Math 2331, Spring 2020

Midterm 1 practice

Below is a reminder of some important topics that are covered on midterm 1.

- (1) Matrix algebra.
- (2) Find the solution to a system of equations $A\vec{x} = \vec{b}$ parametrically; this means find the free variables (or *parameters*) and write the general solution in terms of these.
- (3) Row operations and reduced row echelon form.
- (4) The rank of a matrix, recognizing when a square matrix is invertible, finding the inverse, using the inverse to solve equations.
- (5) Vector spaces and linear transformations (how to recognize when a function $T: V \to W$ between vector spaces is a linear transformation, and when it isn't).
- (6) The matrix of a linear transformation $\mathbb{R}^m \to \mathbb{R}^n$.
- (7) Finding the inverse of a linear transformation.
- (8) Special linear transformations from \mathbb{R}^2 to \mathbb{R}^2 (shears, rotations, reflections, etc).
- (9) Subspaces, span, linear relations, linear independence, basis, dimension. You should know how to decide if a collection of vectors is linearly independent, or when a collection of vectors spans the whole vector space in which they live.
- (10) Writing vectors in terms of a basis.
- (11) Kernels and images of linear transformations; how to find bases of these.
- (12) The rank nullity theorem.
- (13) The \mathcal{B} -matrix of a linear transformation.
- (14) The dot product, orthogonality, length, and othornormal sets of vectors.
- (15) Orthogonal projection onto a subspace $V \subset \mathbb{R}^n$.

Below are some practice problems; more may be added later.

- (1) Let $A = \begin{bmatrix} 1 & 1 & -1 \\ -10 & -8 & 12 \\ 7 & 5 & -10 \end{bmatrix}$.
 - (a) Find A^{-1} . Check your answer using matrix multiplication.
 - (b) Use your answer from part A to solve the matrix equation AX + C = B, where

$$B = \begin{bmatrix} -1 & 3 & 5 \\ 0 & -4 & 7 \\ 5 & 8 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 3 & 9 \\ 6 & -2 & 5 \\ 1 & 2 & 1 \end{bmatrix}$$

(2) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} 2z - 4x + y \\ 3y - z \\ x + y + z \end{bmatrix}.$$

- (a) Find the standard matrix of T.
- (b) Find the \mathcal{B} -matrix of T, where \mathcal{B} is the basis of \mathbb{R}^3 given by

$$ec{v}_1 = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, \qquad ec{v}_2 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \qquad ec{v}_3 = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$$

(3) Let $T: M_{4\times 4}(\mathbb{R}) \to \mathbb{R}$ be the linear transformation defined by

$$T(A) = A_{11} + A_{22} - A_{33} - A_{44}.$$

Given that the image of T is all of \mathbb{R} , find the dimension of $\ker(T)$.

(4) Consider the following matrix:

$$A = \begin{bmatrix} 1 & 0 & -5 & 0 & 3 \\ 0 & 1 & 2 & 1 & 4 \\ 0 & -1 & -2 & 0 & -3 \\ -1 & 0 & 5 & 3 & 0 \\ 0 & 1 & 2 & 3 & 5 \end{bmatrix}$$

- (a) Find a basis for the image of A.
- (b) Without actually computing the kernel of A, what is its dimension?
- (5) (a) Show that the following vectors form a basis for \mathbb{R}^4 :

$$\vec{v}_1 = \begin{bmatrix} 2\\1\\4\\0 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \qquad \vec{v}_3 = \begin{bmatrix} 3\\-1\\16\\0 \end{bmatrix}, \qquad \vec{v}_4 = \begin{bmatrix} 0\\0\\0\\2 \end{bmatrix}.$$

- (b) Write the vector $\begin{bmatrix} 3 \\ 0 \\ -11 \\ 8 \end{bmatrix}$ as a linear combination of these vectors.
- (6) Consider the matrix

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 \\ 2 & -6 & 9 & -1 & 8 \\ 2 & -6 & 9 & -1 & 9 \\ -1 & 3 & -4 & 2 & -5 \end{bmatrix}$$

- (a) Find RREF(A).
- (b) Using your answer from part (a), solve the equation $A\vec{x} = 0$ parametrically.
- (c) Using your answer from part (b), find a basis for the kernel of A.
- (d) Find a basis for the image (that is, the column space) of A.
- (7) Let V be the subspace of \mathbb{R}^2 spanned by $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Let $\vec{x} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$. Find vectors $\vec{x}^{\perp}, \vec{x}^{\parallel} \in \mathbb{R}^2$ such that
 - $\bullet \ \vec{x} = \vec{x}^\perp + \vec{x}^\parallel$
 - $\vec{x}^{\parallel} \in V$,
 - \vec{x}^{\perp} orthogonal to L.
- (8) Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

Find a nonzero vector \vec{w} which is orthogonal to \vec{v}_1 and \vec{v}_2 .