Coxeter frieze patterns

Antoine de Saint Germain

August 14, 2024

Chapter 1

Background on frieze patterns

Throughout this document, we will study frieze patterns of finite *height*. This terminology (as compared to finite *width* or finite *order*) is unconventional but more convenient for formalisation. For us, the height of a frieze pattern corresponds to the number of rows, including the rows of ones but *excluding* the rows of zeros.

1.1 Field-valued patterns

Throughout this section, we fix an arbitrary field F.

Definition 1.1. Fix $n \in \mathbb{N}^*$. A map $f : \{0, 1, ..., n, n + 1\} \times \mathbb{Z} \longrightarrow F$ is called an F-valued pattern of height n if,

- 1) for all $m \in \mathbb{Z}$, f(0,m) = f(n+1,m) = 0,
- 2) for all $m \in \mathbb{Z}$, f(1,m) = f(n,m) = 1, and
- 3) for all $(i, m) \in \{1, 2, ..., n\} \times \mathbb{Z}$, we have

$$f(i,m)f(i,m+1) = 1 + f(i+1,m)f(i-1,m+1).$$
(1.1)

An *F*-valued pattern *f* of height *n* is said to be *nowhere zero* if $f(i, m) \neq 0$, for all $i \in \{1, ..., n\}$ and for all $m \in \mathbb{Z}$.

Lemma 1.2. Let f be a nowhere-zero F-valued pattern of height n. For all m, we have

$$\begin{split} f(i+2,m) &= f(2,m+i)f(i+1,m) - f(i,m), & i \in \{0,\dots,n-1\} \\ f(i,m) &= f(n-1,m)f(i+1,m-1) - f(i+2,m-2), & i \in \{0,n-1\}. \end{split}$$

 ${\it Proof.}$ We begin by proving the first statement. That is, we prove

$$P_i: \forall m \in \mathbb{Z}, f(i+2,m) = f(2,m+i+1)f(i+1,m) - f(i,m),$$

for $i \in \{0, ..., n-1\}$. We do so by induction on i.

Base case P_0 : We have that for all $m \in \mathbb{Z}$, f(2,m)f(1,m) - f(0,m) = f(2,m+1) * 1 - 0 = f(2,m).

Inductive hypothesis. Suppose that our claim holds for some $i \in \{0, ..., n-2\}$ fixed. Then,

$$\begin{split} f(i+3,m)f(i+1,m+1) &= f(i+2,m)f(i+2,m+1) - 1 \\ &= f(i+2,m)(f(2,m+i+1)f(i+1,m+1) - f(i,m+1)) - 1 \\ &= f(i+2,m)f(2,m+i+1)f(i+1,m+1) - (f(i+2,m)f(i,m+1) + 1) \\ &= f(i+2,m)f(2,m+i+1)f(i+1,m+1) - f(i+1,m)f(i+1,m+1). \end{split}$$

Since f is nowhere-zero, we may divide both sides of the equation by f(i+1, m+1) to obtain the desired equality.

The second statement is proved almost identically. Namely, we prove

$$Q_i: \forall m \in \mathbb{Z}, f(i,m) = f(n-1,m)f(i+1,m-1) - f(i+2,m-2),$$

by induction on i, starting with i = n - 1 and proving the inductive step $Q_i \Rightarrow Q_{i-1}$.

Base case Q_{n-1} : for all $m \in \mathbb{Z}$, f(n-1,m)f(n,m-1) - f(n+1,m-2) = f(n-1,m)*1-0 =f(n-1,m).

Inductive hypothesis. Suppose that Q_{i+1} holds for some fixed $i \in \{0, ..., n-2\}$. Then,

$$\begin{split} f(i,m)f(i+2,m-1) &= f(i+1,m-1)f(i+1,m) - 1 \\ &= f(i+1,m-1)(f(i+2,m-1)f(n-1,m) - f(i+3,m-2)) - 1 \\ &= f(i+1,m-1)f(n-1,m)f(i+2,m-1) - (f(i+1,m-1)f(i+3,m-2) + 1) \\ &= f(i+1,m-1)f(n-1,m)f(i+2,m-1) - f(i+2,m-2)f(i+2,m-1). \end{split}$$

Again since f is nowhere-zero, dividing by f(i+2, m-1) on both sides we obtain Q_i .

