Higher Pro-arrows: Towards a Model for Naturality Pretype Theory

Andreas Nuyts

KU Leuven, Belgium

HoTT/UF '23 Vienna, Austria April 23, 2023

Naturality TT: **Why?** (And what?) Example problem in verified functional programming

Type — Monoid

Type — Monoid

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List f : List A → List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves □ (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

 $WriterT : Monoid \rightarrow MonadTrans$

- Object action: WriterT W ∈ MonadTrans
 - Object action: WriterT $WM \in M$
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - lift : M → WriterT W M + naturality
 - Respects return & bind
 - Functorial action:

- WriterThMA
 - Respects return, bind & lift
- naturality w.r.t. A
- naturality w.r.t. M
- + functor laws

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List *f* : List *A* → List *B* (by recursion)
 - List f is a monoid morphism:
 - List f preserves [] (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

WriterT: Monoid → MonadTrans

- Object action: WriterT $W \in MonadTrans$
 - Object action: WriterT $WM \in M$ onad
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT W ∈ MonadTrans
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - lift : M → WriterT W M + naturality
 - Respects return & bind
 - Functorial action:

- WriterT h M A
 - Respects return, bind & lift
- naturality w.r.t. A
- naturality w.r.t. M
- functor laws

In plain DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List f : List A → List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves □ (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

 $WriterT : Monoid \rightarrow MonadTrans$

- Object action: WriterT W ∈ MonadTrans
 - Object action: WriterT $WM \in M$
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - lift : M → WriterT W M + naturality
 - Respects return & bind
 - Functorial action:

- WriterThMA
 - Respects return, bind & lift
- naturality w.r.t. A
- naturality w.r.t. M
- + functor laws

In parametric DTT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Functorial action:
 - List f : List A → List B (by recursion)
 - List *f* is a monoid morphism:
 - List f preserves □ (trivial)
 - List f preserves ++ (by induction)
 - + functor laws (by induction)

Functoriality of

 $WriterT : Monoid \rightarrow MonadTrans$

- Object action: WriterT W ∈ MonadTrans
 - Object action: WriterT $WM \in M$
 - Object action: Define WriterT W M A
 - Functorial action WriterT W M f
 - + functor laws
 - return & bind + naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Functorial action WriterT W g
 - Respects return & bind
 - + functor laws
 - lift : M → WriterT W M + naturality
 - Respects return & bind
 - Functorial action:

- WriterThMA
 - Respects return, bind & lift
- **T** naturality w.r.t. *A*
- maturality w.r.t. M
- + functor laws

In HoTT (assuming f, g and h = List f are isos)

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- **T** Functorial action:
 - \coprod List f: List $A \cong \text{List } B$ (by recursion)
 - **List** *f* is a monoid morphism:
 - **List** f preserves [] (trivial)
 - List f preserves ++ (by ind.)
 - + the functor laws (by induction)

Functoriality of

 $WriterT : Monoid \rightarrow MonadTrans$

- Object action: WriterT W ∈ MonadTrans
 - Object action: WriterT $WM \in M$ onad
 - Object action: Define WriterT W M A
 - Tunctorial action WriterT W Mf
 - + **t** functor laws
 - return & bind + ii naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Tunctorial action Writer Wg
 - Respects return & bind
 - + **t** functor laws
 - lift : M → WriterT W M + aturality
 - Respects return & bind
- Functorial action:

WriterT h: WriterT $V \cong$ WriterT W

- WriterThMA
 - Respects return, bind & lift
- ii naturality w.r.t. A
- maturality w.r.t. M
- + **t** functor laws

In Naturality TT

Functoriality of List : Type \rightarrow Monoid:

- Object action: (List A, [], ++)
- Tunctorial action:
 - List f: List A → List B (by recursion)
 - **T** List *f* is a monoid morphism:
 - List f preserves [] (trivial)
 - **List** preserves ++ (by ind.)
 - + the functor laws (by induction)

