Métodos Matemáticos I

Prof. Aparecido J. de Souza aparecidosouza@ci.ufpb.br

Operadores Positivos Operador Raiz Quadrada

Recapitulando

Seja V um espaço vetorial munido de um PI.

O operador adjunto de um operador $T : \mathbb{V} \to \mathbb{V}$ é o operador $T^* : \mathbb{V} \to \mathbb{V}$ tal que $\langle T(v), w \rangle = \langle v, T^*(w) \rangle, \ \forall v, w \in \mathbb{V}$.

O operador $T : V \to V$ é auto-adjunto se $T^* = T$.

Teorema Espectral. Se $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ é um operador **auto-adjunto** num espaço vetorial \mathbb{V} de dimensão finita munido de um PI, então existe uma base ortonormal de \mathbb{V} formada por autovetores de \mathbf{T} .

Versão Matricial do Teorema Espectral. Toda matriz real simétrica é diagonalizável, isto é, $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \Lambda$, em que Λ é uma matriz diagonal, cuja diagonal é formada pelos autovalores (reais) de \mathbf{A} e a matriz \mathbf{Q} é uma matriz ortogonal, cujas colunas são formadas pelos autovetores (ortonormais) de \mathbf{A} .

Seja V um espaço vetorial real de dimensão finita com um PI.

Definição. Um operador $T : \mathbb{V} \to \mathbb{V}$ é **não negativo** quando T é **Auto-Adjunto** e $\langle T(v), v \rangle \geq 0, \forall v \in \mathbb{V}.$

Definição. Um operador $T : \mathbb{V} \to \mathbb{V}$ é **positivo** quando T é **Auto-Adjunto** e $\langle T(v), v \rangle > 0$, $\forall v \in \mathbb{V}$ tal que $v \neq \mathbf{0}$.

Versões Matriciais.

Definição. Uma matriz real quadrada **A** é **não negativa** quando **A** é **simétrica** e $\langle \mathbf{A}v, v \rangle \geq 0$, $\forall v \in \mathbb{R}^n$, $v \neq \mathbf{0}$.

Definição. Uma matriz real quadrada **A** é **positiva definida** quando **A** é **simétrica** e $\langle \mathbf{A} \mathbf{v}, \mathbf{v} \rangle > 0$, $\forall \mathbf{v} \in \mathbb{R}^n$ tal que $\mathbf{v} \neq \mathbf{0}$.

Seja V um espaço vetorial real de dimensão finita com um PI.

Teorema (versão 1). Um operador auto-adjunto $T: \mathbb{V} \to \mathbb{V}$ é não-negativo se, e somente se, seus autovalores são todos números reais não negativos, se e somente se, todos os determinantes menores principais da matriz A de T são não negativos.

Teorema (versão 2). Um operador auto-adjunto $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ é positivo se, e somente se, seus autovalores são todos números reais positivos, se e somente se, todos os determinantes menores principais da matriz \mathbf{A} de \mathbf{T} são positivos, se e somente se, ao fazer a decomposição $\mathbf{L}\mathbf{U}$ de \mathbf{A} por eliminação de Gauss, sem permutação de linhas, todos os pivôs são positivos.

Prova para a versão 1 no caso dos autovalores.

 (\Longrightarrow) Seja $T: \mathbb{V} \to \mathbb{V}$ um operador não-negativo.

Como T é auto-adjunto, todos os seus autovalores são reais.

Seja ν um autovetor **unitário** de **T** associado à um autovalor λ .

Então
$$\lambda = \lambda \|v\|^2 = \lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle \mathbf{T}(v), v \rangle \geq \mathbf{0}.$$

(\iff) Seja $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ um operador auto-adjunto e $\{v_1, v_2, \dots, v_n\}$ uma base de \mathbb{V} formada por autovetores ortonormais de \mathbf{T} , com $\mathbf{T}(v_i) = \lambda_i v_i$ e $\lambda_i \geq 0, j = 1, 2, \dots, n$.

