Worksheet 4

Problem 1. Sample from Cauchy [Bi] Ex.11.3

Given a random variable z uniformly distributed over (0,1), find a transformation $\mathbf{y}=f(\mathbf{z})$ such that y has Cauchy distribution

$$p_{\mathsf{y}}(y) = \frac{1}{\pi} \frac{1}{1 + y^2} \; .$$

Problem 2. Box-Muller [Bi] Ex.11.4

Suppose z_1 and z_2 are uniformly distributed over the unit circle (disk). Show that

$$\mathbf{y}_1 = \mathbf{z}_1 \left(\frac{-2 \ln r^2}{r^2} \right)^{1/2}, \quad \mathbf{y}_2 = \mathbf{z}_2 \left(\frac{-2 \ln r^2}{r^2} \right)^{1/2}$$

where $r = z_1^2 + z_2^2$, has the joint density

$$p_{(\mathbf{y}_1, \mathbf{y}_2)}(y_1, y_2) = \left[\frac{1}{\sqrt{2\pi}} \exp(-y_1^2/2)\right] \left[\frac{1}{\sqrt{2\pi}} \exp(-y_2^2/2)\right]$$

Problem 3. Gibbs sampling

Consider the Gibbs sampler for a vector of parameters $\boldsymbol{x}=(x_1,\cdots,x_M)^\mathsf{T}$. Suppose at the s-th step $\boldsymbol{x}^{(s)}$ is sampled from the target distribution $p(\mathbf{x})$ and then $\boldsymbol{x}^{(s+1)}$ is generated using the Gibbs sampler. Show that the marginal probability $P(\boldsymbol{x}^{(s+1)} \in \mathbb{A})$ equals the target distribution $\int_{\mathbb{A}} p(\mathbf{x}) d\mathbf{x}$.

Problem 4. Entropy

Recall that the entropy of a discrete random variable X is defined to be

$$H(X) = -\sum_{x \in \mathbb{X}} p(x) \log_2 p(x) ,$$

where \mathbb{X} is the set of all possible values of X.

1. A fair coin is flipped until the first head occurs. Let X denote the number of flips required. Find the entropy H(X) in bits.

1

2. What is the relationship of H(X) and H(Y) if $Y = 2^X$?

Problem 5. Differential entropy

Calculate the (differential) entropy of the following.

- 1. The exponential density $p(x) = \lambda e^{-\lambda x}$, $x \ge 0$.
- 2. The sum of \mathbf{x}_1 and \mathbf{x}_2 where \mathbf{x}_1 is independent from \mathbf{x}_2 and $p_{\mathbf{x}_i}(x) = \mathcal{N}(x|\mu_i,\sigma_i^2)$ for i=1,2.

Problem 6. Change of variable

Recall that $H(\mathbf{x}) = -\int p_{\mathbf{x}}(\boldsymbol{x}) \ln p_{\mathbf{x}}(\boldsymbol{x}) d\boldsymbol{x}$. Prove:

$$H(\mathbf{A}\mathbf{x}) = \ln|\det(\mathbf{A})| + H(\mathbf{x})$$
.