Mathematik II

13.05.2016

Inhaltsverzeichnis

1	Ree	lle Funktionen 3			
	1.1	Wiederholung Mathe 1: Funktionen			
	1.2	Reelle Funktionen			
	1.3	Neue Funktionen aus Alten, Kompositionen			
	1.4	Beispiel			
	1.5	Wiederholung Mathe 1: Injektivität, Surjektivität, Bijektivität; Um-			
		kehrfunktion			
	1.6	Elementare Funktionen (naive Einführung)			
2	Folgen 12				
	2.1	Definition: Folge			
	2.2	Beispiel			
	2.3	Definition: Eigenschaften von Folgen			
	2.4	Beispiel			
	2.5	Definition: Konvergenz			
	2.6	Bemerkung			
	2.7	Beispiel			
	2.8	Bemerkung			
	2.9	Satz: Beschränktheit von Folgen			
	2.10	Bemerkung			
	2.11	Wichtiges Beispiel (geometrische Folgen)			
	2.12	Beispiel			
	2.13	Satz: Rechenregeln für konvergente Folgen			
	2.14	Beispiel			
	2.15	Anmerkung (Landau-Symbole, \mathcal{O} -Notation)			
	2.16	Definition			
	2.17	Beispiel			
	2.18	Bemerkung			
	2.19	Satz (Monotone Konvergenz)			
	2.20	Beispiel			
	2.21	Satz (Intervallschachtelungsprinzip)			
	2.22	Beispiel (vgl. Beispiel 2.20 b))			
		Definition			
	2.24	Beispiel			
	2.25	Bemerkung			
		Definition			
		Beispiel			
	2.28	Satz (Satz von Bolzano-Weierstraß)			
		Bemerkung/Definition			

	2.30	Definition (Cauchyfolge)	24
	2.31	Satz (Cauchykriterium)	24
	2.32	Anwendung (Banachscher Fixpunktsatz)	24
3 Reihen		nen 2	26
	3.1	Definition	26
	3.2	Beispiel	26
	3.3	Rechenregeln für Reihen	27
	3.4	Konvergenz-/Divergenzkriterien für Reihen	28

1 Reelle Funktionen

1.1 Wiederholung Mathe 1: Funktionen

Definition

Eine Funktion/Abbildung $f\colon A\to B$ besteht aus

- zwei Mengen:
 - -A: Definitionsbereich von f
 - -B: Bildbereich von f
- und einer Zuordnungsvorschrift, die jedem Element $a \in A$ genau ein Element $b \in B$ zuordnet.

Wir schreiben dann b = f(a), nennen b das <u>Bild</u>/den <u>Funktionswert</u> von a (unter f) sowie a (ein) <u>Urbild</u> von b (unter f).

Notation

$$f \colon A \to B$$

 $a \mapsto f(a)$

Beispiel

 \rightarrow Folien 11.04.2016

1.2 Reelle Funktionen

Definition

Eine <u>reelle Funktion</u> einer <u>Veränderlichen</u> ist eine Abbildung $f: D \to \mathbb{R}$, wobei $D \subseteq \mathbb{R}$ (oft ist D endliche Vereinigung von Intervallen, z.B.

- $\bullet \ D=(-\infty,a]=\{x\in \mathbb{R}|x\leq a\}$
- $D = \mathbb{R}_0^+ = [0, \infty) = \{x \in \mathbb{R} | x \ge 0\}$
- $D = (-\infty, \infty) = \mathbb{R}$
- $D = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$

1.3 Neue Funktionen aus Alten, Kompositionen

Definition

Seien $f, g: D \to \mathbb{R}$ reelle Funktionen.

a) $(f \pm g)(x) := f(x) \pm g(x) \quad \forall x \in D$ Summe/Differenz von f und g(genauer:

$$f \pm g \colon D \to \mathbb{R}$$

 $x \mapsto (f \pm g)(x) = f(x) \pm g(x)$

- b) $(f \cdot g)(x) := f(x) \cdot g(x)$ $\forall x \in D$ <u>Produkt</u> von f und g
- c) falls $g(x) \neq 0 \quad \forall x \in D$, dann $(\frac{f}{g})(x) \coloneqq \frac{f(x)}{g(x)} \quad \forall x \in D$ Quotient von f und g
- d) Komposition/Hintereinanderausführung $f: D_f \to \mathbb{R}, \quad g: D_g \to \mathbb{R}, \text{ wobei } f(D_f) \subseteq D_g$

$$g \circ f \colon D_f \to \mathbb{R}$$

 $x \mapsto g(f(x))$

1.4 Beispiel

$$f, g: \mathbb{R} \to \mathbb{R}$$

 $f(x) = x^2$
 $g(x) = x - 1$

$$(f+g)(x) = x^{2} + x - 1$$

$$(f \cdot g)(x) = x^{2} \cdot (x-1) = x^{3} - x^{2}$$

$$(\frac{f}{g})(x) = \frac{x^{2}}{x-1} \quad \text{für } x \neq 1 \quad (D_{g} = \mathbb{R} \setminus \{1\})$$

$$(g \circ f)(x) = g(f(x)) = g(x^{2}) = x^{2} - 1$$

$$(f \circ g)(x) = f(g(x)) = f(x-1) = (x-1)^{2} = x^{2} - 2x + 1$$

$$\Rightarrow (g \circ f)(x) \neq (f \circ g)(x)$$

1.5 Wiederholung Mathe 1: Injektivität, Surjektivität, Bijektivität; Umkehrfunktion

 \rightarrow Folien 13.04.2016

1.6 Elementare Funktionen (naive Einführung)

a) Konstante Funktionen für $c \in \mathbb{R}$ (fest):

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto c$$

b) Die identische Funktion (Identität)

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x$$

Durch mehrfache Anwendung von 1.3 entstehen aus a) und b) viele weitere Funktionen.

c) Potenzen (Monome) für $n \in \mathbb{N}_0$ (fest):

$$f \colon \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^n$

-n = 0: die konstante 1-Funktion

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^0 = 1$$

-n ungerade:

fpunktsymmetrisch zum Ursprung (0|0), bijektiv

-n gerade:

 \boldsymbol{f} achsensymmetrisch zur $y\text{-}\mathsf{Achse},$ nicht bijektiv

$$f(x) \ge 0 \quad \forall x \in \mathbb{R}$$

d) Wurzelfunktionen

Wurzelfunktionen sind die Umkehrfunktionen der Monome. Dazu musss die Gleichung $f(x)=x^n=y$ ($y\in\mathbb{R}$ gegeben) gelöst werden.

