Controlling for Observables

Alexander Torgovitsky

ECON 31720: Applied Microeconometrics University of Chicago, Fall 2020 Outline (0/35)

- Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- Imputation with the Propensity Score
- 6 Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- Summary

Overview (1/35)

Randomized controlled trials

- Form the cornerstone of causal inference the "ideal experiment"
- In economics especially, often do not capture exactly what we want
- Compliance, ethical, and cost issues when dealing with human subjects
- Forces us to mentally extrapolate, or else turn to observational data

Selection on observables

- A generalization of the assumption behind randomized controlled trials
- Conditional on covariates, treatment is "as good as randomly assigned"

Implementing selection on observables

- Giant literature due to biostatistics, focused on nonparametrics
- Propensity score sufficiency a key concept in implementation
- → Increasingly gets used elsewhere too e.g. DID designs

Outline (1/35) (3-5)

- Overview
- **2** Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- Imputation with the Propensity Score
- 6 Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- Summary

Notation

- Focus on the case of a binary treatment $D \in \{0, 1\}$
- Potential outcomes Y(0) and Y(1) with Y = DY(1) + (1 D)Y(0)
- Other observable variables *X*

Workhorse example

- *D* is enrolling in a job-training program
- Y(0), Y(1) and Y are potential and actual future earnings
- *X* are sociodemographics, work history, etc.
- Impact of (federally-funded) programs on labor market outcomes?
- Big topic in the 1980s–1990s, and still important (*massive* literature)
- Methodological proving grounds due to LaLonde (1986) critique
- → Heckman & Hotz (1989), Dehejia & Wahba (2002), Smith & Todd (2006)

Selection (3/35)

Definition

• There is **selection** into the treatment state *D* if

```
\underbrace{Y(d)|D=1}_{\text{observable}} \quad \text{is distributed differently from} \quad \underbrace{Y(d)|D=0}_{\text{unobserved}} \quad \text{for } d \in \{0,1\}
```

• Expected to occur if agents choose D with knowledge of (Y(0), Y(1))

Selection is a common concern

- Particularly concerning for neoclassical economists
- Agents choose job training $D \in \{0, 1\}$ to max utility
- Utility will incorporate expected future earnings Y(0), Y(1)
- Agents who choose D = 1 might do so because of low Y(0)
- Data commonly supports this story "Ashenfelter's (1978) dip"

The random assignment assumption

- Random assignment: $(Y(0), Y(1)) \perp D$
- → Treatment state and potential outcomes are independent
 - Random assignment implies that there is no selection

Identification under random assignment

• RA implies the (marginal) distributions of Y(0), Y(1) are identified:

$$F_{Y(d)}(y) \equiv \mathbb{P}[Y(d) \le y] = \mathbb{P}[Y(d) \le y | D = d] = \mathbb{P}[Y \le y | D = d]$$
 random assignment

- Any parameter that is a function of $F_{Y(0)}, F_{Y(1)}$ is also point identified
- \rightarrow e.g. ATE = $\mathbb{E}[Y(1)] \mathbb{E}[Y(0)] = \mathbb{E}[Y|D=1] \mathbb{E}[Y|D=0]$
 - Treated/untreated subgroups identical \Rightarrow ATE = ATT = ATU
 - X not needed, but often used for balance tests and variance reduction

"The fundamental problem of causal inference"

- Even with random assignment, joint distributions aren't (point) id'd
- \Rightarrow For example, quantiles of Y(1) Y(0)
 - Sometimes called the **fundamental problem of causal inference**
 - Intuitive: We never see both Y(0) and Y(1) for anyone
 - Still, random assignment is better than no random assignment!

Random assignment is hard to get

- Randomized controlled experiments are the leading (only?) case
- Common in biostatistics, e.g. drug trials
- Lab/field experiments widely used in economics too, but have limitations
- → "**external validity**" to be discussed more later
 - Random assignment rarely compelling with observational data
- \rightarrow When agents can control D, we typically expect selection

Definition

- Consider the **treatment/control contrast**: $\mathbb{E}[Y|D=1] \mathbb{E}[Y|D=0]$
- Without random selection this is contaminated with selection bias:

$$\mathbb{E}[Y|D=1] - \mathbb{E}[Y|D=0]$$

$$= \underbrace{\left(\mathbb{E}[Y(1)|D=1] - \mathbb{E}[Y(0)|D=1]\right)}_{\text{ATT}} + \underbrace{\left(\mathbb{E}[Y(0)|D=1] - \mathbb{E}[Y(0)|D=0]\right)}_{\text{selection bias}}$$

- First term is the causal effect for those who were treated
- Second term is how the treated would have been different anyway

