第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

- 一、移位运算
 - -1、移位运算的数学意义
 - -2、算术移位规则
 - -3、算术移位的硬件实现
 - -4、算术移位与逻辑移位的区别

- 一、移位运算
 - 1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

6.3

符号位不变

$x = -0.x_1x_2$.x _k 100	.000
$[x]_{\nmid h} = 1.\overline{x}_1\overline{x}_2$	$\overline{x}_k 100.$	000

	码制	添补代码
正数	原码、补码、反码	0
	原码	0
	补 码	左移添0
以 数	个	右移添1
	反 码	1

例6.16

6.3

设机器数字长为 8 位(含 1 位符号位),写出 A = +26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解: A = +26 = +11010

则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{D}} = 0,0011010$

移位操作	机器数 $[A]_{\mathbb{F}}=[A]_{\mathbb{F}}=[A]_{\mathbb{F}}$	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

例6.17

6.3

设机器数字长为8位(含1位符号位),写出 A=-26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解:

$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,0110100	- 52
左移两位	1,1101000	- 104
右移一位	1,0001101	-13
右移两位	1,0000110	-6

补	码
---	---

移位操作	机器数	对应的真值
移位前	1,1100110	- 26
左移一位	1,1001100	- 52
左移两位	1,0011000	- 104
右移一位	1, <mark>1</mark> 110011	- 13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
左移一位	1,1001011	- 52
左移两位	1,0010111	- 104
右移一位	1, <mark>1</mark> 110010	- 13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

6.3

←丢1 出错

影响精度

影响精度

出错

正确

影响精度

正确

正确

→丢1

4. 算术移位和逻辑移位的区别

6.3

10110010

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110 逻辑右移 01011001

算术左移 00100110 算术右移 11011001 (补码)

高位1移丢

• 一、移位运算

2015/6/9

- -1、移位运算的数学意义
- -2、算术移位规则
- -3、算术移位的硬件实现
- -4、算术移位与逻辑移位的区别

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

但是用原码作加法时,会出现如下问题:

要求	数1	数2	实际操作	结果符号
加法	正	正	加	正
加法	正	负	减	可正可负
加法	负	正	减	可正可负
加法	负	负	加	负

能否 只作加法?

找到一个与负数等价的正数 来代替这个负数

就可使 减 —— 加

- 二、加减法运算
 - -1、补码加减法运算的公式
 - 2、举例
 - -3、溢出的判断
 - -4、补码加减法的硬件配置

二、加减法运算

6.3

1. 补码加减运算公式

(1) 加法

整数
$$[A]_{\nmid k} + [B]_{\nmid k} = [A+B]_{\nmid k} \pmod{2^{n+1}}$$

小数
$$[A]_{\stackrel{?}{\nmid 1}} + [B]_{\stackrel{?}{\nmid 1}} = [A+B]_{\stackrel{?}{\nmid 1}} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$

小数
$$[A - B]_{\stackrel{?}{\nmid h}} = [A + (-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

2015/6/9 哈尔滨工业大学 刘宏伟

2. 举例

6.3

例 6.20 设机器数字长为 8 位(含 1 位符号位) 6.3 且 A = 15, B = 24,用补码求 A - B

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\dag} = 0,0001111$
 $[B]_{\dag} = 0,0011000$
 $+ [-B]_{\dag} = 1,1101000$

$$[A]_{\not \nmid h} + [-B]_{\not \nmid h} = 1,11101111 = [A-B]_{\not \nmid h}$$

 $\therefore A - B = -1001 = -9$

练习 1 设 $x = \frac{9}{16}$ $y = \frac{11}{16}$,用补码求 x+y $x+y=-0.1100=-\frac{12}{16}$ 错

