CPE301 – SPRING 2018

Design Assignment X

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

- Atmega 328 P Microcontroller
- LM34 Temperature Sensor
- FTDI Chip
- Breadboard
- 5V Power Supply
- PuTTY

2. INITIAL/DEVELOPED CODE OF TASK 1/A

```
#define F CPU 16000000UL //16 Mhz.
#define BAUD 9600 //Set Baud rate 9600.
#define MYUBRR F_CPU/16/BAUD-1
#include
             <avr/io.h>
#include
              <util/delay.h>
#include
              <stdio.h>
void
      read_adc(void); //
                           Function
                                         Declarations
      adc_init(void);
void
      USART_init( unsigned
                                  int ubrr );
void
                                  *data );
void
      USART tx string(
                           char
                           int adc_temp;
volatile
             unsigned
char
      outs[20];
ISR(TIMER1_OVF_vect)
{
      read_adc(); // call ADC function
      snprintf(outs, sizeof(outs), "%3d\r\n", adc_temp); // print output
      USART tx string(outs);// output string
      _delay_ms(1000);
      TCNT1 = 49911; // reset timer counter
}
int main(void)
      adc init(); //
                           Initialize
                                         the
                                                ADC
                                                        (Analog
                                                                            Digital
      Converter)
      USART_init(UBRR_9600); // Initialize
                                                the
                                                       USART (RS232 interface)
      USART_tx_string("Connected!\r\n"); //
                                                we're alive!
       delay ms(125); // wait
      while(1)
      {
             read adc();
             // snprintf(outs, size of (outs), "%3d\r\n", adc_temp);// print it
             //USART tx string(outs);
             delay ms(1000); // wait a
                                                bit
      }
}
      adc_init(void)
void
{
             Setup and
                           enable ADC
                                         **/
      ADMUX =
                    (0<<REFS1) | //
                                         Reference
                                                       Selection
                                                                     Bits
       (1<<REFS0) | //
                           AVcc - external
                                                       at
                                                              AREF
                                              cap
       (0<<ADLAR) | //
                           ADC
                                 Left Adjust Result
       (0<<MUX2) | // ANalog Channel
                                         Selection
                                                       Bits
       (1<<MUX1)| // ADC2
                          (PC2
                                 PIN25)
       (0<<MUX0);
                    (1<<ADEN) | // ADC
       ADCSRA =
                                         ENable
       (0<<ADSC) | // ADC
                           Start Conversion
       (0<<ADATE) | //
                           ADC
                                                       Enable
                                  Auto
                                         Trigger
       (0<<ADIF)| // ADC
                           Interrupt
                                         Flag
       (0<<ADIE) | // ADC
                           Interrupt
                                         Enable
       (1<<ADPS2) | //
                           ADC
                                  Prescaler Select
                                                       Bits
```

_

```
(0<<ADPS1)
      (1<<ADPS0);
            Timer/Counter1 Interrupt Mask
      //
                                                   Register
      TIMSK1 |= (1<<TOIE1); // enable overflow
                                                         interrupt
      TCCR1B =
                   (1<<CS11)|(1<<CS10); //
                                                   native clock
      TCNT1 = 49911;
}
/*
      READ ADC
                   PINS
                         */
void
      read_adc(void)
{
      unsigned
                   char
                         i = 4;
      adc_temp =
                   0;
      while (i--) {
                         (1<<ADSC);
            ADCSRA =
            while(ADCSRA &
                                (1<<ADSC));
            adc_temp+=
                         ADC;
            _delay_ms(50);
      }
                   adc_temp /
                              4; // Average a
                                                                samples
      adc temp =
                                                         few
      int tempf= (adc_temp*5*100)/1024;
      snprintf(outs, sizeof(outs), "%3d\r\n",
                                          tempf);//
                                                         print it
      USART_tx_string(outs);
}
void
      USART init(
                   unsigned
                                int ubrr )
      UBRRØH =
                   (unsigned
                                char)(ubrr>>8);
      UBRRØL =
                   (unsigned
                                char)ubrr;
      UCSRØB =
                   (1
                         <<
                                TXEN0); //
                                            Enable receiver,
                                                               transmitter &
      RX interrupt
                                UCSZ00); //asynchronous
      UCSR0C =
                   (3
                         <<
                                                         8
                                                               N
                                                                      1
}
/*
      SEND A
                 STRING TO
                                THE
                                      RS-232 */
                                *data )
void
      USART_tx_string(
                         char
                                            {
      while ((*data
                                '\0')) {
                         !=
            while (!(UCSR0A
                                &
                                    (1
                                            <<UDRE0)));
            UDRØ =
                         *data;
            data++;
      }
}
```

3. Flowchart of Code

4. SCHEMATICS

5. SCREENSHOTS OF OUTPUT (USING PuTTY))

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Elizabeth Heider