Recall

Let X, Y be two r.v.s and $\alpha, \beta \in \mathbb{R}$. Then $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$ (the linearity of $E[\cdot]$).

Cumulative distribution function

The cumulative distribution function (CDF) of a r.v. X is defined by

$$F(t) := P(X < t), \ \forall t \in \mathbb{R}$$

which has the following properties:

· Non-decreasing. · Right-continuous. · $\lim_{t\to-\infty} F(t) = 0$ and $\lim_{t\to+\infty} F(t) = 1$.

All probability questions about X can be answered in terms of CDF. In particular, for $x \in \mathbb{R}$, $P(X < x) = \lim_{t \to x^{-}} F(t)$.

Example 1. Suppose r.v. X has CDF

$$F(t) = \begin{cases} 0 & t \in (-\infty, 0) \\ t/4 & t \in [0, 1) \\ 1/2 + (t - 1)/4 & t \in [1, 2) \\ 11/12 & t \in [2, 3) \\ 1 & t \in [3, +\infty). \end{cases}$$

Find P(X = i), i = 1, 2, 3 and $P(1 \le X < 3)$.

Solution. Below is the graph of F(t).

Then

$$P(X = 1) = P(X \le 1) - P(X < 1) = F(1) - \lim_{t \to 1-} F(t) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4},$$

$$P(X = 2) = P(X \le 2) - P(X < 2) = F(2) - \lim_{t \to 2-} F(t) = \frac{11}{12} - \frac{3}{4} = \frac{1}{6},$$

$$P(X=3) = P(X \le 3) - P(X < 3) = F(3) - \lim_{t \to 3^{-}} F(t) = 1 - \frac{11}{12} = \frac{1}{12}.$$

And

$$P(1 \le X < 3) = P(X < 3) - P(X < 1) = \lim_{t \to 3^{-}} F(t) - \lim_{t \to 1^{-}} F(t) = \frac{11}{12} - \frac{1}{4} = \frac{2}{3}.$$

Remark. Since the CDF of discrete r.v.s should be of the shape of step functions, the r.v. X in Example 1 is not discrete. Later we will learn that X is not a continuous r.v. either because the CDF of continuous r.v. should be (absolutely) continuous (following Ross' definition of continuous r.v.).

Common discrete random variables

Usually, there are several equivalent ways to characterize a common r.v. X. (1) The story/backgroud/definition of X. (2) The explicit PMF/ CDF/ (PDF) of X. (3) Express X in terms of other r.v.s. The story shows the specialty of X and hints us the type of examples that we can use X to model. The PMF or CDF way is concise and allows us to do the computations.

Bernoulli r.v.. with parameter $p \in [0,1]$. Denote $X \sim Bern(p)$.

- (1) X is the outcome of a trial that succeeds with probability p and fails with probability 1-p.
- (2) The PMF of X is p(1) = P(X = 1) = p and p(0) = P(X = 0) = 1 p.

Note E[X] = p and Var(X) = p(1 - p).

Binomial r.v.. with parameter (n, p). Denote $X \sim Bin(n, p)$.

- (1) X is the number of successes that occur in the n independent Bernoulli trials with parameter p.
- (2) The PMF of X is $p(k) = P(X = k) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k}$ for $k = 0, \dots, n$.
- (3) Let X_1, \ldots, X_n be independent Bernoulli r.v.s with parameter p. Then $X = \sum_{k=1}^n X_k$.

Note E[X] = np and Var(X) = np(1-p).

Poisson r.v.. with parameter $\lambda > 0$. Denote $X \sim Poisson(\lambda)$.

- (2) The PMF of X is $p(k) = P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ for k = 0, 1, 2, ...
- (1) Approximate binomial r.v. with parameter (n, p) when n large and p small such that np moderate. This story is not precise but flexible to model many examples.

Note
$$E[X] = Var(X) = \lambda$$
.

Geometric r.v. & computing examples

Example 2 (Geometric r.v. with parameter p). Denote $X \sim Geom(p)$.

- (1) X is the number of independent Bernoulli trials with parameter $p \in (0,1)$ such that first success occur.
- (2) By independence, the PMF is $p(k) = (1-p)^{k-1}p$ for $k = 1, 2, 3, \dots$

Then we show $E[X] = \frac{1}{p}$ and $Var(X) = \frac{1-p}{p^2}$.

