Assignment 4 - Data Analytics I

Atharva Taras (TE A - 73)

Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset (https://www.kaggle.com/c/boston-housing (<a href="https://www.kaggle.com/c/boston-hous

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
```

In [2]:

```
data = pd.read_csv('housing.csv', delimiter=r"\s+", header=None, names=['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RA
data.head()
```

Out[2]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

In [3]:

```
1 data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
#
    Column
             Non-Null Count Dtype
0
    CRIM
              506 non-null
                              float64
1
     ΖN
              506 non-null
                              float64
2
     INDUS
              506 non-null
                              float64
3
     CHAS
              506 non-null
                              int64
4
     NOX
              506 non-null
                              float64
5
     RM
              506 non-null
                              float64
     AGE
              506 non-null
                              float64
     DIS
              506 non-null
                              float64
8
     RAD
              506 non-null
                              int64
9
     TAX
              506 non-null
                              float64
10 PTRATIO 506 non-null
                              float64
11
    В
              506 non-null
                              float64
12 LSTAT
              506 non-null
                              float64
              506 non-null
13 MEDV
                              float64
dtypes: float64(12), int64(2)
memory usage: 55.5 KB
```

In [4]:

```
1 data.describe()
```

Out[4]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000

Checking outliers

In [5]:

```
fig, axs = plt.subplots(ncols=7, nrows=2, figsize=(14, 7))
index = 0
axs = axs.flatten()
for k,v in data.items():
    sns.boxenplot(y=k, data=data, ax=axs[index])
    index += 1
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=2.0)
```


In [6]:

```
print('Outliers per column \n')

for k, v in data.items():
    q1 = v.quantile(0.25)
    q3 = v.quantile(0.75)
    irq = q3 - q1

    v_col = v[(v <= q1 - 1.5 * irq) | (v >= q3 + 1.5 * irq)]
    perc = np.shape(v_col)[0] * 100.0 / np.shape(data)[0]

print(f'{k} = {round(perc, 2)}%')
```

Outliers per column

```
CRIM = 13.04%

ZN = 13.44%

INDUS = 0.0%

CHAS = 100.0%

NOX = 0.0%

RM = 5.93%

AGE = 0.0%

DIS = 0.99%

RAD = 0.0%

TAX = 0.0%

PTRATIO = 2.96%

B = 15.22%

LSTAT = 1.38%

MEDV = 7.91%
```

Dropping 'CHAS' since it has too many outliers

In [7]:

```
1 data.drop('CHAS', axis=1, inplace=True)
```

```
CRIM: Per capita crime rate by town
        ZN: Proportion of residential land zoned for lots over 25,000 sq. ft
        INDUS: Proportion of non-retail business acres per town
        CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
        NOX: Nitric oxide concentration (parts per 10 million)
        RM: Average number of rooms per dwelling
        AGE: Proportion of owner-occupied units built prior to 1940
        DIS: Weighted distances to five Boston employment centers
        RAD: Index of accessibility to radial highways
        TAX: Full-value property tax rate per 10,000 Dollars
        PTRATIO: Pupil-teacher ratio by town
        B: 1000(Bk — 0.63)<sup>2</sup>, where Bk is the proportion of (people of African American descent) by town
        LSTAT: Percentage of lower status of the population
        MEDV: Median value of owner-occupied homes in 1000sDolaars
In [8]:
     boston = data.copy()
```

```
X = pd.DataFrame(np.c_[boston['LSTAT'], boston['RM'], boston['AGE'], boston['TAX'], boston['ZN']], columns = ['LSTAT','RM', 'AGE',
 2
 3 Y = boston['MEDV']
In [9]:
```

```
1 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state=5)
2 print(f' X-Train {X_train.shape} \n X-Test {X_test.shape} \n Y-Train {Y_train.shape} \n Y-Test {Y_test.shape}')
    lin_model = LinearRegression()
4 lin_model.fit(X_train, Y_train)
```

```
X-Train (404, 5)
X-Test (102, 5)
Y-Train (404,)
Y-Test (102,)
```

Out[9]:

LinearRegression LinearRegression()

In [10]:

```
1 # Model evaluation for training set
2 y train predict = lin model.predict(X train)
3 rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))
4 r2 = r2_score(Y_train, y_train_predict)
5 print("TRAINING SET \n----")
6 print('Root Mean Square Error (RMSE) is {}'.format(rmse))
   print('Accuracy is {} % \n'.format(r2*100))
8
9 # Model evaluation for testing set
10 | y_test_predict = lin_model.predict(X_test)
11 rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))
12 r2 = r2_score(Y_test, y_test_predict)
13 print("TESTING SET \n----")
  print('Root Mean Square Error (RMSE) is {}'.format(rmse))
print('Accuracy is {} %'.format(r2*100))
```

```
TRAINING SET
Root Mean Square Error (RMSE) is 5.524657077725284
Accuracy is 64.4688793223649 %
TESTING SET
Root Mean Square Error (RMSE) is 5.0287069065809265
Accuracy is 67.70131100841681 %
```