Intégrales dépendant d'un paramètre

Convergence dominée

Exercice 1 [00921] [Correction]

Calculer les limites des suites dont les termes généraux sont les suivants :

a)
$$u_n = \int_0^{\pi/4} \tan^n x \, dx$$
 b) $v_n = \int_0^{+\infty} \frac{dx}{x^n + e^x}$

Exercice 2 [03800] [Correction]

Etudier la limite éventuelle, quand n tend vers $+\infty$, de la suite

$$I_n = \int_0^{+\infty} \frac{x^n}{1 + x^{n+2}} \, \mathrm{d}x$$

Exercice 3 [00746] [Correction]

Calculer les limites des suites dont les termes généraux sont les suivants :

a)
$$u_n = \int_0^{+\infty} \frac{\sin^n x}{x^2} dx$$
 b) $u_n = \int_0^{+\infty} \frac{x^n dx}{x^{n+2} + 1}$ c) $u_n = \int_0^{+\infty} \frac{x^n dx}{x^{2n} + 1}$

Exercice 4 [01771] [Correction]

Vérifier que la suite de terme général

$$u_n = \int_0^{+\infty} \frac{\sin(nt)}{nt + t^2} \, \mathrm{d}t$$

est bien définie et étudier sa convergence.

Exercice 5 [00926] [Correction]

Calculer

$$\lim_{n\to\infty} \int_0^{+\infty} e^{-t} \sin^n(t) dt$$

Exercice 6 [00927] [Correction]

Etablir que

$$\int_{-\infty}^{+\infty} \left(1 + \frac{t^2}{n} \right)^{-n} dt \xrightarrow[n \to +\infty]{} \int_{-\infty}^{+\infty} e^{-t^2} dt$$

Exercice 7 [02568] [Correction]

Montrer que

$$u_n = (-1)^n \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$$

est définie pour $n \ge 1$.

Calculer

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$$

En déduire la nature de la série de terme général u_n .

Exercice 8 [03294] [Correction]

Montrer

$$\lim_{n \to +\infty} n \int_{1}^{+\infty} e^{-x^{n}} dx = \int_{1}^{+\infty} \frac{e^{-x}}{x} dx$$

Exercice 9 [03807] [Correction]

Montrer que la fonction f_n donnée par

$$f_n(x) = \frac{\ln(1+x/n)}{x(1+x^2)}$$

est intégrable sur \mathbb{R}_{+}^{\star} .

Montrer que la suite de terme général $u_n = n \int_0^{+\infty} f_n(x) dx$ converge vers une limite à préciser.

Exercice 10 [02567] [Correction]

Soit $f:[0,+\infty[\to\mathbb{C} \text{ continue.}]$

On suppose que la fonction f converge en $+\infty$ vers une limite finie ℓ . Déterminer la limite quand $n \to +\infty$ de

$$\mu_n = \frac{1}{n} \int_0^n f(t) \, \mathrm{d}t$$

Exercice 11 [02435] [Correction]

Etudier la limite de

$$\int_0^1 f(t^n) \, \mathrm{d}t$$

où $f:[0,1]\to\mathbb{R}$ est continue.

Exercice 12 [00150] [Correction]

Soit $f \in \mathcal{C}^0(\mathbb{R}^+, \mathbb{R}^+)$ bornée. On pose, pour $n \in \mathbb{N}$,

$$I_n = \int_0^{+\infty} nf(t)e^{-nt} dt$$

Déterminer la limite de I_n quand $n \to +\infty$.

Exercice 13 [00924] [Correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et bornée.

Déterminer la limite quand $n \to +\infty$ de

$$\int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} \, \mathrm{d}x$$

Exercice 14 [03650] [Correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ de classe \mathcal{C}^1 intégrable ainsi que sa dérivée.

a) Déterminer pour x > 0

$$\lim_{n \to +\infty} \int_0^{+\infty} n \cos t (\sin t)^n f(xt) dt$$

b) Préciser le mode de convergence.

Exercice 15 [04079] [Correction]

Étudier

$$\lim_{n\to +\infty} \int_0^{\sqrt{n}} \left(1-\frac{t^2}{n}\right)^n \, \mathrm{d}t$$

Exercice 16 [00922] [Correction]

Etudier

$$\lim_{n \to +\infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx$$

Exercice 17 [00923] [Correction]

Déterminer un équivalent de

$$\int_0^n \sqrt{1 + \left(1 - \frac{x}{n}\right)^n} \, \mathrm{d}x$$

Exercice 18 [02982] [Correction]

Déterminer

$$\lim_{n \to +\infty} \int_0^n \left(\cos \frac{x}{n}\right)^{n^2} \, \mathrm{d}x$$

Exercice 19 [00925] [Correction]

Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ continue et intégrable.

Déterminer la limite quand $n \to +\infty$ de

$$n\int_0^1 \frac{f(nt)}{1+t} \, \mathrm{d}t$$

Exercice 20 [02862] [Correction]

Calculer

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{n!}{\prod_{k=1}^n (k+x)} \, \mathrm{d}x$$

Exercice 21 [03159] [Correction]

Soit F une application continue décroissante de \mathbb{R} dans \mathbb{R} , tendant vers 1 en $-\infty$ et vers 0 en $+\infty$. Soient deux réels h et δ vérifiant $0 < h < \delta$.

a) Déterminer la limite éventuelle de

$$I_n = \int_0^1 F\left(\sqrt{n}(\delta t - h)\right) \, \mathrm{d}t$$

b) On pose

$$S_n = \sum_{k=0}^{n-1} F\left(\sqrt{n}\left(\delta \frac{k+1}{n} - h\right)\right)$$

Déterminer un équivalent de S_n lorsque n tend vers $+\infty$.

Exercice 22 [03362] [Correction]

Pour $n \in \mathbb{N}$ et $x \in]0,1[$, on pose

$$f_n(x) = \frac{x^{2n+1} \ln x}{x^2 - 1}$$

a) Montrer que f_n est intégrable sur]0,1[. On pose

$$J_n = \int_0^1 f_n(x) \, \mathrm{d}x$$

- b) Montrer que la suite $(J_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.
- c) Montrer que

$$J_n = \frac{1}{4} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Exercice 23 [02392] [Correction]

Soit f une application réelle de classe C^1 sur [a, b] avec 0 < a < 1 < b et $f(1) \neq 0$. Soit (f_n) la suite de fonctions telle que

$$f_n(x) = \frac{f(x)}{1 + x^n}$$

- a) Déterminer la limite simple de (f_n) .
- b) Etablir l'égalité suivante :

$$\lim_{n \to +\infty} \int_a^b f_n(t) \, \mathrm{d}t = \int_a^1 f(t) \, \mathrm{d}t$$

c) Montrer que

$$\int_a^1 t^{n-1} f_n(t) \, \mathrm{d}t \sim \frac{\ln 2}{n} f(1)$$

Exercice 24 [02517] [Correction]

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose

$$f_n(x) = \frac{n}{\sqrt{\pi}} \left(1 - \frac{x^2}{2n^2} \right)^{2n^4}$$

Soit g une fonction continue sur $\mathbb R$ et nulle en de hors d'un segment [a,b]. Montrer que

$$\lim_{n \to +\infty} \int_{\mathbb{D}} f_n(x)g(x) dx = g(0)$$

Exercice 25 [03013] [Correction]

Existence et calcul de

$$\int_0^{+\infty} \frac{\ln t}{\mathrm{e}^t} \, \mathrm{d}t$$

Indice: utiliser une suite de fonctions judicieuse.

Intégration terme à terme

Exercice 26 [00928] [Correction]

Montrer

$$\int_0^{+\infty} \frac{t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

Exercice 27 [03781] [Correction]

Prouver l'égalité

$$\int_0^1 \frac{(\ln x)^2}{1+x^2} \, \mathrm{d}x = 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3}$$

Exercice 28 [00929] [Correction]

Etablir que

$$\int_0^1 \frac{\ln t}{1+t^2} \, \mathrm{d}t = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{(2n+1)^2}$$

Exercice 29 [02864] [Correction]

Existence et calcul de

$$\int_0^1 \frac{\ln t}{1 - t^2} \, \mathrm{d}t$$

Le résultat est à exprimer à l'aide de $\zeta(2)$.

Exercice 30 [00931] [Correction]

a) Etablir

$$\int_0^1 \frac{\ln(1+t)}{t} \, \mathrm{d}t = -\int_0^1 \frac{\ln t}{1+t} \, \mathrm{d}t$$

a) En déduire

$$\int_0^1 \frac{\ln(1+t)}{t} \, \mathrm{d}t = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$$

b) Calculer cette somme sachant

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Exercice 31 [00930] [Correction]

a) Etablir

$$\int_0^1 \frac{\arctan t}{t} \, \mathrm{d}t = -\int_0^1 \frac{\ln t}{1+t^2} \, \mathrm{d}t$$

b) En déduire

$$\int_0^1 \frac{\arctan t}{t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$$

Cette valeur est appelée constante de Catalan, elle vaut approximativement 0,916.

Exercice 32 [00940] [Correction]

Etablir que

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$

Exercice 33 [02615] [Correction]

Pour $n, m \in \mathbb{N}$, on pose

$$I_n(m) = \int_0^1 x^n (\ln x)^m \, \mathrm{d}x$$

- a) Calculer $I_n(n)$.
- b) En déduire

$$\int_0^1 x^{-x} \, \mathrm{d}x = \sum_{n=1}^{+\infty} n^{-n}$$

Exercice 34 [00932] [Correction] Etablir

$$\int_0^1 \frac{\mathrm{d}x}{x^x} = \sum_{n=1}^{+\infty} \frac{1}{n^n}$$

Exercice 35 [02869] [Correction]

Montrer

$$\sum_{n=1}^{+\infty} n^{-n} = \int_0^1 t^{-t} \, \mathrm{d}t$$

Exercice 36 [02570] [Correction]

Soient p et k 2 entiers naturels, non nul. Soit $f_{p,k}: x \mapsto x^p(\ln x)^k$.

a) Montrer que $f_{p,k}$ est intégrable sur]0,1]. Soit

$$K_{p,k} = \int_0^1 x^p (\ln x)^k \, \mathrm{d}x$$

- b) Exprimer $K_{p,k}$ en fonction de $K_{p,k-1}$.
- c) Exprimer $J_n = \int_0^1 (x \ln x)^n dx$ en fonction de n.
- d) On pose $I = \int_0^1 x^x dx$. Montrer

$$I = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^{n+1}}$$

Exercice 37 [00934] [Correction]

Etablir que pour $p \geqslant 2$,

$$\int_0^1 \frac{(\ln x)^p}{1-x} \, \mathrm{d}x = (-1)^p p! \sum_{n=1}^{+\infty} \frac{1}{n^{p+1}}$$

Exercice 38 [00933] [Correction]

Etablir

$$\int_0^1 x^x \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^n}$$

Exercice 39 [03790] [Correction]

Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}^+$, on pose

$$f_n(x) = x^n(1 - \sqrt{x})$$

a) Montrer que

$$\sum_{n=1}^{+\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \int_0^1 \frac{x}{1 + \sqrt{x}} \, \mathrm{d}x$$

b) En déduire la valeur de

$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)(2n+3)}$$

Exercice 40 [03268] [Correction]

Montrer

$$\int_0^{2\pi} e^{2\cos x} dx = \sum_{n=0}^{+\infty} \frac{2\pi}{(n!)^2}$$

Exercice 41 [00943] [Correction]

Calculer, pour $n \in \mathbb{Z}$,

$$I_n = \int_0^{2\pi} \frac{\mathrm{e}^{in\theta}}{2 + \mathrm{e}^{i\theta}} \,\mathrm{d}\theta$$

Exercice 42 [02439] [Correction]

Soient $a \in \mathbb{C}$, $|a| \neq 1$ et $n \in \mathbb{Z}$. Calculer

$$\int_0^{2\pi} \frac{\mathrm{e}^{int}}{\mathrm{e}^{it} - a} \,\mathrm{d}t$$

Exercice 43 [03214] [Correction]

Montrer que

$$\forall a, b > 0, \int_0^{+\infty} \frac{t e^{-at}}{1 - e^{-bt}} dt = \sum_{n=0}^{+\infty} \frac{1}{(a + bn)^2}$$

Exercice 44 [00935] [Correction]

Déterminer la limite quand $n \to +\infty$ de

$$\frac{1}{n} \int_0^{+\infty} \frac{\mathrm{e}^{-x/n}}{1 + \cos^2 x} \,\mathrm{d}x$$

Exercice 45 [00939] [Correction]

Soient $\alpha > 0$, $n \in \mathbb{N}$. On pose

$$u_n(\alpha) = \int_0^{\pi/2} (\sin t)^{\alpha} (\cos t)^n dt$$

- a) Nature de la série de terme général $u_n(1)$.
- b) Plus généralement, nature de la série de terme général $u_n(\alpha)$.
- c) Calculer $\sum_{n=1}^{\infty} u_n(\alpha)$ pour $\alpha = 2, 3$.

Exercice 46 [02807] [Correction]

a) Pour $(m, n) \in \mathbb{N}^2$, calculer

$$\int_0^1 x^n (1-x)^m \, \mathrm{d}x$$

Pour $p \in \mathbb{Z}$, montrer l'existence de

$$S_p = \sum_{n=1}^{+\infty} \frac{n^p}{\binom{2n}{n}}$$

- b) Calculer S_0 et S_{-1} .
- c) Si $p \in \mathbb{N}$, proposer une méthode de calcul de S_p .

Exercice 47 [02641] [Correction]

- n désigne un entier naturel non nul.
- a) Justifier que l'intégrale

$$\int_0^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x$$

est définie.

b) Soit $a \ge 0$. Calculer

$$\int_0^a \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x$$

En déduire la valeur de

$$\int_0^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x$$

puis de

$$\sum_{n=1}^{+\infty} \int_0^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x$$

c) Soit $a \ge 0$. Montrer que la série

$$\sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2}$$

converge uniformément sur [0, a], puis que

$$\int_0^a \sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}$$

d) En exploitant une comparaison série-intégrale, déterminer

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}$$

e) En déduire que l'intégrale

$$\int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x$$

est convergente et donner sa valeur.

Comparer avec le résultat obtenu en b). Qu'en conclure?

Exercice 48 [02438] [Correction]

a) Démontrer la convergence de la série de terme général

$$a_n = \frac{n!}{n^n}$$

b) Comparer

$$a_n \text{ et } n \int_0^{+\infty} t^n e^{-nt} dt$$

c) En déduire :

$$\sum_{n=1}^{+\infty} a_n = \int_0^{+\infty} \frac{t e^{-t}}{(1 - t e^{-t})^2} dt$$

Exercice 49 [02445] [Correction]

On pose

$$I_n = \int_0^1 \frac{1}{1+t^n} \,\mathrm{d}t$$

pour tout entier n > 0.

- a) Trouver la limite ℓ de (I_n) .
- b) Donner un équivalent de (ℓI_n) .
- c) Justifier

$$\int_0^1 \frac{\ln(1+y)}{y} \, \mathrm{d}y = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(k+1)^2}$$

d) Donner un développement asymptotique à trois termes de (I_n) .

Exercice 50 [02612] [Correction]

a) Déterminer la limite ℓ quand $n \to +\infty$ de

$$I_n = \int_0^1 \frac{1}{1+t^n} \,\mathrm{d}t$$

b) Donner un équivalent de

$$I_n - \ell$$

c) Justifier

$$\int_0^1 \ln(1+t^n) dt = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(nk+1)}$$

d) En déduire un équivalent de

$$\int_0^1 \ln(1+t^n) \, \mathrm{d}t$$

et donner un développement asymptotique à trois termes de I_n .

Exercice 51 [02840] [Correction]

a) Si $(s,\lambda) \in \mathbb{R}^{+\star} \times \mathbb{C}$, quelle est la nature de la série de terme général

$$\frac{\lambda^n}{s(s+1)\dots(s+n)}$$

pour $n \ge 0$? A λ fixé, on note Δ_{λ} l'ensemble des s > 0 tels que la série converge, et on note $F_{\lambda}(s)$ la somme de cette série.

- b) Calculer $\lim_{s \to \sup \Delta_{\lambda}} F_{\lambda}(s)$.
- c) Donner un équivalent de $F_{\lambda}(s)$ quand $s \to \inf \Delta_{\lambda}$.
- d) Si $n \ge 1$, calculer:

$$\int_0^1 (1-y)^{s-1} y^n \, \mathrm{d}y$$

e) En déduire une expression intégrale de $F_{\lambda}(s)$.

Exercice 52 [02866] [Correction]

Soit $(a_n)_{n\geqslant 0}$ une suite bornée. Calculer

$$\lim_{n \to +\infty} \int_0^{+\infty} e^{-2t} \left(\sum_{p=n}^{+\infty} a_p \frac{t^p}{p!} \right) dt$$

Exercice 53 [02870] [Correction]

Si x > 1, on pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$. Montrer

$$\int_{2}^{+\infty} (\zeta(x) - 1) \, \mathrm{d}x = \sum_{n=2}^{+\infty} \frac{1}{n^{2} \ln n}$$

Exercice 54 [00118] [Correction]

Soit, pour $n \in \mathbb{N}$,

$$u_n = \int_0^{\pi/2} \left[\cos \left(\frac{\pi}{2} \sin x \right) \right]^n dx$$

- a) Etudier la convergence de la suite $(u_n)_{n\geq 0}$.
- b) Quelle est la nature de la série de terme général u_n ?

Exercice 55 [03287] [Correction]

Donner la nature de la série de terme général

$$u_n = \int_0^{+\infty} e^{-t} \cos^{2n} t \, \mathrm{d}t$$

Exercice 56 [02583] [Correction]

Soit $n \in \mathbb{N}^*$.

a) Ensemble de définition de

$$I_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^x)^n}$$

- b) Montrer que si x > 1, $\sum I_n(x)$ diverge.
- c) Calculer $I_n(2)$ pour $n \ge 1$.

Exercice 57 [03844] [Correction]

Donner la limite la suite (u_n) de terme général

$$u_n = \int_0^1 \frac{\mathrm{d}t}{(1+t^3)^n}$$

Quelle est la nature de la série $\sum u_n$?

Exercice 58 [01102] [Correction]

a) Donner les limites éventuelles en $+\infty$ des suites de termes généraux

$$U_n = \int_0^1 \frac{\mathrm{d}t}{(1+t^3)^n} \text{ et } V_n = \int_1^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$$

b) Quelle est la nature des séries

$$\sum_{n\geqslant 1} U_n \text{ et } \sum_{n\geqslant 1} V_n ?$$

Exercice 59 [02360] [Correction]

Pour $n \in \mathbb{N}^*$, soit f_n l'application définie par

$$f_n(x) = \begin{cases} \frac{2\operatorname{sh}(x)}{\operatorname{e}^{nx} - 1} & \text{si } x \in]0, +\infty[\\ \alpha & \text{si } x = 0 \end{cases}$$

- a) Pour quelle valeurs de α la fonction f_n est-elle continue? Dans la suite, on prendra cette valeur de α .
- b) Montrer que f_n est bornée.
- c) Montrer que $\int_0^{+\infty} f_n(x) dx$ existe pour $n \ge 2$.
- d) Exprimer $\int_0^{+\infty} f_n(x) dx$ comme la somme d'une série.

Exercice 60 [02609] [Correction]

Pour $n \ge 1$, on pose

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$$

- a) Déterminer la limite de la suite (I_n) .
- b) Etablir que pour tout entier $n \ge 1$,

$$I_{n+1} = \frac{3n-1}{3n}I_n$$

c) Déterminer $\alpha \in \mathbb{R}$ tel qu'il y ait convergence de la suite de terme général

$$u_n = \ln(n^{\alpha} I_n)$$

d) En déduire la convergence de la série

$$\sum_{n\geqslant 1} \frac{1}{n} I_n$$

et exprimer sa somme à l'aide d'une intégrale.

Intégration terme à terme par les sommes partielles

Exercice 61 [00936] [Correction]

Montrer que, pour a > 0

$$\int_0^1 \frac{\mathrm{d}t}{1+t^a} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{na+1}$$

Exercice 62 [00942] [Correction]

Pour tout $\alpha > 0$, établir que

$$\int_0^1 \frac{x^{\alpha - 1}}{1 + x} \, \mathrm{d}x = \sum_{n = 0}^{+\infty} \frac{(-1)^n}{n + \alpha}$$

Exercice 63 [02863] [Correction]

a) Etablir pour a, b > 0 l'égalité

$$\int_0^1 \frac{t^{a-1}}{1+t^b} \, \mathrm{d}t = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb}$$

b) Calculer

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}$$

Exercice 64 [02437] [Correction]

Montrer

$$\int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2 + t^2} dt = \frac{\pi}{2} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$$

Exercice 65 [02867] [Correction]

Soit (a_n) une suite croissante de réels > 0 telle que $a_n \to +\infty$. Justifier

$$\int_0^{+\infty} \sum_{n=0}^{+\infty} (-1)^n e^{-a_n x} dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a_n}$$

Etude de fonctions concrètes

Exercice 66 [00534] [Correction]

a) Justifier que l'intégrale suivante est définie pour tout x>0

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

- b) Justifier la continuité de f sur son domaine de définition.
- c) Calculer f(x) + f(x+1) pour x > 0.
- d) Donner un équivalent de f(x) quand $x \to 0^+$ et la limite de f en $+\infty$.

Exercice 67 [03658] [Correction]

On pose

$$F(x) = \int_0^{+\infty} \frac{e^{-t}}{1 + tx} dt$$

- a) Montrer que F(x) est bien définie pour tout $x \ge 0$.
- b) Montrer que F est de classe \mathcal{C}^{∞} sur $[0, +\infty[$.
- c) Calculer $F^{(n)}(0)$ pour tout $n \in \mathbb{N}$.

Exercice 68 [00538] [Correction]

Soit

$$F: x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$$

Montrer que F est solution sur $\mathbb{R}^{+\star}$ de limite nulle en $+\infty$ de l'équation différentielle

$$y'' + y = \frac{1}{x}$$

Exercice 69 [00537] [Correction]

Soit

$$f: x \mapsto \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$$

- a) Montrer que f est définie et continue sur \mathbb{R}^+ .
- b) Montrer que f est dérivable sur $\mathbb{R}^{+\star}$ et solution de l'équation différentielle

$$y - y' = \frac{\sqrt{\pi}}{2\sqrt{x}}$$

Exercice 70 [00532] [Correction]

Soit

$$g(x) = \int_0^{+\infty} \frac{e^{-tx^2} dt}{1 + t^3}$$

- a) Calculer g(0) en réalisant le changement de variable t = 1/u.
- b) Etudier les variations de g sur son domaine de définition.
- c) Etudier la limite de g en $+\infty$.

Exercice 71 [00531] [Correction]

Soit

$$f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{1 + x^3 + t^3}$$

- a) Montrer que f est définie sur \mathbb{R}^+ .
- b) A l'aide du changement de variable u = 1/t, calculer f(0).
- c) Montrer que f est continue et décroissante.
- d) Déterminer $\lim_{t \to \infty} f$.

Exercice 72 [03313] [Correction]

Soit

$$f: x \mapsto \frac{1}{\pi} \int_0^{\pi} \cos(x \sin \theta) d\theta$$

- a) Montrer que f est définie et de classe \mathcal{C}^2 sur \mathbb{R} .
- b) Déterminer une équation différentielle linéaire d'ordre 2 dont f est solution.
- c) Montrer que f est développable en série entière sur \mathbb{R} .
- d) Exploiter l'équation différentielle précédente pour former ce développement.

Exercice 73 [00533] [Correction]

Soit

$$f: x \mapsto \int_0^{\pi/2} \frac{\cos t}{t+x} \, \mathrm{d}t$$

- a) Montrer que f est définie, continue sur $\mathbb{R}^{+\star}$. Etudier les variations de f.
- b) Déterminer les limites de f en 0^+ et $+\infty$.
- c) Déterminer un équivalent de f en 0^+ et $+\infty$.

Exercice 74 [00536] [Correction]

Soit f la fonction donnée par

$$f(x) = \int_0^{\pi/2} \sin^x(t) \, \mathrm{d}t$$

- a) Montrer que f est définie et positive sur $]-1, +\infty[$.
- b) Montrer que f est de classe C^1 et préciser sa monotonie.
- c) Former une relation entre f(x+2) et f(x) pour tout x > -1.
- d) On pose pour x > 0,

$$\varphi(x) = xf(x)f(x-1)$$

Montrer que

$$\forall x > 0, \varphi(x+1) = \varphi(x)$$

Calculer $\varphi(n)$ pour $n \in \mathbb{N}^*$.

e) Déterminer un équivalent à f en -1^+ .

Exercice 75 [02878] [Correction]

a) Pour quels x de $\mathbb R$ l'intégrale

$$\int_0^{\pi/2} (\sin t)^x \, \mathrm{d}t$$

existe-t-elle? Dans ce cas, soit f(x) sa valeur.

- b) Montrer que f est de classe C^1 sur son intervalle de définition.
- c) Que dire de la fonction

$$x \mapsto (x+1)f(x)f(x+1)$$
?

Exercice 76 [02880] [Correction]

Montrer que, pour tout x réel positif,

$$\int_0^{+\infty} \frac{\arctan(x/t)}{1+t^2} dt = \int_0^x \frac{\ln t}{t^2 - 1} dt$$

Exercice 77 [02875] [Correction]

Soit $\Omega = \{z \in \mathbb{C}/\text{Re}z > -1\}$. Si $z \in \Omega$, on pose

$$f(z) = \int_0^1 \frac{t^z}{1+t} dt$$

- a) Montrer que f est définie et continue sur Ω .
- b) Donner un équivalent de f(x) quand x tend vers -1.
- c) Donner un équivalent de f(z) quand $Re(z) \to +\infty$.

Exercice 78 [02871] [Correction]

Pour $x \in \mathbb{R}$, on pose

$$f(x) = \int_0^{+\infty} \frac{\sin(xt)}{e^t - 1} dt$$

- a) Définition de f.
- b) Continuité et dérivabilité de f.
- c) Ecrire f(1) comme somme de série.

Exercice 79 [02882] [Correction]

On pose, pour x > 0,

$$f(x) = \frac{1}{x} \int_0^{+\infty} \frac{1 - e^{-tx}}{1 + t^2} dt$$

Montrer que f est de classe C^2 sur $]0, +\infty[$ et trouver des équivalents simples de f en 0 et en $+\infty$.

Exercice 80 [03324] [Correction]

Pour x > 0, on pose

$$f(x) = \int_{-x}^{x} \frac{dt}{\sqrt{1 + t^2} \sqrt{x^2 - t^2}}$$

10

- a) Montrer que f est définie et continue.
- b) Déterminer les limites de f en 0^+ et $+\infty$.

Exercice 81 [03621] [Correction]

a) Déterminer le domaine de définition de

$$f(x) = \int_{1}^{x} \frac{\cos^{2} t}{t} \, \mathrm{d}t$$

b) Donner un équivalent de f en 0 et en $+\infty$.

Exercice 82 [03760] [Correction]

a) Déterminer l'ensemble de définition de

$$f(x) = \int_0^1 \frac{dt}{\sqrt{t(1-t)(1-x^2t)}}$$

b) Donner la limite de f en x = 1.

Exercice 83 [03736] [Correction]

On pose

$$f(\alpha) = \int_0^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}(1+x)}$$

- a) Etudier l'ensemble de définition de f.
- b) Donner un équivalent de f en 0.
- c) Montrer que le graphe de f admet une symétrie d'axe x = 1/2.
- d) Montrer que f est continue sur son ensemble de définition.
- e) Calculer la borne inférieure de f.

Enoncé fourni par le concours CENTRALE-SUPELEC (CC)-BY-NC-SA

Exercice 84 [02556] [Correction]

Pour x > 0, on pose

$$F(x) = \int_0^1 \frac{\ln t}{t+x} \, \mathrm{d}t$$

- a) Montrer que F est de classe C^1 sur $]0, +\infty[$.
- b) Calculer F'(x) et en déduire l'expression de

$$G(x) = F(x) + F(1/x)$$

c) Soit $\theta \in \mathbb{R}$. Calculer

$$\int_0^1 \frac{t-1}{t+1} \frac{\ln t}{t^2 + 2t \cosh(\theta) + 1} \, \mathrm{d}t$$

Exercice 85 [03887] [Correction]

a) Montrer la continuité de l'application définie sur $]0, +\infty[$ par

$$g(x) = \int_0^x \frac{\sin(t)}{x+t} \, \mathrm{d}t$$

b) Préciser ses limites en 0 et $+\infty$.

Exercice 86 [03889] [Correction] Soit

$$g: x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t} dt$$

Montrons que q est solution sur $\mathbb{R}^{+\star}$ de l'équation différentielle

$$-y' + y = \frac{1}{x}$$

Calcul de fonction intégrale

Exercice 87 [00545] [Correction]

On considère la fonction

$$g: x \in]-1, +\infty[\mapsto \int_0^1 \frac{t-1}{\ln t} t^x dt$$

- a) Montrer que la fonction q est bien définie.
- b) Justifier que la fonction est de classe \mathcal{C}^1 et exprimer q'(x).
- c) En déduire une expression de q(x) à l'aide des fonctions usuelles

Exercice 88 [02874] [Correction]

Etudier

$$f: x \mapsto \int_0^1 \frac{t-1}{\ln t} t^x \, \mathrm{d}t$$

Exercice 89 [03888] [Correction]

- a) Montrer que l'application $g: x \mapsto \int_0^1 \frac{t^x 1}{\ln t} dt$ est définie sur $]-1, +\infty[$. b) Justifier que g est de classe \mathcal{C}^1 et calculer g'(x).
- c) En déduire une expression simple de q(x) pour x > -1.

Exercice 90 [00546] [Correction]

a) Justifier l'existence et calculer

$$\int_0^{+\infty} \cos(xt) e^{-t} dt$$

Soit

$$F: x \mapsto \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$$

- b) Justifier que F est définie et de classe \mathcal{C}^1 sur \mathbb{R} . Calculer F'(x).
- c) En déduire une expression simplifiée de F(x).

Exercice 91 [02873] [Correction]

Pour tout x réel, on pose

$$f(x) = \int_0^{+\infty} \frac{\cos(xt)}{\sqrt{t}} e^{-t} dt \text{ et } g(x) = \int_0^{+\infty} \frac{\sin(xt)}{\sqrt{t}} e^{-t} dt$$

Existence et calcul de ces deux intégrales.

Exercice 92 [00553] [Correction]

Soit

$$F(x,y) = \int_0^{+\infty} \frac{e^{-xt} - e^{-yt}}{t} dt \text{ avec } x, y > 0$$

Pour y > 0, montrer que $x \mapsto F(x,y)$ est de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$ et calculer

$$\frac{\partial F}{\partial x}(x,y)$$

En déduire la valeur de F(x,y).

Exercice 93 [02611] [Correction]

On pose

$$F(x) = \int_0^{+\infty} \frac{\mathrm{e}^{-t} - \mathrm{e}^{-2t}}{t} \cos(xt) \,\mathrm{d}t$$

- a) Quel est le domaine de définition réel I de la fonction F?
- b) Justifier que la fonction F est de classe C^1 sur I.
- c) Exprimer F(x) à l'aide des fonctions usuelles.

Exercice 94 [03311] [Correction]

Soient a, b deux réels strictement positifs.

a) Justifier l'existence pour tout $x \in \mathbb{R}$ de

$$F(x) = \int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} \cos(xt) dt$$

- b) Justifier que F est de classe C^1 sur \mathbb{R} et calculer F'(x).
- c) Exprimer F(x)

Exercice 95 [00548] [Correction]

On pose

$$z: x \mapsto \int_0^{+\infty} \frac{\mathrm{e}^{(-1+ix)t}}{\sqrt{t}} \,\mathrm{d}t$$

et on donne $\int_0^{+\infty} e^{-t^2} dt = \sqrt{\pi}/2$.

- a) Justifier et calculer z(0).
- b) Montrer que z est définie, de classe \mathcal{C}^1 sur $\mathbb R$ et

$$z'(x) = \frac{-1}{2(x+i)}z(x)$$

c) En déduire l'expression de z(x).

Exercice 96 [03655] [Correction]

En dérivant la fonction déterminer l'expression de la fonction

$$g(x) = \int_{-\infty}^{+\infty} e^{-t^2} e^{tx} dt$$

Exercice 97 [03656] [Correction]

a) Existence de

$$F(x) = \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2xt) \, \mathrm{d}t$$

- b) Calculer F(x) en introduisant une équation différentielle vérifiée par F.
- c) Calculer F(x) directement par une intégration terme à terme.

Exercice 98 [00555] [Correction]

Ensemble de définition, dérivée et valeur de

$$f: x \mapsto \int_0^{+\infty} \frac{\ln(1+x^2t^2)}{1+t^2} dt.$$

Exercice 99 [03660] [Correction]

Pour x > 0, on pose

$$F(x) = \int_0^{\pi/2} \ln \left(\cos^2(t) + x^2 \sin^2(t) \right) dt$$

- a) Justifier que F est définie et de classe C^1 sur $]0, +\infty[$.
- b) Calculer F'(x) et en déduire un expression de F(x).

Exercice 100 [02881] [Correction]

Existence et calcul de

$$\int_0^{2\pi} \frac{\ln(1+x\cos t)}{\cos t} \,\mathrm{d}t$$

Exercice 101 [00556] [Correction]

Soit

$$F(x) = \int_0^{\pi/2} \ln(1 + x \sin^2 t) dt \text{ sur } [0, +\infty[$$

- a) Justifier que F est bien définie et continue.
- b) Etudier la dérivabilité sur $[0, +\infty[$ et donner l'expression de sa dérivée via le changement de variable $u=\tan t.$
- c) Etablir que

$$F(x) = \pi(\ln(1 + \sqrt{1 + x}) - \ln 2)$$

Exercice 102 [02876] [Correction]

Existence et calcul de

$$f(x) = \int_0^{+\infty} \frac{\ln(x^2 + t^2)}{1 + t^2} dt$$

Exercice 103 [00551] [Correction] Soit

$$F(x) = \int_0^1 \frac{\ln(1 + 2t\cos x + t^2)}{t} dt$$

- a) Justifier que F est définie et de classe C^1 sur $[0, \pi/2]$
- b) Calculer F'(x) sur $[0, \pi/2]$
- c) Donner la valeur de F(0) puis celle de F(x) sachant

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2} = \frac{\pi^2}{12}$$

Exercice 104 [00552] [Correction]

Pour $n \in \mathbb{N}^*$ et x > 0, on pose

$$I_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(x^2 + t^2)^n}$$

- a) Justifier l'existence de $I_n(x)$.
- b) Calculer $I_1(x)$.
- c) Justifier que $I_n(x)$ est de classe \mathcal{C}^1 et exprimer $I'_n(x)$.
- d) Exprimer $I_n(x)$.

Exercice 105 [03323] [Correction]

Pour tout $x \in \mathbb{R}$, on pose

$$F(x) = \int_0^{+\infty} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt$$

- a) Montrer que F est définie et continue sur \mathbb{R} .
- b) Montrer que F est de classe C^1 sur $]0, +\infty[$.
- c) Former une équation différentielle vérifiée par F sur $]0, +\infty[$.
- d) En déduire une expression simple de F sur \mathbb{R} .

Exercice 106 [03619] [Correction]

Soit F la fonction définie par :

$$F(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$$

a) Montrer que F est définie et de classe C^1 sur \mathbb{R}^+ . On admet l'identité

$$\frac{x^2 - 1}{(1 + x^2 t^2)(1 + t^2)} = \frac{x^2}{1 + x^2 t^2} - \frac{1}{1 + t^2}$$

valable pour tout x et t dans \mathbb{R}

b) Déterminer l'expression de F(x).

Etude théorique

Exercice 107 [00540] [Correction]

Soit f une application continue de $\mathbb{R} \times [a, b]$ dans \mathbb{R} .

Expliquer pour quoi f est uniformément continue sur $S \times [a,b]$ pour tout segment S de \mathbb{R} .

En déduire que $F: x \mapsto \int_a^b f(x,t) dt$ est continue sur \mathbb{R} .

Pour $x \in \mathbb{R}$, on pose $g(x) = \int_0^1 e^{xt} dt$. A l'aide de la question précédente, étudier la continuité de g. Retrouver le résultat en calculant g(x).

