

Introduction to Machine Learning

Neural Networks

林彦宇 教授 Yen-Yu Lin, Professor

國立陽明交通大學 資訊工程學系 Computer Science, National Yang Ming Chiao Tung University

Linear model for regression or classification

A linear model for regression or classification

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x})\right)$$

- Decision based on a linear combination of fixed nonlinear basis functions
- $\triangleright f$ is an identity function for regression
- $\triangleright f$ is a nonlinear activation function for classification
 - Logistic sigmoid or softmax function

Linear model and neural networks

- Our goal is to extend the linear model by making
 - > 1. The basis functions depend on parameters
 - Parametric basis functions
 - 2. Their parameters learnable during training
- The goal leads to the basic neural network model

Activations

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \overline{\phi_j(\mathbf{x})}\right)$$

Examples of basis functions

• Polynomial basis function: taking the form of powers of x

$$\phi_j(x) = \mathbf{v}^j$$

- Gaussian basis function: governed by μ_j and s
 - $\blacktriangleright \mu_j$ governs the location while ξ we have the scale

$$\phi_j(x) = \exp\left\{-\frac{(y - \mu_j)^2}{2s^2}\right\}$$

• Sigmoidal basis function: governed by μ_j and s

$$\phi_j(x) = \sigma(x) - \lambda$$
 where $\sigma(a) = \frac{1}{1 + \exp(-a)}$

Activations

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \overline{\phi_j(\mathbf{x})}\right)$$

• Construct M linear combinations of the inputs x_1, \ldots, x_D

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

- \triangleright where a_i is the activation for j=1,2,...,M
- $> \{w_{ji}^{(1)}\}_{i=1}^{D}$ are the weights. Superscript (1) indicates that these parameters are in the first layer of neural networks
- $> w_{j0}^{(1)}$ is the bias
- \triangleright Each activation is nonlinearly transformed by using a differentiable, nonlinear activation function h, i.e.,

$$z_i = h(a_i)$$

• $\{z_j = h(a_j)\}_{j=1}^M$ are called hidden units

Output unit activation

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x})\right)$$

- The hidden units $\{z_j = h(a_j)\}_{j=1}^M$ are linearly combined in the second layer of neural networks
- Suppose there are K outputs in the neural networks. We have

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}$$

- \triangleright where a_k is the output activation for k=1,2,...,K
- $\gt \{w_{kj}^{(2)}\}_{j=1}^M$ are the weights. Superscript (2) indicates that these parameters are in the second layer of neural networks
- $> w_{k0}^{(2)}$ is the bias
- a_k is further transformed by output activation function

$$y_k = \sigma(a_k)$$

Neural networks for regression and classification

• Output activation a_k is further transformed by output activation function

$$y_k = \sigma(a_k)$$

- $\{y_k\}_{k=1}^K$ are the final outputs of the neural networks
- For regression, $\sigma(\cdot)$ is the identity function
- For two-class classification, $\sigma(\cdot)$ is the logistic sigmoid function

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

• For multiclass classification, $\sigma(\cdot)$ is the softmax function

$$\frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

Two-layer neural networks

The two-layer neural network model

$$y_{k}(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} h \left(\sum_{i=1}^{D} w_{ji}^{(1)} x_{i} + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

$$z_{j} \underline{a_{j}}$$

$$y_{k} \underline{a_{k}}$$

- \triangleright where ${f w}$ is the set of all weight and bias parameters
- The bias parameters can be absorbed into weight parameters by using one additional input $x_0=1$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^M w_{kj}^{(2)} h \left(\sum_{i=0}^D w_{ji}^{(1)} x_i \right) \right)$$

Feed-forward neural networks

Evaluating the following equation is called forward propagation

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^M w_{kj}^{(2)} h \left(\sum_{i=0}^D w_{ji}^{(1)} x_i \right) \right)$$

Network Diagram

Nodes: Input, hidden, and output variables

Links: Weights and biases

Arrows: Propagation direction

Generalizations

- There may be more than one layer of hidden units
 - Deep learning
- Individual units need not be fully connected to the next layer
 - Convolutional neural networks
- Individual links may skip over one or more subsequent layers
 - Skip connections

Neural networks as universal approximators

Points: training data

Dashed curves:

Outputs of three hidden units

Curve:

