AIRCRAFT STABILITY AND CONTROL DATA

By Gary L. Teper

April 1969

Distribution of this report is provided in the interest of information exchange and should not be construed as endorsement by NASA of the material presented. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 2-4478 by Systems Technology, Inc. Hawthorne, California

for

Ames Research Center
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

,		
·		

FOREWORD

This report was prepared under Contract NAS2-4478 between Systems Technology, Inc., Hawthorne, California and the National Aeronautics and Space Administration. The NASA project monitor was L. W. Taylor. The STI project engineer was Gary L. Teper.

The author gratefully acknowledges the aid of the STI staff in collecting, interpreting, and organizing the data. The author also wishes to acknowledge the fine work of the STI publications department in the preparation of this report.

ABSTRACT

Data of interest to handling qualities investigators is presented for various current aircraft. Included are those required to obtain transfer functions for the aircraft's response to control inputs. Where possible, an analytical description of the aircraft's stability augmentor is given, and also the complete flight envelope of each aircraft is covered for its most common configuration and loading. Computed transfer functions for various flight conditions are included.

CONTENTS

																				Page
I.	INTROD	UCTI	EON			•		•		•	•	•		•		•	•		•	1
II.	A-7A		•			•				•					•	•		•	•	3
III.	A-4D		•				•	•	•			•	•	•	•	•	•	•	•	27
IV.	F-106B		•				•	•				•		•	•		•		•	49
V.	T-38		•		•	•	•	•					•	•	•	•	•	•	•	57
VI.	F-5A		•		•	•	•			•	•			•		•	•	•	•	65
VII.	F-104	•	•					•			•				•	•	•	•	•	73
·IIIV	F-105B		•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	81
IX.	B - 58	• (•	•	•		•	•		•		•	•	•	•	•	91
х.	NAVION	• •				•		•		•	•		•		•	•	•	•	•	99
XI.	DC-8	•				•			•	•	•		•		•	•	•	•	•	105
APPEN	DIX A.	AX.	IS I	SYS	STEN	Æ,	SYN	1 B01	ß,	AN	D D	ERI	TAV	IVE	DE	FIN:	ITI	ONS		A-1
APPEN.	DIX B.												AL •					IS •		B-1
A.PPEN.	DIX C.	•							•				UNC							C-1

1			
	,		

SECTION I

INTRODUCTION

The purpose of this document is to provide handling qualities investigators with readily usable data on various current aircraft. Included are those data required to obtain transfer functions relating the aircraft's response to control inputs. An analytical description of the aircraft's stability augmentor is also given.

For those aircraft for which complete information was available, the following summarizes the contents and presentation:

- 1. A general description is given, including:
 - a. Three-view drawing and reference geometry.
 - b. Flight envelope.
 - Nominal configuration (weight, inertias, and c.g. location).
 - d. References.
 - e. Basic data sources.
- 2. A block diagram of the augmentor showing feedbacks, gains, and scheduling.
- 3. Trim angle-of-attack and elevator versus Mach number and altitude.
- 4. Longitudinal and lateral nondimensional stability derivatives* versus Mach number and altitude for the trimmed nominal configuration.
- Geometrical parameters, longitudinal and lateral dimensional derivatives, and longitudinal and lateral transfer functions for the nominal configuration at various flight conditions. These data are usually given for body-fixed centerline axes (body axes).

For the remaining aircraft, some portion of the above is presented as dictated by the limits of the available data.

TR-176-1

^{*}These are given for the axis system of the data source.

The intention has been to make this report completely self-consistent insofar as symbols, nomenclature, definitions, etc. The system used is described in three appendices. Appendix A covers axis systems, symbols and notation, and definitions of nondimensional and dimensional stability derivatives. Appendix B gives the axis system transformations for the derivatives. Appendix C includes the aircraft equations of motion and transfer functions used herein.

While complete coverage of each aircraft including only the "latest" and "best" data would be desirable, the major criterion used was that the data be immediately accessible to the author. This is why only isolated flight conditions are given for some aircraft, and also why, as those people more intimately familiar with each particular aircraft will recognize, the data presented may represent an early estimate in the design process and perhaps the "nominal configuration" is one which never left the drawing board. The data have been reviewed and, although not all those presented indicate unquestionable trends, those data known to be based on only early "guesstimates" or showing unreasonable trends have been deleted. As to how well the data can be expected to match the flying aircraft, it is assumed that those for whom this document is intended know well the difficulties of obtaining derivatives from flight test data. Every attempt has been made to insure reliable translation, interpretation, and transcription of the data from their source documents.

The manufacturers of the aircraft described herein can not be held accountable for the information presented, nor would they be bound to concur in any conclusions with respect to their aircraft which might be derived from its use.

JECTION II

A-7A

Figure II-1

A-7A

NOMINAL CRUISE CONFIGURATION

Clean Airplane

60% Fuel

W = 21,889 lbs

CG at 30% MGC

Ix = 13,635 Slug ft2

 $I_y = 58,966$ Slug ft² Ref. Axes

 $I_z = 67,560$ Slug ft²

Ixz = 2,933 Slug ft2

REFERENCE GEOMETRY

 $S = 375 \, \text{ft}^2$

c = 10.8 ft

b = 38.7ft

FLIGHT ENVELOPE

X Transfer functions given for these flight conditions

REFERENCES

1) LTV Vought Aeronautics Div. Rept. No. 2-53310/5R-1981, "A-7A Aerodynamics Data Report", 21 May 1965 (U)

Body

- 2) LTV Vought Aeronautics Div. Rept. No. 2-53310/5R-5121, Rev. I, "A-7A Estimated Flying Qualities", 20 August 1965 (C)
- 3) LTV Vought Aeronautics Div., "Updated A-7A Aircraft Lateral-Directional Cruise Device Configuration Data, 25 Augut 1967

BASIC DATA SOURCES

Wind Tunnel Test and Estimates Some Lateral-Directional Derivatives

Adjusted After Flight Test

Figure II-2. A-7A Stability Augmentation System

$$\delta_a = \frac{\delta_{a_R} - \delta_{a_L}}{2}$$
 (Includes Spoiler Effects)

TABLE II-A

GEOMETRICAL PARAMETERS FOR THE A-7A

Note: Data for body-fixed centerline axis, clean flexible airplane

 $S = 375 \text{ ft}^2$, b = 38.7 ft, c = 10.8 ft

W = 21,889 lb, m = 680 slugs, c.g. at 30 percent MGC

 $I_x = 13,635 \text{ slug-ft}^2$, $I_y = 58,966 \text{ slug-ft}^2$, $I_z = 67,560 \text{ slug-ft}^2$, $I_{xz} = 2,933 \text{ slug-ft}^2$

				FLIG	HT CONDITI	ON			
	1	2	3	4	5	6	7	8	9
h (ft)	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
M (-)	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
a (ft/sec)	1,117	1,117	1,117	1,058	1,058	1,058	1,058	973.3	973.3
ρ (slugs/ft ³)	0.002378	0.002378	0.002378	0.001496	0.001496	0.001496	0.001496	0.000736	0.000736
${ m V_{T_O}}$ (ft/sec)	279	670	1,005	317	635	952	1,164	584	876
$\overline{q} = \rho V_{T_0}^2 / 2(lb/ft^2)$	91.5	534	1,200	75.3	301	677	1,010	126	283
α _O (deg)	11.2	2.9	2.1	13.3	4.0	2.5	2.9	7.5	3.8
U _O (ft/sec)	274	669	1,004	309	633	951	1,163	579	874
W _O (ft/sec)	54.2	33.9	36.8	72.9	44.3	41.5	58.9	76.2	58.1
δ _{eo} (deg)	-7.4	-3.35	-3. 8	-8.8	-3. 8	-3. 85	-4.95	-5.4	-1 +•1+
γ_{o} (deg)	0	0	0	0	0	0	0	0	0

A-II EIEAT

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE A-7A

Note: Data are for body-fixed centerline axis, clean flexible airplane

z.os-	61.8-	ਣ• †∤†−	۷.۱۴-	6 . 81–	ZG•4─	9.85-	9.05-	ηη•⊆-	∂ ^M
09100.0-	ξ78000.0	54200.0	46100.0-	40100.0	£81 0 0.0	81100.0	75100.0	10500.0	n _W
655.0-	088.0-	l€*1−	۲0 ٠ ۱–	969.0-	048.0-	72. I-	11.1-	997°0-	₽ _M
£91000.0-	111000.0-	255000.0+	082000.0-	015000.0-	871000.0-	075000.0-	805000.0-	982000.0-	₩
0610.0-	11700.0-	6590.0-	z6z0·0-	£410.0-	77700.0-	20to.0-	2520.0-	28600.0-	w ^M
ħ°66−	Z•€#─	-550	-509	9.66-	8.25-	812-	≤91 -	0.65-	əgZ
₹250.0—	2620.0-	£2£0.0	675 0 0.0	t420.0-	7280.0-	4870.0	44200.0-	7180·0-	n _Z
10.1-	755·0-	₩ ? •2+	zı•z–	91.1-	545.0-	04.5-	26 . 1-	677.0-	MZ
19*9	or.?	z.11	£1.6	96.9	29.3	9.11	45.8	ST.2	_∂ β ^X
£610°0-	TEE00.0	1540.0-	0440.0-	05900.0-	1000.0	2270.0-	£210.0-	5910.0	n _X
9150.0	9410.0	98₹0.0	6550°0	7880.0	†9† ™ °0	4850.0-	8950.0-	5710.0-	wX
6.0	9.0	1.1	6.0	9.0	٤.0	6.0	9.0	GS.0	М
000'55	000'55	000 ' Sl	000'51	000'51	000 ʻ ⊆l	0	0	0	Ч.
6	8	<u>L</u>	9	S	†7	٤	г	L	
	<u> </u>	1	NC	CHI CONDILI	ITI	<u> </u>	1,		

TABLE II-C

LATERAL DIMENSIONAL DERIVATIVES FOR THE A-7A

Note: Data are for body-fixed centerline axes, clean flexible airplane

				FLI	CHT CONDITI	ION			
	1	2	3	<u>1</u> ,	5	6	7	8	9
h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
Y _V	-0.162	-0.314	-0.514	-0.122	-0.187	-0.310	-0.435	-0.0847	-0.145
Y ₈	-0.00274	-0.0105	-0.00857	-0.00150	-0.00655	-0.00691	-0.00216	-0.00267	-0.00427
y _ð r	0.0430	0.0769	0.0626	0.0307	0.0537	0.0550	0.0192	0.0267	0.0347
L's	-11.9	44.8	-98.0	-8.79	- 29 . 2	-66.0	-71.2	-14.9	-30.6
L'p	-2.00	-4.46	-9.75	-1.38	-2.73	-6.19	-7.31	-1.40	-3.00
L'r	1.18	1.15	1.38	0.857	0.868	0.843	0.859	0.599	0.563
La	5.34	28.4	25.2	3.75	17.6	24.1	12.5	7.96	14.2
Lέr	2.22	11.4	13.2	1.82	7.27	11.2	7.27	3.09	6.55
N _β '	1.28	5.74	17.2	0.948	3.12	10.2	21.9	1.38	4.72
N'p	-0.0870	-0.168	-0.319	-0.0310	-0.116	-0.207	-0.169	-0.0799	-0.112
N'r	-0.369	-0.905	-1.54	-0.271	-0.541	-0.975	-1.33	-0.247	-0.455
N ₈ a	0.402	2.08	1.56	0.280	1.37	1.64	1.04	0.652	1.01
Når	-1.93	-8.61	-11.1	-1.56	-5.54	-8.80	-4.83	-2.54	-5.11

TABLE II-D ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE A-7A

Note: Data for body-fixed centerline axes, clean flexible airplane

					FI	IGHT CONDITION	ON			
		1	2	3	14	5	6	7	8	9
	h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,∞∞
	М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
	$t_{ m sp}$	0.367	0.383	0.395	0.277	0.316	0,316	0.185	0.225	0.230
	ω _{sp}	1.76	4.21	6.76	1.63	3.15	5.48	8.81	2.08	3.68
Δ	$\zeta_{\mathbf{p}} (1/T_{\mathbf{p}_1})$	0.0594	0.100	0.790	0.118	0.0620	(0.0888)	0.589	0.0449	(0.0616)
	ω _p (1/T _{p2})	0.156	0.0698	0.0472	0.140	0.0710	(-0.0513)	0.0372	0.0751	(-0.0501)
	Α _θ	-5.43	-30.6	-58.4	-4 5.1	-18.8	4 1.6	-44.3	-8.18	-20.2
θ Nδe	1/T ₀₁	-0.0214	0.0122	0.0728	-0.00823	0.00716	0.0443	0.0422	-0.00316	0.0202
	¹/Tθ2	0.731	1.79	3.19	0.506	1.09	1.97	2.02	0.516	0.933
	Au	5 .7 5	8.34	11.6	5.63	6.96	9.13	11.2	5.70	6.61
Ne.g	$1/T_{\mathbf{u_1}}$	51.1	125	186	8.5	120	190	234	109	177
7,6	ζ _u (1/T _{u2})	(0.411)	0.665	(1.22)	(0.369)	0.627	0.854	(0.899)	0.925	0.753
t	ω _u (1/T _{u3})	(1.03)	1.30	(2.28)	(0.587)	0.890	1.24	(1.23)	0.466	0.719
	A _w	-29.0	-165	-3 18	-23.8	-99.6	-209	-220	-43.2	-99.4
w Nôe	1/T _{W1}	51.7	126	187	58.9	121	191	234	110	178
™ōe	ζ _w (1/T _{w2})	-0.110	0.239	(-0.00603)	-0.0444	0.0567	(-0.00939)	(-0.0131)	-0.0553	0.419
	ω _w (1/ T _{w3})	0.105	0.0210	(0.0773)	0.0990	0.0386	(0.0518)	(0.0530)	0.0494	0.0219
	A _h	29.6	165	318	24.5	99.8	209	221	43.6	99.7
nse Nse	' /Tn ₁	-0.0624	0.00956	0.0719	-0.0549	0.00225	0.0431	0.0412	0.0154	0.0173
"°e	$^{1/\mathrm{Th}_{2}}$	6.21	15.6	25.3	5.41	11.8	20.0	22.2	7.64	13.2
	1/Th3	-5.57	-14.3	-23.3	-4.92	-11.0	-18.7	-21.2	-7.22	-12.5
	Aaz	-29.0	-165	318	-23.8	-99.6	-209	-220	-43.2	-99.4
	1/Taz1	-0.00998	-0.00248	-0.00117	-0.00417	-0.00405	-0.00147	-0.00139	-0.00170	-0.00250
N _{δe}	1/Taz2	-0.0506	0.0120	0.0729	-0.0497	0.00627	0.0445	0.0425	-0.0136	0.0197
CG	1/Taz3	6.33	15.6	25.3	5 . 55	11.8	20.0	22.2	7.69	13.2
	1/Tazl ₄	-5.73	-14.3	-23.3	-5.08	-11.0	-18.7	21.3	-7.28	-12.5

TABLE II-E

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE A-7A

Note: Data for body-fixed centerline axes, clean flexible airplane

		FLIGHT CONDITION										
		1	2	3	14	5	6	7	8	9		
	h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000		
	М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9		
	1/T _s	0.0462	0.0411	0.0180	0.0449	0.0435	0.0214	0.0102	0.0319	0.0191		
	1/T _R	1.62	4.46	9.75	0.968	2.71	6.17	7.15	1.28	2.92		
-	ζa	0.237	0.202	0.218	0.231	0.156	0.175	0.189	0.114	0.128		
	ωđ	1.81	2.91	4.68	1.65	2.29	3,66	5.03	1.81	2,58		
	Ap	5.34	28.4	25,2	3.75	17.6	. 24.1	12.5	7.96	14.2		
$N_{\delta_{\mathbf{a}}}^{\mathbf{p}}$	1/T _{P1}	-0.0219	-0.00234	-0.00113	-0.0232	-0.00347	-0.00144	-0.00137	-0.00718	-0.00241		
1'5a	ζ _p	0.217	0.217	0.222	0.191	0.173	0.176	0.173	0.122	0.124		
	φ P	1.49	3.05	4.91	1.27	2.34	3.87	5.33	1.62	2.64		
	Aφ	5.42	28.5	25.2	3.81	17.7	24.1	12.6	8.04	14.3		
$N_{\delta_{\mathbf{a}}}^{\Phi}$	ζ _φ	0.210	0.217	0.222	0.183	0.173	0.177	0.175	0.119	0.124		
	ω_{Φ}	1.51	3.05	4.91	1.29	2.34	3.87	5 .3 2	1.62	2.64		
	Ar	0.402	2.08	1.56	0.280	1.37	1.64	1.04	0.652	1.01		
$N_{\delta_{\mathbf{a}}}^{\mathbf{r}}$	1/T _{r1}	0.596	1.12	1.13	0.445	0.777	0.944	0.581	0.420	0.593		
^{11δ} a.	ζ _r	0.0852	0.287	0.597	0.146	0.151	0.446	0.638	0.0198	0.193		
	ω _r	2.35	2.29	3.26	2.18	2.13	2.78	3.98	2.03	2.45		
	Aβ	-0.00274	-0.0105	-0.00857	-0.00150	-0.00655	0.00691	-0.00216	-0.00267	-0.00427		
Nδ _a	1/Τ _{β1} (ζ _β)	(0.885)	3.26	7.76	(0.726)	2.21	5.77	10.7	0.793	(0.872)		
N ₈ a	1/ T β2 (ω _β)	(0.667)	-0.627	-0.254	(0.471)	-1.63	-0.245	-0.113	0.422	(10.6)		
	1/T _{β3}	-233	63.1	78.2	-391	23.2	86.8	188	-147	-0.545		
	Aay	-0.766	-7.06	-8.61	-0.477	-4.16	-6.58	-2.51	-1.56	-0.0374		
	$1/T_{\mathbf{a}_{\mathbf{y}_1}}$ $(\zeta_{\mathbf{a}_{\mathbf{y}_2}})$	(0.943)	2.29	-1.16	(0.758)	1,32	-0.596	-0.146	0.290	(0.801)		
$N_{\delta_{\mathbf{a}}}^{\mathbf{a}_{\mathbf{y}}}$	$1/T_{\mathbf{a}_{\mathbf{y}_2}}(\omega_{\mathbf{a}_{\mathbf{y}_2}})$	(0.648)	5.92	-1.84	(0.461)	3.12	-2.66	-7.93	0.961	(2.34)		
CG	ζ _{ay} (1/ T ay ₃)	0.0396	-0.810	(3.65)	0.0673	-0.294	(3.79)	0.897	0.0499	-0.113		
	$\omega_{\mathbf{a}_{\mathbf{y}}}$ (1/ $T_{\mathbf{a}_{\mathbf{y}_{\mathbf{l}_{\mathbf{i}}}}}$)	6.37	1.76	(10.7)	7.10	1.99	(-6.63)	9.31	3.92	1.30		

TABLE II-F

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE A-7A

Note: Data for body-fixed centerline axes, clean flexible airplane

		·····	·	······································	FLI	GHT CONDII	'ION			
		1	2	3	4	5	6	7	8	9
	h	0	0	0	15,000	15,000	15,000	15,000	35,000	35,000
	М	0.25	0.6	0.9	0.3	0.6	0.9	1.1	0.6	0.9
	1/T _s	0.0462	0.0411	0.0180	0.04) 9	0.0435	0.0214	0.0102	0.0319	0.0191
Δ	1/T _R	1.62	4.46	9.75	0.968	2.71	6.17	7.15	1.28	2.92
	ζđ	0.237	0.202	0.218	0.231	0.156	0.175	0.189	0.114	0.128
	[©] ä	1.81	2.91	4.68	1.65	2.29	3.66	5.03	1.81	2.58
	Ap	2.22	11.4	13.2	18.2	7.27	11.2	7.27	3.09	6.55
N _o r	1/Tp1	-0.0224	-0.00242	-0.00117	-0.0237	-0.00352	-0.00147	-0.00141	-0.00723	-0.00243
^{Nδ} r	1/Tp2	2.68	5.3 5	8.31	2.33	4.31	6.63	5.56	3.16	4.39
	1/T _{P3}	-3.38	-5.31	-7. 88	-2.79	-4.45	-6.33	-4.55	-3.44	-4.38
	A _φ	1.84	10.9	12.8	1.45	6.89	10.8	7.03	2.75	6.21
$N_{\delta_{\mathbf{r}}}^{\phi}$	1/T _{Φ1}	2.78	5.37	8.29	2,48	4.35	6.64	5.53	3.27	4.43
	1/T _{Ф2}	- 4.11	-5.53	-8.18	-3.48	-4.68	-6.57	- 4.76	-3.79	- 4.61
	Ar	-1.93	-8.61	-11.1	-1.56	-5.54	-8.80	- 4.83	-2.54	-5.11
,,r	1/Tr1	1.13	4.33	9.87	0.553	2 .3 5	6.12	7.31	0.578	2.64
N ₈ r	ζr	0.538	0.475	0.674	0.414	0.473	0.535	0.790	0.440	0.526
	$\omega_{\mathbf{r}}$	1.02	0.642	0.502	1.17	0.735	0.541	0.381	1.12	0.585
	Aβ	0.0430	0.0769	0.0626	0.0307	0.0537	0.0550	0.0192	0.0267	0.0347
N _δ r	1/T _{β1}	-0.0624	-0.00199	0.000266	-0.0603	-0.00616	0.000578	0.00271	-0.0178	-0.00216
l ^{Nδ} r	1/T _{β2}	1.73	4.45	9.76	1.14	2.70	6.17	7.11	1.32	2.94
	1/T _{β3}	54.7	120	186	63.6	113	170	272	110	160
	Aay	12.0	51.5	62.9	9.74	34.1	52.3	22.4	15.6	30.4
	1/Tay1	-0.123	-0.0145	-0.00502	-0.108	-0.0227	-0.00654	0.000648	-0.0436	-0.0107
N ₈ y	1/Tay2	1.87	4.43	9•57	1.27	2.69	6.16	7.06	1.36	2.97
cg	1/Tay3	-2.00	4.97	-7.84	-1.96	-3.69	<i>-</i> 5.78	-8.91	-2.28	-3.81
	1/Tay4	2.60	5.92	9•57	2,45	4.30	6.80	10.5	2.61	4.30

SECTION III

A-4D

Figure III-1

A-4D

NOMINAL CRUISE CONFIGURATION

Clean Airplane

W = 17,578 lbs

CG at 25% MGC

 $I_x = 8090 \text{ slug-ft}^2$

 $I_y = 25,900 \text{ slug-ft}^2$

Ref. $I_z = 29,200 \text{ slug-ft}^2$ Axes

Ixz = 1300 slug-ft2

REFERENCE GEOMETRY

 $S = 260 \, \text{ft}^2$

c = 10.8 ft

b = 27.5 ft

FLIGHT ENVELOPE

Envelope for model A-4D-!

