Pecios y quandles

Leandro Vendramin

RESUMEN. Estas notas corresponden a un minicurso dictado en la universidad de Talca, Chile, en diciembre de 2015. Compilado el 30 de diciembre de 2015 a las 15:45.

ÍNDICE

Int	troduccion	1
1.	Pecios y quandles	1
2.	Grupos asociados a pecios	7
3.	Algunos resultados de clasificación	9
4.	Extensiones	10
5.	Homología de pecios	13

Introducción

En estas notas introduciremos las nociones básicas sobre pecios (*racks*, en inglés) y quandles. Para la teoría básica nos basaremos principalmente en [?]. Otras referencias importantes: [?, ?].

1. Pecios y quandles

- 1.1. Un **pecio** es un par (X, \triangleright) , donde X es un conjunto no vacío con una operación binaria $\triangleright: X \times X \to X$ tal que
- (1.1.1) para cada $x \in X$, la función $\varphi_x \colon X \to X$, $y \mapsto x \triangleright y$, es biyectiva,
- $(1.1.2) \quad x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z) \text{ para todo } x, y, z \in X.$

Un **quandle** es un pecio que verifica $x \triangleright x = x$ para todo $x \in X$.

1.2. EJERCICIO. Sea X un conjunto con una operación binaria

$$\triangleright: X \times X \to X, \quad (x, y) \mapsto x \triangleright y,$$

tal que para cada $x \in X$ la función $\phi_x \colon X \to X$, $y \mapsto x \triangleright y$, es biyectiva. Demuestre que X es un pecio si y sólo si

$$\varphi_z \circ \varphi_y \circ \varphi_z^{-1} = \varphi_{\varphi_z(y)}$$

para todo y, $z \in X$.

- 1.3. EJERCICIO. Sea X un pecio. Demuestre que $(x \triangleright x) \triangleright y = x \triangleright y$ para todo $x,y \in X$.
- 1.4. EJEMPLO. Sea X un conjunto no vacío. Entonces X es un quandle con $x \triangleright y = y$ para todo $x, y \in X$. Este pecio se denomina **quandle trivial** sobre X.
- 1.5. ЕЈЕМРІО. Sean $n \in \mathbb{N}_{\geqslant 2}$ у $\sigma \in \mathbb{S}_n$. El conjunto $X = \{1, \ldots, n\}$ con la operación $x \triangleright y = \sigma(y)$ es un pecio. Queda como ejercicio verificar que X es un quandle si y sólo si $\sigma = id$.
- 1.6. Ејемрьо. Sea G un grupo y X una unión de clases de conjugación de G. Entonces X es un quandle con $x \triangleright y = xyx^{-1}$ para todo $x, y \in X$.

Dos ejemplos: El quandle asociado a la clase de conjugación de g en G se denota por g^G ; el quandle de conjugación asociado al grupo G se denota por Conj(G).

1.7. EJERCICIO. Si X es un quandle de conjugación entonces

$$(1.7.1) x \triangleright y = y \Leftrightarrow y \triangleright x = x para todo x, y \in X.$$

Encuentre un quandle de tres elementos que no cumpla con la condición (1.7.1).

- 1.8. Sean X e Y dos pecios. Una función $f: X \to Y$ es un **morfismo** de pecios si $f(x \triangleright x') = f(x) \triangleright f(x')$ para todo $x, x' \in X$. Análogamente se define la noción de morfismo entre quandles. Los pecios y sus morfismos forman una categoría. Los quandles forman una subcategoría plena de la categoría de pecios.
 - 1.9. EJERCICIO. Pruebe que la categoría de pecios tiene productos.
- 1.10. EJEMPLO. Sea $f: G \to H$ un morfismo de grupos. Como f induce un morfismo $Conj(G) \to Conj(H)$ de pecios, existe un funtor de la categoría de grupos en la categoría de pecios.
 - 1.11. Ejercicio. Sea $n \in \mathbb{N}$. Pruebe que \mathbb{Z}/n es un quandle con

$$x \triangleright y = 2x - y$$
, $x, y \in \mathbb{Z}/n$.

Este quandle se denomina **quandle diedral** y se denota por \mathbb{D}_n . ¿Es \mathbb{D}_n un quandle de conjugación?

1.12. Ejemplo. Veamos un ejemplo concreto de la construcción del ejercicio 1.11. Sea $X=\mathbb{Z}/3=\{0,1,2\}$ con la estructura de quandle diedral. Entonces $\phi_0=(12),\,\phi_1=(02)$ y $\phi_2=(01)$.

Veamos cómo podemos representar a este quandle como un quandle de conjugación. Sea $\mathbb{D}_3 = \langle r, s : r^3 = s^2 = 1, srs = r^{-1} \rangle$ y sea $C = \{s, rs, r^2s\}$ la clase de conjugación de involuciones de \mathbb{D}_3 .

Como $(r^is)(r^js)(r^is)^{-1} = r^{2i-j}s$ para todo $i, j \in \mathbb{Z}/3$, la función

$$f \colon C \to \mathbb{Z}/3, \quad r^{i}s \mapsto i,$$

resulta ser un isomorfismo de quandles.

1.13. EJERCICIO. Sea V un \mathbb{R} -espacio vectorial de dimensión finita y sea $(\cdot|\cdot): V \times V \to \mathbb{C}$ una forma bilinear simétrica y no degenerada. Demuestre que el par $(V \setminus \{0\}, \triangleright)$, donde

$$v \triangleright w = w - 2 \frac{(w|v)}{(v|v)} v,$$

es un pecio que no necesariamente es un quandle.

1.14. EJERCICIO. Sea G un grupo y sea $s \in Aut(G)$. Demuestre que

$$x \triangleright y = s(yx^{-1})x, \quad x, y \in G,$$

define una estructura de quandle sobre G.

1.15. EJERCICIO. Sea G un grupo y sea $s \in Aut(G)$. Demuestre que

$$x \triangleright y = xs(yx^{-1}), \quad x,y \in G,$$

define una estructura de quandle sobre G.

