Лабораторная работа 2.1.6

Измерение удельной теплоёмкости воздуха при постоянном давленини

Матвей Галицын Б01-411

March 15, 2025

1 Аннотация

1.1 Задача

В работе измеряются изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях. По полученным данным вычисляются коэфиициенты газа Вандер-Ваальса

1.2 Оборудование

Трубка с пористой перегородкой; труба Дьюара; термостат, термометры; дифференицальная термопара; микровольтметр; балластный баллон; манометр.

2 Теория

Рассмотрим стационарный поток газа между произвольными сечениями трубки и пористой перегородкой. Для 1 моля можно записать первое начало термодинамики:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right) \tag{1}$$

где $A_1=P_1V_1$ – работа над газом, необходимая для внесения его в первое сечение трубки, $A_2=P_2V_2$ – работа газа по прохождению второго сечения. Используя уравнение (1), получим:

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_2^2 - v_1^2) \ \ (2)$$

Или:

$$C_P(T_1 - T_2) = \frac{1}{2}\mu(v_2^2 - v_1^2)$$

откуда:

$$\Delta T = \frac{\mu}{2C_P} (v_2^2 - v_1^2) \tag{3}$$

При этом:

$$v_1 = \frac{P_2}{P_1} v_2 \tag{4}$$

Таким образом, для углекислого газа оценка по формуле (3) дает $\Delta T = 7 \cdot 10^{-4} \ {\rm K},$ что ничтожно мало по сравнению с измеряемым эффектом.

Эффект Джоуля-Томсона Для дифференциального эффекта Джоуля-Томсона имеем:

$$\Delta T = \frac{\frac{2a}{RT} - b}{C_P} \Delta P \tag{5}$$

где a и b – коэффициенты в уравнении Ван-дер-Ваальса:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$
(6)

Таким образом, a и b можно получить из нескольких пар значений (μ, T) , где

$$\mu = \frac{\frac{2a}{RT} - b}{C_P} \tag{7}$$

Через коэффициенты Ван-дер-Ваальса находим температуру инверсии эффекта Джоуля-Томсона:

$$T_i = \frac{2a}{Rh} \tag{8}$$

Критическая точка газа определяется условиями:

$$\left(\frac{\partial P}{\partial V}\right)_T = 0, \ \left(\frac{\partial^2 P}{\partial V^2}\right)_T = 0$$

, откуда, используя уравнение (6), получим все параметры газа в критической точке:

$$V_{\rm K} = 3b, \ T_{\rm K} = \frac{8a}{27Rb}, \ P_{\rm K} = \frac{a}{27b^2}$$

Связывая формулы (6) и (7), получим:

$$T_i = \frac{27}{4}T_{\rm K}$$

3 Экспериментальная установка

Экспериментальная установка. Схема установки для исследования эффекта Джоуля Томсона в углекислом газе представлена на рисунке. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки 4=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинныых каналов.

Рис. 1: Экспериментальная установка

Пористость и толщина пробки (1 = 5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P < 4$ атм (расход газа составляет около $10 \text{ cm}^3/\text{c}$); при этом в результате эффекта Джоуля-Томсона создаётся достаточная разность температур. Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещённым в термостате. Требуемая температура воды устанавливается и поддерживается при помощи контактного термометра T_k . Давление газа в трубке измеряется манометром М и регулируется вентилем В (при открывании вентиля В, т. е. при повороте ручки против часовой стрелки, давление Р повыпнается). Манометр М измеряет разность между давлением внутри трубки и наружным (атмосферным). Так как углекислый газ после пористой перегородки переходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$

Разность температур газа до перегородки и после неё измеряется дифференциальной термопарой медь — константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к пифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счёт конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой за крыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

4 Результаты измерений и обработка данных

Далее приведены результаты экспериментов при T=27 °C, 47 °C, 67 °C. Сразу за каждой таблицей идет график зависимости $\Delta T(\Delta p)$.

Угловой коэффициент касательной можно расчитывать

по методу наименьших квадратов.

$$k = \frac{\langle \Delta T \cdot \Delta p \rangle}{\langle \Delta p^2 \rangle}$$

Таблица №1 ΔT от ΔP приведена в приложении. График: Коэффициенты наклона:

$$k_1 = rac{7.78}{11.74} = 0.66 \; ext{K/атм}$$
 $k_2 = 0.5 \; ext{K/атм}$ $k_3 = 0.46 \; ext{K/атм}$

Рис. 2: График зависимости при ΔT от ΔP

Таким образом, получаем таблицу №2, приведенную в приложении.

