# Lithium Borohydride Ethylenediaminates: A Case Study of Solid-State LiBH<sub>4</sub>—Organic Amine Complexes

Juner Chen, †,‡ Teng He,† Guotao Wu,\*,† Zhitao Xiong,† Lin Liu,† Xiaohua Ju,† and Ping Chen\*,†

<sup>†</sup>Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

<sup>‡</sup>University of Chinese Academy of Sciences, Beijing 100049, China

Supporting Information

**ABSTRACT:** Nitrogen (N) containing ligands, such as ammonia (NH<sub>3</sub>), hydrazine (N<sub>2</sub>H<sub>4</sub>), and ethylenediamine (en), can form a series of complexes with common features in crystal structures and thermal behaviors by coordinating with LiBH<sub>4</sub>. Two newly synthesized lithium borohydride ethylenediaminates were investigated in this work. Through comparing the crystal structures of LiBH<sub>4</sub>—en, LiBH<sub>4</sub>—NH<sub>3</sub>, and LiBH<sub>4</sub>—N<sub>2</sub>H<sub>4</sub> complexes, similar coordination environments of Li were observed in which they have the same Li/N molar ratios. Meanwhile, the establishment of dihydrogen bonding networks, together with the Li<sup>+</sup>/N containing ligand interactions, may be important reasons for the structural stabilization and are expected to have profound impacts on their thermal behaviors. When heated under Ar flow, LiBH<sub>4</sub>—N containing complexes decompose via desorption of N containing ligands followed by dehydrogenation. The coordination strength is affected by the number of ligands, i.e., with the increase of N/Li ratio the ligands can be released more easily. For dehydrogenation, the



complex with the shortest NH···HB distance gave rise to the lowest initial temperature. When heated in a closed system, direct dehydrogenation can be achieved at relatively low temperatures with Co-based catalyst. About 8.5 and 7.7 wt % of hydrogen can be released from Co-catalyzed LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>·en at 180  $^{\circ}$ C, respectively.

## **■ INTRODUCTION**

Alkali metal borohydrides, such as LiBH4, NaBH4, and KBH4, constitute an important class of reducing reagents, 1-5 starting materials for synthesis of organometallic derivatives, precursors for the production of borides and hydrides, and catalysts for hydrogenation, isomerization, oligomerization, and polymerization.<sup>6,7</sup> Recently, metal borohydrides have also been used as hydrogen storage materials because of their high hydrogen contents,  $^{8-10}$  and LiBH $_4$  has been studied most comprehensively among the different metal borohydrides. 11 As a crystalline compound containing tetrahedral borohydride ions with an orthorhombic structure, pure LiBH4 was first synthesized by the reaction of ethyllithium with diborane in 1940. 12,13 The thermogram of LiBH<sub>4</sub> shows three endothermic features: at 108-112, 258-286, and 483-492 °C. 14,15 The first feature corresponds to the reversible polymorphic transformation of LiBH<sub>4</sub>. The second peak is attributed to the fusion of LiBH<sub>4</sub>, which is accompanied by a slight decomposition with approximately 2% of the hydrogen evolution. The main gas desorption peak starts at 380 °C and liberates 80% of hydrogen in LiBH<sub>4</sub>. Due to the high hydrogen gravimetric density (18.4 wt %) and high volumetric hydrogen density (121 kg H<sub>2</sub> m<sup>-3</sup>), LiBH<sub>4</sub> has been widely investigated as a hydrogen storage material since 2003. 10 Additionally, LiBH<sub>4</sub> is also a starting material for the synthesis of other borohydrides through metathesis reaction with corresponding salts. 16-18 Hydrolysis

reaction of LiBH<sub>4</sub> can be used for generation of  $\rm H_2$ .<sup>19</sup> More recently, LiBH<sub>4</sub> has been used as a solid electrolyte in lithium batteries for its high lithium ion conductivity.<sup>20–24</sup>

On the other hand, LiBH<sub>4</sub> can be used to form new complexes with ligands to improve the chemical properties and augment its application. By coordination with nitrogen (N) or oxygen (O) containing ligands, a variety of LiBH<sub>4</sub>-based new complexes have been synthesized (Tables S1~S2, Supporting Information). 25-35 A fair number of these complexes have been characterized, and the structures of LiBH<sub>4</sub>·nL compounds depend on the type and number (n) of ligand molecules (L).36,37 Additionally, it is important to understand the coordination environment of the metal center because this may have an influence on the chemical behavior of a particular complex. However, only several kinds of complexes such as LiBH<sub>4</sub>-NH<sub>3</sub>,<sup>32</sup> LiBH<sub>4</sub>-N<sub>2</sub>H<sub>4</sub>,<sup>31</sup> LiBH<sub>4</sub>-NH<sub>3</sub>BH<sub>3</sub>,<sup>33</sup> LiBH<sub>4</sub>-guanidine borohydride,<sup>34</sup> and LiBH<sub>4</sub>-melamine<sup>29</sup> have been studied for their thermal decomposition properties. Compared with pristine LiBH<sub>4</sub>, these complexes show improved dehydrogenation properties.

Organic amines are a group of chemical compounds that have a common feature of possessing sp<sup>3</sup>-hybridized nitrogen

Received: March 29, 2014 Revised: June 11, 2014 Published: June 11, 2014





Figure 1. Raman and FTIR spectra of (a) LiBH<sub>4</sub>·en, (b) (LiBH<sub>4</sub>)<sub>2</sub>·en, (c) en, and (d) LiBH<sub>4</sub>·

atoms with lone pair electrons. <sup>38</sup> In this study, we tried to find out the common features of N-containing ligand coordinated LiBH<sub>4</sub> complexes. Thus, the simplest diamine, ethylenediamine (NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, en), was selected as a representative of organic amines to complex with LiBH<sub>4</sub>. Crystal structures and thermal decomposition behaviors of LiBH<sub>4</sub> ethylenediaminates were systematically investigated in comparison with LiBH<sub>4</sub>– N<sub>2</sub>H<sub>4</sub> and LiBH<sub>4</sub>–NH<sub>3</sub> complexes in this work. These newly synthesized compounds may be useful for the controlled and safe delivery of hydrogen to proton exchange membrane fuel cells (PEMFCs). <sup>23</sup>

## **■ EXPERIMENTAL SECTION**

Synthesis. Lithium borohydride (LiBH<sub>4</sub>, 95%, Acros Organics), CoCl<sub>2</sub> (97%, Sigma-Aldrich), and ethylenediamine (NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, en, 99.5% Fluka) were commercial products and used without further purification. The lithium borohydride ethylenediaminates (denoted as (LiBH<sub>4</sub>)<sub>2</sub>·en, LiBH<sub>4</sub>·en, and LiBH<sub>4</sub>·2en) were prepared by ball milling the solid lithium borohydride and liquid en in a Retsch PM 400 planetary mill. Composites of  $(LiBH_4)_n$ —en (n = 3 and 5) were prepared by the same method. Approximately 600 mg of a sample mixture was loaded into a 180 mL vessel and then milled at 200 rpm for 4 h. The ball to powder ratio was 50:1. To add Co-catalyst to the resulting borohydride ethylenediaminates, 2 mol % (per LiBH<sub>4</sub>) CoCl<sub>2</sub> precursor was ball milled with (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en at 200 rpm for 8 h. All the sample operations were performed in an MBRAUN 200 glovebox filled with purified argon (O2 and H2O concentrations were below 1 ppm).

