Introduction to Statistical Machine Learning

Cheng Soon Ong & Christian Walder

Machine Learning Research Group
Data61 | CSIRO
and
College of Engineering and Computer Science
The Australian National University

Canberra February – June 2019

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Outlines

Introduction
Linear Algebra
Probability
Linear Regression 1
Linear Classification 1
Linear Classification 1
Linear Classification 2
Kernel Methods
Sparse Kernel Methods
Sparse Kernel Methods
Matture Models and EM 1
Misture Models and EM 2
Neural Networks 1
Principal Component Analysis
Autocnocders

Graphical Models 1 Graphical Models 2 Graphical Models 3 Sampling Sequential Data 1 Sequential Data 2

Part XIX

Neural Networks 1

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Neural Ne

Weight-space Symmetries

Parameter Optimisation

Gradient Descent

Veight-space Symmetries

Parameter Optimisatio

Gradient Descen
Optimisation

- The basis functions play a crucial role in the algorithms explored so far.
- Number and parameters of basis functions fixed before learning starts (e.g. Linear Regression and Linear Classification).
- Number of basis functions fixed, parameters of the basis functions are adaptive (e.g. Neural Networks).
- Centre basis function on the data, select a subset of basis functions in the training phase (e.g. Support Vector Machines, Relevance Vector Machines).

Neural Networks

Weight-space Symmetries

Turumeter Optimi

Gradient Descer

- The functional form of the network model (including special parametrisation of the basis functions).
- How to determine the network parameters within the maximum likelihood framework? (Solution of a nonlinear optimisation problem.)
- Error backpropagation: efficiently evaluate the derivatives of the log likelihood function with respect to the network parameters.
- Various approaches to regularise neural networks.

• Same goal as before: e.g. for regression, decompose

$$t(\mathbf{x}) = y(\mathbf{x}, \mathbf{w}) + \epsilon(\mathbf{x})$$

where $\epsilon(\mathbf{x})$ is the residual error.

• (Generalised) Linear Model

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=0}^{M} w_j \phi_j(\mathbf{x})\right)$$

where $\phi = (\phi_0, \dots, \phi_M)^T$ is the fixed model basis and $\mathbf{w} = (w_0, \dots, w_M)^T$ are the model parameter.

- \bullet For regression: $f(\cdot)$ is the identity function.
- \bullet For classification: $f(\cdot)$ is a nonlinear activation function.
- Goal : Let $\phi_j(\mathbf{x})$ depend on parameters, and then adjust these parameters together with \mathbf{w} .

Ong & Walder & Webers
Data61 \ CSIRO
The Australian National
University

Neural Networks

Veight-space Symmetries

Parameter Optimisation

Gradient Descer Optimisation

Neural Networks

Veight-space Symmetrie

G . II . . D

Gradient Descer Optimisation

- Goal : Let $\phi_j(\mathbf{x})$ depend on parameters, and then adjust these parameters together with \mathbf{w} .
- Many ways to do this.
- Neural networks use basis functions which follow the same form as the (generalised) linear model.
- EACH basis function is itself a nonlinear function of an adaptive linear combination of the inputs.

• Construct M linear combinations of the input variables x_1, \ldots, x_D in the form

$$\underbrace{a_{j}}_{\text{activations}} = \sum_{i=1}^{D} \underbrace{w_{ji}^{(1)}}_{\text{weights}} x_{i} + \underbrace{w_{j0}^{(1)}}_{\text{bias}} \qquad j = 1, \dots, M$$

• Apply a differentiable, nonlinear activation function $h(\cdot)$ to get the output of the hidden units

$$z_j = h(a_j)$$

• $h(\cdot)$ is typically sigmoid, tanh, or more recently ReLU(x) = max(x, 0).

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Neural Networks

.....

Gradient Descent

 The outputs of the hidden units are again linearly combined

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}$$
 $k = 1, \dots, K$

 Apply again a differentiable, nonlinear activation function $g(\cdot)$ to get the network outputs y_k

$$y_k = g(a_k)$$

Introduction to Statistical

Ong & Walder & Webers Data61 | CSIRO The Australian National

Neural Networks

- Introduction to Statistical Machine Learning
- © 2019
 Ong & Walder & Webers
 Data61 | CSIRO
 The Australian National
 University
 - DATA |
- Neural Networks
- ricigni space symmetries
- Gradient Descen

- The activation function $g(\cdot)$ is determined by the nature of the data and the distribution of the target variables.
- For standard regression: $g(\cdot)$ is the identity function so that $y_k = a_k$.
- For multiple binary classification, $g(\cdot)$ is a logistic sigmoid function

$$y_k = \sigma(a_k) = \frac{1}{1 + \exp(-a_k)}$$

Weight-space Symmetries

Parameter Optimisation

Gradient Desce Optimisation

Combine all transformations into one formula

where w contains all weight and bias parameters.

