Exercice 1 (Cours)

Donner et prouver la caractérisation de la continuité et de la dérivabilité par les On considère la fonction donnée par développements limités.

EXERCICE 2 (Cours)

Rappeler et prouver le résultat concernant l'unicité d'un développement limité.

Exercice 3 (Cours)

Rappeler et prouver la formule de Taylor-Young.

Exercice 4

Calculer les développements limités suivants.

$$1.\sqrt{1-x}+\sqrt{1+x}$$
 à l'ordre 4 en 0 2. $\sin(x)\cos(2x)$ à l'ordre 6 en 0

$$2. \sin(x)\cos(2x)$$
 à l'ordre 6 en 0

3.
$$cos(x) ln(1+x)$$
 à l'ordre 4 en 0 4. $(ln(1+x))^2$ à l'ordre 4 en 0

4.
$$(\ln(1+x))^2$$
 à l'ordre 4 en

5.
$$\exp(\sin(x))$$
 à l'ordre 3 en 0

$$6. \sin^6(x)$$
 à l'ordre 9 en 0

Exercice 5

Calculer les développements limités suivants.

1.
$$\frac{1}{1+x+x^2}$$
 à l'ordre 4 en 0 $2 \cdot \frac{\ln(1+x)}{\sin(x)}$ à l'ordre 3 en 0

2.
$$\frac{\ln(1+x)}{\sin(x)}$$
 à l'ordre 3 en 0

3.
$$\frac{\sin x - 1}{\cos x + 1}$$
 à l'ordre 2 en 0

3.
$$\frac{\sin x - 1}{\cos x + 1}$$
 à l'ordre 2 en 0 4. $\frac{\sqrt{1 + x^2}}{1 + x + \sqrt{1 + x^2}}$ à l'ordre 2 en 0

Exercice 6

Déterminer la position relative de la courbe de la fonction

$$f: x \mapsto \sqrt{x^2 + 1}$$

et de sa tangente au voisinage des points d'abcisse 0 et 1.

Exercice 7

Déterminer les limites (si elles existent) en 0 des fonctions suivantes.

$$f: x \mapsto \frac{\sin x - x}{x^2}$$
 $g: x \mapsto \frac{\sin x - x}{x^3}$ $h: x \mapsto \frac{\cos x - \sqrt{1 - x^2}}{x^4}$

Exercice 8

$$f: x \mapsto x\sqrt{1+x^2}.$$

Trouver une parabole asymptote à la courbe de f au voisinage de $+\infty$, et préciser la position relative de la courbe et de l'asymptote.

Exercice 9

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \frac{1}{1 + e^x}.$$

- 1. Donner un développement limité de f à l'ordre 3 en 0.
- 2. En déduire que la courbe représentative de f admet une tangente au point d'abcisse 0, dont on précisera une équation.
- 3. Prouver que la courbe traverse la tangente en 0.

Exercice 10

Calculer les développements limités suivants.

1.
$$\ln\left(\frac{\sin x}{x}\right)$$
 à l'ordre 4 en 0 2. $\exp(\sin x)$ à l'ordre 4 en 0

$$1.(\cos x)^{\sin x}$$
 à l'ordre 5 en 0

2. $\ln(\cos x)$ à l'ordre 6 en 0

Exercice 11

Calculer les développements limités suivants.

1.
$$arccos(x)$$
 à l'ordre 5 en 0

2.
$$\int_0^x e^{t^2} dt$$
 à l'ordre 5 en 0

Exercice 12

Calculer les développements limités suivants.

$$1.\sqrt{x}$$
 à l'ordre 3 en 1

2.
$$\exp(\sqrt{x})$$
 à l'ordre 3 en 1

3.
$$\ln(\sin x)$$
 à l'ordre 3 en $\pi/3$