教材和参看书

- 教材: 周民强:《实变函数论》
- 参考书:
 - 1. Real Analysis, E. M. Stein and R. Shakarchi
 - 2. E. Hewitt, K Stromberg. Real and Abstract Analysis
 - 3. 周民强:《实变函数解题指南》
- 成绩评定: 作业 20 分, 期中 30 分期末 50 分.
- 答疑: 理科一号楼 1373.
- 电子邮件: liujm@math.pku.edu.cn.
- 课件下载: ftp://162.105.69.120/teachers/liujm (要用专门的 ftp 软件 匿名登录).

课程内容

- 建立一种新的积分理论,即 Lebesgue 积分,它是 Riemann 积分的推广,被积函数不一定是黎曼可积,积分区域也不一定是区间. Lebesgue 积分是可测函数 f 在可测集 E 上的积分,记为 $\int_{F} f(x) dx$.
- 课程的具体内容包括:
 - 1. 集合论. 2. Lebesgue 测度. 3. Lebesgue 可测函数. 4. Lebesgue 积分, 5. 微分与不定积分. 6. *LP* 空间.

课程内容

- 建立一种新的积分理论,即 Lebesgue 积分,它是 Riemann 积分的推广,被积函数不一定是黎曼可积,积分区域也不一定是区间. Lebesgue 积分是可测函数 f 在可测集 E 上的积分,记为 $\int_E f(x)dx$.
- 课程的具体内容包括:
 - 1. 集合论. 2. Lebesgue 测度. 3. Lebesgue 可测函数. 4. Lebesgue 积分, 5. 微分与不定积分. 6. *LP* 空间.

勒贝格

 勒贝格(1875~1941)H. L. Lebesgue, 法国数学家. 1894~1897年在 巴黎高等师范学校学习. 1902年在巴黎大学获得博士学位,从 1902 年起先后在雷恩大学、普瓦蒂埃大学、巴黎大学文理学院任教. 1922年任法兰西学院教授,同年被选为巴黎科学院院士.

勒贝格的主要贡献是测度和积分理论.他的理论为20世纪的许多数学分支如泛函分析、概率论、抽象积分论、抽象调和分析等奠定了基础.利用勒贝格积分理论,他对三角级数论也作出基本的改进.另外,他在维数论方面也有贡献.晚年他对初等几何学及数学史进行了研究.

勒贝格, H.L.

勒贝格积分

- 微积分学中的黎曼积分, 被积函数要求基本上连续.
- 随着认识的深入,人们经常需要处理复杂的函数,例如,由一列性质良好的函数组成级数所定义出来的函数.在讨论它们的可积性、连续性、可微性时,经常遇到积分与极限能否交换顺序的问题.通常只有在很强的假设下才能对这问题作出肯定的回答.因此,在理论和应用上都迫切要求建立一种新的积分,它既能保持黎曼积分的几何直观和计算上的有效,又能在积分与极限交换顺序的条件上有较大的改善.
- 1902 年法国数学家 H.L.勒贝格出色地完成了这一工作,建立了以后人们称之为勒贝格积分的理论. 20 世纪初又发展成建立在一般集合上的测度和积分的理论,简称测度论.

勒贝格积分

- 微积分学中的黎曼积分, 被积函数要求基本上连续.
- 随着认识的深入,人们经常需要处理复杂的函数,例如,由一列性质良好的函数组成级数所定义出来的函数.在讨论它们的可积性、连续性、可微性时,经常遇到积分与极限能否交换顺序的问题.通常只有在很强的假设下才能对这问题作出肯定的回答.因此,在理论和应用上都迫切要求建立一种新的积分,它既能保持黎曼积分的几何直观和计算上的有效,又能在积分与极限交换顺序的条件上有较大的改善.
- 1902 年法国数学家 H.L.勒贝格出色地完成了这一工作,建立了以后 人们称之为勒贝格积分的理论. 20 世纪初又发展成建立在一般集合 上的测度和积分的理论,简称测度论.

刘建明 (北大数学学院) 4 / 77'

勒贝格积分

- 微积分学中的黎曼积分, 被积函数要求基本上连续.
- 随着认识的深入,人们经常需要处理复杂的函数,例如,由一列性质良好的函数组成级数所定义出来的函数.在讨论它们的可积性、连续性、可微性时,经常遇到积分与极限能否交换顺序的问题.通常只有在很强的假设下才能对这问题作出肯定的回答.因此,在理论和应用上都迫切要求建立一种新的积分,它既能保持黎曼积分的几何直观和计算上的有效,又能在积分与极限交换顺序的条件上有较大的改善.
- 1902年法国数学家 H.L.勒贝格出色地完成了这一工作,建立了以后人们称之为勒贝格积分的理论.20世纪初又发展成建立在一般集合上的测度和积分的理论,简称测度论.

- Newton 积分: $\int_a^b f(x)dx = F(b) F(a)$ 其中 F(x) 是 f(x) 的原函数.
- Riemann $\Re \mathcal{G}$: $\int_a^b f(x) dx = \lim_{\max{\{\Delta x_i\} \to 0}} \sum_{i=1}^n f(\xi_i) \Delta x_i$.
- Lebesgue 积分是 Riemann 积分的延拓: $\int_E f(x)dx$, E 是可测集, f 是可测函数.
- Riemann-Stieltjes 积分

$$\int_{a}^{b} f(x) d\phi(x) = \lim_{\max\{\Delta x_{i}\}\to 0} \sum_{i=1}^{n} f(\xi_{i}) (\phi(x_{i}) - \phi(x_{i-1})).$$

上述积分可延拓为 Lebesgue-Stieltjes 积分

- Lebesgue 关于 Lebesgue 积分的论文
 - 1902年: 《积分,长度与面积》
 - 1903年: 《论三角级数》
 - 1904年: 《积分法和原函数分析的讲义》

刘建明 (北大数学学院) 5

- Newton 积分: $\int_a^b f(x)dx = F(b) F(a)$ 其中 F(x) 是 f(x) 的原函数.
- Riemann 积分: $\int_a^b f(x) dx = \lim_{\max{\{\Delta x_i\} \to 0}} \sum_{i=1}^n f(\xi_i) \Delta x_i$.
- Lebesgue 积分是 Riemann 积分的延拓: $\int_E f(x)dx$, E 是可测集, f 是可测函数.
- Riemann-Stieltjes 积分

$$\int_{a}^{b} f(x) d\phi(x) = \lim_{\max\{\Delta x_{i}\} \to 0} \sum_{i=1}^{n} f(\xi_{i}) (\phi(x_{i}) - \phi(x_{i-1})).$$

上述积分可延拓为 Lebesgue-Stieltjes 积分

- Lebesgue 关于 Lebesgue 积分的论文
 - 1902年: 《积分,长度与面积》
 - 1903年: 《论三角级数》
 - 1904年: 《积分法和原函数分析的讲义》

刘建明 (北大数学学院) 5 ,

- Newton 积分: $\int_a^b f(x)dx = F(b) F(a)$ 其中 F(x) 是 f(x) 的原函数.
- Riemann 积分: $\int_a^b f(x) dx = \lim_{\max\{\Delta x_i\}\to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$.
- Lebesgue 积分是 Riemann 积分的延拓: $\int_E f(x)dx$, E 是可测集, f 是可测函数.
- Riemann-Stieltjes 积分

$$\int_{a}^{b} f(x) d\phi(x) = \lim_{\max\{\Delta x_{i}\} \to 0} \sum_{i=1}^{n} f(\xi_{i}) (\phi(x_{i}) - \phi(x_{i-1})).$$

上述积分可延拓为 Lebesgue-Stieltjes 积分

- Lebesgue 关于 Lebesgue 积分的论文
 - 1902年: 《积分,长度与面积》
 - 1903年: 《论三角级数》
 - 1904年: 《积分法和原函数分析的讲义》

刘建明 (北大数学学院) 5

- Newton 积分: $\int_a^b f(x)dx = F(b) F(a)$ 其中 F(x) 是 f(x) 的原函数.
- Riemann 积分: $\int_a^b f(x) dx = \lim_{\max\{\Delta x_i\}\to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$.
- Lebesgue 积分是 Riemann 积分的延拓: $\int_E f(x)dx$, E 是可测集, f 是可测函数.
- Riemann-Stieltjes 积分

$$\int_{a}^{b} f(x)d\phi(x) = \lim_{\max\{\Delta x_{i}\}\to 0} \sum_{i=1}^{n} f(\xi_{i})(\phi(x_{i}) - \phi(x_{i-1})).$$

上述积分可延拓为 Lebesgue-Stieltjes 积分.

- Lebesgue 关于 Lebesgue 积分的论文
 - 1902年: 《积分, 长度与面积》
 - 1903年: 《论三角级数》
 - 1904年: 《积分法和原函数分析的讲义》

刘建明 (北大数学学院) 5

Fourier 级数

Fourier级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$$

其中

$$a_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, b_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

• 数学分析的许多进展与 Fourier 级数分不开. 1837, Dirichlet 在《用正弦和余弦级数表示完全任意的函数》中给出了现在的函数定义, 黎曼在他的论文《论函数通过三角级数的可表示性》中给出了Riemann 积分的定义, 1903 年 Lebesgue 《论三角级数》.

Fourier 级数

Fourier级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$$

其中

$$a_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, b_n = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx.$$

• 数学分析的许多进展与 Fourier 级数分不开. 1837, Dirichlet 在《用正弦和余弦级数表示完全任意的函数》中给出了现在的函数定义, 黎曼在他的论文《论函数通过三角级数的可表示性》中给出了Riemann 积分的定义. 1903 年 Lebesgue 《论三角级数》.

黎曼积分和勒贝格积分

• 设 f(x) 是定义在区间 [a,b] 上的函数,把区间 [a,b] 进行分割 $a=x_0 < x_1 < x_2 < \cdots < x_n = b$,任取 $\xi_i \in [x_{i-1},x_i]$, $\lambda = \max\{\Delta x_i\}$,黎 曼积分定义为

$$\int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}).$$

• Lebesgue 积分的思想:设 f(x) 是在集合 E 上定义的有界函数, $m \le f(x) \le M$. 把区间 [m, M] 进行分割 $m = y_0 < y_1 < y_2 < \cdots < y_n = M$.令 $E_i = \{x : y_{i-1} \le f(x) < y_i\}$, $0 \le i < n$, $E_n = \{x : y_{n-1} \le f(x) \le y_n = M\}$. $\lambda = \max\{\Delta y_i\}$, Lebesgue 积分定义为

$$\int_{E} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} y_{i-1}|E_{i}|.$$

黎曼积分和勒贝格积分

• 设 f(x) 是定义在区间 [a,b] 上的函数,把区间 [a,b] 进行分割 $a=x_0 < x_1 < x_2 < \cdots < x_n = b$,任取 $\xi_i \in [x_{i-1},x_i]$, $\lambda = \max\{\Delta x_i\}$,黎 曼积分定义为

$$\int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}).$$

• Lebesgue 积分的思想:设 f(x) 是在集合 E 上定义的有界函数, $m \le f(x) \le M$. 把区间 [m, M] 进行分割 $m = y_0 < y_1 < y_2 < \cdots < y_n = M$.令 $E_i = \{x : y_{i-1} \le f(x) < y_i\}$, $0 \le i < n$, $E_n = \{x : y_{n-1} \le f(x) \le y_n = M\}$. $\lambda = \max\{\Delta y_i\}$, Lebesgue 积分定义为

$$\int_{E} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} y_{i-1}|E_{i}|.$$

刘建明 (北大数学学院) 7,

黎曼积分和勒贝格积分思想的差别

- 用数钱比喻积分: 数口袋中的钱的方法 Riemann: 摸出钱币, 逐一依次计数 Lebesgue: 将钱全部拿出, 按照面值分类, 同币值钱币放一起计数, 再求和。
- 定义 Lebesgue 积分需要解决的问题: 1. 一般集合的"长度"(测度,并不是所有集合有测度)
 - 2. 什么函数可以保证定义中的 E; 有测度(可测函数).

Riemann 积分的不足

• 极限和积分交换次序: 若 $f_n(x) \in R([a,b])$, 当 f_n 在 [a,b] 上一致收敛时,才能保证极限函数黎曼可积,此时

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b \lim_{n\to\infty} f_n(x)dx.$$

- 有界收敛定理: 设 $f_n \in R([a,b])$, 存在 M > 0, 使得 对任意 $n \in \mathbb{N}$, $|f_n(x)| \leq M$. 若 $\lim_{n \to \infty} f_n(x) = f(x)$, 则极限 $\lim_{n \to \infty} \int_a^b f_n(x) dx$ 存在(而且只与 f(x) 有关).
- R([a,b]) 不完备: 在距离 $d(f,g) = \int_a^b |f-g| dx$ 或者 $d(f,g) = (\int_a^b |f-g|^2 dx)^{1/2}$ 导出的拓扑下不完备.

Riemann 积分的不足

• 极限和积分交换次序: 若 $f_n(x) \in R([a,b])$, 当 f_n 在 [a,b] 上一致收敛时,才能保证极限函数黎曼可积,此时

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b \lim_{n\to\infty} f_n(x)dx.$$

- 有界收敛定理: 设 $f_n \in R([a,b])$, 存在 M > 0, 使得 对任意 $n \in \mathbb{N}$, $|f_n(x)| \leq M$. 若 $\lim_{n \to \infty} f_n(x) = f(x)$, 则极限 $\lim_{n \to \infty} \int_a^b f_n(x) dx$ 存在(而且只与 f(x) 有关).
- R([a,b]) 不完备: 在距离 $d(f,g) = \int_a^b |f-g| dx$ 或者 $d(f,g) = (\int_a^b |f-g|^2 dx)^{1/2}$ 导出的拓扑下不完备.

关于集合论

- 集合论研究对象是一般集合,它在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域.按现代数学观点,数学各分支的研究对象是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如映射、函数).从这个意义上说,集合论可以说是整个现代数学的基础.
- Cantor (1845-1918) 1874 年提出(超穷)集合理论. 由于 Russell 悖论的出现, Zermelo和 Frankel 提出了 ZFc 公理(c:选择公理).
- 选择公理:设 $\{A_{\alpha}\}$ 是互相不交的非空集族.则存在集合X,它由每个集合 A_{α} 中取一个元构成.

关于集合论

- 集合论研究对象是一般集合,它在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域.按现代数学观点,数学各分支的研究对象是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如映射、函数).从这个意义上说,集合论可以说是整个现代数学的基础.
- Cantor (1845-1918) 1874 年提出(超穷)集合理论. 由于 Russell 悖论的出现, Zermelo和 Frankel 提出了 ZFc 公理(c:选择公理).
- 选择公理:设 $\{A_{\alpha}\}$ 是互相不交的非空集族.则存在集合X,它由每个集合 A_{α} 中取一个元构成.

关于集合论

- 集合论研究对象是一般集合,它在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域.按现代数学观点,数学各分支的研究对象是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如映射、函数).从这个意义上说,集合论可以说是整个现代数学的基础.
- Cantor (1845-1918) 1874 年提出(超穷)集合理论. 由于 Russell 悖论的出现, Zermelo和 Frankel 提出了 ZFc 公理(c:选择公理).
- 选择公理:设 $\{A_{\alpha}\}$ 是互相不交的非空集族.则存在集合X,它由每个集合 A_{α} 中取一个元构成.

- 基本概念:集合(具有一定性质的对象的全体),空集 ϕ ,子集,全集(问题涉及的最大集合).
- 集合的关系:
 - $A \subset B($ 或 $B \supset A) \Longleftrightarrow$ 若 $x \in A$,则有 $x \in B$.
 - $A = B \iff A \subset B \perp B \subset A$. 即若 $x \in A$,则有 $x \in B$;若 $x \in B$,则 有 $x \in A$.

- 基本概念:集合(具有一定性质的对象的全体),空集φ,子集,全集(问题涉及的最大集合).
- 集合的关系:
 - $A \subset B($ 或 $B \supset A) \Longleftrightarrow$ 若 $x \in A$,则有 $x \in B$.
 - $A = B \iff A \subset B \perp B \subset A$. 即若 $x \in A$,则有 $x \in B$;若 $x \in B$,则 有 $x \in A$.

- 基本概念:集合(具有一定性质的对象的全体),空集φ,子集,全集(问题涉及的最大集合).
- 集合的关系:
 - $A \subset B($ 或 $B \supset A) \Longleftrightarrow$ 若 $x \in A$,则有 $x \in B$.
 - $A = B \iff A \subset B \perp B \subset A$. 即若 $x \in A$,则有 $x \in B$;若 $x \in B$,则 有 $x \in A$.
- 幂集: 集合 A 的幂集 2^A = {B: B ⊂ A}.

- 基本概念:集合(具有一定性质的对象的全体),空集φ,子集,全集(问题涉及的最大集合).
- 集合的关系:
 - $A \subset B($ 或 $B \supset A) \Longleftrightarrow$ 若 $x \in A$,则有 $x \in B$.
 - $A = B \iff A \subset B \perp B \subset A$. 即若 $x \in A$,则有 $x \in B$;若 $x \in B$,则 有 $x \in A$.
- 幂集: 集合 A 的幂集 2^A = {B: B ⊂ A}.

基本运算

运算: A∪B, A∩B, 补集 A^c, 差集 A\B = A∩B^c.

$$\bigcup_{\alpha\in I}A_{\alpha}=\{x:\exists\alpha\in I,s.t.x\in A_{\alpha}\},\quad\bigcap_{\alpha\in I}A_{\alpha}=\{x:\forall\alpha\in I,x\in A_{\alpha}\}.$$

• 交与并的交换律和结合律、分配率

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- De.Morgan法则: $E\setminus (\bigcup_{\alpha\in I}A_\alpha)=\bigcap_{\alpha\in I}E\setminus A_\alpha,\ E\setminus (\bigcap_{\alpha\in I}A_\alpha)=\bigcup_{\alpha\in I}E\setminus A_\alpha.$
- 常见集合: N = {1,2,···},有理数集 Q,整数集 Z.

对称差

• 定义:集合 A 与 B 的对称差定义为

$$A \triangle B = (A \backslash B) \cup (B \backslash A).$$

- \emptyset : $A \triangle \phi = A$, $A \triangle A = \phi$, $A \triangle A^c = X$, $A \triangle X = A^c$.
- 性质:
 - (i) 交換律: $A \triangle B = B \triangle A$;
 - (ii) 结合律: $(A \triangle B) \triangle C = A \triangle (B \triangle C)$;
 - (iii) 分配率: $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$
 - (iv) $A^c \triangle B^c = A \triangle B$.
 - (v) 对任意的集合 $A \subseteq B$, 存在唯一的集合 $E(=A \triangle B)$, 使得 $E \triangle A = B$.

• 设 f(x) 是 \mathbb{R} 上的实值函数,则有

$$\{x \in \mathbb{R} : f(x) > 0\} = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}.$$

• 证明: 显然有

$$\{x \in \mathbb{R} : f(x) > 0\} \supset \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}.$$

另一方面, 对任意
$$x \in \{x \in \mathbb{R} : f(x) > 0\}$$
, 即 $f(x) > 0$, 则存在 n 使得 $f(x) > \frac{1}{n}$, 即 $x \in \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}$, 从而 $x \in \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}$. 因此
$$\{x \in \mathbb{R} : f(x) > 0\} \subset \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}.$$

• 设 f(x) 是 \mathbb{R} 上的实值函数,则有

$$\{x \in \mathbb{R} : f(x) > 0\} = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}.$$

• 证明: 显然有

$$\{x \in \mathbb{R} : f(x) > 0\} \supset \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}.$$

另一方面, 对任意 $x \in \{x \in \mathbb{R} : f(x) > 0\}$, 即 f(x) > 0, 则存在 n, 使得 $f(x) > \frac{1}{n}$, 即 $x \in \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}$, 从而 $x \in \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}$. 因此

● 设 f(x) 是 ℝ上的实值函数,则有

$${x \in \mathbb{R} : f(x) > 0} = \bigcup_{n=1}^{\infty} {x \in \mathbb{R} : f(x) > \frac{1}{n}}.$$

• 证明: 显然有

$$\{x \in \mathbb{R} : f(x) > 0\} \supset \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}.$$

另一方面, 对任意
$$x \in \{x \in \mathbb{R} : f(x) > 0\}$$
, 即 $f(x) > 0$, 则存在 n , 使得 $f(x) > \frac{1}{n}$, 即 $x \in \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}$, 从而 $x \in \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}$. 因此
$$\{x \in \mathbb{R} : f(x) > 0\} \subset \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\}.$$

• 设 f(x) 是 \mathbb{R} 上的实值函数,则有

$$\{x \in \mathbb{R} : f(x) \le 0\} = \bigcap_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) \le \frac{1}{n}\}.$$

- $i : \bigcup_{n=1}^{\infty} \{ x \in \mathbb{R} : f(x) > \frac{1}{n} \} = \bigcup_{n=1}^{\infty} \{ x \in \mathbb{R} : f(x) \ge \frac{1}{n} \}.$ $\bigcap_{n=1}^{\infty} \{ x \in \mathbb{R} : f(x) \le \frac{1}{n} \} = \bigcap_{n=1}^{\infty} \{ x \in \mathbb{R} : f(x) < \frac{1}{n} \}.$
- 例: 若 f(x) 是 \mathbb{R} 上的函数, 则 $\bigcap_{n=1}^{\infty} E_n$ 是 f(x) 的连续点集, 其中

$$E_n = \{x \in \mathbb{R} : \exists \delta > 0, |f(x') - f(x'')| < \frac{1}{n}, x', x'' \in (x - \delta, x + \delta)\}.$$

• 设 f(x) 是 \mathbb{R} 上的实值函数,则有

$$\{x \in \mathbb{R} : f(x) \le 0\} = \bigcap_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) \le \frac{1}{n}\}.$$

• $\not\exists$: $\bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\} = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) \geq \frac{1}{n}\}.$

$$\bigcap_{n=1}^{\infty} \left\{ x \in \mathbb{R} : f(x) \le \frac{1}{n} \right\} = \bigcap_{n=1}^{\infty} \left\{ x \in \mathbb{R} : f(x) < \frac{1}{n} \right\}$$

• 例: 若 f(x) 是 \mathbb{R} 上的函数, 则 $\bigcap_{n=1}^{\infty} E_n$ 是 f(x) 的连续点集, 其中

$$E_n = \{x \in \mathbb{R} : \exists \delta > 0, |f(x') - f(x'')| < \frac{1}{n}, x', x'' \in (x - \delta, x + \delta)\}.$$

• 设 f(x) 是 \mathbb{R} 上的实值函数,则有

$${x \in \mathbb{R} : f(x) \le 0} = \bigcap_{n=1}^{\infty} {x \in \mathbb{R} : f(x) \le \frac{1}{n}}.$$

- 注: $\bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) > \frac{1}{n}\} = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) \ge \frac{1}{n}\}.$ $\bigcap_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) \le \frac{1}{n}\} = \bigcap_{n=1}^{\infty} \{x \in \mathbb{R} : f(x) < \frac{1}{n}\}.$

$$E_n = \{x \in \mathbb{R} : \exists \delta > 0, |f(x') - f(x'')| < \frac{1}{n}, x', x'' \in (x - \delta, x + \delta)\}.$$

集合的直积

直积的定义: n个集合 X₁, X₂, ···, X_n 的直积定义为

$$X_1 \times X_2 \times \cdots \times X_n = \prod_{i=1}^n X_i = \{(x_1, x_2, \cdots, x_n) : x_i \in X_i, i = 1, 2, ..., n\}\}.$$

- $X \times X \times \cdots X = X^n$, $\not = \mathbb{R}^n = \{(x_1, x_2, \cdots, x_n) : x_i \in \mathbb{R}, i = 1, 2, ..., n)\}$, $\mathbb{Z}^n = \{(z_1, z_2, \cdots, z_n) : x_i \in \mathbb{Z}, i = 1, 2, ..., n)\}$.
- 例: $[a,b] \times [c,d]$ 是平面中的矩形.

