Algoritmos e Estuturas de Dados Inverno 2006

- Para avaliar e comparar o desempenho de 2 algoritmos podemos executar ambos várias vezes para ver qual é o mais rápido.
- Este método empírico pode fornecer indicações sobre o desempenho mas
 - consome demasiado tempo.
 - continua a ser necessário uma análise mais detalhada para validar os resultados.
- Existem bases científicas irredutíveis para caracterizar, descrever e comparar algoritmos.

- Que dados usar?
 - dados reais: verdadeira medida do custo de execução
 - dados aleatórios: assegura-nos que as experiências testam o algoritmo e não apenas os dados específicos
 - Caso médio
 - dados perversos: mostram que o algoritmo funciona com qualquer tipo de dados
 - Pior caso
 - dados benéficos:
 - Melhor caso

- Melhorar algoritmos:
 - analisando o seu desempenho
 - fazendo pequenas alterações para produzir um novo algoritmo
 - identificar as abstracções essenciais do problema.
 - comparar algoritmos com base no seu uso dessas abstracções.
- É fundamental para percebermos um algoritmo de forma a tomarmos partido dele de forma eficiente:
 - compararmos com outros
 - prevermos o desempenho
 - escolher correctamente os seus parâmetros

- É fundamental separar a análise da implementação, i.e. identificar as operações de forma abstracta:
 - ex:quantas vezes id[p] é acedido
 - Uma propriedade (imutável) do algoritmo
 - não é tão importante saber quantos nanosegundos essa instrução demora no meu computador!
 - Uma propriedade do computador
- O número de operações abstractas pode ser grande, mas
 - normalmente o desempenho depende apenas de um pequeno número de parâmetros
 - procurar determinar a frequência de execução de cada um desses operadores (estabelecer estimativas). Cátia Vaz

- Dependência nos dados de entrada
 - dados reais geralmente não disponíveis:
 - assumir que são aleatórios: caso médio
 - podem não ser representativos da realidade
 - perversos: pior caso
 - por vezes difícil de determinar
 - podem nunca acontecer na realidade
 - benéficos: melhor caso
- Normalmente os dados são boas indicações quanto ao desempenho de um algoritmo

- O tempo de execução geralmente depende de um único parâmetro N
 - tamanho de um ficheiro a ser processado, ordenado, etc
 - usualmente relacionado com o número de dados a processar
- Pode existir mais do que um parâmetro!

- Os algoritmos têm tempo de execução proporcional a:
 - **1**
 - muitas instruções são executadas uma só vez ou poucas vezes
 - se isto for verdade para todo o programa diz-se que o seu tempo de execução é constante

log N

- tempo de execução é logarítmico
- cresce ligeiramente à medida que Ncresce
- quando N duplica log N aumenta mas muito pouco; apenas duplica quando N aumenta para Nº

N

- tempo de execução é linear
- situação óptima quando é necessário processar N dados de entrada (ou produzir N dados na saída)

N

- tempo de execução é linear
- situação óptima quando é necessário processar N dados de entrada (ou produzir N dados na saída)

N log N

 típico quando se reduz um problema em sub-problemas, se resolve estes separadamente e se combinam as soluções

· NP

- tempo de execução quadrático
- típico quando é preciso processar todos os pares de dados de entrada
- prático apenas em pequenos problemas (ex: produto matriz vector)

- N³
 - tempo de execução cúbico
 - ex: produto de matrizes
- 2^N
 - tempo de execução exponencial
 - provavelmente de pouca aplicação prática
 - típico em soluções de força bruta
 - ex: cálculo da saída de um circuito lógico de N entradas

Valores típicos de várias funções

lg N	\sqrt{N}	N	$N \lg N$	$N (lg N)^2$	$N^{3/2}$	N^2
3	3	10	33	110	32	100
7	10	100	664	4414	1000	10000
10	32	1000	9966	99317	31623	1000000
13	100	10000	132877	1765633	1000000	100000000
17 20	316 1000	100000 1000000	1660964 19931569	27588016 397267426	31622777 1000000000	1000000000 1000000000000

<u>segundos</u>					
10 ²	1.7 minutos				
10 ⁴	2.8 horas				
10 5	1.1 dias				
10 ⁶	1.6 semanas				
10^{7}	3.8 meses				
10 ⁸	3.1 anos				
10°	3.1 décadas				
1010	3.1 séculos				
1011	пипса				

