ESC201T : Introduction to Electronics

Lecture 31: Digital Circuits-1

B. Mazhari Dept. of EE, IIT Kanpur

Analog vs. Digital Signal

Advantages of using digital Signals

Robustness towards noise

$$V_{ix}(t) = 0.45 \rightarrow V_{iy}(t) : (0.25, 0.65)$$

It is very difficult to recover the original signal

Advantages of using digital Signals

Robustness towards noise

One can get the desired accuracy using larger number of digits

Accurate Processing?

Suppose we would like to multiply a signal by a factor of 2

Because of tolerances etc, we would not get a gain of 2. Suppose the gain is 1.9.

For Vi = 0.44, we would get 0.836 instead of 0.88V.

Processing of digital signals is often much simpler if numbers are represented properly!

Digital circuits allow much more complex information processing

Deep Blue was a chess-playing computer developed by IBM. On May 11, 1997, the machine won a six-game match by two wins to one with three draws against <u>world champion</u> Garry Kasparov Kasparov accused IBM of cheating and demanded a rematch, but IBM declined and dismantled Deep Blue. Kasparov had beaten a previous version of Deep Blue in 1996....wikipedia

Analog signal Processing

Digital signal Processing

Converting signals into a sequence of numbers and vice-versa

$$x(t) = 0.5 + 0.5 \times \sin(\frac{2\pi}{10^{-3}}t)$$

Step-1: Sampling

Sample at intervals of T/12

$$x[n\frac{T}{12}] = [0.5, 0.75, 0.93, 1, 0.93, 0.75, 0.5, 0.25, 0.067, 0, 0.067, 0.25, 0.5...]$$

Example

Sample and Hold

One can recover the original waveform by low pass filtering the sampled waveform

Converting sampled waveform into a sequence of numbers

Quantization:

1-digit quantizer: [0,1,3,5,4,3,2,0,1,3,5......]

2-digit quantizer: [00,12,32,57,42,31,22,00,12,32,57......]

Quantization:

It is obvious that quantization introduces errors!

Quantization:

$$x(t) = 0.5 + 0.5 \times \sin(\frac{2\pi}{10^{-3}}t)$$
 Sample at intervals of T/12

$$x[n\frac{T}{12}] = [0.5, 0.75, 0.93, 1, 0.93, 0.75, 0.5, 0.25, 0.067, 0, 0.067, 0.25, 0.5...]$$

Voltage Range (Volts)	Number
0-0.2	0
0.2-0.4	1
0.4-0.6	2
0.6-0.8	3
0.8-1.0	4
1.0-1.2	5
1.2-1.4	6
1.4-1.6	7
1.6-1.8	8
1.8-2.0	9

Analog Voltage	Digital voltage or Number
0.5	2
0.75	3
0.93	4
1	5
0.93	4
0.75	3
0.5	2
0.25	1
0.067	0
0	0
0.067	0
0.25	1
0.5	2

$$x(t) = 0.5 + 0.5 \times \sin(\frac{2\pi}{10^{-3}}t)$$

Analog Voltage	Digital voltage or Number
0.5	2
0.75	3
0.93	4
1	5
0.93	4
0.75	3
0.5	2
0.25	1
0.067	0
0	0
0.067	0
0.25	1
0.5	2

2-digit Quantization:

2-digit Quantization: $x(t) = 0.5 + 0.5 \times \sin(\frac{2\pi}{10^{-3}}t)$

Sample at intervals of T/12

Voltage Range (Volts)	Number	
0-0.02	02 00	
0.02-0.04	01	
0.04-0.06	02	
-	-	
-	-	
-	-	
1.92-1.94	96	
1.94-1.96	4-1.96 97	
1.96-1.98	.96-1.98 98	
1.98-2.0	99	

Analog Voltage	Number	
0.5	25	
0.75	37	
0.93	46	
1	50	
0.93	46	
0.75	37	
0.5	25	
0.25	12	
0.067	03	
0	00	
0.067	03	
0.25	12	
0.5	25	

$$x(t) = 0.5 + 0.5 \times \sin(\frac{2\pi}{10^{-3}}t)$$

Analog Voltage	Number
0.5	25
0.75	37
0.93	46
1	50
0.93	46
0.75	37
0.5	25
0.25	12
0.067	03
0	00
0.067	03
0.25	12
0.5	25

Converting numbers back to signals

$$x(t) = 0.5 + 0.5 \times \sin(\frac{2\pi}{10^{-3}}t)$$
 $x(n) = [2, 3, 4, 5, 4, 3, 2, 1, 0, 0, 0, 1, 2, ...]$

Suppose we do not carry out any processing. Y[n] = x[n]. Are we able to regenerate the original signal?

Digital to Analog Converter

$$x(n) = [2,3,4,5,4,3,2,1,0,0,0,1,2....]$$

Voltage Range (Volts)	Number
0-0.2	0
0.2-0.4	1
0.4-0.6	2
0.6-0.8	3
0.8-1.0	4
1.0-1.2	5
1.2-1.4	6
1.4-1.6	7
1.6-1.8	8
1.8-2.0	9

Digital voltage or Number	New Analog Voltage
2	2 x 0.2= 0.4
3	3 x 0.2=0.6
4	0.8
5	1.0
4	0.8
3	0.6
2	0.4
1	0.2
0	0
0	0
0	0
1	0.2
2	0.4

Digital to Analog Converter

Voltage Range (Volts)	Number	
0-0.02	00	
0.02-0.04	0.04 01	
0.04-0.06	-0.06 02	
-	-	
-	-	
-	-	
1.92-1.94	92-1.94 96	
1.94-1.96	4-1.96 97	
1.96-1.98	1.96-1.98 98	
1.98-2.0	99	

Analog Voltage	Number	New Analog Voltage
0.5	25	25 x 0.02 = 0.5
0.75	37	37 x 0.02 =0.74
0.93	46	0.92
1	50	1.0
0.93	46	0.92
0.75	37	0.74
0.5	25	0.5
0.25	12	0.24
0.067	03	0.06
0	00	0
0.067	03	0.06
0.25	12	0.24
0.5	25	0.5

Processing of numbers in decimal system is cumbersome!

Circuits for processing numbers in binary system are much easier to implement

Processing of numbers in decimal system is cumbersome!

How do we add 23+45?

How do we add 23+58 ?

It is not easy to design circuits to carry out this operations using decimal system

A Binary number system is more convenient!

