Math 491 2 Dimensional Topological Quantum Field Theories

A. Eren Uyanık

Department of Mathematics Bilkent University Advisor: Kadri İlker Berktav

Fall 2024

Outline

- Introduction
- Category theory
- Cobordisms and TQFTs
- 4 2-TQFTs and Frobenious algebras
- **5** The main equivalence: $2TQFT_k \simeq cFA_k$.
- Concluding remarks
- References

Push-outs

Definition (Informal)

A category is a collection of objects together with the maps between them, obeying the associativity and identity laws for the composition.

Push-outs

Definition (Informal)

A category is a collection of objects together with the maps between them, obeying the associativity and identity laws for the composition.

Definition

For objects X, Y, Z and maps i_X , i_Y in a category, an (unique) object called 'the' *push-out* can be obtained via the diagram

Maps

Definition

A functor $F: A \to B$ is a mapping of objects and morphisms such that:

- $F: \mathsf{Ob}(\mathcal{A}) \to \mathsf{Ob}(\mathcal{B})$
- $F: \mathsf{Mor}(A_1, A_2) \to \mathsf{Mor}(F(A_1), F(A_2)),$

which obeys the usual composition and identity laws.

Maps

Definition

A functor $F: A \to B$ is a mapping of objects and morphisms such that:

- $F: \mathsf{Ob}(\mathcal{A}) \to \mathsf{Ob}(\mathcal{B})$
- $F: \operatorname{Mor}(A_1, A_2) \to \operatorname{Mor}(F(A_1), F(A_2))$,

which obeys the usual composition and identity laws.

Definition

A natural transformation between two functors $F, G : \mathcal{C} \to \mathcal{D}$ is the data of maps $\{\alpha_c\}_{c \in \mathcal{C}}$ compatible with the functors.

Essentials of a category

Definition

For a category C, we have the following definitions:

- **①** Skeleton: A subcategory $\mathcal S$ consisting of only one object from each isomorphism class.
- **②** Generating set: A set \mathcal{G} is such that all the maps in \mathcal{C} can be obtained from compositions of the maps in \mathcal{G} .

Essentials of a category

Definition

For a category C, we have the following definitions:

- **1** Skeleton: A subcategory $\mathcal S$ consisting of only one object from each isomorphism class.
- **②** Generating set: A set \mathcal{G} is such that all the maps in \mathcal{C} can be obtained from compositions of the maps in \mathcal{G} .

Example

[1] For the category $f.d.\mathbf{Vect}_{\mathbb{R}}$, its skeleton is the set $\{\mathbb{R}^n\}_{n\in\mathbb{N}}$ with all the linear maps between them. A generating set can be obtained by the decomposition theorems.

Monoidal Categories

Definition

[1] "A (strict) monoidal category is a category $oldsymbol{V}$ together with two functors

$$\mu: \mathbf{V} \times \mathbf{V} \to \mathbf{V}, \quad \nu: \mathbf{1} \to \mathbf{V}$$

 $(A, B) \mapsto A \square B, * \mapsto I$

satisfying the associativity axiom and the neutral object axiom", where ${\bf 1}$ denotes the empty cartesian product of the category ${\bf V}$.

Monoidal Categories

Definition

[1] "A (strict) monoidal category is a category $oldsymbol{V}$ together with two functors

$$\mu: \mathbf{V} \times \mathbf{V} \to \mathbf{V}, \quad \nu: \mathbf{1} \to \mathbf{V}$$

 $(A, B) \mapsto A \square B, * \mapsto I$

satisfying the associativity axiom and the neutral object axiom", where ${\bf 1}$ denotes the empty cartesian product of the category ${\bf V}$.

A monoidal category is called *symmetric* if we have a *twist map* $(A \square B \rightarrow B \square A)$ subject to the desired properties, and a functor is called symmetric if it sends a twist map to twist map. A *symmetric monoidal* category is then a 4-tuple $(\mathbf{V}, \square, I, \tau)$.

