REBOND D'UNE BALLE DE TENNIS : AIDE À L'ARBITRAGE HUMAIN

Ouverture

Introduction Problématique Plan

INTRODUCTION

PROBLÉMATIQUE

Comment aider l'arbitrage humain par différents moyens technologiques ?

ntroduction roblématique Plan

Ouverture

PLAN

I. Etude du systèmeHawk-eye

2. Etude d'une alternative

3. Conclusion

Alternative Conclusion Fonctionnement
Modélisation
Protocole

FONCTIONNEMENT

MODÉLISATION

Hypothèses:

- Caméra horizontale centrée sur le rebond
- Balle considérée comme un pixel assimilé à son centre

Fonctionnement
Modélisation
Protocole
Tests et Résultats

PROTOCOLE

Détermination des lignes du point de vue des 2 caméras

Lignes des 2 points de vue

Algorithme de détection de couleurs

Déroulement :

- Détermination de la position de la balle sur les 2 points de vue du rebond
- Superposition des points de vue avec les lignes
- Comparaison des positions
- Prise de position sur l'état de la balle (Bonne ou Fausse)

Tests et Résultats

100

150

200

250

TESTS ET **RÉSULTATS**

des lignes du

point de vue

300

Alternative

Protocole

Tests et Résultats

TESTS ET RÉSULTATS

Image d'un service à ≈ 80km/h

Algorithme de détection de couleurs

Déroulement:

- Détermination de la position de la balle sur les 2 points de vue du rebond
- Superposition des points de vue avec les lignes
- Comparaison des positions
- Prise de position sur l'état de la balle (Bonne ou Fausse)

vue de B

Tests et Résultats

TESTS ET **RÉSULTATS**

Algorithme de détection de couleurs

Déroulement :

- Détermination de la position de la balle sur les 2 points de vue du rebond
- Superposition des points de vue avec les lignes
- Comparaison des positions
- Prise de position sur l'état de la balle (Bonne ou Fausse)

Aide à l'arbitrage humain

Alternative Conclusion

Fonctionnement
Modélisation
Protocole
Tests et Résultats

TESTS ET RÉSULTATS

Algorithme de détection de couleurs

Déroulement :

- Détermination de la position de la balle sur les 2 points de vue du rebond
- Superposition des points de vue avec les lignes
- Comparaison des positions
- Prise de position sur l'état de la balle (Bonne ou Fausse)

Point de vue de B

Système Hawk-eye
Alternative

Fonctionnement Modélisation Protocole Tests et Résultats

TESTS ET RÉSULTATS

vitesse en km/h	30		50		70		90		110		130	
état de la balle												
déterminée par	4	4	4	4	4	4	4	4	4	4	4	4
l'homme												
état de la balle												
déterminée par	4	4	4	4	4	4	3	5	2	5	4	2
l'algorithme												
rebonds												
indéterminables	0		0		0		0		1		2	
par la vidéo												

PROBLÈMES NOTABLES

 Imprécisions si pas assez d'images par secondes ou si balle trop rapide

IDÉE ET MISE EN PLACE

Système Hawk-eye
Alternative
Conclusion

Idée et mise en place Tests et limites

TESTS ET LIMITES

Temps de rebond d'une balle : entre 1,8 et 20 ms

CONCLUSION

Persistance de l'oeil et effet phi du cerveau

modélisation de l'oeil par une caméra à une vingtaine d'images par seconde

	œil simple	Hawk-eye	alternative		
fréquence d'échantillonnage	20 ips	Jusqu'à 1000 ips	20kHz		
écart de position entre 2 « images » à 250km/h	3,47 m/image	6,94 cm/image	3,47 cm/image		
prix	Bénévole dans les grands tournois	70 000 € la semaine	15€		

