Some Class read by ...

Dustin Busch

Contents

1	Vollständige Körper								2																			
	1.1	Vollständige archimedische Körper																										2

Chapter 1

Vollständige Körper

1.1 Vollständige archimedische Körper

Vorlesung 30.10.2024

Definition 1.1: Meine Def

Corollary 1.1 mein Korollar

Question 1: Question

Note:-

Notizen

Solution

Meine Solution

Exercise 1.1 Übungsaufgabe 1

Theorem 1.1

Ein Körper K, der vollständig bzgl. Archimedischer Bewertung |.| ist. Dann existiert ein Isomorphismus $\sigma: K \to \mathbb{R}$ oder $K \to \mathbb{C}$ und $s \in [0,1]$ mit

$$|a| = |\sigma(a)|_{\infty}^{s}$$

Proof. Haben schon gesehen: char $K=0,\mathbb{Q}\subset K,|.||_{\mathbb{Q}}=|.|_{\infty}^s,\mathbb{Q}=\mathbb{R}\subset K$ z.z. bleibt: $K\supset\mathbb{R}$ ist algebr. Körpererweiterung. Zeigen, dass jedes $\zeta\in K$ einer quadr. Gleichung über \mathbb{R} genügt. Betrachte die stetige Funktion $f:\mathbb{C}\to\mathbb{R}$, die durch

$$f(z) = |\zeta^2 - (z + \overline{z})\zeta + z\overline{z}|$$

definiert ist. Beachte $z + \overline{z}$ Hier schreibe ich nun weiter.

Lemma 1.1 MyLemma

Hello Party people. Ich weiß nicht wo mein Lemma ist.