Text Diffusion Models

Agenda

- Problems of autoregressive text generation
- Diffusion models: reminder
- Text diffusion models:
 - Discrete diffusion
 - Continuous diffusion

Autoregressive text generation

Generate one token at a time

The next token is ___

Disadvantages:

- Can't correct previously generated tokens
- Can't think a several tokens ahead
- Need to choose a sampling method

Diffusion models were originally made for image generation

Idea: gradually add noise to an object during the forward diffusion process Learn a model to denoise objects x_t at each noise level

$$q(x_t | x_{t-1}) = \mathcal{N}(x_t | \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)I)$$

$$\alpha_t \in [0, 1]$$

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)I)$$

$$q(x_t|x_0) = \mathcal{N}(x_t|\sqrt{\bar{\alpha}_t}x_{t-1}, (1-\bar{\alpha}_t)I)$$

$$\bar{\alpha}_t = \prod_{t=0}^t \alpha_t$$

$$q(x_{t}|x_{t-1}) = \mathcal{N}(x_{t}|\sqrt{\alpha_{t}}x_{t-1}, (1-\alpha_{t})I)$$

$$q(x_{t}|x_{0}) = \mathcal{N}(x_{t}|\sqrt{\bar{\alpha}_{t}}x_{t-1}, (1-\bar{\alpha}_{t})I)$$

$$\bar{\alpha}_{t} = \prod_{i=1}^{t} \alpha_{i}$$

$$p(x_{t-1}|x_{t}, x_{0}) \propto q(x_{t}|x_{t-1})q(x_{t-1}|x_{0}) = \mathcal{N}(x_{t-1}|\tilde{\mu}_{t}(x_{t}, x_{0}), \tilde{\beta}_{t}I)$$

$$\mathbf{x}_0$$
 \longleftarrow \longleftarrow \mathbf{x}_{t-1} $\stackrel{p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{\longleftarrow}$ \mathbf{x}_t \longleftarrow \longleftarrow \mathbf{x}_T

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t|\sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)I)$$

$$q(x_t|x_0) = \mathcal{N}(x_t|\sqrt{\bar{\alpha}_t}x_{t-1}, (1-\bar{\alpha}_t)I)$$

$$\bar{\alpha}_t = \prod_{t=0}^t \alpha_t$$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0) = \mathcal{N}(x_{t-1} | \tilde{\mu}_t(x_t, x_0), \tilde{\beta}_t I)$$

$$\frac{\tilde{\beta}_t}{\tilde{\beta}_t} = \frac{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \qquad \qquad \tilde{\mu}_t(x_t, x_0) = \frac{1}{\bar{\alpha}_t} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t \right)$$

i=1

DM training and sampling

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t > 1, \text{ else } \mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x_0

Is is possible to predict $\tilde{\mu}_t$ directly or x_0 However, for images prediction of ε_t works better

Why is it hard to apply DMs to text data?

Texts are discrete!

It is not obvious how to add noise to texts

Why is it hard to apply DMs to text data?

Texts are **discrete**!

It is not obvious how to add noise to texts

Two approaches:

- Discrete diffusion destroy information by replacing one tokens with others
- Continuous diffusion map text into continuous space and perform diffusion there

Both approaches are actively developing. Time will show, which one wins

Discrete Diffusion

Idea: Introduce stochastic matrix Q_t that sets token change probabilities

$$Q_t[i,j] = p(x_t = j | x_{t-1} = i)$$

Then we the forward process becomes

$$q(x_t | x_{t-1}) = \text{Cat}(x_t | p = x_{t-1}Q_t)$$

 x_t here is a one-hot vector

Examples of Q_t

Uniform: interpolation between data and uniform distributions

$$Q_t = (1 - \beta_t)I + \beta_t \frac{1}{|V|} 11^T$$

```
T=0 The great brown fox hopped over the lazy dog. 

T=10 The vast black fox hopping over the lazy cat. 

T=20 Their vast tripped this jumping upon walked organizations. 

T=25 Bunk scamper tripped this Sanchez walked organizations.
```

Examples of Q_t

Absorbing: all tokens degrade to the [MASK] (m) token

$$[Q_t]_{ij} = \begin{cases} 1, & i = j = m \\ 1 - \beta_t, & i = j \neq m \\ \beta_t, & i = m, j = m \end{cases}$$

```
T = 0    The great brown fox hopped over the lazy dog.
T = 10    The great [MASK] fox hopped over [MASK] lazy dog.
T = 20    The [MASK] [MASK] [MASK] ship over [MASK] lazy the.
T = 25    [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
```