1.16. Sea M un $\mathbb{Z}[t,t^{-1}]$ -módulo a izquierda. Definimos el **quandle de Alexander** sobre M como el quandle dado por

$$(1.16.1) x \triangleright y = (1-t)x + ty para todo x, y \in M.$$

Demostremos que (1.16.1) define una estructura de quandle sobre M. Es evidente que para cada $x \in M$ la función $\phi_x \colon y \mapsto (1-t)x + ty$ es inversible: la inversa ϕ_x^{-1} está dada por $y \mapsto (1-t^{-1})x + t^{-1}y$. Además $x \triangleright x = x$ para todo $x \in X$. Para demostrar la distributividad, tomamos $x,y,z \in M$ y calculamos

$$(x \triangleright y) \triangleright (x \triangleright z) = ((1-t)x + ty) \triangleright ((1-t)x + tz)$$

$$= (1-t)((1-t)x + ty) + t((1-t)x + tz)$$

$$= (1-t)x + t(1-t)y + t^2z$$

$$= (1-t)x + t(y \triangleright z)$$

$$= x \triangleright (y \triangleright z).$$

- 1.17. Observación. Alternativamente un quandle de Alexander puede definirse como un par (A, g), donde A es un grupo abeliano, $g \in Aut(A)$ y $a \triangleright b = (id g)(a) + g(b)$ para todo $a, b \in A$.
- 1.18. EJEMPLO. Veamos cómo es el quandle asociado a la clase de conjugación $(123)^{\mathbb{A}_4}$. Primero fijamos un orden en la clase:

$$(123)^{\mathbb{A}_4} = \{(123), (134), (142), (243)\}.$$

Calculamos por ejemplo:

$$(123) \triangleright (134) = (123)(134)(123)^{-1} = (142),$$

 $(123) \triangleright (142) = (123)(142)(123)^{-1} = (243).$

De esta forma construimos la tabla del quandle:

	(123)	(134)	(142)	(243)
		(142)	(243)	(134)
	(243)	(134)	(123)	(142)
(142)	(134)	(243)	(142)	(123)
(243)	(142)	(123)	(134)	(243)

Veamos que este quandle puede presentarse como un quandle de Alexander. Consideremos el cuerpo de cuatro elementos

$$\mathbb{F}_4 = \mathbb{F}_2[\alpha]/(\alpha^2 + \alpha + 1) = \{0, 1, \alpha, \alpha + 1\}$$

con la estructura de quandle dada por el automorfismo $x\mapsto \alpha x$ de \mathbb{F}_4 . Si calculamos la tabla de este quandle vemos inmediatamente que la función $(123)^{\mathbb{A}_4}\to \mathbb{F}_4$ dada por

$$(123) \mapsto 0$$
, $(134) \mapsto \alpha$, $(142) \mapsto \alpha + 1$, $(243) \mapsto 1$,

es un isomorfismo de quandles.

- 1.19. EJERCICIO. Sean A un grupo abeliano, $g \in Aut(A)$ y $f \in End(A)$. Supongamos que fg = gf y que f(id g f) = o. Demuestre que la operación $x \triangleright y = f(x) + g(y)$, $x, y \in A$, define una estructura de pecio sobre A. Más aún, (A, \triangleright) es un quandle si y sólo si f = id g.
- 1.20. EJERCICIO. Sean (A,g) y (B,h) dos quandles de Alexander. Demuestre que A y B son isomorfos si y sólo si existe un morfismo $T:A\to B$ de grupos abelianos tal que $T\circ g=h\circ T$.
 - 1.21. EJEMPLO. Sea G un grupo. Entonces G con

$$x \triangleright y = xy^{-1}x$$
 para todo $x, y \in G$

es un quandle. Este pecio será denominado el ${\bf corazón}$ de G y será denotado por ${\bf Core}(G)$.

Ejemplos: el corazón del grupo cíclico \mathbb{Z}/n es el pecio diedral \mathbb{D}_n y el corazón de $\mathbb{Z}/2 \times \mathbb{Z}/2$ es el pecio trivial de cuatro elementos.

- 1.22. EJERCICIO. En este ejercicio estudiaremos la relación entre pecios y quandles. Sea X un pecio y sea $\iota: X \to X$ la función dada por $x \mapsto x \triangleright^{-1} x$. Demuestre las siguientes afirmaciones:
 - 1) $x \triangleright \iota(y) = \iota(x \triangleright y)$ para todo $x, y \in X$.
 - 2) $\phi_{\iota(x)} = \phi_x$ para todo $x \in X$.
 - 3) ι es biyectiva con inversa $j: X \to X$ dada por $x \mapsto x \triangleright x$.
 - 4) La operación $x * y = x \triangleright \iota(y)$, $x,y \in X$, define una estructura de quandle sobre X.

Vamos a definir una categoría $\mathcal C$ que nos permitirá clasificar pecios en términos de quandles. Los objetos de $\mathcal C$ serán los pares $((X, \triangleright), f)$, donde X es un quandle $y f: X \to X$ es una función biyectiva que cumple

$$(1.22.1) x \triangleright f(y) = f(x \triangleright y) para todo x, y \in X,$$

$$\varphi_{f(x)} = \varphi_x \qquad \text{para todo } x \in X.$$

Los morfismos $\gamma \in \text{hom}((X, f), (Y, g))$ de la categoría \mathcal{C} serán los morfismos $\gamma \colon X \to Y$ de pecios que satisfacen $\gamma \circ f = g \circ \gamma$.

Afirmación. La categoría de pecios es equivalente a C.

Queda como ejercicio demostrar esta afirmación. Una pista: si (X,\triangleright) es un pecio, entonces el par ((X,*),j) es un objeto de \mathcal{C} ; recíprocamente, si ((X,*),f) es un objeto de \mathcal{C} , entonces el par (X,\triangleright) , donde $x\triangleright y=x*f(y)$, $x,y\in X$, es un pecio.

1.23. Sea G un grupo. Supongamos que G actúa por · a izquierda en un conjunto X. Un **módulo cruzado** es una terna (G, X, ∂) , donde $\partial: X \to G$ es una función tal que $\partial(g \cdot x) = g\partial(x)g^{-1}$ para cada $g \in G$ y $x \in X$.