-n ungerade:

f ist bijektiv, dann gibt es zu jedem $y \in \mathbb{R}$ genau ein $x \in \mathbb{R}$ mit $x^n = y$. Dieses wird die n-te Wurzel aus y genannt: $x = \sqrt[n]{y}$.

$$\sqrt[n]{}: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sqrt[n]{x}$$

- ngerade: Dann hat die Gleichung $x^n=y$ in $\mathbb R$

- $\ast\,$ keine Lösung, falls y<0
- $\ast\,$ genau eine Lösung, falls y=0 (nämlich x=0)
- * zwei Lösungen, falls y > 0:

$$x_1 = \sqrt[n]{y} \quad (>0)$$
$$x_2 = -\sqrt[n]{y} \quad (<0)$$

Die positive Lösung wird hier dann als n-te Wurzel bezeichnet:

e) Polynome

 $\overline{a_0, \ldots, a_n} \in \mathbb{R}$ (Koeffizienten) Ein Polynom ist eine Funktion p mit

$$p \colon \mathbb{R} \to \mathbb{R}$$

$$x \mapsto a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0 = \sum_{k=0}^n a_k x^k$$

Falls $a_n \neq 0$ ist, heißt n Grad des Polynoms.

f) Rationale Funktionen

Rationale Funktionen sind Quotienten von Polynomen (mit p, q...Polynome):

$$f \colon D \to \mathbb{R}$$

$$x \mapsto \frac{p(x)}{q(x)}$$

$$mit D = \{x \in \mathbb{R} | q(x) \neq 0\}$$

g) Exponentialfunktionen

Exponentialfunktionen sind Funktionen

$$f \colon \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto q^x$$

wobei die Basis $\mathbb{R} \ni q > 0, q \neq 1$ vorgegeben ist.

$$q > 1$$
: f steigt

$$0 < q < 1$$
: f fällt

Bekannte Rechenregeln:

$$-q^{x} \cdot q^{y} = q^{x+y}$$

$$-\frac{q^{x}}{q^{y}} = q^{x-y}$$

$$-(q^{x})^{y} = q^{x \cdot y}$$

$$-(p \cdot q)^{x} = p^{x} \cdot q^{x}$$

$$-(\frac{p}{q})^{x} = \frac{p^{x}}{q^{x}}$$

Zur Beschreibung von Exponentialfunktionen genügt es, <u>eine</u> bestimmte Basis zu benutzen (man kann $g(x) = p^x$ durch $f(x) = q^x$ ausdrücken, siehe Teil h).

Früher: Basis 10

Heute: Basis e $\approx 2.781828...$ (Eulersche Zahl)

Informatik: oft Basis 2

h) Logarithmen

Die Exponentialfunktion

$$\exp(x) \colon \mathbb{R} \to \mathbb{R}^+$$
$$x \mapsto e^x$$

ist bijektiv.

Um sie umzukehren, muss zu gegebenem $y \in \mathbb{R}^+$ die Gleichung $\mathrm{e}^x = y$ gelöst werden.

Die Lösung ist für y>0 in $\mathbb R$ eindeutig und wird als der <u>natürliche Logarithmus</u> von y bezeichnet: $x=\ln y$.

In $\mathbb R$ ist die Gleichung für $y \leq 0$ unlösbar.

Analoges gilt für andere Exponentialfunktionen.

$$f: \mathbb{R} \to \mathbb{R}^+$$

 $x \mapsto q^x \quad (q > 0, q \neq 1)$

Es gilt: $q^x = y \Leftrightarrow x = \log_q y$ (Logarithmus zur Basis q).

Es genügt wieder, <u>eine</u> feste Basis zu betrachten, z.B. e, denn $q^x = (e^{\ln q})^x = e^{x \cdot \ln q}$. Es gilt:

$$q^{x} = y \Leftrightarrow e^{x \cdot \ln q} = y$$
$$\Leftrightarrow \ln(e^{x \cdot \ln q}) = \ln y$$
$$\Leftrightarrow x \cdot \ln q = \ln y$$
$$\Leftrightarrow x = \frac{\ln y}{\ln q} \quad ,$$

also gilt $\log_q y = \frac{\ln y}{\ln q}$.

Rechenregeln für den Logarihmus lassen sich aus den Regeln für die Exponentialfunktion herleiten:

Sei $u \coloneqq \ln x$, $v \coloneqq \ln y$, dann ist $x = e^u$ und $y = e^v$, daraus folgt

$$x \cdot y = e^u \cdot e^v = e^{u+v} \quad ,$$

also ist

$$\ln(x \cdot y) = \ln(e^{u+v}) = u + v = \ln x + \ln y$$
.

Genauso kann man mit beliebiger Basis $q > 0, q \neq 1$ verfahren, wir erhalten für jede Logarithmusfunktion log: $\mathbb{R}^+ \to \mathbb{R}$:

$$-\log(x \cdot y) = \log x + \log y \quad \forall x, y > 0$$

$$-\log(\frac{x}{y}) = \log x - \log y \quad \forall x, y > 0$$

$$-\log(x^{\alpha}) = \alpha \cdot \log x \quad \forall x > 0, \alpha \in \mathbb{R}$$

i) Trigonometrische Funktionen

Wir betrachten einen Punkt P auf dem Einheitskreis (Kreis um O, Radius 1).

Der Winkel, der von der positiven x_1 -Achse und der Geraden durch O und P eingeschlossen wird, sei x.

Dann heißt die x_1 -Koordinate von P der <u>Kosinus</u> von x (cos x), die x_2 -Koordinate heißt der <u>Sinus</u> von x (sin x).

Der Winkel x kann im Gradmaß oder im Bogenmaß (Länge des Bogens von (1|0) bis P) gemessen werden, es gilt:

$$\frac{\text{Gradmaß}}{360^{\circ}} = \frac{\text{Bogenmaß}}{2\pi}$$

So lassen sich die Funktionen cos und sin definieren:

$$\cos \colon \mathbb{R} \to [-1; 1]$$

 $x \mapsto \cos x$

$$\sin \colon \mathbb{R} \to [-1; 1]$$

 $x \mapsto \sin x$

und weiter

$$\tan x := \frac{\sin x}{\cos x}$$
 (Tangens) und

$$\cot x \coloneqq \frac{\cos x}{\sin x} \qquad \text{(Kotangens)}$$

(Tangens und Kotangens sind jeweils nur dort definiert, wo der Nenner $\neq 0$ ist!)

Strahlensatz: $\frac{\sin x}{\cos x} = \frac{\tan x}{1}$

Wertetabelle: s. PÜ 02

Graphen:

Additions theoreme:

$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y$$
$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y$$
$$(\sin x)^2 + (\cos x)^2 = \sin^2 x + \cos^2 x = 1 \qquad \text{(Satz des Pythagoras)}$$

Es gilt: $\cos x = \sin(x + \frac{\pi}{2})$ (Verschiebung um $\frac{\pi}{2}$).

sin und cos sind 2π -periodisch, d.h.

$$\sin x = \sin(x + 2\pi)$$
 $\forall x$
 $\cos x = \cos(x + 2\pi)$ $\forall x$

tan ist π -periodisch:

 $\tan x = \tan(x + \pi)$ $\forall x$ auf Definitionsbereich

2 Folgen

2.1 Definition: Folge

Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung von der Menge der natürlichen Zahlen \mathbb{N} in eine Menge M (oft $M\subset\mathbb{R}$).

Die a_n (n = 1, 2, 3, ...) heißen <u>Glieder</u> der Folge, n heißt <u>Index</u>.

