Reward Shaping, Advanced Exploration, and Entropy Regularization

Alpha Zero: Actor Critic with MCTS

- 1. Use π_{θ} and U_{ϕ} in MCTS
- 2. Learn π_{θ} and U_{ϕ} from tree

$$\ell(\theta) = -\mathbb{E}_s \left[\sum_{a} \pi_{\text{MCTS}}(a \mid s) \log \pi_{\theta}(a \mid s) \right]$$
$$\pi_{\text{MCTS}}(a \mid s) \propto N(s, a)^{\eta}$$

$$\ell(\mathbf{\Phi}) = \frac{1}{2} \mathbb{E}_s \left[\left(U_{\mathbf{\Phi}}(s) - U_{\text{MCTS}}(s) \right)^2 \right]$$

$$U_{\text{MCTS}}(s) = \max_{a} Q(s, a)$$

$$a = \underset{a}{\operatorname{arg\,max}} Q(s, a) + c \pi_{\theta}(a \mid s) \frac{\sqrt{N(s)}}{1 + N(s, a)}$$

https://www.youtube.com/embed/flOIHko8ySg?enablejsapi=1

Reward Shaping

"As a general rule, it is better to design performance measures according to what one actually wants in the environment, rather than according to how one thinks the agent should behave." - Stuart Russell

Reward

Value

-	0.74	0.96	1.18	1.43	1.7	1.98	2.11	2.39	2.09
0.41	0./4	0.96	1.18	1.48	1./ 1	1.98	2.11	2.39	2.09
0.74	1.04	1.27	1.52	1.81	2.15	2.47	2.58	3.02	2.69
0.86	1.18	1.45	1.76	2.15	2.55	2.97	3	3.69	3.32
0.86	1.18	1.45	1./6	2.15	2.50	2.90	3	3.00	3.34
0.84	1.11	1.31	1.55	2.45	3.01	3.56	4.1	4.53	4.04
0.91	1.2	1.09	-3	2.48	3.53	4.21	4.93	5.5	4.88
					0.00				
1.1	1.46	1.79	2.24	3.42	4.2	4.97	5.85	6.68	5.84
1.06	1.41	1.7	2.14	3.89	4.9	5.85	6.92	8.15	6.94
	_	_							
0.92	1.18	0.7	-7.39	3.43	5.39	6.67	8.15	10	8.19
1.09	1.45	1.75	2.18	3.89	4.88	5.84	6.92	8.15	6.94
1.07	1.56	2.05	2.65	3.38	4.11	4.92	5.83	6.68	5.82

Reward Shaping

- ullet $R(s,a,s')+=F(s)-\gamma F(s')$
- any other transformation may yield sub optimal policies unless further assumptions are made about the underlying MDP

Is Exploration Important? Montezuma's Revenge

Is Exploration Important? Theory

Example 1: Learn Pseudocount

 $B(s,a)pprox rac{1}{\sqrt{\hat{N}(s)}}$ where $\hat{N}(s)$ is a learned function approximation

Example 2: Learn a function of the state and action

$$B(s,a) = \|\hat{f}_{ heta}(s,a) - f^*(s,a)\|^2$$

What should f^* be?

- $f^*(s, a) = s'$ (Next state prediction)
- $f^*(s,a) = f_{\phi}(s,a)$ where f_{ϕ} is a random neural network.

Random Network
Distillation!

Example 3: Thompson Sampling

- 1. Maintain a distribution over $Q \leftarrow Hard$
- 2. Sample Q
- 3. Act according to *Q*

- Bootstrapping with multiple Q networks
- Dropout

Example 4: Go-Explore

"First return, then explore"

(Uber Al Labs)

Soft Actor Critic: Entropy Regularization

$$U(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t | \mathbf{s}_t) \right]$$

$$\mathcal{T}^{\pi}Q(\mathbf{s}_t, \mathbf{a}_t) \triangleq r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V(\mathbf{s}_{t+1}) \right]$$

$$\pi_{\text{new}} = \arg\min_{\pi' \in \Pi} D_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}_t) \mid \frac{\exp(Q^{\pi_{\text{old}}}(\mathbf{s}_t, \cdot))}{Z^{\pi_{\text{old}}}(\mathbf{s}_t)} \right)$$

Soft Actor Critic

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ , $\bar{\psi}$, θ , ϕ .

