Exploratory Data Analysis

Ivan Corneillet

Data Scientist

Learning Objectives

After this lesson, you should be able to:

- Identify variable types
- Use the *pandas* (and *NumPy*) libraries to analyze datasets using basic summary statistics: mean, median, mode, max, min, quartile, inter-quartile range, variance, standard deviation, and correlation
- Create data visualizations including boxplots, histograms, and scatter plots to discern characteristics and trends in a dataset

Announcements and Exit Tickets

Review

Review

Parse the DataTidy Data and pandas

❸ PARSE the Data | Tidy data: a tabular format suitable for pandas and machine learning algorithms

- The three rules of tidy data:
 - Each observation is placed in its own row
 - Each variable in the dataset is placed in its own column
 - Each value is placed in its own cell

Review and Activity | Subsetting with pandas

DIRECTIONS (10 minutes)

- 1. Using the dataset in the codealong (Part A), answer the following questions:
 - Subset the dataframe on the age and gender columns.
 - 2. Subset the dataframe on the age column alone, first as a *DataFrame*, then as a *Series*
 - 3. Subset the dataframe on the rows Bob and Carol
 - 4. Subset the dataframe on the row Eve alone, first as a *DataFrame*, then as a *Series*
 - 5. How old is Frank?
- 2. Annotate the next handout with the syntax on how to subset dataframes in *pandas*
- 3. When finished, share your answers with your table

DELIVERABLE

Answers to the above questions

	DataFrame	Series			
Column subsetting					
by name	<pre># New DataFrame with column named X1 df[['X1']]</pre>	df['X1']			
(Columns names are stored in df.columns) (df.columns.get_loc('X1') returns X1's column index)	<pre># 2+ columns (in the order listed) df[['X1', 'X2',]]</pre>	df.X1			
by location	<pre># New DataFrame with column at location i (numbering starts at 0) df[[column_i]] # 2+ columns (in the order listed) df[[column_i, column_j,]]</pre>				
	Row subsetting				
by index label	<pre>df.loc[[index_label_i]] df.loc[[index_label_i, index_label_j,]] # Can use a range if the index is made of numbers (rows "a" to "b" included) df.loc[index_label_a : index_label_b]</pre>	<pre>df.loc[index_label_i]</pre>			
by location	<pre>df.iloc[[row_i]] df.iloc[[row_i, row_j,]] # (rows "a" to "b' excluded) df.iloc[row_a : row_b] or df[row_a : row_b]</pre>	<pre>df.iloc[location_i]</pre>			
Cell/scalar lookup					
by index label/column name	<pre>df.at[index_label, 'X1']</pre>				
by location	df.iat[row_i, column_j]				

Today

Today we'll keep our focus on PARSE the data

Today, we are covering Research Design and introducing further the *pandas* library

Research Design and Data Analysis	Research Design	Data Visualization in pandas	Statistics	Exploratory Data Analysis in <i>pandas</i>
Foundations of Modeling	Linear Regression	Classification Models	Evaluating Model Fit	Presenting Insights from Data Models
Data Science in the Real World	Decision Trees and Random Forests	Time Series Models	Natural Language Processing	Databases

Here's what's happening today:

- Announcements and Exit Tickets
- Review
- Parse the Data
 - Types of Data and Types of Measurement
 Scales
 - Populations and Samples; Descriptive vs.
 Inferential Statistics
 - Measures of Central Tendency and Measures of Dispersion

- Boxplots
- Outliers
- Histograms
- Correlation
- Review
- Exit Tickets

Parse the Data

- Parse the Data
 - Read any documentationprovided with the data (session 2)
 - Perform exploratory data analysis (session 3)
 - Verify the quality of the data (sessions 2/3)

The main theme today is to have enough statistics knowledge to perform Exploratory Data Analysis

- Types of Data and Types of Measurement Scales
- Populations and Samples; Descriptive vs. Inferential Statistics
- Measures of Central Tendency and Measures of Dispersion
- Boxplots
- Outliers
- Histograms
- Correlation

Types of Data and Types of Measurement Scales

Types of Data

Qualitative Data

 Uses descriptive terms to measure or classify something of interest, e.g., education level

Quantitative Data

 Uses numerical values to describe something of interest, e.g., age

Types of Measurement Scales

Types of Measurement Scales (cont.)

