1 3 4 附图3.1 共射极晶体管单管放大电路的设计与静态工作点仿真 课序号: 02 班级: 软2104 学号: 20212241212 姓名: 张亚琦 (a) 电路仿真原理图 (b) 六组静态工作点 (1) Rw设为0.595时的静态工作点 3.449 V u_b Rw 0.595 8.982 V u_c Rc 2.4K 2.778 V -GND I_C(mA) 2.508mA U C U out u_CE(V) 6.204 R1 20K Q1 2N3904 UВ (2) Rw设为0.01时的静态工作点 U_E RL 2.4K u b 1.995 V Vin 200mVpp 12.09 V RR1 Rf u_c 20K 100 u_e 1.345 V LC(mA) 1.214mA +Ce RE 1K 100uF u_CE(V) 10.74 (3) Rw设为0.15时的静态工作点 (4) Rw设为0.4时的静态工作点 2.218 V u_b 2.773 V u_b u_c 11.61 V 10.43 V u_c u_e 1.564 V 2.110 V u_e I_C(mA) 1.411mA I_C(mA) 1.905mA u_CE(V) 10.05 u_CE(V) 8.322 (5) Rw设为0.85时的静态工作点 (6) Rw设为0.99时的静态工作点 u_b 5.079 V u_b 5.523 V 5.484 V 4.886 V u_c u_c 4.828 V 4.394 V u_e u_e LC(mA) 3.965mA LC(mA) 4.214mA u_CE(V) 57.18m u_CE(V) 1.091 Title 共射极单管放大电路实验 Number Size Revision A4 Date: 2022/4/4 Sheet of C:\Users\.\EXP03 02 2104 20212241212 Schidon By: 2022/4/4

附图 3.2 负载电阻 RL 为 2.4K 时交流电压输入输出关系曲线图

通过仿真,可以观察得到频率、周期等数值,使用 CursorA/B 功能可以更为准确的得到 u_out 的最大值和最小值,观测数据如下表所示

	频率(Hz)	周期(s)	最大值 (V)	最小值 (V)
输入信号 u_in	1K	1.000m	150m	-150m
输出信号 u_out	1L	1.000m	-1.6021	1.5738

附图 3.2 负载电阻为 2.4K 时输入输出时间电压测量

根据表中参数可以求得负载电阻为 2.4K 时交流电压的放大倍数:

$$A_u = -\frac{u_{opp}}{u_{ipp}} = -\frac{u_{omax} - u_{omin}}{u_{imax} - u_{imin}} = -\frac{1.5738 - (-1.6021)}{0.15 - (-0.15)} = -10.586$$

附图 3.3 负载电阻 RL 为无穷大时交流电压输入输出关系曲线图

通过仿真,可以观察得到 RL 趋近于正无穷(2400k)时的频率、周期 u_out 的最大值和最小值,观测数据如下表所示

	频率(Hz)	周期(s)	最大值 (V)	最小值 (V)
输入信号 u_in	1K	1.000m	100m	-100m
输出信号 u_out	1L	1.000m	-2.1241	2.1162

附图 3.2 负载电阻为 2.4K 时输入输出时间电压测量

根据表中参数可以求得负载电阻为 2.4K 时交流电压的放大倍数:

$$A_u = -\frac{u_{opp}}{u_{ipp}} = -\frac{u_{omax} - u_{omin}}{u_{imax} - u_{imin}} = -\frac{2.1241 - (-2.1162)}{0.1 - (-0.1)} = -21.2015$$

附图 3.4 饱和失真时交流电压输入输出关系曲线图

Rw=0.855 时:

(a) 饱和失真时,静态工作点位置如下图所示

u_b	5.127 V
u_c	5.382 V
u_e	4.441 V
I_C(mA)	4.007mA

(b) 饱和失真时,输入输出关系曲线,如下图所示

附图 3.4 截止失真时交流电压输入输出关系曲线图

当 Rw = 0.595, 幅值为 175mV时, 静态工作点如下:

u_b	3.449 V
u_c	8.982 V
u_e	2.778 V
I_C(mA)	2.508mA

输入输出关系曲线如下

易知此时还没有出现可观测的截止失真;将 Rw 减小,如此处Rw= 0.001 时,如下:

输入输出关系曲线如下

易知:即使 Rw = 0.001,可观测的截止失真依旧有限。

附图 3.6利用最小二乘法拟合生成 ic(mA)和 uce(V)关系的直流负载线

使用 Excel 进行数据处理,使用MATLAB 进行曲线的拟合。

(a) Excel 进行数据处理:

4	A	В	С	D	Е
1		采样点	R_w	I_C (mA)	U_CE(V)
2		1	0.01	1.214	10.74
3		2	0.15	1.411	10.05
4		3	0.4	1.905	8, 322
5		4	0.595	2.508	6.204
6		5	0.85	3.965	1.091
7		6	0.99	4.214	0.057
8	和			15. 217	36. 464
9	平均值			2.536167	6.077333
10					
11	k	-3.541			
12	b	15.057			

(b) 在 MATLAB 中进行曲线的拟合:

所得曲线方程为

y=-3.541*x+15.06

易知使用最小二乘法与使用MATLAB 拟合出的结果基本一致。 图像如下:

