Теорема о нижней границе времени работы сортировки, основанной на сравнениях

ceagest

1 Нижняя оценка сортировки сравнениями

- Мы уже знаем несколько сортировок, работающих за $\mathcal{O}(n^2)$.
- Также знаем сортировку слиянием за $\mathcal{O}(n \log n)$.
- Все эти сортировки имеют нечто общее: они основаны на сравнениях.
- Хотим понять, можно ли получить асимптотически более быструю сортировку, основанную также на сравнениях. Для этого сначала рассмотрим одну лемму.

Лемма 1.1. $\log n! = \Theta(n \log n)$

Доказательство. По формуле Стирлинга:

$$\log n! \sim \log \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Тогда $\log n! \sim \frac{1}{2} \log(2\pi n) + n \log n - n \log e = \Theta(n \log n)$

Теорема 1.1. Сортировка, основанная на сравнениях, работает за $\Omega(n \log n)$.

Доказательство. Любой сортировочный алгоритм, в котором мы используем понятие «больше» и «меньше», можно свести к действиям вида «если a > b, то делай X, иначе Y ». То есть выбор действий в данном случае бинарен, а значит весь алгоритм мы можем свести к бинарному дереву, в листьях которого у нас будет искомая перестановка. Всего возможных перестановок массива на n элементах ровно n!, а значит листьев не менее n!. Но коль скоро листьев не менее n!, глубина дерева не менее $\log_2 n!$. Итого, по лемме 1.1 получаем, что $T(n) \ge \log_2 n! = \Omega(n \log n)$.