Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2021

Subject Code:3170512 Date:29/12/2		1	
Subject	Nan	ne:Introduction to Computational Fluid Dynamics	
Time:10	0:30	AM TO 01:00 PM Total Marks: 70)
Instructio	ns:		
		empt all questions.	
		ke suitable assumptions wherever necessary.	
		ures to the right indicate full marks.	
4.	Sim	ple and non-programmable scientific calculators are allowed.	
Q.1	(a)	What is computational fluid dynamics (CFD)? Write name of CFD software packages.	03
	(b)	Write applications of CFD in chemical engineering. Explain any one in detail.	04
	(c)	Write conservation and non-conservation form of continuity equation. Briefly describe each term. Differentiate between both of these forms of continuity equations.	07
Q.2	(a)	Write advantages and limitations of CFD.	03
96.1	(b)	For second order partial derivative, $\left(\frac{\partial^2 u}{\partial x^2}\right)_{i,j}$, derive second order accurate	04
		central finite difference equation using Taylor series.	
	(c)	For moving fluid element, derive continuity equation in non-conservation form. OR	07
	(c)	Discuss computational fluid dynamics as a research tool.	07
Q.3	(a)	Shock waves appears naturally in computational domain in shock capturing method. Agree or disagree? Justify your answer.	03
	(b)	Describe user activities at pre-processing stage in CFD.	04
	(c)	With suitable example, explain von Neumann stability method.	07
		OR	
Q.3	(a)	Explain the graphical concept of finite difference module. Write down first order forward and backward difference equation, showing their finite difference modules.	07
	(b)	For moving fluid element, derive momentum balance equation in non-conservation form.	07
Q.4	(a)	State the physical boundary conditions for a viscous flow.	03
	(b)	Differentiate between shock fitting method and shock capturing method.	04

(c) Write conservation form of continuity and momentum equations for 07

		Inviscid flow. Differentiate between these equations and Navier-Stokes equations? OR	
Q.4	(a)	Define structured grid and unstructured grid.	03
	(b)	Write advantages and disadvantages of higher order accurate finite difference equations.	04
¥	(c)	Derive the finite difference expressions for first order derivative with forward, backward and central difference approximations, using Taylor series expansion.	07
Q.5	(a)	Define well-posed problems. What is Dirichlet boundary condition?	03
	(b)	Define Courant number and CFL condition in stability analysis. Explain their importance in stability analysis.	04
	(c)	Illustrate the use of conservation form of the equations so important for the shock-capturing method by considering the flow across a normal shock wave.	07
0.5	(a)	OR Define: (1) Discretization error, (2) Round-off error	03
Q.S	(a)	Define. (1) Discretization error, (2) Round-on error	0.5
	(b)	Differentiate between implicit approach and explicit approach for the solution of differential equations.	04
	(c)	Explain classification of quasi-linear partial differential equations based on Eigenvalue method.	07
		St.	30