Assignment 1 - Linear Programming - Section A

Maxwell Bo Chantel Morris

March 17, 2018

Sets

C Set of cities

Q Set of quarters

Data

 i_c Current number of barrels in city $c \in C^{-1}$

 d_{cq} Predicted demand of barrels in $c \in C$ for quarter $q \in Q$

 c_q Predicted cost of dollars per barrel for quarter $q \in Q$

 m_c Maximum storage capacity of barrels in $c \in \mathbb{C}^{2}$

Variables

 x_{cq} Number of barrels to deliver to city $c \in C$ in quarter $q \in Q$

 $x_{cq} \ge 0$

 s_{cq} Number of barrels to store in city $c \in C$ at the end of quarter $q \in Q$

Objective

$$\min \sum_{c \in C} \sum_{q \in Q} 25s_{cq} + c_q x_{cq}$$

Constraints

$$s_{cq} \geq 0 \qquad \forall c \in C, \ \forall q \in Q \qquad (2)$$

$$\sum_{c \in C} x_{cq} \leq 10000 \qquad \forall q \in Q \qquad (3)$$

$$i_{c} + x_{cf} - d_{cf} = s_{cf} \qquad \forall c \in C \qquad (4)$$

$$s_{c(q-1)} + x_{cq} - d_{cq} = s_{cq} \qquad \forall c \in C, \ \forall q \in Q \setminus \{f\} \qquad (5)$$

$$s_{cl} \geq 3000 \qquad \forall c \in C \qquad (6)$$

$$s_{cq} \leq m_{c} \qquad \forall c \in C, \ \forall q \in Q \qquad (7)$$

 $\forall c \in C, \ \forall q \in Q$

(1)

where f is the first quarter, and l is the last quarter, where $f, l \in Q$.

- Constraints (1) and (2) are basic non-negativity constraints on our variables.
- Constraints (3) ensures that the amount shipped per quarter does not exceed the ships capacity.
- Constraints (4) and (5) describe a recursive relationship between initial supplies, new deliveries, demand, and the amount stored at the end of each quarter.
- Constarint (6) ensures that there at least 3000 barrels in storage in each port by the end of the last quarter.
- Constarint (7) ensures that we do not exceed the capacities of our facilities in each port.