stk310 Practical Assignment A5 – Suggested Solution

Note that, where applicable, the given answers are from the SAS output. The answers from the R output will be equivalent, but might differ slightly with respect to the number of decimal places given.

Question 1

```
goptions reset=all;
proc import out=sasuser.cereal datafile='c:\cereal.csv'
                      dbms=csv replace;
       getnames=yes;
       datarow=2;
run;
data pap;
set sasuser.cereal;
y=Sales of paul se pap;
x2=Price of paul se pap;
x3=Price of Three Bears Bran;
x4=Sales of_Three_Bears_Bran;
keep y x2 x3 x4;
run;
goptions reset=all;
title1 'Multiple regression using proc reg: select model using adjusted R-square';
proc reg data=pap plot=none;
       model y=x2 x3 x4 / selection=adjrsq;
run;
                 Multiple regression using proc reg: select model using adjusted R-square
                                             The REG Procedure
                                               Model: MODEL1
                                           Dependent Variable: y
                                    Adjusted R-Square Selection Method
                                      Number of Observations Read 16
                                      Number of Observations Used 16
                              Number in Adjusted R-Square Variables in Model
                                  Model R-Square
                                          0.7408
                                                  0.7754 x2 x3
                                          0.7229
                                                  0.7783 x2 x3 x4
                                      3
                                          0.7196
                                                  0.7570 x2 x4
                                          0.5873
                                                  0.6148 x2
                                          0.0371
                                                   0.1655 x3 x4
                                          -.0310
                                                  0.0378 x4
                                                  0.0003 x3
                                          -.0711
```

R Code & Output

The best possible linear regression model based upon the adjusted coefficient of determination is $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2i} + \hat{\beta}_3 X_{3i}$ with $\bar{R}^2 = 0.7408$.

Question 2

```
goptions reset=all;
title1 'Partial correlation between Y & X2';
proc corr data=pap;
       var y x2;
       partial x3;
run;
goptions reset=all;
title1 'Partial correlation between Y & X3';
proc corr data=pap;
       var y x3;
       partial x2;
run;
                                    Partial correlation between Y & X2
                                            The CORR Procedure
                                         1 Partial Variables: x3
                                         2 Variables:
                                                              y x2
                                             Simple Statistics
               Variable N
                               Mean Std Dev
                                                   Sum Minimum
                                                                  Maximum
                                                                           Partial Partial
                                                                           Variance Std Dev
               хЗ
                        16 34.31875 3.24925 549.10000 28.50000 40.60000
                        16 76.50000 20.37318
               У
                                                  1224 32.00000 115.00000 444.58623 21.08521
                        16 31.04375 5.35250 496.70000 22.60000 42.40000 23.85226 4.88388
               х2
```

```
Pearson Partial Correlation Coefficients, N = 16
                    Prob > |r| under HO: Partial Rho=0
                                                           x2
                                1.00000
                                                    -0.88053
                                                      <.0001
             x2
                                                     1.00000
                               -0.88053
                                 <.0001
                    Partial correlation between Y & X3
                            The CORR Procedure
                         1 Partial Variables: x2
                         2 Variables:
                             Simple Statistics
Variable N
               Mean Std Dev
                                  Sum Minimum Maximum Partial Partial
                                                          Variance Std Dev
        16 31.04375 5.35250 496.70000 22.60000 42.40000
x2
        16 76.50000 20.37318
                                1224 32.00000 115.00000 171.30364 13.08830
У
x3
        16 34.31875 3.24925 549.10000 28.50000 40.60000 8.78986 2.96477
             Pearson Partial Correlation Coefficients, N = 16
                    Prob > |r| under HO: Partial Rho=0
                                       У
                                                          хЗ
             У
                                1.00000
                                                     0.64568
                                                      0.0093
             хЗ
                                 0.64568
                                                     1.00000
                                  0.0093
```

