Algorithms, Evidence, and Data Science Cookbook

Part I: Classic Statistical Inference

* **Population:** the entire group

* Sample: a subset of the population

* Mean: μ is the mean of the population; \bar{x} is the mean of the sample

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

* Variance: the dispersion around the mean

Variance of a population:

Variance of a sample:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

* Standard Deviation: square root of the variance

* Standard Error: an estimate of the standard deviation of the sampling distribution

For a mean:

For the difference between two

$$se(\bar{x}) = \sqrt{\frac{s^2}{n}}$$

$$se(\bar{x}) = \sqrt{\frac{s^2}{n}}$$
 means:
$$se(\bar{x_1}, \bar{x_2}) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Algorithms and Inference

- * Algorithm: set of data probability-steps to produce an estimator
- * Inference: measuring the uncertainty around the estimator e.q.: \bar{x} the algorithm, while $se(\bar{x})$ is the inference

A Regression Example

Linear Regression

any regression is a conditional mean $\hat{Y}_i = E(Y_i|X_i)$

- * Y: response variable
- * X : covariate/predictor/feature
- * $\hat{\beta}_0, \hat{\beta}_1$: regression coefficients

$$\hat{\beta}_{0} = \hat{Y} - \hat{\beta}_{1}\hat{X}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$se(\hat{\beta}_{0}) = \hat{\sigma}^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \right]$$

$$se(\hat{\beta}_{1}) = \frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

* predicted values = fitted curve given x:

$$\hat{Y}(x) = \hat{\beta_0} + \hat{\beta_1} x$$

* residuals $\hat{\epsilon}$:

$$\hat{\epsilon}_i = Y_i - \hat{Y}_i = Y_i - \hat{\beta}_0 + \beta_1 X_i$$

* residual sum of squares RSS

$$RSS(\hat{\beta_0}, \hat{\beta_1}) = \sum_{i=1}^{n} \hat{\epsilon_i}^2$$

* mean square error $\hat{\sigma}^2$

$$\hat{\sigma}^2 = \frac{RSS(\hat{\beta_0}, \hat{\beta_1})}{n-2}$$

LOWESS & LOESS

* 1) specify the number of points within the range/window n * 2) neighbour weightings $w(x_k)$

$$w(x_k) = \left(1 - \left|\frac{x_i - x_k}{d}\right|^3\right)^3 \quad \text{d is the distance between } x_i$$
 and the k^{th} neighbouring point

* 3) for each range, estimate a regression function

LOWESS: $\hat{y_k} = a + bx_k$

LOESS: $\hat{y_k} = a + bx_k + cx_k^2$

* 4) robust weightings $G(x_k)$

$$G(x_k) = \begin{cases} \left(1 - \left(\frac{|y_i - \hat{y_i}|}{6median(|y_i - \hat{y_i}|)}\right)^2\right)^2, & \left|\frac{|y_i - \hat{y_i}|}{6median(|y_i - \hat{y_i}|)}\right| < 1 \text{if}(p - value \text{ using } t \text{ and } df \\ < 1 \text{if}(p - value < \alpha) \text{ reject } H_o \text{ and accept } H_a \text{ } \end{cases} \\ \left|\frac{|y_i - \hat{y_i}|}{6median(|y_i - \hat{y_i}|)}\right| \ge 1 * \alpha \text{ is the predetermined value of significance (usually 0.05)} \\ * \text{ if } t \text{ is of the importance of the importa$$

LOWESS:
$$\hat{y_k} = \sum_k w(x_k)G(x_k)(a + bx_k)^2$$

LOESS:
$$\hat{y_k} = \sum_{k} w(x_k)G(x_k)(a + bx_k + cx_k^2)^2$$

* 5) A series of new smoothed values is the result. The procedure can be repeated to get a more precise curve fitting.

Bootstrapping

- * bootstrap principle:
- $\sigma_{\text{(sampling w/replacemnt)}} = \sigma_{\text{(across samples)}}$
- * bootstrap iterations: B
- * original sample: $(x_i, y_i)_{i=1}^N$
- * bootstrap samples: $(x_{j(b)}, y_{j(b)})_{j \in I}$ for b = 1, ..., B,

 $I = \{1, ..., N\}$, and j is the index that is randomly sampled

* for each b, compute $\hat{y}_{i(b)}$ using LOWESS or any other model

* for each j row, the standard deviation σ_i^{boot} is

$$\sigma_j^{boot} = \sqrt{\frac{(\bar{\hat{y}_j} - \bar{\hat{y}_j})^2}{B-1}}$$

* sort i(b) by value from min to max \rightarrow get the 5th and 95th values to get a 90% confidence interval

Hypothesis Testing

T-test, one-sample

- * null hypothesis $H_o: \mu = \mu_0$
- * alternative hypothesis $H_a: \mu\{=, > or <\}\mu_0$
- * t-statistict standarices the difference between \bar{x} and μ_0

$$t = \frac{\bar{x} - \mu_0}{se(\bar{x})}$$

degrees of freedom df = n - 1

* p-value: probability that \bar{x} was obtained by chance given

* algorithm: read the t-distribution critical values (chart) for the p-value using t and df

