Baze de date-Anul 2 Laborator 1

1. Introducere

- 1. Ce este o bază de date ? Dar un sistem de gestiune a bazelor de date? Daţi exemple.
 - Baza de date este un ansamblu structurat de date coerente, fără redundanță inutilă, care pot fi accesate în mod concurent de către mai mulți utilizatori.
 - Un **sistem de gestiune a bazelor de date** (SGBD) este un produs software care asigură interacţiunea cu o bază de date, permiţând definirea, consultarea şi actualizarea datelor din baza de date.

2. Ce este SQL?

- **SQL** (Structured Query Language) este un **limbaj** neprocedural pentru interogarea și prelucrarea informațiilor din baza de date.
 - Compilatorul limbajului SQL generează automat o procedură care accesează baza de date şi execută comanda dorită.
 - > SQL permite:
 - definirea datelor (LDD)
 - prelucrarea şi interogarea datelor (LMD)
 - o controlul accesului la date (LCD).
 - Comenzile SQL pot fi integrate în programe scrise în alte limbaje, de exemplu C, C++, Java etc.
- 3. Ce este SQL*Plus? Comenzile SQL*Plus accesează baza de date?
 - **SQL*Plus** este un **utilitar** Oracle, având comenzi proprii specifice, care recunoaşte instrucţiunile SQL şi le trimite server-ului Oracle pentru execuţie.
 - ➤ Dintre funcţionalităţile mediului *SQL*Plus*, se pot enumera:
 - editarea, executarea, salvarea şi regăsirea instrucţiunilor SQL şi a blocurilor PL/SQL;
 - o calculul, stocarea şi afişarea rezultatelor furnizate de cereri;
 - o listarea structurii tabelelor.
 - ➤ Tabelul următor evidenţiază diferenţele dintre instrucţiunile *SQL* şi cele *SQL*Plus*:

SQL	SQL*Plus
Este un limbaj de comunicare cu	Recunoaște instrucțiunile SQL și le transferă
server-ul Oracle pentru accesarea	server-ului Oracle.
datelor.	
Se bazează pe standardul ANSI	Este o interfață specifică sistemului Oracle
pentru SQL.	pentru execuţia instrucţiunilor SQL.
Prelucrează date și definește obiecte	Nu permite prelucrarea informaţiilor din baza
din baza de date.	de date.
Utilizează funcții pentru a efectua	Utilizează comenzi pentru a efectua formatări.
formatări.	·
Instrucţiunile nu pot fi abreviate.	Comenzile pot fi abreviate.
Nu are un caracter de continuare a	Acceptă "-" drept caracter de continuare
instructiunilor scrise pe mai multe linii.	pentru comenzile scrise pe mai multe linii.
Caracterul de terminare a unei	Nu necesită caracter de terminare a unei
comenzi este ";"	comenzi.

4. Comenzile SQL*Plus acceptă abrevieri? Este necesar vreun caracter de încheiere a comenzii? (vezi tabelul de mai sus)

Care sunt regulile de scriere a comenzilor SQL (acceptă abrevieri, e nevoie de caracter de terminare)?

- 5. Care sunt limbajele SQL?
 - În funcție de tipul acțiunii pe care o realizează, instrucțiunile SQL se împart în mai multe categorii. Datorită importanței pe care o au comenzile componente, unele dintre aceste categorii sunt evidențiate ca limbaje în cadrul SQL, și anume:
 - ▶ limbajul de definire a datelor (LDD) comenzile CREATE, ALTER, DROP;
 - limbajul de prelucrare a datelor (LMD) comenzile INSERT, UPDATE, DELETE, SELECT;
 - limbajul de control al datelor (LCD) comenzile COMMIT, ROLLBACK, SAVEPOINT.
 - Pe lângă instructiunile care alcătuiesc aceste limbaje, SQL cuprinde si alte tipuri de instructiuni:
 - instrucţiuni pentru controlul sesiunii;
 - instrucţiuni pentru controlul sistemului;
 - instrucțiuni SQL încapsulate.
- 6. Analizaţi sintaxa simplificată a comenzii SELECT:

