# Introduction to Topology

General Topology, Lecture 16

### Haoming Wang

01 August 2019

This is the Lecture note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

#### Content:

- 1. Abelian Group
- 2. Normal Subgroup

## Abelian Group

**Definition 1** (Abelian Group). Given a group  $(G, \square)$ , we say  $(G, \square)$  is a abelian group if  $\forall g, g' \in G, g \square g' = g' \square g$ .

The set  $\mathbb{Z} \times \mathbb{Z}$  is equivalent with  $\{\{1,2\} \xrightarrow{f} \mathbb{Z} | f \text{ if a map}\}$ . For any  $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ , it can be represented as  $f: 1 \mapsto x, 2 \mapsto y$ ,  $\{1,2\}$  is the ordinate. And for any maps  $\{1,2\} \xrightarrow{f} \mathbb{Z}$ , it is corresponded by  $(f(1),f(2)) \in \mathbb{Z} \times \mathbb{Z}$ .

Let S be a set, define

$$\mathbb{Z}^{\oplus S} := \{S \xrightarrow{f} \mathbb{Z} | f \text{ is a map s.t. } f(s) \neq 0 \text{ for finitely many } s \in S\}$$

The element of  $\mathbb{Z}^{\oplus S}$  is encoding each element of S with integer, and only finite element of S will be encoded by nonzero integer.

**Example 1.** The element of  $\mathbb{Z}^{\oplus \mathbb{N}}$  is a series of integer  $(x_1, x_2, \cdots)(x_i \in \mathbb{Z}, i \in \mathbb{N})$  which has only finite nonzero integers.

We can define add on  $\mathbb{Z}^{\oplus S}$ :  $(x_s)_{s \in S} + (y_s)_{s \in S} = (x_s + y_s)_{s \in S}$ . Then for any  $(x_s)_{s \in S}$ ,  $(y_s)_{s \in S} \in \mathbb{Z}^{\oplus S}$ , the binary operation  $(\mathbb{Z}^{\oplus S}, +)$  has

- 1.  $(x_s + y_s)_{s \in S} \in \mathbb{Z}^{\oplus S}$  (for  $(x_s)_{s \in S}$ ,  $(y_s)_{s \in S}$  only has finite nonzero integers)
- 2.  $e = (0)_{s \in S} \in \mathbb{Z}^{\oplus S}$
- 3.  $((x_s)_{s \in S})^{-1} = (-x_s)_{s \in S} \in \mathbb{Z}^{\oplus S}$
- 4.  $(x_s)_{s \in S} + (y_s)_{s \in S} = (x_s + y_s)_{s \in S} = (y_s)_{s \in S} + (x_s)_{s \in S}$ Thus  $(\mathbb{Z}^{\oplus S}, +)$  is a abelian group, and we call  $(\mathbb{Z}^{\oplus S}, +)$  as **Free Abelian Group**.

**Definition 2** (Homomorphism). Given two groups  $(G, \square)$ ,  $(G', \square')$ , a map  $G \xrightarrow{T} G'$  is a homomorphism w.r.t.  $\square$  and  $\square'$  if  $\forall g_1, g_2 \in G$ ,  $T(g_1 \square g_2) = T(g_1) \square' T(g_2)$ .

**Example 2.** Map  $\mathbb{Z} \xrightarrow{T} \mathbb{Z}/5\mathbb{Z}$  is a homomorphism, since for any  $a, b \in \mathbb{Z}$ ,  $(a + 5\mathbb{Z}) + (b + 5\mathbb{Z}) = (a + b) + 5\mathbb{Z}$ .

*Note* 1. Sometimes, we will denote  $S \xrightarrow{f} \mathbb{Z}$  by  $(x_s)_{s \in S}$ .

**Definition 3** (Isomorphism). We say a homomorphism T is an isomorphism if T is a bijection.

**Definition 4.** Given two groups  $(G, \square), (G', \square')$ , let  $G \xrightarrow{T} G'$  be a homomorphism:

1. 
$$ker(T) := T^{-1}(e') = \{g \in G | T(g) = e'\};$$
  
2.  $im(T) := T(G) = \{T(g) | g \in G\}.$ 

**Exercise 1.** Show that ker(T) is a subgroup of  $(G, \square)$ , im(T) is a subgroup of  $(G', \square')$ .

Proof. 1.

- (o.) Obviously  $ker(T) \subseteq G$ .
- (1.) for  $\forall g_1, g_2 \in ker(T)$ :

$$T(g_1 \square g_2) = T(g_1) \square' T(g_2)$$
$$= e' \square e' = e'$$

thus  $g_1 \square g_2 \in ker(T)$ .

