Abstract Interpretation

© Lunjin Lu

Abstract Interpretation

• Simulate computation (of the program) on a non-standard domain

- Detect errors in calculation of arithmetic expression (+, - ,*)
 - Calculate the remainder of sum of digits in an operand divided by 9
 - Take module 9 of each intermediate and final results
 - The result obtained as above agree with that of *normal calculation* module 9.

Concrete semantics

- Domain: Z
- $n \rightarrow N(n)$
- + → add
- $\rightarrow sub$
- * → mult

Abstract semantics

- Domain: $Z_9 = \{0, ..., 8\}$
- $n \rightarrow N(n) \mod 9$
- + $\rightarrow add_9$
- - $\rightarrow sub_0$
- * \rightarrow mult₉

$$X \text{ add}_9 Y = (X \text{ add } Y) \text{ mod } 9$$
 $X \text{ sub}_9 Y = (X \text{ sub } Y) \text{ mod } 9$
 $X \text{ mult}_9 Y = (X \text{ mult } Y) \text{ mod } 9$

$$\alpha : Z \rightarrow Z_9$$

$$\alpha(0) = 0$$

$$\alpha(8) = 8$$

$$\cdots$$

$$\alpha(9) = 0$$

$$\alpha(10a\pm b) = \alpha(a\pm b)$$

Concrete semantics

$$[]: Exp \rightarrow Z$$

$$[n] = N(n)$$

 $[e_1+e_2] = [e_1] \text{ add } [e_2]$
 $[e_1-e_2] = [e_1] \text{ sub } [e_2]$
 $[e_1*e_2] = [e_1] \text{ mult } [e_2]$

Abstract semantics

$$[\]_9: \operatorname{Exp} \to \mathbb{Z}_9$$

$$[n]_9 = \alpha(N(n))$$

 $[e_1+e_2]_9=[e_1]_9 \text{ add}_9 [e_2]_9$
 $[e_1-e_2]_9=[e_1]_9 \text{ sub}_9 [e_2]_9$
 $[e_1*e_2]_9=[e_1]_9 \text{ mult}_9 [e_2]_9$

Exact Abstraction

Abstract Interpretation

Key points so far:

- There are two semantics
 - Concrete semantics models normal execution;
 - Abstract semantics gives analysis;
 - Constants in concrete domain is abstracted by constants in abstract domain
 - An n-ary operation on concrete domain is abstracted by an n-ary operation on abstract domain
 - Correctness is established with respect to a relationship between the abstract and the concrete domains.

Parity Analysis (Jones & Nielson)

```
A: while n \neq 1 do
       B: if n is even
             then (C: n := n \div 2; D:)
             else (E: n := 3*n+1; F:)
          fi
     od
G:
```

Flowchart

Operational semantics

- A *state* is a pair of program point and a *store*
- Each elementary block (test, assignment) defines a transition
 - $\text{next}_{n \neq 1} (\langle A, \{n \rightarrow 5\} \rangle) = \langle B, \{n \rightarrow 5\} \rangle$
 - $\text{next}_{n \neq 1} (\langle A, \{n \rightarrow 1\} \rangle) = \langle G, \{n \rightarrow 1\} \rangle$

Collecting semantics

Each program point is associated with the set of stores that may be obtained during execution of the program

$$acc_p = \{s \mid next*() = \}$$

Collecting semantics

```
Domain: (2^N, \subset, \cup, \cap, N, \emptyset)
acc_{\Delta} = S_0
acc_{B} = (acc_{A} \cup ace_{D} \cup acc_{F}) \cap (N \setminus \{1\})
acc_C = acc_R \cap \{2m \mid m \in N\}
acc_D = f_{n = 2} (acc_C)
acc_{F} = acc_{R} \cap \{2m+1 \mid m \in N\}
acc_F = f_{3n+1}(acc_F)
acc_G = (acc_A \cup ace_D \cup acc_F) \cap \{1\}
f_{n \div 2}(S) = \{n \div 2 \mid n \in S\}
f_{3n+1}(S) = \{3n+1 \mid n \in S\}
```

```
Domain: \langle P, \leq, \vee, \wedge, \Delta, \nabla \rangle where P = \{ \text{odd,even, } \Delta, \nabla \} \Delta \leq \Delta, \Delta \leq \text{odd, } \Delta \leq \text{even, } \Delta \leq \nabla, \text{odd} \leq \text{odd, even} \leq \text{even} \text{odd} \leq \nabla, \text{even} \leq \nabla, \nabla \leq \nabla
```

Abstraction

```
\alpha(S) = \Delta, \qquad \text{if } S = \{\} odd, \text{if } S \subseteq \{1,3,\dots\} even, \text{if } S \subseteq \{0,2,\dots\} \nabla, \qquad \text{else}
```

```
abs_{\Delta} = \alpha(S_0)
abs_{B} = (abs_{A} \vee abs_{D} \vee abs_{F}) \wedge \alpha(N \setminus \{1\})
abs_C = abs_B \wedge \alpha(\{2m \mid m \in N \})
abs_D = \underline{f}_{n+2} (abs_C)
abs_E = abs_B \wedge \alpha(\{2m+1 \mid m \in N \})
abs_F = \underline{f}_{3n+1}(abs_E)
abs_G = (abs_A \vee abs_D \vee abs_F) \wedge \alpha\{1\}
```

Abstract operations

```
\underline{\mathbf{f}}_{\underline{\mathbf{n}} + \underline{\mathbf{2}}} (abs) = if abs=\Delta then \Delta else \nabla \underline{\mathbf{f}}_{\underline{\mathbf{3n}} + \underline{\mathbf{1}}} (abs) = \Delta, if abs=\Delta \nabla, if abs=\nabla even, if abs=odd odd, if abs=even
```

```
\begin{aligned} abs_A &= \alpha(S_0) \\ abs_B &= (abs_A \vee abs_D \vee abs_F) \wedge \nabla \\ abs_C &= abs_B \wedge even \\ abs_D &= \underline{f}_{n \div 2} \ (abs_C) \\ abs_E &= abs_B \wedge odd \\ abs_F &= \underline{f}_{3n+1} (abs_E) \\ abs_G &= (abs_A \vee abs_D \vee abs_F) \wedge odd \end{aligned}
```

Safety

- α is not homomorphic, so we could not have exact abstraction as in casting out of nine!
- Global safety: $\alpha(\text{lfp } F_{acc}) \leq \text{lfp } F_{abs}$
- Local safety: each abstract operation safely abstracts corresponding concrete operation.
 - $\alpha(S_1 \cup S_2) \leq \alpha(S_1) \vee \alpha(S_2)$

Galois connection

Instead of an abstraction function α , another way to relate abstract and concrete domains is via a concretization function γ from the abstract domain to the concrete domain.

```
\gamma(abs) = \{\}, \qquad \text{if abs} = \Delta, \\ \{2m+1 \mid m \in N\}, \text{if abs} = \text{odd}, \\ \{2m \mid m \in N\}, \quad \text{if abs} = \text{even}, \\ N, \quad \text{if abs} = \nabla
```

Galois connection

Functions α and γ satisfy:

$$S \subseteq \gamma(\alpha(S))$$

$$\alpha(\gamma(abs)) \leq abs$$

This is called a Galois connection

Galois Connection

Let $\langle C, \leq_C \rangle$ and $\langle A, \leq_A \rangle$ be posets. The pair $\alpha: C \rightarrow A$ and $\gamma: A \rightarrow C$ is a Galois *connection* iff

 $c \leq_C \gamma(\alpha(c))$ for each c in C $\alpha(\gamma(a)) \leq_A a$ for each a in A

If $\alpha(\gamma(a)) = a$ then (α, γ) is a Galois *insertion*.

Parity Analysis Revisited

 (α, γ) is a Galois insertion:

Let S be a set of natural numbers. Then It can be easily verified that $S \subseteq \gamma(\alpha(S))$.

Let P be any parity. Then $P = \alpha(\gamma(P))$ follows by simple case analysis.

Alternative Definition

• Let $\langle C, \leq_C \rangle$ and $\langle A, \leq_A \rangle$ be posets. The pair $\alpha: C \xrightarrow{} A$ and $\gamma: A \xrightarrow{} C$ is a Galois *connection* iff

$$\alpha(c) \le a \Leftrightarrow c \le \gamma(a)$$

Galois Connection for Sign Analysis

• Let Sign = $\{ \text{ top, bot, +, 0, -} \}$

Values =
$$(2^{\mathbb{Z}},\subseteq,\cup,\cap,\mathbb{N},\emptyset)$$

$$\alpha_{sign}(X) = \quad \text{bot,} \quad \text{if } X = \varnothing \\ +, \quad \text{if } X \subseteq \{1,2,\ldots\} \\ 0, \quad \text{if } X = \{0\} \\ -, \quad \text{if } X \subseteq \{\ldots, -2, -1\} \\ \text{top,} \quad \text{else}$$

$$\gamma_{sign}(S) = \varnothing, \qquad \text{if } S = bot$$

$$\{1,2,\ldots\} \qquad \text{if } S = +$$

$$\{0\} \qquad \text{if } S = 0$$

$$\{\ldots,-2,-1\} \qquad \text{if } S = -$$

$$Z \qquad \text{else}$$

 $(\alpha_{\text{sign}}, \gamma_{\text{sign}})$ is a Galois connection (insertion).

Properties of Galois connections

- $\alpha \gamma \alpha = \alpha$
- $\gamma \alpha \gamma = \gamma$
- αγ is a lower closure.
- $\gamma \alpha$ is an upper closure.
- If $\langle A, \leq_A \rangle$ is a complete lattice then $\gamma^*(A)$ is a Moore family.
- α and γ determines each other:

$$\gamma(a) = \bigvee_{C} \{ c \mid \alpha(c) \leq_{\underline{A}} a \}$$

$$\alpha(c) = \bigwedge_{A} \{ a \mid c \leq_{\underline{C}} \gamma(a) \}$$

- α preserves l.u.b.
- γ preserves g.l.b.
- α is onto iff γ is one-toone (Galois insertion)
- Every Galois connection can be *reduced* into a Galois insertion.
 - Independent attribute sign analysis.

Operational semantics - revisited

- Each elementary block is a transition function.
 - A state is a pair of a program point and a store.
 s=<p,m> where p is a point and m is a memory store.
 - The block maps a state to another state:

```
• [x:=e] next(\langle p,m\rangle) = \langle q,m[x \rightarrow A[e]m] \rangle
```

• [skip] $next(\langle p,m\rangle) = \langle q,m\rangle$

• [b]
$$next(\langle p,m\rangle) = \langle q_{true},m\rangle \text{ if } \mathbf{\textit{B}}[b]m = tt$$

$$next(\langle p,m\rangle) = \langle q_{false},m\rangle \text{ if } \mathbf{\textit{B}}[b]m = ff$$

Note that p labels the entry of the block while q with/without subscript labels the entry of the block to be executed next.

Properties of memory stores

- Many program analyses derive invariants of memory stores for each program point.
- An invariant is
 - a *logic formula* that is satisfied by all memory stores that may be obtained;
 - a set of memory stores that includes all memory stores that may be obtained
- These two views are both useful.

Collecting semantics

Lifting next relation

- [x:=e] Next($\langle p,M \rangle$)= $\langle q, \{m[x \rightarrow A[e]m] \mid m \in M \} \rangle$
- [skip] $Next(\langle p,M\rangle) = \langle q,M\rangle$
- [b] $Next(<p,M>) = <q_{true}, \ M \cap \{m | \textbf{\textit{B}}[b]m=tt\}>$ $Next(<p,M>) = <q_{false}, \ M \cap \{m | \textbf{\textit{B}}[b]m=ff\}>$

Collecting semantics

Collecting all states with the same points together:

$$X_q = \bigcup \{X \mid Next(p,X_p) = (q,X) \text{ and } p \rightarrow q\}$$

Where X_q is a set of memory stores associated with q and $p \rightarrow q$ indicates that the block labeled q may be executed immediately after that labeled p.

Logical view

- [x:=e]next(<p,f>)=<q, sp(x:=e,f)>
- [skip] next(<p,f>)=<q,f>
- [b] $\begin{aligned} &\textbf{next}(<\!\!p,\!f>) = <\!\!q_{true}, \ f \wedge b> \\ &\textbf{next}(<\!\!p,\!f>) = <\!\!q_{false}, \ f \wedge \neg b> \end{aligned}$

Group all formulae associated with the same program point:

$$f_q = \bigvee \{ X \mid \mathbf{next}(p, X_p) = (q, X) \text{ and } p \rightarrow q \}$$

- Logic formulae without restrict are too general.
 Analysis requires restriction on logic formulae.
 This restriction in turn requires operations next, sp, logical connectives to be approximated.
- In a sign analysis, formulae are formed of primitive formulae (x is positive), (x is negative) together with logical connectives.
- Logic formulae are then represented in an isomorphic domain (abstract domain).

Sign analysis

while
$$\oplus$$
 (x>0) do

- ② x := x-1;
- 3 z := y*yod;
- z := -z

5

A logic formula might be x is positive, y negative and z positive.

This can be represented as an abstract state:

$$\{x\rightarrow +,y\rightarrow -,z\rightarrow +\}$$

Global conditions

• Both concrete and abstract semantics are least fixed points.

$$\alpha(\operatorname{lfp} f_{C}) \leq_{A} \operatorname{lfp} f_{A}$$

$$\operatorname{lfp} f_{C} \leq_{C} \gamma(\operatorname{lfp} f_{A})$$

A sufficient (global) condition is $f_C \le \gamma f_A \alpha$ or equivalently $\gamma f_C \alpha \le f_A$.

Local conditions

- Often f_C and f_A are defined in the same way: an operation o_C is applied whenever o_A is applied.
- Global safety condition can be reduced into a set of local safety conditions.

Best abstract operations/analysis

- Global -- $f_A = \gamma f_C \alpha$
- Local -- $o_A = \gamma_0 o_C < \alpha_1, ..., \alpha_n >$
- Best analysis maybe un-computable.

Independent attribute versus relational analysis

- Independent attribute relationship between variables are not captured.
- Relational keep track of relationship between variables using a power domain construction.
- Example if rand() then (x:=1;y:=1) else (x:=-1;y:=-1)

Disjunctive completion

- Analysis precision can be improved by using a more rich domain.
- Disjunctive completion of an abstract domain allows disjunction in the concrete domain to be precisely represented as disjunction in the abstract domain.
- Example Sign analysis

Martelli-Montanari unification

Apply following steps until no change

- $X=X::E \rightarrow E$
- X=t::E →
 if occurs(X,t) then failure else X=t::E[X/t]
- $f(t_1,...,t_n)=X::E \rightarrow X=f(t_1,...,t_n)::E$
- $f(t_1,...t_n)=g(s_1,...s_m)::E \rightarrow$ if f/n=g/m then $t_1=s_1,...t_n=s_n::E$ else failure

Basic operation in LP

- Unifying an atom $\theta(A)$ with another atom H where H and $\theta(A)$ do not share variable.
- Equivalently, unifying A=H:: θ . In general, unifying E \cup θ

Simple Groundness Analysis

- Derive which program variables are definitely ground. Abstract substitution is
 - a mapping from the set VI of variable of interest to domain {G,top} with a bot to indicate failure or
 - a subset of VI with a bot to indicate failure
 - What is Galois connection?

Abstract unification

- Computes an output abstract substitution from a set of equations and an input abstract substitution.
- Abstract terms: terms with G as a constant

Apply following steps until no change

- $X=X::E \rightarrow E$
- X=t::E →

 if occurs(X,t) then failure

 else if t is ground then X=G::E

 else X=t::E[X/t]
- $f(t_1,...,t_n)=X::E \to X=f(t_1,...,t_n)::E$
- $f(t_1,...t_n)=g(s_1,...s_m)::E \rightarrow$ if f/n = g/m then $t_1=s_1,...t_n=s_n::E$ else failure
- $G = g(s_1,...s_m) :: E \rightarrow s_1 = G,...s_n = G :: E$
- $g(s_1,...s_m) = G :: E \rightarrow s = G,...s_n = G :: E$

Retain only equations of the form Y=G.

Example

- X=f(a,U)
- Y=f(V,b)
- X=Y
- g(U,W)=g(V,h(Z))

Example

```
Given the append program append([], X, X). append([X|U],V,[X|W]) \leftarrow append(U,V,W).
```

Construct an SLD tree for the abstract query \leftarrow append(G,G,V) using abstract unification instead of concrete unification. Which abstract answers do you get?

SOS

$$(\sigma,(A,G)) \xrightarrow{LD} (\theta,(B,mk(A,\sigma,H),G)) \quad if \quad (H \leftarrow B) \in P$$
$$\theta = mgu(A\sigma\rho,H) \neq fail$$

$$(\mathcal{G}, (mk(A, \sigma, H), G)) \xrightarrow{LD} (\sigma \ mgu(A\sigma, H\mathcal{G}\rho), G)$$

Observation

- A goal in the alternative SOS is of the form $(\theta_n, B_n(A_{n-1}, \theta_{n-1}, H_n)B_{n-1} (A_{n-2}, \theta_{n-2}, H_{n-1})B_{n-2}....(A_1, \theta_1, H_2)B_1)$
- The goal can be re-organized as $(\theta_n, B_n, H_n)(\theta_{n-1}, A_{n-1}, B_{n-1}, H_{n-1})...(\theta_1, A_1, B_1, \bullet))$

where each B_i can be \square and is a suffix of a clause whose head is H_i . \blacklozenge is falsity and is the head of the query.

SOS

$$(\sigma,(A,B'),H')S \longrightarrow (\theta,B,H)(\sigma,(A,B'),H')S \quad if \quad \begin{aligned} (H \leftarrow B) \in P \\ \theta = mgu(A\sigma\rho,H) \neq fail \end{aligned}$$

$$(\theta, \langle \rangle, H)(\sigma, (A, B'), H')S \longrightarrow (\sigma \ mgu(A\sigma, H\theta\rho), B', H')S$$

Example

append([], X, X). append([X|U],V,[X|W]) \leftarrow append(U,V,W).

 \leftarrow append([1,2],[a,b,c],L).

Encapsulating procedure-entry and procedure-exit operations

$$unify(a,\sigma,b,\theta) = \theta \circ mgu(a\sigma\rho,b\theta)$$

SOS

$$(\sigma,(A,B'),H')S \longrightarrow (\theta,B,H)(\sigma,(A,B'),H')S \quad if \quad \begin{aligned} (H \leftarrow B) \in P \\ \theta = unify(A,\sigma,H,\{\}) \neq fail \end{aligned}$$

$$(9,\langle \rangle,H)(\sigma,(A,B'),H')S \longrightarrow (unify(H,9,A,\sigma),B',H')S$$

Program flow graph

- Nodes are program points;
- Edge $p \rightarrow q$ indicates that q will be possibly visited immediately after p is visited.
- Call edges models possible procedure-entry operation
- Return edges models possible procedure-exit operation
- Let p be a program point in a clause. Then the suffix of the body to the right of p and the head of the clause are determined.

SOS

$$(\sigma, p)S \longrightarrow (\theta, q)(\sigma, p)S$$
 if $p \xrightarrow{call} q$
 $\theta = unify(A(p), \sigma, H(q), \varepsilon) \neq fail$

$$(\sigma, p)(\omega, q-)S \longrightarrow (\theta, q)S$$
 if $p \xrightarrow{return} q$
 $\theta = unify(H(p), \sigma, A(q-), \omega) \neq fail$

Accumulating substitutions

cunify(a,Θ,b,Ω) = {unify(a,θ,b,ω) | $\theta \in \Theta \land \omega \in \Omega$ } \ {fail}

$$(\Sigma, p)S \longrightarrow (\Theta, q)(\Sigma, p)S$$
 if $p \xrightarrow{call} q$
 $\Theta = cunify(A(p), \Sigma, H(q), \{\varepsilon\})$

$$(\Sigma, p)(\Omega, q-)S \longrightarrow (\Theta, q)S$$
 if $p \xrightarrow{return} q$
 $\Theta = cunify(H(p), \Sigma, A(q-), \Omega)$

Nilsson's Collecting semantics

Initial point: $X_t = \Theta_t$

For entry points:

$$X_q = \bigcup \{cunify(A(p), X_p, H(q), \{\varepsilon\}) \mid p \xrightarrow{call} q \}$$

For other points:

$$X_q = \bigcup \{cunify(H(p), X_p, A(q-), X_{q-}) \mid p \xrightarrow{return} q \}$$

Nilsson's Abstract semantics

• Concrete interpretation: $\langle 2^{Sub}, \subseteq, \emptyset, \cup, cunify, \{\varepsilon\} \rangle$

• Abstract interpretation: $\langle ASub, \leq, \perp, \vee, aunify, id \rangle$

• Galois connection: $\langle 2^{Sub}, \alpha, ASub, \gamma \rangle$

Nilsson's Abstract semantics

Initial point: $\mathbf{X}_{t} = \pi_{t}$

For entry points:

$$X_q = \bigvee \{aunify(A(p), X_p, H(q), id) \mid p \xrightarrow{call} q \}$$

For other points:

$$X_q = \bigvee \{aunify(H(p), X_p, A(q-), X_{q-}) \mid p \xrightarrow{return} q \}$$

Local Safety Conditions

• $\varepsilon \in \gamma(id)$

• cunify($a_1, \gamma(\pi_1), a_2, \gamma(\pi_2)$) $\subseteq \gamma(\text{aunify}(a_1, \pi_1, a_2, \pi_2))$ for any atoms a1 and a2 and any abstract substitutions π_1 and π_2

Groundness Analysis

- A variable x is ground in a substitution σ iff $x\sigma$ contains no variable. Let vars(t) be the set of variables occurring in t. Then x is ground in σ iff $vars(x\sigma)=\{\}$
- Groundness analysis aims to identify which variables are *definitely* ground at a given program point.

Abstract domain

To describe a set of substitutions by

- a function from variables of interest to $\{g,a\}$ ordered $g \le a$ augmented with a bottom \bot
- Abstract domain ASub = $(VI \rightarrow \{g,a\})_{\perp}$ $\perp \leq \pi$ for any π in ASub $\pi_1 \leq \pi_2$ iff $\pi_1(x) \leq \pi_2(x)$ for any x in VI

$$\gamma(\bot) = \{\}$$
$$\gamma(\pi) = \{\theta \mid \forall x \in VI.(\pi(x) = \mathbf{g} \Rightarrow vars(x\theta) = \{\})\}$$

Abstract domain

To describe a set of substitutions by

- a subset of the set variables of interest augmented with a bottom \bot
- $\quad Abstract \ domain \ ASub = 2^{VI}_{\perp}$ $\perp \quad \leq \pi \ for \ any \ \pi \ in \ ASub$ $\pi_1 \leq \pi_2 \ iff \ \pi_1 \supseteq \pi_2$

$$\gamma(\bot) = \{\}$$
$$\gamma(\pi) = \{\theta \mid \forall x \in VI.(x \in \pi \Rightarrow vars(x\theta) = \{\})\}$$

Abstract operations

```
• id = {}
• aunify(a,\pi_1,b,\pi_2) =
          let \ \psi be a tagging substitution in
          let E = mgu(a\psi,b) in
          if E=fail then \perp
          else up(E,down(E, \pi_1 \psi \cup \pi_2)) \cap VI
     up(E, \pi) = \pi \cup \{ x \mid ((x \rightarrow t) \in E) \text{ and } (vars(t) \subseteq \pi) \}
     down(E, \pi) = \pi \cup \{ y \mid ((x \rightarrow t) \in E) \text{ and } (x \in \pi) \text{ and } (x \in \pi) \}
        \{y \in vars(t)\}
```



```
a=append([],X,X)
b=append([X|U],V,X|W]
c=append(U,V,W)
d=append(Xs,Ys,Zs)
```

- $X_1 = \text{aunify}(d, X_4, a, id) \vee \text{aunify}(c, X_2, a, id)$
- $X_2 = \text{aunify}(d, X_4, b, id) \lor \text{aunify}(c, X_2, b, id)$
- $X_3 = \text{aunify}(a, X_1, c, X_2) \vee \text{aunify}(b, X_2, c, X_2)$
- $X_4 = \pi_4$
- $X_5 = \text{aunify}(a, X_1, d, X_4) \vee \text{aunify}(b, X_2, d, X_4)$

• Compute Ifp using $\pi_4 = \{Xs, Ys\}$

Positive Boolean Formulae

- This domain consists of positive Boolean functions over VI that returns true when all arguments are true augmented with *ff*.
- A truth assignment is a model of a Boolean function if the Boolean function is true when arguments are given the true assignment.
- Let assign: Sub \rightarrow VI \rightarrow {tt,ff} assign σ x = tt iff vars(x σ) ={}
- Galois Connection:
 - $-\gamma_{Pos}(f) = \{\sigma \mid assign \ \sigma \mid = f \ for \ each \ \sigma' \le \sigma \}$
 - $-\alpha_{Pos}$

Abstract operations

- id = tt
- aunify(a, π_1 ,b, π_2) =

 let ψ be a tagging substitution in

 let $E = mgu(a\psi,b)$ in

 if E=fail then ffelse $\exists \psi(VI)$. $(\alpha_{Pos}(\{E\}) \wedge \pi_1 \psi \wedge \pi_2)$
- Let $\pi_4 = tt$. Do the analysis using Pos.

OLDT

- OLDT is OLD with tabling. OLD is same as SLD except computational rule always select atom among those that are introduced most recently.
- LD is an OLD.
- T means tabling or memoization: remember all computations and complete duplicate computations by look-up.

