# Phase 1 Project-Aviation Safety Analysis by Wanjira\_Nyambura

# 1. Business Understanding

The company is expanding into the aviation industry and exploring the purchase of aircraft for both commercial and private use. However, they lack clear insights into which aircraft types pose the least safety risks.

This project is designed to help the leadership team make data-driven decisions by analyzing historical aviation accident data from the National Transportation Safety Board (NTSB). The objective is to identify patterns in accident severity across different aircraft types, flight purposes, weather conditions, and phases of flight.

The final output includes safety recommendations and data-backed insights to guide aircraft procurement and inform risk mitigation strategies.

#Imports
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
from sklearn.impute import SimpleImputer
import seaborn as sns

First, I loaded the csv file and treated blanks and placeholders ie NaN and NULL as missing values. It is easy to amputate, clean or analyze them as missing values.

```
#load dataset and treat blanks,NaN,NULL as missing values
df=pd.read_csv("Aviation_Data.csv",na_values=['', ' ', 'NaN', 'NULL'])
#preview of the first 5
df.head()
```

/tmp/ipython-input-3-39574374.py:2: DtypeWarning: Columns (6,7,28) have mixed types. Specify dtype option on import or set low\_memor df=pd.read\_csv("Aviation\_Data.csv",na\_values=['', ' ', 'NaN', 'NULL'])

|   | Event.Id                | <pre>Investigation.Type</pre> | Accident.Number | Event.Date | Location           | Country          | Latitude  | Longitude  | Airport.Code | Airpo |
|---|-------------------------|-------------------------------|-----------------|------------|--------------------|------------------|-----------|------------|--------------|-------|
|   | <b>0</b> 20001218X45444 | Accident                      | SEA87LA080      | 1948-10-24 | MOOSE<br>CREEK, ID | United<br>States | NaN       | NaN        | NaN          |       |
|   | <b>1</b> 20001218X45447 | Accident                      | LAX94LA336      | 1962-07-19 | BRIDGEPORT,<br>CA  | United<br>States | NaN       | NaN        | NaN          |       |
| : | 2 20061025X01555        | Accident                      | NYC07LA005      | 1974-08-30 | Saltville, VA      | United<br>States | 36.922223 | -81.878056 | NaN          |       |
| ; | <b>3</b> 20001218X45448 | Accident                      | LAX96LA321      | 1977-06-19 | EUREKA, CA         | United<br>States | NaN       | NaN        | NaN          |       |
|   | <b>4</b> 20041105X01764 | Accident                      | CHI79FA064      | 1979-08-02 | Canton, OH         | United<br>States | NaN       | NaN        | NaN          |       |
| 5 | rows × 31 columns       |                               |                 |            |                    |                  |           |            |              |       |

### 2. Data Understanding

The dataset was sourced from the National Transportation Safety Board (NTSB) and covers civil aviation accidents and incidents from 1962 to 2023 across the United States and international waters.

### **Dataset Overview:**

- Format: CSV
- Size: 90,348 rows × 31 columns

### Key Variables:

- Aircraft.Make / Aircraft.Model: Manufacturer and model of the aircraft
- . Event.Date: Date of the incident

- Injury.Severity: Severity of injuries (Fatal, Serious, Minor, or None)
- Aircraft.Damage: Extent of damage (Destroyed, Substantial, Minor, None)
- Purpose.of.Flight: Type of operation (e.g. Personal, Instructional, Business)
- Broad.Phase.of.Flight: Phase of flight when the accident occurred (e.g. Landing, Takeoff)
- Weather.Condition: VMC (Visual Meteorological Conditions) or IMC (Instrument Meteorological Conditions)
- Engine.Type: Type of engine installed

#### **Initial Observations:**

- Several columns have significant missing or inconsistent values.
- · I find features such as coordinates, IDs, and airport codes not relevant to the current business objective and will drop them.
- · I will engineer additional columns, including:
  - Year (from Event.Date)
  - Make\_Model (combining manufacturer and model)
  - Severe\_Injuries (sum of fatal and serious injuries

