ЛЕКЦИЯ 5

1.5. Исчисление высказываний – теория L. ЕЕ аксиоматизации

Определение 1. Исчисление высказываний – это Формальная Теория L, в которой:

- 1. Алфавит:
 - а) пропозициональные переменные: a, b, c, d, e.....; A, B, C, D, E...
 - б) служебные символы: левая и правая скобки: (,);
 - в) логические связки: отрицание γ и импликация \rightarrow .
- 2. Формулы:
 - а) пропозициональные переменные это суть формул;
 - б) если A и B формулы, то \overline{A} , \overline{B} , A \rightarrow B формулы.
- 3. Аксиомы Новикова:

 $A_1: A \rightarrow (B \rightarrow A) -$ аксиома «упрощения»;

$$A_2$$
: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ – аксиома *«само-дистрибутивности»*;

$$A_3: (\overline{B} \to \overline{A}) \to ((\overline{B} \to A) \to B)$$

4. Правило вывода "Modus Ponens" (лат., «правило отделения»)

$$\frac{A, A \to B}{R}MP$$

Определение 2. Если в формуле $A(x_1, x_2, \dots, x_n)$ осуществить групповую подстановку $\{B_i // x_i\}_{i=1}^n$, то таким образом полученная формула $C = A(x_1, x_2, \dots, x_n)$ $\{B_i // x_i\}_{i=1}^n$ называется *«частным случаем формулы»* $A(x_1, x_2, \dots, x_n)$, а набор подстановок $\{B_i // x_i\}_{i=1}^n$ называется *«унификатором»*.

Определение 3. Если формула C, является *частным случаем формул* A и B, тогда формула C называется *«совместным частным случаем формул»* A и B, а сами формулы A и B называются *«унифицируемыми»*, т.е.

$$C = A(x_1, x_2, \ldots, x_n) \{D_i // x_i\}_{i=1}^n = B(x_1, x_2, \ldots, x_n) \{D_i // x_i\}_{i=1}^n$$

Набор подстановок $\{D_i // x_i\}_{i=1}^n$ называется *«общим унификатором»* (возможно, он может быть не один!). *Наименьший унификатор* называется *«наиболее общим унификатором»*.

Определение 4. Набор формул $\{B_1, B_2, \ldots, B_n\}$ называется *«частным случаем набора формул»* $\{A_1, A_2, \ldots, A_n\}$, если любая формула B_i является *частным случаем формулы* A_i при одном и том же наборе подстановок $\{D_i // x_i\}_{i=1}^n$.

Определение 5. Набор $\{C_1, C_2, \ldots, C_n\}$ называется *«совместным частным случаем наборов формул»* $\{A_1, A_2, \ldots, A_n\}$ и $\{B_1, B_2, \ldots, B_n\}$, если любая формула C_i является *частным случаем формул* A_i и B_i при одном и том же наборе подстановок $\{D_i // x_i\}_{i=1}^n$.

Системы аксиом (аксиоматизации) ИВ – теории L

1. система аксиом Гильберта — Аккермана; 2. система аксиом Россера; 3. система аксиом Клини; 4. система аксиом Никода; 5. система аксиом Лукасевича; 6. система аксиом Генцена; 7. система аксиом Новикова.

Например, в систему аксиом Клини входят:

$$A_{1}: (A \rightarrow (B \rightarrow A))$$

$$A_{2}: ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$A_{3}: (A \rightarrow (A \lor B))$$

$$A_{4}: (B \rightarrow (A \lor B))$$

$$A_{5}: ((A \land B) \rightarrow A)$$

$$A_{6}: ((A \land B) \rightarrow B)$$

$$A_{7}: ((A \rightarrow B) \rightarrow ((A \rightarrow \overline{B}) \rightarrow \overline{A}))$$

$$A_{8}: ((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)))$$

$$A_{9}: (A \rightarrow (B \rightarrow (A \land B)))$$

$$A_{10}$$
: $\overline{\overline{A}} = A$

Теорема 1. $|-_{L}A \rightarrow A$

Доказательство (в виде алгоритма):

1. Используя аксиому *«упрощения»* A_1 и подстановку $\{A \rightarrow A//B\}$, т.е. запишем:

 $(A \rightarrow (B \rightarrow A))\{A \rightarrow A//B\}$ и получим выводимую формулу (тавтологию)

$$A \rightarrow ((A \rightarrow A) \rightarrow A) \tag{1}$$

2. Используя аксиому *«самодистрибутивности»* A_2 и подстановку $\{A \rightarrow A//B; A//C\}$, т.е. запишем: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\{A \rightarrow A//B; A//C\}$ и получим *выводимую* формулу (*тавтологию*)

$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$

3. Применяем правило вывода «Modus ponens (MP)":

$$\frac{(1), (2) = (A \to ((A \to A) \to A)) \to ((A \to (A \to A)) \to (A \to A))}{(A \to (A \to A)) \to (A \to A)} MP,$$

