

CI 2: ALGORITHMIQUE & PROGRAMMATION

ALGORITHMES D'INFORMATIQUE

1	Rech	nerches dans une liste	.2
	1.1	Recherche d'un nombre dans une liste	. 2
	1.2	Recherche du maximum dans une liste de nombre	. 2
	1.3	Recherche par dichotomie dans un tableau trié	. 3
2	Gest	tion d'une liste de nombres	. 4
	2.1	Calcul de la moyenne	.4
	2.2	Calcul de la variance	. 4
	2.3	Calcul de la médiane	. 4
3	Chaî	înes de caractères	.5
	3.1	Recherche d'un mot dans une chaîne de caractères	. 5
4	Calc	cul numérique	.5
	4.1	Recherche du zéro d'une fonction continue monotone par la méthode de dichotomie	. 5
	4.2	Recherche du zéro d'une fonction continue monotone par la méthode de Newton	. 6
	4.3	Méthode des rectangles pour le calcul approché d'une intégrale sur un segment	. 7
		4.3.1 Méthode des rectangles à gauche	. 7
		4.3.2 Méthode des rectangles à droite	. 8
		4.3.3 Méthode des rectangles – Point milieu	. 9
	4.4	Méthode des trapèzes pour le calcul approché d'une intégrale sur un segment	. 9
	4.5	Méthode d'Euler pour la résolution d'une équation différentielle	10
		4.5.1 Méthode d'Euler explicite	10
	4.6	Algorithme de Gauss – Jordan	11
5	Algo	orithmes de tris	11
	5.1	Tri par sélection	11
	5.2	Tri par insertion	12
		5.2.1 Méthode 1	12
		5.2.2 Méthode 2	13
	5.3	Tri shell	13
	5.4	Tri rapide «Quicksort»	14
6	Algo	orithmes classiques	14
	6.1	Division euclidienne	14
	6.2	Algorithme d'Euclide	
	6.3	Recherche des nombres premiers – Crible d'Ératosthène	16
	6.4	Calcul de puissance	16
		6.4.1 Algorithme naïf	16
		6.4.2 Exponentiation rapide	16
7	Calc	cul d'un polynôme	16
	7.1	Algorithme naïf	16
	7.2	Méthode de Horner	16

1 Recherches dans une liste

1.1 Recherche d'un nombre dans une liste

```
Algorithme: Recherche naïve d'un nombre dans une liste triée ou non

Données:

- n, int: un entier

- tab, liste: une liste d'entiers triés ou non triés

Résultat: un booléen: Vrai si le nombre est dans la liste, Faux sinon.

is_number_in_list(n,tab):

| ← longueur(tab)

Pour i allant de 1 à | faire:

Si tab[i] = n alors:

Retourne Vrai

Fin Si

Fin Faire

Retourne Faux

Fin fonction
```

```
def is _number _in _list(nb,tab):
    """Renvoie True si le nombre nb est dans la liste
    de nombres tab
    Keyword arguments:
    * nb, int — nombre entier
    * tab, list — liste de nombres entiers
    """
    for i in range(len(tab)):
        if tab[i]==nb:
            return True
    return False
```

```
def is _number _in _list(nb,tab):
    """Renvoie True si le nombre nb est dans la liste
    de nombres tab
    Keyword arguments:
    * nb, int — nombre entier
    * tab, list — liste de nombres entiers
    """
    i=0
    while i < len(tab) and tab[i]!=nb:
        i+=1
    return i < len(tab)</pre>
```

Remarque 🛟 F

Ces algorithmes sont modifiables aisément dans le cas où on souhaiterait connaître l'index du nombre recherché.

