Khaziyev
MA 26122024-170425

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 352 МГц, частота ПЧ 50 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 252 MΓι
- 2) 402 MΓ_{II}
- 3) 352 MΓ_{II}
- 4) 1106 MΓ_{II}.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_{\rm r}+mf_{\rm \Pi q}|$ Какой комбинацией $\{n;m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

1)
$$\{21; -73\}$$
 2) $\{21; -73\}$ 3) $\{26; -91\}$ 4) $\{16; -55\}$ 5) $\{21; -73\}$ 6) $\{16; -55\}$ 7) $\{11; -37\}$ 8) $\{26; -55\}$ 9) $\{21; -73\}$

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4.9 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 12 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 1.2 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА: 1) 3.3 дБ 2) 3.9 дБ 3) 4.5 дБ 4) 5.1 дБ 5) 5.7 дБ 6) 6.3 дБ 7) 6.9 дБ 8) 7.5 дБ 9) 8.1 дБ

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 846 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 7 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 189 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 4 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 1920 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 622 МГц до 656 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -74 дБм 2) -77 дБм 3) -80 дБм 4) -83 дБм 5) -86 дБм 6) -89 дБм 7) -92 дБм 8) -95 дБм 9) -98 дБм

Для выделения только **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 17 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 135 МГц?

Варианты ОТВЕТА:

1) 17.4 $\pi\Phi$ 2) 22.5 $\pi\Phi$ 3) 31.9 $\pi\Phi$ 4) 24.7 $\pi\Phi$

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

 $s_{21} = 0.59491 + 0.16033i, s_{31} = -0.16049 + 0.59551i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -62 дБн 2) -64 дБн 3) -66 дБн 4) -68 дБн 5) -70 дБн 6) -72 дБн 7) -74 дБн 8) -76 дБн 9) 0 дБн