

Poison => # div per time Exponential >> time stream divs

E(x)=\frac{1}{\lambda} fers. , time b/w enerts -> PSF: f(x) = P([X=x] = \e^x , x≥0 · wanty time to let evert 2 = "rate" 2=4/lor E(x) = =0.25 P[x=2] = pexp(, Courteul=f) x>2 pexp(P[x1 < X < x27 = P[x] - P[x] Poisson: $X \sim PO1(x)$: $Pr[X=x] = e^{\lambda} \lambda^{x}/x!$ The hold Exponential: $X \sim Exp(\lambda)$: $Pr[X=x] = \lambda e^{-\lambda t}$ In P, dois(x,λ): parameter is λ =# events in t units of time dexp(x, rate): parameter is rate = 1/2 6 internet of time e.g. for x=4 divknas/hr \$ = 0.25h/division