Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

1. Se utiliza un cojinete hidrodinámico como el de la figura 1 para soportar un eje en rotación a una velocidad angular ω . El aceite empleado tiene una viscosidad que varía con linealmente con la temperatura $\mu(T) = \mu_0 + c_\mu(T - T_0)$. El área mojada del eje es un cilindro de radio R y longitud L. Como el cojinete funciona a régimen, puede suponer que la película de aceite tiene un espesor constante e.

Por otra parte, la potencia disipada por efecto viscoso es igual al calor transferido por convección desde el aceite a la caja del cojinete. Dicho calor puede calcularse por la ley de Newton.

$$Q = h_c A(T - T_{caja})$$

Donde h_c es el coeficiente pelicular de convección, que puede extraerse de tablas. Considerando que la temperatura T_{caja} es igual a T_0 , determine la temperatura de trabajo del aceite como función de los parámetros del problema:

$$T = T(\omega, R, L, e, \mu_0, c_\mu, T_0, h_c)$$

Figure 1: Cojinete hidrodinámico trabajando a régimen (esquema adaptado: Dudley 1962)

2. Un tanque, de radio R y altura H, se encuentra ubicado en posición vertical con su interior repleto de agua. Como se observa en la figura 2 consisten en dos mitades cilíndricas. Ambas mitades son sujetadas por medio de tornillos. Determinar la fuerza que realiza cada tornillo, si la separación entre ellos es L. ¿Qué tornillos son sometidos a la mayor carga?¿Cómo puede estimar cuál es la diferencia de carga en cada tornillo?. Las variables del problema son:

$$R$$
 H ρ L

Figure 2: tanque cilindrico vertical

Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

3. Considere el generador eólico de la figura 3. Utilizando balances integrales de momento lineal, calcule la velocidad mínima de incidencia del viento para que comience a generar potencia cuando el salto de presión es de Δp . El diámetro del círculo de los alabes es de D_{al} . La eficiencia de la turbo máquina es del n. Suponga la densidad del aire de ρ_a .

$$\Delta p = 0,04 \text{psi}$$
 $D_{al} = 27 \text{ft}$ $n = 30\%$ $\rho_a = 0,076 \text{ lb/ft}^3$

Figure 3: Generador eólico