TUTORIAL-4

PROBLEM 5.1

5-1. At a location in Europe, it is necessary to supply 300 kW of 60-Hz power. The only power sources available operate at 50 Hz. It is decided to generate the power by means of a motor-generator set consisting of a synchronous motor driving a synchronous generator. How many poles should each of the two machines have in order to convert 50-Hz power to 60-Hz power?

PROBLEM 5.2

5-2. A 2300-V, 1000-kVA, 0.8-PF-lagging, 60-Hz, two-pole, Y-connected synchronous generator has a synchronous reactance of 1.1 Ω and an armature resistance of 0.15 Ω . At 60 Hz, its friction and windage losses are 24 kW, and its core losses are 18 kW. The field circuit has a dc voltage of 200 V, and the maximum I_F is 10 A. The resistance of the field circuit is adjustable over the range from 20 to 200 Ω . The OCC of this generator is shown in Figure P5-1.

FIGURE P5-1
The open-circuit characteristic for the generator in Problem 5-2.

- (a) How much field current is required to make V_T equal to 2300 V when the generator is running at no load?
- (b) What is the internal generated voltage of this machine at rated conditions?

- (c) How much field current is required to make V_T equal to 2300 V when the generator is running at rated conditions?
- (d) How much power and torque must the generator's prime mover be capable of supplying?
- (e) Construct a capability curve for this generator.

PROBLEM 5.3

- 5-3. Assume that the field current of the generator in Problem 5-2 has been adjusted to a value of 4.5 A.
 - (a) What will the terminal voltage of this generator be if it is connected to a Δ -connected load with an impedance of $20 \angle 30^{\circ} \Omega$?
 - (b) Sketch the phasor diagram of this generator.
 - (c) What is the efficiency of the generator at these conditions?
 - (d) Now assume that another identical Δ -connected load is to be paralleled with the first one. What happens to the phasor diagram for the generator?
 - (e) What is the new terminal voltage after the load has been added?
 - (f) What must be done to restore the terminal voltage to its original value?

PROBLEM 5.4

- 5-4. Assume that the field current of the generator in Problem 5-2 is adjusted to achieve rated voltage (2300 V) at full-load conditions in each of the questions below.
 - (a) What is the efficiency of the generator at rated load?
 - (b) What is the voltage regulation of the generator if it is loaded to rated kilovoltamperes with 0.8-PF-lagging loads?
 - (c) What is the voltage regulation of the generator if it is loaded to rated kilovoltamperes with 0.8-PF-leading loads?
 - (d) What is the voltage regulation of the generator if it is loaded to rated kilovoltamperes with unity power factor loads?
 - (e) Use MATLAB to plot the terminal voltage of the generator as a function of load for all three power factors.

PROBLEM 5.5

- 5-5. Assume that the field current of the generator in Problem 5-2 has been adjusted so that it supplies rated voltage when loaded with rated current at unity power factor.
 - (a) What is the torque angle δ of the generator when supplying rated current at unity power factor?
 - (b) When this generator is running at full load with unity power factor, how close is it to the static stability limit of the machine?

PROBLEM 5.11

- 5-11. (a) What is the saturated synchronous reactance of this generator at the rated conditions?
 - (b) What is the unsaturated synchronous reactance of this generator?
 - (c) Plot the saturated synchronous reactance of this generator as a function of load.

PROBLEM 5.12

- 5-12. (a) What are the rated current and internal generated voltage of this generator?
 - (b) What field current does this generator require to operate at the rated voltage, current, and power factor?

PROBLEM 6.1

- 6-1. A 480-V, 60 Hz four-pole synchronous motor draws 50 A from the line at unity power factor and full load. Assuming that the motor is lossless, answer the following questions:
 - (a) What is the output torque of this motor? Express the answer both in newton-meters and in pound-feet.
- (b) What must be done to change the power factor to 0.8 leading? Explain your answer, using phasor diagrams.
- (c) What will the magnitude of the line current be if the power factor is adjusted to 0.8 leading?

