Maximum likelihood estimation

Stat 250

Click here for PDF version

Joint probability, with a twist

$$P(X_1 = 3, X_2 = 5, X_3 = 7) = (1 - p)^{12}p^3, \quad 0$$

Your turn

- 1. Let Y_1, \ldots, Y_n be i.i.d. draws from a Poisson(λ) distribution. Find the maximum likelihood estimator for λ .
- 2. Let X_1, \ldots, X_n be a random sample (that is, i.i.d. draws) from a distribution with PDF

$$f(x|\theta) = (\theta + 1)x^{\theta}, \quad 0 \le x \le 1.$$

Find the maximum likelihood estimator for a random sample of size \mathbf{n} .

Problematic case

Suppose $X_1 = X_2 = X_3 = 1$, then $L(p) = p^3$, 0 .

L(p) is a big as possible when p is as large as possible But p < 1, so p can get arbitrarily close

to 1, but can't reach

⇒ MLE does not exist!

it