Model for Open Loop calculation of V_{ref}

Given the most general electrical model of a magnet with parameters:

R_c	Cable Resistance
R_m	Magnet Winding Resistance
R_p	Parallel Resistance
L_m	Magnet (Differential) Inductance

The following differential equation must hold true:

$$(R_p + R_m)V(t) + L_m \frac{dV}{dt}(t) = \left[R_c(R_p + R_m) + R_pR_m\right]I_{cir}(t) + (R_p + R_c)L_m \frac{dI_{cir}}{dt}(t)$$

There are different implementation methods in order to solve for V(t).

One way is to substitute $s \to \frac{d}{dt}$ and then choose one of the following discretization methods and eventually write V(t) in terms of past values V(t-1) and $I_{cir}(t-1)$ and current value $I_{cir}(t)$.

Forward Euler	$\frac{z-1}{T} \to s$
Backward Euler	$\frac{z-1}{Tz} \to s$
Tustin	$\frac{2z-1}{Tz+1} \to s$