(2.) for  $\forall g \in ker(T)$ ,

$$T(g) = T(g \square e)$$

$$= T(g) \square' T(e)$$

$$= e' \square' T(e) = e'$$

and  $T(e)\Box'e'=e'$  in the same way, thus  $e\in ker(T)$ , and be the unit element of ker(T).

(3.) for  $\forall g \in ker(T)$ ,

$$T(e) = T(g \square g^{-1})$$

$$= T(g) \square' T(g^{-1})$$

$$= e' \square' T(g^{-1})$$

$$= e'$$

and  $T(g^{-1})\Box'e' = e'$ , thus  $T(g^{-1}) = e'$ , and  $g^{-1} \in ker(T)$ . Thus ker(T) is a subgroup of  $(G, \square)$ .

2.

o. Obviously  $im(T) \subseteq G'$ .

1. for  $\forall g_1', g_2' \in im(T), \exists g_1, g_2, \text{ s.t. } T(g_1) = g_1', T(g_2) = g_2'.$  Thus

$$T(g_1 \square g_2) = T(g_1) \square' T(g_2)$$
$$= g_1' \square' g_2'$$

thus  $g_1' \square' g_2' \in im(T)$ .

(2.) Since 
$$e \in ker(T) \Rightarrow T(e) = e' \Rightarrow e' \in im(T)$$
.

(3.) for 
$$\forall g' \in im(T), \exists g \in G$$
, s.t.  $T(g) = g'$ , and

$$T(e) = T(g \square g^{-1})$$

$$= T(g) \square' T(g^{-1})$$

$$= g' \square' T(g^{-1})$$

$$= e'$$

and  $T(g^{-1})\Box'g'=e'$  in the same way, thus  $T(g^{-1})=g'^{-1},g'^{-1}\in$ im(T).

Thus im(T) is a subgroup of G'.

**Exercise 2.**  $G \xrightarrow{T} G'$  is a homomorphism show that T(e) = e' and  $T(g^{-1}) = T(g)^{-1}$  for  $\forall g \in G$ . e' is the unit element of  $(G', \square')$ ,

*Proof.* 1. 
$$ker(T)$$
 is a subgroup of  $G$ , thus  $e \in ker(T) \Rightarrow T(e) = e'$ . 2.  $T(g^{-1})\Box'T(g) = T(g^{-1}\Box g) = T(e) = e'$ , thus  $T(g^{-1}) = T(g)^{-1}$ .

**Definition 5.** Given two groups  $(G, \Box), (G', \Box')$ , let  $G \xrightarrow{T} G'$  be a homomorphism. If  $(G', \square')$  is abelian, cok(T) := G'/im(T).

#### Normal Subgroup

Consider a group  $(G, \square)$  and natural projection  $\pi$ . Are there is map  $\square'$  such that the following commutative diagram holds? i.e. for  $\forall g_1, g_2, \pi(g_1 \square g_2) = \pi(g_1) \square' \pi(g_2) ?$ 

$$\begin{array}{c|c} (a,b)G\times G^{(a,b)} & & \square & \\ \hline & \pi\times\pi \downarrow & & \downarrow \pi \\ \hline (a\square H,b\square H)G/H\times G/H & & \square' \\ \end{array}$$

In the other word, for  $(a, b) \in G \times G$ , we can define map  $\square'$  as

$$(a\Box H)\Box'(b\Box H) := a\Box b\Box H$$

But there is not well-defined, because there would exists  $a', b' \in G$ such that  $a'\Box H = a\Box H, b'\Box H = b\Box H$ , thus  $(a\Box H)\Box'(b\Box H) =$  $(a'\Box H)\Box'(b'\Box H)$ , but  $a'\Box b'\Box H \neq a\Box b\Box H$ .

**Definition 6** (Normal Subgroup). Given a group  $(G, \square)$ ,  $(H, \square)$  is a subgroup of  $(G, \square)$  (denote by  $H \leq G$ ). We call H is a normal subgroup, denote by  $H \subseteq G$ , if  $\forall g \in G, \forall h \in H, g^{-1}hg \in H$ .

**Exercise 3.** If  $H \triangleleft G$ , show that  $a^{-1} \square a' \in H, b^{-1} \square b' \in H \Rightarrow$  $(a\Box b)^{-1}\Box(a'\Box b')\in H$ , that is  $H\unlhd G$  is the sufficient condition. *Note* 2. Given maps  $f_1$ ,  $f_2$  and a surjection g, we have proved if  $g \circ f_1 = g \circ f_2 \Rightarrow f_1 = f_2$ , thus if  $\square'$  exists, there would be only one.

