Licenciatura em Ciências da Computação - 1º ano

2º teste - 18 dez 2015 Duração: 2 horas

- 1. Diga, justificando, se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Sejam A,B e C conjuntos não vazios. Se $f:A\to B$ e $g:B\to C$ são funções não constantes, então, $g\circ f:A\to C$ é uma função não constante;

A afirmação é falsa. Considere-se o seguinte contra exemplo: Sejam $A=B=C=\mathbb{N}.$ As aplicações

são funções não constantes e

$$g \circ f: \mathbb{N} \to \mathbb{N}$$
 $n \mapsto 1$

é uma função constante.

(b) Sejam A e B conjuntos. Então, $\mathcal{R}=\omega_A\cup\omega_B$ é uma relação de equivalência em $A\cup B$;

A afirmação é falsa. Considere-se o seguinte contraexemplo: Sejam $A=\{1,2\}$ e $B=\{2,3\}$. Então,

$$R = \omega_A \cup \omega_B = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3)\}$$

não é uma relação de equivalência em $A\cup B$ uma vez que não é transitiva, já que $(1,2),(2,3)\in R$ e $(1,3)\not\in R$.

(c) Seja (A, \leq) um c.p.o. Se existe $\inf \emptyset$ então A admite um elemento maximal;

A afirmação é verdadeira. Se existe $\inf \emptyset$, então existe $\max A$ e o máximo de um c.p.o. é sempre um elemento maximal desse mesmo c.p.o.

(d) Sejam A, B e C conjuntos. Se $A \cup C \sim B \cup C$ então $A \sim B$.

A afirmação é falsa. Considere-se o seguinte contraexemplo: Se $A=\{1,2\}$, $B=\{3\}$ e $C=\{1,2,3\}$, então, $A\cup C=\{1,2,3\}=B\cup C$ e, portanto, $A\cup C\sim B\cup C$ e, no entanto, $A\not\sim B$, já que são conjuntos finitos com diferentes cardinais.

- 2. Seja $A = \{1, 2, 3, 4\}$. Dê exemplo, ou justifique que não existe, de:
 - (a) uma função sobrejetiva $f:A\to A$ tal que a relação binária f^{-1} não é uma função; Não existe. Se f é sobrejetiva, como o domínio e o conjunto de chegada são iguais, f é bijetiva e, portanto, a relação binária f^{-1} é tabém uma função.
 - (b) uma relação de equivalência \mathcal{R} em A tal que $A/\mathcal{R} = \{[1]_{\mathcal{R}}, [2]_{\mathcal{R}}\};$

Seja
$$\mathcal{R} = \{(1,1), (1,3), (3,1), (3,3), (2,2), (2,4), (4,2), (4,4)\}$$
. Então,

$$A/\mathcal{R} = \{\{1,3\}, \{2,4\}\} = \{[1]_{\mathcal{R}}, [2]_{\mathcal{R}}\}.$$

- (c) uma ordem parcial \leq em A tal que (A, \leq) é um c.p.o. no qual não existe $\inf \emptyset$ nem $\sup \emptyset$. Seja $\leq = \operatorname{id}_A \cup \{(1,2),(3,4)\}$. Então, 1 e 3 são dois elementos minimais e 2 e 4 são dois elementos maximais de A, pelo que o c.p.o. A não admite máximo nem mínimo. Logo, não existe $\inf \emptyset$ nem $\sup \emptyset$.
- (d) uma relação $\mathcal R$ tal que $(A,\mathcal R)$ é um reticulado mas não é um conjunto bem ordenado. Seja $\mathcal R=\operatorname{id}_A\cup\{(1,2),(1,3),(1,4),(2,4),(3,4)\}$. Então, o diagrama de Hasse de $(A,\mathcal R)$ é um losango com mínimo 1 e máximo 4. Logo, o c.p.o. é um reticulado. Mais ainda, como não é uma cadeia, o reticulado não é um conjunto bem ordenado.
- 3. Considere a aplicação $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, definida por $f(m,n) = (mn,m^2)$, para todo $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.
 - (a) Se $A=\{(x,y)\in\mathbb{Z}\times\mathbb{Z}\mid |x|=|y|=1\}$, determine f(A). Como $A=\{(1,1),(1,-1),(-1,1),(-1,-1)\}$ e f((1,1))=f((-1,-1))=(1,1), f((-1,1))=f((1,-1))=(-1,1), temos que

$$f(A) = \{(1,1), (-1,1)\}.$$

(b) Se $B = \{0,2\} \times \{2,0\}$, determine $f^{\leftarrow}(B)$.

