PROPEDEUTIQUE ALGEBRE LINEAIRE

J. Thévenaz

Juin 2012

I) (10 points)

On considère l'espace hermitien \mathbb{C}^3 muni du produit scalaire standard.

Soit $\alpha: \mathbb{C}^3 \to \mathbb{C}^3$ la transformation linéaire suivante :

$$A = \left[\begin{array}{rrr} 4 & -4 & -2 \\ -4 & 4 & 2 \\ -2 & 2 & 1 \end{array} \right]$$

- a) On affirme que A est unitairement diagonalisable. Qu'est-ce que cela signifie? Pourquoi est-ce le cas?
- b) Effectuez explicitement la diagonalisation en question. Justifiez votre démarche et vos réponses.
- c) Quelle est la matrice adjointe de α ?
- II) (8 points)

Soit V le \mathbb{R} -espace vectoriel de toutes les matrices 2×2 triangulaires supérieures à coefficients réels.

Si $A, B \in V$, on définit : c(A) = coefficient non diagonal de A, et $\beta(A, B) = c(AB) + c(BA)$.

- a) Montrer que β est une forme linéaire symétrique sur V sachant que c est linéaire.
- b) Trouver la signature de β . Justifiez votre démarche.
- III) (10 points)

Soit $p \in \mathbb{R}$ et

$$A = \left[\begin{array}{cccc} 4 & -3 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ p & p & 2 & 0 \\ 1 & 0 & 1 & 0 \end{array} \right]$$

- a) Quel est le polynôme minimal de A? Justifiez votre réponse.
- b) Est-ce que A est diagonalisable? Justifiez votre réponse.
- c) $r^3 \cdot (t-1)^5 \cdot (t-2)$ est-il un polynôme annulateur de A? Justifiez votre réponse

IV)	(6 1	point	ts)
1 V)	' (U	pom	JOI

Soit V un \mathbb{C} -espace hermitien et soit $\alpha:V\to V$ une transformation linéaire auto-adjointe.

Montrer que deux espaces propres distincs sont orthogonaux sans utiliser le théorème spectral.

V) (6 points)

Soit V un \mathbb{K} -espace vectoriel de dimension $n \geq 2$. Soient W un sous-espace vec toriel de dimension $n-1,\,\varphi$ et ψ deux formes linéaires de V dans $\mathbb K$ avec φ et ψ nulles sur W.

Montrer que φ et ψ sont linéairement dépendantes.

VI) (4 points)

Répondez de manière précise aux questions suivantes :

- a) Qu'est-ce qu'une forme sesquilinéaire hermitienne sur un C-espace vectoriel?
- b) Quand dit-on que deux matrices sont congruentes?

VII) (6 points)

Choisir la bonne réponse parmi les propositions suivantes. Vous n'avez pas besoin de justifier vos réponses.

a) On travaille dans un espace hermitien. Soit α unitaire, et $ v $ la norme de v . $ \alpha(v) - v =0$?
□ Oui toujours.
$\hfill\Box$ Si l'espace hermitien est de dimension paire.
\Box Si $v = 0$, sinon non.
\square Si $v = 0$ ou vecteur propre, sinon non.
b) Soit $A \in M_n(\mathbb{R})$ orthogonale. La somme des carrés des coefficients de A vaut :
\square N'importe quel réel positif.
\square 1.
$\ \square \ n.$
$\square n^2$.
c) Soit $A \in M_5(\mathbb{R})$ et $m_A(t) = t^3 - t + a, a \in \mathbb{C}$. A est-elle inversible?
\Box Toujours.
\square Si $a \in \mathbb{C}$, sinon non.
\square Si $a \neq 0$, sinon non.
\square Jamais.

: