DE19816414 A1 Verfahren zur Herstellung von Grignardverbindungen BASF AG

Abstract:

Die Erfindung betrifft ein Verfahren zur Herstellung von Grignardverbindungen der Formel I. Die Erfindung betrifft außerdem Verbindungen der Formel I sowie polymergebundene Verbindungen der Formel Ia. Weiterhin betrifft die Erfindung die Verwendung des Verfahrens zur Herstellung von Substanzbibliotheken sowie die Verwendung der Verbindungen der Formeln I und Ia in der chemischen Synthese.

METHOD FOR PRODUCING GRIGNARD COMPOUNDS BASF AKTIENGESELLSCHAFT

Abstract (EN):

The invention relates to a method for producing grignard compounds of formula (I). The invention also relates to compounds of formula (I) in polymer bonded compounds of formula (Ia). The invention further relates to the use of the inventive method to produce substance libraries and to the use of compounds of formulae (I) and (Ia) in chemical synthesis.

(9) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

_® DE 198 16 414 A 1

(2) Aktenzeichen: 198 16 414.9 ② Anmeldetag:

14. 4.98 (3) Offenlegungstag: 21.10.99 (f) Int. Cl.6: C 07 F 3/02 C 07 B 49/00

C 07 B 61/00

(1) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

(12) Erfinder:

Boymond, Laura, Versailles, FR; Rottländer, Mario, 35039 Marburg, DE; Cahiez, Gerard, Paris, FR; Knochel, Paul, Prof. Dr., 35037 Marburg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Verfahren zur Herstellung von Grignardverbindungen
- Die Erfindung betrifft ein Verfahren zur Herstellung von Grignardverbindungen der Formel I. Die Erfindung betrifft außerdem Verbindungen der Formel I sowie polymergebundene Verbindungen der Formel la. Weiterhin betrifft die Erfindung die Verwendung des Verfahrens zur Herstellung von Substanzbibliotheken sowie die Verwendung der Verbindungen der Formeln I und la in der chemischen Synthese.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung von Grignardverbindungen der Formel I. Die Erfindung betrifft außerdem Verbindungen der Formel I sowie polymergebundene Verbindungen der Formel Ia. Weiterhin betrifft die Erfindung die Verwendung des Verfahrens zur Herstellung von Substanzbibliotheken sowie die Verwendung der Verbindungen der Formeln I und Ia in der chemischen Synthese.

Grignardverbindungen sind wertvolle Zwischenstufen in der organischen Synthese. Sie gehören zu den wichtigsten Verbindungsklassen in der organischen Synthesechemie. Ihre Umsetzung mit elektrophilen Substanzen erlaubt die Herstellung der unterschiedlichsten Verbindungen. Aus der Literatur sind eine Vielzahl von Synthesen bekannt, in denen Grignardverbindungen verwendet werden (siehe: Handbook of Grignard-Reagents, Eds. G.S. Silverman, P.E. Rakita, Marcel Dekker, Inc. 1996). Grignardverbindungen besitzen eine gute Reaktivität bei befriedigender Chemoselektivität (siehe Posner G. H. Org. React., Vol. 22, 1975: 253, Lipshutz et al., Org. React., Vol. 41, 1992: 135, Luh T.-Y. Chem. Res., Vol 24, 1991: 257 oder Tamao et al., J. Am. Chem. Soc., Vol, 94, 1972: 4374). In DE 196 32 643 wird beispielsweise die Synthese von Zwischenprodukten für Angiotensin-II-Inhibitoren über eine Grignardverbindung beschrieben. DE 25 41 438 und DE 19 64 405 beschreiben die Synthese von Riechstoffen über Grignardsynthesen beispielsweise fuhr die Kosmetik.

In der deutschen Anmeldung (Aktenzeichen 1 97 09 118.0) wird die Synthese von Pflanzenwirkstoffen mittels einer Grignardverbindung, die als Substituenten Thioalkylether oder Halogen trägt, beschrieben.

Üblicherweise werden sie gemäß Schema I hergestellt, in dem ein entsprechendes Alkyl- oder Arylhalogenid mit metallischem Magnesium oder einer anderen Magnesiumquelle umgesetzt wird. Die Methoden hierzu sind dem Fachmann bekannt und können in Handbook of Grignard-Reagents, Eds. G.S. Silverman, P.E. Rakita, Marcel Dekker, Inc., 1996 nachgelesen werden.

Schema I

25

35

Klassische Herstellung von Grignardverbindungen

All diesen Umsetzungen ist jedoch gemeinsam, daß sie unter recht drastischen Reaktionsbedingungen (Temperaturen > 0°C, zumeist sogar bei Temperaturen > +40°C durchgeführt werden. Diese Bedingungen erlauben es aber nicht, daß weitere funktionelle Gruppen wie Ester oder Nitrilgruppen, die mit einer Grignardverbindung als Elektrophil reagieren können, im Molekül enthalten sind, da es unter diesen Bedingungen dann zur Oligomerisierung, Reduktion oder anderen Nebenreaktionen kommen würde.

In Bull. Soc. Chim. Fr. 1967, 1520, Angew. Chem., Vol. 81, 1969: 293., J. Organomet. Chem., C21 G, 1971: 33, J. Organomet. Chem. Vol. 113, 1976: 107 und J. Organomet. Chem. Vol. 54, 1973: 123 wird die Herstellung von Arylgrignardverbindungen durch Halogen-Magnesiumaustausch beschrieben.

Die dort angewendeten Bedingungen und Reagentien erlauben es aber nicht, Grignardverbindungen mit funktionellen Gruppen wie Estern, Nitrile oder Amide herzustellen, die mit einem Elektrophil reagieren.

