Office européen des brevets

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 10.10.2001 Bulletin 2001/41

(21) Application number: 99974189.5

(22) Date of filing: 12.11.1999

(51) Int CI.7: **C07D 277/38**, C07D 277/64, C07D 277/66, C07D 277/68, C07D 277/82, C07D 417/10, C07D 417/12, A61K 31/425, A61K 31/427, A61F 3/06, A61P 43/00

(86) International application number: PCT/JP99/06352

(87) International publication number: WO 01/36402 (25.05.2001 Gazette 2001/21)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(71) Applicant: Fujimoto Brothers Co., Ltd. Matubara-shi, Osaka 580-0011 (JP)

(72) Inventors:

- YONEDA, Fumio, Soyaku Kenkyusyo, Fujimoto Pharmac Matsubara-shi, Oska 580--0011 (JP)
 OHDE, Hironori, Soyaku Kenkyusyo, Fujimoto Pharmac
 - Fujimoto Pharmac Matsubara-shi, Oska 580-0011 (JP)

 WATANABE, Mayumi, Soyaku Kenkyusyo, Fujimoto Pharm Matsubara-shl, Osaka 580-0011 (JP)

 ANDO, Takashi, Soyaku Kenkyusyo, Fujimoto Pharmac Matsubara-shi, Oska 580-0011 (JP)

 YASUSA, Takuya, Soyaku Kenkyusyo, Fujimoto Pharmac Matsubara-shi, Osaka 580-0011 (JP)

 UEGAKI, Yuko, Soyaku Kenkyusyo, FuJimoto Pharmaceu Matsubara-shi, Osaka 580-0011 (JP)

(74) Representative: Prins, Adrianus Willem et al Vereenigde, Nieuwe Parklaan 97 2587 BN Den Haag (NL)

(54) NOVEL 2-(N-CYANOIMINO)THIAZOLIDIN-4-ONE DERIVATIVES

(57) This invention provides novel 2-(N-cyanolmino)thlazolidin-4-one derivatives represented by formula I or a pharmaceutically acceptable salt or solvate thereof:

wherein ring A represents a benzene ring, a condensed ring or a heterocyclic ring, each of which may be substituted by one or more substituents selected from a straight or branched C_1 - C_4 alkyl group, a haloalkyl group, a haloagen atom or -OB⁵.

 R^1 represents a single bond, an oxygen atom, a sulfur atom, a methyne group, a straight or branched C_1 - C_4 alkylene or alkenylene group optionally substituted by a phenyl group, R^6 -X X- R^6 , X- R^6 -X R⁶-X- R^6 , -C(=O)-NR⁷-or -NR⁷-C(=O)-,

P 1 142 885 A

Printed by Jouve, 75001 PARIS (FR)

(Cont. next page)

 $\rm R^2$ and $\rm R^3$ are the same or different and each represents a hydrogen atom, a $\rm C_1$ - $\rm C_4$ alkyl group, -OR 8 or a halogen atom,

R⁴ represents a hydrogen atom or a C₁ - C₄ alkyl group,

R5 represents a hydrogen atom or a C₁ - C₄ alkyl group,

R⁶ represents a straight or branched C₁ - C₄ alkylene or alkenylene group,

 R^7 represents a hydrogen atom or a C_1 - C_4 alkyl group, R^8 represents a hydrogen atom, a C_1 - C_4 alkyl group or an aralkyl group,

X represents an oxygen atom or a sulfur atom.

They have excellent activities of lowering triglyceride and cholesterol levels, and are useful for preventing from and/or treating hyperlipidemia and related complications.

Description

10

15

40

45

50

55

TECHINICAL FIELD

[0001] The invention relates to novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or pharmaceutically acceptable salts or solvates thereof, which have excellent activities in a lowering blood triglyceride level and a cholesterol level, and are useful for prevention from and/or treatment of hyperlipidemia and related complications.

BACKGROUND ART

[0002] Many epidemiological studies have shown that hypercholesterolemia is a risk factor for coronary heart disease (CHD). Recently, hypertriglycemia is confirmed to be an independent risk factor for CHD. (J Jpn Atheroscler Soc, 25 (1 · 2), 1-34 (1997) -- Guideline for Diagnosis and Treatment of Hyperlipidemias in Adults).

[0003] For the therapy of hypertriglycemia, dextran sulfate sodium, nicotinic acid derivatives, fibric acid derivatives (fibrates) have been used as the first choice. In particular bezafibrate is known to have more potent cholesterol lowering property as well as triglyceride lowering property than the earlier fibrates. And for hypercholesterolemia, HMG-CoA reductase inhibitors (e.g. pravastatin, simvastatin, etc., known as statins) are generally provided for clinical use.

[0004] When blood cholesterol level alone is elevated, HMG-CoA reductase inhibitors are employed. However, when both levels of blood cholesterol and triglyceride are elevated or the effect of hypolipidemic agent is not sufficient, some lipid lowering drugs are combined.

[0005] Thus, an aim of the present invention is to provide a novel class of potent hypolipidemic agents, which reduce more effectively a blood triglyceride level or both levels of blood triglycerides and cholesterol.

[0006] Some antidiabetic agents that are partially analogous to the compounds of the present invention have been found and developed, for example, troglitazone and pioglitazone. However, they are thiazolidin-2,4-dione derivatives, and according to the conference abstract of the 28th Meeting of the Japan Atherosclerosis Society, Osaka, June, 1996, No.024, pioglitazone did not change total cholesterol and triglyceride levels in hyperlipidemic rabbits. Therefore, from a view of chemical and biological properties, the compounds of the present invention are considered to be different from those antidiabetic compounds.

30 DISCLOSURE OF INVENTION

[0007] This invention provides prophylactic or therapeutic agents for hyperlipidemia and related complications comprising novel 2-(N-cyanoimino)thiazolidin-4-one derivatives represented by formula I or a pharmaceutically acceptable salt or solvate thereof as active ingredients:

A R¹ NCN I

wherein ring A represents a benzene ring, a condensed ring or a heterocyclic ring, each of which may be substituted by one or more substituents selected from a straight or branched C₁ - C₄ alkyl group, a haloalkyl group, a halogen atom or -OR⁵;

R1 represents a single bond, an oxygen atom, a sulfur atom, a methyne group, a straight or branched C₁ - C₄ alkylene or alkenylene group optionally substituted by a phenyl group, R⁶-X, X-R⁶, X-R⁶-X, R⁶-X-R⁶, -C(=O)-NR⁷-or -NR⁷-C(=O)-;

 R^2 and R^3 are the same or different and each represents a hydrogen atom, a C_1 - C_4 alkyl group, -OR⁸ or a halogen atom;

R4 represents a hydrogen atom or a C1 - C4 alkyl group;

 R^5 represents a hydrogen atom or a C_1 - C_4 alkyl group;

 R^6 represents a straight or branched C_1 - C_4 alkylene or alkenylene group;

R7 represents a hydrogen atom or a C₁ - C₄ alkyl group;

R8 represents a hydrogen atom, a C1 - C4 alkyl group or an aralkyl group;

X represents an oxygen atom or a sulfur atom.

[0008] The present inventors have carried out various investigations to solve the above problem and found that the novel 2-(N-cyanoimino)thiazolidin-4-one derivatives represented by formula I have excellent blood triglyceride lowering and cholesterol lowering activities. Thus the present invention was successfully established.

BEST MODE FOR CARRYTNFG OUT THE INVENTION

[0009]

10

15

25

35

40

45

50

- "Salts" refers to low toxic salts derived from sodium, potassium, ammonia or organic amines, for instance.
- "C₁ C₄ alkyl group" refers to methyl, ethyl, n-propyl, iso-propyl, n-butyl or tert-butyl, for instance.
- "C1 C4 alkoxy group" refers to methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy or tert-butoxy, for instance.
- "halogen atom" refers to generally fluorine atom, chlorine atom, bromine atom or iodine atom. More preferably it is fluorine atom or chlorine atom.
- "ring A" refers to a benzene ring, a benzodioxole ring, a benzofuran ring, a benzothiazole, a fluorene ring, an indan ring, an indoline ring or a pyridine ring, connecting with R1 at any position, for instance.

