R para Data Science

Solução dos exercícios

To Shao Yong (邵雍), for sharing a secret joy with simple words;

月到天心处,风来水面时。 一般清意味,料得少人知。

and

To Hongzhi Zhengjue (宏智禅师), for sharing the peace of an ending life with simple words.

梦幻空华,六十七年;白鸟淹没,秋水连天。

Conteúdo

W	Welcome							vii
W	Welcome							vii
Pr	Prefácio							ix
Pr	Prefácio							ix
I	I Explorar							1
1	I Visualização de dados	com ggplot2						3
	1.1 Introdução					 		3
	1.2 Primeiros passos					 		3
	1.3 Mapeamentos est	téticos				 		8
	1.4 Problemas comu	ns				 		15
	1.5 Facetas					 		15
	1.6 Objetos geométri	cos				 		21
	1.7 Transformações e	estatísticas				 		27
	1.8 Ajustes de posiçã	0				 		27
	1.9 Sistemas de coord	denadas				 		28
	1.10 A gramática em c	amadas de gráficos				 		28
2	2 Fluxo de trabalho: o bá	sico						29
3	Transformação de dados com _{dplyr}					31		
4	Fluxo de trabalho: scripts 3					33		

iv		Contents
5	Análise exploratória de dados	35
6	Fluxo de trabalho: projetos	37
II	Wrangle	39
7	Tibbles com tibble	41
8	Importando dados com readr	43
9	Arrumando dados com tidyr	45
10	Dados relacionais com dplyr	47
11	Strings com stringr	49
12	Fatores com forcats	51
13	Datas e horas com lubridate	53
III	Programar	55
14	Pipes com magrittr	57
15	Funções	59
16	Vetores	61
17	Iteração com purrr	63
18	(PART) Modelar	65
19	O básico de modelos com modelr	67
20	Construção de modelos	69
21	Muitos modelos com purrr e broom	71
IV	Comunicar	73

Contents	v
22 R Markdown	75
23 Gráficos para comunicação com ggplot2	77
24 Formatos R Markdown	79
25 Fluxo de trabalho de R Markdown	81

Welcome

Prefácio

Esta página serviu para estudo e prática com o pacote R Bookdown e contém a solução encontrada por mim para os exercícios propostos no livro R para Data Sciente, de Hadley Wickham e Garret Grolemund, publicado no Brasil em 2019 pela Alta Books Editora [Wickham and Grolemund, 2019].

Por se tratar de um produto construído durante o processo de aprendizagem, o conteúdo pode conter erros, tanto no texto em si, como na lógica utilizada para solução dos exercícios.

Dúvidas ou sugestões de melhoria podem ser encaminhadas para o e-mail jeidsan. pereira@gmail.com¹.

¹mailto:jeidsan.pereira@gmail.com

Parte I

Explorar

1

Visualização de dados com ggplot2

Para a correta execução dos códigos desse capítulo, utilizaremos algumas configurações específicas.

Inicialmente, precisaremos carregar o pacote nycflights13, que contém os dados de todos os voos da cidade de Nova York em 2013.

```
library(nycflights13)
library(gridExtra)

##
## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':
##
## combine
```

1.1 Introdução

Não temos exercícios nesta seção.

1.2 Primeiros passos

Exercício 1.2.1

Execute ggplot(data=mpg);. O que você vê?

Solução.

```
ggplot(data=mpg) +
  tema
```

É exibido um quadro em branco. Este quadro contém o sistema de coordenadas sobre o qual serão desenhados os grpaficos que pretendemos exibir.

Exercício 1.2.2

Quantas linhas existem em mtcars? Quantas colunas? Solução.

```
dim(mtcars)
## [1] 32 11
```

R.: Existem 32 linhas e 11 colunas.

Exercício 1.2.3

O que a variável dry descreve?

Solução. Executamos o comando ?mpg no console no R e a página de ajuda foi aberta. Nela encontramos o significado de cada variável do conjunto de dados.

A variável descreve o tipo de tração dos carros analisados, onde f significa tração dianteira, r significa tração traseira e 4 significa tração nas quatro rodas.

Exercício 1.2.4

Faça um gráfico de dispersão de hwy *versus* cyl. *Solução*.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = hwy, y = cyl)) +
  tema
```


Exercício 1.2.5

O que acontece se você fizer um gráfico de dispersão de class $\it versus \, drv$? Por que esse gráfico não é útil?

Solução.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = drv, y = class)) +
  tema
```


Apesar de serem exibidos dados no gráfico, nenhuma informação substancial é extraída, uma vez que o tipo de tração não está (a princípio) relacionado com a categoria do carro. Outro fator que torno o gráfico pouco informativo é que há, por exemplo, diversas SUVs com tração nas 4 rodas, contudo os valores ficam sobrepostos no gráfico, não dando dimensão do quanto de dados temos.

