Devoir à la maison n° 9

À rendre le 11 janvier

Soit $a \in \mathbb{R}$ fixé. On note $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 = a$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = u_n - u_n^2.$$

Première partie.

- 1) En étudiant sa monotonie, montrer que (u_n) possède une limite.
- **2)** On introduit la fonction $f: \left\{ \begin{array}{ll} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x-x^2 \end{array} \right.$
 - a) Montrer que [0,1] est stable par f.
 - b) Quels sont les points fixes de f?
- 3) a) On suppose que a < 0. Montrer que $u_n \xrightarrow[n \to +\infty]{} -\infty$.
 - b) On suppose que a > 1. Déduire du signe de u_1 la limite de (u_n) .
 - c) On suppose que $a \in [0,1]$. Montrer que (u_n) est alors convergente et donner sa limite.

Deuxième partie.

On suppose à présent que $a \in]0,1[$. On pose, pour tout $n \in \mathbb{N}^*$:

$$v_n = nu_n$$
 et $S_n = \sum_{k=1}^n u_k$.

- **4)** a) Montrer que pour tout $n \in \mathbb{N}^*$: $0 \le u_n \le \frac{1}{n+1}$.
 - **b)** En déduire que (v_n) est croissante.
 - c) Montrer alors que (v_n) est convergente et que sa limite ℓ appartient à l'intervalle [0,1].
- **5)** a) Montrer que pour tout $n \in \mathbb{N}^* : u_n \geqslant \frac{u_1}{n}$.
 - **b)** En déduire que pour tout $n \in \mathbb{N}^* : S_{2n} S_n \geqslant \frac{u_1}{2}$.

- c) Montrer alors que pour tout $n \in \mathbb{N}$, $S_{2^n} \geqslant (n+1)\frac{u_1}{2}$.
- **d)** Montrer enfin que $S_n \xrightarrow[n \to +\infty]{} +\infty$.
- **6)** a) Montrer que pour tout $n \in \mathbb{N}^*$: $v_{n+1} v_n \geqslant u_n ((1 \ell) u_n)$.
 - **b)** En déduire que pour tout $n \in \mathbb{N}^* : v_{n+1} \geqslant (1 \ell) S_n + u_{n+1}$.
 - c) Montrer enfin que $\ell = 1$.

— FIN —