601.745: Advanced Topics in Applied Cryptography

January 31, 2018

Assignment 1

Instructor: Matthew Green Due: 11:59pm, February 12

Name:			
name.			

The assignment should be completed individually. You are permitted to use the Internet and any printed references.

Please submit the completed assignment via Blackboard.

Problem 1: PRFs as MACs.

Let $f: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{\ell}$ be a pseudorandom function (PRF) family, such that $f_k(m)$ represents the evaluation with key k at point m, and the result is an ℓ bit string. Sketch an informal proof that if f is pseudorandom (and ℓ is long enough, say 128 bits), then $f_k(m)$ is a secure MAC on key k and message m in the SUF-CMA definition.

To help you with this, we will sketch out parts of the theorem and proof below.

Theorem 1 Let $f: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{\ell}$ be a PRF family. Then the construction $f_k(m)$ is an SUF-CMA MAC.

Proof sketch 1 Our proof proceeds as follows. Let us assume by contradiction that $f_k(m)$ is not a secure MAC scheme, *i.e.*, that there exists some p.p.t. adversary \mathcal{A} that wins the SUF-CMA MAC game with non-negligible advantage.³ Then we show that there exists a p.p.t. algorithm \mathcal{B} that wins the PRF game, *i.e.*, that distinguishes the function f from a random function with non-negligible advantage.

 \mathcal{B} operates as follows. It plays the PRF game with a challenger. It also runs \mathcal{A} internally, and interacts with it as in the SUF-CMA game. When \mathcal{A} queries the MAC oracle on a message m_i , \mathcal{B} answers the query as follows:

Fill in this part.

When \mathcal{A} outputs the "forgery" pair (m^*, T^*) (such that, by the definition of \mathcal{A} , with non-negligible probability $T^* = f_k(m^*)$), \mathcal{B} does the following, and outputs a bit b as its guess in the PRF game.

Fill in this part.

¹For a formal definition, see *e.g.*, https://cseweb.ucsd.edu/~mihir/cse207/w-prf.pdf and specifically the security game in Definition 3.4.1.

²See e.g., https://www.cs.jhu.edu/~astubble/dss/ae.pdf.

³As a reminder, in the SUF-CMA game the adversary is allowed to query an oracle on any number of messages m_i , and receives MACs of the form $T = f_k(m_i)$ for each query. At the end of the game it wins if it outputs a pair (m^*, T^*) such that no previous oracle query (resp. response) was (m^*, T^*) and $T^* = f_k(m^*)$. The advantage of \mathcal{A} is the probability that it succeeds in this game.

We argue that if the PRF oracle implements a random function, then:

Here explain why \mathcal{B} is able to distinguish whether the oracle implements a PRF or a random function with non-negligible advantage.

This completes the proof.

Problem 2: Encrypt-and-MAC.

Let k_1, k_2 be two secret keys. Let $\mathsf{Encrypt}(k_1, M)$ represent encryption of M using a IND-CPA encryption scheme under key k_1 . Let $\mathsf{MAC}(k_2, M')$ represent the computation of a (deterministic) MAC on message M' using key k_2 . Let us define the following authenticated encryption scheme:

$$C = \mathsf{Encrypt}(k_1, M) || \mathsf{MAC}(k_2, M)$$

In class we discussed how this scheme is not secure, because there is a simple attack that breaks the IND-CPA (and hence the IND-CCA) security of the scheme. Despite this, I want you to *attempt* to sketch the reduction proof showing that the above scheme is IND-CCA, similar to the one that we discussed in class. Tell me where in the proof your attempt breaks down. This can be a quick explanation, not a full proof.

Problem 3: Encrypt-and-Counter-MAC.

Many versions of the ssh protocol use a variant of the following scheme. Let k_1, k_2 be two secret keys. Let $\mathsf{Encrypt}(k_1, M)$ represent encryption of M using a IND-CPA encryption scheme under key k_1 . Let $f_{k_2}(M')$ represent the computation of a pseudorandom function on message M' using key k_2 (this acts as a MAC; see Problem 1).

Finally, let i be a counter value that begins with i = 0 on the first message encrypted, and increments for every subsequent message (i.e., you can trust that i will never repeat). The overall authenticated encryption algorithm for message M using counter i is:

$$C = \mathsf{Encrypt}(k_1, M) \| f_{k_2}(M \| i)$$

Is this scheme a secure IND-CCA authenticated encryption scheme? If so, sketch a proof that this is true. If not, demonstrate an attack on the scheme that wins the game with non-negligible probability.

To help you with this, we will sketch out parts of the theorem and proof below.

Theorem 2 Let $f: \{0,1\}^{\kappa} \times \{0,1\}^{*} \to \{0,1\}^{\ell}$ be a PRF family, and let (Encrypt, Decrypt) be an IND-CPA-secure encryption scheme. Then the construction above is an IND-CCA encryption scheme.

Proof sketch 2 Our proof proceeds as follows. Let us assume by contradiction that the scheme above is $not \, \mathsf{IND}\text{-}\mathsf{CCA}$ secure i.e., that there exists some p.p.t. adversary $\mathcal A$ that wins the $\mathsf{IND}\text{-}\mathsf{CCA}$ game with non-negligible advantage. Then we show that there exists a p.p.t. algorithm $\mathcal B$ that wins either the $\mathsf{IND}\text{-}\mathsf{CPA}$ game against the encryption scheme, or the PRF game, i.e., that distinguishes the function f from a random function with non-negligible advantage.

 \mathcal{B} operates as follows. It plays the IND-CPA game with a challenger. It also runs \mathcal{A} internally, and interacts with it as in the IND-CCA game. First, each time \mathcal{A} requests the encryption of a message m_i , \mathcal{B} requests the encryption of m_i from the IND-CPA challenger, to obtain c_i . \mathcal{B} then generates a random string $T_i \leftarrow \{0,1\}^\ell$ and records (m_i, c_i, T_i) in a table. It returns $C_i = c_i || T_i$. When \mathcal{A} queries for the decryption of some C_i' , \mathcal{B} parses this as $C_i' = c_i' || T_i'$ and checks its table for an entry of the form (m_i', c_i', T_i') . If one is present, it returns m_i' . Otherwise it returns \perp to \perp

Explain the rest of the operation of \mathcal{B} here.

Now argue that as long as A cannot distinguish the random strings T_i from correctly-generated tags $f_k(m_i)$ except with negligible probability, then B succeeds against the IND-CPA game with non-negligible probability.

Finally, present a second proof that A cannot distinguish these strings.