

CLAIMS

1 1. An optical coherence tomography (OCT) system comprising:
2 an interferometer having a reference arm and a sample arm each having an optical path, the
3 sample arm being disposed such that a test sample reflects a sample portion R_S of an incident optical
4 signal S_S along the sample arm optical path;
5 a reflector disposed in the reference arm to reflect a reference portion R_R of an incident optical
6 signal S_R along the reference arm optical path;
7 a source for producing an optical source signal S having a short coherence length and a first
8 polarization state;
9 a polarizing beam splitter disposed to direct portions of the optical source signal S along the
10 reference arm optical path and the sample arm optical path;
11 a first polarizing element disposed to select, from the returning reference and sample portions
12 (R_R+R_S), a detector component S_D having a second polarization state; and
13 a detector disposed to produce an output signal V_D representing the optical signal intensity
14 I_D of the detector component S_D , wherein the second polarization state is related to the first
15 polarization state such that the detector operates in a noise-optimized regime.

1 2. The OCT system of claim 1 further comprising:
2 a first filter coupled to the detector for separating, from the output signal V_D , a low-frequency
3 component V_L representing a scanning laser ophthalmoscope-like (SLO-like) image pixel;
4 first data storage means for storing a plurality of pixels $\{V_H\}$ representing a two-dimensional
5 (2D) OCT *en face* image;
6 second data storage means for storing a plurality of pixels $\{V_L\}$ representing a 2D SLO-like
7 image; and
8 processing means for removing motion artifacts from 2D OCT *en face* image data in
9 accordance with the corresponding SLO-like image data.

1 3. The OCT system of claim 2 further comprising:
2 a scanner disposed to sweep the incident optical signal S_S over at least part of the test sample;

3 and

4 a reflector motor disposed to move the reflector along the reference arm optical path.

1 4. The OCT system of claim 2 wherein the interferometer is a Michelson interferometer.

1 5. The OCT system of claim 2 further comprising:
2 a second polarizing element disposed in the sample arm optical path such that the returning
3 sample portion R_S is directed by the polarizing beam splitter to the detector

1 6. The OCT system of claim 2 further comprising:
2 in the processing means, rendering means for realigning the pixel data representing a 2D OCT
3 *en face* image with respect to the pixel data representing another 2D OCT *en face* image.

1 7. The OCT system of claim 2 further comprising:
2 an attenuating element disposed in the reference arm optical path to attenuate optical signals
3 therein.

1 8. The OCT system of claim 2 further comprising:
2 a second filter coupled to the detector for separating, from the output signal V_D , a high-
3 frequency component V_H representing an OCT image pixel.

1 9. The OCT system of claim 1 further comprising:
2 a scanner disposed to sweep the incident optical signal S_S over at least part of the test sample;
3 and
4 a reflector motor disposed to move the reflector along the reference arm optical path.

1 10. The OCT system of claim 1 wherein the interferometer is a Michelson interferometer.

1 11. The OCT system of claim 1 wherein the interferometer is a Mach-Zehnder interferometer.

1 12. The OCT system of claim 1 further comprising:
2 a second polarizing element disposed in the sample arm optical path such that the returning
3 sample portion R_S is directed by the polarizing beam splitter to the detector

1 13. The OCT system of claim 1 further comprising:
2 a second polarizing element disposed in the reference arm optical path such that the returning
3 reference portion R_R is directed by the polarizing beam splitter to the detector.

1 14. The OCT system of claim 1 further comprising:
2 in the detector, a plurality of optical transducers each disposed to produce an electrical signal
3 responsive to the detector component S_D .

1 15. The OCT system of claim 1 wherein the second polarization state is related to the first
2 polarization state such that the detector operates in a shot-noise limited regime.

1 16. An optical coherence tomography (OCT) system comprising:
2 an interferometer having a reference arm and a sample arm each having an optical path, the
3 sample arm being disposed such that a test sample reflects a sample portion R_S of an incident optical
4 signal S_S along the sample arm optical path;
5 a reflector disposed in the reference arm to reflect a reference portion R_R of an incident optical
6 signal S_R along the reference arm optical path;
7 an optical source for producing an optical source signal S having a short coherence length;
8 a beam splitter disposed in the interferometer to direct portions of the optical source signal
9 S along the reference arm optical path and the sample arm optical path;
10 a detector disposed to produce an output signal V_D representing the optical signal intensity
11 I_D of the returning reference and sample portions (R_R+R_S);
12 a first filter coupled to the detector for separating, from the output signal V_D , a low-frequency
13 component V_L representing a scanning laser ophthalmoscope-like (SLO-like) image pixel;
14 first data storage means for storing a plurality of pixels $\{V_H\}$ representing a two-dimensional
15 (2D) OCT *en face* image;

16 second data storage means for storing a plurality of pixels $\{V_L\}$ representing a 2D SLO-like
17 image; and

18 processing means for removing motion artifacts from 2D OCT *en face* image data in
19 accordance with the corresponding SLO-like image data.

1 17. The OCT system of claim 16 further comprising:

2 a scanner disposed to sweep the incident optical signal S_S over at least part of the test sample;
3 and

4 a reflector motor disposed to move the reflector along the reference arm optical path.

1 18. The OCT system of claim 16 further comprising:

2 an attenuating element disposed in the reference arm optical path to attenuate optical signals
3 therein.

1 19. The OCT system of claim 16 further comprising:

2 a second filter coupled to the detector for separating, from the output signal V_D , a high-
3 frequency component V_H representing an OCT image pixel.

