Determining the Dark Matter distribution in galaxies with Deep Learning (2111.08725)

As part of the darkmachines projects challenges: https://darkmachines.org/

Martín de los Rios

IFT/UAM (Madrid Spain) - ICTP/SAIFR (Sao Paulo Brasil)

Mihael Petac

CAC (Slovenia) - LUPM (France)

Bryan Zaldivar

IFIC (Valencia Spain)

Nina Bonaventura

Cosmic Dawn Center (Copenhagen Denmark)

Francesca Calore

CNRS LAPTh (Annecy France)

Fabio locco

Dipartimento di Fisica INFN (Napoles Italy)

Outline

- Brief Introduction to Dark Matter
- Brief Introduction to Supervised Learning
- Constructions of the dataset
 - O TNG100 Simulations (1707.03401, 1707.03395, 1707.03395, ...)
 - O SKIRT (2003.00721)
 - O MARTINI (https://github.com/kyleaoman/martini)
- Results
 - Prediction of the Dark matter profile
 - Comparison between different architectures
 - Comparison between different inputs
 - Comparison with Rotation Curve method
- Conclusions and Future work

Brief Introduction to Dark Matter

Cosmic Budget

https://sci.esa.int/web/xmm-newton/-/60430-the-cosmic-budget-of-ordinary-matter

MARTINELLI TALK

NGC 6503 Rotation Curve

Katherine Freese https://arxiv.org/abs/0812.4005

Evidence for dark matter in the inner Milky Way

(https://arxiv.org/abs/1502.03821)

Fabio locco, Miguel Pato & Gianfranco Bertone

Bullet Cluster

Markevitch et al.

https://arxiv.org/abs/astro-ph/0309303

http://background.uchicago.edu/~whu/animbut/anim2.html

Planck Collaboration https://arxiv.org/abs/1807.06209

NGC 6503 Rotation Curve

Brief (1 slide) Introduction to Supervised Learning

Supervised Learning

Construction of the Dataset

TNG100 Cosmological Hydrodynamical Simulation

(https://www.tng-project.org/)

	Planck	cosmol	logy
--	--------	--------	------

- 106.5 Mpc by side
- 1820^3 DM particles
- 1820^3 hydrodynamic cells
- DM resolution 7.5 *10^6 M☉
- Baryon resolution 1.4*10^6 M[⊙]
- 136 snapshots from z=127 to z=0

Property	Criterium
Simulation snapshot	$99 \ (z=0)$
Stellar mass	$10^{10} \ M_{\odot} \le M_{\star} \le 10^{12} \ M_{\odot}$
Star formation rate	$SFR \ge 0.1 \ M_{\odot}/yr$
Central galaxy	SubhaloParent = 0
Cosmological origin	SubhaloFlag = 1

TNG100 (z = 0)

SKIRT* (2003.00721, skirt.ugent.be)

Radiative transfer code which emulates the stellar emissions and subsequent light-ray propagation to the observer, taking into account the absorption and re-emission by dust.

MARTINI (1706.07478; https://github.com/kyleaoman/martini)

Allows for the creation of synthetic resolved HI line observations (i.e. data cubes) directly from the snapshot of a hydrodynamic simulation, and its posterior analysis.

Convolutional layers

Pooling layers

Dropout

Layer	Details
2D convolution	64 kernels, 5 × 5 px kernel size, 2 px stride, ReLU activation
2D max pooling	2 px pooling
Dropout	50% dropout fraction
Batch normalization	
2D convolution	128 kernels, 5×5 px kernel size, 2 px stride, ReLU activation
2D max pooling	2 px pooling
Dropout	50% dropout fraction
Batch normalization	
2D convolution	256 kernels, 5×5 px kernel size, 2 px stride, ReLU activation
Batch normalization	
Dense	256 units, ReLU activation
Dropout	50% dropout fraction
Batch normalization	
Dense	128 units, ReLU activation
Dropout	50% dropout fraction
Batch normalization	
Dense	64 units, ReLU activation
Dropout	50% dropout fraction
Batch normalization	time!
Dense (output)	20 units, linear activation

Results

Comparison between different architectures

$$\Delta_{\text{MSE}}(R_i) = \left[\frac{1}{N} \sum_{j=1}^{N} \left(\frac{\mu_j(R_i) - \hat{\mu}_j(R_i)}{\hat{\mu}_j(R_i)} \right)^2 \right]^{1/2}$$

- Architecture A
- Architecture B
- Architecture C
- ResNet50

Comparison between different inputs

Prediction of the dark matter profile

Understanding the results

$$S_{ij} \equiv \frac{\partial y}{\partial x_{ij}}$$

Understanding the results

Comparison with RC analysis

(preliminary)

Conclusion and Future Work

- Our algorithm is able to reconstruct the DM distribution profile with high performance throughout the extension of the galaxy.
- The highest performance is achieved in the intermediate regions with a mean square error below
 0.2 using all the photometric and spectroscopic information.
- Even in the absence of spectroscopic information, our method is able to recover the dark matter profile with a mean square error below 0.3 in the intermediate regions.
- Our reconstruction of the DM distribution is completely data-driven, and does not need any assumption on the shape nor the functional form of the DM profile.
- The method developed here is applicable to different types of galaxies since it does not rely on explicit physical assumptions regarding the dynamical state of the system.
- The results achieved have been obtained for galaxies with masses in the range ~10^{10}-10^{12} M₀
 but the methodology can be extended to a broader mass range.

- We will make a comparison with the dark matter profile obtained through the traditional rotation curve analysis for the simulated galaxies.
- Study the robustness of our results to the hydrodynamical cosmological simulation.
- Apply our method to real galaxies and compare the results with other estimations.

THANK YOU