

1 WHAT IS CLAIMED IS:

- 1 1. A disk drive, comprising:
 - 2 a disk;
 - 3 a single supply of voltage;
 - 4 a head stack assembly for reading and writing to the disk, including:
 - 5 a body portion;
 - 6 an actuator arm cantilevered from the body portion;
 - 7 a coil portion cantilevered from the body portion in an opposite direction from the
 - 8 actuator arm, the coil portion including a coil assembly having a first wound coil and a second
 - 9 wound coil, the first coil defining a first pair of coil leads and the second wound coil defining a
 - 10 second pair of coil leads, and
 - 11 a switching circuit electrically coupled to the single supply of voltage and to the first and
 - 12 second pairs of coil leads, the switching circuit being configured to selectively switch the first
 - 13 and second wound coils between a first configuration and a second configuration in which the
 - 14 first wound coil is electrically in parallel with the second wound coil, the second configuration
 - 15 being different from the first configuration.
- 1 2. The disk drive of claim 1, wherein in the first configuration, the first wound coil
- 2 is electrically in series with the second wound coil.
- 1 3. The disk drive of claim 1, wherein in the first configuration, the first wound coil
- 2 is electrically disconnected from the second wound coil.

1 4. The disk drive of claim 1, wherein the first wound coil and the second wound coil
2 are both formed of wire having a same gauge.

1 5. The disk drive of claim 1, wherein the first wound coil and the second wound coil
2 are each formed of wire having a different gauge.

1 6. The disk drive of claim 1, wherein the first wound coil and the second wound coil
2 are both formed of a same number of coil turns.

1 7. The disk drive of claim 1, wherein the first wound coil and the second wound coil
2 are each formed of a different number of coil turns.

1 8. The disk drive of claim 1, wherein the first wound coil and the second wound coil
2 have substantially a same resistance.

1 9. The disk drive of claim 1, wherein each of the first wound coil and the second
2 wound coil has a different resistance.

1 10. The disk drive of claim 1, wherein the coil assembly is configured to be supplied
2 with a constant voltage and with a first current of a first magnitude when the switching circuit
3 switches the first and second wound coils into the first configuration and a second current of a
4 second magnitude when the switching circuit switches the first and second wound coils into the
5 second configuration, the second magnitude being greater than the first magnitude.

1 11. The disk drive of claim 10, wherein the switching circuit is configured to switch
2 the first and second wound coils into the second configuration only during selected seek
3 operations.

1 12. The disk drive of claim 10, wherein the switching circuit is configured to switch
2 the first and second wound coils into the second configuration for a time period that is controlled
3 such that a temperature of the coil assembly does not exceed a predetermined threshold.

1 13. The disk drive of claim 1, wherein the first and second wound coils are adhesively
2 attached to one another.

1 14. The disk drive of claim 1, wherein the first pair of coil leads includes a first coil
2 lead and a second coil lead, the second pair of coil leads includes a third coil lead and a fourth
3 coil lead, and the disk drive further comprises a first flex circuit including a first flex circuit lead,
4 a second flex circuit lead, a third flex circuit lead and a fourth flex circuit lead, and wherein the
5 switching circuit selectively connects the first coil lead to the first flex circuit lead, selectively
6 connects the second coil lead to the second flex circuit lead, selectively connects the third coil
7 lead to the third flex circuit lead and selectively connects the fourth coil lead to the fourth flex
8 circuit lead.

1 15. The disk drive of claim 1, wherein the switching circuit is configured to cause the
2 coil assembly to exert a first maximum torque on the head stack assembly when the first and
3 second wound coils are switched to the first configuration and wherein the switching circuit is
4 configured to cause the coil assembly to exert a second maximum torque on the head stack
5 assembly when the coil assembly is in the second configuration, the second maximum torque
6 being greater than the first maximum torque.

1 16. A head stack assembly for a disk drive, comprising:

2 a body portion;

3 an actuator arm cantilevered from the body portion;

4 a coil portion cantilevered from the body portion in an opposite direction from the
5 actuator arm, the coil portion including a coil assembly having a first wound coil and a second
6 wound coil, the first coil defining a first pair of coil leads and the second wound coil defining a
7 second pair of coil leads, and

8 a switching circuit that is configured to be electrically coupled to a single supply of
9 voltage and to the first and second pairs of coil leads, the switching circuit being configured to
10 selectively switch the first and second wound coils between a first configuration and a second
11 configuration in which the first wound coil is electrically in parallel with the second wound coil,
12 the second configuration being different from the first configuration.

1 17. The head stack assembly of claim 16, wherein in the first configuration, the first

2 wound coil is electrically in series with the second wound coil.

1 18. The head stack assembly of claim 16, wherein in the first configuration, the first

2 wound coil is electrically disconnected from the second wound coil.

1 19. The head stack assembly of claim 16, wherein the first wound coil and the second

2 wound coil are both formed of wire having a same gauge.

1 20. The head stack assembly of claim 16, wherein each of the first wound coil and the

2 second wound coil is formed of wire having a different gauge.

1 21. The head stack assembly of claim 16, wherein the first wound coil and the second
2 wound coil are both formed of a same number of coil turns.

1 22. The head stack assembly of claim 16, wherein each of the first wound coil and the
2 second wound coil is formed of a different number of coil turns.

1 23. The head stack assembly of claim 16, wherein the first wound coil and the second
2 wound coil have substantially a same resistance.

1 24. The head stack assembly of claim 16, wherein each of the first wound coil and the
2 second wound coil has a different resistance.

1 25. The head stack assembly of claim 16, wherein the coil assembly is configured to
2 be supplied with a constant voltage and with a first current of a first magnitude when the
3 switching circuit switches the first and second wound coils into the first configuration and a
4 second current of a second magnitude when the switching circuit switches the first and second
5 wound coils into the second configuration, the second magnitude being greater than the first
6 magnitude.

1 26. The head stack assembly of claim 16, wherein the first and second wound coils
2 are adhesively attached to one another.