

$$\vec{q} = \begin{bmatrix} r \\ c \end{bmatrix} = \begin{bmatrix} \frac{\hat{y}}{s_y} + c_y \\ \frac{\hat{u}}{s_x} + c_x \end{bmatrix}$$

Cx, Cy: Image Size /2
principal point of maje

tilted image coord.

Sx, Sy: scaling factors, pixel sal

> LINE SLAN

Camera moving in y+ with constant velocity

- · V: meters/ scanhol
- · assumed object is fixed and can moving if not, sign of V changes and that's it
- · transformations
 from world to com
 coords based on the
 pore of first mase
 only!
- · equations m solution Graide, but are not necessary for using operators...

CAMERA PARAMETERS Determined during CALI-

* Default (always newsay) BRA:
Tron!!

(ameraTyPe, ImageWidth, ImageHeigth

ImagePlaneDist > ara/line)

- * Internal cam. parameters

 f, Magnification (m),

 Kappa (K),

 K1, K2, K3, P1, P2,

 Z, E1

 Sx, Sy, Cx, Cy
- * External cam. parameters

 Port of cam on world (usually defined with first cal plate pore)

 tx, ty, tz, x, p, x: "Itw

 Note: depending on cam type, lens
 type, tilt, model, etc. a subset
 15 taken

(amera porrameter subsets (example)
'area-scan_division'
fik, Sx, Sy, Cx, Cy, ImW, ImH
'area_scan-polynomial'

- telecentar -

'hne-sau'] -> ho telecentriz lens supported for cabbrature