SAMB for "01"

Generated on 2023-05-24 23:02 by MultiPie 1.1.1

• Group: No. 207 O^1 P432 [cubic]

• Associated point group: No. 30 O 432 [cubic]

• Generation condition

model type: tight_bindingtime-reversal type: electric

- irrep: [A1]
- spinful

• Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{a}_2 = \begin{pmatrix} 0 & 1.0 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	n	symbol	pc	sitio	on
Γ	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	0)	X	$\left(\frac{1}{2}\right)$	0	0)

• Kets: dimension = 8

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
 1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(p_x,\uparrow) @A ₁	4	(p_x,\downarrow) @A ₁	5	(p_y,\uparrow) @A ₁
6	(p_y,\downarrow) @A ₁	7	(p_z,\uparrow) @A ₁	8	(p_z,\downarrow) @A ₁				

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	A_1	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]

• Bonds in (primitive) unit cell:

Table 4: Bond-clusters.

				_	_	
	bond	tail	head	n	#	$oldsymbol{b@c}$ mapping
B_1	b_1	A_1	A_1	1	1	
	b_2	A_1	A_1	1	1	$ \left \begin{array}{ccc} \left(1 & 0 & 0\right) @ \left(\frac{1}{2} & 0 & 0\right) & \left \begin{array}{ccc} [6, -9, 11, -12, 13, -14, 21, -24] \end{array} \right $
	b_3	A_1	A_1	1	1	$ \left \begin{array}{ccc} \left(0 & 1 & 0\right) @ \left(0 & \frac{1}{2} & 0\right) & \left \begin{array}{ccc} [7,-10,15,16,-17,-18,-20,23] \end{array} \right. $
B_2	b_4	A_1	A_1	2	1	$(0 1 1) @ (0 \frac{1}{2} \frac{1}{2}) $ [1,-3,7,-10]
	b_5	A_1	A_1	2	1	$\begin{pmatrix} 0 & 1 & -1 \end{pmatrix} @ \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} [-2,4,-20,23]$
	b_6	A_1	A_1	2	1	$\left(\begin{array}{ccc} 1 & 0 & -1 \end{array} \right) @ \left(\begin{array}{ccc} \frac{1}{2} & 0 & \frac{1}{2} \end{array} \right) \ \left[\begin{array}{ccc} [5,-12,13,-19] \end{array} \right]$
	b_7	A_1	A_1	2	1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	b_8	A_1	A_1	2	1	$(1 0 1) @ (\frac{1}{2} 0 \frac{1}{2})$ [-8,11,-14,22]
	b_9	A_1	A_1	2	1	$\left[\begin{array}{cccc} \left(1 & 1 & 0 \right) @ \left(\frac{1}{2} & \frac{1}{2} & 0 \right) & \left[-9,15,-17,21 \right] \end{array} \right]$

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_8[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_2(\boldsymbol{k}) = \mathbb{X}_8[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_9[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_1)}]$$

$$\hat{\mathbb{Z}}_3(\mathbf{k}) = \mathbb{X}_9[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_4 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_4(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_1)}]$$

No. 5
$$\hat{\mathbb{Q}}_4^{(A_1)}(1,-1)$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_5 = -\frac{\sqrt{3}\mathbb{X}_2[\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_5[\mathbb{T}_{4,0}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_3[\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_6[\mathbb{T}_{4,1}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]\otimes\mathbb{Y}_7[\mathbb{M}_{1,2}^{(b,T_1)}(1,-1)]}{3} - \frac{\mathbb{X}_4[\mathbb{M}_{$$

$$\hat{\mathbb{Z}}_{5}(\boldsymbol{k}) = -\frac{\sqrt{3}\mathbb{X}_{2}[\mathbb{M}_{1,0}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{4}[\mathbb{T}_{4,0}^{(k,T_{1})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{3}[\mathbb{M}_{1,1}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{5}[\mathbb{T}_{4,1}^{(k,T_{1})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{6}[\mathbb{T}_{4,2}^{(k,T_{1})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} - \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} - \frac{\mathbb{W}_{1,2}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} - \frac{\mathbb{W}_{1,2}[\mathbb{Q}_{0}^{(s,A_{1})}]}{$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_6 = \mathbb{X}_8[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_6(\boldsymbol{k}) = \mathbb{X}_8[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_1)}]$$

No. 7
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_7 = \mathbb{X}_9[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_2[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{7}(\mathbf{k}) = \mathbb{X}_{9}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{1})}]$$

No. 8
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_8 = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,0}^{(a,E)}] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{2,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,1}^{(a,E)}] \otimes \mathbb{Y}_{4}[\mathbb{Q}_{2,1}^{(b,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{8}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,0}^{(a,E)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,1}^{(a,E)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E)}]}{2}$$

No. 9
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E)}(1,-1)] \otimes \mathbb{Y}_4[\mathbb{Q}_{2,1}^{(b,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{9}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E)}]}{2}$$

No. 10
$$\hat{\mathbb{Q}}_{4}^{(A_1)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{10} = -\frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{M}_{1,0}^{(a,T_1)}] \otimes \mathbb{Y}_{5}[\mathbb{T}_{4,0}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{1,1}^{(a,T_1)}] \otimes \mathbb{Y}_{6}[\mathbb{T}_{4,1}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{Y}_{7}[\mathbb{T}_{4,2}^{(b,T_1)}]}{3}$$

$$\hat{\mathbb{Z}}_{10}(\textbf{\textit{k}}) = -\frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{M}_{1,0}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_4[\mathbb{T}_{4,0}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{1,1}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_5[\mathbb{T}_{4,1}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_6[\mathbb{T}_{4,2}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}]}{3} - \frac{\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}]}{3} - \frac{\mathbb{$$

No. 11
$$\hat{\mathbb{Q}}_4^{(A_1)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{11} = -\frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{M}_{1,0}^{(a,T_1)}(1,1)]\otimes\mathbb{Y}_{5}[\mathbb{T}_{4,0}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,1}^{(a,T_1)}(1,1)]\otimes\mathbb{Y}_{6}[\mathbb{T}_{4,1}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)]\otimes\mathbb{Y}_{7}[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)]\otimes\mathbb{Y}_{7}[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} - \frac{\mathbb{X}_{11}[\mathbb{T}_{11}^{(a,T_1)}(1,1)]\otimes\mathbb{Y}_{12}[\mathbb{T}$$

$$\hat{\mathbb{Z}}_{11}(\textbf{\textit{k}}) = -\frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{M}_{1,0}^{(a,T_1)}(1,1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{4}[\mathbb{T}_{4,0}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,1}^{(a,T_1)}(1,1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{4,1}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{6}[\mathbb{T}_{4,2}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{6}[\mathbb{T}_{4,2}^{(k,T_1)}]\otimes\mathbb{F}_{6}$$

