Day 3

```
Joystick Desired thrust, pitch
P control (pitch)
D control (pitch)
I control (pitch)
PID (pitch)
```

Administration

- Make sure you include all requested info in reports.
 - Graphs from class should be in reports
 - Label graphs!
 - Submit code as .cpp and report as .pdf
- Practice flying!
- Team should work together on same tasks, not divide and conquer
- Submit report on time, no late submissions allowed

Motors

- 4 motors with independent speed control
- Speed between 0 and 2000
- Create an array for motor commands:
 - Int motor_commands[4];
- And then set motors with a function:
 - void set_motors()

Thrust

- Moves robot up and down vertically without effecting any other tilt.
- Motor1=Thrust
- Motor2=Thrust
- Motor3=Thrust
- Motor4=Thrust
- Thrust minimum = 0
- Thrust maximum = 2000
- Variables:
 - Thrust_neutral
 - Thrust_amplitude

Thrust joystick

- When Joystick is highest
 - Thrust=Thrust_neutral+Thrust_amplitude
- When Joystick is middle
 - Thrust=Thrust_neutral
- When Joystick is lowest
 - Thrust=Thrust_neutral-Thrust_amplitude
- Linear between these points

Pitch error

- Pitch error= desired pitch measured pitch
 - Measured pitch from complimentary filter
 - Desired pitch from joystick
- Goal of robot controller is to have no pitch error

Joystick desired pitch

- Variables:
 - Pitch_amplitude (degrees)
- When Joystick is highest
 - Pitch_desired=-pitch_amplitude
- When Joystick is middle
 - Pitch_desired=0
- When Joystick is lowest
 - Pitch_desired=pitch_amplitude
- Linear between these points

Pitch proportional control

- More the robot tilts away from desired pitch, the stronger it torques to the desired pitch.
- Motor command=thrust ± P_{gain}*P_{error}
 - ± means 2 motors are +, two are -
- Try a value of P_{gain} of 10

Pitch proportional control

- Motor1=thrust ± P_{gain}*P_{error}
- Motor2=thrust ± P_{gain}*P_{error}
- Motor3=thrust ± P_{gain}*P_{error}
- Motor4=thrust ± P_{gain}*P_{error}
 - ± means 2 motors are +, two are -
- Try a value of P_{gain} of 10

- 1. P (proportional) controller, including safety
 - Control+C, Gyro limit, roll/pitch limit, joystick kill.. All kill motors (set to 0) with explanation and exits program
 - Plot the following on one graph
 - Motor speeds, desired thrust, desired pitch, measured pitch (from comp filter)
 - Show on level ground with thrust changes
 - Show on level ground with desired pitch changes
 - Show moving the imu with hands off joystick
 - Show moving the imu with joystick thrust commands~150
 - Set the following values (for nicer graphs, plot pitch*10,desired_pitch*10):
 - pitch_amplitude=10
 - Thrust_neutral=100
 - Thrust_amplitude=100

Pitch derivative control

- Keeps the robot from moving too quickly in pitch.
- The faster robot rotates in pitch, the stronger it torques to slow down the pitch speed.
- Motor command=thrust ± D_{gain}*Pitch_{speed}
- How to measure pitch speed?

Pitch derivative control

- Motor1=thrust ± D_{gain}*Pitch_{speed}
- Motor2=thrust ± D_{gain}*Pitch_{speed}
- Motor3=thrust ± D_{gain}*Pitch_{speed}
- Motor4=thrust ± D_{gain}*Pitch_{speed}
 - ± means 2 motors are +, two are
- Try a value of D_{gain} of 1.0

- 1. D (derivative) controller, including safety
 - Control+C, Gyro limit, roll/pitch limit, joystick kill.. All kill motors (set to 0) with explanation and exits program
 - Plot the following on one graph
 - Motor speeds, measured pitch (from comp filter), pitch velocity (from gyro)
 - Show moving the imu with hands off joystick
 - Show moving the imu with joystick thrust commands ~150
 - Set the following values (for nicer graphs, plot pitch*10):
 - Thrust_neutral=100
 - Thrust_amplitude=100

Pitch Integral control

- The longer the pitch has error, the stronger it torques to the desired pitch (up to a limit).
- Every control loop:

```
Integral<sub>pitch</sub> += I<sub>gain</sub>*P<sub>error</sub>
Integral<sub>pitch</sub> should be limited to ± I<sub>saturate</sub>
```

- Motor command=thrust ± Integral_{pitch}
 - ± means 2 motors are +, two are -

Pitch Integral control

- Motor1=thrust ± Integral_{pitch}
- Motor2=thrust ± Integral_{pitch}
- Motor3=thrust ± Integral_{pitch}
- Motor4=thrust ± Integral_{pitch}
 - ± means 2 motors are +, two are -
- Try a value of I_{gain} of .1

- 1. I (Integral) controller, including safety
 - Control+C, Gyro limit, roll/pitch limit, joystick kill.. All kill motors (set to 0) with explanation and exits program
 - Plot the following on one graph
 - Motor speeds, thrust, desired pitch, measured pitch (from comp filter)
 - Show on level ground with hands off joystick
 - Show on level ground with joystick thrust commands~150
 - Show on level ground with desired pitch changes of a ~15 degrees until saturation.
 - Set the following values (for nicer graphs, plot pitch*10,desired_pitch*10):
 - I_{saturate} =100
 - Thrust neutral=100
 - Thrust_amplitude=100

Putting it all together (for pitch)

- Combine proportional (P), Integral (I), Derivative (D)
 - PID control
- Motor1=thrust ± $P_{gain} P_{error} = D_{gain} D_{error} = Integral_{pitch}$
- Motor2=thrust ± P_{gain}*P_{error} ± D_{gain}*D_{error} ± Integral_{pitch}
- Motor3=thrust ± P_{gain}*P_{error} ± D_{gain}*D_{error} ± Integral_{pitch}
- Motor4=thrust ± P_{gain}*P_{error} ± D_{gain}*D_{error} ± Integral_{pitch}

1. PID controller, including safety

- Control+C, Gyro limit, roll/pitch limit, joystick kill.. All kill motors (set to 0) with explanation and exits program
- Plot the following on one graph
 - Motor speeds, thrust, desired pitch, measured pitch (from comp filter)
 - Show moving the imu in back and forth between +- 5 degrees in quick steps.
 - Show on level ground with small, slow desired pitch changes
 - Show on level ground with small slow thrust changes.
 - Show on level ground with hands off joystick

