Variational Bayes Applied to Multimodal Distributions in B Physics

S. Jahn¹ F. Beaujean² C. Bobeth³

¹Exzellenzcluster Universe Technische Universität München

²Exzellenzcluster Universe Ludwig-Maximilians-Universität München

> ³Institute for Advanced Study Technische Universität München

March 12 DPG Wuppertal 2015

Effective theory

effective Lagrangian for $b \to s\ell^+\ell^-$ (SM):

$$\mathcal{L}_{int} = rac{4G_F}{\sqrt{2}} rac{lpha_e}{4\pi} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i \mathcal{O}_i + ... + \text{h.c.}$$

$$\mathcal{O}_9 \ = \begin{bmatrix} \overline{\mathbf{s}} \gamma_\mu P_L & b \end{bmatrix} \begin{bmatrix} \overline{\ell} \gamma^\mu \ell \end{bmatrix} \qquad \qquad \mathcal{O}_{10} = \begin{bmatrix} \overline{\mathbf{s}} \gamma_\mu P_L & b \end{bmatrix} \begin{bmatrix} \overline{\ell} \gamma^\mu \gamma_5 \ell \end{bmatrix}$$

Effective theory

effective Lagrangian for $b \to s\ell^+\ell^-$ (beyond-SM):

$$\mathcal{L}_{int} = rac{4 G_F}{\sqrt{2}} rac{lpha_e}{4\pi} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i \mathcal{O}_i + ... + \text{h.c.}$$

$$\mathcal{O}_{9}^{(\prime)} = \left[\bar{s}\gamma_{\mu}P_{L(R)}b\right]\left[\bar{\ell}\gamma^{\mu}\ell\right] \qquad \qquad \mathcal{O}_{10}^{(\prime)} = \left[\bar{s}\gamma_{\mu}P_{L(R)}b\right]\left[\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\right]$$

$$\mathcal{O}_{S}^{(\prime)} = \begin{bmatrix} \bar{s} P_{R(L)} b \end{bmatrix} \begin{bmatrix} \bar{\ell} \ell \end{bmatrix}$$
 $\mathcal{O}_{P}^{(\prime)} = \begin{bmatrix} \bar{s} P_{R(L)} b \end{bmatrix} \begin{bmatrix} \bar{\ell} \gamma_5 \ell \end{bmatrix}$ $\mathcal{O}_{T} = \begin{bmatrix} \bar{s} \sigma_{\mu\nu} b \end{bmatrix} \begin{bmatrix} \bar{\ell} \sigma^{\mu\nu} \ell \end{bmatrix}$ $\mathcal{O}_{T5} = \begin{bmatrix} \bar{s} \sigma_{\mu\nu} b \end{bmatrix} \begin{bmatrix} \bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell \end{bmatrix}$

ullet B ightarrow K $\mu^+\mu^-$ angular distribution

• B ightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma}\frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4}(1 - \mathbf{\textit{F}_{H}})\sin^{2}\theta + \frac{1}{2}\mathbf{\textit{F}_{H}} + \mathbf{\textit{A}_{FB}}\cos\theta$$

ullet B_s $ightarrow \mu^+ \mu^-$ branching fraction

• B \rightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma} \frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4} (1 - \mathbf{F_H}) \sin^2\!\theta + \frac{1}{2} \mathbf{F_H} + \mathbf{A_{FB}} \cos\theta$$

$$A_{FB} \propto \text{Re} \left[\left(\mathcal{C}_P + \mathcal{C}_P' \right) \mathcal{C}_{T5}^* + \left(\mathcal{C}_S + \mathcal{C}_S' \right) \mathcal{C}_T^* + \mathcal{O}(m_\ell/\sqrt{q^2}) \right] \Big/ \Gamma$$