1.2 Recherche du maximum dans une liste de nombre

```
def what _is _max(tab):
    """

Renvoie le plus grand nombre d'une liste
    Keyword arguments:
    tab — liste de nombres
    """

i =1
```


🞝 python

```
maxi=tab[0]
while i < len(tab):
    if tab[i] > maxi:
        maxi=tab[i]
    i += 1
return maxi
```

1.3 Recherche par dichotomie dans un tableau trié

```
Algorithme: Recherche par dichotomie d'un nombre dans une liste triée ou non
Données:
- nb, int : un entier
- tab, liste : une liste d'entiers triés
Résultat:
- m, int : l'index du nombre recherché
- None: cas où nb n'est pas dans tab
is\_number\_in\_list\_dicho(nb,tab):
   g \leftarrow \mathbf{0}
   d \leftarrow \mathbf{longueur}(\mathsf{tab})
   Tant que g < d Alors:
       m \leftarrow (g+d) \operatorname{div} 2 \operatorname{Alors}:
         Si tab[m]=nb Alors:
             Retourne m
         Sinon si tab[m] < nb Alors:
             g \leftarrow m+1
         Sinon, Alors:
            d \leftarrow m-1
       Fin Si
   Fin Tant que
   Retourne None
Fin fonction
```

```
Pseudo C
```

```
def is_number_in_list_dicho(nb,tab):
    """

    Recherche d'un nombre par dichotomie dans un tableau tri é.
    Renvoie l'index si le nombre nb est dans la liste de nombres tab.
    Renvoie None sinon.
    Keyword arguments:
    nb, int — nombre entier
    tab, list — liste de nombres entiers tri és
    """
    g, d = 0, len(tab)-1
    while g <= d:
        m = (g + d) // 2
        if tab[m] == nb:
            return m
        if tab[m] < nb:
        g = m+1</pre>
```



```
🛟 python
```

```
else:
d = m-1
return None
```

2 Gestion d'une liste de nombres

2.1 Calcul de la moyenne

2.2 Calcul de la variance

Soit une série statistique prenant les n valeurs $x_1, x_2, ..., x_n$. Soit m la moyenne de ces valeurs. La variance est définie par :

$$v = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)^2$$

🛟 pythc

2.3 Calcul de la médiane


```
Algorithme: Recherche de la valeur médiane d'une liste de nombres triés

Données:

- tab, liste: liste de nombres triés

Résultat:

- flt: valeur de la médiane

mediane(tab):

n ← Longueur(tab)

Si n modulo 2 = 0 Alors:

i ← n/2

Retourner (tab[i] +tab[i+1])/2

Sinon:

i ← ndiv 2+1

Retourner (tab[i])

Fin fonction
```

3 Chaînes de caractères

3.1 Recherche d'un mot dans une chaîne de caractères

```
def index_of_word_in_text(mot, texte):
    """ Recherche si le mot est dans le texte.
    Renvoie l'index si le mot est présent, None sinon.

Keyword arguments:
    mot — mot recherché
    texte — texte

"""

for i in range(1 + len(texte) - len(mot)):
    j = 0
    while j < len(mot) and mot[j] == texte[i + j]:
    j += 1
    if j == len(mot):
        return i
    return None</pre>
```

Estimation de la complexité

4 Calcul numérique

4.1 Recherche du zéro d'une fonction continue monotone par la méthode de dichotomie


```
Début Fonction
      Données: f, a, b, \varepsilon
     g \leftarrow a
      d \leftarrow b
      f_g \leftarrow f(g)
      f_d \leftarrow f(d)
      tant que (d-g) > 2\varepsilon faire
           m \leftarrow (g + d)/2
           f_m \leftarrow f(m)

si f_g \cdot f_m \le 0 alors

\mid d \leftarrow m
                f_d \leftarrow f_m
           sinon
               g \leftarrow m
                f_d \leftarrow f_m
     fin
     retourner (g+d)/2
Fin
```

```
def rechercheDichotomique(f,a,b,eps):
    g = a
    d = b
    f_g = f(g)
    f_d = f(d)
    while (d-g) > 2*eps:
        m = (g+d)/2
    f_m = f(m)
    if f_g * f_m <= 0:
        d = m
        f_d = f_m
    else:
        g = m
        f_d = f_m
    return (g+d)/2</pre>
```

Précision du calcul

Rapidité

Comparaison à zéro

4.2 Recherche du zéro d'une fonction continue monotone par la méthode de Newton


```
Début Fonction

| Données: f, f', a, \varepsilon
| g \leftarrow a
| c \leftarrow g - \frac{f(g)}{f'(g)}
| tant que |c - g| > \varepsilon faire
| g \leftarrow c
| c \leftarrow c - \frac{f(c)}{f'(c)}
| fin
| retourner c
| Fin
```