Sean (G,X,∂) y (G_1,X_1,∂_1) módulos cruzados. Un **morfismo** entre (G,X,∂) y (G_1,X_1,∂_1) es un par (ψ,f) , donde $\psi\colon G\to G_1$ es un morfismo de grupos y $f\colon X\to X_1$ es una función tal que $\partial_1\circ f=\psi\circ\partial$ and $f(g\cdot x)=\psi(g)\cdot f(x)$ para cada $x\in X$ y $g\in G$.

Los módulos cruzados y sus morfismos forman una categoría.

Todo módulo cruzado (G, X, ∂) es un pecio con

$$x \triangleright y = \partial(x) \cdot y$$
 $x, y \in X$.

En efecto, primero observemos que cada $\varphi_x \colon X \to X$, $y \mapsto \vartheta(x) \cdot y$, es una función biyectiva con inversa $\varphi_x^{-1} \colon X \to X$, $y \mapsto \vartheta(x)^{-1} \cdot y$. Además, para cada $x,y,z \in X$ se tiene

$$(x \triangleright y) \triangleright (x \triangleright z) = (\partial(x) \cdot y) \triangleright (\partial(x) \cdot z) = \partial(\partial(x) \cdot y) \cdot (\partial(x) \cdot z)$$
$$= (\partial(x)\partial(y)\partial(x)^{-1}) \cdot (\partial(x) \cdot z) = \partial(x) \cdot (\partial(y) \cdot z)$$
$$= \partial(x) \cdot (y \triangleright z) = x \triangleright (y \triangleright z).$$

Veamos que la asignación que acabamos de describir es categórica. Sea (ψ, f) un morfismo entre los módulos cruzados (G, X, ∂) y (G_1, X_1, ∂_1) . Entonces f es un morfismo de pecios pues

$$f(x \triangleright y) = f(\partial(x) \cdot y) = \psi(\partial(x)) \cdot f(y) = \partial_1(f(x)) \cdot f(y) = f(x) \triangleright_1 f(y)$$

para todo $x,y \in X$. Luego, tenemos un funtor de la categoría de módulos cruzados en la categoría de pecios.

EJEMPLO. Sea G un grupo de Lie y sea $\mathfrak g$ su álgebra de Lie. Si exp denota a la exponencial y \cdot denota a la acción adjunta de G en $\mathfrak g$ entonces

$$\exp(q \cdot X) = q \exp(X)q^{-1}, \quad q \in G, x \in \mathfrak{g},$$

implica que (G, \mathfrak{g}, exp) es un módulo cruzado. El pecio asociado a la terna (G, \mathfrak{g}, exp) se denomina **pecio de Lie** con respecto a G.

Lema. Sea (G, X, \delta) un módulo cruzado. Entonces

$$g \cdot (x \triangleright y) = (g \cdot x) \triangleright (g \cdot y)$$

para todo $g \in G$ y $x, y \in X$.

Demostración. Un cálculo directo muestra que

$$(g \cdot x) \triangleright (g \cdot y) = \vartheta(g \cdot x) \cdot (g \cdot y) = (g\vartheta(x)g^{-1}) \cdot (g \cdot y)$$
$$= (g\vartheta(x)) \cdot y = g \cdot (\vartheta(x) \cdot y) = g \cdot (x \triangleright y)$$

para todo $g \in G$ y $x, y \in X$.

1.24. EJERCICIO. Sea (G, X, ∂) un módulo cruzado. Demuestre que la función $\partial \colon X \to \text{Conj}(G)$ es un morfismo de pecios.

1.25. Sea X conjunto. Un **pecio libre** sobre X es un par (R(X), j), donde R(X) es un pecio y $j: X \to R(X)$ es una función tal que para toda función $f: X \to Y$, donde Y es un precio, existe un único morfismo $\widetilde{f}: R(X) \to Y$ de pecios tal que $\widetilde{f} \circ j = f$.

Vamos a demostrar la existencia del pecio libre sobre X. Sea L(X) el grupo libre en X y sean

$$R(X) = X \times L(X)$$
, $j: X \to R(X)$, $x \mapsto (x, 1)$.

El grupo L(X) actúa a izquierda en R(X):

$$g \cdot (x, h) = (x, gh), \quad x \in X, g, h \in L(X).$$

Si $\partial \colon R(X) \to L(X)$ está dada por $(x,g) \mapsto gxg^{-1}$, entonces R(X) es un módulo cruzado pues

$$\partial(g \cdot (x, h)) = \partial(x, gh) = ghx(gh)^{-1} = g\partial(x, h)g^{-1}$$

para todo $x \in X$, $g, h \in L(X)$. Como consecuencia de lo visto en (1.23) obtenemos el siguiente resultado.

Afirmación. El conjunto R(X) junto con la operación

$$(x, g) \triangleright (y, h) = (y, gxg^{-1}h), \quad x, y \in X \ g, h \in L(X)$$

es un pecio.

Si Y es un pecio y f: X \rightarrow Y es una función entonces existe un único morfismo \widetilde{f} : R(X) \rightarrow Y de pecios tal que $\widetilde{f}(x,1) = f(x)$ para todo $x \in X$. Observemos que, como

$$(x,1) \triangleright (y,g) = (y,xg), (x,1) \triangleright^{-1} (y,g) = (y,x^{-1}g),$$

entonces

$$(x_{i_1},\mathbf{1}) \triangleright^{\varepsilon_{i_1}} ((x_{i_2},\mathbf{1}) \triangleright^{\varepsilon_{i_2}} \cdots \triangleright^{\varepsilon_{i_{k-1}}} ((x_{i_k},\mathbf{1}) \triangleright^{\varepsilon_{i_k}} (x,\mathbf{1})) \cdots) = (x,x_{i_1}^{\varepsilon_{i_1}} \cdots x_{i_k}^{\varepsilon_{i_k}})$$

y luego, queda unívocamente definido el morfismo $R(X) \to Y$ de pecios tal que $(x, 1) \mapsto f(x)$.