By definition, $E[X] = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$. Note that for $x \in (-1,1)$, (by a result about the uniform convergence of power series) we have

$$\sum_{k=1}^{\infty} kx^{k-1} = \sum_{k=0}^{\infty} (x^k)' = (\sum_{k=0}^{\infty} x^k)' = (\frac{1}{1-x})' = \frac{1}{(1-x)^2}.$$

Then setting x = 1 - p leads to $E[X] = p \sum_{k=1}^{\infty} k(1-p)^{k-1} = p \frac{1}{[1-(1-p)]^2} = \frac{1}{p}$.

To obtain Var(X), it suffices to compute $E[X^2]$

$$E[X^{2}] = \sum_{k=1}^{\infty} k^{2} (1-p)^{k-1} p$$

$$= \sum_{k=1}^{\infty} (k-1+1)^{2} (1-p)^{k-1} p$$

$$= \sum_{k=1}^{\infty} (k-1)^{2} (1-p)^{k-1} p + \sum_{k=1}^{\infty} 2(k-1)(1-p)^{k-1} p + \sum_{k=1}^{\infty} (1-p)^{k-1} p$$

$$(let $n = k-1) = (1-p) \sum_{n=1}^{\infty} n^{2} (1-p)^{n-1} p + 2(1-p) \sum_{k=1}^{\infty} n(1-p)^{n-1} p + 1$

$$= (1-p) E[X^{2}] + 2(1-p) E[X] + 1$$$$

Then substitute $E[X] = \frac{1}{p}$ and solve the equation to get $E[X^2] = \frac{2-p}{p^2}$.

Hence
$$Var(X) = E[X^2] - (E[X])^2 = \frac{1-p}{p^2}$$
.

Remark. Observe that we have use two different ways to compute E[X] and Var(X) in Example 2 both of which can be recursively extended to deal with series like $\sum_{k=1}^{\infty} k^p x^k$ with $p \in \mathbb{N}$.

Example 3. Let $X \sim Bin(n, p)$. Prove

$$E\left[\frac{1}{1+X}\right] = \frac{1 - (1-p)^{n+1}}{(n+1)p}$$

Proof. Recall the PMF of Bin(n, p) and by the formula of E[g(X)],

$$E\left[\frac{1}{1+X}\right] = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \frac{1}{(n+1)p} \sum_{k=0}^{n} \frac{1}{k+1} \frac{(n+1)!}{k![(n+1)-(k+1)]!} \cdot p^{k+1} (1-p)^{[(n+1)-(k+1)]}$$

$$= \frac{1}{(n+1)p} \sum_{k=0}^{n} \binom{n+1}{k+1} p^{k+1} (1-p)^{[(n+1)-(k+1)]}$$

$$(\text{let } j=k+1) = \frac{1}{(n+1)p} \left[\sum_{j=0}^{n} \binom{n+1}{j} p^{j} (1-p)^{[(n+1)-j]} - (1-p)^{n+1} \right]$$

$$(\text{ by Binomial Thm}) = \frac{1}{(n+1)p} [1-(1-p)^{n+1}].$$

Example 4. Let X be a r.v. with non-negative integral values. Prove

$$\sum_{k=0}^{\infty} kP(X \ge k) = \frac{1}{2}(E[X^2] + E[X]).$$

Proof.

$$\sum_{k=0}^{\infty} kP(X \ge k) = \sum_{k=0}^{\infty} \sum_{i=k}^{\infty} kP(X = i)$$

$$= \sum_{i=0}^{\infty} \sum_{k=0}^{i} kP(X = i)$$

$$= \sum_{i=0}^{\infty} \frac{i(i+1)}{2} P(X = i)$$

$$= \frac{1}{2} E[X^2] + \frac{1}{2} E[X],$$

where in the second equality we have changed the order of summation (see e.g. [Tutorial 4, Example 2] for details). \Box

Remark. Recall for the r.v. X in Example 4 we also have the layer-cake $E[X] = \sum_{k=0}^{\infty} P(X \ge k)$ (see e.g. [Tutorial 4, Example 2]). Together we can express $E[X^2]$ in terms of $P(X \ge k)$ if $E[X] < \infty$, thus Var(X). This process can recursively continue to express $E[X^p]$, $p \in \mathbb{N}$ in terms of $P(X \ge k)$.