т.е. получили выводимую формулу (тавтологию)

$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A). \tag{3}$$

4. Используя аксиому A_1 и подстановку $\{A//B\}$, т.е. запишем:

 $(A {
ightharpoonup} (B {
ightharpoonup} A)) \{A//B\}$ и получим выводимую формулу (тавтологию)

$$A \rightarrow (A \rightarrow A)$$
. (4)

5. Применяем правило вывода «Modus ponens (MP)":

$$\frac{(4) = A \rightarrow (A \rightarrow A), (3) = (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)}{A \rightarrow A} MP,$$

т.е. получили выводимую формулу (тавтологию)

$$A \rightarrow A$$
. (5)

Следовательно, последовательность выводимых формул (тавтологий) (1), (2), (3), (4), (5) представляет собой «правильно построенный вывод», который использовал только лишь аксиомы и правило вывода МР (без гипотез) и на этом основании является доказанной теоремой $|-, A \rightarrow A|$.

Теорема 2. Вывод $A|_{-_L}(B \to A)$ является «правильно построенным выводом».

Доказательство. Сам вывод $A|_{-_L}(B\to A)$ не является теоремой, так как используется гипотеза A. Необходимо доказать, что высказывание «о правильно построенном выводе $A|_{-_L}(B\to A)$ » является истинным. Обозначим это высказывание символом C. Тогда символически теорема 2 будет записана как

$$-_{L}C$$

и нужно доказать, что высказывание C:= «вывод $A|_{-_L}(B\to A)$ является npaвильно nocmpoehhым выводом» является ucmuhhым. Алгоритм доказательства следующий:

- A гипотеза;
- 2. Используем аксиому «упрощения» A_1 : $A \rightarrow (B \rightarrow A)$.
- 3. Применяем правило вывода «modus ponens (MP)»

$$\frac{A, A \to (B \to A)}{B \to A}$$
MP.

Таким образом, получили выводимую формулу $(B \to A)$. Выводимая формула $(B \to A)$ будет истинной в случае истинности формулы A, и она может быть ложной в случае ложности формулы A и истинности формулы B.

В итоге, вывод (1), (2) и (3) является правильно построенным, т.е. этот вывод (способ или алгоритм доказательства) является правильным. Т.е., такой алгоритм доказательства может использоваться в других доказательствах (доказательствах теорем) и в этом его ценность.

Смысл теоремы и вывода $A|_{-_L}(B \to A)$:

Доказанная теорема позволяет сформулировать новое *«производное правило вывода»* в качестве *«доказанной выводимости»*, которое называется *«правилом введения импликации»* и его можно обозначить как

$$\frac{A}{B \to A} \to^+$$

Это правило вывода является *производным правилом*, так как оно является *следствием из правила «modus ponens (MP)»*.

ЛЕКЦИЯ 6

1.6. Дедукция и теорема дедукции

Замечание: импликация тесно связана с понятием «выводимости».

Теорема «**дедукции**». Формула B выводима (доказуема) из формулы A тогда и только тогда, когда выводима (доказуема) формула $A \rightarrow B$. Другими словами, вывод $\Gamma, A - B$ является правильно построенным тогда и только тогда, когда вывод $\Gamma - (A \rightarrow B)$ также является правильно построенным.

1. Доказательство прямой теоремы (необходимость). Дано: вывод Γ,A -B является правильно построенным. Доказать, что вывод Γ - $(A \to B)$ также является правильно построенным.

Вывод $\Gamma, A | -B$ представлен последовательностью формул E_1, E_2, \ldots, E_n и $E_n = B$. Дальнейшее доказательство *прямой теоремы* произведем методом *«математической индукции»*. Т.е., с помощью *индукции* покажем верность вывода $\Gamma | -(A \to E_i)$, где $i = 1, 2, \ldots, n$.

Для индукции необходимо выполнить три этапа. На первом этапе необходимо доказать верность вывода $\Gamma | -(A \to E_1)$. На втором этапе производится *индукционное предположение*: верны выводы $\Gamma | -(A \to E_i)$ и $\Gamma | -(A \to E_j)$, где i < j < n. Причем, на втором этапе можно фиксировать любые индексы i, j, меньшие конечного индекса n. Поэтому индексы i и j выбираются теми, чтобы $E_j = E_i \to E_n$. На третьем этапе необходимо доказать $\Gamma | -(A \to E_n)$.

Выполняем первый этап доказательства согласно метода «математической индукции».

Возможны три случая: E_1 – аксиома; $E_1 \in \Gamma$; $E_1 = A$.

