МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ Центральноукраїнський національний технічний університет Механіко-технологічний факультет

ЗВІТ ПРО ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ № 12 з навчальної дисципліни "Базові методології та технології програмування"

ПРОГРАМНА РЕАЛІЗАЦІЯ АБСТРАКТНИЙ ТИПІВ ДАНИХ

ВИКОНАВ студент академічної групи КН 22
Червоний Є. В.
ПЕРЕВІРИВ викладач кафедри кібербезпеки та програмного забезпечення
Олексанлр COБIHOR

Мета роботи

Полягає у набутті грунтовних вмінь і практичних навичок об'єктного аналізу й проектування, створення класів С++ та тестування їх екземплярів, використання препроцесорних директив, макросів і макрооператорів під час реалізації програмних засобів у кросплатформовому середовищі Code::Blocks.

Завдання до лабораторної роботи

- 1. Як складову заголовкового файлу ModulesПрізвище.h розробити клас ClassLab12_Прізвище формальне представлення абстракції сутності предметної області (об'єкта) за варіантом, поведінка об'єкта якого реалізовує розв'язування задачі 12.1.
- 2. Реалізувати додаток Теасher, який видає 100 звукових сигналів і в текстовий файл ТestResults.txt записує рядок "Встановлені вимоги порядку виконання лабораторної роботи порушено!", якщо файл проекта main.cpp під час його компіляції знаходився не в \Lab12\prj, інакше створює об'єкт класу ClassLab12_Прізвище із заголовкового файлу ModulesПрізвище.h та виконує його unit-тестування за тест-сьютом(ами) із \Lab12\TestSuite\, протоколюючи результати тестування в текстовий файл \Lab12\TestSuite\TestResults.txt.

Варіант 1

Bapiaht 1

— ЗАДАЧА 12.1 —

Дано наступну сутність предметної області (об'єкт).

Об'єкт 1 (екземпляр) класу ClassLab12_Прізвище, як абстракція даної сутності предметної області, за наданим інтерфейсом забезпечує:

- надання² значень своїх атрибутів;
- надання значення свого об'єму³;
- зміну значення заданого атрибута(ів)⁴.

⁴ Всі дані-члени класу є закритими (private); доступ до них (читання, запис) реалізують відповідні відкриті функції-члени (public), які у свою чергу забезпечують валідацію вхідних даних.

Об'єм куба рівний кубу довжини його грані:

$$V=a^3$$
.

де V – об'єм куба, a – довжина грані куба.

Рисунок 1-Завдання

 $^{^{1}}$ Під час створення об'єкта класу всі його атрибути ініціалізуються конструктором.

 $^{^{2}}$ Під наданням розуміється повернення результату відповідними функціями-членами об'єкта класу.

 $^{^{3}}$ Об'єм обчислюється і повертається відповідною функцією-членом (методом) об'єкта класу за значеннями його атрибутів.

Хід роботи

Виконано об'єктний аналіз та визначено інтерфейс сутності заданої в задачі 12.1 Маємо клас з атрибутами:

- side (сторона)
- volume (об'єм, який визначається автоматично для заданої сторони)

Інтерфейс класу:

- setSide (метод для встановлення атрибуту side)
- getSide (метод надання значення атрибуту side)
- getVolume (метод надання значення атрибуту volume)

Також конструктор класу який за змовчуванням буде встановлювати значення атрибуту side : 1.

Далі реалізовано тест сьют для тестування об'єкта класу (Додаток А) Потім за отриманими під час проєктування програмного модуля артефактами виконати конструювання ADT — класу C++, об'єкт якого за наданим інтерфейсом реалізовує розв'язування задачі 12.1

Далі було виконано аналіз та постановку задачі 2 (додатку Teacher)

Вихідний код файлу ModulesChervonyi.h:

```
#ifndef MODULESCHERVONYI_H_INCLUDED

#define MODULESCHERVONYI_H_INCLUDED

#include <iostream>
#include <fstream>
#include <string>
#include <windows.h>
using namespace std;
class ClassLab12_Chervonyi
{
public:
    ClassLab12_Chervonyi();
    void setSide(float newside);
    float getSide() {return side;}
    float getVolume() {return volume(side);}
```

```
private:
   float side;
   float volume(float vside) {return vside*vside*vside;}
};
ClassLab12 Chervonyi::ClassLab12 Chervonyi()
{
   side = 1;
}
void ClassLab12_Chervonyi::setSide(float newside)
   side = newside;
bool fileInDir()
   string cpp = __FILE__;
   size t found = cpp.find("\\lab12\\prj");
   if (found == string::npos) {
       ofstream oufile("../TestSuite/TestResults.txt");
       oufile << "Встановлені вимоги порядку виконання лабораторної роботи
порушено!" << endl;
       for (int i = 0; i < 100; i++) {
           cout << "\a";
       oufile.close();
       return false;
   return true;
}
string declareTestResult(ClassLab12 Chervonyi cube, int num)
   string result;
   result = "-----\nSide:
"+to string(cube.getSide())+"\nVolume: "+to string(cube.getVolume())+"\n";
   return result;
}
#endif // MODULESCHERVONYI_H_INCLUDED
```

