e.g. contains no unknown (population) ters	B1
			(1)
(b)	$\left \left[E(R) = \right. \right.$	$= \frac{1}{2} E(X_1) + \frac{3}{4} E(X_{20}) = \frac{1}{2} \mu + \frac{3}{4} \mu$	M1
	E(R) = -	$\frac{1}{2}\mu + \frac{3}{4}\mu = \frac{5}{4}\mu \neq \mu$ e.g. So R is a biased estimator for μ	A1
			(2)
(c)	$\frac{5}{4}\mu'-\mu$	$u = \frac{1}{4}\mu$	B1ft
			(1)
(d)	One of	$a-b=2$ oe or $14a+6b=20$ oe or $\frac{a-b}{2} = \frac{14a+6b}{20}$ $[-4b=a]$ oe	B1
	Two of	$a-b=2$ oe, $14a+6b=20$ oe, $\frac{a-b}{2}=\frac{14a+6b}{20}$ oe	B1
	Solves s	imultaneously e.g. $14a + 6(a-2) = 20 \Rightarrow a =, b =$	M1
	<i>a</i> =1.6 o	e, $b = -0.4$ oe	A1
		Notes	(4) Total 8
(a)	B1	For a correct explanation. Allow a valid explanation which suggests one of the following that it is based (solely) on observations/calculations/values/information/data oe	
(b)		20	are known
(0)	M1	For use of $E(R) = aE(X_1) + bE(X_{20})$. May be implied by a correct expression or	$\frac{5}{4}\mu$
(=)	M1 A1		$\frac{5}{4}\mu$
(c)		For use of $E(R) = aE(X_1) + bE(X_{20})$. May be implied by a correct expression or Requires an expression in terms of μ before proceeding to a correct simplified value reason (e.g. $\neq \mu$) and a conclusion (e.g. biased estimator).	$\frac{5}{4}\mu$ of $\frac{5}{4}\mu$, a
	A1	For use of $E(R) = aE(X_1) + bE(X_{20})$. May be implied by a correct expression or Requires an expression in terms of μ before proceeding to a correct simplified value reason (e.g. $\neq \mu$) and a conclusion (e.g. biased estimator). Must see use of expectation notation e.g. $E(R)$ or $\frac{1}{2}E(X_1) + \frac{3}{4}E(X_{20})$	$\frac{5}{4}\mu$ of $\frac{5}{4}\mu$, a
(c)	A1 B1ft	For use of $E(R) = aE(X_1) + bE(X_{20})$. May be implied by a correct expression or Requires an expression in terms of μ before proceeding to a correct simplified value reason (e.g. $\neq \mu$) and a conclusion (e.g. biased estimator). Must see use of expectation notation e.g. $E(R)$ or $\frac{1}{2}E(X_1) + \frac{3}{4}E(X_{20})$ Follow through their part (b) $-\mu$ Their part (b) must be in terms of μ . May be seen	$\frac{5}{4}\mu$ of $\frac{5}{4}\mu$, a n in (b)
(c)	A1 B1ft B1	For use of $E(R) = aE(X_1) + bE(X_{20})$. May be implied by a correct expression or Requires an expression in terms of μ before proceeding to a correct simplified value of reason (e.g. $\neq \mu$) and a conclusion (e.g. biased estimator). Must see use of expectation notation e.g. $E(R)$ or $\frac{1}{2}E(X_1) + \frac{3}{4}E(X_{20})$ Follow through their part (b) $-\mu$ Their part (b) must be in terms of μ . May be seen For a correct equation in a and b only. μ must not be present	$\frac{5}{4}\mu$ of $\frac{5}{4}\mu$, a In in (b) be present ling to values ent as long as

Question Number		Scheme	Marks	
7 (a)	$P(\bar{X}_n <$	$(45.2) = 0.3446$ $\Rightarrow \frac{45.2 - \mu}{\frac{\sigma}{\sqrt{n}}} = -0.4$ oe	M1	
		$\frac{.4\sigma}{\sqrt{n}} = \mu$ oe	A1	
	$\Big[P \Big(\overline{X}_n >$	$ > 75.2) = 0.0179] \Rightarrow \frac{75.2 - \mu}{\frac{\sigma}{\sqrt{n}}} = 2.1 \text{ oe} $	M1	
	$75.2 - \frac{2}{3}$	$\frac{1\sigma}{\sqrt{n}} = \mu$ oe	A1	
	e.g. 45.2	$2 + \frac{0.4\sigma}{\sqrt{n}} = 75.2 - \frac{2.1\sigma}{\sqrt{n}}$ or e.g. $\frac{30}{\frac{\sigma}{\sqrt{n}}} = 2.5$ oe	M1	
	$\frac{2.5\sigma}{\sqrt{n}} = 3$	$30 \Rightarrow \left[\sigma = 12\sqrt{n}\right] *$	A1*	
			(6)	
(b)	$\mu = 45.2 + \frac{0.4 \times 12\sqrt{n}}{\sqrt{n}}$ or $\mu = 75.2 - \frac{2.1 \times 12\sqrt{n}}{\sqrt{n}}$		M1	
	$\mu = 50$			
			(2)	
(c)	$\frac{\sigma}{\sqrt{n}} = \left[\frac{12\sqrt{n}}{\sqrt{n}}\right] = 12$			
	$P(\bar{X}_n > 59) = P(Z > \frac{59 - '50'}{12})$		M1	
		=0.2266 awrt 0.227	A1	
			(3)	
		Notes	Total 11	
(a)	Note	If they have not used the tables then maximum score M1A1M1A1M1A0* (5/6)		
	M1	For standardising with μ and $\frac{\sigma}{\sqrt{n}}$ and setting = \pm awrt 0.4		
	A1	For a correct equation with compatible signs. Condone use of e.g. awrt 0.4		
	M1	For standardising with μ and $\frac{\sigma}{\sqrt{n}}$ and setting = \pm awrt 2.1		
	A1	For a correct equation with compatible signs. Condone use of e.g. awrt 2.1		
		Dependent on at least one correct equation. For solving their 2 equations simultaneously to		
	M1	eliminate μ . Note they may eliminate $\frac{\sigma}{\sqrt{n}}$ first to find μ (= 50) and then substitution	ute this back	
		into one of their simultaneous equations which can score this mark.		
	A1*	Answer is given so no incorrect working must be seen. They must have an intermedi where the equation without μ has the constant terms collected and does not have an	_	
		within fractions before proceeding to the given answer.		

