CSC 258

Four common Boolean operators

not

This is a unary operator; the rest are binary operators.

Our symbol: an overbar, e.g. \bar{p} Other common symbols: \sim ' \neg

Funny note: The ' symbol is postfix; others are prefix.

In e-mail: Use an apostrophe for '; may require more parentheses than overbar

Truth table:

p	\bar{p}
0	1
1	0

and

Our symbol: multiplication

Other common symbols: \wedge & \cap

Truth table:

p	q	pq
0	0	0
0	1	0
1	0	0
1	1	1

or

Our symbol: +

Other common symbols: $v \mid \cup$

Truth table:

p	q	p + q
0	0	0
0	1	1
1	0	1
1	1	1

exclusive or (also called "xor")

Our symbol: \oplus

In e-mail: Use the word "xor"

Truth table:

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

CSC 258

Some Boolean algebra identities

identity laws:

$$a \cdot 1 = a$$

$$a + 0 = a$$

base laws:

$$a \cdot 0 = 0$$

$$a+1=1$$

idempotence:

$$aa = a$$

$$a + a = a$$

excluded middle:

$$a + \bar{a} = 1$$

non-contradiction:

$$a \cdot \bar{a} = 0$$

double-negation:

$$\overline{\bar{a}} = a$$

exclusive-or definition:

$$a \oplus b = a\bar{b} + \bar{a}b$$

commutative:

$$ab = ba$$

$$a + b = b + a$$

$$a \oplus b = b \oplus a$$

associative:

$$(ab)c = a(bc)$$

$$(a+b)+c=a+(b+c)$$

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

distributive:

$$a(b+c) = ab + ac$$

$$a + bc = (a + b)(a + c)$$

de Morgan's laws:

$$\overline{a+b} = \bar{a}\bar{b}$$

$$\overline{(ab)} = \bar{a} + \bar{b}$$

absorption:

$$a(a+b) = a$$

$$a + ab = a$$

$$a + \bar{a}b = a + b$$

no name:

$$ab + a\bar{b} = a$$