

Tipi di dati

Tipi numerici

Dati interi e in virgola mobile

Le classi numeriche in MATLAB® includono numeri interi con e senza segno e numeri in virgola mobile a singola e doppia precisione. Per impostazione predefinita, MATLAB memorizza tutti i valori numerici in virgola mobile a doppia precisione. (La precisione e il tipo predefiniti non possono essere modificati). È possibile scegliere di memorizzare qualsiasi numero, o matrice di numeri, come numeri interi o a singola precisione. Gli array di numeri interi e a singola precisione offrono una memorizzazione più efficiente rispetto alla doppia precisione.

Tutti i tipi numerici supportano le operazioni di base degli array, come l'indicizzazione, il rimodellamento e le operazioni matematiche.

double

Array a doppia precisione

Descrizione

double è il tipo di dati numerici (classe) predefinito in MATLAB® che fornisce una precisione sufficiente per la maggior parte delle attività di calcolo. Le variabili numeriche sono memorizzate automaticamente come valori in virgola mobile a doppia precisione a 64 bit (8 byte). Ad esempio:

```
x = 10;
whos x

Name Size Bytes Class Attributes

x = 1x1 8 double
```

MATLAB costruisce il tipo di dati double secondo lo standard IEEE $^{\$}$ 754 per la doppia precisione. L'intervallo per un numero negativo di tipo double è compreso tra -1,79769 x 10^{308} e -2,22507 x 10^{308} , mentre quello per i numeri positivi è compreso tra 2,22507 x 10^{308} e 1,79769 x 10^{308} e 1,79769 x 10^{308} .

Per maggiori informazioni sui valori in virgola mobile a doppia precisione e a precisione singola, vedere Floating-Point Numbers.

eps

Floating-point relative accuracy

Tipi di dati

Tipi numerici

Dati interi e in virgola mobile

Inf

Create array of all Inf values

Examples

Create a 3-by-3 matrix of Inf values.

$$X = Inf(3)$$

$$X = 3 \times 3$$

Inf Inf Inf Inf Inf Inf Inf Inf Inf

NaN

Create array of all NaN values

Examples

Matrix of NaN Values

Create a 3-by-3 matrix of NaN values.

$$X = NaN(3)$$

$$X = 3x3$$

NaN NaN NaN NaN NaN NaN NaN NaN NaN

Tipi di dati

Tipi numerici

Dati interi e in virgola mobile

Le classi numeriche in MATLAB® includono numeri interi con e senza segno e numeri in virgola mobile a singola e doppia precisione. Per impostazione predefinita, MATLAB memorizza tutti i valori numerici in virgola mobile a doppia precisione. (La precisione e il tipo predefiniti non possono essere modificati). È possibile scegliere di memorizzare qualsiasi numero, o matrice di numeri, come numeri interi o a singola precisione. Gli array di numeri interi e a singola precisione offrono una memorizzazione più efficiente rispetto alla doppia precisione.

Tutti i tipi numerici supportano le operazioni di base degli array, come l'indicizzazione, il rimodellamento e le operazioni matematiche.

Tipo e valore della query

allfinite	Determine if all array elements are finite (Da R2022a)
anynan	Determine if any array element is NaN (Da R2022a)
isinteger	Determine whether input is integer array
isfloat	Determine if input is floating-point array
isnumeric	Determine whether input is numeric array
isreal	Determine whether array uses complex storage
isfinite	Determine which array elements are finite
isinf	Determine which array elements are infinite
isnan	Determinare quali elementi dell'array sono NaN

ESERCITAZIONI

MATLAB – Nozioni fondamentali

Tipi di dati

Tipi numerici

allfinite

Determine if all array elements are finite Since R2022a

Syntax

TF = allfinite(A)

Description

TF = allfinite(A) returns logical 1 (true) if all elements of A are finite. It returns 0 (false) if any element is not finite.

If A contains complex numbers, allfinite(A) returns 1 if all elements have finite real and imaginary parts, and 0 otherwise.

✓ Determine If All Matrix Elements Are Finite

Create a matrix and determine if all elements are finite.

