Lecture 3

Jan. 2019

Real and Complex Analysis

MTL122/ MTL503/ MTL506

Lecturer: A. Dasgupta

aparajita.dasgupta@gmail.com

1. Topology on \mathbb{R}

2. Open Sets and Closed Sets

2.1. Open Sets.

Definition 2.1. Let $a \in \mathbb{R}$ and $\epsilon > 0$.

(1) An ϵ -neighbourhood of a is the set

$$N(a, \epsilon) = \{ x \in \mathbb{R} : |x - a| < \epsilon \}.$$

(2) A deleted ϵ -neighbourhood of a is the set

$$N^*(a,\epsilon) = \{x \in \mathbb{R} : 0 < |x - a| < \epsilon\}.$$

It is clear that

$$N(a,\epsilon) = (a - \epsilon, a + \epsilon)$$
 and $N^*(a,\epsilon) = (a - \epsilon, a) \cup (a, a + \epsilon)$.

Definition 2.2. A subset U of \mathbb{R} is said to be open if for each $s \in U$ there is an $\epsilon > 0$ such that $(s - \epsilon, s + \epsilon) \subset U$.

Example 2.3. I = (0,1), the open interval, is open. If $x \in I$, then

$$(x - \delta, x + \delta) \subset I, \ \delta = \min\left(\frac{x}{2}, \frac{1 - x}{2}\right) > 0$$

Similarly, every finite or infinite open interval (a, b), $(-\infty, b)$, or (a, ∞) is open.

Example 2.4. The half-open interval J = (0,1] isn't open, since $1 \in J$ and $(1 - \delta, 1 + \delta)$ isn't a subset of J for any $\delta > 0$, however small.

Proposition 2.5. An arbitrary union of open sets is open, and a finite intersection of open sets is open.

Example 2.6. The interval $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ is open for every $n \in \mathbb{N}$, but

$$\bigcap_{n=1}^{\infty} I_n = \{0\}$$

is not open.

Definition 2.7. A set $G \subset \mathbb{R}$ is open if every $x \in G$ has a neighborhood U such that $U \subset G$.

Definition 2.8. Let S be a subset of \mathbb{R} . Then

a) $x \in S$ is called an **interior point** of s if there is an $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset S$. The set of all the interior points of a set S is denoted by S° or int(S).

- b) x is called a **boundary point** of S if for every $\epsilon > 0$ the interval $(x \epsilon, x + \epsilon)$ contains points of S as well as points of $\mathbb{R} \setminus S$. The set of boundary points of S is denoted by δS or bd(S).
- c) $x \in S$ is called an **isolated point** of S if there exists an $\epsilon > 0$ such that $(x \epsilon, x + \epsilon) \cap S = \{x\}.$

It is clear from the definition that each point of an open set S is an interior point of S. Also, every isolated point of a set S is a boundary point of S.

Example 2.9.

- (1) $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Then each point of S is an isolated point of S. Therefore $S \subset \delta S$.
- (2) The set \mathbb{N} of natural numbers consists of isolated points only. Therefore, every point of \mathbb{N} is a boundary point. Clearly, $\mathbb{N}^{\circ} = \phi$

2.2. Closed sets.

Definition 2.10. A set $F \subset \mathbb{R}$ is closed if $F^c = \{x \in \mathbb{R} : x \notin F\}$ is open.

Example 2.11. The closed interval I = [0, 1] is closed since $I^c = (-\infty, 0) \cup (1, \infty)$ is a union of open intervals, and therefore it's open. Similarly, every finite or infinite closed interval [a, b], $(-\infty, b]$ or $[a, \infty)$ is closed.

The empty set ϕ and \mathbb{R} are both open and closed. They are only such sets. Many subsets of \mathbb{R} are neither open nor closed.

Example 2.12. I = (0,1] isn't open because it doesn't contain any neighborhood of the end point $1 \in I$. Its complement

$$I^c = (\infty, 0] \cup (1, \infty)$$

isn't open either, since it doesn't contain anu neighborhood of $0 \in I^c$. Thus I isn't closed either.

Example 2.13. The set of rational numbers $Q \subset \mathbb{R}$ is neither open nor closed. It isn't open because every neighborhood of a rational number contains irrational numbers, and its complement isn't open because every neighborhood of an irrational number contains rational numbers.

Proposition 2.14. An arbitrary intersection of closed sets is closed, and a finite union of closed sets is closed.

Exercise.

Example 2.15. If I_n is the closed interval

$$I_n = \left\lceil \frac{1}{n}, 1 - \frac{1}{n} \right\rceil,$$

then the union of the I_n is the open interval

$$\bigcup_{n=1}^{\infty} I_n = (0,1).$$

Proposition 2.16. A set $F \subset \mathbb{R}$ is closed if and only if the limit of every convergent sequence in F belongs to F.

Proof First suppose that F is closed and (x_n) is a convergent sequence of points $x_n \in F$ such that $x_n \to x$. Then every neighborhood of x contains points $x_n \in F$. It follows that $x \notin F^c$, since F^c is open and every $y \in F^c$ has a neighborhood $U \subset F^c$ that contains no points in F. Therefore, $x \in F$.

Conversely, suppose that the limit of every convergent sequence of points in F belongs to F. Let $x \in F^c$. Then x must have a neighborhood $U \subset F^c$; otherwise for every $n \in \mathbb{N}$ there exists $x_n \in F$ such that $x_n \in (x - 1/n, x + 1/n)$, so $x = \lim x_n$, and x is the limit of a sequence in F. Thus, F^c is open and F is closed. \square