

Emissions Test Report

EUT Name: NeuroPace® Wand

Model No.: W-02

CFR 47 Part 15.205, 15.207, 15.209: 2010

Prepared for:

Barbara Gibb NeuroPace Inc. 1375 Shorebird Way Mountain View, CA 94043

Tel: (650) 237-2700 Fax: (650) 237-2701

Prepared by:

TUV Rheinland of North America, Inc.

1279 Quarry Lane Pleasanton, CA 94566 Tel: (925) 249-9123 Fax: (925) 249-9124 http://www.tuv.com/

Report/Issue Date: 12 October 2010 Report Number: 31051314.001

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001 EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

Statement of Compliance

Manufacturer: NeuroPace Inc.

1375 Shorebird Way

Mountain View, CA 94043

(650) 237-2700

Requester / Applicant:
Name of Equipment:

Barbara Gibb NeuroPace® Wand

Model No.

W-02

Type of Equipment:

Intentional Radiator

Application of Regulations:

CFR 47 Part 15.205, 15.207, 15.209: 2010

Test Dates: 4 October 2010 to 12 October 2010

Guidance Documents:

Emissions: ANSI C63.10: 2009

Test Methods:

Emissions: ANSI C63.10: 2009

The electromagnetic compatibility test and documented data described in this report has been performed and recorded by TUV Rheinland, in accordance with the standards and procedures listed herein. As the responsible authorized agent of the EMC laboratory, I hereby declare that the equipment described above has been shown to be compliant with the EMC requirements of the stated regulations and standards based on these results. If any special accessories and/or modifications were required for compliance, they are listed in the Executive Summary of this report.

This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. This report contains data that are not covered by NVLAP accreditation. This report shall not be reproduced except in full, without the written authorization of TUV Rheinland of North America.

Jeremy Luong

18 October 2010

Conan Boyle

28 October 2010

Test Engineer

Date

NVLAP Signatory

Date

Com V. Byl

INDUSTRY CANADA

2932D-1

Table of Contents

1 E	xecutive Summary	7
1.1	Scope	
1.2	Purpose	
1.3	Summary of Test Results	7
1.4	Special Accessories	
1.5	Equipment Modifications	
	aboratory Information	
2.1	Accreditations & Endorsements	
	1.1 US Federal Communications Commission	8
	1.2 NIST / NVLAP	8
	1.3 Canada – Industry Canada	
	 1.4 Japan – VCCI	
۷. ا		
2.2	Test Facilities	9
	2.1 Emission Test Facility	
	2.2 Immunity Test Facility	
2.3	Measurement Uncertainty	10
2.4	Calibration Traceability	11
3 P1	roduct Information	12
3.1	Product Description	12
3.2	Equipment Configuration	12
3.3	Operating Mode	
3.4	Unique Antenna Connector	13
	4.1 Results	
4 E	missions	14
4.1	Transmitter Spurious Emissions	
	1.1 Test Methodology	
	1.2 Transmitter Spurious Emission Limit	15
4.1	1.3 Test Results	15
4.1	1.4 Sample Calculation	22
4.2	Receiver Spurious Emissions	23
	2.1 Test Methodology	23
	2.2 Receiver Spurious Emission Limit	24
	2.3 Test Results	24
4.2	2.4 Sample Calculation	31
4.3	AC Conducted Emissions	32
	3.1 Test Methodology	32
	3.2 Test Results	32
5 Te	est Equipment Use List	42
5.1	Equipment List	42

Table of Contents

6 Photo	43
6.1 Test Setup Photo	43
6.2 Product Under Test Photo	50
7 EMC Test Plan	5.
7.1 Introduction	5
7.2 Customer	53
7.3 Equipment Under Test (EUT)	5
7.4 Test Setup	5:
7.4.1 Test Configuration	5.
7.4.2 Test Software	5
7.4.3 Test Mode	5
7.4.4 Radiated Emission Test Matrix	
7.4.5 AC Conducted Emission Test Matrix	
7.5 Test Specifications	58
8 Revision History	59

Index of Figures

Figure 1: Test Setup for 9 kHz to 30 MHz Radiated Emission (Front View) – Loop Facing Away	43
Figure 2: Test Setup for 9 kHz to 30 MHz Radiated Emission (Rear View) – Loop Facing EUT	44
Figure 3: Test Setup for 30 MHz to 1000 MHz Radiated Emission (Front View)	45
Figure 4: Test Setup for 30 MHz to 1000 MHz Radiated Emission (Rear View)	46
Figure 5: Test Setup for AC Conducted Emission (Front View)	47
Figure 6: Test Setup for AC Conducted Emission (Side View)	48
Figure 7: Setup Photo of NeuroPace® Wand and NeuroPace® RNS® Neurostimulator (Side View)	49
Figure 8: External Photo of W-02 (Top View)	50
Figure 9: External Photo of W-02 (Bottom View)	51
Figure 10: External Photo of W-02 (Side View)	52

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001 EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902" EMC / Rev 2/6/2012

Index of Tables

Table 1: Summary of Test Results	
Table 2: Summary of Uncertainties	10
Table 3: AC Conducted Emissions – Test Results	33
Table 4: Customer Information	53
Table 5: Technical Contact Information	53
Table 6: EUT Specifications	54
Table 7: Interface Specifications	54
Table 8: Supported Equipment	55
Table 9: Samples used for Testing	55
Table 10: Description of Test Configuration used for Radiated Measurement.	55
Table 11: Test Matrix for Radiated Emission	56
Table 12: Test Matrix for AC Conducted Emission	57
Table 13: Test Requirements	58

Scope

1 Executive Summary

1.1 Scope

This report is intended to document the status of conformance with the requirements of the CFR 47 Part 15.205, 15.207, 15.209: 2010 based on the results of testing performed on 4 October 2010 through 12 October 2010 on the NeuroPace® Wand Model W-02 manufactured by NeuroPace Inc.. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Summary of Test Results

Table 1: Summary of Test Results

Test	Test Method ANSI C63.10 2009	Test Parameters (from Standard)	Result
Restricted Bands of Operation	CFR47 15.205	Class B	Complied
AC Conducted Emission	CFR47 15.207	Class B	Complied
Spurious Emission in Transmitted Mode	CFR47 15.209	Class B	Complied

1.4 Special Accessories

No special accessories were necessary in order to achieve compliance.

1.5 Equipment Modifications

None

Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America at 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 is recognized by the commission for performing testing services for the general public on a fee basis. These laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (US5251). The laboratory scope of accreditation includes: Title 47 CFR Parts 15, 18, 74, 90, 95, and 97. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP

TUV Rheinland of North America is accredited by the National Voluntary Laboratory Accreditation Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Guide 17025:2005 and ISO 9002 (Lab Code 100411-1). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Canada – Industry Canada

TUV Rheinland of North America, at the 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 address is accredited by Industry Canada for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by Industry Canada (File Number 2932D-1). This reference number is the indication to the Industry Canada Certification Officers that the site meets the requirements of RSS 212, Issue 1 (Provisional). The accreditation is updated every 3 years.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment,

and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland of North America at 1279 Quarry Ln, Pleasanton, CA 94566 has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Registration Nos. R-2366, C-2585, C-2586, T-1635).