Functoriality of

 $WriterT : Monoid \rightarrow MonadTrans$

- Object action: WriterT $W \in MonadTrans$
 - Object action: WriterT $WM \in M$ onad
 - Object action: Define WriterT W M A
 - Tunctorial action WriterT W Mf
 - + **t** functor laws
 - return & bind + naturality

- ... Object action: WriterT $W \in MonadTrans$
 - Tunctorial action Writer Wg
 - Respects return & bind
 - + **t** functor laws
 - lift : M → WriterT W M + naturality
 - Respects return & bind
- ## Functorial action:

- WriterT h M A
 - Respects return, bind & lift
- **t** naturality w.r.t. A
- maturality w.r.t. M
- + **t** functor laws

WriterT W M A: Monad is covariant w.r.t.

• W: Monoid

M: Monad

• *A* : Type

ReaderT R M A is contravariant w.r.t

R: Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

W : Monoid

M: Monad

A : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 - ODON'T know how to compute fmap.

Naturality T7

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT W M A: Monad is covariant w.r.t.

• W: Monoid

M: Monad

A : Type

ReaderT RMA is contravariant w.r.t.

R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

W : Monoid

M: Monad

A : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 - ② Don't know how to compute fmap.

Naturality T7

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT W M A: Monad is covariant w.r.t.

• W: Monoid

M: Monad

A : Type

ReaderT R M A is contravariant w.r.t.

R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

• W: Monoid

• M: Monad

• *A* : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 - Open the property of the pr

Naturality T

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT W M A: Monad is covariant w.r.t.

• W: Monoid

M : Monad

A : Type

ReaderT R M A is contravariant w.r.t.

R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

• W: Monoid

• M: Monad

A : Type

Ignoring variance

- HoTT: only consider **isomorphisms**
 - ② Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality T

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT W M A: Monad is covariant w.r.t.

• W: Monoid

M: Monad

A : Type

ReaderT R M A is contravariant w.r.t.

R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

• W: Monoid

M: Monad

• *A* : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality T

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT W M A: Monad is covariant w.r.t.

• W: Monoid

M: Monad

A : Type

ReaderT R M A is contravariant w.r.t.

R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

• W: Monoid

• M: Monad

A : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

WriterT W M A: Monad is covariant w.r.t.

• W: Monoid

M: Monad

A : Type

ReaderT R M A is contravariant w.r.t.

R : Type

return : $A \rightarrow WriterT W M A$ is **natural** w.r.t.

• W: Monoid

M: Monad

• *A* : Type

Ignoring variance

- HoTT: only consider isomorphisms
 Not everything is an isomorphism.
- Param'ty: relations, not morphisms
 Don't know how to compute fmap.

Naturality TT

- Preserve isomorphisms
- Preserve relations
- Keep track of action on morphisms

- Use functoriality/naturality when possible
- Use HoTT when applicable
- Use param'ty when necessary

Pretypes: A Note on Fibrancy

A presheaf model of DTT can account for the existence of paths/morphisms/bridges/...

- Functoriality & Segal fibrancy are brittle

Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
HoTT	
Kan	Comp. of & transp. along paths
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for the existence of paths/morphisms/bridges/...

Fibrant types have **operations** for these:

We **ignore** fibrancy for now

- Functoriality & Segal fibrancy are brittle
 ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Gontextual fibrancy [BT21, Nuy20]
 - Amazing right adjoint [LOPS18] & Transpension IND211
 - Internal fibrant replacement monad (Nuv20)

Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
HoTT	
Kan	Comp. of & transp. along paths
Param'ty discrete	Homog. bridges express equality

 \Rightarrow It's a **pretype** system

A presheaf model of DTT can account for the existence of paths/morphisms/bridges/...

Fibrant types have **operations** for these:

We **ignore** fibrancy for now

- Functoriality & Segal fibrancy are brittle
 ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT21, Nuy20]
 - Amazing right adjoint [LOPS18] &

 The second right adjoint [LOPS18] &

 The secon
- Internal fibrant replacement monad

Segal	Composition of morphisms		
Rezk	Isomorphism-path univalence		
HoTT			
Kan	Comp. of & transp. along paths		
Param'ty			
discrete	Homog. bridges express equality		

Transport along morphisms

Directed

functorial

⇒ It's a pretype system

A presheaf model of DTT can account for the existence of paths/morphisms/bridges/...