(Bemerkung: Das 1. Glied der Folge muss nicht a_1 sein. durch Umbenennung, z.B. $b_1 \coloneqq a_7, b_2 \coloneqq a_8$, ist auch $(a_7, a_8, a_9, ...)$ eine Folge im sinne der Definition 2.1)

Schreibweisen

$$(a_n)_{n\in\mathbb{N}}$$

 $(a_n)_{n\geq n_0}$ (z.B. $(a_n)_{n\geq 7}$) oder nur
 (a_n)

2.2 Beispiel

- a) $a_n = c$ $\forall n \ge 1, c \in \mathbb{R}$ konstant $(a_n)_{n \in \mathbb{N}} = (c)_n$ (c, c, c, c, ...)
- b) $a_n = n$ (1, 2, 3, 4, ...)
- c) $a_n = (-1)^n$ (-1, 1, -1, 1, -1, ...)
- d) $a_n = \frac{1}{n}$ $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$
- e) $a_n = [0, \frac{2}{n})$ Folge von Intervallen
- f) a_n rekursiv definiert:

$$a_1 := 1$$
 $a_{n+1} := (n+1)a_n \qquad (n \ge 1)$
 $a_2 = 2 \cdot a_1 = 2$
 $a_3 = 3 \cdot a_2 = 6$
 $a_4 = 4 \cdot a_3 = 24$

2.3 Definition: Eigenschaften von Folgen

Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt

- a) <u>beschränkt</u>, wenn die Menge der Folgenglieder beschränkt ist (s. Mathe 1), d.h. wenn es eine Zahl $K \geq 0$ gibt mit $|a_n| \leq K \quad \forall n \in \mathbb{N}$ (d.h. alle Folgenglieder liegen im Intervall $[-K, K] \quad \forall n; \quad (-K \leq a_n \leq K)$).
- b) <u>alternierend</u>, falls ihre Glieder abwechselnd positiv und negativ sind.

2.4 Beispiel

Beispiele aus 2.2:

beschränkt: a), c), d) [für c) und d) z.B. K=1]

alternierend: c)

2.5 Definition: Konvergenz

- a) Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt konvergent gegen $a\in\mathbb{R}$, wenn es zu jeder positiven Zahl $\varepsilon>0$ ein $N\in\mathbb{N}$ gibt (das von ε abhängen darf), so dass gilt: $|a_n-a|<\varepsilon$ für alle $n\geq N$. (kurz: $\forall \varepsilon>0$ $\exists N\in\mathbb{N}$ $\forall n\geq N$: $|a_n-a|<\varepsilon$)
- b) Die Zahl a heißt dann <u>Grenzwert</u> oder <u>Limes</u> der Folge, wir schreiben:

 $\lim_{\substack{n \to \infty \\ a_n \to a \text{ für } n \to \infty}} a_n = a \text{ oder}$

- c) Eine Folge, die gegen 0 konvergiert, heißt Nullfolge.
- d) Eine Folge, die nicht konvergiert, heißt divergent (die Folge divergiert).

2.6 Bemerkung

 \rightarrow Folien 20.04.16

2.7 Beispiel

a) $a_n = \frac{1}{n}$ ist Nulfolge, d.h. $\lim_{n \to \infty} \frac{1}{n} = a = 0$, denn:

Sei $\varepsilon > 0$ beliebig. Dann wähle N als $N > \frac{1}{\varepsilon}$, denn damit gilt für alle a_n mit n > N:

$$|a_n - 0| = \left|\frac{1}{n} - 0\right| = \frac{1}{n} \le \frac{1}{N}$$
, da $n \ge N$ und $\frac{1}{N} < \frac{1}{\frac{1}{\varepsilon}} = \varepsilon \Rightarrow |a_n - 0| < \varepsilon$.

(z.B. falls $\varepsilon=\frac{1}{10}$, wähle N>10, z.B. N=11; ab a_{11} haben alle Folgenglieder einen Abstand $<\frac{1}{10}$ von 0)

- b) (a_n) mit $a_n = \frac{n+1}{3n}$. Behauptung: $a = \frac{1}{3}$. Beweis: Sei $\varepsilon > 0$ beliebig. Dann wähle $N > \frac{1}{3\varepsilon}$. Für alle a_n mit $n \ge N$ gilt dann: $|a_n a| = |\frac{n+1}{3n} \frac{1}{3}| = |\frac{n+1-n}{3n}| = \frac{1}{3n} < \frac{1}{3N} < \varepsilon$. genau dann, wenn $N > \frac{1}{3\varepsilon}$.
- c) $(a_n)_{n\in\mathbb{N}}$ mit $a_n=c$ $\forall n$. $\lim_{n\to\infty}a_n=c$ Sei $\varepsilon>0$ beliebig. Dann ist $|a_n-c|=|c-c|=0<\varepsilon$ $\forall n\geq 1$, hier ist also N=1, hängt nicht von ε ab, untypisch.

2.8 Bemerkung

N muss nicht optimal gewählt werden.

Beispiel: $\lim_{n\to\infty} \frac{1}{n^3+n+5} = 0$, [...]

 $|\frac{1}{n^3+n+5}-0|=\frac{1}{n^3+n+5}\leq \frac{1}{N^3+N+5}\stackrel{!}{<}\varepsilon.$ Für optimales $N:\frac{1}{N^3+N+5}<\varepsilon$ nach N auflösen, schwer.

Deshalb grob abschätzen, z.B. so: $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{$

 $\frac{1}{N13+N+5} < \frac{1}{N} < \varepsilon$, also wähle $N > \frac{1}{\varepsilon}$.

2.9 Satz: Beschränktheit von Folgen

Jede konvergente folge ist beschränkt.

Beweis: (zu zeigen: (a_n) konvergente Folge: $\exists K \in \mathbb{N}$, so dass $|a_n| \leq K \quad \forall n \in \mathbb{N}$) Sei $(a_n)_{n \in \mathbb{N}}$ konvergent gegen a.

dann existiert für alle $\varepsilon > 0$, also auch speziell für $\varepsilon = 1$, ein $N \in \mathbb{N}$ mit $|a_n - a| < 1 \quad \forall b \geq N$.

Also gilt für alle $n \geq N$:

$$|a_n| = |a_n + a - a|$$
 $\leq |a_n - a| + |a|$
'Einschiebetrick' Dreiecksungleichung $|a_n|$ $< 1 + |a|$

(also für $n \ge N$ sind die $|a_n| < 1 + |a|$; aber für n = 1, 2, 3, ..., N - 1?) Definiere K als $K := \max\{|a_1|, |a_2|, |a_3|, ..., |a_{N-1}|, 1 + |a|\}$ Dann gilt $|a_n| \leq K \quad \forall n$. (Anmerkung: Durch den vorletzten Schritt ist meist $K \in \mathbb{R}^+$.)

2.10 Bemerkung

Nach 2.9 gilt:

 (a_n) konvergiert $\Rightarrow (a_n)$ ist beschränkt

Das ist äquivalent zu:

 (a_n) ist nicht beschränkt \Rightarrow (a_n) konvergiert nicht

(Kontraposition). Unbeschränkte Folgen sind also immer divergent.

Bsp. (a_n) mit $a_n = n$

2.11 Wichtiges Beispiel (geometrische Folgen)

Für
$$q \in \mathbb{R}$$
 gilt: $\lim_{n \to \infty} q^n = \begin{cases} 0, \text{ falls } |q| < 1 \\ 1, \text{ falls } |q| = 1 \end{cases}$
Die Folge $(q^n)_n \in \mathbb{N}$ divergiert, falls $q = -1$ oder $|q| > 1$.

