

Contenido

- Introducción
- Base de datos
- Simplificación del problema
 - Primera aproximación
 - Efecto del número de clases
 - Reducción número de clases
- Fase 1: Clasificación
 - Experimentos de modelos e hiperparámetros
 - Aumento de datos
- Fase 2: Segmentación de Deeplab v3+
 - ❖ Máscaras como 4º canal
 - ❖ Máscara sobrepuesta en RGB
- Resultados finales en test

Introducción

discoverocean

- Reconocimiento de individuos (AI)
- Objetivo: Apoyar a catálogos incompletos, estimaciones poblacionales, identificar rutas de migración, estrategias de conservación, ecoturismo, entre otros.
- HappyWhale

 Ballenas Yubartas en el pacífico Colombiano

Base de datos

Kaggle: Humpback Whale Identification

- 25,361 imágenes con anotaciones
 → 5,005 clases
- 9,664 de las imágenes son new_whale
 →15,697 imágenes totales con 5,004 clases

Simplificación del problema

Primera aproximación

- ❖ Al menos 4 imágenes por clase →1078 clases
- ❖ Al menos 1 imagen por clase en val y test
- **♦** 6516 en train

→ Desde cero

Número clases: 1078								
Modelo	ACA	Loss						
Densenet161	0,33%	6,9829						
Resnet18	0,33%	5,6095						
VGG16	0,14%	42,8983						

→ Preentrenados

Número clases: 1078								
Modelo ACA Los								
Densenet161	2,75%	6,8547						
Resnet18	0,14%	6,9829						
VGG16	0.07%	31.4141						

- ❖ Al menos 10 imágenes por clase →273 clases
- ❖ Al menos 2 imágenes por clase en val y test
- ❖ 3612 en train

Número clases: 273								
Modelo ACA Loss								
Densenet161	3,46%	6,4786						
Resnet18	1.68%	5.5985						
VGG16	0.28%	10.2538						

Número clases: 273								
Modelo ACA Loss								
Densenet161	6.42%	5.2497						
Resnet18	7.58%	5.4975						
VGG16	0.28%	145.7540						

Efecto del número de clases en el desempeño

Gráfica de **reconocimiento de caras** con la base de datos **Faces94**

- Tenemos mucho más de 150 clases, todas similares entre sí
- Tenemos muy pocas imágenes de algunas clases en vez de 20 de cada una.
- A diferencia de Faces94, nuestra base de datos tiene variaciones de luz, fondo, orientación, calidad de la imagen, etc.

Simplificación del problema

Base de datos Kaggle con **25,361** imágenes anotadas y **5005** clases.

Removiendo la etiqueta "new_whale" quedaron **15,697** imágenes anotadas y **5004** clases.

Se seleccionaron las clases con al menos **20** imágenes y quedaron **66** clases.

Entrenamiento
1007 imágenes
con al menos 10
imágenes por
clase

Validación **555** imágenes con al menos **5** imágenes por clase

Test **555** imágenes con al menos **5** imágenes por clase

Fase 1: Clasificación

Experimentos Resnet, Densenet y VGG

-> Se corrió con 15 épocas, batch size 32 y optimizador Adam.

Resultados validación (Sin Aumento de datos)											
Modelo	Loss decay	Learning Rate	Weight Decay	Gamma	Pretrained	Aumento datos	Loss	Recall	Precision	Accuracy	F-score
Densenet161	Escalera	3,00E-04	0.0002	0.2	no	no	3,7297	9.03%	4.63%	9.37%	5.45%
Densenet161	Escalera	3,00E-04	0.0002	0.2	si	no	2,0022	57.88%	52.01%	57.66%	53.40%
VGG16	Escalera	3,00E-04	0.0002	0.2	no	no	4,1229	3.63%	0.21%	3.42%	0.39%
VGG16	Escalera	3,00E-04	0.0002	0.2	si	no	4,1096	2.88%	0.28%	3.11%	0.48%
Resnet18	Escalera	3,00E-04	0.0002	0.2	no	no	3,9051	13.51%	8.50%	13.33%	8.88%
Resnet18	Escalera	3,00E-04	0.0002	0.2	si	no	3,8785	13,34%	8,39%	13,15%	9,17%

Fase 1: Clasificación

Aumento de datos

Fase 1: Clasificación

Experimentos Resnet, Densenet, Se-Resnet y VGG

-> Se corrió con 15 épocas, batch size 32 y optimizador Adam.

