Univerzita Tomáše Bati ve Zlíně

Ústav elektrotechniky a měření

Optoelektronika

Přednáška č. 8

Milan Adámek

<u>adamek@ft.utb.cz</u> *U5 A711* +420576035251

Optoelektronika

- zabývá se přeměnou elektrické energie na elektromagnetické záření a opačně
- optoelektronické prvky využívají *vnitřního fotoefektu* světelné záření uvolní v polovodiči nosiče nábojů: díry + elektrony

Rozdělení optoelektronických součástek:

- 1. Optoelektronické vysílače na základě elektrických signálů vyzařují světlo, IR nebo UV záření
- 2. *Optoelektronické přijímače* jejich vodivost je měněna účinkem světla, IR nebo UV záření
- 3. *Displeje* jejich optická propustnost je měněna elektrickým napětím

1. Fotorezistor

- název LDR light dependent rezistor
- je tvořen fotocitlivým materiálem (CdS) naneseným v meandrovitém tvaru na keramické destičce
- při dopadu světla s rostoucím osvětlením roste vodivost, klesá jeho odpor

2. Fotodioda

- jde o polovodičovou PN součástku, která mění vodivost na základě osvětlení
- přechod PN je nejvíc citlivý v závěrném směru, při osvětlení přechodu vzroste závěrný proud
- nejběžnější jsou PIN diody a lavinové fotodiody

2. Fotodioda

Řez PIN diodou

- závěrný režimu
- fotovoltaický režim

2. Fotodioda

Závěrný režim fotodiody

Spektrální citlivost oka a fotodiod

2. Fotodioda

3. Fotočlánky

- každá fotodioda může být použita jako fotočlánek v tzv. fotovoltaickém režimu
- při vnitřním fotoefektu se vytvoří prostorové náboje elektrony se tlačí k vrstvě N a díry k vrstvě P – vznikne fotovoltaické napětí, které vyvolá fotoelektrický proud
- Si fotočlánky ($U_0 = 0.4V$ při osvětlení 1000 lx) a Se fotočlánky
- $(U_0 = 0.3V \text{ při osvětlení } 1000 \text{ lx})$
- zapojením většího počtu fotočlánků mluvíme o solárních panelech nebo slunečních bateriích

3. Fotočlánky

 \mathbf{U}_0 – napětí naprázdno $\mathbf{I}_{\mathbf{K}}$ – zkratový proud

Charakteristiky fotočlánků

3. Fotočlánky

- běžné solární články z amorfního křemíku mají účinnost 5-7%
- soláry z polykrystalického křemíku dosahují 13 15% účinnosti
- soláry s monokrystalickým křemíkem mají účinnost až 19%

4. Fototranzistor

- jde zpravidla o Si součástku s několika mm² okénkem
- dopadající světlo přiotevírá přechod B E
- fototranzistor je 100x citlivější na světlo než fotodioda

elektrické parametry (BPX 62) mezní hodnoty:			
U _{CEO}	32 V		
P _{tot}	0,25 V		
I_{Cmax}	25 mA		
jmenovité hodnoty			
fotoproud Ip	1,2 až 10 mA		
(při 1000 l _x)			
proud za tmy	5 nA		

- označení LED (Light Emitting Diode)
- IRED (Infra Red Emitting Diode) infračerveně emisní dioda
- přeměňují elektrickou energii na přechodu PN na světlo nebo IR záření
- nejčastěji GaAsP, GaAs, GaP, GAN
- barva světla je dána materiálem a příměsí

materiál a dotace	barva světla	vlnová délka v nm	napětí <i>U</i> F
GaAs/Si	infračervená	930	1,2 V
GaAs/P	červená	655	1,6 V
GaAsP/N	oranžová	625	1,6 V
GaAsP/N	žlutá	590	1,8 V
GaP/N	zelená	555	1,8 V
GaN	modrá	465	3 V

1. Dvoubarevné a vícebarevné LED

Dvoubarevné LED

- a₁ GaP žlutozelené
- a₂ GaAsP oranžové

2. Optočleny

- jde o optické nebo IR vazební členy
- je tvořen vysílačem a přijímačem
- používají se ke galvanickému oddělení při přenosu signálů

2. Optočleny

Zobrazovací prvky

1. LED displeje

- pro zobrazení informace používá LED diody
- výhodou je velká životnost
- svítivostí se vyrovnají vakuovým digitronům
- k ovládání jsou k dispozici integrované obvody
- jsou v provedení segmisegmentovém nebo maticovém

Zobrazovací prvky

1. LED displeje

Zobrazovač se skládá ze sedmi LED; řízením zapojení anod je možno zobrazit číslice 0 až 9; každý segment potřebuje napětí asi 2 V; používají se také segmenty se společnou katodou

Zobrazovací prvky

2. LCD displej

- mezi 2 skleněnými destičkami je kapalný krystal (tloušťka 10μm)
- elektrickým napětím lze krystaly orientovat a tak opticky zprůhlednit
- na jedné destičce jsou napařeny elektrody ve tvaru prvků obrazů
- zorientováním krystalů se zviditelní část obrazu