No. 12 $\hat{\mathbb{Q}}_{4}^{(A_1)}(1,-1)$ [M₃, B₁]

$$\hat{\mathbb{Z}}_{12} = -\frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_{5}[\mathbb{T}_{4,0}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_{6}[\mathbb{T}_{4,1}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_{7}[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_{7}[\mathbb{T}_{4,2}^{(b,T_1)}]}}{3} - \frac{\mathbb{X}_{1,2}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_{7}[\mathbb{T}_{4,2}^{(b,T_1)}]}}{3} - \frac{\mathbb{X}_{1,2}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_{7}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]}}{3} - \frac{\mathbb{X}_{1,2}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{Y}_{7}$$

$$\hat{\mathbb{Z}}_{12}(\textbf{\textit{k}}) = -\frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{4}[\mathbb{T}_{4,0}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{5}[\mathbb{T}_{4,1}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{6}[\mathbb{T}_{4,2}^{(k,T_1)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_1)}]\otimes\mathbb{F}_{6}[\mathbb{T}_{4,2}^{(k,T_1)}]\otimes\mathbb{F}$$

No. 13
$$\hat{\mathbb{Q}}_4^{(A_1)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{13} = \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{M}_{3,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{5}[\mathbb{T}_{4,0}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{M}_{3,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{6}[\mathbb{T}_{4,1}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{7}[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}_{4,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{40}[\mathbb{T}$$

$$\hat{\mathbb{Z}}_{13}(\textbf{\textit{k}}) = \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{M}_{3,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_4[\mathbb{T}_{4,0}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{M}_{3,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_5[\mathbb{T}_{4,1}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_6[\mathbb{T}_{4,2}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_6[\mathbb{T}_{4,2}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_6[\mathbb{T}_{4,2}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_6[\mathbb{Q}_0^{(s,A_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{$$

No. 14
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{14} = \mathbb{X}_1[\mathbb{Q}_0^{(a, A_1)}] \otimes \mathbb{Y}_8[\mathbb{Q}_0^{(b, A_1)}]$$

$$\hat{\mathbb{Z}}_{14}(\mathbf{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_7[\mathbb{Q}_0^{(k,A_1)}]$$

No. 15
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{15} = \frac{\sqrt{3}\mathbb{X}_2[\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1,0}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_3[\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1,1}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{M}_{1,2}^{(b,T_1)}]}}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]}}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]}}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]}}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_1)}($$

$$\hat{\mathbb{Z}}_{15}(\textbf{\textit{k}}) = \frac{\sqrt{3}\mathbb{X}_{2}[\mathbb{M}_{1,0}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1,0}^{(k,T_{1})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{3}[\mathbb{M}_{1,1}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,1}^{(k,T_{1})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{15$$

No. 16
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{16} = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{M}_{2,0}^{(a,T_{2})}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{2,0}^{(b,T_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{M}_{2,1}^{(a,T_{2})}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,T_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{M}_{2,2}^{(a,T_{2})}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,2}^{(b,T_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{M}_{2,2}^{(a,T_{2})}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{M}_{2,2}^{(a,T_{2})}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{M}_{2$$

$$\hat{\mathbb{Z}}_{16}(\textbf{\textit{k}}) = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{M}_{2,0}^{(a,T_{2})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{2,0}^{(k,T_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{M}_{2,1}^{(a,T_{2})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{2,1}^{(k,T_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{M}_{2,2}^{(a,T_{2})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{2,2}^{(k,T_{2})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{M}_{2,2}^{(a,T_{2})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{18}[\mathbb{Q}_{2,2}^{(s,A_{1})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,2}^{(s,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{2,2}^{(s,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{1}[\mathbb{Q}_{2,2}^{(s,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{Z}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}(1$$

No. 17
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{17} = \mathbb{X}_8[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{Y}_8[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{17}(\mathbf{k}) = \mathbb{X}_8[\mathbb{Q}_0^{(a,A_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_7[\mathbb{Q}_0^{(k,A_1)}]$$

No. 18
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{18} = \mathbb{X}_9[\mathbb{Q}_0^{(a,A_1)}(1,1)] \otimes \mathbb{Y}_8[\mathbb{Q}_0^{(b,A_1)}]$$

$$\hat{\mathbb{Z}}_{18}(\mathbf{k}) = \mathbb{X}_{9}[\mathbb{Q}_{0}^{(a,A_{1})}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{7}[\mathbb{Q}_{0}^{(k,A_{1})}]$$

No. 19
$$\hat{\mathbb{Q}}_0^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{19} = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,0}^{(a,E)}] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,1}^{(a,E)}] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,1}^{(b,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{19}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{2,0}^{(a,E)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,0}^{(k,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{11}[\mathbb{Q}_{2,1}^{(a,E)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(k,E)}]}{2}$$

No. 20
$$\hat{\mathbb{G}}_{4}^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{20} = \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,0}^{(a,T_2)}] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{3,0}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,1}^{(a,T_2)}] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{3,1}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{2,2}^{(a,T_2)}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,2}^{(b,T_2)}]}{3}$$

$$\hat{\mathbb{Z}}_{20}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{Q}_{2,0}^{(a,T_2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{3,0}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{Q}_{2,1}^{(a,T_2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{3,1}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{2,2}^{(a,T_2)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{3,2}^{(k,T_2)}]}{3}$$

No. 21
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{21} = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E)}(1,-1)]\otimes\mathbb{Y}_{9}[\mathbb{Q}_{2,0}^{(b,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E)}(1,-1)]\otimes\mathbb{Y}_{10}[\mathbb{Q}_{2,1}^{(b,E)}]}{2}$$

$$\hat{\mathbb{Z}}_{21}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{15}[\mathbb{Q}_{2,0}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{2,0}^{(k,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(k,E)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,1}^{(a,E)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]}{2} \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,1}^{(k,E)}]}$$

No. 22 $\hat{\mathbb{G}}_{4}^{(A_1)}(1,-1)$ [M₃, B₂]

$$\hat{\mathbb{Z}}_{22} = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,0}^{(a,T_2)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{3,0}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(a,T_2)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{3,1}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{2,2}^{(a,T_2)}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,2}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{3,2}^{(a,T_2)}(1,-1)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,2}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{3,2}^{(a,T_2)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{3,2}^{(a,T_2)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{3,2}^{(a,T_2)}(1,-1)]}{3} + \frac{\sqrt$$

$$\hat{\mathbb{Z}}_{22}(\boldsymbol{k}) \\ = \frac{\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,0}^{(a,T_2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{10}[\mathbb{Q}_{3,0}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(a,T_2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{11}[\mathbb{Q}_{3,1}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{2,2}^{(a,T_2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{12}[\mathbb{Q}_{3,2}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_{2,2}^{(a,T_2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{12}[\mathbb{Q}_3^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_3^{(k,T_2)}] \otimes \mathbb{F}_{12}[\mathbb{Q}_3^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_3^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_3^{(k,T_2)}] \otimes \mathbb{Q}_3^{(k,T_2)}}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{Q}_3^{(k,T_2)}]}{3} + \frac{\sqrt{3}$$