• B ightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma}\frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4}(1-\textit{\textbf{F}}_{\textit{\textbf{H}}})\sin^2\!\theta + \frac{1}{2}\textit{\textbf{F}}_{\textit{\textbf{H}}} + \textit{\textbf{A}}_{\textit{\textbf{FB}}}\cos\theta$$

$$\begin{split} A_{FB} \propto & \text{Re} \big[(\mathcal{C}_P + \mathcal{C}_P') \, \mathcal{C}_{T5}^* + (\mathcal{C}_S + \mathcal{C}_S') \, \mathcal{C}_T^* + \mathcal{O}(m_\ell / \sqrt{q^2}) \big] \Big/ \Gamma \\ F_H \propto & \Big[\dots \big(|\mathcal{C}_T|^2 + |\mathcal{C}_{T5}|^2 \big) + \dots \big(|\mathcal{C}_S + \mathcal{C}_S')|^2 + |\mathcal{C}_P + \mathcal{C}_P'|^2 \big) \\ & + \mathcal{O}(m_\ell / \sqrt{q^2}) \Big] \Big/ \Gamma \end{split}$$

• B ightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma}\frac{\mathsf{d}\Gamma}{\mathsf{d}\cos\theta} = \frac{3}{4}(1-\textit{\textbf{F}}_{\textit{\textbf{H}}})\sin^2\!\theta + \frac{1}{2}\textit{\textbf{F}}_{\textit{\textbf{H}}} + \textit{\textbf{A}}_{\textit{\textbf{FB}}}\cos\theta$$

$$\begin{aligned} \mathsf{A}_{FB} &\propto & \mathsf{Re} \big[(\mathcal{C}_P + \mathcal{C}_P') \, \mathcal{C}_{T5}^* + (\mathcal{C}_S + \mathcal{C}_S') \, \mathcal{C}_T^* + \mathcal{O}(m_\ell / \sqrt{q^2}) \big] \Big/ \Gamma \\ F_H &\propto \Big[\dots \big(|\mathcal{C}_T|^2 + |\mathcal{C}_{T5}|^2 \big) + \dots \big(|\mathcal{C}_S + \mathcal{C}_S')|^2 + |\mathcal{C}_P + \mathcal{C}_P'|^2 \big) \\ &+ \mathcal{O}(m_\ell / \sqrt{q^2}) \Big] \Big/ \Gamma \\ F_H^{\mathrm{SM}} &= \mathcal{O}(m_\ell^2 / q^2) \qquad A_{FB}^{\mathrm{SM}} = 0 \end{aligned}$$

• B \rightarrow K $\mu^+\mu^-$ angular distribution

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} = \frac{3}{4} (1 - F_{H}) \sin^{2}\theta + \frac{1}{2} F_{H} + A_{FB} \cos\theta \quad \boxed{\blacksquare}$$

$$\begin{aligned} & \underset{\mathsf{F}_{H}}{ \mathsf{A}_{\mathsf{F}\mathsf{B}}} \propto & \mathsf{Re} \big[(\mathcal{C}_{P} + \mathcal{C}_{P}') \, \mathcal{C}_{\mathsf{T5}}^{*} + (\mathcal{C}_{S} + \mathcal{C}_{S}') \, \mathcal{C}_{\mathsf{T}}^{*} + \mathcal{O}(m_{\ell}/\sqrt{q^{2}}) \big] \Big/ \Gamma \\ & F_{\mathsf{H}} \propto \Big[\ldots \big(|\mathcal{C}_{\mathsf{T}}|^{2} + |\mathcal{C}_{\mathsf{T5}}|^{2} \big) + \ldots \big(|\mathcal{C}_{S} + \mathcal{C}_{S}')|^{2} + |\mathcal{C}_{P} + \mathcal{C}_{P}'|^{2} \big) \\ & + \mathcal{O}(m_{\ell}/\sqrt{q^{2}}) \Big] \Big/ \Gamma \\ & F_{\mathsf{H}}^{\mathrm{SM}} = \mathcal{O}(m_{\ell}^{2}/q^{2}) \quad A_{\mathsf{FB}}^{\mathrm{SM}} = 0 \end{aligned}$$

$$\mathcal{B}(B_s \to \mu^+ \mu^-) \propto |\mathcal{C}_S - \mathcal{C}_S'|^2 + |(\mathcal{C}_P - \mathcal{C}_P') + \frac{2m_\ell}{M_B}(\mathcal{C}_{10} - \mathcal{C}_{10}')|^2$$