1 20. The OCT system of claim 16 further comprising:

2 in the processing means, rendering means for realigning the pixel data representing a 2D OCT
3 *en face* image with respect to the pixel data representing another 2D OCT *en face* image.

1 21. In an optical coherence tomography (OCT) system including a detector having a plurality of
2 noise-limited operating regimes and an interferometer having a reference arm and a sample arm each
3 having an optical path, the sample arm being disposed such that a test sample reflects a sample
4 portion R_S of an incident optical signal S_S along the sample arm optical path, a machine-implemented
5 method for rendering a three-dimensional (3D) image of a test sample comprising the unordered steps
6 of:

7 (a) producing an optical source signal S having a short coherence length and a first
8 polarization state;

9 (b) directing a first portion S_R of the optical source signal S along a reference arm optical
10 path and directing a second portion S_S of the optical source signal S along a sample arm optical path;
11 (c) reflecting a reference portion R_R of the first portion S_R along the reference arm optical
12 path;
13 (d) selecting, from the returning reference and sample portions (R_R+R_S), a detector
14 component S_D having a second polarization state; and
15 (e) producing an output signal V_D representing the optical signal intensity I_D of the
16 detector component S_D , wherein the second polarization state is related to the first polarization state
17 such that the detector operates in a noise-optimized regime.

1 22. The method of claim 21 further comprising the steps of:
2 (f) separating, from the output signal V_D , a low-frequency component V_L representing a
3 scanning laser ophthalmoscope-like (SLO-like) image pixel and a high-frequency component V_H
4 representing an OCT image pixel;
5 (g) storing at least one value V_H representing a two-dimensional (2D) OCT *en face* image
6 pixel;
7 (h) removing a motion artifact from 2D OCT *en face* image data in accordance with the
8 corresponding SLO-like image data.

1 23. The method of claim 22 further comprising the step of:
2 (g.1) storing at least one detector output component V_L representing a 2D SLO-like image
3 pixel.

1 24. The method of claim 22 further comprising the step of:
2 (h.1) realigning the pixel data representing a 2D OCT *en face* image with respect to the
3 pixel data representing another 2D OCT *en face* image.

1 25. The method of claim 21 further comprising the steps of:
2 (b.1) sweeping the second portion S_S over at least part of the test sample; and
3 (c.1) moving the reflector along the reference arm optical path.

1 **26.** In an optical coherence tomography (OCT) system including a detector having a plurality of
2 noise-limited operating regimes and an interferometer having a reference arm and a sample arm each
3 having an optical path, the sample arm being disposed such that a test sample reflects a sample
4 portion R_s of an incident optical signal S_s along the sample arm optical path, a machine-implemented
5 method for rendering a three-dimensional (3D) image of a test sample comprising the unordered steps
6 of:

7 (a) producing an optical source signal S having a short coherence length;
8 (b) directing a first portion S_R of the optical source signal S along a reference arm optical
9 path and directing a second portion S_s of the optical source signal S along a sample arm optical path;
10 (c) reflecting a reference portion R_R of the first portion S_R along the reference arm optical
11 path;
12 (d) selecting, from the returning reference and sample portions (R_R+R_s), a detector
13 component S_D ;
14 (e) producing an output signal V_D representing the optical signal intensity I_D of the
15 detector component S_D ;
16 (f) separating, from the output signal V_D , a low-frequency component V_L representing a
17 scanning laser ophthalmoscope-like (SLO-like) image pixel and a high-frequency component V_H
18 representing an OCT image pixel;
19 (g) storing at least one value V_H representing a two-dimensional (2D) OCT *en face* image
20 pixel; and
21 (h) removing a motion artifact from 2D OCT *en face* image data in accordance with the
22 corresponding SLO-like image data.

1 **27.** The method of claim 26 further comprising the step of:
2 (g.1) storing at least one detector output component V_L representing a 2D SLO-like image
3 pixel.
1 **28.** The method of claim 26 further comprising the step of:
2 (h.1) realigning the pixel data representing a 2D OCT *en face* image with respect to the

3 pixel data representing another 2D OCT *en face* image.

1 29. The method of claim 26 further comprising the steps of:

2 (b.1) sweeping the second portion S_s over at least part of the test sample; and

3 (c.1) moving the reflector along the reference arm optical path.

1 30. A computer program product for use in an optical coherence tomography (OCT) system
2 including an interferometer having a reference arm and a sample arm each having an optical path, the
3 sample arm being disposed such that a test sample reflects a sample portion R_s of an incident optical
4 signal S_s along the sample arm optical path, a reflector disposed in the reference arm to reflect a
5 reference portion R_R of an incident optical signal S_R along the reference arm optical path, an optical
6 source for producing an optical source signal S having a short coherence length, a beam splitter
7 disposed in the interferometer to direct the optical source signal S along the reference arm optical
8 path and the sample arm optical path, a detector disposed to produce an output signal V_D representing
9 the optical signal intensity I_D of the optical signals returning from the reference mirror and the test
10 sample and a filter coupled to the detector for separating, from the output signal V_D , a low-frequency
11 component V_L representing a scanning laser ophthalmoscope-like (SLO-like) image pixel, the
12 computer program product comprising:

13 a recording medium;

14 means recorded on the recording medium for directing the OCT system to store at least one
15 value V_H representing a two-dimensional (2D) OCT *en face* image pixel and store at least one value
16 V_L representing a 2D SLO-like image pixel; and

17 means recorded on the recording medium for directing the OCT system to remove a motion
18 artifact from 2D OCT *en face* image data in accordance with the corresponding SLO-like image data.