Работа 4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра.

Подлесный Артём группа 827

17 сентября 2020 г.

Краткая теория

В данной работе рассматривается электронный распад:

$${}_{Z}^{A}X \rightarrow_{Z+1}^{A} X + e^{-} + \widetilde{\nu}. \tag{1}$$

Из этого уравнения можно получить распределения количества частиц dN в промежутке с абсолютным значением импульсов между p и p+dp:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$
 (2)

При переходе от dp к dE получаем:

$$dE = \frac{c^2 p}{E + mc^2} dp. (3)$$

Отсюда получаем функцию спектра на рис 1:

$$W = \frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2. \tag{4}$$

Рис. 1: Форма спектра β -частиц при разрешенных переходах.

Дочерние ядра, образующиеся при β -распаде, если они оказываются возбужденными, успускают γ -квант, который передает избыток энергии электронам с оболочек атомов. Излучаемые таким образом электроны имеют определенную энергию и называются конверсионными.

Экспериментальная установка

Рис. 2: Схема β -спектрометра.

Исходя из принципов работы спектрометра можем получить такие соотношения для экспериментальных данных:

$$p_e = kI, (5)$$

$$N(p_e) = CW(p_e)p_e, (6)$$

где k и C – некоторые константы.

Обработка экспериментальных данных

Измерения проводились для 32 значений тока в промежутке от 1 до 5 А. Каждое измерение проводилось с интервалом в 100 секунд. Полученные результаты представлены на таблице 1.

Так же был измерен фон при 0 токе перед и после проведения основных измерений. Он появляется преимущественно из-за γ -квантов и электронов, рассеянных от стенок спектрометра. По результатам измерений средний фон равен:

$$N_{\Phi} = 0.61 \text{ cek}^{-1}.$$

Исходя из того, что величина pc электрона конверсии равна 1013.5 кэВ, спектр можно откалибровать, пользуясь формулой (5). Постоянная установки для этого спектрометра: k=235.7 кэВ/А. Полученный спектр можно наблюдать на рис.3.

I, A	N, c^{-1}	I, A	N, c^{-1}
0.3	0.53	4	1.72
0.6	0.67	4.05	3.109
0.9	0.96	4.1	7.078
1	1.33	4.15	12.476
1.2	1.909	4.2	11.447
1.5	1.3989	4.25	12.126
1.8	6.318	4.3	12.926
2	9.867	4.35	12.876
2.1	8.188	4.4	9.267
2.4	9.377	4.45	4.409
2.7	9.247	4.5	3.109
3	7.818	4.6	1.52
3.3	4.829	4.7	0.62
3.5	3.259	4.8	0.36
3.6	2.099	4.9	0.45
3.9	1.59	5	0.37

Таблица 1: Таблица с результатами эксперимента, зависимости I(N) — силы тока от среднего числа электронов в секунду.

Аналогично можно получить спектр N в зависимости от энергии E, зная энергию конверсии 634 кэВ. Зная эти соотношения становится возможным построить график Ферми. Для этого получим уравнение графика из (2)-(4):

$$\frac{\sqrt{N(p)}}{p^{3/2}} \approx E_{max} - E. \tag{7}$$

График Ферми показан на рис 4.

Исходя из графика получаем максимальную энергию электрона в этом эксперименте:

$$E_{\rm max} = 604 \pm 40$$
 кэВ.

Вывод

В результате измерения спектра β -частиц, и последующей его обработкой с помощью точного метода графиков Ферми, была получена мансимальная энергия электрона в этом эксперименте. Она оказалась ниже, чем энергия конверсионных атомов, что объясняет то, что конверсионный пик был отделен от основного спектра. В таких условиях получить значение с приемлимой точностью можно лишь с помощью графиков Ферми.

Рис. 3: График спетра N(pc). Из эмпирических соображений, конверсионный пик β -распада на этом спектрометре наблюдается при величине тока в 4.3 A, или 1013.5 кэВ.

Рис. 4: График Ферми. Линеаризация проходила по точкам, обозначенным черным. Эти точки получились из преобразования убывающей части исходного спектра.