[0010] Particularly preferred compounds represented by formula I are as follows:

- 2-(N-Cyanoimino)-5-[(E)-4-stylylbenzylidene]thiazolidin-4-one;
- 2-(N-Cyanoimino)-5-[(E)-4-(a-methylstylyl)benzylidene]thiazolidin-4-one; 20
 - 2-(N-Cyanolmino)-5-[4-(benzyloxymethyl)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[(E)-4-(b-methylstylyl)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(3-phenylpropoxy)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(4-chlorophenoxy)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-(4-phenylthiobenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[(E)-4-(2-fluorostylyl)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(2,5-dimethylphenoxy)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-(4-phenethyloxybenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(2-phenylpropoxy)benzylidene]thiazolidin-4-one;
- 2-(N-Cyanoimino)-5-(3-phenethyloxybenzylidene)thiazolidin-4-one; 30
 - 2-(N-Cyanoimino)-5-(4-benzyloxybenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(5-chlorobenzofuran-2-yl)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[(E)-4-(4-methoxystylyl)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-(3-phenoxybenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(1,3-benzodioxol-5-ylmethoxy)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(4-methylbenzyloxy)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(4-chlorobenzyloxy)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[3-methoxy-(E)-4-stylylbenzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-(2-phenethyloxybenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-(4-phenoxybenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[3-(benzyloxy)benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-(benzylthio)benzylidene]thiazolidin-4-one;

 - 2-(N-Cyanoimino)-5-(4-phenethylbenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[4-[2-(4-chlorophenyl)ethoxy]benzylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[1-[(E)-4-(4-methoxystylyl)phenyl]ethylidene]thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-(4-benzyloxy-2,5-dimethylbenzylidene)thiazolidin-4-one;
 - 2-(N-Cyanoimino)-5-[(E)-3-stylylbenzylidene]thiazolidin-4-one;

[0011] The compounds of the present invention are novel compounds not described in any literature and can be prepared by the following methods as the example.

[0012] A 2-(N-cyanoimino)thiazolidin-4-one represented by formula II or the salts thereof are reacted with an aldehyde or ketone represented by formula III

wherein ring A represents a benzene ring, a condensed ring or a heterocyclic ring, each of which may be substituted by one or more substituents selected from a straight or branched C1 - C4 alkyl group, a haloalkyl group, a halogen atom or -OR5;

 R^{1} represents a single bond, an oxygen atom, a sulfur atom, a methyne group, a straight or branched C_{1} - C_{4} alkylene or alkenylene group optionally substituted by a phenyl group, R6-X, X-R6, X-R6-X, R6-X-R6, -C(=O)-NR7or -NR7-C(=0)-;

 R^2 and R^3 are the same or different and each represents a hydrogen atom, a C_1 - C_4 alkyl group, -OR 8 or a halogen

R4 represents a hydrogen atom or a C₁ - C₄ alkyl group;

R5 represents a hydrogen atom or a C1 - C4 alkyl group;

 R^6 represents a straight or branched C_1 - C_4 alkylene or alkenylene group;

R7 represents a hydrogen atom or a C₁ - C₄ alkyl group;

R8 represents a hydrogen atom, a C1 - C4 alkyl group or an aralkyl group;

X represents an oxygen atom or a sulfur atom.

[0013] The reaction can be carried out in a suitable solvent such as ethanol, acetonitrile, 1,4-dioxane, N,N-dimethylformamide, dimethyl sulfoxide, pyridine, toluene, and xylene, alternatively without employing a solvent, in the presence of ammonium acetate at a temperature ranged from ambient temperature to 200°C, preferably from 70°C to 150°C, for a period of time between 10 minutes to 10 hours, usually 20 minutes to 5 hours.

[0014] There are geometric isomers for the present compounds, however, in solution, reversible isomerization of C5-double bond of thiazolidine occurs very easily by the action of light or heat.

[0015] The compounds of the present invention have excellent activities in lowering blood triglyceride and cholesterol levels and are pharmaceutically useful as therapeutic agents for prevention and/or treatment of hyperlipidemia and related complications.

[0016] The compounds of the present invention and pharmaceutically acceptable salts thereof can be orally or parenterally administered either alone or preferably in the form of appropriate pharmaceutical compositions such as tablets, powders, granules, capsules, syrups, or injections comprised of pharmaceutically acceptable carriers, diluents, solubilizers, or other pharmaceutical additives.

[0017] The dosage will depend on the condition, age, body weight, and other factors of each patient or efficacy of an active ingredient. Generally, when the compound of the present invention is orally administered, the daily dose of the present invention preferably ranges from 10 to 400 mg for adult, and is administered once or in several divided doses a day.

[0018] The invention is illustrated by the following examples.

EXAMPLE 1

45

55

10

15

20

2-(N-Cyanoimino)-5-[(E)-4-stylylbenzylidene]thiazolidin-4-one

[0019] A mixture of 4.48g (0.025mol) of 2-(N-cyanoimino)thiazolidin-4-one potassium salt, 5.47g (0.026mol) of trans-4-stilbencarboxaldehyde and 2.02g (0.026mol) of ammonium acetate in 100 mL of ethanol was heated for 2 hours under reflux. After cooling, ether was added to the reaction mixture and the precipitated potassium salt of the title compound was collected by filtration. To the rapidly stirring suspension of the salt in 50 mL of acetone, 5 mL of conc. hydrogen chloride was added dropwise and then 250 mL of water was added. The precipitate was collected and dried under reduced pressure to yield the title compound.

[0020] The structural formula, yield, and the physical property of the compound are shown in Table 1.

EXAMPLE 2 TO EXAMPLE 61

[0021] In substantially the same manner as in Example 1, the compounds shown in Table 1 were obtained.

[0022] Their structural formulas, yields, and physical properties are shown in Table 1. Abbreviations used in Table 1 are defined as follows: [0023]

Ex.	Example
mp	melting poin

recrystallization solvent recryst solv

electron impact ionization mass spectroscopy EI-MS

infrared spectroscopy IR elemental analysis EΑ proton nuclear magnetic resonance spectra ¹H NMR singlet s

d doublet doublet of doublets

dd triplet t multiplet m

10

15

20

25

30

40

45

50

55

broad br

coupling constant J

1: After heating for 10 minutes at 130°C without solvent, the soluble part of reaction mixture in chloroform is chromatographed on a silica gel column.

2: n-Butanol was used as solvent.

3: E = ethanol, DMF = N,N-dimethylformamide, I = isopropanol, A = acetone, M = methanol, EA = ethyl acetate, H = hexane

4: Solvent; 10% Pyridine-d5 / DMSO-d6

o=(
Table 1. 2-(N-Cyanoimino)thiazolidm-4-ones	
3	

				Ż	<u>x</u> 0x				
Ex Descrip- No tion	Yield (%)	æ	×	mp(°C)	El-MS(m/z)	IR(KBr, cm.¹)		Molecular formula	EA(%) Celeld.
l yellow crystals	88		π	265 (dee) (E-DMP:)	331(M*), 236, 202, 179	3015, 2920, 2240, 2185, 1725, 1880, 5.80-7.00(1H,br), 7.20-8.10(11H,m), 1505, 1490, 1340, 1290, 1170, 380, 7.86-7.00(1H,br), 7.26-8.10(11H,m), 540, 500		C ₁₉ H ₁₁ N ₃ OS (331.399)	H 3.95, C 68.86, N 12.68 H 4.15, C 68.94, N 12.40
orange- 2 yellow crystals	48	4,0	Ŧ	226-227.5 (E-DMF)	345(M [°]), 258, 243, 162	3150, 3080, 2925, 2210, 1724, 1580, 1360, 1348, 1180, 742, 700, 588, 525	2.27(3H,br), 3.50-4.40(1H,br), 7.08(1H,br), 7.20-7.53(5H,m), 7.60- 7.80(4H,m), 7.88(1H,s)	C ₂₀ H _{1,3} N ₃ OS (345.426)	H 4.38, C 69.54, N 12.16 H 4.59, C 69.51, N 11.99
pale 3 yellow crystals	8		=	170 \$-171.5 (E-DMF)	349(M [°]), 320, 258, 243, 230, 162, 147, 135, 115, 103, 91, 79, 77	3200, 3110, 2200, 1740, 1600, 1350, 1307, 1250, 1200, 1190, 1146, 830, 755, 562, 540	3.86(1H,br), 4.57(2H.s), 4.62(2H.s), 7.37(3H.s), 7.60(4H.s), 7.87(1H.s)	C19H13N3O2S (349.414)	H 4.33, C 65.31, N 12.03 H 4.64, C 65.54, N 11.70
4 yellow necdles	8		æ	236.5-237.5 (E-DMF)	345(M ¹), 320, 249, 233. 205	2950, 2200, 1717, 1598, 1360, 1293, 1248, 1202, 1181, 763, 721, 700, 582, 542, 520	2.28(3H,s), 6.05(1H,br), 6.81(1H,s), 7.20-7.80(9H,m),7.84(1H,s)	C ₁₀ H ₁₃ N ₃ OS (345,426)	H 4.38, C 69.54, N 12.16 H 4.65, C 69.62, N 11.76
crystels	78		н	212.5-213 (dec) (E-DMF)	363(M [°]), 272, 268, 245. 176, 150, 121, 91, 65	3110, 3050, 2925, 2780, 2190, 1690. 1585, 1555, 1500, 1490, 1350, 1260, 1245, 1205, 1170, 1110, 820, 720, 535	1.50-2.37(2H.m.), 2.37-2.91(2H.m.), 4.01(2H.d.)=6H.b. 7.05(2H.d.)=8.5H.b.), 7.22(5H.a.), 7.54(2H.d.)=8.5H.b.), 7.76(1H.s.)	C20H17N3O2S (363.441)	H 4.71, C 66.10, N 11.56 H 4.85. C 66.05, N 11.53
orenge- 6 vellov needles	69		=	225-226.5 (dec) (E-DMF)	355(A1 [*]), 262, 260, 149	3160, 3075, 2945, 2770, 2200, 1720, 1590, 1580, 1580, 1480, 1355, 1290, 1245, 1205, 1190, 1170, 1090, 1010, 830, 545, 490	6.40-8.00(114.bs), 7.13 (41.dd, 1-8.51±, 91x), 7.49(214.d, 1-94x), 7.67 (214.d, 1-8.51x), 7.84(114.s)	C ₁ ,H ₁₀ ClN ₃ O ₂ S (355.805)	H2.83, C 57.39, N 11.81 H3.13, C 57.44, N 11.54
) orange crystals	92		#	204.5-205.5 (dec) (E-DMF)	337(M [°]), 242, 200, 197, 165	3125, 3040, 2930, 2750, 2200, 1730, 1700, 1615, 1600, 1380, 1343, 1490, 1470, 1405, 1355, 1320, 1300, 1185, 1080, 735, 715, 700	4.30-5.40(11,br), 7.21(214,d.)~9Hz), 7.40(514,s), 7.50(214,d.)~9Hz), 7.71(114,s)	C ₁₁ H ₁₁ N ₁ OS ₁ (337.427)	H3.29, C 60.51, N 12.45 H3.57, C 60.27, N 12.38
8 yellow crystals	22	5		271-272 (E-DME)	349(M [°]), 254	3050, 2960. 2800, 2200, 1700, 1580, 1357, 1296, 1211, 1177, 754, 550	3.93(114.br), 7.20-7.84(1014.m), 7.87(114.s)	C, H12FN, OS (349.388)	H 3.46, C 65.32, N 12.03 H 3.73, C 65.53, N 11.78
orange- 9 yellow plates	62	£ 200 25 1	Ħ	196-197.5 (E)	349(M [*]), 254, 121, 149, 134, 221, 105, 79	3050, 2950, 2770, 2190, 1735, 1705, 1590, 1735, 1750, 1590, 1425, 1350, 1350, 1250, 1255, 1165, 1110, 830, 725	2.09, 2.27(each 3H.s), 6.30-8.30(1H. br), 6.85(1H.s), 6.99(1H.d.) -7Hz.2H. d.)-8.5Hs), 7.24(1H.d. J-7Hz.3-H), 7.62(1H.d.)-8.5Hs), 7.82(1H.s)	C ₁₉ H ₁₉ N ₁ O ₂ S (349.414)	H 4.33, C 65.31, N 12.03 H 4.50, C 64.91, N 11.66
pale 10 yellow crystals	86		π	193-194 (dec) (1-DNF)	349(M°), 150, 105, 79	3050, 2920, 2150, 2175, 1725, 1580, 1505, 1495, 1345, 1305. 1290, 1255, 1005, 335	3.08(7H,L)=7H±), 4.30(7H,L)=7H±), 6.30-8.30(1H,b), 7.12(2H,d,J=8H±), 7.33(5H,s), 7.60(2H,d,J=8H±), 7.82(1H,s)	C ₁₉ H ₁₃ N ₃ O ₂ S (349.414)	H 4.33, C 65.31, N 12.03 H 4.45, C 65.27, N 11.93

