ВСТУП

Сподіваємось ніхто не буде заперечувати проти такого визначення: "життя – це процес прийняття рішень". Рішення приймають політики, військові, виробники, споживачі, продавці, покупці, водії, пішоходи ("йти чи не йти на червоне світло"), дорослі ("що робити з дітьми"), діти ("що робити з іграшкою"), рішення приймають навіть студенти ("йти чи не йти на лекцію, а якщо йти, то що робити - слухати лектора, розмовляти з сусідом). Рішення приймаються колективні (вибори президента), індивідуальні (за якого кандидата голосувати), стратегічні ("куди піти вчитися"), тактичні ("брати чи не брати з собою парасольку"), миттєві (воротар - "у який кут стрибати"), розтягнуті в часі та просторі, важливі (з погляду цивілізації, партії, окремого індивіда), несуттєві ("яку програму по телевізору дивитися") і т. п. Рішення приймаються на основі знань, досвіду, інтуїтивно, за допомогою випадкового механізму, за підказкою інших, за бажанням, за необхідністю. У багатьох практично цікавих випадках основним моментом є саме метод (алгоритм) прийняття рішення, а вже потім вивчення властивостей прийнятого рішення. Більше того, у деяких випадках апріорне задання властивостей шуканого рішення (у вигляді аксіом) призводить до його неіснування або до неможливості його знаходження заданою процедурою.

Хоча вивченням окремих задач прийняття рішень людство займалось давно, теорія прийняття рішень як наукова дисципліна сформувалось у другій половині ХХ ст., що пов'язано, у першу чергу, з розвитком обчислювальної техніки й інформатики.

Термін "прийняття рішень" зустрічається в багатьох дисциплінах, прийняття рішень є одним з основних напрямів прикладної математики. Моделі та методи теорії прийняття рішень знайшли широке застосування, у першу чергу, в економіці, військовій справі, політиці, медицині. Історично теорія прийняття рішень виокремилась із наукового напряму, відомого під назвою "дослідження операцій". У свою чергу, теорія прийняття рішень стимулювала розвиток нового наукового напряму "штучний інтелект".

Таким чином, із погляду навчального плану напряму "прикладна математика" теорія прийняття рішень є проміжною ланкою між дисциплінами "дослідження операцій" ("методи оптимізації") та "штучний інтелект" ("проектування баз знань").

Розділ 1 БАЗОВІ ОСНОВИ ПРИЙНЯТТЯ РІШЕНЬ

Якщо дотримуватись класифікації проблем прийняття рішень американських учених Γ . Саймона й А. Н'юєлла [11], то типові задачі дослідження операцій відносяться до добре структурованих або кількісно сформульованих. У таких проблемах суттєві залежності відомі настільки добре, що можуть бути вираженими в числах або символах, які у підсумку отримують чисельні оцінки. Вивчення реальної ситуації, що моделюється, може вимагати великого обсягу часу. Необхідна інформація може мати високу вартість, але за наявності засобів і високої кваліфікації дослідників є всі можливості знайти адекватне кількісне описання проблеми, критерій якості та кількісні зв'язки між змінними.

По-іншому складається справа у слабо структурованих проблемах. Тут частина інформації, що необхідна для повного й однозначного визначення вимог до розв'язку, принципово відсутня. Дослідник, як правило, може визначити основні змінні, встановити зв'язок між ними, тобто побудувати модель, що адекватно описує ситуацію. Але при цьому залежності між критеріями взагалі не можуть бути визначеними на основі об'єктивної інформації, що мається в дослідника.

Більше того, існують проблеми, у яких відомий лише перелік основних параметрів, але кількісні зв'язки встановити між ними неможливо. У таких випадках структура, що розуміється як сукупність зв'язків між параметрами, невизначена і проблема називається неструктурованою.

Будемо вважати, що *структуровані* (добре структуровані) задачі відносяться до предмета дослідження операцій, *слабо структуровані* – до компетенції прийняття рішень, *неструктуровані* – до штучного інтелекту.

§1. Загальна задача прийняття рішень

Схему прийняття рішень можна описати в такому вигляді (див. рис. 1.1.1).

Загалом кожен блок 1–5 наведеної схеми ("загальної задачі прийняття рішень" – ЗЗПР) потребує конкретизації та певної формалізації. Задача із заданою множиною альтернатив Ω і принципом оптималь-

ності ОП називається загальною задачею оптимізації, зміст якої полягає у виділенні множини "кращих" альтернатив ОП(Ω), зокрема, якщо принцип оптимальності задається скалярною функцією вибору на Ω , то маємо звичайну оптимізаційну задачу (наприклад, лінійного програмування). Якщо принцип оптимальності задається множиною критеріальних функцій, то маємо задачу багатокритеріальної оптимізації. Задача з відомою множиною альтернатив Ω і явно заданим принципом оптимальності називається задачею вибору.

Рис. 1.1.1

У процесі розв'язання загальної задачі прийняття рішень, як правило, беруть участь три групи осіб: *особи, що приймають рішення* (ОПР), *експерти* (Е) та *консультанти* (К).

ОПР називають людину (або колективний орган такий, як науковий заклад, Верховна рада), що має (формує) ціль, яка слугує мотивом постановки задачі та пошуку її розв'язання. ОПР визначає також, які засоби є допустимими (недопустимими) для досягнення мети.

Експерт – це спеціаліст у своїй галузі, що володіє інформацією про задачу, але не несе прямої відповідальності за результати її розв'язання. Експерти допомагають ОПР на всіх стадіях постановки й розв'язання ЗПР.

Аналітиками (консультантами, дослідниками) називають спеціалістів із теорії прийняття рішень. Вони розробляють модель (математичну, інформаційну) задачі прийняття рішень (ЗПР), процедури прийняття рішень, організовують роботу ОПР і експертів.

У найпростіших ситуаціях ОПР може виступати одним у трьох ролях, у більш складних – ОПР може поєднувати функції аналітика, звер-

таючись до спеціалістів із вузьким профілем для вирішення часткових проблем. У загальному випадку ОПР (наприклад, президент або профільний комітет Верховної Ради) залучає до вирішення державних проблем аналітиків –консультантів, які, у свою чергу, звертаються до експертів. ОПР – головнокомандуючий має колективного консультанта – Генеральний штаб, який, у свою чергу, організовує роботу експертів – спеціалістів з озброєння, хімічного й біологічного захисту, політологів, метеорологів тощо.

У практичних (прикладних) задачах прийняття рішень формалізація кожного кроку процесу прийняття рішень (поданих на рис. 1.1.1) пов'язана з певними, іноді дуже складними, проблемами. У першу чергу, постає проблема визначення мети та засобів її досягнення. Можна ставити апріорі недосяжні або навіть абсурдні чи злочинні цілі ("моя мета – пробігти стометрівку за п'ять секунд", "наша мета – комунізм", "наша мета – чистота раси" і т. д.). Можна використовувати нецивілізовані, навіть злочинні, методи досягнення цілком досяжної мети ("мета – стати президентом", "стати багатим", "отримати п'ятірку на іспиті" і т. д.). Але зараз не про це. Нас цікавить формалізація ЗЗПР, її описання

Але зараз не про це. Нас цікавить формалізація ЗЗПР, її описання на мові математики з метою моделювання практичних ситуацій прийняття рішень. І якщо математична модель призведе до факту неіснування розв'язку поставленої задачі, наша мета буде досягнутою. Припустимо тепер, що мета й методи її досягнення визначені. Постає проблема побудови множини альтернатив – варіантів дій, направлених на досягнення мети. Тут, у першу чергу, виникає проблема побудови "повного списку" альтернатив. Можлива ситуація, коли не включення певної альтернативи призведе до неможливості розв'язання задачі або до її "неякісного" розв'язання. Так, не включення до економічної системи колишнього СРСР ринкових механізмів призвело до деградації суспільства й розпаду СРСР.

Не менш складною є проблема оцінки альтернатив — "до чого приведе та чи інша вибрана дія". Як правило, оцінки альтернатив мають суб'єктивний характер, вони отримуються на основі обробки експертної інформації. Навіть якщо можна оцінювати альтернативи за допомогою "об'єктивних" процедур (наприклад, вимірювати вагу товару, відстань між населеними пунктами), постає проблема визначення всіх або хоча б "найважливіших" аспектів оцінки кожної альтернативи. Тут також неврахування навіть одного аспекту в оцінці варіантів дії може призвести до катастрофічних наслідків (згадаймо Чорнобильську катастрофу — неврахування ризику аварії при будівництві АЕС привело до трагічних результатів).

Остання принципова складність (але не остання за значенням) – вибір принципу порівняння альтернатив і на його основі – принципу оп-

тимальності. Якщо на попередньому етапі визначені числові оцінки альтернатив, то вибір принципу оптимальності зводиться до вибору критерію (критеріїв) оптимізації, який максимально відповідає меті ЗЗПР. Так, якщо для тренера футбольної команди мета – перемога у наступному матчі, то за принцип оптимальності може слугувати такий критерій: "Перемагає та команда, яка виконує за матч більшу сумарну кількість успішних тактично-технічних елементів" (передач м'яча, відборів, ударів по воротах і т. д.). Такий принцип не раз висловлював В. Лобановський. Як правило, визначення (побудова, прийняття) принципу оптимальності відбувається у декілька етапів. Так, якщо мета ЗЗПР описується декількома числовими критеріями (і, отже, маємо задачу багатокритеріальної оптимізації), необхідно визначити – на основі якого "глобального" принципу оптимальності будуть порівнюватись (і вибиратись кращі) альтернативи.

Проблеми реалізації останнього блоку схеми пов'язані, у першу чергу, із математичними труднощами розв'язання задач, що виникають. Тут і велика розмірність, і проблеми існування розв'язку, і збіжність процедур його побудови і т. д.

Розглянемо приклади змістовної інтерпретації блоків ЗЗПР.

- 1. Визначення мети та засобів. Розглянемо такі приклади.
- 1.1. Християнська доктрина визначає мету земного існування людини як "спасіння душі". Засоби будь-які, що не суперечать заповідям "Нового заповіту" (не вбивай; не гнівайся на ближнього; не чини перелюбу; не клянись, але виконуй клятви свої перед Господом; не протився злому, і коли вдарить тебе, хто у праву щоку твою, підстав йому й іншу; любіть і ворогів своїх; про милостиню; про піст; складайте собі скарби на небі; покладайте на Бога надію свою; не судіть своїх ближніх ("Не суди, але викривай"); ходіть дорогою вузькою; стережіться фальшивих пророків; чиніть волю отця вашого небесного; не будуйте на піску).
- 1.2. Сучасна гуманістична доктрина визначає ціль життя людини як "самореалізацію" (Е. Фромм) [30]. Засоби досягнення цієї мети визначаються, перш за все, "Декларацією прав людини", у якій на першому місці, безумовно, стоїть християнський принцип "не убий" ("право на життя"). Інші біблійні принципи не є категоричними імперативами. Із принципом "Не вбивай" тісно пов'язана проблема смертної кари. Якщо мета "справедливість за будь-яку ціну" (зокрема, "око за око, зуб за зуб"), то смертна кара допустима. Але, якщо дещо переформулювати проблему смертної кари чи згодні ви, щоб разом із шістьма злочинцями був страчений один невинний (а саме така статистика хибних смертних вироків за останні 150 років у Європі й Америці), то принцип "справедливість за будь-яку ціну" стає зовсім не очевидним.

- 1.3. Видатний філософ XX ст. Микола Бердяєв визначав мету життя людини не як "спасіння", а як "творче сходження", засіб "свобода" [13].
- 1.4. "Хто ж вони, справжні філософи? Ті, хто метою мають істину" (Платон).

"Життя перестає прив'язувати до себе щойно зникає мета" (І. Павлов).

"Минуле і сучасне – наші засоби, тільки майбутнє – наша мета" (Блез Паскаль).

"Мета влади – влада" (Дж. Оруел).

- 1.5. Мета вилікувати хворого. Засоби усе те, що надається системою охорони здоров'я.
- 1.6. Мета побудувати літак. Засоби 300 млн грн. на початок 2010 р.
- 1.7. Мета виграти футбольний матч, засоби у тренера сформувати команду на даний матч із наявних 25 футболістів.
- 1.8. Мета "щастя всього людства". Цю мету висували й висувають філософи, політики, пророки, авантюристи. І якщо з метою все зрозуміло (про формалізацію терміна "щастя" тепер не йдеться на Всесвітньому економічному форумі в Давосі в січні 2006 р. один із семінарів мав назву "Щастя це..."), то із засобами її досягнення набагато складніше. Згадаймо хоча б Ф. Достоєвського "щастя всього людства не варте однієї сльозинки дитини"; Мао Цзедуна "заради перемоги соціалізму можна пожертвувати половиною людства"; Ф. Ніцше "хочеш бути щасливим не мрій".

Доцільно тут згадати і слова: "Політики – це люди, найбільш нерозбірливі в засобах (досягнення мети)". Сучасна історія, на жаль, повністю підтверджує цей вислів. Прикладів тут безліч, і читач легко може їх навести. Ми ж лише процитуємо слова Максима Горького про те, що "Леніну, як вождю, притаманна для цієї ролі необхідність у відсутності моралі" і слова Мітчела Канора (розробника "Lotus"), який називає Білла Гейтса "найуспішнішим і яскравим представником тих, хто грає на стратегії – перемога за будь-яку ціну". А взагалі проблема "мета – засоби" стара як світ. Ми ж приєднуємось до думки, що історичний досвід показує, що відмова від вимог моралі є завжди програшною стратегією.

- 1.9. Мета отримання максимального задоволення від життя (про формалізацію поняття задоволення див. вище у Е. Фромма). Засоби студента 50 грн (на початок 2009 р.).
- 1.10. Мета викладача навчити студента своєму предмету, засоби викладання "цікаво, зрозуміло і ... весело" (принцип видатного вченого і педагога XX ст. академіка фізика П. Капіци).

Загальний підхід до поняття мети був розвинутий на початку 40-х рр. ХХ ст., у першу чергу, Н. Вінером, який писав, що термін "цілеспрямоване" означає, що дія або поведінка допускає тлумачення як направлені на досягнення деякої мети, тобто деякого кінцевого стану, при якому об'єкт вступає у певний зв'язок у просторі або часі з деякими іншими об'єктами або подіями. Із філософськими аспектами в об'єктивізації поняття мети можна ознайомитись у роботі [11].

Розглянемо основні типи цілей і способи їхньої формалізації, що застосовуються при прийнятті рішень.

"Якісна" ціль характеризується тим, що будь-який результат або повністю задовольняє ці цілі або повністю не задовольняє, причому результати, що задовольняють ці цілі нерозрізненні між собою точно так як нерозрізнені між собою й результати, що не задовольняють ці цілі. Наприклад, ціль — стати чемпіоном. І якщо ціль досягнуто, то немає значення, як її досягнуто — наполегливим тренуванням, підкупом суддів, знищенням конкурентів тощо. Якісну ціль можна формалізувати у вигляді деякої підмножини A множини всіх можливих результатів, де будь-який результат $a \in A$ задовольняє цій цілі, а будь-який результат $a \notin A$ не задовольняє їй. Множина A при цьому називається цільовою підмножиною. Так, якщо ціль "зайняти призове місце", то цільова множина A — перші три місця з усіх можливих.

Якісну ціль (її можна назвати якісною "чіткою" ціллю) можна узагальнити так. Нехай кожному результату a відповідає "ступінь" виконання цілі $\mu(a)$, $0 \le \mu(a) \le 1$. Зокрема, якщо ціль чітка, то $\mu(a) = 1$, якщо $a \in A$; $\mu(a) = 0$, якщо $a \notin A$. Так, нехай у останньому прикладі $\mu(I \text{ місце}) = 1$, $\mu(II) = 0,9$, $\mu(III) = 0,7$ і "нечітка" цільова множина A визначається умовою: $\mu(a) \ge 0,7$. Зазначимо, що значення функції $\mu(a)$ (функція "належності" — див. Розділ 7 "Прийняття рішень в умовах нечіткої інформації") не є оцінкою результату a, а лише "ступінь" його належності до цільової множини a (можливо "націлюватись" на a місце недоцільно з погляду прикладання надмірних зусиль).

"Кількісна" ціль є результатом вибору на множині результатів, що описуються кількісно, за допомогою деякої дійснозначної функції $f:A\to E^1$. Задача прийняття рішень у цьому випадку зводиться до знаходження оптимуму (максимуму чи мінімуму) функції f на множині A. Зазначимо, якщо "якісну чітку" ціль формально можна звести до "кількісної" (поклавши, наприклад, f(a)=1, $a\in A$; f(a)=0, $a\not\in A$), то ЗПР з "якісною нечіткою" ціллю вимагають додаткової інформації до своєї формалізації.

Якщо цільова функція ϵ векторною, тобто кожен результат описується набором чисел, що характеризують його "вартість", "ефективність", "надійність", то маємо задачу багатокритеріальної оптимізації.

Зазначимо, якщо ціль задано з допомогою скалярної цільової функції f, то можна визначити пов'язану з цією ціллю перевагу серед результатів: із двох результатів кращим буде той, якому відповідає більше (менше) значення цільової функції (при рівних значеннях цільової функції говорять про байдужність результатів). Назвемо таку перевагу перевагою, що пов'язана з цільовою функцією f. Але можна говорити про перевагу й без наявності цільової функції, задаючи множину пар результатів, для яких перший результат у парі є кращим за другий (або не гіршим). Останнє означає, що на декартовому добутку результатів $A \times A$ задане деяке бінарне відношення. За заданим бінарним відношенням у загальному випадку неможливо побудувати цільову функцію, пов'язану з ним. Відомі достатні умови (властивості), яким повинно задовольняти бінарне відношення для того, щоб існувала цільова функція, пов'язана з ним (див. Розділ 2 "Основи теорії корисності"). Отже, задання переваг у вигляді бінарного відношення на множині результатів є більш загальною формою формалізації цілі. З іншого боку, на практиці дуже часто відношення переваги задається саме бінарним порівнянням – про це говорить і народна мудрість "Усе пізнається у порівнянні".

2. Побудова множини варіантів дій і їхніх наслідків. Формально блоки 2 і 3 схеми ЗЗПР є незалежними, але змістовно зв'язаними (для чого розглядати альтернативи, які не можна принципово оцінити?). Тому на прикладах розглянемо їх сумісно. У блоці 2 альтернативи будуються на основі евристичних, неформальних процедур; у блоці 3 на основі формально-математичних, експертних процедур здійснюється оцінювання їхніх наслідків.

Розглянемо основні типи залежностей між альтернативами та наслідками.

Найпростіший тип залежності — *детермінований*, коли кожна альтернатива приводить до єдиного наслідку. При цьому між альтернативами та наслідками існує функціональна залежність і такі ЗПР називаються ЗПР в умовах визначеності. Наявність функціональної залежності приводить до того, що ЗПР достатньо описувати лише у термінах цілі й альтернатив.

Найчастіше вибрана альтернатива може привести до множини наслідків. Такий тип залежності називається недетермінованим. При цьому між альтернативами та наслідками не існує функціональної залежності й такі ЗПР називаються ЗПР в умовах невизначеності. Невизначеність є проявом впливу на наслідок зовнішнього середовища, як ще кажуть – природи. Якщо при цьому задано розподіл станів природи, то маємо ЗПР в умовах ризику (щоб текст не змістився на стор. 11, абз. 4 прибрати "і зекономити 50 грн."). Якщо невизначеність є проявом впливу на наслідок інших ОПР, які мають свої цілі, то така задача називається ЗПР в умовах конфлікту.

Інколи, як множини альтернатив (наслідків), так і зв'язок між ними є нечіткими. При цьому між альтернативами й наслідками також не існує функціональної залежності і такі ЗПР називаються ЗПР в умовах нечіткої інформації. Нечіткість, як правило, є проявом суб'єктивності ОПР, експертів та аналітиків, які формулюють ЗПР.

Пропонуємо читачеві (як завдання на самостійну роботу) побудувати множину варіантів для досягнення мети в умовах визначених засобів для наведених вище прикладів.

Детальніше проаналізуємо проблему 1.9 — "Отримати максимальне задоволення за 50 грн". Можливі дії: a_1 — піти в кіно; a_2 — піти на дискотеку; a_3 — придбати книгу; a_4 — залишитись вдома і т. д.

Цілком можливо, що два різні індивіди оцінять альтернативи (наслідки вибраних дій) так: a_1 – 5 балів, a_2 – 4, a_3 – 2, a_4 – 1 (екстраверт, кінолюб); a_1 – 2, a_2 – 1, a_3 – 5, a_4 – 3 (інтраверт, бібліофіл). У цій задачі зв'язок між альтернативами й наслідками є детермінованим, ЗПР достатньо описувати лише у термінах цілі й альтернатив.

Зв'язок між альтернативами та наслідками найчастіше ϵ недетермінованим, залежним від "станів природи".

Так, збираючись зранку на заняття, залежно від станів природи y_1 – y_4 (тепло – сонячно, тепло – дощ, холодно – сонячно, холодно – дощ), студент повинен вибрати одну з альтернатив a_1 – a_4 (іти в одному костюмі, взяти парасольку, одягнути плащ, пальто). Оцінки альтернатив (за чотирибальною шкалою) внесемо у табл. 1.1.1.

Y y_1 y_2 y_3 y_4 Α 5 2 2 $a_{\scriptscriptstyle 1}$ 1 3 5 3 3 a_2 2 2 a_3 3 3 2 4 5 4 $a_{\scriptscriptstyle 4}$

Таблиця 1.1.1

Якщо в прикладі 1.1.6 замовником промисловості виступає уряд, то альтернативами можуть бути конструкторські бюро й літакобудівні

заводи України (Київ, Харків), Росії тощо. Обираючи меню, ОПР оцінює комплексний обід за трьома критеріями: за п'ятибальною шкалою – вартість (f_1 – мінімізувати), калорійність (f_2 – максимізувати або мінімізувати), смакові якості (f_3 – максимізувати). Крім того, нехай оцінки за переліченими критеріями залежать від стану "природи" (у якого з трьох постачальників було закуплено продукти), причому відомі ймовірності реалізації станів (із імовірністю 1/4 товари було закуплено у І або ІІ постачальника, із імовірністю 1/2 – у ІІІ). Нехай також ОПР вибирає альтернативи за допомогою деякого випадкового механізму, зумовленого тим, що двічі на тиждень доцільно вибирати пісну дієту (альтернатива a_3 – салат з капусти, овочевий суп, каша, компот), двічі – рибну (a_2 – салат з огірків, борщ, риба, сік) і тричі – м'ясну (a_1 – салат з капусти, солянка, котлети, компот). Тоді оцінки наслідків можна описати табл. 1.1.2 (q – імовірнісний розподіл станів природи, p – розподіл альтернатив).

Y		y_1			y_2			y_3		p
A	f_1	f_2	f_3	f_1	f_2	f_3	f_1	f_2	f_3	
a_1	4	5	4	3	5	3	2	4	2	2/7
a_{2}	3	4	4	2	4	3	2	4	3	2/7
a_3	2	3	3	1	3	2	1	2	1	3/7
q		1/4			1/4			1/2		

Таблиця 1.1.2

У прикладі 1.1.7 ОПР (тренер) знає лише "порівняльний" стан готовності футболістів, наприклад, нападників (усього їх четверо). Цю інформацію подамо в табл. 1.1.3, де елемент $a_{ij}=1$, якщо у футболіста a_i готовність краща, ніж у a_j $(i\neq j);$ $a_{ij}=0$, якщо стан готовності однаковий (зокрема, $a_{ii}=0$); $a_{ij}=-1$, якщо у футболіста a_i готовність гірша, ніж у a_j $(i\neq j)$. На основі цієї таблиці необхідно побудувати відношення пріоритету серед чотирьох нападників. Якщо склад команди формує не один тренер, потрібно спочатку "інтегрувати" думки тренерів, що представлені у табл. 1.1.3.

"Станом природи" може виступати інший ОПР і задача "прийняття рішення в умовах конфлікту" опишеться такою табл. 1.1.4, де a_1 , a_2 – дії (стратегії) першого ОПР (гравця); b_1 , b_2 – другого.

Таблиця 1.1.3

	$a_{\scriptscriptstyle 1}$	a_{2}	a_3	$a_{\scriptscriptstyle 4}$
$a_{\scriptscriptstyle 1}$	0	1	1	0
a_2	-1	0	1	1
a_3	-1	-1	0	1
$a_{\scriptscriptstyle 4}$	0	-1	-1	0

Таблиця 1.1.4

II	b_1	b_2
$a_1 = a_2$	$(f_1(a_i,b_j),$	$f_2(a_i,b_j))$

При виборі стратегії a_i першим гравцем, b_j – другим, виграш першого складе $f_1(a_i,b_j)$, другого – $f_2(a_i,b_j)$. Як подібну задачу розглянемо відому проблему "Дилема бандита" [6]. Двох спійманих злочинців, яких підозрюють у скоєнні групового злочину (за груповий злочин покарання більше), розсаджують у різні камери (інформаційний обмін між ними – "переговори" – неможливі). "Виграші" наведені у табл. 1.1.5, де a_1 , b_1 – стратегія "зізнатися", a_2 , b_2 – "не зізнаватись", (f_1,f_2) – кількість років, які отримає кожен із бандитів.

Таблиця 1.1.5

I	b_1	b_2
$a_{\scriptscriptstyle 1}$	(10,10)	(0, 25)
a_2	(25, 0)	(1, 1)

3. Визначення принципу оптимальності та структурування множини альтернатив. Блоки 4, 5 загальної схеми принципово різні – у блоці 4 на основі неформальних міркувань вибирається принцип оптимальності, у блоці 5 – на основі формально-математичних процедур розв'язуються задачі вибору; із практичного погляду – блоки 4 і 5 доцільно розглядати сумісно.

Будемо вважати, що в табл. 1.1.1 стани природи рівноймовірні, тоді логічним принципом оптимальності може бути вибір за серед-

ньою або сумарною оцінкою альтернатив (і буде вибрано a_4). Не менш логічними будуть такі міркування — при виборі a_1 найгірша оцінка дорівнює 1, a_2 — 3, a_3 — 2, a_4 — 2. Отже, якщо вибрати a_2 , то менше за 3 отримати не можна. За таким критерієм буде вибрано (і теж цілком логічно) альтернатива a_2 . Найменша залежність від "станів природи" (різниця між найкращою і найгіршою оцінками) гарантується альтернативою a_3 . Зверніть увагу, що "логічні" міркування привели до протилежних наслідків.

Нехай тепер стани природи у цій задачі не рівноймовірні – імовірність стану y_1 $p(y_1)=0,4$; $p(y_2)=0,3$; $p(y_3)=0,2$; $p(y_4)=0,1$. Тоді як "сумарну оцінку" альтернатив логічно взяти математичне сподівання $M(a_i)=\sum_j f(a_i,y_j)p(y_j)$. Маємо: $M(a_1)=5\cdot 0,4+2\cdot 0,3+2\cdot 0,2+1\cdot 0,1=3,7$;

 $M(a_2)=3,6$; $M(a_3)=2,4$, $M(a_4)=3,4$. Отже, при певних імовірностях станів природи кращою альтернативою стала альтернатива a_1 (хоча, звичайно, із імовірністю 0,1 вибір альтернативи a_1 гарантує незагартованому студенту гостре респіраторне захворювання).

Для табл. 1.1.2 логічно взяти середню оцінку для кожної альтернативи по кожному постачальнику (нехай усі критерії максимізуються, оцінку "вартості" візьмемо зі знаком мінус) і підрахувати математичне сподівання по розподілу ймовірностей вибору постачальника: $M(a_1) = 5 \cdot 0.25 + 5 \cdot 0.25 + 4 \cdot 0.5 = 4.5$; $M(a_2) = 5$; $M(a_3) = 2.5$. Далі, прийнявши за оцінку кожної альтернативи $M(a_i)$, логічно оцінити її математичним сподіванням із урахуванням імовірності її реалізації: $\tilde{M}(a_i) = M(a_i)q_i$. Маємо: $\tilde{M}(a_1) = 4.5 \cdot \frac{2}{7} = \frac{9}{7}$; $\tilde{M}(a_2) = \frac{10}{7}$; $\tilde{M}(a_3) = \frac{7.5}{7}$. Таким чином, буде вибрана альтернатива a_2 .

Розглянемо "Дилему бандита". Начебто непоганий вибір (a_2,b_2) , але тоді в кожного з бандитів виникатиме бажання "відхилитися" від даної ситуації: якщо перший поміняє a_2 на a_1 , то його відпустять (перший зізнається й розповідає про спільників). Аналогічно у другого теж виникає бажання відхилитись від ситуації (a_2,b_2) . Якщо брати за принцип оптимальності "невигідність відхилення", то як не парадоксально, буде вибраною ситуація (a_1,b_1) ! Аби бандити могли домовлятись, то можливий вибір ситуації (a_2,b_2) (з мінімізацією спільного терміну ув'язнення).

Контрольні завдання до § 1

- 1. Визначте мету свого життя на наступний тиждень, місяць, рік (можна й більше).
- 2. Які засоби отримання позитивної оцінки на іспиті з курсу "Теорія прийняття рішень" для вас є допустимими (можливими, бажаними) регулярне відвідування лекцій, своєчасне виконання лабораторних робіт, відвідування консультацій викладача, "використання інтелекту" сусіда на контрольних роботах і т. п.
- 3. Конкретизуйте мету "щастя всього людства" (на ваш погляд) і визначте допустимі для вас засоби її досягнення.
- 4. Як ви інтерпретуєте вислів Ф. Ніцше "хочеш бути щасливим не мрій".
- 5. Оцініть засоби досягнення мети "вироблення комуністичного людства" за М. Бухаріним: "Пролетарське присилування в усіх формах, починаючи від розстрілів і закінчуючи трудовою повинністю, є, як не парадоксально звучить, засобом вироблення комуністичного людства з людського матеріалу капіталістичної епохи".
 - 6. Прокоментувати вислів: "Вибирай цілі, враховуючи засоби".
- 7. Запропонуйте цікаві й корисні приклади, аналогічні описаним табл. 1.1.1–1.1.5, які б можна було б навести в наступних виданнях посібника (з посиланням на автора прикладу див. Розділ 3, § 3).

§ 2. Бінарні відношення

Нехай задана множина альтернатив (об'єктів) Ω , принцип оптимальності безпосередньо у числовій формі не задано, але експерт для деяких пар об'єктів може вказати, який з об'єктів пари кращий (переважає) за іншого. У цьому випадку говоритимемо, що ці два об'єкти знаходяться в бінарному відношенні. Оскільки, з одного боку, народна мудрість говорить: "Усе пізнається у порівнянні" (для вибору кращого потрібно порівнювати), з іншого – найпростіше порівнювати два об'єкти (ще одна народна мудрість: "У трьох соснах заблукав"), бінарні відношення широко використовуються у теорії прийняття рішень.

Бінарним відношенням R на множині Ω називається довільна підмножина R декартового добутку $\Omega \times \Omega$ (нагадаймо, що декартовим добутком двох множин A і B називається множина пар елементів (a,b), де $a \in A$, $b \in B$). Якщо пара елементів x і y знаходиться в бінарному відношенні R, то будемо позначати цей факт як $(x,y) \in R$ або xRy. Якщо потрібно вказати множину Ω , на якій задано бінарне відношення R, то будемо писати $R(\Omega)$ або (R,Ω) .

Крім безпосереднього задання всіх пар, для яких виконується відношення R, існує три основних способи задання відношень: матрицею, графом, перетинами.

Нехай множина Ω містить n елементів: $\Omega = \{x_1,...,x_n\}$. Тоді матриця бінарного відношення A(R) задається елементами a_{ij} , $i,j=\overline{1,n}$: $a_{ij}(R)=1$, якщо x_iRx_j ; $a_{ij}(R)=0$, якщо не виконується x_iRx_j . З іншого боку, якщо задана матриця A розміром $n\times n$ із нулів й одиниць і вибрано нумерацію елементів множини Ω , що складається з n елементів, то тим самим на Ω задається деяке відношення R=R(A) таке, що x_iRx_j , виконано тоді й лише тоді, коли $a_{ij}(R)=1$.

Задання бінарного відношення R графом здійснюється так. Елементам скінченої множини $\Omega = \{x_1, ..., x_n\}$ (при деякій нумерації) ставиться у взаємно-однозначну відповідність вершини графа G. Проведемо дугу від вершини x_i до вершини x_j тоді і лише тоді, коли виконується $x_i R x_j$ (при i=j дуга $\left(x_i, x_j\right)$ перетворюється у петлю при вершині x_i).

Якщо задано довільний граф G із n вершинами й обрано нумерацію на множині Ω , то тим самим на Ω задається деяке відношення $R=R(\Omega)$ таке, що x_iRx_j виконується тоді і лише тоді, коли у графі G є дуга $\left(x_i,x_j\right)$. Граф є геометричним представленням відношення аналогічно тому, як графік є геометричним представленням функції. Геометрична мова корисна, якщо граф достатньо простий. Навпаки, вивчати й описувати складні графи з великою кількістю вершин часто зручно у термінах відношень.

Оскільки у багатьох практичних випадках ЗПР кількість альтернатив скінченна (або стає скінченною після попереднього аналізу інформації), то попередні способи задання бінарного відношення широко використовуються (особливо наочним є задання графом).

Універсальним способом задання відношень (зокрема, на нескінченних областях) є задання за допомогою перетинів.

Верхнім перетином $R^+(x)$ називається множина елементів $y \in \Omega$ таких, що $(y,x) \in R$: $R^+(x) = \left\{ y \in \Omega : \ (y,x) \in R \right\}$. Аналогічно задається нижній перетин: $R^-(x) = \left\{ y \in \Omega : \ (x,y) \in R \right\}$.

Відношення називається *порожнім* і позначається \varnothing , якщо воно не виконується ні для однієї пари $(x,y) \in \Omega^2 \equiv \Omega \times \Omega$. Для порожнього відношення справедливо:

- ✓ при заданні матрицею $a_{ij}(\varnothing) = 0$ для всіх i, j;
- ✓ граф $G(\varnothing)$ не має дуг;
- \checkmark $R^+(x) = R^-(x) = \varnothing$ для будь-якого x (далі будемо позначати: $\forall x \in \Omega$).

Відношення U називається *повним*, якщо $U = \Omega^2$ (воно виконується для всіх пар $(x,y) \in \Omega^2$). Для повного відношення U справедливо:

- \checkmark $a_{ii}(U) = 1$ для $\forall i, j;$
- ✓ граф G(U) містить усі дуги та всі петлі;
- \checkmark $R^+(x) = R^-(x) = \Omega$ для $\forall x \in \Omega$.

Відношення E називається *діагональним* (або відношенням рівності або одиничним відношенням), якщо xEy тоді і лише тоді, коли x = y (позначатимемо: $xEy \Leftrightarrow x = y$). Для діагонального відношення виконується:

- \checkmark $a_{ii}(E) = 1$ при i = j; $a_{ii}(E) = 0$ при $i \neq j$;
- \checkmark граф G(E) має петлі при всіх вершинах, інші дуги відсутні;
- \checkmark $R^+(x) = R^-(x) = \{x\}$ для $\forall x \in \Omega$.

Відношення \bar{E} називається антидіагональним, якщо $x\bar{E}y \Leftrightarrow x \neq y$. Для антидіагонального відношення \bar{E} виконується:

- \checkmark $a_{ii}(\overline{E}) = 0$ при i = j; $a_{ii}(\overline{E}) = 1$ при $i \neq j$;
- ✓ граф $G(\bar{E})$ має всі дуги, петлі відсутні;
- \checkmark $R^+(x) = R^-(x) = \Omega \setminus \{x\}$ для $\forall x \in \Omega$.

Нагадаємо основні операції над відношеннями, вважаючи, що всі вони задані на одній і тій самій множині Ω .

Відношення R_1 і R_2 pівні $(R_1=R_2)$, якщо $xR_1y\Leftrightarrow xR_2y$, $\forall~(x,y)\in R_1,R_2$.

Відношення R_1 вкладається у відношення R_2 (позначається $R_1 \subseteq R_2$), якщо з xR_1y випливає xR_2y .

Відношення R_1 строго вкладається у відношення R_2 ($R_1\subset R_2$), якщо $R_1\subseteq R_2$ і $R_1\neq R_2$.

Очевидно, що з $R_1\subseteq R_2$ випливає $a_{ij}\left(R_1\right)\leq a_{ij}\left(R_2\right)$ для $\forall\,i,j;$ $R_1^+\left(x\right)\subseteq R_2^+\left(x\right),\;R_1^-\left(x\right)\subseteq R_2^-\left(x\right)$ для $\forall\,x\in\Omega$.

Відношення \bar{R} називається *доповненням* до відношення R, якщо $\bar{R} = \Omega^2 \setminus R$, тобто воно виконується для тих і лише тих пар, для яких не виконується відношення R. Очевидно, що:

$$\checkmark \ a_{ij}(\overline{R}) = 1 - a_{ij}(R)$$
 для $\forall i,j;$

$$\checkmark$$
 $ar{R}^+\left(x
ight) = \Omega \setminus R^+\left(x
ight), \; ar{R}^-\left(x
ight) = \Omega \setminus R^-\left(x
ight)$ для $\forall \; x \in \Omega$;

✓ у графі $G(\bar{R})$ маються ті і лише ті дуги, котрі відсутні у графі G(R) .

Легко бачити, що $\bar{\varnothing}=U$, $\bar{U}=\varnothing$, антидіагональне відношення \bar{E} є доповненням діагонального відношення E.

Загалом
$$\overline{R} = \Omega^2 \setminus (\Omega^2 \setminus R) = R$$
.

Перетином відношень R_1 і R_2 (позначається $R_1 \cap R_2$) називається відношення, що визначається перетином відповідних підмножин із Ω^2 . Легко перевірити, що для будь-яких R_1 і R_2 :

$$a_{ij}\left(R_1\cap R_2\right)=a_{ij}\left(R_1\right)\wedge a_{ij}\left(R_2\right)$$
 для $\forall i,j,$ де \land – знак кон'юнкції;

$$(R_1 \cap R_2)^+(x) = R_1^+(x) \cap R_2^+(x)$$
 для $\forall x \in \Omega$.

Аналогічно визначається об'єднання $R_1 \cup R_2$, для якого справедливо:

$$a_{ii}(R_1 \cup R_2) = a_{ii}(R_1) \vee a_{ii}(R_2)$$
 для $\forall i,j$, де \vee – знак диз'юнкції;

$$\left(R_1 \cup R_2\right)^-(x) = R_1^-(x) \cup R_2^-(x)$$
 для $\forall x \in \Omega$.

Оберненим до відношення R називається відношення R^{-1} , що визначається умовою: $xR^{-1}y \Leftrightarrow yRx$.

Очевидно, що для оберненого відношення R^{-1} виконується:

$$\checkmark a_{ij}(R^{-1}) = a_{ji}(R)$$
 для $\forall i,j;$

✓ граф $G(R^{-1})$ отримують із графа G(R) зміною направлення всіх дуг (зокрема петлі залишаються, нові не додаються);

$$\checkmark (R^{-1})^+(x) = R^-(x), (R^{-1})^-(x) = R^+(x).$$

Оскільки за визначенням $x\left(R^{-1}\right)^{-1}y\Leftrightarrow yR^{-1}x\Leftrightarrow xRy$, то $\left(R^{-1}\right)^{-1}=R$. Аналогічно легко показати, що $\left(\overline{R^{-1}}\right)=\left(\overline{R}\right)^{-1}$.

Двоїстим до R називається відношення $R^d = \left(\overline{R^{-1}}\right)$ або, у силу попереднього, $R^d = \left(\overline{R}\right)^{-1}$. Маємо $\left(R^d\right)^d = \left(\overline{R^{-1}}\right)^{-1} = \left(\left(\overline{R}\right)^{-1}\right)^{-1} = \overline{R} = R$. Використовуючи правило де Моргана, легко показати, що $\left(R_1 \cup R_2\right)^d = R_1^d \cap R_2^d$, $\left(R_1 \cap R_2\right)^d = R_1^d \cup R_2^d$. Для того, щоб перейти від графа G(R) до графа $G(R^d)$, необхідно:

- ✓ видалити з графа G(R) усі пари протилежних дуг і всі петлі;
- ✓ з'єднати вершини i, j дугами (i, j), (j, i), якщо вони не з'єднані у G(R);
 - ✓ додати петлі (i,i), які були відсутні у G(R).

Добутком відношень R_1 і R_2 називається відношення $R=R_1\cdot R_2$, що визначається так: існує $z\in\Omega$ таке, що xR_1z і zR_2y . Для добутку відношень виконується асоціативний закон: $(R_1\cdot R_2)\cdot R_3=R_1\cdot (R_2\cdot R_3)$, тобто добуток $R_1\cdot R_2\cdot R_3$ визначається однозначно. Зокрема, $R\cdot R\cdot R=R^3$. Легко показати, що матриця добутку відношень $A(R_1\cdot R_2)=A(R_1)\cdot A(R_2)$, де добуток матриць $A^1=A(R_1)$ і $A^2=A(R_2)$ визначається формулою: $a_{ik}=\bigvee_{j=1}^n \left(a_{ij}^1\wedge a_{jk}^2\right)$.

Відношення (R_1,Ω_1) називається *звуженням* відношення (R,Ω) на множину Ω_1 , якщо $\Omega_1\subseteq\Omega$ і $R_1=R\cap\Omega_1^2$. Граф $G(R_1)$ відношення (R_1,Ω_1) – це підграф графа G(R), що породжується множиною вершин $\Omega_1\subseteq\Omega$.

Нехай на множинах Ω_1 та Ω_2 задані відповідні відношення R_1 і R_2 . Відношення (R_1,Ω_1) і (R_2,Ω_2) називаються *ізоморфними*, якщо існує взаємно-однозначне відображення $\phi\colon \Omega_1 \to \Omega_2$, що $xR_1y \Leftrightarrow \phi(x)R_2\phi(y)$, ϕ при цьому називається *ізоморфізмом* (R_1,Ω_1) і (R_2,Ω_2) .

Відображення $\phi: \Omega_1 \to \Omega_2$ називається гомоморфізмом (R_1, Ω_1) у (R_2, Ω_2) , якщо $xR_1y \Rightarrow \phi(x)R_2\phi(y)$.

Наведемо основні властивості бінарних відношень, що необхідні для аналізу задач прийняття рішень.

Рефлексивність. Відношення R називається рефлексивним, якщо для $\forall x, xRx$, іншими словами: $E \subseteq R$, де E – діагональне відношення. У матриці A(R) рефлексивного відношення на головній діагоналі стоять одиниці; у графі G(R) при кожній вершині є петля; $x \in R^+(x)$, $x \in R^-(x)$ для $\forall x \in \Omega$.

Антирефлексивність. Відношення R називається антирефлексивним, якщо з xRy випливає $x\neq y$, іншими словами: $R\subseteq \overline{E}$. У матриці A(R) антирефлексивного відношення на головній діагоналі стоять нулі; у графі G(R) відсутні петлі; $x\notin R^+(x),\ x\notin R^-(x)$ для $\forall\ x\in\Omega$. Легко показати, що якщо відношення R рефлексивне, то R^d антирефлексивне; якщо R – антирефлексивне, то R^d – рефлексивне.

Симетричність. Відношення R називається симетричним, якщо з xRy випливає yRx, іншими словами: $R\subseteq R^{-1}$. Матриця A(R) симетричного відношення R симетрична $(a_{ij}=a_{ji}$ для $\forall i,j)$; у графі G(R) разом із кожною дугою (x,y) входить і дуга (y,x); $R^+(x)=R^-(x)$ для $\forall x\in\Omega$. Із визначення симетричного відношення $(R\subseteq R^{-1})$ випливає, що $R^{-1}\subseteq \left(R^{-1}\right)^{-1}=R$, отже необхідною й достатньою умовою симетричності відношення є умова $R=R^{-1}$.

Асиметричність. Відношення R називається асиметричним, якщо з xRy випливає $y\overline{R}x$, іншими словами: $R\cap R^{-1}=\varnothing$. У матриці A(R) асиметричного відношення $a_{ij}(R)\wedge a_{ji}(R)=0$ для $\forall i,j;$ граф G(R) не може мати одночасно дуг (x,y) і (y,x); для $\forall x\in\Omega$ і $\forall y\in R^-(x),$ $x\notin R^-(y)$. Якщо відношення R асиметричне, то воно антирефлексивне. Дійсно, нехай для деякого x виконується xRx, тоді $xR^{-1}x$ і $x(R\cap R^{-1})x$, тобто $R\cap R^{-1}\neq\varnothing$, що суперечить асиметричності.

Антисиметричність. Відношення R називається антисиметричним, якщо з xRy і yRx випливає x=y або $R\cap R^{-1}\subseteq E$. У матриці A(R) антисиметричного відношення для $i\neq j$, $a_{ij}(R)\wedge a_{ji}(R)=0$; граф G(R) не може містити одночасно дуги (x,y) і (y,x) при $x\neq y$; для $\forall\;x\in\Omega$ і $y\in R^-(x),\;x\neq y,\;x\notin R^-(y)$.

Транзитивність. Відношення R називається транзитивним, якщо з xRz і zRy випливає xRy або $R^2\subseteq R$. У матриці A(R) транзитивного відношення для $\forall i,\ k\ \bigvee_{j=1}^n \left(a_{ij}\left(R\right)\wedge a_{ik}\left(R\right)\right) \leq a_{ik}\left(R\right);$ у графі G(R) існує дуга (x,y), якщо існує шлях із x в y; для $\forall\ x\in\Omega$ і $y\in R^+(x)$ $R^+(y)\subseteq R^+(x)$. За індукцією для транзитивного відношення R маємо: із $xRz_1,\ z_1Rz_2,\ ...,\ z_{k-1}Ry$ випливає xRy. Якщо транзитивне відношення R є рефлексивним, то $E\subseteq R$, звідки $E\cdot R\subseteq R\cdot R$, отже, $R=R^2$.

Ациклічність. Відношення R називається ациклічним, якщо з xRz_1 , $z_1Rz_2,...,\ z_{k-1}Ry$ випливає $x\neq y$. Не важко показати, що ациклічне відношення асиметричне; антирефлексивне транзитивне відношення є ациклічним. Якщо точки x і y у графі ациклічного відношення з'єднані шляхом, то у ньому немає дуги (y,x); якщо $z_1\in R^-(x)$, $z_2\in R^-(z_1)$, ..., $y\in R^-(z_{k-1})$, то $x\notin R^-(y)$ (аналогічні співвідношення виконуються для верхніх перерізів). Ациклічність і транзитивність відношень особливо важливі у теорії вибору та прийняття рішень, оскільки ці властивості виражають деякі природні взаємозв'язки між об'єктами. Дійсно, якщо об'єкт x у якомусь розумінні кращий за z, об'єкт z кращий за y, то природно вважати, що y не кращий за x (ациклічність), а в деяких випадках x буде кращим за y (транзитивність).

Hегативна транзитивність. Відношення R називається негативно транзитивним, якщо його доповнення \bar{R} транзитивне.

Сильна транзитивність. Відношення R називається сильно транзитивним, якщо воно одночасно транзитивне і негативно транзитивне. Структуру сильно транзитивних відношень визначає така теорема.

Теорема 1.2.1. Нехай (R,Ω) — сильно транзитивне відношення на Ω , $|\Omega| < \infty$. Тоді існує розбиття $\Omega = \bigcup_{i=1}^n \Omega_i$, $\Omega_i \bigcap \Omega_j = \emptyset$ при $i \neq j$ таке, що: xRy, $x \in \Omega_i$, $y \in \Omega_j$, i < j; звуження відношення R на будь-яке із Ω_i є або порожнім або повним на Ω_i .

Зв'язність. Відношення R називається зв'язним, якщо виконується $(xRy \lor yRx) \lor (xRy \land yRx)$, тобто між будь-якими вершинами x і y існують дуги (зокрема, петлі).

Використаємо розглянуті властивості для виділення відношень, важливих для теорії вибору та прийняття рішень.

Відношення еквівалентності (еквівалентність). Відношення R називається відношенням еквівалентності, якщо воно рефлексивне, симетричне і транзитивне (позначення " \cong "). Нехай задано розбиття $\Omega = \bigcup_{i=1}^n \Omega_i$, $\Omega_i \bigcap \Omega_j = \emptyset$, при $i \neq j$. Введемо на Ω таке відношення R:

xRy тоді і лише тоді, коли існує підмножина Ω_i , що містить x і y. Легко перевірити, що задання еквівалентності на деякій підмножині Ω рівносильне розбиттю на класи еквівалентних один одному елементів. Навпаки, будь-яке розбиття Ω визначає відповідну йому еквівалентність.

Відношення нестрогого порядку (нестрогий порядок). Відношення R називається відношенням нестрогого порядку, якщо воно рефлексивне, антисиметричне і транзитивне (позначення – " \prec ").

Відношення строгого порядку (строгий порядок). Відношення R називається відношенням строгого порядку, якщо воно антирефлексивне, асиметричне і транзитивне (позначення — " < "). Якщо \leq — нестрогий порядок на Ω , то йому можна зіставити строгий порядок \prec , що визначається так: $x \prec y \Leftrightarrow x \leq y \land x \neq y$. Навпаки, якщо \prec — строгий порядок на Ω , то йому можна зіставити нестрогий порядок \leq так: $x \leq y \Leftrightarrow x \prec y \lor x = y$. Отже, нестрогому порядку однозначно відповідає строгий порядок (і навпаки). Тому за основу береться нестрогий порядок, який називається частковим порядком.

Відношення включення (підпорядкованості). Нехай на множині $B(\Omega)$ всіх підмножин фіксованої множини Ω задане відношення R так: $XRY \Leftrightarrow X \subseteq Y$. Таке відношення ϵ частковим порядком, про що свідчить така теорема.

Теорема 1.2.2. Довільний частковий порядок на множині Ω ізоморфий звуженню відношення "включення" на деяку підмножину $B(\Omega)$, тобто існує таке відображення $\Theta: \ \Omega \to B(\Omega)$, що $x \leq y \Leftrightarrow \Theta(x) \preceq \Theta(y)$.

Відношення лінійного порядку (лінійний порядок). Частковий порядок на Ω називається лінійним порядком, якщо він задовольняє умові зв'язності, тобто виконується одна з трьох умов: $x \prec y$, x = y, $x \succ y$.

Відношення домінування (домінування). Відношення *R* називається домінуванням, якщо воно антирефлексивне й асиметричне. Отже, строгий частковий порядок – це частинний випадок відношення домінування (з додатковою властивістю транзитивності).

Відношення подібності (толерантність). Відношення R називається відношенням подібності, якщо воно рефлексивне й симетричне

(позначення – "≈"). Отже, *еквівалентність* – частинний випадок подібності (з додатковою властивістю транзитивності).

Відношення нестрогої переваги (перевага). Відношення "≥" називається перевагою, якщо воно задовольняє властивості рефлексивності.

Отже, відношення подібності, у свою чергу, є частинним випадком відношення переваги. Рефлексивність відношень нестрогої переваги відображає той природний факт, що будь-яка альтернатива є не гіршою за себе. У свою чергу, можна узагальнити відношення часткового порядку (строгого часткового порядку), відмовившись від властивості антисиметричності (асиметричності), отримавши відношення квазіпорядку (строгого квазіпорядку). Відмітимо, що відношення строгого квазіпорядку і строгого часткового порядку співпадають, оскільки з антирефлексивності та транзитивності випливає асиметричність: якщо $xRy \wedge yRx$, то xRx (із транзитивності), що невірно (R – антирефлексивне). Отже, одне з відношень xRy або yRx не виконується, тобто R – асиметричне.

Введені відношення зведемо у табл. 1.2.1.

Властивість Антирефлексивність Антисиметричність Рефлексивність Асиметричність Транзитивність Симетричність Зв'язність Назва Перевага Подібність (толерантність) Еквівалентність Квазіпорядок Впорядкування Частковий порядок Лінійний порядок Строгий квазіпорядок Строгий порядок Домінування * * Строгий частковий порядок Строгий лінійний порядок

Таблиця 1.2.1

Якщо принципи оптимальності (Блок 4 у схемі ЗЗПР) задаються бінарним відношенням, то відповідним чином здійснюється структурування множини альтернатив (Блок 5):

- ✓ розбиття на класи (наприклад, використовуючи теореми 1.2.1, 1.2.2);
- ✓ упорядкування (за відповідними відношеннями порядку).

Вибір кращого (кращих) елементів множини здійснюється за допомогою поняття R-оптимальності.

Визначення R-максимуму (мінімуму). Елемент $x \in \Omega$ називається максимумом за відношенням R (R-максимумом), якщо xRy для $\forall y \in \Omega$. Аналогічно визначається R-мінімум x: yRx для $\forall y \in \Omega$. R-максимуми і R-мінімуми можуть як існувати, так і не існувати, у випадку існування можуть бути не єдиними. Так, для відношення "більше або рівне" на множині дійсних чисел не існує ні максимуму, ні мінімуму.

Визначення R-мажоранти (міноранти). Елемент $x \in \Omega$ називається мажорантою за відношенням R (R-мажорантою), якщо $y\overline{R}x$ для $\forall y \in \Omega$. Аналогічно визначається R-міноранта $x \in \Omega$: $x\overline{R}y$ для $\forall y \in \Omega$. Позначимо через $\Omega^+(R)$ множину R-максимумів, $\Omega_+(R)$ – R-мажорант, $\Omega^-(R)$ – R-мінімумів, $\Omega_-(R)$ – R-мінорант.

$$\begin{array}{ll} \textbf{Teopema} & \textbf{1.2.3.} & \Omega^+\left(R\right) = \Omega^-\left(R^{-1}\right), & \Omega^-\left(R\right) = \Omega^+\left(R^{-1}\right), & \Omega_+\left(R\right) = \Omega_-\left(R^{-1}\right), \\ \Omega_-\left(R\right) = \Omega_+\left(R^{-1}\right). & \end{array}$$

Доведення. Доведемо першу нерівність (інші – аналогічно). Нехай $x \in \Omega^+(R) \Leftrightarrow xRy, \ \forall \ y \in \Omega \Leftrightarrow yR^{-1}x \,, \ \forall \ y \in \Omega \Leftrightarrow x \in \Omega^-(R^{-1}) \,. lacktriangleleft$

Теорема 1.2.4.
$$\Omega^+(R) = \Omega_+(R^d)$$
, $\Omega^-(R) = \Omega_-(R^d)$.

Доведення. $x \in \Omega^+(R) \Leftrightarrow xRy, \ \forall \ y \in \Omega \Leftrightarrow yR^{-1}x$, $\forall \ y \in \Omega \Leftrightarrow y\left(\overline{R^{-1}}\right)x$, $\forall \ y \in \Omega \Leftrightarrow yR^dx \Rightarrow x \in \Omega_+\left(R^d\right)$. Співвідношення $\Omega^-(R) = \Omega_-\left(R^d\right)$ доводиться аналогічно. lacktriangle

Множина $\Omega_+(R)$ відіграє важливу роль у теорії вибору. У цій теорії вона називається також множиною недомінованих за R елементів; елементи, що входять у множину $\Omega_+(R)$, називаються також R-оптимальними. Множину R-оптимальних елементів позначатимемо через Ω^R , множину максимальних елементів – Ω_R .

Максимальним ланцюгом відносно до R, заданому на Ω , називається найкоротша послідовність $x_1,...,x_m$ така, що x_iRx_{i+1} , $i=\overline{1,m-1}$.

Теорема 1.2.5. Гомоморфізм ϕ відношення (R,Ω) у лінійний порядок існує для довільного ациклічного $R; \ |\phi(\Omega)| \ge m$, де m — довжина максимального ланцюга в Ω .

Доведення. Нехай Ω_1^R — множина недомінованих за R елементів Ω , тобто $\Omega_1^R = \Omega^R$. Покладемо $\Omega_2^R = \left(\Omega \setminus \Omega_2^R\right)^R$, $\Omega_3^R = \left(\Omega \setminus \left(\Omega_1^R \setminus \Omega_2^R\right)\right)^R$, ..., $\Omega_s^R = \left(\Omega \setminus \bigcup_{i=1}^{s-1} \Omega_i^R\right)^R$, $\Omega \setminus \bigcup_{i=1}^s \Omega_i^R = \varnothing$. Гомоморфізм ф можна задати формулою $\Phi(x) = s - i$, якщо $x \in \Omega_i^R$.

Контрольні завдання до § 2

- 1. Скільки існує різних відношень із множини A у множину B, якщо |A|=n, |B|=m (будемо говорити: n-множина і m-множина).
 - 2. Скільки є таких відношень R із n-множини в m-множину, що
 - a) $\forall x \exists y (xRy)$,
 - б) $\forall y \exists x (xRy)$.
 - 3. Яку особливість має граф відношення R з A в B, якщо:
 - 3.1. $xRy \wedge xRz \Rightarrow y = z$; 3.2. $xRy \wedge zRz \Rightarrow x = z$;
 - 3.3. $\forall x \exists y \ (xRy)$; 3.4. $\exists y \ \forall x \ (xRy)$; 3.5. $\forall y \ \exists x \ (xRy)$;
 - 3.6. $\exists x \ \forall y \ (xRy)$; 3.7. $\overline{\forall} x \ \exists y \ (xRy)$; 3.8. $\forall x \ \overline{\exists} y \ (xRy)$;
 - 3.9. $\forall y \exists x \ (xRy);$ 3.10. $\forall y \ \exists x \ (xRy);$ 3.11. $\exists x \ \forall y \ (xRy);$
 - 3.12. $\exists x \ \forall y \ (xRy)$.
- 4. Які з наведених нижче відношень у множині цілих чисел є рефлексивними, транзитивними, симетричними й антисиметричними:
 - 4.1. x < y; 4.5. |x| > y; 4.9. |x-y| = 1;
 - 4.2. $x \le y$; 4.6. $|x| \ge y$; 4.10. $|x-y| \le 1$;
 - 4.3. |x| = |y|; 4.7. x = y; 4.11. x ділиться на y;
 - 4.4. x + y = 0; 4.8. x + 1 = y; 4.12. x не ділиться на y.
- 5. Скільки існує різних рефлексивних, симетричних, антисиметричних відношень у n-елементній множині?
 - 6. Довести, що максимум за частковим порядком не ε єдиним.
 - 7. Навести приклади відношень:
 - 7.1. Рефлексивного та симетричного, але не транзитивного;
 - 7.2. Рефлексивного і транзитивного, але не симетричного;
 - 7.3. Симетричного і транзитивного, але не рефлексивного.

- 8. Довести, що якщо R-відношення часткового порядку, то R-1 також ϵ частковим порядком.
- 9. Довести, що для лінійно впорядкованої множини поняття мажоранти (міноранти) і максимума (мінімума) збігаються.
- 10. Довести, що серед будь-яких шести осіб знайдуться або три попарно знайомих, або три попарно незнайомих.

§ 3. Рункції вибору

Нехай задано скінченну множину альтернатив $\Omega = \{x_1, ..., x_n\}$ і ОПР, користуючись своїм особистим уявленням про кращі альтернативи, для кожної множини $X \subseteq \Omega$ вибирає підмножину кращих C(X). Єдина вимога, яка накладається на вибір: $C(X) \subseteq X$ – кращі альтернативи можна обирати з того, що пропонують, зокрема, $C(\emptyset) = \emptyset$.

Уже на множині з двох альтернатив $\Omega = \{x_1, x_2\}$ можна зробити 16 виборів! Дійсно, коли пропонується одна альтернатива - виборів два (обирати її або не обирати), коли пропонується дві альтернативи - виборів чотири (не обирати жодної, обирати одну (2 вибори) і обирати обидві). Отже, усього виборів 2 · 2 · 4 = 16. На множині з 7 альтернатив виборів більше за 10^{120} (це число має порядок кількості можливих шахових партій, що, у свою чергу, має порядок кількості атомів у "видимому всесвіті"!). Тобто описувати явно вибір, задаючи вибір кращих альтернатив C(X) на кожній підмножині X "універсальної" множини Ω , неможливо вже у найпростіших випадках! Що ж робити? Як здійснювати "розумний", "логічний" вибір? Один із шляхів цього - у блоці 4 загальної схеми задавати "принципи логічності" і вивчати результуючий вибір (множини альтернатив, що задовольняють цим принципам). Наприклад, нехай Ω – групи факультету кібернетики третього курсу. "Логічно" вважати, що краща група на курсі повинна бути кращою на своїй спеціальності. Формально ця умова (умова "спадковості" - див. нижче) записується так: $Y \subseteq X$, $x \in Y \cap C(X) \Rightarrow x \in C(Y)$. Конкурс на кращу групу, у якому краща група курсу виявиться не кращою групою на своїй спеціальності, навряд чи можна вважати об'єктивним, незалежно від того, за якими показниками підводяться його підсумки.

Будемо називати функцією вибору C, задану на Ω , відображення, що зіставляє кожній підмножині $X\subseteq\Omega$ її підмножину C(X), тобто $C\colon 2^\Omega\to 2^\Omega$, $C(X)\subseteq X$ для $\forall\ X\subseteq\Omega$.

Вище ми відмічали, що вибір найпростіше здійснювати, порівнюючи дві альтернативи, тобто на Ω задавати деяке бінарне відношення R. Тоді розглядаючи звуження цього бінарного відношення на будь-яку підмножину $X\subseteq\Omega$ можна задати дві функції: $C^R\left(X\right) = \left\{x \in X \middle| \forall y \in X \ y \overline{R}x\right\}$ — множина мажорант на множині X; $C_R\left(X\right) = \left\{x \in X \middle| \forall y \in X \ x R y\right\}$ — множина максимумів на X. Функція вибору C^R називається блокуванням, C_R — перевагою.

Із властивостей бінарних відношень безпосередньо випливає

Теорема 1.3.1. Функції вибору C^R і C_R пов'язані співвідношеннями $C^R=C_{R^d}$, $C_R=C^{R^d}$, де R^d – двоїсте до R.

Таким чином, із двох функцій вибору, що породжуються заданим бінарним відношенням R, досить розглядати одну. Далі будемо зіставляти бінарному відношенню R функцію блокування C^R і називати її "функцією вибору, породжену бінарним відношенням R". Такі функції називаються *нормальними*. Довільна функція вибору C не обов'язково є нормальною. Розглянемо наступну функцію вибору на

$$\Omega = \{x,y\} : C(x) = x , C(y) = \emptyset , C(x,y) = \{x,y\}$$
 (1.3.1) (прийнято писати $C(x) = x$ замість формального $C(\{x\}) = \{x\}$).

Нехай існує бінарне відношення R, яке породжує функцію вибору (1.3.1). Тоді із $C^R(y)=\varnothing$ випливає, що yRy вірно й невірно $y\overline{R}y$, тобто $y\notin C^R(x,y)$, що суперечить (1.3.1). На мові графів усе дуже наочно: оскільки $C(y)=\varnothing$, вершина y повинна блокуватись (при ній має бути петля), а, з іншого боку, вершина y не має блокуватись, оскільки $C(x,y)=\{x,y\}$.

Наведемо всі, окрім порожньої, функції вибору на множині з двох елементів $\Omega = \{x,y\} \equiv \{\text{сир, ковбаса}\}$ (табл. 1.3.1). Можна змістовно описати всі можливі вибори. Наприклад, $C(x) = C(y) = C(x,y) = \varnothing$ – "піст"; C(x) = x, $C(y) = \varnothing$, C(x,y) = x – "вегетаріанець"; C(x) = x, C(y) = y, $C(x,y) = \{x,y\}$ – "студент"; C(x) = x, C(y) = y, $C(x,y) = \varnothing$ – "буриданів осел" і т. д.

Цікаво відмітити, що не існує оцінки кількості нормальних функцій вибору при фіксованому n. Відмітимо також, що одну і ту ж нормальну функцію вибору можуть породжувати різні бінарні відношення.

Доцільно в останньому випадку виділяти "мінімальне" відношення, граф якого має мінімальне число дуг.

Для формального описання класу нормальних функцій вибору визначимо для $X\subseteq \Omega$ покриваючу сім'ю, таку що $\left\{X_i\right\},\ X_i\subseteq \Omega\,,\ i\in J\,,$ таке, що $X\subseteq \bigcup_{i\in J} X_i$.

Таблиця 1.3.1

C(x)	C(y)	C(x,y)	R_1	R_2
х	у	{ <i>x</i> , <i>y</i> }	x y	ZX Yy
х	у	x	$x \xrightarrow{y}$	$\underset{x}{\longrightarrow} \mathscr{R}$
х	у	y	$x \xrightarrow{y}$	$\underset{\chi}{\longrightarrow}$
х	у	Ø	x y	\mathcal{R} \mathcal{R} \mathcal{R}
х	Ø	$\{x,y\}$	Не існує	Не існує
Ø	y	<i>{x,y}</i>	Не існує	Не існує
х	Ø	х	$x \longrightarrow y$	$ \begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & &$
X	Ø	y	Не існує	Не існує
Ø	у	у	x y y y	
Ø	y	$\{x,y\}$	Не існує	Не існує
x	Ø	Ø	x = y x y	$\underbrace{x}_{x} \underbrace{y}_{y}$
Ø	у	Ø	y y	x y x
Ø	Ø	$\{x,y\}$	Не існує	Не існує
Ø	Ø	х	Не існує	Не існує
Ø	Ø	y	Не існує	Не існує

Теорема 1.3.2. Функція вибору C є нормальною тоді і лише тоді, коли для будь-якої множини $X\subseteq \Omega$ і будь-якої покриваючої її сім'ї $\left\{X_i\right\}_{i\in J}$ виконується:

$$X \setminus C(X) \subseteq X \setminus \bigcap_{i \in J} C(X_i).$$
 (1.3.2)

Отже, якщо функція вибору нормальна, то будь-який об'єкт із X, що не є кращим у X, не є кращим хоча б для однієї множини з покриваючої сім'ї. Зокрема, якщо елемент не вибирається з деякої підмножини X, то він не повинен вибиратись із будь-якої множини, що її містить.

Доведення теореми. Необхідність. Нехай C – нормальна, тобто існує бінарне відношення R таке, що $C = C_R$. Нехай

$$x \in X \setminus C_R(X) \Rightarrow x \in X$$
, $x \notin X \setminus C_R(X) \Rightarrow \exists y \in X$: yRx .

Нехай y належить деякій множині X_i із покриваючої сім'ї. Тоді:

$$\exists y \in X_i: \ yRx \Rightarrow x \notin C_R(X_i) \Rightarrow x \notin \bigcap_i C_R(X_i) \Rightarrow x \in X \setminus \bigcap_i C(X_i).$$

Достатність. Нехай C – функція вибору, що задовольняє (1.3.2). Задамо відношення R формулою: $R = \bigcup_{X \subseteq \Omega} C(X) \times X$. Покажемо, що

 $C=C_R$. Нехай $xRy\Rightarrow \forall X:\ x\in C(X),\ y\in X,\ C(X)\subseteq X\Rightarrow x,y\in X:\ xRy\Rightarrow x\in C_R(x).$ Тобто $C(x)\subseteq C_R(X).$

Покажемо, що $C_R(X) \subseteq C(X)$, $\forall x \in \Omega$. Нехай

$$\begin{cases} x \in C_R(X) \Rightarrow xRy, \forall y \in X_i, \ \forall i \Rightarrow x \in C(X_i), \\ x \notin C(X) \Rightarrow \exists i : x \notin C(X_i). \end{cases}$$

З отриманого протиріччя випливає: $C_R(X) \subseteq C(X)$. Теорему доведено. lacktriangle

Теорема 1.3.3. $C^R(X) \neq \emptyset$ для $\forall X \subseteq \Omega$ тоді і лише тоді, коли відношення $R \in$ ациклічним.

Доведення. Достатність. Нехай R – ациклічне бінарне відношення, $x \in X \subseteq \Omega$. Якщо для всіх $y \in X$, $y \overline{R} x$, то $x \in C(X)$ і тому $C(X) \neq \emptyset$. Інакше, знайдеться $y^* \in X$ такий, що y^*Rx . При цьому або $y^* \in C(X)$, або знайдеться z таке, що zRy^* .

Продовжуючи цей процес, знайдемо $v \in X$ таке, що для всіх $w \in X$ виконується $w \overline{R} v$, тобто $v \in C(X)$. Інакше у силу скінченності X отримаємо протиріччя з ациклічністю R. Таким чином, при ациклічному R вибір $C^R(X)$ не порожній.

 $Heoбxi\partial hicm$ ь. Нехай $C^R(X) \neq \varnothing$ для $\forall X \subseteq \Omega$, але R не ϵ ациклічним. Це означа ϵ , що існують $x_i \in \Omega$ такі, що $x_{i+1}Rx_i$, $i=\overline{1,k-1}$, і x_1Rx_k . Але тоді з визначення C^R маємо, що $C(X)=\varnothing$, де $X=\{x_1,...,x_n\}$. Отримане протиріччя показує, що бінарне відношення R, що породжує функцію вибору C^R , ϵ ациклічним. Теорему доведено. ◆

Отже, кожному бінарному відношенню R на Ω відповідає деяка функція вибору C^R на Ω ; різним бінарним відношенням R можуть відповідати однакові C^R ; функції вибору C, що збігаються з C^R для деякого бінарного відношення (R,Ω) , називаються нормальними; не всі функції вибору нормальні.

Функція вибору C, визначена на множині Ω із n елементів, має множину визначення з 2^n елемента (кількість підмножин). Уже для досить малого n представлення функції вибору є дуже громіздким.

Зручним апаратом для представлення функцій вибору ϵ булеві функції.

Будь-якій підмножині $X\subseteq\Omega=\{x_1,...,x_n\}$ зіставимо вектор:

$$\beta\big(X\big) = \left(\beta_i\left(X\right)\right)_{i = \overline{1,n}} \text{ , де } \beta_i\left(X\right) = \begin{cases} 1, \text{ якщо } x_i \in X, \\ 0, \text{ якщо } x_i \not \in X. \end{cases}$$

Множині Ω відповідає, зокрема, вектор $\beta(\Omega) = (1,...,1)$ (n одиниць), множині \varnothing – вектор $\beta(\varnothing) = (0,...,0)$ (n нулів).

Нехай на Ω задано функцію вибору C. Розглянемо сімейство з n булевих функцій від n-1 змінної $f_i\big(\gamma_1,...,\gamma_{n-1}\big), i=\overline{1,n}$, побудованих за правилом:

$$\beta_i(X) \wedge f_i(\beta(X)) = 1 \Leftrightarrow x_i \in C(X),$$
 (1.3.3)

де

$$f_{i}(\beta) = f_{i}(\beta_{1},...,\beta_{i-1},\beta_{i+1},...,\beta_{n}), i \neq 1, i \neq n,$$

$$f_{1}(\beta) = f_{1}(\beta_{2},...,\beta_{n}),$$

$$f_{n}(\beta) = f_{n}(\beta_{1},...,\beta_{n-1}).$$
(1.3.4)

 Λ огічною формою функції вибору С (Λ ФФВ(С)) називається сімейство функцій $\langle f_1,...,f_n \rangle$ від n-1 змінної, побудованих за формулою (1.3.3).

Навпаки, якщо задане довільне сімейство булевих функцій $\langle f_1,...,f_n \rangle$ від n-1 змінної, то співвідношення (1.3.3) однозначно визначає функцію вибору C. Отже, задання функції вибору ε еквівалентним заданню $\Lambda \Phi \Phi B(C)$.

Розглянемо приклад на побудову ЛФФВ(С).

Нехай $\Omega=\left\{x_1,x_2,x_3\right\}$ і задано функцію вибору C так: $C\left(x_i\right)=x_i$, $C\left(x_i,x_j\right)=x_k$, де $k=\min\{i,j\}$, $C\left(\Omega\right)=x_1$ (див. табл. 1.3.2). Побудуємо табл. 1.3.3–1.3.5, що задають булеві функції f_i , $i=\overline{1,3}$.

Таблиця 1.3.2

X	C(X)	$\beta(X)$	$\beta(C(X))$
x_1	\mathcal{X}_1	(1,0,0)	(1,0,0)
\mathcal{X}_2	\mathcal{X}_2	(0,1,0)	(0,1,0)
x_3	x_3	(0,0,1)	(0,0,1)
x_1, x_2	x_1	(1,1,0)	(1,0,0)
X_1, X_3	\mathcal{X}_1	(1,0,1)	(1,0,0)
x_2, x_3	x_2	(0,1,1)	(0,1,0)
x_1, x_2, x_3	x_1	(1,1,1)	(1,0,0)

Таблиця 1.3.3

β_2	β_3	f_1
0	0	1
0	1	1
1	0	1
1	1	1

Таблиця 1.3.4

β_1	βз	f_2
0	0	1
0	1	1
1	0	0
1	1	0

Таблиця 1.3.5

β1	β_2	f_3
0	0	1
0	1	0
1	0	0
1	1	0

За таблицями 1.3.3–1.3.5 побудуємо розклад функцій у досконалу диз'юнктивну нормальну форму:

$$f_1(\beta_2,\beta_3) \equiv 1$$
, $f_2(\beta_1,\beta_3) = \overline{\beta}_1\overline{\beta}_3 \vee \overline{\beta}_1\beta_3 = \overline{\beta}_1(\overline{\beta}_3 \vee \beta_3) = \overline{\beta}_1$, $f_3(\beta_1,\beta_2) = \overline{\beta}_1\overline{\beta}_2$.

Розглянемо приклад на "відновлення" функції вибору за її логічною формою. Нехай $\Omega = \{x_1, x_2, x_3\}$ і задано сім'ю булевих функцій: $f_1(\gamma_1, \gamma_2) = \gamma_1$, $f_2(\gamma_1, \gamma_2) = \gamma_2$, $f_3(\gamma_1, \gamma_2) \equiv 0$. Перенумеруємо змінні відповідно до (1.3.4): $f_1(\beta_2, \beta_3) = \beta_2$, $f_2(\beta_1, \beta_3) = \beta_3$, $f_3(\beta_1, \beta_2) \equiv 0$, отримані функції зведемо у табл. 1.3.6–1.3.8.

Таблиця 1.3.6

β_2	β ₃	f_1
0	0	0
0	1	0
1	0	1
1	1	1

Таблиия 1.3.7

β_1	β ₃	f_2
0	0	0
0	1	1
1	0	0
1	1	1

Таблиця 1.3.8

β_1	β_2	$oldsymbol{f}_{\mathtt{3}}$
0	0	0
0	1	0
1	0	0
1	1	0

Використовуючи табл. 1.3.6-1.3.8 і формулу (1.3.3), отримаємо табл. 1.3.9.

X	β1	β ₂	β3	$\beta_1 f_1$	$\beta_2 f_2$	$\beta_3 f_3$	C(X)
x_1	1	0	0	0	0	0	Ø
x_2	0	1	0	0	0	0	Ø
x_3	0	0	1	0	0	0	Ø
x_1, x_2	1	1	0	1	0	0	x_1
x_1, x_3	1	0	1	0	0	0	Ø
x_2, x_3	0	1	1	0	1	0	x_2
Ω	1	1	1	1	1	0	x_1, x_2

Таблиця 1.3.9

За логічною формою функції вибору легко отримати формулу для кількості всіх функцій вибору, заданих на множині Ω із n-елементів. Очевидно, що різних булевих функцій від n-1 змінної $2^{2^{n-1}}$ (кількість

Очевидно, що різних булевих функцій від n-1 змінної 2^{2} (кількість наборів змінних довжини n-1 дорівнює 2^{n-1} , на кожному наборі функція набуває два значення), логічна форма функції вибору складається з n функцій, отже $|C(\Omega)| = \left(2^{2^{n-1}}\right)^n = 2^{n2^{n-1}}$.

Представлення функцій вибору (ФВ) їхніми логічними формами створює єдину основу для дослідження всіх властивостей функцій вибору, їхньої класифікації й декомпозиції на простіші.

Операції над функціями вибору.

Функція вибору C_1 вкладається у функцію вибору C_2 ($C_1\subseteq C_2$), якщо $C_1(X)\subseteq C_2(X)$ для $\forall\ X\subseteq\Omega$.

Oб'єднанням ФВ C_1 і C_2 називається функція вибору $C=C_1\cup C_2$, що визначається : $C(X)=C_1(X)\cup C_2(X)$ для $\forall~X\subseteq\Omega$.

Перетин визначається : $C(X) = C_1(X) \cap C_2(X)$ для $\forall X \subseteq \Omega$.

 \mathcal{A} оповненням до ФВ C називається функція \bar{C} , для якої: $\bar{C}(X)=X\setminus C(X)$, $\forall~X\subseteq\Omega$.

Установимо відповідність між введеними операціями над функціями вибору й операціями над ЛФФВ.

Теорема 1.3.4. Нехай 1) $C_1 \subseteq C_2$; 2) $C = C_1 \cup C_2$; 3) $C = C_1 \cap C_2$; 4) задано \overline{C} . Тоді для $\forall i = \overline{1,n}$: 1) $f_i^{C_1} \leq f_i^{C_2}$; 2) $f_i^C = f_i^{C_1} \vee f_i^{C_2}$; 3) $f_i^C = f_i^{C_1} \wedge f_i^{C_2}$; 4) $f_i^{\overline{C}} = \overline{f}_i^C$.

Доведення. 1) Нехай $X\subseteq\Omega$, $x_i\in C_1(X)$. З визначення логічної форми маємо: $\beta_i(X)\wedge f_i^{C_1}(\beta(X))=1$. Оскільки $C_1(X)\subseteq C_2(X)$, то $x_i\in C_2(X)$ і, отже, $\beta_i(X)\wedge f_i^{C_2}(\beta(X))=1$. Звідси випливає, що $f_i^{C_1}=f_i^{C_2}$. Якщо $x_i\notin C_1(X)$, але $x_i\in C_2(X)$, тоді $\beta_i(X)\wedge f_i^{C_1}(\beta(X))=0$ і $f_i^{C_1}=0 \lor 1=1$. Оскільки $f_i^{C_2}=1$, то маємо $f_i^{C_1}\le f_i^{C_2}$. 2) Нехай $X\subseteq\Omega$, $x_i\in C_1(X)\cup C_2(X)$. У силу (1.3.3) маємо:

$$\left(\beta_{i}\left(X\right) \wedge f_{i}^{C_{1}}\left(\beta\left(X\right)\right)\right) \vee \left(\beta_{i}\left(X\right) \wedge f_{i}^{C_{2}}\left(\beta\left(X\right)\right)\right) = 1. \tag{1.3.5}$$

Звідси маємо: $\beta_i(X) \wedge \left(f_i^{C_1}(\beta(X)) \vee f_i^{C_2}(\beta(X))\right) = 1$. Отже, із $x_i \in C(X) \Rightarrow \beta_i(X) \wedge f_i^C = 1$. Навпаки, нехай $\beta_i(X) \wedge f_i^C(\beta(X)) = 1$. Із (1.3.5) випливає, що хоча б одна зі складових у (1.3.5) рівна 1. Тоді $x_i \in C_1(X) \cup C_2(X) = C(X)$ і з $f_i \wedge f_i^C = 1 \Rightarrow x_i \in C(X)$. Співвідношення 3), 4) доводяться аналогічно. Теорему доведено. \blacklozenge

Композицією функцій вибору C_1 і C_2 називається функція вибору $C=C_1\cdot C_2$, що визначається рівністю: $C(X)=C_2\left(C_1(X)\right)$ для $\forall~X\subseteq\Omega$. Змістовно операція полягає в такому. Спочатку відбувається вибір відповідно до функції вибору C_1 , а потім із $C_1(X)$ відбувається вибір за функцією C_2 . Так, із десяти кандидатів у президенти спочатку обирають двох, потім – одного.

Теорема 1.3.5. Нехай $C = C_1 \cdot C_2$. Тоді

$$f_{i}^{C} = f_{i}^{C_{1}} (\beta_{1}, ..., \beta_{i-1}, \beta_{i+1}, ..., \beta_{n}) \wedge f_{i}^{C_{2}} (\beta_{1} \wedge f_{i}^{C_{1}} (\beta_{2}, ..., \beta_{i-1}, 1, \beta_{i+1}, ..., \beta_{n}), ..., \beta_{i-1} \wedge f_{i-1}^{C_{1}} (\beta_{1}, ..., \beta_{i-2}, 1, \beta_{i}, ..., \beta_{n}), \beta_{i+1} \wedge f_{i+1}^{C_{1}} (\beta_{2}, ..., \beta_{i-1}, 1, \beta_{i+2}, ..., \beta_{n}), \dots, \beta_{n} \wedge f_{n}^{C_{1}} (\beta_{2}, ..., \beta_{i-1}, 1, \beta_{i+1}, ..., \beta_{n-1})).$$

$$(1.3.6)$$

Доведення. Розглянемо $Y = C_1(X)$, тоді

$$\beta(Y) = \left(\beta_1 \wedge f_1^{C_1}(\beta(X)), \dots, \beta_n \wedge f_n^{C_1}(\beta(X))\right).$$

Побудуємо ЛФФВ функції $C = C_1 \cdot C_2$, підставивши у (1.3.3) замість $\beta(X)$ вираз $\beta(Y) = \beta(C_1(X))$. Отримаємо: $x_i \in C(X) \Leftrightarrow \left(\beta_i \wedge f_i^{C_1}\left(\beta(X)\right)\right)$ $\wedge f_i^{C_2}\left(\beta_1 \wedge f_i^{C_1}\left(\beta(X)\right),...,\beta_{i-1} \wedge f_{i-1}^{C_1}\left(\beta(X)\right),\beta_{i+1} \wedge f_{i+1}^{C_1}\left(\beta(X)\right),...,\beta_n \wedge f_n^{C_1}\left(\beta(X)\right)\right)$, звідки випливає (1.3.6). \blacklozenge

Установимо взаємозв'язок між властивостями функцій і результатів операцій над ними.

Теорема 1.3.6. Нехай C_1 і C_2 – нормальні функції вибору. Тоді $C_1 \cap C_2$ – також нормальна функція вибору.

Доведення. Нехай $C_1=C^{R_1}$, $C_2=C^{R_2}$. Доведемо, що $C_1\cap C_2=C^{R_1\cup R_2}$. Нехай $X\subseteq\Omega$, $x\in C_1(X)\cap C_2(X)$. Тоді з визначення "блокування" маємо: для $\forall\ y\in X$, $y\overline{R}_1x$, $y\overline{R}_2x$ або $y(\overline{R}_1\cap \overline{R}_2)x$ (1.3.7).

Застосовуючи правило де Моргана:

$$y(\overline{R_1 \cap R_2})x, \qquad (1.3.8)$$

звідки $C_1(X) \cap C_2(X) \subseteq C^{R_1 \cup R_2}(X)$. Навпаки, нехай $x \in C^{R_1 \cup R_2}(X)$. Тоді для всіх $y \in X$ виконано (1.3.8), звідки випливає (1.3.7), тобто $x \in C_1(X) \cap C_2(X)$. \blacklozenge

Коли ОПР здійснює вибір, він природно хотів би, щоб його результат задовольняв певним "розумним" умовам (наприклад, краща група на курсі повинна бути кращою на своїй спеціальності). Функції, які задовольняють певній умові, утворюють деякий "клас функцій, що задовольняють цій умові". Розглянемо деякі найбільш уживані у теорії вибору властивості та відповідні їм класи функцій вибору.

- 1. Умова спадковості (СП): $X_1 \subseteq X_2 \Rightarrow X_1 \cap C(X_2) \subseteq C(X_1)$.
- 2. Умова незалежності від відкинутих альтернатив (умова Неша-Н): $C(X_2)\subseteq X_1\subseteq X_2\Rightarrow C(X_1)=C(X_2)$.
 - 3. Умова *згоди* (3): $\bigcap_k C(X_k) \subseteq C\left(\bigcup_k X_k\right)$.
- 4. Умова незалежності вибору від шляху (умова Плотта-П (квазісуматорність)): $C\left(\bigcup_k X_k\right) = C\left(\bigcup_k C(X_k)\right)$.
 - 5. Умова *суматорності* (СМ): $C\left(\bigcup_{k} X_{k}\right) = \bigcup_{k} C\left(X_{k}\right)$.
 - 6. Умова мультиплікаторності (МП): $C\left(\bigcap_k X_k\right) = \bigcap_k C(X_k)$.
 - 7. Умова монотонності (М): $X_1 \subseteq X_2 \Rightarrow C(X_1) \subseteq C(X_2)$.

Зміст умов 1–7 очевидний. Кожна з них визначає деякий клас функцій вибору, що задовольняють даній умові. За цими класами збережемо позначення відповідних умов і розглянемо, яким умовам повинні задовольняти логічні форми функцій вибору *С*.

Теорема 1.3.7. Функція вибору $C \in$:

1) спадковою; 2) незалежною від відкинутих альтернатив; 3) що задовольняє умові згоди; 4) квазісуматорною; 5) суматорною; 6) мультиплікаторною; 7) монотонною; тоді і лише тоді, коли для \forall $i = \overline{1,n}$:

1)
$$\beta^1 \leq \beta^2 \Rightarrow f_i(\beta^1) \geq f_i(\beta^2)$$
;

2)
$$\beta_i^2 \wedge f_i(\beta^2) \leq \beta_i^1 \leq \beta_i^2 \Rightarrow \beta_i^2 \wedge f_i(\beta^2) = \beta_i^1 \wedge f_i(\beta^1)$$
;

3)
$$\bigwedge_{k} f_{i}(\beta^{k}) \leq f_{i}(\bigvee_{k} \beta^{k});$$

Розглянемо випадок n = 2:

4)
$$(\beta_i^1 \vee \beta_i^2) \wedge f_i(\beta^1 \wedge \beta^2) = (\beta_i^1 \wedge f_i(\beta^1)) \vee (\beta_i^2 \wedge f_i(\beta^2)) \wedge$$

$$f_{i}\left(\left(\beta_{1}^{1} \wedge f_{1}\left(\beta^{1}\right)\right) \vee \left(\beta_{1}^{2} \wedge f_{1}\left(\beta^{2}\right)\right),...,\left(\beta_{n}^{1} \wedge f_{n}\left(\beta^{1}\right)\right) \vee \left(\beta_{n}^{2} \wedge f_{n}\left(\beta^{2}\right)\right)\right);$$

5)
$$f_i(\beta) \equiv 0 \lor f_i(\beta) \equiv 1$$
;

6)
$$f_i\left(\bigwedge_k \beta^k\right) = \bigwedge_k f_i\left(\beta^k\right);$$

7)
$$\beta^1 \leq \beta^2 \Rightarrow f_i(\beta^1) \leq f_i(\beta^2)$$
.

Доведення безпосередньо випливає із представлення відповідних умов із допомогою булевих функцій, що утворюють логічну форму. Для прикладу наведемо доведення умови 1. Із умови спадковості отримуємо: $\beta^1 \leq \beta^2 \Rightarrow \beta_i^1 \wedge \left(\beta_i^2 \wedge f_i\left(\beta^2\right)\right) \leq \beta_i^1 \wedge f_i\left(\beta^1\right). \text{ Якщо } \beta_i^1 = 0 \text{ , то маємо тотожність } 0 \equiv 0 \text{ , якщо } \beta_i^1 = 1 \text{ , то } \beta_i^2 = 1 \text{ і маємо нерівність: } f_i\left(\beta^2\right) \leq f_i\left(\beta^1\right). \spadesuit$

Клас нормальних функцій вибору N описується такою теоремою.

Теорема 1.3.8. Функція вибору C на $\Omega = \{x_1, ..., x_n\}$ є нормальною тоді і лише тоді, коли існує розбиття множини індексів елементів $N = \{\overline{1,n}\}$ на три підмножини J, J_0 , J_1 (деякі з них можуть бути порожніми) такі, що:

$$\forall i \in J \ \exists J_i \subseteq J, \ J_i \neq \varnothing : \ f_i = \bigwedge_{k \in J_i} \overline{\beta}_k;$$

$$\forall i \in J_0 : \ f_i \equiv 0;$$

$$\forall i \in J_1 : \ f_i \equiv 1.$$

Доведення. Необхідність. Нехай $C \in N$, тобто $\exists R \subseteq \Omega^2: C = C^R$. Для $\forall \ x_i$ можлива одна з трьох ситуацій:

$$\begin{split} \exists i_1,...,i_l \in N: \ x_{i_s}Rx_i, \ i_s \neq i \,, \ s = \overline{1,l} \,, \ y \overline{R}x \,, \ y \notin \left\{x_{i_1},...,x_{i_l}\right\}; \\ x_iRx_i; \\ R^+\left(x_i\right) = \varnothing \,. \end{split}$$

Утворимо множину J з індексів, що відносяться до першої ситуації, множину J_0 – до другої, множину J_1 – до третьої. Очевидно, що множини утворюють необхідне розбиття.

 \mathcal{A} остатність. Визначимо $R\subseteq \Omega^2$ так: x_jRx_i для $\forall \ i\in J$ і $\forall \ j\in J_i$; x_iRx_i для $\forall \ i\in J_0$. Очевидно, що $C=C^R$.

Розглянемо деякі властивості функцій вибору, які ϵ природним узагальненням властивостей бінарних відношень.

Функція вибору С називається:

- ✓ рефлексивною, якщо $C(\{x_i\}) = \emptyset$ для $\forall x_i \in \Omega$;
- ✓ антирефлексивною, якщо $C(\{x_i\}) \neq \emptyset$ для $\forall x_i \in \Omega$;
- ✓ повною, якщо $C(X) \neq \emptyset$, для $\forall X \neq \emptyset$;
- \checkmark транзитивною, якщо з умови: $C(X_1 \cup X_2) = C(X_1) \neq \emptyset$, $C(X_2 \cup X_3) = C(X_2) \neq \emptyset$ випливає $C(X_1 \cup X_3) = C(X_1) \ \forall \ X_1, \ X_2, \ X_3$;
- \checkmark ациклічною, якщо з умови: $C(X_k \cup X_{k+1}) = C(X_k) \neq \emptyset$, $k = \overline{1, n-1}$, випливає: $X_1 \neq X_n$ для $\forall X_k$, $k = \overline{1, n}$.

Проілюструємо змістовно умови транзитивності й ациклічності (зміст умов 1–3 очевидний).

Нехай за результатами сесії серед студентів групи A і B кращими виявились два студенти групи A, кращими серед студентів B і C – 3 студенти з групи B. Тоді кращими серед студентів групи A і C будуть вказані студенти з групи A, при цьому вони будуть кращими і серед усіх трьох груп. Відповідна функція вибору ("кращими є студенти з максимальною сумою балів на іспитах") є транзитивною.

Нехай тепер знову кращими серед студентів груп A і B визнано 2 студенти з групи A. Нехай далі взяли залікові книжки студентів однієї з груп A або C (позначимо цю групу через X). Тоді, якщо серед студентів груп B і X стали три студенти з групи B, то зрозуміло, що група X не ε групою A. Відповідна функція вибору ациклічна.

Розглянуті властивості у термінах властивостей логічних форм описуються такою теоремою.

Теорема 1.3.9. Функція вибору C ϵ : 1) рефлексивною; 2) антирефлексивною; 3) повною; 4) транзитивною; 5) ациклічною тоді і лише тоді, коли для $\forall i=\overline{1,n}$:

1)
$$f_i(0,...,0) = 0$$
; 2) $f_i(0,...,0) = 1$; 3) $\bigvee_{i=1}^{n} f_i(\beta) = 1$ для $\forall \beta$;

4)
$$(\beta_i^1 \vee \beta_i^2) f_i(\beta_i^1 \vee \beta_i^2) = \beta_i^1 f_i(\beta^1)$$
, $(\beta_i^2 \vee \beta_i^3) f_i(\beta_i^2 \vee \beta_i^3) = \beta_i^2 f_i(\beta^2)$,

$$\bigvee_{i=1}^{n}\beta_{i}^{1}f_{i}\left(\beta^{1}\right)=\bigvee_{i=1}^{n}\beta_{i}^{2}f_{i}\left(\beta^{2}\right)=1 \implies \left(\beta_{i}^{1}\vee\beta_{i}^{3}\right)f_{i}\left(\beta_{i}^{1}\vee\beta_{i}^{3}\right)=\beta_{i}^{1}f_{i}\left(\beta^{1}\right);$$

5)
$$\left(\beta_i^k \vee \beta_i^{k+1}\right) f_i\left(\beta_i^k \vee \beta_i^{k+1}\right) = \beta_i^k f_i\left(\beta^k\right), i = \overline{1,n}, \bigvee_{i=1}^n \beta_i^k f_i\left(\beta^k\right) = 1, k = \overline{1,n-1} \Rightarrow \beta^1 \neq \beta^n.$$

Розглянемо деякі взаємозв'язки між нормальними функціями вибору, що мають вказані властивості, і бінарними відношеннями з аналогічними властивостями, що їх породжують.

Теорема 1.3.10. Якщо відношення R: а) транзитивне; б) ациклічне, то функція вибору C_R ϵ : а) транзитивною; б) ациклічною.

Доведення. a) Нехай $C_R(X \cup Y) = C_R(X) \neq \varnothing$. Це означає: $\forall \ x \in C_R(X)$, $\forall \ y \in Y$: xRy. Аналогічно, $C_R(Y \cup Z) = C_R(Y) \neq \varnothing$ \Leftrightarrow $\forall \ y \in C_R(Y)$, $\forall \ z \in Z$: yRz. У силу транзитивності R це означає, що $\forall \ x \in C_R(X)$, $\forall \ z \in Z$: xRz, тобто $C_R(X) \subseteq C_R(X \cup Z)$. Звідси випливає, що $\forall \ x \in X \setminus C_R(X) \implies x \notin C_R(X \cup Z)$. Нехай $z \in Z \setminus X$ і $z \in C_R(X \cup Z)$. Тоді $\forall \ x \in X$, zRx і, отже, $\forall \ y \in Y$, zRx, тобто $z \in C_R(Y \cup Z)$. Це означає, що $z \in C_R(Y) \subseteq Y$, звідки yRx для $\forall \ x \in X$, що суперечить $C_R(X \cup Y) = C_R(X)$.

б) Нехай $C\left(X_k \cup X_{k+1}\right) = C\left(X_k\right) \neq \varnothing$, $k=\overline{1,n-1}$, і $X_N=X_1$. Це означає, що існують $x_i \in X_i$, $i=\overline{1,n}$, такі, що x_iRx_{i+1} , $i=\overline{1,n-1}$, і x_nRx_1 , що суперечить ациклічності $R. \blacklozenge$

Теорема 1.3.11. Якщо R – антирефлексивне і C^R – транзитивна функція вибору, то відношення R транзитивне.

Доведення. Нехай C^R транзитивна, xRy, yRz. Тоді C(x,y)=x, C(y,z)=y, значить, C(x,z)=x, тобто xRz і відношення R транзитивне. \blacklozenge

Теореми 1.3.9 і 1.3.11 дозволяють використовувати апарат логічних форм функцій вибору при вивченні класів функцій вибору.

Теорема 1.3.12. Функція вибору нормальна тоді й лише тоді, коли вона належить перетину класів спадковості та згоди ($N = \text{СП} \cap 3$).

Доведення. У силу умов 1 і 3 теореми 1.3.7 і теореми 1.3.8 достатньо довести, що булева функція $g(\alpha_1,...,\alpha_r)$ задовольняє одночасно умовам 1 і 3 теореми 1.3.7 тоді й лише тоді, коли вона задовольняє умові теореми 1.3.8.

Необхідність. Нехай *д* задовольняє умові 3. Тоді при $g \neq 0$:

$$g(\alpha^s) = 1, \ s = \overline{1,k} \Rightarrow g(\bigvee_{s=1}^k \alpha^s) = 1.$$
 (1.3.9)

Знайдемо вид функції g, для чого запишемо її розвинення у досконалу диз'юнктивну нормальну форму: $g(\alpha_1,...,\alpha_r) = \bigvee_{p=1}^d \alpha_1^{\sigma_1^p}...\alpha_r^{\sigma_r^p}$. Розіб'ємо $J = \left\{\overline{1,r}\right\}$ на дві підмножини: $J^- = \left\{i \middle| g(\alpha_1,...,\alpha_r) = 1\right\}$, $J^+ = \left\{i \middle| \exists \alpha^* = \left(\alpha_1^*,...,\alpha_{i-1}^*,1,\alpha_{i+1}^*,...,\alpha_r^*\right) \colon g\left(\alpha^*\right) = 1\right\}$. Нехай $J^+ = \left\{\overline{1,q}\right\}$. Тоді $g(\alpha) = \phi(\alpha_1,...,\alpha_q) \wedge \left(\bigcap_{t=q+1}^r \overline{\alpha}_t\right)$, де $\phi(\alpha_1,...,\alpha_q) = \bigvee_{p=1}^d \alpha_1^{\sigma_1^p}...\alpha_q^{\sigma_q^p}$.

Доведемо, що $\phi(\alpha_1,...,\alpha_q)=1$, тобто g задовольняє умові 1 (при $J^-\neq\varnothing$) або 3 (при $J^-=\varnothing$) теореми 1.3.8. Припустимо протилежне — нехай існує набір $\overline{\alpha}=\left(\overline{\alpha}_1,...,\overline{\alpha}_q,0,...,0\right)$ такий, що $g\left(\overline{\alpha}\right)=\phi\left(\overline{\alpha}_1,...,\overline{\alpha}_q\right)=0$. Із визначення J^+ випливає, що для $i=\overline{1,q}$ існує набір $\alpha^*\left(i\right)$ такий, що $g\left(\alpha^*\left(i\right)\right)=1$ і $a_i^*\left(i\right)=1$. Зрозуміло, що $\overline{\alpha}=\bigvee_{i=1}^q\alpha^*\left(i\right)=\left(1,...,1,0,...,0\right)$, звідки у силу (1.3.9) $g\left(1,...,1,0,...,0\right)=1$. Таким чином, $\overline{\alpha}\leq\overline{\alpha}$, $g\left(\overline{\alpha}\right)=0$, $g\left(\overline{\alpha}\right)=1$, що суперечить умові 1 теореми 1.3.8. Отже, $g\equiv0$ і умова 2 теореми 1.3.8 задовольняється.

Достатність. Нехай $g(\alpha_1,...,\alpha_r) = \bigwedge_{s=1}^l \overline{\alpha}_{i_s}$. Тоді функція g відмінна від нуля лише на наборах, у яких $\alpha_{i_s} = 0$, $s = \overline{1,l}$. Але диз'юнкція будьяких таких наборів також має цю властивість, тому умова 3 теореми 1.3.8 виконується. Виконання умови 1 очевидне, оскільки функція $f(\alpha) = \overline{\alpha}_i$ монотонно спадає і, отже, функція g, що дорівнює кон'юнкції $\bigwedge_{s=1}^l \alpha_{i_s}$ також монотонно спадає. При $g \equiv 0$ або $g \equiv 1$ умови 1 і 2 також виконуються. \bullet

Функція вибору C на Ω називається загальною скалярною функцією, якщо існує числова функція $g: \Omega \to E^1$ така що:

$$C(X) = Arg \max_{x \in \Omega} g(x), \qquad (1.3.10)$$

і називається *скалярною*, якщо $g(x) \neq g(y)$ при $x \neq y$.

Теорема 1.3.13. Функція вибору C є загальною скалярною функцією вибору тоді і лише тоді, коли вона породжується сильно транзитивним антирефлексивним бінарним відношенням.