Beweis:

1. Fall |q| < 1 (zu zeigen $q^n \to 0$ für $n \to \infty$) Sei $\varepsilon > 0$ beliebig. Dann ist

$$|q^{n} - 0| = |q^{n}| = |q|^{n} < \varepsilon$$

$$\Leftrightarrow n \cdot \ln|q| < \ln \varepsilon$$

$$\Leftrightarrow n \stackrel{da|q| < 1}{\geq} \frac{\ln \varepsilon}{\ln|q|}$$

Wähle $\mathbb{N} \ni N > \frac{\ln \varepsilon}{\ln |q|}$, dann ist also $|q|^n < \varepsilon \quad \forall n \ge N$.

- 2. Fall $q = 1 \rightarrow$ konstante 1-Folge, konvergiert, s. 2.7 c)
- 3. Fall $|q| \ge 1, q \ne 1$

Für |q| > 1 ist (q^n) unbeschränkt, also divergent (s. 2,9/2.10).

Für q = -1: können wir erst später beweisen (\rightarrow Cauchy-Folgen)

2.12 Beispiel

Nach 2.11 sind die Folgen $((\frac{1}{2})^n)_{n\in\mathbb{N}} = (\frac{1}{2^n})_{n\in\mathbb{N}}, \quad ((-\frac{7}{8})^n)_n \in \mathbb{N}$ Nullfolgen.

2.13 Satz: Rechenregeln für konvergente Folgen

Seien $(a_n), (b_n)$ reelle Folgen mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$. Dann gilt:

- a) Die Folge $(c \cdot a_n)$ konvergiert gegen $c \cdot a, c \in \mathbb{R}$.
- b) Die Folge $(a_n \pm b_n)$ konvergiert gegen $a \pm b$.
- c) Die Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$.
- d) Die Folge $(\frac{a_n}{b_n})$ konvergiert gegen $\frac{a}{b}$, falls $b_n, b \neq 0$ und $|a_n| \to |a|$.

Seien weiter $(d_n), (e_n)$ reelle Folgen mit $\lim_{n\to\infty} d_n = 0$, dann gilt:

- e) Ist (e_n) beschränkt, dann ist $(d_n \cdot e_n)$ auch eine Nullfolge.
- f) Gilt $|e_n| \leq d_n \quad \forall n$, so ist (e_n) auch eine Nullfolge.

Beweis [exemplarisch für a) und b), Rest s. Moodle]:

a) Falls c=0: klar, konstante 0-Folge. Falls $c\neq 0$: Sei $\varepsilon>0$ beliebig. Dann existiert $N\in\mathbb{N}$, so dass $|a_n-a|<\frac{\varepsilon}{|c|}$ $\forall n\in\mathbb{N}$ (denn $a_n\to a$)

Dann ist aber $|c \cdot a_n - c \cdot a| = |c \cdot (a_n - a)| = |c| \cdot |a_n - a| < \varepsilon \quad \forall n \ge N$, also $c \cdot a_n \to c \cdot a$

b) Sei $\varepsilon > 0$ beliebig.

Dann $\exists N_1 \in \mathbb{N}$, so dass $|a_n - a| < \frac{\varepsilon}{2} \quad \forall n \geq N_1 \text{ (denn } a_n \to a)$ und $\exists N_2 \in \mathbb{N}$, so dass $|b_n - b| < \frac{\varepsilon}{2} \quad \forall n \geq N_2 \text{ (denn } b_n \to b)$. Dann gilt:

$$|(a_n + b_n) - (a + b)| = |\overbrace{(a_n - a)}^{<\frac{\varepsilon}{2}} + \overbrace{(b_n - b)}^{<\frac{\varepsilon}{2}}| \stackrel{\triangle\text{-Ungleichung}}{\leq} |a_n - a| + |b_n - b|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall n \geq N_1 \text{ und } N_2$$

(also z.B. für $n \ge N := \max\{N_1, N_2\}$).

Also gilt $(a_n + b_n) \to a + b$.

2.14 Beispiel

- a) $\frac{(-1)^n+5}{n} \to 0$ für $n \to \infty$, denn $\frac{1}{n} \to 0$ für $n \to \infty$ und $(-1)^n+5$ ist beschränkt: $|(-1)^n+5| \le 6 \quad \forall n \in \mathbb{N} \text{ (nach 2.13 d)}$
- b) $\frac{3n^2-2n+1}{-n^2+n} \to -3 \text{ für } n \to \infty, \text{ denn}$ $\frac{3n^2-2n+1}{-n^2+n} = \frac{n^2 \cdot (3-\frac{2}{n}+\frac{1}{n^2})}{n^2 \cdot (-1+\frac{1}{n})} = \frac{3-\frac{2}{n}+\frac{1}{n^2}}{-1+\frac{1}{n}} \quad \xrightarrow{\to 3 \text{ für } n \to \infty} \longrightarrow \frac{3}{-1} \text{ für } n \to \infty \text{ (nach } 2.13 \text{ b,d)}_{[\text{Nullfolgen}]}$
- c) Wichtiges Beispiel Sei $x \in \mathbb{R}$ mit |x| < 1, d.h. $|x| = \frac{1}{1+t}$ mit t > 0. Sei $k \in \mathbb{N}_0$. Dann ist $\lim_{n \to \infty} (n^k \cdot x^n) = 0$, denn

$$(1+t)^{n} \stackrel{\text{Mathe 1: 7.17}}{=} \sum_{j=0}^{n} \left[\binom{n}{j} \cdot 1^{n-j} \cdot t^{j} \right]$$

$$= \underbrace{1}_{\text{nur Term}}^{j=0} + \underbrace{nt}_{j=k+1}^{j=1} \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k)}_{(k+1)!} t^{2} + \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k)}_{(k+1)} t^{k+1} = \binom{n}{k+1} t^{k+1}$$

Damit gilt:

$$|n^k \cdot x^n| = \left| \frac{n^k}{(1+t)^n} \right| \le \frac{n^k}{\binom{n}{k+1}t^{k+1}} = \frac{n^k}{n^{k+1} + \dots} \to 0$$

für $n \to \infty$.

Es gilt also z.B. $(k = 10000, x = \frac{1}{2})$: $\frac{n^{10000}}{2^n} \to 0$ für $n \to \infty$ Exponentialfkt. $\Rightarrow (1+t)^n$ wächst schneller als jede Potenz n^k !

2.15 Anmerkung (Landau-Symbole, O-Notation)

(Informatik, VL Algorithmen)

Sei (a_n) eine strikt positive Folge, d.h. $a_n > 0 \quad \forall n \in \mathbb{N}$. Dann ist

- a) $\mathcal{O}(a_n) = \mathcal{O}((a_n)) = \{(b_n) | (\frac{b_n}{a_n}) \text{ ist beschränkt } \}$ ("Menge aller Folgen, für die ... gilt")
- b) $o(a_n) = \{(b_n) | \frac{b_n}{a_n} \text{ ist Nullfolge } \} ((a_n) \text{ wächst schneller als } (b_n))$

 \mathcal{O}, o : Landau-Symbole

c)
$$(a_n) \sim (b_n)$$
, falls $\lim_{n \to \infty} (\frac{a_n}{b_n})_n = 1$

Beispiel:

- $(2n^2 + 5n + 1)_n \in \mathcal{O}(n^2)$, denn $(\frac{2n^2 + 5n + 1}{n^2}) = \frac{n^2 \cdot (2 + \frac{5}{n} + \frac{1}{n^2})}{n^2} \to 2$ für $n \to \infty$, beschränkt
- $(n^2) \in o(n^3)$
- $(n^3) \in o(2^n)$
- $(n13-3) \sim (n^3)$, denn $(\frac{n^3}{n^3-3}) = (\frac{n^3 \cdot (1)}{n^3 \cdot (1-\frac{3}{n^3})}) \to 1$ für $n \to \infty$
- häufig auch laxe Schreibweise

$$2n^2 + 5n + 1 = \mathcal{O}(n^2)$$
$$n^2 = o(n^3)$$

Außerdem:

 $\mathcal{O}(1)$ = Menge der beschränkten Folgen

o(1) = Menge der Nullfolgen

Wichtige Formel: Stirling: $(n!) \sim (\sqrt{2\pi n} (\frac{n}{e})^n)$

Problem: Wie zeigt man die Konvergenz einer Folge, wenn man den Grenzwert nicht kennt?

