

Computer Vision (Kris Kitani)

**Carnegie Mellon University** 

### Filters we have learned so far ...

The 'Box' filter

| 1 | I | I | I |
|---|---|---|---|
| 9 | I | I | I |
| J | I | I | I |

Gaussian filter

Sobel filter

Laplace filter

| 1      | 0 | I  | 0 |
|--------|---|----|---|
| _<br>Q | I | -4 | I |
| O      | 0 | Ι  | 0 |

filtering  $h = g \otimes f$ (cross-correlation)

$$h = g \otimes f$$

output filter image 
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 What's the difference?

convolution  $h = g \star f$ 

$$h[m, n] = \sum_{k,j} g[k, l] f[m - k, n - l]$$

filtering  $h = g \otimes f$ (cross-correlation)

$$h = g \otimes f$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 filter flipped vertically and horizontally 
$$h[m,n] = \sum_{l} g[k,l] f[m-k,n-l]$$

convolution  $h = g \star f$ 

$$h[m, n] = \sum_{k,j} g[k, l] f[m - k, n - l]$$

**filtering**  $h = g \otimes f$  cross-correlation) (cross-correlation)

$$h = g \otimes f$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 filter flipped vertically and horizontally

convolution  $h = g \star f$ 

$$h = q \star q$$

$$h[m, n] = \sum_{k,j} g[k, l] f[m - k, n - l]$$

Suppose g is a Gaussian filter. How does convolution differ from filtering?

Recall...

#### Commutative

"can move stuff around"

$$a \star b = b \star a$$
.

#### **Associative**

"can regroup things"

$$(((a \star b_1) \star b_2) \star b_3) = a \star (b_1 \star b_2 \star b_3)$$

#### Distributes over addition

"can take things through parenthesis"

$$a \star (b+c) = (a \star b) + (a \star c)$$

#### Scalars factor out

$$\lambda a \star b = a \star \lambda b = \lambda (a \star b)$$

Derivative Theorem of Convolution  $\frac{\partial}{\partial x}(h\star f)=(\frac{\partial}{\partial x}h)\star f$ 

#### Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$



### Recall ...

