Theoretical Analysis of Gene Expression Reconstruction

1 Single Transition Case

1.1 Exact Bounds for Dense Sampling

Let $p(s_d = t_i | s_g, \sigma^2)$ be the probability of selecting the *i*'th time point conditioned on the actual step time and the noise in the measured data, and let $L(t_i)$ denote the likelihood of the observed data for a specific time point t_i . In order to select t_i as the step point, we need the likelihood defined by this point to be higher than any other point. Thus;

$$p(s_d = t_i | s_q, \sigma^2) = p(L_i > L_j, i \neq j)$$

$$\tag{1}$$

Let $\hat{L}_i = \log(L_i)$, and This can also be interpreted as follows. Let M = L(i), then this can be written as follows:

$$p(s_d = t_i | s_q, \sigma^2) = \int_{-\infty}^{\infty} p(\hat{L}_i = m) p(\hat{L}_j \le m, i \ne j) dm$$
 (2)

where $p(\hat{L}_i = m)$ is chi-squared distribution, and $p(\hat{L}_j \leq m, i \neq j)$ is the probability likelihoods of all other time points is smaller than m. Let $S_i = \{t_1, t_2, \ldots, t_{i-1}\}$ be the set of sorted time points that are smaller than t_i , and $M_i = \{t_{i+1}, t_{i+2}, \ldots, t_T\}$ be the set of time points larger than t_i . For $t_j \in S_i$, $p(\hat{L}_i \geq \hat{L}_j)$ is:

$$p(\hat{L}_i \ge \hat{L}_j) = \frac{1}{2\sigma^2} \left(\sum_{m=j}^{i-1} -(d_m)^2 - \sum_{m=j}^{i-1} -(d_m-1)^2 \right) = \sum_{m=j}^{i-1} d_m \le \frac{s}{2}$$
 (3)

due to gaussian assumption where s is the number of points between t_j and t_{i-1} including both time points. Similar inequalities for all points in S_i return the

following dependent equations:

$$d_{i-1} \le 0.5 \tag{4}$$

$$d_{i-1} + d_{i-2} \le 1 \tag{5}$$

$$d_{i-1} + d_{i-2} + d_{i-3} \le 1.5 \tag{6}$$

$$\dots$$
 (7)

$$d_{i-1} + \ldots + d_1 \le \frac{i-1}{2} \tag{8}$$

Similar analysis for points in M_i return the following dependent equations:

$$d_i \ge 0.5 \tag{9}$$

$$d_i + d_{i+1} \ge 1 \tag{10}$$

$$d_i + d_{i+1} + d_{i+2} \ge 1.5 \tag{11}$$

$$\dots$$
 (12)

$$d_i + \ldots + d_{T-1} \ge \frac{T - i}{2} \tag{13}$$

These joint integrals are independent of each other, so overall expression becomes:

$$p(s_d = t_i | s_q, \sigma^2) = \int_{-\infty}^{\infty} p(\hat{L}_i = m) \, p(\hat{L}_j \le m, j \in S_i) \, p(\hat{L}_j \le m, j \in M_i) dm$$

$$\tag{14}$$

where $p(\hat{L}_j \leq m, j \in S_i)$ and $p(\hat{L}_j \leq m, j \in M_i)$ are probabilities of satisfying the equations for S_i and M_i above. $p(\hat{L}_j \leq m, j \in S_i)$ can be expressed by the following nested integral:

$$p(\hat{L}_j \le m, j \in S_i) = \int_{-\infty}^{0.5} p(x_{i-1}) \int_{-\infty}^{1-x_{i-1}} p(x_{i-2}) \dots \int_{-\infty}^{\frac{i-1}{2} - \sum_{t=2}^{i-1} x_t} p(x_1) dx_1 dx_{i-2} dx_{i-1}$$
(15)

where p(x) is gaussian probability distribution function. Since p(x) is same for all time points, we can estimate the area by visualization. Let x = cdf(0.5), and D(n) be the area by using only topmost n equations. Then, integral can be estimated recursively by:

$$D(n+1) = D(n)(1 - \frac{1}{n+1}(1-x))$$
(16)

with base case D(1) = x, and resulting integral is equal to D(i-1). Similarly, $p(\hat{L}_j \leq m, j \in M_i)$ can be estimated by the following recursive equation:

$$U(n+1) = U(n)(1 - \frac{x}{n+1})$$
(17)

where U(n) is the area by using only topmost n equations and base case is T(1) = 1 - x. $p(\hat{L}_j \leq m, j \in M_i) = U(T - i)$.

In main equation 2, p(m) is same for all time points and independent of other parts, so it integrates out to 1. As a result, Eq. 2 becomes:

$$p(s_d = t_i | s_q, \sigma^2) = U(T - i) D(i - 1)$$
 (18)