Tagebuch

Simon Kapfer

14. August 2014

Zusammenfassung

Was mir an mathematisch Interessantem einfällt.

p-adische Approximation mit erzeugenden Funktionen Eine Potenzreihe $F(x) = \sum c_n x^n$ konvergiert (wenn die c_n nicht zu schlecht sind, also z.B. ganze Zahlen) im p-adischen Sinne in \mathbb{Z}_p bzw. \mathbb{Q}_p für alle x, die Vielfache von p sind. Für $x_0 = a_1 p + a_2 p^2 + \ldots$ konvergieren die Koeffizienten der Reihe

$$\frac{F(a_1pt + a_2p^2t^2 + ...)}{1 - t}$$

gegen $F(x_0)$. Idee dazu kam von folgender Frage: Gegeben ein modulo $p^n \, \forall n$ surjektives Polynom P (vgl. Hensel Lemma), wie kann man eine Folge (r_n) finden, so daß $P(r_n)$ durch p^n teilbar ist? Man muß die Nullstellen von P nämlich padisch approximieren, z.B. mittels Newton-Verfahren, oder direkt eine Potenzreihe für die Wurzel nehmen.

Poincaré-Birkhoff-Witt-Theorem Die universell einhüllende Algebra einer Liealgebra \mathfrak{g} ist der Quotient der freien Tensoralgebra durch die Relationen $\langle a\otimes b-b\otimes a-[a,b]\rangle$. Die Aussage des sog. Theorems ist, daß $U(\mathfrak{g})$ als Vektorraum von den (linear unabhängigen) geordneten Tensoren der \mathfrak{g} -Basiselemente $e_{i_1}\otimes\ldots\otimes e_{i_k},\ i_1\leq\ldots\leq i_k$ aufgespannt wird. Die lineare Unabhängigkeit ist der nichttriviale Teil.

Meine Beweisidee: $U(\mathfrak{g})=\bigoplus U^k$ wobei $U^k=\langle e_{i_1}\otimes \ldots \otimes e_{i_k},\ i_1\leq \ldots \leq i_k\rangle$ und die Erzeuger von U^k sind linear unabhängig. Bleibt zu zeigen, daß $U^k\cap U^l=0$ für verschiedene k und l. Die Relationen der Einhüllenden vermischen nur zwei benachbarte Grade, d. h. es reicht zu zeigen, daß $U^k\cap U^{k-1}=0$. Mit anderen Worten, die Vertauschung von zwei Basisvektoren in U^k soll sich zu einer Gruppenwirkung von \mathfrak{S}_k auf $U^k\oplus U^{k-1}$ fortsetzen lassen. S_k wird von Transpositionen benachbarter Elemente σ_i erzeugt, die den Relationen $\sigma_i^2=1$, $\sigma_i\sigma_j=\sigma_j\sigma_i$ falls

|i-j|>1 und $\sigma_i\sigma_{i+1}\sigma_i=\sigma_{i+1}\sigma_i\sigma_{i+1}$ gehorchen. Die erste Gleichung gilt wegen Antikommutativität der Lieklammer, die zweite trivialerweise, die dritte braucht Jacobi. Gezeigt ist nun: egal, in welcher Reihenfolge man ein Element in U^k in Normalform (durch Vertauschen) bringt, man wird stets dieselbe Korrektur in U^{k-1} erhalten. Insbesondere wird Umformen eines Elements in Normalform in sich selbst keine Korrekturterme produzieren.

Dimension von metrischen Graphen Ein metrischer Raum aus n+1 Punkten kann stets als Eckenmenge eines n-Simplex dargestellt werden. Dieses Simplex ist manchmal entartet, was eine Reduzierung der Dimension bedeutet. Wie weit kann man die Dimension reduzieren, wenn man für die Abstände einen Fehler von bestimmter Größe zuläßt? Möglicherweise gehts mit einer Eigenraumzerlegung der darstellenden Matrix à la Carina.

Faktorisierungen in der Symmetrischen Gruppe Bezeichne mit $f_{n,k}$ die Anzahl der Möglichkeiten, die Identität in \mathfrak{S}_n als k-faches Produkt n-Zykeln zu schreiben (unter Berücksichtigung der Reihenfolge). Dann gilt für die erzeugenden Funktionen $F_n(x) := \sum_{k \geq 0} f_{n,k} x^k$:

$$F_{0}(x) = 1$$

$$F_{1}(x) = \frac{1}{1-x}$$

$$F_{2}(x) = \frac{1}{1-x^{2}}$$

$$F_{3}(x) = \frac{1-x}{1-x-2x^{2}}$$

$$F_{4}(x) = \frac{1-34x^{2}+24x^{4}}{1-40x^{2}+144x^{4}}$$

$$F_{5}(x) = \frac{1-22x-72x^{2}+384x^{3}+384x^{4}}{1-22x-96x^{2}+432x^{3}+1536x^{4}}$$

