Problem 1

Problem

In $\triangle ABC, \angle BAD = 90^{\circ}. \angle DAC = 45^{\circ}. AD$ is the median. Prove: AB = 2AD.

Solution

Extend AD to E such that AD = DE. Connect CE.

Since $DE = AD, \angle CDE = \angle BDA.CD = DB$. Thus $\triangle CDE \cong \triangle BDA, CE = AB$, and $\angle E = \angle DAB = 90^{\circ}$.

Since $\angle CAD = 45^{\circ}$, in right triangle $AEC, \angle ACE = 45^{\circ}$.

Thus, CE = AE = 2AD.

Since CE = AB, AB = 2AD.