Seja
$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$
. Então $\langle \mathbf{T}(v), v \rangle = \langle \mathbf{T}(\sum_{j=1}^n \alpha_j v_j), \sum_{k=1}^n \alpha_k v_k \rangle$ $= \langle \sum_{j=1}^n \alpha_j \mathbf{T}(v_j), \sum_{k=1}^n \alpha_k v_k \rangle = \langle \sum_{j=1}^n \alpha_j \lambda_j v_j, \sum_{k=1}^n \alpha_k v_k \rangle$ $= \sum_{j=1}^n \lambda_j \alpha_j^2 \geq \mathbf{0}$.

Logo, T é não negativo.

Corolário 1. Seja $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ operador linear não negativo. **Se** para um certo vetor $v \in \mathbb{V}$ tivermos a igualdade $\langle \mathbf{T}(v), v \rangle = 0$ **então** obrigatoriamente $\mathbf{T}(v) = \mathbf{0}$, isto é, $v \in \mathcal{N}(\mathbf{T})$.

Corolário 2. Um operador linear auto-adjunto $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ com matriz \mathbf{A} é positivo se, e somente se, é não-negativo e inversível $(N(\mathbf{T}) = \{\mathbf{0}\}, \text{ ou, } det(\mathbf{A}) \neq 0)$.

De fato. (⇒) Se T é positivo então todos os seus autovalores são positivos e sua matriz tem determinante não nulo, pois é o produto dos autovalores.

(⇐⇒) Como $det(\mathbf{A}) \neq 0$, então o único vetor v de \mathbb{V} tal que $\mathbf{A}v = \mathbf{0}$ é o vetor nulo.

Como **T** é não negativo, então $\langle \mathbf{T}(v), v \rangle \geq 0, \forall v \in \mathbb{V}$.

Logo pelo Corolário 1 segue $\langle \mathbf{T}(v), v \rangle > 0$, $\forall v \in \mathbb{V}$, $v \neq \mathbf{0}$, isto é, **T** é positivo.

"Fábrica" de Operadores Não-Negativos

Teorema. Se T: $\mathbb{V} \to \mathbb{W}$ é uma Transformação Linear entre entre um um espaço vetorial \mathbb{V} com $dim(\mathbb{V}) = \mathbf{n}$ e \mathbb{W} um espaço vetorial com $dim(\mathbb{W}) = \mathbf{m}$, ambos munidos de PIs, **então** os operadores compostos $\mathbf{T}^* \circ \mathbf{T} : \mathbb{V} \to \mathbb{V}$ e $\mathbf{T} \circ \mathbf{T}^* : \mathbb{W} \to \mathbb{W}$ são não negativos.

Obs. Se $\mathbf{A}_{\mathbf{m} \times \mathbf{n}}$ é a matriz de \mathbf{T} , então a matriz de $\mathbf{T}^* \circ \mathbf{T} : \mathbb{V} \to \mathbb{V}$ é a matriz produto $(\mathbf{A}^t \mathbf{A})_{\mathbf{n} \times \mathbf{n}}$ e a matriz de $\mathbf{T} \circ \mathbf{T}^* : \mathbb{W} \to \mathbb{W}$ é $(\mathbf{A} \mathbf{A}^t)_{\mathbf{m} \times \mathbf{m}}$.

Versão Matricial. Se A é uma matriz $\mathbf{m} \times \mathbf{n}$, **então** as matrizes produto $(\mathbf{A}^t \mathbf{A})_{\mathbf{n} \times \mathbf{n}}$ e $(\mathbf{A} \mathbf{A}^t)_{\mathbf{m} \times \mathbf{m}}$ são não negativas.

