Lecture 2: Object detection as a machine learning problem

Ross Girshick (FAIR)

AMMI 2022, Computer Vision, Week 2

Learning objectives

- Modern object detection systems are (very) complex
 - It can be difficult to understand how we got here

- What is the underlying logic behind all these design choices?
 - Goal: establish a foundation for understanding object detection research

- Thinking in terms of different levels of problem representation
 - Abstract, mathematical, computational

Recap: The object detection problem

What objects are in an image and where are they?

Levels of problem representation

- Abstract problem formulation
 - "What objects are in an image and where are they?"

- Mathematical problem formulation
 - "How can we describe the above using mathematical language?"

- Computational problem formulation
 - "How can we compute the mathematical model?"
 - Often (not always) involves some approximations (i.e., solving a proxy problem)

Example: Levels of problem representation

- Abstract problem formulation
 - "What is the area under a curve?"

- Mathematical problem formulation
 - "The definite integral from calculus can solve for the area under a curve"

• E.g.,
$$\int_{-\pi/2}^{\pi/2} \cos(x) dx = \sin(x) \Big]_{-\pi/2}^{\pi/2} = 2$$

- Computational problem formulation
 - "Algorithm: rectangle rule for numerical integration" (an approximation via a proxy problem)
 - Alternative: symbolic system like Wolfram Mathematica

From abstract to mathematical problem

 We want to express object detection using the mathematical language of machine learning (ML)

Modeling object detection as an ML problem

We'll start with a mathematical formulation

- Input
 - An image $I \in \mathbb{R}^{3 \times H \times W}$
- Output
 - Any finite subset of the (infinitely many) possible boxes in an image
 - For each box in this subset: its category label and confidence score
- Opening our ML toolbox, what do we know how to do?
 - Classification, regression, clustering, ...

Modeling object detection as an ML problem

Detection := the classification of boxes

Btw, what do we mean by "modeling"?

Detection := the classification of boxes

Object detection is not intrinsically "the classification of boxes"

- "Modeling": We frame the problem in a particular way by choice
 - Some framings may be very natural; others less so

- Other modeling choices are possible!
 - Future detection systems may do things differently open research directions

Modeling object detection as an ML problem

Detection := the classification of boxes

This classic strategy has been used since time immemorial ...

- H. A. Rowley, S. Baluja, and T. Kanade. Neural networkbased face detection. TPAMI, 1998
- R. Vaillant, C. Monrocq, and Y. LeCun. Original approach for the localisation of objects in images. IEE Proc on Vision, Image, and Signal Processing, 1994.
- N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
- P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. TPAMI, 2010
- J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013.
- R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
- R. Girshick, Fast R-CNN. In ICCV, 2015.
- ... literally **thousands** of papers ...

Detection := the classification of boxes

- What are the labels?
 - One catch-all "background" class: 0; C object ("foreground") classes: 1, ..., C
 - The set of boxes \mathbb{B} in an image $I \in \mathbb{I}$ is infinite (assuming real numbers)

- Classification rule: each box in an image belongs to a class in $\{0, ..., C\}$
 - The true mapping is $f: \mathbb{I} \mapsto \{0, ..., C\}^{|\mathbb{B}|}$
 - If a box is in the ground-truth (g.t.) set, its class is the g.t. label in $\{1, ..., C\}$
 - Otherwise, the box's class is 0 (background)

 Train a classifier to learn this classification rule (i.e., to classify every box)

From mathematical to computational problem

 We want to <u>run something on a computer</u>, not just have a mathematical description on paper

- How can we compute this mathematical model?
- Recall the definite integral example
 - Infinites and infinitesimals the enemies of computers!
 - Prepare yourself for some approximations

How do we compute this problem?

1. "Too many" boxes (infinite)

1. "Too many" boxes (infinite) → switch to a proxy problem

1. "Too many" boxes (infinite) → switch to a proxy problem

2. Broken classification rule

1. "Too many" boxes (infinite) → switch to a proxy problem

2. Broken classification rule \rightarrow design label assignment heuristics

1. "Too many" boxes (infinite) → switch to a proxy problem

2. Broken classification rule \rightarrow design label assignment heuristics

Duplicate detections

1. "Too many" boxes (infinite) → switch to a proxy problem

2. Broken classification rule \rightarrow design label assignment heuristics

3. Duplicate detections → cluster outputs into instances

1. "Too many" boxes (infinite) → switch to a proxy problem

2. Broken classification rule \rightarrow design label assignment heuristics

3. Duplicate detections \rightarrow cluster outputs into instances

4. Foreground-background imbalance (intrinsic)

1. "Too many" boxes (infinite) → switch to a proxy problem

2. Broken classification rule \rightarrow design label assignment heuristics

3. Duplicate detections \rightarrow cluster outputs into instances

 Foreground-background imbalance (intrinsic) → balanced sampling, novel losses, cascades, ...

