

Please use the bookmark to navigate

General information on LVT models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): lvtnfet_acc, lvtpfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Ig_on: Gate current at Vds = 0V and Vgs = 1V.
 - ✓ Taueff: Time constant computed as Vdd/Ieff*Cggmean.
 - ✓ Ilin : Drain current at Vgs = 1V, Vds = 0.05V.
 - ✓ Ioff_g: Gate current at Vgs = 0V, Vds = vds_satV.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_satV.
 - ✓ Ieff: Average drain current (Ilow + Ihigh) / 2.
 - ✓ Isat : Drain current at Vgs = 1V, Vds = VddV.
 - ✓ Logioff: log10(Ioffsat).

lvtnfet_acc Electrical characteristics scaling

Scaling versus Vbs (L=1um,W=1um)

lvtnfet_acc, Vt_lin [mV] vs Vbs [V]

lvtnfet_acc, Ilin/W [A/m] vs Vbs [V]

lvtnfet_acc, Vt_sat [mV] vs Vbs [V]

lvtnfet_acc, Isat/W [A/m] vs Vbs [V]

lvtnfet_acc, LogIoff [A] vs Vbs [V]

lvtnfet_acc, Ieff/W [A/sq] vs Vbs [V]

Scaling versus Vbs normalized (L=1um,W=1um)

lvtnfet_acc, Vt_lin normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Ilin normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Vt_sat normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Isat normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, LogIoff normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Ieff normalized wrt. Vbs=0 vs Vbs [V]

Scaling versus Vbs (L=30nm,W=210nm)

lvtnfet_acc, Vt_lin [mV] vs Vbs [V]

lvtnfet_acc, Ilin/W [A/m] vs Vbs [V]

lvtnfet_acc, Vt_sat [mV] vs Vbs [V]

lvtnfet_acc, Isat/W [A/m] vs Vbs [V]

lvtnfet_acc, LogIoff [A] vs Vbs [V]

lvtnfet_acc, Ieff/W [A/sq] vs Vbs [V]

w==210e-9 and L==0.03e-6 and Temp==25 and vbs<1.1 and p_la==0 and Vdd==1

dormieub

Scaling versus Vbs normalized (L=30nm,W=210nm)

lvtnfet_acc, Vt_lin normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Ilin normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Vt_sat normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Isat normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, LogIoff normalized wrt. Vbs=0 vs Vbs [V]

lvtnfet_acc, Ieff normalized wrt. Vbs=0 vs Vbs [V]

Vdd effect (l=1um,w=1um)

dormieub

lvtnfet_acc, Ilin/W [A/m] vs vdd [m]

l==1e-6 and w==1e-6 and Temp==25 and Vbs==0 and $p_la==0$

lvtnfet_acc, Vt_sat [mV] vs vdd [m]

l==1e-6 and w==1e-6 and Temp==25 and Vbs==0 and $p_la==0$

lvtnfet_acc, Isat/W [A/m] vs vdd [m]

lvtnfet_acc, LogIoff [A] vs vdd [m]

lvtnfet_acc, Ieff/W [A/sq] vs vdd [m]

lvtnfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

lvtnfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=1um,w=1um)

lvtnfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

Vdd effect (l=30e-9w=210e-9)

dormieub

lvtnfet_acc, Ilin/W [A/m] vs vdd [m]

lvtnfet_acc, Vt_sat [mV] vs vdd [m]

lvtnfet_acc, Isat/W [A/m] vs vdd [m]

lvtnfet_acc, LogIoff [A] vs vdd [m]

lvtnfet_acc, Ieff/W [A/sq] vs vdd [m]

lvtnfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

lvtnfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=30e-9w=210e-9)

dormieub

lvtnfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

l==30e-9 and w==0.21e-6 and Temp==25 and Vbs==0 and $p_la==0$

dormieub

lvtnfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

lvtnfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc Electrical characteristics scaling

dormieub

Scaling versus Vbs (L=1um,W=1um)

lvtpfet_acc, Vt_lin [mV] vs Vbs [V]

lvtpfet_acc, Ilin/W [A/m] vs Vbs [V]

lvtpfet_acc, Vt_sat [mV] vs Vbs [V]

lvtpfet_acc, Isat/W [A/m] vs Vbs [V]

lvtpfet_acc, LogIoff [A] vs Vbs [V]

lvtpfet_acc, Ieff/W [A/sq] vs Vbs [V]

w==1e-6 and L==1e-6 and Temp==25 and vbs>0.9 and $p_la==0$ and Vdd==1

dormieub

Scaling versus Vbs normalized (L=1um,W=1um)

dormieub

lvtpfet_acc, Vt_lin normalized wrt. Vbs=1 vs Vbs [V]

lvtpfet_acc, Ilin normalized wrt. Vbs=1 vs Vbs [V]

w==1e-6 and L==1e-6 and Temp==25 and vbs>0.9 and $p_la==0$ and Vdd==1

dormieub

lvtpfet_acc, Vt_sat normalized wrt. Vbs=1 vs Vbs [V]

lvtpfet_acc, Isat normalized wrt. Vbs=1 vs Vbs [V]

lvtpfet_acc, LogIoff normalized wrt. Vbs=1 vs Vbs [V]

lvtpfet_acc, Ieff normalized wrt. Vbs=1 vs Vbs [V]

Scaling versus Vbs (L=30nm,W=300nm)

lvtpfet_acc, Vt_lin [mV] vs Vbs [V]

lvtpfet_acc, Ilin/W [A/m] vs Vbs [V]

lvtpfet_acc, Vt_sat [mV] vs Vbs [V]

lvtpfet_acc, Isat/W [A/m] vs Vbs [V]