Для всех трех случаев можно использовать один алгоритм доказательства (одну схему): используем первую аксиому упрощения $A \to (B \to A)$ с подстановкой $\{A//B, E_1//A\}$, т.е. получим формулу $E_1 \to (A \to E_1)$. Далее по правилу вывода «modus ponens(MP)» получаем выводимую формулу $(A \to E_1)$:

$$\frac{E_1, E_1 \to (A \to E_1)}{A \to E_1} MP.$$

Т.о., вывод $\Gamma | -(A \to E_1)$ доказан.

Выполняем третий этап доказательства согласно метода «математической индукции», опираясь на 2-ой этап.

Здесь также возможны те же три случая $(E_n$ – аксиома; $E_n \in \Gamma$; $E_n = A$) и еще один случай: формула E_n получена из формул E_i и E_j , где $E_j = E_i \to E_n$. Напомним индукционные предположения: верны выводы $\Gamma | -(A \to E_i)$ и $\Gamma | -(A \to E_j) = (A \to (E_i \to E_n))$, где i < j < n. Далее используем вторую аксиому «самодистрибутивности» $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ с подстановкой $\{E_i /\!/B, E_n /\!/C\}$. В результате подстановки получим

$$(A \rightarrow (E_i \rightarrow E_n)) \rightarrow ((A \rightarrow E_i) \rightarrow (A \rightarrow E_n))$$
 или $(A \rightarrow E_j) \rightarrow ((A \rightarrow E_i) \rightarrow (A \rightarrow E_n))$.

Далее, используя индукционное предположение $\Gamma | -(A \to E_j)$ и последнюю формулу $(A \to E_j) \to ((A \to E_i) \to (A \to E_n))$, с помощью правила вывода MP получим

$$\frac{A \to E_j, (A \to E_j) \to ((A \to E_i) \to (A \to E_n))}{(A \to E_i) \to (A \to E_n)} MP,$$

т.е. верен вывод $\Gamma | -(A \to E_i) \to (A \to E_n)$. Далее, используя индукционное предположение $\Gamma | -(A \to E_i)$ и полученный вывод $\Gamma | -(A \to E_i) \to (A \to E_n)$, с помощью правила вывода МР получим выводимую формулу $(A \to E_n)$:

$$\frac{A \to E_i, (A \to E_i) \to (A \to E_n)}{A \to E_n} MP.$$

Таким образом, прямая теорема дедукции доказана: верен вывод $\Gamma | -(A \to E_n)$ или $\Gamma | -(A \to B)$, так как $B = E_n$.

2. Доказательство обратной теоремы (достаточность). Дано: вывод $\Gamma | -(A \to B)$ является правильно построенным. Доказать, что вывод $\Gamma, A | -B$ также является правильно построенным.

Имеем выводимую формулу $(A \to B)$. Добавим формулу A в качестве гипотезы. Тогда по правилу вывода МР получим выводимую формулу B:

$$\frac{A, A \to B}{B}MP$$
.

Таким образом, обратная теорема дедукции доказана и доказана теорема дедукции полностью.

Важный вывод. В процессе доказательства использовались лишь две из трех аксиом ИВ (теории L). Таким образом, *теорема дедукции* верна не только в ИВ, но и в других более широких теориях, базирующихся на меньшем количестве аксиом, чем теория ИВ (теория L).

Следствия из теоремы дедукции

Следствие 1. Если верен вывод A | -B, тогда верен и вывод (теорема) $| -A \to B$.

Следствие практически очевидно, так как оно является частным случаем прямой теоремы дедукции ($\Gamma = \emptyset$).

Следствие 2. Верен вывод $A \rightarrow B, B \rightarrow C \mid -A \rightarrow C$.

Доказательство. Добавим к исходным двум гипотезам еще одну гипотезу А. Применяем два раза правило вывода MP:

$$\frac{A, A \to B}{B} MP \qquad \text{u} \qquad \frac{B, B \to C}{C} MP$$

Получили выводимую формулу C. Следовательно правильно построенным выводом будет $A \to B, B \to C, A | -C$. Далее, применяя *прямую теорему* $\partial e \partial y \kappa u u$, получим правильно построенный вывод $A \to B, B \to C | -A \to C$.

Полученный вывод можно интерпретировать как новое «производное» правило вывода — npaвило «mpaнзитивности» (Tr)

$$\frac{A \to B, B \to C}{A \to C}$$
Tr.

Следствие 3. Верен вывод $A \rightarrow (B \rightarrow C), B \mid -A \rightarrow C$.