Prediction by the NN

$$f(x) = |x|$$

f(x) $\sin(x)$

Heaviside step function

Neural networks for classification

- 3-class classification
- 2-layer neural networks with 64 hidden units

https://www.annytab.com/neural-network-classification-in-python/

Network training

• Given a set of training data $\{\mathbf{x}_n\}$ where n=1,2,...,N, together with a corresponding set of target vectors $\{\mathbf{t}_n\}$, we can learn the neural networks by minimizing

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n\|^2$$

 Let's consider how to train the networks by giving a probabilistic interpretation to the network output

Neural networks for 1D regression

- We aim to minimize the error between $y(\mathbf{x}_n,\mathbf{w})$ and t_n
- We assume that the target is a scalar-valued function, which is normally distributed around the prediction

$$p(t|\mathbf{x}, \mathbf{w}) = \mathcal{N}\left(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)$$

- ightharpoonup where $y(\mathbf{x}, \mathbf{w})$ is the prediction by neural networks and β^{-1} is the variance
- Suppose data are i.i.d. The likelihood is

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} p(t_n|\mathbf{x}_n, \mathbf{w}, \beta)$$

ightharpoonup where $\mathbf{X}=\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ and $\mathbf{t}=\{t_1,\ldots,t_N\}$

Taking the negative logarithm, we get negative log likelihood

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 - \frac{N}{2} \ln \beta + \frac{N}{2} \ln(2\pi)$$

 The maximum likelihood solution for w is equivalent to minimizing the sum-of-squares error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2$$

- Does setting the gradient of $E(\mathbf{w})$ to zero work?
 - No closed-form solution

- Optimization by using gradient descent, stochastic gradient descent, or Newton-Raphson iterative optimization scheme
- The nonlinearity of $y(\mathbf{x}_n, \mathbf{w})$ makes $E(\mathbf{w})$ to be nonconvex
- In practice, local minima of the negative log likelihood may be found
- After having found \mathbf{w}_{ML} , the value of β can be found by minimizing the negative log likelihood

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}_{\mathrm{ML}}) - t_n\}^2$$

• After getting \mathbf{w}_{ML} and β_{ML} , we can predict the distribution of the target value t for an input testing data point \mathbf{x} via

$$p(t|\mathbf{x}, \mathbf{w}) = \mathcal{N}\left(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)$$

Two-layer neural networks for one-dimensional regression

Neural networks for multi-dimensional regression

- Neural networks can be used for K-dimensional regression
- Construct neural networks with K outputs
- Make the following assumption

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{x}, \mathbf{w}), \beta^{-1}\mathbf{I})$$

- We can use maximum likelihood solution, which is equivalent to minimizing the sum-of-squares errors, to get \mathbf{w}_{ML}
- Similarly given \mathbf{w}_{ML} , the optimal eta_{ML} is obtained

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{NK} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}_{\text{ML}}) - \mathbf{t}_n\|^2$$

Neural networks for multi-dimensional regression

Two-layer neural networks for K-dimensional regression

Neural networks for binary classification

- Neural networks can be used for classification
- Given a set of training data $\{\mathbf{x}_n\}$ where $n=1,2,\ldots,N$, together with a corresponding set of target labels $\{t_n\}$, where $t_n=1$ denotes class \mathcal{C}_1 and $t_n=0$ denotes class \mathcal{C}_2
- Construct (two-layer) neural networks having a single output whose activation function is a logistic sigmoid

$$y = \sigma(a) \equiv \frac{1}{1 + \exp(-a)}$$

- \triangleright where $0 \leqslant y(\mathbf{x}, \mathbf{w}) \leqslant 1$
- $\rightarrow y(\mathbf{x}, \mathbf{w})$ is the conditional probability $p(\mathcal{C}_1|\mathbf{x})$
- ightharpoonup The conditional probability $p(\mathcal{C}_2|\mathbf{x})$ is given by $1-y(\mathbf{x},\mathbf{w})$

ML solution for binary classification

 Regression: the target is a real-valued function, which is normally distributed around the prediction

$$p(t|\mathbf{x}, \mathbf{w}) = \mathcal{N}\left(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right)$$

 Classification: the conditional distribution of a target given its input is a Bernoulli distribution of the form

$$p(t|\mathbf{x}, \mathbf{w}) = y(\mathbf{x}, \mathbf{w})^t \left\{ 1 - y(\mathbf{x}, \mathbf{w}) \right\}^{1-t}$$

ML solution for binary classification

 When using ML optimization, we minimize the negative log likelihood, here called cross-entropy error