2.16 Definition

Eine Folge reeller Zahle $(a_n)_n$ heißt

- a) (streng) monoton steigend/wachsend, falls $a_{n+1} \stackrel{>}{\geq} a_n \quad \forall n \in \mathbb{N}$, Schreibweise: $(a_n) \nearrow$
- b) (streng) monoton fallend $(a_n) \searrow$, falls $a_{n+1} \leq a_n \quad \forall n \in \mathbb{N}$
- c) monoton, falls a) oder b) gilt (oder beides)

2.17 Beispiel

- $(a_n) = (\frac{1}{n})$ ist streng monoton fallend
- $(a_n) = (1)$ ist monoton fallend und monoton steigend
- $(a_n) = ((-1)^n)$ ist nicht monoton

2.18 Bemerkung

 $(a_n) \nearrow \text{zeigt man so:}$

$$a_{n-1} - a_n \ge 0$$
 oder
$$\frac{a_{n+1}}{a_n} \ge 1$$

2.19 Satz (Monotone Konvergenz)

Jede beschränkte, monotone Folge reeller Zahlen $(a_n)_n$ konvergiert, und zwar gegen

- $\sup\{a_n : n \in \mathbb{N}\}$, falls (a_n) monoton steigend oder gegen
- $\inf\{a_n : n \in \mathbb{N}\}$, falls (a_n) monoton fallend ist.

Beweis:

Sei $(a_n) \nearrow$ und beschrönkt.

$$\Rightarrow \{a_n \colon n \in \mathbb{N}\} \subseteq \text{ ist beschränkt}$$

$$\stackrel{\text{Vollst.-Axiom}}{\Rightarrow} S \coloneqq \sup\{a_n \colon n \in \mathbb{N}\} \text{ existiert.}$$

Wir zeigen: $a_n \to S$ für $n \to \infty$.

Sei $\varepsilon > 0$ beliebig. Zu zeigen ist $\exists N \in \mathbb{N}$ mit $|a_n - S| < \varepsilon \quad \forall n \geq N$. Es gilt $a_n \leq S \quad \forall n \in \mathbb{N}$, also zu zeigen: $S - a_n < \varepsilon \quad \forall n \geq N$.

S ist <u>kleinste</u> obere Schranke, d.h. $S - \varepsilon$ ist <u>keine</u> obere Schranke

$$\Rightarrow \exists N \in \mathbb{N} \quad \text{mit} \quad a_n > S - \varepsilon \quad \forall n \ge N$$
$$\Rightarrow S - a_n < \varepsilon \quad \forall n \ge N$$

$$(a_n) \searrow \text{analog}$$

2.20 Beispiel

a)
$$x \in \mathbb{R}^+$$
, dann $(x^n) \in o(n!)$ $(x^n = o(n!))$, d.h. $a_n = \frac{x^n}{n!} \to 0$ für $n \to \infty$

$$-a_n > 0$$

$$-\frac{a_{n+1}}{a_n} = \frac{x^{n+1} \cdot n!}{(n+1)! \cdot x^n} = \frac{x}{n+1} \le 1$$
 für $n+1 \ge x$, also gilt $a_{n+1} \le a_n$, d.h. $(a_n) \searrow \text{und } (a_n)$ ist beschränkt
$$-\inf\{a_n \colon n \in \mathbb{N}\} = 0$$

b) wichtige Folge

$$(a_n)_{n\in\mathbb{N}} = ((a + \frac{1}{n})^n)_{n\in\mathbb{N}}$$
$$\lim_{n\to\infty} (a_n) = e \qquad \text{(Eulersche Zahl, } e = 2,71828...)$$

Warum existiert dieser Limes?

Zeige: $(a_n) \nearrow \text{ und } (a_n)$ beschränkt, benutze Satz 2.19

$$-(a_n) \nearrow$$

$$\frac{a_n}{a_{n+1}} = (\frac{1+n}{n})^n \cdot (\frac{n-1}{n})^{n-1} = (\frac{n+1}{n})^n \cdot (\frac{n-1}{n})^n \cdot (\frac{n-1}{n})^{-1} \ge 1$$

$$= (\frac{n^2 - 1}{n^2})^n \cdot \frac{n}{n-1}$$

$$= (1 - \frac{1}{n^2})^n \cdot \frac{n}{n-1} \ge 1$$

Benutze die Bernoulli-Ungleichung, für $h \in \mathbb{R}$, $n \in \mathbb{N}$ gilt $(1+h)^n \ge 1+nh$ für $h \ge -1$ (hier: $h=-\frac{1}{n^2}$)

$$\frac{a_n}{a_{n-1}} = (1 - \frac{1}{n^2})^n \cdot \frac{n}{n-1} \ge (1 - n \cdot \frac{1}{n^2}) \cdot \frac{n}{n-1}$$
$$= (1 - \frac{1}{n}) \cdot \frac{n}{n-1} = 1 \qquad ,$$

also
$$(a_n) \nearrow$$

 $-(a_n)$ beschränkt: Übung, benutze wieder Bernoulli

2.21 Satz (Intervallschachtelungsprinzip)

Seien (a_n) , (b_n) reelle Folgen mit

- $(a_n) \nearrow (= linke Intervallgrenze)$
- $(b_n) \searrow (= \text{rechte Intervallgrenze})$
- $a_n \le b_n \quad \forall n \in \mathbb{N}$
- $b_n a_n \to 0$ für $n \to \infty$

Dann sind beide Folgen konvergent und besitzen denselben Limes.

Beweis:

 (a_n) , (b_n) konvergent nach Satz 2.19, denn

- $(a_n) \nearrow$; (a_n) beschränkt, da $a_n \le b_n \quad \forall n \in \mathbb{N}$, also gilt auch $a_n \le b$ (alle anderen b_n sind noch kleiner)
- $(b_n) \searrow$; (b_n) beschränkt, da $b_n \ge a_n \quad \forall n \in \mathbb{N}$, also $b_n \ge a_n \ge a_1$
- Da $(b_n) (a_n)$ Nulfolge ist, sind auch die Grenzwerte gleich.

