CHAPTER FOUR

Interpolation and Polynomial Approximation

Objectives

Newton Polynomials

Recursive Pattern

$$P_{1}(x) = a_{0} + a_{1}(x - x_{0})$$

$$P_{2}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1})$$

$$P_{1}(x)$$

$$P_{3}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1}) + a_{3}(x - x_{0})(x - x_{1})(x - x_{2})$$

$$P_{2}(x)$$

$$P_N(x) = a_0 + a_1(x - x_0) + \dots + a_N(x - x_0) \dots (x - x_{N-1})$$

Newton Polynomials

$$P_N(x) = P_{N-1}(x) + a_N(x - x_0) \dots (x - x_{N-1})$$

$$P_1(x) = a_0 + a_1(x - x_0)$$

$$P_1(x_0) = a_0 + a_1(x_0 - x_0) = a_0 = f(x_0)$$

$$P_1(x_1) = a_0 + a_1(x_1 - x_0) = f(x_0) + a_1(x_1 - x_0) = f(x_1)$$

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$P_2(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f(x_2)$$

$$a_2 = \frac{f(x_2) - a_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

$$a_2 = \frac{f(x_2) - f(x_0) - \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}$$

Divided Difference

$$a_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Divided Difference

$$f[x_k] = f(x_k)$$

$$f[x_{k-1}, x_k] = \frac{f[x_k] - f[x_{k-1}]}{x_k - x_{k-1}}$$

$$f[x_{k-2}, x_{k-1}, x_k] = \frac{f[x_{k-1}, x_k] - f[x_{k-2}, x_{k-1}]}{x_k - x_{k-2}}$$

$$f[x_{k-3}, x_{k-2}, x_{k-1}, x_k] = \frac{f[x_{k-2}, x_{k-1}, x_k] - f[x_{k-3}, x_{k-2}, x_{k-1}]}{x_k - x_{k-3}}$$

$$a_k = f[x_0, x_1, \dots, x_k]$$

Divided Difference

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$

Divided Difference Table

x_k	$f[x_k]$	$f[x_{k-1},x_k]$	$f[x_{k-2},x_{k-1},x_k]$	$f[x_{k-3},\ldots,x_k]$	$f[x_{k-4},\ldots,x_k]$
x_0	$f[x_0]$				
x_1	$f[x_1]$	$f[x_0, x_1]$			
x_2	$f[x_2]$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f[x_3]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
x_4	$f[x_4]$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0, x_1, \dots, x_4]$

Divided Difference Table

x_k	$f[x_k]$	$f[x_{k-1},x_k]$	$f[x_{k-2},x_{k-1},x_k]$	$f[x_{k-3}, \dots, x_k]$	$f[x_{k-4},\ldots,x_k]$
	a_0				
x_0	$a_0 f[x_0]$				
x_1	$f[x_1]$	$a_1 f[x_0, x_1]$			
x_2	$f[x_2]$	$f[x_1, x_2]$	$a_2[f[x_0,x_1,x_2]]$	a_3	
x_3	$f[x_3]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	a_4
x_4	$f[x_4]$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0,x_1,\ldots,x_4]$

Newton Polynomials - Example

• Let $f(x)=x^3-4x$, construct divided-difference table based on the nodes: $x_0=1,\ x_1=2,\ x_2=3,\ x_3=4,\ x_4=5,\ \text{and}\ x_5=6$

x_k	$f[x_k]$	1 st Divided difference	2 nd Divided difference	3 rd Divided difference	4 th Divided difference	5 th Divided difference
$x_0 = 1$	-3					
$x_1 = 2$	0	3				
$x_2 = 3$	15	15	6			
$x_3 = 4$	48	33	9	1		
$x_4 = 5$	105	57	12	1	0	
$x_5 = 6$	192	87	15	1	0	0

Newton Polynomials – Example (Cont'd)

• Find Newton Polynomial $P_3(x)$ based on $x_0=1,\ x_1=2,\ x_2=3,\ x_3=4,\ x_4=5,$ and $x_5=6$

From divided- difference table we have: $a_0 = -3$, $a_1 = 3$, $a_2 = 6$, $a_3 = 1$ Then,

$$P_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2)$$

= -3 + 3(x - 1) + 6(x - 1)(x - 2) + 1(x - 1)(x - 2)(x - 3)

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