A = 3x3

0 0 3 0 0 3 0 0 NaN

TF = allfinite(A)

TF = logical 0

Examples

✓ Determine If All Vector Elements Are Finite

Create a row vector and determine if all elements are finite.

$$A = 1./[-2 -1 1e-23 0.1]$$

$$A = 1 \times 4$$
$$10^{23} \times$$

Create another row vector and determine if all elements are fill

$$B = 0./[-2 -1 0 0.1]$$

$$B = 1 \times 4$$

ESERCITAZIONI

MATLAB – Nozioni fondamentali

Tipi di dati

Tipi numerici

anynan

Determine if any array element is NaN Since R2022a

Syntax

TF = anynan(A)

Description

TF = anynan(A) returns logical 1 (true) if at least one element of A is NaN. It returns 0 (false) if no element is NaN. If A contains complex numbers, anynan(A) returns 1 if at least one element has a real or imaginary part that is NaN.

Examples

	Determine If Vector Contains NaN	
•	Determine if vector Contains was	(
Crea	te a row vector A. Determine if at least one element of A is NaN.	

✓ Determine If Matrix Contains NaN

Create a matrix and determine if at least one of its elements is NaN.

A = [0 0 3;0 0 3;0 0 NaN]

A = 3×3

9 0 9 0

0 0 NaN

TF = anynan(A)

TF = logical

1 - Logi

Examples

✓ Determine If Vector Contains NaN

Create a row vector A. Determine if at least one element of A is NaN.

A = 0./[-2 -1 0 1 2]

 $A = 1 \times 5$

0 NaN 0

TF = anynan(A)

TF = logical

1

anynan returns logical 1 (true) because at least one element of A is NaN.

Create another row vector B. Determine if at least one element of B is NaN.

 $B = [-2 -1 \ 1 \ 2]/0$

 $B = 1 \times 4$

-Inf -Inf Inf Ir

TF = anynan(B)

TF = logical 0

Tipi di dati

Tipi numerici

isfinite

Determine which array elements are finite

Syntax

TF = isfinite(A)

Description

TF = isfinite(A) returns a logical array containing 1 (true) where the elements of the array A are finite, and 0 (false) where they are infinite or NaN. If A contains complex numbers, isfinite(A) contains 1 for elements with finite real and imaginary parts, and 0 for elements where either part is infinite or NaN.

Tipi di dati

Tipi numerici

isfinite

Determine which array elements are finite

Syntax

TF = isfinite(A)

Description

 $TF = \texttt{isfinite}(A) \text{ returns a logical array containing 1 (true) where the elements of the with finite real and imaginary parts, and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where either part is infinite or NaN and 0 for elements where elements w$

Examples

~

Determine Finite Real Elements

Create a row vector and determine the finite real elements.

or elements

$$A = 1./[-2 -1 0 1 2]$$

$$A = 1 \times 5$$

$$TF = 1x5 logical array$$

Tipi di dati

Tipi numerici

isinf

Determine which array elements are infinite

Syntax

TF = isinf(A)

Description

TF = isinf(A) returns a logical array containing 1 (true) where the elements of the array A are Inf or -Inf, and 0 (false) where they are not. If A contains complex numbers, isinf(A) contains 1 for elements with infinite real or imaginary part, and 0 for elements where both real and imaginary parts are finite or NaN.

Examples

✓ Determine Infinite Real Elements

Create a row vector and determine the infinite elements.

A = 1./[-2 -1 0 1 2]

 $A = 1 \times 5$

-0.5000 -1.0000 Inf 1.0000 0.5000

TF = isinf(A)

TF = 1x5 logical array

0 0 1 0 0

Tipi di dati

Tipi numerici

isnan

Determinare quali elementi dell'array sono NaN

Sintassi

TF = isnan(A)

Descrizione

TF = isnan(A) restituisce un array logico contenente 1 (true) dove gli elementi di A sono NaN e 0 (false) dove non lo sono. Se A contiene numeri complessi, isnan(A) contiene 1 per gli elementi la cui parte reale o immaginaria è NaN e 0 per gli elementi dove sia le parte reali che quelle immaginarie non sono NaN.

