1 Area formula and coarea formula

Věta 1.1

Let (P_1, ϱ_1) , (P_2, ϱ_2) be metric spaces, s > 0, and $f : P_1 \to P_2$ be β -Lipschitz. Then $\varkappa^s(f(P_1)) \leqslant \beta^s \varkappa^s(P_1)$.

 $D\mathring{u}kaz$

Choose $\delta > 0$. Let $P_1 = \bigcup_{i=1}^{\infty} A_i$, diam $A_i < \delta$. Then we have $f(P_1) = \bigcup_{j=1}^{\infty} f(A_j)$, diam $f(A_i) < \beta \cdot \delta$.

$$\varkappa^{s}(f(P_{1}), \beta \cdot \delta) \leqslant \sum_{j=1}^{\infty} (\operatorname{diam} f(A_{j}))^{s} \leqslant \sum_{j=1}^{\infty} \beta^{s} \cdot (\operatorname{diam} A_{j})^{s} = \beta^{s} \cdot \sum_{j=1}^{\infty} (\operatorname{diam} A_{j})^{s}.$$

It holds for all possible choices of (A_j) , so we can take infimum:

$$\varkappa^{s}(f(P_{1})) \leftarrow \varkappa^{s}(f(P_{1}), \beta \cdot \delta) \leqslant \beta^{s} \inf_{(A_{j})} \sum_{j=1}^{\infty} (\operatorname{diam} A_{j})^{s} = \beta^{s} \varkappa^{s}(P_{1}, \delta) \to \beta^{s} \varkappa^{s}(P_{1}).$$

Lemma 1.2

Let $k, n \in \mathbb{N}$, $k \leq n$, and $L : \mathbb{R}^k \to \mathbb{R}^n$ be an injective linear mapping. Then for every λ_k -measurable set $A \subset \mathbb{R}^k$ it holds $H^k(L(A)) = \sqrt{\det(L^T L)\lambda_k(A)}$.

 $D\mathring{u}kaz \ (\dim L(\mathbb{R}^k) = k)$

We find linear isometry Q of \mathbb{R}^k onto $L(\mathbb{R}^k)$, from last semester

$$H^k(L(A)) = H^k(Q^{-1} \circ L(A)) = \lambda^k(Q^{-1} \circ L(A)) = |\det(Q^{-1}L)| \cdot \lambda_k(A).$$

$$(\det(Q^{-1}L))^2 = \det((Q^{-1}L)^T) \cdot \det(Q^{-1}L) = \det((Q^{-1}L)^T \cdot (Q^{-1}L)) = \det((\langle Q^{-1}Le^i, Q^{-1}L^Te^j \rangle)_{i,j}).$$

And because Q is isometry ($\Longrightarrow Q^{-1}$ is isometry), we can remove Q^{-1} from scalar product and we get $\det(L^TL)$.

Lemma 1.3

Let $k, n \in \mathbb{N}$, $k \leq n$, $G \subset \mathbb{R}^k$ be an open set, $\varphi : G \to \mathbb{R}^n$ be an injective regular mapping, $x \in G$, and $\beta > 1$. Then there exists a neighbourhood V of the point x such that

- the mapping $y \mapsto \varphi(\varphi'(x)^{-1}(y))$ is β -Lipschitz on $\varphi'(x)(V)$;
- the mapping $z \mapsto \varphi'(x)(\varphi^{-1}(z))$ is β -Lipschitz on $\varphi(V)$.

Důkaz

 x, β fixed. We know, that there exists $\eta > 0$ such that

$$\forall v \in \mathbb{R}^k : \|\varphi'(x)(v)\| \geqslant \eta \cdot \|v\|.$$

We find $\varepsilon \in (0, \frac{1}{2}\eta)$ such that $\frac{2\varepsilon}{\eta} + 1 < \beta$. We find a neighbourhood V of x such that $\forall y \in V : \|\varphi'(x) - \varphi'(y)\| \leq \varepsilon$.