Précision du calcul

Rapidité

- 4.3 Méthode des rectangles pour le calcul approché d'une intégrale sur un segment
- 4.3.1 Méthode des rectangles à gauche

```
Algorithme: Calcul d'intégrale par la méthode des rectangles à gauche
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition

    b, réel : borne supérieure de l'intervalle de définition, b≥a

- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
- res, réel : valeur approchée de \int f(t) dt
\textbf{integrale\_rectangles\_gauche}(f, a, b, nb):
   res \leftarrow 0
   pas \leftarrow (b-a)/nb
   x \leftarrow a
   Tant que x < b-pas : Faire
      res \leftarrow res + pas * f(x)
      x \leftarrow x + pas
   Fin Tant que
   Retourner res
```

```
def integrale_rectangles_gauche(f,a,b,nb):

"""

Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la méthode des rectangles à gauche.

Keywords arguments:

f — fonction à valeur dans IR

a — flt, borne inférieure de l'intervalle d'intégration
```



```
b — flt , borne supérieure de l' intervalle d'intégration
nb — int, nombre d'échantillons pour le calcul
1111111
res = 0
pas = (b-a)/nb
x = a
while x<b-pas
    res = res + pas *f(x)
   x = x + pas
return res
```

4.3.2 Méthode des rectangles à droite

```
Algorithme: Calcul d'intégrale par la méthode des rectangles à droite
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition

    b, réel : borne supérieure de l'intervalle de définition, b≥a

- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
-res, réel : valeur approchée de \bar{\int}\,f(t)\mathrm{d}t
integrale_rectangles_droite(f,a,b,nb) :
   res \leftarrow 0
   pas \leftarrow (b-a)/nb
   x \leftarrow a + pas
   Tant que x < b-pas : Faire
      res \leftarrow res + pas * f(x)
      x \leftarrow x + pas
   Fin Tant que
   Retourner res
```

```
def integrale rectangles droite (f,a,b,nb):
    Calcul de la valeur approchée de l'intégrale de f(x) entre a et b par la
    méthode des rectangles à droite.
    Keywords arguments:
    f — fonction à valeur dans IR
    a — flt, borne inférieure de l'intervalle d'intégration
   b — flt , borne supérieure de l'intervalle d'intégration
   nb — int, nombre d'échantillons pour le calcul
   res = 0
   pas = (b-a)/nb
```


x = a + paswhile x<b-pas:

return res

res = res + pas *f(x)

x = x + pas

🛟 pythc

4.3.3 Méthode des rectangles - Point milieu

```
Algorithme: Calcul d'intégrale par la méthode des rectangles – point milieu
Données:
- f, fonction : fonction définie sur [a, b]
- a, réel : borne inférieure de l'intervalle de définition

    b, réel : borne supérieure de l'intervalle de définition, b≥a

- nb, entiers : nombre d'échantillons pour calculer l'intégrale
Résultat:
- res, réel : valeur approchée de \int f(t) dt
integrale_rectangles_droite(f,a,b,nb) :
   res \leftarrow 0
   pas ← (b-a)/nb
   x \leftarrow a
   Tant que x < b-pas : Faire
      res\leftarrow res + pas *( \mathbf{f}(x)+\mathbf{f}(x+pas))/2
      x \leftarrow x + pas
   Fin Tant que
   Retourner res
```

🛟 pythc

4.4 Méthode des trapèzes pour le calcul approché d'une intégrale sur un segment

cf. méthodes des rectangles par la méthode du point milieu.