2.1.5 Acceptance by Mutual Recognition Arrangement

The United States has an established agreement with specific countries under the Asia Pacific Laboratory Accreditation Corporation (APLAC) Mutual Recognition Arrangement. Under this agreement, all TUV Rheinland at 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 test results and test reports within the scope of the

laboratory NIST / NVLAP accreditation will be accepted by each member country.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

2.2 Test Facilities

Test facilities are located at 1279 Quarry Lane, Pleasanton, California 94566, U.S.A. and 2305 Mission College, Santa Clara, 95054, U.S.A. (Santa Clara is the Pleasanton Annex).

2.2.1 Emission Test Facility

The Semi-Anechoic Chamber and AC Line Conducted measurement facility used to collect the radiated and conducted data has been constructed in accordance with ANSI C63.7:1992. The Santa Clara site has been measured in accordance with and verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4-2009, at test distances of 3 and 10 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by NVLAP (Lab Code 100411-0). The 5 meter semi-anechoic chamber used to collect the radiated data has been verified to comply with the theoretical normalized site attenuation requirements of ANSI C63.4:2003 at test distances of 3 and 5 meters. This site has been described in reports dated November 1st, 2006, submitted to the FCC, and accepted by letter dated November 28, 2006. The site is listed with the FCC and accredited by NVLAP (Lab Code 500011-0).

2.2.2 Immunity Test Facility

ESD, EFT, Surge, PQF: These tests are performed in an environmentally controlled room with a 3.7m x 3.7m x 3.175mm thick galvanized steel floor connected to Protective Earth ground. For ESD testing, tabletop equipment is placed on an insulated mat with a surface resistivity of 10^9 Ohms/square on a 1.6m x 0.8m x 0.8m high non-conductive table with a 3.175mm aluminum Horizontal Coupling Plane (HCP) surface. The HCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. The Vertical Coupling Plane (VCP) consists of an aluminum plate 50cm x 50cm x 3.175mm thick. The VCP is connected to the main ground plane via a low impedance ground strap through two 470 k Ω resistors. For each of the other tests, the HCP is removed.

In Santa Clara, the RF Field Immunity testing is performed in the 10 meter semi-anechoic chamber with absorber added to floor. In Pleasanton, the RF Field Immunity testing is performed in the 3 meter fully-anechoic chamber.

RF Conducted and Magnetic Field Immunity testing is performed on a 4.9m x 3.7m x 3.175mm thick aluminum ground plane which is connected to one end of the anechoic chamber.

All test areas allow a minimum distance of 1 meter from the EUT to walls or conducting objects.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001 EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

Page 9 of 59

2.3 Measurement Uncertainty

Two types of measurement uncertainty are expressed in this report, per *ISO Guide To The Expression Of Uncertainty In Measurement*, 1st Edition, 1995.

The Combined Standard Uncertainty is the standard uncertainty of the result of a measurement when that result is obtained from the values of a number of other quantities; it is equal to the positive square root of the sum of the variances or co-variances of these other quantities, weighted according to how the measurement result varies with changes in these quantities. The term *standard uncertainty* is the result of a measurement expressed as a standard deviation.

The Expanded Uncertainty defines an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed to the measurand. The fraction may be viewed as the coverage probability or level of confidence of the interval.

Table 2: Summary of Uncertainties

$ m U_{lab}$ $ m U_{cispr}$										
Radiated Disturbance @ 10	m									
30 MHz – 1,000 MHz	30 MHz – 1,000 MHz 3.2 dB 5.2 dB									
Conducted Disturbance @ Mains Terminals										
150 kHz – 30 MHz 2.4 dB 3.6 dB										
Disturbance Power										
30 MHz – 300 MHz	3.92 dB	4.5 dB								
Measurement Une	certainty Immunity									
The estimated combined standard u	incertainty for ESD immunity measurements is	$\pm 4.1\%$.								
The estimated combined standard u	ncertainty for radiated immunity measurements	s is ± 2.05 dB.								
The estimated combined standard u	incertainty for conducted immunity measurement	nts is ± 1.83 dB.								
The estimated combined standard u	ncertainty for damped oscillatory wave immun	ity measurements is \pm 8.8%.								
The estimated combined standard u	uncertainty for harmonic current and flicker mea	surements is $\pm 2.50\%$.								
Keytek CE Maste	r									
The estimated combined standard u	uncertainty for EFT fast transient immunity mea	surements is $\pm 2.92\%$.								
The estimated combined standard u	incertainty for surge immunity measurements is	$\pm 2.92\%$.								
The estimated combined standard u	uncertainty for power frequency magnetic field	mmunity measurements is \pm 5.8%.								
The estimated combined standard u	ncertainty for pulse magnetic field immunity m	neasurements is ± 5.8%.								
The estimated combined standard u	uncertainty for voltage variation and interruption	n measurements is ± 1.74%.								

The expanded uncertainty at a level of 95% confidence is obtained by multiplying the combined standard uncertainty by a coverage factor of 2. Compliance criteria are not based on measurement uncertainty.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

2.4 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). The measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001 EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

"WBW902"

Page 11 of 59

3 Product Information

3.1 Product Description

The NeuroPace® Wand model W-02 is an external product that enables the user to interrogate and program the implanted Neurostimulator. The patient's physician uses a NeuroPace® Programmer model PGM-300 and Wand to interrogate and program the Neurostimulator during surgery and at office follow up visits. Additionally, the patient uses a NeuroPace® Remote Monitor model DTR-300 and Wand to interrogate the Neurostimulator at home. The inductive telemetry Wand must be placed within several centimeters of the implanted Neurostimulator to perform efficient telemetry. The Neurostimulator communication is via induction, a coil-to-coil interface.

The RF circuitry for the Wand is included in the electronics enclosure. The Wand electronics enclosure is permanently attached to a shielded USB cable. The Wand connects via USB to a NeuroPace laptop running NeuroPace® Application Software.

The user control of the Wand is by running NeuroPace® Application Software and selecting telemetry functions including programming and interrogating. The communication protocol used between the Neurostimulator and Wand is used to send to the Neurostimulator operating parameters that control EEG sensing, therapy and data storage functions (programming), and to receive from the Neurostimulator diagnostics that include sensed brain waves, or Electrocorticograms (ECoGs), and operating diagnostics (interrogating).

The Neurostimulator, Wand and Programmer and Remote Monitor Application Software have no user operational adjustments which can be used to modify telemetry, including frequency and transmit power.

.

3.2 Equipment Configuration

A description of the equipment configuration is given in Section 7. The EUT was tested as called for in the test standard and was configured and operated in a manner consistent with its intended use. The EUT was powered by the internal battery and allowed to reach intended operating conditions. The placement of the EUT system components was guided by the test standard and selected to represent typical installation conditions.

In the case of an EUT that can operate in more than one configuration, preliminary testing was performed to determine the configuration that produced maximum radiation.

The final configuration was selected to produce the worst case radiation for emissions testing.

3.3 Operating Mode

A description of the operation mode is given in Section 7. In the case of an EUT that can operate in more than one state, preliminary testing was performed to determine the operating mode that produced maximum radiation.

The final operating mode was selected to produce the worst case radiation for emissions testing.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

3.4 Unique Antenna Connector

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of CFR47 Parts 15.211, 15.213, 15.217, 15.219, or 15.221.