Exercice 108 [00544] [Correction]

Soient $f: I \times \mathbb{R} \to \mathbb{R}$ et $u, v: I \to \mathbb{R}$ continues.

Montrer la continuité de la fonction

$$x \mapsto \int_{u(x)}^{v(x)} f(x, t) \, \mathrm{d}t$$

Exercice 109 [03756] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} vérifiant f(0) = 0.

Montrer que la fonction

$$g: x \mapsto \frac{f(x)}{x}$$

se prolonge en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} et exprimer ses dérivées successives en 0 en fonction de celles de f.

Exercice 110 [00294] [Correction]

Soient $f: I \to \mathbb{R}$ une fonction de classe \mathcal{C}^{∞} et $a \in \mathbb{R}$ tels que

$$f(a) = f'(a) = \dots = f^{(\alpha - 1)}(a) = 0$$

a) Montrer qu'on a pour tout $x \in I$

$$f(x) = \int_a^x \frac{(x-t)^{\alpha-1}}{(\alpha-1)!} f^{(\alpha)}(t) dt$$

b) En déduire qu'on peut écrire $f(x) = (x-a)^{\alpha}g(x)$ avec g de classe \mathcal{C}^{∞} sur \mathbb{R} .

Transformée de Fourier et intégrales apparentées

Exercice 111 [00547] [Correction]

On pose

$$z: x \mapsto \int_0^{+\infty} e^{(-1+ix)t^2} dt$$

a) Montrer que z est définie, de classe \mathcal{C}^1 sur $\mathbb R$ et vérifie

$$z'(x) = \frac{-1}{2(x+i)}z(x)$$

b) En déduire l'expression de z(x) sachant $z(0) = \sqrt{\pi}/2$.

Exercice 112 [00549] [Correction]

En dérivant la fonction déterminer l'expression de la fonction

$$g(x) = \int_{-\infty}^{+\infty} e^{-t^2} e^{itx} dt$$

Exercice 113 [03211] [Correction]

On considère

$$\varphi: x \mapsto \int_0^{+\infty} \frac{\mathrm{e}^{itx}}{1+t^2} \,\mathrm{d}t$$

- a) Montrer la définie et la continuité de φ sur \mathbb{R} .
- b) Montrer que φ est de classe \mathcal{C}^1 sur \mathbb{R}^* et montrer que

$$\varphi'(x) = i \int_0^{+\infty} \frac{t e^{itx}}{1 + t^2} dt$$

c) Montrer que pour x > 0,

$$\varphi'(x) = i \int_0^{+\infty} \frac{u e^{iu}}{x^2 + u^2} \, \mathrm{d}u$$

- et déterminer un équivalent de $\varphi'(x)$ quand $x \to 0^+$.
- d) La fonction φ est-elle dérivable en 0?

Exercice 114 [02499] [Correction]

On étudie

$$f(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt$$

- a) Donner le domaine de définition de f.
- b) Calculer f en formant une équation différentielle.
- c) Calculer f en exploitant le développement en série entière de la fonction cosinus.

Exercice 115 [00554] [Correction]

Existence et calcul de

$$g(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt$$

sachant $g(0) = \sqrt{\pi/2}$.

Fonction d'Euler

Exercice 116 [00560] [Correction]

Démontrer que la fonction

$$\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$$

est définie et de classe C^{∞} sur $]0, +\infty[$.

Exercice 117 [00561] [Correction]

a) Démontrer que la fonction Γ donnée par

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

15

est définie et continue sur $]0, +\infty[$.

- b) Démontrer que la fonction Γ est de classe C^2 sur $]0, +\infty[$.
- c) En exploitant l'inégalité de Cauchy Schwarz, établir que la fonction $x\mapsto \ln\Gamma(x)$ est convexe.

Exercice 118 [00562] [Correction]

L'objectif de cet exercice est de calculer

$$\int_0^{+\infty} \ln(t) e^{-t} dt$$

a) Montrer que pour tout $t \in [0, n]$,

$$0 \leqslant \left(1 - \frac{t}{n}\right)^{n-1} \leqslant \text{e.e}^{-t}$$

b) Etablir que

$$\lim_{n \to +\infty} \int_0^n \ln(t) \left(1 - \frac{t}{n} \right)^{n-1} dt = \int_0^{+\infty} \ln(t) e^{-t} dt$$

c) Observer que

$$\int_0^n \ln(t) \left(1 - \frac{t}{n} \right)^{n-1} dt = \ln n + \int_0^1 \frac{(1-u)^n - 1}{u} du$$

d) Conclure que

$$\int_0^{+\infty} \ln(t) e^{-t} dt = -\gamma$$

où γ désigne la constante d'Euler.

Exercice 119 [02635] [Correction]

On rappelle $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Pour x > 0, on pose

$$\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$$

- a) Montrer que cette fonction est définie et indéfiniment dérivable sur $]0, +\infty[$. On étudiera la régularité en se restreignant à $x \in [a, b] \subset]0, +\infty[$.
- b) Calculer $\Gamma(n+1)$ pour $n \in \mathbb{N}$.

c) En réalisant le changement de variable $t=n+y\sqrt{n},$ transformer l'intégrale $\Gamma(n+1)$ en

$$\frac{n^n}{\mathrm{e}^n} \sqrt{n} \int_{-\infty}^{+\infty} f_n(y) \,\mathrm{d}y$$

où $f_n(y) = 0$ pour $y \leqslant -\sqrt{x}$, $0 \leqslant f_n(y) \leqslant e^{-y^2/2}$ pour $-\sqrt{t} < y \leqslant 0$ et $0 \leqslant f_n(y) \leqslant (1+y)e^{-y}$ pour y > 0 et $t \geqslant 1$.

d) En appliquant le théorème de convergence dominée établir la formule de Stirling :

$$n! \sim \sqrt{2\pi n} \frac{n^n}{\mathrm{e}^n}$$

Exercice 120 [02537] [Correction]

a) Donner le domaine de définition de la fonction

$$\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$$

b) Calculer l'intégrale

$$I_n(x) = \int_0^n t^{x-1} \left(1 - \frac{t}{n}\right)^n dt$$

c) Expliquer rapidement pourquoi $\left(1-\frac{t}{n}\right)^n$ converge vers e^{-t} et montrer que

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)\dots(x+n)}$$

Exercice 121 [00941] [Correction]

Etablir que pour tout x > 0

$$\int_0^1 t^{x-1} e^{-t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$$

Applications au calcul d'intégrales

Exercice 122 [00535] [Correction] Soit $f: [0, +\infty[\to \mathbb{R}]$ définie par

$$f(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$$

a) Montrer que f est dérivable sur $[0, +\infty[$ et exprimer f'(x).

- b) Calculer f(0) et $\lim_{t \to \infty} f$.
- c) On note g l'application définie par $g(x) = f(x^2)$. Montrer

$$g(x) + \left(\int_0^x e^{-t^2} dt\right)^2 = \frac{\pi}{4}$$

d) Conclure

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

Exercice 123 [03654] [Correction]

L'objectif de ce sujet est de calculer

$$I = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$$

Pour $x \ge 0$, on pose

$$F(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t(1+t)}} dt$$

- a) Justifier que la fonction F est bien définie
- b) Déterminer une équation linéaire d'ordre 1 dont F est solution sur $]0, +\infty[$.
- c) Calculer F(0) et la limite de F en $+\infty$.
- d) En déduire la valeur de I.

Exercice 124 [02638] [Correction]

On pose, pour $x \ge 0$,

$$F(x) = \int_0^{+\infty} e^{-xt} \frac{1 - \cos t}{t^2} dt$$

- a) Montrer que F est continue sur $[0, +\infty[$ et tend vers 0 en $+\infty$.
- b) Montrer que F est deux fois dérivable sur $]0, +\infty[$ et calculer F''(x).
- c) En déduire la valeur de F(0) puis la valeur de l'intégrale convergente

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t$$

Exercice 125 [00542] [Correction]

a) Justifier la convergence de l'intégrale

$$I = \int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t$$

16

b) Pour tout $x \ge 0$, on pose

$$F(x) = \int_0^{+\infty} \frac{e^{-xt} \sin t}{t} dt$$

Déterminer la limite de F en $+\infty$.

- c) Justifier que F est dérivable sur $]0, +\infty[$ et calculer F'
- d) En admettant la continuité de F en 0 déterminer la valeur de I.

Exercice 126 [00543] [Correction]

Pour $x \in \mathbb{R}^+$ et $t \ge 0$, on pose $f(x,t) = e^{-xt}$ sinct où sinc (lire sinus cardinal) est la fonction $t \mapsto \frac{\sin t}{t}$ prolongée par continuité en 0.

Pour $n \in \mathbb{N}$, on pose

$$u_n(x) = \int_{n\pi}^{(n+1)\pi} f(x,t) dt$$

- a) Montrer que $u_n(x) = (-1)^n \int_0^{\pi} g_n(x, u) du$ avec $g_n(x, u)$ qu'on explicitera.
- b) Montrer que la série de fonctions de terme général u_n converge uniformément sur \mathbb{R}^+ .
- c) On pose $U(x) = \sum_{n=0}^{+\infty} u_n(x)$. Justifier que U est continue et expliciter U sous la forme d'une intégrale convergente.
- d) Montrer que U est de classe \mathcal{C}^1 sur $]0, +\infty[$ et calculer U'(x).
- e) Expliciter U(x) pour x > 0 puis la valeur de

$$U(0) = \int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t$$

Exercice 127 [02872] [Correction]

Pour $x \in \mathbb{R}^+$, soit

$$f(x) = \int_0^{+\infty} \frac{\sin t}{t} e^{-tx} dt$$

- a) Justifier la définition de f(x).
- b) Montrer que f est classe C^1 sur \mathbb{R}^{+*} .
- c) Calculer f(x) si $x \in \mathbb{R}^{+\star}$.
- d) Montrer que f est continue en 0. Qu'en déduit-on?

Exercice 128 [00541] [Correction]

On considère les fonctions f et g définies sur \mathbb{R}^+ par :

$$f(x) = \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt \text{ et } g(x) = \int_0^{+\infty} \frac{\sin t}{x+t} dt$$

a) Montrer que f et g sont de classe \mathcal{C}^2 sur $\mathbb{R}^{+\star}$ et qu'elles vérifient l'équation différentielle

$$y'' + y = \frac{1}{x}$$

- b) Montrer que f et g sont continues en 0
- c) En déduire que

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 129 [00550] [Correction]

Soit F la fonction définie par :

$$F(x) = \int_0^{+\infty} \frac{\arctan(xt)}{t(1+t^2)} dt$$

- a) Montrer que F est définie et de classe \mathcal{C}^1 sur \mathbb{R}^+ .
- b) Déterminer l'expression de F(x).
- c) Calculer

$$\int_0^{+\infty} \frac{\arctan^2 t}{t^2} \, \mathrm{d}t$$

Exercice 130 [03312] [Correction]

a) Montrer que pour tout x > -1

$$\int_0^1 \frac{\ln(1+xt)}{1+t^2} dt = \frac{\ln 2}{2} \arctan x + \frac{\pi}{8} \ln(1+x^2) - \int_0^x \frac{\ln(1+t)}{1+t^2} dt$$

b) En déduire la valeur de

$$\int_0^1 \frac{\ln(1+t)}{1+t^2} \, \mathrm{d}t$$

Corrections

Exercice 1 : [énoncé]

A chaque fois, on vérifie que les fonctions engagées sont continues par morceaux.

a) Sur $[0, \pi/4[$, $\tan^n x \xrightarrow{CVS} 0 | \tan^n x | \le 1 = \varphi(x)$ intégrable sur $[0, \pi/4[$ donc

$$u_n \to \int_0^{\pi/4} 0 \, \mathrm{d}x = 0$$

b) Sur $[0, +\infty[$, $\frac{1}{x^n + e^x} \xrightarrow{CVS} f(x)$ avec $f(x) = e^{-x}$ sur [0, 1[et f(x) = 0 sur $]1, +\infty[$.

De plus $\left|\frac{1}{x^n + e^x}\right| \le e^{-x} = \varphi(x)$ avec φ intégrable sur $[0, +\infty[$ donc

$$v_n \to \int_0^1 e^{-x} dx = \frac{e-1}{e}$$

Exercice 2: [énoncé]

En découpant l'intégrale

$$I_n = \int_0^1 \frac{x^n}{1 + x^{n+2}} \, \mathrm{d}x + \int_1^{+\infty} \frac{x^n}{1 + x^{n+2}} \, \mathrm{d}x$$

En appliquant le théorème de convergence dominée aux deux intégrales, on obtient

$$I_n \to \int_1^{+\infty} \frac{\mathrm{d}x}{x^2} = 1$$

Exercice 3: [énoncé]

A chaque fois, on vérifie que les fonctions engagées sont continues par morceaux. a) Ici, on ne peut appliquer le théorème de convergence dominée sur $[0, +\infty[$ après une majoration de $|\sin x|$ par 1 car la fonction dominante $\varphi(x) = 1/x^2$ ne sera pas intégrable sur $[0, +\infty[$. Pour contourner cette difficulté, on découpe l'intégrale.

$$u_n = \int_0^{+\infty} \frac{\sin^n x}{x^2} \, dx = \int_0^1 \frac{\sin^n x}{x^2} \, dx + \int_1^{+\infty} \frac{\sin^n x}{x^2} \, dx$$

On a

$$\left| \int_0^1 \frac{\sin^n x}{x^2} \, \mathrm{d}x \right| \leqslant \int_0^1 \left| \sin^{n-2}(x) \right| \, \mathrm{d}x \, \operatorname{car} \, \left| \sin x \right| \leqslant |x|$$

Sans difficultés, par le théorème de convergence dominée

$$\int_0^1 \left| \sin^{n-2}(x) \right| \, \mathrm{d}x \to 0$$

et donc

$$\int_0^1 \frac{\sin^n x}{x^2} \, \mathrm{d}x \to 0$$

Aussi

$$\left| \int_{1}^{+\infty} \frac{\sin^{n} x}{x^{2}} \, \mathrm{d}x \right| \leqslant \int_{1}^{+\infty} \frac{\left| \sin x \right|^{n}}{x^{2}} \, \mathrm{d}x$$

Or $\frac{|\sin x|^n}{x^2} \xrightarrow{CS} f(x)$ avec f(x) = 0 pour tout $x \neq \pi/2$ $[\pi]$. De plus $\frac{|\sin x|^n}{x^2} \leqslant \frac{1}{x^2} = \varphi(x)$ avec φ intégrable sur $[1, +\infty[$ donc

$$\int_{1}^{+\infty} \frac{\left|\sin x\right|^{n}}{x^{2}} dx \to \int_{1}^{+\infty} f(x) dx = 0$$

puis $u_n \to 0$.

b) On écrit

$$u_n = \int_0^1 \frac{x^n \, \mathrm{d}x}{x^{n+2} + 1} + \int_1^{+\infty} \frac{x^n \, \mathrm{d}x}{x^{n+2} + 1}$$

On a

$$\left| \int_0^1 \frac{x^n \, \mathrm{d}x}{x^{n+2} + 1} \right| \leqslant \int_0^1 x^n \, \mathrm{d}x = \frac{1}{n+1}$$

 $_{
m et}$

$$\int_{1}^{+\infty} \frac{x^{n} dx}{x^{n+2} + 1} \xrightarrow[n \to +\infty]{} \int_{1}^{+\infty} \frac{dx}{x^{2}} = 1$$

en vertu du théorème de convergence dominée et via la domination $\left|\frac{x^n}{x^{n+2}+1}\right| \leqslant \frac{1}{x^2}$ sur $[1, +\infty[$.

Ainsi $u_n \to 1$.

c) On écrit

$$u_n = \int_0^1 \frac{x^n \, \mathrm{d}x}{x^{2n} + 1} + \int_1^{+\infty} \frac{x^n \, \mathrm{d}x}{x^{2n} + 1}$$

On a

$$\left| \int_{0}^{1} \frac{x^{n} dx}{x^{2n} + 1} \right| \leqslant \int_{0}^{1} x^{n} dx = \frac{1}{n+1}$$

 $_{
m et}$

$$\left| \int_{1}^{+\infty} \frac{x^n \, \mathrm{d}x}{x^{2n} + 1} \right| \leqslant \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^n} = \frac{1}{n - 1}$$

donc $u_n \to 0$.

On peut aussi appliquer le théorème de convergence dominée mais c'est moins efficace.

Exercice 4: [énoncé]

Posons

$$f_n: t \mapsto \frac{\sin(nt)}{nt + t^2}$$

La fonction f_n est définie et continue par morceaux sur $]0, +\infty[$.

Quand $t \to 0^+$, $f_n(t) \sim \frac{nt}{nt+t^2} \to 1$.

Quand $t \to +\infty$; $f_n(t) = O\left(\frac{1}{t^2}\right)$.

On peut donc affirmer que f_n est intégrable sur $]0, +\infty[$.

Pour $t \in]0, +\infty[$.

Quand $n \to +\infty$, $f_n(t) = O\left(\frac{1}{n}\right)$ donc la suite (f_n) converge simplement vers la fonction nulle.

De plus, pour $t \leq \pi/2$, on a, sachant $|\sin u| \leq |u|$,

$$|f_n(t)| \leqslant \frac{nt}{nt + t^2} \leqslant 1$$

et pour $t \geqslant \pi/2$,

$$|f_n(t)| \leqslant \frac{1}{nt + t^2} \leqslant \frac{1}{t^2}$$

Ainsi $|f_n| \leqslant \varphi$ avec

$$\varphi: t \mapsto \begin{cases} 1 & \text{si } t \in [0, \pi/2] \\ 1/t^2 & \text{si } t \in [\pi/2, +\infty[$$

La fonction φ étant intégrable sur $]0,+\infty[$, on peut appliquer le théorème de convergence dominée et affirmer

$$u_n \to \int_0^{+\infty} 0 \, \mathrm{d}t = 0$$

Exercice 5 : [énoncé]

La fonction intégrée ne converge pas simplement en les $t = \pi/2 + \pi$ [2 π]. Pour contourner cette difficulté on raisonne à l'aide de valeurs absolues.

$$\left| \int_0^{+\infty} e^{-t} \sin^n(t) dt \right| \leqslant \int_0^{+\infty} e^{-t} \left| \sin^n t \right| dt$$

On a

$$f_n(t) = \left| e^{-t} \sin^n(t) \right| \xrightarrow{CS} f(t)$$

avec

$$f(t) = \begin{cases} 0 & \text{si } t \neq \pi/2 & [\pi] \\ e^{-t} & \text{sinon} \end{cases}$$

Les fonctions f_n et f sont continues par morceaux et

$$|f_n(t)| \leqslant e^{-t} = \varphi(t)$$

avec φ continue par morceaux intégrable sur $[0, +\infty[$ donc par convergence dominée :

$$\lim_{n \to \infty} \int_0^{+\infty} e^{-t} \sin^n(t) dt = \int_0^{+\infty} f(t) dt = 0$$

Exercice 6: [énoncé]

Les fonctions données par

$$f_n(t) = \left(1 + t^2/n\right)^{-n}$$

sont définies et continues par morceaux sur \mathbb{R} .

La suite de fonctions (f_n) converge simplement vers f avec $f(t) = e^{-t^2}$ définie et continue par morceaux sur \mathbb{R} .

Soit $t \in \mathbb{R}$ fixé et considérons

$$\varphi: x \mapsto -x \ln(1+t^2/x)$$

définie sur $[1, +\infty[$.

En étudiant le signe de φ'' , on démontre φ' est croissante. Or $\lim_{+\infty} \varphi' = 0$ et donc φ' est négative.

La fonction φ est donc décroissante et par conséquent, pour tout $n \in \mathbb{N}^*$

$$|f_n(t)| \leqslant \left(1 + \frac{t^2}{n}\right)^{-n} = \exp(\varphi(n)) \leqslant \exp(\varphi(1)) = \frac{1}{1 + t^2}$$

La fonction $t \mapsto 1/(1+t^2)$ est intégrable sur \mathbb{R} .

Par convergence dominée

$$\int_{-\infty}^{+\infty} \left(1 + \frac{t^2}{n}\right)^{-n} dt \xrightarrow[n \to +\infty]{} \int_{-\infty}^{+\infty} e^{-t^2} dt$$

Exercice 7 : [énoncé]

La fonction $t \mapsto \frac{1}{(1+t^3)^n}$ est continue par morceaux sur $[0,+\infty[$ et on observe

$$\frac{1}{(1+t^3)^n} \mathop{\sim}_{t\to+\infty} \frac{1}{t^{3n}}$$

avec 3n > 1 donc l'intégrale $\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$ est bien définie pour $n \geqslant 1$. Par application du théorème de convergence dominée (en prenant $\varphi(t) = \frac{1}{1+t^3}$ pour dominatrice), on obtient

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n} = 0$$

La décroissance de $(|u_n|)$ et la positivité de l'intégrale étant des propriétés immédiates, on peut appliquer le critère spécial et affirmer que $\sum u_n$ converge.

Exercice 8 : [énoncé]

Soit $n \in \mathbb{N}^*$.

La fonction $x \mapsto e^{-x^n}$ est définie et continue par morceaux sur $[1, +\infty[$. Etant de plus négligeable devant $1/x^2$ quand $x \to +\infty$, on peut affirmer qu'elle est intégrable et on peut donc introduire

$$\int_{1}^{+\infty} e^{-x^{n}} dx$$

Par le changement de variable \mathcal{C}^1 strictement monotone donné par la relation $t=x^n$, on obtient

$$n \int_{1}^{+\infty} e^{-x^{n}} dx = \int_{1}^{+\infty} \frac{e^{-t}}{t} t^{1/n} dt$$

Posons alors

$$f_n: t \mapsto \frac{\mathrm{e}^{-t}}{t} t^{1/n}$$

Les fonctions f_n sont définies et continues par morceaux sur $[1, +\infty[$. La suite de fonctions (f_n) converge simplement vers la fonction

$$f: t \mapsto \frac{\mathrm{e}^{-t}}{t}$$

et pour tout $n \in \mathbb{N}$

$$|f_n(t)| \leqslant e^{-t} = \varphi(t)$$

avec φ fonction continue par morceaux et intégrable puisque $t^2\varphi(t)\xrightarrow[t\to+\infty]{}0$. On peut alors appliquer le théorème de convergence dominée et affirmer

$$n \int_{1}^{+\infty} e^{-x^{n}} dx = \int_{1}^{+\infty} \frac{e^{-t}}{t} t^{1/n} dt \xrightarrow[n \to +\infty]{} \int_{1}^{+\infty} \frac{e^{-t}}{t} dt$$

Exercice 9 : [énoncé]

 f_n est définie et continue par morceaux sur $]0, +\infty[$.

Quand $x \to 0^+$, $f_n(x) \to \frac{1}{n}$, on peut donc la prolonger par continuité.

Quand $x \to +\infty$, $f_n(x) = o\left(\frac{1}{x^2}\right)$.

Par suite f_n est intégrable sur $]0, +\infty[$.

$$u_n = \int_0^{+\infty} \frac{n \ln(1 + x/n)}{x(1+x^2)} \,\mathrm{d}x$$

Posons

$$g_n(x) = \frac{n\ln(1+x/n)}{x(1+x^2)} = nf_n(x)$$

Pour x > 0, quand $n \to +\infty$, $g_n(x) \to \frac{1}{1+x^2}$.

De plus, sachant $\ln(1+u) \leq u$, on a $|g_n(x)| \leq \frac{1}{1+x^2} = \varphi(x)$ avec φ intégrable. Par convergence dominée,

$$u_n \to \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2} = \frac{\pi}{2}$$

Exercice 10: [énoncé]

Par changement de variable

$$\mu_n = \int_0^1 f(ns) \, \mathrm{d}s$$

Par convergence dominée

$$\mu_n \to \ell$$

Exercice 11 : [énoncé]

Considérons la suite des fonctions $u_n : [0,1] \to \mathbb{R}$ déterminée par $u_n(t) = f(t^n)$. Les fonctions u_n sont continues par morceaux et par continuité de f

$$u_n(t) \xrightarrow[n \to +\infty]{} u(t) \stackrel{=}{\underset{\text{def}}{=}} \left\{ \begin{array}{l} f(0) & \text{si } t \in [0, 1[\\ f(1) & \text{si } t = 1 \end{array} \right.$$

La suite de fonctions (u_n) converge simplement sur [0,1] vers la fonction u continue par morceaux.

Enfin, la fonction f étant continue sur un segment, elle y bornée ce qui permet d'introduire

$$M = \sup_{t \in [0,1]} |f(t)|$$

Puisque

$$\forall t \in [0,1], |u_n(t)| \leq M$$

avec $t \mapsto M$ intégrable sur [0, 1], on peut appliquer le théorème de convergence dominée et affirmer

 $\int_0^1 f(t^n) dt \to \int_0^1 u(t) dt = f(0)$

Exercice 12 : [énoncé]

Par le changement de variable u = nt

$$I_n = \int_0^{+\infty} f(u/n) e^{-u} du$$

Par convergence dominée, sachant

$$|f(u/n)| \leq ||f||_{\infty} e^{-u} = \varphi(u)$$

avec φ intégrable, on obtient

$$I_n \to \int_0^{+\infty} f(0) e^{-u} du = f(0)$$

Exercice 13: [énoncé]

Par le changement de variable u = nx,

$$\int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} \, \mathrm{d}x = \int_0^{+\infty} \frac{f(u/n)}{1 + u^2} \, \mathrm{d}u$$

Posons alors $f_n: u \mapsto \frac{f(u/n)}{1+u^2}$ définie sur \mathbb{R}^+ . La suite de fonctions (f_n) converge simplement vers

$$f_{\infty}: u \mapsto \frac{f(0)}{1+u^2}$$

Les fonctions f_n et f sont continues par morceaux sur \mathbb{R}^+ .

$$|f_n(u)| \leqslant \frac{\|f\|_{\infty}}{1+u^2} = \varphi(u)$$

avec φ intégrable sur \mathbb{R}^+ .

Par convergence dominée,

$$\int_0^{+\infty} \frac{nf(x)}{1 + n^2 x^2} dx \xrightarrow[n \to +\infty]{} \int_0^{+\infty} \frac{f(0)}{1 + u^2} du = \frac{\pi f(0)}{2}$$

Exercice 14 : [énoncé]

a) Pour x > 0, posons

$$u_n(x) = \int_0^{+\infty} n\cos t(\sin t)^n f(xt) dt$$

L'intégrabilité de f assure que $u_n(x)$ est bien définie.

Puisque f' est intégrable, la fonction f converge en $+\infty$ et, puisque f est aussi intégrable, f tend vers 0 en $+\infty$. Par intégration par parties, on obtient alors

$$u_n(x) = -\frac{n}{n+1} \int_0^{+\infty} (\sin t)^{n+1} x f'(xt) dt$$

Posons $g_n(x) = |\sin t|^{n+1} x f'(xt) dt$.

Chaque fonction g_n est continue par morceaux.

La suite de fonctions (q_n) converge simplement vers une fonction continue par morceaux, nulle en chaque $x \neq \pi/2 + k\pi$.

La fonction limite simple est continue par morceaux.

Enfin on a la domination

$$|g_n(x)| \leqslant xf'(xt) = \varphi(t)$$

avec la fonction φ intégrable.

Par convergence dominée

$$\int_0^{+\infty} g_n(t) \, \mathrm{d}t \xrightarrow[n \to +\infty]{} 0$$

et par comparaison

$$u_n(x) \xrightarrow[n \to +\infty]{} 0$$

b) On vient déjà d'obtenir une convergence simple de la suite de fonctions (u_n) vers la fonction nulle. Montrons qu'en fait il s'agit d'une convergence uniforme. Par changement de variable

$$u_n(x) = -\frac{n}{n+1} \int_0^{+\infty} (\sin(u/x))^{n+1} f'(u) du$$

Soit $\varepsilon > 0$. Puisque la fonction f' est intégrable, il existe $A \in \mathbb{R}^+$ tel que

$$\int_{\Lambda}^{+\infty} |f'(u)| \, \mathrm{d}u \leqslant \varepsilon$$

et alors

$$|u_n(x)| \leq M \int_0^A |\sin(u/x)|^{n+1} du + \varepsilon \text{ avec } M = \max_{u \in [0,A]} |f'(u)|$$

Pour $x \ge 4A/\pi$, on a

$$\forall u \in [0, A], 0 \leqslant \frac{u}{x} \leqslant \frac{A}{x} \leqslant \frac{\pi}{4}$$

et donc

$$\int_0^A \left| \sin(u/x) \right|^{n+1} du \leqslant \frac{A}{\sqrt{2}^{n+1}}$$

Pour $x \leq 4A/\pi$, on a par changement de variable

$$\int_0^A |\sin(u/x)|^{n+1} du = x \int_0^{A/x} |\sin t|^{n+1} dt$$

Pour k entier tel que $k\pi < A/x \le (k+1)\pi$.

$$\int_0^A \left| \sin(u/x) \right|^{n+1} du \leqslant x \int_0^{(k+1)\pi} \left| \sin t \right|^{n+1} dt = x(k+1) \int_0^{\pi} (\sin t)^{n+1} dt$$

Or $x(k+1)\pi \leqslant A + x\pi \leqslant 5A$ donc

$$\int_0^A \left| \sin(u/x) \right|^{n+1} \, \mathrm{d}u \leqslant 5A$$

Finalement, pour tout x > 0.

$$|u_n(x)| \leqslant 5AM + \frac{AM}{\sqrt{2}^{n+1}} + \varepsilon$$

et donc pour n assez grand, on a pour tout x > 0.

$$|u_n(x)| \leqslant 2\varepsilon$$

Exercice 15: [énoncé]

Posons

$$f_n(t) = \begin{cases} (1 - t^2/n)^n & \text{si } t \in [0, \sqrt{n}[\\ 0 & \text{sinon} \end{cases}$$

Pour $t \in [0, +\infty[$, à partir d'un certain rang $t > \sqrt{n}$ et

$$f_n(t) = \left(1 - \frac{t^2}{n}\right)^n = \exp\left(n\ln\left(1 - \frac{t^2}{n}\right)\right) \to e^{-t^2}$$

Ainsi, la suite (f_n) converge simplement vers $f: t \mapsto e^{-t^2}$. En vertu de l'inégalité $\ln(1+u) \leq u$, on obtient

$$|f_n(t)| \leqslant e^{-t^2} = \varphi(t)$$

et ce que $t \in [0, \sqrt{n}]$ ou non.

La fonction φ est intégrable sur $[0, +\infty[$.

Par application du théorème de convergence dominée,

$$\lim_{n \to +\infty} \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n} \right)^n dt = \int_0^{+\infty} e^{-t^2} dt$$

Exercice 16: [énoncé]

Posons

$$f_n(x) = \begin{cases} (1 + x/n)^n & \text{si } x \in [0, n] \\ 0 & \text{sinon} \end{cases}$$

Pour $x \in [0, +\infty[$, à partir d'un certain rang $x \ge n$ et

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-2x} = \exp\left(n\ln\left(1 + \frac{x}{n}\right) - 2x\right) \to e^{-x}$$

Ainsi, la suite (f_n) converge simplement vers $f: x \mapsto e^{-x}$. En vertu de l'inégalité $\ln(1+u) \leq u$, on obtient

$$|f_n(x)| \leqslant e^{-x} = \varphi(x)$$

et ce que $x \in [0, n]$ ou non.

La fonction φ est intégrable sur $[0, +\infty[$.

Par application du théorème de convergence dominée,

$$\lim_{n \to +\infty} \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-2x} dx = \int_0^{+\infty} e^{-x} dx = 1$$

Exercice 17: [énoncé]

Par changement de variable

$$\int_0^n \sqrt{1 + \left(1 - \frac{x}{n}\right)^n} \, \mathrm{d}x \tilde{\mathbf{n}} = n \int_0^1 \sqrt{1 - u^n} \, \mathrm{d}u$$

Par le théorème de convergence dominée

$$\int_0^1 \sqrt{1 - u^n} \, \mathrm{d}u \xrightarrow[n \to +\infty]{} 1$$

donc

$$\int_0^n \sqrt{1 + \left(1 - \frac{x}{n}\right)^n} \, \mathrm{d}x \sim n$$

Exercice 18 : [énoncé]

Posons $f_n(x) = \left(\cos \frac{x}{n}\right)^{n^2}$ si $x \in [0, n]$ et $f_n(x) = 0$ si $x \in [n, +\infty[$. Pour $x \in \mathbb{R}^+$, quand $n \to +\infty$,

$$f_n(x) = \left(\cos\frac{x}{n}\right)^{n^2} = \exp\left(n^2 \ln\left(1 - x^2/2n^2 + o(1/n^2)\right)\right) \to e^{-x^2/2}$$

Ainsi $f_n \xrightarrow[[0,+\infty[}^{CS} f \text{ avec } f: x \mapsto e^{-x^2/2}.$

Les fonctions f_n et f sont continues par morceaux.

Soit $\psi:[0,1]\to\mathbb{R}$ définie par $\psi(t)=1-t^2/4-\cos t$. Par étude des variations,

$$\forall x \in [0,1], \psi(x) \geqslant 0$$

On en déduit que, pour $x \in [0, n]$,

$$\ln\left(\cos\frac{x}{n}\right) \leqslant \ln\left(1 - \frac{x^2}{4n^2}\right) \leqslant -\frac{x^2}{4n^2}$$

puis

$$f_n(x) \leqslant e^{-x^2/4}$$

Cette inégalité vaut aussi pour $x \in]n, +\infty[$ et puisque la fonction $x \mapsto e^{-x^2/4}$ est intégrable, on peut appliquer le théorème de convergence dominée pour affirmer

$$\lim_{n \to +\infty} \int_0^n \left(\cos \frac{x}{n} \right)^{n^2} dx = \int_0^{+\infty} e^{-x^2/2} dx = \sqrt{\frac{\pi}{2}}$$

Exercice 19 : [énoncé]

On a

$$n \int_0^1 \frac{f(nt)}{1+t} dt = \int_0^n \frac{f(u)}{1+u/n} du = \int_0^{+\infty} f_n(u) du$$

avec

$$f_n(u) = \begin{cases} \frac{f(u)}{1+u/n} & \text{si } u \in [0, n] \\ 0 & \text{si } u \in]n, +\infty[\end{cases}$$

On a $f_n \xrightarrow{CVS} f$ avec f_n et f continues et $|f_n| \leq |f| = \varphi$ avec φ continue par morceaux intégrable sur $[0, +\infty[$ indépendant de n. Par convergence dominée

$$\int_0^{+\infty} f_n(u) \, \mathrm{d}u \to \int_0^{+\infty} f(u) \, \mathrm{d}u$$

Exercice 20 : [énoncé]

On a

$$\left| \frac{n!}{\prod\limits_{k=1}^{n} (k+x)} \right| \leqslant \frac{1 \times 2}{(x+1)(x+2)} \times 1 = \varphi(x)$$

avec φ intégrable sur $[0, +\infty[$. Quand $n \to +\infty$,

$$\ln\left(\frac{n!}{\prod\limits_{k=1}^{n}(k+x)}\right) = -\sum_{k=1}^{n}\ln\left(1+\frac{x}{k}\right) \to -\infty$$

car $\ln{(1+x/k)} \sim x/k$ terme général d'une série à termes positifs divergente. Par suite

$$\frac{n!}{\prod\limits_{k=1}^{n} (k+x)} \to 0$$

puis par le théorème de convergence dominée

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{n!}{\prod_{k=1}^n (k+x)} dx = 0$$

Exercice 21 : [énoncé]

a) Appliquons le théorème de convergence dominée.

Posons $f_n:[0,1]\to\mathbb{R}$ définie par

$$f_n(t) = F\left(\sqrt{n}(\delta t - h)\right)$$

Pour $t \in [0, h/\delta]$, on a $f_n(t) \to 1$.

Pour $t \in [h/\delta, 1]$, on a $f_n(t) \to 0$.

Enfin, pour $t = h/\delta$, $f_n(t) = F(0) \rightarrow F(0)$.

Ainsi la suite de fonctions (f_n) converge simplement sur [0,1] vers f définie par

$$f(t) = \begin{cases} 1 & \text{si } t \in [0, h/\delta[\\ F(0) & \text{si } t = h/\delta\\ 0 & \text{si } t \in [h/\delta, 1] \end{cases}$$

Les fonctions f_n sont continues et la limite simple f est continue par morceaux.

