C11 - 2.1 - θ_r , θ_{stp} Notes

 θ_r : the "reference angle" is the angle between the teminal arm and the *x*-axis (always positive, between 0^o and 90^o). θ_{stp} : the "angle in standard position" from the principal axis to the terminal arm.

Basic logic will calculate θ_{stp} and θ_r much more easily than using these formulas.

C11 - 2.1 - $\pm \theta_{stp}$, θ_{cot} , θ_{pri} Notes

$$\theta_{cot} = \theta_{stp} \pm 360^{o}n$$
, nEI

Counter-clockwise rotation is a positive θ_{stp}

$$\theta_{stp} = 180^o - 50^o$$
$$\theta_{stp} = 130^o$$

Clockwise rotation is a negative θ_{stp}

$$\theta_{stp} = -(180^o - 30^o)$$

 $\theta_{stp} = -150^o$

Positive Co-terminal Angles (θ_{cot})

$$\theta_r = 40^o$$
 , $\theta_{stp} = 40^o$

$$\theta_{cot} = 360^o \pm \theta_{stp}$$

$$\theta_{cot} = 360^o + 40^o$$

$$\theta_{cot} = 400^o$$

$$\theta_r = 40^o, \theta_{stp} = 40^o, \theta_{stp} = 400^o$$

Negative Co-terminal Angles (θ_{cot})

$$\theta_{cot} = 360^{o} \pm \theta_{stp}$$
 $\theta_{cot} = -(360^{o} - 40^{o})$
 $\theta_{cot} = -(320^{o})$
 $\theta_{cot} = -320^{o}$

$$\theta_r = 40^o$$
, $\theta_{stp} = -320^{o^o}$

$$\begin{array}{l} \theta_{cot} = 360^o \pm \theta_{stp} \\ \theta_{cot} = -(360^o + (360^o - 40)^o) \\ \theta_{cot} = -(360^o + 320^o) \\ \theta_{cot} = -680^o \end{array}$$

$$\theta_r = 40^o$$
 , $\theta_{stp} = 40^o$, $\theta_{stp} = -680^o$

$$\theta_{\rm cot} = 40^o$$
, -320^o , -680^o , -1040^o , -1400^o , ...

Basic logic will calculate θ_{cot} much more easily than using these formulas.

 $\theta_{principle} = smallest positive \theta_{stp} coterminal.$

C11 - 2.2 -ASTC Notes

C11 - 2.3 - Special Triangles 30,45,60 sin/cos/tan Notes

$$sin\theta = \frac{Opp}{Hyp}$$

$$\cos\theta = \frac{Adj}{Hyp}$$

$$tan\theta = \frac{Opp}{Adj}$$

$$sin30^o = \frac{1}{2}$$

$$cos30^o = \frac{\sqrt{3}}{2}$$

$$tan30^o = \frac{1}{\sqrt{3}}$$

$$sin45^o = \frac{1}{\sqrt{2}}$$

$$cos45^o = \frac{1}{\sqrt{2}}$$

$$tan45^o = \frac{1}{1}$$

$$tan45^o=1$$

$$sin60^o = \frac{\sqrt{3}}{2}$$

$$cos60^o = \frac{1}{2}$$

$$tan60^o = \frac{\sqrt{3}}{1}$$

$$tan60^o = \sqrt{3}$$

C11 - 2.3 -
$$sin\theta = \frac{1}{2}$$
 Notes

Solve for θ , $0^o \le \theta < 360^o$.

$$\sin\theta = \frac{1}{2}$$

 $\theta_{stp} = 30^o \qquad \theta_{stp} = 180^o - 30^o = 150^o$

 $\theta_{stp} = 30^o, 150^o$

Draw two triangles where $\sin \theta$ is positive:

ASTC Quadrant I, II

Label the triangles according to special triangles and SOH CAH TOA

 150^{o}

270

Label the reference angle according to special triangles.

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal arm.

Solve for the arrows θ_{stn}

Check your answer:

 $sin30^{o} = \frac{1}{2}$ $sin150^{o} = \frac{1}{2}$

Solve for θ , $0^o \le \theta < 360^o$ and general solution.

Draw two triangles where $\cos \theta$ is positive: ASTC Quadrant I, II

Label the triangles according to special triangles and SOH CAH TOA

Label the reference angle according to special triangles.