No. 23
$$\hat{\mathbb{G}}_0^{(A_1)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{23} = \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{M}_{1,0}^{(a,T_1)}] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1,0}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{1,1}^{(a,T_1)}] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1,1}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{($$

$$\hat{\mathbb{Z}}_{23}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{20}[\mathbb{M}_{1,0}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1,0}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{21}[\mathbb{M}_{1,1}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,1}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{22}[\mathbb{M}_{1,2}^{(a,T_1)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_0^{(s,A_1)}]}{3} \otimes \mathbb{F}_{15}[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{$$

No. 24
$$\hat{\mathbb{G}}_0^{(A_1)}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{24} = \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{M}_{1,0}^{(a,T_1)}(1,1)] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1,0}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,1}^{(a,T_1)}(1,1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1,1}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(a,T_1)}(1,1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)] \otimes \mathbb{Y}_{16}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)]}{3} + \frac{\sqrt{3}\mathbb$$

$$\hat{\mathbb{Z}}_{24}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{23}[\mathbb{M}_{1,0}^{(a,T_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1,0}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{24}[\mathbb{M}_{1,1}^{(a,T_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,1}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{25}[\mathbb{M}_{1,2}^{(a,T_1)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{15}[\mathbb$$

No. 25
$$\hat{\mathbb{G}}_0^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{25} = \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1,0}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1,1}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(a,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(a,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(a,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{M}_{1,2}^{(a,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]}{3} + \frac$$

$$= \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{13}[\mathbb{T}_{1,0}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{14}[\mathbb{T}_{1,1}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_0^{(s,A_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)]}{3} + \frac{$$

No. 26
$$\hat{\mathbb{G}}_4^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{26} = \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{M}_{3,0}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{T}_{1,0}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{M}_{3,1}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{15}[\mathbb{T}_{1,1}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(a,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)] \otimes \mathbb{Y}_{16}[\mathbb{T}_{1,2}^{(b,T_1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_1)}($$

$$\hat{\mathbb{Z}}_{26}(m{k})$$

$$=\frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{M}_{3,0}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{13}[\mathbb{T}_{1,0}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{M}_{3,1}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{14}[\mathbb{T}_{1,1}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{T}_{1,2}^{(k,T_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{3,2}^{(a,T_{1})}(1,-1)]\otimes\mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3}+\frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{F}_{15}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3}+\frac{\sqrt{3}\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3}+\frac{\sqrt{3}\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3}+\frac{\sqrt{3}\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]}{3}+\frac{\sqrt{3}\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1})}]\otimes\mathbb{Z}_{31}[\mathbb{Q}_{0}^{(s,A_{1$$

No. 27
$$\hat{\mathbb{Q}}_{4}^{(A_1)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{27} = -\frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3,0}^{(a,T_2)}(1,-1)]\otimes\mathbb{Y}_{17}[\mathbb{T}_{2,0}^{(b,T_2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{3,1}^{(a,T_2)}(1,-1)]\otimes\mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,T_2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{3,2}^{(a,T_2)}(1,-1)]\otimes\mathbb{Y}_{19}[\mathbb{T}_{2,2}^{(b,T_2)}]}{3}$$

$$\begin{split} \hat{\mathbb{Z}}_{27}(\boldsymbol{k}) &= -\frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{3,0}^{(a,T_2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{16}[\mathbb{T}_{2,0}^{(k,T_2)}]}{3} - \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{3,1}^{(a,T_2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{17}[\mathbb{T}_{2,1}^{(k,T_2)}]}{3} \\ &- \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{3,2}^{(a,T_2)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{18}[\mathbb{T}_{2,2}^{(k,T_2)}]}{3} \end{split}$$

No. 28
$$\hat{\mathbb{Q}}_0^{(A_1)}(1,0)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{28} = \frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{T}_{2,0}^{(a,T_2)}(1,0)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{2,0}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{36}[\mathbb{T}_{2,1}^{(a,T_2)}(1,0)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{2,1}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{T}_{2,2}^{(a,T_2)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,2}^{(b,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{T}_{2,2}^{(a,T_2)}(1,0)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{2,2}^{(a,T_2)}(1,0)]}{3} + \frac{\sqrt{3}\mathbb{X}_{$$

$$\hat{\mathbb{Z}}_{28}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{T}_{2,0}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{16}[\mathbb{T}_{2,0}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{36}[\mathbb{T}_{2,1}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{17}[\mathbb{T}_{2,1}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{T}_{2,2}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{18}[\mathbb{T}_{2,2}^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{T}_{2,2}^{(a,T_2)}(1,0)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_1)}] \otimes \mathbb{F}_{18}[\mathbb{T}_2^{(k,T_2)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{T}_2^{(a,T_2)}(1,0)] \otimes \mathbb{T}_{2,2}^{(a,T_2)}}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{T}_2^{(a,$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_1)}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_3	$\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)$	M_1	$egin{pmatrix} (0 & -rac{\sqrt{2}i}{2} \ rac{\sqrt{2}i}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)$	M_1	$\begin{pmatrix} 2 & \sqrt{2}i \\ 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$
	$\mathbb{M}_{2,0}^{(a,T_2)}(1,-1)$	M_2	$egin{pmatrix} 0 & 0 & rac{1}{2} & 0 & 0 & -rac{i}{2} \ 0 & 0 & 0 & -rac{1}{2} & rac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{M}_{2,1}^{(a,T_2)}(1,-1)$ $\mathbb{M}_{2,2}^{(a,T_2)}(1,-1)$	M_2	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix} $
\mathbb{X}_7	$\mathbb{M}_{2,2}^{(a,T_2)}(1,-1)$	M_2	$egin{pmatrix} 0 & -rac{i}{2} & 0 & rac{1}{2} & 0 & 0 \ rac{i}{2} & 0 & rac{1}{2} & 0 & 0 \end{pmatrix}$
X ₈	$\mathbb{Q}_0^{(a,A_1)}$	M_3	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_9	$\mathbb{Q}_0^{(a,A_1)}(1,1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{10}	$\mathbb{Q}_{2,0}^{(a,E)}$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{X}_{11}	$\mathbb{Q}_{2,1}^{(a,E)}$	$ m M_3$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
\mathbb{X}_{12}	$\mathbb{Q}_{2,0}^{(a,T_2)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{13}	$\mathbb{Q}_{2,1}^{(a,T_2)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

