Algebraic Sized Type Constructors

by Sven Nilsen, 2020

In this paper I provide a recursive way of constructing every algebraic sentence in Sized Type Theory by grammar rules such that the sentence is guaranteed to have a certain size.

$$|r| = n$$

 $|s| = 1$
 $k(a) = why(\exists x \{ |x| == a \})$

nat	Constructors ∀ x, y, z	Examples
0	⊥, (r, x),	$(\bot,\bot+\bot),(23,\bot),((\bot,\bot)+\bot)$
1	false, true, 0, 1, 2,,	$(3, \perp)$, (true + \perp), (false + $(\perp, 24)$)
2	bool, (s + s),	bool, (bool + \perp), (1 + 2), (bool, 5) animal \sim := dog + cat
3	-	(3 + 2 + 1), (3 + 2 + false)
4	(k(2) + k(2)), (k(2), k(2)),	(bool + bool), (bool, bool), (1 + 2, 3 + 4) (animal, animal), (animal + dog + cat)
5	-	(bool + bool + 14), ((bool, bool) + 14)
6	(k(2) + k(2) + k(2)), (k(3) + k(3)), (k(2), k(3)),	(bool + bool + bool) ((3 + 2 + 1) + (3 + 2 + 1)) (bool, (bool + 8))
7	-	(9 + bool + bool) (0 + 1 + 2 + 3 + 4 + 5 + 6) ((0, 1) + (0, 2) + (0, 3) + (0, 4) + (0, 5) + (0, 6))
n	$(\bot + r),$ (s, r), $x \sim = r$ defines new symbols	-
n+1	(r + s),	-

Some observations:

- Redundant rules by commutation are left out
- Notice that primes, except `2`, are covered by existing rules
- Rules for composite numbers can be derived by prime factorization and number theory
- One sentence might be constructed multiple ways since rules are not necessarily exclusive
- Recursive constructors might be thought of as a greedy algorithm given some cost of recursion

Two types are isomorphic if they have the same size, so these rules can be used to prove stuff like this:

```
 ∀ x, y, i { ¬∃ f { x == (bool + 3 + z) ∧ y == bool => f : x → y }  conjecture  ∀ z { |(bool + 3 + z)| >= 3 }  ∧  |bool| == 2  why  ∴  ∀ z { |(bool + 3 + z)| ¬= |bool| }  Q.E.D.
```