Licence ST Informatique - S4 - 2004/2005

AL-Examen 2ème session

jeudi 23 juin 2005

Durée 2h.

Documents autorisés

Exercice 1 : On considère la formule de la logique des propositions :

$$f = ((P \longrightarrow Q) \land (P \longrightarrow R)) \longrightarrow (P \land (Q \longrightarrow R))$$

Question 1.1: Trouver une formule, sous forme normale disjonctive, équivalente à la formule f.

Question 1.2 : La formule $R \longrightarrow (P \vee Q)$ est-elle une conséquence de votre formule f? Justifier.

Exercice 2: Le professeur d'AL a enfin réussi à ranger son bureau. Il constate que :

- 1. Tous les tiroirs contiennent des feuilles.
- 2. Aucun des classeurs ne contient d'enveloppe.
- 3. Dans l'un des classeurs, il n'y a que des feuilles.
- 4. S'il n'y a a pas d'enveloppe dans les classeurs, c'est qu'elles sont dans les tiroirs.
- 5. Si on trouve des feuilles dans un tiroir, on est certain de ne pas y trouver d'enveloppe.

Traduire ces 5 énoncés en formules de la logique des prédicats. Vous utiliserez les prédicats unaires $\mathtt{tiroir}(x)$, $\mathtt{feuille}(x)$, $\mathtt{classeur}(x)$ et $\mathtt{enveloppe}(x)$ qui permettent d'identifier le type-de l'objet x, ainsi qu'un prédicat binaire $\mathtt{dans}(x,y)$ qui exprime que l'objet y contient l'objet x.

Exercice 3: On considère le langage rationnel $R = (b^*ba + a^*ab)^*$.

Question 3.1: Trouver une expression rationnelle pour chacun des résiduels du langage R.

Question 3.2: Construire un automate fini déterministe à 3 états pour le langage R.

Question 3.3: Contruire l'automate minimal déterministe pour le langage $R' = a^*b(b^*ba + a^*ab)^*$.

Question 3.4 : Donner une expression rationnelle pour le langage $(a+b)^* \setminus R'$, le complémentaire du langage R'.

Exercice 4: On considère un automate fini déterministe à 4 états $M=(A,Q,q_0,T,\delta)$ avec $A=\{a,b\},\,Q=\{q_0,q_1,q_2,q_3\}$ et on appelle R le langage reconnu par cet automate. On sait que $R_{<5}$, l'ensemble des mots de R de longueur strictement inférieure à 5 est égal à $\{\varepsilon,b,bb,aab,bbb,aaaa,aabb,abab,baab,bbb\}$.

Question 4.1: Montrer que $\delta(q_0, a) \neq q_0$.

Question 4.2: On pose $q_1 = \delta(q_0, a)$. Montrer que $\delta(q_1, a) \neq q_0$ et que $\delta(q_1, a) \neq q_1$.

Question 4.3: On pose $q_2 = \delta(q_1, a)$. Déterminer, en justifiant, les états $\delta(q_2, a)$, $\delta(q_2, b)$ et $\delta(q_1, b)$.

Question 4.4: Sachant, de plus, que $aaaba \in R$, déterminer complétement l'automate M.

Question 4.5: Dire en 2 lignes comment on pourrait vérifier l'égalité $R = (b + ab^*ab + ab^*aab + ab^*a$.