ලි ලංකා විතාශ දෙපාර්තමේන්තුව ලි ලංකා විභාශ දෙපාර්තමේන්තුව ලිසුවිට සිටුව ලිසුවිට විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාශ දෙපාර්තමේන්තුව இலங்கைப் பழிட்சைத் திணைக்களம் இலங்கைப் பழி சேச்ச இங்கைக்கும் இதுக்கும் பழியில் திணைக்களம் இலங்கைப் பழிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கை Sulf மாது திணைக்களம்s**, Sri Lanka Department of Examinations, Sri Lanka ලී ලංකා විභාශ දෙපාර්තමේන්තුව ලී ලංකා විභාශ දෙපාර්තමේන්තුව ලී ලංකා උතාශ දෙපාර්තමේන්තුව ලී ලංකා විභාශ දෙපාර්තමේන්තුව ලක් දින් දෙපාර්තමේන්තුව ලී ලංකා විභාශ දෙපාර්තමේන්තුව ලේකාන් දින් දෙපාර්තමේන්තුව ලේකාන් දෙපාර්තමේන්තුව ලේකාන් දෙපාර්තමේන්තුව ලේකාන් දින් දෙපාර්තමේන්තුව ලේකාන් දෙපාර දෙපාර්තමේන්තුව ලේකාන් දෙපාර්තමේන්තුව ලේකාන් දෙපාර්තමේන්තුව ලේකාන් දෙපාර්තමේන්තුව ලේකාන් දෙපාර්තමේන් දෙපාර දෙපාර්තමේන් දෙපාර ද

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) සහඛ්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)

භෞතික විදපාව

பௌதிகவியல் Physics

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස් :

- 💥 මෙම පුශ්න පතුයේ පුශ්න 50ක්, පිටු 11ක අඩංගු වේ.
- * **සියලුම** පුශ්නවලට පිළිතුරු සපයන්න.

Ι

I

Ι

- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ **විභාග අංකය** ලියන්න.
- * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත්ව කියවන්න.
- * $\mathbf{1}$ සිට $\mathbf{50}$ තෙක් වූ එක් එක් පුශ්නය සඳහා දී ඇති (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි** හෝ ඉතාමත් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය, පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින් (\times) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.

 $(g = 10 \,\mathrm{m \, s^{-2}})$

- 1. පහත දක්වා ඇති රාශි යුගල අතුරෙන් කුමක් පිළිවෙළින් දෛශිකයකින් හා අදිශයකින් සමන්විත වන්නේ ද?
 - (1) ස්කන්ධය, පුවේගය
- (2) ක්ෂමතාව, වේගය

(3) කාර්යය, දුර

- (4) බලය, විභව ශක්තිය
- (5) ගමානාව, වාාවර්තය
- 2. වස්තුවක් මත කියාකරන ඒකතල බල දෙකක විශාලත්වයන් 11~N~ සහ 5~N~ වේ. ඒවායේ සම්පුයුක්ත බලයේ විශාලත්වයට සමාන විය නොහැක්කේ පහත දක්වා ඇති අගයන් අතුරෙන් කුමක් ද?
 - (1) 16N
- (2) 9N
- (3) 7N
- (4) 6N
- (5) 5N
- 3. සංගීත භාණ්ඩයකින් නිපදවෙන ශබ්දයේ ධ්වනි ගුණය රඳා පවතින්නේ,
 - (1) ශබ්දයේ සංඛානතය මත ය.
- (2) ශබ්දයේ විස්තාරය මත ය.
- (3) ශබ්දයේ තීවුකාව මත ය.
- (4) ශබ්දයේ තරංග ආයාමය මත ය.
- (5) ශබ්දයේ උපරිතාන පැවතීම මත ය.
- 4. ස්ථාවර චුම්බක ක්ෂේතුයක් අන්තර් කිුයාවක් සිදු නොකරන්නේ ඕනෑම,
 - (1) අචල විදයුත් ආරෝපණ සමග ය.
- (2) චලනය වන විදාුුත් ආරෝපණ සමග ය.
- (3) ධාරාවක් රැගෙන යන කම්බි සමග ය.
- (4) අචල නිතා චූම්බක සමග ය.
- (5) චලනය වන නිතා චුම්බක සමග ය.
- 5. විදුලි මෝටරයක විදාූත් පුතිගාමක බලය උපරිම වන්නේ,
 - (1) මෝටරය කිුිිියාත්මක නොවන විට ය.
 - (2) මෝටරය කිුියාත්මක වීම ආරම්භ කරන විට ය.
 - (3) මෝටරයේ චේගය වැඩි වන විට ය.
 - (4) මෝටරය එහි උපරිම වේගයෙහි පවතින විට ය.
 - (5) මෝටරයේ වේගය අඩුවන විට ය.
- 6. රූපයේ ඇඳ ඇති කිරණ අතුරෙන් නිවැරදි නොවන්නේ කුමක් ද?
 - (1) A
- (2) B
- (3) (

