

Calculus 3 Formulas

krista king

Partial Derivatives

Domain and range of a multivariable function

A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y).

Domain of f: The set D

Range of f: The set of values that f takes on

Level curves of a multivariable function

The level curves of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).

Precise definition of the limit of a multivariable function

Let f be a function of two variables whose domain D includes points arbitrarily close to (a,b). Then the limit of f(x,y) as (x,y) approaches (a,b) is L,

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for all $\epsilon>0$ there is a corresponding $\delta>0$ such that

if
$$(x,y) \in D$$
 and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then
$$\left| f(x,y) - L \right| < \epsilon$$

Existence of the limit of a multivariable function

lf

$$f(x,y) \rightarrow L_1$$
 as $(x,y) \rightarrow (a,b)$ along a path C_1 and

$$f(x,y) \to L_2$$
 as $(x,y) \to (a,b)$ along a path C_2

where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

Continuity of a multivariable function

A function f of two variables is continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

In other words, f is continuous at (a,b) if it's limit at (a,b) is equal to the actual value of the function at (a,b) We say f is continuous on D if f is continuous on every point (a,b) in D.

Definition of the derivative of a multivariable function

Partial derivative with respect to x

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

Partial derivative with respect to y

$$f_{y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

Notation of partial derivatives

If z = f(x, y), then we can write the

Partial derivative with respect to x as

$$f_x(x, y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x, y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

Partial derivative with respect to y as

$$f_{y}(x,y) = f_{y} = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_{2} = D_{2}f = D_{y}f$$

Rule for finding partial derivatives of z = f(x, y)

To find f_x , treat y as a constant and differentiate f(x, y) with respect to x.

To find f_y , treat x as a constant and differentiate f(x, y) with respect to y.

Clairaut's theorem for the mixed second-order partial derivative

Suppose f is defined on a disk D that contains the point (a,b). If the functions f_{xy} and f_{yx} (the mixed second-order partial derivatives) are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Equation of the tangent plane

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Differentiability of a multivariable function

If z = f(x, y), then f is differentiable at (a, b) if Δz can be expressed as

$$\Delta z = f_x(a, b) \Delta x + f_y(a, b) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

where ϵ_1 and $\epsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0,0)$.

or

If the partial derivatives f_x and f_y exist near (a,b) and are continuous at (a,b), then f is differentiable at (a,b).

Total differential

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Chain rule for multivariable functions

Case 1 - f[g(t), h(t)]

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} \qquad \qquad \frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Case 2 - f[g(s, t), h(s, t)]

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are both differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \qquad \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

General version

Suppose that u is a differentiable function of n variables x_1 , x_2 , ..., x_n and each x_i is a differentiable function of m variables t_1 , t_2 , ..., t_m . Then u is a function of t_1 , t_2 , ..., t_m and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

for each i = 1, 2, ..., m.

Implicit differentiation of a multivariable function

$$\frac{dx}{dy} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

Partial derivatives for implicit differentiation

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$$

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

Directional derivative of a function in two variables

The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

or

If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$$

or

If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

where $\nabla f(x,y)$ is the gradient of the function and **u** is the unit vector.

Directional derivative of a function in three variables

The directional derivative of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

or

If f is a differentiable function of x, y and z, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b, c \rangle$ and

$$D_{\mathbf{u}}f(x, y, z) = f_{x}(x, y, z)a + f_{y}(x, y, z)b + f_{z}(x, y, z)c$$

or

If f is a differentiable function of x, y and z, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b, c \rangle$ and

$$D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$$

where $\nabla f(x, y, z)$ is the gradient of the function and \mathbf{u} is the unit vector.

Gradient of a multivariable function

If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

Gradient vector of a multivariable function

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Maximizing the directional derivative

Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\bf u}f({\bf x})$ is $|\nabla f({\bf x})|$ and it occurs when ${\bf u}$ has the same direction as the gradient vector $\nabla f({\bf x})$.