Доведення. Необхідність. Нехай C – загальна скалярна функція. Покладемо $\Omega_1 = \mathop{\rm Arg\,max}_\Omega g$, $\Omega_2 = \mathop{\rm Arg\,max}_\Omega g$,..., $\Omega_k = \mathop{\rm Arg\,max}_k g = \mathop{\rm Arg\,max}_{\Omega\setminus\bigcup\Omega_i} G$

= $\mathop{\rm Arg\,min}_{\Omega} g$. Ясно, що $\Omega_1,...,\Omega_k$ утворюють розбиття Ω . Визначимо на Ω бінарне відношення R так: $aRb \Leftrightarrow a \in \Omega_i$, $b \in \Omega_j$ та i < j. У силу (1.3.10) $C^R = C$. Сильна транзитивність побудованого відношення R випливає з теореми 1.2.1. Необхідність доведено.

Достатність. Структура сильно транзитивних відношень встановлена теоремою 1.2.1. Нехай $\Omega_1,...,\Omega_k$ – розбиття Ω . Покладемо g(x)=k-i, якщо $x\in\Omega_i$. Функція вибору C^R , очевидно, збігається з функцією C, що побудована за формулою (1.3.10). Достатність доведено. lacktriangle

Оскільки множина визначення функції вибору скінченна, то для будь-якої загальної функції вибору знайдуться скалярні функції $C_1,...,C_r$ такі, що $C=\bigcup\limits_{i=1}^r C_i$ (для цього досить ввести різні функції для збіжних значень — якщо для $x\neq y$ g(x)=g(y), то $C_1(x)=g(x)$, $C_1(y)=\alpha\neq g(x)$, $C_2(x)=\alpha\neq g(y)$, $C_2(y)=g(y)$).

Функція вибору С, що є об'єднанням скалярних, називається сукупно екстремальною (отже, загальна скалярна функція є сукупно екстремальною). Клас сукупно екстремальних функцій позначимо через СЕ. Зміст введеного поняття полягає в такому. На Ω задається r числових функцій (критеріїв) g_1, \ldots, g_r . Із кожної множини $X \subseteq \Omega$ спочатку вибираються елементи, що є оптимумами за першим критерієм, потім за другим і т. д. За вибір береться об'єднання отриманих виборів.

Для будь-якої множини A функцій вибору виділимо підмножину $A^{\Bar{arnothing}}:A^{\Bar{arnothing}}=\left\{C\in A\middle|\ \forall X\subseteq\Omega,\ X\neq\varnothing:\ C\left(X\right)\neq\varnothing\right\}.$

Функція вибору C на Ω називається napemiscькою (Π), якщо існують числові функції $g_1,...,g_m$ такі, що:

$$C(X) = \left\{ x \middle| \exists y \in X, \ y \neq x : \ g_i(y) \geq g_i(x), \ i = \overline{1, m} \right\}.$$

Сформулюємо основні теореми про взаємозв'язок класів ФВ.

Теорема 1.3.14. Клас сукупно екстремальних функцій

$$CE = (H \cap C\Pi)^{\overline{\varnothing}} = H^{\overline{\varnothing}} \cap C\Pi^{\overline{\varnothing}}.$$

Теорема 1.3.15. $KC = H \cap C\Pi$.

Teopema 1.3.16.
$$\Pi = (H \cap C\Pi \cap 3)^{\overline{\emptyset}}$$
.

У практичних ситуаціях прийняття рішень ОПР при виборі деякої альтернативи з множини Ω керується власним уявленням про "кращі" альтернативи. У різних ОПР в одній і тій самій ситуації (в множині $X \subset \Omega$) уявлення про кращі альтернативи можуть відрізнятися, при цьому кожна з них може привести цілком розумне пояснення зробленого вибору. Навіть при виборі одних і тих самих альтернатив різними ОПР обґрунтування вибору в конкретній ситуації може мати відмінності. Таким чином, за відомим вибором у конкретній ситуації Xнавряд чи можна відновити логіку вибору ОПР, тобто передбачити її вибір у множині $Y \subset \Omega, Y \neq X$. Але в цьому випадку логіку вибору ОПР не можна визнати коректною "в цілому", глобально (не можна в певних ситуаціях притримуватись певних моральних принципів, в інших ні, тобто змінювати свої принципи під впливом ситуації). Аналіз функцій вибору якраз і дає розуміння логіки вибору ОПР у будь-яких ситуаціях (множинах $X\subset\Omega$), описує правила "розумного" вибору ОПР глобально, на всій множині вибору. Так, якщо ОПР здаються логічними умови спадковості (СП), незалежності від відкинутих альтернатив (Н), згоди (З), то моделювання її вибору "адекватно" реалізується за допомогою задачі багатокритеріальної оптимізації (див. теорему 1.3.16 і Розділ 4, § 3 – "Методи багатокритеріальної оптимізації").

Контрольні завдання до § 3

- 1. Скільки існує різних бінарних відношень, різних функцій вибору на множині з двох елементів?
 - 2. Довести теореми 1.3.14 1.3.16.
 - 3. Побудувати логічну форму функції вибору для $\Omega = \{x, y, z\}$:

$$C\left(x\right)=x$$
 , $C\left(x,y\right)=y$, $C\left(\Omega\right)=z$, для інших $X:C\left(X\right)=\emptyset$;

$$C(x) = x$$
, $C(x,y) = x$, $C(\Omega) = y$, для інших $X:C(X) = \emptyset$;

$$C(z) = z$$
, $C(x,z) = z$, $C(\Omega) = z$, для інших $X:C(X) = \emptyset$;

$$C(x) = x$$
, $C(x,y) = \{x,y\}$, $C(\Omega) = \{x,z\}$, для інших $X:C(X) = \emptyset$;

4. За логічною формою відновити функції вибору:

$$\begin{split} f_1(\gamma_1,\gamma_2) &= \gamma_1 \;,\; f_2(\gamma_1,\gamma_2) = \gamma_2 \;,\; f_3 \equiv 0 \;;\; f_1(\gamma_1,\gamma_2) = \gamma_1 \wedge \gamma_2 \;,\; f_2 \equiv 0 \;,\; f_3 \equiv \gamma_1 \;;\\ f_1(\gamma_1,\gamma_2) &= \gamma_1 \vee \gamma_2 \;,\; f_2 \equiv 1 \;,\; f_3 \equiv \gamma_2 \;;\; f_1(\gamma_1,\gamma_2) = \gamma_2 \;,\; f_2 = \gamma_1 \;,\; f_3 \equiv \gamma_1 \;. \end{split}$$

5. Дослідити функції вибору з п. 3, п. 4 на належність до класів спадковості, Неша, згоди.

ПИТАННЯ ДЛЯ САМОПЕРЕВІРКИ ДО РОЗДІЛУ 1

- 1. Дайте визначення таких основних понять:
 - 1.1. Загальна задача прийняття рішень.
 - 1.2. Задача вибору.
 - 1.3.Якісні та кількісні цілі.
 - 1.4. Задача прийняття рішень (ЗПР) в умовах визначеності, невизначеності та ризику.
 - 1.5. ЗПР в умовах конфлікту.
 - 1.6. ЗПР в умовах нечіткої інформації.
 - 1.7. Бінарні відношення, основні властивості.
 - 1.8. Відношення домінування, строгого та нестрогого порядку.
 - 1.9. Відношення переваги, подібності й еквівалентності.
 - 1.10. Відношення лінійного порядку.
 - 1.11. R-максимум (мінімум).
 - 1.12. R -мажоранта (міноранта).
 - 1.13. Максимальний ланцюг.
 - 1.14. Функція вибору, нормальна функція вибору.
 - 1.15. Логічна форма функції вибору.
 - 1.16. Умови спадковості та згоди.
 - 1.17. Умови Неша та Плотта.
 - 1.18. Умови суматорності, мультиплікаторності та монотонності.
 - 1.19. Основні властивості функцій вибору.
 - 1.20. Сукупно-екстремальна, загальна скалярна та скалярна функції вибору.
 - 1.21. Паретівська функція вибору.
- 2. Наведіть основні операції над бінарними відношеннями.
- 3. Наведіть основні операції над функціями вибору.
- 4. Сформулюйте теорему про нормальність функції вибору.
- 5. Сформулюйте теореми про основні взаємозв'язки між функціями вибору.

Розділ 2 ОСНОВИ ТЕОРІЇ КОРИСНОСТІ

Математизація будь-якої науки полягає у формалізації змістовних понять, які склалися в ній. Центральне місце в процесі математизації займає питання побудови кількісних оцінок характеристик явищ, що суттєво сприяє їхньому вивченню та використанню.

Нехай маємо множину об'єктів, які ОПР може порівнювати за їхньою перевагою для себе, тобто нехай він хоча б для деяких пар об'єктів у змозі вказати, який із них є для нього переважаючим. При цьому виникає питання: чи можна в цих умовах, спираючись лише на результати виконаних порівнянь, так приписати об'єктам, що порівнюються, кількісні оцінки, щоб більш переважючому об'єкту відповідала більша оцінка? Функція, яка встановлює таку відповідність і називається функцією корисності.

У цьому розділі будуть розглядатися елементарні властивості відношення переваги на множині альтернатив, умови існування функції корисності при різних умовах прийняття рішень і різних способах завдання відношення переваги.

Відношення переваги. Нехай X – задана множина альтернатив. $Bi\partial$ ношенням нестрогої переваги на X будемо називати (див. Розділ 1) будь-яке задане на цій множині рефлексивне бінарне відношення.

Рефлексивність відношення нестрогої переваги (далі будемо казати – відношення переваги і позначати як " \geq " чи R_{\geq}) відбиває той природний факт, що будь-яка альтернатива $x \in X$ не гірше за себе.

За заданим на множині X відношенням переваги R_{\geq} можна однозначно визначити два відповідних йому відношення:

- байдужості $R_{\sim} = (X \times X \setminus R_{\geq} \cup R_{\geq}^{-1}) \cup (R_{\geq} \cap R_{\geq}^{-1})$ (далі будемо позначати як "~"), інколи, це відношення називають толерантністю ;
 - lacktriangle строгої переваги $R_{>} = R_{>} \setminus R_{\geq}^{-1}$ (далі будемо позначати як ">"),

де R_{\geq}^{-1} – відношення, що є оберненим до відношення R_{\geq} , позначається через $R_{<}$, тобто " \leq ".

У теорії корисності в основному розглядаються відношення строгої переваги ">" і відношення байдужості "~", яке можна охарактеризувати відсутністю строгої переваги: $x \sim y \Leftrightarrow (x < y, y < x)$.

Байдужість може виникати кількома шляхами.

По-перше, ОПР може щиро вважати, що фактично немає жодної різниці між x і y, тобто бажано мати x у такій само мірі, як і y, і навпаки.

По-друге, байдужість може наступити, коли ОПР не впевнена у своїй перевазі між x і y. Вона може вважати факт порівняння x із y важким і може відмовлятися говорити про строгу перевагу, не будучи впевненою, чи розглядає вона x і y як однаково бажані (або небажані).

По-третє, ситуація $x \sim y$ може виникнути у випадку, коли ОПР вважає x і y зовсім не порівнянними за перевагою.

Відношення строгої переваги розподіляють на два типи (див. Розділ 1):

✓ слабке впорядкування (асиметричне і від'ємне транзитивне відношення);

✓ строге впорядкування (слабко зв'язане слабке впорядкування).

Слабке впорядкування. Основною рисою слабкого впорядкування ϵ асиметричність. Якщо для вас елемент x ϵ кращим за елемент y, то водночас не може бути y кращим за x.

Транзитивність є наслідком асиметричності та від'ємної транзитивності і представляється розумним критерієм істинності для індивідуальних переваг. Якщо для вас x переважніше, ніж y, а y переважніше, ніж z, то здоровий глузд підказує, що x переважніше, ніж z.

Якщо відношення строгої переваги "<" є слабким упорядкуванням, а байдужість "~" визначається як відсутність строгої переваги, то від супротивного легко показати, що відношення "~" є еквівалентністю (рефлексивне, симетричне і транзитивне).

Однак концепція слабкого порядку в цілому вразлива для критики тому, що наділяє ОПР занадто необмеженою можливістю судження про перевагу, використовуючи транзитивність. Щоб показати, як транзитивність може порушуватися, розглянемо приклад.

Приклад. Припустимо, що при вкладанні капіталу в яку-небудь справу ви відчуваєте, що сума в 1000 у. о. є найкращим вкладенням. Ваша перевага зменшується, якщо ви відхиляєтеся від 1000 у. о. у будь-який бік. Хоча для вас важливіше 955 у. о. ніж 950 у. о., може виявитися, що ви не можете впевнено вибрати кращу суму між 950 і 1080 у. о. або між 955 і 1080 у. о. Але тоді одержимо:

```
955 y. o. > 950 y. o.,
950 y. o. ~ 1080 y. o.,
955 y. o. ~ 1080 y. o.,
```

що суперечить транзитивності відношення байдужності. У цьому прикладі відношення байдужності не ε транзитивним.

Строге впорядкування. Це відношення строгої переваги є слабко зв'язаним ($x \neq y \Rightarrow (xRy \ чи \ yRx)$, $\forall x,y \in X$) слабким упорядкуванням. Воно відповідає реалії більш, ніж слабке впорядкування, оскільки

враховує нетранзитивну байдужість, що з'являється через "недосконалість здатності людського розуму, що розрізняє, чому нерівності встановлюються лише при досить великій різниці величин" [12].

Надалі ми будемо враховувати цю властивість шляхом відмови від безумовної вимоги транзитивності відношення байдужості.

§ 1. Рункції корисності в умовах визначеності

Функції корисності на зліченних множинах. Найбільш прості умови існування функцій корисності можна сформулювати у випадку зліченної множини альтернатив.

Теорема 2.1.1. (про функцію корисності для слабких упорядкувань). Якщо відношення "<" на $X \in$ слабким впорядкуванням, а множина класів еквівалентності на X за відношенням "~" (далі будемо позначати цю множину через X_{\sim}) є зліченною, то існує дійснозначна функція u на X, для якої: $x < y \Leftrightarrow u(x) < u(y)$; $x \sim y \Leftrightarrow u(x) = u(y)$, $\forall x,y \in X$.

Доведення. Оскільки за умовою теореми множина класів еквівалентності X_{\sim} є зліченною, то позначимо всі її елементи через a_1, a_2, \ldots , а через r_1, r_2, \ldots деякий перелік множини раціональних чисел.

Введемо на множині класів еквівалентності X_{\sim} строге упорядкування, яке позначимо через >' ($a < b \Leftrightarrow \exists x \in a, \exists y \in b : x < y$). Це потрібно, оскільки, на відміну від множини X_{\sim} є множини.

Визначимо так дійснозначну функцію u на X_{\sim} .

Будемо вважати $u(a_1) = 0$. Далі за індукцією для a_m на кожному кроці буде реалізовуватися одна з трьох можливостей:

- 1. $a_i < {}^{\shortmid}a_m$ для усіх i < m; у цьому випадку покладемо $u(a_m) = m$.
- 2. $a_m < a_i$ для усіх i < m; у цьому випадку покладемо $u(a_m) = -m$.
- 3. $a_i < a_m < a_j$ для деяких i,j < m і для жодного h < m, відмінного від i,j, не виконується $a_i < a_j < a_j$; у цьому випадку покладемо $u(a_m)$ рівним першому у переліку $a_i < a_j < a$

За побудовою $u(a_m) \neq u(a_i)$, $\forall i < m$, і $a_i < `a_j \Leftrightarrow u(a_i) < u(a_j)$, $\forall i,j \leq m$. Це має місце для будь-якого натурального m, тому виконується на всій множині X_{\sim} . Остаточно визначимо на X функцію u, поклавши u(x) = u(a), $\forall x \in a$.

Якщо тепер a <' b, то за введеним вище строгим упорядкуванням <' для $\forall x \in a, \ \forall y \in b \Rightarrow x < y$, звідки випливає: $x < y \Leftrightarrow u(x) < u(y)$, $\forall x,y \in X$. Співвідношення $x \sim y \Leftrightarrow u(x) = u(y)$, $\forall x,y \in X$ доводиться з визначення байдужості $(x \sim y \Leftrightarrow (x < y, y < x))$ від супротивного. \blacklozenge

Розглянемо тепер відношення переваги, якщо воно є строгим частковим упорядкуванням. Нагадаємо, що бінарне відношення R на множині Y буде *строгим частковим упорядкуванням*, якщо воно є не рефлексивним і транзитивним.

Оскільки сам факт того, що "<" – строге часткове упорядкування на X, допускає співвідношення ($x \sim y, y \sim z, x < z$), відношення " \sim " не зобов'язане бути транзитивним і тому – еквівалентністю. Однак інше відношення — відношення подібності " \sim ", визначене як $x \sim y \Leftrightarrow (x \sim z \Leftrightarrow y \sim z), \ \forall z \in X$, у цих умовах виявляється транзитивним і відповідно є еквівалентністю (рефлективність і симетричність випливає з визначення, а також рефлективності та симетричності відношення " \sim "). Таким чином, відношення $x \sim y$ виконується щоразу, коли з байдужості x порівняно з деяким $z \in X$ випливає, що y також знаходиться у відношенні байдужості з z і навпаки.

Наступна теорема стверджує: якщо відношення "<" є не рефлексивним і транзитивним, а множина класів еквівалентності на X за відношенням " \approx " (далі будемо позначати цю множину через X_{\approx}) є зліченною, то елементам множини X можна так поставити у відповідність числа, щоб їхній порядок відповідав як відношенню "<", так і " \approx ". Однак через те, що відношення " \approx " може виявитися не транзитивним, ми не можемо стверджувати, що з $x \sim y$ та $x \approx y$ випливає u(x) = u(y). У випадку $x \sim y$ і $x \approx y$ може виявитися справедливим будь-яке з трьох співвідношень: u(x) = u(y), u(x) < u(y), u(y) < u(x).

Теорема 2.1.2. (про функцію корисності для строгих часткових упорядкувань). Якщо відношення "<" на $X \in$ строгим частковим упорядкуванням, а множина X_{\approx} класів еквівалентності на X за відношенням " \approx " \in зліченною, то існує дійснозначна функція u на X, для якої: $x < y \Leftrightarrow u(x) < u(y); \quad x \approx y \Leftrightarrow u(x) = u(y), \quad \forall x,y \in X$.

Доведення цієї теореми спирається на доведення попередньої теореми та відому теорему Шпільрайна [12] про взаємозв'язок слабкого та строгого часткового упорядкувань на множині класів еквівалентності відповідно за відношеннями байдужості та подібності.

Таким чином, можна зробити такі висновки.

Бінарне відношення ϵ слабким упорядкуванням, якщо воно ϵ асиметричним і від'ємно транзитивним. Визначаючи відношення байду-

жості "~" як відсутність строгої переваги, отримуємо, що воно є еквівалентністю (тобто рефлексивним, симетричним і транзитивним), якщо відношення "<" на X є слабким упорядкуванням. Якщо множина X_{\sim} класів еквівалентності, у сенсі відношення "~", є зліченною, то за умови, що відношення "<" є слабким упорядкуванням, елементам x, y, \ldots множини X можна поставити у відповідність корисності $u(x), u(y), \ldots$ таким чином, що $x < y \Leftrightarrow u(x) < u(y)$. Звідси випливає, що $x \sim y \Leftrightarrow u(x) = u(y)$.

Відношення переваги є строгим частковим упорядкуванням, якщо воно є нерефлексивним і транзитивним. У цьому випадку відношення байдужості може не бути транзитивним, але у цьому випадку відношення подібності " \approx " є еквівалентністю. Якщо відношення "<" на множині X – строге часткове упорядкування, а множина X_{\approx} є зліченною, то корисності можуть бути поставлені у відповідність елементам множини X таким чином, що $x < y \Leftrightarrow u(x) < u(y)$ і $x \approx y \Leftrightarrow u(x) = u(y)$.

Функції корисності на незліченних множинах. Поширимо теорему про функцію корисності для слабких упорядкувань на випадок, коли множина X_{\cdot} класів еквівалентності на X за відношенням "~" є не обов'язково зліченною. Введемо для цього так звану умову *сепарабельності*, яка має відношення до поняття щільності множини щодо впорядкування.

Нехай R є бінарним відношенням на множині Y. Множина $Z \subseteq Y$ називається R – winhow y множині Y, якщо для будь-яких x і y, що належать Y, але не належать Z, і для яких xRy, знайдеться таке $z \in Z$, що (xRz, zRy).

Наприклад, оскільки між двома будь-якими дійсними числами мається раціональне число, то зліченна множина раціональних чисел ε "<" – щільною у E^1 .

Теорема 2.1.3. (про функцію корисності для слабких впорядкувань на незліченних множинах). Існує така дійснозначна функція u на множині X, що еквівалентність $x < y \Leftrightarrow u(x) < u(y), \ \forall x,y \in X$, має місце тоді і тільки тоді, коли відношення "<" на X є слабким впорядкуванням та існує зліченна підмножина множини X_{\sim} , яка є "<" — щільною у X_{\sim} , де $a < b \Leftrightarrow \exists x \in a, \ \exists y \in b : x < y$ - строге впорядкування на множині класів еквівалентності X_{\sim} .

На жаль, ця умова сепарабельності щодо впорядкування не має простої інтуїтивної інтерпретації. Щоб показати, як ця умова може порушуватись, візьмемо $X=E^2$ і покладемо відношення "<" – лексикографічним впорядкуванням:

$$(x_1, x_2) < (y_1, y_2) \Leftrightarrow (x_1 < y_1) \lor (x_1 = y_1, x_2 < y_2).$$

Тоді $X_{\sim}=\left\{\{x\} \middle| x\in X\right\}$, так, що $\{x\}<\ \{y\}\Leftrightarrow x< y$. При фіксованому x_1 потрібно щонайменше зліченна підмножина множини E^1 , щоб одержати щільну щодо впорядкування "<" підмножину множини $\{x_1\}\times E^1$. Але таких x_1 є незліченна множина, звідки випливає, що множина E^2 щодо впорядкування "<" не є сеперабельною.

Розглянемо тепер відповідне узагальнення теореми про функцію корисності для строгих часткових впорядкувань.

Теорема 2.1.4. (про функцію корисності для строгих часткових упорядкувань на незліченних множинах). Припустимо, що відношення "<" на множині X є строгим частковим впорядкуванням та існує зліченна підмножина множини X_{\approx} класів еквівалентності на X за відношенням " \approx ", яка є "<*" — щільною у X_{\approx} , де $a < *b \Leftrightarrow \exists x \in a$, $\exists y \in b : x < y$ — строге часткове впорядкування на множині класів еквівалентності X_{\approx} . Тоді існує u — така дійснозначна функція на X, що $x < y \Leftrightarrow u(x) < u(y), x \approx y \Leftrightarrow u(x) = u(y), \forall x, y \in X$.

У цьому випадку умова сепарабельності щодо впорядкування не є необхідною, як це було у попередній теоремі. Припустимо, наприклад, що $X = E^1$, і покладемо $x < y \Leftrightarrow x < y, \ y = x + n$ для деякого цілого додатного n. Тоді функція u(x) = x відповідає твердженню теореми і $X_{\approx} = \big\{ \big\{ x \big\} \big| x \in X \big\}$.

Якщо підмножина $Z \subseteq X$ є зліченною, то існує таке x, що ні x, ні x+1 не належать Z. Але тому, що x < x+1, не існує такого $z \in Z$, що буде виконуватись x < z < x+1. Звідси випливає, що не існує зліченної підмножини в X_{\approx} , яка є "<*" – щільною в X_{\approx} .

Таким чином, можна зробити такі висновки.

Якщо множина X не ε зліченною і відношення "<" на X – слабке впорядкування, то переваги можуть бути адекватно описаними за допомогою дійснозначних функцій у тому і лише в тому випадку, коли множина X містить зліченну підмножину Y, для якої з x < y виплива ε існування такого $z \in Y$, що (x < z або $x \sim z$) і ($z \sim y$ чи z < x).

Лексикографічні впорядкування за перевагою. Є приклади, коли умова щільності порушується. Якщо відношення "<" є лише строгим частковим впорядкуванням, то сепарабельність щодо впорядкування є достатньою, але не необхідною умовою існування дійснозначної функції корисності.

Контрольні завдання до § 1

- 1. Довести, що множина {2,4,6,...} є зліченною.
- 2. Довести, що множина $\{...,-2,-1,0,1,2,...\}$ є зліченною.
- 3. Довести, що множина всіх раціональних чисел ϵ зліченною.
- 4. Довести, що якщо транзитивне замикання відношення "<" ε асиметричним, то відношення "<" ε строгим частковим впорядкуванням.
- 5. Довести за теоремою 2.1.2, що дійснозначна функція u на зліченній множині X, яка задовольняє умові $x < y \Leftrightarrow u(x) < u(y)$; $x \approx y \Leftrightarrow u(x) = u(y)$, $\forall x,y \in X$, існує тоді й лише тоді, коли відношення "<" є асиметричним.
- 6. Нехай a і b числа, причому a < b. Довести, що існує раціональне число з інтервалу (a,b) (використати той факт, що існує таке додатне число n, що 1 < n(b-a); покласти, що m дорівнює найменшому цілому числу не меншому за a та показати, що $m/n \in (a,b)$).
- 7. Дати приклад функції корисності на множині $X = \{(1, 1), (1, 2), (2, 1)\}$.

§ 2. Теорія очікуваної корисності

Коли кожна альтернатива відповідає ймовірнісній мірі на підмножині множини наслідків, у теорії корисності розглядається модель очікуваної корисності, яка дає спосіб обчислення корисностей альтернатив або зв'язаних із ними ймовірносних мір. Ідею такої моделі вперше запропонував ще Бернуллі, однак лише в минулому сторіччі були сформульовані дійсно прийнятні аксіоми переваги, що були покладені в її основу. Основні аксіоми цієї теорії були уведені фон Нейманом і Моргенштерном.

Спочатку розглянемо ілюстративний приклад.

Приклад 1. Припустимо, що власник невеликої будівельної фірми планує призначити підрядну ціну за роботу, що за його оцінкою обійдеться компанії у 200 тисяч умовних одиниць. Якщо він призначить ціну x і одержить замовлення, то йому і заплатять x і його прибуток буде дорівнювати x-200. Оскільки будівельна індустрія знаходиться в нестабільному стані, власник думає, що можуть бути призначені кілька різних цін. Виходячи зі свого попереднього досвіду та знання даної ситуації, він оцінює ймовірність p(x) одержання замовлення у

випадку, коли призначить ціну x. Нехай вид p(x) для 190 < x < 300 зображено на рисунку (рис. 2.2.1).

Рис. 2.2.1

Через недолік попиту власник фірми мріяв би одержати таке замовлення, щоб його збиток не перевершував 10. Іншими словами, нехай для нього факт (одержати замовлення і збиток 10 чи більше) еквівалентний факту (не одержати замовлення). Нехай власник оцінює свою функцію корисності від чистого доходу (у припущенні, що він одержав замовлення) так, як це зображене на рисунку (рис. 2.2). Цей рисунок показує, що йому байдужа різниця між достовірним одержанням 10 і лотереєю, що має два рівноймовірні наслідки: -10 і 100. Для нього байдужа також різниця між достовірним одержанням 50 і лотереєю, що дає 100 з імовірністю 0,8 і (-10) з імовірністю 0,2. Відповідно до моделі очікуваної корисності, останнє відношення байдужості перетвориться у рівність u(50) = 0.8u(100) + 0.2u(-10). Подібні рівняння можуть бути використані як основа побудови та перевірки функції и. Якщо власник призначить ціну в х, то його очікувана корисність буде дорівнювати p(x)u (одержати замовлення і з ним чистий дохід (x-200)) +(1-p(x))u (не одержати замовлення).

Із рис. 2.2.2 бачимо, що оскільки: (одержати замовлення й збиток 10) ~ (не одержати замовлення), то u (не одержати замовлення) = 0 i,

таким чином, u (призначити ціну x) = p(x)u (одержати замовлення і з ним чистий прибуток (x-200)).

Рис. 2.2.2

Беручи наближені значення для p(x) і u(x-200) із рисунків, одержимо криву очікуваної корисності, що зображена на рисунку (рис. 2.2.3). Він показує, що очікувана корисність досягає свого максимуму приблизно при x=206. Тому рекомендується призначити ціну, близьку до 206.

Очікувана корисність для простих імовірносних мір. *Простою ймовірнісною мірою* на Y називається дійснозначна функція P, яка визначена на множині всіх підмножин Y таких, що:

$$P(A) \ge 0$$
, $\forall A \subseteq Y$;
 $P(Y) = 1$;
 $P(A \cup B) = P(A) + P(B)$,

якщо $A,B\subseteq Y,\ A\cap B=\varnothing;\ P(A)=1$ для скінченної множини A.

Варто відмітити, що власне лише остання властивість характеризує ймовірнісну міру як просту. Іншими словами, якщо альтернатива, що вибирається, приводить до наслідку з деякої скінченої множини нас-

лідків, то цій альтернативі відповідає проста ймовірнісна міра на множині наслідків У.

Рис. 2.2.3

Розглянемо на множині простих імовірнісних мір, яку позначимо через Р_s, три аксіоми теорії очікуваної корисності щодо відношення строгої переваги.

Аксіома А1. (слабке впорядкування). Відношення строгої переваги "<" повинно бути слабким впорядкуванням на P_s.

Відмітимо, що ця аксіома може критикуватися через те, що з неї випливає транзитивність відношення байдужності. Наприклад, нехай наслідками будуть суми грошей, розглянуті як потенційний приріст багатства деякої особи.

Нехай деякі три простих імовірнісних міри P, Q, $R \in P_S$ визначені так: P(35) = 1, Q(36) = 1, R(0) = R(100) = 0.5.

Тут безсумнівно P < Q. Однак здається цілком можливим, що $P \sim R$ і $Q \sim R$, а в цьому випадку відношення "~" не ϵ транзитивним.

Аксіома А2. (незалежність).

$$(P < Q, \quad 0 < \alpha < 1) \Rightarrow \alpha P + (1 - \alpha)R < \alpha Q + (1 - \alpha)R, \quad \forall P, Q, R \in \mathbb{P}_s \ .$$

Ця аксіома розглядається багатьма як сама сутність теорії очікуваної корисності, без якої зникає та частина теорії, що пов'язана, власне, із "очікуванням". Крім того, ця умова разом із транзитивністю відношення "<" часто розглядається як основний нормативний критерій цієї теорії.

Опуклу комбінацію $\alpha P + (1-\alpha)R$ можна інтерпретувати двома способами: або як лотерею, що дає $x \in X$ із імовірністю $\alpha P(x) + (1-\alpha)R(x)$, або як двокроковий процес, у якому на першому кроці вибирається P (чи R) з імовірністю α (чи $(1-\alpha)$), а на другому кроці альтернатива x вибирається за допомогою того з імовірнісних розподілів P чи R, що був обраним на першому кроці.

Ці дві інтерпретації тотожні з погляду ймовірностей, але не ϵ психологічно рівноцінними (наприклад, двокроковий процес може виявитися більш привабливим).

Як нормативний критерій умова

$$(P < Q, \quad 0 < \alpha < 1) \Rightarrow \alpha P + (1 - \alpha)R < \alpha Q + (1 - \alpha)R$$

базується на двокроковій інтерпретації. Якщо Q є для вас кращим, ніж P, то з погляду цієї інтерпретації вбачається розумним, що опукла комбінація $\alpha Q + (1-\alpha)R$ буде для вас більш переважною, ніж $\alpha P + (1-\alpha)R$.

Аксіома незалежності виконує різні допоміжні функції як керівний принцип для винесення погоджених суджень про переваги. Вона може, по-перше, допомогти з'ясувати переваги між більш складними альтернативами на основі переваг, що стосуються більш простих альтернатив.

Припустимо, що спочатку індивідуум не має явної переваги між R і S, де:

$$R(50) = 0.1, R(80) = 0.45, R(100) = 0.45,$$

 $S(50) = 0.02, S(80) = 0.45, S(100) = 0.53,$

але для нього альтернатива Q переважаюча ніж P, де

$$Q(0) = 0, 2, Q(100) = 0, 8, P(50) = 1.$$

Нехай T(80) = T(100) = 0,5. У силу того факту, що S = 0,1Q+0,9T і R = 0,1P+0,9T, перевага до Q порівняно з P може переконати його в тому, що для нього краще S, ніж R, навіть якщо він вважав би, що S і R "дуже близькі одна до одної".

По-друге, аксіома незалежності може бути також корисною при з'ясуванні неузгодженості між судженнями про переваги. Розглянемо такий приклад.

Яка альтернатива з Р і Q привабливіша?

Нехай Q(500000)=1, P(2500000)=0,10, P(500000)=0,89, P(0)=0,01. Разом із тим, яка альтернатива з R і S привабливіша? Тут R(500000)=0,11, R(0)=0,89, S(2500000)=0,10, S(0)=0,90.

Не буде незвичним визнати, що P < Q і R < S. Тепер, поклавши T(2500000) = 10/11, T(0) = 1/11 і V(0) = 1, одержимо:

$$Q = 0.11Q + 0.89Q,$$

 $P = 0.11T + 0.89Q,$
 $R = 0.11Q + 0.89V,$
 $S = 0.11T + 0.89V.$

Оскільки з аксіоми незалежності, за наявності інших умов, випливає зворотна їй умова ($P < Q \Rightarrow T < Q$ і $R < S \Rightarrow Q < T$), тому маємо деяку "непогодженість". З одного боку, цей результат говорить заперечує вагомість аксіоми незалежності. Л. Севідж [4], навпаки, вважає, що багато людей будуть стривожені цим явним протиріччям і, приймаючи "розумність" аксіоми, захочуть переглянути свою початкову думку з метою одержати внаслідок перегляду інші судження про переваги, уже погоджені з цією аксіомою.

Аксіома Архімеда (АЗ). Для деяких $\alpha, \beta \in [0,1]$,

$$(P < Q, Q < R) \Rightarrow \alpha P + (1 - \alpha)R < Q \text{ i } Q < \beta P + (1 - \beta)R.$$

Ця аксіома стверджує, що якщо P < Q < R, то існує така нетривіальна *суміш* (лінійна комбінація) P і R, яка гірша за Q, та існує також така нетривіальна суміш P і R, яка краща за Q. Зокрема, ця аксіома виключає можливість випадків, коли P < Q < R, але

$$\alpha P + (1-\alpha)R \stackrel{?}{<} Q$$
, $\forall \alpha \in (0,1)$, and $Q \stackrel{?}{<} \alpha P + (1-\alpha)R$, $\forall \alpha \in (0,1)$.

Припустимо – щойно викарбувана монета буде підкидатися n разів і, на вашу думку, для довільного додатного α існує таке $n(\alpha)$, для якого α перебільшує ймовірність того, що в кожному із $n(\alpha)$ кидань випадає герб. Розглянемо вибір між такими альтернативами A і B:

- A. Одержати одну монету незалежно від результатів цих n кидань.
- В. Бути покараним, якщо при кожному киданні випадає герб, і одержати дві монети у протилежному випадку.

Якщо покарання гірше однієї монети, а одна монета, звичайно, гірша, ніж дві монети, і ви віддаєте перевагу альтернативі A, то яким би великим ні було число n, ви порушуєте аксіому Архімеда. Якщо монета підкидається 100 разів, то при виборі альтернативи B існує лише одна з більш ніж 10^{30} можливих послідовностей, при випаданні якої ви будете покарані. Через такі числа багато людей могли б вказати досить

велике значення n, при якому вони б вибирали B. Часто заявляють, що схильність, яку люди виявляють стосовно невеликого ризику, наприклад, при переході вулиці або керуванні автомобілем, представляється досить переконливим свідченням на користь цієї умови.

Визначимо поняття множини сумішей.

Множина Р називається *множиною сумішей*, якщо задано відображення, що будь-якій парі $(P,Q) \in P \times P$ і будь-якому $\alpha \in [0,1]$ ставить у відповідність такий елемент $\alpha P + (1-\alpha)Q \in P$, що для усіх $P,Q \in P$, $\forall \alpha \in (0,1)$ виконуються умови:

$$1P + 0Q = P;$$

$$\alpha P + (1 - \alpha)Q = (1 - \alpha)Q + \alpha P;$$

$$\alpha[\beta P + (1 - \beta)Q] + (1 - \alpha)Q = \alpha\beta P + (1 - \alpha\beta)Q.$$

Відмітимо, що множина простих імовірнісних мір P_s з операцією $\alpha P + (1-\alpha)Q$ є множиною сумішей.

Сформулюємо основну теорему теорії очікуваної корисності [12].

Теорема 2.2.1. (про очікувану корисність міри для слабких упорядкувань). Нехай P – множина сумішей, тоді для виконання аксіом A1, A2, A3 необхідно і достатньо, щоб на P існувала дійснозначна функція u, яка задовольняє умовам:

$$\begin{split} P < Q &\Leftrightarrow u(P) < u(Q), \quad \forall P, Q \in P; \\ u(\alpha P + (1-\alpha)Q) &= \alpha u(P) + (1-\alpha)u(Q), \quad \forall P, Q \in P, \quad \forall \alpha \in (0,1) \,. \end{split}$$

Крім того, якщо функція u на P задовольняє цим умовам, то дійснозначна функція v на p також задовольняє цим умовам при підстановці v замість u тоді і тільки тоді, коли існують такі числа a>0 і b, що $v(P)=au(P)+b, \ \forall P\in P$.

Таким чином, розглянуті вище аксіоми слабкого впорядкування, незалежності та архімедовості дозволяють поставити у відповідність кожній мірі на *Y* таку корисність, яка може бути розрахована як очікувана корисність наслідків відносно цієї міри.

Наступна теорема [12] узагальнює очікувану корисність простих імовірнісних мір на випадок строгих часткових впорядкувань.

Теорема 2.2.2. (про очікувану корисність міри для строгих часткових впорядкувань). Припустимо, що $Y \in \text{скінченною множиною i для бінарного відношення "<" скрізь на множині простих імовірнісних мір <math>P_s$ виконуються такі умови:

- ✓ Відношення "<" є транзитивним.</p>
- \checkmark Якщо $0 < \alpha < 1$, то $P < Q \Leftrightarrow \alpha P + (1 \alpha)R < \alpha Q + (1 \alpha)R$.
- \checkmark Якщо $\alpha P+(1-\alpha)R<\alpha Q+(1-\alpha)S$, $\forall \alpha$, $0<\alpha \le 1$, то ε невірним, що S< R .

Тоді на Y існує дійснозначна функція u, яка задовольняє умові:

$$P < Q \Leftrightarrow \sum_{x \in X} u(x)P(x) < \sum_{x \in X} u(x)Q(x), \quad \forall P, Q \in P_s.$$

Порівняємо останні дві умови цієї теореми з аксіомами незалежності й архімедовості.

Пряма імплікація (\Rightarrow) в умові 2 теореми 2.2 є аксіомою незалежності. Зворотна імплікація (\Leftarrow) в умові 2 обґрунтовується так. Припустимо, що при $0 < \alpha < 1$ опукла комбінація $\alpha Q + (1-\alpha)R$ дійсно переважає $\alpha P + (1-\alpha)R$. Тоді є розумним, щоб ця перевага залежала від погляду на відношення між P і Q. Справді, оскільки наявність доданку $(1-\alpha)R$ призводить до послаблення різниці між цими двома сумішами, усунення $(1-\alpha)R$ зробило б різницю між P і Q ще виразнішою, ніж розходження між $\alpha P + (1-\alpha)R$ і $\alpha Q + (1-\alpha)R$. Тому здається обґрунтованим віддавати перевагу альтернативі Q. За наявності частини (\Rightarrow) умови 2, частина (\Leftarrow) може бути записана у вигляді:

$$[\alpha \in (0,1), \quad \alpha P + (1-\alpha)R < \alpha Q + (1-\alpha)R] \Rightarrow P \neg \sim Q.$$

Умова 3 теореми $2.2~\varepsilon$ послабленням аксіоми Архімеда, але вона потрібна, наприклад, у випадку, коли для $\forall \alpha \in (0,1)$:

$$\alpha \sum_{x \in X} u(x) P(x) + (1-\alpha) \sum_{x \in X} u(x) R(x) < \alpha \sum_{x \in X} u(x) Q(x) + (1-\alpha) \sum_{x \in X} u(x) S(x).$$

Стани природи. На початку параграфу ми представляли прийняття рішень в умовах невизначеності у термінах множини допустимих дій (альтернатив) X і множини наслідків Y, які виникають унаслідок обраних дій. Ми припускали, що для особи, яка приймає рішення, невизначеність у тому, який із наслідків $y \in Y$ виникне внаслідок дії $x \in X$, може бути вираженою за допомогою імовірнісної міри P_x на Y. Аксіоми, що були розглянуті, формулювалися на основі множин імовірнісних мір, які за припущенням містили множину $\{P_x : x \in X\}$.

Для того, щоб розібратися у цьому детальніше, розглянемо множину S' усіх функцій, що відображають усі альтернативи у наслідки. Кожна така функція $s \in S'$ ставить у відповідність кожній альтернативі $x \in X$ деякий наслідок $s(x) \in Y$.

Припустимо, що ОПР має деяку імовірнісну міру Р на родині усіх підмножин множини S'. Коли задана міра P' ми можемо визначити міру P_x , поклавши $P_x(A) = P'\{s: s \in S', \ s(x) \in A\}, \ \forall A \subseteq X$.

У більшості випадків міра P' на S' містить більше інформації про невизначеність ніж сім'я $\{P_x: x \in X\}$. Для того, щоб визначити альтернативу, яка максимізує очікувану корисність, не обов'язково оціню-

вати міру P' у всіх деталях, що може бути більш важким, ніж оцінка міри $P_{\mathbf{x}}$.

За думкою Λ . Севіджа "Природа є об'єктом, із яким пов'язані інтереси ОПР, а стани природи – це опис природи, який не залишає не описаним жоден із суттєвих аспектів". Стани слугують для того, щоб об'єднувати всі суттєві для прийняття рішень фактори, які є для ОПР невизначеними. Вони повинні задаватися так, щоб стан, який має місце, не залежав від обраної дії (альтернативи).

Із цього погляду, досить логічно було б назвати "станами природи" елементи множини функцій S'. Але, як правило, поступають інакше. Замість того, щоб визначати стани як функції, що відображають альтернативи у наслідки, за ідеєю Λ . Севіджа, визначають альтернативи як функції, що відображають стани в наслідки, тобто кожен $x \in X$ є функцією, що відображає S у X, тоді x(s) – є наслідком, який виникає, коли обрана альтернатива x і реалізується стан $s \in S$.

Якщо множина S визначена так, що може реалізуватися хоча б один із станів $s \in S$, ОПР не знає, який із станів реалізується. Більше того, стан, який реалізується, не залежить від обраної альтернативи. У цих умовах можемо припустити, що ОПР має на S деяку імовірнісну міру P^* , де $P^*(C)$ є ймовірність того, що для підмножини $C \subseteq S$ реалізується деякий стан $s \in C$. Тоді можемо визначити міру P_* , поклавши:

$$P_x(A) = P^* \{s : s \in S, x(s) \in A\}, \forall A \subseteq X.$$

Порівняння двох формулювань. Доведемо, що визначені вище формулювання корисностей ϵ фактично ізоморфними при певному узгодженому способі розгляду невизначеностей.

Незалежно від того, чи виглядають множини S і S' зовнішньо різними, припустимо, що задані на них міри P і P^* погоджені одна з одною. Під цим розуміємо, що для будь-яких $A \subseteq Y$, $x \in X$,

$$P'(\{s': s' \in S', s'(x) \in A\}) = P^*(\{s: s \in S, x(s) \in A\}).$$

Це, у свою чергу, означає, що ймовірність, із якою ОПР сподівається одержати наслідок $y \in A$, коли він використовує дію (альтернативу) x, не залежить від конкретного методу, який був використаним для опису невизначеності.

Нехай u – функція корисності наслідку, що визначена на X таким чином, що для будь-яких двох мір P і Q на X виконується умова:

$$P < Q \Leftrightarrow E(u, P) < E(u, Q)$$
.

Припустимо, що функція u обмежена на X.

Нехай $u_1,u_2,...$ послідовність простих функцій на X, яка рівномірно збігається до u знизу. Розглянемо одну з цих функцій, наприклад, u_n . Нехай u_n набуває m значень, а саме, $u_n(A_i)=c_i,\ i=1,\ 2,...,m,$ де $\{A_1,...,A_m\}$ — деяке розбиття множини X, і нехай $C_i'=\{s':s'\in S',s'(x)\in A_i\},\ C_i=\{s:s\in S,x(s)\in A_i\}.$

Тоді $\{C_1',...,C_m'\}$ і $\{C_1,...,C_m\}$ є відповідно розбиттям множин S' і S. Звідси за умовою $P'(\{s':s'\in S',\ s'(x)\in A\})=P^*(\{s:s\in S,\ x(s)\in A\})$ випливає рівність математичних сподівань $\sum_i c_i P'(C_i')=\sum_i c_i P^*(C_i)$.

Згідно з формулою $P_x(A) = P'\{s: s \in S', s(x) \in A\}, \forall A \subseteq X$, ліву частину $\sum_i c_i P'(C_i') = \sum_i c_i P^*(C_i)$ можна прийняти за $E(u, P_x)$. Аналогічно, за формулою $P_x(A) = P^*\{s: s \in S, x(s) \in A\}, \forall A \subseteq X$, праву частину рівності можна прийняти також за $E(u, P_x)$.

Отже, за наявності погодженості, що виражається формулою $P'\left(\left\{s':s'\in S',\ s'(x)\in A\right\}\right)=P^*\left(\left\{s:s\in S,\ x(s)\in A\right\}\right),$ обидва з даних формулювань дають для очікуваної корисності дії (альтернативи) x одне і теж значення.

Контрольні завдання до § 2

- 1. Використовуючи рис. 2.2.1 зобразити криву очікуваного чистого прибутку від x аналогічну рис. 2.2.2.
- 2. Яке значення х буде максимізувати очікуваний чистий прибуток у прикладі 1.
 - 3. Розглянути дві альтернативи.

Альтернатива А. Кидається симетрична монета. Якщо випадає герб, то три дні підряд ви одержуєте на обід телятину (герб) чи курятину (решка).

Альтернатива В. Три дні підряд кидається монета, щоб визначити, що ви одержите на обід телятину (герб) чи курятину (решка).

Позначимо через X множину з восьми трійок (x_1,x_2,x_3) , де $x_1 \in \{\text{те-лятина}, \ kypятина\}$, $i \in \overline{1,3}$, і позначимо через P, Q імовірнісні міри на X, які представляють альтернативи A і B. Потрібно запропонувати розумні аргументи того, що може бути $P \approx Q$.

4. Нехай x=0 представляє ваше багатство в даний час. Якщо P-імовірнісна міра на множині сум грошей, які можуть бути вашими по-

тенційними прибутками, а $P \approx x$ означає, що для вас байдужна різниця між лотереєю відповідно до P і безпосереднім одержанням x грошових одиниць. Треба оцінити x за умовою $P \approx x$ у таких випадках:

a)
$$P(0) = 0.5, P(10000) = 0.5;$$

6)
$$P(0) = 0.1, P(10000) = 0.9;$$

B)
$$P(-500) = 0,5, P(500) = 0,5;$$

r)
$$P(-100) = 0, 2, P(-10) = 0, 8;$$

д)
$$P(0) = 1/3, P(1000) = 1/3, P(3000) = 1/3;$$

$$e) P(90000) = 0.5, P(100000) = 0.5.$$

§ 3. Рункції корисності в умовах ризику та невизначеності

Найважливішим застосуванням теорії очікуваної корисності ϵ можливість формалізації процесу прийняття рішень в умовах ризику й невизначеності.

Задача прийняття рішень (ЗПР) є визначеною на наступній тріаді множин: X – множина альтернатив; Y – множина наслідків; S – множина станів.

Множина S є проявом стохастичної невизначеності у прийнятті рішень, причому конкретна інтерпретація станів залежить від формулювання задачі (наприклад, попит на ту чи іншу продукцію, погода і т. п.). Множину S також називають множиною "станів природи" чи "станів зовнішнього середовища", щоб підкреслити властиву їй невизначеність і незалежність від ОПР.

Відомі (див. § 2) дві форми взаємозв'язку тріади множин, кожній із яких відповідає своє визначення множини станів і свій підхід до оцінки очікуваної корисності альтернатив. Це – екстенсивна й нормальна форми.

В екстенсивній формі стан визначається як відображення альтернатив у наслідки $s: X \to Y$. Цей підхід сформульований Дж. фон Нейманом і О. Моргенштерном (див. § 2). При такій постановці множина станів природи задачі не фігурує. Стохастична невизначеність тут описується розподілом імовірностей на множині наслідків Y, що відповідають альтернативам із X. Переваги ОПР повинні бути виражені у вигляді функцій корисності u(y), визначеній на множині наслідків Y. Очікувана корисність альтернативи х може бути оціненою деякою

функцією корисності (функціоналом) E(x) = E(u(y), p(x,y)), де p(x,y) – розподіл ймовірностей на множині наслідків Y, що відповідають альтернативі x. Оскільки кожній альтернативі однозначно відповідає свій розподіл ймовірностей, то в такій постановці ЗПР можна говорити про вибір найкращого розподілу ймовірностей.

Для ЗПР у нормальній формі альтернативи $x \in X$ визначаються як відображення станів у наслідки $x:S \to Y$. Цей підхід було сформульовано Λ . Севіджем (див. § 2). Тут множина станів S фігурує в ЗПР, а стохастична невизначеність описується за допомогою одного незалежного від альтернатив розподілу ймовірностей на S і задається відповідною щільністю p(s), $s \in S$. Переваги ОПР, як і у попередньому випадку, задаються функціями корисності, але тепер вони будуються не на множині наслідків Y, а на множині $X \times S$, оскільки будь-який наслідок однозначно визначається парою $(x,s) \in X \times S$. Для ЗПР у нормальній формі очікувана корисність альтернативи x може бути оціненою деякою функцією корисності (функціоналом) E(x) = E(u(x,s),p(x)).

За наявності фундаментальної погодженості (коли невизначеність вважається викликаною тими самими причинами) екстенсивна й нормальна форми ЗПР еквівалентні з погляду очікуваної корисності розглянутих альтернатив.

Розглянемо конкретні види функцій корисності (критеріїв) для нормальної форми ЗПР, які найчастіше вживаються в методах прийняття рішень [5].

Мінімаксний критерій Вальда. Мінімаксний критерій (ММ) використовує функцію корисності альтернатив $E_{MM}(x) = \min_{s \in S} u(x,s)$, що від-

повідає позиції крайньої обережності. Шукана альтернатива вибирається з умови $x^* \in \operatorname{Arg}\max_{x \in X} E_{MM}(x) = \operatorname{Arg}\max_{x \in X} \min_{s \in S} u(x,s)$. Обрані таким

чином альтернативи цілком виключають ризик. Це означає, що які б стани природи $s \in S$ не реалізувалися, відповідний результат не може виявитися гіршим за $E_{MM}(x^*)$. Ця властивість робить мінімаксний критерій одним із фундаментальних. Тому в практичних задачах він застосовується найчастіше.

Однак відсутність ризику може привести до певних втрат. Продемонструємо це на прикладі.

Приклад. Нехай числові оцінки наслідків альтернатив x_1 , x_2 при станах s_1 , s_2 задаються нижче наведеною табл. 2.3.1.

Ta	бл	иця	. 2.	3.	1

	$\boldsymbol{s}_{\scriptscriptstyle 1}$	s ₂	$E_{MM}(x)$
$\boldsymbol{x}_{\!\scriptscriptstyle 1}$	1	100	1
x ₂	1,1	1,1	1,1
		Max	1,1

Хоча альтернатива x_1 здається більш вигідною, оптимальною за ММ – критерієм буде альтернатива x_2 . Ухвалення рішення за цим критерієм може, однак, виявитися ще менш розумним, якщо:

- ✓ стан s_2 зустрічається частіше ніж s_1 ;
- ✓ рішення реалізується багаторазово.

Вибираючи альтернативу, що пропонується за ММ-критерієм, щоправда, уникаємо невдалого значення 1, що реалізується при альтернативі x_1 при стані s_1 , одержуючи замість нього при цьому стані не набагато кращий результат 1,1, зате в стані s_2 втрачаємо виграш 100, одержуючи всього лише 1,1. Цей приклад показує, що в численних практичних ситуаціях песимізм мінімаксного критерію може виявитися дуже невигідним.

Застосування ММ-критерію буде виправданим, якщо ситуація, у якій приймається рішення, характеризується такими обставинами:

- ✓ про можливості появи зовнішніх станів нічого невідомо;
- ✓ необхідно рахуватися з появою різних станів природи $s \in S$;
- ✓ рішення реалізується лише один раз;
- \checkmark необхідно виключити будь-який ризик, тобто за жодних умов $s \in S$ не допускається отримання результату, меншого за $E_{MM}(x^*)$.

Критерій Байєса-Лапласа. На відміну від мінімаксного критерію, цей критерій враховує кожен із можливих наслідків альтернативи.

Нехай p(s) – імовірність появи стану $s \in S$, тоді для BL-критерію корисність кожної альтернативи характеризується математичним сподіванням корисностей її наслідків

$$E_{BL}(x) = \int_{s \in S} p(s)u(x,s)ds.$$

Шукана альтернатива вибирається з умови:

$$x^* \in \operatorname{Arg} \max_{x \in X} E_{BL}(x) = \operatorname{Arg} \max_{x \in X} \int_{s \in S} p(s)u(x,s)ds.$$

При цьому вважається, що ситуація, у якій приймається рішення, характеризується такими обставинами:

✓ імовірності появи станів відомі і не залежать від часу;

- ✓ рішення реалізується (теоретично) нескінченно багато разів;
- ✓ для малого числа реалізацій рішення допускається деякий ризик.

При досить великій кількості реалізацій середнє значення корисностей альтернативи *х* наближається до математичного сподівання корисностей її наслідків. Тому при повній (нескінченній) реалізації будьякий ризик практично виключається. ВL-критерій є оптимістичнішим, ніж ММ-критерій, однак він вимагає вищого рівня інформованості й досить тривалої реалізації.

Критерій мінімізації дисперсії оцінки. Цей критерій використовують, коли ОПР, зацікавлена в отриманні "стійкого" щодо станів середовища рішення і відомо, що ймовірності станів середовища мають нормальний розподіл. При виборі цього критерію кожна альтернатива оцінюється дисперсією функції корисності її наслідків при всіх мінімізованих станах середовища:

$$\begin{split} E_{D}(x) &= \int\limits_{s \in S} p(s) \left(\int\limits_{s \in S} p(s) u(x,s) ds - u(x,s) \right)^{2} ds = \int\limits_{s \in S} p(s) \left(E_{MM}(x) - u(x,s) \right)^{2} ds \\ x^{*} &\in \operatorname{Arg} \min_{x \in X} E_{D}(x) = \operatorname{Arg} \min_{x \in X} \int\limits_{s \in S} p(s) \left(E_{MM}(x) - u(x,s) \right)^{2} ds. \end{split}$$

Інші умови такі ж самі, як і для попереднього критерію.

Критерій максимізації ймовірності. При використанні цього критерію ОПР фіксує величину оцінки функції корисності наслідків $u^*: \min_{x \in X} \min_{s \in S} u(x,s) \le u^* \le \max_{x \in X} \max_{s \in S} u(x,s)$, яку він хоче ймовірно досягти.

Для кожної альтернативи x визначається ймовірність $p\{u(x,s) \ge u^*\}$ того, що функція корисності наслідків буде не менша за u^* для кожного стану середовища $s \in S$. Критерій полягає в максимізації ймовірності досягнення значення заданої оцінки

$$E_{F}(x) = \int_{\substack{s \in S, \\ u(x,s) \geq u^{*}}} p(s)ds, \quad x^{*} \in \operatorname{Arg} \max_{x \in X} E_{F}(x) = \operatorname{Arg} \max_{x \in X} \int_{\substack{s \in S, \\ u(x,s) \geq u^{*}}} p(s)ds.$$

Умови застосування цього критерію такі ж самі, як і для BL-критерію.

Модальний критерій. Суть цього критерію полягає у виборі альтернативи, виходячи з найбільш імовірного стану середовища $s^* \in S$: $s^* = \arg\max_{s \in S} p(s)$. При використанні цього критерію ОПР вважає, що середовище знаходиться у стані s^* і вибирає альтернативу з умови: $E_{MOD}(x) = \max_{x \in X} u(x, s^*)$. Хоча цей критерій є досить песимістичним, він має певні переваги:

✓ достатньо виділити лише найбільш імовірний стан середовища і не потрібно знати точне кількісне значення ймовірності його виникнення; ✓ зменшується об'єм обчислень, оскільки розрахунки ведуться лише для найбільш імовірного стану середовища.

Критерій Севіджа (S-критерій). За цим критерієм корисність кожної альтернативи характеризується $E_{SE}(x) = \max_{z \in S} (\max_{z \in S} u(z,s) - u(x,s))$.

Цю величину можна інтерпретувати як втрати (штрафи), що виникають у стані $s \in S$ при заміні оптимальної для неї альтернативи на альтернативу x. Тоді логічно приймати рішення за умовою мінімізації максимально можливих втрат:

$$x^* \in \operatorname{Arg} \min_{x \in X} E_{SE}(x) = \operatorname{Arg} \min_{x \in X} \max_{s \in S} (\max_{z \in X} u(z, s) - u(x, s)).$$

До ситуації прийняття рішень за цим критерієм висуваються такі ж самі вимоги, що і у випадку ММ-критерію.

Критерій стабільності (V-критерій). Із метою мати "максимальну незалежність від станів природи" ("мінімальну залежність") О. Волошин запропонував такий критерій "стабільності". За цим критерієм корисність кожної альтернативи характеризується величиною

$$E_{ST}(x) = \max_{s \in S} (\max_{t \in S} u(x, t) - u(x, s)).$$

Цю величину можна інтерпретувати як втрати, що виникають при виборі альтернативи $x \in X$, при реалізації стану природи $s \in S$. Як оптимальну альтернативу логічно прийняти ту, для якої різниця між максимальним і мінімальним виграшами буде мінімальною, тобто розв'язок задачі прийняття рішень за V-критерієм вибирається з множини:

$$x^* \in X^* = Arg \min_{x \in X} E_{ST}(x) = Arg \min_{x \in X} \max_{s \in S} (\max_{t \in S} u(x, t) - u(x, s)).$$

Якщо розв'язок не єдиний, його необхідно вибирати з недомінованих альтернатив.

До ситуації прийняття рішень за цим критерієм висуваються такі ж самі вимоги, що і у випадку ММ-критерію.

Критерій Гурвіца. Намагаючись зайняти найбільш урівноважену позицію, Λ . Гурвіц запропонував критерій GW, функція корисності якого забезпечує компроміс між граничним оптимізмом і крайнім песимізмом. За цим критерієм корисність кожної альтернативи характеризується величиною $E_{GW}(x) = \alpha \max_{s \in S} u(x,s) + (1-\alpha) \min_{s \in S} u(x,s)$, де $\alpha \in [0,1]$ –

ваговий коефіцієнт, що характеризує схильність ОПР до ризику.

Рішення приймається з умови:

$$x^* \in \operatorname{Arg} \max_{x \in X} E_{GW}(x) = \operatorname{Arg} \max_{x \in X} (\alpha \max_{s \in S} u(x, s) + (1 - \alpha) \min_{s \in S} u(x, s)).$$

Для $\alpha=0$ GW-критерій перетворюється в MM-критерій. Для $\alpha=1$ він перетворюється у критерій азартного гравця. На практиці вибрати цей коефіцієнт буває так само важко, як правильно вибрати сам критерій. Навряд чи можливо знайти кількісну характеристику для тих часток оптимізму й песимізму, що присутні при прийнятті рішення. Тому найчастіше $\alpha=0,5$ без заперечень приймається як деякої "середньої" точки зору.

Інколи величина α використовується для обґрунтування вже прийнятого рішення. Для рішення, що сподобалося, обчислюється ваговий коефіцієнт α і він інтерпретується як показник співвідношення оптимізму та песимізму. Таким чином, позиції, виходячи з яких приймаються рішення, можна розсортувати принаймні заднім числом.

Вибір відповідно до GW-критерію може, незважаючи на цілком урівноважену точку зору, приводити до нераціональних рішень. Розглянемо приклад, побудований так, що оптимальне (відповідно до GW-критерію) рішення є незалежним від α .

Приклад. Нехай вибирається одна з двох альтернатив, які мають оцінки, наведені у табл. 2.3.2.

	s ₁	s_2	 s_{n-1}	s_n
x_1	10000	1	 1	1
x_2	9999	9999	 9999	0.99

Таблиця 2.3.2

Із цієї таблиці бачимо, що x_1 буде вибраним за GW-критерієм при будь-якому $\alpha \in [0,1]$, але більш вдалим вибором буде x_2 .

GW-критерій висуває до ситуації, у якій приймається рішення, такі вимоги:

- ✓ про ймовірності появи станів нічого не відомо;
- ✓ із появою нових станів необхідно рахуватися;
- ✓ реалізується мала кількість рішень;
- ✓ допускається деякий ризик.

Критерій Ходжа-Лемана. Цей критерій спирається одночасно на ММ-критерій і ВL-критерій. Функція корисності альтернатив визначається як: $E_{HL}(x) = \alpha \int\limits_{s \in S} p(s)u(x,s)ds + (1-\alpha) \min\limits_{s \in S} u(x,s).$

За допомогою параметра $\alpha \in [0,1]$ виражається ступінь довіри до використовуваного розподілу ймовірностей p(s), $s \in S$. Якщо ця довіра висока, то акцентується ВL-критерій, у протилежному випадку перевага віддається ММ-критерію. Рішення приймається за умовою:

$$x^* \in \operatorname{Arg} \min_{x \in X} E_{HL}(x) = \operatorname{Arg} \max_{x \in X} \left(\alpha \int_{s \in S} p(s) u(x, s) ds + (1 - \alpha) \min_{s \in S} u(x, s) \right).$$

Для $\alpha=0$ HL-критерій перетворюється в MM-критерій, а для $\alpha=1$ він перетворюється в BL-критерій. Ступінь впевненості $\alpha\in[0,1]$ в будь-якому розподілі ймовірностей p(s), $s\in S$, практично не підда-

ється оцінці. Таким чином, вибір параметра α є повністю суб'єктивним. Крім того, без уваги залишається і число реалізацій рішень. Тому HL-критерій має досить обмежену галузь застосування.

Ситуації, у яких приймається рішення, характеризуються такими властивостями:

- ✓ імовірності появи станів не відомі, але деякі припущення про розподіл імовірностей можливі;
- ✓ прийняте рішення теоретично допускає нескінченно багато реалізацій;
 - при малих числах реалізацій допускається деякий ризик.

Критерій Гермейєра. За підходом Ю. Гермейєра до відшукання слабко ефективних рішень у задачах багатокритеріальної оптимізації (див. Розділ 4) можна запропонувати ще один критерій (GE).

Нехай множина станів є скінченною, а саме $S = \{s_1, ..., s_n\}$. Не обмежуючи загальності, будемо вважати u(x,s) < 0 (u(x,s) інтерпретуються як витрати) $\forall x \in X$, $\forall s \in S$, тоді функція корисності альтернатив за GE-критерієм визначається як $E_{GE}(x) = \min_{s \in S} p(s)u(x,s)$, а рішення приймається з умови:

$$\boldsymbol{x}^* \in \operatorname{Arg} \max_{\boldsymbol{x} \in \boldsymbol{X}} E_{GE}(\boldsymbol{x}) = \operatorname{Arg} \max_{\boldsymbol{x} \in \boldsymbol{X}} \min_{\boldsymbol{s} \in \boldsymbol{S}} p(\boldsymbol{s}) u(\boldsymbol{x}, \boldsymbol{s}) \,.$$

Імовірності станів природи p(s), $s \in S$, у цьому критерії можна інтерпретувати як вагові коефіцієнти функцій корисності u(x,s), $s \in S$, наслідків, які хочемо одночасно максимізувати. За теоремою Ю. Гермейєра про необхідну й достатню умови слабкої ефективності (див. Розділ 4, § 3) фактично шуканий розв'язок x^* визначається як одна (відповідна ваговим коефіцієнтам p(s), $s \in S$) із слабко ефективних альтернатив задачі: $u(x,s) \to \max_{x \in X}$, $s \in S$.

Якщо $u(x,s)>0, \ \forall x\in X$, $\forall s\in S$, то або можна перейти до від'ємних значень із допомогою перетворення u(x,s)-a , відповідним чином підібравши a>0 , або розглянути $E_{GE}(x)=\min_{s\in S}\frac{1}{p(s)}u(x,s)$.

У певному відношенні GE-критерій узагальнює ММ-критерій. У випадку рівномірного розподілу ймовірностей вони стають ідентичними. Умови його застосовності такі:

- ✓ множина станів є скінченною;
- ✓ ймовірності появи станів відомі;
- ✓ із появою тих або інших нових станів необхідно рахуватися;
- ✓ допускається деякий ризик;
- ✓ рішення може реалізуватися один або багато разів.

Якщо функція розподілу відома не дуже надійно, а реалізацій рішення мало, то за GE-критерієм одержують невиправдано великий ризик. Таким чином, залишається деяка воля для суб'єктивних дій.

Критерій добутків. Цей критерій базується на ідеї фільтрації інформації, яка застосовується в теорії нечітких множин (див. Розділ 7). Добутком функцій належності нечітких множин визначається одна з операцій перетину нечітких множин.

Нехай множина станів є скінченною, а саме $S = \{s_1, ..., s_n\}$. Не обмежуючи загальності, будемо вважати $u(x,s) > 0, \ \forall x \in X, \forall s \in S$.

Критерій добутків MU використовує функцію корисності альтернатив $E_{MU}(x) = \prod_{s \in S} u(x,s)$. Шукана альтернатива вибирається з умови:

$$x^* \in \operatorname{Arg} \max_{x \in X} E_{MU}(x) = \operatorname{Arg} \max_{x \in X} \prod_{s \in S} u(x, s).$$

Застосування цього критерію зумовлено такими обставинами:

- ✓ множина станів є скінченною;
- ✓ імовірності появи станів невідомі;
- ✓ із появою кожного зі станів окремо необхідно рахуватися;
- ✓ критерій застосовують і при малому числі реалізацій рішення;
- ✓ деякий ризик допускається.

Вибір рішення відповідно до MU-критерію виявляється значно менш песимістичним, ніж, наприклад, вибір відповідно до ММ-критерію. Можна сказати, що MU-критерій тісно пов'язаний із BL-критерієм при рівномірному розподілі ймовірностей (цей випадок часто

називають нейтральним критерієм NN): $E_{NN} = \frac{1}{n} \sum_{s \in S} u(x, s)$. Зв'язок із

нейтральним критерієм вбачається, наприклад, із такого міркування. Зі строгої монотонності логарифмічної функції випливає, що значення $E_{\scriptscriptstyle MU}(x) = \prod_{s \in S} u(x,s)$ є максимальним за $x \in X$ саме тоді, коли є мак-

симальним $\ln u(x,s)$. Тепер маємо $\ln E_{\scriptscriptstyle MU}(x) = \sum_{\scriptscriptstyle s \in S} \ln u(x,s)$ і ця величи-

на досягає максимуму одночасно з $\frac{1}{n} \ln E_{MU}(x) = \frac{1}{n} \sum_{s \in S} \ln u(x, s)$. Остан-

ній вираз у точності відповідає нейтральному критерію, якщо лише величини u(x,s) у ньому замінити на логарифми $\ln u(x,s)$.

Таким чином, унаслідок застосування MU-критерію відбувається деяке вирівнювання між великими й малими значеннями u(x,s). Це може забезпечити іноді більшу вигоду, ніж при використанні MM-критерію, але при цьому повинна враховуватися можливість появи і гірших результатів. Варто зазначити, що при використанні цьо-

го критерію ні число реалізацій, ні інформація про розподіл ймовірностей не беруться до уваги.

Якщо рішення, прийняте згідно з MU-критерієм, визначається переважно малими значеннями функції корисності наслідків u(x,s), то це вказує на його песимістичний характер, аналогічний MM-критерію. При великих значеннях функції корисності наслідків u(x,s) песимістичний акцент знижується і, власне кажучи, відбувається все більше зближення даного критерію з нейтральним. Тим самим досягається певне вирівнювання між песимістичними й нейтральними поглядами.

Контрольні завдання до § 3

- 1. Прийняти рішення в умовах невизначеності у задачі з втратами $L(w,x)=-\left(\frac{5}{4}+\omega\right)x_1-\left(\frac{7}{4}-\omega\right)x_2 \ , \ \text{які визначені на множині альтернатив } D=\left\{x=\left(x_1,x_2\right)\mid x_1+x_2\leq 4,\, x_1+2x_2\leq 6,\, x_{1,2}\geq 0\right\} \ \text{і множині станів зовнішнього середовища } \Omega=\left\{\omega\middle|\omega\in\left\{0,1\right\}\right\}, \ \text{що відбуваються з імовірністю } p\left\{\omega=0\right\}=\frac{1}{4}, \ \ p\left\{\omega=1\right\}=\frac{3}{4} \ \text{ за критерієм Байєса}-\Lambdaапласа.$
- 2. Прийняти рішення в умовах невизначеності у задачі з втратами $L(w,x)=-\left(\frac{4}{3}+\omega\right)x_1-\left(\frac{5}{3}-\omega\right)x_2$, які визначені на множині альтернатив $D=\left\{x=\left(x_1,x_2\right)\mid x_1+x_2\leq 5, -4x_1+x_2\leq 0, x_1-4x_2\leq 0, x_{1,2}\geq 0\right\}$ і множині станів зовнішнього середовища $\Omega=\left\{\omega\middle|\omega\in\left\{0,1\right\}\right\}$, що відбуваються з ймовірністю $p\left\{\omega=0\right\}=\frac{1}{3}$, $p\left\{\omega=1\right\}=\frac{2}{3}$ за критерієм мінімізації дисперсії оцінок.
- 3. Прийняти рішення в умовах невизначеності в задачі з втратами $L(w,x)=-(2-\omega)x_1-(1-2\omega)x_2$, які визначені на множині альтернатив $D=\left\{x=\left(x_1,x_2\right)|-x_1+2x_2\leq 2,\,3x_1-2x_2\leq 6,\,x_{1,2}\geq 0\right\}$ і множині станів зовнішнього середовища $\Omega=\left\{\omega\big|\omega\in\{0,1\}\right\}$, що відбуваються з ймовірністю $p\left\{\omega=0\right\}=\frac{1}{2},\;\;p\left\{\omega=1\right\}=\frac{1}{2}$ за критерієм максимізації ймовірності розподілу оцінок при $L_2(w,x)\leq -8$.
- 4. Прийняти рішення в умовах невизначеності в задачі з втратами $L(w,x)=-(1+\omega)x_1-(-1-\omega)x_2$, які визначені на множині альтернатив $D=\left\{x=\left(x_1,x_2\right)\mid x_1-x_2\leq 3, -2x_1+x_2\leq 0, x_1+x_2\leq 5, x_{1,2}\geq 0\right\}$ і множині станів зовнішнього середовища $\Omega=\left\{\omega\middle|\omega\in\left\{0,1\right\}\right\}$ за критерієм Байда.

§ 4. Рункції колективної корисності

Перед будь-якою людською спільнотою стоять дві основні задачі: створення й розподіл. Як у взаємодії з природою створити побільше благ, як розподілити витрати на створення цих благ і як розподілити самі блага між членами спільноти? І взагалі, якщо відомі функції індивідуальних корисностей, як побудувати функцію колективної корисності?

Формально задача колективного прийняття рішень формулюється так:

$$\max \{u_i(x) | x \in X \subseteq E^n\}, i \in N = \{1, ..., n\},$$
 (2.4.1)

де u_i – функція корисності i-го агента (§1), X – множина альтернатив.

Існування альтернативи x^* , на якій одночасно досягають максимуму всі індивідуальні функції корисності, у практичних задачах настільки рідкісний випадок, що його можна не враховувати (у цьому випадку задачі колективного прийняття рішень, як такої, і немає). Отже, задача (2.4.1) у термінах Розділу 1 є слабоструктурованою. Необхідна додаткова інформація, яка б дозволила визначити, що розуміється під розв'язком задачі (2.4.1).

Можливо, наприклад, виділити "пріоритетного" члена спільноти ("царя", "вождя"), індивідуальна функція корисності якого максимізується, для інших індивідуальних функцій корисності встановлюються "порогові" рівні \bar{u}_i = const :

$$\max \left\{ u_k(x) \middle| u_i(x) \ge \overline{u}_i, \ i \ne k; \ x \in X \right\}. \tag{2.4.2}$$

Зокрема, \bar{u}_i і \bar{u}_j , $i \neq j$, можуть бути рівними. Якщо для фіксованих значень \bar{u}_i задача (2.4.2) не буде мати розв'язку, то "пороги" (хоча б один) необхідно змінити.

Припускаючи ж, що апріорі всі члени суспільства рівні у своїх правах, навряд чи можна погодитись із постановкою (2.4.2). Логічними ("демократичними") будуть дві такі "крайні" постановки:

$$\sum_{i \in \mathbb{N}} u_i(x) \to \max_{x \in X},\tag{2.4.3}$$

$$u_1(x) = u_2(x) = \dots = u_n(x) \to \max_{x \in X}$$
 (2.4.4)

Задача (2.4.3) називається утилітарною постановкою (функція $W_y\left(u_1,...,u_n\right)=\sum_{i\in\mathbb{N}}u_i$ називається утилітарною функцією колективної

корисності), задача (2.4.4) — егалітарною (від латинського слова "рівність"). Інтерпретуючи функції індивідуальної корисності u_i як прибуток i-го члена спільноти, отримуємо, що утилітаризм максимізує сумарний прибуток спільноти, не звертаючи уваги на його перерозподіл між членами спільноти (так, наприклад, в оптимальній точці x^* може бути, що $u_1(x^*)=1$ млн грн, $u_2(x^*)=...=u_n(x^*)=1$ грн — у "багатому суспільстві" всі, крім одного, — бідні).

Егалітарна постановка може привести до ситуації, коли $u_1(x^*) = ... = u_n(x^*) = 1$ грн. – "рівність у бідності". Розглянуті ситуації ілюструє рис. 2.4.1.

Рис. 2.4.1

Оскільки ситуація з "абсолютною" рівністю здається "непродуктивною", як правило, розглядається функція колективної корисності у вигляді $W_e\left(u_1,...,u_n\right)=\min_{i=1,n}\{u_i\}$, яку необхідно максимізувати на мно-

жині альтернатив X. Ця функція називається егалітарною функцією колективної корисності (задачу (2.4.4) тоді доцільно називати "крайнім" або "абсолютним" егалітаризмом). "Економічна" інтерпретація егалітарної функції зрозуміла – суспільство намагається максимізувати мінімальну "зарплату" (прибуток найбіднішого агента). Суперечка між утилітаризмом та егалітаризмом точиться тисячоліт-

тями, можна привести безліч аргументів "за" і "проти" як для першого, так і для другого. Ми ж будемо розглядати їх як "крайні" способи агрегації індивідуальних функцій корисності (ФК) у колективну (агреговану) функцію корисності (КФК).

Розглянемо цікаві приклади.

1. Два міста A і B з'єднані двома дорогами ("прямою" й "окружною") довжиною 3 км і 5 км відповідно (рис. 2.4.2). Міста хочуть побудувати спільне підприємство (наприклад, лікарню), причому на ділянці BC (|BC|=2) із якихось причин це зробити неможливо. Чим ближче лікарня до міста, тим краще. Абсолютно егалітарний розв'язок буде лежати на дорозі ADB у точці D, що є серединою дуги AB ($u_1(D)=u_2(D)=2,5$ км). Але точка C ($u_1(C)=1$ км, $u_2(C)=2$ км) і для першого, і для другого агента є кращою!

Рис. 2.4.2

2. Два агенти "перетворюють" свою працю в кукурудзу, причому агент 2 має продуктивність вдвічі більшу, ніж агент 1: одна година роботи агента 2 дає 2 центнери кукурудзи, агента 1 – одну од. ФК в агентів однакові: $u(x,y) = \sqrt[3]{y(10-x)}$, де x – витрати праці в годинах, y – отримана кукурудза в центнерах (ФК – монотонно зростає й увігнута по y, спадає й опукла по x).

Маємо задачу:

$$\begin{cases} u(x,y) = \sqrt[3]{y_1(10-x_1)} + \sqrt[3]{y_2(10-x_2)} \to \max, \\ y_1 + y_2 = x_1 + 2x_2, \ x_i, y_i \ge 0, \ i = 1, 2. \end{cases}$$
 (2.4.5)

Необхідні умови оптимальності для задачі (2.4.5), оскільки вона є опуклою задачею математичного програмування, будуть і достатніми, тому матимемо (викладки пропонуємо зробити читачеві самостійно): $y_1^* = 2y_2^*$, $(10 - x_1^*) = 4(10 - x_2^*)$. Таким чином, продуктивніший агент отримує за свою працю вдвічі менше кукурудзи, маючи при цьому в чотири рази менше вільного часу.

3. Брат і сестра повинні поділити між собою одиницю нескінченно подільного пирога. Брат удвічі голодний, ніж сестра: один і той самий шматок пирога x приносить брату (з функцією корисності u_1) удвічі більшу корисність $u_1(x) = 2u_2(x)$, де u_2 – функція корисності сестри. Нехай функції u_1 , u_2 є зростаючими, увігнутими й диференційованими.

Розв'язок утилітарної задачі: $u_1(x) + u_2(1-x) \to \max_{x \in [0,1]}$ знаходиться з

необхідних умов оптимальності, оскільки функція ϵ увігнутою. Маємо:

$$u'_1(x^*) = u'_2(1-x^*) = 0.5u'_1(1-x^*) < u'_1(1-x^*) \Rightarrow x^* > 1-x^* \Rightarrow x^* > 0.5.$$

Розв'язок егалітарної задачі:

$$u_1(\overline{x}) = u_2(1-\overline{x}) = 0,5u_1(1-\overline{x}) < u_1(1-\overline{x}) \Rightarrow \overline{x} < 1-\overline{x} \Rightarrow \overline{x} < 0,5.$$

Отже, утилітарист віддає більшу частину пирога голодному братові, егалітарист віддає йому меншу частину! Чому? Бо турбується перш за все за голодну сестру – компенсує їй знижений апетит.

Кожен може перевірити – ким ε їхні знайомі? Утилітаристи чи егалітаристи? Мірліс [7] пропонує такий тест. Два автомобілі зіштовхуються та спалахують. В одному автомобілі – одна людина, у іншому – чотири. У єдиного свідка ДТП ε час врятувати лише одну машину. Кого будете рятувати ви? Якщо машину з чотирма пасажирами, то ви утилітарист. Підсвідомо ви вважаєте, що "корисність" чотирьох людей апріорі більша за "корисність" одного. Егалітарист намагатиметься зрівняти шанси кожного, наприклад, кине монету – яку машину спасати!

Не дивлячись на відмінність утилітаризму й егалітаризму, вони мають одну спільну "функціональну" рису. В обох випадках використовується функція колективної корисності (ФКК), що агрегує індивідуальні корисності в єдиний "індекс" корисності, що представляє колективний "добробут".

Між цими двома крайнощами "містяться" всі інші "колективні добробути", які визначимо так.

Нехай $N=\left\{\overline{1,n}\right\}$ – фіксована "спільнота", $u=\left(u_1,...,u_n\right)$ – розподіл корисностей, $u\in E^n_{>0}$. Порядком колективного добробуту (ПКД) нази-

вається впорядкування R у E^n (рефлексивне, транзитивне і зв'язне бінарне відношення на E^n).

Позначимо через P його строгу компоненту: $uPv \Leftrightarrow (uRv) \land (v\overline{R}u)$, через J – компоненту байдужності: $uJv \Leftrightarrow (uRv) \land (vRu)$. Припустимо, що ПКД задовольняє таким двом додатковим властивостям (аксіомам).

- **А1. Анонімність** (симетрія по агентах). Якщо u отримане з v перестановкою координат, то uJv .
- **А2.** Одностайність. Якщо $u \ge v$ $(u_i \ge v_i$, для $\forall i = \overline{1,n}$), то uRv. Зокрема, якщо u >> v $(u_i > v_i$ для $\forall i = \overline{1,n}$), то uPv.

Наведемо приклад. Нехай u^* отримано з $u \in E_{>0}^n$ перестановкою компонент по неспаданню. Вектори u і v еквівалентні за лексимінним порядком (LM), якщо $u^* = v^*$. Вектор u переважає вектор v за nексимінним порядком, якщо u^* лексикографічно переважає v^* , тобто існує $k = \overline{0, n-1}$ таке, що: $u_i^* = v_i^*$, для $i = \overline{1,k}$ і $u_{k+1}^* > v_{k+1}^*$. Зокрема, якщо $W_e(u) > W_e(v)$, то вектор u лексимінно переважає вектор v.

"Нестрогий" лексимінний порядок будемо позначати через LM(uLMv), строгу компоненту P_{LM} , компоненту байдужності — J_{LM} .

Очевидно, що лексимінний порядок є ПКД. Розглянемо його властивості. Нехай $S,\ S\subseteq E^n_{>0}$ — множина допустимих векторів корисностей. Нижче припускатимемо, що S — компактна множина (обмежена й замкнена). Нехай $u,v\in E^n_{>0}$, u>v означає, що $u\ge v$ і $u\ne v$.

Скажемо, що вектор u є оптимальним за Парето (ефективним) у S, якщо для $\forall v \in S: v > u \implies v \notin S$. Вектор v називається слабко-оптимальним за Парето (слабко-ефективним) у S, якщо для $\forall v \in S: v >> u \implies v \notin S$.

Теорема 2.4.1. Нехай $W_e=\min_{i=1,n}\{u_i\}$ — егалітарна функція корисності, $S_0= {\rm Arg}\max_{u\in S} W_e$. Тоді множина $S_0\neq\varnothing$, усі її елементи є слабкоефективними й існує хоча б один ефективний елемент.

Теорема 2.4.2. Нехай множина S містить ефективний елемент u^0 такий, що $u_i^0 = u_j^0$ для $\forall i, j = \overline{1,n}$. Тоді $S_0 = \left\{u^0\right\}$.

Теорема 2.4.3. Нехай S містить слабко-ефективний елемент u_0 такий, що $\left(u_0\right)_i=\left(u_0\right)_j$, для $\forall~i,j=\overline{1,n}$. Тоді $u_0\in S_0$.

Розглянемо лексимінний порядок і позначимо через S_{LM} множину елементів множини S, максимальних за цим порядком.

Теорема 2.4.4. $S_{LM} \neq \varnothing$ і кожен елемент S_{LM} є ефективним у S. Нехай $u_0 \in S_0$, тоді $u^* = v^*$ (тобто множина S_0 скінченна). Якщо множина S опукла, то S_0 містить єдиний елемент.

Тепер нас, як і в "індивідуальній" теорії корисності, буде цікавити, чи можна на основі попарних порівнянь векторів колективної корисності (тобто, задаючи ПКД) порівняти кожному векторові колективної корисності – "індекс" колективного добробуту.

Функцією колективної корисності (ФКК) називається дійснозначна функція W, що визначена на E^n й задовольняє такі властивості. Анонімність: W симетрична за змінними $u_1,...,u_n$; одностайність: $u \geq v \Rightarrow W(u) \geq W(v)$ (зокрема, якщо $u >> v \Rightarrow W(u) > W(v)$). Два приклади ми вже знаємо: це егалітарна ФКК $W_e(u) = \min_{i=1,n} u_i$ та утилі-

тарна $W_y(u) = \sum_{i=1}^n u_i$. Кожна ФКК W однозначно породжує ПКД R: uRv $\Leftrightarrow W(u) \ge W(v)$.

Представлення ПКД R за допомогою ФКК є так само зручним, як і представлення індивідуальних переваг за допомогою функції корисності. Але не всі ПКД можуть бути представлені ФКК.

Теорема 2.4.5. Лексимінний ПКД не представляється ФКК.

Доведення можна подивитись в [7].

Егалітарна програма здійснює перерозподіл добробуту від "багатого" до "бідного", утилітарна програма є байдужною до таких перерозподілів. Між цими двома крайніми випадками мається вельми широкий клас ПКД, кожен із яких у деякій мірі звертає увагу на перерозподіл від багатого до бідного, але також намагається підняти й загальну суму корисностей.

Принцип передачі Пігу–Дальтона стверджує, що передача корисності від одного агента до іншого, яка не збільшує розрив у їхньому добробуті, не може зменшити колективного добробуту.

Порядок R задовольняє принципу Пігу–Дальтона, якщо для двох агентів i,j й будь-яких векторів $u,v \in E^n$ виконується:

$$\left\{u_k = \upsilon_k \text{ для } \forall k \neq i, j, \ u_i + u_j = \upsilon_i + \upsilon_j \text{ та } \left|\upsilon_i - \upsilon_j\right| < \left|u_i - u_j\right|\right\} \ \Rightarrow \ \upsilon Ru \ .$$

Якщо ПКД задовольняє принципу Пігу–Дальтона, то будемо говорити, що він не збільшує нерівності. Якщо за тих самих умов вектор v строго переважає u, то ПКД R скорочує нерівність.

Розглянемо сепарабельно-адитивну ФКК $W(u) = \sum_{i=1}^{n} \alpha(u_i)$. Яка властивість функції α відповідає ПКД, що скорочує нерівність?

Покладемо $u_i = x$, $u_j = y + \varepsilon$, $v_i = x + \varepsilon$, $v_j = y$, $\varepsilon > 0$. Із визначення принципу Пігу–Дальтона матимемо: $\forall \ x < y$, $\forall \ \varepsilon > 0$:

$$\alpha(x+\varepsilon)-\alpha(x) \geq \alpha(y+\varepsilon)-\alpha(y)$$
.

Остання умова є, очевидно, просто угнутістю функції α . Таким чином, для того, щоб ФКК $\sum_{i=1}^n \alpha(u_i)$ не збільшувала (скорочувала) нерівність, необхідно й достатньо, щоб функція α була увігнутою (строго увігнутою). Можна легко перевірити, що лексимінний ПКД скорочує нерівність, а егалітарна ФКК його не збільшує.

Інший результат показує, що принцип Пігу-Дальтона виконується не лише для сепарабельно-адитивних ФКК.

Теорема 2.4.6. Нехай ФКК ε диференційованою. Тоді вона задовольняє принципу Пігу–Дальтона тоді й лише тоді, коли:

$$\forall u \in E^n : u_i \leq u_j \Leftrightarrow \frac{\partial W(u)}{\partial u_i} \leq \frac{\partial W(u)}{\partial u_i}.$$

Доведення. Нехай $v_i = u_i + \varepsilon$, $v_j = u_j - \varepsilon$, $v_k = u_k$, $k \neq i,j$; $u_i < u_j$;

$$\varepsilon \leq \frac{1}{2} \left(u_j - u_i \right) \Rightarrow W(u) \leq W(v), \quad \frac{d}{d\varepsilon} \left(W(v) - W(u) \right) = \frac{\partial W(u)}{\partial u_j} - \frac{\partial W(u)}{\partial u_i} \leq 0. \blacktriangleleft$$

Розглянемо два принципи характеризації принципу Пігу-Дальтона.

Вектор
$$L(u) = \left(u_1^*, u_1^* + u_2^*, ..., \sum_{i=1}^n u_i^*\right) = \left(W_e(u), ..., W_k(u), ..., W_y(u)\right),$$
 де

 $W_k\left(u
ight) = \left(L(u)
ight)_k = \sum_{i=1}^k u_i^*$ — сума доходів k перших "найбідніших" членів, називається $\kappa pusoo$ $\Lambda openca$.

Як впливає перерозподіл корисностей Пігу–Дальтона на криву Лоренса? Нехай $u_i^* < u_j^*$, i < j. Збільшимо u_i^* до $u_i^* + \epsilon$, одночасно знижуючи

$$u_j^*$$
 до u_j^* – ε так, щоб u_i^* + ε < u_j^* – ε (тобто виберемо ε : $0 < \varepsilon < \frac{1}{2} \left(u_j^* - u_i^* \right)$).

Нижче наведено приклад, у якому при перерозподілі віднімається 4 одиниці корисності від u_7^* й передається u_2^* ($i=2,\ j=7,\ \epsilon=4$). Позначимо через v вектор, що отримується після перерозподілу:

$$u^* = (2,6,8,9,11,14,16,18) \rightarrow L(u) = (2,8,16,25,36,50,66,84),$$

$$v^* = (2,10,8,9,11,14,12,18) \rightarrow L(v) = (2,10,19,29,40,52,66,84).$$

Таким чином, після перерозподілу кожна координата кривої Лоренса або "піднімається", або залишається незмінною. Виявляється, що ця властивість загальна: будь-яка передача Пігу–Дальтона "піднімає" криву Лоренса. Цікаво, що справедливо і зворотне.

Скажемо, що вектор u домінує за Лоренсом вектор v, якщо його крива Лоренса L(u) домінує за Парето криву Лоренса L(v):

$$L(u) > L(v) \Leftrightarrow \forall k : \sum_{i=1}^k u_i^* \ge \sum_{i=1}^k v_i^*, \exists j : \sum_{i=1}^j u_i^* > \sum_{i=1}^j v_i^*.$$

Теорема 2.4.7. Якщо u домінує за Парето v або u отримано із v передачею Пігу–Дальтона, то u домінує за Лоренсом v. Навпаки, якщо u домінує за Лоренсом v, то можна підібрати послідовність передач Пігу–Дальтона й покращень Парето, які дозволяють із v отримати u.

Отже, ПКД R не збільшує нерівність тоді й лише тоді, коли він є узгодженим із домінуванням Лоренса: $\forall u,v \ L(u) > L(v) \Rightarrow uRv \ (uPv)$.

Послідовність покращень Парето, про яку йдеться в теоремі, для кожного скорочуючого нерівність ПКД приведе до оптимального за Лоренсом елемента. Таким чином, оптимуми Лоренса є підмножиною множини оптимумів Парето. Розглянемо випадок для n=2. $L(u_1,u_2)=\left(\min\{u_1,u_2\},u_1+u_2\right)=\left(W_e\left(u\right),W_y\left(u\right)\right)$. Отже, вектор корисностей є оптимальним за Лоренсом тоді й лише тоді, коли він не може бути поліпшеним за утилітарною ФКК без погіршення за егалітарною ФКК і навпаки.

На рис. 2.4.3 показані типові конфігурації (без дилеми "рівність-ефективність" і з нею) для опуклої допустимої множини S і відповідні оптимуми Лоренса й Парето. Оптимуми Лоренса розміщені між розв'язками егалітарним α й утилітарним β .

Рис. 2.4.3

Оптимуми Парето знаходяться на кривій $\delta \gamma$ на лівому рисунку й на кривій $\gamma \alpha$ – на правому.

Другий спосіб характеризації принципу Пігу–Дальтона має технічний характер. Він стверджує, що опуклі (строго опуклі) ПКД не збільшують (скорочують) нерівності.

Скажемо, що $n \times n$ матриця $\phi = \left(q_{ij}\right)$ є двічі стохастичною, якщо $q_{ij} \geq 0$, $\sum_i q_{ij} = \sum_j q_{ij} = 1$ при всіх i, j. Матриця перестановки — це така двічі стохастична матриця, у якої $q_{ij} = 0$ або 1 для всіх i,j.

Теорема 2.4.8. (Харді, Літтлвуд, Пойа, 1934). ПКД R не збільшує нерівність тоді й лише тоді, коли він задовольняє такій умові: для $\forall u \in E^n$ і будь-якої двічі стохастичної $n \times n$ матриці Q виконується:

$$(Qu)Ru. (2.4.6)$$

Більше того, ПКД R скорочує нерівність тоді й лише тоді, коли виконується (Qu)Pu для всіх u із повністю різними компонентами і для всіх двічі стохастичних матриць Q, що не є матрицями перестановок.

Наслідок із теореми 2.4.8. Скажемо, що ПКД R є опуклим (строго опуклим), якщо його верхні контурні множини $\{v|vRu\}$ є опуклими (строго опуклими). Опуклий ПКД не збільшує нерівності. Строго опуклий ПКД скорочує нерівність. Доведення теореми можна знайти в [6]. ПКД, що задовольняє умові (2.4.6), також називається опуклим за Шуром. Рис. 2.4.4 показує, що контур опуклого за Шуром ПКД може бути не опуклим. Утилітарна функція колективної корисності не звертає уваги на нерівномірність у розподілі індивідуальних корисностей, егалітарна — у першу чергу, намагається підвищити мінімальну індивідуальну корисність. Як чисельно виміряти нерівномірність у розподілі індивідуальних корисностей, а отже, визначити, яке суспільство більш "справедливе"?

Розглянемо ПКД R, що скорочує нерівність. Для будь-якого додатного вектора корисностей u ($u_i > 0$, $\forall i = \overline{1,n}$, або $u \in E_{>0}^n$) визначимо еквівалентний йому рівний розподіл корисностей із рівнем $\varepsilon(u): (\varepsilon(u), \varepsilon(u), ..., \varepsilon(u)) Ju$ або $(\varepsilon(u) \cdot e) Ju$, де e = (1, ..., 1). Визначимо

середню корисність $\overline{u} = \frac{\sum\limits_{i=1}^n u_i}{n}$ й визначимо "індекс нерівності J, пов'язаний із ПКД R", так:

$$J(u) = 1 - \frac{\varepsilon(u)}{u}. \tag{2.4.7}$$

Рис. 2.4.4

Оскільки R скорочує нерівність, то розподіл $\overline{u} \cdot e$ не гірший за u. Отже, $(\overline{u} \cdot e)Ru \wedge uJ(\varepsilon(u) \cdot e) \Rightarrow (\overline{u} \cdot e)R(\varepsilon(u) \cdot e) \Rightarrow \overline{u} \geq \varepsilon(u)$.

Таким чином, J(u) невід'ємний для всіх и. Більше того, J(u)=0 тільки при $\varepsilon(u)=\overline{u}$, що можливе тільки, якщо u – рівний розподіл $(u=\overline{u}\cdot e)$, оскільки R скорочує нерівність. Нарешті, J(u) обмежений зверху 1, оскільки $\varepsilon(u)$ невід'ємне, вектор u додатний. Звідси маємо: $0 \le J(u) \le 1$ для всіх u, причому J(u)=0 тоді й лише тоді, коли $u=\overline{u}\cdot e$.

Теорія індексів паралельна теорії ПКД. Дійсно, за індексом J, можна відновити функцію ε з (4.7) і ε буде ФКК, що представляє R.

Індекс Аткінсона й індекс Джині. Оскільки індекс нерівності J представляє ПКД, що скорочує нерівність, то він буде зменшуватися внаслідок передачі Пігу—Дальтона. Нарешті, покладемо, що індекси нерівності не змінюються при зміні масштабу корисностей. Підсумовуючи, скажемо, що індекс нерівності є функція J, яка визначена на $E_{>0}^n$ і задовольняє умовам:

- 1. $0 \le J(u) \le 1$, причому J(u) = 0 тоді й лише тоді, коли $u = \overline{u} \cdot e$;
- 2. J(v) < J(u), якщо v отримано з u передачею Пігу–Дальтона;
- 3. $J(\lambda u) = J(u)$ для $\forall \lambda > 0$.

Легко перевірити, що наступні ФКК скорочують нерівність:

$$W_q(u) = \sum_{i=1}^n u_i^q, \ 0 < q < 1; \ W_q(u) = -\sum_{i=1}^n u_i^q, \ q < 0; \ W_0(u) = \sum_{i=1}^n \log u_i.$$

Відповідні міри нерівності ("*індекси Аткінсона*") отримуються безпосередніми обчисленнями з (2.4.7):

$$J_{q}(u) = 1 - \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{u_{i}}{\overline{u}}\right)^{q}\right)^{\frac{1}{q}}, \quad 0 < q < 1, \quad q < 0; \quad J_{0}(u) = 1 - \left(\prod_{i=1}^{n} \frac{u_{i}}{\overline{u}}\right)^{\frac{1}{n}}.$$

Із точністю до нормування " $iндекс \ Джинi$ " є середнім розкладом корисностей за всіма парами агентів:

$$G(u) = \frac{1}{n^2 \overline{u}} \sum_{1 \le i, j \le n} \left| u_i - u_j \right|.$$

Відновлюючи з індексу Джині ФКК за формулою (2.4.7), отримуємо:

$$W(u) = \frac{1}{n^2} \sum_{k=1}^{n} (2(n-k)+1) u_k^*.$$

Таким чином, ця Φ KK ε варіантом класичного утилітаризму, при якому ваги успішних агентів спадають лінійно відповідно до збільшення рангів.

Не дивлячись на привабливу інтерпретацію, індекс Джині має суттєвий недолік – відповідна ФКК не є "cenapaбельною".

Приклад.
$$G_5(4, 11, 3, 9, 8) = 1 - \frac{1}{5^2 \cdot 7} (9 \cdot 3 + 7 \cdot 4 + 5 \cdot 8 + 3 \cdot 9 + 11) = \frac{6}{25}$$
. Нехай тепер, відбувся перерозподіл корисностей між першими трьома агентами без зміни загальної корисності всередині групи з $(4, 11, 3)$ до $(7, 10, 1)$. Маємо: $G_3(4, 11, 3) = 8/27$, $G_3(7, 10, 1) = 9/27$.

Тобто індекс Джині для групи $\{1, 2, 3\}$ збільшився, у той час, як індекс Джині для всієї спільноти зменшився:

$$G_5(7, 10, 1, 9, 8) = 8/35 < G_5(4, 11, 3, 9, 8).$$

Отже, індекс Джині не є "cenapaбельним" за таким визначенням.

Визначення (Сепарабельність за підгрупами). Дано дві спільноти N, T, $T \subset N$, і два вектори $u_{\scriptscriptstyle T}, v_{\scriptscriptstyle T} \in E_{\scriptscriptstyle >0}^{|T|}$ такі, що $\overline{u}_{\scriptscriptstyle T} = \overline{v}_{\scriptscriptstyle T}$ і вектор $u_{\scriptscriptstyle N\setminus T} \in E_{\scriptscriptstyle >0}^{|N\setminus T|}$, тоді $J_{\scriptscriptstyle T}\left(u_{\scriptscriptstyle T}\right) \geq J_{\scriptscriptstyle T}\left(v_{\scriptscriptstyle T}\right) \Leftrightarrow J_{\scriptscriptstyle n}\left(u_{\scriptscriptstyle T},u_{\scriptscriptstyle N\setminus T}\right) \geq J_{\scriptscriptstyle n}\left(v_{\scriptscriptstyle T},v_{\scriptscriptstyle N\setminus T}\right).$

Оскільки індекси Аткінсона відповідають сепарабельним Φ KK, то вони ε сепарабельними за підгрупами.

Контрольні завдання до § 4

- 1. Знайти розв'язок задачі 2.4.5.
- 2. На множині векторів корисностей $\{u=(1,3,7,9,5),\ v=(3,2,5,4,6),\ w=(2,5,3,7,6)\}$ знайти егалітарний, утилітарний, лексикографічний та лексимінний оптимуми.

- 3. На множині векторів із п. 2 знайти оптимуми Парето та Лоренса.
- 4. Перевірити, що функції колективної корисності $W_q(u) = \sum_{i=1}^n u_i^q$,

$$0 < q < 1\; ; \; W_q\left(u\right) = -\sum_{i=1}^n u_i^q \; , \; q < 0 ; \; W_0\left(u\right) = \sum_{i=1}^n \log u_i \;$$
 скорочують нерівність.