3.4.1 Results

The NeuroPace® Wand is used an integrated coil antenna for inductive telemetry communication.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

4 Emissions

Testing was performed in accordance with CFR 47 Part 15.205, 15.207 and 15.209. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Procedures described in Section 8 of the standard were used.

4.1 Transmitter Spurious Emissions

Transmitter spurious emissions are emissions outside the frequency range of the equipment when the equipment is in transmit mode; per requirement of CFR47 15.205, and 15.209: 2010

4.1.1 Test Methodology

4.1.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

To determine the worst axis, the pre-scans performed on X-Axis, Y-Axis, and Z-Axis.

4.1.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final scans performed on the Z-Axis for 9 kHz to 30 MHz, and X-Axis for 30 MHz to 1 GHz.

See Test Plan Section for the setup mode and configuration

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

4.1.1.3 Deviations

None.

4.1.2 Transmitter Spurious Emission Limit

The spurious emissions of the transmitter shall not exceed the values in CFR47 Part 15.205, 15.209

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

4.1.3 Test Results

The final measurement data was taken under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

TUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Rad	SOP 1 Radiated Emissions Tracking # 31051314.001 Page 1 of 5										
EUT Name NeuroPace® Wand Do EUT Model W-02 Te								m in		ober 8, 20 C / 48% rl	
EUT Serial	1118						Temp / Hu				
EUT Config.		ral Ante	nna				Line AC / I			Vac, 60 I	
Standard				nd 15.209			RBW / VB	•		below	12
Dist/Ant Use				110 13.203			Performed				~
										emy Luon	
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe		Spec	Type
Freq	Polar	Pos	Pos	Pk	QP/Ave	CF	QP/Ave	Limi		Margin	
(MHz)		(cm)	(deg)	(dBuV/m)				(dBuV		(dB)	
							e Mode 2 (_		
0.022*	Facing	100	181	78.54	67.94	14.76		119.9		-37.27	Spurious
0.044*	Facing	100	180	77.21	66.45	12.46	78.91	114.1	11	-35.20	Spurious
0.057*	Facing	100	183	73.70	63.05	12.00	75.05	112.0	03	-36.99	Spurious
0.101*	Facing	100	183	70.67	59.99	11.56	71.55	107.1	14	-35.59	Spurious
0.523	Facing	100	195	60.57	57.28	11.63	68.91	73.2	3	-4.32	Spurious
0.600	Facing	100	195	58.83	56.49	11.67	68.16	72.0	4	-3.88	Spurious
0.699	Facing	100	195	57.06	54.12	11.75	65.87	70.7	1	-4.84	Spurious
Spec Margin = Total CF= Am					e = FIM QP	Ave +	Total CF ± Ur	ncertaint	ty		
Combined Stand					ed Uncertainty	U = k	$u_c(y)$ $k=2$	for 95%	confi	dence	
Notes: (*) Av				-	-						
				kis; worst oi	rientation.						
	//VBW			•							
		J		1 kHz for 9	kHz to 150) kHz					
			9 kHz / 3	30 kHz for 1	50 kHz to 3	30 MHz	<u>,</u>				

1279 Quarry Lane, Ste. A, Pleasanton, CA 94566

Tel: (925) 249-9123, Fax: (925) 249-9124

Spec Margin = E-Field QP/Ave - Limit, E-Field QP/Ave = FIM QP/Ave + Total CF \pm Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: Final scan performed on Z-Axis; worst orientation.

TUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Rac	SOP 1 Radiated Emissions Tracking # 31051314.001 Page 3 of 5										
EUT Name	EUT Name NeuroPace® Wand								Date October 8, 2010		
EUT Model	W-02	2					Temp / Hu		23°C /		
EUT Serial	1118	358					Temp / Hu	ım out	N/A		
EUT Config.	Integ	ral Ante	enna				Line AC /	Freq	120 Va	ic, 60 l	Hz
Standard	CFR	47 Part	15.205 a	nd 15.209			RBW / VB	W	See be	low	
Dist/Ant Use	ed 3m /	EMCO	6505				Performe	d by	Jeremy	y Luon	g
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe	c S	Spec	Туре
Freq	Pos	Pos	Pos	Pk	QP/Ave	CF	QP/Ave	Limi	it M	argin	
(MHz)		(cm)	(deg)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m)	(dBuV	/m) ((dB)	
	Test II	D # 7,18	3 : 9 kHz	to 30 MHz a	at 3 meter [Distanc	e Mode 2 (Loop fac	cing aw	ay)	
0.022*	Away	100	82	74.14	63.04	14.76	77.80	119.9	7 -4	2.17	Spurious
0.044*	Away	100	76	72.54	61.21	12.46	73.67	114.1	1 -4	0.43	Spurious
0.099*	Away	100	97	66.45	55.68	11.56	67.24	107.3	5 -4	0.11	Spurious
0.576	Away	100	262	55.57	53.09	11.66	64.75	72.39) -7	7.64	Spurious
0.700	Away	100	262	52.94	50.11	11.75	61.86	70.71	-8	3.85	Spurious
Spec Margin =	E-Field	QP/Ave	- Limit, E	-Field QP/A	ve = FIM QP	Ave + T	Total CF ± U	ncertaint	у		
Total CF= Amp											
Combined Stand				dB Expand	ed Uncertainty	U = kt	$u_c(y) = k =$	2 for 95%	confiden	ce	
Notes: (*) Av											
				kis; worst o	rientation.						
RBW	/ VBW	Setting			NIII (. 4 5 4						
				1 kHz for 9							
			9 KHZ/3	30 kHz for 1	DU KHZ to 3	SU IVIHZ	-				

1279 Quarry Lane, Ste. A, Pleasanton, CA 94566

Tel: (925) 249-9123, Fax: (925) 249-9124

Spec Margin = E-Field QP/Ave - Limit, E-Field QP/Ave = FIM QP/Ave + Total CF \pm Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: Final scan performed on Z-Axis; worst orientation.

SOP 1 Radiated Emissions								310513	314.0	001 Page	5 of 5
EUT Name	Neu	roPace@	® Wand				Date		Oct	tober 4, 20	010
EUT Model	W-0	2					Temp / Hu	ım in	23°	C / 48% rl	h
EUT Serial	1118	358					Temp / Hu	ım out	N/A	١	
EUT Config.	Integ	gral Anto	enna				Line AC /	Freq	120) Vac, 60 I	Hz
Standard	CFR	47 Part	15.205 a	and 15.209		_	RBW / VB	W	120) kHz / 300) kHz
Dist/Ant Use	ed 3m /	EMCO	3142				Performed by		Jeremy Luong		g
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe	ЭС	Spec	Type
Freq	Polar	Pos	Pos	Pk	QP	CF	QP	Lim	it	Margin	
(MHz)	(H/V)	(cm)	(deg)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m)	(dBu√	//m)	(dB)	
		Te	est ID 02:	30 MHz to	1000 GHz	at 3 me	eter. Mode	2 (TX)			
45.550	Vert	102	127	56.78	50.27	-21.13	29.14	40.00	0	-10.86	Spurious
77.155	Vert	103	220	60.70	56.99	-24.81	32.18	40.00)	-7.82	Spurious
77.600	Vert	101	224	66.30	61.23	-24.81	36.42	40.00	0	-3.58	Spurious
452.815	Vert	104	192	52.89	46.02	-12.14	33.88	46.00	0	-12.12	Spurious
631.401	Vert	102	86	44.30	39.95	-8.40	31.55	46.00	0	-14.45	Spurious
932.562	Horz	99	56	43.82	35.67	-4.09	31.58	46.00	0	-14.42	Spurious

Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence Notes: Final scan performed on X-Axis; worst orientation.

