

CarbonSage

Track. Reduce. Sustain.

By Team elasticSearch

For Hacknosis: Sustainable MedTech

PROBLEM STATEMENT

The carbon footprint of our gadgets, the internet, and the essential systems supporting them accounts for 3.7% of global greenhouse emissions – on par with the airline industry. These emissions are predicted to double by 2025 as more devices hit the market, including smart medical devices.

Key Challenges:

- Increasing carbon emissions from technology usage.
- Need for effective monitoring and reduction strategies.
- Lack of awareness and tools for optimizing energy consumption.

OUR WORLD, NOW!

CO, Data of 2022 (tonnes)

CHINA	11,396,777,000.00			
ASIA	10,375,572,000.00			
EUROPE	5,105,307,700.00			
USA	5,057,303,600.00			
AFRICA	1,416,626,600.00			
LATAM	1,085,392,400.00			

REGION-WISE ANNUAL CO₂ EMISSIONS

Data source: Global Carbon Budget (2023) - Learn more about this data

SOLUTION OVERVIEW

<u>Hackathon Objective:</u> Develop a solution that can calculate, track, and reduce carbon emissions generated by devices or data usage, with auto-reporting using Opentext.

OUR 3 STEP APPROACH

KEY FEATURES

Anomaly Detection preventing Faults

For tracking excessive CO2 emissions helping prevent potential Faults

Code Alternative

Analyze code block carbon emissions and suggest efficient code alternatives using LLM.

CO2 Per Microservice

Calculating CO2
emission and energy
use on per
microservice basis

Usage Reporting

Generation of daily usage reports on service wise carbon emissions

Data Collection and Storage (1/2)

Data Collection and Storage We store the data mainly in two phases. (2/2)

- 1. Function/Module-Wise CO2 Data per Stress Level (Stored only at testing phase)
 - a. We break the whole project into multiple microservices using code analysis LLMs such as CodeLlama and host them on different endpoints for stress testing.
 - b. We automatically generate test cases with respect to different stress levels.
 - c. We monitor different parameters like CPU usage, RAM usage, and power consumption using monitoring and tracking tools such as Green Coding IO.
- 2. Real-time CO2 Data: Time Series for the Entire Project (Stored at production phase / realtime)
 - a. We host the target project on cloud platforms such as AWS, GCP, or Localhost.
 - We monitor the system parameters with respect to the actual real-time user traffic.
 - c. We store the data in a time series format in AWS Timestream.

FORECAST

PREDICTION

Based on the CO2 time series data and service usage, predict growth of CO2 emissions

COST-BENEFIT ANALYSIS

Corroborate CO2 emission reductions with reduction in lines of code, code efficiency. Estimate effort for target reduction of CO2 emissions

OPENTEXT ALERT NOTIFICATION

Based on abnormal or high CO2 emissions, notification is sent to project lead and writer of specific function/microservice

Code profiling for resource usage

Detailed Mechanism

Usage Analytics Generation

Threshsold

Data Utilisation & Processing (1/2)

Data Utilisation & Processing (2/2)

We mainly use three kinds of data:

- 1. Real-time CO2 Data: Time Series for the Entire Project
- 2. Function / Module Wise CO2 data per stress level
- 3. Functional And Non-Functional Points per module and project

Here are some use cases we offer:

- 1. Module wise resource estimation
- 2. Optimized Code Suggestion
- 3. Anomaly Detection to prevent potential Faults
- 4. Scheduled Reports
- 5. Notification Alerts for high CO2 emission and energy use

TOOLS REQUIRED

Services

- 1. OpenText
- 2. green-coding

AI Frameworks

- 1. Python
- 2. LlamaIndex
- 3. codellama

Web Frameworks and databases

- NextJS (For frontend and dashboards)
- Flask (For backend API design)

USER EXPERIENCE

USER EXPERIENCE

Function Profile Map									
FUNCTION ID	CPU %	PAGEINS	PFAULTS	PHYSICAL MEMORY (RSS MB)	VIRTUAL MEMORY (VMS MB)	ELAPSED TIME (SECS)	ENERGY CONSUMPTION (KWH)	CO2 EMISSION: (KG)	
4247	0.00%	165	2079	22.66 MB	400848.14 MB	1.00 secs	0.00 kWh	0.000029 kg	
8550	0.00%	165	2079	22.66 MB	400848.14 MB	1.00 secs	0.00 kWh	0.000029 kg	
9412	0.00%	165	2079	22.66 MB	400848.14 MB	1.00 secs	0.00 kWh	0.000029 kg	
9996	0.00%	165	2079	22.66 MB	400848.14 MB	1.00 secs	0.00 kWh	0.000029 kg	
13634	0.00%	165	2079	22.66 MB	400848.14 MB	1.00 secs	0.00 kWh	0.000029 kg	
13723	0.00%	165	2079	22.66 MB	400848.14 MB	1.00 secs	0.00 kWh	0.000029 kg	
14331	0.00%	165	2079	22.66 MB	400848.14 MB	1.00 secs	0.00 kWh	0.000029 kg	
17049	6.40%	165	2071	22.53	400830.14	1.00	0.00 kWh	0.00003	

Analytics Dashboard

Data from Aug 25, 2024 22:56:33 to Aug 25, 2024 22:56:53

IMPACT

Reducing energy consumption can save businesses millions annually (Energy Star).

Environmental Benefits

Green technologies can reduce carbon emissions (McKinsey & Company).

8%

Data Driven Innovation

Leveraging data analytics can achieve higher operational efficiency (Deloitte).

Competitive Advantage

Global consumers are willing to pay more for sustainable brands (Nielsen).

FUTURE WORKS

Integration with Cloud Providers

Develop plugins and APIs for seamless integration with major cloud platforms (AWS, Azure, GCP).

Data Security and Privacy

Ensure compliance with data protection regulations (e.g., GDPR, CCPA).

Regulatory Compliance

Help users comply with global and local emission regulations. Provide regular updates on regulatory changes and their impact on emissions tracking.

Thank You