Significance

- The mean contrast no longer represents the effect of D on Y
- → It is **confounded** with other differences between treated/untreated
 - Circumventing selection bias is the main challenge of causal inference
 - When random assignment doesn't hold, we turn to other tools

Definition

• Selection on observables is the assumption that

$$(Y(0), Y(1)) \perp \!\!\! \perp D|X$$

- AKA: unconfoundedness and ignorable treatment assignment
- \rightarrow Conditional on X, treatment is as-good-as randomly assigned
 - Random assignment the special case of X = 1

Thought experiment: a randomized controlled trial given X = x

- **2** Match treated (D = 1) and untreated agents (D = 0) with X = x
- \rightarrow Requires the **overlap condition**: $0 < \mathbb{P}[D = 0 | X = x] < 1$
- **3** Compare outcomes of the treated and untreated within X = x
- Aggregate across different values of X = x

Outline (7/35)

- Overview
- Selection on Observables
- **3** Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- 3 Imputation with the Propensity Score
- **6** Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- Summary

Argument

• Conditional version of random assignment:

$$F_{Y(d)}(y|x) \equiv \mathbb{P}[Y(d) \le y|X = x]$$

$$= \mathbb{P}[Y(d) \le y|D = d, X = x] = \mathbb{P}[Y \le y|D = d, X = x]$$

- Second equality requires the **overlap condition**: $\mathbb{P}[D=d|X=x]>0$
- Aggregating by averaging over *x* identifies the marginals:

$$F_{Y(d)}(y) \equiv \mathbb{P}[Y(d) \le y] = \mathbb{E}\left(\mathbb{P}[Y(d) \le y|X]\right) = \mathbb{E}\left(\mathbb{P}[Y \le y|D = d,X]\right)$$

Implication for specific parameters

- ATE = $\mathbb{E}\left[\mathbb{E}[Y|D=1,X]\right] \mathbb{E}\left[\mathbb{E}[Y|D=0,X]\right]$
- ATT = $\mathbb{E}[Y|D=1]$ $\mathbb{E}[\mathbb{E}[Y|D=0,X]|D=1]$ first term is easy
- ATU = $\mathbb{E}\left[\mathbb{E}[Y|D=1,X]|D=0\right] \mathbb{E}[Y|D=0]$ second term is easy

ATE

- Let $\mu_d(x) \equiv \mathbb{E}[Y|D=d, X=x]$ for $d \in \{0, 1\}$
- Previous expressions involve averaging over $\mu_0(X)$ and/or $\mu_1(X)$, e.g.

$$ATE = \underbrace{\mathbb{E}}_{\text{over } X} \Big[\mathbb{E}[Y|D=1,X] - \mathbb{E}[Y|D=0,X] \Big] \equiv \underbrace{\mathbb{E}}_{\text{over } X} \Big[\mu_1(X) - \mu_0(X) \Big]$$

• An **imputation estimator** of the ATE based on data $\{(Y_i, D_i, X_i)\}_{i=1}^N$ is

$$\widehat{\text{ATE}} \equiv \frac{1}{N} \sum_{i=1}^{N} \widehat{\mu}_1(X_i) - \widehat{\mu}_0(X_i) \quad \text{where } \widehat{\mu}_d(x) \text{ is an estimator of } \mu_d(x)$$

• Estimate conditional means, then take the sample analog

ATT/ATU are similar, but require less estimation

- ATT/ATU only need $\mu_0(X)/\mu_1(X)$ $\mathbb{E}[Y|D=d]$ estimated directly
- Sample average should be conditional on D = 1 or D = 0

Estimating conditional means

- Need to choose estimators $\hat{\mu}_0$ and $\hat{\mu}_1$
- → Many nonparametric options see previous lecture
 - Curse of dimensionality will typically kick in quickly
 - Most common are linear regression and matching

Imputation with linear regression

- Easiest: regress Y on X and D, take coefficient on D
- Better: regress Y on X among D = d: $\mu_d(x) = \alpha_d + \beta'_d x$ then impute:

$$\widehat{ATE} = \underbrace{\overline{Y}_1 - \overline{Y}_0}_{\text{naive contrast}} + \underbrace{\left(\frac{N_1}{N}\widehat{\beta}_0 + \frac{N_0}{N}\widehat{\beta}_1\right)'\left(\overline{X}_0 - \overline{X}_1\right)}_{\text{regression adjustment}}$$

- Concerns about functional forms driving results via extrapolation
- → The usual concern when using a parametric estimator

Linear regression imputation as a weighted average (scalar X_i)

$$\widehat{\mathbb{E}}[Y(0)|D=1] = \frac{1}{N_0} \sum_{i:D_i=0} Y_i \bar{W}_{i0} \quad \text{where} \quad \bar{W}_{i0} \equiv 1 - (X_i - \bar{X}_0) \left(\frac{\bar{X}_0 - \bar{X}_1}{\bar{X}_0^2 - \bar{X}_0^2} \right)$$

Example due to Imbens (2015)

- LaLonde (1986) data, target parameter is ATT, just need $\mathbb{E}[Y(0)|D=1]$
- Control group taken from Current Population Survey
- \rightarrow General population, so has *much* higher past earnings
 - If X_i is earnings before the program, then weighting above becomes

$$W_i = 2.8091 - .0949 \times X_i$$

- So $X_i = 100K \Rightarrow W_i \approx -6.67$ high earners negatively weighted
- Would probably prefer weighting them 0 why should they matter?