- 6-2. A 480-V, 60 Hz 400-hp, 0.8-PF-leading, six-pole, Δ -connected synchronous motor has a synchronous reactance of 1.1 Ω and negligible armature resistance. Ignore its friction, windage, and core losses for the purposes of this problem.
 - (a) If this motor is initially supplying 400 hp at 0.8 PF lagging, what are the magnitudes and angles of E_A and I_A ?
 - (b) How much torque is this motor producing? What is the torque angle δ ? How near is this value to the maximum possible induced torque of the motor for this field current setting?
 - (c) If $|E_A|$ is increased by 15 percent, what is the new magnitude of the armature current? What is the motor's new power factor?
 - (d) Calculate and plot the motor's V curve for this load condition.

- 6-3. A 2300-V, 1000-hp, 0.8-PF leading, 60-Hz, two-pole, Y-connected synchronous motor has a synchronous reactance of 2.8 Ω and an armature resistance of 0.4 Ω . At 60 Hz, its friction and windage losses are 24 kW, and its core losses are 18 kW. The field circuit has a dc voltage of 200 V, and the maximum I_F is 10 A. The open-circuit characteristic of this motor is shown in Figure P6-1. Answer the following questions about the motor, assuming that it is being supplied by an infinite bus.
 - (a) How much field current would be required to make this machine operate at unity power factor when supplying full load?
 - (b) What is the motor's efficiency at full load and unity power factor?
 - (c) If the field current were increased by 5 percent, what would the new value of the armature current be? What would the new power factor be? How much reactive power is being consumed or supplied by the motor?
 - (d) What is the maximum torque this machine is theoretically capable of supplying at unity power factor? At 0.8 PF leading?

PROBLEM 6.5

6-5. If a 60-Hz synchronous motor is to be operated at 50 Hz, will its synchronous reactance be the same as at 60 Hz, or will it change? (*Hint*: Think about the derivation of X_{S} .)

- 6-6. A 480-V, 100-kW, 0.85-PF-leading, 50-Hz, six-pole, Y-connected synchronous motor has a synchronous reactance of 1.5 Ω and a negligible armature resistance. The rotational losses are also to be ignored. This motor is to be operated over a continuous range of speeds from 300 to 1000 r/min, where the speed changes are to be accomplished by controlling the system frequency with a solid-state drive.
 - (a) Over what range must the input frequency be varied to provide this speed control range?
 - (b) How large is E_A at the motor's rated conditions?
 - (c) What is the maximum power that the motor can produce at rated speed with the E_A calculated in part (b)?
 - (d) What is the largest E_A could be at 300 r/min?

FIGURE P6-1
The open-circuit characteristic for the motor in Problems 6-3 and 6-4.

- (e) Assuming that the applied voltage V_{ϕ} is derated by the same amount as E_{A} , what is the maximum power the motor could supply at 300 r/min?
- (f) How does the power capability of a synchronous motor relate to its speed?

- 6-7. A 208-V, Y-connected synchronous motor is drawing 40 A at unity power factor from a 208-V power system. The field current flowing under these conditions is 2.7 A. Its synchronous reactance is 0.8 Ω . Assume a linear open-circuit characteristic.
 - (a) Find the torque angle δ .
 - (b) How much field current would be required to make the motor operate at 0.8 PF leading?
 - (c) What is the new torque angle in part b?

6-8. A synchronous machine has a synchronous reactance of 2.0 Ω per phase and an armature resistance of 0.4 Ω per phase. If $E_A = 460 \angle -8^\circ \text{ V}$ and $V_\phi = 480 \angle 0^\circ \text{ V}$, is this machine a motor or a generator? How much power P is this machine consuming from or supplying to the electrical system? How much reactive power Q is this machine consuming from or supplying to the electrical system?