Fibrant types have **operations** for these:

We **ignore** fibrancy for now

- Functoriality & Segal fibrancy are brittle
 ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
- Contextual fibrancy (BT21, Nuy20)
 Amazing right adjoint [LOPS18] & Transpension IND211
 - Internal fibrant replacement monad (Nuv20)

Directed		
functorial	Transport along morphisms	
Segal	Composition of morphisms	
Rezk	Isomorphism-path univalence	
HoTT		
Kan	Comp. of & transp. along paths	
Param'ty		
discrete	Homog. bridges express equality	

 \Rightarrow It's a **pretype** system

A presheaf model of DTT can account for the existence of paths/morphisms/bridges/...

Fibrant types have **operations** for these:

- Functoriality & Segal fibrancy are brittle

Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
HoTT	
Kan	Comp. of & transp. along paths
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for the existence of paths/morphisms/bridges/...

Fibrant types have **operations** for these:

We **ignore** fibrancy for now:

- Functoriality & Segal fibrancy are brittle
 ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT21, Nuy20]
 - Amazing right adjoint [LOPS18] & Transpension [ND21]
 - Internal fibrant replacement monad [Nuy20]

\Rightarrow	It's a	pretvi	s system	

Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
HoTT	
Kan	Comp. of & transp. along paths
Param'ty	
discrete	Homog. bridges express equality

A presheaf model of DTT can account for the existence of paths/morphisms/bridges/...

Fibrant types have **operations** for these:

We **ignore** fibrancy for now:

- Functoriality & Segal fibrancy are brittle ⇒ need to consider pretypes anyway
- There are promising techniques for defining fibrancy internally:
 - Contextual fibrancy [BT21, Nuy20]
 - Amazing right adjoint [LOPS18] & Transpension [ND21]
 - Internal fibrant replacement monad

[Nuy20]		
 _		

Directed	
functorial	Transport along morphisms
Segal	Composition of morphisms
Rezk	Isomorphism-path univalence
HoTT	
Kan	Comp. of & transp. along paths
Param'ty	
discrete	Homog. bridges express equality

Model-first Approach

The type system emerges from the model:

 A diagram of CwFs and adjunctions models an instance of MTT [GKNB20]. • An endofunctor on \mathscr{W} models a substructural shape (e.g. \mathbb{I}) in Psh(\mathscr{W}) giving rise to modalities $\exists (i:\mathbb{I}) \dashv \exists [i:\mathbb{I}] \dashv \forall (i:\mathbb{I}) \dashv \Diamond [i:\mathbb{I}]$. This is the basis of the modal transpension type system (MTraS) [ND21].

Model-first Approach

The type system emerges from the model:

 A diagram of CwFs and adjunctions models an instance of MTT [GKNB20].

• An endofunctor on \mathscr{W} models a substructural shape (e.g. \mathbb{I}) in Psh(\mathscr{W}) giving rise to modalities $\exists (i:\mathbb{I}) \dashv \exists [i:\mathbb{I}] \dashv \forall (i:\mathbb{I}) \dashv [i:\mathbb{I}]$. This is the basis of the modal transpension type system (MTraS) [ND21].

The Model

n-Fold Categories

Category

A category $\mathscr C$ can be defined as a simplicial set $\mathscr C\in\operatorname{Psh}(\Delta)$ satisfying the Segal condition.

Double category

A double category \mathscr{C} has:

- objects
- horiz. arrows / (1)-arrows
- vertical arrows / (2)-arrows
- squares

and can be defined as a **bisimplicial set** $\mathscr{C}\in\operatorname{Psh}(\Delta imes\Delta)$ satisfying the **Segal condition** in each dimension.

n-Fold category

An *n*-fold category $\mathscr C$ is an *n*-fold simplicial set $\mathscr C\in \mathrm{Psh}(\Delta^n)$ satisfying the Segal condition in each dimension.

Pretypes!

