第四节 协方差、相关系数与矩

- 一、协方差
 - 1. 协方差的概念

定义 1 设(X,Y)为二维随机变量,如果

$$E[(X - EX)(Y - EY)]$$

存在,就称之为X与Y的<mark>协方差</mark>. 记为Cov(X,Y),即

$$Cov(X,Y) = E[(X - EX)(Y - EY)]$$
.

利用数学期望的性质,得协方差的简化计算公式

$$Cov(X,Y) = E(XY) - EXEY$$

例 1 设二维随机变量(X,Y)的分布律为

(X,Y)	(0,0)	(0,1)	(1,0)	(1,1)
P	0.2	0.1	0.4	0.3

试求Cov(X,Y).

解 经计算有 EX = 0.7, EY = 0.4, E(XY) = 0.3,

所以 $Cov(X,Y) = 0.3 - 0.7 \times 0.4 = 0.02$.

例 2 设二维随机变量(X,Y)在区域 $G = \{(x,y) | 0 \le x \le 1,$

 $x^2 \le y \le x$ } 上服从均匀分布. 求 Cov(X,Y).

解 由题意知,(X,Y)的密度函数为 $f(x,y) = \begin{cases} 6, & (x,y) \in G, \\ 0, & \text{其它.} \end{cases}$

$$EX = \iint_{G} x \cdot 6 dx dy = 6 \int_{0}^{1} dx \int_{x^{2}}^{x} x dy = \frac{1}{2}, \qquad \mathcal{Y}^{\uparrow}$$

$$EY = \iint_{G} y \cdot 6 dx dy = 6 \int_{0}^{1} dx \int_{x^{2}}^{x} y dy = \frac{2}{5}.$$

$$E(XY) = \iint_{C} xy \cdot 6dxdy = 6\int_{0}^{1} dx \int_{x^{2}}^{x} xydy = \frac{1}{4},$$

所以
$$Cov(X,Y) = \frac{1}{4} - \frac{1}{2} \times \frac{2}{5} = \frac{1}{20}$$
.

2. 协方差的性质

性质 1 Cov(X,X) = DX.

性质 2 Cov(X,Y) = Cov(Y,X).

性质 3 Cov(X,c)=0.

性质 4 Cov(aX,bY) = abCov(X,Y).

性质 5 $Cov(X_1 \pm X_2, Y) = Cov(X_1, Y) \pm Cov(X_2, Y)$.

性质 6 $D(X \pm Y) = DX + DY \pm 2Cov(X,Y)$.

例 3 设随机变量 X 与 Y 的方差均为正. 求

$$Cov(\frac{X}{\sqrt{DX}} + \frac{Y}{\sqrt{DY}}, \frac{X}{\sqrt{DX}} - \frac{Y}{\sqrt{DY}})$$
.

解 原式 =
$$Cov(\frac{X}{\sqrt{DX}}, \frac{X}{\sqrt{DX}}) - Cov(\frac{X}{\sqrt{DX}}, \frac{Y}{\sqrt{DY}})$$

 $+Cov(\frac{Y}{\sqrt{DY}}, \frac{X}{\sqrt{DX}}) - Cov(\frac{Y}{\sqrt{DY}}, \frac{Y}{\sqrt{DY}})$
 $= \frac{1}{DX}Cov(X, X) - \frac{1}{\sqrt{DX}\sqrt{DY}}Cov(X, Y)$
 $+\frac{1}{\sqrt{DY}\sqrt{DX}}Cov(Y, X) - \frac{1}{DY}Cov(Y, Y)$
 $= \frac{1}{DX}DX - \frac{1}{DY}DY = 1 - 1 = 0$.

