

SEQUENCE LISTING

<110> Brinckerhoff, Constance

Rutter, Joni

Trustees of Dartmouth College

<120> Methods of Diagnosing, Prognosticating and Treating
Matrix Metalloproteinase-1 Related Diseases via a
Matrix Metalloproteinase-1 Single Nucleotide
Polymorphism

<130> DC-0120

<140>

<141>

<150> 60/110,266

<151> 1998-11-30

<160> 10

<170> PatentIn Ver. 2.0

<210> 1

<211> 5

<212> DNA

<213> Homo sapiens

<400> 1

aagat

5

<210> 2

<211> 6

<212> DNA

<213> Homo sapiens

<400> 2

aaggat

6

<210> 3

<211> 4438

<212> DNA

<213> Homo sapiens

<400> 3

cctcacatat ttcaaattca tctcaaattc acattcacag atgtaagac tggttggaa 60
cggttttgac agggctgAAC tgagctatgg tatgtagtagc actcatcccc agaaaagtctc 120
ttgggttgaa ttccggaa aaggagctat agctgcaaaa atctgtttca caaatgtgtct 180

aactataaagc attttccaca gtgtttaata aaccatgcag ataagaaaaat attattgaca 240
 aacaaaattaa taaaatgc tc aaaaatct gatacttaat gtttgtagca tggcatgcaa 300
 atcaccaaaa ataaatgtc tatgttcat ataaaatctc cagaaggct gggtgtggg 360
 gtcacaccc taaaatccca aactctggga ggcccgggtg agagaactgc ttgaggccag 420
 gagtttggaga ctagcctggc caacatagtg agacctcatc tctacaaaaa atcttaaaaa 480
 tcagtggac atgggtggc acatctgtg ttctagtc ttggggatc gaggcagaa 540
 gattgtttaa gcccagagt ttgaggctcc tacactccag cctaagcgac agagggagac 600
 ctgttctca aataaaaaaa ttgttaattt gaatgttgc tcagtggata tatccaattt 660
 ttccccatgg taaaatggc aactttagc tttaggaggt aaaatgtatc gacataaagc 720
 ttcttataaa caactcagcc taatgagaaa tagaccctgt atttaatgtt catttaagta 780
 tctatttctt cattgtatca ttcatattt aactctgtc acaatcatc ttgagacaccc 840
 actatgttga ggtagttaattt actataaaaaa caacaagggt gataaggggaa ataaagagaga 900
 tttagtggaca gtttgcgggg gggattttt tccggccctt gggaccgggtt gttggcatgg 960
 agacattttt gttgacttgc gggaggtaat gtgacagtc tcgtgtctcc agacacttcc 1020
 ttctgtttag ggaaggcaaga ttcttacccc cagatgtatg atgtgttgc tctggactgc 1080
 agtggcacag aactgttgc aacgagtgc taccgcgtc ctgtgtgccc tgggacttgg 1140
 ggttaatttga tcaatcatc ttatccagaa ggtaacatcg aggactgcg gaaaccatgt 1200
 gtaccaagtg tctgttaagt gtctgttca tggttatcca taaagctact gcatggccat 1260
 atgttaggaag aataccaccc ttggacaaaat ttttccaccc gtttttttttcc acaacaaaaat 1320
 agcattttat atttaatgtt ttgggtttaa gaccatgttca agacttgcg gacaaaaaaaaa 1380
 tagaaaaaat atcttgacact caaatgggt taaaatattt aaacccgctga atccccccagc 1440
 ataaaaaaaat atgaagcaag atggaaattt caagactaaag ttaatatgg aaaaatacaa 1500
 atatgtttga ggcctttcac agagggccca gcatagggca accaaagaaaa ccacggaaat 1560
 aatctggctg ctgggaaaat gtcggggatc agctgacacca gccacacgg agccctctt 1620
 tgcttgtcat aaggggtaaa ggaataattt cggaaaattt cattttaaaag agaattatgg 1680
 gggaaagaaga tgctcccaaga ggaaacaaaat agttaggtatg tgaagagcaa atacaacttt 1740
 aacatgtttt gaacttcttgc gaaactatgc taatgtttagg cattgtctagg atttgttgc 1800
 atttaatccc cagttttctg ttcttaattt ttgtttttt ttttacttc aataataatca 1860
 tatgtctagca ecagctgeaa agttacatattt gttgtttagg agcatcttcc atgaataactt 1920
 aactggaaat tccaaatggc agggccatgt gaaatctggc tggctgttca accaaaactt 1980
 aattttatattt ttgtttttta tttagggaaa aaaaatataac gaaaagatgt ttcaagcaac 2040
 cagtttccaa tccacgtcag caactatgac atttaatgaa acactgttgc catttagcat 2100
 gagagctctg gactcagatg caggggatctt tgcttagagaa gggaggaaaa agcaggccatg 2160
 atgtggccggg ttgtgggggg ccctccaaatgttcaatgttccat cttccatcg agaacttctg 2220
 ttttcacctg gttttcaaat tgcttttca aaggggatgt tggttaatgtt aaggatacag 2280
 aggtttataa aagtttggaaa attcttacat tgcaggatgt gcggccatcc gccagatggg 2340
 acagtgtatg agacttcc aggggtgcgt cttaggcata ttccatgttca atccacagatg 2400
 gtcacatgtt gttttctgtt gtttaacttat taaacttcaccc ttgttttccca ggccctcagtg 2460
 gagcttaggt tgtcacgtt tcaactgtc tagtttccat cacaatcgatg tataatgtcc 2520
 actcttgcac ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2580
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2640
 cccctccctt gatgttttttgc aagagggatgt ttccatgttcc tgagaatgtc ttccatgtt 2700
 tttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2760
 tagaaaatgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2820
 agatgttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2880
 agaaaaatgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2940
 gggccatgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3000
 ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 3060