# 3.Data Preparation

I started by checking the size/summary of our data frame. Tells how big the data is by calculating number of rows and columns.

```
df.shape

→ (90348, 31)
```

To understand data quality, I calculated the number and percentage of missing values in each column. This gave me a better insight on which columns I need to be drop or be impute.

```
missing_summary = df.isnull().sum().sort_values(ascending=False)
missing_percent = (df.isnull().mean() * 100).sort_values(ascending=False)
missing_df = pd.DataFrame({
    'Missing Count': missing_summary,
    'Missing Percent': missing_percent
})
missing_df
```

|   | _ | _ |
|---|---|---|
| - | ۷ | ÷ |
| - | • | ď |

|                       | Missing Count | Missing Percent |
|-----------------------|---------------|-----------------|
| Schedule              | 77766         | 86.073848       |
| Air.carrier           | 73700         | 81.573471       |
| FAR.Description       | 58325         | 64.555939       |
| Aircraft.Category     | 58061         | 64.263736       |
| Longitude             | 55975         | 61.954886       |
| Latitude              | 55966         | 61.944924       |
| Airport.Code          | 40216         | 44.512330       |
| Airport.Name          | 37644         | 41.665560       |
| Broad.phase.of.flight | 28624         | 31.681941       |
| Publication.Date      | 16689         | 18.471909       |
| otal.Serious.Injuries | 13969         | 15.461327       |
| Total.Minor.Injuries  | 13392         | 14.822686       |
| Total.Fatal.Injuries  | 12860         | 14.233851       |
| Engine.Type           | 8555          | 9.468942        |
| Report.Status         | 7843          | 8.680878        |
| Purpose.of.flight     | 7651          | 8.468367        |
| umber.of.Engines      | 7543          | 8.348829        |
| Total.Uninjured       | 7371          | 8.158454        |
| Veather.Condition     | 5951          | 6.586753        |
| Aircraft.damage       | 4653          | 5.150086        |
| egistration.Number    | 2841          | 3.144508        |
| Injury.Severity       | 2459          | 2.721698        |
| Country               | 1685          | 1.865011        |
| Amateur.Built         | 1561          | 1.727764        |
| Model                 | 1551          | 1.716695        |
| Make                  | 1522          | 1.684597        |
| Location              | 1511          | 1.672422        |
| Event.Date            | 1459          | 1.614867        |
| Event.ld              | 1459          | 1.614867        |
| Accident.Number       | 1459          | 1.614867        |
| nvestigation.Type     | 0             | 0.000000        |

Sometimes, missing or unclear values are keyed in as text e.g na,"n/a", "unknown", or "none". This step helped me identify the inconsistencies so I can treat them properly.

 $inconsistent\_values = df.apply(lambda col: col[col.astype(str).str.strip().str.lower().isin(['unknown', 'n/a', 'na', 'none'])].count()) \\ inconsistent\_values$ 



|                        | 0    |
|------------------------|------|
| Event.Id               | 0    |
| Investigation.Type     | 0    |
| Accident.Number        | 0    |
| Event.Date             | 0    |
| Location               | 2    |
| Country                | 3    |
| Latitude               | 0    |
| Longitude              | 0    |
| Airport.Code           | 1500 |
| Airport.Name           | 223  |
| Injury.Severity        | 0    |
| Aircraft.damage        | 119  |
| Aircraft.Category      | 14   |
| Registration.Number    | 356  |
| Make                   | 27   |
| Model                  | 22   |
| Amateur.Built          | 0    |
| Number.of.Engines      | 0    |
| Engine.Type            | 2053 |
| FAR.Description        | 22   |
| Schedule               | 0    |
| Purpose.of.flight      | 6802 |
| Air.carrier            | 18   |
| Total.Fatal.Injuries   | 0    |
| Total.Serious.Injuries | 0    |
| Total.Minor.Injuries   | 0    |
| Total.Uninjured        | 0    |
| Weather.Condition      | 0    |
| Broad.phase.of.flight  | 548  |
| Report.Status          | 0    |
| Publication.Date       | 0    |

dtype: int64

Next, I combined both missing and inconsistent value checks to flag the top problematic columns for easier cleaning.

```
missing_df['Inconsistent Count'] = inconsistent_values
missing_df = missing_df[missing_df['Missing Count'] > 0]
missing_df.head(10)  # Display top 10 problematic columns
```

