Problem Set 5 Physics 266 Second Semester, AY 2024-2025 10 points per number Due: 30 May 2025 (Friday)

- 1. Fraunhofer diffraction pattern by an annular aperture (Section 8.6.2, Born & Wolf). Generate the I/I $_0$ versus kaw plot (Equation 26) where $0 \le kaw \le 10$ (512 data points) for $\epsilon = 0$, 0.5, 0.75 and 0.99 and wavelength $\lambda = 550$ nm.
- 2. Plot area of central spot versus ε for: $0 \le \varepsilon$ (micron) ≤ 0.99 (512 data points).
- 3. Plot I_0 versus ϵ for: $0 \le \epsilon$ (micron) ≤ 0.99 (512 data points).
- 4. Plot the central spot area (in micron-squared units) versus λ for ε = 0.99 where: $400 \le \lambda (nm) \le 1000$ (512 data points).
- 5. Plot I_0 (in relative units) versus λ for ε = 0.99 where: $400 \le \lambda (nm) \le 1000$ (512 data points).
- 6. Plot the depth-of-field (in nm units) versus λ for ϵ = 0.99 where: $400 \le \lambda (nm) \le 1000$ (512 data points).

END