PROBLEM 6.9

6-9. Figure P6-2 shows a synchronous motor phasor diagram for a motor operating at a leading power factor with no R_A . For this motor, the torque angle is given by

$$\tan \delta = \frac{X_S I_A \cos \theta}{V_\phi + X_S I_A \sin \theta}$$
$$\delta = \tan^{-1} \left(\frac{X_S I_A \cos \theta}{V_\phi + X_S I_A \sin \theta} \right)$$

Derive an equation for the torque angle of the synchronous motor if the armature resistance is included.

FIGURE P6-2

Phasor diagram of a motor at a leading power factor.

- 6-10. A 480-V, 375-kVA, 0.8-PF-lagging, Y-connected synchronous generator has a synchronous reactance of 0.4 Ω and a negligible armature resistance. This generator is supplying power to a 480-V, 80-kW, 0.8-PF-leading, Y-connected synchronous motor with a synchronous reactance of 1.1 Ω and a negligible armature resistance. The synchronous generator is adjusted to have a terminal voltage of 480 V when the motor is drawing the rated power at unity power factor.
 - (a) Calculate the magnitudes and angles of E_A for both machines.
 - (b) If the flux of the motor is increased by 10 percent, what happens to the terminal voltage of the power system? What is its new value?
 - (c) What is the power factor of the motor after the increase in motor flux?

PROBLEM 6.11

- 6-11. A 480-V, 100-kW, 50-Hz, four-pole, Y-connected synchronous motor has a rated power factor of 0.85 leading. At full load, the efficiency is 91 percent. The armature resistance is 0.08 Ω , and the synchronous reactance is 1.0 Ω . Find the following quantities for this machine when it is operating at full load:
 - (a) Output torque
 - (b) Input power
 - $(c) n_m$
 - (d) $\mathbf{E}_{\mathbf{A}}$
 - (e) $|I_A|$
 - (f) P_{conv}
 - (g) $P_{\text{mech}} + P_{\text{core}} + P_{\text{strav}}$

- 6-13. A 440-V, three-phase, Y-connected synchronous motor has a synchronous reactance of 1.5 Ω per phase. The field current has been adjusted so that the torque angle δ is 28° when the power supplied by the generator is 90 kW.
 - (a) What is the magnitude of the internal generated voltage E_A in this machine?
 - (b) What are the magnitude and angle of the armature current in the machine? What is the motor's power factor?
 - (c) If the field current remains constant, what is the absolute maximum power this motor could supply?

- 6-15. A 100-hp, 440-V, 0.8-PF-leading, Δ -connected synchronous motor has an armature resistance of 0.22 Ω and a synchronous reactance of 3.0 Ω . Its efficiency at full load is 89 percent.
 - (a) What is the input power to the motor at rated conditions?
 - (b) What is the line current of the motor at rated conditions? What is the phase current of the motor at rated conditions?
 - (c) What is the reactive power consumed by or supplied by the motor at rated conditions?
 - (d) What is the internal generated voltage E_A of this motor at rated conditions?
 - (e) What are the stator copper losses in the motor at rated conditions?
 - (f) What is P_{conv} at rated conditions?
 - (g) If E_A is decreased by 10 percent, how much reactive power will be consumed by or supplied by the motor?

- **6–16.** Answer the following questions about the machine of Problem 6–15.
 - (a) If $E_A = 430 \angle 13.5^{\circ} \text{ V}$ and $V_{\phi} = 440 \angle 0^{\circ} \text{ V}$, is this machine consuming real power from or supplying real power to the power system? Is it consuming reactive power from or supplying reactive power to the power system?
 - (b) Calculate the real power P and reactive power Q supplied or consumed by the machine under the conditions in part a. Is the machine operating within its ratings under these circumstances?
- (c) If $E_A = 470 \angle -12^\circ \text{ V}$ and $V_\phi = 440 \angle 0^\circ \text{ V}$, is this machine consuming real power from or supplying real power to the power system? Is it consuming reactive power from or supplying reactive power to the power system?
- (d) Calculate the real power P and reactive power Q supplied or consumed by the machine under the conditions in part c. Is the machine operating within its ratings under these circumstances?