Chapter 2

Square linear systems: Ax = b

2.5 Efficiency of Matrix Computations Comparing function sizes in a limit

- We want to compare how functions behave in limiting cases
- Let $f(n) = \tan(1/n)$, g(n) = 1/n and $h(n) = 1/n^2$
- How do these compare to each other as $n \to \infty$, or "large n"
- The limit is easy: $\lim_{n\to\infty} f(n) = \tan(0) = 0$
- What we want to know is how fast this function gets to the limit. We can do that by comparing f to g and h
- With g, $\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} \tan\left(\frac{1}{n}\right)/\left(\frac{1}{n}\right) = 1$
- We conclude that f and g are the same size...

FLOPs: floating point operations

Comparing functions: Order and asymptotic

- We say that "f is asymptotic to g" or $f \sim g$
- These two approach the limit at the same rate
- We can also say "f is order g" or f = O(g) when the limit is bounded
- With h, $\lim_{n\to\infty} \frac{f(n)}{h(n)} = \lim_{n\to\infty} \left[\tan\left(\frac{1}{n}\right)\right] / \left(\frac{1}{n^2}\right) = \lim_{n\to\infty} n = \infty$
- The limit doesn't exist, because h goes to zero faster than f
- So, f and h are not the same order.
- If we define $k(n) = \tan^2(\frac{1}{n})$, we find $k \sim h$

Comparing functions: Order and asymptotic

- The dominant part of a growing function can be identified using this approach
- Let $f(n) = a_1 n^2 + b_1 n + c_1$ and $g(n) = n^2$
- Then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} a_1 + b_1 n^{-1} + c_1 n^{-2} = a_1$
- We say that "f is asymptotic to n^2 " or $f \sim n^2$ Conly if $a_i = 1$
- We'll use this to evaluate operation counts and performance

$$f(n) = O(n^2)$$

$$\frac{1}{g(n)} - 1 \le \xi, \quad \forall n \ge N$$

ie $g(n)(1-\xi) \le f(n) \le g(n) (1+\xi)$
 $y = g(n)(1-\xi)$
 $y = g(n)(1-\xi)$
 $y = g(n)(1-\xi)$

Suppose
$$g(n) > 0$$
 for all n large enough.
Then $f \in O(g)$ [or $f = O(g)$] if
$$\exists N \text{ and } C > 0 \text{ s.t. } |f(n)| \leq Cg(n), \forall n \geq N$$

$$y = Cg(n) = Cg(n) = Cg(n)$$

$$y = f(n)$$

$$y =$$

$$\frac{49}{n} + 0(\frac{1}{n^3}) \quad but \quad \frac{1}{n^3} = 0(\frac{1}{n})$$

$$\frac{49}{3} + \frac{1}{3} + \frac{1}{3} + n + 1 = \frac{1}{3} + \frac{1}{3} + 0(\frac{1}{n^3})$$

Big-O notation is also used for
$$x \Rightarrow 0$$
:

 $f(x) = O(g(x))$ as $x \Rightarrow 0$ means that

 $\exists \ E > 0$ and $C > 0$ s.t. $|f(x)| \le Cg(x)$

for all $0 < x < E$.

 $\left[\begin{array}{c} \lim_{x \to 0} \frac{f(x)}{g(x)} \le C \end{array}\right]$

eg
$$sin(x) = O(x)$$
 as $x \to 0$
 $cos(x) = 1 - \frac{x^2}{2} + O(x^4)$ as $x \to 0$

Operation Counts: Example

- Matlab example multiplies a matrix and a vector, then adds a vector
- Count *,/,+,- as same operation
- Neglect storage
- Inner loop: Multiplying one row of A with x takes n * and n-1 +; adding vector adds 1 +
- Outer loop: adding that up for n rows gives final result of $2n^2$

```
n = 6;
A = magic(n);
  = ones(n,1);
  = zeros(n,1);
       y(i) = y(i) + A(i,j)*x(j);
end
```

Operation Counts: Matlab

- Let's test Matlab matrix-vector multiplication
- Time using stopwatch functions tic and toc
- Repeat to get more reliable timing

```
t_{-} = [];
n_{-} = 400:400:4000;
for n = n_{\perp}
    A = randn(n,n); \quad x = randn(n,1);
    tic
    for j = 1:10
        A*x:
    end
    t = toc;
    t_{-} = [t_{-}, t/10];
               [Example 2.5.3]
end
```

```
fprintf(' n time (sec)\n')
fprintf('
fprintf('\n\n')
```

```
n time (sec)
400 1.47e-04
800 7.49e-04
1200 1.80e-03
1600 1.88e-03
2000 2.69e-03
2400 4.14e-03
2800 5.29e-03
3200 4.81e-03
3600 7.75e-03
4000 7.40e-03
```

How fast is the time growing?