**Characterization.** X-ray diffraction (XRD) measurements were conducted using a PANalytical X'pert diffractometer (Cu  $K\alpha$  radiation, 40 kV, 40 mA). An in situ cell was used to avoid sample exposure to air during the measurement. Highresolution X-ray diffraction pattern was collected at room temperature at the BL14B1 beamline of Shanghai Synchrotron Radiation Facility (SSRF), Shanghai, China. The obtained XRD patterns have been used for indexing, simulated annealing, and refinement of the structure model using Materials Studio. [BH<sub>4</sub>-] and en are treated as rigid bodies. Thermogravimetric and differential thermal analysis (TG-DTA) measurements were carried out on a Netzsch TG-DTA apparatus (Netzsch, Germany). A 10 mg sample was heated in an Al<sub>2</sub>O<sub>3</sub> crucible at  $1~^{\circ}\mathrm{C}~\mathrm{min}^{-1}$  under the Ar flow. Melting point and freezing point measurements of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en were performed by heating  $(1 \, {}^{\circ}\text{C} \, \text{min}^{-1})^2$  and cooling  $(0.2 \, {}^{\circ}\text{C} \, \text{min}^{-1})$  the

samples between room temperature and 130 °C. Hydrogen desorption measurements were performed over a homemade temperature-programmed desorption (TPD) system comprising a small reactor and a mass spectrometer (MS, Hiden HPR-20) at 2 °C min<sup>-1</sup> under the Ar flow. Quantitative measurements of hydrogen desorption from lithium borohydride ethylenediaminates were conducted using a Sievert-type apparatus. An ca. 200 mg sample was heated inside a closed chamber, with a heating rate of 2 °C min<sup>-1</sup>. The pressure increase in the chamber was monitored, and at the heating intervals a small amount of gaseous product will be connected from the pressurized chamber to MS for analysis. Solid-state <sup>11</sup>B and <sup>7</sup>Li magic angle spinning nuclear magnetic resonance (MAS NMR) and <sup>13</sup>C cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) were performed on a Bruker AVANCE 500 MHz NMR spectrometer (11.7 T). Fourier transform infrared spectroscopy (FTIR) and Raman spectra were recorded by using a Varian 3100 unit and a Renishaw inVia Raman Microscope, respectively.

## ■ RESULTS AND DISCUSSION

**Complex Preparation.** It is reported that NH<sub>3</sub> can be easily reacted with LiBH<sub>4</sub> and form ammoniates with various molar ratios, i.e., Li(NH<sub>3</sub>)<sub>n</sub>BH<sub>4</sub> (0 <  $n \le 4$ ).<sup>30</sup> Recently, solid-state LiBH<sub>4</sub>·NH<sub>3</sub> and LiBH<sub>4</sub>·3NH<sub>3</sub> as well as liquid LiBH<sub>4</sub>·2NH<sub>3</sub> have been obtained by Guo et al. as hydrogen storage materials, but the LiBH<sub>4</sub>·2NH<sub>3</sub> and LiBH<sub>4</sub>·3NH<sub>3</sub> were unstable without ammonia pressure.<sup>39</sup> He et al. reported that reaction of hydrazine with LiBH<sub>4</sub> in various molar ratios (2/1, 1/1, 1/2, and 1/3) yields a series of new phases.<sup>31,40</sup>

Here, ethylenediamine (NH2CH2CH2NH2, en) was employed as a representative of organic amines to coordinate with LiBH<sub>4</sub> in comparison with LiBH<sub>4</sub>-N<sub>2</sub>H<sub>4</sub> and LiBH<sub>4</sub>-NH<sub>3</sub> complexes. Reaction of LiBH4 and en also leads to the formation of three complexes of (LiBH<sub>4</sub>)<sub>2</sub>·en, LiBH<sub>4</sub>·en, and LiBH<sub>4</sub>·2en. Among the three complexes is LiBH<sub>4</sub>·2en, an ionic compound containing chains of cationic [Li(en)<sub>2</sub>]<sup>+</sup> units, which has been synthesized by Giese et al. 41 We found that LiBH<sub>4</sub>·2en was unstable at room temperature, and considerable en ligands could be easily detached at around 140 °C (Figure S1, Supporting Information). Therefore, we will focus on the structures and properties of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en in the present work. As shown in Figure S9 (Supporting Information), white powder samples of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en can be obtained by ball milling LiBH<sub>4</sub> and en. When Co-based catalyst was added, the color of the samples turned black. The samples

Table 1. Summary of Crystallographic Details for (LiBH<sub>4</sub>)<sub>2</sub>·en, LiBH<sub>4</sub>·en, (LiBH<sub>4</sub>)<sub>2</sub>·N<sub>2</sub>H<sub>4</sub>, LiBH<sub>4</sub>·N<sub>2</sub>H<sub>4</sub>, and LiBH<sub>4</sub>·NH<sub>3</sub> Complexes

| parameters                       | (LiBH <sub>4</sub> ) <sub>2</sub> ·en                    | LiBH₄·en                                                 | $(LiBH_4)_2 \cdot N_2H_4$   | $LiBH_4\cdot N_2H_4$                                  | $LiBH_4 \cdot NH_3$                            |
|----------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------|-------------------------------------------------------|------------------------------------------------|
| formula sum                      | $\text{Li}_8\text{B}_8\text{C}_8\text{N}_8\text{H}_{64}$ | $\text{Li}_2\text{B}_2\text{C}_4\text{N}_4\text{H}_{24}$ | $\mathrm{Li_8B_8N_8H_{48}}$ | $\text{Li}_{8}\text{B}_{8}\text{N}_{16}\text{H}_{64}$ | $\text{Li}_4\text{B}_4\text{N}_4\text{H}_{28}$ |
| mol. mass [g·mol <sup>-1</sup> ] | 414.68                                                   | 163.78                                                   | 302.48                      | 430.64                                                | 155.28                                         |
| crystal system                   | monoclinic                                               | monoclinic                                               | orthorhombic                | monoclinic                                            | orthorhombic                                   |
| space group                      | $P2_1/c$                                                 | Pn                                                       | $P2_12_12_1$                | Cc                                                    | Pnma                                           |
| a [Å]                            | 17.1333(18)                                              | 8.2428(22)                                               | 7.6930(7)                   | 12.1653(16)                                           | 5.97213(2)                                     |
| b [Å]                            | 4.5202(4)                                                | 5.2363(4)                                                | 11.9132(12)                 | 6.7288(8)                                             | 4.46432(1)                                     |
| c [Å]                            | 11.4634(10)                                              | 8.2364(21)                                               | 6.8954(11)                  | 10.3724(11)                                           | 14.34875(0)                                    |
| α [°]                            | 90                                                       | 90                                                       | 90                          | 90                                                    | 90                                             |
| β [°]                            | 106.158(5)                                               | 116.110(3)                                               | 90                          | 104.751(5)                                            | 90                                             |
| γ [°]                            | 90                                                       | 90                                                       | 90                          | 90                                                    | 90                                             |
| V [Å <sup>3</sup> ]              | 852.72                                                   | 319.22                                                   | 631.95(13)                  | 821.08(17)                                            | 382.6                                          |
| $ ho~[{ m g~cm^{-3}}]$           | 0.8078                                                   | 0.8523                                                   | 0.7951                      | 0.8712                                                | 0.6748                                         |

are stable in inert atmosphere, but they are deliquescent in damp air. As shown in Figure S10 (Supporting Information),  $LiBH_4$  ethylenediaminates as well as the Co-doped samples react completely with water within 5 min. Therefore, all the operations and measurements should avoid sample exposure to air.

Figure 1 shows the Raman and FTIR spectra of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH₄·en including those of the pristine LiBH₄ and en. Raman results show that the stretching and deformation of B-H bonds in LiBH<sub>4</sub> are in the regions of 2115–2400 cm<sup>-1</sup> and 1270-1350 cm<sup>-1</sup>. The stretching band of B-H bonds splits into three peaks centered at 2167, 2270, and 2296 cm<sup>-1</sup>, respectively, while the bending band splits into two peaks at 1288 and 1319 cm<sup>-1</sup>, respectively. The N-H stretching and bending bands of en are in the regions of 3150-3420 cm<sup>-1</sup> and 1560-1650 cm<sup>-1</sup>. Symmetric and asymmetric N-H stretching vibrations can be easily identified at 3298 and 3365 cm respectively. The C-H stretching band of en is in the region of 2635-3050 cm<sup>-1</sup>. All signals of B-H, N-H, and C-H vibrations are found in LiBH<sub>4</sub> ethylenediaminates. However, due to the complicated coordination environments, the vibration bands split into more peaks. For (LiBH<sub>4</sub>)<sub>2</sub>·en, B-H stretching vibrations give three contributions at 2159, 2273, and 2326 cm<sup>-1</sup>; N-H stretching vibrations give two contributions at 3288 and 3335 cm<sup>-1</sup>; and the stretching band of C-H bonds splits into three peaks at 2878, 2927, and 2945 cm<sup>-1</sup>. For LiBH<sub>4</sub>·en, however, B-H stretching vibrations are associated with five peaks at 2158, 2240, 2265, 2322, and 2387 cm<sup>-1</sup>; N-H stretching vibrations are related to two sharp peaks at 3298 and 3340 cm<sup>-1</sup>; and C-H stretching vibrations are found at 2866, 2909, and 2943 cm<sup>-1</sup>. All B-H, N-H, and C-H vibrations in the newly synthesized complexes are close to those of pristine en and LiBH<sub>4</sub>. Only slightly red shifts of B-H and N-H stretching vibrations in LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>·en, indicating the weakening of B-H and N-H bonds, can be observed from Raman spectra. Similar results can also be found from FTIR spectra.

