- Obesity Prediction
 - The Scale Doesn't Lie But Does Our Model?
 - Summary
 - Table of Contents
 - Team
 - Project Overview
 - 1. Dataset Description
 - Dataset Overview:
 - 2. Preprocessing & Feature Engineering
 - Preprocessing Goals
 - Key Steps
 - Implementation
 - 3. Model Overviews
 - Logistic Regression
 - Ridge Logistic Regression
 - K-Nearest Neighbors (KNN)
 - Neural Network
 - Tree-Based Models
 - 4. Model Comparison
 - Feature Importance Tree-Based Models
 - Model Comparison Overview
 - Model Comparison with Feature Exclusion
 - 5. Reflections
 - Appendix A: Links & Files
 - Appendix B: Team Contributions

Obesity Prediction

The Scale Doesn't Lie — But Does Our Model?

Final Report

Hertie School · MDS

Authors

Nadine Daum · Ashley Razo · Jasmin Mehnert · Nicolas Reichardt

GitHub: https://github.com/nicolasreichardt/ml-project-obesity-prediction

Submission: 12 May 2025

Summary

This project applies supervised machine learning to classify individuals into obesity risk categories based on biometric and lifestyle data. We implemented and evaluated multiple models — including logistic regression, KNN, tree-based models, and a neural network — using a shared preprocessed dataset to ensure consistent and fair comparison.

Our best-performing models achieved test accuracy scores above 85%, with interpretable insights from tree-based approaches and strong generalization from the neural network.

Table of Contents

- Team
- Project Overview
- 1. Dataset Description
- 2. Preprocessing & Feature Engineering
- 3. Model Overviews
- 4. Model Comparison
- 5. Reflections
- Appendix A: Links & Files
- Appendix B: Team Contributions

Team

- Nadine Daum GitHub | Email
- Jasmin Mehnert GitHub | Email
- Ashley Razo GitHub | Email
- Nicolas Reichardt GitHub | Email

Project Overview

This project aims to classify individuals into seven obesity risk categories based on various biometric and behavioral factors. Using a labeled dataset of 2,111 individuals from Mexico, Peru, and Colombia, our models predict obesity levels ranging from *Insufficient Weight* to *Obesity Type III*.

The goal is to explore how well machine learning models can predict obesity status — and how these predictions might support future public health decisions, risk assessment tools, or individual recommendations.

GitHub repo: nicolasreichardt/ml-project-obesity-prediction

1. Dataset Description

We used the **Obesity Levels Estimation Dataset**, which contains demographic, behavioral, and biometric data for 2,111 individuals from Mexico, Peru, and Colombia. The dataset was designed for multi-class classification and is labeled with 7 obesity categories.

Dataset Overview:

- Size: 2,111 samples × 17 features + 1 target
- **Features**: mix of categorical (e.g., gender, transport_mode) and numerical (e.g., height, weight, age)
- Target variable: obesity_level with 7 classes:
 - Insufficient Weight
 - Normal Weight
 - Overweight Level I
 - o Overweight Level II
 - Obesity Type I
 - Obesity Type II
 - Obesity Type III
- ML relevance: Multi-class classification task with imbalanced class distribution
- Input shape for models: ~43 features after encoding (based on one-hot transformation)

The data was collected via a cross-sectional survey and is publicly available on Kaggle, supported by this research article.

Jasmin – please add 1–2 sentences here about EDA findings

For example: were there correlations, outliers, imbalances, or interesting clusters?

All team members used a shared train/test split to ensure model comparability.

2. Preprocessing & Feature Engineering

Before modeling, the dataset required thorough cleaning and transformation. This step was led primarily by **Ashley Razo** and **Jasmin Mehnert**, with feedback and reviews from all team members.

Preprocessing Goals

- Ensure consistent input format across models
- Improve model performance and comparability
- Reduce noise, redundancy, and scaling-related bias

Key Steps

- Feature selection: Retained 17 relevant input features capturing diet, behavior, and biometrics
- Target formatting: Standardized and renamed the class column to obesity_level
- Encoding: Applied one-hot encoding to 13 categorical features (e.g., gender, transport_mode)
- Scaling: Used StandardScaler to normalize all numerical features (e.g., age, height_m, weight_kg)
- Output dimensions: Final input to the models included ~43 encoded features
- Train/test split: 80/20 split applied uniformly to ensure fair model evaluation
- File formats: Datasets exported as both .csv and .feather (for faster access)
- **@Ashley** feel free to insert 1–2 sentences on your preprocessing pipeline: decisions around feature selection, encoding strategies, or challenges during cleaning
- **@Jasmin** you can briefly note how you supported the pipeline and flag any edge cases or quirks in the data

Implementation

Notebook: notebooks/preprocessing.ipynb

Script: processed_data/data_preparation.py

All models consumed the same cleaned and scaled training and testing data.

3. Model Overviews

All models used the same preprocessed data for consistency.

Logistic Regression

- logistic_regression.ipynb
 - Simple baseline with good interpretability

Ridge Logistic Regression

- ridge_logistic_regression.ipynb
 - Regularized version of logistic regression

K-Nearest Neighbors (KNN)

- PCA_KNN.ipynb
 - PCA helped reduce dimensionality and improved KNN performance

Neural Network

- neural_network.ipynb
 - Multi-layer architecture with ReLU and softmax
 - Test accuracy: 83.9%
 - Balanced performance across all obesity categories
- Neural Network Training Curves

Tree-Based Models

tree-based-models.ipynb

- Random Forest & XGBoost achieved top performance (~86%)
- Screen time, calorie tracking, and water intake were key features

4. Model Comparison

Model	Test Accuracy	Notes
Logistic Regression	~75%	Simple, interpretable
Ridge Logistic Regression	~76%	Slight improvement with regularization
KNN	~77%	Better with PCA
Neural Network	83.9%	Strong generalization
Random Forest	~85–86%	Robust, interpretable
XGBoost	~86%	Top performer with best generalization

Feature Importance – Tree-Based Models

Model Comparison Overview

Model Comparison

Model Comparison with Feature Exclusion

Model Comparison (Excluded Features)

5. Reflections

- Preprocessing made a big difference across all models
- Tree-based models helped us understand what mattered most
- Neural networks were surprisingly manageable and performed well
- Sharing the same train/test split helped standardize evaluation
- We improved our understanding of ML pipelines, GitHub collaboration, and reproducibility

Appendix A: Links & Files

- GitHub Repository: nicolasreichardt/ml-project-obesity-prediction
- Cleaned dataset (CSV): processed_data/obesity_cleaned.csv
- Train/Test files:
 - processed_data/train_data.feather
 - processed_data/test_data.feather
- Model notebooks: in notebooks/
- Generated plots: in plots/

Appendix B: Team Contributions

- Nadine Daum Neural network, Ridge/Lasso regression
- Ashley Razo Preprocessing, logistic regression
- Jasmin Mehnert PCA & KNN, preprocessing support
- **Nicolas Reichardt** Random Forest, XGBoost, evaluation

 All team members contributed to meetings, reviews, and report writing.