Sintaxa completă:

https://docs.oracle.com/cd/E11882_01/server.112/e41084/statements_10002.htm#SQLRF 01702

Observații:

- Un element din *lista_campuri* are forma: expresie [AS] alias.
- Dacă un alias conţine blank-uri, el va fi scris obligatoriu între ghilimele. Altfel, ghilimelele pot fi omise.
- Alias-ul apare în rezultat, ca şi cap de coloană pentru expresia respectivă. Doar cele specificate între ghilimele sunt case-sensitive, celelalte fiind scrise implicit cu majuscule.
- 7. Care dintre clauze (în sintaxa simplificată) sunt obligatorii?

In instructiunea urmatoare sunt 2 erori. Care sunt acestea?

```
SELECT employee_id, last_name salary * 12 ANNUAL SALARY FROM employees:
```

Observatie: ANNUAL SALARY este un alias pentru câmpul reprezentând salariul anual.

2. Exerciții

- 1. a) Consultaţi diagrama exemplu *HR* (Human Resources) pentru lucrul în cadrul laboratoarelor de baze de date.
 - b) Identificaţi cheile primare şi cele externe ale tabelelor existente în schemă, precum şi tipul relaţiilor dintre aceste tabele.
- 2. Să se iniţieze o sesiune *SQL*Plus / SQL Developer* folosind informaţiile de conectare indicate.
- 3. Să se listeze **structura** tabelelor din schema *HR* (*EMPLOYEES*, *DEPARTMENTS*, *JOBS*, *JOB_HISTORY*, *LOCATIONS*, *COUNTRIES*, *REGIONS*), observând tipurile de date ale coloanelor.

Obs: Se va utiliza comanda *DESC[RIBE] nume_tabel*.

4. Să se listeze **conţinutul** tabelelor din schema considerată, afişând valorile tuturor câmpurilor.

Obs: SELECT * FROM nume tabel;

- 5. Să se afișeze codul angajatului, numele, codul job-ului, data angajarii. Ce fel de operație este aceasta (selecție sau proiecție)?
- 6. Modificați cererea anterioară astfel încât, la rulare, capetele coloanelor să aibă numele cod, nume, cod job, data angajarii.
- 7. Să se listeze, cu și fără duplicate, codurile job-urilor din tabelul *EMPLOYEES*.

Obs: Se va utiliza opțiunea DISTINCT.

8. Să se afișeze numele concatenat cu job_id-ul, separate prin virgula și spatiu. Etichetați coloana "Angajat si titlu".

Obs: Operatorul de concatenare este "||". Şirurile de caractere se specifică între apostrofuri (NU ghilimele, caz în care ar fi interpretate ca *alias*-uri).

- 9. Creați o cerere prin care să se afișeze toate datele din tabelul *EMPLOYEES* pe o singură coloană. Separaţi fiecare coloană printr-o virgulă. Etichetati coloana "Informatii complete".
- 10. Să se listeze numele si salariul angajaților care câștigă mai mult de 2850.
- 11. Să se creeze o cerere pentru a afișa numele angajatului și codul departamentului pentru angajatul având codul 104.
- 12. Să se afişeze numele şi salariul angajaţilor al căror salariu nu se află în intervalul [1500, 2850].

Obs: Pentru testarea apartenenței la un domeniu de valori se poate utiliza operatorul [NOT] BETWEEN valoare1 AND valoare2.

13. Să se afișeze numele, job-ul și data la care au început lucrul salariații angajați între 20 Februarie 1987 și 1 Mai 1989. Rezultatul va fi ordonat crescător după data de început.

SELECT -		
FROM	_	
WHERE	BETWEEN '20-FEB-1987'	'1-MAY-1989
order ē	; 	_

14. Să se afișeze numele salariaților și codul departamentelor pentru toti angajații din departamentele 10, 30 și 50 în ordine alfabetică a numelor.