Tangent plane to the level surface

$$F_x(x_0, y_o, z_0)(x - x_0) + F_y(x_0, y_o, z_0)(y - y_0) + F_z(x_0, y_o, z_0)(z - z_0) = 0$$

Local and global extrema of a multivariable function

For a function of two variables x and y,

If $f(x,y) \le f(a,b)$ when (x,y) is near (a,b), then f has a local maximum at (a,b) and

f(a,b) is a local maximum value, unless

the inequality is true for all points (x, y) in the domain of f, in which case f has an absolute maximum at (a, b).

If $f(x, y) \ge f(a, b)$ when (x, y) is near (a, b), then f has a local minimum at (a, b) and

f(a,b) is a local minimum value, unless

the inequality is true for all points (x, y) in the domain of f, in which case f has an absolute minimum at (a, b).

Second derivatives test

Suppose the second partial derivatives of f are continuous on a disk with center (a,b) and suppose that $f_x(a,b)=0$ and $f_y(a,b)=0$ [that is, (a,b) is a critical point of f]. Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

If D > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum

If D > 0 and $f_{xx}(a,b) < 0$, then f(a,b) is a local maximum

If D < 0 and f(a, b) is not a local maximum or minimum

((a,b),f(a,b)) is called a saddle point

If D = 0, the test is inconclusive

It can't be used to characterize the critical point ((a, b), f(a, b))

Extreme value theorem for multivariable functions

If f is continuous on a close, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

Steps to identify global extrema

To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:

Find the values of f at the critical points of f in D.

Find the extreme values of f on the boundary of D.

The largest of the values is the absolute maximum value; the smallest of these values is the absolute minimum value.

Method of Lagrange multipliers

To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface g(x, y, z) = k]:

Find all values of x, y, z and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
 and

$$g(x, y, z) = k$$

Evaluate f at all points (x, y, z) that result from the step above. The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Multiple Integrals

Double integrals to find volume over the rectangular region

If $f(x, y) \ge 0$, then the volume V above the rectangle R and below the surface z = f(x, y),

using any point in the sub-rectangle is

$$V = \iiint_{R} f(x, y)dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

using the upper right-hand corner of the sub-rectangle is

$$V = \iiint_R f(x, y)dA = \lim_{m, n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(x_i, y_i) \Delta A$$

using the midpoint of the sub-rectangle is

$$V = \iiint_R f(x, y)dA = \lim_{m, n \to \infty} \sum_{i=1}^m \sum_{j=1}^n f(\bar{x}_i, \bar{y}_i) \Delta A$$

Fubini's theorem for double integrals

If f is continuous over the rectangle $R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$, then

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \int_{c}^{d} f(x, y) \ dy \ dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \ dx \ dy$$

Double integrals when f(x, y) = g(x)h(y)

When f(x, y) sits above the rectangle defined by $R = [a, b] \times [c, d]$ and when f(x, y) can be factored as the product of a function of x only and a function of y only, f(x, y) = g(x)h(y), then the double integral of f can be written as

$$\iint_{R} f(x, y)dA = \iint_{R} g(x)h(y)dA = \int_{a}^{b} g(x) dx \int_{c}^{d} h(y) dy$$

Double integrals to find volume over the general region

The volume above the region D and below the surface z = f(x, y) is

$$V = \iiint_D f(x, y)dA = \iiint_R F(x, y)dA$$

where F is given by

$$F(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \text{ is in } D \\ 0 & \text{if } (x,y) \text{ is in } R \text{ but not in } D \end{cases}$$

and R is a rectangular region around D that encloses D.

Double integrals to find volume over type I regions

A plane region D is type I if it lies between the graphs of two continuous functions of x. If the function f is continuous over a type I region D such that

14

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

$$V = \iiint_D f(x, y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \ dy \ dx$$

Double integrals to find volume over type II regions

A plane region D is type II if it lies between the graphs of two continuous functions of y. If the function f is continuous over a type II region D such that

$$D = \{(x, y) \mid c \le y \le d, h_1(y) \le x \le h_2(y)\}$$

$$V = \iiint_D f(x, y) dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x, y) \ dx \ dy$$

Union of regions

If $D = D_1 \cup D_2$ where D_1 and D_2 are non-overlapping regions, then the volume above the region D and below the surface z = f(x, y) is

$$V = \iiint_{D} f(x, y)dA = \iiint_{D_{1}} f(x, y)dA + \iiint_{D_{2}} f(x, y)dA$$

For example, if we need to find the volume over the region D, but part of D is a type I region and the other part is a type II region, preventing us from finding volume of the entire region at once, then we're allowed to

find the volume of D_1 separately from D_2 , and then add them together to find total volume over D.

