Domanda n. 1: [4] In un albero, ci sono 12 nodi che hanno grado 2, 27 nodi di grado 3, 8 nodi di grado 4 e tutti gli altri nodi sono foglie. Quante foglie ci sono?

Risp: Detto x il numero di foglie si ha la relazione

$$12 \times 2 + 27 \times 3 + 8 \times 4 + x = 2(12 + 27 + 8 + x - 1)$$

ossia 137 + x = 92 + 2x da cui x = 45.

Domanda n. 2: [1/0] Il numero 125^{125} è divisibile per 81.

Risp: Falso. 125 è una potenza di 5 e non ha 3 fra i suoi divisori, mentre 81 sì

Domanda n. 3: [2/0] Sia G = (V, E) un grafo connesso in cui ogni nodo è contenuto in almeno un ciclo (i.e. $d(v) \ge 2$ per ogni $v \in V$). Allora per disconnettere il grafo bisogna rimuovere almeno due archi.

Risp: Falso. Si pensi a due grafi completi K, H e presi due nodi $v \in K$ e $u \in H$ si uniscano con un arco ottenendo il grafo G. Allora, ogni nodo di G sta in un ciclo (nel suo sottografo completo), ma togliendo l'arco uv il grafo G si disconnette.

Domanda n. 4: [4] Quanto è il resto di 16⁶³ nella divisione per 7?

Risp: nell'aritmetica modulo 7, si ha 16 = 2 per cui $16^{63} = 2^{63} = (2^3)^{21} = 8^{21} = 1^{21} = 1$

Domanda n. 5: [8] Potendo colorare ciascuna delle caselle di una scacchiera 2×2 con uno fra 4 colori, quante scacchiere diverse si possono ottenere in tutto? (NB: attenzione alle simmetrie. Una scacchiera può essere ruotata e rimane la stessa. Ad esempio, se i colori disponibili fossero solo due, le diverse scacchiere colorate possibili sarebbero 6).

Risp: Le scacchiere monocromatiche sono 4.

(A meno di rotazioni) le scacchiere di due colori, siano essi $a \in b$, hanno solo queste possibilità:

$$\begin{pmatrix} a & a \\ b & b \end{pmatrix} \qquad \begin{pmatrix} a & b \\ b & a \end{pmatrix} \qquad \begin{pmatrix} a & a \\ a & b \end{pmatrix}$$

Le prime due forme sono simmetriche rispetto ad a e b, per cui ciascuna di esse ha $\binom{4}{2} = 6$ possibilità. La terza forma non è simmetrica per cui si tratta di decidere chi è a e chi b, e ci sono $4 \times 3 = 12$ possibilità.

(A meno di rotazioni) le scacchiere tri-cromatiche, con colori a, b, c possono avere queste forme

$$\begin{pmatrix} a & a \\ b & c \end{pmatrix} \qquad \begin{pmatrix} a & c \\ b & a \end{pmatrix}$$

Nella prima forma non c'è simmetria fra i colori (ossia non si può ottenere

$$\begin{pmatrix} a & a \\ c & b \end{pmatrix}$$

ruotando

$$\begin{pmatrix} a & a \\ b & c \end{pmatrix}$$

Quindi i ruoli di a, b e c sono distinti, e si hanno $4 \times 3 \times 2 = 24$ scacchiere di questo tipo.

Nella seconda forma c'è simmetria fra b e c (ossia ruotando due volte

$$\begin{pmatrix} a & c \\ b & a \end{pmatrix}$$

si ottiene

$$\begin{pmatrix} a & b \\ c & a \end{pmatrix}$$

che quindi non va considerata diversa dalla prima.) In questo caso si sceglie a (4 modi) e poi la coppia $\{b,c\}$, in $\binom{3}{2}=3$ modi, per un totale di 12 possibilità.

Le scacchiere con 4 colori hanno tutti i colori. Senza perdita di generalità, supponiamo che il colore 1 sia in alto a sinistra. Allora bisogna scegliere chi è il colore in diagonale ad 1 (3 modi) e chi è il colore alla sua destra (2 modi) e sotto a lui (1 modo). In totale si hanno 3! = 6 possibilità.

In conclusione abbiamo

$$4 + (2 \times 6 + 12) + (24 + 12) + 6 = 70$$

scacchiere colorate possibili.