Доказательство. Добавим к исходным двум гипотезам еще одну гипотезу *А*. Применяем два раза правило вывода MP:

$$\frac{A, A \to (B \to C)}{B \to C} MP \qquad \text{if} \qquad \frac{B, B \to C}{C} MP.$$

Получили выводимую формулу C. Следовательно правильно построенным выводом будет $A \to (B \to C)$, $B, A \mid -C$. Далее, применяя *прямую теорему* dedykuuu, получим правильно построенный вывод $A \to (B \to C)$, $B \mid -A \to C$. Полученный вывод можно интерпретировать как новое «производное» правило вывода — *правило* «*сечения*» (*S*)

ЛЕКЦИЯ 7

1.7. Некоторые важные теоремы ИВ

Групповая Теорема: В теории L доказуемы следующие теоремы:

a)
$$=_{L} \overline{\overline{A}} \to A$$
 (подобная нотация: $\mapsto_{L} \neg \neg A \to A$)

б)
$$=_L A \to \overline{\overline{A}}$$
 (подобная нотация: $\mapsto_{L:} A \to \neg \neg A$)

$$|-_{L}|\overline{A} \to (A \to B)$$
 (подобная нотация: $|-_{L}|\overline{A} \to (A \to B)$)

$$[-]_L(\overline{B} \to \overline{A}) \to (A \to B)$$
 (подобная нотация: $[-]_L(\overline{B} \to \overline{A}) \to (A \to B)$)

д)
$$|-_{L}(A \to B) \to (\overline{B} \to \overline{A})$$
 (подобная нотация: $\mapsto_{L} (A \to B) \to (\overline{B} \to \overline{A})$)

e)
$$|-_{L}A \to (\overline{B} \to \overline{A \to B})$$
 (подобная нотация: $\mapsto_{L}A \to (\overline{B} \to \overline{A \to B})$)

ж)
$$|-, (A \to B) \to ((\overline{A} \to B) \to B)$$
 (подобная нотация:

$$\mapsto_L (A \to B) \to ((\overline{A} \to B) \to B))$$

Доказательства теорем a) - ж)

Теорема a) – теорема «удаления двойного отрицания»: $- \overline{A} \rightarrow A$

Доказательство.

1. аксиома
$$A_3\{A//B, \overline{A}//A\}$$
: тавтология $(\overline{A} \to \overline{\overline{A}}) \to ((\overline{A} \to \overline{A}) \to A)$ (1)

2. теорема 1
$$\{\overline{A}//A\}$$
: тавтология $(\overline{A} \to \overline{A})$

3. Следствие 3 (правило *сечения*) из теоремы *«дедукции»*

$$\overline{A} \to (B \to C), B | -(A \to C)$$
 с подстановкой $\{(\overline{A} \to \overline{\overline{A}})//A, (\overline{A} \to \overline{A})//B, A//C\}:$

$$(1),(2)$$
 — $(\overline{A} \to \overline{\overline{A}}) \to A$, т.е. выводима тавтология $(\overline{A} \to \overline{\overline{A}}) \to A$

4. аксиома
$$A_1\{\overline{A}//B, \overline{\overline{A}}//A\}$$
: тавтология $(\overline{\overline{A}} \to (\overline{A} \to \overline{\overline{A}})$

5. Следствие 2 (правило *транзитивности*) из теоремы «*дедукции*» $(A \to B), (B \to C) | -(A \to C)$ с подстановкой $\{(\overline{\overline{A}}) / / A, (\overline{A} \to \overline{\overline{A}}) / / B, A / / C\}$:

$$(4),(3) - (\overline{\overline{A}} \to A). \tag{5}$$

Так как (3) и (4) — тавтологии, то выводимая формула $(5)(\overline{\overline{A}} \to A)$ является *тавтологией*. Т.о., теорема доказана.

Теорема б) – теорема «введения двойного отрицания»: $=_{x} A \Rightarrow \overline{\overline{A}}$

Доказательство.

1. аксиома
$$A_3\{\overline{\overline{A}}/B\}$$
: тавтология $(\overline{\overline{A}} \to \overline{A}) \to ((\overline{\overline{A}} \to A) \to \overline{\overline{A}})$ (1)

2. теорема **a**)
$$\{\overline{A}//A\}$$
: тавтология $(\overline{\overline{A}} \to \overline{A})$

3. Применяем правило вывода MP: $\frac{(2), (1) = (2) \to (3)}{(3) = (\overline{A} \to A) \to \overline{A}}$

4. аксиома
$$A_1\{\overline{\overline{A}}/B\}$$
: тавтология $(A \to (\overline{\overline{A}} \to A))$

5. Следствие 2 (правило *транзитивности*) из теоремы «*дедукции*» $(A \to B), (B \to C) | -(A \to C)$ с подстановкой $\{(A//A, (\overline{\overline{A}} \to A)//B, \overline{\overline{A}} //C\}$:

$$(4),(3) - (A \to \overline{\overline{A}}). \tag{5}$$

Так как (3) и (4) — тавтологии, то выводимая формула (5) $(A \to \overline{\overline{A}})$ является *тавтологией*. Т.о., теорема доказана.

<u>Вывод</u>: доказанные **теоремы а) и б) позволяют считать доказанным** «эквивалентность $\overline{\overline{A}} \equiv A$ », другими словами, верно свойство «инволютивности».

Teopema B): $-\sqrt{A} \rightarrow (A \rightarrow B)$

Доказательство.

