Statistical methods for Machine Learning

Lecture 1: Introduction 4.2 2014

Aasa Feragen aasa@diku.dk

Teachers and Instructors

- Christian Igel (igel@diku.dk), course responsible
- Aasa Feragen (aasa@diku.dk)

Instructors

- Asja Fischer (asja.fischer@ini.ruhr-uni-bochum.de)
- Oswin Krause (oswin.krause@diku.dk)
- Niklas Kasenburg (niklas.kasenburg@diku.dk)
- Kristoffer Stensbo-Smidt (k.stensbo@diku.dk)
- Pengfei Diao (diao@di.ku.dk)

Learning goals

Knowledge of

- the **general principles** of machine learning
- basic probability theory for modeling and analyzing data
- the theoretical concepts underlying classification, regression, and clustering
- the mathematical foundations of selected machine learning algorithms
- common pitfalls in machine learning

Skills in

- applying linear and non-linear techniques for classification and regression
- performing elementary dimensionality reduction
- elementary data clustering
- implementing selected machine learning algorithms
- visualizing and evaluating results obtained with machine learning techniques
- using **software libraries** for solving machine learning problems
- identifying and handling common pitfalls in machine learning

Competences in

- recognizing and describing possible applications of machine learning
- comparing, appraising and selecting machine learning methods of for specific tasks
- solving real-world data mining and pattern recognition problems by using machine learning techniques

We assume that you know

- Basic mathematical analysis (high school level and DiMS or MatIntro) and linear algebra (vectors and matrices)
- Take home exam 1 has a math brush-up quiz use it as a guide!
- Probability theory at high school level
- Programming at an introductory level (we will use either Matlab, R, Python, or C/C++ - it is up to you)

Be aware:

- You are a mixed crowd with different backgrounds!
- There might be parts you find trivial and other parts you won't.
- Use the TAs, the lecturers, the forum!

Form

- Lectures:
 - Tuesday 10:15 12:00, Room: DIKU Aud. 4.1.22
 - Thursday 13:15 15:00, Room: DIKU Aud. 4.1.22
- Exercise classes:
 - Thursday 9:15 12:00, Rooms:
 - Class 1: DIKU-NC 1.0.04
 - Class 2: DIKU-NC 3.1.25
 - Class 3: DIKU-NC 1.0.37
 - Class 4: DIKU-NC 1.0.26
 - Class 5: DIKU-NC 1.0.10
- You have been assigned to one of these exercise classes (you can see which in Absalon).

Format of exercise classes

- The teaching assistent will lead a general discussion of the current lectures and assignment as well as provide general feedback on finished assignments (approx. 1 hour)
- You can also get individual help with the assignments while you work on them (approx. 2 hours)
- Bring your laptop!
- The exercise rooms have no computer terminals.

Mandatory assignments

3 mandatory assignments:

- Mix of theoretical and practical problems
- Two weeks to solve each of them
- Solutions can be made individually or in groups of no more than 3 participants
- Help from the TAs at the exercise class
- Feedback at exercise class
- Use the discussion forum!

How do I pass this course?

- Must pass the 3 mandatory assignments to be eligible for participating in the exam
- If you do not pass an assignment the first time you will be given a second chance to submit a new solution (assuming that you have made a SERIOUS attempt at every exercise the first time).
- Exam assignment: Larger written assignment similar to the other mandatory assignments
- This assignment must be solved individually, but we encourage you to discuss it with your fellow students.
- Final grading for the course is: 7-point grading based on the exam assignment only.

How much time should I spend on this course?

 KU expects 20 hours / week for a 7.5 ECTS course, 40 hours/wk for full time study

(yes, it is more than the 37.5 hours/wk common out in real life, i.e. according to Danish union agreements)

How should I spend my time?

- Lectures and exercise class = 2 + 2 + 3 = 7 hours/wk
- Reading and assignment = 20 7 = 13 hours/wk

Recommended:

- Prepare by reading the current week's material prior to each lecture (approx.
 6 hours/wk). Be prepared for the exercise classes come with questions!
- Work on the assignment at home (approx. 7 hours/wk and you will spend
 2-3 hours on the assignment in exercise class)

Course material

Challenge:

- If you find the book not sufficiently mathematical, write out the proofs yourself.
- If you find the book too mathematical, draw figures to understand what the math describes.