We show that for every $u, v \in V$ we have

$$\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| \le \varepsilon \|u - v\|.$$

Fix $v \in V$ and consider the mapping

$$g: w \mapsto \varphi(w) - \varphi(v) - \varphi'(x)(w - v).$$

For $w \in V$ we have $g'(w) = \varphi'(w) - \varphi'(x)$:

$$\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| = \|g(w) - g(v)\| \le \sup\{\|g'(w)\| \mid w \in V\} \cdot \|u - v\| \le \varepsilon \cdot \|u - v\|.$$

Further we show that for every $u, v \in V$ we have

$$\|\varphi(u) - \varphi(v)\| \geqslant \frac{1}{2}\eta \|u - v\|.$$

For $u - v \in V$ we compute

$$\|\varphi(u) - \varphi(v)\| \ge -\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi'(x)(u - v)\| \ge -\varepsilon \|u - v\| + \eta \|u - v\| \ge \frac{1}{2}\eta \|u - v\|$$

"First point": TODO (řádek nebyl k přečtení)

$$\|\varphi(\varphi^{-1}(x)(a)) - \varphi(\varphi^{-1}(x)(b))\| = \|\varphi(u) - \varphi(v)\| \le$$

$$\le \|phi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi'(x)(u - v)\| \le$$

$$\le \varepsilon \cdot \|u - v\| + \|\varphi'(x)(y - v)\| \le \varepsilon \frac{1}{\eta} \|a - b\| + \|a - b\| = \left(\frac{\varepsilon}{\eta} + 1\right) \|a - b\| \le \beta \cdot \|a - b\|.$$

"Second point": $k, q \in \varphi(V)$. We find $u, v \in V$ such that $\varphi(u) = p$ and $\varphi(v) = q$:

$$\|\varphi'(x)(\varphi^{-1}(p)) - \varphi'(x)(\varphi^{-1}(q))\| = \|\varphi'(x)(u) - \varphi'(x)(v)\| =$$

$$= \|\varphi'(x)(u - v)\| \le \|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi(u) - \varphi(v)\| \le$$

$$\le \varepsilon \cdot \|u - v\| + \|p - q\| \le \frac{2\varepsilon}{\eta} \|\varphi(u) - \varphi(v)\| + \|p - q\| = \left(\frac{2\varepsilon}{\eta} + 1\right) \|p - q\| \le \beta \|p - q\|.$$

Lemma 1.4

Let $k, n \in \mathbb{N}$, $k \leq n$, $G \subset \mathbb{R}^k$ be an open set, $\varphi : G \to \mathbb{R}^n$ be an injective regular mapping, $x \in G$, and $\alpha > 1$. Then there exists a neighbourhood of x such that for every λ^k -measurable $E \subset V$ we have

$$\alpha^{-1} \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant H^k(\varphi(E)) \leqslant \alpha \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t).$$

 $D\mathring{u}kaz$

Find $\beta > 1$, $\tau > 1$ such that $\beta^k \tau < \alpha$. By previous lemma we find a neighbourhood V_1 of x such that the conclusion of the lemma holds for β . We find a neighbourhood V_2 of x such that

$$\forall t \in V_2 : \tau^{-1} \operatorname{vol} \varphi'(t) \leq \operatorname{vol} \varphi'(t) \leq \tau \operatorname{vol} \varphi'(x).$$

Set $V = V_1 \cap V_2$.

Assume that $E \subset V$ is a λ^k -measurable set. We have

$$\tau^{-1}\operatorname{vol}\varphi'(x)\cdot\lambda^k(E)\leqslant \int_E\operatorname{vol}\varphi'(t)d\lambda^k(t)\leqslant \tau\operatorname{vol}\varphi'(t)\lambda^k(E).$$

By lemma above we have $\operatorname{vol} \varphi'(t) \lambda^k(E) = H^k(\varphi'(x)(E))$:

$$\tau^{-1}H^k(\varphi'(x)(E)) \leqslant \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant \tau H^k(\varphi'(x)(E)).$$