R Code & Output

- (a) $r_{12.3} = -0.88053$ Holding the price of Three Bears Bran constant, there is a negative linear relation between the price of paul-se-pap and the demand for paul-se-pap. In effect, if the price of paul-se-pap increases and the price of Three Bears Bran stays constant, the demand for paul-se-pap will decrease.
- (b) $r_{13.2} = 0.64568$ Holding the price of paul-se-pap constant, there is a positive linear relation between the price of **Three Bears Bran** and the demand for paul-se-pap. That is, if the price of **Three Bears Bran** increases and the price of paul-se-pap stays constant, the demand for paul-se-pap will increase.

Question 3

```
data logs;
set pap;
lny=log(y);
lnx2=log(x2);
lnx3=log(x3);
run;
goptions reset=all;
title1 'Multiple regression using proc reg: inference & prediction';
proc reg data=logs plot=none;
       model lny=lnx2 lnx3 / alpha=0.01 clb clm;
       id x2 x3;
       test lnx2=-3;
       output out=reg out predicted=lnyhat lclm=lnmeanlo uclm=lnmeanup
       r=residual;
run;
goptions reset=all;
title1 'Mean prediction';
proc iml;
use reg out;
read all var{Inyhat Inmeanlo Inmeanup};
i = 12;
yhat36 = exp(lnyhat[i]);
meanlo36 = exp(lnmeanlo[i]);
meanup36 = exp(lnmeanup[i]);
print 'Predicted mean number of boxes of paul-se-pap sold:';
print yhat36[label=none];
print '95% confidence interval for mean number of boxes of paul-se-pap sold:';
print meanlo36[label=none] meanup36[label=none];
quit;
goptions reset=all;
title1 'Verifying normality assumption';
proc univariate data=reg_out normal;
       var residual;
run;
                        Multiple regression using proc reg : inference & prediction
                                             The REG Procedure
                                               Model: MODEL1
                                          Dependent Variable: lny
                                       Number of Observations Read 16
                                       Number of Observations Used 16
                                            Analysis of Variance
                             Source
                                             DF Sum of
                                                           Mean F Value Pr > F
                                                Squares Square
                             Model
                                              2 1.02420 0.51210
                                                                  18.14 0.0002
                             Error
                                             13 0.36701 0.02823
                             Corrected Total 15 1.39120
                                   Root MSE
                                                  0.16802 R-Square 0.7362
                                   Dependent Mean 4.29816 Adj R-Sq 0.6956
                                   Coeff Var
                                                  3.90915
```

Parameter Estimates

Variable	DF	Parameter	Standard	t	Value	Pr	>	t	99%	Confidence	Limits
			_								

Estimate **Error** 5.55680 1.59934

1 -1.76360 0.29328

Intercept 1

lnx2

3.47 0.0041 -6.01 <.0001

0.73914

10.37445

-2.64703

-0.88017

2.62 0.0212 lnx3 1.35247 0.51640 -0.20306 2.90800

Output Statistics

0bs	х2	х3	Dependent	Predicted	Std Error	99% CI	_ Mean	Residual
			Variable	Value	Mean Predict			
1	22.6	34.9	4.7449	4.8626	0.1038	4.5500	5.1752	-0.1177
2	25.4	28.5	4.5326	4.3826	0.0926	4.1038	4.6615	0.1500
3	30.7	40.6	4.4308	4.5270	0.0981	4.2315	4.8225	-0.0962
4	29.1	36.4	4.6151	4.4737	0.0594	4.2948	4.6526	0.1414
5	27.3	32.1	4.5218	4.4163	0.0537	4.2544	4.5782	0.1055
6	27.7	36.6	4.4886	4.5681	0.0700	4.3572	4.7790	-0.0794
7	35.9	37.6	4.1271	4.1472	0.0643	3.9534	4.3410	-0.0201
8	32.3	34.9	4.4188	4.2328	0.0443	4.0994	4.3662	0.1860
9	26.0	31.3	4.3820	4.4682	0.0633	4.2774	4.6590	-0.0862
10	28.9	32.0	4.3175	4.3116	0.0514	4.1567	4.4665	0.005864
11	37.7	36.5	4.0775	4.0208	0.0680	3.8159	4.2256	0.0568
12	36.0	36.0	4.3820	4.0835	0.0591	3.9053	4.2617	0.2985
13	28.2	29.4	4.1109	4.2403	0.0810	3.9963	4.4842	-0.1294
14	29.6	31.2	4.0775	4.2352	0.0601	4.0540	4.4163	-0.1576
15	42.4	35.8	3.4657	3.7874	0.0960	3.4982	4.0766	-0.3217
16	36.9	35.3	4.0775	4.0134	0.0644	3.8195	4.2073	0.0641

