Vorlesungsnotizen zu Numerik für Informatiker

Nicolas Gres

2025-06-11

Inhaltsverzeichnis

Einführung			3
1	Arithmetik		
	1.1	Gleitkommazahlen	4
	1.2	Auslöschung	4
	1.3	Kondition und Stabilität	5
	1.4	Vektor- und Matrixnormen	6
2	Direkte Lösungsverfahren für lineare Gleichungen		
	2.1	Vorwärts-Substitution	8
	2.2	Rückwärts-Substitution	9
	2.3	LR-Zerlegung	9
	2.4	Choelsky-Zerlegung	11
		2.4.1 Berechnung	12
	2.5	QR-Zerlegung	13
		2.5.1 Householder Transformationen	14
		2.5.2 Givens-Rotation	15
3	Lineare Ausgleichsrechnung		
	3.1	Normalengleichung	17
Αŗ	pend	lix	18
	Mat	Iathematische Grundlagen	
		Reihen und Summen	18
		Lineare Algebra	18
Referenzen			19

Einführung

Es handelt sich hierbei um meine Vorlesungsnotizen, basierend auf den Übungsaufzeichnungen, dem offiziellen Skript (Wieners 2025), sowie Passagen aus Bartels (2016).

♦ Vorsicht

Die Notizen sind nicht vollständig und dienen lediglich als Ergänzung zu den Vorlesungsunterlagen.

Solltest du einen Fehler finden, kannst du ein Issue anlegen.

1 Arithmetik

1.1 Gleitkommazahlen

Wir betrachten für eine gegebene Basis $B \geq 2$, einen minimalen Exponent E^- und Längen M und E die endliche Menge der normalisierten Gleitpunktzahlen FL.

$$\mathrm{FL} := \{ \pm B^e \underbrace{\sum_{l=1}^{M} a_l B^{-l}}_{-m} \mid e = E^- + \sum_{k=0}^{E-1} c_k B^k, \ a_l, c_k \in \{0, \dots, B-1\}, \ a_1 \neq 0 \} \cup \{0\}$$

Maschienengenauigkeit

eps := sup
$$\left\{ \frac{|x - fl(x)|}{|x|} \mid 1 < x < 2 \right\} = \frac{B^{1-M}}{2}$$

1.2 Auslöschung

```
N = 2**10

def exp(x):
    """
    Compute the exponential function using Taylor series expansion.
    """
    return np.sum([x**n / math.factorial(n) for n in range(N)], axis=0)

x = 10

z_bad = exp(-x)
z_good = 1 / exp(x)

r = np.exp(-x) # reference
```

```
np.abs(z_bad - r) / r, np.abs(z_good - r) / r
```

(np.float64(6.529424994681785e-09), np.float64(1.4925713791816933e-16))

Quadratische Gleichung

Anstatt $x_2 = p - \sqrt{p^2 - q}$, verwenden wir

$$x_2 = p - \sqrt{p^2 - q} \cdot \frac{p + \sqrt{p^2 + q}}{p + \sqrt{p^2 + q}} = \frac{q}{p + \sqrt{p^2 - q}} = \frac{q}{x_1}$$

(Satz von Vieta) um die Auslöschung zwischen p und $\sqrt{p^2-q}$ zu vermeiden.

```
p = 1e10
q = 1e2

print(np.roots([1, -2*p, q])) # reference

x1 = p + math.sqrt(p**2 - q)

x2_bad = p - math.sqrt(p**2 - q)
x2_good = q / x1

x2_bad, x2_good
```

[2.e+10 5.e-09]

(0.0, 5e-09)

1.3 Kondition und Stabilität

https://www.youtube.com/watch?v=2_Eb-MPUMd8

Die Kondition eines Problems ist ein Maß dafür, wie stark die Abhängigkeit der Lösung von den Daten ist.

Absolute Konditionszahl

$$\kappa_{\rm abs}(x) = |f'(x)|$$

Relative Konditionszahl

$$\kappa_{\rm rel}(x) = \frac{|f'(x)|}{|f(x)|} \cdot |x|$$

Matrix Kondition

$$\kappa_p(A) = ||A||_p \cdot ||A^{-1}||_p$$
 für $p = 1, 2, \infty$

i Hinweis

Für **symmetrische** Matrizen $(A = A^{\top})$ gilt:

- $\sigma(A) \subset \mathbb{R}$ (Spektrum bzw. alle Eigenwerte sind reell) $\|A\|_2 = \rho(A)$ (Septralradius bzw. größter Eigenwert im Betrag) $\kappa_2(A) = \frac{\max_{\lambda \in \sigma(A)} |\lambda|}{\min_{\lambda \in \sigma(A)} |\lambda|}$ (Verhältnis der größten zur kleinsten Eigenwerte im Betrag)

1.4 Vektor- und Matrixnormen

Eine **Norm** auf \mathbb{R}^n ist eine Abbildung $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}_{\geq 0}$ mit den folgenden Eigenschaften:

- 1. $||x|| = 0 \Longrightarrow x = 0$ für alle $x \in \mathbb{R}^n$ (Definitheit);
- 2. $\|x+y\| \leq \|x\| + \|y\|$ für alle $x,y \in \mathbb{R}^n$ (Dreiecksungleichung);
- 3. $\|\lambda x\| = |\lambda| \|x\|$ für alle $\lambda \in \mathbb{R}$ und $x \in \mathbb{R}^n$ (Homogenität).

