Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

October 29, 2018

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

/45

ntroduction

Overview

- Introduction
- PCTL Syntax
- 3 PCTL Semantics
- 4 PCTL Model Checking
- Complexity
- 6 Summary

Overview

- Introduction
- 2 PCTL Syntax
- PCTL Semantics
- 4 PCTL Model Checking
- 6 Complexity
- **6** Summary

Joost-Pieter Katoen

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

2/4

Introduction

Summary of previous lecture

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

The probability of satisfying an ω -regular property P in a Markov chain \mathcal{D} = reachability probability of accepting BSCCs in the product of \mathcal{D} with a DRA for P.

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

- 1. Syntax and formal semantics of probabilistic CTL.
- 2. Model checking algorithm for probabilistic CTL on Markov chains.
- 3. Time complexity analysis.

Joost-Pieter Katoer

Modeling and Verification of Probabilistic Systems

5/45

PCTL Synta:

Probabilistic Computation Tree Logic

- ▶ PCTL is a language for formally specifying properties over DTMCs.
- ▶ It is a branching-time temporal logic (based on CTL).
- ▶ Formula interpretation is Boolean, i.e., a formula is satisfied or not.
- ▶ The main operator is $\mathbb{P}_{J}(\varphi)$
 - where φ constrains the paths and J is a threshold on the probability.
 - ightharpoonup it is the probabilistic counterpart of \exists and \forall path-quantifiers in CTL.

Overview

- Introduction
- PCTL Syntax
- 3 PCTL Semantics
- 4 PCTL Model Checking
- Complexity
- **6** Summary

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

6/45

PCTL Synt

DTMCs

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ► *S* is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- ullet $\iota_{ ext{init}}:S o[0,1]$, the initial distribution with $\sum\limits_{s\in S}\iota_{ ext{init}}(s)=1$
- ► *AP* is a set of atomic propositions.
- ▶ $L: S \to 2^{AP}$, the labeling function, assigning to state s, the set L(s) of atomic propositions that are valid in s.

Initial states

- ightharpoonup $\iota_{\text{init}}(s)$ is the probability that DTMC $\mathcal D$ starts in state s
- ▶ the set $\{s \in S \mid \iota_{\text{init}}(s) > 0\}$ are the possible initial states.

PCTL syntax

[Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

▶ PCTL *state formulas* over the set *AP* obey the grammar:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{J}(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0,1]$, $J \neq \emptyset$ is a non-empty interval.

▶ PCTL *path formulae* are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup \Phi_2$$

where Φ , Φ_1 , and Φ_2 are state formulae and $n \in \mathbb{N}$.

Abbreviate $\mathbb{P}_{[0,0.5]}(\varphi)$ by $\mathbb{P}_{\leq 0.5}(\varphi)$ and $\mathbb{P}_{]0,1]}(\varphi)$ by $\mathbb{P}_{>0}(\varphi)$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

9/45

PCTL Semantic

Overview

- Introduction
- PCTL Syntax
- Open PCTL Semantics
- 4 PCTL Model Checking
- 6 Complexity
- **6** Summary

Probabilistic Computation Tree Logic

▶ PCTL *state formulas* over the set *AP* obey the grammar:

$$\Phi$$
 ::= true $\mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{J}(\varphi)$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

▶ PCTL path formulae are formed according to the following grammar:

$$\varphi \; ::= \; \bigcirc \, \Phi \; \; \middle| \; \; \Phi_1 \, \mathsf{U} \, \Phi_2 \; \; \middle| \; \; \Phi_1 \, \mathsf{U}^{\leqslant n} \, \Phi_2 \quad \text{where } n \in {\rm I\! N}.$$

Intuitive semantics

- ▶ $s_0 s_1 s_2 ... \models \Phi U^{\leq n} \Psi$ if Φ holds until Ψ holds within n steps.
- $s \models \mathbb{P}_J(\varphi)$ if probability that paths starting in s fulfill φ lies in J.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

10/45

PCTL Semantics

Semantics of \mathbb{P} -operator

- $ightharpoonup s \models \mathbb{P}_{J}(\varphi)$ if:
 - the probability of all paths starting in s fulfilling φ lies in J.
- ▶ Example: $s \models \mathbb{P}_{>\frac{1}{2}}(\lozenge a)$ if
 - ▶ the probability to reach an *a*-labeled state from s exceeds $\frac{1}{2}$.
- ► Formally:
 - $s \models \mathbb{P}_{J}(\varphi)$ if and only if $Pr_{s}\{\pi \in Paths(s) \mid \pi \models \varphi\} \in J$.

