

Sistemas Operacionais

Comunicação entre processos

Comunicação entre Processos

- Num sistema de multiprocessamento ou multiprogramação, os processos geralmente precisam se comunicar com outros processos.
- A comunicação entre processos é mais eficiente se for estruturada e não utilizar interrupções.

Comunicação entre Processos

- O que são interrupções?
- Uma interrupção é um evento externo que faz com que o processador pare a execução do programa corrente e desvie a execução para um bloco de código chamado rotina de interrupção (normalmente são decorrentes de operações de E/S).
- Ao terminar o tratamento de interrupção o controle retorna ao programa interrompido exatamente no mesmo estado em que estava quando ocorreu a interrupção.

Comunicação entre Processos

Programa em execução

Comunicação entre Processos

- Condição de Disputa;
- Região Crítica;
- Formas de Exclusão Mútua;
- Problemas Clássicos.

Comunicação entre Processos

- Processos competem por recursos.
- Três aspectos importantes:
 - Como um processo passa informação para outro processo;
 - Como garantir que processos não invadam espaços uns dos outros;
 - Dependência entre processos: sequência adequada.

- Processos acessam recursos compartilhados concorrentemente.
- Recursos: memória, arquivos, impressoras, discos, variáveis.
 - Impressão: quando um processo deseja imprimir um arquivo, ele coloca o arquivo em um local especial chamado diretório de spool (spooler);
 - Um outro processo, chamado deamon de impressão, checa se existe algum arquivo a ser impresso. Se existe, esse arquivo é impresso e retirado do spooler. Imagine dois processos que desejam imprimir um arquivo ao mesmo tempo.

Condições de Disputa (Race Conditions):

Spooler – fila de impressão (slots)

Coloca seu arquivo no slot 7 e next free slot = 8

- Como solucionar problemas de Condições de Disputa???
- Proibir que mais de um processo leia ou escreva em recursos compartilhados concorrentemente (ao "mesmo tempo")
- **Recursos compartilhados** = Regiões Críticas.
- Exclusão mútua: modo de garantir que outros processos sejam impedidos de usar uma variável ou um arquivo compartilhado que já esteja em uso por um processo.

- Quatro condições para uma boa solução:
 - **1.** Dois processos não podem estar simultaneamente em suas regiões críticas;
 - 2. Nenhuma restrição deve ser feita com relação à CPU;
 - **3.** Processos que não estão em regiões críticas não podem bloquear outros processos que desejam utilizar regiões críticas;
 - **4.** Processos não podem esperar para sempre para acessarem suas regiões críticas.

Thread 1	Thread 2		Integer value
			0
read value		←	0
	read value	←	0
increase value			0
	increase value		0
write back		→	1
	write back	→	1

Thread 1	Thread 2		Integer value
			0
read value		←	0
	read value	←	0
increase value			0
	increase value		0
write back		→	1
	write back	→	1

Thread 1	Thread 2		Integer value
			0
read value		←	0
increase value			0
write back		→	1
	read value	←	1
	increase value		1
	write back	→	2

- Data Races vs. Data Race Bugs: Telling the Difference with Portend
- Hybrid Dynamic Data Race Detection

Modelagem de concorrência: Petri Net

Classificação dos Modelos

- Modelos Baseados em Estado
 - Consideram apenas o conjunto S para modelar e se referir a propriedades do sistema.
 - Maioria das lógicas temporais: CTL (Computation Tree Logic)
- Modelos Baseados em Ações
 - Consideram apenas o conjunto T para modelar e se referir a propriedades dos sistemas.
 - As álgebras de processos: CCS, CSP, FSP
- Modelos Mistos
 - Consideram ambos os conjuntos S e T.
 - Redes de Petri

Modelagem de concorrência: Petri Net

Redes de Petri

- Áreas de Aplicação:
 - Concorrência
 - Arquitetura de Computadores
 - Protocolo de Redes
 - Sistemas Operacionais
 - Sistemas de Produção
 - Sistemas Digitais
 - Hardware/Software Co-design
 - Engenharia de Software
 - Sistemas de Tempo Real

- Modelagem e Avaliação de
 - Desempenho
- Diagnóstico de Falhas
- Controle de Tráfego
- Workflow
- Administração
- Química
- etc

Redes de Petri

Componentes

Lugar

□ Transição

Rede

Redes de Petri

Períodos do Dia

Redes de Petri

Redes de Petri

Redes de Petri

Redes de Petri

Definição: Place/Transition Nets - Teoria Bag (multiconjuntos)

$$R = (P, T, I, O, M_o)$$

- P Conjunto de lugares $P = \{p_0, ..., p_n\}$
- T Conjunto de transições $T=\{t_0, ..., t_m\}$
- I Conjunto de *bags* de entrada I: T → P[∞], é um conjunto de *bags* que representa o mapeamento de transições para lugares de entrada.
- O Conjunto de *bags* de saída O: $T \rightarrow P^{\infty}$
- M_0 Vetor marcação inicial M_0 : $P \to N$

Redes de Petri

$$M_0 = |7,7,0,1,0|$$

```
• R_{LP}=(P,T,I,O,M_0)
P={parafusos, porcas,
                         pacote,
                                   máquina
   depósito }
T={monta_pacote,envia_pacote}
I = \{I(monta\_pacote), I(envia\_pacote)\}
O={O(monta\_pacote), O(envia\_pacote)}
I(monta_pacote)=[parafusos,
                                  parafusos.
   parafusos, porcas, porcas, máquina
I(envia_pacote)=[pacote]
O(monta\_pacote) = [pacote]
O(envia_pacote)=[máquina,depósito]
```


Visual C++ Redistributable for Visual Studio 2015

-Para instalar o Snoopy

https://www.microsoft.com/en-us/download/details.aspx?id=48145

Snoopy

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy

INA

http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/

Mais sobre Redes de Petri

http://disciplinas.stoa.usp.br/course/view.php?id=3078

Exemplo ATM

– Time = t_o Authorisation OK

- Time = t_0 +2s Balance is 1000

- Time = t_0 +10s Client requested 800, 800<1000

- Time = t₀+12s Account updated by -800, 200 left

– Time = t₀+14s Cash dispensed

Exemplo ATM

Saque da mesma conta ao mesmo tempo?

Exemplo ATM

Time = t ₀	Client 1 Authorisation OK	Client 2	
Time = t_0 +1s		Authorisation OK	
Time = t_0 +2s	Balance is 1000		
Time = t_0 +3s		Balance is 1000	
Time = t_0 +5s		Client requested 800, 800<1000	
Time = $t_0 + 7s$		Account updated by -800, 200 left	
Time = t_0 +9s		Cash dispensed	
Time = t_0 +10s	Client requested 800, 800<1000		
Time = t_0 +12s	Account updated by -800, -600 left		
Time = t_0 +14s	Cash dispensed		

Exemplo ATM

Client 1 Client 2

Time = t₀+2s Balance is 1000, lock account

Time = t₀+3s account locked - cannot proceed

Time = $t_0 + 10s$ Client requested 800, 800<1000

Time = t₀+12s Account updated by -800, 200 left, unlock account

Time = t_0 +14s Cash dispensed

Exemplo Sinalização

Exemplo Sinalização