X Transfer functions given for these flight condition

REFERENCES

1) Abzug, M.J. and R.L. Faith, Aerodynamic Data for Model A4D-1 Operational Flight Trainer, Douglas Aircraft Co. Report ES-26104, November 1, 1955

Body

2) Johnston, D.E. and D.H. Weir, Study of Pilot-Vehicle-Controller Integration for A Minimum Complexity AFCS, Systems Technology, Inc. Technical Report No. 127-1, July 1964

BASIC DATA SOURCES

Wind Tunnel Test

63

 $\mathsf{K}_{\theta}^{\, \star}$, $\mathsf{K}_{\mathsf{a}_{\mathsf{Z}}}^{\, \prime} \colon \mathsf{Scheduled}$ for indicated airspeed

Note:

System used on the A4D-2N model only. Control stick steering mode shown

K_p: Gain in deg/deg/sec, scheduled for indicated air speed

K_r: Gain in deg/deg/sec, scheduled for indicated air speed

-.12

A-III AJBAT

CEONELEICAL PARAMETERS FOR THE A-4D

Note: Data are for body-fixed centerline axis, cruise configuration.

$$S = 260 \text{ ft}^2$$
, $b = 27.5 \text{ ft}$, $c = 10.8 \text{ ft}$

V = 17.578 de.g., c.g. slugs, c.g. at 25% MAC

Stingelft, Ix = 8,780 slug-ft, Iz = 25,900 slug-ft, Iz = 28,500 slug-ft, $I_{XZ} = -2$ (Stingelft)

0	0	0	0	0	0	0	0	λ ^o (geg)		
ξ • ηη	٤•68	∀. ŗ	9.11	7.75	†°⊆9	9*9	9*9£	(pas/jj) _O W		
<u>₹</u> 78	LLS	8501	296	759	817	096	944	(pes/tl) _O U		
6 ° ⋷	8.8	0η * 0	o7.0	† •€	6 * 8	t/*O	۲•4	α ^O (qeg)		
585	156	9£8	LL9	IOE	7 5 1	S46	L ∑ S	$\overline{q} = D \cdot V_{O}^{2} \cdot V_{O} = \overline{p}$		
9 ⁷ 8	+85	8≷01	2 9 6	9 59	527	096	<u>۲</u> ۲۲	(ses/fl) oTV		
987000.0	9£7000.0	964100.0	967100.0	967100.0	967100.0	875200.0	875200.0	· (Fll/sguls) o		
દ•દ76	٤٠٤٢6	8501	8501	8501	850 l	4111	2111	s (ff/sec)		
6 ° 0	9.0	0.1	6.0	9.0	4.0	₹8.0	∀ •0	(-) M		
000 ' 5£	000,55	000'≤1	000'51	000'SI	000'⊆l	0	0	(1月) 먹		
8	2	9	G	+7	٤	г	L			
	FLIGHT CONDITION									

TABLE III-B LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE A-4D

Note: Data are for body-fixed centerline axes, clean flexible airplane.

				FLIGHT C	ONDITION			
	1	2	3	4	5	6	7	8
h	C	0	15,000	15,000	15,000	15,000	35,000	35,000
M	0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9
Xw	0.0687	-0.0215	0.052	0.0422	-0.0303	-0.0251	0.0227	- 0.0212
Хu	-0.00934	-0. 0298	0.000877	- 0.00938	-0.0615	-0.1343	0.000806	-0.0282
Х _{бе}	7.612	− 33•9 ^½ 4	6.068	7.396	- 19.723	-15.289	6.288	- 3.873
Z_{W}	-0.899	- 2.23	-0.535	- 0.822	-1. 478	-1.892	-0.3874	-0.677
Z _u	-0.0765	-0.0982	-0.0704	-0.0533	-0.1174	-0.0487	-0.0525	- 0.0869
Z _∂ e	- 42.08	-188. 28	- 22 . 273	- 56.68	-103.23	-9 4.606	- 23.037	-43.149
$M_{\overline{W}}$	-0.0228	-0.0502	-0.0131	-0.0204	-0.0379	-0.1072	-0.00908	-0.01735
$M_{\mathring{W}}$	-0.000763	-0.00131	-0.000476	-0.000555	-0.000902	-0.000683	-0.000270	-0.000443
$^{ m M}_{ m q}$	-1. 151	- 2 . 936	-0.670	-1.071	-1.93 ^L	-2.455	-0.484	-0. 876
Mu	0.00232	0.00340	0.00253	0.00162	-0.00906	0.00263	0.001824	-0.00 ¹ 412
™õe	-13.728	- 63 . 987	-7.400	-19.456	-33.809	-31.773	-8.096	-14.084

TABLE III-C LATERAL DIMENSIONAL DERIVATIVES FOR THE A-4D

Note: Data are for body-fixed centerline axes, clean flexible airplane.

				FLIGHT (CONDITION			
	1	2	3	4	5	6	7	8
h	0	0	15,000	15,000	15,000	15,000	35,000	35,000
М	0.4	0.85	O• ₇ +	0.6	0.9	1.0	0.6	0.9
Yv	- 0.2484	- 0.5755	-0.1476	- 0.228	-0.3628	-0.358	-0.103 ¹ 4	-0.1596
Υδ*	-0.00582	-0.00807	-0.00188	-0.0038	-0.00556	0.00207	-0.000819	-0.002763
Yo*	0.044	0.0898	0.02561	0.03958	0.0549	0.049	0.01791	0.02487
Lβ	-29.71	-118.1	- 17 . 52	- 35 . 95	-82.086	- 82 . 02	-17.557	→0.7
L'p	-1.813	-3.844	-1.111	-1. 566	-2.503	-2.708	-0.761	-1. 167
L;	0.8731	1.776	0.613	0.812	1.208	1.113	0.475	0.6227
Lôa	17.2	64.359	8.99	21.203	39.282	44.89	8.1704	16.85
Lår	8.217	37.214	4.309	10.398	22.103	22.943	4.1675	8.717
Nβ	13.203	67.279	6.706	16.629	42.527	39.85	6.352	17.31
$\mathbb{N}_{p}^{'}$	-0.029	0.02953	-0.0348	-0.02173	0.01647	-0.0260	-0.02513	-0.00539
Nr.	-0.5761	-1.4	-0.3432	-0.5144	-0.899	-0.88	-0.2468	-0.3893
N5a	1.4875	5.484	0.538	1.769	17.43	3.212	0.5703	1.399
N ₅ r	- 6.1953	- 26.642	- 3.280	- 7.78	-16.36	- 16 . 562	- 3.16	- 6.744

TABLE III-D

ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE A-4D

Note: Data are for body-fixed centerline axes, clean flexible airplane.

					FLIGHT	CONDITION			
		1	2	3	4 .	5	6	7	8
h		0	0	15,000	15,000	15,000	15,000	35,000	35,000
М		0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9
	$\zeta_{ m sp}$	0.352	0.435	0.2838	0.301	0.3435	0.233	0.214	0.2478
Δ	$\omega_{ m sp}$	3.39	7.348	2.445	3.718	6.232	10.857	2.358	3.951
Δ	$\zeta_{\mathbf{p}}(1/T_{\mathbf{p_1}})$	0.0735	0.195	0.682	0.086	(-0.06835)	(0.02574)	0.0859	(-0.050)
	$\omega_{\mathrm{p}}(1/T_{\mathrm{p}_2})$	0.1035	0.08615	0.1105	0.0747	(0,1101)	(0.1019)	0.0822	(0.0563)
	A_{Θ}	-13. 726	-63.98	-7.4	- 19 . 456	-33.805	-33.771	- 8.096	-14.083
$N_{\delta_e}^{\theta}$	1/T ₀₁	0.0141	0.0319	0.00353	0.0112	0.0526	0.1284	-0.000615	0.02184
	1/T ₀₂	0.8234	2.079	0.489	0.76	1.362	1.572	0.3591	0.6259
	A _u	7.628	-34.074	6.076	7.408	-19.776	-15.32	6.293	-3.878
$\mathtt{N}^{\mathtt{u}}_{\delta_{\mathbf{e}}}$	1/Tu ₁	66.931	-12.608	80.193	99.8	-20.49	-13.172	115.28	-160.9
" ^o e	ζ_{u} (1/ T_{u_2})	0.584	(2.615)	0.725	0.638	(0.98)	0.49	0.8554	(0.3383)
	ա _ս (1/T _{u3})	0.8481	(3.813)	0.4926	0.8042	(3.733)	2.824	0.3595	(1.337)
	A _w	-4 2.08	-188. 28	-22.274	- 56.68	-103.23	9 4.606	-23.034	-4 3.149
ν Ν _{δe}	1/T _{W1}	149.77	325.77	139.54	218.67	313.69	357.77	203.34	286.42
-'' ^o e	ζ _w (1/T _{w2})	0.0614	0.2653	- 0.0172	0.0835	0.4915	(0.01471)	-0.0238	0.249
	ω _w (1/T _{w3})	0.0761	0.0602	0.0771	0.0538	0.0546	(0.1:127)	0.0565	0.0516
	A _h	42.565	188.04	22.946	57.02	102.98	94.496	23.728	42.898
ν N _{δe}	1/T _h 1	0.00122	0.0299	-0.0208	0.00436	0.050	0.1270	-0.01842	0.01593
-'' ^o e	1/T _{h2}	11.623	27.426	8.454	13.376	21.62	24.916	8.5806	13.782
	1/Th3	-10.415	-24.502	-7.712	- 12 .2 82	- 19.671	-22.453	-8.048	-12,892
	Aaz	- 42.08	-188.28	-22.274	- 56.68	-103.23	-9 4.606	-23.037	-43.149
	1/Taz1	-0.0085	-0.00025	- 0.0228	-0.00404	-0.000431	-0.000214	-0.0181	-0.00227
$N_{\delta e}^{\mathbf{a_z}}$	1/Taz2	0.00962	0.0301	0.00187	0.00835	0.05043	0.127	-0.000296	0.01805
	1/Taz3	11.668	27.412	8,,56	13.405	21.597	24.903	8.7174	13.762
	1/Tazl4	-10.471	-24.484	-7.84	- 12 . 321	-19.645	-22.437	-8.203	-12.868

TABLE III-E

ALLERON LATERAL TRANSFER FUNCTION FACTORS FOR THE A-4D

Note: Data for body-fixed centerline axes, clean flexible airplane.

					FLIGHT CO	ONDITION			
		1	2	3	4	5	6	7	8
h		0	0	15,000	15,000	15,000	15,000	35,000	35,000
М		0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9
	1/T _g	0.00914	0.00568	0.00508	0.00595	0.00658	0.00726	0.00432	0.0067
Δ	1/T _R	1.744	3.81	1.0152	1.5346	2.48	2.772	0.7013	1.137
۵	ζa	0.112	0.1207	0.0949	0.0885	0.0966	0.09123	0.0676	0.065
	ωď	3.955	8.293	3.058	4.342	6.618	6.392	2.996	4.403
	A _p	17.199	64.36	8,988	21.203	39.28 2	44.89	8.17	16.85
_N P	1/T _{P1}	-0.00572	-0.000233	-0.01182	-0.003	-0.00041	-0.000211	-0. 0085	-0.00185
N _S a.	ζp	0.1149	0.121	0.0977	0.0923	0.1015	0.0968	0.0717	0.0669
	$\omega_{\mathbf{p}}$	3.986	8.845	2.779	4.442	8.914	6.787	2.742	4.553
	A_{ϕ}	17.321	64.398	9•073	21.308	39.495	44.91	8.259	16.921
No a	ζ_{ϕ}	0.1149	0.121	0.0951	0.0924	0.1021	0.0968	0.070	0.067
	ωφ	3.985	8.843	2.798	4.439	8.891	6.785	2.76	4.55
	Ar	1.4875	5.484	0.5376	1.769	17.427	3.212	0.5703	1.39
_N r	1/T _r	0.9025	4.364	0.4868	0.873	2.601	3.054	0.3565	0.739
$N_{\delta a}^{\mathbf{r}}$	ζr	0.1024	0.0571	0.0185	0.0847	0.0946	-0. 0646	0.017	0.0695
	$\omega_{\mathbf{r}}$	3.767	2.655	4.475	3 . 694	1.521	2.523	4.073	3.519
	A _B	<u>-</u> 6.00582	-0.00807	-0.001883	-0.0038	-0.00556	0.00207	-0.000819	-0.00276
N _{δa}	$1/T_{\beta 1}(\zeta_{\beta})$	-2.178	-0.1615	(0.9834)	-0.723	-0.0447	-0.2036	(0.974)	-0.369
"δа	$1/T_{\beta 2}(\omega_{\beta})$	3.287	4.156	(0.5504)	1.704	2.537	2.2264	(0.4294)	1.368
	1/T _{β3}	19.185	625.29	-4 56	134.95	3048.0	-1396.8	-838.16	197.67
	Aay	- 2.66	-7. 665	-0.7967	-2.413	-5.294	2.193	-0.4781	-2.42
A	$1/T_{\mathbf{a_{y_1}}}(\zeta_{\mathbf{a_{y_2}}})$	(0.7012)	-0.1975	0.3891	(-0.8875)	-0.0468	-0.1843	0.3626	-0.903
N _{δa} y	$1/T_{\mathbf{a}_{\mathbf{y}_2}}(\omega_{\mathbf{a}_{\mathbf{y}_2}})$	(1.923)	4.248	0.6872	(2.2183)	2.54	2.266	0.4622	1.651
CG	ζ _{ay3} (1/T _{ay3})	-0.0505	(-16.43)	0.0215	(1.869)	(- 32 . 14)	0.0324	0.00935	(-2.903)
	$\omega_{\mathbf{a}_{\mathbf{y}_{l_{4}}}}(1/T_{\mathbf{a}_{\mathbf{y}_{l_{4}}}})$	3.049	(17.628)	8.743	(4.149)	(33.046)	23.254	9•772	(3.712)

TABLE III-F
RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE A-4D

Note: Data for body-fixed centerline axes, clean flexible airplane.

		Well-re-			FLIGHT CO	ONDITION			
		1	2	3	4	5	. 6	7	8
h		0	0	15,000	15,000	15,000	15,000	35,000	35,000
М		0.4	0.85	0.4	0.6	0.9	1.0	0.6	0.9
	1/T _S	0.00914	0.00568	0.00508	0.00595	0.00658	0.00726	0.00432	0.0067
	1/T _R	1.744	3. 81	1.0152	1.5346	2.48	2.772	0.7013	1.137
Δ	ζa	0.112	0.1207	0.0949	0.0885	0.0966	0.09123	0.0676	0.065
	ωđ	3.955	8.293	3.058	4.342	6.618	6 .39 2	2.996	4.403
	A _p	8.217	37.214	4.309	10.398	22.103	22.944	4.167	8.717
,.p	1/T _{p1}	-0.00576	-0.000236	-0.0119	-0.003	-0.000412	-0.000212	-0.00851	-0.00186
N ₈ r	1/Tp2	3.0425	4.375	2.532	3.208	4.359	4.534	2.587	3.743
	1/T _{P3}	-3.029	-3.957	-2.6	-3.207	4 .196	-4.275	-2.664	-3.79
	Aφ	7.4708	37.028	3.795	9.936	21.9	22.83	3.678	8.375
$N_{\delta_{\mathbf{r}}}^{\phi}$	1/T _{Ф1}	3.0 86	4.376	2.642	3 .2 48	4.378	4.539	2.725	3.797
	1/T _{Ф2}	-3.211	-3.98	-2.902	-3.33	-4.227	-4.293	-2.936	-3.90
	Ar	-6.195	-26.642	-3. 28	- 7 .7 8	-16.362	-16.562	-3.159	-6.744
_N r	$1/\mathrm{T_r}$	1.5484	3. 815	0.615	1.348	2.495	2.786	0.393	0.930
$N_{\delta_{\mathbf{r}}}^{\mathbf{r}}$	$\zeta_{\mathbf{r}}$	0.3075	0.363	0.308	0.272	0.1783	0.1828	0.207	0.20
	$\omega_{\mathbf{r}}$	0.7438	0.463	1.032	0.718	0.578	0.5411	1.128	0.850
	Aβ	0.044	0.09	0 .0 256	0.0396	0.0549	0.049	0.0179	0.0249
η ^β δ _r	1/T _{β1}	-0.00945	0.00133	-0.0209	-0.0067	-0.000324	0.000941	-0.0175	-0.00539
^N δr	1/T _{β2}	1.7532	3.812	1.0312	1.537	2.485	2.76	0.711	1.145
	1/T _{β3}	156.02	300.91	153.0	212.32	303.67	342.14	210.23	289.01
	Aay	20.1	85.33	10.835	25.134	52 .29 6	51.83	10.459	21.784
	1/Tay1	-0.0219	-0.00154	-0.039	-0.0147	-0. 00486	-0.00224	-0.0326	-0.0141
N ₈ y	1/Tay2	1.760	3.814	1.043	1.54	2.489	2.752	0.717	1.150
	1/Tay3	5.14	10.957	3.864	5.73	8.618	9.465	3.733	5 .3 85
CG	1/Tay14		-9.526	-3.415	-5.174	-7.7	-8.63	-3.411	-4 .964

PRECEDING PAGE BLANK NOT FILMED.

SECTION IV

F-106B

F-106B

NOMINAL CRUISE CONFIGURATION Clean Airplane

W = 29,776

CG at 30.5% MGC

 $I_x = 18,634 \text{ slug-ft}^2$

Iv = 177,858 slug-ft2 (Body Ref.

Iz = 191,236 slug-ft² (Axes

 $I_{xz} = 5,539 \text{ slug - ft}^2$

REFERENCE GEOMETRY

 $S = 695 \, ft^2$

c = 23.755 f

b = 38.13 ft

FLIGHT ENVELOPE

—— Maximum A/B thrust
——— Military Thrust

Transfer functions given for these conditions

REFERENCES:

Weyel, A.E., A.H. Terp, C.A. Lunder, <u>Description of F-106B Aircraft to Be Used as a Variable Stability Trainer</u>, Service Engineering Div., Kelly AFB, Exhibit SANE-86, 9 Dec. 1963

Collette, J.G.R., General Dynamics, Convair, A Compilation of F-106 Data From Various Convair Reports Contained in Letter, 14 May 1963

F-106

SCHEDULED GAIN and TIME CONSTANTS

SCHEDULED GAINS

Figure IV-2. F-106 - Stability Augmentation System

TABLE IV-A GEOMETRICAL PARAMETERS FOR THE F-106B

Note: Data are for body-fixed centerline axes

8=695 , b=38.13 , c=23.755 , cockpit location: $1_\chi=17.5$, $1_\chi=-3.35$

		FLIGHT CONDITION											
	1	2*	3	4	5	6	7	8	9	10	11	12	
h (ft)	20,000	20,000	20,000	S.L.	8.L.	20,000	S.L.	20,000	40,000	20,000	40,000	40,000	
м (—)	0.755	0.755	0.755	0.2	0.4	0.4	0.9	0.9	0.9	1.4	1.4	2.0	
a (ft/sec)	1,037	1,037	1,037	1,116	1,116	1,037	1,116	1,037	96 8	1,037	968	96 8	
ρ (slugs/ft ³)	0.001267	0.001267	0.001267	0.002377	0.002377	0.001267	0.002377	0.001267	0.000587	0.001267	0.000587	0.000587	
V _{To} (ft/sec)	785	785	785	223.2	446.4	414	1004.4	933	871	1,450	1,355	1,936	
$\underline{\mathbf{d}} = \mathbf{b} \Lambda_{5}^{L} \backslash 5 (\mathbf{J} \mathbf{p} \backslash \mathbf{L} \mathbf{f}_{5})$	392	392	392	59•3	237.2	108.6	1,199	551	223	1,332	549	1,100	
W (1b)	35,000	30,000	28,000	25,500	29,776	29,776	29,776	29,776	29,776	29,776	29,776	29,776	
Mass (slugs)	1,090	931	870	791.9	924.7	924.7	924.7	924.7	924.7	924.7	924.7	924.7	
Ix (slug-ft ²)	25,490	18,744	15,809	15,800	18,634	18,634	18,634	18,634	18,634	18,634	18,634	18,634	
Iy (slug-ft ²)	195,156	185,300	177,645	160,783	177,858	177,858	177,858	177,858	177,858	177,858	177,858	177,858	
Iz (slug-ft ²)	215,262	198,707	187,115	170,301	191,236	191,236	191,236	191,236	191,236	191,236	191,236	191,236	
Ixz (slug-ft ²)	4947-1	,5310.9	6015.4	5,727	5,539	5,539	5 ,53 9	5,539	5,5 3 9	5,539	5,539	5,539	
x cg/c	0.29	0.305	0.26	0.305	0.305	0.305	0.305	0.305	0.305	0.305	0.305	0.305	
α _O (deg)	4.42	4.04	3.8 8	18.0	4.9	11.0	2.0	2.7	5.4	1.2	2.70	1.2	
ுo (deg)	0	0	0	0	0	0	0	0	0	0	0	0	
θ_{O} (deg)	4.42	4.04	3.88	18.0	4.9	11.0	2.0	2.7	5.4	1.2	2.7	1.2	
Uo (ft/sec)	784	784	784	212	445	406	400ء 1	933	868	1,450	1,355	1,936	
Wo (ft/sec)	60. 6	55.4	53.1	73	40	80	3 6	#1	82	30	64	40	

^{*}Optimum design condition

TABLE IV-B

IVLEUVI DIMENSIONVI DEBIAVILAES LOB LHE L-10CB

Static aeroelastic corrections are included

Note: Data are for body-fixed centerline axes

Ngg 65•4-46.T-<u> -</u>Σ•8Σ ₩£•6η•⊆l-69.1-IG·Esı.ı-10.7-£0.9-60•⊊-₩9•٤ч^{§и} ٤9°1-505.0-ST.S--5.55 82**.**č-S67.0-89.5-16.1-**⊆**†° ι--5.90 ነተተ° ٤-91.9an qu in 975.0t9£.0-£58.0--0.263 TS6.0-75.1-815.0-274.0-661.0-£1€.0-864.0-ST4.0-Œ1.0--0.0582 1€0.0-7870.0-_0.0527 T050.0-1890°0--0.0512 £11.0-1050.0--0.0442 -0.0261 70.€ 1.11 8T.T 6.81 2°26 06.7 16.0 90⊆•0 71.5 561.0-89•€ 24.∂ I g L +++-901-5.61-1.65-5.21-0.57-1.19η°9€-T.45-오. 17-1.35-Z*9Z-15.6 90.T 1.11 ١6•٤ 2.97 71.0 80.5 ۶.٤۶ 15.7 70.₹ 1.11 81.4 s•≥6 95°₩ 21.2 2.86 اک.5 16° I t9°1 1.22 59.5 1.36 2.63 09°↓ **∵.**3--2°⊋0 69.1-68.1ηi•ς-80.1--1 °55 47.S--5.69 50.5− 55.4--1.23 l•≤⊆-6.81-9.Ys-Z*115z•6 l− -55*2 -5000 1.01-87.8-19.9-**⊆•09**-911-X.O. G540.0 0.040s 7+₹0.0 0.0255 8€#0.0 0.0280 0.05₹ ₹810.0 2650.0 6990.0 04600.0 86800.0 6670.0 001.0 0.0926 0.0128 7850.0 0.0470 0.0523 801.0 ₹1.0 5440.0 980∙0 2640.0 ^**.**T TTS.0-195.0--601.0--TES.0-921.0--0°52 -0.239 70S.O-T15.0-\$81.0-£24.0--0.112 **€€T.0** €€T.0 **€**€7.0 И 6.0 6.0 6.0 η°0 η°0 5.0 5.0 7° L η· [ч 50,000 20,000 000°017 000°0# 20,000 000°04 50,000 ·I.S 50,000 *T'S S'T' 20,000 Ç ς L 11 Oι 6 8 L 9 ŧτ 5 15 FLIGHT CONDITION

