LATEX for Ninjas

curso técnico

Prof. Walace de Almeida Rodrigues

Instituto Federal de Minas Gerais - Campus Formiga

14 de março de 2016

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA HIRAL GENELA CAMPAL GENELA CAMPAL GENELA CAMPAL FORMELA CAMPAL FORMELA CAMPALA CAM

Sumário

- Introdução
- 2 Elementos básicos
- 3 Ambientes básicos
- Organização do documento
- 5 Bibliografia
- 6 Caixas

- 7 Matemática
- 8 Tabelas
- 9 Algoritmos
- Gráficos
- 11 Programação
- 12 Criação de pacotes
- 13 Referências

Introdução

- Introdução
 - Breve história do T_EX / L^AT_EX
 - Visão simplificada do T_EX
 - Vantagens de usar LATEX
 - Estrutura do curso

1.1. Donald Knuth

Apresentando: Donald Ervin Knuth 1

- TAOCP: The Art of Computer Programming (1968)
- É um dos "pais" da Análise de Algoritmos
- Professor Emérito da Universidade Stanford
- Vencedor do **Prêmio Turing** (1974)
- Eleito Fellow da Royal Society, de Londres (2003)
- Criou o sistema tipográfico T_EX

http://www-cs-faculty.stanford.edu/~uno/

- Conta-se que Knuth revisava o Volume II do TAOCP quando ficou insatisfeito com a tipografia usada pelo seu Editor.
- Ao ver o livro Artificial Intelligence (de Patrick Winston) produzido digitalmente, Knuth percebeu que uma composição tipográfica não era nada mais, nada menos, do que arranjar 0s e 1s (ponto com tinta ou sem tinta)
- Knuth aprendeu quais eram as regras tradicionais para tipografia matemática, o que constituia uma boa tipografia, e tanto quanto pode sobre design
- Todo esse trabalho resultou no TeX, uma linguagem projetada para tipografia de materiais técnicos e matemáticos
- Exemplo de fórmula escrita em TEX:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

■ Versões do T_EX seguem o valor de π : 3, 3.1, 3.14, 3.141, 3.141592...

1.1. Leslie Lamport

Apresentando: Leslie Lamport 2

- Ph.D. em Matemática (Brandeis University, 1972), atua na computação desde 1970, Doutor Honorário em Ciência da Computação por várias universidades
- Desde 2001 trabalha na Microsoft Research
- Várias contribuições na Teoria dos Sistemas
 Distribuídos, seus papers estão hoje entre os mais citados no mundo
- É "pai" da **Lógica Temporal de Ações** (TPA), utilizada na descrição de comportamento de sistemas distribuídos e reativos
- Alguns notáveis: Dijkstra Prize (2005), John von Neumann Medal (2008),
 Prêmio Turing (2013), eleito ACM Fellow (2014)
- Criou a linguagem de marcação LAT_EX

²http://www.lamport.org/

(4/4)

- Nos anos 70, Knuth criou o T_EX e mudou a tipografia
- Problema: T_FX não é fácil de usar
- Nos anos 80, Lamport desenvolveu uma linguagem para separar os trabalhos do author e do designer: nascia o LATEX (1985)
- o LAT_EX é um conjunto de pacotes de macros que simplificam o uso do T_EX

1.2. Esquema simplificado do T_EX

- O núcleo do nosso sistema tipográfico é o compilador de TEX
- Outros módulos do sistema (LaTeX, BibTex, etc) geram arquivos para o T_EX
- O próprio T_EX gera vários arquivos intermediários durante a compilação

 O output driver traduz a saída do TEX para outros tipos específicos (dvi, pdf, html, postscript, etc)

1.3. Por que usar LATEX ao invés de LEX

(1/2

- T_EX foi projetada para fornecer apenas capacidades **fundamentais** de tipografia
- Operações de tipografia do TEX são aplicadas em **nível muito baixo**, para:
 - concatenar caracteres em palavras e estas em parágrafos
 - posicionar símbolos adequadamente em fórmulas matemáticas
 - encontrar quebras de páginas adequadas automaticamente
 - lidar com notas de rodapé e outros objetos flutuantes (imagens, tabelas)
- Problema: autores preferem trabalhar em nível mais alto. Por exemplo, para centralizar algum objeto, ao invés de digitar em T_EX

```
\begingroup
%\rightskip=0pt plus.2\hsize
\leftskip=\rightskip
\parindent=0pt \parfillskip=0pt
\noindent
...
\par \endgroup
```

os autores preferem simplesmente digitar em **nível mais alto** a macro do LATEX

```
\center ... \endcenter
```

1.3. Por que usar LATEX

(2/2)

Prós

- estilo mais consistente (*layout*, fontes, fórmulas, tabelas, etc)
- ciências exatas não são um problema (matemática, computação, química, etc)
- índices, notas de rodapé e referências são facilmente geradas
- o autor tem total domínio da estrutura do documento

Contras

- o resultado final n\u00e3o \u00e9 imediatamente vis\u00edvel (★)
- curva de aprendizado
- é preciso aprender os comandos LATEX necessários
- a customização pode algumas vezes ser difícil

(★) LATEX **não** usa uma abordagem WYSIWYM (What You See Is What You Mean)

1.4. Planejamento

Elementos básicos

- 2 Elementos básicos
 - Estrutura de um documento
 - Texto e parágrafos
 - Tamanho
 - Estilo
 - Cores
 - Grupos

2.1. Estrutura global de um documento LATEX

(1/6)

- Documentos em LAT_EX são arquivos no formato ASCII, portanto intercambiáveis entre vários sistemas operacionais
- Todo documento LATEX pode ser dividido em pelo menos duas partes:
 - 1 preâmbulo instruções para formatação e uso de pacotes
 - 2 corpo o conteúdo propriamente dito do documento

```
%-----
% Cabeçalho do documento
%-----
% Preâmbulo
\documentclass[a4paper]{report}
% Corpo
\begin{document}
Oi mundo.
\end{document}
```

(2/6)

■ Todo arquivo LATEX inicia com um preâmbulo, que contém **ao menos** o comando

\documentclass[opções]{ classe}

- O parâmetro classe é obrigatório, e pode ser:
 - article, para artigos científicos
 - report , para relatórios técnicos e teses
 - book , para livros
 - slides, para transparências
 - letter, para cartas
- O parâmetro opções é opcional, e pode ser:
 - a4paper, para papel tamanho A4
 - letterpaper , para papel tamanho carta
 - 10pt , para tamanho 10 pontos (padrão)
 - 11pt , para tamanho 11 pontos
 - 12pt, para tamanho 12 pontos
 - twocolumn, para texto em duas colunas
 - twoside , para impressão nos dois lados do papel

(3/6)

■ Além do comando \documentclass, o preâmbulo pode conter comandos

```
\usepackage[opções]{pacote}
```

- O comando \usepackage serve para incluir pacotes LATEX que aumentam a capacidade de formatação. Alguns pacotes permitem opções, outros não.
- Os principais pacotes, incluindo as documentações, encontram-se no Repositório CTAN: Comprehensive TEX Archive Network³
- Existe uma infinidade de pacotes e veremos alguns ao longo do curso.
- Um exemplo típico de preâmbulo em LAT_EX:

```
% Linhas que começam com % são comentário em LaTeX
% Define o documento como relatório técnico em papel A4
\documentclass[a4paper]{report}
\usepackage{graphicx} % pacote para lidar com imagens
\usepackage[brazil]{babel} % pacote para língua portuguesa
```

³https://www.ctan.org/

2.1. Alguns pacotes úteis

Pacote	Descrição breve
babel	gerencia regras de tipografia definidas culturalmente (russo, hebreu, português, etc)
inputenc	traduz codificações de entrada para uma "linguagem interna LATEX", permitindo acentos
fontenc	permite hifenização do texto e opera em textos contendo quais- quer caracteres na fonte
geometry	permite gerenciar facilmente o <i>layout</i> da página (tamanho das margens, etc)
graphicx	gerencia a inclusão de imagens no texto (rotação, escala, etc)
amsmath	símbolos matemáticos da American Mathematical Society
algorithm	ambiente para trabalhar com texto no estilo de algoritmos (atribuição, repetição, condicional, etc)
xcolor	gerencia cor de texto e de fundo

(5/6)

- Após o preâmbulo, inicia-se o documento LATEX propriamente dito.
- O texto do documento fica cercado entre dois comandos obrigatórios que são \begin{document} e \end{document}
- Um exemplo típico de documento em LATEX, com preâmbulo e corpo:

```
% Define o documento como relatório técnico em papel A4
\documentclass[a4paper]{report}
% Inclusão de pacotes
\usepackage[utf8]{inputenc} % codificacao
\usepackage[T1]{fontenc} % hifenizacao
\usepackage[brazil]{babel} % tipografia da linguagem
% Corpo do documento
\begin { document }
   Isto é um texto muito, muito simples, em \LaTeX. \\
  O valor de $\pi$ é $3.141595 \dots$ \\
   Fórmula de Bhaskara: x = \frac{-b \pm 1}{2a}
  com \Delta = b^2 - 4ac.
\end{document}
```

(6/6)

■ Compilando-se o código anterior

```
\documentclass[a4paper]{report}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[brazil]{babel}
\begin{document}
    Isto é um texto muito, muito simples, em \LaTeX. \\
    O valor de \pi\$ é \$3.141595 \dots\\\
    Fórmula de Bhaskara: \$x = \frac{-b \pm \sqrt{\Delta}}{2a}\$, com \Delta = b^2 - 4ac\$.
\end{document}
```

Obtêm-se

```
Isto é um texto muito, muito simples, em LATEX.
```

O valor de π é 3.141595...

Fórmula de Bhaskara:
$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
, com $\Delta = b^2 - 4ac$.

(1/6)

- Um documento LATEX contém apenas texto puro (ASCII), a formatação acontece através de comandos digitados ao longo desse texto
- Alguns caracteres são especiais, são tratados de forma diferenciada pelo LATEX, então se quiser a presença deles no texto deve gerá-los através de comandos da seguinte maneira:

Caractere especial	Texto LATEX
\$	\\$
%	\ %
&	\&
#	\#
{	\{
}	\}
/	\slash
\	\textbackslash

(2/6)

Se o pacote fontenc não tiver sido declarado no preâmbulo, a acentuação pelo IATEX também deverá ser gerada através de comandos da seguinte maneira:

Caractere acentuado	Texto LATEX
Ç	\c{c}
á	\ ' {a}
à	\ ` {a}
â	\^{a}
ã	\~{a}
ü	\ " {u}

■ Evite amolações incluindo no preâmbulo dois pacotes que tratam acentuação:

```
\usepackage[T1]{fontenc}
\usepackage[latin 1]{inputenc}
```

- O pacote inputenc é orientado para a entrada, permite a entrada de caracteres acentuados diretamente do teclado, traduzindo-os para o LATEX
- O pacote fontenc é orientado para a saída, gerando os caracteres adequados para a impressão, de acordo com a fonte escolhida, e controla hifenizações

(3/6)

- A quantidade de espaços digitados entre as palavras não faz diferença num documento LATEX, sempre será contado apenas um espaço em branco.
- Todo texto que não esteja separado por uma linha em branco ou por comandos que separam parágrafos forma um único parágrafo.
- A quantidade de linhas em branco entre os parágrafos não faz diferença num documento LATEX, sempre será contada apenas uma linha em branco.

\begin { document }
Exemplo bizarro de
 texto muito mal
 formatado.

Linha branca, muda parágrafo. \end{document}

Exemplo bizarro de texto muito mal formatado.

Linha branca, muda parágrafo.

- O tamanho padrão para espaçamento entre parágrafos é de apenas 1pt.
- Para configurar o tamanho do espaçamento entre parágrafos, inclua no preâmbulo o comando:

```
\setlength\parskip{tamanho}
```

especificando o tamanho com uma das unidades: pt, mm, cm, pol, ...

■ O comando \par oferece outro modo para forçar a mudança de parágrafo.

Exemplo bizarro de texto muito mal formatado.

Linha branca, muda parágrafo.

(5/6)

- Normalmente todos parágrafos iniciam com indentação. O espaçamento padrão para a indentação é de 15pt.
- Para configurar o espaçamento de indentação, inclua no preâmbulo o comando:

```
\setlength\parindent{tamanho}
```

especificando o tamanho com uma das unidades: pt, mm, cm, pol, ...

- Dentro de estruturas do documento (capítulos, seções, etc), o primeiro parágrafo inicia sem indentação. Esse padrão pode ser modificado pela inclusão do pacote identfirst no preâmbulo.
- O comando \indent adiciona espaçamento horizontal do mesmo tamanho da indentação normal
- o comando \noindent retira a indentação do local onde ela deveria aparecer.