- (4) D
- (5) E

- $ar{u}$ ක්වාකයක ($ar{u}$ quark) ආරෝපණය වන්නේ කුමක් ද? (මූලික ආරෝපණය e වේ)
 - (1) 0
- (2) $+\frac{1}{3}e$
- (3) $+\frac{2}{3}e^{-\frac{1}{3}}$
- $(4) \frac{2}{3}e$
- (5) $-\frac{1}{3}e$
- 8. සූර්යයාගේ පෘෂ්ඨයේ උෂ්ණත්වය $6000~{
 m K}$ වන අතර එය උච්ච තරංග ආයාමය $500~{
 m nm}$ වූ කෘෂ්ණ වස්තු විකිරණ විමෝචනය කරයි. පෘෂ්ඨ උෂ්ණත්වය $10~000~{
 m K}$ වන කෘෂ්ණ වස්තුවකින් විමෝචනය වන විකිරණවල උච්ච තරංග ආයාමය වන්නේ කුමක් ද?
 - (1) 30 nm
- (2) 300 nm
- (3) 500 nm
- (4) 600 nm
- (5) 800 nm
- $oldsymbol{9}$. A ලක්ෂායෙන් පුක්ෂේපණය කරන ලද බෝලයක AB පෙත රූපයෙන් පෙන්වා ඇත. වායු පුතිරෝධය නොසලකා හරින්න.

පහත පුකාශ සලකා බලන්න.

- (A) පෙතෙහි උපරිම උසේදී බෝලයේ පුවේගය ශුනා වේ.
- (B) B ලක්ෂායේදී බෝලයේ පුවේගය A ලක්ෂායේදී පුවේගයට සමාන වේ.
- (C) B ලක්ෂායේදී බෝලයේ චාලක ශක්තිය A ලක්ෂායේදී චාලක ශක්තියට සමාන වේ. ඉහත පුකාශ අතුරෙන්,
- (1) (A) පමණක් සතා වේ.
- (2) (C) පමණක් සතා වේ.
- (3) (B) සහ (C) පමණක් සතා වේ.
- (4) (A) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) යන සියල්ලම සතා වේ.
- 10. කම්බියක දුවායේ යං මාපාංකය රඳා පවතිනුයේ
 - (A) කම්බියේ ආරම්භක දිග මත ය.
 - (B) කම්බියේ හරස්කඩ වර්ගඑලය මත ය.
 - (C) කම්බියේ දුවායේ ස්වභාවය මත ය.

ඉහත පුකාශ අතුරෙන්,

- (1) (A) පමණක් සතා වේ.
- (2) (B) පමණක් සතා වේ.
- (3) (C) පමණක් සතා වේ.
- (4) (A) සහ (C) පමණක් සතා වේ.
- (5) (A),(B) සහ (C) සියල්ලම සතා වේ.
- 11. සමාන්තර ලෝහ තහඩු යුගලයක් අතර $200~V~m^{-1}$ තීවුතාවක් ඇති ඒකාකාර විදයුත් ක්ෂේතුයක් යොදා ඇත. 10~V~ක විභව අන්තරයක් ඇති කිරීම සඳහා තහඩු අතර පරතරය කොපමණ විය යුතු ද?
 - (1) 20 mm
- (2) 30 mm
- (3) 50 mm
- (4) 20 m
- (5) 30 m
- 12. නවතා ඇති මෝටර් රථයක අනතුරු ඇඟවීමේ නළාවක් සංඛාාතය $510~{
 m Hz}$ වූ ධ්වති තරංග පිට කරයි. යතුරුපැදි කරුවෙක් මෝටර් රථයෙන් කෙළින්ම ඉවතට ගමන් කරයි. අනතුරු ඇඟවීමේ නළාවේ සංඛාාතය $480~{
 m Hz}$ ලෙසින් ඔහුට ඇසේ නම් ඔහුගේ පුවේගය කොපමණ ද? (වාතයේ ධ්වති වේගය $340~{
 m m\,s}^{-1}$ වේ)
 - (1) 10 m s^{-1}
- (2) 15 m s^{-1}
- $(3) 20 \text{ m s}^{-1}$
- (4) 25 m s^{-1}
- (5) 30 m s⁻¹
- 13. අංශුවක ගමාතාවය (p) එහි ඩී'බොග්ලි (de Broglie) තරංග ආයාමය (λ) සමග විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ පහත කුමන පුස්තාරයෙන් ද?

