

FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS INGENIERIA AMBIENTAL EIA560 - Diseño Hidráulico Período 2018-1

A. Identificación

Número de sesiones: 3

Número total de horas de aprendizaje: 48 h presenciales + 96 h de aplicación del

aprendizaje y estudio autónomo = 144 h total.

Docente: Santiago Daniel Piedra Burgos

Correo electrónico del docente: santiago.piedra@udla.edu.ec

Coordinador: Paola Posligua Chica

Campus: Queri

Pre-requisito: EIA330 Co-requisito: ----

Paralelo: 1 y 2

B. Descripción del curso

Este módulo estudia las ecuaciones fundamentales del transporte de agua bajo presión. Luego, estas ecuaciones son aplicadas en topografía y cartografía para diseñar las secciones transversales y el material de la tubería. Al final del curso se incluye la revisión de canales.

C. Resultados de aprendizaje (RdA) del curso

- Diseña tuberías bajo presión de conducción de agua.
- Asocia criterios de geometría, materiales y topografía en el diseño hidráulico de conducciones de agua.

D. Sistema y mecanismos de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje institucionales, de cada carrera y de cada asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto, la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Progreso 1	25%
Participad	ción en clase
Taller 1	2.5%
Taller 2	2.5%
Σ	5%
Ta	areas
Tarea 1	5%
Tarea 2	5%
Σ	10%
Eval	uación
Evaluación 1	3%
Evaluación 2	7%

udb-
.0%

Σ	10%
Progreso 2	35%
Participación e	en clase
Taller 1	4%
Taller 2	4%
Σ	8%
Tareas	
Tarea 1	6%
Tarea 2	6%
Σ	12%
Evaluació	ón
Evaluación 1	5%
Evaluación 2	10%
Σ	15%
Evaluación final	40%
Participación e	en clase
Taller 1	4%
Taller 2	4%
Σ	8%
Tareas	
Tarea 1	6%
Tarea 2	6%
Σ	12%
Evaluació	ón
Evaluación 1	5%
Evaluación 2	15%
Σ	20%
۷.	20%

E. Asistencia

La política institucional de asistencia obligatoria establece 75% para aprobar la asignatura, excepto en caso de tener una nota de 8 o superior.

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia.

F. Metodología del curso

La metodología consistirá en presentaciones del facilitador utilizando fórmulas, gráficos y figuras que muestren objetivamente el contenido de la materia. Es relevante la deducción de ecuaciones para el entendimiento de la materia como también para procedimientos lógicos para la obtención de resultados. La estrategia consiste en proporcionar conceptos y criterios fundamentales para que luego el estudiante a través de gráficos y figuras interprete la dinámica de las variables.

El uso del idioma inglés es fundamental para el desarrollo del curso pues la información relevante encontrada en la bibliografía se encuentra escrita y desarrollada en inglés. La lectura de artículos científicos será en inglés.

G. Planificación alineada a los RdA

			RdA 2
Planificación	Fechas	RdA 1 Diseña tuberías bajo presión de conducción de agua.	Asocia criterios de geometría, materiales y topografía en el diseño hidráulico de conducciones de agua.
Tema 1 Ecuaciones fundamentales de tuberías	Semanas 1-4		
Lecturas			
Leyes de un fluido		X	
Actividades			
 Taller. Deducción y aplicación del teorema de transporte de Reynolds. Taller. Deducción de Reynolds – conservación de masa Taller. Deducción de Reynolds – conservación de energía Taller. Deducción y aplicación de Hagen y Poiseuille Taller. Uso de OpenFoam I 		X	
Evaluaciones			
 Ejercicios de deducciones I Ejercicios de deducciones II Determinación de coordenadas para simulación con OpenFoam 		Х	
Tema 2 Flujo Turbulento	Semanas 5-7		
Lecturas			
Leyes de un fluido		Х	
Actividades			
 Deducción y ejercicios de Darcy – Weisbach Deducción y ejercicios de Reynolds Deducción y ejercicios de 		Х	

