Quick Reference (What students saw)

Domain: all allowed inputs. Range: all outputs. x-ints: f(x) = 0. y-int: f(0).

Inc/Dec: compare $f(x_2)$ vs $f(x_1)$ for $x_2 > x_1$. AROC: $\frac{f(b) - f(a)}{b - a}$.

1. (8 points) Domain & Range; intercepts.

Solution: Points: $\{(-2,1), (0,3), (1,3), (3,-1), (4,0)\}.$

Domain = $\{-2, 0, 1, 3, 4\}$, Range = $\{1, 3, -1, 0\}$ = $\{-1, 0, 1, 3\}$.

x-intercepts: where $y = 0 \Rightarrow (4,0)$ only. y-intercept: where $x = 0 \Rightarrow (0,3)$.

2. (8 points) Table \rightarrow inc/dec/const.

From x = -3 to -1: $5 \to 4$ (decreasing). From -1 to 0: $4 \to 4$ (constant). From 0 to 2: $4 \to 3$ (decreasing). From 2 to 4: $3 \to 3$ (constant).

So f is **decreasing** on [-3, -1] and [0, 2]; **constant** on [-1, 0] and [2, 4]; not increasing anywhere.

Justification: for each step with $x_2 > x_1$, we compared $f(x_2)$ to $f(x_1)$.

3. (10 points) f(x) = 4 - 2x.

Solution: x-int: set $f(x) = 0 \Rightarrow 4 - 2x = 0 \Rightarrow x = 2 \Rightarrow (2,0)$.

y-int: $f(0) = 4 \Rightarrow (0, 4)$.

AROC on [1,4]: $\frac{f(4) - f(1)}{4 - 1} = \frac{(-4) - 2}{3} = \frac{-6}{3} = -2$ (units: output per input; here "y per x").

4. (12 points) $p(x) = \frac{x^2 - 9}{x - 3}$.

Solution: Factor: $x^2 - 9 = (x - 3)(x + 3)$, so for $x \neq 3$, p(x) = x + 3.

Domain: all real x except x = 3 (denominator cannot be 0).

y-int: $p(0) = \frac{-9}{-3} = 3 \Rightarrow (0,3)$.

x-ints: solve $p(x) = 0 \Rightarrow \frac{x^2 - 9}{x - 3} = 0 \Rightarrow x^2 - 9 = 0 \Rightarrow x = \pm 3$. But x = 3 is not allowed, so the only x-int is $x = -3 \Rightarrow (-3, 0)$.

Is y=6 in the range? Since p(x)=x+3 for $x\neq 3$, getting y=6 would require x = 3, which is excluded. So y = 6 is not in the range.

5. (10 points) $q(x) = \sqrt{7-x}$.

Solution: Inside the root must be ≥ 0 : $7 - x \geq 0 \Rightarrow x \leq 7$. Domain = $(-\infty, 7]$.

Outputs are ≥ 0 : Range = $[0, \infty)$.

x-int: set $\sqrt{7-x} = 0 \Rightarrow 7-x = 0 \Rightarrow x = 7 \Rightarrow (7,0)$.

y-int: $q(0) = \sqrt{7} \Rightarrow (0, \sqrt{7})$.

6. (8 points) AROC from a table.

Solution: [0,2]: $\frac{10-4}{2-0} = \frac{6}{2} = 3$ (units: output per input).

$$[2,5]$$
: $\frac{25-10}{5-2} = \frac{15}{3} = 5.$

$$[5,6]$$
: $\frac{28-25}{6-5} = \frac{3}{1} = 3$.

7. (10 points) Scoring pace.

Solution: [0, 16]: $\frac{23 - 0}{16 - 0} = \frac{23}{16} \approx 1.44 \text{ pts/min.}$ [16, 32]: $\frac{50 - 23}{32 - 16} = \frac{27}{16} = 1.6875 \text{ pts/min.}$

[16, 32]:
$$\frac{50-23}{32-16} = \frac{27}{16} = 1.6875$$
 pts/min.

Higher pace in the second half (larger average rate of change).

8. (8 points) Free throws F(n) = 0.75n.

Solution: Domain: nonnegative integers $\{0, 1, 2, ...\}$ (attempts).

Range: $\{0.75n : n \in \mathbb{Z}_{\geq 0}\}$ (made shots).

AROC [20, 28]: $\frac{0.75 \cdot 28 - 0.75 \cdot 20}{8} = \frac{0.75 \cdot 8}{8} = 0.75 \text{ makes/attempt. Interpretation:}$ about 0.75 made per attempt (i.e., 75%)

9. (8 points) s(x) = -3x + 1 increasing or decreasing?

Solution: For $x_2 > x_1$,

$$s(x_2) - s(x_1) = -3x_2 + 1 - (-3x_1 + 1) = -3(x_2 - x_1) < 0.$$

So $s(x_2) < s(x_1)$ when $x_2 > x_1$: the function is **decreasing** on all real numbers.

10. (8 points) Intercepts from a table.

Solution: *x*-ints where y = 0: x = -2 and $x = 2 \Rightarrow (-2, 0), (2, 0)$. *y*-int where x = 0: (0, 3).

Increasing from x=-2 to x=0 (values $0\to 2\to 3$). Decreasing from x=0 to x=2 ($3\to 2\to 0$).

11. (8 points) General AROC for r(x) = ax + b.

Solution:

$$\frac{r(x_2) - r(x_1)}{x_2 - x_1} = \frac{(ax_2 + b) - (ax_1 + b)}{x_2 - x_1} = \frac{a(x_2 - x_1)}{x_2 - x_1} = a.$$

So the average rate of change of a line on any interval is its slope a (constant).

12. (10 points) Score difference S(t) = 12 - 0.5t.

Solution: y-int: $S(0) = 12 \Rightarrow (0, 12)$ meaning the home team leads by 12 at tip-off (or baseline time).

Tie: set $S(t) = 0 \Rightarrow 12 - 0.5t = 0 \Rightarrow t = 24$ minutes.

S is **decreasing** (slope -0.5), meaning the visitors are catching up by 0.5 point per minute.