Operation Counts: Matlab

loglog(n_,t_,'.-')

- Matlab matrix-vector multiplication
- How to identify rate? Expecting power law: use log-log plot.

$$t = Cn^p$$
 \Longrightarrow $\log t = p(\log n) + (\log C).$

If we get a line, the slope is p

```
xlabel('size of matrix'), ylabel('time (sec)')
title('Timing of matrix-vector multiplications')

Timing of matrix-vector multiplications

10<sup>-1</sup>

0
10<sup>-2</sup>

10<sup>-4</sup>
10<sup>-2</sup>

size of matrix
```

Operation Counts: Matlab [Example 2.5.4]

- To see the slope one could plot a known function
- Try Cn^2 here because of theory
- Pick C to put line in a convenient place, or use t_1/n_1^2

```
hold on, loglog(n_{-}, t_{-}(1) * (n_{-}/n_{-}(1)) .^2, '--')
axis tight
legend('data','0(n^2)','location','southeast')
               Timing of matrix-vector multiplications
time (sec)
                          10<sup>3</sup>
                              size of matrix
```

- While some time is needed, no FLOPs here, so neglected
- Inside nested loops, one FLOP here
- Multiply part of row (j to n, for n-j+1 elements) and subtract from same part
- For operations inside both loops total is then

$$1 + 2(n - j + 1)$$

= 2(n - j) + 3

- Line 19 ignored
- Now total over loops

```
n = length(A);
J L = eye(n); % ones on diagonal
  % Gaussian elimination
   for j = 1:n-1
    for i = j+1:n
   L(i,j) = A(i,j) / A(j,j);
  A(i,j:n) = A(i,j:n) - L(i,j)*A(j,j:n);
    end
   end
  U = triu(A);
```

- Inner loop: i ranges from j + 1 to n (rows below diag)
- Outer loop: j ranges from 1 to n (all rows)

```
\sum_{j=1}^{n-1} \sum_{i=j+1}^{n} \left[ 2(n-j) + 3 \right]
```

Note how the index for the outer sum j is in the limit of the inner sum:

We must do the inner sum first to get all the j's into the summand

$$j+1$$
 $j+2$ ··· n
 1 2 ··· $n-j$

• Do the inner sum:

$$\sum_{j=1}^{n-1} \sum_{i=j+1}^{n} \left[2(n-j) + 3 \right] = \sum_{j=1}^{n-1} (n-j) \left[2(n-j) + 3 \right]$$

- Make it easier: change variable with k = n-j.
- When j=1, k=n-1; when j=n-1, k=1. Then we have

$$\sum_{k=1}^{n-1} k(2k+3)$$

• Distributing the sum, we have sum involving k and a sum involving k^2

 For most situations, we only care about the leading factor in the sum, and can use the results at right

$$\sum_{k=1}^{n-1} k(2k+3)$$

- One term is proportional to n^3 , from k^2
- The other is proportional to n^2 , from k
- Our sum then results in two parts:

$$\frac{2n^3}{3} + \frac{3n^2}{2} = \frac{2}{3}n^3 + O(n^2)$$

• For large n, the cubic term is dominant: LU factorization is $O(n^3)$, and more

$$\sum_{k=1}^{n} k \sim \frac{n^2}{2} = O(n^2), \text{ as } n \to \infty,$$

$$\sum_{k=1}^{n} k^2 \sim \frac{n^3}{3} = O(n^3), \text{ as } n \to \infty,$$

$$\sum_{k=1}^{n} k^{p} \sim \frac{n^{p+1}}{p+1} = O(n^{p+1}), \text{ as } n \to \infty,$$

• Our sum then results in two parts:

$$\frac{2n^3}{3} + \frac{3n^2}{2}$$

- For large n, the cubic term is dominant: LU factorization is $O(n^3)$
- More specifically, the FLOP count is asymptotic to

$$\frac{2n^3}{3}$$

How does this stack up against actual computation time?