So wird beispielsweise in J. Organomet. Chem., Vol. 113, 1976: 107 die Herstellung des 2-Pyridyl-magnesiumbromids (XI) ausgehend von Phenylmagnesiumbromid (VII) und 2-Chlorpyridin (VIII) gemäß Schema II beschrieben.

Schema II

50

Synthese von 2-Pyridyl-magnesiumbromid

Die Reaktionsbedingungen sind jedoch dergestalt, daß funktionelle Gruppen im Molekül sofort umgesetzt werden würden.

Daher ist die einfache Herstellung von Grignardverbindungen, die funktionellen Gruppen, die mit Elektrophilen reagieren, enthalten, bisher nicht bekannt.

Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Synthese von Grignardverbindungen bereitzustellen, die für die weitere vielfältige chemische Synthese weitere funktionelle Gruppen enthalten, die mit Elektrophilenreagentien reagieren können.

Diese Aufgabe wurde durch ein Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

(I) 10

5

15

20

30

55

dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel II

(II)

mit Verbindungen der Formel R⁴MgX (III) bei Temperaturen kleiner 0°C umsetzt, wobei die Substituenten und Variablen in den Formeln I, II und III folgende Bedeutung haben:

25 $X = \text{Halogen wie Cl, Br, 1 oder } R^2$

 $X^a = Br, I$

A, B, D und E unabhängig voneinander CH, CR², N, P oder CR³

 $F = O, S, NR^6, CR^2$ oder CR^3 , wenn z = 0, oder CH, CR^2, N, P oder CR^3 , wenn z = 1,

wobei zwei benachbarte Variablen A, B, D, E oder F zusammen einen weiteren substituierten oder unsubstituierten aromatischen, gesättigten oder teilweise gesättigten Ring mit 5 bis 8 Atomen im Ring bilden können, der ein oder mehrere Heteroatome wie O, N, S, P enthalten kann und wobei nicht mehr als drei der Variablen A, B, D, E oder F ein Heteroatom sind.

Vorzugsweise bedeuten nicht mehr als drei der Variablen A, B, D, E oder F gleichzeitig Stickstoff in den Verbindungen der Formeln I, Ia und II. Ist z = 0, so können vorteilhaft weitere Heteroatome wie Sauerstoff oder Schwefel zusätzlich zum Stickstoff oder anstelle des Stickstoffs im Ring enthalten sein, wobei maximal ein Schwefel- oder Sauerstoffatom im 5-Ring enthalten sein können. Beispielhaft seien 5-Ringheterozyklen mit Grundkörpern wie Pyrol, Pyrazol, Imidazol, Triazol, Oxazol, Isoxazol, Isothiazol, Oxazol, Thiazol, Furazan, Oxadiazol, Thiooxazol, Thiophen oder Furan genannt. Für 6-Ringheterozyklen seien Zyklen mit Grundkörpern wie Pyridin, Pyrimidin, Pyrazin, Pyridazin oder Triazin beispielhaft genannt. Sowohl für z = 0 als auch für z = 1 kann ein Phosphoratom vorteilhaft im Ring als alleiniges Heteroatom enthalten sein.

 $R^1 = COOR^2$, CN, $CONR^3R^3$, Halogen

R² = substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C₁-C₁₀-Alkyl-, C₃-C₁₀-Cycloalkyl-, C₁-C₄-Alkylaryl-, C₁-C₄-Alkylhetaryl-, R⁵,

R³ = Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes -OC₁-C₁₀-Alkyl, -OC₃-C₁₀-Cycloalkyl, -OC₁-C₄-Alkylaryl, -OC₁-C₄-Alkylhetaryl, R³, oder R⁵,

R³ = Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C₁-C₁₀-Alkyl-, C₃-C₁₀-Cycloalkyl-, C₁-C₄-Alkylaryl-, C₁-C₄-Alkylhetaryl-, R⁵,

 R^4 = substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C_1 - C_{10} -Alkyl-, C_3 - C_{10} -Cycloalkyl-, C_1 - C_4 -Alkylaryl-, C₁-C₄-Alkylhetaryl- oder Halogen wie Cl, Br, J, bevorzugt Br oder J,

R³ = ein fester Träger bevorzugt eine polymere Schutzgruppe,

R⁶ = substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C₁-C₁₀-Alkyl-, C₃-C₁₀-Cycloalkyl-, C₁-C₄-Alkylaryl-, C₁-C₄-Alkylhetaryl-, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes -(C=O)-C₁-C₁₀-Alkyl, -(C=O)-C₃-C₁₀-Cycloalkyl, -(C=O)-C₁-C₄-Alkylaryl, -(C=O)-C₁-C₄-Alkylhetaryl oder -SO₂-Aryl, gelöst. R¹ bezeichnet in den Verbindungen der Formeln I und II COOR², CN, CONR³R³, Halogen wie F, Cl.

R² bezeichnet in den Verbindungen der Formeln I und II substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C₁-C₁₀-Alkyl-, C₃-C₁₀-Cycloalkyl-, C₁-C₄-Alkylaryl-, C₁-C₄-Alkylhetaryl- oder R⁵.

Als Alkylreste seien substituierte oder unsubstituierte verzweigte oder unverzweigte C1-C10-Alkylketten wie beispielsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl-, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl oder n-Decyl genannt.