۳ .	mp(⁴ C) (reeryst rolv ⁴⁻³)	EI-MS(m/z)	R(KBr, cm ⁻¹)	H-NAR(DMSO-d6, dppm)	Molecular formula (Molecular weight)	EA(%) Calcid.
. 1	190-191 (E-DMF)	363(M°), 244, 210, 149	2940, 2210, 1730, 1600, 1517, 1360, 1368, 1368, 1180, 1019, 777, 742, 706, 561, 548	134(314,4)-6.61£), 3.00-3.50(11, m), 4.17(21,4)-6.61£), 5.10(11, b), 7.09(21,4,1-91£), 7.31(51, 1), 7.58(21,4,1-91£), 7.30(11,3)	C ₁₀ H ₁₁ N ₃ O ₂ S (363.441)	H471, C66.10, N 11.56 H4.76, C65.76, N 11.57
	172-173 (deo) (E-DMF)	349(N³ [*]), 150, 105	3050, 3020, 2930, 2775, 2220, 1720, 1620, 1600, 1490, 1350, 1250, 1220, 1060, 1030, 990, 780, 750, 730, 700, 525	3.05(2H1,1=7Hz), 4.24 (2H1,1=7Hz), 6.85-7.60(9H.m), 7.82(1H,s)	C1eH1,N,O2S (349.414)	H 4.33, C 65.31, N 12.03 H 4.53, C 65.64, N 11.96
1	230-231 (dec) (E-DMF)	335(M*), 149, 121, 91	3130, 3070, 2960, 2790, 2215, 1710, 1600, 1590, 1510, 1360, 1200, 1210, 1180, 985, 840, 763, 730, 595, 110	3.80-4.90(11Lbr), 5.19(2H.s.), 7.18(2H.d.J-9Hz), 7.42(5H.s.), 7.60(2H,d.J-9Hz), 7.81(1H.s.)	C ₁₄ H ₁₁ N ₃ O ₃ S (335.387)	H 3.90, C 64.46, N 12.53 H 4.20, C 64.52, N 12.20
1	265 (dec) (DMF)	379(M³), 286, 284	3030, 2930, 2730, 2195, 1715, 1595, 1445, 1415, 1330, 1330, 1250, 1260, 1260, 1055, 800, 720, 560, 540	7.33(114.dd.)=914.2.5142), 7.46- 7.83(614.m), 8.03(214.d.)=8142)	C10H10CIN1O2S	H2.65, C 60.09, N 11.06 H3.06, C 60.51, N 10.91
- 1	161-162 (E-DMF)	361(M*), 266; 251, 234. 221, 189, 179, 165, 133, 105, 89, 77	3050, 2940, 2750, 2210, 1728, 1583, 1512, 1328, 1292, 1244, 1176, 1022, 969, 839, 800, 707, 633, 560, 542	3.81(3H.s), 6.87-7.90(11H.m) **	C ₂₀ H ₁₃ N ₃ O ₂ S · 1/2H ₂ O (370.433)	H4.35, C 64.85, N 11.34 H4.23, C 64.87, N 11.29
~	202.5-203.5 (E-DAF)	321(M*), 226, 197, 165	3023, 2920, 2730, 2200, 1733, 1630, 1630, 1600, 1485, 1340, 1286, 1260, 1220, 754, 720, 525	5.18(14,61), 7.00-7.68(9H,m), 7.86(1H,1)	C ₁₁ H ₁₁ N ₃ O ₃ S (321.36)	H 3.72, C 63.61, N 12.80
.	217-218 (dec) (E-DME)	379(M°), 245. 150, 135, 105, 77	3050, 2950, 2775, 2200, 1700, 1585, 1510, 1445, 1355, 1300, 1525, 1215, 1175, 1040, 1020, 985, 930, 830, 830, 830, 730, 550	3.60-4.70(114br), 5.05(214.9), 5.93(214.4), 6.80-7.03(314.m), 7.13(214.4)=942, 7.88 (214.4)=942, 7.68(114.5)	C1sH1,N,O,S	H3.45, C 60.15, N 11.08 H3.74, C 59.82, N 10.96
~	248.5-249.5 (dec) (E-DNJF)	349(M [*]), 150, 105	3030, 2930, 2770, 2225, 2200, 1715, 1600, 1590, 1505, 1353, 1290, 1260, 1240, 1190, 1170, 990, 835, 800, 775, 353, 540, 480	2.31(314.5), 4.60-6.20(114.br), 5.13(214.5), 7.00-7.47(61.pr), 7.60(214.4.1=9142), 7.80(114.5)	C19H13N1O1S (349.414)	H 4.33, C 65.31, N 12.03 H 4.52, C 65.40, N 11.78
[(dec.) (E-DNJF)	369(M°), 149, 127, 125, 105	3050, 2930, 2780, 2225, 1720, 1620, 1610, 1595, 1810, 1360, 1260, 1260, 1245, 1200, 1175, 1000, 850, 840, 820, 7720, 540, 510	3.90-5.00(1H,br.), 5.20(2H,s). 7.19(2H,d,)=9Hz), 7.48(4H,s.). 7.63(2H,d,)=9Hz), 7.82(1H,s)	C ₁₈ H ₁₂ ClN ₃ O ₂ S (369.832)	H 3.27, C 58.46, N 11.36 H 3.52, C 58.65, N 11.09
"	250.5 (dec) (E-DMF)	361(M°), 262, 234, 723, 206	3030, 2950, 2203, 1744, 1593, 1516, 1360, 1330, 1279, 1161, 1043, 970, 839, 763, 698, 637, 604, 555, 520	3.92(3)44), 4.22(114b1), 7.09. 7.99(10)4,m), 7.85(1144)	C ₂₀ H ₁₃ N ₁ O ₂ S (361.425)	H4.18, C 66.47, N 11.63 H 4.35, C 66.71, N 11.35