*Proof.* Denote  $a^{-1} \square a' = h \in H$ ,  $\exists h' \in H$ , s.t.  $b^{-1} \square b' = h' \Rightarrow b' =$  $b\Box h'$ , thus

$$(a \square b)^{-1} \square (a' \square b')$$

$$= b^{-1} \square a^{-1} \square a' \square b'$$

$$= b^{-1} \square h \square b \square h'$$

$$= (b^{-1} \square h \square b) \square h'$$

$$H \subseteq G \Rightarrow b^{-1} \square h \square b \in H \Rightarrow (a \square b)^{-1} \square (a' \square b') \in H.$$

Note 3. a, a' belong to the same coset of  $H \Leftrightarrow a \square H = a' \square \overset{-}{H} \Leftrightarrow a^{-1}a' \in H \Leftrightarrow$  $a' = a \square h$ .

We have seen that if  $H \subseteq G$  then there is a binary operation  $G/H \times$  $G/H \xrightarrow{\square'} G/H((a\square H, b\square H) \mapsto a\square b\square H)$ , such that the commutative diagram

$$\begin{array}{ccc} G\times G & & \square & \\ \pi\times\pi \downarrow & & \downarrow \pi \\ G/H\times G/H & & \square' \to G/H \end{array}$$

holds.

**Exercise 4** (Quotient Group).  $H \subseteq G$ , show that  $(G/H, \square')$  is a group.

*Proof.* o.  $H \subseteq G \Rightarrow \square'$  is well-defined by  $(g_1 \square H) \square' (g_2 \square H) :=$  $(g_1 \square g_2) \square H$  for any  $g_1, g_2 \in G$ .

- 1.  $\forall g_1, g_2 \in G, g_1 \square H, g_2 \square H \in G/H$ , then  $(g_1 \square H) \square'(g_2 \square H) =$  $(g_1 \square g_2) \square H$ .  $g_1 \square g_2 \in G$  thus  $(g_1 \square g_2) \square H \in G/H$ .
- 2.  $\forall g \in G, g \square H \in G/H$ , then  $(g \square H) \square H = (g \square e) \square H = g \square H$ , thus  $e_{G/H} = H \in G/H$ .

3. 
$$(g\Box H)^{-1} = g^{-1}\Box H \in G/H$$
.

**Exercise 5.**  $G \xrightarrow{T} G'$  is a homomorphism, show that  $ker(T) \leq G$  and  $im(T) \leq G'$ .

*Proof.* 1. For  $\forall g \in G, k \in ker(T)$ ,

$$T(g^{-1} \square k \square g) = T(g^{-1}) \square' e' \square' T(g)$$
$$= T(g)^{-1} \square' T(g)$$
$$= e'$$

Thus  $g^{-1} \square k \square g \in ker(T) \Rightarrow ker(T) \leq G$ .

2. (1.) 
$$T(g_1)\Box'T(g_2) = T(g_1\Box g_2) \in im(T);$$
 (2.)  $e' = T(e) \in im(T);$  (3)  $T(g)^{-1} = T(g^{-1}) \in im(T).$ 

Thus if subgroup  $(H, \square)$  is normal then  $(G/H, \square')$  is a group. Conversely, if  $(G, \square)$  is abelian, then any subgroup  $(H, \square)$  is normal, for  $ghg^{-1} = gg^{-1}h = h \in H$ ; and  $(G/H, \square')$  is abelian, for

$$(a\Box H)\Box'(b\Box H)$$

$$= a\Box b\Box H = b\Box a\Box H$$

$$= (b\Box H)\Box'(a\Box H).$$

**Theorem 1** (1st theorem of homomorphism). Suppose  $G \xrightarrow{T} G'$  is a homomorphism,  $H \leq G$ . Then

1.  $T(H) = \{e'\}$ , i.e.  $H \subseteq ker(T) \Leftrightarrow \exists ! map \ G/H \xrightarrow{\tilde{T}} G' \ s.t.$ 



- 2. If  $H \subseteq ker(T)$  and  $H \subseteq G$  then  $G/H \xrightarrow{\tilde{T}} G'$  is a homomorphism.
- 3.  $H = ker(T) \Leftrightarrow \tilde{T}$  is injection.
- 4. T is surjection  $\Leftrightarrow \tilde{T}$  is surjection.

*Proof.* 1.  $\Leftarrow$ : Suppose  $\exists \tilde{T}$ , then  $e \in H \Rightarrow \{e'\} \subseteq T(H) \subseteq G'$ ;  $\pi(H) = H \in G/H, \tilde{T}(H) \in G'$ . Thus

$$\{e'\} \subseteq T(H) = \{\tilde{T}(H)\} \subseteq G'$$

and  $\tilde{T}(H) \in G \Rightarrow T(H) = \{e'\}, \tilde{T}(H) = e'. \Rightarrow : \tilde{T}(g \square H) := T(g). \pi$  is surjection  $\Rightarrow \tilde{T}$  has uniqueness.

*Note* 4.  $H \xrightarrow{\pi} H$  is an element of G/Hand then  $\tilde{T}(H)$  is an element of G'.