Furthermore, <sup>13</sup>C, <sup>11</sup>B, and <sup>7</sup>Li solid-state NMR spectra show more detailed differences between (LiBH<sub>4</sub>)<sub>2</sub>·en, LiBH<sub>4</sub>·en, and the starting materials (Figures S2–S4, Supporting Information). Since en is liquid at RT, the <sup>13</sup>C NMR spectrum of en was carried out without rotation. The peak at 45.6 ppm corresponding to N–C–C–N was observed in en. Broad peaks ranging from 43.0 to 48.0 ppm and 44.0 to 49.0 ppm were detected in (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en, respectively, which can be attributed to the retention of N–C–C–N bonds. Figure S3

(Supporting Information) shows the  $^{11}B$  NMR spectra of  $(\text{LiBH}_4)_2$ ·en, LiBH<sub>4</sub>·en, and LiBH<sub>4</sub>. The chemical shift at -41.9 ppm was found in LiBH<sub>4</sub>. In the spectra of  $(\text{LiBH}_4)_2$ ·en and LiBH<sub>4</sub>·en, the signals of  $^{11}B$  shifted to -41.2 and -41.8 ppm, respectively. In  $^7\text{Li}$  NMR spectra, the chemical shift of  $^7\text{Li}$  in  $(\text{LiBH}_4)_2$ ·en was found at 0.01 ppm, which is much different from those in LiBH<sub>4</sub>·en ( $\delta = 0.27$  ppm) and LiBH<sub>4</sub> ( $\delta = 0.28$  ppm). The shifts of  $^{11}B$  and  $^7\text{Li}$  in  $(\text{LiBH}_4)_2$ ·en and LiBH<sub>4</sub>·en may be caused by the changes of B and Li chemical environments.

**Structure Determination.** The crystal structures of the three kinds of N containing ligand complexes, including LiBH<sub>4</sub>–NH<sub>3</sub>, LiBH<sub>4</sub>–NH<sub>2</sub>NH<sub>2</sub>, and LiBH<sub>4</sub>–en complexes, are summarized in Table 1. The crystal structure of LiBH<sub>4</sub>·NH<sub>3</sub> with the lattice parameters of a = 5.07213(2) Å, b = 4.46432(1) Å, c = 14.34875(0) Å, and V = 382.6 Å<sup>3</sup> was reported by Johnson et al. and Guo et al., separately. <sup>32,39</sup> More recently, studied by He et al., the XRD patterns of (LiBH<sub>4</sub>)<sub>2</sub>·N<sub>2</sub>H<sub>4</sub> and LiBH<sub>4</sub>·N<sub>2</sub>H<sub>4</sub> were indexed using an orthorhombic  $P2_12_12_1$  cell and a monoclinic Cc cell with lattice parameters of a = 7.6930(6) Å, b = 11.913(1) Å, c = 7.4985(1) Å, V = 631.95(15) Å<sup>3</sup> and a = 12.0638 Å, b = 5.7217 Å, c = 10.3680 Å, b = 104.75°, V = 821.08 Å<sup>3</sup>, respectively. <sup>31,40</sup>

In this work, XRD patterns and the Rietveld fits of newly synthesized (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en are shown in Figure 2. XRD patterns of the samples do not contain any detectable phases of LiBH<sub>4</sub> showing quantitative conversion of the starting chemicals. The new sets of diffraction peaks emerged in (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en samples can be well matched by a monoclinic  $P2_1/c$  and a monoclinic Pn cell, with lattice parameters of a = 17.1333(18) Å, b = 4.5202(4) Å, c = 11.4634(10) Å,  $\beta = 106.158(5)^{\circ}$  and a = 8.2428(22) Å, b = 5.2363(4) Å, c = 8.2364(11) Å,  $\beta = 116.110(3)^{\circ}$ , respectively.

On the basis of powder XRD data, crystal structures of  $(LiBH_4)_2$ ·en and  $LiBH_4$ ·en were determined by performing combined direct space simulated annealing and first-principle calculations. It is worth highlighting that a rare bridging coordination mode of en is observed in  $(LiBH_4)_2$ ·en and  $LiBH_4$ ·en. Up to date, coordination compounds containing bridging en units are relatively less studied, although a few extended structures (chains, sheets, and 3D networks) are reported. In  $(LiBH_4)_2$ ·en and  $LiBH_4$ ·en, the en molecules are equivalent, each of which links with two  $Li^+$  centers by the interaction between  $Li^+$  and the  $[NH_2]$  groups at two ends of en (Figure S11A, Supporting Information). In  $LiBH_4$ ·en,  $[Li^+-en-Li^+-BH_4^-]$  chains form a special double helix structure



**Figure 2.** Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) XRD profiles of (a) LiBH<sub>4</sub>·en and (b) (LiBH<sub>4</sub>)<sub>2</sub>·en at 298 K (Cu Kα radiation). Vertical bars indicate the calculated positions of Bragg peaks.

(Figure S11B, Supporting Information). In addition, alternating the Li<sup>+</sup> center and [BH<sub>4</sub><sup>-</sup>] in LiBH<sub>4</sub>·en forms infinite [(Li<sup>+</sup>)(BH<sub>4</sub><sup>-</sup>)] chains (Figure S11C, Supporting Information). The structure of LiBH<sub>4</sub>·en shows a 3D network that consists of [LiN<sub>2</sub>(BH<sub>4</sub>)<sub>2</sub>] tetrahedrons linked by en molecules and [BH<sub>4</sub><sup>-</sup>] groups (Figure S11D, Supporting Information). In (LiBH<sub>4</sub>)<sub>2</sub>·en, the structure of (LiBH<sub>4</sub>)<sub>2</sub>·en contains 2D sheets along the *b* axis (Figure S11E, Supporting Information). In addition to the bridging of en to form a [Li<sup>+</sup>-en-Li<sup>+</sup>] chain, the chains are interconnected by two [BH<sub>4</sub><sup>-</sup>] via head-to-head or tail-to-tail coordination, forming four-membered rings of [(Li<sup>+</sup>)<sub>2</sub>(BH<sub>4</sub><sup>-</sup>)<sub>2</sub>] at each edge (Figure S11F, Supporting Information).

As shown in Figure 3, tetrahedral coordination of lithium ions is observed in (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en. Compared with LiBH<sub>4</sub>-NH<sub>3</sub> and LiBH<sub>4</sub>-N<sub>2</sub>H<sub>4</sub> complexes, it is interesting that these LiBH<sub>4</sub>-N containing ligand complexes have the same Li/ N molar ratio showing similar coordination environments. For example, at the Li/N ratio of 1 to 1 in (LiBH<sub>4</sub>)<sub>2</sub>·en, (LiBH<sub>4</sub>)<sub>2</sub>·  $N_2H_4$ , and  $LiBH_4\cdot NH_3$  complexes, the tetrahedral coordination of the Li cation by three [BH<sub>4</sub><sup>-</sup>] ions and one [NH<sub>2</sub>] group (or NH<sub>3</sub>) was clearly observed. At a Li/N ratio of 1 to 2, Li atoms are tetrahedrally surrounded by two [BH<sub>4</sub>-] units and two [NH<sub>2</sub>] groups, as depicted in LiBH<sub>4</sub>·en and LiBH<sub>4</sub>·N<sub>2</sub>H<sub>4</sub> (Figure 3b2 and c2). Interestingly, increasing the Li/N ratio to 1/4, as shown in LiBH<sub>4</sub>·2en and LiBH<sub>4</sub>·2N<sub>2</sub>H<sub>4</sub>, resulted in tetracoordination of the [NH<sub>2</sub>] group to the Li cation.<sup>31,41</sup> Thus, it is clearly illustrated that the Li center tends to be surrounded by more [NH<sub>2</sub>] groups with the increasing number of N containing ligands.

