Teorija iger - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Sergia Cabella 2021/22

Kazalo

1	Strateške igre s funkcijami preferenc			
	1.1	Uvod		
	1.2	Čisto Nashevo ravnotežje		
		Dominacije		

1 Strateške igre s funkcijami preferenc

1.1 Uvod

Definicija 1.1. Naj bo \mathcal{A} množica. *Funkcija preferenc* na množici \mathcal{A} je preslikava $u: \mathcal{A} \to \mathbb{R}$ funkcija preferenc. Intuicija: $\forall a, a' \in \mathcal{A}, a \neq a'$:

- u(a) > u(a') " \iff " a je boljše kot a'
- u(a) < u(a') " \iff " a je slabše kot a'
- u(a) = u(a') " \iff " med a in a' smo indiferentni

Opomba.

- Različne funkcije lahko določijo iste preference.
- Obravnavali bomo tudi več funkcij preferenc na isti množici (vsak igralec ima lahko svojo funkcijo).
- Preverence določimo kvalitativno, ne kvantitativno pomemben je le vrstni red, same vrednosti ne.
- Namesto R bi lahko uporabili poljubno drugo linearno urejeno množico.

Definicija 1.2. Strateška igra s funkcijami preferenc je trojica

$$(N, (A_i)_{i \in N}, (u_i)_{i \in N}),$$

pri čemer:

- \bullet N je končna množica *igralcev*.
- \bullet Za vsakega igralca $i \in N$ je A_i neprazna množica akcij za $i \in N.$ Naj bo

$$\mathcal{A} := \prod_{i \in N} A_i$$

množica profilov akcij.

• Za vsakega igralca $i \in N$ je $u_i : \mathcal{A} \to \mathbb{R}$ je funkcija preferenc na \mathcal{A} za igralca i.

Opomba. Ponavadi: $N = [n] = \{1, \dots, n\}$. V tem primeru imamo trojico

$$([n], (A_1, \ldots, A_n), (u_1, \ldots, u_n)),$$

$$A = A_1 \times \ldots \times A_n \text{ ter } u_i : A_1 \times \ldots \times A_n \to \mathbb{R}.$$

1.2 Čisto Nashevo ravnotežje

Notacija.

$$(x_{\alpha}, x_{\beta}, x_{\gamma} \mid y; \beta) = (x_{-\beta}, y) = (x_{\alpha}, y, x_{\gamma})$$

Za funkcije preferenc:

$$u_i(x_1,\ldots,x_m \mid y) = u_i(x_1,\ldots,x_{i-1},y,x_{i+1},\ldots,x_n).$$

Definicija 1.3. Naj bo $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$ strateška igra s funkcijami preferenc. Naj bo

$$\mathcal{A} = \prod_{i \in N} A_i.$$

Profil akcij $a^* \in \mathcal{A}$ je čisto Nashevo ravnovesje $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\forall i \in N, \ \forall b \in A_i: \ u_i(a^*) \ge u_i(a^* \mid b).$$

Tak $a^* \in \mathcal{A}$ je strogo čisto Nashevo ravnovesje $\stackrel{\text{def}}{\Longleftrightarrow}$

$$\forall i \in N, \ \forall b \in A_i \setminus \{a_i^*\}: \ u_i(a^*) > u_i(a^* \mid b).$$

Definicija 1.4. Naj bo $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$ strateška igra s funkcijami preferenc. Označimo

$$\mathcal{A} = \prod_{n \in N} A_i.$$

 $Najbolj\check{s}i~odgovor$ igralca $i\in N$ je

$$B_{i}: \mathcal{A} \to 2^{A_{i}} = \{B \mid B \subseteq A_{i}\}$$

$$a \mapsto \{b \in A_{i} \mid \forall c \in A_{i} : u_{i}(a \mid b) \geq u_{i}(a \mid c)\}$$

$$= \{b \in A_{i} \mid u_{i}(a \mid b) = \max_{c \in A_{i}} (a \mid c)\}.$$

Za $N = [n] = \{1, ..., n\}$ je formula v definiciji za igralca i = 1:

$$B_1(a_1, \dots, a_n) = \{b \in A_1 \mid u_1(b, a_2, \dots, a_n) = \max_{c \in A_1} u_1(c, a_2, \dots, a_n)\},\$$

analogno za $i = 2, \ldots, n$.

Opomba.

- Bolj pravilno bi bilo reči "množica najboljših odgovorov".
- Večkrat velja $|B_i(a)| = 1$ (le en najboljši odgovor). V tem primeru pišemo brez $\{\}$.
- \bullet Pri definiciji B_i nima a_i nobene vloge. Za dva igralca bomo ponavadi napisali

$$B_1(a_2) \equiv B_1(*, a_2)$$

 $B_2(a_1) \equiv B_2(a_1, *).$

Trditev 1.1. Profil akcij $a^* = (a_i^*)_{i \in N}$ je čisto Nashevo ravnovesje \iff

$$\forall i \in N : a_i^* \in B_i(a^*).$$

Trditev 1.2. Profil akcij $a^* = (a_i^*)_{i \in N}$ je strogo čisto Nashevo ravnovesje \iff

$$\forall i \in N: \ a_i^* \in B_i^{\text{str}}(a^*),$$

kjer B_i^{str} definiramo kot

$$B_i^{\text{str}}: \mathcal{A} \to 2^{A_i}$$

$$a \mapsto \{b \in A_i \mid \forall c \in A_i \setminus \{b\} : u_i(a^* \mid b) > u_i(a^* \mid c)\}$$

$$= \begin{cases} \text{edini max}; & \text{\'e obstaja}, \\ \emptyset; & \text{sicer}. \end{cases}$$

1.3 Dominacije

Definicija 1.5. Naj bo $\Gamma = (N, (A_i)_{i \in N}, (u_i)_{i \in N})$ strateška igra s funkcijo preferenc. Označimo

$$\mathcal{A} = \prod_{i \in N} A_i.$$

Akcija $b \in A_i$ šibko dominira akcijo $c \in A_i$, če velja

$$\forall a \in \mathcal{A} : u_i(a \mid b) > u_i(a \mid c).$$

Akcija $b \in A_i$ strogo dominira akcijo $c \in A_i$, če velja

$$\forall a \in \mathcal{A} : u_i(a \mid b) > u_i(a \mid c).$$

Trditev 1.3. Če $b \in A_i$ strogo dominira $c \in A_i$, potem ne obstaja čisto Nashevo ravnovesje $a^* = (a_i^*)_{i \in N}$ z $a_i^* = c$. Če $b \in A_i$ dominira $c \in A_i$, potem obstaja strogo čisto Nashevo ravnovesje $a^* = (a_i^*)_{i \in N}$ z $a_i^* = c$.