Root Locus Analysis of Parameter Variations and Feedback Control

Robert Stengel, Aircraft Flight Dynamics MAE 331, 2014

- Effects of system parameter variations on modes of motion
- · Root locus analysis
 - Evans's rules for construction
 - Application to longitudinal dynamic models

Reading: Flight Dynamics 357-361, 465-467, 488-490, 509-514

Copyright 2014 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html

Characteristic Equation: A Critical Component of the Response's Laplace Transform

$$\Delta \mathbf{x}(s) = \left[s\mathbf{I} - \mathbf{F} \right]^{-1} \left[\Delta \mathbf{x}(0) + \mathbf{G} \Delta \mathbf{u}(s) + \mathbf{L} \Delta \mathbf{w}(s) \right]$$

$$\left[s\mathbf{I} - \mathbf{F} \right]^{-1} = \frac{Adj \left(s\mathbf{I} - \mathbf{F} \right)}{\left| s\mathbf{I} - \mathbf{F} \right|} = \frac{\mathbf{C}^{T} \left(s \right)}{\left| s\mathbf{I} - \mathbf{F} \right|} \quad \frac{(n \times n)}{(1 \times 1)}$$

Characteristic equation defines the modes of motion

$$|s\mathbf{I} - \mathbf{F}| = \Delta(s) = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$

= $(s - \lambda_1)(s - \lambda_2)(\dots)(s - \lambda_n) = 0$

• Recall: s is a complex variable $s = \sigma + j\omega$

3

Real Roots of the Dynamic System

 Roots are solutions of the characteristic equation

$$\Delta(s) = (s - \lambda_1)(s - \lambda_2)(...)(s - \lambda_n) = 0$$

- Real roots
 - are confined to the real axis
 - represent convergent or divergent time response
 - time constant, $\tau = -1/\lambda = -1/\mu$, sec

$$\lambda_i = \mu_i$$
 (Real number)
 $x(t) = x(0)e^{\mu t}$

Complex Roots of the Dynamic System

- Complex roots
 - occur only in complex-conjugate pairs
 - represent oscillatory modes
 - natural frequency, ω_n , and damping ratio, ζ , as shown

$$\lambda_1 = \mu_1 + j\nu_1 = -\xi\omega_n + j\omega_n\sqrt{1-\xi^2}$$

$$\lambda_2 = \mu_2 + j\nu_2 = \mu_1 - j\nu_1 = \lambda_1^*$$
$$= -\xi \omega_n - j\omega_n \sqrt{1 - \xi^2}$$

- time constant = $-1/\mu = 1/\zeta \omega_n$
- decay of exponential timeresponse envelope

Complex Roots, Damping Ratio, and Damped Natural Frequency

$$(s - \lambda_1)(s - \lambda_1^*) = [s - (\mu_1 + j\nu_1)][s - (\mu_1 - j\nu_1)]$$

$$= s^2 - [(\mu_1 - j\nu_1) + (\mu_1 + j\nu_1)]s + (\mu_1 - j\nu_1)(\mu_1 + j\nu_1)$$

$$= s^2 - 2\mu_1 s + (\mu_1^2 + \nu_1^2) \triangleq s^2 + 2\zeta\omega_n s + \omega_n^2$$

$$\mu_1 = -\zeta \omega_n = -1/\text{Time constant}$$
 $v_1 = \omega_n \sqrt{1 - \zeta^2} \triangleq \omega_{n_{damped}} = \text{Damped natural frequency}$

Corresponding 2nd-Order Initial Condition Response

Identical exponentially decaying envelopes for both displacement and rate

General form of response

$$x_{1}(t) = Ae^{-\zeta\omega_{n}t} \sin\left[\omega_{n}\sqrt{1-\zeta^{2}}t + \varphi\right]$$

$$x_{2}(t) = Ae^{-\zeta\omega_{n}t} \left[\omega_{n}\sqrt{1-\zeta^{2}}\right] \cos\left[\omega_{n}\sqrt{1-\zeta^{2}}t + \varphi\right]$$

Multi-Modal LTI Responses Superpose Individual Modal Responses

 With distinct roots, (n = 4) for example, partial fraction expansion for each state element is

$$\Delta x_{i}(s) = \frac{d_{1_{i}}}{(s - \lambda_{1})} + \frac{d_{2_{i}}}{(s - \lambda_{2})} + \frac{d_{2_{i}}}{(s - \lambda_{3})} + \frac{d_{2_{i}}}{(s - \lambda_{4})}$$