Conversão de Segundos

Cátia Vaz

operações por	tamanh milhão	o do prob	do problema 1		tamanho do problema 1 bilião	
segundo	N	NIgN	N ²	N	NIgN	N ²
106	segundos	segundos	semanas	horas	horas	nunca
109	instantes	instantes	horas	segundos	segundos	décadas
1012	instantes	instantes	segundos	instantes	instantes	semanas

função	nome	valor típico	aproximação
X	floor function	3.14 = 3	×
X	ceiling function	3.14 = 4	×
lg N	binary logarithm	lg 1024 = 10	1.44 In N
F _N	Fibonacci numbers	F ₁₀ = 55	
H _N	harmonic numbers	H ₁₀ 2.9	In N + g
N!	factorial function	10! = 3628800	(N/e) ^N
lg(N!)		lg(100!) 520	N lg N - 1.44N
	e = 2.71828 g = 0.57721 In 2 = 0.693147 Ig e = 1/In2 = 1.4426		

Números Harmónicos

N

- HN= ∑ 1/I
 i=1
 - In N área debaixo da curva de 1/x entre 1 e N (integração)
 - HN ≈ I nN + y + 1 /(12N)
 - γ = 0.57721(constante de Euler)
- Números de Fibonacci
 - F = FN-1+FN-2, para $N \ge 2$ com F0=0 e F1=1
- Fórmula de Stirling
 - IgN! ≈N IgN -N Ig e + Ig√2πN

Notação O

■ Definição: Seja f,g: $IN_0 \rightarrow IR^+$. Diz-se que f = O(g) se existirem c > $O(c \in IR^+)$ e $n_0 \in IN_0$ tais que $f(n) \le c.g(n)$, para todo o $n > n_0$.

Nota:

- Por exemplo, $O(n^2)$ denota o conjunto de funções $\{n^2, 17n^2, n^2 + 17n^{1.5} + 3n, n^{1.5}, 100n, ...\}$
- Logo, f = O(g) significa que $f \in O(g)$, i.e., f pertence ao conjunto de funções limitadas por g a partir de certa ordem.
- esta notação permite classificar algoritmos de acordo com limites superiores no seu tempo de execução.

Notação O

- Exemplos de manipulações com a notação O:
 - f = O(f)
 - $c \cdot O(f) = O(c \cdot f) = O(f)$ (em que c>0)
 - O(f) + O(g) = O(f+g) = O(max(f,g)) (f,g assintoticamente não negativas)
 - O(f) . $O(g) = O(f \cdot g)$
 - O(f) + O(g) = O(f) se $g(N) \le f(N)$ para $\forall N > N_0$
- Fórmula com termo contendo O(...) diz-se expressão assimptótica.

Operações sobre os dados-Complexidade

As operações sobre os dados mais usuais são:

- aceder
 - ao primeiro elemento,
 - ao último elemento,
 - a um elemento específico,
 - ao proximo;
- modificar o conteúdo
 - da primeira posição,
 - da última posição,
 - de uma posição específica,
 - da próxima posição;

Operações sobre os dados-Complexidade

As operações sobre os dados mais usuais são:

- inserir um novo elemento
 - na primeira posição,
 - na última posição,
 - numa posição intermédia especificada,
 - em função do valor de algum qualificador aplicado a esse elemento;
- remover um elemento
 - o primeiro elemento,
 - o último elemento,
 - um elemento situado numa posição intermédia especificada.
 - em função do valor de algum qualificador aplicado a esse elemento.

Eficiência das operações

Assumindo que:

- é apenas conhecida uma referência para o início da lista (lista simplesmente ligada);
- n representa o número de elementos existentes na estrutura de dados;

k a posição do elemento (i<=n).

	Aceder/Modificar				
	primeiro	último	posição específica	próximo	
Array	O(1)	O(1)	O(1)	O(1)	
Lista	O(1)	O(n)	O(k)	O(1)	

Eficiência das operações

Assumindo que:

- é apenas conhecida uma referência para o início da lista (lista simplesmente ligada);
- n representa o número de elementos existentes na estrutura de dados;
- k a posição do elemento (i<=n).

	Inserir				
	primeiro	último	posição específica	condicional	
Array	O(n)	O(1)	O(n-k)	O(n)	
Lista	O(1)	O(n)	O(k)	O(k)	

Eficiência das operações

Assumindo que:

- é apenas conhecida uma referência para o início da lista (lista simplesmente ligada);
- n representa o número de elementos existentes na estrutura de dados;
- k a posição do elemento (i<=n).