1.26. Ejemplo. Si $X = \{1\}$ entonces $L(X) \simeq \mathbb{Z}$ y $R(X) \simeq X \times \mathbb{Z}$. Bajo esta identificación, R(X) es un pecio con $(\mathfrak{n},\mathfrak{1}) \triangleright (\mathfrak{m},\mathfrak{1}) = (\mathfrak{m}+\mathfrak{1},\mathfrak{1})$ para todo $\mathfrak{n},\mathfrak{m} \in \mathbb{Z}$.

1.27. Sea X un pecio. Una relación de equivalencia \sim en X se dice **compatible** con la estructura de pecio de X si

$$(1.27.1) x \sim x', y \sim y' \implies x \triangleright y \sim x' \triangleright y',$$

$$(1.27.2) x \triangleright y \sim x \triangleright y' \implies y \sim y',$$

para todo $x, x', y, y' \in X$.

Si \sim es una relación de equivalencia compatible con X entonces el cociente $\overline{X} = X/\sim$ tiene una única estructura de pecio que hace que la aplicación canónica $\pi\colon X \to \overline{X}$, $x \mapsto [x]$, sea un morfismo de pecios.

El par (\overline{X},π) cumple con la siguiente propiedad universal: si $f\colon X\to Z$ es un morfismo de pecios tal que $x\sim y$ implica que f(x)=f(y), entonces existe un único morfismo $\overline{f}\colon \overline{X}\to Z$ de pecios tal que $\overline{f}\circ\pi=f$. Además $\overline{f}(\overline{X})=f(X)$ y la función \overline{f} es inyectiva si y sólo si $x\sim x'\Longleftrightarrow f(x)=f(x')$.

EJEMPLO. Sea $f: X \to Y$ un morfismo de pecios. Se define una relación de equivalencia en X de la siguiente forma: $x \sim x' \iff f(x) = f(x')$, $x, x' \in X$. Entonces \sim es compatible con X y $\overline{f}: \overline{X} \to f(X)$ es un isomorfismo de pecios.

1.28. Sea X un conjunto. Un **quandle libre** sobre X es un par (Q(X), j), donde Q(X) es un quandle y j: $X \to Q(X)$ es una función tal que para cada función f: $X \to Y$, donde Y es un quandle, existe un único morfismo \widetilde{f} : $Q(X) \to Y$ de quandles tal que $\widetilde{f} \circ j = f$.

EJERCICIO. En R(X) consideramos la relación \sim dada por:

$$(x, g) \sim (y, h) \iff x = y \ y \ h = gx^k \text{ para algún } k \in \mathbb{Z}.$$

Demuestre las siguientes afirmaciones:

- 1) La relación \sim es una relación de equivalencia compatible con R(X).
- 2) $Q(X) = R(X)/\sim$ es un quandle.
- 3) El par (Q(X),j), donde $j: X \to Q(X)$ está dada por j(x) = [(x,1)], es un quandle libre sobre X.

1.29. EJERCICIO. Sea X un conjunto y sea $\triangleright: X \times X \to X$ una función. Entonces $r: X \times X \to X \times X$, $r(x,y) = (x \triangleright y,x)$ es una solución conjuntista de la ecuación de trenzas si y sólo si (X,\triangleright) es un pecio. (Recordemos que una función inversible $r: X \times X \to X \times X$ es una **solución conjuntista de la ecuación de trenzas** si cumple que $r_{12}r_{23}r_{12} = r_{23}r_{12}r_{23}$, donde $r_{12} = r \times id$ y $r_{23} = id \times r$.)

2. Grupos asociados a pecios

2.1. Sea X un pecio. Se define el **grupo interior** de X como el grupo generado por las permutaciones $\{\phi_x : x \in X\}$, es decir:

$$Inn(X) = \langle \varphi_x : x \in X \rangle.$$

Es evidente que Inn(X) es un subgrupo del grupo de permutaciones \mathbb{S}_X de X. En particular, si X es finito, Inn(X) es un grupo finito.

Observemos que Inn(X) actúa naturalmente en X. Un quandle X se dice **conexo** (o indescomponible) si el grupo Inn(X) actúa transitivamente en X. Un quandle se dice **fiel** si la aplicación $X \to Inn(X)$, $x \mapsto \phi_x$, es inyectiva.

- 2.2. EJEMPLO. Sea $X=\{0,1,2\}$ el quandle diedral de tres elementos, es decir: $x \triangleright y=2x-y, \, x,y \in X$. Entonces, como $\phi_0=(12),\, \phi_1=(02),\, \phi_2=(01),\,$ tenemos $\text{Inn}(X)=\langle (12),(02),(01)\rangle \simeq \mathbb{S}_3$. Como Inn(X) actúa transitivamente en X,X es un quandle conexo. Además X es fiel.
- 2.3. EJEMPLO. Sea $X = \{1, 2, 3, 4\}$ con la estructura de quandle dada por las permutaciones $\varphi_1 = \varphi_3 = (24)$ y $\varphi_2 = \varphi_4 = (13)$. Evidentemente, X no es fiel. El grupo $\text{Inn}(X) = \langle \varphi_1, \dots, \varphi_4 \rangle \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$ no actúa transitivamente en X pues la descomposición de X en Inn(X)-órbitas es $X = \{1, 3\} \cup \{2, 3\}$. Luego X no es conexo.
- 2.4. EJERCICIO. Sea X el quandle de doce elementos asociado a la clase de conjugación de la matriz $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ en GL(2,3). Demuestre las siguientes afirmaciones:
 - 1) $\operatorname{Inn}(X) \simeq \operatorname{GL}(2,3)/\operatorname{Z}(\operatorname{GL}(2,3)) \simeq \mathbb{S}_4$,
 - 2) X es un quandle conexo, y
 - 3) X no es fiel.

