Outline

- AVR Architecture
- AVR I/O Ports
 - Chapter 14 (I/O Ports) in ATMega328P datasheet
- AVR Hardware Design
 - Minimal hardware connection
 - AVR Fuse bits
 - AVR Programming Interface

AVR I/O Ports

Recall AVR Architecture

Simplified AVR Architecture

ATMega328P Architecture

AVR I/O Ports: General Features

- Pin direction (input/output), drive value (high/low for output pins), internal pull-up resistor (for input pins) can be changed individually
- Symmetrical drive characteristics with both high sink and source capability
 - 20 mA when Vcc = 5V or 10mA when Vcc = 3v
- Arrange in group of 8 bits that can be simultaneously configured

AVR I/O Ports: Physical Pin Location

- Each port group consists of 8 pins as register are 8 bits wide
- Some port group may have less than 8 pins

AVR I/O Ports: Simplify Circuit Diagram

Each port pin is controlled by three register bits:

DDRxn, PORTxn, and PINxn

e.g. PC5 is controller by DDRC5, PORTC5, PINC5

DDRx.n = 1 => Output

= 0 => Input (Tri-state)

PORTx.n = 1 => Output High / Enable pull-up

= 0 => Output Low / Disable pull-up

PINx.n = current logic level of the pin

AVR I/O Ports: Register Bits Summary

DDxn	PORTxn	PUD (in MCUCR)	I/O	/O Pull-up Comment	
0	0	X	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if ext. pulled low.
0	1	1	Input	t No Tri-state (Hi-Z)	
1	0	X	Output	out No Output Low (Sink)	
1	1	X	Output	No	Output High (Source)

AVR I/O Ports: More Realistic diagram

AVR I/O Ports: I/O Memory Location

- AVR data memory consists of 3 or 4 sections including general purpose registers, I/O registers, extended I/O memory, general purpose RAM
- Most recent AVRs have extended I/O memory due to the number of internal peripherals
- DDRX, PORTX and PINX are located in standard I/O or extended I/O memory

AVR I/O Ports: I/O Memory Location

Add	Name		
Mem.	I/O		
\$36	\$16	PINB	
\$37	\$17	DDRB	
\$38	\$18	PORTB	
\$39	\$19	PINA	
\$3A	\$1A	DDRA	
\$3B	\$1B	PORTA	
\$3C	\$1C	EECR	
\$3D	\$1D	EEDR	
\$3E	\$1E	EEARL	
\$3F	\$1F	EEARH	
\$40	\$20	UBRRC	
\$40	\$20	UBRRH	
\$41	\$21	WDTCR	
\$42	\$22	ASSR	
\$43	\$23	OCR2	
\$44	\$24	TCNT2	
\$45	\$25	TCCR2	
\$46	\$26	ICR1L	
\$47	\$27	ICR1H	
\$48	\$28	OCR1BL	
\$49	\$29	OCR1BH	
\$4A	\$2A	OCR1AL	

Addı	ress	Name	
Mem.	1/0	Italiie	
\$4B	\$2B	OCR1AH	
\$4C	\$2C	TCNT1L	
\$4D	\$2D	TCNT1H	
\$4E	\$2E	TCCR1B	
\$4F	\$2F	TCCR1A	
\$50	\$30	SFIOR	
\$51	624	OCDR	
\$31	\$31	OSCCAL	
\$52	\$32	TCNT0	
\$53	\$33	TCCR0	
\$54	\$34	MCUCSR	
\$55	\$35	MCUCR	
\$56	\$36	TWCR	
\$57	\$37	SPMCR	
\$58	\$38	TIFR	
\$59	\$39	TIMSK	
\$5A	\$3A	GIFR	
\$5B	\$3B	GICR	
\$5C	\$3C	OCR0	
\$5D	\$3D	SPL	
\$5E	\$3E	SPH	
\$5F	\$3F	SREG	

AVR I/O Ports: Register Summary

MCUCR - MCU Control Register

Bit	7	6	5	4	3	2	1	0	_
0x35 (0x55)	-	BODS ⁽¹⁾	BODSE ⁽¹⁾	PUD	-	-	IVSEL	IVCE	MCUCR
Read/Write	R	R/W	R/W	R/W	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

PORTB – The Port B Data Register

Bit	7	6	5	4	3	2	1	0	
0x05 (0x25)	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

DDRB - The Port B Data Direction Register

Bit	7	6	5	4	3	2	1	0	_
0x04 (0x24)	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

PINB – The Port B Input Pins Address⁽¹⁾

Bit	7	6	5	4	3	2	1	0	
0x03 (0x23)	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
Read/Write	R/W	•							
Initial Value	N/A								

AVR I/O Ports: I/O Programming

- Recall from previous slide that I/O registers location differs for each AVR
- The AVR GCC compiler knows where the registers are so we can write the following code to set pin PBO and PB2 to output HIGH

```
DDRB = 0b00000101;
PORTB = 0b00000101;
```

How can we config 1 pin without affect other pins?