The changes of coordination environments may also affect the bond distances in these complexes. Their main distances have been summarized in Table 2. The Li–B and Li–N distances in  $(LiBH_4)_2$ ·en are in the range of 2.396–2.741 Å and 2.063–2.064 Å, respectively. However, the Li–B and Li–N



Figure 3. Close contacts around the Li center in (a) LiBH<sub>4</sub>·NH<sub>3</sub>, (b1) (LiBH<sub>4</sub>)<sub>2</sub>·N<sub>2</sub>H<sub>4</sub>, (b2) LiBH<sub>4</sub>·N<sub>2</sub>H<sub>4</sub>, (c1) (LiBH<sub>4</sub>)<sub>2</sub>·en, and (c2) LiBH<sub>4</sub>·en. Li cations are indicated as green spheres, while B, N, H, and C atoms are orange, blue, white, and black spheres, respectively.

distances are in the range of 2.40(2)-2.50(6) Å and 2.11(0)-2.20(1) Å in LiBH<sub>4</sub>·en. All LiBH<sub>4</sub>–N containing ligand complexes contain  $H^{\delta+}$  (in the  $[NH_2]$  group) and  $H^{\delta-}$  (in [BH<sub>4</sub><sup>-</sup>]) in the molecules. The interactions between the oppositely charged hydrogen atoms result in the elongated N-H and B–H distances compared to those in the pristine LiBH<sub>4</sub><sup>45</sup> and amines, 46,47</sup> which lead to the red shifts of N–H and B-H vibrations in Raman and FTIR spectra. The shortest distances of BH···HN are all less than 2.4 Å in the abovementioned complexes (Table 2), indicating the establishment of dihydrogen bonding in the structures. The dihydrogen bonding in ammonia borane is considered as primarily responsible for the stability of this molecular crystal at RT.<sup>48</sup> Similarly, structures of LiBH₄−N containing ligand complexes are stabilized by the strong dihydrogen bonding between N containing ligands and [BH<sub>4</sub>-] as well as by the interactions between Li+ and N containing ligands throughout the crystal structures. These interactions are expected to have profound impacts on their thermal behaviors.

Thermal Behaviors in Open Systems. Thermal behaviors of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en were first investigated in open systems by TG-DTA and TPD-MS under Ar flow. As shown in the DTA curves (Figure 4), it is worth noting that endothermic reactions at 100 and 93 °C were observed in (LiBH<sub>4</sub>)<sub>2</sub> en and LiBH₄·en during the heating process at a ramping rate of 1 °C min-1, respectively. These reactions were found to be exothermic and shifted to lower temperatures (88 and 74 °C) when cooled from 130 °C at 0.2 °C min<sup>-1</sup>. The reversible transformations during the heating and cooling processes without any detectable weight losses (Figure 5) indicate the melting nature of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en. The hysteresis between melting and solidification curves is a common phenomenon, which may be caused by the differences in heating and cooling rates or the undercooling nature of the complexes.

Table 2. Interatomic Distances (Å) in  $(LiBH_4)_2$  en and  $LiBH_4$  en Compared with  $LiBH_4$   $NH_3$ ,  $(LiBH_4)_2$   $N_2H_4$ , and  $LiBH_4$   $N_2H_4$  at Room Temperature

|                  | $(LiBH_4)_2$ ·en  | LiBH₄∙en          | $(LiBH_4)_2 \cdot N_2H_4$ | $LiBH_4 \cdot N_2H_4$ | $LiBH_4\cdot NH_3$ |
|------------------|-------------------|-------------------|---------------------------|-----------------------|--------------------|
| В…Н              | 1.22(4) - 1.24(4) | 1.22(5)-1.22(9)   | 1.22(4)-1.22(6)           | 1.21(7)-1.23(1)       | 1.21(7)-1.24(0)    |
| N…H              | 1.03(2)           | 1.02(5)-1.02(7)   | 1.03(0) - 1.03(1)         | 1.02(5)-1.03(6)       | 1.03(4) - 1.08(8)  |
| C···N            | 1.47(6)           | 1.46(7) - 1.47(1) | -                         | -                     | -                  |
| Li…B             | 2.39(6) - 2.74(1) | 2.40(2) - 2.50(6) | 2.35(8) - 2.71(8)         | 2.32(2) - 2.60(0)     | 2.50(7) - 2.58(2)  |
| Li···N           | 2.06(3) - 2.06(4) | 2.11(0) - 2.20(1) | 2.13(2) - 2.13(3)         | 2.13(1) - 2.42(7)     | 1.89(4)            |
| shortest BH···HN | 1.94(9)           | 2.06(7)           | 1.87(8)                   | 2.06(6)               | 2.25(4)            |



Figure 4. DTA curves of (a) LiBH<sub>4</sub>·en and (b) (LiBH<sub>4</sub>)<sub>2</sub>·en during heating and cooling processes.



Figure 5. TG and TPD-MS results of LiBH<sub>4</sub>-en complexes.

From TG and TPD-MS results in Figure 5, it can be seen that  $(LiBH_4)_2$ ·en and  $LiBH_4$ ·en start to decompose at

temperatures above 180 and 150 °C, respectively. The decompositions of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en include detachment of en ligands and dehydrogenation. As shown in the TPD-MS results, en molecules were desorbed from (LiBH<sub>4</sub>)<sub>2</sub>. en and LiBH<sub>4</sub>·en in the temperature ranges of 180-290 °C and 150-290 °C, respectively. Dehydrogenations of both complexes in the second step occur in the temperature range of 250-380 °C. From TG measurements, the total mass losses observed from (LiBH<sub>4</sub>)<sub>2</sub>:en and LiBH<sub>4</sub>:en were 44.1 and 64.1 wt %, respectively. The first steps in TG curves were mainly involved in the detachment of en, which is about 0.65 and 0.8 equiv of en from (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en, respectively. The same intermediates of a mixture of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub> were observed in (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en after heating to 250 °C as shown in Figure S12 (Supporting Information). Then, the intermediates in both (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en may decompose in the same way when heating to higher temperatures. The possible decomposition pathways of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en can be described in Scheme 1. There are three steps for decomposition of LiBH<sub>4</sub> ethylenediaminates: (1) detachment of en molecules with formation of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>; (2) dehydrogenation of (LiBH<sub>4</sub>)<sub>2</sub>· en with formation of [LiBH<sub>4</sub>] and Li[BN<sub>2</sub>C<sub>2</sub>H<sub>4</sub>], here [LiBH<sub>4</sub>], may complex with other species, and Li[BN<sub>2</sub>C<sub>2</sub>H<sub>4</sub>] only shows the contents of each element in the products; (3) decomposition of LiBH<sub>4</sub> and [LiBH<sub>4</sub>]. The total weight losses from (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en calculated from Scheme 1 are approximately 44.95 and 63.38 wt %, which agree well with the TG results.