- 1. \overline{A} гипотеза;
- **2**. *A* гипотеза;

3. аксиома
$$A_1\{\overline{B}/B\}$$
: тавтология $A \to (\overline{B} \to A)$ (3)

4. аксиома
$$A_1\{\overline{A}//A, \overline{B}//B\}$$
: тавтология $\overline{A} \to (\overline{B} \to \overline{A})$ (4)

5. Применяем правило вывода MP:
$$\frac{(2) = A, (3) = (2) \to (5)}{(5) = (\overline{B} \to A)}$$

6. Применяем правило вывода MP:
$$\frac{(1) = \overline{A}, (4) = (1) \to (6)}{(6) = \overline{B} \to \overline{A}}$$

7. аксиома
$$A_3$$
: тавтология $(\overline{B} \to \overline{A}) \to ((\overline{B} \to A) \to B)$ (7)

8. Применяем правило вывода MP:
$$\frac{(6),(7)=(6)\to(8)}{(8)=(\overline{B}\to A)\to B}$$

9. Применяем правило вывода MP:
$$\frac{(5),(8)=(5)\to(9)}{(9)=B}$$

- 10. Последовательность выводимых формул (1), (2), (3), (4), (5), (6), (7), (8),
- (9) это правильно построенный вывод, базирующийся на двух гипотезах

$$(1), (2),$$
 и его символическая запись $\overline{A}, A - B$ (10)

11. Применяем *прямую* теорему дедукции:
$$\overline{A} | -A \to B$$
 (11)

12. Применяем еще раз *прямую* теорему дедукции:
$$|-\overline{A} \to (A \to B)$$
 (12) Т.о., теорема доказана.

Теорема г) - «1-ая теорема контрапозиции»:

$$|-_L (\overline{B} \to \overline{A}) \to (A \to B)$$

Доказательство.

- 1. $\overline{B} \to \overline{A}$ гипотеза;
- **2**. *A* гипотеза;

3. аксиома
$$A_3$$
: тавтология $(\overline{B} \to \overline{A}) \to ((\overline{B} \to A) \to B)$

4. аксиома
$$A_1\{\overline{B}/B\}$$
: $A \to (\overline{B} \to A)$

- 5. Применяем правило вывода MP: $\frac{(1),(3) = (1) \to (5)}{(5) = (\overline{B} \to A) \to B}$
- **6**. Применяем правило вывода MP: $\frac{(2),(4) = (2) \to (6)}{(6) = \overline{B} \to A}$
- 7. Применяем правило вывода MP: $\frac{(6),(4) = (5) \to (7)}{(7) = B}$
- **8**. Последовательность выводимых формул (1), (2), (3), (4), (5), (6), (7) это правильно построенный вывод, базирующийся на двух гипотезах (1), (2), и его символическая запись $\overline{B} \to \overline{A}$, A | -B (8)
- **9**. Применяем *прямую* теорему дедукции: $\overline{B} \to \overline{A} \mid -A \to B$
- **10.** Применяем еще раз *прямую* теорему дедукции: $|-(\overline{B} \to \overline{A}) \to (A \to B)$ Т.о., теорема доказана.

Теорема д) - «2-ая теорема контрапозиции»:

$$|-_{L}(A \to B) \to (\overline{B} \to \overline{A})$$

Доказательство.

1. $A \rightarrow B$ – гипотеза;

2. Применяем теорему а):
$$-\overline{\overline{A}} \to A$$
 (2)

3. Следствие 2 (правило *транзитивности*) из теоремы «*дедукции*» $(A \to B), (B \to C) | -(A \to C)$ с подстановкой $\{\overline{\overline{A}} //A, A//B, B//C\}$:

$$(2),(1) | -\overline{\overline{A}} \to B. \tag{3}$$

4. Применяем теорему **б**)
$$\{B//A\}$$
: $-B \rightarrow \overline{\overline{B}}$ (4)

5. Следствие 2 (правило *транзитивности*) из теоремы «*дедукции*» $(A \to B), (B \to C) | -(A \to C)$ с подстановкой $\{\overline{\overline{A}} //A, \overline{\overline{B}} //C\}$:

$$(3),(4) - \overline{\overline{A}} \to \overline{\overline{B}}.$$
 (5)

6. Применяем теорему г) {
$$\overline{B}$$
 //A, \overline{A} //B}: $(\overline{\overline{A}} \to \overline{\overline{B}}) \to (\overline{B} \to \overline{A})$

7. Применяем правило вывода MP:
$$\frac{(5),(6) = (5) \to (7)}{(7) = \overline{B} \to \overline{A}}$$

8. Последовательность выводимых формул (1), (2), (3), (4), (5), (6), (7) — это правильно построенный вывод, базирующийся на гипотезt (1), и его символическая запись $A \rightarrow B | -\overline{B} \rightarrow \overline{A}$ (8)

9. Применяем *прямую* теорему дедукции: $|-(A \to B) \to (\overline{B} \to \overline{A})$

Т.о., теорема доказана.

