

Redes Perceptron de Uma Camada

Gisele L. Pappa

Perceptron de uma Camada

- Primeiro modelo para aprendizado supervisionado
- Padrões linearmente separáveis

Aprendizado Supervisionado

Treinamento

Entrada Saída A_1, A_2, A_3, A_4, C 0, 0, 1, 0, 1 1 1, 1, 0, 1, 1 0, 1, 0, 0, 0 0, 0, 0, 0, 1, 0

Rede Neural
Artificial

Teste

1,0,1,0,? 0,0,0,1,? 1,1,0,0,? 0,1,1,1,?

Rede Neural Artificial

1,0,1,0,1 0,0,0,1,0 1,1,0,0,1

0,1,1,1,1

• Capacidade de Generalização da rede

Padrões de Dados

Não-linearmente separável

Perceptron de uma Camada

- Primeiro modelo para aprendizado supervisionado
- Padrões linearmente separáveis

Inputs		Output	
X ₁	X ₂	X ₁ AND X ₂	
0.	0	0	
0	1	0	
1	0	0	
1	1	1	

1			
(0,1)	-	\ †	(1, 1)
		`\	`
(0,0)			(1,0)

Inputs		Output	
X	X ₂	x₁ XOR x₂	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Aprendizado

- Seja w_i um peso sináptico de um dado neurônio.
- O ajuste Δw_i é aplicado ao peso sináptico w_i gerando o valor corrigido w_i , na forma:

$$w_{i} = w_{i} + \Delta w_{i}$$

- Várias maneira de obter $\Delta w(t)$:
 - regra de Hebb, regra do perceptron, regra Delta, algoritmo de backpropagation, estratégias de competição, máquina de Boltzmann

Regra do Perceptron

Conjunto de treinamento

$$w_{i} = w_{i} + \Delta w_{i}$$

$$\Delta w_i = \eta \text{ (y-o) } x_i$$

η é a taxa de aprendizado

 No perceptron de uma camada, a taxa de aprendizado têm pouco impacto e pode ser igual a 1

Intuição da Regra do Perceptron

- Dada uma instância (x,y)
 - Se o erro é positivo (saída real é maior que a retornada)
 - Quero aumentar w_kx_k
 - Se o erro é negativo (saída real é menor que a retornada)
 - Quero diminuir w_kx_k
- Se não exite erro, não muda pesos

Fonte: https://towardsdatascience.com/from-biology-to-ai-the-perceptron-81abfdc788bf

Propriedades da regra do Perceptron UNIVERSIDADE FEDERAL PROPRIEDAD PROPRIEDA

- Garante convergência quando os pontos são linearmente separáveis
- Não garante convergência para mínimo local quando pontos não são linearmente separáveis
- Pontos classificados corretamente não influenciam no treino

- Como a regra do perceptron não converge em casos de exemplos não-linearmente separáveis, criou-se a regra delta
- A regra delta converge para a melhor aproximação da saída quando os exemplos não são linearmente separáveis
- Ela usa a descida do gradiente para buscar os pesos.

Perceptron

• Para entender a regra, ao invés de usar a saída usando o perceptron com o limiar, vamos considerar um perceptron usando uma função linear

Perceptron

$$o = f(3x_1 - 2x_2 + 1)$$

introtodeeplearning.com

Perceptron

Entrada: -1, 2 o = $f(3x_1 - 2x_2 + 1)$ = f((3*-1) - (2*2) + 1= f(-6) = -6

Considerando f(x) = x

DCC
DEPARTAMENTO DE
CIÊNCIA DA COMPUTAÇÃO

introtodeeplearning.com

• Consiste em mudar os pesos da rede de forma a reduzir o erro entre a predição da rede e a saída real.

• Erro pode ser calculado utilizando diversas funções de erro/ou de *loss*

Vamos utilizar o erro quadrático médio

$$\overrightarrow{E(w)} = \frac{1}{2} \sum_{d \in D} (y_d - o_d)^2$$

onde D é o número de exemplos de treinamento

Superficie de erro para diferentes conjuntos de pesos w₀ e w₁

- Usa o algoritmo de descida do gradiente
 - Algoritmo de otimização utilizado para encontrar os parâmetros capazes de minimizar uma função.
- Gradiente de uma função f(x,y) no ponto (x_0,y_0) ($\nabla f(x_0,y_0)$:
 - Para um dado ponto (x₀,y₀), o gradiente fornece a direção de maior crescimento de f(x)
 - É um vetor cujos componentes são as derivadas parciais de f(x,y)
- Descida do gradiente vai na "direção contrária" do gradiente

https://www.analyticsvidhya.com/blog/2017/03/introduction-to-gradient-descent-algorithm-along-its-variants/

Descida do Gradiente

- Inicialize os pesos da rede aleatoriamente
- Enquanto (não converge)
 - Compute o gradiente da função de erro considerando os pesos
 - Atualize os pesos usando o negativo do gradiente
- Retorne os pesos

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d)(-x_{i,d})$$

Como os gradientes são obtidos?

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d} (t_d - o_d)^2 \qquad i \text{ para o exemplo } d$$

$$= \frac{1}{2} \sum_{d} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})$$

$$\frac{\partial E}{\partial w_i} = \sum_{d} (t_d - o_d) (-x_{i,d}) \qquad \text{Lembre-se que:}$$

$$y = u^2 : \frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial y}{\partial x} \text{ with } u = t_d - o_d$$

- O algoritmo de descida do gradiente (GD) mostrado otimiza o erro considerando todos os exemplos (batch)
- Existe uma versão estocástica do GD que atualiza os pesos da rede após cada exemplo ser apresentado (stochastic GD)
- Mini-batch GD usa uma amostra pequena dos dados de treino por época

Esquemas de treinamento

- Batch gradient descent: usa todos os exemplos de treinamento a cada iteração.
- Stochastic gradient descent: usa um exemplo de treinamento a cada iteração
- Mini-batch gradient descent: usa *b* exemplos de treinamento a cada iteração, onde *b* normalmente varia entre 2 e 100 e é potência de 2
 - Vantagem: é fácil de paralelizar, tornando o aprendizado mais rápido que o stochastic

Treinamento do Perceptron

- Diferentes conjuntos iniciais de pesos para o perceptron podem levar a diferentes superfícies de decisão.
 - O problema de ajuste supervisionado de pesos pode ser visto como um processo de busca por um conjunto de pesos que otimizam uma determinada superfície de erro.
 - Uma escolha inadequada da condição inicial da rede pode levar o algoritmo a uma convergência para ótimos locais desta superfície de erro.

Treinamento do Perceptron

Parâmetros de treinamento

Taxa de aprendizado

• Treinamento versus aplicação da rede

- Diferenciar entre o processo de treinamento e aplicação da rede.
- O treinamento da rede corresponde ao processo de ajuste de pesos.
- Após treinada, verificar a qualidade do aprendizado para verificar sua capacidade de generalização.

Redes Perceptron de Uma Camada

Gisele L. Pappa

Leitura Recomendada

A Brief Introduction to Neural Networks,

http://www.dkriesel.com/en/science/
neural_networks, Parte 1

