Sorting Algorithms and Master Theorem Summary 1. Bubble Sort Not a divide-and-conquer algorithm.

Complexity: $\Theta(n^2)$ time, O(1) space. 2. Merge Sort Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

Master Theorem (a=2, b=2, $f(n)=\Theta(n)$) \Rightarrow Case 2 \Rightarrow $\Theta(n \log n)$.

Space: O(n). 3. Quick Sort (Random Pivot) Average: $T(n) = 2T(n/2) + \Theta(n) \Rightarrow \Theta(n \log n)$

Worst: Θ(n²)

Space: O(log n). 4. Quick Sort (Median-of-Three Pivot) Better pivot choice, fewer unbalanced cases.

Average: $\Theta(n \log n)$, Worst: $\Theta(n^2)$, Space: $O(\log n)$. 5. Heap Sort Build heap $O(n) + n \times \text{extract } O(\log n) = O(n \log n)$

Space: O(1). Summary Table AlgorithmBestAverageWorstSpace Bubble SortO(n)O(n²)O(n²)O(1) Quick Sort (random)O(n log n)O(n log n)O(n²)O(log n) Quick Sort (median-3)O(n log n)O(n log n)O(n