The Jacobian Property in *T*-convex fields

Erick Garcia Ramirez

University of Leeds

Summer School in Tame Geometry, University of Konstanz, 18-23 July 2016

Outline

- T-convex fields
- 2 The multidimensional Jacobian property (JP)
- 3 JP in power bounded *T*-convex fields
- 4 Comments on the proof

T-convexity

• T an o-minimal expansion of the theory of real closed fields in a language $L \supseteq L_{rings}$.

Definition

For $R \models T$, a subring $V \subseteq R$ is a T-convex subring of R if: (1) V is a proper convex subring and (2) $f(V) \subseteq V$ for all 0-definable continuos functions $f: R \longrightarrow R$.

T-convexity

• T an o-minimal expansion of the theory of real closed fields in a language $L \supseteq L_{rings}$.

Definition

For $R \models T$, a subring $V \subseteq R$ is a T-convex subring of R if: (1) V is a proper convex subring and (2) $f(V) \subseteq V$ for all 0-definable continuos functions $f: R \longrightarrow R$.

- Convexity of $V \Rightarrow V$ is a valuation ring.
- (R, V) is called a T-convex field, considered as a valued field.

Facts

- (R, V) is Henselian of equicharacteristic 0, in fact: the residue field \overline{R} models T.
- (R, V) is a weakly o-minimal structure.
- T power bounded $\Rightarrow \Gamma$ o-minimal.
- T_{convex} := the theory of all pairs (R, V) with $R \models T$ and $V \subseteq R$ a T-convex subring in the language $L \cup \{V\}$ is complete and weakly o-minimal.

Auxiliary sorts

The leading term algebra $RV := R^{\times}/(1+M)$.

Auxiliary sorts

The leading term algebra RV := $R^{\times}/(1+M)$.

Definition

 $\mathsf{RV}^{(n)}$ is the quotient of R^n by the equivalence relation $x \sim y$ iff either x = y = 0 or v(x - y) > v(x).

• rv : $K^n \longrightarrow RV^{(n)}$ denotes the canonical map.

Auxiliary sorts

The leading term algebra RV := $R^{\times}/(1+M)$.

Definition

 $\mathsf{RV}^{(n)}$ is the quotient of R^n by the equivalence relation $x \sim y$ iff either x = y = 0 or v(x - y) > v(x).

• rv : $K^n \longrightarrow RV^{(n)}$ denotes the canonical map.

Definition (Auxiliary sorts)

RV^{eq} is the union of all the imaginary sorts defined from RV⁽ⁿ⁾ $(n \ge 1)$.

- \overline{R} and Γ are auxiliary sorts.
- $L_{RV} = L +$ sorts in RV^{eq} and the canonical maps from the $RV^{(n)}$'s into them.

Jacobian property

Definition (Jacobian property)

Let X be a subset of R^n and $f: X \longrightarrow R$ a function. We say that f has the **Jacobian property** on X if either f is constant on X or there exists $z \in R^n \setminus \{0\}$ such that for all $x, x' \in X$,

$$v(f(x)-f(x')-\langle z,x-x'\rangle)>v(x-x')+v(z).$$

The case n=1 and its positive characteristic variant are used in Motivic Integration à la Cluckers-Loeser.

Jacobian Property in R

Desired Result

Let $A \subseteq R \cup RV^{eq}$ and $f : R^n \longrightarrow R$ be an A-definable function. Then there are an auxiliary sort $S \subseteq RV^{eq}$ and an A-definable function $\chi : R^n \longrightarrow S$ such that f has the Jacobian property on every fiber $\chi^{-1}(q)$ of dimension n.

Jacobian Property in R

Desired Result

Let $A \subseteq R \cup RV^{eq}$ and $f: R^n \longrightarrow R$ be an A-definable function. Then there are an auxiliary sort $S \subseteq RV^{eq}$ and an A-definable function $\chi: R^n \longrightarrow S$ such that f has the Jacobian property on every fiber $\chi^{-1}(q)$ of dimension n.

• No chance of obtaining this for arbitrary T.

Jacobian Property in R

Desired Result

Let $A \subseteq R \cup RV^{eq}$ and $f: R^n \longrightarrow R$ be an A-definable function. Then there are an auxiliary sort $S \subseteq RV^{eq}$ and an A-definable function $\chi: R^n \longrightarrow S$ such that f has the Jacobian property on every fiber $\chi^{-1}(q)$ of dimension n.

No chance of obtaining this for arbitrary T.

Theorem

Assume that T is power bounded. The desired result holds for R.

Importance: Consequences

Consequence 1 (Halupczok, 2014)

Existence of "nice" stratifications for definable subsets of R^n .

Importance: Consequences

Consequence 1 (Halupczok, 2014)

Existence of "nice" stratifications for definable subsets of R^n .

Consequence 2

Applications to local geometry of definable sets:

- inducing stratifications on tangent cones in Rⁿ,
- classical stratifications for L-definable subsets of \mathbb{R}^n and their tangent cones.

Comments on the proof

Consequence 1 is actually employed in one proposed way of proving the theorem.

Sketch of proof.

Induction on *n*.

n = 0, 1: follow, for instance, from work of Y. Yin.

Comments on the proof

Consequence 1 is actually employed in one proposed way of proving the theorem.

Sketch of proof.

Induction on *n*.

n = 0, 1: follow, for instance, from work of Y. Yin.

Suppose JP holds for any A-definable function $R^d \longrightarrow R$, d < n.

Comments on the proof

Consequence 1 is actually employed in one proposed way of proving the theorem.

Sketch of proof.

Induction on n.

n = 0, 1: follow, for instance, from work of Y. Yin.

Suppose JP holds for any A-definable function $R^d \longrightarrow R$, d < n.

For $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ A-definable:

- (van den Dries-Lewenberg) There is a finite partition of \mathbb{R}^n into convex definable sets X_i such that $f|_{X_i}$ is o-minimally definable (i.e. L-definable).
- Jac (f) exists on X_i .
- Further partitioning: There is an A-definable $\rho: R^n \longrightarrow S$ such that rv(Jac(x)) is constant on every fiber of ρ .

- Induction hypothesis \Rightarrow there is a "nice" A-definable stratification for ρ .
- The stratification gives us an A-definable map $\chi: R^n \longrightarrow \mathsf{RV}^{eq}$ refining ρ .
- From properties of χ , a long but not difficult calculation shows that f has the Jacobian property on any fiber of χ of dimension n.

T-convex fields
The multidimensional Jacobian property (JP)
JP in power bounded T-convex fields
Comments on the proof

THANKS!