- 5. Обчислити індекс Джині для розподілів корисності з п. 2.
- 6. Для розподілів корисностей із п. 2 побудувати приклад "несепарабельності за підгрупами".
- 7. Для розподілів корисностей із п.2 обчислити індекси Аткінсона для $q=0;\ 0,5;\ -2.$

ПИТАННЯ ДЛЯ САМОПЕРЕВІРКИ ДО РОЗДІЛУ 2

- 1. Дайте визначення слабкого упорядкування, сформулюйте умови існування функції корисності для слабких упорядкувань.
- 2. Сформулюйте умови існування функції корисності для строгих часткових упорядкувань.
 - 3. Сформулюйте умову сепарабельності.
 - 4. Дайте визначення слабкої імовірнісної міри.
 - 5. Сформулюйте аксіому Архімеда.
 - 6. Що називається множиною сумішей?
 - 7. Що називається станами природи?
- 8. Що називається екстенсивною формою задачі прийняття рішень в умовах невизначеності?
 - 9. Сформулюйте критерії Байда, Гурвіца, Гермейєра.
 - 10. Сформулюйте критерій "мінімальної залежності від природи".
 - 11. Сформулюйте задачу колективного прийняття рішень.
 - 12. Дайте визначення утилітарної, егалітарної функції корисності.
- 13. Дайте визначення порядку колективного добробуту, сформулюйте аксіоми анонімності й одностайності.
 - 14. Дайте визначення колективної функції корисності.
 - 15. Сформулюйте принцип передачі Пігу Дальтона.
- 16. Що таке крива Лоренса? Дайте визначення оптимуму за Лоренсом.
 - 17. Сформулюйте теорему Харді-Літтвуда-Пойя.
- 18. Що таке індекс нерівності? Його зв'язок з функцією колективної корисності.
 - 19. Які функції колективної корисності породжують індекси Аткінсона?
- 20. Дайте визначення індексу Джині. Якій функції колективної корисності він відповідає?
- 21. Дайте визначення сепарабельності за підгрупами індексу нерівності.

Розділ 3 ЕКСПЕРТНІ ПРОЦЕДУРИ ДЛЯ ПРИЙНЯТТЯ РІШЕНЬ

Експертна інформація відіграє важливу роль при використанні сучасних методів підтримки прийняття рішень. Методи її отримання, представлення й обробки утворюють невід'ємну частину технології підтримки прийняття рішень.

§ 1. Загальні проблеми

При підтримці прийняття рішень використовується експертна інформація двох видів: концептуально-понятійна й оціночна. Інформація першого типу представляє собою формування цілей, критеріїв, альтернатив, визначення принципів оптимальності. Вона представляється у текстовому вигляді природною мовою. До другого виду відноситься інформація про оцінку цілей, критеріїв та альтернатив. При цьому розрізняються абсолютні та відносні оцінки, останні, у свою чергу, поділяються на ординарні й кардинальні. Найкраще, звичайно, мати абсолютні оцінки (вартість засобів для досягнення цілі; час, необхідний на реалізацію рішення; ефективність отриманого рішення), але, як правило, витрати на їхнє отримання дуже великі, а їхня точність, навпаки, низька. Відносні оцінки отримати, як правило, простіше, з іншого боку, "все пізнається у порівнянні" ("Порівняно з шістдесятитонним кашалотом десятитонні самочки здаються мініатюрними" - з TVпередачі "У світі тварин"). У цьому сенсі "абсолютні" оцінки є результатом порівняння деякої альтернативи з усіма можливими.

Ординарні оцінки альтернатив являють собою їхні *ранги* (місця) у послідовності переваг за деяким критерієм.

Кардинальні оцінки – це числа, що вказують відносну значимість альтернатив, цілей або критеріїв у тому або іншому сенсі у певній шкалі.

Шкали зручно поділити на дві групи – для кількісної та якісної оцінки альтернатив.

Розглянемо основні шкали першої групи. Прикладами оцінок альтернатив в абсолютній шкалі ϵ : кількість об'єктів, час виконання роботи,

імовірність реалізації альтернативи тощо. Прикладами оцінок у *шкалі* відношень можуть бути: вага товару у кілограмах, фунтах, пудах; довжина в метрах, футах, сажнях тощо. У *шкалі інтервалів* зберігаються відношення різниць оцінок, початок відліку й масштаб можуть змінюватись (значення температури у шкалах Цельсія, Фаренгейта, Кельвіна).

Для представлення якісних оцінок використовується номінальна шкала, шкали порядку й гіперпорядку. Оцінки у номінальній шкалі являють собою номери класів еквівалентності, у які були включені альтернативи внаслідок їхньої класифікації (представлення множини студентів номером навчальної групи, потоку, спеціальності тощо). У порядковій шкалі представляються ординарні оцінки альтернатив, що відображають лише порядок альтернатив у ряду переваг за деяким критерієм (наприклад, "важливості", "корисності" тощо). У шкалі гіперпорядку зберігаються не лише порядок альтернатив, але й відношення порядку між різницями їхніх оцінок.

При розробці методів обробки експертної інформації необхідно враховувати психофізіологічні властивості людей, особливості їхньої поведінки у процесі прийняття колективних оцінок, особливості пам'яті людини.

Найобґрунтованішою експериментальними даними у даний час є так звана трикомпонентна модель пам'яті [4]. Відповідно до цієї моделі розрізняють три види пам'яті: сенсорну, короткотермінову й довготермінову (так же, як і у комп'ютері: регістри прийому інформації, оперативна пам'ять й пам'ять на зовнішніх носіях). Різноманіття видів пам'яті проявляється в об'ємі інформації, що зберігається, часі збереження та способі кодування. У сенсорну пам'ять інформація поступає від органів відчуттів і зберігається у ній біля третини секунди. Із сенсорної пам'яті інформація переписується в короткотермінову пам'ять, де вона зберігається до 30 с й обробляється. Потім інформація або губиться, або надходить у довготермінову пам'ять із дуже великою ємністю і дуже великим часом зберігання (і ємність, і час вважаються практично необмеженими).

Дослідження психологів показують, що процеси прийняття рішень відбуваються за участю саме короткотермінової пам'яті, у яку інформація може надходити із сенсорної й довготермінової. Об'єм короткотермінової пам'яті обмежений 7 ± 2 одиницями (залежно від індивідуума), які називаються *чанками* [4]. При цьому чанком може бути і простий символ, і складний образ, але важливо, що об'єкт, який описується чанком, сприймається людиною як єдиний образ. При порівнянні об'єктів (альтернатив, критеріїв) кожен із них описується чанком. Тому при розробці методів підтримки прийняття рішень число

об'єктів, які повинен порівнювати експерт, необхідно обмежити цим "магічним" числом 7 ± 2 .

Значний теоретичний і практичний інтерес мають оцінки виконання елементарних операцій, що використовуються в методах підтримки прийняття рішень:

- ✓ "Складні" (С), при виконанні яких ОПР допускає багато протиріч, використовує спрощені стратегії (наприклад, виключає частину альтернатив чи критеріїв).
- ✓ "Допустимі" (Д), ОПР може виконувати їх із малими протиріччями та з використанням складних стратегій.
- ✓ "Допустимі при малій розмірності" (ДМ), при невеликій кількості об'єктів ОПР виконує їх достатньо надійно.
- ✓ "Невизначені" (Н), ОПР може винести лише попередні висновки про допустимість (матимемо тип оцінки НД) або складності (тип оцінки НС) операції.

No	Назва елементарної операції	Оцінка
1	Операції з критеріями	
1.1	Впорядкування за корисністю	НД
1.2	Призначення кількісних ваг критеріїв	С
1.3	Декомпозиція складного критерію на прості	ДМ
2	Операції з оцінками альтернатив за критеріями	
2.1	Кількісний еквівалент для якісної оцінки	HC
2.2	Побудова кривої корисності за критерієм	С
2.3	Якісне порівняння змін оцінок двох критеріїв	Д
2.4	Кількісне заміщення для двох критеріїв	HC
2.5	Визначення задовільного значення	НД
3	Операції з альтернативами	
3.1	Порівняння двох альтернатив як сукупності оцінок	ДМ
3.2	Порівняння двох альтернатив як цілісних об'єктів	НД
3.3	Знаходження ймовірнісних оцінок для альтернатив	С
3.4	Відношення альтернатив до класів рішень	ДМ
3.5	Кількісна оцінка корисності	С
3.6	Декомпозиція складної альтернативи на прості	ДМ
3.7	Призначення якісних оцінок імовірностей	Д

Особливо потрібно акцентувати увагу на психологічних аспектах прийняття колективних (групових) рішень. Основи теорії "групової свідомості" були вперше сформульовані у 1971 р. Ірвіном Янісом (Janis). Основні ознаки групової свідомості зводяться до такого: належність до конкретної групи, ізоляція від інших; "стереотипування" інших – інші не розуміють їх; тиск на інакомислячих; загроза групі; ілюзія невразливості, ілюзія одностайності і т. д.

Експериментально доведено, що на ефективність групової свідомості впливають одностайність групи й колективна загроза. Якість групового рішення є гіршим в умовах сильної загрози й сильної одностайності й слабкої загрози та слабкої одностайності, ніж в умовах сильної загрози й слабкої одностайності або слабкої загрози й сильної одностайності.

Наслідком наявності ознак групової свідомості є прийняття "поганих" рішень. Існує декілька підходів до визначення способів утручання з метою компенсування групової свідомості. Так, наприклад, рекомендується запрошення експертів "ззовні"; запрошення "адвоката диявола" (тобто людини, яка помічає в інших лише недоліки); застосування методики "виконання декількох ролей" (членам групи пропонується поставити себе на місце інших); стимулювання інтелектуальної боротьби думок у групі, зокрема, захист думок меншості.

Загальна схема експертизи. Аналіз існуючих експертиз показує, що у процесі їхньої побудови можна виділити таку послідовність дій.

- ✓ Дослідник (консультант) знаходить множину "можливих" оцінок Ω , у якій знаходиться шукана оцінка.
- ✓ Дослідник (консультант) визначає множину допустимих оцінок $\tilde{\Omega}$, із якої здійснюють вибір експерти.
- ✓ Кожен експерт вибирає свою оцінку $a_i = C_i(\tilde{\Omega}) \in \tilde{\Omega}$, $i = \overline{1,n}$, тобто розв'язує задачу вибору найкращої оцінки з $\tilde{\Omega}$.
- \checkmark Дослідник (аналітик) проводить обробку отриманої від експертів інформації і знаходить результуючу (інтегральну, колективну) оцінку з $\tilde{\Omega}$, яка приймається за розв'язок початкової задачі оцінювання.
- ✓ Якщо отриманий розв'язок не задовольняє дослідника, він може організувати "обернений зв'язок", після чого експерти знову розв'язують відповідні задачі вибору.

На рис. 3.1.1. подано блок-схему експертизи. Її параметри:

- Ω множина можливих оцінок; $\tilde{\Omega}$ множина допустимих оцінок;
- L взаємодія між експертами; Q обернений зв'язок; ϕ обробка (відображення $\tilde{\Omega}^n \to \Omega$).

Назвемо *схемою* експертизи п'ятірку параметрів, що подані на блок-схемі. Під підготовкою експертизи будемо розуміти попередню розробку схеми експертизи та підбір експертів, під реалізацією експертизи – отримання інформації та її обробку.

Підготовка експертизи полягає у конкретизації параметрів:

I. Множина можливих оцінок (ММО) визначається задачею оцінювання, що розв'язується, наприклад, так:

1) $\Omega = \{0,1\}$. Відповідна задача попарного порівняння полягає у знаходженні кращого з двох об'єктів A і B. При цьому

$$C(\Omega) = \left\{1 \middle| A \text{ краще за } B; 0 \middle| \text{інакше} \right\}.$$

- 2) $\Omega = \{(i_1, ..., i_n)\}$ множина перестановок натуральних чисел від 1 до n. Відповідна задача ранжування полягає у впорядкуванні об'єктів за спаданням (зростанням) значення деякої ознаки. При цьому $C(\Omega) = (s_1, ..., s_n)$, де s_i номер i-го об'єкта.
- 3) $\Omega = \{1,...,l\}$. Відповідна задача класифікації полягає у віднесенні елемента $x \in S$ до однієї з l підмножин $S_1,...,S_l$. При цьому $C(\Omega) = i$, якщо $x \in S_i$.
- 4) $\Omega = E^m$. Відповідна задача чисельної оцінки полягає у зіставленні системі одного чи декількох чисел. При цьому $C(\Omega) = a$, якщо оцінкою системи є вектор $a \in E^m$.

Рис. 3.1.1

II. Множина допустимих оцінок (МДО). Для конкретизації Ω необхідно описати вид його представлення експерту, який залежить від форми опитування експерта. Опитування типу *інтерв'ю* передбачає розмову дослідника з експертом, під час якої дослідник ставить питання відповідно з розробленою програмою. До недоліків методу відносяться складність формалізації та високі вимоги до дослідника й експерта.

Найчастіше застосовується форма опитування, що носить назву *анкетування*. Анкета – це набір питань, на які пропонується відповісти експерту. Багатьма дослідженнями встановлено, що людина краще відповідає на "якісні" питання ("ripшe-краще"), ніж на кількісні. Рекомендується спочатку формувати загальні питання, потім часткові.

Аналітична форма опитування передбачає тривалу самостійну роботу експерта, направлену на аналіз характерних властивостей і тенденцій системи, що досліджується. Таку форму називають методом доповідної записки. Форма доповідної записки часто застосовується як перший етап складнішої експертизи, що дозволяє уточнити напрям досліджень і зміст питань, що будуть задаватись на таких етапах.

- III. Виділяють три форми взаємодії експертів (параметр L):
- 1) експерти вільно обмінюються інформацією;
- 2) обмін інформацією між експертами регламентовано;
- 3) експерти ізольовані один від одного.

У схемі типу *круглого столу* взаємодія між експертами не регламентована. У процесі обговорення проблеми експерти вільно обмінюються думками, збагачуючись ідеями один одного. Негативний бік, зумовлений підвищеними вимогами до експертів: уміння висловити думку, що не залежить від думки більшості; здатність відмовитись від свого погляду, якщо він виявиться невірним.

Деяка регламентація спілкування експертів у схемі круглого столу дозволяє уникнути вказаних недоліків. Відповідна модифікація називається методом мозкового штурму (мозкової атаки). Він полягає у тому, що протягом деякого проміжку часу будь-яка висловлена думка не обговорюється і не відкидається. Обговорення висловлених думок здійснюється на таких етапах після того, як кожен експерт встигає обдумати їх, порівняти зі своєю.

Якщо експерти ізольовані, то кожен висловлює свою думку незалежно від інших. Оцінки окремих експертів при цьому можна розглядати як незалежні реалізації випадкової величини.

IV. Обернений зв'язок в експертизі. Кожному експерту надають результуючу оцінку, разом із деякою іншою інформацією (наприклад, із "найгіршою" й "найкращими" оцінками). На основі одержаних даних експерти уточнюють свої оцінки, після чого процедура повторюється знову, поки не буде одержана узгодженість оцінок, що задовольняє дослідника.

До числа найбільш відомих процедур з оберненим зв'язком відноситься метод Делфі. Експертам пропонується відповісти на ряд питань і свої відповіді аргументувати. Аналітик вивчає відповіді експертів і визначає їхню узгодженість. Якщо думки експертів недостатньо узгоджені, то він повідомляє кожному з них додаткові відомості про систему, а також відповіді на поставлені питання й аргументації інших членів експертної групи. Із врахуванням отриманої інформації експерти знову відповідають на сформульовані питання. Недоліком методу є великі витрати часу на проведення всіх турів опитування та велика трудомісткість процедури, що пов'язана з переглядом думок експертів.

V. Підбір експертів. Спочатку визначається число експертів – воно має бути достатньо великим для того, щоб були всебічно враховані суттєві властивості задачі, з іншого боку, при занадто великій кількості експертів виникають труднощі в організації процедури. Доцільно організовувати групу з 10–20 експертів, хоча можливі відхилення як у більшу, так і меншу сторону.

Коли чисельність групи визначена, переходять до підбору експертів. Для цього визначають перелік задач, що потребують розв'язання, і складають список осіб, що є компетентними спеціалістами у даній (або близьких до даної) області. Крім компетентними спеціалістами у даній (або близьких до даної) області. Крім компетентності, хороший експерт повинен мати ще цілий ряд якостей. Основні з них такі: креативність — здатність розв'язувати задачі, метод розв'язку котрих, повністю або частково невідомий; евристичність — здатність виявляти неочевидні проблеми; інтуїція — здатність "вгадувати" розв'язок без його обґрунтування; предикатність — здатність "передбачати" розв'язок; незалежність — здатність протистояти думці більшості; всебічність — здатність бачити проблему з різних поглядів.

Вимоги до експертів залежать також від методу організації експертизи. Так, при роботі експерта у комісії, де експерти вступають у безпосередній контакт, важливе значення набувають психологічні фактори, у першу чергу, сумісність, незалежність. Необхідно враховувати також зацікавленість експерта у результаті експертизи.

У деяких випадках при підборі експертів використовують числові оцінки, що характеризують їхні якості. Такі оцінки мають або статистичний характер, або ґрунтуються на результатах психології та соціоніки.

Ступінь компетентності експертів, як правило, визначають на основі статистичного аналізу участі експерта у попередніх експертизах, отримуючи так звані ваги експертів α_i , $i=\overline{1,n}$. Нехай $a_{\Phi j}$ — фактична оцінка у j-й експертизі, a_{ij} — оцінка i-го експерта. Тоді відносна похибка i-го експерта у j-й експертизі $\epsilon_{ij}=\left|a_{\Phi j}-a_{ij}\right|/a_{\Phi j}$, а його вага

$$\alpha_i = \left(\left(\sum_{s=1}^{k_i} \varepsilon_{is} \right) \middle/ k_i \right) \middle/ \left(\sum_{i=1}^n \left(\left(\sum_{s=1}^{k_i} \varepsilon_{is} \right) \right) \middle/ k_i \right),$$

де k_i – кількість експертиз, у яких брав участь i-й експерт; як бачимо, α_i прямо залежить від його середньої похибки по всіх експертизах, і обернено – від суми середніх похибок усіх експертів, тому $\sum_{i=1}^n \alpha_i = 1$.

Ваги експертів можна обраховувати й іншими способами, зокрема, враховувати їхні психофізіологічні характеристики (схильність до ризику, "правдивість", "незалежність", "реалістичність" і т. п.). Задачу визначення ваги експертів, у свою чергу, можна розглядати як задачу обробки експертної інформації. У загальному випадку ваги експертів можна визначати у довільних шкалах, тоді, як правило, їх нормалізу-

ють:
$$\alpha_i' = \alpha_i \bigg/ \sum_{i=1}^n \alpha_i$$
 , де α_i – вага i -го експерта у довільній шкалі ($\alpha_i \geq 0$,

 $\forall i\,;\; \sum_{i=1}^n lpha_i > 0\,$). Далі вважаємо ваги експертів нормалізованими.

Контрольні завдання до § 1

- 1. Що таке ординарні й кардинальні оцінки альтернатив?
- 2. Оцініть об'єм своєї короткострокової пам'яті (від 1 до 9 одиниць).
- 3. До чого зводяться основні ознаки "групової свідомості" за І. Янісом?
 - 4. Опишіть схему експертизи.
- 5. Методами круглого столу, мозкового штурму, Делфі оцінити перспективи розвитку "штучного інтелекту" [32]:
 - 5.1. Чи можливе створення "розумних" машин?
 - 5.2. Для чого створювати "розумні" машини?
 - 5.3. Чи потрібно створювати "розумні" машини?
- 6. Оцінити (за шестибальною шкалою: "дуже висока" 5, "висока" 4, "середня" 3, "низька" 2, "дуже низька" 1, "нульова" 0) власну та "сусіда": креативність, евристичність, інтуїцію, предикатність, незалежність, усебічність. Порівняти оцінки (самого себе та вас "сусідом"). Зробити висновки.
- 7. Оцінити степінь своєї компетентності з прогнозування рахунків футбольних матчів на основі прогнозів за тиждень і місяць (ті, хто апріорі оцінює свою футбольну компетентність як нульову, може оцінити свою компетентність прогнозуванням погоди, індексу інфляції, політичних змін тощо).

§ 2. Методи обробки експертної інформації

Методи обробки експертної інформації поділяються на три основні групи: статистичні методи, алгебраїчні методи й методи шкалювання. Статистичні методи базуються на припущенні, що відхилення оцінок експертів від істинних значень відбувається у силу випадкових причин. Суть алгебраїчних методів полягає у такому: на множині допустимих оцінок задається відстань і результуюча оцінка визначається як така, відстань якої до оцінок експертів (за певним критерієм) мінімальна. Ідея методів шкалювання полягає у тому, що за експертною інформацією про степінь відмінності об'єктів установлюється мінімальний (або близький до мінімального) набір критеріїв та оцінок об'єктів за цими критеріями, що зумовлюють вказані експертами відмінності.

Статистичні методи

Експертиза 1 (Е1): $\Omega=\tilde{\Omega}=E^1$, L – експерти ізольовані, Q – обернений зв'язок відсутній, $a=\varphi(a_1,...,a_n)=\sum_{i=1}^n\alpha_ia_i$.

Тобто результуюча числова оцінка a знаходиться за формулою середньозваженого значення (математичного сподівання випадкової величини). Степінню узгодженості думок експертів є дисперсія: $\sigma^2 = \sum_{i=1}^n \alpha_i \left(a - a_i\right)^2 \,.$

Як модифікація (Е1) розглядається така експертиза 2: $\Omega=\tilde{\Omega}=E^3$, $a=\phi\left(a_1^1,a_1^2,a_1^3;...;a_n^1,a_n^2,a_n^3\right)=\sum_{i=1}^n\alpha_i\frac{\gamma_1a_i^1+\gamma_2a_i^2+\gamma_3a_i^3}{\gamma_1+\gamma_2+\gamma_3}$, де a_i^1 – "оптимістич-

на" оцінка i-го експерта, a_i^2 — "реалістична" і a_i^3 — "песимістична". Для експерта — "реаліста" (психологічний тип експерта можна визначити відповідним тестуванням) доцільно покладати $\gamma_1=1$, $\gamma_2=4$, $\gamma_3=1$; для експерта — "оптиміста" $\gamma_1=3$, $\gamma_2=0$, $\gamma_3=2$ (він "завищує" оптимістичну оцінку), для експерта — "песиміста" $\gamma_1=2$, $\gamma_2=0$, $\gamma_3=3$ (він "занижує" оптимістичну оцінку). Степінь узгодженості між оцінками визначається величиною

$$\sigma^2 = \sum_{i=1}^n \alpha_i \sigma_i^2 + \sum_{i=1}^n \alpha_i (a - a_i)^2,$$

де $\sigma_i^2 = \left(a_3^i - a_1^i\right)\!\!\left/\gamma_4\right.$, γ_4 – степінь невпевненості i-го експерта у своїй оцінці (для експерта реаліста $\gamma_4=36$, для інших – $\gamma_4=25$).

В експертизах E1, E2 можна визначити статистичну значимість отриманих результатів. Задаємо ймовірність похибки p, вважаючи, що величина a розподілена за нормальним законом із центром \bar{a} і дисперсією σ^2 . Тоді: $\bar{a} - \Delta \le a \le \bar{a} + \Delta$, де $\Delta = t\sigma\sqrt{n}$, величина t має розподіл Ст'юдента з (n-1)-м степенем свободи (визначаємо за таблицею розподілу Ст'юдента, за величиною p).

Опишемо застосування метода Делфі для E1 у вигляді такої експертизи 3: $\Omega=E^1$, $\tilde{\Omega}=\left\{z\in E^k\Big|\sum_{i=1}^k z_i=1,\ z_i\geq 0\right\}$.

Відображення ф задається так. Весь інтервал допустимих значень величин, що оцінюються, розбивається на k інтервалів: $t_1,...,t_k$. Експерт оцінює ймовірність попадання величини, що оцінюється, у кожен з k інтервалів. Нехай p_{ij} — оцінка ймовірності попадання у j-й інтервал, що дається i-м експертом. Тоді ймовірність попадання величини в інтервал t_j на основі думок усіх експертів оцінюється величиною: $p_{t_j} = \sum_i \alpha_i p_{ij}$, $j = \overline{1,k}$.

За колективну оцінку береться медіана q_2 побудованого розподілу, яка визначається з умови: $p(t \le q_2) = 0.5$.

Емпірично встановлено, що процедуру можна зупиняти, коли діапазон квантілів $\Delta q=q_3-q_1$ (де $p\left(t\leq q_3\right)=0.75$, $p\left(t\leq q_1\right)=0.25$) зменшився в 1,6 рази порівняно з початковим [5].

Експертиза 4 полягає у зіставленні індивідуальним ранжуванням експертів колективного ранжування: $\Omega = \tilde{\Omega} = \{$ множина всіх перестановок m об'єктів $\}$, експерти ізольовані, обернений зв'язок відсутній.

Відображення ф визначається так. Кожен експерт задає місце (ранг) кожного об'єкта: r_{ij} – ранг j-го об'єкта, визначеного i-м експертом.

Об'єкти впорядковуються відповідно до величин
$$r_j = \sum_{i=1}^n r_{ij}$$
 , $j = \overline{1,m}$ (су-

ма рангів кожного об'єкта по всіх експертизах; вважаємо, що експерти мають рівну компетентність) – на перше місце ставиться об'єкт з мінімальним r_j і т. д. Колективне ранжування може бути нестрогим (ми розглядаємо випадок строгих індивідуальних ранжувань).

Степінь узгодженості думок експертів визначається за допомогою "коефіцієнта конкордації" W, що визначається нижче. Розглянемо два крайніх випадки:

- ✓ ранжування всіх експертів співпадають;
- ✓ усі ранжування відмінні (вважаємо, що n < m!).

Оскільки
$$\sum_{j=1}^m r_j = \sum_{j=1}^m \sum_{i=1}^n r_{ij} = \sum_{i=1}^n \sum_{j=1}^m r_{ij} = 0, 5 \cdot nm(m+1)$$
 (експерти задають

ранги від 1 до m), то "середній ранг" $r_c = \frac{1}{m} \sum_{j=1}^m r_j = 0, 5 \cdot n(m+1)$ і за уз-

годженість експертів беруть суму квадратів відхилень r_j від середнього значення r_c . Коефіцієнтом конкордації W для випадку строгих індивідуальних ранжувань називається величина:

$$W = 12\sum_{j=1}^{m} \left(r_{j} - \frac{1}{2}n(m+1)\right)^{2} / n^{2}(m^{3} - m).$$

У випадку нестрогих індивідуальних ранжувань (Експертиза 5) об'єктам, які "ділять" місця, приписуються рівні ранги (так, якщо два об'єкти ділять місця 2–3, то кожен із них отримує ранг 2,5).

Коефіцієнт конкордації для нестрогого ранжування:

$$W = 12\sum_{j=1}^{m} \left(r_{j} - \frac{1}{2}n(m+1)\right)^{2} / \left(n^{2}\left(m^{3} - m\right) - n\sum_{i=1}^{n}\sum_{j=1}^{k_{i}} \left(t_{ij}^{3} - t_{ij}\right)\right),$$

де k_i – число груп рівних рангів, введених i -м експертом; t_{ij} – кількість об'єктів у j -й групі, введеної i -м експертом.

Статистичну значимість ранжування перевіряють так. Вибирається допустима ймовірність похибки p; вважається, що величина n(m-1)W має χ^2 – розподіл з (m-1) – м степенем свободи. За таблицею розподілу χ^2 знаходиться W_p і, якщо $W \geq W_p$, то отримане ранжування вважається статистично значимим (тобто значимим є узгодженість думок експертів). Якщо експерти не рівнокомпетентні, α_i –

вага i -го експерта, то $r_j = \sum_{i=1}^n \alpha_i r_{ij}$, інші формули залишаються без змін

(оскільки
$$\sum_{i=1}^{n} \alpha_i = 1$$
).

Експертиза 6 визначається для задачі знаходження колективного ранжування за нестрогими індивідуальними ранжуваннями за допомогою попарних порівнянь об'єктів.

Множина Ω така ж, як і в E5; експерти ізольовані, обернений зв'язок відсутній, $\tilde{\Omega}$ — множина всіх матриць $A=\left(a_{ij}\right)$, де $a_{ij}\in\{0,1\}$, $a_{ij}+a_{ji}=1$ $(i\neq j),\ a_{ii}=0$, $i,j=\overline{1,m}$. Кожен експерт робить C_m^2 порів-

нянь, порівнюючи кожен об'єкт із кожним. Результат порівнянь i-го експерта представляється матрицею A^i розмірності $m \times m$, у якій $a^i_{jk} = 1$ тоді й лише тоді, коли для i-го експерта об'єкт j переважає об'єкт k. Для будь-якої пари об'єктів або перший переважає другого, або навпаки; $a_{ij} = 0$ за визначенням.

Матриця A^i , що задається i-м експертом ($i=\overline{1,m}$), ϵ матрицею деякого бінарного відношення, яке називається відношенням переваги i-го експерта. Очевидно, що бінарне відношення, що задається матрицею A^i ϵ повним, антирефлексивним, антисиметричним і, взагалі кажучи, не ϵ ациклічним.

Визначення 3.2.1. Відношення переваги з матрицею A може бути виражене рангами, якщо всі об'єкти, упорядковані так, що $a_{jk} = 1$ тоді й лише тоді, коли ранг j-го об'єкта менший за ранг k.

Теорема 3.2.1. Необхідною й достатньою умовою того, що перевага виражається рангами, ϵ ациклічність відношення переваги.

Теорема 3.2.2. Властивості відношень переваги A^i приводять до еквівалентності умов ациклічності та наявності циклів довжини 3.

Відображення ф в Е6 визначається так. Будується матриця

$$A = (a_{jk}) = \sum_{i=1}^{n} A^{i}$$
 , де $A^{i} = (a_{jk}^{i})$ – матриця оцінок i -го експерта. Знахо-

дяться величини $a_j = \sum_{k=1}^m a_{jk}$, $j = \overline{1,m}$. Об'єкт із максимальним a_j отри-

мує ранг 1 (він переважає максимальну кількість інших об'єктів) і т. д. *Коефіцієнтом сумісності думок* експертів називається величина:

$$\upsilon = \begin{cases} 1 - 24d/m^3 - m, \text{ якщо } m \text{ непарне,} \\ 1 - 24d/m^3 - 4m, \text{ якщо } m \text{ парне,} \end{cases}$$

де d – число циклів довжини 3 у матриці A. Величину υ для матриці A^i можна використовувати як оцінку компетентності i-го експерта.

Алгебраїчний метод

Для визначення колективної числової оцінки алгебраїчним методом використовується експертиза 7: $\Omega = \tilde{\Omega} = E^1$, експерти ізольовані, обернений зв'язок відсутній. Відстань d між числовими оцінками a і b визначається як d(a,b) = |a-b|. За колективну оцінку a беруться, наприклад, оцінки:

$$\checkmark$$
 $a \in \operatorname{Arg} \min_{a \in E^1} \sum_{i=1}^n \alpha_i d(a, a_i)$ (утилітарний критерій),

 $\checkmark \quad a \in \mathrm{Arg} \min_{a \in E^1} \max_{i=1,n} lpha_i dig(a,a_iig)$ (егалітарний критерій).

Для визначення колективного ранжування алгебраїчним методом експерти задають матриці $A^i = \left(a^i_{jk}\right)$, у яких $a^i_{jk} = 1$ тоді й лише тоді, коли об'єкт i передує об'єкту k; якщо об'єкти j і k рівноцінні або j = k, $a_{ik} = 0$; якщо $a_{jk} = 1$ $(j \neq k)$, то $a_{kj} = -1$.

Ранжування A і відповідну йому матрицю A будемо позначати одним символом.

Визначення 3.2.2. Ранжування C знаходиться між ранжуваннями A і B , якщо для $\forall i,j=\overline{1,m}$ $a_{ij}\leq c_{ij}\leq b_{ij}$ або $a_{ij}\geq c_{ij}\geq b_{ij}$.

Відстань між ранжуваннями вводиться аксіоматично:

A1.
$$d(A,B) \ge 0$$
, причому $d(A,B) = 0 \Leftrightarrow A = B$;

- **A2.** d(A,B) = d(B,A) (симетричність);
- **АЗ.** $d(A,B)+d(B,C) \ge d(A,C)$, причому рівність досягається тоді й лише тоді, коли ранжування B знаходиться між ранжуваннями A і C (аксіома трикутника);
- **А4.** При однакових перестановках об'єктів у ранжуваннях A і B відстань між отриманими ранжуваннями d(A',B')=d(A,B) (інваріантність відносно позначень);
- **А5.** Якщо двоє ранжувань відрізняються одне від одного лише на частині об'єктів, то відстань між початковими ранжуваннями дорівнює відстані між ранжуваннями лише цих об'єктів;
 - **А6.** Мінімальна додатня відстань між ранжуваннями дорівнює 1.

Теорема 3.2.3. Аксіоми A1–A6 однозначно визначають відстань ($ei\partial$ -cmahb Xemihea) d(A,B) при будь-якій довжині ранжувань $m \ge 2$, а

формула:
$$d(A,B) = 0,5 \cdot \sum_{i,j=1}^{m} \left| a_{ij} - b_{ij} \right|$$
, визначає єдину відстань $d(A,B)$, що задовольняє аксіомам A1–A6.

Експертиза 8: $\Omega = \tilde{\Omega} = \{$ матриці A_i , елементи яких визначені вище $\}$, експерти ізольовані, обернений зв'язок відсутній. За відстань береться відстань Хемінга, колективне ранжування визначається критеріями:

$$\checkmark$$
 $A^{KS} \in \operatorname{Arg}\min_{A \in \bar{A}} \sum_{i=1}^{n} \alpha_{i} d(A, A^{i})$ (медіана Кемені–Снелла);

$$\checkmark$$
 $A^{VG} \in \operatorname{Arg}\min_{A \in \widehat{A}}\max_{i=1,m} \alpha_i d\left(A,A^i\right)$ (компроміс);

$$\checkmark$$
 $A^{SZ} \in \operatorname{Arg} \min_{A \in A} \sum_{i=1}^{n} \alpha_{i} d^{2} \left(A, A^{i} \right)$ (середнє значення).

Вище \tilde{A} – множина матриць $m \times m$ з елементами $a_{ij} \in \{+1,-1,0\}$, що відповідають ранжуванням (тобто матриці ациклічні). Як видно – критерій 1 відповідає принципу утилітаризма, критерій 2 – егалітаризма.

Приклад. Нехай n=m=3, $A^1=A^2=< a,b,c>$, $A^3=< b,a,c>$ (позначення < a,b,c> означає: $a \succ b \succ c$). Випишемо відповідні матриці:

$$A^{1} = A^{2} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}, A^{3} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}.$$

Потрібно знайти медіани 1, 2 на множині матриць, що відповідають ранжуванням: $A_1 = < a,b,c>$, $A_2 = < a,c,b>$, $A_3 = < b,a,c>$. $A_4 = < b,c,a>$, $A_5 = < c,a,b>$, $A_6 = < c,b,a>$. Виписуємо відповідні матриці: $A_1 = A = B$, $A_3 = C$,

$$A_2 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \ A_4 = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}, \ A_5 = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}, \ A_6 = \begin{pmatrix} 0 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Знаходимо:

$$\begin{split} d\left(A_{1},A^{1}\right) &= d\left(A_{1},A^{2}\right) = 0, \ d\left(A_{1},A^{3}\right) = 2; \ d\left(A_{2},A^{1}\right) = d\left(A_{2},A^{2}\right) = 2, \ d\left(A_{2},A^{3}\right) = 4; \\ d\left(A_{3},A^{1}\right) &= d\left(A_{3},A^{2}\right) = 2, \ d\left(A_{3},A^{3}\right) = 0; \ d\left(A_{4},A^{1}\right) = d\left(A_{4},A^{2}\right) = 4, \ d\left(A_{4},A^{3}\right) = 2; \\ d\left(A_{5},A^{1}\right) &= d\left(A_{5},A^{2}\right) = 4, \ d\left(A_{5},A^{3}\right) = 6; \ d\left(A_{6},A^{1}\right) = d\left(A_{6},A^{2}\right) = 6, \ d\left(A_{6},A^{3}\right) = 4. \end{split}$$

Таким чином, $A^{KS}=A^{VG}=A^{SZ}=\left\{A_1,A_3\right\}$ (цього слід було очікувати, оскільки ранжування двох експертів збіглися, ранжування третього відрізняються від їхнього ранжування лише однією перестановкою). Нехай, $A^1=A_1$, $A^2=A_4$, $A^3=A_6$. Тоді $A^{KS}=\left\{A_3,A_4\right\}$, $A^{VG}=\left\{A_3\right\}$, $A^{SZ}=\left\{A_3\right\}$.

Методи шкалювання

У методах шкалювання експерти оцінюють попарні відмінності між об'єктами, вказують відповідні числа. Задача полягає у зіставленні кожному об'єкту точки простору E^r , $r \ge 1$, а всій системі, що складається з m об'єктів, m точок у E^r так, щоб відстані у E^r між точками були достатньо близькими до вказаних експертами чисел. Таким чином, розв'язок задачі оцінювання у цьому випадку є вектором довжини $m \cdot r$.

Експертиза 9 (одновимірне шкалювання): $\Omega = E^m$, $\tilde{\Omega} = \{$ нестрогі ранжування $\}$, експерти ізольовані, оберненого зв'язку немає. Для побудови ф необхідно зробити такі операції:

✓ Обчислюється матриця $P = \sum_{i=1}^{n} A^{i} / n$, де A^{i} – матриця, що відповідає ранжуванню, даному i-м експертом. Елементи p_{jk} матриці P – імовірності переваги j-го об'єкта над k-м.

🗸 За заданими p_{ik} обчислюються величини z_{ij} за формулами:

$$p_{jk}=\int\limits_{-\infty}^{z_{jk}}\left(1/\sqrt{2\pi}
ight)e^{-rac{t^{2}}{2}}dt$$
 за таблицями нормального розподілу.

 \checkmark Формується матиця $Z=\left(z_{jk}\right)$, знаходяться величини $z_j=\sum_{k=1}^m z_{jk}$. Оцінкою об'єкта A_j є середнє $\overline{z}_j=z_j/m$, $j=\overline{1,m}$.

🗸 Визначаються величини $\,\overline{p}_{i}\,$ за формулою:

$$\overline{p}_j = G(\overline{z}_j) = \int_{-\infty}^{\overline{z}_j} \left(1/\sqrt{2\pi}\right) e^{-\frac{t^2}{2}} dt. \qquad (3.2.1)$$

Нормалізовані величини $p_j^* = \overline{p}_j / \sum_{j=1}^m \overline{p}_j$ називаються показниками відносної важливості об'єктів.

 \checkmark Здійснюється перевірка на несуперечність. Для цього за формулою (3.2.1) знаходяться $\bar{p}_{jk} = G(\bar{z}_j - \bar{z}_k)$ і обчислюються величини

$$\Delta_{jk}=\overline{p}_{jk}-p_{jk}$$
. Визначається середнє відхилення $\overline{\Delta}_{jk}=\sum_{\substack{j,k=1\\i< k}}^m\left|\Delta_{jk}\right|/m(m-1)$,

достатня малість якого свідчить про несуперечність ранжувань експертів. Задача багатовимірного метричного шкалювання полягає у наступному. Задається симетрична матриця відмінностей $D = (D_{jk})$ між m об'єктами $A_1, ..., A_m$ на основі агрегування думок n експертів (наприклад, так, як у попередній експертизі). Необхідно знайти координати m точок $a^j \in E^r$, що відповідають об'єктам, так, щоб матриця $X = (x_{jk})$ відстаней між цими точками була близькою до матриці початкових відмінностей D за певним критерієм. Якщо значення критерію обертається у нуль, то говорять, що задача має точний розв'язок.

В основі Експертизи 10 лежить метод простої ординації, який полягає в такому.

Розглянемо спосіб побудови точок $a^1,...,a^m\in E^m$, що відповідають об'єктам $A_1,...,A_m$. За A_1 і A_2 оберемо об'єкти, відстань D_{jk} між якими

в агрегованій матриці D максимальна. Тоді $a_1^1=0$, $a_1^2=D_{jk}$; $a_j^1=a_j^2=0$, $j=\overline{2,m}$. Побудовані точки належать півпростору E^1 , утвореного першою віссю E^m .

Нехай E^r-r -вимірний півпростір, що утворюється осями з номерами 1,...,r, у якому вже знайдено точки $a^1,...,a^{r+1}$. У цих точок у E^m усі координати, починаючи з (r+1)-ї, дорівнюють нулю. Проєкції інших точок $a_{r+2},...,a_m$ в E^r знаходяться із заданих відстаней D_{jk} між об'єктами j і k, $j,k=\overline{1,m}$. Нехай координати проєкції точки a^l , l>r+1, в E^r — це $a_1^l,...,a_r^l$, h_l — відстань між точкою a^l й підпростором E^r . Маємо: $D_{jl}^2=h_l^2+\sum_l^r\left(a_s^l-a_s^l\right)^2$,

$$j = \overline{1, r+1} \Rightarrow h_l^2 = D_{jl}^2 - \sum_{s=1}^r (a_s^j - a_s^l)^2, \ j = \overline{1, r+1}.$$
 (3.2.2)

Ліва частина останньої рівності не залежить від a^j . Прирівнюючи праві частини при j і j+1, отримаємо систему r рівнянь відносно r невідомих $a_1^l,...,a_r^l$:

$$D_{jl}^2 - \sum_{s=1}^r \left(a_s^j - a_s^l\right)^2 = D_{j+1,l}^2 - \sum_{s=1}^r \left(a_s^{j+1} - a_s^l\right)^2 \; , \; \; j = \overline{1,r} \; .$$

Розв'язавши цю систему при l=r+2,m , отримаємо проекцію точки a^l в E^r . Із рівності (3.2.2) знайдемо h_l для $l=\overline{r+2,m}$ й покладемо $a_{r+1}^l=h_l$.

Оберемо об'єкт A_j , для якого $h_j = \max_{l=r+2,m} h_l$. Зіставимо йому у просторі E^m точку $a^j = \left(a_1^j, ..., a_r^j, h_j, 0, ..., 0\right)$. Перенумеруємо об'єкти $A_{r+2}, ..., A_m$ так, щоб вибраний об'єкт мав номер r+2. Таким чином, отримали координати точки a^{r+2} й проекції точок $a^{r+3}, ..., a^m$ у простір E^{r+1} . Критерій завершення процесу вибирається так: $\alpha = 1 - \tilde{s}/s$, де

$$\tilde{s} = \sum_{\substack{j,k=1\\j < k}}^{m} \sum_{s=1}^{r+1} (a_s^j - a_s^k)^2, \ \ s = \sum_{\substack{j,k=1\\j < k}}^{m} D_{jk}^2.$$

Якщо α менше вибраного $\varepsilon>0$, обчислення координат точок припиняємо і образами об'єктів $A_1,...,A_m$ вважаються проекції точок $a^1,...,a^m$ в E^r .

В основі експертизи 11 (метод "трійок") лежать такі теоретичні побудови. Розглянемо трикутник зі сторонами D_{ij} , D_{ik} , D_{jk} (рис 3.2.1). За теоремою косинусів:

$$D_{ij}D_{ik}\cos\Theta = (D_{ij}^2 + D_{ik}^2 - D_{jk}^2)/2$$
.

Рис. 3.2.1

Побудуємо матриці B^i , $i=\overline{1,m}$, з елементами: $b^i_{jk}=\left(D^2_{ij}+D^2_{ik}-D^2_{jk}\right)/2$. Наступні властивості матриць B^i визначають існування точного розв'язку задачі метричного шкалювання й мінімальну розмірність простору E^r , при якому точний розв'язок існує.

Теорема 3.2.4. У випадку додатної напіввизначеності матриць B^i , $i=\overline{1,m}$ (тобто $(B^ix,x)\geq 0$ для $\forall x$) задача метричного шкалювання має точний розв'язок. Мінімальна розмірність простору E^r , $r=\min_i \rho_i$, де ρ_i — ранг матриці B^i , $i=\overline{1,m}$. За образи об'єктів A_s , $s=\overline{1,m}$, $s\neq i$, у просторі E^r можна взяти точки $a^s=\left(a_1^s,...,a_r^s\right)$, $s=\overline{1,m}$, такі, що $B^i=XX^T$, $X=\left(x_{pq}\right)$, де $x_{pq}=a_q^p$, $p=\overline{1,m}$, $p\neq i$, $q=\overline{1,r}$, $a_i^l=0$, $l=\overline{1,r}$.

У розглянутих випадках відображення ϕ є лінійним. У загальному випадку неможлива побудова точок a^j , $j=\overline{1,m}$, у просторі достатно малої розмірності E^r із збереженням бажаної точності. Тому використовуються нелінійні методи, що базуються на інтерполяційних процедурах.

Основою Експертизи 12 ("нелінійне багатовимірне шкалювання") є така процедура. Упорядкувавши за зростанням m^2 елементів матриці відмінностей D, отримаємо лінійний порядок r(A). Відобразимо об'єкти A_j у простір E^r , лінійний порядок зі зростання елементів матриці X відстаней між точками a^j , $j=\overline{1,m}$, позначимо через r(a).

Виконуємо операції:

- 1. Будуємо ранжування r(A) і нормалізуємо елементи матриці D так, щоб мінімальний дорівнював нулю, максимальний одиниці. Отриману матрицю позначимо через \tilde{D} .
- 2. Точки a^j , $j=\overline{1,m}$, знаходимо як вершини правильного (m-1)-вимірного симплекса, центр якого знаходиться у початку координат, ребра мають довжину 1. Координати вершин симплекса обчислюються за формулами:

$$\begin{split} a_{2q-1}^j &= \cos \big[2q(j-1)\pi/m \big]/\sqrt{m} \;, \\ a_{2q}^j &= \sin \big[2q(j-1)\pi/n \big]/\sqrt{m} \;, \end{split}$$

де $q = \overline{1,[(m-1)/2]}$ ([x] – ціла частина x).

Для парного m проекція на (m-1)-у вісь: $a_{m-1}^j = \left(-1\right)^{j-1}/\sqrt{2m}$.

- 3. Будуємо ранжування r(a). Якщо r(a) = r(A), то обчислення закінчується. Інакше нормуємо матрицю X відстаней між точками a^j , $j = \overline{1,m}$ (аналогічно матриці D, крок 1), отримуючи \tilde{X} .
- 4. Знаходимо нові значення координат точок a^{j} , $j = \overline{1,m}$, за формулами:

$$\overline{a}_k^j = a_k^j + \Delta a_k^j \,, \ j = \overline{1,m-1} \,,$$
 де $\Delta a_k^j = \sum_{i \neq j} P_{ji}^k + R_{ji}^k \,, \quad P_{ji}^k = \frac{\alpha \left(\tilde{D}_{ji} - \tilde{x}_{ji} \right) \left(a_k^i - a_k^j \right)}{x_{ji}} \,, \quad R_{ji}^k = \frac{\beta \left(\tilde{D}_{ji} - \overline{D} \right) \left(a_i^k - a_j^k \right)}{D_{ji}} \,,$ $\overline{D} = \sum_{j,i=1}^m \tilde{D}_{ji} \left/ m^2 \,; \ \alpha = 0,2 \,, \ \beta = 0,05 \,.$

5. Покладемо $a^j = \overline{a}^j$, $j = \overline{1,m}$, будуємо ранжування r(a) і переходимо на крок 1.

Методи побудови кардинальних оцінок

У практичних задачах дуже часто важливо не лише вказати факт переваги одного об'єкта над іншим (або побудувати ранжування), але й оцінити ступінь цієї переваги.

Нехай ранжуванню об'єктів $o_1 \succ o_2 \succ ... \succ o_m$ відповідає вектор числових оцінок $\beta = (\beta_1, ..., \beta_m)$.

Розглянемо основні методи визначення оцінок.

Метод фон Неймана–Моргенштерна (експертиза 13). Нехай m=2. Маємо ранжування $o_1\succ o_2$ і об'єкту o_2 приписується оцінка $\beta_2=1$.

Експерт вибирає таке значення величини γ , $0 < \gamma \le 1$, при якому, на його думку, $\gamma \beta_1 = \beta_2$. З останього співвідношення маємо $\beta_1 = \frac{1}{\gamma}$.

Якщо m=3, то $\beta_3=1$ і експерт визначає значення γ_1,γ_2 з умов $\gamma_1\beta_1=\beta_3,\ \gamma_2\beta_2=\beta_3$, звідки $\beta_1=\frac{1}{\gamma_1},\beta_2=\frac{1}{\gamma_2}$. Після цього експерт повинен визначити γ_3 з умови $\gamma_3\beta_1=\beta_2$. Оцінки об'єктів вважаються узгодженими, якщо $\gamma_3=\frac{\gamma_1}{\gamma_2}$, інакше експерт переглядає початкові значення γ_1,γ_2 .

При m об'єктах число перевірок дорівнює $1+2+\ldots+m-2=\frac{(m-1)(m-2)}{2}$. Загальне число оцінок, які повинен встановити експерт, складається з m-1 початкових оцінок і $\frac{(m-1)(m-2)}{2}$ вторинних оцінок, всього $\frac{m(m-1)}{2}=C_m^2$.

Отримані внаслідок оцінки $\beta_1,\beta_2,...,\beta_m$ є абсолютними. Для отримання відносних оцінок потрібно обчислити значення $g_i = \frac{\beta_i}{\sum_{i=1}^m \beta_j}$.

Для підвищення "об'єктивності" процедури її можна легко узагальнити на випадок n експертів (використавши, наприклад, алгоритм, описаний в §§ 1, 2).

В експертизі 14 (метод Гергомена–Акофа) експерт будує ранжування (нехай це буде : $o_1 \succ o_2 \succ ... \succ o_m$).

Об'єкту o_m приписується оцінка $\beta_m = 1$, останнім об'єктам експерт виставляє оцінки, порівнюючи їх з об'єктом o_m . Значення всіх оцінок повинно монотонно спадати зі зростанням порядкових номерів об'єктів.

Далі об'єкт o_1 послідовно порівнюється з "сумою" об'єктів $o_2+\ldots+o_n, o_2+\ldots+o_{n-1},\ldots, o_2+o_3$ до того часу, поки o_1 не стане еквівалентним або кращим за відповідну "суму", тобто експерт вважає, що $\beta_1 \geq \sum_{i=2}^s \beta_i, \ s \geq 3$. Після цього експерт порівнює o_2 із "сумами"

 $\sum_{i=3}^{l} o_i, l \leq m$, і т. д. У знайдені нерівності підставляються оцінки об'єктів і якщо нерівності справедливі, то призначені експертом оцінки і є шуканими. Інакше оцінки коректуються.

У цьому методі кількість початкових оцінок дорівнює C_m^2 , але самі порівняння для експертів є складнішими, оскільки кожного разу один об'єкт порівнюється з декількома.

Контрольні завдання до § 2

- 1. На основі коефіцієнтів компетентності з п. 7 контрольних завдань до § 1 спрогнозувати результат вибраного футбольного матчу (прогноз погоди на певну дату) на основі колективної оцінки. Порівняти прогнози для різної кількості експертів: n = 2, 3, 5, 10.
- 2. Для вибраних експертів визначити (іншими експертами) колективні оцінки їхньої "оптимістичності", "реалістичності", "песимістичності". Врахувати отримані оцінки в прогнозуванні з § 1. Порівняти ступінь достовірності прогнозів.
- 3. Провести експертизу серед студентів групи на визначення колективного ранжування "смертних гріхів": гнів, гординя, переїдання, зневіра ("уныние"), заздрість, сріблолюбство, блуд. Побудувати колективне ранжування за допомогою методів, описаних вище в § 2. Результати порівняти.
- 4. У кінці XX ст. в Сіетлі (США) зібрались представники різних релігійних концесій і визначили ранжування на "множині якостей homo sapiens", що будуть визначальними для XXI ст., законослухняність, чесність, громадянськість, релігійність, порядність, цивілізованість. Проведіть експертизу, побудуйте колективне ранжуванння.
- 5. У Франції було проведено опитування серед представниць "кращої половини людства" та визначено колективне ранжування якостей представників "гіршої половини людства". Якості такі: зовнішні дані, доброта, матеріальне забезпечення, інтелект, чоловічі якості (надійність, сміливість), іронічність. Проведіть експертизу серед студенток групи та визначте колективне ранжування. Цікаво відмітити, що результати експертизи, що її проводив один з авторів протягом років серед різних вікових груп українок ні разу не збігався (навіть у індивідуальних пріоритетах) із колективним ранжуванням француженок.
- 6. Кожен будує індивідуальне ранжування на множині міст (Москва, Париж, Нью-Йорк, Рим, Лондон, Токіо, Сідней) і методами фон Неймана Моргенштерна і Гермогена Акофа оцінює ступінь переваги в бажанні відвідати ці міста.
- 7. Одним із методів шкалювання провести експертизу для проблеми, описаної в § 6.

§ 3. Методи голосування

Більшість суспільних рішень приймається на основі голосування. Голосуванням обираються президенти, народні депутати, голосуванням приймаються рішення у Верховній Раді, на засіданнях Вчених рад університету і факультетів, на засіданнях кафедр, при прийнятті рішень Державною екзаменаційною комісією, у студентських колективах, у сім'ї (яку телевізійну програму дивитись) і т. п. Хоча практика голосування нараховує тисячі років, фактичне його вивчення почалося близько двохсот років тому у працях французів Борда (Жан Шарль де Борд [1733–1799], фізик, математик, політик, член Французької Академії наук) і Кондорсе (Жан Антуан Ніколя де Кондорсе, [1745–1794], філософ, математик член Французької АН, у 1776–1792 рр. був член-кореспондентом Петербурзької Академії наук, у 1792 р. виключений за велінням Катерини ІІ за жирондистські погляди, закінчив життя на гільйотині).

Розглянемо найуживаніші на практиці методи голосування. Нехай $N = \left\{\overline{1,n}\right\}$ — множина "виборців", $A = \left\{a,b,c,...\right\} = \left\{a_1,a_2,...,a_m\right\}$ — множина "кандидатів". Кожен виборець задає "індивідуальну перевагу" на множині кандидатів у вигляді строгого ранжування, тобто задає лінійний порядок L(A) (повне, транзитивне, асиметричне бінарне відношення). Система всіх індивідуальних переваг називається *профілем*. Розглянемо профіль, що задається табл. 3.3.1 (далі будемо писати "профіль табл. 3.3.1"). Цей профіль містить інформацію про те, що п'ять перших виборців на перше місце поставили кандидата a, на друге — d, на третє — c, на четверте (останнє) — b. Аналогічно, наступні три виборці розташували кандидатів у послідовності — a, d, b, c і т.д. Отже, маємо n=17 і m=4.

Таблиця 3.3.1

Кількість голосів	5	3	5	4
Впорядкування кандидатів	а	а	b	С
	d	d	С	d
	С	b	d	b
	b	c	а	а

Правило (метод) відносної більшості. На перше місце вісім виборців поставили кандидата a ($n_a=8$), п'ять виборців – b ($n_b=5$) і чотири виборці – c ($n_c=4$), $n_d=0$. Перемагає той кандидат, за якого проголосувала більшість виборців (у даному випадку – a, випадок рівності

голосів поки що не розглядаємо). Зрозуміло, що перемогти може й кандидат, за якого проголосували, наприклад, 1 % виборців (за інших — ще менше). Абсурд? Так, але ж за цим методом обираються "мери" в Україні. Тому назвемо це "парадоксом голосування".

Правило відносної більшості з вибуванням ("відносна більшість у два тури", "абсолютна більшість"). За подібним правилом відбуваються вибори Президента України. Якщо деякий кандидат набрав більше половини голосів, то він – переможець. Інакше до другого туру проходять два кандидати, що набрали відносну більшість голосів (тому – "відносна у два тури"). Для нашого профілю у другий тур проходять кандидати a і b. Після "відсіювання" інших кандидатів (тому – "відносна більшість з вибуванням"), маємо табл. 3.3.2 (переваги виборців після першого туру не змінюються).

Таблиця 3.3.2

Кількість голосів		3	5	4
Prongrumowa way waren		a	b	b
Впорядкування кандидатів	b	b	а	а

У другому турі $n_a=8$, $n_b=9$, тобто перемагає кандидат b (перемагає "абсолютно", набираючи більше половини голосів, тому метод і називається методом "абсолютної більшості"). Зауважимо, що випадок рівності голосів ми поки що виключаємо. Не розглядається і випадок "голосування" проти обох, як при виборах Президента України, коли перемогти може кандидат, який набрав менше половини голосів виборців.

Правило Борда ("підрахунку очок"). У цьому правилі за останнє місце кандидата йому нараховується 0 балів (очок), за передостаннє -1, ..., за перше -(m-1).

Розглянемо профіль (табл. 3.3.3). Маємо: n_a = 24 , n_b = 22 , n_c = 27 , n_d = 29 . Перемагає кандидат, що набрав найбільшу кількість балів, у нашому випадку – це кандидат d .

Таблиця 3.3.3

Кількість голосів	5	3	5	4	S
Впорядкування кандидатів	a	a	b	c	3
	d	d	c	d	2
	c	b	d	b	1
	b	c	а	а	0

Зауважимо, що за подібним методом часто визначаються переможці у спортивних змаганнях (наприклад, у багатоборстві враховують кількість перших, других місць і т. д.).

Правило Кондорсе. За Кондорсе переможцем оголошується той кандидат, що "перемагає" всіх інших у попарних порівняннях. Так, у попередньому профілі: вісім виборців поставило кандидата a вище за b, дев'ять виборців поставило a нижче за b (позначимо це a:b=8:9). Маємо b:c=8:9, c:d=9:8, a:c=8:9, b:d=5:12, a:d=8:9. Єдиний кандидат, який "перемагає" всіх інших – це кандидат c.

Зауважимо, що правило Кондорсе видається вельми логічним — переможець перемагає всіх інших у єдиноборствах. Шахіст, що переміг усіх інших претендентів у мікро матчах (скажімо, із двох партій) — безумовно найкращий. Та й при формуванні індивідуальної переваги виборець попарно порівнює (свідомо чи підсвідомо) кандидатів. Але в читача вже, мабуть, виникло запитання. А як бути, якщо кожен із кандидатів когось перемагає, а комусь програє? У цьому випадку за визначенням переможця за Кондорсе (переможця Кондорсе) не існує. Це один із так званих "парадоксів голосування". Найпростіший випадок маємо при n=m=3: для першого виборця a кращий за b і c, b кращий за c (позначимо це $a \succ b \succ c$); для другого $b \succ c \succ a$; для третього $c \succ a \succ b$. Цей профіль називається "Циклом Кондорсе". Маємо — a:b=2:1, a:c=1:2, b:c=2:1 (у кожного по одному виграшу і по одному програшу).

Повернемось до правил голосування. Наведені вище правила (чи подібні до них) застосовуються в житті, усі є досить логічними, кожне з них має свої "переваги". Але їхнє застосування до одного й того самого профілю (табл. 3.3.1) дає абсолютно різні результати! Це ще один "парадокс голосування".

Який висновок можна зробити? Не все так просто, як може здатись на перший погляд, правила голосування потрібно вивчати. Причому, можна робити це двома шляхами. Перший – придумувати "хороші" ("логічні", "розумні") правила голосування (і сприймати результат як даність), другий – задавати "розумні" ("логічні", "хороші") умови на результат і підбирати" правила, які приводять до цього результату (наприклад, "результат виборів повинен бути таким, щоб не було ображених").

Спочатку розглянемо знаменитий "парадокс Ерроу" (Р. Ерроу, американський математик, економіст, лауреат Нобелівської премії), із якого власне і почалась сучасна теорія голосування.

Розглянемо загальну задачу. Нехай на основі індивідуальних преваг необхідно знайти не лише "колективного" ("спільного") переможця, а й "колективний порядок". Причому, нехай, як і раніше індивідуальні переваги будуть строгими (кандидати в індивідуальних перевагах не повинні "ділити" місця), колективний же порядок може бути і нестро-

гим (єдиним розумним компромісом при рівноправності виборців і кандидатів у випадку переваг $a \succ b$ (одного виборця) і $b \succ a$ (в іншого), звичайно, буде a = b (a і b "ділять" місце)). Найпростіший метод побудови колективного порядку за даним правилом голосування є наступний – переможець виключається з профілю, для отриманого профілю знову знаходиться переможець, який займає друге місце у колективній перевазі, і т. д.

Так, для профілю табл. 3.3.1, після виключення переможця a для правила відносної більшості маємо профіль табл. 3.3.4. Для цього профілю переможцем буде кандидат d, після його виключення маємо профіль табл. 3.3.5, для якого переможцем буде c. Отже, правило відносної більшості дає колективну перевагу $a \succ d \succ c \succ b$.

Таблиця 3.3.4

Кількість голосів	5	3	5	4
	d	d	b	С
Впорядкування кандидатів	С	b	c	d
	b	c	d	b

Таблиця 3.3.5

Кількість голосів	5	3	5	4
Prongervenovez von su socio		b	b	c
Впорядкування кандидатів	b	С	c	b

Аналогічно, правило абсолютної більшості дає колективну перевагу $b \succ c \succ d \succ a$ (зверніть увагу, ця перевага "повністю протилежна" попередній).

Правило Борда дає: $d \succ c \succ a \succ b$, Кондорсе: $c \succ d \succ b \succ a$.

Отже, "достатньо розумні" правила побудови колективного порядку приводять до різних результатів (аж до протилежних).

Підемо іншим шляхом. Задамо "розумні апріорні" вимоги до колективного ранжування у вигляді аксіом.

Аксіома А1 (повнота). Для будь-яких кандидатів a і b колективний порядок встановлює, що або $a \succ b$, або a = b, або $a \prec b$ (скорочено – $\forall \ a,b \in A \colon (a \succ b) \lor (a = b) \lor (a \prec b)$).

Аксіома А2 (транзитивність): $(a \succeq b) \land (b \succeq c) \Rightarrow a \succeq c$.

Аксіома АЗ (одностайність): якщо для всіх виборців $a \succeq b$, то й у колективному порядку також $a \succeq b$ ($\forall i \in N : a \succeq b \Rightarrow a \succeq b$).

Цю аксіому можна назвати і "паретовість" і "ефективність".

Аксіома А4 (незалежність). Розташування будь-яких двох кандидатів a і b у колективному порядку залежить лише від їхнього взаємного розташування в індивідуальних порядках і не залежить від розташування інших кандидатів.

Відмова від першої аксіоми може призвести до ситуації – "вибори не відбулися", відмова від транзитивності теж виглядає досить дивною, порушення аксіоми одностайності однозначно свідчить про "фальсифікацію" виборів, відмова від аксіоми незалежності приводить до можливості маніпулювання шляхом зняття чи введення кандидатів (по-

ложення кандидатів a і b у колективному порядку, наприклад, $a \succ b$, не повинно залежати від індивідуальної переваги у вигляді $a \succ c \succ b$, чи $a \succ b \succ c$, чи $c \succ a \succ b$, чи взагалі у відсутності кандидата c).

Теорема 3.3.1. ("Парадокс Ерроу", 1951). Єдиним колективним порядком, що задовольняє аксіомам A1–A4, є "диктаторський", тобто існує виборець $k \in \mathbb{N}$ такий, що колективний порядок збігається з його індивідуальним порядком.

Парадокс Ерроу свого часу вразив науковий світ, згадаймо, якою була геополітична карта світу у 1951 р. Можливо він дає пояснення, чому наша цивілізація пройшла через диктаторські режими (а в деяких країнах ще й зараз існують диктатури). Хоча не все так сумно. Якщо a=b, то b=a, тобто теорема Ерроу стверджує не лише те, що колективний порядок "задається" індивідуальним порядком "диктатора", але й те, що індивідуальний порядок деякого виборця ("провидця") збігається з колективним порядком. А в цьому не має нічого поганого! З іншого боку, якщо до аксіом **А1 – А4** приєднати аксіому **ВД** "відсутності диктатора", то цим аксіомам за теоремою Ерроу відповідає "порожній" вибір. Для "непорожності" вибору можна спробувати послабти аксіому **ВД**. Саме це і реалізує система аксіом Ерроу–Гурвиця [18], в якій аксіома **ВД** заміняється аксіомою **ДД** "допустимості диктатора". Переходимо до доведення теореми.

Визначення 3.3.1. Будь-яка підмножина M множини виборців N називається коаліцією. Коаліція M називається K-вирішальною для кандидата a проти кандидата b тоді і лише тоді, коли з того, що всі члени коаліції M ставлять a вище за b, а всі виборці, що не входять у M, ставлять b вище за a, випливає $a \stackrel{\kappa}{\succ} b$. Цей факт записується як $M = K(a,b) \Leftrightarrow (\forall i \in M \subseteq N: a \stackrel{i}{\succ} b, \ \forall j \in N \setminus M: a \stackrel{j}{\prec} b \Rightarrow a \stackrel{\kappa}{\succ} b).$

Визначення 3.3.2. Якщо для будь-яких двох кандидатів a і b коаліція M є K-вирішальною для a проти b, вона називається просто K-вирішальною. Тобто M = K(a,b), $\forall a,b \in A$. Зауважимо, що вся мно-

жина $N \in K$ -вирішальною (у силу АЗ). Порожня множина не може бути K-вирішальною для a проти b, ні для яких a і b. Якщо ніхто не ставить a вище за b, тобто у всіх b > a, то знову у силу АЗ : $b \stackrel{\kappa}{\succ} a$, і не може бути $a \stackrel{\kappa}{\succ} b$.

Лема 3.3.1. Існує пара кандидатів (a,b), для якої знайдеться коаліція L, що складається з одного виборця $\{l\}$ така, що L=K(a,b).

Доведення. Позначимо через T множину таких коаліцій M, для кожної з яких існує пара (a,b) така, що M=K(a,b). Множина T не порожня, оскільки $N\subseteq T$. Візьмемо у T коаліцію L, що містить найменшу кількість виборців. Оскільки $T\neq\varnothing$, то L має не менше за одного виборця $(|L|\ge 1)$. Нехай $|L|\ge 2$. Розіб'ємо L на 2 не порожні підмножини, що не перетинаються: одна $L'=\{l\}$ з одного елемента, інша L''-3 усіх останніх. Розглянемо профіль, заданий табл. 3.3.6.

L'	L"	N∖L
а	С	b
b	а	а
C	h	C

Таблиця 3.3.6

Оскільки коаліція L-K-вирішальна, то $a \stackrel{\kappa}{\succ} b$. Якщо $c \stackrel{\kappa}{\succ} b$, то $L'' \in K$ -вирішальною c проти b. Але в L'' менше виборців, ніж у множині L, яка за визначенням мінімальна. Отже c не може бути гіршим за b, звідси (у силу аксіоми повноти A1) $b \stackrel{\kappa}{\succ} c$. Отже, $a \stackrel{\kappa}{\succ} b$, $b \stackrel{\kappa}{\succ} c$ і за аксіомою транзитивності A2 $a \stackrel{\kappa}{\succ} c$. Але це означає, що $L' \in K$ -вирішальною для a проти c, що суперечить мінімальності L. Лему доведено.

Лема 3.3.2. Коаліція $L = \{l\}$, існування якої доведено у лемі 3.1, є *К*-вирішальною.

Доведення. Нехай c – довільний кандидат. Розглянемо профіль 1 (див. стор. 105). Оскільки $\{l\} = K(a,b)$, то $a \stackrel{\kappa}{\succ} b$. З аксіоми одностайності АЗ випливає $b \stackrel{\kappa}{\succ} c$, у свою чергу (з аксіоми А2), $a \stackrel{\kappa}{\succ} c$. З аксіоми незалежності А4 маємо, що $a \stackrel{\kappa}{\succ} c$ незалежно від b, звідки $\{l\} = K(a,c)$.

Аналогічно для будь-якого кандидата d, розглянувши профіль 2, можна довести, що $d \stackrel{\kappa}{\succ} c$. Отже, $\{l\} = \mathit{K}(c,d)$ для $\forall c,d$.

Профіль 1					
$\{l\}$	$N \setminus \{l\}$				
:	:				
а	b				
÷	÷				
b	c				
÷	÷				
c	а				
÷	÷				

Профіль 2					
$\{l\}$	$N \setminus \{l\}$				
÷	:				
d	c				
:	:				
a	d				
:	:				
c	a				
÷	÷				

Лема 3.3.3. Описаний у лемі 3.3.2 виборець l – диктатор.

Доведення. Розглянемо профіль … $c \mapsto c \mapsto c \mapsto b \mapsto c$, усі інші виборці ставлять c вище за a і b, інші кандидати розташовуються довільно. Оскільки коаліція $L = \{l\}$ є K-вирішальною, то $a \mapsto c$, за аксіомою АЗ: $a \mapsto b$, за аксіомою А2: $a \mapsto b$. Виключаючи кандидата c, у силу аксіоми незалежності А4, маємо: $a \mapsto b$ і $a \mapsto b$, незалежно від розташування a і b у перевагах інших виборців. Теорему доведено. ◆

Повернемось до вивчення методів голосування, що широко застосовуються на практиці.

По-перше, узагальнимо правило Борда й Кондорсе.

Задамо неспадаючу послідовність дійсних чисел $s_0 \leq s_1 \leq ... \leq s_{m-1}$, $s_0 < s_{m-1}$. Виборці ранжують кандидатів, причому s_0 балів дається за останнє місце, s_1 — за передостаннє і т. д. Вибирається кандидат із максимальною сумою балів. Тим самим отримуємо "узагальнене правило Борда" або "метод голосування з підрахуванням балів".

Правило відносної більшості, таким чином, є частинним випадком методу голосування з підрахунком очок (у ньому $s_0 = s_1 = ... = s_{m-2} = 0$, $s_{m-1} = 1$). І, звичайно, саме правило Борда є частинним випадком цього методу ($s_0 = 0, s_1 = 1, ..., s_{m-1} = m-1$).

Цікаво порівняти правила Кондорсе й Борда (узагальнене правило Борда). У певному сенсі вони ε "несумісними" – існують профілі, при яких переможець Кондорсе не може бути переможцем Борда ні за якою системою балів.

Розглянемо профіль (табл. 3.3.7, Фішберн, 1973). Нехай спочатку $s_0 < s_1 < s_2$ (нерівності строгі). Для цього профілю c — переможець Кондорсе (переконайтесь у цьому). З іншого боку, сума балів кандидата a більша за суму c: $n_a = 3s_2 + 3s_1 + s_0 > n_c = 3s_2 + 2s_1 + 2s_0$.

Таблиця 3.3.7

3	2	1	1	S
c	а	а	b	s_2
а	b	c	c	s_1
b	c	b	а	S_0

Твердження залишається справедливим і для випадку неспадаючої послідовності балів. Нехай, $s_0 \le s_1 \le s_2$, $s_2 > s_0$. У профілі, що задається табл. 3.3.8, a — переможець Кондорсе (a:b=6:5,a:c=6:5), але $n_a=4s_2+4s_1+3s_0$, $n_b=5s_2+4s_1+2s_0$, і $n_b-n_a=s_2-s_0>0$. Профіль 3.3.8 запропоновано студентом факультету кібернетики КНУ ім. Т. Шевченка С.В. Акулініним у 2006 р. У [7] "найменший" відомий приклад для цього випадку містить 17 виборців і три кандидати.

Таблиця 3.3.8

4	2	2	3	S
а	c	b	b	s_2
b	а	а	c	s_1
c	b	c	а	S_0

Множину кандидатів, які можуть бути вибраними при деякому методі підрахунку балів, можна легко описати. Для даного профілю і даного кандидата a будуємо вектор $\Gamma(a) \in E^{m-1}$ так: $\Gamma_1(a)$ – це число виборців, у яких a має перше місце; $\Gamma_2(a)$ – число виборців, у яких a має перші два місця і т. д.

Тоді кандидат a не може бути переможцем ні при якому узагальненому методі Борда, якщо вектор $\Gamma(a)$ домінується за Парето вектором $\Gamma(b)$ для деякого іншого кандидата b. Більше того, можна пока-

зати, що a є переможцем за правилом підрахунку очок тоді і лише тоді, коли вектор $\Gamma(a)$ є слабо оптимальним за Парето (не існує кандидата b, для якого $\Gamma_i(b) > \Gamma_i(a)$ для $i = \overline{1,m-1}$). Якщо система балів утворює строгу послідовність ($s_0 < s_1 < ... < s_{m-1}$), то переможець a узгоджується з "просто" оптимальністю за Парето. Цікаво також відмітити, що переможець (найгірший) за Кондорсе не може бути найгіршим (переможцем) за правилом Борда, як це може мати місце для правила відносної більшості (див. профіль на табл. 3.3.1). Ці твердження випливають із того, що переможець за правилом Борда має у середньому найбільше число виборців, що його підтримують у "бінарних дуелях" із іншими кандидатами.

Найчастіше використовують два такі правила, що узагальнюють метод Кондорсе.

Правило Копленда. Позначимо через K(a,x) число виборців, для яких кандидат a кращий за $x,\ a \neq x$. Порівняємо кандидата a із будьяким іншим кандидатом x. Припишемо K(a,x)=+1, якщо для більшості виборців a кращий за x, інакше K(a,x)=-1; 0 при рівності. Оцінка Копленда кандидата $a \in K(a) = \sum_{x \neq a} K(a,x)$. Переможцем Копленда (пе-

реможцем за Коплендом) називається кандидат (кандидати) з найвищою оцінкою Копленда.

Правило Сімпсона. Аналогічно S(a,x) — число виборців, для яких кандидат a кращий за x, $a \neq x$. Оцінкою Сімпсона кандидата a називається число $S(a) = \min_{x \neq a} S(a,x)$. Переможцем Сімпсона називається кандидат (кандидати) з найвищою оцінкою Сімпсона.

Отже, для того, щоб перемогти за правилом Копленда, вам необхідно виграти в найбільшої кількості інших кандидатів. Для виграшу за правилом Сімпсона, необхідно, щоб проти вас ніякий інший кандидат не зібрав значної більшості. Зазначимо також, що правило Копленда відповідає утилітарному критерію вибору, Сімпсона – егалітарному. Очевидно, що переможець Кондорсе (якщо він існує) буде також переможцем і Копленда, і Сімпсона. Очевидно, також, що правила Копленда та Сімпсона, на відміну від правила Кондорсе, завжди визначають переможця (переможців).

Розглянемо основні властивості, яким повинні задовольняти правила голосування. Найперше, звичайно, необхідно вимагати забезпечення рівноправства виборців і кандидатів, що формально гарантуються наступними аксіомами.

Аксіома А5 (анонімність). Імена виборців не мають значення: якщо два виборці поміняються голосами, то результат не зміниться.

Аксіома Аб (нейтральність). Імена кандидатів не мають значення: якщо поміняти місцями кандидатів a і b у перевазі кожного виборця, то результат голосування зміниться відповідно (якщо раніше вибирався кандидат a, то тепер буде вибиратись кандидат b і навпаки; якщо раніше вибирався деякий кандидат c, відмінний від a і b, то тепер він же і буде вибраний).

Не можна, звичайно, відмовитись і від аксіоми АЗ одностайності (оптимальності за Парето). Тому узагальнимо її так:

Аксіома АЗ' (ефективність). Якщо кандидат a для всіх виборців кращий за кандидата b, то b не може бути вибраним.

Розглянуті вище правила Борда, Копленда та Сімпсона анонімні, нейтральні й оптимальні за Парето. Те ж саме справедливо і для будьякого правила голосування з підрахунком балів, якщо останні різні ($s_k < s_{k+1}$), при рівності балів оптимальність за Парето може порушуватись. Якщо ж нам необхідно виділити єдиного кандидата (при застосуванні правил підрахунку очок, Копленда, Сімпсона), то у загальному випадку це неможливо зробити без порушення або анонімності або нейтральності. Це стає очевидним, якщо розглянути профіль Кон

дорсе: $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$. Якщо при анонімному, нейтральному і однозначному правилі голосування вибирається, наприклад a, то при перестановці a і b, b і c, c і a (унаслідок цього отримаємо профіль:

 $b \succ c \succ a$, $c \succ a \succ b$, $a \succ b \succ c$), з одного боку (за анонімністю), переможцем повинен залишитись a, з іншого (за нейтральністю) – переможцем повинен стати c (оскільки ми поміняли "імена" a і c).

На практиці нас цілком влаштовують відображення голосування (такі, як множина переможців за Борда або за Коплендом), для котрих виконуються три вище наведених принципи і які "не дуже часто" приводять до рівності очок. Якщо необхідний однозначний вибір, то ми використовуємо або анонімне правило (вибираємо, скажімо, серед переможців того, за якого голосує "голова журі") або нейтральне правило (переможця вибираємо за алфавітом).

Наступний "критерій" – властивість монотонності. Він говорить про те, що більша підтримка кандидата не може зменшити його шанси бути вибраним. Ця властивість називається позитивним оберненим зв'язком.

Аксіома А7 (монотонність). Нехай a вибирається при даному профілі й профіль змінюється так, що положення a покращується, а відносне порівняння пари будь-яких кандидатів для будь-якого виборця залишається незмінним. Тоді a для нового профілю також буде вибраним.

Легко зрозуміти, що узагальнене правило Борда, правила Копленда та Сімпсона є монотонними. Правило ж відносної більшості з вибуванням, що широко застосовується на практиці, є немонотонним!

Розглянемо два профілі (табл. 3.3.9, 3.3.10). Другий профіль відрізняється від першого лише останнім стовпчиком, у якому положення a порівняно з b покращується. Перевірте, що для першого профілю переможцем за правилом відносної більшості з вибуванням ϵ a, а для другого профілю c. Покращення позиції a приводить до його поразки! Можна уявити гіпотетичну ситуацію, у якій перший профіль — "істинний" (відповідає індивідуальним перевагам виборців), у другому профілі "підкуплені" два виборці міняють свою перевагу між a і b. Резюме — голосуйте чесно!

Таблиця 3.3.9

6	5	4	2
а	С	b	b
b	а	C	а
C	b	a	c

Таблиця 3.3.10

6	5	4	2
а	C	b	a
b	а	C	b
c	b	а	c

Не ϵ монотонним і таке правило.

Метод альтернативних голосів. Виключаємо тих кандидатів, хто отримав найменшу кількість голосів. Потім знову підраховуємо голоси виборців для кандидатів, що залишились і знову виключаємо "найгірших" до того часу, поки не залишиться один кандидат (або декілька з рівною кількістю голосів).

Наступна властивість вперше була введена Смітом (1973) і Янгом (1974) і відома, як аксіома Янга про поповнення.

Аксіома А8 (поповнення (однозначні правила голосування)). Дві групи виборців N_1 і N_2 , що не перетинаються, вибирають одного і того ж кандидата a з множини A. Тоді виборці з множини $N=N_1\cup N_2$ також вибирають a.

За цією властивістю виборці розбиваються на "територіальні" дільниці або законопроєкт розглядається в підкомісіях.

Аксіома А'8 (поповнення (відображення голосування)). Нехай виборці з N_1 вибирають кандидатів A_1 з A, із N_2 – з A_2 , $N_1 \cap N_2 = \emptyset$, $A_1 \cap A_2 \neq 0$. Тоді виборці з $N = N_1 \cup N_2$ виберуть кандидатів з $A_1 \cap A_2$.

Теорема 3.3. (Янг, 1975). Усі правила голосування, що базуються на підрахунку балів, задовольняють аксіомі поповнення. Якщо при рівності очок вибір відбувається на основі фіксованого порядку на *A*, то відповідні правила також задовольняють аксіомі поповнення. Правило Кондорсе (або його узагальнення таке, що вибирається переможець Кондорсе, якщо останній існує) не задовольняє аксіомі поповнення.

Аксіома А9 (участі). Нехай кандидат $a \in A$ вибирається виборцями з N. Нехай до множини виборців добавляється новий виборець i ($i \notin N$). Тоді виборці з $N \cup \{i\}$ повинні вибрати або a, або кандидата, який для агента $i \in$ строго кращим a.

Переможця за Кондорсе для наведеного профілю (табл. 3.3.11) не існує, переможцем за Сімпсоном є кандидат a: S(a) = 6, S(b) = 4, S(c) = 3, S(d) = 5. Нехай до розглянутого профілю додаються ще чотири виборці з перевагами: $c \succ a \succ b \succ d$. Для нового профілю переможцем буде b (S(a) = 6, S(b) = 8, S(c) = 7, S(d) = 5). Отже, чотирьом новим виборцям краще залишитись удома, щоб переміг a!

3 3 5 d b aа d d b cb ccab cd a

Таблиця 3.3.11

Теорема 3.3.4. (Мулен, 1986). Для всіх правил голосування з підрахунком очок, коли при рівності очок вибір відбувається з допомогою заданого порядку на A, аксіома участі виконується. Якщо A має хоча б чотирьох кандидатів, то для правил типу Кондорсе не задовольняється аксіома участі.

Для формування одного з найбільш відомих результатів теорії голосування знадобиться ще одна аксіома.

Аксіома 10 (неперервність). Нехай виборці з N_1 вибирають $a \in A$, із $N_2-b\in A$, $a\neq b$, $N_1\cap N_2=\varnothing$. Тоді існує (досить велике) натуральне число m таке, що $(mN_1)\cup N_2$ вибере a.

Ця вимога є досить "м'якою": якщо група виборців N_2 є досить малою, то вона не повинна впливати на результат виборів, що визначається m "дуелями" групи виборців N_1 . Ця аксіома, зокрема, гарантує відсутність диктатора.

Теорема 3.3.5. (Янг, 1975). Відображення голосування базується на правилі підрахунку балів тоді й лише тоді, коли задовольняє наступним чотирьом аксіомам: анонімності, нейтральності, поповнення й неперервності.

Доведення цієї теореми (що ε характеризацією правила підрахунку очок) ε вельми складним.

Не дивлячись на складнощі, що виявлені вище для методів типу Кондорсе, вони широко застосовуються на практиці.

Голосування з послідовним виключенням. Задається послідовність кандидатів, наприклад, *abcd*. Перші два кандидати порівнюються і за правилом більшості виключається один із них. Той кандидат, що залишився, порівнюється з наступним і т. д. При рівності голосів залишається, наприклад, "лівий" кандидат.

Таблиця 3.3.12

1	2	1	1
d	а	d	b
b	b	C	C
а	c	а	d
c	d	b	а

Таблиця 3.3.13

1	1	1
b	а	c
а	d	b
d	c	а
С	b	d

Правило паралельного виключення. Для заданої послідовності кандидатів, наприклад, abcd, за правилом більшості порівнюється a з b і c з d ("півфінал"), потім переможці у парах порівнюються між собою ("фінал"). Цей метод є методом типу Кондорсе, у випадку відсутності рівності при попарних порівняннях він зберігає оптимальність за Парето. Якщо рівності можливі, то оптимальність за Парето може порушуватись.

При голосуванні за правилом відносної більшості з вибуванням іноді буває доцільним віддати свій голос не найкращому для себе кандидату, а деякому іншому: якщо я знаю, що найкращий для мене кандидат a все рівно не пройде, оскільки кандидати b і c гарантовано наберуть більше голосів, то я краще допоможу тому кандидату з b, c, котрий для мене переважніший (згадайте свої міркування під час ви-

борів у Верховну Раду України 26 березня 2006 р., коли у бюлетенях було 45 партій і блоків). Тому природно виникає питання - чи існує "захищене від маніпулювання" правило голосування, тобто таке правило, що кожен виборець, знаходячись у кабіні для голосування, завжди захоче вказати свій пріоритет правдиво? У випадку бінарного вибору (при двох кандидатах - другий і третій тури виборів Президента України 2004 р.) голосування за правилом більшості є, очевидно, неманіпульованим. Якщо ж кандидатів не менше трьох, то єдиним неманіпульованим правилом голосування є диктаторське правило. Цей результат, аналогічний теоремі Ерроу, був доведений Гіббартом (1973) і Саттертвайтом (1975). Зрозуміло, що диктаторське правило не може бути прийнято, як найбільш несправедливе (для абсолютної більшості людей). Однак для будь-якого недиктаторського правила голосування існує профіль переваг, при якому деякому агенту вигідно не повідомляти правдиво свої переваги. Таким чином, голосування не є механізмом збору інформації про переваги виборців, що заслуговує на довіру. Але що ж робити? Як подолати негативний результат Гіббарта-Саттертвайта? Головною особливістю цієї теореми є те, що будь-який профіль переваги є допустимим "входом" для правил голосування. Якщо можна зі змістовних міркувань обмежити область переваг, то загроза маніпуляцій, можливо, зникне. Наприклад, нехай профіль переваг змінюється в області, у якій переможець Кондорсе завжди існує. Тоді голосування за правилом більшості (що вибирає у точності переможця Кондорсе) є захищеним від маніпулювання.

На завершення даного параграфа сформулюємо теорему Гіббарта—Саттертвайта строго. Нехай L(A) — множина лінійних порядків на скінченій множині кандидатів A (повних, транзитивних, асиметричних відношень на A). Нехай N — скінченна множина виборців. Думка виборця $i \in N$ записується з допомогою функції корисності $u_i : A \to E^1$, що відображає порядок на A (байдужості виключаються). Наприклад, $u_i(a) > u_i(b) > u_i(c)$ — для i-го виборця кандидат a на першому місці, b — на другому і т. д.

Правило голосування є однозначне відображення $S:L(A)^N\to A$, що ставить кожному профілю $u=(u_i,i\in N)$ результат виборів S(u). Нехай S є відображенням "на": для кожного a існує такий профіль u, що S(u)=a (ніякий кандидат не може бути апріорі відкинутим).

Визначення 3.3.3. Правило голосування є захищеним від маніпулювання, якщо для будь-якого профілю $u \in L(A)^N$ і будь-якого виборця $i \in N$ виконується: $u_i(S(u)) \ge u_i(S(v_i, u_{N\setminus i}))$ для $\forall v_i \in L(A)$.

Теорема 3.3.6. (Гіббарт, 1973; Саттертвайт, 1975). Якщо A має більше двох кандидатів, то правило S є захищеним від маніпулювання

тоді і лише тоді, коли воно є диктаторським: $S = S^{i^*}$ для деякого агента i^* – диктатора, де $S^{i^*}(u) = \max u_{i^*}$ для всіх $u \in L(A)^N$.

Як бачить читач, за останні шістдесят років стало багато що зрозумілим у теорії голосування, отримано багато цікавих результатів, виявлено багато "екзотичних" властивостей правил голосування, що широко використовуються на практиці. Чому ці правила все ще широко використовуються дає нам уявлення про те (за Е. Муленом, [7]), "із якою швидкістю теорії прокладають собі шлях у реальний світ".

З іншого боку виявилось, що спроба апріорі вимагати від переможця "хороших" (логічних, демократичних, розумних) властивостей призводить до диктаторства (див. теореми $3.3.1,\ 3.3.6$). Який вихід? Забезпечувати "демократичність" не переможця, а правил вибору, і приймати переможця таким, який він є – "Народ має тих керівників, яких заслуговує". Чому так виходить? А тому, що (цитуємо М. Бердяєва [13]) "Правда й істина може бути в меншості, а не в більшості, , навіть завжди, вона буває в меншості...Якщо немає правди й істини, будемо вважати за правду й істину те, що визнає більшість".

Контрольні завдання до § 3

1. Побудувати колективне ранжування для наведених профілів за методами: а) Борда, б) відносної більшості, в) абсолютної більшості в два тури, г) Кондорсе, д) Сімпсона, є) Компленда, ж) альтернативних голосів, з) послідовного виключення, і) паралельне виключення:

5	4	2					
а	c	b					
b	a	а					
c	b	c					
d	d	d					
1.3.							
5	4	2					
c	b	а					
d	a	b					
а	d	c					
b	С	d					

1.1.

1.2.		
5	4	2
c	а	b
а	b	a
b	С	d
d	d	c
1.4.		
1.4.	4	2
	4 a	2 <i>b</i>
5		2 b c
5 <i>d</i>	а	b

- 2. Підібрати профіль для ілюстрації аксіом участі й монотонності.
- 3. Для заданого профілю підібрати профіль, для якого переможці за Сімпсоном і Коплендом не збігаються.

§ 4. Метод аналізу ієрархій

Деякі складні задачі експертного оцінювання мають структуровану множину критеріїв. Однією з найбільш поширених структур множини критеріїв є ієрархія. У вершині ієрархії (інколи кажуть на верхньому чи на першому рівні) знаходиться найважливіший критерій. Деяка підмножина критеріїв утворює другий (за важливістю) рівень ієрархії, інша підмножина - третій і т. д. На нижньому рівні ієрархії знаходяться безпосередньо альтернативи. На рис. 3.4.1 наведено загальну схему ієрархії, де f_i^i – елементи ієрархії критеріїв, x_i – альтернативи. Верхній індекс елементів вказує рівень ієрархії, нижній - порядковий номер. Метод аналізу ієрархій (МАІ, запропонований Сааті [22]) реалізує декомпозицію задачі експертного оцінювання на простіші складові частини. Унаслідок цього визначається відносна значимість альтернатив за ієрархічною системою критеріїв. Відносна значимість виражається чисельно у вигляді векторів пріоритетів. Отримані таким чином значення векторів пріоритетів є оцінками у шкалі відношень і відповідають так званим жорстким оцінкам.

Рис. 3.4.1

Можна виділити ряд модифікацій МАІ, які визначаються характером зв'язків між критеріями й альтернативами, розташованими на найнижчому рівні ієрархії, а також методом порівняння альтернатив. За характером зв'язків між критеріями й альтернативами визначається два типи ієрархій. До першого типу відносяться такі, у яких кожен критерій, що має зв'язок з альтернативами, пов'язаний з усіма розглянутими альтернативами (тип ієрархій з однаковим числом і функціональним складом альтернатив). До другого типу ієрархій на-

лежать такі, у яких кожен критерій, що має зв'язок з альтернативами, пов'язаний не з усіма альтернативами (тип ієрархій із різним числом і функціональним складом альтернатив). У МАІ відомі три методи порівняння альтернатив: попарне порівняння; порівняння альтернатив щодо стандартів і порівняння альтернатив копіюванням. Нижче розглядаються методологія MAI та відмінні риси його модифікацій.

Метод попарного порівняння елементів ієрархії. У цій модифікації методу розглядається ієрархія з однаковими числом і функціональним складом альтернатив.

Для установлення відносної важливості елементів ієрархії використовується шкала відношень (табл. 3.4.1). Ця шкала дозволяє експерту ставити у відповідність ступеням переваги одному порівнюваному об'єкту перед іншим - деяке число.

Ступінь значимості	Визначення	Пояснення
1	Однакова значимість	Дві дії вносять однаковий внесок у досягнення мети
3	Слабка значимість	Існують недостатньо переконливі міркування на користь переваги однієї з дій
5	Істотна значимість	Є дані для того, щоб довести перевагу однієї з дій
7	Очевидна значимість	Переконливе свідчення на користь однієї дії перед іншою
9	Абсолютна значимість	Незаперечні переконливі свідчення на користь переваги однієї дії іншій
2, 4, 6, 8	Проміжні значення сусідніми судженнями	Ситуація, коли необхідно компромісне рішення

Таблиця 3.4.1. Шкала відношень (ступеня значущості дій)

Правомірність цієї шкали доведена практично при порівнянні з багатьма іншими. При використанні зазначеної шкали експерт, порівнюючи два об'єкти в змісті досягнення цілі, розташованої на вищому рівні ієрархії, повинен поставити у відповідність цьому порівнянню число в інтервалі від 1 до 9 або обернене до нього. У тих випадках, коли важко розрізнити скільки є проміжних градацій від абсолютного до слабкої переваги або цього не потрібно в конкретній задачі, може використовуватися шкала з меншим числом градацій. Гранично шкала має дві оцінки: 1 – об'єкти рівнозначні; 2 – перевага одного об'єкта над іншим.

Матриці попарних порівнянь. Після побудови ієрархії встановлю-

ється метод порівняння її елементів. Якщо приймається метод попар-

ного порівняння, то будується множина матриць попарних порівнянь. Для цього в ієрархії виділяють елементи двох типів: елементи – "батьки" і елементи – "нащадки". Елементи – "нащадки" впливають на відповідні елементи вищого рівня ієрархії, які є для них "батьками". Матриці попарних порівнянь будуються для всіх елементів – "нащадків", що відносяться до відповідного елемента – "батька". Елементами – "батьками" можуть бути елементи, що належать будь-якому ієрархічному рівневі, крім останнього, на якому розташовані, як правило, альтернативи. Парні порівняння проводяться в термінах домінування одного елемента над іншим. Отримані судження виражаються в цілих числах за дев'ятибальною шкалою (див. табл. 3.4.1).

Заповнення квадратних матриць попарних порівнянь здійснюється за таким правилом. Якщо елемент E_1 домінує над елементом E_2 , то комірка матриці, що відповідає рядкові E_1 і стовпчику E_2 заповнюється цілим числом, а комірка, що відповідає E_2 і E_1 , заповнюється оберненим до нього числом. Якщо елемент домінує E_2 над E_1 , то ціле число ставиться в комірку, що відповідає рядкові E_2 і стовпчику E_1 , а дріб проставляється в клітку, що відповідає E_1 і E_2 . Якщо елементи рівноцінні, то в симетричних комірках матриці ставляться одиниці.

$$\mu = \begin{pmatrix} \mu_1 & \mu_1 & \dots & \mu_1 \\ \mu_1 & \mu_2 & \dots & \mu_n \\ \mu_2 & \mu_2 & \dots & \mu_2 \\ \mu_1 & \mu_2 & \dots & \mu_n \\ \dots & \dots & \dots & \dots \\ \mu_n & \mu_n & \dots & \dots \\ \mu_n & \mu_1 & \mu_2 & \dots & \mu_n \\ \end{pmatrix}.$$

Для отримання кожної матриці експерт виносить n(n-1)/2 суджень (тут n – порядок матриці попарних порівнянь). Розглянемо приклад формування матриці попарних порівнянь.

Нехай $E_{_1}, E_2, ..., E_n$ — множина з n елементів (альтернатив) і $\mu_1, \mu_2, ..., \mu_n$ відповідно до їхньої ваги або інтенсивності. Порівняємо попарно вагу або інтенсивність, кожного елемента з вагою або інтенсивністю, будь-якого іншого елемента множини відносно до загальної для них властивості або цілі (стосовно елемента — "батько"). У цьому випадку матриця попарних порівнянь має поданий вигляд.

Матриця попарних порівнянь має властивість зворотної симетрії, тобто $\mu_{ij} = 1/\mu_{ji}$. При проведенні попарних порівнянь варто відповідати на такі питання: який із двох порівнюваних елементів є важливі-

шим (або має більший вплив) чи ϵ ймовірним (або важливішим). При порівнянні критеріїв звичайно запитують, який із критеріїв важливіший; при порівнянні альтернатив стосовно критерію – яка з альтернатив краща або ймовірна.

Оцінка однорідності суджень. Ранжування елементів, що аналізуються з використанням матриці попарних порівнянь, здійснюється на підставі аналізу головних власних векторів матриці попарних порівнянь. Обчислення головного власного вектора W додатної квадратної матриці A проводиться на підставі рівності $AW = \lambda_{\max} W$, де λ_{\max} – максимальне власне число матриці A.

Для додатної квадратної матриці A правий власний вектор W, що відповідає максимальному власному числу λ_{\max} із точністю до постійного множника C, можна обчислити за формулою:

$$\lim_{k \to \infty} \frac{A^k e}{e^T A^k e} = CW , \qquad (3.4.1)$$

де $e = (1, 1, ..., 1)^T$ одиничний вектор; k – показник степеня.

На практиці обчислення власного вектора виконуються до досягнення заданої точності ξ : $e^T(W^k-W^{k-1}) \le \xi$. Із достатньої для практики точністю можна прийняти $\xi=0,01$ незалежно від порядку матриці. Максимальне власне значення обчислюється за формулою:

$$\lambda_{\max} = e^T A W . \tag{3.4.2}$$

У практичних задачах кількісна (кардинальна) і транзитивна (порядкова) однорідність (погодженість) порушується, оскільки людські відчуття не можна виразити точною формулою. Для покращення однорідності в числових судженнях, яка величина a_{ij} не була б узята для порівняння i-го елемента з j-м, a_{ij} приписується значення оберненої величини, тобто $1/a_{ij}$. Звідси, якщо один елемент у a раз є важливішим за інший, то останній лише в 1/a раз є важливішим за перший.

При порушенні однорідності ранг матриці буде відмінний від одиниці і вона буде мати кілька власних значень. Однак при невеликих відхиленнях суджень від однорідності одне з власних чисел буде істотно більшим за інші та приблизно дорівнюватиме порядкові матриці. Таким чином, для оцінки однорідності суджень експерта необхідно використовувати відхилення величини максимального власного числа від порядку матриці n.

Однорідність суджень оцінюється індексом однорідності (IO) або відношенням однорідності (BO) з допомогою таблиці, у якій M(IO) –

середнє значення (математичне сподівання) індексу однорідності випадково складеної матриці попарних порівнянь, що базується на експериментальних даних (табл. 3.4.2).

Порядок матриці	M(IO)	Порядок матриці	M(IO)	Порядок матриці <i>(п)</i>	M(IO)	
1	0,00	6	1,24	11	1,51	
2	0,00	7	1,32	12	1,48	
3	0,58	8	1,41	13	1,56	
4	0,90	9	1,45	14	1,57	
5	1,12	10	1,49	15	1,59	

Таблиця 3.4.2. Середнє значення індексу однорідності

За припустиме береться значення $BO \le 0,1$. Якщо для матриці попарних порівнянь відношення однорідності BO > 0,1, то це свідчить про істотне порушення логічності суджень, допущеному експертом при заповненні матриці, тому експертові пропонується переглянути дані, використані для побудови матриці, щоб покращити однорідність.

Ієрархічний синтез використовується для зважування власних векторів матриць попарних порівнянь альтернатив вагами критеріїв (елементів), що знаходяться в ієрархії, а також для обчислення суми по усіх відповідних зважених компонентах власних векторів нижчого рівня ієрархії. Далі розглядається алгоритм ієрархічного синтезу з урахуванням позначень, прийнятих у попередній ієрархії.

Крок 1. Визначаються вектори пріоритетів альтернатив $W_{(f_i^{\,j})}^x$ щодо елементів $f_i^{\,j}$ передостаннього рівня ієрархії (i=S). Тут через $f_i^{\,j}$ позначені елементи ієрархії, причому верхній індекс i указує рівень ієрархії, а нижній індекс j – порядковий номер елемента на рівні. Обчислення множини векторів пріоритетів альтернатив W_S^x щодо рівня ієрархії S здійснюється за ітераційним алгоритмом, реалізованим на основі співвідношень (3.4.1) і (3.4.2) по вихідним даним, зафіксованим у матрицях попарних порівнянь. Унаслідок цього визначається множина векторів: $W_S^X = \left\{ \begin{array}{l} W_{f_2^X}^X, W_{f_2^S}^X, ..., W_{f_p^S}^X \end{array} \right\}$.

