User guide for MULTIPASS example

Michael Hubbard

University of Surrey

Github: thehubbard

July 21, 2020, revision 1.0

1 What is MULTIPASS?

MULTIPASS is an acronym for **MUL**tiple **TI**me constant **P**sd scintill**AT**ion emi**SS**ion and is an example code that extends Geant4 such that scintillation emission with more than two decay time constants can be modelled. It is based on the code for simulating the EJ-276 detector system in Michael Hubbard's PhD thesis.

2 Code design and layout

The layout of the files follows the standard of other examples provided my Geant 4. Headers are found in the include directory with corresponding source files located in src

```
User:
          ULTIPASS |$
                        ls --group-directories-first
DOCS_
        ChangeLog.md
                        MULTIPASS.cc
                                        ScanningTable.mac STsubloop_X.mac
        CMakeLists.txt
include
                        photon.mac
                                         singlescint.mac
                                                            STsubloop_Y.mac
random
        defaults.mac
                                                            subloop_xdim.mac
                        README.txt
                                         singlescint.rndm
                                                            vis.mac
                        reviewEvent.mac slabLoop.mac
```

The equivalent to the main is MULTIPASS.cc. There are a variety of macros that have been created, which are either for simulations or visualisations. Inside the include directory is the cxxopts.hpp header, this is an external lightweight C++ option parser library. The key files in this simulation are the G4OpticalPhysicsMod and G4ScintillationMod, which are modifications of the original scintillation and optical physics files that now allow for multiple time constants to be simulated. An overview for the rest of the files can be found in Table. 1

3 Compiling

The MULTIPASS source code has been build and tested again Gean4.10.04.p01 other versions may work. For details on versions of ROOT and cmake, review the source code.

Create a build directory for example build_MULTIPASS.

```
[User: ~ ]$ mkdir build_MULTIPASS
[User: ~ ]$ cd build_MULTIPASS
[User: build_MULTIPASS]$
```

Then inside this directory, compile using the standard cmake method.

```
[User: build MULTIPASS ]$ cmake -DGeant4_DIR=path/to/geant4/install/directory
  path/to/source
```

then use make top produce the executable file.

File	Description
G4OpticalPhysicsMod	Modified Optical physics processes.
G4ScintillationMod	Multi time constant scintillation code.
MULTIPASSActionInitialization	Action initialisations.
MULTIPASSComptonHit	Collector for gamma interactions.
MULTIPASSDetectorConstruction	Material definitions and basic setup.
MULTIPASSDetectorMessenger	Control options for the detector.
MULTIPASSEventAction	Data collected is written to file.
MULTIPASSEventMessenger	Control of data collection.
MULTIPASSHistoManager	Data collection setup.
MULTIPASSMainVolume	Building the scintillator and PMT setup.
MULTIPASSOpticalHit	Optical photon data collection.
MULTIPASSPhysicsList	Physics processes setup.
MULTIPASSPMTHit	Counter for detected photons that reach PMT.
MULTIPASSPMTSD	Stores data in PMThit and Opticalhit collec-
WOLLII ABBI WIBD	tions.
MULTIPASSPrimaryGeneratorAction	Particle generator.
MULTIPASSPrimaryGeneratorMessenger	Controller for particle generator.
MULTIPASSRunAction	Starts the run and creates the output file.
MULTIPASSScintHit	Energy deposited in scintillator data collector.
MULTIPASSScintSD	-
MULTIPASSSCIIISD	Sensitive detector stores energy deposited and
	gamma interaction processes to relevant collections.
MULTIPASSStackingAction	Scintillation and Cherenkov counters.
MULTIPASSSteppingAction	Optical photon detection code.
MULTIPASSSteppingMessenger	Stepping action controller.
MULTIPASSSteppingVerbose	Stepping verbose output leftover from LXe example.
MULTIPASSTrackingAction	From LXe example stores track information.
MULTIPASSTrajectory	Chooses when is drawn when visualisation is en abled.
MULTIPASSUserEventInformation	Event information variables.
MULTIPASSUserTrackInformation	Track information variables.
ChangeLog.md	Change log from EJ-276 example.
CMakeLists.txt	For compiling the code.
gui.mac	Visualisation setup.
README.txt	Acronym readme file.
reviewEvent.mac	Example of how to review an event from stored
review Event.mac	information.
ScanningTable.mac	For replicating scanning table experiment.
singlescint.mac	Another implementation of reviewEvent.mad
singlescint.mac	with different verbose output.
singlescint.rndm	Random event seed file.
slabLoop.mac	Leftover example from EJ-200 detector for in-
	creasing volume. This no longer works but
	shows how to use loops.
STsubloop_X.mac	Components needed for ScanningTable.mac
STsubloop_Y.mac	Components needed for ScanningTable.mac
subloop_xdim.mac	Components needed for slabLoop.mac
vis.mac	Visualisation setup component.