4.1.4 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

Where: $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB) CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\mu V/m = 10^{\frac{\textit{dB}\mu V \, / \, \textit{m}}{20}}$

4.2 Receiver Spurious Emissions

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode.

The spurious emissions of the receiver shall not exceed the values in CFR47 Part 15.209: 2010

4.2.1 Test Methodology

4.2.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 120 kHz and provide a reading at each frequency for no more than 12° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

To determine the worst axis, the pre-scans performed on X-Axis, Y-Axis, and Z-Axis.

4.2.1.2 *Final Test*

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation. The six highest emissions relative to the limit were measured unless such emissions were more than 20 dB below the limit. If less than six emissions are within 20 dB of the limit, than the noise level of the receiver is measured at frequencies where emissions are expected. Multiples of all oscillator and microprocessor frequencies were also checked.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The final scans performed on the Z-Axis for 9 kHz to 30 MHz, and X-Axis for 30 MHz to 1 GHz.

4.2.1.3 Deviations

None.

4.2.2 Receiver Spurious Emission Limit

The spurious emissions of the receiver shall not exceed the values in CFR47 Part 15.209: 2010

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

4.2.3 Test Results

The final measurement data indicates the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories listed in Sections 1.4 and 1.5.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.2.3.1 Final Data

The data recorded in this section contains the final results under the worst-case conditions and without any modifications or special accessories implemented as the manufacturer intends.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. TUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radiated Emissions Tracking # 31051314.001 Page 1 of 5												
									<u>.</u> .			
EUT Name			® Wand				Date			ober 8, 20		
EUT Model	W-02						Temp / Hu	m in	23°	C / 49% rl	า	
EUT Serial	1118	58					Temp / Hu	m out	N/A			
EUT Config.	Integ	ral Ant	enna				Line AC / F	req	120	Vac, 60 l	ic, 60 Hz	
Standard	CFR4	17 Part	15.209				RBW / VB\	N	9 kl	Hz / 30 kH	Z	
Dist/Ant Use	ed 3m /	ЕМСО	6505				Performed	by	Jeremy Luong			
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe	ec	Spec	Type	
Freq	Polar	Pos	Pos	Pk	QP/Ave	CF	QP/Ave	Lim	it	Margin		
(MHz)		(cm)	(deg)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m)	(dBu√	//m)	(dB)		
			Test ID	# 8, 17: 9 kF	Iz to 30 MH	lz at 3r	n, Mode 1 (l	RX)	•			
0.061*	Facing	100	155	68.57	67.17	11.88	79.05	111.	39	-32.35	Spurious	
0.448*	Facing	100	160	63.34	30.32	11.62	41.94	94.5	56	-52.62	Spurious	
0.577	Facing	100	160	58.86	54.24	11.66	65.90	72.3	38	-6.48	Spurious	
0.800	Facing	100	161	54.17	49.65	11.78	61.43	69.5	54	-8.11	Spurious	
0.823	Facing	100	160	53.82	49.25	11.79	61.04	69.2	29	-8.25	Spurious	
Spec Margin =	E-Field C	QP/Ave	- Limit, E	-Field QP/A	e = FIM QP	/Ave + 7	Γotal CF ± Ur	ncertain	ty			
Total CF= Am	p Gain + (Cable L	oss + AN	Γ Factor								
Combined Stand	dard Uncer	tainty <i>U</i>	$_{c}(y) = \pm 3.2$	2 dB Expand	ed Uncertainty	U = k	$u_c(y)$ $k=2$	for 95%	confi	idence		
Notes: (*) Av												
				xis; worst or	rientation.							
RBW	/ / VBW :	Setting	:									
				/ 1 kHz for 9								
			9 kHz /	30 kHz for 1	50 kHz to 3	30 MHz	• =					

1279 Quarry Lane, Ste. A, Pleasanton, CA 94566

Tel: (925) 249-9123, Fax: (925) 249-9124

Spec Margin = E-Field QP/Ave - Limit, E-Field QP/Ave = FIM QP/Ave + Total CF ± Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $U_c(y) = \pm 3.2 \text{ dB}$ Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: None.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. SOP 1 Radiated Emissions Tracking # 31051314.001 Page 3 of 5

EUT Name	NeuroPace® Wand	Date	October 8, 2010
EUT Model	W-02	Temp / Hum in	23°C / 49% rh
EUT Serial	111858	Temp / Hum out	N/A
EUT Config.	Integral Antenna	Line AC / Freq	120 Vac, 60 Hz
Standard	CFR47 Part 15.209	RBW / VBW	9 kHz / 30 kHz
Dist/Ant Used	3m / FMCO 6505	Performed by	Jeremy Luona

_ : • • : : :										3
Emissi	ion ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spec	Spec	Туре
Fred	Polar	Pos	Pos	Pk	QP/Ave	CF	QP/Ave	Limit	Margin	
(MHz	<u>z</u>)	(cm)	(deg)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m)	(dBuV/m)	(dB)	
			Test ID	# 8, 17: 9 kH	Hz to 30 MH	Iz at 3n	n, Mode 1 (RX)		
0.061	l* Away	100	80	64.49	63.17	11.88	75.05	111.40	-36.35	Spurious
0.576	6 Away	100	75	54.93	49.46	11.66	61.12	72.39	-11.27	Spurious
0.623	3 Away	100	75	52.31	47.72	11.69	59.41	71.71	-12.30	Spurious
0.80	0 Away	100	75	49.38	44.90	11.78	56.68	69.54	-12.86	Spurious

Spec Margin = E-Field QP/Ave - Limit, $\,$ E-Field QP/Ave = FIM QP/Ave + Total CF \pm Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: (*) Average measurement.

Final scan performed on Z-Axis; worst orientation.

RBW / VBW Setting:

200 Hz / 1 kHz for 9 kHz to 150 kHz 9 kHz / 30 kHz for 150 kHz to 30 MHz 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Rad	OP 1 Radiated Emissions								Tracking # 31051314.001 Page 4 of 5			
EUT Name	Neu	roPace@	҈ Wand			Date		October 8, 2010				
EUT Model	W-0	2					Temp / Hu	m in	22°0	C / 37% rh		
EUT Serial	1118	358					Temp / Hum out N/A					
EUT Config.	Integ	gral Ante	enna				Line AC / Freq 120 Vac, 60 Hz					
Standard	CFR	47 Part	15.209				RBW / VBW See below					
Dist/Ant Use	d 3m /	EMCO	6505				Performed	l by	Jere	my Luong		
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe	ЭС	Spec	Туре	
Freq	Pos	Pos	Pos	Pk	Ave	CF	Ave	Lim	it	Margin		
(MHz)		(cm)	(deg)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m)	(dBu√	//m)	(dB)		
		•	Test ID #	# 8, 17: 9 kH	Iz to 30 MH	Iz at 3	m, Mode 1 (RX)	•			

Spec Margin = E-Field QP/Ave - Limit, $\,$ E-Field QP/Ave = FIM QP/Ave + Total CF \pm Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Combined Standard Uncertainty $u_c(y) = \pm 3.2$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: None.

