Biomarker Analysis Strategies: Some Case Studies

Abraham Apfel

May 21, 2019

Pharmacodynamic Analysis

Analysis Goals

- Analyze blood RNA-Seq data (141 samples from 18 patients with selected advanced solid tumors and haematological malignancies) for 18,591 genes to help inform dose and schedule selection.
- Identify top genes with changes in expression over time that are consistent across dosing schedule

Sample Collections

Subjects and doses split over multiple batches — needed to account for subject and batch variation in model

Sample Collections

Analysis Challenges

- Batch Effects
 - Subject-subject and batch variability
 - Bridge samples
- Dose*Day (schedule)*Time (hours post-dose) interaction
- Anticipated non-linear relationships between gene expression and time
- Over 4,500 genes were found to have Benjamini-Hochberg adjusted p-values < 0.05
- Looking for expression patterns that are consistent across dose levels and cycle day

Gene Selection

- Ran Linear Mixed Models to test for and estimate the relationship between gene expression and time
 - Averaged time effects across C1D1 and C2D7 for each dose level to identify genes with changes consistent across days
 - Did not test for relationship in C2D14 samples due to small number of samples
- Removed genes that had a B-H adjusted p-value > 0.05
 - ~ 4,500 genes remained, out of 18,591 total

Gene Expression Model

- Linear mixed effects model (using R Imer function)
- Response variable: Log2(gene expression)
- Fixed Effects Portion of Model
 - Expression = Factor + CS + Factor*CS
 - Factor Levels (combination of Dose and Day):
 - 2mg C1D1 & C2D7
 - 3mg C1D1 & C2D7
 - 4.5mg C1D1 & C2D7
 - 3mg C2D14
 - CS represents two cubic spline basis functions for hours post dose, with one knot at 6 hours post dose.
- Random Effects Portion of Model
 - Batch: Random intercept
 - Subject: Random intercept and random slope based on time as a continuous variable across both cycles, which imposed a decreasing correlation over time within each subject

Hypothesis Testing

- H_0 : Coefficient for each CS function (main effect or any interaction, excluding the interaction with curve representing C2D14) = 0
 - Interpretation: No time effect at any dose

• H₁: Time effect at one or more doses

 Likelihood Ratio Test, using bootstrap to get empirical p-values (via "pbkrtest" package in R)

Models

	Fixed Effects					
Factor	Full Model	Reduced Model				
2mg C1D1 & C2D7	$\mu + \tau_1 + \tau_2$	μ				
3mg C1D1 & C2D7	$\mu + \beta_2 + \tau_1 + \tau_2 + i_{21} + i_{22}$	$\mu + \beta_2$				
4.5mg C1D1 & C2D7	$\mu + \beta_3 + \tau_1 + \tau_2 + i_{31} + i_{32}$	$\mu + \beta_3$				
3mg C2D14	$\mu + \beta_4 + \tau_1 + \tau_2 + i_{41} + i_{42}$	$\mu + \beta_4 + i_{41} + i_{42}$				

μ: Intercept

 β_i : Main effect factor coefficient

 τ_i : Main effect basis function for cubic spline coefficient

i_{ii}: Interaction coefficient between basis function and factor

Gene Rankings

- Calculated maximum change from baseline for each of the four curves described above within each gene
- Selected curve with maximum absolute change (excluding the curve representing Cycle Day 14) for each gene
- Ranked genes according to their respective selected maximum absolute change

Reported top 11 ranked genes

~4,500 **of ~18,500** genes had B-H adjusted p-value < .05

Visual Summary of Example Gene

Composite Biomarker Analysis

Summary of Analysis Methods

- Efficacy measures: BOR (Best Overall Response), PFS, OS
- Predictors: 3 continuous biomarkers (A, B, and C) and treatment arm
- Analysis population: 183 subjects
- Model-building approaches:
 - 2 machine learning (ML) methods: MARS (earth package) and Grouped Lasso (glinternet package)
 - Both methods allow for possible interactions among predictor variables
 - MARS allows also for potential non-linear effects of predictor variables
 - Generalized Linear Models (GLM), with interaction terms and all effects linear
 - Logistic Regression for BOR
 - Cox Proportional-Hazards Models for PFS and OS
- Model performance assessment:
 - Performance metrics: ROC, C-index, PPV and NPV
 - Metrics estimated by repeated, nested (for ML methods) cross-validation
 - Visualization by effect-estimate plots

