

Regression Algorithms

Week 11 Day 02

DS 3000 - Foundations of Data Science

1

Reminders

HW 7

Thursday, November 14

FP3

Thursday, November 14

In-class activity

FP4

Available now

Outline

Multiple Regression

Regression Algorithms

FP3 and FP4

3

Ordinary Least Squares

The distance between the actual data points (y) and the predicted point on the line (\hat{y}) is defined as

The goal of regression is to find the equation for the line that minimizes these distances.

min sum of squared error (SSE)

$$\underset{m,b}{\operatorname{arg\,min}} \sum_{i=1}^{N} e_i^2 = (y_i - (mx_i + b))^2$$

Multiple Linear Regression

$$\hat{y} = m_1 x_1 + m_2 x_2 + ... + m_n x_n + b$$

 \hat{y} is the predicted value of the outcome variable (y)

ms are the feature coefficients

xs are the values of the features

b is the intercept

5

Regression Metrics

R-squared:

$$R^2(y,\hat{y}) = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

Mean Squared Error:

$$ext{MSE}(y, \hat{y}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} (y_i - \hat{y}_i)^2$$

7

Preprocessing: Scaling

Some ML algorithms require features to be on the same scale

MinMaxScaler

Calculates the min and max each feature in the training set For each feature x_i : transforms a given feature value to a scaled version, x_i , using the formula

$$x_i' = (x_i - x_i^{MIN})/(x_i^{MAX} - x_i^{MIN})$$

9

Ridge Regression

Regularized linear regression

Restricts coefficients to reduce model complexity

Adds a penalty for large variations in coefficients

$$\underset{m,b}{\operatorname{arg\,min}} \sum_{i=1}^{N} e_i^2 = (y_i - (mx_i + b))^2 + \alpha \sum_{j=1}^{p} m_j^2$$

Uses L2 regularization:

Minimize sum of squared coefficients

Ridge Regression: Tuning

L2 regularization can be controlled by the alpha, α , parameter

$$\underset{m,b}{\operatorname{arg\,min}} \sum_{i=1}^{N} e_i^2 = (y_i - (mx_i + b))^2 + \alpha \sum_{j=1}^{p} m_j^2$$

Higher alpha values mean

More regularization and more restricted coefficients

Simpler model (reduces overfitting)

11

Lasso Regression

An alternative to Ridge for regularizing linear regression Restricts coefficients to reduce model complexity

Adds a penalty for large variations in coefficients

$$\underset{m,b}{\operatorname{arg\,min}} \sum_{i=1}^{N} e_i^2 = (y_i - (mx_i + b))^2 + \alpha \sum_{j=1}^{p} |m_j|$$

Uses L1 regularization:

Minimize the sum of the absolute values of the coefficient

13

Lasso Regression: Tuning

L1 regularization can be controlled by the alpha, α , parameter

$$\underset{m,b}{\operatorname{arg\,min}} \sum_{i=1}^{N} e_i^2 = (y_i - (mx_i + b))^2 + \alpha \sum_{j=1}^{p} |m_j|$$

Higher alpha values mean

More regularization and more restricted coefficients

Some coefficients will be exactly zero (automatic feature selection)

Simpler model (reduces overfitting)

Easier to interpret

15

Linear, Ridge, and Lasso Regression

Linear regression has no parameters

Scales well to high-dimensional datasets

Use Ridge or Lasso when you need to tune a regression model

Use Ridge if you have many important features

Use Lasso if you have many features but only a few of them are expected to be important

					•
D.5 -	U		r_r		iew
ıJ.		ᆫ		CV	

	If you are in	Review
-	Group 01	Group 17
	Group 02	Group 16
	Group 03	Group 15
	Group 04	Group 14
	Group 05	Group 13
	Group 06	Group 12
	Group 07	Group 11
	Group 08	Group 10
	Group 09	Group 08
	Group 10	Group 07
	Group 11	Group 06
	Group 12	Group 05
	Group 13	Group 04
	Group 14	Group 03
	Group 15	Group 02
	Group 16	Group 01
	Group 17	Group 09
	•	•

17

FP4: DS Report