Existem diversas formas para inserir espaçamentos ou quebras no texto:

Comando	Resultado
\\	Insere quebra de linha
\\[tamanho]	Insere quebra de linha e espaço vertical
\newline	Insere quebra de linha
\linebreak	Insere quebra de linha e ajusta a linha anterior
\newpage	Insere quebra de página
\smallskip	Espaço pequeno entre parágrafos
\medskip	Espaço médio entre parágrafos
\bigskip	Espaço grande entre parágrafos
\vspace{tamanho}	Espaço vertical
\hspace{tamanho}	Espaço horizontal
\hfill	Preenche a linha com espaços em branco
\dotfill	Preenche a linha com pontos
\ <espaço></espaço>	Insere um espaço em branco manualmente

O tamanho é especificado por um inteiro seguindo da unidade: pt, mm, cm, pol, ...

2.3. Tamanho

Dez ambientes estão disponíveis para mudar o tamanho da fonte:

Comando	Tamanho
\begin{tiny} exemplo \end{tiny}	exemplo
\begin{ scriptsize } exemplo \end{scriptsize}	exemplo
\begin{footnotesize} exemplo \end{footnotesize}	exemplo
\begin{small} exemplo \end{small}	exemplo
\begin{normalsize} exemplo \end{normalsize}	exemplo
\begin{large} exemplo \end{large}	exemplo
\begin{Large} exemplo \end{Large}	exemplo
\begin{LARGE} exemplo \end{LARGE}	exemplo
\begin{huge} exemplo \end{huge}	exemplo
\begin{Huge} exemplo \end{Huge}	exemplo

Também é possível usar comandos do tipo \tiny {exemplo} ou {\tiny exemplo}

2.4. Estilo (1/3)

Existem muitas opções e o número pode aumentar com a inclusão de pacotes:

Comando	Estilo	Nome
\underline {exemplo}	exemplo	sublinhado
\emph{exemplo}	exemplo	enfatizado
\textit {exemplo}	exemplo	itálico
\textsl {exemplo}	exemplo	inclinado
\textbf {exemplo}	exemplo	negrito
\texttt {exemplo}	exemplo	máquina de escrever
\textsc {exemplo}	EXEMPLO	caixa alta
\textsc {exemplo}	exemplo	romano
\textsf {exemplo}	exemplo	serifado

Neste curso empregamos \usepackage{ulem} para outras versões de sublinhado. Este pacote também modifica o enfatizado para sublinhado, como no exemplo. Normalmente o enfatizado tem aparência de itálico e se for essa a escolha inclua a opção normalem na inclusão do pacote:

\usepackage[normalem]{ulem}

2.4. Estilo (2/3

As opções de estilo implementadas pelo pacote ulem são:

Comando	Estilo	Nome
\uline {exemplo}	exemplo	sublinhado
\uuline {exemplo}	<u>exemplo</u>	sublinhado duplo
\uwave{exemplo}	exemplo	sublinhado ondulado
\sout{exemplo}	exemplo	riscado
\xout{exemplo}	éxémplo/	muito riscado
\dashuline{exemplo}	exemplo	sublinhado traçado
\dotuline {exemplo}	exemplo	sublinhado pontilhado

Geralmente os estilos podem ser combinados, então cabe ao usuário escolher combinações que façam sentido. Exemplo:

```
\textbf{\textit{negrito itálico}}
```


2.4. Estilo (3/3)

Alternativamente, os estilos comuns também podem ser utilizados na forma de "comando de estado":

Comando	Estilo	Nome
{\em exemplo}	exemplo	enfatizado
{ \it exemplo}	exemplo	itálico
{ \sl exemplo}	exemplo	inclinado
{\bf exemplo}	exemplo	negrito
{ \tt exemplo}	exemplo	máquina de escrever
{\sc exemplo}	EXEMPLO	caixa alta
{\rm exemplo}	exemplo	romano
{\sf exemplo}	exemplo	serifado

2.5. Cores (1/4)

■ O pacote color oferece o essencial e define as 8 cores básicas:

■ Para tratar cores, entretanto, é melhor incluir o pacote xcolor que estende o anterior com novas cores e acrescenta comandos para colorir tabelas:

```
\usepackage[usenames,table]{xcolor}
```

A opção usenames define nomes para as cores padrão A opção table oferece recursos para colorir tabelas⁴ 2.5. Cores (2/4)

■ Cor do texto: \textcolor{cor}{texto} ou \color{cor}{texto}

```
Este \textcolor{blue}{exemplo} mostra \textcolor{red}{como}
usar cores no \LaTeX\ {\color{cyan} por} meio de {\color{red}}
comandos do pacote} \textbf{\texttt{xcolor}}
```

Este exemplo mostra como usar cores no lAT_EX por meio de comandos do pacote xcolor

Cor do fundo: \colorbox{cor}{texto}

```
\colorbox{yellow}{Exemplo} super
\colorbox{red}{\textcolor{white}{simples}}
de como \colorbox{black}{{\color{cyan}podemos}} usar cores no
\colorbox{blue}{\textcolor{green}{\LaTeX}}
```

Exemplo super simples de como podemos usar cores no WEX.

2.5. Cores (3/4)

■ Definindo cores: \definecolor{nome}{modelo}{especificação}

```
■ Modelos: 

Gray (Escala de Cinza)

RGB (Red, Green, Blue)

CMYK (Cyan, Magenta, Yellow, Black)
```

Verde escuro por RGB

Cinza por Gray

Laranja por CMYK

Consulte paletas na web para auxiliar na criação de cores 5

⁵latexcolor.com OU http://bcb.med.usherbrooke.ca/images/palette.png

2.5. Cores (4/4)

 Também é possível especificar novas cores diretamente, usando um dos 3 modelos vistos ou através da mistura de cores já definidas

Forma: \color{nome-da-cor!porcentagem-na-mistura}

```
== purple
... agora misturando:
== blue!40
== red!60 + yellow!100
== blue!60 + black!40 + green!100
```

■ Comando para batizar cores criadas por mistura

Forma: \colorlet{nome-da-cor}{mistura}

2.6. Grupos

- **Grupo** é uma massa de texto que inicia com { e termina com } ⁶
- O conceito de grupo é típico do TEX e simplifica o trabalho do compilador. O grupo delimita uma região do texto como campo de ação para certos comandos. Mudanças de estado causadas dentro de um grupo são descartadas quando o grupo termina.

Exemplo:

```
{grupo com \bf exemplo de mudança}
```

o comando de estado **\bf** , que ativa o negrito, só vai atuar até o final do grupo, porque depois a mudança de estado será descartada.

 Entender o conceito de grupo será importante depois para a utilização de recursos mais avançados do LATEX

Ambientes básicos

- 3 Ambientes básicos
 - Definição
 - Listas
 - Alinhamentos
 - Molduras
 - Especiais

3.1. Ambientes: que são e para que?

■ Um ambiente LATEX é uma região do texto delimitada pelos comandos:

```
\begin { ambiente }
...
\end { ambiente }
```

- Os ambientes são utilizados pelo lATEX para prover diversos tipos de recursos de formatação, além de permitir ao autor definir escopos de ação para comandos específicos
- Alguns recursos úteis providos com o uso de ambientes:
 - listas: itemize, enumerate, description
 - alinhamentos: center, flushleft, flushright
 - desligar formatação: verbatimmarcar comentários: comment
 - molduras: framed
- Existem diversos outros tipos de ambientes além desses. Alguns ambientes importantes serão abordados no decorrer deste curso.

3.2. Listas: itemize (1/8)

Exemplo simples de lista:

```
Os objetivos do curso são:

| begin{itemize}
| \item Ensinar os princípios de \LaTeX\ aos alunos de IFMG
| \item Melhorar a qualidade da editoração dos trabalhos
| \item Disseminar o uso desta ferramenta
| \end{itemize}
```

Os objetivos do trabalho são:

- Ensinar os princípios de LATEX aos alunos de IFMG
- Melhorar a qualidade da editoração dos trabalhos
- Disseminar o uso desta ferramenta

3.2. Listas: itemize (2/8)

■ É comum o aninhamento de listas:

```
Para iniciar o sistema:

| begin{itemize}
| item Energize o computador e pressione o botão Ligar
| item No gerenciador de \textit{boot}, escolha:
| begin{itemize}
| item Linux, se for \textit{dual boot};
| item Windows, se for único sistema disponível.
| \end{itemize}
| \end{itemize}
```

Para iniciar o sistema:

- Energize o computador e pressione o botão Ligar
- No gerenciador de *boot*, escolha:
 - Linux, se for dual boot;
 - Windows, se for único sistema disponível.

3.2. Listas: itemize (3/8)

■ É simples alterar o símbolo de cada item:

```
% Exemplos diversos
Enumerando texto estranho:
\begin { itemize }
   \item[$\bullet$] bolinha
   \item[$\pi$] pi
   \item[$\Delta$] delta
      \begin { itemize }
        \item[\textbf{5.1}] texto
        \item[\textbf{5.2}] texto
      \end{itemize}
   \item[\textcircled{a}] circulo
   \item[\textcircled{b}] circulo
   \item[\textcircled{c}] circulo
\end{itemize}
```

Enumerando texto estranho:

- bolinha
- π pi
- ∆ delta
 - 5.1 texto5.2 texto
- a círculo
- **b** círculo
- © círculo

3.2. Listas: enumerate (4/8)

Exemplo simples de lista:

```
Os objetivos do curso são:
\text{begin {enumerate}}
\text{item Ensinar os princípios de \LaTeX\ aos alunos de IFMG
\text{item Melhorar a qualidade da editoração dos trabalhos}
\text{item Disseminar o uso desta ferramenta}
\text{end {enumerate}}
```

Os objetivos do trabalho são:

- Ensinar os princípios de LATEX aos alunos de IFMG
- 2 Melhorar a qualidade da editoração dos trabalhos
- 3 Disseminar o uso desta ferramenta

3.2. Listas: enumerate

(5/8)

■ É simples alterar o sistema da enumeração:

```
Os objetivos do trabalho são:
\begin{enumerate}[(a)]
\item Ensinar os princípios de \LaTeX\ aos alunos de IFMG
\item Melhorar a qualidade da editoração dos trabalhos
\item Disseminar o uso desta ferramenta
\end{enumerate}
```

Os objetivos do trabalho são:

- (a) Ensinar os princípios de LATEX aos alunos de IFMG
- (b) Melhorar a qualidade da editoração dos trabalhos
- (c) Disseminar o uso desta ferramenta

3.2. Listas: enumerate

(6/8)

■ É simples iniciar a enumeração partindo de um número arbitrário

```
Os objetivos do trabalho são:

| begin {enumerate} \setcounter {enumi}{5} |
| \item Ensinar os princípios de \LaTeX\ aos alunos de IFMG |
| \item Melhorar a qualidade da editoração dos trabalhos |
| \vspace {0.5cm} |
| \item Disseminar o uso desta ferramenta |
| \end {enumerate}
```

Os objetivos do trabalho são:

- 6 Ensinar os princípios de LATEX aos alunos de IFMG
- 7 Melhorar a qualidade da editoração dos trabalhos
- 8 Disseminar o uso desta ferramenta

3.2. Listas: description

(7/8)

Exemplo simples de lista:

```
Os objetivos do trabalho são:

\begin{description}
\item[Ensinar] os princípios de \LaTeX\ aos alunos de IFMG
\item[Melhorar] a qualidade da editoração dos trabalhos
\item[Disseminar] o uso desta ferramenta
\end{description}
```

Os objetivos do trabalho são:

Ensinar os princípios de LATEX aos alunos de IFMG

Melhorar a qualidade da editoração dos trabalhos

Disseminar o uso desta ferramenta

3.2. Pacotes úteis para personalizar listas

(8/8)

Pacote	Provê	Funcionalidade
	ambientes	
	compactitem	Gerar lista compacta
paralist	compactenum	
	ambientes	
	inparaitem	Gerar lista em linha
	inparaenum	
	ambientes	
	asparaitem	Gerar lista de parágrafos
	asparaenum	
enumitem	diversos comandos	Personalizar símbolo, espaçamento, etc

3.3. Alinhamentos

Centralizado

\begin{center}
 Texto centralizado.
\end{center}

Texto centralizado.

■ Esquerda

\begin{flushleft}
 Texto à esquerda.
\end{flushleft}

Texto à esquerda.

Direita

\begin{flushright}
 Texto à direita.
\end{flushright}

Texto à direita.

3.4. Molduras

O ambiente framed desenha um frame ao redor do texto destacado. Para usar é preciso incluir \usepackage{framed} no preâmbulo.

```
O ambiente \textbf{framed} insere moldura ao redor de um texto.
\textbf{framed}
Regra $3/8$ de Simpson:
$ I_3 = \frac{3h}{8}\big(y_0 + 3y_1 + 3y_2 + y_3 \big) $
\end{framed}
Para colocar \textbf{frame} em algumas palavras
use \texttt{\textbackslash fbox\{\dots\}}.\\
\fbox{Exemplo} de como \fbox{colocar} texto em \textit{frames}.
```

O ambiente framed insere moldura ao redor de um texto.

Regra 3/8 de Simpson:
$$I_3 = \frac{3h}{8} (y_0 + 3y_1 + 3y_2 + y_3)$$

Para colocar frame em algumas palavras use $\footnote{fbox}\{\dots\}$.

