Rak Mb MLOIS C

Михаил Каменщиков

руководитель юнита Рекомендаций

- в Авито с 2016 года
- все это время занимаюсь развитием рекомендаций (сначала как DS инженер, а последние 3 года как менеджер)
- tg: @greenwo1f

План презентации

Введение: наши задачи, что такое MLOps	04
Airflow	10
ML Flow	18
Model Registry	25
Планы на будущее	31

Немного истории

4

2

3

Персональные рекомендации в Авито

- первое, что видит пользователь, заходя на Авито
- более 50% просмотров и более 30% контактов
- зоопарк ML моделей и микросервисов (>20)
- много данных и большие нагрузки (10кк rpm в самое нагруженное хранилище и редис с историей на 2ТБ)
- 8 лет развития с нуля

Москва | 2024

6

Сколько у нас данных?

220 млн

20 млн

500 млн

объявлений

пользователей ежедневно

действий в сутки

avito.tech p

Москва | 2024

Что такое MLOps?

Что такое MLOps?

ML + Ops. как DevOps, только для ML.

Данные. Подготовка датасетов, хранение, версионирование

Развертывание моделей. Облегчение доставки моделей машинного обучение до продакшена, контейнеризация

Мониторинг. В случае ML нам важны не только технические метрики, но и метрики качества

Эксперименты. Важно обеспечить воспроизводимость экспериментов, а так же хранить их результаты

Совместная работа. Общая платформа для DS инженеров, где можно проводить эксперименты, переиспользовать наработки коллег

Collab

или наша самая первая модель рекомендаций

- 1. собираем данные о кликах пользователей
- 2. обучаем модель + формируем рекомендации
- 3. заливаем их в key-value хранилище
- запускаем все по крону на своих машинках
- код деплоим через скрипт deploy.sh

3pa Airflow

2

3

Москва | 2024

Предпосылки

- стало появляться больше моделей и больше машинок тяжело за всем следить
- команда стала больше
- участились инциденты
- рекомендации стали более важным и чувствительным к проблемам компонентом
- не было единого способа сделать регулярный пайплайн, каждый делал как умел
- насмотрелись на PaaS и захотели так же

Москва | 2024

Что мы хотим?

- запускать все в контейнерах на кластере (чтобы не было проблем с зависимостями)
- управлять ресурсами и эффективно их утилизировать
- деплоить «по кнопке», как сервисы в PaaS
- чтобы все пайплайны «жили» в одном месте и можно было их мониторить
- чтобы один и тот же код использовался для экспериментов и прода

Что такое Airflow

Scalable

Airflow[™] has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers.

Airflow[™] is ready to scale to infinity.

Extensible

Easily define your own operators and extend libraries to fit the level of abstraction that suits your environment.

Dynamic

Airflow™ pipelines are defined in Python, allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.

Elegant

Airflow™ pipelines are lean and explicit. Parametrization is built into its core using the powerful Jinja templating engine.

короче

Airflow - это фреймворк для запуска пайплайнов. Не обязательно ML.

Пайплайн в Airflow

- **DAG** Directed Acyclic Graph
- в Airflow вершинами графа являются операторы
- **оператор** это некоторая программа (может быть на bash, Python, докер образ)
- можем указывать любую зависимость между операторами
- а также, передавать данные между операторами через механизм **XCom** (не игра)


```
t1 = BashOperator(
    task_id="print_date",
    bash_command="date",
)

t2 = BashOperator(
    task_id="sleep",
    depends_on_past=False,
    bash_command="sleep 5",
    retries=3,
)
```

Как подружить Airflow + k8s

Что нам дал переход на Airflow

- ускорение пайплайна и рост продуктовых метрик за счет этого (на **8**% вырастили метрики модели **Collab** за счет ускорения цикла с **5 до 1.5 часов**)
- деплой «по кнопке»
- упростились АБ тесты теперь можно просто создать новую версию ДАГа с другим образом
- существенно снизилось число инцидентов
- появился стандарт для новых проектов, где нужны регулярные пайплайны

Москва | 2024

17

Наш Airflow в цифрах

7

100+

1000+

проектов

DAGob

запусков в день

ML Flow

2

4

Воспроизводимость экспериментов

- невоспроизводимые эксперименты не имеют ценности
- если результаты хранятся только у вас в голове, то никто не сможет ими воспользоваться
- даже вы сами через некоторое время

Трекинг экспериментов

бОльшая часть ML экспериментов - это различные изменения гиперпараметров, например:

- даты, за которые собираем датасет
- различные способы предобработки данных
- параметры модели (количество деревьев, learning rate)
- признаки, которые используем в модели

а результаты эксперимента – это:

- метрики
- различные артефакты (модели, картинки, примеры работы)

Что такое ML Flow?