4.5 Méthode d'Euler pour la résolution d'une équation différentielle

4.5.1 Méthode d'Euler explicite

Résolution de l'équation différentielle :

$$y(t) + \tau \frac{dy(t)}{dt} = y_f$$

```
Algorithme: Méthode d'Euler explicite
Données:
- tau, réel : constante de temps
- y 0, réel : valeur initiale de y
– y f, réel : valeur finale y
- t f, réel : temps de la simulation numérique
- nb, entier: nombre d'échantillons pour calculer les valeurs de y
Résultat:
- res, liste: liste des couples (t,y(t)).
euler_explicite(tau,y 0,y f,t f,nb):
   Initialiser res
   t \leftarrow 0
   y ← y_0
   \mathsf{pas} \leftarrow \mathsf{t}_{-}\mathsf{f}/\mathsf{nb}
   Tant que t<t_f Faire:
      Ajouter (t,y) à res
      y \leftarrow y + pas *(y f-y)/tau
       t \leftarrow t + pas
   Fin Tant que
   Retourner res
```

```
def euler explicite (tau,y0,yf,tf,nb):
    Résolution d'une équation diff é rentielle d'ordre 1 en utilisant la méthode
    d'Euler explicite.
    Keywords arguments:
    tau — flt , constante de temps de l'équation diff é rentielle
    y0 — flt, valeur initiale de y(t)
    yf — flt valeur finale de y(t)
    tf — flt temps de fin de la simulation
    nb — int, nombre d'échantillons pour la simulation
    1111111
    t = 0
    y = y0
    pas = tf / nb
    res = []
    while t < tf:
        res.append((t,y))
       y = y + pas*(yf-y)/tau
        t = t + pas
    return res
```


4.6 Algorithme de Gauss - Jordan

```
def recherche pivot(A,i):
    n = len(A) # le nombre de lignes
    j = i # la ligne du maximum provisoire
    for k in range(i+1, n)
         if abs(A[k][i]) > abs(A[j][i]):
            j = k # un nouveau maximum provisoire
    return j
def echange_lignes(A,i,j):
    # Li <--->Lj
    A[i \ ][i], \ A[j \ ][i] = A[j \ ][i], \ A[i \ ][i]
def transvection_ligne(A, i, j, mu)
    \# L i < -L i + mu.L j''''''
    nc = len(A[0]) # le nombre de colonnes
    for k in range(nc):
         A[i][k] = A[i][k] + mu * A[j][k]
def resolution (AA, BB):
    """Résolution de AA.X=BB; AA doit etre inversible"""
    A, B = AA.copy(), BB.copy()
    n = len(A)
    assert len(A[0]) == n
    # Mise sous forme triangulaire
    for i in range(n):
         j = recherche pivot(A, i)
         if j > i:
             echange_lignes(A, i, j)
             echange_lignes(B, i, j)
         for k in range(i+1, n):
            x = A[k][i] / float(A[i][i])
             transvection\_ligne\left(A,\ k,\ i\ ,\ -x\right)
             transvection ligne (B, k, i, -x)
    # Phase de remontée
    X = [0.] * n
    for i in range(n-1, -1, -1):
        X[i] = (B[i][0] - sum(A[i][j] * X[j] \text{ for } j \text{ in } range(i+1,n))) \ / \ A[i][i]
    return X
```

5 Algorithmes de tris

5.1 Tri par sélection

🛟 python

return tab

5.2 Tri par insertion

5.2.1 Méthode 1

```
Algorithme: Tri par insertion – Méthode 1
Données:
- tab, liste: une liste de nombres
Résultat:
- tab, liste : la liste de nombres triés
tri insertion(tab):
    \mathsf{n} \leftarrow \mathbf{longueur}(\mathsf{tab})
   Pour i de 2 à n:
       x ← tab[i]
      j ← 1
      Tant que j \le i-1 et tab[j] < x:
          j \leftarrow j+1
      Fin Tant que
      Pour k de i-1 à j-1 par pas de -1 faire :
          tab[k+1] \leftarrow tab[k]
      Fin Pour
       tab[j] \leftarrow x
   Fin Pour
```

```
def tri_insertion_01(tab):
    """

    Trie une liste de nombre en utilisant la méthode du tri par insertion .
    En Python, le passage se faisant par référence, il n'est pas indispensable de retourner le tableau .
    Keyword arguments:
    tab — liste de nombres
    """
    for i in range (1,len(tab)):
        x=tab[i]
        j=0
        while j<=i-1 and tab[j]<x:
        j = j+1
        for k in range(i-1,j-1,-1):
            tab[k+1]=tab[k]
        tab[j]=x</pre>
```

Estimation de la complexité

– Meilleur des cas, le tableau est trié à l'envers, la complexité est linéaire : $\mathcal{O}(n)$.