	Remover				
	primeiro	último	posição específica	condicional	
Array	O(n)	O(1)	O(n-k)	O(n)	
Lista	O(1)	O(n)	O(k)	O(k)	

Metedologia para determinação de Complexidade

Considere o seguinte código:

```
for (i = 0; i < N; i++) { instruções; }
```

•número de instruções: N iterações e em cada uma são executadas um numero constante de instruções - O(N)

Considere o seguinte código:

```
for (i = 0; i < N; i++) {
    for (j = 0; j < N; j++) {
        instruções;
    }
}</pre>
```

• número de instruções: ciclo interno é O(N) e é executado N vezes - $O(N^2)$

Metedologia para determinação de Complexidade

Considere o seguinte código:

```
for (i = 0; i < N; i++) {
    for (j = i; j < N; j++) {
        instruções;
    }
}</pre>
```

número de instruções: ciclo interno é executado N iterações e em cada uma são executado

```
N + (N-1) + (N-2) + ... + 3 + 2 + 1 = N(N+1)/2 = O(N^2)
```

Considere os seguintes algoritmos:

```
public static int maxIterativo(int array[], int N){
   int max=Integer.MIN_VALUE;
   for(int i=0;i<N;i++)</pre>
         if(array[i]>max) max=array[i];
   return max;
public static int maxRecursivo(int array[], int N, int maxActual){
   if(N==0) return maxActual;
   if(array[N-1]> maxActual){
        return max(array,N-1,array[N-1]);}
   else{
        return max(array,N-1,maxActual);}
```


na invocação do método maxRecursivo executa-se:

- algumas instruções (digamos um número constante);
- depois voltamos a chamar a mesmo método agora apenas com N-1 objectos.

```
Número total de instruções executadas é C(n) = C(n-1) + O(1) uma recorrência!
```


- Programa recursivo que, em cada passo, analisa um dado de entrada para eliminar um item
 - C(N)=C(N-1)+O(1) para N>=2 com C(1)=O(1)
 - Solução: C(N) é aproximadamente N, i.e., C=O(N)
 - Demonstração: C(N)=C(N-1)+O(1)= C(N-2)+O(1)+O(1)= ... = C(1)+O(1)+...+O(1)= O(N) (N-1)*O(1)

Considere os seguintes algoritmos:

```
public static void paresIterativo(int array[],int N,int x){
   for(int i=0;i<N;i++)</pre>
      for(int j=i;j<N;j++)</pre>
         if(array[i]+array[j]==x)
          System.out.println(array[i] + "+ " + array[j] + " = " + x);
public static void paresRecursivo(int[] array,int x, int N){
   if(N==0)return;
   for(int i=0; i<N;i++){
      if( array[N-1] + array[i]==x)
         System.out.println(array[N-1]+ "+ " + array[i] + " = " + x);
   paresRecursivo(array,x,N-1);
```


- Programa recursivo que, em cada passo, analisa todos os dados de entrada para eliminar um item
 - C(N) = C(N-1) + O(N) para $N \ge 2$ com C(1) = O(1)
 - Solução: C(N) é aproximadamente N²/2, i.e.,
 C=O(N²/2)

```
■ Demonstração: C(N)=C(N-1)+O(N)

=C(N-2)+O(N-1)+O(N)

=C(N-3)+O(N-2)+O(N-1)+O(N)

=\dots

=C(1)+O(2)+\dots+O(N-2)+O(N-1)+O(N)

=O(N(N-1)/2)

=O(N^2/2)
```

Considere os seguintes algoritmos:

```
/*Procura Binária Iterativa*/
public static int pBIterativa(int num,int[] array,int first,int last){
   while (last > = first){
         int medio = (last+first)/2 ;
         if (num == a[medio]) return medio;
         if (num <a[medio]) last = medio-1;</pre>
        else first = medio + 1;
   return -1;
```

Propriedade: A procura binária nunca examina mais do que

 $lg N_l + 1$ números!