Calcid.	H 4.33, C 65.31, N 12.03 H 4.48, C 65.34, N 12.09	H 3.45, C 63.53, N 13.08 H 3.79, C 63.69, N 12.93	H 4.52, C 63.31, N 11.07 H 4.73, C 63.54, N 11.00	H 3.47, C 62.06, N 16.08 H 3.71, C 62.11, N 15.92	H 3.77, C 63.89, N 16.56 H 4.03, C 63.70, N 16.32	H 4.68, C 61.60, N 10.26 H 4.75, C 61.64, N 10.19	H 4,45, C 62.32, N 14.54 H 4.56, C 62.19, N 14.16	H 2.86, C 50.01, N 9.72 H 2.87, C 50.22, N 9.68	H 3.82, C 63.15, N 15.41 H 4.12, C 62.96, N 15.40	H 3.53, C 67.91, N 11.31 H 3.88, C 68.11, N 11.12
E.A(%)		H3.45, C6 H3.79, C6	H4.32, C 6 H4.73, C 6	H3.47, C.	H3.77, C	H 4.68. C H 4.75, C	H 4.45, C H 4.56, C	H 256, C H 2.87, C	H3.82, C H4.12, C	H3.53, C H3.88, C
Molecular formula	C ₁ ,H ₁ ,N ₁ O ₃ S (349.414)	C,1H,1N,0,S (321.36)	C _{2n} H ₁ ,N,O ₃ S (379.44)	C ₁₈ H ₁₂ N ₄ O ₂ S (348.386)	C ₁₈ H ₁₂ N ₄ OS · 1/3H ₃ O (338.392)	C ₂₁ H ₁₉ N ₃ O ₄ S (409.466)	C ₁ ,H ₁₄ N ₄ O ₂ S · 1/2C ₂ H ₂ OH (385.448)	C ₁₁ H ₁₁ BrFN ₁ O ₂ S (432.273)	C ₁₀ H ₁₂ N ₁ O ₂ S · 17ZC ₃ H ₁ NO (408,956)	C ₂₁ H ₁₃ N ₃ O ₃ S (371.42)
H-NNR(DMSO-46, 6:ppm)	3.05(2H _{1,1} =6.5Hz), .25(2H _{1,1} =6.5Hz), 6.85-7.60(9H.m), 8.01(1H ₁ ¢)	4.00-4.80(114.br), 7.00-7.33(714.m), 7.66(214,d,J=914z), 7.84(114.s)	3.06(2H,L)=7H2), 3.83(3H.s), 4.22(2H,t,J=7H2), 6.95-7.50(8H,m), 7.77(3H,s)	. 4.15-5.40(2H.br.), 6.95- 7.62(3H.m), 7.62-8.30(7H.m)	7,30-8,90(m)	2.97(2H,1J-7)tz, 3.81(6H,s). 4.18(2H,1,5-7tz), 6.90(2H,s), 7.10- 7.40(5H,m), 7.80(1H,s)	3.42(3H.s), 5.50-6.40(1H.bs), 7.28(1H.s), 7.30(2H.d.)=8Hz), 7.54(2H.d.)=8Hz), 7.78(1H.s)	3.62(114 br), 5.22(214.1), 7.23(2114,1-912), 7.42-7.78(514.m), 7.83(114.1)		
IR(KBr, cm.¹)	3010, 2910, 2760, 2200, 1725, 1620, 3.05(2H,1)=6.5Hz), (E-DMF) 172, 1620, 1725, 1630, 1480, 1480, 1480, 1485, 1345, 1320, 4.25(2H,1)=6.5Hz), 6.85.7.60(9H,m), 6.90, 520	3500-2700, 2200, 1730, 1580, 1505, 1490, 1360, 1295, 1260, 1200, 1170, 745, 530, 480	3050, 2550, 2790, 2195, 1720, 1700, 1590, 1580, 1510, 1435, 1340, 1270, 1250, 1170, 1145, 1020, 720, 545, 485	3050, 2950, 2770, 2190, 1735, 1650, 1530, 1530, 1530, 1530, 1500, 1440, 1345, 1320, 1295, 1240, 1180, 770, 720, 690, 583, 565, 540	3050, 2925, 2900-2300, 2175, 1730, 1640, 1610, 1510, 1470, 1425, 1320, 1300, 1270, 1250, 1210, 1175, 980, 820, 600, 545	3030, 3025, 2340, 2830, 2760, 2195. 1730, 1700, 1600, 1500, 1450, 1420, 1320, 1240, 1185, 1155, 1130, 990, 730, 700, 560, 545, 530	3050, 2935, 2755, 2195, 1730, 1600, 1515, 1350, 1300, 1290(sh), 1245, 1180, 1105, 720	3060, 2240, 2800, 2230, 1720, 1635, 1618, 1608, 1520, 1361, 1298, 1273, 1255, 1180, 1002, 897, 852, 840, 540	3320, 3050, 2940, 2750, 2190, 11720, 1690, 1640, 1590, 1465, 1380, 1345, 1330, 1290, 1245, 1190, 1100, 795, 760, 725, 600, 525	3050, 2930, 2770, 2199, 1730, 1690, 1610, 1550, 1505, 1415, 1345, 1325, 1225, 1290, 1265, 1240, 1195, 1180, 1090, 735, 720, 600, 540
El-MS(m/z)	349(M.), 178, 149, 105,	321(M [°]), 226. 197, 149, 121, <i>TI</i>	379(M*), 274, 180, 105. 79	348(M [*]), 256. 161. 133, 91	331((N-1)*), 236, 204. 158, 113, 79, 51	40%(M²), 305, 210, 105, 79	362(M²), 105.77	433[(\d+2)*], 431(\d*), 189, 187, 149, 107	372(M [*]), 277	371(M'), 276, 247, 213, 139, 114, 89
mp(°C) (recn'st solv *¹)	204-205.\$ (dec) (E-DNF)	218-219 (dec) (E-DMF)	195-195.5 (E-DMF)	275 (dec) (E-DNIF)	295-296 (dec) (DNÆ)	194-195 (E)	202.5-203.5 (dec) (E)	270-271 (E-DMG)	>300 (E-DMF)	>300 (DMF)
, k	×	±	Ŧ	×	x	æ	五	≖	# .	π
æ			Meo	LZ O		Meo	, To T			
Yield (%)	52	28	88	8	67	65	8	\$6	65	89
(Continued) Ex Descrip-	21 yellow crystals	pale 22 vellow crystals	orange- 22 yellow crystals	pale 24 yellow erystals	25 jellow crystale	26 retion	Trange plates	light 25 brown crystals	ig orange rrystals	pale 30 yellow crystals