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal

 $\theta_{stp} = 30^o$ $\theta_{stp} = 360^o - 30^o$ = 330^o

 $\theta_{stp} = 30^o, 330^o$

Solve for the arrows θ_{stp}

Check your answer:

 $cos30^{o} = \frac{\sqrt{3}}{2}$ $cos330^{o} = \frac{\sqrt{3}}{2}$

General Solution: $\theta = \theta_{stp} \pm pn$, $n \in I$

 $\theta = 30^{o} \pm 360^{o} n_{i} n \in I$

 $\theta = \theta_{stp} \pm pn, n \in I$

 $\theta = 330^o \pm 360^o n, n \in I$

C11 - 2.3 -
$$sin\theta = -\frac{1}{\sqrt{2}}$$
 Notes $sin x = -\frac{1}{\sqrt{2}}$

Draw two triangles where $\sin\theta$ is negative: ASTC Quadrant III, IV

Label the triangles according to special triangles and SOH CAH TOA

Label the reference angle according to special triangles.

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal arm.

$$\theta_{stp} = 180^o + 45^o$$
 $\theta_{stp} = 360^o - 45^o$
= 225^o = 315^o

Solve for the arrows θ_{stp}

$$\theta_{stp} = 225^o, 315^o$$

Check your answer:

$$sin225^o = -\frac{1}{\sqrt{2}}$$
 $sin315^o = \frac{1}{\sqrt{2}}$

Draw two triangles where $\cos \theta$ is negative: ASTC Quadrant II, III

Label the triangles according to special triangles and SOH CAH TOA

Label the reference angle according to special triangles.

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal arm.

$$\theta_{stp} = 180^o + 45^o$$
 $\theta_{stp} = 180^o - 45^o$
= 225° = 135°

Solve for the arrows $heta_{stp}$

$$\theta_{stp} = 225^o, 135^o$$

Check your answer: $cos225^o = -\frac{1}{\sqrt{2}} cos135^o = -\frac{1}{\sqrt{2}}$

$C11 - 2.3 - tan\theta = 1 \text{ Notes}$

$$\tan x = 1$$

$$\tan x = \frac{1}{1}$$

Draw two triangles where $\tan \theta$ is positive: ASTC Quadrant I, III

Label the triangles according to special triangles and SOH CAH TOA

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal arm.

$$\theta_{stp} = 180^o + 45^o$$

= 225°

Solve for the arrows
$$\theta_{stp}$$

$$\theta_{stp} = 45^{o}, 225^{o}$$

 $\theta_{stp} = 45^o = 45^o$

Check your answer:

$$tan45^{o} = \frac{1}{1}$$
 $tan225^{o} = \frac{1}{1}$

Draw two triangles where $\tan \theta$ is negative: ASTC Quadrant II, IV

Label the triangles according to special triangles and SOH CAH TOA

Label the reference angle according to special triangles.

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal arm.

Solve for the arrows θ_{stp}

Check your answer:

$$tan150^{o} = -\frac{1}{\sqrt{3}}$$
 $tan330^{o} = -\frac{1}{\sqrt{3}}$

$C11 - 2.3 - sin\theta = .8 \text{ Notes}$

Solve for $\theta,0^o \leq \theta < 360^o$ and general solution

$$\sin\theta = 0.8$$

$$sin\theta = \frac{0.8}{1} = \frac{8}{10}$$

Draw two triangles where $\sin \theta$ is positive: ASTC Quadrant I, II

Label the triangles according to SOH CAH TOA

Solve for
$$\theta_r$$
: $\theta_r = \sin^{-1}\left(\frac{0.8}{1}\right)$

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal arm.

Solve for the arrows θ_{stp}

$$\begin{array}{ll} \theta_{stp} = 53.1^o & \theta_{stp} = 180^o - 53.1^o \\ &= 126.9^o \end{array}$$

$$\theta_{stp} = 53.1^{o}, 126.9^{o}$$

Check your answer:

$$sin53.1^o = 0.8$$
 $sin126.9^o = 0.8$

$$sin\theta = \frac{0.8}{1}$$
$$\theta = sin^{-1} \left(\frac{0.8}{1} \right)$$
$$\theta = 53.1^{\circ}$$

General Solution:
$$\theta = \theta_{stp} \pm pn, n \in I$$

 $\theta = 53.1^o \pm 360^o n, n \in I$

$$\theta = \theta_{stp} \pm pn, n \in I$$

 $\theta = 53.1^o \pm 360^o n, n \in I$

$$\theta = \theta_{stp} \pm pn, n \in I$$

 $\theta = 126.9^o \pm 360^o n, n \in I$

*C11 -•2.3 - Trig Point on Graph Notes

$$tano=0$$
 $tano=0$
 $tano=3$
 $o=tani'(\frac{3}{4})$
 $o=36.9^{\circ}$
 $o=180-36.9$
 $o=143.1$
 $tan143.1=.75$