$$F_{6}(x) = \frac{1-19320x^{2}+43720704x^{4}-18345277440x^{6}+300589056000x^{8}}{1-19440x^{2}+42418944x^{4}-16334438400x^{6}+303906816000x^{8}}$$

$$F_{7}(x) = \frac{\text{Polynom vom Grad 7}}{\text{Polynom vom Grad 7}}, \quad F_{8}(x) = \frac{\text{Polynom vom Grad 14}}{\text{Polynom vom Grad 14}}$$

Wir haben immer rationale Funktionen, auch wenn die Koeffizienten mit wachsendem n regelrecht explodieren. Die Frage, $f_{n,k}$ zu bestimmen, kam von Kai. Mit dem Paper von Goupil und Schaeffer kommt man an eine Berechnungsmethode dafür über Matrixpotenzen. Damit bekommt man auch obere Schranken für den Nennergrad der F_n , nämlich die Partitionszahlen $1,1,2,3,5,7,11,15,22,\ldots$

Die Tatsache, daß für gerade n nur gerade Funktionen auftauchen, sieht man, sobald man das Signum der Permutationen anschaut. deg $F_{2n} = 2 \deg F_{2n-1}$ folgt möglicherweise auch daraus.

Charakteristische Polynome von Matrixpotenzen Die Koeffizienten c_k des charakteristischen Polynoms einer $d \times d$ -Matrix A sind bis aufs Vorzeichen die elementarsymmetrischen Funktionen in den Eigenwerten: $e_k = (-1)^k c_k$. Was sind die charakteristischen Polynome von A^n ?

$$S_A(x) := \sum_n \operatorname{Spur}(A^n) x^n = \frac{\operatorname{Rev}\left(\frac{\partial}{\partial x} \chi_A(x)\right)}{\operatorname{Rev}\left(\chi_A(x)\right)}$$

Dabei steht Rev : $P(x) \longmapsto x^{\deg P} P\left(\frac{1}{x}\right)$ für das rückwärts gelesene Polynom. S_A ist natürlich eine symmetrische Funktion in den Eigenwerten, daher kann man von Plethysmus sprechen und es gilt:

$$(-1)^k \sum_n c_k(A^n) x^n = S_A[e_k](x)$$

Also braucht man, um χ_{A^n} auszurechnen, nichts weiter als χ_A und die plethystischen Formeln für $\mathbf{e}_j[\mathbf{e}_k]$. Falls det A=1, hat man außerdem eine nette Dualität, die man durch Betrachtung der Eigenwerte beweist, nämlich

$$(-1)^{d-1} \sum_{n} c_{d-1}(A^n) x^n = \frac{\text{Rev}\left(\frac{\partial}{\partial x} \text{Rev}\left(\chi_A(x)\right)\right)}{\chi_A(x)}$$

Diese Dualität wird von Plethysmen respektiert, und so haben dann die erzeugenden Funktionen von $c_k(A^n)$ und $c_{d-k}(A^n)$ jeweils rückwärts gelesene Nenner.

Ordinalzahlen Betrachte alle abzählbaren, nicht endliche Mengen, welche total geordnet sind. Führe eine Relation zwischen diesen ein: $M \subseteq N$, falls eine injektive, monotone (steigende oder fallende) Abbildung : $M \to N$ existiert. Diese Relation besitzt ein kleinstes Element, nämlich \mathbb{N} , sowie ein größtes Element, nämlich \mathbb{Q} .

Eulercharakteristik von symmetrischen Potenzen Wenn $V = V^+ \otimes V^-$ ein Supervektorraum ist und $\chi(V) := \dim V^+ \oplus \dim V^-$, dann ist

$$\sum \chi(\operatorname{Sym}^n V) x^n = (1-x)^{-\chi(V)}.$$

Das sollte auch mit beliebigen gewichteten Zerlegungen von ${\cal V}$ funkionieren und aus der entsprechenden Formel für Charaktere von Darstellungen folgen.

