

Automatic Code Generation TVM Stack

CSE 599W Spring

TVM stack is an active project by <u>saml.cs.washington.edu</u> and many partners in the open source community

The Gap between Framework and Hardware

Each backend to a new software stack on top of it!

Compiler's Perspective to this Problem

◯ Caffe2 Frameworks Express computation Reusable Intermediate Representation (s) **Optimizations** Code generation Hardware

Computational Graph as IR

Represent High level Deep Learning Computations

Effective Equivalent Transformations to Optimize the Graph

Approach taken by: TensorFlow XLA, Intel NGraph, Nvidia TensorRT

XLA: Tensorflow Compiler

- Constant shape dimension
- Data layout is specific
- Operations are low level tensor primitives
 - Map
 - Broadcast
 - Reduce
 - Convolution
 - ReduceWindow

O...

XLA HLO Target-independent Optimizations & Analyses **XLA HLO** Target-dependent Optimizations & Analyses Target-specific Code Generation XLA Backend

Source: Google

TensorRT: Rule based Fusion

Source: Nvidia

Simple Graph-based Element-wise Kernel Generator

Two min Discussion

What are pros and cons of computational graph based approach

The Remaining Gap

Frameworks

CNTK

Computational Graph Optimization

need to build and optimize operators for each hardware, variant of layout, precision, threading pattern ...

Hardware

Tensor Level Optimizations

Frameworks

CNTK

Computational Graph Optimization

Tensor Expression Language

```
C = t.compute((m, n),
```

lambda i, j: t.sum(A[i, k] * B[j, k], axis=k))

Hardware

Tensor Index Expression

Compute C = dot(A, B.T)import tvm m, n, h = tvm.var('m'), tvm.var('n'), tvm.var('h')A = tvm.placeholder((m, h), name='A') Inputs B = tvm.placeholder((n, h), name='B') ← k = tvm.reduce_axis((0, h), name='k') C = tvm.compute((m, n), lambda i, j: tvm.sum(A[i, k] * B[j, k], axis=k))

Computation Rule

Shape of C

Tensor Expressions are Expressive

Affine Transformation

```
out = tvm.compute((n, m), lambda i, j: tvm.sum(data[i, k] * w[j, k], k))
out = tvm.compute((n, m), lambda i, j: out[i, j] + bias[i])
```

Convolution

```
out = tvm.compute((c, h, w),
    lambda i, x, y: tvm.sum(data[kc,x+kx,y+ky] * w[i,kx,ky], [kx,ky,kc]))
```

ReLU

```
out = tvm.compute(shape, lambda *i: tvm.max(0, out(*i))
```

Emerging Tools Using Tensor Expression Language

Halide: Image processing language

Loopy: python based kernel generator

TACO: sparse tensor code generator

Tensor Comprehension

Schedule: Tensor Expression to Code

Key Idea: Separation of Compute and Schedule introduced by Halide

Schedule Optimizations


```
C = tvm.compute((n,), lambda i: A[i] + B[i])
s = tvm.create_schedule(C.op)
```

```
for (int i = 0; i < n; ++i) {
  C[i] = A[i] + B[i];
}</pre>
```

```
C = tvm.compute((n,), lambda i: A[i] + B[i])
s = tvm.create_schedule(C.op)
xo, xi = s[C].split(s[C].axis[0], factor=32)
```

```
for (int xo = 0; xo < ceil(n / 32); ++xo) {
  for (int xi = 0; xi < 32; ++xi) {
    int i = xo * 32 + xi;
    if (i < n) {
        C[i] = A[i] + B[i];
    }
}</pre>
```

```
C = tvm.compute((n,), lambda i: A[i] + B[i])
s = tvm.create_schedule(C.op)
xo, xi = s[C].split(s[C].axis[0], factor=32)
s[C].recorder(xi, xo)
```

```
for (int xi = 0; xi < 32; ++xi) {
  for (int xo = 0; xo < ceil(n / 32); ++xo) {
    int i = xo * 32 + xi;
    if (i < n) {
        C[i] = A[i] + B[i];
    }
}</pre>
```

```
C = tvm.compute((n,), lambda i: A[i] + B[i])
s = tvm.create_schedule(C.op)
xo, xi = s[C].split(s[C].axis[0], factor=32)
s[C].recorder(xi, xo)
s[C].bind(xo, tvm.thread_axis("blockIdx.x")
s[C].bind(xi, tvm.thread_axis("threadIdx.x")
```

```
int i = threadIdx.x * 32 + blockIdx.x;
if (i < n) {
   C[i] = A[i] + B[i];
}</pre>
```