Summary of Analysis Methods

- Efficacy measures: BOR (Best Overall Response), PFS, OS
- Predictors: 3 continuous biomarkers (A, B, and C) and treatment arm
- Analysis population: 183 subjects
- Model-building approaches:
 - 2 machine learning (ML) methods: MARS (earth package) and Grouped Lasso (glinternet package)
 - Both methods allow for possible interactions among predictor variables
 - MARS allows also for potential non-linear effects of predictor variables
 - Generalized Linear Models (GLM), with interaction terms and all effects linear
 - Logistic Regression for BOR
 - Cox Proportional-Hazards Models for PFS and OS
- Model performance assessment:
 - Performance metrics: ROC, C-index, PPV and NPV
 - Metrics estimated by repeated, nested (for ML methods) cross-validation
 - Visualization by effect-estimate plots

Outline

Investigated 7 models

- 3 Single Biomarker models
- 3 Pairwise Biomarker models
- 1 3-way Biomarker model

Model Assessments

- Effect Size Estimates
- Prediction Matrix Plots
- Performance Metrics
- Hypothesis Testing

PFS, Individual Biomarkers (BM)

No noticeable interaction with treatment

PFS, BiomA+BiomB: Effect of BM on HR of TRT vs Control

PFS: Predicted Relative Hazard

PFS - ROC

TRT

PFS - AUC

PFS -

BOR - ROC

Acknowledgements

- Scott Chasalow
- Donald Jackson

Backup

GLM Likelihood Ratio Tests (LRTs)

- A saturated model includes all main effects and interactions for four variables BiomA, BiomB, BiomC, and Treatment Arm – with biomarker effects assumed linear
- 1. Test contribution of all biomarkers as a collective whole
 - Compare saturated model to reduced model containing only treatment effect
 - 1 Chi-Square Test with 14 Degrees of Freedom
- 2. Test contribution of individual biomarkers to saturated model
 - Compare saturated model to reduced model which excludes one of the biomarkers
 - 3 Chi-Square Tests with 8 Degrees of Freedom each
- 3. Test contribution of interactions with treatment arm to saturated model
 - Compare saturated model to reduced model which excludes all interactions containing treatment arm
 - 1 Chi-Square Test with 7 Degrees of Freedom
- Test contribution of each pair of biomarkers to a saturated model that excludes the third biomarker
 - Repeat Test 1 after excluding one biomarker at a time from saturated model
 - 3 Chi-Square Tests with 6 Degrees of Freedom each
- 5. Test contribution of each pair of biomarkers to saturated model
 - Compare saturated model to reduced model which excludes each pair of the biomarkers
 - 3 Chi-Square Tests with 12 Degrees of Freedom each

GLM Summary

		OR		PFS		os		
Hypothesis Test	Biomarker (BM)	N	P-value	FDR	P-value	FDR	P-value	FDR
1. Contribution of all BM	All	105	0.08	0.44	0.18	0.50	0.32	0.50
2. Individual BM contribution to saturated model	BiomA	105	0.36	0.50	0.20	0.50	0.35	0.50
	BiomB	105	0.70	0.70	0.56	0.64	0.68	0.70
	BiomC	105	0.04	0.44	0.30	0.50	0.59	0.65
3. Treatment-arm interactions	All	105	0.35	0.50	0.70	0.70	0.26	0.50
4. Contribution of BM pairs	A & B	124	0.30	0.50	0.01	0.18	0.26	0.50
	A & C	108	0.01	0.18	0.06	0.44	0.13	0.45
	B & C	132	0.10	0.45	0.30	0.50	0.32	0.50
5. Pairwise BM contribution to saturated model	A & B	105	0.52	0.64	0.27	0.50	0.41	0.54
	A & C	105	0.07	0.44	0.14	0.45	0.30	0.50
	B & C	105	0.14	0.45	0.55	0.64	0.53	0.64