Examenul de bacalaureat național 2018 Proba E. c)

Matematică *M_tehnologic*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_1 q^3 = 24 \Rightarrow q^3 = 8$ $q = 2$	3p
	q=2	2p
2.	$f(a) = 2 \Leftrightarrow a^2 - 2a + 1 = 0$	3p
	a=1	2p
3.	$\log_3((x+1)(x-1)) = \log_3 8 \Rightarrow x^2 - 1 = 8$	3 p
	x = -3, care nu verifică ecuația și $x = 3$, care verifică ecuația	2 p
4.	Cifrele pot fi 1 sau 7	2p
	Numerele sunt 117, 171 și 711	3 p
5.	AB=5	2p
	$AC = 10 \Rightarrow AC = 2AB$	3p
6.	MP = 4	2p
	$\mathcal{A}_{\Delta MNP} = \frac{4 \cdot 4 \cdot \frac{1}{2}}{2} = 4$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$5A - 3B = 5 \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix} - 3 \begin{pmatrix} 5 & -7 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 15 & 35 \\ 10 & 25 \end{pmatrix} - \begin{pmatrix} 15 & -21 \\ -6 & 9 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 0 & 56 \\ 16 & 16 \end{pmatrix} = 8 \begin{pmatrix} 0 & 7 \\ 2 & 2 \end{pmatrix}$	2 p
b)	$A \cdot B = \begin{pmatrix} 3 \cdot 5 + 7 \cdot (-2) & 3 \cdot (-7) + 7 \cdot 3 \\ 2 \cdot 5 + 5 \cdot (-2) & 2 \cdot (-7) + 5 \cdot 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$B \cdot A = \begin{pmatrix} 5 \cdot 3 + (-7) \cdot 2 & 5 \cdot 7 + (-7) \cdot 5 \\ (-2) \cdot 3 + 3 \cdot 2 & (-2) \cdot 7 + 3 \cdot 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2, \text{ deci matricea } B \text{ este inversa matricei } A$	3 p
c)	$xA \cdot A \cdot B - 8A \cdot B = yI_2 \cdot B \Leftrightarrow xA - 8I_2 = yB \Leftrightarrow \begin{pmatrix} 3x & 7x \\ 2x & 5x \end{pmatrix} - \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 5y & -7y \\ -2y & 3y \end{pmatrix}$	3p
	x=1, y=-1	2p
2.a)	x * y = xy - 2x - 2y + 4 + 2 =	2p
	= x(y-2)-2(y-2)+2=(x-2)(y-2)+2, pentru orice numere reale x şi y	3 p
b)	(x-2)(3-2)+2=2018	2p
	x = 2018	3 p

Ī	c)	x*2=2 şi $2*y=2$, pentru x şi y numere reale	2p	1
		$\log_2 2 * \log_2 3 * \log_2 4 * \dots * \log_2 2018 = ((\log_2 2 * \log_2 3) * 2) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 2 * \log_2 3) * (\log_2 5 * \dots * \log_2 2018) = (\log_2 5 * \dots * \log_2 20$	2n	
		$= 2 * (\log_2 5 * \dots * \log_2 2018) = 2$	3 p	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 6x^5 - 6, \ x \in \mathbb{R}$	2p
	$\lim_{x \to 1} \frac{f(x) - 5}{x - 1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 0$	3 p
b)	$f'(x) = 0 \Leftrightarrow x = 1$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 1]$, deci f este descrescătoare pe $(-\infty, 1]$ și $f'(x) \ge 0$,	2
	pentru orice $x \in [1, +\infty)$, deci f este crescătoare pe $[1, +\infty)$	3 p
c)	$f(x) \ge f(1)$, deci $f(x) \ge 5$, pentru orice număr real x	2p
	$f(0,9) \ge 5$ și $f(1,1) \ge 5$, deci $f(0,9) + f(1,1) \ge 10$	3 p
2.a)	$\int_{1}^{2} \frac{f(x)}{x} dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	3 p
	$=e^2-e=e(e-1)$	2p
b)	$F(x) = \int xe^x dx = (x-1)e^x + c \text{, unde } c \in \mathbb{R}$	3p
	$(1-1)e+c=0 \Rightarrow c=0$, deci $F(x)=(x-1)e^x$	2p
c)	$\int_{0}^{1} f(x) f'(x) dx = \frac{1}{2} f^{2}(x) \Big _{0}^{1} = \frac{1}{2} e^{2}$	3p
	$\frac{1}{2}e^2 = \frac{1}{2}e^a \Rightarrow a = 2$	2p