All-pair shortest path (Textbook Section 6.6)

Consider G = (V, E) weighted, directed graph without negative cycles

Consider G = (V, E) weighted, directed graph without negative cycles How to compute the shortest_path(u, v)?

Consider G = (V, E) weighted, directed graph without negative cycles

How to compute the shortest_path(u, v)?

Recall Bellman-Ford: $\operatorname{shortest_path}(u,v)$ for fixed u, all v takes $O(|V|\cdot|E|)$ time

Consider G = (V, E) weighted, directed graph without negative cycles

How to compute the shortest_path(u, v)?

Recall Bellman-Ford: $\operatorname{shortest_path}(u, v)$ for fixed u, all v takes $O(|V| \cdot |E|)$ time

If for all u, v, APSP takes $O(|V|^2|E|)$ time

Consider G = (V, E) weighted, directed graph without negative cycles

How to compute the shortest_path(u, v)?

Recall Bellman-Ford: $\operatorname{shortest_path}(u, v)$ for fixed u, all v takes $O(|V| \cdot |E|)$ time

If for all u, v, APSP takes $O(|V|^2|E|)$ time

When $|E| = O(|V|^2)$, its running time becomes $O(|V|^4)$

Consider G = (V, E) weighted, directed graph without negative cycles

How to compute the shortest_path(u, v)?

Recall Bellman-Ford: $\operatorname{shortest_path}(u, v)$ for fixed u, all v takes $O(|V| \cdot |E|)$ time

If for all u, v, APSP takes $O(|V|^2|E|)$ time

When $|E| = O(|V|^2)$, its running time becomes $O(|V|^4)$

Rethink this problem using DP.

WLOG, index the vertices as $V = \{1, 2, \dots, n\}$

WLOG, index the vertices as $V = \{1, 2, ..., n\}$

Subproblem: find the shortest path $u \rightarrow v$ using intermediate vertices from $\{1, \dots, k\} \subseteq V$.

WLOG, index the vertices as
$$V = \{1, 2, ..., n\}$$

Subproblem: find the shortest path $u \to v$ using intermediate vertices from $\{1, \dots, k\} \subseteq V$. Denote it by $\operatorname{sp}(u, v, k)$

WLOG, index the vertices as $V = \{1, 2, ..., n\}$

Subproblem: find the shortest path $u \rightarrow v$ using intermediate vertices

from $\{1,\ldots,k\}\subseteq V$. Denote it by $\mathrm{sp}(u,v,k)$

Optimal solution: the entries sp(u, v, n) for all u, v

WLOG, index the vertices as $V = \{1, 2, ..., n\}$

Subproblem: find the shortest path $u \to v$ using intermediate vertices from $\{1, \dots, k\} \subset V$. Denote it by $\operatorname{sp}(u, v, k)$

Optimal solution: the entries sp(u, v, n) for all u, v

To find out the recurrence relation, we need to relate ${\rm sp}(u,v,k)$ to smaller subproblems ${\rm sp}(u,v,k-1)$

Suppose $\mathrm{sp}(\mathrm{u},\mathrm{v},\mathrm{k}) = P$

$$\mathsf{Suppose}\,\operatorname{sp}(\mathbf{u},\mathbf{v},\mathbf{k})=P$$

• if $k \notin P$, then $\operatorname{sp}(u, v, k) = \operatorname{sp}(u, v, k - 1)$

Suppose sp(u, v, k) = P

- if $k \notin P$, then $\operatorname{sp}(u, v, k) = \operatorname{sp}(u, v, k 1)$
- if $k \in P$, then consider

Suppose
$$sp(u, v, k) = P$$

- if $k \notin P$, then $\operatorname{sp}(u, v, k) = \operatorname{sp}(u, v, k 1)$
- if $k \in P$, then consider

$$P: \quad u \stackrel{\text{P}}{\longrightarrow} \wp \stackrel{\text{P}}{\longrightarrow} v$$

Suppose sp(u, v, k) = P

- if $k \notin P$, then $\operatorname{sp}(u, v, k) = \operatorname{sp}(u, v, k 1)$
- if $k \in P$, then consider

$$P: u \xrightarrow{P_1} k \xrightarrow{P_2} v$$

 P_1, P_2 are paths whose intermediate vertices are from $\{1, \ldots, k-1\}$.

