Dependable Texas Instruments Quality and Reliability

description

The '107 contain two independent J-K flip-flops with individual J-K, clock, and direct clear inputs. The '107 is a positive pulse-triggered flip-flop. The J-K input data is loaded into the master while the clock is high and transferred to the slave and the outputs on the high-tolow clock transistion. For these devices the J and K inputs must be stable while the clock is high.

The 'LS107A contain two independent negative-edgetriggered flip-flops. The J and K inputs must be stable prior to the high-to-low clock transition for predictable operation. When the clear is low, it overrides the clock and data inputs forcing the Q output low and the $\overline{\mathbf{Q}}$ output high.

The SN54107 and the SN54LS107A are characterized for operation over the full military temperature range of - 55 °C to 125 °C. The SN74107 and the SN74LS107A are characterized for operation from 0°C to 70°C.

EADINGS-UNIVERS

Dollad Table Body Co

Body Copy

SN54107, SN54LS107A . . . J PACKAGE SN74107 . . . N PACKAGE SN74LS107A . . . D OR N PACKAGE (TOP VIEW)

3 (A

t2r

SN54LS107A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

107 **FUNCTION TABLE**

	INPU	OUTF	UTS		
CLR	CLK	j	К	a	ā
L	×	Х	Х	L	Н
н	T	L	L	σ_0	\bar{a}_0
н	ΤL	Н	L	Н	L
н	л	L	Н	L	Н
Н	л	Н	Н	TOG	GLE

'LS107A **FUNCTION TABLE**

	INPU	OUTF	STU		
CLR	CLK	j	К	Q	ō
L	×	Х	Х	L	Н
н	1	L	L	σ^0	$\bar{\mathbf{q}}_0$
Н	4	Н	L	н	L
Н	4	L	Н	L	Н
Н	4	Н	Н	TOGGLE	
Н	Н	X	X	σ_0	\overline{a}_0

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

1 Capel

ps)-4

2-319

TEXAS INSTRUMENTS

3-4-16

†These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages.

schematic of inputs and outputs

'LS107A

'107

EQUIVALENT OF EACH INPUT

VCC

Req

INPUT

IIL MAX

Req NOM

- 0.4 mA

30 kΩ

- 0.8 mA

8.25 kΩ

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage_VCC (see Note 1)		
Input voltage: '107		5.5 V
		7 V
Operating free-air temperature range: SNS	54'	-55° C to 125 $^{\circ}$ C
SN	74'	0°C to 70°C
Storage temperature range		-65° C to 150° C

NOTE 1: Voltage values are with respect to network ground terminal.

SN54107, SN74107 **DUAL J-K FLIP-FLOPS WITH CLEAR**

recommended operating conditions

·		· · · · · · · · · · · · · · · · · · ·		SN54107		SN74107			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	_ v
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				0.8			8.0	٧
ІОН	High-level output current				- 0.4			- 0.4	mΑ
lOL	Low-level output current				16			16	mΑ
		CLK high	20			20			
tw	Pulse duration	CLK low	47			47			ns
		CLR low	25			25			
tsu	Input setup time before CLK↑		0			0			ns
th	Input hold time-data after CLK†		0			0			ns
T_{A}	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST SOURITIONS!	SN54107	SN74107	UNIT	
PARAMETER	TEST CONDITIONS [†]	MIN TYP‡ MAX	MIN TYP‡ MAX	ן וואיט ך	
V _{IK}	V _{CC} = MIN, I _I = - 12 mA	- 1.5	- 1.5	V	
V _{OH}	$V_{CC} = MIN$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OH} = -0.4 \text{ mA}$	2.4 3.4	2.4 3.4	٧	
VOL	$V_{CC} = MIN$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OL} = 16 \text{ mA}$	0.2 0.4	0.2 0.4	٧	
Ц	$V_{CC} = MAX$, $V_I = 5.5 V$	1	1	mA	
I _{IH} J or K All other	V _{CC} = MAX, V _I = 2.4 V	40 80	40 80	μΑ	
J or K All other	V _{CC} = MAX, V _I = 0.4 V	- 1.6 - 3.2	- 1.6 - 3.2	mΑ	
I _{OS} §	V _{CC} = MAX	- 20 - 5 7	− 18	mΑ	
¹cc¶	V _{CC} = MAX, See Note 2	10 20	10 20	mA	

 $^{^{\}dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				15	20		MHz
[†] PLH	CLR	ā			16	25	ns
^t PHL	CLR	Q	$R_L = 400 \Omega$, $C_L = 15 pF$		25	40	ns
tPLH	CLK	CLK Q or Q			16	25	ns
[†] PHL		u oru			25	40	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25° C.

[§]Not more than one output should be shorted at a time.

[¶]Average per flip-flop.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is

SN54LS107A, SN74LS107A DUAL J-K FLIP-FLOPS WITH CLEAR

recommended operating conditions

			SN54LS107A			SN74LS107A				
			MIN	NOM	MAX	MIN	МОИ	MAX	UNIT	
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5,25	V	
v_{IH}	High-level input voltage		2			2			V	
VIL	Low-level input voltage				0.7			0.8	V	
Іон	High-level output current				- 0.4			- 0.4	mA	
IOL	Low-level output current				4			8	mA	
fclock	Clock frequency	·	0		30	0	-	30	MHz	
	Pulse duration	CLK high	20			20				
tw	ruise duration	CLR low	25			2 5			ns	
	Satura tima hafana CLKI	data high or low	20			20				
t _{su}	Setup time before CLK↓		25			25			пs	
th	Hold time-data after CLK↓		0			0			ns	
Τ _A	Operating free-air temperature		- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		N2	154LS10	7A	SN	UNIT			
- FA	NAMETER	'	EST CONDITION	MIN TYP MAX		MIN TYP MAX		UNII			
v_{IK}		V _{CC} = MIN,	I _I = — 18 mA				– 1.5			- 1.5	>
V _{OH}		V _{CC} = MIN, I _{OH} = - 0.4 mA	V _{IH} = 2 V,	VIL = MAX,	2.5	3.4	·	2.7	3.4		V
V		V _{CC} = MIN, I _{OL} = 4 mA	V _{IL} = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	V
V _{OL}		V _{CC} = MIN, I _{OL} = 8 mA	VIL = MAX,	V _{IH} = 2 V,					0.35	0.5	V
	J or K			. ,			0.1			0.1	
lj	CLR	V _{CC} = MAX,	∨ _I = 7 ∨				0.3			0.3	mA
_	CLK						0.4			0.4	
	J or K				20		20			20	
IIH	CLR	V _{CC} = MAX,	$V_1 = 2.7 V$			60			60		μА
	CLK						80			80	
1	J or K	V _{CC} = MAX,	V _I = 0.4 V				- 0.4			-0.4	A
ΊL	CLR or CLK	VCC - MAA,	V ~ 0.4 V				- 0.8			- 0.8	mA
los§		V _{CC} = MAX,	See Note 4		- 20		- 100	- 20		– 100	mA
Icc (Total)	V _{CC} = MAX,	See Note 2			4	6		4	6	mA

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	ТҮР	MAX	UNIT	
f _{max}					30	45		MHz
t P LH	CLR or CLK	Q or $\overline{\overline{\mathbf{Q}}}$	$R_L = 2 k\Omega$	C _L ≈ 15 pF		15	20	ns
^t PHL	CERGICER	40,4				15	20	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and Q, outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with $V_0 = 2.25$ V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated