Øving 9

Håvard Solberg Nybøe

MA0301

1 (a)

$$\left[\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]$$

(b)

$$\left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{array}\right]$$

- [2] (a) Grafen må ha en euler vei fordi graden til hjørene i grafen er et partall. B-A-G-F-E-D-C-E-A-C-F-B er en euler vei i grafen.
 - (b) Hvis hjørnene e og f fjernes fra grafen vil ikke grafen være sluttet sammen eller ha en euler vei.
 - (c) Hvis hjørnene e,f,g fjernes fra grafen, vil ikke grafen være sluttet sammen eller ha en euler krets.

3

(a)

(b)

5 La G = (V, E) være en graf.

Anta at det finnes to forskjellige minste utspringstrær $T_1 = (V, E_1)$ og $T_2 = (V, E_2)$. Siden T_1 og T_2 er forskjellige, er mengdene $E_1 - E_2$ og $E_2 - E_1$ ikke tomme mengder, altså $\exists e \in E_1 - E_2$.

Siden $e \in E_2$, vil å legge den til i T_2 lage en sykel. Syklens har egenskapen at en mest vektede kanten, e', ikke er i noen av de minste utspringstrærene. Men

Hvis e' = e

Så vil $e' \in E_1$, fordi $e \in E_1 - E_2$

Hvis $e' \neq e$, så vil $e' \in E_2$

Begge påstandende er motsigende med at e'ikke er i noen av de minste utspringstrærene. \Box

6 Bruker en liknende modifisert graf fra forrige oppgave.

Den røde stien er det minste utspringstreet, med en samlet vekt 33. Man kan bytte ut kanten med vekt 9 men en av de med vekt 10 og få to ulike utspringstrær hvor begge har en samlet vekt på 34.