TUV Rheinland 1279 Quarry Lane, Ste. A, Pleasanton, CA 94566 Tel: (925) 249-9123, Fax: (925) 249-9124

SOP 1 Radiated Emissions Tracking # 31051314.001 Page 5

EUT Name	Neur	oPace@			Date	October 4, 2010					
EUT Model	W-02	W-02 To						m in	23°0	C / 51% rh	
EUT Serial	1118	111858 T						np / Hum out N/A			
EUT Config.	Integ	ral Ante	enna				Line AC / I	Freq	120	Vac, 60 H	Z
Standard	CFR	CFR47 Part 15.209				RBW / VBW 120 kHz / 300 kHz			kHz		
Dist/Ant Used 3m / EMCO3142 Perform							Performed	l by	Jere	emy Luong	
Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spe	C.	Spec	Type
Freq	Polar	Pos	Pos	Pk	QP	CF	QP	Lim	it	Margin	
(MHz)	(H/V)	(cm)	(dea)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m)	(dBu\	//m)	(dB)	

Emission	ANT	ANT	Table	FIM (Pk)	FIM	Total	E-Field	Spec	Spec	Type	
Freq	Polar	Pos	Pos	Pk	QP	CF	QP	Limit	Margin		
(MHz)	(H/V)	(cm)	(deg)	(dBuV/m)	(dBuV/m)	dBuV	(dBuV/m)	(dBuV/m)	(dB)		
Test ID – 01: 30 MHz to 1000 GHz at 3 meter. Mode 1 (RX)											
45.446	Vert	101	58	56.93	51.08	-21.09	29.99	40.00	-10.01	Spurious	
50.467	Vert	103	182	53.52	46.00	-22.57	23.43	40.00	-16.57	Spurious	
77.430	Vert	101	238	64.14	59.74	-24.81	34.93	40.00	-5.07	Spurious	
78.657	Vert	102	239	62.02	57.30	-24.73	32.57	40.00	-7.43	Spurious	
85.001	Vert	148	107	61.38	56.48	-24.44	32.04	40.00	-7.96	Spurious	
665.862	Vert	102	321	48.06	38.93	-8.16	30.77	46.00	-15.23	Spurious	
865.375	Vert	101	270	40.01	31.20	-5.52	25.68	46.00	-20.32	Spurious	
933.328	Vert	120	32	48.38	37.27	-4.04	33.23	46.00	-12.77	Spurious	
										•	

1279 Quarry Lane, Ste. A, Pleasanton, CA 94566

Tel: (925) 249-9123, Fax: (925) 249-9124

Spec Margin = E-Field QP - Limit, E-Field QP = FIM QP+ Total CF ± Uncertainty Total CF= Amp Gain + Cable Loss + ANT Factor

Expanded Uncertainty $U = ku_c(y)$ Combined Standard Uncertainty $U_c(y) = \pm 3.2 \text{ dB}$ K = 2 for 95% confidence

Notes: X-Axis was the worst orientation.

4.2.4 Sample Calculation

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength $(dB\mu V/m) = FIM - AMP + CBL + ACF$

Where: $FIM = Field Intensity Meter (dB\mu V)$

AMP = Amplifier Gain (dB) CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

 $\mu V/m = 10^{\frac{\textit{dB}\mu V \, / \, \textit{m}}{20}}$

Page 32 of 59

4.3 AC Conducted Emissions

Testing was performed in accordance with ANSI C63.10:2009, RSS-210. These test methods are listed under the laboratory's NVLAP Scope of Accreditation.

This test measures the levels emanating from the EUT' AC input port, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

The AC conducted emissions of equipment under test shall not exceed the values in CFR47 Part 15.207

4.3.1 Test Methodology

A test program that controls instrumentation and data logging was used to automate the AC Power Line Conducted emission test procedure. The frequency range of interest was divided into sub-ranges such as to yield a frequency resolution of 9 kHz. Each phase and neutral of the AC power line were measured with respect to ground. Measurements were performed using a set of $50 \, \mu H / 50 \Omega$ LISNs.

Testing is performed in Lab 2. The setup photographs clearly identify which site was used. The vertical ground plane used in the semi-anechoic chamber is a 2m x 2m solid aluminum frame and panel, and it is bonded to the horizontal ground plane.

In the case of tabletop equipment, the EUT is placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane and 40cm from a vertical ground reference plane. The rear of the EUT was positioned flush with the backside of the table and directly over the LISNs. The power and I/O cables were routed over the edge of the table and bundled approximately 40cm from the ground plane. Support equipment was powered from a separate LISN.

4.3.1.1 Deviations

There were no deviations from this test methodology.

4.3.2 Test Results

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s)

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001 EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

EUT: NeuroPace® Wand Model: W-02, intended for FC0 EMC / Rev 2/6/2012

Table 3: AC Conducted Emissions – Test Results

Test Conditions: Conducted Measurement at Normal Conditions only

Antenna Type: Attached

Level: 48

Setup Type: Table Top

AC Power: 120 Vac, 60 Hz

Ambient Temperature: 23°C

Relative Humidity: 51% rh

Test ID#	Frequency Range	Test Result
CE-Low-1	0.15 to 30 MHz	Pass
CE-Low-2	0.15 to 30 MHz	Pass
CE-Low-3	0.15 to 30 MHz	Pass
CE-Low-4	0.15 to 30 MHz	Pass
CE-Full-1	0.15 to 30 MHz	Pass
CE-Full-2	0.15 to 30 MHz	Pass
CE-Full-3	0.15 to 30 MHz	Pass
CE-Full-4	0.15 to 30 MHz	Pass
Note: Laptop was served as he	ost for EUT. The wand is powered via laptop'	s USB port.

Note: See Appendix for Test description.