по сути, это БД + API + UI

- ML Flow решает задачу **трекинга** экспериментов, **но не воспроизводимости**
- можно логировать параметры, метрики, артефакты
- для устоявшихся пайплайнов формат зафиксирован,
 чтобы можно было сравнивать запуски

```
import os
import json
import mlflow
tracking_uri = 'https://prod.k.avito.ru/service-rec-models/'
experiment_name = 'new_experiment_name'
params = {'param':1}
metrics = {'AUC': 0.23}
local_artifact_path = 'artifact.json'
mlflow.set_tracking_uri(traking_uri)
mlflow.create_experiment(experiment_name)
with mlflow.start_run(
   run_name = "Example_run",
   description = "example description"
) as r:
   mlflow.log_params(params)
   mlflow.log_artifact(local_artefact_path, )
   mlflow.log_metrics(metrics, step=1)
```

avito.tech Ф Mocква | 2024

Как сейчас выглядят наши эксперименты

Table	Chart	Evaluation Experimental						
					Metrics	Parameters		
	o	Run Name	Created	Duration	average_precision =	learning_rate	num_iterations	
	o	masked-lynx-621		124ms	0.9557010164407802	0.0161238	2679	
	o	monumental-bird-393		101ms	0.9555982319122476	0.0179618	2991	
	o	efficient-carp-111		124ms	0.9554988300926176	0.0126972	2466	
	o	sneaky-fox-183		100ms	0.9554085615585044	0.0101558	2984	
	o	casual-newt-824		116ms	0.9552676056537011	0.0178975	2566	
	o	trusting-robin-546		105ms	0.9551674041836182	0.0103712	2922	
	0	salty-dolphin-794		104ms	0.9548612280538475	0.0101460	2479	
	0	calm-mink-837	✓ 1 year ago	111ms	0.9546970917032079	0.0354376	2269	(+)
	o	resilient-sloth-812		104ms	0.9544813378600552	0.0162752	2687	Show more columns (18 total)

А что нужно для воспроизводимости?

Что нам дало внедрение MLFlow

- появилось единое место для записи результатов экспериментов
- есть возможность делиться результатами по ссылке (важно!)
- хранится история всех экспериментов
- суммарно в базе более 200 экспериментов и более 1000 разных запусков

Model Registry

2

4

3

Проблемы, которые мы решали

- 1) чтобы выкатить новую модель в прод и запустить АБ тест, нужно потратить время на:
 - code review (от 10 минут до +inf)
 - билды и тесты в CI/CD (10-30 минут)
 - выкатить сервис (10-15 минут)
 - а также не ошибиться, вручную перенося названия групп из АБ платформы
- 2) непонятно, откуда модель взялась (нет ссылок на эксперимент, метрики)

Model Registry

Микросервис, который хранит метаинформацию о моделях и умеет отдавать их по API из S3

avito.tech Ф Mocква | 2024

Model Registry UI

Версия	Время загрузки	Статус	АБ лейбл	АБ группа	Статус доставки
2	22/03/24 15:25:21	ab	ranker_recent_searches_engine time_since	fresh × prod_ranker ×	rec-representation-go
1	28/02/24 01:13:53	prod	ranker_recent_searches_engine ranker_recent_searches_engine ranker_item2vec_main_page	fresh × fresh × item2vec_alt ×	rec-representation-go

Что нам дало Model Registry

- время для запуска типового АБ теста сократилось с 2 часов до 15 минут
- есть место, где хранятся все модели можно скачать их и проанализировать
- можно найти результаты экспериментов для модели из АБ теста
- используется в 4 DS командах

Что в итоге

- существенно упростили запуск сложных пайплайнов с Airflow
- облегчили жизнь десяткам DS с MLFlow
- снизили time to market c Model Registry

Что дальше?

Полгода назад появилась отдельная команда **ML Platform.**мы продолжаем развивать текущие инструменты и делаем новую платформу на базе **Kubeflow**,

в которой будет фокус на:

- воспроизводимых экспериментах
- переиспользовании компонент
- эффективной утилизации железа, не только для продакшена, но и для ad-hoc экспериментов

спасибо!

следите за обновлениями :)