Monoidal Functors & Natural Transformations

Definition

[1] "A (strict) monoidal functor between two (strict) monoidal categories (\mathbf{V}, \square, I) and $(\mathbf{V'}, \square', I')$ is a functor $F : \mathbf{V} \to \mathbf{V'}$ that commutes with all the structure".

Monoidal Functors & Natural Transformations

Definition

[1] "A (strict) monoidal functor between two (strict) monoidal categories (\mathbf{V}, \square, I) and $(\mathbf{V'}, \square', I')$ is a functor $F : \mathbf{V} \to \mathbf{V'}$ that commutes with all the structure".

Definition

Let $F, G: (\mathbf{V}, \square, I, \tau) \longrightarrow (\mathbf{V'}, \square', I', \tau')$ be symmetric monoidal functors. A natural transformation $u: F \Longrightarrow G$ is called a *monoidal natural transformation* if it respects the monoidal structure.

Some Symmetric Monoidal Categories

Example

- (Sets, $[], \emptyset, \tau)$,
- **2** (Sets, \times , 1, σ),
- \bullet (Vect_k, \otimes , k, σ),
- **4** (2Cob, \coprod , \emptyset_1 , T),
- **(FA** $_k, \otimes, k, T).$

Cobordisms

Definition

Given two closed (n-1)-manifolds Σ_0, Σ_1 , a *cobordism* is an *n*-manifold M whose in-boundary is Σ_0 and out-boundary is Σ_1 . To indicate the orientation, we write $M: \Sigma_0 \Longrightarrow \Sigma_1$.

Cobordisms

Definition

Given two closed (n-1)-manifolds Σ_0, Σ_1 , a *cobordism* is an *n*-manifold M whose in-boundary is Σ_0 and out-boundary is Σ_1 . To indicate the orientation, we write $M: \Sigma_0 \Longrightarrow \Sigma_1$.

Example

For any closed *n*-manifold Σ , the *cylinder* cobordism $\Sigma \times I$.

Cobordisms

Definition

Given two closed (n-1)-manifolds Σ_0, Σ_1 , a *cobordism* is an *n*-manifold M whose in-boundary is Σ_0 and out-boundary is Σ_1 . To indicate the orientation, we write $M: \Sigma_0 \Longrightarrow \Sigma_1$.

Example

For any closed n-manifold Σ , the *cylinder* cobordism $\Sigma \times I$.

Convention

- Σ : a closed n-manifold,
- M: a cobordism,
- \emptyset_n is a closed n-manifold!

Example

Example

② "Pair of pants": $S^1 \coprod S^1 \Rightarrow S^1$

Example

$$\textbf{ @ "Birth": } \emptyset_1 \Rightarrow \mathcal{S}^1$$

Example

 $\textcircled{ "Death"} \colon \, \mathcal{S}^1 \Rightarrow \emptyset_1$

Equivalent Cobordisms

Definition

Let $M, M': \Sigma_0 \to \Sigma_1$. We call them equivalent (\sim) if the following diagram with the diffeomorphism $\psi: M \to M'$ commutes:

Nonequivalent Cobordism Example

Figure: Two diffeomorphic manifolds which are not equivalent as cobordisms

Definition (Gluing)

Let $\psi: \Sigma_1 \to \Sigma_1$ be a diffeomorphism. We define $M_0 \coprod_{\Sigma_1} M_1$ to be the topological space $M_0 \coprod M_1$ under the equivalence relation $x \sim \psi(x), x \in \Sigma_1$.

Definition (Gluing)

Let $\psi: \Sigma_1 \to \Sigma_1$ be a diffeomorphism. We define $M_0 \coprod_{\Sigma_1} M_1$ to be the topological space $M_0 \coprod M_1$ under the equivalence relation $x \sim \psi(x), x \in \Sigma_1$.

