Problem sheet - 5

1. Filter output evaluation using Fourier Series

Consider a continuous-time LTI system S whose frequency response is

$$H(w) = \begin{cases} 1, & |w| \ge 250 \\ 0, & \text{otherwise} \end{cases}$$

When the input to this system is a signal x(t) with fundamental period T = $\pi/7$ and Fourier series coefficients a_k , it is found that the output y(t) is identical to x(t). For what values of k is it guaranteed that $a_k = 0$?

2. System response using Fourier Transform

a) Determine the output of LTI system with the following frequency response.

Assume x(t) is a periodic signal with period 2.

- b) Prove that if h(t) is even then $H(\omega)$ is also even.
- c) Is $H(\omega)$ causal?

3. Fourier series representation of a signal

Determine a_k for the following signal with period 2

4. Relationship between Fourier coefficients

Let $x_1(t)$ be a continuous-time periodic signal with fundamental frequency ω_1 and Fourier coefficients ak. Given that

$$x_2(t) = x_1(1-t) + x_1(t-1)$$

how is the fundamental frequency ω_2 of $x_2(t)$ related to ω_1 ? Also, find a relationship between the Fourier series coefficients b_k of $x_2(t)$ and the coefficients a_k . You may use the properties of the Fourier series coefficients.

5. Properties of Fourier series coefficient

Let x(t) be a periodic signal with fundamental period T and Fourier series coefficients a_k . Derive the Fourier series coefficients of each of the following signals in terms of a_k:

(a)
$$x(t - t_0) + x(t + t_0)$$

(b) Ev(x(t))

(c) $Re\{x(t)\}$

(d)
$$\frac{d^2x(t)}{dt^2}$$

(e) x(3t - 1) [for this part, first determine the period of x(3t - 1)]

6. Signal Determination from Fourier coefficient properties

Suppose we are given the following information about a continuous-time periodic signal with period 3 and Fourier coefficients a_k :

a)
$$a_k = a_{k+2}$$

b)
$$a_{k} = a_{-k}$$

b)
$$a_k = a_{-k}$$

c) $\int_{-0.5}^{0.5} x(t) dt = 1$
d) $\int_{1}^{2} x(t) dt = 2$

d)
$$\int_{1}^{2} x(t) dt = 2$$

Determine x(t)

7. Signal Determination from Fourier coefficient properties

Suppose we are given the following information about a signal x(t):

- a) x(t) is a real signal.
- b) x(t) is periodic with period T = 6 and has Fourier coefficients a_k .

- c) $a_k = 0$ for k = 0 and k > 2.
- d) x(t) = -x(t 3).
- e) $\frac{1}{6} \int_{-3}^{3} x(t) dt = \frac{1}{2}$
- f) a_1 is a positive real number.

Show that $x(t) = A \cos(Bt + C)$, and determine the values of the constants A, B, and C.

8. Even and Odd Harmonic Signals

a) A continuous-time periodic signal x(t) with period T is said to be odd harmonic if, in its Fourier series representation

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$

 a_k = 0 for every even integer k.

b) Show that if x(t) is odd harmonic, then

$$x(t) = -x(t + \frac{T}{2})$$

- c) Show that if x(t) satisfies eq. above, then it is odd harmonic.
- d) Suppose that x(t) is an odd-harmonic periodic signal with period 2 such that

$$x(t) = t$$
 for $0 < t < 1$.

Sketch x(t).

- e) Analogously, to an odd-harmonic signal, we could define an even-harmonic signal as a signal for which a_k = 0 for k odd in the Fourier series representation. Could T be the fundamental period for such a signal? Explain your answer.
- f) More generally, show that T is the fundamental period of x(t) in eq. in part(a) if one of two things happens:
 - i. Either a_1 or a_{-1} is nonzero; or
 - ii. There are two integers k and l that have no common factors and are such that both $a_{\bf k}$ and $a_{\bf l}$ are nonzero