Sum of Residuals 0 Sum of Squared Residuals 0.36701

Predicted Residual SS (PRESS) 0.61925

Test 1 Results for Dependent Variable lny

Source DF Mean F Value Pr > F Square

Numerator 1 0.50175 17.77 0.0010

13 0.02823 Denominator

Mean prediction

Predicted mean number of boxes of paul-se-pap sold:

59.352787

95% confidence interval for mean number of boxes of paul-se-pap sold:

49,666577 70,928048

Verifying normality assumption

The UNIVARIATE Procedure Variable: residual (Residual)

Tests for Normality

 Test
 Statistic
 p Value

 Shapiro-Wilk
 W 0.981562
 Pr < W 0.9747</td>

 Kolmogorov-Smirnov
 D 0.131712
 Pr > D >0.1500

 Cramer-von Mises
 W-Sq 0.030616
 Pr > W-Sq >0.2500

 Anderson-Darling
 A-Sq 0.199871
 Pr > A-Sq >0.2500

R Code & Output

```
> # Multiple regression: inference & prediction
> lny <- log(y)
> lnx2 <- log(x2)
> lnx3 <- log(x3)
> (1rm <- lm(lny ~ lnx2 + lnx3, data = pap))
Call:
lm(formula = lny \sim lnx2 + lnx3, data = pap)
Coefficients:
                   lnx2
(Intercept)
                            1.352
                                 lnx3
                -1.764
     5.557
> summary(lrm)
Call:
lm(formula = lny \sim lnx2 + lnx3, data = pap)
Residuals:
Min 1Q Median 3Q Max -0.32165 -0.10155 -0.00711 0.11448 0.29853
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.5568 1.5993 3.474 0.00411 ** lnx2 -1.7636 0.2933 -6.013 0.0000435 ***
                      0.5164 2.619 0.02122 *
lnx3
             1.3525
Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ''1
Residual standard error: 0.168 on 13 degrees of freedom
Multiple R-squared: 0.7362, Adjusted R-squared: 0.6956
F-statistic: 18.14 on 2 and 13 DF, p-value: 0.0001731
> confint(lrm, level = 0.99)
                 0.5 % 99.5 %
(Intercept) 0.7391426 10.374455
1nx2 -2.6470336 -0.880168
1nx3 -0.2030595 2.907997
lnx3
> # Mean prediction
> i <- 12
> exp(predict(lrm, interval="confidence"))[i,]
     fit
              lwr
                      upr
59.35279 52.23328 67.44269
> # Verifying normality assumption
> shapiro.test(lrm$residuals)
       Shapiro-Wilk normality test
data: lrm$residuals
W = 0.98156, p-value = 0.9747
```

(a)
$$\ln Y_i = 5.55680 - 1.76360 \ln X_{2i} + 1.35247 \ln X_{3i} + \hat{u}_i$$

(0.29328) (0.51640)

 $\hat{\beta}_2 = -1.76360$ is unchanged and the price of **paul-se-pap** increases by 1% per box, the mean demand for **paul-se-pap** will decrease by 1.76%.