Define distance and matches

- Mahalonobis: $\operatorname{dist}_{ij} \equiv (X_i X_j)' \hat{V}^{-1} (X_i X_j)$ \hat{V} var-cov matrix
- \rightarrow Gives all X's the same scale can also just use the diagonal
 - For each *i*, find *K*th smallest element of $\{\operatorname{dist}_{ij}: D_j \neq D_i\}_{i=1}^n$ $\operatorname{dist}_i^{\star}$
 - Let $\mathcal{J}_i = \{j : D_j \neq D_i \text{ and } \operatorname{dist}_{ij} \leq \operatorname{dist}_i^{\star} \}$
- \rightarrow Could have more than K elements if there are ties

Impute

Apply the general formula with

$$\hat{\mu}_d(X_i) = \mathbb{1}[D_i = d]Y_i + \mathbb{1}[D_i \neq d] \frac{1}{|\mathcal{J}_i|} \sum_{j \in \mathcal{J}_i} Y_j$$

- Use Y_i to impute $Y_i(D_i)$ (could also do this with any other method!)
- Use average Y_i for $\approx K$ closest matches to impute $Y_i(d), d \neq D_i$

Outline (12/35)

- 1 Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- 3 Imputation with the Propensity Score
- **6** Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- 10 Summary

Angrist (1998) (13/35)

Empirical question

- US military plays an important role in labor market for young men
- What is the effect of *volunteer* service on future labor market outcomes?

Empirical challenge

- Voluntarily serving in the military is not random
- Influenced by other job options, as well as health and screening
- Veterans more likely to be healthier, but had worse job prospects

Data

- US military admin. data linked with Social Security earnings
- Only covers those who have applied and taken preliminary tests
- $\bullet \approx 300,000$ observations with some demographics and test scores

Variables

- *Y* is earnings in a given year (both pre- and post- service)
- D is whether an applicant ended up serving in the military
- X is race, application year, schooling, AFQT, age

Selection on observables assumption

- "Conditional on *X* and applying, serving in military is independent of potential labor market outcomes"
- → Nothing that we can't see matters for both serving and outcomes
 - Job prospects, interview, psych. eval., firm handshake, face tattoo ...?

Implementation

- Splits by race, then discretizes *X* into roughly 450 cells
- Binning/saturated regression imputation estimator of ATT
- Also, "semi-saturated" regression of Y on D and X ...

Result from Angrist (1998)

- Regress *Y* on *D* and fully saturated *X* (but no interactions)
- *Not* a saturated regression (no interactions) "semi-saturated"?
- The coefficient on *D* converges to β_{ssat} :

$$\beta_{\text{ssat}} \equiv \mathbb{E} \left[\frac{\text{Var}(D|X)}{\mathbb{E}[\text{Var}(D|X)]} \left(\mu_1(X) - \mu_0(X) \right) \right] \quad \text{(see supplement)}$$

Discussion

- Shows a particular LR is a positively-weighted average of $\mu_1(x) \mu_0(x)$
- $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$ Nonparametric imputation has positive weights, but LR can be negative
- Positive weights necessary but not sufficient for an interesting parameter
- \rightarrow But $\beta_{\text{ssat}} \neq \text{ATE}, \text{ATT}, \text{ATU}$ how to interpret?
 - Our first example of **reverse engineering** why do this?

		v	Vhites	
Year	Mean (1)	Difference in Means ^c (2)	Controlled Contrast (3)	Regression Estimates (4)
A. Ea	rnings ^a			
74	182.7	-26.1	-14.0	-13.0
		(7.0)	(9.2)	(9.4)
75	237.9	-41.4	-14.2	-12.0
		(6.3)	(7.6)	(7.8)
76	473.4	-47.9	-14.8	-12.7
		(8.1)	(9.0)	(9.3)
77	1012.9	-7.1	-8.6	-9.4
		(11.3)	(12.3)	(12.2)
78	2147.1	40.3	-23.5	-22.4
		(16.7)	(18.1)	(17.2)
79	3560.7	188.0	-8.4	-11.2
		(21.0)	(23.2)	(21.6)
80	4709.0	572.9	178.0	175.9
		(23.4)	(27.2)	(24.6)
81	6226.0	855.5	249.5	249.9
		(27.2)	(32.4)	(29.1)