Derived operators

$$\Diamond \Phi = \text{true } U \Phi$$

$$\lozenge^{\leqslant n} \Phi = \text{true } \mathsf{U}^{\leqslant n} \Phi$$

$$\mathbb{P}_{\leq p}(\Box \Phi) = \mathbb{P}_{>1-p}(\Diamond \neg \Phi)$$

$$\mathbb{P}_{(p,q)}(\Box^{\leqslant n} \Phi) = \mathbb{P}_{[1-q,1-p]}(\lozenge^{\leqslant n} \neg \Phi)$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

14/45

PCTL Semantics

Example properties

► Transient probabilities to be in *goal* state at the fourth epoch:

$$\mathbb{P}_{\geqslant 0.92}\left(\lozenge^{=4} \text{ goal}\right)$$

lacktriangle With probability \geqslant 0.92, a goal state is reached legally:

$$\mathbb{P}_{\geq 0.92}$$
 (¬ illegal U goal)

- ▶ ... in maximally 137 steps: $\mathbb{P}_{\geq 0.92}$ (¬ illegal U ≤ 137 goal)
- ▶ ... once there, remain there almost surely for the next 31 steps:

$$\mathbb{P}_{\geqslant\,0.92}\left(\neg\,\textit{illegal}\ \ \mathsf{U}^{\,\leqslant\,137}\ \ \mathbb{P}_{=1}(\Box^{[0,31]}\ \textit{goal})\right)$$

Correctness of Knuth's die

Correctness of Knuth's die

$$\mathbb{P}_{=\frac{1}{6}}(\lozenge 1) \wedge \mathbb{P}_{=\frac{1}{6}}(\lozenge 2) \wedge \mathbb{P}_{=\frac{1}{6}}(\lozenge 3) \wedge \mathbb{P}_{=\frac{1}{6}}(\lozenge 4) \wedge \mathbb{P}_{=\frac{1}{6}}(\lozenge 5) \wedge \mathbb{P}_{=\frac{1}{6}}(\lozenge 6)$$

DCTI C....

PCTL semantics (1)

Notation

Joost-Pieter Katoen

 \mathcal{D} , $s \models \Phi$ iff state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for PCTL state formulas by:

$$s \models a$$
 iff $a \in L(s)$
 $s \models \neg \Phi$ iff not $(s \models \Phi)$
 $s \models \Phi \land \Psi$ iff $(s \models \Phi)$ and $(s \models \Psi)$
 $s \models \mathbb{P}_{J}(\varphi)$ iff $Pr(s \models \varphi) \in J$

where
$$Pr(s \models \varphi) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \varphi \}$$

PCTL semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 s_1 s_2 \dots$ be an infinite path in (possibly infinite) DTMC \mathcal{D} . Recall that $\pi[i] = s_i$ denotes the (i+1)-st state along π .

The satisfaction relation \models is defined for state formulas by:

$$\pi \models \bigcirc \Phi \qquad \text{iff} \quad s_1 \models \Phi$$

$$\pi \models \Phi \cup \Psi \qquad \text{iff} \quad \exists k \geqslant 0. (\pi[k] \models \Psi \text{ and } \forall 0 \leqslant i < k. \pi[i] \models \Phi)$$

$$\pi \models \Phi \cup^{\leqslant n} \Psi \quad \text{iff} \quad \exists k \geqslant 0. (k \leqslant n \text{ and } \pi[k] \models \Psi \text{ and}$$

$$\forall 0 \leqslant i < k. \pi[i] \models \Phi)$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

PCTL Semantics

Measurability

PCTL measurability

For PCTL path formula φ and state s of DTMC \mathcal{D} , $\{ \pi \in Paths(s) \mid \pi \models \varphi \}$ is measurable.