Recap: From abstract to computational

We started with an abstract problem of object detection

• We formulated it as a mathematical ML problem

- Translating this to a computational problem introduces challenges
 - We will go through them one by one now

• Detection output space is infinite

g.t. box

Standard solution

Detection output space is infinite

• Approximate the infinite set of all possible boxes with a finite set of boxes (i.e., *quantize* the set)

Standard solution

Detection output space is infinite

• Approximate the infinite set of all possible boxes with a finite set of boxes (i.e., *quantize* the set)

quantized box quantization error g.t. box

This approximation creates quantization error

Standard solution

Detection output space is infinite

• Approximate the infinite set of all possible boxes with a finite set of boxes (i.e., *quantize* the set)

 Recover loss of localization accuracy by predicting the quantization error to cancel it (i.e., regress the g.t. box)

Standard solution

regressed box

Detection output space is infinite

• Approximate the infinite set of all possible boxes with a finite set of boxes (i.e., *quantize* the set)

 Recover loss of localization accuracy by predicting the quantization error to cancel it (i.e., regress the g.t. box)

 (dx_0, dy_0) . quantized box (dx_1, dy_1) g.t. box

We have switched to a proxy problem

Template for "pumpkin" category

Template for "pumpkin" category

Where does the template come from?

- It's an ML model, trained on data
- Simple case: it's a linear filter
 - This is a convolution! (Technically cross-correlation)
- More sophisticated: the "template" is a neural network
- ConvNets are built from many layers of sliding-window feature detectors

Foundational concept: Region proposals

Sparse, irregular set of boxes (called "regions")

• Each one is a proposed candidate object location

A downstream classifier will classify each proposal

Proposals need to have high recall, while not being too numerous

Foundational concept: Region proposals

Strategy 1: Bottom-up region proposals from the Selective Search algorithm [Uijlings et al. 2012]

Foundational concept: Region proposals

- A generic object vs. not-object sliding window detector is trained
- It's high-scoring output are taken as proposals for use in the downstream classifier

Strategy 2: Top-down objectness classifier from Region Proposal Network [Ren et al. 2015]

Consequence of the proxy problem

[Recall:

- Classification rule: each box in an image belongs to a class in $\{0, ..., C\}$
 - The true mapping is $f: \mathbb{I} \mapsto \{0, ..., C\}^{|\mathbb{B}|}$
 - If a box is in the ground-truth (g.t.) set, its class is the g.t. label in {1, ..., C}
 - Otherwise, the box's class is 0 (background)

• This classification rule is no longer meaningful for solving detection

- It's "broken" by the introduction of quantized boxes
- Why?

Challenge 2: Broken classification rule

 Why? Ground-truth boxes are not (likely) in the set of quantized boxes

Challenge 2: Broken classification rule grid of quantized boxes

 Why? Ground-truth boxes are not (likely) in the set of quantized boxes

Challenge 2: Broken classification rule grid of quantized boxes

 Why? Ground-truth boxes are not (likely) in the set of quantized boxes

• $f(I) \rightarrow \{0, ..., 0\}$ almost always – not useful!

Challenge 2: Broken classification rule grid of quantized boxes

 Why? Ground-truth boxes are not (likely) in the set of quantized boxes

• $f(I) \rightarrow \{0, ..., 0\}$ almost always – not useful!

• We need to redefine f, i.e., specify \hat{f} via a g.t. label assignment heuristic

- Assign each quantized box to zero or one g.t. boxes
- Using a "labeling heuristic", e.g.:
 - IoU thresholds,
 - centeredness,
 - etc.

- Assign each quantized box to zero or one g.t. boxes
- Using a "labeling heuristic", e.g.:
 - IoU thresholds,
 - centeredness,
 - etc.

IoU(green box, gold box) >= threshold

→ label green box = t-rex

 Assign each quantized box to zero or one g.t. boxes

Using a "labeling heuristic", e.g.:

• IoU thresholds,

• centeredness,

• etc.

IoU(blue box, gold box) < threshold

IoU(green box, gold box) >= threshold

→ label green box = t-rex

- Proxy classification rule: each quantized box in an image belongs to a class in $\{0, \dots, C\}$
 - The proxy mapping is $\hat{f} \colon \mathbb{I} \mapsto \{0, ..., C\}^{|\widehat{\mathbb{B}}|}$ ($\widehat{\mathbb{B}}$ is the set of quantized boxes)
 - If a quantized box B was <u>assigned</u> to a g.t. box G, the g.t. label for B is taken from G
 - Otherwise (i.e., no assignment), B's class is 0 (background)
- Train a classifier to learn the proxy classification rule \hat{f}
- Train a regressor to learn the regression function from B to G

• No single quantized box is correct

- No single quantized box is correct
 - Each g.t. box is spatially spread to nearby quantized boxes

- No single quantized box is correct
 - Each g.t. box is spatially spread to nearby quantized boxes

• The proxy classification rule explicitly asks for duplicate detections

- No single quantized box is correct
 - Each g.t. box is <u>spatially spread</u> to nearby quantized boxes

- The proxy classification rule explicitly asks for <u>duplicate detections</u>
 - Recall: duplicates are undesirable and punished by AP!

