Frequency-domain audio features

Valerio Velardo

domain addio roataroo

Join the community!

thesoundofai.slack.com

Previously...

Mel-Frequency Cepstral Coefficients

Frequency-domain features

- Band energy ratio (BER)
- Spectral centroid (SC)
- Bandwidth (BW)
- ...

Math conventions

• $m_t(n)$ -> Magnitude of signal at frequency bin n and frame t

Math conventions

- $m_t(n)$ -> Magnitude of signal at frequency bin n and frame t
- *N* -> # frequency bins

- Comparison of energy in the lower/higher frequency bands
- Measure of how dominant low frequencies are

$$BER_t = \frac{\sum_{n=1}^{T} m_t(n)^2}{\sum_{n=F}^{N} m_t(n)^2}$$

$$BER_t = \frac{\sum_{n=1}^{F-1} m_t(n)^2}{\sum_{n=F}^{N} m_t(n)^2}$$

Split frequency
$$\sum_{m=1}^{Power at \, t, \, n} m_t(n)^2$$
 $BER_t = \frac{n=1}{N} m_t(n)^2$ $\sum_{m=F}^{N} m_t(n)^2$

$$BER_t = \frac{\sum_{n=1}^{T} m_t(n)^2}{\sum_{n=F}^{N} m_t(n)^2}$$

Power in the lower frequency bands

$$BER_{t} = \frac{\sum_{n=1}^{F-1} m_{t}(n)^{2}}{\sum_{n=F}^{N} m_{t}(n)^{2}}$$

Power in the lower frequency bands

$$BER_{t} = \frac{\sum_{n=1}^{F-1} m_{t}(n)^{2}}{\sum_{n=F}^{N} m_{t}(n)^{2}}$$

Power in the higher frequency bands

Band energy ratio applications

- Music / speech discrimination
- Music classification (e.g., music genre classification)

- Centre of gravity of magnitude spectrum
- Frequency band where most of the energy is concentrated
- Measure of "brightness" of sound

Weighted mean of the frequencies

Weighted mean of the frequencies

$$SC_t = \frac{\sum_{n=1}^{N} m_t(n) \cdot n}{\sum_{n=1}^{N} m_t(n)}$$

Weighted mean of the frequencies

$$SC_t = rac{\sum\limits_{n=1}^{N} m_t(n) \cdot n}{\sum\limits_{n=1}^{N} m_t(n)}$$

Spectral centroid applications

- Audio classification
- Music classification

- Derived from spectral centroid
- Spectral range around the centroid
- Variance from the spectral centroid
- Describe perceived timbre

$$BW_{t} = \frac{\sum_{n=1}^{N} |n - SC_{t}| \cdot m_{t}(n)}{\sum_{n=1}^{N} m_{t}(n)}$$

$$BW_t = rac{\sum\limits_{n=1}^{N}|n-SC_t|\cdot \boxed{m_t(n)}}{\sum\limits_{n=1}^{N}\boxed{m_t(n)}}$$

$$BW_t = rac{\sum\limits_{n=1}^{N} \left| n - SC_t
ight| \cdot m_t(n)}{\sum\limits_{n=1}^{N} m_t(n)}$$

Energy spread across frequency bands

Energy spread across frequency bands

Bandwidth applications

Music processing (e.g., music genre classification)

What's up next?

- Implement band energy ratio in Python (almost!) from scratch
- Visualise BER for music in different genres