Squeeze theorem for double integrals

If $m \le f(x, y) \le M$ for all (x, y) in D, then

$$mA(D) \le \iint_D f(x, y) dA \le MA(D)$$

Conversion between polar and rectangular coordinates

$$r^2 = x^2 + v^2$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Double polar integrals to find volume over the rectangular region

If the function f is continuous over a polar region D given by

$$0 \le a \le r \le b$$
 and

$$\alpha \le \theta \le \beta$$
, where $0 \le \beta - \alpha \le 2\pi$, then

$$V = \iiint_{R} f(x, y)dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta)r \ dr \ d\theta$$

Double polar integrals to find volume over the general region

If the function f is continuous over a polar region D given by

$$D = \{(r, \theta) \mid \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)\}, \text{ then }$$

$$V = \iiint_D f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos\theta, r\sin\theta) r \ dr \ d\theta$$

Properties of the lamina

If a lamina occupies the region D and has density function $\rho(x,y)$, then its

Mass is

$$m = \lim_{k,l \to \infty} \sum_{i=1}^{k} \sum_{j=1}^{l} \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iiint_{D} \rho(x, y) dA$$

Moment about the x-axis is $M_x = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n y_{ij}^* \rho(x_{ij}^*,y_{ij}^*) \Delta A = \iint_D y \rho(x,y) dA$

Moment about the y-axis is $M_y = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n x_{ij}^* \rho(x_{ij}^*,y_{ij}^*) \Delta A = \iint_D x \rho(x,y) dA$

Center of mass, (\bar{x}, \bar{y}) is

$$\bar{x} = \frac{M_y}{m} = \frac{1}{m} \iiint_D x \rho(x, y) dA$$

$$\bar{y} = \frac{M_x}{m} = \frac{1}{m} \iiint_D y \rho(x, y) dA$$

Moments of inertia

About the x-axis

$$I_{x} = \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} (y_{ij}^{*})^{2} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} y^{2} \rho(x, y) dA$$

About the y-axis

$$I_{y} = \lim_{m,n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij}^{*})^{2} \rho(x_{ij}^{*}, y_{ij}^{*}) \Delta A = \iint_{D} x^{2} \rho(x, y) dA$$

About the origin

$$I_0 = \lim_{m,n \to \infty} \sum_{i=1}^m \sum_{j=1}^n \left[(x_{ij}^*)^2 + (y_{ij}^*)^2 \right] \rho(x_{ij}^*, y_{ij}^*) \Delta A = \iiint_D (x^2 + y^2) \rho(x, y) dA$$

Note: The moment of inertia about the origin is also called the polar moment of inertia, and $I_0 = I_x + I_y$.

Surface area of a multivariable function

To find the area of the surface with equation z = f(x, y) where $(x, y) \in D$ and where f_x and f_y are continuous, use any of these equations:

$$A(S) = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \Delta T_{ij}$$

$$A(S) = \iiint_{D} \sqrt{[f_{x}(x,y)]^{2} + [f_{y}(x,y)]^{2} + 1} dA$$

$$A(S) = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA$$

Triple integrals to find volume over the box

If $f(x, y, z) \ge 0$, then the volume V above the box B and below the surface f(x, y, z),

using any point in the sub-box is

$$V = \iiint_{B} f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V$$

using the upper right-hand corner of the sub-box is

$$V = \iiint_{B} f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{i}, y_{j}, z_{k}) \Delta V$$

using the midpoint of the sub-box is

$$V = \iiint_{B} f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i}) \Delta V$$