二、相关系数

定义 2 设 (X,Y) 为 二维随机变量,如果 DX > 0, DY > 0,就称 $\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}$ 为随机变量 X = Y 的相关系数. 记为 ρ_{xy} 或 ρ ,即

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}.$$

注 1: 计算相关系数 ρ_{XY} ,需要事先计算五个数学期望 EX , EY , $E(X^2)$, $E(Y^2)$ 和 E(XY)

对于常见分布,EX, EY, DX, DY可以直接得到.

例 4 设随机变量 $X \sim B(2,\frac{1}{3}), Y = |X-1|$, 求 ρ_{XY} .

解 由于 $X \sim B(2, \frac{1}{3})$,故 $EX = \frac{2}{3}$, $DX = \frac{4}{9}$.

又
$$X \sim \begin{pmatrix} 0 & 1 & 2 \\ \frac{4}{9} & \frac{4}{9} & \frac{1}{9} \end{pmatrix}$$
,故 $Y \sim \begin{pmatrix} 0 & 1 \\ \frac{4}{9} & \frac{5}{9} \end{pmatrix}$, $XY = X |X - 1| \sim \begin{pmatrix} 0 & 2 \\ \frac{8}{9} & \frac{1}{9} \end{pmatrix}$,

得
$$EY = \frac{5}{9}$$
, $DY = \frac{20}{81}$, $E(XY) = \frac{2}{9}$, 所以

$$\rho_{XY} = \frac{\frac{2}{9} - \frac{2}{3} \times \frac{5}{9}}{\sqrt{\frac{4}{9}} \times \sqrt{\frac{20}{81}}} = \frac{-\frac{4}{27}}{\sqrt{\frac{4}{9}} \times \sqrt{\frac{20}{81}}} = -\frac{\sqrt{5}}{5}.$$

例 5 设二维随机变量(X,Y)在区域 $G = \{(x,y) | 0 \le x \le 1$,

 $x^2 \le y \le x$ } 上服从均匀分布. 求 ρ_{XY} .

且已计算得
$$EX = \frac{1}{2}$$
 , $EY = \frac{2}{5}$, $Cov(X,Y) = \frac{1}{20}$, y

$$E(X^{2}) = \iint_{G} x^{2} \cdot 6dxdy = 6\int_{0}^{1} dx \int_{x^{2}}^{x} x^{2} dy = \frac{3}{10},$$

$$E(Y^2) = \iint_C y^2 \cdot 6 dx dy = \frac{3}{14}$$
, $fightharpoonup DX = \frac{3}{10} - (\frac{1}{2})^2 = \frac{1}{20}$,

$$DY = \frac{3}{14} - (\frac{2}{5})^2 = \frac{19}{350}. \quad \text{th } \rho_{XY} = \frac{\frac{1}{20}}{\sqrt{\frac{1}{20} \times \sqrt{\frac{19}{350}}}} = \sqrt{\frac{35}{38}}.$$

例 6 设随机变量 X 与 Y 的相关系数 $\rho_{XY} = 0.5$,且 DX = 1 , DY = 4 ,求 U = 2X + Y 与 V = X - Y 的相关系数 ρ_{UV} .

解 由于
$$Cov(X,Y) = \rho_{XY}\sqrt{DX}\sqrt{DY} = 0.5 \times \sqrt{1} \times \sqrt{4} = 1$$
,所以

$$DU = D(2X + Y) = 4DX + DY + 4Cov(X, Y)$$
$$= 4 \times 1 + 4 + 4 \times 1 = 12,$$

$$DV = D(X - Y) = DX + DY - 2Cov(X, Y) = 1 + 4 - 2 \times 1 = 3$$
,

$$C \text{ ov}(U,V) = C \text{ ov}(2X + Y, X - Y) = 2DX - DY - Cov(X,Y)$$

= $2 \times 1 - 4 - 1 = -3$,

所以
$$\rho_{UV} = \frac{-3}{\sqrt{3}\sqrt{12}} = -0.5.$$

2. 相关系数的性质

性质 7 $|\rho_{XY}| \le 1$,即 $\rho_{XY} \in [-1,1]$.