tggtgacacc ggtcaccagt acccaagaca attaatgtg gaacataagt acaggaaatac 3120
 acatcttca ttacagagcc atgtattttat ttaatgggc aggagatgct aaataagatc 3180
 ttttgaatgg aggaatgcat aaatatatga atgaatgcat acatgaaaaga ataataataat 3240
 gtcgccttagc accaaggaggc gaagatagac tcataatcaag ggaacaactg atgataaaaa 3300
 ataagacccc agagtcaacgc tcagtcctt tccagecctt tcatactccg gtacatccg 3360
 acaatgttca gggaaaggatc ctatgttcc catgataatg atggcaagg ggtggggatg 3420
 tatctcatac tccgcctgtg gatgaggggt cttctcaggta aaggtctta aatcttaggc 3480
 ctgtagataat tttttcaaat ttatatttagt acagggttcc tctctgttgc cttagctgg 3540
 gtgcagcggc acaatcacag ctcataatgc ctcataactc ccaggccccaa gtatctcc 3600
 caccctcagcc tcttcagtga cttagactac aggtgcatga ctccatgott ggtaacttt 3660
 aaaaaatgtt tggttttttgg tttttttttt acagagatgg ggtctcacca tggtgcccag 3720
 gctgtatcttgc aacttctggg ctcaagtgtat tccctgcctt cggcctctgg 3780
 attataggtct tgacccacca tgctctggctc tgatgaaaaga ttaaggaaag ccattgggtct 3840
 atcgcaatag ggtaccaggc agcttaacaa aggccagaagg gaacctcaga gaaccccgaa 3900
 gagccaccgt aaatgtgatgt ctggggggc tgaaccttcag tcagttacagg agccgaacag 3960
 cccatcgatgttgc cgcgtgtta gtaattccac cctctgcctt cgggaccaagg tgggtggaga 4020
 aacctgttgc atcttatgtac catcagaacc agcccttttcc aaaaaagacca tgggatactc 4080
 tttgacctgt gtatataaca agaacctttc tcaaatagga aaaaaatgaa ttggagaaaa 4140
 ccactgttta catggcagat tggttcttcc tcggcacacat ctgttttggaa gttatctatg 4200
 aatctggcaac acaatgtat tccaaataat ctgtctggag tcaccatttc taatgttgc 4260
 ctatgttctt catatgttaa caagaggatg ttataaagca tgatgttgc acctctggct 4320
 ttctggaaagg gcaaggactc tatataataca gagggagctt cctagctggg atattggagc 4380
 agcaagaggc tgggaagcca tcacttacat tgcactgaga aagaagacaa aggccagt 4438

<210> 4

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

<400> 4

gtggaaagctt acacctataa tcccaacact c

31

<210> 5

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

<400> 5

ctgcctggta ccctattgcg atagcaccat ggc

33

<210> 6

<211> 35

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 6
aaataaatttag aaagatata g cttatctcaa atcaa 35

<210> 7
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 7
aaataaatttag aaaggatatg acttatctca aatcaa 36

<210> 8
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 8
ttcatttgtta atcaagagga t gttataaag catgagtac accctcagct t 51

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 9
gttatgccac ttagatgagg 20

<210> 10
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

WO 00/32819

PCT/US99/26610

<223> Description of Artificial Sequence: Synthetic

<400> 10

ttcctccctt tatggattcc

20