Bookdown Resumos de Matemática 2

Daniel Claudino

2022-12-11

Sumário

1	Apı	resentação	5
	1.1	Controle de Versão	5
2	Ana	álise Combinatória (Manoel Paiva, Vol 2, 2004)	7
	2.1	Capítulo 21 - Análise combinatória (Métodos de contagem)	7
	2.2	Capítulo 22 - Princípio aditivo da contagem	13
	2.3	Capítulo 23 - Arranjo simples	14
3	Bin	ômio de Newton (Manoel Paiva, Vol 2, 2004)	15
	3.1	Capítulo 21 - Análise combinatória (Métodos de contagem)	15
	3.2	Capítulo 22 - Princípio aditivo da contagem	17
	3.3	Capítulo 23 - Arranjo simples	17
4	Pro	babilidade (Manoel Paiva, Vol 2, 2004)	19
	4.1	Capítulo 21 - Análise combinatória (Métodos de contagem)	19
	4.2	Capítulo 22 - Princípio aditivo da contagem	21
	4.3	Capítulo 23 - Arranio simples	21

4 SUMÁRIO

Apresentação

Bookdown Resumos de Matemática 2

Figura 1.1: Autor

• Neste material, estão contidos resumos de matemática 2.

1.1 Controle de Versão

Versão	Data / Hora	Colaborador	Descrição da Contribuição
0.1	dd/mm/aaaa xxh00	Daniel Claudino	Versão inicial do documento

Análise Combinatória (Manoel Paiva, Vol 2, 2004)

Neste capítulo estarão contidos os resumos de **Análise Combinatória** de do livro de Matemática - Volume 2, do autor Manoel Paiva, 1° edição, 2004, da editora Moderna.

Capítulo	Descrição
21	Análise combinatória - métodos de contagem
22	Princípio aditivo da contagem
23	Arranjo simples
24	Fatorial
25	Permutação simples
26	Permutação com elementos repetidos
27	Combinação simples
27-X	Combinação com elementos Repetidos
28	Permutação circular

2.1 Capítulo 21 - Análise combinatória (Métodos de contagem)

2.1.1 Introdução

Contar é uma necessidade cotidiana. Contamos a quantidade de frutas em um cesto, a quantidade de livros em uma estante, a quantidade de habitantes em uma cidade, etc.

Existem quantidades que não são tão fáceis de contar tais como quantos números de telefones que podemos obter com 8 dígitos, a quantidade de placas de

Figura 2.1: Livro - Matemática Vol3 - Manoel Paiva, 2004 (Ed. Moderna, 1.ed.)

2.1. CAPÍTULO 21 - ANÁLISE COMBINATÓRIA (MÉTODOS DE CONTAGEM)9

Tabela 2.2: Exemplo - Resultados possíveis do Experimento - Jogar um dado de 6 faces

Jogada				
Face 1				
Face 2				
Face 3				
Face 4				
Face 5				
Face 6				
Fontor	Doire	(2004	nóa	15/1

Fonte: Paiva (2004, pág. 154)

automóveis que podemos obter com 3 letras seguidas de 4 algarismos.

A análise combinatória é a parte da matemática que estabelece métodos para contar nesses casos mais difíceis (métodos de contagem).

2.1.2 Princípio Fundamental da Contagem

SE um experimento $\bf A$ apresenta $\bf n$ resultados distintos e um experimento $\bf B$ apresenta $\bf k$ resultados distintos, ENTÃO o experimento composto $\bf A$ $\bf e$ $\bf B$, nessa ordem, apresenta $n \times k$ resultados distintos.

Exemplos de Experimentos

- 1. Jogar um dado de 6 lados (Experimento simples: 1 experimento);
- 2. Jogar uma moeda (Experimento simples: 1 experimento);
- 3. Jogar um dado de 6 lados e em seguinda jogar uma moeda, nessa ordem (Experimento composto: 2 experimentos);
- 4. Jogar um dado de 6 lados, uma moeda e em seguida retirar uma bola de uma urna com 4 bolas das cores vermelho, preto, azul e amarela (Experimento composto: 3 experimentos);

