Ch 1-4 组合计数

回顾前一次课

- 排列、环排列
- 组合、多重组合、多重集排列
- 整数的有序分解

n只球	m个箱子	无任何限制	每个箱子至多1球	每个箱子至少1球
不同	不同	m^n	$(m)_n$?
相同	不同	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
不同	相同	?	?	?
相同	相同	?	?	?

问题:考虑将n只不同的球放入m个完全相同不可分辨的箱子

定义:将n个不同的元素分成m个非空的子集,不同的划分数称为 第二类 Stirling 数,记为 S(n,m)

定理: 对 $n \ge 1$, $m \ge 1$ 有

$$S(n,m) = mS(n-1,m) + S(n-1,m-1)$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n \quad \text{fill} \quad \sum_{k=1}^{n} S(n,k)(x)_k = x^n$$
$$(x)_k = x(x-1) \cdots (x-k+1).$$

十二重计数

问题简述: 将n只球放入m个箱子, 有多少种不同的放法

n只球	m个箱子	无任何限制	每个箱子至多1球	每个箱子至少1球
不同	不同	m^n	$(m)_n$	
相同	不同	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
不同	相同			
相同	相同	?	?	?

整数的无序分拆

问题: 考虑将n只相同的球放入m个相同的箱子

组合学表述:将正整数n划分成m个无序的正整数之和

定义:将正整数n划分成m个无序的正整数之和,不同的划分数记为p(n,m)

例:考虑7的各种无序划分

m=1	7	p(7,1) = 1
m=2	6+1, 5+2, 4+3	p(7,2) = 3
m=3	5+1+1, $4+2+1$, $3+3+1$, $3+2+2$	p(7,3) = 4
m=4	4+1+1+1, $3+2+1+1$, $2+2+2+1$	p(7,4) = 3
m=5	3+1+1+1+1, $2+2+1+1+1$	p(7,5) = 2
m=6	2+1+1+1+1+1	p(7,6) = 1
m=7	1+1+1+1+1+1	p(7,7) = 1

整数的无序分拆

问题:将正整数n划分成m个无序的正整数之和

问题转化:将正整数n划分成m个无序的正整数之和,等价于

$$x_1 + x_2 + \dots + x_m = n$$
 s.t. $x_1 \ge x_2 \ge \dots \ge x_m \ge 1$

记
$$p(0,0) = 1, p(n,1) = 1, p(n,n) = 1$$

当
$$m > n \ge 1$$
时有 $p(n,m) = 0$

递推关系

定理: 对 $n \ge 1$, $m \ge 1$ 有

$$p(n,m) = p(n-1, m-1) + p(n-m, m)$$
$$p(n,m) = \sum_{i=1}^{m} p(n-m, i)$$

整数的无序分拆

性质:对正整数 $n \ge 1$ 和 $m \ge 1$,有

$$\frac{1}{m!} \binom{n-1}{m-1} \leqslant p(n,m) \leqslant \frac{1}{m!} \binom{n-1+m(m-1)/2}{m-1}$$

给定 $m \ge 1$,当n非常大或趋于无穷的极限中有

$$p(n,m) \approx \frac{n^{m-1}}{m!(m-1)!}.$$

问题简述: 将n只球放入m个箱子, 有多少种不同的放法

n只球	m个箱子	无任何限制	每个箱子至多1球	每个箱子至少1球
不同	不同	m^n	$(m)_n$	m! S(n, m)
相同	不同	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
不同	相同	$\sum_{k=1}^{m} S(n,k)$	$\begin{cases} 1 & n \leq m \\ 0 & n > m \end{cases}$	S(n, m)
相同	相同			

十二重计数

问题简述: 将n只球放入m个箱子, 有多少种不同的放法

n只球	m个箱子	无任何限制	每个箱子至多1球	每个箱子至少1球
不同	不同	m^n	$(m)_n$	m! S(n, m)
相同	不同	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
不同	相同	$\sum_{k=1}^{m} S(n,k)$	$\begin{cases} 1 & n \leq m \\ 0 & n > m \end{cases}$	S(n, m)
相同	相同	$\sum_{k=1}^{m} p(n,k)$	$\begin{cases} 1 & n \leq m \\ 0 & n > m \end{cases}$	p(n,m)

Ch 2 条件概率与独立性

前面所讨论的概率均是在整个样本空间上进行,无任何额外因素或条件.现考虑在一定条件下某一随机事件发生的概率.