Als Cycloalkylreste in der Formel seien beispielhaft substituierte oder unsubstituierte verzweigte oder unverzweigte C₃-C₁₀-Cycloalkylketten mit 3 bis 7 Kohlenstoffatomen im Ring oder Ringsystem wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, 1-Methylcyclopropyl, 1-Ethylcyclopropyl, 1-Propylcyclopropyl, 1-Butylcyclopropyl,

1-Pentylcyclopropyl, 1-Methyl-1-Butylcyclopropyl, 1,2-Dimethylcyclopropyl, 1-Methyl-2-Ethylcyclopropyl, Cyclooctyl, Cyclononyl oder Cyclodecyl genannt. Die Cycloalkylreste können auch Heteroatome wie S, N und O im Ring enthalten.

Als C_1 - C_4 -Alkylaryl seihen substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C_1 - C_4 -Alkylphenyl- oder C_1 - C_4 -Alkyl-naphthylreste wie Methylphenyl, Ethylphenyl, Propylphenyl, 1-Methylphenyl, Butylphenyl, 1-Methylpropylphenyl, 2-Methylpropylphenyl, 1,1-Dimethylethylphenyl, Methylnaphthyl, Ethylnaphthyl, Propylnaphthyl, 1-Methylpropylnaphthyl, 1-Methylpropylnaphthyl, 2-Methylpropylnaphthyl oder 1,1-Dimethylethylnaphthyl genannt.

Als Alkylhetarylreste seien substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C₁-C₄-Alkylhetarylreste, die ein oder mehrere Stickstoff-, Schwefel- und/oder Sauerstoffatome im Ring oder Ringsystem enthalten,

511aiiiii.

R² kann auch ein fester Träger R⁵ sein (Definition des Trägers siehe unten).

Als Substituenten der genannten Reste von R² kommen prinzipiell bis auf Ketone oder Aldehyde alle denkbaren Substituenten in Frage beispielsweise ein oder mehrere Substituenten wie Halogen wie Fluor, Chlor oder Brom, Cyano, Nitro, Amino, Hydroxy, Alkyl, Cycloalkyl, Aryl, Alkoxy, Benzyloxy, Phenyl oder Benzyl.

R³ bezeichnet im Substituent R¹ Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes - OC₁-C₁₀-Alkyl-, -OC₃-C₁₀-Cycloalkyl-, -OC₁-C₄-Alkylaryl-, -OC₁-C₄-Alkylhetaryl-, R³, oder R⁵.

Als -O-Alkylreste seien substituierte oder unsubstituierte verzweigte oder unverzweigte - OC_1 - C_{10} -Alkylketten (= Alkylhydroxamsäuren, Bindung über den Sauerstoff) genannt. In diesen -O-Alkylresten hat haben die C_1 - C_{10} -Alkylketten folgende Bedeutung Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl oder n-Decyl.

Als -O-Cycloalkylreste im Rest R^3 seihen beispielhaft substituierte oder unsubstituierte verzweigte oder unverzweigte -OC₃-C₁₀-Cycloalkylketten mit 3 bis 7 Kohlenstoffatomen im Ring oder Ringsystem genannt, wobei die C₃-C₁₀-Cycloalkylketten folgende Bedeutung haben: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, L-Methylcyclopropyl, 1-Ethylcyclopropyl, 1-Propylcyclopropyl, 1-Butylcyclopropyl, 1-Pentylcyclopropyl, 1-Methyl-1-Butylcyclopropyl, 1,2-Dimethylcyclypropyl, 1-Methyl-2-Ethylcyclopropyl, Cyclooctyl, Cyclononyl oder Cyclodecyl. Die Cycloalkylreste können auch Heteroatome wie S, N und O im Ring enthalten.

Als -O-C₁-C₄-Alkylaryl seihen substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige -O-C₁-C₄-Alkylarylreste genannt, wobei die c₁-C₄-Alkylarylketten folgende Bedeutung haben: C₁-C₄-Alkyl-phenyl- oder C₁-C₄-Alkyl-naphthylreste wie Methylphenyl, Ethylphenyl, 1-Methylphenyl, 1-Methylphenyl, 1-Methylphenyl, 2-Methylpropylphenyl, 1,1-Dimethylethylphenyl, Methylnaphthyl, Ethylnaphthyl, Propylnaphthyl, 1-Methylpropylnaphthyl, 1-Methylpropylnaphthyl, 2-Methylpropylnaphthyl oder 1,1-Dimethylethylnaphthyl. Als -O-Alkylhetarylreste seien substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige -O-C₁-C₄-Alkylhetarylreste, die ein oder mehrere Stickstoff-, Schwefel- und/oder Sauerstoffatome im Ring oder Ringsystem ent-

halten, genannt.

R³ kann auch ein fester Träger R⁵ sein (Definition des Trägers siehe unten) oder R³'.

Alle vorstehend genannten Reste des Substituenten R³ sind über den Sauerstoff gebunden und bilden im Falle des unter R¹ genannten Restes CONR³R³ sogenannte Hydroxamsäuren, ansonsten Ether.

Als Substituenten der genannten Reste von R³ kommen prinzipiell bis auf Ketone oder Aldehyde alle denkbaren Substituenten in Frage beispielsweise ein oder mehrere Substituenten wie Halogen wie Fluor, Chlor oder Brom, Cyano, Nitro, Amino, Hydroxy, Alkyl, Cycloalkyl, Aryl, Alkoxy, Benzyloxy, Phenyl oder Benzyl.

R^{3'} bezeichnet im Substituent R¹ Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C₁-C₁₀-Alkyl-, C₃-C₁₀-Cycloalkyl-, C₁-C₄-Alkylaryl-, C₁-C₄-Alkylhetaryl-, R^{3'} oder R⁵.

