| EPLIA | / | InfoSpé |
|-------|---|---------|

Novembre 2012

| NOM: | · •          |          |      |
|------|--------------|----------|------|
|      | <u>NOM</u> : | PRENOM : | <br> |

# Contrôle 1 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet

| Exercice 1. Questions de cours (7 points)                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Répondre aux questions suivantes. Une seule phrase suffit.                                                                                    |
| 1. Pourquoi a-t-on besoin de doper les semi-conducteurs?                                                                                      |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| 2. En quoi consiste le dopage?                                                                                                                |
| ·                                                                                                                                             |
|                                                                                                                                               |
|                                                                                                                                               |
| 2. Citar las difffuents madèles de la diada du plus podejs su prains podejs                                                                   |
| 3. Citer les différents modèles de la diode du plus précis au moins précis.                                                                   |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| 4. L'équation de la caractéristique d'une diode à jonction PN est donnée par l'équation suivante : $I_D=I_S\left(e^{rac{V_D}{mV_T}}-1 ight)$ |
| Le courant $I_S$ est appelé « Courant thermique ». Pourquoi ?                                                                                 |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |
| On néglige généralement ce courant. Pourquoi sa valeur est-elle si faible?                                                                    |
|                                                                                                                                               |
|                                                                                                                                               |
|                                                                                                                                               |

|   | Quels sont les autres noms de ce courant?         |
|---|---------------------------------------------------|
|   |                                                   |
|   |                                                   |
|   |                                                   |
| į | 5. Quelle est la particularité d'une diode Zéner? |
| _ |                                                   |
|   |                                                   |
|   |                                                   |

6. Soit le montage stabilisateur ci-dessous : On donne  $V_S > 0$ .



On notera:

- ullet  $V_Z$  , la tension de seuil Zéner
- $\bullet$   $I_{Z0}$ , la valeur limite du courant en fonctionnement inverse.

Déterminer pour quelles valeurs de  $V_5$  la tension aux bornes de R2 reste constante. Vous donnerez la réponse sous la forme d'un

intervalle et préciserez la largeur de la plage de stabilisation.

Exercice 2. Les diodes : Polarisation (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec  $V_0 = 0.7V$ .

 $E_1$   $R_2$ 

1. Si  $R_1=10\Omega$ ,  $R_2=10k\Omega$  et E=10V, montrer que la diode est bloquée. ( $Rq:Utiliser\ un\ raisonnement\ par\ l'absurde$ )

| 2.      | Si $R_1=100\Omega$ , $R_2=50\Omega$ et $E=10V$ , montrer que la diode est passante. ( $Rq:Utilise$ un raisonnement par l'absurde). Déterminer alors l'intensité du courant qui l'traverse. |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
| :       |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
|         |                                                                                                                                                                                            |
| Exercic | <u>e 3.</u> Caractéristique de transfert (4 points)                                                                                                                                        |
| Soit le | circuit suivant :                                                                                                                                                                          |
| On so   | whaite tracer la caractéristique $U = f(V)$ .                                                                                                                                              |

On utilisera le modèle à seuil pour modéliser la diode; et on appellera  $V_{\mathcal{O}}$  sa tension de seuil.

V 
ightharpoonup P

| 1  | Donner | l'expression  | de II | ci la | diade | oct r | accante   |
|----|--------|---------------|-------|-------|-------|-------|-----------|
| ⊥. | Donner | I EXDI ESSION | ue    | SI IU | uioue | ESI L | JUSSUITTE |

| 2.        | Donner l'expression de $U$ si la diode est bloquée.  |
|-----------|------------------------------------------------------|
|           |                                                      |
|           |                                                      |
|           |                                                      |
|           |                                                      |
|           |                                                      |
|           |                                                      |
| <u>ರ.</u> | Pour quelles valeurs de V la diode est-elle bloquée? |
|           |                                                      |
|           |                                                      |
|           |                                                      |
|           |                                                      |
|           |                                                      |
|           |                                                      |
|           |                                                      |
| 1         | These $H = f(H)$                                     |
| 4.        | Tracer $U = f(V)$ .                                  |
| 4.        |                                                      |
| 4.        | Tracer $U = f(V)$ .                                  |
| 4.        |                                                      |
| 4.        |                                                      |
| 4.        |                                                      |
| 4.        |                                                      |
| 4.        |                                                      |
| 4.        |                                                      |
| 4.        |                                                      |
| 4.        |                                                      |

# Exercice 4. (4 points)

Soit le circuit suivant.