AVR I/O Ports: I/O Programming

- Each bit can individually be set using bitwise OR operator, clear using bitwise AND operator and toggle using XOR operator
- PBn constant can be used to refer to a bit in a register

AVR I/O Ports: Electrical characteristic

29.1 Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any Pin except RESET with respect to Ground0.5V to V _{CC} +0.5V
Voltage on RESET with respect to Ground-0.5V to +13.0V
Maximum Operating Voltage
DC Current per I/O Pin
DC Current V _{CC} and GND Pins 200.0mA

Figure 31-306. ATmega328: I/O Pin Output Voltage vs. Sink Current (V_{CC} = 5 V)

Table C-5: Fan-out for AVR Ports

Pin	Fan-out	
IOL	20 mA	
IOH	−20 mA	
IIL	-1 μA	
IIH	1 μΑ	

Note: Negative current is defined as current sourced by the pin.

Figure 31-308. ATmega328: I/O Pin Output Voltage vs. Source Current (V_{CC} = 5 V)

AVR Hardware Design

Basic AVR Hardware Connection

- Internal resistor can be used
- Push button can be omited if board doesn't need to be manually resetted

Internal RC Osciallator can be used

AVR Fuse Bits

- ATMega328P has three Fuse bytes: Low, High and Extended for chiplevel setup e.g.
 - Clock source
 - System clock pre-scalar
 - Brown-out Detector trigger level
 - Enable/disable watchdog timer, reset pin, programming method
- Fuses are read as logical zero "O" if they are programmed and "1" if they are unprogrammed
- https://www.engbedded.com/fusecalc/

AVR Fuse Bits: Extended Fuse Byte

Table 28-6. Extended Fuse Byte for ATmega328/328P

Extended Fuse Byte	Bit No	Description	Default Value
-	7	_	1
-	6	_	1
_	5	_	1
-	4	_	1
_	3	_	1
BODLEVEL2 ⁽¹⁾	2	Brown-out Detector trigger level	1 (unprogrammed)
BODLEVEL1(1)	1	Brown-out Detector trigger level	1 (unprogrammed)
BODLEVELO ⁽¹⁾	0	Brown-out Detector trigger level	1 (unprogrammed)

Table 29-12. BODLEVEL Fuse Coding⁽¹⁾⁽²⁾

BODLEVEL 2:0 Fuses	Min. V _{BOT}	Typ V _{BOT}	Max V _{BOT}	Units		
111		BOD Disa	bled			
110	1.7	1.8	2.0			
101	2.5	2.7	2.9	V		
100	4.1	4.3	4.5			
011				·		
010						
001	Reserved					
000						

AVR Fuse Bits: High/Low Fuse Byte

Table 28-8. Fuse High Byte for ATmega328/328P

able 20-0. I doe riigii byte for Armegaezorezor							
High Fuse Byte	Bit No	Description	Default Value				
RSTDISBL ⁽¹⁾	7	External Reset Disable	1 (unprogrammed)				
DWEN	6	debugWIRE Enable	1 (unprogrammed)				
SPIEN ⁽²⁾	5	Enable Serial Program and Data Downloading	0 (programmed, SPI programming enabled)				
WDTON ⁽³⁾	4	Watchdog Timer Always On	1 (unprogrammed)				
EESAVE	3	EEPROM memory is preserved through the Chip Erase	1 (unprogrammed), EEPROM not reserved				
BOOTSZ1	2	Select Boot Size (see Table 27-7 on page 284, Table 27-10 on page 285 and Table 27-13 on page 286 for details)	0 (programmed) ⁽⁴⁾				
BOOTSZ0	1	Select Boot Size (see Table 27-7 on page 284, Table 27-10 on page 285 and Table 27-13 on page 286 for details)	0 (programmed) ⁽⁴⁾				
BOOTRST	0	Select Reset Vector	1 (unprogrammed)				

Table 28-9. Fuse Low Byte

Low Fuse Byte	Bit No	Description	Default Value
CKDIV8 ⁽⁴⁾	7	Divide clock by 8	0 (programmed)
CKOUT ⁽³⁾	6	Clock output	1 (unprogrammed)
SUT1	5	Select start-up time	1 (unprogrammed) ⁽¹⁾
SUT0	4	Select start-up time	0 (programmed) ⁽¹⁾
CKSEL3	3	Select Clock source	0 (programmed) ⁽²⁾
CKSEL2	2	Select Clock source	0 (programmed) ⁽²⁾
CKSEL1	1	Select Clock source	1 (unprogrammed) ⁽²⁾
CKSEL0	0	Select Clock source	0 (programmed) ⁽²⁾

Table 9-1. Device Clocking Options Select⁽¹⁾

	Table 5-1. Device Clocking Options Select				
	Device Clocking Option	CKSEL30			
	Low Power Crystal Oscillator	1111 - 1000			
	Full Swing Crystal Oscillator	0111 - 0110			
	Low Frequency Crystal Oscillator	0101 - 0100			
	Internal 128kHz RC Oscillator	0011			
	Calibrated Internal RC Oscillator	0010			
	External Clock	0000			
	Reserved	0001			

Note: 1. For all fuses "1" means unprogrammed while "0" means programmed.

AVR Max Freq. vs VCC Consideration

AVR Serial Programming Connection

• Most AVR can be programmed through the SPI interface except the most recent tinyAVR O- and 1-series, and megaAVR O-series

In-circuit serial programming pins

Some AVR Programmers

- 1. Opensource Programmer
 - USBasp

• USBtinyISP

- 2. Proprietary Programmer
 - Atmel ICE

• Microchip Snap

