### Graph Concepts









Facebook - - - Code storywith MIK

(Twitter) + CS with MIK

codestorywith MIK - -



(V)otivation:-





MIK.

## matter the obstacles in their way...

#### 3203. Find Minimum Diameter After Merging Two Trees

Hard ♥ Topics ♠ Companies ♥ Hint

There exist two **undirected** trees with n and m nodes, numbered from 0 to n-1 and from 0 to m-1, respectively. You are given two 2D integer arrays edges1 and edges2 of lengths n-1 and m-1, respectively, where edges1[i] = [a<sub>i</sub>, b<sub>i</sub>] indicates that there is an edge between nodes  $a_i$  and  $b_i$  in the first tree and edges2[i] = [u<sub>i</sub>, v<sub>i</sub>] indicates that there is an edge between nodes  $u_i$  and  $v_i$  in the second tree.

You must connect one node from the first tree with another node from the second tree with an edge.

Return the **minimum** possible **diameter** of the resulting tree.

The **diameter** of a tree is the length of the *longest* path between any two nodes in the tree.



Output :- 3

video link in the Description below...



# hought Process



Try to choose nodes that divides the diameters of Tree! & Treez. D1 = 5 (5+1)/2=3

$$(211)/2 + (221)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231)/2 + (231$$

## Corner Case



$$(8+1)/2$$

$$\frac{(D_{1+1})/2 + (D_{2}+1)/2 + 1}{D_{1}}$$

D2

Video-44.

