Lesson Objectives

- 1. Perform Arithmetic Operations $(+, -, \times, \div)$ on Two Functions
 - a. Symbolically (with formula)
 - b. Numerically (with table)
 - c. Graphically
- 2. Perform a Composition of Two Functions
 - a. Symbolically (with formula)
 - b. Numerically (with table)
 - c. Graphically

A. Perform Arithmetic Operations $(+, -, \times, \div)$ on Two Functions

1. Symbolically (by hand)

Properties

If f(x) and g(x) both exist, the sum, difference, product, and quotient are defined as:

Sum of Functions: (f + g)(x) =

Difference of Functions: (f - g)(x) =

Product of Functions: (fg)(x) =

Quotient of Functions $\left(\frac{f}{g}\right)(x) =$ _____, with $g(x) \neq 0$

• **EXAMPLE:** Let f(x) = 3x + 2 and $g(x) = \frac{1}{x}$. Evaluate each expression symbolically. [5.1.9]

(a)
$$(f + g)(4)$$

(b)
$$(f-g)\left(\frac{1}{3}\right)$$

(c)
$$(fg)(2)$$

(d)
$$\left(\frac{f}{g}\right)$$
 (0)

(a)
$$(f + g)(4) =$$
____ + ___ $f(x) = 3x + 2$ and $g(x) = \frac{1}{x}$
= 3(__) + 2 + $\frac{1}{4}$ = ____

(b)
$$(f - g)(\frac{1}{3}) = \underline{\qquad} - \underline{\qquad} f(x) = 3x + 2 \text{ and } g(x) = \frac{1}{x}$$

$$= 3(\underline{\qquad}) + 2 \qquad - \underline{\qquad} = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$$

(c)
$$(fg)(2) = \underline{\qquad} \cdot \underline{\qquad} \qquad f(x) = 3x + 2 \text{ and } g(x) = \frac{1}{x}$$

$$= 3(\underline{\qquad}) + 2 \cdot \frac{1}{2} \qquad = \underline{\qquad} \cdot \frac{1}{2} \qquad = \underline{\qquad}$$

$$(d)\frac{f}{g}(0) = \frac{f(0)}{g(0)} = \frac{3(\underline{\hspace{0.3cm}})+2}{\underline{1}}$$
 but, $\frac{1}{0}$ is

$$f(x) = 3x + 2$$
 and $g(x) = \frac{1}{x}$

2. Numerically (with table)

• **EXAMPLE:** Use the given table to complete the table below. [5.1.47]

Given table:

X	f(x)	g(x)
-2	0	8
0	6	0
2	7	-4
4	14	7

Complete the table. (Simplify your answers. Type N if the answer is undefined.)

X	(f+g)(x)	(f-g)(x)	(fg)(x)	$\left(\frac{f}{g}\right)(x)$
-2				
0				
2				
4				

3. Graphically

EXAMPLE: Use the graph to the right to evaluate the following functions. [5.1.39]

(a) $\overline{(f+g)(0)}$

$$= f(0) + g(0)$$

(get the y-coordinates at x = 0)

= ___ + __ = ___ (b) (f - g)(-1)

$$(b)(f-g)(-1)$$

$$= f(-1) - g(-1)$$

(get the y-coordinates at x = -1)

= ___ = __ = __ (c) (fg)(1)

$$= f(1) \cdot g(1)$$

(get the y-coordinates at x = 1)

(get the y-coordinates at x = 2)

B. Perform a **Composition** of Two Functions

Definition

Function Composition is defined as follows:

$$(f \circ g)(x) = \underline{\hspace{1cm}}$$

The output of the second function is the input into the first function

1. **Symbolically** (by hand)

• **EXAMPLE:** Find
$$(g \circ f)(5)$$
 when $f(x) = -3x - 2$ and $g(x) = -5x^2 - 2x - 9$. [5.1-26]

Always start with the _____ function, and use the given input value.

$$(g \circ f)(5)$$

 $f(5) = -3(\underline{\hspace{1cm}}) - 2 = \underline{\hspace{1cm}}$

Take that **OUTPUT** (answer) from 2ND function and **INPUT** into **FIRST** function:

$$g(\underline{\hspace{1cm}}) = -5(\underline{\hspace{1cm}})^2 - 2(\underline{\hspace{1cm}}) - 9$$

= $-5(\underline{\hspace{1cm}})^2$ ____ - 9
= _____

2. Numerically (with table)

• **EXAMPLE:** Use the tables to evaluate the expressions. [5.1.89]

x	1	2	5	7
f(x)	5	7	1	2

x	1	2	5	7
g(x)	2	5	7	8

Find $(g \circ f)(2)$

You do these similar to the symbolic (formula) way.

Always start with the	Take that OUTPUT (answer) from 2 ND
function, and use the given input value.	function and INPUT into function:
$(g \circ f)(2)$ $f(2) = \underline{\hspace{1cm}}$	$g(7) = $ So, $(g \circ f)(2) = $

(continued from previous page – same problem)

• **EXAMPLE:** Use the tables to evaluate the expressions. [5.1.89]

x	1	2	5	7
f(x)	5	7	1	2

x	1	2	5	7
g(x)	2	5	7	8

Find $(f \circ g)(5)$

You do these similar to the symbolic (formula) way.

Always start with the SECOND function,	Take that OUTPUT (answer) from 2 ND
and use the given input value.	function and INPUT into FIRST function:
$(f \circ g)(5)$	$f(7) = $ So, $(f \circ g)(5) = $
g(5) =	

(continuation of same problem)

• **EXAMPLE:** Use the tables to evaluate the expressions. [5.1.89]

х	1	2	5	7
f(x)	5	7	1	2

x	1	2	5	7
g(x)	2	5	7	8

Find $(g \circ g)(7)$

You do these similar to the symbolic (formula) way.

Always start with the SECOND function,	Take that OUTPUT (answer) from 2 ND
and use the given input value.	function and INPUT into FIRST function:
$(g \circ g)(7)$	g(8) is in the table.
	There's no $x = 8$ in the $g(x)$ table.
7	
$g(7) = \underline{\hspace{1cm}}$	So, $(g \circ g)(7) =$

3. **Graphically**

- **EXAMPLE:** Use the graph to evaluate the following expressions. [5.1.87]
 - (a) $(f \circ g)(1)$
 - **(b)** $(g \circ f)(1)$
 - (c) $(g \circ g)(0)$

SOLUTION

(a) $(f \circ g)(1)$

g(1) means using the g(x) graph, find the y-coordinate when x=1.

$$g(1) =$$

 $f(\underline{\hspace{1cm}})$ means using the f(x) graph, find the y-coordinate when $x = \underline{\hspace{1cm}}$. $f(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$

So,
$$(f \circ g)(1) =$$

(b) $(g \circ f)(1)$

f(1) means using the f(x) graph, find the y-coordinate when x = 1.

 $g(\underline{\hspace{0.1cm}})$ means using the g(x) graph, find the y-coordinate when $x = \underline{\hspace{0.1cm}}$. $g(\underline{\hspace{0.1cm}}) = \underline{\hspace{0.1cm}}$

So,
$$(g \circ f)(1) =$$

(c) $(g \circ g)(0)$

g(0) means using the g(x) graph, find the y-coordinate when x = 0.

 $g(\underline{\hspace{0.3cm}})$ means using the g(x) graph, find the y-coordinate when $x = \underline{\hspace{0.3cm}}$. $g(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$

So,
$$(g \circ g)(0) =$$

Source Used: MyLab Math for College Algebra with Modeling and Visualization, 6th Edition, Rockswold, Pearson Education Inc.