

Università di Bologna - Scuola di Scienze

Esame scritto di Calcolo delle Probabilità e Statistica 22 maggio 2024

Esercizio 1

Tre urne A, B, C sono inizialmente vuote. Esse vengono poi riempite con 5 palline, che vengono inserite, una dopo l'altra, in una delle urne, scelta a caso ogni volta.

- 1) Si introduca uno spazio di probabilità (Ω, \mathbb{P}) per descrivere l'esperimento aleatorio.
- 2) Qual è la probabilità che l'urna A rimanga vuota?
- 3) Qual è la probabilità che entrambe le urne A e B rimangano vuote?
- 4) Qual è la probabilità che almeno un'urna delle tre rimanga vuota? [Si noti che dati tre eventi E_1, E_2, E_3 , non necessariamente disgiunti, vale che $\mathbb{P}(E_1 \cup E_2 \cup E_3) = \mathbb{P}(E_1) + \mathbb{P}(E_2) + \mathbb{P}(E_3) \mathbb{P}(E_1 \cap E_2) \mathbb{P}(E_1 \cap E_3) \mathbb{P}(\mathbb{E}_2 \cap E_3) + \mathbb{P}(E_1 \cap E_2 \cap E_3)$.]

- 1) Sia $\Omega = \mathbf{DR}_{5,3}$ l'insieme delle sequenze $(x_1, x_2, x_3, x_4, x_5)$, con $x_i \in \{A, B, C\}$. Ogni sequenza $(x_1, x_2, x_3, x_4, x_5)$ indica in quale urna è stata inserita ciascuna pallina. Su \mathbb{P} consideriamo la probabilità uniforme, quindi $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$, per ogni sottoinsieme A di Ω . Si noti che $|\Omega| = 3^5 = 243$.
- 2) Consideriamo l'evento

$$E_A$$
 = "l'urna A rimane vuota".

L'evento E_A corrisponde all'insieme delle sequenze $(x_1, x_2, x_3, x_4, x_5)$, con $x_i \in \{B, C\}$. In altri termini, E_A ha la stessa cardinalità dell'insieme delle disposizioni con ripetizione $\mathbf{DR}_{5,2}$, quindi $|E_A| = 2^5$. Perciò

$$\mathbb{P}(E_A) = \frac{|E_A|}{|\Omega|} = \frac{2^5}{3^5} \approx 13.17\%.$$

3) Consideriamo l'evento

$$E_B$$
 = "l'urna B rimane vuota".

L'evento di cui è richiesta la probabilità è allora il seguente:

$$E_A \cap E_B =$$
 "entrambe le urne A e B rimangono vuote".

L'evento $E_A \cap E_B$ si verifica quando tutte le palline vengono inserite nell'urna C, quindi corrisponde all'insieme contenente la sola sequenza (C, C, C, C, C). Perciò

$$\mathbb{P}(E_A \cap E_B) = \frac{|E_A \cap E_B|}{|\Omega|} = \frac{1}{3^5} \approx 0.41\%.$$

4) Consideriamo l'evento

 E_C = "l'urna C rimane vuota",

E = "almeno un'urna delle tre rimane vuota".

Allora si ha che

$$E = E_A \cup E_B \cup E_C.$$

Quindi

$$\mathbb{P}(E) = \mathbb{P}(E_A) + \mathbb{P}(E_B) + \mathbb{P}(E_C) - \mathbb{P}(E_A \cap E_B) - \mathbb{P}(E_A \cap E_C) - \mathbb{P}(E_B \cap E_C) + \mathbb{P}(E_A \cap E_B \cap E_C).$$

Si noti che $E_A \cap E_B \cap E_C = \emptyset$ è l'evento impossibile. Inoltre per simmetria si ha che $\mathbb{P}(E_A) = \mathbb{P}(E_B) = \mathbb{P}(E_C)$ e $\mathbb{P}(E_A \cap E_B) = \mathbb{P}(E_A \cap E_C) = \mathbb{P}(E_B \cap E_C)$. Quindi

$$\mathbb{P}(E) = 3\mathbb{P}(E_A) - 3\mathbb{P}(E_A \cap E_B) = 3\frac{2^5 - 1}{3^5} = \frac{31}{81} \approx 38.27\%.$$

