Intra - and Extra - AS (domain) routing

CE 352, Computer Networks
Salem Al-Agtash

Lecture 17

Slides are adapted from Computer Networking: A Top Down Approach, 7th Edition © J.F Kurose and K.W. Ross

Recall (Lec12 - important context)

Network topology

Nodes

- Representing routers
- Mainly located in datacenters
- Destinations (IP prefixes)

Edges

- Representing interconnecting links:
 - Metrics (distance, bandwidth, loss, congestion, etc.)
 - e.g. (depart time arrival time) + transmission time + link propagation delay

Point-of-Presence (PoP)

- Cluster of routers in a datacenter (e.g. Equinix)
- Inter-PoP: High bandwidth links
- Intra-PoP: Cables between racks

Recall (Lec3. ISP: e.g. Sprint)

Routing in the Internet

So far "simple network assumption" with a set of homogenous interconnected routers running same algorithms to find best route

- Not realistic
 - Scale: Internet consists of millions of routers, so impossible for routers to store routing information and make cost updates
 - Administrative autonomy: ISPs desire to operate their own networks

The internet is managed and operated through Autonomous System (AS):

- 16-bit AS number → 65,536 (64,510 available for public use), recently assigned 32-bits, managed by Internet Assigned Numbers Authority (IANA), department in ICANN
 - e.g. MIT: 3, Harvard: 11, AT&T: 7018, 6341, 5074,
- AS Types: Stub AS (small corporation), Multihomed AS (large corporation no transit), and Transit AS (ISP)
- Routers within the same AS all run the same routing algorithm and have information about each other

Regional Internet Registries

ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/ operates via 5 Regional Internet Registries – ARIN (North America), APNIC (Asia Pacific), RIPE NCC (Europe and Middle East), LACNIC (Latin America), and AFRINIC (Africa) → (DNS, IP, Port, AS No.)

Intra and Inter AS Routing

Intra - AS routing (a.k.a. Interior Gateway Protocols (IGP)) – Within AS:

- Metric based (link costs)
 - OSPF (Open Shortest Path First) uses LS
 - Widely used and each router constructs a complete topological map of AS
 - Individual link costs are configured by the network administrator
 - RIP (Routing Information Protocol) uses DV
 - EIGRP (Enhanced Interior Gateway Routing Protocol Cisco) uses DV

Inter - AS routing — Between AS's:

- Policy-based (not link cost, but control over who and where to send traffic: transit, peering)
 - BGP (Border Gateway Protocol): de facto standards
 - Path Vector protocol: extension of DV
 - Provides path to destination as sequences of AS's
 - Scale: prefixes of 200,000, growing

Recap (LS)

- Each node j, periodically creates LSP: ID, seq.#, TTL, List of neighbors and costs
- When node j receives LSP from node k, check seq#, if new, saves in its DB and forwards a copy to all links except node k, else discards LSP [Flooding]
- Each node constructs network topology, and uses Dijkstra to find shortest path

ı		D(v)	D(w)	D(x)	D(y)	D(z)
Step) N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	3 ,u	5,u	∞	∞
1	uw	6,w		5,u) 11,W	∞
2	uwx	6,w			11,W	14,x
3	uwxv				10,V	14,x
4	uwxvy					(12,y)
5	uwxvyz					

Example

Consider the network shown below, and Dijkstra's link-state algorithm. Here, we are interested in computing the least cost path from node E to all other nodes. Using Dijkstra algorithm, complete the rows in steps o, 1, and 2 in the table below showing the link state algorithm's execution and find the values at (a) (e)

D(F),p(F)

2,E

(e)

Page 9 CE 352: Computer Networks

Example

Consider the network shown below, and Dijkstra's link-state algorithm. Here, we are interested in computing the least cost path from node *E* to all other nodes. Using Dijkstra algorithm, complete the rows in steps 0, 1, and 2 in the table below showing the link state algorithm's execution and find the values at (a) (e)

		Α	В	С	D	F
Step	N'	D(A),p(A)	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(F),p(F)
₀ 0	E	∞	10 , E	∞	4, E	(2, E)
₀ 1	EF	∞	6, F	∞	4, E	
<u> </u>	EFD	8, D	6, F	7, D		

Recap (DV – Good and bad news)

- Each node j, periodically creates distance table: destination and outgoing link to use and cost, by using Bellman-Ford dynamic programming
- Each node j notifies neighbors only when its least cost path to any destination changes
- Count to infinity problem (implicit path): poisoned reverse, split horizon, etc.