Exemplo de como colocar texto em frames.

■ O ambiente verbatim é útil para escrever textos não compilados

```
A fórmula de Bháskara é x = \frac{-b \pm \sqrt\{b^2 - 4ac\}}{2a\}}, codificada em \LaTeX.
```

- Observe que o texto escrito dentro do ambiente verbatim n\u00e3o foi compilado pelo LATEX e apareceu literalmente no documento final
- Existe uma alternativa em linha implementada como macro T_EX que causa o mesmo efeito do ambiente verbatim e pode ser usada na forma \verb|...|

O ambiente comment é útil na fase de escrita do documento e testes de compilação para marcar regiões do documento como comentário. Para usar é preciso incluir \usepackage{comment} no preâmbulo.

```
\begin {comment}
Gera: \\[2mm]
\begin {moldura}[white][10.9cm][black]
   \begin {figure}
   \includegraphics[scale=0.40]{fig/foto1.png}
   \end {figure}
\end {moldura}
\smallskip
\end {comment}
```

■ O texto dentro do ambiente comment é tratado como comentário pelo LATEX e não gera nenhum resultado no documento final.

Organização do documento

- 4 Organização do documento
 - Layout das páginas
 - Seções e índices
 - Notas de rodapé
 - Referências cruzadas

4.1. Como o LATEX formata as páginas

(1/2

- O layout da página em LATEX é definido por vários parâmetros internos, cada um correspondendo ao tamanho de um elemento da página medido em pontos (pt)
- Esse layout é, evidentemente, afetado diretamente pelo tipo de documento definido em \documentclass
- Normalmente recomenda-se **não** modificar o padrão estabelecido mas, caso seja necessário, existem pacotes que auxliam nessa tarefa:

Pacote	Descrição breve	
layout	define o comando \layout que apresenta um sumário dos elementos que definem o formato da página	
showframe	desenha um diagrama simples que mostra o layout definido	
geometry	permite alterar facilmente os elementos que definem o layout	
fancyhdr	permite configurar cabeçalhos e rodaés de um jeito fácil	

- Os pacotes layout e showframe são úteis para debug
- Os pacote geometry e fancyhdr auxiliam na configuração do layout
- Existem belos *templates* disponíveis na internet ⁷

4.1. Como o La formata as páginas

(2/2)

- 1. 72pt + \hoffset
- 2. 72pt + \voffset
- 3. \oddsidemargin = 31pt
- 4. \topmargin = 20pt
- 5. \headheight = 12pt
- 6. \headsep = 25pt
- 7. \textheight = 592pt
- 8. \textwidth = 390pt
- 9. \marginparsep = 10pt
- 10. \marginparwidth = 35pt
- 11. \footskip = 30pt
- \marginparpush = 7pt (não mostrado)
- \hoffset = 0pt
- \voffset = 0pt
- \paperwidth = 597pt
- \paperheight = 845pt

A forma do documento é fixada no preâmbulo:

```
\documentclass[a4paper,12pt]{ article }
%---- mandatórios
\usepackage[brazil]{babel}
\usepackage[T1]{fontenc}
\usepackage[latin 1]{inputenc}
%---- outros
\usepackage{times} % fontes
\usepackage{hyperref} % links
\usepackage {amsmath,amssymb,amsfonts} % matematica
%---- o conteúdo começa aqui:
\title { Algumas explicações sobre o \LaTeX }
\author{Walace Rodrigues}
\date{\today} % mais claro impossível
```

Uma vez definida a forma, o autor pode se concentrar no conteúdo do documento:

```
\begin { document }
\maketitle
\begin{abstract}
   O objetivo deste documento é ajudar você a entender algumas coisas.
\end{abstract}
\section { Introdução }
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Maecenas pretium urna ut nisl semper sed mattis erat interdum.
Vestibulum eget massa nisi. Donec feugiat conseguat leo.
a vehicula est imperdiet at.
\section {O que você pode fazer?}
Quase tudo, por exemplo, se você precisar é muito fácil trabalhar
no modo matemático. É claro que \frac{x \cdot y}{y} = x.
Mas isso fica mais evidente quando está bem escrito.
\end { document }
```

(3/4)

A estrutura lógica do documento é determinada nas seções utilizadas pelo autor:

Algumas explicações sobre o LATEX

Walace Rodrigues

27 de janeiro de 2016

Resumo

O objetivo deste documento é ajudar você a entender algumas coisas.

Introdução

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Maecenas pretium urna ut nisl semper sed mattis erat interdum. Vestibulum eget massa nisi. Donec feugiat consequat leo, a vehicula est imperdiet at.

2 O que você pode fazer?

Quase tudo, por exemplo, se você precisar é muito fácil trabalhar utilizando o modo matemático. É claro que $\forall x \neq 0, \frac{x^2}{x} = x$. Mas isso fica ainda mais evidente quando vem bem escrito no documento.

■ Para criar seções específicas no documento, usar:

Comando	Nível
	0
	1
	2
	3

Nota: \chapter{...} existe somente para as classes book e report

Para incluir índices para seções, figuras e tabelas, usar:

Comando	Descrição
	gera o índice com as seções
	gera o índice de figuras
	gera o índice de tabelas

Nota: outros tipos de índices podem ser gerados por pacotes específicos

4.3. Notas de rodapé

■ Acrescentar notas de rodapé é fácil: use o comando \footnote{...}

```
Criar notas de rodapé é fácil\footnote{Um exemplo de nota.}.
```

■ Para numerar as notas de rodapé por seção, acrescente ao preâmbulo:

```
\makeatletter
\@addtoreset{footnote}{section}
\makeatother
```

■ Para numerar as notas de rodapé por página, acrescente ao preâmbulo:

```
\usepackage{perpage}
\MakePerPage{footnote}
```

4.4. Referências cruzadas

Quase tudo numerado (seções, tabelas, figuras, etc) pode ser referenciado:

Comando	Descrição
\label{marca}	coloca uma marca no objeto
\ref{marca}	referencia o objeto marcado
\pageref{marca}	imprime o número da página onde está o objeto marcado

Adicione um prefixo no nome da marca para indicar o tipo do objeto marcado:

Prefixo	Objeto
sec:	seção
fig:	figura
tab:	tabela
itm:	item de lista

Prefixo	Objeto
eq:	equação
lst:	código
alg:	algoritmo
app:	apêndice

Exemplo:

Veja a Figura~\ref{fig:exemplo} na página~\pageref{fig:exemplo}.

Bibliografia

- 5 Bibliografia
 - Idéia geral
 - Bibliografia embarcada
 - BibTeX

5.1. Citações e Referências Bibliográficas

- Acrescentar referências ao documento é uma parte importante em trabalhos acadêmicos e felizmente o LATEX simplifica muito essa tarefa
- Basicamente, o autor cria uma *tag* para cada obra consultada, fornece as informações necessárias sobre cada obra, e finalmente referencia as obras armazenadas recorrendo às *tags*.
- Existem duas formas básicas para lidar com as informações sobre as obras:
 - Ambiente thebibliography, as informações ficam embutidas no arquivo .tex do documento
 - Módulo BibTeX, as informações ficam armazenadas num arquivo texto auxiliar .bib que depois será consultado pelo módulo para gerar os dados necessários para o LATEX
- Em ambos os casos é possível fazer citações para as obras consultadas usando o comando \cite

(1/2)

 O ambiente thebibliography é simples de usar, mas exige que o usuário escreva os dados da obra por conta própria. As obras são inseridas dentro do ambiente através do comando \bibitem

```
\section { Introdução }
Segundo \cite{barroso}, os sistemas lineares são classificados em possíveis determinados,
possíveis intederminados e impossíveis.
\subsection{Resolução por métodos diretos}
Sistemas lineares podem ser resolvidos por métodos diretos e iterativos. \cite{ruggiero}
citam como métodos diretos a Decomposição LU e a eliminação de Gauss.
\subsection{Resolução por métodos iterativos}
\cite {barroso} discutem em sua obra dois dos métodos iterativos mais conhecidos
para resolução de sistemas lineares: o método de Gauss-Seidel e o método de Jacobi.
\begin{thebibliography}{1}
    \bibitem[Barroso e Campos]{barroso}
   BARROSO, Leonidas; CAMPOS FILHO, Frederico Ferreira.
    \newblock Cálculo Numérico (Com Aplicações). 2$^a$ edição.
    \newblock Editora Harbra, 1987, ISBN: 85-29400-89-5
    \bibitem[Ruggiero e Lopes]{ruggiero}
   RUGGIERO, Márcia: LOPES, Vera Lúcia da Rocha,
    \newblock Cálculo Numérico - Aspectos Teóricos e Computacionais. 2$^a$ edicão.
    \newblock Editora Pearson Makron, 1996, ISBN: 978-85-346-0204-4.
\end{thebibliography}
```

O resultado final no documento é:

1 Introdução

Segundo [Barroso e Campos], os sistemas lineares são classificados em possíveis determinados, possíveis intederminados e impossíveis.

1.1 Resolução por métodos diretos

Sistemas lineares podem ser resolvidos por métodos diretos e iterativos. [Ruggiero e Lopes] citam como métodos diretos a Decomposição LU e a eliminação de Gauss.

1.2 Resolução por métodos iterativos

[Barroso e Campos] discutem em sua obra dois dos métodos iterativos mais conhecidos para resolução de sistemas lineares: o método de Gauss-Seidel e o método de Jacobi.

Referências

[Barroso e Campos] BARROSO, Leonidas; CAMPOS FILHO, Frederico Ferreira. Cálculo Numérico (Com Aplicações). 2º edição. Editora Harbra, 1987. ISBN: 85-29400-89-5

[Ruggiero e Lopes] RUGGIERO, Márcia; LOPES, Vera Lúcia da Rocha. Cálculo Numérico - Aspectos Teóricos e Computacionais. 2º edição. Editora Pearson Makron. 1996. ISBN: 978-85-346-0204-4. 5.3. BibTeX (1/3)

- O módulo BibTeX oferece comodidade para tratar longas listas de referências
- As informações sobre as obras ficam armazenadas num arquivo texto .bib que funciona como base de dados para o módulo BibTeX
- A estrutura do arquivo .bib é muito simples e ele pode ser facilmente editado. Exemplo de entrada nesse arquivo:

```
@article {greenwade93,
   author = "George D. Greenwade",
   title = "The Comprehensive Tex Archive Network ({CTAN})",
   year = "1993",
   journal = "TUGBoat",
   volume = "14",
   number = "3",
   pages = "342--351"
}
```

5.3. BibTeX (2/3)

 Cada entrada no arquivo .bib começa com a declaração do tipo da referência, na forma @tipo.

■ O BibTeX oferece uma variedade enorme de tipos de referências, tais como:

Tipo	Objeto
article	artigos em periódicos e revistas
book	livros publicados
booklet	livros sem editor ou patrocinador
conference	conferências e congressos
inproceedings	trabalhos publicados em conferências
manual	manuais técnicos
mastersthesis	dissertações de mestrado
pdhthesis	teses de doutorado
techreport	relatórios técnicos
misc	outros tipos de publicação

■ Depois do tipo, segue um grupo com os campos de informações sobre a obra

5.3. BibTeX (3/3)

Para cada tipo de obra, existem campos obrigatórios e campos opcionais. Por exemplo:

```
@article { tag ,
    author = "" ,
    title = "" ,
    journal = "" ,
    %volume = "" ,
    %number = "" ,
    year = "" ,
    %month = "" ,
    %note = "" ,
```

@article

Campos obrigatórios: author, title, journal, year. Campos opcionais: volume, number, pages, month, note.

 BibTeX n\u00e3o permite coment\u00e1rios dentro das entradas, se precisar comente fora delas

Existem ótimos aplicativos para auxiliar no preenchimento do arquivo .bib, inclusive com busca online de títulos e autores para preencher automaticamente os campos necessários. Teste algum⁸.

5.3. BibTeX (4/4)

- Como usar o BibTeX?
 - (1) Criar o arquivo documento.bib e salvar na pasta do documento.tex
 - (2) Incluir entradas para as obras consultadas em documento.bib
 - (3) No final do documento.tex, antes do comando \end{document}, inserir os comandos:

```
\bibliographystyle{plain}
\bibliography {documento}
```

- (4) Para fazer citação de uma obra, use o comando \cite{tag-da-obra}
- Existem outros estilos além do plain para o BibTeX. Teste alguns deles 9

Caixas

- 6 Caixas
 - Idéia geral
 - Minipáginas
 - Caixas flutuantes
 - Figuras
 - Modificando o tamanho

(1/2)

- A unidade básica de uma compilação LAT_EX é a caixa
- Tudo são caixas para o LAT=X: caracteres, palavras, parágrafos, imagens, etc
- Quando o LATEX compila um documento, ele está organizando caixas

- Ele começa organizando os caracteres (caixas) para formar palavras (caixas)
- Depois, posiciona as caixas na linha base, como numa superfície de água: dependendo do "peso" (tipo) da caixa, parte dela ficará submersa

■ O comando \mbox permite ao autor criar caixas simples em torno de um texto. Isso proíbe o LATEX de separar seu conteúdo: caixas são unidades indivisíveis.

```
\mbox{Esta frase não será separada pelo \LaTeX.}
```

Atenção, se a caixa não couber numa linha o resultado será ruim

O comando \makebox permite ao autor especificar a largura da caixa e a posição do texto dentro dela.

```
\makebox[8cm]{Este texto indivisível está centralizado.} \\
\makebox[8cm][c]{Este texto indivisível está centralizado.} \\
\makebox[8cm][s]{Este texto indivisível está justificado.}
```

A forma geral do comando é: \makebox[largura][posição] {texto} O parâmetro posição é opcional e o padrão é centralizado. As opções são: [c] = centralizado, [l] = à esquerda, [r] = à direita, [s] = justificado

 Dois outros comandos funcionam de modo análogo, mas acrescentando molduras nas caixas: \fbox e \framebox. O ambiente minipage é muito útil e permite criar uma caixa que é uma minipágina com todas as características de uma página normal, isto é, pode ter cabeçalho, notas de rodapé etc.