Déterminez, <u>en utilisant la méthode de votre choix</u>, le tensions  $U_{AM}$  et  $U_{BM}$ .



| Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous. |  |  |  |
|---------------------------------------------------------------------|--|--|--|
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |
|                                                                     |  |  |  |

# Contrôle 1 Architecture des ordinateurs

Durée : 1 h 30

## Exercice 1 (5 points)

Soit le nombre binaire sur 15 bits suivant : 1000001101102.

- 1. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 3. Donnez sa représentation hexadécimale s'il s'agit d'un entier non signé.

Soit un nombre sur n bits dont tous les bits sont à 1.

- 4. Donnez sa représentation décimale en fonction de n s'il s'agit d'un entier non signé.
- 5. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 6. Donnez la représentation binaire sur 10 bits signés du nombre -9410.
- 7. Donnez, en puissance de deux, le nombre d'octets que contient la grandeur suivante : 64 Mib.

#### Pour finir:

- 8. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 2048.
- 9. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre 2048.
- 10. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2048.

## Exercice 2 (6 points)

- 1. Convertissez, <u>en détaillant chaque étape</u>, les nombres ci-dessous dans le format flottant <u>simple précision</u>. Vous exprimerez le résultat final, sous forme binaire, <u>en précisant chacun des champs</u>.
  - 115,5
  - 0,4375
- 2. <u>En détaillant chaque étape</u>, donnez la représentation décimale des nombres codés en double précision suivants :
  - · 2401 8000 0000 0000<sub>16</sub>
  - · 0006 C000 0000 0000<sub>16</sub>
- 3. <u>En justifiant vos calculs</u>, démontrez que le plus petit flottant, en valeur absolue, du format simple précision à mantisse dénormalisée, peut s'écrire sous la forme : 2<sup>n</sup>. Vous préciserez clairement la valeur numérique de n.
- 4. En justifiant vos calculs, démontrez que le plus grand flottant, du format simple précision à mantisse dénormalisée, peut s'écrire sous la forme :  $(1-2^{n1}).2^{n2}$ . Vous préciserez clairement les valeurs numériques de n1 et de n2.

Contrôle 1

#### Exercice 3 (6 points)

On souhaite réaliser la séquence du tableau présent sur le document réponse à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Donnez les équations des entrées J et K de chaque bascule <u>en détaillant vos calculs par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (ex : J0 = 1,  $K1 = \overline{Q2}$ ).

## Exercice 4 (3 points)

Soit les deux montages ci-dessous :



- 1. Remplissez les chronogrammes relatifs à la <u>figure 1</u> sur le <u>document réponse</u>.
- 2. Remplissez les chronogrammes relatifs à la figure 2 sur le document réponse.

Contrôle 1

## DOCUMENT RÉPONSE À RENDRE AVEC LA COPIE

#### Exercice 3

| Q2 | Q1 | Q0 | J2 | K2 | J1 | K1 | J0 | K0 |
|----|----|----|----|----|----|----|----|----|
| 0  | 0  | 0  |    |    |    |    |    |    |
| 0  | 0  | 1  |    |    |    |    |    |    |
| 0  | 1  | 0  |    |    |    |    |    |    |
| 1  | 0  | 0  |    |    |    |    |    |    |
| 1  | 0  | 1  |    |    |    |    |    |    |
| 1  | 1  | 0  |    |    |    |    |    |    |
| 1  | 1  | 1  |    |    |    |    |    |    |

#### Exercice 4



— Chronogrammes relatifs à la figure 1 —



— Chronogrammes relatifs à la figure 2 —

#### Contrôle n°1 de Physique

#### Calculatrice et documents non autorisées

#### Exercice 1 (6 points)

Un tore magnétique d'axe  $O\vec{z}$ , de rayon interne  $R_1$  et de rayon externe  $R_2$  est formé de N spires rectangulaires de hauteur h. Le système est traversé par un courant I.