New interactive sheet

| _        |                       |               |                 |                    |                |
|----------|-----------------------|---------------|-----------------|--------------------|----------------|
| <b>→</b> |                       | Missing Count | Missing Percent | Inconsistent Count | $\blacksquare$ |
|          | Schedule              | 77766         | 86.073848       | 0                  | ılı            |
|          | Air.carrier           | 73700         | 81.573471       | 18                 |                |
|          | FAR.Description       | 58325         | 64.555939       | 22                 |                |
|          | Aircraft.Category     | 58061         | 64.263736       | 14                 |                |
|          | Longitude             | 55975         | 61.954886       | 0                  |                |
|          | Latitude              | 55966         | 61.944924       | 0                  |                |
|          | Airport.Code          | 40216         | 44.512330       | 1500               |                |
|          | Airport.Name          | 37644         | 41.665560       | 223                |                |
|          | Broad.phase.of.flight | 28624         | 31.681941       | 548                |                |
|          | Publication.Date      | 16689         | 18.471909       | 0                  |                |
|          |                       |               |                 |                    |                |

The Event.Date was stored as a string which makes it hard to analyse trends over time. I converted it to datetime object using \*pd.to\_datetime() \*, then just extracted the year to help group incidents by year without dealing with full dates complexity. I put the new

View recommended plots

```
# Convert "Event.Date" from categorical to float defined as "Year"
df['Event.Date'] = pd.to_datetime(df['Event.Date'], errors='coerce')
df['Year'] = df['Event.Date'].dt.year
```

Here, I dropped columns that had alot of missing values and those I didn't find useful for our analysis goals

#confirm that the columns have dropped
df.shape

Next steps: ( Generate code with missing df

extracts into new column and named it Year.

**→** (90348, 17)

df.head()

| <b>→</b> |   | Event.Id       | Country          | Injury.Severity | Aircraft.damage | Aircraft.Category | Make     | Model        | Number.of.Engines | Engine.Type   | Pur |
|----------|---|----------------|------------------|-----------------|-----------------|-------------------|----------|--------------|-------------------|---------------|-----|
|          | 0 | 20001218X45444 | United<br>States | Fatal(2)        | Destroyed       | NaN               | Stinson  | 108-3        | 1.0               | Reciprocating |     |
|          | 1 | 20001218X45447 | United<br>States | Fatal(4)        | Destroyed       | NaN               | Piper    | PA24-<br>180 | 1.0               | Reciprocating |     |
|          | 2 | 20061025X01555 | United<br>States | Fatal(3)        | Destroyed       | NaN               | Cessna   | 172M         | 1.0               | Reciprocating |     |
|          | 3 | 20001218X45448 | United<br>States | Fatal(2)        | Destroyed       | NaN               | Rockwell | 112          | 1.0               | Reciprocating |     |
|          | 4 | 20041105X01764 | United<br>States | Fatal(1)        | Destroyed       | NaN               | Cessna   | 501          | NaN               | NaN           |     |
|          |   |                |                  |                 |                 |                   |          |              |                   |               |     |

Next steps: Generate code with df 

• View recommended plots 

New interactive sheet

Before diving into EDA, I needed to understand how much data I was working with and what was still incomplete. The command df.isnull().sum() returns a each column with its missing values.

