

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Câmpus Cornélio Procópio

EC35F – Transmissão de Dados

Introdução ao Matlab

Prof. Eduardo Alves Hodgson hodgson@utfpr.edu.br

Os laboratórios da disciplina serão em Matlab.

É muito importante aprender as funções básicas de criação de vetores e gráficos para poder realizar os labs.

Sempre que aparecer o *prompt* >> copie e execute o comando no Command Window do Matlab para ver o resultado.

No final dos slides, fazer os exercícios 1 e 2 e apresentar o resultado ao professor.

- MATLAB (MATrix LABoratory): software p/cálculo numérico e científico de visualização de alta performance.
- Elementos Básicos: Matrizes que não requerem dimensionamento.
- ➤ Presença de TOOLBOXES: Grande coleção de funções.

Você pode executar comandos e funções do Matlab No Command Window e ver o resultado destes.

Rode todo seu script aberto com o *Run* Rode apenas uma seção de cada vez com *Run Section* ou *Run and Advance* (rode a seção atual, e pule para a seguinte)

Transmissão de Dados Elementos básicos

- Escalares: matriz 1x1
- >> a=1
- ➤ Vetores: Linha e Coluna
- >> a = [1 2 4]
- ➤ Matrizes: bi e multidimensionais
- ➤ Palavras Reservadas: ans, pi, i, j, inf, version, flops, NaN, computer
- > Expressões: Lógicas e Aritméticas
- ➤Gráficos: 2D e 3D
- ➤ Controle de Fluxo: while, for, if, etc.

> Tipos de Dados:

- ➤Inteiro: 5; 1000; -564; ...
- ➤ Real: 3; 1.23; .2343; -2.5365e-2, ...
- ➤ Complexo: 2; 1+2i; -47i; -1-3i; ...
 - Distinção entre os tipos numéricos é realizada em tempo de execução.
- Tipo String: 'matlab'; 'figura'; '2ab'; ...

Nomes Para Identificadores:

- >String com até 32 caracteres.
- ≥ 1º caractere deve ser uma letra.
- São sensíveis a maiúsculo e minúsculo
- ➤ Aceita ' ' no meio da variável.

Variável = expressão; → {não mostra o valor da variável no 'Command Window'}

Variável = expressão {mostra o valor da variável}

Matlab

Exemplos:

```
>> x = \sin(5);
```

$$>> x = \sin(5)$$

$$>> y = 1/3$$

$$>> w = 1.602e-20$$

$$>> r = .0001$$

Construção de Vetores:

- ➤ Vetor linha:
- >> x = [5.2 6.3 1.2]
 - > Vetor coluna:
- $>> y = [5.2 6.3 1.2]' \rightarrow transposto$
 - > Referenciação a elementos:
- >> y(1)
- ans =5.2
- >> y(end) -> 'end' contém posição do último elemento de y
- ans =1.2
 - ➤ O primeiro elemento do vetor tem sempre índice 1, e não 0, como em linguagem C.

uniformes de 0 a 1}

10

> Funções Para Geração de Vetores:

```
>> x = 1:5 {Vetor linha de 1 até 5 com incremento de 1}
>> x = 0: 0.05: 2 {Vetor linha de 0 até 2 com incremento de 0.05}
>> y = ones(1,10) {Vetor linha de 10 elementos de valor 1}
>> y(1:10) = 1 {Vetor linha de 10 elementos de valor 1}
>> w = zeros(1,8) {Vetor linha com 8 elementos nulos}
>> w(1:10) = 0 {Vetor linha com 8 elementos nulos}
>> z = rand(1,15) {Vetor linha de 15 elementos aleatórios
```

Transmissão de Dados

Construção de Matrizes

2a. Forma
$$>> y = [5.2 6.3 1.2; 6.4 8.3 7.1; 9.2 1.2 3.1]$$

Referenciação a elementos: x (linha, coluna)

$$\rightarrow$$
 x(1,2); x(3,2); y(2,1); y(3,3); ...

O primeiro elemento da matriz tem índice (1,1).

