NAME

CUTEST cidh – CUTEst tool to evaluate the Hessian of a problem function.

SYNOPSIS

```
CALL CUTEST cidh( status, n, X, iprob, lh1, H val )
```

For real rather than double precision arguments, instead

```
CALL CUTEST_cidh_s( ... )
```

and for quadruple precision arguments, when available,

```
CALL CUTEST_cidh_q( ... )
```

DESCRIPTION

The CUTEST_cidh subroutine evaluates the Hessian matrix of either the objective function or a constraint function for the problem decoded from a SIF file by the script *sifdecoder* at the point X, and possibly its gradient. The matrix is stored as a dense matrix.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l \le c_i(x) \le c_i^u$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_cidh are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

X [in] - real/double precision

an array which gives the current estimate of the solution of the problem,

irpob [in] - integer

the number of the problem function to be considered. If iprob = 0, the Hessian of the objective function will be evaluated, while if iprob = i > 0, that of the i-th constraint will be evaluated,

lh1 [in] - integer

the actual declared size of the leading dimension of H_val (with lh1 no smaller than n),

H_val [out] - real/double precision

a two-dimensional array which gives the value of the required Hessian matrix.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads, N.I.M. Gould, D. Orban and Ph.L. Toint,

Computational Optimization and Applications 60:3, pp.545-557, 2014.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, ACM TOMS, **21**:1, pp.123-160, 1995.

sifdecoder(1).