Fubini's theorem for triple integrals

If f is continuous over the box $B = [a, b] \times [c, d] \times [r, s]$, then

$$\iiint_B f(x, y, z)dV = \int_r^s \int_c^d \int_a^b f(x, y, z) \ dx \ dy \ dz$$

Triple integrals to find volume over type I solid regions

If the function f is a continuous solid region E whose projection onto the xy-plane, D,

is a type I plane region, then

$$E = \{(x, y, z) \mid a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)\}$$

$$V = \iiint_E f(x, y, z) dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \ dx \ dy \ dz$$

is a type II plane region, then

$$E = \{(x, y, z) \mid c \le y \le d, h_1(y) \le x \le h_2(y), u_1(x, y) \le z \le u_2(x, y)\}$$

$$V = \iiint_E f(x, y, z) dV = \int_c^d \int_{h_1(y)}^{h_2(y)} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) dz dx dy$$

Conversion between cylindrical and rectangular coordinates

To convert from cylindrical to rectangular, we use

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

To convert from rectangular to cylindrical, we use

$$r^2 = x^2 + y^2$$

$$r^2 = x^2 + y^2 \qquad \tan \theta = \frac{y}{x} \qquad z = z$$

$$z = z$$

Triple integrals in cylindrical coordinates

$$\iiint_E f(x, y, z)dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta, r\sin\theta)}^{u_2(r\cos\theta, r\sin\theta)} f(r\cos\theta, r\sin\theta, z)r \ dz \ dr \ d\theta$$

Conversion between spherical and rectangular coordinates

To convert from spherical to rectangular, we use

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

To convert from rectangular to spherical, we use

$$\rho^2 = x^2 + y^2 + z^2$$

Triple integrals in spherical coordinates

If E is a spherical wedge given by

$$E = \{ (\rho, \theta, \phi) \mid a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d \}$$

$$\iiint_E f(x, y, z)dV = \int_c^d \int_a^\beta \int_a^b f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)\rho^2 \sin \phi \ d\rho \ d\theta \ d\phi$$

Jacobian of the transformation in two variables

The Jacobian of the transformation T given by x = g(u, v) and y = h(u, v) is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

$$= \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Jacobian of the transformation in three variables

The Jacobian of the transformation T given by x = g(u, v) and y = h(u, v) is

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

$$= \frac{\partial x}{\partial u} \begin{vmatrix} \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} - \frac{\partial x}{\partial v} \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial w} \end{vmatrix} + \frac{\partial x}{\partial w} \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix}$$

$$= \frac{\partial x}{\partial u} \left(\frac{\partial y}{\partial v} \frac{\partial z}{\partial w} - \frac{\partial z}{\partial v} \frac{\partial y}{\partial w} \right) - \frac{\partial x}{\partial v} \left(\frac{\partial y}{\partial u} \frac{\partial z}{\partial w} - \frac{\partial z}{\partial u} \frac{\partial y}{\partial w} \right) + \frac{\partial x}{\partial w} \left(\frac{\partial y}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u} \frac{\partial y}{\partial v} \right)$$

Change of variable

Double:

$$\iint_{R} f(x, y) dA = \iint_{S} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$

Triple:

$$\iiint_R f(x, y, z) dV = \iiint_S f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw$$

Vectors

Distance formula in three dimensions

The distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Equation of a sphere

The equation of a sphere

with center (h, k, l) and radius r is

$$(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$$

with center the origin O and radius r is $x^2 + y^2 + z^2 = r^2$

Definition of vector addition

If ${\bf u}$ and ${\bf v}$ are vectors positioned so the initial point of ${\bf v}$ is at the terminal point of ${\bf u}$, then the sum ${\bf u}+{\bf v}$ is the vector from the initial point of ${\bf u}$ to the terminal point of ${\bf v}$.

Definition of scalar multiplication

If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c>0 and is opposite to \mathbf{v} if c<0. If c=0 or $\mathbf{v}=0$, then $c\mathbf{v}=0$.