Proof (sketch):

Three cases:

- 1. **(**) Φ:
 - cylinder sets constructed from paths of length one.
- 2. Φ U[≤]*n* Ψ:
 - \blacktriangleright (finite number of) cylinder sets from paths of length at most n.
- 3. Φ U Ψ:
 - countable union of paths satisfying $\Phi U^{\leq n} \Psi$ for all $n \geq 0$.

Modeling and Verification of Probabilistic Systems

Overview

Joost-Pieter Katoen

- Introduction
- PCTL Syntax
- 3 PCTL Semantics
- 4 PCTL Model Checking
- 6 Complexity
- **6** Summary

Joost-Pieter Katoen

PCTL model checking

PCTL model checking problem

Input: a finite DTMC $\mathcal{D}=(S,\mathbf{P},\iota_{\mathrm{init}},\mathit{AP},\mathit{L})$, state $s\in S$, and PCTL state formula Φ

Output: yes, if $s \models \Phi$; no, otherwise.

Basic algorithm

In order to check whether $s \models \Phi$ do:

- 1. Compute the satisfaction set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}.$
- 2. This is done recursively by a bottom-up traversal of Φ 's parse tree.
 - ▶ The nodes of the parse tree represent the subformulae of Φ .
 - **F** For each node, i.e., for each subformula Ψ of Φ , determine $Sat(\Psi)$.
 - ▶ Determine $Sat(\Psi)$ as function of the satisfaction sets of its children: e.g., $Sat(\Psi_1 \land \Psi_2) = Sat(\Psi_1) \cap Sat(\Psi_2)$ and $Sat(\neg \Psi) = S \setminus Sat(\Psi)$.
- 3. Check whether state s belongs to $Sat(\Phi)$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

21 /4

PCTL Model Checkin

Core model-checking algorithm

Propositional formulas

 $Sat(\cdot)$ is defined by structural induction as follows:

$$Sat(\mathsf{true}) = S$$

 $Sat(a) = \{ s \in S \mid a \in L(s) \}, \text{ for any } a \in AP$
 $Sat(\Phi \wedge \Psi) = Sat(\Phi) \cap Sat(\Psi)$
 $Sat(\neg \Phi) = S \setminus Sat(\Phi).$

Probabilistic operator P

In order to determine whether $s \in Sat(\mathbb{P}_J(\varphi))$, the probability $Pr(s \models \varphi)$ for the event specified by φ needs to be established. Then

$$Sat(\mathbb{P}_{J}(\varphi)) = \{ s \in S \mid Pr(s \models \varphi) \in J \}.$$

Let us consider the computation of $Pr(s \models \varphi)$ for all possible φ .

Example

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

22/4

PCTL Model Check

The next-step operator

Recall that: $s \models \mathbb{P}_J(\bigcirc \Phi)$ if and only if $Pr(s \models \bigcirc \Phi) \in J$.

Lemma

$$Pr(s \models \bigcirc \Phi) = \sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s').$$

Algorithm

Considering the above equation for all states simultaneously yields:

$$(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_{\Phi}$$

with \mathbf{b}_{Φ} the characteristic vector of $Sat(\Phi)$, i.e., $b_{\Phi}(s) = 1$ iff $s \in Sat(\Phi)$.

Checking the next-step operator reduces to a single matrix-vector multiplication.