Merci pour votre attention!

```
import matplotlib.pyplot as plt
import matplotlib.image as img
import numpy as np
import copy as cp
image_A_balle = img.imread('point A rebond 6.jpg').tolist()
image B balle = img.imread('point B rebond 6.jpg').tolist()
image_A_ligne = img.imread('point A.jpg').tolist()
image B ligne = img.imread('point B.jpg').tolist()
couleur_centre = [251,255,155]
couleur bande = [255,183,155]
def trouver_pixels_de_couleur(image, couleur):
    pixels trouves = []
    largeur, hauteur = len(image[0]),len(image)
    if couleur == couleur centre :
        for x in range(hauteur):
            for y in range(largeur):
                pixel = image[x][y]
                if pixel == couleur:
                    pixels_trouves.append((x, y))
    elif couleur == couleur_bande :
        for x in range(hauteur):
            for y in range(largeur):
                pixel = image[x][y]
                if pixel[0] >= couleur_bande[0] and pixel[1] >= couleur_bande[1] and pixel[2] >= couleur_bande[2]:
                        pixels_trouves.append((x, y))
    return pixels trouves
```

```
def image bande():
    bande A = np.zeros like(image A ligne).tolist()
    bande_B = np.zeros_like(image_B_ligne).tolist()
    pixel_A = trouver_pixels_de_couleur(image_A_ligne, couleur_bande)
    pixel B = trouver pixels de couleur(image B ligne, couleur bande)
    for i in pixel A:
        bande_A[i[0]][i[1]]=image_A_ligne[i[0]][i[1]]
    for i in pixel B:
        bande_B[i[0]][i[1]]=image_B_ligne[i[0]][i[1]]
                                                     def pixels interessants(images):
    bandes = (bande A,bande B)
                                                         pixels = []
    for a in range(2):
                                                         # rebond A
       for i in range(len(bandes[a])):
                                                         for i in range(120,140):
                                                            for j in range(len(images[0][0])):
           for j in range(len(bandes[a][0])):
                                                                if images[0][i][j]!=[0,0,0]:
                if bandes[a][i][j]!=[0,0,0]:
                                                                    pixels.append((i,j))
                    bandes[a][i][j]=[255,255,255]
                                                         # rebond B
    return bandes
                                                         for i in range(40,60):
                                                            for j in range(len(images[1][0])):
                                                                if images[1][i][j]!=[0,0,0]:
images = image_bande()
                                                                    pixels.append((i,j))
                                                         return pixels
```

```
def image balle():
    balle A = np.zeros_like(image_A_balle)
    balle B = np.zeros like(image B balle)
    pixel_A = trouver_pixels_de_couleur(image_A_balle, couleur_centre)
    pixel_B = trouver_pixels_de_couleur(image_B_ligne, couleur_centre)
   for i in pixel A:
        balle_A[i[0]][i[1]]=image_A_balle[i[0]][i[1]]
    for i in pixel B:
        balle_B[i[0]][i[1]]=image_B_balle[i[0]][i[1]]
    return (balle A,balle B)
balles = image_balle()
   def superposition(balles,images):
        rebonds = (cp.deepcopy(images[0]),cp.deepcopy(images[1]))
       for a in range(2):
            for i in range(len(balles[a])):
                for j in range(len(balles[a][0])):
                    if balles[a][i][j]!=[0,0,0]:
                        rebonds[a][i][j]=balles[a][i][j]
        return rebonds
```

```
def verif_position(balles,images):
    delta = 15
    pixels_bandes = pixels_interessants(images)
    pixels_balle = []
    for a in range(2):
        for i in range(len(balles[a])):
            for j in range(len(balles[a][0])):
                if balles[a][i][j]!=[0,0,0]:
                    pixels balle.append((i,j))
    k=0
    for a in range(2):
        mid l = pixels balle[a][1]
        mid_h = pixels_balle[a][0]
        mean = [0,0]
        count = 0
        for i in range(mid h-delta, mid h+delta):
            for j in range(mid_l-delta,mid_l+delta):
                if (i,j) in pixels_bandes:
                    mean[0]+=i
                    mean[1]+=j
                    count+=1
        pixel_m = (mean[0]/count,mean[1]/count)
        if a == 0:
            if pixels_balle[0][0]>=pixel_m[0] and pixels_balle[0][1]<=pixel_m[1]:</pre>
                k+=1
        if a == 1:
            if pixels_balle[0][0]>=pixel_m[0] and pixels_balle[0][1]>=pixel_m[1]:
                k+=1
    if k==2:
        return "La balle est bonne !"
    else :
        return "FAUTE !!"
```

- The Serve Impact in Tennis: First Large-Scale Study of Big HawkEye Data: https://sci-hub.live/10.1002/sam.11316
- https://www.europel.fr/emissions/L-innovation-du-jour/tennis-un-boitier-qui-indique-si-la-balle-est-in-ou-out-3901948
 HAWK-EYETENNIS SYSTEM :

Sources

- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1341323&isnumber=295
 49
 CONCOURS COMMUNS POLYTECHNIQUES : Système d'aide à l'arbitrage : Le
- HAWKEYE: PSI Informatique 2018
 https://www.lunion.fr/id490811/article/2023-06-04/ca-fait-debat-la-redac-est-il-pertinent-de-remplacer-les-juges-de-ligne-de#:~:text=En%202025%2C%20une%20nouvelle%20technologie,des%20balles%20sur%20le%20court
- https://www.atptour.com/en/news/electronic-line-calling-release-april-2023
- https://www.youtube.com/watch?v=fachbvEuTak
- https://technis.com/fr/technis-capture/

Annexes

• https://hitek.fr/actualite/frame-rate-jeux-videos-oeil_6959