Тема 8. Линейная задача о допусках — продолжение.

А.Н. Баженов

ФТИ им. А.Ф.Иоффе

a_ bazhenov@inbox.ru

03.03.2022

ПЛАН

- Обратные задачи и регуляризация
- Интервальная регуляризация
- I₁-регуляризация
- Внутренняя оценка допускового множества решений
- Оценки вариабельности решения ИСЛАУ
- Недоопределенные ИСЛАУ
- Задание 2

Регуляризация — неформально

Имеем задачу A, которую не умеем решать. $x_A = ?$ Заменяем A на задачу B, которую умеем решать. Пусть её решение x_B .

Строим «мостик»

$$B \longrightarrow A$$
,

Пытаемся совершить переход

$$x_B \longrightarrow x_A$$

Регуляризация - мотивация

Когда нужна регуляризация?

Корректность по Адамару - неформально

В 1902 году Ж. Адамар сформулировал понятие корректности постановки задач для дифференциальных уравнений. Корректной по Адамару называют задачу, решение которой

- существует
- единственно
- непрерывно зависит от данных

Там же Адамар привёл пример некорректной задачи (задача Коши для уравнения Лапласа).

Обратные задачи

Параметры модели o Данные

Обратную задачу можно концептуально сформулировать следующим образом:

Данные ightarrow Параметры модели

Корректность по Адамару

Корректность задачи по Адамару (1904). Пусть оператор A отображает топологическое пространство Q в топологическое пространство $F\colon A:Q\to F.$

Определение.

- Задача Aq=F корректна на паре топологических пространств Q и F, если:
- 1) условие существования решения для любого f из $F\colon R(A)=F$
- 2) условие единственности решения. Решение q единственно в Q:
- $A^{-1}:F\to Q$
- 3) условие устойчивости решения. Оператор обратного преобразования непрерывен: $A^{-1}:F_\delta o Q_\delta$

Корректность по Адамару

Рис.: Корректность задачи по Адамару

Некорректные задачи

Некорректно поставленная задача - это задача, не обладающая каким-либо из свойств корректно поставленной задачи.

Некорректные задачи

Пример - Задача дифференцирования. При осциллирующей добавке $\frac{1}{n}\sin(nx)$ функция f неограниченно приближается к F, но это неверно для производных этих функций.

$$F(x) = f(x) + \frac{1}{n}\sin(nx) \underset{n \to \infty}{\to} f(x)$$
$$F'(x) = f'(x) + \cos(nx) \underset{n \to \infty}{\to} f'(x)$$

Этот факт иллюстрирует рисунок:

Рис.: Задача дифференцирования 🗗 🗸 🖎 📵 💌 🖎

Пары корректных и некорректных задач

Корректные задачи	Некорректные задачи
Арифметика	
Умножение на малое число	Деление на малое число
Aq = f	$A^{-1}f=q (A\ll 1)$
Алгебра	
Умножение на матрицу	Решение системы
Aq=f	Aq = f
	А — плохобусловлена, вырождена,
	прямоугольная
Анализ	
Интегрирование	Дифференцирование
$f(x) = f(0) + \int_0^x q(\xi)d\xi$	q(x) = f'(x)

Пары корректных и некорректных задач

Корректные задачи	Некорректные задачи
Задача Штурма-Лиувилля	Обратная задача Штурма-Лиувилля
	() 2)
$u''(x) - q(x)u(x) = \lambda u(x)$	$\{ \lambda_n, \ u_n\ ^2 \} \to q$
u(0) - hu'(0)= 0	Определение $q(x)$
u(1) - $Hu'(1) = 0$	по спектральным данным
Интегральная геометрия	
Определение интеграла	Определение $q(x,y)$
от функции $q(x,y)$	по семейству интегралов
вдоль кривой $\Gamma(x,y)$	$\int_{\Gamma(x,y)} q(x,y) ds = f(\xi,\eta)$
Ур-я Вольтерра и Фредгольма	Ур-я Вольтерра и Фредгольма
второго рода	первого рода
$q(x) + \int_0^x K(x,\xi)q(\xi)d\xi = f(x)$	$\int_0^x K(x,\xi)q(\xi)d\xi = f(x)$
() (b) (c) (b) (c) (c)	ch (c) (b) (b) (c)
$q(x) + \int_a^b K(x,\xi)q(\xi)d\xi = f(x)$	$\int_a^b K(x,\xi)q(\xi)d\xi = f(x)$

Возможность корректного решения обратных задач

В 1943 году А. Н. Тихонов указал на практическую важность подобных задач и возможность устойчивого их решения.