Esempi

Tipi di dati

Tipi numerici

Infinity and NaN

Infinity

MATLAB® represents infinity by the special value Inf. Infinity results from operations like division by zero and overflow, which lead to results too large to represent as conventional floating-point values. MATLAB also provides a function called Inf that returns the IEEE® arithmetic representation for positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in MATLAB are shown here.

x = 1/0 x =	x = 1.e1000
X =	x =
Inf	Inf
x = exp(1000)	$x = \log(0)$
X =	x =
Inf	-Inf

Use the isinf function to verify that x is positive or negative infinity:

```
x = log(0);
isinf(x)
ans =
1
```


Tipi di dati

Tipi numerici

Infinity and NaN

NaN

MATLAB represents values that are not real or complex numbers with a special value called NaN, which stands for "Not a Number". Expressions like 0/0 and inf/inf result in NaN, as do any arithmetic operations involving a NaN:

```
x = 0/0
x =
```

NaN

You can also create NaNs by:

```
x = NaN;
whos x
Name Size Bytes Class
```

The NaN function returns one of the IEEE arithmetic representations for NaN as a double scalar value. The exact bit-wise hexadecimal representation of this NaN value is,

8 double

```
format hex
x = NaN
x =
fff800000000000000
```

1x1

Always use the isnan function to verify that the elements in an array are NaN:

```
isnan(x)
ans =
```

MATLAB preserves the "Not a Number" status of alternate NaN representations and treats all of the different representations of NaN equivalently. However, in some special cases (perhaps due to hardware limitations), MATLAB does not preserve the exact bit pattern of alternate NaN representations throughout an entire calculation, and instead uses the canonical NaN bit pattern defined above.

Tipi di dati

Tipi numerici

Infinity and NaN

NaN

Logical Operations on NaN

Because two NaNs are not equal to each other, logical operations involving NaN always return false, except for a test for inequality, (NaN ~= NaN):

```
NaN > NaN
ans =
0
NaN ~= NaN
ans =
```


Tipi di dati

Tipi numerici

Empty Matrices

If you construct a matrix using empty matrix elements, the empty matrices are ignored in the resulting matrix:

```
A = [5.36; 7.01; []; 9.44]
A = 5.3600
7.0100
9.4400
```

Concatenation Examples

Combining Character and Double Types

 $Combining\ character\ values\ with\ double\ values\ yields\ a\ character\ matrix.\ MATLAB^{\textcircled{\$}}\ converts\ the\ double\ elements\ in\ this\ example\ to\ their\ character\ equivalents:$

```
x = ['A' 'B' 'C' 68 69 70]
x =
    ABCDEF

class(x)
ans =
    char
```

Combining Logical and Double Types

Combining logical values with double values yields a double matrix. MATLAB converts the logical true and false elements in this example to double:

```
x = [true false false pi sqrt(7)]
x =
    1.0000    0    0    3.1416    2.6458

class(x)
ans =
    double
```


Tipi di dati

Caratteri e stringhe

Testo in array di caratteri e in array di stringhe

Gli array di caratteri e gli array di stringhe consentono di memorizzare i dati di testo in MATLAB®.

- Un array di caratteri è una sequenza di caratteri così come un array numerico è una sequenza di numeri. Un uso tipico è quello di memorizzare brevi porzioni di testo come vettori di caratteri, come c = 'Hello World'.
- Un array di stringhe è un contenitore per porzioni di testo. Gli array di stringhe forniscono un insieme di funzioni per lavorare con il testo come dati. È possibile creare stringhe utilizzando le virgolette doppie, come str = "Greetings friend". Per convertire i dati in array di stringhe, utilizzare la funzione string.

Funzioni

Array di stringhe	
string	String array
strings	Create string array with no characters
join	Combine strings
plus	Add numbers, append strings
cellstr	Convert to cell array of character vectors
olanks	Create character array of blanks
newline	Creare il carattere nuova riga
rray di stringhe o di caratteri	
	Format data into multiple strings
compose	
•	Format data into string or character vector
sprintf strcat	Format data into string or character vector Concatenare le stringhe orizzontalmente

14

Tipi di dati

Caratteri e stringhe

Testo in array di caratteri e in array di stringhe

Gli array di caratteri e gli array di stringhe consentono di memorizzare i dati di testo in MATLAB®.