• As before, the biases can be absorbed into the weights by introducing an extra input $x_0 = 1$ and a hidden unit $z_0 = 1$.

$$y_k(\mathbf{x}, \mathbf{w}) = g\left(\sum_{j=0}^{M} w_{kj}^{(2)} h\left(\sum_{i=0}^{D} w_{ji}^{(1)} x_i\right)\right)$$

where $\ensuremath{\mathbf{w}}$ now contains all weight and bias parameters.

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Neural Networks

Weight-space Symmetries

Parameter Optimisation

Gradient Descen
Optimisation

Parameter Optimisation

Gradient Descen Optimisation

- A neural network looks like a multilayer perceptron.
- But perceptron's nonlinear activation function was a step function. Not smooth. Not differentiable.

$$f(a) = \begin{cases} +1, & a \ge 0 \\ -1, & a < 0 \end{cases}$$

• The activation functions $h(\cdot)$ and $g(\cdot)$ of a neural network are smooth and differentiable.

Neural Networks

Weight-space Symmetrie

Optimisation

- If all activation functions are linear functions then there exists an equivalent network without hidden units.
 (Composition of linear functions is a linear function.)
- But if the number of hidden units in this case is smaller than the number of input or output units, the resulting linear function are not the most general.
- · Dimensionality reduction.
- Principal Component Analysis (comes later in the lecture).
- Generally, most neural networks use nonlinear activation functions as the goal is to approximate a nonlinear mapping from the input space to the outputs.

Neural Networks

eight-space Symmetrie:

Parameter Optimisation

Gradient Descer Optimisation

- Add more hidden layers (deep learning). Tom make it work we need many of the following tricks:
- Clever weight initialisation to ensure the gradient is flowing through the entire network.
- Some links may additively skip over one or several subsequent layer(s).
- Favour ReLU over e.g. the sigmoid, to avoid vanishing gradients.
- Clever regularisation methods such as dropout.
- Specific architectures, not further considered here:
 - Parameters may be shared, notably as in convolutional neural networks for images.
 - A state space model with neural network transitions is a recurrent neural network.
 - Attention mechanisms learn to focus on specific parts of an input.

Neural Networks as Universal Function Approximators

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

 $Parameter\ Optimisation$

Gradient Descei

- Feed-forward neural networks are universal approximators.
- Example: A two-layer neural network with linear outputs can uniformly approximate any continuous function on a compact input domain to arbitrary accuracy if it has enough hidden units.
- Holds for a wide range of hidden unit activation functions, but NOT for polynomials.
- Remaining big question: Where do we get the appropriate settings for the weights from? With other words, how do we learn the weights from training examples?

Neural Networks

Weight-space Symmetries

Parameter Optimisation

Gradient Descen
Optimisation

Neural network approximating

 $f(x) = x^2$

Neural Networks

Weight-space Symmetries

Parameter Optimisai

Gradient Descen Optimisation

Neural network approximating

 $f(x) = \sin(x)$

Weight-space Symmetries

Parameter Optimisation

Gradient Desce Optimisation

Neural network approximating

f(x) = |x|

Neural Networks

Weight-space Symmetries

Parameter Optimisation

Gradient Desce Optimisation

Neural network approximating Heaviside function

 $f(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$

Veight-space Symmetries

Parameter Optimisation

Gradient Descer Optimisation

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (0.0, 1.0, 0.1)$

eight-space Symmetries

Parameter Optimisation

Gradient Descei Optimisation

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (0.0, 0.1, 1.0)$

Weight-space Symmetrie.

Parameter Optimisation

Gradient Descer Optimisation

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (0.0, -0.5, 0.5)$

Veight-space Symmetries

Parameter Optimisation

Gradient Descer Optimisation

$$z = \sigma(w_0 + w_1x_1 + w_2x_2)$$
 for $(w_0, w_1, w_2) = (10.0, -0.5, 0.5)$

- orks
- © 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National

Introduction to Statistical

Machine Learning

DATA IIII

Veight-space Symmetries

Parameter Optimisati

Gradient Descer Optimisation

- Neural network for two-class classification.
- 2 inputs, 2 hidden units with tanh activation function, 1 output with logistic sigmoid activation function.

Red: y = 0.5 decision boundary. Dashed blue: z = 0.5 hidden unit contours. Green: Optimal decision boundary from the known data distribution.

Weight-space Symmetries

- Given a set of weights w. This fixes a mapping from the input space to the output space.
- Does there exist another set of weights realising the same mapping?
- Assume tanh activation function for the hidden units. As \tanh is an odd function: $\tanh(-a) = -\tanh(a)$.
- Change the sign of all inputs to a hidden unit and outputs of this hidden unit: Mapping stays the same.