集合的直积

直积的定义: n个集合 X₁, X₂, ···, X_n 的直积定义为

$$X_1 \times X_2 \times \cdots \times X_n = \prod_{i=1}^n X_i = \{(x_1, x_2, \cdots, x_n) : x_i \in X_i, i = 1, 2, ..., n\}\}.$$

- $X \times X \times \cdots X = X^n$, $\not = \mathbb{R}^n = \{(x_1, x_2, \cdots, x_n) : x_i \in \mathbb{R}, i = 1, 2, ..., n)\}$, $\mathbb{Z}^n = \{(z_1, z_2, \cdots, z_n) : x_i \in \mathbb{Z}, i = 1, 2, ..., n)\}$.
- 例: [a, b] × [c, d] 是平面中的矩形.

集合的直积

直积的定义: n个集合 X₁, X₂, ···, X_n 的直积定义为

$$X_1 \times X_2 \times \cdots \times X_n = \prod_{i=1}^n X_i = \{(x_1, x_2, \cdots, x_n) : x_i \in X_i, i = 1, 2, ..., n\}\}.$$

- $X \times X \times \cdots X = X^n$, $\forall x \mathbb{R}^n = \{(x_1, x_2, \cdots, x_n) : x_i \in \mathbb{R}, i = 1, 2, ..., n)\}$, $\mathbb{Z}^n = \{(z_1, z_2, \cdots, z_n) : x_i \in \mathbb{Z}, i = 1, 2, ..., n)\}$.
- 例: [a, b] × [c, d] 是平面中的矩形.

上限集与下限集

设 An 是一集合列.

• 定义上限集与下限集:

$$\overline{\lim}_{n\to\infty}A_n=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k,\quad \underline{\lim}_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k.$$

比较数列的上极限与下极限:

$$\overline{\lim_{n\to\infty}} a_n = \lim_{n\to\infty} \sup\{a_k : k \ge n\}, \quad \underline{\lim_{n\to\infty}} a_n = \lim_{n\to\infty} \inf\{a_k : k \ge n\}.$$

• 极限集: $\overline{\lim}_{n\to\infty}A_n=\varliminf_{n\to\infty}A_n$, 则称极限集 $\lim_{n\to\infty}A_n$ 存在,定义

$$\lim_{n\to\infty}A_n=\overline{\lim_{n\to\infty}}A_n=\underline{\lim_{n\to\infty}}A_n.$$

设An是一集合列,

• 若 A_n 是递增集合列,则 $\lim_{n\to\infty} A_n = \overline{\lim_{n\to\infty}} A_n = \bigcup_{n=1}^{\infty} A_n$.

证明: 对上限集,
$$\bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$$
. 因此 $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. 对下限集, $\bigcap_{k=n}^{\infty} A_k = A_n$, $\bigcap_{k=n}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k$.

• 若
$$A_n$$
 是 遊 滅集合列,则 $\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.

证明:
$$\bigcap_{k=n}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k , \bigcup_{k=n}^{\infty} A_k = A_n.$$

设An是一集合列,

• 若
$$A_n$$
 是递增集合列,则 $\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$. 证明: 对上限集, $\bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. 因此 $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. 对下限集, $\bigcap_{k=n}^{\infty} A_k = A_n$, $\bigcap_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n$.

• 若
$$A_n$$
 是递减集合列,则 $\lim_{\substack{n \to \infty \\ n \to \infty}} A_n = \overline{\lim_{n \to \infty}} A_n = \bigcap_{n=1}^{\infty} A_n$. 证明: $\bigcap_{k=n}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k$, $\bigcup_{k=n}^{\infty} A_k = A_n$.

设An是一集合列,

- 若 A_n 是递增集合列,则 $\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$. 证明: 对上限集, $\bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. 因此 $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. 对下限集, $\bigcap_{k=n}^{\infty} A_k = A_n$, $\bigcap_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n$.
- 若 A_n 是递减集合列,则 $\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$. 证明: $\bigcap_{k=n}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k$, $\bigcup_{k=n}^{\infty} A_k = A_n$.

设 An 是一集合列,

- 若 A_n 是递增集合列,则 $\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$. 证明:对上限集, $\bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. 因此 $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. 对下限集, $\bigcap_{k=n}^{\infty} A_k = A_n$, $\bigcap_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n$.
- 若 A_n 是递减集合列,则 $\lim_{n\to\infty} A_n = \overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$. 证明: $\bigcap_{k=n}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k$, $\bigcup_{k=n}^{\infty} A_k = A_n$.

- 性质: $E \setminus \overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} (E \setminus A_n)$, $E \setminus \underline{\lim}_{n \to \infty} A_n = \overline{\lim}_{n \to \infty} (E \setminus A_n)$
- 设集合列 A_n 满足 $A_{2n+1} = A$, $A_{2n} = B$, 则有

$$\overline{\lim}_{n\to\infty} A_n = A \bigcup B, \quad \underline{\lim}_{n\to\infty} A_n = A \bigcap B$$

证明:
$$\bigcup_{k=n}^{\infty} A_k = A \bigcup B, \quad \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = A \bigcup B$$

$$\bigcap_{k=n}^{\infty} A_k = A \bigcap B, \quad \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = A \bigcap B$$

- 性质: $E \setminus \overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} (E \setminus A_n), E \setminus \underline{\lim}_{n \to \infty} A_n = \overline{\lim}_{n \to \infty} (E \setminus A_n)$
- 设集合列 A_n 满足 $A_{2n+1} = A$, $A_{2n} = B$, 则有

$$\overline{\lim}_{n\to\infty} A_n = A \bigcup B, \quad \underline{\lim}_{n\to\infty} A_n = A \bigcap B$$

.

$$\bigcup_{k=n}^{\infty} A_k = A \bigcup B, \quad \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = A \bigcup B.$$

$$\bigcap_{k=n}^{\infty} A_k = A \cap B, \quad \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = A \cap B.$$

- 性质: $E \setminus \overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} (E \setminus A_n)$, $E \setminus \underline{\lim}_{n \to \infty} A_n = \overline{\lim}_{n \to \infty} (E \setminus A_n)$
- 设集合列 A_n 满足 $A_{2n+1} = A$, $A_{2n} = B$, 则有

$$\overline{\lim}_{n\to\infty} A_n = A \bigcup B, \quad \underline{\lim}_{n\to\infty} A_n = A \bigcap B$$

.

$$\bigcup_{k=n}^{\infty} A_k = A \bigcup B, \quad \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = A \bigcup B.$$

$$\bigcap_{k=n}^{\infty} A_k = A \cap B, \quad \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = A \cap B.$$

- 性质: $E \setminus \overline{\lim}_{n \to \infty} A_n = \underline{\lim}_{n \to \infty} (E \setminus A_n)$, $E \setminus \underline{\lim}_{n \to \infty} A_n = \overline{\lim}_{n \to \infty} (E \setminus A_n)$
- 设集合列 A_n 满足 $A_{2n+1} = A$, $A_{2n} = B$, 则有

$$\overline{\lim}_{n\to\infty} A_n = A \bigcup B, \quad \underline{\lim}_{n\to\infty} A_n = A \bigcap B$$

.

$$\bigcup_{k=n}^{\infty} A_k = A \bigcup B, \quad \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = A \bigcup B.$$

$$\bigcap_{k=n}^{\infty} A_k = A \cap B, \quad \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = A \cap B.$$

• $x \in \overline{\lim}_{n \to \infty} A_n \iff \forall n, x \in \bigcup_{k=n}^{\infty} A_k$ $\iff \exists$ 无穷个 $A_k \ni x \iff \exists$ 子列 $A_{n_k} \ni x$.

证明: 利用
$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
. 若对任意的 $n, x \in \bigcup_{k=n}^{\infty} A_k$. 由 $x \in \bigcup_{k=1}^{\infty} A_k$, 存在 $A_{n_1} \ni x$. 由 $x \in \bigcup_{k=n_1+1}^{\infty} A_k$, 存在 $n_2 > n_1$, 使得 $A_{n_2} \ni x$, 这样可构造出集合列 $A_{n_k} \ni x$.

• $x \in \underline{\lim}_{n \to \infty} A_n \iff \exists n, x \in \bigcap_{k=n}^{\infty} A_k \iff \exists n, \forall k \ge n, x \in A_k.$

证明: 利用
$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$
.

• $x \in \overline{\lim}_{n \to \infty} A_n \iff \forall n, x \in \bigcup_{k=n}^{\infty} A_k$ $\iff \exists$ 无穷个 $A_k \ni x \iff \exists$ 子列 $A_{n_k} \ni x$.

证明: 利用
$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
. 若对任意的 $n, x \in \bigcup_{k=n}^{\infty} A_k$. 由 $x \in \bigcup_{k=1}^{\infty} A_k$, 存在 $A_{n_1} \ni x$. 由 $x \in \bigcup_{k=n_1+1}^{\infty} A_k$, 存在 $n_2 > n_1$, 使得 $A_{n_2} \ni x$, 这样可构造出集合列 $A_{n_k} \ni x$.

• $x \in \underline{\lim}_{n \to \infty} A_n \iff \exists n, x \in \bigcap_{k=n}^{\infty} A_k \iff \exists n, \forall k \ge n, x \in A_k.$

证明: 利用
$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

• $x \in \overline{\lim}_{n \to \infty} A_n \iff \forall n, x \in \bigcup_{k=n}^{\infty} A_k$ $\iff \exists$ 无穷个 $A_k \ni x \iff \exists$ 子列 $A_{n_k} \ni x$.

证明: 利用
$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
. 若对任意的 $n, x \in \bigcup_{k=n}^{\infty} A_k$. 由 $x \in \bigcup_{k=1}^{\infty} A_k$, 存在 $A_{n_1} \ni x$. 由 $x \in \bigcup_{k=n_1+1}^{\infty} A_k$, 存在 $n_2 > n_1$, 使得 $A_{n_2} \ni x$, 这样可构造出集合列 $A_{n_k} \ni x$.

 $\bullet \ x \in \underline{\lim}_{n \to \infty} A_n \Longleftrightarrow \exists n, x \in \bigcap_{k=n}^{\infty} A_k \Longleftrightarrow \exists n, \forall k \ge n, x \in A_k.$

证明: 利用
$$\underline{\lim}_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

• $x \in \overline{\lim}_{n \to \infty} A_n \iff \forall n, x \in \bigcup_{k=n}^{\infty} A_k$ $\iff \exists$ 无穷个 $A_k \ni x \iff \exists$ 子列 $A_{n_k} \ni x$.

证明: 利用
$$\overline{\lim}_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$
. 若对任意的 $n, x \in \bigcup_{k=n}^{\infty} A_k$. 由 $x \in \bigcup_{k=1}^{\infty} A_k$, 存在 $A_{n_1} \ni x$. 由 $x \in \bigcup_{k=n_1+1}^{\infty} A_k$, 存在 $n_2 > n_1$, 使得 $A_{n_2} \ni x$, 这样可构造出集合列 $A_{n_k} \ni x$.

• $x \in \underline{\lim}_{n \to \infty} A_n \iff \exists n, x \in \bigcap_{k=n}^{\infty} A_k \iff \exists n, \forall k \ge n, x \in A_k.$

证明: 利用
$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$
.

• 设 \mathbb{R} 上的渐升实值函数列 $f_n \to f(x)$. $E_n(x) = \{x: f_n(x) > t\}$, 证明

$$\lim_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \{x : f_n(x) > t\} = \{x : f(x) > t\}$$

证明: 因为 f_n(x) ≤ f(x), E_n ⊂ {x: f(x) > t}. 另一方面若 f(x) > t,
 存在 N, n > N 时, f_n(x) > t, 即 x ∈ E_n.

不收敛点集

设 {f_n(x)} 和 f(x) 是 ℝ 上的实值函数, 不收敛点集

$$D = \{x \in \mathbb{R} : f_n(x)$$
 不收敛到 $f(x)\}$

可表示为

$$D = \bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \{x : |f_n(x) - f(x)| \ge \frac{1}{k}\}.$$

证明: 若 x₀ ∈ D, 则存在 ε₀, 存在无穷个 n 满足

$$|f_n(x_0)-f(x_0)|\geq \epsilon$$

若 xo 属于右边的集合, 则存在 k, 存在无穷个 n 满足

$$|f_n(x_0) - f(x_0)| \ge \frac{1}{k}.$$

• 特征函数: 设 $E \subset \mathbb{R}^n$, E 的特性函数 $\chi_E = \begin{cases} 1, x \in E \\ 0, x \notin E \end{cases}$. 如 Dirichlet 函数 $\chi_{\mathbb{Q}}$.

性质: $\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$; $\chi_{A \cap B} = \chi_A \cdot \chi_B$.

• 设 $A_n \subset \mathbb{R}^n$, 证明

$$\underline{\lim}_{n\to\infty}\chi_{A_n}(x)=\chi_{\varliminf_{n\to\infty}A_n}(x),\quad \overline{\lim}_{n\to\infty}\chi_{A_n}(x)=\chi_{\varlimsup_{n\to\infty}A_n}(x).$$

证明: 当 $x \in \underline{\lim}_{n \to \infty} A_n$ 时, 存在N, 当n > N 时, $A_n \ni x$, 则 $\chi_{A_n}(x) = 1$, 则有 $\underline{\lim}_{n \to \infty} \chi_{A_n}(x) = 1$. 当 $x \notin \underline{\lim}_{n \to \infty} A_n$ 时, 存在 A_n 的子列 $A_{n_k} \not\ni x$, 则 $\chi_{A_{n_k}}(x) = 0$, 则有 $\underline{\lim}_{n \to \infty} \chi_{A_n}(x) = 0$.

• 特征函数: 设 $E \subset \mathbb{R}^n$, E 的特性函数 $\chi_E = \begin{cases} 1, x \in E \\ 0, x \notin E \end{cases}$. 如 Dirichlet 函数 $\chi_{\mathbb{Q}}$.

性质: $\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$; $\chi_{A \cap B} = \chi_A \cdot \chi_B$.

设 A_n ⊂ ℝⁿ, 证明

$$\underline{\lim}_{n\to\infty}\chi_{A_n}(x)=\chi_{\underline{\lim}_{n\to\infty}A_n}(x),\quad \overline{\lim}_{n\to\infty}\chi_{A_n}(x)=\chi_{\overline{\lim}_{n\to\infty}A_n}(x).$$

证明: 当 $x \in \underline{\lim}_{n \to \infty} A_n$ 时, 存在N, 当n > N时, $A_n \ni x$, 则 $\chi_{A_n}(x) = 1$, 则有 $\underline{\lim}_{n \to \infty} \chi_{A_n}(x) = 1$. 当 $x \notin \underline{\lim}_{n \to \infty} A_n$ 时, 存在 A_n 的子列 $A_{n_k} \not\ni x$, 则 $\chi_{A_{n_k}}(x) = 0$, 则有 $\underline{\lim}_{n \to \infty} \chi_{A_n}(x) = 0$.

- 映射的定义: X, Y 是两个集合, 对任意 $x \in X$, 存在唯一的 $y = f(x) \in Y$ 与之对应, 记为 $f: X \to Y$. y = f(x) 称为 x 的像, x 称为 y = f(x) 的一个原像.
- 像集和原像集: 若 A ⊂ X, B ⊂ Y, 定义 A 的像集为

$$f(A) = \{f(x) : x \in A\},\$$

B的原像集为

$$f^{-1}(B) = \{x \in A : f(x) \in B\}.$$

- 满射: f(X) = Y, 即 Y 中所有元都有原像.
- Ψ \mathfrak{h} : $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- 双射(一一映射): 既是单射, 又是满射.

- 映射的定义: X, Y 是两个集合, 对任意 $x \in X$, 存在唯一的 $y = f(x) \in Y$ 与之对应, 记为 $f: X \to Y$. y = f(x) 称为 x 的像, x 称为 y = f(x) 的一个原像.
- 像集和原像集: 若 A ⊂ X, B ⊂ Y, 定义 A 的像集为

$$f(A) = \{f(x) : x \in A\},\$$

B的原像集为

$$f^{-1}(B) = \{x \in A : f(x) \in B\}.$$

- 满射: f(X) = Y, 即 Y 中所有元都有原像.
- Ψ \mathfrak{h} : $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- 双射(一一映射): 既是单射, 又是满射.

- 映射的定义: X, Y 是两个集合, 对任意 $x \in X$, 存在唯一的 $y = f(x) \in Y$ 与之对应, 记为 $f: X \to Y$. y = f(x) 称为 x 的像, x 称为 y = f(x) 的一个原像.
- 像集和原像集: 若 A ⊂ X, B ⊂ Y, 定义 A 的像集为

$$f(A) = \{f(x) : x \in A\},\$$

B的原像集为

$$f^{-1}(B) = \{x \in A : f(x) \in B\}.$$

- 满射: f(X) = Y, 即 Y 中所有元都有原像.
- Ψ \mathfrak{h} : $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- 双射(一一映射): 既是单射, 又是满射.

- 映射的定义: X, Y 是两个集合, 对任意 $x \in X$, 存在唯一的 $y = f(x) \in Y$ 与之对应, 记为 $f: X \to Y$. y = f(x) 称为 x 的像, x 称为 y = f(x) 的一个原像.
- 像集和原像集: 若 A ⊂ X, B ⊂ Y, 定义 A 的像集为

$$f(A) = \{f(x) : x \in A\},\$$

B的原像集为

$$f^{-1}(B) = \{x \in A : f(x) \in B\}.$$

- 满射: f(X) = Y, 即 Y 中所有元都有原像.
- Ψ \mathfrak{h} : $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- 双射(一一映射): 既是单射, 又是满射.

- 映射的定义: X, Y 是两个集合, 对任意 $x \in X$, 存在唯一的 $y = f(x) \in Y$ 与之对应, 记为 $f: X \to Y$. y = f(x) 称为 x 的像, x 称为 y = f(x) 的一个原像.
- 像集和原像集: 若 A ⊂ X, B ⊂ Y, 定义 A 的像集为

$$f(A) = \{f(x) : x \in A\},\$$

B的原像集为

$$f^{-1}(B) = \{x \in A : f(x) \in B\}.$$

- 满射: f(X) = Y, 即 Y 中所有元都有原像.
- Ψ \mathfrak{h} : $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- 双射(一一映射): 既是单射, 又是满射.

- 逆映射: 若 $f: X \to Y$ 是双射. 对任意 $y \in Y$, 存在唯一 $x \in X$, 使得 y = f(x). 记 $x = f^{-1}(y)$. 映射 $f^{-1}: Y \to X, y \mapsto x = f^{-1}(y)$ 称为 f 的逆映射.
- 映射的复合: $f: X \to Y$, $g: Y \to Z$, $g \circ f: X \to Z$, $x \to g(f(x))$.
- 若映射 $f: X \to Y$, $g: Y \to Z$ 都有逆映射, 则 $g \circ f$ 也有逆映射, 且 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 函数的定义: 设 $E \subset \mathbb{R}^n$, $f: E \to \mathbb{R}$ 是 映射,则称 f 为 E 上定义的函数.

- 映射的复合: $f: X \to Y$, $g: Y \to Z$, $g \circ f: X \to Z$, $x \to g(f(x))$.
- 若映射 $f: X \to Y$, $g: Y \to Z$ 都有逆映射,则 $g \circ f$ 也有逆映射,且 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 函数的定义: 设 $E \subset \mathbb{R}^n$, $f: E \to \mathbb{R}$ 是 映射,则称 f 为 E 上定义的函数.

- 逆映射: 若 $f: X \to Y$ 是双射. 对任意 $y \in Y$, 存在唯一 $x \in X$, 使得 y = f(x). 记 $x = f^{-1}(y)$. 映射 $f^{-1}: Y \to X$, $y \mapsto x = f^{-1}(y)$ 称为 f 的逆映射.
- 映射的复合: $f: X \to Y$, $g: Y \to Z$, $g \circ f: X \to Z$, $x \to g(f(x))$.
- 若映射 $f: X \to Y$, $g: Y \to Z$ 都有逆映射, 则 $g \circ f$ 也有逆映射, 且 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 函数的定义: 设 $E \subset \mathbb{R}^n$, $f: E \to \mathbb{R}$ 是 映射, 则称 f 为 E 上定义的 函数.

刘建明 (北夫数学学院) 25 / 77

设 $f: X \to Y$ 是映射, $A_{\lambda} \subset X$, $B_{\lambda} \subset Y$, $\lambda \in I$.

• $f(\bigcup_{\lambda \in I} A_{\lambda}) = \bigcup_{\lambda \in I} (f(A_{\lambda})).$

$$y \in f(\bigcup_{\lambda \in I} A_{\lambda}) \iff \exists x \in \bigcup_{\lambda \in I} A_{\lambda}, y = f(x)$$

$$\iff \exists \lambda, x \in A_{\lambda}, y = f(x) \iff \exists \lambda, y \in f(A_{\lambda})$$

$$\iff y \in \bigcup_{\lambda \in I} (f(A_{\lambda})).$$

•
$$f^{-1}(\bigcup_{\lambda \in I} B_{\lambda}) = \bigcup_{\lambda \in I} (f^{-1}(B_{\lambda})).$$

 $f(\bigcap_{\lambda \in I} A_{\lambda}) \subset \bigcap_{\lambda \in I} (f(A_{\lambda})).$ $f^{-1}(\bigcap_{\lambda \in I} B_{\lambda}) = \bigcap_{\lambda \in I} (f^{-1}(B_{\lambda})).$

设 $f: X \to Y$ 是映射, $A_{\lambda} \subset X$, $B_{\lambda} \subset Y$, $\lambda \in I$.

• $f(\bigcup_{\lambda \in I} A_{\lambda}) = \bigcup_{\lambda \in I} (f(A_{\lambda})).$ 证明:

$$y \in f(\bigcup_{\lambda \in I} A_{\lambda}) \iff \exists x \in \bigcup_{\lambda \in I} A_{\lambda}, y = f(x)$$

$$\iff \exists \lambda, x \in A_{\lambda}, y = f(x) \iff \exists \lambda, y \in f(A_{\lambda})$$

$$\iff y \in \bigcup_{\lambda \in I} (f(A_{\lambda})).$$

•
$$f^{-1}(\bigcup_{\lambda \in I} B_{\lambda}) = \bigcup_{\lambda \in I} (f^{-1}(B_{\lambda})).$$

 $f(\bigcap_{\lambda \in I} A_{\lambda}) \subset \bigcap_{\lambda \in I} (f(A_{\lambda})).$ $f^{-1}(\bigcap_{\lambda \in I} B_{\lambda}) = \bigcap_{\lambda \in I} (f^{-1}(B_{\lambda})).$

设 $f: X \to Y$ 是映射, $A_{\lambda} \subset X$, $B_{\lambda} \subset Y$, $\lambda \in I$.

• $f(\bigcup_{\lambda \in I} A_{\lambda}) = \bigcup_{\lambda \in I} (f(A_{\lambda})).$ 证明:

$$y \in f(\bigcup_{\lambda \in I} A_{\lambda}) \iff \exists x \in \bigcup_{\lambda \in I} A_{\lambda}, y = f(x)$$

$$\iff \exists \lambda, x \in A_{\lambda}, y = f(x) \iff \exists \lambda, y \in f(A_{\lambda})$$

$$\iff y \in \bigcup_{\lambda \in I} (f(A_{\lambda})).$$

•
$$f^{-1}(\bigcup_{\lambda \in I} B_{\lambda}) = \bigcup_{\lambda \in I} (f^{-1}(B_{\lambda})).$$

 $f(\bigcap_{\lambda \in I} A_{\lambda}) \subset \bigcap_{\lambda \in I} (f(A_{\lambda})).$ $f^{-1}(\bigcap_{\lambda \in I} B_{\lambda}) = \bigcap_{\lambda \in I} (f^{-1}(B_{\lambda})).$

设 $f: X \to Y$ 是映射, $A_{\lambda} \subset X$, $B_{\lambda} \subset Y$, $\lambda \in I$.