- Let's test with Matlab
- Use functions tic and toc: wall clock time
- Increase matrix size n
- Repeat to get more reliable timing

```
t_ = [];
n_ = 200:100:2400;
for n = n_
    A = randn(n,n);
    tic
    for j = 1:6, [L,U] = lu(A); end
    t = toc;
    t_ = [t_, t/6];
end
```


How fast is the time growing with n?

Operation Counts: Matlab

```
loglog(n_,t_,'.-')
hold on, loglog(n_,t_(end)*(n_/n_(end)).^3,'--')
axis tight
xlabel('size of matrix'), ylabel('time (sec)')
title('Timing of LU factorization')
legend('lu','0(n^3)','location','southeast')
```


- Note that we picked a convenient constant
- Is this behaving like n^3 ?
- It's not perfect fit by any means

Operation Counts: Matlab

- Let's add an n²
 curve
- It looks like it is between n^2 and n^3
- For larger matrix size, seems closer to n³
- What is contributing to this?

- We assumed all that mattered was time to do one flop and that they were sequential
- CPUs can have multiple cores, and can have vectorized operations
- These can violate our assumptions
- Parallel computation is even more different: time to send data to different CPUs can even dominate the computation
- The details of the specific hardware matter
- If computational time is important to your project, test it!!!!

Fixing up issues with naïve GE

- To carry out GE, we needed to compute the multiplier L(i+1,i) = A(i+1,i)/A(i,i).
- What if A(i,i)=0?
- Switch rows so that there is nonzero element there: "row pivoting"
- Smart way to do that: move the largest element of A(i+1:n,i), the part of column i below the pivot, to the pivot.
- Consider this example...

Our previous example

```
A = [2 \ 0 \ 4 \ 3 \ ; \ -4 \ 5 \ -7 \ -10 \ ; \ 1 \ 15 \ 2 \ -4.5 \ ; \ -2 \ 0 \ 2 \ -13]
b = [4; 9; 29; 40]
    2.0000
                    0 4.0000 3.0000
   -4.0000 5.0000 -7.0000 -10.0000
    1.0000 15.0000 2.0000 -4.5000
   -2.0000
                    0 2.0000 -13.0000
    29
    40
[L,U] = lufact(A);
x = backsub( U, forwardsub(L,b) )
```

- No difficulties here
- But, after finishing with the first column, we had $A_{24}=0$
- What if that were at (2,2) location instead?

```
-3
1
4
-2
```

Our previous example

• We can use the following to change the order of the equations with $R_2 \leftrightarrow R_4$

```
A([2 4],:) = A([4 2],:); b([2 4]) = b([4 2]);
```

- Theoretically, the answer does not change, and the \ gets it right
- But, lufact fails!

```
[L,U] = lufact(A);
```


• Why? Zero pivot after first column finished

Fixing up issues with naïve GE

- The fact that we get a zero pivot can be fixed by switching rows, IF the column below the pivot is not all zero
- If the A(i:n,i)=0, then the columns 1:i are linearly dependent, and there is no unique solution
- This implies that the original matrix **A** is singular
- Theorem 2: If a pivot element and all the elements below it are zero, then the original matrix **A** is singular. In other words, if **A** is nonsingular, then Gaussian elimination with row pivoting will run to completion.
- This tells us that using row pivoting is well worth implementing

Our previous example

- How to swap rows?
- Use a "permutation matrix"
- If we take the identity matrix I that is 3x3, and switch the first two rows, we get

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• The effect of left multiplying by this *P* is to switch rows 1 and 2! In terms

$$\mathbf{PB} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 6 & 5 & 4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 5 & 4 \\ 2 & 3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

ullet We could also look at $oldsymbol{P}$ as $oldsymbol{P} = egin{bmatrix} oldsymbol{e}_2 & oldsymbol{e}_1 & oldsymbol{e}_3 \end{bmatrix}$

Permutations and row switches

- Permutation matrices have interesting properties
- Say left multiplying by P switches some rows; left multiplying by P^T will switch them back.
- This suggests that $P^T = P^{-1}$!! (Proof in exercises)
- Let's use them to keep track of row switches.
- For our example where we got the zero pivot, we had

$$\begin{bmatrix} 2 & 0 & 4 & 3 \\ 0 & 0 & 6 & -10 \\ 0 & 15 & 0 & -6 \\ 0 & 5 & 1 & -4 \end{bmatrix}$$

- We can switch rows 2 and 3 to keep going with GE
- Write this in matrix terms...

oermutation Matrices are orthogonal:

Row switches in LU

 After finishing with the first column and doing row switch, we have

$$PA_1 = P_1 L_{41} L_{31} L_{21} A$$

• Finishing up the factorization gives

$$U = L_{43}L_{42}L_{32}P_1L_{41}L_{31}L_{21}A$$

Working toward undoing the right side, we get

$$P_1^T L_{32}^{-1} L_{42}^{-1} L_{43}^{-1} U = L_{41} L_{31} L_{21} A$$

• Continuing, we get

$$L_{21}^{-1}L_{31}^{-1}L_{41}^{-1}P_1^TL_{32}^{-1}L_{42}^{-1}L_{43}^{-1}U = A$$

The way that we use this is to post facto create P so that

$$LU = PA$$

• Or $P^T L U = A$

Row switches in LU: MATLAB

- We will use MATLAB's builtin function lu
- The syntax is [L,U,P] = Iu(A)
- To use this, we first view the system at Pax=Pb
- Then use L and U as before, because row switching won't be needed now
- Thus, PA = LU and let Ux = z.
- Then, Lz = Pb
- Solving the system can then be done by: using forwardsub on Lz=Pb to get z, then using backsub on Ux=z to get x

$$L(Ux) = Pb$$
 t_z

Partial pivoting in MATLAB

- Solving systems using lu in MATLAB and our functions is then as follows:
- 1. Find L, U and P from [L,U,P] = lu(A);
- 2. Solve Lz=Pb using z = forwardsub(L,P*b);
- 3. Solve Ux=z using x = backsub(U,z).

- Using MATLAB's lu and \, one does:
- 1. Find L, U and P from [L,U,P] = lu(A);
- 2. Solve Lz=Pb using z = L(P*b);
- 3. Solve Ux=z using $x = U \setminus z$.

Example using LU

```
    Swapped row

A = [2043; -202-13; 1152-4.5; -45-7-10];
                                                           system at left
b = [4; 40; 29; 9];
                                                         • lu gives L,U,P
[L,U,P] = lu(A)

    In one line,

                                                           forwardsub, then
   1.0000
                                                           backsub
   -0.2500
            1.0000
   0.5000
          -0.1538
                      1.0000
   -0.5000
          0.1538
                      0.0833
                                1.0000
   -4.0000
             5.0000
                     -7.0000
                              -10.0000
            16.2500
                   0.2500 -7.0000
                                            x = backsub(U, forwardsub(L, P*b))
                      5.5385 -9.0769
                               -0.1667
                                               -3.0000
                                                1.0000
                                                4.0000
                                               -2.0000
          0
```

Example using PtLU

-3.0000 1.0000 4.0000 -2.0000

- Use only two output arguments
 - lu gives PtL and U
 - The backslash is better than forwardsub and can use the row-switched L (i.e, PtL)
 - Using the backslash can solve the two system sequence in one line

Example using only MATLAB's \

What about small pivots

- We have row swapped when the pivot was zero
- However, bad things happen when pivots are small ($\epsilon \ll 1$).
- The system at left has a small pivot at (1,1); do GE on the augmented matrix
- If we don't switch it out, then we get large multiplier and result at right
- If ε is small enough, then possible subtractive cancellation
- How to avoid?

$$\mathbf{A} = \begin{bmatrix} -\epsilon & 1 \\ 1 & -1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 - \epsilon \\ 0 \end{bmatrix}$$

$$\mathbf{A} \times \mathbf{b} = \begin{bmatrix} 1 - \epsilon \\ 0 \end{bmatrix}$$

$$\mathbf{A} \times \mathbf{b} = \begin{bmatrix} 1 - \epsilon \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -\epsilon & 1 & 1 - \epsilon \\ 0 & -1 + \epsilon^{-1} & \epsilon^{-1} - 1 \end{bmatrix} \Rightarrow \begin{aligned} x_2 &= 1 \\ x_1 &= \underbrace{(1 - \epsilon) - 1}_{-\epsilon} \end{aligned}$$

What about small pivots

- Now try with rows swapped
- This time, multiplier is small, and we get a very good answer

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 - \epsilon & 1 - \epsilon \end{bmatrix} \Rightarrow x_2 = 1$$

$$x_2 = 1$$

$$x_1 = \frac{0 - (-1)}{1}$$

 $\mathbf{A} = \begin{bmatrix} -\epsilon & 1 \\ 1 & -1 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 - \epsilon \\ 0 \end{bmatrix}$