Considere os seguintes algoritmos:

```
/*Procura binária recursiva*/
public static int pBRecursiva(int num,int[] array,int first,int last){
  int result=-1,mid;
  if(first>last) result=-1;
  else{
        mid=(first+last)/2;
        if(num==array[mid]) result=mid;
        else{
              if(num<array[mid])</pre>
                   result=pBRecursiva(num,array,first,mid-1);
               else
                   result=pBRecursiva(num,array,mid+1,last);
  return result;
```


- Programa recursivo que, em cada passo, analisa divide em dois os dados de entrada
 - C(N) = C(N/2) + O(1) para $N \ge 2$ com C(1) = O(1)
 - Solução: C(N) é aproximadamente log N, i.e.,
 C=O(log N)
 - Demonstração: seja n=logN (i.e., N=2ⁿ). Então,

$$C(2^{n})=C(2^{n-1}) + O(1)=C(2^{n-2}) + O(1) + O(1)$$

$$= ...$$

$$= C(2^{0})+ O(n)$$

$$= O(n) + O(1)$$

$$= O(n)$$

Portanto, $C(N)=O(\log N)$

Considere os sequintes alaoritmos:

```
public static void mergeSort(int[] a){
  if(a.length>=2){
     int meio=a.length/2; int[] frente=new int[meio];
     int[] cauda=new int[a.length-meio];
/*divide os elementos de a pelos dois arrays:frente e cauda */
     divide(a, frente, cauda);
     mergeSort(frente); /*ordenar o array frente*/
     mergeSort(cauda);/*ordenar o array cauda*/
     merge(a,frente,cauda);
        /*junta os arrays no array a, ordenando-os*/
public static void divide(int[] a,int[] frente,int[] cauda){
    int i;
    for(i=0; i<frente.length;i++) frente[i]=a[i];</pre>
    for(i=0; i<cauda.length;i++) cauda[i]=a[frente.length+i];</pre>
```

Considere os sequintes alaoritmos:

```
public static void merge(int[] a,int[] frente,int[] cauda){
   int indexF=0,indexC=0, indexA=0;
   while(indexF<frente.length && indexC<cauda.length){</pre>
       if(frente[indexF]<cauda[indexC]){</pre>
             a[indexA]=frente[indexF];indexA++; indexF++;
       else{
            a[indexA]=cauda[indexC];indexA++;indexC++;
   while(indexF<frente.length){/*Se existir, copiar o resto de frente*/</pre>
         a[indexA]=frente[indexF];indexF++;indexA++;
   while(indexC<cauda.length){/*Se existir, copiar o resto de cauda*/</pre>
         a[indexA]=cauda[indexC];indexC++; indexA++;
```


- Programa recursivo que, em cada passo, tem de examinar todos os dados de entrada antes, durante ou depois de os dividir em duas metades
 - C(N)= 2C(N/2)+ O(N) para N>=2 com C(1)=O(1)
 - Solução: C(N) é aproximadamente Nxlog(N), i.e.,
 C=O(Nxlog(N))
 - **Demonstração**: seja n=logN (i.e., N=2ⁿ). Então, $C(2^n) = 2*C(2^{n-1}) + O(2^n)$; $C(2^n)/2^n = C(2^{n-1})/2^{n-1} + O(1)$ $= C(2^{n-2})/2^{n-2} + O(1) + O(1)$ = ... $= C(2^0)/2^0 + O(n)$ = O(n) + O(1) = O(n)

Portanto, $C(N)=O(N \times \log N)$

- Dois algoritmos que nos permitem verificar se um elemento aparece num conjunto de objectos previamente guardados
- Exemplo de aplicação:
 - companhia de aérea quer saber se as últimas M pessoas a realizar check-in são algumas das N pessoas dadas como más pagadoras.
- Pretende-se estimar o tempo de execução dos algoritmos
- N é muito grande (ex: 10⁴a 10⁶) e M também (10⁶ a 10⁹)

Análise: Procura Sequencial e Binária (iterativa)

- Propriedade: na procura sequencial o número de elementos da tabela que são examinados é:
 - N em caso de insucesso
 - em média aproximadamente N/2 em caso de sucesso
 - Tempo de execução é portanto proporcional a N (linear)
 - Isto para cada elemento de entrada
- Custo total é O(MN).
- Nota: tempo de comparação assumido constante.

Considere os seguintes algoritmos:

```
/*Procura Binária Iterativa*/
public static int pBIterativa(int num,int[] array,int first,int last){
    while (last > = first){
        int medio = (last+first)/2;
        if (num == a[medio]) return medio;
        if (num <a[medio]) last = medio-1;
        else first = medio + 1;
    }
    return -1;
}</pre>
```

Propriedade: A procura binária nunca examina mais do que

Ig N_|+ 1 números!

Análise: Procura Sequencial e Binária (iterativa)

Demonstração:

Seja T(N) o número de comparações no pior caso; redução em 2 implica $T(N) \le T[N/2] + 1$ para $N \ge 2$ com T(1) = 1, i.e., após uma comparação ou temos sucesso ou continuamos a procurar numa tabela com|N/2| elementos