Note que:

- (i) $(\mathbf{A}^t \mathbf{A})^t = \mathbf{A}^t (\mathbf{A}^t)^t = \mathbf{A}^t \mathbf{A}$.
- (ii) T* ∘ T é não negativo, pois

$$\langle \mathbf{A}^t \mathbf{A} \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{A} \mathbf{v}, \mathbf{A} \mathbf{v} \rangle = \| \mathbf{A} \mathbf{v} \|^2 \ge 0.$$

"Fábrica" de Operadores Não-Negativos

Exemplo 1. Seja **T** :
$$\mathbb{R}^3 \to \mathbb{R}^2$$
 tal que **T**(x,y,z) = ($x + 2y + 3z$, $4x + 5y + 6z$).

Matriz de **T**:
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
. Matriz de \mathbf{T}^* : $\mathbf{A}^t = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

Matriz
$$\mathbf{A}\mathbf{A}^t = \begin{bmatrix} 14 & 32 \\ 32 & 77 \end{bmatrix}$$
. Matriz $\mathbf{A}^t\mathbf{A} = \begin{bmatrix} 17 & 22 & 27 \\ 22 & 29 & 36 \\ 27 & 36 & 45 \end{bmatrix}$.

Operador Não Negativo T* \circ T : $\mathbb{R}^3 \to \mathbb{R}^3$: T* \circ T $(x,y,z) = (17x + 22y + 27z, 22x + 29y + 36z, 27x + 36y + 45z). Operador Não Negativo T <math>\circ$ T* : $\mathbb{R}^2 \to \mathbb{R}^2$:

$$\mathsf{T} \circ \mathsf{T}^*(x,y) = (14x + 32y, \quad 32x + 77y).$$

Como $det(\mathbf{A}\mathbf{A}^t) = 54 > 0$ então $\mathbf{T} \circ \mathbf{T}^*$ é positivo, pois todos os determinantes menores principais de $\mathbf{A}\mathbf{A}^t$ são positivos. Como $det(\mathbf{A}^t\mathbf{A}) = 0$, então $\mathbf{T}^* \circ \mathbf{T}$ é apenas não negativo, já que o "maior" menor principal da matrriz $\mathbf{A}^t\mathbf{A}$ é nulo.

Definição. Sejam $T: \mathbb{V} \to \mathbb{V}$ e $S: \mathbb{V} \to \mathbb{V}$ operadores lineares. O operador S é dito uma **raiz quadrada** de T se $S^2 = T$.

Teorema. Todo operador linear não-negativo $\mathbf{T}: \mathbb{V} \to \mathbb{V}$ num espaço vetorial de dimensão finita \mathbf{n} possui uma única raiz quadrada $\mathbf{S} = \sqrt{\mathbf{T}}$. Além disto, $\sqrt{\mathbf{T}}$ é positivo se, e somente se, \mathbf{T} é positivo.

Como definir o operador raiz quadrada.

Sejam $\lambda_j \ge 0$, $1 \le j \le \mathbf{k} \le \mathbf{n}$ os \mathbf{k} -autovalores distintos de \mathbf{T} .

Sejam $\left\{v_j^{(1)}, v_j^{(2)}, \cdots, v_j^{(\mathbf{q}_j)}\right\}$ bases dos autoespaços (com dimensões \mathbf{q}_i) associados à λ_i , para $j=1,2,\cdots,\mathbf{k}$.

Seja $v \in \mathbb{V}$ um vetor qualquer. Então $v = \sum_{j=1}^{\mathbf{k}} \left(\sum_{i=1}^{\mathbf{q}_j} \alpha_{ij} v_j^{(i)} \right)$.

Daí,
$$\mathbf{T}(v) = \sum_{j=1}^{\mathbf{k}} \left(\sum_{i=1}^{\mathbf{q}_j} \alpha_{ij} \mathbf{T}(v_j^{(i)}) \right) = \sum_{j=1}^{\mathbf{k}} \left(\sum_{i=1}^{\mathbf{q}_j} \alpha_{ij} \lambda_j v_j^{(i)} \right)$$
$$= \sum_{j=1}^{\mathbf{k}} \lambda_j \left(\sum_{i=1}^{\mathbf{q}_j} \alpha_{ij} v_j^{(i)} \right).$$

Definimos o operador raiz quadrada $\sqrt{\mathbf{T}}: \mathbb{V} \to \mathbb{V}$ como:

$$\sqrt{\mathsf{T}}(v) = \sum_{j=1}^{\mathbf{k}} \sqrt{\lambda_j} \left(\sum_{j=1}^{\mathbf{q}_j} \alpha_{ij} \, v_j^{(i)} \right).$$

Exemplo 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ com T(x,y) = (x+y,x+3y).

