Резонансные комптоноподобные процессы в сильной замагниченной среде (следует подумать)

Д.А. Румянцев*, Д.М. Шленев** А.А. Ярков*** Ярославский государственный университет им. П.Г. Демидова, Россия

В работе рассмотрены различные квантовые процессы с учетом резонанса на виртуальном фермионе.

^{*}E-mail: rda@uniyar.ac.ru

^{**}E-mail:

^{***}E-mail: a12l@mail.ru

1 Введение

2 Резонансные эффекты

В сильном магнитном поле поперечная составляющая импульса электрона квантуется. В таком случае энергия электрона определяется так называемым уровнем Ландау n и проекцией импульса вдоль магнитного поля p_z :

$$E_n = \sqrt{1 + p_z^2 + 2\beta n},\tag{1}$$

где $\beta=B/B$, а $B=m_e^2c^3/e\hbar$. С другой стороны проекция импульса вдоль постоянного магнитного поля, направленного по оси z, меняется непрерывно. В связи с квантованностью энергетических состояний, в квантовых процессах могут наблюдаться резонансы, связанные с переходами электрона между уровнями Ландау. Отметим некоторые процессы, в которых возможны резонансы.

Одновершинные процессы, будучи в замагниченной среде, становятся кинематически разрешены. Особенностью данных процессов можно отметить жесткие кинематические ограничения. Одним из таких процессов является $npoyecc\ poxedenus\ \phiomona\ e \to e\gamma$, также называемый циклотронным или синхотронным излучением. При высоких магнитных полях излучение обусловлено переходами на более низкие уровни Ландау. Следует отметить, что при очень сильных магнитных полях, когда $\beta \sim 0.2$, электроны, находящиеся на более высоких уровнях Ландау, переходят непосредственно на основной уровень, а не на соседний. С другой стороны обратный к процессу рождения фотона *процесс поглощения фотона* $e\gamma \rightarrow e$ приводит к переходу электрона на высшие уровни Ландау. Другой немаловажный квантовый процесс является Процесс однофотонного рождения электрон-позитронной $napы \ \gamma \to e^+e^-$. Особенностью данного процесса является то, что фотон эффективно распадается вблизи точек циклотронного резонанса, где поляризационный оператор фотона имеет сингулярности. Однако является подавленным в области ниже порога рождения $\hbar\omega=2mc^2$.

Двухвершинные процессы. Типичным примером двухвершинного процесса является комптоновский процесс $e\gamma \to e\gamma$. Вблизи циклотронных резонансов сечение комптоновского рассеяния, без учета конечной ширины поголощения электрона, становится бесконечным. В таком случае промежуточный (виртуальный) электрон становится реальным, т.е. его закон дисперсии соответствует массовой поверхности, а комптоновский процесс становится одновершинным процессом. Поэтому такие резонансы также называются резонансами на виртуальном электроне. Таким образом, в любом процессе, в котором содержится виртуальная частица, имеются резонансы. Большое магнитное поле может индуцировать новые взаимодействия частиц. Таким образом могут возникать такие фотон-нейтринные процессы, как *конверсия* ϕ отона в пару нейтрино-антинейтрино $\gamma \to \nu \bar{\nu}$ или излучение ϕ отона $\textit{нейтрино}\ \nu \to \nu \gamma.$ Такие процессы имеют петлевую диаграмму с двумя виртуальными электронами и вершинами как слабого взаимодействия так и электромагнитного. Резонансные эффекты приводят также к увеличению эффективности фотонейтринного комптоноподобного процесса $\gamma e \to e \nu \bar{\nu}$, который, наряду с $\gamma \to \nu \bar{\nu}$, играет важную роль в остывании нейтронных звезд.

Трехвершинные процессы. Кроме того в остывании нейтронных звёзд также играет роль трехвершинный *процесс двухфотонной аннигиляции* $\gamma\gamma \to \nu\bar{\nu}$. Среди электромагнитных процессов не менее интересным процессом является *процесс рождения электрон-позитронной пары* $\gamma e \to e e^+ e^-$, который может быть достаточно эффективным для производства $e^+ e^-$ -плазмы, в то время, как стандартный механизм при аккуратном учете дисперсионных свойств фотонов становится невозможным. Данный процесс также интересен тем, что в нем наблюдаются резонансы как на виртуальном электроне, так и на виртуальном фотоне. С точки зрения формирования спектра нейтронных звёзд важным является учет трехвершинного *процесса расщепления фотона* $\gamma \to \gamma\gamma$ и *процесс слияния фотонов* $\gamma\gamma \to \gamma$, которые выступают, как механизм изменения числа фотонов. При определенных условиях эти процессы

могут конкурировать с комптоновским процессом.

3 Заключение

Список литературы