Let X be a manifold and $P \to X$ a principal G bundle.

Definition 1. A connection on P, A, is irreducible if for some $x \in X$, the holonomy group of A, H_A , lies in a proper subgroup of G. The isotropy group of A is defined to be

$$\Gamma_A = \{ u \in \mathcal{G} | u(A) = A \} \supseteq Z(G)$$

Lemma 2. If X is connected Γ_A is isomorphic to the centraliser of H_A in G.

Proof. Pick a point $x \in X$. Then an element $u \in \Gamma_A$ defines an element $u(x) \in G$ via evaluation, that is that the fibre of P at x is transformed by right multiplication by u(x) under u. If $\gamma: S^1 \to X$ is a loop based at x, and $g_{\gamma} \in G$ is the holonomy around gamma, then we necessarily have $g_{\gamma}u(x) = u(x)g_{\gamma}$, since applying the gauge transformation and then calculating the holonomy must be the same as calculating the holonomy and then applying the gauge transformation. Now suppose $h \in C(H_A)$. We want to find a gauge transformation such that u(A) = A and u(x) = h. h lies in the identity component of G, so we may assume for simplicity that $h = \exp(\xi)$, for an ξ in the lie algebra of H_A . Given a trivialisation of P about x, we can then define u(y) to be given by $\exp(\xi(y))$ for y near x, where $d\xi = 0$.

Corollary 3. The isotropy group Γ_A is closed.

Proof. The centraliser of any set is closed.

Definition 4. By \mathscr{A} we denote the affine space of all connections on P, and by \mathscr{A}^* we denote the irreducible connections. The gauge group, \mathscr{G} , acts on \mathscr{A} , and we denote the quotients

П

$$\mathscr{B} = \mathscr{A}/\mathscr{G}, \ \mathscr{B}^* = \mathscr{A}^*/\mathscr{G}.$$

A problem with these spaces is that the action of $\mathcal G$ is not free. To get around this we can consider framed connections.

Definition 5. Let $x_0 \in X$ be a base point. Then a framed connection is a pair (A, φ) , where A is a connection and $\varphi : G \to P_{x_0}$ is an isomorphism of G spaces.

Lemma 6. If A is a unitary connection, then a framed connection (A, φ) is equivalent to A with a choice of orthonormal basis at x_0 .

Proof. A choice of framing at x_0 of the unitary vector bundle specifies a point in the fibre of P. If we define $\varphi(e)$ to be this point, then this uniquely defines φ . Going the other way, we can define the frame to be $\varphi(e)$.

Lemma 7. The group $\mathscr G$ acts freely on $\tilde{\mathscr A}=\mathscr A\times \operatorname{Hom}(G,P_{x_0})$

Proof. The isotropy subgroup Γ_A acts on $\operatorname{Hom}(G, P_{x_0})$ by right multiplication. This action is free.

Corollary 8. Under the Sobolev L^2_l completions of \mathscr{A} , and L^2_{l-1} of \mathscr{G} , the space

$$ilde{\mathscr{B}} = ilde{\mathscr{A}}/\mathscr{G}$$

is a Banach Manifold.

Alternatively, one can view $\tilde{\mathscr{B}}$ as the quotient of $\tilde{\mathscr{A}}$ by the based gauge group

$$\mathscr{G}_0 = \{ u \in \mathscr{G} \mid u(x_0) = \mathrm{Id} \}.$$

Definition 9. Let $\tilde{\mathscr{B}}^*$ be the space of framed irreducible connections. Then we can consider $\tilde{\mathscr{B}}^*$ as a principal G/Z(G) bundle

$$\tilde{\mathscr{B}}^* \to \mathscr{B}^*$$
.