(5)

- ${f 14}$. මෝටර් රථයක ඇති ගීස් පුඩුවක (grease nipple) විෂ්කම්භය $5 imes 10^{-4}
 m m$ වන අතර දිග $3 imes 10^{-3}
 m m$ වේ. ගීස්වල දූස්සුාවිතා සංගුණකය $80~{
 m Pa\,s}$ නම් $10~{
 m s}$ තුළදී ගීස් $10^{-6}~{
 m m}^3$ පරිමාවක් පුඩුව හරහා යැවීම සඳහා කොපමණ පීඩන අන්තරයක් අවශා වේ ද? $[(2.5)^4 = 40$ සහ $\pi = 3$ ලෙස ගන්න]
 - (1) $1.6 \times 10^3 \, \text{Pa}$
- (2) $1.6 \times 10^4 \text{ Pa}$ (3) $1.6 \times 10^5 \text{ Pa}$ (4) $1.6 \times 10^6 \text{ Pa}$ (5) $1.6 \times 10^7 \text{ Pa}$

- 15. නිරපේක්ෂ ශූනාඃ උෂ්ණත්වය පිළිබඳව කර ඇති පහත පුකාශ සලකා බලන්න.
 - (A) එය වායුගෝල පීඩනයේදී ජලය මිදෙන උෂ්ණත්වය වේ.
 - (B) එය සියලුම වායු දුව බවට පත්වන උෂ්ණත්වය වේ.
 - (C) එය පරිපූර්ණ වායුවක මධානා චාලක ශක්තිය ශුනා වන උෂ්ණත්වය වේ.

ඉහත පුකාශ අතුරෙන්,

- (1) (A) පමණක් සතා වේ.
- (2) (C) පමණක් සතා වේ.
- (3) (A) සහ (C) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) යන සියල්ලම සතා වේ.
- 16. එක් දත්ත බ්ටුවක් (one bit) ගබඩා කළ හැක්කේ පහත කුමක ද?
 - (1) AND ද්වාරය
- (2) NOR ද්වාරය (3) XOR ද්වාරය (4) OR ද්වාරය

- (5) පිළි-පොළ
- $oldsymbol{17}$. දිග l වන සරල අවලම්බයක දෝලන කාලාවර්තය T වේ. දිග 2l වන සරල අවලම්බයක් උත්තෝලකයක සිව්ලිමේ එල්ලා ඇතැයි සිතන්න. උත්තෝලකය සිරස්ව ඉහළට $\frac{g}{2}$ ක ත්වරණයකින් ගමන් කරයි නම් මෙම අවලම්බයේ දෝලන කාලාවර්තය කුමක් වේ ද?

 - (1) $\frac{T}{4\sqrt{3}}$ (2) $\frac{T}{2\sqrt{3}}$ (3) $\frac{T}{\sqrt{3}}$ (4) $\frac{2T}{\sqrt{3}}$ (5) $\frac{4T}{\sqrt{3}}$

- 18. ස්කන්ධය $2 \log$ වන වස්තුවක් ඝර්ෂණයෙන් තොර තිරස් පෘෂ්ඨයක් මත ආරම්භයේදී නිසලව ඇත. ඊළඟට කාලය t සමග විචලනය වන ති්රස් F බලයක් රූපයේ පෙන්වා ඇති පරිදි $6~\mathrm{s}$ පූරා වස්තුව මත කිුයා කරයි. වස්තුවේ අවසාන පුවේගය කොපමණ ද?

- (2) 25 m s^{-1}
- $(3) 30 \text{ ms}^{-1}$

- (4) 40 m s⁻¹
- (5) 50 m s^{-1}

- $oldsymbol{19}$. සරල රේඛාවක් ඔස්සේ ගමන් කරන P සහ Q වස්තු දෙකක විස්ථාපන (s) කාල (t) පුස්තාර රූපයේ පෙන්වයි. පහත පුකාශ සලකා බලන්න.
 - (A) වස්තු දෙකේම පුවේග එකම දිශාවට ඇත.
 - (B) වස්තු දෙකේම පුවේග කාලය සමග වැඩි වේ.
 - (C) පුස්තාර දෙක කැපෙන ලක්ෂායේදී වස්තු දෙකටම එක සමාන පුවේග ඇත. ඉහත පුකාශ අතුරෙන්,

(2) (A) සහ (B) පමණක් සතා වේ.

- (3) (A) සහ (C) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) යන සියල්ලම සතා වේ.
- ${f 20}$. ස්කන්ධය $1~{
 m kg}$ වන කුට්ටියක් රළු තිරස් පෘෂ්ඨයක් මත තබා ඇත. රූපයේ පෙන්වා ඇති පරිදි තිරසට $30^{
 m o}$ ක කෝණයකින් ආනතව ඇති 4N බලයක් මගින් කුට්ටිය අදිනු ලැබේ. කුට්ටිය සීමාකාරී සමතුලිතතාවයේ ඇත්නම පෘෂ්ඨ දෙක අතර සීමාකාරී ඝර්ෂණ සංගුණකය කොපමණ වේ ද?

- 21. සුතාමි තරංග පිළිබඳ පහත පුකාශ සලකා බලන්න. එම තරංගවල
 - (A) තරංග ආයාම නොගැඹුරු ජලයේදීට වඩා ගැඹුරු ජලයේදී කුඩා වේ.
 - (B) වේග නොගැඹුරු ජලයේදීට වඩා ගැඹුරු ජලයේදී විශාල වේ.
 - (C) විස්තාර නොගැඹුරු ජලයේදීට වඩා ගැඹුරු ජලයේදී විශාල වේ.

