COMP318 Ontologies and Semantic Web

RDF - Part 8

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Where were we

RDF data model

Collections, containers, classes

RDFS Vocabulary

- RDFS is the RDF vocabulary description language
 - it can be used to build simple RDF vocabularies
 - it provides a data model for describing groups of related resources, and their relationships.
 - RDFS inherits RDF syntax, and thus RDFS specifications are RDF data.
 - RDFS has a simple model theoretic semantics that allows inference in the form of entailment rules.
 - RDFS vocabulary is defined in the namespace:
 - http://www.w3.org/2000/01/rdf-schema#

RDFS Primitives

Resource:

- All resources are implicitly instances of rdfs:Resource.
- Class: describe sets of resources
 - classes are resources themselves
 - e.g. Webpages, people, document types
 - Class hierarchy can be defined through rdfs:subClassOf
 - Every class is a member of rdfs:Class

- Property: subset of RDFS
 Resources that are properties
 - domain: class associated with property,
 rdfs:domain
 - range: type of the property values,rdfs:range
 - Property hierarchy defined through rdfs:subPropertyOf

Statements

 Resources that reify subject/predicate/ object triples

RDFS Vocabulary Description Language

- Classes:
 - swp:Apartment rdf:type rdfs:Class
- Class hierarchies:
 - swp:Apartment rdfs:subClassOf swp:ResidentialUnit
- Properties:
 - swp:rents rdf:type rdf:Property
- Property hierarchies:
 - swp:rents rdfs:subPropertyOf swp:residesAt
- Associating properties with classes:
 - swp:address rdfs:domain swp:Unit
 - "The property #hasName only applies to # Person:"
 - swp:address rdfs:range xsd:string
 - "The type of the property #hasName is # xsd:string:"

RDFS

RDFS Classes

rdfs:Resource

rdfs:Class

rdfs:Literal

rdfs:Datatype

rdfs:Container

rdfs:ContainerMembershipProperty

```
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
<owl>owl:Ontology
  rdf:about="http://www.w3.org/2000/01/rdf-schema#"
  dc:title="The RDF Schema vocabulary (RDFS)"/>
<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-</pre>
schema#Resource">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/</pre>
rdf-schema#"/>
 <rdfs:label>Resource</rdfs:label>
 <rdfs:comment>The class resource, everything.</
rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-</pre>
schema#Class">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/</pre>
rdf-schema#"/>
 <rdfs:label>Class</rdfs:label>
```

RDFS

RDFS Properties

- rdfs:domain
- rdfs:range
- rdfs:subPropertyOf
- rdfs:subClassOf
- rdfs:member
- rdfs:seeAlso
- rdfs:isDefinedBy
- rdfs:comment
- rdfs:label

```
<rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-</pre>
schema#subClassOf">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-</pre>
schema#"/>
 <rdfs:label>subClassOf</rdfs:label>
 <rdfs:comment>The subject is a subclass of a class.
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-</pre>
schema#Class"/>
 <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-</pre>
schema#Class"/>
</rdf:Property>
<rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-</pre>
schema#subPropertyOf">
 <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-</pre>
schema#"/>
 <rdfs:label>subPropertyOf</rdfs:label>
 <rdfs:comment>The subject is a subproperty of a property./
rdfs:comment>
 <rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-</pre>
ns#Property"/>
 <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-</pre>
syntax-ns#Property"/>
</rdf:Property>
```

Why Classes are Useful

- Impose restrictions on what can be stated in an RDF document using the schema
 - As in programming languages
 - E.g. A+1, where A is an array
 - the arguments of "+" must be numbers
 - Disallow nonsense from being stated

Disallow nonsensical statements

- •:JeffMeyer:rents:AmsterdamCommercialUnit
 - We want a person to only rent residential units
 - Restriction on values of the property ":rents" (range restriction)
 - Can only be a :ResidentialUnit or any of its subclasses
- •:BaronWayBuilding :rents
 - :BaronWayApartment
 - Only people can rent: Residential Units
 - This imposes a restriction on the objects to which the property can be applied (domain restriction)

Class Hierarchies

- Classes can be organised in hierarchies
 - : Apartment is a subclass of : Residential Unit if every instance of : Apartment is also an instance of : Residential Unit
 - Then: Residential Unit is a superclass of: Apartment
- A subclass graph need not be a tree
- A class may have multiple superclasses

Class Hierarchy Example

COMP318

Inheritance in Class Hierarchies

- Range restriction: Apartments must have an address of type literal
 - :BaronWayApartment is an :Apartment
 - It inherits the property address from being a subclass of :ResidentialUnit and :Unit
- This is done in RDF Schema by fixing the semantics of "rdfs:subClassOf"
 - It is not up to an application (RDF processing software) to interpret "rdfs:subClassOf"

Property Hierarchies

- Hierarchical relationships for properties
 - E.g., "rents" is a sub-property of "residesAt"
 - If a person x rents a residential unit y then the then the person x also resides at y
- The converse is not necessarily true
 - E.g., Someone might be a dependant of x, e.g.a child, but they do not rent y
 - P is a subproperty of Q, if Q(x,y) is true whenever
 P(x,y) is true

COMP318 Ontologies and Semantic Web

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk