The Soundness of SL Tree Proofs

LOGIC I Benjamin Brast-McKie October 5, 2023

Informal Proof

Motive: We want to know which arguments are valid.

Equivalence: $\Sigma \vDash \varphi$ *iff* Σ , $\neg \varphi \vDash \bot$.

Soundness: Letting $\Gamma = \Sigma \cup \{\neg \varphi\}$, we want to show that $\Gamma \vDash \bot$ if $\Gamma \vdash \bot$.

Informally: We want to show that every closed tree has an unsatisfiable root.

Question 1: Why can't we use our tree method (or similar) to prove soundness?

Definitions

Root: An SL tree whose root contains the sentences in Γ is a tree *with* root Γ .

Branch Satisfaction: An SL interpretation \mathcal{I} satisfies a branch \mathcal{B} in an SL tree X just in case

 $V_{\mathcal{I}}(\varphi) = 1$ for every φ which occurs in \mathcal{B} .

Setting up the Proof

Contrapositive: Every SL tree with a satisfiable root is closed.

Lemma 3: Every SL tree with a satisfiable root has a satisfiable branch.

Question 2: How can we derive soundness from this stronger claim?

Question 3: How can we prove *Lemma 4*?

Supporting Lemmas

Lemma 1: Every satisfiable branch \mathcal{B} in an SL tree X is open.

Lemma 2: If X is an SL tree with a satisfiable branch \mathcal{B} , then any tree X' which is the result of resolving a sentence in \mathcal{B} has a satisfiable branch \mathcal{B}' .

- Assume X has a satisfiable branch \mathcal{B} .
- So there is some \mathcal{I} where $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ for all φ in \mathcal{B} .
- By Lemma 1, \mathcal{B} is open.
- If \mathcal{B} is complete, then the consequent holds vacuously.
- If \mathcal{B} is not complete, then \mathcal{B} has a resolvable sentence φ .
- There are nine cases to check given our nine resolution rules.

Lemma 3

Proof: Every SL tree with a satisfiable root has a satisfiable branch.

Antecedent: Assume $\Gamma \nvDash \bot$.

Base: Let *X* be an tree with root Γ where Length(*X*) = 0.

Hypothesis: Every tree X with root Γ of Length(X) = n has a satisfiable branch \mathcal{B} .

Induction: Assume X' is a tree with root Γ of Length(X') = n + 1.

- 1. Let *X* be any tree with root Γ where *X'* is the result of resolving a sentence φ in a branch \mathcal{B} of *X*.
- 2. So X is a tree with root Γ of Length(X) = n.
- 3. By hypothesis, *X* has a satisfiable branch \mathcal{B}^* .
- 4. So either $\mathcal{B}^* = \mathcal{B}$ or not.

Case 1: Assume $\mathcal{B}^* = \mathcal{B}$.

- (a) We know that X' is the result of resolving φ in \mathcal{B} .
- (b) By the case assumption $\mathcal{B} = \mathcal{B}^*$.
- (c) Since \mathcal{B}^* is satisfiable, X' has a satisfiable branch \mathcal{B}' by Lemma 2.

Case 2: Assume $\mathcal{B}^* \neq \mathcal{B}$.

- (a) We know \mathcal{B}^* is a satisfiable branch of X.
- (b) X' is the result of resolving φ in $\mathcal{B} \neq \mathcal{B}^*$ of X.
- (c) So \mathcal{B}^* is also a branch of X'.
- (d) Since \mathcal{B}^* is satisfiable, X' has a satisfiable branch.
- 5. Thus X' has a satisfiable branch whether $\mathcal{B}^* = \mathcal{B}$ or not.
- 6. Every tree X' with root Γ of Length(X') = n+1 has a satisfiable branch \mathcal{B} .

Conclusion: By weak induction, QED.

Proving Soundness

Proof: If there is a closed SL tree with root Γ , then Γ is unsatisfiable.

- 1. Assume Γ is satisfiable.
- 2. Let X be an SL tree with root Γ.
- 3. So X has a satisfiable branch \mathcal{B} by Lemma 3.
- 4. So \mathcal{B} is open by *Lemma* 1.
- 5. So *X* is not closed.
- 6. More generally, there is no closed SL tree with root Γ .
- 7. By contraposition, QED.