# Sta 111 - Summer II 2017 Probability and Statistical Inference

1. Introduction & exploratory data analysis

Lu Wang

Duke University, Department of Statistical Science

June 27, 2017

#### Outline

#### 1. Course outline

## 2. Exploratory data analysis

- 1. Always start your exploration with a visualization
- 2. When describing numerical distributions discuss shape, center, spread, and unusual observations
- Robust statistics are not easily affected by outliers and extreme skew
  - 4. Use box plots to display quartiles, median, and outliers

#### Course outline

## General information at https://wangronglu.github.io/sta111

#### Mathematics behind statistics

- Ch 2 Probability: basics of probability, conditional probability, Bayes' Theorem
- Ch 3 Distributions: binomial and normal distributions.

#### Statistical inference

- Ch 4 Framework for inference: CLT, confidence intervals, hypothesis testing.
- Midterm 1
- Ch 5 Statistical inference for numerical variables
- Ch 6 Statistical inference for categorical variables
- Midterm 2

## Modeling

- Ch 7 Introduction to linear regression: bivariate correlation, introduction to modeling.
- Ch 8 Multiple and logistic regression: more advanced modeling with multiple predictors and binary response.
- Final Exam

#### Data matrix

Data collected on students in a statistics class on a variety of variables:

## variable

|      | *      |             |   |       |              |
|------|--------|-------------|---|-------|--------------|
| Stu. | gender | intro_extra |   | dread |              |
| 1    | male   | extravert   |   | 3     |              |
| 2    | female | extravert   |   | 2     |              |
| 3    | female | introvert   |   | 4     | $\leftarrow$ |
| 4    | female | extravert   |   | 2     | observation  |
| :    | :      | :           | : | :     |              |
| 86   | male   | extravert   |   | 3     |              |
|      |        |             |   |       |              |

## Relationships among variables

*Scatterplots* are useful for visualizing the relationship between two numerical variables.

Does there appear to be a relationship between GPA and number of hours students study per week?



Can you spot anything unusual about any of the data points?

## Relationships among variables

Based on the scatterplot on the right, which of the following statements is correct about the head and skull lengths of possums?



- (a) There is no relationship between head length and skull width,i.e. the variables are independent.
- (b) Head length and skull width are positively associated.
- (c) A longer head causes the skull to be wider.
- (d) A wider skull causes the head to be longer.

### Intensity map

What patterns are apparent in the change in population between 2000 and 2010?



http://projects.nytimes.com/census/2010/map

## Describing distributions of numerical variables

- Shape: skewness, modality
- Unusual observations: observations that stand out from the rest of the data that may be suspected outliers
- ► Center: an estimate of a *typical* observation in the distribution (mean, median, mode, etc.)
  - Notation:  $\mu$ : population mean,  $\bar{x}$ : sample mean

 Spread: measure of variability in the distribution (standard deviation, IQR, range, etc.)

## Histograms - Extracurricular hours

- ▶ Histograms provide a view of the *data distribution*. Higher bars represent where the data are relatively more common.
- ► Histograms are especially convenient for describing the shape of the data distribution.
- ► The chosen *bin width* can alter the story the histogram is telling.



#### Bin width

Which one(s) of these histograms are useful? Which reveal too much about the data? Which hide too much?



## Shape of a distribution: modality

Does the histogram have a single prominent peak (*unimodal*), several prominent peaks (*bimodal/multimodal*), or no apparent peaks (*uniform*)?



Note: In order to determine modality, step back and imagine a smooth curve over the histogram – imagine that the bars are wooden blocks and you drop a limp spaghetti over them, the shape the spaghetti would take could be viewed as a smooth curve.

## Shape of a distribution: modality

Does the histogram have a single prominent peak (*unimodal*), several prominent peaks (*bimodal/multimodal*), or no apparent peaks (*uniform*)?



Note: In order to determine modality, step back and imagine a smooth curve over the histogram – imagine that the bars are wooden blocks and you drop a limp spaghetti over them, the shape the spaghetti would take could be viewed as a smooth curve.

## Shape of a distribution: skewness

Is the histogram right skewed, left skewed, or symmetric?



Note: Histograms are said to be skewed to the side of the long tail.