Funções Para Geração de Matrizes:

x = rand(10){Matriz 10x10 com valores aleatórios uniforme}

y = ones(10,5){Matriz 10x5 com elementos de valor 1}

{Matriz 15x15 com elementos aleatórios N(0,1)} z = randn(15)

w = zeros(5,8){Matriz 5x8 com 8 elementos nulos}

OPERADOR	OPERAÇÃO
+	Adição
	Subtração
*	Multiplicação Matricial
.*	Multiplicação Escalar
/	Divisão Matricial
./	Divisão Escalar
^	Potência
.^	Potência escalar
,	Transposta
()	Precedência

13

Multiplicação do dois vo

Multiplicação de dois vetores a e b, elemento por elemento

Forma errada:

$$>> c = a*b$$

Error using *

Inner matrix dimensions must agree.

Forma correta:

c =

5 10 15 20

.* ⇒ realiza a multiplicação escalar, elemento por elemento.

Multiplicação de dois vetores a e b

MATLAB entende que * sem o ponto (.*) é multiplicação matricial, ou seja, linha vezes coluna. Por isso o Matlab retorna o erro de dimensão de matrizes.

"Inner matrix dimensions must agree".

Ou seja, "o número de colunas de a tem que ser igual (must agree) com número de linhas de b".

Se usarmos um vetor coluna b' (transposto de b), não temos mais o erro:

$$C =$$

50

ехр	Exponencial	det	Determinante
log	Logaritmo natural	abs	Valor absoluto
log10	Log de base 10	sqrt	Raiz quadrada
max	Máximo valor	real	Parte real de complexo
min	Mínimo valor	imag	Parte imag de complexo
mean	Média aritmética	round	Arredondar para próximo inteiro

Operador	Significado
<	Menor que
<=	Menor ou igual que
==	Igual
~=	Não igual
>	Maior que
>=	Maior ou igual que

Operadores lógicos:

- & → Para conjunção (AND)
- | → Para disjunção (OR)
- ~ → Para a negação

```
Transmissão de Dados
```

```
for c = vi : vf
               <bloco de comandos>
end
onde: c é a variável de controle
      vi é o valor inicial de c
      vf é o valor final de c
Exemplo:
>> for i=1:10
v(i) = 3*i;
end
Cria um vetor transposto com 10 elementos:
            [3 6 9 12 15 18 21 24 27 30]
Veja também "help while"
```

```
Primeira Forma:
                                                               if <condição verdadeira>
                                                                                <blood>
                                                                end
Segunda Forma:
                                                               if <condição1 verdadeira>
                                                                                                                        <br/>

                                                                                                elseif <condição2 verdadeira>
                                                                                                                      <blood>
                                                                                                else
                                                                                                                      <blood>
                                                                 end
```

Exemplo:

19

Primeira Forma:

```
if a>3
    a = a + 1;
end
```

Segunda Forma:

```
if I == J
  A(I, J) = 2;
elseif I == 1
  A(I,J) = 1;
else
  A(I,J) = 0;
end
```

Transmissão de Dados

• Exemplo: fazer um programa que armazene num vetor os n primeiros termos da sequência de Fibonacci: 0, 1, 1, 2, 3, 5, 8, 13...

% Salve o código abaixo em um arquivo "fibonacci.m"

```
n = input('Entre com o valor de n > 2: ');
f(1) = 0;
f(2) = 1;
for i = 3:n
f(i) = f(i-1) + f(i-2);
end
```

• >> fibonacci {Exemplo de chamada}

Funções Gráficas com Matlab

- >plot(.) cria um gráfico com escalas lineares sobre ambos eixos.
- ➤ semilogx(.) cria um gráfico com escala linear no eixo Y e logarítmicas no eixo X.
- >semilogy(.) cria um gráfico com escala logarítmica no eixo Y e linear no eixo X.

Alteração de marcadores e traços

Parâmetros da função plot (ver mesma tabela com "help plot"). Utilizar no formato string como abaixo:

>> plot(x,y,'m+:') %plot com cor magenta, símbolo de + e pontilhado

Símbolo	Cor
y	amarelo
m	magenta
С	ciano
r	vermelho
g	verde
b	azul
W	branco
k	preto

Símbolo	Estilo de Marcador
•	ponto
О	círculo
Х	x
+	sinal positivo
*	estrela
S	quadrado
d	losango
^	triângulo p/cima