* if (t is of the 'wrong' sign) $p - value = 1 - p - value_{chart}$

paired two-sample t-test

each value of one group corresponds to a value in the other

* algorithm: subtract the values for each sample to get one set of values and use μ_0 to perform a one-sample t-test

unpaired two-sample t-test

the two populations are independent

- * $H_o: \mu_1 = \mu_2$
- * $H_a: \mu_1 \{=, > or <\} \mu_2$
- * t-statistict

$$t = \frac{\bar{x_1} - \bar{x_2}}{se(\bar{x_1}, \bar{x_2})}$$

degrees of freedom $df = (n_1 - 1) + (n_2 - 1)$

- * algorithm: same as in one-sample t-test
- * double the p-value for $H_a: \mu_1 \neq \mu_2$
- * Type I error α : probability of rejecting a true H_{α}
- * Type II error β : probability of failing to reject a false H_0

Notes

- * the OLS confidence intervals work asymptotically \rightarrow they assume the number of available observations is infinite, but it assumes normality
- * in LOWESS, n is not infinite, but it does not assume any distribution

Frequentist Inference

- * assumes the observed data comes from a probability distribution ${\cal F}$
- * $x = (x_1, ..., x_n)$ is the data vector (aka. the sample's values)
 * $X = (X_1, ..., X_n)$ is the vector of random variables (aka. a sample, individual draws of F)
- * the expectation property $\theta = E_F(X_i)$ (aka. the true expectation value of any draw X_i)
- * $\hat{\theta}$ is the best estimate of θ

usually,

$$\hat{\theta} = t(x) \qquad \qquad t(x) = \bar{x}$$

where t(x) is the algorithm

* $\hat{\theta}$ is sample specific, is a realization of $\hat{\Theta} = t(x)$. Typically,

$$E_F(\hat{\Theta}) = \mu \qquad \qquad \begin{array}{c} \mu \text{ is the expected value of} \\ \text{producing an estimate using} \\ t(x) \text{ when } x \text{ comes from } F \end{array}$$

- * Bias-Variance Trade-Off: models with lower bias will have higher variance and vice versa.
- * Bias: error from incorrect assumptions to make target function easier to learn (high bias → missing relevant relations or under-fitting)
- * Variance: error from sensitivity to fluctuations in the dataset, or how much the target estimate would differ if different training data was used (high variance → modelling noise or over-fitting)

$$bias = \mu - \theta$$
 (aka. $expected-true values)
$$var = E_F\{(\hat{\Theta} - \mu)^2\}$$$

Frequentist principles

* usually defines parameters with infinite sequence of trials \rightarrow hypothetical data sets $X^{(1)}, X^{(2)}, \dots$ generate infinite samples $\hat{\Theta}^{(1)}, \hat{\Theta}^{(2)}, \dots$ * 1) Plug-in principle: relate the sample $se(\bar{x})$ with the true variance.

$$var_F(x) = va\hat{r}_F = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$se(\bar{x}) = \left\lceil \frac{var_F(x)}{n} \right\rceil^{\frac{1}{2}}$$

* 2) Taylor series approximations: relate t(x) by local linear approximations (aka. compute $\bar{se}(x)$ of the transformed estimator)

$$se(\hat{\theta}) = se(\bar{x})\frac{d\hat{\theta}}{d\bar{x}} = se(\bar{x})\frac{dt(x)}{d\bar{x}}$$

* 3.1) Parametric Families: given $x = (x_1, ..., x_n)$, the Likelihood Function L(x) (aka. the probability to observe x) is given by:

e.g. $\hat{\theta} = \mu$ for a normal distribution

$$P(x|N(\mu,\sigma^2)) = P(x_1|N(\mu,\sigma^2))...P(x_n|N(\mu,\sigma^2))$$

$$P(x|N(\mu,\sigma^2)) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = L(x)$$

* 3.2) MLE (maximum likelihood estimate): find $\hat{\theta}$ such that L(x) is maximized e.g.

$$\hat{\theta}^{\max} L(x) \Rightarrow {}^{\max}_{\mu} L(x) = \hat{\mu}^{MLE}$$

- * 4) Simulation and Bootstrap: estimate F as \hat{F} , then simulate values from \hat{F} to get a prior sample $\hat{\Theta}^{(k)} = t(x^{(b)})$ The empirical standard deviation of the $\hat{\Theta}'s$ is the frequentist estimate for $se(\hat{\theta})$
- * 5) Pivotal Statistics: Frequentist use pivotal statistics whenever they are available to conduct stat. tests *e.g.* t-test is a pivotal statistic as it does not depend on parameters the distribution might have.

Frequentist Optimality

Neyman-Pearson lemma optimum hypothesis-testing algorithm:

purpose: choose one of the two possible density functions for observed data \boldsymbol{x}

- * null hypothesis density $f_0(x)$
- * alternative density $f_1(x)$

let L(x) be the Likelihood Ratio

$$L(x) = \frac{f_0(x)}{f_1(x)}$$

let the testing rule $t_c x$ be:

$$t_c x = \begin{cases} 1(picf_1(x)), & ln(L(x)) \ge c \\ 0(picf_0(x)), & ln(L(x)) < c \end{cases}$$

* only rules in the $t_c x$ form can be optimal e.g.

Notes and Details

Bayesian Inference

Two Examples

Uninformative Prior Distributions

Flaws in Frequentist Inference

A Bayesian/Frequentist Comparison List

Notes and Details

Fisherian Inference and Maximum Likelihood Estimation

Likelihood and Maximum Likelihood

Fisher Information and the MLE

Conditional Inference

Permutation and Randomization

Notes and Details

Parametric Models and Exponential Families Univariate Families

Osamu Katagiri - A01212611, linkedin.com/osamu-katagiri/