82 7200.6 1508.5 783.3 782.4 (30.3) (36.4) (32.5) 83 8398.1 1390.5 588.8 601.5 84 9874.2 (32.4) (41.1) (36.6) 84 9874.2 652.8 -235.7 -198.5 (39.5) (46.9) (41.7) 85 10972.7 469.8 -521.3 -459.6
83 8398.1 1390.5 588.8 601.5 (34.4) (41.1) (36.6) 84 9874.2 652.8 -235.7 -198.5 (39.5) (46.9) (41.7) 85 10972.7 469.8 -521.3 -459.6
84 9874.2 652.8 -235.7 -198.5 (39.5) (46.9) (41.7) 85 10972.7 469.8 -521.3 -459.6
84 9874.2 652.8 -235.7 -198.5 (39.5) (46.9) (41.7) 85 10972.7 469.8 -521.3 -459.6
(39.5) (46.9) (41.7) 85 10972.7 469.8 -521.3 -459.6
85 10972.7 469.8 -521.3 -459.6
(11.6) (50.6)
(44.6) (52.6) (46.8)
86 12004.5 543.7 -557.3 -491.7
(50.4) (59.0) (52.5)
87 13045.7 663.9 -548.0 -464.3
(54.6) (63.9) (56.8)
88 14136.1 904.3 -415.5 -311.7
(58.3) (68.2) (60.6)
89 14716.1 1169.1 -248.6 -136.3
(61.0) (71.2) (63.2)
90 14886.1 1300.8 -154.5 -53.2
(63.0) (73.6) (65.2)
91 14407.9 1559.6 29.8 146.2
(64.6) (75.6) (66.9)

- Naive contrast (2) small before application but grows larger
- \rightarrow Same sign in the short-run, but flips in the long-run
 - Nonparametric (3) and semi-saturated (4) somewhat similar ("cosmetic")
 - But still important differences and estimate different parameters

Outline (16/35)

- Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- **S** Imputation with the Propensity Score
- 6 Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- Summary

Definition

- Binary treatment case, $D \in \{0, 1\}$
- $p(x) \equiv \mathbb{P}[D=1|X=x]$ is called the **propensity score**
- Let $P \equiv p(X)$ be the random variable $\mathbb{P}[D=1|X]$

Rosenbaum and Rubin (1983) sufficiency argument

• Selection on observables implies $(Y(0), Y(1)) \perp D|P$. **Proof:**

$$\mathbb{P}[D = 1 \mid Y(0), Y(1), P] = \mathbb{E}\left(\mathbb{P}[D = 1 \mid Y(0), Y(1), P, X] \mid Y(0), Y(1), P\right) \\
= \mathbb{E}\left(\mathbb{P}[D = 1 \mid Y(0), Y(1), X] \mid Y(0), Y(1), P\right) \\
= \mathbb{E}\left(\mathbb{P}[D = 1 \mid X] \mid Y_0, Y_1, P\right) \\
\equiv \mathbb{E}(P \mid Y(0), Y(1), P) = P \qquad \text{Q.E.D.}$$

- Implication is that we can condition on P instead of X
- Still need overlap, but now with *P* (scalar) instead of *X* (vector)

The propensity score and dimension reduction

- Sufficiency \Rightarrow replace $\mu_d(x)$ with $\nu_d(p) \equiv \mathbb{E}[Y|D=d, P=p]$
- \rightarrow Given estimates $\hat{P}_i \equiv \hat{p}(X_i)$, we can impute with \hat{P}_i in place of X_i
 - Appears to break the curse of dimensionality since *P* is scalar
- \rightarrow But of course it doesn't now we need to estimate p(x)
 - Still, having to parameterize p is arguably better than both (μ_0, μ_1)
 - In practice, usually see a logit estimator for \hat{p}

Estimators

- **Propensity score matching** is very popular in biostatistics
- Basically the same as matching and no Mahanobis distance needed
- $\rightarrow\,$ Although there are dozens of variations (replacement? one-to-one? etc.)
 - Imbens (2015) recommends blocking with a linear regression . . .