性质 8 $|\rho_{XY}|=1$ 的充要条件为存在常数 a,b $(a \neq 0)$,使

得
$$P{Y = aX + b} = 1$$
.

注 2: $|\rho_{XY}|$ 越大(越小), X = Y 线性关系越强(越弱).

性质 9 若
$$Y = aX + b$$
,有 $\rho_{XY} = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$.

定义 3 如果 $\rho_{xy} = 0$, 就称随机变量 X 与 Y 不相关.

定理 1 设随机变量 X 与 Y 的相关系数 ρ_{yy} 存在,则下列结论 是等价的

- (1) *X* 与 *Y* 不相关;
- (2) $\rho_{XY} = 0$; (3) Cov(X, Y) = 0;
- (4) E(XY) = EXEY; (5) $D(X \pm Y) = DX + DY$.

定理 2 如果随机变量 X 与 Y 相互独立,且 X 与 Y 的相关 系数 ρ_{xy} 存在,则 X 与 Y 不相关.

注 3: 如果 X 与 Y 不相关,则 X 与 Y 未必相互独立,即定 理 2 的逆命题不成立.

例 8 设二维随机变量 $(X,Y) \sim U(G)$,其中平面区域 $G = \{(x,y) | x^2 + y^2 \le 1\}$,问 X = Y 是否相互独立? 是否不相关?

解 由题意知,(X,Y)的密度函数 $f(x,y) = \begin{cases} \frac{1}{\pi}, (x,y) \in G, \\ 0, 其它. \end{cases}$

可求得
$$f_X(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, |x| \le 1, \\ 0, &$$
其它,
$$f_Y(y) = \begin{cases} \frac{2}{\pi} \sqrt{1 - y^2}, |y| \le 1, \\ 0, &$$
其它,

由于 $f(x,y) \neq f_X(x)f_Y(y)$, 所以 X 与 Y 不相互独立.

利用二重积分的奇偶对称性,有 $EX = \iint_G x \cdot \frac{1}{\pi} dx dy = 0$,

$$EY = \iint_G y \cdot \frac{1}{\pi} dxdy = 0 , \quad E(XY) = \iint_G xy \cdot \frac{1}{\pi} dxdy = 0 ,$$

故有 E(XY) = EXEY,所以 X 与 Y 不相关.

例 9 设二维随机变量(X,Y)的分布律为

Y	-1	O	1	$p_{ullet j}$
0	0	1/3	0	1/3
1	1/3	0	1/3	1/3 2/3
p_{iullet}	1/3	1/3	1/3	1

问 X 与 Y 是否相互独立? 又是否不相关?

解 由于
$$P{X = -1, Y = 0} = 0 \neq P{X = -1}P{Y = 0} = \frac{1}{9}$$
,

所以X与Y不相互独立.

又可计算得
$$EX = 0$$
, $EY = \frac{2}{3}$, $E(XY) = 0$,

故有 E(XY) = EXEY, 所以 X 与 Y 不相关.

定理 3 如果二维随机变量 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则

- (1) X 与Y 的相关系数 $\rho_{xy} = \rho$;
- (2) X 与 Y相互独立 $\Leftrightarrow \rho = 0 \Leftrightarrow Cov(X,Y) = 0$.

例 10 已知随机变量(X,Y) 服从二维正态分布,并且 X 和 Y 分别服从正态分布 $N(1,3^2)$ 和 $N(0,4^2)$, X 与 Y 的相关系数

$$\rho_{XY} = -\frac{1}{2}, \quad \text{if } Z = \frac{X}{3} + \frac{Y}{2}.$$
 (1) $\vec{X} X = \vec{Z} = \vec{X} + \frac{Y}{2}$ (1) $\vec{X} X = \vec{Z} =$

(2) 问 X 和 Z 是否相互独立? 为什么?