Wir verwenden für $x \in \mathbb{R}^N$ und $A \in \mathbb{R}^{M \times N}$

$$\begin{split} |x|_1 &= \sum_{n=1}^N |x_n| & \text{1-Norm} \\ |x|_2 &= \sqrt{x^T x} = \left(\sum_{n=1}^N |x_n|^2\right)^{\frac{1}{2}} & \text{Euklidische Norm} \\ |x|_\infty &= \max_{n=1,\dots,N} |x_n| & \text{Supremumsnorm} \end{split}$$

Für Matrizen $A \in \mathbb{R}^{M \times N}$ definieren wir eine allgemeine Norm mit:

$$\|A\|_{op} = \sup_{x \in \mathbb{R}^n, \|x\| = 1} \|Ax\| = \inf \left\{ c \geq 0 : \forall x \in \mathbb{R}^n \|Ax\| \leq c \|x\| \right\}$$

$$\begin{split} \|A\|_1 &= \max_{n=1,\dots,N} \sum_{m=1}^M |A[m,n]| & \text{Spaltensummennorm,} \\ \|A\|_2 &= \sqrt{\rho \left(A^T A\right)} & \text{Spektralnorm,} \\ \|A\|_\infty &= \max_{m=1,\dots,M} \sum_{n=1}^N |A[m,n]| & \text{Zeilensummennorm,} \\ \|A\|_F &= \left(\sum_{m=1}^M \sum_{n=1}^N A[m,n]^2\right)^{\frac{1}{2}} & \text{Frobeniusnorm.} \end{split}$$

Dabei ist

$$\begin{split} \rho(A) &= \max\{|\lambda|: \lambda \in \sigma(A)\} \text{ Spektralradius,} \\ \sigma(A) &= \{\lambda \in \mathbb{C}: \det\left(A - \lambda I_N\right) = 0\} \text{ Spektrum.} \end{split}$$

Es gilt immer

$$|Ax|_p \leq ||A||_p |x|_p$$

für alle $x \in \mathbb{R}^N$ und wegen $\|A\|_2 \leq \|A\|_F$ auch

$$|Ax|_2 \le ||A||_2 |x|_2 \le ||A||_F |x|_2$$

2 Direkte Lösungsverfahren für lineare Gleichungen

2.1 Vorwärts-Substitution

$$L = \begin{pmatrix} 1 & & & & \\ l_{21} & 1 & & & \\ l_{31} & l_{32} & 1 & & \\ \vdots & \vdots & \vdots & \ddots & \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{pmatrix}$$

Die Vorwärts-Substitution löst $L \cdot \mathbf{y} = \mathbf{b}$ (normierte untere Dreiecksmatrix), indem wir über die Zeilen iterieren und dabei die Lösungen der vorheringen \mathbf{x}_j für die Berechung des aktuellen \mathbf{x}_i verwenden ($\mathbf{x}_1 = \mathbf{b}_1$).

Die Laufzeit liegt somit in $O(n^2)$.

```
def forward_sub(lower, rhs):
    n = lower.shape[0]
    solution = np.zeros(n)
    for i in range(n):
        solution[i] = rhs[i]
        for j in range(i):
            solution[i] -= lower[i, j] * solution[j]
            solution[i] = solution[i] / lower[i, i]
    return solution
```

```
forward_sub(np.array([
       [1, 0, 0],
       [2, 1, 0],
       [3, 4, 1]]
), np.array([1, 2, 3]))
```

```
array([1., 0., 0.])
```

2.2 Rückwärts-Substitution

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} & \dots & r_{1n} \\ & r_{22} & r_{23} & \dots & r_{2n} \\ & & r_{33} & \dots & r_{3n} \\ & & & \ddots & \vdots \\ & & & & r_{nn} \end{pmatrix}$$

Die Rückwärts-Substitution löst $R \cdot \mathbf{x} = \mathbf{y}$, indem wir von der letzten Zeile aus das verfahren der Vorwärts-Substitution anwenden.