Теорема. Пусть некоторая совокупность элементов $\{x\}$, образующая метрическое пространство \mathbb{R} , непрерывно отображается на некоторую другую совокупность элементов $\{x^*\}$, образующую метрическое пространство \mathbb{R}^* .

Если это отображение $x^\star=f(x)$ взаимно однозначно, непрерывно, и если отображаемое пространство $\mathbb R$ компактно, то обратное отображение $x=f^{-1}(x^\star)$ также непрерывно.

Условно корректные задачи

Определение (условная корректность, корректность по Тихонову). Задача называется условно-корректной на множестве M, если

- ullet Решение единственно на множестве M
- Имеет место условная устойчивость

Множество M называется множеством корректности задачи.

Пример - задачи теории потенциала

Потенциал

$$V = \int_T \frac{dm}{s}, \quad s = \sqrt{x^2 + y^2 + z^2}$$

Одна из прямых задач теории потенциала заключается в том, что требуется вычислить на поверхности z=0 потенциал ограниченного тела , заполненного однородной массой плотности m, лежащего ниже этой поверхности (z<0).

Пример - задачи теории потенциала

- ① Каждое тело принадлежит заданной ограниченной поверхности S, лежащей в области z < 0.
- ② Каждое тело звездно относительно своего центра тяжести , так что уравнение поверхности Γ , ограничивающей тело T, может быть представлено в сферической системе координат с центром в точке в виде z=f(s,q).
- **③** Функция f(s,q) имеет производные ограниченные числом, общим для всех тел класса R.

Пример - задачи теории потенциала

Теорема. П.С.Новикова: различным телам T_1 и T_2 , звездным относительно их центра тяжести, не могут соответствовать одинаковые потенциалы.

Теорема. Какова бы ни была степень точности ε и класс тел R, можно указать такое число $d(\varepsilon)$, что если значение потенциалов (или их производных) $V_1(x,y)$ и $V_2(x,y)$ двух каких-либо тел T_1 и T_2 из класса R отличаются при z=0 меньше, чем на $d(\varepsilon)$

$$||V_1(x,y)-V_2(x,)|| \leq d(\varepsilon),$$

то сами тела отстоят друг от друга меньше, чем на arepsilon

$$\rho(T_1, T_2) \leq \varepsilon.$$

Метод подбора

Метод подбора — решение набора прямых задач и выбирается вариант, наиболее подходящий по какому-то критерию.

- Необходимо установить теорему единственности прямого соответствия.
- Совпадение вычисленного и наблюденного полей не является абсолютным (хотя бы в силу приближенности подбора). Таким образом, мы должны еще убедиться в устойчивости обратной задачи (или непрерывности обратного отображения), т. е. в том, что при малом отклонении вспомогательного поля от наблюденного соответствующее ему строение среды не может сильно отличаться от действительного.

Регуляризующий алгоритм

Определение. Регуляризующий алгоритм

$$R_{\delta h}(f_{\delta}, A_h)$$

для задачи (два параметра — δ, h)

$$\sup_{\|f-f_{\delta}\|\leq \delta,\ \|A-A_h\|\leq h}\|R_{\delta h}(f_{\delta},A_h)-A^{-1}f\|\to 0$$

$$f_\delta \in F$$
 и $A_h \in A$.

Регуляризирующее семейство

Определение. Регуляризирующее семейство

$$\lim_{\alpha\to 0}R_{\alpha}f=q_{T}$$

- Оператор R непрерывен по параметру
- Оператор R сходится

Создание теории обратных и некорректных задач

- Тихонов А. Н. Об устойчивости обратных задач. // Докл. АН СССР. — 1943. — Т. 39. — № 5. — С. 195—198.
- Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. 1974.

Интервальная регуляризация.

Интервальная регуляризация

Интервальная регуляризация

Рассмотрим решение плохо обусловленных СЛАУ, с неточно известными матрицей и правой частью. Чтобы улучшить устойчивость процесса решения, «погружаем» исходную неточную линейную систему в ИСЛАУ той же структуры, а затем рассматриваем ее допусковое множество решений. В результате «интервализованная» матрица системы становится лучше обусловленной, для которых решение соответствующей системы уравнений более устойчиво. В качестве псевдорешения исходной системы линейных уравнений берем точку из допускового множества решений интервализированной линейной системы или точки, которая обеспечивает наибольшую допустимую совместимость (согласованность).

Обусловленность СЛАУ

Из теории матриц.

