Blatt 3 Elias Gestrich

Aufgabe 3.1:

1. Für die erste while-Schleife gilt $n_k = 3 \cdot n_{k-1} - 1$, für die zweite gilt $n_k = (n_{k-1} + 2) \cdot 3 - 1 = 3n_{k-1} + 5$

Es wird 41 im ersten print-Befehl ausgegeben und 29 im zweiten.

```
2. print('a = ', end='')
a = float(input())
print('n = ', end='')
n = int(input())
b = 1
if n < 0:
    a = 1/a
    n = -n
for x in range(n):
    b *= a
print("Das Ergebnis von ", a, "^", n, " ist ", b, sep='')</pre>
```

a	$\mid n \mid$	$a^n = b$
1	3	1
3	0	1
2	-3	0.125
0.25	-2	64
-2	4	16
-2	5	-32

Aufgabe 3.2:

1. (a)

A	B	$\neg (A \land B)$	\iff	$\neg A \vee \neg B$
0	0	1	1	1
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0
	$\begin{array}{c} A \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c cc} A & B \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} A & B & \neg (A \wedge B) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

(b)

(D)						
	A	B	C	$(A \lor (B \land C))$	\iff	$((A \lor B) \land (A \lor C))$
	0	0	0	0	1	0
	0	0	1	0	1	0
	0	1	0	0	1	0
	0	1	1	1	1	1
	1	0	0	1	1	1
	1	0	1	1	1	1
	1	1	0	1	1	1
	1	1	1	1	1	1
				1		

2. Schnaps[0] gibt die erste Schnapszahl aus (11) und Schnaps[-2] die vorletzte (88).

Wenn man einfach nur Schnaps2_{\(\sigma\)}=_{\(\sigma\)}Schnaps macht, dann wird kein neues Objekt erstellt, sondern Schnaps2 ist einfach ein anderer Name für Schnaps, dies kann man verhinder indem man Schnaps2_{\(\sigma\)}=_{\(\sigma\)}Schnaps.copy() macht, um eine Kopie von Schnaps zu erstellen.