

Emilio R. Gordon

March 13, 2018

Contents

1	\mathbf{Intr}	oduction													
	1.1	The CubeSat concept													
	1.2	The OUFTI family													
	1.3	OUFTI-1 3													
	1.4	OUFTI-2													
	1.5	Attitude Determination and Control System													
		1.5.1 Passive attitude control and OUFTI-1													
		1.5.2 Active attitude control and OUFTI-2													
2	Mat	athematical modelling and Coordinate systems													
3	Pass	sive ADCS of OUFTI-1													
	3.1	Attitude determination of OUFTI-1													
	3.2	Conclusion													
4	Tow	ards an active control for Oufti-2													
•	4.1	Payload, orbit and requirements													
	4.2	Attitude determination													
	1.2	4.2.1 Sun sensors													
		4.2.2 Magnetometers													
		4.2.3 Gyroscopes													
		4.2.4 Star sensors													
	4.3	Attitude control													
	1.0	4.3.1 Magnetic torquers													
		4.3.2 Momentum exchange devices													
		4.3.3 Thrusters													
	4.4	Existing hardware for active control													
	4.5	Conclusion													
	1.0	Conclusion													
5	Sim	ulations of an active attitude control													
	5.1	Application of quaternions to active control													
	5.2	Attitude determination													
	5.3	Torque free motion													
	5.4	Attitude control models													
	5.5	General parameters for the active control simulations													
	5.6	PID controller													
	5.7	The linear quadratic regulator controller													
	5.8	Detumbling controller based on B-dot													
	5.9	Attitude model with full controllability													
	5.10	Attitude model with only magnetic torquers													
		5.10.1 Magnetic torquers with one reaction wheel													

6 Conclusions														3									
	6.1	OUFTI-1																					3
	6.2	OUFTI-2																					3

1 Introduction

- 1.1 The CubeSat concept
- 1.2 The OUFTI family
- 1.3 OUFTI-1
- 1.4 OUFTI-2
- 1.5 Attitude Determination and Control System
- 1.5.1 Passive attitude control and OUFTI-1
- 1.5.2 Active attitude control and OUFTI-2

2 Mathematical modelling and Coordinate systems

- 3 Passive ADCS of OUFTI-1
- 3.1 Attitude determination of OUFTI-1
- 3.2 Conclusion
- 4 Towards an active control for Oufti-2
- 4.1 Payload, orbit and requirements
- 4.2 Attitude determination
- 4.2.1 Sun sensors
- 4.2.2 Magnetometers
- 4.2.3 Gyroscopes
- 4.2.4 Star sensors
- 4.3 Attitude control
- 4.3.1 Magnetic torquers
- 4.3.2 Momentum exchange devices
- 4.3.3 Thrusters
- 4.4 Existing hardware for active control
- 4.5 Conclusion

5 Simulations of an active attitude control

- 5.1 Application of quaternions to active control
- 5.2 Attitude determination
- 5.3 Torque free motion
- 5.4 Attitude control models
- 5.5 General parameters for the active control simulations
- 5.6 PID controller
- 5.7 The linear quadratic regulator controller
- 5.8 Detumbling controller based on B-dot
- 5.9 Attitude model with full controllability