T0-Modell: Feldtheoretische Herleitung des β -Parameters in natürlichen Einheiten ($\hbar=c=1$)

Johann Pascher

Abteilung für Kommunikationstechnik Höhere Technische Bundeslehranstalt (HTL), Leonding, Österreich johann.pascher@gmail.com

25. August 2025

Inhaltsverzeichnis

1 Einführung und Motivation				
2	Rahmenwerk natürlicher Einheiten	2		
3	Fundamentale Struktur des T0-Modells3.1 Zeit-Masse-Dualität	2 2 3		
4	Geometrische Herleitung des β -Parameters 4.1 Sphärisch symmetrische Punktquelle 4.2 Lösung der Feldgleichung 4.3 Bestimmung der Integrationskonstanten 4.4 Die charakteristische Längenskala 4.5 Definition des β -Parameters	3 3 3 4 4		
5	Physikalische Interpretation des $β$ -Parameters 5.1 Dimensionsanalyse 5.2 Verbindung zur klassischen Physik 5.3 Grenzfälle und Anwendungsbereiche			
6	Vergleich mit etablierten Theorien6.1 Verbindung zur allgemeinen Relativitätstheorie			
7	Experimentelle Vorhersagen7.1 Zeitdilatationseffekte	6		
8	Mathematische Konsistenz8.1 Erhaltungssätze8.2 Stabilität der Lösung	6		
9	Schlussfolgerungen	6		

1 Einführung und Motivation

Das T0-Modell führt eine fundamentale neue Betrachtungsweise der Raumzeit ein, bei der die Zeit selbst zu einem dynamischen Feld wird. Im Zentrum dieser Theorie steht der dimensionslose β -Parameter, der die Stärke des Zeitfeldes charakterisiert und eine direkte Verbindung zwischen Gravitation und elektromagnetischen Wechselwirkungen herstellt.

Diese Arbeit konzentriert sich ausschließlich auf die mathematisch rigorose Herleitung des β -Parameters aus den grundlegenden Feldgleichungen des T0-Modells, ohne die Komplexität zusätzlicher Skalierungsparameter.

Zentrales Ergebnis

Der β -Parameter wird hergeleitet als:

$$\beta = \frac{2Gm}{r} \tag{1}$$

wobei G die Gravitationskonstante, m die Masse der Quelle und r die Entfernung zur Quelle ist.

2 Rahmenwerk natürlicher Einheiten

Das T0-Modell verwendet das in der modernen Quantenfeldtheorie (Peskin & Schroeder, 1995; Weinberg, 1995) etablierte System natürlicher Einheiten:

- $\hbar = 1$ (reduzierte Planck-Konstante)
- c = 1 (Lichtgeschwindigkeit)

Dieses System reduziert alle physikalischen Größen auf Energiedimensionen und folgt der von Dirac (Dirac, 1958) etablierten Tradition.

Dimensionen in natürlichen Einheiten

- Länge: $[L] = [E^{-1}]$
- Zeit: $[T] = [E^{-1}]$
- Masse: [M] = [E]
- Der β -Parameter: $[\beta] = [1]$ (dimensionslos)

3 Fundamentale Struktur des T0-Modells

3.1 Zeit-Masse-Dualität

Das zentrale Prinzip des T0-Modells ist die Zeit-Masse-Dualität, die besagt, dass Zeit und Masse invers miteinander verknüpft sind. Diese Beziehung unterscheidet sich fundamental von der konventionellen Behandlung in der allgemeinen Relativitätstheorie (Einstein, 1915; Misner et al., 1973).

Theorie	Zeit	Masse	Referenz
Einstein ART	$dt' = \sqrt{g_{00}}dt$	$m_0 = \text{const}$	(Einstein, 1915; Misner et al., 1973)
Spezielle Relativität	$t' = \gamma t$	$m_0 = \text{const}$	(Einstein, 1905)
T0-Modell	$T(x) = \frac{1}{m(x)}$	m(x) = dynamisch	Diese Arbeit

Tabelle 1: Vergleich der Zeit-Masse-Behandlung verschiedener Theorien

3.2 Grundlegende Feldgleichung

Die fundamentale Feldgleichung des T0-Modells wird aus Variationsprinzipien hergeleitet, analog zum Ansatz für Skalärfeldtheorien (Weinberg, 1995):

$$\nabla^2 m(x) = 4\pi G \rho(x) \cdot m(x) \tag{2}$$

Diese Gleichung zeigt strukturelle Ähnlichkeit zur Poisson-Gleichung der Gravitation $\nabla^2 \phi = 4\pi G \rho$ (Jackson, 1998), ist jedoch nichtlinear aufgrund des Faktors m(x) auf der rechten Seite. Das Zeitfeld folgt direkt aus der inversen Beziehung:

$$T(x) = \frac{1}{m(x)} \tag{3}$$

4 Geometrische Herleitung des β -Parameters

4.1 Sphärisch symmetrische Punktquelle

Für eine Punktmassenquelle verwenden wir die etablierte Methodik der Lösung von Einsteins Feldgleichungen (Schwarzschild, 1916; Misner et al., 1973). Die Massendichte einer Punktquelle wird durch die Dirac-Deltafunktion beschrieben:

$$\rho(\vec{x}) = m_0 \cdot \delta^3(\vec{x}) \tag{4}$$

wobei m_0 die Masse der Punktquelle ist.

4.2 Lösung der Feldgleichung

Außerhalb der Quelle (r > 0), wo $\rho = 0$, reduziert sich die Feldgleichung zu:

$$\nabla^2 m(r) = 0 \tag{5}$$

Der sphärisch symmetrische Laplace-Operator (Jackson, 1998; Griffiths, 1999) ergibt:

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dm}{dr}\right) = 0\tag{6}$$

Die allgemeine Lösung dieser Gleichung ist:

$$m(r) = \frac{C_1}{r} + C_2 \tag{7}$$

4.3 Bestimmung der Integrationskonstanten

Asymptotische Randbedingung: Für große Entfernungen soll das Zeitfeld einen konstanten Wert T_0 annehmen:

$$\lim_{r \to \infty} T(r) = T_0 \quad \Rightarrow \quad \lim_{r \to \infty} m(r) = \frac{1}{T_0} \tag{8}$$

Daraus folgt: $C_2 = \frac{1}{T_0}$

Verhalten am Ursprung: Verwendung des Gaußschen Satzes (Griffiths, 1999; Jackson, 1998) für eine kleine Kugel um den Ursprung:

$$\oint_{S} \nabla m \cdot d\vec{S} = 4\pi G \int_{V} \rho(r) m(r) \, dV \tag{9}$$

Für einen kleinen Radius ϵ :

$$4\pi\epsilon^2 \left. \frac{dm}{dr} \right|_{r=\epsilon} = 4\pi G m_0 \cdot m(\epsilon) \tag{10}$$

Mit $\frac{dm}{dr} = -\frac{C_1}{r^2}$ und $m(\epsilon) \approx \frac{1}{T_0}$ für kleine ϵ :

$$4\pi\epsilon^2 \cdot \left(-\frac{C_1}{\epsilon^2}\right) = 4\pi G m_0 \cdot \frac{1}{T_0} \tag{11}$$

Daraus folgt: $C_1 = \frac{Gm_0}{T_0}$

4.4 Die charakteristische Längenskala

Die vollständige Lösung lautet:

$$m(r) = \frac{1}{T_0} \left(1 + \frac{Gm_0}{r} \right) \tag{12}$$

Das entsprechende Zeitfeld ist:

$$T(r) = \frac{T_0}{1 + \frac{Gm_0}{r}} \tag{13}$$

Für den praktisch wichtigen Fall $Gm_0 \ll r$ erhalten wir die Näherung:

$$T(r) \approx T_0 \left(1 - \frac{Gm_0}{r} \right) \tag{14}$$

Die charakteristische Längenskala, bei der das Zeitfeld signifikant von T_0 abweicht, ist:

$$\boxed{r_0 = Gm_0} \tag{15}$$

Diese Skala ist proportional zum halben Schwarzschild-Radius $r_s = 2GM/c^2 = 2Gm$ in geometrischen Einheiten (Misner et al., 1973; Carroll, 2004).

4.5 Definition des β -Parameters

Der dimensionslose β -Parameter wird definiert als das Verhältnis der charakteristischen Längenskala zur aktuellen Entfernung:

$$\beta = \frac{r_0}{r} = \frac{Gm_0}{r} \tag{16}$$

Dieser Parameter misst die relative Stärke des Zeitfeldes an einem gegebenen Punkt. Für astronomische Objekte können wir die allgemeinere Form schreiben:

$$\beta = \frac{2Gm}{r} \tag{17}$$

wobei der Faktor 2 aus der vollständigen relativistischen Behandlung stammt, analog zur Entstehung des Schwarzschild-Radius.

5 Physikalische Interpretation des β -Parameters

5.1 Dimensionsanalyse

Die Dimensionslosigkeit des β -Parameters in natürlichen Einheiten:

$$[\beta] = \frac{[G][m]}{[r]} = \frac{[E^{-2}][E]}{[E^{-1}]} = [1]$$
(18)

5.2 Verbindung zur klassischen Physik

Der β -Parameter zeigt direkte Verbindungen zu etablierten physikalischen Konzepten:

- Gravitationspotential: β ist proportional zum Newtonschen Potential $\Phi = -Gm/r$
- Schwarzschild-Radius: $\beta = r_s/(2r)$ in geometrischen Einheiten
- Fluchtgeschwindigkeit: β ist verwandt mit $v_{\rm esc}^2/c^2$