Tabling

- Tabling has been known to computer scientists long time ago and has been incorporated into algorithms.
- There are programming language systems that implement tabling – XSB Prolog

Tabling

```
long fib(long n)
  if (n==0 || n==1)
  then return 1;
  else return fib(n-1) + fib(n-2);
Try fib(4)
```

OLDT

An OLDT structure

- Tree
 - Each node is labeled with a pair of a goal and a substitution
 - Each edge is labeled with a substitution.
 - Look-up nodes (processed by table look-up)
 - Solution nodes (processed as in a SLD tree)
 - Failure nodes
- Table
 - An entry has a key (an atom) and a solution list (instances of the atom)
- Association
 - pointers from look-up nodes to solution lists

Initial OLDT structure

For query (G,σ) and program P;

- Tree single node labeled with (G,σ)
- Table empty
- Association empty

OLDT Resolution

Repeat

- Process a leaf node with non-empty goal
- Process a look-up node

Until no change to the OLDT structure

Process a leaf node $((A,G),\sigma)$

Case -- $A\sigma$ is an variant of a key in the table

- Mark the leaf a look-up node
- Create a child node $(G, \sigma\theta)$ for $((A,G),\sigma)$ (no longer a leaf) for each $A\sigma\theta$ in the solution list for the key and label the edge θ
- make a pointer from $((A,G),\sigma)$ to the tail of the solution list

Process a leaf node $((A,G),\sigma)$

Case -- $A\sigma$ is not an variant of any key in the table

- Mark the leaf a solution node
- Add to the table an entry with key Aσ and empty solution list
- For each clause (renamed) H ← B such that θ =mgu(H, Aσ) ≠ fail
 - Create a child node ((B,G), $\sigma\theta$) for ((A,G), σ) and label the edge θ
 - If B is empty then sub-refutations for several atomic calls have been finished, solution lists of these calls must be updated.
- If there is no such clause, create a child node labeled failure for $((A,G),\sigma)$

Updating solution lists

• Let $A\sigma$ be an atom completed by a unit clause and $\theta_1...\theta_k$ be substitutions that label edges from the node in which $A\sigma$ is located to the node that is created after the unit clause is applied. Then $A\sigma\theta_1...\theta_k$ is added to the rear of the solution list for $A\sigma$.

Process a look-up node $((A,G),\sigma)$

If the pointer for the look-up node points to middle of the solution list for a key

- Add a child node (G, $\sigma\theta$) for ((A,G), σ) for each A $\sigma\theta$ at or after the pointed position in the solution list for the key and label the edge θ
- position the pointer to the tail of the solution list

Example

```
arc(a,b).

arc(b,c).

arc(c,a).

path(X,Y) \leftarrow arc(X,Y).

path(X,Z) \leftarrow arc(X,Y), path(Y,Z).
```

Abstract OLDT

- Substitution → abstract substitution/concrete substitution
- Key → a pair of an atom and an abstract substitution (restricted to variables in the atom)
- Solution → a pair of an atom and an abstract substitution (restricted to variables in the atom)
- Unification → abstract unification
- Composition → abstract composition

Example

append([], X, X). append([X|U], V, [X|W]) \leftarrow append(U, V, W).

 \leftarrow append(Xs,Ys,Zs).

<append(xs,ys,zs), {xs,ys}=""></append(xs,ys,zs),>	<append(xs,ys,zs), {xs,ys,zs}=""></append(xs,ys,zs),>

Top-down/bottom-up analysis

• Top-down analysis emulates a top-down execution mechanism, like OLDT or SLD.

• Bottom-up analysis emulates a bottom-up execution mechanism such as T_p.

Abstract Compilation

Apply abstraction to clauses to obtain an abstract program

• Apply T_P to compute success set of the abstract program

Normalized programs

```
append([], Ys, Ys).
append([X|Us],Vs,[X|Ws]) \leftarrow
   append(Us, Vs, Ws).
append(Xs,Ys,Zs) \leftarrow Xs = [],Ys=Zs.
append(Xs, Ys, Zs) \leftarrow
  Xs=[X|Us], Zs=[X|Ws],
  append(Us, Ys, Ws).
```

Abstraction α_{Pos}

$$\begin{array}{lll} \text{append}(Xs,Ys,Zs) \leftarrow & \text{append}(Xs,Ys,Zs) \leftarrow \\ Xs = [\], & Xs \wedge (Ys \leftrightarrow Zs). \\ Ys = Zs. & \text{append}(Xs,Ys,Zs) \leftarrow \\ \text{append}(Xs,Ys,Zs) \leftarrow & \exists \{X,Us,Ws\}. \\ Xs = [X|Us], & Xs \leftrightarrow X \wedge Us \wedge \\ Zs = [X|Ws], & Zs \leftrightarrow X \wedge Ws \wedge \\ \text{append}(Us,Ys,Ws). & \text{append}(Us,Ys,Ws). \end{array}$$

Abstract atoms

An abstract atom has the following form:

$$p(X_1, X_2, ..., X_n) \leftarrow f(X_1, X_2, ..., X_n)$$

where p is a predicate of arity n.