7/	
ud/2-	

			0.070
Hazen – Williams Deducción y ejercicios de Blasius Deducción y ejercicios de Stanton y Pannell Deducción y ejercicios de Nikuradse Taller. Uso de OpenFoam			
Evaluaciones			
 Ejercicios fundamentales de las ecuaciones de turbulencia. Evaluación escrita 		Х	
Tema 3 Flujo turbulento aplicación	Semanas 8-10		
Lecturas			
Casos de estudio con OpenFoam		х	
Actividades			
 Ejercicios de Prandtl y Von Kármán Taller. Aplicación de Colebrook y White Taller. Aplicación de Moody Taller. Aplicación de Ackers Taller. Aplicación de Barr Taller. Uso de OpenFoam III 		х	
Evaluaciones			
 Modelación de una tubería bajo flujo laminar en OpenFoam. Ejercicios de aplicación de flujo turbulento I Ejercicios de aplicación de flujo turbulento II 		х	
Tema 4 Aplicación de ecuaciones – casos de estudio	Semanas 11-12		
Actividades			
 Ejercicios con cartas IGM Ejercicios – Plantas de tratamiento de aguas residuales. – Tuberías de retorno. 		x	Х

1	
udla	_

Evaluaciones			
 Taller. Ecuaciones de flujo con cartas IGM. Prediseños de proyectos de agua potable. Evaluación escrita 		x	Х
Tema 5 Uso de normativa para diseño	Semanas 13-16		
Actividades			
 Revisión de normativa CEC 2000 capítulo 5. Ejercicios bajo normativa Revisión de casos de estudio en OpenFoam. Posibilidad de modelamiento de estructuras hidráulicas 		X	X
Evaluaciones			
 Ejercicios de aplicación. Tren de cálculo 1 Ejercicios de aplicación. Tren de cálculo 2 Control de lectura de casos de estudio Taller. Cálculo de bombas Evaluación escrita 		Х	Х

H. Normas y procedimientos para el aula

El uso de celulares está permitido en el aula. No existe ninguna restricción de la hora de llegada del estudiante. Sin embargo, si el estudiante no asiste a clases no habrá ninguna justificación para modificar su inasistencia.

A pesar del libre uso de tecnologías de comunicación en clases, el facilitador recordará las personas que alteren el ambiente en el aula y se tomará en cuenta al momento de la exigencia en la calificación de los progresos.

Cualquier persona que haga caso omiso de dos llamadas de atención del facilitador tendrá que abandonar el aula previo aviso del facilitador.

I. Referencias

Principales

Mery M., Horacio. Hidráulica aplicada al diseño de obras. Santiago de Chile, CL: RIL editores, 2013.

J. Perfil del docente

Experiencia con estándares nacionales e internacionales en calidad, medio ambiente y seguridad industrial. El conocimiento ganado en el MBA en calidad y operaciones generó un criterio sobre la importancia de manejar procedimientos estandarizados para planificar y ejecutar proyectos efectivos y eficientes con el uso de normas como el PMbok, ISO, etc. El MSc en ciencias del agua e ingeniería sirvió para mejorar el conocimiento en procesos relacionados con el recurso agua con el estudio de Hidrogeología, Climatología, Hidrodinámica, Gestión de Inundaciones, etc.

- MSc en ciencias del agua e ingeniería Alemania / Oct 2011 Sep 2013
 UNIVERSIDAD TÉCNICA DE DRESDEN
- MBA en operaciones y calidad Ecuador / Feb 2008 Feb 2014
 ESCUELA POLITÉCNICA NACIONAL
- Ingeniería Civil Ecuador / Oct 2001 Nov 2007
 ESCUELA POLITÉCNICA DEL EJÉRCITO
- Secundaria Ecuador / Oct 1998 Jul 2001

COLEGIO INTISANA

Primaria – Estados Unidos de América / Nov 1996 - Jun 1998
 SHORELESS LAKE SCHOOL

Horario de Tutoría: Lunes a Jueves 10:15 - 11-15