实验一: 电子仪器使用与基本运算电路

专业班级:通信2101班

姓名: **罗畅**

学号: U202113940

实验名称

电子仪器使用与基本运算电路

实验目的:

- 熟练掌握集成运算放大器的正确使用方法。
- 掌握用集成运算放大器构成各种基本运算电路的方法
- 学会合理选用示波器的直流、交流耦合方式观察不同波形的方法

实验元器件

直流稳压源,示波器,信号发生器,NE5532, uA741, 电阻: 100Ω , $100k\Omega$, $10K\Omega$, $5.1k\Omega$, $1k\Omega$, 500Ω , 0.22uF电容器, 100Ω 电位器, 1K电位器

实验原理

1.研究电压跟随器

由虚短虚断可得, V_0 始终等于 V_i ,从而不受外部信号源内阻的影响,比直接接入信号源好。

2.研究加法器实验

根据运算放大器的特性,课得到如下公式:

$$V_o = -(rac{R_4}{R_1}V_1 + rac{R_4}{R_2}V_2)$$

实现了对于信号的加法运算。

3.研究积分电路

在电路中加入电容,从而对电压 u_i 进行积分得到 u_o

公式如下:

$$v_o(t) = -rac{1}{RC}\int_0^t v_i(t)dt + v_o(0)$$

实现对输入信号的积分运算。

实验任务

一、电压跟随器作用研究以及电路负载特性影响观察

1. 按照图a连接电路

- 断开开关K,输入f=1kHz, $V_{ipp}=1V$ 的正弦信号,用示波器观察输出波形。
- 闭合开关K,观察输出波形的变化情况。
- 分别记录K闭合前、后信号源输出信号的峰-峰值,计算信号源的内阻 R_s ,并解释 100Ω 负载电阻连接到信号源上产生的负载效应。

2.按图b连接电路

- 仍然从信号源送出频率为1kHz、峰峰值为1V的正弦信号,用示波器观察输入、输出波形(幅值与相位关系)。分别记录接上 R_L 和去掉 R_L 两种情况下输出信号 v_o 的大小,并解释观察到的实验现象。
- 将数据记录在表a中

表a

	不接 R_L	不接 R_L	接 R_L	接 R_L	计算 R_s
	v_{ipp} /V	v_{opp} /V	v_{ipp} /V	v_{opp} /V	
无电压跟随器		-		-	Ω
有电压跟随器					-

二、反向比例运算电路

1.设计并组装反相比例运算电路。要求闭环电压增益为10,输入电阻Ri不小于10kΩ。 2.输入频率为1kHz的正弦信号,用示波器观察 v_o 与 v_i 相位关系。 3.改变 v_i 峰峰值的大小,测量 v_o ,将测试数据填上自拟表格,研究反向比例运算关系,并与理论值比较

• 提示:通常增益AVF的范围为0.1 ~ 100。RF的值不能太大,一般为几十千欧至几百千欧,R1 的取值应远大于信号源vi的内阻,但通常只能取几千欧至几十千欧,否则,要保证一定的增益AVF时,RF值会较大。

(设计 R_1 =10kΩ, R_F =100kΩ, R_p =10kΩ)

三、反向比例加法电路

1.按照下图在面包板上组装电路。电阻值取 R_F =100k Ω , R_1 =10k Ω , R_2 =5.1k Ω , 安装电阻前先用万用表测试记录电阻值; 2.用直流源CH3通道输出5V直流稳压源,调节电位器使得 R_0 =900 Ω , R_p =100 Ω ; 用电位器分压作用输出 v_1 =0.5v, v_2 =0.2v, 检查无误后接通电源;

3.用万用表测量 v_0 ,并与理论值比较。

反向比例加法运算电路

5V电压源连接方式

四、积分电路

• 按照下图在面包板上组装电路。取 R_1 =10k Ω , R_F =100k Ω , C=0.22μF, R_P =10k Ω , 输入 f=200Hz,峰峰值为1V的正方波。用示波器测试 v_i 和 v_0 ,并画出其波形(需含有坐标轴,波形上下对齐)。

反向比例积分电路

实验记录

所有实验按照上述电路图连接实物电路,集成运算放大器的供电电源电压选用±15V。

一、电压跟随器

直接连接电路中,不接负载 R_L (K断开)时,用示波器观测 v_i 波形并填入下表中;接入负载 R_L (K闭合)时,用示波器观测 v_i 波形并填入下表中。

然后在通过电压跟随器连接的电路中,接入同样的信号源,测量接入及不接入负载 R_L 时的 v_i 和 v_o 填入下表。

表a

	不接 R_L	不接 R_L	接 R_L	接 R_L	计算 R_s
	v_{ipp} /V	v_{opp} /V	v_{ipp} /V	v_{opp} /V	
无电压跟随器	1.000	-	0.660	-	51.52 Ω
有电压跟随器	0.993	0.986	0.994	0.955	-

图1. 电压跟随器_直连_K闭合

图2. 电压跟随器_直连_K断开

图3. 电压跟随器_有运放_无 R_L

图4. 电压跟随器_有运放_有 R_L

二、反向比例运算电路

通过改变 v_{ipp} 的值分别为1.5vpp,1vpp,500mvpp,750mvpp,得到以下图像(实验时CH1为 $10\times$,CH2为 $1\times$):

v_{ipp} /V	$v_{opp}ackslash extsf{V}$	A_v (理论)	A_v (测量)
1.477	14.54	10	9.84
1.020	10.07	10	9.87
0.5148	5.168	10	10.04
0.7668	7.682	10	10.02

三、反向比例加法电路

用万用表测量v_0

实验测得 v_o = - 9.1662V

而理论值计算得:

$$v_{rac{1}{2}}=-(rac{R_4}{R_1}V_1+rac{R_4}{R_2}V_2)=-(rac{100k}{10k}*0.5+rac{100k}{5.1k}*0.2)$$
 = -8.9216V

理论值与实际值相差不大,由此验证反向比例运算放大器的性质

四、积分电路

示波器测量图示:

绘制积分电路如下:

实验分析

经计算,电压跟随器、反向比例加减法运算电路、积分电路、实测值与理论值相比较实验误差绝对值在10%以内,基本满足本实验精度要求,实验步骤正确无误,电路正常工作。

实验小结

通过本次实验,基本可以熟练安装、调试由运放构成的基本运算电路,这些基本电路又可以作为单元电路组成多级电子电路,基本掌握了它们的工作原理。同时实验考验了耐心和细心。由于初次实验经验不足、电路连接不规范等问题,在实验过程中浪费了大量时间,后面又花了一个小时去实验室才完成了实验。应在以后的实验中多加注意以避免。由此我也渐渐熟悉了模电实验的流程,最好在课前就对照ppt把电路连接好,去实验室就直接对电路进行调试。一次印象深刻的实验!