Success set

 $append(Xs, Ys, Zs) \leftarrow Xs \land (Ys \leftrightarrow Zs)$

```
append(Xs,Ys,Zs) \leftarrow \exists \{X,Us,Ws\}. Xs \leftrightarrow X \land Us \land Zs \leftrightarrow X \land Ws \land Us \land (Ys \leftrightarrow Ws)
```

 $append(Xs, Ys, Zs) \leftarrow (Xs/Ys \leftrightarrow Zs)$

Quicksort

```
pt(X,Xs,Ls,Bs) \leftarrow
qs(Xs,Ys) \leftarrow
                                        X_{s=[],L_{s=[],B_{s=[]}}.
   X_S = [], Y_S = [].
                                     pt(X,Xs,Ls,Bs) \leftarrow
qs(Xs,Ys) \leftarrow
                                        X_{s}=[X_{1}|X_{s}],
   Xs=[X|Xs1],
                                        X < X1.
   pt(X,Xs1,Ls,Bs),
                                        pt(X,Xs1,Ls,Bs1),
   qs(Ls,Ls1),
                                        Bs = [X1|Bs1].
   qs(Bs,Bs1),
                                     pt(X,Xs,Ls,Bs) \leftarrow
   Bs2=[X|Bs1],
                                        Xs=[X1|Xs1],
   append(Ls1,Bs2,Ys).
                                        X >= X1.
                                        pt(X,Xs1,Ls1,Bs),
                                        Ls = [X1|Ls1].
```

Abstraction of Quicksort

```
qs(Xs,Ys) \leftarrow
                                                        pt(X,Xs,Ls,Bs) \leftarrow
                                                            Xs/Ls/Bs
    Xs \land Ys
                                                        pt(X,Xs,Ls,Bs) \leftarrow
qs(Xs,Ys) \leftarrow
                                                            \exists \{X1,Xs1,Ls,Bs1\}.
    \exists \{X,Xs1,Ls,Bs,Ls1,Bs1,Bs2\}.
                                                             (Xs \leftrightarrow X1 \land Xs1) \land
    Xs \leftrightarrow X \land Xs1 \land
                                                            X \land X1 \land
    pt(X,Xs1,Ls,Bs) \land
                                                            pt(X,Xs1,Ls,Bs1) \land
                                                            Bs \leftrightarrow X \land Bs1
    qs(Ls,Ls1) \land
                                                        pt(X,Xs,Ls,Bs) \leftarrow
    qs(Bs,Bs1) \land
                                                            \exists \{X1,Xs1,Ls1\}.
    Bs2 \leftrightarrow X \land Bs1 \land
                                                             (Xs \leftrightarrow X1 \land Xs1) \land
     append(Ls1,Bs2,Ys)
                                                            X \wedge X1 \wedge
                                                             pt(X,Xs1,Ls1,Bs),
                                                            Ls \leftrightarrow X1 \land Ls1
```

Simplifying Abstract Quicksort

```
qs(Xs,Ys) \leftarrow
                                                       pt(X,Xs,Ls,Bs) \leftarrow
                                                            Xs/Ls/Bs
    Xs \land Ys
                                                       pt(X,Xs,Ls,Bs) \leftarrow
qs(Xs,Ys) \leftarrow
                                                            \exists \{Xs1,Ls,Bs1\}.
    \exists \{X,Xs1,Ls,Bs,Ls1,Bs1,Bs2\}.
                                                            (Xs \leftrightarrow Xs1) \land
    Xs \leftrightarrow X \land Xs1 \land
                                                            X \wedge
                                                            pt(X,Xs1,Ls,Bs1) \land
    pt(X,Xs1,Ls,Bs) \land
                                                           Bs \leftrightarrow Bs1
    qs(Ls,Ls1) \land
                                                       pt(X,Xs,Ls,Bs) \leftarrow
    qs(Bs,Bs1) \land
                                                            \exists \{Xs1,Ls,Ls1\}.
    Bs2 \leftrightarrow X \land Bs1 \land
                                                            (Xs \leftrightarrow Xs1) \land
     append(Ls1,Bs2,Ys)
                                                            X \wedge
                                                            pt(X,Xs1,Ls1,Bs),
                                                            Ls \leftrightarrow Ls1
```