

Maestría de Ciencia de Datos

Fundamentos matemáticos de la ciencia de datos

Tarea 10: Descomposición de valores singulares

Estudiante: Daniel Nuño

Profesor: Dr. Santiago Elvira

Fecha entrega: noviembre 30, 2021

Ejeració 1. Encuentre los valores singulares de los a) [2 0] - MV = AV is equivalente a la ecuación que implica [9V] - [AV] oblemento el n elemento de V. igual a 1, y sendo of resto cero en la ecuación inicial muestra que les el n elemento diagonal de M. por la tanto, los eigen labo son la dia aprol de los elem tos 1=9 11=4 Los vabres singulares son los eigenvalues b) [3] -> [3] [4] [4] 3] = [12 q] $= \lambda^{2} - 24\lambda = \lambda^{2} = 24\lambda = \lambda = 29$ les valores singulares son VZ4 y Vo

$$A^{1/2} = \begin{bmatrix} a^{2} + b^{2} + \lambda \\ cA + db \end{bmatrix} = a^{2} + b^{2} - \lambda \end{bmatrix} = (a^{2} + b^{2}) - \lambda (a^{2} + b^{2}) - (a^{2} + b^{2}$$

En el determinante son iguales entonces los valores sigulores.

Ejercicio 3. Obtenga la des composición en valores singulares de las siguentes matrices. 1 - las valores singulares = tos vectores propos orto normales ortonomides

b)
$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$
 det $(A/A - AI)$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 8 & 1 & 17 \\ 8 & 1 & 17 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 11 & 14 \\ 11 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 11 & 14 \\ 1$$

1 -3 | 0 -
0 0 | 0 | 0 | see carbo como [
$$\frac{1}{4}$$
 -3] [v_1] = [0] v_1 -3 | 0 | v_1 -3 | 0 | v_2 -3 | 0 | v_1 -3 | v_2 -4 | v_2 | v_2 | v_1 -4 | v_2 | v

90 (-2,-1,2)
$$\rightarrow$$
 ($\frac{7}{3}$, $\frac{7}{3}$, $\frac{9}{3}$)
360 ($\frac{1}{2}$, $\frac{2}{3}$, $\frac{2}{3}$)
0 ($\frac{1}{2}$, $\frac{2}{3}$, $\frac{2}{3}$)

3.
$$\vec{U}_1 = \frac{1}{6} \vec{A} \vec{\nabla}_1 = \frac{1}{66} \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \begin{bmatrix} 13 & 2/3 & 2/3 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 6 & 1 \end{bmatrix}$$