05BQX Metodi Matematici per l'ingegneria 2011-2012

Marina Santacroce

Dipartimento di Scienze Matematiche, Politecnico di Torino

7. Complementi sulle leggi congiunte, valori attesi e teoremi limite.

Riferimenti: S.Ross Calcolo delle probabilità Cap.7-8

Outline

Complementi sulle leggi congiunte: valori attesi

Valore atteso di una funzione di due variabili aleatorie Valore atteso della somma di variabili aleatorie

Algebra dei valori attesi

Covarianza Correlazione

Teoremi limite

Legge dei grandi numeri Teorema del limite centrale

Valore atteso di una funzione di due variabili aleatorie

X e Y sono due variabili aleatorie e g(x,y) una funzione reale. Allora g(X,Y) è una variabile aleatoria reale, il cui valor medio si calcola conoscendo la legge congiunta di X e Y.

Prop.: Siano X e Y due variabili aleatorie discrete con densità congiunta p (continue con densità congiunta f) e g una funzione reale, allora, se esiste,

$$\overline{\mathbb{E}(g(X,Y)) = \sum_{(x,y) \in \mathbb{X} \times \mathbb{Y}} g(x,y) p(x,y)} \left(\mathbb{E}(g(X,Y)) = \int_{\mathbb{R}^2} g(x,y) f(x,y) dx dy \right)$$

Esercizio

• Consideriamo la coppia di v.a. X, Y uniforme sul quadrato $[0,1] \times [0,1]$. Calcoliamo $\mathbb{E}(|X-Y|)$ che rappresenta la distanza media tra due punti scelti a caso in modo indipendente in [0,1].

Valore atteso della somma di variabili aleatorie

Prendiamo il caso particolare

•
$$g(x,y) = x + y \Rightarrow \boxed{\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)}$$

Dimostro nel caso continuo:

$$\mathbb{E}(X+Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x+y) f(x,y) dxdy$$

$$= \int_{-\infty}^{+\infty} x \int_{-\infty}^{+\infty} f(x,y) dy dx + \int_{-\infty}^{+\infty} y \int_{-\infty}^{+\infty} f(x,y) dx dy$$

$$= \int_{-\infty}^{+\infty} x f_X(x) dx + \int_{-\infty}^{+\infty} y f_Y(y) dy = \mathbb{E}(X) + \mathbb{E}(Y)$$

- Si verifichi il caso discreto.
- Sia Z = X + Y, $f_Z = f_X \star f_Y$. Si verifichi

$$\int z f_Z(z) dz = \mathbb{E}(X) + \mathbb{E}(Y).$$

Consideriamo n variabili aleatorie X_1, \ldots, X_n allora (per induzione)

$$\mathbb{E}(X_1+\cdots+X_n)=\mathbb{E}(X_1)+\cdots+\mathbb{E}(X_n)$$

•
$$X \sim \text{Bin}(n, p)$$
, $X = \sum_{i:1}^{n} X_i$, $\text{con } X_i \sim \text{Be}(p)$,

$$\Rightarrow \qquad \mathbb{E}(X) = \sum_{i:1}^{n} \mathbb{E}(X_i) = np$$

•
$$X \sim \Gamma(n, \lambda)$$
, $X = \sum_{i=1}^{n} X_i$, con $X_i \sim \text{Exp}(\lambda)$,

$$\Rightarrow \qquad \mathbb{E}(X) = \sum_{i:1}^{n} \mathbb{E}(X_i) = \frac{n}{\lambda}$$

• X_1, \ldots, X_n sono n variabili aleatorie indipendenti identicamente distribuite (in breve i.i.d.) con valore atteso μ . X_1, \ldots, X_n si chiama campione casuale.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 rappresenta la media campionaria e

$$\mathbb{E}(\overline{X}) = \frac{1}{n} (\mathbb{E}(X_1) + \cdots + \mathbb{E}(X_n)) = \mu$$

Indipendenza e valori attesi

Prop. Se le variabili X e Y sono *indipendenti*, e g, h sono due funzioni reali, allora

$$\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y))$$

$$\mathbb{E}(g(X)h(Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x)h(y) f(x,y) dxdy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x)h(y) f_X(x)f_Y(y) dxdy$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x)f_X(x) h(y)f_Y(y) dxdy$$

$$= \int_{-\infty}^{+\infty} g(x)f_X(x) dx \int_{-\infty}^{+\infty} h(y)f_Y(y) dy$$

$$= \mathbb{E}(g(X))\mathbb{E}(h(Y))$$

Si dimostri il caso discreto.

