Foundations of Estimation

What is a Model?

- A model is a simplified mathematical description of how we believe data are generated.
- Models connect:
 - Inputs (e.g. number of trials, predictors x_i)
 - Parameters (unknown quantities like p, μ , λ , β)
 - Outputs (observed data y_i)
- Models can be:
 - Probability models: specify a full probability distribution for outcomes
 - Non-probability models: focus on prediction or minimizing a loss without full distributional assumptions
- Key idea: models are not reality, but useful simplifications.

Probability Models

- Specify a probability distribution for the data, with unknown parameters.
- Examples: Binomial(p), Normal(μ, σ^2), Exponential(λ).
- Advantages:
 - Clear interpretation of parameters
 - Built-in methods for uncertainty (standard errors, confidence intervals)
 - Can compare across models using likelihood-based criteria
- Disadvantages:
 - Require assumptions about the data generating process
 - Sensitive to misspecification

Non-Probability Models

- Do not assume a full probability distribution.
- Examples: k-means clustering, regression trees, neural networks.
- Advantages:
 - Flexible and widely applicable
 - Fewer distributional assumptions
- Disadvantages:
 - Harder to quantify uncertainty
 - Comparisons between models are less formal

Estimators vs. Estimates

- Parameter θ : an unknown number describing a distribution or model
 - Binomial: p, Normal: (μ, σ^2) , Exponential: λ
 - Regression: β_0, β_1, \ldots and error spread σ^2
- **Estimator** $\hat{\theta}$: a rule or formula that uses data to produce a guess for θ
- **Estimate**: the numerical value you get from the estimator after plugging in your sample

Examples of Parameters

Model	Parameter(s)	Meaning
Bernoulli/Binomial	p	success probability
Normal	μ, σ^2	center and spread
Exponential	λ	event rate
Simple Regression	eta_0,eta_1	intercept, slope

The Regression Equation

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i] = 0.$$

- The parameters are the coefficients (β_0, β_1) (and often error spread σ^2).
- Fitting regression means *estimating* these parameters from data (x_i, y_i) .

What makes a good estimator?

- Unbiasedness: $\mathbb{E}[\hat{\theta}] = \theta$ (right on average)
- Low variability: estimates don't bounce around too much across samples
- Mean Squared Error (MSE): $MSE(\hat{\theta}) = Bias(\hat{\theta})^2 + Var(\hat{\theta})$
- Consistency: with more data, estimates hone in on the truth
- Robustness: not overreacting to a few unusual points

The Likelihood Function

- Suppose we have a distribution with parameter θ and data points x_1, \ldots, x_n .
- The probability of the entire dataset is

$$L(\theta) = f(x_1; \theta) \times f(x_2; \theta) \times \cdots \times f(x_n; \theta).$$

- This function of θ is called the **likelihood function**.
- MLE idea: pick the value of θ that makes the observed data most "plausible."

Likelihood: Data Fixed, Parameter Varies

• For i.i.d. data x_1, \ldots, x_n from a model with parameter θ , the **likelihood** is

$$L(\theta \mid x) = \prod_{i=1}^{n} f(x_i; \theta).$$

- Think of x as fixed (already observed) and θ as the variable. We "slide" θ along its domain and see how plausible the observed data look.
- $L(\theta \mid x)$ is not a probability distribution over θ (it does not integrate to 1); it is a score of plausibility.
- We often maximize the **log-likelihood** $\ell(\theta) = \log L(\theta \mid x)$ for numerical stability; $\arg \max_{\theta} \ell(\theta) = \arg \max_{\theta} L(\theta)$.

Exponential Likelihood: Setup

- Suppose data x_1, \ldots, x_n are i.i.d. from Exponential(λ) with unknown rate $\lambda > 0$.
- Density: $f(x; \lambda) = \lambda e^{-\lambda x}$ for $x \ge 0$.
- Likelihood:

$$L(\lambda \mid x) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} x_i\right).$$

• Key point: $L(\lambda)$ is a function of λ with the data x_i fixed.