Position vector

Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector a with representation \overrightarrow{AB} is

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

The magnitude or length of the vector

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Vector formulas

If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

Similarly, for three-dimensional vectors,

$$\langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

$$\langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$$

$$c\langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$$

Properties of vectors

If a, b, and c are vectors in V_n and c and d are scalar, then

$$a + b = b + a$$

$$\mathbf{a} + (-\mathbf{a}) = 0$$

$$(cd)\mathbf{a} = c(d\mathbf{a})$$

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

$$c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$

$$1\mathbf{a} = \mathbf{a}$$

$$\mathbf{a} + 0 = \mathbf{a}$$

$$(c+d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$$

Standard basic vectors

$$\mathbf{i} = \langle 1,0,0 \rangle$$

$$\mathbf{j} = \langle 0, 1, 0 \rangle$$

$$\mathbf{k} = \langle 0, 0, 1 \rangle$$

Dot product

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the dot product of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Properties of the dot product

If a, b, and c are vectors in V_3 and c is a scalar, then

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

$$0 \cdot \mathbf{a} = 0$$

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

Definition of the dot product

If θ is the angle between the vectors \mathbf{a} and \mathbf{b} , then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Corollary

If θ is the angle between the nonzero vectors \mathbf{a} and \mathbf{b} , then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

Orthogonal

Two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$

Projections

The scalar projection of b onto a is

$$comp_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

The vector projection of b onto a is

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

Cross product

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle$$

The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

Angle between two vectors

If θ is the angle between a and b (so $0 \le \theta \le \pi$), then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

Parallel vectors

Two nonzero vectors a and b are parallel if and only if

$$\mathbf{a} \times \mathbf{b} = 0$$

Length of the cross product

The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .

Properties of vector products

$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

$$(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Volume of the parallelepiped

The volume of the parallelepiped determined by the vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} is the magnitude of their scalar triple product,

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Vector equation of a line

The vector equation of the line L is

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

where each value of the parameter t gives the position vector \mathbf{r} of a point on L. In other words, as t varies, the line is traced out by the tip of the vector \mathbf{r} .

Symmetric equations of the line

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

Parametric equations of the line

The parametric equations of the line L through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\mathbf{v} = \langle a, b, c \rangle$ are

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$

Each value of the parameter t gives a point (x, y, z) on L.

Vector equation of the line segment

The line segment from \mathbf{r}_0 to \mathbf{r}_1 is given by the vector equation

$$\mathbf{r}(t) = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1$$

where
$$0 \le t \le 1$$

Vector equation of the plane

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$$

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

Scalar equation of the plane

The scalar equation of the plane through the point $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Linear equation of the plane

$$ax + by + cz + d = 0$$

Distance from the point to the plane

The distance D from the point P_1 to the plane is equal to the absolute value of the scalar projection of \mathbf{b} onto the normal vector $\mathbf{n} = \langle a, b, c \rangle$. Therefore

$$D = |\operatorname{comp}_{\mathbf{n}} \mathbf{b}| = \frac{|\mathbf{n} \cdot \mathbf{b}|}{|\mathbf{n}|} \quad \text{or} \quad D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Limit of a vector function

The limit of a vector function \mathbf{r} is defined by taking the limits of its component functions, so if $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, then

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

provided the limits of the component function exist.

Definition of the derivative of a vector function

The derivative r' of a vector function r is defined as

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

Derivative of a vector function

lf

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$$

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

where f, g and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

$$\mathbf{r}'(t) = f(t)'\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$

In other words, to find the derivative of the vector function, just find the derivative of each component separately.

Derivative rules for vector functions

Suppose ${\bf u}$ and ${\bf v}$ are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

$$\frac{d}{dt} \left[\mathbf{u}(t) + \mathbf{v}(t) \right] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

$$\frac{d}{dt} \left[c \mathbf{u}(t) \right] = c \mathbf{u}'(t)$$

$$\frac{d}{dt} \left[f(t)\mathbf{u}(t) \right] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$$

$$\frac{d}{dt} \left[\mathbf{u}(t) \cdot \mathbf{v}(t) \right] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$

$$\frac{d}{dt} \left[\mathbf{u}(t) \times \mathbf{v}(t) \right] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

$$\frac{d}{dt} \left[\mathbf{u}(f(t)) \right] = f'(t)\mathbf{u}'(f(t))$$
 (chain rule)

