Parametric Equations

Sketch the curve for each pair of parametric equations.

1)
$$x = t$$
, $y = \frac{t^2}{4}$

2)
$$x = -2t + 2$$
, $y = \frac{4t^2}{5} - 2$, $-2 \le t \le 3$

3)
$$x = 5\sin t$$
, $y = 4\cos t$

4)
$$x = 2\sec t$$
, $y = 4\tan t$

Write each pair of parametric equations in rectangular form.

5)
$$x = -\frac{t^2}{3}$$
, $y = t$

6)
$$x = t$$
, $y = \frac{t^2}{6} + \frac{2t}{3} - \frac{1}{3}$

7)
$$x = -2t - 3$$
, $y = 2t^2 + 2t - \frac{5}{2}$

8)
$$x = 2\sin t, \ y = 4\cos t$$

9)
$$x = \sec t$$
, $y = 4\tan t$

10)
$$x = 4\cos t - 1$$
, $y = 3\sin t + 1$

Use the parameter to write each rectangular equation as a pair of parametric equations.

11)
$$x = \frac{y^2}{6}$$
, $t = y$

12)
$$y = -\frac{x^2}{4} + x + 1$$
, $t = -\frac{x}{3} + \frac{1}{3}$

Critical thinking questions:

- 13) Write a set of parametric equations that represent $y = x^2 4x$. Then write a second set of parametric equations that represent the same function, but with a slower speed
- 14) Write a set of parametric equations that represent $y = x^2 1$. Then write a second set of parametric equations that represent the same function, but with a faster speed and an opposite orientation.

Parametric Equations

Sketch the curve for each pair of parametric equations.

1)
$$x = t$$
, $y = \frac{t^2}{4}$

2)
$$x = -2t + 2$$
, $y = \frac{4t^2}{5} - 2$, $-2 \le t \le 3$

3)
$$x = 5\sin t$$
, $y = 4\cos t$

4)
$$x = 2\sec t$$
, $y = 4\tan t$

Write each pair of parametric equations in rectangular form.

5)
$$x = -\frac{t^2}{3}$$
, $y = t$
 $x = -\frac{y^2}{3}$

6)
$$x = t$$
, $y = \frac{t^2}{6} + \frac{2t}{3} - \frac{1}{3}$
$$y = \frac{x^2}{6} + \frac{2x}{3} - \frac{1}{3}$$

7)
$$x = -2t - 3$$
, $y = 2t^2 + 2t - \frac{5}{2}$
$$y = \frac{x^2}{2} + 2x - 1$$

8)
$$x = 2\sin t$$
, $y = 4\cos t$
$$\frac{x^2}{4} + \frac{y^2}{16} = 1$$

9)
$$x = \sec t$$
, $y = 4\tan t$
$$x^2 - \frac{y^2}{16} = 1$$

10)
$$x = 4\cos t - 1$$
, $y = 3\sin t + 1$

$$\frac{(x+1)^2}{16} + \frac{(y-1)^2}{9} = 1$$

Use the parameter to write each rectangular equation as a pair of parametric equations.

11)
$$x = \frac{y^2}{6}$$
, $t = y$
 $x = \frac{t^2}{6}$, $y = t$

12)
$$y = -\frac{x^2}{4} + x + 1$$
, $t = -\frac{x}{3} + \frac{1}{3}$
 $x = -3t + 1$, $y = -\frac{9t^2}{4} - \frac{3t}{2} + \frac{7}{4}$

Critical thinking questions:

13) Write a set of parametric equations that represent $y = x^2 - 4x$. Then write a second set of parametric equations that represent the same function, but with a slower speed

Many answers. Ex:
$$y = t^2 - 4t$$
, $x = t$ and $y = \frac{t^2}{4} - 2t$, $x = \frac{t}{2}$

14) Write a set of parametric equations that represent $y = x^2 - 1$. Then write a second set of parametric equations that represent the same function, but with a faster speed and an opposite orientation.

Many answers. Ex: $y = t^2 - 1$, x = t and $y = 4t^2 - 1$, x = -2t

Create your own worksheets like this one with Infinite Precalculus. Free trial available at KutaSoftware.com

-2-