Convex Learning Problems

Peng Lingwei

April 24, 2019

Contents

12	Con	vex Le	earning Problem	1
	12.1	CONV	EXITY, LIPSCHITZNESS, AND SMOOTHNESS	1
		12.1.1	Convexity	1
		12.1.2	Lipschitzness	2
			Smoothness	
	12.2	CONV	'EX LEARNING PROBLEMS	2
		12.2.1	Learnability of Convex Learning Problems	3
		12.2.2	Convex-Lipschitz/Smooth-Bounded Learning Problems .	3
	123		OGATE LOSS FUNCTIONS	4

12 Convex Learning Problem

Convex learning problems can be learn e ciently. 0—1 loss function is nonconvex function, and is computationally hard to learn in the unrealizable case.

12.1 CONVEXITY, LIPSCHITZNESS, AND SMOOTHNESS

12.1.1 Convexity

De nition 12.1. (Convex Set). $\forall u ; v, then \forall \in [0;1], we have$

$$u + (1 -)v \in C$$
:

De nition 12.2. (Convex Function). Let C be a convex set. A function f: $C \to \mathbb{R}$ is convex if $\forall u : v \in C$ and $\in [0;1]$,

$$f(u + (1 -)v) \le f(u) + (1 -)f(v)$$
:

For convex di erentiable functions,

$$\forall f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}) ; \mathbf{u} - \mathbf{w} \rangle$$
:

Keep Convexity:

- $g(x) = \max_{i \in [r]} f_i(x)$
- $g(x) = \bigcap_{i=1}^{r} w_i f_i(x)$, where for all $i; w_i \ge 0$

12.1.2 Lipschitzness

De nition 12.3. (Lipschitzness).Let $C \subset \mathbb{R}^d$. A function $f : \mathbb{R}^d \to \mathbb{R}^k$ is - Lipschitz over C if $\forall \mathbf{w}_1; \mathbf{w}_2 \in C$, we have

$$||f(\mathbf{w}_1) - f(\mathbf{w}_2)|| \le ||\mathbf{w}_1 - \mathbf{w}_2||$$

Intuitively, Lipschitzness constrains f'(u).

Let $f(\mathbf{x}) = g_1(g_2(\mathbf{x}))$, where g_1 is $_1 - Lipschitz$ and g_2 is $_2 - Lipschitz$. Then, f is $(_{1}_{2}) - Lipschitz$.

12.1.3 Smoothness

De nition 12.4. (Smoothness). A differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ at w is - smooth if its gradient is - Lipschitz; namely, $\forall v ; w$ we have

$$\|\nabla f(\mathbf{v}) - \nabla f(\mathbf{w})\| \le \|\mathbf{v} - \mathbf{w}\|$$
:

- Smoothness implies that

$$f(\mathbf{v}) \le f(\mathbf{w}) + \langle \nabla f(\mathbf{w}); \mathbf{v} - \mathbf{w} \rangle + \frac{1}{2} \|\mathbf{v} - \mathbf{w}\|^2$$

Setting $\mathbf{v} = \mathbf{w} - \frac{1}{2}\nabla f(\mathbf{w})$, we have

$$\frac{1}{2}\|\nabla f(\mathbf{w})\|^2 \le f(\mathbf{w}) - f(\mathbf{v}):$$

If we assume that $\forall \mathbf{v}; f(\mathbf{v}) \geq 0$, we conclude that smoothness implies self-bounded:

$$\|\nabla f(\mathbf{w})\|^2 \le 2 f(\mathbf{w})$$
:

Let $f(\mathbf{w}) = g(\langle \mathbf{w}; \mathbf{x} \rangle + b)$, where $g \to \mathbb{R} \to \mathbb{R}$ is a - smooth function, then f is $(\|\mathbf{x}\|^2) -$ smooth.

