MAT217 HW 5 Due Tues. Mar. 12, 2013

1. Let V and W be finite dimensional vector spaces and $\xi_V: V \to V^{**}$ and $\xi_W: W \to W^{**}$ be the isomorphisms

$$\xi_V(v) = eval_v \text{ and } \xi_W(w) = eval_w$$
.

Show that if $T: V \to W$ is linear then $\xi_W^{-1} \circ (T^t)^t \circ \xi_V = T$.

2. Let V be finite-dimensional and C a basis for V^* . Show that there is a basis B of V such that $B^* = C$.

Hint. Consider $C^* \subset V^{**}$, the dual basis to C.

- 3. (From Hoffman-Kunze) Let V be finite dimensional and define $\Psi: L(V, V) \to L(V^*, V^*)$ by $\Psi(T) = T^t$. Show that Ψ is an isomorphism.
- 4. Let $S \subset V$, a finite dimensional vector space. Show that if $\xi_V : V \to V^{**}$ is the map $\xi_V(v) = eval_v$, then $\xi_V^{-1}((S^{\perp})^{\perp}) = \operatorname{Span}(S)$.