- Un array di caratteri è una sequenza di caratteri così come un array numerico è una sequenza di numeri. Un uso tipico è quello di memorizzare brevi porzioni di testo come vettori di caratteri, come c = 'Hello World'.
- Un array di stringhe è un contenitore per porzioni di testo. Gli array di stringhe forniscono un insieme di funzioni per lavorare con il testo come dati. È possibile creare stringhe utilizzando le virgolette doppie, come str = "Greetings friend". Per convertire i dati in array di stringhe, utilizzare la funzione string.

Funzioni

Conversione degli argomenti di input

convert	tCharsToStrings	Convert character arrays to string arrays, leaving other arrays unaltered
convert	tStringsToChars	Convert string arrays to character arrays, leaving other arrays unaltered
convert	tContainedStringsToChars	Convert string arrays at any level of cell array or structure

Conversione tra numeri e stringhe

double	Array a doppia precisione
string	String array
str2double	Convert strings to double precision values
num2str	Convert numbers to character array

Tipi di dati

Caratteri e stringhe

Testo in array di caratteri e in array di stringhe

Gli array di caratteri e gli array di stringhe consentono di memorizzare i dati di testo in MATLAB®.

- Un array di caratteri è una sequenza di caratteri così come un array numerico è una sequenza di numeri. Un uso tipico è quello di memorizzare brevi porzioni di testo come vettori di caratteri, come c = 'Hello World'.
- Un array di stringhe è un contenitore per porzioni di testo. Gli array di stringhe forniscono un insieme di funzioni per lavorare con il testo come dati. È possibile creare stringhe utilizzando le virgolette doppie, come str = "Greetings friend". Per convertire i dati in array di stringhe, utilizzare la funzione string.

Funzioni

✓ Determinazione del tipo e delle proprietà

Tipo di dati

ischar	Determine if input is character array
iscellstr	Determine if input is cell array of character vectors
isstring	Determine if input is string array
isStringScalar	Determine if input is string array with one element

Proprietà del testo

Tophicu del teste	
strlength	Lengths of strings
isstrprop	Determine which characters in input strings are of specified category
isletter	Determine which characters are letters
isspace	Determine which characters are space characters

Tipi di dati

Caratteri e stringhe

Testo in array di caratteri e in array di stringhe

Gli array di caratteri e gli array di stringhe consentono di memorizzare i dati di testo in MATLAB®.

- Un array di caratteri è una sequenza di caratteri così come un array numerico è una sequenza di numeri. Un uso tipico è quello di memorizzare brevi porzioni di testo come vettori di caratteri, come c = 'Hello World'.
- Un array di stringhe è un contenitore per porzioni di testo. Gli array di stringhe forniscono un insieme di funzioni per lavorare con il testo come dati. È possibile creare stringhe utilizzando le virgolette doppie, come str = "Greetings friend". Per convertire i dati in array di stringhe, utilizzare la funzione string.

Funzioni

Ricerca e sostituzione

Ricerca

contains	Determine if pattern is in strings
matches	Determine if pattern matches strings (Da R2019b)
count	Count occurrences of pattern in strings
endsWith	Determine if strings end with pattern
startsWith	Determine if strings start with pattern
strfind	Find strings within other strings
sscanf	Read formatted data from strings

Sostituzione

replace	Find and replace one or more substrings
replaceBetween	Replace substrings between start and end points
strrep	Find and replace substrings

Tipi di dati

Caratteri e stringhe

Testo in array di caratteri e in array di stringhe

Gli array di caratteri e gli array di stringhe consentono di memorizzare i dati di testo in MATLAB®.

- Un array di caratteri è una sequenza di caratteri così come un array numerico è una sequenza di numeri. Un uso tipico è quello di memorizzare brevi porzioni di testo come vettori di caratteri, come c = 'Hello World'.
- Un array di stringhe è un contenitore per porzioni di testo. Gli array di stringhe forniscono un insieme di funzioni per lavorare con il testo come dati. È possibile creare stringhe utilizzando le virgolette doppie, come str = "Greetings friend". Per convertire i dati in array di stringhe, utilizzare la funzione string.

Funzioni

∨ Unione e divisione

join	Combine strings
plus	Add numbers, append strings
split	Split strings at delimiters
splitlines	Split strings at newline characters
strjoin	Join strings in array
strsplit	Split string or character vector at specified delimiter
strtok	Selected parts of strings
extract	Extract substrings from strings (Da R2020b)
extractAfter	Extract substrings after specified positions
extractBefore	Extract substrings before specified positions
extractBetween	Extract substrings between start and end points

Tipi di dati

Caratteri e stringhe

Testo in array di caratteri e in array di stringhe

Gli array di caratteri e gli array di stringhe consentono di memorizzare i dati di testo in MATLAB®.