 $\hat{\beta}_3 = 1.35247$ \Longrightarrow If the price of paul-se-pap remains constant and the price of Three Bears Bran increases by 1% per box, the mean demand for paul-se-pap will increase by 1.35%.

(b)

$$\stackrel{\text{\@}}{\rightleftharpoons} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0$$

Test statistic value $\Rightarrow t = 3.47$

Since p-value = 0.0041 < 0.01, H_0 is rejected at a 1% significance level.

$$H_0: \beta_2 = 0$$

$$H_1: \beta_2 \neq 0$$

Test statistic value $\Rightarrow t = -6.01$

Since *p*-value < .0001 < 0.01, H_0 is rejected at a 1% significance level.

$$\begin{array}{l}
\blacksquare \\
H_0: \beta_3 = 0 \\
H_1: \beta_3 \neq 0
\end{array}$$

Test statistic value $\Rightarrow t = 2.62$

Since p-value 0.01 < 0.0212 < 0.05, H_0 cannot be rejected at a 1% significance level, but is rejected at a 5% significance level.

We conclude that all the individual regression coefficients are statistically significant.

(c)
$$H_0$$
: $\beta_2 = \beta_3 = 0$
 H_1 : At least one of β_2 and β_3 is not zero

Test statistic value $\Rightarrow F = 18.14$

Since p-value = 0.0002 < 0.01, H_0 is rejected at a 1% significance level.

Thus the overall regression model is statistically significant in that at least one of β_2 and β_3 is a significant parameter.

(d)
$$H_0: \beta_2 = -3$$

 $H_1: \beta_2 \neq -3$

Test statistic value $\Rightarrow F = 17.77$

99% confidence interval for $\beta_2 \Longrightarrow (-2.64703, -0.88017)$

Because p-value = 0.0010 < 0.01 and because $\beta_2^* = -3$ does not fall within the 99% confidence interval for β_2 , H_0 is rejected at a 1% significance level.

So, if the price of **Three Bears Bran** remains unchanged and the price of **paul-se-pap** increases by 1%, the mean demand for **paul-se-pap** will not decrease by 3%.

(e) Estimated mean demand for paul-se-pap $\Rightarrow e^{4.0835} = 59.352787$

99% confidence interval for the mean demand for paul-se-pap:

$$(e^{3.9053}, e^{4.2617}) = (49.666577, 70.928048)$$

(f) H_0 : u_i normal H_0 : u_i not normal

Test statistic value $\Rightarrow W = 0.981562$

p-value = 0.9747 > 0.1, so the null hypothesis cannot even be rejected at a 10% significance level.

Therefore u_i follows a normal distribution.

