Now that we have defined \widehat{E} and investigated the relationship between affine frames in E and bases in \widehat{E} , we can give another construction of a vector space \mathcal{F} from E and \overrightarrow{E} that will allow us to "visualize" in a much more intuitive fashion the structure of \widehat{E} and of its operations $\widehat{+}$ and \cdot .

25.3 Another Construction of \widehat{E}

One would probably wish that we could start with this construction of \mathcal{F} first, and then define \widehat{E} using the isomorphism $\widehat{\Omega} \colon \widehat{E} \to \mathcal{F}$ defined below. Unfortunately, we first need the vector space structure on \widehat{E} to show that $\widehat{\Omega}$ is linear!

Definition 25.1. Given any affine space (E, \overrightarrow{E}) , we define the vector space \mathcal{F} as the direct sum $\overrightarrow{E} \oplus \mathbb{R}$, where \mathbb{R} denotes the field \mathbb{R} considered as a vector space (over itself). Denoting the unit vector in \mathbb{R} by 1, since $\mathcal{F} = \overrightarrow{E} \oplus \mathbb{R}$, every vector $v \in \mathcal{F}$ can be written as $v = u + \lambda 1$, for some unique $u \in \overrightarrow{E}$ and some unique $\lambda \in \mathbb{R}$. Then, for any choice of an origin Ω_1 in E, we define the map $\widehat{\Omega} \colon \widehat{E} \to \mathcal{F}$, as follows:

$$\widehat{\Omega}(\theta) = \begin{cases} \lambda(1 + \overrightarrow{\Omega_1 a}) & \text{if } \theta = \langle a, \lambda \rangle, \text{ where } a \in E \text{ and } \lambda \neq 0; \\ u & \text{if } \theta = u, \text{ where } u \in \overrightarrow{E}. \end{cases}$$

The idea is that, once again, viewing \mathcal{F} as an affine space under its canonical structure, E is embedded in \mathcal{F} as the hyperplane $H=1+\overrightarrow{E}$, with direction \overrightarrow{E} , the hyperplane \overrightarrow{E} in \mathcal{F} . Then, every point $a\in E$ is in bijection with the point $A=1+\overrightarrow{\Omega_1 a}$, in the hyperplane H. If we denote the origin 0 of the canonical affine space \mathcal{F} by Ω , the map $\widehat{\Omega}$ maps a point $\langle a,\lambda\rangle\in E$ to a point in \mathcal{F} , as follows: $\widehat{\Omega}(\langle a,\lambda\rangle)$ is the point on the line passing through both the origin Ω of \mathcal{F} and the point $A=1+\overrightarrow{\Omega_1 a}$ in the hyperplane $H=1+\overrightarrow{E}$, such that

$$\widehat{\Omega}(\langle a, \lambda \rangle) = \lambda \overrightarrow{\Omega A} = \lambda (1 + \overrightarrow{\Omega_1 a}).$$

The following proposition shows that $\widehat{\Omega}$ is an isomorphism of vector spaces.

Proposition 25.4. Given any affine space (E, \overrightarrow{E}) , for any choice Ω_1 of an origin in E, the map $\widehat{\Omega} \colon \widehat{E} \to \mathcal{F}$ is a linear isomorphism between \widehat{E} and the vector space \mathcal{F} of Definition 25.1. The inverse of $\widehat{\Omega}$ is given by

$$\widehat{\Omega}^{-1}(u+\lambda 1) = \begin{cases} \langle \Omega_1 + \lambda^{-1}u, \lambda \rangle \rangle & \text{if } \lambda \neq 0; \\ u & \text{if } \lambda = 0. \end{cases}$$

Proof. It is a straightforward verification. We check that $\widehat{\Omega}$ is invertible, leaving the verification that it is linear as an exercise. We have

$$\langle a, \lambda \rangle \mapsto \lambda 1 + \lambda \overrightarrow{\Omega_1 a} \mapsto \langle \Omega_1 + \overrightarrow{\Omega_1 a}, \lambda \rangle = \langle a, \lambda \rangle$$