第五章 树与二叉树

2022年10月2日 星期日 19:44

树的基本概念

树的存储结构/树的表示

森林 • 0个或多个不相交的树组成

有序树 • 树中结点的各子树之间的次序是重要的, 不可以交换位置

双亲表示法 孩子兄弟表示法 • 采用一组连续空间来存储每个节点 • 将每个节点的孩子节点用单链表连接 • 又叫二叉树表示法 • 化每个节点中设置一个伪指针 • 伪指针指示其双亲节点在数组中的位置 • 伪指针指示其双亲节点在数组中的位置 • 节点内容包含3个部分 【孩子节点】【数据】【兄弟节点】 ● 次 0 B 5	例的存储结构/例的表示			
 在每个节点中设置一个伪指针 伪指针指示其双亲节点在数组中的位置 市点内容包含3个部分 【孩子节点】【数据】【兄弟节点】 (孩子节点】【数据】【兄弟节点】 (3) (3) (4) 例(3) (4) 別(3) (4) 別(3) (5) 双条指针图示 (4) の (4) の (5) 双条表示 (5) の (6) の (6) 双条表示 (6) 双条表示 (7) の (6) 双条表示 (6) 双条表示 (7) の (7) の (8) 日本の (7) の (8)	双亲表示法	孩子表示法	孩子兄弟表示法	
 伪指针指示其双亲节点在数组中的位置 ・ 节点内容包含3个部分 【孩子节点】【数据】【兄弟节点】 ・ では、	• 采用一组连续空间来存储每个节点	• 将每个节点的孩子节点用单链表连接	• 又叫二叉树表示法	
(孩子节点】【数据】【兄弟节点】 (孩子节点】【数据】【兄弟节点】 (孩子节点】【数据】【兄弟节点】 (水	• 在每个节点中设置一个伪指针		• 以二叉链表作为树的存储结构	
data parchi	• 伪指针指示其双亲节点在数组中的位置		• 节点内容包含3个部分	
A O R T T T T T T T T T			【孩子节点】【数据】【兄弟节点】	
(a) 孩子表示法 (b) 孩子兄弟表示法	0 R -1 1 A 0 2 B 0 3 C 0 4 D 1 5 E 1 6 F 3 7 G 6 H 6 8 H 6 W 6 W 7 C D E F C	3 C	$\triangle E \triangle$ $\triangle E \triangle$ $\triangle F \triangle$ $\triangle F \triangle$	

树林和二叉树的转换

树和森林的遍历对应关系

先根遍历	先序遍历	先序遍历
后根遍历	中序遍历	中序遍历

二叉树的基本概念 ◆ 二叉树是每个节点最多有两个子树的树结构 ● 它有五种基本形态【二叉树可以是空集】【根可以有空的左子树或右子树】【左、右子树皆为空】 (3) 根和左子树 (4) 根和右子树 (5) 根和左右子树 ● 二叉树第i层上的节点数目最多为 2ⁱ⁻¹个 ● 深度为k的二叉树最多有 2^k – 1个节点(满二叉树) ● 包含n个节点的二叉树的高度至少为log₂(n + 1) ● 树的节点数 = 所有节点的度数之和 + 1 • 在任意一颗二叉树中,若终端节点的个数为 n_0 , 度为2的节点数为 n_2 , 则 $n_0=n_2+1$

	顺序存储结构	以 链式存储结构
定义	一般用数组存二叉树的节点只要知道根节点的存储位置,就可以通过下标计算,把整棵树串起来	• 只要知道根节点,就可以通过左右子节点的指针把整棵二叉树串起来
特点	 节点x存储在下标为i的位置 该节点的左节点存储在下标为2i的位置 该节点的右节点存储在下标为2i+1的位置 下标i/2的位置,存储的就是该节点的父节点 空间利用率不高,容易造成空间浪费 	● 二叉链表中至少包含3个域 ● 「数据域data」「左指针域lchild」「右指针域rchild」
适用于	1. 完全二叉树 2. 满二叉树	1. 二叉树
结构图	2 B C B B 6 B 13 A B C D E F G H O 2 3 4 5 6 7 8 9 10 11 12 13	data left right data left right data left right data left right data left right

