Simulations in Mechatronic Design						
Title of exercise	Ex. 1 – Modelling of an electric micromotor in the MATLAB / SIMULINK environment					
Name and surname	Harshit Verma	Date	4/11/24			
Group	1	No. of points		/7		
Academic year	2023/2024	ivo. or politis		//		

1. Motor parameters

Motor catalogue number:

Symbol	Parameter name	Catalogue v	Catalogue values and units		Parameter values in the model	
J_s	Mass moment of inertia of rotor	1.10	Kgm ² 10 ⁻⁷	1.10*10-4	gm²	
Κ _D	Viscous damping constant	0.04*10 ⁻⁶	Nms	4*10 ⁻⁵	mNm/rad/s	
K _E	Back EMF constant	0.70	v/1000 rpm	6.68	mV/rad/s	
K_T	Torque constant	6.7	mNm/A	6.7*10 ⁻³	mNm/mA	
L	Rotor inductance	0.11	mH	0.11*10 ⁻³	Н	
I ₀	No-load current	10.5	mA	10.5	mA	
R_t	Terminal resistance	3.20	Ohms	3.20	Ω	
ω_0	No-load speed	8500	rpm	889.66	rad/s	

2. Transformed equations of equilibrium of voltages and moments

$$\omega = \int \left(\left(K_t * i - K_D * \omega - M_F * sgn(\omega) \right) / J_s \right) dt$$

$$i = (u - L * (di/dt) - K_E * \omega)/(R_t)$$

3. Compare the obtained responses with the catalogue parameters

Symbol	Parameter name	Catalogue values	Values obtained in simulation
Io	No-load current	10.5 mA	12.413 mA
ω_0	No-load speed	889.66 rad/s	893.559 rad/s
τ _m	Electromechanical time constant	8 ms	8.3 ms

