AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for generating code to perform
2	anticipatory prefetching for data references, comprising:
3	receiving code to be executed on a computer system;
4	analyzing the code to identify data references to be prefetched;
5	calculating an execution time of a single loop iteration which includes the
6	identified data references, wherein the execution time includes an adjustment for
7	the execution probability of the identified data references;
8	calculating a prefetch ahead distance, wherein the prefetch ahead distance
9	includes the ratio of outstanding prefetches to the number of prefetch streams and
0	considers the probabilistically adjusted execution time of the single loop iteration,
1	and wherein the prefetch ahead distance indicates how many loop iterations ahead
2	to prefetch for; and
.3	inserting prefetch instructions into a preceding basic block of the code in
4	advance of the identified data references based upon the prefetch ahead distance,
.5	wherein inserting prefetch instructions involves inserting multiple prefetch
6	instructions for a given cache line, and wherein inserting the prefetch instructions
7	involves,
8	attempting to calculate a stride value for a given data
9	reference within a loop,
20	if the stride value cannot be calculated, setting the stride
21	value to a default stride value, and

22	inserting a prefetch instruction to prefetch the given data
23	reference for a subsequent loop iteration based on the stride value;
24	wherein the stride value is constant for some but not necessarily all loop
25	iterations.
1	2. (Original) The method of claim 1, further comprising allowing a system
2	user to specify the default stride value.
1	2 (0:1) 1) 771
1	3. (Original) The method of claim 1, wherein calculating the stride value
2	involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and
5	calculating the stride value based upon the stride function and the
6	induction variable.
1	4. (Original) The method of claim 1, wherein inserting the prefetch
2	instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to an
9	address accessed by the given data reference.
1	5. (Original) The method of claim 1, wherein analyzing the code involves:
2	identifying loop bodies within the code; and
3	identifying data references to be prefetched from within the loop bodies.

2	identify data references to be prefetched involves examining a pattern of data
3	references over multiple loop iterations.
1	7. (Original) The method of claim 1, wherein analyzing the code involves
2	analyzing the code within a compiler.
1	8. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for generating code to perform anticipatory prefetching for data
4	references, the method comprising:
5	receiving code to be executed on a computer system;
6	analyzing the code to identify data references to be prefetched;
7	calculating an execution time of a single loop iteration which includes the
8	identified data references, wherein the execution time includes an adjustment for
9	the execution probability of the identified data references:
0	calculating a prefetch ahead distance, wherein the prefetch ahead distance
1	includes the ratio of outstanding prefetches to the number of prefetch streams and
2	considers the probabilistically adjusted execution time of the single loop iteration
3	and wherein the prefetch ahead distance indicates how many loop iterations ahead
4	to prefetch for; and
5	inserting prefetch instructions into a preceding basic block of the code in
6	advance of the identified data references based upon the prefetch ahead distance,
7	wherein inserting prefetch instructions involves inserting multiple prefetch
8	instructions for a given cache line, and wherein inserting the prefetch instructions
9	involves,
0	attempting to calculate a stride value for a given data
1	reference within a loop,

6. (Original) The method of claim 5, wherein analyzing the code to

22	if the stride value cannot be calculated, setting the stride
23	value to a default stride value, and
24	inserting a prefetch instruction to prefetch the given data
25	reference for a subsequent loop iteration based on the stride value;
26	wherein the stride value is constant for some but not necessarily all loop
27	iterations.
1	9. (Original) The computer-readable storage medium of claim 8, wherein
2	the method further comprises allowing a system user to specify the default stride
3	value.
1	10. (Original) The computer-readable storage medium of claim 8, wherein
2	calculating the stride value involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and
5	calculating the stride value based upon the stride function and the
6	induction variable.
	·
1	11. (Original) The computer-readable storage medium of claim 8, wherein
2	inserting the prefetch instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to an
9	address accessed by the given data reference.

1	12. (Original) The computer-readable storage medium of claim 8, wherein
2	analyzing the code involves analyzing the code within a compiler.
1	13. (Currently amended) An apparatus that generates code to perform
2	anticipatory prefetching for data references, comprising:
3	a receiving mechanism that is configured to receive code to be executed on
4	a computer system;
5	an analysis mechanism that is configured to analyze the code to identify
6	data references to be prefetched;
7	a calculating mechanism that is configured to calculate an execution time
8	of a single loop iteration which includes the identified data references, wherein the
9	execution time includes an adjustment for the execution probability of the
0	identified data references;
1	a calculating mechanism that is configured to calculate a prefetch ahead
2	distance, wherein the prefetch ahead distance includes the ratio of outstanding
3	prefetches to the number of prefetch streams and considering the probabilistically
4	adjusted execution time of the single loop iteration, and wherein the prefetch
5	ahead distance indicates how many loop iterations ahead to prefetch for; and
6	an insertion mechanism that is configured to insert prefetch instructions
7	into a preceding basic block of the code in advance of the identified data
8	references based upon the prefetch ahead distance, wherein the insertion
9	mechanism facilitates inserting multiple prefetch instructions for a given cache
0	line;
1	wherein the insertion mechanism is configured to,
2	attempt to calculate a stride value for a given data reference
3	within a loop,
4	set the stride value to a default stride value if the stride
5	value cannot be calculated, and to

e stride value; crily all loop
rily all loop
a
ride value
ulating the
the induction
on mechanisn
ize by the
h latency, the
y the prefetch
to an address
itus resides

18-45 (Canceled).