الوضعية التعلمية الساعة (التوقيتية) بالدارة المندمجة NE555

الاشكالية:

رأينا سابقا أهمية النمط التزامني، وأن التشغيل في هذا النمط يتم بإضافة مدخلا آخرا للقلاب يسمى إشارة الساعة (التوقيتية).

فكيف يمكن الحصول على إشارة الساعة ؟

نشاط 01:

نتيجة: إشارة الساعة ناتجة عن مولد نبضات، نحصل عليها بعدة طرق أبرزها إستعمال الدارة المندمجة NE555.

1. الدارة المندمجة NE555: خصائص هذه الدارة حسب وثيقة الصانع (Datasheet):

2. خصائص إشارة الساعة:

المستوى العالى. t_L : زمن المستوى المنخفض.

 $T=t_H+t_L$: دور الإشارة، حيث T

 $\alpha = \frac{t_H}{T}$: التواتر: $f = \frac{1}{T}$

 $\alpha = \frac{1}{2}$ المحصول على إشارة مربعة $(t_H = t_L)$ تكون النسبة الدورية

شاط 02:

آعتمادا على التركيب الداخلي للـ NE555 أجب على مايلى:

- ♦ ماهى وظيفة المضخمات العملية 1 و 2؟ تعمل كمقارنات.
- $e_1^+ = \frac{R}{R+R+R} Vcc = \frac{1}{3} Vcc$ باستعمال قاسم التوتر في المدخل غير العاكس للمضخم 1 بدلالة \mathbf{V}_{CC} باستعمال قاسم التوتر نجد فيمة التوتر في المدخل غير العاكس للمضخم 1 بدلالة \mathbf{V}_{CC}

$$e_1^+ = \frac{R+R}{R+R+R} Vcc = \frac{2}{3} Vcc$$
 . V_{CC} أوجد قيمة التوتر في المدخل العاكس للمضخم 2 بدلالة .

- $oldsymbol{V}_{C}$ ماذا يمثل هذين التوترين؟ التوترين المرجعيين للمقارنة مع
- التركيب من اجل انتاج إشارة الساعة:

- ♦ اشرح كيفية تشغيل تركيب دارة الساعة. ثم أتمم المخططات الزمنية.
- ويكون المقحل مسدود. $V_C=0$ في البداية تكون المكثفة فارغة $V_C=0$ ويكون $V_C=0$ ويكون المقحل مسدود.
- يصبح S=0 و S=0 عندها يصبح القلاب في $V_{c}=rac{1}{3}V_{cc}$ ، حتى يصل $V_{c}=rac{1}{3}V_{cc}$ و معندها يصبح القلاب في

حالة إحتفاظ أي يبقى التركيب على حاله. وتعتبر هذه المدة عابرة لا تأخذ بعين الإعتبار في حساب دور الإشارة.

 V_S - يواصل المكثفة الشحن حتى $V_C=rac{2}{3}$ عندها يحدث القلب على مستوى المقارن 2 ويصبح R=1 أي $V_S=0$.

. R_2 عبر عبر المقحل مشبع) فتبدأ المكثفة في التفريغ عبر

- بعدها يحدث القلب من جديد على مستوى المقارن 2 فيصبح S=0 و S=0 أي القلاب في حالة إحتفاظ.

تواصل المكثفة التفريغ حتى $V_{c}=rac{1}{3}$ فيصبح S=1 ويعود التركيب إلى حالته الأولى ويبقي يتأرجح بين الحالتين.

حسب المعادلة العامة لشحن وتفريغ مكثفة $e^{-rac{t}{ au}} = V_f - (V_f - V_i) e^{-rac{t}{ au}}$. يكون الزمن اللازم لوصول التوتر بين

طرفي مكثفة لقيمة
$$au$$
 هو ثابت الشحن. $t= au\ln\left(rac{V_f-V_i}{V_f-V_i}
ight)$: V_t هو ثابت الشحن.