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

- \triangleright where y_n denotes $y(\mathbf{x}_n, \mathbf{w})$
- Optimize w by using gradient descent or its variant
- After getting \mathbf{w}_{ML} , binary classification is carried out by

$$p(t|\mathbf{x}, \mathbf{w}) = y(\mathbf{x}, \mathbf{w})^t \left\{ 1 - y(\mathbf{x}, \mathbf{w}) \right\}^{1-t}$$

ML solution for binary classification

Neural networks for multi-class classification

- Neural networks can be extended to K-class classification
- Given a set of training data $\{\mathbf{x}_n\}$ where n=1,2,...,N, together with a corresponding set of target vectors $\{\mathbf{t}_n\}$, where \mathbf{t}_n is encoded by using 1-of-K coding scheme
- Construct (two-layer) neural networks having K outputs and use softmax as the activation function

$$y_k(\mathbf{x}, \mathbf{w}) = \frac{\exp(a_k(\mathbf{x}, \mathbf{w}))}{\sum_j \exp(a_j(\mathbf{x}, \mathbf{w}))}$$

 \blacktriangleright where $0 \leqslant y_k \leqslant 1$ and $\sum_k y_k = 1$

ML solution for multi-class classification

The negative log likelihood or the cross-entropy error is

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_k(\mathbf{x}_n, \mathbf{w})$$

- Optimize w by using gradient descent or its variant
- After getting \mathbf{w}_{ML} , multi-class classification is carried out by using the softmax function

$$y_k(\mathbf{x}, \mathbf{w}) = \frac{\exp(a_k(\mathbf{x}, \mathbf{w}))}{\sum_j \exp(a_j(\mathbf{x}, \mathbf{w}))}$$

ML solution for multi-class classification

Two-layer neural networks for K-class classification

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_k(\mathbf{x}_n, \mathbf{w})$$

Gradient descent

• The simplest approach is to update ${f w}$ by a displacement in the negative gradient direction

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

- ➤ This is a steepest descent algorithm
- $\triangleright \eta > 0$ is the learning rate
- \blacktriangleright This is a batch method, as evaluation of ∇E involves the entire data set
- ightharpoonup A range of starting points $\{\mathbf{w}^{(0)}\}$ may be needed, in order to find a satisfactory minimum

Stochastic gradient descent

- Stochastic gradient descent (or called sequential gradient descent) has proved useful in practice when training neural networks on a large data set
- The error function needs to comprise a sum of terms, one for each data point, i.e.,

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

Sum-of-squares error for regression

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2$$

Cross-entropy error for classification

国立立通大学
$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1-t_n) \ln(1-y_n) \right\}$$
National Chiao Tung University

Stochastic gradient descent

 Stochastic gradient descent makes an update to the weight vector based on one data point at a time

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

Geometric view of gradient descent

• The error function $E(\mathbf{w})$ is a surface sitting over the weight space

- W_A is a local minimum
- $oldsymbol{\mathbf{w}}_B$ is a global minimum
- At any point \mathbf{w}_C , the local gradient of the error surface is given by the vector ∇E

 The computational cost of gradient descent mainly lies in the evaluation of gradient at each iteration

$$\triangleright \mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

- > The dimension of gradient is the number of learnable parameters
- In feed-forward neural networks, the gradient of an error function $E(\mathbf{w})$ can be efficiently evaluated via an algorithm called error backpropagation

Feed-forward neural networks

Two-layer feed-forward neural networks for regression

$$a_{j} = \sum_{i=1}^{D} w_{ji}^{(1)} x_{i} + w_{j0}^{(1)}, \quad j = 1,..., M$$

$$z_{j} = h(a_{j})$$

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}, \quad k = 1, ..., K$$

$$y_k = a_k$$

Variables/Activations dependency:

$$\{x_i\} \to \{w_{ji}^{(1)}\} \to \{a_j\} \to \{z_j\} \to \{w_{kj}^{(2)}\} \to \{a_k\} \to \{y_k\} \to E$$

Our goal in gradient computation:

$$\frac{\partial E}{\partial w_{kj}^{(2)}}$$
 and $\frac{\partial E}{\partial w_{ji}^{(1)}}$

 In backpropagation, we also need to compute

$$\delta_k = \frac{\partial E}{\partial a_k}$$
 and $\delta_j = \frac{\partial E}{\partial a_j}$