- 1- On montre à l'aide de la loi de Biot-Savart que les lignes de champ magnétique créé à l'intérieur des spires (c'est-à-dire entre R<sub>1</sub> et R<sub>2</sub>) sont circulaires. Préciser les surfaces traversées par ces lignes de champ magnétiques, en donnant l'expression de l'élément de surface dS.
- 2- Le champ magnétique à l'intérieur des spires  $(R_1 < r < R_2)$  s'exprime par :

$$B(r) = \frac{\mu_0.N.I}{2.\pi.r}$$

Montrer que le flux magnétique total à travers les N spires (A gauche de l'axe Oz) est donné par.

$$\Phi(\vec{B}) = \frac{\mu_0 . h. N^2}{2.\pi} J. \ln(\frac{R_2}{R_1})$$



- 3- a) Le courant I traversant le tore est d'expression  $I(t) = I_0 \sin(\omega t)$ , quel est le phénomène qui se produit, justifier votre réponse.
  - b) Exprimer la f.é.m. auto-induite. En déduire le courant induiti, ainsi que sa valeur aximale  $i_0$ . La résistance du tore est R.

## Exercice 2 (7 points)

Un barreau métallique de longueur a, de masse m et résistance R, glisse sans frottement le long de deux rails de résistance négligeable. Ces rails sont inclinés d'un angle  $\theta$  par rapport à l'horizontale. Le système est placé dans un champ magnétique uniforme vertical tel que :

$$\vec{B} = -B_0 \sin(\theta)\vec{e}_x + B_0 \cos(\theta)\vec{e}_z$$
. Tel que :  $B_0 > 0$ 

On lâche le barreau qui acquiert de la vitesse sous l'action de son poids.

- 1-a) Exprimer le vecteur champ électromoteur  $\vec{E}_m = \vec{V} \wedge \vec{B}$  (Utiliser les composantes des vecteurs pour le produit vectoriel.)
  - b) En déduire la f.é.m auto-induite donnée par la circulation de  $\vec{E}_m$  de N vers N, ainsi que le courant induit i. Préciser le sens de la circulation du courant.
- 2- Donner la force que subit le barreau conducteur suite au courant induit i.
- 3- Calculer l'accélération du barreau sur l'axe Ox, en tenant compte de son propre poids et de l'action de la force électromagnétique dans la direction Ox.



## Exercice 3

(7 points)

## Les questions A, B, C sont indépendantes

A- Soit un champ de température donné par la fonction :

$$T(x, y, z) = \frac{4}{(1 + x^2 + y^2 + 4z^2)}$$

- 1- Déterminer le vecteur gradient de température
- 2- Donner la direction selon laquelle il y a une grande variation de température au point (1,1,0)

B- Soit un champ de vitesses d'un fluide donné par :

$$\vec{V}(x,y,z) = \left(x^2 \, \vec{e}_x + xy \, \vec{e}_y + z^4 y \, \vec{e}_z\right)$$

Calculer  $div(\vec{V})$ . Avons-nous une accumulation de fluide au point (1,0,1) ?

## C- Propriétés des opérateurs

- a- Démontrer que  $div(f\vec{A}) = gra\vec{d}(f) \cdot \vec{A} + f div(\vec{A})$  où  $\vec{A}$  est un champ vectoriel et f une fonction scalaire.
- b- Montrer que  $div(ro\bar{t}(\vec{U})) = 0$ , sachant que les composantes  $U_x, U_y$  et  $U_z$  sont des fonctions différentielles totales exactes (D.T.E).

## Formulaire

Loi de Biot-Savart

$$d\vec{B} = \frac{\mu_0}{4\pi} I \frac{d\vec{l} \, \Lambda P \vec{M}}{P M^3}$$

Flux magnétique

$$\Phi(\vec{B}) = \iint_{S} \vec{B} . d\vec{S}$$

Circulation d'un vecteur  $\vec{V}$  de A vers B

$$C(\vec{V}) = \int_{A}^{B} \vec{V}.d\vec{l}$$

# Algorithmique Contrôle nº 1

Info-Spé – Epita

D.S. 311848.13 BW (6 nov 2012 - 10:00)

#### Consignes (à lire):

- □ Vous devez répondre sur les feuilles de réponses prévues à cet effet.
  - Aucune autre feuille ne sera ramassée (gardez vos brouillons pour vous).
  - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées : utilisez des brouillons!
  - Ne séparez pas les feuilles à moins de pouvoir les ré-agrafer pour les rendre.
  - Aucune réponse au crayon de papier ne sera corrigée.
- □ La présentation est notée en moins, c'est à dire que vous êtes noté sur 20 et que les points de présentation (2 au maximum) sont retirés de cette note.

