

# Class 5: Python ML Project Modeling

Master Course:

Data-driven Systems Engineering (ML Operations)
440MI and 305SM



### Agenda

- Learning Goals
- Definitions
- RICE Framework
- Computational Representation
- Modeling and Abstraction
- Why Model Adaptation Matters?
- Why Continuous Learning is Needed?
- Drift Detection Mechanisms
- Real-World!



#### **Learning Goals**

- Understand ML modeling paradigms
- Explore online adaptation
- Learn how to expose and serve ML models
- Examine ML ecosystems and monitoring



### Definition: What is Modeling?

 In machine learning, modeling refers to the formalization of data patterns through computational representations, encoding empirical relationships found in data into a mathematical or algorithmic form that can generalize beyond observed examples.

 $f:X \longrightarrow Y$ 



### RICE Framework in Machine Learning

#### RICE = Representation–Information–Computation–Evaluation

Defines the complete cycle of ML system design and optimization:

- Representation: how knowledge is structured
- Information: what data is available and its quality
- Computation: how learning occurs algorithmically
- Evaluation: how performance is measured and improved

Together, RICE forms the foundation for iterative, data-driven model development and operational excellence. (Domingos, 2012; Mitchell, 1997; Jordan & Mitchell, 2015)



### RICE Framework in Machine Learning

The RICE framework thus offers an integrative view of machine learning as an iterative optimization process across four interdependent spaces, aligning closely with both theoretical and applied ML system design.





### Computational Representation

Models differ in how they represent and compute this mapping:

| Model Type           | Representation Mechanism                   | Example                  |
|----------------------|--------------------------------------------|--------------------------|
| Linear Models        | Parameter vector                           | Linear Regression        |
| Decision Trees       | Hierarchical partitioning of feature space | CART, Random Forest      |
| Probabilistic Models | Conditional probability distributions      | Naïve Bayes, HMM         |
| Neural Networks      | Nonlinear composition of layers            | CNNs, RNNs, Transformers |

Each of these representations defines a *different inductive bias* — the assumptions that guide learning from limited data (Mitchell, 1997).



From a systems engineering perspective, modeling is a process of **abstraction**:

- Reducing real-world complexity into computationally tractable structures.
- Capturing relevant signal while filtering out noise.
- Enabling automation, prediction, and decision-making at scale.

As emphasized by Bishop (2006), the ultimate goal is not merely fitting data but learning *generalizable representations* that can make accurate predictions on unseen cases.



#### **Supervised Learning:**

- Learn from labeled data.
- Tasks: classification, regression.
- Algorithms: Linear Regression, Random Forest, SVM, Neural Networks.
- High accuracy with sufficient labels.
- Costly labeling process, overfitting risk

| Domain        | Application                              | Typical Algorithm          | Rationale                                                      |
|---------------|------------------------------------------|----------------------------|----------------------------------------------------------------|
| Finance       | Credit scoring, fraud detection          | Random Forest,<br>XGBoost  | Robust to heterogeneous data, interpretable feature importance |
| Healthcare    | Medical diagnosis                        | Neural Networks,<br>SVM    | Can model non-linear feature interactions                      |
| Manufacturing | Predictive maintenance                   | Gradient Boosting,<br>RF   | Handles tabular, sensor-based data                             |
| NLP / Vision  | Image classification, sentiment analysis | Deep CNNs,<br>Transformers | Exploit large labeled datasets and hierarchical features       |



#### **Unsupervised Learning:**

- Discover hidden structures in unlabeled data.
- Algorithms: K-Means, DBSCAN, PCA, Autoencoders.
- Use: clustering, anomaly detection.
- Reveals hidden patterns.
- Interpretation difficulty, hyperparameter sensitivity.

| Domain             | Application              | Method                      | Motivation                               |
|--------------------|--------------------------|-----------------------------|------------------------------------------|
| Customer Analytics | Market segmentation      | K-Means / GMM               | Identify behavioral clusters             |
| IoT / Sensor Data  | Anomaly detection        | Autoencoders                | Learn normal patterns, detect deviations |
| Text Mining        | Topic modeling           | Latent Dirichlet Allocation | Discover latent topics                   |
| Bioinformatics     | Gene expression grouping | Hierarchical clustering     | Reveal biological pathways               |



#### **Semi-supervised Learning:**

- Mix of labeled and unlabeled data.
- Techniques: self-training, co-training, graph-based SSL.
- Challenges: validation on partially labeled data.
- Example: label propagation in text classification.

