Ecuaciones y Teoremas

Vladimir Huarachi

September 25, 2024

1 Teorema

Theorem 1.1. Supóngase que f es continua en a, y f(a) > 0. Entonces existe un número $\delta > 0$ tal que f(x) > 0 para todo x que satisface $|x - a| < \delta$. Análogamente, si f(a) < 0, entonces existe un número $\delta > 0$ tal que f(x) < 0 para todo x que satisface $|x - a| < \delta$.

DEMOSTRACIÓN.

Proof. Considérese el caso f(a)>0, puesto que f es continua en a, si $\varepsilon>0$ existe un $\delta>0$ tal que, para todo x,

si
$$|x - a| < \delta$$
, entonces $|f(x) - f(a)| < \varepsilon$.

Puesto que f(a)>0, podemos tomar a f(a) como el ε . Así, pues, existe $\delta>0$ tal que para todo x,

si
$$|x - a| < \delta$$
, entonces $|f(x) - f(a)| < f(a)$,

y esta última igualdad implica f(x) > 0.

Puede darse una demostración análoga en el caso f(a)<0; tómese $\varepsilon=-f(a)$. O también se puede aplicar el primer caso a la función -f.