Covarianza

Def. Date X e Y variabili aleatorie reali, la *covarianza* di X e Y è

$$COV(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Se la COV(X, Y) = 0 le variabili X e Y si dicono *non correlate* o *scorrelate*.

Esempio: $X \sim U([-1,1])$ e sia $Y = X^2 \Rightarrow COV(X,Y) = 0$.

Prop.: Se X e Y sono indipendenti, allora sono non correlate, i.e. COV(X, Y) = 0.

Infatti,

$$COV(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}[(X - \mathbb{E}(X))]\mathbb{E}[(Y - \mathbb{E}(Y))] = 0$$

Oss. Come si vede dall'esempio, in generale non vale il viceversa!!!

In generale variabili aleatorie *non correlate* sono *molto lontane* dall'essere *indipendenti*!

Fanno eccezione:

- X e Y normale bivariata;
- X e Y Bernoulli.

In questi due casi la non correlazione implica l'indipendenza.

Proprietà della Covarianza e Varianza della somma

Verificare le seguenti uguaglianze.

- a) COV(X, Y) = COV(Y, X)
- b) COV(X, X) = Var(X)
- c) COV(X, a) = 0, per a costante;
- d) COV(aX, Y) = aCOV(X, Y), COV(X, bY) = bCOV(X, Y), per due costanti a, b;
- e) COV(aX + bZ + c, Y) = aCOV(X, Y) + bCOV(Z, Y) per tre costanti a, b, c.

La covarianza è bilineare, i.e. scelte le costanti a_i , b_i si ha

$$COV\left(\sum_{i=1}^{n} a_{i}X_{i}, \sum_{j=1}^{n} b_{j}Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}b_{j}COV(X_{i}, Y_{j})$$

Da questa formula si ricava immediatamente

$$\operatorname{Var}(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq i} \operatorname{COV}(X_{i}, X_{j})$$

Esempio: Problema delle corrispondenze (cappelli, tango, etc.) rivisitato....

Studiamo i casi notevoli:

- $X_1, \ldots X_n$ sono non correlate $\Rightarrow \text{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \text{Var}(X_i)$
- $X_1, ... X_n$ sono indipendenti $\Rightarrow \text{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \text{Var}(X_i)$;
- X_1, \ldots, X_n sono i.i.d. con varianza σ^2 . Allora

$$\operatorname{Var}(\sum_{i:1}^{n} X_i) = n\sigma^2$$

e la varianza della media campionaria $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ è

$$Var(\overline{X}) = \frac{\sigma^2}{n}.$$

Oss: Se $X_1, \ldots X_n$ sono i.i.d. e $X_i \sim N(\mu, \sigma^2) \Rightarrow \overline{X} \sim N(\mu, \frac{\sigma^2}{n})$

S² indica la varianza campionaria corretta,

$$\mathbb{E}(S^2) = \mathbb{E}\left(\sum_{i:1}^n \frac{\left(X_i - \overline{X}\right)^2}{n-1}\right) = \sigma^2.$$

Correlazione

Def. Date X e Y variabili aleatorie reali, il *coefficiente di correlazione* tra X e Y è definito, se $Var(X)Var(Y) \neq 0$, da

$$\rho(X, Y) = \frac{\text{COV}(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

Oss. Si osservi che $\rho(X, Y) = 0 \iff X \text{ e } Y \text{ sono } non \text{ } correlate.$

Prop.
$$-1 \le \rho(X, Y) \le +1$$
.

Siano $\sigma_X = \sqrt{Var(X)}$ e $\sigma_Y = \sqrt{Var(Y)}$.

$$\begin{split} 0 & \leq \textit{Var}\left(\frac{X}{\sigma_X} + \frac{Y}{\sigma_Y}\right) = \textit{Var}\left(\frac{X}{\sigma_X}\right) + \textit{Var}\left(\frac{Y}{\sigma_Y}\right) + 2\text{COV}\left(\frac{X}{\sigma_X}, \frac{Y}{\sigma_Y}\right) = \\ & = 1 + 1 + 2\frac{\text{COV}(X, Y)}{\sigma_X \sigma_Y}) = 2(1 + \rho(X, Y)) \ \Rightarrow \ \rho(X, Y) \geq -1 \end{split}$$

Analogamente da $Var(\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y}) \ge 0$ si ricava che $\rho(X, Y) \le 1$.