With this definition, $M_0 \coprod_{\Sigma_1} M_1$ is the push-out as shown in the diagram:

Definition (nCob)

$$\mathbf{nCob} \begin{cases} \mathit{Ob}(\mathbf{nCob}) := \{\Sigma : \Sigma \text{ is a closed } (n-1) - \mathsf{manifold} \} \\ \mathit{Mor}(\Sigma_0, \Sigma_1) := \{[M] | M : \Sigma_0 \Longrightarrow \Sigma_1 \}. \end{cases}$$

Definition (nCob)

$$\mathbf{nCob} \begin{cases} \mathit{Ob}(\mathbf{nCob}) := \{\Sigma : \Sigma \text{ is a closed } (n-1) - \mathsf{manifold} \} \\ \mathit{Mor}(\Sigma_0, \Sigma_1) := \{[M] | M : \Sigma_0 \Longrightarrow \Sigma_1 \}. \end{cases}$$

Remark

With this definition, identity morphisms are the classes of cylinders over the objects.

The associativity of the gluing is proven via the following diagram:

2Cob

For n = 2, we have a nice representation of **2Cob**.

Notation

We will take the skeleton of **2Cob** which is the set $\{\mathbf{m} := \coprod_{i=0}^m S^1\}$ with all the cobordisms, to be **2Cob**.

2Cob

For n = 2, we have a nice representation of **2Cob**.

Notation

We will take the skeleton of **2Cob** which is the set $\{\mathbf{m} := \coprod_{i=0}^m S^1\}$ with all the cobordisms, to be **2Cob**.

With taking disjoint unions and usual twist maps, **2Cob** is a symmetric monoidal category.

Normal Form of a 2-cobordism

Theorem ([1])

"Two connected, compact oriented surfaces with oriented boundary are diffeomorphic if and only if they have the same genus and the same number of in-boundaries and the same number of out-boundaries."

Normal Form of a 2-cobordism

Theorem ([1])

"Two connected, compact oriented surfaces with oriented boundary are diffeomorphic if and only if they have the same genus and the same number of in-boundaries and the same number of out-boundaries."

Claim

Any connected 2-cobordism can be written as

Generators of 2Cob

Theorem ([1])

"The monoidal category **2Cob** is generated under composition (serial connection) and disjoint union (parallel connection) by the following six cobordisms":

Generators of 2Cob

Theorem ([1])

"The monoidal category **2Cob** is generated under composition (serial connection) and disjoint union (parallel connection) by the following six cobordisms":

We can write bunch of relations between the generators which can immediately be proven by the classification theorem.

TQFTs

Definition

A *n-TQFT* is a symmetric monoidal functor from $(\mathbf{nCob}, \coprod, \emptyset_{n-1}, T)$ to $(\mathbf{Vect}_k, \otimes, k, \sigma)$.

TQFTs

Definition

A *n-TQFT* is a symmetric monoidal functor from $(\mathbf{nCob}, \coprod, \emptyset_{n-1}, T)$ to $(\mathbf{Vect}_k, \otimes, k, \sigma)$.

Original formulation [Atiyah]

A TQFT is an assignment \mathcal{A} mapping the closed manifolds to vector spaces and cobordisms to the linear maps between them, subject to the following axioms:

TQFTs

Definition

A *n-TQFT* is a symmetric monoidal functor from $(\mathbf{nCob}, \coprod, \emptyset_{n-1}, T)$ to $(\mathbf{Vect}_k, \otimes, k, \sigma)$.

Original formulation [Atiyah]

A TQFT is an assignment \mathcal{A} mapping the closed manifolds to vector spaces and cobordisms to the linear maps between them, subject to the following axioms:

- A1. If $M \sim M'$, then $\mathcal{A}(M) = \mathcal{A}(M')$.
- A2. $\mathcal{A}(\Sigma \times I) = id_{\mathcal{A}(\Sigma)}$.
- A3. Given a decomposition M = M'M'', $AM = AM'' \circ AM'$.
- A4. $\mathcal{A}(\Sigma_0 \mid \Sigma_1) = \mathcal{A}(\Sigma_0) \otimes \mathcal{A}(\Sigma_1)$.
- A5. $A\emptyset_{n-1} = k$.

