# From materials to vehicle – what, why, and how? → From vehicle to materials

Helena Berg



#### Outline

- 1. Electric vehicles and requirements
- 2. Battery packs for vehicles
- 3. Cell selection
- 4. Material requirements
- 5. Li-ion materials
- 6. From material to cell
- 7. From research to production



#### 1. Electric vehicles and requirements



#### Types of electric vehicles (xEV)

- Start/Stop
- Mild hybrids (HEV)
- Strong (or full) hybrids (HEV)
- Plug-in hybrids (PHEV)
- Full electric (EV, BEV, PEV)
  - PEV can also be FCEV or FCV









#### Vehicle requirements

- Electric driving range
- Vehicle weight
- Roll and drag resistance
- Packaging limitations
- Operational conditions incl. auxillary loads
- Performance (e.g., BMW's 'fun to drive')

- Climate/Geographical constrains
- Durability
- Cost
- Service needs
- Charging



#### 2. Battery packs for vehicles



#### A battery pack includes....

- Cells
  - Often in modules
  - Connected in Series (and Parallel) €
- Electronics
  - Supervision and Balancing
- Wires for current distribution (often Cu)
- Cooling
  - Liquid or Air; Active or Passive
- Control unit
- Fuses
- Disconnect unit
- Connectors
- Housing and safety protection







Cells 50-75 % of pack weight and ca 75 % of pack cost

#### Battery control

- State of Charge (SOC) minutes
- State of Power (SOP) seconds
- State of Health (SOH) months



#### State of Charge





#### State of Power vs. State of Charge



#### Current effects



#### Control accuracy



#### 3. Cell selection



Type of vehicle; Degree of electrification; Electric driving range; Vehicle weight; Roll and drag resistance; Usage profile; Auxillary loads; etc. **Energy and Power Requirements** Packageing and climate constraints Battery weight & volume; Voltage and SOC range; Operational conditions; Durability; Cost; Service needs; etc.

### Charging



#### 4. Material requirements



#### Energy



#### Material properties needed

- High capacity (mAh/g) → high energy density
- Low impedance → good power
- High ion conductivity -> fast-charging and accelerations
- Stable materials within wide potential and temperature ranges
- Number of charges → long durability
- Sustainable materials and production processes → low cost?
- Stable in air → handling and cell production
- Low toxicity → handling
- Low-cost materials → low-cost cells?



#### 5. Li-ion materials





#### Anodes: carbons most commonly used



#### Anodes: comparisons



# Cathodes: transition metal oxides/phosphates



#### Cathods: comparisons

| Material | Energy | Power | Safety | Cycling stability | Cost (per<br>Ah) |
|----------|--------|-------|--------|-------------------|------------------|
| LCO      |        |       |        |                   |                  |
| NCA      |        |       |        |                   |                  |
| NMC      |        |       |        |                   |                  |
| LMO      |        |       |        |                   |                  |
| LFP      |        |       |        |                   |                  |
| LMO-NMC  |        |       |        |                   |                  |

#### 6. From material to cell



#### Cell production



#### Electrode design



Electronically conducting particles

**Active material** 

Binder

Thickness:  $\sim 50-250 \mu m$ 

Loading: ~5-50 mg/cm<sup>2</sup>

Porosity: ~40%

#### Cell format



#### Cell format





#### Energy or power optimised cells





- Higher loading per cm<sup>2</sup>
- Low currents to enable mass transfer, solid state diffusion, ...

- Smaller particles
- Thicker current collectors to enable high currents (temperature issues if too thin)

#### Ragone plot



#### **Energy & Power**

- How to increase Energy?
  - Increase the cell voltage
  - Use a cathode and anode materials with higher reversible capacity
  - Use a concept enabling higher cell voltages
  - Use concepts involving multivalent charge carriers

- How to increase <u>Power</u>?
  - Active materials with high Li ion diffusion
  - Electrode design thickness, porosity, conductivity, particle size
  - Minimise resistance in materials, electrodes, cell and battery
  - Select active materials enabling fast ion diffusion

→ All related to material properties

## 7. From research to production











- Production processes
  - Energy usage, etc.
- > Minimize inactive materials
- > Optimize specific properties
  - Optimize material properties
- > Application-adapted cells

#### Further reading...



# Thank you...

