Large Scale Data Processing

Adaptation from

Magdalena Balazinska (Univ. of Washington) Mining of Massive Datasets, by Rajaraman and Ullman Alan Gates (Yahoo!) Olston

Why Distributed Data Processing

Hardware:

- too much tota to prouss w/ a single machine - CPU speed does not increase - hardware limitation
- Instead: multicore
- · Commodity clusters thousands of machines
 - Easy access to 1000 of nodes through cloud computing
 - e commodity clusters replacing mainframes Much cheaper than large mainframe
- Big Data 29
 - Astronomy: high-resolution, high-frequency sky surveys
 - Medicine: digital records, MRI, ultrasound
 - Biology: sequencing data
 - User behavior data: click streams, search logs, ...
 - Google and Facebook, but also Walmart and co...

Distribution and Performance

- Traditionally: scale-up
 - Improve performance by buying larger machine
- Distribution: scale-out multiple machines
 - Improve performance through parallel execution
- Performance metrics:
 - Throughput: transactions/queries per time unit
 - The higher the better
 - · Important for OLTP online transaction processing
 - Response time time for execution of an individual transaction/query

 - The smaller, the better
 Important for OLAP-online analysis proussing

Speedup

more processing bility

- Speedup (the data size remains the same)
 - More nodes → more throughput and/or lower response time

- Non-linear Speedup Startup costs
 - Coordination costs
 - Communication costs
 - Skew (equal distribution of load not possible)

in terms of alarmins in terms of alarmins

Scaleup

- Scaleup (the data size increases):
 - More nodes → have same throughput / same response time despite more data
- Non-linear Speedup and scaleup:
 - Data distribution overhead distribute data between nodes
 - Non parallelizable operations
 - aggregation
 - Communication costs overhead, between nodes
 - Skew (equal distribution of data not possible)

Parallel Relational Database Systems

- A lot of DBS technology developed in 90s.
- Good understanding of distributed execution of relational algebra queries
- Both for
 - OLTP (online transaction processing): workload of short, update intensive queries, such as day-to-day banking, flight reservations etc.
 - OLAP (online analytical processing) / Decision support: workload of complex queries, mainly read-only
- Sophisticated and optimized operators (such as distributed join operators...)
- Expensive and specialized: Oracle, Teradata,...

Parallel Query Evaluation

- Inter-query parallelism
- multiple queries running at same time
- Different queries run in parallel on different processors; each query is executed sequentially
- · Inter-operator parallelism single query partition then join

 - Different operators within same execution tree run on different processors
 - Pipelining leads to parallelism
- Intra-operator parallelism
 - A single operator (e.g., scan, join) runs on many processors
 - Topic of this week

Horizontal Data Partitioning

- Data
 - Large table R(K,A,BC) Evelational model, partition data
 - Key-value store KV(K,V) = non-relational model
 hash-table stord in database
- Goal
 - partition into chunks $C_1, C_2, \dots C_n$ of records stored at n nodes
- Hash partitioned on attribute X:
 - Record r goes to chunk i, according to hash function
 - Example hash-function: $H = r.X \mod n + I$
- Range partitioned on attribute X:
 - Partition range of X into: $-\infty$ = \mathbf{V}_1 < \mathbf{v}_2 < ... < \mathbf{v}_{n-1} = ∞
 - Record r goes to chunk i, if $v_{i-1} < r.v < v_i$

Example parallel operator: selection

- Execution path
 - Push selections to nodes with chunks
 - Execute locally at each node
 - Send result to coordinating node
 - Assemble result and return to user
- Basics:
 - move and split of operators
 - Parallel operator execution
 - Transfer of records across nodes
 - Merge / post-processing at coordinating node
- Goals: Minimize CPU/IO/communication
 - Equal (non skewed) distribution of processing and I/O costs
 - Partition data equally <
 - Keep communication costs low: execute locally, minimize transfer

 σ (a < 10)(R) $\sigma(a < 10)(C_n)$ $\sigma(a < 10)(C_1)$

Dervad

L) send as little data as oussible back

Note: Vertical Data Partitioning

- Column-Stores
- Data: relations R(K,A,B,C,D,E) Very wide table -> lots of columns
- Partition into RAB(K, A,B), RCDE(K, C,D,E)
- Query
 - SELECT A from R where B > 50
- Query only needs to access partition RAB
- Much less I/O

either only

need to gray

one patition or

can happen

in paalel

men join

Vertical Data Partitioning

Why is the key replicated?

```
SELECT * FROM R

Equals

SELECT * FROM RAB, RCDE

WHERE RAB.K = RCDE.K
```

Map-reduce - fundamental

- ting Por big
- General-purpose distributed computing framework
- ☐ Can be applied to many types of queries; nonrelational and relational
- Developed by Google; open-source version *Hadoop* developed by Yahoo led to quick success
- One initiative within the NoSQL movement