Exponential Likelihood: Example

- Example data: x = (2.0, 0.5, 1.3, 0.7, 1.5).
- Here n=5, and $\sum x_i=6.0$.
- Likelihood:

$$L(\lambda) \propto \lambda^5 e^{-6\lambda}$$
.

• MLE: $\hat{\lambda} = \frac{n}{\sum x_i} = \frac{5}{6} \approx 0.833$.

Numerical Check: Likelihood Values

To see how the likelihood depends on λ , let's evaluate it at a few values.

λ	$L(\lambda)$
0.20	6.6×10^{-4}
0.50	1.32×10^{-2}
0.80	2.42×10^{-2}
0.83	2.43×10^{-2}
1.00	2.20×10^{-2}
1.20	1.60×10^{-2}
1.50	7.8×10^{-3}

Here n=5, $\sum x_i=6.0$, and $\hat{\lambda}=0.833$ maximizes the likelihood.

Binomial Likelihood: Setup

- Data summary: n trials, k successes.
- Binomial model: $X \sim \text{Binomial}(n, p)$ with unknown $p \in (0, 1)$.
- Likelihood (treating k as observed):

$$L(p \mid k) = \binom{n}{k} p^k (1-p)^{n-k} \propto p^k (1-p)^{n-k}.$$

• The combinatorial factor $\binom{n}{k}$ does not depend on p, so we can drop it when maximizing or plotting up to scale.

Plotting L(p) for the Binomial

- Example: n = 20, k = 11.
- The MLE is $\hat{p} = \frac{k}{n} = 0.55$ (can be shown by calculus or inspection).
- We can plot L(p)'' (or a scaled version) across $p \in (0,1)$ and mark the peak at \hat{p} .

Numerical Check: Evaluate at Several p

To make the "maximizes" idea concrete, evaluate the likelihood at a few p's. We report scaled likelihood $L(p)/L(\hat{p})$ and log-likelihood difference $\Delta \ell(p) = \ell(p) - \ell(\hat{p}) \leq 0$.

p	$L(p)/L(\hat{p})$	$\Delta \ell(p)$
0.20	0.0026	-5.949
0.30	0.0678	-2.691
0.40	0.4010	-0.914
0.50	0.9047	-0.100
0.55	1.0000	0.000
0.60	0.9022	-0.103
0.70	0.3692	-0.996
0.80	0.0417	-3.177

Here $n=20,\,k=11,\,\hat{p}=k/n=0.55.$ Scaling by $L(\hat{p})$ makes the table numerically stable (the maximum becomes 1).

Normal Mean Example

- Data: x_1, \ldots, x_n from Normal(μ, σ^2), with σ known.
- Likelihood:

$$L(\mu) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$$

• This peaks at the sample mean $\hat{\mu} = \bar{x}$.

A Gentle Taste of Calculus

- We often maximize $\ell(\theta) = \log L(\theta)$ (log-likelihood).
- Example (Binomial):

$$\ell(p) = k \log p + (n-k) \log(1-p).$$

• Differentiate, set derivative = 0:

$$\frac{k}{n} - \frac{n-k}{1-n} = 0 \quad \Rightarrow \quad \hat{p} = \frac{k}{n}.$$

• Similar calculations show $\hat{\mu} = \bar{x}$ and $\hat{\lambda} = n/\sum x_i$.

Formulas for Common MLEs

- Binomial(n,p): $\hat{p} = \frac{k}{n}$
- Normal(μ, σ^2):

$$\hat{\mu} = \bar{x}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• Exponential(λ): $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i}$

Suppose we have data that follows a normal distribution with an unknown μ and σ . The collected data is

$$x = (1.9, 2.4, 1.8, 2.1, 2.2)$$

What are the maximum likelihood estimates of μ and σ ?

Suppose we have data that follows a normal distribution with an unknown μ and σ . The collected data is

$$x = (1.9, 2.4, 1.8, 2.1, 2.2)$$

What are the maximum likelihood estimates of μ and σ ?