| Domain             | Application           | Strategy                 | Benefit                                         |
|--------------------|-----------------------|--------------------------|-------------------------------------------------|
| Medical Imaging    | Disease detection     | Pseudo-labeling +<br>CNN | Labeled data limited; unlabeled images abundant |
| Cybersecurity      | Threat classification | Graph SSL                | Dynamic patterns with few labels                |
| Autonomous Driving | Object detection      | Self-training            | Leverage continuous sensor data                 |
| NLP                | Intent classification | MixMatch                 | Augment sparse annotations                      |



### Why Model Adaptation Matters?

**Concept drift** occurs when the statistical properties of the target variable or data distribution change over time, causing the predictive relationship P(Y|X) to evolve.

In dynamic environments, the model's learned function  $f:X \rightarrow Yf: X \land yf:X \rightarrow Y$  no longer reflects current reality.

#### Taxonomia:

| Туре              | Description                       | Example                                     |
|-------------------|-----------------------------------|---------------------------------------------|
| Sudden Drift      | Abrupt shift in data distribution | New regulation changes transaction patterns |
| Incremental Drift | Gradual change over time          | Customer preferences evolve slowly          |
| Recurring Drift   | Past concepts reappear cyclically | Seasonal product demand                     |



### Why Model Adaptation Matters?





### Why Model Adaptation Matters?



**Virtual Drift** 

Feature distribution changes, but target relation remains

Sensor calibration changes



### Why Continuous Learning is Needed?

- Continuous learning = capability to update model incrementally as new data arrives.
- Avoids full retraining (computationally costly).
- Maintains alignment with evolving data distribution.

#### **Techniques:**

- Online Learning Algorithms: Perceptron, SGD-based (Stochastic Gradient Descent) algorithms
- Streaming Ensembles: Hoeffding Trees, Adaptive Random Forest (Bifet et al., 2010).
- Window-based Adaptation: ADWIN (Adaptive Windowing).



### Online Machine Learning

#### **Example - Very Fast Decision Tree**

- A Hoeffding tree (VFDT) is:
  - Incremental Tree.
  - Anytime decision tree induction algorithm
  - Capable of learning from massive data streams, assuming that the distribution generating examples does not change over time.
  - Hoeffding trees exploit the fact that a small sample can often be enough to choose an optimal splitting attribute.
  - Supported mathematically by the Hoeffding bound, which quantifies the number of observations (in our case, examples) needed to estimate some statistics within a prescribed precision.

https://www.youtube.com/watch?v=jDxpm53hJSA



#### **Drift Detection Mechanisms**

• **Goal:** Identify when model predictions deviate due to changes in data distribution.

#### Approaches:

- $\triangleright$  *Error-rate monitoring:* Sudden rise in model error  $\rightarrow$  possible drift.
- Statistical tests: Kolmogorov–Smirnov, Page-Hinkley, ADWIN.
- Data-driven monitors: compare distributions of input features or latent embeddings.

#### • Adaptive Response:

- Retrain model on recent data window.
- Replace outdated model component.
- Adjust learning rate dynamically.



#### • Industry Examples:

- Fraud Detection: Continuous retraining with rolling window data.
- Recommender Systems: User-item interactions evolve hourly.
- Predictive Maintenance: Sensor patterns drift with machine wear.

#### Engineering Patterns:

- Data stream ingestion → preprocessing (Kafka, Flink)
- Incremental model updates (River, Vowpal Wabbit)
- Performance monitoring (EvidentlyAl, Prometheus)
- Automated retraining triggers on drift signals



- Data stream ingestion → preprocessing (Kafka, Flink)
  - Apache Kafka is a distributed event streaming platform used to build real-time data pipelines;
  - Apache Flink is a unified stream and batch data processing framework for real-time and large-scale data;







Incremental model updates (River, Vowpal Wabbit)







Performance monitoring (EvidentlyAl, Prometheus)







Training





## Data-driven Systems Engineering (ML Operations) 440MI and 305SM



# Data-driven Systems Engineering (ML Operations) 440MI and 305SM

#### References:

- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.
- Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education.
- Domingos, P. (2012). A Few Useful Things to Know About Machine Learning. Communications of the ACM, 55(10), 78–87.
- Jordan, M. I., & Mitchell, T. M. (2015). Machine Learning: Trends, Perspectives, and Prospects. Science, 349(6245), 255–260.