Enfin

$$\forall t \in [0,1], |f_n(t)| \leqslant 1 = \varphi(t)$$

avec φ continue par morceaux et intégrable. Par convergence dominée,

$$I_n \to \int_0^1 f(t) dt = \int_0^{h/\delta} 1 dt = \frac{h}{\delta}$$

b) Par la décroissance de F, on peut écrire

$$\int_{(k+1)/n}^{(k+2)/n} F\left(\sqrt{n}(\delta t - h)\right) dt \leqslant \frac{1}{n} F\left(\sqrt{n} \left(\delta \frac{k+1}{n} - h\right)\right) \leqslant \int_{k/n}^{(k+1)/n} F\left(\sqrt{n}(\delta t - h)\right) dt$$

En sommant ces inégalités

$$\int_{1/n}^{(n+1)/n} F\left(\sqrt{n}(\delta t - h)\right) dt \leqslant \frac{S_n}{n} \leqslant I_n$$

et

$$\int_{1/n}^{(n+1)/n} F\left(\sqrt{n}(\delta t - h)\right) dt = \int_0^1 F\left(\sqrt{n}(\delta(t + 1/n) - h)\right) dt$$

Par convergence dominée, on obtient de façon analogue à ce qui précède, la limite de ce terme et on conclut

$$S_n \sim \frac{h}{\delta}n$$

Exercice 22 : [énoncé]

a) Considérons la fonction

$$\varphi: x \mapsto \frac{x \ln x}{x^2 - 1}$$

La fonction φ est définie et continue par morceaux sur]0,1[. Quand $x \to 0^+$, $\varphi(x) \to 0$ et quand $x \to 1^-$,

$$\varphi(x) = \frac{x}{x+1} \frac{\ln x}{x-1} \to \frac{1}{2}$$

Puisque φ se prolonge par continuité en 0 et en 1, φ est intégrable sur]0,1[. Or

$$|f_n(x)| = x^{2n} |\varphi(x)| \le |\varphi(x)|$$

donc, par domination, la fonction f_n est elle aussi intégrable sur]0,1[.

b) La suite de fonctions f_n converge simplement vers la fonction nulle et est dominée par la fonction intégrable φ donc par convergence dominée

$$J_n \to 0$$

c) On a

$$J_k - J_{k+1} = -\int_0^1 x^{2k+1} \ln(x) dx$$

Réalisons une intégration par parties

$$-\int_{\varepsilon}^{a} x^{2k+1} \ln(x) dx = -\left[\frac{x^{2k+2}}{2k+2} \ln x\right]_{\varepsilon}^{a} + \int_{\varepsilon}^{a} x^{2k+1} dx$$

Quand $\varepsilon \to 0^+$ et $a \to 1^-$, on obtient

$$J_k - J_{k+1} = \frac{1}{(2k+2)^2}$$

et donc

$$J_n = \lim_{N \to +\infty} \sum_{k=n}^{+\infty} (J_k - J_{k+1}) = \sum_{k=n}^{+\infty} \frac{1}{(2k+2)^2}$$

Enfin par translation d'indice

$$J_n = \sum_{k=n}^{+\infty} \frac{1}{(2k+2)^2} = \frac{1}{4} \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Exercice 23 : [énoncé]

a) (f_n) converge simplement vers la fonction f donnée par

$$f(x) = \begin{cases} f(x) & \text{si } x \in [a, 1[\\ f(1)/2 & \text{si } x = 1\\ 0 & \text{si } x \in]1, b] \end{cases}$$

- b) Sachant $|f_n(x)| \leq |f(x)|$ avec f intégrable sur [a,b], on peut appliquer le théorème de convergence dominée et on obtient directement le résultat proposé.
- c) Par une intégration par parties

$$\int_{a}^{1} t^{n-1} f_n(t) dt = \left[\frac{1}{n} \ln(1 + t^n) f(t) \right]_{a}^{1} - \frac{1}{n} \int_{a}^{1} \ln(1 + t^n) f'(t) dt$$

D'une part

$$\left[\frac{1}{n}\ln(1+t^n)f(t)\right]_a^1 = \frac{\ln 2}{n}f(1) + \frac{\ln(1+a^n)}{n}f(a) = \frac{\ln 2}{n}f(1) + o\left(\frac{1}{n}\right)$$

 $\operatorname{car} \ln(1+a^n) \to 0.$

D'autre part

$$\left| \frac{1}{n} \int_{a}^{1} \ln(1 + t^{n}) f'(t) dt \right| \leqslant \frac{1}{n} \|f'\|_{\infty} \int_{0}^{1} t^{n} dt = O\left(\frac{1}{n^{2}}\right) = o\left(\frac{1}{n}\right)$$

sachant $\ln(1+u) \leqslant u$.

Au final, on obtient

$$\int_{a}^{1} t^{n-1} f_n(t) dt = \frac{\ln 2}{n} f(1) + o\left(\frac{1}{n}\right)$$

Exercice 24: [énoncé]

L'intégrale

$$\int_{\mathbb{R}} f_n(x)g(x)dx = \int_a^b f_n(x)g(x)dx$$

est bien définie.

Par le changement de variable x = u/n bijectif de classe C^1

$$\int_{\mathbb{R}} f_n(x)g(x) dx = \int_{na}^{nb} \frac{1}{\sqrt{\pi}} \left(1 - \frac{u^2}{2n^4} \right)^{2n^4} g(u/n) du = \int_{-\infty}^{+\infty} h_n(u) du$$

avec

$$h_n(u) = \frac{1}{\sqrt{\pi}} \left(1 - \frac{u^2}{2n^4} \right)^{2n^4} g(u/n) \chi_{[na,nb]}$$

 h_n est continue par morceaux, (h_n) converge simplement vers h continue par morceaux avec

$$h(u) = \frac{1}{\sqrt{\pi}} e^{-u^2} g(0)$$

Pour n assez grand de sorte que |a/n|, $|b/n| \le 1$ on a pour tout $u \in [na, nb]$, $|u^2/2n^4| \le 1/2 < 1$,

$$|h_n(u)| = \frac{1}{\sqrt{\pi}} e^{2n^4 \ln(1 - u^2/2n^4)} \le \frac{1}{\sqrt{\pi}} e^{-u^2} = \varphi(u)$$

et cette inégalité vaut aussi pour $u \notin [na, nb]$.

La fonction φ étant continue par morceaux et intégrable sur \mathbb{R} , on peut appliquer le théorème de convergence dominée et conclure sachant

$$\int_{-\infty}^{+\infty} e^{-u^2} du = \sqrt{\pi}$$

Exercice 25: [énoncé]

L'intégrale $\int_0^{+\infty} \frac{\ln t}{e^t} dt$ est définie car la fonction $t \mapsto \ln(t)e^{-t}$ est continue et intégrable sur $]0, +\infty[$ puisque

$$\sqrt{t}\ln(t)e^{-t} \xrightarrow[t\to 0^+]{} 0 \text{ et } t^2\ln(t)e^{-t} \xrightarrow[t\to +\infty]{} 0$$

Pour tout $t \in \mathbb{R}^+$, e^{-t} est la limite de

$$u_n(t) = \left(1 - \frac{t}{n}\right)^{n-1} \chi_{[0,n]}(t)$$

Le n-1 de l'exposant n'est pas usuel et peut très bien être remplacé par un n. Néanmoins pour alléger les calculs à venir, le n-1 est préférable... On a

$$\ln(t)u_n(t) \to \ln(t)e^{-t}$$

 $_{
m et}$

$$|\ln(t)u_n(t)| \le e \ln(t)e^{-t}$$

donc par convergence domine

$$\int_0^{+\infty} \frac{\ln t}{\mathrm{e}^t} \, \mathrm{d}t = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n} \right)^{n-1} \ln(t) \, \mathrm{d}t$$

On a

$$\int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n-1} \ln(t) dt = \int_{0}^{1} n (1 - u)^{n-1} \ln(nu) du$$

avec

$$\int_0^1 n (1-u)^{n-1} \ln(nu) du = \ln n + \int_0^1 n \ln(u) (1-u)^{n-1} du$$

et par intégration par parties

$$\int_0^1 n \ln(u) (1-u)^{n-1} du = \left[\ln(u) (1-(1-u)^n)\right]_0^1 + \int_0^1 \frac{(1-u)^n - 1}{u} du$$

On notera qu'on a choisi $(1-(1-u)^n)$ pour primitive de $n(1-u)^{n-1}$ car celle-ci s'annule en 0 de sorte que l'intégration par parties n'engage que des intégrales convergentes.

Enfin

$$\int_0^1 \frac{(1-u)^n - 1}{u} \, \mathrm{d}u = -\int_0^1 \frac{v^n - 1}{v - 1} = -\int_0^1 \sum_{k=0}^{n-1} v^k \, \mathrm{d}v$$

puis

$$\int_0^1 \frac{(1-u)^n - 1}{u} \, du = -\sum_{k=1}^n \frac{1}{k} = -\ln n - \gamma + o(1)$$

Finalement

$$\int_0^{+\infty} \frac{\ln t}{e^t} \, \mathrm{d}t = -\gamma$$

Exercice 26: [énoncé]

Pour tout t > 0, on a

$$\frac{1}{e^t - 1} = \frac{e^{-t}}{1 - e^{-t}} = \sum_{n=1}^{+\infty} e^{-nt}$$

donc

$$\frac{t}{e^t - 1} = \sum_{n=1}^{+\infty} t e^{-nt} = \sum_{n=1}^{+\infty} f_n(t)$$

Les fonctions f_n sont continues par morceaux sur $]0, +\infty[$ et, en vertu de l'étude qui précède, la série $\sum f_n$ converge simplement et sa somme est continue par morceaux sur $]0, +\infty[$

Les fonctions f_n sont intégrables sur $]0, +\infty[$ et

$$\int_0^{+\infty} |f_n(t)| \, dt = \int_0^{+\infty} t e^{-nt} \, dt = \frac{1}{n^2}$$

qui est sommable. On en déduit que la fonction $t\mapsto \frac{t}{\mathrm{e}^t-1}$ est intégrable sur $]0,+\infty[$ et

$$\int_0^{+\infty} \frac{t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

Exercice 27 : [énoncé]

Pour $x \in [0, 1]$, on peut écrire

$$\frac{1}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n}$$

et pour $x \in]0,1[$, on a

$$\frac{(\ln x)^2}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n} (\ln x)^2$$

Considérons alors la série des fonctions

$$u_n(x) = (-1)^n x^{2n} (\ln x)^2$$

Par convergence des séries précédentes, la série des fonctions u_n converge simplement vers la fonction $x \mapsto (\ln x)^2/(1+x^2)$. Les fonctions u_n et la fonction somme sont continues par morceaux.

Chaque fonction u_n est intégrable et

$$\int_0^1 |u_n(x)| \, \mathrm{d}x = \int_0^1 x^{2n} (\ln x)^2 \, \mathrm{d}x$$

Par intégration par parties, on montre

$$\int_0^1 x^{2n} (\ln x)^2 \, \mathrm{d}x = \frac{2}{(2n+1)^3}$$

On peut alors appliquer le théorème d'intégration terme à terme et affirmer

$$\int_0^1 \frac{(\ln x)^2}{1+x^2} \, \mathrm{d}x = 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3}$$

Exercice 28 : [énoncé]

Sur]0, 1[,

$$\frac{\ln t}{1+t^2} = \sum_{n=0}^{+\infty} (-1)^n t^{2n} (\ln t)$$

Posons $f_n(t) = (-1)^n t^{2n} \ln t$.

Les $f_n:]0,1[\to \mathbb{R}$ sont continues par morceaux et la série de fonctions $\sum f_n$ converge simplement vers $\frac{\ln t}{1+t^2}$ elle-même continue par morceaux sur]0,1[.

$$\int_0^1 |f_n(t)| \, \mathrm{d}t = \frac{1}{(2n+1)^2}$$

et la série $\sum \frac{1}{(2n+1)^2}$ converge donc on peut intégrer terme à terme la série de fonctions et on obtient

$$\int_0^1 \frac{\ln t}{1+t^2} dt = \sum_{n=0}^{+\infty} \int_0^1 (-1)^n t^{2n} \ln t dt = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{(2n+1)^2}$$

Ce dernier calcul est non trivial et fait référence à la constante de Catalan.

Exercice 29 : [énoncé]

Pour $t \in [0,1[$, on peut écrire

$$\frac{\ln t}{1 - t^2} = \sum_{n=0}^{+\infty} t^{2n} \ln t$$

Or

$$\int_0^1 t^{2n} \ln t \, \mathrm{d}t = \frac{-1}{(2n+1)^2}$$

Sachant que la série des intégrales des valeurs absolues converge, le théorème d'intégration terme à terme de Fubini donne

$$\int_0^1 \frac{\ln t}{1 - t^2} \, \mathrm{d}t = -\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = -\frac{3\zeta(2)}{4}$$

avec en substance la convergence de l'intégrale étudiée.

Exercice 30 : [énoncé]

a) Par intégration par parties,

$$\int_{\varepsilon}^{1} \frac{\ln(1+t)}{t} dt = \left[\ln(1+t)\ln(t)\right]_{\varepsilon}^{1} - \int_{\varepsilon}^{1} \frac{\ln t}{1+t} dt$$

et quand $\varepsilon \to 0$, on obtient

$$\int_0^1 \frac{\ln(1+t)}{t} \, \mathrm{d}t = -\int_0^1 \frac{\ln t}{1+t} \, \mathrm{d}t$$

b) Sur]0,1[,

$$-\frac{\ln t}{1+t} = \sum_{n=0}^{+\infty} (-1)^{n-1} t^n (\ln t)$$

Posons $f_n(t) = (-1)^{n-1}t^n \ln t$.

Les $f_n:]0,1[\to \mathbb{R}$ sont continues par morceaux et la série de fonctions $\sum f_n$ converge simplement vers $-\frac{\ln t}{1+t}$ elle-même continue par morceaux sur]0,1[. On a

$$\int_0^1 |f_n(t)| \, \mathrm{d}t = \frac{1}{(n+1)^2}$$

et la série $\sum \frac{1}{(n+1)^2}$ converge donc on peut intégrer terme à terme la série de fonctions et donc

$$-\int_0^1 \frac{\ln t}{1+t} dt = \sum_{n=0}^{+\infty} \int_0^1 (-1)^{n-1} t^n \ln t dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$$

c) En séparant les termes pairs et les termes impairs (ce qui se justifie en transitant par les sommes partielles)

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} = \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} - \sum_{p=1}^{+\infty} \frac{1}{(2p)^2} = \sum_{p=1}^{+\infty} \frac{1}{n^2} - 2\sum_{p=1}^{+\infty} \frac{1}{(2p)^2} = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{12}$$

Exercice 31 : [énoncé]

a) Par une intégration par parties

$$\int_{\varepsilon}^{1} \frac{\arctan t}{t} \, \mathrm{d}t = \left[\ln(t) \arctan(t)\right]_{\varepsilon}^{1} - \int_{\varepsilon}^{1} \frac{\ln t}{1 + t^{2}} \, \mathrm{d}t$$

Sachant $\arctan t \sim_{t\to 0} t$, on obtient quand $\varepsilon \to 0$

$$\int_0^1 \frac{\arctan t}{t} dt = -\int_0^1 \frac{\ln t}{1+t^2} dt$$

avec convergence des intégrales proposées

b) Pour tout t élément de]0,1[,

$$-\frac{\ln t}{1+t^2} = \sum_{n=0}^{+\infty} (-1)^{n-1} t^{2n} (\ln t)$$

Posons $f_n(t) = (-1)^{n-1}t^{2n} \ln t$.

Les $f_n:]0,1[\to \mathbb{R}$ sont continues par morceaux et la série de fonctions $\sum f_n$ converge simplement vers $-\frac{\ln t}{1+t^2}$ elle-même continue par morceaux sur]0,1[.

$$\int_0^1 |f_n(t)| \, \mathrm{d}t = \frac{1}{(2n+1)^2}$$

et la série $\sum \frac{1}{(2n+1)^2}$ converge donc on peut intégrer terme à terme la série de fonctions et donc

$$-\int_0^1 \frac{\ln t}{1+t^2} dt = \sum_{n=0}^{+\infty} \int_0^1 (-1)^{n-1} t^{2n} \ln t dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$$

Rq : on aurait aussi pu exploiter $\arctan t = \sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{2n+1} t^{2n+1}$.

Exercice 32 : [énoncé]

Pour t > 0, on peut écrire

$$\frac{\sin t}{e^t - 1} = \sum_{n=1}^{+\infty} \sin t \cdot e^{-nt}$$

La fonction $t \mapsto \sin t \cdot e^{-nt}$ est intégrable sur $]0, +\infty[$ et

$$\int_0^{+\infty} |\sin t| e^{-nt} dt \leqslant \int_0^{+\infty} t e^{-nt} dt = \frac{1}{n^2}$$

est le terme général d'une série convergente donc par le théorème de Fubini d'intégration terme à terme $t\mapsto \frac{\sin t}{e^t-1}$ est intégrable sur $]0,+\infty[$ et

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \int_0^{+\infty} \sin t \cdot e^{-nt} dt$$

avec

$$\int_0^{+\infty} \sin t \cdot e^{-nt} \, dt = \text{Im} \int_0^{+\infty} e^{(-n+i)t} \, dt = \frac{1}{n^2 + 1}$$

Finalement

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$

Exercice 33 : [énoncé]

Les intégrales considérées sont bien définies.

Par intégration par parties,

$$I_n(m) = \left[\frac{x^{n+1}}{n+1} (\ln x)^m \right]_0^1 - \frac{m}{n+1} I_n(m-1)$$

Ainsi

$$I_n(m) = \frac{(-1)^m}{(n+1)^{m+1}}m!$$

En particulier

$$I_n(n) = \frac{(-1)^n}{(n+1)^{n+1}} n!$$

b)
$$x^{-x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} (x \ln x)^n$$
.

Par convergence de la série des intégrales des valeurs absolues,

$$\int_0^1 x^{-x} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} I_n(n) = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{n+1}}$$

Exercice 34: [énoncé]

On a

$$\frac{1}{x^x} = e^{-x \ln x} = \sum_{n=0}^{+\infty} \frac{(-1)^n (x \ln x)^n}{n!}$$

donc

$$\int_0^1 \frac{\mathrm{d}x}{x^x} = \int_{]0,1]} \sum_{n=0}^{+\infty} f_n$$

avec

$$f_n(x) = \frac{(-1)^n (x \ln x)^n}{n!}$$

Les f_n sont continues par morceaux, $\sum f_n$ CS vers une fonction continue par morceaux sur [0,1].

Les f_n sont intégrables et

$$\int_{]0,1]} |f_n| = \int_{]0,1[} \frac{(-1)^n x^n (\ln x)^n}{n!} dx$$

Or

$$\int_{\varepsilon}^{1} x^{n} (\ln x)^{n} dx = \left[\frac{1}{n+1} x^{n+1} (\ln x)^{n} \right]_{\varepsilon}^{1} - \frac{n}{n+1} \int_{\varepsilon}^{1} x^{n} (\ln x)^{n-1} dx$$

donc quand $\varepsilon \to 0$

$$\int_{]0,1]} x^n (\ln x)^n dx = -\frac{n}{n+1} \int_{]0,1]} x^n (\ln x)^{n-1} dx$$

Ainsi

$$\int_{[0,1]} x^n (\ln x)^n \, \mathrm{d}x = (-1)^n \frac{n}{n+1} \frac{n-1}{n+1} \cdots \frac{1}{n+1} \int_0^1 x^n \, \mathrm{d}x = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

Par suite

$$\int_0^1 |f_n| \, dx = \frac{1}{(n+1)^{n+1}} \text{ et } \sum \int_0^1 |f_n| \text{ converge}$$

Par le théorème d'intégration terme à terme de Fubini, on obtient que l'intégrale étudiée et définie et

$$\int_0^1 \frac{\mathrm{d}x}{x^x} = \sum_{n=0}^{+\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{n+1}}$$

puis le résultat voulu.

Exercice 35 : [énoncé]

Par la série exponentielle, on peut écrire pour t > 0,

$$t^{-t} = \exp(-t \ln t) = \sum_{n=0}^{+\infty} (-1)^n \frac{(t \ln t)^n}{n!}$$

Pour procéder à une intégration terme à terme, posons $u_n(t) = (-1)^n (t \ln t)^n / n!$ pour $t \in [0, 1]$.

Les fonctions u_n sont continues par morceaux et la série de fonctions $\sum u_n$ converge simplement sur [0,1] vers la fonction $t\mapsto t^{-t}$ elle-même continue par morceaux.

Les fonctions u_n sont intégrables sur]0,1] car on peut les prolonger par continuité en 0 et

$$\int_0^1 |u_n(t)| \, \mathrm{d}t = (-1)^n \int_0^1 u_n(t) \, \mathrm{d}t$$

Par intégration par parties

$$\int_{\varepsilon}^{1} (t \ln t)^{n} dt = \left[\frac{t^{n+1}}{n+1} (\ln t)^{n} \right]_{\varepsilon}^{1} - \frac{n}{n+1} \int_{\varepsilon}^{1} t^{n} (\ln t)^{n-1} dt$$

En passant à la limite quand $\varepsilon \to 0$, on obtient

$$\int_0^1 (t \ln t)^n dt = -\frac{n}{n+1} \int_0^1 t^n (\ln t)^{n-1} dt$$

En itérant le procédé on obtient

$$\int_0^1 (t \ln t)^n dt = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

et ainsi

$$\int_0^1 |u_n(t)| \, \mathrm{d}t = \frac{1}{(n+1)^{n+1}} = o\left(\frac{1}{n^2}\right)$$

La série $\sum \int_0^1 |u_n|$ étant convergente, on peut intégrer terme à terme et l'on obtient

$$\int_0^1 t^{-t} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{(n+1)}}$$

avec existence de l'intégrale en premier membre.

Exercice 36 : [énoncé]

a) $f_{p,k}$ est définie et continue par morceaux sur]0,1]. Quand $x \mapsto 0^+$, $\sqrt{x} f_{p,k}(x) = x^{p+1/2} (\ln x)^k \to 0$ donc $f_{p,k}(x) = o(1/\sqrt{x})$.

Par suite $f_{p,k}$ est intégrable sur [0,1].

b) Par intégration par parties

$$K_{p,k} = -\frac{k}{p+1}K_{p,k-1}$$

c) $K_{p,k} = \frac{(-1)^k k!}{(p+1)^k} K_{p,0} = \frac{(-1)^k k!}{(p+1)^{k+1}}$

et donc

$$J_n = K_{n,n} = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

d) $x^x = \sum_{n=0}^{+\infty} \frac{(x \ln x)^n}{n!}$ pour tout $x \in [0, 1]$.

Posons $f_n: x \mapsto \frac{1}{n!} (x \ln x)^n$.

Les fonctions f_n sont continues par morceaux et intégrables sur]0,1].

La série $\sum f_n$ converge simplement sur [0,1] et sa somme, qui est $x \mapsto x^x$, est continue par morceaux sur [0, 1].

Enfin

$$\int_0^1 |f_n(x)| \, \mathrm{d}x = \frac{1}{(n+1)^{n+1}} = o\left(\frac{1}{n^2}\right)$$

est terme général d'une série convergente.

Par théorème d'intégration terme à terme, $x \mapsto x^x$ est intégrable sur [0,1] et

$$I = \int_0^1 x^x \, dx = \sum_{n=0}^{+\infty} \int_0^1 f_n(x) \, dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^{n+1}}$$

Exercice 37 : [énoncé]

Pour $x \in [0, 1[$, on a

$$\frac{(\ln x)^p}{1-x} = \sum_{n=0}^{+\infty} x^n (\ln x)^p = \sum_{n=0}^{+\infty} f_n(x)$$

avec $f_n(x) = x^n (\ln x)^p \text{ sur } [0, 1[$.

Les fonctions f_n sont continues par morceaux et la somme $\sum_{n=0}^{+\infty} f_n$ l'est aussi.

Les fonctions f_n sont intégrables sur]0,1[et par intégration par parties,

$$\int_0^1 |f_n| = (-1)^p \int_0^1 x^n (\ln x)^p \, \mathrm{d}x = \frac{p!}{(n+1)^{p+1}}$$

Puisque la série $\sum \int |f_n|$ converge, le théorème d'intégration terme à terme de Fubini donne

$$\int_0^1 \frac{(\ln x)^p}{1-x} \, \mathrm{d}x = \sum_{n=0}^{+\infty} \int_0^1 f_n(x) \, \mathrm{d}x = (-1)^p p! \sum_{n=1}^{+\infty} \frac{1}{n^{p+1}}$$

avec en substance existence de l'intégrale et de la série intoduite.

Exercice 38 : [énoncé]

Pour x > 0,

$$x^{x} = e^{x \ln x} = \sum_{n=0}^{+\infty} \frac{(x \ln x)^{n}}{n!}$$

donc

$$\int_0^1 x^x \, \mathrm{d}x = \int_{]0,1]} \sum_{n=0}^{+\infty} f_n$$

avec

$$f_n(x) = \frac{(x \ln x)^n}{n!}$$

Les fonctions f_n sont continues par morceaux, $\sum f_n$ converge simplement vers une fonction continue par morceaux sur]0,1].

Les fonctions f_n sont intégrables et

$$\int_{]0,1]} |f_n| = \int_{]0,1[} \frac{(-1)^n x^n (\ln x)^n}{n!} \, \mathrm{d}x$$

Or

$$\int_{\varepsilon}^{1} x^{n} (\ln x)^{n} dx = \left[\frac{1}{n+1} x^{n+1} (\ln x)^{n} \right]_{\varepsilon}^{1} - \frac{n}{n+1} \int_{\varepsilon}^{1} x^{n} (\ln x)^{n-1} dx$$

donc quand $\varepsilon \to 0$

$$\int_{]0,1]} x^n (\ln x)^n dx = -\frac{n}{n+1} \int_{]0,1]} x^n (\ln x)^{n-1} dx$$

Ainsi

$$\int_{[0,1]} x^n (\ln x)^n \, \mathrm{d}x = (-1)^n \frac{n}{n+1} \frac{n-1}{n+1} \cdots \frac{1}{n+1} \int_0^1 x^n \, \mathrm{d}x = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

Par suite

$$\int_0^1 |f_n| \, \mathrm{d}x = \frac{1}{(n+1)^{n+1}}$$

et il y a convergence de la série $\sum \int_0^1 |f_n|$

Par le théorème d'intégration terme à terme, on obtient que l'intégrale $\int_{]0,1]} x^x dx$ est définie et

$$\int_0^1 x^x \, \mathrm{d}x = \sum_{n=0}^{+\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^{n+1}}$$

puis le résultat voulu.

Exercice 39: [énoncé]

a) Sur [0,1[, la série de fonction $\sum f_n$ converge simplement et sa somme est

$$\sum_{n=1}^{+\infty} f_n(x) = \frac{x}{1-x} (1 - \sqrt{x}) = \frac{x}{1+\sqrt{x}}$$

Cette fonction somme est continue par morceaux sur [0,1[. Les fonction f_n sont intégrables sur [0,1[et

$$\int_0^1 |f_n(x)| \, \mathrm{d}x = \int_0^1 f_n(x) \, \mathrm{d}x = \frac{1}{n = \sqrt{x}} \frac{1}{(n+1)(2n+3)}$$

Ce terme est sommable et l'on peut donc intégrer terme à terme ce qui donne

$$\sum_{n=1}^{+\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \int_0^1 \frac{x}{1 + \sqrt{x}} \, \mathrm{d}x$$

b) Ainsi

$$\sum_{n=1}^{+\infty} \frac{1}{(n+1)(2n+3)} = \int_0^1 \frac{x}{1+\sqrt{x}} \, \mathrm{d}x = \frac{5}{3} - 2\ln 2$$

Exercice 40: [énoncé]

Pour $x \in [0, 2\pi]$, on peut écrire

$$e^{2\cos x} = \sum_{n=0}^{+\infty} \frac{2^n \cos^n x}{n!}$$

Posons

$$f_n: x \in [0, 2\pi] \mapsto \frac{2^n \cos^n x}{n!}$$

Les fonctions f_n sont continues et la série de fonctions $\sum f_n$ converge normalement sur $[0, 2\pi]$ puisque

$$||f_n||_{\infty} \leqslant \frac{2^n}{n!} = o\left(\frac{1}{n^2}\right)$$

On peut donc intégrer terme à terme pour obtenir

$$\int_0^{2\pi} e^{2\cos x} dx = \sum_{n=0}^{+\infty} \frac{2^n}{n!} \int_0^{2\pi} (\cos x)^n dx$$

Par intégration par parties (cf. intégrale de Wallis)

$$\int_0^{2\pi} (\cos x)^n dx = \frac{n-1}{n} \int_0^{2\pi} (\cos x)^{n-2} dx$$

Sachant

$$\int_0^{2\pi} (\cos x)^0 dx = 2\pi \text{ et } \int_0^{2\pi} (\cos x)^1 dx = 0$$

on obtient

$$\int_0^{2\pi} (\cos x)^{2p} dx = 2\pi \frac{(2p)!}{2^{2p} (p!)^2} \text{ et } \int_0^{2\pi} (\cos x)^{2p+1} dx = 0$$

et donc

$$\int_0^{2\pi} e^{2\cos x} dx = \sum_{p=0}^{+\infty} \frac{2^{2p}}{(2p)!} \frac{(2p)!}{2^{2p} (p!)^2} 2\pi = \sum_{p=0}^{+\infty} \frac{2\pi}{(p!)^2}$$

Exercice 41 : [énoncé]

$$I_n = \int_0^{2\pi} \frac{e^{in\theta}}{2} \sum_{k=0}^{+\infty} \frac{(-1)^k}{2^k} e^{ik\theta} d\theta$$

Par convergence normale de la série de fonctions sous-jacente sur $[0, 2\pi]$

$$I_n = \sum_{k=0}^{+\infty} \frac{(-1)^k}{2^{k+1}} \int_0^{2\pi} e^{i(n+k)\theta} d\theta$$

Or $\int_0^{2\pi} e^{ip\theta} d\theta = 0$ si $p \neq 0$ et $\int_0^{2\pi} e^{ip\theta} d\theta = 2\pi$ si p = 0. Par conséquent

$$I_n = (-1)^n 2^n \pi \text{ si } n \leq 0 \text{ et } I_n = 0 \text{ si } n > 0$$

Exercice 42 : [énoncé]

Si |a| < 1 alors

$$\int_0^{2\pi} \frac{e^{int}}{e^{it} - a} dt = \int_0^{2\pi} \frac{e^{i(n-1)t}}{1 - ae^{-it}} dt = \int_0^{2\pi} \sum_{k=0}^{+\infty} a^k e^{i(n-(k+1))t} dt$$

Par convergence normale de la série

$$\int_0^{2\pi} \frac{e^{int}}{e^{it} - a} dt = \sum_{k=0}^{+\infty} a^k \int_0^{2\pi} e^{i(n - (k+1))t} dt = \begin{cases} 2\pi a^{n-1} & \text{si } n \geqslant 1\\ 0 & \text{sinon} \end{cases}$$

Si |a| > 1 alors

$$\int_0^{2\pi} \frac{\mathrm{e}^{int}}{\mathrm{e}^{it} - a} \, \mathrm{d}t = -\frac{1}{a} \int_0^{2\pi} \frac{\mathrm{e}^{int}}{1 - \mathrm{e}^{it}/a} \, \mathrm{d}t = -\sum_{k=0}^{+\infty} \frac{1}{a^{k+1}} \int_0^{2\pi} \mathrm{e}^{i(n+k)t} \, \mathrm{d}t = \left\{ \begin{array}{l} -2\pi a^{n-1} & \text{si } n \leq n \leq n \\ 0 & \text{sinon} \end{array} \right\}$$

Exercice 43: [énoncé]

Par sommation géométrique

$$\forall t > 0, \frac{te^{-at}}{1 - e^{-bt}} = \sum_{n=0}^{+\infty} te^{-(a+nb)t}$$

Posons $f_n: \mathbb{R}^{+\star} \to \mathbb{R}$ définie par

$$f_n(t) = t e^{-(a+nb)t}$$

Les fonctions f_n sont continues par morceaux, la série de fonctions $\sum f_n$ converge simplement sur $]0, +\infty[$ et sa somme est continue par morceaux puisque c'est la fonction

$$t \mapsto \frac{t e^{-at}}{1 - e^{-bt}}$$

Les fonctions f_n sont intégrables sur $]0, +\infty[$ et par intégration par parties

$$\int_{[0,+\infty[} |f_n| = \int_0^{+\infty} f_n = \frac{1}{(a+bn)^2} = O\left(\frac{1}{n^2}\right)$$

Puisque la série $\sum \int |f_n|$ converge, on peut appliquer le théorème d'intégration terme à terme de Fubini et on obtient

$$\int_0^{+\infty} \frac{t e^{-at}}{1 - e^{-bt}} dt = \int_{[0, +\infty[} \sum_{n=0}^{+\infty} f_n = \sum \int_{[0, +\infty[} f_n \sum_{n=0}^{+\infty} \frac{1}{(a + bn)^2}$$

Exercice 44: [énoncé]

La convergence de l'intégrale proposée est facile.

En découpant l'intégrale :

$$\int_0^{+\infty} \frac{e^{-x/n}}{1 + \cos^2 x} dx = \sum_{k=0}^{+\infty} \int_{k\pi}^{(k+1)\pi} \frac{e^{-x/n}}{1 + \cos^2 x} dx = \sum_{k=0}^{+\infty} e^{-k\pi/n} \int_0^{\pi} \frac{e^{-x/n}}{1 + \cos^2 x} dx$$

Dans la somme proposée, le terme intégrale ne dépend de l'indice sommation donc

$$\int_0^{+\infty} \frac{e^{-x/n}}{1 + \cos^2 x} dx = \left(\sum_{k=0}^{+\infty} e^{-k\pi/n}\right) \int_0^{\pi} \frac{e^{-x/n}}{1 + \cos^2 x} dx = \frac{1}{1 - e^{-\pi/n}} \int_0^{\pi} \frac{e^{-x/n}}{1 + \cos^2 x} dx$$

Quand $n \to +\infty$,

$$\frac{1}{1 - \mathrm{e}^{-\pi/n}} \sim \frac{n}{\pi}$$

et

$$\int_0^{\pi} \frac{e^{-x/n}}{1 + \cos^2 x} dx \to \int_0^{\pi} \frac{dx}{1 + \cos^2 x}$$

par application du théorème de convergence dominée.

Par le changement de variable $t = \tan x$ inspiré des règles de Bioche,

$$\int_0^{\pi} \frac{\mathrm{d}x}{1 + \cos^2 x} = 2 \int_0^{\pi/2} \frac{\mathrm{d}x}{1 + \cos^2 x} = 2 \int_0^{+\infty} \frac{\mathrm{d}t}{2 + t^2} = \frac{\pi}{\sqrt{2}}$$

Au final

$$\frac{1}{n} \int_0^{+\infty} \frac{e^{-x/n}}{1 + \cos^2 x} dx \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{2}}$$

Exercice 45: [énoncé]

a) On a

$$u_n(1) = \int_0^{\pi/2} \sin t (\cos t)^n dt = \left[-\frac{1}{n+1} \cos^{n+1} t \right]_0^{\pi/2} = \frac{1}{n+1}$$

La série de terme général $u_n(1)$ est divergente.

b) Pour $\alpha \leq 1$,

$$\forall t \in [0, \pi/2], (\sin t)^{\alpha} \geq \sin t$$

et donc $u_n(\alpha) \geqslant u_n(1)$.

On en déduit que la série de terme général $u_n(\alpha)$ est alors divergente.