 $Kpo\kappa\ 2$. Аналогічно обробляються матриці попарних порівнянь власне елементів f_j^i . Дані матриці, побудовані так, щоб визначити перевагу елементів визначеного ієрархічного рівня щодо елементів вищого рівня, із якими вони безпосередньо пов'язані. Наприклад, для обчислення векторів пріоритетів елементів третього ієрархічного рівня (див. рис. 3.4.1) обробляються три матриці попарних порівнянь:

f_1^2	f_1^3	f_2^3	f_4^3	f_2^2	f_1^3	f_2^3	f_4^3	f_3^2	f_2^3	f_3^3	f_4^3
f_1^3	μ_1 / μ_1	μ_1/μ_2	μ_1 / μ_4	f_1^3	μ_1 / μ_1	μ_1/μ_2	μ_1/μ_4	f_2^3	μ_2 / μ_2	μ_2 / μ_3	μ_2 / μ_4
f_2^3	μ_2/μ_1	μ_2/μ_2	μ_2/μ_4	f_2^3	μ_2 / μ_1	μ_2 / μ_2	μ_2/μ_4	f_3^3	μ_3/μ_2	μ_3/μ_3	μ_2/μ_4
f_4^3	μ_4/μ_1	μ_4/μ_2	μ_4/μ_4	f_4^3	μ_4/μ_1	μ_4/μ_2	μ_4/μ_4	f_4^3	μ_4/μ_2	μ_4/μ_3	μ_4/μ_4

Унаслідок обробки матриць попарних порівнянь визначається множина векторів пріоритетів критеріїв: $W^f = \left\{W^f_{f_i^f}\right\}$.

Отримані значення векторів використовуються згодом при визначенні векторів пріоритетів альтернатив щодо всіх елементів ієрархії.

Крок 3. Здійснюється власне ієрархічний синтез, що полягає в послідовному визначенні векторів пріоритетів альтернатив щодо критеріїв f_j^i , які знаходяться на всіх ієрархічних рівнях, крім передостаннього, що містить критерії f_j^S . Обчислення векторів пріоритетів проводиться в напрямку від нижніх рівнів до верхнього з урахуванням конкретних зв'язків між критеріями, що належать різним рівням. Обчислення проводиться шляхом перемножування відповідних векторів і матриць.

Вираз для обчислення векторів пріоритетів альтернатив визначається так:

$$W_{f_{j}^{i}}^{X} = \left[W_{f_{1}^{i-1}}^{X}, W_{f_{2}^{i-1}}^{X}, \dots, W_{f_{n}^{i-1}}^{X}\right] \cdot W_{f_{i}^{i-1}}^{f},$$

де $W^X_{f^i_j}$ – вектор пріоритетів альтернатив щодо критерію $W^X_{f^{i-1}_j}$, що визначає j-й стовпчик матриці; $W^f_{f^i_j}$ – вектор пріоритетів критеріїв $f^{i-1}_1, f^{i-1}_2, ..., f^{i-1}_n$, пов'язаних із критерієм f^i_j вищого рівня ієрархії.

Оцінка однорідності ієрархії. Після розв'язання задачі ієрархічного синтезу оцінюється однорідність всієї ієрархії за допомогою підсумовування показників однорідності всіх рівнів, приведених шляхом "зважування" до першого рівня ієрархії, де знаходиться коренева ве-

ршина. Число кроків алгоритму з обчислення однорідності визначається конкретною ієрархією.

Розглянемо принципи обчислення індексу та відношення однорідності ієрархії. Нехай задана ієрархія критеріїв і альтернатив (рис. 3.4.2) і для кожного рівня визначений індекс однорідності та вектори пріоритетів критеріїв так: IO_1^1 – індекс однорідності для 1-го рівня; $\{IO_1^2, IO_2^2\}$ – індекси однорідності для 2-го рівня; $\{IO_1^3, IO_2^3, IO_3^3\}$ – індекси однорідності для 3-го рівня; $\{W_1^1\}$ – вектор пріоритетів f_1^2 , f_2^2 відносно критерію f_1^1 ; $\{W_1^2\}$, $\{W_2^2\}$ – вектори пріоритетів критеріїв f_1^3 , f_2^3 , f_3^3 відносно критеріїв f_1^2 , f_2^2 другого рівня.

У цьому випадку індекс однорідності розглянутої ієрархії можна визначити за формулою:

$$IO = IO_{1}^{1} + \left\{W_{1}^{1}\right\}^{T} \begin{bmatrix}IO_{1}^{2}\\IO_{2}^{2}\end{bmatrix} + \left\{W_{1}^{1}\right\}^{T} \begin{bmatrix}W_{1}^{2}W_{2}^{2}\end{bmatrix}^{T} \begin{bmatrix}IO_{1}^{3}\\IO_{2}^{3}\\IO_{3}^{3}\end{bmatrix}.$$

Рис. 3.4.2

Визначення відношення однорідності BO для всієї ієрархії здійснюється за формулою: $BO = IO \ / \ M(IO)$, де M(IO) – індекс однорідності ієрархії при випадковому заповненні матриць попарних порівнянь.

Розрахунок індексу однорідності M(IO) за експериментальними даними (див. табл. 3.4.2) виконується за формулою аналогічною індексу однорідності. Однорідність ієрархії вважається задовільною при значеннях $BO \leq 0.1$.

Агрегація думок декількох експертів. Для агрегування думок експертів береться середнє геометричне, що обчислюється за таким співвідношенням: $a_{ij}^A = \sqrt[n]{a_{ij}^1 \dots a_{ij}^n}$, де a_{ij}^A – агрегована оцінка елемента, що належить і-му рядку ј-му стовпчику матриці попарних порівнянь; n – число матриць попарних порівнянь, кожна з яких складена одним експертом. Логічність цього критерію стає очевидною, якщо два експерти вказують при порівнянні об'єктів відповідно оцінки a і 1/a, що при обчисленні агрегованої оцінки дає одиницю і свідчить про еквівалентність порівнюваних об'єктів.

Осереднення суджень експертів може здійснюватися і на рівні власних векторів матриць попарних порівнянь. Покажемо це на прикладі. Нехай задані судження двох експертів у виді матриць попарних порівнянь:

$$A_1 = \begin{pmatrix} 1 & 2 & 1/7 \\ 1/2 & 1 & 1/5 \\ 7 & 5 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 3 & 1/5 \\ 1/3 & 1 & 1/3 \\ 5 & 3 & 1 \end{pmatrix}.$$

Власні вектори W_i , максимальні власні значення λ_{\max} й оцінки однорідності (ІО, ВО) для цих матриць мають такий вигляд:

✓ для матриці A_1

$$W_1 = (0.15, 0.16, 0.744)^T$$
, $\lambda_{\text{max}} = 3.121$, $IO = 0.06$, $BO = 0.103$;

✓ для матриці A_2

$$W_2 = \begin{pmatrix} 0,223,\ 0,127,\ 0,65 \end{pmatrix}^T, \ \lambda_{\max} = 3,297,\ IO = 0,148,\ BO = 0,255.$$

Осереднення на рівні елементів власних векторів дає

$$W=\begin{pmatrix} 0,184,&0,117,&0,7\end{pmatrix}^T$$
. Осереднюючи елементи матриць $A_1,&A_2$, одержимо матрицю: $A=\begin{pmatrix} 1&2,45&0,17\\0,41&1&0,26\\5,9&3,9&1 \end{pmatrix}$.

Власним вектором матриці A буде: $W_A = (0,184, 0,116, 0,7)^T$.

Контрольні завдання до § 4

- 1. Методом аналізу ієрархій серед трьох автомобілів (А1, А2, А3) треба вибрати найкращий за критеріями (К1, К2, К3). Нехай за критерієм К1 автомобіль А1 має слабку значимість відносно до А2 та істотну значимість відносно до А3; автомобіль А3 має очевидну значимість відносно до А2. За критерієм К2 автомобіль А1 має очевидну значимість відносно до А2 і слабку значимість відносно до А3; автомобіль А3 має однакову значимість відносно до А2. За критерієм К3 автомобіль А1 має однакову значимість відносно до А2 та істотну значимість відносно до А3; автомобіль А2 має слабку значимість відносно до А3.
- 2. Методом аналізу ієрархій потрібно проранжувати три будинки (Б1, Б2, Б3) за критеріями (К1, К2, К3). Нехай за критерієм К1 будинок Б2 має істотну значимість відносно до Б1 і слабку значимість відносно до Б3; будинок Б3 має очевидну значимість відносно до Б1. За критерієм К2 будинок Б1 має істотну значимість відносно до Б2 і слабку значимість відносно до Б3; будинок Б3 має однакову значимість відносно до Б2. За критерієм К3 будинок Б3 має слабку значимість відносно до Б2 та істотну значимість відносно до Б1; будинок Б2 має слабку значимість відносно до Б1.

ПИТАННЯ ДЛЯ САМОПЕРЕВІРКИ ДО РОЗДІЛУ 3

- 1. Описати загальну схему експертизи.
- 2. Оцінити складність виконання конкретної елементарної операції.
- 3. Порівняти методи мозкового штурму і Делфі.
- 4. Дати визначення медіани Кемені-Снела.
- 5. Сформулювати правила Кондорсе і Борда.
- 6. Сформулювати парадокс Ерроу.
- 7. Сформулювати аксіому участі.
- 8. Сформулювати теорему Гіббарта-Саттертвайта.
- 9. У чому полягає метод аналізу ієрархії Сааті?
- 10. Як у методі аналізу ієрархій здійснюється аналіз однорідності суджень?
 - 11. У чому полягає алгоритм ієрархічного синтезу?
 - 12. Як у методі Сааті відбувається агрегування думок експертів?

Розділ 4 ПРИЙНЯТТЯ РІШЕНЬ В УМОВАХ ВИЗНАЧЕНОСТІ

У цьому розділі будуть вивчатися ЗПР в умовах визначеності при числовій оцінці наслідків, тобто коли зв'язок між альтернативами та наслідками детермінований (кожній альтернативі відповідає лише один наслідок) і ціль ототожнюється з максимізацією чи мінімізацією деякої дійснозначної функції, що визначена на множині всіх наслідків.

§ 1. Основні поняття та визначення

Оскільки кожній альтернативі відповідає тільки один наслідок і "корисність" (відносно до цілі задачі) цього наслідку оцінюється деякою єдиною числовою оцінкою, а нас цікавить у кінцевому підсумку найкраща оцінка і відповідна їй альтернатива, то можна встановити прямий зв'язок "альтернатива — числова оцінка відповідного наслідку", минаючи саме наслідок. Унаслідок такого підходу отримаємо дійснозначну функцію f, яка визначена на множині альтернатив, і будемо називати її цільовою функцією. Оскільки ціль у ЗПР при числовій оцінці наслідків полягає у знаходженні такого наслідку, що максимізує чи мінімізує числову оцінку, то під оптимальним розв'язком задачі в умовах визначеності природно розуміти ту альтернативу, яка забезпечує цільовій функції мінімальне чи максимальне значення. Таким чином, можна зробити висновок: математичною моделлю ЗПР в умовах визначеності при числовій оцінці наслідків є задача оптимізації (максимізації чи мінімізації) дійснозначної функції, що задана на множині альтернатив.

Якщо функція f є скалярною (тобто наслідки оцінюються тільки за одним показником – критерієм), то приходимо до "звичайної" задачі оптимізації, для якої існує єдина концепція оптимальності – оптимальною буде та альтернатива, яка забезпечує цільовій функції мінімальне чи максимальне значення. Припустимо, що маємо таку ЗПР, наслідки якої оцінюються не за одним, а за двома показниками f_1, f_2 , а ціль полягає в максимізації цієї пари показників (критеріїв) одночасно, тобто за вектором $f = (f_1, f_2)$. Зрозуміло, що лише винятково точки максимумів цих функцій можуть збігатися. Наприклад,

це можна побачити на рис. 4.1.1. Такі задачі не мають розв'язку у звичайному сенсі (є некоректними). Тому спочатку потрібно визначити принцип оптимальності.

Загальні відомості про задачі багатокритеріальної оптимізації. Концепція прийняття рішення в багатокритеріальних ЗПР полягає у свідомому виборі з множини альтернатив однієї. Цей вибір робить особа, що приймає рішення (ОПР), яка прагне до досягнення своєї певної цілі. У ролі такої особи виступають чи окрема людина (прийняття індивідуальних рішень), чи група людей (прийняття колективних рішень), що володіють правами вибору рішення і несуть відповідальність за його наслідки.

Застосування математичних методів при прийнятті рішень допускає побудову математичної моделі, що формально представляє проблемну ситуацію, тобто ситуацію вибору рішення. Для задач прийняття рішень в умовах визначеності, коли випадкові та невизначені фактори відсутні, компонентами такої моделі є: множина X альтернатив (рішень), із якої і варто зробити вибір однієї найкращої альтернативи (оптимального розв'язку), і опис переваг особи, що приймає рішення. Для того, щоб була забезпечена можливість (воля) вибору, множина альтернатив X повинна містити не менш двох елементів.

За наявності числових оцінок наслідків порівняння альтернатив за перевагою ОПР здійснюється не безпосередньо, а за допомогою зада-

них на X числових функцій $f_1, f_2, ..., f_m$, які називаються критеріями (показниками корисності чи ефективності, критеріальними функціями, цільовими функціями і т. п.). Передбачається, що $m \ge 2$ (при m = 1 задача оптимізації називається однокритеріальною).

Шкала критерію. Для кожного критерію f_i на числовій прямій E^1 вказується підмножина Y_i , на якій він приймає свої значення. На практиці множину Y_i (яку часто називають *шкалою критерію* f_i) визначають відповідно до предметного змісту цього критерію. Наприклад, якщо відомо, що значення критерію f_i є додатним чи невід'ємним (критерій характеризує масу, вартість), то можна прийняти $Y_i = (0, +\infty)$ чи відповідно $Y_i = [0, +\infty)$. Якщо значення f_i обмежені знизу та зверху деякими природними границями a і b, то $Y_i = [a,b]$ (наприклад, якщо f_i — деяка частка запасу ресурсів, то $Y_i = [0,1]$). Якщо значеннями f_i можуть слугувати лише нуль і натуральні числа (скажімо, коли f_i визначається внаслідок підрахунку кількості деяких об'єктів), то $Y_i = \{0, 1, ...\}$. Якщо на значення f_i немає жодних змістовних обмежень, то $Y_i = E^1$ і т. п.

Кількісні та якісні критерії. У задачах прийняття індивідуальних рішень критерії слугують для вираження "інтенсивності" істотних властивостей (ознак) рішень. Наприклад, при порівнянні деяких виробів можуть використовуватися такі критерії, як маса, вартість, дата випуску, зовнішній (товарний) вид і т. п. У задачах прийняття групових рішень критерій f_i характеризує "якість" (чи перевагу) рішень із погляду індивіда i, що входить у скінченну множину $M = \{1, 2, ..., m\}$. Наприклад, якщо множина альтернатив є скінченною й індивід i їх проранжував (упорядкував за перевагою), то можна прийняти $f_i(x') = 1$ для найбільш переважної альтернативи x', $f_i(x'') = 2$ для наступної за перевагою x'' і т. д.

За своїм характером критерії поділяються на кількісні та якісні. Критерій є кількісним, коли його значення має сенс порівнювати, вказуючи, на скільки чи в скільки разів його значення є більшим за інший, і *якісним*, коли ці порівняння безглузді. Прикладом кількісного критерію f_i є маса. Якщо фіксована одиниця виміру маси, то можна говорити про те, у скільки разів (чи на скільки) один виріб важчий за інший. Відношення ваги виробів не змінюється після переходу до іншої одиниці виміру, тобто після перетворень f_i у kf_i , де k>0. Зрозуміло, що будь-яке інше перетворення (яке не є множенням на додатне числю) може привести до зміни вихідного співвідношення значень f_i .

У розглянутому прикладі допустимими перетвореннями критерію f_i є всі додатні лінійні перетворення і лише вони. Функцію ф називають допустимим перетворенням критерію f_i , якщо функція $\phi(f_i)$ знову є критерієм, що вимірює (характеризує) ту ж саму властивість. При заміні f_i на $\phi(f_i)$ множина Y_i змінюється на $\phi(Y_i)$.

Таким чином, із кожним критерієм зв'язують множину допустимих перетворень Φ і кажуть, що цей критерій має шкалу типу Φ чи що вимірювання виконуються за шкалою типу Ф. Як правило, множина Φ вводиться разом із завданням критерію, але іноді визначення типу шкали виявляється самостійною і досить складною задачею.

У вищенаведеному прикладі $\Phi = \Phi_0 = \{\phi | \phi(z) = kz, k > 0\}$. Шкала такого типу називається шкалою відношень тому, що зберігаються відношення величин kz'/kz'' = z'/z'' = C, C = const = const. Розповсюдженим є випадок виміру в шкалі типу $\Phi_u = \{\phi | \phi(z) = kz + l, \ k > 0 \}$. Тут допустимими перетвореннями ϵ множення на додатне число k і додавання довільного числа І. Така шкала називається шкалою інтервалів. Ця назва пояснюється властивістю збереження відношень інтервалів: $\frac{z^{1}-z^{2}}{z^{3}-z^{4}} = \frac{(kz^{1}+l)-(kz^{2}+l)}{(kz^{3}+l)-(kz^{4}+l)} = C, \ C = \text{const.}$

$$\frac{z^{3}-z^{4}}{z^{3}-z^{4}} = \frac{(kz^{3}+l)\cdot(kz^{4}+l)}{(kz^{3}+l)-(kz^{4}+l)} = C, \ C = \text{const.}$$

Прикладом критерію, що має шкалу інтервалів, слугує "дата випуску виробу", оскільки для виміру часу необхідно фіксувати масштаб і початок відліку.

Шкала ϵ тоді досконалою, чим вужча множина Φ допустимих перетворень. Критерії, що мають шкалу не менш досконалу, ніж інтервальна, називаються кількісними. У більшості випадків кількісні критерії відповідають вимірам об'єктивних (фізичних) властивостей. Однак дуже поширені й критерії з менш досконалими шкалами, ніж шкала інтервалів. Найменш досконалою шкалою критеріїв, що зустрічається у задачах оптимізації, є *порядкова шкала.* Для неї множина допустимих перетворень складається з усіх монотонно зростаючих функцій: $\Phi_n = \left\{ \phi | z' > z'' \to \phi(z') > \phi(z'') \right\}.$

Критерії, що мають порядкову шкалу, називаються якісними. Значення якісного критерію має сенс порівнювати тільки за відношенням "більше", "менше" і "дорівнює" - вони зберігаються при монотонних перетвореннях. Але з'ясовувати, у скільки разів чи на скільки одне значення ϵ більшим за інше, безглуздо. Критерій із порядковою шкалою природним чином виникає в тих випадках, коли розв'язки ранжуються, тобто розташовуються за зростанням чи за зменшенням інтенсивності деякої властивості. Потім їм приписуються числа таким чином, щоб більшій інтенсивності відповідало більше чи, навпаки, менше число. Звичайно, такі ранжування отримують при суб'єктивних "вимірах", наприклад, коли вони відображають думку індивіда про перевагу альтернатив.

Дуже часто суб'єктивні виміри виконуються в бальних шкалах. Наприклад, експерти можуть оцінювати у балах зовнішній вигляд виробу. Критерії з бальними шкалами займають "проміжне" положення між кількісними та якісними критеріями.

Твердження про значення критеріїв із заданими типами шкал називається осмисленим, чи адекватним, якщо його істинність не змінюється після застосування до критеріїв будь-яких допустимих перетворень, зумовлених типами шкал. Тому для аналізу й розв'язання практичних багатокритеріальних задач оптимізації варто застосовувати тільки ті визначення та поняття, методи і процедури, що приводять до одержання адекватних висновків і рекомендацій.

Наприклад, широко відомим є метод розв'язку багатокритеріальних задач, заснований на "згортанні" векторного критерію в одну функцію – узагальнений (чи агрегований) критерій $F(f_1,f_2,...,f_m)$. Неважко переконатися в тому, що цей метод не придатний для розв'язку задач із якісними критеріями. Візьмемо найрозповсюдженіший узагальнений критерій – лінійну "згортку" $F_{\Sigma} = \sum_{i \in M} \mu_i f_i$, де μ_i – деякі додатні числа, що ха

рактеризують відносну важливість критеріїв (коефіцієнти важливості). Нехай, наприклад, m=2, $\mu_1=\mu_2=1$, f(x')=(2,8), f(x'')=(1,27). Тоді F_{Σ} вказує, що x' краще за x'' тому, що 2+8<1+27. Однак, якщо до першого критерію застосувати допустиме перетворення $\phi_1(z')=z^5$, а до другого $\phi_2(z'')=z^{\frac{1}{3}}$ (тобто f_1 замінити на f_1^5 , а f_2 на $f_2^{\frac{1}{3}}$), то висновок виявиться протилежним тому, що 32+2>1+3.

Множина досяжності. Окремі (локальні) критерії f_i , утворюють векторний критерій $f=(f_1,f_2,...,f_m)=(f_i)_{i\in M}$, де $M=\{1,2,...,m\}$ називають множиною індексів критеріїв. Вважається, що кожна альтернатива x цілком характеризується відповідною (векторною) оцінкою, тобто вектором f(x). Тому вибір оптимальної альтернативи з множини всіх альтернатив X зводиться до вибору оптимальної оцінки з множини досяжних оцінок $Y=f(X)=\left\{y\in E^m \middle| y=f(x),\ x\in X\right\}$, де E^m-m -вимірний числовий простір, який називається простором оцінок (критеріїв). За необхідності цей простір буде вважатися евклідовим,

тобто з метрикою $\rho_2(y',y'') = \langle y'-y'',y'-y'' \rangle^{\frac{1}{2}} = \left[\sum_{i \in M} (y_i'-y_i'')^2\right]^{\frac{1}{2}}$, інколи використовуються інші простори, наприклад, із метриками $\rho_1(y',y'') = \sum_{i \in M} |y_i'-y_i''|$ чи $\rho_\infty(y',y'') = \max_{i \in M} |y_i'-y_i''|$. Часто буває, що в реальних задачах множину Y будувати дуже складно, а то й неможливо. Тому розглядається деяка більш широка множина $\overset{\circ}{Y} \subseteq E^m$, векторам із якої можна надати певного змісту. Найчастіше — ця множина $\overset{\circ}{Y}$ досяжних оцінок є гіперпаралелепіпедом $Y^m = \prod_{i \in M} Y_i$. Іноді Y отримують із Y^m за допомогою тих чи інших обмежень, спрямованих на виклю-

із Y^m за допомогою тих чи інших обмежень, спрямованих на виключення позбавлених чи змісту, чи заздалегідь недосяжних векторів.

Введення в розгляд множини Y дає ряд переваг. Наприклад, виникає можливість дослідження не однієї, а відразу цілої сім'ї задач, для ко-

жної з яких множина досяжних оцінок входить у Y. Зокрема, можливо вивчати характерні залежності оптимального розв'язку від тих чи інших параметрів задачі.

Далі альтернативи завжди будуть позначатися літерою x із різними індексами, а відповідні їм оцінки – літерою y із тими ж індексами, наприклад: y = f(x), $y^* = f(x^*)$ і т. п. Якщо деяка векторна оцінка y^0 є досяжною і їй відповідає кілька альтернатив, то під x^0 буде розуміти (якщо немає спеціальних застережень) довільна з цих альтернатив (тобто будь-яка альтернатива, що задовольняє рівності $f(x^0) = y^0$).

Незалежність критеріїв за перевагою. У багатокритеріальній задачі кожний розв'язок $x \in X$ цілком характеризується своєю оцінкою y = f(x) і тому вибір оптимального розв'язку зводиться до вибору оптимальної оцінки з множини Y всіх досяжних оцінок.

Природно, що найбільш просто порівнювати за перевагою ті векторні оцінки, що відрізняються одна від одної лише однією компонентою. Значення критерію f_i можуть по-різному співвідноситися за перевагою ОПР залежно від того, які значення всіх інших критеріїв. Інакше кажучи, для чисел s і t з Y може виявитися, наприклад, що оцінка $(y_1,...,y_{i-1},\ s,\ y_{i+1},...,y_m)$ є важливішою за $(y_1,...,y_{i-1},\ t,\ y_{i+1},...,y_m)$, однак $(y_1',...,y_{i-1}',\ s,\ y_{i+1}',...,y_m')$ менш краща порівняно з $(y_1',...,y_{i-1}',\ t,\ y_{i+1}',...,y_m')$. І тоді сказати, яке зі значень критерію s чи t – важливіше, не вказуючи значень інших критеріїв, неможливо.

Критерій f_i , для якого має місце зазначене твердження, називається залежним за перевагою від інших. Наприклад, якщо f_1 , f_2 відповідно – довжина й ширина кімнати, а f_3 висота стелі, то з погляду мешканця f_3 залежить за перевагою від (f_1, f_2) . Ще приклад: кожний із критеріїв f_1 (температура повітря) і f_2 (його вологість) залежать за перевагою один від одного (мається на увазі комфортність для людини).

Однак, набагато частіше зустрічаються критерії, для яких можна впорядкувати за перевагою всі їхні значення без розгляду значень інших критеріїв. Прикладами є вже згадувані критерії доходу, витрат і т. п. Такі критерії називаються незалежними за перевагою від інших [10]. Критерій f_i є незалежним за перевагою від інших m-1 критеріїв, якщо для будь-яких чотирьох оцінок виду:

$$(y_1,...,y_{i-1},s,y_{i+1},...,y_m), (y_1,...,y_{i-1},t,y_{i+1},...,y_m), (y'_1,...,y'_{i-1},s,y'_{i+1},...,y'_m), (y'_1,...,y'_{i-1},t,y'_{i+1},...,y'_m)$$

зі співвідношення $(y_1,...,y_{i-1},s,y_{i+1},...,y_m)R(y_1,...,y_{i-1},t,y_{i+1},...,y_m)$ завжди випливає $(y_1',...,y_{i-1}',s,y_{i+1}',...,y_m')R(y_1',...,y_{i-1}',t,y_{i+1}',...,y_m')$.

Якщо критерій f_i є незалежним за перевагою від сукупності інших, то на множині Y_i можна ввести відношення нестрогої переваги R і вважати, що sRt, коли $(y_1,...,y_{i-1},s,y_{i+1},...,y_m)R(y_1,...,y_{i-1},t,y_{i+1},...,y_m)$ для деяких двох (а виходить і будь-яких двох) оцінок такого виду.

Задачі, у яких усі критерії незалежні за перевагою, тобто кожен критерій незалежний за перевагою від сукупності всіх інших, а відношення нестрогої переваги на множині значень кожного критерію є відношення "> " ("не менше"), називаються багатокритеріальними задачами максимізації. У таких задачах кожному критерію бажано мати можливо більше значення, чи, як говорять, кожен критерій бажано максимізувати. Якщо ж у задачі кожен критерій бажано мінімізувати, то вона називається багатокритеріальною задачею мінімізації.

Надалі, за винятком тих випадків, що особливо обговорюються, будуть розглядатися багатокритеріальні задачі максимізації.

Постановка задачі багатокритеріальної оптимізації. Будемо розглядати скінченно вимірні задачі багатокритеріальної максимізації:

$$f(x) \to \max,$$

 $x \in X,$

де X — множина альтернатив, яка є множиною з простору E^n ; $f(x) = (f_i(x))_{i \in M}$ — вектор критеріїв, який задається відображенням $f: X \to E^m$; $M = \{1, 2, ..., m\}$ — множина індексів критеріїв, m — кількість критеріїв. У таких задачах множина альтернатив X, як правило, виді-

ляється з якоїсь ширшої множини $D \subseteq E^n$ за допомогою обмежень, що найчастіше представляються у вигляді нерівностей:

$$X = \{x \in D | g_1(x) \ge 0, g_2(x) \ge 0, ..., g_k(x) \ge 0 \},$$

де $g_i(x)$, j=1,2,...,k, – числові функції, які визначені на D. При цьому вважається, що і вектор критеріїв $f(x)=(f_1(x),f_2(x),...,f_m(x))$ також визначений на D.

У ролі множини D, як правило, виступає або весь простір E^n , або деяка його специфічна підмножина, наприклад, невід'ємний ортант $E^n_{\geq 0}$, утворений усіма векторами з невід'ємними компонентами: $E^n_{\geq 0} = \left\{x \in E^n \,\middle|\, x_1 \geq 0, \; x_2 \geq 0, ..., x_n \geq 0 \right\}.$

Практично, множина D виділяється з E^n за допомогою найпростіших і очевидних обмежень на змінні.

Класи задач багатокритеріальної оптимізації. Залежно від структури множини X (чи D) і властивостей функцій f_i (а також g_i) для зручності досліджень виділяють різні класи багатокритеріальних задач. Так, якщо множина X (чи D) містить скінченну кількість елементів, то задача називається *скінченною*, а якщо X (чи D) є зліченною множиною, то – дискретною.

Зокрема, якщо в кожного вектора з X (чи D) компоненти – цілі числа, то задача називається *цілочисельною*. А якщо вектори, які утворюють X (чи D) є булевими (тобто складаються з нулів та одиниць), то і сама задача називається *булевою*.

Якщо X (чи D) опукла множина, а усі f_i – увігнуті функції, то задача називається *увігнутюю*. Зокрема, якщо X – поліедральна множина (тобто "вирізана" з E^n кінцевою системою лінійних нерівностей і рівностей), а усі f_i – лінійні, то багатокритеріальна задача називається *лінійною*.

Ефективні й слабко-ефективні оцінки й альтернативи. У багатокритеріальній задачі максимізації із двох векторних оцінок, що відрізняються лише однією компонентою, переважнішою буде та, у якої ця компонента більша. А що можна сказати про векторні оцінки y і y', для яких виконуються нерівності:

$$y_i \ge y_i', i = 1, 2, ..., m$$
? (4.1.1)

Для цього згадаємо, як описуються переваги.

Досить загальним і добре розробленим є спосіб опису переваг "мовою" бінарних відношень. Для опису переваг широко використовуються бінарні відношення (див. Розділ 1), що вводяться на множині порівнюваних об'єктів. У багатокритеріальних задачах такими множинами є множина альтернатив X і множина оцінок Y.

Відношення строгої переваги P: aPb означає, що об'єкт a є важливішими за b.

Відношення байдужості I: aIb означає, що об'єкти a і b однакові за перевагою (якщо вибір обмежити двома цими об'єктами, то байдуже, який із них узяти).

Відношення нестрогої переваги R: aRb означає, що об'єкт a не менш кращий, ніж b, тобто має місце aPb чи aIb; формально R є об'єднанням P та I.

Відношення переваги R та його підмножин P та I повинні задовольняти таким властивостям: P асиметричне і антирефлексивне; I – симетричне і рефлексивне, R – рефлексивне; P та I – не перетинаються (не може бути одночасно aPb і aIb). Варто мати на увазі, що P і I відновлюються за R: aIb, коли одночасно aRb і bRa, тобто $I = R \cap R^{-1}$; aPb, коли aRb вірно, але bRa невірно: $P = R \setminus R^{-1}$. Таким чином, I є "симетрична ", а P – "асиметрична частина" R.

Відношення R, P та I не є транзитивними. Якщо ж R виявляється транзитивним, то транзитивними будуть P і I; у цьому випадку R є квазіпорядком, P – строгим порядком, I – еквівалентністю.

Абсолютно-оптимальні оцінки й альтернативи. Припустимо, що переваги ОПР описуються відношенням нестрогої переваги R на $\overset{\hat{}}{Y}$, причому відомо, що воно не тільки рефлексивне, але і транзитивне (тобто є квазіпорядком). Вважаючи, що $\overset{\hat{}}{Y} = Y_1 \times ... \times Y_m$, можна записати такі співвідношення для оцінок, послідовно використовуючи відношення " \geq " для їхніх компонент

На підставі цих співвідношень і транзитивності R приходимо до висновку, що справедливо yRy', тобто векторна оцінка y не менш переважна, ніж y'. Це означає введення на множині оцінок $\overset{\circ}{Y}$ відношення нестрогої переваги, яке збігається з квазіпорядком " \geq " для векторів із E^m . Відповідно до загального визначення максимального елемента за відношенням R оцінка y^* називається найкращою за відношенням " \geq ", якщо для будь-якої оцінки $y \in Y$ має місце $y^* \geq y$. Оскільки відношення " \geq " є квазіпорядком, то може існувати лише одна така точка y^* . Наприклад, це ілюструє рис. 4.1.2. Якщо в багатокритеріальній задачі існує

найкраща за відношенням " \geq "оцінка y^* , то саме її і варто вважати оптимальною. У методах багатокритеріальної оптимізації таку оцінку, якщо вона існує, називають *абсолютно-оптимальною*.

Відношення " \geq ", визначене на множині оцінок, породжує аналогічне за змістом відношення " \geq " на множині альтернатив, яке також є частковим квазіпорядком.

Альтернативі, максимальній за відношенням " \geq ", відповідає максимальна за відношенням " \geq " оцінка з Y. Називається ця альтернатива також абсолютно-оптимальною. Отже, абсолютно-оптимальна альтернатива перетворює в максимум на X кожен із критеріїв $f_1, f_2, ..., f_m$. Умови існування абсолютно-оптимальних альтернатив встановлює така теорема.

Теорема 4.1.1. (про необхідні й достатні умови абсолютної оптимальності). Нехай множини оптимальних за кожним критерієм альтернатив є не порожніми, $X^i = Arg \max_{x \in X} f_i(x) \neq \emptyset, \quad i=1,2,...,m$. Тоді мно-

жина абсолютно-оптимальних альтернатив $Q(X) = \bigcap_{i=1}^m X^i$.

Доведення. Спочатку доведемо включення $Q(X) \subseteq \bigcap_{i=1}^m X^i$, що ϵ очевидним, коли $Q(X) = \emptyset$. Нехай $Q(x) \neq \emptyset$ і оберемо $x \in Q(X)$. Тоді за ви-

значенням абсолютно-оптимальної альтернативи отримаємо такий ланцюг імплікацій:

$$\forall x \in X, \quad \overline{x} \geq x \quad \Rightarrow \quad \overline{y} = f(\overline{x}) \geq f(x) = y \quad \Rightarrow \quad f_i(\overline{x}) \geq f_i(x), \quad i = 1, 2, ..., m \quad \Rightarrow$$

$$f_i(\overline{x}) = \max_{x \in X} f_i(x), \quad i = 1, 2, ..., m \quad \Rightarrow \quad \overline{x} \in \bigcap_{i=1}^m X^i.$$

Тепер доведемо включення $Q(X)\supseteq\bigcap_{i=1}^m X^i$, що ϵ очевидним, коли $\bigcap_{i=1}^m X^i=\varnothing$. Нехай $\bigcap_{i=1}^m X^i\ne\varnothing$ і оберемо $x\in\bigcap_{i=1}^m X^i$. Тоді отримаємо такий ланцюг відношень:

$$\overrightarrow{x} \in \bigcap_{i=1}^m X^i \implies \overrightarrow{x} \in X^i, \quad i=1,2,...,m \implies f_i(\overrightarrow{x}) = \max_{x \in X} f_i(x), \quad i=1,2,...,m \implies f_i(\overrightarrow{x}) \geq f_i(x), \quad i=1,2,...,m \implies \overrightarrow{y} = f(\overrightarrow{x}) \geq f(x) = y \implies \forall x \in X, \quad \overrightarrow{x} \geq x \implies x \in Q(x)$$
. Теорему доведено. $lack \bullet$

Абсолютно-оптимальні альтернативи і відповідно абсолютно-оптимальні оцінки, як уже відзначалося, безумовно, можуть вважатися оптимальними, однак практично вони майже ніколи не існують. Це пов'язано з тим, що порядок " \geq " не ε повним, наприклад, якщо $y_i > y_i'$, але $y_j < y_j'$, $i \neq j$, то y й y' за відношенням " \geq " ε незрівнянними. Тому, залежно від суті задачі, доводиться використовувати оцінки й альтернативи, "максимальні" за відношеннями ">"чи ">>". Для таких оцінок використовують спеціальні назви.

Ефективні оцінки й альтернативи. Якщо R не є транзитивним чи $\overset{\circ}{Y} \neq Y_1 \times ... \times Y_m$, то формальним шляхом прийти до сформульованого твердження yRy', неможливо. Однак, у будь-якому випадку, воно є настільки природним, що у всіх моделях прийняття індивідуальних рішень вводиться як аксіома. Прийняття цієї аксіоми, що часто називається (сильною) аксіомою Парето, означає введення в множині оцінок $\overset{\circ}{Y}$ відношення строгої переваги, яке збігається з відношенням ">" для векторів з E^m . Нагадаємо, що вектори $y=(y_1,y_2,...,y_m), \ y'=(y'_1,y'_2,...,y'_m)$ знаходяться у відношенні строгої переваги, якщо $y_i \geq y'_i, \ i=1,2,...,m$, і хоча б одна нерівність є строгою, тобто $y \neq y'$. Для цього відношення можна визначити поняття "максимального" елементу.

Визначення 4.1.1. Будемо називати оцінку $y^0 \in Y$ оптимальною за Парето (ефективною, максимальною за ">"), якщо не існує оцінки

 $y \in Y$ такої, що $y > y^0$. Множину всіх таких оцінок із Y будемо позначати через P(Y) і називати множиною Парето чи множиною ефективних оцінок.

Відношення ">", визначене на множині оцінок, породжує аналогічне за змістом відношення ">" на множині альтернатив, яке є строгим частковим порядком. Отже, альтернатива $x^0 \in X$ називається оптимальною за Парето (ефективною), якщо не існує альтернативи $x \in X$ такої, що $x > x^0$, тобто для якої $f(x) > f(x^0)$. Множина оптимальних за Парето (ефективних) альтернатив буде позначатися через P(X).

Слабко-ефективні оцінки. Розглянемо, наприклад, випадок багато-критеріальної задачі прийняття групового рішення, коли f_i є критерієм i-го ОПР, що входить у групу ОПР (множину $M = \{1, 2, ..., m\}$). У цьому випадку $f_i(x) \ge f_i(x')$ означає, що альтернатива x не гірша за x' із погляду i-го ОПР. У такій задачі відношення переваги на множині оцінок Y повинно відбивати "групову думку", яка агрегує індивідуальні.

Якщо y=y', тобто f(x)=f(x'), то висновок про рівність x і x' за перевагою може бути зроблений і для групи в цілому. Залишається розглянути таке питання: якщо в (4.1.1) хоча б одна нерівність строга, то чи варто вважати, що альтернатива x ϵ важливішою за x'. На жаль, позитивну відповідь на останнє питання можна дати не у всіх реальних ситуаціях. Дійсно, якщо в (4.1.1) строга нерівність лише одна, то це означає, що x переважніше за x' лише для одного члена групи, а для всіх інших обидві альтернативи рівноцінні. Але в деяких ситуаціях може виявитися, що "одного голосу" занадто мало, і тоді група в цілому не обов'язково повинна вважати x важливішим за x'.

Очевидно, у різних ситуаціях підсумок порівняння оцінок y та y' може залежати від того, скільки строгих нерівностей у (4.1.1) виконується при порівнянні їхніх компонент. Однак, самим слабким є припущення, яке полягає в тому, що в для всієї групи y переважніше y', якщо в (4.1.1) усі нерівності строгі. Це припущення є прийнятим майже у всіх відомих моделях групових рішень і називається слабкою аксіомою Парето. Воно вводить на \hat{Y} відношення сильної переваги, що збігається з відношенням ">>" для векторів з E^m . Кажуть, що y >> y' вірне тоді і тільки тоді, коли $y_i > y_i'$, i=1,2,...,m. Для цього відношення також визначається поняття максимального елементу.

Визначення 4.1.2. Оцінку $y^* \in Y$ будемо називати оптимальною за Слейтером (слабко-ефективною або максимальною за ">>"), якщо не

існує оцінки $y \in Y$ такої, що $y >> y^0$. Множину всіх таких оцінок із Y будемо позначається далі через S(Y) і називати множиною Слейтера чи множиною слабко ефективних оцінок.

Відношення ">>", визначене на множині оцінок, породжує аналогічне за змістом відношення ">>" на множині альтернатив, яке є строгим частковим порядком. Отже, альтернатива $x^0 \in X$ називається оптимальною за Слейтером (слабко ефективною), якщо не існує альтернативи $x \in X$ такої, що $x >> x^0$, тобто для якої $f(x) >> f(x^0)$. Множина оптимальних за Слейтером (слабко ефективних альтернатив) буде позначатися через S(X).

Порівняння ефективних і слабко ефективних оцінок. Оскільки з y >> y' випливає y > y', то будь-яка ефективна векторна оцінка є слабко ефективною, так $P(Y) \subseteq S(Y)$. Дійсно, якщо y^0 не є слабко ефективною, то для деякої $y \in Y$ буде виконуватися $y >> y^0$, а тому й $y > y^0$ так, що y^0 не може бути ефективною.

Геометрично, при m=2, P(Y) є "північно-східною" границею множини Y (без горизонтальних і вертикальних ділянок, чи ділянок, що знаходяться у досить "крутих і глибоких проваллях"), а S(Y) може додатково містити в собі вертикальні й горизонтальні ділянки границі, що прилягають до P(Y). Так, на рис. 4.1.3 множина P(Y) (ефективна границя Y) утворена кривими bc, ef, а S(Y) складається з двох частин – abcd (включаючи d) і efg. У цьому легко переконатися, якщо помітити, що точки, які є кращими ніж y за відношенням ">", заповнюють прямий кут, сторони якого паралельні осям координат із вершиною у точці y (сама точка y виключається); а точки, що є кращими за y за відношенням ">>", складають внутрішність цього ж кута.

Економічна інтерпретація оптимальності за Парето. Визначення (слабко) ефективної альтернативи є "статичним" у тім сенсі, що ґрунтується на попарному порівнянні альтернатив і не пов'язується з питанням про те, чи можливо "повільно" перейти від однієї альтернативи до іншої, кращої, збільшуючи кожен критерій. Можливість здійснення такого переходу в деяких, особливо економічних моделях, становить великий інтерес. Прикладом є модель чистого обміну, у якій кожен споживач бере участь в обміні, прагнучи скласти собі набір товарів найбільшої корисності, тобто формально максимізувати свою функцію цінності. Такого роду моделі розглядали ще в ХІХ ст. Ф. Еджворт і В. Парето. Ефективним для моделі обміну є стан (розподіл товарів між споживачами), який не може бути покращеним шляхом перерозподілу товарів для жодного з учасників без обмеження інтересів деяких інших учасників. Отже, оп-

тимальність за Парето відбиває ідею економічної рівноваги: якщо стан не ϵ ефективним, то буде відбуватися торгівля, що приведе до ефективного стану. Якщо процес обміну розглядати як послідовність угод, вигідних усім учасникам, то формалізовано його можна описати гладкою кривою, рухаючись уздовж якої, усі критерії збільшуються. Тоді можна виділити стани, із яких не виходить жодна гладка крива такого типу. Такі стани були названі С. Смейлом критичними точками Парето. Зрозуміло, що множина таких точок (критична множина Парето) включає всю множину слабко-ефективних точок, але ширше останньої (через "локальний характер" визначення критичної точки Парето).

Власно-ефективні альтернативи. Дослідження показують, що серед ефективних можуть зустрітися оцінки (альтернативи), що виявляються у певному сенсі аномальними.

Приклад 1. Розглянемо таку множину оцінок:

$$Y = \{ y \in E^2 | y_1 \le -(y_2)^2 \}.$$

Ефективні оцінки утворюють частину параболи $y_1 = -(y_2)^2$, що лежить у другому квадранті (Рис. 4.1.4). До ефективних відноситься й оцінка $y^* = (0,0)$. Різниці значень координат ефективних оцінок y і y^* виявляються рівними величинам:

$$\Delta y_2 = y_2 - y_2^* = y_2 > 0$$
 i $\Delta y_1 = y_1 - y_1^* = -(\Delta y_2)^2 < 0$.

Рис. 4.1.4

Отже, якщо перейти з точки y^* у досить близьку до неї ефективну точку y, то буде отримано виграш першого порядку малості за другим критерієм за рахунок програшу другого порядку малості за першим критерієм. Якщо критерій f_1 не вважати набагато важливішим за f_2 , то, очевидно, природно погодитися на деяке збільшення f_2 , допустивши на порядок менші втрати по f_1 . Таким чином, оцінка y^* є аномальною: вона є нестійкою в зазначеному випадку і тому відповідна їй альтернатива не може претендувати на оптимальність.

Розглянутий приклад доводить, що іноді має сенс спеціально виділяти ефективні оцінки (і альтернативи), які позбавлені подібних небажаних властивостей. Перше визначення такого роду ефективних рішень, названих власне ефективними (proper efficient), було дано X. Куном і А. Таккером. Однак воно було сформульоване для диференційованого випадку і пов'язане зі спеціальними умовами регулярності, що дозволили одержати необхідні умови оптимальності. Для загального випадку визначення власної ефективності було запропоновано А. Джеофріоном.

Визначення 4.1.3. Ефективна оцінка $y^0 \in P(Y)$ називається власно-ефективною чи оптимальною за Джеофріоном, якщо існує таке додатне число θ , що для $\forall i \in M$, $\forall y \in Y$ (для яких виконується нерівність $y_i > y_i^0$), існує індекс $j \in M$ такий, що $y_j < y_j^0$ і виконується нерівність:

$$(y_i - y_i^0)/(y_i^0 - y_i) \le \theta.$$
 (4.1.2)

Зазначимо, що оскільки y^0 ефективна, то у випадку існування ефективної оцінки y, для якої при деякому i виконується нерівність $y_i > y_i^0$, y буде також ефективною, а тоді \exists номер j, для якого буде справедливою нерівність $y_j < y_j^0$ (оскільки ефективні оцінки y та y' є між собою незрівнянними). Тому зміст приведеного визначення полягає у вимозі існування числа θ , для якого при зазначених умовах виконується (4.1.2).

Альтернативи, яким відповідають власно-ефективні оцінки, також називаються власно-ефективними чи оптимальними за Джеофріоном. Множину всіх таких альтернатив (оцінок) будемо позначати через G(X) (G(Y)). Так, у наведеному прикладі 1 множина G(Y) – це верхня гілка параболи (без вершини y^*).

Приклад 2. Найкраща за відношенням " \geq " (абсолютно-оптимальна) оцінка y^0 є власно-ефективною. Так як $y^0 \geq y$ для $\forall y \in Y$, то нерівність $y_i > y_i^0$ не виконується при жодному $i \in M$ та для жодного $y \in Y$. Тому для власної ефективності y^0 необхідність в умові (4.1.2) відсутня.

Звідси випливає, що альтернатива, яка обертає в максимум одночасно кожний із критеріїв f_i , є власно-ефективною. Зокрема, в однокритеріальних задачах будь-яка оптимальна альтернатива є власно-ефективною.

Приклад 3. Якщо множина $Y \in$ скінченною, то будь-яка ефективна оцінка \in власно-ефективною. Якщо ефективна оцінка \in дина, то \in абсолютно-оптимальною, тому \in власно-ефективною (попередній приклад). Якщо ж P(Y) містить більше одні \in оцінки, то шукане додатне число θ можна задати рівністю:

$$\theta = \max \left\{ y_i - y_i^0 / y_j^0 - y_j \middle| y \in Y; \ i, j \in M; \ i \neq j; \ y_i > y_i^0; \ y_j^0 > y_j \right\}.$$

Отже, якщо $Y \in \text{скінченним}$ (а для цього достатньо скінченності множини альтернатив X), то поняття ефективності та власної ефективності рівносильні.

Ефективна оцінка, що не є власно-ефективною, називається невласно-ефективною. Аналогічна термінологія вводиться і для альтернатив. Це означає, що переходом від невласно-ефективної альтернативи до деякої іншої можна забезпечити збільшення принаймні по одному певному критерію за рахунок втрат вищого порядку малості за всіма тими критеріями, значення яких зменшаться. Іншими словами, невласно-ефективна альтернатива в зазначеному сенсі є аномальною (нестійкою).

Примітка. Як уже вказувалося, поняття власно-ефективних оцінок і альтернатив не має сенсу вводити в тих випадках, коли один крите-

рій важливіший за інші. Задачі, у яких критерії впорядковані за важливістю (і перенумеровані) так, що кожен попередній незрівнянно важливіший за усі наступні, називаються лексикографічними задачами оптимізації тому, що в таких задачах відношення нестрогої переваги є лексикографічним порядком " \geq ". Цей порядок задається так: $y \geq y'$, коли виконана одна з умов:

Відношення " \geq ", що є повним, впорядковує оцінки подібно тому, як розташовуються слова в словнику, і цим пояснюється походження прикметника "лексикографічний". З визначення видно, що в лексикографічній задачі варто домагатися як завгодно малого збільшення більш важливого критерію за рахунок як завгодно великих втрат за всіма іншими, менш важливими критеріями. Саме тому лексикографічно-оптимальна (найкраща за \geq) оцінка не обов'язково буде власно-ефективною, хоча, як легко переконатися, вона обов'язково є невласно-ефективною.

Вище були введені поняття ефективності декількох типів і установлений взаємозв'язок між ними. Цьому зв'язку відповідають такі включення для множини оцінок і альтернатив, ефективних у різному сенсі: $G(Y) \subseteq P(Y) \subseteq S(Y)$, $G(X) \subseteq P(X) \subseteq S(X)$.

Приклади, наведені в цьому розділі, показують, що кожне з цих включень може бути строгим.

Контрольні завдання до § 1

1. Знайти за визначенням множину ефективних альтернатив у такій двокритеріальній задачі:

$$2x_1 + x_2 \rightarrow \max, x_1 + 3x_2 \rightarrow \max, x_1 + x_2 \le 4, x_1 + 2x_2 \le 6, x_{1,2} \ge 0.$$

2. Знайти за визначенням множину ефективних альтернатив у такій двокритеріальній задачі:

$$2x_1 + x_2 \rightarrow \max$$
, $-x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 4$, $x_2 \le 2$, $x_{1,2} \ge 0$.

3. Знайти за визначенням множину ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 - x_2 \rightarrow \max$$
, $-x_1 + 3x_2 \rightarrow \max$, $-x_1 + 2x_2 \ge 2$, $0 \le x_1 \le 2$, $0 \le x_2 \le 4$.

4. Знайти за визначенням множину ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max, x_2 \to \max, x_1 + x_2 \le 5, -4x_1 + x_2 \le 0, x_1 - 4x_2 \le 0, x_{1,2} \ge 0.$$

5. Знайти за визначенням множину слабко ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 + x_2 \rightarrow \max$$
, $x_1 + 4x_2 \rightarrow \max$, $3x_1 + x_2 \le 9$, $x_1 + 3x_2 \le 9$, $x_1 + x_2 \le 4$, $x_{1,2} \ge 0$.

6. Знайти за визначенням множину слабко ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 + x_2 \rightarrow \max, \ x_2 \rightarrow \max, \ x_1 + x_2 \le 5, \ -2x_1 + x_2 \le -1, \ x_1 - x_2 \le 3, \ x_{1,2} \ge 0.$$

7. Знайти за визначенням множину слабко ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max$$
, $-x_1 + 2x_2 \to \max$, $-x_1 + 2x_2 \le 2$, $3x_1 - 2x_2 \le 6$, $x_{1,2} \ge 0$.

8. Знайти за визначенням множину власне ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max, x_2 \to \max, 2x_1^2 + x_2^2 \le 4, x_{1,2} \ge 0$$
.

9. Знайти за визначенням множину власне ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 \to \max, x_1 + x_2 \to \max, x_1^2 + 2x_2^2 \le 4, x_{1,2} \ge 0.$$

10. Знайти за визначенням множину власне ефективних альтернатив у такій двокритеріальній задачі:

$$x_1 + x_2 \rightarrow \max, x_2 \rightarrow \max, x_1^2 + x_2^2 \le 1, x_{1,2} \ge 0.$$

§ 2. Умови оптимальності

У цьому розділі встановлюються умови оптимальності [10] без будьяких істотних припущень щодо структури множини альтернатив X і властивостей заданої на ній вектор-функції критеріїв $f = (f_1, ... f_m)$. Для простоти й наочності викладення будемо розглядати умови оптимальності стосовно до оцінок альтернатив, маючи на увазі, що отримані результати легко переносяться і на самі альтернативи.

Теорема 4.2.1. (умови слабкої ефективності оцінок (Гермейєр)). Припустимо, що $y^0 > 0$. Оцінка $y^0 \in$ слабко ефективною тоді й тільки тоді,

коли існує вектор
$$\mu \in M^+ = \left\{ \mu = (\mu_i)_{i \in M} \Big| \sum_{i \in M} \mu_i = 1; \quad \mu_i > 0, \quad i \in M \right\}$$
 такий, що:
$$\min_{i \in M} \mu_i y_i^0 = \max_{y \in Y} \min_{i \in M} \mu_i y_i. \tag{4.2.1}$$

Для слабко ефективної оцінки $y^0 \in Y$ можна прийняти $\mu = \mu^0 \in M^+$, де μ^0 – вектор з компонентами

$$\mu_i^0 = \lambda^0 / y_i^0, \quad i \in M; \quad \lambda^0 = 1 / \sum_{k \in M} \frac{1}{y_k^0},$$
(4.2.2)

і тоді $\max_{y \in Y} \min_{i \in M} \mu_i^0 y_i = \lambda^0$.

Доведення. Достатність. Із рівності (4.2.1) випливає, що для кожного $y \in Y$ існує номер $i \in M$ такий, що $y_i^0 \ge y_i$. Тому $\neg \exists y \in Y : y >> y^0$. Звідси y^0 є слабко ефективною оцінкою.

Доведемо необхідність. Для цього візьмемо вектор із компонентами, які визначені формулами (4.2.2). Відмітимо, що $\mu^0 \in M^+$. З $y^0 \in S(Y)$ випливає, що для кожного $y \in Y$ існує $j \in M$, при якому виконується нерівність $y_j^0 \ge y_j$, а, отже, і нерівність $\mu_j^0 y_j^0 \ge \mu_j^0 y_j$. Оскільки $\mu_j^0 y_j^0 = \lambda^0 = \sqrt{\sum_{i \in M} \frac{1}{y_i^0}} = \mathrm{const}$, то $\forall y \in Y$ $\min_{i \in M} \mu_i^0 y_i^0 \ge \min_{i \in M} \mu_i^0 y_i$. Звідси

випливає (4.2.1). ♦

Із рис. 4.2.1 бачимо, що $y^0 \in S(Y)$ тоді і тільки тоді, коли у внутрішність ортанта $E^m_{\ge 0}$, зсунутого у точку y^0 , не потрапляє жодна точка з Y.

Рис. 4.2.1

Оскільки гіперповерхня $\min_{i\in M}\mu_iy_i=\lambda$ при $\lambda=0$ і додатних μ_i представляє собою границю цього ортанта, зсув якого в y^0 можна здійснити присвоєнням відповідних значень параметрам μ_i і λ , то з'являється можливість сформульований геометричний факт виразити в термінах функції $\min_{i\in M}\mu_iy_i$. Ця можливість і реалізована в теоремі.

Приклад 1. Побудувати слабко-ефективні альтернативи за теоремою Гермейєра для такої двокритеріальної задачі:

$$2x_1 + x_2 \rightarrow \max,$$

 $x_1 + 2x_2 \rightarrow \max,$
 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

На рис. 4.2.2 зображена множина альтернатив X; лінії рівнів першого й другого критеріїв, відповідно (1), (2); x', x'' – найкращі відповідно за першим і другим критерієм альтернативи.

Рис. 4.2.2

За визначенням можна встановити, що множиною слабко ефективних альтернатив буде відрізок [x',x'']. Спробуємо побудувати якісь слабко ефективні альтернативи. За теоремою Гермейєра для того,

щоб альтернатива x^* була слабко ефективною альтернативою, необхідно й достатньо:

$$\exists \mu \in M^+ = \left\{ \mu = (\mu_1, ..., \mu_n) : \mu_i > 0, i = \overline{1, m}, \sum_{i=1}^m \mu_i = 1 \right\}$$

і тоді альтернатива x^* буде розв'язком такої параметричної задачі: $\max_{x \in X} \min_{i=1,m} \mu_i f_i(x)$.

Для нашого прикладу ця задача матиме такий вигляд:

$$F(x,\mu) = \min\{\mu_1(2x_1 + x_2), \mu_2(x_1 + 2x_2)\} \rightarrow \max,$$

 $x_1 + x_2 \le 5, \quad 0 \le x_{1,2} \le 4.$

Зафіксуємо вектор параметрів $\mu=(\mu_1,\mu_2)\in M^+$, наприклад, нехай $\mu_1=\mu_2=\frac{1}{2}$, і розв'яжемо графічно параметричну задачу. Для цього побудуємо лінію рівня її цільової функції. Наприклад, сталому значенню функції 2 буде відповідати множина векторів $x=(x_1,x_2)$, задана рівнянням: $F(x,(0,5,0,5))=\min\{0,5(2x_1+x_2),0,5(x_1+2x_2)\}=2$.

Для побудови цієї множини розглянемо такі випадки: якщо $x_1+\frac{1}{2}x_2<\frac{1}{2}x_1+x_2 \Rightarrow x_1< x_2$ (півплощина, що знаходиться над бісектрисою прямого кута), то рівняння набуде вигляду: $2x_1+x_2=4$; якщо $x_1+\frac{1}{2}x_2\geq \frac{1}{2}x_1+x_2 \Rightarrow x_1\geq x_2$ (півплощина, що знаходиться під бісектрисою прямого кута), то рівняння набуде вигляду: $x_1+2x_2=4$. На рис. 2.3 можна побачити лінію рівня цільової функції параметричної задачі, яка має вигляд кута, вершина якого знаходиться в точці x на прямій $x_1=x_2$, що задається умовою рівності аргументів функції $F\left(x,\left(\frac{1}{2},\frac{1}{2}\right)\right)$, а бокові сторони цього кута паралельні лініям

рівня відповідних критеріїв (1) і (2). Для того, щоб побачити, куди є спрямованим субградієнт функції (використовуємо поняття субградієнта, оскільки $F(x,\mu)$ є недиференційованою функцією), візьмемо більший її рівень, наприклад, 3,75, і побудуємо лінію цього рівня. У цьому випадку отримаємо: якщо $x_1 < x_2$, то $2x_1 + x_2 = 7,5$; а якщо $x_1 \ge x_2$, то $x_1 + 2x_2 = 7,5$.

Із рис. 4.2.3 бачимо, що лінія рівня 3,75 цільової функції параметричної задачі також матиме вигляд кута, вершина якого знаходиться

вже в точці x^* і також на прямій $x_1 = x_2$, що задається умовою рівності аргументів функції $F\left(x,\left(\frac{1}{2},\frac{1}{2}\right)\right)$, а бокові сторони цього кута також паралельні лініям рівня відповідних критеріїв (1) і (2). Цей рівень 3,75 і буде максимальним значенням $F\left(x,\left(\frac{1}{2},\frac{1}{2}\right)\right)$, а точка $x^* = (2,5,\ 2,5)$ буде оптимальним розв'язком параметричної задачі і за теоремою Гермейєра слабко-ефективною альтернативою початкової двокритеріальної задачі.

Спробуємо тепер поміняти вектор параметрів $\mu = (\mu_1, \mu_2) \in M^+$ на інший, наприклад, $\mu_1 = \frac{3}{7}$, $\mu_2 = \frac{4}{7}$, і подивимось, яку слабкоефективну альтернативу отримаємо в цьому випадку.

Цільова функція параметричної задачі тепер матиме вигляд:

$$F\left(x,\left(\frac{3}{7},\frac{4}{7}\right)\right) = \min\left\{\frac{3}{7}(2x_1 + x_2), \frac{4}{7}(x_1 + 2x_2)\right\}.$$

На рис. 4.2.5 бачимо лінії рівнів $\frac{90}{49}$ і $\frac{180}{49}$ цієї функції, які утворюють кути, вершини яких x і x^* знаходяться на прямій $2x_1 = 5x_2$,

яка визначається умовою рівності аргументів функції $F\left(x,\left(\frac{3}{7},\frac{4}{7}\right)\right)$, а бокові сторони паралельні лініям рівня відповідних критеріїв початкової двокритеріальної задачі. Рівень $\frac{180}{49}$ буде максимальним значенням функції, а точка $x^* = \left(\frac{25}{7},\frac{10}{7}\right)$ буде оптимальним розв'язком параметричної задачі і за теоремою Гермейєра слабко-ефективною альтернативою початкової дво-критеріальної задачі. Якщо порівняти випадки задання різних параметрів $\mu = (\mu_1,\mu_2) \in M^+$, то можна підтвердити висновок теореми Гермейєра, що таким чином можна отримати будь-яку слабко-ефективну альтернативу цієї задачі.

Рис. 4.2.5

Теорема 4.2.2. (умова ефективності оцінок (Подіновський)). Оцінка y^0 ефективна тоді і тільки тоді, коли для кожного $i \in M$

$$y_i^0 = \max_{y \in Y^i} y_i \,, \tag{4.2.3}$$

де

$$Y^{i} = \left\{ y \in Y \middle| y_{j} \geq y_{j}^{0}, j \in M; j \neq i \right\}. \tag{4.2.4}$$

Якщо $y^0 \in Y$ ефективна, то вона є єдиною в Y точкою, що задовольняє (4.2.3) при кожному $i \in M$.

Доведення. Доведемо достатність. Нехай $y_i^0 = \max_{y \in Y^i} y_i$. Припустимо супротивне, що $y^0 \notin P(Y)$. Тоді знайдеться така оцінка $y \in Y$, що $y_i \geq y_i^0$, $\forall i \in M$; $\exists j \in M : y_j > y_j^0$. Таким чином, $y \in Y^i$, $y_i > y_i^0$. Звідси випливає, що $y_i^0 < \max_{u \in Y^i} y_i$. Одержали суперечність.

Доведемо необхідність. Нехай $y^0 \in P(Y)$. Побудуємо множини Y^i , $\forall i \in M$, за умовами (4.2.4). Помітимо, що $Y^i \neq \varnothing$, $\forall i \in M$. Припустимо супротивне, що $\exists i \in M: y_i^0 < \max_{y \in Y^i} y_i$. Тоді для оцінки $y^* \in Y^i$, $y_i^* = \max_{y \in Y^i} y_i$ маємо $y_j^* \geq y_j^0$, $\forall j \in M; \ y_i^* > y_i^0$. Звідси, за означенням ефективної оцінки, одержимо $y^0 \notin P(Y)$.

Варто зауважити, що досить неконструктивну умову (4.2.3) теореми Подіновського можна значно послабити, якщо множина оцінок задачі буде строго опуклою. Цей факт у термінах альтернатив формалізує така теорема.

Теорема 4.2.3. Нехай множина альтернатив $X \in \text{опуклою}$, а $f(x) \in \text{строго увігнутою вектор-функцією}$. Для ефективності альтернативи x^* необхідно й достатньо, щоб існував вектор $\mu \geq 0$, при якому

$$\langle \mu, f(x^*) \rangle = \max_{x \in X} \langle \mu, f(x) \rangle.$$

Приклад 5. Побудувати ефективні альтернативи за теоремою Подіновського для такої двокритеріальної задачі:

$$x_1 + 2x_2 \rightarrow \max,$$

 $3x_1 + x_2 \rightarrow \max,$
 $x_1 + x_2 \le 4, \quad 3x_1 + x_2 \le 9, \quad x_{1,2} \ge 0.$

На рис. 4.2.6 зображена множина альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1) і (2); x', [x'', x'''] – найкращі відповідно за першим й другим критерієм задачі альтернативи (через [x'', x'''] позначений відрізок прямої $3x_1 + x_2 = 6$ між точками x'', x'''). За визначенням можна встановити, що множиною ефективних альтернатив буде відрізок [x', x''] прямої $x_1 + x_2 = 5$. Побудуємо ефективні альтернативи за теоремою Подіновського. Запишемо параметричну задачу для деякого $i = \overline{1, m}$:

$$f_i(x) \to \max$$

$$f_j(x) \ge \xi_j, \ j = \overline{1, m}, j \ne i,$$
 $x \in X,$

де $\xi_j \in \left[d_j, h_j\right], \ d_j = \min_{x \in X} f_j\left(x\right), \ h_j = \max_{x \in X} f_j\left(x\right), \ j = \overline{1,m} \ .$

Рис. 4.2.6

При i = 1 ця задача набуде такого вигляду:

$$x_1 + 2x_2 \to \max,$$

 $x_1 + 3x_2 \ge \xi_2, \quad \xi_2 \in [0, 9],$
 $x \in X.$

Зафіксуємо значення параметра $\xi_2 = 6$. Із рис. 4.2.7 бачимо, що ξ_2 буде відповідати оптимальному розв'язку параметричної задачі $x^* = (1, 3)$, який буде ефективною альтернативою початкової двокритеріальної задачі. Вибираючи інші значення параметра $\xi_2 \in [0, 9]$, можемо отримати будь-яку ефективну альтернативу. Нехай тепер i = 2, тоді параметрична задача набуде такого вигляду:

$$3x_1 + x_2 \to \max,$$

 $x_1 + 2x_2 \ge \xi_1, \quad \xi_1 \in [0, 8],$
 $x \in X.$

Рис. 4.2.7

Зафіксуємо значення параметра $\xi_1 = 6$. Із рис. 4.2.8 бачимо, що цьому значенню параметра буде відповідати оптимальний розв'язок параметричної задачі $x^* = (2, 2)$, який буде ефективною альтернативою початкової двокритеріальної задачі. Вибираючи інші значення параметра $\xi_1 \in [5,5, 8]$, можемо отримати будь-яку ефективну альтернативу. Але при значеннях параметра $\xi_1 \in [0, 5, 5)$, розв'язок параметричної задачі не буде єдиним і серед них, окрім ефективної альтернативи x'', будуть і слабко ефективні. Із цієї причини теорема Подіновського і вимагає, щоб ефективна альтернатива була одночасно розв'язком відповідних параметричних задач для всіх $i \in M$. Наприклад, нехай i=2, $\xi_1=4$. Із рис. 4.2.9 бачимо, що цьому значенню параметра буде відповідати максимальне значення дев'ятої цільової функції параметричної задачі і вже не одна точка, а множина оптимальних розв'язків. Це будуть точки відрізку [x'', x'''] із яких тільки x'' = (2, 5, 1, 5)буде ефективною альтернативою початкової двокритеріальної задачі, а інші будуть слабко ефективними альтернативами.

Тому розглянемо параметричну задачу при i=1 й при $\xi_2=9$ (нагадаємо, що 9 – це значення другого критерію, що відповідає максимальному значенню цільової функції параметричної задачі при i=2). Із рис. 4.2.9 бачимо, що ця параметрична задача вже буде мати єдиний розв'язок $x''=(2,5,\ 1,5)$, який буде ефективною альтернативою початкової двокритеріальної задачі.

Теорема 4.2.4. (умова власної ефективності оцінок (Ногін)). Оцінка $y^0 \in Y$ є власно-ефективною тоді і тільки тоді, коли існує набір векторів $\mu^1, ..., \mu^p \in M^+$, $p \le m$ такий, що для кожної оцінки $y \in Y$ знайдеться номер $i \in \{1, ..., p\}$, при якому виконується нерівність для скалярних добутків:

$$\langle \mu^{i}, y^{0} \rangle \geq \langle \mu^{i}, y \rangle.$$
 (4.2.5)

Доведення. Не зменшуючи загальності, покладемо $y^0 = 0$. Відзначимо наступний факт, що безпосередньо випливає з визначення власно-ефективної оцінки. Включення $y^0 \in G(Y)$ має місце в тому і тільки в тому випадку, коли існує число N > 0 таке, що для кожного $i \in M$ система нерівностей:

$$y^{i} > 0,$$

 $y_{i} + Ny_{j} > 0, \quad j \in M; \quad j \neq i,$ (4.2.6)

не має розв'язку на множині Ү.

Достатність. Не важко перевірити, що оцінка $y^0 = 0$ є ефективною. Доведемо включення $0 \in G(Y)$. Нехай

$$N = \max \left\{ \frac{m\mu_j^i}{\mu_k^i} \middle| j, k \in M; \quad i = 1, 2, ..., p \right\} > 0.$$
 (4.2.7)

Якщо $0 \notin G(Y)$, то для цього числа N існує індекс $k \in M$ і точка $y' \in Y$ такі, що:

$$y'_k > 0, \ y'_k + Ny'_j > 0, \ j \in M; \ j \neq k.$$
 (4.2.8)

Позначимо $M_0 = \left\{ j \in M \,\middle|\, y_j' < 0 \right\}$. Оскільки $0 \in P(Y)$, виконується $M_0 \neq \varnothing$. З (4.2.8) випливає :

$$my'_k + N\sum_{j \in M_0} y'_j > 0.$$
 (4.2.9)

З іншого боку, за умовою теореми, для точки y' існує вектор $\mu^i \in M$ такий, що $\left\langle \mu^i, y' \right\rangle \leq 0$. Звідси $\mu^i_k y'_k + \sum_{j \in M_0} \mu^i_j y'_j \leq 0$. З огляду на (4.2.7), отримаємо нерівність $my'_k + N \sum_{j \in M_0} y'_j \leq 0$, яка суперечить (4.2.9).

Heoбxiдність. Нехай $y^0 \in G(Y)$, тобто існує таке N>0, що для будь-якого $i \in M$, система нерівностей (4.2.6) є несумісною на Y. Візьмемо довільну оцінку $y \in Y$. Для кожного $i \in M$ виконується або $y_i \leq 0$, або $y_i + Ny_j \leq 0$ при деякому $j \in M \setminus \{i\}$. Взявши суму по $i \in M$ усіх таких нерівностей, одержимо $\sum_{i \in M} N_i y_i \leq 0$, де $N_i > 0$ для будьякого $i \in M$. Звідси випливає нерівність (4.2.5) при $y^0 = 0$ і $\mu_i = \overline{\mu}_i = \left(N_1 / \sum_i N_i, ..., N_m / \sum_i N_i\right)$.

Очевидно, що $\overline{\mu}_i \in M^+$. Таким чином, для кожного $y \in Y$ існує вектор $\mu_i = \overline{\mu}_i$, при якому має місце нерівність (4.2.5). Причому, завдяки скінченності множини індексів M, число таких векторів, що мають необхідні властивості, є скінченним. Тобто, існує кінцевий набір векторів $\left\{\overline{\mu}^1,...,\overline{\mu}^p\right\}\subset M^+$ з такою властивістю, що для кожного $y\in Y$ знайдеться $i\in\{1,2,...,p\}$, при якому має місце (4.2.5). Вкажемо набір не більш, ніж з m векторів, що мають необхідні властивості. Нехай $\varepsilon=\min\left\{\overline{\mu}_j^i\big|j\in M,\ i=1,2,...,p\right\}$. Розглянемо вектори $\mu^j=(\mu_i^j)_{j\in M}$ з компонентами:

$$\mu_j^i = \begin{cases} \varepsilon, & j \in M; \quad j \neq i; \\ 1 - (m - 1)\varepsilon, & j = i; \end{cases}$$
(4.2.10)

Очевидно, для кожного $\mu^i \in M^+$ для будь-якого $i \in M$. Доведемо включення $\left\{\overline{\mu}^1,...,\overline{\mu}^p\right\} \subseteq \operatorname{conv}\left\{\mu^1,...,\mu^m\right\}$. Для цього візьмемо довільний вектор $\overline{\mu}^l$ "старого" набору. Якщо $\varepsilon = 1/m$, то, очевидно, $\overline{\mu}^l = 1/m$, $i \in M$. У цьому випадку для $\lambda_1 = ... = \lambda_m = 1/m$ маємо:

$$\sum_{i \in M} \lambda_i \mu_j^i = \overline{\mu}_j^i, \quad j \in M , \qquad (4.2.11)$$

тобто $\overline{\mu}^i \in \operatorname{conv}\left\{\mu^1,\ldots,\mu^m\right\}$. Якщо $\varepsilon < 1/m$, то беремо $\lambda_i = \frac{\overline{\mu}_i^l - \varepsilon}{1-m\varepsilon},$ $i \in M$, де $\sum_{i \in M} \lambda_i = 1$. Для цих λ_i рівності (4.2.11) також мають місце.

Включення доведене. Припустимо, що "новий" набір векторів (4.2.10) не має необхідних властивостей, тобто знайдеться оцінка $y \in Y$ така, що

$$\langle \mu^i, y \rangle > 0, \quad i \in M.$$
 (4.2.12)

Для довільного $l \in \{1,2,...,p\}$ при деяких $\lambda_j \geq 0$, $j \in M$, $\sum_{j \in M} \lambda_j = 1$, має місце представлення (4.2.11). Тому з (4.2.12) одержуємо нерівності $\sum_{j \in M} \lambda_j \left\langle \mu^j, y \right\rangle = \left\langle \overline{\mu}^l, y \right\rangle > 0$, l = 1, 2, ..., p, які означають, що і "старий" набір векторів також не має необхідних властивостей. Це суперечить отриманому раніше припущенню. lacktriangle

Примітка. Якщо множина Y складається зі скінченного числа елементів, то умова доведеної теореми є необхідною й достатньою для того, щоб $y^0 \in P(Y)$, оскільки має місце рівність G(Y) = P(Y).

Із цієї теореми (частина "достатність") при p=1 випливає

Наслідок. Якщо всі $\mu_i > 0$, то будь-яка точка максимуму функції $\sum_{i=1}^n \mu_i y_i$ на множині Y є власне ефективною оцінкою.

У випадку опуклості множини оцінок цей наслідок є необхідною й достатньою умовою власне ефективності. Це твердження, сформульоване в термінах альтернатив, складає відому теорему.

Теорема 2.5. (Джеофріон). Нехай $X \in$ опуклою множиною, а $f(x) \in$ увігнутою вектор-функцією. Для власної ефективності альтернативи x^* необхідно й достатньо, щоб $\exists \mu > 0 : \langle \mu, f(x^*) \rangle = \max_{x \in X} \langle \mu, f(x) \rangle$.

Приклад 6. Побудувати власне ефективні альтернативи за теоремою Джеофріона для такої двокритеріальної задачі:

$$2x_1 + x_2 \to \max,$$

 $x_1 + 2x_2 \to \max,$
 $(x_1 - 1)^2 + (x_2 - 1)^2 \le 4, \quad x_{1,2} \ge 0.$

На рис. 4.2.10 зображено множину альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1) і (2); x', x'' – найкращі, відповідно за першим і другим критерієм задачі, альтернативи. За визначенням можна встановити, що множиною ефективних альтернатив буде дуга [x', x''] кола $(x_1 - 1)^2 + (x_2 - 1)^2 = 4$, а множиною власноефективних альтернатив буде дуга (x', x'') (точки x', x'' ε ефективними, але не власно-ефективними альтернативами). Параметрична $\max_{x \in X} F_{\mu}(x) = \max_{x \in X} \sum_{i=1}^{m} \mu_{i} f_{i}(x),$ загальній постановці: задача

 $\mu = (\mu_1, ... \mu_m) \in M^+$, щодо нашого прикладу матиме такий вигляд:

$$F_{\mu} = x_1 \mu_1 + x_2 \mu_2 \rightarrow \max,$$

$$(x_1 - 1)^2 + (x_2 - 1)^2 \le 4,$$

$$x_{1,2} \ge 0, \quad \mu_1 + \mu_2 = 1, \quad \mu_{1,2} > 0.$$

Рис. 4.2.10

Нехай $\mu_1=\mu_2=\frac{1}{2}$. Із рис. 4.2.11 бачимо, що розв'язком параметричної задачі буде точка $x^*=(2+\sqrt{2},\ 2+\sqrt{2})$, яка є власно-ефективною альтернативою; при значеннях $\mu_1=\frac{1}{3},\ \mu_2=\frac{2}{3}$ отримаємо іншу власно-ефективну альтернативу x^{**} . Вибираючи інші значення параметрів $\mu_1,\ \mu_2:\ \mu_1+\mu_2=1,\ \mu_{1,2}>0$, можемо отримати будь-яку власне ефективну альтернативу.

Контрольні завдання до § 2

1. Проілюструвати побудову множини слабко ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 + x_2 \rightarrow \max$$
, $-x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 4$, $x_1 - x_2 \le 3$, $x_2 \le 2$, $x_{1,2} \ge 0.2$.

2. Проілюструвати побудову множини слабко ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$2x_1 + x_2 \rightarrow \max, \ x_1 + 3x_2 \rightarrow \max, \ -2x_1 + x_2 \le 0, \ 2x_1 + x_2 \le 8, \ x_{1,2} \ge 0.$$

3. Проілюструвати побудову множини слабко ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 + x_2 \rightarrow \max$$
, $2x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 5$, $-4x_1 + x_2 \le 0$, $x_1 - 4x_2 \le 0$, $x_{1,2} \ge 0$.

4. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$2x_1 + x_2 \rightarrow \max$$
, $-x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 4$, $x_1 - x_2 \le 3$, $x_2 \le 2$, $x_{1,2} \ge 0$.

5. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$3x_1 + x_2 \rightarrow \max$$
, $x_1 + 3x_2 \rightarrow \max$, $-2x_1 + x_2 \le 0$, $2x_1 + x_2 \le 8$, $x_{1,2} \ge 0$.

6. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 + 2x_2 \rightarrow \max$$
, $2x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 5$, $-4x_1 + x_2 \le 0$, $x_1 - 4x_2 \le 0$, $x_{1,2} \ge 0$.

7. Проілюструвати побудову множини ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$2x_1 + x_2 \rightarrow \max, x_1 + 3x_2 \rightarrow \max, x_1 - x_2 \le 3, -5x_1 - 3x_2 \le -15, x_1 + 2x_2 \le 9.$$

8. Проілюструвати побудову множини власне ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 \to \max, x_2 \to \max, 2x_1^2 + x_2^2 \le 4, x_{1,2} \ge 0$$
.

9. Проілюструвати побудову множини власне ефективних альтернатив за необхідною й достатньою умовою оптимальності для багатокритеріальної задачі прийняття рішень:

$$x_1 \to \max, \ x_1 + x_2 \to \max, \ x_1^2 + 2x_2^2 \le 4, \ x_{1,2} \ge 0.$$

§ 3. Методи багатокритеріальної оптимізації

Висновок, який можна зробити з попереднього розділу, полягає в тому, що вибір альтернативи, яка буде розв'язком задачі багатокритеріальної оптимізації, потрібно робити з множини ефективних альтернатив (чи слабко-ефективних альтернатив, чи власно-ефективних альтернатив) — залежно від вимог ОПР і предметної області, у якій приймається рішення (далі, для спрощення викладання припустимо, що вибирається ефективна альтернатива).

Але яку, однак, ефективну альтернативу вибирати? Звичайно, якщо множина абсолютно-оптимальних альтернатив не є порожньою, то будьяка з них (варто нагадати, що всі абсолютно-оптимальні альтернативи рівноцінні між собою) може вважатися розв'язком багатокритеріальної

задачі. Як було з'ясовано вище, на практиці такі задачі зустрічаються дуже рідко. Таким чином, потрібно вирішити, що робити у випадку, коли множина абсолютно-оптимальних альтернатив є порожньою. Оскільки ефективні альтернативи є непорівнянними між собою за перевагою, яка задається критеріями задачі, а якимось чином їх необхідно порівняти, то для цього потрібна додаткова інформація окрім тієї, яка є при порівнянні альтернатив за кожним критерієм окремо. Точніше, для порівняння ефективних альтернатив, потрібна додаткова інформація про перевагу не на множині альтернатив, а на множині критеріїв, тобто інформація такого типу: скількома одиницями виграшу за одними критеріями можна компенсувати програшем за іншими критеріями. Джерелом такої інформації може бути як ОПР, так і специфіка предметної області, у якій розв'язується задача прийняття рішення.

Правила вибору ефективних альтернатив. Те, що в межах постановки багатокритеріальної задачі проблема вибору єдиної ефективної альтернативи не може бути розв'язаною, потребує уведення деякого правила (позначимо його через *R*) вибору єдиної альтернативи з множини ефективних альтернатив.

Нехай R(X,f) – множина альтернатив багатокритеріальної задачі:

$$\max_{x \in X} \{ f(x) = (f_1(x), ..., f_m(x)) \},\,$$

яка задовольняє правилу вибору R. Сформулюємо умови, яким це правило повинно задовольняти (так звані умови раціональності, сформульовані Вільгельмом [11]).

- 1. Вибір повинен бути зробленим завжди, тобто $R(X,f) \neq \emptyset$.
- 2. Вибирається ефективна альтернатива, тобто $R(X,f)\subseteq P(X)$.
- 3. Єдиність вибору потрібно розуміти не буквально, що обов'язково вибрати лише одну альтернативу. Будемо вважати, що правило вибору R однозначно визначає розв'язок багатокритеріальної задачі, якщо всі альтернативи, що задовольняють цьому правилу є рівноцінними, тобто якщо $x', x'' \in R(X,f)$, то $x' \sim x''$.
- 4. Більше того, якщо ми вибираємо якусь альтернативу, для якої у множині альтернатив є рівноцінна, то і вона повинна вибиратися цим же правилом вибору, тобто якщо $x' \in R(X,f)$, $x'' \in X$, $x'' \sim x'$, то $x'' \in R(X,f)$.
- 5. Якщо розглядати дві ситуації прийняття рішення за одним і тим самим вектором критеріїв f, але на множинах альтернатив таких, що одна з множин X' є підмножиною іншої X, то вибір R(X,f) із "ширшої" множини альтернатив X, якщо він належить "більш вузькій"

множині альтернатив $R(X,f)\subseteq X'$, повинен бути вибором з цієї множини. Тобто якщо $R(X,f)\cap X'\neq\varnothing$, то $R(X,f)\cap X'=R(X',f)$.

Звичайно, правил вибору, що задовольняють цим умовам, можна побудувати необмежену кількість, але в цьому немає нічого поганого, оскільки це дає можливість пристосуватися до будь-якої ОПР і специфіки предметної області. Незважаючи на такий широкий спектр різних можливих правил вибору, серед них можна виділити певні класи.

- 1. Правила вибору, які безпосередньо визначені на множині ефективних альтернатив, тобто R(X,f)=R(P(X),f). Перевагою таких правил є їхня простота, а суттєвим недоліком необхідність побудови всієї множини ефективних альтернатив.
- 2. Правила вибору, які є суперпозицією двох правил вибору: правила вибору R'(X,f), що є визначеним на множині альтернатив і вибирає деяку підмножину альтернатив, яка містить як ефективні, так і неефективні альтернативи, і правила вибору R(R'(X,f),f), що є визначеним на множині вже попередньо вибраних альтернатив і вибирає лише ефективну альтернативу. Такий розподіл правила вибору на два правила в деяких практичних ситуаціях дозволяє реалізувати досить ефективний вибір.
- 3. Діалогові процедури вибору. Цей клас правил вибору враховує той факт, що формалізація правила вибору в багатьох практичних ситуаціях прийняття рішень ускладнюється наявністю "людського" фактору. Справа в тому, що навіть припускаючи наявність у ОПР якоїсь системи переваг, може статися так, що ОПР не завжди її усвідомлює і ця система переваг може усвідомлюватися (формуватися) ОПР тільки у процесі прийняття рішення, змінюючись із часом змінюватися. Тому, якщо вибрано якусь альтернативу, її вже після вибору потрібно перевірити на відповідність перевагам ОПР (які вже можуть змінитися) і за необхідності відкоригувати правило вибору.

Ці міркування приводять до необхідності створення правил вибору у вигляді діалогової процедури, яка являє собою ітеративний процес взаємодії між ОПР і комп'ютером. Кожна ітерація $i,\ i=1,\ 2,\ ...,\$ складається з двох етапів:

- 1. Обчислювальний етап. На цьому етапі комп'ютер використовує отриману від ОПР інформацію для побудови (корекції) правила вибору, визначає ефективну альтернативу $x^i = R^i(X, f)$ і формує допоміжну інформацію для визначення переваг ОПР.
- 2. Етап прийняття рішення. ОПР аналізує отриману від комп'ютера ефективну альтернативу й допоміжну інформацію. Якщо ця інформація задовольняє ОПР, то ОПР приймає рішення про вибір x^i , у про-

тилежному випадку дає нову інформацію для комп'ютера, завдяки якій буде зроблено інший вибір і т. д.

Методи багатокритеріальної оптимізації являють собою чисельну реалізацію певного правила вибору ефективної (слабко-ефективної, власно-ефективної) альтернативи, тому цілком природно класифікувати їх за типами інформації, яку дає ОПР для формування правила вибору. Розглянемо таку класифікацію:

- ✓ Методи багатокритеріальної оптимізації.
- ✓ Методи, які не використовують інформацію про перевагу на множині критеріїв.
- ✓ Методи, які використовують один тип інформації про перевагу на множині критеріїв.
- ✓ Методи, які використовують різні типи інформації про перевагу на множині критеріїв.
 - ✓ Спеціальні методи.

Згідно з цією класифікацією наведемо короткий огляд відомих методів багатокритеріальної оптимізації.

Метод ідеальної точки. Цей метод не використовує допоміжну інформацію від ОПР про перевагу на множині критеріїв. Це може відбуватися, коли у ОПР ця інформація відсутня або, за наявності, її не можна застосувати з деяких причин. У цьому випадку робиться припущення про наявність, так званого, "оптимального" розв'язку задачі багатокритеріальної оптимізації, який може бути знайдено шляхом перетворення багатокритеріальної задачі у відповідну скаляризовану (однокритеріальну) задачу.

Ідеальною називається точка $a=(a_1,...,a_m)\in R^m_s$, $a_i=\max_{y\in Y}y_i,\ i\in M$.

Правило вибору компромісу R у цьому методі полягає у знаходженні альтернативи, яка має оцінку, що є найближчою до ідеальної точки в деякій метриці.

Визначимо відстань
$$\rho_s(y,a) = \left(\sum_{i=1}^m |y_i - a_i|^s\right)^{\frac{1}{s}}$$
 між точками y і a у ме-

тричних просторах R_s^m з показником метрики $s \ge 1$. Тоді, згідно з цим методом, знайдемо компромісну оцінку як розв'язок, так званої, ска-

ляризованої задачі
$$y^* \in \operatorname{Arg\,min}_{y \in Y} \left(\sum_{i=1}^m |y_i - a_i|^s \right)^{1/s}$$
. Значення показника

метрики s вибирається залежно від предметної області. На практиці в основному використовують значення $s = 1, 2, \infty$.

Вибирають s=2 (Евклідів простір) у випадках, коли критерії мають зміст відстані чи інших фізичних величин, для яких Евклідова

метрика є змістовною. У цьому випадку компромісна альтернатива x^* знаходиться як розв'язок скаляризованої задачі:

$$\min_{x \in X} \sum_{i \in M} (f_i(x) - a_i)^2 . \tag{4.3.1}$$

При $s=1,\infty$ критерії можуть мати будь-який інший зміст (наприклад, вартість, надійність, тривалість) і скаляризовані задачі набудуть вигляду:

$$\min_{x \in X} \sum_{i \in M} |f_i(x) - a_i| = \max_{x \in X} \sum_{i \in M} f_i(x),$$
 (4.3.2)

$$\min_{x \in X} \max_{i \in M} |f_i(x) - a_i| = \max_{x \in X} \min_{i \in M} (f_i(x) - a_i). \tag{4.3.3}$$

Задача (4.3.2) вибирається, коли ОПР оцінює "відстань" до ідеалу як сумарну нев'язку за всіма критеріями і така оцінка має певний зміст у предметній області, у якій розв'язується задача (наприклад, у двокритеріальній задачі (4.3.2), де максимізуються прибуток фірми й заробітна платня її працівників, цільова функція задачі має зміст частини доходу фірми).

Задача (4.3.3) обирається, коли ОПР оцінює "відстань" до ідеалу як максимальну нев'язку за всіма критеріями (тобто за "найгіршим" за значенням показником).

Якщо критерії задачі мають різні шкали (одиниці вимірювання, масштаб), то, як правило, для задач (4.3.2), (4.3.3) їх зводять до безрозмірної шкали [0,1] і розв'язують відповідно задачі:

$$\max_{x \in X} \sum_{i \in M} \overline{f}_i(x) = \max_{x \in X} \sum_{i \in M} \frac{(f_i(x) - f_i^{\min})}{(a_i - f_i^{\min})} = \max_{x \in X} \sum_{i \in M} \frac{f_i(x)}{(a_i - f_i^{\min})}$$

$$\max_{x \in X} \min_{i \in M} \left(\overline{f}_i(x) - 1 \right) = \max_{x \in X} \min_{i \in M} \left(\frac{f_i(x) - f_i^{\min}}{a_i - f_i^{\min}} - 1 \right) = \max_{x \in X} \min_{i \in M} \left(\frac{f_i(x) - a_i}{a_i - f_i^{\min}} \right).$$

Варто врахувати, що для будь-якого $s \in [1,\infty)$ $R(Y) \subseteq P(Y)$ і для $s = \infty$ $R(Y) \subseteq S(Y)$. Якщо множина Y строго опукла, то |R(Y)| = 1.

Приклад 4.3.1. Методом ідеальної точки розв'язати таку задачу:

$$3x_1 + x_2 \rightarrow \max,$$

 $x_1 + 2x_2 \rightarrow \max,$
 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

Визначимо ідеальну точку: $a=(a_1,\ a_2):a_i=\max_{y\in Y}y_i=\max_{x\in X}f_i(x),$ $i=1,\ 2.$ На рис. 4.3.1 зображено множину альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1), (2); $x'=(4,\ 1),\ x''=(1,\ 4)$ – найкращі відповідно за першим і другим критерієм задачі альтернативи, $a_1=13$, $a_2=9$ (максимуми 1-го та 2-го критеріїв). Таким чином, $a=(13,\ 9)$. Розглянемо випадки що пов'язані з вибором різних метрик.

Рис. 4.3.1

 $Bunado\kappa\ 1.\ \Pi$ ри $s=1\ скаляризована задача має вигляд:$

$$\max_{x \in X} \sum_{i=1}^{m} \frac{f_i(x)}{a_i - f_i^{\min}}.$$

Із урахуванням того, що мінімальні значення критеріїв задачі дорівнюють нулю, отримаємо таку задачу лінійного програмування:

$$8x_1 + 7x_2 \rightarrow \max,$$

 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

Із рис. 4.3.1 неважко бачити, що оптимальним розв'язком скаляризованої задачі (на рис. 4.3.1 зображено лінію рівня (3) цільової функції скаляризованої задачі) буде точка x' = (4, 1), яка і вважається шуканою ефективною альтернативою вихідної задачі.

 $Bunado\kappa \ 2$. При s=2 скаляризована задача має вигляд: $\min_{x\in X}\sum_{i=1}^m (f_i(x)-a_i)^2$. У нашому випадку отримаємо таку задачу квадратичного опуклого програмування:

$$(3x_1 + x_2 - 13)^2 + (x_1 + 2x_2 - 9)^2 \rightarrow \min,$$

 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

Розв'яжемо цю задачу аналітично. На рис. 4.3.2 зображено лінії рівня цільової функції скаляризованої задачі, які мають вигляд концентричних еліпсів із центром у точці $O = \left(\frac{17}{5}, \, \frac{14}{5}\right)$, яка є точкою безумовного мінімуму цієї функції та знаходиться як розв'язок системи рівнянь:

$$\begin{cases} 3x_1 + x_2 = 13, \\ x_1 + 2x_2 = 9. \end{cases}$$

Із рис. 4.3.2 бачимо, що умовний мінімум функції досягається в точці x^* , яка знаходиться на границі множини альтернатив, що описується рівнянням $x_1 + x_2 = 5$. Це дає можливість знайти x^* як розв'язок такої задачі квадратичного нелінійного програмування:

$$(3x_1 + x_2 - 13)^2 + (x_1 + 2x_2 - 9)^2 \rightarrow \min,$$

 $x_1 + x_2 = 5.$

Рис. 4.3.2

Скористаємося методом множників Лагранжа. Функція Лагранжа для цієї задачі матиме такий вигляд:

$$L(x,y) = (3x_1 + x_2 + 3)^2 + (x_1 + 2x_2 - 9)^2 + \lambda(x_1 + x_2 - 5).$$

За теоремою Куна–Таккера будемо шукати x^* як відповідну компоненту сідлової точки $\left(x^*,\lambda^*\right)=\min_{x\in R^2}\max_{\lambda\in R^1}L(x,\lambda)$ функції Лагранжа. Запишемо необхідні умови екстремуму функції Лагранжа:

$$\begin{split} &\frac{\partial L}{\partial x_1} = 6(3x_1 + x_2 - 13) + 2(x_1 + 2x_2 - 9) + \lambda = 0, \\ &\frac{\partial L}{\partial x_2} = 2(3x_1 + x_2 - 13) + 4(x_1 + 2x_2 - 9) + \lambda = 0, \\ &\frac{\partial L}{\partial \lambda} = x_1 + x_2 - 5 = 0, \end{split}$$

які будуть і достатніми умовами існування сідлової точки, оскільки у нашому випадку $L(x,\lambda)$ є строго опуклою за змінними x. Отже, остаточно одержимо $x^* = \left(\frac{17}{5}, \ \frac{8}{5}\right)$.

 $Bunado\kappa 3$. При $s=\infty$ скаляризована задача має вигляд:

$$\min_{x \in X} \max_{i=\overline{1,m}} \left| a_i - \overline{f_i}(x) \right| = \min_{x \in X} \max_{i=\overline{1,m}} \left(1 - \frac{f_i(x) - f_i^{\min}}{a_i - f_i^{\min}} \right) = -\max_{x \in X} \min_{i=\overline{1,m}} \frac{f_i(x) - a_i}{a_i - f_i^{\min}}.$$

З урахуванням того, що мінімальні значення критеріїв задачі дорівнюють нулю, отримаємо таку задачу:

$$\min \left\{ \frac{3x_1 + x_2 - 13}{13}, \frac{x_1 + 2x_2 - 9}{9} \right\} \to \max,$$

$$x_1 + x_2 \le 5,$$

$$0 \le x_{1,2} \le 4.$$

На рис. 4.3.3 бачимо, що лінії рівня цільової функції скаляризованої задачі мають вигляд кутів, вершини яких знаходяться на прямій $14x_1-17x_2=0$. Ця пряма задається умовою рівності аргументів функції $\min\{...\}$, а бокові сторони паралельні лініям рівня (1), (2) відповідних критеріїв початкової задачі. Максимум досягається в точці $x^* = \left(2\frac{23}{31}, 2\frac{8}{31}\right)$.

Рис. 4.3.3

Метод вибору за кількістю домінуючих критеріїв. Цей метод також не використовує допоміжну інформацію від ОПР про перевагу на множині критеріїв. Правило вибору *R* за цим методом враховує взаємні співвідношення (типу "більше" й "менше") між оцінками альтернатив і не враховує величини різниць оцінок. Метод призначений для розв'язку багатокритеріальних задач із дискретною множиною альтернатив, яка має невелику потужність (може бути перебрана за реальний час).

Нехай q(x, x') – кількість критеріїв, за якими альтернатива x' строго переважає альтернативу x. Покладемо $Q(x) = \max_{x' \in X} q(x, x')$ і визначимо $Q = \min_{x \in X} Q(x)$. Тоді за правилом вибору R, яке розглядається, вибираються альтернативи, які відповідають величині Q (домінуючому показнику множини X).

Основні властивості методу полягають: R(X) = R(P(X)), тобто вибір за цим методом з усієї множини альтернатив і вибір з множини ефективних альтернатив – збігаються; $R(X) \subseteq P(X)$ – метод вибирає ефективні альтернативи.

Варто зауважити, якщо q(x, x') – кількість критеріїв, за якими альтернатива x' переважає альтернативу x, то цей метод вибирає слабко ефективні альтернативи.

Приклад 4.3.2. За кількістю домінуючих критеріїв вибрати ефективну альтернативу в такій трикритеріальній задачі максимізації, яка описується табл. 4.3.1. Розв'язок знаходиться в табл. 4.3.2.

Таблиця 4.3.1

Таблиия 4.3.2

X	Y
x_1	(5, 3, 4)
x_2	(4, 5, 5)
x_3	(4, 5, 6)
\mathcal{X}_4	(4, 5, 3)
x_5	(4, 3, 6)
x_6	(5, 3, 1)
x_7	(4, 4, 2)

x	¢' x ₁	x ₂	x ₃	X ₄	x ₅	x ₆	x ₇	Q(x)
x_1	0	2	2	1	2	0	1	2
x_2	1	0	3	0	2	1	0	3
x_3	1	0	0	0	0	1	0	1
\mathcal{X}_4	2	3	3	0	2	0	0	3
x_5	2	3	3	2	0	2	2	3
x_6	3	2	2	2	2	0	2	3
\mathcal{X}_7	2	3	3	3	2	1	0	3

З останньої таблиці бачимо, що $Q = \min_{x \in X} Q(x) = 1$ і цьому значенню домінуючого показника множини альтернатив відповідає ефективна альтернатива x_3 . Варто звернути увагу на те, як вибиралися значення, наприклад, $q(x_2, x_3) = 3$ і $q(x_2, x_4) = 0$. Дійсно, альтернатива x_3 строго переважає альтернативу x_2 за трьома критеріями, оскільки між відповідними компонентами їхніх оцінок є дві рівності й одна строга нерівність, а альтернатива x_4 строго переважає альтернативу x_2 за нульовою кількістю критеріїв, не зважаючи на те, що дві перші компоненти їхніх оцінок – рівні, жодної строгої нерівності оцінок на користь альтернативи x_4 – немає.

Метод послідовних поступок. Особливістю методу є те, що критерії багатокритеріальної задачі повинні бути попередньо впорядковані за зменшенням їхньої важливості, після чого вибір розв'язку задачі здійснюється шляхом виконання багатокрокової діалогової процедури. Діалогова процедура послідовних поступок складається з одного попереднього і m основних кроків (нагадаємо, що m – це кількість критеріїв).

0 – $\kappa po\kappa$. Критерії впорядковуються за зменшенням їхньої важливості (будемо вважати, що $f_1 \succ f_2 \succ ... \succ f_m$) за думкою ОПР.

i – \breve{u} крок ($i = \overline{1,m}$). Розв'язується однокритеріальна задача:

$$f_i(x) \to \max,$$

 $x \in G_i, (G_1 \equiv X).$

Позначимо через x^i її оптимальний розв'язок. Далі обчислюється оцінка $y^i = (f_1(x^i),...,f_m(x^i))$. ОПР аналізує отриману оцінку й у випадку, коли вона його не задовольняє, визначає величину поступки Δf_i за i-м критерієм, на яку він може погодитися з метою покращення показників за іншими, менш важливими критеріями. Якщо крок не є останнім (i < m), то визначається "уточнена" множина альтернатив $G_{i+1} = \left\{x \in G_i \middle| f_i(x) \ge f_i(x^i) - \Delta f_i \right\}$ і здійснюється перехід на наступний крок. У протилежному випадку — альтернатива x^i вибирається як розв'язок багатокритеріальної задачі і процедура закінчується.

На *тивою*, чи повторно виконати процедуру. У цьому випадку ОПР збагачується знанням про взаємозв'язок поступок за критеріями та значеннями менш важливих критеріїв.

Варто зауважити, що метод не обмежує можливості ОПР у виборі ефективних альтернатив. Це обґрунтовується такою теоремою.

Теорема 4.3.1. (О. Вентцель). Для будь-якого впорядкування критеріїв і будь-якої ефективної альтернативи x^* існує послідовність невід'ємних поступок $\left\{\Delta f_i\right\}_{i=\overline{1,m}}$ таких, що на останньому кроці процедури буде отримана множина ефективних альтернатив, усі елементи якої рівноцінні x^* .