2015/6/9

练习 2 设机器数字长为 8 位 (含 1 位符号位) 且 A = -97, B = +41, 用补码求 A - B

$$A - B = +1110110 = +118$$
 错

3. 溢出判断

6.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 🕀 符号位的进位 = 1 溢出

(2) 两位符号位判溢出

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda \mid \cdot} + [y]_{\lambda \mid \cdot} = [x + y]_{\lambda \mid \cdot} \pmod{4}$$

$$[x-y]_{k} = [x]_{k} + [-y]_{k}$$
 (mod 4)

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

6.3

A、X均n+1位

用减法标记 Gs 控制求补逻辑

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

- 三、乘法运算
 - 计算机中怎么做二进制的乘法运算呢
 - 可以分析一下笔算乘法是怎么做的
 - 笔算乘法的分析
 - 笔算乘法的改进
 - 原码的乘法运算
 - 补码的乘法运算

三、乘法运算

6.3

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

- 0.1101
- $\times 0.1011$
- ✔ 符号位单独处理
 - 1101
- ✓ 乘数的某一位决定是否加被乘数
- 1101
- 0000

? 4个位积一起相加

1101

- ✓ 乘积的位数扩大一倍
- $\overline{0.10001111}$

2. 笔算乘法改进

6.3

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1[A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1[A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1[A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1[A + 0.1[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1[A + 0.1[A + 0.1A]$$

$$= 0.1[A + 0.1[A + 0.1A]$$

$$= 0.1[A + 0.1[A + 0.1A]$$

第八步 右移一位,得结果

8

3. 改进后的笔算乘法过程(竖式) 6.3

部分积	乘数	说明
0.0000	1011	初态,部分积 = 0
+0.1101	=	乘数为1,加被乘数
0.1101		
0.0110	1101	$\rightarrow 1$,形成新的部分积
+0.1101	=	乘数为1,加被乘数
1.0011	1	
0.1001	1110	$\rightarrow 1$,形成新的部分积
+ 0.0000	=	乘数为0,加0
$\boxed{0.1001}$	11	
0.0100	1111	→ 1, 形成新的部分积
+0.1101	=	乘数为1,加被乘数
1.0001	111	
0.1000	1111	→1,得结果

小结 6.3

- p 乘法 运算可用 加和移位实现 $p_1 = 4$,加 4 次,移 4 次
- ▶ 由乘数的末位决定被乘数是否与原部分积相加,然后→1位形成新的部分积,同时乘数→1位 (末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加
 - 硬件 3个寄存器,其中2个具有移位功能
 - 1个全加器

- 三、乘法运算
 - 计算机中怎么做二进制的乘法运算呢
 - 可以分析一下笔算乘法是怎么做的
 - 笔算乘法的分析
 - 笔算乘法的改进
 - 原码的乘法运算
 - 补码的乘法运算

运算规则 递推公式 举例 硬件配置

4. 原码乘法

6.3

(1) 原码一位乘运算规则 以小数为例

设
$$[x]_{\mathbb{F}} = x_0 \cdot x_1 x_2 \cdots x_n$$

$$[y]_{\mathbb{F}} = y_0 \cdot y_1 y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{F}} = (x_0 \oplus y_0) \cdot (0 \cdot x_1 x_2 \cdots x_n) (0 \cdot y_1 y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0) \cdot x^* y^*$$
式中 $x^* = 0 \cdot x_1 x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0 \cdot y_1 y_2 \cdots y_n$$
 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

(2) 原码一位乘递推公式

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*} + z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*} + z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*} + z_{n-1})$$

2015/6/9

例 6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 6.3

解:	数值部分	•	
师年 : 	部分积	乘数	说 明
	0.0000	1101	部分积 初态 $z_0 = 0$
	+ 0.1110		+ x*
\m\ \	0.1110		
逻辑右移	0.0111	0110	→1 ,得 <i>z</i> ₁
	+ 0.0000		+ 0
\m \text{\tin}\}}}}}}}}}}}} \end{\text{\ti}\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	0.0111	0	
逻辑右移	0.0011	1011	→1 , 得 z ₂ + x*
	+ 0.1110	_	+ x*
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	1.0001	10	
逻辑右移	> 0.1000	$110\underline{1}$	→1, 得 z ₃ + x*
	+ 0.1110	_	+ x*
一种相子4	1.0110	110	
这 舞石移	0.1011	$0\ 1\ 1\ 0$	→1 ,得 z ₄

