Guía Laboratorio 5 Procesamiento Digital de Señales Transformada Z

Paula Pérez, Alejandro Escobar y Cristian Ríos

2024-1

NOTAS:

- Enviar el informe del laboratorio con el siguiente nombre: Lab5_PDS_Apellido_Nombre.ipynb
- Enviar junto con el informe los archivos adicionales generados y descargados. Todo esto debe ir en un archivo comprimido con el siguiente nombre: Lab5_PDS_Apellido_Nombre.zip
- OJO! Recuerde tener cuidado con la identación y caracteres como el guión bajo y las llaves cuando copie y pegue el código entregado en esta guía.
- Las preguntas deberán ser resueltas en el notebook indicando sus respectivos numerales.

1. Transformada Z

Considere los siguientes sistemas representados con ecuaciones en diferencias. Elija una ecuación de acuerdo a su ultimo número de cédula, aplique la transformada Z y halle la función de transferencia del sistema.

0.
$$y[n] = x[n] + 8x[n-1] - 2y[n-2] + 5y[n-1]$$

1.
$$y[n] = y[n-1] - 0.5y[n-2] + x[n] + x[n-1]$$

2.
$$y[n] = 6y[n-1] - 10y[n-1] + 3x[n-2] - 7x[n-2] + x[n]$$

3.
$$y[n] + 0.3y[n-2] = x[n] + 15x[n-1] - 2y[n-1]$$

4.
$$y[n] - 0.7y[n-1] + 0.2y[n-2] = x[n] - x[n-1] + x[n-2]$$

5.
$$y[n] = 5.4y[n-2] - 2y[n-2] + x[n-1] + 5x[n-1]$$

6.
$$y[n] = 4y[n-1] - 3y[n-2] + y[n-3] + x[n-1] + x[n-2]$$

7.
$$y[n] = -2y[n-1] - 15y[n-3] + 10x[n-2] + 10x[n-2] - 0.2x[n]$$

8.
$$y[n] - 2.83y[n-1] + 4y[n-3] = 2x[n] - 3x[n-1] + x[n-2]$$

9.
$$y[n] = y[n-1] + 0.5y[n-1] + x[n-2] - 10x[n-3]$$

Nota: Para desarrollar el laboratorio es necesario representar el numerador y denominador de la función de transferencia usando listas en Python. Recuerde que las listas solo contienen los coeficientes de los polinomios de Z ordenados de mayor a menor orden.

- 1. Importe las funciones del archivo adjunto *ztrans.py* y úselas para graficar la respuesta en frecuencia y fase, la respuesta al impulso, la respuesta al escalón, y el diagrama de polos y ceros.
- 2. ¿Dónde están ubicados los polos y los ceros?
- 3. ¿Qué se puede decir de la respuesta en frecuencia y fase de la función de transferencia?
- 4. ¿Qué se puede decir acerca de la respuesta al impulso y al escalón?
- 5. ¿Qué se puede decir acerca de la estabilidad del sistema?

2. Transformada Z: Introducción a los filtros digitales

- 1. Genere una señal sinusoidal cuya frecuencia se incremente en el tiempo de forma cuadrática. La señal debe tener una duración de 40 segundos y una frecuencia de muestreo de 5000 Hz.
- 2. Grafique y escuche la señal ¿Qué se puede decir acerca del audio?
- 3. Genere la función de transferencia de un filtro de respuesta finita al impulso (FIR) usando las siguientes instrucciones.

```
import scipy.signal as signal
n = 9
num = signal.firwin(n, [0.2, 0.4], pass_zero=False)
den=np.zeros(n)
den[0] = 1
```

- 4. Grafique la respuesta en frecuencia y fase, la respuesta al impulso, la respuesta al escalón, y el diagrama de polos y ceros del filtro FIR.
- 5. ¿Qué puede concluir acerca de las gráficas anteriores? ¿Qué tipo de filtro es? ¿Cuáles son las frecuencias de corte? ¿Dónde están ubicados los polos y ceros? ¿Qué puede decir de la estabilidad del filtro?
- 6. Calcule la respuesta del filtro ante la señal generada previamente. Grafique la señal antes y después de pasar por el filtro. ¿Qué le ocurrió a la señal?

Tip: Recuerde que para calcular la respuesta del sistema ante una entrada debe usar la convolución.

```
data2=np.convolve(data, num, mode='same')
```

- 7. Aumente progresivamente el orden n del filtro (mínimo 3 veces), repita el procedimiento anterior (items 3, 4, 5, y 6), y concluya. Que puede decir de la respuesta en frecuencia, y de los polos y ceros.
- 8. Genere una señal sinusoidal cuya frecuencia se incremente en el tiempo de forma cúbica, la señal debe tener la misma duración (40 seg) y una frecuencia de muestreo de 3000 Hz. Repita los pasos 3, 4, 5 y 6. Concluya de acuerdo a las gráficas obtenidas.

3. Agregando polos y ceros al sistema

- 1. Retorne al sistema anterior con n = 10.
- 2. Use la función computeZ(num, den, zeros, poles, data) que se encuentra en el archivo adjunto (ztrans.py) para agregar polos y ceros a una función de transferencia. Observe un ejemplo a continuación:

```
n = 10
num = signal.firwin(n, [0.1, 0.4], pass_zero=False)
den=np.zeros(n)
den[0]=1

# Agregue polos conjugados en los puntos z1=-sqrt(2)/4+sqrt(2)/2j y z2=-sqrt(2)/4-sqrt(2)/2j y ...
    un cero en z=0.5
computeZ(num, den, [0.5], [complex(-np.sqrt(2)/4,np.sqrt(2)/2), ...
    complex(-np.sqrt(2)/4,-np.sqrt(2)/2)], data)
```

- 3. Explique el comportamiento del sistema si se agrega de forma independiente:
 - Dos ceros conjugados de magnitud 1.3
 - Un polo real de magnitud 1.4

4. Conclusiones

Realice conclusiones generales sobre la práctica. Recuerde que las conclusiones son parte fundamental de su evaluación en el laboratorio, tómese el tiempo de pensar las conclusiones.