1.4

La racine carrée

Maths 2nde 7 - JB Duthoit

1.4.1 Définition

Définition

Soit a un réel positif. La $racine\ carr\'ee$ de a est le réel positif dont le carr\'e est égal à a.

Remarque

Pour tout $a \ge 0$, on a donc $(\sqrt{a})^2 = a$.

Exemples

- $\sqrt{4} =$
- $\sqrt{100} =$
- $\sqrt{36} =$
- $\sqrt{1.44} =$
- $\sqrt{0.01} =$
- $(\sqrt{5})^2 =$
- $\sqrt{5^2} =$

1.4.2 Propriétés

Propriété

Soient a et b deux réels positifs. On a : $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$

Exemples

- $\sqrt{18} =$
- $\sqrt{7 \times 5} =$

↑Démonstration 1.2

Démonter que pour tous a et b réels positifs, $\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$

Propriété (admise)

Soient a et b deux réels positifs, avec b non nul.

On a :
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
.

Exemples

•
$$\sqrt{\frac{16}{9}} =$$

•
$$\frac{\sqrt{100}}{\sqrt{25}} =$$

 \triangle En général : $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$

Exemple

•
$$\sqrt{9+16} =$$

•
$$\sqrt{9} + \sqrt{16} =$$

Propriété

Soient a et b deux réels strictement positifs. Alors on a $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$.

∠Démonstration 1.3

 \S Démonter que pour tous a et b réels strictement positifs, $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$

Savoir-Faire 1.6

Savoir additionner, lorsque cela est possible, des racines carrées

•
$$\sqrt{18} + \sqrt{8} =$$

Exercices

104, 105 page 2

Exercice 1.1

Le nombre $\Phi = \frac{1+\sqrt{5}}{2}$ est appelé "nombre d'or".

- 1. Calculer Φ^2 et simplifier le résultat obtenu.
- 2. Calculer $1 + \Phi$
- 3. Calculer $\frac{1}{\Phi}$ et simplifier le résultat obtenu en multipliant le numérateur et le dénominateur par
- 4. Que constate t-on?

Exercices

138 page 28