Als Alkylreste seien substituierte oder unsubstituierte verzweigte oder unverzweigte C_l - C_{10} -Alkylketten wie beispielsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 1-Ethylbutyl, 1,1-Dimethylpropyl, 1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl oder n-Decyl genannt.

Als Cycloalkylreste in der Formel seihen beispielhaft substituierte oder unsubstituierte verzweigte oder unverzweigte C₃-C₁₀-Cycloalkylketten mit 3 bis 7 Kohlenstoffatomen im Ring oder Ringsystem wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, 1-Methylcyclopropyl, 1-Ethylcyclopropyl, 1-Propylcyclopropyl, 1-Butylcyclopropyl, 1-Pentylcyclopropyl, 1-Methyl-1-Butylcyclopropyl, 1,2-Dimethylcyclypropyl, 1-Methyl-2-Ethylcyclopropyl, Cyclooctyl, Cyclononyl oder Cyclodecyl genannt. Die Cycloalkylreste können auch Heteroatome wie S, N und O im Ring enthalten.

Als C₁-C₄-Alkylaryl seihen substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C₁-C₄-Alkylphenyl- oder C₁-C₄-Alkyl-naphthylreste wie Methylphenyl, Ethylphenyl, Propylphenyl, 1-Methylphenyl, Butylphenyl, 1-Methylpropylphenyl, 2-Methylpropylphenyl, 1,1-Dimethylethylphenyl, Methylnaphthyl, Ethylnaphthyl, Propylnaphthyl, 1-Methylethylnaphthyl, Butylnaphthyl, 1-Methylpropylnaphthyl, 2-Methylpropylnaphthyl oder 1,1-Dimethylethylnaphthyl genannt.

Als Alkylhetarylreste seien substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C_1 - C_4 -Alkylhetarylreste, die ein oder mehrere Stickstoff-, Schwefel- und/oder Sauerstoffatome im Ring oder Ringsystem enthalten, genannt.

R³ kann auch ein fester Träger R⁵ sein (Definition des Trägers siehe unten).

Als Substituenten der genannten Reste von R³ kommen prinzipiell bis auf Ketone oder Aldehyde alle denkbaren Substituenten in Frage beispielsweise ein oder mehrere Substituenten wie Halogen wie Fluor, Chlor oder Brom, Cyano, Nitro, Amino, Hydroxy, Alkyl, Cycloalkyl, Aryl, Alkoxy, Benzyloxy, Phenyl oder Benzyl.

R⁴ bezeichnet in der Formel R⁴MgX (III) substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C₁-C₁₀-Alkyl-, C₃-C₁₀-Cycloalkyl-, C₁-C₄-Alkylaryl-, C₁-C₄-Alkylhetaryl- oder Halogen wie Chlor, Brom oder Jod, bevorzugt Brom oder Jod.

Als Alkylreste seien substituierte oder unsubstituierte verzweigte oder unverzweigte C_1 - C_{10} -Alkylketten wie beispielsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 1-Ethylbutyl, 1,1-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl oder n-Decyl genannt.

Als Cycloalkylreste in der Formel seihen beispielhaft substituierte oder unsubstituierte verzweigte oder unverzweigte C₃-C₁₀-Cycloalkylketten mit 3 bis 7 Kohlenstoffatomen im Ring oder Ringsystem wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, L-Methylcyclopropyl, 1-Ethylcyclopropyl, 1-Propylcyclopropyl, 1-Butylcyclopropyl, 1-Pentylcyclopropyl, 1-Methyl-1-Butylcyclopropyl, 1,2-Dimethylcyclopropyl, 1-Methyl-2-Ethylcyclopropyl, Cyclooctyl, Cyclononyl oder Cyclodecyl genannt. Die Cycloalkylreste können auch Heteroatome wie S, N und O im Ring enthalten.

Als C_1 - C_4 -Alkylaryl seihen substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C_1 - C_4 -Alkylphenyl- oder C_1 - C_4 -Alkyl-naphthylreste wie Methylphenyl, Ethylphenyl, Propylphenyl, 1-Methylethylphenyl, Butylphenyl, 1-Methylpropylphenyl, 2-Methylpropylphenyl, 1,1-Dimethylethylphenyl, Methylnaphthyl, Ethylnaphthyl, Propylnaphthyl, 1-Methylpropylnaphthyl, 2-Methylpropylnaphthyl oder 1,1-Dimethylethylnaphthyl genannt.

Als Alkylhetarylreste seien substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C_1 - C_4 -Alkylhetarylreste, die ein oder mehrere Stickstoff-, Schwefel- und/oder Sauerstoffatome im Ring oder Ringsystem enthalten, genannt.

25

Als Substituenten der genannten Reste von R⁴ kommen prinzipiell bis auf Ketone oder Aldehyde alle denkbaren Substituenten in Frage beispielsweise ein oder mehrere Substituenten wie Halogen wie Fluor, Chlor oder Brom, Cyano, Nitro, Amino, Hydroxy, Alkyl, Cycloalkyl, Aryl, Alkoxy, Benzyloxy, Phenyl oder Benzyl.

 R^6 bezeichnet substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C_1 - C_{10} -Alkyl-, C_3 - C_{10} -Cycloalkyl-, C_1 - C_4 -Alkylaryl-, C_1 - C_4 -Alkylhetaryl-, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes -(C=O)- C_1 - C_1 -Alkyl-, -(C=O)- C_3 - C_1 -Cycloalkyl, -(C=O)- C_1 - C_4 -Alkylaryl, -(C=O)- C_1 - C_4 -Alkylhetaryl oder -SO₂-Aryl.