<u>Вывод</u>: доказанные теоремы г) и д) позволяют считать доказанным «эквивалентность $\overline{B} \to \overline{A} \equiv A \to B$ », другими словами, верно Утверждение: «прямая теорема и противоположная обратной теореме эквивалентны». Т.о., вместо прямой теоремы можно доказывать ей эквивалентную «противоположную обратной», которая соответствует методу доказательства «от противного (от обратного)».

Теорема e):
$$\left| - A \rightarrow (\overline{B} \rightarrow \overline{A \rightarrow B}) \right|$$

Доказательство.

- **1**. *A* гипотеза;
- **2**. $A \rightarrow B$ гипотеза:

3. Применяем правило вывода MP:
$$\frac{(1) = A, (2) = (1) \to (3)}{(3) = B}$$

4. Последовательность выводимых формул (1), (2), (3) — это правильно построенный вывод, базирующийся на двух гипотезах (1), (2), и его символическая запись $A, A \rightarrow B | -B$ (4)

5. Применяем *прямую* теорему дедукции:
$$A \mid -(A \rightarrow B) \rightarrow B$$
 (5)

- **6.** Применяем еще раз *прямую* теорему дедукции: $-A \rightarrow ((A \rightarrow B) \rightarrow B)$ **(6)**
- 7. Применяем теорему д) $\{A \to B//A\}$: $[-((A \to B) \to B) \to (\overline{B} \to \overline{A \to B})$ (7)
- **8.** Следствие 2 (правило *транзитивности*) из теоремы «*дедукции*» $(A \to B), (B \to C) | -(A \to C)$ с подстановкой $\{(A \to B) \to B //B, \overline{B} \to \overline{A \to B} //C\}$: $(6), (7) | -A \to (\overline{B} \to \overline{A \to B})$. **(8)**

Выводимые формулы (6), (7) – тавтологии, поэтому они имеют статус, равный аксиомам. Т.о., теорема доказана.

Теорема ж):
$$\left| - \left(A \to B \right) \to ((\overline{A} \to B) \to B) \right|$$

Доказательство.

- **1**. $A \rightarrow B$ гипотеза;
- **2**. $\overline{A} \rightarrow B$ гипотеза;

3. Применяем теорему д):
$$-(A \to B) \to (\overline{B} \to \overline{A})$$
 (3)

4. Применяем правило вывода MP:
$$\frac{(1),(3) = (1) \to (4)}{(4) = \overline{B} \to \overline{A}}$$
 (4)

5. Применяем теорему д) {
$$\overline{A}$$
 // A }: $\left| -(\overline{A} \to B) \to (\overline{B} \to \overline{\overline{A}}) \right|$ (5)

6. Применяем правило вывода MP: $\frac{(2),(5) = (2) \to (6)}{(6) = \overline{B} \to \overline{\overline{A}}}$

7. аксиома
$$A_3\{\overline{A}/A\}$$
: $(\overline{B} \to \overline{\overline{A}}) \to ((\overline{B} \to \overline{A}) \to B)$ (7)

8. Применяем правило вывода MP:
$$\frac{(6), (7) = (6) \to (8)}{(8) = (\overline{B} \to \overline{A}) \to B}$$
 (8)

9. Применяем правило вывода MP:
$$\frac{(4),(8) = (4) \to (9)}{(9) = B}$$
 (9)

10. Последовательность выводимых формул (1), (2), (3), (4), (5), (6), (7), (8), (9),— это правильно построенный вывод, базирующийся на двух гипотезах (1), (2), и его символическая запись $A \rightarrow B, \overline{A} \rightarrow B | -B$ (10)

11. Применяем *прямую* теорему дедукции:
$$A \to B \mid \neg(\overline{A} \to B) \to B$$
 (11)

12. Применяем еще раз *прямую* теорему дедукции: $|-(A \to B) \to ((\overline{A} \to B) \to B)$.

Теорема ж) доказана.

ЛЕКЦИЯ 8

1.8. Метатеоремы о "полноте» и «формальной непротиворечивости» ИВ (теории L)

Пусть имеется формула $A(a_1, a_2, \ldots, a_n)$ и задана интерпретация I(A). Обозначим:

$$A_{i}' := \begin{cases} a_{i}, ecnu \ a_{i} = 1; \\ \overline{a}_{i}, ecnu \ a_{i} = 0; \end{cases} \qquad A' := \begin{cases} A, ecnu \ A = 1; \\ \overline{A}, ecnu \ A = 0; \end{cases}$$

Лемма. Вывод $A_1, A_2, \dots, A_n - A'$ верен в любой интерпретации.

Доказательство по индукции (по структуре формул: переменные и операции «отрицания и импликации» определяют различные структуры формул ИВ).

1. Структура формулы A: переменная — суть формулы, т.е. A=a - переменная.