#### □ Les algorithmes :

- Tout algorithme doit être écrit dans le langage Algo (pas de C, Caml ou autre).
- Tout code ALGO non indenté ne sera pas corrigé.
- Tout ce dont vous avez besoin (types, routines) est indiqué en annexe (dernière page)!
- $\square$  Durée : 2h00



#### Exercice 1 (Hachages - 7 points)

On considère l'ensemble de clés données directement sous forme entière que l'on veut stocker dans une table de hachage (indicée de 0 à m-1), de taille m=12.

Soit la fonction de hachage :  $h(x) = x \mod m$ .

- 1. Donner sous forme d'un tableau les valeurs de hachage associées aux éléments 15, 24, 125, 4, 26, 6, 78, 55, 89.
- 2. En considérant la fonction h et la gestion des collisions à l'aide du hachage Coalescent, représenter la structure de données correspondant à la séquence d'ajouts des éléments : 15, 24, 125, 4, 26, 6, 78, 55, 89.
- 3. Proposer, en utilisant le langage algorithmique vu en TD, une déclaration des types nécessaires à l'implémentation de la variable Th de la figure 1. Vous conserverez les identifiants précisés dans la figure.
- 4. En utilisant cette déclaration, écrire l'algorithme de la fonction booléenne estpresent(th,x) qui vérifie l'existence d'un élément x dans la table Th.



FIGURE 1 - Table de Hachage Dynamique

#### Exercice 2 (Arbres 2.3.4 : Recherche d'un élément – 6 points)

Après avoir donné son principe, écrire un algorithme qui recherche un élément dans un arbre 2-3-4, donne un pointeur sur le nœud contenant l'élément si la recherche est positive, la valeur NUL sinon.

#### Exercice 3 (Arité moyenne d'un arbre général - 7 points)



FIGURE 2 - Arbre général

On va s'intéresser à l'arité (nombre de fils d'un nœud) moyenne dans un arbre général. On définit l'arité moyenne comme la somme des nombres de fils par nœud divisée par le nombre de nœuds *internes* (nœuds qui ne sont pas des feuilles).

Par exemple, pour l'arbre de la figure 2, il y a 8 nœuds internes (non feuilles), et lorsque l'on fait la somme des nombres de fils par nœud, on obtient 17 (compter les flèches pour vérifier), l'arité moyenne est donc de 17/8 = 2.125

Les deux fonctions demandées seront appelées par la fonction d'appel suivante (modulo le changement de type).

- 1. Écrire la procédure rec\_arite\_nuplet(A,nbnoeud,nbfils) qui accumule dans le paramètre global nbnoeud le nombre de nœuds internes de l'arbre général A (en représentation n-uplet de pointeurs) et dans nbfils la somme des nombres de fils par nœuds de A.
- 2. Écrire la procédure rec\_arite\_dyn(A,nbnoeud,nbfils) qui accumule dans le paramètre global nbnoeud le nombre de nœuds internes de l'arbre général A (en représentation premier-fils-frère-droit) et dans nbfils la somme des nombres de fils par nœuds de A.

#### Annexes

#### Type de données représentant les arbres 2-3-4:

```
constantes
   degre = 2

types
   /* déclaration du type t_element */
   t_a234 = ↑ t_noeud_234
   tab3cles = (2*degre-1) chaine
   tab4fils = (2*degre) t_a234
   t_noeud_234 = enregistrement
        entier nbcles
        tab3cles cle
        tab4fils fils
   fin enregistrement t_noeud_234
```

Rappel: dans le vecteur des fils, les k premiers fils sont à NUL pour les k-nœuds externes.

#### Arbres Généraux en représentation nuplets

#### Arbres Généraux en représentation premier-fils/frère-droit

#### Vecteurs de clefs

```
constantes
    MaxVect = /*une valeur suffisante !*/
types
    t_element = ...
    t_vect_cles = MaxVect t_element
```

| Nom    |  |
|--------|--|
| Prénom |  |
| Groupe |  |

Note

# Algorithmique - Info-SPE Contrôle nº 1 D.S. 311848.13 BW (6 nov. 2012 - 10 :00) Feuilles de réponses

#### Consignes (à lire):

- □ Vous devez répondre sur les feuilles de réponses prévues à cet effet.
  - Aucune autre feuille ne sera ramassée (gardez vos brouillons pour vous).
  - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées : utilisez des brouillons!
  - Ne séparez pas les feuilles à moins de pouvoir les ré-agrafer pour les rendre.
  - Aucune réponse au crayon de papier ne sera corrigée.
- □ La présentation est notée en moins, c'est à dire que vous êtes noté sur 20 et que les points de présentation (2 au maximum) sont retirés de cette note.