By previous lemma we get

$$\begin{split} H^k(\varphi(E)) &= H^k\left(\left(\varphi\circ(\varphi'(x))^{-1}\circ\varphi'(x)\right)(E)\right) \leqslant \beta^k H^k(\varphi'(x)(E)) \leqslant \beta^k H^k(\varphi'(x)(E)) \leqslant \\ &\leqslant \beta^k \tau \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant \alpha \int_E \operatorname{vol} \varphi'(t) d\lambda^k(t). \end{split}$$

By lemma above we get

$$H^{k}(\varphi(E)) \geqslant \beta^{-k} H^{k} \left(\left(\varphi'(x) \circ \varphi^{-1} \circ \varphi \right) (E) \right) = \beta^{-k} H^{k}(\varphi'(x)(E)) \geqslant$$
$$\geqslant \beta^{-k} \tau^{-1} \int_{E} \operatorname{vol} \varphi'(t) d\lambda^{k}(t) \geqslant \alpha^{-1} \int_{E} \operatorname{vol} \varphi'(t) d\lambda^{k}(t).$$

Věta 1.5

Let $k, n \in \mathbb{N}$, $k \leq n$, $G \subset \mathbb{R}^k$ be an open set, $\varphi : G \to \mathbb{R}^n$ be an injective regular mapping and $f : \varphi(G) \to \mathbb{R}$ be H^k -measurable. Then we have

$$\int_{\varphi(G)} f(x)dH^k(x) = \int_G f(\varphi(t)) \operatorname{vol} \varphi'(t) d\lambda^k(t),$$

if the integral at the right side converges.

Důkaz

 φ^{-1} is well defined": If $H \subset G$ is open, then we can write $H = \bigcup_{n=1}^{\infty} K_n$, where K_n is compact for every $n \in \mathbb{N}$. Then we have $\varphi(H) = \bigcup_{n=1}^{\infty} \underbrace{\varphi(K_n)}_{\text{compact}}$ is F_{σ} . This implies that

 φ^{-1} is Borel. The mappings φ , φ^{-1} are locally Lipschitz by lemma above. ($\varphi(G)$ is Borel.) $\varphi(G)$ is H^k - σ -finite.

1. $f = \chi_L$, $L \subset \varphi(G)$ is H^k -measurable": We show $H^k(L) = \int_{\varphi^{-1}(L)} \varphi'(t) d\lambda^k(t)$. Choose $\alpha > 1$. By previous lemma we find for every $y \in G$ neighbourhood $V_y \subset G$ of the point y such that for every λ^k -measurable set $E \subset V_y$ we have

$$\alpha^{-1} \int_{E} \operatorname{vol} \varphi'(t) d\lambda^{k}(t) \leq H^{k}(\varphi(E)) \leq \alpha \int_{E} \operatorname{vol} \varphi'(t) d\lambda^{k}(t).$$

We have $\subset \{V_y|y\in G\}=G$. There exists a sequence $\{y_j\}_{j=1}^\infty$ such that $\bigcup_{i=1}^\infty V_{y_j}=G$. Using lemma from previous semester we find Borel sets $B,N\subset \varphi(G)$ such that $B\subset L\subset B\cup N$, $H^k(N)=0$.

 $\lambda^k(\varphi^{-1}(N)) = 0. \ \varphi^{-1}(B) \subset \varphi^{-1}(L) \subset \varphi^{-1}(B) \cup \varphi^{-1}(N) \implies \varphi^{-1}(L) \text{ is } \lambda^k\text{-measurable.}$ We set

$$A_j = \varphi^{-1}(L) \cap \left(V_{y_j} \setminus \bigcup_{i=1}^{j-1} V_{y_j}\right).$$

Then we have

- A_i is λ^k -measurable;
- $A_j \subset V_{y_j}$ for every $j \in \mathbb{N}$;
- $\forall j, j' \in \mathbb{N}, j \neq j' : A_j \cap A_{j'} = \emptyset;$
- $\bigcup_{j=1}^{\infty} A_j = \varphi^{-1}(L);$
- for every $j \in \mathbb{N}$ we have

$$\alpha^{-1} \int_{A_j} \operatorname{vol} \varphi'(t) d\lambda^k(t) \leqslant H^k(\varphi(A_j)) \leqslant \alpha \int_{A_j} \operatorname{vol} \varphi'(t) d\lambda^k(t).$$