- One could use kernel or sieve methods for $\nu_d(p)$
- Subclassification (**blocking**) is a particular type of sieve
- \rightarrow Constant spline, also called a partitioning estimator

Blocking

- Divide [0, 1] into $\{b_0, b_1, \dots, b_J\}$ with $b_0 = 0, b_J = 1$
- Define $B_j = 1$ if $p(X) \in (b_{j-1}, b_j)$ as membership in block j
- If $b_i b_{i-1}$ is small then roughly random assignment within block
- Estimate $\widehat{ATE}_j = \overline{Y}_{1,j} \overline{Y}_{0,j}$ per block, i.e. conditional on $B_j = 1$
- Then average \widehat{ATE}_i by block size into \widehat{ATE}
- Key question is how to construct the blocks
- Imbens (2015) suggests an algorithm based on testing $D \perp X | \{B_j\}_{j=1}^J$
- $\rightarrow D \perp \!\!\! \perp X | P$ implied by selection on observables so check within blocks

Combining two approaches

- Imbens (2015) suggests combining blocking with linear regression
- First construct the blocks
- Then within each block, run a linear regression Y on 1, D, X
- Coefficient on D for each block, average up over blocks

Why?

- Intuitively, this could potentially reduce both bias and variance
- The variance part is clear if accounting for *X* reduces variation in *Y*
- The bias part is less clear (i.e. not necessarily true) ...
- Recall that linear regression extrapolates if $\overline{X}_1 \neq \overline{X}_0$
- \rightarrow However within each block $X_1 \approx X_0$ little extrapolation
 - Adjusting for *X* reduces remaining differences within blocks
- → But presumably the remaining differences should be small anyway?

Outline (20/35)

- Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- Imputation with the Propensity Score
- **6** Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- 10 Summary

Only predetermined observables

- For selection on observables to be plausible, *X* should be **predetermined**
- In particular, D should not have a causal effect on X
- ullet Usually this really is a temporal issue (i.e. measured before vs. after D)
- Intuition is clear we want to condition on selection *into* treatment

Simple but trivial example

- Suppose we accidentally included *Y* as part of *X*
- Then clearly we aren't going to have $(Y(0), Y(1)) \perp D|X$

Less trivial examples in the context of job training

- Don't include earnings 1 year after the program in X
- Don't include employment after the program in X
- \bullet Don't include marital status after the program in X
- Ok to include sunspots after the program, but it won't help

Question

- Suppose $(Y(0), Y(1)) \perp D|X_1, X_2, X_3, \dots$
- All we have available is X_1
- Is it better to condition on X_1 instead of not conditioning on anything?

Answer

- Not necessarily
- → Surprising? Conditioning on something should be better than nothing?
 - Why: Selection bias conditional on X_1 could be worse than unconditional
- \rightarrow See the supplemental notes for a simple example

Implications

- Means we really need to have "the correct set of X"
- ⇒ Need to be careful with automated model selection (machine learning)
 - Point is not well-appreciated but should be concerning

Placebo Tests (23/35)

Idea and motivation

- Selection on observables is not directly testable more next lecture
- Instead, auxiliary placebo tests are sometimes used as support
- Suppose there is another variable W known to be unaffected by D
- \rightarrow Typical choice would be another pre-determined covariate not in X
 - Suppose we treat W as Y and estimate the ATE
 - If we reject the hypothesis that ATE = 0, then we should be concerned
- \rightarrow Suggests unobservable differences in treated/untreated given X

Critique

- Can be difficult to see what would comprise a good W
- Needs to be something that is not otherwise included in X
- Otherwise you are changing the selection on observables assumption
- Also need power not rejecting when W is a sunspot isn't helpful

Inherent unobservables

- Selection on observables can be difficult to believe in economics
- → Inherent unobservables: preferences, private info, expectations, ...
- Observationally identical people behave differently due to ... a coin flip?

Controlling for more is not a solution

- Often argued that large *X* makes selection on observables "more likely"
- \rightarrow But remember the previous example conditioning on more was worse
- Even if you buy this, still raises an uncomfortable friction with overlap
- \rightarrow If we could *perfectly* explain D with X then $\mathbb{P}[D=1|X] \in \{0,1\}$

Better methods for choosing observables will not solve this

- Selection on observables is seeing a resurgence with machine learning
- Fancier methods, but the identifying assumption is still the same
- Bias/variance trade-off is not the first-order issue here

Outline (24/35) (24/35)

- Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- 3 Imputation with the Propensity Score
- 6 Assessing Selection on Observables
- **7** Empirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- 10 Summary

Empirical question

- Local discretion in the US on stringency of environmental regulation
- What is the effect of this on where manufacturers locate?
- \rightarrow Is there a "race to the bottom"?