ATLERON INTERAL TRANSFER FUNCTION FACTORS FOR BASIC F-1068

ાડ	ŧĻ	οι	6	8.	L L L	Flight Cond	ς	ή τ	٤	5	l		
0.s 000.o 6.0č 6.ľ 8.ľ	€.0€	%, f 000, os ₹, 0₹ 5, 0₹ 5, f 5, f	6.0 6.05 6.05 977.es 4.?	0.0 000,0s 000,0s 000,0s 000,0s 000,0s 000,0s 000,0s 000,0s	6.0 .1.2 6.05 3TT,6S	4.0 000,0s 6.0% 7T,6s 0.11	η•0	₹.0₹	000,0s 000,0s 3s	₹₹7.0 000,0S ₹.0₹	₹₹ . 0	ų ' a	And the charted of th
-0.005 57.5 77.5 0.074	010.0 70.1 35.5 760.0	०।०•० ६८•म ११।•०	00.0 50.1 51.2 621.0	300.0- 48.1 10.₹ e₹1.0	400.0- 45.4 45.0 45.0	080.0 870.0 00.s \$31.0	\$0.0 \$.09 \$0.5 \$65.0	991.0 \$9₹.0 \$41.5 \$31.0	40.0.0- 50.s 45.s 471.0	30.00-0-0166 20.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	07:0.0- 00.1 00.1 75.5 10:0	aT\r AT\r G ^D G ²	gab _{to} u tal [△]
1.62- -0.0005 54.4 511.0	5.35- 100.0- 101.0 101.0	ደተነ•0 6≤•9 ያ000•0- ተ•9⊊-	7.4₹- ₹00.0- \$\$.\$ \$₹1.0	2.17- 500.0- 7č.č 191.0	01- 00.0- 00.4 005.0	\$.61- \$4.0 \$4.1 \$21.0	7.9₹- 300.0- 80.2 ₹4≤.0	१८६१- १४०,०- १८६१-	0.67- 07500.0- 16.2 681.0	1.13- \$8\$00.0- \$₹.5 181.0	τ.μμ. Οι₹∞ο.ο- Γτι.ο	وqA _و qT\ ۲ _{وq} ⁰ و qک	g/Q
2.6.2 4.45 511.0	4.3S- 81.4 0.102	8₹•9 841•0	0.₹- ss.s ₹1.0	7.17- 16.6 191.0	901- 901-	8.61- 64.1 881.0	₹₩₹.0 80.5 7.268 7.268	8.81- 72.1 775.0	6.67- 6.5 0.188	جر: 61 ج5جء 1835ء	1.24- 24.5 271.0	ed A equi equi equi	, φ ₈ β, φ
49.5- 62.1 62.1 014.0	45.0 40.5 696.0 48.0	42.7- 83.5 17.1 0.506	₹8.₹- 114.0 8ę.1 T₹1.0	ቶኛ - 6- ፕሮፅ - 0 ፕሬ - ቦ ፍዛፍ - 0	4.21- 46.2 04.1 007.0	69.1- 604.0 €1.2 601.0	12.5- 640.0 78.1 025.0	SI.1- 0₹4.0 2₹.2 011.0	10.7- 817.0 848.0	₹0.8- \$78.0 \$9.1 81₹.0	₩₹₹°0 88°1 60°5-	ar A ar T\ i arw ar 2 ar 2	£∂\1
0.013 -0.045 2.35 243	650.0 600.0- 711	740.0 S40.0- 88.ξ ?41	\$\$0.0 \$##.0- \$\$.\$ 8.0¶	801.0 152.0- 07.1 5.85	271.0 311.0- 87.4 6.73	440.0 (847.0) (847.0)	80.0 72.1- (19.8) (088.0)	640.0 Γ.18- (ξ42.0) (868.0)	001.0 175.0- 58.5 5.0S	0.0926 185.0- 185.5 0.81	0.070 0.070 0.05 0.02	ear 1 الهوس 1 الهوس 1 الهوس 1 الهوس	₽\ <i>₽</i>
84.8 -0.06 2.17 -5.93 6.88	0.95 211.0- 21.5 70.5-	670.0- 670.0- 87.7 80.7- 67.7	8.24 (40.1) (481.0) (770.0) (770.0)	101 est.o- sc.1 co.1- cc.c	971 545.0- 70.8 74.8- 74.8-	7.81 (76.9) (7880.0) (044.0) (016.0)	(45·1)	6.11 (86.5) (870.0) (184.0) (9₹6.0)	6.87 (04.5) (188.0) (070,0) (117,0-)	6.27 (91.5) (918.0) (754.0-)	6.59 (97.1) (397.0) (37.0) (88.0-)	204 (ae) cert (ae) cert (a	_B δ\ _V β (00)
921- 6 50.0- 67.4 77.4 0 . 050	921- 580.0- 585.0 52.4 50.0	381- 170.0- 85.1 810.0	0.2777 2.25	ro₹- ₹7≤.0- ₹7€.0 60.₹ ₹11.0	560.0 54.0- 54.0- 544-	1.37- 685.0 54.1 585.0	421- 472.0 11.5 12.0	5.22- 21.1- 455.0 05.1 142.0	885- -0.555.0 -185.0 -185 -186 -186	755- 665.0- 165.0 16.5	۵۲۱- 40.5 ما 25 184.0 2.5 ع 011.0	. 294 1.267\1 2.987\1 2.987\1 2.980 2.981	ay\barrellarit)

TABLE IV-D
RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR BASIC F-106B

		·			ERAL TRANSFE		Flight Cond	ition					
		1	2	3	1 4	5	6	7	8	9	10	11	12
Altit C G Vetak	No., M tude, h ht b/ft ²	0.755 20,000 29 35,000 392	0.755 20,000 30.5 30,000 392	0.755 20,000 26 20,000 392	0.2 S.L. 30.5 25,500 59	0.4 S.L. 30.5 29,776 237	0.4 20,000 30.5 29,776 109	0.9 S.L. 30.5 29,776 1,199	0.9 20,000 30.5 29,776 551	0.9 20,000 30.5 29,776 223	1.4 20,000 30.5 29,776 1,332	1.4 40,000 30.5 29,776 549	2.0 40,000 30.5 29,776 1,100
$\Delta_{ ext{lat}}$	1/T _s 1/T _R ω _D ζ _D	-0.0170 1.60 2.37 0.164	-0.0166 2.19 2.47 0.175	-0.0164 2.62 2.54 0.178	0.169 0.592 2.42 0.162	0.032 2.09 2.01 0.233	0.080 0.678 2.00 0.162	-0.004 5.03 4.34 0.224	-0.006 1.84 3.01 0.159	0.001 1.05 2.12 0.129	0.010 4.39 4.73 0.116	0.010 1.97 3.22 0.095	2.76 3.57
p/8 _r	A _{pr} 1/T _{pr1} 1/T _{pr2} (ω _{pr}) 1/T _{pr3} (ζ _{pr})	7.06 -0.00314 (1.64) (0.0633)	9.51 -0.00286 (1.72) (0.0701)	11.1 -0.00275 (1.79) (0.0736)	2.08 -0.043 1.88 -2.64	6.17 -0.006 1.85 -2.05	2.97 -0.015 1.97 -2.34	19•5 -0•351 -0•001 0•565	11.1 -0.782 -0.002 0.829	5.07 -0.003 1.54 -1.69	7.31 -0.0005 5.13 -5.29	4.18 -0.001 3.35 -3.40	5.23 -0.0003 3.10 -3.58
φ/δ _r	Aφ _r 1/Tφ _{r1} (ωφ _r) 1/Tφ _{r2} (ζφ _r)	6.86 (1.67) (0.0468)	9.32 (1.74) (0.0545)	10.9 (1.81) (0.0582)	1.92 -2.98 1.99	6.03 -2.12 1.85	2.81 -2.49 2.02	19•3 -0•406 0•555	11.0 -0.808 0.823	4.94 -1.74 1.55	7.25 -5.34 5.13	4.11 -3.45 3.37	5.19 -3.61 3.10
r/8 _r	Arr 1/Trr1 ωrr(1/Trr2) ζrr(1/Trr3)	-2.55 -0.436 (0.349) (2.00)	-2.68 -0.431 (0.365) (2.71)	-2.75 -0.427 (0.375) (3.28	-0.505 0.442 2.48 0.214	-1.63 2.18 0.680 0.415	-0.792 0.430 1.74 0.243	5.57 (0.383)	-3.28 2.00 0.190 0.582	-1.44 0.735 0.674 0.502	-2.90 4.28 0.592 0.435	-1.45 1.43 .736 .610	1
β/ðr	Α _{βr} 1/Τ _{βr1} 1/Τ _{βr2} 1/Τ _{βr3}	0.0347 -0.00111 1.56 89.5	0.0402 -0.000727 2.11 83.8	0.0435 -0.000530 2.53 81.1	0.028 -0.259 0.690 41.3	0.0436 -0.033 2.07 50.4	0.023 -0.086 0.780 60.0	-0.004	0.039 -0.009 1.85 97.8	0.019 -0.021 1.07 103	0.024 -0.003 4.36 130	0.009 -0.004 1.98 184	
a _y /δ _r (C G)	Aar 1/Tar1(aar) 1/Tar2(5ar) 1/Tar3(aar) 1/Tar3(5ar) 1/Tar3(5ar)	27.3 0.0061 ¹ 1.53 -3.30 3.92	31.6 0.00656 2.04 -3.41 4.16	34.2 0.00679 2.44 -3.49 4.29	6.57 (1.02) (0.986) (1.21) -(0.243)	-2,42	9.52 -0.333 0.904 -1.16 1.88		36.6 -0.010 1.85 -3.92 4.59	16.2 -0.034 1.08 -2.44 2.88	34.1 -0.012 4.29 -5.37 6.16	12.2 -0.011 1.99 -4.59 5.02	2.74 -5.65
a''/ôr (cockpit)	Adr 1/Tdr1 1/Tdr2 (adr1)1/Tdr3 (dr1)1/Tdr3	6.40 0.0646 -8.81 (3.05) (0.890)	16.6 0.00670 -6.05 (2.99) (0.730)	23.3 0.00693 -5.56 (3.08) (0.663)	4.71 -0.300 0.402 -5.38	11.8 -0.061 -6.36 (2.17) (0.949	1		16.5 -0.010 2.69 -8.13 3.39	8.03 -0.031 0.844 -5.89 3.35	7.89 -0.012 3.35 -21.5 8.69	0.78 -0.016 1.33 -51.0 10.9	-0.012

•

PRECEDING PAGE BLANK NOT FILMED:

SECTION V

T-38

NOMINAL CRUISE CONFIGURATION

Clean Airplane

W = 9000lbs

CG at 23% MGC

 $I_x = 1438 \text{ slug-ft}^2$

Iy = 25,874 slug-ft² | Body Ref.

 $I_z = 26,779 \text{ slug-ft}^2$ Axes

 $I_{xz} = O(assumed)$

REFERENCE GEOMETRY

S = 170 ft2

c = 7.73 ft

b = 25.25 ft

REFERENCES

1) <u>T-38 Dynamic Stability</u>, Norair Report NAI 58-704, April 1959

BASIC DATA SOURCES

Wind Tunnel Tests

FLIGHT ENVELOPE

- Augmented Power
- --- Military Power (J85-GE-5)
- X Lateral transfer functions given for these flight conditions

SCHEDULED GAINS

Figure V-2. T-38 — Stability Augmentation System

TABLE V-A

GEOMETRICAL PARAMETERS FOR THE T-38

Note: Data for body-fixed centerline axes, cruise configuration

 $S = 170 \text{ ft}^2$, b = 25.25 ft, c = 7.75 ft

M = 10,000 lbs, m - 311.0 slugs, c.g. at 2% MAC

 $O = \frac{1}{2}$ Large Strange of $\frac{1}{2}$ Large of $\frac{1}{2}$ Large of $\frac{1}{2}$ Large of $\frac{1}{2}$ Large of $\frac{1}{2}$

દ•દેઽ	₹•25	†• ∠ 9	56.6	٤٠١9	7.11	∫•ઽા	7.SI	(ft/sec)
T.60S1	⊆ 96	٤٠١٢٢	L•⊆lOl	Z.104	8.3111	8.198	8.699	U _o (ft/sec)
0	0	0	0	0	0	0	0	λ ^O (qeg)
Z•1	1.8	0.3	ن ا	7.8	9•0	8.0	l• l	α ^O (qeg)
727	οΔι	601	099	88	Z87l	096	SES	$ (^{S} J J / dI) S / _{O} T V_{Q} = \overline{p} $
ารเด	≤• 896	777	9101	904	LIII	₹ 68	oL9	V _{To} (ft/sec)
≤8€000 . 0	795000.0	795000.0	€90100.0	€90100.0	875200.0	875200.0	875200.0	(^C fl\guLa) q
⊆• 896	ۥ 896	ۥ896	9101	9101	7111	2111	LIII	(pas/ff) s
J-25	0.1	8.0	0.1	η·O	0.1	8.0	9.0	(-) M
000'07	000'09	000'09	000'≤z	000'⊊z	0	0	0	(1月) 먹
8	۷.	9	G	tγ	٤	г	L	
		1	NOITION	FLIGHT CON	-			

TABLE V-B LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE T-38

Note: Data are for body fixed centerline axes, cruise configuration

				FLIGHT C	ONDITION	-		
	1	2	3	4	5	6	7.	8
h (ft)	0	0	0	25,000	25,000	50,000	50,000	40,000
M (-)	0.6	0.8	1.0	O.)÷	1.0	0.8	1.0	1.25
V _{To} (ft/sec)	670	893	1117	406	1017	77 ⁴	968	1210
$c_{y_{eta}}$	-0.715	-1.27	-1.35	-1.26	-1.3 5	-1.26	—1. 41	-1. 20
$c_{y_{\delta_a}}$	0	0	0	0	0	0	0	0
C _{yor}	0.155	0.172	0.103	0.160	0.132	0.183	0.126	0.097
C _{lβ}	-0. 057	-0.063	- 0.085	-0.097	- 0.086	-0.086	- 0.080	- 0.052
C _{lp}	-0.320	-0.330	-0.275	-0.270	-0.365	- 0.335	-0.390	-0.295
C _{lr}	0.080	0.095	0.110	0.155	0.115	0.140	0.135	0.130
C _{lba}	0.037	0.030	0.0069	0.040	0.026	0.053	0.032	0.019
C _{lbr}	0.016	0.018	0.012	0.017	0.015	0.021	0.016	0.0103
С _п в	0.262	0.315	0.332	0.240	0.335	0.286	0.340	0.310
C _{np}	0.076	0.078	0.084	0.085	0.078	0.052	0.070	0.076
C _n ,	-0.470	-0.435	-0.490	-0.340	-0.490	- 0.380	- 0.500	-0.53
C _{nõa}	0.013	0.0143	0.0126	0.0069	0.0126	0.0149	0.0137	0.0149
C _n	- 0.092	-0.092	-0.063	-0.103	-0. 086	-0.106	-0.086	-0.060

TABLE V-C LATERAL DIMENSIONAL DERIVATIVES FOR THE T-38

Note: Data are for body-fixed centerline axes, cruise configuration

	FLIGHT CONDITION									
	1	2	3	4	5	6	7	8		
h (ft)	0	0	0	25,000	25,000	50,000	50,000	40,000		
M (-)	0.6	0.8	1.0	0.4	1.0	0.8	1.0	1.25		
Yv	-0.311	-0.737	-0.98	-0.151	-0.4	-0.0982	-0.137	-0.232		
Y ₈ a	0	0	0	0	0	0	0	0		
Y [*] Sr	0.0675	0.1	0.075	0.191	0.0391	0.0143	0.0122	0.0188		
L' _β	-29.69	-58.29	-123.03	-8.491	-46.24	-9.293	-13.46	-21.73		
L' p	-3·14·	4.316	-4.5	-0.727	-2.435	-0.588	-0.8544	-1.286		
$^{ ext{L}_{ ext{r}}^{ ext{!}}}$	0.785	1.242	1.8	0.417	0.767	0.246	0.296	0.567		
L'8a	19•27	27•75	9•987	3.503	13.98	5.727	5.383	7.941		
L.	8.334	16.65	17.37	1.489	8.065	2.269	2.691	4.305		
N j	17.65	37•71	62•18	2.72	23.31	4.0	7.402	16.77		
N'p	0.0965	0.132	0.178	0.296	0.0673	0.0118	0.0198	0.0429		
Nr'	-0.597	-0.736	-1.037	-0.1185	-0.423	-0.086	-0.142	-0.30		
N⁵a	0.876	1.712	2.36	0.0782	0.877	0.2084	0.298	0.806		
N.	-6.2	-11.01	-11.8	-1.167	-5.984	-1.482	-1.872	-3.245		

TABLE V-D

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE T-38

Note: Data for body-fixed centerline axes, cruise configuration

		FLIGHT CONDITION							
		1	2	3	4	5	6	7	8
h		0	0	O	25,000	25,000	50,000	50,000	40,000
М		0.6	0.8	1.0	0.4	1.0	0.8	1.0	1.25
	$1/T_{\rm S}$	0.0025	-0.0014	0.00141	-0.013	0.00016	-0.00594	-0.0031	-0.0043
Δ	1/T _R	3.0197	4•145	4.185	0.605	2.275	0.548	0.803	1•236
	ζ _d	0.121	0.133	0.146	0.102	0.1	0.0527	0.0585	0.0705
	ω _d	4.251	6.2	7•97	1.98	4.94	2.187	2.847	4•151
p NŠa	$A_{ m p}$	19•273	27.75	10.0	3.50	13.98	5.727	5 .3 83	7•941
	1/T _{p1}	-0.00091	-0.0005	-0.0003	-0.012	-0.00082	-0.00362	-0.0018	-0.000554
a	ζ _p	0.108	0.12	0.127	0.0852	0.085	0.0473	0.052	0.0675
	q ^w	4.382	6.473	9.628	1.703	5.137	2.081	2.856	4.365
	\mathtt{A}_{ϕ}	19•29	27.78	10.01	3.515	14.0	5 •7 45	5.4	7•96
$^{\circ}_{^{N_{\delta_{\mathbf{a}}}}}$	$1/T_{\phi_1}(\zeta_{\phi})$	(0.108)	(0.12)	(0.127)	(0.0829)	(0.0853)	(0.047)	(0.0522)	(0.068)
	1/Τφ2 (ωφ)	(4.381)	(6.471)	(9.617)	(1.719)	(5•135)	(2.086)	(2.856)	(4.361)
	A _r	0.876	1.712	2.36	0.782	0.877	0.2084	0.298	0.806
Ns _a	1/T _r	4.439	5.405	4.80	0.535	1.52	0.484	0.638	1.401
	$\zeta_{\mathbf{r}}$	0.267	0.423	0.47	0.192	0.405	0.0827	0.129	0.143
	$\omega_{\mathbf{r}}$	2.127	2.113	1.523	4.345	2.95	3.19	2.765	1.884
β Nδ _a	A _β	-0.511	-1.323	-2.255	0.446	-0.511	0.289	-0.0074	-0.64
	$1/T_{\beta_1}(\zeta_{\beta})$	-0.167	-0.0832	-0.0353	(0.706)	-0.0843	(0.58)	-0.21	-0.066
	1/T _{β2} (ω _β)	6.926	7.439	5•334	(0.287)	4.90	(0.283)	18.624	1.795
	1/T _{β3}								

TABLE V-E

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE T-38

Note: Data are for body-fixed centerline axes, cruise configuration.

		FLIGHT CONDITION									
		1	2	3	4	5	6	7	8		
h		0	0	0	25,000	25,000	50,000	50,000	40,000		
М		0.6	0.8	1.0	0.4	1.0	0.8	1.0	1.25		
Δ	1/Ts	0.0025	-0.0014	0.00141	-0.013	0.00016	-0.00594	-0.0031	-0.0043		
	1/T _R	3.0197	4.145	4.185	0.605	2.275	0.548	0.803	1.236		
	ζ _đ	0.121	0.133	0.146	0.102	0.1	0.527	0.585	0.0705		
	ω đ	4.251	6.2	7.97	1.98	4.94	2.187	2.847	4.151		
	A _p	8.33	16.65	17•37	1.49	8.065	2.27	2.691	4 .3 05		
p Nar	1/T _{P1}	-0.00092	-0.0005	-0.0003	-0.0119	-0.00082	-0.00361	-0. 0018	-0.000583		
" ^o r	$1/T_{\mathbf{p}_{2}}(\zeta_{\mathbf{p}})$	-2.07	-0.797	4.522	-2.06	-3.311	-1.454	-1.395	(0.0081)		
	1/T _{p3} (ω _p)	2.154	1.10	4.79	1.905	3.341	1.423	1.408	(0.605)		
	Aφ	8.215	16.5	17.245	1.31	7•91	2.14	2.59	4.237		
$N_{\mathbf{\delta_r}}^{\mathbf{\phi}}$	$1/T_{\phi_1}$ (ζ_{ϕ})	-2.11	-0.827	4.557	-2.293	-3.372	-1.526	-1.443	(-0.0103)		
	$1/T_{\phi_2} (\omega_{\phi})$	2.15	1.09	4.79	1.994	3 .3 50	1.451	1.42	(0.608)		
	Ar	-6.2	-11.01	-11.8	-1.167	-5.984	-1.482	-1.872	-3.245		
$_{^{N_{\mathfrak{S}_{r}}^{r}}}$	1/T _{r1}	3.0	4.114	4.196	0.561	2.252	0.519	0.78	-0.0571		
	$ζ_{\mathbf{r}}$ (1/ $T_{\mathbf{r}_2}$)	0.206	(0 . 0 30 2)	0.674	0.14	0.373	0.11	0.196	(0.193)		
	ω _r (1/T _{r3})	0.309	(0.367)	0.465	0.833	0.456	0.502	0.346	(1.23)		
	Aβ	0.067	0.0998	0.0748	0.0191	0.0391	0.0143	0.0122	0.188		
$N_{\delta_{\mathbf{r}}}^{\beta}$	1/T _{β1}	-0.00063	-0.0016	-0.00212	-0.0372	-0.0034	-0.0107	-0.0052	-0.0041		
	1/T _{β2}	2.994	4.075	4.205	0.655	2.302	0.558	0.810	1.23		
	1/T _{β3}	94.93	113.63	161.56	72.21	159.0	117.48	164.64	178.02		
	Aay	45.24	89•16	83.53	7.852	39.77	11.08	11.88	22.72		
	$1/T_{\mathbf{a}\mathbf{y}_1}$	-0.0057	-0.0018	-0.00447	-0.0496	-0.00561	-0.014	-0.0063	-0.00398		
$N_{\delta_r}^{\mathbf{a}_y}$	1/Tay2	3. 89	3•795	4.223	0.683	2.322	0.565	0.813	1.226		
CG	1/Tay3	-3.027	-6.248	-9.098	-2.525	-5.987	-2.536	-3.709	-4.732		
	1/Tay14	2,882	7.327	10.416	2.736	6•529	2,66	3.90	5.096		

SECTION VI

F-5A

F-5A

CONFIGURATIONS

GAR-8 - GAR-8 on wing tips

I - Centerline Tank 150.gal. tanks at W.S. 85 750 lb. stores at W.S. 114.5 50.gal. tip tanks

I-A - as I with 50% fuel

II - 2000 lb centerline store 1000 lb stores at W.S. 85 750 lb stores at W.S. 114.5 50 gal. tip tanks

REFERENCE GEOMETRY

S = 170 ft2

b = 25.25 ft

c = 7.75 ft

REFERENCE

 Jex, H.R. and J. Nakagawa, Typical F-5A <u>Longitudinal Aerodynamic Data and</u> <u>Transfer Functions for 14 Conditions</u>, Systems Technology, Inc., Technical <u>Memorandum No. 239-4</u>, March 1964

BASIC DATA SOURCES

Wind tunnel tests with corrections made per flight test.