Formas de Demonstrar Experimentos

- **2.1.2.0.1** Matríz de Possibilidades Podemos demonstrar todos os resultados possíveis de um experimento simples ou composto construindo uma uma matriz de possibilidades.
- **2.1.2.0.1.1 Experimento Simples** Para um **experimento simples** de jogar um dado de 6 faces:
- **2.1.2.0.1.2** Experimento Composto (dois experimentos) Para um experimento composto, contendo dois experimentos: (A) Jogar um dado de

Tabela 2.3: Exemplo - Resultado do Experimento - Jogar um dado de 6 faces e jogar uma moeda

ExperimentoA	ExperimentoB.C.	ExperimentoB.K.
Face 1	(1,C)	(1,K)
Face 2	(2, C)	(2, K)
Face 3	(3, C)	(3, K)
Face 4	(4, C)	(4, K)
Face 5	(5, C)	(5, K)
Face 6	(6, C)	(6, K)

Fonte: Paiva (2004, pág. 154)

6 faces e (B) jogar uma moeda.

- 1. Construímos uma matriz com as $\bf n$ linhas contendo os elementos do experimento $\bf A$:
- 2. Adicionamos ${\bf k}$ colunas contendo os elementos do experimento ${\bf B}.$

Logo, os resultados possíveis são:

2.1.2.0.1.3 Experimento Composto (três experimentos) Vamos supor que o experimento seja composto de três experimentos, qual sejam (A) jogar um dado de 6 faces, (B) jogar uma moeda e (C) retirar uma bola de uma urna contendo quatro bolas (preto, azul, verde, vermelha).

- 1. Construímos a matriz de possibilidades entre o 1º e 2º experimentos:
- 2. Listar os resultados possíveis da matriz de possibilidades:
- 3. Listar os resultados possíves do 3º subexperimento (Retirar bola de urna)
- 4. Construir uma matriz com ${\bf n}$ linhas da lista do item 2 por ${\bf k}$ colunas da lista do item 3
- 5. Repetir os procedimentos de 1 a 4, caso hajam mais experimentos (4º, 5º, 6º, etc.)

2.1.2.0.2 Árvore de Possibilidades Podemos demonstrar todos os resultados possíveis de um experimento através de uma árvore de possibilidades.

PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is

2.1.3 Generalização do Princípio Fundamental da Contagem

Se os experimentos $A_1, A_2, A_3, ..., A_k$ apresentam como número de resultados possíveis, respectivamente, $n_1, n_2, n_3, ..., n_k$, então o **experimento composto**

2.1. CAPÍTULO 21 - ANÁLISE COMBINATÓRIA (MÉTODOS DE CONTAGEM)11

Tabela 2.4: Exemplo - Lista de Resultados do Experimento - Jogar um dado de 6 faces e jogar uma moeda

Resultados
(1,C)
(2,C)
(3, C)
(4, C)
(5, C)
(6, C)
(1, K)
(2, K)
(3, K)
(4, K)
(5, K)
(6, K)

Fonte: Paiva (2004, pág. 154)

Tabela 2.5: Matriz de possibilidades com os resultados possíveis entre o $1^{\rm o}$ e $2^{\rm o}$ experimentos

JogarDado	ExperimentoB.C.	ExperimentoB.K.
Face 1	(1,C)	(1, K)
Face 2	(2, C)	(2, K)
Face 3	(3, C)	(3, K)
Face 4	(4, C)	(4, K)
Face 5	(5, C)	(5, K)
Face 6	(6, C)	(6, K)

Fonte: Paiva (2004, pág. 155)

Tabela 2.6: Lista de Resultados do Experimento - Jogar um dado de 6 faces e jogar uma moeda

Resultados
(1,C)
(2,C)
(3, C)
(4, C)
(5, C)
(6, C)
(1, K)
(2, K)
(3, K)
(4, K)
(5, K)
(6, K)

Fonte: Paiva (2004, pág. 154)

Tabela 2.7: Lista de Resultados do Experimento - Retirar uma bola de uma urna contendo quatro bolas (preto, azul, amarela, vermelha).