symbol	type	group	form
\mathbb{X}_{14}	$\mathbb{Q}_{2,2}^{(a,T_2)}$	M_3	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{15}	$\mathbb{Q}_{2,0}^{(a,E)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}i}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$
X16	$\mathbb{Q}_{2,1}^{(a,E)}(1,-1)$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{17}	$\mathbb{Q}_{2,0}^{(a,T_2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{1}{4} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{18}	$\mathbb{Q}_{2,1}^{(a,T_2)}(1,-1)$	M_3	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$

symbol	type	group	form
X ₁₉	$\mathbb{Q}_{2,2}^{(a,T_2)}(1,-1)$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{20}	$\mathbb{M}_{1,0}^{(a,T_1)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{21}	$\mathbb{M}_{1,1}^{(a,T_1)}$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{22}	$\mathbb{M}_{1,2}^{(a,T_1)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{23}	$\mathbb{M}_{1,0}^{(a,T_1)}(1,1)$	$ m M_3$	$ \begin{pmatrix} 0 & \frac{\sqrt{30}}{15} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{20} & 0 \\ \frac{\sqrt{30}}{15} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{20} \\ 0 & -\frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 \\ \frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & 0 \\ \frac{\sqrt{30}}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{30}}{30} \\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \end{pmatrix} $

Table 6

	T		
symbol	type	group	form
\mathbb{X}_{24}	$\mathbb{M}_{1,1}^{(a,T_1)}(1,1)$	$ m M_3$	$ \begin{bmatrix} 0 & \frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 \\ -\frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{15} & \frac{\sqrt{30}}{20} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{15} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & \frac{\sqrt{30}i}{30} \\ 0 & 0 & 0 & -\frac{\sqrt{30}}{20} & -\frac{\sqrt{30}i}{30} & 0 \end{bmatrix} $
\mathbb{X}_{25}	$\mathbb{M}_{1,2}^{(a,T_1)}(1,1)$	$ m M_3$	$ \begin{pmatrix} -\frac{\sqrt{30}}{30} & 0 & 0 & 0 & 0 & \frac{\sqrt{30}}{20} \\ 0 & \frac{\sqrt{30}}{30} & 0 & 0 & \frac{\sqrt{30}}{20} & 0 \\ 0 & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & 0 & \frac{\sqrt{30}}{30} & \frac{\sqrt{30}i}{20} & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{15} \end{pmatrix} $
\mathbb{X}_{26}	$\mathbb{M}_{1,0}^{(a,T_1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{27}	$\mathbb{M}_{1,1}^{(a,T_1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0\\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0\\ 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{28}	$\mathbb{M}_{1,2}^{(a,T_1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$

symbol	type	group	form
\mathbb{X}_{29}	$\mathbb{M}_{3,0}^{(a,T_1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{5}}{5} & 0 & \frac{\sqrt{5}i}{10} & -\frac{\sqrt{5}}{10} & 0\\ \frac{\sqrt{5}}{5} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & \frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0\\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10}\\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \end{pmatrix}$
\mathbb{X}_{30}	$\mathbb{M}_{3,1}^{(a,T_1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0\\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{5} & -\frac{\sqrt{5}}{10} & 0\\ -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{5} & 0 & 0 & \frac{\sqrt{5}}{10}\\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10}\\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \end{pmatrix}$
\mathbb{X}_{31}	$\mathbb{M}_{3,2}^{(a,T_1)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{10} & \frac{\sqrt{5}}{5} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & -\frac{\sqrt{5}}{5} \end{pmatrix} $
\mathbb{X}_{32}	$\mathbb{M}_{3,0}^{(a,T_2)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \end{pmatrix} $
\mathbb{X}_{33}	$\mathbb{M}_{3,1}^{(a,T_2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0\\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0\\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6}\\ 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} \end{pmatrix}$

symbol	type	group	$_{ m form}$
X34	$\mathbb{M}_{3,2}^{(a,T_2)}(1,-1)$	M ₃	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{35}	$\mathbb{T}_{2,0}^{(a,T_2)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$
\mathbb{X}_{36}	$\mathbb{T}_{2,1}^{(a,T_2)}(1,0)$	$ m M_3$	
\mathbb{X}_{37}	$\mathbb{T}_{2,2}^{(a,T_2)}(1,0)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ 0 & -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	(1)

Table 7

-			
symbol	type	cluster	form
\mathbb{Y}_2	$\mathbb{Q}_0^{(b,A_1)}$	B_1	$\left(\begin{array}{ccc} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 & \end{array} \right)$
\mathbb{Y}_3	$\mathbb{Q}_{2,0}^{(b,E)}$	B_1	$\left(-\frac{\sqrt{6}}{3} \frac{\sqrt{6}}{6} \frac{\sqrt{6}}{6}\right)$
\mathbb{Y}_4	$\mathbb{Q}_{2.1}^{(b,E)}$	B_1	$\left(0 - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right)'$
\mathbb{Y}_5	$\mathbb{T}_{4,0}^{(b,T_1)}$	B_1	$\begin{pmatrix} 0 & i & 0 \end{pmatrix}$
\mathbb{Y}_6	$\mathbb{T}_{4,1}^{(b,T_1)}$	B_1	$\begin{pmatrix} 0 & 0 & i \end{pmatrix}$
\mathbb{Y}_7	$\mathbb{T}^{(b,T_1)}$	B_1	$\begin{pmatrix} i & 0 & 0 \end{pmatrix}$
\mathbb{Y}_8	$\mathbb{Q}_0^{(b,A_1)}$	B_2	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{Y}_9	$\mathbb{Q}_{2,0}^{(b,E)}$	B_2	$ \left(-\frac{\sqrt{3}}{6} - \frac{\sqrt{3}}{6} - \frac{\sqrt{3}}{6} - \frac{\sqrt{3}}{6} \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{6} \frac{\sqrt{3}}{3} \right) $
\mathbb{Y}_{10}	$\mathbb{Q}_{2,1}^{(b,E)}$	B_2	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{11}	$\mathbb{Q}_{3,0}^{(b,T_2)}$	B_2	$ \begin{pmatrix} \sqrt{2} & 2 & 2 & 2 & 2 & 2 \\ \sqrt{2} & -\sqrt{2} & 2 & 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{Y}_{12}	$\mathbb{Q}_{3,1}^{(b,T_2)}$	$_{ m B_2}$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{Y}_{13}	$\mathbb{Q}_{3,2}^{(b,T_2)}$	$_{\mathrm{B}_{2}}$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{Y}_{14}	$\mathbb{T}_{1,0}^{(b,T_1)}$	$_{ m B_2}$	$\left(0 0 \frac{i}{2} \frac{i}{2} \frac{i}{2} \frac{i}{2}\right)$
\mathbb{Y}_{15}	$\mathbb{T}_{1,1}^{(b,T_1)}$	$_{\mathrm{B}_{2}}$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{16}	$\mathbb{T}_{1,2}^{(b,T_1)}$	$_{ m B_2}$	$\left(\begin{array}{ccccc} \frac{i}{2} & -\frac{i}{2} & -\frac{i}{2} & 0 & \frac{i}{2} & 0 \end{array}\right)$
\mathbb{Y}_{17}	$\mathbb{T}_{2,0}^{(b,T_2)}$	$_{\mathrm{B}_{2}}$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{18}	$\mathbb{T}_{2,1}^{(b,T_2)}$	B_2	$\left(egin{array}{ccccc} -rac{i}{2} & -rac{i}{2} & 0 & -rac{i}{2} & 0 & rac{i}{2} \end{array} ight)$
\mathbb{Y}_{19}	$\mathbb{T}_{2,2}^{(b,T_2)}$	B_2	

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_1)}$	S_1	(1)

Table 9: Structure SAMB.

$\begin{array}{ c c c c c } \hline \text{symbol} & \text{type} & \text{cluster} & \text{form} \\ \hline \hline F_1 & \mathbb{Q}_0^{(k,A_1)} & \mathbb{B}_1 & \frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{002}}{3} + \frac{\sqrt{6}c_{003}}{3} \\ \hline \mathbb{F}_2 & \mathbb{Q}_{2,0}^{(k,E)} & \mathbb{B}_1 & -\frac{2\sqrt{3}c_{001}}{3} + \frac{\sqrt{3}c_{003}}{3} + \frac{\sqrt{3}c_{003}}{3} \\ \hline \mathbb{F}_3 & \mathbb{Q}_{2,1}^{(k,E)} & \mathbb{B}_1 & -c_{002} + c_{003} \\ \hline \mathbb{F}_4 & \mathbb{T}_{4,0}^{(k,T_1)} & \mathbb{B}_1 & \sqrt{2}s_{002} \\ \hline \mathbb{F}_5 & \mathbb{T}_{4,1}^{(k,T_1)} & \mathbb{B}_1 & \sqrt{2}s_{003} \\ \hline \mathbb{F}_6 & \mathbb{T}_{4,2}^{(k,T_1)} & \mathbb{B}_1 & \sqrt{2}s_{001} \\ \hline \hline \mathbb{F}_7 & \mathbb{Q}_0^{(k,E)} & \mathbb{B}_2 & \frac{\sqrt{3}c_{004} + \frac{\sqrt{3}c_{005}}{3} + \frac{\sqrt{3}c_{005}}{3} + \frac{\sqrt{3}c_{007}}{3} + \frac{\sqrt{3}c_{008}}{3} + \frac{\sqrt{3}c_{008}}{3} \\ \hline \mathbb{F}_8 & \mathbb{Q}_{2,0}^{(k,E)} & \mathbb{B}_2 & -\frac{\sqrt{6}c_{004}}{6} - \frac{\sqrt{6}c_{005}}{6} - \frac{\sqrt{6}c_{006}}{6} + \frac{\sqrt{6}c_{007}}{3} - \frac{\sqrt{6}c_{008}}{6} + \frac{\sqrt{6}c_{009}}{3} \\ \hline \mathbb{F}_9 & \mathbb{Q}_{2,1}^{(k,E)} & \mathbb{B}_2 & \frac{\sqrt{2}c_{004}}{2} + \frac{\sqrt{2}c_{005}}{2} - \frac{\sqrt{2}c_{006}}{2} - \frac{\sqrt{2}c_{008}}{2} \\ \hline \mathbb{F}_{10} & \mathbb{Q}_{3,0}^{(k,T_2)} & \mathbb{B}_2 & c_{004} - c_{005} \\ \hline \mathbb{F}_{11} & \mathbb{Q}_{3,1}^{(k,T_1)} & \mathbb{B}_2 & -c_{007} + c_{009} \\ \hline \mathbb{F}_{13} & \mathbb{T}_{1,0}^{(k,T_1)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} + \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} \\ \hline \mathbb{F}_{14} & \mathbb{T}_{1,1}^{(k,T_1)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{004}}{2} + \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} \\ \hline \mathbb{F}_{15} & \mathbb{T}_{1,2}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} \\ \hline \mathbb{F}_{16} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \hline \mathbb{F}_{16} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \hline \mathbb{F}_{17} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \hline \mathbb{F}_{17} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \hline \mathbb{F}_{18} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{009}}{2} - \frac{\sqrt{2}s_{$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	symbol	type	cluster	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_1	$\mathbb{Q}_0^{(k,A_1)}$	B_1	$\frac{\sqrt{6}c_{001}}{3} + \frac{\sqrt{6}c_{002}}{3} + \frac{\sqrt{6}c_{003}}{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_2	$\mathbb{Q}_{2,0}^{(k,E)}$	B_1	$-\frac{2\sqrt{3}c_{001}}{3} + \frac{\sqrt{3}c_{002}}{3} + \frac{\sqrt{3}c_{003}}{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_3		B_1	$-c_{002} + c_{003}$
$\begin{array}{ c c c c c c }\hline F_6 & T_{4,T}^{(k,T_1)} & B_1 & \sqrt{2}s_{001} \\\hline \hline F_7 & \mathbb{Q}_0^{(k,A_1)} & B_2 & \frac{\sqrt{3}c_{004} + \sqrt{3}c_{005}}{3} + \frac{\sqrt{3}c_{006}}{3} + \frac{\sqrt{3}c_{007}}{3} + \frac{\sqrt{3}c_{008}}{3} + \frac{\sqrt{6}c_{008}}{3} + \frac{\sqrt{6}c_{008$	\mathbb{F}_4	$\mathbb{T}_{4,0}^{(k,T_1)}$	B_1	$\sqrt{2}s_{002}$