Тогда лемма записывается так $A' \mid -A'$. Применяя *прямую* теорему дедукции, получим вывод $\mid -A' \to A'$, совпадающий по структуре с ранее доказанной *Теоремой* 1 (см. подраздел 1.5). Другими словами два случая леммы $a \mid -a$ и $\overline{a} \mid -\overline{a}$ эквивалентны (согласно применению *прямой* теоремы дедукции) выводам (теоремам): $\mid -a \to a$ и $\mid -\overline{a} \to \overline{a}$, которые являются

частными случаями теоремы $|-A' \to A'|$. Т.о., доказана лемма для первого случая A=a.

2. Структура формулы A получена отрицанием другой формулы B, для которой по «индукционному предположению» выполняется лемма $A_1^{\mathsf{T}}, A_2^{\mathsf{T}}, \dots, A_n^{\mathsf{T}} - B'$. Т.е. имеем структуру $A = \overline{B}$.

Рассмотрим два случая интерпретации формулы В:

- а) Пусть I(B)=1. Тогда I(A)=0 и $A' = \overline{A} = \overline{B}$. По «индукционному предположению» выполняется лемма $A_1^*, A_2^*, \ldots, A_n^* | -B' = B$, т.е. по лемме выводима формула B. Используя теорему б) из подраздела 1.7 и подстановку $\{B//A\}$, а именно: $|-B \to \overline{B}|$, и применяя правило вывода MP: $\frac{B' = B, B \to \overline{B}|}{\overline{B}}$, получаем правильно построенный вывод $A_1^*, A_2^*, \ldots, A_n^* | -\overline{B}| = A'$
- б) Пусть I(B)=0. Тогда I(A)=1 и $A'=A=\overline{B}$. По «индукционному предположению» выполняется лемма $A_1^*, A_2^*, \dots, A_n^* = \overline{B} = A'$

T.o., доказана лемма для второго случая $A = \overline{B}$

3. Структура формулы A получена импликацией двух формул B и C, для которых по «индукционному предположению» выполняются леммы $A_1^{\mathsf{T}}, A_2^{\mathsf{T}}, \ldots, A_n^{\mathsf{T}} = B'$ и $A_1^{\mathsf{T}}, A_2^{\mathsf{T}}, \ldots, A_n^{\mathsf{T}} = C'$. Т.е. имеем структуру $A = B \to C$.

Для данной структуры формулы A возможны 4 случая интерпретации. Однако первые два случая можно объединить в одно доказательство, т.е. когда I(B)=0, так как для двух случаев а) и б) интерпретации I(C)=1 и I(C)=0 формула A принимает истинное значение (I(A)=1).

а) и б) I(B)=0. Тогда при любом значении формулы I(C) имеем значение I(A)=1. Тогда $A' = A = B \to C$ и $B' = \overline{B}$. Используя *индукционное* предположение $A_1^{\text{\tiny II}}, A_2^{\text{\tiny II}}, \dots, A_n^{\text{\tiny II}} | -B' = \overline{B}$ и теорему **в**): $|-\overline{A} \to (A \to B)$ с подстановкой $\{B//A, C//B\}$, в результате которой имеем $|-\overline{B} \to (B \to C)$, а

также применив правило вывода MP: $\frac{B'' = \overline{B}, \overline{B} \to (B \to C)}{B \to C},$ получаем правильно построенный вывод $A_1'', A_2'', \dots, A_n'' = B \to C = A = A'$

в) Пусть I(B)=1 и I(C)=1. Тогда I(A)=1, $A' = A = B \to C$, B' = B, C' = C. Используем аксиому A_1 : $A \to (B \to A)$ с подстановкой $\{C//A\}$ и получаем $C \to (B \to C)$. С учетом индукционного предположения $A_1^*, A_2^*, \ldots, A_n^* = C' = C$ применяем правило вывода MP: $C' = C, C \to (B \to C)$ получаем выводимую формулу C = A = A'. Следовательно, имеем правильно построенный вывод $A_1^*, A_2^*, \ldots, A_n^* = C' = C = A'$.

г) Пусть I(B)=1 и I(C)=0. Тогда I(A)=0, $A' = \overline{A} = \overline{B \to C}$, B' = B, $C' = \overline{C}$.

Далее используем *теорему* е): $|-A \to (\overline{B} \to \overline{A} \to \overline{B})|$ с подстановкой $\{B/\!/A, C/\!/B\}$, в результате которой имеем $|-B \to (\overline{C} \to \overline{B} \to \overline{C})|$. С учетом индукционного предположения $A_1^*, A_2^*, \dots, A_n^*|-B'=B$ применяем правило вывода MP: $\overline{C} \to \overline{B} \to \overline{C}$ получаем выводимую формулу $\overline{C} \to \overline{B} \to \overline{C}$ Далее, используя индукционное предположение $A_1^*, A_2^*, \dots, A_n^*|-C'=\overline{C}$ и правило вывода MP: $\overline{C}'=\overline{C}, \overline{C} \to \overline{B} \to \overline{C}$ получаем выводимую формулу $\overline{B} \to \overline{C} = \overline{A} = A'$, т.е. имеем правильно построенный вывод $A_1^*, A_2^*, \dots, A_n^*|-\overline{B} \to \overline{C} = \overline{A} = A'$, т.е. имеем правильно построенный

Т.о., все случаи третьей структуры формулы $A = B \to C$ доказаны и, тем самым, лемма полностью доказана.