Corresponding 4th-order time response is

$$\Delta x_i(t) = d_{1_i} e^{\lambda_1 t} + d_{2_i} e^{\lambda_2 t} + d_{3_i} e^{\lambda_3 t} + d_{4_i} e^{\lambda_4 t}$$

9

Root Locus Example: 4th-Order Longitudinal Characteristic Equation

Evans's Rules for

Root Locus Analysis

$$\begin{split} \Delta_{Lon}(s) &= s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0 \\ &= s^4 + \left(D_V + \frac{L_\alpha}{V_N} - M_q \right) s^3 \\ &+ \left[\left(g - D_\alpha \right) \frac{L_V}{V_N} + D_V \left(\frac{L_\alpha}{V_N} - M_q \right) - M_q \frac{L_\alpha}{V_N} - M_\alpha \right] s^2 \\ &+ \left\{ M_q \left[\left(D_\alpha - g \right) \frac{L_V}{V_N} - D_V \frac{L_\alpha}{V_N} \right] + D_\alpha M_V - D_V M_\alpha \right\} s \\ &+ g \left(M_V \frac{L_\alpha}{V_N} - M_\alpha \frac{L_V}{V_N} \right) = 0 \end{split}$$

Typically factors into oscillatory phugoid and short-period modes

$$\Delta_{Lon}(s) = \left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)_{Ph} \left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)_{SP} \Big|_{10}$$

Root Locus Analysis of Parametric Effects on Aircraft Dynamics

- Parametric variations alter eigenvalues of F
- Graphical technique for finding the roots with varying parameter values

Locus: "the set of all points whose location is determined by stated conditions"

11

Example: How do the roots vary when we change pitch-rate damping, M_a ?

$$\Delta_{Lon}(s) = s^{4} + \left(D_{V} + \frac{L_{\alpha}}{V_{N}} - M_{q}\right)s^{3}$$

$$+ \left[\left(g - D_{\alpha}\right)^{L_{V}} + D_{V}\left(\frac{L_{\alpha}}{V_{N}} - M_{q}\right) - M_{q}^{L_{\alpha}} + M_{Q}^{L_{\alpha}} - M_{\alpha}\right]s^{2}$$

$$+ \left\{M_{q}\left[\left(D_{\alpha} - g\right)^{L_{V}} + D_{V}^{L_{\alpha}} + D_{V}^{L_{\alpha}} + D_{Q}^{L_{\alpha}} + D_{Q}^{L_{\alpha$$

- M_q could be changed byVariation in aircraft aerodynamic configuration
 - Effect of feedback control, i.e., control of pitching moment (via elevator) that is proportional to pitch rate

Effect of Parameter Variations on Root Location

$$\Delta_{Lon}(s) = s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0$$

$$= (s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4)$$

$$= (s - \lambda_1)(s - \lambda_1^*)(s - \lambda_3)(s - \lambda_3^*)$$

$$= (s^2 + 2\zeta_P \omega_{n_P} s + \omega_{n_P}^2)(s^2 + 2\zeta_{SP} \omega_{n_{SP}} s + \omega_{n_{SP}}^2) = 0$$

- Let "root locus gain" = $k = a_i$ (just a notation change)
 - Option 1: Vary k and calculate roots for each new value
 - Option 2: Apply Evans's Rules of Root Locus Construction

13

Effect of a_0 Variation on Longitudinal Root Location

• Example: Root locus gain, $k = a_0$

$$\Delta_{Lon}(s) = [s^4 + a_3 s^3 + a_2 s^2 + a_1 s] + [k] = d(s) + kn(s)$$
$$= (s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4) = 0$$

d(s): Polynomial in s, degree = nn(s): Polynomial in s, degree = q

where

$$d(s) = s^{4} + a_{3}s^{3} + a_{2}s^{2} + a_{1}s$$

$$= (s - \lambda'_{1})(s - \lambda'_{2})(s - \lambda'_{3})(s - \lambda'_{4})$$

$$n(s) = 1$$

Degree?

Effect of a_1 Variation on Longitudinal Root Location

• Example: Root locus gain, $k = a_1$

$$\Delta_{Lon}(s) = s^4 + a_3 s^3 + a_2 s^2 + k s + a_0 = d(s) + k n(s)$$

= $(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)(s - \lambda_4) = 0$

where

$$d(s) = s^{4} + a_{3}s^{3} + a_{2}s^{2} + a_{0}$$

$$= (s - \lambda'_{1})(s - \lambda'_{2})(s - \lambda'_{3})(s - \lambda'_{4})$$

$$n(s) = s$$

Degree?

