HOMEWORK 2

LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE AND JOYCE GOMEZ)

Proposition 1.24. Let $x \in \mathbb{Z}$. If $x \cdot x = x$ then x = 0 or 1.

Proof. By proposition 1.7, $1 \cdot x = x$. We may thus write $x \cdot x = x \cdot 1$. If x = 0, we are done. Otherwise, we assume $x \neq 0$. Since $x \neq 0$, axiom 1.5 (cancellation) implies x = 1.

Proposition 1.25. For all $m, n \in \mathbb{Z}$:

- (i) -(m + n) = (-m) + (-n).
- (ii) -m = (-1)m.
- (iii) (-m)n = m(-n) = -(mn).

Proof. (i) $(-1) \cdot -(-m) = 1 \cdot (-m)$ by proposition 1.20. $1 \cdot (-m) = -m$ by proposition 1.7. On the other hand, -(-m) = m by proposition 1.22. Thus -m = (-1)m. Because of this, we can say -(m+n) = (-1)(m+n). Distributivity (axiom 1.1.3) shows $(-1)(m+n) = -1 \cdot m + -1 \cdot n$. Using what we just recently proved again, $-1 \cdot m + -1 \cdot n = (-m) + (-n)$. We conclude -(m+n) = (-m) + (-n).

(ii) (-1) · -(-m) = 1 · (-m) by proposition 1.20. $1 \cdot (-m) = -m$ by proposition 1.7. On the other hand, -(-m) = m by proposition 1.22. Thus -m = (-1)m.

(iii) By proposition 1.20, we have $(-m) \cdot -(-n) = m \cdot (-n)$. Also thanks to proposition 1.20, $(-1) \cdot -(-n) = 1 \cdot (-n)$. Then by proposition 1.7, we can say that 1(-n) = -n. On the other hand, -(-n) = n by proposition 1.22. Thus (-1)n = -n. Because of this, we can say that $m \cdot (-n) = m \cdot (-1)n$. By commutativity, $m \cdot (-1)n = (-1)mn$. Then by associativity, (-1)mn = -1(mn). Because we just proved $(-1)n = -n \forall n \in \mathbf{Z}$, we can say that -1(mn) = -(mn). We conclude that (-m)n = m(-n)

Proposition 1.26. Let $m,n \in \mathbb{Z}$. If mn = 0, then m = 0 or n = 0.

Proof. If we look at $m \cdot n$, then by proposition 1.14, $m \cdot 0 = 0$, so $m \cdot n = m \cdot 0$. Because of axiom 1.5, n = 0. On the other hand, commutativity shows $m \cdot n = n \cdot m$. If we look at this case, by proposition 1.14, $n \cdot 0$

Date: January 30, 2017.

= 0, so $n \cdot m = n \cdot 0$. Because of axiom 1.5, m = 0. We conclude if $m \cdot n = 0$, then m = 0 or n = 0.

Project 3.1. Express each of the following statements using quantifiers:

- (i) There exists a smallest natural number.
- (ii) There exists no smallest integer.
- (iii) Every integer is the product of two integers.
- (iv) The equation $x^2 2y^2 = 3$ has an integer solution.

Answer.

- (i) $\exists m \in \mathbf{N} \ \forall n \in \mathbf{N} \ (m < n \lor m = n)$.
- (ii) $\forall m \in \mathbf{Z} \exists n \in \mathbf{Z} n < m$.
- (iii) $\forall m, n \in \mathbb{Z} \exists p \in \mathbb{Z} m \cdot n = p$.
- (iv) $\exists x,y \in \mathbf{Z} \ x^2 2y^2 = 3$

Project 3.2. In each of the following cases explain what is meant by the statement and decide whether it is true or false.

- (i) For each $x \in Z$ there exists $y \in Z$ such that x + y = 1.
- (ii) There exists $y \in Z$ such that for each $x \in Z$, x + y = 1.
- (iii) For each $x \in Z$ there exists $y \in Z$ such that xy = x.
- (iv) There exists $y \in Z$ such that for each $x \in Z$, xy = x.

Answer.

- (i) This statement is saying that every integer x has an integer y that when added to it is equal to 1. This is true.
- (ii) This statement is saying that there is some universal integer y that when added to any integer x the sum is 1. This is false.
- (iii) This statement is saying that every integer x has an integer y that when multiplied together is equal to x. This statement is false, since 1 is the only integer capable of this (proposition 1.18).
- (iv) This statement is saying that there is a universal integer y that when multiplied with any integer x the product is x. This statement is true.

Project 3.3. Construct two more mathematical if-then statements that are true, but whose converses are false.

Answer.

- (i) There exists $y \in \mathbf{Z}$ such that for each $x \in \mathbf{Z}$ $x \cdot y = 0$.
- For each $x \in \mathbf{Z}$ There exists $y \in \mathbf{Z}$ such that $x \cdot y = 0$.
- (ii) For each $x \in Z$ there exists $y \in Z$ such that x + y = 5.

There exists $y \in Z$ such that For each $x \in Z$ x + y = 5.

1 The classical logical connectives are and, or, not, and (if then). These are denoted, respectively, by \land , \lor , \neg , and \rightarrow . Write out the truth tables for \land , \lor , \neg , and \rightarrow .

Answer.

Р	l	Q			V	Q			Р	$ $ \rightarrow	Q
$\overline{\mathrm{T}}$	Т	T		Τ	Т	Т	Р	$\neg P$	Т	Т	$\overline{\mathrm{T}}$
Т	F	F		_	Т	<u>+</u>	Τ	F	Τ	F	F
F	F	Т	-	F	Т	Т	F	Τ	F	Т	T
F	F	F		F	F	F			F	Т	F

2 Find an expression using only \vee and \neg with the same truth table as \rightarrow .

Answer.

$\neg P$	\ \	Q
Т	Т	Т
Т	F	F
\overline{F}	Т	Т
\overline{F}	Т	F