Пусть А — матрица и ее число обусловленности

$$cond(A) = ||A|| \cdot ||A^{-1}||,$$

определенное через подчиненную норму $\|\cdot\|$, удовлетворяет условию

$$cond(A) \geq 1$$
.

Тогда в окрестности найдутся матрицы A' имеющие лучшую обусловленность:

$$cond(A') \leq cond(A)$$
.

Это следует из факта, что число обусловленности для подчиненной нормы имеет только глобальный минимум $\mathrm{cond}(A)=1$ и не имеет локальных минимумов.

Регуляризация СЛАУ

Возникает следующая идея: заменить решение исходной СЛАУ

$$A \cdot x = b$$

решением СЛАУ

$$A' \cdot x = b$$

с близкой, но лучше обусловленной матрицей A'.

При благоприятных условиях, решение новой системы будет близко к желаемому решению исходной системы.

Метод регуляризации Лаврентьева

Эта идея не нова и восходит к методу регуляризации Лаврентьева, используемому, например для решения интегральных уравнений первого рода. При малом возмущении оператора уравнения, малые собственные числа отодвигаются от нуля, и оператор удаляется от сингулярности.

Метод регуляризации Лаврентьева также применим к СЛАУ. В частном простейшем случае, когда матрица А симметрична и положительна полуопределена (неотрицательно определена), решается СЛАУ:

$$(A + \theta \cdot I) \cdot x = b$$

В общем случае, когда мы ничего не знаем о свойствах матрицы A, выбор параметра θ , т.е. направление сдвига и его величина не очевидны.

Интервальная регуляризация

В интервальных терминах мы «раздуваем» матрицу, превращая ее в интервальную матрицу \boldsymbol{A} . Чтобы покрыть все возможные направления сдвига матрицы A:

$$\mathbf{A} = A + \theta \cdot \mathbf{E}$$

здесь ${\pmb E}$ — матрица того же размера что и ${\sf A}$, составленная из интервалов [-1,1] и ${\theta}$ — параметр величины «раздувания».

Интервальная регуляризация ИСЛАУ 2x2

Рассмотрим [1] точечную матрицу

$$A = \begin{pmatrix} 99 & 100 \\ 98 & 99 \end{pmatrix}$$

По отношению к спектральной норме $\mathrm{cond}\,(A) = \sqrt{\lambda_{max}(A^TA)}$, число обусловленности равно $3.9\cdot 10^4$, и можно показать, что это максимум для регулярных 2x2-матриц с целыми положительными числами < 100.

«Интервализуем» матрицу добавлением к каждому элементу.

$$A = \begin{pmatrix} [98, 100] & [99, 101] \\ [97, 99] & [98, 100] \end{pmatrix}$$

Интервальная регуляризация ИСЛАУ 2×2

Новая интервальная матрица содержит множество точечных сингулярных матриц, например:

$$A = \begin{pmatrix} 98 & 99 \\ 98 & 99 \end{pmatrix}$$

Число обусловленности « угловых » матриц равно

$$cond(A) = \begin{array}{cccc} 38000 & 197 & 201 & 13100 \\ 197 & \boxed{99} & 13100 & 195 \\ 197 & 39200 & \boxed{99} & 199 \\ 39200 & 199 & 199 & 40000 \end{array}$$

Интервальная регуляризация ИСЛАУ 2x2

Мы можем видеть, что среди 16 матриц конечных точек одна матрица имеет еще большее число обусловлености, чем исходное, 40000. Две матрицы имеют примерно такое же значение, а одна матрица несколько меньшее. Однако 10 матриц из 16 имеют значительно меньшие числа обусловленности. Значения чисел обусловленности для наиболее «выдающиеся» представители заключены в таблице в рамки.

Можно показать, что условие 98.76, достигнутое в матрице конечных точек действительно минимально среди всех точечных матриц из множества A.

Существуют мощные эвристические методы нахождения оценок числа обусловленности [?].

Приведем примерный код на языке Octave.