- Un array di caratteri è una sequenza di caratteri così come un array numerico è una sequenza di numeri. Un uso tipico è quello di memorizzare brevi porzioni di testo come vettori di caratteri, come c = 'Hello World'.
- Un array di stringhe è un contenitore per porzioni di testo. Gli array di stringhe forniscono un insieme di funzioni per lavorare con il testo come dati. È possibile creare stringhe utilizzando le virgolette doppie, come str = "Greetings friend". Per convertire i dati in array di stringhe, utilizzare la funzione string.

Funzioni

✓ Confronti	
matches	Determine if pattern matches strings (Da R2019b)
strcmp	Confrontare stringhe
strcmpi	Compare strings (case insensitive)
strncmp	Compare first n characters of strings (case sensitive)
strncmpi	Compare first n characters of strings (case insensitive)

Tipi di dati

Caratteri e stringhe

Argomenti

n = 12

Text in String and Character Arrays

There are two ways to represent text in MATLAB®. You can store text in string arrays and in character vectors. MATLAB displays strings with double quotes and character vectors with single quotes.

Represent Text with String Arrays

You can store any 1-by-n sequence of characters as a string, using the string data type. Enclose text in double quotes to create a string.

```
str = "Hello, world"

str =
"Hello, world"
```

Though the text "Hello, world" is 12 characters long, stritself is a 1-by-1 string, or string scalar. You can use a string scalar to specify a file name, plot label, or any other piece of textual information.

To find the number of characters in a string, use the strlength function.

```
n = strlength(str)
```

If the text includes double quotes, use two double quotes within the definition.

```
str = "They said, ""Welcome!"" and waved."

str =
"They said, "Welcome!" and waved."
```


Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Represent Text with String Arrays

To add text to the end of a string, use the plus operator, +. If a variable can be converted to a string, then plus converts it and appends it.

```
fahrenheit = 71;
celsius = (fahrenheit-32)/1.8;
tempText = "temperature is " + celsius + "C"

tempText =
"temperature is 21.6667C"
```

You can also concatenate text using the append function.

```
tempText2 = append("Today's ",tempText)
tempText2 =
```

"Today's temperature is 21.6667C"

The string function can convert different types of inputs, such as numeric, datetime, duration, and categorical values. For example, convert the output of pi to a string.

```
ps = string(pi)

ps =
"3.1416"
```

You can store multiple pieces of text in a string array. Each element of the array can contain a string having a different number of characters, without padding.

Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Represent Text with String Arrays

str is a 2-by-3 string array. You can find the lengths of the strings with the strlength function.

N = 9	strleng	gth(sti	r)
N = 2	2×3		
	7	6	6
	6	8	3

String arrays are supported throughout MATLAB and MathWorks® products. Functions that accept character arrays (and cell arrays of character vectors) as inputs also accept string arrays.

Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Represent Text with Character Vectors

To store a 1-by-n sequence of characters as a character vector, using the char data type, enclose it in single quotes.

```
chr = 'Hello, world'

chr =
'Hello, world'
```

The text 'Hello, world' is 12 characters long, and chr stores it as a 1-by-12 character vector.

```
Whos chr

Name Size Bytes Class Attributes

chr 1x12 24 char
```

If the text includes single quotes, use two single quotes within the definition.

```
chr = 'They said, ''Welcome!'' and waved.'
chr =
'They said, 'Welcome!' and waved.'
```

Character vectors have two principal uses:

- · To specify single pieces of text, such as file names and plot labels.
- . To represent data that is encoded using characters. In such cases, you might need easy access to individual characters.

Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

String arrays store pieces of text and provide a set of functions for working with text as data. You can index into, reshape, and concatenate strings arrays just as you can with arrays of any other type. You also can access the characters in a string and append text to strings using the plus operator. To rearrange strings within a string array, use functions such as split, join, and sort.

Create String Arrays from Variables

MATLAB® provides string arrays to store pieces of text. Each element of a string array contains a 1-by-n sequence of characters.