Empirical challenge

- Local governments do not randomly choose environmental enforcement
- Influenced by current federal attainment status and economic health
- Also potentially confounded by public attitudes/demographics

Data

- County-level yearly panel data 1980–1990 for New York state
- 62 counties observed in each of 11 years \Rightarrow sample size 682
- Number of individual plant openings and closings
- Federal ozone attainment status and other county characteristics

Variable	Mean	In-Attainment Mean	Out-of-Attainment Mean	Definition and Source
New pollution-intensive plants	0.41 (0.89)	0.31 (0.64)	0.70 (1.32)	Actual count of new plants from 1980 to 1990 labeled as having production activities that are pollution-intensive. Industrial Migration File, NYS DED.
New non-pollution- intensive plants	1.05 (2.09)	0.71 (1.25)	2.02 (3.36)	Actual count of new plants from 1980 to 1990 labeled as having production activities that are non-pollution-intensive. Industrial Migration File, NYS DED.
Attainment status	0.26 (0.44)	-	-	Intensity of county-level pollution regulations. Dichotomous variable = 1 if county is out of attainment of federal standards for ozone, 0 otherwise. Federal Register Title 40 CFR, Part 81.305.
In(employment)	10.81 (1.33)	10.55 (1.15)	11.59 (1.53)	Natural logarithm of total employment in manufacturing. <i>County Business Patterns</i> .
ln(wage)	9.71 (0.23)	9.74 (0.22)	9.65 (0.25)	Natural logarithm of total annual manufacturing payroll divided by the number of employees by county, adjusted for inflation. <i>County Business Patterns</i> .
In(population)	11.66 (1.25)	11.39 (1.07)	12.47 (1.38)	Natural logarithm of county population. Current Population Reports, U.S. Bureau of Census.
ln(property tax)	6.26 (0.34)	6.27 (0.35)	6.25 (0.28)	Natural logarithm of real property tax collected per capita. Census of Governments.

Data are for the 62 New York counties from 1980 to 1990. N = 682 (176 out of attainment). Standard deviations in parentheses.

- Y is number (or net number) of plants that open in a year
- $D \in \{0, 1\}$ is federal attainment status (D = 1 is polluted)
- X are wages, existing plants, population, per capita income, etc.

The selection on observables assumption

- Y(0), Y(1) are plants that would have opened under attainment status
- Assumption: Conditional on county-time observation characteristics, actual attainment status is independent of potential plant openings

One-to-one propensity score matching with caliper

- Estimate propensity score by county-year specification next slide
- 2 Match each treated observation to observation w/ closest *P* among:
 - Untreated and in the same year (across counties)
 - Untreated and in the same year/region (across counties)
 - Untreated and in the same county (across years)
- \rightarrow Like matching on both P and certain components of X
 - Drop if difference in *P* is greater than .01 or .05 (**caliper matching**)
 - Drop untreated observations not matched to a treated observation (ATT)
- Take simple difference in means across treated/untreated pairs

TABLE A2.—FIRST-STAGE LOGIT ESTIMATES OF THE DETERMINANTS OF ATTAINMENT STATUS

		Coeffic	ient (SE)	
Independent Variable	(1)	(2	!)
Neighboring attainment status Man. employment Property taxes	2.85* 1.99E-06 -1.85E-03*	(0.33) (1.29E-06) (8.75E-04)	-	-
Man. wages (Man. wages) ¹ (Man. wages) ²	-3.95E-06	(7.08E-05)	3.63E-03 -2.23E-07 4.27E-12	(2.55E-03) (1.41E-07) (2.74E-12)
Man. plants (Man. plants) ¹ (Man. plants) ²			1.40* -0.09* 1.84E-03*	(0.58) (0.05) (1.04E-03)
Population Population ¹ Population ²	1.62E-06*	(5.09E-07)	-1.85E-06 7.37E-12 -3.14E-18*	(6.28E-06) (6.12E-12) (1.82E-18)
Per capita income (Per capita income) ¹ (Per capita income) ²			4.73E-03* -1.86E-07* 2.63E-12*	(1.25E-03) (9.64E-08) (1.40E-12)
Man. wages × man. plants Man. wages × population Man. wages × per capita income Man. plants × population Man. plants × per capita income Population × per capita income			-9.57E-06 1.08E-09* -1.61E-08 -8.61E-07* 1.67E-05 -8.88E-10*	(3.20E-05) (4.53E-10) (6.61E-08) (3.54E-07) (3.04E-05) (4.10E-10)
Time effects Log likelihood Pseudo R ¹ N	Yo -18 0.: 68	80.7 54	Y: -14 0.6 68	15.8 53

Dependent variable is equal to 1 if county is out of attainment of federal ozone standards during the year, 0 otherwise. Neighboring attainment status is the percentage of western contiguous neighbors that out of attainment.

Time effects jointly significant at the 1% level.

¹ Standard errors are in parentheses beside the coefficient estimates and are adjusted for clustering within counties. * indicates significant at the 10% level using a two-sided alternative.

² Model (1) is used in the two-step FE Poisson estimation. Model (2) is used to generate the propensity score estimates.