★ Longitudinal data given at these flight conditions, see Table E .5a for configuration, n₂, and y₀

F-5A

SCHEDULED GAINS

SCHEDULED GAIN

Figure VI-2. F-5A — Stability Augmentation System

TABLE VI-A
GEOMETRICAL PARAMETERS FOR THE F-5A

Bote: 8 = 170 ft², b = 25.25 ft, c = 7.75 ft, t₀ = 0.5 deg
Data are for body-fixed stability axes.

						FL	IGHT CONDITIO	ĸ						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Configurations	GAR-8	gar-8	GAR-8	GAR-8 + Dive Brake	GAR-8 Flaps + Slats	I + Flaps	I	I-A + Dive Brake	MK 84 g + TT Empty	TT Empty	I-A	I-A	II 50% Fuel	II 50% Fuel
h (ft)	40,000	40,000	0	20,000	0	0	30,000	20,000	0	٥	0	٥	٥	
м	0.875	1.25	0.875	1.40	0.204	0.286	0.8	0.875	0.875	0.875	0.70	0.70	0.50	0.50
γ _O (deg)	0	0	0	-60	0	0	o	-60	0	0	0	0	0	0
H _z = L/W cos 70	1.0	1.0	1.0	0.5	1.0	1.0	1.0	0.5	1.0	4.0	1.0	4.0	1.0	2.0
α _O (deg)	3.2	1.0	0.8	0	12	12	9.0	2.8	1.2	2.8	2.8	7.0	4.4	8.0
VTo (ft/sec)	850	1210	980	1450	228	320	796	910	980	980	784	784	560	560
q (1b/ft ²)	210	428	1130	1340	61.9	122	282	521	1,130	1,130	725	725	370	370
W (lbs)	10,000	10,000	10,000	10,000	10,000	19,000	17,000	14,000	14,000	12,000	14,000	14,000	17,000	17,000
xeag./ē	0.22	0.22	0.22	0.22	0.22	0.14	0.12	0.15	.03	0.17	0.15	0.15	0.13	0.13
m (slugs)	311	311	311	311	311	590	528	435	435	373	435	435	528	528
δ _{e_O} (deg)	-1.15	-1.80	-0.45	1.02	- 4.28	-6.26	-2.57	0,52	-1.55	-2.62	-1.13	-4.62	-2.86	-5.77
Iy (slug-ft ²)	30,000	30,000	30,000	30,000	31,000	34,600	34,600	37,900	38,700	37,100	37,900	37,900	34,400	34,400
l _x (Pilot)	12.0	12.0	12.0	12.0	12.0	11.4	11.2	11.4	10.5	11.6	11.4	11.4	11.3	11.3
								}						

8

TABLE VI-B LONGITUDINAL MONDIMENSIONAL DERIVATIVES FOR THE F-5A

096~

0

-1.20

8.9-

01.0-

079.0-

06800.0

0

0.00

0

274.0

158.0

0

٤٠٤

48.₹

11.5-

0.8

η≤•0

05.0

88₹0.0

0

0

20% Enet

II

ηl

~5000

0

0Z.1-

8.9-

01.0-

989.0-

€250.0

0

0

0

0.264

158.0

0

٤٠٤

SL.4

98.S-

ተ*ተ

T420.0

0

0

20% Fuel

ΙΙ

75.0

05.0

066-

0

₩Z*1-

8.7-

01.0-

059.0-

86500.0

0

0

0

1₹8.0 304.0

0

٤•٤

Ltr*tr

79°+-

0.7

1140.0

ი•⊭გა

0

07.0

0

A-I

15

0511-

0

ტ**ე° ს**—

8.7-

01.0-

655.0-

0.002≥5

0

0

0

049010

158.0

0

٤٠٥

⊆L•η

El·1-

8.5

0.0252

511.0

0

0

Tau¶ %0€

A-I

11

07.0

-5000

75° L-

91.0

1.6-

7.0-

813.0-

0,0001756

0

٥

5+0.0

961.0

-5000

46.1-

00€.0-

7.6-

7.0-

€0.1-

0.001255

0

0.030

0

0.0232

0

77.1-

012.0-

5.11-

0.1-

184.0-

15900.0

0

0.030

9920.0

, -, -		1						42		
CLec (1/red)	٤٥،١	₹47.0	888.0	509.0	S47.0	so8.0	888.0	888.0	916.0	916.0
MID	04.0	07.0-	Οη ° Ο	9.0-	0	0	ट्ट••−	0η*0	0	0≤•0−
Crd (1/red)	8.7	ن وو	8.7	8.₹	٤•٤	٤٠٥	۶۰۶	٤٠٥	۲•۶	٤٠٥
C _{Let} (1/red)	8€•∈	8₹•₹	8₹∙⋜	૯ Σ•η	5.5	#8.₹	8≤*म	18.4	90°tı	81 ° 4
ρe ^ο (geg)	€1.1-	08.r-	Sη·0-	1.02	85.4−	9z·9 -	72 . S-	5€.0	<u> ۲۰</u> ۰۶	29·S-
a _o (deg)	5.2	0.1	8.0	0	St	ટા	0.6	8.5	s.r	8.5
σ _D	67 50. 0	1540.0	8710.0	0450.0	081.0	081.0	0.0422	0.0272	1610.0	0.02s4
Cr	085.0	SE1.0	s co. o	0.022	€6 •0	0.92	₹₹.0	670.0	٥.072	845 . 0
(gap) or	0	0	0	09-	0	0	0	09-	0	0
Ж	₹78.0	ट.।	₹78.0	0η·ι	0°50#	98s.0	8.0	₹78.0	₹78.0	त्र8.0
(भ्र) प	000 ° 04	000°04	0	50,000	0	0	000 0€	50,000	0	0
MOITARUBITION	8 -яд э	8 -ял э	8 -яд э	GAR-8 + Dive Brake	8-8R-8 Flags + Slats	I + Flags	I	H-Dive Brake	9 48 MK 84 C + TT Empty +	Ltque II
	i	5	٤	Ħ	ς	9	L	8	6	٥٢
	·		•				EFIGHT CO	NOITION		

096-

05.1-

8.9-

0

900.0−

746°0-

0.0214

S71.0

٥

1.20

0171-

92.1-

8.9-

900.0−

₹47.0

0.00582

571.0

0

0

75.1

1520

80.1-

010.0-

S.30

L++1-

S47100.0

0

0

9610.0−

6.9-

-5000

0

94.1-

7.6-

7.0-

795.0-

₹2000.0

0

050.0

0.0362

0

00ηί

65°1-

5.6−

05.0−

169 0-

969100.0

0

001.0

0.352

0

0.020

*Derivatives take into account the elastic mode as 0.8c.

009

۲٠٠١ -

050.0−

z.01-

s.r-

795.0-

500000.0

0

0540°0

0

655.0

2≥00

6z.1-

001.0-

6-

٤

94.1-

94100.0

0

0

0

16.1

(adf) M6\T6

(1/red)_

(1/red).

**(be1/!)

(pex/t)

(per/l)

(l/xeq)

Cmc (1/rad)

e_βm^Ω

Mula CIMH

Pm2

Cano

CD^{©©}

KG_D

CD_q

TABLE VI-C

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE F-5A

Note: Data are for body-fixed stability axes, quasi-steady aeroelastic corrections included.

							FLIGHT CONDIT	LON			FLIGHT CONDITION								
	1	2	3	14	5	6	7	8	9	10	11	12	13	14					
Configurations	GAR-8	CAR-8	GAR-8	GAR-8 + Dive Brake	GAR-8 Flaps +Slats	I + Flaps	I	I-A + Dive Brake	MK 84 G. + TT Exmpty	TT Empty	I-A	I-A	II 50% Fuel	II 50% Fuel					
h (ft)	40,000	40,000	0	20,000	0	0	30,000	20,000	0	0	0	0	0	0					
м	0.875	1.25	.875	1.40	0.204	0.286	0.8	0.875	0.875	0.875	0.70	0.70	0.50	0.50					
X_ (1/sec)	-0.00803	-0.0126	0.0101	0.0209	-0.0609	-0.0301	0.000338	0.0117	0.0222	0.0276	0.0178	0.0167	0.00128	0.0144					
X _u * (1/sec)	-0.0109	-0.00589	-0.0452	-0.0505	0.0564	-0.0401	-0.0158	-0.0362	-0.0335	-0.0505	-0.0192	-0.0309	-0.0182	-0.0319					
Zw (1/sec)	-0.734	-1.05	-3.44	-2.22	-0.508	-0.431	-0.521	-1.10	-1.86	-2.23	-1 -74	-1 .61	-1.02	-0.828					
Z ₁₁ * (1/sec)	-0.124	0.118	-0.289	0.401	-0.276	-0.197	-0.0575	-0-114	-0.0656	-0.0310	-0.0822	-0.327	-0.115	-0.229					
Z _{õe} (ft/sec ² /rad)	-119	-175	- 555	-439	-24.1	-26.9	-78.6	-181	-409	-475	-236	-235	-99.1	-97•7					
My (1/sec-ft)	-0.00399	-0.0227	-9.0187	-0.0593	-0.00838	-0.0138	-0.00852	-0.00961	-0.0408	-0.0253	-0.0174	-0.0202	-0.0174	-0.0169					
Mr (1/ft)	-0.0000595	0.000149	-0.000141	0.000247	0	0	-0.0000327	-0.0000851	-0.000109	-0.000114	-0.0000159	-0.0000159	-0.0000176	-0.00001					
M _q (1/sec)	-0.429	-0.540	-1.92	-1.08	-0.296	-0.372	-0.488	-0.888	-1.48	-1.55	-0.973	-0.969	-0.667	-0.662					
M* (1/sec-ft)	-0.000462	-0.00193	0.0000737	-0.000534	0.000142	0.000626	0.000325	-0.00499	-0.0103	0.00585	0.000166	0.000266	0.000327	0.0004.					
Mae (1/sec ² /rad)	-14-3	-24.2	-73-1	-63.2	-3.16	-5.31	-14.5	-26.1	-59.8	-62.1	-31.3	-31 .0	-17.0	-16.7					

Note: The transfer functions given in Table E.5c) are based on the above derivatives and the equations of Appendix C with additional corrections made for Inertial Bending as follows:

TABLE VI-D

LONGITUDINAL TRANSFER FUNCTIONS FOR THE F-5A

Note: Data are for body-fixed stability axes; corrections have been made for Inertial Bending

		for In	for Inertial Bending												
								FLIGHT CO	NDITION						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	h (ft)	40,000	40,000	0	20,000	0	0		20,000	0	0	0	0	0	0
	M	0.875	1.25	0.875	1.40	0.204	0.286 1.0/0	0.8 1.0/0	0.875 0.5/ -60	0.875 1.0/0	0.875 4.0/0	0.70	0.70 4.0/0	0.50 1.0/0	0.50 2.0/0
	$ar{\mathtt{n}}_{\mathrm{z}}/\gamma_{\mathrm{O}}$ (deg)	1.0/0	1.0/0	1.0/0	0.5/-60 10,000		,			14,000	· 1	′ 1	. ,	17,000	17,000
	W.C. C.G	0.22	0.22	0.22	0.22	0.22	0.14	0.12	0.15	0.03	0.17	0.15	0.15	0.13	0.13
	ω _{sp}	2.29	5.84	5.65	11.4	1.43	2.14	2.82	3.78	8.05	7.39	4.81	4.95	3-50	3.36
٨	ζ _{ap}	0.266	0.121	0.325	0.128	0.286	0.188	0.182	0.270	0.215	0.262	0.283	0.262	0.243	0.223
Δ	ω_p (1/ T_{p_1})	0.0367	(-0.0721)	0.0856	(-0.0346)	0.197	0.147	0.0553	(-0.0530)	(-0.0964)	0.126	0.0601	0.115	0.0852	0.118
	$\zeta_{\rm p}$ (1/ $T_{\rm p_2}$)	0.0761	(0.0750)	0.257	(0,104)	0.108	0.142	0.153	(0.116)	(0.128)	0.197	0.157	0.129	0.106	0.132
	A_{θ_e}	-14.6	-25.0	-80.4	-68.3	-3.16	-5.31	-14.6	-26.9	-64.0	-67.0	-32.6	-32.2	-17-3	-17.0
$N_{\delta_e}^{\theta}$	1/T _{6e1}	0.0955	0,00778	0.0461	0.0457	0.0170	0.0223	0.0159	0.0371	0.0334	0.0516	0.0202	0.0348	0.0184	0.0367
	1/Te _{e2}	0.703	0.885	3.30	1.81	0.484	0.379	0.474	1.03	1.58	2.04	1.60	1.46	0,921	0.724
"u	Au _e	0.970	2.26	-6.15	-9.91	1.47	0.810	-0.0269	-2.19	- 9•74	-14-1	-4.38	-4.06	-0.130	-1.44
$^{ ext{N}}_{ ext{\delta}e}^{ ext{u}}$	1/Tu _{e1}	0.580	0.602	4.72	-1.95	0.312	0.280	0.478	2.91	4.68	9.53	2.79	2.42	0.942	0.969
	1/Tue2	586	523	-294	100	98.6	273	-17,450	-68.6	-71 -4	-32.6	-1 37	-154	-4210	-288
	Awe	-121	-180	-610	-474	-24.1	-26.9	-79•5	-186	-438	-513	-246	-244	-101	-99.7
$N_{\delta e}^{W}$	1/Twe ₁	103	168	131	210	29•5	62.1	146	131	145	129	105	104	96.3	95.6
- ' 6e	$\omega_{ m w_e}$ (1/T $_{ m w_{e_2}}$)	0.0673	(-0.0563)	0.0969	(-0.0338)	0.199	0.143	0.0492	0.0501	(-0.00410)	0.0496	0.0583	0.116	0.0820	0.116
	ζ _{we} (1/T _{we3})	0.0809	(0.0622)	0.233	(0.103)	0.139	0.139	0.161	0.666	(0.0376)	0.509	0.165	0,132	0.111	0.137
	A _{he}	121	180	610	238	24.1	26.9	79•5	93.4	438	513	246	5/1/4	101	99•7
h N _{Se}	$1/T_{\mathrm{he}_1}$	0.00309	0.0117	0.0432	0.0680	-0.0718	-0.337	0.0108	0.0661	0.0335	0.0503	0.0180	0.0253	0.0110	C.0180
-¹⊖e	$1/T_{h_{e_2}}$	-8.23	-12.0	-19.6	-18.8	-3-39	-4.50	-8.04	-11.0	-14.3	-15.3	-12.4	-11.9	-9.05	-7.98
	$1/T_{he_{\overline{3}}}$	8.72	12.4	21.7	19.6	3.81	4.95	8.56	12.0	15•9	17.0	13.4	12.8	9-73	8.67
	A'ze	54.0	120	353	346	13.8	33.6	84.8	119	233	264	125	124	94.6	93.2
a. Nδe	$1/T_{z_{e_1}}^{i}$ $(\omega_{z_{e_1}}^{i})$	0	0	0	0.0177	0	0	0	(0.0338)	0	0	0	0	0	0
^{1ν} δe	$1/T_{z_{e_2}}^{i}(\zeta_{z_{e_1}}^{i})$	0.00309	0.0117	0.0432	0.0499	-0.0714		1		0.0335	0.0503	ł	1	ĺ	1
(Pilot		12.8	15.0	27.1	22.7	4.76	4.23	8.03	14.5	20.6	22.5	18.1	17.2	9.70	8.60
	ζże	0.0476	0.0559	0.101	0.0720	0.0871	0.0505	0.0276	0.0381	0.0379	0.0618	0.0781	0.0699	0.0613	0.0468

s ,		

PRECEDING PAGE BLANK NOT F

SECTION VII

F-104

FLIGHT CONDITIONS

		ı	2	3	4	5
		Takeoff	Start Cruise	End Cruise	V _{MAX}	V _{MAX} Sea Level
	h(ft)	Sea Level	30,000	30,000	30,000	Sea Level
	M	.273	.84	1.0	1.9	1,36
	W(lb)	24,000	23,310	14,960	15,000	15,000
	x _{CG} /c	.046	.040	.18	.18	.18
External	Tip	On	On	Clean	Clean	Clean
Tanks	Pylon	On	On	Clean	Clean	Clean
Flore	Leading Edge	-15°	-3°	-3°	-3°	-3°
Flaps T	Trailing Edge	15°	15°	'0°	o°	o° _

Note: Lateral data not available

REFERENCE GEOMETRY

.S = 196 ft2

b = 21.9ft

c = 9.53ft

REFERENCES

Unpublished Data

PITCH:

ROLL:

<u>YAW</u>:

Figure VII-2. F-104 — Stability Augmentation System

TABLE VII-A

GEOMETRICAL AND INERTIAL PARAMETERS FOR THE F-104

Note: Data are for body-fixed stability axes

$$S = 196.1 \text{ ft}^2$$
 , $c = 9.53 \text{ ft}$, $b = 21.9 \text{ ft}$

		FLIG	HT CONDITION	ON	
	1 TAKEOFF	2 START CRUISE	3 END CRUISE	V _{max}	5 V _{max} SEA LEVEL
h (ft)	Sea Level	30,000	30,000	30,000	Sea Level
M (-)	0.273	0.84	1.0	1.9	1.36
a (ft/sec)	1117	995	995	995	1117
ρ (slugs/ft ³)	0.00238	0.000889	0.000889	0.000889	0.00238
V _{To} (ft/sec)	30 5	836	995	1892	1519
$\bar{q} = \rho V^2/2 (lb/ft^2)$	110.5	310	440	1590	2740
W (lb)	24,000	23,310	14,960	15,000	15,000
m (slugs)	7 46	724.5	465	466	466
Iy (slug-ft ²)	65,000	64,500	56,650	56,650	56,650
x _{c.g.} /ē	0.046	0.040	0.18	0.18	0.18
α _o (deg)	19.6	4.0	2.0	1.4	1.1
γ_{O} (deg)	10	0	. 0	0	0
θ _O (deg)	29.6	4.0	2.0	1.4	1.1

TABLE VII-B

LONGITUDINAL NONDIMENSIONAL DERIVATIVES FOR THE F-104

Note: Data are for body-fixed stability axes.

		FI	LIGHT CONDITE	EON	
	1	2	3	4.	5
h (ft)	0	30 , 000	30 , 000	30 , 000	0
M (-)	0.237	0.84	1.0	1.9	1.36
$\mathtt{C}_{\mathbf{L}}$	1.125	0.342	0 .13 75	0.0383	0.0278
c_{D}	0.185	0.0365	0.04	0.041	0.045
$c_{\mathrm{L}_{lpha}}$	7+•7+7+	4.97	5.10	2.92	4.18
$^{ ext{CL}}\dot{lpha}$	0	0	0	0	. 0
$\mathtt{c}_{\mathtt{L}_{M}}$	0	0	0	0	0
$\mathtt{c}_{\mathtt{L}_{\delta e}}$	0.762	1.015	1.071	0.6925	0.8035
$^{\mathrm{C}_{\mathrm{D}_{lpha}}}$	0	0.1094	0.0255	0	0
$\mathtt{c}_{\mathtt{D}_{\mathtt{M}}}$	0	0.038	0.040	0.042	0.045
^C D _{∂e}	0	0	. 0	0	0
$^{\mathrm{C}_{\mathrm{m}}}$	- 1.496	-1. 319	-1. 564	-1.255	-1. 80
$^{\mathrm{C}_{\mathrm{m}}}\dot{_{\mathrm{a}}}$	-3.44	- 3.90	- 4∙99	-3.04	-2.00 5
$^{\mathrm{C}_{\mathrm{m}}}{}_{\mathrm{M}}$	0	0	0	0	0
$^{\mathrm{C}_{\mathrm{m}}}\mathbf{q}$	-5. 615	-8.03	-8.60	-4 .59	- 6.825

TABLE VII-C
LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE F-104

Note: Data are for body-fixed stability axes.

		FLI	GHT CONDITI	OIV	
	1 TAKEOFF	2 START CRUISE	3 END CRUISE	4 V _{max}	5 V _{max} SEA LEVEL
h (ft)	Sea Level	30,000	30,000	30,000	Sea Level
M (-)	0.273	0.84	1.0	1.9	1.36
X _u (1/sec)	-0.0352	-0.0106	-0.0224	-0.0573	- 0.115
X _w (1/sec)	0.107	0.0234	0.0209	0.0136	0.0211
X_{δ_e} [(ft/sec ²)/rad]	0	0	0	0	0
Z _u (1/sec)	-0.214	-0.0688	-0.0513	-0.0271	-0.0422
Z_{W}^{\bullet} (-)	. 0	0	0	0	0
Z _W (1/sec)	-0.440	-0.504	-0.959	-1.05	-3. 21
Z_{δ_e} [(ft/sec ²)/rad]	- 22 . 1	-85.3	- 199	- 464	- 927
M _u (1/sec-ft)	0	0	0	0	0
M _w (1/ft)	-0.00056	-0.000239	-0.000349	-0.000212	-0.000375
M _W (1/sec-ft)	-0.0156	-0.0142	-0.0228	-0.0348	-0.107
Mq (1/sec)	-0.279	-0.412	-0.598	-0.607	–1. 9½
M _{δe} (1/sec ²)	→ +.67	-17.8	- 30 . 8	- 57 . 2	-140

TABLE VII-D

ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE F-104

Note: Data are for body-fixed stability exes

	FLIGHT CONDITION							
	1 TAKEOFF	2 START CRUISE	3 END CRUISE	V _{max}	5 V _{max} SEA LEVEL			
M (-)	0.273	0.84	1.0	1.9	1.36			
h (ft)	Sea Level	30,000	30,000	30,000	Sea Level			
)	4.6	4.0	18	18	18			
(lb)	24,000	23,310	14,960	15,000	15,000			
ζ _{sp}	0.206	0.161	0.197	0.126	0.220			
$\omega_{ extsf{sp}}$	2.21	3. 48	4.83	8.16	13.0			
ζ _p (1/T _{p1})	0.0532	0.102	0.277	(0.00959)	(0.00808)			
ω _p (1/T _{p2})	0.145	0.051	0.0402	(0.0477)	(0.107)			
A _θ	-4.66	_17.8	-30.7	- 57 . 1	-140			
1/T ₀₁	0.133	0.0144	0.0237	0.0578	0.115			
1/T ₀₂	0.269	0.432	0.812	0.767	2,51			
Au	-2.37	-2.00	4.15	-6.29	-19.6			
1/Tu ₁	-0.0391	1.11	2.26	3.61	24.8			
1/T _{u2}	6.17	-113	-85.7	-62.2	-23.2			
A _w	-22.1	-85.3	-199	− †6†	-9 27			
1/T _{w1}	64.7	175	155	234	231			
ζ _w (1/T _{w2})	0.0566	0.102	0.275	(0.00967)	(0.00833)			
ω _w (1/T _{w3})	0.147	0.0514	0.0407	(0.0476)	(0.107)			
		<u> </u>	100	1.0	007			
		ŀ	•		927			
1/Th ₁					0.115			
1/Th2		1			25.2			
1/T _{h3}	- 4.76	-8.41	-10.7	– 12.9	-22.7			
	h (ft)) (1b) (sp Lsp Lsp (p (1/Tp1) Lp (1/Tp2) A0 1/T01 1/T02 Au 1/Tu1 1/Tu2 Aw 1/Tw1 (mathematical stress of the	M (-) 0.273 h (ft) Sea Level 4.6 (1b) 24,000 Ssp 0.206 2.21 Sp (1/Tp1) 0.0532 Dp (1/Tp2) 0.145 A0 -4.66 1/T01 0.269 Au -2.37 1/Tu1 -0.0391 1/Tu2 6.17 Aw -22.1 Sw (1/Tw2) 0.0566 Dw (1/Tw3) 0.147 An -21.8 1/Th1 0.0185	TAKEOFF CRUISE M (-) 0.273 0.84 h (ft) Sea Level 30,000) 4.6 4.0 (1b) 24,000 23,310 Ssp 0.206 0.161 Dsp 2.21 3.48 Sp (1/Tp1) 0.0532 0.102 Dp (1/Tp2) 0.145 0.051 A0 -4.66 -17.8 1/T01 0.269 0.432 A1 -2.37 -2.00 1/Tu1 0.0591 1.11 1/Tu2 6.17 -113 Aw -22.1 -85.3 1/Tw1 64.7 175 Sw (1/Tw2) 0.0566 0.102 Dw (1/Tw3) 0.147 0.0514 Ah 21.8 85.3 1/Th1 0.0185 0.00816	M (-) 0.273 0.84 1.0 h (ft) Sea Level 30,000 30,000 (1b) 24,000 23,310 14,960 Sap 0.206 0.161 0.197 Dap 2.21 3.48 4.85 Sp (1/Tp1) 0.0532 0.102 0.277 Dap (1/Tp2) 0.145 0.051 0.0402 Ae -4.66 -17.8 -30.7 1/Te1 0.133 0.0144 0.0237 1/Te2 0.269 0.432 0.812 Au -2.37 -2.00 -4.15 1/Tu2 6.17 -113 -85.7 Aw -22.1 -85.3 -199 1/Tw1 64.7 175 155 xw (1/Tw2) 0.0566 0.102 0.275 xw (1/Tw3) 0.147 0.0514 0.0407	TAKEOFF CRUISE CRUISE Vmax M (-) 0.273 0.84 1.0 1.9 h (ft) Sea Level 30,000 30,000 30,000 Left 18 18 (1b) 24,000 23,310 14,960 15,000 Sep 0.206 0.161 0.197 0.126 Exp (1/Tp1) 0.0532 0.102 0.277 (0.00959) Exp (1/Tp2) 0.145 0.051 0.0402 (0.0477) Ae -4.66 -17.8 -30.7 -57.1 1/Te1 0.133 0.0144 0.0237 0.0578 1/Te2 0.269 0.432 0.812 0.767 Au -2.37 -2.00 -4.15 -6.29 1/Tu1 -0.0391 1.11 2.26 3.61 1/Tu2 6.17 -113 -85.7 -62.2 Aw -22.1 -85.3 -199 -464 1/Tw1 64.7 175 155 234 Cu (1/Tw2) 0.0566 0.102 0.275 (0.00967) Exp (1/Tw3) 0.147 0.0514 0.0407 (0.0476) Afi 21.8 85.5 199 464 1/Th1 0.0185 0.00816 0.0217 0.0571			

.