Resultados validación (Aumento de datos)											
Modelo	Loss decay	Learning Rate	Weight Decay	Gamma	Prentrenada	Aumento datos	Loss	Recall	Precision	Accuracy	F-score
Densenet161	Escalera	0.01	-	2	no	si	332339,5974	1.74%	0.09%	1.80%	0.16%
Densenet161	Escalera	0.01	-	2	si	si	3931805,513	0.87%	0.03%	0.90%	0.05%
Densenet161	Escalera	3,00E-04	0.0002	2	si	si	11,1465	2.26%	0.09%	2.34%	0.18%
Densenet161 (Cls)	Escalera	3,00E-04	0.002	0.2	si	si	0,7465	77.72%	77.29%	77.12%	76.46%
Densenet161 (Cls)	Coseno	3,00E-04	0.0002	0.2	si	si	1,8305	54.40%	55.72%	54.05%	53.19%
Resnet18	Escalera	0.01	-	2	no	si	4,1897	2.43%	0.15%	2.52%	0.28%
Resnet18	Escalera	0.01	-	2	si	si	4,1897	2.43%	0.15%	2.52%	0.28%
Resnet18	Escalera	3,00E-04	0.0002	2	si	si	3,4866	25.47%	20.73%	25.41%	21.25%
Resnet18	Escalera	3,00E-04	0.0002	0.2	si	si	3,4866	25.47%	20.73%	25.41%	21.25%
Resnet18	Coseno	3,00E-04	0,0002	0.2	si	si	3,7072	20.11%	16.69%	20.18%	16.23%
SE-Resnet50	Coseno	3,00E-04	0,0002	0.2	si	si	2.5123	30.84%	28.27%	30.63%	26.79%
VGG16	Escalera	0.01	-	2	no	si	332339,5974	1.74%	0.09%	1.80%	0.16%
VGG16	Escalera	0.01	-	2	si	si	3931805,513	0.87%	0.03%	0.90%	0.05%
VGG16	Escalera	3,00E-04	0.0002	2	si	si	11,1465	2.26%	0.09%	2.34%	0.18%
VGG16	Escalera	3,00E-04	0.0002	0.2	si	si	2,0486	50.09%	52.19%	50.27%	49.49%
VGG16	Coseno	3,00E-04	0.0002	0.2	si	si	1,8305	54.40%	55.72%	54.05%	53.19%
VGG16	Coseno	3,00E-04	0.0002	0.2	si	si	1,5855	61.52%	61.44%	61.44%	59.59%
VGG16	Coseno	3,00E-04	0.002	0.2	si	si	1,9466	45.80%	45.17%	46.85%	43.61%

Fase 1: Clasificación

Modelo seleccionado: Densenet (con clasificador VGG)

-> Se corrió con <u>15 épocas</u>, batch size 32 y optimizador Adam.

Loss: 0.7465

Accuracy: 77.12%

Precision: 77.29%

Recall: 77.72%

Fbeta: 76.46%

Fase 2: Segmentación de Deeplab v3+

→ Anotaciones disponibles en línea, primer puesto concurso Kaggle (450 imágenes)

Deeplab V3+

→ Predicciones

En conjunto validación

Accuracy: 98.29%

mIoU: 96.41%

Fase 2: Segmentación de Deeplab v3+

Máscara como cuarto canal

-> Se corrió con <u>15 épocas</u>, batch size 32, optimizador Adam.

Resultados validación (Con máscaras y aumento de datos)										
Modelo	Loss Decay	Weight decay	Loss	Recall	Precision	Accuracy	F-score			
Densenet161 (cls)	Escalera	0.0002	30.219	17.53%	11.61%	18.20%	12.74%			
Densenet161 (cls)	Coseno	0.002	15.980	52.73%	51.45%	52.79%	51.10%			
Densenet161 (cls)	Coseno	0.0001	0.8837	78.67%	81.61%	78.56%	78.42%			
Densenet161 (cls)	Coseno	0.0002	10.254	75.08%	75.80%	75.86%	73.95%			
VGG16	Escalera	0.0002	41.354	3.30%	0.24%	3.42%	0.45%			
VGG16	Coseno	0.0002	41.230	3.30%	0.21%	3.42%	0.39%			

Fase 2: Segmentación de Deeplab v3+

Máscara como cuarto canal

-> Se corrió con <u>50 épocas</u>, batch size 32, optimizador Adam.