Course Home Page and Information

- Through Absalon (access via your KUnet account)
 - Updated course information
 - Updated lecture and exercise schedules
 - Links to lecture slides (after the lecture)
 - Exercise material
 - Course material (reading material)
 - Links to additional material (reading, programming, etc.)
 - A discussion forum for course related topics

Tentative lecture schedule

4/2 Introduction; starting probability theory and estimation 6/2 Probability theory and estimation; Bayes theorem 11/2 CI Ingredients of statistical learning theory (loss, risk minimization, bounds) 13/2 CI Linear classification (LDA, perceptron, margin bounds) 18/2 AF Linear models for regression I 20/2 AF Linear models for regression II 25/2 CI Neural networks (MLPs) 27/2 CI Kernel methods I (RKHS, kernel NN, representer theorem, regularization networks) 4/3 CI Kernel methods II (SVMs) 6/3 CI **Unsupervised Learning and Clustering** 11/3 AF **Principal Component Analysis** 13/3 AF Visualization (MDS/PCA, Isomap, etc.) 18/3 CI Trees and Forests 20/3 CI Basics of learning theory; Course evaluation and questions about the exam

Exercises

4/2	-	18/2	Foundations of statistical machine learning
8/2	-	4/3	Basic supervised learning algorithms
4/3	-	18/3	Neural networks and support vector machines
18/3	_	3/4	Exam assignment

Any questions to the course setup?

Let's get started!

After today's lecture you should

- Be familiar with the types of questions answered and the types of problems solved with Machine Learning and Pattern Recognition techniques
- Recall basic probability theory:
 - discrete and continuous distributions
 - probability mass/density functions
 - Gaussian distributions

Machine Learning/Data Mining/Pattern Recognition

- Example 1: Image segmentation
 - Split the image into "objects" (foreground) and "irrelevant" (background).
- Classification of voxels x into classes:
 - y(x) = 1 (foreground)
 - y(x) = 0 (background)

Machine Learning/Data Mining/Pattern Recognition

Classification splits data x into a finite number of classes:

- y(x) = 1 (foreground)
- y(x) = 0 (background)

General goal of ML:

Model a mapping (rule)
 between data x and
 some abstract description
 y(x) of the data.

Supervised learning

 We know the rule y for a set of data (the training set) and try to learn a general rule y

Machine Learning/Data Mining/Pattern Recognition

- Example 2: Stock market prediction
- Regression
 - y(x) = stock price
 - Predicting a continuous variable
- Also a case of supervised learning

Machine Learning and Pattern Recognition?

- Example 3: Clustering
 - Cluster brain MRI voxels with respect to connectivity
- Example of unsupervised learning:
 - No known values y(x)
 - Don't know which clusters we are looking for

Machine Learning and Pattern Recognition?

- Example 3: Clustering
 - Cluster brain MRI voxels with respect to connectivity
- Example of unsupervised learning:
 - No known values y(x)
 - Don't know which clusters we are looking for

- Make sure the model y(x) generalizes to new unseen data (the test set).
- Example 3: Xerox
 - July 2013: Xerox scanners were found to mangle numbers in documents
 - Cause: JBIG2 compression algorithm replacing image patches by "similar" image patches from a database
 - Model for "similar" did not generalize
 - Unexpected impact of ML: legal documents scanned, etc...

