TECHNISCHE UNIVERSITÄT BERLIN

Fakultät II, Institut für Mathematik

Lutz

WS 2001 18.02.2002

Februar-Klausur (Rechenteil) Analysis II für Ingenieure

Name:			Vorn	ame:		
MatrNr.:			Stud	iengang:		
Nur für Studiengäng e	mit Pfli	ichtabg	gabe d	er Hausaufg	gaben:	
Die Klausurzulassu	ng (40% d	der Hai	usaufga	abenpunkte) wurde erw	vorben im
□ WS 2001						
□ SS/WS	• • • • • • • • •	. , Kurs	S	,	Dozent	
Ich wünsche den Ausl (ohne Namen) am Sch MA 708.	_		_		0	
□ Ja □ Nei	${\sf Nein}^1$ Unterschrift					
Neben einem handbes gelassen. Die Lösunger stift geschriebene Kla- ist mit 32 von 80 Punk mindestens 10 von 40	n sind in l usuren kö tten besta	Reinscl nnen n nden, v	hrift at nicht ge wenn in	ıf A4 Blätte ewertet wer ı jedem der	ern abzugeb den. Die Ge	en. Mit Blei- esamtklausur
Dieser Teil der Klaus vollständigen Recher				0		
	1	2	3	$\sum(R)$	$\sum(V)$	Σ

¹Falls die Unterschrift fehlt, wird das Ergebnis nicht ausgehängt.

Rechenwege und Begründungen nicht vergessen!

1. Aufgabe (11 Punkte)

Sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) := \begin{cases} \frac{x^3y}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

- a) Zeigen Sie, dass die Funktion auf ganz \mathbb{R}^2 stetig ist.
- b) Berechnen Sie $\frac{\partial f}{\partial y}(x,y)$ an allen Stellen $(x,y)\in\mathbb{R}^2$, an denen diese partielle Ableitung existiert.

2. Aufgabe (14 Punkte)

Bestimmen Sie alle kritischen Punkte von $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) := (x-1)^3 + 3(x-1)^2 - xy^2 - 2.$$

Hat die Funktion f lokale bzw. globale Extrema?

3. Aufgabe (15 Punkte)

Sei $B = \{(x, y, z) : x^2 + z^2 \leq 4, \ 0 \leq y \leq 1\}$ und $f : \mathbb{R}^3 \to \mathbb{R}$,

$$f(x, y, z) := 6y^2 + 3z.$$

Skizzieren Sie B und berechnen Sie

$$\iint_{\partial B} f \ dO.$$

(Hinweis: Verwenden Sie Zylinderkoordinaten $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \sin \varphi \\ y \\ \rho \cos \varphi \end{pmatrix}$ mit $dxdydz = \rho \ d\rho d\varphi dy$.)