You can create a string using double quotes.

```
str = "Hello, world"

str = "Hello, world"

As an elternative you can convert a character vector to a string using the starter function, why is a 1 by 17 character vector at a is a 1 by 1 string that has the compositor vector vector vector at a is a 1 by 1 string that has the compositor vector vector vector.
```

As an alternative, you can convert a character vector to a string using the string function. chr is a 1-by-17 character vector. str is a 1-by-1 string that has the same text as the character vector.

```
chr = 'Greetings, friend'
chr =
'Greetings, friend'
str = string(chr)
str =
"Greetings, friend"
```


Tipi di dati

Caratteri e stringhe

Argomenti

"Skylab"

Text in String and Character Arrays

Create String Arrays

Create String Arrays from Variables

"Skylab B"

"TSS"

Create a string array containing multiple strings using the [] operator. str is a 2-by-3 string array that contains six strings.

Find the length of each string in str with the strlength function. Use strlength, not length, to determine the number of characters in strings.

```
L = strlength(str)

L = 2×3
```

As an alternative, you can convert a cell array of character vectors to a string array using the string function. MATLAB displays strings in string arrays with double quotes, and displays characters vectors in cell arrays with single quotes.

Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Create String Arrays from Variables

In addition to character vectors, you can convert numeric, datetime, duration, and categorical values to strings using the string function.

Convert a numeric array to a string array.

```
X = [5 10 20 3.1416];
string(X)

ans = 1x4 string
    "5" "10" "20" "3.1416"
```

Convert a datetime value to a string.

```
d = datetime('now');
string(d)

ans =
"12-Feb-2024_23:24:55"
```

Also, you can read text from files into string arrays using the readtable, textscan, and fscanf functions.

Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Create Empty and Missing Strings

String arrays can contain both empty and missing values. An empty string contains zero characters. When you display an empty string, the result is a pair of double quotes with nothing between them (""). The missing string is the string equivalent to NaN for numeric arrays. It indicates where a string array has missing values. When you display a missing string, the result is <missing>, with no quotation marks.

Create an empty string array using the strings function. When you call strings with no arguments, it returns an empty string. Note that the size of str is 1-by-1, not 0-by-0. However, str contains zero characters.

```
str = strings
str =
""
```

Create an empty character vector using single quotes. Note that the size of chr is 0-by-0.

```
chr = ''
```

0x0 empty char array

Create a string array where every element is an empty string. You can preallocate a string array with the strings function.

```
str = strings(2,3)

str = 2x3 string
"" "" ""
```

To create a missing string, convert a missing value using the string function. The missing string displays as <missing>.

```
str = string(missing)
str =
<missing>
```


Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Create Empty and Missing Strings

You can create a string array with both empty and missing strings. Use the ismissing function to determine which elements are strings with missing values. Note that the empty string is not a missing string.

```
str(1) = "";
str(2) = "Gemini";
str(3) = string(missing)

str = 1x3 string
    ""    "Gemini"    <missing>

ismissing(str)

ans = 1x3 logical array
    0     0     1
```

Compare a missing string to another string. The result is always 0 (false), even when you compare a missing string to another missing string.

```
str = string(missing);
str == "Gemini"

ans = logical
0
```

ans = logical 0

str == string(missing)

Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Access Elements of String Array

String arrays support array operations such as indexing and reshaping. Use array indexing to access the first row of str and all the columns.

Access the second element in the second row of str.

```
str(2,2)

ans =
"Skylab B"
```

Assign a new string outside the bounds of str. MATLAB expands the array and fills unallocated elements with missing values.

```
str(3,4) = "Mir"

str = 3x4 string
   "Mercury"   "Gemini"   "Apollo"   <missing>
    "Skylab"   "Skylab B"   "ISS"    <missing>
   <missing>   <missing>   "Mir"
```


Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Access Characters Within Strings

You can index into a string array using curly braces, {}, to access characters directly. Use curly braces when you need to access and modify characters within a string element. Indexing with curly braces provides compatibility for code that could work with either string arrays or cell arrays of character vectors. But whenever possible, use string functions to work with the characters in strings.

Access the second element in the second row with curly braces. chr is a character vector, not a string.