	Calcid.	H 3.50, C 61.10, N 14.70 H 3.71, C 61.02, N 14.57	H 4.71, C 66.10, N 11.56 H 4.89, C 66.00, N 11.38	H 3.91, C 64.46, N 12.53 H 4.07, C 64.44, N 12.17	H 3.63, C 66.87, N 13.76 C 66.93, H 3.96, N 13.70	H5.13, C 70.75, N 11.25 H 5.29, C 70.81, N 11.21	H 4.19, C 66.50, N 11.63 H 4.40, C 66.46, N 11.41	H 4.94, C 69.06, N 8.95 H 5.09, C 69.02, N 8.64	H 4.14, C 62.45, N 11.50 H 4.30, C 62.16, N 11.13	H 3.47, C 62.06, N 16.08 H 3.74, C 62.12, N 15.86	H 4.69, C 71.82, N 9.31 H 4.80, C 72.12. N 9 18	H 4.14, C 62.45, N 11.50 H 4.32, C 62.39, N 11.44	
	EA(%)	1	H 4.71, H 4.89,	H 3.91, H 4.07,	H 3.63,	H 5.13, H 5.29.	H 4.19,	H 4.94 H 5.05	H 4.14	H 3.47	H 4.6		
	Molecular formula (Molecular weight)	C _{2n} H ₁₂ N ₄ OS ₂ · 1/3C ₂ H ₃ NO (412.84)	C ₂₀ H ₁ ,N ₃ O ₂ S (363.441)	C _{tr} H ₁₃ N ₃ O ₂ S (335 387)	C ₁₁ H ₍₁ N ₃ OS (305.361)	C ₁₃ H ₁₉ N ₁ OS (373.48)	C ₂₀ H _{1,1} N ₃ O ₂ S (361 425)	C ₂ ,H ₂₃ N,O ₃ S (469.563)	C ₁₉ H ₁₅ N ₃ O ₃ S (365.413)	C ₁₈ H ₁₇ N ₄ O ₂ S (348.386)	C ₁₁ H ₁₁ N ₁ OS · C ₁ H ₁ OH (451.55)	C ₁₉ H ₁₃ N ₃ O ₃ S (365.413)	
	H-NNR(DMSO-46, 8:ppm)	7.40-8.50(m)	0.90(3H,1J=7.2H2), 1.61-2.10(2H, m), 4.40(1H,bv), 5.35(1H,1,1=6.2 H2), 7.05(2H,d,J=8.4Hz), 7.33(3H,3), 7.50(2H,d,J=8.4Hz), 8.73(1H,3)	5.19(2H.s), 5.53(1H.br.), 6.94- 7.53(5H.m), 7.63(4H.s), 7.86(1H.s)	4.32(1H,br), 7.33-7.95(9H.m). 7.91(1H.s)	1.20(6H.d.J=7Hz), 7.92(1H, septet), 3.60-4.50(1H,bs.), 7.15-7.90(11H.m)	3.50-5.00(11.b.), 4.83(2H.d.)=5 Hz), 6.45-6.80(2H.m), 7.18(2H.d.)=91b2, 6.90-7.80(5H.m.), 7.63 (2H.d.)=91b2, 6-H), 7.82(1H.s)	3.04(dH,1=6.5Hz), 4.00- 4.43(dHm), 6.90-7.60(13Hm), 7.78(1H,s)	3.09(2H,LJ=7H±), 4.27(2H,LJ=7H±), 6.90-7.55(8H,m), 7.71(1H,s)	7.40-8.20(m)	3.50-4.35(1H,br), 6.95-8.15(14H,m)	4.37(4H.br), 6.80-7.47(7H,m), 7.47- 7.75(3H,m) *4	
	IR(KBr, cm¹)	3050, 3020, 2930, 2730, 2190, 1725, 1595, 1510, 1415, 1350, 1320, 1290, 1240, 1190, 1173, 760, 720, 565, 530	2960, 2930, 2200. 1730, 1598, 1507, 1357, 1259, 1177, 1000, 978, 829, 705, 523	3040, 2945, 2770, 2205, 1730, 1603, 1498, 1358, 1338, 1300, 1250, 1180, 810, 753, 514	3045, 2950, 2750, 2200, 1737, 1595, 1490, 1339, 1179, 770, 640, 560, 547	3020, 2955, 2760, 2200, 1730, 1585, 1510, 1340, 1295, 1245, 1190, 1170, 830, 555	3100, 3050, 2950, 2780, 2195, 1710, 1590, 1580, 1560, 1510, 1360, 1250, 1250, 1250, 1730, 350	3050, 3005, 2230, 2750, 2190, 1720, 1520, 1500, 1450, 1345, 1300, 1210, 1250, 1210, 1165, 1135, 1010, 745, 715, 690	3030, 2930, 2770, 2200, 1720(sh), 1710, 1595, 1505, 1455, 1360, 1280, 1250, 1210, 1170, 1135, 1010, 720, 700, 510	3060, 2930, 2930, 2710, 2195, 1720, 1720, 1705, 1635, 1850, 1810, 1485, 1415, 1350, 1350, 1295, 1240, 1185, 710, 630, 610, 335	3050, 2950, 2760, 2200, 1715, 1595, 1445, 1350, 1290, 1240, 1190, 1170, 775, 730, 610, 540	3120, 3060, 2945, 2780, 2190, 1710, 1600, 1505, 1485, 1480, 1360, 1260, 1250, 1230, 1230, 1230, 1760, 175, 540	
	EI-MS(m/z)	388(h1 [°]), 294, 292, 260, 1 249, 236, 163, 149, 77	363(N-'), 244, 210, 149	335(NJ*), 250, 240, 173, 147	305(M ²), 210	373(M ⁻), 358, 278, 263, 230, 202, 129, 91, 68	361(M*), 150, 117, 91	469(M°), 364, 267, 105, 77	365(NL [*]), 166, 105, 79	348(M²), 197, 148, 105	405(M*), 310, 253, 165	365(M²), 270, 243, 176, 150, 121, 93, 77	
	mp(°C) (recrist solv *³)	>300 (DNE)	144-145.5 (EA-H)	238.5-240 (E-DN:F)	253.5-255 (E-DMF)	240 (dec) (E-A)	219.5-220.5 (dec) (E-DAF)	161.5.162.5 (E)	189.5-190.5 (dec) (M)	297 (dec) (E-DMF)	257-259 (dec) (E-DNF)	225-226.5 (dec) (E-DMF)	
	æ	H	π.	x	π	Ξ.	_ _ _	=	Ξ	π	. x	#	
	٠ د		F.2.+										
ଚ	Yield (%)	67	6 7	15 94	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	£. ₩	258 vir	TE sie	ge. 73	ge- ovr 57	ige S5	rellew 80	
(Continued)	Ex Descrip- Yield No tion (%)	wollay 15	pale 32 yellow crystals	sletsion is	id yellow	stels ro	pale 34 yellow crystals	37 yellow crystals	orenge-	orange- 39 yellow crystals	tiv orange crystals	us istalew	
•													