$\begin{array}{ c c c c c }\hline \mathbb{F}_7 & \mathbb{Q}_0^{(k,A_1)} & \mathbb{B}_2 & \frac{\sqrt{3}c_{004}}{3} + \frac{\sqrt{3}c_{005}}{3} + \frac{\sqrt{3}c_{006}}{3} + \frac{\sqrt{3}c_{007}}{3} + \frac{\sqrt{3}c_{008}}{3} + \frac{\sqrt{3}c_{009}}{3} \\ \mathbb{F}_8 & \mathbb{Q}_{2,0}^{(k,E)} & \mathbb{B}_2 & -\frac{\sqrt{6}c_{004}}{6} - \frac{\sqrt{6}c_{006}}{6} - \frac{\sqrt{6}c_{006}}{6} + \frac{\sqrt{6}c_{009}}{3} - \frac{\sqrt{6}c_{008}}{6} + \frac{\sqrt{6}c_{009}}{3} \\ \mathbb{F}_9 & \mathbb{Q}_{2,1}^{(k,E)} & \mathbb{B}_2 & \frac{\sqrt{2}c_{004}}{2} + \frac{\sqrt{2}c_{005}}{2} - \frac{\sqrt{2}c_{006}}{2} - \frac{\sqrt{2}c_{008}}{2} \\ \mathbb{F}_{10} & \mathbb{Q}_{3,0}^{(k,T_2)} & \mathbb{B}_2 & c_{004} - c_{005} \\ \mathbb{F}_{11} & \mathbb{Q}_{3,1}^{(k,T_2)} & \mathbb{B}_2 & -c_{004} + c_{008} \\ \mathbb{F}_{12} & \mathbb{Q}_{3,2}^{(k,T_2)} & \mathbb{B}_2 & -c_{007} + c_{009} \\ \mathbb{F}_{13} & \mathbb{T}_{1,0}^{(k,T_1)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{004}}{2} + \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{009}}{2} \\ \mathbb{F}_{14} & \mathbb{T}_{1,1}^{(k,T_1)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{004}}{2} + \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{006}}{2} + \frac{\sqrt{2}s_{009}}{2} \\ \mathbb{F}_{15} & \mathbb{T}_{1,2}^{(k,T_1)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{006}}{2} + \frac{\sqrt{2}s_{008}}{2} \\ \mathbb{F}_{16} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} - \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \mathbb{F}_{16} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \mathbb{F}_{16} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \mathbb{F}_{16} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \mathbb{F}_{16} & \mathbb{T}_{2,0}^{(k,T_2)} & \mathbb{B}_2 & \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{007}}{2} + \frac{\sqrt{2}s_{008}}{2} - \frac{\sqrt{2}s_{009}}{2} \\ \mathbb{F}_{17} & \mathbb{F}_{17} & \mathbb{F}_{17} & \mathbb{F}_{17} & \mathbb{F}_{18} & \mathbb{F}_{$	\mathbb{F}_5	-4.1	B_1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_6	$\mathbb{T}_{4,2}^{(k,T_1)}$	B_1	$\sqrt{2}s_{001}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_7	$\mathbb{Q}_0^{(k,A_1)}$	B_2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_8	$\mathbb{Q}_{2,0}^{(k,E)}$	B_2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_9	$\mathbb{Q}_{2,1}^{(k,E)}$	B_2	$rac{\sqrt{2}c_{004}}{2} + rac{\sqrt{2}c_{005}}{2} - rac{\sqrt{2}c_{006}}{2} - rac{\sqrt{2}c_{008}}{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_{10}		B_2	$c_{004}-c_{005}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_{11}		B_2	$-c_{006} + c_{008}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_{12}		$_{\mathrm{B}_{2}}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbb{F}_{13}		B_2	
$\mathbb{F}_{16} \mathbb{T}_{2,0}^{(i,T_2)} \mathbf{B}_2 \frac{\sqrt{2s_{006}}}{2} - \frac{\sqrt{2s_{007}}}{2} + \frac{\sqrt{2s_{008}}}{2} - \frac{\sqrt{2s_{009}}}{2}$	\mathbb{F}_{14}	$\mathbb{T}_{1,1}^{(k,T_1)}$	B_2	
	\mathbb{F}_{15}	$\mathbb{T}_{1,2}^{(k,T_1)}$	B_2	
\mathbb{R}_{-} $ \mathbb{T}(k,T_2) \mathbb{R}_{0}$ $ \sqrt{2}s_{004} \sqrt{2}s_{005} \sqrt{2}s_{007} \sqrt{2}s_{009}$	\mathbb{F}_{16}	$\mathbb{T}_{2,0}^{(k,T_2)}$	B_2	
	\mathbb{F}_{17}	$\mathbb{T}_{2,1}^{(k,T_2)}$	B_2	$-rac{\sqrt{2}s_{004}}{2} - rac{\sqrt{2}s_{005}}{2} - rac{\sqrt{2}s_{007}}{2} + rac{\sqrt{2}s_{009}}{2}$
$\mathbb{F}_{18} \mathbb{T}_{2,2}^{(k,T_2)} \mathbf{B}_2 \frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} + \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{008}}{2}$	\mathbb{F}_{18}	$\mathbb{T}_{2,2}^{(k,T_2)}$	B_2	$\frac{\sqrt{2}s_{004}}{2} - \frac{\sqrt{2}s_{005}}{2} + \frac{\sqrt{2}s_{006}}{2} - \frac{\sqrt{2}s_{008}}{2}$

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_1)}$	0	A_1	_	_	1
2	$\mathbb{Q}_{1,0}^{(T_1)}$	1	T_1	_	0	x
3	$\mathbb{Q}_{1,1}^{(T_1)}$	1	T_1	_	1	y
4	$\mathbb{Q}_{1,2}^{(T_1)}$	1	T_1	_	2	z

Table 10

No.	symbol	rank	irrep.	mul.	comp.	form
5	$\mathbb{Q}_{2,0}^{(E)}$	2	E	_	0	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,1}^{(E)}$	2	E	_	1	$\frac{\sqrt{3}(x-y)(x+y)}{2}$
7	$\mathbb{Q}_{2,0}^{(\hat{T}_2)}$	2	T_2	_	0	$\sqrt{3}yz$
8	$\mathbb{Q}_{2,1}^{(T_2)}$	2	T_2	_	1	$\sqrt{3}xz$
9	$\mathbb{Q}_{2,2}^{(T_2)}$	2	T_2	_	2	$\sqrt{3}xy$
10	$\mathbb{Q}_{3,0}^{(T_2)}$	3	T_2	-	0	$\frac{\sqrt{15}x(y-z)(y+z)}{2}$
11	$\mathbb{Q}_{3,1}^{(T_2)}$	3	T_2	_	1	$-\frac{\sqrt{15}y(x-z)(x+z)}{2}$
12	$\mathbb{Q}_{3,2}^{(T_2)}$	3	T_2	_	2	$\frac{\sqrt{15}z(x-y)(x+y)}{2}$
13	$\mathbb{Q}_{4,0}^{(T_1)}$	4	T_1	_	0	$\frac{\sqrt{35}yz(y-z)(y+z)}{2}$
14	$\mathbb{Q}_{4,1}^{(T_1)}$	4	T_1	_	1	$-\frac{\sqrt{35}xz(x-z)(x+z)}{2}$
15	$\mathbb{Q}_{4,2}^{(T_1)}$	4	T_1	_	2	$\frac{\sqrt{35}xy(x-y)(x+y)}{2}$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_{1,0}^{(T_1)}$	1	T_1	_	0	X
2	$\mathbb{G}_{1,1}^{(T_1)}$	1	T_1	_	1	Y
3	$\mathbb{G}_{1,2}^{(T_1)}$	1	T_1	_	2	Z
4	$\mathbb{G}_{2,0}^{(T_2)}$	2	T_2	_	0	$\sqrt{3}YZ$
5	$\mathbb{G}_{2,1}^{(T_2)}$	2	T_2	_	1	$\sqrt{3}XZ$
6	$\mathbb{G}_{2,2}^{(T_2)}$	2	T_2	_	2	$\sqrt{3}XY$
7	$\mathbb{G}_{3,0}^{(T_1)}$	3	T_1	_	0	$\frac{X(2X^2-3Y^2-3Z^2)}{2}$
8	$\mathbb{G}_{3,1}^{(T_1)}$	3	T_1	_	1	$-\frac{X(2X-3Y-3Z)}{2(3X^2-2Y^2+3Z^2)}$ $-\frac{Y(3X^2-2Y^2+3Z^2)}{2(3X^2+3Y^2-2Z^2)}$
9	$\mathbb{G}_{3,2}^{(T_1)}$	3	T_1	_	2	$-\frac{2(611+61-222)}{2}$
10	$\mathbb{G}_{3,0}^{(T_2)}$	3	T_2	_	0	$\frac{\sqrt{15}X(Y-Z)(Y+Z)}{2}$
11	$\mathbb{G}_{3,1}^{(T_2)}$	3	T_2	_	1	$-\frac{\sqrt{15}Y(X-Z)(X+Z)}{2}$
12	$\mathbb{G}_{3,2}^{(T_2)}$	3	T_2	_	2	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$

 \bullet Group info.: Generator = $\{2_{001}|0\},~\{2_{010}|0\},~\{3_{~111}^{+}|0\},~\{2_{110}|0\}$

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 0\}$	$\{2_{001} 0\}, \{2_{100} 0\}, \{2_{010} 0\}$
$\{2_{110} 0\}$	$\{2_{110} 0\}, \{2_{101} 0\}, \{2_{011} 0\}, \{2_{1-10} 0\}, \{2_{-101} 0\}, \{2_{01-1} 0\}$
$\{3^{+}_{111} 0\}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\{4^{+}_{001} 0\}$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
 1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{2_{110} 0\}$
6	$\{2_{101} 0\}$	7	$\{2_{011} 0\}$	8	$\{2_{1-10} 0\}$	9	$\{2_{-101} 0\}$	10	$\{2_{01-1} 0\}$
11	$\{3^{+}_{111} 0\}$	12	$\{3^+_{1-1-1} 0\}$	13	$\{3^{+}_{-11-1} 0\}$	14	$\{3^{+}_{-1-11} 0\}$	15	$\{3^{-}_{111} 0\}$
16	$\{3^{1-1-1} 0\}$	17	$\{3^{-}_{-11-1} 0\}$	18	$\{3^{-}_{-1-11} 0\}$	19	$\{4^{+}_{001} 0\}$	20	$\{4^{+}_{100} 0\}$
21	$\{4^{+}_{010} 0\}$	22	$\{4^{-}_{001} 0\}$	23	$\{4^{-}_{100} 0\}$	24	$\{4^{-}_{010} 0\}$		

Table 14: Character table (point-group part).

	1	2_{001}	2_{110}	3^{+}_{111}	4^{+}_{001}
A_1	1	1	1	1	1
A_2	1	1	-1	1	-1
E	2	2	0	-1	0
T_1	3	-1	-1	0	1
T_2	3	-1	1	0	-1

Table 15: Parity conversion.

\longrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_1 (A_1)$	$A_2 (A_2)$	E(E)	T_1 (T_1)	T_2 (T_2)

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_1	A_2	E	T_1	T_2
$\overline{A_1}$	A_1	A_2	E	T_1	T_2
A_2		A_1	E	T_2	T_1
E			$A_1 + E$	$T_1 + T_2$	$T_1 + T_2$
T_1				$A_1 + E + T_2$	$A_2 + E + T_1 + T_2$
T_2					$A_1 + E + T_2$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_{-}$.

A_1	A_2	E	T_1	T_2
		A_2	T_1	T_1

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} -2 & -1 & 0 \end{pmatrix}$	3	$\begin{pmatrix} 2 & -1 & 0 \end{pmatrix}$	4	$\begin{pmatrix} -2 & 1 & 0 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$	6	$\begin{pmatrix} 0 & -1 & 2 \end{pmatrix}$	7	$\begin{pmatrix} -2 & 0 & 1 \end{pmatrix}$	8	$\begin{pmatrix} -1 & -2 & 0 \end{pmatrix}$
9	$\begin{pmatrix} 0 & -1 & -2 \end{pmatrix}$	10	$\begin{pmatrix} -2 & 0 & -1 \end{pmatrix}$	11	$\begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$	12	$\begin{pmatrix} 0 & -2 & 1 \end{pmatrix}$
13	$\begin{pmatrix} 0 & -2 & -1 \end{pmatrix}$	14	$\begin{pmatrix} 0 & 2 & -1 \end{pmatrix}$	15	$\begin{pmatrix} 1 & 0 & 2 \end{pmatrix}$	16	$\begin{pmatrix} -1 & 0 & -2 \end{pmatrix}$

Table 18

No.	position	No.	position	No.	position	No.	position
17	$\begin{pmatrix} -1 & 0 & 2 \end{pmatrix}$	18	$\begin{pmatrix} 1 & 0 & -2 \end{pmatrix}$	19	$\begin{pmatrix} -1 & 2 & 0 \end{pmatrix}$	20	$\begin{pmatrix} 2 & 0 & 1 \end{pmatrix}$
21	$\begin{pmatrix} 0 & 1 & -2 \end{pmatrix}$	22	$\begin{pmatrix} 1 & -2 & 0 \end{pmatrix}$	23	$\begin{pmatrix} 2 & 0 & -1 \end{pmatrix}$	24	$\begin{pmatrix} 0 & 1 & 2 \end{pmatrix}$

Table 19: Virtual-cluster basis.