SECTION VIII

F-105B

Unpublished Data

BELEBENCES

11.5.11 = 0

11 6.45 = d

511 285 = 2

REFERENCE GEOMETRY

Sed Level

Takeoff

* TOIGEOI QUID DOI DADIJOPIG OI LUGSE COUQILIOUS Frailing Edge **,9**† 0 .97 0 0 Flabs 0 SOS 0 0 SO Leading Edge Wing Pylon S-450gal. S-420gal. Clean Cledu CIECU Tanks External 1-650gal. Centerline Clean Clean 1-650gal. Clean 2/93x 80£. 80£. 80£. **262**. **262**. 075,85 41,230 41,230 35,370 30,000 M(IP) IPS. 6. 192. 1.5 6.

35,000

Start Cruise

S*

Sed Level

Approach

POWEL

Þ

000,04

XAMV

ç

32,000

Cruise

End

ξ

FLIGHT CONDITIONS

(44)4

F-105B

f-IIIV amgiq

PITCH:

ROLL:

Figure VIII-2. F-105 — Stability Augmentation System

TABLE VIII-A

GEOMETRICAL AND INERTIAL PARAMETERS FOR THE F-105B

Note: Inertia data are for principal axes.

 $s = 385 \text{ ft}^2$, b = 34.9 ft, c = 11.5 ft

		FLIG	T CONDIT	EON	
	1 TAKEOFF	2 START CRUISE	3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN
h (ft)	Sea Level	35,000	35,000	Sea Level	40,000
M (-)	0.261	0.9	0.9	0.241	2.1
a (ft/sec)	1117	973.3	973.3	1117	968.5
$_{ ho}$ (slugs/ft ³)	0.00237	0.000738	0.000738	0.00237	0.000587
VT _O (ft/sec)	291	875	875	269	2030
$\overline{q} = \rho V^2/2 \text{ (lb/ft}^2)$	100	283	283	86	1210
W (lb)	41,230	41,230	35,370	30,000	35,370
m (slugs)	1280	1280	1098	932	1098
I_x (slug-ft ²)	8,700	8,700	10,300	12,600	10,300
I_y (slug-ft ²)	140,000	140,000	140,000	140,000	140,000
I_z (slug-ft ²)	185,000	185,000	181,000	177,000	181,000
I _{xZ} (slug-ft ²)	0	0	0	0	0
x _{c.g.} /ē	0.295	0.295	0.308	0.308	0.308
α _o (deg)	7.4	7.2	7.0	5.2	3.5
$\gamma_{_{ m O}}$ (deg)	10.0	0	0	-5.0	0
θ _O (deg)	17.4	7.2	7.0	0.2	3.5

Note: Data are for body-fixed stability axes.

		FL	IGHT CONDI	TION	
	l TAKEOFF	2 START CRUISE	3 END CRUISE CLEAN	4 POW E R APPROACH CLEAN	5 V _{max} CLEAN
h (ft)	Sea Level	35,000	35,000	Sea Level	40,000
M (-)	0.261	0.9	0.9	0.241	2.1
X _u (1/sec)	-0.029	-0.00582	-0.00565	-0.0263	-0.00751
X _w (1/sec)	0.0793	0.00693	0.0264	0.086	0.0132
$X_{\delta_e} [(ft/sec^2)/rad]$	0	0	0	0	0
$Z_{\rm u}$ (1/sec)	-0.1585	-0.01386	-0.0527	-0.1719	-0.0265
$\mathbb{Z}_{\mathbf{W}}^{\bullet}$ (-)	0	0	0	0	0
Z _W (1/sec)	-0.311	-0.4	-0.466	-0.406	-0.590
$\mathbb{Z}_{\delta_{\mathbf{e}}}$ [(ft/sec ²)/rad]	-17.3	-65.19	-75.97	-19.88	-135.9
$M_{\rm u}$ (1/sec-ft)	0.0000119	0	0 -	0.0000101	-0.0000198
M _w (1/ft)	-3.000259	-0.000117	-0.000117	-0.000259	-0.00000535
M _w (1/sec-ft)	-0.00575	-0.00819	-0.00468	-0.00324	-0.01252
M _q (1/sec)	-0.345	-0.485	-0.485	-0.319	-0.303
$M_{\delta_e} (1/sec^2)$	-2.60	-12.03	-12.03	-2.703	-21.0

TABLE VIII-C

LATERAL DIMENSIONAL DERIVATIVES FOR THE F-105B

Note: Data are for body-fixed stability axes, lateral data not available for flight conditions 1 and 2.

	FL	GHT CONDIT	ION
	3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN
h (ft)	35,000	Sea Level	40,000
M (-)	0.9	0.241	2.1
Y _V (1/sec)	-0.1497	-0. 1878	-0.213
Υδa* [(1/sec)/rad]	-0.00173	-0.0021	-0.00221
Yor [(1/sec)/rad]	0.0234	0.0241	0.0837
I_{β} $(1/\text{sec}^2)$	- 41.1	-21.5	-139.8
Ц <mark>'</mark> (1/sec)	- 2.8	-1.185	-3.14
L' (1/sec)	1.709	1.251	1.966
$L_{\delta_{\mathbf{a}}}$ (1/sec ²)	10.71	3.72	26.5
$L_{\delta_{\mathbf{r}}^{\mathbf{i}}}$ (1/sec ²)	14.37	2.86	12.97
N_{β} (1/sec ²)	12.39	4.38	18.81
N_p' (1/sec)	0.324	0.0725	0.1341
N; (1/sec)	-0.382	-0.242	-0.386
$N_{\delta a}$ (1/sec ²)	-1.086	-0.277	-1.339
$N_{\delta_{\mathbf{r}}}$ (1/sec ²)	- 4.71	-0.975	-1.989

TABLE VIII-D

ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE F-105B

Note: Data are for body-fixed stability axes.

			FLI	GHT CONDITI	ON	
		1 TAKEOFF	2 START CRUISE	3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN
Mach No	., M (-)	0.261	0.9	0.9	0.241	2.1
Altitud	e h (ft)	Sea Level	35,000	35,000	Sea Level	40,000
CG (%	₸)	29.5	29.5	30.8	30. 2	30.8
Weight,	W (lb)	41,230	41,230	35,370	30,000	35,370
	$\xi_{ m sp}$	0.281	0.1819	0.253	0.398	0.0893
Λ.	ω _{sp}	1.338	2.71	2.08	0.998	5.06
$\Delta_{ m long}$	$\zeta_{\mathbf{p}}$	0.0297	0.1295	0.0631	0.1016	0.1869
	ωp	0.1247	0.0223	0.0429	0.1342	0.0201
	A_{Θ}	- 2.60	-12.03	-12.02	-2. 70	-21. 0
$^{ extsf{N}_{oldsymbol{\delta}_{f e}}^{ heta}}$	1/T ₀₁	0.1026	0.0061	0.00891	0.0742	0.00827
	1/T ₀₂	0.200	0.355	0.433	0.335	0.508
	A _u	-1. 367	-0.452	-2,002	-1.708	-1.792
N _{δe}	1/Tu ₁	1.018	0.438	1.511	1.266	2.94
	1/Tu ₂	-17.0	- 696	- 55 . 8	-15.02	- 65 . 2
	A _W	- 17 . 27	- 65 . 2	- 76 . 0	-19.88	-135.9
n ^w Nຽe	1/T _{w1}	44.2	162	– 139	36.9	315
¹¹óe	ζ _w	0.0372	0.129	0.0642	0.1258	0.1838
	ω <mark>M</mark>	0.1287	0.0225	0.044	0.1435	0.0204
	$\mathtt{A}_{\mathrm{h}}^{\boldsymbol{\cdot}}$	17.28	65.2	76.0	19.88	135.9
Nδe	1/Th ₁	0.01292	0.00466	0.00439	0.01094	0.00737
™δe	1/T _{h2}	- 3•37	- 7 . 29	- 7 . 48	- 3.49	- 12 . 49
	1/Th3	3 . 80	7.88	8.07	3.89	12.8

TABLE VIII-E

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE F-105B

Note: Data are for body-fixed stability axes; lateral data not available for flight conditions 1 and 2.

		F	LIGHT CONDITION	4
		3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN
Mach No	o., M (-)	0.9	0.241	2.1
Altitud	de, h (ft)	35,000	Sea Level	40,000
CG (9	が <u>c</u>)	30.8	30.2	30.8
Weight	, W (lb)	35,370	30,000	35,370
α _o (de	g) ,	7.0	5.2	3 . 5
	1/T _s	-0.00870	0.000676	0.00631
	1/T _R	2.13	1.382	2.95
$\Delta_{ m lat}$	ζa	0.184	0.0545	0.1531
	ωđ	3.29	2.13	4.16
	A _p	10.71	3. 72	26.5
p Nãa	1/T _{p1}	0	0.0103	0
™oa	$\zeta_{\mathbf{p}}$	0.0635	0.101	0.0744
	$\omega_{\mathbf{p}}$	2.87	1.674	3.44
	$\mathtt{A_r}$	-1.086	-0.277	-1.339
$ exttt{N}_{\delta_{\mathbf{a}}}^{\mathbf{r}}$	1/T _{r1}	-1. 524	-1.503	-1. 3
"Oa	$\zeta_{\mathbf{r}}$	0.465	0.564	0.600
	w _r	1.398	1.718	1.686
	A_{β}	-0.00174	-0.00210	-0.00221
Ns _a	1/T _{β1}	- 622	0.1427	0.1379
a Toa	1/I _{β2} (ζ _β)	(-0.0573)	1.655	0.658
	1/Ι _{β3} (ω _β)	(0.276)	- 133.7	601

TABLE VIII-F
RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE F-105B

Note: Data are for body-fixed stability axes; lateral data not available for flight conditions 1 and 2.

		FLIGHT CONDITION				
		3 END CRUISE CLEAN	4 POWER APPROACH CLEAN	5 V _{max} CLEAN		
Mach No	o., M (-)	0.9	0.241	2.1		
Altitu	de, h (ft)	35,000	Sea Level	40,000		
CG (% ਂ ਂ ਂ	30. 8	30.2	30 . 8		
Weight	, W (lb)	35,370	30,000	35,370		
α ₀ (de	eg)	7.0	5.2	3. 5		
	$1/T_{\rm S}$	-0.00870	0.000676	0.00631		
	$1/T_{ m R}$	2.13	1.382	2.45		
$\Delta_{ m lat}$	ζ _{đ.}	0.184	0.0545	0.1531		
	aA	3.29	2.13	4.16		
	$^{\mathrm{A}}\mathrm{p}$	14.37	2.86	12.97		
$ extbf{N}^{ extbf{p}}_{\delta_{ extbf{r}}}$	1/T _{p1}	0	0.0103	0		
νδr	1/T _{p2}	-1.109	-1.82	-1 . 499		
	1/T _{p3}	1.014	1.63	1.738		
	Ar	-4 .71	-0.975	-1.989		
$_{^{N}\!\delta_{f r}}^{f r}$	1/T _{r1}	1.848	1.463	2.31		
" ^o r	$\zeta_{\mathbf{r}}$	0.1028	-0. 246	0.1601		
	^a r	0.259	0.838	0.342		
	A_{β}	0.0233	0.0241	0.00538		
$ exttt{N}_{\delta_{f r}}^{eta}$	1/T _{β1}	-0.0103	-0.0395	0.00369		
^{ιν} δ _r	1/T _{f32}	1.927	1.371	2 .3 6		
	1/T _{F3}	203	40.6	370		

, , , , , , , , , , , , , , , , , , ,			
		-	
		•	
			·

IK NOT FILMED

PRECEDING PAG

SECTION IX

B-58

B-58

NOMINAL CRUISE CONFIGURATION

FLIGHT CONDITIONS

See Table IX -A

REFERENCE GEOMETRY

S = 1542 ft2

b = 56.8 ft

c = 36.2 ft

REFERENCES

 Bright, B.E., Ellington, J.D., "Application of the Limit-Cycle Selfadaptive Concept to the B-58 Lateral Directional Stability Augmentation System."
 Thesis, Air Force Institute of Technology, GGC/EE/64-5, May 1964

- 2) Anon., B-58 Flight Control System, Gen. Dyn. Fort Worth, FZE-4-049, Nov. 1962
- 3) Jones, L.S., U.S. Bombers BI-B70" Aero Publishing Inc., 1962

SOURCE

Unknown

36

PITCH

ROLL

YAW

93 **NOTE**:

K₁, K₄, K₅, K₇, K₈...Gains Scheduled for Mach-Number

 K_2 , K_3 , K_6 , K_9 , K_{10} ...Gains Scheduled for Altitude

(Air data computer not shown)

The Augmentation System for this airplane is known to have undergone several modifications. The system shown is of 1962 vintage as documented in G.D. Convair Report FZE 4-052, Dec. 1962, being the latest available data

TABLE IX-A

GEOWETRICAL PARAMETERS FOR THE B-58

Note: Data for body-fixed stability axes, cruise configuration.

 $S = 1,542 \text{ ft}^2; b = 56.82 \text{ ft}; c = 36.17 \text{ ft}$

ე/ ^{ქეე} x	85.0	8s . o	8s . 0	05.0	££.0	££•0	۶۶ . 0
) (deg) oγ	0	0	0	0	0	0	0
. (Stl-guls) zxl	9 1 9'Slz -	092,61	SLE'15	178,62-	981 , 7S	SST,01	<u> </u>
$(^{SJ}$	1,402,030	080,076	1,445,230	019'902'1	011,805,1	015,705,1	064,805,1
I _y (slug-ft ²)	000'S70'l	z68 ' 679	000'S70'l	000°≤†0°l	000°570°L	000'S70'L	000°570°L
$(^{\mathrm{S}}$ tl $_{\mathrm{s}}$ ula $)$ $_{\mathrm{x}}$ I	020,024	44E°SEE	098'985	595,585	202 , 502	SL2,138	787°19£
(sgnīs) m	SS97	887s	GG97	SS97	SS97	: ⊆⊆9†	997
(adl) W	000'091	000'06	000'0⊆l	000,0∂1	000°091	000,021	000,021
$\overline{q} = OV_{\overline{L}O} / S $ (Lb/ft ²)	125	TSSI	TSSI	822	006	423	962
Λ_{To} (ft/sec)	TZE	9101	9101	188	9561	S16	1162
(Sti/Buls) o	775500.0	772500.0	775500.0	585000.0	874000.0	688000.0	₹85000.0
a (ft/sec)	7111	7111	2111	896	896	<u>9</u> 66	896
(-) M	55.0	16.0	16.0	16.0	5.0	86.0	2°L
(14) 년	0	0	0	000°0†7	77,200	000'02	000°0†
	L	ਟ	٤	†7	⊆ .	9	L
			LII	CHI COMDILIC	NO	1	

TABLE IX-B LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE B-58

Note: Data are for body-fixed stability axes, cruise configuration.

<u></u>	THE TAXUE OF THE TAXUE								
	FLIGHT CONDITION								
	1	2	3	<u>)</u>	5	6	7		
h (ft)	0	0	0	40,000	44,200	30,000	40,000		
M (-)	0.32	0.91	0.91	0.91	2.0	0.98	1.2		
V _{To} (ft/sec)	357•3	1016	1016	880.9	1936.2	975	1161.7		
c _{y_β}	-0.6395	-0.6375	-0.674	-0. 7665	-0.6275	-0.732	- 0.801		
Cy8a	0.1511	0.08655	0.0890	0.1790	0.0187	0.1862	0 . 179 1		
Cybr	0.0929	0.0527	0.05725	0.0954	0.0232	0.08075	0.0545		
Cℓ _β	-0.1 58 ¹ 4	-0.0551	-0.0851	-0.1345	-0.03942	- 0.1096	-0.1158		
C _{lp}	-0.1936	- 0.1585	- 0.1576	-0.2173	-0. 2317	-0.2107	- 0.2238		
Clr	0.04479	0.08568	0.08553	0.1102	0.07207	0.09543	0.1071		
C _{lba}	-0.1112	-0.04043	- 0.03892	-0.1041	- 0.01782	-0.0729	- 0.0010		
Clor	0.001927	0.00729	0.007395	0.01227	0.003115	0.01328	0.0078		
$^{\mathrm{C}}\mathrm{n}_{\beta}$	0.1014	0.1242	0.0624	0.1029	0.03207	0.0788	0.1117		
C _{np}	-0.1143	- 0.01082	-0.02935	-0.06118	0.01241	-0.03713	-0.04215		
$^{\mathrm{C}}\mathrm{n}_{\mathtt{r}}$	-0.2494	-0.2449	-0.2312	- 0.2868	- 0.2132	- 0.2611	-0.2823		
^C n∂a	-0.0405	- 0.03318	-0.03317	-0.0664	- 0.02038	-0.0725	-0.09275		
$\mathbb{C}_{n_{\delta_{\mathbf{r}}}}$	-0.06415	- 0.03561	- 0.03563	-0.0633	-0.01382	-0.0530	-0.03255		

TABLE IX-C LATERAL DIMENSIONAL DERIVATIVES FOR THE B-58

Note: Data for body-fixed stability axes, cruise configuration.