– Pire des cas, le tableau est trié, la complexité est quadratique : $\mathcal{O}(n^2)$.

5.2.2 Méthode 2

```
Algorithme: Tri par insertion – Méthode 2
Données:
- tab, liste: une liste de nombres
Résultat:
- tab, liste : la liste de nombres triés
tri_insertion(tab):
   n ← longueur(tab)
   Pour i de 2 à n:
      x ← tab[i]
      j ← i
     Tant que j > 1 et tab[j-1] > x:
         tab[j] \leftarrow tab[j-1]
         j ← j-1
      Fin Tant que
      tab[j] \leftarrow x
   Fin Pour
```

Estimation de la complexité

- Meilleur des cas, le tableau est trié, la complexité est linéaire : $\mathcal{O}(n)$.
- Pire des cas, le tableau est trié à l'envers, la complexité est quadratique : $\mathcal{O}(n^2)$.

5.3 Tri shell


```
def shellSort (array):
    "Shell sort using Shell's (original) gap sequence: n/2, n/4, ..., 1."
    "http://en.wikibooks.org/wiki/Algorithm_Implementation/Sorting/Shell_sort#Python"
    gap = len(array) // 2
    # loop over the gaps
    while gap > 0:
        # do the insertion sort
        for i in range(gap, len(array)):
            val = array[i]
            j = i
            while j >= gap and array[j - gap] > val:
                  array[j] = array[j - gap]
            j -= gap
                  array[j] = val
                  gap //= 2
```

5.4 Tri rapide «Quicksort»

5.5 Tri fusion

6 Algorithmes classiques

6.1 Division euclidienne

```
Data: a, b \in \mathbb{N}^*

reste \leftarrow a

quotient \leftarrow 0

tant que reste \geq b faire

| reste \leftarrow reste -b
| quotient \leftarrow quotient +1

fin

Retourner quotient, reste
```

6.2 Algorithme d'Euclide

Cet algorithme permet de calculer le PGCD de deux nombres entiers. Il se base sur le fait que si a et b sont deux entiers naturels non nuls, $pgcd(a,b) = pgcd(b,a \mod b)$.

```
Data: a, b \in \mathbb{N}^*
x \leftarrow a
y \leftarrow b
tant que y \neq 0 faire

\begin{vmatrix} r \leftarrow \text{reste de la division euclidienne de } x \text{ par } y \\ x \leftarrow y \\ y \leftarrow r \\ \text{fin} \\ \text{Afficher } x. \end{vmatrix}
```


python[®]

Codage en Pythonde l'algorithme d'Euclide :

```
def Euclide PGCD(a,b): # on définit le nom de la
                        # fonction et ses variables
                        #d'entrées/d'appel
    r=a%b
                        # on calcule le reste dans
                        # la division de a par b
    while r!=0:
                        # tant que ce reste est non nul :
        a=b
                        # b devient le nouveau a
                        # r devient le nouveau b
        r=a%b
                        # on recalcule le reste
                        # une fois la boucle terminée,
   return(b)
                        # on retourne le dernier b
print(pgcd(1525,755))
                       # on affiche le résultat
                        # retourné par la fonction
```

Fonction PGCD: algorithme d'Euclide

Données: a et b: deux entiers naturels non nuls tels que a > b

Résultat: le PGCD de a et b

Euclide_PGCD(a,b)

Répéter

r ← a mod b

a ← b

b ← r

Jusqu'à r == 0

Retourner a

- 6.3 Recherche des nombres premiers Crible d'Ératosthène
- 6.4 Calcul de puissance
- 6.4.1 Algorithme naïf
- 6.4.2 Exponentiation rapide
- 7 Calcul d'un polynôme
- 7.1 Algorithme naïf
- 7.2 Méthode de Horner

Références

- [1] Patrick Beynet, Cours d'informatique de CPGE, Lycée Rouvière de Toulon, UPSTI.
- [2] Adrien Petri et Laurent Deschamps, Cours d'informatique de CPGE, Lycée Rouvière de Toulon, UPSTI.
- [3] Damien Iceta, Cours d'informatique de CPGE, Lycée Gustave Eiffel de Cachan, UPSTI.