例 随意掷一枚骰子, 用事件B表示观察到3点, P(B) = 1/6.

用事件A表示观察到奇数点, $A = \{1,3,5\}$, P(A) = 1/2.

现考虑事件A发生的情况下事件B发生的概率, 记为P(B|A). 根据 $A = \{1,3,5\}$ 且每种情况等可能发生, 由此可得

$$P(B|A) = 1/3 > P(B)$$

用事件C表示观察到2点,可知P(C) = 1/6,在事件A发生的情况下事件C发生的概率P(C|A) = 0 < P(C)

一个随机事件发生的概率可能随着条件的改变而改变

条件概率形式化定义

定义:设A和B为同一样本空间下的随机事件,且P(A) > 0,

$$P(B|A) = \frac{P(AB)}{P(A)}$$

为事件A发生的条件下事件B发生的概率, 简称 条件概率

任何事件的概率可看作必然事件的条件概率 $P(A) = P(A)/P(\Omega)$

考虑事件A发生的条件下考虑事件B发生的概率,可将A看作新的样本空间,即缩减的样本空间

条件概率是概率

对任何给定的事件A满足P(A) > 0, 其条件概率:

非负性: 对任意事件B有P(B|A) ≥ 0;

规范性: 对样本空间 Ω 有 $P(\Omega|A) = 1$;

可列可加性: 若 $B_1, B_2, \cdots, B_n, \cdots$ 是可列无穷个互不相容的事件, 即 $B_i B_j = \emptyset (i \neq j)$, 有

$$P(B_1 \cup B_2 \cup \cdots \cup B_n \cup \cdots | A) = P(B_1 | A) + \cdots + P(B_n | A) + \cdots$$

条件概率是一种概率

条件概率的性质

容斥原理:对随机事件 A, B_1 和 B_2 且满足P(A) > 0, 有 $P(B_1 \cup B_2|A) = P(B_1|A) + P(B_2|A) - P(B_1B_2|A)$

对随机事件A和B且满足P(A) > 0,有 $P(B|A) = 1 - P(\bar{B}|A)$

例: 盒子中有4只不同的产品, 其中3只一等品, 1只二等品. 从盒子中不放回随机取两次产品. 用A表示第一次拿到一等品的事件, B表示第二次取到一等品的事件, 求条件概率P(B|A).

对随机事件A和B且满足P(A) > 0,根据条件概率的定义可 P(AB) = P(A)P(B|A) = P(B)P(A|B)

性质: 对随机事件 A_1, A_2, \cdots, A_n 且满足 $P(A_1A_2 \cdots A_{n-1}) > 0$,有 $P(A_1A_2 \cdots A_n)$ $= P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \cdots P(A_n|A_1A_2 \cdots A_{n-1})$

例:假设一批灯泡有100只,其中有次品10只,其余为正品.不放回抽取地每次抽取一只,求第三次才是正品的概率

设n把钥匙中只有一把能打开门. 不放回随机取出一把开门, 求第k次打开门的概率.

匹配问题

假设有n对夫妻参加活动,被随机分成n组,每组一男一女,求n对夫妻恰好两两被分到一组的概率.

第一个箱子里有n个不同的白球,第二个箱子里有有m个不同的红球,从第一个箱子任意取走一球,再从第二个箱子里任意取走一球放入第一个箱子,依次进行,直至第一、第二个箱子都为空,求第一个箱子最后一次取走的球是白球的概率.