df.isnull().sum()



|                        | 0     |
|------------------------|-------|
| Event.ld               | 1459  |
| Country                | 1685  |
| Injury.Severity        | 2459  |
| Aircraft.damage        | 4653  |
| Aircraft.Category      | 58061 |
| Make                   | 1522  |
| Model                  | 1551  |
| Number.of.Engines      | 7543  |
| Engine.Type            | 8555  |
| Purpose.of.flight      | 7651  |
| Total.Fatal.Injuries   | 12860 |
| Total.Serious.Injuries | 13969 |
| Total.Minor.Injuries   | 13392 |
| Total.Uninjured        | 7371  |
| Weather.Condition      | 5951  |
| Broad.phase.of.flight  | 28624 |
| Year                   | 1459  |
|                        |       |

dtype: int64

I did Imputation with the mean to fill the missing values in the columns with numerical values. For the year, I used mode since it represents a discrete value and sing the mean would bring decimals and make the work messier.

I then converted all the imputated columns into integers for consistency and to remove the decimals points.

```
# Imputation with the mean was done to fill the missing values in the columns with numerical values
df['Total.Serious.Injuries'].fillna(df['Total.Serious.Injuries'].mean(), inplace=True)
df['Total.Fatal.Injuries'].fillna(df['Total.Fatal.Injuries'].mean(), inplace=True)
df['Total.Minor.Injuries'].fillna(df['Total.Minor.Injuries'].mean(), inplace=True)
df['Total.Uninjured'].fillna(df['Total.Uninjured'].mean(), inplace=True)
df['Number.of.Engines'].fillna(df['Number.of.Engines'].mean(), inplace=True)
df['Year'].fillna(df['Year'].mode()[0], inplace=True)
df['Year'] = df['Year'].astype(int)
df['Total.Serious.Injuries'] = df['Total.Serious.Injuries'].astype(int)
df['Total.Fatal.Injuries'] = df['Total.Fatal.Injuries'].astype(int)
df['Total.Minor.Injuries'] = df['Total.Minor.Injuries'].astype(int)
df['Total.Uninjured'] = df['Total.Uninjured'].astype(int)
df['Number.of.Engines'] = df['Number.of.Engines'].astype(int)
df.isnull().sum()
```

/tmp/ipython-input-13-963258328.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Total.Serious.Injuries'].fillna(df['Total.Serious.Injuries'].mean(), inplace=True)

/tmp/ipython-input-13-963258328.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Total.Fatal.Injuries'].fillna(df['Total.Fatal.Injuries'].mean(), inplace=True)

/tmp/ipython-input-13-963258328.py:4: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Total.Minor.Injuries'].fillna(df['Total.Minor.Injuries'].mean(), inplace=True)

/tmp/ipython-input-13-963258328.py:5: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Total.Uninjured'].fillna(df['Total.Uninjured'].mean(), inplace=True)

/tmp/ipython-input-13-963258328.py:6: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Number.of.Engines'].fillna(df['Number.of.Engines'].mean(), inplace=True)

/tmp/ipython-input-13-963258328.py:7: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Year'].fillna(df['Year'].mode()[0], inplace=True)

|                        | 0     |  |
|------------------------|-------|--|
| Event.ld               | 1459  |  |
| Country                | 1685  |  |
| Injury.Severity        | 2459  |  |
| Aircraft.damage        | 4653  |  |
| Aircraft.Category      | 58061 |  |
| Make                   | 1522  |  |
| Model                  | 1551  |  |
| Number.of.Engines      | 0     |  |
| Engine.Type            | 8555  |  |
| Purpose.of.flight      | 7651  |  |
| Total.Fatal.Injuries   | 0     |  |
| Total.Serious.Injuries | 0     |  |
| Total.Minor.Injuries   | 0     |  |
| Total.Uninjured        | 0     |  |
| Weather.Condition      | 5951  |  |
| Broad.phase.of.flight  | 28624 |  |
| Year                   | 0     |  |

