Package 'penm'

September 27, 2022
Type Package
Title Build and Perturb Elastic Network Models
Version 0.2.0
Author Julian Echave
Maintainer Julian Echave < jechave@unsam.edu.ar>
Description Functions to calculate ENM models, mutate ENMs by perturbing them, perform single-site mutional scans to calculate average mutation-response matrices, and perform double-site mutational scans to calculate compensation matrices.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.0
Suggests testthat
Depends R (>= 2.10),
Imports matrixStats, pracma, bio3d, dplyr, jefuns, magrittr, Matrix, purrr, stats, tibble, tidyr
penm-package 2 admrs 2 amrs 3 sdmrs 4 set_enm 5 smrs 6
Index

2 admrs

penm-package	penm: Build and Perturb Elastic Network Models	
periii-package	penni. Butta una Ferturo Etastic Network Models	

Description

Functions to calculate ENM models, mutate ENMs by perturbing them, perform single-site mutional scans to calculate average mutation-response matrices, and perform double-site mutational scans to calculate compensation matrices.

Details

The penm package includes functions to calculate various Elastic Network Models for proteins, perform normal mode analysis, and using Ifenm, obtain mutant proteins and the corresponding mutant ENMs. In addition, it has functions to scan the various average-responses w.r.t. single-site mutations and double-site mutations.

admrs

Calculate a double-mutational-scan matrix analytically

Description

Returns a compensation matrix: element (i,j) measures the degree of compensation of structural deformations produced by pairs of mutations at sites i and j. It uses analytical methods (closed formulas). Two measures are implemented: "mean_max" (default), the structural compensation maximized over mutations at j and averaged over mutations at i; "max_max" is the structural compensation maximized over mutations at i and j.

Usage

```
admrs(wt, mut_dl_sigma, mut_sd_min, option = "mean_max", response = "dr2")
```

Arguments

wt	is the (wild-type) protein to mutate (an object obtained using set_enm)
mut_dl_sigma	is the standard deviation of a normal distribution from which edge-length perturbations are picked (LFENM model).
mut_sd_min	is integer sequence-distance cutoff, only edges with $sdij \ge mut_sd_min$ are mutated
option	is either "mean_max" (default) or "max_max", depending on which compensation measure is desired.
response	is the response desired, which maybe either "dr2", "de2", or "df2"

Details

For details see doi:10.7717/peerj.11330

Value

A compensation matrix, rows are initially mutated site, j is compensation site

amrs 3

See Also

```
Other mutscan functions: amrs(), sdmrs(), smrs()
```

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
dmat <- admrs(wt, mut_dl_sigma = 0.3, mut_sd_min = 1, option = "max_max", response = "dr2")
## End(Not run)</pre>
```

amrs

Calculate a mutation-response matrix analitically

Description

Returns a mutation-response matrix It uses an analytical method (closed formulas). For details see doi:10.7717/peerj.11330

Usage

```
amrs(wt, mut_dl_sigma, mut_sd_min, option = "site", response = "dr2")
```

Arguments

wt	is the (wild-type) protein to mutate (an object obtained using set_enm)
mut_dl_sigma	is the standard deviation of a normal distribution from which edge-length perturbations are picked (LFENM model).
mut_sd_min	is integer sequence-distance cutoff, only edges with $sdij \ge mut_sd_min$ are mutated
option	is either "site" (default) or "mode"
response	is either "dr2" (default), "de2", or "df2"

Details

A site-by-site response matrix has elements Mij that measure the response (e.g. deformation) of site i averaged over mutations at site j. A mode-by-site response matrix has elements Mnj that measure the response (e.g. deformation) along mode n averaged over mutations at site j.

It may calculate either site-by-site or mode-by site response matrices Three type of response may be calculated, "dr2" (dr2ij and dr2nj), "de2" (de2ij and de2nj), and "df2" (df2ij and df2nj).

Value

A response matrix, columns are mutated sites, rows are responses, of a given site or normal mode.

See Also

```
Other mutscan functions: admrs(), sdmrs(), smrs()
```

4 sdmrs

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
mrs_matrix <- amrs(wt, mut_dl_sigma = 0.3, mut_sd_min = 1, option = "site", resonse = "dr2")
## End(Not run)</pre>
```

sdmrs

Calculate a double-mutational-scan matrix numerically (simulation-based)

Description

Returns a compensation matrix: element (i,j) measures the degree of compensation of structural deformations produced by pairs of mutations at sites i and j. It uses a simulation method (calculates responses for various instances of forces, then calculates means or maxima) Two measures are implemented: "mean_max" (default), the structural compensation maximized over mutations at j and averaged over mutations at i; "max_max" is the structural compensation maximized over mutations at i and j.