Category

A category $\mathscr C$ can be defined as a simplicial set $\mathscr C\in\operatorname{Psh}(\Delta)$ satisfying the Segal condition.

Double category

A double category \mathscr{C} has:

- objects
- horiz. arrows / (1)-arrows
- vertical arrows / (2)-arrows
- squares

and can be defined as a **bisimplicial set** $\mathscr{C} \in \operatorname{Psh}(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

n-Fold category

An *n*-fold category \mathscr{C} is an *n*-fold simplicial set $\mathscr{C} \in \operatorname{Psh}(\Delta^n)$ satisfying the Segal condition in each dimension.

Category

A category $\mathscr C$ can be defined as a simplicial set $\mathscr C\in\operatorname{Psh}(\Delta)$ satisfying the Segal condition.

Double category

A double category \mathscr{C} has:

- objects
- horiz. arrows / (1)-arrows
- vertical arrows / (2)-arrows
- squares

and can be defined as a **bisimplicial set** $\mathscr{C} \in \operatorname{Psh}(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

n-Fold category

An *n*-fold category $\mathscr C$ is an *n*-fold simplicial set $\mathscr C\in \mathrm{Psh}(\Delta^n)$ satisfying the Segal condition in each dimension.

Category

A category $\mathscr C$ can be defined as a simplicial set $\mathscr C\in\operatorname{Psh}(\Delta)$ satisfying the Segal condition.

Double category

A double category \mathscr{C} has:

- objects
- horiz. arrows / (1)-arrows
- vertical arrows / (2)-arrows
- squares

and can be defined as a **bisimplicial set** $\mathscr{C}\in \mathrm{Psh}(\Delta\times\Delta)$ satisfying the **Segal condition** in each dimension.

n-Fold category

An n-fold category $\mathscr C$ is an n-fold simplicial set $\mathscr C \in \operatorname{Psh}(\Delta^n)$ satisfying the Segal condition in each dimension.

Category

A category $\mathscr C$ can be defined as a simplicial set $\mathscr C\in\operatorname{Psh}(\Delta)$ satisfying the Segal condition.

Double category

A double category \mathscr{C} has:

- objects
- horiz. arrows / (1)-arrows
- vertical arrows / (2)-arrows
- squares

and can be defined as a **bisimplicial set** $\mathscr{C} \in \operatorname{Psh}(\Delta \times \Delta)$ satisfying the **Segal condition** in each dimension.

n-Fold category

An n-fold category $\mathscr C$ is an n-fold simplicial set $\mathscr C \in \operatorname{Psh}(\Delta^n)$ satisfying the Segal condition in each dimension.

 Δ is a skeleton of FinLinOrd, hence $\Delta \simeq$ FinLinOrd.

Twisted Prism Functor [PK19]

 $\sqcup \ltimes \mathbb{I} : \mathsf{FinLinOrd} \to \mathsf{FinLinOrd}$ $W \mapsto W^\mathsf{op} \uplus_{\geq} W$

$$a \longrightarrow b \qquad \mapsto \qquad \begin{matrix} \iota_0 a \longleftarrow \iota_0 b \\ \downarrow \\ \iota_1 a \longrightarrow \iota_1 b \end{matrix}$$

An MTraS-shape I modelled by $\square \ltimes I$, reconciles the view of Hom as a contra-/covariant bifunctor with a view as a directed path type.

 ${\mathbb I}$ as an MTraS-shape is better behaved on ${old \bowtie}$:

Twisted Cube Category ⋈ [PK19]

(Roughly) the subcategory of FinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

n-Fold category

An *n*-fold category $\mathscr C$ is an *n*-fold twisted cubical set $\mathscr C \in \operatorname{Psh}(\bowtie^n)$ satisfying the Segal condition in each dimension.

 Δ is a skeleton of FinLinOrd, hence $\Delta \simeq$ FinLinOrd.

Twisted Prism Functor [PK19]

 $\sqcup \ltimes \mathbb{I} : \mathsf{FinLinOrd} \to \mathsf{FinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

An MTraS-shape \mathbb{I} modelled by $\square \ltimes \mathbb{I}$, reconciles the view of Hom as a **contra-/covariant bifunctor** with a view as a directed **path type**.