15

Three Equivalent Equations for Defining Roots

$$d(s) + k n(s) = 0$$

$$1 + k \frac{n(s)}{d(s)} = 0$$

$$k \frac{n(s)}{d(s)} = -1 = (1)e^{-j\pi(rad)} = (1)e^{-j180(\deg)}$$

Longitudinal Equation Example

Original 4th-order polynomial

$$\Delta_{Lon}(s) = s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0$$

$$= (s - \lambda_1)(s - \lambda_1^*)(s - \lambda_3)(s - \lambda_3^*)$$

$$= (s^2 + 2\zeta_P \omega_{n_P} s + \omega_{n_P}^2)(s^2 + 2\zeta_{SP} \omega_{n_{SP}} s + \omega_{n_{SP}}^2) = 0$$

Typical flight condition

$$\Delta_{Lon}(s) = s^4 + 2.57s^3 + 9.68s^2 + 0.202s + 0.145$$
$$= \left[s^2 + 2(0.0678)0.124s + (0.124)^2 \right] \left[s^2 + 2(0.411)3.1s + (3.1)^2 \right] = 0$$

Phugoid

Short Period

17

Example: Effect of a_0 Variation

Original 4th-order polynomial

$$\Delta_{Lon}(s) = s^4 + 2.57s^3 + 9.68s^2 + 0.202s + 0.145 = 0$$

Example: $k = a_0$

$$\Delta(s) = s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0$$

$$= (s^4 + a_3 s^3 + a_2 s^2 + a_1 s) + k$$

$$= s(s^3 + a_3 s^2 + a_2 s + a_1) + k$$

$$= s(s + 0.21)[s^2 + 2.55s + 9.62] + k$$

Rearrange:

$$\frac{k}{s(s+0.21)[s^2+2.55s+9.62]} = -1$$

Example: Effect of a₁ Variation

Example: $k = a_1$

$$\Delta(s) = s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0$$

$$= s^4 + a_3 s^3 + a_2 s^2 + ks + a_0$$

$$= (s^4 + a_3 s^3 + a_2 s^2 + a_0) + ks$$

$$= [s^2 - 0.00041s + 0.015][s^2 + 2.57s + 9.67] + ks$$

Rearrange:

$$\frac{ks}{\left[s^2 - 0.00041s + 0.015\right]\left[s^2 + 2.57s + 9.67\right]} = -1$$

19

Locations of Roots for Large and Small k

Origins of the roots are the *n* poles of *d(s)*

$$\Delta(s) = d(s) + kn(s) \xrightarrow{k \to 0} d(s)$$

Two destinations for the roots as k becomes large

1) q roots go to the zeros of n(s)

$$\frac{d(s) + kn(s)}{k} = \frac{d(s)}{k} + n(s) \xrightarrow{k \to \pm \infty} n(s) = (s - z_1)(s - z_2) \cdots$$

2) (n-q) roots go to infinity

$$\left[\frac{d(s) + kn(s)}{n(s)}\right] = \left[\frac{d(s)}{n(s)} + k\right] \xrightarrow{k \to \pm R \to \pm \infty} \left[\frac{s^n}{s^q} + k\right] \to s^{(n-q)} \pm R \to \pm \infty$$

20

Origins of the roots are the *n* poles of *d(s)*

21

Origins of the roots are the *n* poles of *d(s)*

Real Axis

$$\frac{ks}{\left[s^2 - 0.00041s + 0.015\right]\left[s^2 + 2.57s + 9.67\right]} = -1$$

Destination infinity for the roots as *k* becomes large

Destinations for the roots as k becomes large

Asymptotes of the root loci are described by

R(+)

$$s^{(n-q)} = R e^{-j180^{\circ}} \rightarrow \infty \quad or \quad R e^{-j360^{\circ}} \rightarrow -\infty$$

R(-)

$$s = R^{1/(n-q)} e^{-j180^{\circ}/(n-q)} \rightarrow \infty$$

$$or \quad R^{1/(n-q)} e^{-j360^{\circ}/(n-q)} \rightarrow -\infty$$

Magnitudes of roots are the same for given *k*Angles from the origin are different

http://www.wolframalpha.com

25

Asymptotes of Roots (for $k \rightarrow \pm \infty$)

4 roots to infinite radius

3 roots to infinite radius

Asymptotes = ±45°, ±135°

Asymptotes = $\pm 60^{\circ}$, -180°

26

(n-q) Roots Approach Asymptotes as $k \rightarrow \pm \infty$

Asymptote angles for positive k

$$\theta(rad) = \frac{\pi + 2m\pi}{n - q}, \quad m = 0, 1, ..., (n - q) - 1$$

Asymptote angles for negative k

$$\theta(rad) = \frac{2m\pi}{n-q}, \quad m = 0,1,...,(n-q)-1$$

27

Origin of Asymptotes = "Center of Gravity"

$$"c.g." = \frac{\sum_{i=1}^{n} \sigma_{\lambda_i} - \sum_{j=1}^{q} \sigma_{z_j}}{n - q}$$

Root Locus on Real Axis

- Locus on real axis
 - k > 0: Any segment with odd number of poles and zeros to the right on the axis
 - k < 0: Any segment with even number of poles and zeros to the right on the axis

29

First Example: Positive and Negative Variations of $k = a_0$

$$\frac{k}{s(s+0.21)[s^2+2.55s+9.62]} = -1$$

Second Example: Positive and Negative Variations of $k = a_1$

Summary of Root Locus Concepts

Weather Hazard Factoids

Wind Shear Encounter

- Inertial Frames
 - Earth-Relative
 - Wind-Relative (Constant Wind)
- Non-Inertial Frames
 - Body-Relative
 - Wind-Relative (Varying Wind)

33

Pitch Angle and Normal Velocity Frequency Response to Axial Wind

- Pitch angle resonance at phugoid natural frequency
- Normal velocity (~ angle of attack) resonance at phugoid and short period natural frequencies

Pitch Angle and Normal Velocity Frequency Response to Vertical Wind

- Pitch angle resonance at phugoid and short period natural frequencies
- Normal velocity (~ angle of attack) resonance

Microbursts

Ring vortex forms in outlow

http://en.wikipedia.org/wiki/Microburst

The Insidious Nature of Microburst Encounter

The wavelength of the phugoid mode and the disturbance input are comparable

http://en.wikipedia.org/wiki/Delta_Air_Lines_Flight_191

37

Importance of Proper Response to Microburst Encounter

- Stormy evening July 2, 1994
- USAir Flight 1016, Douglas DC-9, Charlotte
- Windshear alert issued as 1016 began descent along glideslope

- DC-9 encountered <u>61-kt windshear</u>, executed <u>missed approach</u>
- Plane continued to descend, striking trees and telephone poles before impact
- Go-around procedure begun correctly -- aircraft's nose rotated up -but power was not advanced
- Together with increasing tailwind aircraft <u>stalled</u>
- Crew <u>lowered nose to eliminate stall</u>, but descent rate increased, causing ground impact

Optimal Flight Path Through Worst *JAWS* Profile

- Graduate research of Mark Psiaki
- Joint Aviation Weather Study (JAWS)
 measurements of microbursts (Colorado
 High Plains, 1983)
- Negligible deviation from intended path using available controllability
- Aircraft has sufficient performance margins to stay on the flight path

Downburst

Optimal and 15° Pitch Angle Recovery during Microburst Encounter

Graduate Research of Sandeep Mulgund

Airspeed vs. Time Altitude vs. Time 15' 8 Recovery Encountering Optimal Recovery outflow 700 Altitude (ft) Angle of Attack vs. Time Rapid arrest of 400 descent Recovery initiated at t=20 sec 30 FAA Windshear Training Aid, 1987, addresses proper operating procedures for suspected windshear

Tactical Airplane Maneuverability

Chapter 10, Airplane Stability and Control, Abzug and Larrabee

- What are the principal subject and scope of the chapter?
- What technical ideas are needed to understand the chapter?
- During what time period did the events covered in the chapter take place?
- What are the three main "takeaway" points or conclusions from the reading?
- What are the three most surprising or remarkable facts that you found in the reading?

41

Root Locus Analysis of Simplified Longitudinal Modes

Approximate Phugoid Model

2nd-order equation

$$\Delta \dot{\mathbf{x}}_{Ph} = \begin{bmatrix} \Delta \dot{V} \\ \Delta \dot{\gamma} \end{bmatrix} \approx \begin{bmatrix} -D_{V} & -g \\ L_{V} / V_{N} & 0 \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix} + \begin{bmatrix} T_{\delta T} \\ L_{\delta T} / V_{N} \end{bmatrix} \Delta \delta T$$

Characteristic polynomial

$$|s\mathbf{I} - \mathbf{F}_{Ph}| = \det(s\mathbf{I} - \mathbf{F}_{Ph}) \equiv$$

$$\Delta(s) = s^2 + D_V s + gL_V / V_N$$

$$= s^2 + 2\zeta\omega_n s + \omega_n^2$$

Parameters

$$|gL_V/V_N, D_V|$$

43

Approximate Phugoid Roots

Approximate Phugoid Equation $(\gamma_N = 0)$

$$\Delta \dot{\mathbf{x}}_{Ph} = \begin{bmatrix} \Delta \dot{V} \\ \Delta \dot{\gamma} \end{bmatrix} \approx \begin{bmatrix} -D_{V} & -g \\ L_{V/V_{N}} & 0 \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta \gamma \end{bmatrix} + \begin{bmatrix} T_{\delta T} \\ L_{\delta T/V_{N}} \end{bmatrix} \Delta \delta T$$

Characteristic polynomial

$$|s\mathbf{I} - \mathbf{F}_{Ph}| = \det(s\mathbf{I} - \mathbf{F}_{Ph}) \equiv \Delta(s) = s^2 + D_V s + gL_V / V_N$$
$$= s^2 + 2\zeta\omega_n s + \omega_n^2$$

Natural frequency and damping ratio

$$\omega_{n} = \sqrt{gL_{V}/V_{N}}$$

$$\zeta = \frac{D_{V}}{2\sqrt{gL_{V}/V_{N}}}$$

$$\frac{L_{V}}{V_{N}} \approx \frac{1}{mV_{N}} \left[C_{L_{V}} \frac{\rho_{N}V_{N}^{2}}{2} S + C_{L_{N}}\rho_{N}V_{N}S \right]$$

$$D_{V} \approx \frac{1}{m} \left[C_{D_{V}} \frac{\rho_{N}V_{N}^{2}}{2} S + C_{D_{N}}\rho_{N}V_{N}S \right]$$

$$\boxed{\frac{L_V}{V_N} \approx \frac{1}{mV_N} \left[C_{L_V} \frac{\rho_N V_N^2}{2} S + C_{L_N} \rho_N V_N S \right]}$$

$$D_{V} \approx \frac{1}{m} \left[C_{D_{V}} \frac{\rho_{N} V_{N}^{2}}{2} S + C_{D_{N}} \rho_{N} V_{N} S \right]$$

Effect of Airspeed on Approximate Phugoid **Natural Frequency and Period**

Neglecting compressibility effects

$$g\frac{L_V}{V_N} \approx \frac{g}{m} \left[C_{L_N} \rho_N S \right]$$

$$= \frac{2g}{mV_N^2} \left[C_{L_N} \frac{1}{2} \rho_N V_N^2 S \right] = \frac{2g}{mV_N^2} \left[mg \right] = \frac{2g^2}{V_N^2}$$

$$\omega_n \approx \sqrt{2} \sqrt[g]{V_N} \approx \frac{13.87}{V_N} (m/s)$$

$$\approx 0.45 V_N \text{ sec}$$

$$Period, T = 2\pi / \omega_n$$

$$\approx 0.45 V_N \text{ sec}$$

45

Effect of L/D on Approximate **Phugoid Damping Ratio**

Neglecting compressibility effects

$$D_{V} \approx \frac{1}{m} \left[C_{D_{N}} \rho_{N} V_{N} S \right]$$

	Natural			Damping
Velocity	Frequency	Period	L/D	Ratio
m/s	rad/s	sec		
50	0.28	23	5	0.14
100	0.14	45	10	0.07
200	0.07	90	20	0.035
400	0.035	180	40	0.018

Effect of L_V/V_N Variation on Approximate Phugoid Roots

Effect of D_V Variation on Approximate Phugoid Roots

$$k = D_V$$

$$\Delta(s) = \left(s^2 + gL_V / V_N\right) + \frac{ks}{s}$$

$$= \left(s + j\sqrt{gL_V / V_N}\right) \left(s - j\sqrt{gL_V / V_N}\right) + \frac{ks}{s}$$

Change in damping ratio

ζ

Approximate Short-Period Model

Approximate Short-Period Equation $(L_q = 0)$

$$\Delta \dot{\mathbf{x}}_{SP} = \begin{bmatrix} \Delta \dot{q} \\ \Delta \dot{\alpha} \end{bmatrix} \approx \begin{bmatrix} M_q & M_{\alpha} \\ 1 & -\frac{L_{\alpha}}{V_N} \end{bmatrix} \begin{bmatrix} \Delta q \\ \Delta \alpha \end{bmatrix} + \begin{bmatrix} M_{\delta E} \\ -L_{\delta E}/V_N \end{bmatrix} \Delta \delta E$$

Characteristic polynomial

$$\Delta(s) = s^{2} + \left(\frac{L_{\alpha}}{V_{N}} - M_{q}\right) s - \left(M_{\alpha} + M_{q} \frac{L_{\alpha}}{V_{N}}\right)$$
$$= s^{2} + 2\zeta \omega_{n} s + \omega_{n}^{2}$$

Parameters

$$m{M}_{lpha}, \;\; m{M}_{q}, \;\; rac{m{L}_{lpha}}{m{V}_{N}}$$

49

Approximate Short-Period Roots

Approximate Short-Period Equation $(L_q = 0)$

$$\Delta \dot{\mathbf{x}}_{SP} = \begin{bmatrix} \Delta \dot{q} \\ \Delta \dot{\alpha} \end{bmatrix} \approx \begin{bmatrix} M_q & M_{\alpha} \\ 1 & -L_{\alpha}/V_N \end{bmatrix} \begin{bmatrix} \Delta q \\ \Delta \alpha \end{bmatrix} + \begin{bmatrix} M_{\delta E} \\ -L_{\delta E}/V_N \end{bmatrix} \Delta \delta E$$

Characteristic polynomial

$$\Delta(s) = s^{2} + \left(\frac{L_{\alpha}}{V_{N}} - M_{q}\right)s - \left(M_{\alpha} + M_{q}\frac{L_{\alpha}}{V_{N}}\right)$$

$$= s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2}$$
General
$$L_{\alpha} > 0$$

$$M_{\alpha} < 0$$

$$M_{q} < 0$$

Generally,

Natural frequency and damping ratio

$$\omega_{n} = \sqrt{-\left(M_{\alpha} + M_{q} \frac{L_{\alpha}}{V_{N}}\right)}; \quad \zeta = \frac{\left(\frac{L_{\alpha}}{V_{N}} - M_{q}\right)}{2\sqrt{-\left(M_{\alpha} + M_{q} \frac{L_{\alpha}}{V_{N}}\right)}}$$

50

Effect of M_{α} on Approximate Short-Period Roots

 $k = M_{\alpha}$

$$\Delta(s) = s^2 + \left(\frac{L_{\alpha}}{V_N} - M_q\right) s - \left(M_q \frac{L_{\alpha}}{V_N}\right) - k = 0$$
$$= \left(s + \frac{L_{\alpha}}{V_N}\right) \left(s - M_q\right) - k = 0$$

Change in damped natural frequency

51

Effect of M_q on Approximate Short-Period Roots

 $k = M_a$

Change primarily in damping ratio

$$\Delta(s) = s^2 + \frac{L_{\alpha}}{V_N} s - M_{\alpha} - \frac{k}{k} \left(s + \frac{L_{\alpha}}{V_N} \right)$$

$$\Delta(s) = \left\{ s - \left[\frac{L_{\alpha}}{2V_{N}} + \sqrt{\left(\frac{L_{\alpha}}{2V_{N}} \right)^{2} + M_{\alpha}} \right] \right\} \left\{ s - \left[\frac{L_{\alpha}}{2V_{N}} - \sqrt{\left(\frac{L_{\alpha}}{2V_{N}} \right)^{2} + M_{\alpha}} \right] \right\} - \frac{k}{k} \left(s + \frac{L_{\alpha}}{V_{N}} \right) = 0$$

Effects of Airspeed, Altitude, Mass, and Moment of Inertia on Fighter Aircraft Short Period

Airspeed variation at constant altitude

Mass variation at constant altitude

	Dynamic	Angle of	Natural		Damping
Airspeed	Pressure	Attack	Frequency	Period	Ratio
m/s	P	deg	rad/s	sec	-
91	2540	14.6	1.34	4.7	0.3
152	7040	5.8	2.3	2.74	0.31
213	13790	3.2	3.21	1.96	0.3
274	22790	2.2	3.84	1.64	0.3

Mass	Natural		Damping
Variation	Frequency	Period	Ratio
%	rad/s	sec	-
-50	2.4	2.62	0.44
0	2.3	2.74	0.31
50	2.26	2.78	0.26

Altitude variation with constant dynamic pressure

Moment of inertia variation at constant altitude

		Natural		Damping
Airspeed	Altitude	Frequency	Period	Ratio
m/s	m	rad/s	sec	-
122	2235	2.36	2.67	0.39
152	6095	2.3	2.74	0.31
213	11915	2.24	2.8	0.23
274	16260	2.18	2.88	0.18

Moment of			
Inertia	Natural		Damping
Variation	Frequency	Period	Ratio
%	rad/s	sec	-
-50	3.25	1.94	0.33
0	2.3	2.74	0.31
50	1.87	3.35	0.31

53

Flight Control Systems

Effect of Scalar Feedback Control on Roots of the System

$$\Delta y(s) = H(s)\Delta u(s) = \frac{kn(s)}{d(s)}\Delta u(s) = \frac{kn(s)}{d(s)}K\Delta \varepsilon(s)$$

$$= KH(s) [\Delta y_c(s) - \Delta y(s)]$$

$$\Delta y(s) = KH(s) \Delta y_c(s) - KH(s) \Delta y(s)$$

55

Scalar Closed-Loop Transfer Function

$$\frac{\Delta y(s)}{\Delta y_c(s)} = \frac{KH(s)}{[1 + KH(s)]}$$

Roots of the Closed-Loop Control System

$$\frac{\Delta y(s)}{\Delta y_c(s)} = \frac{K \frac{kn(s)}{d(s)}}{\left[1 + K \frac{kn(s)}{d(s)}\right]} = \frac{Kkn(s)}{\left[d(s) + Kkn(s)\right]} = \frac{Kkn(s)}{\Delta_{closed}(s)}$$

Closed-loop roots are solutions to

$$\Delta_{\substack{closed\\loop}}(s) = d(s) + Kkn(s) = 0$$

or
$$K \frac{kn(s)}{d(s)} = -1$$

57

Root Locus Analysis of Pitch Rate Feedback to Elevator (2nd-Order Approximation)

$$KH(s) = K \frac{\Delta q(s)}{\Delta \delta E(s)} = K \frac{k_q(s - z_q)}{s^2 + 2\zeta_{SP}\omega_{n_{SP}}s + \omega_{n_{SP}}^2} = -1$$

- # of roots = 2
- # of zeros = 1
- Destinations of roots (for k = ±∞):
 - 1 root goes to zero of n(s)
 - 1 root goes to infinite radius
- Angles of asymptotes, θ, for the roots going to ∞
 - K->+∞: -180 deg
 - K -> -∞: 0 deg

Root Locus Analysis of Pitch Rate Feedback to Elevator (2nd-Order Approximation)

- "Center of gravity" on real axis
- Locus on real axis
 - K > 0: Segment to the left of the zero
 - K < 0: Segment to the right of the zero

Feedback effect is analogous to changing M_q

59

Unusual Aircraft Factoids

Asymmetrical Aircraft: DC-2-1/2

DC-3 with DC-2 right wing

Quick fix to fly aircraft out of harm's way during WWII

Asymmetric Aircraft - WWII

Blohm und Voss, BV 141

B + V 141 derivatives

B + V P.202

Recent Asymmetric Aircraft

Scaled Composites Boomerang

NASA AD-1

Scaled Composites Ares

Next Time: Advanced Longitudinal Dynamics

63

Supplemental Material

Effect of L_a/V_N on Approximate Short-Period Roots

 $k = L_{\alpha}/V_{N}$

 Change primarily in damping ratio

$$\Delta(s) = s^2 - M_q s - M_\alpha + \frac{k}{s} \left(s - M_q\right)$$

$$= \left\{s + \left[\frac{M_q}{2} - \sqrt{\left(\frac{M_q}{2}\right)^2 + M_\alpha}\right]\right\} \left\{s + \left[\frac{M_q}{2} - \sqrt{\left(\frac{M_q}{2}\right)^2 + M_\alpha}\right]\right\} + \frac{k}{s} \left(s - M_q\right) = 0$$

Root Locus Criterion

- All points on the locus of roots must satisfy the equation k[n(s)/d(s)] = -1
- i.e., all points on the root locus must have a phase angle(-1) = ±180 deg

