Parallel Finite Element assembly

Michael Wathen*

April 28, 2016

Abstract

1 Introduction

Many industrial and geophysical scientific computing problems require discrete solving techniques for partial differential equations (PDEs). The two main components of a PDE solving are:

- Discretisation;
- Linear/non-linear solve.

2 Assembly

3 Results

3.1 Laplacian

Consider Laplace's equation with non-homogeneous Dirichlet boundary conditions

$$\Delta u = f \text{ in } \Omega,
 u = g \text{ on } \partial \Omega.$$

3.2 MHD

4 Conclusion

^{*}Department of Computer Science, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, mwathen@cs.ubc.ca.

MPI	DoFs								
processes	375	$2,\!187$	14,739	$107,\!811$	$823,\!875$	6,440,067	50,923,779		
1	1.88e-01	4.99e-02	6.44e-01	2.69e+00	1.86e + 01	1.49e + 02	-		
2	5.59e-02	7.60e-02	1.91e-01	1.38e + 00	1.04e + 01	7.92e + 01	-		
4	3.12e-02	3.78e-02	1.29e-01	1.05e + 00	5.66e + 00	4.19e + 01	-		
8	2.61e-02	3.45 e-02	8.71e-02	5.31e-01	3.11e+00	2.32e+01	1.88e + 02		
16	7.83e-02	8.45 e-02	1.16e-01	4.34e-01	2.12e+00	1.34e + 01	9.94e + 01		
32	1.45e-01	1.33e-01	2.48e-01	3.17e-01	1.69e + 00	1.20e + 01	9.14e+01		

Table 1: Assemble time

MPI	DoFs								
processes	375	$2,\!187$	14,739	$107,\!811$	$823,\!875$	6,440,067	50,923,779		
1	1.15e-01	3.29e-02	3.67e-01	4.50e+00	4.34e+01	3.93e + 02	-		
2	1.31e-02	2.19e-02	2.12e-01	2.90e+00	2.79e + 01	1.92e + 02	-		
4	4.32e-03	1.42e-02	1.74e-01	1.46e + 00	1.40e + 01	1.21e + 02	-		
8	4.47e-03	1.18e-02	8.42e-02	1.18e + 00	1.18e + 01	9.24e + 01	7.76e + 02		
16	1.35e-02	2.38e-02	8.28e-02	1.26e + 00	9.11e+00	8.00e + 01	6.71e + 02		
32	1.58e-02	2.28e-02	6.27e-02	9.35e-01	8.70e + 00	7.66e + 01	6.50e + 02		

Table 2: Assemble time