Als Alkylreste seien substituierte oder unsubstituierte verzweigte oder unverzweigte C_1 - C_{10} -Alkylketten wie beispielsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 1-Ethylbutyl, 1,1-Dimethylpropyl, 1,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl oder n-Decyl genannt.

Als Cycloalkylreste in der Formel seihen beispielhaft substituierte oder unsubstituierte verzweigte oder unverzweigte C₃-C₁₀-Cycloalkylketten mit 3 bis 7 Kohlenstoffatomen im Ring oder Ringsystem wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl, 1-Methylcyclopropyl, 1-Ethylcyclopropyl, 1-Propylcyclopropyl, 1-Butylcyclopropyl, 1-Pentylcyclopropyl, 1-Methyl-1-Butylcyclopropyl, 1,2-Dimethylcyclopropyl, 1-Methyl-2-Ethylcyclopropyl, Cyclooctyl, Cyclononyl oder Cyclodecyl genannt. Die Cycloalkylreste können auch Heteroatome wie S, N und O im Ring enthalten.

Als C_1 - C_4 -Alkylaryl seihen substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C_1 - C_4 -Alkylphenyl- oder C_1 - C_4 -Alkyl-naphthylreste wie Methylphenyl, Ethylphenyl, Propylphenyl, 1-Methylpropylphenyl, 2-Methylpropylphenyl, 1,1-Dimethylethylphenyl, Methylnaphthyl, Ethylnaphthyl, Propylnaphthyl, 1-Methylpropylnaphthyl, 1-Methylpropylnaphthyl, 2-Methylpropylnaphthyl oder 1,1-Dimethylethylnaphthyl genannt.

Als Alkylhetarylreste seien substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige C₁-C₄-Alkylhetarylreste, die ein oder mehrere Stickstoff-, Schwefel- und/oder Sauerstoffatome im Ring oder Ringsystem enthalten, genannt.

Als -(C=O)-Alkylreste seien substituierte oder unsubstituierte verzweigte oder unverzweigte -(C=O)- C_1 - C_{10} -Alkylketten (= Bindung über den Kohlenstoff an dem über die Doppelbindung der Sauerstoff hängt) genannt. In diesen - (C=O)-Alkylresten haben die C_1 - C_{10} -Alkylketten folgende Bedeutung Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl oder n-Decyl.

Als -(C=O)-Cycloalkylreste im Rest R⁶ seihen beispielhaft substituierte oder unsubstituierte verzweigte oder unverzweigte -(C=O)-C₃-C₁₀-Cycloalkylketten mit 3 bis 7 Kohlenstoffatomen im Ring oder Ringsystem genannt, wobei die C₃-C₁₀-Cycloalkylketten folgende Bedeutung haben: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, 1-Methylcyclopropyl, 1-Ethylcyclopropyl, 1-Popylcyclopropyl, 1-Butylcyclopropyl, 1-Pentylcyclopropyl, 1-Methyl-1-Butylcyclopropyl, 1,2-Dimethylcyclopropyl, 1-Methyl-2-Ethylcyclopropyl, Cyclooctyl, Cyclononyl oder Cyclodecyl.

Die Cycloalkylreste können auch Heteroatome wie S, N und O im Ring enthalten.

Als $-(C=O)-C_1-C_4$ -Alkylaryl seihen substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige $-(C=O)-C_1-C_4$ -Alkylarylreste genannt, wobei die C_1-C_4 -Alkylarylketten folgende Bedeutung haben: C_1-C_4 -Alkyl-phenyl-oder C_1-C_4 -Alkyl-naphthylreste wie Methylphenyl, Ethylphenyl, Propylphenyl, 1-Methylphenyl, Butylphenyl, 1-Methylphenyl, 2-Methylphenyl, 1,1-Dimethylethylphenyl, Methylnaphthyl, Ethylnaphthyl, Propylnaphthyl, 1-Methylethylnaphthyl, Butylnaphthyl, 1-Methylpropylnaphthyl, 2-Methylpropylnaphthyl, 2-Methylpropylnaphthyl, 1-Dimethylethylnaphthyl, 1-Dimethylethylnaphthyl, 1-Dimethylethylnaphthyl, 1-Dimethylethylnaphthyl, 2-Methylpropylnaphthyl, 1-Dimethylethylnaphthyl, 1-Dimethylnaphthyl, 1-Dimethylnaphthyl,

Als -(C=O)-Alkylhetarylreste seien substituierte und unsubstituierte verzweigtkettige oder unverzweigtkettige -(C=O)-C₁-C₄-Alkylhetarylreste, die ein oder mehrere Stickstoff-, Schwefel- und/ oder Sauerstoffatome im Ring oder Ringsystem enthalten, genannt.

Alle genannten -(C=O)-Reste sind über den Kohlenstoff gebunden, der den Sauerstoff über eine Doppelbindung trägt.

Als Reste von R6 seien seien weiterhin -SO₂-Arylreste wie -SO₂-Phenyl oder -SO₂-Naphthyl genannt. Die Bindung erfolgt über den SO₂-Rest.

Als Substituenten der genannten Reste von R⁶ kommen prinzipiell bis auf Ketone oder Aldehyde alle denkbaren Substituenten in Frage beispielsweise ein oder mehrere Substituenten wie Halogen wie Fluor, Chlor oder Brom, Cyano, Nitro, Amino, Hydroxy, Alkyl, Cycloalkyl, Aryl, Alkoxy, Benzyloxy, Phenyl oder Benzyl.