ඉහත පුකාශ අතුරෙන්,

- (1) (A) පමණක් සතා වේ.
- (2) (B) පමණක් සතා වේ.
- (3) (A) සහ (C) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) යන සියල්ලම සතා වේ.
- $oldsymbol{22}$. ඒකාකාර සමචතුරසු PQRS තහඩුවකින් තිුකෝණාකාර QBR කොටස ඉවත් කොට රූපයේ පෙන්වා ඇති පරිදි එය සම්බන්ධ කිරීමෙන් PQB'RS සංයුක්ත තහඩුව සාදා ඇත. සංයුක්ත තහඩුවේ ගුරුත්ව කේන්දුය පිහිටීමට වඩාත්ම ඉඩ ඇති ලක්ෂාය වනුයේ

- (2) B
- (3) C

- (4) D
- (5) E
- ${f 23.}$ සමාන්තරගතව සම්බන්ධ කොට ඇති $3{\cdot}0$ Ω පුතිරෝධකයක් සහ $6{\cdot}0$ Ω පුතිරෝධකයක් සමග වී.ගා. බලය $6\cdot 0$ V වන බැටරියක් සම්බන්ධ කළ පරිපථයක් රූපයේ පෙන්වා ඇත. K ස්විච්චය විවෘත කළ විට පරිපූර්ණ ඇමීටරයෙහි පාඨාංකය $1.5~\mathrm{A}$ වේ. K ස්චිච්චය වැසූ විට ඇමීටරයේ පාඨාංකය කොපමණ ද?

- (2) 1.2 A
- (3) 1.5 A

- (5) 3·0 A
- ${f 24}$. උස ${f 20}$ m වන ගොඩනැගිල්ලක ඉහළ කෙළවරේ සිට ${f 10}$ m ${f s}^{-1}$ පුවේගයකින් බෝලයක් ති්රස්ව පුක්ෂේපණය කරනු ලැබේ. බෝලය වැටෙන අතරතුරේදී X සහ Y සර්වසම කොටස් දෙකකට වෙන් ුවේ. පසුව X සහ Y කොටස් දෙක රූපයේ පෙන්වා ඇති අයුරින් ගොඩනැගිල්ලේ සිට පිළිවෙළින් $10~\mathrm{m}$ සහ R තිරස් දුරවලදී පොළොවට එකම මොහොතේ පතිත වේ. වායු පුතිරෝධය නොසලකා හරින්න. R දුර කොපමණ ද?

- (2) 30 m
- (3) 40 m

- (4) 50 m
- (5) 60 m
- ${f 25}.$ බෝලයක් A ලක්ෂායෙන් මුදා හැර ඝර්ෂණයෙන් තොර පීල්ලක් ඔස්සේ රූපයේ පෙන්වා ඇති අයුරින් ගමන් කරයි. ඊළඟට බෝලය අරය Rවූ වෘත්තාකාර පීලි කොටසේ ඇතුළු පෘෂ්ඨයේ B ලක්ෂාය <mark>යන්තමින්</mark> ස්පර්ශ කරයි. B ලක්ෂායේදී බෝලයේ පුවේගය කුමක් ද?

- $(2) \sqrt{gR} \qquad (3) 2\sqrt{gR}$

6.0 V

 3.0Ω

 6.0Ω

K

<--10 m⋅

20 m

- ${f 26}$. වෘත්තයක පරිධිය දිගේ තබා ඇති සර්වසම සංගීත භාණ්ඩ දහයක් මගින් ${f 50~dB}$ ක ධ්වනි තීවුතා මට්ටමක් වෘත්තයේ කෝන්දුයේ ඇති කරයි. කේන්දුයේදී $60~\mathrm{dB}$ ක ධවනි තීවුතා මට්ටමක් ඇති කිරීම සඳහා සර්වසම සංගීත භාණ්ඩ කොපමණ සංඛාාවක් වෘත්තයේ පරිධිය දිගේ තැබීමට අවශා වේ ද?
 - (1) 10
- (2) 20
- (3) 50
- (4) 100
- (5) 200

 $oldsymbol{27}$. අරය R වන අර්ධගෝලාකාර පාතුයක ගැට්ටේ සිට ස්කන්ධය m වන ගෝලයක් රූපයේ පෙන්වා ඇති අයුරින් මුදා හැරේ. ගෝලය කිහිපවරක් දෝලනය වී ඝර්ෂණය නිසා අවසානයේදී එය පාතුයේ පතුලේ නවතී. මෙම කිුිිියාවලියේදී ගෝලය මත කිුිිියා කරන ගුරුත්වාකර්ෂණ බලය සහ අභිලම්බ පුතිකිුිිියා බලය මගින් කෙරෙන කාර්යය පිළිබඳ සතා වන්නේ කුමක් ද?

` ;	ගුරුත්වාකර්ෂණ බලය මගින් කෙරෙන කාර්යය	අභිලම්බ පුතිකුියා බලය මගින් කෙරෙන කාර්යය	
(1)	0	0	
(2)	$\frac{1}{2}mgR$	0	
(3)	mgR	0	
(4)	0	mgR	
(5)	mgR	mgR	

28. පුද්ගලයෙක් තුනී වීදුරු බිත්ති සහිත බඳුනක් තුළ ඇති ජලජ ශාකයක් උත්තල කාචයක් භාවිතයෙන් ඡායාරූප ගත කරයි. බඳුන ජලයෙන් පිරී ඇත. ඡායාරූප පටලය, කාචය සහ ජලජ ශාකය රූපයේ පෙන්වා ඇති පරිදි ස්ථානගතව ඇතිවිට ජලජ ශාකයේ පැහැදිලි පුතිබිම්බයක් ඡායාරූප පටලය මත සටහන් වේ.