Definite integral of a vector function

$$\int_{a}^{b} \mathbf{r}(t) dt = \left(\int_{a}^{b} f(t) dt \right) \mathbf{i} + \left(\int_{a}^{b} g(t) dt \right) \mathbf{j} + \left(\int_{a}^{b} h(t) dt \right) \mathbf{k}$$

Arc length of a vector function

Suppose that the curve has the vector equation $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ with $a \le t \le b$, or equivalently, the parametric equations x = f(t), y = g(t), and z = h(t) where f', g' and h' are continuous.

If the curve is traversed exactly once as t increases from a to b, then its length is any of the following:

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2} + [h'(t)]^{2}} dt$$

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

$$L = \int_{a}^{b} |\mathbf{r}'(t)| dt$$

Unit vectors

Unit tangent vector

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\left|\mathbf{r}'(t)\right|}$$

Unit normal vector

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\left|\mathbf{T}'(t)\right|}$$

Binormal vector

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

Curvature

If T is the unit tangent vector, then curvature is given by any of the following

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| \qquad = \qquad \kappa = \frac{\left| \mathbf{T}'(t) \right|}{\left| \mathbf{r}'(t) \right|} \qquad = \qquad \kappa = \frac{\left| \mathbf{r}'(t) \times \mathbf{r}''(t) \right|}{\left| \mathbf{r}'(t) \right|^3}$$

Curvature for a plane equation like y = f(x)

For a plane curve y = f(x), we choose x as the parameter and write $\mathbf{r}(x) = x\mathbf{i} + f(x)\mathbf{j}$. Then $\mathbf{r}'(x) = \mathbf{i} + f'(x)\mathbf{j}$ and $\mathbf{r}''(x) = f''(x)\mathbf{j}$. Since $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ and $\mathbf{j} \times \mathbf{j} = 0$, we know that $\mathbf{r}'(x) \times \mathbf{r}''(x) = f''(x)\mathbf{k}$. We also have $|\mathbf{r}'(x)| = \sqrt{1 + \left[f'(x)\right]^2}$ and so

$$\kappa(x) = \frac{\left| f''(x) \right|}{\left[1 + (f'(x))^2 \right]^{3/2}}$$

Velocity vector

Suppose a particle moves through space so that its position vector at time t is $\mathbf{r}(t)$. For small values of h, the vector

$$\frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

approximates the direction of the particle moving along the curve $\mathbf{r}(t)$. Its magnitude measures the size of the displacement vector per unit time. The formula above gives the average velocity over a time interval of length h and its limit is the velocity vector $\mathbf{v}(t)$ at time t:

$$\mathbf{v}(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \mathbf{r}'(t)$$

Therefore, the velocity vector is also the tangent vector and points in the direction of the tangent line.

The speed of the particle at time t is the magnitude of the velocity vector, that is, $|\mathbf{v}(t)|$. This is appropriate because we have

$$|\mathbf{v}(t)| = |\mathbf{r}'(t)| = \frac{ds}{dt}$$
 rate of change of distance with respect to time

Parametric equations of the trajectory

$$x = (v_0 \cos \alpha)t$$

$$y = (v_0 \sin \alpha)t - \frac{1}{2}gt^2$$

Tangential and normal components of acceleration

If a_T and a_N are the tangential and normal components of acceleration, then we can write

$$\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$$

where $a_T = v'$ and $a_N = \kappa v^2$

In other words,

$$\mathbf{a} = v'\mathbf{T} + \kappa v^2 \mathbf{N}$$

Vector fields in two and three dimensions

Two dimensions

Let D be a set in \mathbb{R}^2 (a plane region). A vector field on \mathbb{R}^2 is a function \mathbf{F} that assigns to each point (x, y) in D a two-dimensional vector $\mathbf{F}(x, y)$.

Three dimensions

Let E be a subset in \mathbb{R}^3 . A vector field on \mathbb{R}^3 is a function \mathbf{F} that assigns to each point (x, y, z) in E a three-dimensional vector $\mathbf{F}(x, y, z)$.

