

TABLE 5

Ex.	R	from	Dye II			Dye III							
			No.	n	Ex. 49	X	R ²	R ³ =R ⁴	R ⁵	X ¹	X ²	R ⁷ =R ⁸	R ⁶
49	1	H	from Ex. 49			Cl	CH ₃	CH ₂ CH=CH ₂	CH ₃	Cl	NO ₂	C ₂ H ₅	CH ₃
50	1	H	from Ex. 49			Cl	C ₂ H ₅	C ₂ H ₅		C ₂ H ₅	Cl	NO ₂	C ₂ H ₅
51	1	H	from Ex. 49			Br	CH ₃	C ₂ H ₅		CH ₃	Br	NO ₂	C ₂ H ₅
52	1	H	from Ex. 49			Cl	CH ₃	C ₂ H ₅		CH ₃	Br	NO ₂	C ₂ H ₅
53	1	H	from Ex. 49			Br	CH ₃	CH ₂ CH=CH ₂	CH ₃	Br	NO ₂	C ₂ H ₅	CH ₃

*Ring A not further substituted

What is claimed is:

1. A mixture comprising at least one compound of the formula (I)

where

R¹ is hydrogen, C₁-C₄-alkyl, halogen, or C₁-C₄-alkoxy,

n is 1 or 2, and the

ring A is optionally substituted,

and at least one compound of the formula (II)

20 where

X is halogen, or CN,

R² and R⁵ are independently hydrogen or C₁-C₄-alkyl,
and

25 R³ and R⁴ are independently hydrogen, optionally sub-
stituted C₁-C₄-alkyl or C₂-C₄-alkenyl.

2. The mixture of claim 1, comprising at least one
compound of the formula (I) where the ring A does not bear
any further substituents.

3. The mixture of claim 1, comprising at least one
compound of the formula (I) where R¹ is hydrogen or
C₁-C₄-alkyl.

35 4. The mixture of claim 1, comprising at least one
compound of the formula (I), where n is 1, R¹ is hydrogen
or methyl and the ring A is not further substituted.

5. The mixture of claim 1, comprising compounds of the
formula (II) where X is halogen.

40 6. The mixture of claim 1, comprising compounds of the
formula (II) where

45 R³ and R⁴ are independently hydrogen, C₂-C₄-alkenyl,
unsubstituted C₁-C₄-alkyl or ROCO—, NC— and/or
ROOC-substituted C₁-C₄-alkyl, R being hydrogen or
C₁-C₄-alkyl.

7. The mixture of claim 1, comprising a compound of the
formula (III), (IV) and/or (V)

und/or

15

-continued

16

(V)

where

 X^1 is halogen or CN, X^2 is halogen, hydrogen, NO_2 or CN, R^6 is $C_1\text{--}C_4$ -alkyl,

R^7 and R^8 are independently hydrogen, unsubstituted or HO—, NC—, ROCO—, $H_5C_6\text{OCO}$ —, ($C_1\text{--}C_4$ -alkyl) OOCO—, ROOC—, $H_5C_6\text{O}$ —, H_5C_6 — and/or $C_1\text{--}C_4$ -alkoxy-substituted $C_1\text{--}C_4$ -alkyl and/or $C_2\text{--}C_4$ -alkenyl, 20 R being hydrogen or $C_1\text{--}C_4$ -alkyl,

 Y^1 and Y^2 are independently hydrogen or halogen,

R^9 and R^{10} are independently hydrogen, unsubstituted or HO—, NC—, ROCO—, $H_5C_6\text{OCO}$ — and/or $C_1\text{--}C_4$ -alkoxy-substituted $C_1\text{--}C_4$ -alkyl, R being as defined above, or $C_2\text{--}C_4$ -alkenyl, 25

 R^{11} is $C_1\text{--}C_4$ -alkyl, and R^{12} is hydrogen, $C_1\text{--}C_4$ -alkyl or $C_1\text{--}C_4$ -alkoxy.

8. The mixtures of claim 1, comprising 1 to 99% by weight, especially 1 to 80% by weight, of at least one compound of the formula (I) and 1 to 99% by weight,

especially 20 to 99% by weight, of at least one compound of the formula (II), based on total amount of dye.

9. A dye preparation comprising

10 to 60% by weight of dye mixture according to claim 1,

and

40 to 90% by weight of dispersant.

10. A process for producing the dye preparation of claim 8, in which the individual dyes of the dye mixture of claim 1 are ground in water in the presence of a dispersant, then mixed and optionally dried or in which the dye mixture of claim 1 is ground in water in the presence of a dispersant and optionally dried.

11. A method for dyeing and printing hydrophobic synthetic materials or for mass coloration of hydrophobic synthetic materials in which the dye mixture of claim 1 is used.

12. The hydrophobic synthetic material dyed or printed with the dye mixture of claim 1.

* * * * *