Using Spatial Information in the VCG

Sina Mohammadzadeh Colin Fernandes

Prof. Roberto Sassi Bioengineering Informatics University of Milan

- Some Cardiology
- Some Math
- What is EDR?
- Various methods
- Our Implementation
- Results

- Some Cardiology
- Some Math
- What is EDR?
- Various methods
- Our Implementation
- Results

- Some Cardiology
- Some Math
- What is EDR?
- Various methods
- Our Implementation
- Results

- Some Cardiology
- Some Math
- What is EDR?
- Various methods
- Our Implementation
- Results

- Some Cardiology
- Some Math
- What is EDR?
- Various methods
- Our Implementation

Results

- Some Cardiology
- Some Math
- What is EDR?
- Various methods
- Our Implementation
- Results

Electrocardiography

Bio Medical Signal Processing

- ECG Lead Positions
- Vectorcardiography

Electrocardiography

Bio Medical Signal Processing

- ECG Lead Positions
- Vectorcardiography

Vectorcardiography

Vectorcardiography

Vectorcardiography

- What is EDR?
- Significance
- Different Methods

- What is EDR?
- Significance
- Different Methods
 - Ratio of Area on two leads Moody et al

- What is EDR?
- Significance
- Different Methods
 - Ratio of Area on two leads Moody et al
 - Ratio of amplitudes R and S on a Single Lead Masaon et al
 - Using Spatial Information in the VCG Leanderson et a

- What is EDR?
- Significance
- Different Methods
 - Ratio of Area on two leads Moody et al
 - Ratio of amplitudes R and S on a Single Lead Masaon et al
 - Using Spatial Information in the VCG Leanderson et a

- What is EDR?
- Significance
- Different Methods
 - Ratio of Area on two leads Moody et al
 - Ratio of amplitudes R and S on a Single Lead Masaon et al
 - Using Spatial Information in the VCG Leanderson et al

- What is EDR?
- Significance
- Different Methods
 - Ratio of Area on two leads Moody et al
 - Ratio of amplitudes R and S on a Single Lead Masaon et al
 - Using Spatial Information in the VCG Leanderson et al

Using Spatial Information in the VCG

S.Leanderson et al

Leif Sornomo

Transformations

- Translation
- notatio
- Scaling
- Time Synchronization

$$J\tau = \begin{bmatrix} 0_{\delta+\tau} \\ I \\ 0_{\delta-\tau} \end{bmatrix}$$

- Transformations
 - Translation
 - Rotation
 - Scaling
 - Time Synchronization

$$J\tau = \begin{bmatrix} 0_{\delta+\tau} \\ I \\ 0_{\delta-\tau} \end{bmatrix}$$

- Transformations
 - Translation
 - Rotation
 - Scaling
 - Time Synchronization

$$J\tau = \begin{bmatrix} 0_{\delta+\tau} \\ I \\ 0_{\delta-\tau} \end{bmatrix}$$

- Transformations
 - Translation
 - Rotation
 - Scaling
 - Time Synchronization

- Transformations
 - Translation
 - Rotation
 - Scaling
 - Time Synchronization

$$J au = egin{bmatrix} \mathtt{0}_{\delta+ au} \ \mathtt{I} \ \mathtt{0}_{\delta- au} \end{bmatrix}$$

Leif Sornomo

Minimization of

$$\varepsilon_{min}^2 = min_{Q,\tau} |Y - QY_R J_{\tau}|_F^2$$

Estimate Q using SVD

$$Z = YJ_{\tau}^{T}Y_{R}^{T}$$

Finding angles

Leif Sornomo

Minimization of

$$\varepsilon_{min}^2 = min_{Q,\tau} |Y - QY_R J_{\tau}|_F^2$$

Estimate Q using SVD

$$Z = YJ_{\tau}^{T}Y_{R}^{T}$$

Finding angles -

$$Q = \begin{bmatrix} * & sin\varphi_z cos\varphi_y & sin\varphi_y \\ * & * & sin\varphi_x cos\varphi_y \\ * & * & * \end{bmatrix}$$

Flowchart

Results

Input Signal	Actual Frequency	Spatial Info		EDR +HR	QRS Area
		W	W/O		
		Opt	Opt		
1	23	23	23	24	23
2	15	15	15	15	24
3	15	10	10	5	13
4	17	21	17	21	18

EDR With Operator Splinting

EDR Without Operator Splinting

Thank you