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\mathrm{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\mathrm{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}))$$

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}))$$

theory

experiment

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}))$$

theory

calculate observables $\mathbf{O}(m{ heta},\mathrm{M})$

experiment

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}))$$

theory

calculate observables $\mathbf{O}(heta,\mathrm{M})$

experiment

measure observables $P(\mathcal{D}|\mathbf{0})$

we want:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) \overset{\text{Bayes}}{\propto} P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) P(\boldsymbol{\theta}|\mathbf{M})$$

split theory and experiment - observables O:

$$P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M}) = P(\mathcal{D}|\mathbf{O}(\boldsymbol{\theta}, \mathbf{M}), \underbrace{\boldsymbol{\theta}, \mathbf{M}}_{\text{assumption}})$$

theory

calculate observables $\mathbf{O}(m{ heta},\mathrm{M})$

experiment

measure observables $P(\mathcal{D}|\mathbf{0}, \boldsymbol{\theta}, \mathbf{M})$

Measurements $P(\mathcal{D}|\mathbf{0})$

- $B \to K\mu^+\mu^-$: \mathcal{B}, A_{FB}, F_H
 - LHCb 2014 (arXiv:1403.8044, arXiv:1403.8045)
 - CDF 2012
 (http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96)
- $B_s \to \mu^+ \mu^-$: \mathcal{B}
 - LHCb+CMS 2014 (arXiv:1411.4413)
- $B \rightarrow K^* \mu^+ \mu^-$: \mathcal{B}
 - LHCb 2013 (arXiv:1304.6325)
 - CMS 2013 (arXiv:1308.3409)
 - CDF 2012

(http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96)

Parameters θ

scan parameters

 \bullet Wilson coefficients $\mathcal{C}_{10}^{(\prime)},\mathcal{C}_S^{(\prime)},\mathcal{C}_P^{(\prime)},\mathcal{C}_T,$ and \mathcal{C}_{T5}

Parameters θ

scan parameters

• Wilson coefficients $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

nuisance parameters

- CKM matrix (4 parameters)
- charm and bottom quark mass (2 parameters)
- form factors
 - $B \rightarrow K$ (5 parameters)
 - $B \to K^*$ (6 parameters)
- B_s decay constant f_{B_s}
- subleading corrections (11 parameters)

Parameters θ

scan parameters

• Wilson coefficients $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

nuisance parameters

- CKM matrix (4 parameters)
- charm and bottom quark mass (2 parameters)
- form factors
 - $B \rightarrow K$ (5 parameters)
 - $B \rightarrow K^*$ (6 parameters)
- B_s decay constant f_{B_s}
- subleading corrections (11 parameters)

theory calculation $O(\theta, M)$:

open-source implementation: EOS-package
http://project.het.physik.tu-dortmund.de/eos/

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

• first *simultaneous* fit

Joint fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

- first *simultaneous* fit
- interference $\mathcal{C}_{10}^{(\prime)} \leftrightarrow \mathcal{C}_{S,P}^{(\prime)}$ in $\mathcal{B}(B_{\mathrm{s}} \to \mu^+\mu^-)$

Joint fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

-0.2

-0.4

-0.6 -0.4 -0.2 0.0

 C_P

-0.2

-0.6 -0.4 -0.2 0.0

- first simultaneous fit
- interference $\mathcal{C}_{10}^{(\prime)} \leftrightarrow \mathcal{C}_{S,P}^{(\prime)}$ in $\mathcal{B}(B_s \to \mu^+ \mu^-)$
 - ⇒ larger uncertainty than obtained for fixed $C_{10}^{(\prime)} = C_{10}^{(\prime){
 m SM}}$ arXiv:1205.5811.
 - arXiv:1206.0273.
 - arXiv:1407.7044

