Slide 1: What is an roAp?

- roAp stands for rapidly oscillating Ap star.
 - These can have periods as little as 5 minutes.
- These lie on the delta Scuti instability strip and are usually A:F class stars.
 - The delta Scuti strip is along the main sequence, along with most standard candles.
- Most roAp's have spectral type Sr (Strontium), Eu (Europium), and Cr (Chromium) and sometimes Si (Silicon) (EX: ApSrEuCr spectral type).
 - Meaning they show strong lines of these ionized metals along with chemical peculiarities. A result of radiative acceleration and gravitational settling.
 - Gravitational Settling: particles falling toward the core due to gravity.
 - Radiative Acceleration: In each layer of the star, the particles move according to a diffusion velocity that involves a term describing the momentum transfer between the radiation field and the various chemical species.

Slide 2: Known roAp's

- Referencing documentation from TESS observations on ~ 200 known roAp stars, making a database with these.
 - Using cone search with radius 2" to identify the roAp's in Gaia catalog.
- Then concatenating each roAp table into a database and pair matching starhorse catalog.
 - Starhorse database accounts for accounting for dust extinction
 - Using GMAG vs. BP-RP0
 - GMAG being G broadband filter Absolute Mag
 - Using G filter because it covers more of the spectrum
 - BP-RPO being B-R color
 - Using this because we want separate indicators, not the same; which would using G filter

• This is the instability strip for the known roAp's.

Slide 3: NGC 2264

- Using TopCat with Gaia to plot a 13' FOV of NGC 2264.
 - NGC 2264, or the Christmas Tree cluster with the cone nebula in it, is in the Monoceros constellation and is an open cluster.
 - It is ~720 pc away from earth with an angular diameter of 20'.
 - o Pair matching with starhorse to account for dust extinction.

- I selected the dense, pink, group of stars inside the open cluster, fig 2.
 - The other stars in the top right are apart of the galactic disk, which we are not interested in.
 - o The pink group is NGC 2264

- Then considering the parallaxes, using a histogram, fig 3.
 - o We want our stars to be in proximity of one another.
 - Selecting a range from .6 2

- Now making an HRD with the selected group of stars, fig 4.
 - o These are the stars we are looking through to find roAp candidates.

Slide 4: Conclusion

- From NGC 2264 and the known roAp's, I plotted the candidates and known roAp's, fig 5.
 - Doing this by choosing only the stars in NGC 2264 that followed the instability strip of the known roAp's when grouping the plots of fig 1 and 4.

 The green section being the roAp candidates in our images and the red section being all the possible roAp's within 13'.

roAp candidates in our image FOV

#	Gaia designation	Identifier	RA;DEC
1	3326709559553987840	NGC 2264-153	06 41 03.374;+09 40 44.986
2	3326711487994693504	NGC 2264-169	06 41 07.778;+09 44 02.995
3		CI* NGC 2264 RMS	06 40 11.682;+09 45 55.699
	3326714752169858944	1872A	
4	3326715297630893184	CI* NGC 2264 SBL 1534	06 40 21.434;+09 48 04.741
5	3326716397142282240	CI* NGC 2264 SBL 226	06 40 55.183;+09 50 49.753
%6	3326736811121849216	HD 262066A	06 41 30.092;+09 49 48.324
%7	3326737051640013952	HD 262108	06 41 34.613;+09 51 37.917
8	3326743614350027008	CI* NGC 2264 SBL 392	06 41 31.989;+10 00 24.443
9	3326928882059976576	CI* NGC 2264 SBL 204	06 40 50.862;+09 55 53.029
10	3326929393158941056	V* V358 Mon	06 41 03.939;+09 58 09.453

The % stars are the better candidates.