Obs: Apartenenţa la o mulţime finită de valori se poate testa prin intermediul operatorului *IN*, urmat de lista valorilor (specificate între paranteze şi separate prin virgule): expresie *IN* (valoare_1, valoare_2, ..., valoare_n)

- 15. Să se listeze numele şi salariile angajatilor care câştigă mai mult de 1500 şi lucrează în departamentul 10, 30 sau 50. Se vor eticheta coloanele drept *Angajat* si *Salariu lunar*.
- 16. Care este data curentă? Afișați diferite formate ale acesteia.

Obs:

Functia care returnează data curentă este SYSDATE. Pentru completarea sintaxei obligatorii a comenzii SELECT, se utilizează tabelul DUAL:

SELECT SYSDATE

FROM dual;

➤ Datele calendaristice pot fi formatate cu ajutorul funcţiei *TO_CHAR(data, format)*, unde formatul poate fi alcătuit dintr-o combinatie a următoarelor elemente:

Element	Semnificație
D	Numărul zilei din săptămâna (duminica=1;
	luni=2;sâmbătă=6)
DD	Numărul zilei din lună.
DDD	Numărul zilei din an.
DY	Numele zilei din săptămână, printr-o
	abreviere de 3 litere (MON, THU etc.)
DAY	Numele zilei din săptămână, scris în
	întregime.
MM	Numărul lunii din an.
MON	Numele lunii din an, printr-o abreviere de 3
	litere (JAN, FEB etc.)
MONTH	Numele lunii din an, scris în întregime.
Υ	Ultima cifră din an
YY, YYY, YYYY	Ultimele 2, 3, respectiv 4 cifre din an.
YEAR	Anul, scris în litere (ex: two thousand four).
HH12, HH24	Orele din zi, între 0-12, respectiv 0-24.
MI	Minutele din oră.
SS	Secundele din minut.
SSSSS	Secundele trecute de la miezul nopţii.

17. Să se afișeze numele și data angajării pentru fiecare salariat care a fost angajat în 1987. Se cer 2 soluții: una în care se lucrează cu formatul implicit al datei și alta prin care se formatează data.

Varianta1:
Sunt obligatorii ghilimelele de la şirul '1987'? Ce observaţi?
Varianta 3:
WHERE EXTRACT(YEAR from hire_date)=1987;

Obs: Elementele (câmpuri ale valorilor de tip *datetime*) care pot fi utilizate în cadrul acestei funcții sunt: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND.

- 18. Să se afișeze numele, prenumele și data angajării persoanelor care au început activitatea într-o zi a lunii egală cu cea a datei curente.
- 19. Să se afișeze numele și job-ul pentru toți angajații care nu au manager.

SQL> SELECT	,
FROM	
WHERE I	manager_id IS NULL

- 20. Să se afișeze numele, salariul și comisionul pentru toti salariații care câștigă comision (se presupune că aceasta înseamnă absența oricărei valori în coloana respectivă). Să se sorteze datele în ordine descrescătoare a salariilor și comisioanelor.
- 21. Eliminaţi clauza *WHERE* din cererea anterioară. Unde sunt plasate valorile *NULL* în ordinea descrescătoare?
- 22. Să se listeze numele tuturor angajatilor care au a treia literă din nume 'A'.

Obs: Pentru compararea şirurilor de caractere, împreună cu operatorul *LIKE* se utilizează caracterele *wildcard*:

- % reprezentând orice şir de caractere, inclusiv şirul vid;
- _ (underscore) reprezentând un singur caracter şi numai unul.
- 23. Să se listeze numele tuturor angajatilor care au 2 litere 'L' in nume şi lucrează în departamentul 30 sau managerul lor este 102.
- 24. Să se afiseze numele, job-ul si salariul pentru toti salariatii al caror job conţine şirul "CLERK" sau "REP" şi salariul nu este egal cu 1000, 2000 sau 3000. (operatorul NOT IN)
- 25. Să se afișeze numele departamentelor care nu au manager.