• $f(\bigcup_{\lambda \in I} A_{\lambda}) = \bigcup_{\lambda \in I} (f(A_{\lambda})).$ 证明:

$$y \in f(\bigcup_{\lambda \in I} A_{\lambda}) \iff \exists x \in \bigcup_{\lambda \in I} A_{\lambda}, y = f(x)$$

$$\iff \exists \lambda, x \in A_{\lambda}, y = f(x) \iff \exists \lambda, y \in f(A_{\lambda})$$

$$\iff y \in \bigcup_{\lambda \in I} (f(A_{\lambda})).$$

• $f^{-1}(\bigcup_{\lambda \in I} B_{\lambda}) = \bigcup_{\lambda \in I} (f^{-1}(B_{\lambda})).$ $f(\bigcap_{\lambda \in I} A_{\lambda}) \subset \bigcap_{\lambda \in I} (f(A_{\lambda})).$ $f^{-1}(\bigcap_{\lambda \in I} B_{\lambda}) = \bigcap_{\lambda \in I} (f^{-1}(B_{\lambda})).$

- 集合的对等: 设A与B是两个集合,如果存在一个从A到B的双射,则称集合A与B对等,记作 $A \sim B$.
- \emptyset : $(-1,1) \sim \mathbb{R}$, $x \mapsto \tan \frac{\pi}{2}x$.
- 例: 2N ~ N: 2n → n.
- $\mathfrak{H}: \mathbb{N} \sim \mathbb{Z}: n \mapsto (-1)^n \left[\frac{n}{2}\right].$

证明: 若存在单射 $f: A \to B$, 则 A = B 的子集 f(A) 对等.

若存在满射 $g: B \to A$, 对任意 $a \in A$, 取一个 $x_a \in B$, 使得 $g(x_a) = a$. 则 B 的子集 $\{x_a: a \in A\}$ 与 A 对等.

- 集合的对等: 设A与B是两个集合,如果存在一个从A到B的双射,则称集合A与B对等,记作 $A \sim B$.
- \mathfrak{H} : $(-1,1) \sim \mathbb{R}$, $x \mapsto \tan \frac{\pi}{2}x$.
- 例: 2N ~ N: 2n → n.
- $\mathfrak{H}: \mathbb{N} \sim \mathbb{Z}: n \mapsto (-1)^n \left[\frac{n}{2}\right].$

证明: 若存在单射 $f: A \to B$, 则 A = B 的子集 f(A) 对等.

若存在满射 $g: B \to A$, 对任意 $a \in A$, 取一个 $x_a \in B$, 使得 $g(x_a) = a$. 则 B 的子集 $\{x_a: a \in A\}$ 与 A 对等.

- 集合的对等: 设A与B是两个集合,如果存在一个从A到B的双射,则称集合A与B对等,记作 $A \sim B$.
- \mathfrak{H} : $(-1,1) \sim \mathbb{R}$, $x \mapsto \tan \frac{\pi}{2}x$.
- 例: 2N ~ N: 2n → n.
- $\mathfrak{H}: \mathbb{N} \sim \mathbb{Z}: n \mapsto (-1)^n \left[\frac{n}{2}\right].$

证明: 若存在单射 $f: A \rightarrow B$, 则 A 与 B 的子集 f(A) 对等.

若存在满射 $g: B \to A$, 对任意 $a \in A$, 取一个 $x_a \in B$, 使得 $g(x_a) = a$. 则 B 的子集 $\{x_a: a \in A\}$ 与 A 对等.

- 集合的对等: 设A与B是两个集合,如果存在一个从A到B的双射,则称集合A与B对等,记作 $A \sim B$.
- \mathfrak{H} : $(-1,1) \sim \mathbb{R}$, $x \mapsto \tan \frac{\pi}{2}x$.
- 例: 2N ~ N: 2n → n.
- \mathfrak{H} : $\mathbb{N} \sim \mathbb{Z}$: $n \mapsto (-1)^n \left[\frac{n}{2}\right]$.

证明: 若存在单射 $f: A \rightarrow B$, 则 $A \rightarrow B$ 的子集 f(A) 对等.

若存在满射 $g: B \to A$, 对任意 $a \in A$, 取一个 $x_a \in B$, 使得 $g(x_a) = a$. 则 B 的子集 $\{x_a: a \in A\}$ 与 A 对等.

- 集合的对等: 设A与B是两个集合,如果存在一个从A到B的双射,则称集合A与B对等,记作 $A \sim B$.
- \mathfrak{H} : $(-1,1) \sim \mathbb{R}$, $x \mapsto \tan \frac{\pi}{2}x$.
- 例: 2N ~ N: 2n → n.
- \mathfrak{H} : $\mathbb{N} \sim \mathbb{Z}$: $n \mapsto (-1)^n \left[\frac{n}{2}\right]$.
- 若A,B是集合,且存在从A到集B的单射,或从B到A的满射,则A与B的一个子集f(A)对等.

证明: 若存在单射 $f: A \to B$, 则 $A \to B$ 的子集 f(A) 对等. 若存在满射 $g: B \to A$, 对任意 $a \in A$, 取一个 $x_a \in B$, 使得 $g(x_a) = a$. 则 B 的子集 $\{x_a: a \in A\}$ 与 A 对等.

- 集合的对等: 设A与B是两个集合,如果存在一个从A到B的双射,则称集合A与B对等,记作 $A \sim B$.
- 例: $(-1,1) \sim \mathbb{R}$, $x \mapsto \tan \frac{\pi}{2}x$.
- 例: 2N ~ N: 2n → n.
- \mathfrak{H} : $\mathbb{N} \sim \mathbb{Z}$: $n \mapsto (-1)^n \left[\frac{n}{2}\right]$.
- 若A,B是集合,且存在从A到集B的单射,或从B到A的满射,则A与B的一个子集f(A)对等.

证明: 若存在单射 $f: A \rightarrow B$, 则 A 与 B 的子集 f(A) 对等.

若存在满射 $g: B \to A$, 对任意 $a \in A$, 取一个 $x_a \in B$, 使得 $g(x_a) = a$. 则 B 的子集 $\{x_a: a \in A\}$ 与 A 对等.

对等的性质

- 若 A ~ B, 则若 B ~ A; 若 A ~ B, B ~ C, 则 A ~ C.
- 若 $A \sim B$, $C \sim D$, 则 $A \times C \sim B \times D$. 证明:存在双射 $f: A \rightarrow B$, $g: C \rightarrow D$, 则

$$(a,c) \rightarrow (f(a),g(c))$$

是 $A \times C$ 到 $B \times D$ 的双射.

• $\overline{A} \wedge B$, $C \sim D$, 且 $A \cap C = \phi$, $B \cap D = \phi$, 则 $A \cup C \sim B \cup D$.

- 若 A ~ B, 则若 B ~ A; 若 A ~ B, B ~ C, 则 A ~ C.
- 若 $A \subset B \subset C$, 且 $A \sim C$. 则有 $A \sim B \sim C$.
- 若 $A \sim B$, $C \sim D$, 则 $A \times C \sim B \times D$. 证明:存在双射 $f: A \rightarrow B$, $g: C \rightarrow D$, 则

$$(a,c) \rightarrow (f(a),g(c))$$

是 $A \times C$ 到 $B \times D$ 的双射.

• $\dot{\pi}$ $A \sim B$, $C \sim D$, 且 $A \cap C = \phi$, $B \cap D = \phi$, 则 $A \cup C \sim B \cup D$.

- 若 A ~ B,则若 B ~ A;若 A ~ B, B ~ C,则 A ~ C.
- 若 $A \sim B$, $C \sim D$, 则 $A \times C \sim B \times D$.

证明:存在双射 $f:A \rightarrow B,g:C \rightarrow D, 则$

$$(a,c) \rightarrow (f(a),g(c))$$

是 $A \times C$ 到 $B \times D$ 的双射.

• \dot{a} \dot{a} \dot{a} \dot{a} \dot{b} \dot{b}

- 若 A ~ B, 则若 B ~ A; 若 A ~ B, B ~ C, 则 A ~ C.
- 若 A ~ B, C ~ D, 则 A × C ~ B × D.
 证明:存在双射 f: A → B, g: C → D, 则

$$(a,c) \rightarrow (f(a),g(c))$$

是 $A \times C$ 到 $B \times D$ 的双射.

- 若 A ~ B, 则若 B ~ A; 若 A ~ B, B ~ C, 则 A ~ C.
- 若 $A \sim B$, $C \sim D$, 则 $A \times C \sim B \times D$. 证明:存在双射 $f: A \rightarrow B$, $g: C \rightarrow D$, 则

$$(a,c) \rightarrow (f(a),g(c))$$

是 $A \times C$ 到 $B \times D$ 的双射.

• 若 $A \sim B$, $C \sim D$, 且 $A \cap C = \phi$, $B \cap D = \phi$, 则 $A \cup C \sim B \cup D$.

集合在映射下的分解1

• 引理: 若有映射 $f: X \to Y, g: Y \to X$, 则存在分解

$$X = A \cup \tilde{A}, A \cap \tilde{A} = \phi; \quad Y = B \cup \tilde{B}, B \cap \tilde{B} = \phi$$

使得 f(A) = B, $g(\tilde{B}) = \tilde{A}$.

注:上面分解不是唯一的,当 f,g 互逆时,对 X 的任意分解,都有 Y 的相应分解满足条件.

证明: $E \subset X$ 称为分离集, 如果 $E \cap g(Y \setminus f(E)) = \phi$.

比如 $X\setminus (g(Y))$ 是分离集, 当 f 是满射时 X 是分离集. 当 f , g 互逆时, 任意集合是分离集.

满足引理条件的集合 A 是分离集.

集合在映射下的分解2

● 证明(续): 设 A 是 X 中所有分离集的并集. 则 A 也是分离集, 事实上, 对任意分离集 E, 有

$$E \cap g(Y \setminus f(A)) \subset E \cap g(Y \setminus f(E)) = \phi$$

对所有分离集求并即得.

设 $A \not\in X$ 中所有分离集的并集, 它是最大的分离集. 令 B = f(A), $\tilde{B} = Y \setminus B$, $\tilde{A} = g(\tilde{B})$, 显然 $A \cap \tilde{A} = \phi$, 只要验证 $X = A \cup \tilde{A}$, 若不然, 令 $C = X \setminus (A \cup \tilde{A})$, 做 $A_0 = A \cup C$, $Y \setminus f(A_0) \subset Y \setminus f(A) = \tilde{B}$, 因此 $g(Y \setminus f(A_0)) \subset \tilde{A}$,

$$A_0 \cap g(Y \setminus f(A_0)) = (A \cap g(Y \setminus f(A_0))) \cup (C \cap g(Y \setminus f(A_0))) = \phi.$$

Cantor-Bernstein 定理

• Cantor-Bernstein 定理: 若集合 X 与 Y 的某个(真)子集对等, Y 与 X 的某个(真)子集对等, 则 $X \sim Y$.

方法1: 利用集合在映射下的分解

方法2: 存在真子集 $X_0 \subset X$, $Y_0 \subset Y$, 使得 $f: X \to Y_0$, $g: Y \to X_0$ 是双射, 令 $X_1 = X \setminus X_0$, $f(X_1) = Y_1 \subset Y_0$, $g(Y_1) = X_2 \subset X_0$, $f(X_2) = Y_2$, $g(Y_2) = X_3$... 则有 $\{X_k\}$ 两两不交, $\{Y_k\}$ 两两不交,

$$Y \setminus \sum_{k=1}^{\infty} Y_k \sim X_0 \setminus \sum_{k=1}^{\infty} X_{k+1} = X \setminus \sum_{k=1}^{\infty} X_k$$

因此

$$X = (X \setminus \sum_{k=1}^{\infty} X_k) \cup \sum_{k=1}^{\infty} X_k = (Y \setminus \sum_{k=1}^{\infty} Y_k) \cup \sum_{k=1}^{\infty} Y_k = Y$$

基数(势)

- 设 A, B 是两个集合, 如果 $A \sim B$, 则称 $A \subseteq B$ 有相同的基数(Cardinal number)或势. A 的基数记为 \overline{A} , 则 $\overline{A} = \overline{B} \iff A \sim B$.
- it $\bar{\phi}=0$, $\overline{\overline{\{1,2,\cdots,n\}}}=n$, $\bar{\bar{\mathbb{N}}}=\aleph_0$, $\bar{\bar{\mathbb{R}}}=c$.
- 基数的序: 若 A 与 B 的一个子集对等(即存在从 A 到 B 的单射), 则 $\bar{A} < \bar{B}$, 若 $\bar{A} < \bar{B}$ 且 $\bar{A} \neq \bar{B}$, 则 $\bar{A} < \bar{B}$.
- 由 Cantor-Bernstein 定理, 若 $\bar{A} \leq \bar{B}$ 且 $\bar{B} \leq \bar{A}$, 则 $\bar{A} = \bar{B}$
- 若存在从 B 到 A 的满射(由选择公理, 存在从 A 到 B 的单射), 则 $\bar{A} \leq \bar{B}$. 利用选择公理还能证明对任意两个基数 α, β , 三个关系式 $\alpha < \beta, \alpha > \beta, \alpha = \beta$ 必有一个成立.

- 一个集合有 n 个元的充分必要条件是该集合与 {1,2,...,n} 对等.
- 定义: N 对等的集合称为可列集. 例如: Z, 2N. 可列集和有限集统 称为可数集. 显然任何两个可列集对等.
- 定理: 任何无穷集都包含可列子集(即可列集是最小的无穷集). 证明: 设 A 是无穷集. 任取 $x_1 \in A$, 再取 $x_2 \in A \setminus \{x_1\}$, $x_n \in A \setminus \{x_1, x_2, \dots, x_{n-1}\}$. 得可列子集 $\{x_n\} \subset A$,

刘建明 (北大教学学院) 33 / 77

- 一个集合有 n 个元的充分必要条件是该集合与 {1,2,...,n} 对等.
- 定义: N 对等的集合称为可列集. 例如: Z, 2N. 可列集和有限集统 称为可数集. 显然任何两个可列集对等.
- 定理: 任何无穷集都包含可列子集(即可列集是最小的无穷集). 证明: 设 A 是无穷集. 任取 $x_1 \in A$, 再取 $x_2 \in A \setminus \{x_1\}$, $x_n \in A \setminus \{x_1, x_2, ..., x_{n-1}\}$. 得可列子集 $\{x_n\} \subset A$,

- 一个集合有 n 个元的充分必要条件是该集合与 {1,2,...,n} 对等.
- 定义: N 对等的集合称为可列集.例如: Z, 2N. 可列集和有限集统 称为可数集, 显然任何两个可列集对等,
- 定理: 任何无穷集都包含可列子集(即可列集是最小的无穷集).

- 一个集合有 n 个元的充分必要条件是该集合与 {1,2,...,n} 对等.
- 定义: N 对等的集合称为可列集. 例如: Z, 2N. 可列集和有限集统 称为可数集. 显然任何两个可列集对等.
- 定理: 任何无穷集都包含可列子集(即可列集是最小的无穷集). 证明: 设 A 是无穷集. 任取 $x_1 \in A$, 再取 $x_2 \in A \setminus \{x_1\}$, $x_n \in A \setminus \{x_1, x_2, \dots, x_{n-1}\}$. 得可列子集 $\{x_n\} \subset A$,

• 可列集和有限集的并是可列集.

证明: 设 $A = \{a_1, a_2, \ldots, \}$ 是可列集, B是有限集, $A \cup B = A \cup B_1$, 其中 $B_1 = \{b_1, b, \ldots, b_m\} = B \setminus A$ 是与 A 不相交的有限集. 构造双射射 $f: A \cup B_1 \to A$: $f(b_k) = a_k(k+1,2,\ldots,m)$, $f(a_k) = a_{k+m}$.

• 可列集和可列集的并是可列集. 证明: $A \cup B = A \cup B_1$, 其中 $B_1 = B \setminus A$. B_1 有限时,显然成立. 若 B_1 可列,则有 $A \sim 2\mathbb{N}$, $B \sim 2\mathbb{N} - 1$, 从而 $A \cup B_1 \sim \mathbb{N}$.

- 可列集和有限集的并是可列集.
 - 证明:设 $A = \{a_1, a_2, \ldots, \}$ 是可列集,B 是有限集, $A \cup B = A \cup B_1$,其中 $B_1 = \{b_1, b, \ldots, b_m\} = B \setminus A$ 是与 A 不相交的有限集.构造双射射 $f: A \cup B_1 \to A$: $f(b_k) = a_k(k+1, 2, \ldots, m)$, $f(a_k) = a_{k+m}$.
- 可列集和可列集的并是可列集.
 - 证明: $A \cup B = A \cup B_1$, 其中 $B_1 = B \setminus A$. B_1 有限时,显然成立. 若 B_1 可列,则有 $A \sim 2\mathbb{N}$, $B \sim 2\mathbb{N} 1$,从而 $A \cup B_1 \sim \mathbb{N}$.

- 可列集和有限集的并是可列集.
 - 证明:设 $A = \{a_1, a_2, \ldots, \}$ 是可列集,B 是有限集, $A \cup B = A \cup B_1$,其中 $B_1 = \{b_1, b, \ldots, b_m\} = B \setminus A$ 是与 A 不相交的有限集.构造双射射 $f: A \cup B_1 \to A$: $f(b_k) = a_k(k+1, 2, \ldots, m)$, $f(a_k) = a_{k+m}$.
- 可列集和可列集的并是可列集.
 证明: A∪B = A∪B₁, 其中 B₁ = B\A. B₁ 有限时,显然成立.若B₁ 可列,则有 A~2N, B~2N-1,从而 A∪B₁~N.

- 可列集和有限集的并是可列集.
 - 证明:设 $A = \{a_1, a_2, \ldots, \}$ 是可列集,B 是有限集, $A \cup B = A \cup B_1$,其中 $B_1 = \{b_1, b, \ldots, b_m\} = B \setminus A$ 是与 A 不相交的有限集.构造双射射 $f: A \cup B_1 \to A$: $f(b_k) = a_k(k+1, 2, \ldots, m)$, $f(a_k) = a_{k+m}$.
- 可列集和可列集的并是可列集.
 证明: A∪B = A∪B₁, 其中 B₁ = B\A. B₁ 有限时,显然成立.若B₁ 可列,则有 A~2N, B~2N-1,从而 A∪B₁~N.

• N×N 是可列集(可列集和可列集的直积是可列集).

证明: 构造映射 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $f(m,n) = 2^{m-1}(2n-1)$. 则 f 是单射, $\mathbb{N} \times \mathbb{N}$ 是可列集. 任意可列集和可列集的直积与 $\mathbb{N} \times \mathbb{N}$ 对等. 映射 f 也可以如下构造: f(i,j) = n, 其中

$$n = \begin{cases} 1, & i = j = 1\\ j + \sum_{k=1}^{i+j-2} k, & i+j > 2 \end{cases}$$

刘建明 (北大教学学院) 35 / 77

• N×N 是可列集(可列集和可列集的直积是可列集). 证明:构造映射 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $f(m,n) = 2^{m-1}(2n-1)$. 则 f 是单射, $\mathbb{N} \times \mathbb{N}$ 是可列集. 任意可列集和可列集的直积与 $\mathbb{N} \times \mathbb{N}$ 对等. 映射 f 也可以如下构造: f(i,j) = n, 其中

$$n = \begin{cases} 1, & i = j = 1 \\ j + \sum_{k=1}^{i+j-2} k, & i+j > 2 \end{cases}$$

刘建明 (北大教学学院) 35 / 77

• N × N 是可列集(可列集和可列集的直积是可列集). 证明: 构造映射 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $f(m,n) = 2^{m-1}(2n-1)$. 则 f 是单射, $\mathbb{N} \times \mathbb{N}$ 是可列集. 任意可列集和可列集的直积与 $\mathbb{N} \times \mathbb{N}$ 对等. 映射 f 也可以如下构造: f(i,j) = n, 其中

$$n = \begin{cases} 1, & i = j = 1 \\ j + \sum_{k=1}^{i+j-2} k, & i+j > 2 \end{cases}.$$

- 可列集列的并集是可列集: 设 $A_n(n = 1, 2, \cdots)$ 为可列集列, 则 $A = \bigcup_{n=1}^{\infty} A_n$ 是可列集.
 - 证明: 设 $A_n = \{a_{n,1}, a_{n,2}, \cdots, a_{n,k}, \cdots\}, f(n,k) = a_{n,k}$ 是 $\mathbb{N} \times \mathbb{N}$ 到 A 的满射.
- ℤ, ℚ 是可列集.
 证明: 构造 f: ℤ×ℕ→ℚ, f(p,q) = P/g 是满射.
- 可数集和可数集的直积是可数集.

- 可列集列的并集是可列集: 设 $A_n(n=1,2,\cdots)$ 为可列集列,则 $A=\bigcup_{n=1}^{\infty}A_n$ 是可列集. 证明: 设 $A_n=\{a_{n,1},a_{n,2},\cdots,a_{n,k},\cdots\}$, $f(n,k)=a_{n,k}$ 是 $\mathbb{N}\times\mathbb{N}$ 到 A 的满射.
- Z, Q 是可列集.
 证明:构造 f: Z × N → Q, f(p,q) = E 是满射
- 可数集和可数集的直积是可数集.

- 可列集列的并集是可列集: 设 $A_n(n=1,2,\cdots)$ 为可列集列,则 $A=\bigcup_{n=1}^{\infty}A_n$ 是可列集. 证明: 设 $A_n=\{a_{n,1},a_{n,2},\cdots,a_{n,k},\cdots\}$, $f(n,k)=a_{n,k}$ 是 $\mathbb{N}\times\mathbb{N}$ 到 A 的满射.
- ℤ, ℚ 是可列集.
 证明: 构造 f: ℤ × ℕ → ℚ, f(p,q) = ਊ 是满射.
- 可数集和可数集的直积是可数集.

- 可列集列的并集是可列集: 设 $A_n(n=1,2,\cdots)$ 为可列集列, 则 $A=\bigcup_{n=1}^{\infty}A_n$ 是可列集. 证明: 设 $A_n=\{a_{n,1},a_{n,2},\cdots,a_{n,k},\cdots\}$, $f(n,k)=a_{n,k}$ 是 $\mathbb{N}\times\mathbb{N}$ 到 A 的满射.
- ℤ, ℚ 是可列集.
 证明: 构造 f: ℤ × ℕ → ℚ, f(p,q) = ਊ 是满射.
- 可数集和可数集的直积是可数集.

无穷集的性质

- 性质: 若 A 是无穷集,B 是可数集,则 $A \sim A \cup B$. 证明: 不妨设 A 与 B 不交. 存在可列集 $C \subset A$, 则有 $A = (A \setminus C) \cup C = A \cup B$
- 定理: A 是无穷集的充要条件是 A 与它的某个真子集对等。
 证明: 设 a ∈ A, A\{a} ~ (A\{a}) ∪ {a} = A.

刘建明 (北大教学学院) 37 / 77

无穷集的性质

- 性质:若A是无穷集,B是可数集,则A~A∪B.
 证明:不妨设A与B不交.存在可列集C⊂A,则有A=(A\C)∪C~(A\C)∪(C∪B)=A∪B.
- 定理: A 是无穷集的充要条件是 A 与它的某个真子集对等. 证明: 设 $a \in A$, $A \setminus \{a\} \sim (A \setminus \{a\}) \cup \{a\} = A$.

无穷集的性质

- 性质:若A是无穷集,B是可数集,则A~A∪B.
 证明:不妨设A与B不交.存在可列集C⊂A,则有A=(A\C)∪C~(A\C)∪(C∪B)=A∪B.
- 定理: A 是无穷集的充要条件是 A 与它的某个真子集对等.
 证明: 设 a ∈ A, A\{a} ~ (A\{a}) ∪ {a} = A.