Pour $\alpha > 1$. La série des $u_n(\alpha)$ est une série à termes positifs et

$$\sum_{k=0}^{n} u_k(\alpha) = \int_0^{\pi/2} (\sin t)^{\alpha} \frac{1 - (\cos t)^{n+1}}{1 - \cos t} dt$$

donc

$$\sum_{k=0}^{n} u_k(\alpha) \leqslant \int_0^{\pi/2} \frac{(\sin t)^{\alpha}}{1 - \cos t} dt$$

avec l'intégrale majorante qui est convergente puisque

$$\frac{(\sin t)^{\alpha}}{1-\cos t} \sim 2\frac{t^{\alpha}}{t^2} = \frac{2}{t^{2-\alpha}} \text{ quand } t \to 0^+$$

Puisque la série à termes positifs $\sum u_n(\alpha)$ a ses sommes partielles majorées, elle est convergente.

c) Par ce qui précède, on peut intégrer terme à terme car il y a convergence de la série des intégrales des valeurs absolues des fonctions. On peut alors écrire

$$\sum_{n=0}^{+\infty} \int_0^{\pi/2} \sin^\alpha t \cos^n t \, \mathrm{d}t = \int_0^{\pi/2} \frac{\sin^\alpha t}{1 - \cos t} \, \mathrm{d}t$$

Pour $\alpha = 2$

$$\int_0^{\pi/2} \frac{\sin^2 t}{1 - \cos t} dt = \int_0^{\pi/2} 1 + \cos t dt = \frac{\pi}{2} + 1$$

Pour $\alpha = 3$

$$\int_0^{\pi/2} \frac{\sin^3 t}{1 - \cos t} \, dt = \int_0^{\pi/2} \sin t (1 + \cos t) \, dt = \frac{3}{2}$$

Exercice 46: [énoncé]

a) Par intégration par parties on obtient une relation de récurrence qui conduit à

$$\int_0^1 x^n (1-x)^m \, \mathrm{d}x = \frac{n!m!}{(n+m+1)!}$$

En posant u_n le terme général de la série étudiée, on observe $\frac{u_{n+1}}{u_n} \to \frac{1}{4}$ ce qui assure la convergence de la série.

b) $S_{-1} = \sum_{n=1}^{+\infty} \int_0^1 x^n (1-x)^{n-1} dx$. Par convergence de la série des intégrales des valeurs absolues, on peut permuter et obtenir

$$S_{-1} = \int_0^1 \frac{x dx}{1 - x(1 - x)} = \frac{\pi}{3\sqrt{3}}$$

Puisque

$$\binom{2n+2}{n+1} = \frac{4n+2}{n+1} \binom{2n}{n}$$

on observe

$$\frac{4}{\binom{2n+2}{n+1}} - \frac{2}{n+1} \frac{1}{\binom{2n+2}{n+1}} = \frac{1}{\binom{2n}{n}} \ (\star)$$

En sommant pour n allant de 1 à $+\infty$, on obtient

$$4\left(S_0 - \frac{1}{2}\right) - 2\left(S_{-1} - \frac{1}{2}\right) = S_0$$

puis

$$S_0 = \frac{1 + 2S_{-1}}{3}$$

c) On multiplie la relation (\star) par $(n+1)^p$ et on développe le $(n+1)^p$ du second membre et en sommant comme ci-dessus, on saura exprimer $3S_p$ en fonction des S_q avec q < p.

Exercice 47: [énoncé]

a) $f: x \mapsto \frac{n^2 - x^2}{(n^2 + x^2)^2}$ est définie, continue sur $[0, +\infty[$ et $f(x) \underset{x \to +\infty}{\sim} -\frac{1}{x^2}$ donc $\int_0^{+\infty} f(x) dx$ est définie.

$$\int_0^a \frac{n^2 - x^2}{(n^2 + x^2)^2} dx = \int_0^a \frac{1}{n^2 + x^2} dx - 2 \int_0^a \frac{x^2}{(n^2 + x^2)^2} dx$$

 $_{
m et}$

$$\int_0^a \frac{x^2}{(n^2 + x^2)^2} \, \mathrm{d}x = \frac{1}{2} \left[-\frac{x}{n^2 + x^2} \right]_0^a + \frac{1}{2} \int_0^a \frac{1}{n^2 + x^2} \, \mathrm{d}x$$

donc

$$\int_0^a \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x = \frac{a}{n^2 + a^2}$$

Par suite

$$\int_0^{+\infty} f(x) dx = \lim_{a \to +\infty} \int_0^a f(x) dx = 0$$

La série $\sum_{n=1}^{+\infty} \int_0^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} dx$ est convergente et de somme nulle.

c) Pour $x \in [0, a]$,

$$\left| \frac{n^2 - x^2}{(n^2 + x^2)^2} \right| \leqslant \frac{n^2 + a^2}{n^4}$$

 $_{
m et}$

$$\sum_{n=1}^{+\infty} \frac{n^2 + a^2}{n^4} < +\infty$$

donc $\sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2}$ converge normalement, et donc uniformément sur [0, a]. Par suite

$$\int_0^a \sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \int_0^a \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}$$

d) La fonction $x\mapsto \frac{a}{x^2+a^2}$ est décroissante et intégrable sur $[0,+\infty[$ donc par comparaison série-intégrale

$$\int_{1}^{+\infty} \frac{a}{x^2 + a^2} \, \mathrm{d}x \leqslant \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} \leqslant \int_{0}^{+\infty} \frac{a}{x^2 + a^2} \, \mathrm{d}x$$

Or

$$\int_{1}^{+\infty} \frac{a}{x^2 + a^2} dx = \left[\arctan \frac{x}{a}\right]_{1}^{+\infty} = \frac{\pi}{2} - \arctan \frac{1}{a}$$

 $_{
m et}$

$$\int_0^{+\infty} \frac{a}{x^2 + a^2} dx = \left[\arctan \frac{x}{a}\right]_0^{+\infty} = \frac{\pi}{2}$$

donc

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} = \frac{\pi}{2}$$

e) Ci-dessus :

$$\lim_{a \to +\infty} \int_0^a \sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} dx = \frac{\pi}{2}$$

donc l'intégrale

$$\int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} \, \mathrm{d}x$$

est convergente et vaut $\pi/2$.

Le résultat diffèrent de celui obtenu en b). Il est donc faux ici de permuter somme et intégrale. Document7

Exercice 48: [énoncé]

- a) $a_{n+1}/a_n \to 1/e < 1$.
- b) Posons

$$I_n = \int_0^{+\infty} t^n e^{-\alpha t} dt$$

Par intégration par parties, on obtient $I_n = \frac{n!}{\alpha^{n+1}}$ d'où

$$a_n = n \int_0^{+\infty} t^n e^{-nt} dt$$

c) On a

$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} \int_0^{+\infty} nt^n e^{-nt} dt$$

et la série

$$\sum \int_0^{+\infty} |nt^n e^{-nt}| dt = \sum a_n$$

converge donc on peut intégrer terme à terme et on obtient

$$\sum_{n=1}^{+\infty} a_n = \int_0^{+\infty} \sum_{n=1}^{+\infty} nt^n e^{-nt} dt$$

avec

$$(1 - te^{-t}) \sum_{n=1}^{+\infty} nt^n e^{-nt} = \sum_{n=1}^{+\infty} t^n e^{-nt} = \frac{te^{-t}}{1 - te^{-t}}$$

d'où la conclusion.

Exercice 49 : [énoncé]

a) Posons $u_n(t) = 1/(1+t^n)$ sur]0,1].

La suite de fonctions (u_n) converge simplement vers la fonction $u_\infty: t \mapsto 1$. Les fonctions u_n et la fonction u_∞ sont continue par morceaux. Enfin

$$\forall t \in [0,1], |u_n(t)| \leq 1 = \varphi(t)$$

avec $\varphi: [0,1] \to \mathbb{R}^+$ intégrable. Par convergence dominée

$$I_n = \int_0^1 u_n(t) dt \xrightarrow[n \to +\infty]{} \int_0^1 u_\infty(t) dt = 1 = \ell$$

b) On a

$$\ell - I_n = \int_0^1 \frac{t^n}{1 + t^n} dt = \int_0^1 t \frac{t^{n-1}}{1 + t^n} dt$$

Par intégration par parties,

$$\ell - I_n = \frac{\ln 2}{n} - \frac{1}{n} \int_0^1 \ln(1 + t^n) dt$$

Puisque

$$\left| \int_0^1 \ln(1+t^n) \mathrm{d}t \right| \leqslant \int_0^1 t^n \mathrm{d}t = \frac{1}{n+1}$$

on peut affirmer $\ell - I_n \sim \frac{\ln 2}{n}$.

c) Pour $y \in (0, 1)$,

$$\frac{\ln(1+y)}{y} = \sum_{k=0}^{+\infty} \frac{(-1)^k y^k}{k+1}$$

Par convergence de la série des intégrales des valeurs absolues,

$$\int_0^1 \frac{\ln(1+y)}{y} \, \mathrm{d}y = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(k+1)^2}$$

Sans peine, $\sum_{k=0}^{+\infty} \frac{(-1)^k}{(k+1)^2} = \frac{\pi^2}{12}$ sachant $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

d) Par le changement de variable C^1 strictement croissant $y = t^n$

$$\int_0^1 \ln(1+t^n) \, \mathrm{d}t = \frac{1}{n} \int_0^1 \frac{\ln(1+y)}{y^{\frac{n-1}{n}}} \, \mathrm{d}y$$

Par convergence dominée (domination par sa limite simple),

$$\int_0^1 \frac{\ln(1+y)}{y^{\frac{n-1}{n}}} \, \mathrm{d}y \to \int_0^1 \frac{\ln(1+y)}{y} \, \mathrm{d}y = \frac{\pi^2}{12}$$

Ainsi,

$$\ell - I_n = \frac{\ln 2}{n} - \frac{\pi^2}{12n^2} + o\left(\frac{1}{n^2}\right)$$

puis

$$I_n = 1 - \frac{\ln 2}{n} + \frac{\pi^2}{12n^2} + o\left(\frac{1}{n^2}\right)$$

Exercice 50 : [énoncé]

a) On a

$$|I_n - 1| = \int_0^1 \frac{t^n}{1 + t^n} dt \le \int_0^1 t^n dt = \frac{1}{n+1} \to 0$$

donc $I_n \to \ell = 1$.

b) Par intégration par parties

$$I_n - 1 = -\frac{\ln 2}{n} + \frac{1}{n} \int_0^1 \ln(1 + t^n) dt$$

Or

$$0 \leqslant \int_0^1 \ln(1+t^n) \, dt \leqslant \int_0^1 t^n \, dt \to 0$$

donc

$$I_n = 1 - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

b) On a

$$\ln(1+t^n) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} t^{nk}$$

Par convergence de la série des intégrales des valeurs absolues, on obtient la relation proposée.

c) On a

$$n\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(nk+1)} - \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2} = \sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2(nk+1)}$$

avec

$$\left| \sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2 (nk+1)} \right| \le \frac{1}{n} \sum_{k=1}^{+\infty} \frac{1}{k^2} \to 0$$

donc

$$n \int_0^1 \ln(1+t^n) dt \to \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2}$$

avec

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2} = \frac{\pi^2}{12}$$

car on sait

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

Finalement

$$I_n = 1 - \frac{\ln 2}{n} + \frac{\pi^2}{12n^2} + o\left(\frac{1}{n^2}\right)$$

Exercice 51 : [énoncé]

a) Par la règle de d'Alembert la série converge pour tout $(s, \lambda) \in \mathbb{R}^{+\star} \times \mathbb{C}$. $\Delta_{\lambda} : [0; +\infty[$.

b)

$$F_{\lambda}(s) = \frac{1}{s} \left(1 + \sum_{n=1}^{+\infty} \frac{\lambda^n}{(s+1)\dots(s+n)} \right)$$

Or

$$\left|1 + \sum_{n=1}^{+\infty} \frac{\lambda^n}{(s+1)\dots(s+n)}\right| \leqslant \sum_{n=0}^{+\infty} \frac{\left|\lambda\right|^n}{n!} = e^{|\lambda|}$$

donc $F_{\lambda}(s) \xrightarrow[s \to +\infty]{} 0$.

c) Puisque

$$\left| \frac{\lambda^n}{(s+1)\dots(s+n)} \right| \leqslant \frac{\lambda^n}{n!}$$

il y a converge normale sur \mathbb{R}^+ de la série des fonctions continues $s\mapsto \frac{\lambda^n}{(s+1)\dots(s+n)}$. Ceci permet d'affirmer

$$1 + \sum_{n=1}^{+\infty} \frac{\lambda^n}{(s+1)\dots(s+n)} \xrightarrow[s \to 0]{} \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} = e^{\lambda}$$

et donc

$$F_{\lambda}(s) \underset{s \to 0^{+}}{\sim} \frac{\mathrm{e}^{\lambda}}{s}$$

d) Par intégrations par parties successives :

$$\int_0^1 (1-y)^{s-1} y^n \, \mathrm{d}y = \frac{n!}{s(s+1)\dots(s+n)}$$

e)

$$F_{\lambda}(s) = \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} \int_0^1 (1-y)^{s-1} y^n \, dy$$

Par convergence de la série des intégrales des valeurs absolues, on peut échanger somme et intégrale :

$$F_{\lambda}(s) = \int_0^1 e^{\lambda y} (1-y)^{s-1} dy$$

Exercice 52 : [énoncé] La série $\sum a_p \frac{t^p}{p!}$ est convergente car

$$\left| a_p \frac{t^p}{p!} \right| \leqslant \|(a_n)\|_{\infty} \frac{t^p}{p!}$$

De plus sa somme est continue car on peut aisément établir la convergence normale sur tout segment.

Enfin

$$\left| \sum_{p=n}^{+\infty} a_p \frac{t^p}{p!} \right| \le \|(a_n)\|_{\infty} e^t$$

permet d'assurer l'existence de l'intégrale étudiée.

Posons

$$f_p(t) = a_p \frac{t^p}{p!} e^{-2t}$$

La série de fonction $\sum f_p$ convergence simplement.

Les fonctions f_p et $\sum_{p=n}^{+\infty} f_p$ sont continues par morceaux.

Les fonctions f_p sont intégrables sur $[0, +\infty[$ et

$$\int_0^{+\infty} |f_p(t)| \, \mathrm{d}t = \frac{|a_p|}{2^{p+1}} = O\left(\frac{1}{2^{p+1}}\right)$$

est terme générale d'une série convergente.

Par le théorème d'intégration terme à terme de Fubini, on obtient

$$\int_0^{+\infty} e^{-2t} \left(\sum_{p=n}^{+\infty} a_p \frac{t^p}{p!} \right) dt = \sum_{p=n}^{+\infty} \frac{a_p}{2^{p+1}}$$

Enfin, cette expression tend vers 0 en tant que reste d'une série convergente.

Exercice 53 : [énoncé]

On sait que la fonction ζ est continue.

$$\int_{2}^{+\infty} (\zeta(x) - 1) \, \mathrm{d}x = \int_{2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^{x}} \, \mathrm{d}x$$

avec

$$\int_{2}^{+\infty} \frac{\mathrm{d}x}{n^x} = \frac{1}{n^2 \ln n}$$

La convergence de la série des intégrales des valeurs absolues assure la convergence de l'intégrale du premier membre et permet de permuter intégrale et somme. On obtient alors

$$\int_{2}^{+\infty} (\zeta(x) - 1) \, \mathrm{d}x = \sum_{n=2}^{+\infty} \frac{1}{n^2 \ln n}$$

Exercice 54 : [énoncé]

a) Posons

$$f_n(x) = \left(\cos\left(\frac{\pi}{2}\sin x\right)\right)^n$$

Les fonctions f_n sont continues par morceaux et la suite de fonctions (f_n) converge simplement vers la fonction nulle sur $[0, \pi/2]$, elle-même continue par morceaux. Enfin, on a la domination

$$|f_n(x)| \leqslant 1 = \varphi(x)$$

avec φ évidemment intégrable sur $[0, \pi/2]$. Par convergence dominée, on obtient

$$u_n \to 0$$

b) Par l'absurde, si $\sum u_n$ converge alors, on peut appliquer un théorème d'intégration terme à terme à la série de fonctions $\sum f_n$. En effet, les fonctions f_n sont continues par morceaux, la série de fonctions $\sum f_n$ converge simplement sur $[0, \pi/2]$ vers la fonction

$$f: x \mapsto \frac{1}{1 - \cos\left(\frac{\pi}{2}\sin x\right)}$$

elle-même continue par morceaux. Enfin les fonctions f_n sont intégrables sur $[0,\pi/2[$ et l'hypothèse de travail absurde signifie la convergence de la série $\sum \int_{[0,\pi/2[} |f_n|.$

Par théorème d'intégration terme à terme, on obtient

$$\sum_{n=0}^{+\infty} u_n = \int_0^{\pi/2} \frac{1}{1 - \cos(\frac{\pi}{2}\sin x)} \, \mathrm{d}x$$

avec convergence de l'intégrale. Or, quand $x \to 0^+$

$$\frac{1}{1 - \cos\left(\frac{\pi}{2}\sin x\right)} \sim \frac{8}{\pi^2 x^2}$$

et donc l'intégrale introduite diverge. C'est absurde. On en déduit que la série $\sum u_n$ diverge.

Exercice 55 : [énoncé]

On a $u_n \ge v_n = \int_0^{\pi/2} e^{-t} \cos^{2n} t \, dt$.

Si la série numérique $\sum u_n$ converge alors, par comparaison de série à termes positifs, la série $\sum v_n$ converge aussi. Par le théorème d'intégration terme à terme de Fubini, il y a alors intégrabilité sur $[0, \pi/2]$ de la fonction

$$\sum_{n=0}^{+\infty} e^{-t} \cos^{2n} t = \frac{e^{-t}}{1 - \cos^2 t} = \frac{e^{-t}}{\sin^2 t}$$

Or quand $t \to 0^+$

$$\frac{\mathrm{e}^{-t}}{\sin^2 t} \sim \frac{1}{t^2}$$

qui n'est pas intégrable sur $[0, \pi/2]$.

C'est absurde, on en conclut que la série $\sum u_n$ diverge.

Exercice 56: [énoncé]

- a) La fonction $t \mapsto \frac{1}{(1+t^x)^n}$ est définie et continue par morceaux sur $]0, +\infty[$.
- $\operatorname{Cas} x < 0$:
- $\frac{1}{(1+t^x)^n}\xrightarrow[t\to+\infty]{}1$ donc la fonction n'est pas intégrable.

Cas x = 0:

 $\frac{1}{(1+t^x)^n}\xrightarrow[t\to+\infty]{}\frac{1}{2}.$ Même conclusion.

 $\operatorname{Cas} x > 0$

Quand $t \to 0^+$, $\frac{1}{(1+t^x)^n} \to 1$ et quand $t \to +\infty$, $\frac{1}{(1+t^x)^n} \sim \frac{1}{t^{nx}}$ donc la fonction est intégrable sur $]0, +\infty[$ si, et seulement si, nx > 1.

b) Pour t > 0, on remarque que

$$\sum_{n=1}^{+\infty} \frac{1}{(1+t^x)^n} = \frac{1}{t^x}$$

Par l'absurde, si $\sum I_n(x)$ converge, on peut appliquer un théorème d'interversion somme et intégrale assurant que $t\mapsto \frac{1}{t^x}$ est intégrable sur $]0,+\infty[$. C'est absurde. On conclut que $\sum I_n(x)$ diverge.

Par intégration par parties avec deux convergences

$$I_n(2) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^n} = \left[\frac{t}{(1+t^2)^n}\right]_0^{+\infty} + \int_0^{+\infty} \frac{2nt^2}{(1+t^2)^{n+1}} \, \mathrm{d}t = 2n \int_0^{+\infty} \frac{t^2 \text{ Exercice 58 : [\'enonc\'e]}}{(1+t^2)^{n+3}} \, \mathrm{d}\theta \text{ osons } u_n(t) = 1/(1+t^3)^n \text{ d\'efinie sur }]0, +\infty[.$$

Or

$$I_n(2) - I_{n+1}(2) = \int_0^{+\infty} \frac{t^2 dt}{(1+t^2)^{n+1}}$$

donc

$$I_{n+1}(2) = \frac{2n-1}{2n}I_n(2)$$

On en déduit

$$I_{n+1}(2) = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$$

 $car I_1(2) = \pi/2$.

Notons que par le changement de variable $t = \tan u$, on pouvait aussi transformer $I_n(2)$ en une intégrale de Wallis.

Exercice 57: [énoncé]

a) Posons $f_n(t) = 1/(1+t^3)^n$ définie sur [0,1].

Les fonctions f_n sont continues par morceaux et la suite (f_n) converge simplement sur [0, 1] vers la fonction nulle, elle-même continue par morceaux. De plus

$$\forall n \geqslant 1, \forall t \in [0, 1], |f_n(t)| \leqslant \varphi(t)$$

avec $\varphi: t \mapsto 1/(1+t^3)$ intégrable sur [0,1].

Par application du théorème de convergence dominée, on obtient $u_n \to 0$ b) Les fonctions f_n sont continues par morceaux et la série de fonctions $\sum f_n$ converge simplement sur [0,1] vers la fonction S continue par morceaux donnée par

$$S(t) = \sum_{n=0}^{+\infty} \frac{1}{(1+t^3)^n} = \frac{1}{1-\frac{1}{1+t^3}} = \frac{1+t^3}{t^3}$$

Si, par l'absurde, la série $\sum u_n$ converge, on est dans la situation où la série de terme général $\int_{[0,1]} |f_n(t)| dt$ converge et l'on peut appliquer un théorème d'intégration terme à terme affirmant :

$$S$$
 est intégrable sur $]0,1]$ et $\int_{]0,1]} S(t) dt = \sum_{n=1}^{+\infty} \int_0^1 f_n(t) dt$

Or ceci est absurde car la fonction S n'est pas intégrable sur [0,1]! On en déduit que la série $\sum u_n$ diverge.

Les fonctions u_n sont continues par morceaux et la suite (u_n) converge simplement vers la fonction nulle sur $]0,+\infty[$, elle-même continue par morceaux. De plus

$$\forall n \geqslant 1, \forall t \in]0, +\infty[, |u_n(t)| \leqslant \varphi(t)]$$

avec $\varphi: t\mapsto 1/(1+t^3)$ intégrable sur $[0,+\infty[$ et donc aussi sur $]0,+\infty[$. Par application du théorème de convergence dominée sur]0,1] et sur $[1,+\infty[$, on obtient

$$U_n \to 0$$
 et $V_n \to 0$

b) Les fonctions u_n sont continues par morceaux et la série de fonctions $\sum u_n$ converge simplement sur]0,1] vers la fonction U continue par morceaux donnée par

$$U(t) = \sum_{n=1}^{+\infty} \frac{1}{(1+t^3)^n} = \frac{1}{1+t^3} \frac{1}{1-\frac{1}{1+t^3}} = \frac{1}{t^3}$$

Si, par l'absurde, la série $\sum U_n$ converge, on est dans la situation où la série de terme général $\int_{]0,1]} |u_n(t)| dt$ converge et l'on peut appliquer un théorème d'intégration terme à terme affirmant :

$$U$$
 est intégrable sur $]0,1]$ et $\int_{]0,1]}U(t)\,\mathrm{d}t=\sum_{n=1}^{+\infty}\int_0^1u_n(t)\,\mathrm{d}t$

Or ceci est absurde car la fonction U n'est pas intégrable sur]0,1]!On en déduit que la série $\sum U_n$ diverge.

En revanche, la série $\sum V_n$ est à termes positifs et

$$\sum_{k=1}^{n} V_k \leqslant \int_{1}^{+\infty} \sum_{k=1}^{n} \frac{1}{(1+t^3)^n} \, \mathrm{d}t \leqslant \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^3} = \frac{1}{2}$$

Les sommes partielles de la série à termes positifs $\sum V_n$ étant majorées, on peut affirmer que la série $\sum V_n$ converge.

Exercice 59 : [énoncé]

- a) Quand $x \to 0^+$, $f_n(x) \sim \frac{2x}{nx} \to \frac{2}{n}$ donc $\alpha = \frac{2}{n}$ est l'unique valeur pour laquelle f est continue en 0.
- b) f_n est continue sur $[0, +\infty[$ et quand $x \to +\infty, f_n(x) \sim \frac{e^x}{e^{nx}} \to 0$ donc f_n est bornée sur \mathbb{R}^+ .

On peut envisager une argumentation plus détaillée :

- puisque f converge en $+\infty$, il existe $A\geqslant 0$ tel que f est bornée sur $[A,+\infty[\,;$
- puisque f est continue, f est bornée sur [0, A];
- et finalement f est bornée sur la réunion de ces deux intervalles par la plus grande des deux bornes.
- c) f_n est définie et continue sur $[0, +\infty[$ et quand $x \to +\infty,$ $x^2 f_n(x) \sim x^2 e^{-(n-1)x} \to 0$ donc $f_n(x) = o(1/x^2)$ et donc f est intégrable sur $[0, +\infty[$.

d) Pour x > 0,

$$\frac{2\sinh x}{e^{nx} - 1} = 2\sinh x \sum_{k=1}^{+\infty} e^{-nkx} = \sum_{k=1}^{+\infty} \left(e^{-(nk-1)x} - e^{-(nk+1)x} \right)$$

$$\int_0^{+\infty} \left| e^{-(nk-1)x} - e^{-(nk+1)x} \right| dx = \frac{1}{nk-1} - \frac{1}{nk+1} = \frac{2}{n^2k^2 - 1} = O\left(\frac{1}{k^2}\right)$$

Par convergence de la série des intégrales des valeurs absolues, on peut sommer terme à terme et affirmer

$$\int_0^{+\infty} \frac{2\operatorname{sh} x}{\operatorname{e}^{nx} - 1} \, \mathrm{d}x = \sum_{k=1}^{+\infty} \int_0^{+\infty} \left(\operatorname{e}^{-(nk-1)x} - \operatorname{e}^{-(nk+1)x} \right) \, \mathrm{d}x = \sum_{k=1}^{+\infty} \frac{1}{nk-1} - \frac{1}{nk+1}$$

Pour n=2, la somme est facile à calculer.

Exercice 60: [énoncé]

- a) Par convergence dominée $I_n \to 0$.
- b) Par intégration par parties avec convergence du crochet

$$I_n = \left[\frac{t}{(1+t^3)^n}\right]_0^{+\infty} + 3n \int_0^{+\infty} \frac{t^3}{(1+t^3)^n} dt$$

avec

$$\int_0^{+\infty} \frac{t^3}{(1+t^3)^n} \, \mathrm{d}t = I_n - I_{n+1}$$

On en déduit la relation demandée.

c) La suite (u_n) a la nature de la série de terme général $v_n = u_{n+1} - u_n$. Or

$$v_n = \alpha \ln \left(1 + \frac{1}{n} \right) + \ln \left(1 - \frac{1}{3n} \right) = \frac{\alpha - 1/3}{n} + O\left(\frac{1}{n^2} \right)$$

La série de terme général v_n converge si, et seulement si, $\alpha = 1/3$.

d) Puisque $\ln (n^{1/3}I_n) \to \ell$, on obtient

$$I_n \sim \frac{\mathrm{e}^\ell}{\sqrt[3]{n}}$$

et donc

$$\frac{1}{n}I_n = O\left(\frac{1}{n^{4/3}}\right)$$

Par suite $\sum_{n\geqslant 1} \frac{1}{n} I_n$ converge.

On a

$$\sum_{n=1}^{+\infty} \frac{1}{n} I_n = \sum_{n=1}^{+\infty} \int_0^{+\infty} f_n(t) dt \text{ avec } f_n(t) = \frac{1}{n} \frac{1}{(1+t^3)^n}$$

Les fonctions f_n sont continues par morceaux sur $]0, +\infty[$, la série $\sum f_n$ converge simplement sur $]0, +\infty[$ et sa somme

$$\sum_{n=1}^{+\infty} f_n = \sum_{n=1}^{+\infty} \frac{1}{n} \frac{1}{(1+t^3)^n} = -\ln\left(1 - \frac{1}{1+t^3}\right)$$

est continue par morceaux.

Enfin, la série de terme général $\int_0^{+\infty} |f_n|$ converge.

On peut donc permuter somme et intégrale pour obtenir

$$\sum_{n=1}^{+\infty} \frac{1}{n} I_n = -\int_0^{+\infty} \ln\left(1 - \frac{1}{1+t^3}\right) dt = \frac{2}{\sqrt{3}} \pi$$

la dernière intégrale étant calculer par intégration par parties puis

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3} = \frac{2\pi}{3\sqrt{3}}$$

Exercice 61: [énoncé]

On a

$$\frac{1}{1+t^a} = \sum_{n=0}^{+\infty} (-1)^n t^{na} = \sum_{n=0}^{+\infty} f_n(t)$$

avec $f_n(t) = (-1)^n t^{na} \text{ sur }]0,1[$.

$$\int_0^1 |f_n(t)| \, \mathrm{d}t = \frac{1}{na+1}$$

et $\sum \frac{1}{na+1}$ diverge, le théorème d'intégration terme à terme de Fubini ne s'applique pas.

De plus la série de fonctions ne converge par uniformément sur [0,1] car elle ne converge pas simplement en 1...

Transitons alors par les sommes partielles et le théorème de convergence dominée. Posons

$$S_n: t \mapsto \sum_{k=0}^n (-1)^k t^{ka} = \frac{1 - (-1)^{n+1} t^{(n+1)a}}{1 + t^a}$$

Les fonctions S_n sont continues par morceaux et la suite (S_n) converge simplement sur [0,1[vers la fonction

$$S: t \mapsto \frac{1}{1+t^a}$$

elle-même continue par morceaux.

De plus

$$|S_n(t)| \leqslant \frac{2}{1+t^a} = \varphi(t)$$

avec φ intégrable sur [0,1[.

Par le théorème de convergence dominée, on obtient

$$\int_0^1 S_n(t) \, \mathrm{d}t \to \int_0^1 \frac{\mathrm{d}t}{1 + t^a}$$

Or

$$\int_0^1 S_n(t) dt = \sum_{k=0}^n \int_0^1 (-1)^k t^{ka} dt = \sum_{k=0}^n \frac{(-1)^k}{ka+1}$$

donc

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{na+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^a}$$

avec, en substance, la convergence de la série introduite.

Exercice 62: [énoncé]

Notons que l'intégrale étudiée est bien définie.

Pour tout $x \in [0, 1[$,

$$\frac{x^{\alpha-1}}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^{n+\alpha-1}$$

Le théorème d'intégration terme à terme ne pourra pas s'appliquer car ici

$$\sum \int_{[0,1]} |f_n| = \sum \frac{1}{n+\alpha} \text{ diverge}$$

Nous allons alors intégrer terme à terme en exploitant les sommes partielles. Posons

$$S_n: x \mapsto \sum_{k=0}^{n} (-1)^k x^{k+\alpha-1} = x^{\alpha-1} \frac{1 - (-1)^{n+1} x^{n+1}}{1+x}$$

Les fonctions S_n sont continues par morceaux et convergent simplement sur]0,1[vers la fonction

 $S: x \mapsto \frac{x^{\alpha - 1}}{1 + x}$

elle-même continue par morceaux.

De plus

$$|S_n(x)| \leqslant \frac{2x^{\alpha - 1}}{1 + x} = \varphi(x)$$

avec φ fonction intégrable sur]0,1[.

Par le théorème de convergence dominée, on obtient

$$\int_0^1 S_n(x) \, \mathrm{d}x \to \int_0^1 \frac{x^{\alpha - 1}}{1 + x} \, \mathrm{d}x$$

Or

$$\int_0^1 S_n(x) dx = \sum_{k=0}^n \int_0^1 (-1)^k x^{k+\alpha-1} dx = \sum_{k=0}^n \frac{(-1)^k}{k+\alpha}$$

et on peut donc conclure

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+\alpha} = \int_0^1 \frac{x^{\alpha-1}}{1+x} \, \mathrm{d}x$$

avec en substance la convergence de la série introduite.

Exercice 63: [énoncé]

a) Pour $t \in [0, 1[$, on peut écrire

$$\frac{t^{a-1}}{1+t^b} = \sum_{n=0}^{+\infty} (-1)^n t^{a+nb-1}$$

Posons

$$S_n: t \mapsto \sum_{k=0}^n (-1)^k t^{a+kb-1} = t^{a-1} \frac{1 - (-1)^{n+1} t^{(n+1)b}}{1 + t^b}$$

Les fonctions S_n sont continues par morceaux et la suite (S_n) converge simplement sur]0,1[vers la fonction

$$S: t \mapsto \frac{t^{a-1}}{1+t^b}$$

elle-même continue par morceaux.

De plus

$$|S_n(t)| \leqslant \frac{2t^{a-1}}{1+t^b} = \varphi(t)$$

avec φ intégrable sur]0,1[.

Par convergence dominée, on obtient

$$\int_0^1 S_n(t) \, dt \to \int_0^1 \frac{t^{a-1}}{1+t^b} \, dt$$

avec convergence de l'intégrale introduite.

Or

$$\int_0^1 S_n(t) dt = \sum_{k=0}^n \int_0^1 (-1)^k t^{a+kb-1} = \sum_{k=0}^n \frac{(-1)^k}{a+kb}$$

donc

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb} = \int_0^1 \frac{t^{a-1}}{1+t^b} \, \mathrm{d}t$$

avec convergence de la série introduite..

b) Après calculs

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^3} = \frac{1}{3} \ln 2 + \frac{\pi}{3\sqrt{3}}$$

Exercice 64: [énoncé]

Soit $f_n:[0,+\infty[\to\mathbb{R}]$ la fonction définie par

$$f_n(t) = \frac{(-1)^{n-1}}{n^2 + t^2}$$

On observe $||f_n||_{\infty} = 1/n^2$ et donc la série des fonctions f_n converge normalement, donc uniformément sur $[0, +\infty[$. Puisque chaque f_n est continue, on peut affirmer que la fonction

$$S: t \mapsto \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2 + t^2}$$

est définie et continue sur $[0, +\infty[$.

Les fonctions f_n sont intégrables sur \mathbb{R}^+ et

$$\int_{0}^{+\infty} |f_n(t)| \, \mathrm{d}t = \frac{\pi}{2} \int_{0}^{+\infty} \frac{\mathrm{d}t}{n^2 + t^2} = \frac{\pi}{2n}$$

Puisque la série $\sum \int |f_n|$ diverge, on ne peut intégrer terme à terme par le théorème de Fubini.

Corrections

Raisonnons alors par les sommes partielles en exploitant le théorème de convergence dominée.

Posons

$$S_n: t \mapsto \sum_{k=1}^n \frac{(-1)^{k-1}}{k^2 + t^2}$$

Les fonctions S_n sont continues par morceaux sur $[0, +\infty[$ et converge simplement vers la fonction S elle-même continue par morceaux.

De plus, le critère spécial des séries alternées s'appliquant, on a

$$0 \leqslant S_n(t) \leqslant \frac{1}{1+t^2} = \varphi(t)$$

avec φ intégrable sur $[0, +\infty[$.

Par le théorème de convergence dominée, on obtient

$$\int_0^{+\infty} S_n(t) dt \to \int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2 + t^2} dt$$

Or

$$\int_0^{+\infty} S_n(t) dt = \sum_{k=1}^n \int_0^{+\infty} \frac{(-1)^{n-1}}{n^2 + t^2} dt = \frac{\pi}{2} \sum_{k=1}^n \frac{(-1)^{n-1}}{n}$$

donc

$$\frac{\pi}{2} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \int_0^{+\infty} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2 + t^2} dt$$

avec convergence de la série introduite.

Exercice 65 : [énoncé]

Posons

$$f_n: x \mapsto (-1)^n e^{-a_n x}$$

Les fonctions f_n sont continues et en vertu du critère spécial des séries alternées, on peut affirmer que la série $\sum f_n$ converge simplement sur $]0, +\infty[$. De plus, par le critère spécial des séries alternées, on a

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} (-1)^k e^{-a_k x} \right| \le e^{-a_{n+1} x}$$

ce qui permet d'établir que la série $\sum f_n$ converge uniformément sur tout segment de $]0,+\infty[$. On en déduit que la fonction

$$S: x \mapsto \sum_{n=0}^{+\infty} (-1)^n e^{-a_n x}$$

est définie et continue sur $]0, +\infty[$.

Pour intégrer terme à terme, nous allons exploiter les sommes partielles et le théorème de convergence dominée. Posons

$$S_n: x \mapsto \sum_{k=0}^n (-1)^k e^{-a_k x}$$

Les fonctions S_n sont continues par morceaux et la suite (S_n) converge simplement vers S elle-même continue par morceaux.

En vertu du critère spécial des séries alternées, on a

$$0 \le S_n(x) \le S_0(x) = e^{-a_0 x} = \varphi(x)$$

avec φ intégrable.

Par convergence dominée, on obtient

$$\int_0^{+\infty} S_n(x) \, \mathrm{d}x \to \int_0^{+\infty} S(x) \, \mathrm{d}x$$

avec convergence de l'intégrale introduite.