Варто зазначити, якщо на перших кроках ОПР давав великі значення поступок, то ефективна альтернатива, яку отримано в кінці процедури, може мати вищі показники за менш важливими критеріями. І навпаки, якщо ОПР намагається отримати високі показники за більш важливим критерієм, він може отримати ефективну альтернативу з неприпустимо малими показниками за менш важливим критеріям. Із цих міркувань можна зробити висновок, що дуже важливо вірно впорядкувати критерії, тоді ОПР може обмежитись аналізом попарного зв'язку критеріїв.

Серед недоліків методу варто відмітити, що лише на першому кроці методу величина поступки відповідає її фактичній величині, оскільки вона визначена на всій множині альтернатив. На наступних кроках величина поступки може бути значно меншою за її фактичну величину, оскільки вона визначається на "уточненій" множині альтернатив.

Недоліком методу є також зростання обчислювальної складності задач оптимізації з кількістю зроблених кроків, оскільки на кожному кроці додається нове обмеження. Метод використовує два типи інфо-

рмації від ОПР: інформацію про впорядкування критеріїв і про діапазони значень критеріїв.

Приклад 4.3.3. Методом послідовних поступок розв'язати таку трикритеріальну задачу:

$$2x_1 + x_2 \rightarrow \max,$$

 $x_1 + 2x_2 \rightarrow \max,$
 $-x_1 - x_2 \rightarrow \max,$
 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

На рис. 4.3.4 зображено множину альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1), (2), (3); x', x'', x''' – найкращі, відповідно за першим, другим і третім критеріями задачі, альтернативи. Будемо вважати, що критерії вже впорядковані за зменшенням їхньої важливості та знайдемо максимум першого критерію на множині альтернатив:

$$2x_1 + x_2 \rightarrow \max,$$

 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

Рис. 4.3.4

Отримаємо ефективну альтернативу x'=(4,1), яка має оцінку $y^1=(9,6,-5)$. Припустимо, що отриманий результат не задовольняє ОПР. Тоді визначимо величину поступки Δf_1 , на яку можна погодитися, щоб покращити значення інших критеріїв. Нехай $\Delta f_1=1$, "уточнена" множина альтернатив: $G_2=\left\{x:x\in X,f_1(x)\geq y_1^1-\Delta f_1=8\right\}$.

На другому кроці максимізуємо другий критерій на уточненій множині альтернатив:

$$x_1 + 2x_2 \rightarrow \max,$$

 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4,$
 $2x_1 + x_2 \ge 8.$

Із рис. 4.3.5 бачимо, що розв'язком задачі буде ефективна альтернатива $x''=(3,\ 2)$, яка має оцінку $y^2=(8,\ 7,\ -5)$. Припустимо, що отриманий результат також не задовольняє ОПР. Тоді визначимо величину поступки Δf_2 , на яку можна погодитися, щоб покращити значення третього критерію. Нехай $\Delta f_2=1$ "уточнена" множина альтернатив: $G_3=\left\{x:x\in G_2,f_2\left(x\right)\geq y_2^2-\Delta f_2=6\right\}$.

Рис. 4.3.5

Тепер (крок 3) на цій множині максимізуємо третій критерій:

$$-x_{1} - x_{2} \rightarrow \max,$$

$$x_{1} + x_{2} \leq 5,$$

$$0 \leq x_{1,2} \leq 4,$$

$$2x_{1} + x_{2} \geq 8,$$

$$x_{1} + 2x_{2} \geq 6.$$

Звідси (це можна побачити на рис. 4.3.6) знаходимо ефективну альтернативу $x^3 = \left(\frac{10}{3}; \frac{4}{3}\right)$, яка має оцінку $y^3 = \left(8, 6, -4\frac{2}{3}\right)$.

Рис. 4.3.6

Якщо ОПР не влаштовують отримані результати, вона повертається на відповідний крок, де було зроблено (на думку ОПР) невірну поступку. В іншому випадку процедура закінчується.

Метод послідовного вводу обмежень. Характерною особливістю цієї діалогової процедури є послідовне (на кожному кроці) введення обмежень на альтернативи, які мають незадовільні, із погляду ОПР, значення критеріїв.

k-й $\kappa po\kappa$ (k=1, 2, ...). Обчислюються оптимальні значення кожного критерію окремо на "уточненій" множині альтернатив:

$$f_i^{*(k)} = \max_{x \in G_k} f_i(x), \quad i = \overline{1, m}; \quad G_1 \equiv X;$$

і формується вектор "ідеальної" оцінки на уточненій множині альтернатив: $f^{*(k)} = (f_1^{*(k)}, ..., f_m^{*(k)})$. Далі визначається вагові коефіцієнти критеріїв $\alpha_1^{(k)}, ..., \alpha_m^{(k)}$ так. Складається матриця $\sigma^{(k)} = (\sigma_{ij}^{(k)})_{i,j=\overline{1,m}}$ переваг ОПР на множині критеріїв, кожна пара симетричних елементів якої $(\sigma_{ij}^{(k)}, \sigma_{ji}^{(k)})$ характеризує відносну важливість i-го критерію порівняно з j-м. Значення кожної пари елементів цієї матриці вибирається так: (8, 1) – при значній перевазі i-го критерію над j-м; (4, 1) – при значній перевазі; (2, 1) – при "звичайній" перевазі; (1, 1) – при рівноцінності критеріїв. Тепер розраховуються вагові коефіцієнти критеріїв за такою формулою: $\alpha_i^{(k)} = \left(\sum_{s=1}^m \sigma_{is}\right) / \left(\sum_{r=1}^m \sum_{s=1}^m \sigma_{rs}\right), \quad i=\overline{1,m}.$ Унаслідок роз-

в'язку задачі: $\max_{x \in G_k} \sum_{i=1}^m \alpha_i^{(k)} f_i(x)$, визначається альтернатива x^k і її оцінка $y^k = (f_1(x^k), ..., f_m(x^k))$.

ОПР аналізує отриману альтернативу й оцінку y^k шляхом її зіставлення з "ідеальною" оцінкою $f^{*(k)}$. Якщо оцінка y^k задовольняє ОПР, то процедура закінчується, а альтернатива x^k приймається за розв'язок вихідної задачі. Інакше, вказується номер $s \in \{1, ..., m\}$ критерію, значення якого найменш, на думку ОПР, його задовольняє; визначається, до якого рівня ξ_s потрібно покращити значення цього критерію, формується нова "уточнена" множина альтернатив $G_{k+1} = \left\{x \in G_k \left| f_s(x) \ge \xi_s \right.\right\}$ і здійснюється перехід на наступний крок.

Приклад 3.4. Методом послідовного вводу обмежень розв'язати таку двокритеріальну задачу:

$$2x_1 + x_2 \to \max$$
, $x_1 + 2x_2 \to \max$,
 $(x_1 - 1)^2 + (x_2 - 1)^2 \le 4$, $x_{1,2} \ge 0$.

На рис. 4.3.7 зображено множину альтернатив X; лінії рівнів першого й другого критеріїв, відповідно (1) і (2); $x' = \left(\frac{4\sqrt{5}}{5} + 1, \frac{2\sqrt{5}}{5} + 1\right)$,

$$x'' = \left(\frac{2\sqrt{5}}{5} + 1, \frac{4\sqrt{5}}{5} + 1\right)$$
 – найкращі, відповідно за першим і другим критерієм задачі, альтернативи.

Крок 1. Обчислюємо оптимальні значення кожного критерію окремо на всій множині альтернатив і отримуємо вектор "ідеальної" оцінки $f^{*(1)} \approx (7,5,\ 7,5)$. Нехай перший критерій значно переважає другий.

Тоді матриця переваг критеріїв буде мати такий вигляд: $\sigma^{(1)} = \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}$.

Обчислюємо вагові коефіцієнти критеріїв $\alpha_1^{(1)} = \frac{4+1}{4+1+1+1} = \frac{5}{7}$,

$$\alpha_2^{(1)} = \frac{1+1}{7} = \frac{2}{7}$$
. Із задачі:

$$\frac{5}{7}(2x_1 + x_2) + \frac{2}{7}(x_1 + 2x_2) = \frac{3}{7}(4x_1 + 3x_2) \to \max,$$

$$(x_1 - 1)^2 + (x_2 - 1)^2 \le 4, \quad x_{1,2} \ge 0,$$

визначимо ефективну альтернативу $x^1 = \left(\frac{13}{5}, \frac{11}{5}\right)$ і її оцінку $y^1 = (7,4, 7)$. Нехай ми вирішили, що внаслідок порівняння отриманої оцінки і "ідеальної" оцінки $f^{*(1)} \approx (7,5, 7,5)$ другий критерій набуде неприпустимо малого значення. Встановимо мінімальний рівень цього критерію $\xi_2 = 7,2$, отримаємо "уточнену" множину альтернатив $G_2 = \left\{x \in G_1 \equiv X \,\middle|\, x_1 + 2x_2 \geq 7,2\right\}$.

Рис. 4.3.7

Крок 2. На рис. 4.3.8 зображено множину G_2 .

Обчислюємо оптимальні значення кожного критерію окремо на "уточненій" множині альтернатив і отримаємо вектор "ідеальної" оці-

нки $f^{*(2)} \approx (7,28,\ 7,5)$. Нехай тепер критерії рівноцінні для ОПР. Тоді матриця переваг критеріїв матиме такий вигляд: $\sigma^{(2)} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Обчислюємо вагові коефіцієнти критеріїв

$$\alpha_1^{(1)} = \frac{1+1}{1+1+1+1} = \frac{1}{2} \,, \ \alpha_2^{(1)} = \frac{1+1}{4} = \frac{1}{2} \,.$$

Рис. 4.3.8

Розв'язавши задачу:

$$\frac{1}{2}(2x_1 + x_2) + \frac{1}{2}(x_1 + 2x_2) = \frac{3}{2}(x_1 + x_2) \to \max,$$

$$(x_1 - 1)^2 + (x_2 - 1)^2 \le 4, \quad x_1 + 2x_2 \ge 7, 2, \quad x_{1,2} \ge 0,$$

визначимо ефективну альтернативу $x^2 = \left(\sqrt{2} + 1, \sqrt{2} + 1\right)$ і її оцінку $y^1 = \left(2\sqrt{2} + 2, 2\sqrt{2} + 2\right) \approx \left(4,82,4,82\right)$ (на рис. 4.3.8 зображено: (1) – лінія рівня цільової функції задачі, x – розв'язок задачі). Якщо отримана ефективна альтернатива та її оцінка задовольняють ОПР, то процедура закінчується. У протилежному випадку – перехід на наступний крок.

У цьому методі можуть використовуватися й інші способи виявлення переваг $\alpha_1^{(k)},...,\alpha_m^{(k)}$ на множині критеріїв. Наприклад, нехай x^i – альтернатива, яка максимізує l-й критерій на множині $G_i; f_i^{*(k)}, f_i^{\min(k)}$

– відповідно найкраще та найгірше значення i-го критерію на цій множині. Далі, для $i=\overline{1,m}\,,$ обчислюються величини: чи

$$\delta_i^{(k)} = \max_{l=1,m} rac{f_i^{*(k)} - f_i(\mathbf{x}^{il})}{f_i^{*(k)} - f_i^{\min(k)}}$$
 , чи $\delta_i^{(k)} = rac{1}{m} \sum_{l=1}^m rac{f_i^{*(k)} - f_i(\mathbf{x}^{il})}{f_i^{*(k)} - f_i^{\min(k)}}$, відповідно чи мак-

симальне, чи середнє відносне відхилення від найкращого значення i-го критерію на альтернативах, що максимізують інші критерії. Вагові коефіцієнти критеріїв визначаються за формулою:

$$lpha_i^{(k)} = \delta_i^{(k)} \bigg/ \bigg(\sum_{j=1}^m \delta_j^{(k)} \bigg), \;\; i = \overline{1, m}.$$

Метод використовує два типи інформації від ОПР: інформацію про відносну важливість критеріїв та інформацію про діапазони значень критеріїв.

Метод бажаної точки. Особливістю цієї діалогової процедури є необхідність задання ОПР бажаних значень критеріїв для визначення переваги на множині критеріїв.

0-й крок. Розраховуються "найкращі" і "найгірші" значення критеріїв: $f_i^* = \max_{x \in X} f_i(x), \ h_i^* = \min_{x \in X} f_i(x), \ i = \overline{1, m}$, здійснюється монотонне перетворення критеріїв до нормованого безрозмірного вигляду:

$$w_i(x) = \frac{f_i^* - f_i(x)}{f_i^* - h_i^*}, \quad i = \overline{1, m}.$$

k-й крок ($k=1,\ 2,...$). ОПР аналізує отриманий на попередньому кроці розв'язок і його оцінку порівняно з "найкращими" і "найгіршими" значеннями критеріїв і вказує бажані значення критеріїв $\xi_i^k \in \left\lceil h_i^*, f_i^* \right\rceil$, $i=\overline{1,m}$.

Здійснюється перетворення бажаних значень цільових функцій до нормованого безрозмірного вигляду $w_i^k = \frac{f_i^* - \xi_i^k}{f_i^* - h_i^*}, \quad i = \overline{1,m}$.

Обчислюються вагові коефіцієнти критеріїв:

$$\rho_i^k = \left(\prod_{j=1, j\neq i}^m w_j^k\right) / \left(\sum_{j=1}^m \prod_{l=1, l\neq j}^m w_l^k\right), \quad i = \overline{1, m}.$$

Ефективна альтернатива x^k знаходиться як розв'язок однокритеріальної задачі: $\max_{x \in X} \min_{i=1,m} \rho_i^k w_i(x)$.

Обчислюється оцінка $y^k = (f_1(x^k), ..., f_m(x^k))$. Якщо отримані значення цільових функцій задовольняють ОПР, то процедура закінчується, у протилежному випадку – переходимо на наступний крок. Цей метод

використовує тільки один тип інформації від ОПР про бажані значення критеріїв.

Приклад 4.3.5. Розв'язати методом бажаної точки таку задачу: $2x_1 + x_2 \to \max, x_1 + 2x_2 \to \max, x_1 + x_2 \le 5, \ 0 \le x_{1,2} \le 4.$

На рис. 4.3.9 зображено множину альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1), (2); x' = (4, 1), x'' = (1, 4) – найкращі, відповідно за першим і другим критерієм задачі, альтернативи.

0-й крок. Обчислюємо "найкращі" і "найгірші" значення критеріїв: $f_1^*=9,\ h_1^*=0,\ f_2^*=9,\ h_2^*=0$ і здійснимо монотонне перетворення критеріїв до нормованого безрозмірного вигляду:

$$w_1(x) = \frac{9 - 2x_1 - x_2}{9 - 0}, \ w_2(x) = \frac{9 - x_1 - 2x_2}{9 - 0}.$$

Рис. 4.3.9

Крок 1. ОПР вказує бажані значення критеріїв $\xi_i^1 \in [0, 9]$, $i = \overline{1, 2}$. Нехай, наприклад, $\xi_1^1 = 3\frac{6}{7}$, $\xi_2^1 = 5\frac{1}{7}$. Здійснюємо перетворення бажаних значень цільових функцій до нормованого безрозмірного ви-

гляду:
$$w_1^1 = \frac{9-36/7}{9} = \frac{4}{7}, \quad w_2^1 = \frac{9-51/7}{9} = \frac{3}{7}.$$

Обчислюємо вагові коефіцієнти критеріїв:

$$\rho_1^1 = \frac{3/7}{3/7 + 4/7} = \frac{3}{7}, \quad \rho_2^1 = \frac{4/7}{3/7 + 4/7} = \frac{4}{7}.$$

Ефективну альтернативу x^1 знаходимо як розв'язок задачі:

$$\min\left\{\frac{3}{7}(2x_1+x_2), \frac{4}{7}(x_1+2x_2)\right\} \to \max, x_1+x_2 \le 5, 0 \le x_{1,2} \le 4.$$

На рис. 4.3.9 бачимо лінії рівнів $\frac{90}{49}$ і $\frac{180}{49}$ цієї функції, які утворюють кути вершини яких x і x^* знаходяться на прямій $2x_1 = 5x_2$, що визначається умовою рівності аргументів функції $\min\left\{\frac{3}{7}(2x_1+x_2),\,\frac{4}{7}(x_1+2x_2)\right\}$, а бокові сторони паралельні лініям рівня відповідних критеріїв початкової двокритеріальної задачі. Рівень 180/49 буде максимальним значенням функції, а точка $x^{(1)}=x^*=(25/7,\,10/7)$ буде оптимальним розв'язком цієї задачі. Обчислюємо оцінку $y^1=(60/7,\,45/7)$. Якщо отримані значення критеріїв задовольняють ОПР, то процедура закінчується, у протилежному випадку – переходимо на наступний крок.

Метод задоволених вимог. Особливістю цієї діалогової процедури ε визначення переваги на множині критеріїв шляхом виділення так званого "головного критерію".

k-й крок $(k=1,\ 2,\dots)$. ОПР виділяє "головний критерій" $f_i(x),\ i\in\{1,\dots,m\}$, який, на його думку, найбільш за всі інші повинен бути покращеним. Далі встановлює мінімально допустимі рівні значень інших критеріїв $\xi_j^k,\ j=\overline{1,m},\ j\neq i$. Унаслідок розв'язку однокритеріальної задачі: $\max_{x\in G_k}f_i(x),\$ де $G_k=\left\{x\in X\big|\,f_j(x)\geq \xi_j^k,\ \ j=\overline{1,m},\ \ j\neq i\right\},$ визначається ефективна альтернатива x^k і її оцінка $y^k=(f_1(x^k),\dots,f_m(x^k))$.

ОПР аналізує отримане значення головного критерію. Якщо воно не задовольняє його, то переходить на наступний крок, залишаючи номер головного критерію незмінним. Якщо значення головного критерію задовольняє ОПР, то він розмірковує – можливо чи ні деяке погіршення значення головного критерію з метою покращення значень інших. Якщо – "ні", то процедура закінчується. У протилежному випа-

дку – переходить на наступний крок із метою призначити інший головний критерій.

Метод використовує два типи інформації від ОПР: інформацію про домінування одного критерію над іншими й інформацію про діапазони значень критеріїв.

Приклад 4.3.6. Методом задоволених вимог розв'язати таку трикритеріальну задачу:

$$2x_1 + x_2 \rightarrow \max,$$

 $x_1 + 2x_2 \rightarrow \max,$
 $-x_1 - x_2 \rightarrow \max,$
 $x_1 + x_2 \le 5,$
 $0 \le x_{1,2} \le 4.$

На рис. 4.3.10 зображено множину альтернатив X; лінії рівнів першого та другого критеріїв, відповідно (1), (2), (3); x', x'', x''' – найкращі, відповідно за 1–3 критеріями задачі, альтернативи.

Крок 1. ОПР виділяє "головний критерій", наприклад $f_2(x)$, який, на його думку, найбільш за всі інші повинен бути покращеним. Далі встановлює мінімально допустимі рівні значень інших критеріїв, наприклад, $\xi_1^1 = 7$, $\xi_3^1 = -4$.

Рис. 4.3.10

Унаслідок розв'язку задачі:

$$x_1 + 2x_2 \rightarrow \max,$$
 $2x_1 + x_2 \ge 7, -x_1 - x_2 \ge -4,$ $x_1 + x_2 \le 5, 0 \le x_{1,2} \le 4,$

визначаються: $x^1 = x' = (2, 3)$; $y^1 = (7, 8, -5)$ (див. рис. 4.3.11). Якщо отримані значення не задовольняють ОПР, то можна перейти на наступний крок і змінити мінімально допустимі рівні першого та третього критеріїв. У цьому випадку зміна мінімально допустимого рівня третього критерію нічого не дасть, а зміна мінімально допустимого рівня першого критерію приведе до зміни розв'язку задачі вздовж усієї "північно-східної" границі множини альтернатив. Якщо значення головного критерію задовольняє ОПР, то він розмірковує — можливо чи ні деяке погіршення значення головного критерію з метою покращення значень інших. Якщо — "ні", то процедура закінчується. У протилежному випадку — переходить на наступний крок з метою призначити інший головний критерій.

Рис. 4.3.11

Метод векторної релаксації. Ця діалогова процедура, призначена для пошуку ефективних альтернатив у задачах багатокритеріальної безумовної оптимізації такого вигляду: $\max_{x \in R^n} f_i(x)$, $i = \overline{1,m}$. Припуска-

 ϵ ться, що критерії задачі ϵ неперервно-диференційованими увігнутими функціями.

k-й крок ($k=1,\ 2,\ldots$). Являє собою крок градієнтного методу для лінійної згортки критеріїв із ваговими коефіцієнтами $\alpha_1^k,\ldots,\alpha_m^k,$ $\sum_{i=1}^m \alpha_i^k = 1,\ \alpha_i^k > 0,\ i=\overline{1,m}\,,$ що визначаються ОПР за допомогою будьякої процедури експертного оцінювання важливості критеріїв. Тобто $x^k = x^{k-1} + \gamma^k \sum_{i=1}^m \alpha_i^k \nabla f_i \left(x^{k-1} \right),$ початкове наближення x^0 є будь-якою точ-

кою простору R^n ; γ^k , γ^k > 0 — величина кроку, яка знаходиться з умови збільшення лінійної згортки критеріїв

$$\gamma^{k} = \arg\max_{\gamma \in R^{1}} \sum_{i=1}^{m} \alpha_{i}^{k} f_{i} \left(x^{k-1} + \gamma \sum_{i=1}^{m} \alpha_{i}^{k} \nabla f_{i} \left(x^{k-1} \right) \right).$$

Якщо оцінка $y^k = (f_1(x^k), ..., f_m(x^k))$ знайденої альтернативи задовольняє ОПР, то процедура закінчується. У протилежному випадку переходимо на наступний крок.

Варто зауважити, що альтернативи, які генеруються цією процедурою, лише в граничному випадку будуть ефективними. Тому ОПР, коли аналізує отриману альтернативу, звертає увагу не лише на те, щоб вона відповідала його перевагам на множині критеріїв, але і наскільки вона є оптимальною за Парето. Оптимальність альтернативи оцінюється величиною:

$$\left\| \sum_{i=1}^m \alpha_i^k \nabla f_i \left(x^k \right) \right\|.$$

Приклад 4.3.7. Розв'язати методом векторної релаксації таку двокритеріальну задачу:

$$-2(x_1-3)^2 - (x_2-1)^2 + x_1x_2 - x_1 \to \max,$$

$$-(x_1-1)^2 - 2(x_2-3)^2 + x_1x_2 - x_2 \to \max.$$

На рис. 4.3.12 зображено лінії рівнів цих функцій, жирною лінією позначено множину ефективних альтернатив. Градієнти критеріальних функцій мають такий вигляд:

$$\nabla f_1(x) = (-4x_1 + x_2 - 13, x_1 - 2x_2 + 2)^T,$$

 $\nabla f_2(x) = (-2x_1 + x_2 + 2, 2x_1 - 4x_2 + 11)^T.$

Нехай $x^0 = (4, 1)^T$ – початкове наближення (на рис. 4.3.12 – це x').

Крок 1. ОПР вибирає перевагу на множині критеріїв. Нехай, наприклад, критерії рівноцінні, тобто $\alpha_1^1 = \alpha_2^1 = 0,5$. Тоді:

$$x^{1}(\gamma) = x^{0} + \gamma \left(\alpha_{1}^{1} \nabla f_{1}(x^{0}) + \alpha_{2}^{1} \nabla f_{2}(x^{0})\right) = \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} -4,5 \\ 7,5 \end{pmatrix}.$$

Величину кроку знаходимо з умови найшвидшого спуску, тобто:

$$\gamma^{1} = \arg\min_{\mathbf{x}} \left(\alpha_{1}^{1} \nabla f_{1} \left(x^{1} \left(\gamma \right) \right) + \alpha_{2}^{1} \nabla f_{2} \left(x^{1} \left(\gamma \right) \right) \right) \approx 0,25.$$

Таким чином, $x^1 = (2,84,\ 2,93)^T$ (на рис. 4.3.12 – це точка x''). Обчислюємо оцінку $y^1 = (1,7,\ 2)^T$. Якщо оцінка знайденої альтернативи задовольняє ОПР, то процедура закінчується. Оскільки градієнти критеріальних функцій у знайденій альтернативі не дорівнюють нулю (це можна як обчислити, так і побачити з рис. 4.3.12), то переходимо на наступний крок.

Крок 2. Нехай ОПР не змінює перевагу на множині критеріїв, тоді легко переконатися (зробивши аналогічні першому кроку обчислення), що $x^2 = (3,25,\ 3,25)^{\rm T}$ (на Рис. 4.3.13 — це точка x^*) з оцінкою $y^2 = \left(2\frac{1}{8},\ 2\frac{1}{8}\right)^{\rm T}$ буде шуканою альтернативою.

Метод використовує лише один тип інформації від ОПР – інформацію про відносну важливість критеріїв.

Контрольні завдання до § 3

1. Розв'язати методом ідеальної точки (S=1) таку багатокритеріальну задачу:

$$2x_1 + x_2 \rightarrow \max, x_1 + 3x_2 \rightarrow \max, x_1 + x_2 \le 4, x_1 + 2x_2 \le 6, x_{1,2} \ge 0.$$

2. Розв'язати методом ідеальної точки (S=2) таку багатокритеріальну задачу:

$$2x_1 + x_2 \rightarrow \max$$
, $-x_1 + x_2 \rightarrow \max$, $x_1 + x_2 \le 4$, $x_2 \le 2$, $x_{1,2} \ge 0$.

3. Розв'язати методом ідеальної точки ($S = \infty$) таку багатокритеріальну задачу:

$$x_1 - x_2 \rightarrow \max$$
, $-x_1 + 3x_2 \rightarrow \max$, $-x_1 + 2x_2 \ge 2$, $0 \le x_1 \le 2$, $0 \le x_2 \le 4$.

4. Розв'язати методом послідовних поступок таку багатокритеріальну задачу:

$$x_1 \to \max, x_2 \to \max, x_1 + x_2 \le 5, -4x_1 + x_2 \le 0, x_1 - .4x_2 \le 0, x_{1,2} \ge 0.$$

5. Розв'язати методом послідовного вводу обмежень (варіант 1) таку багатокритеріальну задачу:

$$x_1 \to \max$$
, $x_1 + 4x_2 \to \max$, $3x_1 + x_2 \le 9$, $x_1 + 3x_2 \le 9$, $x_1 + x_2 \le 4$, $x_{1,2} \ge 0$.

- 6. Розв'язати методом бажаної точки таку багатокритеріальну задачу: $-x_1 + 2x_2 \rightarrow \max, \ 2x_1 x_2 \rightarrow \max, \ x_1 + x_2 \le 5, \ 0 \le x_1 \le 4, \ 0 \le x_2 \le 3.$
- 7. Розв'язати методом задоволених вимог таку багатокритеріальну задачу:

$$x_1 + 2x_2 \rightarrow \max$$
, $-x_2 \rightarrow \max$, $2 \le x_1 + x_2 \le 5$, $-2 \le -x_1 + x_2 \le 2$.

8. Зробити вибір з урахуванням кількості домінуючих критеріїв у таку багатокритеріальній задачі:

$$-x_1 + x_2 \to \max$$
, $x_1 \to \max$, $x_1 + 3x_2 \le 6$, $x_1 - 3x_2 \le 0$, $x_{1,2} \ge 0$, $x_{1,2} = \min$.

ПИТАННЯ ДЛЯ САМОПЕРЕВІРКИ ДО РОЗДІЛУ 4

- 1. Дайте визначення слабко-ефективної, ефективної та власно-ефективної альтернативи.
- 2. Сформулюйте необхідні та достатні умови слабко-ефективності, ефективності та власно-ефективності.
 - 3. Які основні типи правил вибору, сформульовані Вільгельмом?
 - 4. Сформулюйте основну ідею методів ідеальної та бажаної точок.
 - 5. Ідея вибору з урахуванням кількості домінуючих критеріїв.
- 6. Опишіть метод послідовних поступок, сформулюйте теорему Венцель.
- 7. Яка ідея методів послідовного вводу обмежень та задоволених вимог?

Розділ 5 ПРИЙНЯТТЯ РІШЕНЬ В УМОВАХ КОНФЛІКТУ

Конфлікти притаманні життю людини на всіх рівнях її буття – міждержавному (ідеологічні, економічні, воєнні конфлікти), усередині суспільства між окремими групами (між поколіннями чи політичними партіями), між окремими людьми (у трудовому колективі, у сім'ї). Основа конфліктів - незбігання інтересів двох або більше сторін. При цьому незбігання інтересів може бути як абсолютним, антагоністичним (виграш однієї сторони досягається за рахунок програшу протилежної), так і не антагоністичним, при якому інтереси сторін не ϵ ні строго протилежними, ні такими, що повністю збігаються (виробникспоживач, викладач-студент тощо). Завдання політиків, економістів, кожної людини, зокрема, - уміти "розумно" розв'язувати конфлікти, по можливості не вибираючи крайніх форм (війна, бійка, відрахування студента з навчального закладу). Для розв'язання конфлікту (та ще й "розумного") потрібно перш за все вміти його описувати ("формалізувати") та проводити аналіз. Цим займаються соціологи, психологи, економісти, формалізуючи, аналізуючи й рекомендуючи ті або інші дії для розв'язання конфлікту. Займаються цим і математики, будуючи математичні моделі та створюючи засоби їхнього аналізу. Особливо інтенсивно розвивається цей напрям у математиці і, у першу чергу, у прикладній математиці, у другій половині XX ст.

Сітка Томаса-Кілмана. Перед тим як розглянути основні математичні результати, отримані у цій галузі, розглянемо так звану сітку Томаса-Кілмана (рис. 5.1.1), запропоновану у 1972 р.

У сітці Томаса-Кілмана на описовому рівні стверджується, що всі види розв'язання конфліктів між людьми зводяться до п'яти способів, які визначаються чотирма видами дій сторін. Томас і Кілман наводять типові ситуації, у яких потрібно застосовувати певний стиль дій.

Конкуренція:

- ✓ результат конфлікту дуже для вас важливий;
- ✓ ви маєте достатню владу;
- ✓ ви маєте авторитет;
- ✓ у вас немає іншого вибору;
- ✓ ви знаходитесь у критичній ситуації.

Рис. 5.1.1

Ухилення:

- результат для вас не дуже важливий;
- ✓ ви відчуваєте, що не можете вирішити конфлікт на свою користь;
 - ✓ ви хочете виграти час;
 - ✓ ситуація дуже складна;
 - ✓ у вас недостатньо влади.

Пристосування:

- ✓ вас не дуже хвилює конфлікт;
- ✓ ви хочете зберегти мир;
- ✓ ви розумієте, що не праві;
- ✓ у вас мало шансів перемогти;
- ✓ ви розумієте, що вирішити конфлікт на свою користь набагато важливіше для іншої сторони.

Співпраця:

- ✓ у вас взаємозалежні стосунки;
- ✓ усі сторони мають рівну владу;
- ✓ усі можуть викласти свої інтереси та вислухати іншу сторону.

Компроміс:

✓ ви хочете прийти до розв'язання конфлікту швидко;

- ✓ ви хочете отримати хоча б щось (максимально можливе у даній ситуації);
 - ✓ інші підходи виявились неефективними.

Не дивлячись на нечіткість в описанні сітки Томаса-Кілмана, вона цікава в декількох пунктах. По-перше, вона дає певну класифікацію конфліктних ситуацій, які постійно виникають у житті людини. По-друге, вона пов'язує дії (стратегії) людей із ситуаціями. По-третє, вона у якомусь ступені пов'язує міру (інтенсивність) досягнення результатів із обраними стратегіями, які, у свою чергу, приводять до тієї чи іншої ситуації. При побудові математичних моделей ігрових ситуацій кожен із відмічених моментів буде чітко описано та формалізовано.

Постановка задачі. Нехай $N = \{1, 2, ..., n\}$ — множина гравців (агентів), n — їхня кількість. Грою $G = (X_i, u_i; i \in N)$ у нормальній формі назвемо сукупність, яка містить для кожного гравця $i \in N$:

- \checkmark множину *стратегій* X_i , елементи якої позначають через x_i ;
- \checkmark "виграші" гравців $u_i(x)$, $i \in N$, функції, які визначені на множині ситуацій гри $X_N = \prod_{i \in N} X_i$ (виграші максимізуються або мінімізуються, якщо вони є програшами гравця).

§ 1. Некооперативна поведінка ізольованих гравців

Розглянемо спочатку випадок, коли гравці діють *ізольовано*, тобто кожен із них обирає свою стратегію незалежно, вони не обмінюються інформацією, на вибір гравців не впливає минуле (початкова позиція або передісторія партії гри). Будемо також вважати, що кожен гравець знає лише свою цільову функцію виграшу, значення якої він може обчислити після вибору своїх стратегій іншими учасниками.

Недоміновані та домінуючі стратегії. Позначимо через $x_{N\setminus i}$ вектор x без i-ї компоненти, тобто $x_{N\setminus i} \in X_{N\setminus i} = \prod_{j\in N\setminus \{i\}} X_j$ (сукупність стратегій усіх гравців за виключенням фіксованого i-го).

Bизначення 5.1.1. Стратегія $x_i \in X_i$ гравця i домінує його стратегію $y_i \in X_i$, якщо:

$$u_{i}(x_{i}, x_{N\setminus i}) \ge u_{i}(y_{i}, x_{N\setminus i}), \ \forall x_{N\setminus i} \in X_{N\setminus i};$$
$$\exists \tilde{x}_{N\setminus i} \in X_{N\setminus i} : u_{i}(x_{i}, \tilde{x}_{N\setminus i}) > u_{i}(y_{i}, \tilde{x}_{N\setminus i}).$$

Таким чином, стратегія i-го гравця x_i домінує його стратегію y_i (позначатимемо це як $x_i \succ y_i$), якщо при виборі стратегії x_i значення його цільової функції є не гіршим за значення цільової функції при виборі стратегії y_i при довільних виборах своїх стратегій усіма іншими гравцями, при чому хоча б для одного набору стратегій інших гравців значення цільової функції для стратегії x_i є кращим, ніж для стратегії y_i . Іншими словами, обираючи стратегію x_i , гравець не погіршує свій виграш порівняно з вибором стратегії y_i , причому хоча б в одному випадку значення цільової функції покращується.

Визначення 5.1.2. Стратегія $x_i \in X_i$ гравця i називається домінуючою стратегією, якщо: $u_i\left(x_i, x_{N\setminus i}\right) \geq u_i\left(y_i, x_{N\setminus i}\right), \ \forall \ y_i \in X_i, \ \ \forall \ x_{N\setminus i} \in X_{N\setminus i}$. Множину домінуючих стратегій i-го гравця позначатимемо через D_i .

Розглянемо приклад 5.1.1:

 $X_1 = \{a_1, b_1, c_1\}$ — стратегії 1-го гравця, $X_2 = \{a_2, b_2, c_2, d_2\}$ — другого. У клітинах таблиці перше число є виграшем першого гравця, друге — другого (див. табл. 5.1.1).

X_2	a_{2}	b ₂	$oldsymbol{c_2}$	d_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 2	5, 1	2, 1	3, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	3, 1	4, 2	2, 1	3, 1
$\boldsymbol{c}_{\scriptscriptstyle 1}$	2, 1	3, 1	2, 1	2, 1

Таблиця 5.1.1

У фіксованій ситуації (x_1,x_2) виграш гравців знаходиться у клітині, яка визначається стратегією x_1 першого гравця та стратегією x_2 другого. Так, виграш у ситуації (b_1,b_2) рівний (4,2) — 4 одиниці має перший, 2 — другий $(u_1(b_1,b_2)=4$, $u_2(b_1,b_2)=2$). Порівняємо стратегії a_1 і b_1 1-го гравця. Маємо:

$$\begin{split} &u_1\left(a_1,a_2\right)=u_1\left(b_1,a_2\right) \ \left(3=3\right), \ u_1\left(a_1,b_2\right)>u_1\left(b_1,b_2\right) \ \left(5>4\right), \\ &u_1\left(a_1,c_2\right)=u_1\left(b_1,c_2\right) \ \left(2=2\right), \ u_1\left(a_1,d_2\right)=u_1\left(b_1,d_2\right) \ \left(3=3\right). \end{split}$$

Отже, $a_1 \succ b_1$. Аналогічно, $a_1 \succ c_1$, $b_1 \succ c_1$. Звідси випливає, що стратегія a_1 першого гравця є домінуючою: $D_1 = \{a_1\}$.

Розглядаючи стратегії другого гравця, маємо: $a_2 \succ c_2$, $a_2 \succ d_2$, $b_2 \succ c_2$, $c_2 \sim d_2$. Але стратегії a_2 і b_2 "є непорівняними": $u_2(a_1,a_2) > u_2(a_1,b_2)$, але $u_2(b_1,a_2) < u_2(b_1,b_2)$. Отже, $D_2 = \varnothing$. Значення виграшів другого гравця на стратегіях c_2 і d_2 при всіх виборах першого гравця одне і теж (рівне 1). Такі стратегії називають еквівалентними $(c_2 \sim d_2)$.

Визначення 5.1.3. Стратегії x_i і y_i першого гравця називаються еквівалентними, якщо: $u_i\left(x_i,x_{N\setminus i}\right)=u_i\left(y_i,x_{N\setminus i}\right),\ \forall\ x_{N\setminus i}\in X_{N\setminus i}$. Множину еквівалентних стратегій i-го гравця позначимо як E_i .

Визначення 5.1.4. Стратегія $x_i \in X_i$ *і*-го гравця називається недомінованою, якщо не існує стратегії $y_i \in X_i$, яка б її домінувала: $\exists \ y_i \in X_i: \ y_i \succ x_i$. Множину недомінованих стратегій *і*-го гравця позначатимемо через HD_i .

Повертаючись до прикладу 5.1.1, маємо: $HD_2=\{a_2,b_2\}$. Зауважимо, що, очевидно, $D_i\subseteq HD_i$ (домінуючі стратегії є частинним випадком недомінованих). Тому для прикладу 5.1.1: $D_1=HD_1=\{a_1\}$.

Визначення 5.1.5. Ситуація $x^* = \left(x_i^*\right)_{i \in N}$ називається рівновагою у домінуючих стратегіях, якщо x_i^* є домінуючою стратегією кожного гравця $\left(x_i^* \in D_i, \ \forall i \in N\right)$. Множина $D = \prod_{i \in N} D_i$ називається множиною рівноваг у домінуючих стратегіях.

Приклад 5.1.2 (див. табл. 5.1.2). Маємо: $a_1 \sim b_1$ і $D_1 = HD_1 = \{a_1, b_1\}$. Для другого гравця: $b_2 \succ a_2$, $b_2 \succ c_2$, звідки $D_2 = HD_2 = \{b_2\}$. Отже, ситуації (a_1, b_2) та (b_1, b_2) є рівновагами у домінуючих стратегіях.

Таблиця 5.1.2 X₂

X_2	a_{2}	\boldsymbol{b}_2	$oldsymbol{c}_2$
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 1	3, 2	4, 2
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 2	3, 3	4, 1

Підведемо підсумок. По-перше, для знаходження домінуючих та недомінованих стратегій кожному гравцю досить знати лише свою

функцію виграшу та спостерігати за вибором стратегій усіма іншими гравцями для формування ситуації, від якої залежить його виграш. По-друге, "розумний" гравець (точніше "раціонально мислячий") ніколи не буде вибирати домінованих стратегій — адже при їхньому виборі, він може лише втратити! По-третє, рівновага у домінуючих стратегіях є "розумним" розв'язком задачі колективного прийняття рішень (якщо кількість елементів множини D більша за одиницю, то можна вибирати будь-який — адже всі вони еквівалентні для кожного гравця).

На жаль, в абсолютній більшості практично цікавих задач $D=\varnothing$. Тому, все, що залишається "розумним" гравцям, це відкидати свої доміновані стратегії, будуючи множини HD_i , $i\in N$. У випадку скінченності множини стратегій X_i існування непорожніх множин недомінованих стратегій HD_i очевидне. У більш загальнішому при досить слабких припущеннях можна також довести непорожність HD_i .

Лема 5.1.1. Нехай множини стратегій X_i , $i \in N$, компактні та в кожній з них існує зліченна, скрізь щільна підмножина. Нехай також функції виграшів U_i , $i \in N$, неперервні. Тоді множини HD_i недомінованих стратегій кожного гравця непорожні.

Доведення. Для кожного $j \in N$ виберемо ймовірнісний розподіл p_j на X_j таким чином, щоб непорожня відкрита підмножина X_j мала додатну міру (можливість цього випливає з другої умови, накладеної на множини стратегій). Зафіксуємо i й розглянемо функцію ψ_i , визначену на X_i :

$$\psi_i\left(x_i\right) = \int\limits_{X_{N\backslash i}} u_i\left(x_i, x_{N\backslash i}\right) \; dp_{N\backslash i}\left(x_{N\backslash i}\right), \; \text{де} \;\; p_{N\backslash i} \; - \; \text{добуток} \;\; p_j \;, \;\; j \neq i \;.$$

Оскільки функція u_i неперервна, то неперервна і функція ψ_i , а отже, можна вибрати стратегію x_i^* , що максимізує функцію ψ_i на множині X_i .

Покажемо, що стратегія x_i^* недомінована. Дійсно, якщо існує стратегія x_i , що домінує x_i^* , то в силу неперервності функції u_i знайдеться відкрита підмножина $X_{N\setminus i}$ множини $X_{N\setminus i}$ така, що $u_i\left(x_i^*,x_{N\setminus i}\right) < u_i\left(x_i,x_{N\setminus i}\right)$ для $\forall x_{N\setminus i} \in X_{N\setminus i}'$. У силу вибору p_j , $j\neq i$, маємо:

$$\int_{X'_{N\setminus i}} u_i\left(x_i^*, x_{N\setminus i}\right) dp_{N\setminus i}\left(x_{N\setminus i}\right) < \int_{X'_{N\setminus i}} u_i\left(x_i, x_{N\setminus i}\right) dp_{N\setminus i}\left(x_{N\setminus i}\right). \tag{5.1.1}$$

Оскільки $u_i\left(x_i^*,x_{N\setminus i}\right) \leq u_i\left(x_i,x_{N\setminus i}\right)$ справедливо для $\forall x_{N\setminus i} \in X_{N\setminus i}$, то

$$\int\limits_{X_{N\setminus i}\setminus X_{N\setminus i}'} u_i\left(x_i^*, x_{N\setminus i}\right) \ dp_{N\setminus i}\left(x_{N\setminus i}\right) \leq \int\limits_{X_{N\setminus i}\setminus X_{N\setminus i}'} u_i\left(x_i, x_{N\setminus i}\right) \ dp_{N\setminus i}\left(x_{N\setminus i}\right). \ (5.1.2)$$

Складаючи (5.1.1), (5.1.2), приходимо до протиріччя: $\psi_i(x_i^*) < \psi_i(x_i)$. \blacklozenge

Лема 5.1.2. Нехай множина недомінованих стратегій $HD_i \neq \emptyset$. Тоді еквівалентні твердження: а) $D_i \neq \emptyset$; б) $D_i = HD_i$; в) $x_i, y_i \in HD_i \Rightarrow x_i \sim y_i$. Тобто, усі стратегії у множині недомінованих стратегій еквівалентні.

Доведення. Доведемо еквівалентність а) і б). Оскільки $D_i \neq \emptyset$, то недомінованою стратегією може бути лише домінуюча стратегія i, отже, $HD_i \subseteq D_i$. Оскільки включення $D_i \subseteq HD_i$ очевидне (див. вище), то з а) випливає б). Імплікація б) ⇒ а) випливає з умови леми. Із визначення еквівалентності стратегій x_i, y_i випливає, що, якщо $x_i \in D_i \neq \emptyset$, то і $y_i \in D_i$. Якщо $x_i, y_i \in ND_i$, $x_i \neq y_i$, то оскільки $ND_i = D_i$, то $x_i, y_i \in D_i$, $x_i \neq y_i$, що неможливо. ♦

У лемі 5.1.2 говориться про те, що якщо у гравця ϵ хоча б одна домінуюча стратегія, то всі домінуючі стратегії еквівалентні і збігаються з його недомінованими стратегіями (див. приклад 5.1.2). Будемо вважати, що при "некооперативній" поведінці гравець використовує будьяку з них. Так, у прикладі 5.1.2 першому гравцеві байдуже яку стратегію a_1 або b_1 використовувати – як у першому, так й у другому випадку перший гравець буде мати виграш у три одиниці. Але звернемо увагу на те, що при виборі першим гравцем стратегії $b_{\scriptscriptstyle 1}$, другий гравець буде мати виграш у три одиниці, проти двох одиниць при виборі a_1 . Кооперуючи свої дії, гравці можуть зупинитись на ситуації (a_1,b_1) , наприклад, другий гравець може пообіцяти першому половину "додаткової" одиниці свого виграшу. Якщо ж у і-го гравця немає домінуючої стратегії, то його недоміновані стратегії апріорі нееквівалентні, тому його некооперативна поведінка не може бути визначеною однозначно. Потрібна додаткова інформація, зокрема, про функції виграшу суперників, щоб визначити свою стратегію.

Сподіваємось, що читач погодився з тим, що вибір рівноваги у домінуючих стратегіях (якщо вона існує) є раціональною поведінкою ізольованих гравців. Але виявляється, що ця раціональна поведінка може бути дуже й дуже "нерозумною". Повернемось до класичної моделі "Дилема бандита" (табл. 1.1.5), що належить Льюісу і Райфі (1957 р.).

Приклад 5.1.3 ("дилема бандита"). Спіймали двох злочинців, яких підозрюють у скоєнні групового злочину (бандитизм, за нього "дають" більше, ніж за "індивідуальний"). Їх розсадили по різних камерах, так, що домовлятись про вибір стратегій вони не можуть (обмін інформаці-

єю відсутній – гравці ізольовані). У кожного з бандитів є дві стратегії – зізнатись у злочині (3) чи не зізнаватись (Н). Таблиця виграшів (у даному випадку програшів - кожен намагається мінімізувати кількість років тюрми) у табл. 5.1.3. Отже, якщо обидва не зізнаються у злочині, то їм дадуть по 1 року ("припишуть" незначну провину), якщо ж зізнаються, то – по 10 років. Якщо ж один зізнається ("продасть" спільника), то його відпускають, другому же дають "максимум" - 25 років. Погодьтесь - ситуація реальна. Дослідимо стратегії кожного на домінованість: $3_1 > H_1$, $3_2 > H_2$ (не забуваймо, що програш потрібно мінімізувати). Отже, раціональна поведінка кожного гравця призведе до відкидання його домінованої стратегії і залишиться єдина ситуація $(3_1, 3_2)$, значення функцій програшу кожного у якій рівне 10. "Раціональна" поведінка привела до точки з функцією корисності $u = (u_1, u_2) = (10, 10)$ у той час, як існувала можливість (потенційна) вибору точки u = (1, 1)!Зверніть увагу, що вибір ситуації $(3_1,3_2)$ не зміниться, якщо ми поміняємо наведену таблицю, наприклад, на таку (табл. 5.1.4): де "∞" – означає смертну кару (приклад 5.1.4). "Раціональна" поведінка знову приведе до ситуації $(3_1,3_2)!$ Цей парадокс можна пояснити тим, що краще отримати 100 років тюрми з надією на помилування, ніж ризикувати отриманням ∞ (переходячи на стратегію З;). Таким чином, в описаній ситуації єдиним раціональним (який цілком можна назвати й розумним) буде вибір гіршої (для обох!) ситуації $(3_1,3_2)$ порівняно з (H_1, H_2) . Можна навести безліч життєвих прикладів, у яких саме так і відбувається "розумний" вибір - досить згадати хоча б безліч воєн, якими людство "розв'язує" конфліктні ситуації. Що ж робити, щоб виправдати назву нашого виду ("людина розумна") без лапок? Спробуємо розібратися в цьому, але спочатку визначимо поняття "вигідності" ситуації для всіх гравців у цілому.

Таблиия 5.1.3

X_2	H_2	32
H_1	1, 1	25, 0
3 ₁	0, 25	10, 10

Таблиця 5.1.4

X_2	H_2	32
H_{1}	1, 1	∞ , 0
3 ₁	0, ∞	100, 100

Визначення 5.1.6. Ситуація $x \in X$ домінує за Парето ситуацію $y \in X$, якщо:

$$u_i(x) \ge u_i(y), \forall i \in \mathbb{N};$$
 (5.1.3)

$$\exists j \in N : u_i(x) > u_i(y).$$
 (5.1.4)

Ситуація x^* називається *Парето-оптимальною* (оптимальною за Парето, ефективною), якщо вона не домінується за Парето.

Коротко умови (5.1.3), (5.1.4) будемо описувати, як xPy, тоді умова ефективності x^* запишеться як: $\exists x$, xPx^* , x, $x^* \in X$.

Отже, ситуація x^* є ефективною, якщо не існує іншої ситуації, у якій усі гравці мають значення виграшу, не гірші, ніж у x^* , і хоча б один гравець має краще значення функції виграшу. Множину Парето-оптимальних ситуацій позначатимемо РО.

Наведемо приклади. Нехай $u=(2,2,2),\ v=(2,2,3),\ w=(1,1,1).$ Очевидно, що $vPu,\ vPw,\ uPw$ і v є оптимумом Парето на множині з цих векторів. Якщо перевага u над w не викликає питань (кожен із гравців має виграш при u строго більший, ніж при w), то vPu вимагає пояснення. Чому з погляду "усіх разом" гравців v кращий за u? Адже, перший і другий гравець мають такі самі виграші і лише третій має кращий виграш. Чому "розумні" гравці виберуть v, а не u? Тому що, по-перше, вибравши v, можна сподіватись, що третій гравець поділиться своїм додатковим виграшем із партнерами, подруге, кожен із них може опинитись у ситуації третього гравця. В окремих випадках розглядається сильне домінування за Парето ($xSPy \Leftrightarrow u_i(x) > u_i(y), \ \forall i \in N$) і визначається "слабкий оптимум за Парето" (або оптимум за Слейтером (див. Розд. 4)). Зазначимо, що в задачах багатокритеріальної оптимізації подібних питань не виникає: безумовно, вибір (2,2,3) є кращим за (2,2,2).

Повертаючись до попередньої таблиці, маємо $(H_1,H_2)P(3_1,3_2)$ (задача на мінімум), усі три ситуації (H_1,H_2) , $(H_1,3_2)$, $(3_1,H_2)$ є Паретооптимальними, але "розумна" поведінка ізольованих гравців приводить до єдиного неефективного рішення. Так що ж робити? Правильно, кооперуватись! Але для кооперації повинні мати місце певні умови й, у першу чергу, можливість обмінюватись інформацією.

Розглянемо приклад 5.1.5 (Льюіс, Райфа, 1957). Він має назву "Дилема в'язня". В'язні знаходяться в одній камері, кожен із них має дві стратегії поведінки — відноситись до сусіда миролюбно (M) чи агресивно (A). Таблиця виграшів — 5.1.5. Знову маємо: $A_1 \succ M_1$, $A_2 \succ M_2$ і отже, раціональна поведінка приводить до неефективної ситуації (A_1,A_2) із вектором виграшів u=(1,1). Але на відміну від "Дилеми бандитів" у "Дилемі в'язнів" вони можуть вести переговори про вибір ситуації

 (M_1, M_2) . Звичайно, можливість відхилення від цієї ситуації в кожного в'язня зберігається (перший в'язень, змінюючи стратегію M_1 на A_1 , отримає додатковий виграш), зате у партнера є можливість "покарати" порушника: у разі відхилення першого, другий також змінює свою стратегію, унаслідок чого вони переходять до ситуації (A_1, A_2) , невигідної їм обом. Таким чином, унаслідок наявності можливості обміну інформацією кожен із в'язнів може "стабілізувати" ситуацію (M_1, M_2) із допомогою, наприклад, "стратегії погрози" - "я буду миролюбним до тих пір, поки і ти будеш таким". Узагальнюючи дану ситуацію, можна стверджувати, що додаткова інформація може привести до виграшу всіх партнерів. Людська спільнота це розуміє, про що свідчить хоча б наявність у кожній державі розвідки. Ще один приклад 5.1.6, який показує, що ізольована поведінка гравців не дозволяє їм вибрати ефективну ситуацію. Приклад носить назву "Послуга за послугу", у ньому кожен гравець має дві стратегії - відноситись до іншого доброзичливо (Д) чи недоброзичливо (Н) (див. табл. 5.1.6). Маємо: $\mathcal{L}_1 \approx H_1$, $\mathcal{L}_2 \approx H_2$ і, отже, із погляду кожного з гравців байдуже, яку стратегію вибирати (така ситуація виникає, коли домінуюча стратегія не єдина - із леми 5.1.2 випливає, що усі вони еквівалентні). Але ж лише ситуація (A_1, A_2) є ефективною. Знову без переговорів не обійтися!

Таблиця 5.1.5

X_2	M ₂	A_2
M_{1}	2, 2	0, 3
A_1	3, 0	1, 1

Таблиця 5.1.6

X_2	Д2	H_2
Д ₁	1, 1	0, 1
H_1	1, 0	0, 0

Обережні стратегії. Коли кожен гравець знає лише свою цільову функцію, єдиною раціональною поведінкою кожного гравця є використання домінуючих стратегій, якщо вони існують. А що залишається, якщо рівновага у домінуючих стратегіях відсутня (найпоширеніший випадок). Тоді залишається вибирати не "абсолютно краще", а "відносно краще" – "краще з гіршого".

Розглянемо приклад 5.1.7. Як легко переконатись, стратегії кожного гравця незрівняльні між собою і початкова задача залишається "невизначеною" (див. табл. 5.1.7). Спробуємо скористатись принципом вибору "кращого з гіршого". При виборі першим гравцем стратегії a_1 у найгіршому випадку (коли другий гравець обере стратегію a_2)

він одержить 1 виграшу, b_1 – 2, c_1 – 1. Таким чином, вибираючи стратегію b_1 , перший гравець гарантує собі виграш 2 одиниці (хоча при виборі a_1 він може виграти і 5, а при виборі c_1 – 4). Аналогічно, другий гравець при виборі стратегії b_2 гарантує собі 2 одиниці виграшу (вибираючи a_2 , він може виграти як 4, так і 1, вибираючи c_2 – 1 і 5). Оскільки кожен із гравців нічого не знає про наміри іншого, то вибір "обережних" стратегій b_1 і b_2 гравцями можна визнати "розумним", незважаючи на те, що існують ситуації (наприклад (c_1,c_2)), у яких кожен із гравців має більший виграш. Таким чином, для "обережних" ізольованих гравців вибір у прикладі 5.1.7 є однозначним! Хоча і не "повністю розумним" із погляду спостерігача, який володіє повною інформацією (знає цільові функції обох гравців).

Таблиця 5.1.7

Визначення 5.1.7. Стратегія x_i називається обережною (песимістичною) стратегією i-го гравця, якщо

$$\inf_{x_{N\setminus i}\in X_{N\setminus i}}u_i(x_i,x_{N\setminus i}) = \sup_{y_i\in X_i}\inf_{x_{N\setminus i}\in X_{N\setminus i}}u_i(y_i,x_{N\setminus i}) = \alpha_i.$$
 (5.1.5)

Множину обережних стратегій i-го гравця позначимо O_i . Величина α_i називається ϵ гарантованим результатом (виграшем) i-го гравця. У прикладі 5.1.7: $\alpha_1=\alpha_2=2$.

Отже, i-ий гравець вважає, що його супротивники діють для нього найгірше і його "розумність" у такій ситуації полягає у виборі на множині своїх стратегій максимізуючої його цільову функцію стратегії.

Множина $IR = \left\{ x \in X \middle| u_i(x) \ge \alpha_i, \ \forall i \in N \right\}$ називається множиною iндивідуально-раціональних ситуацій. Множині IR належать ситуації, у яких кожен гравець має виграш не менший за гарантований. У прикладі $5.1.7 \ IR = \left\{ (a_1, b_2), \ (b_1, a_2), \ (b_1, b_2), \ (b_1, c_2), \ (c_1, c_2) \right\}.$

Очевидно, що вести переговори про вибір ситуації, у якій хоча б один гравець має виграш, менший за гарантований α_i , не має сенсу.

Адже і без переговорів кожен гравець, діючи ізольовано, може отримати α_i . Очевидно також, що вести переговори про вибір домінованої за Парето ситуації не логічно (з урахуванням міркувань про ефективні рішення).

Визначення 5.1.8. Множина $\Pi = IR \cap PO$ називається переговорною.

Для приклада 5.1.7 $\Pi = \{(a_1, b_2), (b_1, c_2), (c_1, c_2)\}$. Відмітимо, що у множину Π не ввійшли індивідуально-раціональні ситуації (b_1, a_2) , (b_1, b_2) , які не ϵ ефективними, і ефективна ситуація (a_1, c_2) , яка не ϵ індивідуально-раціональною.

Визначення 5.1.9. Обережні стратегії гравців x_i , $i \in N$, називаються оптимальними, якщо набір гарантованих результатів $\alpha = (\alpha_i)_{i \in N}$, що відповідає цим стратегіям, є Парето-оптимальним. Оптимальні стратегії i-го гравця позначимо через OP_i . Для прикладу 5.1.7: $OP_1 = OP_2 = \varnothing$.

Розглянемо приклад 5.1.8 (табл. 5.1.8):

$$O_1 = \{b_1\}, O_2 = \{a_2, c_2\}, OP_1 = \{b_1\}, OP_2 = \{c_2\}, ((b_1, c_2) \in PO, (b_1, a_2) \notin PO).$$

Таблиця 5.1.8

Для скінченної гри існування непорожніх множин O_i очевидне. Маємо таке твердження.

Лема 5.1.3. Нехай X_i – компактні, u_i – неперервні, $i \in N$. Тоді множини обережних стратегій O_i кожного гравця не порожні й компактні.

Доведення. Оскільки функції u_i неперервні, то функції $\Theta(y_i) = \inf_{x_{N \setminus i} \in X_{N \setminus i}} u_i \left(y_i, x_{N \setminus i} \right)$ напівнеперервні зверху на X_i і для $\forall \lambda$ мно-

жини
$$\left\{y_i \in X_i \,\middle|\, \Theta \left(y_i\right) \geq \lambda \right\} = \bigcap_{x_{N \setminus i} \in X_{N \setminus i}} \left\{y_i \in X_i \,\middle|\, u_i \left(y_i, x_{N \setminus i}\right) \geq \lambda \right\}$$
 замкнені. Звід-

си випливає, що множина точок максимуму функцій $\Theta(y_i)$ є непорожньою і компактною множиною O_i . \blacklozenge

Уже у скінченному випадку існування оптимальних стратегій не гарантується. Що можна забезпечити в умовах леми 5.1.3 – це існування множини недомінованих стратегій кожного гравця (лема 5.1.1). Виявляється, що розумний обережний гравець (що діє обережно та відкидає свої доміновані стратегії) у багатьох випадках може гарантувати собі непорожній вибір.

Лема 5.1.4. Нехай X_i — компакти, u_i — неперервні, $i \in N$. Тоді $O_i \cap HD_i \neq \varnothing$, $i \in N$.

Доведення. Зафіксуємо i й розглянемо гру $\tilde{G} = \left(Y_j, u_j, j \in N\right)$, у якій $Y_j = X_j$, $j \neq i$, $Y_i = O_i$ (за лемою 5.1.3 множина $Y_i \neq \varnothing$ і компактна). За лемою 5.1.1 у грі \tilde{G} i-й гравець має хоча б одну недоміновану стратегію x_i . Покладемо, що x_i домінується стратегією y_i у початковій грі, тобто $u_i\left(x_i, x_{N\setminus i}\right) \leq u_i\left(y_i, x_{N\setminus i}\right)$ для $\forall x_{N\setminus i} \in X_{N\setminus i}$. Тоді маємо:

$$\Theta\left(x_{i}\right) = \inf_{y_{N\setminus i} \in X_{N\setminus i}} u_{i}\left(x_{i}, y_{N\setminus i}\right) \leq \Theta\left(y_{i}\right) = \inf_{x_{N\setminus i} \in X_{N\setminus i}} u_{i}\left(y_{i}, x_{N\setminus i}\right),$$

звідки $\Theta(y_i) = \sup_{z_i \in X_i} \Theta(z_i)$ і $y_i \in O_i$, що суперечить припущенню про не-

домінованість x_i у грі \tilde{G} . Отже, $x_i \in O_i \cap HD_i$. •

Ігри двох осіб з нульовою сумою. Окремо й коротко розглянемо izpu двох осіб з нульовою сумою (оскільки вони вивчаються у курсі "Методи оптимізації"), у яких $u_2\left(x_1,x_2\right)=-u_1\left(x_1,x_2\right)$ для $\left(x_1,x_2\right)\in X_1\times X_2$.

Обережні стратегії x_1 , x_2 кожного гравця визначаються співвідношеннями:

$$\begin{split} &\inf_{x_2 \in X_2} u_1(x_1, x_2) = \sup_{y_1 \in X_1} \inf_{x_2 \in X_2} u_1(y_1, x_2) = \alpha_1\,,\\ &\sup_{x_1 \in X_1} u_1(x_1, x_2) = \inf_{y_2 \in X_2} \sup_{x_1 \in X_1} u_1(x_1, y_2) = \alpha_2\,. \end{split}$$

Легко показати, що $\alpha_1 \leq \alpha_2$. Фіксуючи довільні $(x_1, x_2) \in X_1 \times X_2$, маємо: $\phi_1(x_1) = \inf_{y_2} u_1(x_1, y_2) \leq u_1(x_1, x_2) \leq \sup_{y_1} u_1(y_1, x_2) = \phi_2(x_2)$. Звідси випливає: $\alpha_1 = \sup_{y_1} \phi_1(y_1) \leq \inf_{y_2} \phi_2(y_2) = \alpha_2$.

Якщо $\alpha_1 = \alpha_2 = \alpha$, то величина α називається *ціною гри*. Якщо $\alpha_1 < \alpha_2$, то відповідна гра не має ціни.

Якщо для $\forall (y_1,y_2) \in X_1 \times X_2$, $u_1(y_1,x_2) \leq u_1(x_1,x_2) \leq u_1(x_1,y_2)$, то ситуація (x_1,x_2) називається *сідловою точкою*. Зв'язки між сідловими точками і оптимальними стратегіями встановлює лема 5.1.5.

Лема 5.1.5. Якщо гра двох осіб з нульовою сумою має ціну, то ситуація (x_1, x_2) є парою оптимальних стратегій тоді і лише тоді, коли вона є сідловою точкою. Якщо гра не має ціни, то у ній відсутня і сідлова точка.

Доведення можна подивитись у [7].

Приклад 5.1.9. Гра двох осіб з нульовою сумою задається матрицею виграшів першого гравця (і відповідно програшів другого) (див. табл. 5.1.9). Маємо, $O_1 = OP_1 = \{b_1\}$, $O_2 = OP_2 = \{b_2\}$, $\alpha_1 = \alpha_2 = 2$. Ситуація (b_1,b_2) є сідловою точкою: $u_1(y_1,b_2) \le u_1(b_1,b_2) \le u_1(b_1,y_2)$, $\forall y_1 \in X_1$, $\forall y_2 \in X_2$ ($\{1,2,1\} \le 2 \le \{3,2,3\}$).

Таблиця 5.1.9

Приклад 5.1.10 (Гра "Раз–два–три"). Кожен гравець вибирає одну з трьох стратегій: a = "раз", b = "два", c = "три". Виграш першого гравця додатний, якщо він правильно вгадав виграш другого гравця й нуль — у протилежному випадку. Виграш першого гравця задається матрицею (див. табл. 5.1.10). У цій грі α_1 = 0 < 1 = α_2 і гра не має ціни. O_1 = $\{a,b,c\}$, O_2 = $\{a\}$. Отже, навіть для скінченної гри двох осіб з нульовою сумою не гарантується існування сідлової точки, а, отже, і оптимальних стратегій. Відома теорема фон Неймана–Моргенштерна говорить, що гарантувати існування сідлової точки для гри двох осіб з нульовою сумою можна при "змішаному розширенні" гри (див. § 5.4) при використанні "змішаних" стратегій, які задаються імовірнісним розподілом на множині початкових ("чистих") стратегій.

Таблиця 5.1.10

X_2	а	b	С
а	1	0	0
b	0	2	0
C	0	0	3

Контрольні завдання до § 1

1. Знайти множини недомінованих стратегій (ND_i), рівноваг у домінуючих стратегіях (D), Парето-оптимальних ситуацій (PO), обережних стратегій (O_i), індивідуально-раціональних ситуацій (IR), переговорних ситуацій (Π):

1.1

X_2	a_2	b ₂	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 0	1, 1	2, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 5	0, 5	1, 4
$\boldsymbol{c}_{\scriptscriptstyle 1}$	5, 1	1, 2	2, 2

1.2

X_2	a_{2}	b ₂	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	3, 2	3, 3
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 2	3, 3	1, 3
$\boldsymbol{c}_{\scriptscriptstyle 1}$	3, 1	2, 4	4, 2

1.3

X_2	a_2	b ₂	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 4	1, 3	3, 4
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 5	3, 3	4, 3
c ₁	1, 1	4, 2	4, 2

1.4

X_2 X_1	a_{2}	b ₂	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1	1, 3	3, 2
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 3	2, 2	3, 1
c ₁	3, 2	2, 3	3, 3

2. Знайти змішані рівноваги для таких ігрових моделей: 2.1

X_2	a_2	b ₂	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 0	1, 1	2, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 5	0, 5	1, 4
$\boldsymbol{c}_{\scriptscriptstyle 1}$	5, 1	1, 2	2, 2

2.2

X_2	a_2	b ₂	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	3, 2	3, 3
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 2	3, 3	1, 3
$\boldsymbol{c}_{\scriptscriptstyle 1}$	3, 1	2, 4	4, 2

2.3

X_2	a ₂	b ₂	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 4	1, 3	3, 4
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 5	3, 3	4, 3
c ₁	1, 1	4, 2	4, 2

2.4

X_2	a_2	\boldsymbol{b}_2	c_2
\boldsymbol{a}_1	1, 1	1, 3	3, 2
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 3	2, 2	3, 1
$\boldsymbol{c}_{\scriptscriptstyle 1}$	3, 2	2, 3	3, 3

§ 2. Повна та часткова інформованість гравців

Розглянемо випадок "повної інформованості" гравців, коли кожен із них знає всі цільові функції – свою та суперників.

Складна поведінка гравців. При некооперативній поведінці в умовах повної інформованості породжуються взаємні "стратегічні очікування", які полягають у тому, що *і-*й гравець очікує, що всі інші гравці також будуть виключати свої доміновані стратегії. Унаслідок цього у деяких гравців можуть виникнути нові доміновані стратегії і т. д.

Розглянемо приклад 5.2.1 (табл. 5.2.1). Маємо: $a_1 \succ c_1$, a_1 і b_1 незрівнянні. Усі стратегії другого гравця незрівнянні між собою. Отже, рівноваги в домінуючих стратегіях не існує. Але, якщо другий гравець знає цільову функцію першого, то він може "стратегічно сподіватись" на те, що перший відкине свою доміновану стратегію c_1 (простіше кажучи, другий може сподіватись на "розумність" першого) й розглядати вже не початкову задачу, а "скорочену", у якій $X_1^1 = \{a_1, b_1\}$. У новій задачі стратегія a_2 буде домінованою (і b_2 , і c_2). Отже, $X_2^1 = \{b_2, c_2\}$. У свою чергу, на множинах стратегій X_1^1 , X_2^1 стратегія a_1 домінується стратегією b_1 , а на множинах $X_1^2 = \{b_1\}$, X_2^1 домінованою буде стратегія b_2 ! Отже, раціональна поведінка кожного гравця разом із раціональною оцінкою поведінки супротивника приводить до однозначного результату: перший вибирає стратегію b_1 , другий — c_2 .

Таблиця 5.2.1

X_2	a_{2}	\boldsymbol{b}_2	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	1, 2	2, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 1	2, 1	2, 2
$\boldsymbol{c}_{\!\scriptscriptstyle 1}$	3, 3	1, 2	1, 2

Ця ситуація (b_1,c_2) , отримана внаслідок відкидання кожним гравцем своїх домінованих стратегій, називається складною рівновагою. Звернемо увагу на два аспекти. По-перше, складну рівновагу було отримано не внаслідок послідовної "тактичної" гри (перший гравець відкидає свої доміновані стратегії, потім — другий), а внаслідок "стратегічного" планування (якщо я відкину свої доміновані стратегії, а

другий гравець це врахує та відкине свої, то прийдемо до (b_1,c_2)). Подруге, отримана ситуація не є ефективною (ситуація (c_1,a_2) краща для обох гравців!).

Визначення 5.2.1. Для гри $G = \left(X_i, u_i, i \in N \right)$ послідовне виключення домінованих стратегій означає побудову послідовностей $X_i = X_i^0 \supset X_i^1 \supset \ldots \supset X_i^t \supset X_i^{t+1} \supset \ldots, \forall i \in N$, $X_i^{t+1} = ND \left(u_i, X_j^t, j \in N \right)$.

Розглянемо, до чого може привести послідовне виключення домінованих стратегій.

Приклад 5.2.2 (табл. 5.2.2). Виключаючи доміновані стратегії c_1 і a_2 (у будь-якій послідовності), отримаємо $X_1^1 = \{a_1,b_1\}$, $X_2^1 = \{b_2,c_2\}$. Подальше виключення стратегій неможливе, оскільки a_1 і b_1 , b_2 і c_2 незрівнянні. Що робити далі? Можна задовольнитись фактом скорочення кількості стратегій у кожного гравця й розглядати нову гру з множинами стратегій X_1^1 , X_2^1 (а в реальних ситуаціях скорочення може бути значним — наприклад, від гри 100×100 до 2×2), а можна повернутись до початкової гри. У конкретних ситуаціях можливі обидва шляхи, але звернемо увагу, що при "скороченні" початкової гри було втрачено ситуацію (c_1,a_2) , що домінує за Парето всі ситуації, що залишились.

 X_2
 X_1 a_2 b_2 c_2 a_1 3, 11, 22, 1 b_1 1, 12, 11, 2 c_1 3, 31, 31, 4

Таблиця 5.2.2

Приклад 5.2.3 (табл. 5.2.3). Маємо: $a_1 \succ b_1$, $a_1 \succ c_1$, $b_2 \succ a_2$ і виключення домінованих стратегій у довільній послідовності приводить до двох ситуацій – (a_1,b_2) , (a_1,c_2) , рівноцінних із погляду кожного гравця. У цьому випадку логічно назвати складною рівновагою обидві ситуації. І знову відмітимо, що раціональна (але ізольована!) поведінка кожного гравця призводить до втрати ситуації (c_1,a_2) , кращої для обох.

Таблиця 5.2.3

X_2	a_2	\boldsymbol{b}_2	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	2, 3	2, 3
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	3, 3	1, 5	2, 4
\boldsymbol{c}_1	3, 4	2, 4	1, 5

Визначення 5.2.2. Гра G називається розв'язною за домінуванням, якщо існує натуральне t таке, що для всіх i функція виграшу u_i не залежить від x_i на X_N^t : $\forall x_i, y_i \in X_i^t$, $\forall x_{N\setminus i} \in X_{N\setminus i}^t$ $u_i \left(x_i, x_{N\setminus i} \right) = u_i \left(y_i, x_{N\setminus i} \right)$. Множина X_N^t при цьому називається множиною складних рівноваг і буде позначатись SE.

Розв'язність гри за домінуванням означає, що після скінченого числа раундів виключення всі стратегії кожного гравця стануть для нього еквівалентними (для нього, але, взагалі кажучи, не для інших – див. приклад 5.1.6, у якому всі ситуації є складними рівновагами, але, якщо для першого гравця байдуже, яку стратегію обрати – \mathcal{L}_1 або \mathcal{H}_1 , то для другого це – яку стратегію обере перший – зовсім не байдуже!). Якщо функції виграшу для всіх гравців однозначні на X_N , то множина складних рівноваг (якщо вона існує) складається з одного елемента. Отже, у таких розв'язних за домінуванням іграх, складна поведінка ізольованих гравців є детермінованою. Складна рівновага узагальнює рівновагу в домінуючих стратегіях у такому сенсі.

Лема 5.2.1. Якщо у грі G множина рівноваг у домінуючих стратегіях D непорожня, то гра ε розв'язною за домінуванням і D ε множиною складних рівноваг.

Доведення випливає з леми 5.1.3. Якщо тільки в одного гравця i є домінуюча стратегія, то, очевидно, $D_i(u_i)$ є i-ю компонентою складної рівноваги, якщо остання існує.

Для гри $G = (u_i, X_i, i \in N)$ невідомі достатні умови розв'язності за домінуванням. Такі умови можна отримати, якщо розглянути інші представлення гри – так звану розгорнуту форму [6].

Можна стверджувати, що ми, свідомо чи підсвідомо, нерідко застосовуємо "складну" поведінку (діємо раціонально в припущенні, що і партнери також поводяться раціонально). При перевагах складної поведінки, потрібно пам'ятати, що така раціональність нерідко є нерозумною (з погляду досягнення бажаного результату). На цю тему ще один класичний приклад (Форкуарсон, 1969).

Журі з трьох членів повинно вибрати одного з трьох кандидатів $\{a,b,c\}$. Переможець обирається за правилом більшості, якщо думки членів журі розходяться, то вибирається кандидат, за якого проголосував "голова журі" (нехай – це виборець під номером 1). Отже, якщо гравці висунули кандидатури $(x_1,x_2,x_3),\ x_i\in X_i=\{a,b,c\},\ i=1,2,3$, то вибори переможця відбуваються за правилом:

$$\pi(x_1, x_2, x_3) = \begin{cases} x_2, & \text{якщо } x_2 = x_3, \\ x_1, & \text{якщо } x_2 \neq x_3. \end{cases}$$

Покладемо, що функції виграшу гравців мають таку структуру: $u_1(a) > u_1(b) > u_1(c)$, $u_2(b) > u_2(c) > u_2(a)$, $u_3(c) > u_3(a) > u_3(b)$ ("цикл Кондорсе"). Розглянемо стратегії a і b першого гравця на предмет домінування. Для цього потрібно розглянути ситуації і для всіх можливих (але однакових) виборів другого та третього гравця. Усього потрібно розглянути $3 \times 3 = 9$ ситуацій. Маємо:

$$\begin{split} u_1\big(\pi(a,a,a)\big) &= u_1\big(a\big) = u_1\big(\pi(b,a,a)\big) = u_1\big(a\big)\,,\\ u_1\big(\pi(a,a,b)\big) &= u_1\big(a\big) > u_1\big(\pi(b,a,b)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,a,c)\big) &= u_1\big(a\big) > u_1\big(\pi(b,a,c)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,b,a)\big) &= u_1\big(a\big) > u_1\big(\pi(b,b,a)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,b,b)\big) &= u_1\big(b\big) = u_1\big(\pi(b,b,b)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,b,b)\big) &= u_1\big(a\big) > u_1\big(\pi(b,b,c)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,b,c)\big) &= u_1\big(a\big) > u_1\big(\pi(b,c,a)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,c,a)\big) &= u_1\big(a\big) > u_1\big(\pi(b,c,a)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,c,b)\big) &= u_1\big(a\big) > u_1\big(\pi(b,c,b)\big) = u_1\big(b\big)\,,\\ u_1\big(\pi(a,c,c)\big) &= u_1\big(c\big) = u_1\big(\pi(b,c,c)\big) = u_1\big(c\big)\,. \end{split}$$

Отже, за визначенням домінування $a \succ b$ для першого гравця. Аналогічно $a \succ c$ і $X_1^1 = \{a\}$. Для другого й третього гравця маємо (перевірте!): $X_2^1 = \{b,c\}$, $X_3^1 = \{c,a\}$. Порівняємо стратегії b і c для другого гравця на множинах стратегій X_i^1 , i=1,2,3. Маємо:

$$u_2(a,b,c) = u_2(a) < u_2(a,c,c) = u_2(c),$$

 $u_2(a,b,a) = u_2(a) = u_2(a,c,a) = u_2(a)$

(стратегія першого фіксована, третій може вибрати або c або a). Отже, $X_2^2=\{c\}$. Аналогічно, $X_3^2=\{c\}$ і, таким чином, на множині $X_1^2=X_1^1=\{a\}$, $X_2^2=X_3^2=\{c\}$ за правилом більшості буде вибрано c —

найгірший вибір для першого гравця – голови журі! Сила "начальника" в розв'язуванні спірних ситуацій виявляється його слабкістю у грі з розумними (навіть, ізольованими!) підлеглими. Згадайте цей життєвий приклад, перед тим, як висуватись у начальники!

Розглянемо випадок n = 2.

Лема 5.2.2. Нехай $G = (X_1, X_2, u_1)$ – гра двох осіб із нульовою сумою та скінченними множинами стратегій. Тоді складна рівновага є сідловою точкою функції u_1 . Отже, розв'язки за домінуванням гри двох осіб із нульовою сумою мають ціну. Доведення у [6].

У випадку, коли множини стратегій X_i нескінченні при всіх $i \in N$ (хоча й компактні), досить важко формально визначити складну поведінку. Однією з причин є те, що у процесі виключення домінованих стратегій компактність множини стратегій може порушуватись. Далі, збіжність послідовностей X_i^t , $i \in N$, до підмножини еквівалентних стратегій може відбуватися лише при нескінченній кількості гравців. Ці складнощі демонструються прикладом ("Поділ долара при інфляції" – Дутта, Дживерс, 1981).

Гравці ($i \in N = \{\overline{1,n}\}$) ділять долар за таким правилом:

$$\mathit{Kpo\kappa}\ 1.\ \Gamma$$
равець 1 пропонує поділ $x^1 = \left(x_1^1, ..., x_n^1\right),$ де $\sum_{i=1}^n x_i^1 = 1$, $x_i^1 \geq 0$,

 $i \in N$. Гравці 2, ..., n можуть прийняти цей поділ або відхилити його. Якщо всі гравці погоджуються на x^1 , то він приймається, інакше (хоча б один гравець 2, ..., n не погоджується) відбувається перехід на крок 2.

Крок 2. Гравець 1 переставляється в кінець черги, а свій поділ x^2 пропонує гравець 2. Якщо інші гравці (3, ..., n, 1) не приймають поділ x^2 , то процедура повторюється (вже з гравцем 3).

Нехай долар знецінюється за кожен крок переговорів із коефіцієнтом τ , $0 < \tau < 1$. Так, у другому періоді ділиться вже $\delta = 1 - \tau$ (тобто, другий гравець пропонує свій поділ величини δ , $0 < \delta < 1$), у третьому δ^2 і т. д. Зрозуміло, що якщо процедура буде продовжуватись до нескінченності, то доведеться ділити нуль. Отже, з одного боку, кожному гравцеві вигідно поділити гроші якомога швидше (поки вони не знецінились), з іншого – не можна погоджуватись на "несправедливий" поділ. Нехай такий "справедливий" поділ x^* існує (його вигідно прийняти кожному гравцеві). Наведемо міркування, що базується на стратегічних очікуваннях кожного гравця, аналогічних міркуваннях при знаходженні складної рівноваги у скінченому випадку.

Нехай на першому кроці гравець 1 пропонує $x^1 = (x_1^1, ..., x_n^1)$. Він знає, що гравець i ($i \neq 1$), розраховує на наступному кроці (якщо він відбудеться) отримати поділ $x^\delta = \left(\delta x_1^*, \delta x_2^*, ..., \delta x_n^*\right)$ (другий гравець перемістився на перше місце, перший на останнє). Отже, для того, щоб поділ x^1 був прийнятий гравцями 2, ..., n необхідно, щоб

$$x_2^1 \ge \delta x_1^*, \ x_3^1 \ge \delta x_2^*, \dots, x_n^* \ge \delta x_{n-1}^*.$$

Покладаючи, що пропозиція x^* буде прийнятою ($x^1 = x^*$), маємо:

$$x_2^* \ge \delta x_1^*, x_3^* \ge \delta x_2^*, \dots, x_n^1 \ge \delta x_{n-1}^*.$$
 (5.2.1)

Яка доля при цьому залишається першому гравцю? Очевидно, $x_1^1 = 1 - \left(x_2^* + \ldots + x_n^*\right) \le 1 - \left(\delta x_1^* + \ldots + \delta x_{n-1}^*\right)$. Отже, він не запропонує поділ $x_1^1 < 1 - \left(\delta x_1^* + \ldots + \delta x_{n-1}^*\right)$. Тобто, $x_1^* \ge 1 - \left(\delta x_1^* + \ldots + \delta x_{n-1}^*\right) =$

$$=1-\left(\delta x_{1}^{*}+\ldots+\delta x_{n-1}^{*}+\delta x_{n}^{*}-\delta x_{n}^{*}\right)=1-\delta \sum_{i=1}^{n}x_{i}^{*}+\delta x_{n}^{*}=\left(1-\delta\right)+\delta x_{n}^{*} \quad (5.2.2)$$

Із (5.2.1), (5.2.2) маємо: $x_i^* \geq \delta^{i-1} x_1^* \geq \left(1-\delta\right) \delta^{i-1} + \delta^i x_n^* \geq \left(1-\delta\right) \delta^{i-1} + \delta^n x_n^*$, Звідки:

$$x_i^* \ge (1 - \delta)\delta^{i-1}/(1 - \delta^n) = \delta^{i-1}/(1 + \delta + \dots + \delta^{n-1}), i = \overline{1, n}.$$
 (5.2.3)

Оскільки величини у правій частині нерівностей у сумі дають 1, то всі нерівності (5.2.3) - є рівностями. Отже, компоненти складної рівноваги $x_i^* = \delta^{i-1} / (1 + \delta + \ldots + \delta^{n-1})$, $i = \overline{1,n}$. Зазначимо, що коли δ прямує до 1 ($\tau \to 0$, інфляція незначна), граничний поділ стає справедливим $(x_i^* = 1/n, i = \overline{1,n})$, хоча вже "стратегічна" аргументація при $\delta = 1$ стає некоректною. Якщо гравці рівноправні (початковий порядок на їхній множині задається, наприклад, випадково), то пропонування у поділі на i-му кроці i-м гравцем своєї долі $x_i^i > 1/n$ приведе або до "зациклення" або прийняття "несправедливого" поділу (краще мати щось у даний момент, ніж померти від голоду в очікуванні справедливості). Тому потрібні процедури, що "автоматично" забезпечують "справедливий" поділ. У цьому випадку задача зводиться вже не до розумного вибору стратегій, а до розумного вибору процедур розумного вибору стратегій. Згадаймо, як відбуваються дипломатичні переговори. Основні зусилля тут зводяться до вибору процедури ведення переговорів, а вибір стратегій ϵ другорядним і приймається сторонами автоматично (звичайно, сторони можуть не погодитись із результатом і все починається з початку. У цьому випадку передбачається наявність "апеляційного суду", "конституційного суду", рішення якого є остаточним).

Наведемо характерний приклад, який називається "Діли — вибирай". Два гравці ділять одиницю нескінченно подільного продукту (золотий пісок, яблуко і т. п.). Гравці рівноправні, кожен претендує на $x_i = 0.5$, i = 1, 2. Процедура поділу, у якій гравці почергово пропонують свої варіанти, може продовжуватись до нескінченності. Процедура "Діли — вибирай" закінчується за один крок! Усе дуже просто (автори впевнені, що читачі не раз цією процедурою користувались у житті) — один ділить, другий вибирає (того, хто ділить, можна визначити жеребом). Зрозуміло, що той, хто ділить, зацікавлений у тому, щоб одиницю поділити навпіл як можна точніше (інакше партнер забере собі більшу частину!). Як приклад, ще одна повчальна життєва історія. Коли відомого персонажа Вовочку запитали, чому він перейшов з "Снікерса" на "Баунті", той відповів: "Снікерс" точно навпіл дуже важко поділити, і більшу частину мені, як джентльмену, доводилось віддавати дамі" ("Баунті" містить дві ідентичні цукерки). Узагальнення процедуру "Діли — вибирай" на випадок $n \ge 3$ здійсне-

Узагальнення процедуру "Діли — вибирай" на випадок $n \ge 3$ здійснено відомим математиком Штейнгаузом. Якимось чином установлюється черга гравців і перший указує свою частку x_1 , $0 \le x_1 \le 1$. Якщо другий гравець із нею не погоджується, він повинен показати свою частку x_2 , $0 \le x_2 < x_1$, третьому гравцю і т. д. Якщо другий гравець згоден з x_1 , то її розглядає третій гравець і т. д. Оскільки, кожен з гравців буде пропускати долю інших не більшу за 1/n і затримувати більшу за 1/n, то оптимальна поведінка кожного є відрізати собі рівно 1/n.

Ще один приклад (пірати ділять зливки золота), який показує, що відносно демократична процедура, може привести до не дуже справедливого результату.

Нехай маємо 100 одиниць продукту (одна одиниця – уже неподільна). Гравці (пірати) вишикувані в чергу (капітан, помічник капітана, юнга) і послідовно пропонують свій варіант поділу. Якщо поділ підтримується не менш ніж половиною команди (включаючи того, хто пропонує), він приймається. Інакше (більшість – проти), того, хто пропонує, вилучають із поділу (викидають за борт) і наступний за старшинством пропонує свій варіант поділу. Візьмемо реалістичне припущення, що кожен із піратів знає функції виграшу інших. А саме, кожен пірат із двох даних поділів вибирає той, у якому його частка більша. Загальна недовіра, що, як відомо, царювала серед піратів, дозволяє стверджувати, що вони будуть діяти ізольовано (некооперативно). А отже, задача зводиться до пошуку складної рівноваги. Коли n=2, то всі зливки забирає собі старший пірат (він становить половину команди). При n=3 поділ (як не дивно!) такий: 100=99+0+1 (старший отримує 99 одиниць, молодший — 1, середній — 0). Чому молодший пірат погодиться з 1

і підтримає тим самим старшого? Тому, що інакше (молодший не погоджується, старшого усувають, залишається два пірати й усі 100 одиниць забирає собі середній) він отримує О. А одиниця краща за О. Парадоксальний результат! Але, якщо добре подумати, то саме такі результати на кожному кроці ми зустрічаємо у житті. "Краще щось, ніж нічого!", "Покладатися лише на себе!", - оптимальна (раціональна, розумна) ідеологія? Так, але не забуваймо - ізольованих гравців. Не змінюючи процедури поділу (нагадаймо: приймається варіант більшості, що цілком демократично), другий і третій гравець (помічники капітана) можуть домовитись відкинути стратегічно очікуваний варіант капітана 100 = 99 + 0 + 1 заради, наприклад, поділу 100 = 0 + 50 + 50. Залежно від ситуації на переговорах можуть розглядатись варіанти від 100 = 0 + 1 + 99 (третій має тиск на другого – "інакше нічого не одержиш") до 100 = 0 + 98 + 2 (тиск другого: "два краще за одиницю і яка тобі різниця, хто ϵ твоїм начальником"). Погодьтесь, типові життєві ситуації. Настільки ж типові, як і можливість відмови третього від кооперації – "де гарантія, що після усунення першого, другий буде дотримуватись домовленості". ("Домовленість - домовленістю, але закон (правило більшості у даному випадку) ϵ законом!").

Повернемось до нашої задачі. Сподіваємось, що вже всім вам зрозуміло (мається на увазі n>3): 100=99+0+1+0, 100=98+0+1+0+1 і т. д. Якщо n=2p+1 або n=2p+2, то у поділі частка капітана дорівнює (100-p) зливків $(100-p\geq 1)$. По одному злитку отримають p піратів, які мають номери тієї парності, що й капітан.

Рівновага за Нешем. Домінуюча стратегія, обережна та складна поведінка можуть бути визначеними гравцями незалежно один від одного. На противагу цьому рівновага за Нешем може бути зумовленою лише динамічним сценарієм, у якому стратегічні рішення, що приймаються у даний момент, залежать від попередніх сценаріїв гри або хоча б від початкової позиції. Таким чином, спілкування гравців стає неминучим. Вони повинні хоча б сумісно спостерігати ситуації гри.

Розглянемо приклад "особисті інтереси та суспільні потреби" [6]. Кожен із n учасників може працювати на "суспільство" ($x_i = 0$) або на себе ($x_i = 1$). Розглядається задача:

$$\begin{cases} u_i(x) = \lambda x_i + \sum_{j=1}^n (1 - x_j) \rightarrow \max, \\ x_i \in X_i = \{0, 1\}, \ 1 < \lambda < n. \end{cases}$$

Параметр λ можна розглядати як продуктивність праці (у грошових одиницях) при роботі на себе ($x^1 = (1,...,1)$, $u_i(x^1) = \lambda$), при роботі на су-

спільство продуктивність праці кожного одинична. Членів суспільства досить багато — із якою б продуктивністю λ гравці не працювали, деяке $n>\lambda$ (на себе можна працювати і "за десятьох", але ж $\lambda<11$). Якщо всі працюють на суспільство $(x_i^0=0\,,\,\,i=\overline{1,n})$, то виграш кожного $u_i\left(x^0\right)=n>\lambda$. Отже, коли всі працюють на суспільство вигідно всім (і кожному). Але! Нехай на суспільство працюють усі, крім одного $(x_i=0\,,\,x_k=1\,,\,k\neq i\in N)$. Маємо: $u_i=n-1< n\,,\,u_k=\lambda+n-1=n+(\lambda-1)> n\,.$

Отже, ухилення одного від "суспільних" робіт вигідно йому (він має добавку $\Delta u_k = \lambda - 1$), останні ж від цього втрачають (кожен із них 1). Розглянемо протилежний випадок — усі крім одного працюють на себе $(x_i = 1, x_k = 0, k \neq i \in N)$. Маємо: $u_i = \lambda + 1 > \lambda$, $u_k = 1 < \lambda$. Тобто, відхилення k-го гравця ("альтруїста") від праці "на себе" на працю "на суспільство" виявилось невигідним йому (він утрачає $\Delta u_k = \lambda - 1 > 0$). Відмітимо, що поява альтруїста привела до збільшення прибутку "індивідуалістів" (на 1). Але ж кожен намагається максимізувати свою цільову функцію — отже, відхилення будь-якого гравця від ситуації x^1 йому невигідне. Повернемось до моделі "Дилема в'язня" (приклад 5.1.4).

Від ситуації (M_1,M_2) , однаково вигідної для обох (порівняно із ситуацією (A_1,A_2)), кожному гравцю вигідно відхилятись (замість 2 мати 3), за умови, що інший не змінює свою стратегію (див. табл. 5.2.4). Аналогічно від ситуацій (A_1,M_2) , (M_1,A_2) вигідно відхилятись одному з них. І лише від ситуації (A_1,A_2) невигідно відхилятись кожному. Підкреслимо, саме кожному з них, а не обом (відхилення ж від (A_1,A_2) обох приводить у ситуацію (M_1,M_2)).

Таблиия 5.2.4

X_1	M ₂	A_2
M_{1}	2,2	0,3
A_1	3,0	1,1

Подамо трохи іншу (соціальну) інтерпретацію цієї моделі. Нехай кожен із двох гравців має дві стратегії — підтримувати зміни у суспільстві ("перебудова" — Π) або не підтримувати ("консерватизм" — K) (табл. 5.2.5).

Таблиця 5.2.5

X_1	II_2	K ₂
Π_{1}	2,2	0,3
K_{1}	3,0	1,1

Знову лише від ситуації (K_1,K_2) невигідно відхилятись будь-якому одному гравцеві, хоча в ситуації (Π_1,Π_2) їхні виграші більші. Цю модель можна назвати дилемою між стабільністю ("нічого не міняти") і ефективністю (ситуація (Π_1,Π_2) є Паретівською або ефективною). Розглянутій моделі можна дати й економічний зміст. Дві конкуруючі фірми можуть призначати "середню" ціну (C) або використовувати політику демпінгу (D). То попередня таблиця виграшів теж ефективно описує модель ринку.

Розглянемо узагальнення попередніх моделей на випадок трьох гравців, у кожного з яких є дві стратегії — C і \mathcal{I} (інтерпретація за бажанням — "кримінальна", "соціально-політична", або "економічна"). Вектори виграшів мають вигляд: $u(C,C,C)=(2,2,2),\ u(\mathcal{I},C,C)=(3,1,1),\ u(\mathcal{I},\mathcal{I},C)=(2,2,0),\ u(\mathcal{I},\mathcal{I},\mathcal{I},\mathcal{I})=(1,1,1).$

В останніх чотирьох ситуаціях вектори виграшів обчислюються за симетрією (якщо два гравці вибирають середні ціни, то вони мають по 1 прибутку, третій гравець із демпінговою ціною — 3; якщо ж 2 гравці вибирають демпінгові ціни — їх виграш 2, третього з середньою ціною — 0).

Дослідимо вигідність відхилення від конкретної ситуації будь-якого (але одного!) гравця. Розглянемо ситуацію (C, C, C). Відхилення одного гравця приведе до ситуації, у якій два гравці вибирають C, а третій (який відхилився) — \mathcal{A} . У цьому випадку гравець, що відхилився, має додатковий виграш (3 замість 2), тобто йому вигідно відхилятись. Якщо у ситуації було 2C і $1\mathcal{A}$, то відхилення гравця з C приведе до ситуації з 1C і $2\mathcal{A}$ і збільшення його виграшу з 1 до 2. Аналогічно, із ситуації з $2\mathcal{A}$ і 1C вигідно відхилитися хоча б одному гравцеві (а саме тому, хто C поміняв на \mathcal{A}). Від ситуації ж (\mathcal{A} , \mathcal{A} , \mathcal{A}) невигідно відхилятися будь-якому одному гравцеві (у цьому випадку він замість 1 отримає 0). Отже, ситуація (\mathcal{A} , \mathcal{A} , \mathcal{A}) — "рівноважна", хоча і неефективна (її сильно домінує ситуація (C, C, C) і строго домінують ситуації 2C і $1\mathcal{A}$). Перейдемо до формалізації.

Визначення 5.2.3. Для гри $G = (X_i, u_i, i \in N)$ ситуація x^* називається рівновагою за Нешем, якщо:

$$u_i(x^*) \ge u_i(x_i, x_{N\setminus i}^*), \forall i \in N, \forall x_i \in X_i.$$
 (5.2.4)

Будемо позначати через NE (Nesh Equalibrity) множину рівноваг Неша. Як синоніми будемо використовувати терміни "рівновага Неша", "нешівська рівновага", "нешівська ситуація", "NE—ситуація". Для зручності будемо використовувати також позначення x^{NE} для рівноваг Неша. Стратегії, із яких утворюється x^{NE} , будемо аналогічно називати "нешівські стратегії", "NE—стратегії".

Отже, у рівновазі Неша x^* гравець i розглядає стратегії інших гравців $x_{N\setminus i}^*$ як екзогенно задані ("зовнішньо" задані) і максимізує свою функцію виграшу u_i на множині своїх стратегій $x_i \in X_i$. Властивість (5.2.4) рівноваг Неша полягає у тому, що x_i^* — одна з кращих відповідей на стратегії $x_{N\setminus i}^*$ (потрібно підкреслити — x_i^* є точкою *глобального* максимуму функції однієї змінної $u_i(x_i) \equiv u_i(x_i, x_{N\setminus i}^*)$ при фіксованих значеннях змінних $x_{N\setminus i} = x_{N\setminus i}^*$). Із визначення 5.2.3 випливає, що дана ситуація є рівновагою Неша, якщо від неї невигідно відхилятись будь-якому одному гравцеві (всі інші свої стратегії не змінюють), оскільки значення його цільової функції не покращується (залишається таким, як у даній ситуації, або погіршується). Навпаки, дана ситуація не є рівновагою Неша, якщо хоча б одному гравцю вигідно відхилятись від неї (значення його цільової функції хоча б на одній стратегії покращується).

На відміну від складної або обережної поведінки концепція рівноваги Неша не дає конкретних рекомендацій із вибору стратегії. Для ігор двох осіб із нульовою сумою *NE*-ситуації є, очевидно, просто сідловими точками, тому нешівські стратегії збігаються з оптимальними стратегіями.

Розглянемо приклад 5.2.4 (див. табл. 5.2.6). Розглянемо всі 9 ситуацій на предмет їхнього аналізу на рівноважність за Нешем. Аналізуємо ситуацію (a_1,a_2) . Фіксуємо стратегію другого гравця a_2 (перший стовпчик) і розглядаємо відхилення першого з a_1 на b_1 . Значення цільової функції першого гравця при цьому не погіршиться. Тому розглянемо відхилення першого на c_1 . Це приведе до покращення значення цільової функції першого гравця (з 2 на 5). Отже, $(a_1,a_2) \not\in NE$. Фіксуємо b_2 і розглядаємо відхилення першого гравця від a_1 на b_1 . Знову відбудеться покращення значення цільової функції першого гравця, отже, $(a_1,b_2)\not\in NE$. Аналогічно, $(a_1,c_2)\not\in NE$.

Таблиця 5.2.6

X_1	a_{2}	b_2	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 2	2, 1	1, 5
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 3	3, 3	2, 2
$\boldsymbol{c}_{\scriptscriptstyle 1}$	5, 1	2, 2	3, 2

Ми аналізували ситуації (a_1,x_2) (перший рядок таблиці), фіксуючи стратегії другого гравця і змінюючи стратегії першого. Можна було поступити й навпаки – фіксувати стратегію першого $(x_1=a_1)$ і змінювати стратегії другого. Тоді, наприклад, від ситуації (a_1,a_2) другому вигідно відхилятись, вибираючи стратегію c_2 . Зміна ситуації (a_1,c_2) переходом другого гравця на інші стратегії $(a_2$ і $b_2)$ до погіршення значення його цільової функції не приводить, отже, у цьому випадку необхідно розглядати відхилення першого гравця (що ми зробили раніше).

Аналізуючи таблицю далі, знаходимо дві нешівські точки (b_1,b_2) і (c_1,c_2) . Звернемо увагу, що перша з них ефективна, друга – домінується першою. Отже, можливі різні ситуації – нешівські ситуації не є ефективними ("Дилема в'язня"), деякі з них ефективні, деякі ні. Легко побудувати приклад, коли всі нешівські точки є ефективними.

Ми розв'язували приклад прямим перебором. Насправді перебір можна скоротити. Зафіксуємо, як і вище, стратегію $x_2 = a_2$. Очевидно, що "підозрілою на нешевість" можуть бути лише стратегії першого гравця, на яких досягається максимум $u_1(x_1,a_2)$. У даному випадку — це стратегія c_1 і, отже, ситуація (c_1,a_2) . Аналізуючи її на рівновагу (зміною стратегій другого гравця) маємо, що $(c_1,a_2) \not\in NE$. Усі ситуації з першого стовпчика (в даному випадку це (b_1,a_2)) розглядати вже не потрібно. Якщо максимум $u_1(x_1,a_2)$ досягався б для декількох стратегій x_1 , то розглядати потрібно було б усі відповідні ситуації.

Таким чином, ми побудували алгоритм. Для кожного фіксованого стовпчика \bar{x}_2 знаходимо рядки, у яких досягається максимум $u_1(x_1,\bar{x}_2)$, для кожного фіксованого рядка \bar{x}_1 знаходимо стовпчики, у яких досягається максимум $u_2(\bar{x}_1,x_2)$, перетин знайдених рядків і стовпчиків і дасть нешівські ситуації. У нашому випадку, для стратегії $\bar{x}_2=a_2$ мак-

симізуюча стратегія $x_1=c_1$ (позначимо $a_2\to c_1$). $b_2\to b_1$, $c_2\to c_1$, $a_1\to c_2$, $b_1\to a_2$, b_2 , $c_1\to b_2$, c_2 . Ситуації з максимізуючих стратегій ((b_1,b_2) , (c_1,c_2)) і є нешівськими рівновагами. Якщо розглядається задача, у якій цільові функції u_i (одна або декілька) мінімізуються, то можна або перейти до максимізації ($-u_i$) або при розгляді відхилення використовувати термінологію вигідно—невигідно (замість більше—менше).