	1.1	1.63	1.50	11.69	13.76	11.07	10.31	13.39	14.30	111.49	111.42	110.52
	Calcid. Found	5.47, N 1	2.45, N	0.17, N	N '96'9	3.31. N	N.69. N	60.28. N 60.27, N	55.16, N 55.46, N	62.38, h 62.48, h	65.29, 1	60.15.1
	EA(%) -	H 4.18, C 66.47, N 11.63 H 4.44, C 66.43, N 11.27	H 4.14, C 62.45, N 11.50 H 4.28, C 62.26, N 11.33	H 4.77, C 70.17, N 11.69 H 4.96, C 70.15, N 11.52	H 3.63, C 66.87, N 13.76 H 3.99, C 66.96, N 13.49	H 4.52, C 63.31, N 11.07 H 4.64, C 63.20, N 10.79	H 4.20, C 73.69, N 10.31 H 4.47, C 73.83, N 10.00	H 3.37, C 60.28. N 13.39	H 3.67, C 55.16, N 14.30 H 3.75, C 55.46, N 14.00	H 3.31, C 62.38, N 11.49 H 3.53, C 62.48, N 11.46	H 4.79, C 65.29, N 11.42 H 4.86, C 65.47, N 11.02	H 3.03, C 60.15, N 10.52 H 3.25, C 60.28, N 10.63
	1	1	-								ļ	İ
	Molecular formula (Molecular weight)	CzeHtsNsO2S (361.425)	C ₁₉ H ₁₅ N ₃ O ₃ S (365.413)	C21H17N,OS	C,,H,,N,OS	C20H1,NJO5S (379.44)	C ₁₃ H ₁₁ N ₃ OS (407 497)	C ₁₁ H ₁₄ N ₂ O ₄ S (418.433)	ClaH11N,OS, 2/3C,H1NO (457,26)	C ₁₉ H ₁₁ CIN ₃ OS (365.844)	C ₂₀ H ₁₁ N ₁ O ₂ S 114H ₂ O (367.945)	C ₂₀ H ₁₂ F ₃ N ₃ OS (399,393)
	Noles Rok Sok	ű	1	ا ن	0 -							
	(mdd;), 7.11- (H.e)	3.10(2Ht, J=TH2), 4.27(2H, LJ=TH2), 6.90-7.60(8H,m), 7.79(1H,s)	(ZH.m). s). 6.92- H,s)	(9H.m).	3.87(3H3), 4.56(2H3), 4.62(2H5), 7.04-7.71(8H,m), 7.80(1H,s)	4.55(1H.br), 6.89-7.60(15H.m), 7.77(1H.s)	3.90-4.50(4Hm), 7.04(2H.d.J-8.5Hz), 7.53(2H.d.J-8.5Hz), 7.60(1H.s), 7.88(4H.s) **	4.71(2H,e), 7.18-7.80(8H,m), 7.80- 8.10(2H,m) **	3.92(1H,br), 7.20-7.87(10H,m), 7.83(1H,t)	2673H,s), 3.06(2H,L)=6Hz), 3.86(1H,br), 4.28(2H,L)=6Hz), 7.06(2H,d,J=9Hz), 7.30(5Hs), 7.46(2H,d,J=9Hz)	4.40(1H,br), 7.45(2H,s), 7.50. 7.90(8H,m), 7.83(1H,s)
	H-NNR(DNISO-d6, 8:ppm)	3.93(3H.s), 5.25(1H.br), 7.11- 7.92(10H.m), 7.93(1H.s)	(2Ht, J=7Hz), 4.27(2Ht,J=7. 6.90-7.60(8H.m), 7.79(1H,s)	1.01(3H,J*7Hz), 2.52(2H.m), 4.19(1H,br), 6.54(1H,s), 6.92- 7.69(9H,m), 7.73(1H,s)	5.43(11,br), 7.38-7.93(9H.m), 7.96(114,s)	7(3H,s), 4.56(2H,s), 4.62(2H 7.04-7.71(8H,m), 7.80(1H,s)), 6.89-7.60 7.77(1H,s)	3.90-4.50(4H,m), 7.04(2H,d,1-8.5Hz), 2H,d,1-8.5Hz), 7.600 7.88(41Ls) **	8.10(2H.m) **	, 7.20-7.8 .83(1H,t)	H,s), 3.06(2H,t) ⁻ H,br), 4.28(2H,t) H,d,J=91E), 7.30 7.46(2H,d,J=91E,	0(1H,br), 7.45(2H,s), 7.3 7.90(8H,m), 7.83(1H,s)
	NATR(D)	(3H.s), 5. 92(10H.	£1,5=7Hz 0-7.60(8}	(3H,U=7 (1H,W). 7.69(9H,	(1Hbr)	3H,9), 4.5	χ(1Η,br), 7.	3.90-7.04(2I 3(2H,d,1-7.8	(2H.e), 7. 8.1	7(11,67)	67(3H,s), 66(1H,br) 06(2H,d,) 7.46(40(1H,br 7.90(8F
	<u> </u>	3.93			ł	1		ł	ľ	Ì		
		20, 1512, 29, 1036,	20, 1190.	33, 15 <i>97</i> ,	3130, 3060, 2980, 2200, 1703, 1604, 1594, 1353, 1240, 760, 720, 700, 542	3080, 2955, 2203, 1735, 1597, 1502, 1363, 1274, 1205, 1140, 1110, 1037, 742, 560, 493	3950, 2200, 1736, 1600, 1500, 1343, 1330, 1297, 1188, 772, 707, 640, 616, 550	3050, 2950, 2760, 2195, 1770, 1710, 1890, 1810, 1390, 1350,	3060, 2930, 2750, 2190, 1730, 1640, 1600, 1455, 1430, 1350, 1295, 1245, 1195, 1180, 1000, 760, 715, 545	3040, 2930, 2760, 2220, 1736, 1617, 1590, 1357, 1298, 1181, 1094, 838, 734, 538	3070, 2950, 2200, 1722, 1600, 1515, 1342, 1250, 1178, 1020, 836, 754, 700, 540	3050, 2940, 2770, 2220, 1740, 1620, 1600, 1323, 1300, 1180, 1121, 1070, 838, 727, 526
	(1913)	1710, 160 1219, 119 730, 540	7760, 2195, 17 1300, 1285, 12 1125, 720, 695	0, 2955, 2760, 2200, 1733, 19 1350, 1297, 1223, 1190, 700	2200, 17 760, 720	, 2205, 1735, 13 , 1205, 1140, 11 742, 560, 493	050, 2200, 1736, 1600, 1500, 134; 1330, 1297, 1188, 772, 707, 640, 616, 550	760, 2195, 1 390, 1350, 1 1120, 720	160, 2930, 2750, 2190, 1730, 164 100. 1455, 1430, 1350, 1295, 124 1195, 1180, 1000, 760, 715, 545	760, 2220, 1 298, 1181, 734, 538	200, 1722, 1 1178, 1020, 700, 540	2770, 2220, 1 1300, 1180, 338, 727, 526
	IR(KBr, cm²)	75, 2210, 1710, 16 82, 1252, 1219, 111 970, 823, 730, 540	10, 2760, 50, 1300, 1125, 7	. 1297. 13	53, 1240,	55, 2205, 74, 1205, 742, 5	00, 1736 1297, 118 616	250, 2760 210, 1390 211	330, 2750 455, 1430 1180, 10	930, 2760 930, 126 951, 129	950, 2200 1250, 117	940, 277 323, 130 838.
		3045, 2975, 2210, 1710, 1600, 1512, 1156, 1282, 1252, 1219, 1199, 1036, 970, 823, 730, 540	3050, 2940, 2760, 2195, 1705, 1570, 1510, 1350, 1300, 1285, 1220, 1190, 1125, 720, 695	3050, 2955, 2760, 2200, 1733, 15 <i>97</i> , 1350, 12 <i>97</i> , 1223, 1190, 700	3130, 3060, 2980, 2200, 1703, 1604, 1594, 1353, 1240, 760, 720, 700, 542	3080, 29 1363, 12	3050, 22 1330,	3050, 25	3060, 2 1600. 1 1195,	3040, 2 1590, 1	3070, 2 1342,	3050, 2
			į į	30, 283, 88, 147, 1, 91	10, 165	73, 244.	235, 203	130, 78	408(ħ.4'), 375, 280, 242, 147, 91	365(M*), 272, 270, 234, 202, 178	164	399(K°), 304, 259, 227
	E1-MS(m/z)	361(M*), 189, 177, 165,	365(M*), 166, 105, 79	359(M*), 344, 330, 283, 264, 249, 216, 188, 147, 129, 116, 114, 91	305(M*), 304, 210, 165	379(M°), 289, 273, 244, 178, 147, 91	407(N1 [*]), 312, 235, 203	418(M [°]), 174, 130, 78	r), 375, 3 147, 91	f), 272, 2; 202, 178	363(M*), 164	L). 304.
	III	361(M*)	365(M	359(M* 264, 24 129,	305(M	M)97.6	407(M	418(h	408(N	365(Å		399()
	mp(°C) (recryst solv " ^J)	273-275 (dec) (E-DMF)	206-207 (dec) (E)	198-200 (E-DNF)	242-243 (E-DNF)	183.5-185 (E-DNF)	238-239 (E-DNŒ)	235-236 (dec) (E-DMF)	200-201.5 (E-DNF)	>300 (DMF)	12-69	275-280 (dec) (E-DNÆ)
	(recryst solv	. 273 (d	206 (d	198 (E-t	247 (E-3)	183 (E-3)	_					
	ž	x	н	Ή	н	=	#	± _	,	Ξ	We .	Ţ
		OMe										9
	×		ο , Qr			Meo		0 > Z	N S	6		5
				H,C,				Ç.		20 %	2 ·	P1 F3C
(g)	p- Yield (%)	se 76	.v 76 als.	els als	ove 85s	lish RA Eals	ow 62 tals		pale yellow 7 crystals	vellow	amor- phous	yellow s
(Continued)	Ex Descrip- No. tron	orange crystals	43 yellow crystals.	44 brown crystals	45 yellow crystels	reddish 46 brown crystals	47 yellow crysials	pale us yellow crystals	49 cell	So yell	isell sell	Sz yell
익	ű ž	겈	¥ (4 1	→ 1	4 1	- 1	• 1		'	•	•

ပ္ပို	(Continued)	_								
ž ž	Ex. Descrip- Yield No tion (%)	Yield (%)	æ	Ä	mp(°C) (recryst solv * ³)	EI-MS(m/z)	IR(KBr, cm²)	'H-NMR(DMSO-d6, è:ppm)	Molecular formula (Molecular weight)	EA(%) Celoid.
8	pale yellow crystals	94		ж	201-202.5 (E-DNF)	335(M²), 245, 177, 149, 121	3330, 2920, 2770, 2210, 2200, 1720, 1630, 1612, 1491, 1424, 1357, 1300, 1226, 1023, 786, 740, 723, 525	5.18(2H.s), 5.70(1H.br), 7.02- 7.63(9H.m), 7.80(1H,s)	C ₁ H ₁ JN ₁ O ₂ S (335.387)	H 3.91, C 64.46, N 12.53 H 4.09, C 64.35, N 12.37
2.	yellow crystals	57	0	π .	282-283 (E-DMF)	351(M*), 260, 165, 121, 91, 63	3060, 2960, 2790, 2200, 1700, 1592, 1577, 1541, 1494, 1408, 1354, 1300, 1254, 1192, 1089, 832, 814, 723, 589, 370, 534, 525, 437	3.60(111.br), 4.32(2H.a), 7.15- 7.58(9H.m), 7.77(1H,s)	C ₁₄ H ₁₃ N ₁ OS ₁ (351.454)	H3.73, C 61.52, N 11.96 H3.97, C 61.53, N 12.04
23	yellow crystals	-	86 H ₃ C-O	π	>300 (E-DMF)	345(M²), 251, 178	3090, 2200, 1720, 1589, 1519, 1352, 1300, 1178, 978, 826, 730, 550	2,32(3H,5), 5,13(1H,5), 7,10- 7,73(11H,m)**	CzoH13N3OS (345.426)	H 4.38, C 69.54, N 12.16 H 4.66, C 70.12, N 11.48
98	orange crystals	69		. #	206.5-208.5 (E-DMF)	383(M²), 244, 149, 139	3060, 2950, 2760, 2180, 1727, 1587, 1510, 1262, 1179, 1018, 826, 797, 723, 540	3.08(2H; J=6.8Hz), 4.30(2H; J=6.8Hz), 4.30(1H,br), 7.13(2H,d,J=9Hz), 7.38(4H,s), 7.62(2H,d,J=9Hz), 7.38(1H,s)	C ₁₉ H ₁ ,CIN ₃ O ₃ S (383.859)	H 3.68, C 59.45, N 10.95 H 3.87, C 59.67, N 10.65
22	yellow crystals	96		æ	190-191 (E)	369(M*), 185, 183, 91	3173, 3100, 3080, 3040, 2950, 2770, 2200, 1740, 1593, 1885, 1487, 1460, 3159, 1294, 1252, 1220, 1179, 1027, 935, 730, 742, 721, 550	3.80-5.80(114, br.), 5.26(2H.£), 7.10- 7.70(8H.m), 7.91(1H.t)	C ₁₈ H ₁₁ ClN ₃ O ₃ S (369.832)	H 3.27, C 58.46, N 11.36 H 3.49, C 58.35, N 10.98
8	pale vellow crystals	2		± .	212-214 (E-DMF)	333AA*), 242, 147, 91	3110, 3060, 3030, 2960, 2773, 2200, 1505, 1600, 1588, 1352, 1259, 1251, 1198, 1175, 760, 728, 700	2.92(4H.s), 7.00-7.70(9H.m.), 7.82(1H.s)	C ₁ ,H ₁₃ N ₃ OS (333.415)	H 4.53, C 68.45, N 12.60 H 4.72, C 68.70, N 12.37
ò	crystals	5 7 72 25		æ	247-248 · (E-DMF)	331(M'), 236, 203, 147, 103	3120, 3078, 3055, 3024, 2966, 2790, 2200, 1729, 1705, 1809, 1859, 1355, 1314, 1294, 1265, 1245, 1220, 1165, 960, 788, 755, 720, 689, 528	5.30-6.40(11,br),7.10-8.00(12H.m)	C ₁₉ H ₁₁ N ₁ OS	H 3.95, C 68.36, N 12.68 H 4.24, C 68.90, N 12.27
09	orange- orystals	88		ू म	(dec) (E-A)	363(M*), 177, 91	3060, 3040, 2930, 2775, 2195, 1730, 1685, 1590, 1505, 1310, 1270, 1230. 1095, 995, 730	2.22, 2.19(cach 3Ha), 5.19(2Hs), 7.07(1Hs), 7.19(1Ha), 7.23- 7.65(5Hm), 7.86(1Hs)	C _{1n} H ₁₁ N ₃ O ₃ S (363.441)	H4.71, C 66.10, N 11.56 H4.97, C 66.34, N 11.34
19	yellow nyord crystals	1	33 MeO	¥	203-204 (E-DMF)	375(M [°]), 280, 266, 250, 232, 221, 210, 166	3060, 3020, 2330, 2827, 2763, 2189, 1716, 1592, 1519, 1334, 1230, 1216, 1173, 1027, 968, 833, 563, 539	2.71(3H.s), 3.78(3H.s), 6.75- 7.85(10H,m)	C ₁₁ H ₁₁ N ₃ O ₃ S · 1/3H ₃ O (381.457)	H 4.67, C 66.12, N 11.02 H 4.92, C 66.22, N 10.80

