- 1) Bestimmen Sie die Stammfunktion!
 - a) $\int 6x^3 dx$
 - b) $\int 2\sqrt{x} dx$
 - c) $\int (x^2 + x + 1) \frac{1}{x} dx$
 - d) $\int \frac{1}{x+2} dx$
 - _t _**r** e) ∫e dt
- 2) Bestimmen Sie grafisch die Stammfunktion. Wählen Sie als Zwischenwerte \tilde{t}_k jeweils die Intervallmitte. Benutzen Sie $\Delta t_k = \Delta t = 2$ s und gehen Sie von s(0) = 0 aus.

3)
$$\int_{0}^{3/2} \sqrt{2x+1} \, dx$$

4) Bestimmen Sie den linearen Mittelwert und den quadratischen Mittelwert (Effektivwert) der skizzierten Spannung über eine Periode [0,2]!

5)

Ermitteln Sie anhand des nebenstehenden Dreiecks die Zahlenwerte für sin (45°) und cos(45°).

6)

Wie lautet die Funktionsgleichung des skizzierten Wechselstroms

$$i(t) = \hat{i} \sin(\omega t + \phi)$$
?

- 7) Überprüfen Sie die Beziehung $\sin(x+\pi/2) = \cos x$ über die Additionstheoreme.
- 8) Berechnen Sie den Effektivwert für $i = \hat{i} \sin(\omega t)$ (quadrat. Mittelwert über 1 Periode T).

1) a)
$$3/2 \, x^4 + C$$
 b) $4/3 \, x^{3/2} + C$ c) $x^2/2 + x + \ln|x| + C$ d) $\ln|x + 2| + C$ e) $-\tau \, e^{-\frac{t}{\tau}} + C$ 3) $F(x) = \frac{1}{3} (2x + 1)^{3/2} + C$, $Int = 7/3$ 4) $u_{lin} = 0.5$, $u_{eff} = 1.58$ 5) $1/2 \, \sqrt{2}$ 6) $2mA \, sin(\pi/6 \, s^{-1} \, t + \pi/3)$ 8) $1/\sqrt{2}$

4)
$$u_{\text{lin}}^{-}$$
 = 0.5, $u_{\text{eff}} = 1.58$ 5) ½ $\sqrt{2}$ 6) 2mA $\sin(\pi/6 \text{ s}^{-1} \text{ t} + \pi/3)$ 8) $\hat{1}/\sqrt{2}$