

Second Project

Banking Customer Churn Prediction

Group A2_33

Alberto Serra João Alves Eduardo Sousa

Problem Specification Review

Predicting Customer Churn with Supervised Learning

The Issue and main goal

Issue - Customer churn impacts revenue and growth in banking. **Goal -** Identify high-risk customers using predictive modeling.

Key Attributes

Demographics - Age, Geography, Gender **Financials -** Balance, CreditScore, NumOfProducts **Engagement -** HasCrCard, IsActiveMember, Tenure **Outcome -** Churn status (Exited)

The Dataset*

10,000 customers 14 attributes Churn outcome 20.4% churn rate

Model Training

Applied various classification algorithms

(e.g., SVM, Logistic Regression, Random Forest)
Evaluated models using cross-validation (F1 score, accuracy)
Selected CatBoost as the best model based on performance

Pre-processing and cleaning

Removed identifiers
Encoded categories
Normalized data
Filtered out salary values
Checked for missing values
Addressed outliers

Related Work and References

Course Slides

Theoretical **class slides** about machine learning topics

Online Documentation and Tutorials

Python Machine Learning libraries documentation (Scikit-Learn, TensorFlow, PyTorch). Programming tutorials and code snippets from GeeksforGeeks and Stack Overflow.

Al Tools in Practice

Coding strategies improved by AI technologies like **ChatGPT**, **Gemini** and **GitHub Copilot**;

Research and Case Studies

Analysis of academic papers on churn prediction models from platforms like **Google Scholar** and **ResearchGate**.

Open Source Contributions

Machine learning communities on **Reddit** and **GitHub** for code examples, discussions and feedback.

Tools and Algorithms for Churn Prediction

- Data Preparation and Visualization
 - Pandas, NumPy
 - o Matplotlib, Seaborn
- Machine Learning Models
 - Baseline: Logistic Regression
 - o Tree-Based: Decision Tree, Random Forest
 - Ensemble: Gradient Boosting, AdaBoost, Extra Trees, CatBoost. XGBoost
 - Support Vectors: SVM
 - Neural Networks: MLPClassifier
 - Probabilistic: Naive Bayes, Linear and Quadratic Discriminant Analysis
- Model Evaluation and Feature Processing
 - o Accuracy, Precision, Recall, F1 Score, ROC Curves
 - Label Encoding, Standard Scaling
- Comparative Analysis
 - Cross-validation, Boxplots for Algorithm Comparison
 - Boxplots for Algorithm Comparison: Visualized F1
 Score and Accuracy for different models.

Data Preprocessing and EDA

Data Cleaning

Dropped irrelevant columns	Removed RowNumber, CustomerId, Surname
Filtered salary data	Removed rows with EstimatedSalary below 1000
Identified outliers	Detected and removed EstimatedSalary outliers between 1000 and 5000
Saved cleaned data	Exported to cleaned_churn_data.csv

Exploratory Data Analysis (EDA)

Initial exploration	Displayed first few rows and basic statistics
Missing values check	Ensured no missing values
Class distribution visualization	Created pie chart for Exited (churn vs. non-churn)
Pairplot analysis	Visualized relationships between features.
Categorical feature analysis	Used count plots for Geography, Gender, HasCrCard, IsActiveMember, NumOfProducts
Numerical feature analysis	Utilized box plots for CreditScore, Age, Balance, EstimatedSalary, Tenure

Data Analysis – Correlation and Insights

Correlation Analysis

Heatmap

- Visualized correlation matrix to identify significant correlations
- Key Correlations
 - Age and Churn: Older customers more likely to churn.
 - Balance and Churn: Higher balances show varied churn rates.
 - Number of Products and Churn: Fewer products correlate with higher churn.

Data Splitting

- Data split into training and testing sets
 - Training set: 80% of data.
 - Testing set: 20% of data.
 - Ensures the model is trained on one part and evaluated on another.

Insights from Data Analysis

- Credit Score: Not a strong predictor of churn; lower median for exited customers.
- Age: Older customers are more likely to churn; higher median age for exited customers.
- Balance: Higher balances correlate with increased churn; higher median balance for exited customers.
- Number of Products: Fewer products lead to higher churn.
- **Tenure:** No clear pattern with churn; no significant difference between exited and retained customers.
- Estimated Salary: No significant correlation between exited and retained customers.

Model Selection and Evaluation

Model Selection

Classification Algorithms Considered:

Logistic Regression, Support Vector Machine (SVM), Decision Tree, Random Forest, Extra Trees, Quadratic Discriminant Analysis, CatBoost, Linear Discriminant Analysis, MLP, KNN, Naive Bayes, AdaBoost, Bagging, Gradient Boosting, XGBoost

Cross-Validation

K-Fold Cross-Validation: Used 90 splits for robustness.

F1 Score Accuracy

Data Preparation

Feature Types:

Categorical and Continuous - CreditScore, Age, Tenure, Balance, NumOfProducts, EstimatedSalary, Geography, Gender, IsActiveMember, HasCrCard.

____ Data Splitting:

Training (80%) and Testing (20%) subsets.

Encoding:

Used LabelEncoder for categorical variables.

Normalization:

Applied StandardScaler to numerical features.

Model Performance – F1 Score, Accuracy

Evaluation Metrics

F1 Score

- Measures both precision and recall.
- Useful for evaluating **imbalanced datasets**.
- Best performing models with highest median
 F1 scores CatBoost, Random Forest, Gradient
 Boosting
- **CatBoost** best performance with a high median F1 score, indicating its robustness.

Accuracy

- Ratio of correctly predicted instances to total instances
- Effective metric for balanced datasets
- Best performing models with highest median accuracy scores - SVM, Random Forest, Gradient Boosting, CatBoost
- Consistently high accuracy SVM, CatBoost

Best Model and Results

Best Model Selection	CatBoost based on overall performance metrics (F1 score and accuracy) and execution time.
Training and Testing Performance	Training accuracy: 90.47%, Testing accuracy: 86.67%
Confusion matrix for CatBoost	Precision, recall, and F1 scores for both retained and exited classe
Precision, Recall, F1 Score	Retained: Precision = 0.89, Recall = 0.95, F1 Score = 0.92 Exited: Precision = 0.70, Recall = 0.50, F1 Score = 0.59

Results Conclusion

- CatBoost showed the highest performance.
- Identified retained customers with high precision and recall.
- Despite lower accuracy for exited customers, its robustness makes it the best choice.

Conclusion and Insights

Key Predictors, Model Performance, and Practical Applications in Banking

- Significant Predictors:
 - **Higher churn** in Germany.
 - **Higher churn** among females.
 - Lower churn among active members.
 - Higher churn with fewer products.
- Top Performing Models
 - CatBoost: Best overall with high precision and recall.
 - Random Forest & Gradient Boosting: Consistent high accuracy and robustness.
- Worst Performing Models:
 - Naive Bayes: Lower accuracy and higher error rates.
 - KNN: Poor performance in handling high-dimensional data.
 - **Decision Tree:** High variance and overfitting issues.

Top Metrics

- Training Accuracy: 90.47%
- Testing Accuracy: 86.67%
- High precision and recall for retained customers.
- **F1 Score:** 0.92 (retained customers), 0.59 (exited customers)
- Precision: 0.89 and Recall: 0.95 (for retained customers)
- Real-Life Applicability:
 - o Integrate into banking CRM systems to **predict** and reduce churn.
 - Implement personalized retention strategies (e.g financial advice, targeted promotions)
 - Enhances customer satisfaction and loyalty.
 - Demonstrates potential of predictive analytics in the banking industry.