It is well understood that coordination strength is a matter of the number of ligands coordinated with the metal center which has been found in the halide—ammonia complexes. The desorption of ammonia from Ca(NH<sub>3</sub>)<sub>8</sub>Cl<sub>2</sub>, Mn(NH<sub>3</sub>)<sub>6</sub>Cl<sub>2</sub>, Mg(NH<sub>3</sub>)<sub>6</sub>Cl<sub>2</sub>, and Ni(NH<sub>3</sub>)<sub>6</sub>Cl<sub>2</sub> examined by TG-MS was found to be a multistep reaction. That is to say, the more NH<sub>3</sub> coordinates with a metal center, the easier it would be detached. Similar results have been observed in LiBH<sub>4</sub>–N<sub>2</sub>H<sub>4</sub> complexes. (LiBH<sub>4</sub>)<sub>2</sub>·N<sub>2</sub>H<sub>4</sub> evolves hydrazine at around 220

Scheme 1. Possible Decomposition Pathways of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en



°C which is higher than that of LiBH<sub>4</sub>·N<sub>2</sub>H<sub>4</sub> (165 °C). (LiBH<sub>4</sub>)<sub>3</sub>·N<sub>2</sub>H<sub>4</sub> does not release any detectable hydrazine in the temperature range of 20-500 °C. To find the coordination strength of LiBH<sub>4</sub> and en, two additional samples of (LiBH<sub>4</sub>)<sub>3</sub>en and (LiBH<sub>4</sub>)<sub>5</sub>-en were prepared by ball milling. However, only (LiBH<sub>4</sub>)<sub>2</sub>:en and LiBH<sub>4</sub> phases were observed in both samples, as evidenced by XRD (Figure S5, Supporting Information). As shown in Figure 5, en desorption temperatures of LiBH<sub>4</sub>·en, (LiBH<sub>4</sub>)<sub>2</sub>·en, (LiBH<sub>4</sub>)<sub>3</sub>-en, and (LiBH<sub>4</sub>)<sub>5</sub>en are 150, 180, 230, and 250 °C, respectively. These results are in accordance with those observed in LiBH<sub>4</sub>-N<sub>2</sub>H<sub>4</sub> complexes in which the coordination strength between Li<sup>+</sup> and the ligands decreases with the increasing number of en. Although the structure parameters cannot provide a direct explanation for the above phenomena since the samples have melted before decomposition, the studies of Li-N distances in the complexes can also give us some inspiration. As shown in Table 2, Li-N distances in LiBH<sub>4</sub>-N containing ligand complexes are elongated with the increase of ligands, meaning the weakening of Li<sup>+</sup>/ligand interaction.

It was reported that the establishment of NH···HB dihydrogen bonding networks plays a significant role in promoting dehydrogenation of ammonia borane. 48 For LiBH<sub>4</sub>-en complexes, hydrogen is first released from (LiBH<sub>4</sub>)<sub>2</sub>·en in open systems. Similarly, dehydrogenation of  $LiBH_4 \cdot NH_3$  and  $(LiBH_4)_2 \cdot N_2H_4$  has been reported. 31,39 As shown in Table 2, the shortest NH···HB distances in LiBH<sub>4</sub>·  $NH_3$ , (LiBH<sub>4</sub>)<sub>2</sub>·en, and (LiBH<sub>4</sub>)<sub>2</sub>·N<sub>2</sub>H<sub>4</sub> are 2.25(4), 1.94(9), and 1.87(8) Å, respectively. Accordingly, the dehydrogenation temperatures are about 280, 260, and 235 °C for LiBH<sub>4</sub>·NH<sub>3</sub>,  $(LiBH_4)_2 \cdot en$ , and  $(LiBH_4)_2 \cdot N_2H_4$ , respectively. Similar to the dehydrogenation of NH3BH3, hydrogen gas may be released from LiBH<sub>4</sub>-N containing ligand complexes through the combination of  $H^{\delta+}$  in ligands and  $H^{\delta-}$  in  $[BH_4^{-}]$ . Therefore, the shortest NH···HB distance gives rise to the strongest  $H^{\delta+}$ ···  $H^{\delta-}$  interaction and results in the lowest dehydrogenation temperature of LiBH<sub>4</sub>-N containing ligand complexes. The relationship between NH···HB distances and dehydrogenation temperature has been verified from a meager energy barrier to dehydrogenation in the previous report.<sup>52</sup> The shortest NH··· HB distance in the transition state for dehydrogenation is ~0.988 Å. The barrier for dehydrogenation seems to be proportional to the NH···HB distances in the LiBH<sub>4</sub>-N containing ligand complexes. The large distance reorganization from complexes with longer NH···HB bonds to the transition state is expected to require more energy than in the cases of complexes with shorter NH···HB bonds. Therefore, hydrogen can be released at lower temperatures from the complexes with shorter NH···HB distances.

Catalytic Dehydrogenation in a Closed System. Quantitative measurements on hydrogen desorption from the samples were subsequently investigated using a Sievert-type apparatus. Approximately 200 mg samples were loaded into a closed vessel with a heating rate of 2 °C min<sup>-1</sup> each time. The pressure increase in the vessel was monitored by a digital pressure gauge. The amount of gaseous products can be calculated by use of the ideal gas equation (PV = nRT). After that, small amounts of gaseous products will be connected from the pressurized vessel to MS for analysis. As shown in Figure 6A, both the pristine (LiBH<sub>4</sub>)<sub>2</sub>-en and LiBH<sub>4</sub>-en decompose slowly at 180 °C, evolving 0.89 and 0.78 equiv of gases per en after heating for 12 h. Interestingly, hydrogen is the only detectable gaseous product as shown in Figure 6B. In the cases





Figure 6. (A) Volumetric release measurements on (a) en, (b) LiBH<sub>4</sub>, (c) pristine LiBH<sub>4</sub>·en, (d) pristine (LiBH<sub>4</sub>)<sub>2</sub>·en, (e) Co-doped LiBH<sub>4</sub>· en, and (f) Co-doped (LiBH<sub>4</sub>)<sub>2</sub>·en at 180 °C. (B) MS profiles of the gaseous products of en, LiBH<sub>4</sub>, LiBH<sub>4</sub>·en, (LiBH<sub>4</sub>)<sub>2</sub>·en, Co-doped LiBH<sub>4</sub>·en, and Co-doped (LiBH<sub>4</sub>)<sub>2</sub>·en after heating for 12 h at 180 °C. Hydrogen was the only detectable gaseous product. The detected Ar was from the glovebox where the sample was loaded into the vessel.

of LiBH<sub>4</sub>-NH<sub>3</sub> and LiBH<sub>4</sub>-N<sub>2</sub>H<sub>4</sub> complexes, NH<sub>3</sub> and NH<sub>3</sub>/ N<sub>2</sub> are the main byproducts during the dehydrogenation. Due to the strong C-N bonds, neither NH3 nor N2 was found in the dehydrogenation products of LiBH<sub>4</sub>-en complexes. It was reported by Zheng et al. that the thermal decomposition pathway of LiBH<sub>4</sub>·NH<sub>3</sub> can be altered by "locking" NH<sub>3</sub> in the vicinity of LiBH4 to increase the chance of dehydrogenation rather than deammonization.<sup>53</sup> The way to retain NH<sub>3</sub> in the materials is through equilibrium-vapor-pressure, i.e., by putting the ammoniate in a closed vessel, which is similar to the volumetric release experiment performed in this study. Therefore, direct dehydrogenation took place rather than desorption of en from (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en due to the retainment of en in the vicinity of LiBH4 in such a closed system. However, the pristine samples show poor dehydrogenation kinetics at 180 °C, and only 22.2% and 19.2% of the ideal dehydrogenation amounts of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en can be achieved after heating for 12 h, respectively.

