MAC0325 Combinatorial Optimization Assignment 1

Pedrog Gigeck Freire 10737136

October 06, 2020

Exercise 6

Given a digraph $D=(V,A,\varphi)$ and a cost function $c:A\to\mathbb{R}$ and $r,s\in V$. We adopt the notation $v_i=(v,i)$ for $v\in V,\,i\in\mathbb{Z}$. Let $D':=(V',A',\varphi')$ be a digraph with

$$V' \coloneqq V \times \{0, 1\}$$

$$A' \coloneqq A \times \{0, 1\}$$

$$\varphi' : A' \to V' \times V' \text{ given by}$$

$$\varphi'((a, i)) \coloneqq \begin{cases} (u_0, w_1) & \text{if } i = 0, \text{ where } \varphi(a) = (u, w) \\ (u_1, w_0) & \text{if } i = 1, \text{ where } \varphi(a) = (u, w) \end{cases}$$

Figure (1) is an example of D' obtained from an original digraph D.

Figure 1: Example of transformation from D to D'.

Let $c': A' \to \mathbb{R}$ be a cost function given by $c'((a,i)) \coloneqq c(a)$. We define the following instance of the shortest walk problem:

(6.2) Minimize
$$c'(W)$$

subject to W is an (r_0, s_0) -walk in D'

We claim that problem (6.2) and problem (6.1) (given in the exercise) are homomorphically equivalent.

To prove it, we need to define some notation:

Let $W_2(D)$ be the set of all walks in D that have even length.

Let $V_0' := \{(v,0), v \in V\}$ be a subset of V'.

Let $W_0(D') := \{(u_0, w_0)\text{-walks in } D' : u_0, w_0 \in V_0'\}$ be the set of all walks in D' that starts in V_0' and ends in V_0' .

Let X be the set of feasible solutions of problem (6.1), i.e., the set of (r, s)-walks in D that have even length.

Let Y be the set of feasible solutions of problem (6.2), i.e., the set of (r_0, s_0) -walks in D'.

From now on, v_i denotes the vertices of V and (v_i, j) denotes de vertices of V'.

Let $\xi: W_2(D) \to W_0(D')'$ be a function defined recursively by: Given $W := \langle v_0, a_1, v_1, ..., a_l, v_l \rangle \in W_2(D)$,

$$\begin{split} \xi(\langle v_0 \rangle) &\coloneqq \langle (v_0, 0) \rangle & \text{if } l = 0 \\ \xi(\langle v_0, a_1, v_1, a_2, v_2 \rangle) &\coloneqq \langle (v_0, 0), (a_1, 0), (v_1, 1), (a_2, 1), (v_2, 0) \rangle & \text{if } l = 2 \\ \xi(\langle v_0, a_1, v_1, ..., a_l, v_l \rangle) &\coloneqq \xi(\langle v_0, ..., v_2 \rangle) \cdot \xi(\langle v_2, ..., v_l \rangle & \text{if } l > 2 \end{split}$$

It is simple to verify by induction that if $W \in W_2(D)$ is a (u, w)-walk in D then $\xi(W)$ is a (u_0, w_0) -walk in D', so $\xi(W) \in W_0(D')$ and the function ξ is, indeed, a (well defined) function.

Let $\phi: X \to Y$ be a function given by $\phi(W) := \xi(W)$

Lemma 1. ϕ is a homomorphism from (6.1) to (6.2).

Proof. Given $W \in X$, the length of W is equal to the length of $\phi(W)$, and the arcs in both walks have the same costs. Formally,

$$c'(\phi(W)) = \sum_{(a,i)\in A(\phi(W))} c'((a,i))$$
$$= \sum_{a\in A(W)} c(a) = c(W)$$

So
$$W \in L_{(6.1)}(\mu) \implies c(W) \le \mu \implies c'(\phi(W)) \le \mu$$
.
Then $\phi(W) \in L_{(6.2)}(\mu)$. So ϕ is a homomorphism .