0.4

Nuisance parameters

Nuisance parameters

Difficulties

Difficulties

curse of dimensionality

Difficulties

- curse of dimensionality
- multimodality

Difficulties

- curse of dimensionality
- multimodality
- degeneracies

Difficulties

- curse of dimensionality
- multimodality
- degeneracies

no standard algorithm so far

https://pypi.python.org/pypi/pypmc

• model-independent search for new physics

- model-independent search for new physics
- $\bullet \ \ \text{simultaneous fit of} \ \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}, \mathcal{C}_{T5}, \text{and} \ \mathcal{C}_{10}^{(\prime)} \\$
 - ⇒ updated, data-driven constraints

- model-independent search for new physics
- $\bullet \ \ \text{simultaneous fit of} \ \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}, \mathcal{C}_{T5}, \text{and} \ \mathcal{C}_{10}^{(\prime)}$
 - ⇒ updated, data-driven constraints
- no significant deviation from the SM

- model-independent search for new physics
- $\bullet \ \ \text{simultaneous fit of} \ \mathcal{C}_S^{(\prime)}, \mathcal{C}_P^{(\prime)}, \mathcal{C}_T, \mathcal{C}_{T5}, \text{and} \ \mathcal{C}_{10}^{(\prime)} \\$
 - ⇒ updated, data-driven constraints
- no significant deviation from the SM
- need better theoretical control (form factors, subleading QCDF)

- model-independent search for new physics
- simultaneous fit of $C_S^{(\prime)}, C_P^{(\prime)}, C_T, C_{T5}$, and $C_{10}^{(\prime)}$ \Rightarrow updated, data-driven constraints
- no significant deviation from the SM
- need better theoretical control (form factors, subleading QCDF)
- sampling algorithm to handle multimodality in dim = $\mathcal{O}(40)$

Outlook

$${\sf B} o {\sf K}^* \mu^+ \mu^-$$
 angular analysis

Outlook

$$\mathsf{B} \to \mathsf{K}^* \mu^+ \mu^-$$
 angular analysis

•
$$J_{6c}$$
, $(J_{1s}-3J_{2s})$, $(J_{1c}-J_{2c})$
SM-contributions suppressed $\mathcal{O}\left(\frac{m_\ell}{\sqrt{q^2}}\right)$

Outlook

$\mathsf{B} \to \mathsf{K}^* \mu^+ \mu^-$ angular analysis

• J_{6c} , $(J_{1s}-3J_{2s})$, $(J_{1c}-J_{2c})$ SM-contributions suppressed $\mathcal{O}\left(\frac{m_{\ell}}{\sqrt{q^2}}\right)$

invalid

• LHCb currently assumes $\mathcal{C}_{S,P,T,T5}^{(\prime)}=0\Rightarrow P(\mathcal{D}|\mathbf{0},\ \mathcal{D})$ http://www.physi.uni-heidelberg.de/Forschung/he/LHCb/documents/WorkshopNeckarzMar14/
NeckarzimmernKstmumuExp.pdf

$\mathsf{B} o \mathsf{K}^* \mu^+ \mu^-$ angular analysis

• J_{6c} , $(J_{1s}-3J_{2s})$, $(J_{1c}-J_{2c})$ SM-contributions suppressed $\mathcal{O}\left(\frac{m_{\ell}}{\sqrt{q^2}}\right)$

• LHCb currently assumes $\mathcal{C}_{S,P,T,T5}^{(\prime)} = 0 \Rightarrow P(\mathcal{D}|\mathbf{0}, \stackrel{\bullet}{\cancel{\theta_{\star}}})$ http://www.physi.uni-heidelberg.de/Forschung/he/LHCb/documents/WorkshopNeckarzMar14/

 ${\tt NeckarzimmernKstmumuExp.pdf}$

paper work in progress

invalid