From all except for second point we have

$$\alpha^{-1} \int_{\varphi^{-1}(L)} \operatorname{vol} \varphi'(t) d\lambda^{k}(L) \leqslant \sum_{\underline{j=1}}^{\infty} H^{k}(\varphi(A_{j})) \leqslant \alpha \int_{\varphi^{-1}(L)} \operatorname{vol} \varphi'(t) d\lambda^{k}(t).$$

$$= H^{k}(\bigcup_{j=1}^{\infty} \varphi(A_{j})) = H^{k}(L)$$

2. " $f \ge 0$ simple H^k -measurable": From linearity of integrals. 3. " $f \ge 0$ H^k -measurable": we approximate f by $0 \le f_j \le f_{j+1}$ simple functions and from Levi

$$\lim_{j \to \infty} \int_{\varphi(G)} f_j(x) dH^k(x) = \int_{\varphi(G)} f(x) dH^k(x), \qquad \lim_{j \to \infty} \int_G f_j(\varphi(t)) \operatorname{vol} \varphi'(t) d\lambda^k(t) = \int_G f(\varphi(t)) \operatorname{vol} \varphi'(t) d\lambda^k(t)$$

3. " $f\ H^k$ -measurable": We add positive and negative part.

Věta 1.6 (Coarea formula)

Let $k, n \in \mathbb{N}$, k > n, $\varphi : \mathbb{R}^k \to \mathbb{R}^n$ be Lipschitz mapping, $f : \mathbb{R}^k \to \mathbb{R}$ be λ^k -integrable function. Then we have

$$\int_{\mathbb{R}^k} f(x) \sqrt{\det(\varphi'(x) \cdot (\varphi'(x))^T)} d\lambda^k(x) = \int_{\mathbb{R}^n} \int_{\varphi^{-1}(\{y\})} f(x) dH^{k-n}(x) d\lambda^k(y)$$

Věta 1.7

Let $f: \mathbb{R}^k \to \mathbb{R}$ be λ^k -integrable function. Then we have

$$\int_{\mathbb{R}^k} f(x) d\lambda^k(x) = \int_0^\infty \left(\int_{x \in \mathbb{R}^k, \|x\| = z} f(x) dH^{k-1}(x) \right) d\lambda^1(z).$$

 $D\mathring{u}kaz$

By Coarea formula.

2 Semicontinuous functions

Definice 2.1

Let X be a topological space and $f: X \to \mathbb{R}^*$. We say that f is lower semicontinuous (lsc), if the set $\{x \in X | f(x) > a\}$ is open for every $a \in \mathbb{R}$. We say that f is upper semicontinuous (usc) if the set $\{x \in X | f(x) < a\}$ is open for every $a \in \mathbb{R}$.

Tvrzení 2.1 (Fact)

 $f: \mathbb{R} \to \mathbb{R}$:

$$f \text{ is } lsc \iff \forall x \in \mathbb{R} : \liminf_{t \to x} f(t) \geqslant x.$$

Věta 2.2

Let X be a metrizable topological space and $f: X \to \mathbb{R}^*$ be a function bounded from below. Then f is lsc if and only if there exists a sequence $\{f_n\}$ of continuous functions from X to \mathbb{R} such that $f_0 \leq f_1 \leq \ldots$ and $f_n \to f$. $D\mathring{u}kaz$

" \Leftarrow ": Choose $a \in \mathbb{R}$. Assume that $f(x_0) > a$. There exists $k \in \mathbb{N}$ such that $f_k(x_0 > a)$. Then there is an open set $G \subset X$ such that $x_0 \in G$ and $f_k|_G > a$. Thus we have $f|_G \geqslant f_k|_G > a$. So $\{x \in X | f(x) > a\}$ is open.