#### □ Les algorithmes :

- Tout algorithme doit être écrit dans le langage Algo (pas de C, Caml ou autre).
- Tout code Algo non indenté ne sera pas corrigé.
- Tout ce dont vous avez besoin (types, routines) est indiqué en annexe (dernière page)!
- □ Durée : 2h00



#### Réponses 1 (hachages - 7 points)

1. Valeurs de hachage associées aux éléments 15, 24, 125, 4, 26, 6, 78, 55, 89.

- 2. Représentation de la séquence d'ajouts suivante : 15, 24, 125, 4, 26, 6, 78, 55, 89, dans le cas du hachage coalescent :

| /                                            |   |  |
|----------------------------------------------|---|--|
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
| Algorithme de la fonction estpresent(th,x):  |   |  |
| ingonomie de la fonction obseptionale (en,x) |   |  |
|                                              |   |  |
| Algorithme fonction estpresent : Booléen     |   |  |
| Paramètres locaux<br>t_hachage Th            |   |  |
| t_element x                                  |   |  |
| Variables                                    |   |  |
|                                              |   |  |
|                                              |   |  |
| Début                                        |   |  |
| Debut                                        |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              | 1 |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |
|                                              |   |  |

Réponses 2 (Arbres 2.3.4 : Recherche d'un élément – 6 points)

| Spé | cific:<br>La<br>nar | fond | tion | rec<br>eur a | her<br>dar | che2<br>ns l'a | 234<br>arbre | (t_e<br>e <i>A</i> : | elem<br>ou la | ent<br>a val | x, eur | t_a<br>NUL | 234<br>si <i>x</i> | <i>A</i> )<br>n'es | reto<br>st pa | urne<br>ıs pr | un<br>ésen | poir<br>t da | nteu:<br>.ns l' | r vei<br>'arbi | s le<br>e.  | nœı | ıd co | onte        |
|-----|---------------------|------|------|--------------|------------|----------------|--------------|----------------------|---------------|--------------|--------|------------|--------------------|--------------------|---------------|---------------|------------|--------------|-----------------|----------------|-------------|-----|-------|-------------|
| Pri | acipe               | e :  | _    |              |            | <del></del>    |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              | · · ·                |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       | <del></del> |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                | <del></del> |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    | <u></u>       |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            | ļ              |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      | ļ    |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                | _           |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      | ļ            |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     | ļ                   |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
| ļ   |                     |      |      |              | <u> </u>   |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     | ļ                   |      |      |              | <u> </u>   |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              | <u>.</u>   |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     | ļ                   |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      | ļ    |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     | <u> </u>            |      |      |              |            |                | :            |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     | L     |             |
|     |                     |      | ļ    |              |            |                |              |                      | ļ             |              |        |            |                    |                    |               |               |            |              |                 |                |             |     | L     |             |
| _   |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      | <u> </u>     |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     | _     |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     | _     |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        |            |                    |                    |               |               |            |              |                 |                |             |     |       |             |
|     |                     |      |      |              |            |                |              |                      |               |              |        | <u>.</u>   |                    |                    |               |               |            |              |                 |                |             |     |       |             |
| 1   | 1                   | 1    |      | 1            | 1          | 1              | 1            | 1                    |               |              | 1      | 1          |                    | 1                  | I             | I             | l          |              |                 | 1              | I           | i   |       | l           |

#### Réponses 3 Arité moyenne d'un arbre général - 7 points

1. Spécification: la procédure rec\_arite\_nuplet(A,nbnoeud,nbfils) qui accumule dans le paramètre global nbnoeud le nombre de nœuds internes de l'arbre général A (en représentation n-uplet de pointeurs) et dans nbfils la somme des nombres de fils par nœuds de A.

| <br> |      |  |  |
|------|------|--|--|
|      |      |  |  |
|      | <br> |  |  |
|      |      |  |  |

algorithme procedure rec\_arite\_nuplet
parametres locaux
t\_nuplet A
parametres globaux
entier nbnoeud, nbfils
variables

#### debut



fin algorithme procedure rec\_arite\_nuplet

2. Spécification: la procédure rec\_arite\_dyn(A,nbnoeud,nbfils) qui accumule dans le paramètre global nbnoeud le nombre de nœuds internes de l'arbre général A (en représentation premier-fils-frère-droit) et dans nbfils la somme des nombres de fils par nœuds de A.