- No single quantized box is correct
 - Each g.t. box is spatially spread to nearby quantized boxes

- The proxy classification rule explicitly asks for <u>duplicate detections</u>
 - Recall: duplicates are undesirable and punished by AP!

• Removing duplicates requires a post-processing ("clean up") step to fix the the proxy classification rule

Two (quantized) boxes, both assigned label t-rex because of the same g.t. box

First prediction

P(t-rex) = 0.91

Second prediction

P(t-rex) = 0.99Predictions are similar Proxy classification rule asks for exactly this (labels are spread spatially) P(t-rex) = 0.91g.t. box

Predictions are similar

 Proxy classification rule asks for exactly this (labels are spread spatially)

 Could define a different proxy classification rule that does not spread?

Predictions are similar

 Proxy classification rule asks for exactly this (labels are spread spatially)

 Could define a different proxy classification rule that does not spread?

> Empirical works poorly (likely due to symmetry)

Standard solution

Strategy

 Don't try to learn a sharp classification rule

P(t-rex) = 0.97

Standard solution

Strategy

- Don't try to learn a sharp classification rule
- Instead, clean up duplicates in a post-processing step

P(t-rex) = 0.97

Standard solution

Standard solution

Found. concept: Non-maximum suppression

 General concept beyond detection: suppress values that are not maximal

• 1D signal example:

```
NMS([0.0, 0.0, 0.1, 0.4, 0.9, 0.5, 0.1, 0.01, 0.0]) \rightarrow [0.0, 0.0, 0.0, 0.0, 0.9, 0.0, 0.0, 0.0]
```


Found. concept: Non-maximum suppression

Found. concept: Non-maximum suppression

Many possible algorithms for boxes

- Most common: greedy selection
 - 1. Sort detections by score
 - 2. Keep the highest scoring unsuppressed box B
 - 3. Find all lower scoring boxes B' with IoU(B, B') > nms_iou_threshold
 - 4. Suppress these boxes B'
 - 5. Go to step 2

Can also view this as a clustering problem

Challenge 4: Foreground-background imbalance

- Before quantization
 - Infinitely imbalanced! (An intrinsic problem)

Challenge 4: Foreground-background imbalance

- Before quantization
 - Infinitely imbalanced! (An intrinsic problem)

- After quantization
 - Typically, ~100k classification decisions per image (better than infinite!)
 - But only 0.01 to 0.1% are assigned foreground labels (imbalanced!)

Challenge 4: Foreground-background imbalance

- Before quantization
 - Infinitely imbalanced! (An intrinsic problem)

- After quantization
 - Typically, ~100k classification decisions per image (better than infinite!)
 - But only 0.01 to 0.1% are assigned foreground labels (imbalanced!)

- Two issues
 - Learning from imbalanced data is difficult (open research area)
 (e.g., ignore the minority class → ~100% classification accuracy*)
 - Processing speed

Found. concept: Loss functions; easy/hard data

Found. concept: Loss functions; easy/hard data

Common loss functions (CE / logistic) are sensitive to lots of easy background

A good loss function for detection pays more attention to hard examples (often called "hard example mining")

Example: focal loss

T-Y Lin, P Goyal, R Girshick, K He, P Dollár.
Focal Loss for Dense Object Detection. In ICCV 2019

• Each classifier stage is inexpensive (implies fast, but weak)

Classification cascade

[Viola & Jones 2001]

Classification cascade

[Viola & Jones 2001]

 Each classifier stage is inexpensive (implies fast, but weak)

- Early stages: tuned for high recall
 - Winnow down false positives, retain true positives
 - Gradually alleviates imbalance

Classification cascade

[Viola & Jones 2001]

 Each classifier stage is inexpensive (implies fast, but weak)

- Early stages: tuned for high recall
 - Winnow down false positives, retain true positives
 - Gradually alleviates imbalance

Later stages see (more) balanced data

Examples in modern use, R-CNN family:

- R-CNN: selective search → convnet
- Fast R-CNN: selective search → Fast R-CNN head
- Faster R-CNN: RPN → Fast R-CNN head
- Cascade R-CNN: RPN → Fast R-CNN head 1 → ... → Fast R-CNN head N

Recap of today's lecture

- - Output space: all finite subsets of all infinitely many possible boxes + category labels
- Abstract → mathematical → computational
 - The computation ML problem is a proxy, introducing assumptions and approximations
- The modeling choice has consequences that introduce new problems
 - Box quantization, label assignment, redundant outputs, fg-bg imbalance
- Most research on object detection focuses on these new problems
 - If we change the ML-modeling, do we get different, more tractable problems?