Actividad 2

Problema 2.1. Producción de gasolina.

La tabla de las etiquetas de los arcos es:

Flujo de/ a:	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7	Nodo 8
Nodo 1				(20,0)				
Nodo 2				(10,0)	(20,0)	(50,0)		
Nodo 3					(15,0)			
Nodo 4					(20,0)	(10,0)	(10,0)	
Nodo 5						(30,0)		(30,0)
Nodo 6							(50,0)	(20,0)
Nodo 7								
Nodo 8								

Iteración 1

Empezamos en el Nodo 1. La única salida, y por lo tanto, la máxima, es de 20u. hacia el Nodo 4. Así pues, conectamos Nodo 1 con Nodo 4, ponemosla etiqueta [20,1] en el Nodo 4 y marcamos el arco (1,4).

A continuación, hacemos el máximo de las capacidades de salida de flujo del Nodo 4, esto es, con los Nodos 5,6 y 7 (max{20, 10, 10} = 20). Por tanto, conectamos Nodo 4 con Nodo 5, ponemos la etiqueta [20,4] en el Nodo 5 y marcamos el arco (4,5).

El máximo de las capacidades de salida del Nodo 5 són las mismas (max{30, 30}=30), así que elegiremos el Nodo 8; conectando el Nodo 5 y el Nodo 8, y etiquetando [30,5] el Nodo 8.

Dado que estamos en el Nodo 8, que es un nodo destino, calculamos el flujo comprometido. La capacidad mínima $c^* = mín \{20, 20, 30\} = 20$.

Ajustamos los flujos:

Flujo de/ a:	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7	Nodo 8
Nodo 1				(0, 20)				
Nodo 2				(10,0)	(20,0)	(50,0)		
Nodo 3					(15,0)			
Nodo 4					(0, 20)	(10,0)	(10,0)	
Nodo 5						(30,0)		(10, 20)
Nodo 6							(50,0)	(20,0)
Nodo 7								
Nodo 8								

Iteración 2

Empezamos en el Nodo 2. Hacemos el máximo de las capacidades de salida de flujo con los Nodos 4, 5 y 6 (max{10, 20, 50} = 50). Por tanto, conectamos Nodo 2 con Nodo 6, ponemos la etiqueta [50, 2] en el Nodo 6 y marcamos el arco (2,6).

A continuación, hacemos el máximo de las capacidades de salida de flujo del Nodo 6, esto es, con los Nodos 7 y 8 ($\max\{50, 20\} = 50$). Por tanto, conectamos Nodo 6 con Nodo 7, ponemos la etiqueta [50, 6] en el Nodo 7 y marcamos el arco (6, 7).

Ya estamos en el Nodo 7, que es también un nodo destino, así que calculamos el flujo comprometido. La capacidad mínima $c^* = min\{50, 50\} = 50$.

Ajustamos otra vez los flujos:

Flujo de/ a:	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7	Nodo 8
Nodo 1				(0, 20)				
Nodo 2				(10,0)	(20,0)	(0, 50)		
Nodo 3					(15,0)			
Nodo 4					(0, 20)	(10,0)	(10,0)	
Nodo 5						(30,0)		(10, 20)
Nodo 6							(0, 50)	(20,0)
Nodo 7								
Nodo 8								

Iteración 3

Usaremos los nuevos flujos. Empezando en el Nodo 2, hacemos el máximo de las capacidades de salida de flujo con los Nodos 4, 5 y 6 (max{10, 20, 0} = 20). Por tanto, conectamos Nodo 2 con Nodo 5, ponemos la etiqueta [20, 2] en el Nodo 5 y marcamos el arco (2,5).

Después, hacemos el máximo de las capacidades de salida de flujo del Nodo 5, con los Nodos 6 y 8 (max{30, 10} = 30). Por tanto, conectamos Nodo 5 con Nodo 6, ponemos la etiqueta [30, 5] en el Nodo 6 y marcamos el arco (5, 6).

Finalmente, el máximo de las capacidades de salida del Nodo 6 són con los Nodos 7 y 8 (max{0, 20}=20), así que elegiremos el Nodo 8. Conectamos el Nodo 6 y el Nodo 8, y etiquetamos con [20,6] el Nodo 8.