Access the character vector and return the first three characters

```
str{2,2}(1:3)

ans =
'Sky'
```

Find the space characters in a string and replace them with dashes. Use the isspace function to inspect individual characters within the string. isspace returns a logical vector that contains a true value wherever there is a space character. Finally, display the modified string element, str(2,2).

```
TF = isspace(str{2,2})

TF = 1x8 logical array

0 0 0 0 0 1 0
```


Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Access Characters Within Strings

```
str{2,2}(TF) = "-";
str(2,2)

ans =
"Skylab-B"
```

Note that in this case, you can also replace spaces using the replace function, without resorting to curly brace indexing.

```
replace(str(2,2)," ","-")
ans =
"Skylab-B"
```


Tipi di dati

Caratteri e stringhe

Argomenti

"Mercury"

"Gemini"

"Apollo"

Text in String and Character Arrays

Create String Arrays

Concatenate Strings into String Array

Concatenate strings into a string array just as you would concatenate arrays of any other kind.

Concatenate two string arrays using square brackets, [].

"Skylab"

"Skylab B"
"TSS"

```
str1 = ["Mercury", "Gemini", "Apollo"];
str2 = ["Skylab", "Skylab B", "ISS"];
str = [str1 str2]

str = 1x6 string
    "Mercury" "Gemini" "Apollo" "Skylab B" "ISS"
```

Transpose str1 and str2. Concatenate them and then vertically concatenate column headings onto the string array. When you concatenate character vectors into a string array, the character vectors are automatically converted to strings.

```
str1 = str1';
str2 = str2';
str = [str1 str2];
str = [["Mission:", "Station:"] ; str]

str = 4x2 string
    "Mission:"     "Station:"
```


Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Append Text to Strings

To append text to strings, use the plus operator, +. The plus operator appends text to strings but does not change the size of a string array.

Append a last name to an array of names. If you append a character vector to strings, then the character vector is automatically converted to a string.

```
names = ["Mary";"John";"Elizabeth";"Paul";"Ann"];
names = names + ' Smith'

names = 5x1 string
    "Mary Smith"
    "John Smith"
    "Elizabeth Smith"
    "Paul Smith"
    "Ann Smith"
```

Append different last names. You can append text to a string array from a string array of character vectors. When you add nonscalar arrays, they must be the same size.

```
names = ["Mary";"John";"Elizabeth";"Paul";"Ann"];
lastnames = ["Jones";"Adams";"Young";"Burns";"Spencer"];
names = names + " " + lastnames

names = 5x1 string
    "Mary Jones"
    "John Adams"
    "Elizabeth Young"
    "Paul Burns"
    "Ann Spencer"
```


Tipi di dati

Caratteri e stringhe

Argomenti

Text in String and Character Arrays

Create String Arrays

Append Text to Strings

Append a missing string. When you append a missing string with the plus operator, the output is a missing string.

```
str1 = "Jones";
str2 = string(missing);
str1 + str2

ans =
<missing>
```


Tipi di dati

Caratteri e stringhe

Argomenti

Analyze Text Data with String Arrays

Compare Character Vectors

You can compare character vectors and cell arrays of character vectors to each other. Use the strcmp function to compare two character vectors, or strncmp to compare the first N characters. You also can use strcmpi and strncmpi for case-insensitive comparisons.

Compare two character vectors with the strcmp function. chr1 and chr2 are not equal.

```
chr1 = 'hello';
chr2 = 'help';
TF = strcmp(chr1,chr2)
```

TF = logical 0

Note that the MATLAB strcmp differs from the C version of strcmp. The C version of strcmp returns 0 when two character arrays are the same, not when they are different.

Compare the first two characters with the strncmp function. TF is 1 because both character vectors start with the characters he.

```
TF = strncmp(chr1,chr2,2)
```

TF = logical

Tipi di dati

Caratteri e stringhe

Argomenti

Analyze Text Data with String Arrays

Compare Character Vectors

Compare two cell arrays of character vectors. strcmp returns a logical array that is the same size as the cell arrays.

```
C1 = {'pizza'; 'chips'; 'candy'};
C2 = {'pizza'; 'chocolate'; 'pretzels'};
strcmp(C1,C2)
```

```
ans = 3x1 logical array
```

- 1
- 0
- Ø

Riferimenti Bibliografici

[1] https://it.mathworks.com