OSPF (Open Shortest Path First) routing

- LS and DV routing ideal flat network, not true in practice, millions of destinations – cannot store in routing tables
- "open": publicly available
- classic link-state
 - each router floods OSPF link-state advertisements (directly over IP rather than using TCP/UDP) to all other routers in entire AS
 - multiple link costs metrics possible: bandwidth, delay
 - each router has full topology, uses Dijkstra's algorithm to compute forwarding table
 - security: all OSPF messages authenticated (to prevent malicious intrusion)

Hierarchical routing - OSPF

- two-level hierarchy: local area (~300 routers), backbone.
 - link-state advertisements (LSA) flooded only in area, or backbone
 - each node has detailed area topology; only knows direction to reach other destinations

Router Classification

- IR: Internal Router
 - Routes within area
- ABR: Area Border Router
 - Routes are announced from area to another
- BR: Backbone Router
 - Runs OSPF limited to backbone
- ASBR: Autonomous System Border Router
 - Connects to other AS's
- DR: Designated Router
 - Elected router in same area, multicasting info

Routing Protocol Packets

- Sent as IP packet with a TOS field = o
- Five types of OSPF routing protocol packets
 - Link-state advertisement (LSA) primary mean of communication between OSPF routers carrying information about the network topology (11 types)
 - Each router has information to communicate about the networks, building maps then running Dijkstra algorithm
 - Link-state DB Description (LSDB) link-state information exchanged among the network. Routers in the same area have identical LSDB.
 - Link-state request (LSR) neighbor router sends a request to claim a missing LSDB from a neighbor (adjacent router)
 - Link-state update response to LSR on a specific piece of LSDB with neighbor
 - Link-state Acknowledgment confirming receipt of LSU from neighbor

OSPF areas

Area is a group of contiguous hosts and networks

Reduces routing traffic

Per area topology database

Invisible outside the area

Backbone area contiguous and connects all areas

Types of areas:

- Regular (ISPs): Summary networks from other areas are injected, as external networks
- Stub: Summary networks from other areas are injected as default type 3
 route not connecting to other areas or to other AS (on the edge)
- Totally Stubby: Only a default route injected to closest area border router
- Not-So-Stubby: importing routes in a limited fashion

Types of LS advertisement (LSA)

- Type 1 : Router LSA to advertise directly connected networks
 - type (ABR, ASBR), links, costs in area, flooded in area
- Type 2 : Network LSA to represent each transit network
 - transit broadcast, all routers attached to network, flooded in area
- Type 3: Summary LSA from one area to another to advertise a network in the source area (listing of networks)
 - inter-area routes advertised into backbone, ABR
- Type 4 : Summary ASBR LSA created by ABR to tell members of an area how to reach ASBR
 - destination outside area in AS
- Type 5&7: AS External LSA created by ASBR to advertise networks in a different AS
 - routes to destination external to AS, costs, LSA for one specific OSPF area type
- Type 6: Group membership LSA
- Type 9, 10 & 11: Link-Local, Area

OSPF details

"open": publicly available

two-level hierarchy: local area, backbone.

- link-state advertisements only in area
- each node has detailed area topology; only knows direction (shortest path) to nets in other areas.

uses link-state algorithm

- link state packet dissemination
- topology map at each node in an area
- route computation using Dijkstra's algorithm

router floods OSPF link-state advertisements to all other routers in entire AS

- carried in OSPF messages directly over IP (rather than TCP or UDP)
- link state: for each attached link

OSPF "advanced" features

- security: all OSPF messages authenticated (to prevent malicious intrusion), possible fictitious paths (hard to fix)
- multiple same-cost paths allowed
- integrated uni- and multi-cast support
- hierarchical OSPF in large domains

RIP (Routing Information Protocol)

- DV based RIP, earliest routing protocol
- UDP port 520
- As in DV, node maintains copies of neighbours' routing tables and uses iteratively to generate its own table (table is refreshed every 30 sec)
- When an entry is updated, router sends copy of entry to neighbours
- Link costs in RIP: 1 15, 16 represent infinity
- RIP is limited to fairly small networks
- Router timer: limit 180 seconds, if not updated, set to infinity
- When router or link fails, can take minutes to stabilize

EIGPR widely used

Inter-AS routing: BGP

BGP (Border Gateway Protocol): the de facto inter-domain routing protocol

- "glue that holds the Internet together"
- TCP port 179

BGP provides each AS a means to:

- eBGP: obtain subnet reachability information from neighboring ASes
- iBGP: propagate reachability information to all AS-internal routers.
- determine "good" routes to other networks based on reachability information and policy

