Loss for Classification and Regression

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

Classification Loss

■ Both the cross-entropy and the Kullback–Leibler (KL) divergence measures the distance between two probability distributions *P* and *Q*.

$$H(P,Q) = -\sum_{x} P(x) \log Q(x)$$

$$KL(P \mid Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)} = H(P,Q) - H(P)$$

- In the above formula, H(P) = H(P, P) is the entropy of the distribution P, which is a constant term.
- Hence, it turns out that the minimization of KL divergence is equivalent to the minimization of cross-entropy.

Classification Loss

Logarithmic loss indicates how close a distribution of prediction probability comes to the real probability distribution of the data in binary classification.

$$H(p,q) = -\frac{1}{m} \sum_{i=1}^{m} y_i \log(p(y_i)) + (1 - y_i) \log(1 - p(y_i))$$

where $y_i \in \{0, 1\}$

Cross-entropy loss indicates how close a distribution of prediction probability comes to the real probability distribution of the data in multilabel classification.

$$H(p,q) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{k} y_j^{(i)} \log(p(y_j^{(i)}))$$

where $y_j^{(i)}$ and $p(y_j^{(i)})$ is respectively the true and predicted probability of the class *i*-th of the sample *j*-th.

Classification Loss

Figure: Cross Entropy Evaluation, Source

Regression Loss

$$\begin{aligned} \text{MSE}(y, \hat{y}) &= \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 \\ \text{MAE}(y, \hat{y}) &= \frac{1}{m} \sum_{i=1}^{m} |(y_i - \hat{y}_i)| \\ \text{MAPE}(y, \hat{y}) &= \frac{1}{m} \sum_{i=1}^{m} |\frac{(y_i - \hat{y}_i)}{y_i}| \\ \text{Logcosh}(y, \hat{y}) &= \frac{1}{m} \sum_{i=1}^{m} \text{Logcosh}(y_i - \hat{y}_i) \end{aligned}$$

$$L_{\delta}(y,\hat{y}) = \begin{cases} \frac{1}{2}(y-\hat{y})^2 & \text{for } |y-\hat{y}| \leq \delta \\ \delta \cdot (|(y-\hat{y})| - \frac{1}{2}\delta), & \text{otherwise} \end{cases}$$

Regression Loss

Figure: Various Regression Losses, Source

Thank You!

Any Question?