- Zⁿ, ℚⁿ 都是可列集.
- {B(x, ½): x ∈ ℚⁿ, k ∈ ℕ} 是可列集.
 证明:构造映射 B(x, ½) → (x, k) ∈ ℚⁿ × ℕ.
- 单调函数的间断点集是可数集. 证明:不妨设 f 单调增. f 在定义域内任意点处的左右极限存在. x 是间断点的充要条件是 f(x+0) > f(x-0). 对不同的间断点 x_1, x_2 , $(f(x_1-0), f(x_1+0))$ 和 $(f(x_2-0), f(x_2+0))$ 不交. 对任意间断点 x, 取有理数 $r_x \in (f(x-0), f(x+0))$. 则映射: $x \to r_x$ 是间断点集 到有理数集的单射. 因此间断点集和有理数的一个子集对等,因此可数.

- ℤⁿ, ℚⁿ 都是可列集.
- {B(x, ½): x ∈ ℚⁿ, k ∈ ℕ} 是可列集.
 证明: 构造映射 B(x, ½) → (x, k) ∈ ℚⁿ × ℕ.
- 单调函数的间断点集是可数集. 证明:不妨设 f 单调增. f 在定义域内任意点处的左右极限存在. x 是间断点的充要条件是 f(x+0) > f(x-0). 对不同的间断点 x_1, x_2 , $(f(x_1-0), f(x_1+0))$ 和 $(f(x_2-0), f(x_2+0))$ 不交. 对任意间断点 x, 取有理数 $r_x \in (f(x-0), f(x+0))$. 则映射: $x \to r_x$ 是间断点集 到有理数集的单射. 因此间断点集和有理数的一个子集对等,因此可数.

- ℤⁿ, ℚⁿ 都是可列集.
- $\{B(x,\frac{1}{k}): x \in \mathbb{Q}^n, k \in \mathbb{N}\}$ 是可列集. 证明:构造映射 $B(x,\frac{1}{k}) \to (x,k) \in \mathbb{Q}^n \times \mathbb{N}$.
- 单调函数的间断点集是可数集. 证明: 不妨设 f 单调增. f 在定义域内任意点处的左右极限存在. x 是间断点的充要条件是 f(x+0) > f(x-0). 对不同的间断点 x_1, x_2 , $(f(x_1-0), f(x_1+0))$ 和 $(f(x_2-0), f(x_2+0))$ 不交. 对任意间断点 x, 取有理数 f_x \in (f(x-0), f(x+0)). 则映射: $x \to f_x$ 是间断点集 到有理数集的单射. 因此间断点集和有理数的一个子集对等,因此可数.

刘建明 (北大教学学院) 38 / 77

- ℤⁿ, ℚⁿ 都是可列集.
- {B(x, ½): x ∈ ℚⁿ, k ∈ ℕ} 是可列集.
 证明: 构造映射 B(x, ½) → (x, k) ∈ ℚⁿ × ℕ.
- 单调函数的间断点集是可数集. 证明:不妨设 f 单调增. f 在定义域内任意点处的左右极限存在. x 是间断点的充要条件是 f(x+0) > f(x-0). 对不同的间断点 x_1, x_2 , $(f(x_1-0), f(x_1+0))$ 和 $(f(x_2-0), f(x_2+0))$ 不交. 对任意间断点 x, 取有理数 $r_x \in (f(x-0), f(x+0))$. 则映射: $x \to r_x$ 是间断点集 到有理数集的单射. 因此间断点集和有理数的一个子集对等,因此可数.

刘建明 (北大教学学院) 38 / 77

第一类间断点可数1

● 例: 若 f(x) 是 ℝ上的函数, 则集合

 $\{x \in \mathbb{R}: f(x)$ 在 x 点不连续, 且右极限 f(x+0) 存在有限 $\{x \in \mathbb{R}: f(x)\}$

是可数集

证明: $\Diamond S = \{x \in \mathbb{R} : \Delta R \mid f(x+0) \mid \Delta f \in \mathbb{R} \}$,

$$E_n = \{x \in \mathbb{R} : \exists \delta > 0, |f(x') - f(x'')| < \frac{1}{n}, x', x'' \in (x - \delta, x + \delta)\}.$$

则 $\bigcap E_n$ 是 f(x) 的连续点集, 只需证明 $S\setminus E_n$ 是可数集.

设 $x \in S \setminus E_n$, x 点处右极限存在, 因此存在 $(x, x + \delta)$, 当 $x', x'' \in (x, x + \delta)$ 时, $|f(x') - f(x'')| < \frac{1}{n}$, 即 $I_x = (x, x + \delta) \subset E_n$, 若 $x_1, x_2 \in S \setminus E_n$, $I_{x_1} \subseteq I_{x_2}$ 不交. 因此 $\{I_x\}$ 可数.

左右导数不相等的点可数1

• 例: f(x) 是 (a,b) 上的函数, 则集合

$$\{x \in (a,b) : 右导数 f'_{+}(x) 与左导数 f'_{-}(x) 都存在而不相等 \}$$

• 证明思路: 令

$$A = \{x \in (a, b) : f'_{+}(x) < f'_{-}(x)\}$$
$$B = \{x \in (a, b) : f'_{+}(x) > f'_{-}(x)\}$$

要证 A, B 均为可数集. 对任意 $x \in A$, 存在有理数 r_x , s_x , t_x 使得 $x \to (r_x, s_x, t_x)$ 是单射.

• 推理: (a,b)上的凸函数的不可微点集是可数集.

左右导数不相等的点可数2

• 证明: 对任意 $x \in A = \{x \in (a,b): f'_{+}(x) < f'_{-}(x)\}$, 存在有理数 r_{x} , 使得 $f'_{+}(x) < r_{x} < f'_{-}(x)$, 存在有理数 s_{x} , t_{x} 满足 $a < s_{x} < x < t_{x} < b$, 使得

$$\frac{f(y) - f(x)}{y - x} > r_x, s_x < y < x; \frac{f(y) - f(x)}{y - x} < r_x, x < y < t_x.$$

即当 $s_x < y < t_x$, 且 $y \neq x$ 时, $f(y) - f(x) < r_x(y - x)$. 下面证明 $x \to (r_x, s_x, t_x)$ 是单射.事实上,若 $x_1 \neq x_2$, $(s_{x_1}, t_{x_1}) = (s_{x_2}, t_{x_2})$, $x_1, x_2 \in (s_{x_1}, t_{x_1})$,因此

$$f(x_2) - f(x_1) < r_{x_1}(x_2 - x_1), f(x_1) - f(x_2) < r_{x_2}(x_1 - x_2)$$

显然 $r_{x_1} \neq r_{x_2}$.

刘建明 (北大数学学院) 41

ℝ 是不可数集1

- 定理: (0,1) 是不可数集.
- 证明: 反设 (0,1) 可数,则 (0,1] 也是可数集,存在双射 $f: \mathbb{N} \to (0,1]$. 对任意 $x \in (0,1]$,有唯一的十进制小数表示 $x = 0.a_1a_2\cdots$ (规定不允许从某位开始全为 0,如 0.3 写成 $0.2999\cdots$). 令 $f(n) = 0.a_{n,1}a_{n,2}a_{n,3}\cdots$ 构造 $x = b_1b_2\cdots \in (0,1]$ 满足:当 $a_{n,n} \leq 1$ 时, $b_n = 2$;当 $a_{n,n} \geq 2$ 时, $b_n = 1$. 则 $x \neq f(n)$, $\forall n$,这与 f 是双射矛盾.
- 另一证明: 反设 $[0,1] = \{x_1, x_2, \dots\}$, [0,1] = \$分, $[0,\frac{1}{3}]$ 和 $[\frac{2}{3},1]$ 必有一个区间(记为 I_1)不含 x_1 , 再把 I_1 三等分, 左右两个区间中必有一个(记为 I_2)不含 x_2 , 继续下去得集合列 I_n , $x_n \not\in \bigcap I_n$, 因此 $\bigcap I_n$ 是空集.

刘建明 (北大教学学院) 42 / 77

ℝ 是不可数集1

- 定理: (0,1) 是不可数集.
- 证明: 反设 (0,1) 可数,则 (0,1] 也是可数集,存在双射 $f: \mathbb{N} \to (0,1]$. 对任意 $x \in (0,1]$,有唯一的十进制小数表示 $x = 0.a_1a_2\cdots$ (规定不允许从某位开始全为 0,如 0.3 写成 $0.2999\cdots$). 令 $f(n) = 0.a_{n,1}a_{n,2}a_{n,3}\cdots$. 构造 $x = b_1b_2\cdots \in (0,1]$ 满足: 当 $a_{n,n} \leq 1$ 时, $b_n = 2$; 当 $a_{n,n} \geq 2$ 时, $b_n = 1$. 则 $x \neq f(n)$, $\forall n$,这与 f 是双射矛盾.
- 另一证明: 反设 $[0,1] = \{x_1, x_2, \dots\}$, [0,1] = \$分, $[0,\frac{1}{3}]$ 和 $[\frac{2}{3},1]$ 必有一个区间(记为 I_1)不含 x_1 , 再把 I_1 三等分, 左右两个区间中必有一个(记为 I_2)不含 x_2 , 继续下去得集合列 I_n , $x_n \not\in \bigcap I_n$, 因此 $\bigcap I_n$ 是空集.

ℝ的一些等势集

- $A_1 = \{0,1$ 构成的序列}, $A_1' = \{0,1$ 构成的序列, 且有无穷项等于1}, $A_2 = \{$ 自然数列}, $A_3 = \{$ 严格递增自然数列}, $A_4 = 2^{\mathbb{N}}, A_5 = \{A: A \subset \mathbb{N}$ 是无穷集}
- $A_1 \sim A_1'$: $\{0,1$ 构成的序列, 且只有有限项等于1 $\}$ 是可数集($\{a_n\} \rightarrow \sum \frac{a_n}{2^n} \in \mathbb{Q}$).
- $A_2 \sim A_3$: $\{n_k\} \to \{S_k = n_1 + n_2 + \cdots + n_k\}$
- $\bullet \ \mathcal{A}_3 \sim \mathcal{A}_5$
- A₄ ~ A₅: B = {A: A ⊂ N是有限集} 可数,
- $(0,1] \sim \mathcal{A}'_1$: 二进制展开 $x = 0.a_1 a_2 \cdots$ (要求无穷个 $a_n = 1$),
- $A'_1 \sim A_3$: 设 $a_{n_k} = 1$, n_k 是严格递增数列.

实数列构成集合的基数

- 定义: 称 $(0,1)(\mathbb{R})$ 的基数为连续基数, 记为 c 或者 \aleph_1 . 则 $c=2^{\aleph_0}$.
- 例: 无理数集 $\mathbb{R}\setminus\mathbb{Q}$. \mathbb{R} . \mathbb{R}^n 的基数均为 c.
- 集合

$$\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) : x_k \in \mathbb{R}\}$$

的基数是c

证明: x_k 对应于自然数列 $x_{k,j}(j=1,2,\cdots)$, $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}: (k,j) \to n=f(k,j)$ 是双射, \mathbb{R}^{∞} 到 {自然数列} 的映射: $\{x_k\} \to \{a_n=x_{k,j}\}$.

实数列构成集合的基数

- 定义: 称 $(0,1)(\mathbb{R})$ 的基数为连续基数, 记为 c 或者 \aleph_1 . 则 $c=2^{\aleph_0}$.
- 例: 无理数集 $\mathbb{R}\setminus\mathbb{Q}$. \mathbb{R} . \mathbb{R}^n 的基数均为 c.
- 集合

$$\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) : x_k \in \mathbb{R}\}\$$

的基数是 c.

证明: x_k 对应于自然数列 $x_{k,j}(j=1,2,\cdots)$, $f:\mathbb{N}\times\mathbb{N}\to\mathbb{N}:(k,j)\to n=f(k,j)$ 是双射, \mathbb{R}^∞ 到 {自然数列} 的映射: $\{x_k\}\to\{a_n=x_{k,j}\}.$

无最大基数定理

- $2^{-} = 1$, $\bar{A} = n$ \exists , $2^{-} = 2^n$.
- 定理: 若 A 是非空集合,则 $\bar{A} < 2^{\bar{A}}$. 证明: 只要证明 A 到 2^A 的任意映射都不是满射. 设 $f: A \to 2^A$, 考虑集合 $B = \{x \in A: x \not\in f(x)\}$. 任意 $x \in B$, 满足 $x \not\in f(x)$, 显然 $f(x) \neq B$; 对任意 $x \notin B$, $x \in f(x)$, 也有 $f(x) \neq B$. 例: $A = \{1, 2, \dots, n\}$, $k \to \{k\}$,则 $B = \phi$.
- 推论: c > №0.

刘建明 (北大教学学院) 45 / 77

n维欧氏空间

n维欧氏空间 $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_k \in \mathbb{R}\}.$

• 代数运算: $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n), \lambda \in \mathbb{R}$.

$$x + y = \{x_1 + y_1, \dots, x_n + y_n\},\$$
$$\lambda x = \{\lambda x_1, \dots, \lambda x_n\}.$$

• 内积 $(x,y) = \sum_{k=1}^{n} x_k y_k$, 模 $|x| = \sqrt{x_1^2 + \dots + x_n^2}$, 满足 $|(x,y)| \le |x| \cdot |y|, \quad |\lambda x| = |\lambda| \cdot |x|, \quad |x+y| \le |x| + |y|$

证明: 可直接验证 $(x,y)^2 \le |x|^2 \cdot |y|^2$.

$$|x + y|^2 = |x|^2 + |y|^2 + 2x \cdot y \le |x|^2 + |y|^2 + 2|x| \cdot |y|$$

刘建明 (北大数学学院) 46 / 77

n维欧氏空间

n维欧氏空间 $\mathbb{R}^n = \{(x_1, \dots, x_n) : x_k \in \mathbb{R}\}.$

• 代数运算: $x=(x_1,\cdots,x_n),y=(y_1,\cdots,y_n),\lambda\in\mathbb{R}.$

$$x + y = \{x_1 + y_1, \dots, x_n + y_n\},\$$
$$\lambda x = \{\lambda x_1, \dots, \lambda x_n\}.$$

• 内积 $(x,y) = \sum_{k=1}^{n} x_k y_k$, 模 $|x| = \sqrt{x_1^2 + \dots + x_n^2}$, 满足 $|(x,y)| \le |x| \cdot |y|, \quad |\lambda x| = |\lambda| \cdot |x|, \quad |x+y| \le |x| + |y|$

证明: 可直接验证 $(x,y)^2 \le |x|^2 \cdot |y|^2$.

$$|x + y|^2 = |x|^2 + |y|^2 + 2x \cdot y \le |x|^2 + |y|^2 + 2|x| \cdot |y|.$$

刘建明 (北大数学学院) 46 / 77

n维欧氏空间

n维欧氏空间 $\mathbb{R}^n = \{(x_1, \cdots, x_n) : x_k \in \mathbb{R}\}.$

• 代数运算: $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n), \lambda \in \mathbb{R}$.

$$x + y = \{x_1 + y_1, \dots, x_n + y_n\},\$$
$$\lambda x = \{\lambda x_1, \dots, \lambda x_n\}.$$

• 内积 $(x,y) = \sum_{k=1}^{n} x_k y_k$, 模 $|x| = \sqrt{x_1^2 + \dots + x_n^2}$, 满足 $|(x,y)| \le |x| \cdot |y|, \quad |\lambda x| = |\lambda| \cdot |x|, \quad |x+y| \le |x| + |y|.$

证明: 可直接验证 $(x,y)^2 \le |x|^2 \cdot |y|^2$.

$$|x+y|^2 = |x|^2 + |y|^2 + 2x \cdot y \le |x|^2 + |y|^2 + 2|x| \cdot |y|.$$

刘建明 (北大数学学院) 46 / 77

n维欧氏空间的拓扑

- n 维欧氏空间上的距离: $d(x,y) = |x-y| = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$ 满足
 - $d(x,y) \ge 0, d(x,y) = 0 \iff x = y.$
 - d(x, y) = d(y, x).
 - $d(x,z) \le d(x,y) + d(y,z)$, 证明: $|x-z| \le |x-y| + |y-z|$.
- 开球 $B(x,r) = B_r(x) = \{ y \in \mathbb{R}^n : d(x,y) < r \}$, 也称为 x 的球邻域.
- 闭球 $\bar{B}(x,r) = \{y \in \mathbb{R}^n : d(x,y) \le r\}.$
- 球面 $S(x,r) = \{y \in \mathbb{R}^n : d(x,y) = r\}.$

n维欧氏空间的拓扑

- n 维欧氏空间上的距离: $d(x,y) = |x-y| = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$ 满足
 - $d(x,y) \ge 0, d(x,y) = 0 \iff x = y.$
 - d(x, y) = d(y, x).
 - $d(x,z) \le d(x,y) + d(y,z)$, 证明: $|x-z| \le |x-y| + |y-z|$.
- 开球 $B(x,r) = B_r(x) = \{y \in \mathbb{R}^n : d(x,y) < r\}$, 也称为 x 的球邻域.
- 闭球 $\bar{B}(x,r) = \{y \in \mathbb{R}^n : d(x,y) \le r\}.$
- 球面 $S(x,r) = \{y \in \mathbb{R}^n : d(x,y) = r\}.$

n维欧氏空间的矩体

- 集合的直径: diam $(E) = \sup\{d(x,y) : x,y \in E\}$.
- 有界集: $E \subset \mathbb{R}^n$ 有界 \iff diam $(E) < \infty$. $\iff \exists M > 0, ||x|| \le M, \forall x \in E$ $\iff \exists B(0, r) \supset E$.
- 开矩体 $(a_1,b_1) \times (a_2,b_2) \times \cdots \times (a_n,b_n)$.
- 闭矩体 $[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$.
- 半开闭矩体 $(a_1,b_1] \times (a_2,b_2] \times \cdots \times (a_n,b_n]$.

刘建明 (北夫数学学院) 48 / 77

点列的极限点

- 极限点: $\{x_k\} \subset \mathbb{R}^n$. 若存在 $x \in \mathbb{R}^n$, 使得 $d(x_n, x) \to 0$, 则称 $\{x_k\}$ 是收敛点列, $x \not\in x_k$ 的极限点,记着 $\lim_{k \to \infty} x_k = x$.
- 性质: 设 $x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}), x = (x_1, x_2, \dots, x_n),$ 则有

$$x_k \to x(|x_k - x| \to 0) \iff x_{k,i} \to x_i, i = 1, \dots, n.$$

证明: 若 $|x - x_k| \to 0$, 则有 $|x_i - x_{k,i}| \le |x - x_k| \to 0$ (这里 $i = 1, 2, \dots, n$); 若对 $i = 1, 2, \dots, n$, $|x_i - x_{k,i}| \to 0$, 则有

$$|x-x_k| = \sqrt{(x_1-x_{k,1})^2 + (x_2-x_{k,2})^2 + \cdots + (x_n-x_{k,n})^2} \to 0.$$

点列的极限点

- 极限点: $\{x_k\} \subset \mathbb{R}^n$. 若存在 $x \in \mathbb{R}^n$, 使得 $d(x_n, x) \to 0$, 则称 $\{x_k\}$ 是收敛点列, $x \not\in x_k$ 的极限点,记着 $\lim_{k \to \infty} x_k = x$.
- 性质: 设 $x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}), x = (x_1, x_2, \dots, x_n),$ 则有

$$x_k \to x(|x_k - x| \to 0) \iff x_{k,i} \to x_i, i = 1, \cdots, n.$$

证明: 若 $|x - x_k| \to 0$, 则有 $|x_i - x_{k,i}| \le |x - x_k| \to 0$ (这里 $i = 1, 2, \dots, n$); 若对 $i = 1, 2, \dots, n$, $|x_i - x_{k,i}| \to 0$, 则有

$$|x-x_k| = \sqrt{(x_1-x_{k,1})^2 + (x_2-x_{k,2})^2 + \cdots + (x_n-x_{k,n})^2} \to 0.$$

点列的极限点

- 极限点: $\{x_k\} \subset \mathbb{R}^n$. 若存在 $x \in \mathbb{R}^n$, 使得 $d(x_n, x) \to 0$, 则称 $\{x_k\}$ 是收敛点列, $x \not\in x_k$ 的极限点,记着 $\lim_{k \to \infty} x_k = x$.
- 性质: 设 $x_k = (x_{k,1}, x_{k,2}, \dots, x_{k,n}), x = (x_1, x_2, \dots, x_n),$ 则有

$$x_k \to x(|x_k - x| \to 0) \iff x_{k,i} \to x_i, i = 1, \cdots, n.$$

证明: 若 $|x - x_k| \to 0$, 则有 $|x_i - x_{k,i}| \le |x - x_k| \to 0$ (这里 $i = 1, 2, \cdots, n$); 若对 $i = 1, 2, \cdots, n$, $|x_i - x_{k,i}| \to 0$, 则有

$$|x-x_k| = \sqrt{(x_1-x_{k,1})^2 + (x_2-x_{k,2})^2 + \cdots + (x_n-x_{k,n})^2} \to 0.$$

• 集合的极限点(聚点): $x \in \mathbb{R}^n$, $E \subset \mathbb{R}^n$. 若对任意 $\epsilon > 0$,

$$(B(x,\epsilon))\setminus\{x\}\cap E\neq\phi,$$

则称x是集合E的聚点.E的聚点集记为E'.

• 集合的孤立点: $E \subset \mathbb{R}^n$, $x \in A$. 若存在 $\epsilon > 0$, 使得

$$(B(x,\epsilon))\setminus\{x\}\cap E=\phi,$$

即 $B(x,\epsilon) \cap E = \{x\}$, 则称 x 是集合 E 的孤立点. 显然 E 的孤立集记为 $E \setminus E'$, $E = (E \cap E') \cup (E \setminus E')$

- 例: 若 $E = \mathbb{Q}$, 则有 $E' = \mathbb{R}$, $E \setminus E' = \phi$.
- 例: $E = \{\frac{1}{n} : n = 1, 2, \dots \}, \ \ \ \, \text{则有 } E' = \{0\}, \ \, E \setminus E' = E.$

• 集合的极限点(聚点): $x \in \mathbb{R}^n$, $E \subset \mathbb{R}^n$. 若对任意 $\epsilon > 0$,

$$(B(x,\epsilon))\setminus\{x\}\cap E\neq\phi,$$

则称x是集合E的聚点.E的聚点集记为E'.

• 集合的孤立点: $E \subset \mathbb{R}^n$, $x \in A$. 若存在 $\epsilon > 0$, 使得

$$(B(x,\epsilon))\backslash\{x\}\cap E=\phi,$$

即 $B(x,\epsilon) \cap E = \{x\}$, 则称 x 是集合 E 的孤立点. 显然 E 的孤立集记为 $E \setminus E'$, $E = (E \cap E') \cup (E \setminus E')$

- 例: $E = \mathbb{Q},$ 则有 $E' = \mathbb{R},$ $E \setminus E' = \phi.$
- 例: $\ddot{A} E = \{\frac{1}{n} : n = 1, 2, \dots\}, \text{ 则有 } E' = \{0\}, E \setminus E' = E.$

• 集合的极限点(聚点): $x \in \mathbb{R}^n$, $E \subset \mathbb{R}^n$. 若对任意 $\epsilon > 0$,

$$(B(x,\epsilon))\setminus\{x\}\cap E\neq\phi,$$

则称x是集合E的聚点. E的聚点集记为E'.

• 集合的孤立点: $E \subset \mathbb{R}^n$, $x \in A$. 若存在 $\epsilon > 0$, 使得

$$(B(x,\epsilon))\setminus\{x\}\cap E=\phi,$$

即 $B(x,\epsilon) \cap E = \{x\}$, 则称 x 是集合 E 的孤立点. 显然 E 的孤立集记为 $E \setminus E'$, $E = (E \cap E') \cup (E \setminus E')$.

