Sistemas de inteligencia artificial TP5: Deep Learning

Grupo 19 Integrantes:

- → Lucas Catolino
- → Matias Ricarte

Ejercicio 1.a

Autoencoder

- Dos perceptrones multicapa: la salida de uno es la entrada del otro
- Arquitecturas paralelas
- Aprendizaje: función identidad \rightarrow X = X'
- En Z se encuentran las proyecciones en los componentes principales

Autoencoder

El problema: dado un archivo de fuentes (imágenes binarias), estudiar arquitecturas de autoencoders y tácticas de optimización, graficar el espacio latente y generar nuevas letras

Autoencoder

Optimizador: se estudiaron los resultados con y sin momentum. El momentum introduce una ponderación en las direcciones de descenso calculadas en pasos anteriores. Agrega una noción de "inercia" para suavizar el camino zigzagueante del gradiente descendiente y acelerando el descenso en direcciones similares a las

anteriores

Experimentación

Se probaron distintas arquitecturas con y sin momentum

		Sin			
	Capas	momentum	α= 0.5	α= 0.8	α= 0.9
[2]	1	2,029090678	2,112012327	1,979408549	2,266884278
[20,2,20]	3	0,6880308877	0,4090950168	0,6640879464	0,9291257471
[25,10,2,10,25]	5	0,4032735513	0,212031022	0,287066664	0,669640356
[25,20,15,10,2,10,15,20,25]	9	0,5930309474	0,1129948061	0,039992508	0,1203184404
[31,27,23,19,15,11,7,3,2,3,7,11,15,19,23,27,31]	17	1,704542485	0,8735941077	0,8735941077	0,6525797032

Experimentación

Error promedio por capas y optimización

La mejor combinación se dió en 9 capas con α = 0.8

[25,20,15,10,2,10,15,20,25]

Espacio latente

epochs	10000
momentum	0,8
beta	1
learning rate	0,01
function	tanh(x)
hiddenLayers	[25, 20, 15, 10, 2, 10, 15, 20, 25]

La red logró aprender todo el conjunto de entrada

Decodificación a partir de los valores en el espacio latente del conjunto de datos original

La red logró aprender todo el set de datos con mínimos errores

epochs	10000
momentum	0,8
beta	1
learning rate	0,01
function	tanh(x)
hiddenLayers	[25, 20, 15, 10, 2, 10, 15, 20, 25]

epochs	10000
momentum	0,8
beta	1
learning rate	0,01
function	tanh(x)
hiddenLayers	[25, 20, 15, 10, 2, 10, 15, 20, 25]

Decodificación a partir de los valores en el espacio latente elegidos de manera uniforme

Se usó la red para generar nuevas muestras que no pertenecieran al conjunto de entrenamiento

Ejercicio 1.b

Denoising Autoencoder

- Se entrena con una entrada ruidosa, comparando con la entrada sin ruido
- Se simula ruido al conjunto de entrada
- Busca preservar información más allá del ruido

Denoising Autoencoder

El problema: dado un archivo de fuentes (imágenes binarias), implementar una arquitectura conveniente, distorsionar la entrada y estudiar la capacidad de eliminación del ruido

epochs	10000
momentum	0,8
beta	1
learning rate	0,01
function	tanh(x)
hiddenLayers	[25, 20, 15, 10, 2, 10, 15, 20, 25]

Ruido	Error
0	0,039992508
0,05	0,1241927836
0,1	0,3815621126
0,2	1,021471619
0,4	2,597748449
0,5	3,202972687
0,6	2,607369799
0,8	1,371351545
1	0,05282446101

Error: 0.05

Ejercicio 2

Autoencoder Variacional Simple

- El espacio latente se representa como una distribución (generalmente Gaussiana)
- Se basa en un estimador Bayesiano: cuál es la probabilidad de un suceso dada una ocurrencia anterior
- Se aprenden los parámetros para definir la distribución: media y desvío estándar
- Se samplean datos de la "distribución latente", se los alimenta al decoder y se obtienen datos que parecen ser del set original

Autoencoder Variacional Simple

El problema: dada la capacidad generativa de la red, elegir un conjunto de datos y generar una nueva muestra

- Data set: fashion mnist
- Librerías: Keras, Tensorflow

• **Epochs:** 50

• Dimensiones intermedias: 256

• Espacio latente: 2

• Training set: 60000

• Testing set: 10000

Label	0	1	2	3	4	5	6	7	8	9
Description	T-shirt/top	Trouser	Pullover	Dress	Coat	Sandal	Shirt	Sneaker	Bag	Ankle boot

Dimensiones intermedias: 375

Muchas gracias

Grupo 19 Integrantes:

- → Lucas Catolino
- → Matias Ricarte