(ජලයේ වර්තනාංකය = $\frac{7}{2}$)

උත්තල කාචයේ නාභීය දුර කොපමණ ද?

- (1) 8·0 cm

- (2) $\frac{25}{3}$ cm (3) $\frac{110}{13}$ cm (4) 9.0 cm (5) $\frac{40}{3}$ cm
- ${f 29}$. රූපයේ පෙන්වා ඇති පරිදි X සහ Y ලක්ෂායීය ආරෝපණ දෙකක් සරල රේඛාවක් දිගේ අචලව තබා ඇත. X හි ආරෝපණය +q වේ. ලක්ෂායීය ඍණ ආරෝපණයක් P ලක්ෂායේ තැබූ විට එය අචලව පවතී. Yහි ආරෝපණය කුමක් ද? ආරෝපණ මත කිුියාකරන අනෙකුත් සියලුම බල නොසලකා හරින්න.
 - (1) $-\frac{1}{\sqrt{2}}q$ (2) $-\frac{1}{2}q$
- $(3) + \frac{1}{2}q \qquad \qquad X \qquad P \qquad Y$
- (4) $+\frac{1}{\sqrt{2}}q$ (5) +2q

30. අභාාන්තර පුතිරෝධය නොගිණිය හැකි බැටරි දෙකක්, පුතිරෝධක පහක් සහ එක් ධාරිතුකයක් අඩංගු පරිපථයක් රූපයේ පෙන්වයි.

පරිපථය අනවරත අවස්ථාවට පත් වූ පසු $3\,\Omega$ පුතිරෝධකය හරහා ගලන ධාරාව කොපමණ ද?

- (1) 0.1 A
- (2) 0.2 A
- (3) 0.4 A

- (4) 0.8 A
- (5) 1.0 A

61721

31. අසමාන හරස්කඩ ඇති ධාරාවක් රැගෙන යන ලෝහ කම්බියක් රූපයේ පෙන්වා ඇත. පහත පුකාශ සලකා බලන්න.

- (A) කම්බිය තුළ ධාරාව සෑම තැනකදීම එකම වේ.
- (B) කම්බියේ තුනී කොටසේ ක්ෂමතා උත්සර්ජනය පළල් කොටසේදීට වඩා වැඩි ය.
- (C) තුනී කොටසේදී ඉලෙක්ටුෝනවල ප්ලාවිත පුවේගය පළල් කොටසේදීට වඩා වැඩිය.

ඉහත පුකාශ අතුරෙන්,

- (1) (A) පමණක් සතා වේ.
- (2) (B) පමණක් සතා වේ.
- (3) (A) සහ (C) පමණක් සතා වේ.
- (4) (B) සහ (C) පමණක් සතා වේ.
- (5) (A), (B) සහ (C) යන සියල්ලම සතා වේ.
- $oldsymbol{32}$. රූපයේ පෙන්වා ඇති පරිදි ලෝහ තහඩු හතරක් එකිනෙක අතර පරතරය d වන සේ තබා ඇත. එක් එක් තහඩුව අනෙක සමග අතිච්ඡාදනය වන වර්ගඵලයA වේ. පද්ධතියේ සමක ධාරණාව කුමක් ද?

- (1) $\frac{1}{3} \frac{\varepsilon_0 A}{d}$ (2) $\frac{1}{2} \frac{\varepsilon_0 A}{d}$ (3) $\frac{\varepsilon_0 A}{d}$ (4) $2 \frac{\varepsilon_0 A}{d}$ (5) $3 \frac{\varepsilon_0 A}{d}$
- ${f 33}$. රූපයේ පෙන්වා ඇති පරිදි වීදුරු පුිස්මයකAC මුහුණත මත ඒකවර්ණ ආලෝක කි්රණයක් අභිලම්බව පතනය වේ. වීදුරුවල වර්තනාංකය
 - $rac{3}{2}$ කි. වර්තනාංකය n වන පාරදෘශා දුව ස්තරයක් පිුස්මයේ ABමුහුණත මත අතුරා ඇත. AB පෘෂ්ඨයෙන් කිරණය පූර්ණ අභාන්තර පරාවර්තනයට බඳුන් වීම සඳහා n සම්බන්ධයෙන් පහත කුමක් නිවැරදි

- (1) $n < \frac{3\sqrt{3}}{8}$ (2) $n < \frac{3}{4}$ (3) $n < \frac{3\sqrt{3}}{4}$
- (4) $n > \frac{3\sqrt{3}}{8}$ (5) $n > \frac{3\sqrt{3}}{4}$
- 34. දුවයකින් පුරවන ලද සයිපනයක් රූපයේ දැක්වේ. අනුරූප උස රූපයේ සටහන් කොට ඇත. සයිපනයේ $oldsymbol{C}$ ලක්ෂායෙන් නිකුත්වන දුවයේ වේගය (
 u) කුමක් වේ ද ${
 m ?}$ දුව බඳුනේ හරස්කඩ වර්ගඵලය නළයේ හරස්කඩ වර්ගඵලයට වඩා විශාල බවත් පුවාහය අනවරත හා දුස්සුාවී නොවන බවත් උපකල්පනය කරන්න.