- No loss of significance this way
- This suggests a strategy: When working with row i, find the biggest element in column i from the diagonal and below, and put that element in the pivot
- That is max A(i:n,i) (say row p) becomes the pivot $(R_p \leftrightarrow R_i)$
- Then, multipliers are never bigger than 1, so this avoids the large multiplier problem

2.7 Vector and Matrix Norms Vector Norms

- We need to be able to measure the size of a vector or matrix, so that we can order them
- We do this with norms, which can be thought of as functions that map $\mathbb{R}^n \mapsto \mathbb{R}$
- A norm of a vector ||v|| must have the following properties:
 - 1. $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$
 - 2. ||x|| = 0 if and only if x = 0
 - 3. $\|\alpha x\| = |\alpha| \|x\|$ for any $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$
 - 4. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$ (the triangle inequality)

Norms of vectors

• The general vector norm of interest is the *p*-norm:

$$||v||_p = \left[\sum_{i=0}^n |v_i|^p\right]^{1/p} \qquad l \leq p \leq \infty$$

• We are most interested in only three values of p: 1,2, or ∞

$$||x||_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}} = \sqrt{x^{T}x} \qquad ||x||_{2} = x^{T}x$$

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_{i}|$$

$$||x||_{1} = \sum_{i=1}^{n} |x_{i}|$$

Norms of vectors

• Examples:

$$u = \begin{bmatrix} 1 - 5 & 3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$$

- Shape of vector doesn't matter
- 1-norm uses p=1, so that $||u||_1 = |1| + |-5| + |3| = 9$, $||v||_1 = |-2| + |2| + 0 = 4$
- For the 2-norm

$$||u||_2 = (|1|^2 + |-5|^2 + |3|^2)^{1/2} = \sqrt{35},$$

 $||v||_2 = (|-2|^2 + |2|^2 + 0)^{1/2} = \sqrt{8} = 2\sqrt{2}$

Norms of vectors

• Examples:

$$u = [1 - 5 \ 3], \quad v = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$$

• ∞-norm now:

$$||u||_{\infty} = \max(|1|, |-5|, |3|) = 5$$

- Multiply by a scalar?
- Always ≥ 0? ✓
- Only 0 if **0** vector?

[Example 2.7.1]

11/1/00 = 2

Norms of vectors

$$||x||_{0} = ||x||_{0}$$

- What do unit vectors look like?
- Given $\mathbf{x} = [x_1 \ x_2]$, we can create the unit vector or direction $\mathbf{x}/\|\mathbf{x}\|$
- For $x = [x_1 \ x_2]$ and $||x||_2$, unit vectors have $||x||_2 = (|x_1|^2 + |x_2|^2)^{1/2} = 1$
- In the (x_1, x_2) -plane, the set of all unit vector is a circle
- What about ∞-norm?
- $||x||_{\infty} = \max(|x_1|, |x_2|) = 1$; what is it?

- Measuring the "size" of a matrix should be associated with a vector norm: Induced matrix norms
- For $x = [x_1 \ x_2]$ and $||x||_2$, the induced matrix norm is $||A||_2 = \max_{||x||_2 = 1} (||Ax||_2) = \max_{||x||_2 \neq 0} (||Ax||_2/||x||_2)$
- When we multiply x by a matrix, then it is stretched and pointed in a different direction, generally
- The magnitude of the biggest stretching is the norm of A

- We can multiply the set of unit vectors by A and see what the distortion does to all of those unit vectors
- The magnitude of the biggest stretching is the norm of A

```
subplot(1,2,2), plot(Ax(1,:),Ax(2,:)), axis equal
hold on, plot(twonorm*x(1,:),twonorm*x(2,:),'--')
title('Image of Ax, showing ||A||')
xlabel('x_1'), ylabel('x_2')
```


• The induced norms for the other matrices are a bit easier to compute

| Example 2.7.2 |

- The ∞-norm is the maximum row sum of the matrix A
- The 1-norm is the maximum column sum of A
- Mnemonic: think of the "direction" of 1 or ∞
- Example: $A = \begin{bmatrix} 1 & 3 \\ -5 & 8 \end{bmatrix}$
- $||A||_1 = \max(1+5.3+8) = 11$
- $||A||_{\infty} = \max(1+3.5+8) = 13$

- We need some properties of matrix norms for future use.
- One can prove the following for any of the norms we have used.

