Here's the **procedure** for the university ranking clustering code:

1. Load the Dataset

- Extract the CSV file from the ZIP archive.
- Read the dataset into a Pandas DataFrame.

2. Select Relevant Features

- Choose the columns:
 - This_site_rank_in_global_internet_engagement (Global ranking of the site).
 - Daily_time_on_site (User engagement time).
- Drop missing values to ensure data consistency.

3. Standardize the Data

 Normalize the selected columns using StandardScaler to ensure all values are on the same scale.

4. Determine Optimal Number of Clusters (Elbow Method)

- Perform K-Means clustering for **k = 1 to 10**.
- Store the inertia (sum of squared distances to cluster centers) for each k-value.
- Plot the Elbow Curve to identify the optimal number of clusters.

5. Apply K-Means Clustering

- Choose the best **K value** (e.g., 3 clusters).
- Apply **K-Means** and assign each university site to a cluster.

6. Analyze the Clusters

• Calculate the average ranking & engagement time for each cluster.

• Print the cluster distribution.

7. Save the Results

• Save the clustered dataset to a **CSV** file (university_clusters.csv) for further analysis.

```
import pandas as pd
import zipfile
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
zip path = r"c:\Users\balaj\Downloads\alexa.com site info.csv.zip"
with zipfile.ZipFile(zip_path, 'r') as z:
   with z.open('alexa.com site info.csv') as f:
       df = pd.read csv(f)
# Select relevant columns for clustering
columns = ["This site rank in global internet engagement",
"Daily time on site"]
df filtered = df[columns].dropna()
scaler = StandardScaler()
df scaled = scaler.fit transform(df filtered)
# Determine optimal number of clusters using the Elbow Method
inertia = []
k range = range(1, 11)
for k in k range:
    kmeans = KMeans(n clusters=k, random state=42, n init=10)
    inertia.append(kmeans.inertia )
plt.figure(figsize=(8, 5))
plt.plot(k range, inertia, marker='o')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.title('Elbow Method for Optimal K')
plt.show()
```

```
# Apply K-Means clustering with optimal K (e.g., 3 for illustration)
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10)
df_filtered['Cluster'] = kmeans.fit_predict(df_scaled)

# Show cluster distribution
print(df_filtered.groupby('Cluster').mean())

# Save results
df_filtered.to_csv("university_clusters.csv", index=False)
```

OUTPUT:

PS C:\Users\balaj\OneDrive\Desktop> &

'c:\Users\balaj\AppData\Local\Microsoft\WindowsApps\python3.10.exe'

'c:\Users\balaj\.vscode\extensions\ms-python.debugpy-2025.4.1-win32-x64\bundled\libs\debugpy\launcher' '60882' '--' 'c:\Users\balaj\OneDrive\Desktop\un.py'

This_site_rank_in_global_internet_engagement Daily_time_on_site

Cluster

0	641276.927039	1790.061516
1	88999.313675	897.419355
2	94183.017217	2743.570552