Bei den Verbindungen der Formeln I, Ia und II handelt es sich um aromatische Verbindungen.

Das erfindungsgemäße Verfahren wird in der Reaktion vorteilhafterweise so durchgeführt, daß die Verbindung II vorteilhaft in einem inertem, aprotischen Lösungsmittel beispielsweise Ether wie Tetrahydrofuran (= THF), Diethylether, Dioxan, Dimethoxyethan oder Methyl-tert.-butylether (= MTB) bei Temperaturen von kleiner 0°C, bevorzugt kleiner -10°C, besonders bevorzugt kleiner -15°C, ganz besonders bevorzugt bei -40°C oder kleiner mit einer Verbindung der allgemeinen Formel R⁴MgX (III) zu Verbindung der Formel 1 umgesetzt wird. Prinzipiell können alle dem Fachmann bekannten Verbindungen der Formel R⁴MgX zur Herstellung der Grignardverbindung verwendet werden, bevorzugt werden Diisopropylmagnesium oder Dicylopentylmagnesium verwendet. Die Reaktion läßt sich allgemein in einem Bereich von -70°C bis 0°C durchführen.

Umsetzungen bei höheren Temperaturen beispielsweise bei 25°C führen zu Nebenprodukten und damit deutlich geringeren Ausbeuten.

Unter diesem milden Bedingungen erfolgt der Halogen-Magnesium-Austausch ohne, daß die gebildeten Grignardverbindungen der Formel II (siehe oben) mit den weiteren im Molekül enthaltenden funktionellen Gruppen reagieren. Die Verbindungen reagieren nur in der gewünschten Weise mit dem Elektrophil (siehe Beispiele in der Tabelle I). Auf diesem Wege sind Umsätze mit dem Elektrophil größer 70%, bevorzugt größer 80%, besonders bevorzugt größer 85% ganz besonders bevorzugt größer 90% möglich.

Die Reaktion ist in der Regel innerhalb von 10 Stunden, bevorzugt innerhalb von 5 Stunden besonders bevorzugt innerhalb von 4 Stunden beendet.

Eine Variante des Verfahrens besteht darin, daß nicht direkt die Dialkylmagnesiumverbindung (III mit $R^4 = R^2 = X$) eingesetzt wird, sondern eine gut zugänglich Grignardverbindung X = Hal, die dann unter den Reaktionsbedingungen entsprechend dem Schlenk Gleichgewicht die Dialkylmagnesiumbindung bildet, die dann die eigentliche Reaktion eingeht.

Ein besonderer Vorteil dieses Verfahrens ist, daß auch Ester, gebundener Alkohole bevorzugt polymer gebundener Alkohole in der gewünschten Weise den Halogen-Magnesiumaustausch eingehen. (Beispiele in Tabelle II).

Die Bindung der Verbindungen der Formel I kann dabei über einen festen Träger (= R⁵), wie sie aus der Festphasen-Peptidsynthese bekannt sind, erfolgen. Nutzbare Träger können, soweit sie mit der verwendeten Synthesechemie kompatibel sind aus einer Vielzahl von Materialien bestehen. Wobei die Größe, Größenverteilung und Form der Träger je nach Material in weitem Rahmen variieren kann. Bevorzugt werden sphärische Partikel, die vorteilhafterweise in ihrer Größenverteilung homogen sind.

Geeignete feste Träger sind beispielsweise Keramik, Glas, Latex, funktionalisierte quervernetzte Polystyrole, Polyacrylamide, Silicagele, oder Harze.

Üm eine Anknüpfung des Reaktanten bzw. eine Abspaltung des Syntheseproduktes nach der Synthese zu ermöglichen, muß der Träger geeignet funktionalisiert oder mit einem Linker versehen sein, der eine entsprechende funktionelle Gruppe besitzt, die eine Anbindung der erfindungsgemäßen Verbindungen ermöglicht. Bevorzugt geeignete Träger bzw. Träger-Linker-Konjugate sind beispielsweise Chlorbenzylharz (Merrifieldharz), Rink-Harz (Novabiochem), Sieber-Harz (Novabiochem), Wang-Harz (Bachem), Tentagel-Harze (Rapp-Polymere), Pega-Harz (Polymer Laboratories) oder Polyacrylamide. Besonders bevorzugt ist als Träger Hydroxybenzylharz (Wang-Harz). Ganz besonders bevorzugt sind als polymere Träger bzw. Schutzgruppen beispielsweise Triphenylmethyl, p-Benzyloxybenzylalkohol, 4-(2',4,-Dimethoxyphenyl-hydroxymethyl)phenoxy-polystyrol oder 4-(2',4,-Dimethoxyphenyl-methyl)-phenoxy-polystyrol.

Die Anbindung der Verbindung an den Träger bzw. polymeren Träger erfolgt über dem Fachmann bekannte Reaktionen, die beispielsweise aus dem Review von Balkenhohl et al. (Angew. Chem., Vol. 108, 1996: 2436) und der dort zitierten Literatur zu entnehmen ist. Im Falle von Wang-Harz kann die Anbindung beispielsweise über einen Ester erfolgen. Dieser kann nach abgeschlossener Synthese mit beispielsweise Trifluoressigsäure vom Harz abgespalten werden.

Auf diese Weise lassen sich die Vorteile der Festphasensynthese, nämlich die automatische Durchführung und Aufarbeitung der Reaktion durch einfaches Waschen und Filtern, nutzen. Unter Verwendung des erfindungsgemäßen Verfahrens lassen sich so leicht Substanzbibliotheken herstellen.

