МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по лабораторной работе №5 на тему «Знакомство со средой Cisco Packet Tracer»

Дисциплина: Сетевые Технологии

Группа: 21ПИ1

Выполнил: Гусев Д. А.

Количество баллов:

Дата сдачи:

Принял: Елпатова В. С.

- 1 Цель работы: ознакомиться со средой Cisco Packet Tracer.
- 2 Задание на лабораторную работу.
- 2.1 Изучить теоретический материал и выполнить пример.
- 2.2 Создать топологию, приведенную на рисунке 1.

Рисунок 1 - Топология

2.3 В режиме Realtime назначить имена и IP-адреса компьютерам в соответствии с таблицей й, где v – номер варианта. При назначении IP-адреса воспользоваться как командной строкой, так и настройками устройства.

Таблица 1 — Устройства

Устройство	IP ADDRESS	SUBNET MASK
PC1	8.1.1.1	255.255.255.0
PC2	8.1.1.2	255.255.255.0
PC3	8.1.1.3	255.255.255.0
PC4	8.1.1.4	255.255.255.0
PC5	8.1.1.5	255.255.255.0
PC6	8.1.1.6	255.255.255.0
PC7	8.1.1.7	255.255.255.0

2.4 Выполнить проверку работоспособности узлов, согласно таблице ц. Проверку выполнить с использованием командной строки и отправкой простого запроса.

Таблица 2 — Вариант задания

Вариант	Пинг из	Пинг в	Размер істр пакета
8	PC1	PC6	2155

- 2.5 Переключиться в режим Simulation. Отправить простой запрос и проследить его передачу от узла к узлу. В узле назначения просмотреть содержимое пакета на промежуточных узлах и на узле-получателе. В отчет привести содержимое вкладки OSI Model на узле-получателе запроса. Нажимая кнопки Previous Layer и Next Layer просмотреть последовательность действий по обработке запроса. Привести последовательность действий в отчет (перевести на русский).
- 2.6 Врежиме Simulation отправить сложный істр запрос (Complex PDU), указав в поле Size размер, в соответствии с вариантом задания. Определить количество передаваемых IP пакетов (дейтограмм) для передачи одного запроса по протоколу істр. Просмотреть содержимое ір-дейтограмм на промежуточных узлах в процессе передачи. Привести в отчет содержимое полей flags и data offset (флаги и указатель фрагмента) для всех ір-дейтограмм одного істр запроса.
 - 3 Выполнение лабораторной работы:
 - 3.1 Был изучен теоретический материал.
- 3.1.1 На рабочую область программы были добавлены 2 коммутатора Switch-PT. На рабочее поле было добавлено четыре компьютера с именами PC0, PC1, PC2, PC3. Устройства были соеденены в сеть Ethernet (рисунок 1).

Рисунок 1 - Топология

3.1.2 Была открыта вкладка Desktop, и была симулирована работа run (с помощью Command Prompt). Для конфигурирования компьютера была использована команда ipconfig из командной строки, введенные команды представлены на рисунках 2 — 5.

Рисунок 2 — Настройка РС0

Рисунок 3 — Настройка РС1

Рисунок 4 — Настройка РС2

Рисунок 5 — Настройка РС3

3.1.3 На каждом компьютере были просмотрены назначенные адреса с помощью команды ipconfig без параметров. Был выполнен пинг компьютеров (рисунки 6-13).

Рисунок 7 — Проверка РС0

Рисунок 8 — Проверка РС0

```
₹ PC1
                                                                                                                                     _ _
    Physical Config Desktop Programming Attributes
    Command Prompt
                                                                                                                                                 Х
     C:\>ipconfig
     FastEthernet0 Connection:(default port)
          Bluetooth Connection:
          Connection-specific DNS Suffix.:

Link-local IPv6 Address. ::

IPv6 Address. ::

IPv4 Address. :0.0.0.0

Subnet Mask :0.00.0

Default Gateway ::

0.0.0.0
       C:\>ping 192.168.1.2
      Pinging 192.168.1.2 with 32 bytes of data:
        eply from 192.168.1.2: bytes=32 time<lms TTL=128
     Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Hinimum = Oms, Maximum = Oms, Average = Oms
       :\>ping 192.168.1.4
       Pinging 192.168.1.4 with 32 bytes of data:
 Пор
```

Рисунок 8 — Проверка РС1

Рисунок 9 — Проверка РС1

Рисунок 10 — Проверка РС2

```
Physical Config Deskiop Programming Attributes

Command Prompt

Reply from 193.168.1.2: bytes=32 time<lms TTL=128
Reply from 193.168.1.2: bytes=32 time<lms TTL=128
Reply from 193.168.1.2: bytes=32 time<lms TTL=128
Reply from 192.168.1.2: bytes=32 time<lms TTL=128
Reply from 192.168.1.2: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Winimum = Oms, Maximum = Oms, Average = Oms

C:\ping 192.168.1.3 with 32 bytes of data:

Reply from 192.168.1.3: bytes=32 time<lms TTL=128
Reply from 192.168.1.5: bytes=32 time<lm>Reply from 192.16
```