Policy criteria

- Financial gains (Transit and Peering)
- Performance (smallest AS path length)
- Minimize use of own network bandwidth ("hot potato")

Path vector routing: extension of DV, gives entire path to destination (autonomous systems to go through)

eBGP, iBGP connections

gateway routers run both eBGP and iBGP protocols

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages over semipermanent TCP connection:
 - advertising paths to different destination network prefixes (BGP is a "path vector" protocol)

when AS3 gateway router 3a advertises path AS3,X to AS2 gateway router 2c:

AS3 promises to AS2 it will forward datagrams towards X

Path attributes and BGP routes

Advertised prefix includes BGP attributes

prefix + attributes = "route" ______

e.g. 128.112.0.0/16 (network X) AS path = 7018 543 (AS2, AS3) Next hop = 12.127.0.121 (1c)

Two important attributes:

- AS-PATH: list of ASes through which prefix advertisement has passed
- NEXT-HOP: indicates specific internal-AS router to next-hop AS

Policy-based routing:

- gateway receiving route advertisement uses import policy to accept/decline path (e.g., never route through AS Y).
- AS policy also determines whether to advertise path to other other neighboring ASes

BGP path advertisement

- AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3 router 3a
- Based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates (via iBGP) to all AS2 routers
- Based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2, AS3, X to AS1 router 1c

BGP path advertisement

gateway router may learn about multiple paths to destination:

- AS1 gateway router 1c learns path AS2, AS3, X from 2a
- AS1 gateway router 1c learns path AS3,X from 3a
- Based on policy, AS1 gateway router 1c chooses path AS3,X, and advertises path within AS1 via iBGP

BGP operation

BGP messages exchanged between peers over TCP connection

BGP messages:

- OPEN: opens TCP connection to remote
 BGP peer and authenticates sending
 BGP peer
- UPDATE: advertises new path (or withdraws old)
- KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
- NOTIFICATION: reports errors in previous msg; also used to close connection

AS₁

BGP, OSPF, forwarding table entries

Q: how does router set forwarding table entry to distant prefix?

BGP, OSPF, forwarding table entries

Q: how does router set forwarding table entry to distant prefix?

destinterface
... ...
X 2

recall: 1a, 1b, 1c learn about dest X via iBGP from 1c: "path to X goes through 1c"

- 1d: OSPF intra-domain routing: to get to 1c, forward over outgoing local interface 1
- 1a: OSPF intra-domain routing: to get to
 1c, forward over outgoing local interface 2

BGP route selection

router may learn about more than one route to destination AS, selects route based on:

- local preference value attribute: policy decision
- shortest AS-PATH
- closest NEXT-HOP router: hot potato routing
- additional criteria

"Hot Potato" Routing

2d learns (via iBGP) it can route to X via 2a or 2c

hot potato routing: choose local gateway that has least intradomain cost (e.g., 2d chooses 2a, even though more AS hops to X): don't worry about inter-domain cost! \rightarrow routing instability

BGP https://youtu.be/A1KXPpqINZ4

BGP: achieving policy via advertisements

Suppose an ISP only wants to route traffic to/from its customer networks (does not want to carry transit traffic between other ISPs)

- A,B,C are provider networks
- X,W,Y are customer (of provider networks)
- X is dual-homed: attached to two networks
- policy to enforce: X does not want to route from B to C via X

.. so X will not advertise to B a route to C

BGP: achieving policy via advertisements

Suppose an ISP only wants to route traffic to/from its customer networks (does not want to carry transit traffic between other ISPs)

- A advertises path Aw to B and to C
- B chooses not to advertise BAw to C:
 - B gets no "revenue" for routing CBAw, since none of C, A, w are B's customers
 - C does not learn about CBAw path
- C will route CAw (not using B) to get to w

Why different Intra-, Inter-AS routing?

policy:

inter-AS: admin wants control over how its traffic routed, who routes through its net.

intra-AS: single admin, so no policy decisions needed

scale:

hierarchical routing saves table size, reduced update traffic

performance:

intra-AS: can focus on performance

inter-AS: policy may dominate over performance

Comparison:

Routing Protocol	Distance-Vector	Link-State	Path-Vector
RIP	*		
OSPF		*	
IS-IS		V	
EIGRP	V		
BGP			V

Summary

Today:

- Intra AS: OSPF
- Inter AS: BGP

Canvas discussion:

- Reflection
- Exit ticket

Next time:

- read 5.5, 5.6 and 5.7 of K&R (SDN, ICMP, and SNMP)
- follow on Canvas! material and announcements

Any questions?