This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A position determining system for determining a position of a rotor of a rotating motor, said system comprising:

sensing means coupled to the rotor for generating in response to a rotation of the rotor a quadrature signal comprising a sine component and a cosine component, and

calculating means for calculating

- (A 2 sin 2 x) and a squared value of the sine component (A 2 cos 2 x),
- (ii) an amplitude correction factor (A) as the \underline{a} squared root of the sum (A²),
- (iii)—an amplitude corrected sine component $(\sin(x))$ as the sine component $(A\sin(x))$ divided by the amplitude correction factor (A) and an amplitude corrected cosine component $(\cos(x))$ as

the cosine component $(A\cos(x))$ divided by the amplitude correction factor (A), and

weighting an inverse sine value of the amplitude

corrected sine component (sin(x)) with a weighting factor for

favoring the inverse sine value around its zero crossings to obtain

a weighted sine value,

weighting an inverse cosine value of the amplitude corrected cosine component (cos(x)) with a weighting factor for favoring the inverse cosine value around its zero crossings, to obtain a weighted cosine value, and

(iv) an output sum of an the weighted inverse sine value of the amplitude corrected sine component $(\sin(x))$ and an the weighted inverse cosine value of the amplitude corrected cosine component $(\cos(x))$, and

output means for outputting the output sum for determining the position of the rotor.

2.(Currently Amended) A position determining method for determining a position of a rotor of a rotating motor, said method comprising:

generating in response to a rotation of the rotor a quadrature signal comprising a sine component and a cosine component, calculating

(i) a sum (A^2) of a squared value of the sine component $(A^2\sin^2x)$ and a squared value of the cosine component $(A^2\cos^2x)$,

(ii) an amplitude correction factor (A) as the \underline{a} squared root of the sum (A^2), and

(iii) an amplitude corrected sine component ($\sin(x)$) as the sine component ($A\sin(x)$) divided by the amplitude correction factor (A) and an amplitude corrected cosine component ($\cos(x)$) as the cosine component ($A\cos(x)$) divided by the amplitude correction factor (A), and

weighting an inverse sine value of the amplitude corrected sine component (sin(x)) with a weighting factor for favoring the inverse sine value around its zero crossings to obtain a weighted sine value,

weighting an inverse cosine value of the amplitude corrected cosine component (cos(x)) with a weighting factor for favoring the inverse cosine value around its zero crossings, to obtain a weighted cosine value, and

(iv) an output sum of an the weighted inverse sine value of the amplitude corrected sine component $(\sin(x))$ and an the weighted inverse cosine value of the amplitude corrected cosine component $(\cos(x))$, and

output means for outputting the output sum for determining the position of the rotor \underline{x} .

Claims 3-4 (Canceled)

- 5. (Currently Amended) An optical or magnetic drive comprising a pick-up unit for reading and/or writing information from/to an optical or magnetic medium,
 - a rotating motor having a rotor,
- a gearbox for converting a rotating movement of the rotor into a linear movement of optical pick-up unit), and
- a position determining system for determining a position of the rotor, said system comprising

sensing means coupled to the rotor for generating in response to a rotation of the rotor a quadrature signal comprising a sine component and a cosine component,

calculating means for calculating

 $\frac{(i)}{(A^2 \sin^2 x)}$ and a squared value of the cosine component $(A^2 \cos^2 x)$,

(ii) an amplitude correction factor (A) as the \underline{a} squared root of the sum (A²), and

(iii)—an amplitude corrected sine component ($\sin(x)$) as the sine component ($A\sin(x)$) divided by the amplitude correction factor (A) and an amplitude corrected cosine component ($\cos(x)$) as the cosine component ($A\cos(x)$) divided by the amplitude correction factor (A),—and

weighting an inverse sine value of the amplitude

corrected sine component (sin(x)) with a weighting factor for

favoring the inverse sine value around its zero crossings to obtain

a weighted sine value,

weighting an inverse cosine value of the amplitude corrected cosine component (cos(x)) with a weighting factor for favoring the inverse cosine value around its zero crossings, to obtain a weighted cosine value, and

 $\frac{\text{(iv)}}{\text{an output sum of } \text{an}} = \frac{\text{the weighted inverse sine value}}{\text{of the amplitude corrected sine component (sin(x))}}$ and $\frac{\text{an}}{\text{the}}$

Amendment in Reply to Final Office Action of September 25, 2007

weighted inverse cosine value of the amplitude corrected cosine component $(\cos(x))$, and

output means for outputting the output sum for determining the position of the rotor.