CSL7450: Computer Graphics

Rajendra Nagar

Trimester 2, 2020-2021
Indian Institute of Technology Jodhpur
sites.google.com/iitj.ac.in/cs17450/

December 5, 2020

How to Draw a Line on a screen?

Algorithm 1: $(x_{i+1}, round(m \times x_{i+1} + c))$

Algorithm 2: $(x_{i+1}, round(y_i+m))$

Jaggies or Staircasing

Can we eliminate the rounding operation?

Draw at $(x_{i+1}, \operatorname{round}(y_i+m))$.

- Bresenham developed a classic algorithm that is attractive because it uses only integer arithmetic ¹.
- Thus eliminating the round operation.
- Allows the calculation for (x_{i+1}, y_{i+1}) by using the calculation already done at (x_i, y_i) .

Rajendra Nagar Computer Graphics December 5, 2020 3 / 12

¹Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems journal, 4(1), 25-30.

- We have to determine on which side of the line the midpoint ${\bf M}$ lies.
- If the midpoint lies above the line, pixel ${\bf E}$ is closer to the line.
- If the midpoint lies below the line, pixel NE is closer to the line.

- The algorithm chooses NE as the next pixel for this example.
- Now, we need to come up with a way to calculate on which side of the line the midpoint lies.

• Let F(x,y)=ax+by+c=0 be the equation of the line and $\Delta x=x_1-x_0$ and $\Delta y=y_1-y_0$, then slope-intercept form can be written as

$$y = \frac{\Delta y}{\Delta x}x + c_0$$

$$y\Delta x = x\Delta y + c_0\Delta x$$

$$0 = x\Delta y - y\Delta x + c_0\Delta x.$$

$$\Rightarrow a = \Delta y, b = -\Delta x, c = c_0 \Delta x.$$

- F(x,y)=0 for points on the line, F(x,y)>0 for points below the line, and F(x,y)<0 for points above the line.
- Define $d = F(\mathbf{M}) = F(x_p + 1, y_p + \frac{1}{2}) = a(x_p + 1) + b(y_p + \frac{1}{2}) + c$.
- If d > 0, we choose pixel **NE**, if d < 0, we choose **E** and if d = 0, we can choose either.

• Next, we ask what happens to the location of M and therefore to the value of d for the next grid line , both depend, of course, on whether we chose E or NE.

• If ${\bf E}$ is chosen , ${\bf M}$ is incremented by one step in the x direction. Then,

$$\begin{array}{lcl} d_{\mathsf{new}} & = & F\left(x_p + 2, y_p + \frac{1}{2}\right) \\ & = & a(x_p + 2) + b(y_p + \frac{1}{2}) + c \\ d_{\mathsf{old}} & = & a(x_p + 1) + b(y_p + \frac{1}{2}) + c \\ d_{\mathsf{new}} & = & d_{\mathsf{old}} + a \\ & = & d_{\mathsf{old}} + \Delta_{\mathbf{E}}. \end{array}$$

 \bullet If NE is chosen , M is incremented by one step in both the directions.

$$\begin{split} d_{\text{new}} & = & F\left(x_p + 2, y_p + \frac{3}{2}\right) \\ & = & a(x_p + 2) + b(y_p + \frac{3}{2}) + c \\ d_{\text{old}} & = & a(x_p + 1) + b(y_p + \frac{1}{2}) + c \\ d_{\text{new}} & = & d_{\text{old}} + a + b \\ & = & d_{\text{old}} + \Delta_{\mathbf{NE}}. \end{split}$$

• Since the first pixel is simply the first endpoint (x_0, y_0) , we can directly calculate the initial value of d for choosing between ${\bf E}$ and ${\bf NE}$. The first midpoint is at $(x_0+1, y_0+\frac{1}{2})$, and

$$\begin{array}{rcl} d_{\rm start} & = & F(x_0+1,y_0+\frac{1}{2}) \\ & = & a(x_0+1)+b(y_0+\frac{1}{2})+c \\ & = & ax_0+by_0+c+a+\frac{b}{2} \\ & = & a+\frac{b}{2}. \\ & = & \Delta y - \frac{\Delta x}{2}. \end{array}$$

- To eliminate the fraction in d_{start} , we redefine our original F by multiplying it by 2; F(x,y) = 2(ax + by + c).
- This multiplies each constant and the decision variable by 2, but does not affect the sign of the decision variable, which is all that matters for the midpoint test.

- 1: **Input**: (x_0, y_0) and (x_1, y_1)
- 2: Initialize: $\Delta x = x_1 x_0$, $\Delta y = y_1 y_0$, $d = 2\Delta y \Delta x$, $\Delta_{\mathbf{E}} = 2\Delta y$, $\Delta_{\mathbf{NE}} = 2(\Delta y \Delta x)$, $x = x_0$, and $y = y_0$.
- 3: Draw at (x, y)
- 4: while $x < x_1$ do
- 5: if $d \leq 0$ then
- 6: $d \leftarrow d + \Delta_{\mathbf{E}}$
- 7: $x \leftarrow x + 1$
- 8: **else**
- 9: $d \leftarrow d + \Delta_{NE}$
- 10: $x \leftarrow x + 1$
- 11: $y \leftarrow y + 1$
- 12: end if
- 13: Draw at (x, y)
- 14: end while