2.22 Beispiel (vgl. Beispiel 2.20 b))

$$a_n = (1 + \frac{1}{n})^n$$
, $b_n = (1 + \frac{1}{n})^{n+1}$
Man kann zeigen: $(a_n) \nearrow$, $(b_n) \searrow$
 $a_n \le b_n$, $b_n - a_n \to 0$, also $\exists \lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1}$

Ähnlich zeigt man $\lim_{n\to\infty} (1+\frac{x}{n})^n$ existiert $\forall x\in\mathbb{R}$ So definiert man $e^x:=\lim_{n\to\infty} (1+\frac{x}{n})^n$

Bisher:

 (a_n) konvergiert \Rightarrow (a_n) beschränkt, Umkehrung gilt nicht; z.B. $((-1)^n)$ Allerdings besitzt diese Folge zwei konvergente Teilfolgen mit lim +1 und lim -1.

2.23 Definition

Sei $(a_n)_{n \in \mathbb{N}}$ eine Folge und $(n_k)_{k \in \mathbb{N}}$ $(n_1, n_2, ...)$ eine streng monoton steigende Folge von Indizes (d.h. $n_1 < n_2 < n_3 < ...$).

Dann heißt die Folge $(a_{n_k})_{k\in\mathbb{N}}$ <u>Teilfolge</u> von $(a_n)_{n\in\mathbb{N}}$ ("Teilfolgen entstehen durch Streichung von Gliedern").

2.24 Beispiel

$$(a_n) = ((-1)^n)$$

 $n_k := 2n$ ergibt $(n_1 = 2; n_2 = 4 \ n_3 = 6)$
 $a_n = 1 \quad \forall n \in \mathbb{N}$ (Teilfolge 1,1,1,1...)
 $n_k := 2n - 1$ ergibt (Teilfolge -1,-1,-1,...)
 $a_{2n-1} = -1 \quad \forall n \in \mathbb{N}$

2.25 Bemerkung

Es gilt: (a_n) konvergiert gegen $a \Rightarrow$ jede Teilfolge von (a_n) konvergiert gegen a.

2.26 Definition

Sei (a_n) eine reelle Folge. Eine Zahl $h \in \mathbb{R}$ heißt <u>Häufungspunkt</u> von (a_n) , wenn es eine Teilfolge von (a_N) gibt, die gegen h konvergiert.

2.27 Beispiel

- $\bullet \ (a_n) = ((-1)^n + \frac{1}{n})$ esitzt zwei Häufungspunkte-1 und 1
- $(a_n) = ((-1)^n)$ besitzt die Häufungspunkte -1 und 1

2.28 Satz (Satz von Bolzano-Weierstraß)

Sei (a_n) eine reelle Folge. Dann gilt:

$$(a_n)$$
 beschränkt $\Rightarrow (a_n)$ besitzt eine konvergente Teilfolge

Beweis: Intervallschachtelungsprinzip/Bisektionsverfahren (s. Folien/Blatt[\leftarrow s.u.])

Wir verwenden das Intervallschachtelungsprinzip (Satz 2.21). Nach Voraussetzung ist $(a_n)_{n\in\mathbb{N}}$ beschränkt, es existiert also ein $K\in\mathbb{N}$, so dass ale Folgeglieder im Intervall $[-K,K] =: [A_0,B_0]$ liegen. Halbiere dieses Intervall:

- Falls in der ersten Hälfte des Intervalls unendlich viele Folgenglieder liegen: wähle eines davon aus.
- Falls nicht (also falls nur endlich viele Folgenglieder in der ersten Hälfte des Intervalls liegen), dann liegen in der zweiten Hälfte unendlich viele Folgenglieder. Wähle davon eines aus.

Das ausgewählte Folgenglied nennen wir a_{n1} , die Intervallhälfte, aus der es stammt, nennen wir $[A_1, B_1]$. Fahre nun so fort: Halbiere $[A_1, B_1]$, wähle wie oben a_{n2} aus, erhalte damit das Intervall $[A_2, B_2]$, usw. So erhalten wir eine Teilfolge $(a_{n_k})_{k \in \mathbb{N}}$. Für die Intervalgrenzen von $[A_k, B_k]$ gilt:

- $A_k \leq a_{n_k} \leq B_k$
- $(A_k)_{k\in\mathbb{N}} \nearrow$, $(B_k)_{k\in\mathbb{N}} \searrow$
- $A_k \leq B_k$
- $B_k A_k \to 0$ für $k \to \infty$.

Damit sind alle Voraussetzungen für Satz 2.21 (Intervallschachtelungsprinzip) erfüllt. Die Folgen $(A_k)_{k\in\mathbb{N}}$ und $(B_k)_{k\in\mathbb{N}}$ sind also konvergent und besitzen denselben Limes a. Damit gilt auch $a_{n_k} \to a$ für $k \to \infty$.

2.29 Bemerkung/Definition

Sei (a_n) reell und beschränkt, dann gibt es inen größten und einen kleinsten Häufungspunkt, den

- <u>Limes superior</u> von (a_n) : $\lim_{n\to\infty} \sup a_n$ oder $\overline{\lim}_{n\to\infty} a_n$ bzw. den
- <u>Limes inferior</u> von (a_n) : $\lim_{n\to\infty} \inf a_n$ oder $\lim_{n\to\infty} a_n$.

Weiter setzt man

- $\overline{\lim}_{n\to\infty} a_n := \begin{cases} \infty, \text{ wenn } (a_n) \text{ nicht nach oben beschränkt ist} \\ -\infty, \text{ wenn } (a_n) \to -\infty \text{ gilt, d.h. } \forall K > 0 \quad \exists N \in \mathbb{N} \colon a_n \le -K \quad \forall n \ge N \end{cases}$
- $\underline{\lim}_{n\to\infty} a_n := \begin{cases} -\infty, \text{ wenn } (a_n) \text{ nicht nach unten beschränkt ist} \\ \infty, \text{ wenn } (a_n) \to \infty \text{ gilt, d.h. } \forall K > 0 \quad \exists N \in \mathbb{N} \colon a_n \ge K \quad \forall n \ge N \end{cases}$

Achtung: $-\infty$, ∞ sind keine reellen Zahlen!

Man erweitert hier \mathbb{R} um zwei ideelle Elemente $-\infty, \infty$, setzt $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$ (Abschluss von \mathbb{R}) und erweitert die Ordnungsstruktur auf \mathbb{R} durch $-\infty < x < \infty \quad \forall x \in \mathbb{R}$.

Mit dieser Festlegung besitzt <u>jede</u> reelle Zahlenfolge sowohl lim sup als auch lim inf. Beispiel:

a)
$$a_n = \frac{n+1}{n}$$
 $\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n = 1$

b)
$$a_n = (-1)^n$$
 $\overline{\lim}_{n \to \infty} a_n = 1$ $\underline{\lim}_{n \to \infty} a_n = -1$

c)
$$a_n = (-1)^n \cdot n$$
 $\overline{\lim}_{n \to \infty} a_n = \infty$ $\underline{\lim}_{n \to \infty} a_n = -\infty$

d)
$$a_n = n \cdot (1 + (-1)^n) : Übung$$

2.30 Definition (Cauchyfolge)

Eine Folge (a_n) heißt Cauchyfolge, falls es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt, so dass $|a_n - a_m| < \varepsilon \quad \forall n, m \geq N$ (kurz: $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \geq N \colon |a_n - a_m| < \varepsilon$) mit $|a_n - a_m|$... Abstand zweier Folgenglieder

2.31 Satz (Cauchykriterium)

Eine Folge konvergiert genau dann, wenn sie eine Cauchyfolge ist.