O parâmetro posição é opcional e o padrão é centralizado. As opções são: [c] = centralizado, [b] = linha do fundo, [t] = linha do topo

A posição especifica como fica o alinhamento da minipage na linha base

(2/3)

■ O ambiente minipage pode ser utilizado para criar layouts

```
% Primeira minipágina
\begin { minipage } [t] {0.30 \linewidth }
\color{red}
Esta minipágina contêm um espaço equivalente à 30\%
da largura da linha da página. Observe como o texto
se ajusta ao espaço da minipágina.
\end{minipage}
\hspace{0.05\linewidth} % IMPORTANTE: sem linha em branco aqui
% Segunda minipágina
\begin { minipage } [ t ] {0.65 \linewidth }
\color{blue}
Deste lado temos uma minipágina com espaço de apenas 65\%
da largura da linha da página.
Dentro de uma minipágina podemos inserir o que quisermos, figuras,
tabelas, etc. Isso permite, por exemplo, colocar textos e figuras
lado a lado.
\end{minipage}
```

(3/3)

■ Resultado da compilação do código do slide anterior:

Esta minipágina contêm um espaço equivalente à 30% da largura da linha da página. Observe como o texto se ajusta ao espaço da minipágina.

Deste lado temos uma minipágina com espaço de apenas 65% da largura da linha da página. Dentro de uma minipágina podemos inserir o que quisermos, figuras, tabelas, etc. Isso permite, por exemplo, colocar textos e figuras lado a lado.

■ O ambiente minipage na sua forma completa admite mais dois parâmetros:

Forma geral: \begin{minipage} [posição] [A] [P] {largura} onde:

- A especifica a altura da minipage
- P especifica o posicionamento vertical do texto dentro da minipage

6.3. Caixas flutuantes

(1/2)

- Uma caixa flutuante é uma unidade indivisível que contém textos, imagens, etc
 - ela não pode ser quebrada durante a mudança de página
 - ela é útil para tratar objetos que não se encaixam na página corrente
 - ela não faz parte do fluxo normal do texto e é posicionada diferentemente
- Flutuantes costumam incomodar muito os novatos com mentalidade WYSIWYG
- Flutuantes são adornados com legendas e recebem numeração automática, por isso compõem índices específicos disponibilizados automaticamente
- Exemplos típicos de flutuantes são figuras e tabelas. No decorrer do curso estudaremos esses flutuantes e veremos outros
- O autor também pode criar flutuantes (utilizando o pacote float) e alguns pacotes provêem outros além das figuras e tabelas

■ As caixas flutuantes são especiais porque é o LATEX e não o autor que escolhe onde posicioná-las na página para alcançar o melhor efeito, o autor pode apenas sugerir as opções de posicionamento que mais lhe agradam.

```
\begin{tipoFlutuante}[posição]
% conteúdo da caixa flutuante
\end{tipoFlutuante}
```

- As opções de posicionamento que o autor pode sugerir são:
 - [t] no topo da página (atual ou seguinte)
 - [b] no fundo da página (atual ou seguinte)
 - [p] numa página especial para caixas flutuantes (mais à frente)
 - [h] aqui (ou melhor, tão breve quanto possível a partir daqui)
 - [!] força uma opção ignorando considerações do LaTeX (cuidado!)
 - [H] precisamente aqui, requer o pacote float (cuidado!)
- Como o autor não sabe ao certo onde será efetivamente posicionada uma caixa flutuante na página, é normal utilizar referências cruzadas para apontar para esses objetos ao longo do texto.

6.4. Figuras (1/5)

O autor pode inserir figuras diretamente no texto, mas figuras são caixas

Figura \includegraphics[scale=0.10]{knuth.png} inserida no texto.

inserida no texto.

Inserir diretamente uma figura no texto pode não gerar bom resultado, então o LATEX oferece como alternativa o ambiente figure que cria uma caixa flutuante para posicionar figuras de forma adequada no documento

```
\begin{figure}[posição]
... figura e descrição ...
\end{figure}
```

6.4. Figuras (2/5)

■ O ambiente figure é normalmente utilizado da forma abaixo

```
\begin{figure}[posição]
  \includegraphics[opções]{arquivo}
  \caption{legenda}
  \label{tag}
\end{figure}
```

- Opções de posicionamento [posição]: são as mesmas das caixas flutuantes
 - [t] no topo da página (atual ou seguinte)
 - [b] no fundo da página (atual ou seguinte)
 - [p] numa página especial para caixas flutuantes (mais à frente)
 - [h] aqui (ou melhor, tão breve quanto possível a partir daqui)
 - [!] força uma opção ignorando considerações do LaTeX (cuidado!)
 - [H] precisamente aqui, requer o pacote float (cuidado!)
- Marca para referência {tag}: criada pelo comando \label 10

¹⁰Ver secão 4. 4 sobre referências cruzadas.

6.4. Figuras (3/5)

■ Apenas para comodidade, segue a forma do ambiente figure de novo:

```
\begin{figure}[posição]
  \includegraphics[opções]{arquivo}
  \caption{legenda}
  \label{tag}
\end{figure}
```

Opções da figura [opções]: as mais comuns são

```
scale=xx fator de escala (0.5 reduz o tamanho da figura pela metade)
height=xx altura da imagem
width=xx largura da imagem
angle=xx ângulo de rotação (sentido anti-horário)
valign=x alinhamento vertical (posição na linha base, opções: t, c, b) 11
```

- Legenda para a figura {legenda}: criada pelo comando \caption 12
- Nome do arquivo {arquivo}: vários formatos são permitidos (png, jpg, etc)

75 / 154

¹¹ Requer \usepackage[export]{adjustbox} no preâmbulo

¹²Se \caption vem antes de \includegraphics, a legenda vem antes da figura =

(4/5)

6.4. Figuras

Exemplo:

```
\begin{itemize}
    \item A figura Fig~\ref{fig:knuth} apresenta uma foto
    antiga do criador do \TeX.
    \begin{figure }[H]
        \centering
        \includegraphics[scale = 0.10]{knuth.png}
        \caption{\footnotesize Donald Knuth, Autor do TAOCP}
        \label{fig:knuth}
    \end{figure}
    \item A figura Fig~\ref{fig:knuth-rotacao} é semelhante à
    Fig~\ref{fig:knuth} porém com rotação de $90^o$, com 90\%
   do tamanho anterior.
    \begin { figure } [H]
        \centering
        \includegraphics[scale=0.09,angle=90]{knuth.png}
        \caption{Donald Knuth, Autor do TAOCP e \TeX}
        \label { fig: knuth-rotacao }
    \end{figure}
\end{itemize}
```

6.4. Figuras (5/5)

Resultado:

A figura Fig 1 apresenta uma foto antiga do criador do TEX.

Figura 1: Donald Knuth, Autor do TAOCP

A figura Fig 2 é semelhante à Fig 1, porém com rotação de 90^o , com 90% do tamanho anterior.

Figura 2: Donald Knuth, Autor do TAOCP e do TEX

6.5. Modificando o tamanho da caixa

- O autor pode alterar o tamanho de uma caixa utilizando o comando \resizebox{largura}{altura}{caixa}
- Para modificar a largura da caixa, mantendo a proporção, use \resizebox{largura}{!}{caixa}
- Para modificar o tamanho da caixa por escala, mantendo a proporção, use \scalebox{proporção}{caixa} 13
- Exemplo:

 $\resizebox \{!\}\{1.5cm\}\{\\bigstar\}\}$

¹³Requer o pacote graphicx carregado.

Matemática

- 7 Matemática
 - Idéia geral
 - Símbolos e operadores
 - Fórmulas
 - Delimitadores
 - Matrizes e arranjos
 - Equações e teoremas

7.1. Notação matemática no LATEX

- Umas das maiores vantagens do lATEX consiste na possibilidade de criar fórmulas matemáticas com boa apresentação visual
- Fórmulas matemáticas são inseridas no LATEX por várias maneiras:
 - Ambiente math (ou \$...\$), para expressões matemáticas inline
 - Ambiente displaymath (ou \$\$...\$\$), para exibir equações
 - Ambiente equation, para equações numeradas
- Dentro destes ambientes é possível incluir facilmente:
 - operadores matemáticos
 - letras gregas
 - notações em lógica
 - potenciação
 - frações
 - funções

- l binômios
- radiciação
- somatórios e produtórios
- integração e derivação
- matrizes e arranjos
- símbolos matemáticos

7.2. Símbolos e operadores

(1/2)

- Operadores matemáticos: $+ = ! | () [] \setminus { }$
- Alguns símbolos matemáticos dentre os muitos disponíveis:

Grupo	Sintaxe	Como é exibido
funções padrão	$\c x$ + $\ln \{y\}$ + sgn_z	$\cos x + \ln y + \operatorname{sgn} z$
arit. modular	\$s_k \equiv 0 \pmod{m}\$	$s_k \equiv 0 \pmod{m}$
espaçamentos	\$x \! x x x \: x \; x x \qquad x\$	xxxxxx x x
derivação	\$\nabla \partial {dx}\$	$\nabla \partial dx$
conjuntos	$\x \in \{x,y\} for x \in \mathbb{N} \$ y\subseteq A\cup B\cap C\$	$\exists \{x,y\} \forall x \notin \mathbb{N} y \subseteq A \cup B \cap C$
lógica	\$p \land \overline {q} \to p \lor \lnot {q}\$	$p \wedge \overline{q} \rightarrow p \vee \neg q$
raízes	\$\sqrt{2} \approx 1{,}4 \sqrt[n]{x}\$	$\sqrt{2} \approx 1.4$ $\sqrt[n]{x}$
op. relacionais	\$\sim \simeq \cong \le \ge \equiv \not\equiv \ne\$	$\sim \simeq \cong \leq \geq \equiv \neq \neq$
geometria	<pre>\$\triangle \; \angle \; \perp \; 45^\circ \$</pre>	Δ∠ ⊥ 45°
setas	\$\leftarrow \; \rightarrow \; \leftrightarrow \\$ \$\longleftarrow \; \longrightarrow \; \searrow \; \swarrow \; \nwarrow \\$ \$\uparrow \; \downarrow \; \updownarrow \\$	 111
especiais	<pre>\$\infty \; \pm \; \mp \; \bullet \; \circ \; \oplus \; \otimes\$</pre>	$\infty \pm \mp \bullet \circ \oplus \otimes$

7.2. Símbolos e operadores

■ Fontes úteis:

Sintaxe	Letra Grega
\alpha	α
\beta	β
\gamma	γ
\delta	δ
\epsilon	ϵ
\zeta	ζ
\eta	η
\theta	θ
\kappa	κ
\lambda	λ
\mu	μ
\nu	ν
\xi	ξ
\pi	π
\rho	ρ
\sigma	σ
\tau	τ
\phi	ϕ
\chi	χ
\psi	Ψ
\omega	ω

Sintaxe	Letra Grega
\Gamma	Γ
\Delta	Δ
\Theta	Θ
\Lambda	Λ
\Xi	Ξ
∖Pi	П
\Sigma	Σ
\Phi	Φ
\Psi	Ψ
\Omega	Ω

Sintaxe	Letra ^a
\mathbb{A}	A
\mathbb{B}	B
\mathbb{C}	C
:	:
\mathbb{Z}	Z

 $a_{{\sf Requer}\,{\sf os}\,{\sf pacotes}\,{\sf amsfonts}\,{\sf ou}\,{\sf amssymb}\,.$

7.3. Fórmulas (1/3)

Sobrescritos e subscritos

```
$f(x) = x^3 + 2x - 10$ \\
$a^{i+3}$ depois
$a_{i \times j}$ depois
$b_2^3$
```

$f(x) = x^3 + 2x - 10$ $a^{i+3} \text{ depois } a_{i \times j} \text{ depois } b_2^3$

Sobrelinhas e vetores

```
$\hat{a} + \widehat{ghi} + \overline{b}$
depois
$\overrightarrow{ab}+\overleftarrow{cd}$
```

$$\hat{a} + \widehat{ghi} + \overline{b}$$
 depois $\overrightarrow{ab} + \overleftarrow{cd}$