RetirarBolaDeUrna	
Bola preta	
Bola azul	
Bola amarela	
Bola vermelha	

Fonte: Paiva (2004, pág. 154)

Tabela 2.8: Lista de Resultados do Experimento - Jogar um dado de 6 faces e jogar uma moeda

ResultadosExperimentos1E2	BolaAmarela	BolaVerde	BolaPreta	BolaBranca
(1, C)	(1, C, A)	(1, C, V)	(1, C, P)	(1, C, B)
(1, K)	(1, K, A)	(1, K, V)	(1, K, P)	(1, K, B)
(2, C)	(2, C, A)	(2, C, V)	(2, C, P)	(2, C, B)
(2, K)	(2, K, A)	(2, K, V)	(2, K, P)	(2, K, B)
(3, C)	(3, C, A)	(3, C, V)	(3, C, P)	(3, C, B)
(3, K)	(3, K, A)	(3, K, V)	(3, K, P)	(3, K, B)
(4, C)	(4, C, A)	(4, C, V)	(4, C, P)	(4, C, B)
(4, K)	(4, K, A)	(4, K, V)	(4, K, P)	(4, K, B)
(5, C)	(5, C, A)	(5, C, V)	(5, C, P)	(5, C, B)
(5, K)	(5, K, A)	(5, K, V)	(5, K, P)	(5, K, B)
(6, C)	(6, C, A)	(6, C, V)	(6, C, P)	(6, C, B)
(6, K)	(6, K, A)	(6, K, V)	(6, K, P)	(6, K, B)

Fonte: Paiva (2004, pág. 154)

 $A_1,A_2,A_3,...,A_k,$ nessa ordem, apresenta $n_1\times n_2\times n_3\times...\times n_k$ resultados possíveis.

Exercícios

2.2 Capítulo 22 - Princípio aditivo da contagem

2.2.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

2.2.2 Exercícios do Capítulo 22

Lorem ipsum. Lorem ipsum.

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum.

2.3 Capítulo 23 - Arranjo simples

2.3.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

2.3.2 Exercícios do Capítulo 23

Lorem ipsum. Lorem ipsum.

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

Binômio de Newton (Manoel Paiva, Vol 2, 2004)

Neste capítulo estarão contidos os resumos de **Binômio de Newton** de do livro de Matemática - Volume 2, do autor Manoel Paiva, 1º edição, 2004, da editora Moderna.

Capítulo	Descrição
29	Numero binominal
30	Binômio de Newton
31	Termo Geral do Binômio de Newton

3.1 Capítulo 21 - Análise combinatória (Métodos de contagem)

3.1.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

3.1.2 Exercícios do Capítulo 21

Lorem ipsum. Lorem ipsum.

Figura 3.1: Livro - Matemática Vol3 - Manoel Paiva, 2004 (Ed. Moderna, 1.ed.)

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

3.2 Capítulo 22 - Princípio aditivo da contagem

3.2.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

3.2.2 Exercícios do Capítulo 22

Lorem ipsum. Lorem ipsum.

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

3.3 Capítulo 23 - Arranjo simples

3.3.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

3.3.2 Exercícios do Capítulo 23

Lorem ipsum. Lorem ipsum.

$18CAP\'ITULO~3.~~BIN\^OMIO~DE~NEWTON~(MANOEL~PAIVA,~VOL~2,~2004)$

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

Probabilidade (Manoel Paiva, Vol 2, 2004)

Neste capítulo estarão contidos os resumos de **Probabilidade** de do livro de Matemática - Volume 2, do autor Manoel Paiva, 1° edição, 2004, da editora Moderna.

Capítulo	Descrição
32	O conceito de probabilidade
33	Propriedade da probabilidade
34	Adição de probabilidade
35	Probabilidade condicional
36	Multiplicação de probabilidade

4.1 Capítulo 21 - Análise combinatória (Métodos de contagem)

4.1.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

4.1.2 Exercícios do Capítulo 21

Lorem ipsum. Lorem ipsum.

Figura 4.1: Livro - Matemática Vol3 - Manoel Paiva, 2004 (Ed. Moderna, 1.ed.)

Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum.

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

4.2 Capítulo 22 - Princípio aditivo da contagem

4.2.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

4.2.2 Exercícios do Capítulo 22

Lorem ipsum. Lorem ipsum.

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

4.3 Capítulo 23 - Arranjo simples

4.3.1 Subseção Numerada 1

Lorem ipsum. Lorem ipsum.

4.3.2 Exercícios do Capítulo 23

Lorem ipsum. Lorem ipsum.

Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum. Lorem ipsum.

Seção não Numerada 3

Lorem ipsum. Lorem ipsum.

•