(2)
$$v = \sqrt{2g(h_1 + h_2)}$$

(3)
$$v = \sqrt{2g(h_1 + h_3)}$$

(4)
$$v = \sqrt{2g(h_2 + h_3)}$$

$$(5) \quad v = \sqrt{2gh_3}$$

 ${f 35}$. ස්කන්ධය M සහ දිග L වූ ඒකාකාර AB දණ්ඩක් රූපයේ පෙන්වා ඇති ප්රිදි A කෙළවරින් සුමටව අසව් කොට Bකෙළවරට ඇඳු නූලක් මගින් දණ්ඩ තිරස්ව තබා ඇත. නූල කැපූ පසු B කෙළවරේ ආරම්භක සිරස් රේඛීය ත්වරණය කුමක් ද?

A කෙළවර වටා දණ්ඩේ අවස්ථීති සූර්ණය $rac{1}{3}\mathit{ML}^2$ වේ.

- (1) $\frac{2}{3}g$

- 36. පැත්තක දිග 10 cm වන සමජාතීය ලී ඝනකයක් රූපයේ පෙන්වා ඇති පරිදි දුනු තරාදියකට ගැට ගැසූ සැහැල්ලු තන්තුවක් මගින් ජල ටැංකියක් තුළ එල්ලා ඇත. ලී සහ ජලයේ ඝනත්ව පිළිවෙළින් $800\,\mathrm{kg}\,\mathrm{m}^{-3}$ සහ $1000~{
 m kg}\,{
 m m}^{-3}$ වේ. තරාදියේ පාඨාංකය $3~{
 m N}$ නම් ජලය තුළ ඇති ලී පරිමාව කොපමණ ද?

් නූල

- (1) 400 cm³
- (2) 500 cm³
- $(3) 600 \text{ cm}^3$

- $(4) 700 \text{ cm}^3$
- $(5) 800 \text{ cm}^3$
- ${f 37}$. දෙකෙළවරම මුදා තබා ඇති AB ඒකාකාර වීදුරු නළයක දිග $100~{
 m cm}$ වේ. එය තිරස්ව තබා ඇති අතර වායු කඳන් දෙකම (P සහ Q) 27 $^{\circ}\mathrm{C}$ උෂ්ණත්වයක සහ එකම පීඩනයක පවතින විට $10~\mathrm{cm}$ දිගැති රසදිය කඳක් නළයේ හරි මැද සිරවී ඇත. P සහ Q වායු කඳන්වල උෂ්ණත්වය පිළිවෙළින් $47~^{\circ}\mathrm{C}$ සහ $127~^{\circ}\mathrm{C}$ දක්වා වැඩි කළේ නම් වායු කඳන්වල දිග අතර වෙනස කොපමණ වේ ද? රසදිය සහ වීදුරුවල පුසාරණය නොසලකා හරින්න.
 - (1) 5 cm
- (2) 6 cm
- (3) 8 cm

- (4) 10 cm
- (5) 12 cm
- ${f 38}.~~A,B$ සහ C යන සර්වසම සන්නායක ගෝල තුනක් පරිවාරක ආධාරක මත රඳවා රූපයේ පෙන්වා ඇති පරිදි ඇත් කොට තබා ඇත. A ගෝලයට +3q ආරෝපණයක් ද C ට -2q ආරෝපණයක් ද ලබාදී ඇත. B ගෝලයේ සඵල ආරෝපණයක් නැත. ඊළඟට B ගෝලය පළමුව C ගෝලයට ස්පර්ශ කොට දෙවනුව B ගෝලය A ගෝලයට ස්පර්ශ කොට අවසානයේ ගෝල ආරම්භක ස්ථානවලට ගෙන යන ලදී. එක් .එක් ගෝලයේ ඉතිරිව පවතින අවසාන ආරෝපණය වන්නේ,

_			The state of the s
	A ගෝලය	<i>B</i> ගෝලය	C ගෝලය
(1)	+3q	<i>−q</i>	-q
(2)	+2q	0	-q
(3)	+2q	<i>−q</i>	0
(4)	+q	-q	+q
(5)	+ <i>q</i>	+q	-q

 $oldsymbol{39}$. රූපයේ පෙන්වා ඇති පරිදි සුාව ඝනත්වය $oldsymbol{\mathit{B}}$ වන ඒකාකාර චුම්බක ක්ෂේතුයක් කඩදාසියේ තලය තුළට යොමුව ඇත. අරය r වන අර්ධ වෘත්තාකාර සන්නායක පුඩුවක් තලයට ලම්බව O කේන්දුය වටා $oldsymbol{\omega}$ ඒකාකාර කෝණික පුවේගයකින් භුමණය වේ. පුඩුවේ පුතිරෝධය 2Ω වේ. පුඩුවේ පුේරණය වන ධාරාවේ විශාලත්වය කුමක් ද?