Sobrechaves e subchaves

```
$\textbf{begin} {\text{matrix}}
5050 \\
\text{\overbrace} {1+2+\cdots+100} \\
\end{\matrix}$
```

$$\overbrace{1+2+\cdots+100}^{5050}$$

$$\underbrace{a+b+\cdots+z}_{26}$$

Somatórios

\$\$
$$\sum_{k=1}^{n} \{k=1\}^{n}\{k\} = \frac{n}{2}(n+1)$$

$$\sum_{k=1}^n k = \frac{n}{2}(n+1)$$

■ Produtórios

$$\prod_{i=1}^{n} x_i = n!$$

Limites

$$\lim_{n\to\infty}x_n$$

Integrais

$$\int_{-n}^{n} e^{x} dx \qquad \oint_{c} x^{3} dx$$

7.3. Fórmulas (3/3)

■ Frações:

```
$$ \frac{-b \pm \sqrt{\Delta}}{2a} $$
```

```
\frac{-b \pm \sqrt{\Delta}}{2a}
```

■ Coeficientes binomiais:

```
$${n \choose k}
\qquad
\binom{p}{x}$$
```

```
\begin{pmatrix} n \\ k \end{pmatrix} \qquad \begin{pmatrix} p \\ x \end{pmatrix}
```

Funções por partes:

```
Seja $f(x)$ a função dada por $ f(x) = \begin{cases} 0 & \text{se} x < 50 \\ 2x^{2} & \text{se} \ 50 \\ \sqrt{x} + \cos{x}\} & \mbox{se} \ x \ \geq 300. \\
```

```
Seja f(x) a função dada por f(x) = \begin{cases} 0 & \text{se } x < 50 \\ 2x^2 & \text{se } 50 \le x < 300 \\ \sqrt{x + \cos x} & \text{se } x \ge 300. \end{cases}
```

7.4. Delimitadores

- Chamamos delimitadores os sinais que envolvem os objetos matemáticos
- São exemplos de delimitadores: parênteses, colchetes, chaves, barras verticais
- Para gerar delimitadores com tamanho ajustado na altura das caixas, o LATEX oferece os pares de comandos left right:

Comando left	Comando right
\left (\right)
\left [\right]
\left {	\right }
\left	\right

- Esses comandos funcionam em pares
- Para ocultar um dos lados use \left .

```
Errado:
$$( \int_{0}^{\infty}{e^{-st}\,dt} )$$
```

$$(\int_0^\infty e^{-st}\,dt)$$

$$\left(\int_0^\infty e^{-st}\,dt\right)$$

■ A base para construção das matrizes no LATEX é o ambiente matrix, onde as linhas são separadas por \\ e as colunas são separadas por &.

```
$\begin{ matrix}
1 & 20 & 3 \\
-2 & 9 & 14 \\
15 & -23 & -32 \\
\end{matrix}$
```

```
1 20 3
-2 9 14
15 -23 -32
```

- Por padrão o ambiente matrix organiza por linhas com colunas centralizadas
- Para modificar o alinhamento por coluna, use uma opção de alinhamento 14 15

```
$\begin{matrix *}[r]

1 & 20 & 3 \\

-2 & 9 & 14 \\

15 & -23 & -32 \\

\end{matrix *}$
```

¹⁴As opções de alinhamento são as mesmas das tabelas: [r], [I], [c]. Ver seção 8

¹⁵Requer o pacote mathtools

- É simples cercar a matriz com algum par de delimitadores left right 16
- Mas existem variantes do ambiente matrix que funcionam como atalhos:

```
$\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix}$
```

```
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
```

```
$\begin{vmatrix}
a & b \\
c & d \\
\end{vmatrix}$
```

```
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
```

```
$\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}$
```

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

```
$\begin{Bmatrix}
a & b \\
c & d \\
\end{Bmatrix}$
```

$$\begin{cases}
 a & b \\
 c & d
 \end{cases}$$

Quando tratando com matrizes de tamanho arbitrário, é comum usar elipses

```
$A_{m,n} =
  \begin { pmatrix }
    a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
    a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
    \\dots & \dots & \dots & \vdots \\
    a_m,1 & a_{m,2} & \cdots & a_{m,n} \\
    \\end{pmatrix}$
```

$$A_{m,n} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

Quando tratando com frações, pode ocorrer de faltar espaço na linha

Resultado ruim

```
$\begin{bmatrix}
\frac \{5\{6\} & 0 \\
\frac \{5\{6\} & 0 \\
\end{bmatrix}\$
```

```
\begin{bmatrix} \frac{5}{6} & 0\\ \frac{5}{6} & 0 \end{bmatrix}
```

Problema corrigido

```
$\begin{bmatrix}
\frac{5}{6} & 0 \\[2mm]
\frac{5}{6} & 0 \\
\end{bmatrix}$
```

$$\begin{bmatrix} \frac{5}{6} & 0 \\ \frac{5}{6} & 0 \end{bmatrix}$$

■ Ás vezes é necessário ter um controle fino sobre as linhas e colunas da matriz. Isso pode ser obtido com o uso do ambiente array que é essencialmente uma versão modo-matemático para o ambiente tabular ¹⁷

Exemplo:

```
$\begin{array}{c|c|c}
1 & 2 & 3 \\
\hline
4 & 5 & 6 \\
\hline
7 & 8 & 9 \\
\end{array}$
```

■ Para mais detalhes, estude o funcionamento do ambiente tabular

■ O ambiente equation numera automaticamente a equação:

```
A parábola é um tipo de polinômio.

\begin{equation}
\label{eq:parabola}
f(x) = ax^2 + bx + c
\end{equation}
A Equação~\eqref{eq:parabola} é um exemplo.
```

A parábola é um tipo de polinômio.

$$f(x) = ax^2 + bx + c \tag{1}$$

A Equação (1) é um exemplo.

- Com os comandos \ref{...} ou \eqref{...} é possível referenciar a equação no texto. A diferença entre esses comandos é que o primeiro produz "1" e o segundo "(1)"
- Para usar o comando \eqref é preciso incluir o pacote amsmath

■ Para numerar equações subordinadas, use o ambiente subequations:

```
\begin{subequations}
Equações de Maxwell:
\begin{align}
B' &= -\nabla \times E \\
E' &= \nabla \times B - 4\pi j
\end{align}
\end{subequations}
```

Equações de Maxwell:

$$B' = -\nabla \times E \tag{2a}$$

$$E' = \nabla \times B - 4\pi j \tag{2b}$$

- Um \label{...} pode ser incluído no final de cada linha, antes do \\
- Existem vários outros comandos para formatar equações, como:

Comandos	Descrição
\overset e \underset	Posiciona símbolos acima e abaixo na equação
\xLeftarrow[under]{over} 18	Posiciona símbolos acima e abaixo de setas

■ Equações numeradas e alinhadas em múltiplas linhas:

```
\begin{align}
  (a+b)^2 &= (a+b) (a+b) \\
        &= a(a+b) + b(a+b) \nonumber \\
        &= a^2 + 2ab + b^2 \\
  \left{end} \{align}
```

$$(a+b)^{2} = (a+b)(a+b)$$

$$= a(a+b) + b(a+b)$$

$$= a^{2} + 2ab + b^{2}$$
(4)

■ O comando \nonumber cancela uma numeração

Equações não numeradas e alinhadas em múltiplas linhas:

```
\begin{align *}
    (a+b)^2 &= (a+b) (a+b) \\
    &= a(a+b) + b(a+b) \\
    &= a^2 + 2ab + b^2
\end{align *}
```

$$(a+b)^2 = (a+b)(a+b)$$

= $a(a+b) + b(a+b)$
= $a^2 + 2ab + b^2$

- O comando \newtheorem permite ao autor criar novos ambientes para numerar definições, teoremas, provas etc
- O comando para criar o novo ambiente é posicionado no preâmbulo

```
\newtheorem{teorema}{Poderoso Teorema}
```

■ Depois de criado, o novo ambiente pode ser usado no corpo do documento:

```
\begin{teorema}
Seja $f(x)$ uma função cuja derivada existe em todo ponto, então $f(x)$
é uma função contínua.
\end{teorema}
```

Poderoso Teorema 1 Seja f(x) uma função cuja derivada existe em todo ponto, então f(x) é uma função contínua.

Tabelas

- 8 Tabelas
 - Idéia geral
 - Tabelas coloridas
 - Colunas formatadas
 - Família de pacotes

8.1. Tabelas (1/5)

O autor pode inserir tabelas diretamente no texto, mas tabelas são caixas

```
Tabela bit bool of false inserida no texto.
```

Inserir diretamente uma tabela no texto pode não gerar bom resultado, então o LATEX oferece como alternativa o ambiente table que cria uma caixa flutuante para posicionar tabelas de forma adequada no documento

```
\begin{table}[posição]
... tabela e descrição ...
\end{table}
```

- O ambiente tabular cria a tabela
- O ambiente table cria um flutuante para encapsular a tabela
- A complexidade do ambiente tabular exige uma boa indentação

■ O ambiente table é normalmente utilizado da forma abaixo

```
\begin{table}[posição]
... ambiente tabular aqui ...
\caption{legenda}
\label{tag}
\end{table}
```

- Opções de posicionamento [posição]: são as mesmas das caixas flutuantes
 - [t] no topo da página (atual ou seguinte)
 - [b] no fundo da página (atual ou seguinte)
 - [p] numa página especial para caixas flutuantes (mais à frente)
 - [h] aqui (ou melhor, tão breve quanto possível a partir daqui)
 - [!] força uma opção ignorando considerações do LaTeX (cuidado!)
 - [H] precisamente aqui, requer o pacote float (cuidado!)
- Legenda para a tabela {legenda}: criada pelo comando \caption ¹⁹
- Marca para referência {tag}: criada pelo comando \label 20

¹⁹Se \caption vem antes do ambiente tabular, a legenda vem antes da tabela.

²⁰Ver secão 4. 4 sobre referências cruzadas.

■ O ambiente tabular tem a forma geral:

```
\begin{tabular}[posição]{especificação}
... conteúdo da tabela ...
\end{tabular}
```

- Alinhamento vertical na linha base [posição]: parâmetro opcional
 - opções: [t], [c], [b]
 - normalmente você **não** precisa desse parâmetro
- Especificação das colunas e linhas verticais {especificação}:
 - informa o número de colunas na tabela e a formatação para cada coluna
 - o número de colunas é inferido automaticamente dos argumentos
 - a largura de cada coluna é determinada automaticamente
 - a existência de uma linha vertical é indicada por

■ Os símbolos que descrevem o formato de uma coluna na {especificação} são:

Coluna	Descrição
I	coluna com conteúdo justificado à esquerda
С	coluna com conteúdo centralizado
r	coluna com conteúdo justificado à direita
p{largura}	coluna com parágrafo alinhado verticamente no topo
m{largura}	coluna com parágrafo alinhado verticamente no centro ²¹
b{largura}	coluna com parágrafo alinhado verticamente no fundo ²¹
- 1	linha vertical simples
	linha vertical dupla

- O LATEX por padrão não controla quebra de linha na tabela, por isso a largura das colunas pode estourar o tamanho da linha. Para contornar esse problema, são ofertadas as opções **p**, **m**, **b** que permitem especificar a largura da coluna
- A largura da coluna pode ser indicada com uma unidade válida ²² ou como proporção a \textwidth.

²¹Requer o pacote **array** carregado.

