Differentiable programming tensor networks for Kitaev magnets

Xing-Yu Zhang IOP, CAS

arXiv: 2304.01551

github.com/XingyuZhang2018/TeneT.jl

Motivation

- Kitaev materials
 - α -RuCl₃
 - K- Γ and K-J- Γ - Γ '
 - Complex phases
- Computational method
 - QMC sign problem
 - DMRG finite size effect

Lee, Hyun-Yong, NC 11.1 (2020): 1639.

Method to 2D quantum system

• 2D ansatz

$$|\Psi(\mathcal{A})\rangle = \sum_{\{S_r\}} \operatorname{Tr} \prod_{\mathbf{r}} \mathcal{A}^{S_r}[\mathbf{r}] |\{S_r\}\rangle$$

$$= \mathcal{A} \mathcal{A} \mathcal{A}$$

• Energy

$$E(\mathcal{A}) = \langle \Psi(\bar{\mathcal{A}}) | H | \Psi(\mathcal{A}) \rangle / \langle \Psi(\bar{\mathcal{A}}) \mid \Psi(\mathcal{A}) \rangle$$

Contraction

Problems

- Contraction: 2D with large unit cell
 - CTMRG: power method
 - VUMPS: non-Hermitian transfer matrix
- Optimization: iPEPS
 - Imaginary time evolution(ITE): artificial expertise
 - Gradient optimization: graph summations or automatic differentiation (AD) careful design

Problem of CTMRG

- Power method: slow
- No general truncation principle

D

Iregui, et. al., PRB 90, 195102 (2014)

Channel environments

Gradient

L Vanderstraeten, PRB 94, 155123 (2016)

AD-VUMPS

variational uniform matrix product states

VUMPS

Boundary MPS

Fixed point

Computation graph and adjoint

adjoint
$$\bar{T} = \partial \mathcal{L}/\partial T$$

Computation graph of VUMPS

Key factors of AD:

- 1. Numerical stability
- 2. Matrix free linear algebra: Krylov, GMRES

Adjoint of QR decomposition

•
$$\bar{\mathcal{M}} = [\bar{Q} + Q \operatorname{Hermitian}(R\bar{R}^{\dagger} - \bar{Q}^{\dagger}Q)](R^{\dagger})^{-1}$$

•
$$C = Q_C \cdot R_C$$

• Trick: add $\delta = 10^{-12}$ to R's diagonal elements for the stability of inverse

Adjoint of dominant eigen solver

dominant eigen equation

Adjoint related to linear solver

$$\bar{\mathcal{M}} = \bar{\lambda} l r^T - l \xi_l^T - \xi_r r^T$$

Gauge invariant case

For physical observable

Simplify linear solver

$$(\mathcal{M} - \lambda I)\xi_{l} = \left(1 - r l^{T}\right)\bar{l}, \quad l^{T}\xi_{l} = 0$$

$$(\mathcal{M}^{T} - \lambda I)\xi_{r} = \left(1 - l r^{T}\right)\bar{r}, \quad r^{T}\xi_{r} = 0$$

$$\text{Only } l \quad l^{T}\bar{l} = r^{T}\bar{r} = 0$$

$$(\mathcal{M} - \lambda I)\xi_{l} = \bar{l}, \quad l^{T}\xi_{l} = 0$$

$$(\mathcal{M}^{T} - \lambda I)\xi_{r} = 0 \quad r^{T}\xi_{r} = 0$$

Numerical stability

• Linear solver

$$(\mathcal{M} - \lambda I)\boldsymbol{\xi}_l = \bar{\boldsymbol{l}}, \quad \boldsymbol{l}^T\boldsymbol{\xi}_l = 0$$
$$\boldsymbol{l}^T\bar{\boldsymbol{l}} = \boldsymbol{r}^T\bar{\boldsymbol{r}} = 0$$

• subtract part of \bar{l} which is not orthogonal to l

$$\bar{l} \rightarrow \bar{l} - l^T \bar{l} \cdot l$$

Matrix free linear algebra

Toward to large unit cell

Large unit cell

Each bulk has its environment

Large cell→Power method for non-hermitian

Non-hermitian VUMPS

One step power

$$\begin{bmatrix} \lambda_r \end{bmatrix}^{t} \approx \begin{bmatrix} \lambda_r \end{bmatrix}^{t+1}$$

Maximum fidelity

$$\operatorname*{arg\,max}_{A^{t+1}} \left(\log \frac{\langle \psi(\bar{A}^{t+1}) | T | \psi(A^t) \rangle \langle \psi(\bar{A}^t) | T^\dagger | \psi(A^{t+1}) \rangle}{\langle \psi(\bar{A}^{t+1}) | \psi(A^{t+1}) \rangle} \right)$$

Fixed-point function

 $\begin{bmatrix} \lambda_{A_C} & \lambda_{A_C} \end{bmatrix}^{t} = \begin{bmatrix} \lambda_{A_C} & \lambda_{A_C} \end{bmatrix}^{t+1}$

Bram Vanhecke, arXiv:2001.11882(2021)

Large unit cell VUMPS

One step power

• Fixed-point function

Computation graph

Applications

Kitaev models

Model

Hamiltonian

$$\hat{H} = \sum_{\langle i,j \rangle_{\gamma}} K S_i^{\gamma} S_j^{\gamma} + J \mathbf{S}_i \cdot \mathbf{S}_j + \Gamma \left(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha} \right)$$

$$+ \Gamma' \left(S_i^{\alpha} S_j^{\gamma} + S_i^{\gamma} S_j^{\alpha} + S_i^{\beta} S_j^{\gamma} + S_i^{\gamma} S_j^{\beta} \right)$$

- J Heisenberg term
- Γ spin-orbit couplings
- Γ' lattice distortions

S.Trebst arXiv:1701.07056(2017)

- Rich phase diagram
 - ferromagnetic (FM), antiferromagnetic (Neel), zigzag (ZZ), stripy phases
 - 6-site, 18-site unit

honeycomb lattice to square lattice

Honeycomb Kitaev

Better optimization rather than larger D!

K-Γ model

K-Γ model for Γ = 1

- 18-site configuration
- E = -0.3520 at D = 4 AD-VUMPS, a random initial
- E = -0.3518 at D = 8 ITE-CTMRG, hundreds of initials

K-J- Γ - Γ ' model

- parameters K = -25meV, $\Gamma = 0.3 |K|$, $\Gamma' = -0.02 |K|$ and J = -0.1 |K|H. Li, Nature Communications 12, 1 (2021).
- non-collinear Zigzag

Out of plane critical point

• The obvious jump

H. Li, Nature Communications 12, 1 (2021).

U1-symmetry tensor for fermion

• $Z2 \rightarrow U1$

- Tensor contraction with OMEinsum.jl
 - Rebuilt permutedims and reshape
 - Efficiency: same with C in CPU and 30~40 faster in GPU
- Q: Physical bond division is decided by Hamiltonian, but virtual bond division is arbitrary.

Bogoliubov-de Gennes (BdG)

$$\hat{H} = -t \sum_{\langle i,j,\sigma \rangle} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \text{H.c.}) + \sum_{\langle i,j \rangle} \gamma_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\downarrow}^{\dagger} - \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\uparrow}^{\dagger} + \text{H.c.})$$

Corboz P. PRB, 2016, 93(4): 045116.

34

Summary

- feasible, stable and efficient backward of VUMPS
- highly accurate results in Kitaev type frustrated systems
- add U1-symmetry to explore fermion system
 - the U1 block division

Thank you for your attention!