Proposition 1.3. Let f be a nowhere-zero F-valued pattern of height n. Then, for all $m \in \mathbb{Z}$ and all $i \in \{0, ..., n+1\}$, we have

$$f(i,m) = f(i,m+n+1).$$

Proof. We prove a stronger statement, called the *glide symmetry* of frieze patterns. First, consider the map $\rho_n: \{0, 1, \dots, n+1\} \times \mathbb{Z} \longrightarrow \{0, 1, \dots, n+1\} \times \mathbb{Z}$ given by

$$\rho_n(i,m) = (n+1-i, m+i). \tag{1.2}$$

We show that every nowhere-zero F-valued pattern of height n is ρ_n -invariant, i.e. satisfies

$$f(\rho_n(i,m)) = f(i,m), \qquad \forall (i,m) \in \{0,1,\ldots,n+1\} \times \mathbb{Z}.$$

The proposition will then follow by observing that $\rho_n^2:(i,m)\mapsto(i,m+n+1)$. Thus, consider the statement

$$P_i: \forall m \in \mathbb{Z}, f(i,m) = f(n+1-i,m+i),$$

where $i \in \{0, \dots, n+1\}$. To prove that P_i holds for all i, it is sufficient to prove that P_0 , P_1 hold, $\begin{aligned} \text{and that } P_i \wedge P_{i+1} \Rightarrow P_{i+2}. \\ P_0: \text{for all } m \in \mathbb{Z}, f(0,m) = 0 = f(n+1,m). \end{aligned}$

 $P_1: \text{for all } m \in \mathbb{Z}, f(1,m) = 1 = f(n,m+1).$

Now suppose we are given $i \in \{0, 1, \dots, n-1\}$ such that P_i and P_{i+1} hold. Then, for any fixed $m \in \mathbb{Z}$, we have

$$\begin{split} f(i+2,m) &= f(2,m+i)f(i+1,m) - f(i,m) \\ &= f(n-1,m+i+2)f(n-i,m+i+1) - f(n+1-i,m+i) \\ &= f(n-i-1,m+i+2). \end{split}$$

Corollary 1.4. Let f be a nowhere-zero F-valued pattern of height n. Then, $Im(f) := \{f(i, m) : f(i, m) : f$ $i \in \{1, ..., n\}, m \in \mathbb{Z}\}$ is a finite set.

Proof. Consider the finite set $\mathcal{D} = \{(i, m) : i \in \{1, ..., n\}, m \in \{0, ..., n\}\}$. By Proposition 1.3,

$$Im(f) = \{ f(i, m) : (i, m) \in \mathcal{D} \},\$$

and the right-hand side is obviously finite.

1.2 Arithmetic frieze patterns

We now turn to arithmetic frieze patterns. We begin with a preliminary definition.

Definition 1.5. A \mathbb{Q} -valued pattern of height n is said to be positive if, for all $m \in \mathbb{Z}$ and all $i \in \{1, ..., n\}$, we have $f(i, m) \in \mathbb{Q}_{>0}$.

Definition 1.6. A \mathbb{Q} -valued pattern of height n is said to be an arithmetic frieze pattern (of height n) if it takes values in $\mathbb{Z}_{>0}$. We denote by Frieze(n) the set of arithmetic frieze patterns of height n.

We now introduce an auxiliary object called an n-diagonal.

Definition 1.7. Let n be a positive integer. By an n-diagonal, we mean any n-tuple $(a_1, ..., a_n)$ of positive integers such that $a_1 = a_n$ and

$$a_i \mid a_{i-1} + a_{i+1}, \qquad i \in \{2, \dots, n-1\}.$$

We denote by Diag(n) the set of n-diagonals.

