

$$X^TX = V \ge U^T U \ge V^T = V \ge^2 V^T \qquad (::U^T U = I)$$

$$(V^{T}X)^{\frac{q}{2}} = (V \mathcal{E}^{1}V^{T}) (V\mathcal{E}^{1}V^{T}) \dots (V\mathcal{E}^{2}V^{T}) \dots (V^{T}V = I)$$

 $XX^{T} = U \Sigma V^{T} V \Sigma U^{T} = U \Sigma^{2} U^{T}$ $(XX^{T})^{9} = (U Z^{2} U^{T}) (U \Sigma^{2} U^{T}) \cdots (U \Sigma^{2} U^{T})$ 9 - himes

=
$$U \Sigma^{2} U^{T}$$
.
Eigenvalues of $(X^{T}X)^{V}$ are $G(X)^{2}V$, ..., $G(X)^{2}V$
Eigenvectors of $(X^{T}X)^{V}$ are column vectors of V .

Eigenvalues of $(xx^T)^N$ are $\sigma_1(x)^{2N}$, ..., $\sigma_d(x)^{2N}$ Eigenvectors of $(xx^T)^N$ are column vectors of U.

· Time required to compute $(X^TX^T)^Ty$ for some vector y $X \in \mathbb{R}^{n \times d}$

 $(X^TX)^Y y = X^TX X^TX (X^T(X \cdot ... (XT(X y))))$

-> cost to compute Xy = O(nd)cost to compute $X^{T}(xy) \rightarrow first$ compute (Xy), then $X^{T}(xy)$ And so on

=> O(nd) + O(nd)

Total time to compute (XX^T)^QZ is O(ndq).