Question 4

```
data onlylogs;
set logs;
keep lny lnx2 lnx3;
goptions reset=all;
title1 'Multiple regression using proc iml';
proc iml;
use onlylogs;
read all into matrix;
n=nrow(matrix);
y=matrix[,1];
x=j(n,1,1)||matrix[,2:3];
print 'y:' y[label=none] 'X:' x[label=none];
bhat=inv(x`*x)*x`*y;
print 'Vector of parameter estimates:' bhat[label=none];
k=ncol(x);
uhat=y-x*bhat;
mse=uhat`*uhat/(n-k);
print 'Mean square error:' mse[label=none];
varcovb=mse#inv(x`*x);
print 'Covariance matrix for estimates:' varcovb[label=none];
```

```
stderr=sqrt(vecdiag(varcovb));
t=bhat/stderr;
t_pvalue=2#(1-probt(abs(t),n-k));
print 'Standard errors of estimates:' stderr[label=none];
print 'Test statistic values for t-tests:' t[label=none];
print 'p-values for t-tests:' t_pvalue[label=none];
ybar=sum(y)/n;
ess=bhat`*x`*y-n#ybar##2;
tss=y`*y-n#ybar##2;
rsquare=ess/tss;
print 'Coefficient of determination:' rsquare[label=none];
adjrsq=1-(1-rsquare)#(n-1)/(n-k);
print 'Adjusted coefficient of determination:' adjrsq[label=none];
f=(rsquare/(k-1))/((1-rsquare)/(n-k));
f_pvalue=1-probf(f,k-1,n-k);
print 'Test statistic value for F-test:' f[label=none];
print 'p-value for F-test:' f_pvalue[label=none];
quit;
                                    Multiple regression using proc iml
                                   y: 4.7449321 X: 1 3.1179499 3.5524868
                                      4.5325995
                                                   1 3.2347492 3.3499041
                                      4.4308168
                                                   1 3.4242627 3.7037681
                                      4.6151205
                                                   1 3.3707382 3.5945688
                                      4.5217886
                                                   1 3.3068867 3.468856
                                      4.4886364
                                                   1 3.3214324 3.6000482
                                      4.1271344
                                                   1 3.5807373 3.6270041
                                      4.4188406
                                                   1 3.4750672 3.5524868
                                      4.3820266
                                                   1 3.2580965 3.4436181
                                      4.3174881
                                                   1 3.3638416 3.4657359
                                      4.0775374
                                                   1 3.6296601 3.5973123
                                                   1 3.5835189 3.5835189
                                      4.3820266
                                      4.1108739
                                                   1 3.339322 3.3809947
                                      4.0775374
                                                   1 3.3877744 3.4404181
                                      3.4657359
                                                   1 3.7471484 3.5779479
                                                   1 3.6082116 3.563883
                                      4.0775374
                                 Vector of parameter estimates: 5.5567987
                                                                 -1.763601
                                                                1.3524687
                                       Mean square error: 0.0282313
                      Covariance matrix for estimates: 2.5578915 -0.034732 -0.690172
                                                        -0.034732 0.0860117 -0.073508
                                                        -0.690172 -0.073508 0.2666652
                                  Standard errors of estimates: 1.599341
                                                                0.2932775
                                                                0.5163963
```

```
Test statistic values for t-tests: 3.4744303
-6.01342
2.6190517

p-values for t-tests: 0.0041108
0.0000435
0.0212243

Coefficient of determination: 0.7361943

Adjusted coefficient of determination: 0.6956088

Test statistic value for F-test: 18.139347
p-value for F-test: 0.0001731
```