Damit ist diese Reaktion sehr gut geeignet, um nach den Prinzipien der Kombinatorischen Chemie bzw. des HSA Substanzbibliotheken zu erzeugen (Angew. Chem., Vol. 108, 1996: 2436), in dem zuerst der Halogen-Magnesiumaustausch an einem Polymer gebundenen Edukt durchgeführt wird und dieses dann mit einer Vielzahl von Elektrophilen (in einem Gefäß zur Erzeugung von Mischungen) umgesetzt wird.

Nach Waschen und Filtern werden die Zielprodukte dann unter Bedingung, die zur Spaltung der Linker-Bindung geeignet sind, von Polymer abgelöst.

Die erfindungsgemäßen Verbindungen der Formeln I oder Ia (= R5 = fester Träger bevorzugt polymerer Träger) lassen sich vorteilhaft als Ausgangs- bzw. Zwischenprodukte, die sich in vielfältigen Folgereaktionen einsetzen lassen, in der chemischen Synthese verwenden. Beispielhaft seinen hier Carotinoid-, Vitamin- oder Wirkstoffsynthesen wie Wirkstoffe im Pharma- oder Pflanzenschutzbereich.

Die folgenden Beispiele sollen das Verfahren veranschaulichen ohne eine Einschränkung der Methode zu bedeuten:

Beispiele

A Darstellung von 4-(1-hydroxybenzyl)benzoesäureethylester

Eine Lösung von 552 mg (2 mmol) 4-Iod-benzoesäurethylester in 20 ml THF wurde auf -40°C abgekühlt und 1.06 mmol Diisopropylmagnesium in Methyl-tert.-butylether zugegeben. Nach 1 h bei -40°C wurden 233 mg (2.2 mmol) zugegeben. Nach 3 h wurde die Reaktionsmischung hydrolysiert und die org. Phase eingeengt. Chromatographie des Rohproduktes mit Pentan/Ether 4/1 ergab 460 mg (90%) des Alkohols.

Tabelle I gibt die Ergebnisse analoger Umsetzungen mit verschiedenen Elektrophilen wieder.

Die Ausgangsverbindungen (Grignardverbindungen) wurden innerhalb einer halben bis zu einer Stunde über einen Iod-Magnesiumaustausch hergestellt. Die Temperatur der Reaktionslösung lag zwischen –25 bis –40°C. Bei dieser Temperatur konnten gute Umsätze erzielt werden. Durch Benutzung von cPent2Mg für die iod-Magnesiumaustauschreaktion lassen sich die Ausbeuten steigern (siehe Angaben in Klammern).

Die in Tabelle I angegebenen Umsätze beziehen sich auf chemisch reines Endprodukt. Die Allylierungsreaktionen wurden in Gegenwart von CuCN×2 LiCl (10 mol%) durchgeführt (siehe z. B. Nr. 4-7 und 9, 10 und 13).

25

10

15

30

35

40

45

50

55

60

65

Tabelle I

Herstellung von Grignardverbindungen und Umsetzung mit Elektrophilen

5	Nr.	Acrylhalogenid	Elektro- phil	Produkt	Aus- beute (%)
10	1	ICO2tBu	PhCHO	OH Ph CO ₂ tBu	91 (94)
20	2	I	PhCHO	OH CN	89
25 30	3	ICO ₂ Et	PhCHO	Ph CO ₂ Et	90
35	4	CON	Br	CON	81
40	5	CN	Br	CN	75
45	6	I	Br		80 (87)
50	7	Br	Br	Br	79
55	8	I Br	PhCHO	Ph (HO) HC	93
65	9	Br	Br	Br	79

B. Herstellung von Grignardverbindungen am Polymeren Träger und Umsetzung mit Elektrophilen

Nr.	Acrylhalogenid	Elektro- phil	Produkt	Aus- beute (%)	5
10	I N:	Br		81	10
11	Си	PhCHO	Ph (HO) HC CN	94	15
12	CN	НехСНО	Hex (HO) HCCN	74	20
13	NC	Br	NC NC	89	30

100 mg Wang-Harz wurden mit 70 mmol 4-Iodbenzoesäure und 2 ml THF versetzt und auf -35° C abgekühlt. Es wurden 0.7 ml (0.51 mmol) einer 0.73 M Lösung von Diisopropylmagnesium in THF zugetropft und nach 15 min. 0.7 ml einer 1 M Lösung von CuCN \cdot 2LiCl in THF. Danach wurden 0.3 ml Allylbromid zugegeben und 1 h gerührt.

35

40

45

50

60

65

Filtration und Waschen lieferte das Polymer gebundene Produkt, das unter Standardbedingungen (Trifluoressigsäure) vom Polymer abgelöst wurde.

Analog wurden die in Tabelle II aufgeführten Substanzen hergestellt. Die Ausbeute an freiem Produkt betrug in der Regel 90% oder mehr (siehe Angaben in der Tabelle, Spalte 5).