Símbolo	Estilo de Linha
-	sólida
:	pontilhada
	traço e ponto
	tracejada

- > plot(y) plota os valores de y no eixo das ordenadas sendo que o eixo x é incrementado de uma unidade para cada valor de y.
- > plot(x,y) plota o valor de x no eixo das abscissas e y no eixo das ordenadas.
- > plot(x,y,'r') plota o gráfico em cor vermelha referente aos valores de x e y.
- > plot(x,y,'b:d') plota o gráfico em cor azul, estilo de linha pontilhada e estilo de marcador em losango.
- > plot(x1,y1,'b:d',x2,y2,'r-o',x3,y3,'k--*') plota três curvas na mesma figura. É o mesmo que:

plot(x1,y1,'b:d')

hold on plot(x2,y2,'r-o') plot(x3,y3,'k--*')

Transmissão de Dados

- linspace(ínício, fim, N)
 - ✓ Cria um vetor uniforme de tamanho 'N' começando por 'início' até 'fim'. Muito útil para eixo x (tempo) em plots.
- \rightarrow t= linspace(0, 1, 5) \rightarrow vetor com 5 valores de a 0 a 1:
- 0.2500 0.5000 0.7500 0.1000
- Manipulação de textos em gráficos:
 - > title('título') insere o título no gráfico.
 - xlabel('label1') insere legenda no eixo x.
 - > ylabel('label2') insere legenda no eixo y.
 - > legend('leg1','leg2',...) define rótulos para os plots do gráfico.

Manipulações gráficas

Exemplo:

```
x=0:0.01:2*pi;
y1=cos(x);
y2=sin(x);

figure
plot(x,y1,'r-');
hold on
plot(x,y2,'k-');
title('Seno e cosseno')
ylabel('Amplitude')
xlabel('Tempo (s)')
legend('Cosseno','Seno')
```


- > axis([xmin xmax ymin ymax]) define os valores mínimos e máximos dos eixos com base nos valores fornecidos pelo vetor linha.
- > xlim([xmin xman]) e ylim([ymin ymax]) fazem o mesmo que o comando anterior.
- > axis square faz com que o gráfico atual tenha a forma de um quadrado em lugar do retângulo habitual.
- grid on mostra as linhas de grade da figura. Sempre utilizar este comando nos plots.

- > figure(n) utilizada para criar figuras numeradas.
- ▶ figure o comando cria apenas uma nova figura, iniciando pela figura 1. Novo comando cria figura 2, e assim vai. Utilizar sempre antes de plotar uma figura! Caso contrário, um novo plot apaga a figura anterior.
- > close all fecha todas as janelas de gráfico.
- ➤ hold on mantém os plots da mesma figura fixos para os próximos plots.

- Transmissão de Dados
- ➤ O comando subplot(m,n,k) subdivide a janela de figuras atual em uma matriz com m por n regiões nas quais se pode traçar gráficos, ativando a região de ordem k.
- ➤ Exemplo: subplot(2,3,1) ativa o 1º gráfico em amarelo, dividindo em 2 linhas e 3 colunas. Em seguida, você fazer o plot(.) desejado.
- ➤ Com subplot(2,3,6) podemos plotar no último "quadrinho" inferior à direita.

Para as funções sin(x) e cos(x) faça as seguintes ações:

- ➤ Defina os valores de x para ambas entre 0 e 2pi com 30 pontos. (ver slide 24)
- > Traçar no mesmo gráfico ambas as funções, tendo as seguintes características (ver slide 23):
- Função sen(x) na cor vermelha, estilo de linha cheia (sólido) e marcador em estrela.
- Função cos(x) na cor verde, estilo de linha pontilhado e marcador em círculo.

EC35F

Funções gráficas

Exercício 1

Transmissão de Dados

- ➤ Dada as seguintes funções:
 - \geq 1) f(x) = sen(x);
 - \geq 2) f(x) = cos(x);
 - >3) f(x) = 2*sen(x)*cos(x)
 - >4) f(x) = sen(x)/exp(x)
- Trace cada uma delas em sub-gráficos, com valores de x entre 0 e 5pi/2, tendo ainda este intervalo 500 pontos e eixos dimensionados automaticamente.
- ➤ Coloque rótulos nos eixos das ordenadas (y).

Transmissão de Dados

Troque as interrogações '?' pelo código correto e termine as linhas que faltam. Crie um novo script e cole o código abaixo:

```
>> x= linspace( ? )
>> subplot (2, 2, 1)
>> plot(x, sin(x))
>> ylabel( ? )
>> subplot (2, 2, 2)
>> plot( ? )
>> ylabel( ? )
>> subplot (2,2,3)
```

Funções gráficas

Transmissão de Dados

Exercício 1