For any $n \times n$ matrix **A** and induced matrix norm,

$$\|\mathbf{A}\mathbf{x}\| \le \|\mathbf{A}\| \cdot \|\mathbf{x}\|,$$
 for any $\mathbf{x} \in \mathbb{R}^n$,
 $\|\mathbf{A}\mathbf{B}\| \le \|\mathbf{A}\| \cdot \|\mathbf{B}\|,$ for any $\mathbf{B} \in \mathbb{R}^{n \times n}$,
 $\|\mathbf{A}^k\| \le \|\mathbf{A}\|^k$, for any integer $k \ge 0$.

2.8 Conditioning of Linear Systems Stability analysis of solving systems

- We want to solve Ax = b
- We want to analyze how robust our answers are to perturbations of A and b
- To measure what happens to the sizes of vectors and matrices, use norms
- We know that $||b|| = ||Ax|| \le ||A|| \, ||x||$
- We also know that $x = A^{-1}b$, now take norms
- $||x|| = ||A^{-1}b|| \le ||A^{-1}|| ||b||$
- If we change b to b+d, then the solution changes somewhat to x+h, say, such that A(x+h)=b+d
- But, using the original equation Ax = b, the first term on each side cancels

- We then have Ah = d
- Then $h = A^{-1}d$, now take norms
- $||h|| = ||A^{-1}d|| \le ||A^{-1}|| ||d||$
- Let's now look at the relative change in the solution ||h||/||x|| compared to the relative change in the right hand side ||d||/||b||
- Taking the ratio of those two,
- The last quantity is the condition number $\kappa(A) = ||A^{-1}|| ||A||$

ose two,
$$\frac{\frac{\|h\|}{\|x\|}}{\frac{\|d\|}{\|b\|}} = \frac{\|h\| \cdot \|b\|}{\|d\| \cdot \|x\|} \le \frac{\left(\|A^{-1}\| \|d\|\right) \left(\|A\| \|x\|\right)}{\|d\| \|x\|} = \|A^{-1}\| \|A\|$$

The condition number $\kappa(A) = ||A^{-1}|| ||A||$ thus tells us the worst case magnification of the relative change in $\frac{\|h\|\cdot\|b\|}{\|d\|\cdot\|x\|} \leq \frac{\left(\|A^{-1}\|\,\|d\|\right)\left(\|A\|\,\|x\|\right)}{\|d\|\,\|x\|} = \|A^{-1}\|\,\|A\|$ the answer compared to the relative change in the right hand side

The condition number depends on the matrix A and the norm, and it measures the sensitivity of its solutions to perturbations

- What if we perturb A and solve Ax = b?
- If we change A to A + E, then the solution changes somewhat to x + h, say, such that (A + E)(x + h) = b
- Expand again to get Ax + Ex + Ah + Eh = b
- Then use Ax = b, and neglect Eh because it is the product of two small terms; then one has Ex + Ah = 0
- Solve for **h** and use norms:

$$h = -A^{-1}Ex$$

$$\|h\| \le \|A^{-1}\| \|E\| \|x\|$$

Now compute relative changes again...

The condition number $\kappa(A) = ||A^{-1}|| ||A||$ thus tells us the worst case magnification of the relative change in the answer compared to the relative change in the matrix A

The condition number measures the sensitivity of its solutions to perturbations in the matrix as well

Condition number

 In summary, the worst case changes in the answer from perturbations to the coefficients is given by the condition number:

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$$
$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \kappa(\mathbf{A}) \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|}$$

 Note that the best we can get is a condition number of unity:

$$1 = \|\mathbf{I}\| = \|\mathbf{A}\mathbf{A}^{-1}\| \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\| = \kappa(\mathbf{A})$$

Condition number: example

• The $n \times n$ Hilbert matrix has elements

$$H_{ij} = 1/(i+j-1)$$

It's a builtin function in MATLAB:

```
>> hilb(5)
ans =
    1.0000
             0.5000
                       0.3333
                                0.2500
                                          0.2000
             0.3333
                      0.2500
                                0.2000
                                          0.1667
    0.5000
    0.3333
             0.2500
                      0.2000
                               0.1667
                                          0.1429
                      0.1667
                               0.1429
                                          0.1250
    0.2500
             0.2000
             0.1667
                       0.1429
                                0.1250
   0.2000
                                          0.1111
```

• It is not singular, but conditioning?

```
>> det(hilb(5))
ans =
    3.7493e-12
>> cond(hilb(5))
ans =
    4.7661e+05
```