Proposition 2. Every walk $W \in W_0(D')$ has even length.

Proof. Let $W \in W_0(D')$, let l be the length of W. We prove by induction on l. If l = 0, then l is even.

There is no walk in $W_0(D')$ of length 1, because every arc with origin in V'_0 ends in an arc of the form (v, 1), by the definition of the incidence function φ' .

Suppose that $l \geq 2$, and every walk $W' \in W_0(D')$ of length l' < l has even length (l' is even).

Let $W = \langle (v_0, 0), (a_1, 0), (v_1, 1), (a_2, 1), (v_2, 0), ..., (a_l, 1), (v_l, 0) \rangle$. Suppose by the sake of contradiction that l is odd. Let $W' := \langle (v_2, 0), ..., (a_l, 1), (v_l, 0) \rangle$, then W' has odd length l' = l - 2, but l' < l and $W' \in W_0(D')$, contradiction.

L

Let $\chi: W_0(D') \to W_2(D)$ be a function defined by, given $W' \in W_0(D')$ with length l:

$$\chi(\langle (v_0,0)\rangle) \coloneqq \langle v_0\rangle \qquad \text{if } l = 0$$

$$\chi(\langle (v_0,0), (a_1,0), (v_1,1), (a_2,1), (v_2,0)\rangle) \coloneqq \langle v_0, a_1, v_1, a_2, v_2\rangle \qquad \text{if } l = 2$$

$$\chi(\langle (v_0,0), (a_1,1), (v_1,1), ..., (a_l,1), (v_l,0)\rangle) \coloneqq \chi(\langle (v_0,0), ..., (v_2,0)\rangle) \cdot$$

$$\chi(\langle (v_2,0), ..., (v_l,0)\rangle \qquad \text{if } l > 2$$

We can notice that χ is well defined directly from proposition (2) (every walk in $W_0(D')$ has even length).

Let
$$\psi: Y \to X$$
 be a function given by $\psi(W') := \chi(W')$

Lemma 3. ψ is a homomorphism from (6.2) to (6.1).

Proof. Given $W' \in Y$, the length of W' is equal to the length of $\psi(W')$, and the arcs in both walks have the same costs. Formally,

$$c(\psi(W')) = \sum_{a \in A(\psi(W'))} c(a)$$
$$= \sum_{(a,i) \in A(W')} c'(a,i) = c'(W')$$

So
$$W' \in L_{(6.2)}(\mu) \Longrightarrow c'(W') \leq \mu \Longrightarrow c(\psi(W')) \leq \mu$$
.
Thus $\psi(W') \in L_{(6.1)}(\mu)$. So ψ is a homomorphism.

Theorem 1. Problems (6.1) and (6.2) are homomorphically equivalent.

Proof. Imediate from lemmas
$$(1)$$
 and (3)

Exercise 9

We will write a compact proof that needs to be read carefully in both directions. Each step comes straightforward from definitions.

For each $x \in X$, take $\mu := f(x)$.

$$\varphi \text{ homomorphism } \implies \varphi(L_{\mathcal{O}}(\mu)) \subseteq L_{\mathcal{P}}(\mu)$$

$$\iff \varphi(\{x \in X : \alpha f(x) \ge \alpha \mu\}) \subseteq L_{\mathcal{P}}(\mu)$$

$$\iff \varphi(\{x \in X : \alpha f(x) \ge \alpha f(x)\}) \subseteq L_{\mathcal{P}}(\mu)$$

$$\iff \varphi(X) \subseteq L_{\mathcal{P}}(\mu)$$

$$\iff \varphi(X) \subseteq L_{\mathcal{P}}(f(x))$$

$$\iff \varphi(X) \subseteq \{y \in Y : \alpha g(y) \ge \alpha f(x)\}$$

$$\iff \varphi(x) \in \{y \in Y : \alpha g(y) \ge \alpha f(x)\}, \forall x \in X$$

$$\iff \alpha g(\varphi(x)) \ge \alpha f(x), \forall x \in X$$

The only step that is not straightforward is the way back of the first implication.