	Nominal	Ordinal	Interval	Ratio
e.g.	Gender	Movie ratings	Temperature	Salary
Categorize?	✓ (male, female)	✓	✓	✓
Rank-order?	×	✓ (*<2*<3*<4*)	✓	✓
Add and subtract?	*	* (4★-3★≠★)	(75°C is 50°C warmer than 25°C)	✓
Multiply and divide?	*	★ (4★ not 4× better than 1★)	(75°C not 3× as warm as 25°C) (0°C doesn't mean no temperature!)	✓ (Salary of \$200K is 2× that of \$100K) (\$0 means no salary ⁽³⁾)

Populations and Samples

Populations and Samples

A dataset may be considered either as a population or a sample, depending on the reason for its collection and analysis

- Students of a class are a population if the analysis describes the distribution of scores in that class
- But they are a sample the analysis infers
 from their scores the scores of other
 students (e.g., all students from that school)

Descriptive Statistics

Inferential Statistics

Activity | Summarizing Data

Activity | How would you summarize this data?

Activity | How would you summarize this data? (cont.)

Activity | Measures of Central Tendency. What is the typical age for <u>each</u> of these 8 groups of people? (10 minutes)

Activity | Measures of Central Tendency. What is the typical age for each of these 8 groups of people? (cont.)

Group	Mean	Median	Mode
A (30-30)	30 ⁽¹⁾	30 ⁽¹⁾	30 ⁽¹⁾
B (30-30-1)	20.3 ⁽²⁾ (i.e., no 20-year-olds in the group)	30 ⁽³⁾	30 ⁽³⁾
C (35-5-35)	25 ⁽²⁾	35 ⁽³⁾	35 ⁽³⁾
D (5-35)	20 ⁽²⁾	20(2)	None ⁽⁴⁾
E (35-1-5)	13.6 ⁽²⁾	5 ⁽²⁾	None ⁽⁴⁾
F (5-35-35-5)	20 ⁽²⁾	20 ⁽²⁾	5 and 35 ⁽⁵⁾
G (5-5)	5 ⁽¹⁾	5 ⁽¹⁾	5 ⁽¹⁾
H (35-5-5-35-1)	16.2 ⁽²⁾	5(6)	5 and 35 ⁽⁵⁾
(1) All values are equal (2) Value not r	representative (3) Follow the "majority"	(4) All values are different (5) Follow the	"majorities" (6) Partially correct

Mean, Median, and Mode | Trade-offs

	Value is in the dataset	Value is easy to compute	Value is resistant to outliers	Corresponding measure of Dispersion	Used extensively by mathematical models
Mean	(Unlikely)		8	(Variance, Standard Deviation)	©
Median	(50% chance)	(need to rank the values)		(Interquartile Range)	8
Mode	(Always)	(Need to count and rank the count)		(Not really)	(Mode might not be defined or you might have multiple values)

Measures of Central Tendency and Measures of Dispersion

Measures of Central Tendency and Measures of Dispersion

- Measures of Central Tendency
 - (Or measures of location)
 - Answer the question: "What's the typical or common value for a variable?"
 - Mean, Median, Mode
- Measures of Dispersion
 - (Or measures of variability/spread)
 - Answer the question: "How far do values stray from the typical value?"
 - Variance, Standard Deviation, Range, Interquartile Range (IQR)

(Arithmetic) Mean, Variance, and Standard Deviation

Ordinal *	ı	Nominal *	Interval ✓	,	Ratio ✓
		Population		Sample	
(Arithmetic) Mean $ (a.k.a., the \ first \ moment) $ (Mean has unit of $X:[X]$)		$\mu = \frac{1}{N} \sum_{i=1}^{N} e^{i\pi i \pi}$	$x_i = E[X^1]$	$\bar{x} =$	$= \frac{1}{n} \sum_{i=1}^{n} x_i$ (x-bar)
Variance (a.k.a., the second mom $[X^2]$	$[X^2] = E[(X -$		$(x_i - \mu)^2$ $(\mu)^2$ quared)	$s^2 = \frac{1}{n - 1}$	$\frac{1}{1}\sum_{i=1}^{n}(x_i-\bar{x})^2$
Standard Deviation [X]			$\sqrt{\sigma^2}$ ma)	S	$=\sqrt{s^2}$

(mean, variance, and standard deviations are based on the values of x_i)


```
Codealong - Part B
    .mean()
    .var(), .std()
```


Median, Range, and Interquartile Range

Median

Median, Range, and Interquartile Range

Median, Range, and Interquartile Range (cont.)