Condition number: example

- Explore the Hilbert matrix for solving sytems
- Increase n gets even worse conditioning fast.
- The "gallery" has a collection of commonly used matrices in numerical methods and analysis.
- Try "help gallery" at prompt or search for gallery in help browser
- You can find other ill-conditioned, non-singular matrices there: e.g., dorr,

Residuals and ill-conditioned systems

- What happens to the residual r = b Ax?
- For the computed solution (tilde) we have $r = b A\tilde{x}$.
- Manipulate into the useful form $\mathbf{r} = \mathbf{A}(\mathbf{A}^{-1}\mathbf{b} \tilde{\mathbf{x}}) = \mathbf{A}(\mathbf{x} \tilde{\mathbf{x}}),$
- Then use solve for change in solution and use norms: $\|\mathbf{x} \tilde{\mathbf{x}}\| \le \|\mathbf{A}^{-1}\| \|\mathbf{r}\|$.
- Now compute relative changes again: $\frac{\|x-\tilde{x}\|}{\|x\|} \le \kappa(A) \frac{\|r\|}{\|b\|}$
- We can expect *small residual*, but... the *change in the answer may not be small* for ill-conditioned systems!!!
- Commercial FEM, e.g., tells you residuals: use with care!!!

2.9) Exploiting Matrix Structure Special matrices

- We can take advantage of the structure of some kinds of matrices to create faster algorithms or get additional information.
- Possibilities include:
 - Triangular matrices: Been there, reduces solves for n unknowns from $O(n^3)$ to $O(n^2)$
 - Banded matrices: only certain diagonals have non-zero elements
 - Sparse matrices: only a (preferably small) minority of elements are nonzero
 - Symmetric matrices
 - Symmetric positive definite matrices

- A tridiagonal matrix has three nonzero diagonals: e.g.,
- A = gallery('tridiag',c,d,e)
- This matrix would have vectors c in the first subdiagonal, d on the main diagonal, and e on the first superdiagonal
- The bandwidth is three. How to compute?
- Upper bandwidth is p, with $A_{ij} = 0$ if j i > p
- Lower bandwidth is q, with $A_{ij} = 0$ if i j > q
- Total bandwidth is p+q-1
- For this example, we'd get 3, with p=2 and q=2

Consider

```
>> triu(tril(rand(7),1),-3)
ans =
   0.4465 0.3725
   0.6463 0.5932
                   0.4067
   0.5212 0.8726 0.6669
                           0.9880
   0.3723 0.9335 0.9337 0.8641
                                    0.5583
           0.6685 0.8110 0.3889 0.5989
                                            0.8825
               0
                   0.4845 0.4547 0.1489
                                            0.2850
                                                    0.2834
               0
                            0.2467 0.8997
                                            0.6732
                                                    0.8962
```

- Upper bandwidth is p = 1, lower bandwidth is q = 3
- Total bandwidth is p + q + 1 = 5

- We can visualize nonzero elements with sparsity plot from spy(triu(tril(rand(7),1,-3)
- Dots are shown where the nonzero elements were
- The total number of nonzeros is at the bottom
- Handy to see where nonzeros are in large matrices

- How do we get diagonals?
- How can we build banded matrices
- What happens with LU factorization?
- Start with example at right
- We can extract one diagonal at a time with the diag command

diag_main = diag(A,0)'

diag_plusone = diag(A,1)'

diag_minusone = diag(A,-1)'

- How do we get diagonals?
- How can we build banded matrices?
- What happens with LU factorization?
- Start with example at right
- We can extract one diagonal at a time with the diag command
- We can also create the matrix with the diag command:

```
A =

2 -1 0 0 0 0

4 2 -1 0 0 0

0 3 0 -1 0 0

0 0 2 2 -1 0

0 0 0 1 1 1 -1

0 0 0 0 0 2
```

```
>> c = [4 3 2 1 0];
>> d = [2 2 0 2 1 2];
>> e = [-1 -1 -1 -1 -1];
>> B = diag(c,-1)+diag(d,0)+diag(e,1);
>> norm(A-B,2)
ans =
    0
```

- What happens with LU factorization?
- Modify A with extra diag
- Do LU factorization without partial pivoting
- The banded structure is preserved:

```
A = A + diag([5 8 6 7], 2)
```



```
[L,U] = lufact(A);
subplot(1,2,1), spy(L), title('L')
subplot(1,2,2), spy(U), title('U')
```