Or

$$\int_0^{+\infty} S_n(x) dx = \sum_{k=0}^n \int_0^{+\infty} (-1)^k e^{-a_k x} dx = \sum_{k=0}^n \frac{(-1)^k}{a_k}$$

donc

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{a_n} = \int_0^{+\infty} \sum_{n=0}^{+\infty} (-1)^n e^{-a_n x} dx$$

avec en substance convergence de la série écrite.

Exercice 66 : [énoncé]

a) La fonction $t \mapsto \frac{t^{x-1}}{1+t}$ est définie et continue par morceaux sur]0,1].

Quand $t \to 0^+$, $\frac{t^{x-1}}{1+t} \sim t^{x-1} = \frac{1}{t^{1-x}}$ avec 1 - x < 1

donc $t \mapsto \frac{t^{x-1}}{1+t}$ est intégrable sur]0,1].

b) Posons $g(x,t) = \frac{t^{x-1}}{1+t}$ sur $]0, +\infty[\times]0, 1]$.

 $t \mapsto g(x,t)$ est continue par morceaux sur]0,1],

 $x \mapsto g(x,t)$ est continue sur $]0,+\infty[$.

Soit $[a,b] \subset \mathbb{R}^{+\star}$,

$$\forall (x,t) \in [a,b] \times]0,1], |g(x,t)| \leqslant \frac{t^{a-1}}{1+t} \leqslant t^{a-1} = \varphi_a(t)$$

avec φ_a intégrable sur [0,1].

Par domination sur tout segment de $]0, +\infty[$, on peut affirmer que f est continue sur $]0, +\infty[$.

c) Pour x > 0

$$f(x) + f(x+1) = \int_0^1 t^{x-1} dt = \frac{1}{x}$$

d) Quand $x \to 0^+$, $f(x+1) \to f(1)$ donc f(x+1) = o(1/x) puis $f(x) \sim 1/x$. Quand $x \to +\infty$,

$$0 \leqslant f(x) \leqslant \int_0^{+\infty} t^{x-1} dt = \frac{1}{x} \to 0$$

donc $f(x) \xrightarrow[x \to +\infty]{} 0$.

Exercice 67: [énoncé]

a) Posons $f:[0,+\infty[\times[0,+\infty[\to\mathbb{R}$ définie par

$$f(x,t) = \frac{e^{-t}}{1+tx}$$

Pour chaque $x \in [0, +\infty[$, la fonction $t \mapsto f(x, t)$ est continue par morceaux sur $[0, +\infty[$ et intégrable car

$$t^2 f(x,t) \xrightarrow[t \to +\infty]{} 0$$

On en déduit la convergence de l'intégrale impropre définissant F(x).

b) Pour chaque $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est indéfiniment dérivable et

$$\frac{\partial^n f}{\partial x^n}(x,t) = \frac{(-1)^n n!}{(1+tx)^{n+1}} t^n e^{-t}$$

La fonction $x \mapsto \frac{\partial^n f}{\partial x^n}(x,t)$ est continue, la fonction $t \mapsto \frac{\partial^n f}{\partial x^n}(x,t)$ est continue par morceaux et

$$\forall (x,t) \in [0,+\infty[\times [0,+\infty[,\left|\frac{\partial^n f}{\partial x^n}(x,t)\right| \leqslant n!t^n e^{-t} = \varphi_n(t)$$

avec $\varphi_n:[0,+\infty[$ $\to \mathbb{R}$ continue par morceaux et intégrable.

Par domination, on peut alors affirmer que F est de classe \mathcal{C}^{∞} sur $[0, +\infty[$ et

$$\forall n \in \mathbb{N}, \forall x \in [0, +\infty[, F^{(n)}(x) = (-1)^n n! \int_0^{+\infty} t^n e^{-t} dt$$

c) En particulier

$$F^{(n)}(0) = (-1)^n (n!)^2$$

Exercice 68: [énoncé]

Considérons $f:(x,t)\mapsto \frac{\mathrm{e}^{-xt}}{1+t^2}$ définie sur $]0,+\infty[\times[0,+\infty[$ Pour tout $x\in]0,+\infty[$, $t\mapsto f(x,t)$ est continue par morceaux sur $[0,+\infty[$ et intégrable car

$$|f(x,t)| \leqslant \frac{1}{1+t^2}$$

Pour $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est de classe C^2 sur $]0, +\infty[$ et

$$\frac{\partial f}{\partial x}(x,y) = -t \frac{e^{-xt}}{1+t^2} et \frac{\partial^2 f}{\partial x^2}(x,t) = t^2 \frac{e^{-xt}}{1+t^2}$$

Pour tout $x \in]0, +\infty[$, la fonctions $t \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue par morceaux et intégrable.

La fonction $\frac{\partial^2 f}{\partial x^2}$ est continue en x, continue par morceaux en t. Soit $[a,b] \subset]0,+\infty[$. Sur $[a,+\infty[\times[0,+\infty[$, on a

$$\left| \frac{\partial^2 f}{\partial x^2}(x,t) \right| \leqslant e^{-at}$$

avec $\varphi: t \mapsto e^{-at}$ continue par morceaux et intégrable sur $[0, +\infty[$. Par domination sur tout compact, la fonction F est de classe \mathcal{C}^2 sur $\mathbb{R}^{+\star}$ et

$$F''(x) + F(x) = \int_0^{+\infty} t^2 \frac{e^{-xt}}{1+t^2} dt + \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$$

Enfin $F \xrightarrow{+\infty} 0$ car

$$|f(x)| \leqslant \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt \leqslant \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

Exercice 69: [énoncé]

a) $g:(x,t)\mapsto \frac{\mathrm{e}^{-xt^2}}{1+t^2}$ est définie continue en x et continue par morceaux en t sur $\mathbb{R}^+\times[0,+\infty[$ avec

$$|g(x,t)| \leqslant \frac{1}{1+t^2} = \varphi(t)$$

et φ intégrable sur $[0, +\infty[$.

Par domination, on peut affirmer que f est définie et continue sur \mathbb{R}^+ .

b) $\frac{\partial g}{\partial x}$ existe et est continue en x et continue par morceaux en t sur $\mathbb{R}^{+\star} \times [0, +\infty[$. Pour $x \in [a, b] \subset \mathbb{R}^{+\star}$ on a

$$\left| \frac{\partial g}{\partial x}(x,t) \right| = \left| -\frac{t^2}{1+t^2} e^{-xt^2} \right| \leqslant e^{-at^2} = \psi(t)$$

avec ψ intégrable sur \mathbb{R}^+ .

Par domination sur tout segment de $\mathbb{R}^{+\star}$, on peut affirmer que f est de classe \mathcal{C}^1 sur $]0, +\infty[$ avec

$$f'(x) = -\int_0^{+\infty} \frac{t^2 e^{-xt^2}}{1+t^2} dt$$

Enfin,

$$f(x) - f'(x) = \int_0^{+\infty} e^{-xt^2} dt = \frac{1}{u = \sqrt{x}t} \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2\sqrt{x}}$$

Exercice 70 : [énoncé]

a) $t \mapsto \frac{1}{1+t^3}$ est intégrable sur \mathbb{R}^+ donc g(0) existe.

 $u \mapsto 1/u$ est une bijection \mathcal{C}^1 entre $\mathbb{R}^{+\star}$ et $\mathbb{R}^{+\star}$.

On peut réaliser le changement de variable t=1/u qui donne

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3} = \int_0^{+\infty} \frac{u \, \mathrm{d}u}{1+u^3}$$

Donc

$$2g(0) = \int_0^{+\infty} \frac{dt}{t^2 - t + 1} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2t - 1}{\sqrt{3}} \right]_0^{+\infty} = \frac{4\pi}{3\sqrt{3}}$$

puis

$$g(0) = \frac{2\pi}{3\sqrt{3}}$$

- b) La fonction g est paire. Pour $0 \le x \le x'$, on a pour tout $t \ge 0$, $e^{-tx^2} \ge e^{-tx'^2}$ donc g est décroissante sur \mathbb{R}^+ .
- c) Pour x > 0,

$$0 \leqslant g(x) \leqslant \int_0^{+\infty} e^{-tx^2} dt = \frac{1}{x^2} \to 0$$

donc $\lim_{x \to +\infty} g(x) = 0$.

Exercice 71 : [énoncé]

a) Posons

$$g(x,t) = \frac{1}{1 + x^3 + t^3}$$

Pour tout $x \in \mathbb{R}^+$, la fonction $t \mapsto g(x,t)$ est définie, continue sur \mathbb{R}^+ et $g(x,t) \underset{+\infty}{\sim} 1/t^3$ donc f(x) existe.

b) $u \mapsto 1/u$ est un \mathcal{C}^1 difféomorphisme entre $\mathbb{R}^{+\star}$ et $\mathbb{R}^{+\star}$.

On peut réaliser le changement de variable t = 1/u qui donne

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3} = \int_0^{+\infty} \frac{u \, \mathrm{d}u}{1+u^3}$$

Donc

$$2f(0) = \int_0^{+\infty} \frac{dt}{t^2 - t + 1} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2t - 1}{\sqrt{3}} \right]_0^{+\infty} = \frac{4\pi}{3\sqrt{3}}$$

puis

$$f(0) = \frac{2\pi}{3\sqrt{3}}$$

c) $x \mapsto g(x,t)$ est continue sur \mathbb{R}^+ , $t \mapsto g(x,t)$ est continue par morceaux sur $[0,+\infty[$ avec

$$|g(x,t)| \leqslant \frac{1}{1+t^3} = \varphi(t)$$

et φ intégrable sur $[0, +\infty[$ donc f est continue.

Si $x \leq y$ alors $\forall t \in [0, +\infty[$, $g(y, t) \leq g(x, t)$ donc $f(y) \leq f(x)$. Ainsi f est décroissante.

Rq : On peut aussi montrer f de classe \mathcal{C}^1 mais cela alourdit la démonstration d) f tend vers 0 en $+\infty$ car

$$0 \leqslant f(x) \leqslant \int_0^{+\infty} \frac{\mathrm{d}t}{x^3 + t^3} = \frac{1}{t = xu} \frac{1}{x^2} \int_0^{+\infty} \frac{\mathrm{d}u}{1 + u^3} \underset{x \to +\infty}{\to} 0$$

Exercice 72: [énoncé]

a) Posons $u: \mathbb{R} \times [0, \pi] \to \mathbb{R}$ la fonction définie par

$$u(x,\theta) = \cos(x\sin\theta)$$

La fonction u admet des dérivées partielles

$$\frac{\partial u}{\partial x}(x,\theta) = -\sin\theta\sin(x\sin\theta)$$
 et $\frac{\partial^2 u}{\partial x^2}(x,\theta) = -\sin^2\theta\cos(x\sin\theta)$

Pour chaque $x \in \mathbb{R}$, $\theta \mapsto u(x,\theta)$ et $\theta \mapsto \frac{\partial u}{\partial x}(x,\theta)$ sont continues par morceaux sur $[0,\pi]$ donc intégrable.

De plus $\frac{\partial^2 u}{\partial x^2}$ est continue en x et continue par morceaux en θ et

$$\forall x \in \mathbb{R}, \forall \theta \in [0, \pi], \left| \frac{\partial^2 u}{\partial x^2}(x, \theta) \right| \leqslant 1 = \varphi(\theta)$$

L'application φ étant intégrable sur $[0, \pi]$, on peut affirmer par domination sur tout segment que la fonction f est de classe \mathcal{C}^2 avec

$$f'(x) = -\frac{1}{\pi} \int_0^{\pi} \sin \theta \cos(x \sin \theta) d\theta \text{ et } f''(x) = -\frac{1}{\pi} \int_0^{\pi} \sin^2 \theta \cos(x \sin \theta) d\theta$$

b) On remarque

$$f''(x) = \frac{1}{\pi} \int_0^{\pi} (\cos^2 \theta - 1) \cos(x \sin \theta) d\theta$$

et donc

$$x(f''(x) + f(x)) = \frac{1}{\pi} \int_0^{\pi} \cos \theta \cdot (x \cos \theta \cos(x \sin \theta)) d\theta$$

Par intégration par parties, on obtient

$$x(f''(x) + f(x)) = -f'(x)$$

On en déduit que f est solution de l'équation différentielle linéaire d'ordre 2

$$xy''(x) + y'(x) + xy(x) = 0$$

c) Pour tout $x \in \mathbb{R}$, on peut écrire

$$f(x) = \frac{1}{\pi} \int_0^{\pi} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} (\sin \theta)^{2n} x^{2n} d\theta$$

Puisque la série $\sum \frac{x^{2n}}{(2n)!}$ est convergente, un argument de convergence normale permet une intégration terme à terme et donc

$$f(x) = \sum_{n=0}^{+\infty} a_n x^{2n} \text{ avec } a_n = \frac{(-1)^n}{(2n)!\pi} \int_0^{\pi} (\sin \theta)^{2n} d\theta$$

d) Nous pourrions calculer l'intégrale définissant a_n car c'est une intégrale de Wallis, mais puisqu'on nous demande d'exploiter l'équation différentielle... Pour tout $x \in \mathbb{R}$, par dérivation d'une série entière

$$f'(x) = \sum_{n=0}^{+\infty} (2n+2)a_{n+1}x^{2n+1} \text{ et } f''(x) = \sum_{n=0}^{+\infty} (2n+2)(2n+1)a_{n+1}x^{2n}$$

L'équation xf''(x) + f'(x) + xf(x) = 0 donne alors

$$\sum_{n=0}^{+\infty} \left((2n+2)^2 a_{n+1} + a_n \right) x^{2n+1} = 0$$

Par unicité des coefficients d'un développement en série entière de rayon de convergence > 0, on obtient

$$(2n+2)^2 a_{n+1} + a_n = 0$$

Sachant $a_0 = 1$, on conclut

$$a_n = \frac{(-1)^n}{2^{2n}(n!)^2}$$

Exercice 73: [énoncé]

a) Introduisons $g(x,t) = \frac{\cos t}{t+x}$ définie sur $\mathbb{R}^{+\star} \times [0,\pi/2]$. La fonction g est continue et x et continue par morceaux en t. Pour $[a,b] \subset \mathbb{R}^{+\star}$, on a

$$\forall (x,t) \in [a,b] \times [0,\pi/2], |g(x,t)| \leqslant \frac{1}{t+a} = \varphi(t)$$

La fonction φ est intégrable sur $[0, \pi/2]$.

Par domination sur tout segment, on peut affirmer que f est continue sur $\mathbb{R}^{+\star}$. Aussi, pour $0 < x \leq x'$, on a

$$\forall t \in [0, \pi/2], g(x', t) \leqslant g(x, t)$$

En intégrant, on obtient $f(x') \leq f(x)$. La fonction f est donc décroissante. On aurait pu aussi établir que f est de classe C^1 et étudier le signe de sa dérivée. b) Quand $x \to +\infty$,

$$0 \leqslant f(x) \leqslant \int_0^{\pi/2} \frac{1}{x+t} dt \to 0$$

Quand $x \to 0^+$

$$f(x) \geqslant \int_0^{\pi/4} \frac{\cos t}{t+x} dt \geqslant \frac{\sqrt{2}}{2} \left[\ln(t+x) \right]_0^{\pi/4} = \frac{\sqrt{2}}{2} \ln \frac{x+\pi/4}{x} \to +\infty$$

c) $\frac{1}{x + \pi/2} \int_0^{\pi/2} \cos t \, dt \leqslant f(x) \leqslant \frac{1}{x} \int_0^{\pi/2} \cos t \, dt$

donc

$$f(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$$

On sait:

$$\forall 0 \leqslant t \leqslant \pi/2, \, 1 - \frac{1}{2}t^2 \leqslant \cos t \leqslant 1$$

donc

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{t+x} - \frac{1}{2} \int_0^{\pi/2} \frac{t^2 \, \mathrm{d}t}{t+x} \le f(x) \le \int_0^{\pi/2} \frac{\mathrm{d}t}{t+x}$$

Or

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{t+x} = \ln \frac{x + \pi/2}{x} \sim -\ln x$$

et

$$0 \leqslant \int_0^{\pi/2} \frac{t^2 dt}{t+x} \leqslant \int_0^{\pi/2} t dt = C = o(\ln x)$$

donc

$$f(x) \underset{x\to 0}{\sim} -\ln x$$

Exercice 74: [énoncé]

a) La fonction $t \mapsto (\sin t)^x$ est définie, continue et positive sur $]0, \pi/2]$. Quand $t \to 0^+$, $(\sin t)^x \sim t^x$ avec x > -1 donc $t \mapsto (\sin t)^x$ est intégrable sur $]0, \pi/2]$.

Ainsi f est définie et positive sur $]-1,+\infty[$

b) La fonction

$$\frac{\partial g}{\partial x}(x,t) = \ln(\sin t)(\sin t)^x$$

est définie, continue en x et continue par morceaux en t. Soit $[a,b] \subset]-1,+\infty[$. Sur $[a,b] \times]0,\pi/2]$

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \le \left| \ln(\sin t)(\sin t)^a \right| = \varphi(t)$$

avec φ est intégrable sur $[0, \pi/2]$ car pour α tel que $-a < \alpha < 1$,

$$t^{\alpha}\varphi(t) \sim t^{a+\alpha} \left| \ln(t) \right| \to 0$$

Par domination sur tout segment, f est de classe C^1 sur $]-1,+\infty[$ et

$$f'(x) = \int_0^{\pi/2} \ln(\sin t)(\sin t)^x dt \leqslant 0$$

Ainsi la fonction f est décroissante.

c) En intégrant par parties

$$f(x+2) = \int_0^{\pi/2} (\sin t)^x (1 - \cos^2 t) dt = f(x) - \left[\frac{(\sin t)^{x+1}}{x+1} \cos t \right]_0^{\pi/2} - \frac{1}{x+1} f(x+2)$$

et donc

$$f(x+2) = \frac{x+1}{x+2}f(x)$$

d) On a

$$\varphi(x+1) = (x+1)f(x+1)f(x) = xf(x-1)f(x) = \varphi(x)$$

et

$$\varphi(1) = f(0)f(1) = \pi/2$$

donc par récurrence

$$\forall n \in \mathbb{N}^{\star}, \varphi(n) = \pi/2$$

e) φ est continue et quand $x \to 0$,

$$\varphi(x) = \varphi(1+x) \to \varphi(1) = \pi/2$$

Or quand $x \to 0$,

$$f(x) \to f(0) = \pi/2$$

donc quand $x \to -1$,

$$f(x) = \frac{\varphi(x+1)}{(x+1)f(x+1)} \sim \frac{1}{x+1}$$

Rq: En fait on peut montrer que φ est une fonction constante.

Exercice 75: [énoncé]

a) Posons $u(x,t) = (\sin t)^x$ définie sur $\mathbb{R} \times [0,\pi/2]$.

Pour tout $x \in \mathbb{R}$, $t \mapsto u(x,t)$ est continue par morceaux sur $]0,\pi/2]$. On a

$$u(x,t) \underset{t\to 0^+}{\sim} t^x$$

donc $t \mapsto u(x,t)$ est intégrable sur $[0,\pi/2]$ si, et seulement si, x > -1.

De plus, la fonction $t \mapsto u(x,t)$ est positive et donc la convergence de l'intégrale équivaut à l'intégrabilité de la fonction.

En conclusion, l'intégrale existe si, et seulement si, x > -1.

b) u admet une dérivée partielle

$$\frac{\partial u}{\partial x}(x,t) = \ln(\sin t)(\sin t)^x$$

Celle-ci est continue en x et continue par morceaux en t.

Pour
$$[a, b] \subset]-1, +\infty[$$
, on a

$$\forall (x,t) \in [a,b] \times]0,\pi/2], \left| \frac{\partial u}{\partial x}(x,t) \right| \leqslant |\ln(\sin t)| (\sin t)^a = \varphi(t)$$

La fonction φ est intégrable car

$$\varphi(t) \underset{t \to 0^+}{\sim} |\ln t| \, |t^a| = o(t^\alpha) \text{ avec } \alpha \in]-1, a[$$

Par domination sur tout segment, on obtient f de classe C^1 avec

$$f'(x) = \int_0^{\pi/2} \ln(\sin t)(\sin t)^x dt \leqslant 0$$

c) Posons

$$\varphi(x) = (x+1)f(x)f(x+1)$$

Une intégration par parties avec

$$u'(t) = \sin t \text{ et } v(t) = (\sin t)^{x-1}$$

donne

$$\int_0^{\pi/2} (\sin t)^x dt = (x - 1) \left(\int_0^{\pi/2} (\sin t)^{x-2} dt - \int_0^{\pi/2} (\sin t)^x dt \right)$$

On en déduit

$$\varphi(x+1) = \varphi(x)$$

Montrons que cette fonction est en fait constante. Soit $a \in]-1,0[$. Pour tout $n \in \mathbb{N}, \varphi(a+n)=\varphi(a)$. En posant p=|a|, la décroissance de f donne

$$\varphi(a) = \varphi(a+n) \leqslant (a+n+1)f(p+n)f(p+n+1)$$

Or

$$(p+n+1)f(p+n)f(p+n+1) = \varphi(p+n) = \varphi(0)$$

et donc

$$(a+n+1)f(p+n)f(p+n+1) = \frac{a+n+1}{p+n+1}\varphi(0) \xrightarrow[n \to +\infty]{} \varphi(0)$$

De façon semblable, $\varphi(a)$ peut être minorée par une suite de limite $\varphi(0)$. On peut donc affirmer que φ est constante.

Exercice 76: [énoncé]

Etudions la fonction donnée par

$$f(x) = \int_0^{+\infty} \frac{\arctan(x/t)}{1+t^2}$$

Notons $u(x,t) = \frac{\arctan(x/t)}{1+t^2}$ définie sur $\mathbb{R}^+ \times]0, +\infty[$ $t \mapsto u(x,t)$ est continue par morceaux sur $]0, +\infty[$ pour chaque $x \in \mathbb{R}^+$ $x \mapsto u(x,t)$ est continue sur \mathbb{R}^+ pour chaque $t \in]0, +\infty[$ et

$$|u(x,t)| \leqslant \frac{\pi/2}{1+t^2} = \varphi(t)$$

avec φ fonction intégrable sur $]0, +\infty[$.

On en déduit que la fonction f est définie et continue sur \mathbb{R}^+ . $x \mapsto u(x,t)$ est dérivable sur $\mathbb{R}^{+\star}$ pour chaque $t \in]0,+\infty[$ et

$$\frac{\partial u}{\partial x}(x,t) = \frac{t}{(t^2 + x^2)(1+t^2)}$$

 $x \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue sur $\mathbb{R}^{+\star}$ pour chaque $t \in]0,+\infty[$ $t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$ pour chaque $x \in \mathbb{R}^{+\star}$ et

$$\left| \frac{\partial u}{\partial x}(x,t) \right| = \frac{1}{2x} \frac{1}{(1+t^2)}$$

 $\operatorname{car} 2tx \leqslant x^2 + t^2$. Soit $[a, b] \subset]0, +\infty[$

$$\forall (x,t) \in [a,b] \times]0, +\infty[, \left| \frac{\partial u}{\partial x}(x,t) \right| = \frac{1}{2a} \frac{1}{(1+t^2)} = \psi(t)$$

avec ψ fonction intégrable.

Par domination sur tout segment, on obtient f de classe C^1 sur $]0, +\infty[$ avec

$$f'(x) = \int_0^{+\infty} \frac{t}{(t^2 + x^2)(1 + t^2)} dt$$

Pour $x \neq 1$, on peut décomposer la fraction rationnelle définissant l'intégrande

$$\frac{t}{(1+t^2)(x^2+t^2)} = \frac{t}{(x^2-1)(1+t^2)} - \frac{t}{(x^2-1)(x^2+t^2)}$$

et on obtient alors

$$f'(x) = \frac{1}{x^2 - 1} \left[\frac{1}{2} \ln \left(\frac{1 + t^2}{x^2 + t^2} \right) \right]_0^{+\infty} = \frac{\ln x}{(x^2 - 1)}$$

Cette identité se prolonge en x=1 par un argument de continuité. On a alors

$$\int_0^x \frac{\ln t}{(t^2 - 1)} dt = \lim_{\varepsilon \to 0} \int_{\varepsilon}^x \frac{\ln t}{(t^2 - 1)} dt = \lim_{\varepsilon \to 0} f(x) - f(\varepsilon)$$

Corrections

47

Or f(0) = 0 et par continuité on parvient à

$$\int_0^x \frac{\ln t}{(t^2 - 1)} \, \mathrm{d}t = f(x)$$

Exercice 77: [énoncé]

a) Pour a > -1, on note $\Omega_a = \{z \in \mathbb{C}/\text{Re}(z) \geqslant a\}$. $t \mapsto \frac{t^z}{1+t}$ est continue par morceaux sur $]0,1], z \mapsto \frac{t^z}{1+t}$ est continue sur Ω et pour $z \in \Omega_a$,

$$\left| \frac{t^z}{1+t} \right| \leqslant \frac{t^a}{1+t} = \varphi(t)$$

avec φ intégrable sur [0,1] car $\varphi(t) \sim t^a$ quand $t \to 0^+$.

Par domination, on peut affirmer que f est définie et continue sur Ω_a . Ceci valant pour tout a > -1, on peut encore affirmer que f est définie et continue sur Ω .

b) On observe

$$f(x) + f(x+1) = \int_0^1 t^x dt = \frac{1}{x+1}$$

et par continuité

$$f(x+1) \xrightarrow[x \to -1]{} f(0)$$

donc

$$f(x) \underset{x \to -1}{\sim} \frac{1}{x+1}$$

c) Par intégration par parties

$$(z+1)f(z) = \frac{1}{2} + \int_0^1 \frac{t^{z+1}}{(1+t)^2} dt$$

Or

$$\left| \int_0^1 \frac{t^{z+1}}{(1+t)^2} \, \mathrm{d}t \right| \le \int_0^1 \left| t^{z+1} \right| \, \mathrm{d}t$$

avec

$$|t^{z+1}| = |\exp((z+1)\ln t)| = \exp((\operatorname{Re}(z)+1)\ln t)| = t^{\operatorname{Re}(z)+1}$$

car les exponentielles imaginaires sont de module 1.

On a alors

$$\left| \int_0^1 \frac{t^{z+1}}{(1+t)^2} \, \mathrm{d}t \right| \leqslant \int_0^1 t^{\mathrm{Re}(z)+1} \, \mathrm{d}t = \frac{1}{\mathrm{Re}(z)+2} \xrightarrow[\mathrm{Re}(z) \to +\infty]{} 0$$

Ainsi

$$(z+1)f(z) \xrightarrow{\operatorname{Re}(z) \to +\infty} \frac{1}{2}$$

puis

$$f(z) \underset{\operatorname{Re}(z) \to +\infty}{\sim} \frac{1}{2z}$$

Exercice 78 : [énoncé]

a) Pour $x \in \mathbb{R}$, $t \mapsto \frac{\sin(xt)}{e^t - 1}$ est continue par morceaux sur $]0, +\infty[$,

$$\frac{\sin(xt)}{e^t - 1} \underset{t \to 0}{=} O(1) \text{ et } \frac{\sin(xt)}{e^t - 1} \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$$

donc f(x) est bien définie pour tout $x \in \mathbb{R}$.

b) Posons $g(x,t) = \frac{\sin(xt)}{e^t - 1}$.

g admet une dérivée partielle $\frac{\partial g}{\partial x}$ avec

$$\frac{\partial g}{\partial x}(x,t) = \frac{t}{e^t - 1}\cos(xt)$$

 $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} , $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$.

Enfin $\left| \frac{\partial g}{\partial x}(x,t) \right| \leqslant \frac{t}{\mathrm{e}^t - 1} = \varphi(t)$ avec φ intégrable sur $]0, +\infty[$.

Par domination, on peut affirmer que f est de classe C^1 , a fortiori continue et dérivable.

c) La décomposition

$$\frac{1}{\mathbf{e}^t - 1} = \sum_{n=1}^{+\infty} \mathbf{e}^{-nt}$$

permet d'écrire

$$f(1) = \int_0^{+\infty} \sum_{n=1}^{+\infty} \sin(t) e^{-nt} dt$$

Par la majoration $|\sin(u)| \leq |u|$, on obtient

$$\int_{0}^{+\infty} \left| \sin(t) e^{-nt} \right| \leqslant \int_{0}^{+\infty} t e^{-nt} dt = \frac{1}{n^2}$$

La série $\sum \int_{[0,+\infty[} |\sin(t)e^{-nt}| dt$ converge, on peut intégrer terme à terme

$$f(1) = \sum_{n=1}^{+\infty} \int_0^{+\infty} \sin(t) e^{-nt} dt$$

On calcule l'intégrale sommée en considérant la partie imaginaire de

$$\int_0^{+\infty} e^{it} e^{-nt} dt$$

On obtient à terme

$$f(1) = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$

Exercice 79: [énoncé]

La fonction f est bien définie sur $]0, +\infty[$ et

$$xf(x) = \frac{\pi}{2} - \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$$

Posons

$$u(x,t) = \frac{e^{-tx}}{1+t^2}$$

définie sur $]0, +\infty[\times [0, +\infty[$. u admet deux dérivées partielles

$$\frac{\partial u}{\partial x}(x,t) = -\frac{t}{1+t^2}e^{-tx}$$
 et $\frac{\partial^2 u}{\partial x^2}(x,t) = \frac{t^2}{1+t^2}e^{-tx}$

Pour chaque x > 0, les fonctions u et $\frac{\partial u}{\partial x}$ sont intégrables et pour tout $[a, b] \subset [0, +\infty[$, on a la domination

$$\left| \frac{\partial^2 u}{\partial x^2}(x,t) \right| \leqslant e^{-at} = \varphi(t)$$

avec φ intégrable. On en déduit que la fonction

$$x \mapsto \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} \, \mathrm{d}t$$

est définie et de classe C^2 sur $]0,+\infty[$. Il en est de même pour f par opérations sur de telles fonctions.

Quand $x \to +\infty$,

$$0 \leqslant \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt \leqslant \int_0^{+\infty} e^{-tx} dt = \frac{1}{x}$$

donc $xf(x) \to \frac{\pi}{2}$ puis

$$f(x) \underset{x \to 0^+}{\sim} \frac{\pi}{2x}$$

Etudions maintenant f(x) quand $x \to 0^+$. Par le changement de variable u = tx,

$$f(x) = \int_0^{+\infty} \frac{1 - e^{-u}}{x^2 + u^2} du = \int_0^{+\infty} \frac{u}{x^2 + u^2} \frac{1 - e^{-u}}{u} du$$

avec

$$\varphi: u \mapsto \frac{1 - e^{-u}}{u}$$

Par intégration par parties,

$$f(x) = \left[\frac{1}{2}\ln(x^2 + u^2)\varphi(u)\right]_0^{+\infty} - \frac{1}{2}\int_0^{+\infty}\ln(x^2 + u^2)\varphi'(u)\,\mathrm{d}u$$

Pour $x \in [0, 1]$,

$$\left|\ln(x^2 + u^2)\right| \le \left|\ln(u^2)\right| + \left|\ln(1 + u^2)\right|$$

et la fonction

$$u \mapsto (\left|\ln(u^2)\right| + \left|\ln(1+u^2)\right|)\varphi'(u)$$

est intégrable sur $]0, +\infty[$ car φ' peut être prolongée par continuité en 0 et

$$\varphi'(u) \underset{u \to +\infty}{\sim} \frac{e^{-u}}{u}$$

On en déduit

$$f(x) = -\ln x + O(1) \underset{x \to 0^{+}}{\sim} -\ln x$$

Exercice 80 : [énoncé]

a) Par le changement de variable t = ux (bijection de classe C^1) on obtient

$$f(x) = \int_{-1}^{1} \frac{\mathrm{d}u}{\sqrt{1 + x^2 u^2} \sqrt{1 - u^2}}$$

Posons $g:]0, +\infty[\times] -1, 1[\to \mathbb{R}$ définie par

$$g(x,u) = \frac{1}{\sqrt{1 + x^2 u^2} \sqrt{1 - u^2}}$$

La fonction g est continue sur $]0, +\infty[\times]-1, 1[$ et

$$|g(x,u)| \leqslant \frac{1}{\sqrt{1-u^2}} = \varphi(u)$$

avec φ intégrable sur]-1,1[.

On en déduit que f est définie et continue sur $]0, +\infty[$.

b) Quand $x \to 0^+$

$$g(x,u) = \frac{1}{\sqrt{1+x^2u^2}\sqrt{1-u^2}} \to \frac{1}{\sqrt{1-u^2}}$$

Par la domination précédente

$$f(x) \xrightarrow[x \to 0^+]{} \int_{-1}^{1} \frac{\mathrm{d}u}{\sqrt{1 - u^2}} = \left[\arcsin u\right]_{-1}^{1} = \pi$$

De même, on obtient

$$f(x) \xrightarrow[x \to +\infty]{} \int_{-1}^{1} 0 \, \mathrm{d}u = 0$$

Exercice 81 : [énoncé]

a) Puisque

$$\frac{\cos^2 t}{t} \sim \frac{1}{t}$$
 quand $t \to 0^+$

on peut affirmer, par équivalence de fonctions positives, que l'intégrale diverge en 0.

On peut alors conclure que f est définie sur $]0,+\infty[$ (car l'intégrale sur un segment d'une fonction continue converge) mais ne peut pas être définie sur un domaine plus grand.

b) Posons

$$g(x) = \int_{1}^{x} \frac{\sin^{2} t}{t} \, \mathrm{d}t$$

Cette fois-ci

$$\frac{\sin^2 t}{t} \sim t \text{ quand } t \to 0^+$$

et donc la fonction g est définie et continue en 0.

Puisque

$$f(x) + g(x) = \int_{1}^{x} \frac{\mathrm{d}t}{t} = \ln x$$

on peut conclure

$$f(x) \sim \ln x$$
 quand $x \to 0^+$

Aussi

$$f(x) = \int_{1}^{x} \frac{1 + \cos(2t)}{2t} dt = \frac{1}{2} \ln x + \int_{1}^{x} \frac{\cos(2t)}{2t} dt$$

Comme la nouvelle intégrale converge en $+\infty$ (cela s'obtient par une intégration par parties) on conclut

$$f(x) \sim \frac{1}{2} \ln x$$
 quand $x \to +\infty$

Exercice 82 : [énoncé]

a) Pour que la racine carrée soit définie pour $t \in]0,1[$, il est nécessaire que $x \in [-1,1]$.