Definitions for line integrals

Suppose that F is a continuous vector field in some domain D.

1. **F** is a **conservative** vector field if there is a function f such that $\mathbf{F} = \nabla f$. The function f is called a potential function for the vector field. We first saw this definition in the first section of this chapter.

- 2. $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path if $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ for any two paths C_1 and C_2 in D with the same initial points and final points.
- 3. A path *C* is **closed** if its initial and final points are the same point. As an example, a circle is a closed path.
- 4. A path *C* is **simple** if it doesn't cross itself. A circle is a simple curve; a figure 8 is not simple.
- 5. A region D is open if it doesn't contain any of its boundary points.
- 6. A region D is **connected** if we can connect any two points in the region with a path that lies completely in D.
- 7. A region D is **simply-connected** if it's connected and contains no holes.

Line integrals

If f is defined on a smooth curve C given by x = x(t), y = y(t), and $a \le t \le b$, then the line integral of f along C can be calculated using either of the following.

$$\int_C f(x, y) \ ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta s_i$$

$$\int_{C} f(x, y) \ ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} \ dt$$

Line integrals with respect to x and y (with respect to arc

length)

The line integral with respect to x:

$$\int_C f(x, y) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta x_i$$

$$\int_C f(x, y) \ dx = \int_a^b f(x(t), y(t)) x'(t) \ dt$$

The line integral with respect to y:

$$\int_C f(x, y) \ dy = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta y_i$$

$$\int_C f(x, y) \ dy = \int_a^b f(x(t), y(t)) y'(t) \ dt$$

Line integral for a continuous vector field

Let **F** be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t)$, $a \le t \le b$. Then the line integral of F along C is

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds$$

Relationship between line integrals and vector fields

If the vector field \mathbf{F} on \mathbf{R}^3 is given in component form by the equation $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$, then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{where } \mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$$

Fundamental theorem for line integrals

Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Independence of path

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
 is independent of path in *D* if and only if

$$\int_C \mathbf{F} \cdot d\mathbf{r} = 0 \qquad \text{for every closed path } C \text{ in } D.$$

Conservative vector fields

- 1. Suppose \mathbf{F} is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then \mathbf{F} is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$.
- 2. If $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is a conservative vector field where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

3. Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 throughout D

Then F is conservative.

Green's theorem

Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} P \ dx + Q \ dy = \iiint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dA$$

Green's theorem for the area of the region

The area of the region D is given by any of the following

$$A = \oint_C x \ dy$$

$$A = -\oint_C y \ dx$$

$$A = \frac{1}{2} \oint_C x \ dy - y \ dx$$

Curl

1. The curl of \mathbf{F} is the vector field on \mathbf{R}^3 defined by

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

curl
$$\mathbf{F} = \nabla \times \mathbf{F}$$

2. If f is a function of three variables that has continuous second-order partial derivatives, then

$$\operatorname{curl}(\nabla f) = 0$$

3. If \mathbf{F} is a vector field defined on all of \mathbf{R}^3 whose component functions have continuous partial derivatives and $\operatorname{curl} \mathbf{F} = 0$, then \mathbf{F} is a conservative vector field.

Divergence

1. If $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbf{R}^3 and $\partial P/\partial x$, $\partial Q/\partial y$, and $\partial R/\partial z$ exist, then the divergence of \mathbf{F} is the function of three variables defined by

$$\operatorname{div} \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F}$$

2. If **F** is a vector field on \mathbb{R}^3 , then the curl **F** is also a vector field on \mathbb{R}^3 . Therefore, we can calculate its divergence and say that, if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R have continuous second-order partial derivatives, then

div curl
$$\mathbf{F} = 0$$

Vector form of green's theorem

$$\oint_C \mathbf{F} \cdot n \ ds = \iiint_D \operatorname{div} \mathbf{F}(\mathbf{x}, \mathbf{y}) \ d\mathbf{A}$$