Domanda n. 6: [2] Indichiamo con $=_n$ la relazione di congruenza modulo n. Sia S l'insieme $\{1, \ldots, m\}$. Quanti elementi ha l'insieme quoziente $S/=_n$ per n=5, m=10 ?

Risp: Se n = 5 i possibili resti sono 5 e quindi le classi di equivalenza sono 5

Domanda n. 7: [8] Quante espressioni matematiche corrette si possono formare utilizzando, una volta ciascuna, le cifre $1, \ldots, 7$ e due operatori + e un operatore \times ? (Alcuni esempi corretti: $315 + 2 \times 47 + 6$, $71 + 452 \times 3 + 6$, $1 + 2 + 3 \times 4567$, $3 \times 4567 + 2 + 1$. Alcuni esempi errati: 44 + 2 + 345671, $12 + \times 345 + 67$, $+ 12 \times 456 + 37$, $+ 12345 + + \times 67$.) NB: Anche se due espressioni sono equivalenti come risultato (ad esempio $a + b + c \times d$ è equivalente a $c \times d + a + b$), esse vanno comunque contate come diverse perchè corrispondono a stringhe diverse. Inoltre, non si deve cominciare con un "+".

Risp: Immaginiamo di disporre le cifre in questo schema

$$C \times C \times C \times C \times C \times C \times C$$

dove ogni C è una cifra e 3 su 6 delle x vanno sostituite da un operatore, mentre le altre 3 spariscono. Si può scegliere dove mettere gli operatori in $\binom{6}{3} = 20$ modi, e poi riempire queste posizioni con due "+" e un × in 3 modi. Le cifre C possono essere permutate in 7! modi. Per cui il numero di espressioni valide è

$$20 \times 3 \times 7! = 302400$$

Domanda n. 8: [4] Una stringa è palindroma se rimane la stessa letta da destra a sinistra e da sinistra a destra. Quante sono le stringhe palindrome che si possono scrivere utilizzando esattamente 4 "A", 2 "B", 4 "C" e 3 "D"?

Risp: Una D va in mezzo. Scelta la prima metà della stringa, la seconda è obbligata. Le soluzioni sono

$$\frac{(2+1+2+1)!}{2!1!2!1!} = 180$$

Domanda n. 9: [8] Si consideri il grafo orientato G = (V,A) con vertici $V = \{3,\ldots,8\}$ e archi (i,j) tra ogni coppia di nodi i e j tali che $j \neq i+1$ (ad es. ci sono gli archi (4,7), (7,4), (5,4) ma non l'arco (4,5)). Quanti sono in tutto i cammini hamiltoniani in G? (ricordiamo che un cammino hamiltoniano parte da un nodo qualsiasi v, attraversa tutti i nodi esattamente una volta e termina in un nodo $w \neq v$)

Risp: Siccome la soluzione è un cammino hamiltoniano, si tratta di una permutazione dei nodi. Quindi la domanda può essere riformulata come: quante sono le permutazioni delle cifre 3,...,8 tali che nessuna cifra è seguita nella stringa dalla cifra immediatamente successiva?

Possiamo usare il principio di inclusione/esclusione. Sia P_i la proprietà che i è seguita dalla cifra immediatamente successiva, per $3 \le i \le 7$. Una soluzione che gode, ad es., della proprietà P_3 è una permutazione di

e ci sono 5! tali soluzioni. Questo vale per ogni i.

Una soluzione che gode di P_i e di P_j (con i < j) può essere di due tipi, a seconda che j = i + 1 o j > i + 1. Ad esempio, una soluzione che ha la proprietà P_5 e la P_6 è una permutazione di

e quindi ci sono 4! tali soluzioni.

Invece se la soluzione ha la P_4 e la P_7 essa è una permutazione di

ma ancora una volta ci sono 4! tali soluzioni.

Continuando nell'analisi, se le proprietà sono 3, ci sono 3! soluzioni, come ad esempio le permutazioni di

$$(3),(45),(678)$$
 (godono di P_4,P_6,P_7)

oppure le permutazioni di

$$(34)(56)(78)$$
 (godono di P_3, P_5, P_7)

Se le proprietà sono k, le soluzioni sono (6-k)! e questo vale per $1 \le k \le 5$.

In conclusione, le stringhe buone sono

$$6! - [5 \times 5!] + {\binom{5}{2}} \times 4! - {\binom{5}{3}} \times 3! + {\binom{5}{4}} \times 2! - {\binom{5}{5}} \times 1! = 309$$