Summary of ML principles

General ML task:

Learn rule y(x) which predicts a target t from measured data x

Unsupervised learning:

- No examples of y(x)
- Examples:
 - Clustering

Supervised learning:

- Have a set of examples x for which y(x) is known (training set)
- Learn a function y from the training set
- Check generalizability to test set
- Examples:
 - Classification discrete target t
 - Regression continuous target t

Why Statistical Machine Learning

- Often the data we are modeling:
 - Have too large variability and/or complexity to be described by deterministic rules

 Example: Variability in handwriting

Why Statistical Machine Learning

- Often the data we are modeling:
 - Have too large variability and/or complexity to be described by deterministic rules
 - Are inherently stochastic
 (e.g. image projection angle)
 - Are noisy (e.g. caused by sensory noise)

Why Statistical Machine Learning

- Often the data we are modeling:
 - Have too large variability and/or complexity to be described by deterministic rules
 - Are inherently stochastic
 (e.g. image projection angle)
 - Are noisy (e.g. caused by sensory noise)

- Hence a probabilistic description is most often needed.
- For probabilistic models we need to be able to represent and estimate probability distributions either:
 - Parametric
 - Non-parametric

Probability Theory 101

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

$$X = x_i \in \{1, 2, \dots, 6\}$$
$$Y = y_j \in \{2, 3, \dots, 12\}$$

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

$$X = x_i \in \{1, 2, \dots, 6\}$$
$$Y = y_j \in \{2, 3, \dots, 12\}$$

$$n_{ij} = \sharp$$
 trials with $(X = x_i, Y = y_j)$
 $c_i = \sum_j n_{ij} = \sharp$ trials with $X = x_i$
 $r_j = \sum_i n_{ij} = \sharp$ trials with $Y = y_j$

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

$$X = x_i \in \{1, 2, \dots, 6\}$$
$$Y = y_j \in \{2, 3, \dots, 12\}$$

$$n_{ij} = \sharp$$
 trials with $(X = x_i, Y = y_j)$
 $c_i = \sum_j n_{ij} = \sharp$ trials with $X = x_i$
 $r_j = \sum_i n_{ij} = \sharp$ trials with $Y = y_j$

Example: Throwing two dice X_1, X_2

Two random variables X, Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

$$X = x_i \in \{1, 2, \dots, 6\}$$

$$Y = y_j \in \{2, 3, \dots, 12\}$$

$$n_{ij} = \sharp$$
 trials with $(X = x_i, Y = y_j)$
 $c_i = \sum_j n_{ij} = \sharp$ trials with $X = x_i$
 $r_j = \sum_i n_{ij} = \sharp$ trials with $Y = y_j$

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

Joint probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Marginal probability

$$p(X = x_i) = \frac{c_i}{N} \qquad p(Y = y_j) = \frac{r_j}{N}$$

Conditional probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$
$$p(X = x_i | Y = y_j) = \frac{n_{ij}}{r_j}$$

In the limit $N \to \infty$!

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

Joint probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Marginal probability

$$p(X = x_i) = \frac{c_i}{N} \qquad p(Y = y_j) = \frac{r_j}{N}$$

Conditional probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$
$$p(X = x_i | Y = y_j) = \frac{n_{ij}}{r_j}$$

In the limit
$$N \to \infty$$
!
$$p(X = i, Y = j) = ?$$

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

Joint probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Marginal probability

$$p(X = x_i) = \frac{c_i}{N} \qquad p(Y = y_j) = \frac{r_j}{N}$$

Conditional probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$
$$p(X = x_i | Y = y_j) = \frac{n_{ij}}{r_i}$$

In the limit
$$N \to \infty!$$

$$p(X = i, Y = j) = 1/36 \text{ or } 0$$

 $p(Y = 3) = ?$

Probability theory and Estimation

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

Joint probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Marginal probability

$$p(X = x_i) = \frac{c_i}{N} \qquad p(Y = y_j) = \frac{r_j}{N}$$

Conditional probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$
$$p(X = x_i | Y = y_j) = \frac{n_{ij}}{r_i}$$

In the limit $N \to \infty!$

$$p(X = i, Y = j) = 1/36 \text{ or } 0$$

 $p(Y = 3) = 2/36$
 $p(Y = 3 | X = 2) = ?$

Probability theory and Estimation

Example: Throwing two dice X_1, X_2

Two random variables X,Y

$$X = X_1$$
$$Y = X_1 + X_2$$

Trial withN throws

Joint probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Marginal probability

$$p(X = x_i) = \frac{c_i}{N} \qquad p(Y = y_j) = \frac{r_j}{N}$$

Conditional probability

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$
$$p(X = x_i | Y = y_j) = \frac{n_{ij}}{r_i}$$

