Terms, Concepts, and Examples

• A truth table displays the relationships between truth values (T or F) of different propositions. Constructing a truth table for a compound statement depends upon the simple statements composing the compound statement.

When making a truth table you need a row for each possible truth value. This means if there is one proposition in your statement, you will need 2 rows.

• Consider the **negation** operator. Recall, a statement and its negation have opposite truth values. Since it is just one statement and an operator, so its truth table will have 2 rows.

p	$\neg p$		
Т	F		
F	Т		

If there are two propositions, you will need 4 rows. As in conjunction and disjunction.
 Recall conjunction (∧) is true if both statements are true, and false otherwise. Disjunction (∨) is false if both statements are false, and true otherwise.

p	q	$p \wedge q$	$p \vee q$
Т	Т	Τ	Τ
Т	F	F	Т
F	Т	F	Т
F	F	F	F

• Exclusive or (\oplus) is true when exactly one of p and q is true and it is false otherwise. Implication (\Longrightarrow) is false when p is true and q is false and is true otherwise. The biconditional (\Longleftrightarrow) is true when p and q have the same truth values and is false otherwise.

p	q	$p \oplus q$	$p \implies q$	$p \iff q$
Τ	Τ	F	Τ	${ m T}$
Т	F	Т	F	F
F	Т	Т	Τ	F
F	F	F	Τ	Τ

• If there are three propositions you will need 8 rows. Note that the number of true-false cases has doubled with the addition of one statement. The total number of cases (rows in your truth table) will be determined by using 2 to the power of the number of statements. This means that if there are four statements, we would determine the number of cases by calculating 2⁴.

1

Example: Complete the truth table for the compound proposition $(p \implies q) \land (\neg p \iff q)$ Solution: Notice there are 2 simple propositions so the truth table has 4 rows. There is also a column for each piece of the compound proposition.

p	q	$p \implies q$	$\neg p$	$\neg p \iff q$	$(p \implies q) \land (\neg p \iff q)$
Т	Т	Т	F	F	F
Т	F	F	F	Τ	F
F	Т	Т	Т	Τ	Т
F	F	Т	Т	F	F

Video Example of Truth Table

• The propositions p and q are called **logically equivalent** if they have the same truth table, this is noted by the symbol \equiv .

Example: The propositions $\neg(p \land q)$ and $\neg p \lor \neg q$ are logically equivalent.

Solution: Look at the truth table for both statements and compare. Notice that the fourth column and the last column are the same.

p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$
T	Т	Т	F	F	F	F
Т	F	F	Т	F	Т	Т
F	Т	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

Video Example of Logically Equivalent

• The above statements and their counterparts are called **DeMorgan's Laws**.

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Example: Consider the statement "I went to the movie or I did not go bowling." Use DeMorgan's Law to find the negation of this statement.

Solution: If p is the proposition "I went to the movie." and q is "I went bowling." then the statement above is written

$$p \vee \neg q$$

Using DeMorgan's Law the negation would be

$$\neg (p \lor \neg q) \equiv \neg p \land \neg (\neg q)$$
$$\equiv \neg p \land q$$

In words, we would say, "I did not go to the movies and I went bowling."

Video Example of DeMorgan's Law

Practice Problems

1. Construct a truth table for each of the compound propositions.

(a)
$$(p \lor \neg q) \implies q$$

(c)
$$(p \wedge q) \vee \neg r$$

(b)
$$p \bigoplus (p \vee q)$$

(d)
$$(p \iff q) \oplus (p \iff \neg q)$$

2. Determine which of the statements form logically equivalent pairs.

(a)
$$\neg p \implies (q \implies r)$$

(g)
$$(p \lor q) \land (\neg p \lor r) \implies (q \lor r)$$

(b)
$$(p \lor q) \implies r$$

(h)
$$p \implies (q \vee r)$$

(c)
$$(p \land q) \implies r$$

(i)
$$(p \implies r) \lor (q \implies r)$$

(d)
$$(p \implies r) \land (q \implies r)$$

$$(j) (p \implies q) \land (p \implies r)$$

(e)
$$(p \implies q) \lor (p \implies r)$$

(k)
$$p \implies (q \wedge r)$$

(f)
$$q \implies (p \lor r)$$

$$(1) \ (p \implies q) \land (q \implies r) \implies (p \implies r)$$

- 3. Show the following statements are logically equivalent $p \implies q$ and $\neg p \lor q$.
- 4. Use DeMorgan's Laws to find the negation of these statements.
 - (a) 12 is even and 12 is prime.
 - (b) Kwame will take a job in industry or go to graduate school.