We have that $\varphi(L_{\mathcal{O}}(\mu)) \subseteq L_{\mathcal{P}}(\mu)$ for every μ of the form $\mu = f(x)$ but not for every $\mu \in \mathbb{R}$.

But we claim that being valid in the range of f is sufficient to be valid in the whole real set. Let $\nu \in \mathbb{R}$ be any real number, so $L_{\mathcal{O}}(\nu) = \{x \in X : \alpha f(x) \geq \alpha \nu\}$. So every element in $L_{\mathcal{O}}(\nu)$ has a value in f greater or equal than some other value. We may take the greatest value of these, say f(x*) and $L_{\mathcal{O}}(\nu) \subseteq L_{\mathcal{O}}(f(x*))$

Thus φ will be, indeed, a homomorphism.

Exercise 12

In each iteration of the **for** loop, we list the matching $\mathbf{M_t}$ that is already defined in the beggining of the iteration and the augmenting path found in the end of the iteration (this path generates the next matching M_{t+1})

t	M_t	Augmenting Path found
0	Ø	$\langle a, A \rangle$
1	$\{(a,A)\}$	$\langle b,B \rangle$
2	$\{(a,A),(b,B)\}$	$\langle c, D \rangle$
3	$\{(a,A),(b,B),(c,D)\}$	$\langle f, C \rangle$
4	$\{(a,A),(b,B),(c,D),(f,C)\}$	$\langle g, E \rangle$
5	$\{(a,A),(b,B),(c,D),(f,C),(g,E)\}$	$\langle h, F \rangle$
6	$\{(a,A),(b,B),(c,D),(f,C),(g,E),(h,F)\}$	$\langle i,I angle$
7	$\{(a,A),(b,B),(c,D),(f,C),(g,E),(h,F),(i,I)\}$	$ \langle d, A, a, B, \\ b, C, f, H \rangle $
8	$\{(a,B),(b,C),(c,D),(d,A),(f,H),(g,E),(h,F),(i,I)\}$	-

In the end of algorithm, the vertex cover found is the set $\{b,f,g,h,A,B,D,I\}$

Exercise 13

Let G be a (U, W)-bipartite graph

Lemma 4 $((i) \implies \neg(ii))$. If G has a matching that saturates U, then $|S| \le |N(S)|$ for each $S \subseteq U$.

Proof. Let M be a matching in G that saturates U. For each $s \in S$ there is an edge $e \in M$ that connects s with one unique $w \in W$. So there are at least |S| vertices in N(S).

Lemma 5 $(\neg(i) \implies (ii))$. If no matching in G saturates U, then there is a subset $S \subseteq U$ such that |S| > |N(S)|.

Proof. Let M be a maximum matching in G. By hyposthesis, there are vertices in U that are not saturated by M.

Let $R := \{v \in V : \text{ there is } u \in U \setminus V_M \text{ such that } u \leadsto v\}$ be the set (defined in the algorithm) of vertices reacheable from unsaturated vertices in U.

Let $S := U \cap R$. We have that $N(S) \subset (R \cap W)$, by definition of R (the reacheable vertices)

Since M is maximum, the algorithm correctness implies that every vertice in N(S) is saturates, because if there was one unsaturated, there would be an augmenting path and M would not be maximum.

So, for every vertice in N(S) there is one unique vertice in $(S \cap V_M)$ (the other end of the matching edge). From this we get that $|S \cap V_M| = |N(S)|$.

But there is at least one vertice in S that is not in $S \cap V_M$. Therefore $|S| > |S \cap V_M| = |N(S)|$.

From the law of excluded middle. We may divide our exercise in two cases: Case 1: (i) holds. From lemma 4, we have that (ii) fails, thus exactly one of the options holds.

Case 2: (i) fails. From lemma 5, we have that (ii) holds, thus exactly one of the options holds.