- (1) $\frac{1}{4}\omega r^2 B$ (2) $\frac{1}{2}\omega r^2 B$ (3) $\omega r^2 B$ (4) $2\omega r^2 B$ (5) $4\omega r^2 B$

40. AB, BC, BD, CD, CE සහ DE ඒකාකාර දඬු හයක් රුපයේ පෙන්වා ඇති පරිදි සම්බන්ධ කොට ඇත. සියලු දඬුවලට සර්වසම දිග හා හරස්කඩ වර්ගඵලයක් ඇත. AB, BC සහ BD දඬු සාදා ඇති දවායේ තාප සන්නායකතාව k_1 වන අතර CD, CE සහ DE දඬු සාදා ඇති දවායේ තාප සන්නායකතාව k_2 වේ.

සියලු දඬු හොඳින් අවුරා ඇති අතර A සහ E දෙකෙළවර පිළිවෙළින් θ_1 සහ θ_2 උෂ්ණත්වවල $(\theta_1>\theta_2)$ පවත්වාගෙන ඇත. අනවරත අවස්ථාවට පැමිණි පසු AB,BC සහ CE දඬු ඔස්සේ තාපය ගලා යෑමේ ශීඝුතාවයේ (Q) විචලනය වඩාත්ම හොඳින් A තිරුපණය වන්නේ කුමන පුස්තාරයෙන් ද?

41. පුතිරෝධක 12ක් භාවිත කොට තතා ඇති පරිපථ තුනක් රූපවල පෙන්වා ඇත. පිළිවෙළින් පරිපථ හරහා ගලන ධාරා $I_{\rm a}$, $I_{\rm b}$ සහ $I_{\rm c}$ අතර නිවැරදි සම්බන්ධතාවය දෙනු ලබන්නේ පහත කුමකින් ද?

- (1) $I_{\rm a} > I_{\rm b} > I_{\rm c}$
- (2) $I_{\rm a} < I_{\rm b} < I_{\rm c}$
- (3) $I_{\rm a} = I_{\rm b} > I_{\rm c}$
- (4) $I_{\rm a} = I_{\rm b} < I_{\rm c}$
- (5) $I_{a} = I_{b} = I_{c}$

 $oldsymbol{42}.~~a$ සිට b දක්වා වූ තාපගතික කිුයාවලියක් තුළදී පරිපූර්ණ වායුවක දී ඇති ස්කන්ධයක පරිමාව V සමග එහි මධානා ු චාලක ශක්තිය E විචලනය වන අයුරු රූපයේ පෙන්වයි. වායුවේ පරිමාව V සමග පීඩනය P හි අනුරූප විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ,

 $oldsymbol{43}$. හරස්කඩ වර්ගඵලය A වන සිලින්ඩරාකාර බඳුනක පතුලේ රූපයේ පෙන්වා ඇති පරිදි අරය r වූ කුඩා සිදුරක් ඇත. පෘෂ්ඨික ආතතිය T වන දුවයක් බඳුනේ යම් උසකට පිරවූ විට දුවය සිදුර හරහා කාන්දු වීමට පටන් ගනී. එම උසෙන් හරි අඩකට දුවය පුරවා වස්තුවක් දුවයේ මතුපිට පා කරන ලදී. සිදුර හරහා දුවය කාන්දුවීම සඳහා වස්තුවට තිබිය යුතු අවම ස්කන්ධය කුමක් ද?

- (1) $\frac{AT}{2rg}$ (2) $\frac{AT}{rg}$ (3) $\frac{2AT}{rg}$

- $(4) \frac{rg}{AT} \qquad (5) \frac{2rg}{AT}$
- 44. පෙන්වා ඇති සිලිකන් ටුාන්සිස්ටර පරිපථය පිළිවෙළින් කපාහරින පෙදෙසට සහ කිුිිියාකාරී පෙදෙසට යොමු කරවන R හි අගයන් වන්නේ මොනවා ද?

- (1) $5 k\Omega$, $1.0 k\Omega$
- (2) $5 k\Omega$, $2.5 k\Omega$
- (3) $5 k\Omega$, $7.5 k\Omega$
- (4) $100 k\Omega$, $10 k\Omega$
- (5) $100 k\Omega$, $50 k\Omega$

45. රූපයේ පෙන්වා ඇති පරිදි O ලක්ෂායේ අචලව ඇති උදාසීන අංශුවක් සර්වසම ස්කන්ධ ඇති P සහ Q යන කුඩා ආරෝපිත අංශු දෙකකට ක්ෂය වේ. සුාව ඝනත්වය B වන නියත සහ ඒකාකාර චුම්බක ක්ෂේතුයක් කඩදාසි තලය තුළට යොමු කොට ඇත. P සහ Q ආරෝපිත අංශු දෙකේ පථ නිවැරදිව පෙන්වන්නේ පහත කුමකින් ද? (අංශු දෙක අතර ස්ථිති විදුහුත් අන්තර් කිුයාව නොසලකා හරින්න.)