	FLIGHT CONDITION								
	1	2	3	4	5	6	7		
h (ft)	0	0	0	40,000	44,200	30,000	40,000		
M (-)	0.32	0.91	0.91	0.91	2.0	0.98	1.2		
$Y_{ abla}$	-0.09	-0.426	-0.27	-0.0654	-0.0962	- 0.105	-0.09		
Yo*	0.0212	0.0578	0.0356	0.0153	0.00287	0.0267	0.0201		
Ys*	0.0131	0.0382	0.0229	0.00814	0.00356	0.0116	0.00613		
L _β	- 5.828	- 16 . 875	-23.14	- 7.575	-8.394	- 11.163	-11.08		
Lp	-0.469	-1.424	-1. 238	-0.381	-0.736	-0.63	-0.524		
L _r	0.221	0.724	0.603	0.212	0.214	0.278	0.251		
L _{\delta\alpha}	-3. 516	-13.19	- 11.19 ¹ 4	- 5•597	- 3.965	- 7.538	-0.953		
L _{br}	0.395	2.108	1.71	0.789	0.608	1.313	0.748		
N _B	1.858	13.71	3.818	1.946	1.895	2.317	3.202		
Np	-0.0141	-0.0631	-0.105	-0.02	-0.00473	-0.0388	-0.0293		
Nr.	-0.222	-0.76	-0.459	-0.159	-0.198	-0.231	-0.198		
N _δ a	0.157	- 4.021	- 2.865	-0.909	-1.413	- 2.29	-2.654		
N _{or}	-0.669	- 3.986	- 2.589	-1.069	-0.884	-1.614	-0.932		

TABLE IX-D

AILERON IATERAL TRANSFER FUNCTION FACTORS FOR THE B-58

Note: Data are for body-fixed stability axes, cruise configuration

		· · · · · · · · · · · · · · · · · · ·		FLIG	HT CONDIT	ION		
		1	2	3	4	5	6	7
h (f	h (ft)		0	0	40,000	44,200	30,000	40,000
м (—)	0.32	0.91	0•91	0.91	2.0	0.98	1.2
	$1/T_{\mathbf{S}}$	0.058	0.00426	0.0334	0.026	0.0134	0.029	0.017
Δ	1/T _R	0.698	1.527	1.75	0.556	0.802	0.885	0.687
:	ζa	0.009	0.144	0.044	0.0086	0.0772	0.0165	0.0296
	ωď	1.403	3.756	2•126	1.42	1.40	1.58	1.81
	$A_{\mathbf{p}}$	-3.516	-13•19	-11•194	-5•597	-3.965	-7.538	-0.953
N ^p N _{Sa}	1/T _{P1}	0	0	0	0	0	0	0
^N δa.	$\zeta_{\mathbf{p}}$	0.132	0.168	0.152	0.0784	0.085	0.096	0.104
	φ _D	1.274	4.391	3.151	1.786	2.217	2.398	5.85
	Ar	0.157	-4 .021	-2.865	-0.909	-1.413	-2.29	-2.654
r Naa	1/T _R	-1.148	1.881	1.498	1.002	0.983	1.082	0.934
	$\zeta_{\mathbf{r}}$	0.678	-0.213	0.249	-0.420	-0.174	-0.331	-0.295
	ω _r	1.677	1.021	0.897	0.845	0.481	0.757	0.602
	Aβ	0.0212	0.0578	0.0356	0.0153	0.00287	0.0267	0.0202
ηβ N _δ a	1/T _{β1} (ζ _β)	0.1624	-0.0838	-0.0941	-0.191	-0.0184	-0.073	-0.0171
Noa.	$1/T_{\beta_2} (\omega_{\beta})$	2.1616	1.198	0.798	0.226	0.695	0.467	0.520
	1/T _{β3}	-9.008	70.64	81.472	60.03	493.37	86.15	131.87
.a.,	Aay	7•594	58.73	36.17	13.46	5•55	26.063	23.42
N ₈ y	$1/T_{\mathbf{a}_{\mathbf{y}_1}}$ $(\zeta_{\mathbf{a}_{\mathbf{y}_2}})$	0.12	-0.210	-0.183	0.15	-0.02	-0.161	-0.036
	1/Tay2 (way2)	1.009	0.948	0.593	1.839	0.69	0.35	0.458
CG	ζ _{ay3} (1/T _{ay3})	-0.127	(-3.3)	(-3.608)	-0.852	(-6.618)	(-2 .2 55)	(-2.8)
	ω _{ay3} (1/T _{ay14})	1.733	(4.744)	(4.896)	0.85	(6.883)	(2.927)	(3.097)

TABLE IX-E

RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE B-58

Note: Data for body-fixed stability axes, cruise configuration

				FL	IGHT CONDIT	ION	-	
		1	2	3	14	5	6	7
h (f	Pt)	0	0	0	40,000	44,200	30,000	40,000
м (-	-)	0.32	0.91	0•91	0.91	2.0	0.98	1.2
	1/T _s	0.058	0.00426	0.0334	0.026	0.0134	0.029	0.017
Δ	1/T _R	0.698	1.527	1.75	0.556	0.802	0.885	0.687
	ζa	0.009	0.144	0.044	0.0086	0.0772	0.0165	0.0296
	ωđ	1.403	3.7 56	2•126	1.42	1.40	1•58	1.81
	A _p	0.395	2.108	1.711	0.789	0.608	1.313	0.748
p N ₈ p	1/T _{P1}	0	0	0	0	0	0	0
η ^{δη}	1/T _{p2}	-2•969	-4.554	-5.859	-2.959	-3.247	-3.433	-3.319
	1/T _{p3}	2.713	4.065	5 •3 65	2.818	3.181	3.329	3.204
	Ar	-0.669	-3•986	-2•589	-1.069	-0.884	-1.614	-0.932
r Nor	1/T _r	0.964	1.607	1.615	0.786	0.901	1.0	0.88
N8 _r	ζ _r	-0.326	0.167	-0.0561	-0.317	-0.10	-0.226	-0.255
	$\omega_{\mathbf{r}}$	0.665	0.436	0.636	0.534	0.362	0.553	0.518
	Aβ	0.0131	0.0382	0.0229	0.00814	0.00355	0.0116	0.00613
β Nor	1/T _{β1}	-0.0149	-0.00685	-0.00709	-0.008	-0.00171	-0.0043	-0.00445
N8 _r	1/T ₆₂	0.546	1•482	1 • 337	0.431	0.753	0.693	0.574
	1/T _{β3}	51 .3 55	150.05	113.43	131.44	248.84	139•37	152.06
	Aay	4.669	3 8•813	23•266	7•173	6.886	11.303	7•126
	1/Tay1 (\$ay2)	-0.0966	-0.0122	-0.0167	-0.0225	-0.0032	-0.0135	-0.0131
Nay	1/Tay2 (way2)	0.446	1.46	1.243	0.394	0.748	0.649	0.537
CG	ζ _{ay3} (1/T _{ay3})	(-1.486)	(-5•179)	(-4.926)	(-2.492)	(-4.597)	(-3.394)	(-3.14)
	ω _{ay3} (1/T _{ay14})	(1.828)	(5•915)	(5•398)	(2.662)	(4.788)	(3.62)	(3.338)

SECTION X

NAVION

NAVION

NOMINAL FLIGHT CONDITION

h(ft) = 0; M = .158; $V_{T_0} = 176 ft/sec$

W = 2750 lbs

CG at 29.5 % MAC

 $I_{x} = 1048 \text{ slug ft}^{2}$

 $I_y = 3000 \text{ slug ft}^2$

 $I_z = 3530 \text{ slug ft}^2$

I_{xz} = O

REFERENCE GEOMETRY

 $S = 184 \text{ ft}^2$

c = 5.7 ft

b = 33.4 ft

GEOMETRICAL PARAMETERS FOR THE NAVION

LONGITUDINAL NONDIMENSIONAL LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE NAVION DERIVATIVES FOR THE NAVION

Note: Data for body stability axes, leve			are for	Note: Data are	for stability
s (ft ²)	180	5005		-	THE TANKE
b (ft)	33.4	1	FLIGHT CONDITION		FLIGHT CONDITION
c (ft)	5.7		1		1
W (lb)	2,750	h (ft)	0	h (ft)	0
m (slugs)	85.4	M (-)	0.158	M (-)	0.158
c.g. (% MAC)	29.5	$c_{ m L}$	0.41	V _{To} (ft/sec)	176
I _x (slug-ft ²)	1,048	c_{D}	0.05	α _O (deg)	
Iy (slug-ft ²)	3,000	$^{\mathrm{CI}^{lpha}}$	4.44	С _{УВ}	-0.564
I _z (slug-ft ²)	3,530	$^{\mathrm{C}_{\mathrm{L}_{lpha}}}$	0	Cy8a	0
I _{xz}	0	$^{\mathrm{C}_{\mathrm{L}_{\mathbf{M}}}}$	0	$c_{y_{\delta_r}}$	0.157
h (ft)	0	$c_{L\delta_{\mathbf{e}}}$	0 .3 55	ClB	-0.074
М	0.158	$c_{\mathrm{D}_{\mathrm{CL}}}$	0.330	C_{ℓ_p}	-0.410
a (ft/sec)	1117	$c_{D_{ extbf{M}}}$	0	C _L	0.107
ρ (slugs/ft ³)	0.002378	^C D8e	0	C _l sa	0.1342
VTo (ft/sec)	176	$c_{m_{\alpha}}$	-0.683	C _{&8}	0.0118
$\overline{q} = \rho V_{T_0}^2 / 2 \ (1b/ft^2)$	36. 8	C _{må}	-4.36	$c_{n_{\beta}}$	0.0701
α _O (deg)	0.6	$C_{m_{M}}$	0	C_{n_p}	-0.0575
γ _o (deg)	0	$^{\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}}$	-9. 96	C_{n_r}	-0.125
				C _{nõa}	-0.00346
				C _{nor}	-0.0717

TABLE X-D
LONGITUDINAL DIMENSIONAL

DERIVATIVES FOR THE NAVION

LATERAL DIMENSIONAL DERIVATIVES FOR THE NAVION

TABLE X-E

	FLT. COND.
X_W	0.03607
Хu	-0.0451
X _{δe}	0
$Z_{\mathbf{W}}$	-2.0244
z_u	-0.3697
Z _{δe}	-28.17
M _W	-0.04997
$M_{\tilde{W}}$	-0.005165
$M_{\mathbf{q}}$	- 2.0767
Mu	0
^M δe	- 11 . 1892

FOR THE NAVION	
	FLT. COND.
$Y_{\mathbf{V}}$	-0. 2543
$Y_{\delta_{\mathbf{a}}}^*$	0
Y ₈ r	0.0708
Lβ	- 15 . 982
$\mathtt{L}_{\mathtt{p}}^{\bullet}$	-8.402
$\mathbb{L}_{\boldsymbol{\Upsilon}}^{\boldsymbol{\mathfrak{r}}}$	2.193
Lδ'a	28.984
L _b .	2.548
${\tt N}_{\beta}^{^{\boldsymbol{\mathfrak t}}}$	4.495
$\mathtt{N}_{p}^{''}$	-0.3498
$N_{\mathbf{r}}^{'}$	-0.7605
N _S '	-0.2218
N ₅ ,	-4.597

TRANSPER PUNCTION

ELEVATOR LONGITUDINAL ALLERON LATERAL TRANSFER RUDDER LATERAL TRANSFER FUNCTION FACTORS FACTORS FOR THE NAVION FOR THE NAVION

FUNCTION FACTORS FOR THE NAVION

		FLT. COND.			FLT. COND.			FLT. COND.
	t, sp	0.6957		1/T _S	0,00876		1/T _s	0.00876
Δ	$^{(1)}$ sp	3.6083		1/T _R	8.435		1/T _R	8.435
	$t_{ m p}$	0.0801	Δ	$\zeta_{ m d}$	0.20 ¹ 1	Δ	ζd	0.204
	$q_{(1)}$	0.2137		⁽¹⁾ đ	2.385		⁽¹⁾ d.	2.385
	A ₍₎	-11.0 ⁵ 14		Ap	28 . 98 ⁾ i		$^{\mathrm{A}}\mathrm{p}$	2 . 548
N _{δe}	1/T ₍₎₁	0.05231	n	1/T _{P1}	0	$\mathtt{N}^{\mathrm{p}}_{\mathrm{Sr}}$	1/T _{P1}	. 0
	1/T _{()2?}	1.9164	№ Na	ζ_{p}	0.2336	" ^N ör	1/T _{P2}	- 6.991
	A _u	-1.0161		ωp	2 . 136		1/T _{P3}	3 . 6061
N _{Se}	1/T _{u1}	2.401		Ar	-0. 2218		Ar	-4.597
	1/T _{u2}	<i>–</i> 280.39		1/T _r	-1.253	$N_{\{\cdot,r\}}^r$	1/T _r	8.639
	A _W	<i>-</i> 28.171	$^{ m r}_{ m \delta_a}$	1/T _{r2}	1.5 ⁴ 3		$\xi_{\mathbf{r}}$	0.1335
ν Νδe	$1/T_{\rm W}$	71.984		1/T _{r3}	54.071		⁽¹⁾ r	0.5345
i 'ne	t _w	0.0862					A _β	0.0707
	(I)W	0.2563	В	A _B	0.2218	$\mathtt{N}^{\!eta}_{\!ar{\delta}_{\mathbf{r}}}$	1/T _{B1}	-0.0366
	A _h	28.171	$N_{\delta a}^{\beta}$	1/T _{B1}	0.2285	ror	1/T _{β2}	8.795
h Nδe	1/T _{h1}	-10.108		1/T _{β2}	77.78		1/T _{β3}	65 .3 52
T'Oe	1/T _{h2}	0.0165					Aay	12.485
	1/T _{h3}	13.122					1/Tay1	-0.0591
	$A_{\mathbf{a_{Z}}}$	- 28 . 171				N _δ r	1/Tay2	8.335
$N_{\delta e}^{\mathbf{a_z}}$	1/Ta _z 1					CG	1/Tay3	- 3.0074
	1/Taz2	-10.108					1/Tay4	3.894
$\ell_{\rm X}$ =0	1/Taz3	0.0165						
CG	1/Taz ₄	13.122						

PRECEDING PAGE BLANK NOT FILMED.

SECTION XI

DC-8

FLIGHT CONDITIONS

Flight Condition	Approach	Holding	Cruise	V _{NE}
h(ft)	0	15,000	33,000	33,000
M	0.219	0.443	0.84	0.88
W (lbs)	190,000	190,000	230,000	230,000
I _x (slug-ft ²)	3.09×106	3.11×10 ⁶	3.77×10 ⁶	3.77×10 ⁶
I _y (slug-ft ²)	2.94×10 ⁶	2.94×10 ⁶	3.56×10 ⁶	3.56×10
Iz (slug-ft ²)	5.58×10 ⁶	5.88×10 ⁶	7.13 x 10 ⁶	7.13 × 10 ⁶
I _{xz} (siug-ft ²)	28×10 ³	-64,5×10 ³	45×10 ³	53.7 × 10 ³
X _{cq} Ic	0.15	0.15	0.15	0.15

Stability Axes

REFERENCE GEOMETRY

S = 2600 ft²

b = 142.3 ft

c = 23 ft

REFERENCES: Unpublished Data

106

TABLE XI-A

GEOMETRICAL AND INERTIAL PARAMETERS FOR THE DC-8

S = 2600 ft² , b = 142.3 ft , c = 23 ft , γ_0 = 0 deg

		FLIGHT CON	DITION	
	1 APPROACH	2 HOLDING	3 CRUISE	ι V _{NE}
h (ft)	0	15,000	33,000	33,000
M (-)	0.218	0.443	0.84	0.88
a (ft/sec)	1117	1058	982	982
ρ (slugs/ft ³)	0.002378	0.001496	0.000795	0.000795
V _{To} (ft/sec)	243.5	468.2	824.2	863.46
$\bar{q} = _0 V^2 / 2 (lb/ft^2)$	71.02	163.97	270.0	296.36
W (lb)	190,000	190,000	230,000	230,000
m (slugs)	5900	5900	7143	7143
$I_{x} (slug-ft^{2})$	3,090,000	3,110,000	3,770,000	3,770,000
I_y (slug-ft ²)	2,940,000	2,940,000	3,560,000	3,560,000
I_z (slug-ft ²)	5,580,000	5,880,000	7,130,000	7,130,000
I _{xz} (slug-ft ²)	28,000	-64,500	45,000	53,700
x _{CG} /c	0.15	0.15	0.15	0.15
θ_{O} (deg)	0	0	0	0
U _o (ft/sec)	243.5	468.2	824.2	863.46
W _O (ft/sec)	0	0	0	0
$\delta_{ extbf{F}}$ (deg)	35	0	0	0

TABLE XI-B

LONGITUDINAL NONDIMENSIONAL DERIVATIVES FOR THE DC-8

	FLIGHT CONDITION				
	1	2	3	4	
h	0	15,000	33,000	33,000	
М	0.218	0.443	0.840	0.88	
CJ.	0.98	0.42	0.308	0.279	
c_{D}	0.1095	0.0224	0.0188	0.0276	
$c^{\Gamma^{\alpha}}$	4.81	4.8762	6.7442	6,8989	
$^{\mathrm{C}_{\mathrm{L}_{\dot{lpha}}}}$	0	0	0	0	
$c_{\mathbb{L}_M}$	0.02	0.048	0	-1.2	
C _L δe	0.328	0.328	0.352	0.358	
$c_{\mathrm{D}_{lpha}}$	0.487	0.212	0.2719	0.4862	
$\mathtt{c}_{\mathtt{D}_{\mathtt{M}}}$	0.0202	0.00208	0.1005	0.3653	
C _D δe	0	-0.9712	0	0	
$c_{m_{\alpha}}$	-1.478	-1.5013	-2.017	-2.413	
$c_{m_{\hat{\alpha}}}$	-3.84	4 .10	-6.62	-6.83	
c_{m_m}	-0.006	-0.02	-0.17	-0.50	
$^{\mathrm{C}_{\mathrm{m}_{\mathrm{q}}}}$	-0.00117	-0.9712	-14.6	-15.2	

TABLE XI-C

LATERAL NONDIMENSIONAL STABILITY DERIVATIVES FOR THE DC-8

Note: Data are for body-fixed stability axes

		FLIGHT CO	ND ITION	
	1	2	3	<u>J</u> ţ
h (ft)	0	15,000	33,000	33,000
M (-)	0.218	0.443	0.84	0.88
V _{To} (ft/sec)	243.5	468.2	824.2	863.46
$c_{y_{eta}}$	-0.87268	-0.6532	-0.7277	-0.7449
С _{Уба}	0	0	0	0
$C_{y_{\delta_r}}$	0.18651	0.18651	0.18651	0.18651
C ℓ β	-0.15815	-0.13752	-0.16732	-0.17362
c_{ℓ_p}	-0.385	-0.416	-0.516	-0.538
$^{\mathrm{C}}\ell_{r}$	0.248	0.132	0.147	0.146
C _l s _a	-0.08595	-0.08308	-0.07965	-0.07907
C _l s _r	0.02189	0.019195	0.021086	0.02166
$c_{n_{\beta}}$	0.1633	0.12319	0.15471	0.16044
C_{n_p}	-0.0873	-0.0307	-0.0107	-0.00587
c_{n_r}	-0.196	-0.161	- 0.190	-0.199
$c_{n_{\delta_{\mathbf{a}}}}$	-0.0106	-0.00354	-0.003701	-0.003999
$c_{n\delta_{\mathbf{r}}}$	-0.08337	-0.08337	-0.08337	-0.08337

TABLE XI-D

LONGITUDINAL DIMENSIONAL DERIVATIVES FOR THE DC-8

		FLIGHT C	ONDITION	
	1	2	3	4.
h (ft)	0	15,000	33,000	33,000
M (-)	0.218	0.443	0.84	0.88
T _u (1/sec)	-0.000595	-0.0000846	0.000599	0.000733
X _{U aero} (1/sec)	-0.02851	-0.00707	-0.0145	0.0471
$X_{u} (1/sec)$	-0.0291	-0.00714	-0.01 ¹ 4	-0.0463
X _W (1/sec)	0.0629	0.0321	0.0043	-0.0259
$X_{\delta_{\hat{e}}} [(ft/sec^2)/rad]$	0	0	0	0
$Z_{U_{\text{dero}}}(1/\text{sec})$	-0.2506	-0.1329	-0.0735	0 0622
Z_{u} (1/sec)	-0.2506	-0.1329	-0.0735	0 0622
Z_{W}^{\bullet} (-)	0	0	0	0
Z _w (1/sec)	-0.6277	-0.756	-0.806	-0.865
Z_{δ_e} [(ft/sec ²)/rad]	-10.19	-23.7	-34.6	-38.6
M _{U gero} (1/sec-ft)	-0.0000077	-0.000063	-0.000786	-0.00254
M _u (1/sec-ft)	-0.0000077	-0.000063	-0.000786	-0.00254
M _w (1/ft)	-0.001068	-0.00072	-0.00051	-0.00052
M _w (1/sec-ft)	-0.0087	-0.0107	-0.0111	-0.0139
$M_{ m q}$ (1/sec)	-0.7924	-0.991	-0.924	-1.008
M _{õe} (1/sec ²)	-1.3 5	-3.24	-4. 59	- 9.10
	,			

TABLE XI-E

LATERAL DIMENSIONAL DERIVATIVES FOR THE DC-8

		FLIGHT CON	DITION	
	1	2	3	4
h (ft)	0	15,000	33,000	33,000
M (-)	0.218	0.443	0.84	0.88
Y_V (1/sec)	-0.1113	-0.1008	-0.0868	-0.0931
Υδ* [(1/sec)/rad]	0	0	0	0
Yor [(1/sec)/rad]	0.0238	0.0288	0.0222	0.0233
L_{B}^{T} (1/sec ²)	-1.328	-2. 71	-4.41	- 5 . 02
L' (1/sec)	-0.951	-1.232	-1.181	-1.29
$L_{\mathbf{r}}^{\mathbf{r}}$ (1/sec)	0.609	0.397	0.334	0.346
L_{δ_a} (1/sec ²)	-0.726	-1.62	-2.11	-2.3
Lo; (1/sec2)	0.1813	0.392	0.549	0.612
$N_{\rm B}^{\prime}$ (1/sec ²)	0.757	1.301	2.14	2.43
$N_{\mathbf{p}}^{1}$ (1/sec)	-0.124	-0.0346	-0.0204	-0.01715
$N_{\mathbf{r}}^{\mathbf{t}}$ (1/sec)	-0.265	-0.257	-0.228	-0.25
N_{δ_a} $(1/sec^2)$	-0.0532	-0.01875	-0.0652	-0.0788
N_{δ_r} (1/sec ²)	0.389	-0.864	-0.01164	-1.277

TABLE XI-F
ELEVATOR LONGITUDINAL TRANSFER FUNCTION FACTORS FOR THE DC-8

			FLIGHT CO	NDITION	
		1	2	3	4
Mach No., M (-)		0.218	0.443	0.84	0.88
Altitud	e, h (ft)	0	15,000	33,000	33,000
CG (%	ō ē)	15	15	15	15
Weight,	W (lb)	190,000	190,000	230,000	230,000
	$\zeta_{ extsf{sp}}$	0.522	0.434	0.342	0.325
^-	wsp	1.619	2.40	3.15	3.59
$\triangle_{ ext{long}}$	ζ _p (1/T _{p1})	0.06 0 6	0.0310	0.241	(-0.0708)
	$\omega_{\rm p}$ $(1/T_{\rm p_2})$	0.1635	0.0877	0.0243	(0.108)
	Aθ	-1.338	-3.22	4.57	- 5.1
N _δ e	1/T ₀₁	0.0605	0.01354	0.01436	0.0493
^{no} e	1/T ₀₂	0.535	0.675	0.725	0.76
	A _u	-0.641	-0.761	-0.1489	1.00
u ^{Nδ} e	1/T _{u1}	1.08	1.279	0.816	0.449
⊖e	1/Tu ₂	-35.3	-72 .7	-879	279
	A _W	-10.19	-23.7	-34.6	-38.6
	$1/T_{W1}$	33.0	65.0	110.2	-0.0364
w N∂ _e	$\xi_{\mathbf{w}}^{\prime}$ (1/ $\mathbf{T}_{\mathbf{w}_2}$)	0.0781	0.037	0.1362	(0.0827)
^N ∂e	$\omega_{\rm W}$ (1/ $T_{\rm W3}$)	0.1798	0.0947	0.0511	(115•5)
	w ,				(**************************************
	A _h	10.19	23.7	34.6	38.6
•	1/T i 1	-3.75	- 5.95	-8.24	-8.63
h Nδe	1/T h 2	-0.00182	-0.000026	0.0107	0.0531
	1/Th3	4.83	7.29	9.59	100.9
			THE STREET OF THE PART WAS BUILDING MINISTER TO SERVE		
	$A_{\mathbf{a}_{\mathbf{Z}}}$	-10.19	-23.7	-34.6	-38.6
η <mark>a</mark> z δe	$1/T_{a_{Z_1}}$	0	0	0	0
	1/Ta _{Z2}	-3.75	-5.95	-8.24	-8.63
CG	1/Ta _{z3}	-0.00182	-0.000026	0.0107	0.0531
	$1/T_{a_{Z_{l_4}}}$	4.83	7.29	9.59	100.9

TABLE XI-G

AILERON LATERAL TRANSFER FUNCTION FACTORS FOR THE DC-8

Note: Data are for body-fixed stability axes

	,		FLIGHT C	ONDITION	
		1	2	3	4
Mach No., (-)		0.218	0.443	0.84	0.88
Altitude	e, h (ft)	0	15,000	33,000	33,000
CG (%	ē)	15	15	15	15
Weight,	W (1b)	190,000	190,000	230,000	230,000
	1/T _s	-0.013	0.00649	0.00404	0.00447
$\triangle_{ ext{lat}}$	$1/T_{ m R}$	1.121	1.329	1.254	1.356
Lat	ζ _d	0.1096	0.1061	0.0793	0.0855
	ω d	0.996	1.197	1.495	1.589
	Ap	-0.726	-1.62	-2.11	-2.30
	1/T _{P1}	0	0	0	0
$ exttt{N}^{ exttt{p}}_{\delta exttt{a}}$	ζp	0.223	0.1554	0.1072	0.1094
∪a,	ωp	0.943	1.166	1.515	1.620
				_	
	A_{ϕ}	-0.726	-1.62	-2.11	-2.30
$^{\circ}_{ m N}_{ m \delta_{f a}}$	ζφ	0.223	0.1554	0.1072	0.1094
a - Oa	ωφ	0.943	1.166	1.515	1.620
•					
	Ar	-0.0532	-0.01875	-0.0652	-0.0788
70	1/T _{r1}	0.998	1.589	1.644	1.757
$^{ m N}_{\delta_{f a}}$	$\zeta_{\mathbf{r}}$	-0.656	-0.727	-0.392	-0.345
	$\omega_{\mathbf{r}}$	1.242	2.23	1.323	1.269
	Ав	0.0532	0.01875	0.0652	-0.0788
R	1/T _{β1}	-2.75	-7.9	- 1.036	-0.704
$^{ ho}_{ m N\delta_a}$	1/T _{β2}	0.203	0.197	0.291	0.404
	1/I _{β3}		_	·	