Die Laufzeit liegt somit ebenfalls in $O(n^2)$.

```
def backward_sub(upper, rhs):
    n = upper.shape[0]
    solution = np.zeros(n)
    for i in range(n - 1, -1, -1):
        tmp = rhs[i]
        for j in range(i + 1, n):
            tmp -= upper[i, j] * solution[j]
            solution[i] = tmp / upper[i, i]
    return solution
```

```
backward_sub(np.array([
    [2, 2, 3],
    [0, 1, 4],
    [0, 0, 1]]
), np.array([1, 0, 0]))
```

```
array([0.5, 0., 0.])
```

2.3 LR-Zerlegung

(en. LU-Decomposition)

https://www.youtube.com/watch?v=BFYFkn-eOQk

⚠ Warnung

Die 1-en auf der Diagonalen der L-Matrix bleiben beim Zeilentauschen unverändert

Die LR-Zerlegung lässt sich mittels des Gauß-Algorithmus bestimmen, indem wir A auf eine untere Dreiecksmatrix R gaußen und uns die Operationen in L "merken". Sie ist eindeutig und benötigt $O(n^3)$ Operationen.

Die Berechnung ist nicht stabil.

Hinreichende Bedingungen für die Exsistenz einer LR-Zerlegung für eine **quadratische** Matrix A.

1. strikt diagonal-dominant, daher das Diagonalelement ist größer als die Summe aller anderen Elemente in der Zeile, bzw.

$$|A[n,n]| > \sum_{\substack{k=1 \\ k \neq n}}^N |A[n,k]| \quad \text{ für } n=1,\dots,N$$

2. positiv definit, daher alle Eigenwerte > 0, bzw.

$$x^{\top}Ax > 0$$
 für alle $x \in \mathbb{R}^N, x \neq 0$.

Falls diese Bedingungen nicht gegeben sind, können wir mittels **Zeilenvertauschung** (Permutationsmatrix P) eine LR-zerlegbare Matrix PA in $O(n^3)$ erzeugen.

```
def lu_decomposition(matrix):
    n = matrix.shape[0]
    lower = np.zeros(shape=matrix.shape)
    upper = np.zeros(shape=matrix.shape)
    for j in range(n):
```

```
lower[j][j] = 1.0
for i in range(j + 1):
    first_sum = sum(upper[k][j] * lower[i][k] for k in range(i))
    upper[i][j] = matrix[i][j] - first_sum
    for i in range(j, n):
        second_sum = sum(upper[k][j] * lower[i][k] for k in range(j))
        lower[i][j] = (matrix[i][j] - second_sum) / upper[j][j]
    return lower, upper

def solve_with_lu(matrix, rhs):
    lower, upper = lu_decomposition(matrix)
    y = forward_sub(lower, rhs)
    return backward_sub(upper, y)
```

```
matrix = np.array([[2.0, 1.0],
    [1.0, 4.0]])
rhs = np.array([1.0, 2.0])
solution = solve_with_lu(matrix, rhs)
print("solution", solution)
test = rhs - np.dot(matrix, solution)
print("test ",test)
```

```
solution [0.5 0.]
test [0. 1.5]
```

2.4 Choelsky-Zerlegung

Sei $A \in \mathbb{R}^{N \times N}$ symmetrisch und positiv definit. Dann existiert genau eine Cholesky-Zerlegung $A = LL^{\top}$ mit einer regulären unteren Dreiecksmatrix L.

Es handelt sich somit um eine Spezialisierung der LR-Zerlegung für symmetrisch, positiv definite Matrizen.

$$A = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 (2.1)

$$= \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{pmatrix} \equiv LL^{T}$$
 (2.2)

$$= \begin{pmatrix} l_{11}^2 & l_{21}l_{11} & l_{31}l_{11} \\ l_{21}l_{11} & l_{21}^2 + l_{22}^2 & l_{31}l_{21} + l_{32}l_{22} \\ l_{31}l_{11} & l_{31}l_{21} + l_{32}l_{22} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{pmatrix}$$
(2.3)

2.4.1 Berechnung

Diagonalelemente:

$$l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{kj}^2}$$

Rest:

$$l_{ik} = \frac{1}{l_{kk}} \left(a_{ik} - \sum_{j=1}^{k-1} l_{ij} l_{kj} \right)$$

```
def cholesky_decomposition(A):
    n = matrix.shape[0]
    lower = np.zeros(matrix.shape)
    lower[0, 0] = np.sqrt(matrix[0, 0])
    for n in range(1, n):
        y = forward_sub(lower[:n, :n], matrix[n, :n]) # linalg.solve_triangular(lower[:n, :n])
        lower[n, :n] = y
        lower[n, n] = np.sqrt(matrix[n, n] - np.dot(y, y))
    return lower

def solve_with_cholesky(matrix, rhs):
    lower = cholesky_decomposition(matrix)
    y = forward_sub(lower, rhs)
    return backward_sub(lower.transpose(), y)
```

```
matrix = np.array([[2.0, 1.0],
    [1.0, 4.0]])
rhs = np.array([1.0, 2.0])
rhs = np.array([1.0, 2.0])
solution = solve_with_cholesky(matrix, rhs)
print("solution",solution)
test = rhs - np.dot(matrix, solution)
print("test ",test)
```

```
solution [0.70710678 0. test [-0.41421356 1.29289322]
```