46. සර්වසම කාරකාත්මක වර්ධක මගින් සාදා ඇති A,B සහ C පරිපථ තුනක් රූපවල පෙන්වයි. පරිපූර්ණ චෝල්ටීයතා පුභවයකින් ලබාගත් $V_{
m in}$ සර්වසම පුදාන චෝල්ටීයතා පරිපථ තුනටම යොදා ඇත. පරිපථ තුනත් අනුරූප පුතිදාන චෝල්ටීයතාවල විශාලත්ව $V_{
m A},V_{
m B}$, සහ $V_{
m C}$ අතර ඇති නිවැරදි සසැඳුම දෙනු ලබන්නේ පහත කුමකින් ද?

 $(1) \quad V_{A} = V_{B} = V_{C}$

 $(2) \quad V_{\rm A} = V_{\rm B} < V_{\rm C}$

 $(3) \quad V_{\rm A} > V_{\rm B} = V_{\rm C}$

 $(4) \quad V_{\rm A} = V_{\rm B} > V_{\rm C}$

 $(5) V_{\rm A} < V_{\rm B} < V_{\rm C}$

47. උෂ්ණත්වය 30 °C සහ සාපේක්ෂ ආර්දුතාව (RH) 90% වූ පරිසරයේ ඇති වාතය 10 °C දක්වා සිසිල් කොට වා සැකසුම් පිරියතක් (air conditioning plant) මගින් වාතයේ ඇති යම් ජල වාෂ්ප පුමාණයක් ඉවත් කරන ලදී. ඊළඟට මෙම වාතය 20 °C දක්වා රත් කොට පරිගණක විදාහගාරයක් තුළට යවන ලදී. පිළිවෙළින් උෂ්ණත්ව 10 °C, 20 °C සහ 30 °C දී සංකෘප්ත ජල වාෂ්ප පීඩන a,b සහ c මගින් දෙනු ලබයි නම් පිරියතෙන් ඉවත් කළ ජල වාෂ්ප අනුපාතය සහ 20 °C දී වාතයේ අවසාන සාපේක්ෂ ආර්දුතාවය (RH) වන්නේ කුමක් ද?

- (1) $\frac{(0.9c-a)}{0.9c}, \frac{a \times 100}{b}\%$
- (2) $\frac{(0.9c-a)}{0.9c}, \frac{c \times 100}{b}\%$
- $(3) \quad \frac{(0.9c-a)}{c}, \frac{a \times 100}{b} \%$
- (4) $\frac{(c-a)}{c}, \frac{b\times 100}{c}\%$
- $(5) \quad \frac{(c-a)}{c}, \frac{a \times 100}{c}\%$

48. උෂ්ණත්වය $51\,^{\circ}$ C වාතයෙන් පුරවන ලද එක් කෙළවරක් වැසූ නළයක් සමග සරසුලක් නාද කළ විට ඇසෙන නුගැසුම් සංඛ්‍යාතය $4\,Hz$ ක් විය. උෂ්ණත්වය $127\,^{\circ}$ C වාතයෙන් පුරවන ලද නළය සමග සරසුල නාද කළ විට ද එම නුගැසුම් සංඛ්‍යාතයම ඇසෙන ලදී. අවස්ථා දෙකේදීම නළය නාද වූයේ එකම උපරිතානයෙනි. සරසුලේ සංඛ්‍යාතය කොපමණ ද? නළයේ ආන්ත ශෝධනය නොසලකා හරින්න. $(\sqrt{324} = 18)$

- (1) 56 Hz
- (2) 60 Hz
- (3) 66 Hz
- (4) 76 Hz
- (5) 80 Hz

49. අභාාවකාශ යානයක් පෘථිවියේ සිට සඳ කරා ගමන් කරයි නම් දුර (s) සමග එහි සඵල බරෙහි (W) විචලනය වඩාත්ම හොඳින් නිරූපණය වන්නේ පහත කුමන පුස්තාරය මගින් ද? (අනෙක් වස්තුවල බලපෑම නොසලකා හරින්න.)

50. කඩදාසියෙන් ඉවතට නියත ධාරාවක් රැගෙන යන දිග සෘජු කම්බියක් O මූල ලක්ෂාය හරහා Z අක්ෂය ඔස්සේ කඩදාසියේ තලයට ලම්බව තබා ඇත. කම්බිය කේන්දු කොට ගෙන X-Y තලයේ ඇඳ ඇති අරය R වූ අර්ධ වෘත්තයක් රූපයේ පෙන්වයි. අර්ධ වෘත්තාකාර පථය ඔස්සේ x සමග චූම්බක සුාව ඝනත්වයේ x - සංරචකයේ (B_x) වීචලනය වඩාත්ම හොඳින් නිරූපණය වනුයේ පහත කුමන පුස්තාරය මගින් ද?

* * *