- $\bar{x} = 2.08$, so $\hat{\mu} = 2.08$.
- Sample variance: $\hat{\sigma}^2 = 0.05$.

Suppose that the data instead follows an exponential distribution with unknown parameter λ .

$$x = (1.9, 2.4, 1.8, 2.1, 2.2)$$

What are the maximum likelihood estimates of λ ?

Suppose that the data instead follows an exponential distribution with unknown parameter λ .

$$x = (1.9, 2.4, 1.8, 2.1, 2.2)$$

What are the maximum likelihood estimates of λ ?

•
$$\hat{\lambda} = 0.48$$
.

Comparing Probability Models

Use AIC:

$$AIC = -2\log L(\hat{\theta}) + 2k$$

where k = number of parameters.

• Lower AIC means better fit (balance between goodness-of-fit and parsimony).

Example: Data Comparison

- Data: 20 values (times between arrivals, say).
- Fit Binomial, Normal, Exponential models.
- Compute log-likelihoods at $\hat{\theta}$, then AIC.
- Suppose we get:
 - Binomial: AIC = 62
 - Normal: AIC = 58
 - Exponential: AIC = 65
- Best model here is Normal.

How to Decide in Practice

- By data type:
 - Number of successes out of fixed trials ⇒ Binomial.
 - Continuous, symmetric ⇒ Normal.
 - Waiting times, skewed ⇒ Exponential.
- Graphically: histograms, skewness, symmetry.
- Formally: compare likelihoods/AIC.

Example: Normal Model (MLE and Numbers)

Suppose x_1, \ldots, x_n are i.i.d. Normal (μ, σ^2) with both μ, σ unknown.

$$x = (1.9, 2.4, 1.8, 2.1, 2.2), n = 5.$$

MLEs (closed form):

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum x_i, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$$

Values for our data:

$$\bar{x} = 2.08$$
, $\hat{\sigma}^2 = 0.0456$, $\hat{\sigma} = 0.2135$.

Log-likelihood at the MLE:

$$\ell_{\mathsf{Norm}}(\hat{\mu}, \hat{\sigma}) = -n \log(\hat{\sigma}\sqrt{2\pi}) - \frac{1}{2} \sum \frac{(x_i - \hat{\mu})^2}{\hat{\sigma}^2} = -5 \log(0.2135\sqrt{2\pi}) - \frac{1}{2} \cdot 5 = 0.6249.$$

(We used
$$\sum (x_i - \hat{\mu})^2 = n\hat{\sigma}^2$$
.)

Example: Exponential Model (MLE and Numbers)

Suppose x_1, \ldots, x_n are i.i.d. Exponential(λ) with density $f(x; \lambda) = \lambda e^{-\lambda x}$ for $x \ge 0$.

MLE (closed form):

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i}$$

Values for our data:

$$\sum x_i = 10.4, \quad n = 5 \quad \Rightarrow \quad \hat{\lambda} = \frac{5}{10.4} = 0.4808.$$

Log-likelihood at the MLE:

$$\ell_{\mathsf{Exp}}(\hat{\lambda}) = n \log(\hat{\lambda}) - \hat{\lambda} \sum_{i} x_i = 5 \log(0.4808) - 0.4808 \times 10.4 = -8.6618.$$

AIC: Full Calculation and Comparison

$$AIC = -2\log L(\hat{\theta}) + 2k,$$

where k = number of free parameters.

Normal has $k = 2 (\mu, \sigma)$:

$$AIC_{Norm} = -2 \cdot \ell_{Norm}(\hat{\mu}, \hat{\sigma}) + 2 \cdot 2 = -2(0.6249) + 4 = 2.7501.$$

Exponential has k = 1 (λ):

$$AIC_{\mathsf{Exp}} = -2 \cdot \ell_{\mathsf{Exp}}(\hat{\lambda}) + 2 \cdot 1 = -2(-8.6618) + 2 = 19.3237.$$

Result: $AIC_{Norm} \ll AIC_{Exp} \Rightarrow Normal fits much better for this dataset.$

Visual Comparison: Overlaid Fits

- Histogram of the data with the Normal (MLE) and Exponential (MLE) densities overlaid.
- This matches the AIC result: Normal aligns closely; Exponential decays too slowly for these values.