Example

Consider DTMC:

and PCTL-formula:

$$\mathbb{P}_{\geqslant 0.9}\left(\bigcirc\left(\neg try \lor succ\right)\right)$$

- 1. $Sat(\neg try \lor succ) = (S \setminus Sat(try)) \cup Sat(succ) = \{s_0, s_2, s_3\}$
- 2. We know: $(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_{\Phi}$ where $\Phi = \neg try \lor succ$
- 3. Applying that to this example yields:

$$\left(\Pr(s \models \bigcirc \Phi) \right)_{s \in S} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{pmatrix}$$

4. Thus: $Sat(\mathbb{P}_{\geqslant 0.9}(\bigcirc (\neg try \lor succ)) = \{s_1, s_2, s_3\}.$

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

25 /41

PCTL Model Checking

Bounded until (2)

Let
$$S_{=1}=Sat(\Psi),\ S_{=0}=S\setminus (Sat(\Phi)\cup Sat(\Psi)),\ \text{and}\ S_?=S\setminus (S_{=0}\cup S_{=1}).$$
 Then:

$$Pr(s \models \Phi \cup^{\leqslant n} \Psi) = \left\{ egin{array}{ll} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ 0 & \text{if } s \in S_{?} \land n = 0 \end{array}
ight.$$
 $\sum_{s' \in S} \mathbf{P}(s,s') \cdot Pr(s' \models \Phi \cup^{\leqslant n-1} \Psi) \quad \text{otherwise}$

Algorithm

- 1. Let $\mathbf{P}_{\Phi,\Psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
- 2. Then $(Pr(s \models \Phi \cup V^{\leq 0} \Psi))_{s \in S} = \mathbf{b}_{\Psi}$
- 3. And $(Pr(s \models \Phi \cup V^{\leqslant i+1} \Psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi} \cdot (Pr(s \models \Phi \cup V^{\leqslant i} \Psi))_{s \in S}$.
- 4. This requires *n* matrix-vector multiplications in total.

Bounded until (1)

Recall that: $s \models \mathbb{P}_J(\Phi \cup^{\leqslant n} \Psi)$ if and only if $Pr(s \models \Phi \cup^{\leqslant n} \Psi) \in J$.

Lemma

Let
$$S_{=1} = Sat(\Psi)$$
, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \cup^{\leqslant n} \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ 0 & \text{if } s \in S_{?} \land n = 0 \end{cases}$$

$$\sum_{s' \in S} \mathbf{P}(s, s') \cdot Pr(s' \models \Phi \cup^{\leqslant n-1} \Psi) \text{ otherwise}$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

26 /41

PCTL Model Checki

Bounded until (3)

Algorithm

- 1. Let $\mathbf{P}_{\Phi,\Psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
- 2. Then $(Pr(s \models \Phi \cup^{\leq 0} \Psi))_{s \in S} = \mathbf{b}_{\Psi}$
- 3. And $(Pr(s \models \Phi \cup \forall i+1 \cup \psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi} \cdot (Pr(s \models \Phi \cup \forall i \cup \psi))_{s \in S}$.
- 4. This requires *n* matrix-vector multiplications in total.

Remarks

- 1. In terms of matrix powers: $(Pr(s \models \Phi \cup^{\leq n} \Psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi}^n \cdot \mathbf{b}_{\Psi}$.
 - ► Computing $\mathbf{P}_{\Phi,\Psi}^n$ in $\log_2 n$ steps is inefficient due to fill-in.
 - ▶ That is to say, $\mathbf{P}_{\Phi,\Psi}^n$ is much less sparse than $\mathbf{P}_{\Phi,\Psi}$.
- 2. $\mathbf{P}_{\Phi,\Psi}^n \cdot \mathbf{b}_{\Psi} = (Pr(s \models \bigcirc^{=n} \Psi))_{s \in S_n} \text{ in } \mathcal{D}[S_{=0} \cup S_{=1}].$
 - ▶ Where $\bigcirc^0 \Psi = \Psi$ and $\bigcirc^{i+1} \Psi = \bigcirc (\bigcirc^i \Psi)$.
 - ▶ This thus amounts to a transient analysis in DTMC $\mathcal{D}[S_{=0} \cup S_{=1}]$.