Previous investigations on LiBH<sub>4</sub>–NH<sub>3</sub> and LiBH<sub>4</sub>–N<sub>2</sub>H<sub>4</sub> complexes revealed that transition metals, such as Co and Fe, can be effective catalysts in promoting dehydrogenation, especially when the sample is in the melting state. This is understandable since the molten sample will be mobile and has higher chances to interact with catalyst. <sup>54</sup> As mentioned above,  $(\text{LiBH}_4)_2$ ·en and LiBH<sub>4</sub>·en melt at 100 and 93 °C, respectively. Therefore, the CoCl<sub>2</sub> precursor was introduced into  $(\text{LiBH}_4)_2$ ·en and LiBH<sub>4</sub>·en by ball milling. Volumetric release experi-

ments show that ca. 3.5 and 4.0 equiv of H<sub>2</sub> per en evolved from the Co-catalyzed LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>·en at 180 °C as shown in Figure 6A (e, f), respectively, showing the rapid interaction between en and LiBH4 during the heating process in the presence of Co-based catalyst. In other words, around 8.5 and 7.7 wt % of hydrogen can be released from Co-catalyzed LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>·en, respectively. At the same condition, only 1.9 and 1.7 wt % of H2 can evolve from LiBH4·en and (LiBH<sub>4</sub>)<sub>2</sub>·en, and the starting materials, LiBH<sub>4</sub> and en, release only negligible gases product. The evolution of H2 gas from Co-doped LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>·en was verified by MS measurements as shown in Figure 6B. As shown by previous reports in the literature, chemical states of Co catalyst in LiBH<sub>4</sub>-NH<sub>3</sub> and LiBH<sub>4</sub>-LiNH<sub>2</sub> complexes may be Co or CoB alloy. 54 It is most likely that the reduced Co is produced by the reaction of CoCl<sub>2</sub> precursor and [BH<sub>4</sub>-].53 Therefore, Co or CoB alloy may also be the active species in Co-catalyzed LiBH<sub>4</sub>· en and (LiBH<sub>4</sub>)<sub>2</sub>·en.

The solid dehydrogenated products were characterized by XRD and solid-state 11B MAS and 13C CPMAS NMR. As shown in Figure S6 (Supporting Information), several weak peaks were observed at 7.4°, 19.8°, 24.0°, etc. in the XRD patterns of the dehydrogenated residues of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH₄·en. However, these peaks cannot match with any known species from the database. In <sup>13</sup>C CPMAS NMR spectra, the dehydrogenated residues present two peaks at 47.2 and 51.2 ppm (Figure S7, Supporting Information), indicating that C still keeps the sp<sup>3</sup>-hybridized state and bonds with H, C, and N.55,56 Therefore, N-C-C-N bonds are retained in the products. 11B MAS NMR spectra of the residues exhibit a broad line shape with two overlapped peaks at 28.0 and 23.0 ppm (Figure S8, Supporting Information), revealing the existence of sp<sup>2</sup>-hybridized B species in the BN<sub>2</sub>H or BN<sub>3</sub> environment. Similar <sup>11</sup>B MAS NMR spectra have been observed in the study of hexagonal BN, BNH<sub>x</sub>, and [LiNBH].<sup>57</sup>  $^{11}$ B signals at -40ppm, which are the signals of [BH<sub>4</sub><sup>-</sup>], were found in both samples. Obviously, the [BH<sub>4</sub>-] signal in dehydrogenated  $LiBH_4$  en residues is much weaker than that in  $(LiBH_4)_2$  en. There are equivalent  $H^{\delta+}$  and  $H^{\delta-}$  in LiBH<sub>4</sub>·en, while,  $H^{\delta-}$  in  $(LiBH_4)_2$  en is two times more than  $H^{\delta+}$ . It is believable that 4 equiv of H<sub>2</sub> may be released from both LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>· en due to the interaction between  $H^{\delta+}$  and  $H^{\delta-}$ . In LiBH<sub>4</sub>·en,  $H^{\delta+}$  in en and  $H^{\delta-}$  in  $[BH_4^-]$  will be totally consumed. However, in  $(LiBH_4)_2$  en,  $H^{\delta+}$  in en will be completely consumed, and the excess  $H^{\delta-}$  in  $[BH_4^-]$  will remain. Therefore, the [BH<sub>4</sub><sup>-</sup>] signals in NMR spectra can probably be ascribed to a minor unreacted LiBH4·en in the dehydrogenated LiBH4·en and remaining  $[BH_4^-]$  groups in dehydrogenated (LiBH<sub>4</sub>)<sub>2</sub>·en, respectively. Thus, the dehydrogenated residues of (LiBH<sub>4</sub>)<sub>2</sub>·en may be comprised of Li<sup>+</sup>,  $[BH_4^-]$ , and  $[-B=NCH_2CH_2N-]_n^{n-}$ . On the other hand, totally dehydrogenated residues of LiBH<sub>4</sub>·en only contain species composed of Li<sup>+</sup> and  $[-B=NCH_2CH_2N-]_n^{n-}$ . Nevertheless, the actual compositions and structures of [-B=  $NCH_2CH_2N-]_n^{n-}$  remain uncertain, and further investigation is needed to clarify the dehydrogenation products in the future.

## CONCLUSIONS

The coordination of en to the Li center of borohydrides leads to the formation of lithium borohydride ethylenediaminates. By comparison of LiBH<sub>4</sub>–NH<sub>3</sub>, LiBH<sub>4</sub>–N<sub>2</sub>H<sub>4</sub>, and LiBH<sub>4</sub>–en complexes, similar coordination environments of Li<sup>+</sup> were observed in the complexes having the same Li/N molar ratios.

When heated in an open system, lithium borohydride ethylenediaminates decomposed via detachment of en followed by dehydrogenation. Three-step pathways including releasing of en, dehydrogenation of (LiBH<sub>4</sub>)<sub>2</sub>·en, as well as the decomposition of LiBH<sub>4</sub> and remaining [BH<sub>4</sub><sup>-</sup>] were proposed. With the decreasing number of en, en detaching temperatures increased from 150 to 250 °C. The onset dehydrogenation temperatures were related to the shortest NH···HB distances in the LiBH<sub>4</sub>-N containing ligand complexes. The shortest NH··· HB distance gives rise to the strongest  $H^{\delta+} \cdots H^{\delta-}$  interaction, which results in the lowest dehydrogenation temperature of LiBH₄-N containing ligand complexes. When heated in a closed system, direct dehydrogenation without release of ligands can be achieved at relatively low temperatures by loading the complexes into a closed vessel with Co-based catalyst. About 8.5 and 7.7 wt % of hydrogen can be released from Co-catalyzed LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>·en at 180 °C, respectively. The above results may be a guideline for the study of other LiBH<sub>4</sub>-organic amine complexes, which may find potential applications in organic synthesis, catalysis, Li ion conductivity, and hydrogen generation.

## ASSOCIATED CONTENT

## S Supporting Information

A description of calculation methods on lithium borohydride ethylenediaminates, tables of LiBH<sub>4</sub> coordination compound with ethers and amines, TPD-MS results of LiBH<sub>4</sub>·2en, figures of <sup>13</sup>C, <sup>11</sup>B, and <sup>7</sup>Li NMR spectra of (LiBH<sub>4</sub>)<sub>2</sub>·en, LiBH<sub>4</sub>·en, neat LiBH<sub>4</sub>, and neat en, figure of XRD patterns of (LiBH<sub>4</sub>)<sub>n</sub>·en and LiBH<sub>4</sub>, figure of XRD patterns of Co-doped (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en after dehydrogenation, figures of <sup>13</sup>C and <sup>11</sup>B NMR spectra of LiBH<sub>4</sub>·en and (LiBH<sub>4</sub>)<sub>2</sub>·en before and after dehydrogenation, photos of the as-prepared samples, photos of the sample exposure to air, crystal structures of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en, and XRD patterns of the decomposition products of (LiBH<sub>4</sub>)<sub>2</sub>·en and LiBH<sub>4</sub>·en collected at different temperatures. This material is available free of charge via the Internet at http://pubs.acs.org.

## AUTHOR INFORMATION

#### **Corresponding Authors**

\*E-mail: pchen@dicp.ac.cn. Tel./Fax: +86 411 84379583.

\*E-mail: wgt@dicp.ac.cn.

#### Notes

The authors declare no competing financial interest.

### ACKNOWLEDGMENTS

The authors would like to acknowledge the Project of National Natural Science Funds for Distinguished Yong Scholar (51225206), 973 (2010CB631304) Project, National Natural Science Foundation of China (U1232120, 51301161), Postdoctoral Science Foundation Funded Project, and Shanghai Synchrotron Radiation Facility (SSRF) for providing the beam time.