.

```
ввод исследуемой интервальной матрицы
A = \dots
определяем размеры данной матрицы
m = size(A, 1);
n = size(A,2);
задаём количество случайных бросаний в реализуемом алгоритме
NN = 10:
инициализируем угловые матрицы для А
Matr1 = ones(m,n);
Matr2 = ones(m,n);
инициализируем MinCond - минимум чисел обусловленности точечных г
MinCond = Inf;
```

```
for i = 1:NN
случайно порождаем целочисленную матрицу ЕРМ из нулей и единиц, т
EPM = randi([0,1],m,n);
порождаем угловые матрицы, диагонально противоположные друг другу
for i = 1:m
for j = 1:n
if EPM(i,i) == 0
Matr1(i,i) = inf(A(i,i)):
Matr2(i,i) = sup(A(i,i)):
else
Matr1(i,j) = sup(A(i,j));
Matr2(i,i) = inf(A(i,i));
endif
end
```

end

```
находим числа обусловленности полученных угловых матриц, корректир
c1 = cond(Matr1,2);
c2 = cond(Matr2,2);
if MinCond > c1
MinCond = c1;
endif
if MinCond > c2
MinCond = c2;
endif
end
выводим найденный минимум чисел обусловленности
disp(MinCond);
```

 I_1 -регуляризация.

 I_{1} -регуляризация

$\overline{\mathit{I}_{1}}$ -регуляризация

В этом подходе ищется решение

ограничения в которой описывают

задачи линейного программирования специального вида,

подвижные границы

сжимаемого в точку информационного множества и при необходимости могут быть дополнены условиями на компоненты вектора решений.

Например, требования неотрицательности компоненты вектора решений.

Этот подход, по существу, производит I_1 -регуляризацию задачи с ограничением на неотрицательность компонент вектора решения.

Постановка задачи линейного программирования

Постановка задачи линейного программирования выглядит следующим образом [2]. Для условия:

$$A \cdot x \subseteq \boldsymbol{b}$$
,

A — точечная матрица правой части ИСЛАУ,

 $m{b}$ — интервальный вектор правой части ИСЛАУ ставится задача линейного программирования (ЗЛП):

$$\text{mid } \boldsymbol{b}_i - w_i \cdot \text{rad } \boldsymbol{b}_i \leq (A \cdot x)_i \leq \text{mid } \boldsymbol{b}_i + w_i \cdot \text{rad } \boldsymbol{b}_i,$$

$$w_i \geq 0, i = 1, \dots, n.$$

Масштабирующие множители

Идея введения

масштабирующих множителей *w*;

состоит в выяснении того, насколько для конкретного уравнения необходимо увеличить радиус интервала правой части для для удовлетворения условия

$$A \cdot x \subseteq \boldsymbol{b}$$

→□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Постановка задачи линейного программирования

Добавим условие минимального отклонения от исходной задачи и неотрицательности решения

$$\min_{x,w} \sum_{i=1}^{n} w_i,$$

$$x_j \ge 0, j = 1, \dots, m.$$

Постановка задачи линейного программирования

Окончательно имеем задачу линейного программирования

$$\min_{x,w} \sum_{i=1}^{min} w_i,$$
 $\min \boldsymbol{b}_i - w_i \cdot \operatorname{rad} \boldsymbol{b}_i \leq (A \cdot x)_i \leq \operatorname{mid} \boldsymbol{b}_i + w_i \cdot \operatorname{rad} \boldsymbol{b}_i,$
 $w_i \geq 0, i = 1, \dots, n,$
 $x_i > 0, j = 1, \dots, m.$

Задача линейного программирования

Технически процедура вычисления строится следующим образом.

Пусть A — матрица размером $n \times m$, что соответствует СЛАУ с n уравнениями и m неизвестными.

Строится матрица C ограничений ЗЛП и расширенный вектор r правой части для уравнения

$$C = \begin{pmatrix} A & -\mathtt{diag}(\mathrm{rad}\ oldsymbol{b}) \\ -A & -\mathtt{diag}(\mathrm{rad}\ oldsymbol{b}) \end{pmatrix}; \quad r = \begin{pmatrix} \mathrm{mid}\ oldsymbol{b} \\ -\mathrm{mid}\ oldsymbol{b} \end{pmatrix}.$$

Здесь $\operatorname{diag}(v)$ — диагональная матрица, со значениями на диагонали, равными компонентам вектора v,

размер матрицы ограничений $C - (m+n) \times (m+n)$, размер вектора искомого решения -m+n.

Задача линейного программирования

Таким образом, ставится задача минимизации суммы весов w_i

$$\min_{x,w} \sum_{i=1}^{n} w_i,$$

при неопределенностях компонент правой части $\operatorname{rad} {\it {m b}}$. Веса w_i при начале вычислений устанавливаются равными 1,

$$w_i = 1$$
,

то есть ищется решение, помещающееся в интервальной правой части.

При необходимости, w_i увеличиваются или уменьшаются, показывая своей величиной количественную степень совместности (при $w_i \leq 1$) или несовместности (при $w_i > 1$) конкретного уравнения.

