CS 4780/6780: Fundamentals of Data Science

Spring 2019

Topic 7: K-Means Clustering

Instructor: Daniel L. Pimentel-Alarcón

© Copyright 2019

GO GREEN. AVOID PRINTING, OR PRINT DOUBLE-SIDED.

7.1 Introduction

Recall that classification can be summarized as assigning a label (class) $y \in \{1, 2, ..., C\} =: [C]$ to a data point $\mathbf{x} \in \mathbb{R}^D$ based on a collection of training data points $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N \in \mathbb{R}^D$ whose corresponding classes $y_1, y_2, ..., y_N \in [C]$ are already known. To this end we can use nearest neighbors and other *supervised* learning algorithms.

However, in data science the labels $\{y_i\}_{i=1}^N$ of the training data points $\{\mathbf{x}_i\}_{i=1}^N$ are often unavailable:

- Given a collection of vectorized images $\{\mathbf{x}_i\}_{i=1}^N$, we want to determine which correspond to the same individuals (but we don't know their names).
- Given a collection of vectors $\{\mathbf{x}_i\}_{i=1}^N$ containing information about people's movies ratings (e.g., Netflix or Amazon), we want to determine which people have similar preferences.
- Given a collection of vectors $\{\mathbf{x}_i\}_{i=1}^N$ containing genomic sequences from different organisms in a human gut microbiome sample, determine which sequences correspond to the same species.

Unsupervised learning refers to the tasks when labels $\{y_i\}_{i=1}^{N}$ are unavailable. Clustering is one of such tasks.

7.2 Clustering

The task of clustering can be summarized as splitting a collection of data points into groups such that the points in each group are *similar*. More precisely, given a collection of data points $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathbb{R}^D$, we want to identify a partition $\{C_1, C_2, \dots, C_K\}$ of [N] (called clusters) such that if $i, j \in C_k$, then \mathbf{x}_i and \mathbf{x}_j are *close* to each other (recall that there are several ways to define how *close* two points are, e.g., $\|\mathbf{x}_i - \mathbf{x}_j\|_2$, $\|\mathbf{x}_i - \mathbf{x}_j\|_1$, or $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$).

Recall that norms satisfy the so-called triangle inequality: $\|\mathbf{x}\| + \|\mathbf{y}\| \ge \|\mathbf{x} + \mathbf{y}\|$, which implies that if \mathbf{x} is close to \mathbf{y} , and \mathbf{y} is close to \mathbf{z} , then \mathbf{x} is also close to \mathbf{z} . Using this insight, we can rephrase/adapt our clustering goal in terms of *centers* as follows: given a collection of data points $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathbb{R}^D$, we want to identify *centers* $\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_K \in \mathbb{R}^D$ that minimize the within-cluster distances:

$$\sum_{k=1}^K \sum_{i \in C_k} \|\boldsymbol{\mu}_k - \mathbf{x}_i\|,$$

Figure 7.1: Initial and final step of Lloyd's algorithm.

where $i \in C_k$ if $\|\boldsymbol{\mu}_k - \mathbf{x}_i\| \le \|\boldsymbol{\mu}_\ell - \mathbf{x}\|$ for every $\ell \in [K]$. Notice that this is a kind of chicken and egg problem: you need to know the clusters $\{C_k\}$ to find the centers $\{\boldsymbol{\mu}_k\}$, and you need to know the centers in order to determine the clusters. This observation is the main insight behind Lloyd's algorithm.

7.3 Lloyd's Algorithm

Lloyd's algorithm, aka the K-means clustering algorithm, is perhaps the simplest unsupervised clustering method, which uses an *alternating* strategy that is very common in machine learning. The main idea is to (i) *pretend* that we know the centers and determine the clusters, (ii) *pretend* that we know the clusters and compute the centers, and then alternate between steps (i) and (ii) until convergence. More precisely, we start with some initial estimates $\hat{\mu}_1, \hat{\mu}_2, \ldots, \hat{\mu}_K \in \mathbb{R}^D$, and then

(i) Assign each datapoint to its closest center to produce a clustering:

$$\hat{C}_k \ = \ \Big\{ i \in [N] \ : \ \|\hat{\boldsymbol{\mu}}_k - \mathbf{x}_i\| \le \|\hat{\boldsymbol{\mu}}_\ell - \mathbf{x}\| \ \forall \ \ell \in [K] \Big\}.$$

(ii) Compute the center of each cluster:

$$\hat{\boldsymbol{\mu}}_{k} = \frac{1}{|\hat{C}_{k}|} \sum_{i \in \hat{C}_{k}} \mathbf{x}_{i}.$$

Finally, we alternate between steps (i) and (ii) until convergence. See Figure 7.1 to build some intuition.

7.4 Initialization

As with most alternating algorithms, Lloyd's algorithm depends heavily on initialization, that is, the choice of initial centers $\{\hat{\mu}_k\}_{k=1}^K$. There are several popular options:

- Random samples. This option simply selects K data points randomly, that is, $\hat{\mu}_k = x_i$ for some randomly chosen i. This tends to spread out initial centers.
- Random partition. This option first partitions data randomly into K clusters, and then computes the initial centers as the mean of each cluster. This tends to place all initial centers close to the center of the entire dataset.

• K-means++. This option aims to spread initial centers according to the data distribution. To this end, K-means++ selects one random data point \mathbf{x}_i as the first center $\hat{\boldsymbol{\mu}}_1$, and then for every $2 \le k \le K$, it chooses the k^{th} center from the remaining data with probability proportional to its closest existing center. That is, if \mathbf{x}_j is none of the first k-1 centers, then \mathbf{x}_j is chosen as the k^{th} center with probability proportional to

$$\min_{\ell \in [k-1]} \| \boldsymbol{\hat{\mu}}_{\ell} - \mathbf{x}_j \|^2.$$

With this initialization, Lloyd's algorithm is guaranteed to find a solution that is close (within a log K factor) to the optimal solution. This is remarkable, because the K-means problem is non-convex, NP-hard, so it is not evident that *any* algorithm should work.