dtype: int64

Next, I did Imputation with the mode to fill the missing values in the columns with categorical data.

```
df['Broad.phase.of.flight'].fillna(df['Broad.phase.of.flight'].mode()[0], inplace=True)
df['Country'].fillna(df['Country'].mode()[0], inplace=True)
df['Make'].fillna(df['Make'].mode()[0], inplace=True)
df['Aircraft.damage'].fillna(df['Aircraft.damage'].mode()[0], inplace=True)
df['Model'].fillna(df['Model'].mode()[0], inplace=True)
df['Engine.Type'].fillna(df['Engine.Type'].mode()[0], inplace=True)
df['Purpose.of.flight'].fillna(df['Purpose.of.flight'].mode()[0], inplace=True)
df['Weather.Condition'].fillna(df['Weather.Condition'].mode()[0], inplace=True)
df['Aircraft.Category'].fillna(df['Injury.Severity'].mode()[0], inplace=True)
df['Injury.Severity'].fillna(df['Injury.Severity'].mode()[0], inplace=True)
df.isnull().sum()
```

```
PROJECT BY WANJIRA - Colab
tmp/ipython-input-14-4241630647.py:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained
    The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting
    For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col
      df['Broad.phase.of.flight'].fillna(df['Broad.phase.of.flight'].mode()[0], inplace=True)
    /tmp/ipython-input-14-4241630647.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained
    The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting
    For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col
```

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

/tmp/ipython-input-14-4241630647.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained

df['Make'].fillna(df['Make'].mode()[0], inplace=True)

df['Country'].fillna(df['Country'].mode()[0], inplace=True)

/tmp/ipython-input-14-4241630647.py:4: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Aircraft.damage'].fillna(df['Aircraft.damage'].mode()[0], inplace=True)

/tmp/ipython-input-14-4241630647.py:5: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Model'].fillna(df['Model'].mode()[0], inplace=True)

/tmp/ipython-input-14-4241630647.py:6: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Engine.Type'].fillna(df['Engine.Type'].mode()[0], inplace=True)

/tmp/ipython-input-14-4241630647.py:7: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using  $'df.method(\{col: value\}, inplace=True)'$  or df[col] = df[col]

df['Purpose.of.flight'].fillna(df['Purpose.of.flight'].mode()[0], inplace=True)

/tmp/ipython-input-14-4241630647.py:8: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Weather.Condition'].fillna(df['Weather.Condition'].mode()[0], inplace=True)

/tmp/ipython-input-14-4241630647.py:9: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Aircraft.Category'].fillna(df['Injury.Severity'].mode()[0], inplace=True)

/tmp/ipython-input-14-4241630647.py:10: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chains The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col

df['Injury.Severity'].fillna(df['Injury.Severity'].mode()[0], inplace=True)

|                   | 0    |
|-------------------|------|
| Event.ld          | 1459 |
| Country           | 0    |
| Injury.Severity   | 0    |
| Aircraft.damage   | 0    |
| Aircraft.Category | 0    |
| Maka              | Λ    |

| Mave                   | v |
|------------------------|---|
| Model                  | 0 |
| Number.of.Engines      | 0 |
| Engine.Type            | 0 |
| Purpose.of.flight      | 0 |
| Total.Fatal.Injuries   | 0 |
| Total.Serious.Injuries | 0 |
| Total.Minor.Injuries   | 0 |
| Total.Uninjured        | 0 |
| Weather.Condition      | 0 |
| Broad.phase.of.flight  | 0 |
| Year                   | 0 |

dtype: int64

 $\label{prop:continuous} \mbox{\tt \#confirm the data is cleaned by checking first few rows.} \\ \mbox{\tt df.head()}$ 