12.2 CONVEX LEARNING PROBLEMS

Symbols: a hypothesis classes set \mathcal{H} , a set of examples Z, and a loss function $I:\mathcal{H}\times Z\to \mathbb{R}_+$

 \mathcal{H} can be an arbitrary set. In this chapter, we consider hypothesis classes set $\mathcal{H} = \mathbb{R}^d$.

De nition 12.5. (Convex Learning Problem). A learning problem, $(\mathcal{H}; Z; I)$, is called convex if the hypothesis class \mathcal{H} is convex set and $\forall z \in Z$, the loss function, $I(\cdot; z)$, is a convex function (which means $f: \mathcal{H} \to \mathbb{R}; f(\mathbf{w}) = I(\mathbf{w}; z)$).

Lemma 12.1. If I is a convex loss function and the class \mathcal{H} is convex, then the $ERM_{\mathcal{H}}$ problem, of minimizing the empirical loss over \mathcal{H} , is a convex optimization problem.

12.2.1 Learnability of Convex Learning Problems

Is convexity a su cient condition for the learnability of a problem? The answer is **NO**.

Example 12.1. (Nonlearnability of Linear Regression Even If d = 1). Let $\mathcal{H} = \mathbb{R}$, and the loss be the squared loss: $I(w; (x; y)) = (wx - y)^2$. We assume A is a successful PAC learner for this problem.

Choose = 1=100, = 1=2, let $m \ge m($;) and set = $\frac{\ln(100=99)}{2m}$. We get two points $Z_1 = (1;0)$ and $Z_2 = (;-1)$, then we construct two distributions: $\mathcal{D}_1 = \{(Z_1; \cdot); (Z_2; 1-\cdot)\}$, and $\mathcal{D}_2 = \{(Z_2; 1)\}$

The probability that all examples of the training set will be Z₂ is at least 99%.

$$(1 -)^m > e^{-2} = 0.99$$
:

If $\mathcal{W} < -1=(2)$, then $L_{\mathcal{D}_1}(\mathcal{W}) = (\mathcal{W})^2 + (1-)(\mathcal{W}+1)^2 \geq (\mathcal{W})^2 \geq 1=(4)$. However, $\min_{W} L_{\mathcal{D}_1}(W) \leq L_{\mathcal{D}_{\infty}(0)} = (1-)$, it follows that, $L_{\mathcal{D}_{\infty}}(\mathcal{W}) - \min_{W} L_{\mathcal{D}_1}(W) \geq \frac{1}{4} - (1-) > .$ (< 0.0051, which means 1=(4) - (1-) > 48 \gg).

If $\hat{W} \ge -1 = (2)$, then $L_{D_2} = (\hat{W} + 1)^2 \ge 1 = 4 >$. All in all, the problem is not PAC learnable.

In addition to the convexity requirement, we also need ${\cal H}$ will be bounded. But the above example is still not PAC learnble. This motivate a de nition of two families of learning problems, convex-Lipschitz-bounded and convex-smooth-bounded.

12.2.2 Convex-Lipschitz/Smooth-Bounded Learning Problems

De nition 12.6. (Convex-Lipschitz-Bounded Learning Problem). A learning problem, $(\mathcal{H}; Z; I)$, is called Convex-Lipschitz-Bounded, with parameters ; B if:

- The hypothesis class \mathcal{H} is a convex set and bounded (parameter is B).
- For all $z \in Z$, the loss function, $I(\cdot; z)$, is a convex and Lipschitz function.

Example 12.2. Let $\mathcal{X} = \{x \in \mathbb{R}^d : ||\mathbf{x}|| \le \}$ and $\mathcal{Y} = \mathbb{R}$. Let $\mathcal{H} = \{\mathbf{w} \in \mathbb{R}^d : ||\mathbf{w}|| \le B\}$ and let the loss function be $I(\mathbf{w}; (\mathbf{x}; \mathbf{y})) = |\langle \mathbf{w}; \mathbf{x} \rangle - \mathbf{y}|$.