При n>2 пошук рівноваг Неша ускладнюється, хоча принципово не змінюється. Розглянемо життєво важливий випадок, коли n=3 (якщо наші предки довгий час обмежувались поняттями "один", "два", "багато", то в багатьох практичних задачах досить обмежуватись n=3).

Розглядаємо табл. 5.2.7 (у ній x_3 фіксоване на a_3). Фіксуємо a_2 (перший стовпчик) і знаходимо максимізуючі стратегії по x_1 . Маємо $(a_2,a_3) \rightarrow b_1$. Аналогічно $(b_2,a_3) \rightarrow b_1$, $(c_2,a_3) \rightarrow a_1$.

X_1	a_2	b ₂	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1, 3	1, 2, 1	2, 2, 3
$\boldsymbol{b}_{\scriptscriptstyle 1}$	2, 1, 4	2, 1, 1	1, 3, 2

Таблиця 5.2.7

Для табл. 5.2.8: $(x_3=b_3)$ маємо: $(a_2,b_3)\to a_1$, $(b_2,b_3)\to b_1$, $(c_2,b_3)\to a_1$. Отже, лише ситуації (b_1,a_2,a_3) , (b_1,b_2,a_3) , (a_1,c_2,a_3) , (a_1,a_2,b_3) , (b_1,b_2,b_3) , (a_1,c_2,b_3) необхідно перевірити на рівноважність. Із них максимум по другій компоненті досягається на (a_1,c_2,a_3) , (a_1,c_2,b_3) . У свою чергу, в останніх векторах максимум по третій компоненті досягається (a_1,c_2,a_3) . Отже, це і є єдина нешівська рівновага. Вивчимо деякі властивості NE-рівноваги.

Таблиця 5.2.8

X_2	a_2	$oldsymbol{b}_2$	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 2, 1	1, 5, 1	2, 2, 2
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 3, 2	2, 1, 2	1, 1, 1

Лема 5.2.3. Нешівські рівноваги індивідуально раціональні ($NE \subseteq IR$). **Доведення**. Нехай $x^* \in NE$, тоді $u_i(x^*) \ge u_i(x_i, x^*_{N\setminus i})$ для $\forall \ i \in N$, $\forall \ x_i \in X_i$. Оскільки $x^*_{N\setminus i}$ — фіксоване, то $u_i(x_i, x^*_{N\setminus i}) \ge \inf_{x_{N\setminus i}} u_i(x_i, x_{N\setminus i})$ для $\forall \ x_i \in X_i$. Узявши супремум по x_i у цій нерівності, отримаємо необхілне. lacktriangle

Отже, NE-ситуація дає кожному гравцю хоча б його гарантований виграш, хоча NE-стратегії можуть і не бути обережними (див. наступний приклад) і тим більш оптимальними (тобто NE-ситуація може бути не паретівською – див. "Дилему в'язня"). Більше того, якщо кожна NE-ситуація є паретівською, то співіснування декількох різних паретівських ситуацій породжує боротьбу за лідерство, що унеможливлює знаходження "оптимальних" стратегій. Це ілюструється таким прикладом.

Приклад 5.2.5 ("Перехрестя"). Два автомобілі рухаються по двох перпендикулярних дорогах і одночасно зустрічаються на перехресті. Кожен з них може або зупинитись (стратегія 3) або продовжувати рухатись (P). Наведена табл. 5.2.9 формалізує дану ситуацію у припущенні, що кожному гравцеві краще зупинитись, ніж постраждати в аварії, і рухатись, якщо інший зупинився. Додатне число є відповідає мірі незадоволення того, хто зупинився, від спостерігання колеги, який їде (величина є визначається етичними нормами суспільства).

Таблиця 5.2.9

X_1	3	P
3	1, 1	1-ε, 2
P	2, 1-ε	0, 0

Обидві NE-ситуації (3,P) і (P,3) є паретівськими, хоча вони і не взаємозамінні. Для кожного гравця оптимальною стратегією є зупинка, якщо інший вирішив переїхати перехрестя, і навпаки. Отже, задача кожного полягає у виборі першим стратегії "рухатись" і отримати виграш у 2 одиниці — маємо боротьбу за лідерство. Кожному гравцеві вигідно демонструвати, що він може переключитись із стратегії P на стратегію S (наприклад, вдавати п'яного або вигукнути, що в нього відмовили гальма), і у той же час уважно спостерігати за супротивником, щоб вияснити, а чи той і дійсно не може зупинитись. Дивно, що найвигіднішюю є нераціональна поведінка, яка в той же час є цілком

розумною. Хоча кожен із читачів може пригадати випадки зі свого життя, коли аналогічні дії (наприклад, стратегія "прибіднятися" на іспиті) приводили до позитивних наслідків. Це ще один приклад того, що, взагалі кажучи, раціональність і розумність — це різні речі. Симетричність ролей обох гравців робить неможливим розв'язання конфліктної ситуації у зазначеній постановці. Тому недарма придумуються правила дорожнього руху, чіпляються світлофори і т. д.

Для n=2 розглянуту ситуацію можна повністю формалізувати.

Нехай S_i – виграш i-го гравця, який є "лідером" – він знає свою цільову функцію і цільову функцію "підлеглого", діє оптимально у припущенні, що і підлеглий поводить себе розумно (формальне визначення див. нижче – визначення 5.2.8).

Визначення 5.2.4. У грі G маємо боротьбу за лідерство, якщо $\exists x$: $u_i(x) \geq S_i$, i=1,2 .

Лема 5.2.4. Якщо у грі G мається хоча б дві паретівські NE – ситуації x^1 , x^2 із різними векторами виграшів:

$$((u_1(x^1), u_2(x^1)) \neq (u_1(x^2), u_2(x^2))),$$
 (5.2.5)

то має місце боротьба за лідерство.

Доведення. З визначення S_i маємо: $\{x \in NE\} \Rightarrow \{u_i(x) \leq S_i, i = 1, 2\}$. Якщо у грі G відсутня боротьба за лідерство, то знайдеться ситуація z, для якої справедливі нерівності $u_i(z) \geq S_i$, i = 1, 2, звідки: $u_i(x^1) \leq u_i(z)$, $u_i(x^2) \leq u_i(z)$, i = 1, 2. Оскільки ситуації x^1 і x^2 Парето-оптимальні, то всі чотири нерівності суть рівності, що суперечить (5.2.5). \blacklozenge

Наступна лема порівнює NE–ситуації з ситуаціями при існуванні складної рівноваги.

Лема 5.2.5. Нехай у грі G множини стратегій X_i скінченні, $i \in N$. Якщо гра G розв'язна за домінуванням, то будь-яка складна рівновага є рівновагою Неша.

Доведення. Доміновані стратегії не можуть утворювати нешівські рівноваги, отже, $NE\left(HD\left(X_i\right)\right) \leq NE\left(X_i\right), \ i \in N$. Нехай $X^t = \prod_{i \in N} X_i^t$ є мно-

жиною складних рівноваг, тоді
$$\mathit{NE}\left(X^{1}\right)\supset\mathit{NE}\left(X^{1}\right)\supset\ldots\supset\mathit{NE}\left(X^{t}\right)=X^{t}$$
 . $lacktriangle$

Отже, для розв'язаних за домінуванням ігор складна поведінка завжди приводить до NE-ситуації. Цікаво зазначити, що протилежне твердження не вірне. NE-стратегія може бути домінованою, як бачимо з наступного приклада 5.2.6 (табл. 5.2.10). Ситуація (a_1,a_2) - єдина рівновага Неша. Однак a_1 домінується c_1 , a_2 домінується c_2 .

Таблиця 5.2.10

X_1	a_{2}	b ₂	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1	0, 1	0, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	0, 0	1, 0	0, 1
\boldsymbol{c}_1	1, 0	0, 1	1, 0

Умови леми 5.2.3 є одними з достатніх умов існування рівноваги Неша. Однак, у свою чергу, зручних умов для X_i , u_i , які б гарантували розв'язність за домінуванням, не існує. Тому результат леми 5.2.3 відносно існування рівноваги Неша є неконструктивним. У багатьох прикладних задачах функції виграшу u_i задаються аналітично з допомогою елементарних операцій над елементарними функціями (поліноміальними, логарифмічними тощо). У цьому випадку корисною є теорема 5.2.1 [36].

Теорема 5.2.1. (Неш, 1951). Нехай множина стратегій X_i є опуклою й компактною підмножиною деякого топологічного векторного простору (взагалі кажучи, свого для кожного i). Нехай усі u_i – неперервні дійснозначні функції на X_N такі, що для кожного $x_{N\setminus i}\in X_{N\setminus i}$ функції однієї змінної $u_i\left(x_i,x_{N\setminus i}\right)$ угнуті по x_i на X_i . Тоді множина рівноваг Неша є непорожньою й компактною множиною.

Доведення. Доведення спирається на теорему про нерухому точку та наступну лему.

Лема 5.2.6 (Кнастера–Куратовського–Мазуркевича). Нехай p – ціле число і $a_1,...,a_p$ – деякі точки топологічного векторного простору. Нехай також $A_1,...,A_p$ – деякі замкнуті підмножини множини $CO\left\{a_1,...,a_p\right\}$, яка є випуклою оболонкою множини $\left\{a_1,...,a_p\right\}$, причому для $\forall \ T \subseteq \left\{\overline{1,p}\right\}$, множина $\bigcup_{k \in T} A_k$ містить $CO\left\{a_k \ | \ k \in T\right\}$. Тоді перетин $\bigcap_{k=1,p} A_k \neq \varnothing$.

Визначимо дійснозначну функцію ф на $X_N \times X_N$: $\phi(x,y) = \sum_{i \in N} \left(u_i\left(x_i,y_{N\setminus i}\right) - u_i\left(y\right)\right), \ x,y \in X_N$. Із неперервності u_i та ввігнутості u_i по x_i випливає неперервність функції ф по y та увігнутість по x. Визначимо багатозначне відображення Φ із X_N у себе:

$$\Phi(x) = \{ y \in X_N \mid \phi(x, y) \le 0 \}, \ \forall x \in X_N.$$

Оскільки ф неперервна по y, то $\Phi(x)$ – компакт для будь-якого x. Оскільки $x \in \Phi(x)$, то $\Phi(x) \neq \varnothing$. Фіксуємо ціле p і p елементів $x^1,...,x^p$ із X_N . Будь-яка опукла комбінація $x = \sum_{k=1}^p \lambda_k x^k \in \bigcup_{k=1}^p \Phi(x^k)$ (інакше мали б для будь-якого $k = \overline{1,p} \colon \Phi(x^k,x) > 0$; у силу увігнутості Φ відносно до першого аргументу отримуємо протиріччя: $0 < \phi\Big(\sum_{k=1}^p \lambda_k x^k, x\Big) = \phi(x,x) = 0$). Отже, $CO\{x_1,...,x_p\} \subseteq \bigcup_{k=1}^n \Phi(x^k)$.

Застосовуючи лему Кнастера–Куратовського–Мазуркевича, маємо: $\bigcap_{k=1,p} \Phi(x^k) \neq \emptyset$. Оскільки не порожні компактні множини $(\Phi(x))_{x \in X_N}$ такі, що будь-яка їхня сім'я має не порожній перетин, то і перетин моїх муруки. $\bigcap_{x \in X_N} \Phi(x) \neq \emptyset$. Для буль якого x^* із укого перетуну маємо:

усіх множин $\bigcap_{x \in X_N} \Phi(x) \neq \emptyset$. Для будь-якого x^* із цього перетину маємо:

 $\phi(x,x^*) \leq 0$, \forall $x \in X_N$, що може бути переписаним у вигляді $u_i\left(x_i,x_{N\backslash i}^*\right) - u_i\left(x^*\right) \leq 0$, \forall $i \in N$, \forall $x_i \in X_i$. Отже, $\bigcap_{x \in X_N} \Phi(x) = NE$ і теорему

доведено. ♦ (Відмітимо, що це доведення належить Ж. Хаддаду, воно набагато коротше за оригінальне доведення Неша.)

Теорема Неша стверджує, що в умовах теореми множина NE не порожня. Для того щоб її обчислити, необхідно розв'язати систему рівнянь:

$$u_{i}(x^{*}) = \max_{x_{i} \in X_{i}} u_{i}(x_{i}, x_{N \setminus i}^{*}), i \in N.$$
 (5.2.6)

Оскільки u_i увігнута по x_i , то наведена вище задача глобальної оптимізації еквівалентна локальній задачі. Наприклад, якщо x_i – внутрішня точка множини X_i і функція u_i диференційована по x_i , то умови (5.2.6) еквівалентні умовам: $\frac{\partial u_i}{\partial x_i} = 0$, $i \in N$.

Наведемо приклад ("Олігополія з призначенням випуску").

Мається n виробників із нульовими витратами деякого насиченого за споживанням товару. Виробники постачають товар на ринок в об'ємах x_i , $i \in N$, за ціною $p(x_1 + ... + x_n)$, де p(t) – спадаюча увігнута

функція:
$$p(0) > 0$$
, $p'(t) < 0$, $p''(t) < 0$, $\overline{x} = \sum_{i=1}^n x_i \ge 0$. Маємо гру $\left< [0, +\infty), \ x_i p(\overline{x}); \ i = \overline{1, n} \right>$.

Оскільки X_i не є компактними множинами, покладемо $Y_i = [0,s]$, де s є пропозицією, що породжує нульову ціну: p(s) = 0. Для "звуженої" таким чином гри $\tilde{G} = (Y_i, u_i, i \in N)$ можна застосувати теорему Неша, котра гарантує існування NE-ситуації. У силу увігнутості й диференційованості u_i маємо систему: $x_i^* p'(\overline{x}^*) + p(\overline{x}^*) = 0$, $i \in N$. Звідси маємо:

$$x_i^* = -rac{pig(\overline{x}^*ig)}{p'ig(\overline{x}^*ig)}, \; i \in N$$
 , тобто: $x_1^* = x_2^* = ... = x_n^* = ilde{x}$, де $ilde{x} = -pig(n ilde{x}ig)/p'ig(n ilde{x}ig)$.

Нехай
$$n=2$$
, $p(x_1+x_2)=\left(\frac{1}{x_1+x_2}-1\right)^{\frac{1}{2}}$, $X_i=\left[0,\frac{1}{2}\right]$, $i=1,2$. Тоді

 $\tilde{x}_1 = \tilde{x}_2 = 1/8$. Цікаво зазначити, що обом гравцям вигідно ("у розумінні" Неша) випускати 25 % товару від їхніх потенційних можливостей.

При n=2 отримуємо як наслідок з теореми Неша відомий результат з теорії ігор двох осіб із нульовою сумою.

Теорема 5.2.2. (фон Неймана) (наслідок з теореми Неша). Нехай X_1 , X_2 – опуклі компактні підмножини деяких топологічних векторних просторів, u_1 – неперервна дійснозначна функція на $X_1 \times X_2$, причому: 1) $u_1(x_1,x_2)$ увігнута по x_1 для $\forall x_2,2$ $u_1(x_1,x_2)$ опукла по x_2 для $\forall x_1$.

Тоді гра двох осіб із нульовою сумою (X_1, X_2, u_1) має хоча б одну сідлову точку і, отже, ціну.

Вибір Нешівських рівноваг. Гра може мати декілька ситуацій рівноваги за Нешем, при цьому, у різних ситуаціях гравці можуть отримувати різні виграші. Тобто одні ситуації вигідні одним гравцям, інші – іншим. Після введення Нешем поняття рівноваги, численні спеціалісти намагались сформулювати додаткові умови вибору єдиної рівноваги. Одна з таких концепцій запропонована лауреатами Нобелівської премії з економіки за 1994 р. Дж. Харшаньї та Р. Зельтеном [31]. Розглянемо приклад 5.2.7 (табл. 5.2.11) Р. Аумана (ще один лауреат Нобелівської премії з економіки за 2005 р.). У цій грі маємо дві ситуації рівноваги: (a_1,a_2) та (b_1,b_2) . Яку з них оберуть гравці? Ситуація (a_1,a_2) начебто краща для обох гравців $((a_1,a_2)$ строго домінує (b_1,b_2)), але вибір (a_1,a_2) зовсім неочевидний. Отже, якщо перший гравець відхилиться від

стратегії a_1 (за умови, що другий буде дотримуватися a_2), то він утратить лише одну одиницю виграшу (≈ 10 %), зате інший витратить 8 одиниць (≈ 90 %). Водночас, першому гравцю абсолютно невигідно відхилятися від ситуації (b_1,b_2), оскільки він втрачає 6 одиниць (≈ 85 %), а другий отримує навіть більше. Оскільки гра симетрична, то для другого гравця висновки аналогічні. Отже, ризик відхилення кожного гравця від ситуації рівноваги (a_1,a_2) великий, від (b_1,b_2) – малий. Розглянемо спрощений варіант концепції Харшаньї—Зельтена.

Таблиця 5.2.11

X_1	a_{2}	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	9, 9	1, 8
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	8, 1	7, 7

Визначення 5.2.5. Нехай r та s шукані рівноваги s грі s. Ситуація s домінує за виграшем s , якщо $u_i(r) \ge u_i(s), \ i \in N; \ u_i(r) \ne u_i(s).$

Визначення 5.2.5. Ситуація рівноваги r називається eфективною за виграшем у грі G, якщо не існує інших ситуацій рівноваги, які домінують за виграшем r.

Отже, ситуація рівноваги (a_1,a_2) у наведеному вище прикладі є ефективною за виграшем.

Оцінка ризику для першого гравця визначається відношенням: $u_2(a_1,b_2)/u_2(a_1,a_2)=8/9>u_2(b_1,a_2)/u_2(b_1,b_2)=1/7$ (аналогічно для другого гравця). Отже, для обох гравців рівновага (a_1,a_2) є більш ризикованою (на предмет відхилення суперника від неї), рівновага (b_1,b_2) – менш ризикованою.

"Несиметричною" грою двох осіб із двома стратегіями, можна також провести дослідження на "ризикованість рівноважних ситуацій. Для цього перейдемо від гри з виграшами (табл. 5.2.12) до гри із "втратами" (при відхиленні від ситуацій рівноваги) (табл. 5.2.13). Так, таблиця з прикладом 5.2.7 зводиться до табл. 5.2.14. Одержимо несиметричну гру з втратами $v_1, v_2, w_1, w_2 > 0$; $v_1 > w_1, v_2 > w_2$. Оцінка ризику для першого гравця визначається відношенням v_1/w_1 , другого гравця – відношенням v_2/w_2 . Перший гравець має більш сильну мотивацію (з погляду ризику) вибору (a_1,a_2) , ніж другий для вибору (b_1,b_2) , якщо $v_1/w_1 > w_2/v_2$, або $v_1v_2 > w_1w_2$ (добуток Неша).

Таблиця 5.2.12

X_2	a_2	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	(v_{11}, v_{12})	(w_{11}, w_{12})
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	(v_{21}, v_{22})	(w_{21}, w_{22})

Таблиця 5.2.13

X_2	a_2	$oldsymbol{b}_2$
$\boldsymbol{a}_{\scriptscriptstyle 1}$	$(v_{11}-v_{21}, \ v_{12}-v_{22})$	(0, 0)
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	(0, 0)	$(w_{21}-w_{11}, w_{22}-w_{12})$

	X_2	$oldsymbol{a}_2$	$oldsymbol{b_2}$
=	$\boldsymbol{a}_{\scriptscriptstyle 1}$	(v_1, v_2)	(0, 0)
	$\boldsymbol{b}_{\scriptscriptstyle 1}$	(0, 0)	(w_1, w_2)

Таблиця 5.2.14

X_2	a_2	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	(1, 1)	(0, 0)
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	(0, 0)	7, 7

Визначення 5.2.6. Ситуація а домінує за ризиком b, якщо $v_1v_2>w_1w_2$.

Визначення 5.2.7. Ситуація рівноваги a ефективна за ризиком у грі G, якщо не існує інших ситуацій рівноваги, які домінують за ризиком a.

Так, у прикладі 5.2.7 ситуація рівноваги (b_1, b_2) домінує за ризиком ситуацію рівноваги (a_1, a_2) і є ефективною за ризиком.

Отже, за думкою Дж. Харшаныї та Р. Зельтена, гравці не повинні вибирати ситуації, що є домінованими чи за виграшем, чи за ризиком. А далі, вони повинні вирішити, що для них важливіше: виграш чи ризик, і вибирати одну з недомінованих рівноваг, відповідно чи за виграшем, чи за ризиком (зауважимо, що доцільно розглянути тут двокритеріальну постановку цієї задачі, враховуючи, зокрема, "схильність до ризику" опонента).

Слід відмітити, що у випадку, коли гравців більше двох і гравці мають більше двох стратегій, пошук недомінованих за ризиком рівноваг значно ускладнюється, але ця проблема має вирішення [31].

Часткова інформованість гравців. У багатьох економічних, політичних і соціальних ситуаціях природним чином виникає несиметричний розподіл інформації. Розглянемо найпростішу модель такого виду –

поведінка "лідер-підлеглий". Першим подібну модель розглянув економіст Г. Штакельберг на початку ХХ ст. при описанні стратегій фірм, що конкурують на одному ринку. У таких ситуаціях нерідко одна з фірм виявляється сильнішою за інші і нав'язує їм свою стратегію, наприклад, призначає ціну. Безліч подібних прикладів можна знайти в політиці, в армії, у сім'ї.

Нехай для даної гри двох осіб $G = (X_1, X_2, u_1, u_2), R_j$ – множина кращих відповідей j-го гравця на задані стратегії i-го $(j \neq i)$:

$$R_{j} = \left\{ (x_{1}, x_{2}) \in X_{1} \times X_{2} \middle| u_{j}(x_{1}, x_{2}) = \sup_{y_{j} \in X_{j}} u_{j}(x_{i}, y_{J}), j \neq i \right\}.$$

Визначення 5.2.8. Ситуація (x_1, x_2) називається *і-рівновагою Шта-* кельберга, якщо:

$$u_i(x_1, x_2) = \sup_{(y_1, y_2) \in R_j} u_i(y_1, y_2); \ i, j = 1, 2, \ i \neq j.$$
 (5.2.7)

Множину *i*-рівноваг Штакельберга позначимо через *ШЕ*; .Можна інтерпретувати 1-рівновагу Штакельберга на основі такого сценарію: гравець 1 ($\mathit{лідер}$) знає обидві функції виграшу u_1 і u_2 і використовує цю інформацію для передбачення реакції гравця 2. Гравець 2 (підлеглий) сприймає стратегію гравця 1 як задану екзогенно (ззовні) і максимізує власний виграш (обираючи свою максимізуючу стратегію). Таким чином, гравець 1, маючи перший хід і передбачаючи "розумність" реакцій на нього гравця 2, сам, поступаючи "розумно", буде розв'язувати задачу (5.2.7). Розглянемо приклад 5.2.8 (табл. 5.2.15). Знайдемо 1-рівновагу Штакельберга (1-лідер, 2-підлеглий, 1 – знає u_1 і u_2 , 2 – лише u_2). На фіксовану стратегію першого a_1 другий вибере свою максимізуючу стратегію c_2 ; $b_1 \to b_2$, c_2 ; $c_1 \to b_2$. Таким чином, для вибору своєї найкращої стратегії 1 гравець повинен розглядати лише ситуації (a_1,c_2) , (b_1,b_2) , (b_1,c_2) , (c_1,b_2) (це і є множина R_2). Він, звичайно, обере (b_1,c_2) (на R_2 максимум u_1 досягається у b_1). Отже, 1-рівновагою Штакельберга є (b_1,c_2) ($\mathit{ШE}_1=\{(b_1,c_2)\}$). Аналогічно, фіксуючи a_2 , знаходимо максимізуючі стратегії першого гравця (це b_1), $b_2 \to a_1$, $c_2 \to b_1$, c_1 . Шукаємо на ситуаціях $R_2 = \{(b_1, a_2), (a_1, b_2), (b_1, c_2), (c_1, c_2)\}$ максимізуючі стратегії другого гравця, отримуємо 2 - рівновагу Штакельберга $IIIE_2 = \{(c_1, c_2)\}$. Отже, при несиметричному розподілі інформації вибір обома гравцями буде детермінованим у першому випадку (лідер – 1) – (b_1,c_2) і у другому (лідер – 2) – (c_1,c_2) . Звернемо увагу,

що лідер — 1 при розумному підлеглому може забезпечити собі лише 3 одиниці виграшу, хоча потенційно він міг отримати і 4 $((b_1,a_2))$ і 5 $((a_1,b_2))$. Аналогічно маємо для лідера — 2. Звичайно, множина 1-рівноваг Штакельберга може містити більше ніж один елемент і тоді множина вибору скорочується, але неоднозначність залишається.

Таблиця 5.2.15

X_2 X_1	a_2	\boldsymbol{b}_2	$oldsymbol{c_2}$
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 3	5, 1	1, 5
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	4, 1	2, 2	3, 2
$\boldsymbol{c}_{\scriptscriptstyle 1}$	1, 1	2, 4	3, 3

Принцип поведінки гравців, що описується визначенням 5.2.8, нагадує процес виключення домінованих стратегій. Наступний результат показує, що рівновага Штакельберга зводиться до складних рівноваг при відповідному перетворенні початкової гри.

Лема 5.2.7. Нехай $G = (X_1, X_2, u_1, u_2)$ – скінченна гра двох осіб, причому функції u_1 і u_2 взаємно однозначні на $X_1 \times X_2$. Тоді існує єдина 1 – рівновага Штакельберга, яку позначимо $(\tilde{x}_1, \tilde{x}_2)$. Розглянемо таку гру $\tilde{G} = (X_1, X_2^{X_1}, \tilde{u}_1, \tilde{u}_2)$: $X_2^{X_1}$ утворюється відображенням

$$\eta: X_1 \to X_2; \forall x_1 \in X_1, \forall \eta \in X_2^{X_1}, \tilde{u}_i(x_1, \eta) = u_i(x_1, \eta(x_1)).$$

Тоді гра \tilde{G} розв'язна за домінуванням, причому єдиною складною рівновагою є $(\tilde{x}_1,\tilde{\eta})$, де $\tilde{\eta}$ – стратегія найкращих відповідей гравця 2, і $\tilde{\eta}(\tilde{x}_1)=\tilde{x}_2$.

Доведення. Існування та єдиність 1-рівноваги Штакельберга випливає зі взаємної однозначності u_1 на $X_1 \times X_2$. У грі \tilde{G} стратегія найкращих відповідей $\tilde{\eta}$ другого гравця є її домінуючою стратегією:

$$\tilde{u}_{2}\left(x_{1},\tilde{\eta}\right) = \sup_{x_{2} \in X_{2}} u_{2}\left(x_{1},x_{2}\right) \geq u_{2}\left(x_{1},\eta\left(x_{1}\right)\right) = \tilde{u}_{2}\left(x_{1},\eta\right), \forall x_{1} \in X_{1}, \forall \eta \in X_{2}^{X_{1}}.$$

Перед другим раундом виключення домінованих стратегій гравець 1 є учасником гри $(X_1^1, \{\overline{\eta}\}, u_1, u_2)$, у якій його єдина домінуюча стратегія визначається так:

$$ilde{u}_1\left(x_1^*,\overline{\eta}\right) = u_1\left(x_1^*,\overline{\eta}\left(x_1^*
ight)\right) \geq u_1\left(x_1,\overline{\eta}\left(x_1
ight)\right) = ilde{u}_2\left(x_1,\overline{\eta}
ight)$$
 для $\forall x_1$.

У силу взаємної однозначності u_2 графік відображення $\overline{\eta}$ збігається з R_2 . Отже, $\left(x_1^*, \overline{\eta}\left(x_1^*\right)\right)$ є 1 — рівновага Штакельберга і $x_1^* = \overline{x}_1$, $\overline{\eta}\left(x_1^*\right) = \overline{x}_2$. \blacklozenge

Відмітимо, що існування i-рівноваги Штакельберга можна гарантувати при звичайних передумовах (X_i – компактні, u_i – неперервні). Однак лема 5.2.7 безпосередньо не узагальнюється.

Контрольні завдання до § 2

1. Знайти множини складних рівноваг (SE), рівноваг Неша (NE), сильних рівноваг Неша (SNE), i-рівноваг Штакельберга (ШЕ $_i$):

1.2

1.4

1.1

X_2	a_2	\boldsymbol{b}_2	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 0	1, 1	2, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 5	0, 5	1, 4
$\boldsymbol{c}_{\!\scriptscriptstyle 1}$	5, 1	1, 2	2, 2

X_2	a_{2}	b ₂	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	3, 2	3, 3
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 2	3, 3	1, 3
c ₁	3, 1	2, 4	4, 2

1.3

X_2 X_1	a_{2}	b ₂	c_{2}
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 4	1, 3	3, 4
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 5	3, 3	4, 3
$c_{_1}$	1, 1	4, 2	4, 2

X_2	a_{2}	\boldsymbol{b}_2	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1	1, 3	3, 2
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 3	2, 2	3, 1
$\boldsymbol{c}_{\scriptscriptstyle 1}$	3, 2	2, 3	3, 3

2.3

2. Дослідити рівноваги Неша на ефективність за ризиком і виграшем:

2.1

X_2	a_{2}	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	7, 5	3, 5
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	5, 3	5, 7

2.2

X_2	a_{2}	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	5, 3	3, 3
\boldsymbol{b}_{1}	2, 2	4, 4

 $\begin{array}{c|ccccc}
X_2 & a_2 & b_2 \\
\hline
a_1 & 5, 5 & 1, 5 \\
b_1 & 5, 1 & 5, 5
\end{array}$

§ 3. Поведінка гравців в умовах мінімальної інформованості

Кажуть, що гра відбувається в умовах *мінімальної інформованості*, якщо гравці знають лише свої функції виграшу, але на відміну від умов повної неінформованості гравців, гра може відбуватися необмежену кількість разів і гравці можуть разом спостерігати її наслідки.

Проаналізуємо мотивацію концепції рівноваги Неша із "філософського" погляду. Можливі два "крайніх" сценарії.

- 1. Із "нормативного" погляду покладемо, що гравці спільно обговорюють вибір сценарію до того часу, поки не домовляться до "необов'язкової" домовленості. Далі вони розходяться й обмін інформацією припиняється. Після цього кожен гравець таємно вибирає свою "справжню" стратегію, не знаючи дійсних стратегічних виборів останніх. Кожен гравець може бути вірним досягнутій домовленості, а може й відступити від неї. Тоді і лише тоді, коли узгоджена ситуація є рівновагою Неша, отримуємо стабільну домовленість.
- 2. З "описового" погляду ми шукаємо "стійкі" ситуації "короткозорих" процедур "намацування", у яких кожен гравець притримується оптимальної стратегії за умови (яка постійно порушується), що останні не змінюють своїх стратегій. Коли ця "процедура намацування Курно" (див. нижче) збігається, отримуємо рівновагу Неша.

Перший сценарій ("стратегічний") передбачає повну інформованість гравців (кожен знає всі цільові функції) і актуальну можливість знаходження нешівських рівноваг; другий сценарій ("тактичний") реалізується в умовах мінімальної інформованості гравців (кожен знає лише свою цільову функцію, контакти гравців зводяться до спільного спостереження стратегій) і, не завжди приводить до нешівської рівноваги. Розглянемо другий сценарій детальніше.

Процедура Курно. Розглянемо класичний приклад.

Приклад 5.3.1 ("Дуаполія Курно з призначенням випусків"). Два гравці поставляють на ринок один і той самий товар в об'ємах x_i , i=1,2, за ціною $p(x_1+x_2)=1-(x_1+x_2)$. Максимальні виробничі можливості кожного гравця дорівнюють 1/2. Розглядаються два варіанти:

- \checkmark постійні витрати на випуск одиниці продукції при збільшенні масштабів виробництва (оцінюються величиною $\frac{1}{2}x$ на виробництво x одиниць продукції);
 - \checkmark спадаючі витрати (оцінюються величиною $\frac{1}{2}x \frac{3}{4}x^2$). Для випадку а) маємо гру в нормальній формі:

$$\langle X_i = [0, \frac{1}{2}], u_i(x) = x_i (1 - x_1 - x_2) - \frac{1}{2} x_i; i = 1, 2 \rangle.$$

Оскільки множини стратегій компактні, функції виграшу диференційовані й увігнуті, отримуємо оптимальні відповіді i-го гравця на фіксовані стратегії j-го з розв'язку системи:

$$\frac{\partial u_i}{\partial x_i} = 0 , \ i = 1, 2 .$$

Маємо:
$$R_i = \left\{ (x_i, x_j) \middle| x_i = \frac{1}{4} - \frac{1}{2} (x_1 + x_2), \ 0 \le x_j \le \frac{1}{2} \right\}.$$

Єдина NE–ситуація знаходиться як перетин множин R_i (прямих R_i на рис. 5.3.1), тобто: $NE = R_1 \cap R_2 = \{(1/6,1/6)\}$.

Рис. 5.3.1

Процедура намацування Курно починається з довільної точки $\left(x_1^0, x_2^0\right), \ 0 \le x_i^0 \le \frac{1}{2},$ далі кожен гравець послідовно використовує свою оптимальну відповідь на поточну стратегію партнера:

ою оптимальну відповідь на поточну стратегію партнера:
$$\begin{pmatrix} (x_1^0, x_2^0) \to \left(x_1^1, x_2^0\right) = \left(\alpha\left(x_2^0\right), x_2^0\right) \in R_1 \to \\ \left(x_1^1, x_2^1\right) = \left(x_1^1, \alpha\left(x_1^1\right)\right) \in R_2 \to \dots \to \\ \end{pmatrix} \begin{pmatrix} (x_1^t, x_2^{t-1}) \in R_1 \to \left(x_1^t, x_2^{t-1}\right) \in R_2 \to R_2 \\ \end{pmatrix}.$$

На рис. 5.3.1 вказано дві такі послідовності. Легко переконатись, що для будь-якої початкової позиції x^0 з квадрата $[0,1/2]\times[0,1/2]$ процедура намацування Курно збігається (зі швидкістю геометричної прогресії) до NE-ситуації (1/6, 1/6). У цьому випадку NE-ситуація (1/6, 1/6) є стійкою.

Для випадку б) маємо таку гру в нормальній формі:

$$\langle X_i = \begin{bmatrix} 0, & 1/2 \end{bmatrix}, \quad u_i(x) = x_i(1 - x_1 - x_2) - (1/2 x_i - 3/4 x_i^2) \rangle.$$

При знаходженні оптимальних відповідей гравців на фіксовані стратегії супротивника, врахувавши крайові оптимуми, маємо (рис. 5.3.2):

$$R_{i} = \left\{ (x_{i}, x_{j}) \middle| x_{i} = \beta(x_{j}), \ 0 \le x_{j} \le 1/2 \right\}, \ \beta(x) = \begin{cases} \frac{1}{2}, \ 0 \le x \le \frac{1}{4}, \\ 1 - 2x, \ \frac{1}{4} \le x \le \frac{1}{2}. \end{cases}$$

Рис. 5.3.2

Одержимо три NE-ситуації: $NE = \{ (1/3, 1/3), (0,5, 0), (0, 0,5) \}.$

Починаючи з будь-якої початкової позиції $x^0 \neq (1/3, 1/3)$, процедура намацування Курно за скінченну кількість кроків збігається до (0,5,0) або до (0,0,5). Це залишається справедливим, навіть, якщо точка x^0 знаходиться як завгодно близько до точки (1/3, 1/3), але не збігається з нею. Отже, *NE*-ситуацію (1/3, 1/3) логічно назвати нестійкою, а (0,5,0), (0,0,5) – стійкими (локально).

Можна дати різні визначення процедури намацування Курно для ігор n осіб: гравці можуть змінювати свої стратегії одночасно або послідовно (порядок має значення). Відповідні поняття збігаються для n=2 і не збігаються для $n\geq 3$.

Нехай кожен гравець має єдину стратегію оптимальної відповіді $r_i(x_{N\backslash i})\in R_i$ на стратегії інших гравців $x_{N\backslash i}\in X_{N\backslash i}$. Із будь-якою ситуацією $x^0\in X_N$ пов'язана процедура одночасного намацування Курно, що будує послідовність $x^0, x^1, ..., x^t, ...$ з X_N таку, що $x_i^t=r_i\left(x_{N\backslash i}^{t-1}\right)$, $i\in N$, t=1,2,...

Стійкі, локально стійкі та нестійкі рівноваги Неша

Визначення 5.3.1. Рівновага Неша x^* стійка, якщо для $\forall x^0 \in X_N$, процедура намацування Курно, що починається з x^0 , збігається до x^* .

Зазначимо, що стійка NE-ситуація обов'язково є єдиною рівновагою Неша у грі, оскільки, якщо x^0 є рівновагою Неша (у визначенні x^0 може будь-якою, зокрема, NE-ситуацією), то процедура намацування Курно приводить до стаціонарної послідовності.

Для заданого порядку гравців $N = \{1, 2, ..., n\}$ процедурою $\{1, 2, ..., n\}$ – послідовного намацування Курно, що починається з x^0 , називається послідовність $\{x^t\}$, де $x_i^t = r_i\left(x_1^t, ..., x_{i-1}^t, x_{i+1}^{t-1}, ..., x_n^{t-1}\right), \ i \in N$, t = 1, 2, ...

Визначення 5.3.2. NE-ситуація $x^* \in \{1, 2, ..., n\}$ — стійкою, якщо для $\forall x^0$ процедура $\{1, 2, ..., n\}$ — послідовного намацування Курно, що починається у x^0 , збігається до x^* .

Приклад 5.3.2 (табл. 5.3.1). Почнемо з ситуації $x^0 = (a_1,a_2)$. Перший гравець оптимізує свій виграш при фіксованій стратегії другого гравця, для чого з a_1 переходить на b_1 . Далі другий гравець оптимізує свій виграш, переходячи на b_2 або c_2 (у даній грі не гарантується єдиність оптимізуючої стратегії). Якщо буде вибрана стратегія b_2 , то процедура зупиниться, оскільки з ситуації (b_1,b_2) перший гравець свій виграш покращити вже не може. Якщо ж буде вибрана стратегія c_2 , то матимемо: $(b_1,c_2) \rightarrow (c_1,c_2) \rightarrow (c_1,a_2) \rightarrow (b_1,a_2) \rightarrow (b_1,b_2)$ або (b_1,c_2) .

Таблиця 5.3.1

Отже, у випадку неоднозначності вибору оптимізуючих стратегій хоча б одним гравцем процедура може зупинитись навіть при єдиній NE–ситуації (як у даному прикладі: (b_1,b_2) є єдиною нешівською рівновагою). В умовах визначень 5.3.1, 5.3.2 подібного зациклення бути не може (вибір оптимізуючих стратегій однозначний).

Приклад 5.3.3 (табл. 5.3.2). Почнемо з $x^0=(b_1,b_2)$. Процедура (1, 2) – генерує: $(b_1,b_2)\to(c_1,b_2)\to(c_1,c_2)\in N\!E$. Процедура (2, 1) – дає послідовність ситуацій: $(b_1,b_2)\to(b_1,a_2)\to(a_1,a_2)\in N\!E$. Як бачимо від порядку фіксації стратегій залежить побудова тієї чи іншої $N\!E$ –ситуації.

4. 1

2, 2

0,0

Таблиця 5.3.2

У прикладі 5.3.4 (табл. 5.3.3). нешівською рівновагою є єдина ситуація (c_1,c_2) . Якщо x^0 належить декартовому квадрату множин стратегій $\{a_1,b_1\}\times\{a_2,b_2\}$, то процедура намацування Курно зациклюється незалежно від порядку фіксації стратегій. До (c_1,c_2) може привести лише (2,1) – послідовне намацування Курно з точок (c_1,a_2) і (c_1,b_2) .

Таблиця 5.3.3

X_2	a_2	\boldsymbol{b}_2	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2,2	2,3	1,2
\boldsymbol{b}_1	1,3	3,1	2,2
c_1	1,1	2,1	5,5

Резюме. Навіть у скінченній грі в умовах мінімальної інформованості раціональна поведінка гравців (вибір оптимальної стратегії на оптимальну стратегію супротивника) може не привести до розв'язання конфліктної ситуації. Тепер стає зрозумілою природа "зациклення" у багатьох життєвих ситуаціях (політичних, соціальних, економічних, сі-

мейних) – адже в більшості випадків ми застосовуємо саме процедуру намацування Курно в умовах мінімальної інформації! В умовах незнання (або небажання знати!) цілей партнерів. І що залишається у цих умовах? На слово – слово, на дію – дію. Одним словом, "око – за око", "зуб – за зуб"! І внаслідок цього в ситуацію (c_1, c_2) із виграшами (5, 5) (чи (500, 500) – не має значення) взагалі можна ніколи не потрапити.

Маленький імовірнісний аналіз. Із восьми ситуацій (крім (c_1,c_2)) можна піти двома шляхами – по стовпчиках або по рядках. Маємо 16 можливостей, із яких лише відмічених чотири ведуть до цілі. Отже, у даному прикладі з імовірністю 1/4 (якщо випадково не почали з (c_1,c_2) з імовірністю вже 1/9) можна прийти до цілі.

Нескладно побудувати приклад із десятком стратегій у кожного гравця, у якому ймовірність розв'язати конфлікт із користю для кожного дуже й дуже мала. А якщо $n \approx 10$, то і взагалі мета практично (й теоретично) недосяжна. Якщо ж домовитись про вибір (необов'язковий!) ситуації (c_1,c_2) , то навіть не "дуже розумним" супротивникам не захочеться від неї відхилятись.

Умови стійкості. Достатні умови стійкості NE-ситуацій складно отримати і вони виявляються вельми обмежувальними. Якщо послабити поняття стійкості з "глобальної" на "локальну", то з'являється можливість (для n=2) майже повністю описати локально стійкі NE-ситуації.

Теорема 5.3.1. Нехай множини X_1 , X_2 одновимірні, x^* – рівновага Неша у грі $G = (X_1, X_2, u_1, u_2)$, причому виконуються умови: x_i^* – внутрішня точка X_i , i=1,2; функції u_i двічі неперервно-диференційовані в околі x^* ; частинні похідні $\partial^2 u_i(x^*)/\partial x_i^2 < 0$. Тоді, якщо

$$\left| \frac{\partial^2 u_1}{\partial x_1 \partial x_2} \cdot \frac{\partial^2 u_2}{\partial x_1 \partial x_2} \right| < \left| \frac{\partial^2 u_1}{\partial x_1^2} \cdot \frac{\partial^2 u_2}{\partial x_2^2} \right|, \text{ то } x^* - \text{локально стійка,}$$
 (5.3.1)

$$\left| \frac{\partial^2 u_1}{\partial x_1 \partial x_2} \cdot \frac{\partial^2 u_2}{\partial x_1 \partial x_2} \right| > \left| \frac{\partial^2 u_1}{\partial x_1^2} \cdot \frac{\partial^2 u_2}{\partial x_2^2} \right|, \text{ то } x^* - \text{ не } \varepsilon \text{ локально стійкою (5.3.2)}$$

(усі похідні взято у точці x^*).

З умови теореми випливає, що множини оптимальних відповідей гравців R_i є двома неперервно-диференційованими кривими, що перетинаються у точці x^* . У нерівностях (5.3.1), (5.3.2) просто відбувається порівняння модулів нахилу дотичних до кривих R_1 і R_2 у точці

 x^* . Покладемо $\alpha_i = \frac{\partial^2 u_i}{\partial x_i \partial x_1} \bigg/ \frac{\partial^2 u_i}{\partial x_i \partial x_2}$. Тоді умови (5.3.1), (5.3.2) можна переписати у вигляді:

$$|\alpha_1|>|\alpha_2|\Rightarrow x^*$$
 – локально стійка, $|\alpha_1|<|\alpha_2|\Rightarrow x^*$ – не є локально стійкою.

Коротко розглянемо "процедуру намацування Курно у неперервному часі". Нехай $G=\left(X_i,u_i;i\in N\right)$ – гра n осіб, у якій кожна множина стратегій одновимірна, функції виграшів u_i двічі неперервно-диференційовані. Нехай ϕ – дійснозначна функція, визначена на E^1 , причому $\phi(0)=0$, $\phi'(t)>0$, для $t\in E^1$. Тоді "процедуру намацування Курно у неперервному часі" задає така система диференціальних рівнянь:

$$\frac{\partial x_i}{\partial t} = \phi(r_i(x_{N\setminus i}) - x_i), i \in N, \qquad (5.3.3)$$

де $r_i(x_{N\setminus i})$ – оптимальна відповідь *i*-го гравця на вектор стратегій $x_{N\setminus i}$ інших гравців. Якщо x^* є NE–стратегією, то $x_i^* = r_i(x_{N\setminus i}^*)$, $\phi(0) = 0$, і точка x^* є нерухомою (стаціонарною) точкою системи (5.3.3). Можна показати, що локальна стійкість ситуації x^* уже є і глобальною.

Контрольні завдання до § 3

 Проаналізувати рівноваги Неша на стійкість 1.1

X_2	a_2	b ₂	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 0	1, 1	2, 1
\boldsymbol{b}_1	1, 5	0, 5	1, 4
c ₁	5, 1	1, 2	2, 2

1.2

X_2	a_2	b ₂	c ₂		
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	3, 2	3, 3		
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 2	3, 3	1, 3		
\boldsymbol{c}_1	3, 1	2, 4	4, 2		

1.3

X_2	a_2	b ₂	c ₂	
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 4	1, 3	3, 4	
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 5	3, 3	4, 3	
c ₁	1, 1	4, 2	4, 2	

1.4

X_2	a_2	b ₂	c_2	
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1	1, 3	3, 2	
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 3	2, 2	3, 1	
c ₁	3, 2	2, 3	3, 3	

§ 4. Змішані стратегії

Почнемо з класичного прикладу 5.4.1 ("Гра де Монмора").

У кінці XVIII ст. французький математик Рене де Монмор розглянув наступну ситуацію. Для того, щоб зробити подарунок своєму синові, батько пропонує: "Я візьму золоту монету у праву (Π) або ліву (Λ) руку, а ти назвеш одну з них. Якщо монета в мене у правій руці і твій здогад правильний, то ти отримаєш одну золоту монету. Якщо ж монета у мене у лівій руці і твій здогад правильний, то ти отримаєш дві монети; інакше ти не отримаєш нічого".

Матрицю виграшів сина у грі де Монмора наведено у табл. 5.4.1. Де Монмор запитує, як можна оцінити для сина цей подарунок, беручи до уваги, що "якщо у цій грі гравці однаково проникливі й спостережливі, то немає можливості виробляти правило поведінки" (не існує оптимальної стратегії).

Таблиця 5.4.1

X_2	Λ	П
Λ	2	0
Π	0	1

Ця гра не має ціни ($\sup_{x_1}\inf u(x_1,x_2)=0\neq\inf_{x_2}\sup u(x_1,x_2)=1$), у жодного з гравців немає оптимальної стратегії. Але знання стратегії супротивника дозволяє домогтися хорошого результату. Отже, виникає боротьба за другий хід, у якій кожен гравець хоче приховати свій кінцевий стратегічний вибір і у той же час розвідати наміри супротивника. Але навіть найглибшої секретності не досить, щоб не дозволити розумному противнику вгадати стратегічний вибір.

Єдиним способом зробити власний вибір непередбачуваним полягає у тому, щоб зробити його випадковим: замість вибору так званої чистої стратегії x_1 з множини $\{\Lambda,\Pi\}$ син може використати рандомізовану (випадкову) стратегію μ_1 , вибираючи значення Λ і Π відповідно з ймовірностями p_1 , $1-p_1$, $0 \le p_1 \le 1$. Очікуваний виграш (математичне сподівання) сина при цьому буде не меншим за:

$$v_1 = \inf\{2p_1, 1-p_1\} = \begin{cases} 2p_1, & 2p_1 \le 1-p_1 \Rightarrow p_1 \le 1/3, \\ 1-p_1, & 1-p_1 \le 2p_1 \Rightarrow p_1 \ge 1/3. \end{cases}$$

Отже, гарантований виграш сина дорівнює $\alpha_1=2/3$ (при $p_1=1/3$). Програш батька при виборі стратегій $\{\Lambda,\Pi\}$ із ймовірностями p_2 , $1-p_2$ відповідно буде не більшим за $v_2=2/3$ і гарантований програш $\alpha_2=2/3$.

Таким чином, внесення тактичної невизначеності у стратегічний вибір приводить до ціни $\alpha=2/3$. Це означає, що якщо гра буде повторятись багато разів (теоретично – нескінченно) і батько й син будуть вибирати стратегії з ймовірністю 1/3, то у кожних трьох випадках її реалізації син буде отримувати 2 монети.

Змішане розширення гри. Формалізуємо зроблені нами висновки.

Визначення 5.4.1. Нехай $G = (X_i, u_i; i \in N)$, де X_i – скінченна множина при всіх $i \in N$. Змішаною стратегією гравця i називається імовірнісний розподіл $\mu_i = \mu_i(x_i)_{x_i \in X_i}$ на X_i , $0 \le \mu_i(x_i) \le 1$, $x_i \in X_i$; $\sum_{x_i \in X_i} \mu_i(x_i) = 1$, $i \in N$ ($\mu_i(x_i)$ – імовірність вибору i-м гравцем його "чистої" стратегії з $x_i \in X_i$).

Отже, множина M_i змішаних стратегій i-го гравця ϵ одиничним симплексом у просторі його стратегій $E^{|X_i|}$.

Змішаним розширенням гри G називається гра $\bar{G}=(M_i,\bar{u}_i,i\in N)$, де:

$$\overline{u}_{i}(\mu) = \sum_{x \in X_{N}} u_{i}(x)\mu_{1}(x_{1})...\mu_{n}(x_{n}); \ \forall \ \mu \in M_{N} = \prod_{i=1,n} M_{i}.$$
 (5.4.1)

Мається на увазі, що "лотерея" i-го гравця не залежить від "лотереї" j-го для всіх $j \neq i$, лише гравець i знає стратегію x_i , яка дійсно випала у лотереї. Оскільки випадкові змінні незалежні у сукупності, то $\overline{u}_i(\mu)$ є очікуваним виграшем (математичним сподіванням виграшу) гравця i.

Визначення 5.4.2. Чиста стратегія $x_i \in X_i$ гравця i у початковій грі ототожнюється зі змішаною стратегією $\delta_{x_i} \in M_i$, у якій вибирається x_i із імовірністю одиниця: $\delta_{x_i} \left(x_i \right) = 1; \; \delta_{x_i} \left(y_i \right) = 0, \; y_i \in X_i, \; y_i \neq x_i$.

У цьому випадку з формули (5.4.1) випливає: $\overline{u}_i(\delta_x) = u_i(x)$, $\forall \ x \in X_N$, $\delta_x = \left(\delta_{x_i}\right)_{i \in N}$. Тому будемо розглядати X_i як підмножину M_i , а \overline{u}_i – як розширення області визначення u_i з X_N на M_N .

Із теорії ігор двох осіб із нульовою сумою відомо, що у змішаному розширенні гри завжди існує її ціна та сідлова точка. Аналогічна ситуація мається і для рівноваг Неша.

Теорема 5.4.1. Якщо X_i — скінченні множини стратегій для всіх $i \in N$, то множина рівноваг Неша у грі \bar{G} є непорожнім компактом у M_N і містить множину рівноваг Неша у початковій грі G: $NE(G) \subseteq NE(\bar{G}) \neq \varnothing$.

Доведення. Нехай x^* – рівновага Неша у грі G. Позначимо $\delta_{x_{N\setminus i}} = \left(\delta_{x_j}\right)_{j\neq i} \in M_{N\setminus \{i\}}$. Із визначення δ_x , лінійності функції \overline{u}_i по змінній μ_i на M_i (опуклій оболонці X_i) маємо:

$$\sup_{\mu_i \in M_i} \overline{u}_i \left(\mu_i, \delta_{x_i} \right) = \sup_{y_i \in X_i} u_i \left(y_i, x_{N \setminus i} \right). \tag{5.4.2}$$

Iз x^* ∈ NE випливає:

$$\sup_{u_i \in X_i} u_i \left(y_i, x_{N \setminus i}^* \right) = u_i \left(x^* \right) = \overline{u}_i \left(\delta_{x_i}, \delta_{x^* \setminus i}^* \right). \tag{5.4.3}$$

Із рівностей (5.4.2), (5.4.3) маємо, що δ_{x^*} є рівновагою Неша у грі \bar{G} . Оскільки гра \bar{G} задовольняє умовам теореми Неша, доведення теореми завершено. \blacklozenge

Як наслідок із леми 5.2.3 всі NE-ситуації у грі \overline{G} ε індивідуальнораціональними у грі \overline{G} . Насправді вони ε індивідуальнораціональними й у початковій грі G.

Лема 5.4.1. Гарантований виграш гравця i у початковій грі не перевищує його гарантований виграш у змішаному розширенні гри:

$$\forall i \in N: \sup_{x_i \in X_i} \inf_{x_{N \setminus i} \in X_{N \setminus \{i\}}} u_i \left(x_i, x_{N \setminus i}\right) \leq \sup_{\mu_i \in M_i} \inf_{\mu_{N \setminus i} \in M_{N \setminus \{i\}}} \overline{u}_i \left(\mu_i, \mu_{N \setminus i}\right).$$

Доведення. Фіксуємо у гравця $i \in N$ чисту стратегію $x_i \in X_i$ і для кожного $j \in N \setminus \{i\}$ деяку змішану стратегію $\mu_j \in M_j$. Тоді $\overline{u}_i \left(\delta_{x_i}, \mu_{N \setminus \{i\}} \right)$ є математичним сподіванням функції $u_i \left(x_i, x_{N \setminus i} \right)$ (звуження u_i на X_i для фіксованого x_i) відносно добутку імовірнісних мір μ_j на $X_{N \setminus \{i\}}$. Отже, $\inf_{x_{N \setminus \{i\}}} u_i \left(x_i, x_{N \setminus i} \right) \leq \overline{u}_i \left(\delta_{x_i}, \mu_{N \setminus \{i\}} \right)$.

Оскільки ця нерівність справедлива для всіх $\mu_{N\setminus i}\in M_{N\setminus \{i\}}$, то $\inf_{x_{N\setminus i}\in X_{N\setminus \{i\}}}u_i\left(x_i,x_{N\setminus i}\right)\leq \inf_{\mu_i\in M_{N\setminus \{i\}}}\overline{u}_i\left(\delta_{x_i},\mu_{N\setminus i}\right)\leq \sup_{\mu_i\in M_i}\inf_{\mu_i\in M_{N\setminus \{i\}}}\overline{u}_i\left(\delta_{x_i},\mu_{N\setminus \{i\}}\right).$ Оскільки вибір x_i довільний, доведення завершено. ullet

Як наслідок з теореми 5.2.4 і леми 5.2.2 для n=2 отримуємо:

Теорема 5.4.2 (фон Неймана–Моргенштерна). Змішане розширення $\overline{G} = \left(M_1, M_2, \overline{u}_1\right)$ скінченої гри двох осіб із нульовою сумою $G = \left(M_1, M_2, u_1\right)$ має хоча б одну сідлову точку і ціну \overline{v} , для якої $\widetilde{v} = \sup_{x_1 \in X_1} \inf_{x_2 \in X_2} u_1\left(x_1, x_2\right) \leq \overline{v} \leq \inf_{x_2 \in X_2} \sup_{x_1 \in X_1} u_1\left(x_1, x_2\right) = \widetilde{\widetilde{v}}$.

Якщо початкова гра G має ціну й у кожного гравця мається оптимальна стратегія, то змішане розширення гри \overline{G} має ту ж ціну й довільні випуклі комбінації оптимальних стратегій у грі G є оптимальними стратегіями у грі \overline{G} . Якщо ж гра G не має ціни й, отже, у гравців немає оптимальних стратегій, то у грі \overline{G} кожен гравець має хоча б одну оптимальну змішану стратегію й ціна гри лежить на відрізку $\left[\tilde{v}, \tilde{\tilde{v}}\right]$. Типовим прикладом є гра де Монмора зі змішаною ціною 2/3 й оптимальними обережними стратегіями обох гравців $(1/3 \Lambda + 2/3 \Pi)$.

У змішаному розширенні гри "Дилема в'язня" агресивна стратегія продовжує залишатись єдиною домінуючою стратегією для кожного гравця, тому $NE(G) = NE(\overline{G})$.

У грі "Перехрестя" є дві *NE*-ситуації у чистих стратегіях. У змішаному розширенні виникає ще одна *NE*-ситуація $\mu^* = \left(\mu_1^*, \mu_2^*\right)$ (про її знаходження див. нижче): $\mu_1^* = \mu_2^* = \frac{1-\varepsilon}{2-\varepsilon} \delta_I + \frac{1}{2-\varepsilon} \delta_{I\!\!I}$, де $\delta_I \left(\delta_{I\!\!I}\right)$ – змішана стратегія, при якій із імовірністю 1 гравець проїжджає перехрестя (зупиняється). Маємо:

$$\begin{split} \overline{u}_{1}\left(\delta_{I},\mu_{2}^{*}\right) &= \frac{1-\varepsilon}{2-\varepsilon}\cdot 1 + \frac{1}{2-\varepsilon}\cdot \left(1-\varepsilon\right) = 1 - \frac{\varepsilon}{2-\varepsilon}\,,\\ \overline{u}_{1}\left(\delta_{II},\mu_{2}^{*}\right) &= \frac{1-\varepsilon}{2-\varepsilon}\cdot 2 + \frac{1}{2-\varepsilon}\cdot 0 = 1 - \frac{\varepsilon}{2-\varepsilon}\,. \end{split}$$

Із лінійності \overline{u}_1 відносно μ_1 отримуємо $\overline{u}_1\left(\mu_1,\,\mu_2^*\right) = \overline{u}_1\left(\mu_1^*,\,\mu_2^*\right),$ $\forall \mu_1 \in M_1$. У силу симетрії гравців: $\overline{u}_2\left(\mu_1^*,\,\mu_2\right) = \overline{u}_2\left(\mu_1^*,\,\mu_2^*\right), \ \forall \ \mu_2 \in M_2$.

Звідси випливає, що $\left(\mu_1^*,\mu_2^*\right)$ – *NE*–ситуація у змішаному розширенні гри "Перехрестя". Відмітимо, що на відміну від *NE*–ситуацій у чистих стратегіях, змішана *NE*–ситуація неефективна (домінується вектором виграшів (1,1)), але симетрична $(\mu_1^*=\mu_2^*)$ і рівноправна для обох гравців $(u_1^*=u_2^*)$. Тому її можна рекомендувати гравцям у якості "переговорної".

Насправді отриманий результат невипадковий – у симетричних іграх завжди існує симетрична змішана NE–ситуація. Аналогічно чистим NE–ситуаціям змішані NE–ситуації також можуть не бути обережними.

Таким прикладом є гра з табл. 5.4.2 (упевніться самостійно, що NE-ситуація у змішаному розширенні цієї гри складається не з обережних стратегій).

Таблиця 5.4.2

Знаходження рівноваг у змішаних стратегіях. Нехай X_i — скінченна множина стратегій гравця $i \in N$. Для довільної змішаної стратегії $\mu_i \in M_i$ позначимо через $\left[\mu_i\right] = \left\{x_i \in X_i \middle| \mu_i\left(x_i\right) > 0\right\}$ — "носій" μ_i , тобто множину чистих стратегій гравця i, які входять у μ_i із додатною ймовірністю.

Визначення 5.4.3. Змішана стратегія μ_i називається *цілком змішаною*, якщо $[\mu_i] = X_i$ (носієм μ_i є вся множина чистих стратегій).

Визначення 5.4.4. Ситуація μ у грі \bar{G} називається цілком змішаною, якщо μ_i – цілком змішана стратегія при всіх $i \in N$.

Теорема 5.4.3. Нехай початкова гра $G = (X_i, u_i, i \in N)$ має скінченні множини стратегій. Нехай $\mu^* \in NE(\bar{G})$ рівновага Неша у змішаних стратегіях. Тоді справедлива така система рівностей:

$$\forall i \in N, \forall x_i \in \left[\mu_i^*\right], \overline{u}_i\left(\delta_{x_i}, \mu_{N\setminus i}^*\right) = \overline{u}_i\left(\mu^*\right). \tag{5.4.4}$$

Доведення. Фіксуємо $i \in N$. Тоді за визначенням рівноваг Неша маємо:

$$\overline{u}_i\left(\delta_{x_i}, \mu_{N\setminus i}^*\right) \le \overline{u}_i\left(\mu^*\right)$$
 для $x_i \in \left[\mu_i\right].$ (5.4.5)

Покладемо, що хоча б одна з цих нерівностей строга: $\overline{u}_i\left(\delta_{x_i^0},\mu_{N\backslash i}^*\right)<\overline{u}_i\left(\mu^*\right).$ Перемножуючи всі нерівності (5.4.5) на $\mu_i\left(x_i\right)$ і, враховуючи, що $\mu_i\left(x_i^0\right)>0$, маємо:

$$\overline{u}_{i}\left(\mu^{*}\right) = u_{i} \sum_{x_{i} \in \left[\mu_{i}\right]} \mu_{i}\left(x_{i}\right) \cdot \overline{u}_{i}\left(\delta_{x_{i}}, \mu_{N \setminus i}^{*}\right) < \left\{\sum_{x_{i} \in \left[\mu_{i}\right]} \mu_{i}\left(x_{i}\right)\right\} \cdot \overline{u}_{i}\left(\mu^{*}\right) = \overline{u}_{i}\left(\mu^{*}\right).$$

Отримане протиріччя доводить, що всі нерівності у (5.4.5) насправді перетворюються у рівності (5.4.4). ♦

Згідно з теоремою, рівновага Неша у змішаних стратегіях μ має властивість: будь-яка змішана стратегія μ'_i із тим самим носієм, що і μ_i , є найкращою відповіддю гравця i на $\mu_{N\backslash i}$.

Зокрема, якщо μ є цілком змішаною рівновагою, то будь-яка стратегія гравця i є найкращою відповіддю на набір $\mu_{N\setminus i}$ рівноважних стратегій останніх гравців.

Отже, у грі двох осіб у стані цілком змішаної рівноваги гравець i вибирає стратегію, яка вирівнює виграші гравця j при всіх його змішаних стратегіях. Ця стратегія не залежить від функції виграшу гравця i (цей факт, проілюстрований на прикладі "Перехрестя"). У той же час у грі трьох і більше осіб стратегії цілком змішаної рівноваги повинні визначатись гравцями спільно. Причому μ_i залежить від функції виграшу u_i у силу системи (5.4.4).

Теорема 5.4.3 ϵ основним інструментом, що дозволя ϵ обчислювати рівноваги Неша у змішаних стратегіях.

Дійсно, нехай ми шукаємо ситуацію $\mu \in NE\left(\bar{G}\right)$, вважаючи носії всіх стратегій μ_i заданими, тобто:

$$\left[\mu_{i}\right] = Y_{i} \subseteq X_{i}, \ i \in \mathbb{N}. \tag{5.4.6}$$

Тоді система (5.4.4) переписується так:

$$\forall i \in N, \forall x_i, y_i \in Y_i \ \overline{u}_i \left(\delta_{x_i}, \mu_{N \setminus i} \right) = \overline{u}_i \left(\delta_{y_i}, \mu_{N \setminus i} \right). \tag{5.4.7}$$

Система (5.4.7) має $\sum_{i \in \mathbb{N}} (|Y_i| - 1)$ незалежних одновимірних рівнянь.

Згідно (5.4.6) кожна стратегія μ_i складається з ($|Y_i|-1$) незалежних змінних (беручи до уваги умову $\sum_{x_i \in Y_i} \mu_i(x_i) = 1$).

Коли множини стратегій X_i , $i \in N$, містять невелике число елементів, то наступний алгоритм дозволяє повністю визначити $NE\left(\overline{G}\right)$.

Фіксуємо підмножину Y_N з X_N . Розв'язуємо систему (5.4.6), (5.4.7) відносно змінних $\mu_i \in M_i$ для всіх $i \in N$. Для кожного розв'язку μ тепер потрібно перевірити нерівності:

$$\forall i \in N, \forall x_i \in X_i \setminus Y_i \ \overline{u}_i \left(\delta_{x_i}, \mu_{N \setminus i} \right) \leq \overline{u}_i \left(\mu_i, \mu_{N \setminus i} \right).$$

Для біматричних ігор змішані рівноваги Неша можна подати в аналітичній формі. Нехай виграші гравців задаються матрицями $U_i = \left[u_i\left(x_1,x_2\right)\right]_{x_1 \in X_1}^{x_2 \in X_2}$, де X_1 – множина рядків, X_2 – стовпців.

Змішана стратегія μ_1 є вектор-рядком $\mu_1 = \left[\mu_1(x_1)\right]_{x_1 \in X_1}$, змішана стратегія μ_2 є вектор-стовпчиком $\mu_2 = \left[\mu_2(x_2)\right]_{x_2 \in X_2}$.

Тоді виграш гравця $i \in \overline{u}_i(\mu_1,\mu_2) = \mu_1 U_i \mu_2$. Нехай (μ_1^*,μ_2^*) – цілком змішана *NE*–ситуація. Тоді система (4.7) набуде вигляду:

$$U_1 \mu_2^* = v_1 J_{X_1}, \quad \mu_1^* U_2 = v_2 J_{X_2},$$
 (5.4.8)

де $v_i = \mu_1^* U_i \mu_2^* - N\!E\!$ —виграш гравця $i;\ J_{X_1}$, J_{X_2} — відповідно векторстовпчик і вектор-рядок, усі компоненти яких рівні 1.

Нехай матриці U_i не вироджені. З (5.4.8) маємо $\mu_2^* = v_1 U_1^{-1} J_{X_1}$. Перемножуючи на J_{X_2} зліва цю рівність, одержимо:

$$1=J_{X_2}\cdot \mu_2^*= v_1J_{X_2}U_1^{-1}J_{X_1}$$
 , звідки $v_1=rac{1}{J_{X_2}U_1^{-1}J_{X_1}}$, тому

$$\mu_2^* = \frac{U_1^{-1} J_{X_1}}{J_{X_2} U_1^{-1} J_{X_1}}$$
. Аналогічно, $\mu_1^* = \frac{J_{X_1} U_2^{-1}}{J_{X_1} U_2^{-1} J_{X_2}}$. (5.4.9)

Отже, якщо U_i не вироджені матриці й гра $G = (X_1, X_2, U_1, U_2)$ має цілком змішану NE-ситуацію (μ_1^*, μ_2^*) , то вона єдина і визначається формулами (5.4.9). Навпаки, якщо компоненти векторів μ_1^* , μ_2^* , що визначаються (5.4.9) невід'ємні, то пара (μ_1^*, μ_2^*) , очевидно, є змішаною NE-ситуацією у грі G.

Для зручності обчислень рівноважні виграші v_i доцільно представляти у вигляді: $v_i = \det(U_i) / \sum_{x_1 \in X_1, x_2 \in X_2} U_i^c\left(x_1, x_2\right)$, де $U^c\left(x_1, x_2\right)$ позначає

алгебраїчне доповнення елемента (x_1, x_2) у матриці U.

Важливі властивості виконуються "майже для всіх" ігор.

Визначення 5.4.3. Нехай множини стратегій X_1 , X_2 скінченні. Деяка властивість P виконується майже для всіх ігор, визначених на $X_1 \times X_2$, якщо множина

$$\overline{P} = \left\{ \left(u_1, u_2\right) \in E^{n_1 \times n_2} \times E^{n_1 \times n_2} \left| \right| \text{ для гри } \left(X_1, X_2, u_1, u_2\right) \text{ не виконано } P \right\}$$

має міру Лебега рівну нулю й міститься в деякій замкненій підмножині без внутрішніх точок простору $E^{n_1 \times n_2} \times E^{n_1 \times n_2}$.

Нехай X_1 , X_2 – скінченні множини. Майже для всіх ігор, визначених на $X_1 \times X_2$, справедливі твердження:

- ✓ Кількість рівноваг Неша у змішаних стратегіях обмежена й непарна, для будь-якої *NE*-ситуації у змішаних стратегіях множини $[\mu_1]$ й $[\mu_2]$ мають однакову кількість елементів.
- ✓ Рівноваги Неша у змішаних стратегіях, які не є рівновагами у початковій грі, не є оптимальними за Парето у змішаному розширенні гри.

Розглянемо приклад 5.4.1 – біматричну гру (табл. 5.4.3) із двома стратегіями в кожного гравця. Стратегії першого гравця – B (верх), H (низ), другого – Λ (ліве), Π (праве), a_i , b_i , c_i , d_i – чотири різних дійсних числа, i = 1, 2 (ця умова гарантує скінченність множини $NE(\bar{G})$).

Таблиця 5.4.3

Розглянемо три класи ігор.

1. У початковій грі G хоча б один гравець, наприклад, перший, має домінуючу стратегію (нехай B). Тоді гра G і її змішане розширення \bar{G} мають єдину ситуацію рівноваги Неша:

 $NE\left(G\right)=NE\left(\bar{G}\right)=\left\{ \left(B,\Lambda\right),\;$ якщо $a_{2}>c_{2};\;\left(B,\Pi\right),\;$ якщо $a_{2}< c_{2}\right\},\;$ оскільки нерівності $a_{1}>b_{1}\;,\;c_{1}>d_{1}\;$ (усі числа – різні) приводять до того, що у грі $\bar{G}\;$ стратегія $B\;$ строго домінує усі змішані стратегії.

2. Гра G не має рівноваг Неша. Це може бути, якщо:

$$\left\{b_1 < a_1, c_1 < d_1, a_2 < c_2, d_2 < b_2\right\}$$
, $\left\{a_1 < b_1, d_1 < c_1, c_2 < a_2, b_2 < d_2\right\}$, (5.4.11) тоді змішане розширення \overline{G} гри G має єдину $N\!E$ –рівновагу:

$$\mu_{1}^{*} = \left(\frac{d_{2} - b_{2}}{a_{2} + d_{2} - b_{2} - c_{2}}, \frac{a_{2} - c_{2}}{a_{2} + d_{2} - b_{2} - c_{2}}\right),$$

$$\mu_{2}^{*} = \left(\frac{d_{1} - c_{1}}{a_{1} + d_{1} - b_{1} - c_{1}}, \frac{a_{1} - b_{1}}{a_{1} + d_{1} - b_{1} - c_{1}}\right).$$
(5.4.12)

із виграшами:

$$v_1 = \frac{a_1 d_1 - b_1 c_1}{a_1 + d_1 - b_1 - c_1}, \ v_2 = \frac{a_2 d_2 - b_2 c_2}{a_2 + d_2 - b_2 - c_2}.$$

Ці формули одержуються безпосередньо з формул (5.4.9), (5.4.10). Єдиність гарантується умовами (5.4.11), при їхньому виконанні або U_i – невироджена матриця, або її можна зробити невиродженою, додаванням деякої константи c до елементів матриці (ця операція, очевидно, не змінює множину NE—ситуацій).

3. Гра G має дві рівноваги Неша. Цей випадок визначається, якщо: $\{b_1 < a_1, c_1 < d_1, c_2 < a_2, b_2 < d_2\}$ чи $\{a_1 < b_1, d_1 < c_1, a_2 < c_2, d_2 < b_2\}$. Тоді у грі \overline{G} виникає ще одна NE–ситуація, що збігається з (5.4.12).

Якщо множини чистих стратегій X_i нескінченні, то навіть для гри двох осіб із нульовою сумою не можна гарантувати існування ціни гри у змішаних стратегіях, тим більше існування NE-ситуації.

Розглянемо гру "Китайський покер". Кожен із двох гравців вибирає невід'ємне ціле число. Гравець, який називає більше число, виграє гривню:

$$X_1 = X_2 = N$$
, $u_1(x_1, x_2) = \{1 | x_2 < x_1; \ 0 | x_2 = x_1; -1 | x_1 < x_2 \}$.

Імовірнісний розподіл на $X_1=N$ набуде вигляду: $\mu_i=\left(\mu_i\left(n\right)\right)_{n\in N}$, де $\sum_{n\in N}\mu_i\left(n\right)=1$, $\mu_i\left(n\right)\geq 0$, $n\in N$. Позначаючи через M_i множину розподілів, маємо гру $\left(M_1,M_2,\overline{u}_1\right)$, де

$$\overline{u}_{1}\left(\mu_{1},\mu_{2}\right) = \sum_{x_{1},x_{2} \in N,\ x_{2} < x_{1}} \mu_{1}\left(x_{1}\right) \cdot \mu_{2}\left(x_{2}\right) - \sum_{x_{1},x_{2} \in N,\ x_{1} < x_{2}} \mu_{1}\left(x_{1}\right) \cdot \mu_{2}\left(x_{2}\right).$$

Початкова гра є грою з нульовою сумою без ціни:

$$v_1 = \sup_{x_1} \inf_{x_2} u_1 = -1 < +1 = \inf_{x_2} \sup_{x_1} u_1 = v_2$$
.

Але виявляється, що і використання змішаних стратегій не збільшує гарантованого виграшу гравців.

Зафіксуємо μ_1 , тоді для $\forall \varepsilon > 0$ знайдеться ціле n_{ε} таке, що

$$\sum_{n=n_c}^{+\infty}\mu_1(n)<\varepsilon.$$

Розглянемо чисту стратегію другого гравця $x_2 = n_{\varepsilon}$:

$$\overline{u}_{1}\left(\mu_{1},\delta_{x_{2}}\right)=-\sum_{n< n_{\varepsilon}}\mu_{1}\left(n\right)+\sum_{n>n_{\varepsilon}}\mu_{1}\left(n\right)<-\left(1-\varepsilon\right)+\varepsilon=-1+2\varepsilon\text{ ,}$$

звідки: $\overline{v}_1=\inf_{\mu_2}\overline{u}_1\left(\mu_1,\mu_2\right)=\inf_{x_2}\overline{u}_1\left(\mu_1,\delta_{x_2}\right)=-1$. У силу симетрії гри $\overline{v}_2=1$.

Із прикладу бачимо, що складність цієї задачі проявляється навіть у випадку, коли множини стратегій є опуклими й компактними.

Контрольні завдання до § 4

1. Знайти змішані рівноваги Неша для n = 2:

1.2

X_2	a_{2}	b_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 1	1, 2
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 2	2, 1

X_2	a_2	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 3	2, 2
\boldsymbol{b}_1	2, 2	2, 3

1.3

2. Знайти змішані рівноваги для таких ігрових моделей:

2.1 2.2 2.3

X_2	a_2	\boldsymbol{b}_2	c_2	X_2	a_2	\boldsymbol{b}_2	c_2	X_2	a_2	\boldsymbol{b}_2	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 0	1, 1	2, 1	$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	3, 2	3, 3	$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 4	1, 3	3, 4
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 5	0, 5	1, 4	$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 2	3, 3	1, 3	$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 5	3, 3	4, 3
\boldsymbol{c}_1	5, 1	1, 2	2, 2	$\boldsymbol{c}_{\scriptscriptstyle 1}$	3, 1	2, 4	4, 2	\boldsymbol{c}_1	1, 1	4, 2	4, 2

ПИТАННЯ ДЛЯ САМОПЕРЕВІРКИ ДО РОЗДІЛУ 5

- 1. Визначте на основі сітки Томаса-Кілмана, який спосіб розв'язання конфліктних ситуацій ви використовуєте. Ваш "сусід"? Порівняйте результати вашої самооцінки й оцінки вас "сусідом".
- 2. У яких ситуаціях логічно застосовувати стиль конкуренції, ухилення, пристосування та співпраці?
- 3. Дайте визначення множин: недомінованих стратегій, рівноваг у домінуючих стратегіях, парето-оптимальних ситуацій, індивідуально-раціональних ситуацій, складних рівноваг, рівноваг Неша, сильних рівноваг Неша, *і*-рівноваг Штакельберга.
 - 4. Опишіть моделі "дилема бандита" та "дилема в'язня".
 - 5. Дайте визначення обережних стратегій.
 - 6. Що таке переговорна множина?
 - 7. Що таке сідлова точка у грі двох осіб з нульовою сумою?
 - 8. Що таке "складна рівновага"?
 - 9. Опишіть модель Форкуарсона.
 - 10. Опишіть модель "поділ долара при інфляції".
 - 11. Дайте визначення рівноваги Неша, змішаної рівноваги Неша.
 - 12. Сформулюйте теорему Неша.
 - 13. Опишіть алгоритм знаходження рівноваг Неша.
 - 14. Дайте визначення ситуації "боротьба за лідерство".
 - 15. Сформулюйте модель "олігополія з призначенням випуску".
- 16. Дайте визначення рівноваги Неша, ефективної за виграшем і ризиком.
 - 17. Що таке *i*-рівновага Штакельберга?
- 18. Опишіть процедури "одночасного та послідовного намацування Курно".
 - 19. Поясніть стійкість, локальну стійкість і нестійкість рівноваг Неша.
- 20. Дайте визначення змішаного розширення гри та змішаної рівноваги Неша.
 - 21. Сформулюйте теорему фон Неймана Моргенштерна.
- 22. Що означає, що деяка властивість виконується майже для всіх ігор?
- 23. Опишіть класи ігор, в яких існує єдина рівновага Неша, дві рівноваги Неша або відсутність рівноваги Неша.
 - 24. Сформулюйте модель "китайський покер".
 - 25. Опишіть алгоритм знаходження змішаних рівноваг Неша.

Розділ 6 КООПЕРАТИВНЕ ПРИЙНЯТТЯ РІШЕНЬ

У попередньому розділі розглядався випадок задач прийняття рішень, у яких гравці діяли некооперативно, тобто обмін інформацією між ними був відсутній. Це, як правило, призводить до неефективності (домінованості) рівноважних ситуацій. У випадку можливості обміну інформацією можна сподіватись на кооперацію у процесі прийняття рішень (вибору стратегій). Умови кооперації визначаються гравцями під час переговорів, у яких можуть взаємно з'ясовуватися функції виграшу, різноманітні психологічні аспекти поведінки супротивників (колег), проводить торги тощо. Унаслідок цього гравці приходять до кооперативної домовленості, яка може бути обов'язковою (коли підписується контракт про використання певних стратегій і виконання цього контракту забезпечується деяким контролюючим органом, якому підкоряються всі гравці) або необов'язковим (коли такого органу не існує й тому домовленість нагадує міжнародні договори, які діють до того часу, поки невигідно їх порушувати).

§ 1. Кооперативна поведінка гравців

Будемо розглядати необов'язкові домовленості з погляду їхньої стабільності, яка розуміється як невигідність відхилення від неї гравцями. Стабільність є не таким уже простим поняттям, як може здаватись на перший погляд. Дійсно, відхилення деяких гравців від домовленості (необов'язкової) може примусити інших гравців (які спочатку не збирались порушувати домовленість) змінити свої стратегії. Ці зміни важко передбачити незалежно від того, чи ми передбачаємо чи ні, що порушення домовленості знищить дух кооперації та призведе до некооперативної поведінки гравців. Тому будемо вважати, що необов'язкові домовленості будуть складатись із домовленостей про ситуацію, а також із сценарію реагування кожного гравця i на відхилення будь-якої коаліції, що не містить гравця i. Цей сценарій оголошується заздалегідь і є "сценарієм погроз". Зокрема, реакція на порушення домовленості може полягати у відсутності будь-якої реакції ("сценарій ігнорування").

Як домовленість може виступати будь-яка ситуація гри, але логічно використовувати "стабільні" ситуації, від яких невигідно відхилятись. Основним прикладом стабільної домовленості є домовленість, що базується на рівновазі Неша. Її стабільність забезпечується взаємним незнанням остаточних стратегічних виборів.

Сильна рівновага Неша. Розглянемо приклад 6.1.1 (табл. 6.1.1). Перший гравець може запропонувати вибрати ситуацію (b_1,b_2) , погрожуючи, у разі відмови іншого, перейти на стратегію a_1 (і другий взагалі нічого не матиме). Нескладно придумати приклади, у яких другий гравець погодиться на ситуацію (b_1,b_2) – "краще мати хоча б щось". Але спокуса іншого відхилитись від b_2 буде залишатись.

 $egin{array}{c|ccccc} & \pmb{X_2} & \pmb{a_2} & \pmb{b_2} \\ \hline \pmb{a_1} & 1,0 & 1,0 \\ \hline \pmb{b_1} & 10,10 & 99,1 \\ \hline \end{array}$

Таблиця 6.1.1

Ситуація (b_1,a_2) здається ідеальною для переговорів (від неї невигідно відхилятись обом), але у першого гравця також завжди буде спокуса запропонувати ситуацію (b_1,b_2) – у ній він має виграш у 10 разів більший!

На прикладі цієї гри маємо знов (як і у § 2.4) проблему "рівністьефективність". Ситуація (b_1,b_2) описує багате "рабовласницьке" суспільство $(u_1+u_2=100),(b_1,a_2)$ — відносно бідне "демократичне" суспільство $(u_1+u_2=20)$, точки $(a_1,a_2),\;(a_1,b_2)$ відповідають "революційним" ситуаціям.

Спочатку узагальнимо концепцію рівноваги Неша, потім розглянемо стабільність на основі погроз. Узагальнення концепції рівноваги Неша можливе у двох напрямах. Якщо гравці – порушники можуть утворювати коаліції, то виконання домовленості підпадає під небезпеку зі сторони потенційних відхилень будь-якої коаліції. Це приводить до концепції "сильної" рівноваги. Якщо гравці можуть використовувати випадковий механізм, який реалізує корельовано рандомізовані стратегії і посилає гравцям ізольовано сигнал про те, якої стратегії йому дотримуватись, то виникає поняття рівноваги у спільних змішаних стратегіях.

Розглянемо приклад 6.1.2 (табл. 6.1.2). Маємо дві нешівські рівноваги – (a_1,a_2) й (b_1,b_2) . Але, якщо від ситуації (a_1,a_2) невигідно відхилятись будь-якому (але одному! – стратегія другого є фіксованою), то від (b_1,b_2) невигідно відхилятись обом одночасно (якщо від ситуації (a_1,a_2) одночасно відхиляться обоє, то вони перейдуть у ситуацію (b_1,b_2) , вигіднішу для обох).

Таблиця 6.1.2

X_1	a_{2}	\boldsymbol{b}_2
$\boldsymbol{a}_{\!\scriptscriptstyle 1}$	1, 1	1, 0
\boldsymbol{b}_1	0, 1	2, 2

Визначення 6.1.1. Для гри $G = (X_i, u_i, i \in N)$ ситуація x^* є сильною рівновагою Неша, якщо не існує коаліції гравців, для яких було б вигідно відхилятись від даної ситуації у випадку, коли доповнювальна коаліція не реагує на відхилення: $\forall \ T \subset N$, $\forall \ x_T \in X_T$ несумісна система нерівностей:

$$u_i\left(x_T, x_{N\backslash T}^*\right) \geq u_i\left(x^*\right), \forall i \in T; \ \exists j \in T: \ u_j\left(x_T, x_{N\backslash T}^*\right) > u_j\left(x^*\right). \tag{6.1.1}$$

Множину сильних рівноваг у грі G позначатимемо через SNE(G). Ця множина може бути порожньою.

Покладаючи у формулах (6.1.1) $T=\{i\}$, $i\in N$, маємо, що сильна рівновага Неша є просто рівновагою Неша, тобто $SNE(G)\subseteq NE(G)$. Покладаючи T=N, отримуємо, що сильна рівновага є Паретооптимальною (ефективною) ситуацією. Отже, для n=2 сильні рівноваги Неша – це ефективні рівноваги Неша.

У прикладі 6.1.2 дві рівноваги Неша – (a_1,a_2) , (b_1,b_2) , але лише (b_1,b_2) є сильною рівновагою. При $n\geq 3$ потрібно аналізувати ефективні рівноваги Неша на предмет вигідності відхилення від них "проміжних" коаліцій T (1<|T|< N). Розглянемо приклад 6.1.3. Єдина нешівська рівновага (a_1,c_2,a_3) (див. табл. 6.1.3) не є сильною рівновагою, оскільки не є ефективною (вона домінується (a_1,c_2,b_3)).

Таблиця 6.1.3

a_3	X_1	a_2	\boldsymbol{b}_2	$oldsymbol{c}_2$		
	$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1, 3	1, 2, 1	2, 2, 2		
	$\boldsymbol{b}_{\scriptscriptstyle 1}$	2, 1, 4	2, 1, 1	1, 3, 2		

\boldsymbol{b}_3	X_2	a_{2}	\boldsymbol{b}_2	$oldsymbol{c_2}$
	$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 2, 1	1, 5, 1	2, 3, 2
	$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 3, 2	2, 1, 2	1, 1, 1

У прикладі 6.1.4 (табл. 6.1.4) дві нешівські точки, які є ефективними ((a_1,a_2,a_3) й (b_1,b_2,b_3)), але лише одна є сильною рівновагою – (b_1,b_2,b_3). Від ситуації (a_1,a_2,a_3) вигідно відхилятись, наприклад, коаліції $T=\{2,3\}$ у точку (a_1,b_2,a_3).

Таблиця 6.1.4

a_3	X_{1}	a_2	\boldsymbol{b}_2
	$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 2, 2	1, 2, 3
	$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 2, 3	1, 3, 1

b ₃	X_1	a_{2}	\boldsymbol{b}_2
	$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1, 1	1, 2, 1
	$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 2, 1	1, 3, 2

Інтерпретація властивості стабільності (6.1.1) базується на двоетапному процесі прийняття рішень. На першому етапі гравці приходять до домовленості про деяку конкретну ситуацію x^* . Далі обмін інформацією припиняється й кожен гравець самостійно приймає рішення про свою остаточну стратегію. Будь-який гравець $i \in \mathbb{N}$ може відмовитись від використання стратегії x^* , але не може інформувати останніх про своє відхилення. Може бути також сформованою будь-яка коаліція T, яка відхиляється від x_T^* і вибирає x_T , але гравці поза даною коаліцією не можуть бути проінформованими про цю зміну, тому очікується, що вони будуть притримуватись стратегій із домовленості x_T^* .

На прикладі ігор двох осіб ми переконались, що непорушність будьякої NE-ситуації руйнується, якщо виникає боротьба за лідерство. Аналогічна ситуація можлива у грі n осіб.

Гра "Переговори". У цій грі n гравців повинні поділити одну гривню. Гравці подають свої заявки арбітру, який задовольняє їх, якщо у сумі вони не перевищують 1 гривню. Інакше жоден гравець нічого не отримує: $X_i = [0,1], \ i \in N$,

$$u_i\left(x\right) = \left\{x_i, \text{ якщо } \sum_{j \in N} x_j \leq 1; \quad 0, \text{ якщо } \sum_{j \in N} x_j > 1\right\}.$$

Розв'язок $x^0=(0,...,0)$ не є сильною рівновагою, оскільки він домінується, наприклад, точкою $\overline{x}=(1/n)_{j=\overline{1,n}}$. Аналогічно, розв'язок $x'=\left(x'_j\right)_{j=\overline{1,n}}, \ \sum_{j\in N} x'_j < 1$, також є домінованим (наприклад, точкою $\widetilde{x}=\left(\widetilde{x}_j\right)_{j=\overline{1,n}}, \ \widetilde{x}_j=x'_j, \ j=\overline{1,n-1}, \ \widetilde{x}_n=x'_n+\left(1-\sum_{j=1}^{n-1}x_j^1\right)$). Відхилення будьякої коаліції від точки $x^*=\left(x_j^*\right)_{j=\overline{1,n}}, \ \sum_{j=1}^n x_j^*=1$, може лише погіршити результат хоча б одному члену коаліції. Отже, $SNE\left(G\right)=\left\{x\in X_N\middle|\sum_{i\in N}x_i=1\right\}$.

Відмітимо, що коли коаліція T діє у ролі лідера та вибирає набір стратегій x_T^* так, що $\sum_{i \in T} x_i^* = 1 - \varepsilon$, $0 < \varepsilon < 1$, то коаліції $N \setminus T$ залишається

вибрати $x_{N \setminus T}^*$ такий, що $\sum_{j \in N \setminus T} x_j^* = \varepsilon$. Отже, будь-який учасник або коа-

ліція, привласнивши собі право лідера, може забрати собі майже всю гривню (наприклад, 99 коп.)!

Виберемо тепер конкретну SNE-ситуацію для переговорів, наприклад, $x_i^* = 1/n$, $i \in N$. Для того, щоб зробити таку домовленість стабільною, кожен гравець повинен вирішити не звертати уваги на заявки гравців, більші за 1/n. Найкраще така політика "глухоти" може бути реалізованою шляхом обмежень в обміні інформацією між гравцями. Ці обмеження повинні бути або законом (як у системі таємного голосування) або фізичним обмеженням (супутники Одіссея затикали вуха воском, щоб не бути звабленими сиренами). Отже, необов'язкові домовленості вимагають деяких обов'язкових обмежень в обміні інформацією.

Рівновага у спільних змішаних стратегіях. Із кооперативної точки зору рівновага Неша у змішаних стратегіях є необов'язковою домовленістю, яка забезпечується таємністю проведення лотерей, що організовують гравці для випадкового вибору остаточного рішення.

Розглянемо приклад 6.1.5 ("Ввічливі водії", у літературі цей приклад відомий також під назвою "Сімейна суперечка"). Модифікуємо виграші у грі "Перехрестя": якщо один водій зупиняється, то для ньо-

го краще, щоб інший проїхав. Виграші наведено у табл. 6.1.5. На доповнення до трьох чистих NE-ситуацій із векторами виграшів $(1+\epsilon,2)$, $(2,1+\epsilon)$ (як і раніше $0<\epsilon<1$, величині ϵ відповіда ϵ степінь "ввічливості" водія) ця гра має цілком змішану рівновагу (μ_1^*, μ_2^*) : $\mu_1^* = \mu_2^* = \frac{1+\varepsilon}{2+\varepsilon}\delta_I + \frac{1}{2+\varepsilon}\delta_{II}$ із вектором виграшів $\left(1+\frac{\varepsilon}{2+\varepsilon},1+\frac{\varepsilon}{2+\varepsilon}\right)$. Ця змішана NE-ситуація домінується обома чистими NE-ситуаціями, тому її можна рекомендувати як переговорну лише у зв'язку із її "справедливістю" (їй відповідають однакові виграші гравців). Однак у цій змішаній *NE*-ситуації кожен гравець отримує виграш $1 + \frac{\varepsilon}{2+\varepsilon}$, рівний гарантованому виграшу у змішаних стратегіях. Разом із тим стратегії μ_{i}^{*} , що утворюють *NE*-ситуацію, не є обережними, а тому не гарантують гравцеві цього виграшу. Дійсно, ціна гри у змішаних стратегіях дорівнює $1+\frac{\varepsilon}{2+\varepsilon}$ і єдина рівноважна ситуація є $\left(\mu_1^0,\mu_2^*\right)$, де $\mu_1^0 = \frac{2}{2+\epsilon} \delta_I + \frac{\epsilon}{2+\epsilon} \delta_{I\!I}$. Більше того, $u_1(\mu_1^*, \delta_{I\!I}) = \frac{1-\epsilon^2}{2+\epsilon} < 1 + \frac{\epsilon}{2+\epsilon} = \epsilon$ $=u_1(\mu_1^*,\mu_2^*)=u_1(\mu_1^0,\delta_{I\!\!I})$, звідки зрозуміло, що змішана $N\!E\!-$ ситуація μ_1^* ϵ більш ризикованою, ніж обережна стратегія μ_i^0 . Єдиним аргументом на користь рівноваги у змішаних стратегіях є стабільність. Якщо гравці можуть таємно проводити лотереї, то необов'язкова домовленість про реалізацію цілком змішаної NE-ситуації ϵ стабільною. Отже, для кожного гравця дії інших цілком передбачувані. Із цього погляду аргументація на користь обережних стратегій оманлива, оскільки застосування обережних стратегій приводить до послідовності найкращих відповідей, що робить результат непередбачуваним.

Таблиця 6.1.5

X_2	3	P	
3	1, 1	$1+\epsilon$, 2	
P	$2, 1+\varepsilon$	0, 0	

З одного боку, змішана NE-стратегія є розумною, якщо гравець вважає свого партнера таким само раціональним, як і він сам, хоча NE-ситуація є більш ризикованою, ніж обережна стратегія, якщо партнер може зіграти нерозумно (тут потрібно згадати слова

Л.М. Толстого, який говорив, що 90 % вчинків росіянина пояснюються елементарною дурістю). З іншого – обережна змішана стратегія вибирається з міркувань мінімуму ризику і, отже, максимально безпечна. Тим не менш, у раціонального гравця виникає бажання одностороннього відхилення від ситуації, що складається з пари змішаних обережних стратегій, оскільки це збільшує виграш.

Повертаючись до гри "Перехрестя", побудуємо випадковий механізм, який не зводиться до незалежної рандомізації стратегій, тому дозволяє зробити рівноважну ситуацію Парето-оптимальною.

Приклад 6.1.6 ("Перехрестя зі світлофором"). Гравці встановлюють світлофор, який показує "зелене – червоне" й "червоне – зелене" з рівною ймовірністю. Домовленість полягає у тому, щоб на зелене світло проїжджати без зупинки, на червоне – зупинятись. Ця домовленість є стабільною, оскільки при кожній реалізації лотереї маємо рівновагу Неша. Математичне сподівання виграшу дорівнює $3/2 + \varepsilon/2$ для кожного гравця, чим забезпечується Парето – оптимальність і справедливість.

Визначення 6.1.1. Для гри $G = (X_i, u_i; i \in N)$ із скінченною множиною стратегій *спільною лотереєю* назвемо імовірнісний розподіл $L = (L(x))_{x \in X_N}$ на X_N . Для всіх $i \in N$ і для всіх $x_i \in X_i$ позначимо через L_{x_i} умовну ймовірність реалізації $x_{N \setminus i} \in X_{N \setminus \{i\}}$:

$$L_{x_i}\left(x_{N\backslash i}\right) = \begin{cases} \frac{1}{\sum\limits_{y_{N\backslash i} \in X_{N\backslash \{i\}}} L\left(x_i, y_{N\backslash i}\right)} \cdot L\left(x_i, x_{N\backslash i}\right), & \sum\limits_{y_{N\backslash i} \in X_{N\backslash \{i\}}} L\left(x_i, y_{N\backslash i}\right) \neq 0, \\ 0, & \text{якщо } L\left(x_i, y_{N\backslash i}\right) = 0 & \text{для всіх } y_{N\backslash i} \in X_{N\backslash \{i\}}. \end{cases}$$

Скажемо, що L є pівновагою y спільних змішаних стратегіях у грі G, якщо виконані такі нерівності: $\forall i \in N \,, \ \forall x_i, y_i \in X_i$,

$$\sum_{x_{N\setminus i}\in X_{N\setminus \{i\}}}u_i\left(x_i,x_{N\setminus i}\right)L_{x_i}\left(x_{N\setminus i}\right) \geq \sum_{x_{N\setminus i}\in X_{N\setminus \{i\}}}u_i\left(y_i,x_{N\setminus i}\right)L_{x_i}\left(x_{N\setminus i}\right). \tag{6.1.2}$$

Позначимо через CNE(G) множину всіх рівноваг у спільних змішаних стратегіях у грі G.

Кооперативний сценарій, що є обґрунтуванням даного визначення, полягає у такому. Гравці спільно будують випадковий датчик, який може реалізувати вибір ситуацій $x \in X_N$ із імовірністю L(x). Якщо реалізувалась ситуація x, то гравець i отримує інформацію лише про компоненту x_i . Далі кожен гравець вибирає вільно й незалежно, а також таємно, свою справжню стратегію. Сигнал x_i сприймається гравцем i як необов'язкова пропозиція зіграти x_i . Умови (6.1.2) означа-

ють, що виконання домовленості про вибір x_i гравцем i забезпечуються автоматично при тій самій обмеженій інформації, яка доступна кожному гравцеві. Дійсно, нехай гравцеві i запропоновано використати стратегію x_i . Він робить висновок із загального розподілу L, що з імовірністю $L_{x_i}\left(x_{N\backslash i}\right)$ набір $x_{N\backslash i}$ буде вибрано. Отже, $M\left(y_i,L_{x_i}\right)=\sum_{x_{N\backslash i}\in X_{N\backslash i}}u_i\left(y_i,x_{N\backslash i}\right)L_{x_i}\left(x_{N\backslash i}\right)$ є математичним сподіванням його

виграшу при використанні стратегії $y_i \in X_i$, якщо всі інші гравці згодні у виборі стратегій слідувати сигналу. Таким чином, умова (6.1.2) означає, що використання стратегії, що пропонується датчиком, є оптимальною відповіддю гравця i при заданому рівні інформації у припущенні, що всі інші гравці підкоряються сигналу.

Нехай стратегія x_i така, що $L\left(x_i,x_{N\setminus i}\right)=0$ для всіх $x_{N\setminus i}\in X_{N\setminus \{i\}}$, тобто ймовірність того, що стратегія x_i буде запропонована датчиком, дорівнює нулю. Для такої стратегії x_i умова (6.1.2) виконується тривіально, отже, система (6.1.2) переписується в еквівалентному вигляді: $\forall \ i\in N\,,\ \forall\ x_i,y_i\in X_i\,,$

$$\sum_{x_{N\setminus i}\in X_{N\setminus \{i\}}} u_i(x_i, x_{N\setminus i}) L(x_{N\setminus i}) \ge \sum_{x_{N\setminus i}\in X_{N\setminus \{i\}}} u_i(y_i, x_{N\setminus i}) L(x_{N\setminus i}). \tag{6.1.3}$$

Звідси випливає, що лотерея L є рівновагою у спільних змішаних стратегіях тоді й лише тоді, коли ці стратегії задовольняють системі лінійних нерівностей (6.1.3). Ця система завжди має розв'язок, як показує такий результат.

Лема 6.1.1. Множина CNE(G) рівноваг у спільних змішаних стратегіях у грі G є непорожньою опуклою компактною підмножиною одиничного симплекса у $E^{|X_N|}$. Якщо $\mu = (\mu_i)_{i \in N}$ є ситуацією змішаного розширення гри \overline{G} , то лотерея L, що визначається по цій ситуації, є рівновагою у спільних змішаних стратегіях у G тоді й лише тоді, коли μ – ситуація рівноваги у \overline{G} .

Отже, NE-ситуація як у початковій грі, так і у її змішаному розширенні, ототожнюється з рівновагою L у спільних змішаних стратегіях, де імовірнісний розподіл L є набором незалежних випадкових індивідуальних стратегій.