例6.21 结果

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

A、X、Q均n+1位

移位和加受末位乘数控制

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

- 三、乘法运算
 - -1. 分析笔算乘法
 - 2. 笔算乘法的改进
 - -3. 改进后的乘法笔算过程
 - -4. 原码一位乘
 - -5.补码一位乘

5. 补码乘法

6.3

(1) 补码一位乘运算规则

以小数为例 设被乘数
$$[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$$
 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

① 被乘数任意,乘数为正

与原码乘相似 但加和移位按补码规则运算乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正 ③ Booth 算法(被乘数、乘数符号任意) 6.3

④ Booth 算法递推公式

$$\begin{split} [z_0]_{\nmid h} &= 0 \\ [z_1]_{\nmid h} &= 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0 \\ &\vdots \\ [z_n]_{\nmid h} &= 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

$$[x \cdot y]_{\nmid h} = (y_1 - y_0)[x]_{\nmid h} + [z_n]_{\nmid h}$$

最后一步不移位

如何实现 $+(y_{i+1}-y_i)[x]_{i}$?

y_i	y_{i+1}	y_{i+1} - y_i	操作
0	0	0	→1
0	1	1	$+[x]_{\nmid h} \rightarrow 1$
1	0	-1	$+[-x]_{\uparrow \uparrow} \rightarrow 1$
1	1	0	→1

例6.23 已知 x = +0.0011 y = -0.1011 求 [xy] 6.3

解: 00.0000 +11.1101	1.0101	0	+[- <i>x</i>] _{ネト}	$[x]_{\nmid h} = 0.0011$
补码 11.1101 右移 11.1101 + 00.0011	1 1010	1	-1	$[y]_{\begin{subarray}{l} [y]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{subarra$
补码 00.001	1 11 10 <u>1</u>	0	$\begin{array}{c} -1 \\ +[-x]_{\nmid h} \end{array}$	
补码 11.1101 右移 11.1101 + 00.0011	1 1 1 1 1 1 <u>0</u>	1	-1	$\therefore [x y]_{\nmid h}$ $= 1.11011111$
补码 00.0001 右移 00.000 +11.1101	111 1111 <u>1</u>	0	$\rightarrow 1$ + $[-x]_{\nmid h}$	<u> </u>
2015/6/ 1 1 . 1 1 0 1	1111		最后亚达	上不移位

(2) Booth 算法的硬件配置

6.3

A、X、Q 均n+2位

移位和加法操作受乘数末两位控制

乘法小结

6.3

- 整数乘法与小数乘法过程完全相同可用 逗号 代替小数点
- ▶ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持

6.3 定点运算

- 一、移位运算
- 二、加减法运算
- 三、乘法运算
- 四、除法运算

6.3 定点运算

- 四、除法运算
 - -1. 笔算除法是怎么做的
 - -2. 如何用计算机硬件来模拟笔算除法的过程
 - •恢复余数法
 - 加减交替法

四、除法运算

1. 分析笔算除法

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001101 \\ \hline 0.000001111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ? 余数不动低位补"0"减右移一位的除数
- ?上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.00001111

2. 笔算除法和机器除法的比较

6.3

笔算除法

商符单独处理 心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器 上商位置 不固定

机器除法

符号位异或形成

$$|x| - |y| > 0$$
上商 1

$$|x| - |y| < 0$$
上商 0

余数 左移一位 低位补 "0" 减 除数

1倍字长加法器

在寄存器 最末位上商

3. 原码除法

6.3

以小数为例

$$[x]_{\mathbb{R}} = x_{0}. x_{1}x_{2} \dots x_{n}$$

$$[y]_{\mathbb{R}} = y_{0}. y_{1}y_{2} \dots y_{n}$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_{0} \oplus y_{0}). \frac{x^{*}}{y^{*}}$$