for each iteration do

for each environment step do

$$\mathbf{a}_{t} \sim \pi_{\phi}(\mathbf{a}_{t}|\mathbf{s}_{t})$$

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_{t}, \mathbf{a}_{t}, r(\mathbf{s}_{t}, \mathbf{a}_{t}), \mathbf{s}_{t+1})\}$$

end for

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)
\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
\phi \leftarrow \phi - \lambda_\pi \hat{\nabla}_{\phi} J_\pi(\phi)
\bar{\psi} \leftarrow \tau \psi + (1 - \tau) \bar{\psi}$$

end for

end for

$$J_V(\psi) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\psi}(\mathbf{s}_t) - \mathbb{E}_{\mathbf{a}_t \sim \pi_{\phi}} \left[Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \log \pi_{\phi}(\mathbf{a}_t | \mathbf{s}_t) \right] \right)^2 \right]$$

$$J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]$$
$$\hat{Q}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right]$$

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[D_{\mathrm{KL}} \left(\pi_{\phi}(\cdot | \mathbf{s}_{t}) \, \middle\| \, \frac{\exp\left(Q_{\theta}(\mathbf{s}_{t}, \cdot)\right)}{Z_{\theta}(\mathbf{s}_{t})} \right) \right]$$

Soft Actor Critic

Advantages:

Dicadvantage

```
    St; Algorithm 1 Soft Actor-Critic

   Le Input: \theta_1, \theta_2, \phi
                                                                                                                                          \theta_1 \leftarrow \theta_1, \theta_2 \leftarrow \theta_2
                                                                                                                   ▶ Initialize target network weights

    Ex

                                                                                                                     ▷ Initialize an empty replay pool
                for each iteration do
• Ins
                      for each environment step do

    Of

                            \mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t|\mathbf{s}_t)
                                                                                                                      Sample action from the policy

    Sample transition from the environment

                            \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)
                            \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}\

    Store the transition in the replay pool

                      end for
                      for each gradient step do
                            \theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
                                                                                                                ▶ Update the Q-function parameters
                            \phi \leftarrow \phi - \lambda_{\pi} \nabla_{\phi} J_{\pi}(\phi)

    □ Update policy weights

                            \alpha \leftarrow \alpha - \lambda \nabla_{\alpha} J(\alpha)

    ► Adjust temperature

                            \bar{\theta}_i \leftarrow \tau \theta_i + (1 - \tau)\bar{\theta}_i \text{ for } i \in \{1, 2\}

    □ Update target network weights

                       end for
                end for
             Output: \theta_1, \theta_2, \phi
                                                                                                                                   ▷ Optimized parameters
```

Wisdom

Deep RL: The Dream

- CartPole-v0 defines "solving" as getting average reward of 195.0 over 100 consecutive trials.
- This environment corresponds to the version of the cart-pole problem described by Barto, Sutton, and Anderson [Barto83].

User	Episodes before solve	Write-up	Video
Zhiqing Xiao	0 (use close-form preset policy)	writeup	
Hengjian Jia	0 (use close-form PID policy)	code/writeup	
Keavnn	0	writeup	
Shakti Kumar	0	writeup	Video
Nextgrid.ai	0	writeup	Video
iRyanBell	2	writeup	

Using Deep RL for your problem

- 1. Some interesting problem (smallsat swarm)
- 2. Spend weeks theorizing about the exact-right cost function and dynamics
- 3. Decide RL can solve all of your problems
- 4. Fire up open-ai baselines
- 5. Does it work??

openai / baselines

Why not?

- Hyperparameters?
- Reward scaling?
- Not enough training time????

Algorithms

Policy Network Architecture

Reward Rescaling

"simply multiplying the rewards generated from an environment by some scalar"

Statistical Significance

"Unfortunately, in recent reported results, it is not uncommon for the top-N trials to be selected from among several trials (Wu et al. 2017; Mnih et al. 2016)"

Figure 5: TRPO on HalfCheetah-v1 using the same hyperparameter configurations averaged over two sets of 5 different random seeds each. The average 2-sample t-test across entire training distribution resulted in t = -9.0916, p = 0.0016.

Codebases

How to choose an RL Algorithm

(According to Sergey Levine)

How to be successful with RL

- Always start with a small problem that works and scale up (keep verifying that it works with every change)
- Plot everything that you can think of (TensorBoard)
 - *Losses*
 - Policies
 - Value functions
 - Trajectories
 - (Average return) Learning curve
- Keep calm and lower your learning rate

