习题(13)

13.1 已知随机变量X,Y的联合分布函数

$$F(x,y) = \begin{cases} x^2y^2 &, & 0 < x \le 1, 0 < y \le 1 \\ x^2 &, & 0 < x \le 1, y > 1 \\ y^2 &, & x > 1, 0 < y \le 1 \\ 0 &, & x \le 0, & \text{if } y \le 0 \\ 1 &, & x > 1, y > 1 \end{cases}$$

试计算 $P{X \le 0.5, Y > 0.6}$.

13.2 在一箱子中装有 12 只开关,其中 2 只是次品.在其中取两次,每次任取一只,考虑两种方式: 1)放回抽样; 2)不放回抽样.

现定义随机变量 X, Y 如下:

$$X = \begin{cases} 0 & , & \text{第一次取出正品} \\ 1 & , & \text{第一次取出次品} \end{cases}$$
 $Y = \begin{cases} 0 & , & \text{第二次取出正品} \\ 1 & , & \text{第二次取出次品} \end{cases}$

试分别写出 X, Y 的联合分布律.

- **13.3** 有三个箱子,其中第一箱中有 2 个红球、4 个白球、2 个黄球,第二、三箱中均有 4 个红球、1 个白球、3 个黄球.现随机取一箱,然后从该箱中随机地取出两个球(不放回取球),记 X 为取出的红球个数, Y 为取出的白球个数.
 - 1) 求随机变量(X,Y) 的联合分布律;
 - 2) 已知 X = 1, Y = 1 的条件下, 求所取两球来自第一箱的概率.
- **13.4** 设某班车起点站上客人数 X 服从参数为 λ ($\lambda > 0$)的泊松分布,每位乘客在中途下车的概率为 p(0 ,且中途下车与否相互独立,以 <math>Y 表示在中途下车的人数,求:
 - (1) 在发车时有n个乘客的条件下,中途有m个人下车的概率;
 - (2) 二维随机变量(X,Y) 的概率分布.

习题(13)参考解答

13.1 M: $P\{X \le 0.5, Y > 0.6\} = P\{X \le 0.5\} - P\{X \le 0.5, Y \le 0.6\}$

$$= P\{X \le 0.5, Y < +\infty\} - P\{X \le 0.5, Y \le 0.6\}$$

$$= F(0.5, +\infty) - F(0.5, 0.6)$$
$$= 0.5^2 - 0.5^2 \times 0.6^2 = 0.16.$$

13.2 解:由古典概型的概率计算可分别得X,Y的联合分布律:

1)放回抽样情形: 2)不放回抽样情形:							
X	0 1	X	0 1				
Y		Y					
0	$\frac{25}{36} \frac{5}{36}$	0	$\frac{45}{66}$ $\frac{10}{66}$				
1	$\frac{5}{36}$ $\frac{1}{36}$	1	$\frac{10}{66}$ $\frac{1}{66}$				
	•						

13.3 解: 1)由题意知, X 的可能取值为 0, 1, 2; Y 的可能取值为 0, 1, 2. 且注意到,从 8 个球中随机取出 2 个球,所有不同取法有 $\binom{8}{2} = \frac{8 \times 7}{2!} = 28$ 种.利用全概率公式,则

$$P\{X=0,Y=0\} = P\{取出2个黄球\} = \frac{1}{3} \times \frac{\binom{2}{2}}{28} + \frac{2}{3} \times \frac{\binom{3}{2}}{28} = \frac{1}{12},$$

$$P\{X=0,Y=1\} = P\{取出1个白球,1个黄球\} = \frac{1}{3} \times \frac{\binom{4}{1} \times \binom{2}{1}}{28} + \frac{2}{3} \times \frac{\binom{1}{1} \times \binom{3}{1}}{28} = \frac{1}{6},$$

$$P\{X=0,Y=2\} = P\{取出2个白球\} = \frac{1}{3} \times \frac{\binom{4}{2}}{28} + \frac{2}{3} \times 0 = \frac{1}{14},$$

$$P\{X=1,Y=0\}=P\{取出1个红球,1个黄球\}=\frac{1}{3}\times\frac{\binom{2}{1}\times\binom{2}{1}}{28}+\frac{2}{3}\times\frac{\binom{4}{1}\times\binom{3}{1}}{28}=\frac{1}{3},$$

$$P{X = 1, Y = 1} = P{取出1个红球,1个白球} = \frac{1}{3} \times \frac{\binom{2}{1} \times \binom{4}{1}}{28} + \frac{2}{3} \times \frac{\binom{4}{1} \times \binom{1}{1}}{28} = \frac{4}{21}$$

$$P\{X=2, Y=0\} = P\{取出2个红球\} = \frac{1}{3} \times \frac{\binom{2}{2}}{28} + \frac{2}{3} \times \frac{\binom{4}{2}}{28} = \frac{13}{84},$$

$$P\{X=1, Y=2\} = P\{X=2, Y=1\} = P\{X=2, Y=2\} = 0$$
.

由此得(X,Y)的联合分布律如下表:

X	0	1	2	
Y				

0	1/12	1/3	13/84	
1	1/6	4/21	0	
2	1/14	0	0	

2) 所求概率为

$$P\{$$
所取球来自第一箱 | $X = 1, Y = 1\} = \frac{P\{$ 所取球来自第一箱,且 $X = 1, Y = 1\}}{P\{X = 1, Y = 1\}}$

$$= \frac{\frac{1}{3} \times \frac{\binom{2}{1} \times \binom{4}{1}}{28}}{\frac{4}{21}} = \frac{1}{2}.$$

13.4 解: 1) 对于 $n = 0,1,2,\cdots$, 所求概率为

$$P\{Y = m \mid X = n\} = \binom{n}{m} \cdot p^m \cdot (1-p)^{n-m}, m = 0,1,2,\dots, n.$$

2) 由 X 服从参数为 λ ($\lambda > 0$)的泊松分布,即有分布律

$$P\{X=n\} = \frac{\lambda^n \cdot e^{-\lambda}}{n!}, \quad n = 0,1,2,\dots,$$

则(X,Y)的联合概率分布为

$$P\{X = n, Y = m\} = P\{X = n\} \cdot P\{Y = m \mid X = n\} = \frac{\lambda^n \cdot e^{-\lambda}}{n!} \cdot \binom{n}{m} \cdot p^m \cdot (1 - p)^{n - m}$$
$$= \frac{\lambda^n \cdot p^m (1 - p)^{n - m}}{m! (n - m)!} \cdot e^{-\lambda} , \quad m = 0, 1, 2, \dots, n ; \quad n = 0, 1, 2, \dots$$