I_1 -регуляризация

По условию

$$\operatorname{mid} \boldsymbol{b}_i - w_i \cdot \operatorname{rad} \boldsymbol{b}_i \leq (A \cdot x)_i \leq \operatorname{mid} \boldsymbol{b}_i + w_i \cdot \operatorname{rad} \boldsymbol{b}_i,$$

имеем:

$$Tol = 0,$$

и по определению распознающего функционала допусковое множество $\varXi_{tol}(m{A},m{b})$ решения ИСЛАУ

содержит единственную точку.

В связи с достижением разрешимости, можно назвать описанный процесс I_1 -регуляризацией.

ИСЛАУ

$$\textbf{\textit{A}} = \begin{pmatrix} \begin{bmatrix} 1,2 \\ [1,2] \end{pmatrix}; \quad \textbf{\textit{b}} = \begin{pmatrix} \begin{bmatrix} 1,5 \\ [2.5,3.5] \end{pmatrix}; \quad \mathrm{rad} \ \textbf{\textit{b}} = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix}; \quad \mathrm{mid} \ \textbf{\textit{b}} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}.$$

Решение

$$x=2; \quad w=\begin{pmatrix} 0.5\\2 \end{pmatrix}.$$

Вектор w показывает, насколько надо изменить допуски в правой части.

Проверка

$$\operatorname{mid} \boldsymbol{b}_i - w_i \cdot \operatorname{rad} \boldsymbol{b}_i \leq (A \cdot x)_i \leq \operatorname{mid} \boldsymbol{b}_i + w_i \cdot \operatorname{rad} \boldsymbol{b}_i,$$

$$\mathbf{A}x = \begin{pmatrix} [1,2] \\ [1,2] \end{pmatrix} \cdot 2 = \begin{pmatrix} [2,4] \\ [2,4] \end{pmatrix} = \begin{pmatrix} [3-0.5\cdot 2, 3+0.5\cdot 2] \\ [3-2\cdot 0.5, 3+2\cdot 0.5] \end{pmatrix}$$

С.И.Жилин.

Примеры анализа интервальных данных в Octave. Сборник jupyter-блокнотов с примерами анализа интервальных данных. https://github.com/szhilin/octave-interval-examples

Macca t-кварка https://github.com/szhilin/octave-interval-examples/blob/master/TopQuark.ipynb

Формулы для размеров бруса решения.

Внутренняя оценка допускового множества решений

Формулы для размеров бруса решения

Теорема Если $y \in \Xi_{tol}(\pmb{A},\pmb{b})$, то для

$$r = \min_{1 \le i \le m} \min_{A \in \text{ vert } A} \left\{ \frac{\operatorname{rad} b_i - \left| \operatorname{mid} b_i - \sum_{j=1}^n a_{ij} y_j \right|}{\sum_{j=1}^n \left| a_{ij} \right|} \right\}$$

интервальный вектор $m{U}=(y+rm{e})$ также целиком лежит во множестве решений $\Xi_{tol}(m{A},m{b}).$

Формулы для размеров бруса решения

Алгоритм В.В.Шайдурова для вычисления размера бруса решения линейной задачи о допусках

Для данного $y \in \Xi_{\mathsf{tol}}(A,b)$ вычисляем значения

$$r_i = \frac{\operatorname{rad} \, \boldsymbol{b}_i - \left| \operatorname{mid} b_i - \sum_{j=1}^n a_{ij} y_j \right|}{\sum_{j=1}^n |a_{ij}|}$$

 $i=1,2,\ldots,m$, и затем полагаем

$$\varrho:=\min_{1\leq i\leq m}r_i$$

Интервальный вектор $(y + \varrho e), e = ([-1, 1], \dots, [-1, 1])^T$ есть внутренняя оценка допускового множества решений $\Xi_{tol}(A, b)$, т.е. $y + \varrho e \subseteq \Xi_{tol}(A, b)$.

Построим брус внутренней оценки допускового множества решений системы

$$\begin{pmatrix} [1,2] & [-\frac{2}{3},\frac{1}{2}] \\ [-\frac{2}{3},\frac{1}{2}] & [1,2] \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} [-1,1] \\ [-1,1] \end{pmatrix}$$

Ранее мы нашли точку $(0,0)^T$ из внутренности её допускового множества решений, и эту точку можно взять в качестве центра искомого бруса. В соответствии с методом Шайдурова

$$\mathbf{r}_1 = \mathbf{r}_2 = \frac{1}{\left|\left[-\frac{2}{3}, \frac{1}{2}\right]\right| + \left|\left[1, 2\right]\right|} = \frac{1}{\frac{2}{3} + 2} = \frac{3}{8}$$

так что получаем кубик

$$[-\frac{3}{8}, \frac{3}{8}], [-\frac{3}{8}, \frac{3}{8}].$$

Оценка показана на рисунке синей линией, она даже максимальна по включению, так как касается границ допускового множества решений (зеленая заливка).