(Co-)algebras

Definition (Co-algebra)

As a dual definition to algebras, we have a k-co-algebra A as a vector space with these two k-linear maps:

$$\delta:A\to A\otimes A$$
 and $\varepsilon:A\to k$

called co-multiplication and co-unit, satisfying the following axioms:

(Co-)algebras

Definition (Co-algebra)

As a dual definition to algebras, we have a k-co-algebra A as a vector space with these two k-linear maps:

$$\delta:A o A \otimes A$$
 and $\varepsilon:A o k$

called co-multiplication and co-unit, satisfying the following axioms:

Definition

 $\beta: V \otimes W \to k$ is called a *pairing*. If there exists another map (called *co-pairing*)

 $\gamma: k o W \otimes V$ such that the composition of the below maps is the identity,

Definition

 $\beta: V \otimes W \to k$ is called a *pairing*. If there exists another map (called *co-pairing*) $\gamma: k \to W \otimes V$ such that the composition of the below maps is the identity,

 β is said to be *non-degenerate*.

Definition

 $\beta: V \otimes W \to k$ is called a *pairing*. If there exists another map (called *co-pairing*) $\gamma: k \to W \otimes V$ such that the composition of the below maps is the identity,

 β is said to be *non-degenerate*.

Definition (Frobenious algebra)

A pair (A, β) where A is an algebra and β is a non-degenerate pairing over A is called a *Frobenious algebra*.

Theorem

The followings hold good of a Frobenious algebra (A, β) :

• There exists $\varepsilon \in A^*$ with its null-space containing no non-trivial left ideals. Such an ε is called a Frobenious form.

Theorem

The followings hold good of a Frobenious algebra (A, β) :

- There exists $\varepsilon \in A^*$ with its null-space containing no non-trivial left ideals. Such an ε is called a Frobenious form.
- A is a co-algebra with co-unit ε given above and a co-multiplication δ to be defined later.

Theorem

The followings hold good of a Frobenious algebra (A, β) :

- There exists $\varepsilon \in A^*$ with its null-space containing no non-trivial left ideals. Such an ε is called a Frobenious form.
- A is a co-algebra with co-unit ε given above and a co-multiplication δ to be defined later.

Relation between β and ε

$$\beta(a \otimes b) := \varepsilon(a.b)$$
 and $\varepsilon(a) := \beta(1_A \otimes a)$.

Theorem

The followings hold good of a Frobenious algebra (A, β) :

- There exists $\varepsilon \in A^*$ with its null-space containing no non-trivial left ideals. Such an ε is called a Frobenious form.
- A is a co-algebra with co-unit ε given above and a co-multiplication δ to be defined later.

Relation between β and ε

$$\beta(a \otimes b) := \varepsilon(a.b)$$
 and $\varepsilon(a) := \beta(1_A \otimes a)$.

Example

All $n \times n$ real matrices form a Frobenious algebra over \mathbb{R} with the usual matrix multiplication as multiplication and the trace map as both the non-degenerate pairing and the Frobenious form.

Graphical calculus

Graphical calculus

Graphical calculus

Co-multiplication δ

Axioms stated graphically

Associativity and unitality yield these relations:

Axioms stated graphically

Associativity and unitality yield these relations:

Oc-associativity of the co-multiplication is encoded in the below figure:

Axioms stated graphically

Associativity and unitality yield these relations:

Oc-associativity of the co-multiplication is encoded in the below figure:

FA_k

Definition

A Frobenious homomorphism is an algebra homomorphism $\phi:(A,\varepsilon)\to(A',\varepsilon')$ such that

$$(\phi \otimes \phi) \circ \delta_1 = \delta_2 \circ \phi$$

where $\delta_{1,2}$ are the induced co-multiplication maps, and

$$\varepsilon' \phi = \varepsilon$$
.