Optimization

The above procedure used:

- \triangleright $S_{-1} = Sat(\Psi)$, and
- $ightharpoonup S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi)) = Sat(\neg \Phi \land \neg \Psi), \text{ and}$
- perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging $S_{=0}$ and $S_{=1}$:

- $S_{=1} = Sat(\mathbb{P}_{=1}(\Phi \cup \Psi))$, obtained by a graph analysis
- $ightharpoonup S_{=0} = Sat(\mathbb{P}_{=0}(\Phi \cup \Psi))$, obtained by a graph analysis too, and
- perform the matrix-vector multiplications on the remaining states.

Modeling and Verification of Probabilistic System

Until

Recall that: $s \models \mathbb{P}_{I}(\Phi \cup \Psi)$ if and only if $Pr(s \models \Phi \cup \Psi) \in J$.

Algorithm

- 1. Determine $S_{=1} = Sat(\mathbb{P}_{=1}(\Phi \cup \Psi))$ by a graph analysis.
- 2. Determine $S_{=0} = Sat(\mathbb{P}_{=0}(\Phi \cup \Psi))$ by a graph analysis.
- 3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

- 1. Ensures unique solution to linear equation system.
- 2. Reduces the number of variables in the linear equation system.
- 3. Gives exact results for the states in $S_{=1}$ and $S_{=0}$ (i.e., no round-off).
- 4. For qualitative properties, no further computation is needed.

Example

Example

Overview

- Introduction
- PCTL Syntax
- 3 PCTL Semantics
- 4 PCTL Model Checking
- 6 Complexity
- 6 Summary

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

33/45

Complexity

Time complexity

Time complexity of PCTL model checking

For finite DTMC \mathcal{D} and PCTL state-formula Φ , the PCTL model-checking problem can be solved in time

$$\mathcal{O}(poly(size(\mathcal{D})) \cdot n_{max} \cdot |\Phi|).$$

Proof (sketch)

- 1. For each node in the parse tree, a model-checking is performed; this yields a linear complexity in $|\Phi|$.
- 2. The worst-case operator is (unbounded) until.
 - 2.1 Determining $S_{=0}$ and $S_{=1}$ can be done in linear time.
 - 2.2 Direct methods to solve linear equation systems are in $\Theta(|S_7|^3)$.
- 3. Strictly speaking, $U^{\leq n}$ could be more expensive for large n. But it remains polynomial, and n is small in practice.

Time complexity

Let $|\Phi|$ be the size of Φ , i.e., the number of logical and temporal operators in Φ .

Time complexity of PCTL model checking

For finite DTMC \mathcal{D} and PCTL state-formula Φ , the PCTL model-checking problem can be solved in time

$$\mathcal{O}(poly(size(\mathcal{D})) \cdot n_{\mathsf{max}} \cdot |\Phi|)$$

where $n_{\max} = \max\{ n \mid \Psi_1 \cup \Psi_2 \text{ occurs in } \Phi \}$ with and $n_{\max} = 1$ if Φ does not contain a bounded until-operator.

Joost-Pieter Katoen

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

34/45

Complex

Example: Lost passenger ticket

Verification results

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

37/45

omplexity

Example

- Exact answer: $Pr(\lozenge t) = \frac{3}{4}$
- Value iteration with $\varepsilon=$ 0,000001 yields 0.7248
- ► True error: 0.0252

Value iteration

▶ Reachability probabilities are typically obtained iteratively:

$$\mathbf{x}^{(n+1)} = \mathbf{A} \cdot \mathbf{x}^{(n)} + \mathbf{b}$$

- ▶ Then: reachability probability $Pr(\lozenge G)$ equals $\lim_{n\to\infty} \mathbf{x}^{(n)}$
- Question: when to halt this iterative process?
- ► Typical approach:

$$|\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}| \leqslant \varepsilon$$

for some ε , e.g., 10^{-6}

► Potential problem: premature convergence

That is: iterations are stopped too early

► Verification results are obtained without guarantees

Joost-Pieter Katoen

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

38/4

Complexit

Value iteration

Idea: approach $Pr(\lozenge G)$ by computing $Pr(\lozenge^{\leqslant k}G)$ for increasing k

