- 1. Determine whether each of the following functions of vectors in \mathbb{R}^n is linear. If it is a linear function, give its inner product representation, i.e., an vector $\mathbf{a} \in \mathbb{R}^n$ for which $f(x) = \langle \mathbf{a}, \mathbf{x} \rangle$ for all $\mathbf{x} \in \mathbb{R}^n$. If it is not linear, give specific $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$ for which superposition fails, i.e., $f(\alpha \mathbf{x} + \beta \mathbf{x}) \neq \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$.
 - (a) The spread of values of the vector, defined as $f(x) = \max_k x_k \min_k x_k$.
 - (b) The difference of the last element and the first, $f(x) = x_n x_1$.
 - (c) The median of a vector, where we will assume n=2k+1 is odd. The median of the vector x is defined as the (k+1)-st largest number among the entries of x. For example, the median of (7.1, 3.2, 1.5) is 1.5.
 - (d) Vector extrapolation, defined as $x_n + (x_n x_{n-1})$, for $n \ge 2$. (This is a simple prediction of what x_{n+1} would be, based on a straight line drawn through x_n and x_{n-1} .)
- 2. Let V be a Hilbert space. Let S_1 and S_2 be two hyperplanes in V defined by

$$S_1 = \{x \in V \mid \langle a_1, x \rangle = b_1\}, \quad S_2 = \{x \in V \mid \langle a_2, x \rangle = b_2\}.$$

Let $y \in V$ be given. We consider the projection of y onto $S_1 \cap S_2$, i.e., the solution of

$$\min_{\boldsymbol{x} \in S_1 \cap S_2} \|\boldsymbol{x} - \boldsymbol{y}\|. \tag{1}$$

- (a) Prove that $S_1 \cap S_2$ is a plane, i.e., if $x, z \in S_1 \cap S_2$, then $(1+t)z tx \in S_1 \cap S_2$ for any $t \in \mathbb{R}$.
- (b) Prove that z is a solution of (1) if and only if $z \in S_1 \cap S_2$ and

$$\langle z - y, z - x \rangle = 0, \quad \forall x \in S_1 \cap S_2.$$
 (2)

- (c) Find an explicit solution of (1).
- (d) Prove the solution found in part (c) is unique.
- 3. Let $\{(x_i, y_i)\}_{i=1}^N$ be given with $x_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Assume N < n, and x_i , i = 1, 2, ..., N, are linearly independent. Consider the ridge regression

$$\min_{oldsymbol{a} \in \mathbb{R}^n} \sum_{i=1}^N \left(\langle oldsymbol{a}, oldsymbol{x}_i
angle - y_i
ight)^2 + \lambda \|oldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter, and we set the bias b=0 for simplicity.

- (a) Prove that the solution must be in the form of $\boldsymbol{a} = \sum_{i=1}^N c_i \boldsymbol{x}_i$ for some $\boldsymbol{c} = [c_1, c_2, \dots, c_N]^T \in \mathbb{R}^N$. (Hint: Similar to the proof of the representer theorem.)
- (b) Re-express the minimization in terms of $c \in \mathbb{R}^N$, which has fewer unknowns than the original formulation.