Key Challenge: Good Space of Schedule

Should contain any knobs that produces a logically equivalent program that runs well on backend models

Must contain the common manual optimization patterns

Need to actively evolve to incorporate new techniques

Two Min Discussions

What are useful program transformation that can be used a schedule primitive

TVM Schedule Primitives

Still constantly evolving

Tensor Expression Language

Primitives in prior works
Halide, Loopy

Loop Transformations Thread Bindings

Cache Locality

New primitives for GPU Accelerators Thread Cooperation

Tensorization

Latency Hiding

Hardware

Schedule Space Exploration

```
Tensor Expression Language

C = t.compute((m, n),
    lambda i, j: t.sum(A[i, k] * B[j, k], axis=k))
```


Make use of an AutoTuner

Extending Compute Primitives

s_update = $tvm.compute((m, n), lambda t, i: s_state[t-1, i] + X[t, i])$

Y = tvm.scan(s_init, s_update, s_state, inputs=[X])

New Hardware Challenges

Tensorization Challenge

Hardware designer: declare tensor instruction interface

```
w, x = t_placeholder((8, 8)), t_placeholder((8, 8))
                                                      declare behavior
k = t_reduce_axis((0, 8))
y = t.compute((8, 8), lambda i, j:
               t.sum(w[i, k] * x[j, k], axis=k))
                                                  lowering rule to generate
def gemm_intrin_lower(inputs, outputs):
                                                  hardware intrinsics to carry
  ww_ptr = inputs[0].access_ptr("r")
   xx_ptr = inputs[1].access_ptr("r")
                                                  out the computation
   zz_ptr = outputs[0].access_ptr("w")
   compute = t.hardware_intrin("gemm8x8",
                                          ww_ptr, xx_ptr, zz_ptr)
   reset = t.hardware_intrin("fill_zero", zz_ptr)
   update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
   return compute, reset, update
gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)
```

Tensorize: transform program to use tensor instructions

Two Min Discussions

We talked a lot of tensor expression language what are the possible drawbacks about what we talked about so far

Global View of TVM Stack

Frameworks

CoreML

Tensor Expression Language

Schedule Primitives Optimization

High Level Compilation Frontend

```
import tvm
import nnvm.frontend
import nnvm.compiler
graph, params =
nnvm.frontend.from_keras(keras_resnet50)
graph, lib, params =
     nnvm.compiler.build(graph, target)
```

```
module = runtime.create(graph, lib, tvm.gpu(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=tvm.gpu(0))
module.get_output(0, output)
             input
                    Deployable Module
           prediction tabby, tabby cat
```

On languages and platforms you choose

Program Your Phone with Python from Your Laptop

RPC Server on Compiler Stack **Embedded Device** lib = t.build(s, [A, B],'llvm -target=armv7l-none-linux-gnueabihf', name='myfunc') remote = t.rpc.connect(host, port) lib.save('myfunc.o') upload module to remote remote_upload('myfunc_o') get remote function f = remote.load_module('myfunc.o') ctx = remote.cpu(0) copy data to remote a = t.nd.array(np.random.uniform(size=1024), ctx) get remote array handle b = t.nd.array(np.zeros(1024), ctx)run function on remote remote_timer = f.time_evaluator('myfunc', ctx, number=10) time_cost = remote_timer(a, b) get profile statistics back np.testing.assert_equal(b.asnumpy(), expected) copy data back to host for correctness verification

Some Fun Results

Compare TVM Stack solution to Existing solutions which relies on manually optimized libraries

End to End Performance across Hardwares

Credit: Leyuan Wang(AWS/UCDavis), Yuwei Hu(TuSimple), Zheng Jiang(AWS/FDU), Lianmin Zheng(SJTU)

End to End Performance on Mobile GPUs(ARM Mali)

Credit: Lianmin Zheng(SJTU)

Support New Accelerators as Well

A Lot of Open Problems

Some examples questions:

Optimize for NLP models like RNN, attention

High dimensional convolutions

Low bit and mix precision kernels

More primitive support for accelerators

Tutorials from tvmlang.org