Причина столь хорошего качества оценивания - совпадение центра бруса с началом координат, т. е. точкой $(0,0)^T$, из-за чего связанность переменных в числителе и знаменателе дроби в фигурных скобках исчезает, а естественное интервальное расширение приводит к точному оцениванию области значений.

Оценки вариабельности решения ИСЛАУ

С.П. Шарый в материале [3] предложил оценки параметров в статистике интервальных данных и предложил терминологию для описания этих параметров.

Ниже рассмотрены конкретные примеры, иллюстрирующие количественную связь предложенной величины и общепринятых в интервальном анализе информационных множеств.

Рассмотрим ИСЛАУ

$$\mathbf{A}\mathbf{x}=\mathbf{b}.$$

Исследование разрешимости ИСЛАУ можно произвести, используя технику распознающих функционалов.

Выражение для Tol имеет вид:

$$\operatorname{Tol}(x) = \operatorname{Tol}(x, \boldsymbol{A}, \boldsymbol{b}) = \min_{1 \le i \le m} \left\{ \operatorname{rad} \boldsymbol{b}_i - \left| \operatorname{mid} \boldsymbol{b}_i - \sum_{j=1}^n \boldsymbol{a}_{ij} x_j \right| \right\}$$

принадлежность $x\in \Xi_{tol}(\pmb{A},\pmb{b})$ равносильна $\mathrm{Tol}(x;\pmb{A},\pmb{b})\geq 0$, т. е. допусковое множество решений интервальной линейной системы $\pmb{A}x=\pmb{b}$ есть множество уровня

$$\boldsymbol{\Xi}_{tol}(\boldsymbol{A}, \boldsymbol{b}) = \{ x \in \mathbb{R}^n \mid \operatorname{Tol}(x; A, b) \ge 0 \}$$

функционала Tol . Распознающий функционал имеет единственный максимум при значении аргумента, наиболее близкому к «решению» ИСЛАУ.

Проведем оценку вариабельности решения с интервальными данными. Отправной точкой для такой оценки служит традиционная оценка изменчивости решения СЛАУ

$$A \cdot x = b$$

в форме, учитывающей только вариацию правой части:

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}.$$

Предполагается, что нормы векторов и матриц $\|\cdot\|$ согласованы, и число обусловленности матрицы СЛАУ вычисляется как

cond
$$(A) = ||A|| \cdot ||A^{-1}||$$
.

Для случая интервально заданных величин в настоящее время предложена следующая оценка абсолютной вариабельности оценки ive (interval variability of the estimate)

$$ive(\boldsymbol{A}; \boldsymbol{b}) = \sqrt{n} \left(\min_{A \in \boldsymbol{A}} \operatorname{cond}_2 A \right) \cdot \max_{\mathbb{R}^n} \operatorname{Tol} \cdot \frac{\left\| \operatorname{arg } \max_{\mathbb{R}^n} \operatorname{Tol} \right\|_2}{\left\| \boldsymbol{b} \right\|_2},$$

В выражениях минимум числа обусловленности находится среди всех реализаций матрицы ИСЛАУ.

Логика оценки этой величины строится на основе представлений о множестве решений интервальных задач.

В случае разрешимости в смысле непустоты допускового множества, $\| \arg \max Tol \|$ входит в допусковое множество и можно положить

$$||x|| = ||arg max Tol||$$
.

Что касается оценки $\|\Delta b\|$, то можно рассуждать следующим образом. Свойством распознающего функционала является его равенство нулю в случае, если решением является одна точка $x \in \mathbb{R}^n$.

 $\mathrm{Tol} = \mathbf{0} \Leftrightarrow \mathsf{решением}$ является одна точка

При этом $\|\Delta b\|=0$. При расширении допуска $\|\Delta b\|$ на константу C, на это же значение изменяется величина max Tol.

Таким образом:

$$\|\Delta b\|_{\infty}=$$
 max Tol.

для любого вектора y:

$$||y||_{\infty} \le ||y||_2 \le \sqrt{n} \, ||y||_{\infty} \, .$$

Обсудим оценки, даваемые выражениями ive и rve. Начнем с относительной оценки rve. При допусковом множестве, состоящем из одной точки,

$$\max Tol = 0$$
, $ive = 0$.