$$(a_n)$$
 konvergiert \Leftrightarrow (a_n) ist eine Cauchyfolge

Beweisskizze (ausführlicher Beweis: s. Moodle):

- \bullet " \Rightarrow ": Einschiebetrick, Dreiecksungleichung verwenden
- "⇐": Idee: (a_n) ist Cauchyfolge (zu zeigen: konvergent)
 zeige: (a_n) ist beschränkt
 ⇒ 2.28 ∃ konvergente Teilfolge
 zeige: Limes der Teilfolge ist Limes der Folge

2.32 Anwendung (Banachscher Fixpunktsatz)

Sei $f \colon [a,b] \to [a,b]$ eine Abbildung mit

$$\underbrace{|f(x) - f(y)|}_{} < \underbrace{|x - y|}_{} \qquad \forall x, y \in [a, b]$$

Abstand der Bildpunkte Abstand von 2 Punkten ("f ist strikte Kontraktion")

Dann hat f genau einen Fixpunkt, d.h.

$$\exists !$$
 $r \in [a, b] \text{ mit } f(r) = r$

es gibt genau ein...

Beweisidee:

Starte mit beliebigem $x_0 \in [a, b]$.

Berechne x_1 als $f(x_0)$ $x_1 := f(x_0)$

 $x_2 \text{ als } f(x_1)$ $x_2 \coloneqq f(x_1)$

also
$$x_{n+1} \coloneqq f(x_n)$$

Zeige: Diese Folge konvergiert (Cauchyfolge), und zwar gegen $r=f(r);\,r$ ist eindeutig (Annahme: es existieren 2 verschiedene r)

3 Reihen

3.1 Definition

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Summiere die ersten n Folgeglieder.

$$S := \sum_{k=1}^{n} a_k \qquad \forall n \in \mathbb{N} \qquad (= a_1 + a_2 + a_3 + \dots + a_n)$$

(<u>n-te Partialsumme</u>)

$$\underbrace{\underbrace{a_1}_{S_1} + a_2 + a_3 + \dots + a_n}_{S_2}$$

$$\underbrace{\underbrace{a_1}_{S_2} + a_2 + a_3 + \dots + a_n}_{S_n}$$

Die Folge $(S_n)_{n\in\mathbb{N}}=(S_1,S_2,S_3,...)$ heißt <u>unendliche Reihe</u>, schreibe $\sum_{k=1}^{\infty}a_k$ Falls $(S_n)_{n\in\mathbb{N}}$ gegen $s\in\mathbb{R}$ konvergiert, heißt die Reihe <u>konvergent gegen s</u> und ihr Grenzwert wird dann ebenfalls mit $\sum_{k=1}^{\infty}a_k$ bezeichnet.

(Entsprechend kann man für eine Folge $(a_n)_{n\geq n_0}$ die Reihe $\sum_{k=n_0}^{\infty} a_k$ definieren)

3.2 Beispiel

a) $\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots$ divergente Folge

b)
$$\sum_{k=1}^{\infty} (-1)^k = (-1) + 1 + (-1) + \dots$$
 divergente Folge
$$S_n = \sum_{k=1}^n (-1)^k = \begin{cases} 0, \text{ falls } n \text{ gerade} \\ -1, \text{ falls } n \text{ ungerade} \end{cases}$$

c) Die harmonische Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots \qquad \text{divergiert}$$

$$S_n = 1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{>2 \cdot \frac{1}{4} = \frac{1}{2}} + \underbrace{\frac{1}{5} + \dots + \frac{1}{8}}_{>4 \cdot \frac{1}{8} = \frac{1}{2}} + \underbrace{\frac{1}{9} + \dots + \frac{1}{16}}_{>8 \cdot \frac{1}{16} = \frac{1}{2}} + \underbrace{\dots + \frac{1}{n}}_{\text{usw.}}$$

$$> 1 + \frac{1}{2} + \underbrace{\frac{1}{2}}_{>1} + \underbrace{\frac{1}{2}}_{>1} + \underbrace{\frac{1}{2}}_{>1} + \dots$$

 \Rightarrow divergent (per Induktion: $S_{2^m} \ge 1 + \frac{m}{2}$)

d)
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$
 it konvergent gegen den Grenzwert $\sum_{k=0}^{\infty} \frac{1}{2^k} = 2$

e) wichtiges Beispiel: Geometrische Reihe Für $q \in \mathbb{R}$ mit |q| < 1 gilt

$$\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}\quad\text{, denn:}$$

$$S_n=\sum_{k=0}^nq^k=\frac{1-q^{n+1}}{1-q}\quad\text{(Übung: geom. Summe, Induktion)}$$

Aus 2.11:

$$\lim_{n \to \infty} q^n = 0 \qquad \text{, falls } |q| < 1$$

Geometrische Folge. Also gilt:

$$S_n \to \frac{1-0}{1-q} = \frac{1}{1-q}$$
 für $n \to \infty$
$$\sum_{k=0}^{\infty} q^k$$
 divergiert für $|q| \ge 1$

Nochmal Beispiel d)

Nochmal Beispiel d)
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = \sum_{k=0}^{\infty} (\frac{1}{2})^k$$
, also geometrische Reihe mit $q = \frac{1}{2}$ $1 > |q|$, konvergiert gegen $\frac{1}{1-q} = \frac{1}{1-\frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2$

Weitere Beispiele:

$$-\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = \sum_{k=0}^{\infty} (\frac{1}{2})^k = \frac{2}{3}$$

$$-\sum_{k=3}^{\infty} q^k = \sum_{k=0}^{\infty} q^{k+3} = q^3 \cdot \sum_{k=0}^{\infty} q^k = \frac{q^3}{1-q} \qquad \text{(falls } |q| < 1)$$

3.3 Rechenregeln für Reihen

folgen aus den Rechenregeln für Folgen. Sei

- $\sum_{k=1}^{\infty} a_k$ konvergiert gegen a,
- $\sum_{k=1}^{\infty} b_k$ konvergiert gegen b.

Dann gilt mit $c \in \mathbb{R}$:

- a) $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergiert gegen a + b
- b) $\sum_{k=1}^{\infty} (c \cdot a_k)$ konvergiert gegen $c \cdot a$

Konvergenz-/Divergenzkriterien für Reihen 3.4

- 1 Ist S_n mit $S_n = \sum_{k=1}^{\infty} a_k$ beschränkt und $a_k \geq 0 \quad \forall k \in \mathbb{N}$, so ist $\sum_{k=1}^{\infty} a_k$ konvergent (folgt aus Satz 2.19/monotone Konvergenz).
- 2 Cauchy-Kriterium

 $\overline{\sum_{k=1}^{\infty} a_k \text{ konvergiert}} \Leftrightarrow \forall \varepsilon > 0 \quad \exists N \in \mathbb{N}, \text{ so dass } \forall m > n \geq N \text{ gilt: } |a_{n+1} + \dots + a_m| = |\sum_{k=n+1}^m a_k| < \varepsilon$ $|S_m - S_n|$

(folgt aus 2.31/Cauchykriterium für Folgen)

Daraus ergibt sich:

Ist $\sum_{k=1}^{\infty} a_k$ konvergent, so ist $(a_n)_n$ Nullfolge (wähle m=n+1, dann $|a_{n+1}|<$ ε , d.h. $a_n \to 0$). $\Rightarrow [3]$