Table 1: Overview of files included in the MULTIPASS example.

```
[User: build_MULTIPASS]$ make
```

If you amend the code just make should be required to compile with the latest updates. However, if new .hh, .cc, .mac files are added the cmake command will have to be run again. New files in the include and src will not need to be added to the CMakeLists.txt, any files such as macros outside these directories need to be added to the CMakeLists.txt file.

4 Use

MULTIPASS has multiple options for operation to see a full extent run the file with the help command.

```
[User: build MULTIPASS ]$ ./MULTIPASS --help
- a simulation software for MULTIPASS detector
Usage:
    ./MULTIPASS [OPTION...]
-m, --macro arg run macro
-r, --runmode arg Run mode [Full, Gamma, Optics] (default: Optics)
-h, --help Print help
```

The macro flag allows a macro file to be passed such that the simulation is started in batch mode with no visualisations enabled. There are several different run modes an overview is provided in Table. 2, the default mode is Optics.

Mode	Description
Full	Fires a gamma-ray into the scintillator. Scintillation process is enabled
	and optical photons are generated when interactions occur.
Gamma	Fires a gamma-ray into the scintillator. Scintillation and optical photons
	are disabled.
Optics	

Table 2: Different run modes available in the MULTIPASS example.

When running the program several options are accessible by messengers. Some can only be used in certain run modes. An overview of some of the important commands is found below:

Choose between Gamma or Neutron. In Optics mode this selects the time constants of the particle type for simulation.

/MULTIPASS/gun/particleEnergy <energy> <unit> Choose energy of the particle.

/MULTIPASS/qun/scintYield <scintillationYield>

Change scintillation yield in Optics mode. The total number of photons simulated in this mode is equal to the particle energy multiplied by the scintillation yield. Unit is per MeV.

/MULTIPASS/qun/InteractionOrigin <location>

Location of optical photon generation in Optics mode. Default is Center. Available: Center¹, Back, Top, Topback, Front, Topfront, Side, Sideback, Sidefront, Cornerback, Cornerfront, Edge.

/MULTIPASS/gun/offset <offset>

Offset from nearest face(s) in Optics mode.

/MULTIPASS/gun/wavelength <wavelength>

Wavelength in nm of generated optical photons in Optics mode.

/MULTIPASS/gun/ScanTableX <position>

X positional interaction location centre in Full and Gamma mode. (0,0) is bottom left where, top is defined as face with PMT.

/MULTIPASS/gun/ScanTableY <position>

Y positional interaction location centre in Full and Gamma mode. (0,0) is bottom left where, top is defined as face with PMT.

In all modes the standard /run/beamOn starts the simulation. Each run creates a data file output. For the Gamma and Full modes, the particles interact with a spot size with a 1 cm diameter on the face of the detector. The x and y position marks the centre of the spot, this was chosen to replicate the scanning table experimental setup.

5 Data output

Depending on run mode the data output is different. In the HistoManager the data output it currently selected as .root, editing this file allows for other data formats to be selected. The output file name starts with the run mode and includes the number of events in the run. If the optics mode is used the emission location in terms of top right etc is stored in the name. For gamma and full modes, the x-y positional information is stored in the file name.

5.1 Full

Energy deposited in scintillator is recorded as both a ROOT histogram and in a ntuple. The total number of optical photons detected is also stored in a histogram. Along with separate histograms for the number of reflections and pathlength of optical photons. Two 2D histograms are also filled. One has the information relating to the emission direction of the detected photons, stored in terms of the azimuthal and polar angles. An additional 2D histogram produces pseudo pulse shapes. The x-axis is time in ns, with 1 ns intervals. The y-axis corresponds to the event number in the run.

In the ntuple along with energy deposited, the total number of reflections, number of optical absorptions, number of boundary absorptions and the information regarding scintillation emission and Cherenkov photons is stored.

5.2 Gamma

Only energy deposited in scintillator is recorded. This is stored in a ROOT histogram and an ntuple.

¹American English spelling used as in programming mode Michael's brain switches to this. Mainly because of the word color in the programming languages!

5.3 Optics

The same as full mode data output, however, energy deposited is not recorded.