 ${\mathbb I}$ as an MTraS-shape is better behaved on ${old \bowtie}$:

Twisted Cube Category ⋈ [PK19]

(Roughly) the subcategory of FinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

n-Fold category

An *n*-fold category \mathscr{C} is an *n*-fold twisted cubical set $\mathscr{C} \in \operatorname{Psh}(\bowtie^n)$ satisfying the Segal condition in each dimension.

 Δ is a skeleton of FinLinOrd, hence $\Delta \simeq$ FinLinOrd.

Twisted Prism Functor [PK19]

 $\sqcup \ltimes \mathbb{I} : \mathsf{FinLinOrd} \to \mathsf{FinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

An MTraS-shape \mathbb{I} modelled by $\square \ltimes \mathbb{I}$, reconciles the view of Hom as a contra-/covariant bifunctor with a view as a directed path type.

 ${\mathbb I}$ as an MTraS-shape is better behaved on ${old \bowtie}$:

Twisted Cube Category ⋈ [PK19]

(Roughly) the subcategory of FinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

n-Fold category

An *n*-fold category \mathscr{C} is an *n*-fold twisted cubical set $\mathscr{C} \in \operatorname{Psh}(\bowtie^n)$ satisfying the Segal condition in each dimension.

 Δ is a skeleton of FinLinOrd, hence $\Delta \simeq$ FinLinOrd.

Twisted Prism Functor [PK19]

 $\sqcup \ltimes \mathbb{I} : \mathsf{FinLinOrd} \to \mathsf{FinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

An MTraS-shape \mathbb{I} modelled by $\square \ltimes \mathbb{I}$, reconciles the view of Hom as a **contra-/covariant bifunctor** with a view as a directed **path type**.

 \mathbb{I} as an MTraS-shape is better behaved on \bowtie :

Twisted Cube Category ⋈ [PK19]

(Roughly) the subcategory of FinLinOrd (or Δ) generated by \top and $\square \ltimes \mathbb{I}$.

n-Fold category

An *n*-fold category \mathscr{C} is an *n*-fold twisted cubical set $\mathscr{C} \in \operatorname{Psh}(\bowtie^n)$ satisfying the Segal condition in each dimension.

 Δ is a skeleton of FinLinOrd, hence $\Delta \simeq$ FinLinOrd.

Twisted Prism Functor [PK19]

 $\sqcup \ltimes \mathbb{I} : \mathsf{FinLinOrd} \to \mathsf{FinLinOrd} : W \mapsto W^\mathsf{op} \uplus_{<} W$

An MTraS-shape \mathbb{I} modelled by $\square \ltimes \mathbb{I}$, reconciles the view of Hom as a contra-/covariant bifunctor with a view as a directed path type.

 \mathbb{I} as an MTraS-shape is better behaved on \bowtie :

Twisted Cube Category ⋈ [PK19]

(Roughly) the subcategory of FinLinOrd (or $\Delta)$ generated by \top and $\sqcup \bowtie \mathbb{I}.$

n-Fold category

An *n*-fold category $\mathscr C$ is an *n*-fold twisted cubical set $\mathscr C \in \operatorname{Psh}(\bowtie^n)$ satisfying the Segal condition in each dimension.

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- arrows (\rightarrow)
- pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has **graph** pro-arrows $\varphi^{\ddagger}: x \nrightarrow y$ and $\varphi^{\dagger}: y \nrightarrow x$ such that (\ldots) .

Example: Set

Set is an equipment with:

- sets
- functions
- relations
 - identity relation: equality
 - $(R; S)(x,z) = \exists y.R(x,y) \land S(y,z)$
- proofs that $R(a,b) \Rightarrow S(fa,gb)$

$$\begin{array}{c|c}
A & \xrightarrow{H} & B \\
\downarrow^f & & \downarrow^g \\
C & \xrightarrow{\downarrow} & D
\end{array}$$

(Pro-arrow) Equipment

An equipment $\mathscr C$ is a double category with

- objects
- arrows (\rightarrow)
- pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has **graph** pro-arrows $\varphi^{\ddagger}: x \nrightarrow y$ and $\varphi^{\dagger}: y \nrightarrow x$ such that (\ldots) .

