简单线性回归算法公式推导

求损失函数
$$\sum_{i=1}^{m} (y^{(i)} - ax^{(i)} - b)^2$$
 的最小值

最小二乘法求解:

本质是试图找到一条直线,使得样本上的点到直线的欧式距离之和最小

$$J(a,b) = \sum_{i=1}^{m} (y^{(i)} - ax^{(i)} - b)^2$$

对J(a,b)求导并且令 $\frac{\partial J(a,b)}{\partial a}=0$, $\frac{\partial J(a,b)}{\partial b}=0$

(-)

$$\frac{\partial J(a,b)}{\partial b} = \sum_{i=1}^{m} 2(y^{(i)} - ax^{(i)} - b)(-1) = 0$$

化简

$$\sum_{i=1}^{m} y^{(i)} - a \sum_{i=1}^{m} x^{(i)} - \sum_{i=1}^{m} b = 0$$

$$\sum_{i=1}^{m} y^{(i)} - a \sum_{i=1}^{m} x^{(i)} - mb = 0$$

$$\sum_{i=1}^{m} y^{(i)} - a \sum_{i=1}^{m} x^{(i)} = mb$$

两边同除 m

$$\mathbf{b} = \bar{\mathbf{y}} - \mathbf{a}\bar{\mathbf{x}}$$

 $(\underline{})$

$$\frac{\partial J(a,b)}{\partial b} = \sum_{i=1}^{m} 2(y^{(i)} - ax^{(i)} - b)(-x^{(i)}) = 0$$

化简并将 b 带入

$$\sum_{i=1}^{m} (y^{(i)} - ax^{(i)} - \bar{y} + a\bar{x}) x^{(i)} = 0$$

$$\sum_{i=1}^{m} (x^{(i)}y^{(i)} - ax^{(i)}x^{(i)} - x^{(i)}\bar{y} + a\bar{x}x^{(i)}) = 0$$

$$\sum_{i=1}^{m} (x^{(i)}y^{(i)} - x^{(i)}\bar{y} + a\bar{x} x^{(i)} - ax^{(i)}x^{(i)}) = 0$$

$$\sum_{i=1}^{m} (x^{(i)}y^{(i)} - x^{(i)}\bar{y}) = a \sum_{i=1}^{m} (x^{(i)}x^{(i)} - \bar{x} x^{(i)})$$
$$a = \frac{\sum_{i=1}^{m} (x^{(i)}y^{(i)} - x^{(i)}\bar{y})}{\sum_{i=1}^{m} (x^{(i)}x^{(i)} - \bar{x} x^{(i)})}$$

因为

$$\sum_{i=1}^{m} x^{(i)} \bar{y} = \bar{y} \sum_{i=1}^{m} x^{(i)} = m \bar{y} \cdot \bar{x} = \bar{x} \sum_{i=1}^{m} y^{(i)} = \sum_{i=1}^{m} x^{(i)} \bar{y} = \sum_{i=1}^{m} \bar{y} \bar{x}$$

所以

$$a = \frac{\sum_{i=1}^{m} (x^{(i)}y^{(i)} - x^{(i)}\overline{y} - \overline{x}y^{(i)} + \overline{x}\overline{y})}{\sum_{i=1}^{m} (x^{(i)}x^{(i)} - \overline{x}x^{(i)} - \overline{x}x^{(i)} + \overline{x}^2)}$$
$$a = \frac{\sum_{i=1}^{m} (x^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum_{i=1}^{m} (x^{(i)} - \overline{x})^2}$$

模型输出 $y = ax_i + b$

多元线性回归公式推导

样本数据集
$$\begin{pmatrix} x_1^1, x_2^1, x_3^1, \cdots, x_n^1, y^1 \\ x_1^2, x_2^2, x_3^2, \cdots, x_n^2, y^2 \\ \cdots \\ x_1^n, x_2^n, x_3^n, \cdots, x_n^n, y^n \end{pmatrix} = (X_1^{(i)}, X_2^{(i)}, X_3^{(i)}, \cdots, X_n^{(i)}, Y^{(i)})$$

求损失函数
$$\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2$$
 的最小值

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_n x_n \quad \text{the } \beta \theta_0$$
$$\hat{y}^{(i)} = \theta_0 + \theta_1 X_1^{(i)} + \theta_2 X_2^{(i)} + \theta_3 X_3^{(i)} + \dots + \theta_n X_n^{(i)}$$

找出 $\theta_0, \theta_1, \theta_2, \dots, \theta_n$,使得 $\sum_{i=1}^m (y^{(i)} - \hat{y}^{(i)})^2$ 最小

最终多元线性回归方程的正规方程解 $\boldsymbol{\theta} = (X_b^T X_b)^{-1} X_b^T y$

模型输出 $\hat{\mathbf{y}}^{(i)} = X_b \boldsymbol{\theta}$

参数

超参数	解释	数值类型(默认	optional
		值)	
fit_intercept	是否计算此模型的截距。 如果设置为 False,则不会在计算	Boolean (True)	True/False
	中使用截距(例如,预计数据已经居中		
normalize	fit_intercept 设置为 False 时,将忽略此参数。 如果为真,	Boolean	True/False
	则回归量 X 将在回归之前通过减去平均值并除以 12 范数	(False)	
	来归一化。 如果您希望标准化,请 在使用估算器		
	sklearn.preprocessing.StandardScaler 之前 fit 使用		
	normalize=False .		
copy_X	如果为 True,则将复制 X;否则,它可能会被覆盖。(不太	Boolean (True)	True/False
	懂)		
n_jobs	确定 cpu 的核数, -1 表示使用所有处理器	Int (None)	

属性	解释	类型	Shape
coef_	回归系数 (斜率)	array	(n_features,) (n_targets,
			n_features)
intercept_	截距	Float	

方法	解释	类型
fit(X, y, sample_weight=None)	训练线性模型	X : array-like or 稀疏矩
		阵, y:array_like,
		sample_weight : numpy
		array
get_params (deep=True)	如果为 True,将返回此估计器的参数并包含作为模型的子对象。	boolean
predict(X)	使用线性模型预测	X: array-like or 稀疏矩阵
score(X, y[, sample_weight])	评分标准 $R^2 = 1 - \frac{(\sum_{i=1}^m (\hat{y}^{(i)} - y^{(i)})^2)/m}{(\sum_{i=1}^m (y^{(i)} - \bar{y})^2)/m}$	float
set_params(**params)	设置参数	