Oss. $\rho(X,Y)=\pm 1$ corrisponde rispettivamente a $Var(\frac{X}{\sigma_X}\mp\frac{Y}{\sigma_Y})=0$, i.e. a $\mathbb{P}\left(\frac{X}{\sigma_X}\mp\frac{Y}{\sigma_Y}=c\right)=1$, quindi Y=a+bX con $b=\pm\frac{\sigma_Y}{\sigma_X}$ e $a=\mp\sigma_Yc$.

 Se ρ(X, Y) = ±1, le variabili aleatorie si dicono perfettamente correlate (Y è funzione lineare di X).

Alcune disuguaglianze

Prop. (Disuguaglianza di Markov) Sia X una variabile aleatoria non negativa. Allora, per ogni a>0

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

Supponiamo che X sia continua, dato che $X \ge 0$ con probabilità 1,

$$\mathbb{E}(X) = \int_0^\infty x f(x) dx = \int_0^a x f(x) dx + \int_a^\infty x f(x) dx \ge a \int_a^\infty f(x) dx = a \, \mathbb{P}(X \ge a).$$

Oss. La disuguaglianza fornisce un *limite superiore* per la probabilità di $X \ge a$ in termini di $\mathbb{E}(X)$.

Cor: (Disuguaglianza di Chebyshev) Sia X una variabile aleatoria di media μ e varianza σ^2 finite. Allora per ogni k>0

$$\mathbb{P}(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$

Consideriamo l'evento $\{|X-\mu| \geq k\} = \{(X-\mu)^2 \geq k^2\}$ e applichiamo la disuguaglianza di Markov alla variabile aleatoria (non negativa) $(X-\mu)^2$, notando che $\mathbb{E}((X-\mu)^2) = \sigma^2$.

Oss. Se X ha $Var(X) = 0 \Rightarrow \mathbb{P}(X = \mathbb{E}(X)) = 1$.

Legge dei grandi numeri

Sono leggi dei grandi numeri tutti i teoremi che stabiliscono le condizioni sotto le quali la "media campionaria" converge al suo valore atteso in un qualche modo.

Teorema: "Legge (debole) dei grandi numeri" 12

Sia X_1, X_2, \ldots una successione di variabili aleatorie i.i.d., con valore atteso finito $\mathbb{E}(X_i) = \mu$. Allora per ogni $\varepsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|\geq\varepsilon\right)=0.$$

Sia $Var(X_i) = \sigma^2 < \infty$. Richiamiamo

$$\mathbb{E}\left(\frac{X_1+\cdots+X_n}{n}\right)=\mu \ \ \text{e} \ \ \textit{Var}(\frac{X_1+\cdots+X_n}{n})=\frac{\sigma^2}{n}.$$

Dalla disuguaglianza di Chebyshev segue che

$$\mathbb{P}\left(\left|\frac{X_1+\cdots+X_n}{n}-\mu\right|\geq\varepsilon\right)\leq\frac{\sigma^2}{n\varepsilon^2},$$

da cui si ottiene il risultato prendendone il limite per $n \to \infty$.

¹l'aggettivo debole si riferisce al tipo di convergenza (convergenza in probabilità)

²Dimostrata da J. Bernoulli nel 1713 nel caso di variabili bernoulliane, questa dimostrazione si deve a Khintchine

Teorema del limite centrale

Nel teorema del limite centrale si dimostra che la distribuzione di somme di variabili aleatorie opportunamente standardizzate tende alla normale standard.

Teorema: "Teorema del limite centrale"3

Sia X_1, X_2, \ldots una successione di variabili aleatorie i.i.d., con valore atteso $\mathbb{E}(X_i) = \mu$ e varianza $Var(X_i) = \sigma^2$ finiti. Allora, la distribuzione di

$$\frac{X_1+\cdots+X_n-n\mu}{\sqrt{n\sigma^2}}$$

tende a quella di una normale standard, i.e.

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{X_1+\cdots+X_n-n\mu}{\sqrt{n\sigma^2}}\leq z\right)=\Phi(z)=\int_{-\infty}^z\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}du,\qquad z\in\mathbb{R}.$$

Oss. Il teorema del limite centrale si può dimostrare sotto ipotesi molto più deboli.

Questo risultato giustifica l'evidenza empirica per cui molti dati reali osservati presentano una distribuzione a campana come se in effetti provenissero da una normale.

³Il teorema del limite centrale con variabili bernoulliane è noto come Teorema di De Moivre Laplace