Example: Set

Set is an equipment with:

- sets
- functions
- relations
 - identity relation: equality
 - $(R; S)(x, z) = \exists y. R(x, y) \land S(y, z)$
- proofs that $R(a,b) \Rightarrow S(fa,gb)$

(Pro-arrow) Equipment

An equipment $\mathscr C$ is a double category with

- objects
- arrows (\rightarrow)
- pro-arrows (→)
- squares

such that every arrow $\varphi: x \to y$ has **graph** pro-arrows $\varphi^{\ddagger}: x \nrightarrow y$ and $\varphi^{\dagger}: y \nrightarrow x$ such that (\ldots) .

Example: Set

Set is an equipment with:

- sets
- functions
- relations
 - identity relation: equality
 - $(R; S)(x, z) = \exists y. R(x, y) \land S(y, z)$
- proofs that $R(a,b) \Rightarrow S(fa,gb)$

(Pro-arrow) Equipment

An equipment \mathscr{C} is a double category with

- objects
- arrows (\rightarrow)
- pro-arrows (→)
- squares

such that every arrow $\varphi : x \to y$ has **graph** pro-arrows $\varphi^{\ddagger}: x \rightarrow y$ and $\varphi^{\dagger}: y \rightarrow x$ such that (...).

Example: Cat

Cat is an equipment with:

- categories
- functors
- profunctors
 - identity profunctor: Hom
 - $(\mathcal{P}; \mathcal{Q})(x, z) =$ $\exists y. \mathscr{P}(x,y) \times \mathscr{Q}(y,z)$

• Hend $\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Egmnt is ...

- An equipment
- A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Pro-pro-arrows Equipment pro-profunctors:

Squares ...

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

 $\Rightarrow \mathscr{C} \in \operatorname{Psh}(\bowtie_{\dagger,\ddagger}^n)$

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- C A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Pro-pro-arrows Equipment pro-profunctors:

Squares ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

 $\Rightarrow \mathscr{C} \in \mathrm{Psh}(\bowtie_{\dagger,\ddagger}^n)$

Set is ...

A large set

A category

An equipment

Cat is ...

A category

A 2-category

An equipment

Eqmnt is ...

An equipment

© A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment pro-profunctors:

Squares ...

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

 $\Rightarrow \mathscr{C} \in \mathrm{Psh}(\bowtie_{\dagger,\ddagger}^n)$

Set is ...

A large set

A category

An equipment

Cat is ...

A category

A 2-category

An equipment

Eqmnt is ...

An equipment

A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment **pro-profunctors**:
Contain pro-arrows

Squares ...

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

 $\Rightarrow \mathscr{C} \in \mathrm{Psh}(\bowtie_{\dagger,\ddagger}^n)$

Set is ...

- A large set
- A category
- An equipment

Cat is ...

- A category
- A 2-category
- An equipment

Eqmnt is ...

- An equipment
- A 2-equipment

Eqmnt has:

Objects Equipments

Arrows Equipment functors

Pro-arrows Equipment profunctors:

Contain arrows and pro-arrows

Pro-pro-arrows Equipment **pro-profunctors**:

Contain pro-arrows

Squares ...

Cubes ...

Higher Equipment

An *n*-equipment is an *n*-fold category (...)

$$\Rightarrow \mathscr{C} \in \mathrm{Psh}(\bowtie_{\dagger,\ddagger}^n)$$

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- *i*-jet (pro^{*i*-1}-arrow) relations \curvearrowright_i
- $J: A \curvearrowright_{j+1}^{\mathsf{U}} B$ is a container for $j: a \curvearrowright_{j}^{J} E$ $\mathsf{U} = \langle \operatorname{disc} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \curvearrowright_{i+1} b$
- Modalities change indices & orientation:

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- *i*-jet (proⁱ⁻¹-arrow) relations \curvearrowright_i
- $J: A \curvearrowright_{j+1}^{\mathsf{U}} B$ is a container for $j: a \curvearrowright_{j}^{\mathsf{J}} b$ $\mathsf{U} = \langle \mathsf{disc} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \curvearrowright_{i+1} b$
- Modalities change indices & orientation:

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- *i*-jet (proⁱ⁻¹-arrow) relations \curvearrowright_i
- $J: A \curvearrowright_{j+1}^{\cup} B$ is a container for $j: a \curvearrowright_{j}^{j} L$ $U = \langle \operatorname{disc} \mid U^{\operatorname{HS}} \rangle$
- $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \curvearrowright_{i+1} b$
- Modalities change indices & orientation:

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} | \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- i-jet (proⁱ⁻¹-arrow) relations →_i
- $J: A \curvearrowright_{i+1}^{J} B$ is a container for $i: a \curvearrowright_{i}^{J} b$
 - U = $\langle \operatorname{disc} \mid U^{\operatorname{HS}} \rangle$
- \bullet $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \curvearrowright_{i+1} b$
- Modalities change indices & orientation

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- i-jet (proⁱ⁻¹-arrow) relations ∼_i
- $J: A \curvearrowright_{j+1}^{\mathsf{U}} B$ is a container for $j: a \curvearrowright_{j}^{\mathsf{J}} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} | \mathsf{U}^{\mathsf{HS}} \rangle$
- $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \curvearrowright_{i+1} b$
- Modalities change indices & orientation:

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- i-jet (proⁱ⁻¹-arrow) relations ∼_i
- $J: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $j: a \curvearrowright_{i}^{J} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} | \mathsf{U}^{\mathsf{HS}} \rangle$
- $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \curvearrowright_{i+1} b$
- Modalities change indices & orientation:

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- *i*-jet (pro^{*i*-1}-arrow) relations \curvearrowright_i
- $J: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $j: a \curvearrowright_{i}^{\mathsf{J}} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} | \mathsf{U}^{\mathsf{HS}} \rangle$
- $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \stackrel{\sim}{\curvearrowright}_{i+1} b$
- Modalities change indices & orientation:

Depth *n* types

- $R: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $r: a \curvearrowright_{i}^{R} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} \mid \mathsf{U}^{\mathsf{HS}} \rangle$
- $a \frown_i b \Rightarrow a \frown_{i+1} b$
- Modalities change indices:

- i-jet (proⁱ⁻¹-arrow) relations ∼_i
- $J: A \curvearrowright_{i+1}^{\mathsf{U}} B$ is a container for $j: a \curvearrowright_{i}^{\mathsf{J}} b$ $\mathsf{U} = \langle \operatorname{\mathbf{disc}} | \mathsf{U}^{\mathsf{HS}} \rangle$
- $(\ddagger,\dagger): a \curvearrowright_i b \Rightarrow a \stackrel{\sim}{\curvearrowright}_{i+1} b$
- Modalities change indices & orientation:

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows → 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, → 1-arrows
- (1,2)-squares, → 2-arrows
- (1,2,3)-cubes, → 3-arrows . . .

can be non-trivial

$$\begin{array}{cccc}
\mathcal{A} & \stackrel{\mathcal{P}}{\longrightarrow} \mathcal{B} \\
\downarrow & & \downarrow G \\
\mathcal{C} & \stackrel{\downarrow}{\longrightarrow} \mathcal{D}
\end{array}$$

end
$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$
 $\cong \forall a. \text{Hom}(Fa, Ga)$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, → 1-arrows
- (1,2)-squares, → 2-arrows
- (1,2,3)-cubes, → 3-arrows . . .

can be non-trivial

$$\begin{array}{cccc}
\mathcal{A} & \xrightarrow{\mathcal{P}} & \mathcal{B} \\
\downarrow & & \downarrow G \\
\mathcal{C} & \xrightarrow{\downarrow} & \mathcal{D}
\end{array}$$

end
$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$
end
 $\cong \forall a. \text{Hom}(Fa, Ga)$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, \sim 1-arrows
- (1,2)-squares, → 2-arrows
- (1,2,3)-cubes, → 3-arrows . . .