- 2.5. EJERCICIO. Sea (A, g) un quandle de Alexander. Demuestre que A es conexo si y sólo si A es fiel.
- 2.6. Sea X un pecio. Se define el **grupo de automorfismos** de X como el subgrupo de \mathbb{S}_X formado por los morfismos de pecios, es decir:

$$\operatorname{Aut}(X) = \{ f \in \mathbb{S}_X : f \text{ es morfismo de pecios} \}.$$

- 2.7. EJERCICIO. Verifique $\operatorname{Aut}(\mathbb{D}_4) \neq \operatorname{Inn}(\mathbb{D}_4)$.
- 2.8. EJERCICIO. Demuestre que si X es un pecio entonces Inn(X) es un subgrupo normal de Aut(X).
- 2.9. EJERCICIO. Sea (A, g) un quandle de Alexander conexo. Demuestre que $Inn(A, g) \simeq im(id - g) \rtimes \langle g \rangle$ y que $Aut(A, g) \simeq A \times G$, donde

$$G = \{T \in Aut(A) : T \circ g = g \circ T\}.$$

- 2.10. EJERCICIO. ¿Existen quandles conexos con dos elementos?
- 2.11. Ejercicio. Pruebe que \mathbb{D}_n es conexo si y sólo si n es impar. ¿Para qué valores de n es \mathbb{D}_n fiel?
 - 2.12. Sea X un pecio. El grupo envolvente de X es el grupo

$$G_X = F_X / \langle xy = (x \triangleright y)x, x, y \in X \rangle$$

donde F_X es el grupo libre con base en los elementos de X.

- 2.13. Observación. El grupo envolvente de un pecio X cumple la siguiente propiedad universal: para cada grupo G y cada función $f: X \to G$ que cumple $f(x \triangleright y) = f(x)f(y)f(x)^{-1}$ para todo $x,y \in X$, existe un único morfismo $g: G_X \to G$ de grupos tal que $f = g \circ \partial$, donde $\partial: X \to G_X$ es la aplicación canónica.
- 2.14. Sea X un pecio. El grupo G_X actúa naturalmente en X y esta acción es transitiva si X es conexo. Es fácil demostrar que G_X es un grupo infinito: basta considerar el morfismo de grupos d: $G_X \to \mathbb{Z}$ dado por
- 2.15. EJERCICIO. Sea X un pecio finito. Demuestre que las siguientes afirmaciones:
 - 1) El centro $Z(G_X)$ de G_X es un subgrupo de índice finito.
 - 2) Toda clase de conjugación de G_X es finita.
- 2.16. Observación. El ejercicio 2.15 prueba que si X es un pecio finito entonces toda clase de conjugación de G_X es finita. Luego, si aplicamos el teorema de Schur [?, Theorem 5.32], obtenemos que $[G_X, G_X]$ es un grupo finito.
- 2.17. EJERCICIO. Sea X un pecio conexo. Demuestre que el conmutador $[G_X, G_X]$ de G_X actúa transitivamente en X.
 - 2.18. Se define el patrón de una permutación

$$\sigma = (i_{1,1} \cdots i_{1,l_1})(i_{2,1} \cdots i_{2,l_2}) \cdots (i_{k,1} \cdots i_{k,l_k}) \in \mathbb{S}_n,$$

donde suponemos 1 \leqslant $l_1 \leqslant l_2 \leqslant \cdots \leqslant l_k$, como la sucesión l_1, l_2, \dots, l_k .

2.19. EJEMPLOS. El patrón de (123) $\in \mathbb{S}_3$ es 3, el patrón de (12) $\in \mathbb{S}_3$ es 1, 2 y el patrón de (1,6)(2,5) $\in \mathbb{S}_6$ es 1, 1, 2, 2.

Sea X un quandle finito y conexo. Como todas las permutaciones ϕ_x tienen la misma estructura cíclica, todas las ϕ_x tienen el mismo patrón. Se define el **perfil** de X como el patrón de cualquier ϕ_x , $x \in X$.

Ejemplos. El perfil de \mathbb{D}_3 es 1, 2, y el perfil de $(123)^{\mathbb{A}_4}$ es 1, 3.

EJERCICIO. Demuestre las siguientes afirmaciones:

- 1) El perfil de $(1234)^{\mathbb{S}_4}$ es 1, 1, 4.
- 2) El perfil de $(12)^{\mathbb{S}_4}$ es 1, 1, 2, 2.

2.20. Conjetura (Hayashi). Si X es un quandle finito y conexo con perfil $\{l_1, l_2, \ldots, l_k\}$ con $1 \leqslant l_1 \leqslant l_2 \leqslant \cdots \leqslant l_k$ entonces l_k es un múltiplo de l_i para todo $i \in \{1, \ldots, k-1\}$.

3. Algunos resultados de clasificación

- 3.1. Un quandle X se dice **simple** si todo morfismo $f: X \to Y$ de quandles es constante o inyectivo.
- 3.2. EJERCICIO. Sea X un quandle simple con al menos tres elementos. Demuestre las siguientes afirmaciones:
 - 1) X es fiel.
 - 2) X es conexo.
 - 3) $\varphi(X)$ es una clase de conjugación y genera a Inn(X).
 - 4) Inn(X) tiene centro trivial.
- 3.3. Los quandles finitos y simples fueron clasificados por Joyce en [?] e independientemente en [?]. Ejemplos de quandles simples son las clases de conjugación de grupos simples, y los quandles conexos de Alexander sobre \mathbb{F}_p , donde p es un número primo.
- 3.4. Sea q(n) la cantidad de quandles conexos no isomorfos de tamaño $n \ge 1$. La tabla siguiente muestra los valores de q(n) para $n \in \{1, ..., 45\}$:

n	1	2	3	4	5	6	7	8	9	10	11	12
q(n)	1	O	1	1	3	2	5	3	8	1	9	10
n												
q(n)	11	O	7	9	15	12	17	10	9	O	21	42
n												
q(n)	34	O	65	13	27	24	29	17	11	O	15	73
n												
q(n)	35	O	13	33	39	26	41	9	45	O	45	

Para estos valores de q(n) referimos a la sucesión A181771 de la base de datos de sucesiones *The On-Line Encyclopedia of Integer Sequences*. Para más información consultar [?].

3.5. Sea p un número primo. Se sabe que todo quandle conexo de tamaño p es de Alexander, ver [?]. En [?] Graña clasificó los quandles conexos de tamaño p²; en particular, todo quandle conexo de p² elementos es un quandle de Alexander. En [?] se demostró que no existen quandles conexo con 2p elementos.