- 例: 若 $E = \mathbb{Q}$, 则有 $E' = \mathbb{R}$, $E \setminus E' = \phi$.
- 例: $\ddot{a} E = \{\frac{1}{n} : n = 1, 2, \dots\}, \text{ 则有 } E' = \{0\}, E \setminus E' = E.$

• 集合的极限点(聚点): $x \in \mathbb{R}^n$, $E \subset \mathbb{R}^n$. 若对任意 $\epsilon > 0$,

$$(B(x,\epsilon))\setminus\{x\}\cap E\neq \phi,$$

则称x是集合E的聚点.E的聚点集记为E'.

• 集合的孤立点: $E \subset \mathbb{R}^n$, $x \in A$. 若存在 $\epsilon > 0$, 使得

$$(B(x,\epsilon))\backslash\{x\}\cap E=\phi,$$

即 $B(x,\epsilon) \cap E = \{x\}$, 则称 x 是集合 E 的孤立点. 显然 E 的孤立集记为 $E \setminus E'$, $E = (E \cap E') \cup (E \setminus E')$.

- 例: 若 $E = \mathbb{Q}$, 则有 $E' = \mathbb{R}$, $E \setminus E' = \phi$.
- 例: $\ddot{A} E = \{\frac{1}{n} : n = 1, 2, \dots\}, \text{ 则有 } E' = \{0\}, E \setminus E' = E.$

• 集合的极限点(聚点): $x \in \mathbb{R}^n$, $E \subset \mathbb{R}^n$. 若对任意 $\epsilon > 0$,

$$(B(x,\epsilon))\setminus\{x\}\cap E\neq \phi,$$

则称x是集合E的聚点.E的聚点集记为E'.

• 集合的孤立点: $E \subset \mathbb{R}^n$, $x \in A$. 若存在 $\epsilon > 0$, 使得

$$(B(x,\epsilon))\backslash\{x\}\cap E=\phi,$$

即 $B(x,\epsilon) \cap E = \{x\}$, 则称 x 是集合 E 的孤立点. 显然 E 的孤立集记为 $E \setminus E'$, $E = (E \cap E') \cup (E \setminus E')$.

- 例: 若 $E = \mathbb{Q}$, 则有 $E' = \mathbb{R}$, $E \setminus E' = \phi$.
- 例: $E = \{\frac{1}{n} : n = 1, 2, \dots \}, \ \text{则有 } E' = \{0\}, \ E \setminus E' = E.$

- 性质: $x \in E'$ 的充要条件是 \iff 存在互异点列 $\{x_n\} \subset E$, 使得 $x_n \to x$.
- 证明: 若存在互异点列 $\{x_n\} \subset E$, 使得 $x_n \to x$, 则对任意的 $\epsilon > 0$, 存在 N, 当 n > N 时, $x_n \in B(x,\epsilon) \cap E$, 因此 $B(x,\epsilon) \setminus \{x\} \cap E \neq \phi$. 若 $x \in E'$, $r_1 = 1$, 则 $B(x,r_1) \setminus \{x\} \cap E \neq \phi$, 存在 $x_1 \in B(x,r_1) \setminus \{x\} \cap E$; 取 $r_2 = \min\{\frac{1}{2}, d(x,x_1)\}$, 则存在 $x_2 \in B(x,r_2) \setminus \{x\} \cap E$, · · · 的互 异点列 $\{x_n\}$, 且 $x_n \to x$.
- 推论: $x \in A' \iff \forall \epsilon > 0$, $B_{\epsilon}(x_0) \cap A$ 是无穷集 ⇔ 存在点列 $\{x_n\} \subset A \setminus \{x_0\}$, 使得 $x_n \to x_0$ ⇔ 存在互异点列 $\{x_n\} \subset A$, 使得 $x_n \to x_0$.

- 性质: $x \in E'$ 的充要条件是 \iff 存在互异点列 $\{x_n\} \subset E$, 使得 $x_n \to x$.
- 证明: 若存在互异点列 $\{x_n\} \subset E$, 使得 $x_n \to x$, 则对任意的 $\epsilon > 0$, 存在 N, 当 n > N 时, $x_n \in B(x,\epsilon) \cap E$, 因此 $B(x,\epsilon) \setminus \{x\} \cap E \neq \phi$. 若 $x \in E'$, $r_1 = 1$, 则 $B(x,r_1) \setminus \{x\} \cap E \neq \phi$, 存在 $x_1 \in B(x,r_1) \setminus \{x\} \cap E$; 取 $r_2 = \min\{\frac{1}{2}, d(x,x_1)\}$, 则存在 $x_2 \in B(x,r_2) \setminus \{x\} \cap E$, \cdots 的互 异点列 $\{x_n\}$, 且 $x_n \to x$.
- 推论: $x \in A' \iff \forall \epsilon > 0$, $B_{\epsilon}(x_0) \cap A$ 是无穷集 ⇔ 存在点列 $\{x_n\} \subset A \setminus \{x_0\}$, 使得 $x_n \to x_0$ ⇔ 存在互异点列 $\{x_n\} \subset A$, 使得 $x_n \to x_0$.

- 性质: $x \in E'$ 的充要条件是 \iff 存在互异点列 $\{x_n\} \subset E$, 使得 $x_n \to x$.
- 证明: 若存在互异点列 $\{x_n\} \subset E$, 使得 $x_n \to x$, 则对任意的 $\epsilon > 0$, 存在 N, 当 n > N 时, $x_n \in B(x,\epsilon) \cap E$, 因此 $B(x,\epsilon) \setminus \{x\} \cap E \neq \phi$. 若 $x \in E'$, $r_1 = 1$, 则 $B(x,r_1) \setminus \{x\} \cap E \neq \phi$, 存在 $x_1 \in B(x,r_1) \setminus \{x\} \cap E$; 取 $r_2 = \min\{\frac{1}{2}, d(x,x_1)\}$, 则存在 $x_2 \in B(x,r_2) \setminus \{x\} \cap E$, \cdots 的互 异点列 $\{x_n\}$, 且 $x_n \to x$.
- 推论: $x \in A' \iff \forall \epsilon > 0$, $B_{\epsilon}(x_0) \cap A$ 是无穷集 ⇔ 存在点列 $\{x_n\} \subset A \setminus \{x_0\}$, 使得 $x_n \to x_0$ ⇔ 存在互异点列 $\{x_n\} \subset A$, 使得 $x_n \to x_0$.

- 若 $A \subset B$, 则有 $A' \subset B'$. 证明: 若 $x \in A'$, 则存在 A 中的互异点列 $x_n \to x$, 又 $x_n \in B$, 从而 $x \in B'$.
- (A∪B)' = A'∪B'.
 证明: (A∪B)' ⊃ A'∪B' 显然成立.
 ∀x ∈ (A∪B)', 存在互异点列 x_n ∈ A∪B, 使得 x_n → x. 则 A 或 B 包含 {x_n} 的一个子列, 从而 x ∈ A' 或 x ∈ B'.
- 孤立点集可数. 若 E 不可数, 则 E' 不可数; 若E' 可数, 则 E 可数.

- 若 $A \subset B$, 则有 $A' \subset B'$. 证明: 若 $x \in A'$, 则存在 A 中的互异点列 $x_n \to x$, 又 $x_n \in B$, 从而 $x \in B'$.
- (A∪B)' = A'∪B'.
 证明: (A∪B)' ⊃ A'∪B' 显然成立.
 ∀x∈(A∪B)', 存在互异点列 x_n∈ A∪B, 使得 x_n → x. 则 A 或 B 包含 {x_n} 的一个子列, 从而 x∈ A' 或 x∈ B'.
- 孤立点集可数. 若 E 不可数, 则 E' 不可数; 若 E' 可数, 则 E 可数.

- 内点: $A \subset \mathbb{R}^n$, $x_0 \in A$. 若存在 $\epsilon > 0$, 使得 $B_{\epsilon}(x_0) \subset A$, 则称 x_0 是集合 A 的内点. A 的内点集记为 \mathring{A} .
- 边界点: $x_0 \in \mathbb{R}^n$, $A \subset \mathbb{R}^n$. 若对任意的 $\epsilon > 0$, 有 $B_{\epsilon}(x_0) \cap A \neq \phi$, $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 则称 x_0 是集合 A 的边界点. A 的边界点集记为 ∂A .
- 性质: $\mathring{A} \subset A$, 但是 ∂A 不一定是 A 的子集. $A = \mathring{A} \cup (\partial A \cap A)$. 证明: $\overleftrightarrow{A} \times \in A \setminus \mathring{A}$, 则对任意 $\epsilon > 0$, $B_{\epsilon}(x_0) \not\subset A$, 从而 $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 又显然有 $B_{\epsilon}(x_0) \cap A \neq \phi$ (包含 \times). 因此 $\times \in \partial A$.

刘建明 (北大教学学院) 53 / 77

- 内点: $A \subset \mathbb{R}^n$, $x_0 \in A$. 若存在 $\epsilon > 0$, 使得 $B_{\epsilon}(x_0) \subset A$, 则称 x_0 是集合 A 的内点. A 的内点集记为 \mathring{A} .
- 边界点: $x_0 \in \mathbb{R}^n$, $A \subset \mathbb{R}^n$. 若对任意的 $\epsilon > 0$, 有 $B_{\epsilon}(x_0) \cap A \neq \phi$, $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 则称 x_0 是集合 A 的边界点. A 的边界点集记为 ∂A .
- 性质: $^{A} \subset A$, 但是 $^{\partial A}$ 不一定是 A 的子集. $^{A} = ^{A} \cup (^{\partial A} \cap A)$. 证明: $\overset{.}{E} \times \in A \setminus ^{A}$, 则对任意 $^{\epsilon} \times = 0$, $^{\epsilon} \times = 0$, 风而 $^{\epsilon} \times = 0$, 又显然有 $^{\epsilon} \times = 0$, 包含 $^{\epsilon} \times = 0$.

- 内点: $A \subset \mathbb{R}^n$, $x_0 \in A$. 若存在 $\epsilon > 0$, 使得 $B_{\epsilon}(x_0) \subset A$, 则称 x_0 是集合 A 的内点. A 的内点集记为 \mathring{A} .
- 边界点: $x_0 \in \mathbb{R}^n$, $A \subset \mathbb{R}^n$. 若对任意的 $\epsilon > 0$, 有 $B_{\epsilon}(x_0) \cap A \neq \phi$, $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 则称 x_0 是集合 A 的边界点. A 的边界点集记为 ∂A .
- 性质: $\mathring{A} \subset A$, 但是 ∂A 不一定是 A 的子集. $A = \mathring{A} \cup (\partial A \cap A)$. 证明: $\ddot{A} \times \in A \setminus \mathring{A}$, 则对任意 $\epsilon > 0$, $B_{\epsilon}(x_0) \not\subset A$, 从而 $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 又显然有 $B_{\epsilon}(x_0) \cap A \neq \phi$ (包含 \times). 因此 $\times \in \partial A$.
- 例: $\dot{A} = \mathbb{Q}$, 则有 $\dot{A} = \phi$, $\partial A = \mathbb{R}$.

- 内点: $A \subset \mathbb{R}^n$, $x_0 \in A$. 若存在 $\epsilon > 0$, 使得 $B_{\epsilon}(x_0) \subset A$, 则称 x_0 是集合 A 的内点. A 的内点集记为 \mathring{A} .
- 边界点: $x_0 \in \mathbb{R}^n$, $A \subset \mathbb{R}^n$. 若对任意的 $\epsilon > 0$, 有 $B_{\epsilon}(x_0) \cap A \neq \phi$, $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 则称 x_0 是集合 A 的边界点. A 的边界点集记为 ∂A .
- 性质: $\mathring{A} \subset A$, 但是 ∂A 不一定是 A 的子集. $A = \mathring{A} \cup (\partial A \cap A)$. 证明: $\overleftrightarrow{A} \times \in A \setminus \mathring{A}$, 则对任意 $\epsilon > 0$, $B_{\epsilon}(x_0) \not\subset A$, 从而 $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 又显然有 $B_{\epsilon}(x_0) \cap A \neq \phi$ (包含 x). 因此 $x \in \partial A$.
- 例: 若 A = [a, b], 则有 $\mathring{A} = (a, b)$, $\partial A = \{a, b\}$.
- 例: $A = \mathbb{Q},$ 则有 $A = \phi,$ $\partial A = \mathbb{R}.$

- $\partial A = \partial A^c$.
- $A' \setminus A = \partial A \setminus A$.

 if $\Pi \cdot \neq x_0 \in \partial A \setminus A$ $\Pi \setminus A \setminus A$

$$B_{\epsilon}(x_0) \cap A = B_{\epsilon}(x_0) \cap (A \setminus \{x_0\}) \neq \phi$$

从而 $x \in A'$. 反过来, 若 $x_0 \in A' \setminus A$, 则 $\forall \epsilon > 0$, 有

$$B_{\epsilon}(x_0) \cap (A \setminus \{x_0\}) = B_{\epsilon}(x_0) \cap A \neq \phi,$$

且显然有 $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 因此 $x \in \partial A$.

- $\partial A = \partial A^c$.
- $A' \setminus A = \partial A \setminus A$.

$$B_{\epsilon}(x_0) \cap A = B_{\epsilon}(x_0) \cap (A \setminus \{x_0\}) \neq \phi,$$

从而 $x \in A'$. 反过来, 若 $x_0 \in A' \setminus A$, 则 $\forall \epsilon > 0$, 有

$$B_{\epsilon}(x_0) \cap (A \setminus \{x_0\}) = B_{\epsilon}(x_0) \cap A \neq \phi,$$

且显然有 $B_{\epsilon}(x_0) \cap A^c \neq \phi$, 因此 $x \in \partial A$.

• $\partial(A \cup B) \subset \partial A \cup \partial B$.

证明:设 $x \in \partial(A \cup B)$. 若 $x \in A$, 则

$$B_{\epsilon}(x) \cap A \neq \phi, B_{\epsilon}(x) \cap (A \cup B)^{c} \subset B_{\epsilon}(x) \cap A^{c} \neq \phi$$

从而 $x \in \partial A$; 同理若 $x \in B$, 则 $x \in \partial B$; 若 $x \notin (A \cup B)$, 由于 $\partial (A \cup B) \setminus (A \cup B) = (A \cup B)' \setminus (A \cup B)$,

$$x \in (A' \cup B') \setminus (A \cup B) \subset (A' \setminus A) \cup (B' \setminus B) = (\partial A \setminus A) \cup (\partial B \setminus B)$$

• 注: $\partial(A \cup B) = \partial A \cup \partial B$ 不一定成立. 如 A = [0,1], B = [1,2]. $\partial(A \cup B) = \{0,2\}$, $\partial A \cup \partial B = \{0,1,2\}$.

• $\partial(A \cup B) \subset \partial A \cup \partial B$.

证明:设 $x \in \partial(A \cup B)$.若 $x \in A$,则

$$B_{\epsilon}(x) \cap A \neq \phi, B_{\epsilon}(x) \cap (A \cup B)^{c} \subset B_{\epsilon}(x) \cap A^{c} \neq \phi,$$

从而 $x \in \partial A$; 同理若 $x \in B$, 则 $x \in \partial B$; 若 $x \notin (A \cup B)$, 由于 $\partial (A \cup B) \setminus (A \cup B) = (A \cup B)' \setminus (A \cup B)$,

$$x \in (A' \cup B') \setminus (A \cup B) \subset (A' \setminus A) \cup (B' \setminus B) = (\partial A \setminus A) \cup (\partial B \setminus B).$$

• 注: $\partial(A \cup B) = \partial A \cup \partial B$ 不一定成立. 如 A = [0,1], B = [1,2]. $\partial(A \cup B) = \{0,2\}$, $\partial A \cup \partial B = \{0,1,2\}$.

∂(A∪B) ⊂ ∂A∪∂B.
 证明: 设 x ∈ ∂(A∪B). 若 x ∈ A, 则

$$B_{\epsilon}(x) \cap A \neq \phi, B_{\epsilon}(x) \cap (A \cup B)^{c} \subset B_{\epsilon}(x) \cap A^{c} \neq \phi,$$

从而 $x \in \partial A$; 同理若 $x \in B$, 则 $x \in \partial B$; 若 $x \notin (A \cup B)$, 由于 $\partial (A \cup B) \setminus (A \cup B) = (A \cup B)' \setminus (A \cup B)$,

$$x \in (A' \cup B') \setminus (A \cup B) \subset (A' \setminus A) \cup (B' \setminus B) = (\partial A \setminus A) \cup (\partial B \setminus B).$$

• 注: $\partial(A \cup B) = \partial A \cup \partial B$ 不一定成立. 如 A = [0,1], B = [1,2]. $\partial(A \cup B) = \{0,2\}$, $\partial A \cup \partial B = \{0,1,2\}$.

- 闭包: 集合 A 的闭包 $\bar{A} = A \cup A'$.
- $\bar{A} = A \cup \partial A = \check{A} \cup \partial A$. 证明: 利用 $A' \setminus A = \partial A \setminus A$, $A = \mathring{A} \cup (\partial A \cap A)$,

$$A \cup A' = A \cup (A' \setminus A) = A \cup (\partial A \setminus A) = A \cup \partial A$$
$$= \mathring{A} \cup (\partial A \cap A) \cup \partial A = \mathring{A} \cup \partial A.$$

- 性质: $x \in \bar{A} \iff \forall \epsilon > 0, B_{\epsilon}(x) \cap A \neq \phi \iff$ 存在 A 中点列 $x_n \to x$
- $\{\emptyset\}: A = [a, b) \subset \mathbb{R}, \ \mathring{A} = (a, b), \ \partial A = \{a, b\}, \ A' = [a, b] = \bar{A}.$

- 闭包:集合 A的闭包 $\bar{A} = A \cup A'$.
- $\bar{A} = A \cup \partial A = \mathring{A} \cup \partial A$.

证明: 利用
$$A' \setminus A = \partial A \setminus A$$
, $A = \mathring{A} \cup (\partial A \cap A)$,

$$A \cup A' = A \cup (A' \setminus A) = A \cup (\partial A \setminus A) = A \cup \partial A$$
$$= \mathring{A} \cup (\partial A \cap A) \cup \partial A = \mathring{A} \cup \partial A.$$

- 性质: $x \in \bar{A} \iff \forall \epsilon > 0, B_{\epsilon}(x) \cap A \neq \phi \iff$ 存在 A 中点列 $x_n \to x$.
- $\{\emptyset\}: A = [a, b) \subset \mathbb{R}, \ \mathring{A} = (a, b), \ \partial A = \{a, b\}, \ A' = [a, b] = \bar{A}.$

- 闭包: 集合 A 的闭包 $\bar{A} = A \cup A'$.
- $\bar{A} = A \cup \partial A = \mathring{A} \cup \partial A$.

证明: 利用 $A' \setminus A = \partial A \setminus A$, $A = \mathring{A} \cup (\partial A \cap A)$,

$$A \cup A' = A \cup (A' \setminus A) = A \cup (\partial A \setminus A) = A \cup \partial A$$
$$= \mathring{A} \cup (\partial A \cap A) \cup \partial A = \mathring{A} \cup \partial A.$$

- 性质: $x \in \bar{A} \iff \forall \epsilon > 0, B_{\epsilon}(x) \cap A \neq \phi \iff$ 存在 A 中点列 $x_n \to x$.
- $\{\emptyset\}: A = [a, b) \subset \mathbb{R}, \ \mathring{A} = (a, b), \ \partial A = \{a, b\}, \ A' = [a, b] = \bar{A}.$

刘建明 (北夫数学学院) 56 / 77

- 闭包: 集合 A 的闭包 $\bar{A} = A \cup A'$.
- $\bullet \ \bar{A} = A \cup \partial A = \mathring{A} \cup \partial A.$

证明: 利用
$$A' \setminus A = \partial A \setminus A$$
, $A = \mathring{A} \cup (\partial A \cap A)$,

$$A \cup A' = A \cup (A' \setminus A) = A \cup (\partial A \setminus A) = A \cup \partial A$$
$$= \mathring{A} \cup (\partial A \cap A) \cup \partial A = \mathring{A} \cup \partial A.$$

- 性质: $x \in \bar{A} \iff \forall \epsilon > 0, B_{\epsilon}(x) \cap A \neq \phi \iff$ 存在 A 中点列 $x_n \to x$.
- $\{\emptyset\}: A = [a, b) \subset \mathbb{R}, \ \mathring{A} = (a, b), \ \partial A = \{a, b\}, \ A' = [a, b] = \bar{A}.$

- 闭包: 集合 A 的闭包 $\bar{A} = A \cup A'$.
- $\bar{A} = A \cup \partial A = \mathring{A} \cup \partial A$. 证明: 利用 $A' \setminus A = \partial A \setminus A$, $A = \mathring{A} \cup (\partial A \cap A)$,

$$A \cup A' = A \cup (A' \setminus A) = A \cup (\partial A \setminus A) = A \cup \partial A$$
$$= \mathring{A} \cup (\partial A \cap A) \cup \partial A = \mathring{A} \cup \partial A.$$

- 性质: $x \in \overline{A} \iff \forall \epsilon > 0, B_{\epsilon}(x) \cap A \neq \phi \iff$ 存在 A 中点列 $x_n \to x$.
- $\{\emptyset\}: A = [a,b) \subset \mathbb{R}, \ \mathring{A} = (a,b), \ \partial A = \{a,b\}, \ A' = [a,b] = \bar{A}.$

刘建明 (北大教学学院) 56 / 77

集合的闭包2

- 若 Ā = E, 则称 A 在 E 中稠密.
- 例: $A = \mathbb{Q} \subset \mathbb{R}$, $\mathring{A} = \phi$, $\partial A = A' = \overline{A} = \mathbb{R}$. \mathbb{Q} 在 \mathbb{R} 中稠密.
- (i) $\partial A = \bar{A} \backslash \mathring{A}$, (ii) $(A^c)^o = (\bar{A})^c$.

证明: (i)由关系 $\bar{A} = \mathring{A} \cup \partial A$ (不交并) 可得.

(ii)

$$x \in (A^{c})^{o} \iff \exists \epsilon > 0, s.t. x \in B_{\epsilon}(x) \subset A^{c}$$

$$\iff \exists \epsilon > 0, s.t. x \in B_{\epsilon}(x) \cap A = \phi$$

$$\iff x \notin A \cup \partial A = \bar{A} \iff x \in (\bar{A})^{c}$$

刘建明 (北大数学学院)

57 / 77

集合的闭包2

- 若 Ā = E, 则称 A 在 E 中稠密.
- 例: $A = \mathbb{Q} \subset \mathbb{R}$, $\mathring{A} = \phi$, $\partial A = A' = \overline{A} = \mathbb{R}$. \mathbb{Q} 在 \mathbb{R} 中稠密.
- (i) $\partial A = \bar{A} \backslash \mathring{A}$, (ii) $(A^c)^o = (\bar{A})^c$.

