Notes

2 mars, 2015

edge ideals

consider \mathbb{R} and polynomials in X with coefficients in \mathbb{R} .

example

$$x^{2} + 1$$

$$x - 2$$

$$\pi$$

$$3x^{3} - 5x + 7$$

we denote the set of all of these as $\mathbb{R}[x]$. some polynomials "do fun things"

1. factor

$$x^{2} - 1 = (x+1)(x-1)$$

$$x^{2} - 2x + 1 = (x-1)^{2}$$

$$x^{3} - x^{2} + 4x - 4$$

$$etc$$

we say all plynomials in $\mathbb{R}[x]$ with the property that x-1 divides it, this entire set is an ideal. this is denoted $\langle x-1\rangle\subseteq\mathbb{R}[x]$

if we want all polynomials divisable by several things, then $\langle x-1, x^2+1, x^4-2 \rangle$. This is "or" or union. the "and" or intersection would be formed by just multiplying the divisors.

in general
$$\langle f_1, \dots, f_r \rangle = \{ \sum_{i=1}^r p_i f_i | p_i \in \mathbb{R}[x] \}$$

we can do this in many variables like $\mathbb{R}[x,y,z]$ or $\mathbb{R}[x_1,\ldots,x_n]$ or even $\mathbb{R}[x_1,\ldots]$

all ideals have many invariants, eg, dimesnion, projective dimension, injective dimension, height, resolutions, betti numbers, etc.

let G be a graph and label the vertices x_1, \ldots, x_n . then create an ideal in $\mathbb{R}[x_1, \ldots, x_n]$. $I = \langle x_i x_j | x_j \rangle$

example