				·	_ 	
5 10	II: Herstellung von Grignardverbindungen und Umsetzung mit Elektrophilen an festem Träger.	Produkt (vom Polymer abgespalten)	CO ₂ H	EtCO2 CO2H	Ph Ph CO2H	NC CO2H
20	ctroph	_	<u>.</u>			
25	mit Ele	nden)	(CO ₂	CO ₂	CO ₂	(A)
30	Jasetzung	Produkt (polymergebunden)				60,2
35	igen und t	(pol	_	Btco ₂	HO	NC
40	lverbindun	Elektro- phil	Br	CO ₂ Et	РЬСНО	Toscn
45	ignaro	ы	"	,		
50	lung von Gr	lodid	co _z	co ₂	co ₂	GB
55	Herstel]	Acryliodid				
60	le II:		4	4	ĭ	1
	Tabelle	Nr.	н	8	ъ	4

	Acryliodid	Elektro- phil	Pro (polyme)	Produkt (polymergebunden)	Produkt (vom Polymer abgespalten)
	Br S CO2 (P)	TOSCN	NC NC	CO ₂ (P)	$NC S CO_2H$
	Br S CO2	CO ₂ Et	EtCO ₂	S CO2	EtCO ₂ S CO ₂ H
	T CO ₂ (B)	Phssph	No.	(a) Coo	Ph S CO ₂ H
ľ		Phssph	s — ya	S CO ₂ (P)	Ph — S
		Tosci		CO ₂ (B)	CN CO ₂ H
	50 55 60	40	35	20	10

5	spalten)	CO ₂ H	СО2Н
10	Produkt mer abges		
15	Produkt (vom Polymer abgespalten)		NC /
20			
25	Produkt (polymergebunden)	CO ₂	CO2
30	Produkt ymergebur		
35	(po1		NC
40	Elektro- phil	A Br	Toscn
45			
50	Acryliodid	-co ₂	(E) CO2
55	Acry.	S	
60		Br /	Br /
	Nr.	10	11

Patentansprüche

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$R^{\frac{1}{F}} \xrightarrow{A} D Mg - X$$
 (I)

dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel II

$$R^{\frac{1}{F}} \xrightarrow{A} D X^{a}$$
 (II)

20

25

50

60

mit Verbindungen der Formel R⁴MgX (III) bei Temperaturen kleiner 0°C umsetzt,

wobei die Substituenten und Variablen in den Formeln I, II und III folgende Bedeutung haben:

Z = 0,1

 $X = Halogen, R^2$

 $X^a = Br, I$

A, B, D und E unabhängig voneinander CH, CR², N, P oder CR³

 $F = Q, S, NR^6, CR^2 \text{ oder } CR^3, \text{ wenn } z = 0, \text{ oder } CH, CR^2, N, P \text{ oder } CR^3, \text{ wenn } z = 1,$

wobei zwei benachbarte Variablen A, B, D, E oder F zusammen einen weiteren substituierten oder unsubstituierten aromatischen, gesättigten oder teilweise gesättigten Ring mit 5 bis 8 Atomen im Ring bilden können, der ein oder mehrere Heteroatome wie O, N, S, P enthalten kann und wobei nicht mehr als drei der Variablen A, B, D, E oder F ein Heteroatom sind,

R1 = COOR2, CN, CONR3R3, Halogen

 R^2 = substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C_1 - C_{10} -Alkyl-, C_3 - C_{10} -Cycloalkyl-, C_1 - C_4 -Alkylaryl-, C_1 - C_4 -Alkylhetaryl-, R^5 ,

 R^3 = Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes -OC₁-C₁₀-Alkyl, -OC₃-C₁₀-Cycloalkyl, -OC₁-C₄-Alkylaryl, -OC₁-C₄-Alkylhetaryl, R^3 oder R^5 ,

 R^{3} = Wasserstoff, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C_1 - C_{10} -Alkyl-, C_3 - C_{10} -Cycloalkyl-, C_1 - C_4 -Alkylaryl-, C_1 - C_4 -Alkylhetaryl-, R^5 ,

 R^4 = substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C_1 - C_{10} -Alkyl-, C_3 - C_{10} -Cycloalkyl-, C_1 - C_4 -Alkylaryl-, C_1 - C_4 -Alkylhetaryl- oder Halogen,

 R^5 = ein fester Träger,

 R^6 = substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes C_1 - C_{10} -Alkyl-, C_3 - C_{10} -Cycloalkyl-, C_1 - C_4 -Alkylaryl-, C_1 - C_4 -Alkylatyl-, substituiertes oder unsubstituiertes, verzweigtes oder unverzweigtes -(C=O)- C_1 - C_1 -Alkyl-, -(C=O)- C_3 - C_1 -Cycloalkyl, -(C=O)- C_1 - C_4 -Alkylaryl, -(C=O)- C_1 - C_4 -Alkylaryl oder -SO₂-Aryl. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Verfahren in einem inertem aprotischen Lösungsmittel durchgeführt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Verfahren bei Temperaturen kleiner –15°C 45 durchgeführt wird.

4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Umsetzung zu Verbindungen der Formel I nach Anspruch 1 innerhalb 10 Stunden beendet ist.

5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß das Verfahren an einem festen Träger (= R⁵) durchgeführt wird.

6. Verbindungen der Formel I

$$R^{\frac{1}{2}} \xrightarrow{A} E \qquad \qquad (I)$$

in der die Variablen und Substituenten die in Anspruch 1 genannte Bedeutung haben.

7. Verbindungen der Formel Ia

$$R^{\frac{1}{F}} \xrightarrow{A} D Mg - X$$
 (Ia)

in der die Variablen und Substituenten die in Anspruch 1 genannte Bedeutung haben und mindestens einer der Sub-

- stituenten R², R³ oder R³ eine polymere Schutzgruppe (= R⁵) ist.

 8. Verwendung eines Verfahrens gemäß den Ansprüchen 1 bis 5 zur Herstellung von Substanzbibliotheken.

 9. Verwendung von Verbindungen der Formel I oder Formel Ia gemäß Anspruch 6 oder Anspruch 7 für chemische Synthesen.
- 10. Verwendung nach Anspruch 9 für Carotinoid-, Vitamin- oder Wirkstoffsynthesen.