Inertia Wheel Lab Report

Arnav Patri

$March\ 23,\ 2022$

Data

m_w (kg)	$(\Delta t)_{\mathrm{avg}}$ (s)	Δy (m)	$a \text{ (m/s}^2)$	$\alpha \left(\mathrm{rad/s^2} \right)$	$\tau_{\rm net} \; ({ m N} \cdot { m m})$
0.02	9 61, 61, 7, 91, 96 10 00, 16 $\boxed{1 1 = 1.1}$ $(\Delta t)_{\text{avg}} = 9.85$		$v_0 = 0$ $\Delta y = v_0 \Delta t + 0.5a(\Delta t)^2$ $= v_0 (\Delta t)_{\text{avg}} + 0.5a(\Delta t)_{\text{avg}}^2$ $a = \frac{2(\Delta y - v_0(\Delta t)_{\text{avg}})}{(\Delta t)_{\text{avg}}^2}$ $= \frac{2(1 - 0)}{9.85^2} \approx 0.021$	$\alpha = \frac{a}{r_p}$ $\approx \frac{0.021}{0.125}$ ≈ 0.275	$\tau_{\text{net}} = F_{\text{net}} \times r_p$ $= mr_p(g - a)$ $\approx 0.02(9.8 - 0.021)$ ≈ 0.007
0.04	$ \begin{array}{c c} 64 & 1 \\ 65 & 0, 1, 1, 5 \\ 66 & 0 \end{array} $ $ \begin{array}{c c} 11 1 = 1.11 \\ (\Delta t)_{\text{avg}} \approx 6.513 \\ \hline 49 & 2 \end{array} $		≈ 0.047	≈ 1.257	≈ 0.015
0.06	$ \begin{array}{c c} 49 & 2 \\ 50 & 0, 3 \\ 51 & 52 \\ 53 & 1 \\ 54 & 1, 1 \\ \hline 11 1 = 1.11 \\ (\Delta t)_{\text{avg}} \approx 5.211 \end{array} $	1	≈ 0.074	≈ 1.964	≈ 0.022
0.08	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		≈ 0.104	≈ 2.772	≈ 0.029
0.1	$\begin{array}{c c} 37 & 3 \\ 38 & 4 \\ 39 & 3 \\ 40 & 1, 8 \\ 41 & 41 & 5 \\ \hline 11 1 = 1.11 \\ (\Delta t)_{\rm avg} \approx 3.994 \end{array}$		≈ 0.125	≈ 3.343	≈ 0.036

 $I_{\rm net}$

$$I_{\text{net,th}} = 0.5m_d r_d^2 + m_p r_p^2$$

$$= 0.5(1.3)(0.125)^2$$

$$+ 0.1(0.0375)^2$$

$$\approx 0.01 \,\text{N} \cdot \text{m}$$