Abaixo seguem duas opções de como trazer mais informação ao gráfico:

• a primeira opção adiciona um ruído aos dados (position = jitter ou geom_jitter()) de modo que não haja sobreposição;

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = drv, y = class), position = "jitter") +
   tema
```


• a segunda opção, bem mais avançada, adiciona uma estética de size considerando a quantidade de registros.

```
mpg %>%
  group_by(class, drv) %>%
  summarize(count = n()) %>%
  ggplot(mapping = aes(x = drv, y = class, size = count)) +
      geom_point() +
      tema
```

```
## `summarise()` has grouped output by 'class'. You can override using the ## `.groups` argument.
```


1.3 Mapeamentos estéticos

Exercício 1.3.1

O que há de errado com este código? Por que os pontos não estão azuis?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, color = "blue")) +
  tema
```


Solução. Ao invés de atribuir uma cor aos elementos de geom_point, o atributo color foi passado como uma estética. O gráfico deveria ser construído da seguinte maneira:

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy), color = "blue") +
  tema
```


Exercício 1.3.2

Quais variáveis em $_{mpg}$ são categóricas? Quais variáveis são contínuas? Como você pode ver essa informação quando executa $_{mpg}$?

Solução. Usando ?mpg vemos que as variáveis categóricas são: manufacturer, model, trans, drv, fl e class. As variáveis contínuas são: displ, cty, hwy.

Exercício 1.3.3

Mapeie uma variável contínua para color, size e shape. Como essas estéticas se comportam de maneira diferente para variáveis categóricas e contínuas? *Solução*.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ)) +
   tema
```



```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, size = displ)) +
   tema
```



```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, shape = displ)) +
    tema

## Error in `geom_point()`:
## ! Problem while computing aesthetics.
## i Error occurred in the 1st layer.
## Caused by error in `scale_f()`:
## ! A continuous variable cannot be mapped to the shape aesthetic
## i choose a different aesthetic or use `scale_shape_binned()`
```

Quando possível, a biblioteca *ggplot* apesenta a estética em um gradiente, como em color e size. Porém, nem sempre isso é possível, como vemos em shape, que só pode ser utilizada com variáveis discretas ou categóricas.

Exercício 1.3.4

O que acontece se você mapear a mesma variável a várias estéticas? *Solução*.

```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, size = class, color = class, shape = class)) +
    tema

## Warning: Using size for a discrete variable is not advised.

## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.

## Warning: Removed 62 rows containing missing values (`geom_point()`).
```


Os valores da variável serão representados de modo a atender todas as estéticas simultaneamente, por exemplo, no gráfico acima é dada uma cor, um formato e um tamanho específicos para cada classe de veículo. Os veículos de dois lugares são exibidos como um disco rosa pequeno.

Exercício 1.3.5

O que a estética stroke faz? com que formas ela trabalha? Solução.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, stroke = displ)) +
  tema
```


A estética stroke controla a espessura do ponto ou elemento a ser representado.

Exercício 1.3.6

O que acontece se você mapear uma estética a algo diferente de um nome de variável, como aes(color = displ < 5)?

Solução.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ < 5)) +
   tema</pre>
```

15

A expressão é avaliada para cada um dos valores da variável e o resultado é utilizado para plotagem da estética no gráfico.

1.4 Problemas comuns

Não temos exercícios nessa seção.

1.5 Facetas

Exercício 1.5.1

O que acontece se você criar facetas em uma variável contínua? *Solução*.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy)) +
   facet_wrap(. ~ displ) +
   tema
```


O ggplot se encarrega de dividir o conjunto em classes e toma o ponto médio de cada classe para realizar a quebra em facetas.

Exercício 1.5.2

O que significam as célula em branco em um gráfico com facet_grid(drv ~ cyl)? Como elas se relacionam a este gráfico?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ cyl) +
  tema
```

1.5 Facetas

Solução. Significa que para aquela combinação de variáveis, não há nenhum valor observado. Por exemplo, não há nenhum veículo com 5 cilindros e tração nas quatro rodas.

Exercício 1.5.3

Que gráficos o código a seguir faz? O que . faz?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ .) +
  tema
```



```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(. ~ cyl) +
  tema
```

1.5 Facetas

 $Solu\~{q}\~{a}$ o. São gerados os gráficos de dispersão segregados pelas variáveis drv e cyl, respectivamente. O . indica que não queremos considerar nenhuma segrega $\~{q}$ ão naquela dimensão do grid (linha ou coluna).

Exercício 1.5.4

Pegue o primeiro gráfico em facetas dessa seção.

