Übungsblatt 9

Aufgabe 2

- Die Hashtabelle hat Große $\frac{k^n.l^m}{2}$ Ersten n-Ziffern sind im Bereich $\{0,...,k-1\}$
- Ersten m-Ziffern sind im Bereich $\{0, ..., l-1\}$

$$ightarrow h = \left(\sum_{n+m-1}^{i=m} (k-1).10^i + \sum_{m}^{i=0} (l-1).10^i\right) \bmod \frac{k^n.l^m}{2}$$

Von der funktion können wir eindeutige n+m IDs als Hash Schlüssel betracten. z.B:

$$n = m = 2, k = 4, l = 3$$

$$\rightarrow h = (3000 + 300 + 20 + 2) \mod \frac{16.9}{2} = \frac{3322}{72} = 20$$
. Schlüssel

Aufgabe 3

Uniformes Hashing: Anstatt durch einer definierten Hash-Funktion, ein zufällige Hash-Funktion von einem Funktion-Set wird gewält. Diese Hashing-Methode eine wichtige Eigenschaft:

- Real-time hashing Entscheidungen
- \rightarrow Kann nicht die Paare von Keys, die Kollisions auftreten, konsistenz finden.
- → Alle chaining LinkedList sind balanciert

Anzahl der Kollisionen: $\frac{|K|}{m}$, |K| ist die Anzahl, wie viele die Hash-Funktion ausgerufen wird, also Anzahl der Keys

 $\Rightarrow No.Kollisions = \frac{n}{m}$

Aufgabe 4

Zu zeigen: Die gegebenen Schritten entspicht die Funktion, ein Element in der Hashtabelle zu suchen Beweis:

- i(3. schritt) ist incrementiert immer nach ein Suchen des key k(2. schritt) und stoppt bis i = m
- \rightarrow i ist a counter und j = (i + j), also h(k) + i läuft recursiv bis Ende der Tabelle
- \rightarrow Das Sequenz von Suchcounter(bevor mod m) sind: h(k) + 0, h(k) + 1, h(k) + 3, h(k) + 6 ..., h(k) + $m \Rightarrow quadratischen Sondieren Suchmethod, die <math>c_1$ und c_2 enthält

Werte von c_1 : $\frac{1}{2}$

Werte von c_2 : $\frac{1}{2}$

Hash-Funktion: $h(k, i) = h(k) + \frac{1}{2}i + \frac{1}{2}i^2$