| <br> |  |
|------|--|
|      |  |
| <br> |  |
|      |  |
|      |  |

algorithme procedure rec\_arite\_dyn
parametres locaux
t\_arbre\_dyn A
parametres globaux
entier nbnoeud, nbfils
variables

#### debut



fin algorithme procedure rec\_arite\_dyn

# Contrôle 1

Durée : trois heures

Documents et calculatrices non autorisés

| M. Kalfaian / M. Marchetti |                            |
|----------------------------|----------------------------|
| 1                          | M. Kalfaian / M. Marchetti |

# Exercice 1 (2 points)





# Exercice 2 (4,5 points)

1. Déterminer, en utilisant la règle de d'Alembert, la nature de la série  $\sum \frac{2 \times 4 \times \cdots \times 2n}{(n!)^2}$ 

2. Déterminer, en utilisant la règle de Cauchy, la nature de la série  $\sum \frac{n^2}{2^{n^2}}$ 

3. Déterminer la nature de la série  $\sum (-1)^n \frac{(\ln(n))^2}{n}$ 

N.B.: vous prendrez soin de démontrer rigoureusement qu'une certaine suite est décroissante à partir d'un certain rang.



# Exercice 3 (3 points)

Soit  $(u_n)_{n\in\mathbb{N}^*}$  définie pour tout  $n\in\mathbb{N}^*$  par  $u_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln(n)$ 

1. Montrer que  $\sum (u_n - u_{n-1})$  est convergente.



2. Montrer rigoureusement que  $(u_n)$  est alors convergente.

[suite du cadre page suivante



## Exercice 4 (4,5 points)

Soit  $(\alpha,\beta)\in\mathbb{R}^2$ . On considère la série  $\sum u_n$  où  $u_n=\frac{\ln(1+n^\alpha)}{n^\beta}$ 

On rappelle que  $\sum \frac{1}{n^{\alpha}(\ln(n))^{\beta}}$  converge ssi  $((\alpha > 1) \text{ ou } (\alpha = 1 \text{ et } \beta > 1))$ .

1. On suppose  $\alpha < 0$ . Déterminer un équivalent de  $\ln(1+n^{\alpha})$  en  $+\infty$ . En déduire un équivalent de  $u_n$  en  $+\infty$ .



2. On suppose  $\alpha > 0$ . Montrer que  $\ln(1 + n^{\alpha}) \underset{+\infty}{\sim} \alpha \ln(n)$ . En déduire un équivalent de  $u_n$  en  $+\infty$ . En déduire la nature de  $\sum u_n$  dans ce cas.



3. On suppose  $\alpha=0$ . Déterminer un équivalent de  $u_n$  au voisinage de  $+\infty$ . En déduire la nature de  $\sum u_n$  dans ce cas.



Exercice 5 (3 points)

Soient  $a \in \mathbb{R}_+^*$  et  $\sum u_n$  où  $u_n = \ln \left(1 + \frac{(-1)^n}{n^a}\right)$ 

1. Déterminer (sans parachuter le résultat!) la nature de  $\sum \frac{(-1)^n}{n^a}$  en fonction de a.



2. On a  $u_n \underset{+\infty}{\sim} \frac{(-1)^n}{n^a}$ . Peut-on en conclure que  $\sum u_n$  est de même nature que  $\sum \frac{(-1)^n}{n^a}$ ? Justifiez votre réponse.

3. Déterminer  $k \in \mathbb{R}$  tel que  $u_n = \frac{(-1)^n}{n^a} + \frac{k}{n^{2a}} + o\left(\frac{1}{n^{2a}}\right)$ .

4. En déduire la nature de  $\sum u_n$  en fonction de a.

# Exercice 6 (2 points)

Soient  $a \in \mathbb{R}_+^*$  et  $\sum u_n$  où  $u_n = \left(\frac{an}{n+1}\right)^{n^2}$ 

1. Déterminer  $\lim_{n\to+\infty} \left(\frac{n}{n+1}\right)^n$ .

2. Via la règle de Cauchy, déterminer la nature de  $\sum u_n$  en fonction de a.

[suite du cadre page suivante]



# Exercice 7 (2 points)

Déterminer la nature de la série suivant les valeurs de  $\alpha: \sum \left(\sqrt{n+1}-\sqrt{n}\right)^{\alpha}$