R Code & Output

```
> # Matrix approach to multiple regression
> n <- nrow(pap)
> (y <- matrix(lny, nrow = n, ncol = 1))</pre>
           [,1]
[1,] 4.744932
 [2,] 4.532599
 [3,] 4.430817
 [4,] 4.615121
 [5,] 4.521789
 [6,] 4.488636
 [7,] 4.127134
 [8,] 4.418841
 [9,] 4.382027
[10,] 4.317488
[11,] 4.077537
[12,] 4.382027
[13,] 4.110874
[14,] 4.077537
[15,] 3.465736
[16,] 4.077537
> (X <- cbind(matrix(1, nrow = n, ncol = 1), matrix(c(lnx2, lnx3), nrow = n, ncol = 2)))
      [,1]
                [,2]
                           [,3]
        1 3.117950 3.552487
[1,]
       1 3.234749 3.349904
1 3.424263 3.703768
1 3.370738 3.594569
 [2,]
 [3,]
 [4,]
        1 3.306887 3.468856
1 3.321432 3.600048
 [5,]
 [6,]
        1 3.580737 3.627004
1 3.475067 3.552487
1 3.258097 3.443618
 [7,]
 [8,]
 [9,]
        1 3.363842 3.465736
1 3.629660 3.597312
[10,]
[11,]
[12,]
        1 3.583519 3.583519
         1 3.339322 3.380995
[13,]
         1 3.387774 3.440418
[14.]
         1 3.747148 3.577948
[15,]
[16,]
         1 3.608212 3.563883
> # Vector of parameter estimates
> (bhat <- solve(t(X) %*% X) %*% t(X) %*% y)
           [,1]
[1,] 5.556799
[2,] -1.763601
[3,] 1.352469
> # Mean square error
> k <- ncol(X)
> uhat <- y - X %*% bhat
 (mse <- as.numeric(t(uhat) %*% uhat / (n - k)))</pre>
[1] 0.02823133
```

```
> # Covariance matrix for estimates
> (varcovb <- mse * solve(t(X) %*% X))
    [,1]     [,2]     [,</pre>
[1,] 2.55789150 -0.03473185 -0.69017210
[2,] -0.03473185  0.08601171 -0.07350782
[3,] -0.69017210 -0.07350782 0.26666517
> # Standard errors of estimates
> (stderr <- as.matrix(sqrt(diag(varcovb))))</pre>
           [,1]
[1,] 1.5993410
[2,] 0.2932775
[3,] 0.5163963
> # Test statistic values for t-tests
> (t <- bhat / stderr)</pre>
          [,1]
[1,] 3.474430
[2,] -6.013420
[3,] 2.619052
> # p-values for t-tests
> (t_pvalue <- 2 * pt(abs(t), n - k, lower.tail = FALSE))</pre>
[1,] 0.00411079586
[2,] 0.00004349936
[3,] 0.02122431800
> # Coefficient of determination
> ybar <- mean(y)</pre>
> Fixed to mean (y)

> ESS <- t(bhat) %*% t(X) %*% y - n * ybar ^ 2

> TSS <- t(y) %*% y - n * ybar ^ 2
> (Rsquare <- as.numeric(ESS / TSS))</pre>
[1] 0.7361943
> # Adjusted coefficient of determination
> (AdjRsq <- 1 - (1 - Rsquare) * (n - 1) / (n - k))
[1] 0.6956088
> # Test statistic value for F-test
> (F \leftarrow (Rsquare / (k - 1)) / ((1 - Rsquare) / (n - k)))
[1] 18.13935
> # p-value for F-test
> (F_pvalue <- pf(F, k - 1, n - k, lower.tail = FALSE))
[1] 0.0001731199
```

(a)
$$\ln Y_i = 5.55667987 - 1.763601 \ln X_{2i} + 1.3524687 \ln X_{3i} + \hat{u}_i$$

 (0.599341)

(b)
$$\hat{\sigma}^2 = 0.0282313$$
 $R^2 = 0.7361943$ $\bar{R}^2 = 0.6956088$

$$R^2 = 0.7361943$$

$$\bar{R}^2 = 0.6956088$$

(c)

$$\begin{array}{ll}
 & H_0: \beta_1 = 0 \\
 & H_1: \beta_1 \neq 0
\end{array}$$

Test statistic value $\Rightarrow t = 3.4744303$

Because p-value = 0.0041108 < 0.01, H_0 is rejected at a 1% significance level.

$$H_0: \beta_2 = 0$$

$$H_1: \beta_2 \neq 0$$

Test statistic value $\Rightarrow t = -6.01342$

Because p-value = 0.0000435 < 0.01, H_0 is rejected at a 1% significance level.

$$H_0: \beta_3 = 0$$

$$H_1: \beta_3 \neq 0$$

Test statistic value $\Rightarrow t = 2.6190517$

Because p-value 0.01 < 0.0212243 < 0.05, H_0 cannot be rejected at a 1% significance level, but is rejected at a 5% significance level.

We conclude that all the individual regression coefficients are statistically significant.

(d)
$$H_0$$
: $\beta_2 = \beta_3 = 0$

(d) H_0 : $\beta_2 = \beta_3 = 0$ H_1 : At least one of β_2 and β_3 is not zero

Test statistic value $\Rightarrow F = 18.139347$

Since *p*-value = 0.0001731 < 0.01, H_0 is rejected at a 1% significance level.

So we conclude that the overall regression model is statistically significant.