二叉树的代码表示 typedef struct TreeNode *BinTree; struct TreeNode int Data; // 存值 BinTree Left**;** // 左儿子结点 BinTree Right**;** // 右儿子结点

二叉树的三种遍历方法

三种遍历实例

常考的结论

、不能唯一确定一颗二叉树的是:先序序列和后序序列	
、先序遍历第一个节点为根节点;后序遍历最后一个节点为根节点	
、前序序列和中序序列的关系相当于以前序序列为入栈次序,以中序序列为出栈顺序	
、前序序列与后序序列刚好相反的时候,二叉树的高度 = 节点数(即每层只有一个节点)	
、后序遍历可以找到m到n直接的路径(其中m是n的祖先)	
5、根据两个序列确定二叉树的方法	17.【2021 统考真题】某森林 F 对应的二叉树为 T 若 T 的先序遍历序列是 a,b,d,c,e,g,f,中序遍历序列是 b,d,a,e,g,c,f,则 F 中树的棵数是(人)。 A.1 B.2 C D.4 前方、 a b d s e y f 中方、 b d a e g c f ① 根据点为 a ② 不知定 b d ② 和定 e g c f ② 和定 e g c f ② 和定 e g c f

哈夫曼树/最优二叉树

定义	特点
● 树的带权路径长度最小的二叉树	• 没有度为 1 的结点
● WPL=路径长度 * 结点权值	● n个叶结点的哈夫曼树共有 2n-1 个结点
	● 哈夫曼树的任意非叶结点的左右子树交换后仍是哈夫曼树
	● 对同一组权值,可能存在不同构的多棵哈夫曼树
	● 哈夫曼树不一定是完全二叉树
构造	例题
● 每次把队列中值最小的合并,合并后的值放入队列中再继续比较	17.【2021 统考真题】若某二叉树有 5 个叶结点, 其权值分别为 10,12,16,21,30, 则其最小的带流 径长度(WPL)是(P) A.89 B.200 C.208 D.289 (ロ, 12, 16, 21, 3 つ (ロ, 12, 16, 21, 3 つ (ロ, 12) (ロ) (ロ) (ロ) (ロ) (ロ) (ロ) (ロ) (ロ) (ロ) (ロ
	(a) (b) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e

并查集

定义	例题
产义 ,并查集是一种简单的集合表示,支持3种操作 ,并查集的存储结构是双亲表示法存储的树,主要是为了方便两个主要的操作	9.并查集中最核心的两个操作是:①查找,查找两个元素是否属于同一个集合;②合并,如果两个元素不属于同一个集合,且所在的两个集合互不相交,则合并这两个集合。假设初始长度为 10(0~9的并查集,按 1/2、3.4、5-6、7-8、8-9、1-8、0-5、1-9 的顺序进行查找和合并操作,最终并查集共有())个集合。 A.1 B.2 C D.4

Initial(S)	Union(S,Root1,Root2)	Find(S,x)
• 将集合S中的每个元素都初始化为只有一个单元素的子集合 • •	把集合S中的子集合Root2并入子集合Root1要求Root1和Root2互不相交,否则不执行合并	• 查找集合S中单元素x所在的子集合,并返回该子集合的根结
<pre>void Initial(int S[]) { for (int i = 0; i < size; i++) S[i] = -1; }</pre>	<pre>int Find(int S[], int x) { while (S[x] >= 0) x = S[x]; return x; }</pre>	<pre>void Union(int S[], int Root1, int Root2) { S[Root2] = Root1; }</pre>
S ① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ (a) 全集合S初始化时形成一个森林 0 1 2 3 4 5 6 7 8 9 -1 -1 -1 -1 -1 -1 -1 -1 (b) 初始化时形成的(森林)双亲表示 图 5.21 并查集的初始化	6 7 8 1 0 1 2 3 4 5 6 7 8 9 -7 0 -3 2 1 2 0 0 0 1 图 5.23 S ₁ ∪S ₂ 可能的表示方法	S ₁ 0 S ₂ 1 (a) 集合的树形表示 0 1 2 3 4 5 6 7 8 9 -4 -3 -3 2 1 2 0 0 0 1 (b) 集合S ₁ 、S ₂ 和S ₃ 的(森林)双亲表示
图 3.21 开旦朱的初知化		图 5.22 用树表示并查集

图 5.22 用树表示并查集