Composite Simpsons Rule for Numerical Integration — Study Guide (Basic)

Study Guide on Composite Numerical Integration

Key Concepts:

- Composite Numerical Integration
- Simpson's Rule
- Subintervals
- Composite Trapezoidal Rule
- Composite Midpoint Rule
- Approximation Error

Composite Numerical Integration

- Uses a piecewise approach to numerical integration.
- Breaks the interval into smaller subintervals for more accurate approximations.

Simpson's Rule

• Approximates the integral using quadratic polynomials on each subinterval.

Composite Simpson's Rule

- Involves applying Simpson's rule on consecutive pairs of subintervals.
- Formula:

$$\label{eq:continuous_sum_{j=1}^{h} f(x) dx & = h \left[f(a) + 2 \sum_{j=1}^{n/2} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(b) \right] / 180h^4 f^{(4)}(\mu)$$

 $\ensuremath{\mbox{end}} \aligned \ali$

 H_{403} z M_{403} 1759 Vo H_{319} V1759 vo v1759 h_{4z} "/> $f(a) + 2j = 1\sum n/3$

$$2f(x2j) + 4j=1\sum n/2f(x2j-1) + f(b)$$

 $M_{347} 1759 \text{ Vo } H_{263} V_{1759} \text{ vo } v_{1759} \text{ h84z''} /> /180h_{4}f(4)(\mu)$

where $h = \frac{b-a}{n}$ and $\mu \in [a,b]$.

Composite Trapezoidal Rule

• Formula:

 $\ensuremath{\mbox{end}} {aligned} \int ab f(x) dx = h [f(a) + 2j = 1 \sum n - 1 f(xj) + f(b)] / 12h2f''(\mu)$

where $h = \frac{b-a}{n}$ and $\mu \in [a,b]$.

Composite Midpoint Rule

• Formula:

 $\label{eq:continuity} $$ \int_{a}^{b} f(x) \, dx \& = 2h \sum_{j=0}^{n/2} f(x_{2j}) + \frac{6}h^2 f''(\mu)$

 $\ensuremath{\mbox{end}\mbox{aligned}} \int ab f(x)dx = 2h j = 0\sum n/2 f(x2j) + 6b - ah2f''(\mu)$

where $h = \frac{b-a}{n+2}$ and $\mu \in [a,b]$.

Examples:

• Example 24:

• Use Simpson's rule to approximate $\int_0^4 e^x dx$ and compare it to the approximation obtained by adding the Simpson's rule approximations for $\int_0^2 e^x dx$ and $\int_2^4 e^x dx$.

• Example 25:

• Use composite Simpson's rule with n=4 to approximate $\int_1^x \ln(x) dx$.

• Example 26:

- Determine values of n that will ensure the approximation error is less than 2×10^{-5} when approximating $\int_0^\pi \sin(x)dx$ using:
 - a) Composite Trapezoidal Rule
 - b) Composite Simpson's Rule.