#### REFERENCES

- (1) Zeynizadeh, B.; Behyar, T. Wet THF as a Suitable Solvent for a Mild and Convenient Reduction of Carbonyl Compounds with NaBH<sub>4</sub>. Bull. Chem. Soc. Jpn. **2005**, 78, 307–315.
- (2) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations; Wiley-VCH: New York, 1999.
- (3) Hudlicky, M. Reductions in Organic Chemistry; American Chemical Society: Washington, DC, 1996.

- (4) Barone, V.; Dolcetti, G.; Lelj, F.; Russo, N. Transition-Metal Tetrahydroborate Complexes as Catalysts. 1. Nonempirical Determination of Static, Dynamic, and Chemical Properties of the Model Compounds Sodium Tetrahydroborate and Aluminum Borate (AlH,BH<sub>4</sub>). *Inorg. Chem.* 1981, 20, 1687–1691.
- (5) Chaikin, S. W.; Brown, W. G. Reduction of Aldehydes, Ketones and Acid Chlorides by Sodium Borohydride. *J. Am. Chem. Soc.* **1949**, 71, 122–125.
- (6) Reyes-Márquez, V.; Lara, K. O.; Sánchez, M.; Gálvez-Ruizb, J. C. Unconventional Hydrogen and Dihydrogen Bonded Supramolecular Array of a 2,6-Dioxa-9,16-Diaza-1,3(1,2),4(1,4)-Tribenzenacycloheptadecaphane-Borane Adduct. *Arkivoc* **2008**, *115*, 123.
- (7) Makhaev, V. D. Structural and Dynamic Features of Tetrahydroborate Complexes. *Usp. Khimii.* **2000**, *69*, 795–816.
- (8) Moussa, G.; Moury, R.; Demirci, U. B.; Sener, T.; Miele, P. Boron-Based Hydrides for Chemical Hydrogen Storage. *Int. J. Energy Res.* **2013**, *37*, 825–842.
- (9) Vajo, J. J.; Skeith, S. L.; Mertens, F. Reversible Storage of Hydrogen in Destabilized LiBH<sub>4</sub>. *J. Phys. Chem. B* **2005**, 109, 3719–3722.
- (10) Züttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, P.; Emmenegger, C. LiBH<sub>4</sub> a New Hydrogen Storage Material. *J. Power Sources* **2003**, *118*, 1–7.
- (11) El Kharbachi, A.; Pinatel, E.; Nuta, I.; Baricco, M. A Thermodynamic Assessment of LiBH<sub>4</sub>. *Calphad* **2012**, *39*, 80–90.
- (12) Schlesinger, H. I.; Brown, H. C. Metallo Borohydrides. III. Lithium Borohydride. *J. Am. Chem. Soc.* **1940**, *62*, 3429–3435.
- (13) Harris, P. M.; Meibohm, E. P. The Crystal Structure of Lithium Borohydride LiBH<sub>4</sub>. J. Am. Chem. Soc. **1947**, 69, 1231–1232.
- (14) Pistorius, C. W. Melting and Polymorphism of LiBH<sub>4</sub> to 45 kbar. Z. Phys. Chem. 1974, 88, 253–263.
- (15) Fedneva, E.; Alpatova, V.; Mikheeva, V. LiBH<sub>4</sub> Complex Hydride Materials. Russ. J. Inorg. Chem. **1964**, *9*, 826–7.
- (16) Soloveichik, G. L.; Andrus, M.; Gao, Y.; Zhao, J. C.; Kniajanski, S. Magnesium Borohydride as a Hydrogen Storage Material: Synthesis of Unsolvated Mg(BH<sub>4</sub>)<sub>2</sub>. *Int. J. Hydrogen Energy* **2009**, 34, 2144–2152.
- (17) Ephritikhine, M. Synthesis, Structure, and Reactions of Hydride, Borohydride, and Aluminohydride Compounds of the F-Elements. *Chem. Rev.* **1997**, *97*, 2193–2242.
- (18) Klingen, T. J. Reaction of Copper (II) Chloride with Lithium Borohydride. *Inorg. Chem.* **1964**, *3*, 1058–1059.
- (19) Goudon, J. P.; Bernard, F.; Renouard, J.; Yvart, P. Experimental Investigation on Lithium Borohydride Hydrolysis. *Int. J. Hydrogen Energy* **2010**, *35*, 11071–11076.
- (20) Takahashi, K.; Hattori, K.; Yamazaki, T.; Takada, K.; Matsuo, M.; Orimo, S.; Maekawa, H.; Takamura, H. All-Solid-State Lithium Battery with LiBH<sub>4</sub> Solid Electrolyte. *J. Power Sources* **2013**, 226, 61–64.
- (21) Sveinbjörnsson, D.; Myrdal, J. S. G.; Blanchard, D.; Bentzen, J. J.; Hirata, T.; Mogensen, M. B.; Norby, P.; Orimo, S.-I.; Vegge, T. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH<sub>4</sub>–LiI Solid Solution. *J. Phys. Chem. C* **2013**, *117*, 3249–3257.
- (22) Matsuo, M.; Takamura, H.; Maekawa, H.; Li, H.-W.; Orimo, S. -i., Stabilization of Lithium Superionic Conduction Phase and Enhancement of Conductivity of LiBH<sub>4</sub> by LiCl Addition. *Appl. Phys. Lett.* **2009**, *94*, 084103.
- (23) Matsuo, M.; et al. Complex Hydrides with (BH<sub>4</sub>)<sup>-</sup> and (NH<sub>2</sub>)<sup>-</sup> Anions as New Lithium Fast-Ion Conductors. *J. Am. Chem. Soc.* **2009**, 131, 16389–16391.
- (24) Matsuo, M.; Nakamori, Y.; Orimo, S.-i.; Maekawa, H.; Takamura, H. Lithium Superionic Conduction in Lithium Borohydride Accompanied by Structural Transition. *Appl. Phys. Lett.* **2007**, *91*, 224103.
- (25) Aguilar-Martínez, M.; Félix-Baéz, G.; Pérez-Martínez, C.; Nöth, H.; Flores-Parra, A.; Colorado, R.; Galvez-Ruiz, J. C. Studies in Solution and the Solid State of Coordination Compounds Derived from LiBH<sub>4</sub>, NaBH<sub>4</sub>, and Bidentate Aromatic Amines. *Eur. J. Inorg. Chem.* **2010**, 2010, 1973–1982.