أوجد الزمن t_H اللازم لشحن المكثفة و الزمن t_L اللازم لتفريغها.

$$V_{C}(t_{H}) = \frac{2}{3}V_{CC}$$
 وعند نهاية الشحن: $\tau = (R_{1} + R_{2})C$ ، $V_{i} = \frac{1}{3}V_{CC}$ ، $V_{f} = V_{CC}$:

$$t_{H} = (R_{1} + R_{2})C$$
 . $\ln \left(\frac{V_{CC} - \frac{1}{3}V_{CC}}{V_{CC} - \frac{2}{3}V_{CC}}\right) = (R_{1} + R_{2})C$. $\ln 2$

$$V_{C}\left(t_{L}\right)=rac{1}{3}V_{CC}$$
 وعند نهاية التفريغ: $au=R_{2}C$ ، $V_{i}=rac{2}{3}V_{CC}$ ، $V_{f}=0$ وعند نهاية التفريغ:

$$t_L = R_2 C . \ln \left(\frac{0 - \frac{2}{3} V_{CC}}{0 - \frac{1}{3} V_{CC}} \right) = R_2 C . \ln 2$$
 ومنه معادلة التفريغ:

خلاصة

يمكن الحصول على إشارة الساعة بعدة طرق أهمها إستعمال الدارة المندمجة NE 555 حيث:

: C زمن شحن المكثفة: $t_H
ightharpoonup :$

$$t_H = (R_1 + R_2)$$
. $\ln 2 = 0, 7.(R_1 + R_2)$.

 \cdot \cdot زمن تفريغ المكثفة: t_L

$$t_L = R_2.C. \ln 2 = 0, 7.R_2.C$$
 عبارته:

♦ عبارة دور إشارة الساعة:

$$T = 0,7.(R_1 + 2R_2)$$
. ومنه: $T = t_H + t_L$ لدينا

.
$$\alpha = \frac{t_H}{T} = \frac{R_1 + R_2}{R_1 + 2R_2}$$
 النسبة الدورية:

نشاط 03:

في تركيب دارة الساعة نريد الحصول على دور إشارة الساعة قابل للضبط:

♦ ماذا تقترح كإضافة؟

إضافة مقاومة متغيرة في دارة الشحن أو التفريغ.

♦ أنجز التركيب المناسب من أجل زمن الشحن قابل للضبط وتحقق من التشغيل.

بما أن التفريغ يتم عبر المقاومة \mathbf{R}_2 ، فللتغيير في زمن الشحن ثربط

المقاومة المتغيرة P على التسلسل مع R_1 ، كما في الشكل:

♦ أعط عبارة دور إشارة الساعة T.

$$T = 0,7.(R_1 + P + 2R_2).C$$

 \bullet أحسب قيمة P من أجل قيمة الدور تساوي 63μ . حيث:

$$R_1=1k\Omega$$
 , $R_2=1k\Omega$, $C=0.01\mu F$, $V_{CC}=5V$, $P_{max}=10k\Omega$

$$P = 6K \Omega$$
 ت-ع: $P = \frac{T}{0.7C} - R_1 - 2R_2$ ومنه $T = 0.7.(R_1 + P + 2R_2).C$

نشاط 04:

إليك التركيب التالى:

♦ أعط حالة الثنائي D أثناء الشحن و أثناء التفريغ.

أثناء الشحن: D ممرر (قاطعة مغلوقة).

أثناء التفريغ: D غير ممرر (قاطعة مفتوحة).

- ♦ ماذا تلاحظ؟ المقاومة R₂ ثقصر أثناء الشحن.
 - . t_L e t_H is a defined a. t_L

$$t_L = 0.7R_2C$$
 , $t_H = 0.7R_1C$

♦ بوضع: R₁=R₂ ماذا تستنتج بالنسبة لإشارة الساعة؟

بوضع: $R_1=R_2$ يصبح $t_H=t_L$ ومنه إشارة الساعة مربعة.

أنجز التركيب وتحقق من التشغيل.

نتائج:

- ♦ للحصول على دور إشارة الساعة قابل للضبط يجب إضافة مقاومة متغيرة في دارة الشحن أو دارة التفريغ.
 - ♦ للحصول على إشارة مربعة يجب:
 - التفرع مع R_2 متجهة للأسفل.
 - $R_1=R_2$ إختيار

⊸۷s

NE555

min.