Liu & Layland Test. A CPU utilization > muse CPV utilization then tasks are not schedulable. max CPV utilization = n+(2)-1) where n-no. of tesk - For multiple task (n) - mase cpu utilization = 69.3% Liu & Lehockzy test: if According Liu & Lagland test, tasks

are not schedulable then try scheduling of tasks for at least one hyper period. It tasks are schedulable in first hyper period then your task are schedulable

			RMA	Hyper 1 (M(100 100 500)
CPU	Burst	Deadline	Period	Hyper = LCM (100,150, 200) per 182 = 600
P1	20	100	100	
P2	30	150	150	Priority Period

P3

Release point (phase) =0

DMA

	CPU Burst	Deadline	Period
P1	3	7	20
P2	2	4	5
Р3	2	9	10

if deadline is not given, then it will behave like RMA

CPV Utilization = $\frac{3}{20} + \frac{2}{5} + \frac{2}{10} = 0.75$ Mancepu Utilization = $3*(2^{1/3}-1) = 0.78$ Apper period = Lem (20,5,10) = 20

priority $\propto \frac{1}{3}$ Teadline 12 > 12 > 12 > 12 > 13Fixed Istatic

Release point = 0

CPV Vtilization =
$$\frac{15}{20}$$
 = 0.75=75%

	_	
, T		1
		н
ועי		Г'

	CPU Burst	Deadline	Period
P1	20	50	50
P2	35	80	80

CPV Utilization = $\frac{20}{20} + \frac{35}{20} = 0.84$ Max CPV Utilization = 0.82 Hyper Period = LCM (50,80)

Privrity - earliest deadline first Dynamic

332

LSTF

Least Slack Time (Lazeity) First

slack time = Deadline - real time wrt cycle - remain time

	CPU Burst	Deadline	Period
P1	3	7	20
P2	2	4	5
Р3	2	8	10

CPV Utilization =
$$\frac{3}{20} + \frac{2}{5} + \frac{2}{10} = 0.75$$

Max CPV Utilization = $3*(2^{1/3}-1) = 0.78$
Hyper period = LCM (20,5,10) = 20

Release Point =0

- stack time will be calculated at every | unit time
- stack time is going to vary, so privrities will also vary
- stack time is going to vary, so privrities will also vary
- the process whose stack time is less will highest
priority

Slack time = deadline - real time - remeden time

time 0:
$$P$$
)= $7-0-3=4$
 $P2=4-0-2=2$ (1)
 $P3=8-0-2=6$

$$time (: P) = 7 - 1 - 3 = 3$$

$$P2 = 4 - 1 - 1 = 2 (0)$$

$$P3 = 8 - 1 - 2 = 5$$

time 2:
$$P_1 = 7 - 2 - 3 = 2$$
 (2)
 $P_3 = 8 - 2 - 2 = 4$

times:
$$91 = 7 - 3 - 2 = 2 (1)$$

 $93 = 8 - 3 - 2 = 3$

time 4:
$$P1=7-4-1=2$$
 (0)
 $P3=8-4-2=2$

time
$$5: P2=4-0-2=2$$

$$P3=8-5-2=0(1)$$

time 6:
$$P2=4-1-2=1$$

 $P3=8-6-1=(0)$

Memory Management

intrupt latericies Ratio: task execution + intr handling task execution time close to CPU load = \(\task + \task \) Kernel + \(\task \) Tsk Worst case execution Hope minarg case execution time taski. ISRC) inte Jitter ISR