Boolean Algebra

Hoda Roodaki hroodaki@kntu.ac.ir

Introduction

- Digital systems are concerned with digital signals.
- Here we will concentrate on binary signals since these are the most common form of digital signals.

Binary Quantities and Variables

 A binary quantity is one that can take only 2 states.

S	L
OPEN	OFF
CLOSED	ON
S	L
0	0
1	1
	ı

Logic Gates

- The building blocks used to create digital circuits are logic gates.
- There are three elementary logic gates and a range of other simple gates.
 - AND
 - OR
 - NOT
- Each gate has its own logic symbol which allows complex functions to be represented by a logic diagram.
- The function of each gate can be represented by a truth table or using Boolean notation.

The AND gate

A binary arrangement with two switches in series

The AND gate

(a) Circuit symbol

A	В	С
0	0	0
0	1	0
1	0	0
1	1	1

(b) Truth table

$$C = A \cdot B$$

The AND gate

L
0
0
0
0
0
0
0
1

The OR gate

A binary arrangement with two switches in parallel

S1	S2	L
0	0	0
0	1	1
1	0	1
1	1	1

(b) Truth table

The OR gate

(a) Circuit symbol

A	В	C
0	0	0
0	1	1
1	0	1
1	1	1

(b) Truth table

$$C = A + B$$

The OR gate

S1	S2	S3	L
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

The NOT gate (or inverter)

(a) Circuit symbol

A	В
0	1
1	0

(b) Truth table

$$B = \overline{A}$$

The NAND gate

(a) Circuit symbol

A	В	С
0	0	1
0	1	1
1	0	1
1	1	0

$$C = \overline{A \cdot B}$$

The NOR gate

(a) Circuit symbol

A	В	С
0	0	1
0	1	0
1	0	0
1	1	0

$$C = \overline{A + B}$$

The Exclusive OR gate

/	`	~ :		1 1
(:	1)	Circuit	svm	bol
١.	-,			

A	В	C
0	0	0
0	1	1
1	0	1
1	1	0

$$C = A \oplus B$$

The Exclusive NOR gate

$$C = \overline{A \oplus B}$$

Boolean Algebra

Boolean Constants

- these are '0' (false) and '1' (true)

Boolean Variables

- variables that can only take the vales '0' or '1'

Boolean Functions

each of the logic functions (such as AND, OR and NOT)
 are represented by symbols as described above

Boolean Theorems

a set of identities and laws

Boolean Algebra

Boolean identities (Basic Operation)

AND Function	OR Function	NOT function
0•0=0	0+0=0	
0•1=0	0+1=1	$\overline{1} = 0$
1•0=0	1+0=1	$\overline{\overline{A}} = A$
1•1=1	1+1=1	
A•0=0	A+0=A	
0•A=0	0+ <i>A</i> = <i>A</i>	
A•1=A	A+1=1	
1• <i>A</i> = <i>A</i>	1+ <i>A</i> =1	
$A \bullet A = A$	A+A=A	

Boolean Algebra laws

Commutative law	Absorption law
AB = BA	A + AB = A
A+B=B+A	A(A+B)=A
Distributive law $A(B+C) = AB + AC$ $A+BC = (A+B)(A+C)$	De Morgan's law $ \overline{A+B} = \overline{A} \bullet \overline{B} $ $ \overline{A} \bullet \overline{B} = \overline{A} + \overline{B} $
Associative law	4 AD 4 D
A(BC) = (AB)C	A+AB=A+B
A+(B+C)=(A+B)+C	A(A+B)=AB

Boolean Algebra laws proof

(Distributive law)

```
A + BC = A.1 + BC [Since, A.1 = A]

= A(1 + B) + BC [Since, B+1 = 1]

= A.1 + AB + BC

= A.(1 + C) + AB + BC

= A (A + C) + B (A+C) [Since, A.A = A.1 = A]

A + BC = (A+B)(A+C)
```

Boolean Algebra laws proof

(Absorption Law):

$$A.(A+B) = A$$

Proof.

$$A.(A+B) = A.A + A.B$$

= A+AB [Since, A.A = A]
= A(1+B)
= A.1

$$A + (A \cdot B) = A$$

Proof.

$$A+(A.B) = A.1 + AB$$
 [Since $A.1 = A$]
= $A(1+B)$ [Since, $1+B=1$]
= $A.1 = A$

Boolean Algebra laws proof

(De Morgan's Law)

For every pair a, b in set B:

$$(A+B)' = A'B'$$
, and $(AB)' = A'+B'$.

Proof: We should show that a+b and a'b' are complementary.

In other words, we show that both of the following are true

$$(A+B) + (A'B') = 1$$

 $(A+B)(A'B') = 0$

Identity element

- An **identity element** (or **neutral element**) is a special type of element of a <u>set</u> with respect to a <u>binary operation</u> on that set.
 - It leaves other elements unchanged when combined with them.
 - An identity element with respect to + and . is 0 and 1, respectively.

Complement element

- b is a complement of a if a+b=1, a.b=0.
 - So a unique complement must be a unique solution to both equations (involving both operations), not just a single operation.