		e.g. $\frac{30}{\frac{\sigma}{\sqrt{n}}} = 2.5 \Rightarrow \frac{25\sigma}{\sqrt{n}} = 300 \Rightarrow \sigma = 12\sqrt{n}$
(b)	Note	If they do not have an equation in (a) involving the standard error $\frac{\sigma}{\sqrt{n}}$ then M0A0
	M1	For substitution of $\sigma = 12\sqrt{n}$ into an equation for μ . May be implied by 50
	A1	50
(c)	B1	Correct SE seen or may be implied e.g. N(,144) or awrt 0.227
	M1	For standardising using their μ and standard error = 12. Can be implied by awrt 0.227
	A1	awrt 0.227 (correct answer provided no incorrect working seen in (c) scores 3/3)

Question Number		Scheme	Marks
8(a)	$X = S_1 + S_2 + S_3$		
	$[X \square]$ N(54,0.0027) or e.g. $[E(X) =]$ 54, $[Var(X) =]$ 0.0027		
	P(X >	$54.1) = P \left(Z > \pm \frac{54.1 - 54'}{\sqrt{0.0027'}} \right) = P(Z > 1.924)$	M1
		[=1-0.9726] = 0.0274 (Calc 0.02714) awrt 0.027	A1
	V. C		(4)
(b)	$Y = C_1 -$		
	$[Y \square] N($	(0,0.0018) or e.g. $[E(Y)=]0$, $[Var(X)=]0.0018$	M1
	P(Y >	$0.02) = P\left(Z > \pm \frac{0.02 - 0'}{\sqrt{0.0018'}}\right) = P(Z > 0.4714)$	M1
		[=1-0.6808] = 0.3192 (Calc 0.31867) awrt 0.319	A1
	$2\times P(Y)$	> 0.02) = 2×'0.3192' = 0.6384 (Calc 0.63735) awrt 0.637 - awrt 0.638	M1 A1
		,	(5)
(c)	$T = P_1 + C_1 + \dots + C_5 + S_1 + \dots + S_{28}$		
, ,	Let $R = T - 30P_1 = C_1 + + C_5 + S_1 + + S_{28} - 29P_1$ (or e.g. $Q = T - 30P_1 - 190$)		
		(194,33.6697) or e.g. $[E(R) =]194$, $[Var(R) =]33.6697$ (or $N(4,33.6697)$)	M1 A1 M1 A1
			1,11,11
	P(R <	$190) = P\left(Z < \pm \frac{190 - 194'}{\sqrt{33.6697'}}\right) = P\left(Z < -0.68935\right) $ (or e.g. $P(Q < 0)$)	M1
		[=1-0.7549] = 0.2451 (Calc 0.2453) awrt 0.245	A1
			(6)
(a)	М1	Notes For N(54,) oe seen or used. May see e.g. $[E(X) = 3 \times 18$. Implied by awrt 0.027	Total 15
(4)	M1	For N(54, 0.0027) oe seen or used (Standard deviation (0.05196) May be seen in t	heir
	A1	standardisation. The unevaluated expressions for μ and σ^2 can score	
	M1	For standardising with 54.1, their mean $\neq 18$ or 6 and their standard deviation $\neq 0.0$	
		(if their mean/or their sd/var are incorrect then working must be shown. Allow \pm sta	nd
(b)	A1	awrt 0.027 provided standardisation seen For N(0, 0.0018) oe seen or used e.g. seen in their standardisation. The unevaluated of	avnraccions
(0)	M1	for μ and σ^2 can score. Implied by awrt 0.319 or awrt 0.637– awrt 0.638	capicosions
	M1	For standardising with 0.02, their mean and their standard deviation \neq 0.0018. Allo	w ± stand
	A1	awrt 0.319 provided standardisation seen. May be implied by their final answer	= 500110
	M1	For 2 × their 0.319 provided their probability of "0.319" is < 0.5 Imp by correct probability	b statement
	A1	Dep on all previous method marks scored and standardisation seen awrt 0.637–	
(c)		For sight or use of $T - 30P_1$ may be implied by sight of 194 oe or awrt 33.7 oe. May	attempt
	M1	$T-30P_1-190$ May be implied by sight of 4.	
	A1	for $C_1 + + C_5 + S_1 + + S_{28} - 29P_1$ oe May be implied by sight of awrt 33.7.	
	M1	For $N(194,)$ oe seen or used. May be unsimplified. (or $N(4,)$)	
	A1	For N(194, 33.6697) oe seen or used. The expressions for μ and σ^2 can score. (or No	(4,33.6697))
	M1	For standardising with 190, their mean and their standard deviation \neq 33.6697. Allo	
	A1	Dependent on all previous marks scored for awrt 0.245 provided standardisation	
		F. C.	