Proposition 1.8. Let f be an arithmetic frieze pattern of height n. For all $m \in \mathbb{Z}$, the n-tuple

$$(f(1,m),f(2,m),\dots,f(n,m))$$

is an n-diagonal.

Proof.

We prove a couple of key properties about n-diagonals.

Lemma 1.9. Fix a positive integer n. The set Diag(n) is non-empty.

Proof. The *n*-tuple $(1,1,\ldots,1)$ consisting entirely of 1s is clearly an *n*-diagonal.

We conclude this section with a discussion of upper bounds on the entries of an n-diagonal.

Definition 1.10. The Fibonacci sequence $(F_n)_{n\in\mathbb{N}}$ is defined by $F_0=0, F_1=1$ and the recursive formula

$$F_n = F_{n-1} + F_{n-2}$$
.

Lemma 1.11. In an n-diagonal (a_1, \ldots, a_n) , there exists an index $i \in \{2, \ldots, n-1\}$ such that $a_i = a_{i-1} + a_{i+1}$.

Proof.

Proposition 1.12. Fix a positive integer n, and let $(a_1, ..., a_n) \in \text{Diag}(n)$. For any $i \in \{1, ..., n\}$, we have $a_i \leq F_n$.

Proof. By induction on n, and using Lemma 1.11.

Chapter 2

Sequence of maxima of frieze patterns

In $\S 1$, we introduced the notion of an (arithmetic) frieze pattern of height n, where n is a positive integer.

In particular, we showed that each (arithmetic) frieze pattern of height n takes on finitely many values (Corollary 1.4).

We now show that there are finitely many arithmetic frieze patterns of height n.

Lemma 2.1. Fix a positive integer n. The set Frieze(n) is non-empty.

Proof. The proof of Lemma 1.9 showed that $(1,1,\ldots,1)$ is an n-diagonal. By Proposition ??, $(FR_n)^{-1}(1,1,\ldots,1)$ is an arithmetic frieze pattern of height n.

Proposition 2.2. Fix a positive integer n. The set Frieze(n) is finite.

Proof.

This leads to the following two definitions.

Definition 2.3. For each $n \in \mathbb{N}^*$ and each $f \in \text{Frieze}(n)$, there is a well-defined positive integer

$$u_n(f) := \max(f(i,m) : (i,m) \in \{1,\dots,n\} \times \mathbb{Z}).$$

Definition 2.4. For each n, there is a well-defined positive integer, called the maximum value among arithmetic frieze patterns of height n, which we write as

$$u_n:=\max(u_n(f):f\in \operatorname{Frieze}(n)).$$

We are now able to formulate and prove the main theorem of this section.

Theorem 2.5. For all $n \ge 1$, we have

$$u_n = F_n$$
.

We break down the proof into two lemmas.

Lemma 2.6. For all $n \ge 1$, we have

$$u_n \geq F_n$$
.

Proof. We construct, for each n, a frieze pattern containing the value F_{n+2} . By Proposition $\ref{eq:construction}$, it is sufficient to specify an n-tuple (a_1,\ldots,a_n) of positive integers such that $a_1=a_n=1$ and

$$a_i \mid a_{i-1} + a_{i+1}, \qquad i \in \{2, \dots, n-1\}. \tag{2.1}$$

1) If n is odd, one sees by a direct computation that the n-tuple

$$(F_2, F_4, F_6, \dots, F_{n-1}, F_n, F_{n-2}, F_{n-4}, \dots, F_5, F_3, F_1),$$

satisfies the conditions of (2.1).

2) If n is even, the n-tuple

$$(F_2,F_4,F_6,\dots,F_{n-2},F_n,F_{n-1},F_{n-3},\dots,F_5,F_3,F_1),$$

satisfies the conditions of (2.1).

We now turn to the reverse equality.

Proposition 2.7. For all $n \ge 1$, we have

$$u_n \leq F_n$$
.

Proof.