CBSE CLASS 9

CHAPTER 7: EXERCISE 1.8

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B see Fig. 1. Show that:

Figure 1: $\triangle \mathbf{ACB}, \triangle \mathbf{DCB}$ with Mid-Point \mathbf{M}

- (i) $\triangle AMC \cong \triangle BMD$
- (ii) $\angle \mathbf{DBC}$ is a right angle.
- (iii) $\triangle \mathbf{DBC} \cong \triangle \mathbf{ACB}$
- (iv) $\mathbf{CM} = \frac{1}{2}\mathbf{AB}$

Solution:

CONSTRUCTION STEPS:

(a) Let us Assume , the input parameters as ;

Parameter	Value	Description
θ	90°	$\angle \mathbf{DBC} = \angle \mathbf{ACB}$
В	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Reference point at Origin
C	$\begin{pmatrix} 6 \\ 0 \end{pmatrix}$	point C on the same axis of B

Table 1: Input Parameters

(b) the output can be calculated as ;

Parameter	Value	Description
l	$\ \mathbf{B} - \mathbf{C}\ $	Length of BC
M	$\left(\frac{\mathbf{A}+\mathbf{B}}{2}\right)$	Mid-point of AB
D	$\mathbf{B} + \begin{pmatrix} l\cos\theta\\l\sin\theta \end{pmatrix}$	From point B with an angle θ generating point D
A	$\mathbf{C} + \begin{pmatrix} -l\cos\theta\\l\sin\theta \end{pmatrix}$	From point C with an angle θ generating point A

Table 2: Output Parameters

 \therefore By, Plotting these points we get the required Image Fig. 2

Figure 2: PYTHON Plot of $\triangle \mathbf{ACB}, \triangle \mathbf{DCB}$ with Mid-Point \mathbf{M}