How to Decide in Practice

- By data type:
 - Number of successes out of fixed trials ⇒ Binomial.
 - Continuous, symmetric ⇒ Normal.
 - Waiting times, skewed ⇒ Exponential.
- Graphically: histograms, skewness, symmetry.
- Formally: compare likelihoods/AIC.

Empirical Risk (Loss) Minimization

- Pick a loss $\ell(\hat{y}, y)$ to measure how bad a prediction \hat{y} is when the truth is y.
- For a model $f_{\theta}(x)$, define the **empirical risk** (total/average loss)

$$Q(\theta) = \sum_{i=1}^{n} \ell(f_{\theta}(x_i), y_i) \quad \text{or} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(\cdot).$$

• Estimation by minimization:

$$\hat{\theta} = \arg\min_{\theta} Q(\theta).$$

• ERM is very general: many classical estimators are solutions of $\min Q(\theta)$.

Loss Choice ⇒ What You Estimate

- Squared loss $\ell(r) = r^2$ with $r = y \hat{y} \Rightarrow$ estimates the mean.
- Absolute loss $\ell(r) = |r| \Rightarrow$ estimates the median.
- **0–1 loss** $\ell(r) = \mathbf{1}\{r \neq 0\} \Rightarrow$ estimates the **mode**.
- Pinball (quantile) loss for $\tau \in (0,1)$:

$$\ell_{\tau}(r) = \begin{cases} \tau \, r, & r \geq 0, \\ (\tau - 1) \, r, & r < 0, \end{cases} \quad \Rightarrow \quad \text{estimates the τ-quantile.}$$

Common Loss Functions

Huber

Regression as Loss Minimization

• L2/OLS:

$$\hat{\beta}_{L2} = \arg\min_{\beta_0, \beta_1} \sum_{i} (y_i - \beta_0 - \beta_1 x_i)^2.$$

• L1/LAD (least absolute deviations):

$$\hat{\beta}_{\mathsf{L}1} = \arg\min_{\beta_0, \beta_1} \sum_i \big| y_i - \beta_0 - \beta_1 x_i \big|.$$

- **Huber regression:** replace r^2 by Huber loss to reduce outlier influence.
- If errors are Normal, maximizing likelihood ⇔ minimizing SSE (L2).
- Different losses ⇒ different solutions and robustness.

Why OLS = MLE (Normal Errors)

Assume the regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \qquad \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2).$$

Likelihood:

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right).$$

Log-likelihood (up to constants):

$$\ell(\beta_0, \beta_1, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

• For fixed σ^2 , maximizing ℓ in (β_0, β_1) is

$$\arg\min_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2.$$

Visual: Outliers Move L2 More Than L1

L2 and L1 fits are similar on clean data. With one extreme point, the L2 line tilts more; the L1 line is more stable.

Regularization = Penalized Loss (Shrinkage)

• Add a penalty to trade a little bias for lower variance (helps generalization):

$$\min_{\beta} \ \underbrace{\sum_{i} (y_i - x_i^\top \beta)^2}_{\text{fit}} + \lambda \underbrace{\|\beta\|_2^2}_{\text{Ridge}} \quad \text{or} \quad \min_{\beta} \ \sum_{i} (y_i - x_i^\top \beta)^2 + \lambda \|\beta\|_1 \text{ (Lasso)}.$$

- Ridge shrinks coefficients smoothly; Lasso can set some exactly to zero (feature selection).
- Same ERM template: "fit" + "complexity penalty."

Choosing a Loss: A Quick Checklist

- Symmetric errors, few outliers ⇒ L2 (efficient under Normality).
- Heavy tails / outliers ⇒ L1 or Huber.
- Want a specific quantile (e.g., 90% service time) ⇒ Pinball loss.
- Care about large errors more ⇒ higher powers (but beware instability).