3 Divergenzkriterium

Ist
$$(a_n)_n$$
 keine Nullfolge, so ist $\sum_{k=1}^{\infty} a_k$ divergent.
Bsp: $\sum_{k=1}^{\infty} \underbrace{\left(1 + \frac{1}{k}\right)}_{\rightarrow 1 \text{ für } k \rightarrow \infty, \text{ keine Nullfolge!}}$ divergiert

4 Majorantenkriterium

 $\overline{\text{Seien }(a_n),(b_n)\text{ Folgen}}$ mit $|a_n| \leq b_n \quad \forall n \in \mathbb{N}$ (für fast alle n, d.h. für alle bis auf endlich viele)

Dann gilt:

Ist
$$\sum_{k=1}^{\infty} b_k$$
 konvergent, dann auch $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} |a_k|$

Beweis:

$$\begin{split} |\sum_{k=n+1}^m a_k| &\leq \sum_{k=n+1}^m |a_k| \\ &\leq \sum_{k=n+1}^m b_k \\ &\leq |\sum_{k=n+1}^m b_k| < \varepsilon \text{ , da } \sum_{k=1}^\infty b_k \text{ konvergent,} \end{split}$$

also ist Cauchykriterium [2] für $\sum_{k=1}^{\infty} a_k$ erfüllt, $\sum_{k=1}^{\infty} a_k$ konvergiert. Ähnlich: Minorantenkriterium für Divergenz, s. Blatt 5.

5 <u>Leibnitzkriterium für alternierende Reihen</u>

Sei $(a_n)_n$ reelle, monoton fallende Nullfolge mit $a_n \ge 0 \quad \forall n$. Dann konvergiert die alternierende Reihe $\sum_{k=0}^{\infty} (-1)^k \cdot a_k$

Beweis: Intervallschachtelungsprinzip

$$A_n := \sum_{k=0}^{2n-1} (-1)^k \cdot a_k$$
$$B_n := \sum_{k=0}^{2n} (-1)^k \cdot a_k$$

 $-A_n \nearrow$, denn

$$A_{n1} - A_n = \sum_{k=0}^{2n+1} (-1)^k \cdot a_k - \sum_{k=0}^{2n-1} (-1)^k \cdot a_k$$
$$= (-1)^{2n+1} a_{2n+1} + (-1)^{2n} a_{2n} = -a_{2n+1} + a_{2n} \ge 0$$

$$(da (a_n) \searrow)$$

– ähnlich für $B_n \searrow$

$$-B_n - A_n = (-1)^{2n} a_{2n} = a_{2n} \ge 0 \longrightarrow 0$$
 für $n \to \infty$ (weil $(a_n)_n$ Nullfolge nach Voraussetzung)
 $\Rightarrow \exists \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n$, also konvergiert $\sum_{k=0}^{\infty} (-1)^k a_k$

Bsp:

a) Leibnitz-Reihe:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - \dots$$
$$= \sum_{k=0}^{\infty} (-1)^k \frac{1}{2k+1}$$

konvergiert gegen $\frac{\pi}{4}$

b) Die alternierende harmonische Reihe

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots + \dots$$
$$= \sum_{k=0}^{\infty} (-1)^k \frac{1}{k+1}$$

konvergiert gegen ln 2

6 Absolute Konvergenz

Definition

Eine Reihe $\sum_{k=0}^{\infty} a_k$ heißt absolut konvergent, falls die Betragsreihe $\sum_{k=0}^{\infty} |a_k|$

Beispiel

Beispiel a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^2}$$
 konvergiert absolut, da $\sum_{k=1}^{\infty} |(-1)^k \frac{1}{k^2}| = \underbrace{\sum_{k=1}^{\infty} \frac{1}{k^2}}_{\text{s. } \underline{\text{fa}}}$ konvergiert absolut, da $\sum_{k=1}^{\infty} |(-1)^k \frac{1}{k^2}| = \underbrace{\sum_{k=1}^{\infty} \frac{1}{k^2}}_{\text{s. } \underline{\text{fa}}}$

giert

b) $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k}$ konvergiert nicht absolut (aber konvergiert, s. Leibnitzkriterium), da $\sum_{k=1}^{\infty} |(-1)^k \frac{1}{k}| = \sum_{k=1}^{\infty} \frac{1}{k}$ (harmonische Reihe, konvergiert

(Majorantenkriterium)

Es gilt: Reihe konvergiert absolut ⇒ Reihe konvergiert (aber nicht umgekehrt, s. Beispiel b))

|6a| <u>Wurzelkriterium</u>

Für $a_k \in \mathbb{R}$ gilt:

– falls
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} < 1 \Rightarrow \sum_{k=0}^{\infty} |a_k|$$
 konvergiert (d.h. $\sum_{k=0}^{\infty} a_k$ konvergiert absolut)

– falls
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1 \Rightarrow \sum_{k=0}^{\infty} a_k$$
 divergiert

- für
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_k|} = 1$$
 ist keine allgemeine Aussage möglich

Beweis:

Sei
$$s := \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$$

- falls
$$s < 1$$
: Wähle kleines $\varepsilon > 0$, so dass $s + \varepsilon < 1$
 $\Rightarrow \sqrt[n]{|a_n|} \le s + \varepsilon$ für fast alle n

$$\Rightarrow |a_n| leg(s+\varepsilon)^n$$

 $\Rightarrow \bigvee_{\alpha_n \mid eq(s+\varepsilon)^n} |a_n| leq(s+\varepsilon)^n$ Die Reihe $\sum_{k=0}^{\infty} \underbrace{(s+\varepsilon)^n}_{<1}$ ist geometrische Reihe und konvergiert, und

ist Majorante für die Reihe $\sum_{k=0}^{\infty} |a_k|$

- falls s > 1, dann ist $\sqrt[n]{|a_n|} > 1$ für unendlich viele n, also $a_n \to 0$, $\sum_{k=0}^{\infty} a_k$ divergent nach $\boxed{3}$
- z.B. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ (allgemeine harmonische Reihe) mit $\alpha \geq 1$ liefert $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 1$, aber es gilt (Mitteilung):

für $\alpha=1$ ist Reihe divergent (für $0<\alpha<1$ ebenso, Blatt 5 Aufgabe 2);

für $\alpha > 1$ ist Reihe konvergent

Das Wurzelkriterium kann diese Fälle nicht unterscheiden.

6b Quotientenkriterium

 $\overline{\text{Sei } a_n \neq 0 \text{ für fast alle } k}$ (d.h. für alle bis auf endlich viele)

- falls $\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum_{k=0}^{\infty} |a_k|$ konvergiert
- falls $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \sum_{k=0}^{\infty} a_k$ divergiert
- falls $\overline{\lim_{n\to\infty}} \left| \frac{a_{n+1}}{a_n} \right| \ge 1$ und $\underline{\lim_{n\to\infty}} \left| \frac{a_{n+1}}{a_n} \right| \le 1$, so ist keine allgemeine Aussage möglich (wie bei $\boxed{6a}$, dritter Punkt)

Beweis: ähnlich wie 6a

3.5 Bemerkung

Umordnung einer Reihe, Konvergenzverhalten \rightarrow s. Folien 11.05.2016