(ii)
$$x \in (A^c)^o \iff \exists \epsilon > 0, s.t. x \in B_{\epsilon}(x) \subset A^c \\ \iff \exists \epsilon > 0, s.t. x \in B_{\epsilon}(x) \cap A = \phi \\ \iff x \not\in A \cup \partial A = \bar{A} \iff x \in (\bar{A})^c$$

集合的闭包2

- 若 Ā = E, 则称 A 在 E 中稠密.
- 例: $A = \mathbb{Q} \subset \mathbb{R}$, $\mathring{A} = \phi$, $\partial A = A' = \overline{A} = \mathbb{R}$. \mathbb{Q} 在 \mathbb{R} 中稠密.
- (i) $\partial A = \bar{A} \backslash \mathring{A}$, (ii) $(A^c)^o = (\bar{A})^c$. 证明: (i)由关系 $\bar{A} = \mathring{A} \cup \partial A$ (不交并)可得. (ii) $x \in (A^c)^o \iff \exists \epsilon > 0, s.t. x \in B_{\epsilon}(x) \subset A^c$ $\iff \exists \epsilon > 0, s.t. x \in B_{\epsilon}(x) \cap A = \phi$ $\iff x \not\in A \cup \partial A = \bar{A} \iff x \in (\bar{A})^c.$

- 定义: $F \subset \mathbb{R}^n$, 若 $\overline{F} = F$ 则称 F 是闭集.
- F 是闭集 \iff $F' \subset F \iff \partial F \subset F$.
- 定义: $G \subset \mathbb{R}^n$. 若 G^c 是闭集则称 G 是开集.
- G 是开集 \iff $\mathring{G} = G \iff \partial G \cap G = \phi$. 证明: G^c 是闭集 $\iff \partial G^c = \partial G \subset G^c \iff \partial G \cap G = \phi$.
- 例: 闭球 $\bar{B}(x,r)$ 、球面 S(x,r) 是闭集,开球 B(x,r) 是开集, Q 既 不是开集, 也不是闭集, ϕ 和 \mathbb{R}^n 既是开集, 又是闭集.

- 定义: $F \subset \mathbb{R}^n$, 若 $\overline{F} = F$ 则称 F 是闭集.
- F 是闭集 \iff $F' \subset F \iff \partial F \subset F$. 证明: $\bar{F} = F \cup F' = F \cup \partial F$.
- 定义: $G \subset \mathbb{R}^n$, 若 G^c 是闭集则称 G 是开集.
- G 是开集 \iff $\mathring{G} = G \iff \partial G \cap G = \phi$. 证明: G^c 是闭集 $\iff \partial G^c = \partial G \subset G^c \iff \partial G \cap G = \phi$.
- 例: 闭球 $\bar{B}(x,r)$ 、球面 S(x,r) 是闭集,开球 B(x,r) 是开集, \mathbb{Q} 既 不是开集, 也不是闭集, ϕ 和 \mathbb{R}^n 既是开集, 又是闭集.

- 定义: $F \subset \mathbb{R}^n$, 若 $\overline{F} = F$ 则称 F 是闭集.
- F 是闭集 \iff $F' \subset F \iff \partial F \subset F$. 证明: $\bar{F} = F \cup F' = F \cup \partial F$.
- 定义: $G \subset \mathbb{R}^n$, 若 G^c 是闭集则称 G 是开集.
- G 是开集 \iff $\mathring{G} = G \iff \partial G \cap G = \phi$. 证明: G^c 是闭集 $\iff \partial G^c = \partial G \subset G^c \iff \partial G \cap G = \phi$.
- 例: 闭球 $\bar{B}(x,r)$ 、球面 S(x,r) 是闭集,开球 B(x,r) 是开集, \mathbb{Q} 既 不是开集, 也不是闭集, ϕ 和 \mathbb{R}^n 既是开集, 又是闭集.

- 定义: $F \subset \mathbb{R}^n$, 若 $\overline{F} = F$ 则称 F 是闭集.
- F 是闭集 \iff $F' \subset F \iff \partial F \subset F$. 证明: $\bar{F} = F \cup F' = F \cup \partial F$.
- 定义: $G \subset \mathbb{R}^n$, 若 G^c 是闭集则称 G 是开集.
- G 是开集 \iff $\mathring{G} = G \iff \partial G \cap G = \phi$. 证明: G^c 是闭集 $\iff \partial G^c = \partial G \subset G^c \iff \partial G \cap G = \phi$
- 例: 闭球 $\bar{B}(x,r)$ 、球面 S(x,r) 是闭集,开球 B(x,r) 是开集, Q 既 不是开集, 也不是闭集, ϕ 和 \mathbb{R}^n 既是开集, 又是闭集.

- 定义: $F \subset \mathbb{R}^n$, 若 $\overline{F} = F$ 则称 F 是闭集.
- F 是闭集 \iff $F' \subset F \iff \partial F \subset F$. 证明: $\bar{F} = F \cup F' = F \cup \partial F$.
- 定义: $G \subset \mathbb{R}^n$, 若 G^c 是闭集则称 G 是开集.
- G 是开集 \iff $\mathring{G} = G \iff \partial G \cap G = \phi$. 证明: G^c 是闭集 $\iff \partial G^c = \partial G \subset G^c \iff \partial G \cap G = \phi$.
- 例: 闭球 $\bar{B}(x,r)$ 、球面 S(x,r) 是闭集,开球 B(x,r) 是开集, Q 既 不是开集, 也不是闭集, ϕ 和 \mathbb{R}^n 既是开集, 又是闭集.

- 定义: $F \subset \mathbb{R}^n$, 若 $\overline{F} = F$ 则称F是闭集.
- F 是闭集 \iff $F' \subset F \iff \partial F \subset F$. 证明: $\bar{F} = F \cup F' = F \cup \partial F$.
- 定义: $G \subset \mathbb{R}^n$, 若 G^c 是闭集则称 G 是开集.
- G 是开集 \iff $\mathring{G} = G \iff \partial G \cap G = \phi$. 证明: G^c 是闭集 $\iff \partial G^c = \partial G \subset G^c \iff \partial G \cap G = \phi$.
- 例: 闭球 $\overline{B}(x,r)$ 、球面 S(x,r) 是闭集,开球 B(x,r) 是开集, \mathbb{Q} 既不是开集,也不是闭集, ϕ 和 \mathbb{R}^n 既是开集,又是闭集.

• 闭集的性质:有限个闭集的并是闭集;任意多个闭集的交集是闭 集.

证明: F_1, F_2 是闭集, $(F_1 \cup F_2)' = F_1' \cup F_2' \subset F_1 \cup F_2$, 从而 $F_1 \cup F_2$ 是闭集; 若 F_α 是闭集, $(\bigcap F_\alpha)' \subset F_\alpha' \subset F_\alpha$ 对所有 α 成立, 因此 $(\bigcap F_\alpha)' \subset \bigcap F_\alpha$, $\bigcap F_\alpha$ 是闭集.

开集的性质:有限个开集的交是开集;任意多个开集的并集是开集。

证明: 设 G_1 , G_2 是开集, $G_1 \cap G_2 = (G_1^c \cup G_2^c)^c$ 是开集 ($G_1^c \cup G_2^c$ 是 闭集). 若 G_α 是开集, $\bigcup G_\alpha = (\bigcap G_\alpha^c)^c$.

- 闭集的性质:有限个闭集的并是闭集;任意多个闭集的交集是闭 集.
 - 证明: F_1, F_2 是闭集, $(F_1 \cup F_2)' = F_1' \cup F_2' \subset F_1 \cup F_2$, 从而 $F_1 \cup F_2$ 是闭集; 若 F_α 是闭集, $(\bigcap F_\alpha)' \subset F_\alpha' \subset F_\alpha$ 对所有 α 成立, 因此 $(\bigcap F_\alpha)' \subset \bigcap F_\alpha$, $\bigcap F_\alpha$ 是闭集.
- 开集的性质:有限个开集的交是开集;任意多个开集的并集是开集。
 - 证明: 设 G_1 , G_2 是开集, $G_1 \cap G_2 = (G_1^c \cup G_2^c)^c$ 是开集 ($G_1^c \cup G_2^c$ 是 闭集). 若 G_α 是开集, $\bigcup G_\alpha = (\bigcap G_\alpha^c)^c$.

- 闭集的性质:有限个闭集的并是闭集;任意多个闭集的交集是闭 集.
 - 证明: F_1, F_2 是闭集, $(F_1 \cup F_2)' = F_1' \cup F_2' \subset F_1 \cup F_2$, 从而 $F_1 \cup F_2$ 是闭集; 若 F_α 是闭集, $(\bigcap F_\alpha)' \subset F_\alpha' \subset F_\alpha$ 对所有 α 成立, 因此 $(\bigcap F_\alpha)' \subset \bigcap F_\alpha$, $\bigcap F_\alpha$ 是闭集.
- 开集的性质:有限个开集的交是开集;任意多个开集的并集是开集。
 - 证明: 设 G_1 , G_2 是开集, $G_1 \cap G_2 = (G_1^c \cup G_2^c)^c$ 是开集 ($G_1^c \cup G_2^c$ 是 闭集). 若 G_α 是开集, $\bigcup G_\alpha = (\bigcap G_\alpha^c)^c$.

- 闭集的性质:有限个闭集的并是闭集;任意多个闭集的交集是闭 集.
 - 证明: F_1, F_2 是闭集, $(F_1 \cup F_2)' = F_1' \cup F_2' \subset F_1 \cup F_2$, 从而 $F_1 \cup F_2$ 是闭集; 若 F_α 是闭集, $(\bigcap F_\alpha)' \subset F_\alpha' \subset F_\alpha$ 对所有 α 成立, 因此 $(\bigcap F_\alpha)' \subset \bigcap F_\alpha$, $\bigcap F_\alpha$ 是闭集.
- 开集的性质:有限个开集的交是开集;任意多个开集的并集是开集。
 - 证明:设 G_1 , G_2 是开集, $G_1 \cap G_2 = (G_1^c \cup G_2^c)^c$ 是开集 $(G_1^c \cup G_2^c)$ 是 闭集). 若 G_α 是开集, $\bigcup G_\alpha = (\bigcap G_\alpha^c)^c$.

开集、闭集和连续函数

- f(x) 是 \mathbb{R}^n 上的函数, 则下面三个命题等价
 - (1) $f \in C(\mathbb{R}^n)$.
 - (2) 对任意的 t, 下面的点集是闭集

$$F_1 = \{x \in \mathbb{R}^n : f(x) \ge t\}, F_2 = \{x \in \mathbb{R}^n : f(x) \le t\}$$

(3) 对任意的 t, 下面的点集是开集

$$E_1 = \{x \in \mathbb{R}^n : f(x) > t\}, E_2 = \{x \in \mathbb{R}^n : f(x) < t\}$$

- (4) \forall 开集 $U \subset \mathbb{R}$, 集合 $f^{-1}(U)$ 是开集.
- (5) \forall 闭集 K ⊂ \mathbb{R} , 集合 $f^{-1}(K)$ 是闭集.
- 证明: $(1) \Rightarrow (3)$: 若 $x_0 \in E_1$, 即 f(x) > t, 则存在 δ , 使得 $|x x_0| < \delta$ 时, f(x) > t, 因此 $B(x_0, \delta) \subset E_1$.
- $(3) \Rightarrow (1)$: 对任意 $x_0 \in \mathbb{R}^n$, $\epsilon > 0$,集合 $E = \{x \in \mathbb{R}^n : f(x_0) \epsilon < f(x) < f(x_0) + \epsilon\}$ 是开集, 存在 $B(x_0, \delta) \subset E$, 即 $|x x_0| < \delta$ 时,

刘建明 (北大教学学院) 60 / 77

开集、闭集和连续函数

- f(x) 是 \mathbb{R}^n 上的函数, 则下面三个命题等价
 - (1) $f \in C(\mathbb{R}^n)$.
 - (2) 对任意的 t, 下面的点集是闭集

$$F_1 = \{x \in \mathbb{R}^n : f(x) \ge t\}, F_2 = \{x \in \mathbb{R}^n : f(x) \le t\}$$

(3) 对任意的 t, 下面的点集是开集

$$E_1 = \{x \in \mathbb{R}^n : f(x) > t\}, E_2 = \{x \in \mathbb{R}^n : f(x) < t\}$$

- (4) \forall 开集 U ⊂ \mathbb{R} , 集合 $f^{-1}(U)$ 是开集.
- (5) \forall 闭集 $K \subset \mathbb{R}$, 集合 $f^{-1}(K)$ 是闭集.

证明: $(1) \Rightarrow (3)$: 若 $x_0 \in E_1$, 即 f(x) > t, 则存在 δ , 使得 $|x - x_0| < \delta$ 时, f(x) > t, 因此 $B(x_0, \delta) \subset E_1$.

(3) ⇒ (1): 对任意 $x_0 \in \mathbb{R}^n$, $\epsilon > 0$,集合 $E = \{x \in \mathbb{R}^n : f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon\}$ 是开集, 存在 $B(x_0, \delta) \subset E$, 即 $|x - x_0| < \delta$ 时,

Bolzano-Weierstrass 定理

- $\{x_k\} \subset \mathbb{R}^n$ 是收敛列 $\iff \{x_k\}$ 是 Cauchy 列(即 $\|x_k x_I\| \to 0$). $\{x_k\}$ 是收敛列 $\iff x_{k,i} (1 \le i \le n)$ 是收敛列 $\iff \{x_{k,i}\}$ 是 Cauchy 列 $\iff \{x_k\}$ 是 Cauchy 列.
- Bolzano-Weierstrass 定理: ℝⁿ 中的有界无限点集必有极限点.
- 证明: 设E ⊂ \mathbb{R}^n 为有界无限点集, 存在互异点列

$$\{x_k = (x_{k,1}, x_{k,2}, \cdots, x_{k,n})\} \subset E.$$

由于 $\{x_{k,1}\}$ 是有界,存在子列 $x_k^{(1)}$,它的第一个分量收敛,同样在找 $x_k^{(1)}$ 的子列 $x_k^{(2)}$,使得它的第二分量是收敛到(第一个分量依然收敛),继续这一过程,可以找到 $x_k^{(n)}$,使得它的第n个分量是收敛到(前n-1个分量依然收敛).则 $x_k^{(n)}$ 是互异收敛点列,它的极限即为 E 的极限点.

Bolzano-Weierstrass 定理

- $\{x_k\} \subset \mathbb{R}^n$ 是收敛列 $\iff \{x_k\}$ 是 Cauchy 列(即 $\|x_k x_I\| \to 0$). $\{x_k\}$ 是收敛列 $\iff x_{k,i} (1 \le i \le n)$ 是收敛列 $\iff \{x_{k,i}\}$ 是 Cauchy 列 $\iff \{x_k\}$ 是 Cauchy 列.
- Bolzano-Weierstrass 定理: ℝⁿ 中的有界无限点集必有极限点.
- 证明: 设 $E \subset \mathbb{R}^n$ 为有界无限点集, 存在互异点列

$$\{x_k = (x_{k,1}, x_{k,2}, \cdots, x_{k,n})\} \subset E.$$

由于 $\{x_{k,1}\}$ 是有界,存在子列 $x_k^{(1)}$,它的第一个分量收敛,同样在找 $x_k^{(1)}$ 的子列 $x_k^{(2)}$,使得它的第二分量是收敛到(第一个分量依然收敛),继续这一过程,可以找到 $x_k^{(n)}$,使得它的第n个分量是收敛到(前n-1个分量依然收敛).则 $x_k^{(n)}$ 是互异收敛点列,它的极限即为 E 的极限点.

闭集套定理

- 若 $\{F_k\}$ 是 \mathbb{R}^n 中的非空有界闭集列, 且 $F_1 \supset F_2 \supset \cdots \supset F_k \supset \cdots$, 则有 $\bigcap F_k \neq \emptyset$.
- 证明: 若 $\{F_k\}$ 有无限项相同, 则存在 k_0 , 使得 $k \ge k_0$ 时 $F_k = F_{k_0}$. 结论显然成立.

若 $\{F_k\}$ 只有有限项相同,可去掉相同项, $\bigcap F_k \neq \phi$ 不变. 不妨假设 $\{F_k\}$ 是严格递减集合列, 取 $x_k \in F_k \setminus F_{k+1}$, 则 $\{x_k\}$ 是有界互异点 列, 存在收敛子列 $x_{k_i} \to x$. 对任意 k, 当 $k_i > k$ 时, $x_{k_i} \in F_k$, 因此 $x \in F_k$, 从而 $x \in \bigcap F_k$.

有限子覆盖定理1

- 引理: ℝⁿ 中点集的任意开覆盖均含有一个可数子覆盖.
- 证明: 设 $\bigcup_{G \in \Gamma} G \supset E$, $\mathscr{A} = \{B(x, 1/k) : x \in \mathbb{Q}^n, k \in \mathbb{N}\}$. $\mathscr{A}' = \{A \in \mathscr{A} : \exists G \in \Gamma, s.t. A \subset G\}$. 则 $\mathscr{A}' \not\in E$ 的覆盖, 对任意 $A \in \mathscr{A}'$, 找一个 $G_A \in \Gamma$, 使得 $G_A \supset A$, 则 $\Gamma'\{G_A : A \in \mathscr{A}\}$ 是 Γ 的一个可数子覆盖.

有限子覆盖定理2

- 定理: ℝⁿ中的有界闭集的任意开覆盖均含有一个有限子覆盖.
- 证明: 有界闭集设为 F, 只要讨论覆盖 Γ 可列的情形. 设 $\Gamma = \{G_k\}$, 令 $H_k = \bigcup_{i=1}^k G_i$, $L_k = F \cap H_k^c$. 则 L_k 是递减有界闭集列. 若存在 $L_{k_0} = \phi$, 则 $H_{k_0} \supset F$, 得证. 若所有 L_k 非空, 由闭集套定理, 存在 $x_0 \in F \cap H_k^c$, 与 Γ 是覆盖矛盾,
- 定理: E ⊂ ℝⁿ 的任意开覆盖都有有限子覆盖,则 E 是有界闭集.

一维开集的构造

● 定理: ℝ 中的开集一定是可数个互不相交的开区间的并(开区间可 以是 无穷区间)

一维闭集的构造:若F⊂R是闭集,则F是从R中挖去可数个互

一维开集的构造

- 定理: ℝ中的开集一定是可数个互不相交的开区间的并(开区间可以是 无穷区间)
 - 证明: $G \subset \mathbb{R}$ 是开集, $\forall x \in G$,存在包含 x 的最大开区间 $I_x \subset G$ (事实上, $I_x = (a', a'')$, $a' = \inf\{a : (a, x) \subset G\}$, $a'' = \sup\{a : (x, a) \subset G\}$,对任意 a' < t < x,存在 $a : a' \leq a < t < x$, $(a, x) \subset G$).
 - 对不同的 $x,y \in G$, I_x 和 I_y 要么相同,要么不交,故集合 $\{I_x\}$ 可数.
- 一维闭集的构造: 若 $F \subset \mathbb{R}$ 是闭集,则 F 是从 \mathbb{R} 中挖去可数个互不相交的开区间后所得的集合. 若 $F \subset [a,b]$,则 F 是从 [a,b] 中挖去可数个互不相交的开区间后所得的集合.

刘建明 (北大教学学院) 65 / 77

一维开集的构造

- 定理: \mathbb{R} 中的开集一定是可数个互不相交的开区间的并(开区间可以是 无穷区间).
 - 证明: $G \subset \mathbb{R}$ 是开集, $\forall x \in G$,存在包含 x 的最大开区间 $I_x \subset G$ (事实上, $I_x = (a', a'')$, $a' = \inf\{a : (a, x) \subset G\}$, $a'' = \sup\{a : (x, a) \subset G\}$,对任意 a' < t < x,存在 $a : a' \leq a < t < x$, $(a, x) \subset G$).
 - 对不同的 $x,y \in G$, I_x 和 I_y 要么相同, 要么不交, 故集合 $\{I_x\}$ 可数.
- 一维闭集的构造: 若 $F \subset \mathbb{R}$ 是闭集,则 F 是从 \mathbb{R} 中挖去可数个互不相交的开区间后所得的集合. 若 $F \subset [a,b]$,则 F 是从 [a,b] 中挖去可数个互不相交的开区间后所得的集合.

高维开集的构造

• 定理: \mathbb{R}^n 中的开集一定可表示为可列个互不相交的半开闭矩体的并. (平面中的半开闭矩体: $(a,b] \times (c,d]$).

例: $(a,b) \times (c,d) = \bigcup_{m,n=1}^{\infty} (a_{n-1},a_n] \times (c_{m-1},c_m]$, 其中 $a_n \in (a,b)$ 单调递增趋向于 b, $a_0 = a$, $c_m \in (c,d)$ 单调递增趋向于 d, $c_0 = c$.

- 二进方体: Γ_0 是边长为1顶点是整点的半开闭方体的集合. Γ_1 是 Γ_0 中方体的每一边二等分得到的半开闭方体之集合. 继续下去, $\Gamma_k = \{(\frac{m_1}{2^n}, \frac{m_1+1}{2^n}] \times \cdots \times (\frac{m_n}{2^k}, \frac{m_n+1}{2^k}]\}$. 二进方体要么不交, 要么包含. 二进方体的集合可数.
- 记 Γ_0 中含于 G 的方体之并为 G_0 (可以是空集), Γ_1 中含于 $G \setminus G_0$ 的方体之并为 G_1 , 继续这一过程, 得 G_k , 满足 $G = \bigcup G_k$. 事实上, 对任意 $x \in G$, 存在 $B(x,\delta) \subset G$, 存在二进方体 $J: x \in J \subset B(x,\delta) \subset G$.

高维开集的构造

• 定理: \mathbb{R}^n 中的开集一定可表示为可列个互不相交的半开闭矩体的并. (平面中的半开闭矩体: $(a,b] \times (c,d]$).

例: $(a,b)\times(c,d)=\bigcup_{m,n=1}^{\infty}(a_{n-1},a_n]\times(c_{m-1},c_m]$, 其中 $a_n\in(a,b)$ 单调递增趋向于 b, $a_0=a$, $c_m\in(c,d)$ 单调递增趋向于 d, $c_0=c$.

- 二进方体: Γ_0 是边长为1顶点是整点的半开闭方体的集合. Γ_1 是 Γ_0 中方体的每一边二等分得到的半开闭方体之集合. 继续下去, $\Gamma_k = \{(\frac{m_1}{2^n}, \frac{m_1+1}{2^n}] \times \cdots \times (\frac{m_n}{2^k}, \frac{m_0+1}{2^k}]\}$. 二进方体要么不交, 要么包含. 二进方体的集合可数.
- 记 Γ_0 中含于 G 的方体之并为 G_0 (可以是空集), Γ_1 中含于 $G \setminus G_0$ 的方体之并为 G_1 , 继续这一过程, 得 G_k , 满足 $G = \bigcup G_k$. 事实上, 对任意 $x \in G$, 存在 $B(x,\delta) \subset G$, 存在二进方体 $J: x \in J \subset B(x,\delta) \subset G$.

高维开集的构造

- 定理: ℝⁿ 中的开集一定可表示为可列个互不相交的半开闭矩体的 并. (平面中的半开闭矩体: $(a,b) \times (c,d)$).
 - 例: $(a,b)\times(c,d)=\bigcup_{m=0}^{\infty}(a_{m-1},a_{m}]\times(c_{m-1},c_{m}]$, 其中 $a_{m}\in(a,b)$ 单 调递增趋向于 b, $a_0 = a$, $c_m \in (c, d)$ 单调递增趋向于 d, $c_0 = c$.
- 二进方体: Γα 是边长为1顶点是整点的半开闭方体的集合. Γ1 是 Γα 中方体的每一边二等分得到的半开闭方体之集合. 继续下去. $\Gamma_k = \{ (\frac{m_1}{2^n}, \frac{m_1+1}{2^n}] \times \cdots \times (\frac{m_n}{2^k}, \frac{m_n+1}{2^k}] \}$. 二进方体要么不交, 要么包含. 二进方体的集合可数
- 记 Γ_0 中含于 G 的方体之并为 G_0 (可以是空集), Γ_1 中含于 $G \setminus G_0$ 的 方体之并为 G_1 , 继续这一过程, 得 G_k , 满足 $G = \bigcup G_k$. 事实上, 对任 意 $x \in G$, 存在 $B(x,\delta) \subset G$, 存在二进方体 $J: x \in J \subset B(x,\delta) \subset G$.