Приклад 6.1.7 ("Музичні стільці"). Маємо двох гравців і три стільці (a, b, c). Стратегія гравця полягає у виборі стільця. Обидва гравці несуть втрати при виборі одного й того ж стільця. Якщо ж їхні вибори різні, то гравець, чий стілець безпосередньо слідує за стіль-

цем супротивника (вважаємо, що b безпосередньо слідує за a, c за b, a за c) виграє вдвічі більше. Отже, виникає біматрична гра (табл. 6.1.6). У ній a_i – вибір гравцем i стільця a. У початковій грі рівноваги Неша відсутні. Єдиною цілком змішаною рівновагою Неша є $\mu_1^* = \mu_2^* = \frac{1}{3} \delta_a + \frac{1}{3} \delta_b + \frac{1}{3} \delta_c$. Ця ситуація рівноваги приносить кожному гравцеві виграш рівний 1 і є домінованою. Причина цього полягає в тому, що у змішаній ситуації (μ_1^*, μ_2^*) "погані" для обох гравців діагональні ситуації реалізуються з ймовірністю 1/3. Розглянемо таку лоте-

рею
$$L$$
 на $X_1 \times X_2$: $L(x_1, x_2) = \begin{cases} 1/6, \text{ якщо } x_1 \neq x_2, \\ 0, \text{ якщо } x_1 = x_2. \end{cases}$. Дана лотерея L ε рів-

новагою у змішаних стратегіях у даній грі. Нехай, наприклад, реалізується (з імовірністю 1/6) ситуація (b_1,c_2) . При даній L гравець 1 може вивести, що гравцю 2 запропоновано використовувати одну зі стратегій a_2 або c_2 з однаковою ймовірністю 1/2, тобто використовувати змішану стратегію $\mu_2 = \frac{1}{2} \delta_a + \frac{1}{2} \delta_c$.

Таблиця 6.1.6

X_2	a_{2}	b ₂	c ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	0, 0	1, 2	2, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	2, 1	0, 0	1, 2
$\boldsymbol{c}_{\scriptscriptstyle 1}$	1, 2	2, 1	0, 0

Найкращою відповіддю на цю стратегію і є стратегія b_1 , оскільки $\overline{u}_1(\delta_b,\mu_2)=\frac{3}{2}>\overline{u}_1(\delta_a,\mu_2)=1>\overline{u}_1(\delta_c,\mu_2)=\frac{1}{2}$. Аналогічно гравець 2, якому поступає сигнал використати стратегію c_2 , виводить, що гравцю 1 пропонується вибрати змішану стратегію $\mu_1=\frac{1}{2}\delta_a+\frac{1}{2}\delta_c$. У цьому випадку стратегія c_2 і є найкращою відповіддю гравця 2 (аналогічно вище наведеному).

У силу симетричності гри отримуємо властивість стабільності лотереї L при будь-яких допустимих реалізаціях. Відмітимо, що лотерея L приводить до оптимальних за Парето і справедливих виграшів

(3/2,3/2), що спонукає гравців вступати в кооперацію на основі використання спільних змішаних стратегій.

Розглянемо приклад 6.1.8 (табл. 6.1.7). Рівновагою Неша (також і рівновагою в домінуючих стратегіях) є ситуація (a_1,a_2) , у якій кожен отримує виграш 1. Ситуація (a_1,a_2) є Парето – оптимальною так, як і (a_1,b_2) , і (b_1,a_2) . Але ж в останніх ситуаціях один із гравців отримує виграш у 10 разів більший! Якщо гра повторюється неодноразово, то у гравців може виникнути ідея використовувати ситуації (a_1,b_2) та (a_2,b_1) по черзі. Але не виключена ситуація, коли одному з гравців буде вигідно порушити цю домовленість (наприклад, він хоче вийти з гри). Єдиним способом запобігти таким порушенням є застосування випадкового механізму – ситуації (a_1,b_2) , (a_2,b_1) вибирати з імовірні-

стю 1/2 , тобто за лотереєю
$$L = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$$
. Зрозуміло, як реалізувати

подібну "справедливу" (яка дає кожному з гравців середній виграш) лотерею. Але подібна справедливість відносна.

Таблиця 6.1.7

X_2	a_2	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1	10, 0
\boldsymbol{b}_1	0, 10	0, 0

Розглянемо приклад 6.1.9. У ситуації (b_1,a_2) перший гравець отримує втричі більший виграш, ніж у ситуації (a_1,b_2) , у той час, як різниця у виграшах другого гравця дорівнює 2 (див. табл. 6.1.8). Тому перший гравець частіше хотів би отримувати першу ситуацію, інший – другу. На практиці гравці можуть домовитись про "середню" частоту – у даному прикладі перший гравець хотів би використовувати ситуацію (b_1,a_2) із частотою 3/4, другий – 1/3, тому "середня" частота використання стратегії (b_1,a_2) дорівнює: 3/4+1/3=7/12 ((a_1,b_2) – 5/12). Математичне сподівання виграшів $M_1=9\cdot\frac{7}{12}+3\cdot\frac{5}{12}=6,5$,

 $M_2=1\cdot \frac{7}{12}+2\cdot \frac{5}{12}=1\frac{5}{12}\approx 1,4$. Зазначимо, що про рівновагу у спільних змішаних стратегіях тут не йдеться.

Таблиця 6.1.8

X_1	a_2	b ₂
$\boldsymbol{a}_{\scriptscriptstyle 1}$	0, 0	3, 2
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	9, 1	0, 0

У наступному прикладі перехід до змішаного розширення гри не дає нічого нового, крім єдиної рівноваги Неша (детермінованої). Але буде наведено механізм кооперації, який є більш обов'язковою формою стабільної домовленості, що базується на спільних змішаних стратегіях і який дозволить покращити за Парето NE—ситуацію.

Приклад 6.1.10 ("Конкуренція зі спеціалізацією"). Два дуополісти постачають на ринок один товар, але різної якості — низької (H), середньої (C) й високої (B) (виграші у табл. 6.1.9). Для гравців, що притримуються некооперативної поведінки, ця гра, розв'язна за домінуванням і ситуація (C, C) є єдиною рівновагою як самої гри, так і її змішаного розширення.

Таблиця 6.1.9

X_2	H	С	В
H	0, 0	0, 2	1, 3
C	2, 0	1, 1	2, 0
В	3, 1	0, 2	0, 0

Ця гра має також єдину рівновагу у спільних змішаних стратегіях, яка реалізується на лотереї, що вибирає (C, C) з імовірністю 1. Тим не менш, оптимальний за Парето виграш (2, 2) може бути оптимальним у результаті наступної домовленості.

Побудуємо лотерею з імовірнісним розподілом $L = \frac{1}{2} \delta_{(B,H)} + \frac{1}{2} \delta_{(H,B)}$. Кожен гравець незалежно й таємно вибирає та посилає нейтральному арбітру, що обирається обома гравцями, обов'язковий сигнал s_i , який приймає одне з чотирьох значень для кожного гравця: три чистих стратегії і сигнал A (згідно лотереї). Отримавши пару повідомлень

 (s_1, s_2) , арбітр визначає випадкову ситуацію (x_1, x_2) відповідно до лотереї L. Фінальна ситуація гри визначається за таким правилом (за цим слідкує арбітр):

$$\begin{cases} \left(x_1, x_2\right), \ \text{якщо} \ s_1 = s_2 = A, \\ \left(x_1, s_2\right), \ \text{якщо} \ s_1 = A, \ s_2 = H, C, B, \\ \left(s_1, x_2\right), \ \text{якщо} \ s_1 = H, C, B, \ s_2 = A, \\ \left(s_1, s_2\right), \ \text{якщо} \ s_i = H, C, B, \ i = 1, 2. \end{cases}$$

Тоді для $\forall y_1, y_2 \in \{H, C, B\}$:

$$\begin{split} \overline{u}_{1}(A,A) &= \frac{1}{2}u_{1}(B,H) + \frac{1}{2}u_{1}(H,B) = 2 > \overline{u}_{1}(y_{1},A) = \frac{1}{2}u_{1}(y_{1},H) + \frac{1}{2}u_{1}(y_{1},B), \\ \overline{u}_{2}(A,A) &= \frac{1}{2}u_{2}(H,y_{2}) + \frac{1}{2}u_{2}(B,H) > \frac{1}{2}\overline{u}_{2}(A,y_{2}) = \frac{1}{2}u_{2}(B,y_{2}) + \frac{1}{2}u_{2}(H,y_{2}). \end{split}$$

Отже, з імовірністю 1/2 будуть реалізуватись ситуації (H, B) й (B, H) і математичне сподівання виграшу кожного гравця дорівнює 2.

Зауважимо, що на відміну від рівноваги у змішаних стратегіях рівновага про домовленість із лотереєю не може бути відміненою після реалізації конкретної ситуації. Це рішення повинно бути прийнятим раз і назавжди до випадкової реалізації.

Bизначення 6.1.2. Для всіх $i\in N$ позначимо через $L_{N\setminus i}$ звуження розподілу L на $X_{N\setminus \{i\}}\colon L_{N\setminus i}\left(x_{N\setminus i}\right)=\sum_{x_i\in X_i}L_i\left(x_i,x_{N\setminus i}\right)$ для $\forall~x_{N\setminus i}$. Назвемо ло-

терею L слабкою рівновагою у спільних змішаних стратегіях у грі G, якщо виконані нерівності:

$$\forall i \in N , \forall y_i \in X_i, \sum_{x \in X_N} u_i(x) L(x) \ge \sum_{x_{N \setminus i} \in X_{N \setminus \{i\}}} u_i(y_i, x_{N \setminus i}) L_{N \setminus i}(x_{N \setminus i}).$$

Позначимо множину слабких рівноваг через WCNE(G).

Лема 6.1.2. Множина WCNE(G) є непорожньою опуклою компактною підмножиною одиничного симплекса у $E^{|X_N|}$, причому $WCNE(G) \supseteq CNE(G)$. Якщо μ – ситуація розширеної гри \overline{G} , то відповідна лотерея L є слабкою рівновагою у спільних змішаних стратегіях у грі G тоді й лише тоді, коли ситуація μ є рівновагою Неша у грі \overline{G} .

Доведення. За (6.1.2) лотерея L належить $\mathit{WCNE}(G)$ тоді й лише тоді, коли

$$\forall i \in \mathbb{N}, \forall y_i \in X_i, \sum_{x \in X_N} u_i(x) L(x) \ge \sum_{x \in X_N} u_i(y_i, x_{N \setminus i}) L(x). \tag{6.1.4}$$

Лотерея L є рівновагою у спільних змішаних стратегіях тоді й лише тоді, коли вона задовольняє системі нерівностей для $\forall x_i y_i \in X_i$, $\forall i \in N$:

$$\sum_{x_{N\setminus i}\in X_{N\setminus \{i\}}} u_i\left(x_i, x_{N\setminus i}\right) L\left(x_i, x_{N\setminus i}\right) \ge \sum_{x_{N\setminus i}\in X_{N\setminus \{i\}}} u_i\left(y_i, x_{N\setminus i}\right) L\left(x_i, x_{N\setminus i}\right). \tag{6.1.5}$$

Взявши у нерівностях (6.1.5) суми по $x_i \in X_i$ при фіксованих i і y_i , отримаємо (6.1.4). Отже, $CNE(G) \subseteq WCNE(G)$. Інші твердження леми очевидні. \blacklozenge

Отже,
$$NE(G) \subseteq NE(\bar{G}) \subseteq CNE(G) \subseteq WCNE(G)$$
.

Проходячи по цьому ланцюжку зліва направо, ми повинні накладати все більше інформаційних обмежень для того, щоб рівноважна ситуація стала стабільною домовленістю. Для NE-ситуації та змішаної NE-ситуації вимагається лише дотримуватись секретності у виборі індивідуальних стратегій. Для CNE-ситуації у доповненні до цього потрібно вимагати, щоб окремі гравці могли спостерігати лише свої власні реалізації спільної лотереї. Для WCNE(G)-ситуації необхідно мати нейтрального арбітра, який реалізує випадкову ситуацію лотереї, нічого не повідомляючи окремим гравцям. Далі цей арбітр опитує незалежно й таємно кожного гравця, чи згоден той "всліпу" використовувати ту стратегію, яка зреалізувалась при проведенні лотереї. Потім він повинен повідомити тим гравцям, які добровільно погодились із проведенням лотереї, ситуацію, що випала, і примусити цих гравців дійсно використовувати ці стратегії.

Загальною рисою цих сценаріїв є неможливість із досягненням домовленості про вибір деякої спільної стратегії вести прямий обмін інформації між гравцями. У випадку багаторазового проведення лотереї кооперація стає неявною та важко розпізнати сам факт її існування. Така форма мовчазного зговору описана у літературі про поведінку фірм в умовах олігополії під назвою "Зговір по електричному обладнанню 1950-х рр.", у якому були замішані 29 компаній США. Уряд США організував аукціон, у якому кожна фірма повинна була таємно й незалежно одна від одної назвати свою ціну на деякий вид електротехнічного обладнання. Однак фірми провели попередні таємні переговори, у яких було визначено частку кожної фірми. Потім продавці узгодили свою політику призначення цін на аукціоні так, щоб кожен із них виявився таким, що призначив найменшу ціну (і, отже, отримав би замовлення від уряду) достатню кількість разів для захоплення визначеної частки ринку. Це було досягнуто за рахунок поділу ринку на чотири зони, причому до кожної зони були приписані різні продавці. Продавці, що були прикріплені до однієї зони, чергували свої ставки. При визначенні привілеїв призначення найменшої

ціни орієнтувались на "фази місяця". Унаслідок чого утворився начебто випадковий процес, що імітував незалежну поведінку учасників.

Стабільність на основі погроз. Погроза може слугувати сильним механізмом кооперації. Для досягнення стабільності домовленості (наприклад, вибору рівноваги Неша) гравці оголошують деяку схему реагування на можливі відхилення інших. Оскільки гравцеві, який відхилиться, може стати погано, якщо оголошена погроза здійсниться, то він остерігатиметься відхилень, і необов'язкова домовленість виявиться стабільною. Таким чином, попередження є "розумним використанням потенціальної сили". Успішною є та погроза, яка ніколи не реалізується (Шеллінг, 1970).

Стабільні домовленості, що розглядались у попередньому розділі, вимагали повної секретності у прийнятті рішень. На противагу цьому погроза є ефективною лише тоді, коли відхилення неможливо приховати. Отже, для досягнення стабільності на основі застережень потрібно, щоб усі індивідуальні вибори стратегій відбувались відкрито.

Приклад 6.1.11 ("Дилема в'язня"). Нешівською рівновагою є агресивна поведінка кожного. Для забезпечення доброзичливості (стабілізації ситуації (M,M)) кожен гравець оголошує принцип своєї поведінки (що є погрозою партнеру):

- ✓ Якщо ти будеш поводитись мирно, то і я буду доброзичливим.
- √ Якщо ти будеш агресивним, то і я буду поводитись агресивно.

Узявши до уваги таку погрозу від опонента, кожен гравець змушений бути люб'язним, щоб не втратити у виграші.

Звернемо увагу на те, що тут не все так просто – якщо різниця у виграшах при відхиленні дуже велика ("життя – смерть"), то погроза може не зупинити суперника (у СРСР перед Другою світовою війною була така пісня "Нас не трогай, мы не тронем, а затронешь спуску не дадим, и в воде мы не утонем, и в огне мы не сгорим", що однак, не зупинило агресію). Для зняття цієї складності можна вважати, що гра повторюється і короткотерміновий виграш від некооперативного відхилення перекривається довготерміновими втратами.

Визначення 6.1.3. Сценарієм попередження у грі $G = (X_i, u_i; i \in N)$ називається набір $(x_i, \xi_{N\setminus i}; i \in N)$, де відображення $\xi_{N\setminus i}: X_i \to X_{N\setminus i}$ - погроза гравцю i, де

$$\xi_{N\setminus i}\left(x_{i}\right) = x_{N\setminus i}, \ \forall y_{i} \in X_{i} \setminus \left\{x_{i}\right\} : \ u_{i}\left(y_{i}, \xi_{N\setminus i}\left(y_{i}\right)\right) \leq u_{i}\left(x\right). \tag{6.1.6}$$

Проілюструємо сценарій попередження, розглядаючи гру на нескінченному інтервалі часу. У кожен конкретний момент часу кожен гравець вибирає деяку стратегію, причому він може поміняти свою стратегію в будь-який час. Гра відбувається у відкриту, тобто стратегії всіх гравців усім відомі. Це є головним інформаційним припущен-

ням, яке робить неможливим таємне порушення договору. Гравець, який виконує домовленість, спочатку вибирає узгоджену з іншими стратегію x_i і потім спостерігає за стратегіями $y_{N\setminus i}$ інших гравців. Поки $y_{N\setminus i} = x_{N\setminus i}$, гравець i зберігає стратегію x_i . Як тільки будь-який гравець, скажімо j, переключається на стратегію $y_j \neq x_j$, гравець i переключається раз і назавжди на i-ту компоненту $\xi_{N\setminus j} \left(y_j \right)$. Умова стабільності (6.1.6) означає, що якщо гравці виконують договір, що базується на сценарії попередження, то в жодного гравця не виникає приводу для одностороннього порушення домовленості. Справді, виграш на нескінченному інтервалі часу завжди перевищує виграш на будь-якому інтервалі скінченної довжини.

Звичайно, інколи важко виконати вимогу вести відкриту гру. Так, зокрема, у сучасному світі раптовий напад стає небезпечним (згадаймо події 11 вересня 2001 р. у США). Прикладом механізму обміну інформацією типу попереджувальних погроз є домовленості про взаємну інспекцію ядерної зброї або створення демілітаризованих зон.

Лема 6.1.3. Нехай $(x_i, \xi_{N \setminus i}; i \in N)$ – сценарій попередження. Тоді ситуація $x \in$ індивідуально раціональною:

$$\sup_{y_{i}} \inf_{y_{N\setminus i}} u_{i}(y_{i}, y_{N\setminus i}) \leq u_{i}(x), \forall i \in N.$$

Доведення. Із (6.1.6) маємо $\inf_{y_{N\setminus i}}u_iig(y_i,y_{N\setminus i}ig)\leq u_iig(y_i,\xi_{N\setminus i}ig(y_iig)ig)\leq u_iig(xig)$ для $\forall~y_i\in X_i$, зокрема для y_i , на якому досягається супремум. ullet

Лема 6.1.4. Нехай X_i – компакт, u_i – неперервна, $i \in N$. Тоді у грі $G = \left(X_i, u_i; i \in N\right)$ існує хоча б одна індивідуально-раціональна ситуація. Для кожної такої ситуації x при всіх $i \in N$ існує набір погроз $\xi_{N \setminus i}$ такий, що $\left(x_i, \xi_{N \setminus i}, i \in N\right)$ є сценарієм попередження.

Доведення. Із припущень леми очевидним образом випливає існування в кожного гравця хоча б однієї обережної стратегії x_i і те, що $x=\left(x_i\right)_{i\in N}$ є індивідуально-раціональною ситуацією. Для кожного $i\in N$ і для $\forall y_i\in X_i$, $y_i\neq x_i$, виберемо елемент $y_{N\setminus i}=\xi_{N\setminus i}\left(y_i\right)\in X_{N\setminus i}$, що $u_i\left(y_i,y_{N\setminus i}\right)=\inf_{z_{N\setminus i}}u_i\left(y_i,z_{N\setminus i}\right)\leq \sup_{z_i}\inf_{z_{N\setminus i}}u_i\left(z_i,z_{N\setminus i}\right)\leq u_i\left(x\right).$

Визначення 6.1.4. Поділом у грі $G = (X_i, u_i, i \in N)$ називається оптимальна за Парето індивідуально-раціональна ситуація.

Позначимо через I(G) множину поділів у грі G.

Лема 6.1.5. Нехай для $\forall i \in N$ множина X_i компактна, функція u_i неперервна. Тоді у грі $G \in$ хоча б один поділ.

Доведення. Позначимо через $I\!R(G)$ непорожню компактну підмножину індивідуально-раціональних ситуацій у грі G. Виберемо елемент x із $I\!R(G)$, який максимізує $\sum_{i\in N}u_i$ на $I\!R(G)$. Тоді x є оптимальною за

Парето ситуацією. Покладемо від супротивного, що ситуація y домінує за Парето ситуацію x. Тоді $y \in IR(G)$ й $\sum_{i \in N} u_i(x) < \sum_{i \in N} u_i(y)$. Отрима-

не протиріччя доводить лему. ♦

Із леми 6.1.3 поділ є необов'язковою домовленістю, стабільної відносно індивідуальних відхилень, а також відносно відхилень коаліції N усіх гравців (оптимальність за Парето). З іншого боку, двома мінімальними вимогами для кооперативних домовленостей якраз і є індивідуальна раціональність і оптимальність за Парето. Отже, множина I(G) є максимальною областю переговорів про кооперацію. Якщо множина I(G) одноелементна, то кооперативний результат гри не викликає сумнівів. Але в більшості ігор множина I(G) містить не один елемента й вибір серед них є гострою конфліктною ситуацією.

Приклад 6.1.12 ("Торг"). Гравець І продає неподільний товар гравцю ІІ. Гравець І повинен вирішити, яку призначити ціну: високу (ВЦ) чи низьку (НЦ). Гравець ІІ (покупець) може або придбати товар (ПТ) або відмовитись від нього (ВТ). Виграші наведені у табл. 6.1.10. Ситуація (ВЦ, ПТ) є рівновагою у домінуючих стратегіях і оптимальною за Парето. Якщо гравці не обмінюються інформацією, то це беззаперечний результат гри. Але звернемо увагу, що поділів у грі 2 – (ВЦ, ПТ), (НЦ, ПТ). Тому при можливості обміну інформацією, другий гравець може виграти, погрожуючи першому: "Я буду купувати лише за низькою ціною та відмовлятись від товару при призначенні високої ціни". Аналогічно, перший гравець може об'явити, що буде продавати товар лише за високою ціною. Результатом здійснення погроз може стати домінована ситуація з виграшем (0, 0), тобто програють обоє.

Таблиця 6.1.10

II I	ПТ	BT
ВЦ	2, 1	0, 0
НЦ	1, 2	0, 0

Ще раз повторимо, що "успішною є та погроза, яка ніколи не реалізується". З іншого боку, успішне застосування погроз як механізму попередження вимагає, щоб погрожуючий гравець був зобов'язаний приводити погрозу в дію або принаймні щоб усі в це вірили (погроза "Страшного суду"). Навіть найбільш переконливі й успішні погрози є ризикованими, якщо об'явлена реакція на відхилення не збігається з найкращою відповіддю гравця, що погрожує. У цьому сенсі доцільно розділити погрози на "агресивні" та "попереджувальні".

Розглянемо гру двох осіб (X_1, X_2, u_1, u_2) , де множини X_i компактні, а функції u_i неперервні, i=1,2. Найкращим поділом для гравця i є ситуація x^i така, що

$$u_{i}\left(x^{i}\right) = \sup_{x \in I(G)} u_{i}(x) = \sup_{x} \left\{ u_{i}\left(x\right) \middle| \ u_{k}\left(x\right) \geq \sup_{y_{k}} \inf_{y_{j}} u_{k}\left(y_{k}, y_{j}\right), k \neq j \right\}.$$

Лема 6.1.6. Нехай x^i – найкращий поділ гравця i, ξ_i – погроза (агресивна) гравця i:

$$\begin{cases} \xi_{i}\left(x_{j}^{i}\right) = x_{i}^{i}, \\ \forall y_{j} \in X_{j} \setminus \left\{x_{j}^{i}\right\}, \ u_{j}\left(y_{i}, \xi_{i}\left(y_{j}\right)\right) = \inf_{y_{i}} u_{j}\left(y_{j}, y_{i}\right); \end{cases}$$

 ξ_i – попередження гравця j:

$$\begin{cases} \xi_{j}(x_{i}^{i}) = x_{j}^{i}, \\ \forall y_{j} \in X_{i} \setminus \{x_{i}^{i}\}, \ u_{j}(\xi_{j}(y_{j}), y_{i}) = \sup_{y_{j}} u_{j}(y_{j}, y_{j}). \end{cases}$$

Тоді (x^i, ξ_i, ξ_i) – сценарій попереджень.

Доведення. Із визначення погрози маємо:

$$u_{j}\left(y_{j}, \xi_{i}\left(y_{j}
ight)
ight) \leq \sup_{z_{i}} \inf_{z_{i}} u_{j}\left(z_{j}, z_{i}
ight)$$
 для $\forall \ y_{j} \in X_{j} \setminus \left\{x_{j}^{i}
ight\}$.

Оскільки поділ x^i є індивідуально раціональним, то маємо: $u_j\left(y_j,\xi_i\left(y_j\right)\right) \leq u_j\left(x^i\right)$ для $\forall \ y_j \in X_j \setminus \left\{x_j^i\right\}$. Із визначення попередження маємо: $u_j\left(\xi_j\left(y_i\right),y_i\right) \geq \inf_{z_i} \sup_{z_j} u_j\left(z_j,z_i\right), \forall \ y_i \in X_i \setminus \left\{x_i^i\right\}$.

Зафіксуємо стратегію y_i , $y_i \neq x_i^i$, і покладемо $u_i \left(\xi_j \left(y_i \right), y_i \right) > u_i \left(x^i \right)$. Останні дві нерівності разом з умовою $x^i \in IR(G)$ дозволяють стверджувати, що $u_j \left(\xi_j \left(y_i \right), y_i \right) \geq \inf_{z_i} \sup_{z_j} u_j \left(z_j, z_i \right)$. Із неперервності функцій

виграшу на компактних множинах стратегій випливає, що існує Парето-оптимальна ситуація z така, що $u_i(y) \le u_i(z)$, $u_j(y) \le u_j(z)$. Отже, для поділу z справедлива нерівність $u_i(x^i) < u_i(z)$. Маємо суперечність. Таким чином, $u_i(\xi_i(y_i), y_i) \le u_i(x^i)$ для $\forall y_i \in X_i \setminus \{x_i^i\}$.

Для даної гри двох осіб (X_1,X_2,u_1,u_2) із скінченою множиною стратегій позначимо через S(1,G) її розширення, у якому гравець 1 діє як підлеглий (сприймає стратегії другого як екзогенно задані): $S(1,G)=\left(X_1^{X_2},X_2,\tilde{u}_1,\tilde{u}_2\right)$. Нехай гра G задається табл. 6.1.11. Тоді гра S(1,G) задається табл. 6.1.12. Розглянемо гру $H=S\left(r,S(1,G)\right)$ ("метагру" Ховарда [2]), у якій гравець 2 є підлеглим.

Таблиця 6.1.11

X_2	\boldsymbol{x}_{2}^{1}	x_2^2
\boldsymbol{x}_1^1	1, 4	4, 1
\boldsymbol{x}_{1}^{2}	2, 3	3, 2

Таблиця 6.1.12

$ ilde{ ilde{X}}_1$	X_2 $X_1^{X_2}$	\boldsymbol{x}_{2}^{1}	x_2^2
$ ilde{oldsymbol{\mathcal{X}}}_1^1$	$\left(oldsymbol{x}_{2}^{1},oldsymbol{x}_{1}^{1} ight)$	1, 4	4, 1
$\tilde{\boldsymbol{x}}_{1}^{2}$	$\left(\boldsymbol{x}_{2}^{1},\boldsymbol{x}_{1}^{2}\right)$	2, 3	3, 2
$\tilde{\boldsymbol{x}}_{1}^{3}$	$\left(\boldsymbol{x}_{2}^{2},\boldsymbol{x}_{1}^{1}\right)$	4, 1	1, 4
$\tilde{\boldsymbol{x}}_{1}^{4}$	$\left(\boldsymbol{x}_{2}^{2},\boldsymbol{x}_{1}^{2}\right)$	3, 2	2, 3

Лема 6.1.7. Пара (a_1,a_2) є вектором виграшів для деякої *NE*–ситуації гри H тоді й лише тоді, коли виконуються такі властивості:

а) (a_1,a_2) – допустимий вектор виграшів у грі G, тобто для деякого x^* має місце $(a_1,a_2)=(u_1(x^*),u_2(x^*));$

б) виконується:
$$\inf_{x_2} \sup_{x_1} u_1(x_1, x_2) \le u_1(x^*)$$
, $\sup_{x_2} \inf_{x_1} u_2(x_1, x_2) \le u_2(x^*)$.

Знайдемо найкращий поділ у грі G для 1-го гравця – це буде $\left(x_1^2, x_2^1\right)$. Відмітимо, що виграш у ньому 1-го гравця збігається з 1– виграшем за Штакельбергом у грі S(1,G). Виявляється, що цей збіг не випадковий.

Лема 6.1.8. У грі S(i,G) i – виграш Штакельберга збігається з виграшем в найкращому поділі i-го гравця у грі G.

Визначення 6.1.5. Для гри $G = (X_i, u_i; i \in N)$ α – ядром називається підмножина $C_{\alpha}(G)$ таких ситуацій x^* , що для будь-якої коаліції

 $T\subseteq N$ знайдеться така погроза коаліції $N\backslash T$ проти потенційних відхилень коаліції T, що $\left(x^*,\xi_T;T\subseteq N\right)$ — коаліційний сценарій попередження, тобто не знайдеться коаліції $T\subseteq N$ й спільної стратегії $x_T\in X_T$, для яких було б виконано: $u_i\left(x_T,\xi_{N\backslash T}\left(x_T\right)\right)\geq u_i\left(x^*\right)$ для $\forall\ i\in T$, $\exists\ j\in T:u_j\left(x_T,\xi_{N\backslash T}\left(x_T\right)\right)>u_j\left(x^*\right)$.

Згідно з визначенням, ситуація x^* належить α — ядру, якщо будьякому відхиленню x_T коаліції T може бути протиставлений хід $x_{N\backslash T}$ доповнювальної коаліції $N\backslash T$, який застерігає хоча б одного члена коаліції T від прийняття стратегії x_T , оскільки в цьому випадку цей гравець програє: $u_i\left(x_T,x_{N\backslash T}\right) < u_i\left(x^*\right)$ (або ж усі гравці коаліції отримують такий саме виграш, як раніше $u_i\left(x_T,x_{N\backslash T}\right) = u_i\left(x^*\right), \forall i \in T$). Застосовуючи цю властивість до коаліцій T=N й $T=\{i\}$, $i\in N$, маємо, зокрема, що будьяка ситуація у α — ядрі є також поділом: $C_{\alpha}\left(G\right)\subset I(G)$. Зазначимо також, що оптимальна за Парето NE-ситуація також є поділом (разом із пасивною погрозою, що полягає у відсутності реакції, він утворює сценарій попередження). Сильна рівновага також міститься у α — ядрі: $NE\left(G\right)\cap PO\left(G\right)\subset I\left(G\right)$, $SE\left(G\right)\subset C_{\alpha}\left(G\right)$. Можна довести, що поділ x з α — ядра не обов'язково є сильною рівновагою. Тим не менш, із $SE\left(G\right)=\varnothing$ випливає $C_{\alpha}\left(G\right)=\varnothing$ і навпаки.

У грі з порожнім α – ядром кооперативна стабільність не може бути досягнутою лише за рахунок попереджувальних погроз, оскільки можливе існування коаліції, для якої відхилення є вигідним, не дивлячись на відповідні дії інших гравців. У цьому випадку для забезпечення стабільності можна ввести сценарій поведінки, у якому деякі гравці з коаліції "відступників" підкуповуються таким чином, щоб останні члени коаліції "відступників" понесли суттєві втрати.

Розглянемо гру "Вибір більшістю голосів" (див. Розділ 3), у якій порядки переваги утворюють цикл Кондорсе: $u_1(a) > u_1(b) > u_1(c)$, $u_2(b) > u_2(c) > u_2(a)$, $u_3(c) > u_3(a) > u_3(b)$.

Розглянемо ситуації x = (b, b, c), за якими обирається кандидат b. Стабільність ситуації x може бути порушеною коаліцією $\{1, 3\}$: гравці 1 і 3, обираючи кандидата a, покращують свій виграш. Тим не менш, гравець 2 може запропонувати гравцю 3 кращий варіант, підтримуючи кандидата c. При цьому гравець 1 отримає найменший виграш.

Передбачаючи, що гравець 2 може підкупити гравця 3, гравець 1 не буде входити у коаліцію $\{1,3\}$ відхилення від початкового договору, оскільки внаслідок двоетапного порушення початкової домовленості (b, b, c), він може отримати найгірший результат.

Приклад 6.1.13 ("Дилема в'язня з трьома гравцями"). У кожного з гравців є агресивна стратегія (A) і кооперативна стратегія (K). Гра симетрична. Нижче перераховані чотири варіанти виграшів гравців: $(K, K, K) \rightarrow (2, 2, 2)$, $(A, K, K) \rightarrow (3, 1, 1)$, $(A, A, K) \rightarrow (2, 2, 0)$, $(A, A, A) \rightarrow (1, 1, 1)$ (інші 4 – симетричні).

Легко перевірити, що в цій грі рівновага у домінуючих стратегіях є домінованою за Парето і не існує сильної рівноваги, α – ядро містить чотири елементи та збігається з множиною поділів.

Приклад 6.1.14 ("Голосування за одного з трьох кандидатів"). Кожен гравець пропонує одного з трьох кандидатів, зокрема, самого себе. Отже, $X_i = \{1,2,3\}$. Сім із 27 можливих (3³) векторів виграшів приводяться нижче (останні відновлюються за симетрією): $(1,2,3) \rightarrow (0,0,0), \ (1,2,1) \rightarrow (0,0,-1), \ (1,3,1) \rightarrow (0,0,0), \ (1,1,1) \rightarrow (3,1,1), \ (1,3,2) \rightarrow (0,2,2), \ (2,3,1) \rightarrow (2,2,2), \ (2,3,2) \rightarrow (-1,3,3).$

Визначення 6.1.6. β – ядром гри $G=\left(X_i,u_i;\ i\in N\right)$ називається множина $C_{\beta}\left(G\right)$ ситуацій x^* , що задовольняють такій властивості. Для будь-якої коаліції $T\subset N$, існує спільна стратегія доповнювальної коаліції $x_{N\setminus T}\in X_{N\setminus T}$ така, що для $\forall\ x_T\in X_T$ не може бути виконаною така система нерівностей:

$$\begin{cases} u_i \left(x_{\scriptscriptstyle T}, x_{\scriptscriptstyle N \setminus T} \right) \geq u_i \left(x^* \right) \; \text{для} \; \forall i \in T, \\ u_j \left(x_{\scriptscriptstyle T}, x_{\scriptscriptstyle N \setminus T} \right) > u_j \left(x^* \right) \; \text{для} \; \text{деякого} \; j \in T. \end{cases}$$

Стабільність ситуацій із β – ядра ϵ більш сильною, ніж стабільність ситуацій із α – ядра. Коаліція $N\backslash T$ може попередити відхилення коаліції T, навіть якщо члени коаліції T вибирають свою спільну стратегію таємно. Порівнюючи визначення 6.1.4 – 6.1.6, маємо $SE(G)\subseteq C_{\beta}(G)\subseteq C_{\alpha}(G)$. Для того, щоб дати інтерпретацію визначенню 6.1.6, уявимо, що гра $G(\infty)$ повторюється у часі. У момент t, t=1,2,..., кожен гравець i, знаючи попередні ходи $x^1,...,x^{t-1}$, вибирає стратегію x_i^t . Виграш кожного гравця після зробленого ходу x^t :

$$u_i(t) = \lim_{t \to \infty} \frac{1}{t} \sum_{s=1}^t u_i(x^s)$$
 ("середне Чезаро"). (6.1.7)

Можна показати, що всі ситуації зі змішаного β -ядра гри G можуть бути отриманими як сильні рівноваги у грі $G(\infty)$. Навпаки, виграші, що відповідають сильним рівновагам у грі $G(\infty)$, покривають опуклу оболонку виграшів, що відповідають змішаному β -ядру гри G. Таким чином, із допомогою гри, що повторюється, формалізується поняття кооперації із застосуванням погроз. Відхилення, тактично вигідні, стають невигідними стратегічно, якщо об'явлена погроза приводиться у виконання. Для цього необхідно, щоб довготривалі виграші завжди перевищували короткотривалі (середнє Чезаро забезпечує виконання цієї умови).

Розглянемо більш простий варіант гри, що повторюється, у якій загальний виграш ε "дисконтованою" сумою поточних виграшів.

Нехай у момент t=1 розігрується гра G і реалізується ситуація x^1 . Деякий випадковий механізм диктує або закінчити гру з імовірністю $(1-\delta)$, $0<\delta<1$, або продовжити гру з імовірністю δ і тоді гра G наново розігрується в момент t=2. Нехай гра G розігрується нескінченну кількість разів, тоді загальний виграш гравця $i \in N$ дорівнює:

$$u_i(\infty) = (1 - \delta)(u_i(x^1) + \delta u_i(x^2) + \dots + \delta^{t-1}u_i(x^t) + \dots).$$
 (6.1.8)

Відомо, що при $\delta \to 1$ сума ряду (6.1.8) прямує до *середнього Чезаро* (6.1.7), якщо границя в (6.1.7) існує. Покладемо $\beta_i = \inf_{x_{N\setminus i}} \sup_{x_i} u_i(x)$ – максимальний виграш гравця i, який він може собі забезпечити за умови, що на момент вибору своєї стратегії він знає стратегії всіх інших гравців. Виберемо поділ x^* так, щоб виконувалась умова $\beta_i < u_i(x^*)$ для $\forall i \in N$.

Знайдемо NE-ситуацію σ^* у грі $G(\infty)$, яка дає кожному гравцеві виграш $u_i(x^*)$. Для цього для кожного $j \in N$ виберемо стратегію $\tilde{x}_{N\setminus j}$ гравців $N\setminus \{j\}$ таку, що $\sup_{x_j}u_j(x_j,\tilde{x}_{N\setminus j})=\beta_j$. Тоді для кожного $i\in N$ стратегія σ_i^* гравця i у грі $G(\infty)$ визначається так: $x_i^1=x_i^*$; якщо $x^1=x^2=\ldots=x^{t-1}=x^*$, то $x_i^t=x_i^*$; якщо $x^1=x^2=\ldots=x^{t-2}\neq x^{t-1}$, вибрати j, для якого $x_j^{t-1}\neq x_j^*$, й далі вибирати $\tilde{x}_i=x_i^t=x_i^{t+1}=\ldots$ для всіх $i\in N\setminus \{j\}$.

Нехай $u_i^*\left(x_{N\backslash i}^*\right)=\sup_{x_i}u_i\left(x_i,x_{N\backslash i}^*\right)$, тоді "короткотерміновий" дохід гравця i у момент t за рахунок відхилення від стратегії x_i^* дорівнює $\Delta_i=u_i^*\left(x_{N\backslash i}^*\right)-u_i\left(x^*\right)$. Порівнюючи його з "довготерміновими" втратами $\varepsilon_i=\sum_{t=1}^\infty \delta^t\left(u_i\left(x^*\right)-\beta_i\right)$, отримуємо "умову стабільності": $\Delta_i\leq \varepsilon_i$, яка еквівалентна умовам:

$$1 - \delta \le \left(u_{i}(x^{*}) - \beta_{i}\right) / \left(u_{i}^{*}(x_{N\setminus i}^{*}) - \beta_{i}\right). \tag{6.1.9}$$

Таким чином, якщо δ ϵ досить близьким до 1, умови (6.1.9) виконуються, і, отже, σ^* ϵ *NE*—ситуацією гри $G(\infty)$.

Лема 6.1.9. При виконанні умов (6.1.9) гра $G(\infty)$ із виграшем (6.1.8) має рівновату, якій відповідає послідовність $x^* = x^1 = x^2 = ... = x^t = ...$

Таким чином, NE-виграш гравця i дорівнює $u_i(x^*)$. Розглянемо випадок, у якому кожен гравець бере до уваги тільки останній хід партнерів.

Приклад 6.1.15 (Нескінченна гра "Дилема в'язня"). Раціональна поведінка гравців зводиться до такого: у момент $t \ge 2$ гравець i поводить себе мирно, якщо партнер у момент t-1 поводив себе мирно, й поводить себе агресивно інакше. Стратегією 1-го гравця є трійка (В; С, D), де В – стратегія, яку він вибирає на кроці t-1; С – стратегія, яку він вибирає на мирну стратегію 2-го гравця; D – на агресивну. Тоді у будь-який момент $t \ge 2$ маємо біматричну гру 8×8 із множиною стратегій 1-го гравця:

$$\begin{aligned} &a_1 = \left(M_1; M_1, M_1\right), \ a_2 = \left(A_1; A_1, A_1\right), \ a_3 = \left(M_1; M_1, A_1\right), a_4 = \left(A_1; M_1, A_1\right), \\ &a_5 = \left(M_1; A_1, M_1\right), \ a_6 = \left(A_1; A_1, M_1\right), \ a_7 = \left(M_1; A_1, A_1\right), \ a_8 = \left(A_1; M_1, M_1\right). \end{aligned}$$

Аналогічно описуються стратегії b_i , $i=\overline{1,8}$, 2-го гравця. Дві стратегії кожного гравця в цій грі можна відкинути (так стратегія $(M_1;A_1,A_1)$ еквівалентна стратегії $(A_1;A_1,A_1)$, $(A_1;M_1,M_1)\sim(M_1;M_1,M_1)$). Залишається гра 6×6 (див. табл. 6.1.13). "Північно-західна" матриця 2×2 є власне матрицею початкової гри (для зручності значення виграшів змінені). У нескінченній грі гравці "блукають" клітинами цієї матриці. При "зацикленні" виграші визначаються середнім арифметичним відповідних елементів початкової матриці, інакше виграш є "чистим". У цій грі мається дві NE—ситуації — (a_2,b_2) (некооперативна рівновага) й нова NE—рівновага (a_3,b_3) , у якій обидва гравці застосо-

вують стратегію "як ти, так і я". Зазначимо, що у цій грі "мирні" стратегії a_1 , b_1 не домінуються "агресивними" стратегіями a_2 , b_2 . Однак після послідовного відкидання домінованих стратегій мирні стратегії будуть відкинуті і складною рівновагою виявиться ситуація (a_3,b_3) (яка до того ж буде і Парето-оптимальною).

A	b ₁	\boldsymbol{b}_2	b ₃	b ₄	b ₅	b ₆
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 3	0, 4	3, 3	3, 3	0, 4	0, 4
a_2	4, 0	1, 1	1, 1	1, 1	4, 0	4, 0
a_3	3, 3	1, 1	3, 3	2, 2	2, 2	2, 2
a_{4}	3, 3	1, 1	2, 2	1, 1	2, 2	2, 2
$a_{\scriptscriptstyle 5}$	4, 0	0, 4	2, 2	2, 2	2, 2	0, 4
a_6	4, 0	0, 4	2, 2	2, 2	4, 0	2, 2

Таблиця 6.1.13

Коротко розглянемо результати для гри двох осіб із скінченними множинами стратегій (хоча більшість результатів залишаються справедливими і для компактних множин стратегій і неперервних функцій виграшів).

Лема 6.1.10. α – ядро гри двох осіб збігається з множиною всіх поділів $(C_{\alpha}(G) = I(G))$, β -ядро задається умовами:

$$x^* \in C_{\beta}(G) \Leftrightarrow \left\{ x^* \in PO \middle| \inf_{y_i} \sup_{y_j} u_j(y_i, y_j) \leq u_j(x^*), \ j = 1, 2 \right\}.$$

Доведення випливає з визначень α , β – ядер для |N| = 2 .

Зазначимо, що β-ядро, зокрема, може бути порожнім.

Приклад 6.1.16. Гравці вибирають число з множини $A=\{1,2,...,10\}$. Нехай вибрано x_1 , x_2 й $x_1+x_2=10$, тоді $u_i\left(x_i\right)=x_i$. В інших випадках виграш дорівнює (4, 0), якщо (x_1+x_2) парне, і (0, 4) інакше.

Гарантований виграш i-го гравця $\alpha_i = \sup_{x_i} \inf_{x_j} u_i(x_i, x_j) = 0$, тому поділами є всі Парето-оптимальні ситуації у грі. Очевидно, що такими будуть ситуації, для яких $x_1 + x_2 = 10$. Оскільки $\inf_{x_j} \sup_{x_i} u_i(x_i, x_j) = 4$, i = 1, 2, то з леми 6.1.9 випливає, що β -ядро складається з трьох ситуацій (4, 6), (5, 5), (6, 4).

Для того щоб стабілізувати з допомогою попереджувальних погроз, наприклад, поділ (3, 7), необхідно, щоб обидва гравці погодились на

вибір стратегій у відкриту. У протилежність до цього, реалізація поділу з β -ядра потребує більш слабкого інформаційного обмеження: потрібен лише сигнал, що інформує гравця про відхилення його партнера. З іншого боку, у багатьох іграх двох осіб α і β ядра збігаються. Зокрема, це справедливо для змішаного розширення, оскільки обидві гри з нульовою сумою $(M_1, M_2, \overline{u}_1)$ й $(M_1, M_2, -\overline{u}_2)$ мають ціну.

Розглянемо підмножину таких поділів, які можуть бути стабілізованими парою попереджень, тобто парою погроз, що збігаються з найкращими відповідями гравців.

Визначення 6.1.7. γ – ядро гри двох осіб $C_{\gamma}(G)$ складається з таких поділів x^* , для яких існує сценарій $\left(x^*,\xi_1,\xi_2\right)$, де погрози ξ_i , i = 1, 2 , ϵ

попередженнями:
$$\forall x_j \neq x_j^* \begin{cases} u_j\left(x_j, \xi_i\left(x_j\right)\right) \leq u_j\left(x^*\right), \\ u_i\left(x_j, \xi_i\left(x_j\right)\right) = \sup_{x_i} u_i\left(x_j, x_i\right). \end{cases}$$

Лема 6.1.11. Нехай функції u_i , i = 1, 2, взаємно однозначні, $S_i = \sup \left\{ u_i \left(x_i, x_j \right) \middle| \left(x_i, x_j \right) \in O_j \right\} - i$ -виграш Штакельберга, де O_j — множина найкращих відповідей гравця $j \neq i$. Тоді γ -ядро складається з Паретівських ситуацій, для яких

$$S_i \le u_i(x); i = 1, 2.$$
 (6.1.10)

Доведення. Нехай x^* — оптимум Парето, що задовольняє (6.1.10). Для будь-якого $x_i \neq x_i^*$ позначимо через $x_j = \xi_j\left(x_i\right)$ найкращу відповідь гравця j. За визначенням: $u_i\left(x_i,\xi_j\left(x_i\right)\right) \leq S_i \leq u_i\left(x^*\right), \quad i=1,2$, $x_i \neq x_i^*$. Отже, $\left(x^*,\xi_1,\xi_2\right)$ є сценарієм попередження, а тому ситуація x^* індивідуально раціональна. Таким чином, x^* є поділом. Навпаки, нехай $x^* \in C_\gamma(G)$. Тоді існує сценарій попередження $\left(x^*,\xi_1,\xi_2\right)$, де $\xi_i\left(x_j\right)$ — єдина (за припущенням) стратегія найкращої відповіді гравця i на x_j . Покажемо, що x^* задовольняє (6.1.10). Виберемо $x_i \neq x_i^*$. За властивістю ξ_j маємо: $u_i\left(x_i,\xi_j\left(x_i\right)\right) \leq u_i\left(x^*\right)$.

Від супротивного доведемо, що $x_j = \xi_j\left(x_i^*\right) \Rightarrow u_i\left(x_i^*, x_j\right) \leq u_i\left(x^*\right)$. Нехай $u_i\left(x^*\right) < u_i\left(x_i^*, x_j\right)$. З оптимальності за Парето x^* отримуємо:

$$\sup_{y_{j}} u_{j}(x_{i}^{*}, y_{j}) = u_{j}(x_{i}^{*}, x_{j}) < u_{j}(x^{*}),$$

що суперечить припущенню. ♦

Відмітимо, що припущення про взаємну однозначність у формулюванні леми може бути опущеним, якщо S_i замінити на величину $\gamma_i = \sup_{x_i} \inf_{x_j \in O_j(x_i)} u_i \left(x_i, x_j \right)$, що характеризує максимальний гарантований виграш лідера (гравця і) без припущення про доброзичливість підлеглого.

Лема встановлює зв'язок між здійсненням стабільності з допомогою попереджень й боротьбою за лідерство. Вона стверджує, що у грі G виникає боротьба за лідерство тоді й лише тоді, коли її γ -ядро порожнє. Таким чином, у грі з порожнім γ -ядром стабільності будьякого поділу загрожує можливість захоплення лідерства одним із гравців. Разом із тим, другий гравець у цьому випадку може використовувати погрозу типу "Машина страшного суду". Правдоподібність успіху однієї та другої тактики з погляду стороннього спостерігача конфлікту однакова.

Приклад 6.1.17. Дві фірми поставляють на ринок товар в об'ємі x_i , i=1,2. Ціна на товар визначається формулою $p=p_0-(x_1+x_2)$ (для $(x_1+x_2)\leq p_0$). Витрати на випуск одиниці продукції при збільшенні масштабів виробництва однакові в обох фірм і є постійними.

Розглядається така гра з параметрами p_0 , c , $0 < \frac{1}{2} p_0 < c < p_0$:

$$\langle X_1 = X_2 = \left[0, \frac{1}{2} p_0\right], u_i(x_1, x_2) = \left[p_0 - (x_1 + x_2)\right] \cdot x_i - cx_i; i = 1, 2\rangle.$$

Оскільки $u=u_1+u_2=-x^2+\left(p_0-c\right)\cdot x$, де $x=x_1+x_2$, то максимальний загальний дохід $u^0=\frac{1}{4}\left(p_0-c\right)^2$ при $x^0=\frac{1}{2}\left(p_0-c\right)$ є Парето-

оптимальним. Гарантований виграш
$$\alpha_i = \sup_{x_i} \inf_{x_j} u_i = \sup_{x_i} u_i \left(x_i, \frac{1}{2} \, p_0 \right) = 0$$
 .

Таким чином, поділи утворюють довільний розподіл максимального сумарного доходу. Найкраща відповідь першого гравця:

$$O_1(x_2) = \frac{1}{2}(p_0 - c) - \frac{1}{2}x_2$$
, тоді

$$\gamma_2 = S_2 = \sup_{0 \le x_2 \le \frac{1}{2} p_0} u_2(O_2(x_2), x_2) = \sup_{0 \le x_2 \le \frac{1}{2} p_0} \frac{1}{2} \left[(p_0 - c) x_2 - x_2^2 \right] = \frac{1}{8} (p_0 - c)^2.$$

Симетрично $S_1=S_2$. Отже виграш $\left(S_1,S_2\right)$ відповідає деякому поділу й за лемою 6.1.10, γ — ядро складається з єдиного поділу $\left(x_1^*,x_2^*\right)=\left(\frac{1}{4}(p_0-c),\frac{1}{4}(p_0-c)\right)$, що порівну розподіляє максимальний сумарний дохід. У цій грі γ -ядро є справедливою кооперативною ситуацією, що реалізується за допомогою природних погроз O_1 , O_2 . Реалізація будь-якого несправедливого (нерівного) розподілу максимального загального доходу вимагає тактики залякування.

Можливо проаналізувати гру і у випадку непостійних (зростаючих або спадаючих) витрат на одиницю продукції при збільшенні масштабів виробництва.

Цікаву класифікацію ігор двох осіб дає така теорема.

Теорема 6.1.1. γ і β ядра не можуть бути порожніми одночасно. Якщо γ і β ядра непорожні, то вони перетинаються.

Наслідок. Ігри двох осіб розпадаються на три класи:

- 1. $C_{y} = \emptyset$, $C_{B} \neq \emptyset$ (боротьба за право першого ходу (за лідерство));
- 2. $C_{\beta}=\varnothing$, $C_{\gamma}\neq\varnothing$ (боротьба за право другого ходу (за підлеглість));
- 3. $C_{\beta} \cap C_{\gamma} \neq \emptyset$ (у цьому випадку множина $C_{\beta} \cap C_{\gamma}$ є областю для кооперації з використанням погроз).

У свою чергу клас 3 розпадається на 4 підкласи:

- $3.1.C_{\beta} \cap C_{\gamma} = C_{\gamma}$ (лідером бути краще, оскільки $\gamma \geq \beta$, але можливий компроміс, що усуває небезпеку захоплення лідерства підлеглим);
- $3.2. C_{\beta} \cap C_{\gamma} = C_{\beta}$ (підлеглим бути краще ($\beta \ge \gamma$), але можливий компроміс, коли у лідера не має підстав відмовитись від лідерства);

$$3.3.\,C_{\beta}\cap C_{\gamma}=\left\{x\middle|\ u_{1}(x)\geq\gamma_{1},u_{2}(x)\geq\beta_{2}\right\}$$
 (лідером є гравець 1);

3.4.
$$C_{\beta} \cap C_{\gamma} = \{x | u_2(x) \ge \gamma_2, u_1(x) \ge \beta_1 \}$$
 (лідером є гравець2).

На закінчення приведемо ще одне визначення "ядра" (читачу пропонуємо спробувати самому запропонувати концепцію ядра, бажано конструктивну й розумну).

Визначення 6.1.8. Нехай (x^*, ξ_1, ξ_2) – сценарій попередження гри G. Погроза називається гарантованою, якщо не принесе втрат гравцю, що погрожує:

$$u_{1}(x_{1}, \xi_{2}(x_{1})) \leq u_{1}(x^{*}) \leq u_{1}(\xi_{1}(x_{2}), x_{2}),$$

$$u_{2}(\xi_{1}(x_{2}), x_{2}) \leq u_{2}(x^{*}) \leq u_{2}(x_{1}, \xi_{2}(x_{1})), \forall x_{1}, x_{2}.$$

Тоді g-ядром гри G називається множина $C_g(G)$ таких ситуацій x^* , для яких існує хоча б один гарантований сценарій попередження $\left(x^*,\xi_1,\xi_2\right)$.

Лема 6.1.12.
$$x \in C_g(G) \Leftrightarrow x \in PO$$
 і $u_i(x) \le \beta_i$ для $i \in N$.

Доведення випливає з двох попередніх лем, звідки $C_g(G) \subseteq C_\gamma(G)$, зокрема, $C_g(G)$ може бути порожнім. lacktriangle

Контрольні завдання до § 1

1. Знайти сильні рівноваги Неша 1.1

X_2	a_{2}	b ₂	c ₂	
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 2	1, 2	2, 1	
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 2	1, 3	2, 1	
c ₁	0, 0	0, 1	2, 1	

1.2

X_2	a_{2}	\boldsymbol{b}_2	c_2	
$\boldsymbol{a}_{\scriptscriptstyle 1}$	3, 1	2, 2	1, 1	
\boldsymbol{b}_1	2, 1	3, 1	2, 1	
$\boldsymbol{c}_{\scriptscriptstyle 1}$	2, 3	3, 2	2, 1	

1.3

X_2	a_{2}	\boldsymbol{b}_2	c_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 4	1, 3	3, 4
\boldsymbol{b}_1	2, 5	3, 3	4, 3
\boldsymbol{c}_1	1, 1	4, 2	4, 2

1.4

X_2	a_2	b ₂	c ₂	
$\boldsymbol{a}_{\scriptscriptstyle 1}$	1, 1	1, 3	3, 2	
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 3	2, 2	3, 1	
c ₁	3, 2	2, 3	3, 3	

2. Знайти рівноваги Неша у спільних змішаних стратегіях: 2.1

X_2 X_1	a_2	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 2	5, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 5	1, 1

2.2

X_2	a_2	\boldsymbol{b}_2
$\boldsymbol{a}_{\scriptscriptstyle 1}$	2, 2	5, 1
$\boldsymbol{b}_{\!\scriptscriptstyle 1}$	1, 4	1, 1

§ 2. Ігри у характеристичній формі

У кооперативних іграх доцільно розглядати виграші не лише для окремих гравців (індивідуальні корисності), і не лише для всієї спільноти N (колективна функція корисності, наприклад, утилітарна чи егалітарна), але й для кожної коаліції гравців (не порожньої підмножини) з N.

Нехай $N = \left\{\overline{1,n}\right\}$ — множина потенційно можливих споживачів об'єкта колективного користування. Кожен споживач може або обслуговуватись або ні, наприклад, він або отримує телефон, або ні, підключається до центрального водопостачання, або ні і т. д. Витрати на обслуговування коаліції гравців $S,\ S\subseteq N$, підсумовуються в загальну функцію витрат $c(S)\geq 0$, де c(S) — мінімальні витрати на обслуговування коаліції гравців S найбільш ефективним способом. Необхідно обслужити всіх гравців і поділити відповідні витрати, тобто визначи-

ти вектор $x=(x_i)_{i\in \mathbb{N}}$ такий, що $\sum_{i\in \mathbb{N}} x_i = c\left(N\right)$. Зокрема, для деякого j може бути, що $x_j=0$ (j-й гравець не несе жодних витрат), для деякого k $x_k<0$ (k-му гравцю "доплачують").

Розглянемо типовий приклад такої проблеми з області планування капіталовкладень — побудова сусідніми трьома містечками спільної системи водопостачання. Опишемо витрати на будівництво. Місто A окремо — 120 одиниць витрат $(c(A)=120),\ c(B)=140,\ c(C)=120$. Якщо міста A і B об'єднають свої зусилля, то c(A,B)=170; c(B,C)=190; c(A,C)=160. Якщо проект буде реалізуватись спільно всіма, то c(A,B,C)=255. Зазначимо, що для зручності позначення c(A,B,C) означає c(A,B,C).

Нехай про співпрацю домовились A і B, тоді економія витрат $\Delta c(A,B)$ для них дорівнює c(A)+c(B)-c(A,B)=90. Якщо A і B домовились поділити $\Delta c(A,B)=90$ порівну (егалітарне рішення), то остаточні витрати будуть $c_A=120-45=75$, $c_A=140-45=95$.

Оскільки загальні витрати будуть рівними 290 = 170 + 120 (C будує самостійно), то при раціональній поведінці всіх гравців їм потрібно кооперуватись (щоб мати витрати 255 одиниць).

Нехай усі три гравці співпрацюють, економія

$$\Delta c(A, B, C) = c(A) + c(B) + c(C) - c(A, B, C) = 125$$

ділиться порівну. Тоді

$$c_A = 120 - \frac{1}{3}(125) = 78\frac{1}{3}, \ c_B = 140 - \frac{1}{3}(125) = 98\frac{1}{3},$$

$$c_C = 120 - \frac{1}{3}(125) = 78\frac{1}{3}.$$

Хоча загальні витрати у даному випадку менші за попередній варіант, але "раціонально мислячі" A і B на нього не погодяться! Адже вони несуть витрати більші $(c_A+c_B=176\frac{1}{3})$, ніж у попередньому випадку, коли "відділяться" (c(A,B)=170). Отже, егалітарний поділ спільної економії у даному випадку нелогічний.

"Принцип відокремлення" говорить, що будь-яка коаліція не заплатить ціну, що ϵ більшою за витрати, які вона понесе, якщо захоче обслуговуватись самостійно:

$$\forall S \subseteq N: \sum_{i \in S} x_i \le c(S). \tag{6.2.1}$$

Визначення 6.2.1. Будемо говорити, що задана кооперативна гра у характеристичній формі (N,c), якщо задано $N=\{1,...,n\}$ — множину гравців і функцію витрат c, яка пов'язує з кожною коаліцією $S\subseteq N$ її витрати $c(S)\geq 0$.

Визначення 6.2.2. Ядром гри (N,c) називається розподіл витрат $x=(x_i)_{i\in N}$, $\sum_{i\in N}x_i=c\left(N\right)$, що задовольняє умові (6.2.1).

Принцип відокремлення можна переписати в еквівалентній формі у вигляді "принципу відсутності субсидій": ніяка коаліція не повинна платити менше, ніж додаткові витрати на її обслуговування (різниця у витратах з коаліцією та без неї): $\forall S \subseteq N$:

$$\sum_{i \in S} x_i \ge c(N) - c(N \setminus S). \tag{6.2.2}$$

Т. я.
$$\sum_{i \in N} x_i = c(N)$$
, то з (6.2.1)

$$\sum_{i \in S} x_i \geq \sum_{i \in N} x_i - c(N \setminus S) \Leftrightarrow c(N \setminus S) \geq \sum_{i \in N \setminus S} x_i.$$

Якщо розглядається кооперативна гра (N, v) по розподілу прибутку, то у формулах (6.2.1), (6.2.2) необхідно відповідно поміняти знаки.

Повернемось до нашого прикладу. Знайдемо розподіл витрат із ядра гри (при такому розподілі, якщо він існує, будь-якій коаліції гравців не вигідно відділятись). Ядро визначається такими співвідношеннями:

$$\begin{cases} x_1 + x_2 + x_3 = 255, & x_1 \le 120, & x_2 \le 140, & x_3 \le 120, \\ x_1 + x_2 \le 170, & x_2 + x_3 \le 190, & x_1 + x_3 \le 160. \end{cases}$$
 (6.2.3)

Для того, щоб подати розв'язок системи (6.2.3) більш наглядно, зробимо заміну змінних $y_i = c(i) - x_i$ (y_i – "економія" витрат гравця i). Отримаємо систему:

$$\begin{cases} y_1 + y_2 + y_3 = 125, \ y_i \ge 0, \ i = 1, 2, 3, \\ y_1 + y_2 \ge 90, \ y_2 + y_3 \ge 70, \ y_1 + y_3 \ge 80. \end{cases}$$
(6.2.4)

Використаємо барицентричні координати — виділимо на площині три точки, яким відповідають розв'язки системи (6.2.4) $(y_1,y_2,y_3)\in\{(125,0,0),(0,125,0),(0,0,125)\}$, (відповідно до вершин трикутника ABC (рис. 6.2.1). Тоді рівнянню $y_1+y_2=80$ буде відповідати пряма, паралельна стороні AC, $y_1+y_3=90$ — паралельна AB, $y_2+y_3=70$ — паралельна BC. Ядром гри будуть точки заштрихованого трикутника. Логічно вибрати за розв'язок центр цього трикутника (центр описаного кола) — егалітарний розв'язок $y^*=\left(51\frac{2}{3},41\frac{2}{3},31\frac{2}{3}\right)$.

Повертаючись до змінних x_i , матимемо $x^* = \left(68\frac{1}{3},98\frac{1}{3},88\frac{1}{3}\right)$. Відмітимо, що ядро кооперативної гри може бути порожнім, тобто "повна кооперація" неможлива — існує хоча б одна коаліція, якій вигідно відділитись. Так, нехай витрати всіх власних коаліцій у нашому прикладі залишають без змін, витрати максимальної коаліції c(A,B,C) > 260. Тоді з $\{x_1 + x_2 \le 170, \ x_2 + x_3 \le 190, \ x_1 + x_3 \le 160\} \implies 2(x_1 + x_2 + x_3) \le 520$, що суперечить $x_1 + x_2 + x_3 > 260$.

Рис. 6.2.1

Виникає питання: за яких умов ядро кооперативної гри не порожнє? Необхідною умовою непорожності ядра є *субадитивність*: якщо коаліції $S_1,...,S_k$ утворюють розбиття максимальної коаліції

$$(S_i \cap S_j = \varnothing, i \neq j, \bigcup_{i=1}^k S_i = N), \text{ To } \sum_{i=1}^k c(S_i) \geq c(N).$$
 (6.2.5)

Дійсно, нехай (6.2.5) не виконується, тобто $\sum_{i=1}^k c(S_i) < c(N)$. Із принципу відокремлення $\sum_{i \in S_j} x_i \le c\left(S_j\right)$ для $\forall j = \overline{1,k}$. Беручи суму по $j = \overline{1,k}$,

маємо суперечність :
$$\sum_{j=1}^k \sum_{i \in S_i} x_i = \sum_{i \in N} x_i = c\left(N\right) \le \sum_{j=1}^k c\left(S_j\right) < c\left(N\right)$$
.

Але субадитивність є лише необхідною умовою непорожності ядра. У нашому прикладі для витрат, наприклад, c(A, B, C) = 261 ядро порожнє, хоча властивість субадитивності виконується:

$$c(A, B, C) \le c(A) + c(B) + c(C), c(A, B, C) \le c(A) + c(B, C),$$

 $c(A, B, C) \le c(B) + c(A, C), c(A, B, C) \le c(C) + c(A, B).$

Необхідною й достатньою умовою непорожності ядра гри (N,c) є суттєве підсилення властивості (6.2.5).

Визначення 6.2.3. Збалансованим покриттям N є таке відображення δ з $2^N\setminus\{N\}$ (множина власних коаліцій) у [0,1], що $\sum_{S:i\in S}\delta_S=1$, $\forall i\in N$, де сума береться по всіх власних коаліціях, яким належить гравець i.

Теорема 6.2.1 (Бондарева,1961). Ядро гри не порожнє тоді й лише тоді, коли для будь-якого збалансованого покриття δ

$$\sum_{S \subset N} \delta_S \cdot c(S) \ge c(N). \tag{6.2.6}$$

Доведення. Нехай x належить ядру гри (N,c) і δ – збалансоване покриття. Тоді для $\forall S \subset N: \sum_{i \in S} x_i \leq c(S) \Rightarrow \delta_S \left(\sum_{i \in S} x_i\right) \leq \delta_S \cdot c(S)$. Беручи суму в останній нерівності та враховуючи (6.2.6): $\sum_{S \subset N} \delta_S c(S) \geq \sum_{S \subset N} \delta(S) x(S) = \sum_{i \in N} \sum_{S: i \in S} \delta_S x_i = \sum_{i \in N} x_i = c(N)$.

Нехай тепер ядро гри (N,c) порожнє. Це означає, що гіперплощина $\sum_{i\in N} x_i = c(N)$ не перетинається з непорожньою опуклою підмножиною з

$$E^N$$
, що визначається нерівностями: $\sum_{i\in N} x_i \leq c(S)$ для $\forall S\subset N$. За тео-

ремою опуклого аналізу про відділяючу гіперплощину, маємо для кожної коаліції S існування такого невід'ємного числа $\delta_{\scriptscriptstyle S}$, що для

$$\forall x \in E^N$$
, $\sum_{i \in N} x_i = \sum_{S \subset N} \delta_S \left(\sum_{i \in S} x_i \right)$ і $\sum_{S \subset N} \delta_S c(S) < c(N)$, що суперечить (6.2.6). $ullet$

Для гри з розподілом прибутків (6.2.6) заміняється умовою:

$$\sum_{S \subseteq N} \delta_S \nu(S) \le \nu(N). \tag{6.2.7}$$

Умови (6.2.6), (6.2.7) називаються збалансованістю гри (N,c) та змістовно вони означають, що кооперативні витрати c(S) власних коаліцій не повинні бути занадто малими порівняно з витратами c(N) максимальної коаліції (відповідно прибутки v(S) власних коаліцій – занадто великими порівняно з v(N)).

Зазначимо, що субадитивність є частинним випадком умови (6.2.6) (покладемо $\delta_{S_i}=1$ для $i=\overline{1,k}$, $\delta_S=0$ для всіх інших коаліцій).

Зазначимо також, що збалансовані покриття утворюють опуклий компактний многогранник у $E^{2^N \setminus \{N\}}$. Отже, властивість (6.2.6) досить

перевірити для крайніх точок цього многогранника, що означає скінченність системи лінійних нерівностей виду (6.2.6).

Розглянемо гру з трьома гравцями. Збалансовані покриття утворюють многогранник у E^6 розмірності З із п'ятьма крайніми точками. Чотири з них відповідають розбиттям: ({1}, {2}, {3}), ({1}, {2, 3}), ({2}, {1, 3}), ({3}, {1, 2}). Для п'ятого покриття $\delta_S = 1/2$ для |S| = 2 і $\delta_S = 0$ для |S| = 1.

Отже, гра (N,c) із трьома гравцями має непорожнє ядро тоді й лише тоді, коли

$$c(1)+c(2)+c(3) \ge c(N), \ c(1)+c(2,3) \ge c(N),$$

$$c(2)+c(1,3) \ge c(N), \ c(3)+c(2,1) \ge c(N),$$

$$0.5(c(1,2)+c(1,3)+c(2,3)) \ge c(N).$$
(6.2.8)

У кооперативній грі з чотирма гравцями збалансовані покриття утворюють многогранник у E^{14} із 23 крайніми точками! Кількість нерівностей виду (6.2.6) можна суттєво скоротити, якщо гра "суперадитивна": для $\forall S,T$, $S\cap T=\varnothing \Rightarrow c(S)+c(T)\geq c(S\cup T)$ (зазначимо, що більшість "економічних" ігор є суперадитивними).

Для такої гри умови непорожності ядра зводяться до перевірки нерівностей:

$$\frac{1}{3}(c(1,2,3)+c(2,3,4)+c(1,3,4)+c(1,2,4)) \ge c(N), \qquad (6.2.9)$$

 $\frac{1}{2}(c(1,2,3)+c(2,3,4)+c(1,4)) \ge c(N)$ та 5 аналогічних (6.2.9) нерівностей з врахуванням перестановки гравців.

Вище ми розглянули таку концепцію визначення розподілу кооперативних ігор — розподіл "розумно" вибирати з ядра гри (якщо воно непорожнє), тобто фактично застосували принцип егалітаризму. Як ми бачили вище, принцип егалітаризму не ε єдиною можливою концепцією вибору й до того ж не позбавлений негативних властивостей ("рівність у бідності"). Тому виникає закономірне питання — як можна застосувати принцип утилітаризму до знаходження розподілу гри та які основні властивості "егалітарних" і "утилітарних" розподілів?

Нехай коаліційні можливості суспільства збільшуються (v(N)) зростає або відповідно c(N) зменшується), а можливості всіх інших коаліцій не змінюються. Чи будуть при цьому збільшуватись прибутки всіх членів суспільства (відповідно зменшуватись витрати)? Якщо так, то розподіл задовольняє властивості "коаліційної монотонності". Виявляється, що: або "принцип відокремлення" (вибір із ядра), або "коаліційна монотонність"!

Розглянемо вибір розподілу, що відповідає принципу утилітаризму. У ньому доля прибутку кожного гравця в розподілі $\sum_{i=1}^n x_i = v(N)$ залежить від його "внеску" у прибуток кожної коаліції, тобто від величини $(v(S \cup i) - v(S)), i \notin S$ (прибуток коаліції S з гравцем i та без нього, так званий "маргінальний прибуток".

Визначення 6.2.4. Для гри (N,v) вектором Шеплі σ називається наступний розподіл прибутку максимальної коаліції v(N):

$$\sigma_{i} = \sum_{0 \leq s \leq n-1} \frac{s!(n-s-1)!}{n!} \sum_{S \subseteq N \setminus i, |S|=s} \left(\upsilon(S \cup i) - \upsilon(S) \right), \quad i = \overline{1, n}, \quad \upsilon(\varnothing) = 0. \quad (6.2.10)$$

Змістовно формула (6.2.10) пояснюється так. Нехай гравці з N упорядковані $(i_1,i_2,...,i_n)$ випадково з рівною ймовірністю для кожного упорядкування. Вага внеску i-го гравця в коаліцію S відповідає ймовірності того, що у черзі $(i_1,i_2,...,i_n)$ перед гравцем i стоять у точності елементи з множини S. Ця ймовірність, очевидно, дорівнює s!(n-s-1)!/n!, де s=|S|. Перевіримо рівність $\sum_{i=1}^n \sigma_i = v(N)$ безпосередньо з формули (2.10). Зафіксуємо довільну власну коаліцію S тоді її коефіцієнт: $s\left(\frac{(s-1)!(n-(s-1)-1)!}{n!}\right)-(n-s)\left(\frac{s!(n-s-1)!}{n!}\right)=0$, коефіцієнт

же при v(N) дорівнює $n\left(\frac{(n-1)!0!}{n!}\right)=1$. Для гри (N,c) у формулах (6.2.10) замість v необхідно підставити c. Розглянемо гру (N,v) трьох осіб. Формула (6.2.10) для i=1 набуває вигляду:

$$\begin{split} &\sigma_1 = \frac{1}{3} \upsilon(1) + \frac{1}{6} \Big(\big(\upsilon(1,2) - \upsilon(2)\big) + \big(\upsilon(1,3) - \upsilon(3)\big) \big) + \frac{1}{3} \big(\upsilon(N) - \upsilon(2,3)\big) = \\ &= \frac{1}{3} \upsilon(N) + \frac{1}{6} \big(\upsilon(1,2) + \upsilon(1,3) - 2\upsilon(2,3)\big) + \frac{1}{6} \big(2\upsilon(1) - \upsilon(2) - \upsilon(3)\big) \,. \end{split}$$

Аналогічно, заміною індексу i = 1 на i = 2, 3 отримуємо σ_2 й σ_3 .

Для прикладу, розглянутого на початку параграфа, $(\sigma_1,\sigma_2,\sigma_3) = \left(73\frac{1}{3},98\frac{1}{3},83\frac{1}{3}\right).$ Цей розподіл ядру не належить $(\sigma_1+\sigma_2=171\frac{2}{3}>170).$

Розглянемо ще один приклад ("Внески користувачів"). Об'єднання з n авіакомпаній розподіляють витрати на будівництво злітної смуги. Витрати на будівництво пропорційні довжині смуги. Для i-ї авіакомпанії досить, щоб довжина смуги була рівною c_i . Без обмеження загальності нехай: $c_n \leq c_{n-1} \leq ... \leq c_2 \leq c_1$.

Маємо таку гру розподілу витрат: $c(S) = \max_{i \in S} \{c_i\}$, $\forall S \subseteq \{1,...,n\}$. Формула (6.2.10) дає такий результат: $\sigma_n = \frac{1}{n} c_n$,

$$\sigma_{n-1} = rac{1}{n}c_n + rac{1}{n-1}(c_{n-1}-c_n), \; ..., \; \sigma_i = \sum_{j=i}^n rac{1}{j}(c_j-c_{j+1}), \; i = \overline{1,n} \; , \; c_{n+1} = 0 \; .$$

Тобто у будівництві найкоротшої смуги беруть участь усі компанії (і ділять витрати порівну), у будівництві відрізка смуги $(c_n - c_{n-1})$ бере участь (n-1) — а компанія (крім компанії з номером n) і теж ділять витрати порівну і т. д.

Як ми бачили вище, вектор Шеплі може не належати ядру гри. Важливим класом ігор, у яких ядро не порожнє і містить вектор Шеплі, є "опуклі ігри".

Визначення 6.2.5. Кооперативна гра (N,v) називається опуклою, якщо вона задовольняє одній із двох еквівалентних умов $(v(\emptyset) = 0)$:

- 1) $\forall i \in N$, $\forall S, T \subseteq N \setminus \{i\} : (S \subseteq T) \Rightarrow (v(S \cup i) v(S) \leq v(T \cup i) v(T));$
- 2) $\forall S, T \subseteq N : \nu(S) + \nu(T) \le \nu(S \cup T) + \nu(S \cap T)$.

Лема 6.2.1. Нехай (N,v) — опукла гра, $N=\{i_1,i_2,...,i_n\}$. Тоді вектор маргінальних внесків $x_{i_k}=v(i_1,...,i_k)-v(i_1,...,i_{k-1})$ належить ядру гри. Отже, вектор Шеплі також належить ядру.

Справедливе й обернене твердження – якщо всі вектори маргінальних внесків належать ядру, то гра ε опуклою.

В опуклих іграх вектор Шеплі займає "центральне положення" у ядрі, оскільки ядро опуклої гри ε опуклою оболонкою векторів маргінальних внесків [7].

Визначення 6.2.6. Оператором значення гри (N,v) є відображення ϕ із E^{2^N} у E^N , що ставить у відповідність кожній грі (N,v) розподіл $\phi(v)$ величини v(N): $\sum_{i\in N}\phi_i(v)=v(N)$.

Визначення 6.2.7. Оператор значення $\phi(v)$ гри (N,v) задовольняє "аксіомі анонімності", якщо він комутує з перестановкою гравців, тобто для довільної бієкції τ множини N у себе і $\forall v \in E^{2^N}$ має місце рівність $\tau(\phi(v)) = \phi(\tau(v))$, де $\tau(v)(S) = v(\tau(S))$, при $S \subseteq N$; $\tau(x)_i = x_{\tau(i)}$ при $x \in E^N$.

Визначення 6.2.8. Оператор значення ϕ гри (N,v) задовольняє " $a\kappa$ - cioмі адитивності", якщо $\forall v,w \in E^{2^N}$: $\phi(v+w) = \phi(v) + \phi(w)$.

Визначення 6.2.9. Оператор значення ф гри (N,v) задовольняє " $a\kappa$ - ciomi бовдура", якщо $\forall i \in N$, $\forall v \in E^{2^N}$:

$$\{v(S \cup i) = v(S), \forall S \subseteq N \setminus i\} \implies \phi_i(v) = 0.$$

Теорема 6.2.2 (Шеплі, 1953). Існує лише один оператор ф, що задовольняє аксіомам анонімності, адитивності й бовдура. Це – вектор Шеплі.

Визначення 6.2.10. Оператор значення ф гри (N,v) задовольняє аксіомі маргінальності, якщо $\phi_i(v)$ залежить лише від вектора $(v(S \cup i) - v(S))_{S \subseteq N \setminus i}$, тобто:

$$\begin{aligned} \left\{ v(S \cup i) - v(S) = w(S \cup i) - w(S), \, \forall S \subseteq N \setminus i \right\} &\Rightarrow \phi_i(v) = \phi_i(w), \\ \forall v, w \in E^{2^N}, \, \forall i \in N, \end{aligned}$$

 $де <math>\nu(\emptyset) = w(\emptyset) = 0$.

Теорема 6.2.3. (Янг, 1985). Існує лише один анонімний і маргінальний оператор значення. Це – вектор Шеплі.

Теореми Шеплі та Янга ε "характеризаціями" вектора Шеплі. Маються й інші характеризації та узагальнення вектора Шеплі [7].

Повернемось до принципу егалітаризму у виборі розподілу кооперативної гри. Перший крок – це виділення ядра, другий – знаходження "егалітарного" розподілу з ядра.

Визначення 6.2.11. Лексимінний оптимум $\gamma = (\gamma_i)_{i \in N}$ на множині векторів $e(x) = \left(e(x,S) \equiv \sum_{i \in S} x_i - v(S)\right)_{S \subset N}$ таких, що $\sum_{i=1}^n x_i = v(N)$, називається $N- \mathit{ядром}$ гри (N,v).

Величина e(x,S) називається $e\kappa cuecom$, це по суті "наддохід" коаліції S порівняно з її власними можливостями. Ексцеси різних коаліцій порівнюються егалітарно. У першу чергу, розглядається мінімальний прибуток, який максимізується. Вектор ексцесів $e(\gamma)$ максимізує на множині розподілів x, $\sum_{i=1}^n x_i = v(N)$, егалітарну функцію колективної

корисності за умови, що корисність кожної коаліції вимірюється її ексцесом:

$$\min_{S \subset N} \left(\sum_{i \in S} \gamma_i - \nu(S) \right) = \max_{\substack{x: \sum x_i = \nu(N) \\ i \in N}} \left\{ \min_{S \subset N} \left(\sum_{i \in S} x_i - \nu(S) \right) \right\}$$
(6.2.11)

Далі серед розв'язків (6.2.11) N-ядро вибирає такий розподіл, при якому максимального значення досягає другий за мінімальністю коа-

ліційний прибуток. Насамкінець такий процес приводить до єдиного розподілу, яке і є N-ядром.

Зазначимо, що коли ядро гри (N,v) непорожнє, то всі розв'язки задачі (6.2.11) йому належать. Дійсно, якщо розподіл x належить ядру, то $\min_{S\subset N}e(x,S)\geq 0$. Тоді будь-який розв'язок (6.2.11) задовольняє цій нерівності, що і свідчить про належність його ядру.

Навіть для гри трьох осіб не так легко привести загальну формулу для N-ядра. "Геометрично" N-ядро займає "центральну" позицію в середині ядра гри.

Розглянемо задачу "Внески користувачів". Нехай як і при обчисленні вектора Шеплі витрати впорядковані: $0 \le c_n \le c_{n-1} \le ... \le c_2 \le c_1$. Нехай також $\delta_i = c_i - c_{i+1}$, $i = \overline{1,n}$, $c_{n+1} = 0$. Обчислення N-ядра є вельми важкою задачею. Обсудимо лише частинний випадок $\delta_1 \ge \delta_2 \ge ... \ge \delta_n$, для якого існує формула: $\gamma_1 = \delta_1 + \delta_2/2 + \delta_3/4 + ... + \delta_n/2^{n-1}$, $\gamma_i = \sum_{i=i}^n \delta_j/2^{j-i+1}$, $2 \le i \le n$.

Як видно, N-ядро, як і вектор Шеплі, розподіляє δ_i між гравцями 1,2,...,i, при цьому доля гравця i є найбільшою. Долі спадають зі швидкістю геометричної прогресії за індексом гравця.

Порівняємо N-ядро з вектором Шеплі ($\sigma_i = \sum_{j=1}^i \delta_j \big/ j$, $1 \le i \le n$). Очеви-

дно, що при $n \ge 4$: $\sigma_1 \ge \gamma_1$, $\sigma_2 \ge \gamma_2$, $\sigma_{n-1} \le \gamma_{n-1}$, $\sigma_n \le \gamma_n$. При $3 \le i \le n-2$ можливі знаки нерівностей як " \ge ", так і " \le ".

Існує характеризація N-ядра [7], яка є значно складнішою порівняно з характеризацією вектора Шеплі.

Серйозним недоліком N-ядра є його немонотонність відносно до прибутку максимальної коаліції. Якщо деякі гравці "страждають" унаслідок покращення загальної ситуації, то вони можуть відмовитись від участі в максимальній коаліції (якщо при зростанні бюджету прибуток деяких членів суспільства падає, то вони будуть не зацікавлені в його зростанні, тобто покращенні добробуту всього суспільства в цілому).

Отже, використання принципу "справедливості" в розподілі благ приводить унаслідок цього до "несправедливості" у їх отриманні. Точне формулювання властивості немонотонності дається такою лемою.

Лема 6.2.2. Якщо N має не менше дев'ять гравців, то існують дві такі гри (N,v) і (N,w) із v(N) < w(N), v(S) = w(S) для $\forall S \subset N$, що для деякого гравця i можлива нерівність $\gamma_i > \mu_i$, де γ_i , μ_i – компоненти N-ядер відповідно ігор (N,v) й (N,w).

Контрольні завдання до § 2

- 1. Обчислити вектор Шеплі для кооперативної гри: c(1) = 2, c(2) = 1, c(3) = 3, c(12) = 2, c(13) = 4, c(23) = 3.
- 2. Знайти вектор Шеплі для кооперативної гри "Внески користувачів": $c_1 = 10, \ c_2 = 7, \ c_3 = 5, \ c_4 = 4, \ c_5 = 3.$
 - 3. Знайти *N*-ядро для кооперативної гри з п. 2.

§ 3. Механізми колективного прийняття рішень

У цьому параграфі застосуємо введені у Розділі 2, § 4 поняття до деяких мікроекономічних проблем поділу витрат і розподілу прибутку.

При поділі витрат на виробництво неподільного суспільного продукту (наприклад, мосту) маються лише дані про загальні витрати на його будівництво й доходи, які кожен гравець має від експлуатації цього об'єкта. Іншою інтерпретацією моделі поділу витрат є розрахунок при банкротстві фірми. Кожен гравець має виражену у грошах претензію на її власність, але вся власність фірми виявляється меншою за суму претензій. Проблема полягає в тому, щоб поділити власність між кредиторами.

Задача поділу прибутку полягає в тому, що необхідно поділити виручку від неподільного кооперативного заходу, наприклад, футбольного матчу, між його учасниками – футболістами, тренерами, лікарями. Правило поділу повинно базуватись на оцінці "ринкової вартості" кожного гравця, що враховує його повні витрати (наприклад, його зарплату). Нехай гонорар від матчу перевищує суму повних витрат. Як він повинен бути розподіленим між учасниками?

Модель поділу прибутку. Об'єднання з n гравців отримують від кооперації дохід r > 0. Повні витрати гравця i дорівнюють $c_i > 0$. Коо-

перація прибуткова, тобто
$$\sum_{i=1}^n c_i < r$$
 . Як поділити дохід r ?

Перший принцип розподілу доходу r — індивідуальна раціональність. Кожен гравець повинен отримати не менше своїх повних витрат, інакше він не буде кооперуватись. Після цих виплат залишається прибуток $s=r-\sum_{i=1}^{n}c_{i}$, який потрібно поділити.

Оскільки прибуток отримується від кооперації гравців, то всі вони мають права на нього і чому б не вважати ці права рівними (ми не маємо інформації про внесок окремого гравця або коаліції гравців в

отримання прибутку). Отже, при "егалітарному" розв'язку доля i-го гравця $y_i = c_i + s/n$.

Звичайно, гравець, у якого повні витрати перевищують середній рівень, може не погодитись із такою аргументацією. Необхідно розглядати, скаже він, повні витрати як фактори процесу виробництва, у якому дохід є результатом. На одиницю повних витрат дістається $r / \sum_{i=1}^n c_i$ одиниць доходу і справедливим буде розподілити дохід пропорційно участі кожного, яка оцінюється індивідуальними витратами c_i , $i=\overline{1,n}$.

Отже, маємо "пропорційний" розв'язок $y_i = c_i \left(r \middle/ \sum_{j=1}^n c_j \right)$, який також

випливає з егалітарного принципу – віддача на одиницю індивідуальних витрат для всіх однакова. Але пропорційний поділ теж не позбавлений недоліків.

Нехай останні свої гроші перед стипендією три студенти витратили на торт вартістю 20 грн. Один студент вклав 15 грн, другий – 4 грн, третій – 1 грн. Пропорційний поділ виділить першому 750 г торта, другому – 200 г, третьому – 50 г. Навряд чи третій студент погодиться отримати 50 г. Він відмовиться вносити свою гривню і внаслідок чого і перший, і другий студенти залишаться з нічим.

А який принцип поділу запропонували б Ви?

Модель поділу витрат. Колективний об'єкт (міст) коштує c>0 й приносить дохід $b_i \ge 0$ кожному з його користувачів $i=\overline{1,n}$. Будівництво об'єкта ефективне: $\sum_{i=1}^n b_i > c$. Як розподілити витрати c між гравцями? Формально ця модель є симетричною попередній моделі поділу прибутку, якщо розглядати b_i як повні витрати гравця i, а $s=\sum_{i=1}^n b_i-c$ як спільний прибуток. Але змістовна інтерпретація моделі поділу прибутку дасть нам нові принципи прийняття рішень.

При пропорційному розв'язку кожен гравець платить $x_i = b_i \frac{c}{\sum\limits_{j=1}^n b_j}$

 $i=\overline{1,n}$. Зазначимо, що для $\forall i\colon 0\leq x_i\leq b_i$ (ніхто не отримує субсидій і не платить більше за свій дохід).

Егалітарний принцип може застосовуватись двома способами: вирівнюванням частки витрат і вирівнюванням чистої економії на

витратах. Розв'язок із "рівномірним розподілом витрат" приписує кожному гравцю витрати $x_i = c/n$, розв'язок із "рівним прибутком"

(тобто
$$b_i - x_i = b_j - x_j = \left(\sum_{j=1}^n b_j - c\right) / n$$
 для всіх i,j) приписує кожному

гравцеві витрати
$$x_i = b_i - \left(\sum_{j=1}^n b_j - c\right) \bigg/ n$$
 . Очевидний недолік рівномір-

ного розподілу витрат полягає в тому, що якийсь гравець, можливо, повинен буде заплатити більше за свій дохід (тобто $\exists k$: $x_k = c/n > b_k$). При вирівнюванні прибутку можлива ситуація, коли якийсь гравець отримує субсидію за споживання продукту (тобто

$$\exists k: \ x_k = b_k - \left(\sum_{j=1}^n b_j - c\right) / n < 0$$
).

Оподаткування. Спробуємо модифікувати два останні принципи поділу, приймаючи $0 \le x_i \le b_i$, $i = \overline{1,n}$, як обмеження.

Визначення 6.3.1. Рівневий податок — це (єдиний) розподіл витрат $(x_1,...,x_n)$ у моделі розподілу витрат при $\sum_{i=1}^n b_i > c$, що є розв'язком задачі:

$$(x_1,...,x_n) \in A = \left\{ (y_1,...,y_n) \middle| \sum_{i=1}^n y_i = c, \ 0 \le y_i \le b_i, \ \forall i \right\},$$
$$(b_1 - x_1,...,b_n - x_n) LM(b_1 - y_1,...,b_n - y_n), \forall y \in A,$$

де LM – лексимінний порядок на E^N .

Визначення 6.3.2. Подушний податок – це (єдиний) розподіл витрат $(x_1,...,x_n) \in A$, що задовольняє:

$$(x_1,\ldots,x_n)LM(y_1,\ldots,y_n), \forall y \in A.$$

Отже, рівневий податок вирівнює прибутки (чисті доходи) при обмеженнях $0 \le x_i \le b_i$, у той час, як подушний податок вирівнює витрати. Якщо частки витрат рівневого прибутку (рівномірний розподіл витрат) задовольняє цим обмеженням, то він збігається з рівневим податком (подушним податком).

Єдиність обох розв'язків випливає із єдиності лексимінного оптимуму на опуклій множині $A \subset E^n$.

"Податкова" термінологія належить Янгу (1987), який інтерпретував неподільний суспільний продукт як послуги, що надаються податківцем. Дохід гравця i до сплати податків дорівнює b_i , а його дохід після сплати податків дорівнює $b_i - x_i$. Таким чином, c — необхідна загальна сума податків (бюджет збирача податків).

Рівневий і подушний податки можна легко обчислити за допомогою такого параметричного представлення.

Теорема 6.3.1. Для задачі розподілу витрат $(b_1,...,b_n;c)$, $\sum_{i=1}^n b_i > c$, подушний податок обчислюється з розв'язку такого рівняння відносно параметра $\lambda \geq 0$:

$$\sum_{i=1}^{n} \min\{\lambda, b_i\} = c \implies x_i = \min\{\lambda, b_i\}.$$
 (6.3.1)

Рівневий податок обчислюється з розв'язку такого рівняння відносно $\lambda \geq 0: \sum_{i=1}^n \min\{\lambda, b_i\} = \sum_{i=1}^n b_i - c \Rightarrow \ x_i = b_i - \min\{\lambda, b_i\}$.

Знайдемо явний вираз для подушного й рівневого податків при n=2. Нехай $b_1 < b_2$, розглянемо три випадки: 1) $\lambda \leq b_1$; 2) $b_1 < \lambda \leq b_2$ і 3) $b_2 < \lambda$.

За формулою (3.1) для першого випадку маємо: $\lambda + \lambda = c \implies \lambda = \frac{c}{2} \le b_1 \implies x_1 = x_2 = \frac{c}{2}$ при $0 \le c \le 2b_1$; для другого: $b_1 + \lambda = c \implies b_1 < \lambda = c - b_1 \le b_2 \implies x_1 = b_1$, $x_2 = c - b_2$, при $2b_1 < c < b_1 + b_2$. Для третього: $b_1 + b_2 = c$, що суперечить умові задачі.

Аналогічно отримуємо для рівневого податку:

$$\lambda=b_2-c\;,\;\;x_1=0\;,\;\;x_2=c\;,\;\mathrm{при}\;\;0\leq c\leq b_2-b_1\;;$$

$$\lambda=\frac{1}{2}(b_1+b_2-c)\;,\;b_1-x_1=b_2-x_2=\frac{1}{2}(b_1+b_2-c)\;,\;\;b_2-b_1\leq c< b_1+b_2\;.$$

Бачимо, що подушний податок збігається з рівномірним розподілом витрат для малих значень c, а рівневий податок збігається з рівним прибутком для великих значень c. Ця властивість зберігається і для $\forall n$. Якщо кожне b_i додатне та $c/n \leq \min\{b_j\}$, то подушний податок $x_i = c/n$, $i = \overline{1,n}$.

У той же час, якщо
$$\sum_{j=1}^n b_j - n \cdot \min\{b_j\} \le c \le \sum_{j=1}^n b_j \text{ ,то} \quad \text{податок}$$

$$x_i = b_i - \left(\sum_{j=1}^n b_j - c\right)/n \text{ , } i = \overline{1,n} \text{ .}$$

Розглянемо п'ять гравців із доходами: $b_1=4$, $b_2=12$, $b_3=20$, $b_4=24$, $b_5=30$. Загальний дохід дорівнює $\sum_{j=1}^5 b_j=90$. Розглянемо спочатку досить низькі витрати c=30 (табл. 6.3.1). Однак, вони все ж не

досить низькі, щоб подушний податок збігався з рівномірним розподілом ($x_i = 6$, для всіх i). Гравець 1 може заплатити лише $x_1 = 4$, після чого останні гравці рівномірно розподіляють витрати, що залишились. Разом із тим, рівневий податок дуже приємний для гравців 1 і 2, у той час, як останні гравці мають $14\frac{2}{3}$ одиниць прибутку. Тепер виберемо досить великі загальні витрати c = 66 (табл. 6.3.2).

Таблиця 6.3.1

Доходи	4	12	20	24	30	Витрати
Подушний податок	4	6.5	6.5	6.5	6.5	30
Пропорційний	4/3	4	20/3	8	10	30
Рівневий	0	0	16/3	28/3	46/3	30

Таблиця 6.3.2

Доходи		12	20	24	30	Витрати
Подушний податок	4	12	50/3	50/3	50/3	66
Пропорційний	2.9	8.8	14.7	17.6	22	66
Рівневий	0	7	15	19	25	66

При рівневому податку всі гравці, крім першого, отримують по п'ять одиниць прибутку. При подушному податку перші два гравці не отримують ніякого прибутку, останні три мають по $16\frac{2}{3}$ одиниць прибутку. Зазначимо, що в цих двох прикладах пропорційний податок, як правило, але не завжди, знаходиться між подушним і рівневим податками. Необхідність верхньої та нижньої границі на частки витрат $(0 \le x_i \le b_i, i = \overline{1,n})$ відповідають поняттю ядра у кооперативній грі, що описує повні витрати коаліцій так:

$$v(S) = \max\left(\sum_{i \in S} b_i - c, 0\right), \tag{6.3.2}$$

тобто коаліція S може отримати прибуток за рахунок будівництва та покриття витрат на нього (зокрема v(S)=0, якщо $\sum_{i\in S}b_i\leq c$).

Нехай $\sum_{i=1}^n b_i > c$. Витрати $x = (x_i)_{i=\overline{1,n}}$ задовольняють принципу відокремлення для даної кооперативної гри тоді й лише тоді, коли вектор

прибутків $y=(b_1-x_1,...,b_n-x_n)$ належить ядру гри, тобто: $\sum_{i=1}^n x_i=c$, $\forall S\subseteq N: \ \sum_{i\in S}(b_i-x_i)\geq \upsilon(S) \iff \sum_{i\in S}(b_i-x_i)\geq \max\left(\sum_{i\in S}b_i-c,0\right)= \ \sum_{i\in S}b_i-c \iff \sum_{i\in S}x_i\leq c \iff \sum_{i\in S}x_i\leq \min\left(c,\sum_{i\in S}b_i\right), \text{ оскільки } \sum_{i\in S}x_i\leq \sum_{i\in S}b_i$.

Якщо взяти $S=\{i\}$, то з останньої нерівності випливає, що $x_i \leq b_i$, для $\forall i$. Якщо взяти $S=N\setminus\{i\}$, то $\sum_{j\in S}x_j \leq c-x_i \leq \min\left(c,\sum_{j\in S}b_j\right)$. Якщо $c\leq \sum_{j\in N\setminus\{i\}}b_j$, то $c-x_i\leq c$ \Rightarrow $x_i\geq 0$, для $\forall i$. Якщо $c\geq \sum_{j\in N\setminus\{i\}}b_j$, то $c-x_i\leq c$ \Rightarrow $x_i\geq 0$. Отже, умова $\{0\leq x_i\leq b_i$ для $\forall i\}$,

еквівалентна умові належності вектора витрат x, $\sum_{i=1}^{n} x_i = c$, ядру кооперативної гри (N,c) із функцією витрат (6.3.2). Тому, пропорційний розподіл, що є подушним або рівневим податком, належить ядру гри (N,c) (6.3.2).

Оскільки ми звели задачу розподілу витрат до кооперативної гри, логічно знайти це значення у вигляді N-ядра та вектора Шеплі.

Теорема 6.3.2. (Ауман, Машлер, 1985). *N*-ядро гри (6.3.2) відповідає таким долям витрат (λ – параметр):

1)
$$c \leq \frac{1}{2} \sum_{i=1}^{n} b_i$$
: $\sum_{i=1}^{n} \min \left\{ \lambda, \frac{b_i}{2} \right\} = c \implies x_i = \min \left\{ \lambda, \frac{b_i}{2} \right\}, i = \overline{1, n};$

2)
$$c \ge \frac{1}{2} \sum_{i=1}^{n} b_i$$
: $\sum_{i=1}^{n} \min \left\{ \lambda, \frac{b_i}{2} \right\} = \sum_{i=1}^{n} b_i - c \implies x_i = b_i - \min \left\{ \lambda, \frac{b_i}{2} \right\}, i = \overline{1, n}$.

Ауман і Машлер звернули увагу на те, що N-ядро ϵ розв'язком цікавої загадки з Талмуда (IV ст. до н. е.).

Помирає чоловік, у якого залишаються три дружини, претензії яких на спадщину дорівнюють відповідно 100, 200 й 300 одиниць. Талмуд рекомендує частки для величини спадщини з табл. 6.3.3.

Який логічний метод (алгоритм, принцип) лежить в основі розв'язку? Якщо при поділі "малої" спадщини у 100 одиниць (сума заявок $\sum_{j=1}^3 b_j = 600$) долі відповідають методу рівного прибутку, то в інших ви-

падках поділ прибутку відрізняється від рівневого, подушного та пропорційного податків (перевірте це). Виявляється, що долі прибутку, наве-

дені у табл. 6.3.3 відповідають N-ядру (перевірте, застосуйте теорему 6.3.2 для величини витрат $c = b_1 + b_2 + b_3 - s$, де s – сума спадщини).

Заявка	100	200	300	Сума спадщини
	33 1/3	33 1/3	33 1/3	100
Долі	50	75	75	200
	50	100	150	300

Таблиця 6.3.3

Вектор Шеплі гри (6.3.2) не має такої простої формули як *N*-ядро. Однак його "податкова" інтерпретація дозволяє його легко обчислити. Гравці намагаються втекти від збирача податків. Він ловить їх одного за одним у випадковому порядку (усі порядки рівноймовірні). Спіймані гравці платять повну суму своїх доходів, поки витрати не будуть покриті. Нехай порядок затримання збігається з порядком (1, 2,..., n), витрати покриваються лише після затримання гравця k+1: $\sum_{j=1}^k b_j < c \le \sum_{j=1}^{k+1} b_j$. Тоді перші k гравців платять b_i , гравець k+1 платить $c-\sum_{i=1}^k b_i$, інші гравці не платять нічого.

В інтерпретації з банкрутством маємо симетричну історію. Гравці біжать у банк і отримують спадщину повністю у відповідності із заявкою (за принципом "хто перший прийшов, той перший і обслуговується"), поки спадщина повністю не вичерпається. У прикладі з Талмуда вектор Шеплі збігається з N-ядром, якщо спадщина дорівнює 100 або 300, але відрізняється від нього, якщо спадщина складає 200. У цьому випадку витрати дорівнюють c = 600 - 200 = 400. Тоді гравець 1 заплатить повністю свій дохід, якщо буде спійманим першим або другим, і нічого не заплатить, якщо буде спійманим останнім. Отже, його доля дорівнює $66\frac{2}{3}$. Далі, гравець 2 повинен заплатити 200, якщо буде спійманим першим, 100 або 200 із рівною ймовірністю, якщо спійманим другим, і нічого, якщо спійманим останнім. Отже, його доля дорівнює $116\frac{2}{3}$. Отже, спадщина за Шеплі ділиться як $\left(33\frac{1}{3},83\frac{1}{3},83\frac{1}{3}\right)$.

Розглянемо аксіоматичні моделі розподілу витрат і прибутку. Ці питання почали вивчатися в останні два десятиріччя.