Соответствующий график:

Рис. 3: Зависимость μ от T^{-1}

Коэффициент наклона в данном случае:

$$k = 0.52 \cdot 10^{-2} \text{ }\Pi\text{a}$$

$$\begin{split} \sigma_k &= \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\left<\mu^2\right> - \left<\mu\right>^2}{\left<\left(T^{-1}\right)^2\right> - \left<\left(T^{-1}\right)\right>^2} - k} \\ \sigma_k &= \frac{1}{\sqrt{3}} \cdot \sqrt{\frac{0.3*10^{-10}}{9.91*10^{-6}} - 0.52*10^{-2}} \approx 0.05 \cdot 10^{-2} \; \Pi \mathrm{a} \end{split}$$

Смещение по вертикали:

$$b = -1.07 \cdot 10^{-5}$$

Так как данный графиик отображает следующую зависимость $\mu=\frac{2a}{RC_P}\cdot T^{-1}-\frac{b}{C_P},$ то коэффициент наклона это $\frac{2a}{RC_P},$ а смещение это $-\frac{b}{C_P}.$

Отсюда

$$a = 0.75 \pm 0.15 \frac{\Pi \text{a} \cdot \text{m}^6}{\text{K} \cdot \text{моль}^2}$$

$$b = (4.25 \pm 0.78)10^{-4} \frac{\text{M}^3}{\text{МОЛЬ}}$$

По формуле (8) получаем температуру инверсии:

$$T_i = 424 \text{K}$$

5 Обсуждение результатов

В результате работы мы:

- Выявили экспериментально наличие эффекта Джоуля-Томсона, показали его линейность с неплохой степенью точности.
- Вычислили коэффициенты *а* и *b*, мы обнаружили расхождение с табличными значениями на целый порядок, поэтому наш опыт показывает, что модель газа Ван-дер-Ваальса способна описывать поведение газа лишь при малых отклонениях температуры.
- Получили значение температуры инверсии T_i

6 Приложение

№	ΔT , K	ΔU , мкВ	$\Delta p, \mathrm{atm}$	$\Delta T \cdot \Delta P, \mathbf{K} \cdot \mathbf{atm}$	ΔP^2 , atm ²			
$T=27~^{\circ}\mathrm{C}$								
1	2.87	117	4	11.48	16			
2	2.51	102	3.7	9.29	13.69			
3	2.24	91	3.4	7.62	11.56			
4	1.94	79	3.1	6.01	9.61			
5	1.62	66	2.8	4.54	7.84			
Среднее значение	2.23		3.4	7.78	11.74			
$T=47~^{\circ}\mathrm{C}$								
1	2.26	96	4	9.04	16			
2	1.93	82	3.7	7.14	13.69			
3	1.69	72	3.4	5.75	11.56			
4	1.41	60	3.1	4.37	9.61			
5	1.18	50	2.8	3.30	7.84			
Среднее значение	1.55		3.4	5.92	11.74			
$T=67~^{\circ}\mathrm{C}$								
1	2.09	92	4	8.36	16			
2	1.72	76	3.7	6.36	13.69			
3	1.54	68	3.4	5.24	11.56			
4	1.32	58	3.1	4.09	9.61			
5	1.09	48	2.8	3.05	7.84			
Среднее значение	1.55		3.4	5.42	11.74			

Таблица 1: Таблица зависимости $\Delta T(\Delta p)$ при T = 27 °C, 47 °C, 67 °C

No	T,° C	T^{-1} , $10^{-3}\frac{1}{K}$	μ , $10^{-5} \; \text{K} \; / \; \Pi \text{a}$	$\left(T^{-1}\right)^2, 10^{-6}\frac{1}{K^2}$	μ^2 , $10^{-10} (\text{K} / \text{\Pi a})^2$
1	27	3.33	0.66	11.09	0.44
2	47	3.13	0.50	9.79	0.25
3	67	2.94	0.46	8.84	0.21
Среднее значение		3.13	0.54	9.91	0.30

Таблица 2: Зависимость $\mu(T^{-1})$ при T = 27 °C, 47 °C, 67 °C