Usage

```
sdmrs(
  wt,
  nmut,
  mut_dl_sigma,
  mut_sd_min,
  option = "mean_max",
  response = "dr2",
  seed = 1024
)
```

Arguments

wt is the (wild-type) protein to mutate (an object obtained using set_enm)

nmut is the number of mutations per site to simulate

mut_dl_sigma is the standard deviation of a normal distribution from which edge-length per-

turbations are picked (LFENM model).

mut_sd_min is integer sequence-distance cutoff, only edges with sdij >= mut_sd_min are

mutated

option is either "mean_max" (default) or "max_max", depending on which compensa-

tion measure is desired.

response is the response desired, which maybe either "dr2", "de2", or "df2"

seed seed for random generation of mutations

Details

For details see doi:10.7717/peerj.11330

set_enm 5

Value

A compensation matrix, rows are initially mutated site, j is compensation site

See Also

```
Other mutscan functions: admrs(), amrs(), smrs()
```

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
dmat <- sdmrs(wt, nmut = 10, mut_dl_sigma = 0.3, mut_sd_min = 1, option = "max_max", response = "dr2")
## End(Not run)</pre>
```

set_enm

Set up 'prot' object

Description

'set_enm' set's up a 'prot' object containing information on ENM structure, parameters, and normal modes

Usage

```
set_enm(pdb, node, model, d_max, frustrated)
```

Arguments

pdb object obtained using bio3d::read.pdb

node parameter specifying how network nodes should be built: "sc" (side chains) or

"ca" (alpha carbons)

model parameter specifying model type: "anm", "ming_wall", "hnm", "hnm0", "pfanm",

"reach"

d_max distance cutoff used to define enm contacts

frustrated logical value indicating whether to include frustrations in calculation of kmat

Value

```
an object of class 'prot', which is a list 'lst(param, node, graph, eij, kmat, nma)'
```

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
set_enm(pdb, node = "sc", model = "anm", d_max = 12.5, frustrated = TRUE)
## End(Not run)</pre>
```

6 smrs

smrs

Calculate a mutation-response matrix numerically (simulation-based)

Description

Returns a mutation-response matrix It uses a simulation method (averages over perturbations). For details see doi:10.7717/peerj.11330

Usage

```
smrs(
  wt,
  nmut,
  mut_dl_sigma,
  mut_sd_min,
  option = "site",
  response = "dr2",
  seed = 1024
)
```

Arguments

wt is the (wild-type) protein to mutate (an object obtained using set_enm)

nmut is the number of mutations per site to simulate

mut_dl_sigma is the standard deviation of a normal distribution from which edge-length per-

turbations are picked (LFENM model).

mut_sd_min is integer sequence-distance cutoff, only edges with sdij >= mut_sd_min are

mutated

option is either "site" (default) or "mode" response is either "dr2" (default), "de2", or "df2"

seed is a seed for random-number generation of mutations

Details

A site-by-site response matrix has elements Mij that measure the response (e.g. deformation) of site i averaged over mutations at site j. A mode-by-site response matrix has elements Mnj that measure the response (e.g. deformation) along mode n averaged over mutations at site j.

It may calculate either site-by-site or mode-by site response matrices Three type of response may be calculated, "dr2" (dr2ij and dr2nj), "de2" (de2ij and de2nj), and "df2" (df2ij and df2nj).

Value

A response matrix, columns are mutated sites, rows are responses, of a given site or normal mode.

See Also

```
Other mutscan functions: admrs(), amrs(), sdmrs()
```

smrs 7

Examples

```
## Not run:
pdb <- bio3d::read.pdb("2acy")
wt <- set_enm(pdb, node = "ca", model = "ming_wall", d_max = 10.5, frustrated = FALSE)
mrs_matrix <- smrs(wt, nmut = 10, mut_model = "lfenm", mut_dl_sigma = 0.3, mut_sd_min = 1, seed = 1024)
## End(Not run)</pre>
```

Index

```
* mutscan functions
    admrs, 2
    amrs, 3
    sdmrs, 4
    smrs, 6

admrs, 2, 3, 5, 6

admrs, 3, 3, 5, 6

penm (penm-package), 2
penm-package, 2

sdmrs, 3, 4, 6
set_enm, 5
smrs, 3, 5, 6
```