$$\mathbf{P}(1) \quad Cov(X,Z) = Cov(X, \frac{X}{3} + \frac{Y}{2}) = \frac{1}{3}Cov(X,X) + \frac{1}{2}Cov(X,Y)$$

$$= \frac{1}{3}DX + \frac{1}{2}\rho_{XY}\sqrt{DX}\sqrt{DY} = \frac{1}{3}\times 9 + \frac{1}{2}\times(-\frac{1}{2})\times 3\times 4 = 0,$$

(续解) 因此
$$\rho_{XZ} = \frac{Cov(X,Z)}{\sqrt{DX}\sqrt{DZ}} = \frac{0}{\sqrt{DX}\sqrt{DZ}} = 0$$
.

(2) 由于(X,Y) 服从二维正态分布,而 $\begin{cases} X=X, \\ Z=\frac{X}{3}+\frac{Y}{2}, \\ Z=\frac{X}{3}+\frac{Y}{2}, \end{cases}$

式
$$\begin{vmatrix} 1 & 0 \\ 1 & 1 \\ 3 & 2 \end{vmatrix} = \frac{1}{2} \neq 0$$
,由第三章结论知, (X, Z) 也服从二维正态

分布. 又由(1)知,X与Z不相关,所以利用定理 3(2)可得X和Z相互独立.

三、矩

定义 4 设有随机变量 X ,如果对于正整数 k , $E(X^k)$ 存在, 就称 $E(X^k)$ 为 X 的 k 阶原点矩.

如果 $E[(X-EX)^k]$ 存在,就称 $E[(X-EX)^k]$ 为 X 的 k 阶中心矩. $k=1,2,\cdots$.

定义 5 设有二维随机变量 (X,Y) ,如果对于正整数 k,l , $E(X^kY^l)$ 存在,就称 $E(X^kY^l)$ 为 X 和 Y 的 k+l 阶混合原点矩. 如果 $E[(X-EX)^k(Y-EY)^l]$ 存在,就称 $E[(X-EX)^k(Y-EY)^l]$

为 X 和 Y 的 k+l 阶混合中心矩. $k=1,2,\dots,l=1,2,\dots$.

注 4: ① X 的一阶原点矩即为 X 的数学期望 EX.

X 的一阶中心矩 E(X-EX)=0.

- X 的二阶中心矩即为 X 的方差 DX.
- (X,Y)的1+1阶混合中心矩为(X,Y)的协方 差Cov(X,Y).

练习:

1. 将长度为1m的木棒随机地截成两段,求两段长度

X 与Y 的相关系数 ρ_{XY} .

答案: -1.

2. 设 A, B 为两个随机事件, P(A) = p, P(B) = q, P(AB) = r, 且

$$p, q \in (0,1)$$
, 记 $X = \begin{cases} 0, & A$ 不发生, $1, & A$ 发生, $Y = \begin{cases} 0, & B$ 不发生, $1, & B$ 发生,

- (1) 求相关系数 ρ_{xy} ;
- (2) 证明 X 与 Y 不相关的充要条件为 X 与 Y 相互独立.

解(1) 可求得(X,Y)的分布律为

Y	0	1	$p_{ullet j}$
0	1-p-q+r	p-r	1-q
1	q-r	r	q
p_{iullet}	1- <i>p</i>	p	1

(续解)
$$EX = p, EY = q, DX = p(1-p)$$
, $DY = q(1-q)$ $E(XY) = r$, 所以 $\rho_{XY} = \frac{r - pq}{\sqrt{p(1-p)q(1-q)}}$.

(2) 证由(1)知,

X与Y不相关 $\Leftrightarrow r = pq \Leftrightarrow (X,Y)$ 分布律为

X	О	1	$p_{ullet j}$
0	(1-p)(1-q)	p(1-q)	1 – q
1	(1-p)q	pq	q
p_{iullet}	1-p	p	1

 $\Leftrightarrow X 与 Y$ 相互独立.