EXAMPLE 62

2-(N-Cyanoimino)-5-[(E)-4-stylylbenzylidene]thiazolidin-4-one potassium salt: potassium salt of the compound of Example 1

[0024] The crude product (18.98g) was recrystallized from 65% isopropanol to yield the title compound as yellow powder (10.87g).

mp: > 300 °C IR (KBr, cm $^{-1}$): 3025, 2180, 1750, 1590, 1490, 1420, 1340, 1290, 1205, 1180, 960, 820, 745, 540 1 H-NMR (DMSO-d6, ppm): δ = 7.25-7.55 (6H, m), 7.55-7.85 (6H, m)

PHARMACOLOGICAL EXAMPLES

EXAMPLE 63

10

15

20

25

30

40

45

50

55

Hypotriglyceridemic activity in fructose-induced hyperlipidemic rats

[0025] The compounds were tested for a hypotriglyceridemic activity in fructose-induced hyperlipidemic rats in accordance with the method described in Nippon Yakurigaku Zasshi, 92 (3), 175-180 (1988). Sprague Dawley rats were divided into experimental groups with a comparable mean body weight. 75% fructose solution as drinking water was given to the animals for 7 days, while normal water was given to the intact groups ad libitum. During the experimental period the test compounds suspended in 3% gum arabic were given to the test group orally once a day in a daily dose of 30 mg/kg. The vehicle solution was given to the control group and the intact group. After 2 hours from the final administration, blood was collected from the abdominal aorta under ether anesthesia, and levels of total cholesterol and triglyceride in the serum were measured. The results are shown in Table 2. The reduction rate (%) was calculated according to the following equation:

Reduction rate (%) =
$$\left(1 - \frac{\text{(measured triglyceride level in each treated group)}}{\text{(measured triglyceride level in control group)}}\right) \times 100$$

[0026] Above experimental model is well known as a model of hypertriglicemia. As shown in Table 2, the compounds of the present invention have a serum trigriceride reducing activity.

Table 2.

The hypotrigh	yceridemic activity in fructose	induced hyper	lipidemic rats
Compound	Triglyceride (% Reduction)	Compound	Triglyceride (% Reduction)
Example 1	47	Example 20	54
Example 2	67	Example 21	. 48
Example 3	64	Example 22	65
Example 4	42	Example 26	46
Example 6	84	Example 28	. 36
Example 7	60	Example 32	47
Example 8	47	Example 34	71
Example 9	. 49	Example 37	41
Example 10	39	Example 39	57
Example 11	62	Example 40	42
Example 12	59	Example 43	67
Example 13	55	Example 45	43
Example 14	36	Example 47	69
Example 15	47	Example 49	39
Example 16	54	Example 51	67

Table 2. (continued)

The hypotrial	yceridemic activity in fructose	induced hyper	lipidemic rats
Compound	Triglyceride (% Reduction)	Compound	Triglyceride (% Reduction)
Example 17	37	Example 52	44
Example 19	38		
At a dose	e of 30 mg/kg p.o.		

Example 64

10

20

25

30

45

55

Lipid lowering effects in high cholesterol-fed hamsters

[0027] The compounds were tested for lipid lowering effects in high cholesterol-fed hamsters in accordance with the method described in Jpn Pharmacol Ther, 23 (suppl 4), s1047-1053 (1995). Male Syrian hamsters were fed the high cholesterol diet supplemented with 1% cholesterol and 10% coconut oil for 3 weeks. Before drug administration, blood was collected from the orbital venous plexus under ether anesthesia, and a serum total cholesterol level was measured. The animals were divided into groups so as to have a comparable mean total cholesterol level. The designated doses of the compound of Example 1 or Bezafibrate were administrated to test groups and the vehicle solution was given to the control group orally once a day for 7 days under the high cholesterol diet feeding. The intact group of animals were fed normal diet. After 4 hours of the final administration, blood was collected by cardiac puncture, and the total cholesterol and triglyceride levels in the serum were determined by the enzymatic method.

[0028] The results are shown in Table 3, The reduction rate (%) was calculated according to the following equation:

Reduction rate (%) =
$$\left(1 - \frac{\text{(measured lipid level in each treated group)}}{\text{(measured lipid level in control group)}}\right) \times 100$$

[0029] The result indicates that the compound of Example 1 has potent reducing activities in serum cholesterol and triglyceride levels and it is more effective than bezafibrate.

Table 3.

	compound of Example 1 a		Compound of	f Example 1
Activity Activity	Total cholesterol (% - Reduction)*	Triglyceride (% Reduction)*	Total cholesterol (% Reduction)	Triglyceride (% Reduction)
Dose			00	60
15 mg/kg 30 mg/kg	- -5	- -21	26 25	62
60 mg/kg 120 mg/kg	-0 20	-18 16	29 41	69 80

^{*:} A minus quantity represents the rate of increase.

EXAMPLE 65

Lipid lowering effects in high cholesterol-fed hamsters

[0030] The compounds of the present invention were evaluated for selecting more effective lipid lowering activities in the same manner described in Example 64 at a dose of 15 mg/kg p.o.. The results are shown in Table 4. The reduction rate (%) was calculated according to the following equation:

Reduction rate (%) =
$$\left(1 - \frac{\text{(measured lipid level in each treated group)}}{\text{(measured lipid level in control group)}}\right) \times 100$$

Table 4.

Hypolipidemi	effects in high cholesterol-fed ha	msters
Compound	Total cholesterol (% Reduction)	Triglyceride (% Reduction)
Example 2	27	57
Example 3	16	17
Example 7	18	12
Example 9	15	15
Example 14	11	24
Example 15	32	61
At a dose	of 15 mg/kg p o.	

EXAMPLE 66

10

15

20

Acute Toxicity

25 [0031] The single dose toxicity of the compound of Example 1 and Example 10 were evaluated after oral administration at a dose of 2000 mg/kg with each group comprising 3 mice. The animals were observed daily for 2 weeks after the administration. As a result, no deaths were observed.

EXAMPLE 67

Mutagenicity test

[0032] The mutagenicity of the compound of Example 1 was examined by a reverse mutation test using Salmonella typhimurium TA100 and TA98 in the absence or presence of S9 mix. The compound of Example 1 did not increase the number of revertant colonies, and was not mutagenic in this test system.

Claims

45

50

55

 Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives represented by formula I or a pharmaceutically acceptable salt or solvate thereof:

wherein ring A represents a benzene ring, a condensed ring or a heterocyclic ring, each of which may be substituted by one or more substituents selected from a straight or branched C_1 - C_4 alky! group, a haloalkyl group, a halogen atom or -OR⁵;

R¹ represents a single bond, an oxygen atom, a sulfur atom, a methyne group, a straight or branched C₁ - C₄ alkylene or alkenylene group optionally substituted by a phenyl group, R⁶-X, X-R⁶, X-R⁶-X, R⁶-X-R⁶, -C(=O)-NRȝ-Or -NRȝ-C(=O)-;
R² and R³ are the same or different and each represents a hydrogen atom, a C₁ - C₄ alkyl group, -OR⁶ or a

halogen atom; R4 represents a hydrogen atom or a C₁ - C₄ alkyl group; R5 represents a hydrogen atom or a C1 - C4 alkyl group; R^6 represents a straight or branched C_1 - C_4 alkylene or alkenylene group; R7 represents a hydrogen atom or a C1 - C4 alkyl group; R⁸ represents a hydrogen atom, a C₁ - C₄ alkyl group or an aralkyl group; X represents an oxygen atom or a sulfur atom.