FA_k

Definition

A Frobenious homomorphism is an algebra homomorphism $\phi:(A,\varepsilon)\to(A',\varepsilon')$ such that

$$(\phi \otimes \phi) \circ \delta_1 = \delta_2 \circ \phi$$

where $\delta_{1,2}$ are the induced co-multiplication maps, and

$$\varepsilon' \phi = \varepsilon$$
.

With arrows defined as the Frobenious homomorphisms, we get the category \mathbf{FA}_k (and \mathbf{cFA}_k for the commutative Frobenious algebras' category).

FA_k

Definition

A Frobenious homomorphism is an algebra homomorphism $\phi:(A,\varepsilon)\to(A',\varepsilon')$ such that

$$(\phi \otimes \phi) \circ \delta_1 = \delta_2 \circ \phi$$

where $\delta_{1,2}$ are the induced co-multiplication maps, and

$$\varepsilon' \phi = \varepsilon.$$

With arrows defined as the Frobenious homomorphisms, we get the category \mathbf{FA}_k (and \mathbf{cFA}_k for the commutative Frobenious algebras' category). Taking tensor products yields a natural Frobenious algebra structure. Hence, we constructed $(\mathbf{FA}_k, \otimes, k, T)$.

Definition (\mathbf{nTQFT}_k)

 \mathbf{nTQFT}_k is the category whose objects are the symmetric monoidal functors from $(\mathbf{nCob}, \coprod, \emptyset_{n-1}, T)$ to $(\mathbf{Vect}_k, \otimes, k, \sigma)$ and the maps are the monoidal natural transformation between $n-\mathsf{TQFTs}$.

Definition (\mathbf{nTQFT}_k)

 \mathbf{nTQFT}_k is the category whose objects are the symmetric monoidal functors from $(\mathbf{nCob}, \coprod, \emptyset_{n-1}, T)$ to $(\mathbf{Vect}_k, \otimes, k, \sigma)$ and the maps are the monoidal natural transformation between n-TQFTs.

Theorem ([1])

There is a canonical equivalence of categories

 $2\mathsf{TQFT}_k \simeq \mathsf{cFA}_k$.

By monoidality, a 2-TQFT is fully characterized by its image of S^1 and the images of the 6 generators.

By monoidality, a 2-TQFT is fully characterized by its image of S^1 and the images of the 6 generators.

 $2Cob \longrightarrow Vect_{\mathbb{k}}$

where $A^n = A \otimes \cdots \otimes A$.

 $\{\delta: A \to A^2\}.$

- Summary
 - Why category theory?

- Summary
 - Why category theory?
 - TQFT as an assignment

- Summary
 - Why category theory?
 - TQFT as an assignment
 - Characterization of 2-TQFTs

- Summary
 - Why category theory?
 - TQFT as an assignment
 - Characterization of 2-TQFTs
- Importance

- Summary
 - Why category theory?
 - TQFT as an assignment
 - Characterization of 2-TQFTs
- Importance
 - In mathematics

- Summary
 - Why category theory?
 - TQFT as an assignment
 - Characterization of 2-TQFTs
- Importance
 - In mathematics
 - In physics

- Summary
 - Why category theory?
 - TQFT as an assignment
 - Characterization of 2-TQFTs
- Importance
 - In mathematics
 - In physics
 - Physical spaces → Hilbert spaces
 - ullet Evolution in time o Operators

- Summary
 - Why category theory?
 - TQFT as an assignment
 - Characterization of 2-TQFTs
- Importance
 - In mathematics
 - In physics
 - Physical spaces → Hilbert spaces
 - ullet Evolution in time o Operators
 - Toy model for quantum gravity

References

J. Kock.

Frobenius Algebras and 2D Topological Quantum Field Theories. Cambridge University Press, 2003.