Hilbertschema von Punkten auf K3 Sei X eine K3. Dann ist die Torsion der Cup-Produkt-Bilder von

- Sym²($H^2(X^{[2]}; \mathbb{Z})$) in $H^4(X^{[2]}; \mathbb{Z})$ gleich $2^{22} \cdot 10$.
- Sym³($H^2(X^{[2]}; \mathbb{Z})$) in $H^6(X^{[2]}; \mathbb{Z})$ gleich $2^{17} \cdot 4$.
- Sym²($H^2(X^{[3]};\mathbb{Z})$) in $H^4(X^{[3]};\mathbb{Z})$ gleich 3. Dabei kann $\frac{1}{3}\mathfrak{a}_3(1)|0\rangle$ nicht getroffen werden, sondern nur das Dreifache.
- $h^6(X^{[3]}) = 2554$.

$$\frac{H^6(X^{[3]};\mathbb{Z})}{H^4(X^{[3]};\mathbb{Z}) \cup H^2(X^{[3]};\mathbb{Z})} = \frac{\mathbb{Z}}{(3^{12})}$$

Die 12 Klassen, wo nur die Dreifachen getroffen werden, sind: $\mathfrak{m}_{1^3,\alpha_i} | 0 \rangle \in H^6(X^{[3]}; \mathbb{Z})$, wobei $i \in \{1,2,3,4,5,6,8,9,11,16,17,19\}$ und $\mathfrak{m}_{1^3,\alpha_i} = \frac{1}{6}\mathfrak{a}_{1^3}(\alpha_i) - \frac{1}{2}\mathfrak{a}_{2,1}(\alpha_i) + \frac{1}{3}(\alpha_i)$. Insbesondere kann $\frac{1}{6}\mathfrak{a}_{1^3}(\alpha_i) | 0 \rangle$ nicht getroffen werden.

 $H^{6}(X^{[3]}) = \operatorname{im}_{\cup}(\operatorname{Sym}^{3}H^{2}(X^{[3]})) \oplus \frac{\mathbb{Z}}{2^{2} \cdot 4^{21}} \oplus \mathbb{Z}^{2024} \oplus \mathbb{Z}^{254}$

Primfaktoren zählen Sei $p \ge 3$ eine Primzahl. Bezeichne o(n) die Anzahl von p-Faktoren in n!. Dann ist $o(n) \le \frac{n}{p-1}$ linear beschränkt und es gibt keinen kleineren Faktor als $\frac{1}{p-1}$, der es auch tut.

p-adischer Arcustangens Der Arcustangens, definiert über die übliche Potenzreihe, konvergiert im p-adischen nur für Argumente vom Betrag kleiner 1. Mit der Formel

$$2\arctan x = \arctan\left(\frac{2x}{1-x^2}\right)$$

läßt er sich jedoch für Primzahlen $p \in \{2\} \cup \{2^n-1\}$ auf ganz $\mathbb{Q}_p \setminus \{\pm 1\}$ fortsetzen. Dort ist er nicht mehr injektiv, es gilt z. B. in \mathbb{Q}_2 : $\arctan (8n \pm 1) = \arctan \left(\pm \frac{4n}{4n \pm 1}\right)$. Die Machinsche Formel für $\frac{\pi}{4}$ entartet zu: $4\arctan \frac{1}{5} -\arctan \frac{1}{239} = 0$. Nachtrag: Man hat allgemein die Formel: $\arctan(x) = \Im \log(1+ix)$ und daher:

$$\arctan(x) = \frac{1}{m} \Im \log((1+ix)^m) = \frac{1}{m} \Im \log \left(1 + i \frac{\sum_{k} (-1)^k \binom{m}{2k+1} x^{2k+1}}{\sum_{k} (-1)^k \binom{m}{2k} x^{2k}} \right)$$

bis auf Addition von π -Vielfachen. So lassen sich für p=2 oder p=4n-1 alle Argumente in etwas transformieren, wo die Potenzreihe konvergiert, zum Beispiel, in dem man m:=p+1 nimmt. Für p=4n+1 und m:=p-1 geht es auch fast überall gut, mit Ausnahme von $\pm i \in \mathbb{Q}_p$. Da kann man aber auch gleich $\arctan(x):=\frac{1}{2i}\log\left(\frac{x-i}{x+i}\right)$ setzen, so daß die beiden Definitionslücken offensichtlich werden.

Monotonie und Stetigkeit Seien $f,g:\mathbb{R}\to\mathbb{R}$ monotone Funktionen, so daß $g\circ f=\mathrm{id}$. Dann ist g stetig. Es reicht für die Stetigkeit von g sogar: g ist monoton und surjektiv.

Beweis. Seien $a, b \in \mathbb{R}$ beliebig. Wegen Monotonie von g ist $g^{-1}([a, b])$ ein Intervall. Setze $I := \inf(g^{-1}([a, b]))$. Falls $I > -\infty$ und g(I) < a wäre, so wäre g nicht surjektiv. Also $g(I) = a \in [a, b]$. Also ist $g^{-1}([a, b])$ abgeschlossen. Also ist g stetig.