SF-42

Image Processing

Assignment-I

Name: Udoy Saha ID: 23341134

Submitted to: Saiful Bari Iftu [SDQ] Submission date: 5 - October -2024

Ans to the ques no: 1

Here, input image has, width, w= 4height, h= 4 :. size = 4x4

kernel size = 3 x 3

If the height and width memains the same, lots consider the new height and width L' and w'.

$$s_{0}$$
, $h' = \frac{h - k + 2P}{s} + 1$

$$=) h = \frac{h - k + 2P}{s} + 1 \quad [: h' = h]$$

$$P = \frac{s \cdot h - h + k - s}{2} = \frac{1 \times 4 - 4 + 3 - 1}{2}$$

$$= \frac{4 - 4 + 3 - 1}{2}$$

$$= 1$$

Call happens

= 1

Same fore width, the padding will be 1.

: After mounding,

Add to a good to a contract on the CArel

the risk = 3 4

Masked pant from the original inage: [0 2]

: . Unshanp mask = Oniginal image - mask

(M)

Adding the Wishamp mask with

[d

Shanpened image = Oniginal image + K x Unshanp musk

property by Laplacian appropria

$$\begin{bmatrix} 3 & 0 & 2 \\ 9 & 9 \end{bmatrix} + 1 \times \begin{bmatrix} -3 & -1 \\ -5 & 4 \end{bmatrix}$$

After dipping = [0 07]

CAD (AD

Ans to the owner no:-2

The picture has many edges in different directions. Only detecting honizontal and ventical edges wont be sufficient here.

Also the image contains a lot of grain.

We have two good option for this image to detect edges. First one is

Robinson Compass filter which detects edges

by convolving multiple filters deditated for different directions. Second one is Laplacian operator. But, gince the image contains a lot of grain, the edges produced by Laplacian operator want be so good.

Therefore, B the best technique will be applying

Robinson Compass operators. Employing these

filters will produce the best result;

1. Honizontal = [-1, -2, -1]

2. North - East = [-2, -1, 0]

1. 2 | 1 | 2 | 1 |

-0-7-0-

This picture shows an Eagle, and it is notloable that there is not much grain present in the picture. The colon of one of region is almost consistent throughout the region.

Sec. Sec. State P. S. C. L. P. J.

A Robinson Compass Operator would work nicely to this case. But to cover different directions, we will need to employ at-least 4 filters.

Since, the grains present is considerably less in this picture, the Laplacean operator would also work great in this case.

so, a slighly modified on enhanced vension of Laplacian positive operation will be enough to cover all edges. The filter is as follows: - [0 4 0]

4 -16 4

Ans to the gues no: 4

Layer	Input Dimension	Filler Size	# Filters # Meuron	Padding	Output Dimension	# Parang
Conv1	128712873	7×7	8	2	126×126×8	8×(4×7×3+1) = 1184
MaxPool 1	156x 156x8	2×2	12	0	63×63×8	0
conv2	63×63 ×8	5×5	164	+, Z.I.	63×63×16	16x(5x5x8+1) = 3216
MaxPool 2	63×63×16	2×2	_	0	31×31×16	0
Conv3	31×16×16	3×3	32	0	29×29×32	32×(3×3×16+1) = 4640
Aug Pool 3	29×29×32	4×4	0 d	6 =	7×7×32	0
Flatten	7×7×32	- T-	-	2130	1568	0
FC	1568		256	andip	256	(1568+1)×256 = 401664
FC	256	2 +	128	Incl	128	=32896
FC (output)	128		4		4	(28+1)×4 = 516
1. 01.5	5128 N - 2	B C	Loli Lo	. [1	

9

In the final layer,

2 11 nothing

number of classes = 4

activation function = softmax

Done in table.

16

[0]

Done in the table.

		8		
Layer 1	Input dimension [Output dimension		
Const 1	32 x 128 x 128 x 3	32×126×126×8		
Man Pool I	32×126×126×8	32 x 63 x 63 x 8		
Conu 2	32 × 63 × 6 3 × 8	32× 63×63× 16		
Manpool 2	32 \$ 63 x 63 x 16	327 31 x 31 x 16		
Conu 3	32 x 31 x 31 x 16	32 x 29 x 29 x 32		
Mug Pool 3	32x 29×19 × 32	32× 7× 7×32		
datten	32 × 7 × 7 × 32	32 × 1568		
FC 6	32×1568	32 × 356		
EC	32×256	327 128		
FC (butput)	32× 128	32×4		

e

Yes, adding Batch Normalization layers will change the total number of trainable parameters. It will add:

Batch Normalization Conv1
$$\rightarrow$$
 8×4 = 32
11 Conv2 \rightarrow 16×4 = 64
12 Conv3 \rightarrow 32×4 = 128
14 FC \rightarrow 256×4 = 1024
17 FC \rightarrow 128×4 = 512

So, it will add 1760 more parameters.

-0-x-0-