C11 - 2.4 - Unit Circle sin/cos/tan 90, 180, 270, 360 Notes

Radius of unit circle = 1Hyp = 1

$sin\theta = \frac{Opp}{Hyp}$	$cos\theta = \frac{Adj}{Hyp}$	$tan\theta = \frac{Opp}{Adj}$
$sin\theta = \frac{y}{1}$	$cos\theta = \frac{x}{1}$	$tan\theta = \frac{y}{x}$
$sin\theta = y$	$\cos\theta = x$	
$sin0^o = \frac{0}{1}$	$cos0^o = \frac{1}{1}$	$tan0^o = \frac{0}{1}$
$\frac{sin0^o = 0}{1}$	$cos0^o = 1$	$tan0^o = 0$
$sin 90^{o} = \frac{1}{1}$	$cos90^{o} = \frac{0}{1}$	$tan90^{o} = \frac{1}{0}$
$sin 90^o = 1$	$cos90^o = 0$	$tan90^o = UND$
$sin180^o = \frac{0}{1}$	$\cos 180^o = -\frac{1}{1}$	$tan180^o = \frac{0}{-1}$
$sin180^o = 0$	$cos180^o = -1$	$tan180^o = 0$
$sin270^{o} = \frac{-1}{1}$	$cos270^o = \frac{0}{1}$	$tan270^{o} = \frac{-1}{0}$
$sin270^o = -1$	$cos270^o = 0$	$tan270^o = UND$
$sin360^o = \frac{0}{1}$	$cos360^{o} = \frac{1}{1}$	$tan360^o = \frac{0}{1}$
$sin 360^o = 0$	$cos360^o = 1$	$tan360^o = 0$

$$(x,y)$$

 $(\sin\theta,\cos\theta)$

C11 - 2.8 - TOV^0 sinx,cosx,tanx Graphs Notes

 $y = \sin x$

Table of Values

X	у
0 _o	0
90°	1
180°	0
270°	-1
360°	0

Pt.
(0,0)
(90,1)
(180,0)
(270,-1)
(360,0)

$y = \cos x$

Table of Values

X	у
0°	1
90°	0
180°	-1
270°	0
360°	1

Pt.
(0,1)
(90,0)
(180,-1)
(270,0)
(360,1)

$y = \tan x$

Table of Values

X	у
0 _o	0
45°	1
90°	und
135°	-1
180°	0

Pt.	
(0,0)	
(45,1)	
(90,und)	
(135,-1)	
(180,0)	

Trig Page 12

C11 - 2.8 - $\sin 2\theta$ Notes

Solve for θ $0^o \le \theta < 360^o$, and the general solution.

Let
$$m = 2\theta$$

$$\sin m = \frac{1}{2}$$

Draw two triangles where $\sin m$ is positive: ASTC Quadrant I, II

Label the triangles according to special triangles and SOH CAH TOA

Label the reference angle according to special triangles.

Draw an arrow from the principal axis to the first terminal arm, draw an arrow from the principal axis to the second terminal arm.

$$m_{stp} = 30^o$$
 $m_{stp} = 180^o - 30^o$
= 150°

Solve for the arrows
$$m_{stp}$$

 $m_{stp} = 30^o, 150^o$

$$m = 30^{\circ}$$

$$2\theta = 30^{\circ}$$

$$\frac{2\theta}{2} = \frac{30^{\circ}}{2}$$

$$\theta = 15^{\circ}$$

$$m = 150^{\circ}$$

$$2\theta = 150^{\circ}$$

$$\frac{2\theta}{2} = \frac{150^{\circ}}{2}$$

Substitute 2θ back in for m.

$$y = sin\theta$$

 $y = \sin 2\theta$

$$p = \frac{360^{0}}{b}$$
$$p = \frac{360^{0}}{2}$$
$$= 180^{0}$$

$$\theta = \theta_{stp} \pm p$$

$$\theta = 15^{0} + 180^{0}$$

$$\theta = 195^{0}$$

$$\theta = \theta_{stp} \pm p$$

$$\theta = 195^{\circ} + 180^{\circ}$$

$$\theta = 375^{\circ}$$

$$\theta = \theta_{stp} \pm p$$

$$\theta = 75^{\circ} + 180^{\circ}$$

$$0 \le \theta \le 360^{o}$$

$$\theta = 15^{o}, 75^{o}, 195^{o}, 225^{o}$$

General Solution:
$$\theta = \theta_{stp} \pm pn, n \in I$$

$$\theta = \theta_{stp} \pm pn, n \in I$$

$$\theta = 15^o \pm 180^o \, n, n \in I$$

$$\theta = 75^o \pm 180^o n, n \in I$$