Рисунок 11 — Проверка РС2

```
₹ PC3
                 Config Desktop Programming Attributes
     Physical
                                                                                                                                                              Х
      FastEthernet0 Connection: (default port)
           Connection-specific DNS Suffix.:
Link-local IPv6 Address...: FE80::2E0:8FFF:FE6D:A7D7
IPv6 Address...: 192.168.1 5
Subnet Mask...: 255.255.0
Default Gateway...: 192.168.1 5
        Sluetooth Connection:
           Subnet Mask.....
Default Gateway....
       C:\>ping 192.168.1.2
       Pinging 192.168.1.2 with 32 bytes of data:
       Reply from 192.168.1.2: bytes=32 time<lms TTL=128
      Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
       C:\>ping 192.168.1.3
     Pinging 192.168.1.3 with 32 bytes of data:
  Пор
```

Рисунок 12 — Проверка РС3

Рисунок 13 — Проверка РС3

3.1.4 Для проверки работоспособности была использована панель Common Tools Bar. Для выполнения ping-запроса был выбран Add Simple PDU, затем в рабочей области были указаны компьютер-источник и компьютер-получатель. В поле User Created Packet Window отобразилось сообщение об успешности (Successful — рисунок 14)

Рисунок 14 — Проверка с помощью Simple PDU

3.1.5 Был выполнен сложный запрос(с помощью кнопки Add Complex PDU – рисунки 15 - 16).

Рисунок 15 — Создание сложного запроса

Рисунок 16 — Проверка сложного запроса

3.2 Была создана топология (рисунок 17).

Рисунок 17 - Топология

3.3 Устройства были настроены в соответствии с таблицей 1. Результат представлен на рисунке 18 — 24.

Рисунок 18 — Конфигурация РС1

Рисунок 19 — Конфигурация РС2

Рисунок 20 — Конфигурация РС3

Рисунок 21 — Конфигурация РС4

Рисунок 22 — Конфигурация РС5

Рисунок 23 — Конфигурация РС6

Рисунок 24 — Конфигурация РС7

3.4 Были выполнены ping запросы в соответствии с таблицей 2. Результат представлен на рисунке 25.

Рисунок 25 — ping из PC1 в PC6

3.5 Был выполнен переход в режим Simulation. Был отправлен простой запрос и отслежена его передача от узла к узлу. Содержимое вкладки OSI Model представлено на рисунке 26. С помощью кнопок Previous Layer и Next Layer была просмотрена последовательность действий по обработке запроса.

Последовательность действий представлена ниже.

- Слой 3:
- 1. FastEthernet0 получает кадр.
- Слой 2:
- 1. МАС-адрес получателя кадра совпадает с МАС-адресом принимающего порта, широковещательным адресом или адресом многоадресной рассылки.
 - 2. Устройство декапсулирует PDU из Ethernet-кадра.

Слой 1:

- 1. IP-адрес получателя пакета совпадает с IP-адресом устройства или широковещательным адресом. Устройство деинкапсулирует пакет.
 - 2. Пакет является пакетом ІСМР. Процесс ІСМР обрабатывает его.
 - 3. Процесс ICMР получил сообщение с эхо-запросом.
 - Слой 3:
- 1. ІСМР-процесс отвечает на эхо-запрос, устанавливая тип ІСМР на Эхоответ.
 - 2. ІСМР-процесс отправляет эхо-ответ.
- 3. IP-адрес получателя находится в той же подсети. Устройство устанавливает следующий переход к месту назначения.
 - Слой 2:
- 1. IP-адрес следующего перехода является одноадресным. Процесс ARP ищет его в таблице ARP.
- 2. IP-адрес следующего перехода указан в таблице ARP. Процесс ARP устанавливает MAC-адрес назначения кадра таким, какой указан в таблице.
 - 3. Устройство инкапсулирует PDU во фрейм Ethernet.
 - Слой 1:
 - 1. FastEthernet0 отправляет кадр.

Рисунок 26 - Содержимое вкладки OSI Model

3.6 В режиме Simulation был отправлен сложный істр запрос (Complex PDU — рисунок 27). Было определено количество передаваемых IP пакетов (дейтограмм) для передачи одного запроса по протоколу істр - 2. Было просмотрено содержимое ір-дейтограмм на промежуточных узлах в процессе передачи. Содержимое полей flags и data offset приведено ниже.

- Flags: 0x0, data offset: 0x5c8

- Flags: 0x1, data offset: 0x000

Рисунок 27 - Создание сложного запроса

4 Вывод: было выполнено ознакомление со средой Cisco Packet Tracer.