²²Por exemplo, **cm** ou **pt**.

```
A Tabela~\ref{tab:tabuada-and} mostra a tabulada para o operador lógico $\land$:
\begin { table } [h]
  \centering
  \begin{tabular}{|cc|c|}
    \hline
    $p$ & $q$ & $p \land q$ \\
    \hline \hline
    0 & 0 & 0 \\
    0 & 1 & 0 \\
    1 & 0 & 0 \\
    1 & 1 & 1 \\
    \hline
  \end{tabular}
  \caption{Tabela verdade para $(p \land q)$}
  \label{tab:tabuada-and}
\end{table}
```

A Tabela 1 mostra a tabulada para o operador lógico A:

q	$p \wedge q$
0	0
4	0
- 1	0
Λ	l o
U	١ ٠
1	1 1
	9 0 1 0 1

Tabela 1: Tabela verdade para $(p \land q)$

O ambiente tabular contém as linhas da tabela:

- As colunas são separadas por &
- As linhas são separadas por \\
- \newline começa nova linha em parágrafo coluna
- hline linha horizontal
- \cline{i-j} linha horizontal parcial da coluna i até j

8.2. Tabelas coloridas

- Para colorir tabelas, inclua no preâmbulo: \usepackage[table]{xcolor}
- Para colorir uma célula da tabela use, no início da célula:

```
\cellcolor{cor}
```

■ Para colorir uma linha da tabela use, no início da linha:

```
\rowcolor{cor}
```

Para colorir as linhas alternando cores use, antes do ambiente tabular:

```
\rowcolors{linha-inicial}{cor-linhas-impares}{cor-linhas-pares}
```

Exemplos

```
\rowcolors {2}{green}{pink}
\begin{tabular}{|ccc|}
\hline \rowcolor{blue!30}
impar & a & b \\
\hline
par & c & d \\
impar & e & f \\
par & g & h \\
\hline
\end{tabular}
```

```
impar a b
par c d
impar e f
par g h
```

8.3. Personalizando colunas

- O conteúdo de uma coluna pode ser formatado com as macros >{...} e <{...}
- Na {especificação} da tabela, as colunas personalizadas tem a forma:

```
>{ comandos-antes } formato <{ comandos-depois }
```

- A macro >{...} indica comandos para executar no início de cada célula da coluna
- A macro <{...} indica comandos para executar no final de cada célula da coluna</p>

```
>{$}p{4cm} <{$}

Coluna de 4cm em modo matemático

Coluna com texto pequeno em vermelho à direita
```

■ Você também pode criar um modelo para usar na {especificação} da tabela

```
\newcolumntype {g}{>{\columncolor{gray}}c}
```

Pacote	Descrição breve
tabularx	cria tabela com largura definida, mas mantendo a definição automática da largura das colunas
booktab	cria tabela elegante com estilo semelhante ao usado em livros
longtable	cria tabela que pode se alongar e continuar além de uma página

- Esses pacotes definem variantes para o ambiente tabular
- Vamos comentar a idéia geral, para mais detalhes ver documentação do pacote
- Outro pacote importante é multirow que permite fazer *merge* de células ²³

- Inclua no preâmbulo: \usepackage{tabularx}
- A forma geral exige o parâmetro adicional {largura}:

```
\begin{tabularx}[posição]{largura}{especificação}
... conteúdo da tabela ...
\end{tabularx}
```

- A {largura} define a largura total da tabela
- A {especificação} aceita as opções de tabular
- A {especificação} aceita a opção adicional X
- A opção X faz o compilador calcular automaticamente a largura da coluna sem ultrapassar o largura definida para a tabela

- Inclua no preâmbulo: \usepackage{booktab}
- O pacote booktab não muda o ambiente tabular, a forma geral do ambiente permanece a mesma:

```
\begin{tabular}[posição]{especificação}
... conteúdo da tabela ...
\end{tabular}
```

■ Na descrição do conteúdo da tabela, o comando \hline é substituído por

```
\toprule para a primeira linha da tabela \bottomrule para a última linha da tabela \midrule para as linhas entre a primeira e a última
```

■ Quando usar as linhas definidas em booktab , não use linhas verticais

8.4. Pacote longtable

(4/4)

- Inclua no preâmbulo: \usepackage{longtable}
- Use o ambiente longtable cuja forma geral é semelhante a tabular :

```
\begin{longtable}{especificação}
... conteúdo da tabela ...
\end{longtable}
```

Algoritmos

- 9 Algoritmos
 - Idéia geral
 - Pacote listings
 - Pacote algorithmic
 - Pacote algorithmicx
 - Pacote algorithm2e

9.1. Algoritmos no LATEX

- Existem vários pacotes para imprimir algoritmos de forma elegante no LATEX. Esses pacotes oferecem comandos que formatam as principais construções dos algoritmos (laços, condicionais, etc)
- É necessário escolher qual pacote utilizar, porque existem diferenças e alguns são incompatíveis entre si
- Vamos apresentar a idéia geral e mostrar exemplos de uso dos principais, para maiores detalhes consulte a documentação do pacote

Pacote	Descrição breve
listings	Este pacote difere dos outros por não oferecer comandos de formatação, mas é muito útil provendo um ambiente adequado para apresentação de códigos fontes
algorithm	Define o ambiente algorithm, uma caixa flutuante para apresentação de algoritmos
algorithmic 1	Define o ambiente algorithmic e comandos para apresentação de pseudo-códigos ²
algorithmicx	Este pacote não define comandos para apresentação, mas facilita a criação deles ² . É usado junto com algum <i>layout</i> de comandos, use o pacote algpseudocode
algorithm2e ¹	Pacote sofisticado com customizações para apresentação de pseudo-códigos ²

Pacote não compatível com o muito usado pacote revtex4-1

²Os pacotes algorithmic, algorithmicx, algorithm2e são incompatíveis entre<u>s</u>i → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨

- Oferece um ambiente para apresentação elegante de códigos fontes, facilitando sua leitura ao destacar os comandos da linguagem escolhida
- Para utilizar, inclua no preâmbulo: \usepackage{listings}
- Para inserir código fonte no próprio documento:

```
\begin{lstlisting}
... escreva o código fonte aqui ...
\end{lstlisting}
```

■ Para inserir código armazenado em arquivo fonte de uma dada liguagem:

```
\\Istinputlisting [language=C]{ arquivo.c}
```

Para inserir código fonte em linha no próprio documento:

```
\lstinline!código fonte!
```

- é possível usar a alternativa \lstinline{código fonte}
- mas código fonte costuma conter }
- a solução é uma macro T_EX onde ! é um delimitador
- ▶ é possível escolher outro delimitador, por exemplo, \$

(2/3)

- É possível personalizar a apresentação dos códigos fontes alterando a configuração padrão oferecida pelo pacote
- O exemplo abaixo mostra como alterar os parâmetros do pacote no preâmbulo:

```
\lstset{
language=Java.
                                 % linguagem do código
                                 % se quiser adicionar mais palavras-chave além do padrão
otherkeywords = { . . . } .
backgroundcolor=\color{white},
                                 % cor de fundo; requer \usepackage{xcolor}
basicstyle=\footnotesize.
                                 % tamanho da fonte
frame=single.
                                 % usa moldura simples em volta do código
rulecolor=\color{black},
                                 % cor da moldura
keepspaces=true,
                                 % conserva espacos no texto, útil para indentação
keywordstyle=\color{blue}.
                                 % estilo para as palavras-chave
commentstyle=\color { green } ,
                                 % estilo para os comentários
stringstyle=\color{purple},
                                 % estilo para strings literais
numbers=left.
                                 % posição da numeração das linhas; opções; none, right
                                 % espaço entre a numeração das linhas e o código
numbersep=5pt,
numberstyle=\tiny\color{gray},
                                 % estilo para a numeração das linhas
showspaces=false.
                                 % usa marca especial para mostrar espaços ?
showstringspaces=false,
                                 % usa marca especial para mostrar espacos em strings ?
showtabs=false,
                                 % usa marca especial para mostrar tabs em strings ?
stepnumber=2,
                                 % passos entre linhas numeradas; 1 numera todas linhas
tabsize=2.
                                 % tamanho do tab em espacos
```

O pacote também permite definir estilos para uso posterior.
 Os exemplos abaixo ilustram isso:

```
\lstdefinestyle {customc}{
  language=C, frame=L, xleftmargin=\parindent, breaklines=true, showstringspaces=false,
  basicstyle=\footnotesize\ttfamily, keywordstyle=\bfseries\color{green!40!black},
  commentstyle=\itshape\color{purple!40!black}, identifierstyle=\color{blue},
  stringstyle=\color{orange},
}

\lstdefinestyle {customasm}{
  language=[x86masm]Assembler, frame=L, xleftmargin=\parindent,
  basicstyle=\footnotesize\ttfamily, commentstyle=\itshape\color{purple!40!black},
}

\lstset{style=customc} % define o estilo padrão
```

■ Uma vez definidos os estilos, será simples invocá-los nos comandos:

```
\lstinputlisting[style=customasm]{arquivo.asm}
```

- Oferece um ambiente para apresentação elegante de pseudo-códigos
- Oferece os seguintes comandos de formatação:

```
\STATE <text>
\IF{<condition >} <text > \ENDIF
\IF{<condition >} <text > \ELSE <text > \ENDIF
\IF{<condition >} <text > \ELSE <text > \ENDIF
\IF{<condition >} <text > \ELSIF{<condition >} <text > \ENDFOR
\FORALL{<condition >} <text > \ENDFOR
\WHILE{<condition >} <text > \ENDWHILE
\REPEAT <text > \UNTIL{<condition >}
\LOOP <text > \ENDLOOP
\REQUIRE <text > \UNTIL{<condition >}
\FORALL \REPEAT <\EXTLESS
\FORALL \REPEAT \
```

■ Para usar, inclua no preâmbulo:

```
\usepackage{algorithm}
\usepackage{algorithmic}
```

■ Este pacote oferece poucas opções de customização

```
\begin { algorithm } [H]
  \algsetup{linenosize=\tiny}
  \caption { Procedimento de Euclides }
  \label{alg:euclides}
  \begin { algorithmic }[1]
    \REQUIRE $a, b$
   \ENSURE $gcd(a,b)$
    \STATE $r \gets a \bmod b$
    \WHILE{$r \setminus not = 0$}
      \STATE $a \qets b$
     \STATE $b \aets r$
      \STATE $r \gets a \bmod b$
    \ENDWHILE
   \RETURN $b$
  \end{algorithmic}
\end{algorithm}
```

```
Algoritmo 1 Procedimento de Euclides

Require: a,b
Ensure: gcd(a,b)
1: r \leftarrow a \mod b
2: while r \neq 0 do
3: a \leftarrow b
4: b \leftarrow r
5: r \leftarrow a \mod b
6: end while
7: return b
```

Para renomear as apresentações criadas pelos comandos:

```
\floatname{algorithm}{Procedure} \renewcommand{\algorithmicrequire}{\textbf{Input:}} % require \renewcommand{\algorithmicensure}{\textbf{Output:}} % ensure
```

115 / 154

- Este pacote facilita a criação de comandos de formatação e normalmente é usado em conjunto com algum layout ²⁴ já codificado.
- O algpseudocode oferece os seguintes comandos de formatação:

```
\State <text>
\If {< condition > } < text > \EndIf
\If {< condition > } < text > \Else < text > \EndIf
\If \{ \condition > \} \ \text > \EIsIf \{ \condition > \} \ \text > \\ \text \ \text \ \EndIf
\For{<condition>} <text> \EndFor
\ForAll{<condition>} <text> \EndFor
\While{<condition>} <text> \EndWhile
\Repeat <text> \Until{<condition>}
\Loop <text> \EndLoop
\Require <text>
\Ensure <text>
\Return <text>
\Comment{<text>}
\Statex % comando vazio, para indentação, gera linha em branco
\Procedure{<name>}{<params>} <text> \EndProcedure
\Function{<name>}{<params>} <text> \EndFunction
```

■ Para usar, inclua no preâmbulo:

```
\usepackage { algorithm } \usepackage { algoseudocode }
```

Aqui o termo *layout* denota um conjunto definido de comandos de formatação « □ » « 🗗 » « 🛢 » « 🛢 » 🦠 🤟

■ Este pacote permite redefinir os comandos, mais detalhes na documentação

```
\begin { algorithm } [H]
  \caption { Procedimento de Euclides }
  \label{alg:euclides}
  \begin{algorithmic}[1]
    \Procedure { Euclides } { $a.b$}
       \Comment{Calcula o mdc(a,b)}
       \State $r \gets a \bmod b$
       \mathbb{T}_{v} \in \{ r \mid v \in 0 \} 
           \State $a \gets b$
           \State $b \gets r$
           \State $r \gets a \bmod b$
       \EndWhile
       \State \Return $b$
       \Comment{O mdc(a,b) está em b}
    \EndProcedure
  \end{algorithmic}
\end{algorithm}
```

```
    Algoritmo 1 Procedimento de Euclides

    1: procedure EUCLIDES(a, b)
    ▷ Calcula o mdc(a,b)

    2: r \leftarrow a \mod b
    3: while r \neq 0 do

    4: a \leftarrow b
    5: b \leftarrow r

    6: r \leftarrow a \mod b
    7: end while

    8: return b
    ▷ O mdc(a,b) está em b

    9: end procedure
```

Para renomear as apresentações criadas pelos comandos:

```
\floatname{algorithm}{Algoritmo} \renewcommand{\algorithmicrequire}{\textbf{Input:}} % require \renewcommand{\algorithmicensure}{\textbf{Output:}} % ensure
```

- Este pacote é mais sofisticado e exige mais esforço para usar bem:
 - todo texto é tratado com um potencial comando alto-nível
 - todo comando alto-nível termina com o fim-de-comando \;
 - existem comandos de formatação que são predefinidos
 - existem macros para o autor criar novos comandos de formatação
 - existem comandos de configuração para o pacote
- Existem muitos comandos de formatação predefinidos, seguem alguns:
 - \KwData{ input }, \KwResult{ output }, \KwIn{ input }, \KwOut{ output }
 - \KwTo
 - \KwReturn{ value }
 - Begin{ block inside }
 - \If\{ condition \}\ then block \}, \elf\{ condition \}\ then block \}\ else block \}
 - \ulf{ condition }{ then block } \ulletElef{ condition }{ more one block } \Else{ last block }
 - While{ condition }{ text loop }. \Repeat{ end condition }{ text loop }
 - \For{ condition }{ text loop }, \ForEach{ condition }{ text loop }, \ForAll{ condition }{ text loop },
- Existem muitos comandos para comentários, mas esse costuma atender bem:
 - \tcp*[pos]{ comment } gera um comentário no estilo C++
 - o parâmetro [pos] indica o alinhamento na linha, opções = (r|l)
 - dica: se usar comentário na linha, não use o fim-de-comando \;