TABLE XI-H
RUDDER LATERAL TRANSFER FUNCTION FACTORS FOR THE DC-8

Mach No., M (-) 0.218 0.443 0.84 0.84 Altitude, h (ft) 0 15,000 33,000 33,000 CG ($\%$ \bar{c}) 15 15 15 15 Weight, W (lb) 190,000 190,000 230,000 230 Δ_{lat} 1/Ts -0.013 0.00649 0.00404 0.0 Δ_{lat} 1/Tr 1.121 1.329 1.254 1. Δ_{lat} 0.1096 0.1061 0.0793 0.0 Δ_{lat} 0.996 1.197 1.495 1. Ap 0.1813 0.392 0.545 0. $N_{\delta_{\text{r}}}^{\text{p}}$ 1/Tp ₂ 1.028 1.85 2.43 2. $1/T_{\text{p}_3}$ -2.13 -2.56 -3.01 -3.01 -3.01 $\Delta_{\phi_{\text{r}}}$ 0.1813 0.392 0.545 0. $\Delta_{\phi_{\text{r}}}$ 0.1813 0.392 0.545 0.	.88 ,000
Altitude, h (ft) 0 15,000 33,000 33,000 33,000 CG (% \bar{c}) 15 15 15 15 15 15 15 15 15 15 15 15 15	,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Weight, W (1b) 190,000 190,000 230,000 230 $1/T_8$ -0.013 0.00649 0.00404 0.0 $1/T_R$ 1.121 1.329 1.254 1. ζ_d 0.1096 0.1061 0.0793 0.0 ω_d 0.996 1.197 1.495 1. A_p 0.1813 0.392 0.545 0. $1/T_{p_1}$ 0 0 0 0 $1/T_{p_2}$ 1.028 1.85 2.43 2. $1/T_{p_3}$ 2.13 -2.56 -3.01 -3	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	xx447
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	356
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	855
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	589
$N_{\delta_{\mathbf{r}}}^{\mathbf{p}}$ $1/T_{\mathbf{p}_{2}}$ $1/T_{\mathbf{p}_{3}}$ 1.028 1.85 -2.43 -2.56 -3.01 -3 A_{ϕ} 0.1813 0.392 0.545 0.47 0.183 0.392 0.545 0.393	612
$N_{\delta r}^{p}$ 1/ $T_{p_{2}}$ 1.028 1.85 2.43 2. 1/ $T_{p_{3}}$ 2.13 -2.56 -3.01 -3.01 -3.01	0
$1/T_{p_3}$ -2.13 -2.56 -3.01 -3 A_{ϕ} 0.1813 0.392 0.545 0.13	57
A _φ 0.1813 0.392 0.545 0.	3.15
1 000 1 00 0 1 3	
1.028 1.85 2.43 2.	.612
1 _ V '/ ±Ψ1	.57
	3.15
A_r -0.389 -0.864 -1.165 -1.	.277
	.377
	.0475
	. 323
A _β 0.0238 0.0288 0.0222 0.0	0233
	00637
$N_{\delta_{\mathbf{r}}}^{\beta} = 1/T_{\beta_2}$ 1.141 1.297 1.217 1.	.323
	0.0
l ay	0.1
1 / - 2 / 1	01746
$N_{\delta r}^{3y} = 1/T_{ay_2} = -0.1077 = 1.535 = 1.122 = 1$.231
$1/T_{ay3}(\zeta_{ay})$ (0.994) -1.157 -1.418 -1	1.01.
$_{\text{CG}}$ $1/T_{\text{ayh}}$ (ω_{ay}) (1.078) 1.147 1.723 1	
	.494 .819

APPENDIX A

AXIS SYSTEMS, SYMBOLS, AND DERIVATIVE DEFINITIONS

1. AXIS SYSTEMS

- X_B , Y_B , Z_B The Body-Axis System consists of right-handed, orthogonal axes whose origin is fixed at the nominal aircraft center of gravity. It's orientation remains fixed with respect to the aircraft, the X_B and Z_B axes being in the plane of symmetry. The exact alignment of X_B axis is arbitrary, herein it is taken along the body centerline reference.
- $x_{\rm S}, x_{\rm S}, x_{\rm S}$ The Stability-Axis System is that particular body-axis system for which the Xg-axis is coincident with the projection of the total steady-state velocity vector ($v_{\rm T_O}$) on the aircraft's plane of symmetry. It's orientation remains fixed with respect to the aircraft.

2. SYMBOLS

a	Speed of sound in air	ft/sec
ay	Lateral acceleration along the Y-Body Axis at the center of gravity (positive out right wing)	ft/sec ²
$\mathbf{a}_{\mathbf{y}}^{\mathbf{t}}$	Lateral acceleration parallel to the Y-Body Axis at a distance l_X and l_Z from the c.g., $a_y' = a_y + l_x \dot{r} - l_Z \dot{p}$	ft/sec ²
a_Z	Normal acceleration along the Z-Body Axis at the c.g. (positive down)	ft/sec ²
$a_{ m Z}^{!}$	Normal acceleration parallel to the Z-Body Axis at a distance l_X from the c.g., $a_Z'=a_Z-l_X\dot{q}$	ft/sec ²
ъ	Reference wing span	ft
c	Reference chord	ft
CG	Center of gravity	
D	Aerodynamic force (drag) along the total velocity vector (positive aft)	lbs
g	Acceleration due to gravity	ft/sec ²
h	Altitude	ft
I_X , I_Y , I_Z	Moments of inertia referred to body axis	slug-ft ²
I_{XZ}	Product of inertia referred to body axis	slug-ft ²
ງ່ພ	The imaginary portion of the complex variable $s = \sigma \pm j\omega$	rad/sec
$1_{\mathbf{X}}$	Distance along the X-Body Axis from the c.g. (positive forward)	ft
1_{Z}	Distance along the Z-Body Axis from the c.g. (positive down)	ft
L	Rolling moment about the X-axis due to aerodynamic torques (positive right wing down)	ft-lb

L	Aerodynamic force (lift) perpendicular to the total velocity vector in the aircraft's plane of symmetry (positive up)	lbs
m	Mass	slugs
M	Mach number	
М	Pitching moment about the Y-axis due to aerodynamic torques (positive nose up)	ft-lb
MAC	Mean aerodynamic chord	ft
MGC	Mean geometric chord	ft
N	Aerodynamic normal force along the Z-Body Axis <u>but</u> positive up	lbs
И	Yawing moment about Z-axis due to aerodynamic torques (positive nose right)	ft-lbs
р	Roll rate, angular velocity about X-axis (positive right wing down)	rad/sec
ď	Pitch rate, angular velocity about Y-axis (positive nose up)	rad/sec
- q	Dynamic pressure, 1/2 p $V_{\mathrm{T}_{\mathrm{O}}}^{2}$	lbs/ft ²
r	Yaw rate, angular velocity about Z-axis (positive nose right)	rad/sec
$^{ m r}$ RG	Yaw rate gyro signal	rad/sec
S	Laplace operator, σ+ jω	rad/sec
S	Reference wing area	ft ²
T.E.	Trailing edge	
u	Linear perturbed velocity along the X-axis (positive forward)	ft/sec
U _O	Linear steady-state velocity along the X-axis (positive forward)	ft/sec
v	Linear perturbed velocity along the Y-axis (positive out right wing)	ft/sec
$v_{\mathbf{T}_{\mathbf{O}}}$	Total linear steady-state velocity (positive forward)	ft/sec

W	Linear perturbed velocity along the Z-axis (positive down)	ft/sec
W	Weight	lbs
$W_{\mathcal{O}}$	Linear steady-state velocity along the Z-axis (positive down)	ft/sec
X	Aerodynamic force along the X-axis (positive forward)	lbs
Y	Aerodynamic force along Y-axis (positive out right wing)	lbs
^z j	Perpendicular distance from c.g. to thrust line (positive for nose up pitching moment due to thrust)	ſt
Z	Aerodynamic force along Z-axis (positive down)	lbs
α	Perturbed angle of attack	rad
α_{O}	Steady-state (trim) angle of attack	deg
β	Sideslip angle	rad
γ_{O}	Steady-state flight path angle	deg
δ_{a}	Aileron control surface deflection, (includes spoiler effects, etc.), (positive for positive rolling moment)	rad
δ _e	Elevator surface deflection from trim, (positive for nose down pitching moment for aft surface)	rad
δ _{eo}	Trim elevator deflection	deg
$\delta_{f r}$	Rudder deflection [positive for nose left yawing moment (negative N)]	rad
Δ	Denominator of airframe transfer function	
ζ _i	Damping ratio of linear second order mode particularized by the subscript	
θ	Pitch angle, f q dt for straight and level flight, positive nose up	rad

€ O	Inclination of thrust line with X-axis [positive gives negative (-) Z force]	deg
ρ	Mass density of air	slugs/ft ³
σ	The real portion of the complex variable $s = \sigma \pm j\omega$	rad/sec
φ	Roll angle, ($\cos \theta_0$ f p dt - $\sin \theta_0$ f r dt) in straight and level flight, (positive right wing down)	rad
$\omega_{\mathbf{i}}$	Undamped natural frequency of a second order mode, particularized by subscript	rad/sec

Special Subscript

a	Aileron
đ	Dutch roll
e	Elevator
p	Phugoid
r	Rudder
R	Roll subsidence
s	Spiral
sp	Short period

3. NONDIMENSIONAL DERIVATIVE DEFINITIONS

a) Longitudinal Body Axis

b) Longitudinal Stability Axis

c) Lateral Body and Stability Axis

Though physically and numerically different,* see Appendix B, the same symbols are used for body axis and stability axis lateral rolling and yawing moment derivatives. The sideforce derivatives $(c_y, etc.)$ are physically and numerically the same in both axis systems. When the rolling or yawing moment derivatives are given in this report the axis system is specified. When using the following all quantities should be for the same axis system.

^{*}The exception is the zero trim angle of attack condition.

4. DIMENSIONAL STABILITY DERIVATIVE DEFINITIONS

The same symbols are used for body- and stability-axis dimensional derivatives. Care should be exercised so that a consistent set of quantities are used.

a) Longitudinal Body Axis

$$\begin{split} X_{\mathbf{u}}^{\star} &= X_{\mathbf{u}} + T_{\mathbf{u}} \cos \xi_{\mathbf{0}} \\ X_{\mathbf{u}} &= \frac{\rho S U_{\mathbf{0}}}{m} \left(-\frac{M}{2} C_{X_{\mathbf{M}}} - C_{X} + \frac{W_{\mathbf{0}}}{2U_{\mathbf{0}}} C_{X_{\mathbf{0}}} \right) \\ X_{\mathbf{w}} &= \frac{\rho S U_{\mathbf{0}}}{2m} \left[-C_{X_{\mathbf{0}}} - 2 \frac{W_{\mathbf{0}}}{U_{\mathbf{0}}} \left(C_{X} + \frac{M}{2} C_{X_{\mathbf{M}}} \right) \right] \\ X_{\delta_{\mathbf{e}}} &= -\frac{\rho S V_{T_{\mathbf{0}}}^{2}}{2m} C_{X_{\delta_{\mathbf{e}}}} \\ \\ Z_{\mathbf{u}}^{\star} &= Z_{\mathbf{u}} - T_{\mathbf{u}} \sin \xi_{\mathbf{0}} \\ Z_{\mathbf{u}} &= \frac{\rho S U_{\mathbf{0}}}{m} \left(-\frac{M}{2} C_{N_{\mathbf{M}}} - C_{\mathbf{N}} + \frac{V_{\mathbf{0}}}{2U_{\mathbf{0}}} C_{N_{\mathbf{0}}} \right) \\ \\ Z_{\mathbf{w}} &= \frac{\rho S U_{\mathbf{0}}}{2m} \left[-C_{N_{\mathbf{0}}} - 2 \frac{W_{\mathbf{0}}}{U_{\mathbf{0}}} \left(C_{\mathbf{N}} + \frac{M}{2} C_{N_{\mathbf{M}}} \right) \right] \\ \\ Z_{\delta_{\mathbf{e}}} &= -\frac{\rho S C}{\frac{V_{T_{\mathbf{0}}}}{2m}} \frac{U_{\mathbf{0}}}{V_{T_{\mathbf{0}}}} C_{N_{\delta_{\mathbf{e}}}} \\ \\ \\ Z_{\delta_{\mathbf{e}}} &= -\frac{\rho S V_{T_{\mathbf{0}}}^{2}}{2m} C_{N_{\delta_{\mathbf{e}}}} \\ \\ \end{split}$$

$$M_{u}^{*} = M_{u} + \frac{Z_{jm}}{I_{v}} T_{u}$$

$$\frac{1}{\sec - ft}$$

$$\begin{array}{lll} M_{U} & = & \frac{\rho S_{C}U_{O}}{2I_{y}} \left[\frac{M}{2} \; C_{m_{M}} + C_{m} - \frac{W_{O}}{2U_{O}} \; C_{m_{Q}} \right] & \frac{1}{\mathrm{sec-ft}} \\ \\ M_{W} & = & \frac{\rho S_{C}U_{O}}{2I_{y}} \left[C_{m_{Q}} + \frac{2W_{O}}{U_{O}} \; (C_{m} + \frac{M}{2} \; C_{m_{M}}) \right] & \frac{1}{\mathrm{sec-ft}} \\ \\ M_{W} & = & \frac{\rho S_{C}^{2}}{4I_{y}} \; \frac{U_{O}}{V_{T_{O}}} \; C_{m_{Q}} & \frac{1}{\mathrm{sec-ft}} \\ \\ M_{Q} & = & U_{O}M_{W} & 1/\mathrm{sec} \\ \\ M_{Q} & = & \frac{\rho S_{C}^{2}V_{T_{O}}}{4I_{y}} \; C_{m_{Q}} & 1/\mathrm{sec} \\ \\ M_{Q} & = & \frac{\rho S_{C}V_{T_{O}}^{2}}{2I_{y}} \; C_{m_{Q}} & 1/\mathrm{sec} \\ \\ M_{Q} & = & \frac{1}{\mathrm{am}} \; \partial T/\partial M & 1/\mathrm{sec} \\ \end{array}$$

b) Lateral Body Axis

$$Y_{V} = (\rho SV_{T_{O}}/2m)C_{y_{\beta}}$$

$$Y_{\beta} = V_{T_{O}}Y_{V}$$

$$Y_{\delta_{a}} = (\rho SV_{T_{O}}^{2}/2m)C_{y_{\delta_{a}}}$$

$$Y_{\delta_{r}} = (\rho SV_{T_{O}}^{2}/2m)C_{y_{\delta_{a}}}$$

$$Y_{\delta_{r}}^{*} = (\rho SV_{T_{O}}^{2}/2m)C_{y_{\delta_{r}}}$$

$$I/\sec^{2}$$

$$Y_{\delta_{r}}^{*} = (\rho SV_{T_{O}}/2m)C_{y_{\delta_{r}}}$$

$$I/\sec^{2}$$

$$I_{\beta} = (\rho SV_{T_{O}}/2m)C_{y_{\delta_{r}}}$$

$$I/\sec^{2}$$

$$I_{\beta} = (\rho SV_{T_{O}}/2m)C_{y_{\delta_{r}}}$$

$$I/\sec^{2}$$

$$I_{\beta} = (\rho SV_{T_{O}}/2m)C_{\beta_{r}}$$

$$I/\sec^{2}$$

$$I_{\gamma} = (\rho SV_{T_{O}}/2m)C_{\gamma_{O}}$$

$$I/\sec^{2}$$

$$I_{\gamma} = (\rho SV_{T_{O}}/2m)C_{\gamma_{O}}$$

$$I/\sec^{2}$$

$$I/\sec^{$$

$_{ m L}_{ m \delta_a}$	=	$(\rho SV_{T_O}^2 b/2I_x)C_{1\delta_a}$	1/sec ²
		$(\rho SV_{T_o}^2 b/2I_x)C_{l\delta_r}$	1/sec ²
		$(\rho SV_{T_O}/2m)C_{y_{\delta_a}}$	1/sec
N_{β}	=	$(\rho SV_{T_O}^2 b/2I_z)C_{n_\beta}$	1/sec ²
$\mathbb{N}_{\mathbf{p}}$	=	$(\rho SV_{T_O}b^2/4I_z)c_{n_p}$	1/sec
$\mathtt{N}_{\mathtt{r}}$	=	$(\rho SV_{T_O}b^2/4I_z)c_{n_r}$	1/sec
N_{δ_a}	=	$(\rho SV_{T_O}^2 b/2I_z)C_{n_{\delta_a}}$	1/sec ²
$N_{\delta_{\Upsilon}}$	=	$(\rho SV_{T_O}^2 b/2I_z)c_{n_{\delta_r}}$	1/sec ²
L_{β}	==	$(L_{\beta} + I_{xz}N_{\beta}/I_{x})G$	$1/\sec^2$
L_{p}^{\bullet}	=	$(I_p + I_{xz}N_p/I_x)G$	1/sec
$\mathbb{L}_{\Upsilon}^{ \boldsymbol{\iota}}$	=	$(I_r + I_{XZ}N_r/I_X)G$	1/sec
Lar	=	$(I_{\delta_r} + I_{xz}N_{\delta_r}/I_x)G$	1/sec ²
Ls:	=	$(I_{\delta_a} + I_{xz}N_{\delta_a}/I_x)G$	$1/\text{sec}^2$
N_{β}^{\bullet}	=	$(N_{\beta} + I_{xz}I_{\beta}/I_{z})G$	1/sec ²
$\mathbb{N}_{\mathbf{i}}^{\mathbf{b}}$	=	$(N_p + I_{xz}L_p/I_z)G$	1/sec
$N_{\mathbf{r}}^{\bullet}$		$(N_r + I_{XZ}L_r/I_Z)G$	1/sec
Ns;	=	$(N_{\delta_r} + I_{xz}L_{\delta_r}/I_z)G$	$1/\sec^2$
Noa.	-	$(N_{\delta_a} + I_{xz}L_{\delta_a}/I_z)G$	$1/\text{sec}^2$
G	=	$\frac{1}{1 - \frac{I_{xZ}^2}{I_{x}I_{z}}}$	

<u>,</u>

APPENDIX B

TRANSFORMATION OF NON-DIMENSIONAL STABILITY AXIS DERIVATIVES TO BODY AXIS

$$U_o = V_{T_O} cos \alpha_o$$

$$W_{O} = V_{T_{O}} sin \alpha_{O}$$

LONGITUDINAL

Body Axis

 $C_N = C_L \cos \alpha_O + C_D \sin \alpha_O$

 $C_X = C_D \cos \alpha_o - C_L \sin \alpha_o$

 $\mathtt{CN}_{\alpha} \ = \ \mathtt{CL}_{\alpha}\mathtt{cos} \ \alpha_{\mathtt{O}} - \mathtt{CLsin} \ \alpha_{\mathtt{O}} + \mathtt{CL}_{\alpha}\mathtt{sin} \ \alpha_{\mathtt{O}} + \mathtt{CD} \ \mathtt{cos} \ \alpha_{\mathtt{O}}$

 $C_{N_{\dot{\alpha}}} = C_{L_{\dot{\alpha}}} \cos \alpha_{o}$

 $C_{N_M} = C_{L_M} \cos \alpha_0 + C_{D_M} \sin \alpha_0$

 $c_{N\delta}$ = $c_{L\delta} \cos \alpha_o + c_{D\delta} \sin \alpha_o$

 $\mathtt{Cx}_{\alpha} \ = \ \mathtt{Cp}_{\alpha} \ \cos \, \alpha_{o} - \mathtt{Cp} \ \sin \, \alpha_{o} - \mathtt{Ct}_{\alpha} \ \sin \, \alpha_{o} - \mathtt{Ct} \ \cos \, \alpha_{o}$

 c_{X_M} = $c_{D_M} \cos \alpha_o - c_{L_M} \sin \alpha_o$

 $\mathtt{C}_{X_{\delta}} \ = \ \mathtt{C}_{D_{\delta}} \ \mathtt{cos} \ \alpha_{o} \text{-} \mathtt{C}_{L_{\delta}} \ \mathtt{sin} \ \alpha_{o}$

 C_m , $C_{m_{Q}}$, $C_{m_{Q}}$, $C_{m_{Q}}$, $C_{m_{M}}$, $C_{m_{S}}$ - UNCHANGED

LATERAL

Body Axis

 $(c_{1_{\beta}})_{B} = c_{1_{\beta}} \cos \alpha_{o} - c_{n_{\beta}} \sin \alpha_{o}$

 $(c_{l_p})_{B} = c_{l_p} \cos^2 \alpha_o - (c_{l_r} + c_{n_p}) \sin \alpha_o \cos \alpha_o + c_{n_r} \sin^2 \alpha_o$

 $\left(\mathtt{Cl_r}\right)_\mathtt{B} = \mathtt{Cl_r} \, \cos^2\!\!\alpha_\mathtt{O} - \left(\mathtt{Cn_r} - \mathtt{Cl_p}\right) \sin \alpha_\mathtt{O} \, \cos \alpha_\mathtt{O} - \mathtt{Cn_p} \, \sin^2\!\alpha_\mathtt{O}$

 $(c_{1\delta})_B = c_{1\delta} \cos a_0 - c_{n\delta} \sin a_0$

 $(c_{n_{\beta}})_{B} = c_{n_{\beta}} \cos \alpha_{o} + c_{l_{\beta}} \sin \alpha_{o}$

 $(c_{n_p})_p = c_{n_p} \cos^2 \alpha_0 - (c_{n_r} - c_{1_p}) \sin \alpha_0 \cos \alpha_0 - c_{1_r} \sin^2 \alpha_0$

 $(c_{n_r})_{\mathbf{B}} = c_{n_r} \cos^2 a_0 + (c_{\mathbf{l_r}} + c_{n_p}) \sin a_0 \cos a_0 + c_{\mathbf{l_p}} \sin^2 a_0$

 $(c_{n_{\delta}})_{F} = c_{n_{\delta}} \cos \alpha_{o} + c_{1_{\delta}} \sin \alpha_{o}$

$$c_{y_{\beta}}, c_{y_{\delta_{\mathbf{r}}}}, c_{y_{\delta_{\mathbf{R}}}}$$
 - unchanged