La capacidad mínima es $c^* = mín\{20, 30, 20\} = 20$ así que volvemos a ajustar los flujos:

Flujo de/ a:	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7	Nodo 8
Nodo 1				(0, 20)				
Nodo 2				(10,0)	(0, 20)	(0, 50)		
Nodo 3					(15,0)			
Nodo 4					(0, 20)	(10,0)	(10,0)	
Nodo 5						(10, 20)		(10, 20)
Nodo 6							(0, 50)	(0, 20)
Nodo 7								
Nodo 8								

Iteración 4

Empezamos en el Nodo 2. Hacemos el máximo de las capacidades de salida de flujo con los Nodos 4, 5 y 6 ($\max\{10, 0, 0\} = 10$). Por tanto, conectamos Nodo 2 con Nodo 4, ponemos la etiqueta [10, 2] en el Nodo 4 y marcamos el arco (2,4).

A continuación, hacemos el máximo de las capacidades de salida de flujo del Nodo 4, esto es, con los Nodos 5, 6 y 7 ($\max\{0, 10, 10\} = 10$). Por tanto, elegimos conectar Nodo 4 con Nodo 7, ponemos la etiqueta [10, 4] en el Nodo 7 y marcamos el arco (4, 7).

Calculamos el flujo comprometido y la capacidad mínima es c*= mín{10, 10} = 10.

Ajustamos otra vez los flujos:

Flujo de/ a:	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7	Nodo 8
Nodo 1				(0, 20)				
Nodo 2				(0, 10)	(0, 20)	(0, 50)		
Nodo 3					(15,0)			
Nodo 4					(0, 20)	(10,0)	(0, 10)	
Nodo 5						(10, 20)		(10, 20)
Nodo 6							(0, 50)	(0, 20)
Nodo 7								
Nodo 8								

Iteración 5

Empezamos en el Nodo 3. La única salida, y por lo tanto, la máxima, es de 15u. hacia el Nodo 5. Así pues, conectamos Nodo 3 con Nodo 5, ponemosla etiqueta [15,3] en el Nodo 5 y marcamos el arco (3,5).

Finalmente, hacemos el máximo de las capacidades de salida de flujo del Nodo 5, esto es, con los Nodos 6 y 8 (max{10, 10} = 10). Elegimos conectar Nodo 5 con Nodo 8, ponemos la etiqueta [10, 5] en el Nodo 8 y marcamos el arco (5, 8).

Calculamos el flu	io comprometido	y la capacidad	l mínima es c*= ı	mín{15 10	3 = 10
Calculatios of ilu	jo comprometido	y la capacidac	, IIIIIIIIII 63 C — I	ιιιιη ιο, ιο	_γ – 10.

Flujo de/ a:	Nodo 1	Nodo 2	Nodo 3	Nodo 4	Nodo 5	Nodo 6	Nodo 7	Nodo 8
Nodo 1				(0, 20)				
Nodo 2				(0, 10)	(0, 20)	(0, 50)		
Nodo 3					(5, 10)			
Nodo 4					(0, 20)	(10,0)	(0, 10)	
Nodo 5						(10, 20)		(0,30)
Nodo 6							(0, 50)	(0, 20)
Nodo 7								
Nodo 8								

1. ¿Determinar cuánto flujo llegará a cada terminal y la capacidad usada en cada ruta?

Hay dos terminales, el Nodo 7 y el Nodo 8. A la terminal 7 llegarán 60000 L/hora y a la terminal 8, 50000 L/hora.

2. ¿Cuál será la capacidad de bombeo de cada estación para que el sistema funcione correctamente?

Hay tres estaciones, el Nodo 4, el 5 y el 6. La capacidad de bombeo de la estación 4 será de 30000 L/hora, la de la estación 5 de 50000 L/hora, y la de la 6, de 70000 L/h.

3. ¿Cuánto tiempo tiene que funcionar el sistema para satisfacer la demanda?