66 / 77

例

- 设 F 是 \mathbb{R}^n 中的有界闭集, G 是开集, 且 $F \subset G$. 则存在 $\delta > 0$, 使得 当 $|x| < \delta$ 时有 $F + \{x\} \subset G$.
- 证明: 对任意 $y \in F$, 存在 $B(y, \delta_y) \subset G.\{B(y, \delta_y/2)\}$ 构成 F 的开覆 盖. 存在有限子覆盖 $F \subset \bigcup_{i=1}^m B(y_i, \delta_{y_i}/2)$. 令 $\delta = \min\{\delta_{y_i}/2\}$, 则当 $|x| < \delta$ 时, $B(y_i, \delta_{y_i}/2) + \{x\} \subset B(y_i, \delta_{y_i}) \subset G$.

- 定义: $f \in \mathbb{R}^n$ 上定义的实值函数, $x_0 \in \mathbb{R}^n$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_\delta(x_0)$ 时, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. \mathbb{R}^n 上处处连续的函数构成的集合记为 $C(\mathbb{R}^n)$.
- 定义: $f \in E \subset \mathbb{R}^n$ 上定义的实值函数, $x_0 \in E$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_\delta(x_0) \cap E$, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. E 上处处连续的函数构成的集合记为 C(E).
- 注: f∈ C([a,b]),则f在a点处右连续,b点处左连续.
- 注: $f \in X_0$ 处连续 \iff 对 E 中任意收敛到 X_0 的点列 X_k , 有 $f(X_k) \to f(X_0)$.

证明: " \Leftarrow " 反设 f 在 x_0 处不连续, 则存在 ϵ_0 , 对任意 n, 存在 $x_n \in B_{\frac{1}{n}}(x_0)$, 使得 $|f(x_n) - f(x_0)| \ge \epsilon_0$. 则 $x_0 \to x_0$, 但是 $f(x_n) \not\to f(x_0)$.

- 定义: $f \in \mathbb{R}^n$ 上定义的实值函数, $x_0 \in \mathbb{R}^n$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_\delta(x_0)$ 时, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. \mathbb{R}^n 上处处连续的函数构成的集合记为 $C(\mathbb{R}^n)$.
- 定义: $f \in E \subset \mathbb{R}^n$ 上定义的实值函数, $x_0 \in E$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_\delta(x_0) \cap E$, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. E 上处处连续的函数构成的集合记为 C(E).
- 注: f∈ C([a,b]), 则 f 在 a 点处右连续, b 点处左连续.
- 注: $f \in X_0$ 处连续 \iff 对 E 中任意收敛到 X_0 的点列 X_k , 有 $f(X_k) \rightarrow f(X_0)$.

证明: " \Leftarrow " 反设 f 在 x_0 处不连续, 则存在 ϵ_0 , 对任意 n, 存在 $x_n \in B_{\frac{1}{n}}(x_0)$, 使得 $|f(x_n) - f(x_0)| \ge \epsilon_0$. 则 $x_0 \to x_0$, 但是 $f(x_n) \not\to f(x_0)$.

- 定义: $f \in \mathbb{R}^n$ 上定义的实值函数, $x_0 \in \mathbb{R}^n$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_\delta(x_0)$ 时, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. \mathbb{R}^n 上处处连续的函数构成的集合记为 $C(\mathbb{R}^n)$.
- 定义: $f \in E \subset \mathbb{R}^n$ 上定义的实值函数, $x_0 \in E$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_\delta(x_0) \cap E$, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. E 上处处连续的函数构成的集合记为 C(E).
- 注: f∈ C([a,b]),则f在a点处右连续,b点处左连续.
- 注: $f \in X_0$ 处连续 \iff 对 E 中任意收敛到 X_0 的点列 X_k , 有 $f(X_k) \to f(X_0)$.

证明: " \Leftarrow " 反设 f 在 x_0 处不连续, 则存在 ϵ_0 , 对任意 n, 存在 $x_n \in B_{\frac{1}{n}}(x_0)$, 使得 $|f(x_n) - f(x_0)| \ge \epsilon_0$. 则 $x_0 \to x_0$, 但是 $f(x_n) \not\to f(x_0)$.

- 定义: $f \in \mathbb{R}^n$ 上定义的实值函数, $x_0 \in \mathbb{R}^n$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_{\delta}(x_0)$ 时, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. \mathbb{R}^n 上处处连续的函数构成的集合记为 $C(\mathbb{R}^n)$.
- 定义: $f \in E \subset \mathbb{R}^n$ 上定义的实值函数, $x_0 \in E$, $\forall \epsilon > 0$, $\exists \delta > 0$, 使得当 $x \in B_\delta(x_0) \cap E$, $|f(x) f(x_0)| < \epsilon$, 则称 f 在 x_0 处连续. E 上处处连续的函数构成的集合记为 C(E).
- 注: f∈ C([a,b]),则f在a点处右连续,b点处左连续.
- 注: $f \in x_0$ 处连续 \iff 对 E 中任意收敛到 x_0 的点列 x_k , 有 $f(x_k) \rightarrow f(x_0)$.

证明: " \leftarrow " 反设 f 在 x_0 处不连续, 则存在 ϵ_0 , 对任意 n, 存在 $x_n \in B_{\frac{1}{n}}(x_0)$, 使得 $|f(x_n) - f(x_0)| \ge \epsilon_0$. 则 $x_0 \to x_0$, 但是 $f(x_n) \not\to f(x_0)$.

连续函数的刻画

- 定理: $f \in E \subset \mathbb{R}^n$ 上的函数. 下面几个叙述等价:
 - $f \in C(E)$.
 - $\forall \lambda \in \mathbb{R}$, 存在开集 G_1, G_2 , 使得 $\{x \in E : f(x) > \lambda\} = E \cap G_1$, $\{x \in E : f(x) > \lambda\} = G_2 \cap E$.
 - $\forall \lambda \in \mathbb{R}$, 存在闭集 F_1, F_2 , 使得 $\{x \in E : f(x) \ge \lambda\} = F_1 \cap E$, $\{x \in E : f(x) \le \lambda\} = F_2 \cap E$ 是闭集.
- 当 G 是开集时, $f \in C(G) \iff \forall$ 开集 $U \subset \mathbb{R}$, 集合 $f^{-1}(U)$ 是开集.
- 当 F 是闭集时, $f \in C(F) \iff \forall$ 闭集 $K \subset \mathbb{R}$, 集合 $f^{-1}(K)$ 是闭集.

刘建明 (北大教学学院) 69 / 77

连续函数的刻画

- 定理: $f \in E \subset \mathbb{R}^n$ 上的函数. 下面几个叙述等价:
 - $f \in C(E)$.
 - $\forall \lambda \in \mathbb{R}$, 存在开集 G_1, G_2 , 使得 $\{x \in E : f(x) > \lambda\} = E \cap G_1$, $\{x \in E : f(x) > \lambda\} = G_2 \cap E$.
 - $\forall \lambda \in \mathbb{R}$, 存在闭集 F_1, F_2 , 使得 $\{x \in E : f(x) \ge \lambda\} = F_1 \cap E$, $\{x \in E : f(x) \le \lambda\} = F_2 \cap E$ 是闭集.
- 当 G 是开集时, $f \in C(G) \iff \forall$ 开集 $U \subset \mathbb{R}$,集合 $f^{-1}(U)$ 是开集.
- 当 F 是闭集时, $f \in C(F) \iff \forall$ 闭集 $K \subset \mathbb{R}$, 集合 $f^{-1}(K)$ 是闭集.

连续函数的刻画

- 定理: $f \in E \subset \mathbb{R}^n$ 上的函数. 下面几个叙述等价:
 - $f \in C(E)$.
 - $\forall \lambda \in \mathbb{R}$, 存在开集 G_1, G_2 , 使得 $\{x \in E : f(x) > \lambda\} = E \cap G_1$, $\{x \in E : f(x) > \lambda\} = G_2 \cap E$.
 - $\forall \lambda \in \mathbb{R}$, 存在闭集 F_1, F_2 , 使得 $\{x \in E : f(x) \ge \lambda\} = F_1 \cap E$, $\{x \in E : f(x) \le \lambda\} = F_2 \cap E$ 是闭集.
- 当 G 是开集时, $f \in C(G) \iff \forall$ 开集 $U \subset \mathbb{R}$,集合 $f^{-1}(U)$ 是开集.
- 当 F 是闭集时, $f \in C(F) \iff \forall$ 闭集 $K \subset \mathbb{R}$, 集合 $f^{-1}(K)$ 是闭集.

连续函数的例子

- 若 $f \in C(\mathbb{R}^n)$, 则 f 在任意集合 E 上的限制 $f|_{E} \in C(E)$.
- 例: f(x) = ||x||, 则 f 在任意集合上连续.
- 例: $E = \mathbb{N} \subset \mathbb{R}$, 则 E 上的任意函数均连续. 证明: 对任意 $x_0 \in E$, $x \in B_{\frac{1}{2}}(x_0) = \{x_0\}$ 时, $0 = |f(x) f(x_0)| < \epsilon$ 总成立.
- 例: F_k (k = 1, 2, ..., n) 是互相不交的闭集, $E = \bigcup_{k=1}^{n} F_k$, $f = \sum_{k=1}^{p} c_k \chi_{F_k}$ 是 E 上的连续函数.

证明: 对任意闭集 $K \subset \mathbb{R}$, $f^{-1}(K)$ 是 F_k 中的一些集合的并, 因此 $f^{-1}(K)$ 是闭集.

刘建明 (北大数学学院) 70 / 77

连续函数的例子

- $\Xi f \in C(\mathbb{R}^n)$, 则 f 在任意集合 E 上的限制 $f|_{E} \in C(E)$.
- 例: f(x) = ||x||, 则f在任意集合上连续.
- 例: $E = \mathbb{N} \subset \mathbb{R}$, 则 E 上的任意函数均连续. 证明: 对任意 $x_0 \in E$, $x \in B_{\frac{1}{2}}(x_0) = \{x_0\}$ 时, $0 = |f(x) f(x_0)| < \epsilon$ 总成立.
- 例: F_k (k = 1, 2, ..., n) 是互相不交的闭集, $E = \bigcup_{k=1}^{n} F_k$, $f = \sum_{k=1}^{p} c_k \chi_{F_k}$ 是 E 上的连续函数.

证明: 对任意闭集 $K \subset \mathbb{R}$, $f^{-1}(K)$ 是 F_k 中的一些集合的并, 因此 $f^{-1}(K)$ 是闭集

刘建明 (北大数学学院) 70 / 77

- 若 $f \in C(\mathbb{R}^n)$, 则 f 在任意集合 E 上的限制 $f|_{E} \in C(E)$.
- 例: f(x) = ||x||, 则f在任意集合上连续.
- 例: E = N ⊂ R, 则 E 上的任意函数均连续.
 证明: 对任意 x₀ ∈ E, x ∈ B_{1/2}(x₀) = {x₀} 时, 0 = |f(x) f(x₀)| < €
 总成立.
- 例: F_k (k = 1, 2, ..., n) 是互相不交的闭集, $E = \bigcup_{k=1}^{n} F_k$, $f = \sum_{k=1}^{p} c_k \chi_{F_k}$ 是 E 上的连续函数.

证明: 对任意闭集 $K \subset \mathbb{R}$, $f^{-1}(K)$ 是 F_k 中的一些集合的并, 因此 $f^{-1}(K)$ 是闭集.

- 若 $f \in C(\mathbb{R}^n)$, 则 f 在任意集合 E 上的限制 $f|_{E} \in C(E)$.
- 例: f(x) = ||x||, 则f在任意集合上连续.
- 例: E = N ⊂ R, 则 E 上的任意函数均连续.
 证明: 对任意 x₀ ∈ E, x ∈ B_½(x₀) = {x₀} 时, 0 = |f(x) f(x₀)| < є
 总成立.
- 例: F_k (k = 1, 2, ..., n) 是互相不交的闭集, $E = \bigcup_{k=1}^{n} F_k$, $f = \sum_{k=1}^{p} c_k \chi_{F_k}$ 是 E 上的连续函数.

证明: 对任意闭集 $K \subset \mathbb{R}$, $f^{-1}(K)$ 是 F_k 中的一些集合的并, 因此 $f^{-1}(K)$ 是闭集.

- 若 $f \in C(\mathbb{R}^n)$, 则 f 在任意集合 E 上的限制 $f|_{E} \in C(E)$.
- 例: f(x) = ||x||, 则f在任意集合上连续.
- 例: $E = \mathbb{N} \subset \mathbb{R}$, 则 E 上的任意函数均连续. 证明: 对任意 $x_0 \in E$, $x \in B_{\frac{1}{2}}(x_0) = \{x_0\}$ 时, $0 = |f(x) - f(x_0)| < \epsilon$ 总成立.
- 例: F_k (k = 1, 2, ..., n) 是互相不交的闭集, $E = \bigcup_{k=1}^{n} F_k$, $f = \sum_{k=1}^{p} c_k \chi_{F_k}$ 是 E 上的连续函数.

证明: 对任意闭集 $K \subset \mathbb{R}$, $f^{-1}(K)$ 是 F_k 中的一些集合的并, 因此 $f^{-1}(K)$ 是闭集.

- 若 $f \in C(\mathbb{R}^n)$, 则 f 在任意集合 E 上的限制 $f|_{E} \in C(E)$.
- 例: f(x) = ||x||, 则f在任意集合上连续.
- 例: E = N ⊂ R, 则 E 上的任意函数均连续.
 证明: 对任意 x₀ ∈ E, x ∈ B_½(x₀) = {x₀} 时, 0 = |f(x) f(x₀)| < є
 总成立.
- 例: F_k (k = 1, 2, ..., n) 是互相不交的闭集, $E = \bigcup_{k=1}^{n} F_k$, $f = \sum_{k=1}^{p} c_k \chi_{F_k}$ 是 E 上的连续函数. 证明: 对任意闭集 $K \subset \mathbb{R}$, $f^{-1}(K)$ 是 F_k 中的一些集合的并,因此 $f^{-1}(K)$ 是闭集.

有界闭集上的连续函数

- 设 F 是有界闭集, $f \in C(F)$, 则有
 - (1) f 在 F 上有界.
 - (2) 存在 $x_0, y_0 \in F$, 使得 f 在 x_0 上取到最大值, 在 y_0 上取到最小值,
 - (3) f(x) 在 F 上一致连续, 即对任意 $\epsilon > 0$, 存在 $\delta > 0$, 当 $x, y \in F$ 满足 $|x y| < \delta$ 时, 有 $|f(x) f(y)| < \delta$.
- 证明: (2) $\{f(x): x \in E\}$ 有上确界 M. 存在 $x_k \in E$, 使得 $|f(x_k) M| < \frac{1}{k}$. x_k 有收敛子列 $x_{k_j} \to x_0 \in E$, 则 $f(x_{k_j}) \to f(x_0)$. 又 $|f(x_{k_j}) M| < \frac{1}{k_j}$, 因此 $f(x_0) = M$.
 - (3) 对任意 $x \in F$, 存在 $B(x, \delta_x)$, f 在 $B(x, \delta_x)$ 上的振幅小于 ϵ . 覆盖 $\{B(x, \delta_x/2)\}$ 有有限子覆盖 $\{B(x_i, \delta_{x_i}/2) : i = 1, 2, \dots, m\}$ (由此也能说明 f 有界), 取 $\delta = \min\{\delta_{x_i}\}$.

- 定义: 若集合 A 可表示为可数个闭集的并,则称 A 是 F_{σ} 集;若 A 可表示为可数个开集的交,则称 A 为 G_{δ} 集.
- 可数个 F_{σ} 集的并是 F_{σ} 集, 可数个 G_{δ} 集的交是 G_{δ} 集.
- 性质: F_{σ} 的补集是 G_{δ} 集. G_{δ} 集的补集是 F_{σ} 集(($\bigcup F_{n}$) $^{c} = \bigcap F_{n}^{c}$).
- 例: $[0,1) = \bigcup_{k=1}^{\infty} [0,1-\frac{1}{k}] = \bigcap_{k=1}^{\infty} (-\frac{1}{k},1)$, [0,1) 既是 F_{σ} 又是 G_{δ} 集. 类似地可证 n 维欧氏空间中的半开闭矩体

$$[a_1,b_1)\times[a_1,b_1)\times\cdots[a_n,b_n]$$

既是Fo又是Go集

- 例: $(0,1) = \bigcup_{n=0}^{\infty} [\frac{1}{n}, 1 \frac{1}{n}]$, 任意开区间既是 F_{σ} 又是 G_{δ} 集.
- 有理数集是 F_{α} 集, 但不是 G_{δ} 集(证明要用到 Baire 定理).

- 定义: 若集合 A 可表示为可数个闭集的并,则称 A 是 F_{σ} 集;若 A 可表示为可数个开集的交,则称 A 为 G_{δ} 集.
- 可数个 F_{σ} 集的并是 F_{σ} 集, 可数个 G_{δ} 集的交是 G_{δ} 集.
- 性质: F_{σ} 的补集是 G_{δ} 集. G_{δ} 集的补集是 F_{σ} 集(($\bigcup F_{n}$) $^{c} = \bigcap F_{n}^{c}$).
- 例: $[0,1) = \bigcup_{k=1}^{\infty} [0,1-\frac{1}{k}] = \bigcap_{k=1}^{\infty} (-\frac{1}{k},1)$, [0,1) 既是 F_{σ} 又是 G_{δ} 集. 类似地可证 n 维欧氏空间中的半开闭矩体

$$[a_1,b_1)\times[a_1,b_1)\times\cdots[a_n,b_n)$$

既是 F_{σ} 又是 G_{δ} 集

- 例: $(0,1) = \bigcup [\frac{1}{n}, 1 \frac{1}{n}]$, 任意开区间既是 F_{σ} 又是 G_{δ} 集.
- 有理数集是 F_{σ} 集, 但不是 G_{δ} 集(证明要用到 Baire 定理).

- 定义: 若集合 A 可表示为可数个闭集的并,则称 A 是 F_{σ} 集;若 A 可表示为可数个开集的交,则称 A 为 G_{δ} 集.
- 可数个 F_{σ} 集的并是 F_{σ} 集, 可数个 G_{δ} 集的交是 G_{δ} 集.
- 性质: F_{σ} 的补集是 G_{δ} 集. G_{δ} 集的补集是 F_{σ} 集(($\bigcup F_{n}$) $^{c} = \bigcap F_{n}^{c}$).
- 例: $[0,1) = \bigcup_{k=1}^{\infty} [0,1-\frac{1}{k}] = \bigcap_{k=1}^{\infty} (-\frac{1}{k},1)$, [0,1) 既是 F_{σ} 又是 G_{δ} 集. 类似地可证 n 维欧氏空间中的半开闭矩体

$$[a_1,b_1)\times[a_1,b_1)\times\cdots[a_n,b_n]$$

既是 F_{σ} 又是 G_{δ} 集

- 例: $(0,1) = \bigcup [\frac{1}{n}, 1 \frac{1}{n}]$, 任意开区间既是 F_{σ} 又是 G_{δ} 集.
- 有理数集是 F_{σ} 集, 但不是 G_{δ} 集(证明要用到 Baire 定理).

- 定义: 若集合 A 可表示为可数个闭集的并,则称 A 是 F_{σ} 集;若 A 可表示为可数个开集的交,则称 A 为 G_{δ} 集.
- 可数个 F_{σ} 集的并是 F_{σ} 集, 可数个 G_{δ} 集的交是 G_{δ} 集.
- 性质: F_{σ} 的补集是 G_{δ} 集. G_{δ} 集的补集是 F_{σ} 集(($\bigcup F_{n}$) $^{c} = \bigcap F_{n}^{c}$).
- 例: $[0,1) = \bigcup_{k=1}^{\infty} [0,1-\frac{1}{k}] = \bigcap_{k=1}^{\infty} (-\frac{1}{k},1)$, [0,1) 既是 F_{σ} 又是 G_{δ} 集. 类似地可证 n 维欧氏空间中的半开闭矩体

$$[a_1,b_1)\times[a_1,b_1)\times\cdots[a_n,b_n)$$

既是 F_{σ} 又是 G_{δ} 集.

- 例: $(0,1) = \bigcup [\frac{1}{n}, 1 \frac{1}{n}]$, 任意开区间既是 F_{σ} 又是 G_{δ} 集.
- 有理数集是 F_{σ} 集, 但不是 G_{δ} 集(证明要用到 Baire 定理).

- 定义: 若集合 A 可表示为可数个闭集的并,则称 A 是 F_{σ} 集;若 A 可表示为可数个开集的交,则称 A 为 G_{δ} 集.
- 可数个 F_{σ} 集的并是 F_{σ} 集, 可数个 G_{δ} 集的交是 G_{δ} 集.
- 性质: F_{σ} 的补集是 G_{δ} 集. G_{δ} 集的补集是 F_{σ} 集(($\bigcup F_{n}$) $^{c} = \bigcap F_{n}^{c}$).
- 例: $[0,1) = \bigcup_{k=1}^{\infty} [0,1-\frac{1}{k}] = \bigcap_{k=1}^{\infty} (-\frac{1}{k},1)$, [0,1) 既是 F_{σ} 又是 G_{δ} 集. 类似地可证 n 维欧氏空间中的半开闭矩体

$$[a_1,b_1)\times[a_1,b_1)\times\cdots[a_n,b_n)$$

既是 F_{α} 又是 G_{δ} 集.

- 例: $(0,1) = \bigcup [\frac{1}{n}, 1 \frac{1}{n}]$, 任意开区间既是 F_{σ} 又是 G_{δ} 集.
- 有理数集是 F_{α} 集, 但不是 G_{δ} 集(证明要用到 Baire 定理).

刘建明 (北大数学学院) 72

振幅函数

• 定义: f(x) 在 x₀ 附近有定义,

$$\omega_f(x_0) = \lim_{\delta \to 0} \sup\{|f(x') - f(x'')| : x', x'' \in B(x_0, \delta)\}$$

• f(x) 是开集 $G \subset \mathbb{R}^n$ 上的函数, 则对任意 $t \in \mathbb{R}$,

$$H = \{x \in G : \omega_f(x) < t\}$$

是开集.

证明: 设 $x_0 \in G$, $\omega_f(x_0) < t$, 存在 δ_0 , 使得 $B(x_0, \delta_0) \subset G$,

$$\sup\{|f(x') - f(x'')| : x', x'' \in B(x_0, \delta_0)\} < t.$$

对任意 $x \in B(x_0, \delta_0)$, 存在 $B(x, \delta_1) \subset B(x_0, \delta_0)$, 则 f(x) 在 $B(x, \delta_1)$ 上的振幅小于 t, 即 $\omega_f(x) < t$, $B(x_0, \delta_0) \subset H$

函数的连续点集

• 定理: 开集 $G \subset \mathbb{R}^n$ 上的函数的连续点集是 $G\delta$ 集证明: f(x) 的连续点集可表示为

$$\{x \in G : w_f(x) = 0\} = \bigcap_{k=1}^{\infty} \{x \in G : \omega_f(x) < \frac{1}{k}\}.$$

- σ -代数: Γ是由集合 X 中的一些子集所构成的集合族, 如果满足 (i) $\phi \in \Gamma$;
 - (ii) 若 $A \in \Gamma$, 则 $A^c \in \Gamma$;

σ -代数

- 若「是一个 σ-代数,
 - (i) 若 $A_n \in \Gamma(n=1,2,\cdots,n)$, 则 $\bigcup_{n=1}^m A_n \in \Gamma$
 - (ii) 若 $A_n \in \Gamma(n = 1, 2, \cdots)$,

$$\bigcap_{n=1}^{\infty} A_n \in \Gamma, \overline{\lim}_{n \to \infty} A_n \in \Gamma, \underline{\lim}_{n \to \infty} A_n \in \Gamma$$

- (iii) 若 $A, B \in \Gamma$, 则 $A \setminus B \in \Gamma$.
- (iv) $X \in \Gamma$.
- 生成 σ -代数: Σ 是由集合 X 中的一些子集所构成的集合族, 包含 Σ 的最小 σ -代数称为由 Σ 生成的 σ -代数. 由 \mathbb{R}^n 的开集族所生成的 σ -代数称为 Borel-代数(记为 \mathcal{B}), \mathcal{B} 中的元称为 Borel 集.

