Machine Learning Project: Clustering Analysis

1. Initial Data Inspection and Data Cleaning:

- Begin by examining your dataset. Look for:
 - Duplicates: Check for identical rows.
 - Missing values: Identify any null or NaN entries.
 - Irrelevant entries: Remove any data points that don't contribute to your analysis.
 - Outliers: Detect extreme values that might skew results.
 - Erroneous entries: Correct any data inconsistencies.
- o Clean the data by addressing the issues you've identified.

2. Data Refinement:

- o Based on your initial inspection, refine the data further. This may involve:
 - Dropping unnecessary columns.
 - Imputing missing values.
 - Standardizing or normalizing features.

3. Exploratory Data Analysis (EDA) and Feature Engineering:

- Visualize the data:
 - Create suitable visualizations (e.g., bar plots, scatter plots) to identify patterns.
 - Specifically, focus on identifying two albums with the most popular songs.
- Feature engineering:
 - Create new features if needed (e.g., aggregating song features).
 - Explore relationships between features.

4. Song Popularity Analysis:

- Investigate the relationship between song popularity and various factors:
 - Features like danceability, energy, valence, etc.
 - How this correlation has evolved over time (if your data includes a temporal aspect).
- Use visualizations to illustrate your findings.

5. Dimensionality Reduction Techniques:

- Explain the significance of dimensionality reduction:
 - High-dimensional data can be challenging to work with.
 - Techniques like Principal Component Analysis (PCA) or t-SNE reduce dimensions while preserving important information.
 - We used PCA to reduce the dimensionality

6. Cluster Analysis:

- o Determine the right number of clusters:
 - Using method like the elbow method we determined the appropriate number of clusters
- Choose appropriate clustering algorithms:
 - K-means algorithm was used for clustering
 - Cluster count is taken as 20
- Define each cluster based on features:
 - Interpret the characteristics of each cluster (e.g., high-energy songs, acoustic songs).