При увеличении значения \max To1, растет и ive с коэффициентом пропорциональности $\operatorname{cond} A$. С точки зрения понятий информационных множеств, это соотвествует увеличению допускового множества. Чем хуже обусловлена ИСЛАУ, тем сильнее «расплывается» область решения, тем «хуже» качество решения. Величина ive дает абсолютную оценку, в которую входит и норма правой части $\|b\|$.

График распознающего функционала для ИСЛАУ.

Величина максимума распознающего функционала дает представление о размерах допускового множества решений.

График распознающего функционала для ИСЛАУ.

Помимо максимума распознающего функционала на размеры множества решений влияет также «крутизна» графика функционала

Рассмотрим конкретный пример ИСЛАУ.

$$\textbf{\textit{A}} = \begin{pmatrix} [0.95, 1.05], & [0.95, 1.05] \\ [-0.05, 0.05], & [0.95, 1.05] \end{pmatrix}, \quad \textbf{\textit{b}} = \begin{pmatrix} [1.8, 2.2] \\ [0.8, 1.2] \end{pmatrix}$$

ИСЛАУ с матрицами такого типа характерны, в частности, для задач спектрального анализа. Например, система вида

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} [1.8, 2.2] \\ [0.8, 1.2] \end{pmatrix}$$

соответствует ситуации, когда известна сумма двух аналитических линий (первое уравнение) и значение одной из них (второе уравнение).

ИСЛАУ близка к треугольной и хорошо обусловлена: $\operatorname{cond}\left(\operatorname{mid}(\boldsymbol{A})\right)=2.6.$

Результами вычисления распознающего функционала с помощью программы tolsolvty являются величины:

$$\texttt{max} \; \texttt{Tol} = \texttt{0.1}, \quad \texttt{argmax} = [\texttt{1}, \texttt{1}],$$

График распознающего функционала имеет хорошо выраженную «вершину».

График распознающего функционала для ИСЛАУ.

Цветовая палитра выбрана таким образом, что значениям функционала Tol, меньшим 0, отвечает синий цвет. Точки графика Tol, соответствующие допусковому множеству ИСЛАУ, окрашены в теплые тона.

Информационные множества решений ИСЛАУ показаны на рисунке зеленым (объединенное) и красным (допусковое) цветами.

Сторона квадрата равна $2 \cdot ive$.

Размер бруса решения

Размер бруса решения

Рассмотрим ИСЛАУ, сильно отличающуюся от предыдущей:

$$\mathbf{A} = \begin{pmatrix} [0.95, 1.05], & [0.95, 1.05] \\ [1.05, 1.15], & [0.95, 1.05] \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} [1.85, 2.15] \\ [1.95, 2.25] \end{pmatrix}$$

ИСЛАУ с матрицами такого типа характерны для задач оптической томографии в веерной геометрии, если углы между хордами наблюдения малы.

Средней по отношению ИСЛАУ является СЛАУ с матрицей и правой частью, даваемыми уравнениями:

$$\operatorname{mid} \mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix}, \quad \operatorname{mid} \mathbf{b} = \begin{pmatrix} 2 \\ 2.1 \end{pmatrix}.$$

ИСЛАУ плохо обусловлена: $\operatorname{cond}\left(\operatorname{mid}(\boldsymbol{A})\right)=42.$

Результами вычисления распознающего функционала с помощью программы tolsolvty являются величины:

$$\texttt{max} \; \texttt{Tol} = 0.05, \quad \texttt{argmax} = [1, 1],$$

Вычисления оценок вариабельности по формулам для ive и rve дают:

$$ive = 1.03$$
, $rve = 2.1$.

Информационные множества решений ИСЛАУ показаны на рисунке зеленым (объединенное) и красным (допусковое) цветами.

На рисунке показано положение оценки вариабельности по формуле ive, с центром в точке argmax — квадрат с синей границей. Сторона квадрата равна $2 \cdot ive$.

График распознающего функционала для ИСЛАУ.

Ввиду того, что уравнения в ИСЛАУ соответствуют прямым с небольшим углом между ними, график распознающего функционала не будет иметь ярко выраженной вершины.

Значениям функционала Tol, меньшим 0, отвечает синий цвет. Точки графика Tol, соответствующие допусковому множеству ИСЛАУ, окрашены в теплые тона.

