VARIATIONAL AUTOENCODERS FOR SHARED LATENT SPACE REPRESENTATION OF STUDENT BEHAVIOR

Serena Nicoll

Generative Models in Educational Settings

Rasch Model (1960)

- Generalized Linear Model (GLM)
- Item Response Theory (IRT)
- Assumptions about data distribution

Latent Dirichlet Allocation (2003)

- Topic & Content Modeling
- Only able to model one category of data (written)

Feature Embeddings with Variational Autoencoders (2017)

- Removes assumptions about data distribution
- Modeling data in a shared, low-complexity space
- Limited to gaussian distributions in the latent space

Personalized Learning

Can we personalize student representations within a shared latent space?

Students have many types of actions:

- Watching Lecture Videos
- Posting in class discussion forums
- Taking Quizzes and Exams
- Interacting with posted content
- Giving and receiving feedback
- Etc.

Personalized Learning

Can we personalize student representations within a shared latent space?

Accounting for Learning Differences:

- Informed by federated setting
- Data Heads: Categorical Emission
- Central VAE: Gaussian/Gaussian

Datasets

Year	Semester	Course	Enrolled	Active	Total Actions	Forum	Video	Access
2020	Spring	A	1689	860	19408	0.671 ± 5.244	4.183 ± 7.689	17.71 ± 35.03
2020	Spring	В	2841	169	3787	2.041 ± 7.256	4.296 ± 7.207	16.07 ± 35.43
2020	Fall	C	352	133	8174	11.10 ± 33.48	5.692 ± 7.521	44.66 ± 55.17

- Online Master's Courses with global enrollment
- Emphasis on different action types per course

Our Methodology: Experimental Setup

KL-Divergence (sum)

Push

$$\mathbb{E}_{Q}\big[\log P(x|z)\big] - KL(Q(Z|X)||P(Z))$$

- KL: Min between all components X and std. N(0, 1)
- Minimizing loss terms

Reconstruction Loss

Keep distributions close to origin (and to each other)

0.7142

- Maximize KL-Divergence between classes
- Using distributions from VAE
- Practically: Discriminative Step

Results: Low-Dimensional Representation

Encodings

- Traditional Autoencoder
 - Vs
- Variational AE + Contrast

Downstream Uses

- Knowledge Tracing:
 - ACC: 0.7143

Results and Discussion

Future Work:

- Investigating "meaning" of latent variables
- Further refining discriminative step to encourage divergence within clusters

THANK YOU

Questions?