| <b>→</b> | Event.Id                | Country          | Injury.Severity   | Aircraft.damage   | Aircraft.Category     | Make     | Model        | Number.of.Engines | Engine.Type   | Pur |
|----------|-------------------------|------------------|-------------------|-------------------|-----------------------|----------|--------------|-------------------|---------------|-----|
|          | <b>0</b> 20001218X45444 | United<br>States | Fatal(2)          | Destroyed         | Non-Fatal             | Stinson  | 108-3        | 1                 | Reciprocating |     |
|          | <b>1</b> 20001218X45447 | United<br>States | Fatal(4)          | Destroyed         | Non-Fatal             | Piper    | PA24-<br>180 | 1                 | Reciprocating |     |
|          | <b>2</b> 20061025X01555 | United<br>States | Fatal(3)          | Destroyed         | Non-Fatal             | Cessna   | 172M         | 1                 | Reciprocating |     |
|          | <b>3</b> 20001218X45448 | United<br>States | Fatal(2)          | Destroyed         | Non-Fatal             | Rockwell | 112          | 1                 | Reciprocating |     |
|          | <b>4</b> 20041105X01764 | United<br>States | Fatal(1)          | Destroyed         | Non-Fatal             | Cessna   | 501          | 1                 | Reciprocating |     |
|          |                         |                  |                   |                   |                       |          |              |                   |               |     |
| Next     | : steps: ( Generate cod | le with df       | ) ( 💿 View recomm | nended plots)(Nev | v interactive sheet ) |          |              |                   |               |     |

# Check for outliers

df.describe()

| <b>→</b> | Number.of.Engines | Total.Fatal.Injuries | Total.Serious.Injuries | Total.Minor.Injuries | Total.Uninjured | Year         |
|----------|-------------------|----------------------|------------------------|----------------------|-----------------|--------------|
| count    | 90348.000000      | 90348.000000         | 90348.000000           | 90348.000000         | 90348.000000    | 90348.000000 |
| mean     | 1.134347          | 0.555640             | 0.236607               | 0.304135             | 5.298889        | 1998.928798  |
| std      | 0.429384          | 5.085584             | 1.423306               | 2.067189             | 26.750886       | 11.989644    |
| min      | 0.000000          | 0.000000             | 0.000000               | 0.000000             | 0.000000        | 1948.000000  |
| 25%      | 1.000000          | 0.000000             | 0.000000               | 0.000000             | 0.000000        | 1988.000000  |
| 50%      | 1.000000          | 0.000000             | 0.000000               | 0.000000             | 1.000000        | 1998.000000  |
| 75%      | 1.000000          | 0.000000             | 0.000000               | 0.000000             | 2.000000        | 2009.000000  |
| max      | 8.000000          | 349.000000           | 161.000000             | 380.000000           | 699.000000      | 2022.000000  |

# 4.DATA ANALYSIS- with visuals

I started by checking accident trends over the years. This helps me track when high and low accidents were recorded. We all know/ would assume that technological advancements over the years have led to a decline in number of accidents.

```
#Accident Trends Over Time
accidents_per_year = df.groupby('Year').size().reset_index(name='Accident_Count')
fig = px.line(accidents_per_year, x='Year', y='Accident_Count', markers=True, title='Accident Trends Over Time')
fig.show()
```

#### Accident Trends Over Time



I created a new variable called (Severe Injuries), combining fatal and serious injuries, to rank aircraft risk.

By grouping aircraft by make and model, I identified the top 30 aircraft types with the highest number of severe injury incidents. This will help us flag high-risk models to avoid purchasing.



Top Aircraft (Make + Model) by Severe Injuries



Engine type can influence both the complexity and risk level of any aircraft. Here, I looked at the number of accidents per engine type to determine if certain designs are more prone to accidents than the others.

#### Accidents by Engine Type



### Accidents by Number of Engines



By grouping the data by\* (**Purpose of Flight**)\* I gained insight into which flight types are most commonly involved in serious or fatal incidents.

One would automatically assume that \*personal flights \* will have the highest number of severe injuries due to less safety protocols or less experienced pilots. From the data, instructional or business flights have relatively low severity, due to structured environments and regulatory protocals and oversight.



### Severe Injuries by Purpose of Flight



Purpose.of.flight

Different phases of flight carry different risk levels. Here, I visualized the number of accidents occurring during each phase of the flight.



#### Accidents by Phase of Flight



Next,I examined how weather conditions correlate with fatal injuries.

This gives us insight into how much the weather influences severity, with poor or unknown weather conditions showing higher risks, as expected.

### Average Injuries by Weather Condition