Допусковое множество, как это видно из рисунка, имеет форму сильно вытянутого вдоль одной из диагоналей четырехугольника (виден на проекции графика на плоскость z=-8), а график Tol в этой области — форму «плато», со слабо выраженной вершиной в его центре. Даже при относительно невысокой вариабельности правой части ИСЛАУ, размеры допускового множества весьма велики.

Оценка вариабельности решения ИСЛАУ.

Несмотря на явственное различие между информационными множествами и оценками вариабельности для рассмотренных ИСЛАУ, оценки, даваемые формулой для значений ive, вполне адекватно ограничивают допусковое множество.

Этот факт дает положительную основу для использования этой величины в качестве оценки вариабельности решения линейной задачи о допусках.

Недоопределенные ИСЛАУ

Линейная функция трех переменных

$$b = x_1 a_1 + x_2 a_2 + x_3 a_3$$

восстанавливается по данным двух измерений. Имеем недоопределенную ИСЛАУ:

$$\begin{pmatrix} [98, 100] & [97, 99] & [96, 98] \\ [99, 101] & [98, 100] & [97, 99] \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} [190, 210] \\ [200, 220] \end{pmatrix}$$

Ее матрица имеет неполный ранг, поскольку содержит точечную матрицу ранга 1

$$\begin{pmatrix} 98 & 98 & 98 \\ 99 & 99 & 99 \end{pmatrix}$$

Тем не менее интервальная матрица системы не содержит линейно зависимых точечных столбцов, и потому согласно критерию И.А. Шарой допусковое множество решений — ограниченное.

Минимальное спектральное число обусловленности точечных матриц, содержащихся в матрице ИСЛАУ, равно 103.83 и достигается на матрице

$$\begin{pmatrix} 100 & 97 & 96 \\ 99 & 100 & 99 \end{pmatrix}$$

В этом можно убедиться перебором всех «угловых» точечных матриц для интервальной матрицы системы

Нахождение максимума распознающего функционала этой системы с помощью программы tolsolvty дает значение maxTol = 3.9698, который достигается в точке

$$\hat{x} = \text{arg max Tol} = (2.06, 3 \cdot 10^{-6}, 2.1 \cdot 10^{-6})^T.$$

Ee можно взять в качестве оценки коэффициентов. Тогда мера вариабельности

IVE =
$$\sqrt{2} \cdot 3.9698 \cdot 103.83 \frac{\|\hat{x}\|_2}{\sqrt{200^2 + 201^2}} = 4.14$$

Интервальная оболочка допускового множества решений ИСЛАУ, т. е. его оптимальная внешняя интервальная оценка — это брус

$$\begin{pmatrix} [-1.97, 4.03] \\ [-1.99, 4.08] \\ [-1.99, 4.11] \end{pmatrix}$$

Радиусы компонент оптимальной внешней оценки допускового множества решений равны

что также не сильно отличается от значения IVE.

Допусковое множества решений ИСЛАУ

Рассмотренный пример показывает работоспособность оценки даже в случае недоопределенных ИСЛАУ. Но строгое исследование и обоснование этого факта, еще ожидают своего продолжения.

Задание 2

Исследование переопределённой ИСЛАУ

- Исследовать разрешимость
- Построить множества
- Построить график Tol

Достичь разрешимости за счет коррекции

- правой части ИСЛАУ
- матрицы ИСЛАУ

Исследовать разрешимость ИСЛАУ 3×2

$$[0.5, 1.5] \cdot x_1 + [1.5, 2.5] \cdot x_2 = [3.0, 5.0]$$

$$[1.5, 2.5] \cdot x_1 + [-1.5, -0.5] \cdot x_2 = [-1.0, 1.0]$$

$$[0.5, 1.5] \cdot x_1 + [-0.5, 0.5] \cdot x_2 = [1.0, 3.0],$$

которая получается из

$$x_1 + 2 \cdot x_2 = 4$$

 $2 \cdot x_1 - x_2 = 0$
 $x_1 = 2$.

Построить множества решений, объединённое и допусковое

Построить график Tol

Литература

- https://arxiv.org/abs/1810.01481 S. Shary. Interval regularization for imprecise linear algebraic equations (Submitted on 27 Sep 2018)
- Zhilin, S.I. Simple method for outlier detection in fitting experimental data under interval error // Chemometrics and Intelligent Laboratory Systems. 2007. Vol. 88. No 1. P. 60–68.
- С.П. Шарый. О мере вариабельности оценки параметров в статистике интервальных данных. Вычисл. технологии, 24, 5, 2019.
 — стр.90-108.