

Example 1 92: As shown in Figure 1, point P on the \triangle ABC plane, P, P_1 is symmetric about AB, P, is symmetric P_2 about BC, P, is symmetric P_3 about CA, prove that the circumscribed circles of $\triangle ABP_1$, $\triangle BCP_2$, $\triangle CAP_3$ intersect at one point.

Proof: Assuming that the circumscribed circle of $\triangle ABP_1$, $\triangle BCP_2$ intersects at Q, it is only necessary to prove that $\angle AQC = \angle APC$.

Proof:
$$\frac{\frac{Q-C}{Q-A}}{\frac{P-A}{P-C}} = \frac{\frac{Q-B}{Q-A}}{\frac{B-P_1}{P_1-A}} \frac{\frac{P-B}{Q-A}}{\frac{P_1-A}{P_1-B}} \frac{\frac{Q-C}{Q-B}}{\frac{P_2-C}{P_2-B}} \frac{\frac{P-C}{P-B}}{\frac{P_2-B}{P_2-C}}.$$