Data Processing at Massive Scale

- Massive Scale
 - ☆Petabytes of data

 - **☆Many hours**
- ☐ Failure becomes an issue
 - ☆If medium-time-between failure is I year
 - ☆Then 10000 servers have one failure / hour
- > \$\times Query execution must succeed even if individual
 - nodes fail

need to handle failure / do failure recovery when it happens -> need to gavuntee execution success even if there is a failure

Distributed Large-Scale File Systems

- Google DFS / Yahoo's Hadoop HDFS (sponsored by Yahoo)
- Assumptions:
 - Files are large (terabytes....)
 - Files are rarely updated
- · Main concepts file system distributed over nous
 - Files are split into chunks, typically 64MBytes
 - (compare with 4K page size discussed so far)
 - Each chunk replicated for availability
 - Master node knows about location of chunks
 - Meta-repository (also replicated for fault-tolerance)

Map-reduce

- High-level programming model AND implementation for large-scale parallel data processing
- Programming model
 - Distribute data and each side read data records one by one (key-value pairs)
 - Map tasks: extract something interesting from records and output a new set of data records (key-value pairs)
 - Shuffle and sort (same key to same reduce task)
 - Reduce tasks: aggregate, summarize, filter
 - Write the results

pust marsi

Overview

Overview

- Input and output considered key/value pairs in order to be able to compose several map/reduce instances
- Keys and values themselves could be complex objects (including tuples).
- Map and Reduce functions are written by
 programmer
- Number of map tasks and reduce tasks given at start of program
- The rest done automatically (at least conceptually)

Example: Word Count

- Given: Document Set DS(K, documenttext)
- Output: For each word w occurring at least in one document of DS: indicate the number of occurrences of w in DS

Map Step

m chunks

- Input Parameters from User
 - Number m of map tasks
 - Number r of reduce tasks
 - Data set = document set DS
- Map function written by User
 WordCountMap:

For each input key/value pair (dkey, dtext)

For each word w of dtext

Output key-value pair (w, I)

- System splits input set into m partitions
- System creates m map tasks, gives each one partition
- Each map task executes map function on its partition
- Map step only completes once all map tasks are done

each word as læy

the appearances as value

the appearance say value

comboine say value

get total count

Shuffle and Reduce Steps

- System sorts map outputs by key and transforms all key/value pairs $(k, v_1), (k, v_2), \dots (k, v_n)$ with same key k to one key/value-list pair $(k, (v_1, v_2, \dots v_n))$
 - For Word count: all ('star', I), ('star', I), ('star', I) ... are transformed into one ('star', (I,I,I,...))
- System partitions output by key into r partitions
- Systems creates r reduce tasks and assigns each one partition
- Each reduce task executes user written reduce function

WordCountReduce:

```
For each input key/value-list pair (k, (v_1, v_2, ..., v_n))
Output (k, n)
```

Example Execution

requalive pairs

System has a certain # mappers + reducers

Once more as a tree

Phase Details

DFS

- Split into partitions
- At map tasks
 - Record reader
 - Map function
 - Possibly combine (explain later)
 - Write to local file
- Group and shuffle
 - Group keys and aggregate value-lists
 - Copy from map location to reduce location
 - group keys and aggregate value-lists
- At reduce tasks
 - Reduce function and write to file system

map location

reduce location

J DES

Combine

- ☐ Possible if reduce function commutative and associative
- ☐ Execute reduce function at each mapper on partial result of mapper
- ☐ Reduces data to be transferred by shuffle
- ☐ Example word count:
 - At each mapper: count the occurrences of each word for all documents read by this mapper
 - ☆ For each mapper, there is then only one key-value pair for each word and the value is the number of occurrences

Implementation

- There is one master node controlling execution
- Master partitions file into m partitions
- Master assigns workers (server processes) to m map tasks
- Workers executing map tasks write to local disk
- Master assigns workers to r reduce tasks
- Reduce workers implement group and shuffle (read from map disks) and execute reduce tasks

Failures

- Failures are detected by master
 - Failure of map task during map phase
 - master assigns new worker to map task
 - Failure of map task during reduce phase
 - Master <u>assigns new worker to map task to redo</u> (as data stored locally)
 - Failure of reduce task during reduce phase
 - Master assigns new worker to reduce task
- Straggler Slow node
 - A machine that takes unusually long to complete one of its last tasks
 - Maybe some I/O problem, too many other tasks...
 - Solution: back execution of last few remaining in-progress tasks

System is not only for queries -

Selection with Map/reduce

- Assume $R(\underline{A}, B, C)$ relation (no duplicates)
- Selection with condition c on R
 - tition data into Ci, Cz Map:
 - for each tuple t of R for which condition c holds, output (a,(b,c))
 - Reduce:
 - identity that is, output (a,(b,c)) = Just output to do

