1 Definitionen

Stand: 26. Juni 2017

Kombination aus [BFLV16] und [Sch16]

- P: Menge der Zustände,
- $p_0 \in P$: Startzustand,
- I, O: disjunkte Input- und Outputaktionen,
- $A = I \cup O$: Alphabet,
- $\tau \notin A$: interne Aktion,
- $\longrightarrow \subseteq P \times (A \cup \{\tau\}) \times P$: must-Transitions-Relation,
- --+ $\subseteq P \times (A \cup \{\tau\}) \times P$: may-Transitions-Relation,
- $E \subseteq P$: Menge der Fehler-Zustände.

Es wird vorausgesetzt, dass die Eigenschaft $\forall \alpha \in A \cup \{\tau\} : p \xrightarrow{\alpha} p' \Rightarrow p \xrightarrow{\alpha} p'$ (syntaktische Konsistenz) gilt.

TODO: ab hier Transitionen nicht zu Mengen, sondern zu einem Zustand umändern

Must-Transitionen sind Transitionen, die von einer Verfeinerung implementiert werden müssen. Die may-Transitionen sind hingegen die zulässigen Transitionen für eine Verfeinerung.

MEIOs werden in dieser Arbeit durch ihre Zustandsmenge (z.B. P) identifiziert und falls notwendig werden damit auch die Komponenten indiziert (z.B. I_P anstatt I). Falls der MEIO selbst bereits einen Index hat (z.B. P_1) kann an der Komponente die Zustandsmenge als Index wegfallen und nur noch der Index des gesamten Automaten verwendet werden (z.B. I_1 anstatt I_{P_1}). Zusätzlich stehen i, o, a, ω und α für Buchstaben aus den Alphabeten $I, O, A, O \cup \{\tau\}$ und $A \cup \{\tau\}$. Es kann A = I/O geschrieben werden um die Inputs und Outputs eines Alphabets hervorzuheben. Im Zusammenhang mit schwachen Transitionen wird die Notation $\hat{\alpha}$ verwendet, wobei gilt $\hat{\alpha} =_{\mathrm{df}} a$, falls $\alpha = a \neq \tau$ und $\hat{\alpha} =_{\mathrm{df}} \varepsilon$, falls $\alpha = \tau$. Desweiteren werden Outputs und die interne Aktion lokale lokale

Erleichterung der Notation zu erhalten, soll gelten, dass $p \xrightarrow{a} p', p \xrightarrow{a} \text{ und } p \xrightarrow{b} \text{ für } p \xrightarrow{a} \{p'\}, \not\equiv P': p \xrightarrow{a} P' \text{ und } \not\equiv p': p \xrightarrow{a} p' \text{ stehen soll. In Graphiken wird eine Aktion } a \text{ als } a? \text{ notiert, falls } a \in I \text{ und } a!, \text{ falls } a \in O. \text{ Must-Transitionen (may-Transitionen)} \text{ werden als durchgezogener Pfeil gezeichnet (gestrichelter Pfeil). Entsprechend der syntaktischen Konsistenz repräsentiert jede gezeichnete must-Transition auch gleichzeitig die zugrundeliegende may-Transitionen.$

- $I = (I_1 \cup I_2) \setminus (O_1 \cup O_2),$
- $\bullet \ O = (O_1 \cup O_2),$

(PMust1)
$$(p_1, p_2) \xrightarrow{\alpha} P'_1 \times \{p_2\}$$
, falls $p_1 \xrightarrow{\alpha} P'_1$ und $\alpha \notin A_2$,

$$(PMust2)$$
 $(p_1, p_2) \xrightarrow{\alpha} \{p_1\} \times P_2'$, falls $p_2 \xrightarrow{\alpha} P_2'$ und $\alpha \notin A_1$,

(PMust3)
$$(p_1, p_2) \xrightarrow{a} P'_1 \times P'_2$$
, falls $p_1 \xrightarrow{a} P'_1$ und $p_2 \xrightarrow{a} P'_2$,

$$(PMay1)$$
 $(p_1, p_2) \xrightarrow{\alpha} P'_1 \times \{p_2\}, falls p_1 \xrightarrow{\alpha} P'_1 und \alpha \notin A_2,$

$$(PMay2)$$
 $(p_1, p_2) \xrightarrow{\alpha} \{p_1\} \times P_2'$, falls $p_2 \xrightarrow{\alpha} P_2'$ und $\alpha \notin A_1$,

$$(PMay3)$$
 $(p_1, p_2) \xrightarrow{a} P'_1 \times P'_2$, falls $p_1 \xrightarrow{a} P'_1$ und $p_2 \xrightarrow{a} P'_2$.