5.3 Grenzfälle und Anwendungsbereiche

Physikalisches System	Typischer β -Wert	Regime
Wasserstoffatom	$\sim 10^{-39}$	Quantenmechanik
Erde (Oberfläche)	$\sim 10^{-9}$	Schwache Gravitation
Sonne (Oberfläche)	$\sim 10^{-6}$	Stellare Physik
Neutronenstern	~ 0.1	Starke Gravitation
Schwarzschild-Horizont	$\beta = 1$	Grenzfall

Tabelle 2: Typische β -Werte für verschiedene physikalische Systeme

6 Vergleich mit etablierten Theorien

6.1 Verbindung zur allgemeinen Relativitätstheorie

In der allgemeinen Relativitätstheorie charakterisiert der Parameter rs/r = 2Gm/r die Stärke des Gravitationsfeldes. Der T0-Parameter $\beta = 2Gm/r$ ist identisch mit diesem Ausdruck, was eine tiefe Verbindung zwischen beiden Theorien aufzeigt.

6.2 Unterschiede zum Standardmodell

Während das Standardmodell der Teilchenphysik die Zeit als externe Parameter behandelt, macht das T0-Modell die Zeit zu einem dynamischen Feld. Der β -Parameter quantifiziert diese Dynamik und stellt eine messbare Abweichung von der Standardphysik dar.

7 Experimentelle Vorhersagen

7.1 Zeitdilatationseffekte

Das T0-Modell sagt eine modifizierte Zeitdilatation vorher:

$$\frac{dt}{dt_0} = 1 - \beta = 1 - \frac{2Gm}{r} \tag{19}$$

Diese Beziehung ist identisch mit der Gravitationszeitdilatation der ART in erster Ordnung, bietet jedoch eine fundamentally andere theoretische Grundlage.

7.2 Spektroskopische Tests

Der β -Parameter könnte durch hochpräzise Spektroskopie getestet werden:

- Gravitationsrotverschiebung in stellaren Spektren
- Atomuhr-Experimente in verschiedenen Gravitationspotentialen
- Interferometrie mit hoher Präzision

8 Mathematische Konsistenz

8.1 Erhaltungssätze

Die Herleitung des β -Parameters respektiert fundamentale Erhaltungssätze:

- Energieerhaltung: Durch die Lagrange-Formulierung gewährleistet
- Impulserhaltung: Aus der räumlichen Translationsinvarianz
- Dimensionskonsistenz: In allen Herleitungsschritten verifiziert

8.2 Stabilität der Lösung

Die sphärisch symmetrische Lösung ist stabil gegen kleine Störungen, was durch Linearisierung um die Grundzustandslösung gezeigt werden kann.

9 Schlussfolgerungen

Diese Arbeit hat den β -Parameter des T0-Modells aus ersten Prinzipien hergeleitet:

Hauptergebnisse

- 1. Exakte Herleitung: $\beta = \frac{2Gm}{r}$ aus der fundamentalen Feldgleichung
- 2. Dimensionskonsistenz: Der Parameter ist dimensionslos in natürlichen Einheiten
- 3. Physikalische Interpretation: β misst die Stärke des dynamischen Zeitfeldes
- 4. **Verbindung zur ART**: Identität mit dem Gravitationsparameter der allgemeinen Relativitätstheorie
- 5. **Testbare Vorhersagen**: Spezifische experimentelle Signaturen vorhergesagt

Der β -Parameter stellt somit eine fundamentale dimensionslose Konstante des T0-Modells dar, die eine Brücke zwischen der Quantenfeldtheorie und der Gravitation schlägt.

9.1 Zukünftige Arbeiten

Theoretische Entwicklungen:

- Quantenkorrekturen zum klassischen β -Parameter
- Kosmologische Anwendungen des T0-Modells
- Schwarze-Loch-Physik im T0-Rahmenwerk

Experimentelle Programme:

- Präzisionsmessungen der Gravitationszeitdilatation
- Laborexperimente mit kontrollierten Massenkonfigurationen
- Astrophysikalische Tests mit kompakten Objekten

Literatur

- Carroll, S. M. Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, San Francisco, CA (2004).
- Dirac, P. A. M. *The Principles of Quantum Mechanics*. Oxford University Press, Oxford, 4th edition (1958).
- Einstein, A. Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891–921 (1905).
- Einstein, A. Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 844–847 (1915).
- Griffiths, D. J. *Introduction to Electrodynamics*. Prentice Hall, Upper Saddle River, NJ, 3rd edition (1999).
- Jackson, J. D. Classical Electrodynamics. John Wiley & Sons, New York, 3rd edition (1998).
- Misner, C. W., Thorne, K. S., and Wheeler, J. A. *Gravitation*. W. H. Freeman and Company, New York (1973).

- Peskin, M. E. and Schroeder, D. V. An Introduction to Quantum Field Theory. Addison-Wesley, Reading, MA (1995).
- Schwarzschild, K. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 189–196 (1916).
- Weinberg, S. The Quantum Theory of Fields, Volume I: Foundations. Cambridge University Press, Cambridge (1995).