Pour $x \in]-1,1[$, l'intégrale définissant f converge par les arguments d'intégrabilité suivant

$$\frac{1}{\sqrt{t(1-t)(1-x^2t)}} \underset{t \to 0^+}{\sim} \frac{1}{\sqrt{t}} \text{ et } \frac{1}{\sqrt{t(1-t)(1-x^2t)}} \underset{t \to 1^-}{\sim} \frac{C^{te}}{\sqrt{1-t}}$$

Pour $x = \pm 1$, l'intégrale définissant f diverge car

$$\frac{1}{\sqrt{t(1-t)(1-t)}} \underset{t \to 0^+}{\sim} \frac{1}{1-t} \geqslant 0$$

L'ensemble de définition de f est donc]-1,1[.

b) Sur [0,1[, la fonction f est croissante et admet donc une limite en 1^- . Par l'absurde, si celle-ci est finie égale à $\ell \in \mathbb{R}$ alors

$$\forall a \in [0, 1[, \int_0^a \frac{\mathrm{d}t}{\sqrt{t(1-t)(1-x^2t)}} \le \ell$$

Par intégration sur un segment, la fonction de x déterminée par le premier membre est continue en x=1, on en déduit

$$\int_0^a \frac{\mathrm{d}t}{\sqrt{t}(1-t)} \leqslant \ell$$

Or ceci est absurde car par non intégrabilité d'une fonction positive

$$\int_0^a \frac{\mathrm{d}t}{\sqrt{t(1-t)}} \xrightarrow[a\to 1^-]{} +\infty$$

Exercice 83: [énoncé]

a) La fonction $x\mapsto 1/x^\alpha(1+x)$ est définie et continue par morceaux sur $]0,+\infty[$ avec

$$\frac{1}{x^{\alpha}(1+x)} \underset{x \to 0^{+}}{\sim} \frac{1}{x^{\alpha}} \text{ et } \frac{1}{x^{\alpha}(1+x)} \underset{x \to +\infty}{\sim} \frac{1}{x^{\alpha+1}}$$

Cette fonction est donc intégrable si, et seulement si, $\alpha \in [0,1[$. La fonction intégrée étant de surcroît positive, l'intégrale définissant $f(\alpha)$ converge si, et seulement si, $\alpha \in [0, 1[$.

b) On a

$$f(\alpha) - \int_{1}^{+\infty} \frac{dx}{x^{\alpha+1}} = \int_{0}^{1} \frac{dx}{x^{\alpha}(1+x)} - \int_{1}^{+\infty} \frac{dx}{x^{\alpha+1}(1+x)}$$

Or

$$\left| \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha+1}(1+x)} \right| \leqslant \int_{1}^{+\infty} \frac{\mathrm{d}x}{x(1+x)} = C$$

et pour $\alpha \leq 1/2$

$$\left| \int_0^1 \frac{\mathrm{d}x}{x^{\alpha}(1+x)} \right| \leqslant \int_0^1 \frac{\mathrm{d}x}{\sqrt{x}(1+x)} = C'$$

On a donc

$$f(\alpha) = \int_1^{+\infty} \frac{\mathrm{d}x}{x^{\alpha+1}} + O(1) = \frac{1}{\alpha} + O(1) \sim \frac{1}{\alpha}$$

c) Par le changement de variable \mathcal{C}^1 bijectif x=1/t, on obtient $f(\alpha)=f(1-\alpha)$ d'où la symétrie affirmée.

d) Posons

$$u(\alpha, x) = \frac{1}{x^{\alpha}(1+x)}$$

Pour chaque $x \in]0, +\infty[$, la fonction $\alpha \mapsto u(\alpha, x)$ est continue et pour chaque $\alpha \in]0,1[$ la fonction $x \mapsto u(\alpha,x)$ est continue par morceaux. Enfin pour $\alpha \in [a, b] \in [0, 1] \text{ (avec } a > 0), \text{ on a}$

$$|u(x,\alpha)| \leqslant \frac{1}{x^a(1+x)}$$
 si $x \in [1, +\infty[$

 $_{
m et}$

$$|u(x,\alpha)| \le \frac{1}{x^b(1+x)} \text{ si } x \in]0,1]$$

Ainsi

$$|u(x,\alpha)| \leq \varphi_{a,b}(x) \text{ pour } x \in]0,+\infty[$$

en posant $\varphi_a(x) = u(a,x) + u(b,x)$ qui est intégrable.

Par domination sur tout segment, on peut affirmer que f est continue sur]0,1[.

e) Par le changement de variable x = 1/t, on peut écrire

$$\int_0^1 \frac{\mathrm{d}x}{x^{\alpha}(1+x)} = \int_1^{+\infty} \frac{\mathrm{d}t}{t^{1-\alpha}(1+t)}$$

et alors

$$f(\alpha) = \int_{1}^{+\infty} \frac{x^{1-\alpha} + x^{\alpha}}{x(1+x)} dx$$

On vérifie que pour $x \ge 1$, la fonction $\alpha \mapsto x^{1-\alpha} + x^{\alpha}$ est décroissante sur [0, 1/2]puis croissante sur [1/2, 1]. La fonction f a donc la même monotonie et son minimum est donc

$$f(1/2) = \int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{t}(1+t)} = \pi$$

via le changement de variable $u = \sqrt{t}$.

Exercice 84 : [énoncé]

a) Posons $f(x,t) = \frac{\ln t}{t+x}$.

f est définie et continue sur $]0, +\infty[\times]0, 1]$. Pour x > 0, $f(x,t) \sim \frac{1}{t \to 0^+} \ln t$ donc $\sqrt{t} f(x,t) \xrightarrow[t \to 0^+]{} 0$ puis $t \mapsto f(x,t)$ est intégrable sur [0, 1]

Ainsi F est définie sur $]0, +\infty[$. f admet une dérivée partielle $\frac{\partial f}{\partial x}$ continue avec $\frac{\partial f}{\partial x}(x,t) = -\frac{\ln t}{(t+x)^2}$. Soit $[a, b] \subset]0, +\infty[$. Pour $x \in [a, b]$,

$$[a,b] \subset [0,+\infty[$$
. Four $x \in [a,b]$,

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \frac{|\ln t|}{a^2} = \varphi(t)$$

avec φ intégrable sur [0,1].

Par domination sur tout segment, on peut affirmer que F est de classe C^1 et

$$F'(x) = \int_0^1 -\frac{\ln t}{(t+x)^2} \, dt$$

b) Par intégration par parties.

$$F'(x) = \left[\ln t \left(\frac{1}{t+x} - \frac{1}{x} \right) \right]_0^1 - \int_0^1 \frac{1}{t} \left(\frac{1}{t+x} - \frac{1}{x} \right) dt$$

où la primitive de $t\mapsto \frac{1}{t+x}$ est choisie de sorte de s'annuler en 0 pour que l'intégration par parties présente deux convergences. Ainsi

$$F'(x) = \int_0^1 \frac{\mathrm{d}t}{t(t+x)} = \frac{\ln(x+1) - \ln x}{x}$$

Par opérations

$$G'(x) = \frac{\ln(x+1) - \ln x}{x} - \frac{\ln(1+1/x) + \ln x}{x} = -\frac{1}{x} \ln x$$

puis

$$G(x) = G(1) - \frac{1}{2}(\ln x)^2$$

Or G(1) = 2F(1) avec

$$F(1) = \int_0^1 \frac{\ln t}{t+1} dt = \int_0^1 \sum_{k=0}^{+\infty} (-1)^k t^k \ln(t) dt$$

Or $\int_0^1 t^k \ln(t) dt = \frac{-1}{(k+1)^2}$ donc par convergence de la série des intégrales des valeurs absolues, $F(1) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$. Sachant $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, on obtient $F(1) = -\frac{\pi^2}{12}$ puis

$$G(x) = \frac{1}{2}(\ln x)^2 - \frac{\pi^2}{6}$$

c) Par décomposition en éléments simples

$$\frac{t-1}{(t+1)(t^2+2t\cosh\theta+1)} = \frac{\frac{1}{\cosh\theta-1}}{t+1} - \frac{\frac{1}{\cosh\theta-1}(t+\cosh\theta)}{t^2+2t\cosh\theta+1}$$

Donc

$$\int_0^1 \frac{t-1}{t+1} \frac{\ln t}{t^2 + 2t\operatorname{ch}(\theta) + 1} \, \mathrm{d}t = \frac{1}{\operatorname{ch}\theta - 1} (F(1) - \frac{1}{2}G(\mathrm{e}^\theta)) = \frac{\theta^2}{4(\operatorname{ch}(\theta) - 1)}$$

Exercice 85 : [énoncé]

a) Par le changement de variable t = xu,

$$g(x) = \int_0^x \frac{\sin t}{t+x} dt = \int_0^1 \frac{\sin(xu)}{1+u} du$$

L'application $f:(x,u)\mapsto \frac{\sin(xu)}{1+u}$ est définie et continue sur $]0,+\infty[\times[0,1]]$ et

$$|f(x,u)| \leqslant 1 = \varphi(u)$$

avec φ intégrable sur [0,1].

Par domination, on peut conclure que g est définie et continue sur $]0, +\infty[$. b) Puisque

$$\forall u \in [0,1], \frac{\sin(xu)}{1+u} \xrightarrow[x\to 0^+]{} 0$$

on peut affirmer, toujours par domination, que

$$g(x) \xrightarrow[x \to 0^+]{} \int_0^1 0 \, \mathrm{d}u = 0$$

La même technique ne s'applique par pour l'étude en $+\infty$. On va alors transformer l'écriture de l'intégrale. Par intégration par parties

$$g(x) = \left[-\frac{\cos(t)}{x+t} \right]_0^x - \int_0^x \frac{\cos(t)}{(x+t)^2} dt$$

Le terme entre crochet tend vers 0 quand $x \to +\infty$ et le terme intégrale aussi car

$$\left| \int_0^x \frac{\cos(t)}{(x+t)^2} \, \mathrm{d}t \right| \leqslant \int_0^x \frac{\mathrm{d}t}{x^2} = \frac{1}{x}$$

Ainsi

$$g(x) \xrightarrow[x \to +\infty]{} 0$$

Exercice 86 : [énoncé]

Considérons $f:(x,t)\mapsto \frac{\mathrm{e}^{-xt}}{1+t}$ définie sur $]0,+\infty[\times[0,+\infty[$ Pour $t\in[0,+\infty[$, la fonction $x\mapsto f(x,t)$ est fois dérivable sur $]0,+\infty[$ f admet

Pour $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est fois dérivable sur $]0, +\infty[$ f adme une dérivée partielle

$$\frac{\partial f}{\partial x}(x,t) = -t \frac{\mathrm{e}^{-xt}}{1+t}$$

Pour tout $x \in]0, +\infty[$, $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur $[0, +\infty[$ car

$$t^2 f(x,t) \xrightarrow[t \to +\infty]{} 0$$

De plus

 $\forall x \in]0, +\infty[, t \mapsto \frac{\partial f}{\partial x}(x, t) \text{ est continue par morceaux.}$ $\forall t \in [0, +\infty[, x \mapsto \frac{\partial f}{\partial x}(x, t) \text{ est continue.}$ Enfin, pour $[a, b] \subset [0, +\infty[$. On a

$$\forall (x,t) \in [a,b] \times [0,+\infty[,\left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant e^{-at}$$

avec $\varphi: t \mapsto e^{-at}$ continue par morceaux et intégrable sur $[0, +\infty[$. Par domination sur tout segment, la fonction g est de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$ et

$$-g'(x) + g(x) = \int_0^{+\infty} t \frac{e^{-xt}}{1+t} dt + \int_0^{+\infty} \frac{e^{-xt}}{1+t} dt = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$$

On peut aussi constater le résultat plus directement en procédant aux changements de variable u=1+t puis v=ux ce qui ramène l'expression étudiée à une primitive

$$g(x) = e^x \int_x^{+\infty} \frac{e^{-v}}{v} dv$$

et on peut alors vérifier la satisfaction de l'équation différentielle.

Exercice 87: [énoncé]

a) L'application $t \mapsto \frac{t-1}{\ln t} t^x$ est définie et continue par morceaux sur]0,1[. Quand $t \to 0^+$,

$$\frac{t-1}{\ln t}t^x = o\left(t^x\right)$$

Quand $t \to 1^-$

$$\frac{t-1}{\ln t}t^x \to 1$$

L'application $t\mapsto \frac{t-1}{\ln t}t^x$ est donc intégrable sur]0,1[Donc g est bien définie.

b) Posons $f(x,t) = \frac{t-1}{\ln t} e^{x \ln t}$.

 $\forall x > -1, t \mapsto f(x,t)$ est continue par morceaux et intégrable sur]0,1[comme vu ci-dessus.

La fonction f admet une dérivée partielle

$$\frac{\partial f}{\partial x}(x,t) = (t-1)e^{x \ln t}$$

 $\forall x > -1, t \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue par morceaux sur]0, 1[, $\forall t \in]0, 1[$, $x \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue sur $]-1, +\infty[$. Pour $[a, b] \subset]-1, +\infty[$

$$\forall (x,t) \in [a,b] \times]0,1[, \left| \frac{\partial f}{\partial x}(x,t) \right| \leq (1-t)t^a = \varphi_a(t)$$

avec φ_a continue par morceaux et intégrable.

Par domination sur tout segment, on peut affirmer que g est de classe C^1 sur $]-1,+\infty[$ et

$$g'(x) = \int_0^1 (t-1)t^x dt = \frac{1}{x+2} - \frac{1}{x+1}$$

c) Par intégration

$$g(x) = \ln \frac{x+2}{x+1} + C$$

Etudions $C = \lim_{x \to +\infty} g(x)$.

La fonction $t\mapsto \frac{t-1}{\ln t}$ peut être prolongée par continuité sur [0,1], elle y est donc bornée par un certain M et alors

$$0 \leqslant g(x) \leqslant \int_0^1 M t^x \, \mathrm{d}x = \frac{M}{x+1} \xrightarrow[x \to +\infty]{} 0$$

On en déduit C=0.

Exercice 88 : [énoncé]

Posons

$$u(x,t) = \frac{t-1}{\ln t}t^x$$

définie et continue par morceaux sur $\mathbb{R} \times]0,1[$.

Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto u(x,t)$ est continue par morceaux sur]0,1[. Puisque

$$u(x,t) \underset{x\to 0^+}{\sim} \frac{t^x}{\ln t}$$
 et $u(x,t) \xrightarrow[t\to 1^-]{} 1$

la fonction $t \mapsto u(x,t)$ est intégrable sur]0,1[si, et seulement si, x > -1.

De plus, cette fonction est positive et donc la convergence de l'intégrale équivaut à l'intégrabilité de la fonction intégrande.

On en déduit que la fonction f est définie sur $]-1,+\infty[$.

La fonction u admet une dérivée partielle

$$\frac{\partial u}{\partial x}(x,t) = (t-1)t^x$$

Cette dérivée partielle est continue en x et continue par morceaux en t. Pour $[a,b] \subset]-1,+\infty[$, on a

$$\forall (x,t) \in [a,b] \times]0,1[,\left|\frac{\partial u}{\partial x}(x,t)\right| \leqslant (1-t)t^a$$

Par domination sur tout segment, on peut affirmer que f est de classe C^1 sur $]-1,+\infty[$ avec

$$f'(x) = \int_0^1 (t-1)t^x dt = \frac{1}{x+2} - \frac{1}{x+1}$$

On en déduit

$$f(x) = \ln \frac{x+2}{x+1} + C$$

La fonction

$$t \mapsto \frac{t-1}{\ln t}$$

est continue sur]0,1[et se prolonge par continuité en 0 et 1, elle est donc bornée par un certain $M \in \mathbb{R}^+$ et alors

$$|f(x)| \le \int_0^1 Mt^x dt = \frac{M}{x+1} \xrightarrow[x \to +\infty]{} 0$$

On en déduit C=0 puis finalement

$$f(x) = \ln \frac{x+2}{x+1}$$

Exercice 89 : [énoncé]

a) Considérons $f:(x,t)\mapsto \frac{t^x-1}{\ln t}$ définie sur $]-1,+\infty[\times]0,1[$. Soit x>-1. La fonction $t\mapsto f(x,t)$ est continue par morceaux sur]0,1[.

Soit x > -1. La fonction $t \mapsto f(x,t)$ est continue par morceaux sur]0, Quand $t \to 1^-$.

t = 1 - h avec $h \to 0^+$.

$$f(x,t) = \frac{(1+h)^x - 1}{\ln(1+h)} \to x$$

et donc f est intégrable sur [1/2, 1].

Quand $t \to 0^+$.

On a

$$t^{x} \xrightarrow[t \to 0^{+}]{} \begin{cases} 0 & \text{si } x > 0 \\ 1 & \text{si } x = 0 \\ +\infty & \text{si } x \in]-1,0[\end{cases}$$

Si $x \ge 0$, on obtient $f(x,t) \to 0$ ce qui permet un prolongement par continuité.

Si x < 0, on a $f(x,t) = o(t^x) = o(1/t^{-x})$ avec -x < 1.

Dans les deux cas, $t \mapsto f(x,t)$ est intégrable sur [0,1/2].

Finalement $t\mapsto f(x,t)$ est intégrable sur]0,1[et donc g est définie sur]-1,+ ∞ [. b) La fonction $x\mapsto f(x,t)=\frac{t^x-1}{\ln t}$ est dérivable donc f admet une dérivée partielle $\frac{\partial f}{\partial x}$ et

$$\frac{\partial f}{\partial x}(x,t) = t^x$$

 $\forall x \in]-1, +\infty[, \ t \mapsto \frac{\partial f}{\partial x}(x,t) \text{ est continue par morceaux sur }]0,1[$ $\forall t \in]0,1[, \ x \mapsto \frac{\partial f}{\partial x}(x,t) \text{ est continue sur }]-1, +\infty[.$ Soit $[a,b] \subset]-1, +\infty[.$ Pour $x \in [a,b],$

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant t^a = \varphi(t)$$

avec $\varphi:]0,1[\to \mathbb{R}^+$ continue par morceaux et intégrable sur]0,1[. Par domination sur tout segment, g est de classe \mathcal{C}^1 et

$$g(x) = \int_0^1 t^x dt = \frac{1}{x+1}$$

On en déduit

$$g(x) = g(0) + \int_0^x \frac{\mathrm{d}t}{1+t} = \ln(1+x)$$

Exercice 90 : [énoncé]

a) $\cos(xt)e^{-t} = \operatorname{Re}(e^{(-1+i.x)t})$ et $\left|e^{(-1+i.x)t}\right| = e^{-t}$ qui est intégrable sur \mathbb{R}^+ . Par suite $\int_0^{+\infty} \cos(xt)e^{-t} dt$ existe et

$$\int_0^{+\infty} \cos(xt) \mathrm{e}^{-t} \, \mathrm{d}t = \mathrm{Re} \left(\int_0^{+\infty} \mathrm{e}^{(-1+i.x)t} \, \mathrm{d}t \right) = \mathrm{Re} \left(\frac{1}{1-i.x} \right) = \frac{1}{1+x^2}$$

b) $g(x,t) = \frac{\sin xt}{t} e^{-t}$ est définie et continue sur $\mathbb{R} \times]0, +\infty[$.

 $t\mapsto g(x,t)$ est continue par morceaux sur $]0,+\infty[$, se prolonge par continuité en 0 et est négligeable devant $t\mapsto 1/t^2$ en $+\infty$ donc la fonction F est bien définie sur \mathbb{R} .

 \mathbb{R} . $\frac{\partial g}{\partial x}$ est définie sur $\mathbb{R} \times]0, +\infty[$, $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur $]0, +\infty[$, $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} et pour tout x > 0,

$$\left| \frac{\partial g}{\partial x}(x,t) \right| = \left| \cos xt \cdot e^{-t} \right| = e^{-t} = \psi(t)$$

avec ψ intégrable sur $\mathbb{R}^{+\star}$.

Par domination F est de classe \mathcal{C}^1 sur \mathbb{R} avec

$$F'(x) = \int_0^{+\infty} \cos(xt) e^{-t} dt = \frac{1}{1+x^2}$$

c) F(0) = 0 donc $F(x) = \arctan x$.

Exercice 91 : [énoncé] La fonction $u(x,t) = e^{(ix-1)t}/\sqrt{t}$ définie sur $\mathbb{R} \times]0,+\infty[$. $t\mapsto u(x,t)$ est continue par morceaux sur $]0,+\infty[$ pour chaque $x\in\mathbb{R}$ et

$$u(x,t) \underset{t\to 0^+}{\sim} \frac{1}{\sqrt{t}} \text{ et } t^2 u(x,t) \xrightarrow[t\to +\infty]{} 0$$

On en déduit que la fonction donnée par

$$F(x) = \int_0^{+\infty} \frac{e^{(ix-1)t}}{\sqrt{t}} dt = f(x) + ig(x)$$

est définie sur \mathbb{R} .

La fonction $x \mapsto u(x,t)$ est dérivable sur \mathbb{R} pour chaque $t \in]0,+\infty[$ et

$$\frac{\partial u}{\partial x}(x,t) = i\sqrt{t}e^{(ix-1)t}$$

 $x \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue sur \mathbb{R} pour chaque $t \in]0,+\infty[$, $t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$ pour chaque $x \in \mathbb{R}$ et

$$\left| \frac{\partial u}{\partial x}(x,t) \right| = \sqrt{t} e^{-t} = \varphi(t)$$

avec φ intégrable sur $]0,+\infty[$ car prolongeable par continuité en 0 et vérifiant $t^2\varphi(t) \xrightarrow[t\to+\infty]{} 0.$

Par domination, on peut affirmer que F est de classe \mathcal{C}^1 sur \mathbb{R} et

$$F'(x) = \int_0^{+\infty} \sqrt{t} e^{(ix-1)t} dt$$

A l'aide d'une intégration par parties, on obtient

$$F'(x) = -\frac{1}{2(x+i)}F(x)$$

La résolution de cette équation différentielle donne

$$F(x) = F(0) \frac{e^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}$$

Enfin, sachant

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

on parvient à

$$F(x) = \frac{\sqrt{\pi}e^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}$$

d'où les expressions de f(x) et de g(x).

$$f(x) = \frac{\sqrt{\pi}}{\left(x^2 + 1\right)^{1/4}} \cos\left(\frac{\arctan x}{2}\right) \text{ et } g(x) = \frac{\sqrt{\pi}}{\left(x^2 + 1\right)^{1/4}} \sin\left(\frac{\arctan x}{2}\right)$$

On peut encore éventuellement « simplifier »en exploitant

$$\cos x = \sqrt{\frac{1 + \cos(2x)}{2}} \text{ pou } x \in [-\pi/2, \pi/2]$$

ce qui donne

$$\cos\left(\frac{\arctan x}{2}\right) = \sqrt{\frac{1 + \frac{1}{\sqrt{1 + x^2}}}{2}}$$

et aussi

$$\sin\left(\frac{\arctan x}{2}\right) = \operatorname{signe}(x)\sqrt{\frac{1 - \frac{1}{\sqrt{1 + x^2}}}{2}}$$

Exercice 92: [énoncé]

 $f:(x,t)\to \frac{\mathrm{e}^{-xt}-\mathrm{e}^{-yt}}{t}$ et $\frac{\partial f}{\partial x}(x,t)=-\mathrm{e}^{-xt}$ sont définies et continues sur $\mathbb{R}^{+\star}\times\mathbb{R}^{+\star}$. $t\mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ car prolongeable par continuité en 0 et négligeable devant $1/t^2$ en $+\infty$.

Pour a > 0.

$$\forall x \in [a, +\infty[\left| \frac{\partial f}{\partial x}(x, t) \right| \le e^{-at} = \varphi_a(t)$$

avec φ_a intégrable sur $\mathbb{R}^{+\star}$.

Par domination $x \mapsto F(x,y)$ est de classe \mathcal{C}^1 et

$$\frac{\partial F}{\partial x}(x,y) = \int_0^{+\infty} -e^{-xt} dt = -\frac{1}{x}$$

Donc $F(x,y) = -\ln x + C^{te}$ et puisque pour x = y, on a F(x,y) = 0 on obtient

$$F(x,y) = \ln y - \ln x$$

Exercice 93: [énoncé]

a) Posons

$$\varphi: t \mapsto \frac{\mathrm{e}^{-t} - \mathrm{e}^{-2t}}{t}$$

La fonction φ est intégrable sur $]0,+\infty[$ car prolongeable par continuité en 0 et vérifiant $t^2\varphi(t)\xrightarrow[t\to+\infty]{}0$. Par domination, on obtient que F est définie sur $I=\mathbb{R}$.

b) Posons $f(x,t) = \varphi(t) \cos(xt)$. f admet une dérivée partielle $\frac{\partial f}{\partial x}$ et

$$\frac{\partial f}{\partial x}(x,t) = -(e^{-t} - e^{-2t})\sin(xt)$$

 $x\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur \mathbb{R} , $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$ et $\left|\frac{\partial f}{\partial x}(x,t)\right|\leqslant \mathrm{e}^{-t}+\mathrm{e}^{-2t}=\psi(t)$ avec ψ intégrable sur $]0,+\infty[$. On en déduit que F est une fonction de classe \mathcal{C}^1 et

$$F'(x) = \int_0^{+\infty} -(e^{-t} - e^{-2t})\sin(xt) dt$$

Or

$$\int_0^{+\infty} e^{-at} \sin(xt) dt = \operatorname{Im} \left(\int_0^{+\infty} e^{(-a+ix)t} dt \right) = \frac{x}{a^2 + x^2}$$

donc

$$F(x) = \frac{1}{2} \ln \left(\frac{4+x^2}{1+x^2} \right) + C^{te}$$

Montrons que $F(x) \xrightarrow[x \to +\infty]{} 0$ quand $x \to +\infty$.

Par intégration par parties

$$F(x) = \left[\varphi(t) \frac{\sin(xt)}{x}\right]_0^{+\infty} - \frac{1}{x} \int_0^{+\infty} \varphi'(t) \sin(xt) dt$$

On en déduit

$$|F(x)| \le \frac{1}{x} \int_0^{+\infty} |\varphi'(t)| dt \xrightarrow[x \to +\infty]{} 0$$

Par suite $C^{te} = 0$ puis

$$F(x) = \frac{1}{2} \ln \frac{4 + x^2}{1 + x^2}$$

Exercice 94 : [énoncé]

On définit $f: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ par

$$f(x,t) = \frac{e^{-at} - e^{-bt}}{t} \cos(xt)$$

a) Pour $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est définie et continue par morceaux sur $]0,+\infty[$.

Quand $t \to +\infty$, $t^2 f(x,t) \to 0$ et quand $t \to 0^+$, $f(x,t) \to b-a$ donc $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$.

b) Pour $x \in \mathbb{R}$, la fonction $t \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,y) = (e^{-bt} - e^{-at})\sin(xt)$$

La fonction $\frac{\partial f}{\partial x}$ est continue sur $\mathbb{R} \times]0, +\infty[$ et

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \le e^{-at} + e^{-bt} = \varphi(t)$$

avec φ fonction intégrable.

On en déduit que F est de classe \mathcal{C}^1 sur \mathbb{R} et

$$F'(x) = \int_0^{+\infty} (e^{-bt} - e^{-at}) \sin(xt) dt$$

Or

$$\int_0^{+\infty} e^{-ct} \sin(xt) dt = \operatorname{Im} \left(\int_0^{+\infty} e^{(-c+ix)t} dt \right) = \frac{x}{c^2 + x^2}$$

donc

$$F'(x) = \frac{x}{x^2 + b^2} - \frac{x}{x^2 + a^2}$$

c) On en déduit

$$F(x) = \frac{1}{2} \ln \left(\frac{x^2 + b^2}{x^2 + a^2} \right) + C^{te}$$

Pour déterminer la constante, on étudie la limite de F en $+\infty$. Posons

$$\psi(t) = \frac{e^{-at} - e^{-bt}}{t}$$

ce qui définit une fonction de classe C^1 intégrable ainsi que sa dérivée sur $]0, +\infty[$. Par intégration par parties généralisée justifiée par deux convergences

$$\int_0^{+\infty} \psi(t) \cos(xt) dt = \frac{1}{x} \left[\psi(t) \sin(xt) \right]_0^{+\infty} - \frac{1}{x} \int_0^{+\infty} \psi'(t) \sin(xt) dt$$

Corrections

et donc

$$\left| \int_0^{+\infty} \psi(t) \cos(xt) \, \mathrm{d}t \right| \leqslant \frac{1}{x} \int_0^{+\infty} |\psi'(t)| \, \, \mathrm{d}t \to 0$$

On peut conclure

$$F(x) = \frac{1}{2} \ln \left(\frac{x^2 + b^2}{x^2 + a^2} \right)$$

Exercice 95 : [énoncé]

a) On réalise le changement de variable $u = \sqrt{t}$. On obtient $z(0) = \sqrt{\pi}$.

b) $t \mapsto g(x,t) = \frac{e^{(-1+i.x)t}}{\sqrt{t}}$ est définie, continue par morceaux sur $]0,+\infty[$ et intégrable.

g admet une dérivée partielle

$$\frac{\partial g}{\partial x}(x,t) = i.\sqrt{t}e^{(-1+ix)t}$$

 $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est définie et continue par morceaux sur $]0,+\infty[x\mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} ,

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \leqslant \sqrt{t} e^{-t} = \varphi(t)$$

avec φ intégrable sur $]0, +\infty[$.

La fonction z est donc définie et de classe \mathcal{C}^1 avec

$$z'(x) = \int_0^{+\infty} i \cdot \sqrt{t} e^{(-1+i\cdot x)t} dt = \frac{i}{\sup} \frac{i}{2(1-ix)} \int_0^{+\infty} \frac{e^{(-1+i\cdot x)t}}{\sqrt{t}} dt = -\frac{1}{2(x+i)} z(x)$$

c)

$$\frac{-1}{2(x+i)} = \frac{-x+i}{2(x^2+1)} = -\frac{x}{2(x^2+1)} + \frac{i}{2(x^2+1)}$$

donc

$$z(x) = C \exp\left(i\frac{\arctan x}{2} - \frac{1}{4}\ln(x^2 + 1)\right) = \frac{Ce^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}$$

Puisque $z(0) = \sqrt{\pi}$, on conclut

$$z(x) = \frac{\sqrt{\pi}e^{i(\arctan x)/2}}{(x^2+1)^{1/4}}$$

Exercice 96 : [énoncé]

Posons

$$f(x,t) = e^{-t^2} e^{tx}$$

La fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur \mathbb{R} car

$$t^2 f(x,t) \xrightarrow[t \to \pm \infty]{} 0$$

et donc la fonction g est définie sur \mathbb{R} .

La fonction $x \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = t e^{-t^2} e^{tx}$$

La fonction $t \mapsto \frac{\partial f}{\partial x}(t,x)$ est continue par morceaux, la fonction $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue.

Pour $a \in \mathbb{R}^+$, on a

$$\forall (x,t) \in [-a,a] \times \mathbb{R}, \left| \frac{\partial f}{\partial x}(x,t) \right| \leq |t| e^{a|t|} e^{-t^2} = \varphi_a(t)$$

avec φ_a intégrable sur \mathbb{R} indépendant de x.

On en déduit que la fonction g est de classe \mathcal{C}^1 et par une intégration par parties

$$g'(x) = \int_{-\infty}^{+\infty} t e^{-t^2} e^{tx} dt = \left[-\frac{1}{2} e^{-t^2} e^{tx} \right]_{-\infty}^{+\infty} + \frac{1}{2} \int_{-\infty}^{+\infty} x e^{-t^2} e^{tx} dt$$

On en déduit que g est solution de l'équation différentielle

$$g'(x) - \frac{1}{2}xg(x) = 0$$

Après résolution de cette équation différentielle

$$g(x) = \lambda e^{x^2/4}$$

Enfin $g(0) = \sqrt{\pi}$ donne $\lambda = \sqrt{\pi}$.

Exercice 97 : [énoncé]

a) Posons

$$f(x,t) = e^{-t^2} \operatorname{ch}(2xt)$$

La fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur \mathbb{R} car

$$t^2 f(x,t) \xrightarrow[t \to +\infty]{} 0$$

et donc la fonction F est définie sur \mathbb{R} .

b) La fonction $x \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = 2te^{-t^2} \operatorname{sh}(2xt)$$

La fonction $t \mapsto \frac{\partial f}{\partial x}(t,x)$ est continue par morceaux, la fonction $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue.

Soit $a \in \mathbb{R}^+$.

$$\forall (x,t) \in [-a,a] \times \mathbb{R}, \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant 2a \operatorname{sh}(2a|t|) e^{-t^2} = \varphi_a(t)$$

avec φ_a intégrable sur \mathbb{R} indépendant de x.

On en déduit que la fonction F est de classe \mathcal{C}^1 et par une intégration par parties

$$F'(x) = \int_0^{+\infty} 2t e^{-t^2} \operatorname{sh}(2xt) dt = \left[-e^{-t^2} \operatorname{sh}(2xt) \right]_0^{+\infty} + 2x \int_0^{+\infty} e^{-t^2} \operatorname{ch}(2xt) dt$$

On en déduit que F est solution de l'équation différentielle

$$F'(x) - 2xF(x) = 0$$

Après résolution de cette équation différentielle

$$F(x) = \lambda e^{x^2}$$

avec $F(0) = \sqrt{\pi/2}$.

c) On sait

$$\forall x, t \in \mathbb{R}, \text{ch}(2xt) = \sum_{n=0}^{+\infty} \frac{2^{2n}}{(2n)!} (xt)^{2n}$$

Posons $u_n: [0, +\infty[\to \mathbb{R}$

$$u_n(t) = \frac{2^{2n}}{(2n)!} (xt)^{2n} e^{-t^2}$$

Les fonctions u_n sont continues par morceaux et la série de fonctions $\sum u_n$ converge simplement sur $[0, +\infty[$ vers la fonction $t \mapsto e^{-t^2} \operatorname{ch}(2xt)$ elle-même continue par morceaux.

Chaque fonction u_n est intégrable et

$$\int_0^{+\infty} |u_n(t)| \, \mathrm{d}t = \frac{2^{2n} |x|^{2n}}{(2n)!} \int_0^{+\infty} t^{2n} \mathrm{e}^{-t^2} \, \mathrm{d}t$$

Par intégration par parties

$$\int_0^{+\infty} t^{2n} e^{-t^2} dt = \int_0^{+\infty} t^{2n-1} \times t e^{-t^2} dt = \frac{2n-1}{2} \int_0^{+\infty} t^{2(n-1)} e^{-t^2} dt$$

et donc

$$\int_0^{+\infty} t^{2n} e^{-t^2} dt = \frac{(2n)!}{2^{2n} n!} \frac{\sqrt{\pi}}{2}$$

puis

$$\int_{0}^{+\infty} |u_n(t)| \, dt = \frac{|x|^{2n}}{n!} \frac{\sqrt{\pi}}{2}$$

Il y a alors convergence de la série $\sum \int |u_n|$ et donc on peut intégrer terme à terme ce qui fournit

$$F(x) = \sum_{n=0}^{+\infty} \int_0^{+\infty} u_n(t) dt = \sum_{n=0}^{+\infty} \frac{x^{2n}}{n!} \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2} e^{x^2}$$

Exercice 98 : [énoncé]

Posons $g(x,t) = \frac{\ln(1+x^2t^2)}{1+t^2}$. $x \mapsto g(x,t)$ est continue sur \mathbb{R} ,

 $t \mapsto g(x,t)$ est continue par morceaux sur $[0,+\infty[$,

 $|g(x,t)| \leq \frac{\ln(1+a^2t^2)}{1+t^2} \text{ sur } [-a,a] \text{ avec } t \mapsto \frac{\ln(1+a^2t^2)}{1+t^2} \text{ intégrable.}$

Par domination sur tout segment, on peut donc affirmer que f est définie et continue sur \mathbb{R} .

Il est évident que f est paire. Nous poursuivons son étude sur \mathbb{R}^+ .

 $\frac{\partial g}{\partial x}(x,y) = \frac{2xt^2}{(1+x^2t^2)(1+t^2)}$ est bien définie.

 $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R}^+ ,

 $t\mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[$.

 $\operatorname{Enfin} \left| \frac{\partial g}{\partial x}(x,t) \right| \leqslant \frac{2bt^2}{(1+a^2t^2)(1+t^2)} \text{ sur } [a,b] \subset \mathbb{R}^{+\star} \text{ avec } t \mapsto \frac{2bt^2}{(1+a^2t^2)(1+t^2)} \text{ intégrable.}$

Par domination sur tout segment de $\mathbb{R}^{+\star}$, on peut affirmer que f est de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$ et $f'(x) = \int_0^{+\infty} \frac{2xt^2}{(1+x^2t^2)(1+t^2)} dt$

En réalisant la décomposition en éléments simples (pour $x \neq 1$),

 $f'(x) = \frac{\pi}{x+1}$ et cette relation est aussi valable pour x=1 par continuité.

Sachant que f(0) = 0 et que f est paire, on obtient $f(x) = \pi \ln(1 + |x|)$.

Exercice 99 : [énoncé]

a) Posons $f(x,t) = \ln(\cos^2(t) + x^2 \sin^2(t))$ définie sur $[0,+\infty[\times[0,\pi/2]]$.

Pour chaque x > 0, la fonction $t \mapsto f(x,t)$ étant continue par morceaux sur $[0,\pi/2]$, l'intégrale définissant F(x) est bien définie.

Pour chaque t > 0, la fonction $x \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = \frac{2x\sin^2(t)}{\cos^2(t) + x^2\sin^2(t)}$$

Soit $[a, b] \subset]0, +\infty[$.

$$\forall (x,t) \in [a,b] \times [0,\pi/2], \left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \frac{2b}{\cos^2(t) + a^2 \sin^2(t)} = \varphi_{a,b}(t)$$

avec la fonction $\varphi_{a,b}: [0,\pi/2] \to \mathbb{R}^+$ continue par morceaux et intégrable. Par domination sur tout segment, F est de classe \mathcal{C}^1 et

$$F'(x) = \int_0^{\pi/2} \frac{2x \sin^2(t)}{\cos^2(t) + x^2 \sin^2(t)} dt$$

Par le changement de variable C^1 bijectif $u = \tan t$

$$F'(x) = \int_0^{+\infty} \frac{2u^2x}{(1+x^2u^2)(1+u^2)} du$$

Par décomposition en éléments simples (si $x \neq 1$)

$$\frac{2xX}{(1+x^2X)(1+X)} = \frac{2x/(x^2-1)}{1+X} - \frac{2x/(x^2-1)}{1+x^2X}$$

et donc

$$F'(x) = \frac{2x}{x^2 - 1} \int_0^{+\infty} \frac{1}{1 + u^2} - \frac{1}{1 + x^2 u^2} du = \frac{\pi}{x + 1}$$

et la relation vaut aussi pour x=1 par argument de continuité. On en déduit

$$F(x) = \pi \ln(x+1) + C^{te}$$

Sachant F(1) = 0, on conclut

$$F(x) = \pi \ln \left(\frac{x+1}{2}\right)$$

Exercice 100: [énoncé]

Posons

$$f(x) = \int_0^{2\pi} \frac{\ln(1 + x\cos t)}{\cos t} \,\mathrm{d}t$$

Pour |x| > 1, l'intégrale ne peut pas être définie.

