Terminology

- Digital: also known as discrete, is a signal that at any time can have one of a finite set of possible values.
- Analog: also known as continuous, is a signal that can have one of an infinite number of possible values.
- · Moore's Law: the doubling of IC density every 18 months.
- Sum of Products: an equation written as an ORing of product terms such that no parentheses are present.
 Sum of Minterms: an equation in the sum-of-products form, and every product term is a minterm.
- \bullet Equivalent: two functions that return exactly the same results.
- Complement: also known as inverse, such that the outputs of two functions return exactly the opposite results.
 Optimization: a transformation that improves all criteria of interest or improves some of those criteria without worsening the others.
- Tradeoff: a transformation that improves some criteria at the expense of other criteria of interest.
- Critical Path: the longest path from any input to the circuit's output; i.e. sum the amount of processing time for each possible circuit path and whatever path returns the largest value is the critical path.

- Digital methods of recording data do not deteriorate over time.
- Digital data can be compressed.
- Custom digital circuits take less processing time than a microprocessor.

Voltage-to-Binary 00 0 01 10

Binary-to-Decimal

$$(1011)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = (11)_{10}$$

Decimal-to-Binary (Addition Method)

$$(65)_{10}$$

$$64 + 1 = 65 = (1000001)_2$$

V = 0.012321B = 00000110111001

10

01

Binary-to-Hexadecimal

$${\textstyle \left(11100111\right)_2} \quad {\textstyle \text{NOTE: If length of binary string is not equal to a multiple of four,}} \\ \quad {\textstyle \text{then append zeroes to front of string until it is.}}$$

$$\begin{aligned} & \left(1110\right)_2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = \left(14\right)_{10} = \left(E\right)_{16} \\ & \left(0111\right)_2 = 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = \left(7\right)_{10} = \left(7\right)_{16} \end{aligned}$$

$$(E7)_{16}$$

Hexadecimal-to-Binary

(B0C4),

$$(B)_{16} = (11)_{16} = \frac{1}{8} \frac{0}{4} \frac{1}{2} \frac{1}{1} = (1011)_{2}$$

$$(0)_{16} = (0)_{16} = \frac{0}{8} \frac{0}{4} \frac{0}{2} \frac{0}{1} = (0000)_{2}$$

$$(C)_{16} = (12)_{16} =$$
 $\begin{array}{cccc} & & & & 25 \\ \hline 8 & 4 & 2 & 1 \end{array} = (1100)_2 & & & 5 \overline{128} \\ & & & & -125 \end{array}$

$$(4)_{16} = (4)_{16} = \frac{0}{8} \frac{1}{4} \frac{0}{2} \frac{0}{1} = (0100)_{2}$$

Boolean Algebra Properties

F = a+a'b+acd+c'+ab'c'd

(ab)' = a' + b'

Variables: a, b, c, d Literals: a, a' ,b, a, c, d, c', a, b', c', d Product Terms: a, a'b, acd, c', ab'c'd

Multilevel Logic Optimization

Initial	Optimized			
ab + acd + ace	a(b + c(d + e))			
abcd + abcef	abc(d + ef)			
	_			

Circuit Design Metrics

5 5

-5

Decimal-to-Base 5

 $(128)_{10} \rightarrow (\cdots)_{5}$ 25

5

5 25

-25

23 29 47 43 67

89

- Performance: a measure of execution time for a computation on the system.
- Size: a measure of the number of transistors, or silicon area, of a digital system.
 Power: a measure of the energy consumed by the system per second, directly relating to both the heat generated by the system and to the battery energy consumed by computations.

3 $(1003)_{5}$ (1011000011000100),

Binary / Decimal / Hexidecimal Prime Numbers

В	D	Н	02	2 03	05
0000	00	0	13	3 17	19
0001	01	1	31	1 37	41
0010	02	2	53	3 59	61
0011	03	3	73	3 79	83
0100	04	4			
0101	05	5			
0110	06	6			
0111	07	7			
1000	08	8			
1001	09	9			
1010	10	Α			
1011	11	В			
1100	12	C			
1101	13	D			

K-Map

0

5 1

-0

- Implicants: any legal circle on the K-map.
- Prime Implicants: largest possible legal circles on the K-map. • Essential Prime Implicants: the largest possible circle that is also
- the only circle that covers a particular | on the K-map.

	cd	00	01	11	10	
ab						
00		0	0	×	0	
01		0		X	0	
11		×	×	X	X	
10		0	Ó	\times		
F	= ac	+ bd		bd		ac

Levels: 4 levels

Delay: 3 gate-delays Transistors: (14 inputs)*2 = 28

 $\begin{array}{l} \textbf{Boolean Functions} \\ \textbf{Combinations (Rows): } 2^n, n = number of variables \\ \textbf{Functions: } 2^c, c = number of combinations (rows) \end{array}$

а	b	a'	<i>b</i> '	AND ab	OR $a+b$	NOR $(a+b)^{'}$	XOR $a \oplus b$	(ab)	XNOR $(a \oplus b)$
0	0	1	I	0	0	1	0	1	1
0	1	1	0	0	I	0	1	1	0
-	0	0	-1	0	1	0	1	1	0
-	1	0	0	I		0	0	0	1

Logic Gate Operations

NOR Detects all 0s

XOR Detects odd no

NAND Detects all 1s Detects odd number of 1s XNOR Detects even number of 1s

4x2 priority encoder