" \Longrightarrow "The case " $f \equiv \infty$ ": Then we consider $f_n \equiv n$. The case " $f \not\equiv \infty$ ". Fix a compatible metric ϱ on X. We set $f_n(x) = \inf\{f(y) + n \cdot \varrho(x,y) | y \in X\}$. Then we have $f_n: X \to \mathbb{R}$ and $f_0 \leqslant f_1 \leqslant \ldots$ We have

$$|f_n(x) - f_n(z)| \le n \cdot \rho(x, z) \iff$$

 $\iff f_n(x) - f_n(z) \leqslant f(y) + n \cdot \varrho(x, y) - (f(y) + n \cdot \varrho(y, z)) + \varepsilon = n(\varrho(x, y) - \varrho(y, z)) + \varepsilon \leqslant n \cdot \varrho(x, z) + \varepsilon.$ So f_n is continuous.

 $,f_n \to f$ ": There exists $K \in \mathbb{R}$ such that $f(x) \ge K$ for every $x \in X$. Fix $x \in X$. Choose $\varepsilon > 0$. For every $n \in \mathbb{N}$ we find $y_n \in X$ such that $f(y_n) \le f(y_n) + n \cdot \varrho(x,y_n) \le f_n(x) + \varepsilon$. Then we have

$$\varrho(x, y_n) \leqslant \frac{1}{n} (f_n(x) + \varepsilon - f(y_n)) \leqslant \frac{1}{n} (f_n(x) + \varepsilon - K).$$

 $f_n(x) \to \infty \implies f(x) = \infty$, since $f_n(x) \le f(x)$. $f_n(x)$ is bounded $\implies y_n \to x$, so we can find $n_0 \in \mathbb{N}$ such that $\forall n \ge n_0 : f(y_n) > f(x) - \varepsilon$. Then we have $f(x) < f(y_n) + \varepsilon \le f_n(x) + 2\varepsilon$, $\lim f_n(x) \le f(x) \le \lim f_n(x) + 2\varepsilon$, thus $\lim f_n(x) = f(x)$.

3 Function of Baire class 1

Definice 3.1

Let X and Y be metrizable topological spaces, a function $f: X \to Y$ is of Baire class 1 (B_1 -function) if for every open set $U \subset Y$ the set $f^{-1}(U)$ is F_{σ} .

Věta 3.1 (Lebesgue–Hasudorff–Banach)

Let X be a metrizable topological space and $f: X \to \mathbb{R}$ be a B_1 -function. Then there exists a sequence $\{f_n\}$ of continuous functions from X to \mathbb{R} with $f_n \to f$.

Lemma 3.2

Let X be a metrizable topological space and $A \subset X$ be G_{δ} and F_{σ} . Then χ_A is point-wise limit of a sequence of continuous functions.

 $D\mathring{u}kaz$

 $A = \bigcup_{n \in \mathbb{N}} F_n$, $X \setminus A = \bigcup_{n \in \mathbb{N}} H_n$, $F_n \subseteq F_{n+1}$, $H_n \subseteq H_{n+1}$. By Urysohn lemma there exists continuous function $f_n : X \to [0,1]$ such that $f_n|_{H_n} = 0$ and $f_n|_{F_n} = 1$. Then $f_n(x) \to f(x)$.

Lemma 3.3

Let X be a metrizable topological space, $p_n : X \to \mathbb{R}$, $n \in \omega$, be a point-wise limit of a sequence of continuous functions. If the sequence $\{p_n\}$ converges uniformly to p, then p is point-wise limit of continuous functions.

 $D\mathring{u}kaz$

Claim: If $q_n: X \to \mathbb{R}$, $n \in \omega$, is point-wise limit of continuous functions, $||q_n||_{\infty} \leq 2^{-n}$, then $\sum_{n=0}^{\infty} q_n$ is a point-wise limit of continuous functions.

Corollary: One can assume $||p - p_n||_{\infty} \le 2^{-(n+1)}$. $p = p_0 + \sum_{n=0}^{\infty} (p_{n+1} - p_n)$

$$||p_{n+1} - p_n||_{\infty} \le ||p_{n+1} - p|| + ||p - p_n|| < 2^{-(n+2)} + 2^{-(n+1)} < 2^{-n}.$$

Proof of claim: For every $n \in \omega$, there exists a sequence of continuous functions $\{q_i^n\}_{i=0}^{\infty}$ such that $q_i^n \to q_n$ and moreover we may assume $\|q_i^n\|_{\infty} \leq 2^{-n}$. We set $r_i = \sum_{n=0}^{\infty} q_i^n$. The sum converges uniformly, so r_i is continuous for every $i \in \omega$.