Results (29 / 35)

Table 1.	.—Propensity	SCORE	ESTIMATES OF	ATTAINMENT-	STATUS .	EFFECT
----------	--------------	-------	--------------	-------------	----------	--------

		Matching Algorithm						
	Within Year Max. Difference		Within Region & Year Max. Difference		Within County Max. Difference			
Independent Variable	(0.01)	(0.05)	(0.01)	(0.05)	(0.01)	(0.05)		
Propensity score	-0.00	0.00	0.00	0.00	0.00	0.01		
ropensity score	(0.99)	(0.97)	(0.98)	(0.98)	(1.00)	(0.97		
Man. wages (\$1000s)	-0.73	-0.20	-0.06	-0.91	0.54	-0.01		
	(0.33)	(0.66)	(0.98)	(0.44)	(0.60)	(0.99		
Man. employment (\$1000s)	-38.86	-52.88	29.94	4.05	3.11	2.53		
	(0.27)	(0.07)	(0.63)	(0.93)	(0.98)	(0.98		
Man. plants	-0.72	-0.76	-0.79	-2.37	0.59	0.48		
	(0.52)	(0.32)	(0.82)	(0.26)	(0.70)	(0.74		
Population (1000s)	-53.91	-40.74	59.49	4.61	-0.65	-0.31		
	(0.50)	(0.57)	(0.55)	(0.96)	(1.00)	(1.00		
Per capita income (\$1000s)	-0.09	0.15	-0.66	-0.61	0.33	-0.20		
	(0.89)	(0.72)	(0.79)	(0.66)	(0.84)	(0.90		
Property tax	-31.38	7.85	-389.13	-186.81	1.22	1.00		
	(0.40)	(0.73)	(0.06)	(0.10)	(0.98)	(0.98		
High school graduates (%)	-1.10	-0.85	-3.61	-3.39	-1.09	-0.89		
	(0.34)	(0.29)	(0.32)	(0.12)	(0.70)	(0.71		
Highway expenditure	-0.01	0.01	-0.16	-0.07	-0.00	-0.00		
	(0.38)	(0.31)	(0.09)	(0.16)	(0.97)	(0.92		
Number of matched pairs	37	81	8	16	9	11		
Number of unique controls	33	44	8	15	6	7		

entries represent mean difcontrols groups are equal.

- Three matches and two calipers each their preferred columns
- Well-balanced on p-score (by construction) on observables it varies
- Observables left out of p-score (e.g. property tax) seen as placebo

[&]quot;Dirty" plants are those defined as pollution-intensive (see text); "clean" are all remaining manufacturing plants.
"Unique controls" reports the number of control counties that are matched with at least one treatment county.

Results (29 / 35)

	TABLE 1.—PROPENSITY	SCORE ESTIMATES OF	F ATTAINMENT-STATUS EFFECT
--	---------------------	--------------------	----------------------------

	Matching Algorithm						
	Within Year Max.		Within Region & Year		Within County Max.		
	Difference		Max. Difference		Difference		
Independent Variable	(0.01)	(0.05)	(0.01)	(0.05)	(0.01)	(0.05)	
New dirty plants $(\tau_{TT,\cdot})$	-0.32	-0.69	0.38	-0.19	(1.33	-1.18	
	(0.08)	(0.00)	(0.25)	(0.60)	(0.09)	(0.07)	
New clean plants	0.03	-0.59	1.25	0.50	0.00	-0.18	
	(0.95)	(0.08)	(0.07)	(0.36)	(1.00)	(0.84)	
Net new plants $(\tau_{DID,\cdot})$	-0.35	-0.10	-0.88	(-0.69	(-1.33	-1.00	
	(0.27)	(0.68)	(0.12)	(0.05)	(0.03)	(0.08)	
Lagged new dirty plants (1 year)	-0.07 (0.79)	-0.06 (0.70)	0.71 (0.08)	0.43 (0.10)	1.00 (0.12)	1.04	
Lagged net new plants (1 year)	0.53 (0.31)	0.71 (0.04)	0.50 (0.41)	0.44 (0.43)	0.00 (1.00)	-0.14 (0.74)	

- New dirty plants are the main outcome
- Also net (dirty clean) new plants argue differences out unobservables
- Lags and clean plants viewed as types of balance/placebo tests
- Preferred estimates are -.7 to -1.3 plants (off of a mean of .4)

Outline (29/35)

- Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- 3 Imputation with the Propensity Score
- 6 Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- Summary

Bootstrap

• Variance calculations are complicated even for imputation estimators:

$$\frac{1}{N} \sum_{i=1}^{N} \hat{\mu}_1(X_i) - \hat{\mu}_0(X_i) \quad \text{complicated by extra} \quad \frac{1}{N} \sum_{i=1}^{N}$$

- Propensity score methods have two steps, make this even more annoying
- Possible to derive SE formulas, but why? Just use the bootstrap ...