Surface area of the parametric surface

If a smooth parametric surface S is given by the equation

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \qquad (u,v) \in D$$

and S is covered just once as (u, v) ranges throughout the parameter domain D then the surface area of S is

$$A(S) = \iiint_D |\mathbf{r}_u \times \mathbf{r}_v| \ dA$$

where

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}$$

and

$$\mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$$

The surface area formula can also be written as

$$A(S) = \int \int_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} \ dA$$

Surface integral

The surface integral of f over the surface S is

$$\iint_{S} f(x, y, z) \ dS = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^{*}) \Delta S_{ij}$$

$$\iint_{S} f(x, y, z) \ dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| \ dA$$

$$\iint_{S} f(x, y, z) \ dS = \iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} \ dA$$

Surface integral for a continuous vector field

If F is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n} , then the surface integral of F over S is

$$\iint_{S} \mathbf{F} \cdot dS = \iiint_{S} \mathbf{F} \cdot \mathbf{n} \ dS$$

$$\iint_{S} \mathbf{F} \cdot dS = \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \ dA$$

$$\iiint_{S} \mathbf{F} \cdot dS = \iiint_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

This integral is also called the flux of F across S.

Stokes' theorem

Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with a positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \iiint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

The divergence theorem

Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$\iiint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} \mathbf{F} \, d\mathbf{V}$$

Quadric surfaces

Gua		14663					
tips	a=b=c: the ellipsoid is a sphere		a=b: the cylinder is circular	c: opens up -c: opens down	c: opens up -c: opens down		
axis set by	major: largest value of a, b and c	the variable by itself on one side of the = sign when all signs are +	the variable not appearing in the equation	the variable that isn't squared	the variable that isn't squared	the variable with the – sign in front of it when all variables are on the same side	the variable with the + sign in front of it when all variables are on the same side
traces	ellipses	horizontal: ellipses vertical: hyperbolas x=h or y=k: pairs of lines	horizontal: ellipses horizontal, a=b: circles vertical: pairs of lines	horizontal: ellipses horizontal, a=b: circles vertical: parabolas	horizontal: hyperbolas vertical: parabolas	horizontal: ellipses horizontal, a=b: circles vertical: hyperbolas	horizontal: ellipses horizontal, a=b: circles vertical: hyperbolas
shifted form	$rac{(x-h)^2}{a^2} + rac{(y-k)^2}{b^2} + rac{(z-l)^2}{c^2} = 1$ center (h,k,l)	$rac{(x-h)^2}{a^2} + rac{(y-k)^2}{b^2} = rac{(z-l)^2}{c^2}$ center (h,k,l)	$rac{(x-h)^2}{a^2} + rac{(y-k)^2}{b^2} = 1$ center (h,k)	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = \frac{z-l}{c}$ center (h,k,l)	$rac{(x-h)^2}{a^2}-rac{(y-k)^2}{b^2}=rac{z-l}{c}$ center (h,k,l)	$rac{(x-h)^2}{a^2} + rac{(y-k)^2}{b^2} - rac{(z-l)^2}{c^2} = 1$ center (h,k,l)	$-\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} + \frac{(z-l)^2}{c^2} = 1$ center (h,k,l)
standard form	$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 1$ center $(0,0,0)$	$rac{x^2}{a^2} + rac{y^2}{b^2} = rac{z^2}{c^2}$ center $(0,0,0)$	$rac{x^2}{a^2} + rac{y^2}{b^2} = 1$ center $(0,0,0)$	$rac{x^2}{a^2}+rac{y^2}{b^2}=rac{z}{c}$ center $(0,0,0)$	$rac{x^2}{a^2}-rac{y^2}{b^2}=rac{z}{c}$ center $(0,0,0)$	$rac{x^2}{a^2} + rac{y^2}{b^2} - rac{z^2}{c^2} = 1$ center $(0,0,0)$	$-rac{x^2}{a^2}-rac{y^2}{b^2}+rac{z^2}{c^2}=1$ center (0,0,0)
surface			•			- Dentile	
	ellipsoid	cone	cylinder	elliptic paraboloid	hyperbolic paraboloid	hyperboloid of one sheet	hyperboloid of two sheets