- 3.6. Problema. Enumerar y clasificar quandles conexos de tamaño p^3 , donde p es un número primo.
- 3.7. Problema. Enumerar y clasificar quandles conexos de tamaño pq, donde p, q son primos.
- 3.8. Problema. ¿Es cierto que siempre existe un quandle conexos de tamaño 2k+2?
- 3.9. Problema. Enumerar y construir quandles conexos de tamaño 2k+2.

4. Extensiones

4.1. Vamos a definir extensiones de pecios y quandles. Sean A un grupo abeliano (escrito aditivamente), X un pecio y $f \colon X \times X \to A$ una función. Sobre el conjunto $X \times A$ definimos la operación

$$(4.1.1) (x,a) \triangleright (y,b) = (x \triangleright y, b + f(x,y))$$

para todo (x, a), $(y, b) \in X \times A$. Puede demostrarse que (4.1.1) define una estructura de pecio sobre $X \times A$ si y sólo si f cumple

$$(4.1.2) f(x,z) + f(x \triangleright y, x \triangleright z) = f(y,z) + f(x,y \triangleright z)$$

para todo $x, y, z \in X$.

Como ejemplo, demostremos la distributividad. Sean $x,y,z \in X$ y a, b, $c \in A$. Un cálculo directo nos dice que

$$(x,a) \triangleright ((y,b) \triangleright (c,z)) = (x,a) \triangleright (y \triangleright z, c + f(y,z))$$
$$= (x \triangleright (y \triangleright z), c + f(y,z) + f(x,y \triangleright z)),$$

y, por otro lado,

$$((x,a) \triangleright (y,b)) \triangleright ((x,a) \triangleright (c,z))$$

$$= (x \triangleright y, b + f(x,y)) \triangleright (x \triangleright z, c + f(x,z))$$

$$= ((x \triangleright y) \triangleright (x \triangleright z)), c + f(x,z) + f(x \triangleright y, x \triangleright z)).$$

- 4.2. Se define el conjunto $Z^2(X,A)$ de 2-cociclos con valores en A como el conjunto de funciones $f: X \times X \to A$ que verifican (4.1.2) para todo $x,y,z \in X$.
- 4.3. El pecio obtenido en 4.1 se llama **extensión abeliana** de X por el grupo abeliano A y el 2-cociclo f, y se denota por $X \times_f A$.
- 4.4. EJERCICIO. Sean X un quandle y A un grupo abeliano. Demuestre que la operación (4.1.1) define una estructura de quandle sobre $X \times A$ si y sólo si $f \in Z^2(X,A)$ y f(x,x) = o para todo $x \in X$. Las $f \in Z^2(X,A)$ tales que f(x,x) = o para todo $x \in X$ se conocen como 2-cociclos de quandles.
- 4.5. Ejemplo. Sea $X = \{x_1, x_2, x_3, x_4\}$ con la estructura de quandle dada por las permutaciones

$$\phi_{x_1}=(x_2x_3x_4),\quad \phi_{x_2}=(x_1x_4x_3),\quad \phi_{x_3}=(x_1x_2x_4),\quad \phi_{x_4}=(x_1x_3x_2).$$

Sea $A = \{o, 1\} \simeq \mathbb{Z}_2$ y sea $f \colon X \times X \to A$ la función

$$f(x,y) = \begin{cases} o & \text{si } x = x_1 \text{ o } y = x_1 \text{ o } x = y, \\ 1 & \text{en otro caso.} \end{cases}$$

Entonces $f \in Z^2(X, A)$.

4.6. EJERCICIO. Sea $Y = X \times \{0, 1\}$ el quandle dado por

$$(x,i) \triangleright (y,j) = (x \triangleright y, j + f(x,y)), \quad x,y \in X, i,j \in \{0,1\},$$

donde X es el quandle del ejemplo 4.5. Demuestre que la aplicación canónica $Y \to G_Y$ no es inyectiva. ¿Es Y un quandle de conjugación?

4.7. Ејемрьо. Sea X el quandle (1234) \mathbb{S}_4 y sea $A=\{0,1,2,3\}\simeq\mathbb{Z}/4$. La función f: X × X \to A dada por la tabla

f	(1234)	(1432)	(1342)	(1243)	(1324)	(1423)
(1234)	О	1	2	2	1	3
(1432)	1	O	2	O	3	3
(1342)	2	1	O	1	2	3
(1243)	3	2	1	O	O	3
(1324)	1	1	1	1	O	1
(1423)	О	O	O	O	1	O

es un 2-cociclo de X con coeficientes en A.

4.8. Sean X un pecio y A un grupo abeliano. Se dice que un 2-cociclo $f: X \times X \to A$ es un **coborde** si existe una función $\gamma: X \to A$ tal que

$$f(x,y) = \gamma(x \triangleright y) - \gamma(y)$$

para todo $x,y \in X$. Diremos que dos 2-cociclos f y g son **cohomólogos** si existe $\gamma \colon X \to A$ tal que

$$f(x,y) = \gamma(x \triangleright y) + g(x,y) - \gamma(y)$$

para todo $x, y \in X$.

4.9. Sea X un pecio y sea A un grupo abeliano. Una **extensión** de X por A se define como un par $(Y \stackrel{p}{\rightarrow} X, A)$, donde p: Y \rightarrow X es un morfismo de pecios sobreyectivo y existe una acción $A \times Y \rightarrow Y$, $(\lambda, y) \mapsto \lambda y$, de A en Y tal que A actúa regularmente en cada fibra $p^{-1}(x)$, y valen las siguientes propiedades:

$$(4.9.1) \quad p(y_1) = p(y_2) \implies \varphi_{y_1} = \varphi_{y_2} \quad \text{para todo } y_1, y_2 \in Y,$$

(4.9.2)
$$\lambda y \triangleright z = y \triangleright z$$
, $\lambda(y \triangleright z) = y \triangleright (\lambda z)$ para todo $\lambda \in A$, $y, z \in Y$.

Recordemos que un grupo A actúa regularmente en un conjunto Y si dados $y,z\in Y$ existe un único $\lambda\in A$ tal que $\lambda y=z$.