(2/3)

- Existem muitas macros para criação de comandos, alguns exemplos:
 - \SetKw{ KwAnd }{ and } define o comando \KwAnd que produz and
 - \SetKwFunction{ DoThat }{ Do } define o comando \DoThat{ arg } que produz Do(arg)
 - \SetKwInParam{ Func }{ (){) } define a macro \Func{ name }{ arg } cuja \Func{ function }{ arg1, arg2 } produz function(arg1, arg2)
- Existe uma enorme variedade de comandos e opções para customização
- O apresentado aqui é suficiente para usar os recursos básicos do pacote
- Para maiores detalhes consulte a documentação do pacote

■ Difere dos pacotes anteriores pela enorme variedade de customizações

```
| Negin{algorithm}[H]
| NewData{aula e slides}
| NewBesult{aprendizado}
| comece a estudar e praticar\;
| While{não terminou o curso}{
| estude um tópico\;
| leff{entendeu o tópico}{
| vá para a próxima seção\;
| yá para o próximo tópico\;
| }
| forocure ajuda para eliminar a dúvida\;
| }
| while
| Negarion | Negarion | | | | |
| Negarion | Negarion | Negarion | Negarion |
| Negarion | Negarion | Negarion | Negarion |
| Negarion | Negarion | Negarion | Negarion |
| Negarion | Negarion | Negarion | Negarion | Negarion | Negarion |
| Negarion | N
```

```
Algorithm 1: Como aprender LaTeX no curso
  Data: aula e slides
  Result: aprendizado
1 comece a estudar e praticar;
2 while não terminou o curso do
      estude um tópico;
      if entendeu o tópico then
         if era o último tópico da secão then
             vá para a próxima seção;
         else
             vá para o próximo tópico;
         end
      else
         procure ajuda para eliminar a dúvida:
      end
13 end
```

■ Este código foi compilado com as opções de pacote no preâmbulo:

```
\usepackage{algorithm}
\usepackage[ruled, % cabeçalho em cima, entre duas linhas
linesnumbered, % linhas de código numeradas
lined % linhas verticais de indentação
]{algorithm2e}
```

Gráficos

- 10 Gráficos
 - Idéia geral
 - Pacote tikz

10.1. Gráficos no LaT⊨X

- Criar gráficos no LATEX pode consumir tempo, mas o resultado é ótimo
- Uma vez dominada a técnica, o trabalho de tradução idéia → documento é otimizado

■ Existem vários pacotes que suportam a criação de gráficos dentro do LATEX. Alguns deles:

Pacote	Descrição breve
picture	Pacote minimalista, oferece poucos recursos, mas produz figuras de poucos bytes
pstricks	Extensão poderosa do picture, é voltado para PostScript e não trabalha com pdflatex
metapost	Talvez o mais poderoso pacote, inspirado na Metafont, outra linguagem de descrição idealizada pelo Knuth, mas também é voltado para o PostScript
tikz	Pacote escolhido para ser tratado neste curso, será assunto da próxima seção

(1/5)

- O PGF/Tikz, doravante apenas tikz, é um sistema de duas camadas:
 - **PGF** (portable graphics format) é a camada back end que oferece os comandos básicos para a construção dos gráficos
 - TikZ é a camada front end que torna fácil o uso do PGF, é resultado de um casamento feliz de comandos inspirados na Metafont com um mecanismo de sintaxe inspirado no pstricks
- O tikz produz gráficos que são portáveis para Pdf e PostScript
- Outros pacotes focam no "como" desenhar, a filosofia do tikz permite isso, mas também permite trabalhar em nível mais alto, focando no "que" desenhar. Existem muitos subpacotes especializados para: autômatos, circuitos elétricos, mapas mentais, figuras geométricas etc
- Visite a página http://www.texample.net/tikz/examples/

■ Para usar o tikz, inclua no preâmbulo:

```
\usepackage{tikz} % o pacote pgf será incluido automaticamente
\usetikzlibray{ <lista de subpacotes separados por vírgulas>}
```

■ Existem vários subpacotes (*libraries*) para o tikz , alguns exemplos:

```
"arrows", "automata", "backgrounds", "calendar", "chains", "matrix", "mindmap", "patterns", "petri", "shadows", "spy", "trees", "shapes.geometric", "shapes.misc"
```

■ Para desenhar, coloque os comandos no ambiente tikzpicture :

```
\begin{tikzpicture}[opções] ... comandos tikz ... \end{tikzpicture}
```

ou, alternativamente, use o comando em linha:

```
\tikz[opções]{ ... comandos tikz ... }
```

- Muitas vezes o conceito de grafo facilita o entendimento no tikz:
 - o desenho é formado de vértices (nodes) conectado por arestas (edges)
 - uma sequência de vértices define um caminho (path)
 - formas prontas podem ser colocadas sobre os vértices
 - vértices e arestas podem ser decorados e/ou estilizados
- Os subpacotes importados fornecem diversos tipos de formas prontas
- Há dois modos básicos para posicionamento no desenho:
 - Modo absoluto: são fornecidas coordenadas

```
(1cm,2pt) % coord. cartesianas: 2cm no eixo x, 2pt no eixo y (30:1cm) % coord. polar: 30 graus, 1cm de distancia do centro (1,3) % sem unidade, o padrao é cm
```

Modo relativo: são fornecidas orientação relativas a elementos já posicionados

Existem outros tipos de orientação relativa, por exemplo: *above, below, left, right.* No modo relativo frequentemente é estabelecida uma grade e as orientações então incluem uma distância. Por exemplo: *2 above* (duas posições acima)

14 de marco de 2016

(4/5)

- O desenho gerado pelo tikz é uma caixa ²⁵
- Exemplo:

```
Estamos desenhando
\textbf{\text{begin}} \text{tikzpicture} \
\text{\draw} \ (-0.25,0) -- (0.25,0); \\
\text{\draw} \ \draw \ [<->>] (0,-0.25) -- (0,0.25); \\
\text{\end} \text{\text{tikzpicture}} \text{\text{\text{}}}
```


Observações:

o comando \draw.como vários outros no tikz.tem a forma

- o comando \draw mandou desenhar
- o elemento foi identificado, pelo --, como um caminho
- e o tikz desenhou uma aresta até o outro ponto

Curso de LATEX

(5/5)

- O tikz oferece muitos recursos e dificilmente alguém aprenderá tudo dele
- Um bom roteiro para iniciar o aprendizado é estudar os tutoriais do manual [2] www.texample.net/media/pgf/builds/pgfmanualCVS2012-11-04.pdf
- Outra opção para iniciar, consultar o wikibooks do LATEX [5]

```
https://en.wikibooks.org/wiki/LaTeX/PGF/TikZ
```

■ Uma boa prática, quando for desenhar no LATEX, é examinar um exemplo pronto daquilo que você precisa. Existem bons exemplos de uso do tikz no site

```
http://www.texample.net/tikz/examples/
```

- Felizmente o uso do tikz costuma ser intuitivo e com alguma prática ele será dominado naquilo que você precisa
- N\u00e3o tente aprender tudo de uma vez, pegue um exemplo pronto e adapte para sua necessidade

Programação

- 11 Programação
 - Idéia geral
 - Pacotes de apoio
 - Pacote xargs
 - Pacote xparse
 - Pacote environ
 - Pacote xkeyval
 - Pacote etoolbox

- Algumas vezes você precisa de um comando ou ambiente que não existe, nesse momento o LATEX fica ainda mais interessante:
 - ele permite você criar novos comandos e novos ambientes de acordo com sua necessidade
 - ele permite você utilizar comandos básicos de programação (condicionais e repetições)
 - se ainda não bastar, você pode apelar para o TEX (não abordamos o TEX neste curso)
- Vários pacotes que dão suporte para a programação dentro do LATEX. Alguns deles:

Pacote	Descrição breve
calc	Permite executar cálculos básicos com contadores e tamanhos
calculator	Permite usar uma calculadora dentro do LaTeX
ifthen	Immplementa o comando condicional
multido, pgffor	Pacotes concorrentes que implementam o comando de repetição O multido foi criado para o pstricks, mas pode ser usado sozinho O pgffor foi criado para o tikz, mas pode ser usado sozinho
etoolbox	Pacote de ferramentas completo, substitui muitos pacotes
environ	Implementa macros poderosas para criação de novos ambientes
xargs, xparse	Pacotes concorrentes, implementam macros para tratamento de parâmetros
xkeyval	Permite criar opções nomeadas (do tipo [key ₁ =val ₁ , key ₂ =val ₂]) para comandos
xstring	Permite executar operações com strings

■ Para criar um novo comando, use:

```
\newcommand{\nome}[num]{ definição}
```

Cria o comando \nome com num parâmetros, acessados na definição assim: #1 para o primeiro, #2 para o segundo, etc

```
\newcommand{\aspas}[1]{''#1''} %... para criar \aspas{teste} %..... para usar
```

■ Para redefinir um comando existente, use:

```
\renewcommand{\comando}[num]{definição}
```

Para criar um comando com um parâmetro opcional, use:

```
\newcommand{\nome}[num][padrão]{ definição}
```

Cria o comando \nome com num parâmetros, o primeiro opcional, os outros não Se o parâmetro opcional não aparecer, ele assume o valor padrão

```
      \newcommand{\moeda}[2][R]{#1\$ #2.00} %... para criar

      \moeda{3} %... para usar ... vai gerar R$ 3.00

      \moeda[US]{4} %... para usar ... vai gerar US$ 4.00
```

(3/7)

Para criar um novo ambiente, use:

```
\newenvironment{nome}[num]{antes}{depois}
```

Cria o ambiente **nome** com **num** parâmetros, de modo análogo ao que ocorre na criação de comandos Como se trata de um ambiente:

- 1 ▶ quando o comando \begin{ nome } é encontrado, o parâmetro antes é processado
- 2 ▶ o corpo do ambiente é processado
- 3▶ quando o comando \end{ nome } é encontrado, o parâmetro depois é processado

- Para redefinir um ambiente existente, use \renewenvironment e proceda como no caso dos comandos
- Para criar um ambiente com um parâmetro opcional, proceda como no caso dos comandos

(4/7)

Agora um exemplo mais complexo:

```
% Criando o novo ambiente
\newenvironment{moldura}[1] % moldura com titulo
{ %---- antes
\newcommand{\titmold}{#1}
\begin{tikzpicture} | scale = 11
   \tikzstyle { titulo }=[anchor=north west,
       text width={3cm}, inner sep={2mm}.
       fill={green!30}, draw={black}, text centered ]
   \tikzstyle { texto }=[anchor=north west,
       text width = {0.9 \textwidth }, inner sep = {2mm},
       fill={green!10}, draw={black}, text justified ]
   \draw (0.0) node [style=texto]
   \bgroup }
{ %---- depois
   \egroup
   \draw (1, 18pt) node [style=titulo] {\titmold};
\end{tikzpicture} }
```

Digite o exemplo e compile para ver o resultado

```
% Usando o novo ambiente
\begin{moldura}{Dica}
Pratique o LaTeX e em pouco tempo vai se acostumar com ele.
\end{moldura}
```

11.1. Dicas e truques de programação LATEX

(5/7)

- Os comandos frágeis não funcionam sempre como você queria que fosse
 - ► Tecnicamente, quando o T_EX recebe um token, ele o expande e o executa (se possível)
 - A fase de expansão, dependendo do caso, poderia levar a novas expansões
 - Entretanto, um comando frágil só funciona bem no ciclo simples expande-executa
 - ▶ Na prática, os comandos frágeis podem causar problemas guando passados como parâmetro

Exemplo prático: se um comando funciona bem no corpo do documento, mas não na legenda de uma figura, suspeite estar lidando com um comando frágil ²⁶

Para tornar um comando robusto, substitua o comando \newcommand. Use:

```
\verb|\DeclareRobustCommand{\nome}[num]{ definição}|
```

As caixas fantasmas são úteis quando você quer inserir caixas no texto para acertar alinhamentos, mas não quer que o conteúdo delas apareça no resultado final. Use:

```
\phantom{ ... conteúdo fantasma ... }
```


- Os comandos criados dentro de ambientes poderiam causar conflito no momento de acessar os parâmetros. Esse problema não ocorre porque:
 - Os parâmetros do ambiente são acessados com #n, sendo n o número do parâmetro
 - ▶ Os parâmetros do comando são acessados com ##n, sendo n o número do parâmetro

```
% Criando o novo ambiente
\newenvironment{precos}{
    \newcommand(\pechincha)[2]{ \item ##1 $\rightarrow$ R\$ ##2 }
    \begin{itemize}
}
{
    \end{itemize}
}
```

Digite o exemplo e compile para ver o resultado

```
% Usando o novo ambiente
\begin{precos}
\pechincha{Café}{1,00}
\pechincha{Chá}{2,50}
\end{precos}
```