Pour $|x| \leq 1$

En $t = \pi/2$ et $t = 3\pi/2$, il est possible de prolonger par continuité la fonction intégrée.

Pour x = -1:

Quand $t \to 0^+$, $\ln(1 - \cos t) \sim 2 \ln t$

Quand $t \to 2\pi^-$, $t = 2\pi - h$, $\ln(1 - \cos t) = \ln(1 - \cos h) \sim 2 \ln h$

Pour x = 1, quand $t \to \pi, t = \pi + h$, $\ln(1 + \cos t) = \ln(1 - \cos h) \sim 2 \ln h$.

Finalement f est définie sur [-1, 1].

Pour des raisons de symétrie,

$$f(x) = 2 \int_0^{\pi} \frac{\ln(1 + x \cos t)}{\cos t} dt$$

Par domination sur [-a, a] avec a < 1, f est C^1 sur]-1, 1[et

$$f'(x) = 2 \int_0^{\pi} \frac{\mathrm{d}t}{1 + x \cos t}$$

Par le changement de variable $u = \tan \frac{t}{2}$,

$$f'(x) = 4 \int_0^{+\infty} \frac{\mathrm{d}u}{(1+u^2) + x(1-u^2)} = \frac{2\pi}{\sqrt{1-x^2}}$$

Puisque f(0) = 0, on en déduit $f(x) = 2\pi \arcsin x$.

Exercice 101: [énoncé]

a) $f(x,t) = \ln(1+x\sin^2 t)$ est définie et continue sur $[0,+\infty[\times[0,\pi/2]$. Soit $[a,b] \subset [0,+\infty[$,

$$\forall (x,t) \in [a,b] \times [0,\pi/2], |f(x,t)| \le \ln(1+b) = \varphi(t)$$

La fonction φ est intégrable sur $[0, \pi/2]$

Par domination sur tout segment, on obtient F est définie et continue sur $[0, +\infty[$. b) f admet une dérivée partielle

$$\frac{\partial f}{\partial x}(x,t) = \frac{\sin^2 t}{1 + x \sin^2 t}$$

Celle-ci est continue en x et continue par morceaux en t.

$$\forall (x,t) \in \left[0,+\infty\right[\times\left[0,\pi/2\right], \left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant 1 = \varphi(t)$$

La fonction φ est intégrable sur $[0,\pi/2]$ et donc, par domination, F est de classe \mathcal{C}^1 avec

$$F'(x) = \int_0^{\pi/2} \frac{\sin^2 t}{1 + x \sin^2 t} \, dt$$

Par le changement de variable $u = \tan t \, \mathcal{C}^1$ strictement croissant

$$F'(x) = \int_0^{+\infty} \frac{u^2}{(1+u^2)(1+(x+1)u^2)}$$

Après décomposition en éléments simples et calcul,

$$F'(x) = \frac{\pi}{2} \frac{1}{x} \left(1 - \frac{1}{\sqrt{x+1}} \right) = \frac{\pi}{2} \frac{1}{(1+\sqrt{x+1})\sqrt{x+1}}$$

c) On remarque que

$$\ln(1+\sqrt{1+x})' = \frac{1}{2} \frac{1}{(1+\sqrt{x+1})\sqrt{x+1}}$$

donc

$$F(x) = \pi \ln(1 + \sqrt{1+x}) + C^{te}$$

sur \mathbb{R}^+ .

Par continuité en 0 et sachant F(0) = 0, on parvient à conclure.

Exercice 102 : [énoncé]

 $t \mapsto \frac{\ln(x^2 + t^2)}{1 + t^2}$ est continue par morceaux sur $[0, +\infty[$, $x \mapsto \frac{\ln(x^2 + t^2)}{1 + t^2}$ est continue sur \mathbb{R} et pour $x \in [-a, a]$

$$\left| \frac{\ln(x^2 + t^2)}{1 + t^2} \right| \le \frac{\left| \ln(a^2 + t^2) \right| + \left| \ln(t^2) \right|}{1 + t^2} = \varphi(t)$$

avec φ intégrable. Par suite f est définie et continue sur \mathbb{R} . Il est immédiat que f est paire. Poursuivons, en étudiant f sur $\mathbb{R}^{+\star}$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln(x^2 + t^2)}{1 + t^2} \right) = \frac{2x}{(x^2 + t^2)(1 + t^2)}$$

 $t\mapsto \frac{2x}{(x^2+t^2)(1+t^2)}$ est continue par morceaux sur $[0,+\infty[, x\mapsto t\mapsto \frac{2x}{(x^2+t^2)(1+t^2)}$ est continue sur $\mathbb R$ et pour $x\in [a,b]\subset \mathbb R^{+\star}$,

$$\left| \frac{2x}{(x^2 + t^2)(1 + t^2)} \right| \leqslant \frac{2b}{(a^2 + t^2)(1 + t^2)} = \psi(t)$$

avec ψ intégrable. Par suite f est de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$. Pour $x \neq 1$,

$$\frac{2x}{(x^2+t^2)(1+t^2)} = \frac{2x}{x^2-1} \left(\frac{1}{1+t^2} - \frac{1}{x^2+t^2} \right)$$

donc

$$f'(x) = \int_0^{+\infty} \frac{2x}{(x^2 + t^2)(1 + t^2)} dt = \frac{\pi}{x + 1}$$

et cette relation vaut aussi pour x = 1 par continuité.

En procédant au changement de variable u=1/t, on obtient f(0)=0 et donc on peut conclure

$$f(x) = \pi \ln (x+1)$$

pour $x \in \mathbb{R}^+$ en exploitant un argument de continuité.

Exercice 103: [énoncé]

a) Posons

$$g(x,t) = \frac{\ln(1 + 2t\cos x + t^2)}{t}$$

Puisque $\cos x \ge 0$,

$$1 + 2t\cos x + t^2 \geqslant 1 + t^2$$

donc $t \mapsto g(x,t)$ est définie et continue par morceaux sur]0,1] De plus

$$\lim_{t \to 0} \frac{\ln(1 + 2t\cos x + t^2)}{t} = \cos x$$

on peut donc prolonger $t \mapsto g(x,t)$ par continuité en 0. Par suite F(x) est bien définie.

La dérivée partielle $\frac{\partial g}{\partial x}$ existe sur $[0, \pi/2] \times]0, 1]$ et

$$\frac{\partial g}{\partial x}(x,t) = -\frac{2\sin x}{1 + 2t\cos x + t^2}$$

 $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux sur]0,1], $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur $[0,\pi/2]$ et

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \leqslant 2 = \varphi(t)$$

avec φ est intégrable. Par domination F est de classe \mathcal{C}^1 . b) Pour x = 0, F'(0) = 0. Pour $x \neq 0$,

$$F'(x) = -\int_0^1 \frac{2\sin x}{1 + 2t\cos x + t^2} dt = -\int_0^1 \frac{2\sin x}{(t + \cos x)^2 + \sin^2 x} dt = -\left[2\arctan\frac{t + \cos x}{\sin x}\right]_0^{\text{lintégrale définissant } I_n(x) \text{ existe.}$$

$$I_1(x) = \int_0^{+\infty} \frac{1}{(t + \cos x)^2 + \sin^2 x} dt = -\left[2\arctan\frac{t + \cos x}{\sin x}\right]_0^{\text{lintégrale définissant } I_n(x) \text{ existe.}$$

Or

$$\arctan \frac{\cos x}{\sin x} = \arctan(\tan(\pi/2 - x))$$

avec $\pi/2 - x \in [-\pi/2, \pi/2]$ donc

$$\arctan \frac{\cos x}{\sin x} = \pi/2 - x$$

 $_{
m et}$

$$\arctan \frac{1 + \cos x}{\sin x} = \arctan \frac{\cos (x/2)}{\sin (x/2)} = \pi/2 - x/2$$

Finalement

$$F'(x) = 2((\pi/2 - x) - (\pi/2 - x/2)) = -x$$

c)

$$F(0) = \int_0^1 \frac{2\ln(1+t)}{t} dt = 2 \int_0^1 \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} t^n dt$$

or la série de fonctions $\sum \frac{(-1)^n}{n+1} t^n$ converge uniformément sur [0, 1] puisque la série numérique satisfait au critère spécial ce qui permet d'écrire

$$|R_N(t)| \leqslant \frac{t^{n+1}}{n+2} \leqslant \frac{1}{n+2}$$

d'où $||R_N||_{\infty} \to 0$.

Par suite

$$F(0) = 2\sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^2} = \frac{\pi^2}{6}$$

puis

$$F(x) = \frac{\pi^2}{6} - \frac{x^2}{2}$$

Exercice 104: [énoncé]

a) Posons

$$g_n(x,t) = \frac{1}{(x^2 + t^2)^n}$$

 $t \to g_n(x,t)$ est définie continue par morceaux sur \mathbb{R}^+ et $g_n(x,t) \sim \frac{1}{t^{2n}}$ donc

$$I_1(x) = \int_0^{+\infty} \frac{dt}{x^2 + t^2} = \left[\frac{1}{x} \arctan \frac{t}{x}\right]_0^{+\infty} = \frac{\pi}{2x}$$

c) $\frac{\partial g_n}{\partial x}(x,t) = \frac{-2nx}{(x^2+t^2)^{n+1}}$ existe sur $]0,+\infty[\times[0,+\infty[$.

 $t\mapsto \frac{\partial g_n}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[,\,x\mapsto \frac{\partial g}{\partial x}(x,t)]$ est continue sur $[0, +\infty[$ et pour tout 0 < a < b,

$$\forall x \in [a, b], \ \left| \frac{\partial g_n}{\partial x}(x, t) \right| \leqslant \frac{2nb}{(a^2 + t^2)^{n+1}} = \varphi_{a, b}(t)$$

avec $\varphi_{a,b}$ intégrable sur \mathbb{R}^+ . Par domination sur tout segment, I_n est de classe \mathcal{C}^1 sur [a,b] puis sur $\mathbb{R}^{+\star}$ et

$$I_n'(x) = -2nxI_{n+1}(x)$$

d) $I_n(x) = \frac{\lambda_n}{x^{2n+1}}$ avec $\lambda_1 = \frac{\pi}{2}$ et $\lambda_{n+1} = \frac{2n+1}{2n} \lambda_n$ d'où

$$\lambda_n = \frac{(2n)!}{2^{2n+1}(n!)^2} \pi$$

Exercice 105 : [énoncé]

a) Posons $f: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ définie par

$$f(x,t) = \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right)$$

La fonction f est continue sur $\mathbb{R} \times [0, +\infty]$ et

$$|f(x,t)| \leqslant e^{-t^2} = \varphi(t)$$

avec φ intégrable sur $]0, +\infty[$.

On peut donc affirmer que F est définie et continue sur \mathbb{R} .

b) $x \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = -\frac{2x}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right)$$

La fonction $\frac{\partial f}{\partial x}$ est continue sur $\mathbb{R} \times]0, +\infty[$ et pour $x \in [a,b] \subset]0, +\infty[$

$$\left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant \frac{2b}{t^2} \exp\left(-\frac{a^2}{t^2}\right) \exp\left(-t^2\right) = \varphi_{a,b}(t)$$

La fonction $\varphi_{a,b}$ est intégrable sur $]0,+\infty[$ (notamment car de limite nulle en 0^+) donc on peut affirmer que F est de classe C^1 sur $]0, +\infty[$ et

$$F'(x) = -2x \int_0^{+\infty} \frac{1}{t^2} \exp\left(-\left(t^2 + \frac{x^2}{t^2}\right)\right) dt$$

c) Procédons au changement de variable u = x/t (bijection de classe \mathcal{C}^1)

$$F'(x) = -2 \int_0^{+\infty} \exp\left(-\left(\frac{x^2}{u^2} + u^2\right)\right) du = -2F(x)$$

d) On en déduit qu'il existe $\lambda \in \mathbb{R}$ vérifiant

$$\forall x > 0, F(x) = \lambda e^{-2x}$$

Puisque F est paire et continue en 0, on obtient

$$\forall x \in \mathbb{R}, F(x) = F(0)e^{-2|x|}$$

Exercice 106: [énoncé]

a) Posons

$$f(x,t) = \frac{\arctan(xt)}{t(1+t^2)}$$

est définie sur $[0, +\infty[\times]0, +\infty[$,

 $t\mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ car prolongeable par continuité en 0 et égale à un $O(1/t^3)$ en $+\infty$. Ainsi F est définie sur \mathbb{R}^+

$$\frac{\partial f}{\partial x}(x,t) = \frac{1}{(1+x^2t^2)(1+t^2)}$$

est définie sur $[0, +\infty[\times]0, +\infty[,$

 $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$ et $x\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue $\operatorname{sur}\left[0,+\infty\right]$.

$$\left|\frac{\partial f}{\partial x}(x,t)\right|\leqslant \frac{1}{1+t^2}=\varphi(t)$$

avec φ continue par morceaux et intégrable sur $]0, +\infty[$, donc F est de classe \mathcal{C}^1 sur \mathbb{R}^+ avec

$$F'(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+x^2t^2)(1+t^2)}$$

b) Pour $x \neq 1$

$$\frac{1}{(1+x^2t^2)(1+t^2)} = \frac{1}{x^2-1} \left(\frac{x^2}{1+x^2t^2} - \frac{1}{1+t^2} \right)$$

d'où

$$F'(x) = \frac{x-1}{x^2 - 1} \frac{\pi}{2} = \frac{\pi}{2(x+1)}$$

ce qui est encore valable en 1 par continuité.

Par suite

$$F(x) = \frac{\pi}{2}\ln(x+1) + C$$

avec C=0 puisque F(0)=0.

Exercice 107 : [énoncé]

 $S \times [a, b]$ est compact et toute fonction continue sur un compact y est uniformément continue.

Etudions la continuité de F en $\alpha \in \mathbb{R}$ et considérons $S = [\alpha - 1, \alpha + 1]$.

$$\forall \varepsilon > 0, \exists \eta > 0, \forall (x,t), (x',t') \in S \times [a,b], \|(x,t) - (x',t')\|_{\infty} \leqslant \eta \Rightarrow |f(x,t) - f(x',t')| \leqslant \varepsilon$$

Donc pour $|x - \alpha| \leq \eta$, on a

$$|F(x) - F(\alpha)| \le \int_a^b \varepsilon dt = \varepsilon(b - a)$$

Ainsi F est continue en α .

 $(x,t)\mapsto e^{xt}$ est continue par opérations donc q l'est aussi par intégration sur un segment.

Pour $x \neq 0$, $g(x) = \frac{e^x - 1}{x}$ et g(0) = 1. Sans difficultés, on vérifie g est continue sur \mathbb{R} .

Exercice 108: [énoncé]

Réalisons le changement de variable $t = u(x) + \theta(v(x) - u(x))$

$$\int_{u(x)}^{v(x)} f(x,t) dt = (v(x) - u(x)) \int_{0}^{1} f(x, u(x) + \theta(v(x) - u(x))) d\theta$$

Considérons la fonction

$$g:(x,\theta)\mapsto f(x,u(x)+\theta(v(x)-u(x))$$

Pour $[a,b]\subset I$, la fonction g est continue sur le compact $[a,b]\times [0,1]$ et donc bornée. Par conséquent, il existe $M\in\mathbb{R}^+$ vérifiant

$$\forall (x, \theta) \in [a, b] \times [0, 1], |g(x, \theta)| \leq M = \varphi(\theta)$$

La fonction φ est intégrable sur [0,1] et donc, par domination sur tout segment, on peut affirmer la continuité de la fonction

$$x \mapsto \int_0^1 g(x, \theta) \, \mathrm{d}\theta$$

On en déduit la continuité de la fonction étudiée par produit.

Exercice 109: [énoncé]

Pour tout $x \in \mathbb{R}$, on peut écrire

$$f(x) = \int_0^x f'(t) dt = x \int_0^1 f'(xu) du$$

On a donc

$$\forall x \in \mathbb{R}^*, g(x) = \int_0^1 f'(xu) \, \mathrm{d}u$$

Posons h(x, u) = f'(xu) définie sur $\mathbb{R} \times [0, 1]$. La fonction h admet des dérivées partielles $\frac{\partial^n h}{\partial x^n}$ à tout ordre n avec

$$\frac{\partial^n h}{\partial x^n}(x, u) = u^n f^{(n+1)}(xu)$$

Celles-ci sont continues en x et continues par morceaux en u. Soit $[-a,a] \subset \mathbb{R}$. Puisque la fonction $f^{(n+1)}$ est continue sur le segment [-a,a], elle y est bornée et donc il existe $M \in \mathbb{R}^+$ vérifiant

$$\forall (x, u) \in [-a, a] \times [0, 1], \left| \frac{\partial^n h}{\partial x^n} (x, u) \right| \leqslant M = \varphi(u)$$

Puisque la fonction φ est intégrable, on peut affirmer par domination sur tout segment, que la fonction

$$x \mapsto \int_0^1 f'(xu) \, \mathrm{d}u$$

est de classe \mathcal{C}^{∞} sur \mathbb{R} avec

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(\int_0^1 f'(xu) \, \mathrm{d}u \right) = \int_0^1 u^n f^{(n+1)}(xu) \, \mathrm{d}u$$

On en déduit que la fonction g se prolonge en une fonction \mathcal{C}^{∞} sur \mathbb{R} avec

$$\forall n \in \mathbb{N}, g^{(n)}(0) = \int_0^1 u^n f^{(n+1)}(0) du = \frac{f^{(n+1)}(0)}{n+1}$$

Exercice 110: [énoncé]

- a) On applique la formule de Taylor reste-intégrale à f en a.
- b) On réalise le changement de variable $t = a + \theta(x a)$ et l'on obtient

$$f(x) = (x - a)^{\alpha} \int_0^1 \frac{(1 - \theta)^{\alpha - 1}}{(\alpha - 1)!} f^{(\alpha)}(a + \theta(x - a)) d\theta$$

Posons

$$h(x,\theta) = \frac{(1-\theta)^{\alpha-1}}{(\alpha-1)!} f^{(\alpha)}(a+\theta(x-a))$$

La fonction h admet des dérivées partielles

$$\frac{\partial^k h}{\partial x^k}(x,\theta) = \frac{(1-\theta)^{\alpha-1}}{(\alpha-1)!}(x-a)^k f^{(\alpha+k)}(a+\theta(x-a))$$

Celles-ci sont continues en x et continues par morceaux en θ .

Soit $[a-b,a+b] \subset \mathbb{R}$. La fonction $f^{(\alpha+k)}$ est continue sur ce segment et y est donc bornée par un certain M.

Puisque

$$\forall x \in [a - b, a + b], \forall \theta \in [0, 1], a + \theta(x - a) \in [a - b, a + b]$$

on a

$$\forall (x,\theta) \in [a-b,a+b] \times [0,1], \left| \frac{\partial^k h}{\partial x^k}(x,\theta) \right| \leqslant M = \varphi(\theta)$$

avec φ fonction intégrable sur [0,1].

Par domination sur tout segment, on peut affirmer que la fonction

$$g: x \mapsto \int_0^1 \frac{(1-\theta)^{\alpha-1}}{(\alpha-1)!} f^{(\alpha)}(a+\theta(x-a)) d\theta$$

est de classe \mathcal{C}^{∞} .

Exercice 111 : [énoncé]

a) $t \mapsto g(x,t) = e^{(-1+ix)t^2}$ est définie et continue par morceaux sur $[0,+\infty[$.

Puisque $t \mapsto |g(x,t)| = e^{-t^2}$ est intégrable sur $[0,+\infty[$, la fonction z est bien définie.

 $t \mapsto \frac{\partial g}{\partial x}(x,t) = it^2 e^{(-1+ix)t^2}$ est définie et continue par morceaux sur $[0,+\infty[$, $x \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue sur \mathbb{R} ,

$$\left| \frac{\partial g}{\partial x}(x,t) \right| \le t^2 e^{-t^2} = \varphi(t)$$

avec φ intégrable sur $[0, +\infty[$.

La fonction z est donc définie et de classe \mathcal{C}^1 sur \mathbb{R} avec

$$z'(x) = \int_0^{+\infty} it^2 e^{(-1+ix)t^2} dt = -\frac{1}{2(x+i)} z(x)$$

b) En multipliant par la quantité conjuguée

$$\frac{-1}{2(x+i)} = \frac{-x+i}{2(x^2+1)} = -\frac{x}{2(x^2+1)} + \frac{i}{2(x^2+1)}$$

donc

$$z(x) = C \exp\left(i\frac{\arctan x}{2} - \frac{1}{4}\ln(x^2 + 1)\right) = \frac{Ce^{i(\arctan x)/2}}{(x^2 + 1)^{1/4}}$$

Puisque $z(0) = \frac{\sqrt{\pi}}{2}$, on conclut

$$z(x) = \frac{\sqrt{\pi}e^{i(\arctan x)/2}}{2(x^2+1)^{1/4}}$$

Exercice 112 : [énoncé]

Posons

$$f(x,t) = e^{-t^2} e^{itx}$$

La fonction $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur \mathbb{R} car

$$t^2 f(x,t) \xrightarrow[t \to +\infty]{} 0$$

et donc la fonction g est définie sur \mathbb{R} . La fonction $x \mapsto f(x,t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = ite^{-t^2}e^{itx}$$

La fonction $t \mapsto \frac{\partial f}{\partial x}(t,x)$ est continue par morceaux, la fonction $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue et

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \le |t| e^{-t^2} = \varphi(t)$$

avec φ intégrable sur \mathbb{R} indépendant de x.

On en déduit que la fonction g est de classe \mathcal{C}^1 et par une intégration par parties

$$g'(x) = \int_{-\infty}^{+\infty} it e^{-t^2} e^{itx} dt = \left[-\frac{i}{2} e^{-t^2} e^{itx} \right]_{-\infty}^{+\infty} - \frac{1}{2} \int_{-\infty}^{+\infty} x e^{-t^2} e^{itx} dt$$

On en déduit que q est solution de l'équation différentielle

$$g'(x) + \frac{1}{2}xg(x) = 0$$

Après résolution de cette équation différentielle

$$g(x) = \lambda e^{-x^2/4}$$

Enfin $g(0) = \sqrt{\pi}$ donne $\lambda = \sqrt{\pi}$.

Exercice 113: [énoncé]

a) Posons $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ définie par

$$f(x,t) = \frac{e^{itx}}{1+t^2}$$

La fonction f est définie et continue sur \mathbb{R}^2 . Pour tout $(x,t) \in \mathbb{R}^2$, on a

$$|f(x,t)| \leqslant \frac{1}{1+t^2} = \psi(t)$$

avec ψ intégrable sur $[0, +\infty[$.

On en déduit que φ est définie et continue sur \mathbb{R} .

b) Par intégration par parties

$$\varphi(x) = -\frac{1}{ix} + \frac{1}{ix} \int_0^{+\infty} \frac{2te^{itx}}{(1+t^2)^2} dt$$

La fonction

$$x \mapsto \int_0^{+\infty} \frac{2t e^{itx}}{(1+t^2)^2} dt$$

est de classe \mathcal{C}^1 sur \mathbb{R} en vertu de la domination

$$\left| \frac{\partial}{\partial x} \left(\frac{2te^{itx}}{(1+t^2)^2} \right) \right| = \frac{2t^2}{(1+t^2)^2} \leqslant \frac{2}{1+t^2}$$

On en déduit que φ est de classe \mathcal{C}^1 sur \mathbb{R}^* avec

$$\varphi'(x) = \frac{1}{ix^2} - \frac{1}{ix^2} \int_0^{+\infty} \frac{2te^{itx}}{(1+t^2)^2} dt + \frac{1}{x} \int_0^{+\infty} \frac{2t^2e^{itx}}{(1+t^2)^2} dt$$

Or par intégration par parties

$$\int_0^{+\infty} \frac{2te^{itx}}{(1+t^2)^2} = \left[-\frac{e^{itx}}{1+t^2} \right]_0^{+\infty} + ix \int_0^{+\infty} \frac{e^{itx}}{1+t^2} dt$$

donc

$$\varphi'(x) = -\frac{1}{x} \int_0^{+\infty} \frac{e^{itx}}{1+t^2} dt + \frac{1}{x} \int_0^{+\infty} \frac{2t^2 e^{itx}}{(1+t^2)^2} dt = \frac{1}{x} \int_0^{+\infty} \frac{t^2 - 1}{(1+t^2)^2} e^{itx} dt$$

Enfin, une dernière intégration par parties donne

$$\varphi'(x) = \frac{1}{x} \left[-\frac{2t}{1+t^2} e^{itx} \right]_0^{+\infty} + i \int_0^{+\infty} \frac{2t}{1+t^2} e^{itx} dt$$

et la relation voulue...

c) Par le changement de variable u=tx, on obtient l'expression proposée. On peut décomposer

$$\varphi'(x) = i \int_0^1 \frac{u e^{iu}}{x^2 + u^2} du + \int_1^{+\infty} \frac{u e^{iu}}{x^2 + u^2} du$$

D'une part, par intégration par parties

$$\int_{1}^{+\infty} \frac{u e^{iu}}{x^2 + u^2} du = \left[\frac{u e^{iu}}{x^2 + u^2} \right]_{1}^{+\infty} - \int_{1}^{+\infty} \frac{x^2 - u^2}{(x^2 + u^2)^2} e^{iu} du$$

avec

$$\left[\frac{ue^{iu}}{x^2 + u^2}\right]_1^{+\infty} = -\frac{e^i}{x^2 + 1} \xrightarrow[x \to 0^+]{} -e^i$$

et

$$\left| \int_{1}^{+\infty} \frac{x^{2} - u^{2}}{(x^{2} + u^{2})^{2}} e^{iu} du \right| \leqslant \int_{1}^{+\infty} \frac{u^{2} - x^{2}}{(x^{2} + u^{2})^{2}} du = \frac{1}{x^{2} + 1} \xrightarrow[x \to 0^{+}]{} 1$$

D'autre part

$$\int_0^1 \frac{u e^{iu}}{x^2 + u^2} du = \int_0^1 \frac{u}{x^2 + u^2} du + \int_0^1 \frac{u(e^{iu} - 1)}{x^2 + u^2} du$$

avec

$$\int_0^1 \frac{u}{x^2 + u^2} \, \mathrm{d}u = \left[\frac{1}{2} \ln(x^2 + u^2) \right]_0^1 \sim \lim_{x \to 0^+} \ln x$$

 $_{
m et}$

$$\left| \int_0^1 \frac{u(e^{iu} - 1)}{x^2 + u^2} \, \mathrm{d}u \right| \leqslant \int_0^1 \frac{\left| e^{iu} - 1 \right|}{u} \, \mathrm{d}u < +\infty$$

Au final

$$\varphi'(x) = i \ln x + o(\ln x) + O(1) \underset{x \to 0^+}{\sim} i \ln x$$

d) En vertu de ce qui précède

$$\operatorname{Im}(\varphi'(x)) \underset{x \to 0^+}{\sim} \ln x \to -\infty$$

On en déduit que la fonction réelle $\text{Im}\varphi$ n'est pas dérivable en 0, il en est a fortiori de même de φ .

Exercice 114: [énoncé]

Posons $u(x,t) = e^{-t^2} \cos(xt)$.

- a) Pour chaque $x \in \mathbb{R}$, la fonction $t \mapsto u(x,t)$ est continue par morceaux sur $[0,+\infty[$ et négligeable devant $1/t^2$ en $+\infty$ donc intégrable sur $[0,+\infty[$. La fonction f est définie sur \mathbb{R} .
- b) La fonction $t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur \mathbb{R}^+ et $x \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue sur \mathbb{R} .

Pour $x \in [0, +\infty[$

$$\left| \frac{\partial u}{\partial x}(x,t) \right| \leqslant t e^{-t^2}$$

avec $t \mapsto t e^{-t^2}$ intégrable sur $[0, +\infty[$, la fonction f est de classe \mathcal{C}^1 et

$$f'(x) = \int_0^{+\infty} -t e^{-t^2} \sin(xt) dt$$

Par intégration par parties impropre justifiée par deux convergences,

$$f'(x) = \left[\frac{1}{2}e^{-t^2}\sin(xt)\right]_0^{+\infty} - \frac{1}{2}\int_0^{+\infty} xe^{-t^2}\cos(xt)dt = -\frac{1}{2}xf(x)$$

f est solution d'une équation différentielle linéaire d'ordre 1 et $f(0)=\sqrt{\pi}/2$ on conclut

$$f(x) = \frac{\sqrt{\pi}}{2} e^{-\frac{1}{4}x^2}$$

c) On peut écrire

$$f(x) = \int_0^{+\infty} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!} t^{2n} e^{-t^2} dt$$

Posons $u_n(t) = \frac{(-1)^n x^{2n}}{(2n)!} t^{2n} e^{-t^2}$.

Les fonctions u_n sont continues par morceaux sur \mathbb{R}^+ .

La série $\sum u_n$ converge simplement sur \mathbb{R}^+ vers la fonction $t \mapsto e^{-t^2} \cos(xt)$ elle aussi continue par morceaux.

Les fonctions u_n sont intégrables sur \mathbb{R}^+ et

$$\int_0^{+\infty} |u_n(t)| \, \mathrm{d}t = \frac{x^{2n}}{(2n)!} \int_0^{+\infty} t^{2n} \mathrm{e}^{-t^2} \, \mathrm{d}t$$

Par intégration par parties impropre justifiée par deux convergences

$$\int_0^{+\infty} t^{2n} e^{-t^2} dt = \frac{2n-1}{2} \int_0^{+\infty} t^{2(n-1)} e^{-t^2} dt$$

et donc

$$\int_0^{+\infty} t^{2n} e^{-t^2} dt = \frac{(2n)!}{2^{2n} n!} \int_0^{+\infty} e^{-t^2} dt$$

Ainsi

$$\int_0^{+\infty} |u_n(t)| \, \mathrm{d}t = \frac{x^{2n}}{2^{2n} n!} \frac{\sqrt{\pi}}{2}$$

Cette quantité étant sommable, on peut intégrer terme à terme et on retrouve

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{2^{2n} n!} \frac{\sqrt{\pi}}{2} = \frac{\sqrt{\pi}}{2} e^{-x^2/4}$$

Exercice 115 : [énoncé]

Posons $u(x,t) = e^{-t^2} \cos(xt)$.

La fonction u est définie sur $\mathbb{R} \times [0, +\infty[$ et admet une dérivée partielle

$$\frac{\partial u}{\partial x}(x,t) = -te^{-t^2}\sin(xt)$$

 $\forall x \in \mathbb{R}, t \mapsto u(x,t)$ est continue par morceaux et intégrable sur $[0,+\infty[$ car négligeable devant $1/t^2$ en $+\infty$.

 $\forall x \in \mathbb{R}, t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[$.

 $\forall t \in [0, +\infty[, x \mapsto \frac{\partial u}{\partial x}(x, t) \text{ est continue sur } \mathbb{R}.$

Enfin

$$\forall (x,t) \in \mathbb{R} \times [0,+\infty[,\left|\frac{\partial u}{\partial x}(x,t)\right| \leqslant te^{-t^2} = \varphi(t)$$

avec $\varphi:[0,+\infty[\to\mathbb{R}$ continue par morceaux et intégrable sur $[0,+\infty[$.

Par domination, la fonction g est de classe \mathcal{C}^1 et

$$g'(x) = \int_0^{+\infty} -t e^{-t^2} \sin(xt) dt$$

Procédons à une intégration par parties avec les fonctions \mathcal{C}^1

$$u(t) = \frac{1}{2}e^{-t^2}$$
 et $v(t) = \sin(xt)$

Puisque le produit uv converge en 0 et $+\infty$, l'intégration par parties impropre est possible et

$$g'(x) = \left[\frac{1}{2}e^{-t^2}\sin(xt)\right]_0^{+\infty} - \frac{1}{2}\int_0^{+\infty} xe^{-t^2}\cos(xt) dt$$

Ainsi on obtient

$$g'(x) = -\frac{1}{2}xg(x)$$

g est solution d'une équation différentielle linéaire d'ordre 1 et $g(0)=\sqrt{\pi}/2$ on conclut

$$\varphi(x) = \frac{\sqrt{\pi}}{2} e^{-\frac{1}{4}x^2}$$

Exercice 116: [énoncé]

Posons $f(x,t) = t^{x-1}e^{-t}$ définie sur $\mathbb{R}^{+\star} \times [0,+\infty[$.

Pour tout x > 0, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ car

$$t^{x-1}e^{-t} \underset{t\to 0^+}{\sim} t^{x-1}$$
 avec $x-1>-1$ et $t^2f(x,t) \xrightarrow[t\to +\infty]{} 0$

La fonction f admet des dérivées partielles

$$\frac{\partial^k f}{\partial x^k}(x,t) = (\ln t)^k t^{x-1} e^{-t}$$

Pour tout x > 0, la fonction $t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux et intégrable sur $]0, +\infty[$ car

$$t^a(\ln t)^k t^{x-1} \mathrm{e}^{-t} \xrightarrow[x \to 0^+]{} 0 \text{ pour } a \in]1-x,1[\text{ et } t^2 \times (\ln t)^k t^{x-1} \mathrm{e}^{-t} \xrightarrow[t \to +\infty]{} 0$$

Pour $[a, b] \subset]0, +\infty[$,

$$\forall (x,t) \in [a,b] \times]0, +\infty[, \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leqslant (\ln t)^k (t^{a-1} + t^{b-1}) e^{-t} = \varphi(t)$$

car

$$t^{x-1} \leqslant t^{a-1} + t^{b-1}$$
 que $t \leqslant 1$ ou $t \geqslant 1$

La fonction φ est intégrable sur $]0, +\infty[$ et donc, par domination sur tout segment, Γ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$

Exercice 117: [énoncé]

a) Posons $f(x,t) = t^{x-1}e^{-t}$ définie sur $\mathbb{R}^{+\star} \times [0,+\infty[$.

Pour tout x > 0, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur $]0,+\infty[$ et intégrable car

$$t^{x-1}e^{-t} \underset{t\to 0^+}{\sim} t^{x-1} \text{ avec } x-1 > -1 \text{ et } t^2f(x,t) \xrightarrow[t\to +\infty]{} 0$$

La fonction Γ est donc définie sur $]0, +\infty[$.