2

Esercizio 2

Un arciere di buon livello, tirando con il suo arco abituale alla distanza preferita, centra il bersaglio da 10 punti con probabilità 1/4 e i cerchi da 8 e da 9 punti con probabilità 3/8 ciascuno. Supponiamo che l'arciere effettui due tiri e indichiamo con X_i la variabile aleatoria che indica il punteggio realizzato al tiro i-esimo, per i=1,2. Supponiamo che le variabili aleatorie X_1 e X_2 siano indipendenti e identicamente distribuite.

a) Determinare densità discreta, media e varianza di X_i , per i=1,2.

Siano
$$U = \min(X_1, X_2)$$
 e $V = \max(X_1, X_2)$.

- b) Determinare la densità discreta congiunta di U e V.
- c) Calcolare $\mathbb{P}(|U V| = 1)$.
- d) Calcolare $\mathbb{E}[U(V-U)]$.

a) Si ha che

Quindi

$$\mathbb{E}[X_i] = 8 \cdot \frac{3}{8} + 9 \cdot \frac{3}{8} + 10 \cdot \frac{1}{4} = \frac{71}{8} = 8.875,$$

$$\operatorname{Var}(X_i) = \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 = 8^2 \cdot \frac{3}{8} + 9^2 \cdot \frac{3}{8} + 10^2 \cdot \frac{1}{4} - \left(\frac{71}{8}\right)^2 \approx 0.609.$$

b) Si ottiene la seguente tabella:

U V	8	9	10	p_U
8	$\frac{9}{64}$	$\frac{9}{32}$	$\frac{3}{16}$	$\frac{39}{64}$
9	0	$\frac{9}{64}$	$\frac{3}{16}$	$\frac{21}{64}$
10	0	0	$\frac{1}{16}$	$\frac{1}{16}$
p_V	$\frac{9}{64}$	$\frac{27}{64}$	$\frac{7}{16}$	1

c) Si ha che

$$\mathbb{P}(|U-V|=1) = P(V=U+1) = p_{(U,V)}(8,9) + p_{(U,V)}(9,10) = \frac{15}{32}.$$

d) Si ottiene

$$\mathbb{E}[U(V-U)] = \sum_{\substack{i,j=8,9,10\\i\leq j}} i(j-i) p_{(U,V)}(i,j) = 8 \cdot 1 \cdot \frac{9}{32} + 8 \cdot 2 \cdot \frac{3}{16} + 9 \cdot 1 \cdot \frac{3}{16}$$
$$= \frac{111}{16} \approx 6.9375.$$

Esercizio 3

Sia X una variabile aleatoria continua con densità

$$f_X(x) = \begin{cases} 0, & x \le 0, \\ \frac{2x}{\theta}, & 0 < x < 3, \\ 0, & x \ge 3, \end{cases}$$

dove $\theta > 0$ è un parametro fissato.

- 1) Determinare il valore del parametro θ in modo tale che f_X sia effettivamente una densità.
- 2) Determinare la funzione di ripartizione ${\cal F}_X$ della variabile aleatoria X.
- 3) Calcolare $\mathbb{P}(1 \leq X \leq 2)$ e $\mathbb{E}[X]$.

Si consideri la variabile aleatoria continua

$$Y = \log X$$
.

4) Determinare la funzione di ripartizione di Y.

1) Si ottiene $\theta = 9$, infatti

$$1 = \int_{-\infty}^{+\infty} f_X(x) dx = \int_0^3 \frac{2x}{\theta} dx = \frac{9}{\theta}.$$

2) Si ha che

$$F_X(x) = \begin{cases} 0, & x \le 0, \\ \frac{x^2}{9}, & 0 < x < 3, \\ 1, & x \ge 3. \end{cases}$$