Caveat: matching estimators

- The bootstrap requires some underlying smoothness to work
- \rightarrow It is conditional on data, parameter needs to change smoothly with data
 - Matching estimators are not smooth (Abadie and Imbens, 2008)
 - Abadie and Imbens (2006, 2016), Imbens (2015) provide SE formulas

Something to be alert about

• Some (mainly/only Imbens?) argue we should do statistical inference on

$$\underbrace{\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[Y_i(1) - Y_i(0) | X_i]}_{\text{"conditional ATE" (CATE)}} \quad \textit{instead of} \quad \underbrace{\mathbb{E}[Y(1) - Y(0)]}_{\text{the usual population ATE}}$$

- The asymptotic variance of the CATE is always weakly lower
- \rightarrow Intuitively, not taking into account variation in X_i

I recommend focusing on population treatment effects

- It is more standard, everyone will know what you are talking about
- I have not seen a compelling scientific argument for CATE
- \rightarrow Here's one against: your parameter of interest now depends on your data
 - Moving the goalposts to gain a few *p*-value points isn't worth it

Outline (31/35)

- Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- 3 Imputation with the Propensity Score
- 6 Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- 10 Summary

The ATE as a weighted average

• Selection-on-observables implies a weighting result using *P*:

ATE =
$$\mathbb{E}\left[\frac{Y(D-P)}{P(1-P)}\right]$$
 (see supplement)

• Similar expressions can be derived for the ATT and ATU, e.g.

$$ATT = \mathbb{E}\left[\frac{Y(D-P)}{\mathbb{P}[D=1](1-P)}\right]$$

Implementation

- Estimate P, then take a simple average of weighted Y
- Another way of shifting the curse of dimensionality to p(x)
- Practical issues with P being close to 0 or 1 trimming
- \rightarrow Probably why less popular (but see Busso et al 2014, Ma & Wang 2019)

Idea

- Imputation based on *X* requires modeling $\mu_d(x)$, but not p(x)
- Propensity score weighting requires modeling p(x), but not $\mu_d(x)$
- Model both and combine into a **doubly robust** estimator
- \rightarrow Consistent estimator if either $\mu_d(x)$ or p(x) is correctly specified

Form of the estimator

• Take propensity score weighting and add a correction term:

$$\mathbb{E}\left[\frac{DY}{p(X)} - \frac{(D - p(X))}{p(X)}\mu_1(X)\right] = \mathbb{E}[Y(1)] \quad \leftarrow \text{ see supplement}$$

- Equality holds if $p(x) = \mathbb{P}[D = 1 | X = x]$ or $\mu_1(X) = \mathbb{E}[Y(1) | X = x]$
- Estimate by sample analog replace p(x) by $\hat{p}(x)$ and $\mu_1(x)$ by $\hat{\mu}_1(x)$
- Analogous argument holds for $\mathbb{E}[Y(0)]$

We haven't discussed multivalued treatments ...

- It is interesting many counterfactual states are multivalued
- Selection on observables becomes: $\{Y(d)\}_{d \in \mathcal{D}} \perp D|X$
- Not many interesting/relevant methodological differences
- $\rightarrow \ \mbox{Some details regarding the (generalized) propensity score (problem set)}$
 - The literature is overwhelmingly about $D \in \{0, 1\}$

Why the focus on binary treatments? (Speculation)

- The reason seems (to me) to be mostly sociological
- Nonparametric methods are highly valued by those in this literature
- With $D \in \{0, 1\}$ there is only nonparametric (at least, in D)
- If $D \in \{0, 1, 2\}$, then one needs to make a choice:
- 1. Make a (potentially wrong) functional form assumption
- 2. Remain nonparametric basically reduces back to the binary case
- Community is against the first option, and second has low payoff

Outline (34/35) (34/35)

- 1 Overview
- Selection on Observables
- 3 Imputation Estimators
- 4 Empirical Example #1: Angrist (1998)
- 3 Imputation with the Propensity Score
- 6 Assessing Selection on Observables
- Tempirical Example #2: List et al (2003)
- Statistical Inference
- Other Approaches
- Summary

Summary (35 / 35) (35 / 35)

Key points

- Selection on observables a generalization of random assignment
- Many ways to implement dimensions reduction with propensity score
- → Methods differ on details, not on the main idea
 - Requires strong assumptions about role of unobservables
- → "Inherent unobservables" are crucially important in economics
 - Not a satisfying choice model given X, choices are ... random?
 - Requires conditioning on exactly the right set of *X*'s

What next?

- Selection on observables is less widely used in economics now
- Researchers want to allow for selection on *unobservables*
- We will discuss methods that allow for this (to differing degrees)
- Alternatives come with other challenges (heterogeneity & extrapolation)