

10/20/97

CLAIMS

1 1. A computer-aided method for balancing the spectral
2 response characteristics of vertically and transversely-
3 polarized seismic receiver components relative to an in-line
4 polarized seismic receiver component of a three-component
5 seismic transducer employed in a multi-dimensional seismic
6 survey, comprising:

7 defining limits for near-offset source-receiver
8 trajectory vectors in range and azimuth;

9 assembling in a computer matrix a plurality of seismic
10 wavefields emanating from near-offset source locations in a
11 common-receiver in-line gather, a common-receiver cross-line
12 gather and a common-receiver vertical gather;

13 defining a preferred reflection-time window length;

14 normalizing said common receiver gathers for spherical
15 divergence;

16 transforming said seismic wavefields from the time
17 domain to the frequency domain;

18 generating first deconvolution operators for the cross-
19 line component;

20 applying said first operators to the cross-line and the
21 vertical receiver gathers to form a corrected cross-line
22 component;

23 generating second deconvolution operators for
24 minimizing vertical component energy;

25 applying said second deconvolution operators to the
26 cross-line and vertical receiver gathers to form a corrected
27 vertical component.

1 2. A computer-aided method for balancing the spectral
2 response characteristics time-scale traces representative of
3 vertically and transversely-polarized seismic receiver

10/20/97

4 components relative to an in-line polarized seismic receiver
5 component of a three-component seismic transducer employed
6 in a three-dimensional seismic survey, comprising:

7 a) selecting an initial receiver station and assembling
8 in a computer matrix a plurality of seismic wavefields
9 emanating from near-offset source locations in a common-
10 receiver in-line gather, a common-receiver cross-line gather
11 and a common-receiver vertical gather;

12 b) defining limits for near-offset source-receiver
13 vectors in range and azimuth relative to the initial
14 receiver station;

15 c) defining a preferred reflection-time window length;

16 d) normalizing said common receiver gathers for
17 spherical divergence;

18 e) transforming said seismic wavefields from the time
19 domain to the frequency domain;

20 f) calculating the terms for the cross-line component
21 for each frequency from

$$\begin{pmatrix} \Sigma_i \cos^2(\theta_i) \bar{y}_i \bar{y}_i & \Sigma_i \cos^2(\theta_i) \bar{z}_i \bar{y}_i \\ \Sigma_i \cos^2(\theta_i) \bar{y}_i \bar{z}_i & \Sigma_i \cos^2(\theta_i) \bar{z}_i \bar{z}_i \end{pmatrix} \begin{pmatrix} c(\omega) \\ w(\omega) \end{pmatrix} = \begin{pmatrix} \Sigma_i \sin(\theta_i) \cos(\theta_i) \bar{x}_i \bar{y}_i \\ \Sigma_i \sin(\theta_i) \cos(\theta_i) \bar{x}_i \bar{z}_i \end{pmatrix};$$

22 g) solving for the cross-line coupling coefficients,
23 $c(\omega)$ and $w(\omega)$ for each frequency;

24 h) calculating terms for each frequency for the
25 vertical component from

26

$$v(\omega) \sum_i \bar{z}_i \bar{z}_i = w(\omega) \sum_i \bar{y}_i \bar{z}_i;$$

27

28 i) solving for the vertical coupling coefficients, $v(\omega)$
29 for each frequency;

10/20/97

30 j) correcting the cross-line component time-scale trace
31 response characteristics, $y(\omega)$, using
32 $y(\omega) = c(\omega)y'(\omega) + w(\omega)z'(\omega);$
33 k) correcting the vertical component time-scale trace
34 response characteristics, $z(\omega)$, using
35 $z(\omega) = -w(\omega)y'(\omega) + v(\omega)z'(\omega);$ and
36 l) displaying, with the aid of a computer graphics
37 program, the corrected cross-line and vertical time scale
38 trace components.

1 3. The method as defined by claim 2, comprising:
2 repeating steps a) through l) for all subsequent
3 receiver stations.