- Die Cholesky-Zerlegung ist stabil: Es gilt $\kappa_2(L)^2 = \kappa(A)$
- Die Berechnung der Cholesky-Zerlegung benötigt nur halbsoviele Operationen wie die Berechnung einer LR-Zerlegung.
- Matrizen mit einer geeigneten Hüllenstruktur (viele Nullelemente wie bei der Bandmatrix) können effizienter gelöst werden (Bandmatrix in $O(NM^2)$)

Abbildung 2.2: Schematische Darstellung einer Bandmatrix

2.5 QR-Zerlegung

Zu $A \in \mathbb{R}^{M \times N}$ existiert eine QR-Zerlegung A = QR in eine orthogonale Matrix $Q \in \mathbb{R}^{M \times M}$ mit $Q^{\top}Q = I_M$ und eine obere Dreiecksmatrix $R \in \mathbb{R}^{M \times N}$ mit R[m,n] = 0 für m > n.

- Das LGS Ax = b kann durch die Berechnung $y = Q^{T}b$ und darauf mit Rücksubstitution Rx = y gelöst werden.
- Asymptotischer Aufwand in $O(N^3)$

Rotationen und Drehungen sind orthogonale Matrizen $Q \in \mathbb{R}^{N \times N}$ mit

- $\begin{array}{l} \bullet \ \ QQ^\top = I_N, \ Q^\top Q = I_N, \ \text{so dass} \ Q^{-1} = Q^\top, \\ \bullet \ \ |Qv|_2 = |v|_2 \ \text{und} \ (Qv)^\top (Qw) = v^\top w \ \text{L\"{a}ngen und Winkel erhaltend}, \end{array}$
- $\kappa_2(Q) = 1$.

2.5.1 Householder Transformationen

Wir erhalten N orthogonale Vektoren für A, indem wir den ersten Spaltenvektor v_1 mittels einer Householder Transformation (Spiegelung) Q_1 auf die x-Achse (e_1) abbilden und dies sukzessiv für die nächsten Spaltenvektoren v_i aus $Q_1\cdot\dots\cdot Q_{i-1}\cdot A$ wiederholen (dabei vernachlässigen wir die ersten i Zeilen, da wir nur einen Untervektorraum in \mathbb{R}^{N-i} betrachten).

Abbildung 2.3: QR-Zerlegung mittels Householder Transformationen berechnen

2.5.2 Givens-Rotation

Alternativ können wir Givens-Rotationen verwenden, um die Matrix A in eine obere Dreiecksmatrix zu überführen. Eine Givens-Rotation ist eine orthogonale Matrix $Q \in \mathbb{R}^{N \times N}$, die die m-te und n-te Zeile von A rotiert, um die Elemente unterhalb der Hauptdiagonalen zu eliminieren.

Abbildung 2.4: QR-Zerlegung mittels Givens-Rotation

3 Lineare Ausgleichsrechnung

Anstatt eine extakte Lösung zu finden, können wir auch eine Näherungslösung suchen, die die Summe der Abweichungen minimiert. Dies wird als lineare Ausgleichsrechnung bezeichnet.

3.1 Normalengleichung

$$A^{\top}Ax = A^{\top}b$$

ist äquivalent zur Minimierung von $\|Ax-b\|_2$

- Wenn $A^{\top}A$ invertierbar ist, ist die Lösung eindeutig.
- Wenn Kern $\{v \in \mathbb{R}^N : Av = 0\} \neq \{0\}$, dann ist die Lösung nicht eindeutig. In diesem Fall ist das Problem nicht sachgemäß gestellt!

Lösungsverfahren: - Berechne QR-Zerlegung von A - Berechne $A^{\top}A$ mittels Cholesky-Zerlegung

Appendix

Mathematische Grundlagen

Reihen und Summen

Analysis

Für alle reellen $q \neq 1$ und für alle $n \in \mathbb{N}_0$ ist:

$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Der Grenzwert ist dementsprechend:

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

Lineare Algebra

 $2\times 2\text{-Matrix invertieren}$

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \quad \text{ then } \quad A^{-1} = \frac{1}{ad-bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

Referenzen

Bartels, Sören. 2016. Numerik 3x9: Drei Themengebiete in jeweils neun kurzen Kapiteln. 1. Aufl. 2016. Springer-Lehrbuch. Berlin Heidelberg: Springer Spektrum. https://doi.org/10.1007/978-3-662-48203-2.

Wieners, Christian. 2025. "Einführung in Die Numerische Mathematik".