Como a matriz **A** é simétrica, **então** este operador é auto-adjunto.

Autovalores de T (ou de A):

$$\lambda_1 = 2 - \sqrt{2} \approx 0.585786, \ \lambda_2 = 2 + \sqrt{2} \approx 3.41421.$$

Como todos (os dois) autovalores são positivos e o operador é auto-adjunto, **então T** é positivo.

Note que os dois menores pricipais de **A** são positivos. **Note também que** se for feita a eliminação de Gauss em **A**, então o pivô $a_{11} = 1$ é positivo.

Logo, o operador **T** (ou a matriz **A**) possui uma raiz quadrada.

Exemplo 2(cont.). Determinemos o operador (matriz) raiz quadrada de T(x,y) = (x+y,x+3y).

Autovalores de T (ou de A):

$$\lambda_1 = 2 - \sqrt{2} \approx 0.585786, \ \lambda_2 = 2 + \sqrt{2} \approx 3.41421.$$

Base de Autovetores de T (ou de A):

$$\mathbf{B_2} = \left\{ v^{(1)} = (-1 - \sqrt{2}, 1), v^{(2)} = (-1 + \sqrt{2}, 1) \right\}.$$

Dado um vetor na base de autovetores: $v = a_1 v^{(1)} + a_2 v^{(2)}$.

Então o operador raiz quadrada de T é dado por

$$\begin{split} \sqrt{\mathbf{T}}(a_1,a_2) &= \sqrt{\lambda_1} \, a_1 \, v^{(1)} + \sqrt{\lambda_2} \, a_2 \, v^{(2)} \\ &= \sqrt{2} - \sqrt{2} \, a_1 \, v^{(1)} + \sqrt{2 + \sqrt{2}} \, a_2 \, v^{(2)} \\ \textbf{Portanto,} \, \sqrt{\mathbf{T}}(a_1,a_2) &= \left(\sqrt{2 - \sqrt{2}} \, a_1, \quad \sqrt{2 + \sqrt{2}} \, a_2\right) \end{split}$$

 $\approx (0.765367 a_1, 1.84776 a_2).$

Obs. Se $B_{\mathbb{V}} = \{v_1, \dots v_n\}$ é uma base ortonormal de \mathbb{V} formada por autovetores (unitários) de \mathbf{T} , então a matriz do operador raiz quadrada $\sqrt{\mathbf{T}}$ na base $B_{\mathbb{V}}$ é obtida apenas tomando as raízes quadradas dos elemento da diagonal na matriz de \mathbf{T} na base $B_{\mathbb{V}}$.

Obs. O quadrado de um operador **não adjunto** pode ser negativo.

Exemplo 3. T : $\mathbb{R}^2 \to \mathbb{R}^2$ dado por $\mathbf{T}(x,y) = (-y,x)$ (rotação de $\pi/2$ em torno da origem).

Note que
$$\mathbf{T}^2(x,y) = \mathbf{T}(\mathbf{T}(x,y)) = \mathbf{T}(-y,x) = (-x,-y)$$
 é auto-adjunto, pois $\langle \mathbf{T}^2(x,y),(x,y) \rangle = \langle (-y,-x),(x,y) \rangle = \langle (x,y),(-y,-x) \rangle = \langle (x,y),\mathbf{T}^2(x,y) \rangle$.

No entanto, o único autovalor (repetido) de T^2 é $\lambda = -1 < 0$.

Logo, T² é negativo!