Loss: 0.7765

Accuracy: 84.32%

Precision: 85.70%

Recall: 84.31%

Fbeta: 83.74%

Fase 2: Segmentación de Deeplab v3+

Máscara sobrepuesta en RGB

- -> Genera imagen sin fondo
- -> Se corrió con <u>15 épocas</u>, batch size 32, optimizador Adam.

Resultados validación (Con máscaras y aumento de datos)										
Modelo	Loss Decay	Weight decay	Loss	Recall	Precision	Accuracy	F-score			
Densenet161 (cls)	Escalera	0.0002	1.3798	58.07%	55.87%	58.20%	55.86%			
Densenet161 (cls)	Coseno	0.002	1.1188	73.63%	73.26%	72.97%	72.25%			
Densenet161 (cls)	Coseno	0.0001	0.5756	83.89%	85.46%	83.96%	83.64%			
Densenet161 (cls)	Coseno	0.0002	0.6284	84.06%	86.48%	84.14%	84.12%			
VGG16	Escalera	0.0002	4.0144	3.28%	0.61%	3.06%	1.01%			
VGG16	Coseno	0.0002	1.6897	53.25%	52.72%	54.23%	51.23%			

Fase 2: Segmentación de Deeplab v3+

Máscara sobrepuesta en RGB

-> Se corrió con <u>30 épocas</u>, batch size 32, optimizador Adam.

Loss: 0.4552

Accuracy: 88.11%

Precision: 89.70%

Recall: 87.55%

Fbeta: 87.74%

Resultados finales en test

Modelo Densenet161 (clasificador VGG)

->Máscaras sobrepuestas en RGB

-> Coseno

-> Weight decay: 0.0002

Loss: 0.5207

Accuracy: 88.29%

Precision: 89.64%

Recall: 88.72%

Fbeta: 88.39%

Clasificación de Ballenas Yubartas

Catalina Botia, Isabella Ramos y Daniela Tamayo.

Código:

https://github.com/ramoshe0/Jorobadas.git

Semillero BCV 7 - Agosto - 2020

Referencias

- [1] Kaggle, «Humpback Whale Identification,» 2019. [En línea]. Available: https://www.kaggle.com/c/humpback-whale-identification. [Último acceso: 6 Junio 2020].
- [2] Fundación Yubarta, «Quiénes somos. Fundación Yubarta,» [En línea]. Available: http://fundacionyubarta.blogspot.com/p/quienes-somos.html. [Último acceso: 6 Junio 2020].
- [3] Fundación Omacha, «Fundación Omacha,» 2020. [En línea]. Available: https://omacha.org/. [Último acceso: 6 Junio 2020].
- [4] W. Wang, «Whale identification 5th place approach using siamese networks with adversarial training,» 1 Marzo 2019. [En línea]. Available: https://weiminwang.blog/2019/03/01/whale-identification-5th-place-approach-using-siamese-networks-with-adversarial-training/. [Último acceso: 6 Junio 2020].
- [5] jfzhang95, «pytorch-deeplab-xception,» 17 Diciembre 2019. [En línea]. Available: https://github.com/jfzhang95/pytorch-deeplab-xception. [Último acceso: 15 Julio 2020].
- [6] jaemin93, «pytorch-deeplab-xception,» 6 Diciembre 2019. [En línea]. Available: https://github.com/jaemin93/pytorch-deeplab-xception/blob/master/inference.py. [Último acceso: 1 Agosto 2020].
- [7] earhian, «Humpback-Whale-Identification-1st-,» 11 Marzo 2019. [En línea]. Available: https://github.com/earhian/Humpback-Whale-Identification-1st-. [Último acceso: 6 Junio 2020].
- [8] SeuTao, «Humpback-Whale-Identification-Challenge-2019_2nd_palce_solution,» 20 Mayo 2019. [En línea]. Available: https://github.com/SeuTao/Humpback-Whale-Identification-Challenge-2019_2nd_palce_solution. [Último acceso: 6 Junio 2020].
- [9] pudae, «kaggle-humpback,» 7 Marzo 2019. [En línea]. Available: https://github.com/pudae/kaggle-humpback. [Último acceso: 6 Junio 2020].
- [10] Uglov, Jegor, et al. "Comparing robustness of pairwise and multiclass neural-network systems for face recognition." EURASIP Journal on Advances in Signal Processing 2008.1 (2007): 468693.