Introduction to Tensor Spaces Appunti del Corso

Mirko Torresani

29 novembre 2024

Per noi gli spazi vettoriali saranno di dimensione finita, con campo base $\mathbb{C}.$

Definizione 1. Il prodotto tensoriale $V_1 \otimes \cdots \otimes V_n$ è definito come lo spazio $\operatorname{Mult}(V_1, \ldots, V_n; \mathbb{C})$.

Definizione 2. Dato un tensore $f \in V \otimes W$, il suo rango rk f è

$$\operatorname{rk} f = \min\{s \mid f = \sum_{i=1}^{s} v_i \otimes w_i\}.$$

Proposizione 3. Il rango $\operatorname{rk} f$ è equivalentemente definibile come

- (i) il rango del morfismo $V^* \to V$ associato a f;
- (ii) posto $f = \sum c_{ij}v_i \otimes w_j$, con $(v_i)_i$ e $(w_j)_j$ rispettive basi, il rango di f è il rango della matrice $(c_{ij})_{i,j}$.

Nel caso in cui abbiamo un prodotto tensore di più spazi, le cose si complicano.

Definizione 4. Dato un elemento $f \in V_1 \otimes \cdots \otimes V_d$, il rango rk f è definito come

$$\operatorname{rk} f = \min\{s \mid f = \sum_{j=1}^{s} v_{j,1} \otimes \cdots \otimes v_{j,d}\}\$$

Un argomento, storicamente molto importate, riguarda il calcolo del rango tensoriale. Per una sua prima trattazione introduciamo la seguente notazione: se f è un vettore in $V_1 \otimes \cdots \otimes V_d$, allora f induce mappe

$$f_k \colon V_k^* \to \bigotimes_{i \neq k} V_i \quad f_k^{\dagger} \colon \bigotimes_{i \neq k} V_i^* \to V_k$$

per ogni k.

Definizione 5. Un tensore $f \in V_1 \otimes \cdots \otimes V_d$ si dice V_i -conciso, o i-conciso, se f_i .

Definizione 6. Il multi-rango di f è definito come

$$\operatorname{mrk} f = (\operatorname{rk} f_1, \dots, \operatorname{rk} f_d) =: (r_1, \dots, r_d),$$

dove rk f_k è il rango di f_k come mappa lineare (o equivalentemente il rango della mappa trasporta f_k^{\dagger}).

Per il resto della trattazione useremo la notazione di Einstein: quando lo stesso indice compare come pedice e apice, allora viene intesa una sommatoria rispetto a quell'indice, se non diversamente indicato.

Proposizione 7. Sia f un tensore, allora

$$\max_{i} r_i \le \operatorname{rk} f \le \min_{i} \prod_{j \ne i} r_j$$

Dimostrazione. Sia r il rango di f, e poniamo

$$f = \sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i}.$$

L'immagine della funzione trasporta f_k^{\dagger} , da $\bigotimes_{i\neq k} V_i^* \to V_k$, è contenuta nel generato $\langle v_{k,1}, \ldots, v_{k,r} \rangle$, e quindi l'immagine ha dimensione ha al più dimensione r.

Se $\{u_{i,1},\ldots,u_{i,r_i}\}$ è una base per l'immagine di f_i^{\dagger} , allora f si può scrivere come

$$f = \alpha^{j_1, \dots, j_d} \, u_{1, j_1} \otimes \dots \otimes u_{d, j_d}$$

e per ogni k

$$f = u_{1,j_1} \otimes \cdots \otimes u_{k-1,j_{k-1}} \otimes \left[\sum_{j_k=1}^{r_k} \alpha^{j_1,\dots,j_d} u_{k,j_k} \right] \otimes u_{k+1,j_{k+1}} \otimes \cdots \otimes u_{d,j_d}.$$

Conseguentemente per ogni k, il rango r è al più $\prod_{i\neq k} r_i$.

Corollario 8. Se rk f = 1, allora rk $f_k = 1$ per ogni k.

Corollario 9. Fissato un certo k, se $r_j = 1$ per ogni $j \neq k$ allora $\operatorname{rk} f_k = \operatorname{rk} f = 1$.

Proposizione 10. Sia f un tensore 1-conciso, tale che $r_1 \geq \cdots \geq r_d$ e che $\operatorname{rk} f = r_1$. Allora $f_1(V_1^*)$ è generato precisamente da r_1 tensori indecomponibili in $V_2 \otimes \cdots \otimes V_d$.

Dimostrazione. Sappiamo che $f = \sum_{i=1}^{r_1} v_{1,i} \otimes \cdots \otimes v_{d,i}$ via vettori arbitrari. Conseguentemente, l'immagine di

$$f_1^{\dagger} \colon \bigotimes_{i>1} V_i^* \to V_1$$

è generata da $\{v_{1,1},\ldots,v_{1,r_1}\}$. Siccome il rango di f_1 , e quindi quello di f_1^{\dagger} , è per ipotesi r_1 , quei vettori devono essere necessariamente indipendenti. Inoltre, per ipotesi, il tensore f è 1-conciso, e quindi f_1 è iniettivo. In definitiva, dim $V_1^* = \dim V_1 = r_1$ e $\{v_{1,1},\ldots,v_{1,r_1}\}$ formano una base di V_1 .

Consideriamo quindi la base duale $\{v_1^1, \dots, v_1^{r_1}\}$ di V_1^* . Per costruzione

$$f(V_1^*) = \langle f(v_1^1), \dots, f(v_1^{r_1}) \rangle = \langle v_{2,i} \otimes \dots \otimes v_{d,i} \rangle_{i=1,\dots,r_1}.$$

Come non-esempio consideriamo $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$, ed il tensore

$$f := e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 \otimes e_1 \otimes e_0 \otimes e_0.$$

Si può osservare che in effetti è 1-conciso, e che

$$f(V_1^*) = \langle e_0 \otimes e_1 + e_1 \otimes e_0, e_0 \otimes e_0 \rangle.$$

Tuttavia quest'ultima espressione non può essere ricondotta ad uno span di tensori indecomponibili. Inoltre, $\operatorname{mrk} f$ è (2,2,2). Conseguentemente, $\operatorname{rk} f = 3$ come ci si può immaginare.

Proposizione 11. Sia $f \in V_1 \otimes \cdots \otimes V_d$. Il rango di f coincide col minimo numero di elementi indecomponibili necessari per generare uno spazio che contiene $f_1(V_1^*)$.

Dimostrazione. Se r è il rango di f, allora f si scrive come $\sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i}$ e conseguentemente $f_1(V_1^*)$ è contenuto in $\langle v_{2,i} \otimes \cdots \otimes v_{d,i} \rangle_{i=1}^r$.

D'altra parte, supponiamo che $f_1(V_1^*)$ sia contenuto in $\langle v_{2,i} \otimes \cdots \otimes v_{d,i} \rangle_{i=1}^r$. Fissiamo una base $\{v_{1,1}, \ldots, v_{1,m}\}$ di V_1 , ed una conseguente base duale. Allora

$$f(v_1^k) = \alpha^{k,i} v_{2,i} \otimes \cdots \otimes v_{d,i} \quad 1 \le k \le r,$$

е

$$f = \alpha^{k,i} \, v_{1,k} \otimes v_{2,i} \otimes \otimes v_{d,i} \,. \qquad \Box$$