In the limit $N \to \infty!$

$$p(X = i, Y = j) = 1/36 \text{ or } 0$$

 $p(Y = 3) = 2/36$
 $p(Y = 3 | X = 2) = 1/6$

Probability mass function

Discrete random variables:

p(x) = p(X = x) is called a probability mass function

 $x \in \mathbb{R}$ real random variable $p: \mathbb{R} \to \mathbb{R}$ Must fulfill $p(x) \ge 0$ for all x $\int_{-\infty}^{\infty} p(x)dx = 1$ \boldsymbol{x}

 $x \in \mathbb{R}$ real random variable

 $p \colon \mathbb{R} \to \mathbb{R}$

p(x) is the probability density function of X

 $x \in \mathbb{R}$ real random variable

 $p \colon \mathbb{R} \to \mathbb{R}$

p(x) is the probability density function of X

 $x \in \mathbb{R}$ real random variable

 $p \colon \mathbb{R} \to \mathbb{R}$

p(x) is the probability density function of X

$$p(x) = \mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)}$$

$$p(x) = \mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)}$$
 normalize PDF shape
$$\int_{-\infty}^{\infty} p(x) dx = 1$$

$$p(x) = \mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

$$= Ce^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 bandwidth maximum

$$p(x) = \mathcal{N}(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

$$= Ce^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
 maximum bandwidth

 μ is mean σ^2 is variance σ is standard deviation $\beta = \frac{1}{\sigma^2}$ is precision

$$\mathcal{N}(\mathbf{x}|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \sum_{j=1}^{T-1} (\mathbf{x}-\mu)}$$
 covariance matrix mean

$$\mathcal{N}(\mathbf{x}|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$
 The interesting part! normalization (boring)

$$\mathcal{N}(\mathbf{x}|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$
 The interesting part! normalization (boring)

$$\mathcal{N}(\mathbf{x}|\mu,\Sigma) = c_1 e^{-c_2 \mathbf{x}^T \Sigma^{-1} \mathbf{x}}$$
 Translated so that $\mu = \mathbf{0}$

$$\mathcal{N}(\mathbf{x}|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$
 The interesting part!

normalization (boring)

$$\mathcal{N}(\mathbf{x}|\mu, \Sigma) = c_1 e^{-c_2 \mathbf{x}^T \Sigma^{-1} \mathbf{x}}$$
$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathcal{N}(\mathbf{x}|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$
 The interesting part!

normalization (boring)

$$\mathcal{N}(\mathbf{x}|\mu, \Sigma) = c_1 e^{-c_2 \mathbf{x}^T \Sigma^{-1} \mathbf{x}}$$
$$\Sigma = \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix}$$

$$\mathcal{N}(\mathbf{x}|\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$
 The interesting part!

normalization (boring)

$$\mathcal{N}(\mathbf{x}|\mu, \Sigma) = c_1 e^{-c_2 \mathbf{x}^T \Sigma^{-1} \mathbf{x}}$$
$$\Sigma = \begin{pmatrix} 9 & 3 \\ 3 & 4 \end{pmatrix}$$

Distributions are useful how? Classification

Distributions are useful how? Classification

Distributions are useful how? Classification

Distributions are useful how? Clustering

Distributions are useful how? Clustering

Summary

- Today we have learned
 - What are the main types of ML problems
 - Definition and meaning of probability density/mass functions for continuous and discrete random variables
 - Definition of Gaussian probability density distributions and their parameters
- Reading material: CB section 1.1-1.2.4 (p 1-28)
- Any questions?

If you want to play!

Next time!

- Bayes' rule
- Parametric estimation
- Multivariate Gaussian distributions
- Nonparametric estimation
- Reading material: CB sections 1.1-1.2.4 (p 1-28), 2.3 + 2.5 (p 78-113, 120-127)