Todo list

Add discu	"casting" between nu ss vectors in general	Numerics-With-Negation-(T) merics	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	Typing Rules	8	
1.1	Literal		
1.	Integers:	$i: { t Integer}$	
		$\overline{Integer[i]: ext{Literal Integer}}$	(1)
2.	Strings (Text):	s: String	
		$\frac{Str[s]: ext{Literal String}}{Str[s]: ext{Literal String}}$	(2)
3.	Real numbers:	$d: exttt{Double}$, ,
		$Dbl[d]: exttt{Literal Real}$	(3)
4.	Whole numbered rea	$\mathrm{ds}\;(\mathbb{Z}\subset\mathbb{R}):$	
		$d: { t Integer}$	
		$\overline{ExactDbl[d]}: exttt{Literal Real}$	(4)
5.	Percentages:	$n: { t Integer} d: { t Integer}$	
		$\overline{Perc[n,d]: exttt{Literal Real}}$	(5)
1.2	Miscellaneous		
1.	Completeness:	$\overline{Complete[]: {\tt Completeness}}$	(6)
		$\overline{Incomplete[]: {\tt Completeness}}$	(7)
2.	AssocOp:		
	(a) Numerics:	(T)	
		$\dfrac{x: \mathtt{Numerics}(\mathtt{T})}{Add[]: \mathtt{AssocOp} \ \mathtt{x}}$	(8)
		$\dfrac{x: exttt{Numerics(T)}}{Mul[]: exttt{AssocOp x}}$	(9)

(b) Bool: And[]: AssocOp Bool(10)Or[]: AssocOp Bool(11)3. UnaryOp: (a) Numerics: Discuss x: NumericsWithNegation(T) Numerics-Neg[]: UnaryOp x x (T) and (12)Numerics-With $x: \mathtt{NumericsWithNegation}(\mathbf{T})$ Negation-Abs[] : UnaryOp x x (13)(T)For Log, Ln, Sin, Cos, Tan, Sec, Csc, Cot, Arcsin, Arccos, Arctan, and Sqrt, please use the following template, replacing "TRG" with the desired operator: $\overline{\$TRG[]}: \mathtt{UnaryOp} \ \mathtt{Real} \ \mathtt{Real}$ (14)Add "casting" be-(b) Vectors: tween nux: NumericsWithNegation(T)merics NegV[]: UnaryOp [x] [x] (15) $x: \mathtt{Numerics}(\mathbf{T})$ $Norm[]: {\tt UnaryOp} \ [{\tt x}] \ {\tt Real}$ (16) $\mathtt{x}:\tau$ Dim[]: UnaryOp [x] Integer (17)(c) Booleans: Not[] : UnaryOp Bool Bool (18)4. BinaryOp: (a) Arithmetic: FracR[]: BinaryOp Real Real Real (19)(b) Bool: $Impl[]: {\tt BinaryOp Bool Bool Bool}$ (20)

 $\overline{Iff[]}: exttt{BinaryOp Bool Bool Bool}$

(21)

(c) Equality:
$$\frac{\mathbf{x} : \tau}{Eq[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (22)$$

$$\frac{\mathbf{x} : \tau}{NEq[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (23)$$
(d) Ordering:
$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{Lt[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (24)$$

$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{Lt[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (24)$$

$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{Gt[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (25)$$

$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{LEq[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (26)$$
(e) Indexing:
$$\frac{\mathbf{x} : \mathbf{x} : \tau}{Index[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (27)$$
(e) Indexing:
$$\frac{\mathbf{x} : \mathbf{x} : \tau}{Index[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Bool}} \qquad (27)$$
(f) Vectors:
$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{Cross[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Ixl} \times \mathbf{x}} \qquad (28)$$
(f) Vectors:
$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{Cross[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Ixl} \times \mathbf{x}} \qquad (30)$$
5. RTopology:
$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{Dot[] : \operatorname{BinaryOp} \times \mathbf{x} \operatorname{Ixl} \times \mathbf{x}} \qquad (30)$$
5. RTopology:
$$\frac{\mathbf{x} : \operatorname{Numerics}(\mathbf{T})}{Continuous[] : \operatorname{RTopology}} \qquad (31)$$

$$\frac{\mathbf{Continuous}}{Continuous[] : \operatorname{RTopology}} \qquad (32)$$
6. DomainDesc:
$$\frac{top : \tau_1 \quad bot : \tau_2 \quad s : \operatorname{Symbol} \quad rtop : \operatorname{RTopology}}{BoundedDD[s, rtop, top, bot] : \operatorname{DomainDesc} \operatorname{Discrete} \quad \tau_1 \quad \tau_2} \qquad (33)$$