Set $x \in X$ and $\varepsilon > 0$. We find $N \in \omega$ such that

$$\left| \sum_{n=N+1}^{\infty} q_i^n(x) \right| < \frac{1}{2} \varepsilon, \left| \sum_{n=N+1}^{\infty} q_n(x) \right| < \frac{1}{2} \varepsilon.$$

Then we have

$$\left| r_i(x) - \sum_{n=0}^{\infty} q_n(x) \right| = \left| \sum_{n=0}^{\infty} q_i^n(x) - \sum_{n=0}^{\infty} q_n(x) \right| \le \left| \sum_{i=0}^{N} q_i^n(x) - q_n(x) \right| + \left| \sum_{n=N+1}^{\infty} q_i^n(x) - \sum_{n=N+1}^{\infty} q_n(x) \right| \le \left| \sum_{n=0}^{N} q_i^n(x) - \sum_{n=0}^{\infty} q_n(x) \right| \le \left| \sum_{n=0}^{N} q_i^n(x) - \sum_{n=0}^{N} q_i^$$

$$\limsup_{i \to \infty} |r_i(x) \sum_{n=0}^{\infty} q_n(x)| \leqslant \varepsilon \implies r_i(x) \to \sum_{n=0}^{\infty} q_n(x).$$

Lemma 3.4 (Reduction theorem for F_{σ} sets)

Let X be a metrizable topological space, $A_n \subset X$ be an F_σ set for every $n \in \omega$. Then there are F_σ sets $A_n^* \subset A_n$, such that $A_n^* \cap A_m^* = \emptyset$, whenever $n, m \in \omega$, $n \neq m$, and $\bigcup_{n=0}^{\infty} A_n = \bigcup_{n=0}^{\infty} A_n^*$.

Důkaz

 $A_n = \bigcup_{j=0}^{\infty} A_{n,j}, A_{n,j} \text{ is closed. } k \mapsto (k',k'') \text{ bijection of } \omega \text{ onto } \omega \times \omega. \ Q_k = A_{(k)_0,(k)_j} \setminus \bigcup_{l < k} A_{(l)_0,(k)_1}.$ $(Q_k)_{k \in \omega} \text{ is sequence of } F_{\sigma} \text{ sets, which is disjoint. } A_n^* := \bigcup \{Q_k | (k)_0 = n\} \subseteq A_n \text{ is } F_{\sigma} \text{ set,}$ $A_n^* \cap A_m^* = \emptyset \text{ if } n \neq m \text{ and } \bigcup_{n=0}^{\infty} A_n^* = \bigcup_{k=0}^{\infty} Q_k = \bigcup_{n=0}^{\infty} A_n.$

Důkaz (Of Lebesgue–Hasudorff–Banach theorem)

It is sufficient to prove result for $g: X \to (0,1)$. Because if $f \in B_1$, then we set $g = k \circ f$ where $k: \mathbb{R} \to (0,1)$ is homeomorphism. We find $g_n: X \to \mathbb{R}$, continuous and $g_n \to g$.

 $\tilde{g}_n := \min\left\{\max\left\{\frac{1}{n}, g_n\right\}, 1 - \frac{1}{n}\right\}. \ \tilde{g}_n(X) \subset \left(\frac{1}{n}, 1 - \frac{1}{n}\right).$

Let $g: X \to (0,1)$ be B_1 . For $N \in \omega$, $N \ge 2$, and $i \in [N-2]$ we set

$$A_i^N := g^{-1}\left(\frac{i}{N}, \frac{i+2}{n}\right) \dots F_{\omega}, \qquad \bigcup_{i=0}^{N-2} A_i^N = X.$$

 $B_i^N \subset A_i^N$ such that $\bigcup_{i=0}^{N-2} B_i^N = X$, B_i^N is F_σ and $B_i^N \cap B_{i'}^N = \emptyset$, whenever $i \neq i'$. $g_N(x) := \sum_{i=0}^{N-2} \frac{1}{N} \chi_{B_i^n}(x)$. $g_N \Rightarrow g \ (\|g - g_N\|_\infty \leqslant \frac{2}{N})$.