Nominal *	Ordinal *	Interval ✓	Ratio ✓		
Median	$median = \begin{cases} x_{p+1} & \text{if } n = 2p + 1 \\ \frac{x_p + x_{p+1}}{2} & \text{if } n = 2p \end{cases}$				
Range	$range = x_n - x_1$				
Percentile	$q_k = \begin{cases} x_{[p]} \text{ if } p = \frac{nk}{100} \text{ not integer} \\ \frac{x_p + x_{p+1}}{2} \text{ otherwise} \end{cases}$				
Quartile	$Q_1 = q_{25}; Q_3 = q_{75}$				
Interquartile Range	$IQR = Q_3 - Q_1$				

(median, range, and interquartile range are based on the ranks of x_i ; x_i ranked from smallest to largest)


```
Codealong - Part C
    .mean(), .median()
.count(), .dropna(), .isnull()
    .min(), .max()
    .quantile()
    .describe()
```


Median, Range, Interquartile Range, and Boxplots

Boxplot #1 | Median, Range, Interquartile Range, and no Outliers

Boxplot #2 | Median, Range, Interquartile Range, and Outliers

Codealong – Part D Boxplots

Outliers

Think twice before discarding outliers; they might be the most important points

- Outliers are values that are "far" from the central tendency
- No formal definition among statisticians on how to define outliers (how do you define "far"?)
- However, general agreement that they be identified and dealt with appropriately (e.g., keep or discard)
 - They might be the most important points of your dataset

Histograms

Histograms. $x_1 = x_2 = x_3 < x_4 = x_5...$

Codealong – Part E Histograms

Mode

Modes and Histograms

Nominal ✓ **Ordinal** ✓ **Interval** ✓ Ratio ✓ **One Mode** The Mode is the value(s) that occur(s) most often No Mode **Multiple Modes**

Codealong - Part F
.mode()

Plot the Data!

Don't rely on basic statistic properties and **plot the data!** 4 datasets (Anscombe's quartet) that have nearly identical simple statistical properties, yet are very different

Property	Value
Mean of x _i	9
Sample variance of x _i	11
Mean of y _i	7.50
Sample variance of y_i	4.122 or 4.127
Correlation between x _i and y _i	0.816
Linear regression line in each case	y _i = 3.00 + 0.500 x _i

(Linear) Correlation

Correlation

• A measure of strength and direction for a **linear association** between two random variables

$$\rho_{X,Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

- ρ = 0 means that the two variables don't have a linear association
 - It doesn't imply that they are independent!

Correlation (cont.)

 ρ quantifies the strength and direction of movements of two random variables **Negative Correlation Positive Correlation** Strong Weak Weak Strong -1 -.5 one variable moves in the same **No Correlation** direction by 50% the amount that the other variable moves Perfect negative Negative Positive Perfect positive No correlation correlation correlation correlation correlation $\rho = 0$ $\rho < 0$ $\rho = -1$ $\rho > 0$ $\rho = 1$

Activity | Correlations and Scatter Plots

Activity | What's the correlations for the following scatter plots (5 minutes)

Activity | What's the correlations for the following scatter plots (cont.)

Codealong – Part G

.corr()

Heatmaps Scatter plots and matrices


```
Codealong - Part H
.value_counts()
.crosstab()
```


Lab

Exploratory Data Analysis

Review

Review

You should now be able to:

- Identify variable types
- Use the *pandas* (and *NumPy*) libraries to analyze datasets using basic summary statistics: mean, median, mode, max, min, quartile, inter-quartile range, variance, standard deviation, and correlation
- Create data visualizations including boxplots, histograms, and scatter plots to discern characteristics and trends in a dataset

Next Class

Flexible Class Session #1 | Exploratory Data Analysis

Exit Ticket

Don't forget to fill out your exit ticket here

Slides © 2016 Ivan Corneillet Where Applicable Do Not Reproduce Without Permission