Визначення 6.3.3. Для даної спільноти $N=\{1,2,...,n\}$ механізмом розподілу витрат називається відображення x, що ставить у відповідність кожній задачі $(b_1,...,b_n;c)$, $\sum_{i\in N}b_i\geq c$, вектор часток витрат

$$x(b,c) = \left(x_i\left(b_1,...,b_n;c\right)\right)_{i\in N}$$
, для якого $\sum_{i\in N}x_i(b,c) = c$.

Визначення 6.3.4. Кажуть, що механізм розподілу витрат децентралізується, якщо частка $x_i(b,c)$ гравця $i \in N$ залежить від величини витрат c, його особистого доходу b_i і спільного доходу:

$$\sum_{i\in N}b_i:x_i(b,c)=t_i\bigg(b_i;\ \sum_{i\in N}b_i;\ c\bigg).$$

Отже, якщо механізм розподілу витрат децентралізується, то кожен гравець не повинен знати деталі розподілу витрат між партнерами. Необхідно знати лише повний (або середній) дохід. Наслідком властивості децентралізованості ϵ те, що для будь-якої коаліції S частка її витрат може бути обчислена за спільним доходом цієї коаліції та її

доповнення:
$$\sum_{i \in S} x_i(b, c) = r_S \left(\sum_{i \in S} b_i; \sum_{j \in N \setminus S} b_j; c \right)$$
.

Теорема 6.3.3 (Мулен, 1985). Нехай $n \ge 3$, тоді існує єдиний механізм розподілу витрат, який узгоджується з децентралізацією і належить до ядра $(0 \le x_i(b,c) \le b_i, \ \forall i, \ b, \ c)$. Це пропорційний податок.

Визначення 6.3.5. Механізм розподілу витрат задовольняє *аксіомі* сумісності, якщо для $\forall i, j, b, b', c, c'$ з умови $\left\{b_i = b_i', b_j = b_j'\right\}$ випливає $\left\{\left(x_i(b,c) - x_i(b',c')\right) - \left(x_j(b,c) - x_j(b',c')\right) \ge 0\right\}$.

Тобто, якщо дохід двох гравців фіксований, а всі інші параметри задачі змінюються, то ці зміни повинні бути вигідними або невигідними одночасно для обох.

Усі розглянуті вище механізми розподілу витрат (пропорційний, подушний, рівневі податки та N-ядро) окрім вектора Шеплі, задовольняють аксіомі сумісності. Характеризацію цих методів (необхідні та достатні умови) одержимо приєднанням до аксіоми сумісності ще двох аксіом: анонімності (якщо поміняти індекс i на j, то частка x_i поміняється на x_j) і неперервності (частка витрат неперервно змінюється при зміні c).

Контрольні завдання до § 3

- 1. Знайти рівневий податок для задач поділу витрат:
 - 1.1. b = (1, 3, 5, 6, 10), c = 10, c = 20;

1.2.
$$b = (1, 5, 8, 12, 14), c = 10, c = 20, c = 30.$$

- 2. Знайти подушний податок для задачі поділу витрат із п. 1.
- 3. Знайти рівневий податок для задач поділу прибутку:

$$3.1. c = (1, 3, 5, 6, 10), r = 30, r = 40, r = 50;$$

3.2.
$$c = (1, 5, 8, 12, 14), r = 40, r = 50, r = 60.$$

- 4. Знайти подушний податок для задач поділу прибутку з п. 3.
- 5. Знайти *N*-ядро для задач із п. 1, п. 3.
- 6. Знайти вектор Шеплі для задач із п. 1, п. 3.

ПИТАННЯ ДЛЯ САМОПЕРЕВІРКИ ДО РОЗДІЛУ 6

- 1. Дайте визначення сильної рівноваги Неша.
- 2. Що таке рівновага у спільних змішаних стратегіях?
- 3. У чому полягає стабілізація рівноваг Неша на основі погроз?
- 4. Дайте визначення a і β -ядер.
- 5. Як задається кооперативна гра в нормальній формі?
- 6. Сформулюйте "принцип відокремлення", дайте визначення ядра кооперативної гри.
 - 7. Сформулюйте теорему Бондаревої.
 - 8. Що таке вектор Шеплі? Сформулюйте теореми Шеплі та Янга.
 - 9. Дайте визначення *N*-ядра кооперативної гри.
 - 10. Сформулюйте задачі поділу витрат і прибутку, доходу та прибутку.
 - 11. Які основні принципи поділу витрат, їхні переваги та недоліки?
 - 12. Що таке рівневий і подушний податки, як вони обчислюються?
 - 13. Як задачі поділу витрат і прибутку зводяться до кооперативної гри?
 - 14. Сформулюйте теорему Аумана-Машлера.
- 15. Наведіть "податкову" та "банкрутну" інтерпретацію вектора Шеплі.

Розділ 7 ПРИЙНЯТТЯ РІШЕНЬ В УМОВАХ НЕЧІТКОЇ ІНФОРМАЦІЇ

"Нечіткість", як правило, є проявом суб'єктивності осіб, що приймають рішення, експертів та аналітиків, які формулюють задачу прийняття рішень. Тому, як множина альтернатив, множина наслідків, так і зв'язок між ними можуть бути нечіткими. Такі задачі прийняття рішень називаються ЗПР в умовах нечіткої інформації.

§ 1. Основні поняття з теорії нечітких множин

Визначення нечіткої множини. У класичній математиці під множиною розуміється сукупність елементів (об'єктів), що мають деяку спільну властивість. Наприклад, множина чисел, не менших заданого числа; множина векторів, сума компонентів кожного з яких не перевершує одиниці і т. п. При цьому, для будь-якого елемента множини розглядаються лише дві можливості: або цей елемент належить даній множині (тобто має дану властивість), або не належить даній множині (тобто не має даної властивості). Таким чином, в описі множини у звичайному розумінні необхідно дотримуватися чіткого критерію, що дозволяє говорити про належність або неналежність будь-якого елемента даній множині.

Поняття нечіткої множини – спроба математичної формалізації нечіткої інформації з метою її використання при побудові математичних моделей складних систем. В основі цього поняття лежить уявлення про те, що елементи, які складають дану множину та мають деяку спільну властивість, можуть мати цю властивість у різному ступені і, отже, належати даній множини з "різним ступенем". При такому підході висловлення типу "елемент х належить даній множині" втрачають зміст, оскільки необхідно вказати "наскільки сильно" або з яким ступенем даний елемент належить множині.

Один з найпростіших способів математичного опису нечіткої множини – характеризація ступеня належності елемента множині чисел, наприклад, з інтервалу [0, 1]. Нехай X – деяка множина елементів (у звичайному розумінні). Надалі будемо називати її універсальною множиною й розглядати підмножини цієї множини.

Нечіткою множиною C на множині X називається сукупність пар $(x, \mu_C(x))$, де $x \in X$, а μ_C – функція $X \to [0,1]$, що називається функціє єю належності нечіткої множини C. Значення μ_C для конкретного x називається ступенем належності цього елемента нечіткій множині C.

Як бачимо з цього визначення, нечітка множина цілком описується своєю функцією належності, тому нижче будемо використовувати цю функцію як позначення нечіткої множини. Звичайні множини складають підклас класу нечітких множин. Дійсно, функцією належності звичайної множини $B \subset X$ є її характеристична функція:

$$\mu_B(x) = \begin{cases} 1, & x \in B, \\ 0, & x \notin B, \end{cases}$$

і відповідно до визначення нечіткої множини звичайну множину B можна також визначити як сукупність пар виду $(x, \mu_B(x))$. Таким чином, нечітка множина являє собою більш широке поняття, ніж звичайна множина, у тому розумінні, що функція належності нечіткої множини може бути довільною функцією або навіть довільним відображенням.

Приклад 7.1.1. Для порівняння розглянемо звичайну множину чисел $B = \{x | 0 \le x \le 2\}$ і нечітку множину чисел $C = \{x |$ "значення $x \in$ близьким до 1" $\}$. Функції належності цих множин представлені відповідно на рис. 7.1.1а. і рис. 7.1.1б. Зазначимо, що вид функції належності нечіткої множини C залежить від змісту, вкладеного у поняття "близько" у контексті аналізованої ситуації.

Нечітка множина називається *порожньою*, якщо її функція належності дорівнює нулю на всій множині X, тобто $\mu_{\varnothing}(x) = 0$, $\forall x \in X$.

Універсальну множину X також можна описати функцією належності виду $\mu_X(x) = 1, \ \forall x \in X.$

Носієм нечіткої множини A (позначення suppA) з функцією належності $\mu_A(x)$ називається множина виду supp $A = \left\{ x \, | \, x \in X, \;\; \mu_A(x) > 0 \;\; \right\}.$

Нечітка множина A називається *нормальною*, якщо виконується рівність $\sup_{x\in X}\mu_A(x)=1$. У протилежному випадку нечітка множина називається *субнормальною*. Наприклад, нечітка множина C у прикладі 7.1.1 є нормальною. Субнормальним часто виявляється перетин нечітких множин. Субнормальна множина може бути перетворена до нормальної (нормалізована), якщо розділити функцію належності $\mu(x)$ цієї множини на величину $\sup_{x\in X}\mu(x)$. Однак варто врахувати що, застосовуючи таке перетворення в конкретній задачі, необхідно представляти собі його "фізичний зміст".

Нехай A і B – нечіткі множини у X, а $\mu_A(x)$ і $\mu_B(x)$ – їхні функції належності відповідно. Кажуть, що A містить у собі B (тобто $B \subseteq A$), якщо для будь-якого $x \in X$ виконується нерівність $\mu_B(x) \leq \mu_A(x)$. Варто зауважити, що якщо $B \subseteq A$, то і supp $B \subseteq$ supp A. Множини A і B збігаються одна з одною (еквівалентні), якщо при будь-якому $x \in X$, $\mu_B(x) = \mu_A(x)$.

Приклад 7.1.2. Розглянемо нечіткі множини: $B = \{x | x \text{ близько до } 1\}$, $B = \{x | x \text{ дуже близько до } 1\}$. Зрозуміло, що $B \subseteq A$, тобто функції належності цих множин $\mu_A(x)$ та $\mu_B(x)$ повинні задовольняти нерівності $\mu_B(x) \le \mu_A(x)$ при будь-якому $x \in X$. Графічно ці функції можуть виглядати, наприклад, як показано на рис. 7.1.2. Суцільною лінією показаний графік функції належності множини A, а пунктирною – множини B.

Операції над нечіткими множинами. Операції над нечіткими множинами, такі, наприклад, як об'єднання та перетин, можна визначити різними способами. Нижче буде дано кілька таких визначень. Вибір конкретного з них залежить від предметної області.

Oб'еднанням нечітких множин A і B у X називається нечітка множина з функцією належності:

$$\mu_{A \cup B}(x) = \max \{\mu_A(x), \mu_A(x)\}, x \in X.$$

Рис. 7.1.2

Приклад 7.1.3. Нехай нечіткі множини A і B на числовій осі описуються функціями належності, показаними на рис. 7.1.3. Жирною лінією на цьому рисунку показано функцію належності об'єднання цих множин.

Рис. 7.1.3

Об'єднання нечітких множин A і B у X можна також визначити через алгебраїчну суму їх функцій належності:

$$\mu_{A \cup B}(x) = \begin{cases} 1, & \mu_A(x) + \mu_B(x) \ge 1, \\ \mu_A(x) + \mu_B(x), & \mu_A(x) + \mu_B(x) < 1. \end{cases}$$

Перетином нечітких множин A і B у X називається нечітка множина з функцією належності $\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}$, $x \in X$.

Приклад 7.1.4. Нехай нечіткі множини *A* і *B* на числовій осі описуються функціями належності, показаними на рис. 7.1.4. Жирною лінією на цьому малюнку показана функція належності перетину цих множин.

Інакше можна визначити перетин нечітких множин A і B у X як алгебраїчний добуток їх функцій належності:

$$\mu_{A \cap B}(x) = \mu_A(x)\mu_B(x), \ x \in X.$$

Рис. 7.1.4

Це визначення може бути дуже зручним у випадку нечітких множин A і B таких, що $B \subseteq A$. За першим із цих визначень отримаємо, що $\mu_{A \cap B}(x) = \mu_B(x)$, $\forall x \in X$, тобто функція належності множини A фактично "не бере участі" в результуючій функції належності, тоді як за останнім визначенням функція належності перетину завжди зберігає інформацію про функції належності обох множин.

Корисною може виявитися така властивість носіїв нечітких множин:

supp
$$(A \cup B) = (\text{supp A}) \cup (\text{supp B})$$
,
supp $(A \cap B) = (\text{supp A}) \cap (\text{supp B})$.

Доповненням нечіткої множини A у X називається нечітка множина A' з функцією належності виду $\mu_{a'}(x) = 1 - \mu_{a}(x), \ \forall x \in X.$

Цікаво, що при такому визначенні, може бути, що $A' \cap A \neq \emptyset$.

Приклад 7.1.5. Розглянемо множину $A = \{x,$ занадто більше $0 \}$, і нехай функція належності цієї множини має вигляд, показаний на рис. 7.1.5 (суцільна крива). Тоді пунктирна лінія на цьому рисунку відповідає функції належності доповнення A' множини A на множині всіх чисел. Іншими словами, множину A' можна описати як множину чисел, що не є набагато більшими за нуль. Непорожній перетин множин A і A' у цьому прикладі являє собою нечітку множину чисел, "набагато більших за нуль і одночасно таких, що не є набагато більшими за нуль". Непорожність цієї нечіткої множини відбиває той факт, що саме поняття "бути набагато більшим" описане нечітко, внаслідок чого, деякі числа можуть із визначеним ступенем належати одночасно як одній, так і іншій множині. У деякому сенсі цей перетин можна розглядати як нечітку "межу" між множинами A і A'.

Рис. 7.1.5

Визначимо поняття різниці, декартового добутку й опуклої комбінації нечітких множин.

Різницею множин A і B у X називається нечітка множина $A \backslash B$ с функцією належності виду:

$$\mu_{A\setminus B} = \begin{cases} \mu_A(x) - \mu_B(x), & \mu_A(x) \ge \mu_B(x), \\ 0, & \mu_A(x) < \mu_B(x). \end{cases}$$

Декартовим добутком $A_1 \times A_2 \times ... \times A_n$ у X нечітких множин A_i в X_i , i=1,2,...,n, називається нечітка множина A з функцією належності виду $\mu_A(x) = \min \left\{ \mu_{A_1}(x_1),...,\mu_{A_n}(x_n) \right\}, \quad x=(x_1,...,x_n) \in X.$

Oпуклою комбінацією нечітких множин $A_1, A_2, ... A_n$ у X називається нечітка множина A з функцією належності виду:

$$\mu_A(x) = \sum_{i=1}^n \lambda_i \mu_i(x)$$
, де $\lambda_i \ge 0$, $i = 1, 2, ..., n$, $\sum_{i=1}^n \lambda_i = 1$.

Опуклі комбінації нечітких множин можуть знайти застосування, наприклад, у задачах прийняття рішень із декількома нечіткими обмеженнями. Зауважимо, що для звичайних множин ця операція не має сенсу.

Множини рівня й декомпозиція нечіткої множини. Множиною рівня α нечіткої множини A у X називається множина у звичайному розумінні, яка складається з елементів $x \in X$, ступені належності яких нечіткій множині A, не менші за число α . Таким чином, якщо A_{α} множина рівня α нечіткої множини A, то $A_{\alpha} = \left\{x \middle| x \in X, \; \mu_{A}(x) \geq \alpha\right\}$.

Операціям над нечіткими множинами відповідають наведені нижче відношення між множинами рівня:

✓ операція об'єднання $(A \cup B)_a = A_a \cup B_a$ (при визначенні об'єднання через алгебраїчну суму функцій належності – $(A \cup B)_a \supseteq A_a \cup B_a$);

✓ операція перетину $(A \cap B)_{\alpha} = A_{\alpha} \cap B_{\alpha}$ (при визначенні перетину через алгебраїчний добуток функцій належності – $(A \cap B)_{\alpha} \subseteq A_{\alpha} \cap B_{\alpha}$);

$$\checkmark$$
 декартовий добуток – $(A_1 \times A_2 \times ... \times A_n)_a = (A_1)_a \times (A_2)_a \times ... \times (A_n)_a$;

$$\checkmark$$
 опукла комбінація A нечітких множин $A_1,A_2,...A_n-igcap_{i=1}^n(A_i)_{\scriptscriptstylelpha}\subseteq A_{\scriptscriptstylelpha}$.

У деяких випадках зручно користуватися *декомпозицією* (розкладанням) нечіткої множини за її множинами рівня, тобто представленням цієї множини у вигляді $A = \bigcup_{\alpha} \alpha A_{\alpha}$, де $\mu_{\alpha A_{\alpha}}(x) = \alpha \mu_{A_{\alpha}}(x)$, а об'єднання нечітких множин береться по всіх α від 0 до 1.

Приклад 7.1.6. Нехай $X = \{1, 2, ..., 6\}$, а функція належності нечіткої множини A у X задана табл. 7.1.1.

Таблиця 7.1.1

х	0	1	2	3	4	5	6
$\mu_A(x)$	0	0,1	0,3	0,5	0,7	0,9	1

Тоді А можна декомпозувати на такі множини рівня:

$$A_{0,1} = \{1, 2, ..., 6\}, \quad A_{0,3} = \{2, 3, 4, 5, 6\}, \quad A_{0,5} = \{3, 4, 5, 6\},$$

$$A_{0,7} = \{4, 5, 6\}, \quad A_{0,9} = \{5, 6\}, \quad A_{1,0} = \{6\}$$

і представити нечітку множину А у такому вигляді:

$$A = 0.1\{1, 2, ..., 6\} \cup 0.3\{2, 3, 4, 5, 6\} \cup 0.5\{3, 4, 5, 6\} \cup 0.7\{4, 5, 6\} \cup 0.9\{5, 6\} \cup 1\{6\}$$

Відображення нечітких множин. Лотфізаде запропонував визначення образа нечіткої множини при звичайному (чітко описаному) відображенні. Нехай $\phi: X \to Y$ — задане відображення і нехай A — деяка нечітка підмножина множини X із функцією належності $\mu_A(x)$. Відповідно до узагальнення Лотфізаде образ A при відображенні ϕ визначається як нечітка підмножина множини Y, що представляє собою сукупність пар виду $(y, \mu_B(y))$, де $\mu_B: Y \to [0,1]$ функція належності образа. Неважко зрозуміти, що функцію належності μ_B можна записати так:

$$\mu_B(y) = \sup_{x \in \phi^{-1}(y)} \mu_A(x), \quad y \in Y,$$

де $\phi^{-1}(y) = \{x \mid x \in X, \phi(x) = y\}$, $\forall y \in Y$, являє собою множину всіх елементів $x \in X$, образом кожного з яких при відображенні ϕ , є елемент y.

При такому підході нечітке відображення чіткої множини можна описати як відображення, при якому елементові $x \in X$ ставиться у відповідність не конкретний елемент множини Y, а нечітка підмножина множини Y. Це нечітке відображення описується функцією належності $\mu_{\phi}: X \times Y \to [0,1]$ так, що функція $\mu_{\phi}(x_0,y)$ (при фіксованому $x = x_0$) є функцією належності нечіткій множині у Y і представляє собою нечіткий образ елемента x_0 при даному відображенні.

У межах цієї концепції можна визначити нечітке відображення нечіткої множини. Нехай $\mu_{\phi}: X \times Y \to [0,1]$ задане нечітке відображення нечіткої множини $\mu_A(x)$ у X. Тоді образом цієї нечіткої множини при нечіткому відображенні буде сукупність пар виду $\left(\mu_{\phi}(x,y),\mu_A(x)\right),\ x\in X$, де $\mu_{\phi}(x,y)$ при кожному фіксованому $x\in X$ являє собою нечітку підмножину множини Y. Унаслідок чого

одержуємо, що нечіткий образ нечіткої множини y даному випадку є досить складним об'єктом – нечіткий підклас класу всіх нечітких підмножин множини Y. Зрозуміло, що використання подібних об'єктів в аналізі реальних систем є досить важким.

Зручнішим для практичного використання ϵ інший підхід, що запропонував С.О. Орловський [12].

Визначення 7.1.1. Образом В у Y нечіткої множини А у X при нечіткому відображенні $\mu_{\phi}: X \times Y \to [0,1]$ називається нечітка множина із функцією належності виду: $\mu_{B}(y) = \sup_{x \in X} \min \left\{ \mu_{\phi}(x,y), \mu_{A}(x) \right\}$.

Якщо розуміти $\mu_A(x)$ як нечітке унарне відношення на множині X, то легко бачити, що в основі цього визначення образу лежить максмінний добуток (композиція) нечітких відношень $\mu_A(x)$ і $\mu_{\phi}(x,y)$ (див. нижче "Нечіткі бінарні відношення").

Неважко перевірити, що в окремому випадку, коли $\mu_{\phi}(x,y)$ – звичайне відображення: $\phi: X \to Y$ (тобто $\mu_{\phi}(x,y) = 1$ при $y = \phi(x)$ і $\mu_{\phi}(x,y) = 1$ для інших пар (x,y)), це визначення дає $\mu_{B}(y) = \sup_{x \in \phi^{-1}(y)} \mu_{A}(x), \ y \in Y$, що відповідає наведеному вище класичному визначенню Лотфізаде для образа нечіткої множини при звичайному відображенні.

Введемо тепер визначення прообразу нечіткої множини при нечіткому відображенні.

Визначення 7.1.2. Прообразом A нечіткої множини B у Y при нечіткому відображенні $\mu_{\phi}: X \times Y \to [0,1]$ називається об'єднання всіх нечітких множин, образи яких при цьому відображенні належать (є підмножинами) нечіткій множині B.

Якщо образ нечіткої множини a при відображенні μ_{ϕ} позначати як $a \circ \mu_{\phi}$, то прообразом нечіткої множини $B \in \text{об'} \varepsilon$ днання всіх множин a, що задовольняють умові $a \circ \mu_{\phi} \subseteq B$ чи, іншими словами, $\sup_{x \in X} \min \left\{ \mu_{\phi}(x,y), \mu_{a}(x) \right\} \leq \mu_{B}(y), \ \forall y \in Y.$

Явний вираз для функції належності прообразу визначається так:

$$\mu_A(x) = \begin{cases} \inf_{y \in N_x} \mu_B(y), & x \in X_0, \\ 1, & x \in X \setminus X_0, \end{cases}$$
 де $X_0 = \left\{ x \in X \middle| \exists y \in Y, \;\; \mu_\phi(x,y) > \mu_B(y) \right\}, \;\; N_x = \left\{ y \in Y \middle|\; \mu_\phi(x,y) > \mu_B(y) \right\}.$

Приклад 7.1.7. Нехай в універсальній множині $X = \{x_1, x_2, x_3\}$ нечітка множина A задається функцією належності $\mu_A(x)$ (табл. 7.1.2), а нечітке відображення $\phi: X \to Y$ функцією належності $\mu_{\phi}(x,y): X \times Y \to [0,1]$ (табл. 7.1.3).

Таблиця 7.1.2

x	$\mu_A(x)$
\boldsymbol{x}_1	0,4
x_2	0,6
x_3	1,0

Таблиця 7.1.3

	\boldsymbol{y}_1	y ₂	y ₃	y ₄	$\boldsymbol{y}_{\scriptscriptstyle 5}$
x_1	0,7	1,0	0,1	0,3	0,6
x_2	0,7	0,4	0,7	0,5	0,6
x_3	0,3	0,4	0,1	0,2	1,0

1. Знайти образ B нечіткої множини A, що задається нечітким відображенням $\mu_{\scriptscriptstyle h}(x,y)$.

Для зручності позначимо через $M(x,y) = \min \left\{ \mu_A(x), \mu_\phi(x,y) \right\}$ і складемо табл. 7.1.4. З останнього рядка цієї таблиці отримаємо функцію належності $\mu_B(y)$ (табл. 7.1.5) образу B нечіткої множини A у Y, що задається нечітким відображенням $\mu_\phi(x,y)$.

Таблиця 1.4

x	$M(x, y_1)$	$M(x, y_2)$	$M(x, y_3)$	$M(x, y_4)$	$M(x, y_5)$
$\boldsymbol{\mathcal{X}}_1$	0,4	0,4	0,1	0,3	0,4
x_2	0,6	0,4	0,6	0,5	0,6
x_3	0,3	0,4	0,1	0,2	1,0
$\mu_B(y)$	0,6	0,4	0,6	0,5	1,0

2. Знайти прообраз A^* нечіткої множини B^* із функцією належності $\mu_{B^*}(y)$ (табл. 7.1.5), що задається відображенням $\mu_{\phi}(x,y)$. Побудуємо:

$$X_0 = \left\{ x \in X \middle| \exists y \in Y, \ \mu_{\phi}(x,y) > \mu_{B^*}(y) \right\} = \left\{ x_1, x_2 \right\}.$$

Відмітимо, що елемент x_3 множини X не буде належати множині X_0 , оскільки, при будь-яких y числа у відповідних комірках рядка x_3 табл. 7.1.3 ϵ не більшими за числа у відповідних комірках стовпчика $\mu_{B^*}(y)$ табл. 7.1.6. Тому одразу можна записати, що $\mu_{A^*}(x_3) = 1$, і не будувати множину N_{x_3} . Для x_1 , x_2 визначимо множини:

$$\begin{split} N_{x_1} &= \left\{ y \in Y \,\middle|\, \, \mu_{\phi}(x_1, y) > \mu_B(y) \right\} = \left\{ y_1, y_2 \right\}, \\ N_{x_2} &= \left\{ y \in Y \,\middle|\, \, \mu_{\phi}(x_2, y) > \mu_B(y) \right\} = \left\{ y_1, y_3 \right\}. \end{split}$$

Нарешті, за табл. 7.1.6 знайдемо:

$$\mu_{A^*}(x_1) = \min\{0,3, 0,4\} = 0,3,$$

 $\mu_{A^*}(x_2) = \min\{0,3, 0,7\} = 0,3.$

Таблиця 7.1.5

y	$\mu_B(\boldsymbol{y})$
$y_{\scriptscriptstyle 1}$	0,6
y_2	0,4
y_3	0,6
y_4	0,5
$y_{\scriptscriptstyle 5}$	1,0

Таблиця 7.1.6

y	$\mu_{B^*}(\boldsymbol{y})$
$y_{\scriptscriptstyle 1}$	0,3
y_2	0,7
y_3	0,4
y_4	0,6
y_5	1,0

Приклад 7.1.8. Нехай задана нечітка множина $A = \left\{ x \middle| \mu_A(x) = e^{-x/2} \right\}$ (рис. 7.1.6) в універсальній множині $X = E_{\geq 0}$ також нечітке відображення у множину $Y = E_{\geq 0}$ із функцією належності $\mu_{\phi}(x,y) = e^{-|x-y|}$ (графік при фіксованому y на рис. 7.1.7).

Рис. 7.1.7

1. Знайти образ B нечіткої множини A, що задається нечітким відображенням $\mu_{\scriptscriptstyle \phi}(x,y)$.

За означенням $\mu_B(y) = \sup_{x \in X} \min \left\{ \mu_\phi(x,y), \mu_A(x) \right\}$. На рис. 7.1.8 жирною лінією виділено графік функції $\min \left\{ e^{-|x-y|}, e^{-\frac{1}{2}x} \right\}$, із якого ми бачимо, що функція $\min \left\{ e^{-|x-y|}, e^{-\frac{1}{2}x} \right\}$ має два максимуми у точках x = 2/3y і x = 2y, серед яких перший, для $\forall y \in E_\ge$, є глобальним. Таким чином, образ B нечіткої множини A, що задається нечітким відображенням $\mu_\phi(x,y)$ є нечіткою множиною з функцією належності

$$\mu_B(y) = \max_{x \in E_{\geq 0}} \min \left\{ e^{-|x-y|}, e^{-\frac{1}{2}x} \right\} = e^{-\frac{1}{3}y}.$$

2. Знайти прообраз A^* нечіткої множини B^* , яка задана функцією належності $\mu_{B^*}(y) = e^{-\frac{1}{4}y}$ (рис. 7.1.9), при нечіткому відображенні $\mu_{\phi}(x,y)$ (на рис. 7.1.10 представлений графік функції належності нечіткого відображення $\mu_{\phi}(x,y)$ при фіксованому y=x).

Рис. 7.1.8

294

Рис. 7.1.10

Розв'язок. Побудуємо

$$\begin{split} X_0 &= \left\{ x \left| \exists y \in Y, \mu_{\phi}(x,y) > \mu_{B^*}(y) \right\} = \\ &= \left\{ x \in E_{\geq 0} \left| \exists y \in E_{\geq 0}, \ e^{-|x-y|} > e^{-\frac{1}{4}y} \right\} = \left\{ x \in E_{\geq 0} \left| \exists y \in E_{\geq 0}, \ \frac{3}{4}y < x < \frac{5}{4}y \right\} = E_{> 0} \right. \end{split}$$

Одержали всі додатні точки числової осі.

Одразу можна записати, що $\mu_{A^*}(0) = 1$.

Визначимо множину:

$$N_{x} = \left\{ y \in Y \middle| \mu_{\phi}(x_{1}, y) > \mu_{B}(y) \right\} = \left\{ y \in E_{\geq 0} \middle| e^{-|x-y|} > e^{-\frac{1}{2}y} \right\} =$$

$$= \left\{ y \in E_{\geq 0} \middle| \frac{4}{5} x < y < \frac{4}{3} x \right\}, \ \forall x \in E_{> 0}$$

(це легко побачити з рис. 7.1.10; жирною лінією на графіку виділена частина, для якої нерівність виконується). Тепер знайдемо $\forall x \in E_{>0}$ функцію належності:

$$\mu_{A^*}(x) = \inf_{y \in N_x} \mu_B(y) = \min \left\{ e^{-\frac{1}{4}y} \left| \frac{4}{5}x < y < \frac{4}{3}x, \quad y > 0 \right\} = e^{-\frac{1}{3}x} \right\}$$

(із рисунку бачимо, що мінімум досягається при $y=\frac{4}{3}x$). Остаточно отримаємо, $\mu_{A^*}(x)=e^{-\frac{1}{3}x},\ \forall x\in E_{\geq 0}$.

Нечіткі бінарні відношення. Аналогічно "звичайним" бінарним відношенням можна ввести поняття нечіткого бінарного відношення на

множині X як нечітку підмножину декартового добутку $X \times X$ із функцією належності $\mu_R(x,y)$. Для нечітких бінарних відношень поняття носія й множини рівня нечіткого відношення на множині X, а також операції об'єднання, перетину, доповнення вводяться аналогічно введеним поняттям та операціям для нечітких множин так:

✓ носієм нечіткого відношення $\mu_R(x,y)$ на множині X називається нечітка множина $\sup pR = \{x | x \in X, \ \mu_R(x,y) > 0\}, \ \forall x,y \in X;$

✓ множиною рівня α нечіткого відношення $\mu_R(x,y)$ на множині X називається чітка множина $R_\alpha = \{x | x \in X, \ \mu_R(x,y) \ge \alpha\}, \ \forall x,y \in X;$

✓ об'єднанням нечітких відношень $\mu_R(x,y)$ і $\mu_S(x,y)$ називається нечітке відношення з функцією належності

$$\mu_{R\cup S}(x,y) = \max\{\mu_R(x,y), \mu_S(x,y)\}, \quad \forall x,y \in X;$$

✓ перетином нечітких відношень $\mu_R(x,y)$ і $\mu_S(x,y)$ називається нечітке відношення з функцією належності

$$\mu_{R \cap S}(x, y) = \min \{ \mu_R(x, y), \mu_S(x, y) \}, \quad \forall x, y \in X;$$

✓ доповненням нечіткого бінарного відношення $\mu_R(x,y)$ на множині X називається нечітка множина з функцією належності

$$\mu_{\overline{R}}(x,y) = 1 - \mu_R(x,y), \quad \forall x,y \in X.$$

Операція композиції (добутку) вводиться різними способами:

✓ для максмінної композиції нечітких відношень R і S

$$\mu_{R\times S}(x,y) = \sup_{z\in Y} \min(\mu_R(x,z),\mu_S(z,y));$$

✓ для мінімаксної композиції

$$\mu_{R\times S}(x,y) = \inf_{z\in X} \max(\mu_R(x,z),\mu_S(z,y));$$

✓ для максимультиплікативної композиції

$$\mu_{R\times S}(x,y) = \sup_{z\in X} (\mu_R(x,z)\circ \mu_S(z,y)).$$

Оскільки для $\forall x, y, z \in X$ виконуються нерівності :

$$\max(\mu_R(x,z), f_S(z,y)) \ge \min(\mu_R(x,z), \mu_S(z,y)) \ge \mu_R(x,z) \circ \mu_S(z,y),$$

то, якщо позначити через R_1^2 , R_2^2 , R_3^2 — відповідно максмінну, мінімаксну та максимультипликативну композиції відношення R самого на себе, матимемо: $R_1^2 \supseteq R_2^2 \supseteq R_3^2$.

Для оберненого відношення R^{-1} : $\mu_{R^{-1}}(x,y) = \mu_{R}(y,x), \forall x,y$.

Якщо задавати бінарне відношення матрицею, то її елементи будуть довільними числами з відрізка [0, 1]. За змістом ця матриця аналогічна матриці, що описує "звичайне" бінарне відношення, але оскільки її елементи приймають значення не лише 0 чи 1, а й проміжні між ними, факт, що елемент r_{ij} цієї матриці дорівнює $\alpha \in [0,1]$ означає, що ступінь виконання відношення $x_i R x_j$ дорівнює α . Інтерпретація операцій над нечіткими бінарними відношеннями у термінах матриць, які їх задають, є такою ж самою як і у випадку "звичайних" бінарних відношень.

Найважливішими властивостями нечітких бінарних відношень, що використовуються у теорії прийняття рішень ϵ :

- ✓ рефлексивність ($\mu_R(x,x) = 1, \forall x$);
- ✓ антирефлексивність ($\mu_R(x, x) = 0, \forall x$);
- ✓ симетричність ($\mu_R(x,y) = \mu_R(y,x)$, $\forall x,y$);
- ✓ антисиметричність (min(($\mu_R(x,y),\mu_R(y,x)$) = 0, $\forall x \neq y$);
- ✓ транзитивність $(R \circ R \subseteq R)$.

Варто зазначити, що оскільки операція композиції може бути введеною трьома способами (максмінна композиція, мінімаксна композиція, максимультипликативна композиція), то і властивість транзитивності визначається відповідно.

Нечіткі відношення переваги, байдужності, подібності та строгої переваги. Нехай X — задана множина альтернатив. *Нечітким відношенням нестрогої переваги* на X будемо називати будь-яке задане на цій множині рефлексивне нечітке бінарне відношення. Оскільки нечітке відношення можна розуміти як нечітку підмножину декартового добутку $X \times X$, то нечітке відношення переваги R_{\geq} на множині X будемо описувати функцією належності виду $\mu_{\geq}: X \times X \to [0,1]$, яка володіє властивістю рефлексивності, тобто $\mu_{\geq}(x,x)=1, \ \forall x \in X$.

Якщо μ_{\geq} нечітке відношення переваги на множині альтернатив X, то для будь-якої пари альтернатив $x, y \in X$, значення $\mu_{\geq}(x,y)$ розуміється як ступінь переваги "x не гірше за y" або $x \geq y$. Рівність $\mu_{\geq}(x,y) = 0$ може означати або те, що з позитивним ступенем має місце зворотна перевага $y \geq x$, тобто, $\mu_{\geq}(y,x) > 0$ або те, що альтернативи x і y є непорівнянні між собою з жодним позитивним ступенем, тобто, $\mu_{>}(y,x) = 0$.

Рефлексивність нечіткого відношення переваги відбиває той природний факт, що будь-яка альтернатива $x \in X$ не гірша самої себе.

За заданим на множині X нечітким відношенням переваги μ_{\geq} можна однозначно визначити три відповідних йому нечітких відношення: байдужності R_{\geq} (функцію належності будемо позначати через μ_{\sim}), подібності $R_{\geq}(\mu_{\geq})$ (квазієквівалентності) і строгої переваги $R_{>}(\mu_{>})$.

За аналогією зі звичайними відношеннями переваги ці три відношення можна визначити так:

$$R_{\sim} = (X \times X \setminus R_{\geq} \cup R_{\geq}^{-1}) \cup (R_{\geq} \cap R_{\geq}^{-1}),$$

$$R_{\sim} = R_{>} \cap R_{>}^{-1}, \quad R_{>} = R_{>} \setminus R_{>}^{-1},$$

де R_{\geq}^{-1} – зворотне до відношення R_{\geq} , позначається через R_{\leq} і описується функцією належності $\mu_{<}(x,y) = \mu_{>}(y,x), \ \forall (x,y) \in X \times X$.

За визначеннями перетину, об'єднання й різниці нечітких множин, одержимо такі вирази для функції належності цих відношень:

- 1. Нечітке відношення байдужності:
 - $$\begin{split} & \mu_{\scriptscriptstyle \sim}(x,y) = \max \left\{ 1 \max \left\{ \mu_{\scriptscriptstyle \geq}(x,y), \mu_{\scriptscriptstyle \geq}(y,x) \right\}, \; \min \left\{ \mu_{\scriptscriptstyle \geq}(x,y), \mu_{\scriptscriptstyle \geq}(y,x) \right\} \right\} = \\ & = \max \left\{ \min \left\{ 1 \mu_{\scriptscriptstyle \geq}(x,y), \; 1 \mu_{\scriptscriptstyle \geq}(y,x) \right\}, \; \min \left\{ \mu_{\scriptscriptstyle \geq}(x,y), \; \mu_{\scriptscriptstyle \geq}(y,x) \right\} \right\}. \end{split}$$
- 2. Нечітке відношення подібності: $\mu_z = \min \{ \mu_z(x,y), \mu_z(y,x) \}$.
- 3. Нечітке відношення строгої переваги:

$$\mu_{>}(x,y) = \begin{cases} \mu_{\geq}(x,y) - \mu_{\geq}(y,x), & \mu_{\geq}(x,y) \geq \mu_{\geq}(y,x), \\ 0, & \mu_{\geq}(x,y) \leq \mu_{\geq}(y,x). \end{cases}$$

Розглянуті нечіткі відношення: байдужності μ_{\sim} , подібності μ_{\sim} і строгої переваги μ_{\sim} успадковують властивості їхніх чітких прототипів.

- 1. Нечіткі відношення байдужності $\mu_{_{\sim}}$ і подібності $\mu_{_{\sim}}$ рефлексивні та симетричні.
- 2. Нечітке відношення строгої переваги $\mu_{>}$ антирефлексивне й антисиметричне.
- 3. Якщо вихідне нечітке відношення переваги на множині X транзитивне, то цією ж властивістю володіють нечіткі відношення подібності μ_{ϵ} і строгої переваги μ_{ϵ} .

Контрольні завдання до § 1

1. Нехай в універсальній множині $X = \{1, 2, 3, 4, 5, 6\}$ задані дві нечіткі множини A і B, задані функціями належності

х	0	1	2	3	4	5	6
$\mu_A(x)$	0,2	0,1	0	0,1	0,9	0,3	0
$\mu_B(x)$	0	0,1	0,3	0,5	0,7	0,9	1

Знайти для цих множин: об'єднання; перетин; різницю.

2. Нехай задані дві нечіткі множини $A = \{x \in E^1 \mid x$ – приблизно дорівнює $1\}$, $B = \{x \in E^1 \mid x$ – приблизно дорівнює $3\}$. Знайти для цих множин

х	$\mu_A(x)$
x_1	0,2
x_2	0,1
x_3	0,5

	$y_{\scriptscriptstyle 1}$	y_{2}	y_3	y_4	$y_{\scriptscriptstyle 5}$
\mathcal{X}_1	0,3	0	0,8	0,2	0,1
\mathcal{X}_2	0,5	0,6	0,1	0,5	0,6
x_3	0,3	0,4	0,5	0,4	0,3

- об'єднання; перетин; різницю.
- 3. Нехай задано нечіткі множини $A = \left\{x \in E^1 \left| \mu_A(x) = e^{-x} \right. \right\}$ і $B = \left\{x \in E^1 \left| \mu_B(x) = e^{-(x-3)^2} \right. \right\}$. Знайти для цих множин об'єднання; перетин; різницю.
- 4. Нехай в універсальній множині $X = \{x_1, x_2, x_3\}$ нечітка множина A задається функцією належності $\mu_A(x)$, а нечітке відображення $\phi: X \to Y$ функцією належності $\mu_{\phi}(x,y): X \times Y \to [0,1]$. Знайти образ B нечіткої множини A, що задається нечітким відображенням $\mu_{\phi}(x,y)$.
- 5. Нехай задана нечітка множина $A = \left\{ x \in E^1 \middle| \mu_A(x) = e^{-x} \right\}$ в універсальній множині $X = E^1$ і також задане нечітке відображення у множину $Y = E^1$ із функцією належності $\mu_{\phi}(x,y) = e^{(x-y)^2}$. Знайти образ B нечіткої множини A.

§ 2. Прийняття рішень при нечіткому відношенні переваги

Якщо інформація про ситуацію прийняття рішення описана у формі звичайного відношення переваги, раціональним, природно вважати вибір недомінованих альтернатив. Застосуємо подібний підхід до задачі прийняття рішень при нечітко описаному відношенні переваги на множині альтернатив. При цьому ми розглянемо спочатку задачі, у яких сама множина альтернатив описана чітко, тобто як звичайна множина, а потім звернемося до загального випадку з нечіткою множиною альтернатив.

Отже, нехай X – звичайна (чітко описана) множина альтернатив і $\mu_{\scriptscriptstyle \geq}$ задане на ньому нечітке відношення нестрогої переваги, а $\mu_{\scriptscriptstyle >}$ відпові-

дне нечітке відношення строгої переваги. Визначимо нечітку підмножину недомінованих альтернатив множини X за відношенням μ_{\geq} . Відповідно до визначення відношення строгої переваги $\mu_{>}$, для будь-яких альтернатив $x, y \in X$ величина $\mu_{>}(x,y)$ є ступінь, із якою альтернатива y домінується альтернативою x. Отже, при фіксованому $y \in X$ визначену на X функцію $\mu_{>}(y,x)$ можна розглядати як функцію належності нечіткої множини "всіх" альтернатив x, що строго домінуються альтернативою y. Нехай, наприклад, ступінь належності альтернативи x^* цій множині (відповідно деякому фіксованому y) дорівнює 0,3. Це означає, що x^* домінується альтернативою y зі ступенем 0,3.

Неважко зрозуміти, що множина "всіх" альтернатив x, що не домінуються альтернативою y, являє собою доповнення у X введеної множини $\mu_{>}(y,x)$. Звідси одержуємо, що ця нечітка множина описується функцією належності виду $1-\mu_{>}(y,x)$, $\forall x\in X$. Якщо, наприклад, $\mu_{>}(y,x)=0,3$, то зі ступенем 0,7 альтернатива x не домінується альтернативою y. Тому для виділення у X підмножини "всіх" альтернатив, кожна з яких не домінується жодною альтернативою з X, потрібно взяти перетин нечітких множин виду $1-\mu_{>}(y,x)$ за всіма $y\in X$. Цей перетин ми і назвемо нечіткою підмножиною недомінованих (ефективних) альтернатив (нечітка множина Парето) і позначимо його через

$$\mu^{P}(x) = \inf_{y \in X} \left\{ 1 - \mu_{>}(y, x) \right\} = 1 - \sup_{y \in X} \mu_{>}(y, x) = 1 - \sup_{y \in X} (\mu_{\geq}(y, x) - \mu_{\geq}(x, y)).$$

Останнє співвідношення отримується з визначення нечіткого відношення строгої переваги. Дійсно, нехай $x,\ x\in X$, довільно обрана альтернатива. Введемо множини:

$$Y^{1}(x) = \left\{ y \in X \, \middle| \, \mu_{\text{B}}(y, x) > \mu_{\text{B}}(x, y) \right\}, \quad Y^{2}(x) = \left\{ y \in X \, \middle| \, \mu_{\text{B}}(y, x) \leq \mu_{\text{B}}(x, y) \right\}.$$

Користуючись тим, що $Y^1(x) \cup Y^2(x) = X$, $\forall x \in X$, отримаємо:

$$\mu^{P}(x) = 1 - \sup_{y \in X} \mu_{>}(y, x) = 1 - \max \left\{ \sup_{y \in Y^{1}(x)} \mu_{>}(y, x) - \sup_{y \in Y^{2}(x)} \mu_{>}(x, y) \right\}, \quad x \in X$$

Далі, спираючись на визначення μ_{s} , одержуємо:

$$\mu^{P}(x) = 1 - \max \left\{ \sup_{y \in Y^{1}(x)} (\mu_{\geq}(y, x) - \mu_{\geq}(x, y)), 0 \right\} =$$

$$= 1 - \max \left\{ \sup_{y \in Y^{1}(x)} (\mu_{\geq}(y, x) - \mu_{\geq}(x, y)), \sup_{y \in Y^{2}(x)} (\mu_{\geq}(y, x) - \mu_{\geq}(x, y)) \right\} =$$

$$= 1 - \sup_{y \in X} (\mu_{\geq}(y, x) - \mu_{\geq}(x, y)), \quad x \in X.$$

Отриманий вираз дозволяє описати нечітку підмножину недомінованих альтернатив через вихідне відношення нестрогої переваги на множині X.

Значення $\mu^P(x)$ являє собою ступінь, із яким альтернатива x не домінується жодною з альтернатив множини X. Нехай $\mu^P(x^*) = \alpha$ для деякої альтернативи x^* . Тоді x^* може домінуватися іншими альтернативами, але зі ступенем не вище $1-\alpha$. Дійсно, при цьому $\sup_{y \in X} \mu_>(y,x^*) = 1-\alpha$, отже, $\mu_>(y,x^*) \le 1-\alpha$ для $\forall y \in X$.

Оскільки величина $\mu^P(x)$ є ступінь "недомінованості" альтернативи x, то раціональним при заданій нечіткій інформації природно вважати вибір альтернатив, що мають по можливості більшу ступінь належності нечіткій множині $\mu^P(x)$.

Множина таких альтернатив $X^P = \left\{ x \in X \middle| \mu^P(x) = \sup_{y \in X} \mu^P(y) \right\}$ називаеться множиною максимальних недомінованих альтернатив множини X за нечітким відношенням переваги $\mu_>$.

Приклад 7.2.1. Нехай на множині $X = \{x_1, x_2, x_3, x_4\}$, задане за табл. 7.2.1 нечітке відношення переваги $\mu_{\geq}(x_i, x_j)$, $i, j \in \overline{1,4}$.

Таблиця 7.2.1

μ≥	x ₁	x ₂	x ₃	X ₄
\boldsymbol{x}_1	1	0,2	0,3	0,1
x_2	0,5	1	0,2	0,6
x_3	0,1	0,6	1	0,3
\mathcal{X}_4	0,6	0,1	0,5	1

За визначенням отримаємо нечітке відношення Парето (див. табл. 7.2.2). Звідси видно, що найбільший (рівний 0,8) ступінь недомінованості має альтернатива x_3 , тому її вибір як розв'язку варто вважати раціональним у межах розглянутого підходу.

Таблиця 7.2.2

	x ₁	x ₂	x ₃	X ₄
μ^{P}	0,5	0,6	0,8	0,5

Розглянемо тепер задачу прийняття рішень із ціллю, що задана нечітким відношенням переваги у випадку, коли множина альтернатив ϵ нечіткою.

Нехай на універсальній множині X задана нечітка множина альтернатив $\mu_D: X \to [0,1]$ із нечіткою ціллю $\mu_{\scriptscriptstyle \geq}: X \times X \to [0,1]$.

Відміна цієї задачі від попередньої полягає у тому, що більш переважними варто вважати альтернативи, які мають більшу перевагу як за нечітким відношенням $\mu_{\scriptscriptstyle 2}$, так і за функцією належності $\mu_{\scriptscriptstyle D}$. Для вирішення цієї проблеми побудуємо ще одне відношення переваги $\eta_{\scriptscriptstyle 2}$, що є індукованим функцією належності $\mu_{\scriptscriptstyle D}$

$$\eta_{\geq}(x,y) = \begin{cases} 1, & \mu_{D}(x) \geq \mu_{D}(y), \\ 0, & \mu_{D}(x) < \mu_{D}(y). \end{cases}$$

Тепер, якщо вважати відношення μ_{\geq} і η_{\geq} рівноцінними для ОПР, їх можна агрегувати в одне відношення переваги, яке визначимо як їхній перетин $\omega_{\geq}(x,y) = \min\{\mu_{\geq}(x,y), \eta_{\geq}(x,y)\}$, і розв'язати задачу прийняття рішень у попередній постановці (на чіткій множині альтернатив із ціллю, що задана нечітким відношенням переваги). У випадку, коли відношення μ_{\geq} і η_{\geq} не є рівноцінними для ОПР, усе буде складніше [12].

Контрольні завдання до § 2

1. Нехай на множині $X = \{x_1, x_2, x_3, x_4\}$, задане нечітке відношення переваги $\mu_{\geq}(x_i, x_j), \ i, j \in \overline{1,4}$. Знайти нечітке відношення Парето.

$\mu_{\scriptscriptstyle \geq}$	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4
\boldsymbol{x}_1	1	0,8	0,7	0,5
\mathcal{X}_2	0,2	1	0,1	0,4
x_3	0,4	0,3	1	0,2
\mathcal{X}_4	0,1	0,1	0,5	1

2. Нехай на множині $X = \{x_1, x_2, x_3, x_4\}$, задане нечітке відношення переваги $\mu_{\geq}(x_i, x_j)$, $i, j \in \overline{1,4}$. Знайти нечітке відношення Парето.

$\mu_{\scriptscriptstyle \geq}$	\boldsymbol{x}_1	\mathcal{X}_2	x_3	\mathcal{X}_4
\mathcal{X}_1	1	0,4	0,4	0,1
\mathcal{X}_2	0,5	1	0,5	0,2
x_3	0,9	0,9	1	0,9
\mathcal{X}_4	0,6	0,2	0,1	1

- 3. Нехай на універсальній множині $X = \{x_1, x_2, x_3, x_4\}$ задана нечітка множина альтернатив $\mu_D : X \to [0, 1]$ із нечіткою ціллю $\mu_{>} : X \times X \to [0, 1]$. Знайти нечітке відношення Парето.
- 4. Нехай на універсальній множині $X = \{x_1, x_2, x_3, x_4\}$ задана нечітка множина альтернатив $\mu_D: X \to [0, 1]$ із нечіткою ціллю $\mu_2: X \times X \to [0, 1]$. Знайти нечітке відношення Парето.

§ 3. Ігри в умовах нечіткої інформації

Для простоти викладення матеріалу без обмеження загальності будемо розглядати ігри двох гравців в умовах нечіткої інформації.

Ігри з нечіткою цільовою множиною. Нехай X і Yуніверсальні множини стратегій, які можуть вибирати гравці 1 і 2 відповідно, а стратегії гравців описуються нечіткими множинами $\mu_1: X \to [0, 1], \ \mu_2: X \to [0, 1]$. Функції вигращу гравців $u_1, \ u_2: X \times Y \to [0, 1]$ інтерпретується як оцінки гравцями ситуації гри (x, y). Множина E^1 (числова вісь) інтерпретується при цьому як універсальна множина оцінок.

Кожен із гравців прагне до досягнення своєї нечітко описаної цілі. Будемо вважати, що ціль гравця i описується нечіткою множиною G_i в універсальній множині оцінок E^1 із функцією належності $\overline{\mu}_i^G: E^1 \to [0,\ 1]$. Наприклад, така нечітка ціль може бути нечіткою множиною типу "величина виграшу повинна бути значно більшою за 10" і т. п. Чим більший ступінь належності оцінки виграшу u нечіткій множині $\overline{\mu}_G(u)$, тим більший ступінь досягнення цієї цілі.

Таким чином, оскільки виграш залежить від ситуації гри, то ціль гравця i будемо описувати нечіткою підмножиною множини ситуацій виду:

$$\mu_i^G(x,y) = \mu_i^{-G}(u_i(x,y)), (x,y) \in X \times Y.$$

Неважко побачити, що задана нечітка множина є такою, що її образом у E^1 при відображенні u_i , є задана у E^1 нечітка множина цілі G_i .

Введемо в розгляд нечіткі підмножини D_1 і D_2 множини ситуацій $X \times Y$, які визначаються так:

$$\mu_{D_1}(x,y) = \min \{ \mu_1(x), \mu_1^G(x,y) \}, \quad \mu_{D_2}(x,y) = \min \{ \mu_2(x), \mu_2^G(x,y) \}.$$

Ці нечіткі множині є перетинами відповідних нечітких множин стратегій і нечітких множин цілі. Якщо, наприклад, гравцеві 1, відомий конкретний вибір $\tilde{y} \in Y$ гравця 2, то перед першим гравцем по-

стає задача досягнення нечіткої мети $\mu_1^G(x,\tilde{y})$ на множині нечітких стратегій $\mu_1(x)$. Розв'язок такої задачі є перетин нечітких множин $\mu_1^G(x,\tilde{y})$ і $\mu_1(x)$, тобто нечітка множина з функцією належності

$$\mu_{D_1}(x, \tilde{y}) = \min \{ \mu_1(x), \mu_1^G(x, \tilde{y}) \}.$$

Таким чином, нечітку множину $\mu_{D_1}(x,y)$ можна розглядати як родину (за параметром y) розв'язків задач досягнення нечітких цілей $\mu_1^G(x,y)$. Аналогічний зміст надається і множині $\mu_{D_2}(x,y)$.

Остаточно, приходимо до "чіткої" гри у нормальній формі $\left\langle X,Y,\mu_{D_1},\mu_{D_2}\right\rangle$, розв'язки якої за тими чи іншими принципами оптимальності, у тих чи інших умовах інформованості гравців при їх некооперативній чи кооперативній поведінці будуть розв'язками наведеної вище нечіткої постановки гри.

Ігри з чіткими функціями виграшу і нечіткими множинами стратегій. Нехай X і Y універсальні множини можливих стратегій гравців 1 і 2 відповідно, а $\mu_1: X \to [0,1], \ \mu_2: X \to [0,1]$ нечіткі множини їхніх стратегій. Функції виграшу гравців $u_1, \ u_2: X \times Y \to [0,1]$. На відміну від попереднього випадку, будемо вважати, що кожен із гравців прагне одержати по можливості більше значення своєї функції виграшу.

Варто зауважити, що при будь-який фіксованій (і відомій гравцеві 1) стратегії $\tilde{y} \in Y$ гравця 2 перед гравцем 1 стоїть задача максимізації функції його виграшу на нечіткій множині стратегій. Під "максимізацією" розуміють вибір нечіткої підмножини μ_{D_1} множини μ_1 , якій відповідають найбільші значення як функції u_1 , так і функції належності μ_1 до нечіткої множини стратегій. Таким чином, фактично виграш гравця оцінюється не за одним критерієм, а за двома $u_1(x,\tilde{y})$ і $\mu_1(x)$ і ми приходимо до двокритеріальної гри. Її нормальна форма має вигляд $\langle X,Y,(u_1,\mu_1),(u_2,\mu_2)\rangle$. Нехай X^*,Y^* – множини "оптимальних" за тим чи іншим принципом оптимальності стратегій відповідно 1 і 2 гравця у цій чіткій двокритеріальній грі, тоді нечіткі множини "оптимальних" стратегій вихідної гри мають функції належності

$$\mu_1^u(x) = \begin{cases} \mu_1(x), & x \in X^*, \\ 0, & x \notin X^*, \end{cases} \quad \mu_2^u(y) = \begin{cases} \mu_2(y), & y \in Y^*, \\ 0, & y \notin Y^*. \end{cases}$$

Для ілюстрації цього підходу розглянемо задачу знаходження нечіткої рівноваги за Нешем. Побудуємо множину найкращих нечітких відповідей 1 гравця на фіксовану стратегію $y \in Y$ другого гравця. Це

буде нечітка множина $\mu_{D_1}(x,y) = \left\{ \mu_1(x) \middle| x \in P_1(y); \ 0 \middle| x \notin P_1(y) \right\}$, де $P_1(y) -$ множина ефективних альтернатив двокритеріальної задачі:

$$u_1(x,y) \rightarrow \max, \ \mu_1(x) \rightarrow \max, \ x \in X,$$

яка за теоремою Подіновського про необхідну й достатню умови ефективності альтернативи (див. Розділ 4. § 3 "Багатокритеріальна оптимізація") може бути подана у вигляді:

$$P_1(y) = \bigcup_{\lambda > 0} \left\{ x \; \middle| \; u_1(x, y) = \sup_{\substack{x' \in X, \\ \mu_1(x') \geq \lambda}} u_1(x', y) \right\}.$$

Найкращою нечіткою відповіддю гравця 2 на вибір гравцем 1 стратегії варто вважати нечітку множина виду:

$$\mu_{D_2}(x,y) = \{ \mu_2(y) | y \in P_2(x); \quad 0 | y \notin P_2(x) \},$$

де $P_2(x)$ – множина ефективних альтернатив двокритеріальної задачі:

$$u_2(x,y) \to \max, \ \mu_2(y) \to \max, \ y \in Y,$$

яка може бути представлена у вигляді:

$$P_{2}(x) = \bigcup_{\rho > 0} \left\{ y \mid u_{2}(x, y) = \sup_{\substack{y' \in Y, \\ \mu_{2}(y') \geq \rho}} u_{2}(x, y') \right\}.$$

Визначення 7.3.1. Нечіткою рівновагою за Нешем розглянутої гри двох осіб називається нечітка підмножина множини $X \times Y$ виду: $\mu^{NE}(x,y) = \min \left\{ \mu_{D_1}(x,y), \mu_{D_2}(x,y) \right\}.$

Іншими словами, нечітка рівновагою за Нешем визначається як перетин нечітких множин D_1 і D_2 .

Оскільки числа λ і ρ інтерпретуються як рівні, починаючи із яких гравці вважають в однаковому ступені припустимими всі стратегії із нечітких множин стратегій, то для знаходження конкретної рівноваги за Нешем достатньо знайти такі $\lambda > 0$ і $\rho > 0$, при яких існує розв'язок такої системи оптимізаційних задач:

$$u_{1}(x,y) = \sup \{u_{1}(x',y) \mid x' \in X, \ \mu_{1}(x') \geq \lambda \},$$

$$u_{2}(x,y) = \sup \{u_{2}(x,y') \mid y' \in Y, \ \mu_{2}(y') \geq \rho \}.$$

Нечіткому рівноважному розв'язку відповідають такі нечіткі виграші гравців:

$$\begin{split} & \mu_{u_1}(\upsilon) = \sup_{(x,y) \in u_1^{-1}(\upsilon)} \mu^{NE}(x,y), & \forall \upsilon \in R^1, \\ & \mu_{u_2}(\upsilon) = \sup_{(x,y) \in u_2^{-1}(\upsilon)} \mu^{NE}(x,y), & \forall \upsilon \in R^1. \end{split}$$

Так саме, як у чіткій грі, нечіткий рівноважний за Нешем розв'язок може бути основою для досягнення домовленості між гравцями про вибір конкретної ситуації (x,y) у вихідній нечітко визначеній грі.

Контрольні завдання до § 3

1. Нехай на універсальних множинах $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$ задані нечіткі множини стратегій гравців, відповідно $\mu_1: X \to [0,1]$ та $\mu_2: Y \to [0,1]$. Кожен із гравців прагне досягнути свою нечітку ціль, яка описується функцією належності, відповідно $\overline{\mu}_1^D: X \to [0,1]$ та $\overline{\mu}_2^D: Y \to [0,1]$, заданими у таблицях. Знайти обережні стратегії гравців.

1.1.

	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	
μ_1	0,2	0,8	0,4	0,9	
$\overline{\mu}_1^D$	0,5	0,6	0,8	0,5	

	x_1	x_2	x_3	\mathcal{X}_4	
μ_2	0,2	0,4	0,4	0,5	
$\overline{\mu}_2^{\scriptscriptstyle D}$	0,5	0,8	0,8	0,2	

1.2.

	\boldsymbol{x}_1	\mathcal{X}_2	x_3	\mathcal{X}_4	
μ_1	0,9	0,7	0,4	0,2	
$\overline{\mu}_1^D$	0,5	0,5	0,8	0,4	

	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	
μ_2	0,5	0,2	0,4	0,9	
$\overline{\mu}_2^{\scriptscriptstyle D}$	0,1	0,6	0,1	0,5	

1.3.

	\boldsymbol{x}_1	\mathcal{X}_2	x_3	\mathcal{X}_4	
μ_1	0,7	0,2	0,1	0,9	
$\overline{\mu}_1^D$	0,4	0,8	0,5	0,1	

	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	
μ_2	0,1	0,8	0,1	0,9	
$\overline{\mu}_2^{\scriptscriptstyle D}$	0,2	0,1	0,3	0,5	

§ 4. Нечіткі задачі багатокритеріальної оптимізації

Задача прийняття рішень із нечітко визначеною ціллю (підхід Белмана – Лотфізаде). Основою цього підходу ϵ визначення цілі задачі прийняття рішень як нечіткої підмножини універсальної множини альтернатив.

Нехай X – універсальна множина альтернатив. Нечіткою ціллю у X будемо називати нечітку підмножину X, яку будемо позначати через G і задавати функцією належності $\mu_G: X \to [0,1]$. Якщо, наприклад, X – числова вісь, то нечіткою ціллю прийняття рішень може бути нечітка множина типу "величина x повинна приблизно дорівнювати 5" або "бажано, щоб величина x була значно більшою за 10" і т. п. Чим більший ступінь належності альтернативи x нечіткій множині цілі μ_G , тобто чим більше значення $\mu_G(x)$, тим більший ступінь досягнення цієї цілі при виборі альтернативи x як розв'язку задачі.

Нечітка множина альтернатив також описуються нечіткою підмножинами універсальної множини альтернатив X. У наведеному вище прикладі нечітка множина альтернатив може мати, наприклад, такий вигляд: "x повинний бути не занадто великим" чи "x не повинне бути набагато більше 50" і т. п.

Більш загальною є постановка задачі, у якій нечітка ціль і нечітка множина альтернатив є підмножинами різних універсальних множин. Нехай X — універсальна множина альтернатив, елементи якої оцінюються за вектором критеріїв $f=(f_1,...,f_m)$, який задає відображення X в універсальну множину оцінок Y, тобто $f:X\to Y$. В універсальній множині оцінок Y задана ціль у вигляді нечіткої множини $\mu_G:Y\to [0,1]$.

Задача при цьому зводиться до попередньої постановки (тобто до випадку, коли ціль – нечітка підмножина X) так. Визначимо нечітку множина альтернатив μ_G , що забезпечує досягнення заданої цілі μ_G . Ця множина є прообразом нечіткої множини μ_G при відображенні f, тобто за визначенням прообразу нечіткої множини маємо: $\mu_G(x) = \mu_G(f(x))$, $x \in X$.

Після цього вихідна задача розглядається як задача досягнення нечіткої мети $\stackrel{-}{\mu_G}$ на нечіткій множині альтернатив.

Перейдемо тепер до визначення розв'язку задачі прийняття рішень із нечітко визначеною ціллю. Розв'язати цю задачу – означає досягти цілі та задовольнити обмеження, причому в даній нечіткій постановці варто говорити не просто про досягнення цілі, а про її досягнення з тим або іншим ступенем, причому варто враховувати і ступінь належності до множини альтернатив.

За підходом Белмана–Лотфізаде ці фактори враховуються так. Нехай, наприклад, деяка альтернатива x забезпечує досягнення мети із ступенем $\mu_G(x)$ і належить множині альтернатив зі ступенем $\mu_D(x)$. Тоді покладається, що ступінь належності цієї альтернативи розв'язку

задачі дорівнює мінімальному з цих чисел. Іншими словами, альтернатива зі ступенем, наприклад, 0,3, із тим же ступенем належить нечіткому розв'язку, незважаючи на те, що вона забезпечує досягнення цілі зі ступенем, рівним, наприклад, 0,8.

Таким чином, нечітким розв'язком задачі досягнення нечіткої цілі на нечіткій множині альтернатив називається перетин нечітких множин цілі й альтернатив, тобто функція належності розв'язку має вигляд $\mu(x) = \min \{ \mu_G(x), \mu_D(x) \}$.

За наявності декількох цілей нечіткий розв'язок описується функцією належності: $\mu(x) = \min \left\{ \mu_{G_1}(x), ..., \mu_{G_n}(x), \mu_D(x) \right\}$.

Якщо функції належності до множини альтернатив і різні цілі розрізняються по важливості, а також задані відповідні коефіцієнти відносної важливості ступеню належності до множини альтернатив $\lambda_0>0$ і відносної важливості цілей $\lambda_i>0, \quad i=\overline{1,m}, \quad \sum_{i=0}^m \lambda_i=1$, то функ-

$$\mu(x) = \min \left\{ \lambda_1 \mu_{G_1}(x), \dots, \lambda_m \mu_{G_m}(x), \mu_D(x) \right\}.$$

Приклад 7.4.1. Нехай $X = \{1, 2, ..., 10\}$, а нечітка ціль і множина альтернатив задаються табл. 7.4.1:

Таблиця 7.4.1

x	1	2	3	4	5	6	7	8	9	10
$\mu_{G}(x)$	0	0,1	0,3	0,5	0,7	0,9	1,0	0,9	0,7	0,5
$\mu_D(x)$	0,2	0,4	0,6	0,8	1,0	0,8	0,6	0,4	0,2	0

Тоді розв'язок µ отримаємо у табл. 7.4.2.

ція належності розв'язку визначається виразом:

Таблиця 7.4.2

x	1	2	3	4	5	6	7	8	9	10
$\mu(x)$	0	0,1	0,3	0,5	0,7	0,8	0,6	0,4	0,2	0

Словами ціль і множину альтернатив можна інтерпретувати, наприклад, так:

G = "x повинен бути близьким до 7", D = "x повинен бути близьким до 5". Тоді отриманий розв'язок: "x повинен бути близьким до 6".

Якщо виникає потреба у визначенні конкретної альтернативи, що є розв'язком задачі з нечіткою ціллю, то це можна робити по-різному.

Один із найбільш розповсюджених способів полягає у виборі альтернативи x^* , що має максимальну ступінь належності нечіткому розв'язку, тобто:

$$\mu(x^*) = \max_{x \in X} \mu(x) = \max_{x \in X} \min \left\{ \mu_G(x), \mu_D(x) \right\}.$$

Такі альтернативи називають максимізуючими розв'язками.

Багатокритеріальні задачі з нечіткою множиною альтернатив. Спочатку розглянемо звичайну (однокритеріальну) задачу математичного програмування з нечіткою множиною альтернатив, а потім узагальнимо отримані результати на випадок багатокритеріальної задачі.

Нехай X — універсальна множина і нехай ϕ — функція $X \to E^1$, значеннями якої оцінюються результати вибору елементів із множини X. У множині X задана нечітка підмножина $\mu_D: X \to [0,1]$, яку ми назвемо нечіткою множиною альтернатив. Задача полягає у "максимізації" у деякому сенсі функції ϕ на нечіткій множині μ_D .

Під "максимізацією" за підходом С.О. Орловського [12] розуміють вибір нечіткої підмножини μ множини μ_D , якій відповідає найбільші значення як функції ϕ , так і функції належності μ_D до нечіткої множини альтернатив. Ці альтернативи в задачах багатокритериальної оптимізації залежно від способу їхнього порівняння називаються ефективними, слабко ефективними, власно ефективними (відповідно максимальними за Парето, за Слейтером, за Джеофріоном). Далі простоти без обмеження загальності ми будемо використовувати лише визначення ефективних альтернатив.

Зрозуміло, що представлення розв'язку у формі всієї нечіткої множини ефективних альтернатив за критеріями ф і μ_D має сенс, коли така форма змістовно зрозуміла особі, що приймає рішення. Нагадаємо, що альтернатива $x^* \in X$ називається ефективною за двома функціями $\phi(x)$ і $\mu_D(x)$, якщо не існує іншої альтернативи $x \in X$ строго кращої за x^* , тобто $\neg \exists x \in X : \phi(x) \ge \phi(x^*)$, $\mu_D(x) \ge \mu_D(x^*)$ і хоча б одна нерівність є строгою. Іншими словами, якщо $x^* \in X$ ефективна альтернатива для функцій $\phi(x)$ і $\mu_D(x)$ на множині X, то вибором будь-якої іншої альтернативи з X неможливо збільшити (порівняно з $\phi(x^*)$ або $\mu_D(x^*)$) значення однієї функції, не зменшивши при цьому значення іншої.

Якщо ж опис розв'язку задачі у вигляді нечіткої множини є не прийнятним ОПР, то під розв'язком задачі варто розуміти деякий компроміс між бажанням одержати найбільші значення як функції ϕ , так і функції належності μ нечіткої множини альтернатив. Цей

компроміс при виявленій перевазі ОПР між критеріями ϕ і μ_D може бути знайдений будь-яким із методів багатокритеріальної оптимізації.

Отже, нехай P – множина всіх ефективних альтернатив двокритеріальної задачі: $\phi(x) \to \max$, $\mu_D(x) \to \max$, $x \in X$.

Визначення 7.4.2. Розв'язок задачі математичного програмування з нечіткою множиною альтернатив називається нечітка множина з функцією належності виду:

$$\mu(x) = \left\{ \mu_D(x) \middle| x \in P; \quad 0 \middle| x \notin P \right\}.$$

У цьому визначенні наголошується, що ОПР повинна використовувати у своєму рішенні лише ті альтернативи універсальної множини X, що дають значення функцій $\phi(x)$ і $\mu_D(x)$, які не покращуються одночасно.

Вибір деякої конкретної альтернативи з множини P може зробити лише ОПР, яка має деяку додаткову інформацію (чи міркування) про те, що важливіше: значення функції ϕ чи ступінь належності μ_D до множини альтернатив.

Відповідне нечіткому розв'язку нечітке значення функції ф записується у вигляді

$$\mu_{\phi}(\psi) = \sup_{x \in \phi^{-1}(\psi)} \mu(x).$$

У випадку, коли ми маємо багатокритеріальну задачу з нечіткою множиною альтернатив функція ф є векторною ф: $X \to R^m$. Під розв'язком такої задачі ми будемо розуміти вибір нечіткої підмножини μ множини μ_D , якій відповідають найбільші значення як функцій ϕ_i , $i=\overline{1,m}$, так і функції належності μ_D до нечіткої множини альтернатив.

Нехай P_m – множина всіх ефективних альтернатив (m+1) – критеріальної задачі:

$$\phi_i(x) \rightarrow \max, i = 1, \overline{m},$$

 $\mu_D(x) \rightarrow \max, x \in X.$

Визначення 7.4.3. Розв'язком багатокритеріальної задачі з нечіткою множиною альтернатив називається нечітка множина з функцією належності виду:

$$\mu(x) = \left\{ \mu_D(x) \middle| x \in P_m; \quad 0 \middle| x \notin P_m \right\}.$$

Таким чином, у випадку багатокритеріальної задачі нечітка множина розв'язків буде включати у себе ті і лише ті альтернативи, які будуть ефективними як за критеріями ϕ_i , $i=\overline{1,m}$, так і за функцією належності μ_D до нечіткої множини альтернатив. Вибір деякої конк-

ретної з них здійснюється за допомогою будь-якого з методів багато-критеріальної оптимізації.

Задача нечіткої векторної оптимізації. Формально загальна задача нечіткої векторної оптимізації описується так. Нехай на універсальній множині X задана нечітка підмножина альтернатив $\mu_D: X \to [0,1]$. На універсальній множині $Y \subseteq E^m$ числових оцінок наслідків альтернатив із множини X задане нечітке відношення переваги $\mu_R: Y \times Y \to [0,1]$. Альтернативи оцінюються нечіткими значеннями векторів оцінок $y = (y_1, ..., y_m) \in Y$, які задаються нечітким відображенням $\phi: X \times Y \to [0,1]$.

При такому нечіткому описі цілі задачі прийняття рішень альтернативи потрібно порівнювати одна з одною за відповідними їм нечіткими множинами значень векторів оцінок y за нечітким відношенням переваги μ_R ("більш кращим" нечітким оцінкам відповідають "більш кращі" альтернативи).

Таким чином, необхідним етапом в аналізі подібної задачі прийняття рішень ϵ побудова відношення переваги для порівняння між собою нечітких множин на основі заданого нечіткого відношення переваги μ_R .

Побудова узагальненого відношення переваги. Нехай на універсальній множині оцінок Y задане нечітке відношення переваги з функцією належності $\mu_R: Y \times Y \to [0,1]$. Нехай Ψ клас усіх нечітких підмножин із множини Y, тобто Ψ – клас усіх функцій належності виду $\mu: Y \to [0,1]$. Треба побудувати відношення переваги між нечіткими множинами класу Ψ , яке ε *індукованим* вихідним відношенням переваги μ_R .

Неважко зрозуміти, що задане на множині Y нечітке відношення переваги μ_R можна розглядати як нечітке відображення $Y \to \Psi$. Образ будь-якого елементу $y^0 \in Y$ при цьому відображенні є нечітка підмножина множини Y із функцією належності $\mu_R(y^0,y)$. Фактично, функція $\mu_R(y^0,y)$ описує нечітку множину елементів Y, пов'язаних із y^0 відношенням R, тобто таких $y \in Y$, що $y^0 R y$.

Нехай $\mu: Y \to [0,1]$ – деяка нечітка підмножина множини Y. Тоді за визначенням $7.1.1~\mu_R~\varepsilon$ нечітка підмножина Y із функцією належності виду: $\tilde{\eta}(\mu,y) = \sup_{z \in Y} \min \left\{ \mu(z), \mu_R(z,y) \right\}$.

Побудована таким чином функція $\tilde{\eta}$ описує нечітке відображення $\Psi \to \Psi$ і є узагальненням вихідного нечіткого відображення

 $\mu_R: Y \to \Psi$. Неважко зрозуміти і те, що ця функція описує узагальнення \tilde{R} вихідного відношення переваги R на множину $\Psi \times Y$. Іншими словами, для фіксованої нечіткої множини $\mu^0 \in \Psi$ функція $\tilde{\eta}(\mu^0,y)$ описує нечітку множину елементів множини Y, зв'язаних з μ^0 узагальненим відношенням переваги, тобто таких $y \in Y$, що $\mu^0 \tilde{R} y$. Величина $\tilde{\eta}(\mu^0,y)$, таким чином, є ступінь, із яким нечітка множина μ^0 є головнішою елемента y.

Аналогічно одержуємо, що величина $\tilde{\eta}(x,\mu^0) = \sup_{z \in Y} \min \{ \mu(z), \mu_R(y,z) \} \in$ ступенем оберненої переваги $y \ge \mu^0$.

Продовжимо процес узагальнення вихідного нечіткого відношення переваги R.

Розглянемо отриману функцію $\tilde{\eta}(\mu,y)$ як нечітке відображення $Y \to \tilde{\Psi}$, де $\tilde{\Psi}$ клас усіх нечітких підкласів класу Ψ (тобто всіх функцій виду $\Psi \to [0,1]$), і нехай μ^0 довільний елемент Ψ . Тоді за визначенням 7.1.1 образом μ^0 при нечіткому відображенні $\tilde{\eta}$ є нечіткий підклас класу Ψ із функцією належності виду: $\eta(\mu,\mu^0) = \sup_{y \in Y} \min \left\{ \mu^0(y), \tilde{\eta}(\mu,y) \right\}$, причому його можна розуміти як підклас нечітких підмножин μ таких, що $\mu \geq \mu^0$.

Іншими словами, функція η описує узагальнення нечіткого відношення переваги \tilde{R} на множину $\Psi \times \Psi$. Отже, і відповідне узагальнення вихідного нечіткого відношення переваги R. Величина $\eta(\mu_1, \mu_2)$ є ступінь виконання переваги $\mu_1 \ge \mu_2$. Остаточно одержуємо такий вираз для функції належності узагальненого відношення переваги:

$$\eta(\mu_{1}, \mu_{2}) = \sup_{y \in Y} \min \left\{ \mu_{1}(y), \sup_{z \in Y} \min \left\{ \mu_{2}(z), \mu_{R}(y, z) \right\} \right\} =
= \sup_{z, y \in Y} \min \left\{ \mu_{1}(y), \mu_{2}(z), \mu_{R}(y, z) \right\}.$$

Аналогічно можна прийти до висновку про те, що обернена перевага $\mu_2 \ge \mu_1$ виконується зі ступенем, рівним величині:

$$\eta(\mu_2,\mu_1) = \sup_{z,y \in Y} \min\{\mu_1(y),\mu_2(z),\mu_R(z,y)\}.$$

Отримана функція належності узагальненого відношення переваги у випадку, коли вихідне відношення переваги є чітким, конкретизується так:

$$\eta(\mu_1,\mu_2) = \sup_{\substack{z,y \in Y, \\ y \geq z}} \min \{\mu_1(y),\mu_2(z)\},\,$$

коли R ϵ відношенням нестрогого порядку (\geq) у E^m (доречно нагадати, що $(y_1,...,y_m) \geq (z_1,...,z_m) \Leftrightarrow y_i \geq z_i, \ \forall i=\overline{1,m}, \ \exists j:y_j>z_j)$ і $\eta(\mu_1,\mu_2) = \sup_{\substack{z,y\in Y,\\y>z}} \min\left\{\mu_1\left(y\right),\mu_2\left(z\right)\right\},$ коли R ϵ відношенням строгого по-

рядку (>) в E^m .

Приклад 7.4.2. Нехай Y – числова вісь і R – природний порядок (\geq) на Y. Розглянемо дві нечітких підмножини Y: M1, M2, які показані на рис. 7.4.1. З отриманих формул маємо:

$$\eta(M1, M2) = \sup_{z,y \in Y, y \ge z} \min\{M1(y), M2(z)\} = 0, 4,$$

$$\eta\big(M2,M1\big) = \sup_{z,y \in Y, \ z \geq y} \min\big\{M1\big(y\big),M2\big(z\big)\big\} = 1.$$

Тобто, іншими словами: М1 краща за М2 із ступенем 0,4, М2 краще за М1 зі ступенем 1. Звідси, за бажанням, можна виразити відношення строгої переваги й байдужості: М1 байдужа до М2 із ступенем 0,4, М2 строго краща за М1 зі ступенем 0,6.

Рис. 7.4.1

Нечітка множина недомінованих альтернатив. Звернемося тепер безпосередньо до розв'язку задачі нечіткої багатокритеріальної оптимізації. Спочатку, для простоти викладення матеріалу, будемо вважати, що множина альтернатив описана чітко і будемо позначати її через X. Наприкінці розділу коротко зупинимося і на задачах із нечіткою множиною альтернатив.

Для розв'язку поставленої задачі побудуємо на множині альтернатив X нечітке відношення переваги, індуковане вихідним нечітким відношенням переваги R і нечіткою ціллю, яка задана нечітким векторним відображенням ϕ . Після цього виділимо у X нечітку підмножину недомінованих альтернатив, яка і буде множиною оптимальних за Парето рішень задачі нечіткої багатокритеріальної оптимізації.

Будь-якій альтернативі x^* задане нечітке відображення ϕ ставить у відповідність нечітку векторну оцінку цієї альтернативи у формі нечіткої підмножини $\phi(x^*,y)$ множини оцінок $Y\subseteq E^m$.

Нехай $\tilde{\eta}$ – нечітке відношення переваги, індуковане нечітким відношенням переваги R на класі Ψ усіх нечітких підмножин множини Y. Користуючись цим відношенням, можна порівнювати одну з іншою нечіткі оцінки альтернатив, а отже і самі альтернативи. Іншими словами, ступенем переваги альтернативи $x_1 \in X$ альтернативі $x_2 \in X$ ми будемо вважати ступінь переваги нечіткої множини оцінок $\phi(x_1, y)$ нечіткій множині оцінок $\phi(x_2, y)$, тобто покладемо

$$\eta(x_1,x_2) = \tilde{\eta}(\phi(x_1,y),\phi(x_2,y)).$$

Таким чином, використовуючи визначення узагальненого нечіткого відношення переваги, одержуємо нечітке відношення переваги на множині альтернатив X такого вигляду:

$$\eta(x_1, x_2) = \sup_{z, y \in Y} \min \left\{ \phi(x_1, z), \phi(x_2, y), \mu_R(z, y) \right\}.$$

Після того як і у множині альтернатив уведене нечітке відношення переваги вихідна задача зводиться до задачі прийняття рішень із ціллю, що задана нечітким відношенням переваги (див. § 2). Неважко переконатися у тому, що коли функція ф має властивість $\sup_{y \in Y} \phi(x,y) = 1, \ \forall x \in X$, тобто коли оцінка будь-якої альтернативи є но-

рмальною нечіткою множиною, то нечітке відношення переваги η рефлексивно, тобто $\forall x \in X, \ \eta(x,x) = 1$.

Виділимо тепер у множині X нечітку підмножину недомінованих (оптимальних за Парето) альтернатив. Відповідно до визначення вона матиме такий вигляд:

$$\begin{split} &\tilde{\eta}^{P}\left(x\right) = 1 - \sup_{x' \in X} \left\{ \eta\left(x', x\right) - \eta\left(x, x'\right) \right\} = \\ &= 1 - \sup_{x' \in X} \left\{ \sup_{z, y \in Y} \min\left\{ \phi\left(x', z\right), \phi\left(x, y\right), \mu_{R}\left(z, y\right) \right\} - \\ &- \sup_{z, y \in Y} \min\left\{ \phi\left(x', z\right), \phi\left(x, y\right), \mu_{R}\left(y, z\right) \right\} \right\}. \end{split}$$

Необхідно відзначити, що коли функція $\phi(x,y)$ така, що для деякої альтернативи x^* має місце нерівність $\sup_{y \in V} \phi(x^*,y) = \alpha < 1$, то значення

 $\tilde{\eta}^{P}(x^{*})$ може не відповідати фактичному ступеню недомінованості цієї альтернативи.

Для ілюстрації розглянемо крайній випадок, коли $\alpha=0$. У вихідній задачі це відповідає тому, що оцінка альтернативи x^* є невідомою або невизначеною. У той же час для цієї альтернативи $\eta(x^*,x^*)=0$ і $\tilde{\eta}^P(x^*)=1$, тобто альтернатива виявляється недомінованою, причому винятково через відсутність інформації про неї.

Для того щоб виключити такі аномальні випадки, величину $\tilde{\eta}^P(x^*)$ необхідно скорегувати. Для цього значення функції $\tilde{\eta}^P(x)$ потрібно порівнювати з відповідними значеннями $\sup_{y \in Y} \phi(x,y)$.

Спираючись на ці міркування, розв'язком вихідної задачі будемо вважати не функцію належності $\tilde{\eta}^P$, а скориговану функцію виду:

$$\eta^{P}(x) = \min \left\{ \tilde{\eta}^{P}(x), \sup_{y \in Y} \phi(x, y) \right\}.$$

Неважко показати, що для будь-якого x має місце рівність $\sup_{y \in Y} \phi(x,y) = \eta(x,x)$. Тоді остаточно функцію $\eta^P(x)$ можна записати у

вигляді:
$$\eta^P(x) = \min\{\tilde{\eta}^P(x), \eta(x,x)\}$$
.

Отримана функція належності й описує нечітку множину рішень вихідної задачі, раціональним можна вважати вибір $x^* = \sup_{x \in X} \eta^P(x)$.

Якщо у вихідній задачі множина альтернатив описана нечітко (нехай μ_D – функція належності цієї множини), то вибір альтернатив варто здійснювати з урахуванням двох відношень переваги: отриманого вище узагальненого відношення переваги η_{\geq} , що відбиває ступені допустимості альтернатив. Це відношення є

індукованим функцією належності μ_D до нечіткої множини альтернатив і визначається так:

$$\eta_{\geq}(x,y) = \begin{cases} 1, & \mu_{D}(x) \geq \mu_{D}(y), \\ 0, & \mu_{D}(x) < \mu_{D}(y). \end{cases}$$

Тепер, якщо вважати відношення $\mu_{\scriptscriptstyle \geq}$ і $\eta_{\scriptscriptstyle \geq}$ рівноцінними для ОПР, їх можна агрегувати в одне відношення переваги, яке визначимо як їхній перетин $\omega_{\scriptscriptstyle \geq}(x,y)=\min\{\mu_{\scriptscriptstyle \geq}(x,y),\,\eta_{\scriptscriptstyle \geq}(x,y)\}$ і розв'язати задачу на чіткій множині альтернатив із ціллю, що задана нечітким відношенням переваги. У випадку, коли відношення $\mu_{\scriptscriptstyle \geq}$ і $\eta_{\scriptscriptstyle \geq}$ не є рівноцінними для ОПР, усе буде складніше.

Задачі нечіткої векторної оптимізації. У випадку, коли відношення переваги R на множині оцінок Y є чітким і це – відношення нестрогого порядку (\geq) в E^m вибір конкретного розв'язку вихідної задачі можна зробити конструктивнішим. Функція належності $\eta^P(x)$, що описує нечітку множину розв'язків вихідної задачі конкретизується так: $\eta^P(x) = \min\{\tilde{\eta}^P(x), \eta(x,x)\}$, де

$$\tilde{\eta}^{P}(x) = 1 - \sup_{\substack{x' \in X \\ z, y \in Y, \\ z \geq u}} \left\{ \sup_{\substack{z, y \in Y, \\ z \geq u}} \min \left\{ \phi(x', z), \phi(x, y) \right\} - \sup_{\substack{z, y \in Y, \\ z \geq u}} \min \left\{ \phi(x', z), \phi(x, y) \right\} \right\}.$$

Доречно нагадати, що:

$$y = (y_1, ..., y_m) \ge z = (z_1, ..., z_m) \Leftrightarrow y_i \ge z_i, \quad \forall i = \overline{1, m}, \quad \exists j : y_i > z_j.$$

Оскільки величина $\eta^P(x)$ є ступінь недомінованості альтернативи x, якщо $\eta^P(x) \ge \alpha$, то у множині X немає жодної альтернативи, що домінувала б альтернативу x зі ступенем більшим, ніж $1-\alpha$. Це зауваження дає можливість вибрати конкретний розв'язок зі ступенем недомінованості не меншим за α , як розв'язок наступної звичайної (чіткої) багатокритеріальної задачі:

$$y_i \to \max, \quad i = \overline{1, m},$$

 $\phi(x, y) \ge \alpha,$ (7.4.1)
 $x \in X, \quad y = (y_1, ..., y_m) \in Y.$

Дійсно, нехай (x^*, y^*) – розв'язок отриманої багатокритеріальної задачі. Припустимо супротивне, тобто, нехай знайдуться $\tilde{x} \in X$ і $\varepsilon > 0$ такі, що:

$$\sup_{z,y\in Y,\ z\geq y}\min\left\{\phi\left(\tilde{x},z\right),\phi\left(x^{*},y\right)\right\}-\sup_{z,y\in Y,\ z\geq y}\min\left\{\phi\left(x^{*},z\right),\phi\left(\tilde{x},y\right)\right\}\geq 1-\alpha+\varepsilon.$$
 (7.4.2)

Виберемо $\tilde{y} \in Y$ так, що $\phi(\tilde{x}, \tilde{y}) \ge \alpha - \varepsilon$ (неіснування такого \tilde{y} означає, що $\sup_{y \in Y} \phi(x, y) < \alpha$ і розв'язком із ступенем недомінованості не

меншим за α , не існує, тому варто вибрати меншу ступінь). Оскільки (x^*, y^*) є розв'язком задачі (7.4.1), то $\phi(x^*, y^*) \ge \alpha$. Звідси

$$\sup_{z,y\in Y,\ z\geq y}\min\left\{\phi\left(x^{*},z\right),\phi\left(\tilde{x},y\right)\right\}\geq\min\left\{\phi\left(x^{*},y^{*}\right),\phi\left(\tilde{x},\tilde{y}\right)\right\}\geq\min\left\{\alpha,\alpha-\varepsilon\right\}=\alpha-\varepsilon,$$

але тоді наше припущення ϵ неможливим, оскільки лівий доданок у лівій частині (7.4.2) не перевищує 1.

Таким чином, будь-який компромісний розв'язок багатокритеріальної задачі (7.4.1) буде розв'язком вихідної задачі зі ступенем недомінованості не меншим за α .

У випадку, коли множина альтернатив є нечіткою (нехай μ_D – функція належності цієї множини), то ми отримаємо багатокритеріальну задачу з чіткими критеріями і нечіткою множиною альтернатив μ_D . Під розв'язком такої задачі ми будемо розуміти вибір нечіткої підмножини μ множини μ_D , якій відповідає найбільші значення як функцій y_i , $i=\overline{1,m}$, так і функції належності μ_D до нечіткої множини альтернатив.

Нехай $P_m(\alpha)$ – множина всіх ефективних альтернатив (m+1) – критеріальної задачі:

$$y_i \to \max, i = 1, \overline{m},$$

 $\mu_D(x) \to \max,$
 $\phi(x, y) \ge \alpha,$
 $x \in X, y = (y_1, ..., y_m) \in Y.$

Тоді розв'язком задачі нечіткої векторної оптимізації з нечіткою множиною альтернатив і зі ступенем недомінованості альтернатив, не меншим за α , називається нечітка множина з функцією належності виду:

$$\mu_{\alpha}(x) = \begin{cases} \mu_{D}(x), & x \in P_{m}(\alpha), \\ 0, & x \notin P_{m}(\alpha). \end{cases}$$

Таким чином, нечітка множина рішень вихідної задачі буде включати у себе ті й тільки ті альтернативи зі ступенем недомінованості не меншим за α , які будуть ефективними як за числовими оцінками альтернатив $y_i, i=\overline{1,m}$, так і за функцією належності μ_D до нечіткої множини альтернатив. Вибір деякої конкретної з них альтернативи здійснюється за допомогою методів багатокритеріальної оптимізації (див. Розділ 4).

Контрольні завдання до § 4

1. Розв'язати методом ідеальної точки (S=1) таку задачу прийняття рішень в умовах нечіткої інформації:

$$x_1 + x_2 \rightarrow \max$$
, $x_{1,2} \in [0, 1]$, $\mu(x) = 1 - (x_1 + x_2 - 1)^2$.

2. Розв'язати методом ідеальної точки ($S = \infty$) таку задачу прийняття рішень в умовах нечіткої інформації:

$$(x_1 - 1)^3 + (x_2 - 1)^3 \rightarrow \max, x_{1,2} \in [0, 1], \mu(x) = 1 - (x_1 + x_2 - 1)^2.$$

3. Розв'язати методом послідовних поступок (три кроки) таку задачу прийняття рішень в умовах нечіткої інформації:

$$x_1 \to \max$$
, $x_1 + x_2 \to \max$, $x_{1,2} \in [0, 1]$, $\mu(x) = 1 - (x_1 + x_2 - 1)^2$.

4. Розв'язати (зробити півтори ітерації) методом послідовного уводу обмежень (варіант 2) таку задачу прийняття рішень в умовах нечіткої інформації:

$$(x_1 - 1)^3 + 2(x_2 - 1)^3 \rightarrow \max, x_{1,2} \in [0, 1], \mu(x) = 1 - (x_1 + x_2 - 1)^2.$$

5. Розв'язати (зробити півтори ітерації) методом послідовного уводу обмежень (варіант 3) таку задачу прийняття рішень в умовах нечіткої інформації:

$$2(x_1-1)^3 + (x_2-1)^3 \to \max$$
, $x_{1,2} \in [0,1]$, $\mu(x) = 1 - (x_1 + x_2 - 1)^2$.

ПИТАННЯ ДЛЯ САМОПЕРЕВІРКИ ДО РОЗДІЛУ 7

- 1. Що таке універсальна множина альтернатив?
- 2. Дайте визначення множини рівня нечіткої множини.
- 3. Дайте визначення нечіткого відображення чіткої множини.
- 4. Дайте визначення нечіткого відношення Парето.
- 5. Що таке множина максимальних недомінованих альтернатив?
- 6. Яка основна ідея розв'язку ігор із нечіткою цільовою множиною стратерій.
 - 7. Дайте визначення нечіткої рівноваги Неша.
 - 8. У чому полягає підхід Белмана-Лотфізаде.
- 9. У чому полягає підхід С.О. Орловського до багатокритеріальних задач із нечіткою множиною альтернатив?
 - 10. Яка постановка задачі нечіткої векторної оптимізації?

ПІСЛЯМОВА

Курс "Теорія прийняття рішень" був включений до навчальних планів дисципліни "Прикладна математика" при розробці нормативних документів на початку 90-х рр. минулого сторіччя з ініціативи одного з авторів посібника, члена Науково-методичної комісії з прикладної математики Міністерства освіти України. При цьому був урахований досвід кращих навчальних закладів світу: Кембридж, Оксфорд, Каліфорнійський університет (Берклі), Масачусетський технологічний інститут і т. д. Про важливість подібного курсу свідчить і те, що за останні п'ятнадцять років за результати, отримані в теорії прийняття рішень і їхнє застосування в багатьох галузях людської діяльності (в першу чергу, в економіці), присуджено три Нобелівські премії (див. текст посібника).

На факультеті кібернетики Київського національного університету імені Тараса Шевченка курси з теорії прийняття рішень читаються на всіх спеціальностях – прикладній математиці, інформатиці, системному аналізі та теорії прийняття рішень. П'ятнадцятирічний досвід читання цих курсів авторами саме й узагальнено в посібнику. Розділи 1, 5, 6; § 4 розділу 2, §§ 1–3 розділу 3 написані проф. О.Ф. Волошиним. Розділи 4, 7; §§ 1–3 розділу 2; § 4 розділу 3 – доц. С.О. Мащенком.

Щодо змісту – автори свідомо не включили інформацію, пов'язану з розробкою систем прийняття рішень (це окрема тема, див., наприклад, [16,18,21,29,36]), але практично всі розділи посібника підтримуються програмною реалізацією методів у вигляді модулів (розроблених студентами на лабораторних заняттях [2,15]), об'єднаних у навчально-методичну програмну систему. Бажаючі зможуть придбати диск із цією системою як додаток до посібника (звертатись на email: ovoloshin@unicyb.kiev.ua).

Автори вдячні рецензентам професорам А.М. Вороніну, Ю.П. Зайченку та І.М. Ляшенку за висловлені зауваження та побажання, частина яких врахована в цьому виданні, інші будуть ураховані в майбутньому.

Висловлюємо подяку П.П. Антосяку, Н.В. Волошиній, П.О. Волошину, Т.Б. Козаченко за допомогу при підготовці електронної версії посібника, а також студентам факультету кібернетики, у першу чергу, К.О. Путієнко, за співпрацю у виправленні помилок у попередньому виданні посібника [1].

СПИСОК ЛІТЕРАТУРИ

ОСНОВНА ЛІТЕРАТУРА

- 1. Волошин О.Ф., Мащенко С.О. Теорія прийняття рішень : навч. посібн. К., 2006.
- 2. Волошин О.Ф., Мащенко С.О. Методичні рекомендації до виконання практичних і лабораторних робіт з теорії прийняття рішень. К., 2001.
- 3. Катренко А.В., Пасічник В.А., Пасько В.П. Теорія прийняття рішень. К., 2009.
 - 4. Ларичев О.И. Теория и методы принятия решений. М., 2000.
- 5. Макаров И.М., Виноградская Т.М., Рубчинский А.А. Теория выбора и принятия решений: Учебн. пособие. М., 1982.
- 6. Мулен Э. Теория игр с примерами из математической экономики. М., 1985.
- 7. *Мулен Э.* Кооперативное принятие решений: Аксиомы и модели. М., 1991.
- 8. *Мушик Э., Мюллер П.* Методы принятия технических решений. М., 1990.
- 9. Орловский С.А. Проблемы принятия решений при нечеткой исходной информации. М., 1981.
- 10. Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач. М., 1982.
 - 11. Розен В.В. Цель оптимальность решение. М., 1982.
 - 12. Фишберн П. Теория полезности для принятия решений. М., 1978.

ДОДАТКОВА ЛІТЕРАТУРА

- 13. Бердяев Н. Смысл творчества. М., 2007.
- 14. Волкович В.Л., Волошин А.Ф., Горлова Т.М.. Методы и алгоритмы проектирования сложных систем. К., 1984.
- 15. Волошин А., Газин Ю., Гридчин И., Литвиненко И. Об опыте коллективной разработки учебно-методических программных систем // International Book Series "Information Science&Computing". 2008. Vol. $2. N_{\odot} 6. P. 97-103.$
- 16. *Волошин О.Ф.*, *Панченко М.В.* Експертна система якісного оцінювання на основі багатопараметричних залежностей // Проблеми математичних машин і систем. 2002. № 2. С. 83–89.

- 17. Волошин А., Маляр Н., Швалагин О. Нечеткий алгоритм последовательного анализа вариантов // International Book Series "Information Science&Computing". 2009. Vol. 3. № 15. Р. 189–195.
- 18. Воронин А.М, Зіатдінов Ю.К., Клімова А.С.Інформаційні системи прийняття рішень : Навч. посібн. К., 2009.
 - 19. Гермейер Ю.Б. Игры с непротивоположными интересами. М., 1976.
- 20. Гнатієнко Г.М., Снитюк В.Є. Експертні технології прийняття рішень. К., 2008.
- 21. Зайченко Ю.П. Нечеткие модели и методы в интеллектуальных системах. К., 2008.
- 22. Ляшенко І.М., Коробова М.В., Столяр А.М. Основи математичного моделювання економічних, екологічних та соціальних процесів: Навчальний посібник. Тернопіль, 2006.
- 23. *Мащенко С.О.* Рівновага за Нешем у нечітких іграх // Вісн. Київ. ун-ту. Серія : Фіз.-мат. науки. 2004. № 2. С. 169–174.
- 24. *Мащенко С.О.*, *Павлюченко О.Г.* Загальні умови векторної рівноваги за Нешем // Вісн. Київ. ун-ту. Серія : Фіз.-мат. науки. 2004. N_0 4. С. 212–217.
 - 25. Миркин Б.Г. Проблема группового выбора. М., 1974.
- 26. Михалевич В.С., Волкович В.Л. Вычислительные методы проектирования сложных систем. М., 1982.
 - 27. Саати Т., Кернс К. Аналитическое планирование. М., 1981.
- 28. Салуквадзе М.Е. Методы векторной оптимизации. Тбилиси, 1976.
- 29. *Тоценко В.Г.* Методы и системы поддержки принятия решений. Алгоритмический аспект. К., 2002.
 - 30. Фромм Э. Бегство от свободы. Человек для себя. М.,2006.
- 31. Харшаньи Дж., Зельтен Р. Общая теория выбора равновесия в играх. СПб., 2001.
 - 32. Хокинс Дж. Об интеллекте. М., 2006.
- 33. *Хоменюк В.В.* Элементы теории многоцелевой оптимизации. М., 1983.
- 34. *Юдин Д.Б.* Вычислительные методы теории принятия решений. М., 1989.
 - 35. Arrow K. Social Choice and Individual Values. N.-York, 1951.
- 36. *Nash J.F.* Equilibrium Points in n-Person Games // Proceedings of National Academia of Science (US). 1951. N 36.
- 37. *Voloshyn A.* Decision-Making Support Systems as Personal Intellectual Device of a Decision-Maker // Internation Journal "Information: Technologies&Knowledge". 2007. Vol. 1. N_{\odot} 2. P. 159–162.