- Introduction to Statistical Machine Learning
- Ong & Walder & Webers Data61 | CSIRO The Australian National
 - DATA | CSIR
 - Weight-space Symmetries

Parameter Ontimication

Gradient Desce

- M hidden units, therefore 2^M equivalent weight vectors.
- Furthermore, exchange all of the weights going into and out of a hidden unit with the corresponding weights of another hidden unit. Mapping stays the same. M! symmetries.
- Overall weight space symmetry: M! 2^M

M	1	2	3	4	5	6	7
$M! 2^M$	2	8	48	384	3840	46080	645120

- Assume the error $E(\mathbf{w})$ is a smooth function of the weights. Smallest value will occur at a critical point for which

$$\nabla E(\mathbf{w}) = 0.$$

- This could be a minimum, maxium, or saddle point.
- Furthermore, because of symmetry in weight space, there are at least $M! 2^M$ other critical points with the same value for the error.

neurai neiworks

Parameter Optimisation

Gradient Descent

Definition (Global Minimum)

A point \mathbf{w}^* for which the error $E(\mathbf{w}^*)$ is smaller than any other error $E(\mathbf{w})$.

Definition (Local Minimum)

A point \mathbf{w}^* for which the error $E(\mathbf{w}^*)$ is smaller than any other error $E(\mathbf{w})$ in some neighbourhood of \mathbf{w}^* .

- Finding the global minimium is difficult in general (would have to check everywhere) unless the error function comes from a special class (e.g. smooth convex functions have only one minimum).
- Error functions for neural networks are not convex (symmetries!).
- But finding a local minimum might be sufficient.
- Use iterative methods with weight vector update $\Delta \mathbf{w}^{(\tau)}$ to find a local minimum.

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$

Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

veurai Networks

Gradient Descent Optimisation

Neural Netwo

Weight-space Symmetries

Parameter Optimisation

Gradient Descent
Optimisation

Around a stationary point w* we can approximate

$$E(\mathbf{w}) \simeq E(\mathbf{w}^*) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^T \mathbf{H}(\mathbf{w} - \mathbf{w}^*),$$

where the Hessian H is evaluated at w*.

• Using a set $\{u_i\}$ of orthonormal eigenvectors of H,

$$\mathbf{H}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

to expand

$$\mathbf{w} - \mathbf{w}^* = \sum_i \alpha_i \mathbf{u}_i.$$

We get

$$E(\mathbf{w}) = E(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \alpha_i^2.$$

Neural Net

Weight-space Symmetries

Parameter Optimisation

Gradient Descent Optimisation

Neural Networks

eight-space Symmetries

Parameter Optimisation

Gradient Descent Optimisation

Neural Networks

Weight-space Symmetries

Turumeter Optimisuno

Gradient Descent
Optimisation

- Hessian is symmetric and contains W(W+1)/2 independent entries where W is the total number of weights in the network.
- Need to gather this $O(W^2)$ pieces of information by doing O(W) function evaluations if nothing else is know. Get order $O(W^3)$.
- The gradient ∇E provides W pieces of information at once. Still need O(W) steps, but the order is now $O(W^2)$.

Veight-space Symmetries

Turumeter Optimisui

Gradient Descent Optimisation

 Batch processing: Update the weight vector with a small step in the direction of the negative gradient

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

where η is the learning rate.

- After each step, re-evaluate the gradient $\nabla E(\mathbf{w}^{(\tau)})$ again.
- Gradient Descent has problems in 'long valleys'.

Gradient Descent Optimisation

• Gradient Descent has problems in 'long valleys'.

Example of zig-zag of Gradient Descent Algorithm.

Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Neural Ne

Weight-space Symmetries

Parameter Optimisation

Gradient Descent Optimisation

Neural Networks

Veight-space Symmetries

Gradient Descent Optimisation

- Use Conjugate Gradient Descent instead of Gradient Descent to avoid zig-zag behaviour.
- Use Newton method which also calculates the inverse Hessian in each iteration (but inverting the Hessian is usually costly).
- Use Quasi-Newton methods (e.g. BFGS) which also calculates an estimate of the inverse Hessian while iterating.
- Run the algorithm from a set of starting points to find the smallest local minimum.

- DATA |
- Neural Networks
- Weight-space Symmetries
- rarameter Optimisan

Gradient Descent Optimisation

- Remaining big problem: Error function is defined over the whole training set. Therefore, need to process the whole training set for each calculation of the gradient $\nabla E(\mathbf{w}^{(\tau)})$.
- If the error function is a sum of errors for each data point

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

we can use on-line gradient descent (also called sequential gradient descent or stochastic gradient descent updating the weights by one data point at a time

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)}).$$