```
ggplot(data = mpg) +
   geom_point(data = transform(mpg, class = NULL), mapping = aes(x = displ, y = hwy), color = "gray80") +
   geom_point(mapping = aes(x = displ, y = hwy)) +
   facet_wrap(~ class, nrow = 2) +
   tema
```


Quais são as vantagens de usar facetas, em vez de estética de cor? Quais são as desvantagens? Como o equilíbrio poderia mudar se você tivesse um conjunto de dados maior?

Solução. A principal vantagem no uso de facetas é que fica mais fácil analisar os dados quando eles estão separados em seu próprio contexto, contudo visualizá-los assim dificulta a comparação entre grupos.

Exercício 1.5.5

Leia ?facet_wrap. O que nrow faz? o que ncol faz? Quais outras opções controlam o layout de paineis individuais? Por que facet_grid() não tem variáveis nrowe ncol? Solução.

?facet_wrap

Os atributos ncol e nrow são utilizados pelo facet_wrap para determinar o número de colunas ou linhas (respectivamente) nas quais serão distribuídos os gráficos segregados. Esses atributos não figuram em facet_grid pelo fato deste já organizar as facetas retangularmente.

Exercício 1.5.6

Ao usar facet_grid() você normalmente deveria colocar a variável com níveis mais singulares nas colunas. Por quê?

Solução. Para melhor aproveitamento do espaço em tela.

1.6 Objetos geométricos

Exercício 1.6.1

Que *geom* você usaria para desenhar um gráfico de linha? Um diagrama de caixas (*boxplot*)? Um histograma? Um gráfico de área?

Solução.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_line() +
    tema
```



```
ggplot(data = mpg) +
geom_boxplot(mapping = aes(y = hwy, x = class)) +
tema
```



```
ggplot(data = mpg, mapping = aes(x = hwy)) +
   geom_histogram() +
   tema
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
ggplot(data = economics, mapping = aes(x = date, y = unemploy)) +
    geom_area() +
    tema
```


Podem ser utilizados, respectivamente as geoms: line, boxplot, histogram e area.

Exercício 1.6.2

Execute este código em sua cabeça e preveja como será o resultado. Depois execute o código no R e confira suas previsões:

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
    geom_point() +
    geom_smooth(se = FALSE) +
    tema
```

```
## \ensuremath{\text{`geom\_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'
```


Solução. O gráfico bateu com a expectativa.

Exercício 1.6.3

O que o show.legend = FALSE faz? O que acontece se você removê-lo? Por que você acha que usei isso anteriormente no capítulo?

Solução.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
    geom_point(show.legend = FALSE) +
    geom_smooth(se = FALSE, show.legend = FALSE) +
    tema
```

`geom_smooth()` using method = 'loess' and formula = 'y \sim x'

Ele indica que, para a camada à qual se aplica, não serão geradas as legendas de identificação.

Exercício 1.6.4

O que o argumento se para geom_smooth faz? Solução.

?geom_smooth

Esse argumento indica se o intervalo de confiança utilizado no processo de suavização da linha deve ou não ser exibido no gráfico.

Exercício 1.6.5

Esses dois gráficos serão diferentes? Por quê/por que não?

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_point() +
    geom_smooth() +
    tema

ggplot() +
    geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy)) +
    tema
```

Solução. Os gráficos serão iguais. Ao informar os parâmetros data e mapping na função ggplot essas atributos serão considerados como globais, sendo utilizado em todos as camadas do gráfico, a menos que alguma das camadas os sobrescreva. No segundo gráfico, não são definidos parâmetros globais, porém, o mesmo parâmetro é passado para ambas as camadas, sendo assim, a única diferença é o código estar duplicado.

Exercício 1.6.6

Recrie o código R necessário para gerar os seguintes gráficos:

Solução.

```
a <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point() +
        geom_smooth(se = FALSE) +
        tema
b <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point() +
        geom_smooth(mapping = aes(group = drv), se = FALSE) +
        tema
c <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
        geom_point() +
        geom_smooth(se = FALSE) +
        tema
d \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point(mapping = aes(color = drv)) +
        geom_smooth(se = FALSE) +
        tema
e <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point(mapping = aes(color = drv)) +
        geom_smooth(mapping = aes(linetype = drv), se = FALSE) +
        tema
f \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy, fill = drv)) +
        geom_point(color = "white", shape = 21, size = 3, stroke = 2) +
        tema
```

1.7 Transformações estatísticas

X

1.8 Ajustes de posição

1.9 Sistemas de coordenadas

X

1.10 A gramática em camadas de gráficos

Exercício

X

Solução. x

Fluxo de trabalho: o básico

Transformação de dados com aplyr

Fluxo de trabalho: scripts

Análise exploratória de dados

Fluxo de trabalho: projetos

Parte II

Wrangle

Tibbles com tibble

Importando dados com readr

Arrumando dados com tidyr

Dados relacionais com aplyr

Strings com stringr

Fatores com forcats

Datas e horas com lubridate

Parte III

Programar

Pipes com magrittr

Funções

Vetores

Iteração com purrr

(PART) Modelar

O básico de modelos com model r

Construção de modelos

Muitos modelos com purrr e broom

Parte IV

Comunicar

R Markdown

Gráficos para comunicação com ggplot2

Formatos R Markdown

Fluxo de trabalho de R Markdown

Bibliografia

Hadley Wickham and Garrett Grolemund. *R para Data Science*. Alta Books, Rio de Janeiro, 2019.