Suppose sp(u, v, k) = P

- if $k \notin P$, then $\operatorname{sp}(u, v, k) = \operatorname{sp}(u, v, k 1)$
- if $k \in P$, then consider

$$P: u \xrightarrow{P_1} k \xrightarrow{P_2} v$$

 P_1, P_2 are paths whose intermediate vertices are from $\{1, \ldots, k-1\}$. Because there's no negative cycles, there's no repeated vertices in shortest path $P_1 = (u, k, k+1)$ $P_2 = (k, v, k+1)$

$$P_2 = (k, v, k-1)$$

- if $k \notin P$, then $\operatorname{sp}(u, v, k) = \operatorname{sp}(u, v, k 1)$
- if $k \in P$, then consider

$$P: u \xrightarrow{P_1} k \xrightarrow{P_2} v$$

 P_1, P_2 are paths whose intermediate vertices are from $\{1, \ldots, k-1\}$. Because there's no negative cycles, there's no repeated vertices in shortest path

Hence,
$$P_1 = \text{sp}(u, k, k-1), P_2 = \text{sp}(k, v, k-1)$$

Suppose sp(u, v, k) = P

- if $k \notin P$, then $\operatorname{sp}(u, v, k) = \operatorname{sp}(u, v, k 1)$
- if $k \in P$, then consider

$$P: u \xrightarrow{P_1} k \xrightarrow{P_2} v$$

 P_1, P_2 are paths whose intermediate vertices are from $\{1, \ldots, k-1\}$. Because there's no negative cycles, there's no repeated vertices in shortest path

Hence,
$$P_1 = \text{sp}(u, k, k-1), P_2 = \text{sp}(k, v, k-1)$$

Using k is better if

$$|\operatorname{sp}(i, k, k-1)| + |\operatorname{sp}(k, v, k-1)| \le |\operatorname{sp}(i, v, k-1)|$$

Let
$$dist(u, v, k) = |sp(u, v, k)|$$

Let
$$dist(u, v, k) = |sp(u, v, k)|$$

Recurrence:

$$\operatorname{dist}(u,v,k) = \min\{\operatorname{dist}(u,v,k-1),\operatorname{dist}(u,k,k-1) + \operatorname{dist}(k,v,k-1)\}$$

Let
$$dist(u, v, k) = |sp(u, v, k)|$$

Recurrence:

$$\operatorname{dist}(u,v,k) = \min\{\operatorname{dist}(u,v,k-1),\operatorname{dist}(u,k,k-1) + \operatorname{dist}(k,v,k-1)\}$$

- Optimal solution: $\operatorname{dist}(\overset{1}{\cdot},\overset{1}{\cdot},n)$
 - · Base case:

Let
$$dist(u, v, k) = |sp(u, v, k)|$$

Recurrence:

$$\operatorname{dist}(u,v,k) = \min\{\operatorname{dist}(u,v,k-1),\operatorname{dist}(u,k,k-1) + \operatorname{dist}(k,v,k-1)\}$$

- Optimal solution: $dist(\cdot, \cdot, n)$
- Base case:

$$\operatorname{dist}(u, v, 0) = \begin{cases} w_{u,v} & \text{if } (u, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

The Floyd-Warshall algorithm:

The Floyd-Warshall algorithm: **def** FLOYD_WARSHALL(G, w):

The Floyd-Warshall algorithm:

```
def FLOYD_WARSHALL(G, w):
```

The Floyd-Warshall algorithm:

```
def Floyd_Warshall(G, w):
```

```
for u = 1 \dots n:

| for v = 1 \dots n:
```