- (26) Galvez-Ruiz, J. C.; Sanchez, M. Structural Analysis of Alkali Metal Tetrahydroborates: The Role of Metal and Coordination Form in the [BH<sub>4</sub>]<sup>-</sup> Anion Structure. *J. Mol. Struct.: THEOCHEM* **2009**, 908, 114–116.
- (27) Gálvez Ruiz, J. C.; Nöth, H.; Warchhold, M. Coordination Compounds of Alkali Metal Tetrahydroborates with Ethers and Amines. *Eur. J. Inorg. Chem.* **2008**, 2008, 251–266.
- (28) Buttery, J. H. N.; Plackett, N. C.; Skelton, B. W.; Whitaker, C. R.; White, A. H. Syntheses and Structures of Lithium and Sodium Salt Complexes with Alkylpolyamine Ligands. *Z. Anorg. Allg. Chem.* **2006**, 632, 1856–1869.
- (29) Liu, L.; Hu, D.; He, T.; Zhang, Y.; Wu, G.; Chu, H.; Wang, P.; Xiong, Z.; Chen, P. Lithium Borohydride–Melamine Complex as a Promising Material for Chemical Hydrogen Storage. *J. Alloys Compd.* **2013**, *552*, 98–101.
- (30) Sullivan, E. A.; Johnson, S. The Lithium Borohydride–Ammonia System P–C–T Relationships and Densities. *J. Phys. Chem.* **1959**, *63*, 233–238.
- (31) He, T.; Wu, H.; Wu, G.; Wang, J.; Zhou, W.; Xiong, Z.; Chen, J.; Zhang, T.; Chen, P. Borohydride Hydrazinates: High Hydrogen Content Materials for Hydrogen Storage. *Energy Environ. Sci.* **2012**, *5*, 5686–5689.
- (32) Johnson, S. R.; David, W. I. F.; Royse, D. M.; Sommariva, M.; Tang, C. Y.; Fabbiani, F. P. A.; Jones, M. O.; Edwards, P. P. The Monoammoniate of Lithium Borohydride, Li(NH<sub>3</sub>)BH<sub>4</sub>: An Effective Ammonia Storage Compound. *Chem.—Asian J.* **2009**, *4*, 849–854.
- (33) Wu, H.; Zhou, W.; Pinkerton, F. E.; Meyer, M. S.; Srinivas, G.; Yildirim, T.; Udovic, T. J.; Rush, J. J. A New Family of Metal Borohydride Ammonia Borane Complexes: Synthesis, Structures, and Hydrogen Storage Properties. *J. Mater. Chem.* **2010**, *20*, 6550–6556.
- (34) Guo, Y.; Gu, Q.; Guo, Z.; Mao, J.; Liu, H.; Dou, S.; Yu, X. A GBH/LiBH<sub>4</sub> Coordination System with Favorable Dehydrogenation. *J. Mater. Chem.* **2011**, *21*, 7138–7144.
- (35) Armstrong, D. R.; Clegg, W.; Colquhoun, H. M.; Daniels, J. A.; Mulvey, R. E.; Stephenson, I. R.; Wade, K. Structure and Bonding of the Lithium Tetrahydroborate-Tetramethylethylenediamine Adduct (TMEDA·LiBH<sub>4</sub>) $_2$ , a Centrosymmetric Dimer Containing Doubly and Triply Bridging Hydrogen Atoms. *J. Chem. Soc., Chem. Commun.* 1987, 630–632.
- (36) Giese, H.-H.; Habereder, T.; Nöth, H.; Ponikwar, W.; Thomas, S.; Warchhold, M. Metal Tetrahydridoborates and Tetrahydridoborato Metalates. 23.1 Amine Solvates of Lithium and Sodium Tetrahydridoborate. *Inorg. Chem.* 1999, 38, 4188–4196.
- (37) Galvez-Ruiz, J. C.; Sanchez, M. Towards an Understanding of the Structure and Bonding of Lithium Tetrahydroborate and Its Amine Complexes. J. Mol. Struct.: THEOCHEM 2007, 818, 23–30.
- (38) Lawrence, S. A. Amines: Synthesis, Properties and Applications; Cambridge University Press: New York, 2004.
- (39) Guo, Y.; Xia, G.; Zhu, Y.; Gao, L.; Yu, X. Hydrogen Release from Amminelithium Borohydride, LiBH<sub>4</sub>·NH<sub>3</sub>. *Chem. Commun.* **2010**, 46, 2599–2601.
- (40) He, T.; Wu, H.; Chen, J.; Zhou, W.; Wu, G.; Xiong, Z.; Zhang, T.; Chen, P. Alkali and Alkaline-Earth Metal Borohydride Hydrazinates: Synthesis, Structures and Dehydrogenation. *Phys. Chem. Chem. Phys.* **2013**, *15*, 10487–10493.
- (41) Giese, Hans H.; Habereder, T.; Knizek, J.; Nöth, H.; Warchhold, M. Solvates of Lithium Tetrahydridoborates with Various Amines: From Molecular to Extended Structures of Lithium Tetrahydridoborate. *Eur. J. Inorg. Chem.* **2001**, 2001, 1195–1205.
- (42) Keene, T. D.; Hursthouse, M. B.; Price, D. J. Two-Dimensional Metal—Organic Frameworks: A System with Competing Chelating Ligands. *Cryst. Growth Des.* **2009**, *9*, 2604–2609.
- (43) Huang, X.; Li, J.; Fu, H. The First Covalent Organic-Inorganic Networks of Hybrid Chalcogenides: Structures That May Lead to a New Type of Quantum Wells. *J. Am. Chem. Soc.* **2000**, *122*, 8789–
- (44) Rabenau, A.; Kniep, R.; Welzel, W. Phasengleichgewichte in Systemen Lithiumhalogenid-Ethylendiamin Sowie Die Kristallstruktu-

- ren Von LiBr·(H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>), LiI·(H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>) Und LiI· 3(H<sub>3</sub>NCH<sub>3</sub>CH<sub>3</sub>NH<sub>2</sub>). Z. Kristallogr. **1988**, 183, 179–191.
- (45) Hartman, M. R.; Rush, J. J.; Udovic, T. J.; Bowman, R. C., Jr.; Hwang, S.-J. Structure and Vibrational Dynamics of Isotopically Labeled Lithium Borohydride Using Neutron Diffraction and Spectroscopy. *J. Solid State Chem.* **2007**, *180*, 1298–1305.
- (46) Kohata, K.; Fukuyama, T.; Kuchitsu, K. Molecular Structure of Hydrazine as Studied by Gas Electron Diffraction. *J. Phys. Chem.* **1982**, *86*, 602–606.
- (47) Lee, S. J.; Mhin, B. J.; Cho, S. J.; Lee, J. Y.; Kim, K. S. Ab Initio Studies of the Conformations of Methylamine and Ethylenediamine: Interaction Forces Affecting the Structural Stability. *J. Phys. Chem.* **1994**, 98, 1129–1134.
- (48) Staubitz, A.; Robertson, A. P. M.; Manners, I. Ammonia-Borane and Related Compounds as Dihydrogen Sources. *Chem. Rev.* **2010**, *110*, 4079–4124.
- (49) Sørensen, R. Z.; Hummelshøj, J. S.; Klerke, A.; Reves, J. B.; Vegge, T.; Nørskov, J. K.; Christensen, C. H. Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts. *J. Am. Chem. Soc.* **2008**, *130*, 8660–8668.
- (50) Bevers, E.; van Ekeren, P.; Haije, W.; Oonk, H. Thermodynamic Properties of Lithium Chloride Ammonia Complexes for Application In a High-Lift High Temperature Chemical Heat Pump. *J. Therm. Anal. Calorim.* **2006**, *86*, 825–832.
- (51) Christensen, C. H.; Sorensen, R. Z.; Johannessen, T.; Quaade, U. J.; Honkala, K.; Elmoe, T. D.; Kohler, R.; Norskov, J. K. Metal Ammine Complexes for Hydrogen Storage. *J. Mater. Chem.* **2005**, *15*, 4106–4108
- (52) Kulkarni, S. A. Intramolecular Dihydrogen Bonding in Main Group Elements. Connection with Dehydrogenation Reactions. *J. Phys. Chem. A* **1999**, *103*, 9330–9335.
- (53) Zheng, X. L.; Wu, G. T.; Li, W.; Xiong, Z. T.; He, T.; Guo, J. P.; Chen, H.; Chen, P. Releasing 17.8 wt% H<sub>2</sub> from Lithium Borohydride Ammoniate. *Energy Environ. Sci.* **2011**, *4*, 3593–3600.
- (54) Pinkerton, F. E.; Meisner, G. P.; Meyer, M. S.; Balogh, M. P.; Kundrat, M. D. Hydrogen Desorption Exceeding Ten Weight Percent from the New Quaternary Hydride Li<sub>3</sub>BN<sub>2</sub>H<sub>8</sub>. *J. Phys. Chem. B* **2004**, *109*, 6–8.
- (55) Tanaka, R.; Ueoka, I.; Takaki, Y.; Kataoka, K.; Saito, S. High Molecular Weight Linear Polyethylenimine and Poly(N-Methylethylenimine). *Macromolecules* **1983**, *16*, 849–853.
- (56) Weyts, K.; Goethals, E. New Synthesis of Linear Polyethyleneimine. *Polym. Bull.* **1988**, *19*, 13–19.
- (57) Gervais, C.; Maquet, J.; Babonneau, F.; Duriez, C.; Framery, E.; Vaultier, M.; Florian, P.; Massiot, D. Chemically Derived BN Ceramics: Extensive <sup>11</sup>B and <sup>15</sup>N Solid-State NMR Study of a Preceramic Polyborazilene. *Chem. Mater.* **2001**, *13*, 1700–1707.