Proof.
$$|I(\mathbf{w}_1; (\mathbf{x}; y)) - I(\mathbf{w}_2; (\mathbf{x}; y))| \le |\langle \mathbf{w}_1 - \mathbf{w}_2; \mathbf{x} \rangle| \le ||\mathbf{x}|| \cdot ||\mathbf{w}_1 - \mathbf{w}_2||$$

De nition 12.7. (Convex-Smooth-Bounded Learning Problem). A learning problem, $(\mathcal{H}; Z; I)$, is called Convex-Smooth-Bounded, with parameters ; B if:

- The hypothesis class \mathcal{H} is a convex set and bounded (parameter is B).
- For all $z \in Z$, the loss function, $I(\cdot; z)$, is a convex and Smooth function.

Example 12.3. Let $\mathcal{X} = \{x \in \mathbb{R}^d : \|\mathbf{x}\|^2 \le -2\}$ and $\mathcal{Y} = \mathbb{R}$. Let $\mathcal{H} = \{\mathbf{w} \in \mathbb{R}^d : \|\mathbf{w}\| \le B\}$ and let the loss function be $I(\mathbf{w}; (\mathbf{x}; \mathbf{y})) = (\langle \mathbf{w}; \mathbf{x} \rangle - \mathbf{y})^2$.

Proof.
$$\|\nabla I(\mathbf{w}_1; (\mathbf{x}; y)) - \nabla I(\mathbf{w}_2; (\mathbf{x}; y))\| = 2\|\mathbf{x}\langle \mathbf{w}_1 - \mathbf{w}_2; \mathbf{x}\rangle\| = 2\|\mathbf{x}\|^2 \|\mathbf{w}_1 - \mathbf{w}_2\|$$

12.3 SURROGATE LOSS FUNCTIONS

The 0-1 loss function is not convex.

$$f^{0-1}(w;(x;y)) = 1\{y(w;x) \le 0\}$$
:

Proof. Let \mathcal{H} be the class of homogeneous halfspaces in \mathbb{R}^d . Let $\mathbf{x} = \mathbf{e}_1; y = 1$, and consider the sample $S = \{\mathbf{x}; y\}$. Let $\mathbf{w} = -\mathbf{e}_1$. Then, $\langle \mathbf{w}; \mathbf{x} \rangle = -1$ and $L_S(h_\mathbf{w}) = 1$. Let $\mathbf{w}'; s:t: \in (0;1)$ and $\|\mathbf{w}' - \mathbf{w}\| \le epsilon$. Then, $\langle \mathbf{w}'; \mathbf{x} \rangle = \langle \mathbf{w}; \mathbf{x} \rangle - \langle \mathbf{w}' - \mathbf{w}; \mathbf{x} \rangle = -1 - \langle \mathbf{w}' - \mathbf{w}; \mathbf{x} \rangle \le -1 + \|\mathbf{x}\| \le -1 + <0$, which means $L_S(\mathbf{w}') = 1$.

The requirements from a convex surrogate loss are as follows:

- It should be convex.
- It should be upper bound th original loss.

De nition 12.8. (hinge loss).

$$I^{hinge}(\mathbf{w}; (\mathbf{x}; y)) = \max\{0; 1 - y\langle \mathbf{w}; \mathbf{x} \rangle\}:$$

Then, we have:

$$L_{\mathcal{D}}^{hinge}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{hinge}(\mathbf{w}) + :$$

$$L^{0-1}_{\mathcal{D}}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L^{hinge}_{\mathcal{D}}(\mathbf{w}) + :$$

We can further rewrite the upper bound as follows:

$$L_{\mathcal{D}}^{0-1} \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w}) + \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{hinge}(\mathbf{w}) - \min_{mathbf w \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w}) + :$$

The 0-1 error of the learned predictor is upper bounded by three terms:

- Approximation error: the rst term.
- Optimization error: the second term.
- Estimation error: the third term.