Fonction carré, fonction cube

Table des matières

1 La fonction carré : $x \mapsto x^2$

2 La fonction cube : $x \mapsto x^3$

1 La fonction carré : $x \mapsto x^2$

1.1 Définition et propriétés

Définition 1. La fonction carré est définie sur \mathbb{R} par $f(x) = x^2$.

Propriété 1. La fonction carré est

- strictement décroissante sur $]-\infty,0]$
- strictement croissante sur $[0, +\infty[$

La fonction carré n'est ni linéaire, ni affine.

1.2 Parabole d'équation $y = x^2$

La fonction carré est représentée par une courbe appelée **parabole.** Elle est constituée de tous les points $M(x,x^2)$ et a pour équation $y=x^2$.

Le point O(0,0) est son **sommet.**

La fonction carré est paire.

Propriété 2. Dans un repère orthogonal, la parabole d'équation $y=x^2$ admet l'axe des ordonnées comme axe de symétrie.

Les points $M(x;x^2)$ et $M'(-x;x^2)$ appartiennent tous les deux à la courbe et sont symétriques par rapport à l'axe des ordonnées. L'axe des ordonnée est donc un axe de symétrie de cette parabole.

1.3 Équations $x^2 = a$

1.3.1 N'oublions pas les solutions négatives!

Exemple. La démarche « naturelle » qui consiste à résoudre l'équation $x^2=4$ en x=2 est fausse.

En effet, on attend **TOUTES** les solutions et on a oublié -2 qui vérifie pourtant $(-2)^2 = 4$.

D'où vient cette erreur?

Des applications du théorème de Pythagore! En effet souvenons-nous :

Si ABC est rectangle en A et que AB=3 et AC=4 alors le théorème de Pythagore s'applique et il vient :

$$AB^2 + AC^2 = BC^2$$

 $4^2 + 3^2 = BC^2$

$$25 = BC^2$$

On en déduit que BC=5 car BC est une distance, donc un **nombre positif.** La solutionBC=-5 est exclue, car **impossible.**

Rien n'indique dans l'équation $x^2 = 4$ que x soit positif... donc rien ne permet d'exclure x = -2!

1.3.2 Cas général

 $\begin{array}{ll} \textit{D\'{e}monstration.} & x^2 \geq 0 \text{ pour tout} \\ \textit{r\'{e}el } x. \text{ Donc } x^2 \text{ ne peut jamais \'{e}tre} \\ \textit{\'{e}gal \'{a} un nombre strictement n\'{e}gatif.} \end{array}$

Démonstration. $x^2=0$ signifie $x\times x=0$. Un produit est nul si et seulement si l'un de ses facteurs est nul. 0 est donc la seule solution.

 $\begin{array}{ll} \textit{D\'{e}monstration.} & x^2 = a \text{ revient à} \\ x^2 - a = 0. & \text{Comme } a \text{ est positif, il est le carr\'e de } \sqrt{a}. \text{ L'\'equation s'\'ecrit } (x + \sqrt{a})(x - \sqrt{a}) = 0. \\ \text{Soit } x = -sqrta \text{ ou } x = +\sqrt{a}. & \square \end{array}$

2 La fonction cube : $x \mapsto x^3$

2.1 Définition et propriétés

Définition 2. La fonction cube est définie sur \mathbb{R} par $f(x) = x^3$.

La fonction cube est strictement croissante sur $]-\infty;+\infty[$

Propriété 3.

La fonction cube n'est ni linéaire, ni affine.

2.2 Courbe d'équation $y = x^3$

La fonction cube est représentée par une courbe constituée de tous les points $M(x,x^3)$ et a pour équation $y=x^3$.

La fonction cube est *impaire*.

Propriété 4. Dans un repère orthogonal, la courbe d'équation $y=x^3$ admet l'origine comme centre de symétrie.

Démonstration. Pour n'importe quel réel x, on a $(-x)^3 = -x^3$.

Les points $M(x;x^3)$ et $M'(-x;-x^2)$ appartiennent tous les deux à la courbe et sont symétriques par rapport à l'origine. L'origine est donc centre de symétrie de cette courbe.

2.3 Équations $x^3 = a$

Propriété 5. Pour tout réel a, l'équation $x^3 = a$ admet une unique solution notée $\sqrt[3]{a}$.

Exemple.

 $x^3 = -8$ a pour unique solution x = -2.

x = -8 a pour unique solution x = -2. $x^3 = 26$ a pour unique solution $x = \sqrt[3]{26} \approx 2.9624$.