UT Name	NeuroPace®	Wand		Date	<u> </u>	October 5, 2010		
UT Model	W-02	· · · · · · ·			p / Hum in	23°C / 51% rh		
UT Serial	111858				p / Hum out			
UT Config.	Attached Ante	nna			AC / Freq	120 Vac, 60 Hz		
tandard	CFR47 Part 1				V / VBW	9 kHz / 30 kHz		
ab/LISN	Lab#2 / Solar		4-BNC		ormed by			
Frequency	QP	QP	QP Margin		· · · · · · · · · · · · · · · · · · ·	Ave Margin	Line	
rrequency	QF	~	QF Margin	Avg	Avg	Ave Margin	Lille	
2.411	ID 17	Limit	100	ID 17	Limit	100		
MHz	dBuV	dBuV	dB	dBuV	dBuV	dB		
	Test ID: C	E-LOW-1, 15	0 kHz to 30 MHz	z, Mode 1 (R	X), Line to (Ground		
0.155	48.01	65.74	-17.73	19.32	55.74	-36.42	1	
0.177	47.74	64.68	-16.94	43.30	54.68	-11.38	1	
3.598	39.35	56.00	-16.65	27.38	46.00	-18.62	1	
3.658	39.84	56.00	-16.16	27.78	46.00	-18.22	1	
3.897	42.43	56.00	-13.57	30.45	46.00	-15.55	1	
3.950	36.88	56.00	-19.12	23.45	46.00	-22.55	1	
4.008	35.71	56.00	-20.29	22.10	46.00	-23.90	1	
4.136	44.82	56.00	-11.18	29.13	46.00	-16.87	1	
4.191	38.16	56.00	-17.84	23.14	46.00	-22.86	1	
	Test ID: CE	-LOW-2, 150	kHz to 30 MHz,	Mode 1 (RX	(), Neutral to	Ground		
0.163	46.26	65.37	-19.10	20.44	55.37	-34.93	2	
0.180	50.00	64.53	-14.54	44.90	54.53	-9.64	2	
3.646	32.10	56.00	-23.90	17.04	46.00	-28.96	2	
3.767	34.68	56.00	-21.32	19.57	46.00	-26.43	2	
3.891	42.59	56.00	-13.41	27.54	46.00	-18.46	2	
3.944	34.84	56.00	-21.16	18.53	46.00	-27.47	2	
4.011	45.55	56.00	-10.45	28.01	46.00	-17.99	2	
4.070	41.03	56.00	-14.97	25.60	46.00	-20.40	2	
4.133	46.98	56.00	-9.02	27.41	46.00	-18.59	2	
4.252	45.01	56.00	-10.99	25.80	46.00	-20.20	2	
ec Margin = 0	QP./Ave Limit,		· ·		<i>k</i> = 2 for 959	·		

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Tracking # 31051314.001 Page 2 **SOP 2** Conducted Emissions **EUT Name** NeuroPace® Wand **Date** October 5, 2010 23°C / 51% rh **EUT Model** W-02 Temp / Hum in **EUT Serial** 111858 Temp / Hum out N/A **EUT Config.** Attached Antenna Line AC 120 Vac, 60 Hz RBW / VBW Standard CFR47 Part 15.207 9 kHz / 30 kHz Lab/LISN Lab #2/ Solar 9348-50-R-24-BNC Performed by Jeremy Luong

Notes: Class B Limit.

EUT Name	NeuroPace®	Wand		Date	Δ.	October 5, 2010	1
EUT Model	W-02	vvaria			np / Hum in	23°C / 51% rh	<u> </u>
UT Serial	111858				np / Hum out		
EUT Config.	Attached Ante	nna			AC / Freq	120 Vac, 60 Hz	
_					N / VBW		
Standard	CFR47 Part 1		4.5010			9 kHz / 30 kHz	
ab/LISN	Lab#2 / Solar				formed by	Jeremy Luong	
Frequency	QP	QP	QP Margin	Avg	Avg	Ave Margin	Line
		Limit			Limit		
MHz	dBuV	dBuV	dB	dBuV	dBuV	dB	
	Toot ID: C		0 kHz to 30 MH	- Modo 2 (1	TV) Line to C	Fround	
0.159	47.31	65.56	-18.25	2, Mode 2 (1	55.56	-35.86	1
0.180	48.75	64.55	-15.80	45.00	54.55	-9.55	1
0.189	43.71	64.12	-20.41	29.97	54.12	-24.15	1
3.883	35.58	56.00	-20.42	20.19	46.00	-25.81	1
4.007	38.77	56.00	-17.23	23.77	46.00	-22.23	1
4.009	40.62	56.00	-15.38	24.89	46.00	-21.11	1
4.058	34.80	56.00	-21.20	18.71	46.00	-27.29	1
4.132	43.97	56.00	-12.03	26.04	46.00	-19.96	1
4.246	36.38	56.00	-19.62	20.14	46.00	-25.86	1
	Test ID: CE	-LOW-3. 150	kHz to 30 MHz,	Mode 2 (T)	(). Neutral to	Ground	
0.150	48.35	65.98	-17.62	19.44	55.98	-36.54	2
0.169	45.66	65.09	-19.43	24.99	55.09	-30.10	2
0.193	42.42	63.92	-21.50	23.35	53.92	-30.57	2
3.883	35.99	56.00	-20.01	19.57	46.00	-26.43	2
4.003	37.80	56.00	-18.20	22.74	46.00	-23.26	2
4.132	45.73	56.00	-10.27	24.92	46.00	-21.08	2
4.137	40.36	56.00	-15.64	20.99	46.00	-25.01	2
4.181	38.10	56.00	-17.90	17.84	46.00	-28.16	2
4.250	44.06	56.00	-11.94	22.05	46.00	-23.95	2
Spec Margin = C	QP./Ave Limit,	± Uncertainty	<u> </u>				
ombined Standa	rd Uncertainty U_(\	$() = \pm 2.4 \text{ dB}$	xpanded Uncertain	$U = ku_c(v)$	k = 2 for 95%	6 confidence	

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

SOP 2 Conducted Emissions Tracking # 31051314.001 Page 4 **EUT Name** NeuroPace® Wand **Date** October 5, 2010 23°C / 51% rh **EUT Model** W-02 Temp / Hum in **EUT Serial** 111858 Temp / Hum out N/A Attached Antenna Line AC 120 Vac, 60 Hz RBW / VBW Standard CFR47 Part 15.207 9 kHz / 30 kHz Lab/LISN Lab #2/ Solar 9348-50-R-24-BNC Performed by Jeremy Luong

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Notes: Class B Limit.

SOP 2 Cond	lucted Emiss	ions		Tracki	ing # 310513	314.001 Page 5	of 8
EUT Name	NeuroPace® '	Wand		Date	e	October 5, 201	0
EUT Model	W-02			Ten	np / Hum in	23°C / 51% rh	
EUT Serial		111858 Attached Antenna				N/A	
EUT Config.						120 Vac, 60 Hz	·
Standard	CFR47 Part 1	5.207			e AC / Freq W / VBW	9 kHz / 30 kHz	
Lab/LISN	Lab#2 / Solar	9348-50-R-24	-BNC	Perf	formed by	Jeremy Luong	
Frequency	QP	QP	QP Margin	Avg	Avg	Ave Margin	Line
		Limit			Limit		
MHz	dBuV	dBuV	dB	dBuV	dBuV	dB	
	Test ID: C	E-Full-1, 150	kHz to 30 MH	Iz, Mode 2 (T	X), Line to C	Ground	
0.174	43.55	64.85	-21.30	32.94	54.85	-21.91	1
0.193	40.72	63.94	-23.23	34.07	53.94	-19.87	1
0.203	38.34	63.54	-25.21	17.39	53.54	-36.15	1
3.766	33.30	56.00	-22.70	18.49	46.00	-27.51	1
3.816	32.20	56.00	-23.80	16.02	46.00	-29.98	1
3.939	32.39	56.00	-23.61	17.17	46.00	-28.83	1
3.960	37.95	56.00	-18.05	24.38	46.00	-21.62	1
4.057	32.91	56.00	-23.09	17.01	46.00	-28.99	1
4.130	34.82	56.00	-21.18	18.34	46.00	-27.66	1
4.240	31.06	56.00	-24.94	14.41	46.00	-31.59	1
	Test ID: CE	-Full-2, 150 k	Hz to 30 MHz	. Mode 2 (TX	(). Neutral to	Ground	
0.177	47.68	64.67	-16.98	39.30	54.67	-15.37	2
0.237	43.07	62.24	-19.18	35.07	52.24	-17.17	2
3.481	35.27	56.00	-20.73	21.10	46.00	-24.90	2
3.659	37.29	56.00	-18.71	22.17	46.00	-23.83	2
4.008	34.82	56.00	-21.18	18.00	46.00	-28.00	2
4.022	39.85	56.00	-16.15	22.92	46.00	-23.08	2
4.127	35.19	56.00	-20.81	15.85	46.00	-30.15	2
4.199	39.00	56.00	-17.00	21.95	46.00	-24.05	2
4.253	34.75 QP./Ave Limit,	56.00	-21.25	15.91	46.00	-30.00	2
	rd Uncertainty <i>U_c(y</i>		randed Uncortain	ty 11 – ku (y)	k = 2 for 95%	confidence	
Notes: (*) EU	T was setup as	table top equi	pment. Laptop	's battery wa			
("") LII	ne 1 = Line to G	nouna, Line 2	= ineutral to G	irouna			

