QCM SUITES - BAC ES/L CENTRES ÉTRANGERS 2013

- 1) La valeur de U_1 est 36200.
- 2) La suite (V_n) est géométrique de raison 0,875.
- 3) La suite (U_n) a pour limite 9600.
- 4) L'algorithme permet d'obtenir le plus petit rang n pour lequel on a $U_n \le 10000$.
- 5) La valeur affichée est 33.

JUSTIFICATIONS

Même si elles ne sont pas demandées, elles peuvent aider les élèves ayant des difficultés avec cet exercice.

1)
$$U_1 = 0.875 \times U_0 + 1200 = 0.875 \times 40000 + 1200 = 36200$$
.

2)
$$V_n = U_n - 9600$$
 et $V_{n+1} = U_{n+1} - 9600$.

En remplaçant U_{n+1} par $0.875 \times U_n + 1200$ dans l'expression de V_{n+1} , on obtient :

$$V_{n+1} = 0,875 \times U_n - 8400 = 0,875 \times U_n - 0,875 \times 9600 = 0,875 (U_n - 9600) = 0,875 \times V_n.$$

D'où:
$$\frac{V_{n+1}}{V_n} = 0.875$$
.

3) De ce qui précède on peut écrire
$$V_0 = U_0 - 9600 = 40000 - 9600 = 30400$$
 et $V_n = V_0 \times 0.875^n = 30400 \times 0.875^n$.

Puisque
$$0.875 < 1$$
, $\lim_{n \to +\infty} (V_n) = 0$. Et comme $U_n = V_n + 9600$, on en déduit que $\lim_{n \to +\infty} (U_n) = 9600$.

4) Le tableau suivant montre le fonctionnement de l'algorithme pour quelques étapes :

N	U	<i>U</i> > 10000 ?	N = N + 1	U = 0.875U + 1200
0	40000	vrai	1	36200
1	36200	vrai	2	32875
2	32875	vrai	3	29965,625
• • •	•••	•••	•••	•••
31	10084,31	vrai	32	10023,77
32	10023,77	vrai	33	9970,19
33	9970,19	faux	N = 33	

L'algorithme s'arrête dès que $U \le 10000$ et affiche la valeur de N pour laquelle ceci se produit.

5) La valeur de N qui s'affiche est 33.