Věta 3.5 (Baire)

Let X be a metrizable topological space, Y be separable metrizable topological space, and $f: X \to Y$ be B_1 -function. Then the set of points of continuity of f is G_{δ} and residual.

 $D\mathring{u}kaz$

 $\{V_n\}$ open countable basis of Y. f is not continuous at $x \Leftrightarrow \exists n \in \omega : x \in f^{-1}(V_n) \setminus \inf f^{-1}(V_n)$. $D(f) = \{x \in X | f \text{ is not continuous at } x\} = \bigcup_{n \in \omega} \underbrace{(f^{-1}(V_n) \inf f^{-1}(V_n))}_{\in F_{\omega}}.$

 $B = (f^{-1}(V_n) \text{ int } f^{-1}(V_n)) = \bigcup_{k \in \omega} F_{n,k} \text{ is closed and int } F_{n,k} = \emptyset, \text{ so } F_{n,k} \text{ is nowhere dense. So } B \text{ is meager. And complement of meager is residual.}$

TODO!!!

TODO!!!

TODO!!!

Důsledek

Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded approximately continuous function. Then f has Darboux property and is in B_1 .

 $D\mathring{u}kaz$

The previous theorem gives that there exists a function $F : \mathbb{R} \to \mathbb{R}$ such that F'(x) = f(x) for every $x \in \mathbb{R}$. So f has Darboux property.

$$f \in B_1$$
: $f(x) = F'(x) = \lim_{n \to \infty} \frac{F(x + \frac{1}{n}) - F(x)}{\frac{1}{n}}.$

Věta 3.6

There exists a differentiable function $f: \mathbb{R} \to \mathbb{R}$ such that the sets $\{x \in \mathbb{R} | f'(x) > 0\}$ and $\{x \in \mathbb{R} | f'(x) < 0\}$ are dense.

 $D\mathring{u}kaz$

Let $A, B \subset \mathbb{R}$ be countable, dense, and disjoint. $A = \{a_n, n \in \mathbb{N}\}, B = \{b_n, n \in \mathbb{N}\}$. Observe that A and B are d-closed. Using theorem above we find for every $n \in \mathbb{N}$ approximately continuous g_n and h_n such that $g_n(a_n) = 1$, $0 \le g_n \le 1$, $g_n|_B = 0$, similarly $h_n(b_n) = 1$, $0 \le h_n \le 1$, $h_n|_A = 0$.

We define $\psi = \sum_{n=1}^{\infty} 2^{-n} g_n - \sum_{n=1}^{\infty} 2^{-n} h_n$. ψ is bounded. ψ is approximately continuous. ψ is positive on A and negative on B. By the previous theorem $\exists f : \mathbb{R} \to \mathbb{R}$ such that $f' = \psi$.

Poznámka

We say that differentiable function g is of Köpcke type if g' is bounded and the sets $\{g' > 0\}$, $\{g' < 0\}$ are dense.

Poznámka

A and B are countable disjoint \implies A and B are τ_d -closed. Towards contradiction assume that there exists $f: \mathbb{R} \to [0,1]$ approximately continuous such that $f|_A = 0$ and $f|_B = 1$ $\implies f \in B_1 \implies f$ has comeagerly many points of continuity.

4 More on derivatives

Definice 4.1 (Notation)

Let $I \subset \mathbb{R}$ be a nonempty open interval. We denote

 $\Delta'(I) = \{ f : I \to \mathbb{R} | f \text{ has an antiderivative on I} \}$

Věta 4.1 (Den?-Clarkson)

Let I be a nonempty open interval and $f \in \Delta'(I)$. Then f has Denj TODO!!!

TODO!!!