Discrete Diffusion training

To get the loss function we need to maximize the likelihood $p(x_{t-1} | x_t, x_0)$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0)$$

Discrete Diffusion training

To get the loss function we need to maximize the likelihood $p(x_{t-1} \mid x_t, x_0)$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0)$$

or to maximize the variational lower bound (VLB), which is the same

$$\log p_{\theta}(x_0) = \log \int q(x_{1:T}|x_0) \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} dx_{1:T} \ge \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log p_{\theta}(x_{0:T}) - \log q(x_{1:T}|x_0) \right]$$

Discrete Diffusion training

To get the loss function we need to maximize the likelihood $p(x_{t-1} \mid x_t, x_0)$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0)$$

or to maximize the variational lower bound (VLB), which is the same

$$\log p_{\theta}(x_0) = \log \int q(x_{1:T}|x_0) \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} dx_{1:T} \ge \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log p_{\theta}(x_{0:T}) - \log q(x_{1:T}|x_0) \right]$$

However, in practice often a simple cross entropy loss is used

$$L_{\theta} = -\mathbb{E}_{q(x_t|x_0)} \left[\log p_{\theta} \left(x_0 \mid x_t \right) \right]$$

Let $\mathcal{N}(x)$ be a neighbourhood of x, $\mathcal{N}(x) = \{x_{n_1}, \dots, x_{n_k}\}$

Then concrete score is

$$c_p(x; \mathcal{N}) = \left[\frac{p(x_{n_1})}{p(x)}, \dots, \frac{p(x_{n_k})}{p(x)}\right] - 1$$

Let $\mathcal{N}(x)$ be a neighbourhood of x, $\mathcal{N}(x) = \{x_{n_1}, \dots, x_{n_k}\}$

Then concrete score is

$$c_p(x; \mathcal{N}) = \left[\frac{p(x_{n_1})}{p(x)}, \dots, \frac{p(x_{n_k})}{p(x)}\right] - 1$$

Proposition: For $x \in \mathbb{R}^d$ and $\delta > 0$ let $\mathcal{N}_{\delta} = \{x + \delta \mathbf{e}_i\}_{i=1}^d$. Then we have

$$\lim_{\delta \to 0} \frac{c_p(x; \mathcal{N}_{\delta})}{\delta} = \nabla_x \log p(x)$$

Proof:

$$\lim_{\delta \to 0} \left\{ \frac{p(x + \delta \mathbf{e}_i) - p(x)}{\delta \cdot p(x)} \right\}_{i=1}^d = \frac{1}{p(x)} \nabla_x p(x)$$

Turns out that is it much better to predict the ratio of probability densities.

$$s_{\theta}(x,t) \approx \left[\frac{p_t(y)}{p_t(x)}\right]_{x \neq y}$$

For optimization we can use, for example, MSE

$$L_{\text{CSM}} = \frac{1}{2} \mathbb{E}_{x \sim p_t} \left[\sum_{y \neq x}^{|V|} \left(s_{\theta}(x_t, t)_y - \frac{p_t(y)}{p_t(x)} \right)^2 \right]$$

Size	Model	LAMBADA	WikiText2	PTB	WikiText103	1BW
Small	GPT-2	45.04	42.43	138.43	41.60	75.20
	SEDD Absorb	≤50.92	\leq 41.84	≤114.24	\leq 40.62	≤ 79.29
	SEDD Uniform	≤65.40	\leq 50.27	\leq 140.12	≤ 49.60	≤ 101.37
	D3PM	≤93.47	\leq 77.28	≤ 200.82	≤75.16	\leq 138.92
	PLAID	<57.28	\leq 51.80	\leq 142.60	≤50.86	\leq 91.12
Medium	GPT-2	35.66	31.80	123.14	31.39	55.72
	SEDD Absorb	≤42.77	≤ 31.04	\leq 87.12	\leq 29.98	\leq 61.19
	SEDD Uniform	≤51.28	≤ 38.93	≤ 102.28	\leq 36.81	\leq 79.12

Zero-shot unconditional perplexity (1) on a variety of datasets