Ејемр
Lo. Sea X un pecio, A un grupo abeliano y f \in Z²(X, A). Entonces A actúa en X \times_f A vía

$$\lambda(x, \alpha) = (x, \lambda + \alpha), \quad \lambda, \alpha \in A, x \in X.$$

La función $p: X \times_f A \to X$, $(x, a) \mapsto x$, es un morfismo sobreyectivo de pecios y A actúa regularmente en cada fibra $p^{-1}(x)$. Queda como ejercicio verificar que el par $(X \times_f A \to X, A)$ es una extensión de X por A.

Diremos que las extensiones $(Y \xrightarrow{p} X, A)$ y $(Y_1 \xrightarrow{p_1} X, A)$ de X por el grupo abeliano A son **equivalentes**,

$$(Y \xrightarrow{p} X, A) \simeq (Y_1 \xrightarrow{p_1} X, A),$$

si existe un morfismo $F: Y \to Y_{\scriptscriptstyle \rm I}$ de pecios tal que $\mathfrak p = \mathfrak p_{\scriptscriptstyle \rm I} \circ F$ y para todo $\lambda \in A$, $y \in Y$ se cumple $F(\lambda y) = \lambda F(y)$.

EJERCICIO. Sea X un pecio finito y sea $(Y \xrightarrow{p} X, A)$ una extensión de X. Demuestre que cada sección conjuntista s: $X \to Y$ de p induce un 2-cociclo $f \in Z^2(X,A)$ tal que

$$f(x_1, x_2) + s(x_1 \triangleright x_2) = s(x_1) \triangleright s(x_2), \quad x_1, x_2 \in X.$$

Más aún, si $s_1: Y \to X$ es otra sección y $f_1 \in Z^2(X,A)$ es su 2-cociclo asociado entonces f y f_1 son cohomólogos.

Veamos que toda extensión $(Y \xrightarrow{p} X, A)$ es equivalente a una extensión de la forma $(X \times_f A \xrightarrow{p_X} X, A)$, donde $p_X \colon X \times_f A \to X$, $(x, \alpha) \mapsto x$, para algún $f \in Z^2(X, A)$. Sea $s \colon X \to Y$ una sección conjuntista para $p \colon Y \to X$, es decir: $p \circ s = id_X$. Por el ejercicio anterior sabemos que s induce un 2-cociclo $f \in Z^2(X, A)$.

Afirmación. La función $F: X \times_f A \to Y$, $(x, a) \mapsto as(x)$, es una equivalencia de extensiones.

Veamos que F es sobreyectiva: si $y \in Y$ existe un único $a \in A$ tal que asp(y) = y y luego F(p(y), a) = y. Para demostrar que F es inyectiva basta ver que si $as(x) = a_1s(x_1)$ entonces $x = x_1$: como A actúa transitivamente en cada $p^{-1}(x)$,

$$x = p(s(x)) = p(as(x)) = p(a_1s(x_1)) = ps(x_1) = x_1.$$

Dejamos como ejercicio demostrar que

$$p_X \circ F = p$$
, $F((x, \lambda + a)) = \lambda F(x, a)$

para todo λ , $\alpha \in A$, $x \in X$, y que F es morfismo de pecios.

Afirmación. Sean f, $g \in Z^2(X, A)$. Entonces

$$(X \times_f A \to X, A) \simeq (X \times_g A \to X, A)$$

si y sólo si f y g son cohomólogos.

Veamos cómo demostrar la afirmación anterior. Si F es una equivalencia de extensiones, la función $\gamma\colon X\to A,\ \gamma(x)=\mathfrak{p}_A(F(x,o)),$ donde $\mathfrak{p}_A\colon X\times A\to A,\ (x,\mathfrak{a})\mapsto \mathfrak{a},$ permite demostrar que f y g son cohomólogos. Recíprocamente, si f y g son cohomólogos existe una función $\gamma\colon X\to A$ tal que $\gamma(y)-\gamma(x\triangleright y)=(f-g)(x,y)$ para todo $x,y\in X$. Luego $F\colon X\times_f A\to X\times_g A,\ (x,\mathfrak{a})\mapsto (x,\mathfrak{a}+\gamma(x)),$ es una equivalencia de extensiones.

4.10. Un quandle X se dice **involutivo** si para cada $x \in X$ la permutación φ_x es una involución, es decir: $x \triangleright (x \triangleright y) = y$ para todo $x, y \in X$. Ejemplo: Si G es un grupo entonces Core(G) es involutivo; en particular los quandles diedrales son involutivos.

Conjetura. Sea X un quandle involutivo y conexo, sea A un grupo abeliano y sea $f \in Z^2(X,A)$ tal que f(x,x) = o para todo $x \in X$. Entonces $X \times_f A$ es un quandle involutivo.

5. Homología de pecios

5.1. Sea X un pecio. Para cada $n \in \mathbb{N}_o$ sea $C_n(X,\mathbb{Z}) = \mathbb{Z} X^n$. Definimos $\mathfrak{d}_{n+1}: C_{n+1}(X,\mathbb{Z}) \to C_n(X,\mathbb{Z})$ como $\mathfrak{d}_o = \mathfrak{d}_1 = o$ y

$$\partial_{n+1}(x_1, x_2, \dots, x_{n+1}) = \sum_{i=1}^{n} (-1)^i [(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) - (x_1, \dots, x_{i-1}, x_i \triangleright x_{i+1}, \dots, x_i \triangleright x_{n+1})]$$

si $n \ge 1$.

- 5.2. EJERCICIO. Demuestre que $\{(C_n(X,\mathbb{Z}), \partial_n)\}$ es un complejo.
- 5.3. Sea X un pecio. Los elementos de $C_n(X)$ se denominan n-cadenas, los elementos de $\ker \partial_n$ son los n-ciclos y los elementos de $\operatorname{im} \partial_{n+1}$ son los n-bordes. La **homología** $H_*(X,\mathbb{Z})$ de X es la homología del complejo $C_*(X,\mathbb{Z})$. Más precisamente, se define el n-ésimo **grupo de homología** de X como

$$H_n(X, \mathbb{Z}) = Z_n(X, \mathbb{Z})/B_n(X, \mathbb{Z}),$$

donde $Z_n(X, \mathbb{Z}) = \ker \partial_n y B_n(X, \mathbb{Z}) = \operatorname{im} \partial_{n+1}$.

