Nome: Pedro Henrique Silva Domingues

R.A.: 22.218.019-2

Resultado da simulação:

rograma	Tamanho1	Tamanho2	Tempo de Processamento	Tempo Acumulado	Indice de ocupacao 1	Indice de ocupacao 2	R1	R2	R3	Z	Theta	
	+ 86.63		 22.54	+ 22.54	67.68	+ 	+ 0.57	+ 0.74	+ 0.59	+ -0.08	++ 43.31	
		106.99	183.86	206.40		167.18	0.96	0.34	0.03	-0.15	53.50	
	73.36		109.55	315.94	57.31		0.55	0.69	0.05	-0.42	36.68	
		98.45	3.35	319.30		153.83	0.70	0.37	0.93	-0.58	49.23	
	90.59		12.36	331.66	70.77		0.71	0.75	0.76	0.01	45.29	
		98.88	9.74	341.40		154.50	0.00	0.28	0.82	-0.56	49.44	
	49.42		22.82	364.22	38.61		0.59	0.48	0.40	-1.01	24.71	
		111.18	64.50	428.72		173.71	0.92	0.23	0.31	0.06	55.59	
	62.45		2.64	431.36	48.79		0.44	0.66	0.92	-0.69	31.22	
10	! !	117.39	17.09	448.44		183.42	0.10	0.22	0.75	0.37	58.70	
Media	72.49	106.58	44.84	 	56.63	166.53	i			,		
svio Padrao	17.04	8.12	59.10		13.31	12.68	i					
Variancia	290.24	65.90	3493.30		177.15	160.88	İ					

Conclusões:

1. Analisar o comportamento do tamanho dos programas.

R: O tamanho dos programas manteve-se dentro da capacidade para a memória 1 em mais de 99.7% dos casos, visto que a capacidade de 128Kb é maior do que a média mais três vezes o desvio padrão (72.49+3*17.04 = 125.41). Por outro lado, a capacidade da memória 2 (64Kb) está abaixo da média em mais de três vezes o desvio padrão (106.58-3*8.12 = 82.12), o que pode causar lentidão devido a necessidade de criação de memória virtual.

2. Analisar o comportamento do tempo de processamento dos programas.

R: O tempo de processamento apresentou um valor muito alto de variância, indicando alta dispersão, portanto os tempos podem variar muito dependendo da memória onde ele rodou.

3. Analisar o comportamento do índice de ocupação dos programas.

R: O índice de ocupação da memória 1 obteve média de 56.63% com desvio padrão de 13.31%, indicando que em mais de 99.7% dos casos há espaço de sobrando para rodar o programa na memória 1(56.63+3*13.31=96.56%<100%).

O índice de ocupação da memória 2 obteve média de 166.53% e desvio padrão de 12.68%, o que demonstra que há a necessidade de criação de memória virtual (portanto lentidão adicional para rodar códigos) em mais de 99.7% dos casos, visto que 166.53-3*12.68 = 128.49% > 100%.