Метатеорема «о полноте» ИВ (теории L). Выводимыми формулами в теоремах ИВ (теории L) являются общезначимые формулы (тавтологии) и только они:

$$(\mid -_{L} A) \equiv (A -$$
тавтология $)$

І. Доказательство *обратной* теоремы (достаточность): если формула A — тавтология, то верна теорема $\begin{vmatrix} -_L A \end{vmatrix}$.

Пусть A — тавтология. Тогда по лемме в любой интерпретации верен вывод A_1 , A_2 ,....., A_n — A' = A. В области гипотез имеется n величин, каждая из которых принимает два значения A_i := $\begin{cases} a_i$, $ecnu \ a_i = 1; \\ \overline{a}_i$, $ecnu \ a_i = 0; \end{cases}$

Поэтому количество вариантов интерпретаций для них равно 2^n . Сначала рассмотрим два варианта для последней переменной: $A_1^i, A_2^i, \dots, a_n | -A$ и $A_1^i, A_2^i, \dots, \overline{a_n} | -A$. Применяя *прямую теорему дедукции*, получим:

$$A_1, A_2, \dots, A_{n-1} = a_n \to A,$$
 (1)

$$A_1, A_2, \dots, A_{n-1} = \overline{a}_n \to A$$
 (2)

Применяя *теорему* ж): $- (A \to B) \to ((\overline{A} \to B) \to B)$ с подстановкой $\{a_n/A, A/B\}$, получим

$$|-, (\overline{a}_n \to \overline{A}) \to ((\overline{a}_n \to \overline{A}) \to \overline{A}).$$
 (3)

Далее, используя вывод (1) и теорему (3), применяем правило вывода MP: $\frac{a_n \to A, (a_n \to A) \to ((\overline{a}_n \to A) \to A)}{(\overline{a}_n \to A) \to A}, \text{ в результате получаем выводимую}$

формулу $(\overline{a}_n \to A) \to A$, наряду с которой используем вывод (2) и вновь правило вывода MP: $\overline{a}_n \to A, (\overline{a}_n \to A) \to A$. Получили выводимую формулу

А, т.е. имеем правильно построенный вывод на основании (1) и (2):

$$A_1^{\mathsf{T}}, A_2^{\mathsf{T}}, \dots, A_{n-1}^{\mathsf{T}} | -A_{\mathsf{T}}$$
 (4)

Далее, действуя аналогичным образом, на следующем шаге получим правильно построенный вывод $A_1^{'}, A_2^{''}, \dots, A_{n-2}^{''} = A$.

Т.е., проделав еще (n-2) раза аналогичную процедуру доказательства, на последнем шаге на основании верного вывода $A_1 - A$ получим правильно построенный вывод (теорему) $A_2 - A$.

Т.о., обратная теорема доказана.

II. Доказательство *прямой* теоремы (необходимость): если верна теорема [-, A], тогда формула A - mавтология.

Аксиомы A_1 , A_2 и A_3 являются *тавтологиями*. В теоремах ИВ на основании этих аксиом с помощью «логичного» правила вывода МР (см. теорему 2 в подразделе 1.2) выводимы только *тавтологии*. Т.е., A – *тавтология*.

Т.о., метатеорема «о полноте» доказана.

Метатеорема «о формальной непротиворечивости» ИВ (теории L) - Следствие из метатеоремы "о полноте» ИВ. Теория L формально непротиворечива.

Доказательство. Все выводимые формулы в теоремах ИВ являются тавтологиями (согласно метатеореме «о полноте» ИВ). Отрицание тавтологии не является тавтологией, т.е. в теореме ИВ это отрицание тавтологии не оказывается результатом выводимости (выводимы только тавтологии). Согласно определению «формальной непротиворечивости» теории (см. Определение 11 в подразделе 1.4) наряду с формулой А (в нашем случае, тавтологией) не может быть одновременно выводима формула, являющаяся отрицанием формулы А. Поэтому ИВ — теория L является формально непротиворечивой.

Важный вывод: логика высказываний (в т.ч. «исчисление высказываний») является основой языков общения между людьми, и она является «полной» и «непротиворечивой». Поэтому отношения в обществе между людьми, опирающиеся на логику высказываний, могут развиваться на «здоровой» основе и вселяют большой оптимизм на будущее.