3)

$$\mathbb{P}(1 \le X \le 2) \stackrel{X \text{ cont.}}{\stackrel{\downarrow}{=}} \mathbb{P}(1 < X \le 2) = F_X(2) - F_X(1) = \frac{1}{3},$$

$$\mathbb{E}[X] = \int_0^3 \frac{2x^2}{9} \, \mathrm{d}x = 2.$$

4) Si ha che

$$F_Y(y) = \mathbb{P}(\log X \le y) = \mathbb{P}(X \le e^y) = F_X(e^y).$$

Quindi

$$F_Y(y) = \begin{cases} 0, & e^y \le 0, \\ \frac{e^{2y}}{9}, & 0 < e^y < 3, \\ 1, & e^y \ge 3. \end{cases}$$

Dato che \mathbf{e}^y è sempre maggiore di zero, si ottiene

$$F_Y(y) = \begin{cases} \frac{e^{2y}}{9}, & y < \log 3, \\ 1, & y \ge \log 3. \end{cases}$$

Esercizio 4

Consideriamo una popolazione di conigli. Un certo gene si presenta in due tipologie (o alleli): $g \in G$. Il genotipo di ogni coniglio contiene una coppia di alleli relativi a questo genere. Possiamo avere conigli GG (dominanti), Gg (ibridi, l'ordine non conta: $gG \in Gg$ sono identici) oppure gg (recessivi). Un coniglio eredita un allele da ciascun genitore; inoltre, l'allele ereditato è "scelto" con uguale probabilità (ad esempio, se i genitori hanno come genotipi $GG \in Gg$, allora la prole avrà genotipo GG con probabilità 1/2 oppure Gg, sempre con probabilità 1/2).

Indichiamo i genotipi con i seguenti numeri: gg corrisponde a 0, gG corrisponde a 1 e GG corrisponde a 2.

Sia X_n il genotipo della n-esima generazione di conigli, supponendo che tale generazione abbia come genitore un ibrido e un altro con genotipo X_{n-1} . Più precisamente, consideriamo un coniglio con un certo genotipo che indichiamo con X_1 . Tale coniglio viene incrociato con un coniglio ibrido. Indichiamo con X_2 il genotipo della prole. Un coniglio di questa prole è incrociato con un altro coniglio ibrido e così a seguire per le generazioni successive.

- a) Determinare la matrice di transizione della catena di Markov e disegnare il grafo orientato.
- b) Determinare la distribuzione invariante.
- c) Cosa si può dire sul genotipo della centesima generazione di conigli?

a) La matrice di transizione è la seguente:

$$\Pi = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

Il grafo orientato associato alla catena di Markov è dato da

b) Ricordiamo che una distribuzione invariante è un vettore riga $\vec{\pi} = (\pi_0, \pi_1, \pi_2)$ tale che

$$\vec{\pi} = \vec{\pi} \Pi$$
 e $\sum_{i=0}^{2} \pi_i = 1$.

Queste due uguaglianze corrispondono al seguente sistema:

$$\begin{cases} \pi_0 &= \frac{1}{2}\pi_0 + \frac{1}{4}\pi_1 \\ \pi_1 &= \frac{1}{2}\pi_0 + \frac{1}{2}\pi_1 + \frac{1}{2}\pi_2 \\ \pi_2 &= \frac{1}{4}\pi_1 + \frac{1}{2}\pi_2 \\ \pi_0 + \pi_1 + \pi_2 &= 1. \end{cases}$$

Dalla prima equazione si ottiene $2\pi_0 = \pi_1$. Dalla terza equazione si ottiene $2\pi_2 = \pi_1$. Dall'ultima equazione si ottiene infine $\pi_1 = \frac{1}{3}$, quindi

$$\vec{\boldsymbol{\nu}} = \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right).$$

c) La catena è irriducibile. In particolare ogni stato ha lo stesso periodo, ed essendo per esempio $\pi_{11} > 0$, si conclude che è anche aperiodica. Pertanto la catena è regolare e vale il teorema ergodico:

$$p_{X_n}(j) \underset{n \to \infty}{\to} \nu_j, \quad \forall j \in S.$$

Inoltre la convergenza è esponenziale. Possiamo pertanto ritenere n=100 un valore sufficientemente grande per affermare che

$$\overrightarrow{p}_{X_{100}} \simeq \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right).$$

8