Repetition

Simulation of discrete-time Markov chains

Input:

- i_0 : starting state
- P: transition probability matrix
- T: number of time steps

Algorithm:

- 1. Set $x_0 = i_0$
- 2. for $n = 1 \dots T$
- 3. Simulate x_n from $X_n | X_{n-1} = x_{n-1}$
- 4. end

Output: One realization x_0, x_1, \ldots, x_T .

Definition

For a Markov chain, a state i such that $P_{ij} = 0 \ \forall j \neq i$ is called **absorbing**.

Theorem

Let $\{X_n\}$ be a discrete-time Markov chain with state space $S = \{0, 1, ..., N\}$ and transitition probability matrix **P**. Let $A \subset S$ be the set of absorbing states. Then

1. If u_i is the probability of absorption in state $j \in A$ conditional on $X_0 = i$, then

$$u_{i} = 1, \quad i = j,$$

 $u_{i} = 0, \quad i \in A, i \neq j,$
 $u_{i} = P_{ij} + \sum_{k \in A^{C}} P_{ik} u_{k}, \quad i \in A^{C}.$