■ As variáveis podem ser simuladas como comandos

```
\newcommand{\criavar}[1]{\newcommand{#1}{0}}
\newcommand{\setavar}[2]{\renewcommand{#1}{#2}}
%--- usando
\criavar{\valor}
\setavar{\valor}{35}
valor = \valor
```

Os contadores são muito úteis para numerar objetos, por exemplo, são usados nas listas

11.2. Pacotes de apoio

■ Pacote calc usado para cálculos básicos com contadores

```
\usepackage{calc}
% ...
\newcounter{mine}
\setcounter{mine}{2*17}
\themine % o estranho comando \the extrai o valor do contador
```

■ Pacote ifthen usado para ter comando condicional

```
\usepackage{ifthen}
% ...
\ifthenelse{ \equal{\myvar}{true} }
{ Variável = true. }
{ Variável = false. }
```

Pacote xstring usado para operações com strings

```
\usepackage{xstring}
% ...
\newcommand{\mystr}{Hello World!}
% ...
O string em \mystr tem \StrLen\\mystr}{} caracteres. \\
Pergunta: O string em \mystr contém a subpalavra 'Hello'? \\
Resposta: \IfSubStr\\mystr}{Hello}{true}{false}.
```

(2/4)

Pacote calculator provê uma calculadora científica dentro do LATEX

```
\usepackage{calculator}
% ...
\usepackage{calculator}
% ...
\usepackage{calculator}
% ...
\usepackage{calculator}
\usepac
```

- Os nomes dos comandos providos são em maiúsculas
- Há vários implementados, incluindo funções científicas
- O resultado é retornado na "variável" criada, o último parâmetro
- Há várias constantes implementadas: \numberPI, \numberE, etc
- Existe um comando de atribuição: \COPY{1.27}{\var}
- Estão implementadas funções trigonométricas, exponenciais, etc
- Há comandos para fazer cálculo vetorial e com matrizes
- Praticamente tudo que uma calculadora avançada faz, este pacote provê

(3/4)

Pacote multido usado para ter comando de repetição

Forma geral do comando:

```
\multido{variáveis}{repetições}{corpo}
```

Exemplo:

```
\usepackage { multido }
% ...
\usepackage { multido }
```

- Foram criadas duas variáveis, \i e \n
- \i inicia em 0 com incremento de 1
- \n inicia em 0 com incremento de 0.25
- o laço repete 8 vezes

Pacote pgffor usado para ter comando de repetição

Forma geral do comando:

```
\foreach {variáveis} in {lista} {corpo}
```

Exemplos:

```
\label{eq:loss} $$ \wordsymbol{"} \width= \w
```

- O exemplo A é auto explicativo
- No exemplo B, a elipse indica uma repetição, o LaTeX calcula o incremento
- No exemplo C, há três variáveis (\i, \j, \k) separadas por /
- Elas assumem os valores indicados nas triplas $\mathbf{v}_1/\mathbf{v}_2/\mathbf{v}_3$
- A elipse não funciona com mais de uma variável
- O pacote define dois comandos: \foreach e \breakforeach

Implementa macros para melhor tratamento de parâmetros, as principais são:

\newcommandx
\newenvironmentx \renewenvironmentx

Vamos examinar uma, as outras são análogas

```
\newcommandx{\comando}[num][padrões]{ ... definição ...}
```

- A novidade está nos [padrões] definidos para os parâmetros opcionais
- Os parâmetros sem valores padrão são obrigatórios

```
\label{localization} $$ ``... `\newcommandx{\coord}[3][1=1 , 3=n]{(#2_{#1}, \cdot | dots , #2_{#3}))} $$
```

```
$\coord{x}$
$\coord[0]{y}$
$\coord[z]{m]$
$\coord[0]{t}[m]$
```

```
(x_1,...,x_n)

(y_0,...,y_n)

(z_1,...,z_m)

(t_0,...,t_m)
```

- Existem alguns "truques" para evitar ambiguidade nos parâmetros opcionais
- A opção usedefault e o salto de parâmetros com []

```
$\coord{x}$
$\coord{y}{0}$
$\coord{z}[][m]$
$\coord{t}[0][m]$
```

Redefinindo o critério para uso do padrão

```
\label{localization} $$\sup_{\cdots} \ \dots $$\operatorname{localize}_{1=A, 2=B, usedefault=@]{(\#1, \#2)}}
```

```
$\test[b]$
$\test[][b]$
$\test[@][b]$
```

```
(b, B)
(,b)
(A,b)
```

■ Implementa macros para melhor tratamento de parâmetros, as principais são:

\NewDocumentCommand \RenewDocumentCommand \NewDocumentEnvironment \IfNoValue(TF) \IfBoolean(TF)

- O pacote permite implementar construções estranhas e/ou experimentais. O relatório de erros no caso de mal uso ainda não está totalmente estável. Use com cautela
- Vamos examinar uma macro, as outras são análogas ou intuitivas

```
\text{NewDocumentCommand}\comando}{\especificações}{\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definição\ldots\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\definiq\def
```

A grande novidade está nas **{especificações}**, uma lista contendo uma especificação por parâmetro do comando. Existem várias opções, seguem algumas:

Especificação	Descrição breve
m	parâmetro obrigatório padrão, entre chaves
0	parâmetro opcional padrão, entre colchetes
O{valor}	parâmetro opcional, entre colchetes, com default
g	parâmetro opcional padrão, entre chaves
G{valor}	parâmetro opcional, entre chaves, com default
S	asterisco opcional no fim do nome do comando, vai resultar \BooleanTrue se o asterisco estiver presente, ou \BooleanFalse caso contrário

■ Exemplos:

```
\usepackage{xparse}
\NewDocumentCommand{\foo}{ s m G{3} o }
{
\noindent
\lifBooleanTF{#1}{1 = True \\}{1 = False \\}
2 = #2 \\ 3 = #3 \\ 4 = #4
}
```

```
\foo{teste1}
\foo{teste2}
\foo{teste3}{5}
\foo{teste4}[6]
\foo{teste5}{7}[8]
```

```
1 = False; 2 = teste1; 3 = 3; 4 = -NoValue-

1 = True; 2 = teste2; 3 = 3; 4 = -NoValue-

1 = False; 2 = teste3; 3 = 5; 4 = -NoValue-

1 = False; 2 = teste4; 3 = 3; 4 = 6

1 = False; 2 = teste5; 3 = 7; 4 = 8
```

- Implementa três comandos, mas vamos examinar somente o primeiro: \NewEnviron \Collect@Body \collect@body
- O comando \NewEnviron é uma alternativa para criação de ambiente

```
%--- criação de ambiente na versão tradicional
\newenvironment{nome}[num]{antes}{depois}

%--- criação de ambiente na versão do pacote environ
\NewEnviron{nome}[num]{ ... definição ...}{ ... acabamento ... }
```

Alguns comentários para a versão do pacote:

- O código da definição é apresentado num único bloco, isso facilita a programação
- O conteúdo do autor, contido no ambiente, é coletado pela macro \BODY
- O {acabamento} é opcional e executado depois do \end{ nome }

(2/2)

Exemplos:

Digite o conteúdo do exemplo e compile para ver o resultado

```
\begin{moldura}{green!10}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\textwidth}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condition}{\texture{condity}{\texture{condition}{\texture{condition}{\texture{condition}{\
```

O comando \environbodyname personaliza a macro \BODY

Implementa macros para tratamento de parâmetros com opções nomeadas do tipo:

\MeuComando[cor=red, tam=2cm, estilo=normal]{Exemplo usando parâmetros nomeados}

- Este pacote é bastante complexo e difícil de dominar nos detalhes, mas como o resultado é muito elegante vale o esforço para aprender. Aqui será apresentado apenas um exemplo prático básico. Faça alterações com cuidado e ao próprio risco;)
- Aqui nos interessam as seguintes macros que serão utilizadas no exemplo:

\define@key \setkeys

define uma opção nomeada associada ao parâmetro define valores default e amarra as opções nomeadas ao comando

Além destas macros do pacote, serão utilidados no exemplo três comandos do TEX :

\makeatletter
\makeatother
\def

marca início de contexto ¹ para definições de opções nomeadas marca fim de contexto ¹ para definições de opções nomeadas define novo comando (não faz checagem de segurança)

(2/2)

Exemplo

```
\usepackage{xparse. xkevval}
% ====== define as keys para o 1o parametro
\makeatletter
\define@key{MeuComando}{cor}{\def\comandocor{#1}}
\define@key{MeuComando}{tam}{\def\comandotam{#1}}
\define@key{MeuComando}{ estilo}{\def\comandoestilo{#1}}
\setkevs{MeuComando}{cor={black}. tam={2mm}. estilo={normal}}
\makeatother
% ===== define o comando
\DeclareDocumentCommand{\MeuComando}{o m}{
\bgroup
   \setkevs{MeuComando}{#1}
   \noindent \hrulefill \par
   Parâmetro mandatório = #2 \par
   Opcões do parâmetro opcional: \par
   \quad cor = \comandocor \par
   \quad tam = \comandotam \par
   \quad estilo = \comandoestilo \par
   \noindent \hrulefill \par
\egroup }
```

■ Digite o código do exemplo, compile e execute para ver o resultado

```
MeuComando[]{ teste 1 }
WeuComando[cor=red]{ teste 2 }
WeuComando[estilo=poor, cor=green]{ teste 3 }
WeuComando[tam=2cm]{ teste 4 }
```

11.7. Pacote etoolbox

- Implementa diversas macros e comandos para auxiliar na programação
- Implementa também uma série de "ganchos" (hooks) que não serão analisados aqui
- Exemplos do que encontrar no pacote:
 - Várias macros para tratar comandos frágeis
 - Vários comandos para tratamento de variáveis, contadores, booleanos etc
 - Várias variantes de comandos de decisão (if's)
 - Comandos aritméticos e lógicos, operadores, etc
 - Implementa os parênteses para uso em expressões
 - Comandos para tratamento de listas, incluindo comandos de repetição
 - E muito mais
- O pacote também define uma série de "ganchos" (hooks) que não serão analisados aqui
- Para mais detalhes, consulte a documentação do pacote

Criação de pacotes

- 12 Criação de pacotes
 - Idéia geral

- Quando você define muitos comandos e ambientes, o preâmbulo começa a ficar muito longo. Talvez seja uma boa idéia criar um pacote para suas definições
- Pacotes e classes são semelhantes, mas os pacotes são mais flexíveis. Aqui vamos examinar apenas a criação de pacotes, para maior informação consulte os manuais
- Exemplo: pacote pacotinho, arquivo pacotinho.sty

```
%--- pacotinho.sty
\text{NeedsTeXFormat{LaTeX2e}[1994/06/01]}
\text{ProvidesPackage} \{ pacotinho} \{ [2016/02/14 \text{ pacotinho Package} \]
\text{%--- lista de pacotes que serão incluídos junto com o pacotinho} \text{\text{RequirePackage} \{ brazil \} \{ babel \} \\ \text{\text{RequirePackage} \{ T1 \} \{ fontenc \} \\ \text{\text{RequirePackage} \{ latin 1 \} \{ inputenc \} \\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{
```

(2/2)

■ Para criar opções nomeadas para seu pacote, use:

```
\DeclareOption{ opção }{ ... ação ... } : um comando por opção \ExecuteOptions{ opção } : define opção padrão
```

\ProcessOptions\relax : termina processamento das opcões

- Você pode exportar um comando definindo-o com \providecommand
- Atenção, não existe um comando para exportar ambientes, por isso recomendo a criação de pacotes utilizando o pacote xparse que provê os comandos:

```
\ProvideDocumentCommand \ProvideDocumentEnvironment
```

- Comandos e ambiente criados com os tradicionais \newcommand e \newenvironment s\u00e3o locais ao pacote e n\u00e3o ser\u00e3o exportados
- O último comando do pacote deve ser \endinput

Referências

13 Referências

13. Materiais Consultados (1/2)

CTAN

Comprehensive TeX Archive Network

www.ctan.org

TeKample.net

TikZ & PGF Manual

www.texample.net/media/pgf/builds/pgfmanualCVS2012-11-04.pdf

The LATEX Project

LATEX documentation

https://latex-project.org/guides

The LATEX 3 Project

LATEX 2ϵ for class and package writers

www.lasca.ic.unicamp.br/pub/ctan/macros/latex/doc/clsguide.pdf

Wikibooks

LaTeX

https://en.wikibooks.org/wiki/LaTeX

13. Materiais Consultados (2/2)

KOTTWITZ, Stefan

LaTeX beginner's guide

Packt Publishing Ltd, 2011

KOTTWITZ, Stefan

LaTeX Cookbook

Packt Publishing Ltd, 2015

LAMPORT, Leslie

Latex: A Document Preparation System

Addison Wesley, 1994

MITTELBACH, F., GOOSSENS, M.

The LaTeX Companion

Addison Wesley, 2004

FLYNN, Peter

A Beginner's Introduction to Typesetting with LaTeX

Comprehensive TeX Archive Network, 2005

The End