symbol	1	2	3	4	5	6	7	8	9	10
$\mathbb{Q}_0^{(A_1)}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{1,0}^{(T_1)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$
	0	0	0	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$
	0	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0						
$\mathbb{Q}_{1,1}^{(T_1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0
	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	0	0	0	0	$\frac{\sqrt{10}}{10}$	0
	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$						
$\mathbb{Q}_{1,2}^{(T_1)}$	0	0	0	0	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$
	$-\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$						
$\mathbb{Q}_{2,0}^{(E)}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$
	$-\frac{\sqrt{39}}{78}$	$-\frac{\sqrt{39}}{78}$	$-\frac{\sqrt{39}}{78}$	$-\frac{\sqrt{39}}{78}$	$\frac{7\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$
	$\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$\frac{7\sqrt{39}}{156}$						
$\mathbb{Q}_{2,1}^{(E)}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$-\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$	$-\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$
	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{13}$	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$-\frac{3\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$
	$-\frac{\sqrt{13}}{52}$	$-\frac{3\sqrt{13}}{52}$	$\frac{\sqrt{13}}{13}$	$-\frac{\sqrt{13}}{52}$						
$\mathbb{Q}_{2,0}^{(T_2)}$	0	0	0	0	0	$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$	0
	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0	0	0	0	0

Table 19

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table 19										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	symbol	1	2	3	4	5	6	7	8	9	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{2,1}^{(T_2)}$	0	0	0	0	0	0	$-\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	$\frac{\sqrt{2}}{4}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	$-\frac{\sqrt{2}}{4}$	0						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{2,2}^{(T_2)}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	0	0	$\frac{\sqrt{2}}{4}$	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	0	0	0	0	0	$-\frac{\sqrt{2}}{4}$	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	$-\frac{\sqrt{2}}{4}$	0	0						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{3,0}^{(T_1)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$		0		$\frac{\sqrt{10}}{10}$	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0			0	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\frac{\sqrt{10}}{20}$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{3,1}^{(T_1)}$	10				$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$		0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$-\frac{\sqrt{10}}{20}$		0	0	0	0	$\frac{\sqrt{10}}{20}$	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{3,2}^{(T_1)}$		0							$-\frac{\sqrt{10}}{20}$	
			$-\frac{\sqrt{10}}{10}$		$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	0	$-\frac{\sqrt{10}}{10}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				10	20						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{3,0}^{(T_2)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$						
		0			0	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$
$ \begin{bmatrix} \frac{\sqrt{10}}{20} & -\frac{\sqrt{10}}{20} & -\frac{\sqrt{10}}{20} & \frac{\sqrt{10}}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{10}}{20} & 0 \\ \frac{\sqrt{10}}{10} & \frac{\sqrt{10}}{20} & 0 & \frac{\sqrt{10}}{10} & 0 & \frac{\sqrt{10}}{10} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{10}}{20} & \frac{\sqrt{10}}{10} & 0 & \frac{\sqrt{10}}{20} & -\frac{\sqrt{10}}{10} \\ -\frac{\sqrt{10}}{10} & -\frac{\sqrt{10}}{10} & \frac{\sqrt{10}}{10} & \frac{\sqrt{10}}{10} & \frac{\sqrt{10}}{20} & -\frac{\sqrt{10}}{20} & \frac{\sqrt{10}}{20} & -\frac{\sqrt{10}}{20} & 0 \\ \frac{\sqrt{10}}{20} & 0 & -\frac{\sqrt{10}}{10} & -\frac{\sqrt{10}}{20} & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$											
	$\mathbb{Q}_{3,1}^{(T_2)}$					$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$		0
				$-\frac{\sqrt{10}}{20}$		0	0	0	0	$-\frac{\sqrt{10}}{20}$	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbb{Q}_{3,2}^{(T_2)}$									$\frac{\sqrt{10}}{20}$	
			$-\frac{\sqrt{10}}{10}$			$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\frac{\sqrt{13}}{52}$ $\frac{3\sqrt{13}}{52}$ $-\frac{\sqrt{13}}{13}$ $\frac{\sqrt{13}}{52}$	$\mathbb{Q}_{4,0}^{(E)}$										
						$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$\frac{\sqrt{13}}{52}$	$\frac{3\sqrt{13}}{52}$	$-\frac{\sqrt{13}}{13}$
$\mathbb{Q}_{4,1}^{(E)} \frac{5\sqrt{39}}{156} \frac{5\sqrt{39}}{156} \frac{5\sqrt{39}}{156} \frac{5\sqrt{39}}{156} -\frac{5\sqrt{39}}{156} \frac{7\sqrt{39}}{156} -\frac{\sqrt{39}}{78} -\frac{5\sqrt{39}}{156} \frac{7\sqrt{39}}{156} -\frac{\sqrt{39}}{78}$											
	$\mathbb{Q}_{4,1}^{(E)}$	$\frac{5\sqrt{39}}{156}$	$\frac{5\sqrt{39}}{156}$	$\frac{5\sqrt{39}}{156}$	$\frac{5\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$-\frac{5\sqrt{39}}{156}$	$\frac{7\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$

Table 19

symbol	1	2	3	4	5	6	7	8	9	10
	$\frac{\sqrt{39}}{78}$	$\frac{\sqrt{39}}{78}$	$\frac{\sqrt{39}}{78}$	$\frac{\sqrt{39}}{78}$	$-\frac{7\sqrt{39}}{156}$	$-\frac{7\sqrt{39}}{156}$	$-\frac{7\sqrt{39}}{156}$	$-\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$
	$\frac{7\sqrt{39}}{156}$	$-\frac{5\sqrt{39}}{156}$	$-\frac{\sqrt{39}}{78}$	$\frac{7\sqrt{39}}{156}$						
$\mathbb{Q}_{4,0}^{(T_1)}$	0	0	0	0	0	$\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$	0
	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0	0	0	0	0
	$\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$						
$\mathbb{Q}_{4,1}^{(T_1)}$	0	0	0	0	0	0	$\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$
	0	0	0	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	$-\frac{\sqrt{2}}{4}$
	0	0	$\frac{\sqrt{2}}{4}$	0						
$\mathbb{Q}_{4,2}^{(T_1)}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	0	0	$-\frac{\sqrt{2}}{4}$	0	0
	0	0	0	0	0	0	0	0	$\frac{\sqrt{2}}{4}$	0
	0	$\frac{\sqrt{2}}{4}$	0	0						
$\mathbb{Q}_{5,0}^{(T_2)}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$
	0	0	0	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$
	0	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	0						
$\mathbb{Q}_{5,1}^{(T_2)}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$	0
	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	0	0	0	0	$-\frac{\sqrt{10}}{10}$	0
	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$						
$\mathbb{Q}_{5,2}^{(T_2)}$	0	0	0	0	0	$-\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{20}$	0	$\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{20}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	$\frac{\sqrt{10}}{10}$	$-\frac{\sqrt{10}}{10}$	0	$-\frac{\sqrt{10}}{20}$
	$\frac{\sqrt{10}}{10}$	0	$\frac{\sqrt{10}}{20}$	$-\frac{\sqrt{10}}{10}$						
$\mathbb{Q}_6^{(A_2)}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						