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

Tracking # 31051314.001 Page 6 **SOP 2** Conducted Emissions **EUT Name** NeuroPace® Wand **Date** October 5, 2010 23°C / 51% rh **EUT Model** W-02 Temp / Hum in **EUT Serial** 111858 Temp / Hum out N/A **EUT Config.** Attached Antenna Line AC 120 Vac, 60 Hz RBW / VBW Standard CFR47 Part 15.207 9 kHz / 30 kHz Lab/LISN Lab #2/ Solar 9348-50-R-24-BNC Performed by Jeremy Luong

SOP 2 Cond	ucted Emiss	ions		Trackii	ng # 310513	14.001 Page 7	of 8
EUT Name	NeuroPace® '	Wand		Date	1	October 5, 201	0
EUT Model	W-02	· · · · · · ·			p / Hum in	23°C / 51% rh	
EUT Serial	111858				p / Hum out		
EUT Config.	Attached Ante	enna	enna			120 Vac, 60 Hz	,
Standard	CFR47 Part 15.207 RBW / VBW				AC / Freq / / VRW	9 kHz / 30 kHz	-
Lab/LISN		9348-50-R-24	-BNC		ormed by	Jeremy Luong	
Frequency	QP	QP	QP Margin		Avg	Ave Margin	Line
Frequency	Q1	Limit	Qi Maigiii	Avg	Limit	Ave margin	Line
MII-	JD37	-	an.	JD37		dr.	
MHz	dBuV	dBuV	dB	dBuV	dBuV	dB	
	Test ID: C	E-Full-4, 150	kHz to 30 MH	Iz, Mode 1 (R			
0.159	44.69	65.55	-20.86	17.73	55.55	-37.82	1
0.179	49.60	64.56	-14.97	42.82	54.56	-11.75	1
3.720	39.20	56.00	-16.80	26.79	46.00	-19.21	1
3.843	39.03	56.00	-16.97	27.07	46.00	-18.93	1
4.024	39.38	56.00	-16.62	27.17	46.00	-18.83	1
4.078	38.16	56.00	-17.84	23.72	46.00	-22.28	1
4.096	33.14	56.00	-22.86	15.40	46.00	-30.60	1
4.185	30.86	56.00	-25.14	12.89	46.00	-33.11	1
4.275	30.61	56.00	-25.39	13.37	46.00	-32.63	1
	Test ID: CE	-Full-3, 150 kl	Hz to 30 MHz	Mode 1 (RX) Neutral to	Ground	
0.162	43.95	65.40	-21.44	18.12	55.40	-37.27	2
0.192	40.11	63.98	-23.86	23.27	53.98	-30.71	2
0.239	46.56	62.15	-15.59	38.37	52.15	-13.78	2
3.782	39.58	56.00	-16.42	26.57	46.00	-19.43	2
3.899	40.27	56.00	-15.73	25.57	46.00	-20.43	2
3.955	36.83	56.00	-19.17	21.16	46.00	-24.84	2
4.078	41.27	56.00	-14.73	24.63	46.00	-21.37	2
4.137	41.25	56.00	-14.75	23.31	46.00	-22.69	2
4.264	40.11	56.00	-15.89	22.06	46.00	-23.94	2
4.304	43.95	65.40	-21.44	18.12	55.40	-37.27	2
Spec Margin = Q	P./Ave Limit,	± Uncertainty					
Combined Standar	d Uncertainty <i>U_c(y</i>	$() = \pm 1.2 \text{ dB} \text{Ex}$	panded Uncertain	$ty U = \overline{ku_c(y)}$	k = 2 for 95%	confidence	
Notes: (*) EU					s fully charge	d.	
() [(**) Line 1 = Line to Ground, Line 2 = Neutral to Ground						

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

Tracking # 31051314.001 Page 8 **SOP 2** Conducted Emissions **EUT Name** NeuroPace® Wand **Date** October 5, 2010 23°C / 51% rh **EUT Model** W-02 Temp / Hum in **EUT Serial** 111858 Temp / Hum out N/A **EUT Config.** Attached Antenna Line AC 120 Vac, 60 Hz RBW / VBW Standard CFR47 Part 15.207 9 kHz / 30 kHz Lab/LISN Lab #2/ Solar 9348-50-R-24-BNC Performed by Jeremy Luong

Notes: Using CISPR Class B Limit.

5 Test Equipment Use List

5.1 Equipment List

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy	Test
EMI Receiver (Receiver Section)	HP	85462A	3807A00445	01/20/2010	01/20/2011	RE
EMI Receiver (RF Filter Section)	HP	85460A	3704A00407	01/20/2010	01/20/2011	RE
EMI Receiver (Receiver Section)	HP	85462A	3942A00514	02/23/2010	02/23/2011	CE
EMI Receiver (RF Filter Section)	HP	85460A	3330A00174	02/23/2010	02/23/2011	CE
9 kHz – 1 GHz Preamplifier	Sonoma	310	185516	01/20/2010	01/20/2011	RE
Bilog Antenna Emissions	EMCO	3142	9701-1117	07/14/2010	07/14/2011	RE
Loop Antenna	EMCO	6505	9110-2683	08/13/2010	08/13/2012	RE
LISN	Solar	9348-50-R-24-BNC	961012	01/21/2010	01/21/2011	CE
Spectrum Analyzer	Rhode&Schwarz	ESIB	832427	01/22/2010	01/22/2011	RE

Note: CE = Conducted Emissions, CI= Conducted Immunity, DP=Disturbance Power, EFT=Electrical Fast Transients, ESD = Electrostatic Discharge, FLI=Flicker, HAR=Harmonics, MF=Magnetic Field Immunity, RE=Radiated Emissions, RI=Radiated Immunity, SI=Surge Immunity, VDSI=Voltage Dips and Short Interruptions

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001 EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

6 Photo

6.1 Test Setup Photo

Figure 1: Test Setup for 9 kHz to 30 MHz Radiated Emission (Front View) – Loop Facing Away

Figure 2: Test Setup for 9 kHz to 30 MHz Radiated Emission (Rear View) – Loop Facing EUT

Figure 3: Test Setup for 30 MHz to 1000 MHz Radiated Emission (Front View)

Figure 4: Test Setup for 30 MHz to 1000 MHz Radiated Emission (Rear View)

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

Figure 5: Test Setup for AC Conducted Emission (Front View)

Figure 6: Test Setup for AC Conducted Emission (Side View)

Figure 7: Setup Photo of NeuroPace® Wand and NeuroPace® RNS® Neurostimulator (Side View)

6.2 Product Under Test Photo

Figure 8: External Photo of W-02 (Top View)

Figure 9: External Photo of W-02 (Bottom View)

Figure 10: External Photo of W-02 (Side View)

7 EMC Test Plan

7.1 Introduction

This section provides a description of the Equipment Under Test (EUT), configurations, operating conditions, and performance acceptance criteria. It is an overview of information provided by the manufacturer so that the test laboratory may perform the requested testing.