## Shape of a distribution: unusual observations

## Are there any unusual observations or potential outliers?





#### Extracurricular activities

How would you describe the shape of the distribution of hours per week students spend on extracurricular activities?



Hours / week spent on extracurricular activities

## Commonly observed shapes of distributions

modality



#### **Practice**

## Which of these variables do you expect to be uniformly distributed?

- (a) weights of adult females
- (b) salaries of a random sample of people from North Carolina
- (c) house prices
- (d) birthdays of classmates (day of the month)

▶ The *sample mean*, denoted as  $\bar{x}$ , can be calculated as

$$\bar{\mathbf{x}} = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \cdots + \mathbf{x}_n}{n},$$

where  $x_1, x_2, \dots, x_n$  represent the *n* observed values.

- ▶ The *population mean* is also computed the same way but is denoted as  $\mu$ . It is often not possible to calculate  $\mu$  since population data are rarely available.
- ➤ The sample mean is a *sample statistic*, and serves as a *point estimate* of the population mean. This estimate may not be perfect, but if the sample is good (representative of the population), it is usually a pretty good estimate.

#### Median

► The *median* is the value that splits the data in half when ordered in ascending order.

▶ If there are an even number of observations, then the median is the average of the two values in the middle.

$$0, 1, \underline{2, 3}, 4, 5 \rightarrow \frac{2+3}{2} = 2.5$$

➤ Since the median is the midpoint of the data, 50% of the values are below it. Hence, it is also the 50th percentile.

#### Mean vs. median

## How do the mean and median of the following two datasets compare?

Dataset 1: 30, 50, 70, 90 Dataset 2: 30, 50, 70, 1000

- (a)  $\bar{\mathbf{x}}_1 = \bar{\mathbf{x}}_2$ ,  $median_1 = median_2$
- (b)  $\bar{\mathbf{x}}_1 < \bar{\mathbf{x}}_2$ ,  $median_1 = median_2$
- (c)  $\bar{\mathbf{x}}_1 < \bar{\mathbf{x}}_2$ ,  $median_1 < median_2$
- (d)  $\bar{\mathbf{x}}_1 > \bar{\mathbf{x}}_2$ ,  $median_1 < median_2$
- (e)  $\bar{\mathbf{x}}_1 > \bar{\mathbf{x}}_2$ ,  $median_1 = median_2$

#### Standard deviation and variance

- Most commonly used measure of variability is the standard deviation, which roughly measures the average deviation from the mean.
  - Notation: σ: population standard deviation, s: sample standard deviation
- Calculating the standard deviation, for a population (rarely, if ever) and for a sample:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{n}} \qquad \mathbf{s} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}}$$

- The standard deviation has the same unit as the data.
- Square of the standard deviation is called the variance.

#### More on SD

Why divide by n-1 instead of n when calculating the sample standard deviation?

Lose a "degree of freedom" for using an estimate (the sample mean  $\bar{x}$ ) in estimating the sample variance/standard deviation.

Why do we use the squared deviation in the calculation of variance?

- ➤ To get rid of negatives so that observations equally distant from the mean are weighed equally.
- ▶ To weigh larger deviations more heavily.

### Q1, Q3, and IQR

- ▶ The 25<sup>th</sup> percentile is also called the first quartile, Q1.
- ▶ The 50<sup>th</sup> percentile is also called the median.
- ▶ The 75<sup>th</sup> percentile is also called the third quartile, *Q3*.
- ▶ Between Q1 and Q3 is the middle 50% of the data. The range these data span is called the *interquartile range*, or the IQR.

$$IQR = Q3 - Q1$$

### Range and IQR

True / False: The range is always at least as large as the IQR for a given dataset.

- (a) Yes
- (b) No

Is the range or the IQR more robust to outliers?

#### Robust statistics

- Mean and standard deviation are easily affected by extreme observations since the value of each data point contributes to their calculation.
- Median and IQR are more robust.
- ► For skewed distributions, it is often more helpful to use median and IQR to describe the center and spread.
- ► For symmetric distributions, it is often more helpful to use the mean and SD to describe the center and spread.

#### Box plot

A box plot visualizes the median, the quartiles, and suspected outliers. An *outlier* is defined as an observation more than  $1.5 \times IQR$  away from the quartiles.