Baire 定理

- 设 $E \subset \mathbb{R}^n$ 是一个 F_σ 集, 即 F 可以表示为可列个闭集 $F_k(k = 1, 2, \cdots)$ 的并. 若每个 F_k 皆无内点, 则 E 也没有内点.
- 证明: 反设 E 有内点 x_0 , 存在 $B(x_0, \delta_0) \subset E$, 由于 F_k 没有内点, 存在 $x_1 \in B(x_0, \delta_0)$, $x \notin F_1$, 存在 $\bar{B}(x_1, \delta_1) \subset B(x_0, \delta_0)$, 且 $B(x_0, \delta_0) \cap F_1 = \phi$, 继续做 $\bar{B}(x_2, \delta_2) \subset B(x_1, \delta_1)$, $\bar{B}(x_2, \delta_1) \cap F_2 = \phi$, 继续这一过程, 可以假设 $\delta_k < \frac{1}{k}$, 当 I > k 时, 有 $|x_I x_k| < \delta < \frac{1}{k}$, x_k 收敛到某个 $x \in \bar{B}(x_k, \delta_k)$, $\forall k$, 因此 $x \notin F_k$, 矛盾.

稠密集, 无处稠密集1

• \mathbb{Q} 不是 G_δ 集. 反设 $\mathbb{Q} = \bigcap G_i$,

$$\mathbb{R} = \bigcup G_i^c \cup \mathbb{Q}$$

即 ℝ 可表示为可列个无内点的闭集之并, 矛盾,

- 定义: 设 $E \subset \mathbb{R}^n$, 若 $\overline{E} = \mathbb{R}^n$, 则称 $E \to \mathbb{R}^n$ 的稠密集, 若 $E = \phi$, 则称 $E \to \mathbb{R}^n$ 中的无处稠密集(疏朗集); 可数个无处稠密集的并集称为贫集或第一纲集, 不是第一纲集的集合称为第二纲集.
- 性质: 由 Baire 定理, 第一纲集不含内点, 它的补集是稠密集. 可数个 第一纲集的并集也是第一纲集.

稠密集, 无处稠密集2

- 第一纲集的补集是第二纲集: 若 E 和 E^c 都是第一纲集, 则它们的并集 \mathbb{R}^n 也是第一纲集,这显然是错的.
- 例: 孤立点集, Cantor 集, 类 Cantor 集(测度大于0)
- 闭集的边界是无处稠密集, 因为 $\partial F \subset F$, ∂F 的内点不可能是 F 的 边界点.
- 设 $\{G_k\}$ 是 \mathbb{R}^n 中的稠密开集列, 则 $G_0 = \bigcap G_k$ 在 \mathbb{R}^n 中的稠密. 证明: $G_0^c = \bigcup G_k^c$, G_k^c 都是无处稠密, 因此 G_0^c 没有内点, G_k 是稠密集.

极限函数的连续点集

• $f_k \in C(\mathbb{R}^n)$. $\lim f_k(x) = f(x)$, 则 f(x) 的连续点集可表示为(G_δ 集)

$$\bigcap_{m=1}^{\infty}\bigcup_{k=1}^{\infty}\mathring{E}_{k}(\frac{1}{m}), E_{k}(\epsilon) = \{x: |f_{x}(x) - f(x)| \leq \epsilon\}.$$

且 f(x) 的不连续点集为第一纲集.

证明:设 x_0 是 f(x) 的连续点,则对任给 $\epsilon > 0$,存在 k_0, δ ,使得对 $x \in B(x_0, \delta)$,有

$$|f(x) - f(x_0)| < \epsilon/3, |f_{k_0}(x_0) - f(x_0)| < \epsilon/3, |f_{k_0}(x) - f_{k_0}(x_0)| < \epsilon/3,$$

因此 $|f_{k_0}(x) - f(x)| < \epsilon, \ B(x_0, \delta) \subset \mathring{E}_{k_0}(\epsilon). \ x_0 \in \bigcup \mathring{E}_k(\epsilon).$

极限函数的连续点集续1

• (2) 设

$$x_0 \in \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \mathring{E}_k(\frac{1}{m}),$$

对任给 ϵ , 取 $m > 3/\epsilon$, $x_0 \in \bigcup_{k=1}^{\infty} \mathring{E}_k(\frac{1}{m})$, 存在 k_0 , $x_0 \in \mathring{E}_{k_0}(\frac{1}{m})$, 即存在 $B(x_0, \delta_0) \subset E_{k_0}(\frac{1}{m})$, 从而得

$$|f_{k_0}(x) - f(x)| \le \frac{1}{m} < \frac{\epsilon}{3}, x \in B(x_0, \delta_0)$$

又存在 δ_1 , 使得

$$|f_{k_0}(x) - f_{k_0}(x_0)| < \frac{\epsilon}{3}, x \in B(x_0, \delta_0)$$

因此当 $x \in B(x_0, \delta)(\delta = \min\{\delta_0, \delta_1\})$ 时, $|f(x) - f(x_0)| < \epsilon$.

极限函数的连续点集续2

f(x) 的不连续集为

$$\bigcup_{m=1}^{\infty} \left(G(1/m) \right)^{c}, \text{这里 } G(\epsilon) = \bigcup_{k=1}^{\infty} \mathring{E}_{k}(\epsilon),$$

对任给 $\epsilon > 0$, 令

$$F_{\epsilon} = \bigcap \{x : |f_x(x) - f_{k+i}(x)| \le \epsilon\} \Rightarrow \mathbb{R}^n = \bigcup F_k(\epsilon)$$

由于 $F_k(\epsilon) \subset E_k(\epsilon)$,

$$\bigcup \mathring{F}_k(\epsilon) \subset \bigcup \mathring{E}_k(\epsilon) = G(\epsilon),$$

因此

$$G(\epsilon)^{c} \subset \bigcup F_{k}(\epsilon) \setminus \bigcup \mathring{F}_{k}(\epsilon) \subset \bigcup F_{k}(\epsilon) \setminus \mathring{F}_{k}(\epsilon) = \bigcup \partial F_{k}(\epsilon)$$

- 第一步: 记 $I = [0,1], I_1 = (\frac{1}{3}, \frac{2}{3}), F_1 = I \setminus I_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$
- 第二步: $I_2 = (\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9})$, 取

$$F_2 = I \setminus (I_1 \cup I_2) = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1].$$

- 第三步: $I_3 = (\frac{1}{27}, \frac{2}{27})(\frac{7}{27}, \frac{8}{27})(\frac{19}{27}, \frac{20}{27})(\frac{25}{27}, \frac{26}{27}), F_3 = I \setminus (I_1 \cup I_2 \cup I_3).$ 这样可构造出开集列 I_n 和闭集例 I_n .
- Cantor $\mbox{\ } \mbox{\ } C = I \backslash (\bigcup I_k) = \bigcap F_k.$

刘建明 (北大数学学院)

- 第一步: 记 $I = [0,1], I_1 = (\frac{1}{3}, \frac{2}{3}), F_1 = I \setminus I_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1].$
- 第二步: $I_2 = (\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9})$, 取

$$F_2 = I \setminus (I_1 \cup I_2) = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1].$$

- 第三步: $I_3 = (\frac{1}{27}, \frac{2}{27})(\frac{7}{27}, \frac{8}{27})(\frac{19}{27}, \frac{20}{27})(\frac{25}{27}, \frac{26}{27})$, $F_3 = I \setminus (I_1 \cup I_2 \cup I_3)$. 这样可构造出开集列 I_n 和闭集例 I_n .
- Cantor $\mbox{\normalfont\&fig} C = I \setminus (\bigcup I_k) = \bigcap F_k.$

• 注1: 用三进制小数表示时, I_1 中数的小数点后第一位 $a_1 = 1$, I_2 中的数小数点后第二位 $a_2 = 1$, ... $F_1 = I \setminus I_1$ 中的小数点后第一位 a_1 可以只取 0, 2, F_2 中数的小数点后第一、二位 a_1, a_2 可以只取 0, 2, ... C 中的数用三进制展开可以不含 1. 因此

$$x \in C \Longleftrightarrow x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} = (0.a_1a_2a_3\cdots)_3, a_k = 0, 2.$$

• 注2: I_k 的端点均属于 Cantor 集. 例如 $\frac{1}{3} = (0.0222...)_3$, $\frac{1}{9} = (0.0022...)_3$.

• 注1: 用三进制小数表示时, I_1 中数的小数点后第一位 $a_1 = 1$, I_2 中的数小数点后第二位 $a_2 = 1$, ... $F_1 = I \setminus I_1$ 中的小数点后第一位 a_1 可以只取 0, 2, F_2 中数的小数点后第一、二位 a_1, a_2 可以只取 0, 2, ... C 中的数用三进制展开可以不含 1. 因此

$$x \in C \Longleftrightarrow x = \sum_{k=1}^{\infty} \frac{a_k}{3^k} = (0.a_1a_2a_3\cdots)_3, a_k = 0, 2.$$

• 注2: I_k 的端点均属于 Cantor 集. 例如 $\frac{1}{3} = (0.0222...)_3$, $\frac{1}{9} = (0.0022...)_3$.

• Cantor 集是非空有界闭集.

- C = C'. (满足该条件的集合称为完全集). 证明: $\forall x \in C$, $x \in F_n$ 中的某个区间(区间长为 3^{-n}), 而该区间的端点 $\in C$, 对任意的 $\epsilon > 0$, 存在 n 使得 $B_{\epsilon} \supset B_{\frac{2}{3n}}(x)$ 至少含有 C 中的两个点($B_{\frac{2n}{n}}$ 包含 F_n 的某个区间).
- Cantor 集没有内点.

- Cantor 集是非空有界闭集.
- C = C'. (满足该条件的集合称为完全集). 证明: $\forall x \in C$, $x \in F_n$ 中的某个区间(区间长为 3^{-n}), 而该区间的端点 $\in C$, 对任意的 $\epsilon > 0$, 存在 n 使得 $B_\epsilon \supset B_{\frac{2}{3n}}(x)$ 至少含有 C 中的两个点($B_{\frac{2}{3n}}$ 包含 F_n 的某个区间).
- Cantor 集没有内点.

- Cantor 集是非空有界闭集.
- C = C'. (满足该条件的集合称为完全集). 证明: $\forall x \in C, x \in F_n$ 中的某个区间(区间长为 3^{-n}), 而该区间的端点 $\in C$, 对任意的 $\epsilon > 0$, 存在 n 使得 $B_{\epsilon} \supset B_{\frac{2}{3^n}}(x)$ 至少含有 C 中的两个点($B_{\frac{2}{3^n}}$ 包含 F_n 的某个区间).
- Cantor 集没有内点.

- Cantor 集是非空有界闭集.
- C = C'. (满足该条件的集合称为完全集). 证明: $\forall x \in C, x \in F_n$ 中的某个区间(区间长为 3^{-n}), 而该区间的端点 $\in C$, 对任意的 $\epsilon > 0$, 存在 n 使得 $B_{\epsilon} \supset B_{\frac{2}{3^n}}(x)$ 至少含有 C 中的两个点($B_{\frac{2}{3^n}}$ 包含 F_n 的某个区间).
- Cantor 集没有内点.

- Cantor 集是非空有界闭集.
- C = C'. (满足该条件的集合称为完全集). 证明: $\forall x \in C, x \in F_n$ 中的某个区间(区间长为 3^{-n}), 而该区间的端点 $\in C$, 对任意的 $\epsilon > 0$, 存在 n 使得 $B_{\epsilon} \supset B_{\frac{2}{3n}}(x)$ 至少含有 C 中的两个点($B_{\frac{2}{3n}}$ 包含 F_n 的某个区间).
- Cantor 集没有内点.

完全集

- E⊂限是完全集的充分必要条件是 E 的补集可以表示为可数个没有公共端点的开区间之并.
 证明:若 E⊂限是完全集,则 E 是闭集, E 的补集可以表示为可数个开区间之并.又因为 E 没有孤立点,这些开区间没有公共端点.
 - 若 E 的补集可以表示为可数个没有公共端点的开区间之并,则 E 是闭集. 若 $x \in E' \setminus E$,则 x 是孤立点,与 E^c 的组成开区间没有公共端点矛盾.
- 任意非空完全集的基数是 c.

• Cantor 集不可数. 事实上 $C \sim \mathbb{R}$.

证明:由于
$$x \in C \iff x = \sum_{i=1}^{\infty} \frac{2a_i}{3^i} (a_i = 0, 1)$$
,存在满射

$$\phi: C \to [0,1], \quad \sum_{i=1}^{\infty} \frac{2a_i}{3^i} \mapsto \sum_{i=1}^{\infty} \frac{a_i}{2^i},$$

因此 [0,1] 和 C 的一个子集对等, C 不可数.

- 注: 上面的映射不是单射, 事实上 ϕ 在构造过程中移除区间的两个端点上取值相同, 比如 $\phi(0.2_3) = \phi(0.022\cdots_3)$.
- 注: 若构造过程中移除的区间长不定, 每次总是把一个区间移除一个开区间变成两个闭区间, 可类似证明余下的集合的基数必为 $c(若 \times 2$ 是余下集合中的一点, 第 k 步移除区间后属于左边区间时记 $a_k = 0$, 属于右边区间时记 $a_k = 1$), 则 x 对应与二进制数 $0.a_1a_2 \cdots$.

• Cantor 集不可数. 事实上 $C \sim \mathbb{R}$. 证明: 由于 $x \in C \iff x = \sum_{i=1}^{\infty} \frac{2a_i}{3^i} (a_i = 0, 1)$, 存在满射

$$\phi: C \to [0,1], \quad \sum_{i=1}^{\infty} \frac{2a_i}{3^i} \mapsto \sum_{i=1}^{\infty} \frac{a_i}{2^i},$$

因此 [0,1] 和 C 的一个子集对等, C 不可数.

- 注: 上面的映射不是单射, 事实上 ϕ 在构造过程中移除区间的两个端点上取值相同, 比如 $\phi(0.2_3) = \phi(0.022\cdots_3)$.
- 注: 若构造过程中移除的区间长不定,每次总是把一个区间移除一个 开区间变成两个闭区间,可类似证明余下的集合的基数必为 c(若 x 是余下集合中的一点,第 k 步移除区间后属于左边区间时记 a_k = 0, 属于右边区间时记 a_k = 1),则 x 对应与二进制数 0.a₁a₂····.

类 Cantor 集

• [0,1] 中类 Cantor 集的构造. 设 p > 3.

第一步: 移去以中点为中心长度为 $\frac{1}{p}$ 的开区间, 得到两个闭区间. 第二步: 剩下的两个闭区间再移去以中点为中心长度为 $\frac{1}{p^2}$ 的开区间得到四个闭区间

.

移去的区间总长度:
$$\sum \frac{2^{n-1}}{p^n} = \frac{1/p}{1-2/p} = \frac{1}{p-2} < 1$$
.

• 上面过程中移去长度的比例是下降的: $\frac{1}{p}$, $\frac{1}{p} \cdot \frac{2}{p-1}$, · · · · 若保持每次移去 $\frac{1}{p}$,

移去的区间长为: $\frac{1}{p}$, $\frac{1}{p}(1-\frac{1}{p})$, $\frac{1}{p}(1-\frac{1}{p})^2$, ...

.

移去的区间总长度: $\sum_{n=0}^{\infty} \frac{1}{p} (1 - \frac{1}{p})^n = 1$

类 Cantor 集

• [0,1] 中类 Cantor 集的构造. 设 p>3. 第一步: 移去以中点为中心长度为 $\frac{1}{p}$ 的开区间, 得到两个闭区间. 第二步: 剩下的两个闭区间再移去以中点为中心长度为 $\frac{1}{p^2}$ 的开区间得到四个闭区间

.

移去的区间总长度:
$$\sum \frac{2^{n-1}}{p^n} = \frac{1/p}{1-2/p} = \frac{1}{p-2} < 1$$
.

• 上面过程中移去长度的比例是下降的: $\frac{1}{p}$, $\frac{1}{p} \cdot \frac{2}{p-1}$, · · · · 若保持每次移去 $\frac{1}{p}$,

移去的区间长为: $\frac{1}{p}$, $\frac{1}{p}(1-\frac{1}{p})$, $\frac{1}{p}(1-\frac{1}{p})^2$, ...

移去的区间总长度: $\sum_{n=0}^{\infty} \frac{1}{p} (1 - \frac{1}{p})^n = 1$

类 Cantor 集

• [0,1] 中类 Cantor 集的构造. 设 p>3. 第一步: 移去以中点为中心长度为 $\frac{1}{p}$ 的开区间, 得到两个闭区间. 第二步: 剩下的两个闭区间再移去以中点为中心长度为 $\frac{1}{p^2}$ 的开区间得到四个闭区间

.

移去的区间总长度:
$$\sum \frac{2^{n-1}}{p^n} = \frac{1/p}{1-2/p} = \frac{1}{p-2} < 1$$
.

• 上面过程中移去长度的比例是下降的: $\frac{1}{p}$, $\frac{1}{p} \cdot \frac{2}{p-1}$, 若保持每次移去 $\frac{1}{p}$,

移去的区间长为: $\frac{1}{p}$, $\frac{1}{p}(1-\frac{1}{p})$, $\frac{1}{p}(1-\frac{1}{p})^2$, · · · ·

.

移去的区间总长度: $\sum_{n=0}^{\infty} \frac{1}{p} (1 - \frac{1}{p})^n = 1$.

Cantor 函数

• 利用 C 中元的三进制表示, 前面定义了 C 到 [0,1] 上的函数:

$$\phi: 2\sum \frac{a_i}{3^i} \in C(a_i=0,1) \to \sum_{i=1}^{\infty} \frac{a_i}{2^i}.$$

 $\phi(x)$ 在 C 上单调上升: 若 a > b, 它们的三进制展开为 $a = 2\sum \frac{a_i}{3^i}$, $b = 2\sum \frac{b_i}{3^i}$. 若 $a_i = b_i (i = 1, \dots, k - 1)$, $a_k = 1$, $b_k = 0$, 则有

$$\phi(x) \geq 0.a_1a_2\cdots a_{k-1}1 = \geq a_1a_2\cdots a_{k-1}0b_{k+1}b_{k+2}\cdots.$$

• 把 $\phi(x)$ 延拓到 [0,1] 上(保持单调性), 记为 $\Phi(x)$,

$$\Phi(x) = \sup \{ \phi(x) : y \in C, y \le x \}.$$

称为 Cantor 函数.因为是满射, 必为连续.

点集间的距离1

• 定义: 设 $x \in \mathbb{R}^n$, E是非空点集, x到 E的距离定义为

$$d(x,E) = \inf\{|x-y| : y \in E\};$$

 E_1, E_2 是两个非空点集, E_1 和 E_2 之间的距离定义为

$$d(E_1, E_2) = \inf\{|x - y| : x \in E_1, y \in E_2\}.$$

- 例: \mathbb{R}^2 中的集合 E_1 是 x 轴, E_2 是双曲线 xy = 1 (E_1 , E_2 是不交闭集), $d(E_1, E_2) = 0$.
- 若 d(x, E) = 0, 则 x ∈ E 或者 x ∈ E'.

点集间的距离2

• 性质:

$$d(E_1, E_2) = \inf\{d(x, E_2) : x \in E_1\} = \inf\{d(x, E_1) : x \in E_2\}.$$

证明:存在 $x \in E_1, y \in E_2$ 使得 $|x - y| < d(E_1, E_2) + \epsilon$, 此时
$$\inf\{d(x, E_2) : x \in E_1\} \le d(x, E_2) < |x - y| < d(E_1, E_2) + \epsilon.$$

反过来,存在 $x \in E_1$, $d(x, E_2) < \inf\{d(x, E_2) : x \in E_1\} + \epsilon$ 存在 $y \in E_2$, $d(E_1, E_2) \le d(x, y) < d(x, E_2) + \epsilon < \inf\{d(x, E_2) : x \in E_1\} + 2\epsilon.$

距离函数

• 定理: 若 $E \subset \mathbb{R}^n$ 是非空点集, 则 d(x, E) 作为 x 的函数在 \mathbb{R}^n 上一致 连续.

证明: 只要证明 $|d(x, E) - d(y, E)| \le |x - y|$. 取 $z \in E$ 使得 $|y - z| < d(y, E) + \epsilon$,

$$d(x, E) \le |x - z| \le |x - y| + |y - z| < |x - y| + d(y, E) + \epsilon$$

- 定理: 若 $F \subset \mathbb{R}^n$ 是非空闭集, $x_0 \in \mathbb{R}^n$, 则存在 $y_0 \in F$, 使得 $|x_0 y_0| = d(x_0, F)$.
 - 证明: 若 $\bar{B}(x_0,r)\cap F$ 非空, $d(x_0,y)$ 在 $\bar{B}(x_0,r)\cap F$ 上取到最小值.
- 定理: 若 F_1 , F_2 是非空闭集, 且至少有一个是有界集, 则存在 $x_1 \in F_1$, $x_2 \in F_2$, 使得 $|x_1 x_2| = d(F_1, F_2)$.

刘建明 (北大数学学院) 91 / 77

连续延拓

- 例: 若 F_1, F_2 是两个不相交的非空闭集,则存在 \mathbb{R}^n 上的连续函数 f(x) 使得
 - (i) $0 \le f(x) \le 1$.

(ii)
$$F_1 = \{x : f(x) = 1\}.$$
 $F_2 = \{x : f(x) = 0\}$

证明: 取

$$f(x) = \frac{d(x, F_2)}{d(x, F_1) + d(x, F_2)}$$

• 定理: 若 F 是 \mathbb{R}^n 中的闭集, f(x) 是定义在 F 上的连续函数且 $|f(x)| \leq M(x \in F)$, 则存在 \mathbb{R}^n 上的连续函数 g(x) 满足

$$|g(x)| \le M$$
, $g(x) = f(x), \forall x \in F$.

刘建明 (北大教学学院) 92 / 77

延拓定理的证明1

● 证明思路: 作 ℝⁿ 上的连续函数 g₁(x) 满足

$$|g_1(x)| \leq \frac{M}{3}, x \in \mathbb{R}^n, |f(x) - g_1(x)| \leq \frac{2}{3}M, \forall x \in F.$$

对 $|f(x)-g_1(x)| \leq \frac{2}{3}M$ 重复上述过程,构造 $g_2(x)$, 继续这一过程, 得到连续函数列 $g_k(x)$ 满足

$$|g_k(x)| \leq \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{k-1} M, x \in \mathbb{R}^n, |f(x) - \sum_{i=1}^k g_i(x)| \leq \left(\frac{2}{3}\right)^k M, \forall x \in F.$$

则 $\sum_{k=1}^{\infty} g_k(x)$ 一致收敛, 记和函数为 g(x), 且在 F 上等于 f(x), 且

$$|g(x)| \le \frac{M}{3} \left(1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \cdots\right) = M$$

刘建明 (北大数学学院) 93 / 77

延拓定理的证明2

● g₁(x) 的构造: F 分成三个集合

$$A = \{x \in F : \frac{M}{3} \le f(x) \le M\},\$$

$$B = \{x \in F : -M \le f(x) \le -\frac{M}{3}\},\$$

$$C = \{x \in F : -\frac{M}{3} < f(x) < \frac{M}{3}\},\$$

则 A, B 是闭集, 当 A, B 均非空时, 取

$$g_1(x) = \frac{M}{3} \frac{d(x, B) - d(x, A)}{d(x, B) + d(x, A)}$$

当 A 为空集时, $g_1(x) = -\frac{M}{3}$; 当 B 为空集时, $g_1(x) = \frac{M}{3}$, 当 A, B 均为空集时, $g_1(x) = 0$. 则有

$$|g_1(x)| \leq \frac{M}{3}, x \in \mathbb{R}^n, |f(x) - g_1(x)| \leq \frac{2}{3}M, \forall x \in F.$$