Stochastic gradient descent

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n(\mathbf{w}^{(\tau)})$$

Multi-dimensional regression

$$a_{j} = \sum_{i=1}^{D} w_{ji}^{(1)} x_{i} + w_{j0}^{(1)}, \quad j = 1,..., M$$

$$z_{j} = h(a_{j})$$

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}, \quad k = 1, ..., K$$
$$y_k = a_k$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2$$

Hidden layer
$$\delta_{j} \equiv \frac{\partial E}{\partial a_{j}} = \sum_{k} \frac{\partial E}{\partial a_{k}} \frac{\partial a_{k}}{\partial a_{j}}$$

$$= h'(a_{j}) \sum_{k} w_{kj}^{(2)} \delta_{k}$$

$$\delta_k \equiv \frac{\partial E}{\partial a_k} = y_k - t_k$$

Error function

Variables/Activations dependency:

$$\{x_i\} \to \{w_{ji}^{(1)}\} \to \{a_j\} \to \{z_j\} \to \{w_{kj}^{(2)}\} \to \{a_k\} \to \{y_k\} \to E$$

$$a_{j} = \sum_{i=1}^{D} w_{ji}^{(1)} x_{i} + w_{j0}^{(1)}, \quad j = 1,..., M$$

$$z_{j} = h(a_{j})$$

$$\delta_j = h'(a_j) \sum_k w_{kj}^{(2)} \delta_k$$

Hidden layer

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}, \quad k = 1, ..., K$$

$$y_k = a_k$$

Output layer
$$\frac{\partial E}{\partial w_{kj}^{(2)}} = \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}^{(2)}} = \delta_k z_j$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2$$

Error function $\delta_k = y_k - t_k$

$$\delta_k = y_k - t_k$$

Variables/Activations dependency:

$$\{x_i\} \to \{w_{ji}^{(1)}\} \to \{a_j\} \to \{z_j\} \to \{w_{kj}^{(2)}\} \to \{a_k\} \to \{y_k\} \to E$$

$$a_{j} = \sum_{i=1}^{D} w_{ji}^{(1)} x_{i} + w_{j0}^{(1)}, \quad j = 1,..., M$$

$$z_{j} = h(a_{j})$$

$$\delta_{j} = h'(a_{j}) \sum_{k} w_{kj}^{(2)} \delta_{k}$$
Hidden layer
$$\frac{\partial E}{\partial w_{ji}^{(1)}} = \frac{\partial E}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ji}^{(1)}} = \delta_{j} x_{i}$$

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}, \quad k = 1, ..., K$$

Output layer
$$\frac{\partial E}{\partial w_{kj}^{(2)}} = \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial w_{kj}^{(2)}} = \delta_k z_j$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2$$

Error function $\delta_k = y_k - t_k$

$$\delta_k = y_k - t_k$$

 $y_k = a_k$

A review of error backpropagation

Step 4:

Step 3:

$$\frac{\partial E}{\partial w_{ji}^{(1)}} = \frac{\partial E}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}^{(1)}} = \delta_j x_i$$

Error backpropagation for other tasks

• Step 1: $\delta_k \equiv \frac{\partial E}{\partial a_k} = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial a_k}$

$$E(\mathbf{w}) = \begin{cases} \frac{1}{2} \sum_{k=1}^{K} (y_k - t_k)^2 & \text{regression} \\ -\{t \ln y(\mathbf{x}, \mathbf{w}) + (1 - t) \ln(1 - y(\mathbf{x}, \mathbf{w}))\} & \text{binary classification} \\ -\sum_{k=1}^{K} t_k \ln y_k(\mathbf{x}, \mathbf{w}) & \text{multi-calss classification} \end{cases}$$

$$y_k = a_k$$
 regression $y = \frac{1}{1 + e^{-a}}$ binary classification $y_k = \frac{e^{a_k}}{\sum_i e^{a_j}}$ multi-class classification

Steps 2 ~ 4 remain unchanged

Neural networks' applications

Face detection

Convolutional neural networks

Convolutional neural networks' applications

skis person person person person backpack skis skis skis skis

object segmentation

object detection

Recurrent neural networks

Speech recognition

https://gab41.lab41.org/speech-recognition-you-down-with-ctc-8d3b558943f0

Generative adversarial networks

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Generative adversarial networks' applications

Karras et al.

Wang et al.

References

• Chapters 5.1, 5.2, and 5.3 in the PRML textbook

Thank You for Your Attention!

Yen-Yu Lin (林彥宇)

Email: lin@cs.nycu.edu.tw

URL: https://www.cs.nycu.edu.tw/members/detail/lin

