

Enhanced Entity Relationship (EER)

- Semantic concepts are incorporated into the original ER model and called the **Enhanced** Entity-Relationship (EER) model.
 - Specialization/generalization
 - Aggregation
 - Composition.

FIGURE 2.3 THE ER MODEL NOTATIONS

Chen Notation

Crow's Foot Notation

UML Class Diagram Notation

A One-to-Many (1:M) Relationship: a PAINTER can paint many PAINTINGs; each PAINTING is painted by one PAINTER.

A Many-to-Many (M:N) Relationship: an EMPLOYEE can learn many SKILLs; each SKILL can be learned by many EMPLOYEEs.

A One-to-One (1:1) Relationship: an EMPLOYEE manages one STORE; each STORE is managed by one EMPLOYEE.

	UML	ERD
Full form	Unified Modeling Language	Entity Relationship Diagram
Definition	An easy to read system of symbols, shapes, and notations used in software system modeling and planning	A diagram that shows real-world items that exist in a database, and uses symbols and shapes to show relationships, attributes, and other important details
Key attributes	Class diagrams Object diagrams Sequence diagrams Activity diagrams Communication diagrams	Entities Attributes Cardinality Ordinality Number of relationship instances
Uses	Plan and model software systems Show how entities operate within a system, with all possible interactions	Plan databases Ensure all entities function properly Defines attributes of entities

Specialization / Generalization

Superclass

 An entity type that includes one or more distinct subgroupings of its occurrences.

Subclass

A distinct subgrouping of occurrences of an entity type.

Specialization / Generalization

- Superclass/subclass relationship is one-to-one (1:1).
- Superclass may contain overlapping or distinct subclasses.
- Not all members of a superclass need be a member of a subclass.

Attribute Inheritance

 An entity in a subclass represents same 'real world' object as in superclass, and may possess subclass-specific attributes, as well as those associated with the superclass.

Specialization / Generalization

Specialization

• Process of maximizing differences between members of an entity by identifying their *distinguishing* characteristics.

Generalization

• Process of minimizing differences between entities by identifying their **common** characteristics.

Staff Table with details of all staff

Specialization/generalization of Staff entity into subclasses representing job roles

IS A relation - Chen's notation

Constraints on Specialization / Generalization

- Two constraints that may apply to a specialization/generalization:
 - Participation constraints
 - Disjoint constraints.

Categories of constraints

All combinations of Participation and Disjoint

Constraints on Specialization / Generalization

Participation constraint

- Determines whether every member in superclass must participate as a member of a subclass.
- May be mandatory or optional.

Disjoint constraint

- Describes relationship between members of the subclasses and indicates whether member of a superclass can be a member of one, or more than one, subclass.
- May be disjoint (can be member of only one of the subclasses OR) or non-disjoint/overlapping (Multiple subclasses - AND).

Specialization/generalization of Staff entity into subclasses representing job roles

Specialization/generalization of Staff entity into job roles and contracts of employment

DreamHome worked example - Staff Superclass with Supervisor and Manager subclasses

DreamHome worked example - Owner Superclass with PrivateOwner and BusinessOwner subclasses

DreamHome worked example - Person superclass with Staff, PrivateOwner, and Client subclasses

- Student is postgraduate or undergraduate.
- A student in the university has a registration number and a name.
- Only postgraduate students have supervisors
- *Undergraduates* accumulates points through their coursework.

Method 1

All the entities in the relationship are mapped to individual tables.

Student (<u>Regno (PK)</u>, name)

PosGrad (Regno (PK,FK), supervisor)

UnderGrad (Regno (PK,FK), points)

Method 2

Only subclasses are mapped to tables. The attributes in the superclass are duplicated in all subclasses.

PosGrad (Regno, name, supervisor)

UnderGrad (Regno, name, points)

This method is most preferred when inheritance is disjoint (OR) and mandatory,

e.g. every student is either PosGrad or UnderGrad and nobody is both.

Method 3

Only the superclass is mapped to a table. The attributes in the subclasses are taken to the superclass.

Student (Regno, name, supervisor, points)

This method will introduce null values.

EER diagram of Branch view of DreamHome with specialization/generalization

• Represents a 'has-a' or 'is-part-of' relationship between entity types, where one represents the 'whole' and the other 'the part'.

Composition

 Specific form of aggregation that represents an association between entities, where there is a strong ownership and coincidental lifetime between the 'whole' and the 'part

In Chen's ER, we show this specialized relation of composition using **weak entities.**

This is the UML notation which shows composition but says nothing about the keys.