Como $B = \{(0,0), (2,0), (0,2), (2,2)\}$ e:

- $f((m,n)) = (0,0) \Leftrightarrow mn = 0 = m^2 \Leftrightarrow m = 0 \land n \in \mathbb{Z};$
- $f((m,n)) = (2,0) \Leftrightarrow mn = 2 \land m^2 = 0 \Leftrightarrow \text{condição impossível};$
- $f((m,n)) = (0,2) \Leftrightarrow mn = 0 \land m^2 = 2 \Leftrightarrow \text{condição impossível em } \mathbb{Z} \times \mathbb{Z};$
- $f((m,n)) = (2,2) \Leftrightarrow mn = 2 \land m^2 = 2 \Leftrightarrow \text{condição impossível em } \mathbb{Z} \times \mathbb{Z},$

temos que

$$f^{\leftarrow}(B) = \{(0, n) \mid n \in \mathbb{Z}\}.$$

- (c) Diga, justificando, se f é sobrejetiva e/ou injetiva.
 - Em (a), vimos que f((1,1)) = f((-1,-1)) = (1,1). Logo, f não é injetiva. Em (b), vimos que (2,0) não é imagem de um par de números inteiros. Logo, f não é sobrejetiva.
- 4. Seja θ a relação binária definida em $\mathbb{N}_0 \times \mathbb{N}_0$ por

$$(x,y) \theta (a,b) \Leftrightarrow x-y=a-b$$
 $(x,y,a,b \in \mathbb{N}_0).$

(a) Mostre que θ é uma relação de equivalência em $\mathbb{N}_0 \times \mathbb{N}_0$.

A relação binária θ é uma relação de equivalência porque:

- θ é reflexiva, já que, para todos $(a,b) \in \mathbb{N}_0 \times \mathbb{N}_0$, se tem a-b=a-b e, portanto, $(a,b) \theta (a,b)$;
- θ é simétrica. De facto, dados $(x,y),(a,b)\in\mathbb{N}_0\times\mathbb{N}_0$, temos

$$(x,y) \theta (a,b) \Leftrightarrow x - y = a - b$$

 $\Leftrightarrow a - b = x - y$
 $\Leftrightarrow (a,b) \theta (x,y);$

• θ é transitiva. de facto, dados $(x,y),(a,b),(p,q)\in\mathbb{N}_0\times\mathbb{N}_0$, temos

$$(x,y) \theta (a,b) \wedge (a,b) \theta (p,q) \Leftrightarrow x-y=a-b \wedge a-b=p-q$$

 $\Rightarrow a-b=p-q$
 $\Leftrightarrow (x,y) \theta (p,q);$

(b) Determine as classes $[(0,2)]_{\theta}$ e $[(2,0)]_{\theta}$.

Tendo em conta a definição de classe de equivalência, temos

$$[(0,2)]_{\theta} = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid (x,y) \ \theta \ (0,2)\}$$
$$= \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x-y=0-2\}$$
$$= \{(x,x+2) \mid x \in \mathbb{N}_0\}$$

е

$$[(2,0)]_{\theta} = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid (x,y) \ \theta \ (2,0)\}$$
$$= \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x-y=2-0\}$$
$$= \{(y+2,y) \mid y \in \mathbb{N}_0\}$$

(c) Mostre que $(\mathbb{N}_0 \times \mathbb{N}_0)/\theta \sim \mathbb{Z}$.

Seguindo a resposta da alínea anterior, dado $z \in \mathbb{Z}$, a expressão

$$f(z) = \begin{cases} [(z,0)]_{\theta} & \text{se } z > 0 \\ [(0,0)]_{\theta} & \text{se } z = 0 \\ [(0,-z)]_{\theta} & \text{se } z < 0 \end{cases}$$

define uma aplicação de \mathbb{Z} em $(\mathbb{N}_0 \times \mathbb{N}_0)/\theta$.

Esta aplicação é claramente injetiva e é também sobrejetiva, pois, dado $(a,b) \in \mathbb{N}_0 \times \mathbb{N}_0$,

$$[(a,b)]_{\theta} = \begin{cases} [(a-b,0)]_{\theta} & \text{se } a > b \\ [(0,0)]_{\theta} & \text{se } a = b \\ [(0,b-a)]_{\theta} & \text{se } a < b \end{cases}$$

ou seja, $[(a,b)]_{\theta}=f(a-b)$. Estamos em condições de afirmar que os dois conjuntos são equipotentes.

5. Considere o c.p.o. (A, \leq) definido pelo seguinte diagrama de Hasse:

(a) Indique, caso exista:

i. Maj
$$\{7,10\}$$
;
$${\sf Maj}\,\{7,10\} = \{8,4,1\}.$$

ii. sup∅;

Não existe. Quando existe, $\sup \emptyset = \min A$. O c.p.o. A tem dois elementos minimais (o 2 e o 5), pelo que não admite elemento mínimo.

iii. um subconjunto de A com 5 elementos que admita máximo e mínimo.

Seja $X = \{1, 8, 7, 10, 5\}$. Então, X admite máximo (o elemento 1) e mínimo (o elemento 5).

(b) Será (A, \leq) um reticulado? Justifique.

Não. Como vimos em (a)ii., A não admite elemento mínimo e A é um c.p.o. finito (qualquer reticulado finito admite elemento mínimo).

Cotação: **1.** 4×1.0 **2.** 4×1.0

3. 3×1.5

4. $2 \times 1.5 + 2.0$ **5.** $3 \times 0.5 + 1.0$