- 5.4. Notación. Escribiremos $C_n(X) = C_n(X, \mathbb{Z})$ y $H_n(X) = H_n(X, \mathbb{Z})$.
- 5.5. EJERCICIO. Sea X un pecio finito. Demuestre que $H_1(X) \simeq \mathbb{Z}^m$, donde m es la cantidad de órbitas que tiene la acción de Inn(X) en X.
- 5.6. Ејемрьо. Sea p un número primo y sea X un quandle conexo de p elementos. Entonces $H_2(X) \simeq \mathbb{Z}$, ver por ejemplo [?, Lemma 5.1].
- 5.7. La cohomología de un pecio X se define como la cohomología del complejo de cocadenas $\{C^n(X), d_n\}$, donde

$$C^{n}(X) = \operatorname{Fun}(X^{n}, \mathbb{Z})$$

 $y d_n \colon C^n(X) \to C^{n+1}(X)$ está dada por

$$(d_n f)(x_1, \dots, x_n, x_{n+1}) = \sum_{i=1}^n (-1)^i [f(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) - f(x_1, \dots, x_{i-1}, x_i \triangleright x_{i+1}, \dots, x_i \triangleright x_{n+1})].$$

Los elementos of $C^n(X)$ se denominan n-cocadenas, los elementos de ker d_n son los n-cociclos y los elementos de im d_{n+1} son los n-cobordes. Se define el n-ésimo **grupo de cohomología** de X como

$$H^n(X) = Z^n(X)/B^n(X),$$

donde $Z^n(X) = \ker d_n$ and $B^n(X) = \operatorname{im} d_{n+1}$.

5.8. Sea A un grupo abeliano. Si al complejo $\{C_n(X), \partial_n\}$ le aplicamos los funtores $-\otimes A$ y hom $_{\mathbb{Z}}(-,A)$ obtenemos complejos con coeficientes en A. La homología de X con coeficientes en A es la homología de

$$C_n(X, A) = C_n(X) \otimes A$$

con bordes

$$\begin{split} \vartheta_n((x_1,\dots,x_{n+1})\otimes \alpha) &= \sum_{i=1}^n (-1)^i [(x_1,\dots,x_{i-1},x_{i+1},\dots,x_{n+1})\otimes \alpha \\ &\qquad - (x_1,\dots,x_{i-1},x_i\triangleright x_{i+1},\dots,x_i\triangleright x_{n+1})\otimes \alpha] \end{split}$$

Similarmente, la cohomología de X con coeficientes en A es la cohomología del complejo

$$C^{n}(X, A) = hom_{\mathbb{Z}}(C_{n}(X), A) \simeq Fun(X^{n}, A)$$

con cobordes

$$(d_n f)(x_1, \dots, x_{n+1}) = \sum_{i=1}^n (-1)^i [f(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) - f(x_1, \dots, x_{i-1}, x_i \triangleright x_{i+1}, \dots, x_i \triangleright x_{n+1})].$$

5.9. EJEMPLOS. Sea X un pecio y sea A un grupo abeliano. Entonces el conjunto de 1-cociclos de X con valores en A es

$$Z^{1}(X, A) = \{ \gamma \colon X \to A : \gamma(x \triangleright y) = \gamma(y), \ \forall x, y \in X \}.$$

Similarmente, un cálculo directo muestra que el conjunto $Z^2(X,A)$ de 2-cociclos con valores en A es el conjunto de funciones $\alpha\colon X\times X\to A$ que verifican

$$\alpha(x,y \triangleright z) + \alpha(y,z) = \alpha(x \triangleright y, x \triangleright z) + \alpha(x,z)$$

para todo $x, y, z \in X$.

5.10. Proposición. Las sucesiones

$$\begin{split} & o \to H_n(X) \otimes A \to H_n(X,A) \to Tor_{\scriptscriptstyle \rm I}^{\mathbb{Z}}(H_{n-1}(X),A) \to o, \\ & o \to Ext_Z^1(H_{n-1}(X),A) \otimes H^n(X,A) \to hom_{\mathbb{Z}}(H_n(X),A) \to o, \end{split}$$

son exactas y se parten.

Demostración. Como $\{C_n(X), \mathfrak{d}_n\}$ es un complejo de grupos abelianos libres, el resultado se sigue del teorema de los coeficientes universales, ver por ejemplo [?, §56].

- 5.11. Ejercicio. Demuestre que si $H_{n-1}(X)$ no tiene torsión entonces $H_n(X,A)=H_n(X)\otimes A$. Esta igualdad es válida también en el caso en que A no tenga torsión.
- 5.12. Ejercicio. Demuestre que si $H_{n-1}(X)$ es libre o el grupo A es divisible entonces $H^n(X,A) \simeq \text{hom}_{\mathbb{Z}}(H_n(X),A)$.
- 5.13. EJERCICIO. Sea X un pecio y A un grupo abeliano. Demuestre que las clases de equivalencia extensiones de X por A están en correspondencia biyectiva con los elementos de $H^2(X,A)$.

5.14. Теоrема (Etingof–Graña). Sea X un pecio conexo y finito y sea A un grupo abeliano con una acción trivial de G_X . Entonces

$$H^1(G_X, Fun(X, A)) \simeq H^2(X, A),$$

donde Fun(X, A) es un G_X -módulo a izquierda trivial y la acción a derecha está dada por $(f \cdot x)(y) = f(x \triangleright y)$.

Demostración. Si $f \in H^1(G_X, Fun(X,A))$ entonces $q^f(x,y) = f(x)(y)$, donde $x,y \in X$, define un 2-cociclo $q^f \in H^2(X,A)$. Recíprocamente, cada $q \in H^2(X,A)$ determina un 1-cociclo $f_q \in H^1(G_X, Fun(X,A))$ al extender q recursivamente vía $f_q(xy)(z) = q(x,y \triangleright z) + q(y,z)$, donde $x,y,z \in X$. Para más detalles ver [?, Lemma 4.10].