Вихідний файл проекту Teacher:

```
#include <iostream>
#include <fstream>
#include <string>
#include "ModulesChervonyi.h"
using namespace std;
int main()
{
    string line;
    if(fileInDir() == 0) {return 0;}
    ClassLab12_Chervonyi cube;
    ifstream TSFile("../TestSuite/TS.txt");
    ofstream RFile("../TestSuite/TestResults.txt");
    if(TSFile.is open()){
        if(RFile.is open()){
            int counter = 1;
            while (getline(TSFile, line))
                cube.setSide(stof(line));
                RFile << declareTestResult(cube, counter);</pre>
                counter++;
            }
        }
    TSFile.close();
    RFile.close();
    system("pause");
    return 0;
}
```

Вміст вихідного файлу TestResults.txt:

Volume: 618470.125000

-----TS#5-----

Side: 90.000000

Volume: 729000.000000

-----TS#6-----

Side: 15.600000 Volume: 3796.416260

-----TS#7-----

Side: 17.200001

Volume: 5088.448730

-----TS#8-----

Side: 123.456001

Volume: 1881640.250000

----TS#9-----

Side: 67.230003

Volume: 303871.125000

----TS#10-----

Side: 119.000000

Volume: 1685159.000000

Дотаток A — TestSuite12

TestSuite12

Назва тестового набору	TestSuite12
Автор	Червоний Єгор Владиславович
Виконавець	Червоний Єгор Владиславович

Preliminar y Steps	Action	Expected Result	Result
1	Side: 10	Volume: 1000	PASSED
2	Side: 45	Volume: 91125	PASSED
3	Side: 7	Volume: 343	PASSED
4	Side: 85,199997	Volume: 618470.125	PASSED
5	Side: 90	Volume: 729000	PASSED
6	Side: 15,6	Volume: 3796.41626	PASSED
7	Side: 17,200001	Volume: 5088.44873	PASSED
8	Side: 123,456001	Volume: 1881640.25	PASSED
9	Side: 67,230003	Volume: 303871.125	PASSED
10	Side: 119	Volume: 1685159	PASSED

Висновок

Завантажити власний Git-репозиторій https://github.com/odorenskyi/ (в \Lab12\tasks міститься варіант умови задачі 12.1), до звіту записано мету лабораторної роботи, номер варіанта, завдання. У \Lab12 заповнено файл README.md, а також створено теки pri, Software, TestSuite, Report. Виконати об'єктний аналіз сутності згідно з варіантом завдання визначено інтерфейс сутності, виконано аналіз та постановку задачі 12.1. Програмно реалізувано абстракцію сутності предметної області, враховуючи вимоги стандарту ISO/IEC 12207 в частині реалізації програмного елемента. Розроблено тест-сьют задля проведення модульного тестування об'єкта класу. В Code::Blocks IDE відкрито проект заголовкового файлу ModulesChervonyi, створений під час виконання лабораторної роботи № 8 (\ Lab8\pri). За отриманими під час проектування програмного модуля артефактами виконано конструювання ADT — класу C++, об'єкт якого за наданим інтерфейсом реалізовує розв'язування задачі 12.1. Виконано аналіз і постановку задачі завдання 2 (додаток Teacher). У \Lab12\TestSuite\ за допомогою текстового редактора створено текстовий файл (.txt), до якого збережено тест-сьют для об'єкта класу ClassLab12 Chervonyi. Виконано аналіз вимог до програмного засобу Teacher, проектування архітектури й детальне проектування ПЗ. У Code::Blocks створено в теці \pri проект консольного додатка, іменуваной як Teacher. Виконано конструювання програмного засобу мовою програмування С++ реалізовано проектні артефакти завдання 2 (Teacher). Скомпілювано проект, виконано системне тестування створеного ПЗ Teacher.exe та скопіювано його у \ Lab12\Software\. За допомогою розробленого додатка Teacher.exe з \Software виконано Unit-тестування об'єкта класу ClassLab12 Chervonyi. Вихідний код заголовкового файлу ModulesПрізвище.h, проекта Teacher та вміст файлу TestResults.txt включено звіту як додатки. В ході виконання ДО лаборатороноїх роботи я набув ґрунтовних вмінь і практичних навичок об'єктного аналізу й проектування, створення класів С++ та тестування їх екземплярів, використання препроцесорних директив, макросів і макрооператорів під час реалізації програмних засобів у кросплатформовому середовищі Code::Blocks.