- ightharpoonup Problem: δ_k is unknown
- ▶ Stopping criterion: $|Pr(\lozenge^{\leqslant k+1}G) Pr(\lozenge^{\leqslant k}G)| \leqslant \varepsilon$
- ▶ But this is independent from the aim: $\underbrace{Pr(\lozenge G) Pr(\lozenge^{\leqslant k}G)}_{\delta_k} \leqslant \varepsilon$

Remedy: bound $Pr(\lozenge G)$ from above too

Idea: provide bounds $\ell_k \leqslant \delta_k \leqslant u_k$ for $\delta_k = Pr(\lozenge G) - Pr(\lozenge^{\leqslant k} G)$

How to obtain these bounds? Towards an upper bound observe:

$$\delta_{\mathbf{k}} = \underbrace{Pr(\lozenge G) - Pr(\lozenge^{\leqslant \mathbf{k}} G)}_{\text{probability to reach } G \text{ in } > \mathbf{k}} \leqslant Pr(\square^{\leqslant \mathbf{k}} S_?) \cdot \max_{s \in S_?} Pr_s(\lozenge G)$$

Towards a lower bound observe:

$$\delta_{k} = \underbrace{Pr(\lozenge G) - Pr(\lozenge^{\leq k} G)}_{\text{probability to reach } G \text{ in } > k \text{ steps}} \geqslant Pr(\square^{\leq k} S_{?}) \cdot \min_{s \in S_{?}} Pr_{s}(\lozenge G)$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

41/4

Complexit

Example sound value iteration

- **Exact answer**: $Pr(\lozenge t) = \frac{3}{4}$
- $S_? = \{ s_0, s_1, s_2 \}$
- ightharpoonup We have $I_3 = (0.00003, 0.003, 0.3)$
- ightharpoonup and $m u_3 = (0.99996, 0.996, 0.6)$
- For all $s \in S_?$ we have $\frac{\ell_3(s)}{1-u_3(s)} = \frac{3}{4}$
- ► Thus $\ell_3 = u_3 = \frac{3}{4}$
- ▶ Three iterations suffice for the exact answer

Sound value iteration

Sound value iteration theorem

For DTMC \mathcal{D} , goal states $G \subseteq S$ and $k \in \mathbb{N}$:

$$Pr(\lozenge^{\leqslant k}G) + \ell_k \leqslant Pr(\lozenge G) \leqslant Pr(\lozenge^{\leqslant k}G) + u_k$$

where:

$$u_{\mathbf{k}} = Pr(\square^{\leqslant \mathbf{k}} S_{?}) \cdot \max_{s \in S_{?}} \frac{Pr_{s}(\lozenge^{\leqslant \mathbf{k}} G)}{1 - Pr_{s}(\square^{\leqslant \mathbf{k}} S_{?})}$$

and

$$\ell_{k} = Pr(\square^{\leq k}S_{?}) \cdot \min_{s \in S_{?}} \frac{Pr_{s}(\lozenge^{\leq k}G)}{1 - Pr_{s}(\square^{\leq k}S_{?})}$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

42/4

Summ

Overview

- Introduction
- 2 PCTL Syntax
- 3 PCTL Semantics
- 4 PCTL Model Checking
- Complexity
- **6** Summary

Summarv

Summary

- ▶ PCTL is a branching-time logic with key operator $\mathbb{P}_{\mathbf{J}}(\varphi)$.
- \blacktriangleright Sets of paths fulfilling PCTL path-formula φ are measurable.
- ightharpoonup PCTL model checking is performed by a recursive descent over Φ .
- ▶ The next operator amounts to a single matrix-vector multiplication.
- ▶ Bounded until $U^{\leq n}$ amounts to n matrix-vector multiplications.
- ▶ The until-operator amounts to solving a linear equation system.
- ▶ Time complexity of $\mathcal{D} \models \Phi$ is polynomial in $|\mathcal{D}|$ and linear in $|\Phi|$.
- ▶ Value iteration is sound when upper bounding $Pr(\lozenge G)$
- ► Variations: long-run operator, conditional probabilities, expected reward until reaching a set of states.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

45/4