SELECT * FROM Users WHERE experience = 10 kev

	7				
\ \		<u>uid</u>	uname	experience	age
C_1	,	123	(Dora	2	13)
1		132	(Bug	10	60)
		267	(Sakura	10	15)
C_2		111	(Cyphon	8	35)

Map

132	(Bug	10		60))
267	(Saku	ra	10		15)

Reduce

132	(Bug	10	60)
-----	------	----	-----

(Sakura 10 15) 267

Join with Map/reduce

- Natural Join R(A,B,C) with Q(C,D,E)
 - Map: Join column is ley

 For each tuple (a,b,c) of R, output (c, (R, (a,b)))

 For each tuple (c,d,e) of Q, output (c, (Q, (d,e)))

 h hin or the ley
 - Group and shuffle will aggregate all key/value pairs with same c-value combine values with same key
 - Reduce

```
For each tuple (c, value-list)

(e.g., value-list = (R, (a I,b I)), (R, (a2,b2)),...(Q,(d I,e I)),...))

Rt = Qt = empty;

for each v=(rel,tuple) in value-list

if v.rel = R: insert tuple into Rt else insert tuple into Qt

for vI in Rt, for v2 in Qt, output(c,(vI,v2))

Basically produces all combinations (c, (ai,bi,dj,ej))

Arst whes
```

SELECT * FROM Users u, GroupMembers g WHERE u.uid = g.uid

uid	uname	experience	age
123	(Dora	2	13)
132	(Bug	10	60)
267	(Sakura	10	15)
111	(Cyphon	8	35)

grove		
uid	<u>gid</u>	stars
(123)	G1)	2
(132	G1)	5
(132	G2)	3
(132	G3)	1
(123	G2)	4
(111)	G4)	2

1	Map (lay, (R(a,b,c)))						
	123	(U	(Dora	2	13))		
	132	(U	(Bug	10	60))		
	267	(U	(Sakura	10	15)		
	111	(U	(Cyphon	8	35)		
	ay		value				

lag	Va	rue	
123	(GM	(G1	2))
132	(GM	(G1	5))
132	(GM	(G2	3))
132	(GM	(G3	1))
123	(GM	(G2	4))
111	(GM	(G4	2))

SELECT * FROM Users u, GroupMembers g WHERE u.uid = g.uid 123 (U (Dora 2 13)) 132 (U (Bug 10 60)) 123 (GM (G1 132 (GM (G2 132 (GM (G3 13

15)

35)

123	(GM	(G1	2))	
132	(GM	(G1	5))	
132	(GM	(G2	3))	/ _{[M}
132	(GM	(G3	1))	où
123	(GM	(G2	4))	
111	(GM	(G4	2))	

267

111

(U

(U

(Sakura 10

(Cyphon 8

267	((U	(Sakura	10	15))			
111	((U	(Cyphon	8	35)	(GM	(G4	2)))

Projection with Map/reduce

- Projection on B,C of R
 - Map:
 - for each tuple t=(a,(b,c)) of R, let t'=(b,c): output (t',0)
 - There might now be duplicates, that is several (t', 0) tuples; the group function will aggregate them to \longrightarrow (t', 0, 0, ... 0))
 - Reduce:
 - for each tuple (t', (0,0,0...), output (t', 0)

SELECT DISTINCT uname, age FROM Users

Carrix,ox	uid	uname	experience	age
C_1	123	(Dora	2	13)
1	132	(Bug	10	60)
	267	(Sakura	10	15)
C_2	111	(Dora	8	13)

Ιιαρ					
(Dora	13)		0		
(Bug	60)		0		
(Sakura		15)		0	
(Dora		13)		0	

Shuffle

(Dora	13)	(0,0)	
\			

Reduce

(Dora	13)	0	• • •

Group BY Map/reduce

- SELECT b, max(c) GROUP BY b Grouping:
 - Map:
 - for each tuple (a,(b,c)) of R, output (b, c)
 - Group and shuffle will create for each value b a key/value-list (b, (c1, c2,...))
 - Reduce:
- I to get max perp • for each (b, (cl, c2,...)) perform aggregation (e.g., cl+c2,...)

SELECT experience, max(age) FROM Users **GROUP BY** experience

		<u>uid</u>	uname	experience	age
C_1	123	(Dora	2	13)	
	132	(Bug	10	60)	
C ₂	267	(Sakura	10	15)	
	111	(Cyphon	8	35)	

Мар	(- 10) -	Shuffle			
Мар			2	13	
2	13		10	(60,15)	
10	60				
10	15		8	35	
8	35		2	13	
Reduce		10	60		
		8	35		