 $\overline{AllDD[s,rtop]}$: DomainDesc Continuous topT botT

(34)

7. Inclusive:

$$\overline{Inc[]}: \mathtt{Inclusive}$$
 (35)

$$\overline{Exc[]}:$$
 Inclusive (36)

8. RealInterval:

$$\frac{\mathtt{a}:\tau\quad\mathtt{b}:\tau\quad top: (\texttt{Inclusive, a})\quad bot: (\texttt{Inclusive, b})}{Bounded[top,bot]: \texttt{RealInterval a b}} \tag{37}$$

$$\frac{\mathtt{a}:\tau\quad\mathtt{b}:\tau\quad top: (\texttt{Inclusive, a})}{UpTo[top]: \texttt{RealInterval a b}} \tag{38}$$

1.3 Expr

1. Literals:

$$\frac{\mathbf{x}:\tau\quad l: \mathtt{Literal}\ \mathbf{x}}{Lit[l]: \mathtt{Expr}\ \mathbf{x}} \tag{40}$$

2. Associative Operations:

$$\frac{\mathbf{x} : \tau \quad op : \mathsf{AssocOp} \ \mathbf{x} \quad args : [\mathsf{Expr} \ \mathbf{x}]}{\mathsf{Assoc}[op, args] : \mathsf{Expr} \ \mathbf{x}} \tag{41}$$

3. Symbols:

$$\frac{\mathbf{x}:\tau\quad u:\mathtt{UID}}{C[u]:\mathtt{Expr}\ \mathbf{x}} \tag{42}$$

4. Function Call:

discuss functions in general

5. Case:

$$\frac{\mathbf{x}:\tau\quad c: \texttt{Completeness}\quad ces: \texttt{[(Expr Bool, Expr x)]}}{Case[c,ces]: \texttt{Expr x}} \tag{43}$$

6. Matrices:

$$\frac{\mathbf{x} : \tau \quad es : [[\mathbf{Expr} \ \mathbf{x}]]}{Matrix[es] : \mathbf{Expr} \ \mathbf{x}}$$
(44)

7. Unary Operations:

$$\frac{ \texttt{x} : \tau \quad \texttt{y} : \tau \quad op : \texttt{UnaryOp} \ \texttt{x} \ \texttt{y} \quad e : \texttt{Expr} \ \texttt{x} }{Unary[op,e] : \texttt{Expr} \ \texttt{y} } \tag{45}$$

8. Binary Operations:

$$\frac{\mathbf{x}:\tau\quad\mathbf{y}:\tau\quad\mathbf{z}:\tau\quad op: \texttt{BinaryOp}\;\mathbf{x}\;\mathbf{y}\;\mathbf{z}\quad l: \texttt{Expr}\;\mathbf{x}\quad r: \texttt{Expr}\;\mathbf{y}}{Binary[op,l,r]: \texttt{Expr}\;\mathbf{z}} \tag{46}$$

9. "Big" Operations:

$$\frac{\texttt{x}:\tau \quad op: \texttt{AssocOp x} \quad dom: \texttt{DomainDesc Discrete (Expr x) (Expr x)}}{BigOp[op, dom]: \texttt{Expr x}} \tag{47}$$

10. "Is in interval" operator:

$$\frac{\mathtt{x}:\tau\quad u:\mathtt{UID}\quad itvl:\mathtt{RealInterval}\ (\mathtt{Expr}\ \mathtt{x})\ (\mathtt{Expr}\ \mathtt{x})}{RealI[u,itvl]:\mathtt{Expr}\ \mathtt{x}} \tag{48}$$

1.4 ModelExpr

1.

$$\frac{B C}{A}$$

1.5 CodeExpr

1.

$$\frac{B C}{A}$$