APPENDIX C

EQUATIONS OF MOTION, TRANSFER FUNCTIONS, AND COUPLING NUMERATORS

- 1. Longitudinal
 - a. Equations

$$\begin{bmatrix} s - X_{\mathbf{u}}^{*} & -X_{\mathbf{w}} & W_{o}s + g \cos \theta_{o} \\ -Z_{\mathbf{u}}^{*} & (1 - Z_{\mathbf{w}}^{*})s - Z_{\mathbf{w}} & -U_{o}s + g \sin \theta_{o} \\ -M_{\mathbf{u}}^{*} & -(M_{\mathbf{w}}^{*}s + M_{\mathbf{w}}) & s^{2} - M_{\mathbf{q}}s \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix} = \begin{bmatrix} X_{\delta_{e}} \\ Z_{\delta_{e}} \end{bmatrix} \begin{bmatrix} \delta_{e} \end{bmatrix}$$

$$q = s\theta$$

$$\dot{h} = -w \cos \theta_O + u \sin \theta_O + (U_O \cos \theta_O + W_O \sin \theta_O)\theta$$

$$a_z = sw - U_0q + (g sin \theta_0)\theta$$

$$\mathbf{a_z^i} = \mathbf{a_z} - \mathbf{1_x} \mathbf{s}^2 \theta$$

b. Transfer Functions

$$\frac{\theta}{\delta_e} = \frac{N_{\delta_e}^{\theta}}{\Delta}$$

1) Denominator,
$$\Delta = As^4 + Bs^3 + Cs^2 + Ds + E$$

$$A = (1 - Z_{\mathbf{w}}^{\bullet})$$

$$B = -(M_q + X_u^*)(1 - Z_w^*) - Z_w - M_{\alpha}^*$$

$$\begin{split} C &= M_{q} Z_{w} - M_{\alpha} + X_{u}^{*} [(M_{q})(1 - Z_{\dot{w}}^{*}) + Z_{w} + M_{\dot{\alpha}}^{*}] \\ &- X_{w} Z_{u}^{*} + W_{o} [M_{\dot{w}}^{*} Z_{u}^{*} + M_{u}^{*} (1 - Z_{\dot{w}}^{*})] + g M_{\dot{w}}^{*} \sin \theta_{o} \end{split}$$

$$\begin{split} \mathbf{D} &= -\mathbf{X}_{\mathbf{u}}^{*}(\mathbf{M}_{\mathbf{q}}\mathbf{Z}_{\mathbf{w}} - \mathbf{M}_{\mathbf{Q}}) - \mathbf{M}_{\mathbf{u}}^{*}\mathbf{X}_{\mathbf{Q}} + \mathbf{M}_{\mathbf{q}}\mathbf{X}_{\mathbf{w}}\mathbf{Z}_{\mathbf{u}}^{*} + \mathbf{g} \big[\mathbf{M}_{\mathbf{w}}\mathbf{Z}_{\mathbf{u}}^{*} + \mathbf{M}_{\mathbf{u}}^{*}(1 - \mathbf{Z}_{\mathbf{w}}^{*})\big] \cos\theta_{\mathbf{0}} + \mathbf{W}_{\mathbf{0}}(\mathbf{M}_{\mathbf{w}}\mathbf{Z}_{\mathbf{u}}^{*} - \mathbf{M}_{\mathbf{u}}^{*}\mathbf{Z}_{\mathbf{w}}^{*}) \\ &+ \mathbf{g}(\mathbf{M}_{\mathbf{w}} - \mathbf{M}_{\mathbf{w}}\mathbf{X}_{\mathbf{u}}^{*}) \sin\theta_{\mathbf{0}} \end{split}$$

$$\mathbf{E} = \mathbf{g}(\mathbf{M}_{\mathbf{W}}\mathbf{Z}_{\mathbf{u}}^{*} - \mathbf{M}_{\mathbf{u}}^{*}\mathbf{Z}_{\mathbf{w}})\cos\theta_{0} + \mathbf{g}(\mathbf{M}_{\mathbf{u}}^{*}\mathbf{X}_{\mathbf{w}}^{*} - \mathbf{M}_{\mathbf{w}}\mathbf{X}_{\mathbf{u}}^{*})\sin\theta_{0}$$

2) 8 Numerators

$$N_{\delta}^{\theta} = A_{\theta}s^{2} + B_{\theta}s + C_{\theta}$$

$$A_{\theta} = Z_{\delta}M_{\dot{w}} + M_{\delta}(1 - Z_{\dot{w}})$$

$$B_{\theta} = X_{\delta} \left[M_{\mathring{\mathbf{w}}} Z_{\mathring{\mathbf{u}}}^{*} + M_{\mathring{\mathbf{u}}}^{*} (1 - Z_{\mathring{\mathbf{w}}}) \right] + Z_{\delta} (M_{\mathring{\mathbf{w}}} - M_{\mathring{\mathbf{w}}} X_{\mathring{\mathbf{u}}}^{*}) - M_{\delta} \left[Z_{\mathring{\mathbf{w}}} + X_{\mathring{\mathbf{u}}}^{*} (1 - Z_{\mathring{\mathbf{w}}}) \right]$$

$$\mathbf{C}_{\theta} = \mathbf{X}_{\delta}(\mathbf{M}_{\mathbf{w}}\mathbf{Z}_{\mathbf{u}}^{*} - \mathbf{M}_{\mathbf{u}}^{*}\mathbf{Z}_{\mathbf{w}}) + \mathbf{Z}_{\delta}(\mathbf{M}_{\mathbf{u}}^{*}\mathbf{X}_{\mathbf{w}} - \mathbf{M}_{\mathbf{w}}\mathbf{X}_{\mathbf{u}}^{*}) + \mathbf{M}_{\delta}(\mathbf{Z}_{\mathbf{w}}\mathbf{X}_{\mathbf{u}}^{*} - \mathbf{X}_{\mathbf{w}}\mathbf{Z}_{\mathbf{u}}^{*})$$

$$N_{\delta}^{u} = A_{u}s^{3} + B_{u}s^{2} + C_{u}s + D_{u}$$

$$A_{u} = X_{\delta}(1 - Z_{\dot{v}})$$

$$B_{u} = -X_{\delta} [M_{q}(1 - Z_{\dot{w}}) + Z_{w} + M_{\dot{\alpha}}] + Z_{\delta}X_{w} - W_{o}[Z_{\delta}M_{\dot{w}} + M_{\delta}(1 - Z_{\dot{w}})]$$

$$\begin{split} \mathbf{C}_{\mathbf{u}} &= \mathbf{X}_{\delta} (\mathbf{M}_{\mathbf{q}} \mathbf{Z}_{\mathbf{w}} - \mathbf{M}_{\alpha}) - \mathbf{Z}_{\delta} (\mathbf{g} \mathbf{M}_{\dot{\mathbf{w}}} \cos \theta_{o} + \mathbf{M}_{\mathbf{q}} \mathbf{X}_{\mathbf{w}}) + \mathbf{M}_{\delta} [\mathbf{X}_{\alpha} - (\mathbf{g} \cos \theta_{o})(1 - \mathbf{Z}_{\dot{\mathbf{w}}})] \\ &+ \mathbf{W}_{o} (\mathbf{Z}_{\mathbf{w}} \mathbf{M}_{\delta} - \mathbf{M}_{\mathbf{w}} \mathbf{Z}_{\delta}) + \mathbf{g} \mathbf{X}_{\delta} \mathbf{M}_{\dot{\mathbf{w}}} \sin \theta_{o} \end{split}$$

$$\mathbf{D_{u}} = \mathbf{g}(\mathbf{Z_{w}}\mathbf{M_{\delta}} - \mathbf{M_{w}}\mathbf{Z_{\delta}})\cos\theta_{o} + \mathbf{g}(\mathbf{X_{\delta}}\mathbf{M_{w}} - \mathbf{M_{\delta}}\mathbf{X_{w}})\sin\theta_{o}$$

$$N_{\delta}^{W} = A_{W}s^{3} + B_{W}s^{2} + C_{W}s + D_{W}$$

$$A_{\mathbf{w}} = Z_{\delta}$$

$$\mathbf{B}_{\mathbf{w}} = -\mathbf{Z}_{\delta}(\mathbf{M}_{\mathbf{q}} + \mathbf{X}_{\mathbf{u}}^{*}) + \mathbf{U}_{\mathbf{0}}\mathbf{M}_{\delta} + \mathbf{X}_{\delta}\mathbf{Z}_{\mathbf{u}}^{*}$$

$$\mathbf{C}_{\mathbf{w}} = \mathbf{X}_{\mathbf{u}}^{*} (\mathbf{Z}_{\delta}^{\mathbf{M}_{\mathbf{q}}} - \mathbf{U}_{o}^{\mathbf{M}_{\delta}}) + \mathbf{W}_{o} (\mathbf{Z}_{\delta}^{\mathbf{M}_{\mathbf{u}}^{*}} - \mathbf{M}_{\delta}^{\mathbf{Z}_{\mathbf{u}}^{*}}) - \mathbf{g}^{\mathbf{M}_{\delta}} \sin \theta_{o} + \mathbf{X}_{\delta} (\mathbf{M}_{\mathbf{u}}^{*} \mathbf{U}_{o} - \mathbf{Z}_{\mathbf{u}}^{*} \mathbf{M}_{\mathbf{q}})$$

$$\mathbf{D_w} = \mathbf{g} \big(\mathbf{Z_{\delta}^{M_u^*} - M_{\delta}^{Z_u^*}} \big) \mathbf{cos} \ \theta_0 + \mathbf{g} \mathbf{M_{\delta}^{X_u^*}} \ \mathbf{sin} \ \theta_0 - \mathbf{X_{\delta}^{M_u^*}} \mathbf{g} \ \mathbf{sin} \ \theta_0$$

$$N_{\delta}^{\dot{h}} = A_{\dot{h}}^{\dot{s}} s^{3} + B_{\dot{h}}^{\dot{s}} s^{2} + C_{\dot{h}}^{\dot{s}} s + D_{\dot{h}}^{\dot{s}}$$

$$A_{\dot{h}} = -\cos\theta_{o} A_{w} + \sin\theta_{o} A_{u}$$

$$B_{\dot{h}} = -\cos\theta_{o} B_{w} + \sin\theta_{o} B_{u} + (U_{o}\cos\theta_{o} + W_{o}\sin\theta_{o}) A_{\theta}$$

$$C_{\dot{h}} = -\cos\theta_{o} C_{w} + \sin\theta_{o} C_{u} + (U_{o}\cos\theta_{o} + W_{o}\sin\theta_{o}) B_{\theta}$$

$$D_{h}^{\cdot} = -\cos \theta_{o}D_{w} + \sin \theta_{o}D_{u} + (U_{o} \cos \theta_{o} + W_{o} \sin \theta_{o})C_{\theta}$$

$$N_{\delta}^{a_{Z}^{\dagger}} = A_{a_{Z}^{\dagger}} s^{l_{+}} + B_{a_{Z}^{\dagger}} s^{j_{+}} + C_{a_{Z}^{\dagger}} s^{j_{+}$$

To obtain a_z , let $l_x = 0$.

2. Lateral

a. Equations

$$\begin{bmatrix} s - Y_{\mathbf{V}} & -\frac{W_{\mathbf{O}}s + g \cos \theta_{\mathbf{O}}}{V_{\mathbf{T}_{\mathbf{O}}}} & \frac{U_{\mathbf{O}}s - g \sin \theta_{\mathbf{O}}}{V_{\mathbf{T}_{\mathbf{O}}}s} \end{bmatrix} \begin{bmatrix} \beta \\ \frac{p}{s} \\ -I_{\beta} & s(s - I_{\mathbf{p}}) & -I_{\mathbf{r}}' \\ -N_{\beta} & -N_{\mathbf{p}}'s & s - N_{\mathbf{r}}' \end{bmatrix} \begin{bmatrix} \beta \\ \frac{p}{s} \\ -N_{\mathbf{f}}' & s - N_{\mathbf{f}}' \end{bmatrix} \begin{bmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{r}} \end{bmatrix} \begin{bmatrix} \delta_{\mathbf{a}} \\ \delta_{\mathbf{r}} \end{bmatrix}$$

$$v = V_{\mathbf{T}_{\mathbf{O}}}\beta \qquad a_{\mathbf{y}} = sv + U_{\mathbf{O}}r - W_{\mathbf{O}}p - g(\cos \theta_{\mathbf{O}})\phi$$

$$\phi = \frac{p}{s} + \frac{r}{s} \tan \theta_{\mathbf{O}} \qquad a_{\mathbf{y}}' = a_{\mathbf{y}} + I_{\mathbf{X}_{\mathbf{1}}\mathbf{a}\mathbf{t}} \operatorname{sr} - I_{\mathbf{z}}\operatorname{sp}$$

$$\psi = \frac{1}{\cos \theta_{\mathbf{O}}} \frac{r}{s}$$

Transfer Functions b.

$$\frac{\rho}{\delta_a} = \frac{N_{\delta_a}^{\phi}}{\Delta_{lat}}$$
; $\frac{r}{\delta_r} = \frac{N_{\delta_r}^{r}}{\Delta_{lat}}$; etc.

1) Denominator, $\triangle_{lat} = as^4 + bs^3 + cs^2 + ds + e$

$$a = 1$$

$$b = -(Y_v + L_p^{\dagger} + N_r^{\dagger})$$

$$\mathbf{c} = \frac{\mathbf{U}_{o}}{\mathbf{V}_{T_{o}}} \, \mathbf{N}_{\beta}^{\bullet} + \mathbf{L}_{p}^{\bullet}(\mathbf{Y}_{\mathbf{V}} + \mathbf{N}_{r}^{\bullet}) - \mathbf{N}_{p}^{\bullet}\mathbf{L}_{r}^{\bullet} + \mathbf{Y}_{\mathbf{V}}\mathbf{N}_{r}^{\bullet} - \frac{\mathbf{W}_{o}\mathbf{L}_{\beta}^{\bullet}}{\mathbf{V}_{T_{o}}}$$

$$\begin{split} \mathbf{d} &= \frac{\mathbf{U_o}}{\mathbf{V_{T_o}}} \left(\mathbf{N_p^t} \mathbf{L_\beta^t} - \mathbf{L_p^t} \mathbf{N_\beta^t} \right) + \mathbf{Y_v} (\mathbf{N_p^t} \mathbf{L_r^t} - \mathbf{L_p^t} \mathbf{N_r^t}) - \frac{\mathbf{g}}{\mathbf{V_{T_o}}} \left(\mathbf{L_\beta^t} \cos \theta_o + \mathbf{N_\beta^t} \sin \theta_o \right) \\ &+ \frac{\mathbf{W_o}}{\mathbf{V_{T_o}}} \left(\mathbf{L_\beta^t} \mathbf{N_r^t} - \mathbf{N_\beta^t} \mathbf{L_r^t} \right) \end{split}$$

$$e = \frac{g}{v_{T_O}} \left[\left(\mathbf{I}_{\beta}^{\bullet} \mathbf{N}_{r}^{\bullet} - \mathbf{N}_{\beta}^{\bullet} \mathbf{I}_{r}^{\bullet} \right) \cos \theta_{O} - \left(\mathbf{N}_{p}^{\bullet} \mathbf{I}_{\beta}^{\bullet} - \mathbf{I}_{p}^{\bullet} \mathbf{N}_{\beta}^{\bullet} \right) \sin \theta_{O} \right]$$

2) δ (δ_a or δ_r) Numerators

$$\mathbb{N}_{\delta}^{\beta} = \mathbb{A}_{\beta} s^{3} + \mathbb{B}_{\beta} s^{2} + \mathbb{C}_{\beta} s + \mathbb{D}_{\beta}$$

$$A_{\beta} = Y_{\xi}^*$$

$$B_{\beta} = -Y_{\delta}^{*}[I_{p}^{1} + N_{r}^{1}] - N_{\delta}^{1} \frac{U_{o}}{V_{T_{o}}} + \frac{W_{o}}{V_{T_{o}}} I_{\delta}^{1}$$

$$\begin{split} A_{\beta} &= Y_{\delta}^{*} \\ B_{\beta} &= -Y_{\delta}^{*} [I_{p}^{\dagger} + N_{r}^{\dagger}] - N_{\delta}^{\dagger} \frac{U_{o}}{V_{T_{o}}} + \frac{W_{o}}{V_{T_{o}}} I_{\delta}^{\dagger} \\ C_{\beta} &= Y_{\delta}^{*} (I_{p}^{\dagger} N_{r}^{\dagger} - N_{p}^{\dagger} I_{r}^{\dagger}) + I_{\delta}^{\dagger} \frac{g}{V_{T_{o}}} \cos \theta_{o} + (N_{\delta}^{\dagger} I_{p}^{\dagger} - I_{\delta}^{\dagger} N_{p}^{\dagger}) \frac{U_{o}}{V_{T_{o}}} \\ &+ \frac{W_{o}}{V_{T_{o}}} (N_{\delta}^{\dagger} I_{r}^{\dagger} - I_{\delta}^{\dagger} N_{r}^{\dagger}) + N_{\delta}^{\dagger} \frac{g}{V_{T_{o}}} \sin \theta_{o} \end{split}$$

$$\mathbf{D}_{\beta} = \frac{\mathbf{g}}{V_{T_{O}}} \left(\mathbf{N}_{\delta}^{\mathbf{i}} \mathbf{L}_{r}^{\mathbf{i}} - \mathbf{L}_{\delta}^{\mathbf{i}} \mathbf{N}_{r}^{\mathbf{i}} \right) \cos \theta_{O} + \frac{\mathbf{g}}{V_{T_{O}}} \left(\mathbf{N}_{p}^{\mathbf{i}} \mathbf{L}_{\delta}^{\mathbf{i}} - \mathbf{N}_{\delta}^{\mathbf{i}} \mathbf{L}_{p}^{\mathbf{i}} \right) \sin \theta_{O}$$

$$N_{\delta}^{p} = A_{p}s^{3} + B_{p}s^{2} + C_{p}s + D_{p}$$

$$A_p = L_\delta$$

$$\mathbf{B}_{\mathrm{p}} \ = \ \mathbf{Y}_{\mathrm{\delta}}^{\star}\mathbf{L}_{\mathrm{p}}^{\bullet} \ - \ \mathbf{L}_{\mathrm{\delta}}^{\bullet}(\mathbf{N}_{\mathrm{r}}^{\bullet} \ + \ \mathbf{Y}_{\mathrm{V}}) \ + \ \mathbf{N}_{\mathrm{\delta}}^{\bullet}\mathbf{L}_{\mathrm{r}}^{\bullet}$$

$$\begin{split} \mathbf{B}_{\mathbf{p}} &= \mathbf{Y}_{\delta}^{\star} \mathbf{L}_{\beta}^{\dagger} - \mathbf{L}_{\delta}^{\dagger} (\mathbf{N}_{\mathbf{r}}^{\dagger} + \mathbf{Y}_{\mathbf{V}}) + \mathbf{N}_{\delta}^{\dagger} \mathbf{L}_{\mathbf{r}}^{\dagger} \\ \mathbf{C}_{\mathbf{p}} &= \mathbf{Y}_{\delta}^{\star} (\mathbf{L}_{\mathbf{r}}^{\dagger} \mathbf{N}_{\beta}^{\dagger} - \mathbf{L}_{\beta}^{\dagger} \mathbf{N}_{\mathbf{r}}^{\dagger}) + \mathbf{L}_{\delta}^{\dagger} \mathbf{Y}_{\mathbf{v}} \mathbf{N}_{\mathbf{r}}^{\dagger} - \mathbf{N}_{\delta}^{\dagger} \mathbf{Y}_{\mathbf{v}} \mathbf{L}_{\mathbf{r}}^{\dagger} + (\mathbf{L}_{\delta}^{\dagger} \mathbf{N}_{\beta}^{\dagger} - \mathbf{N}_{\delta}^{\dagger} \mathbf{L}_{\beta}^{\dagger}) \frac{\mathbf{U}_{\mathbf{O}}}{\mathbf{V}_{\mathbf{T}_{\mathbf{O}}}} \end{split}$$

$$D_{p} = -\frac{g}{V_{T_{o}}} \left(L_{\delta}^{\bullet} N_{\beta}^{\bullet} - N_{\delta}^{\bullet} L_{\beta}^{\bullet} \right) \sin \theta_{o}$$

$$N_{\delta}^{r} = A_{r}s^{3} + B_{r}s^{2} + C_{r}s + D_{r}$$

$$A_r = N_\delta'$$

$$\mathbf{B}_{\mathbf{r}} = \mathbf{Y}_{\delta}^{*} \mathbf{N}_{\beta}^{\dagger} + \mathbf{L}_{\delta}^{\dagger} \mathbf{N}_{\mathbf{p}}^{\dagger} - \mathbf{N}_{\delta}^{\dagger} (\mathbf{Y}_{\mathbf{V}} + \mathbf{L}_{\mathbf{p}}^{\dagger})$$

$$\begin{array}{lll} B_{\mathbf{r}} &=& Y_{\delta}^{\star} N_{\beta}^{\dagger} \,+\, L_{\delta}^{\dagger} N_{\mathbf{p}}^{\dagger} \,-\, N_{\delta}^{\dagger} (Y_{\mathbf{V}} \,+\, L_{\mathbf{p}}^{\dagger}) \\ \\ C_{\mathbf{r}} &=& Y_{\delta}^{\star} (L_{\beta}^{\dagger} N_{\mathbf{p}}^{\dagger} \,-\, N_{\beta}^{\dagger} L_{\mathbf{p}}^{\dagger}) \,-\, L_{\delta}^{\dagger} Y_{\mathbf{V}} N_{\mathbf{p}}^{\dagger} \,+\, N_{\delta}^{\dagger} Y_{\mathbf{V}} L_{\mathbf{p}}^{\dagger} \,+\, \frac{W_{\mathbf{O}}}{V_{\mathbf{T}_{\mathbf{O}}}} \,\, (L_{\delta}^{\dagger} N_{\beta}^{\dagger} \,-\, N_{\delta}^{\dagger} L_{\beta}^{\dagger}) \end{array}$$

$$D_{r} = \frac{g}{VT_{O}} \left(L_{\delta}^{\dagger} N_{\beta}^{\dagger} - N_{\delta}^{\dagger} L_{\beta}^{\dagger} \right) \cos \theta_{O}$$

$$N_{\delta}^{\phi} = A_{\Phi}s^2 + B_{\Phi}s + C$$

$$A_{\Phi} = A_p + A_r \tan \theta_0$$

$$B_{\Phi} = B_{p} + B_{r} \tan \theta_{o}$$

$$C_{\Phi} = C_p + C_r \tan \theta_0$$

$$N_{8}^{a'y} = A_{ay}^{i} s^{4} + B_{ay}^{i} s^{5} + C_{ay}^{i} s^{2} + D_{ay}^{i} s + E_{ay}^{i}$$

$$A_{ay}^{i} = V_{T_{0}}^{A_{\beta}} + 1_{x_{1at}}^{A_{r}} - 1_{z^{A_{p}}}$$

$$B_{ay}^{i} = V_{T_{0}}^{B_{\beta}} + U_{0}^{A_{r}} - W_{0}^{A_{p}} + 1_{x_{1at}}^{B_{r}} - 1_{z^{B_{p}}}$$

$$C_{a'y}^{i} = V_{T_{0}}^{C_{\beta}} + U_{0}^{B_{r}} - W_{0}^{B_{p}} - g \cos \theta_{0}^{A_{\phi}} + 1_{x_{1at}}^{C_{r}} - 1_{z^{C_{p}}}$$

$$D_{a'y}^{i} = V_{T_{0}}^{D_{\beta}} + U_{0}^{C_{r}} - W_{0}^{C_{p}} - g \cos \theta_{0}^{B_{\phi}} + 1_{x_{1at}}^{D_{r}} - 1_{z^{D_{p}}}$$

$$E_{a'y}^{i} = U_{0}^{D_{r}} - W_{0}^{D_{p}} - g \cos \theta_{0}^{C_{\phi}}$$

To obtain a_y , let $l_{x_{lat}} = l_z = 0$.