Segunda Lista de Preparação para a LVIII IMO e XXVII Olimpíada Iberoamericana de Matemática Nível III

Prazo: 03/03/2017, 23:59 de Brasília

Álgebra

PROBLEMA 1

Encontre o valor máximo de $(x^2 - yz)(y^2 - zx)(z^2 - xy)$ sabendo que x, y, z são reais tais que $x^2 + y^2 + z^2 = 1$.

PROBLEMA 2

Uma sequência infinita a_0, a_1, \ldots de números reais satisfaz

$$\sum_{n=0}^{m} a_n (-1)^n \binom{m}{n} = 0$$

para todo $m > m_0$, m_0 um inteiro positivo fixado. Prove que existe um polinômio P tal que $a_n = P(n)$ para todo $n \ge 0$.

PROBLEMA 3

Dado um inteiro positivo n, defina f(0,j) = f(i,0) = 0, f(1,1) = n e

$$f(i,j) = \left| \frac{f(i-1,j)}{2} \right| + \left| \frac{f(i,j-1)}{2} \right|$$

para todos i, j inteiros positivos, $(i, j) \neq (1, 1)$. Quantos pares ordenados (i, j) de inteiros positivos são tais que f(i, j) é impar?

Combinatória

PROBLEMA 4

Encontre a maior quantidade possível de triângulos retângulos determinados por três de 100 retas no plano.

PROBLEMA 5

Dados quaisquer 2n-1 subconjuntos de $\{1,2,\ldots,n\}$, cada um com dois elementos, prove que é sempre possível escolher n deles cuja união tem $\frac{2}{3}n+1$ ou menos elementos.

PROBLEMA 6

A Deziânia é um país com dez cidades. Alguns pares de cidades são interligadas por uma estrada de duas mãos, e cada estrada liga exatamente duas cidades. Diz a lenda que se três ou quatro cidades estarem ligadas em ciclo por estradas, a Deziânia será destruída. Qual é a maior quantidade de estradas que podem ser construídas de modo que essa desgraça não ocorra?

Geometria

PROBLEMA 7

Definimos altura de um pentágono convexo como a reta que passa por um vértice e é perpendicular ao lado oposto ao vértice (se ABCDE é o pentágono então o lado oposto a A é CD). Prove que se quatro alturas têm um ponto comum H então a outra altura também passa por P.

PROBLEMA 8

Seja $A_1A_2A_3A_4A_5A_6$ um hexágono convexo tal que $\angle A_1A_3A_5 = \angle A_2A_4A_6$ e $\angle A_2A_3A_1 = \angle A_5A_4A_6$. Defina B_i como a interseção das diagonais A_iA_{i+2} e $A_{i-1}A_{i+1}$, em que os índices são tomados módulo 6. Suponha que $B_1B_2B_3B_4B_5B_6$ é inscritível em um círculo Γ . Os circuncírculos de $A_2B_2B_6$ e $A_5B_4B_6$ se cortam novamente em $P \neq B_6$. A reta B_6P corta Γ novamente em Q. Prove que as retas B_2B_4 e QB_3 são paralelas.

PROBLEMA 9

Sejam O e H respectivamente o circuncírculo e o ortocentro do triângulo acutângulo e escaleno ABC. Sendo M e N os pontos médios de AH e BH, prove que se MNOH é cíclico então o seu circuncírculo tangencia o circuncírculo de ABC.

Teoria dos Números

PROBLEMA 10

Seja k um inteiro positivo e $n=(2^k)!$. Sendo $\sigma(n)$ a soma dos divisores positivos de n, prove que $\sigma(n)$ tem um fator primo maior do que 2^k .

PROBLEMA 11

Determine se existe um polinômio P(x) de coeficientes inteiros tal que $P\left(1+\sqrt[3]{2}\right)=1+\sqrt[3]{2}$ e $P(\left(1+\sqrt{5}\right)=2+3\sqrt{5}$.

PROBLEMA 12

A sequência $\{a_n\}$ satisfaz $a_n + a_{n+1} = 2a_{n+2}a_{n+3} + 2017$, $n \ge 1$. Encontre todos os valores de a_1 e a_2 para os quais a_n é inteiro para todo n inteiro positivo.

Problemas gerais

PROBLEMA 13

Seja $n \geq 5$ inteiro e seja $A_1 A_2 \dots A_n$ um n-ágono convexo cujos ângulos internos são todos obtusos. Para cada $1 \leq i \leq n$ seja O_i o circuncentro de $A_{i-1} A_i A_{i+1}$, em que os índices são vistos módulo n. Prove que a linha poligonal fechada $O_1 O_2 \dots O_n$ não é um n-ágono convexo.

PROBLEMA 14

Zé Roberto e Umberto fazem um jogo de adivinhação. Zé Roberto pensa secretamente em uma 100-upla ordenada $(x_1, x_2, \ldots, x_{100})$ de inteiros. Como é difícil lembrar 100 números, ele se limita a pensar numa 100-upla em que 99 dos números são iguais e o outro é diferente, mas ele pode colocar o número diferente em qualquer posição.

Umberto sabe dessa regra e deve adivinhar a 100-upla de Zé Roberto. Para tanto, ele fala a Zé Roberto uma 100-upla $(y_1, y_2, \ldots, y_{100})$, e Zé Roberto informa a Umberto o resultado da conta $x_1y_1 + x_2y_2 + \cdots + x_{100}y_{100}$. Umberto pode então repetir o procedimento quantas vezes quiser, usando a informação das contas anteriores se quiser.

Qual é a quantidade mínima de 100-uplas que Umberto deve falar para garantir que consegue adivinhar a 100-upla de Zé Roberto?

PROBLEMA 15

Seja x_0, x_1, x_2, \ldots uma sequência infinita de racionais definidos por

$$x_{n+1} = \begin{cases} \left| \frac{x_n}{2} - 1 \right| & \text{se o numerador de } x_n \text{ \'e par} \\ \left| \frac{1}{x_n} - 1 \right| & \text{se o numerador de } x_n \text{ \'e impar} \end{cases}$$

O valor inicial x_0 é arbitrário.

Prove que

- (a) a sequência tem uma quantidade finita de termos distintos.
- (b) a sequência contém exatamente um dos números 0 e 2/3.

PROBLEMA 16

Prove que não existem racionais x, y tais que $x - \frac{1}{x} + y - \frac{1}{y} = 4$.