7.2 Customer

Table 4: Customer Information

Company Name	NeuroPace Inc.		
Address	1375 Shorebird Way		
City, State, Zip	Mountain View, CA 94043		
Country	USA		
Phone	(650) 237-2700		
Fax	(650) 237-2701		

Table 5: Technical Contact Information

Name	Barbara Gibb
E-mail	bgibb@neuropace.com
Phone	(650) 237-2700
Fax	(650) 237-2701

7.3 Equipment Under Test (EUT)

Table 6: EUT Specifications

Dimensions	3.5 x 7.0 x 1.7 in.
Mass	0.6 lbs
Supply	Powered via USB V1.1 V _{nominal} : 5.0 Vdc
Environment	Indoor
Operating Temperature Range:	0 to 35 °C
Feeds:	∑ Yes: Quantity 1
Operating Band	Inductive Telemetry
Transmitter Frequency Band	20 kHz to 50 kHz
Rated Power Output	< 224 pW
# Operating Channel	1
Antenna Type	Separate receive coil antenna and transmit coil antenna (both integrated)
Antenna Gain	Not Specific (Unknown)
Modulation Type	☐ AM ☐ FM ☐ Phase ☐ Other describe: Half Duplex.
Type of Equipment	☐ Table Top ☐ Wall-mount ☐ Floor standing cabinet☐ Other Describe: Patient Wear
Clocks/Oscillating Frequency	~ 20 kHz - 50 kHz, 3 MHz, 6MHz, 12 MHz, 48 MHz.

Table 7: Interface Specifications

Interface Type	Cabled with what type of cable?	Is the cable shielded?	Maximum potential length of the cable?	Metallic (M), Coax (C), Fiber (F), or Not Applicable?
USB	USB	⊠ Yes		⊠ M

Table 8: Supported Equipment

Equipment	Manufacturer	Model	Serial
Laptop	Dell, Inc.	PP08L	CN-0F3553-12961-4A8-8212
Laptop Power Supply	Dell, Inc.	PA-1650-05D2	CN-0F7970-71515-91J-2E43
NeuroStimulator	NeuroPace, Inc.	RNS-300M	105092

Table 9: Samples used for Testing

Device	Serial #	Requirements	Scan Type
Wand	111858	CFR47 Part 15.207	Conducted Emission
Wand	111858	CFR47 Part 15.205, 15.209	Pre-scan, radiated measurement in 3 orientations
Wand	111858	CFR47 Part 15.205, 15.209	Final, radiated measurement on the worst orientation

7.4 Test Setup

7.4.1 Test Configuration

Table 10: Description of Test Configuration used for Radiated Measurement.

Device	Antenna	Mode	Setup Photo (X-Axis)	Setup Photo (Y-Axis)	Setup Photo (Z-Axis)
Wand	Attached	Transmit/ Receive			
Remark: Pre	e-scans were p	erformed in all	three orientations and the wo	orst orientation was selected fo	r final testing.

7.4.2 Test Software

Engineering Programmer II Test software, P/N 1005682 was installed on test laptop. EM Test Software, P/N 1006922 was installed on test laptop and installed on Neurostimulator. They were used to configure the software mode.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

7.4.3 Test Mode

Software Mode	Wand Mode	Neurostimulator Mode	Notes
1	Transmit	Receive	The Neurostimulator is continuously streaming Real-Time ECoGs to the Wand
2	Receive	Transmit	The Wand is continuously downloading code into the Neurostimulator

7.4.4 Radiated Emission Test Matrix

Table 11: Test Matrix for Radiated Emission

Test	Freq Range	Software	Orientatio	Antenna	Notes
#		Mode	n	Distance	
1	30 MHz – 1 GHz	1	X	3m	None
2	30 MHz – 1 GHz	2	X	3m	None
3	30 MHz – 1 GHz	2	Y	3m	None
4	30 MHz – 1 GHz	1	Y	3m	None
5	30 MHz – 1 GHz	1	Z	3m	None
6	30 MHz – 1 GHz	2	Z	3m	None
7	150 kHz – 30 MHz	2	Z	3m	None
8	150 kHz – 30 MHz	1	Z	3m	None
9	150 kHz – 30 MHz	1	Y	3m	None
10	150 kHz – 30 MHz	2	Y	3m	None
11	150 kHz – 30 MHz	2	X	3m	None
12	150 kHz – 30 MHz	1	X	3m	None
13	9 kHz – 150 kHz	1	X	3m	None
14	9 kHz – 150 kHz	2	X	3m	None
15	9 kHz – 150 kHz	2	Y	3m	None
16	9 kHz – 150 kHz	1	Y	3m	None
17	9 kHz – 150 kHz	1	Z	3m	None
18	9 kHz – 150 kHz	2	Z	3m	None

7.4.5 AC Conducted Emission Test Matrix

Table 12: Test Matrix for AC Conducted Emission

Test ID	Freq Range	Device s/w Mode	Laptop Battery	Notes	
CE-Low-1	150 kHz – 30 MHz	1	Battery Low - Charging	Measure both Line - Ground	
CE-Low-2	150 kHz – 30 MHz	1	Battery Low - Charging	Measure both Neutral - Ground	
CE-Low-3	150 kHz – 30 MHz	2	Battery Low - Charging	Measure both Neutral - Ground	
CE-Low-4	150 kHz – 30 MHz	2	Battery Low - Charging	Measure both Line - Ground	
CE-Full-1	150 kHz – 30 MHz	2	Battery Full	Measure both Line - Ground	
CE-Full-2	150 kHz – 30 MHz	2	Battery Full	Measure both Neutral - Ground	
CE-Full-3	150 kHz – 30 MHz	1	Battery Full	Measure both Neutral - Ground	
CE-Full-4	150 kHz – 30 MHz	1	Battery Full	Measure both Line - Ground	

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

7.5 Test Specifications

Testing requirements

Table 13: Test Requirements

Emissions				
Standard	Requirement			
CFR 47 Part 15.205, 15.207, 15.209	All, intended for NeuroPace® Wand, Model W-02.			

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"

8 Revision History

Revision No.	Date	Reason for Change	Author
0	October 12, 2010	Original Document	N/A
1	August 12, 2011	 Changed Table 6 (pg 54) Antenna Type from "coil antenna (integrated)" to "Separate receive coil antenna and transmit coil antenna (both integrated)" Rated Power Output from "3 W" to "< 224 pW" 	Conan Boyle
2	February 6, 2012	Removed EUT detailed information in Table 6	Conan Boyle

Note: Latest revision report will replace all previous reports.

END OF REPORT

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Report Number: 31051314.001

EUT: NeuroPace® Wand Model: W-02, intended for FCC ID "WBW902"