- What happens with LU factorization?
- Modify A with extra diag
- Now do LU factorization with partial pivoting
- The banded structure is not preserved:
- We can improve the computing time by telling matlab that the matrices may be sparse (mostly zeros)

 [Example 2.9.1]

```
A = A + diag([5 8 6 7], 2)
```

```
A =

2  -1  5  0  0  0

4  2  -1  8  0  0

0  3  0  -1  6  0

0  0  2  2  -1  7

0  0  0  0  1  1  -1

0  0  0  0  0  2
```

```
[L,U,P] = lu(A);
subplot(1,2,1), spy(L), title('L')
subplot(1,2,2), spy(U), title('U')
```


Consider tridiagonal matrices

```
A = gallery('tridiag',n)
```

- This creates a $n \times n$ tridiagonal matrix with 2 on the main diagonal and -1 on the sub- and super-diagonals
- But, only the non-zeros are stored (let n=10 and try it!) Thus, only 28 numbers are stored for this element that would have 100 elements: 28%
- If n = 100, then nz=298, out of 10^4 possible elements: 2.98% nonzero
- In this case, 3n 2 elements nonzero out of n^2 possible; more sparse an n increases

```
>> A = gallery('tridiag',10);
>> spy(A)
```


 Computations can be sped up significantly if we only work with the nonzeros (need to code it)

```
 \begin{array}{lll} n &=& 8000; \\ A &=& diag(1:n) + diag(n-1:-1:1,1) + diag(ones(n-1,1),-1); \\ \\ tic, & [L,U] &=& lu(A); \ toc \\ \\ Elapsed time is 5.850532 seconds. \\ \\ tic, & [L,U] &=& lu(sparse(A)); \ toc \\ \\ Elapsed time is 0.182472 seconds. \\ \end{array}
```

• If A is sparse, full(A) will make it a full matrix

Consider tridiagonal matrices

- This creates a large sparse matrix; if n=20, the matrix is 1281×1281 with
- But, things can go wrong: LU factorization leads to fill-in
- In this example, about 1.17% nonzeros in A, but look how many nonzeros after LU...

- The commands:
- Each factor L (left) and U (right) has about 6.6e4 nonzeros now! (10x more nonzeros)

```
200
400
600
800
1000
1200
                                          1000
           200
                   400
                           600
                                   800
                                                  1200
                         nz = 66461
```

```
>> A=gallery('wathen',20,20);
>> spy(A)
>> [L,U]=lu(A);
>> spy(L)
>> spy(U)
```


Symmetric matrices

- If $A^T = A$, then A is symmetric
- We can modify the LU factorization:

$$A = LU = LIU = LDD^{-1}U$$

- D is diagonal, with the elements that would have been in
 U from standard factorization
- Now it turns out that $\boldsymbol{D}^{-1}\boldsymbol{U} = \boldsymbol{L}^T$
- Then $A = LDL^T$

Symmetric positive definite matrices

- If $A^T = A$, and
- if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$ and $x \ne 0$,
- Then A is positive definite
- We can modify the LU factorization again to the Cholesky factorization:

$$A = R^T R$$
, $R = D^{1/2} L^T$

- R has all positive entries on the diagonal
- The MATLAB function chol will compute the Cholesky factorization

Symmetric positive definite matrices

• Start with A=magic (5);

```
B = A' * A
```

```
B =
         1055
                        865
                                       695
                                                     770
                                                                   840
          865
                       1105
                                       815
                                                     670
                                                                   770
          695
                        815
                                     1205
                                                     815
                                                                   695
          770
                        670
                                       815
                                                    1105
                                                                   865
          840
                        770
                                       695
                                                     865
                                                                  1055
```

```
R = chol(B)
```

```
R =
   32.4808
             26.6311
                       21.3973
                                 23.7063
                                           25.8615
             19.8943
                       12.3234
                                 1.9439
                                          4.0856
                                         3.7415
                       24.3985
                                 11.6316
                                            9.9739
                                 20.0982
                                            16.0005
```



```
norm( R'*R - B )
```

```
ans = 0
```

Symmetric positive definite matrices

- If $A^T = A$, and
- if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$ and $x \ne 0$,
- Then A is positive definite
- We can modify the LU factorization again to the Cholesky factorization:

$$A = R^T R$$
, $R = D^{1/2} L^T$

- R has all positive entries on the diagonal
- The MATLAB function chol will compute the Cholesky factorization