Pour tout $t \in]0, +\infty[$, la fonction $x \mapsto f(x,t)$ est continue sur $\mathbb{R}^{+\star}$ Pour $x \in [a,b] \subset]0, +\infty[$, on a $t^{x-1} \leqslant t^{a-1}$ ou $t^{x-1} \leqslant t^{b-1}$ selon que $t \leqslant 1$ ou $t \geqslant 1$ et donc

$$\forall (x,t) \in [a,b] \times]0, +\infty[, |f(x,t)| \leqslant f(a,t) + f(b,t) = \varphi(t)$$

La fonction φ est intégrable et donc, par domination sur tout segment, Γ est continue sur $]0,+\infty[$.

car

$$t^{x-1}e^{-t} \underset{t\to 0^+}{\sim} t^{x-1} \text{ avec } x-1 > -1 \text{ et } t^2f(x,t) \xrightarrow[t\to +\infty]{} 0$$

b) Pour k = 1 ou 2.

$$\frac{\partial^k f}{\partial x^k}$$
 existe et $\frac{\partial^k f}{\partial x^k}(x,t) = (\ln t)^k t^{x-1} e^{-t}$

Pour tout x > 0: $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux et intégrable sur $]0,+\infty[$ car

$$t^a \ln(t) t^{x-1} e^{-t} \xrightarrow[x \to 0^+]{} 0 \text{ pour } a \in]1 - x, 1[\text{ et } t^2 \times \ln(t) t^{x-1} e^{-t} \xrightarrow[t \to +\infty]{} 0$$

 $\frac{\partial^2 f}{\partial x^2}$ est continue en x et continue par morceaux en t. Pour tout $[a,b]\subset]0,+\infty[$

$$\forall (x,t) \in [a,b] \times]0, +\infty[\ , \left| \frac{\partial^2 f}{\partial x^2}(x,t) \right| \leqslant (\ln t)^2 (t^{a-1} + t^{b-1}) \mathrm{e}^{-t} = \varphi(t)$$

Par des arguments analogues aux précédents, on obtient que φ est intégrable sur $]0, +\infty[$ et donc, par domination sur tout segment, Γ est de classe C^2 sur $]0, +\infty[$ avec

$$\Gamma'(x) = \int_0^{+\infty} \ln(t) t^{x-1} e^{-y} dt \text{ et } \Gamma''(x) = \int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-y} dt$$

c) La dérivée seconde de $\ln \Gamma(x)$ est du signe de

$$\Gamma''(x)\Gamma(x) - \Gamma'(x)^2$$

Par l'inégalité de Cauchy-Schwarz :

$$\left(\int_0^{+\infty} \sqrt{t^{x-1} \mathrm{e}^{-t}} \sqrt{(\ln t)^2 t^{x-1} \mathrm{e}^{-t}} \right) \, \mathrm{d}t \leqslant \left(\int_0^{+\infty} t^{x-1} \mathrm{e}^{-t} \, \mathrm{d}t \right) \left(\int_0^{+\infty} (\ln t)^2 t^{x-1} \mathrm{e}^{-t} \, \mathrm{d}t \right)$$

Ainsi

$$\Gamma'(x)^2 \leqslant \Gamma(x)\Gamma''(x)$$

et donc

$$(\ln \Gamma(x))'' \geqslant 0$$

Finalement $x \mapsto \ln \Gamma(x)$ est convexe.

Exercice 118: [énoncé]

a) Puisque $ln(1+u) \leq u$, on a

$$0 \leqslant \left(1 - \frac{t}{n}\right)^{n-1} = \exp\left((n-1)\ln\left(1 - \frac{t}{n}\right)\right) \leqslant \exp\left(-(n-1)\frac{t}{n}\right) = e^{-t}e^{t/n} \leqslant e.e^{-t}$$

b) Pour tout $t \in \mathbb{R}^+$, $\ln(t)e^{-t}$ est limite simple de la suite de fonction (u_n) définie par $u_n(t) = \left(1 - \frac{t}{n}\right)^{n-1}$ si $t \in]0, n[$ et $u_n(t) = 0$ sinon. Puisque $|\ln(t)u_n(t)| \le e. \ln(t)e^{-t}$, par convergence dominée :

$$\lim_{n \to +\infty} \int_0^n \ln(t) \left(1 - \frac{t}{n}\right)^{n-1} dt = \int_0^{+\infty} \ln(t) e^{-t} dt$$

c) Par le changement de variable u = nt

$$\int_0^n \left(1 - \frac{t}{n}\right)^{n-1} \ln(t) dt = \int_0^1 n (1 - u)^{n-1} \ln(nu) du$$

avec

$$\int_0^1 n (1-u)^{n-1} \ln(nu) du = \ln n + \int_0^1 n \ln(u) (1-u)^{n-1} du$$

et

$$\int_{\varepsilon}^{1} n \ln(u) (1-u)^{n-1} du = \left[\ln(u) (1-(1-u)^{n}) \right]_{\varepsilon}^{1} + \int_{\varepsilon}^{1} \frac{(1-u)^{n} - 1}{u} du$$

On notera que la fonction $u \mapsto n(1-u)^{n-1}$ est primitivée en $(1-(1-u)^n)$ qui s'annule en 0 de sorte que l'intégration par parties donne à la limite quand $\varepsilon \to 0^+$

$$\int_0^1 n \ln(u) (1-u)^{n-1} du = \int_0^1 \frac{(1-u)^n - 1}{u} du$$

d) Par le changement de variable u = 1 - v

$$\int_0^1 \frac{(1-u)^n - 1}{u} \, du = -\int_0^1 \frac{v^n - 1}{v - 1} \, dv = -\int_0^1 \sum_{k=0}^{n-1} v^k \, dv$$

puis

$$\int_0^1 \frac{(1-u)^n - 1}{u} \, \mathrm{d}u = -\sum_{k=1}^n \frac{1}{k} = -\ln n - \gamma + o(1)$$

Finalement

$$\int_0^{+\infty} \ln(t) e^{-t} dt = -\gamma$$

Exercice 119 : [énoncé]

a) Posons $f(x,t) = t^{x-1}e^{-t}$ définie sur $\mathbb{R}^{+\star} \times]0, +\infty[$.

Pour tout x > 0, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ car

$$t^{x-1}e^{-t} \underset{t\to 0^+}{\sim} t^{x-1}$$
 avec $x-1>-1$ et $t^2f(x,t)\xrightarrow[t\to +\infty]{} 0$

La fonction f admet des dérivées partielles

$$\frac{\partial^k f}{\partial x^k}(x,t) = (\ln t)^k t^{x-1} e^{-t}$$

Pour tout x > 0, la fonction $t \mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux et intégrable sur $]0, +\infty[$ car

$$t^a(\ln t)^kt^{x-1}\mathrm{e}^{-t}\xrightarrow[x\to 0^+]{}0 \text{ pour } a\in]1-x,1[\text{ et } t^2\times (\ln t)^kt^{x-1}\mathrm{e}^{-t}\xrightarrow[t\to +\infty]{}0$$

Pour $[a, b] \subset]0, +\infty[$,

$$\forall (x,t) \in [a,b] \times]0, +\infty[, \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leqslant (\ln t)^k (t^{a-1} + t^{b-1}) e^{-t} = \varphi(t)$$

car

$$t^{x-1} \leqslant t^{a-1} + t^{b-1}$$
 que $t \leqslant 1$ ou $t \geqslant 1$

La fonction φ est intégrable sur $]0, +\infty[$ et donc, par domination sur tout segment, Γ est de classe \mathcal{C}^{∞} sur $]0, +\infty[$

b) Par intégration par parties avec $u'(t) = e^{-t}$ et $v(t) = t^x$, on obtient

$$\Gamma(x+1) = x\Gamma(x)$$

Sachant $\Gamma(1) = 1$, on obtient par récurrence $\Gamma(n+1) = n!$.

c) Par le changement de variable proposé

$$\Gamma(n+1) = \frac{n^n}{e^n} \sqrt{n} \int_{-\infty}^{+\infty} f_n(y) \, \mathrm{d}y$$

avec

$$f_n(y) = 0 \text{ sur } \left[-\infty, -\sqrt{n} \right], f_n(y) = e^{-y\sqrt{n}} \left(1 + \frac{y}{\sqrt{n}} \right)^n \text{ sur } \left[-\sqrt{n}, +\infty \right]$$

Sur $]-\sqrt{n}, 0]$, une étude fonctionnelle montre $n \ln \left(1 + \frac{y}{\sqrt{n}}\right) - y\sqrt{n} \leqslant -\frac{y^2}{2}$ qui donne $0 \leqslant f_n(y) \leqslant e^{-y^2/2}$.

Sur $[0, +\infty[$, une étude fonctionnelle montre $n \ln \left(1 + \frac{y}{\sqrt{n}}\right) - y\sqrt{n} \leqslant -y + \ln(1+y)$ pour $t \geqslant 1$. Cela donne $0 \leqslant f_n(y) \leqslant (1+y)e^{-y}$.

d) La fonction

$$\varphi: y \to \begin{cases} e^{-y^2/2} & \text{si } y \leq 0\\ (1+y)e^{-y} & \text{sinon} \end{cases}$$

est intégrable sur \mathbb{R} .

Quand $n \to +\infty$, en réalisant un développement limité du contenu de l'exponentielle

$$f_n(y) = e^{-y\sqrt{n} + n\ln\left(1 + \frac{y}{\sqrt{n}}\right)} \to e^{-y^2/2}$$

Par convergence dominée

$$\int_{-\infty}^{+\infty} f_n(y) dy \to \int_{-\infty}^{+\infty} e^{-y^2/2} dy = \sqrt{2\pi}$$

d'où

$$\Gamma(n+1) = n! \sim \sqrt{2\pi n} \frac{n^n}{e^n}$$

Exercice 120: [énoncé]

a) La fonction Γ est définie sur $\mathbb{R}^{+\star}$.

En effet, pour $x \in \mathbb{R}$, la fonction $f: t \mapsto t^{x-1}e^{-t}$ est définie et continue par morceaux sur $]0, +\infty[$.

Puisque $t^2 f(t) = t^{x+1} e^{-t} \xrightarrow[t \to +\infty]{} 0$, la fonction f est assurément intégrable sur $[1, +\infty[$.

De plus, $f(t) \underset{t\to 0^+}{\sim} t^{x-1}$ est intégrable sur]0,1] si, et seulement si, x-1>-1 i.e. x>0.

Ainsi f est intégrable sur $]0, +\infty[$ si, et seulement si, x > 0.

Enfin, la fonction f étant positive, l'intégrabilité équivaut à l'existence de l'intégrale.

b) Par intégration par parties

$$I_n(x) = \left[\frac{t^x}{x} \left(1 - \frac{t}{n}\right)^n\right]_0^n + \int_0^n \frac{t^x}{x} \frac{n}{n} \left(1 - \frac{t}{n}\right)^{n-1} dt$$

En répétant l'opération

$$I_n(x) = \frac{n!}{x(x+1)\dots(x+n-1)n^n} \int_0^n t^{x+n-1} dx$$

et finalement

$$I_n(x) = \frac{n^x n!}{x(x+1)\dots(x+n)}$$

c) Quand $n \to +\infty$

$$\left(1 - \frac{t}{n}\right)^n = \exp\left(n\ln(1 - \frac{t}{n})\right) = \exp\left(n\left(-\frac{t}{n} + o\left(\frac{1}{n}\right)\right)\right) \to e^{-t}$$

Considérons la suite des fonctions

$$f_n: t \mapsto \begin{cases} t^{x-1} \left(1 - \frac{t}{n}\right)^n & \text{si } t \in]0, n[\\ 0 & \text{si } t \in [n, +\infty[\end{cases}$$

Soit t > 0 fixé. Pour n assez grand $t \in]0, n[$ et

$$f_n(t) = t^{x-1} \left(1 - \frac{t}{n} \right)^n \to t^{x-1} e^{-t}$$

La suite (f_n) converge simplement vers la fonction f introduite dans la première question.

Les fonctions f_n et f sont continues par morceaux.

Enfin, pour $t \in]0, n[$, on a

$$|f_n(t)| = t^{x-1} \exp(n \ln(1 - t/n)) \le t^{x-1} e^{-t} = f(t)$$

car il est connu $\ln(1+u) \le u$ pour tout u > -1. On a aussi $|f_n(t)| \le f(t)$ pour $t \in [n, +\infty[$ et donc

$$\forall t \in]0, n[, |f_n(t)| \leq f(t)$$

La fonction f étant intégrable, on peut appliquer le théorème de convergence dominée et affirmer

$$\Gamma(x) = \lim_{n \to +\infty} \int_0^{+\infty} f_n(t) \, \mathrm{d}t$$

Puisque

$$\int_0^{+\infty} f_n(t) dt = \int_0^n t^{x-1} \left(1 - \frac{t}{n}\right)^n dt$$

on peut conclure

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)\dots(x+n)}$$

Exercice 121 : [énoncé]

Notons que $\int_0^1 t^{x-1} e^{-t} dt$ est bien définie.

Pour tout $t \in]0,1]$,

$$t^{x-1}e^{-t} = \sum_{n=0}^{+\infty} \frac{(-1)^n t^{n+x-1}}{n!}$$

donc

$$\int_0^1 t^{x-1} e^{-t} dt = \int_{[0,1]} \sum_{n=0}^{+\infty} f_n$$

Les fonctions f_n sont continues par morceaux, $\sum f_n$ converge simplement sur]0,1] et est de somme $t \mapsto t^{x-1} e^{-t}$ continue par morceaux.

Les fonctions f_n sont intégrables sur [0,1] et

$$\int_{]0,1]} |f_n(t)| \, \mathrm{d}t = \frac{1}{n!(x+n)}$$

La série $\sum \int_{[0,1]} |f_n|$ converge donc on peut intégrer terme à terme

$$\int_0^1 t^{x-1} e^{-t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$$

Exercice 122 : [énoncé]

a) Introduisons la fonction

$$u: (x,t) \in [0,+\infty[\times [0,1] \mapsto \frac{e^{-x(1+t^2)}}{1+t^2}$$

Pour chaque $x \in [0, +\infty[$, la fonction $t \mapsto u(x, t)$ est continue par morceaux sur $[0, \pi/2]$. La fonction f est donc bien définie.

La fonction u admet une dérivée partielle

$$\frac{\partial u}{\partial x}:(x,t)\mapsto -\mathrm{e}^{-x(1+t^2)}$$

Celle-ci est continue en x, continue par morceaux en t et vérifie

$$\forall (x,t) \in [0,+\infty[\times[0,1],\left|\frac{\partial u}{\partial x}(x,t)\right| \leqslant 1$$

La fonction $\varphi: t \mapsto 1$ est intégrable sur [0,1]. Par domination, on peut alors affirmer que f est de classe \mathcal{C}^1 et

$$f'(x) = \int_0^1 \frac{\partial u}{\partial x}(x,t) dt = -\int_0^1 e^{-x(1+t^2)} dt$$

b) On a

$$f(0) = \int_0^1 \frac{\mathrm{d}t}{1 + t^2} = \frac{\pi}{4}$$

Pour $x \ge 0$,

$$0 \leqslant f(x) \leqslant \int_0^1 e^{-x} dt = e^{-x}$$

donc $\lim_{t \to 0} f = 0$.

c) g est de classe \mathcal{C}^1 par composition et

$$g'(x) = 2xf'(x^2) = -2x \int_0^1 e^{-x^2(1+t^2)} dt$$

On a alors

$$\left(g(x) + \left(\int_0^x e^{-t^2} dt\right)^2\right)' = -2x \int_0^1 e^{-x^2(1+t^2)} dt + 2e^{-x^2} \int_0^x e^{-t^2} dt = 0$$

car

$$\int_0^x e^{-t^2} dt = x \int_0^1 e^{-x^2 u^2} du$$

L'évaluation en 0 permet de conclure.

d) Pour $x \ge 0$, $\int_0^x e^{-t^2} dt \ge 0$ donc

$$\int_0^x e^{-t^2} dt = \sqrt{\frac{\pi}{4} - g(x)} \xrightarrow[x \to +\infty]{} \frac{\sqrt{\pi}}{2}$$

Exercice 123: [énoncé]

a) Posons

$$f(x,t) = \frac{e^{-xt}}{\sqrt{t(1+t)}}$$

définie sur $[0, +\infty[\times]0, +\infty[$.

Soit $x \ge 0$. L'application $t \mapsto f(x,t)$ est continue par morceaux sur $]0,+\infty[$ et

$$0 \leqslant f(x,t) \leqslant \frac{1}{\sqrt{t}(1+t)}$$

avec

$$\frac{1}{\sqrt{t}(1+t)} \mathop{\sim}_{t\to 0^+} \frac{1}{\sqrt{t}} \text{ et } \frac{1}{\sqrt{t}(1+t)} \mathop{\sim}_{t\to +\infty} \frac{1}{t^{3/2}}$$

donc $t\mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ et l'intégrale impropre définissant F(x) est bien convergente.

b) Pour chaque $t \in]0, +\infty[$, la fonction $x \mapsto f(x, t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = -\frac{te^{-xt}}{\sqrt{t}(1+t)}$$

Pour tout $x \in]0, +\infty[$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0, +\infty[$

Pour tout $t \in]0, +\infty[$, la fonction $x \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue sur $]0, +\infty[$ Soit $[a, b] \subset]0, +\infty[$. Pour $(x, t) \in [a, +\infty[\times]0, +\infty[$,

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \le \sqrt{t} e^{-at} = \varphi(t)$$

avec $\varphi:]0, +\infty[\to \mathbb{R}^+$ continue par morceaux et intégrable. Par domination sur tout segment, F est de classe \mathcal{C}^1 sur $]0, +\infty[$ et

$$F'(x) = -\int_0^{+\infty} \frac{t e^{-xt} dt}{\sqrt{t}(1+t)}$$

On constate alors

$$F(x) - F'(x) = \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt = \frac{1}{\sqrt{x}} \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du = \frac{I}{\sqrt{x}}$$

c) On a

$$F(0) = \int_0^{+\infty} \frac{\mathrm{d}t}{\sqrt{t(1+t)}} = \int_0^{+\infty} \frac{2\,\mathrm{d}u}{1+u^2} = \pi$$

et

$$0 \leqslant F(x) \leqslant \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt = \frac{I}{\sqrt{x}} \xrightarrow[x \to +\infty]{} 0$$

donc, par encadrement, $F \xrightarrow[+\infty]{} 0$.

d) Après résolution (avec méthode de variation de la constante) de l'équation

$$y - y' = \frac{I}{\sqrt{x}}$$

avec la condition initiale $y(0) = \pi$, on obtient

$$\forall x \geqslant 0, F(x) = e^x \left(\pi - I \int_0^x \frac{e^{-t}}{\sqrt{t}} dt \right)$$

La nullité de la limite de F en $+\infty$ impose alors

$$I \int_0^x \frac{e^{-t}}{\sqrt{t}} dt \xrightarrow[x \to +\infty]{} \pi$$

et donc

$$I = \sqrt{\pi}$$

Exercice 124 : [énoncé]

a) La fonction

$$\varphi: t \mapsto \frac{1 - \cos t}{t^2}$$

est intégrable sur $]0, +\infty[$ car

$$\varphi(t) = O(1/t^2)$$
 quand $t \to +\infty$ et $\varphi(t) \xrightarrow[t \to 0]{} 1/2$

La fonction $g:(x,t)\mapsto \mathrm{e}^{-xt}\frac{1-\cos t}{t^2}$ est continue sur $\mathbb{R}^+\times]0,+\infty[$ et dominée par φ donc F est continue.

De plus la fonction φ est bornée donc, pour x>0

$$|F(x)| \le \|\varphi\|_{\infty} \int_0^x e^{-xt} dt = \frac{\|\varphi\|_{\infty}}{x}$$

et on en déduit que F tend vers 0 en $+\infty$.

b) Les dérivées partielles $\frac{\partial g}{\partial x}$ et $\frac{\partial^2 g}{\partial x^2}$ existent et sont continues sur $\mathbb{R}^{+\star} \times]0, +\infty[$. $t \mapsto \frac{\partial g}{\partial x}(x,t)$ est continue par morceaux et intégrable sur $]0, +\infty[$. Soit $[a,b] \subset \mathbb{R}^{+\star}$

$$\forall (x,t) \in [a,b] \times]0, +\infty[, \left| \frac{\partial^2 g}{\partial x^2}(x,t) \right| \le 2e^{-at} = \psi(t)$$

La fonction ψ est intégrable sur $]0, +\infty[$.

Par domination sur tout segment, F est de classe C^2 et

$$F''(x) = \int_0^{+\infty} e^{-xt} (1 - \cos t) dt = \frac{1}{x} - \frac{x}{x^2 + 1}$$

c) On a

$$F'(x) = \ln x - \frac{1}{2}\ln(x^2 + 1)$$

 $\operatorname{car} F'(x) \xrightarrow[x \to +\infty]{} 0 \text{ et}$

$$F(x) = x \ln x - x \ln \sqrt{x^2 + 1} - \arctan x + \frac{\pi}{2}$$

 $\operatorname{car} F(x) \xrightarrow[x \to +\infty]{} 0.$

Par continuité, on obtient $F(0) = \pi/2$.

Par intégrations par parties

$$\int_0^{+\infty} \frac{1 - \cos t}{t^2} dt = \int_0^{+\infty} \frac{2\sin^2(t/2)}{t^2} dt = \left[-\frac{2\sin^2(t/2)}{t} \right]_0^{+\infty} + \int_0^{+\infty} \frac{\sin t}{t} dt$$

donc

$$\int_0^{+\infty} \frac{1 - \cos t}{t^2} dt = \int_0^{+\infty} \frac{\sin t}{t} dt$$

d'où

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 125 : [énoncé]

a) Posons $u(t) = 1 - \cos(t)$ et v(t) = 1/t.

Les fonctions u et v sont de classe \mathcal{C}^1 sur $]0, +\infty[$ et le produit uv converge en 0 et $+\infty$:

$$u(t)v(t) \underset{t\to 0}{\sim} \frac{t}{2} \to 0 \text{ et } u(t)v(t) \underset{t\to +\infty}{=} O\left(1/t\right) \to 0$$

Par intégration par parties impropre, les intégrales

$$\int_0^{+\infty} u'(t) v(t) \, \mathrm{d}t \, \operatorname{et} \, \int_0^{+\infty} u(t) v'(t) \, \mathrm{d}t$$

sont de même nature. Or

$$\int_0^{+\infty} u(t)v'(t) dt = -\int_0^{+\infty} \frac{1 - \cos t}{t^2} dt$$

converge car

$$\frac{1-\cos t}{t^2} \underset{t\to 0}{\sim} \frac{1}{2} \text{ et } \frac{1-\cos t}{t^2} \underset{t\to +\infty}{=} O\left(\frac{1}{t^2}\right)$$

Cela permet de conclure à la convergence de

$$I = \int_0^{+\infty} \frac{\sin t}{t} \mathrm{d}t$$

b) Posons

$$f(x,t) = \frac{e^{-xt}\sin t}{t}$$

définie sur $]0, +\infty[\times]0, +\infty[$.

Pour tout x > 0, la fonction $t \mapsto f(x,t)$ est continue par morceaux sur $]0,+\infty[$ et intégrable car

$$f(x,t) \xrightarrow[t \to 0^+]{} 1 \text{ et } t^2 f(x,t) \xrightarrow[t \to +\infty]{} 0$$

De plus, puisque $|\sin t| \le t$ pour tout t > 0, on a

$$|F(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

c) f admet une dérivée partielle

$$\frac{\partial f}{\partial x}(x,t) = e^{-xt}\sin(t)$$

Celle-ci est continue en x et continue par morceaux en t. Soit $[a,b]\subset]0,+\infty[.$ On a

$$\forall (x,t) \in [a,b] \times]0, +\infty[, \left| \frac{\partial f}{\partial x}(x,t) \right| \le e^{-at} = \varphi(t)$$

La fonction φ est intégrable sur $]0, +\infty[$. Par domination sur tout segment, on obtient F de classe \mathcal{C}^1 sur $]0, +\infty[$ et

$$F'(x) = \int_0^{+\infty} e^{-tx} \sin(t) dt$$

En exploitant

$$\int_0^{+\infty} e^{-tx} \sin(t) dt = \operatorname{Im} \left(\int_0^{+\infty} e^{-tx} e^{it} dt \right)$$

on obtient

$$F'(x) = \frac{-1}{1 + x^2}$$

d) On en déduit

$$F(x) = -\arctan x + C^{te} \text{ sur }]0, +\infty[$$

et puisque $\lim_{x \to +\infty} F(x) = 0$,

$$F(x) = \frac{\pi}{2} - \arctan x$$

Par continuité en 0,

$$I = \frac{\pi}{2}$$

Exercice 126: [énoncé]

a) On réalise le changement de variable $t = u + n\pi$:

$$u_n(x) = (-1)^n \int_0^{\pi} e^{-x(u+n\pi)} \frac{\sin u}{u+n\pi} du$$

Ici

$$g_n(x, u) = e^{-x(u+n\pi)} \frac{\sin u}{u+n\pi}$$

b) Pour tout $x \in \mathbb{R}^+$ et tout $u \in [0,\pi]$, $g_n(x,u) \ge 0$ et $g_{n+1}(x,u) \le g_n(x,u)$ donc $u_n(x) = (-1)^n |u_n(x)|$ avec $(|u_n(x)|)_{n \ge 0}$ décroissante. De plus

$$|u_n(x)| \leqslant \int_0^{\pi} \frac{\mathrm{d}u}{n\pi} = \frac{1}{n} \text{ pour } n \in \mathbb{N}^*$$

donc $|u_n(x)| \xrightarrow[n \infty]{} 0$. Par application du critère spécial, la série $\sum_{n \geqslant 0} u_n(x)$ converge et

$$\left| \sum_{k=n+1}^{+\infty} u_k(x) \right| \leqslant |u_{n+1}(x)| \leqslant \frac{1}{n+1} \to 0$$

ce qui donne la convergence uniforme de la série de fonctions $\sum_{n>0} u_n$.

c) La fonction g_n est continue en x, continue par morceaux en u et

$$\forall x \in [0, +\infty[\times [0, \pi], |g_n(x, u)] \leq |\operatorname{sinc} u| \leq 1$$

Par domination, les fonctions u_n sont continues.

Comme somme d'une série uniformément convergente de fonctions continues sur \mathbb{R}^+ , la fonction U est continue sur \mathbb{R}^+ . De plus, par sommation d'intégrales contiguës

$$U(x) = \int_0^{+\infty} e^{-xt} \frac{\sin t}{t} dt$$

avec cette intégrale qui est définie quand x > 0 et connue convergente quand x = 0.

d) Posons

$$h(x,t) = \frac{e^{-xt}\sin t}{t}$$

définie sur $]0, +\infty[\times]0, +\infty[$.

Pour tout x > 0, la fonction $t \mapsto h(x,t)$ est continue par morceaux sur $]0,+\infty[$ et intégrable car

$$f(x,t) \xrightarrow[t\to 0^+]{} 1 \text{ et } t^2 f(x,t) \xrightarrow[t\to +\infty]{} 0$$

h admet une dérivée partielle

$$\frac{\partial h}{\partial x}(x,t) = e^{-xt}\sin(t)$$

Celle-ci est continue en x et continue par morceaux en t. Soit $[a,b]\subset]0,+\infty[.$ On a

$$\forall (x,t) \in [a,b] \times]0, +\infty[, \left| \frac{\partial h}{\partial x}(x,t) \right| \leqslant e^{-at} = \varphi(t)$$

La fonction φ est intégrable sur $]0, +\infty[$. Par domination sur tout segment, on obtient U de classe \mathcal{C}^1 sur $]0, +\infty[$ et

$$U'(x) = \int_0^{+\infty} e^{-tx} \sin(t) dt$$

En exploitant

$$\int_0^{+\infty} e^{-tx} \sin(t) dt = \operatorname{Im} \left(\int_0^{+\infty} e^{-tx} e^{it} dt \right)$$

on obtient

$$U'(x) = \frac{-1}{1 + x^2}$$

e) En intégrant

$$U(x) = C - \arctan x \text{ sur } [0, +\infty[$$

Or

$$|U(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

donc $C = \pi/2$.

Par continuité en 0,

$$U(0) = \int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 127 : [énoncé]

a) Pour x > 0, $t^{2} \frac{\sin t}{t} e^{-tx} \xrightarrow[t \to +\infty]{} 0$ donne l'intégrabilité de $t \mapsto \frac{\sin t}{t} e^{-tx}$.

Pour x=0, il est connu que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ est convergente bien que $t\mapsto \frac{\sin t}{t}$ ne soit pas intégrable.

b) Pour $x \in [a, b] \subset]0, +\infty[$

$$\left| \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\sin t}{t} \mathrm{e}^{-tx} \right) \right| \leqslant \mathrm{e}^{-ax} = \varphi(x)$$

avec φ intégrable. Par domination sur tout segment f est de classe \mathcal{C}^1 sur $]0, +\infty[$. c) Pour x > 0,

$$f'(x) = \int_0^{+\infty} -\sin(t)e^{-tx} dt = \operatorname{Im}\left(-\int_0^{+\infty} e^{(-x+i)t} dt\right) = -\frac{1}{x^2 + 1}$$

donc $f(x) = C - \arctan x$.

Or

$$|f(x)| \le \int_0^{+\infty} e^{-tx} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

donc

$$C = \frac{\pi}{2}$$

d) En découpant l'intégrale, on a

$$f(x) = \sum_{n=0}^{+\infty} \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} e^{-tx} dt$$

Posons

$$u_n(t) = \int_{n\pi}^{(n+1)\pi} \frac{\sin(t)}{t} e^{-tx} dt$$

Par application du critère spécial des séries alternées, on établir que la série de fonctions continues $\sum u_n$ converge uniformément sur [0,1], on en déduit que sa somme, à savoir la fonction f, est continue en 0. On peut conclure que

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 128 : [énoncé]

a) Posons

$$\tilde{f}(x,t) = \frac{e^{-xt}}{1+t^2}$$

Les fonctions \tilde{f} , $\frac{\partial \tilde{f}}{\partial x}$ et $\frac{\partial^2 \tilde{f}}{\partial x^2}$ existent et sont continues sur $\mathbb{R}^{+\star} \times \mathbb{R}$. Pour chaque x, les fonctions $t \mapsto \tilde{f}(x,t)$ et $t \mapsto \frac{\partial \tilde{f}}{\partial x}(x,t)$ sont intégrables.

Soit $[a, b] \subset]0, +\infty[$. Sur $[a, b] \times [0, +\infty[$, on a

$$\left|\frac{\partial^2 \tilde{f}}{\partial x^2}(x,t)\right| \leqslant \frac{t^2 \mathrm{e}^{-at}}{1+t^2} \leqslant \mathrm{e}^{-at} = \varphi(t)$$

La fonction φ est intégrable sur $[0, +\infty[$.

Par domination sur tout segment, on peut affirmer que la fonction f est définie et de classe avec

$$f''(x) = \int_0^{+\infty} \frac{t^2 e^{-xt}}{1 + t^2} dt$$

On a alors

$$f(x) + f''(x) = \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$$

Posons

$$\tilde{g}(x,t) = \frac{\sin t}{x+t}$$

Les fonctions \tilde{g} , $\frac{\partial \tilde{g}}{\partial x}$ et $\frac{\partial^2 \tilde{g}}{\partial x^2}$ existent et sont continues sur $\mathbb{R}^{+\star} \times \mathbb{R}$.

La fonction $x \mapsto \int_0^{+\infty} g(x,t) dt$ est bien définie sur \mathbb{R}^+ (intégrale convergente via intégration par parties)

La fonction $t \mapsto \frac{\partial \tilde{g}}{\partial x}(x,t)$ est intégrable et sur $[a,b] \times [0,+\infty[$

$$\left|\frac{\partial^2 g}{\partial^2 x}(x,t)\right| \leqslant \frac{2}{(a+t)^3} = \psi(t)$$

La fonction ψ est intégrable sur $[0, +\infty[$.

Par domination sur tout segment, on peut affirmer que g est de classe \mathcal{C}^2 et

$$g''(x) = \int_0^{+\infty} \frac{2\sin t}{(x+t)^3} \,\mathrm{d}t$$

Par une intégration par parties

$$g''(x) = \left[-\frac{\sin t}{(x+t)^2} \right]_0^{+\infty} + \int_0^{+\infty} \frac{\cos t}{(x+t)^2} dt = \int_0^{+\infty} \frac{\cos t}{(x+t)^2} dt = \frac{1}{x} - g(x)$$

b) Pour $x \in \mathbb{R}^+$,

$$\left|\tilde{f}(x,t)\right| \leqslant \frac{1}{1+t^2}$$

donc f est définie et continue sur \mathbb{R}^+ .

$$g(x) - g(0) = -\int_0^{+\infty} \frac{x \sin t}{t(x+t)} dt = -\left(x \int_0^1 \frac{\sin t}{t(x+t)} dt + \int_1^{+\infty} \frac{x \sin t}{t(x+t)} dt\right)$$

mais

$$\left| x \int_0^1 \frac{\sin t}{t(x+t)} \, \mathrm{d}t \right| \leqslant x \int_0^1 \frac{\mathrm{d}t}{(x+t)} = x \ln(x+1) - x \ln x \to 0$$

 $_{
m et}$

$$\left| \int_{1}^{+\infty} \frac{x \sin t}{t(x+t)} dt \right| \leqslant x \int_{1}^{+\infty} \frac{dt}{t^2} \to 0$$

donc g est continue en 0.

c) D'une part

$$|f(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$$

D'autre part

$$|g''(x)| \le \int_0^{+\infty} \frac{2|\sin t|}{(x+t)^3} dt \le \frac{1}{x} \int_0^{+\infty} \frac{2|\sin t|}{(x+t)^2} dt$$

et en prenant $x \geqslant 1$

$$|g''(x)| \le \frac{1}{x} \int_0^{+\infty} \frac{2|\sin t|}{(1+t)^2} dt \xrightarrow[x \to +\infty]{} 0$$

donc

$$g(x) = \frac{1}{x} - g''(x) \xrightarrow[x \to +\infty]{} 0$$

Ainsi $f-g \underset{+\infty}{\rightarrow} 0$ ce qui permet via résolution de l'équation différentielle de conclure

$$f = q$$

On en déduit g(0) = f(0) i.e.

$$\int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{\pi}{2}$$

Exercice 129: [énoncé]

a) Posons

$$f(x,t) = \frac{\arctan(xt)}{t(1+t^2)}$$

est définie sur $[0, +\infty[\times]0, +\infty[,$

 $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ car prolongeable par continuité en 0 et égale à un $O(1/t^3)$ en $+\infty$. Ainsi F est définie sur \mathbb{R}^+

$$\frac{\partial f}{\partial x}(x,t) = \frac{1}{(1+x^2t^2)(1+t^2)}$$

est définie sur $[0, +\infty[\times]0, +\infty[,$

 $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0,+\infty[$ et $x\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $]0,+\infty[$.

$$\left| \frac{\partial f}{\partial x}(x,t) \right| \leqslant \frac{1}{1+t^2} = \varphi(t)$$

avec φ continue par morceaux et intégrable sur $]0, +\infty[$, donc F est de classe \mathcal{C}^1 sur \mathbb{R}^+ avec

$$F'(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+x^2t^2)(1+t^2)}$$

b) Pour $x \neq 1$

$$\frac{1}{(1+x^2t^2)(1+t^2)} = \frac{1}{x^2-1} \left(\frac{x^2}{1+x^2t^2} - \frac{1}{1+t^2} \right)$$

d'où

$$F'(x) = \frac{x-1}{x^2 - 1} \frac{\pi}{2} = \frac{\pi}{2(x+1)}$$

ce qui est encore valable en 1 par continuité.

Par suite

$$F(x) = \frac{\pi}{2}\ln(x+1) + C$$

avec C = 0 puisque F(0) = 0.

c) En intégrant par parties, on obtient $\pi \ln 2$.

Exercice 130 : [énoncé]

a) Posons

$$f(x,t) = \frac{\ln(1+xt)}{1+t^2}$$

La fonction f est définie et continue sur $]-1, +\infty[\times [0, 1]]$. Pour $t \in [0, 1]$, la fonction $x \mapsto f(x, t)$ est dérivable et

$$\frac{\partial f}{\partial x}(x,t) = \frac{t}{(1+xt)(1+t^2)}$$

La fonction $\frac{\partial f}{\partial x}$ est continue sur $]-1,+\infty[\times[0,1].$ Par intégration sur un segment, on peut affirmer que la fonction

$$F: x \mapsto \int_0^1 f(x,t) \, \mathrm{d}t$$

est définie, de classe C^1 sur $]-1, +\infty[$ et

$$F'(x) = \int_0^1 \frac{t}{(1+xt)(1+t^2)} dt$$

Par décomposition en éléments simples (en la variable t)

$$\frac{t}{(1+xt)(1+t^2)} = \frac{-x}{(x^2+1)(1+xt)} + \frac{x+t}{(x^2+1)(1+t^2)}$$

donc

$$F'(x) = -\frac{\ln(1+x)}{x^2+1} + \frac{\pi}{4} \frac{x}{x^2+1} + \frac{\ln 2}{2} \frac{1}{1+x^2}$$

Puisque F(0) = 0, on peut écrire

$$F(x) = \int_0^x F'(t) dt = -\int_0^x \frac{\ln(1+t)}{t^2+1} dt + \frac{\pi}{8} \ln(x^2+1) + \frac{\ln 2}{2} \arctan x$$

b) Pour x = 1, la relation précédente donne

$$\int_0^1 \frac{\ln(1+t)}{1+t^2} \, \mathrm{d}t = \frac{\pi \ln 2}{8}$$