can be non-trivial.

$$\begin{array}{cccc}
\mathcal{A} & \xrightarrow{\mathcal{P}} & \mathcal{B} \\
\downarrow & & \downarrow & \downarrow \\
\mathcal{C} & \xrightarrow{\downarrow} & \mathcal{D}
\end{array}$$

end
$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$
end $\cong \forall a. \text{Hom}(Fa, Ga)$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, \sim 1-arrows
- (1,2)-squares, \sim 2-arrows
- (1,2,3)-cubes, \sim 3-arrows . . .

can be non-trivial.

end
$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$
end $\cong \forall a. \text{Hom}(Fa, Ga)$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, \sim 1-arrows
- (1,2)-squares, \sim 2-arrows
- (1,2,3)-cubes, \sim 3-arrows . . .

can be non-trivial.

end
$$\forall a, b. \mathscr{P}(a, b) \Rightarrow \mathscr{Q}(Fa, Gb)$$
 $\cong \forall a. \text{Hom}(Fa, Ga)$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, \sim 1-arrows
- (1,2)-squares, \sim 2-arrows
- (1,2,3)-cubes, \sim 3-arrows . . .

can be non-trivial.

end
$$\forall a, b. \text{Hom}(a, b) \Rightarrow \text{Hom}(Fa, Gb)$$

$$\cong \forall a \text{Hom}(Fa, Ga)$$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, \sim 1-arrows
- (1,2)-squares, \sim 2-arrows
- (1,2,3)-cubes, ~ 3 -arrows . . .

can be non-trivial.

$$\forall a, b. \frac{\mathsf{Hom}}{\mathsf{a}}(a, b) \Rightarrow \frac{\mathsf{Hom}}{\mathsf{F}}(a, Gb)$$
 $\cong \quad \forall a. \text{Hom}(a, b) \Rightarrow \frac{\mathsf{Hom}}{\mathsf{a}}(a, Gb)$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, \sim 1-arrows
- (1,2)-squares, \sim 2-arrows
- (1,2,3)-cubes, \sim 3-arrows . . .

can be non-trivial.

$$\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\text{Hom}} & \mathcal{A} \\
\downarrow F & & \downarrow G \\
\mathscr{C} & \xrightarrow{\text{Hom}} & \mathscr{C}
\end{array}$$

$$\forall a, b. \frac{\mathsf{Hom}}{\mathsf{a}}(a, b) \Rightarrow \frac{\mathsf{Hom}}{\mathsf{F}}(a, Gb) \cong \forall a. \text{Hom}(a, Ca)$$

2-category (Tamsamani & Simpson)

An 2-category is an **double (2-fold)** category whose (2)-arrows are all trivial (id), so only

- (1)-arrows \sim 1-arrows
- (1,2)-squares → 2-arrows

can be non-trivial.

n-category (Tamsamani & Simpson)

An *n*-category is an *n*-**fold** category where only

- (1)-arrows, \sim 1-arrows
- (1,2)-squares, \sim 2-arrows
- (1,2,3)-cubes, ~ 3 -arrows . . .

can be non-trivial.

$$\begin{array}{ccc}
\mathscr{A} & \xrightarrow{\mathscr{P}} & \mathscr{B} & & \mathscr{A} \\
F \downarrow & & \downarrow G & & F \downarrow G \\
\mathscr{C} & \xrightarrow{} & \mathscr{D} & & \mathscr{C}
\end{array}$$

end
$$\forall a, b. \text{Hom}(a, b) \Rightarrow \text{Hom}(Fa, Gb)$$
 $\cong \forall a. \text{Hom}(Fa, Ga)$

Status of the model

- The building blocks are there (also further ahead!).
- Sort out details of base category & modalities. (Not success/failure but descriptive.)

Conclusion

We are **not** stuck on *higher* directed type theory.

Thanks!

Questions?

Status of the model

- The building blocks are there (also further ahead!).
- Sort out details of base category & modalities. (Not success/failure but descriptive.)

Conclusion

We are **not** stuck on *higher* directed type theory.

Thanks!

Questions?