

OpenVINO

Visual Inference & Neural Network Optimization

Денис Орлов Евгения Стёпырева

Нейронные сети за 30 секунд

1980S-ERA NEURAL NETWORK

DEEP LEARNING NEURAL NETWORK

M. Mitchell Waldrop PNAS 2019;116:4:1074-1077

Тренировка vs Запуск («Инференс»)

Тренировка требует:

- больших объёмов данных
- времени (дни, недели)
- значительных вычислительных ресурсов

Инференс – запуск натренированной сети как готовой программы

Популярные фреймворки и инструменты

> ONNX

K Keras Caffe

TensorFlow

 $\label{eq:GPU} GPU = Intel \ CPU \ with integrated \ GPU/Intel^{\circ} \ Processor \ Graphics, \ Intel^{\circ} \ NCS = Intel^{\circ} \ Neural \ Compute \ Stick \ (VPU) \ *VAD = Intel^{\circ} \ Vision \ Accelerator \ Design \ Products \ (HDDL-R)$

Улучшение производительности с Model Optimizer

- Сокращение количества выполняемых операций путём слияния (линейные операции, групповые конволюции)
- Вычищение топологии от остатков обучения
- Переводит расчёты в меньшие битности (FP32 -> FP16)
- Конвертирует модели пониженной точности INT8, INT1
- Нормализует выражение операций в модели

OpenVINO Inference Engine

- библиотека на C++ (Python / C), позволяющая приложению:
- прочитать модель из файлов (IR)
- загрузить модель в плагин, работающий с конкретным устройством
- отправить данные для обработки (картинка, текст, звук, ...)
- получить результаты обработки (вероятности, координаты, ...)

Главная идея: единый API для разных устройств, выпускаемых Intel

(оставляя возможность «тонкой настройки» для конкретных устройств)

Поддерживаемые устройства

Процессоры (CPU)

Field-programmable gate array (FPGA)

Графические карты (GPU)

Процессоры машинного зрения (VPU)

Поддерживаемые устройства

Gaussian & Neural Accelerator (GNA)

- маломощный сопроцессор для обработки звука

Программный стек при использовании Inference Engine

Оптимизация с помощью Inference Engine

- Оптимальное использование аппаратных особенностей
- Объединение нескольких операций в одну (fusing)
- Пакетная обработка данных (несколько картинок обрабатываются одновременно)
- «Стримы» (несколько экземпляров сети запускаются одновременно)
- Использование вычислений с меньшей разрядностью

Гетерогенный режим

Не поддерживаемые слои отправляются на другое устройство (fallback)

«Multi-device» режим

Задачи могут автоматически распределяться между несколькими

устройствами

Синхронный и асинхронный режим

- Синхронный режим: выполнение блокируется до исполнения
- Асинхронный режим: выполнение продолжается; окончание отслеживается с помощью механизма callback

Deep Learning Workbench

- Конвертация сетей в IR
- Визуализация и профилировка сетей
- Подбор оптимальных параметров запуска
- Измерение точности сетей
- Работа с Open Model Zoo

Модели от Intel – Open Model Zoo (1)

Open Model Zoo – набор готовых бесплатных нейронных сетей, натренированных компанией Intel

Модель: person-vehicle-bike-detection-crossroad-1016

Модели от Intel – Open Model Zoo (2)

Type: car Color: black

Модель: vehicle-attributes-recognition-barrier-0039

Модели от Intel – Open Model Zoo (3)

Модель: person-reidentification-retail-0076

Модели от Intel – Open Model Zoo (4)

Модель: semantic-segmentation-adas-0001

Модели от Intel – Open Model Zoo (5)

Модель: instance-segmentation-security-0010

Модели от Intel – Open Model Zoo (6)

Модель: text-detection-0004

Модели от Intel – Open Model Zoo (7)

DRINKING EATING - 99.1%

Модель: driver-action-recognition-adas-0002-decoder

Содержимое Intel® Distribution of OpenVINO™ toolkit

OS Support: CentOS* 7.4 (64 bit), Ubuntu* 16.04.3 LTS (64 bit), Microsoft Windows* 10 (64 bit), Yocto Project* version Poky Jethro v2.0.3 (64 bit), macOS* 10.13 & 10.14 (64 bit)

Intel® Architecture-Based Platforms Support

Intel® Vision Accelerator Design Products & AI in Production/ Developer Kits

 $An open source \ version \ is \ available \ at \ \underline{01.org/openvinotoolkit} \ (deep \ learning \ functions \ support \ for \ Intel \ CPU/GPU/NCS/GNA).$

Hoвые применения методов deep learning

- Машинный перевод
- Распознавание голоса
- Устранение шумов и отражений в звуке
- Классификация звука
- Классификация текста
- Анализ тональности текста (sentiment analysis)
- Идентификация говорящего
- Генерация голоса
- •

Дополнительные материалы

Тренинги

- Intel Delta Course
- Курсы по Deep Learning на Coursera

Книги

- <u>Николенко С.И., Кадурин А. А. Глубокое обучение. Погружение в мир</u> <u>нейронных сетей</u>
- Н.Будума, Н.Локашо. Основы глубокого обучения

Ресурсы в интернете

- Документация по OpenVINO
- Papers with Code

We are hiring!!!

У нас много сложной и интересной работы!

JR0122146 – Deep Learning Software Intern (Model Optimizer)

<u>JR0116342</u> – Deep Learning Software Development Intern (DL Workbench)

<u>JR0127180</u> – Deep Learning Engineering Intern (Inference Engine)

JR0114640 – Software Validation Intern (OpenVINO validation)

Летняя интернатура: набор будет открыт весной

Контакты: denis.orlov@intel.com, evgenya.stepyreva@intel.com