Según el enunciado, se sabe que las demandas de las terminales son de 400000 y 450000 litros diarios. La llegada de flujo a cada terminal son de 60000 L/h y 50000 L/h. Así pues, para satisfacer la demanda de:

la terminal 7 serán necesarias
$$\frac{400000}{60000}=6,6$$
 horas la terminal 8 serán necesarias $\frac{450000}{50000}=9$ horas.

El sistema deberá funcionar 9 horas para satisfacer la demanda de ambas terminales.

Problema 2.2. Inversión en productos financieros.

Producto financiero	Inversión mínima	Rentabilidad Inv mínima %	Rentabilidad Inv adic %
1	1000	12	7
2	3000	15	3
3	4000	8	15
4	3000	12	5
5	2000	10	12

El grafo asociado es el siguiente:

S	→	1 0	→	2 0	→	③0 →	④ ⁰ →	⑤ 0	`\	
	\searrow	1000	\rightarrow	21000	\rightarrow	③1000 →	④ 1000 →	⑤ 1000	\searrow	
	`	12000	\rightarrow	22000	\rightarrow	③2000 →	④ 2000 →	⑤ 2000	\searrow	
	\searrow	13000	\rightarrow	23000	\rightarrow	③3000 →	₫3000 →	⑤ 3000	\	
	\searrow	14000	\rightarrow	24000	\rightarrow	③4000 →	4 4000 →	5 4000	\rightarrow	
	\searrow	1 5000	\rightarrow	25000	\rightarrow	③5000 →	₫5000 →	⑤ 5000	\rightarrow	t
1										

Se consideran 5 Nodos y 6 capas, ya que las 6 posibilidades de actuar ante un producto financiero son: no invertir o invertir 1000€, 2000€, 3000€, 4000€ o 5000€, según se pueda i se quiera. Por ello, se han escrito los nodos elevados a 0, 1000, 2000, 3000, 4000 y 5000, y de esta forma queda representado cuánto se invierte y en qué producto.

Queremos calcular cuánto se gana en cada inversión de entre todas las posibles. Lo haremos mediante la fórmula $C_n = C_0(1 + i)^n$. El conjunto óptimo de inversión será la combinacion que nos lleve de s a t que nos de un mayor beneficio, y el beneficio, el resultado de aplicr la fórmula en ese cojunto.

Los cálculos son los siguientes:

```
c(2^0, 3^{3000}) =
c(0, 1^0) = 0
c(0, 1^{1000}) = 1000 * 1,12
                                                                c(2^0, 3^{4000}) = 4000 * (1,08)
c(0, 1^{2000}) = 2000 * (1,12 + 1,07)
                                                                c(2^{0}, 3^{5000}) = 5000 * (1,08 + 1,15)
c(0, 13000) = 3000 * (1,12 + 1,07)
                                                                c(3^0, 4^0) = 0
                                                                c(3^0, 4^{1000}) = 0
c(0, 14000) = 4000 * (1,12 + 1,07)
                                                                c(3^0, 4^{2000}) = 0
c(0, 15000) = 5000 * (1,12 + 1,07)
c(1^0, 2^0) = 0
                                                                c(3^0, 4^{3000}) = 3000 * (1,12)
c(1^0, 2^{1000}) = 0
                                                                c(3^{\circ}, 4^{4000}) = 4000 * (1,12 + 1,05)
c(1^0, 2^{2000}) = 0
                                                                c(3^{\circ}, 4^{5000}) = 5000 * (1,12 + 1,05)
c(1^0, 2^{3000}) = 3000 * (1,15)
                                                                c(4^0, 5^0) = 0
c(1^0, 2^{4000}) = 4000 * (1,15 + 1,03)
                                                                c(4^0, 5^{1000}) = 0
c(1^0, 2^{5000}) = 5000 * (1,15 + 1,03)
                                                                c(4^0, 5^{2000}) = 2000 * (1,1)
c(2^0, 3^0) = 0
                                                                c (4^0, 5^{3000}) = 3000 * (1,1 + 1,12)
c(2^0, 3^{1000}) = 0
                                                                c(4^0, 5^{4000}) = 4000 * (1,1 + 1,12)
c(2^0, 3^{2000}) = 0
                                                                c(4^0, 5^{5000}) = 5000 * (1,1 + 1,12)
```