10

40

45

50

55

- 2. Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein ring A represents a benzene ring, a benzodioxole ring, a benzofuran ring, a benzothlazole, a fluorene ring, an indan ring, an indoline ring or a pyridine ring, each of which may be substituted by one or more substituents selected from a straight or branched C1 - C4 alkyl group, a haloalkyl group, a halogen atom or -OR5; R5 represents a hydrogen atom or a C₁ - C₄ alkyl group.
- 3. Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein ring A represents a benzene ring which may be substituted by one or more substituents 15 selected from a straight or branched C₁ - C₄ alkyl group, a haloalkyl group, a halogen atom or -OR⁵; R⁵ represents a hydrogen atom or a C₁ - C₄ alkyl group.
- 4. Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein R1 represents a methyne group or a straight or branched C1 - C4 alkylene or alkenylene 20 group optionally substituted by a phenyl group.
- 5. Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein R1 represents an oxygen atom or a sulfur atom. 25
 - Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein R1 represents a single bond.
- Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein R1 represents R6-X, X-R6, X-R6-X or R6-X-R6; R6 represents a straight or branched 30 C₁ - C₄ alkylene or alkenylene group; X represents an oxygen atom or a sulfur atom.
 - Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein R¹ represents -C(=O)-NR⁷- or -NR⁷-C(=O)-; R⁷ represents a hydrogen atom or a C₁ - C₄ alkyl group.
 - Novel 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, wherein the compound of formula I is any one of the following:

2-(N-Cyanoimino)-5-[(E)-4-stylylbenzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-[(E)-4-(a-methylstylyl)benzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-[4-(benzyloxymethyl)benzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-[(E)-4-(b-methylstylyl)benzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-[4-(3-phenylpropoxy)benzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-[4-(4-chlorophenoxy)benzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-(4-phenylthiobenzylidene)thiazolidin-4-one; $\hbox{$2$-(N-Cyanoimino)-5-[(E)-4-(2-fluorostylyl)benzylidene]$ thiazolidin-4-one;}$ 2-(N-Cyanoimino)-5-[4-(2,5-dimethylphenoxy)benzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-(4-phenethyloxybenzylidene)thiazolidin-4-one; 2-(N-Cyanoimino)-5-[4-(2-phenylpropoxy)benzylidene]thiazolidin-4-one; 2-(N-Cyanoimino)-5-(3-phenethyloxybenzylidene)thiazolidin-4-one;

2-(N-Cyanoimino)-5-(4-benzyloxybenzylidene)thiazolidin-4-one;

2-(N-Cyanoimino)-5-[4-(5-chlorobenzofuran-2-yl)benzylidene]thiazolidin-4-one;

2-(N-Cyanoimino)-5-[(E)-4-(4-methoxystylyl)benzylidene]thiazolidin-4-one;

2-(N-Cyanoimino)-5-(3-phenoxybenzylidene)thiazolidin-4-one;

2-(N-Cyanoimino)-5-[4-(1,3-benzodioxol-5-ylmethoxy)benzylidene]thiazolidin-4-one;

2-(N-Cyanoimino)-5-[4-(4-methylbenzyloxy)benzylidene]thiazolidin-4-one;

2-(N-Cyanoimino)-5-[4-(4-chlorobenzyloxy)benzylidene]thiazolidin-4-one;
2-(N-Cyanoimino)-5-[3-methoxy-(E)-4-stylylbenzylidene]thiazolidin-4-one;
2-(N-Cyanoimino)-5-(2-phenethyloxybenzylidene)thiazolidin-4-one;
2-(N-Cyanoimino)-5-(4-phenoxybenzylidene)thiazolidin-4-one;
2-(N-Cyanoimino)-5-[3-(benzyloxy)benzylidene]thiazolidin-4-one;
2-(N-Cyanoimino)-5-[4-(benzylthio)benzylidene]thiazolidin-4-one;
2-(N-Cyanoimino)-5-(4-phenethylbenzylidene)thiazolidin-4-one;
2-(N-Cyanoimino)-5-[4-[2-(4-chlorophenyl)ethoxy]benzylidene]thiazolidin-4-one;
2-(N-Cyanoimino)-5-[1-[(E)-4-(4-methoxystylyl)phenyl]ethylidene]thiazolidin-4-one;
2-(N-Cyanoimino)-5-(4-benzyloxy-2,5-dimethylbenzylidene)thiazolidin-4-one;
2-(N-Cyanoimino)-5-[(E)-3-stylylbenzylidene]thiazolidin-4-one.

10. A process for preparing a 2-(N-cyanoimino)thiazolidin-4-one derivatives or a pharmaceutically acceptable salt or solvate thereof according to claim 1, which comprises reacting a compound represented by formula II, or salts thereof, with an aldehyde or ketone represented by formula III:

NH S NCN II A R1 III

wherein ring A represents a benzene ring, a condensed ring or a heterocyclic ring, each of which may be substituted by one or more substituents selected from a straight or branched C_1 - C_4 alkyl group, a haloalkyl group, a halogen atom or -OR⁵;

R¹ represents a single bond, an oxygen atom, a sulfur atom, a methyne group, a straight or branched C₁ - C₄ alkylene or alkenylene group optionally substituted by a phenyl group, R⁶-X, X-R⁶, X-R⁶-X, R⁶-X-R⁶, -C(=O)-NR⁷- or -NR⁷-C(=O)-;

 $\rm H^2$ and $\rm H^3$ are the same or different and each represents a hydrogen atom, a $\rm C_1$ - $\rm C_4$ alkyl group, -OR⁸ or a halogen atom;

R4 represents a hydrogen atom or a C1 - C4 aikyl group;

 $m R^{5}$ represents a hydrogen atom or a $m C_{1}$ - $m C_{4}$ alkyl group;

R6 represents a straight or branched C1 - C4 alkylene or alkenylene group;

R7 represents a hydrogen atom or a C1 - C4 alkyl group,

R8 represents a hydrogen atom, a C1 - C4 alkyl group or an aralkyl group;

X represents an oxygen atom or a sulfur atom.

10

15

20

25

30

40

45

50

55

11. A pharmaceutical composition for treating hyperlipidemia comprising novel 2-(N-cyanoimino)thiazolidin-4-one derivatives and/or a pharmaceutically acceptable salt and/or solvate thereof according to claim 1 - 10 as an active ingredient and a pharmaceutically acceptable carrier.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP99/06352

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D277/38, 277/64, 277/66, 277/68, 277/70, 277/82, 417/10, 417/12 A61K31/425, 31/427, 31/428, 31/4439, A61P3/06, 43/00			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A 17/10 417/12			
Int.Cl' C07D277/38, 277/64-277/52 A61K31/425-31/428, 31/4439, A61P3/06, 43/00			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
of the base and where practicable, search terms used)			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
CAPLUS (STN), REGISTRY (STN), WPI (DIALOG)			
· •			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
C. DOCUI	MENTS CONSIDERED TO BE RECEVALL	in file mlayant nacsapes	Relevant to claim No.
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	1-11
A	EP, 697410, Al (Fujimoto Pharma	aceutical Co., Bed,	
	21 February, 1996 (21.02.96), c. TD 8-41040, E US, 5750	712, A	
	& Dij S III - I		1-11
A	JP, 8-92249, A (SANKYO COMPANY	LIMITED),	, 1-11
	09 April, 1996 (09.04.96) (Family: none)		
_	JP, 8-157461, A (SANKYO COMPANY, LIMITED),		
A	18 June, 1996 (18.06.96) (Pamily: none)		
	i l		
PX	PX JP, 2000-26438, A (Fujimoto Brothers Co., Ltd.), 1-11 25 January, 2000 (25.01.00),		
	Full text (Family: none)		
	ruii com (ruii)		
			•
	,	·	
		Ì	j
		·	
Ì			
 _	documents are listed in the continuation of Box C.	See patent family annex.	
Further documents are listed in the			
Special categories of cities described by the art which is not priority date and not in conflict with the applications of the art which is not priority date and not in conflict with the application of the conflict with the			
considered to be of particular relevance			
	data		
"L" docume	establish the publication date of another citation or other	"Y" document of particular relevance; the c considered to involve an inventive step	isimed invention cannot oc
	reason (as specified) nt referring to an oral disclosure, use, exhibition or other	hined with one or more other such	documents, such
		combination being obvious to a person document member of the same patent f	amily
document published prior to the international form			
Date of maining of the international search Date of maining of the international search			
26 J	anuary, 2000 (26.01.00)	08 February, 2000 (0	0.02.00/
Name and mailing appress of the 1970		Authorized officer	
Japanese Patent Office			i
Tele		Telephone No.	
Facsimile No.			