式中
$$x^* = 0$$
. $x_1x_2 \cdots x_n$ 为 x 的绝对值 $y^* = 0$. $y_1y_2 \cdots y_n$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{v^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于0 除数不能为0

(1) 恢复余数法

6.3

例6.24
$$x = -0.1011$$
 $y = -0.1101$ 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

#: $[x]_{\mathbb{R}} = 1.1011 \quad [y]_{\mathbb{R}} = 1.1101 \quad [y^*]_{\mathbb{R}} = 0.1101 \quad [-y^*]_{\mathbb{R}} = 1.0011$

(1)
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

	. •	
②被除数(余数)	商	说明
0.1011	0.0000	
+ 1.0011		+[- <i>y</i> *] _{ネト}
$\boxed{1.1110}$	0	余数为负,上商 0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	←1
+ 1.0011		+[-y*] _{*\}
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	←1
+ 1.0011		$+[-v^*]_{*b}$

_被除数(余数)	商	说 明	6.3
0.0101	011	余数为正,上商1	_
逻辑左移 0.1010	011	←1	
$+ \overline{1.0011}$		$+[-y^*]_{ enskip}$	
1.1101	0110	余数为负,上商0	_
+ 0.1101		恢复余数 +[y*] _补	
0.1010	0110	恢复后的余数	_
逻辑左移 1.0100	0110	←1	
+ 1.0011		$+[-y^*]_{ eqh}$	
$\boxed{0.0111}$	01101	余数为正,上商1	_
· ·	•	-	

 $\frac{x^*}{y^*} = 0.1101$ $\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$

上商5次

第一次上商判溢出

余数为正 上商1

移4次

余数为负 上商 0, 恢复余数 2015/6/9

97

(2) 不恢复余数法(加减交替法)

6.3

•恢复余数法运算规则

余数
$$R_i > 0$$
 上商 "1", $2R_i - y^*$

余数
$$R_i < 0$$
 上商 "0", $R_i + y^*$ 恢复余数

$$2(R_i+y^*)-y^*=2R_i+y^*$$

• 不恢复余数法运算规则

$$2R_i - y^*$$

$$2R_i + y^*$$

加减交替

例6.25 x = -0.1011 y = -0.1101 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$ 6.3

解: 0.1011	0.0000		[]
+1.0011		+[- <i>y</i> *] _{*\}	$[x]_{\mathbb{R}}=1$
	0	余数为负,上商 0	$[y]_{\mathbb{g}}=1$
左移 1.1100	0	← 1	$[x^*]_{n} = 0$
逻辑 +0.1101		+[y*] _{ネト}	$[y^*]_{i \nmid j} = 0$
 	0 1	余数为正,上商1	
1.0010	0 1	←1	$[-y^*]_{\dagger} = 1$
+1.0011		$+[-y^*]_{ eqh}$	
逻辑 0.0101	011	余数为正,上商1	
0.1010	011	←1	
逻辑 +1.0011		$+[-y^*]_{\nmid h}$	
左移	0110	余数为负,上商0	
1.1010	0110	←1	
+0.1101		+[y*] _补	
$_{2015/6/9}$ 0 . 0 1 1 1	01101	余数为正工上商业。	

$$[y]_{\mathbb{R}} = 1.1101$$

$$[x^*]_{\nmid k} = 0.1011$$

$$[y^*]_{ab} = 0.1101$$

$$[-y^*]_{*} = 1.0011$$

②
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移 n 次,加 n+1 次

用移位的次数判断除法是否结束

(3) 原码加减交替除法硬件配置

6.3

A、X、Q均n+1位 用 Q_n 控制加减交替