 $w{=}300e{-}9\ and\ L{=}0.03e{-}6\ and\ Temp{=}{=}25\ and\ vbs{>}0.9\ and\ p_la{=}{=}0\ and\ Vdd{=}{=}1$

lvtpfet_acc, LogIoff [A] vs Vbs [V]

lvtpfet_acc, Ieff/W [A/sq] vs Vbs [V]

 $w{=}300e{-}9~and~L{=}{=}0.03e{-}6~and~Temp{=}{=}25~and~vbs{>}0.9~and~p_la{=}{=}0~and~Vdd{=}{=}1$

Scaling versus Vbs normalized (L=30nm,W=300nm)

lvtpfet_acc, Vt_lin normalized wrt. Vbs=1 vs Vbs [V]

 $w{=}300e{-}9~and~L{=}{=}0.03e{-}6~and~Temp{=}{=}25~and~vbs{>}0.9~and~p_la{=}{=}0~and~Vdd{=}{=}1$

lvtpfet_acc, Ilin normalized wrt. Vbs=1 vs Vbs [V]

lvtpfet_acc, Vt_sat normalized wrt. Vbs=1 vs Vbs [V]

lvtpfet_acc, Isat normalized wrt. Vbs=1 vs Vbs [V]

lvtpfet_acc, LogIoff normalized wrt. Vbs=1 vs Vbs [V]

 $w{=}300e{-}9\ and\ L{=}0.03e{-}6\ and\ Temp{=}{=}25\ and\ vbs{>}0.9\ and\ p_la{=}{=}0\ and\ Vdd{=}{=}1$

lvtpfet_acc, Ieff normalized wrt. Vbs=1 vs Vbs [V]

 $w{=}300e{-}9~and~L{=}{=}0.03e{-}6~and~Temp{=}{=}25~and~vbs{>}0.9~and~p_la{=}{=}0~and~Vdd{=}{=}1$

Vdd effect (l=1um,w=1um)

dormieub

lvtpfet_acc, Ilin/W [A/m] vs vdd [m]

lvtpfet_acc, Vt_sat [mV] vs vdd [m]

lvtpfet_acc, Isat/W [A/m] vs vdd [m]

lvtpfet_acc, LogIoff [A] vs vdd [m]

lvtpfet_acc, Ieff/W [A/sq] vs vdd [m]

lvtpfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

lvtpfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=1um,w=1um)

lvtpfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

Vdd effect (l=30e-9w=300e-9)

dormieub

lvtpfet_acc, Ilin/W [A/m] vs vdd [m]

lvtpfet_acc, Vt_sat [mV] vs vdd [m]

lvtpfet_acc, Isat/W [A/m] vs vdd [m]

lvtpfet_acc, LogIoff [A] vs vdd [m]

lvtpfet_acc, Ieff/W [A/sq] vs vdd [m]

lvtpfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

lvtpfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=30e-9w=300e-9)

dormieub

lvtpfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

lvtpfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

Annex

ST Confidential

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model lvtnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_sat = Vdd V
 - \times ivt = 300e-9 A
 - **x** mc_runs = 1000
 - \mathbf{X} vstep_ivt = 0.005 V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc_sens = 0
 - \times vds lin = 0.05 V
 - **✗** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - \mathbf{x} vbs = 0 V
 - \times ams_release = 2018.3

- **x** model_version = 1.3.e
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
 - \star vbs = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - X lvt_dev = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
- Model lvtpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_sat = Vdd V
 - **x** ivt = 70e-9 A
 - **x** mc_runs = 1000
 - \times vstep_ivt = 0.005 V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V

- **✗** sbenchlsf_release = Alpha
- **x** plashrink_ivt = 1
- \mathbf{x} vbs = 1 V
- \mathbf{x} ams_release = 2018.3
- **x** model_version = 1.3.e
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \mathbf{x} vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
 - \star vbs = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - \mathbf{X} lvt dev = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
- Model lvtnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_sat = Vdd V
 - **x** ivt = 300e-9 A
 - **x** mc_runs = 1000
 - \mathbf{X} vstep_ivt = 0.005 V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V

Sep 21, 2018

- \times temp = 25 °C
- \times vgs_start = -0.5 V
- \mathbf{x} mc sens = 0
- \times vds lin = 0.05 V
- **x** sbenchlsf_release = Alpha
- **x** plashrink_ivt = 1
- \mathbf{x} vbs = 0 V
- \mathbf{x} ams_release = 2018.3
- **x** model version = 1.3.d
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- x vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
 - \star vbs = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - \mathbf{X} lvt dev = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0
- Model lvtpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_sat = Vdd V
 - **x** ivt = 70e-9 A

- **x** mc_runs = 1000
- \mathbf{X} vstep_ivt = 0.005 V
- **x** vds_off = vds_sat V
- \times vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \times vgs_start = -0.5 V
- \mathbf{x} mc_sens = 0
- \times vds_lin = 0.05 V
- **x** sbenchlsf_release = Alpha
- **✗** plashrink_ivt = 1
- \star vbs = 1 V
- \mathbf{x} ams_release = 2018.3
- **x** model_version = 1.3.d
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- X dlshrink ivt = 0
- ✓ Sweep Parameters
 - \star vbs = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - X lvt_dev = 0
 - **✗** gflag__noisedev__lvt__cmos028fdsoi = 0