•
$$E = (P_1 \times E_2) \cup (E_1 \times P_2)$$
 geerbte Fehler
$$\cup \left\{ (p_1, p_2) \mid \exists a \in O_1 \cap I_2 : p_1 \xrightarrow{a} \land p_2 \xrightarrow{a} \right\}$$

$$\cup \left\{ (p_1, p_2) \mid \exists a \in I_1 \cap O_2 : p_1 \xrightarrow{a} \land p_2 \xrightarrow{a} \right\}$$
neue Kommunikationsfehler

Definition 1.3 (Schwache Transitionens-Relation). Für einen beliebigen MEIO P, sind schwache must- (\Longrightarrow) und may-Transitions-Relationen (\Longrightarrow) die kleinsten Relationen die die folgenden Eigenschaften erfüllen, dabei ist $P' \stackrel{\hat{\alpha}}{\Longrightarrow} P''$ eine Abkürzung für $\forall p \in P' \exists P_p : p \stackrel{\hat{\alpha}}{\Longrightarrow} P_p$ und $P'' = \bigcup_{p \in P'} P_p$:

1.
$$p \stackrel{\varepsilon}{\Longrightarrow} \{p\} \ \forall p \in P$$
,

2.
$$p \xrightarrow{\tau} P'$$
 und $P' \stackrel{\hat{\alpha}}{\Longrightarrow} impliziert $p \stackrel{\hat{\alpha}}{\Longrightarrow} P''$,$

3.
$$p \xrightarrow{a} P'$$
 und $P' \stackrel{\varepsilon}{\Longrightarrow} impliziert $p \stackrel{a}{\Longrightarrow} P''$$

$$4. \ p \stackrel{\varepsilon}{\Longrightarrow} p \ \forall p \in P,$$

5.
$$p \stackrel{\varepsilon}{\Longrightarrow} p'' \stackrel{\tau}{\dashrightarrow} p' \text{ implizient } p \stackrel{\varepsilon}{\Longrightarrow} p,$$

6.
$$p \stackrel{\varepsilon}{\Longrightarrow} p'' \stackrel{\alpha}{\dashrightarrow} p''' \stackrel{\varepsilon}{\Longrightarrow} implizient \ p \stackrel{\alpha}{\Longrightarrow} p$$

1 Definitionen

Transitionen, die wie in Fall 3 aufgebaut sind, werden auch als $\stackrel{a}{\longrightarrow} \stackrel{\varepsilon}{\Longrightarrow}$ notiert und schwach-endende must-Transition TODO: Übersetzung überlegen genannt. Analog steht $\stackrel{a}{-} \stackrel{\varepsilon}{\longrightarrow} \stackrel{\varepsilon}{\Longrightarrow}$ für eine schwach-endende may-Transition.

Definition 1.4 (MIA Verfeinerunge). Seien P und Q MIAs mit gemeinsamen Input- und Output-Alphabeten. Dann ist $\mathcal{R} \subseteq P \times Q$ eine MIA-Verfeinerungs-Relation, falls für alle $(p,q) \in \mathcal{R}$ mit $q \neq e_Q$ die folgenden Eigenschaften erfüllt sind:

(i)
$$p \neq e_P$$

(ii)
$$q \xrightarrow{i} Q' \Rightarrow \exists P' : p \xrightarrow{i} \stackrel{\varepsilon}{\Longrightarrow} P' \text{ und } \forall p' \in P' \exists q' \in Q' : (p', q') \in \mathcal{R}$$

(iii)
$$q \xrightarrow{\omega} Q' \Rightarrow \exists P' : p \stackrel{\hat{\omega}}{\Longrightarrow} P' \text{ und } \forall p' \in P' \exists q' \in Q' : (p', q') \in \mathcal{R}$$

(iv)
$$p \xrightarrow{i} p' \Rightarrow \exists q' : a \xrightarrow{i} = \stackrel{\varepsilon}{\Longrightarrow} q' \text{ und } (p', q') \in \mathcal{R}$$

$$(v) \ p \xrightarrow{\omega} p' \Rightarrow \exists q' : q \stackrel{\hat{\omega}}{=} q' \ und \ (p', q') \in \mathcal{R}$$

p MIA-verfeinert q ($p \sqsubseteq q$), falls eine MIA-Verfeinerungs-Relation \mathcal{R} existiert mit $(p,q) \in \mathcal{R}$. Falls es auch in die umgekehrte Richtung eine Verfeinerungsrelation gibt, sind die beiden Zustände äquivalent, was durch $\exists \sqsubseteq$ ausgedrückt wird. Für zwei MIAs gilt $P \sqsubseteq Q$, falls $p_0 \sqsubseteq q_0$.

Literaturverzeichnis

- [BFLV16] Ferenc Bujtor, Sascha Fendrich, Gerald Lüttgen, und Walter Vogler, Nondeterministic Modal Interfaces, Theor. Comput. Sci. **642** (2016), 24–53.
- [Sch16] Ayleen Schinko, Kommunikationsfehler, Verklemmung und Divergenz bei Interface-Automaten, Bachelorarbeit, Universität Augsburg, 2016.