The Floyd-Warshall algorithm:

def FLOYD_WARSHALL(G, w):

for
$$u = 1 ... n$$
:

for $v = 1 ... n$:

$$dist(u, v, 0) = \begin{cases} w_{u,v} & \text{if } (u, v) \in E \\ \infty & \text{otherwise} \end{cases}$$
;

The Floyd-Warshall algorithm:

def FLOYD_WARSHALL(G, w):

for
$$u = 1 ... n$$
:

for $v = 1 ... n$:

$$dist(u, v, 0) = \begin{cases} w_{u,v} & \text{if } (u, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

for k = 1 ... n:

The Floyd-Warshall algorithm:

def FLOYD_WARSHALL(G, w):

for
$$u=1\dots n$$
:
$$\begin{bmatrix} & \text{for } v=1\dots n \text{:} \\ & & \text{dist}(u,v,0) = \begin{cases} w_{u,v} & \text{if } (u,v) \in E \\ \infty & \text{otherwise} \end{cases};$$
for $k=1\dots n$:
$$\begin{bmatrix} & \text{for } u=1\dots n \text{:} \\ & & & \end{bmatrix}$$

The Floyd-Warshall algorithm:

def FLOYD_WARSHALL(G, w):

for
$$u = 1 \dots n$$
:
$$\begin{bmatrix}
\text{for } v = 1 \dots n : \\
\text{dist}(u, v, 0) = \begin{cases} w_{u, v} & \text{if } (u, v) \in E \\
\infty & \text{otherwise} \end{cases};$$
for $k = 1 \dots n$:
$$\begin{bmatrix}
\text{for } v = 1 \dots n : \\
\text{for } v = 1 \dots n :
\end{bmatrix}$$

Mar 3, 2022

The Floyd-Warshall algorithm:

```
def FLOYD_WARSHALL(G, w):
       for u = 1 ... n:
              for v = 1 \dots n:
    \operatorname{dist}(u, v, 0) = \begin{cases} w_{u,v} & \text{if } (u, v) \in E \\ \infty & \text{otherwise} \end{cases};
       for k = 1 ... n:
              for u = 1 ... n:
                    for v = 1 ... n:
     \begin{vmatrix} \operatorname{dist}(u, v, k) = \\ \operatorname{min}\{\operatorname{dist}(u, v, k - 1), \operatorname{dist}(u, k, k - 1) + \operatorname{dist}(k, v, k - 1)\}; \end{vmatrix}
```

```
The Floyd-Warshall algorithm:
def FLOYD_WARSHALL(G, w):
     for u = 1 ... n:
           for v = 1 \dots n:
               \operatorname{dist}(u, v, 0) = \begin{cases} w_{u,v} & \text{if } (u, v) \in E \\ \infty & \text{otherwise} \end{cases};
                       \operatorname{dist}(u, v, k) =
                          \min\{\operatorname{dist}(u,v,k-1),\operatorname{dist}(u,k,k-1)+\operatorname{dist}(k,v,k-1)\};
                                     How many entries: O(n3)
time for each entry: O(1)
     return dist(\cdot, \cdot, n);
           Running time:
```

The Floyd-Warshall algorithm:

```
def FLOYD_WARSHALL(G, w):
      for u = 1 ... n:
             for v = 1 \dots n:
     \operatorname{dist}(u, v, 0) = \begin{cases} w_{u,v} & \text{if } (u, v) \in E \\ \infty & \text{otherwise} \end{cases};
      for k = 1 ... n:
             for u = 1 ... n:
                  for v = 1 ... n:
        \operatorname{dist}(u, v, k) = \\ \operatorname{min}\{\operatorname{dist}(u, v, k-1), \operatorname{dist}(u, k, k-1) + \operatorname{dist}(k, v, k-1)\};
      return dist(\cdot, \cdot, n);
```

Running time: $O(n^3) = O(|V|^3)$