Unit 5: Generalized linear models: Special cases

Eugene Katsevich

November 23, 2021

Unit 4 developed a general theory for GLMs. In Unit 5, we specialize this theory to several important cases, including logistic regression and Poisson regression.

1 Logistic regression

1.1 Model definition and interpretation

Model definition. Recall from Unit 4 that the logistic regression model is

$$m_i y_i \stackrel{\text{ind}}{\sim} \text{Bin}(m_i, \pi_i); \quad \text{logit}(\pi_i) = \log \frac{\pi_i}{1 - \pi_i} = \boldsymbol{x}_{i*}^T \boldsymbol{\beta}.$$
 (1)

Here we use the canonical logit link function, although other link functions are possible. The interpretation of the parameter β_j is that a unit increase in x_j —other predictors held constant—is associated with an (additive) increase of β_j on the log-odds scale or a multiplicative increase of e^{β_j} on the odds scale. Note that logistic regression data come in two formats: ungrouped and grouped. For ungrouped data, we have $m_1 = \cdots = m_n = 1$, so $y_i \in \{0,1\}$ are Bernoulli random variables. For grouped data, we can have several independent Bernoulli observations per predictor x_{i*} , which give rise to binomial proportions $y_i \in [0,1]$. This happens most often when all the predictors are discrete. You can always convert grouped data into ungrouped data, but not necessarily vice versa. We'll discuss below that the grouped and ungrouped formulations of logistic regression have the same MLE and standard errors but different deviances.

Generative model equivalent. Consider the following generative model for $(x, y) \in \mathbb{R}^{p-1} \times \{0, 1\}$:

$$y \sim \text{Ber}(\pi); \quad \boldsymbol{x}|y \sim \begin{cases} N(\boldsymbol{\mu}_0, \boldsymbol{V}) & \text{if } y = 0\\ N(\boldsymbol{\mu}_1, \boldsymbol{V}) & \text{if } y = 1 \end{cases}$$
 (2)

Then, we can derive that y|x follows a logistic regression model (called a *discriminative* model because it conditions on x). Indeed,

$$\log \operatorname{it}(p(y=1|\boldsymbol{x})) = \log \frac{p(y=1)p(\boldsymbol{x}|y=1)}{p(y=0)p(\boldsymbol{x}|y=0)}$$

$$= \log \frac{\pi \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_1)^T \boldsymbol{V}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}_1)\right)}{(1-\pi)\exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_0)^T \boldsymbol{V}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}_0)\right)}$$

$$= \beta_0 + \boldsymbol{x}^T \boldsymbol{V}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$$

$$\equiv \beta_0 + \boldsymbol{x}^T \boldsymbol{\beta}_{-0}.$$
(3)

This is another natural route to motivating the logistic regression model.

Special case: 2×2 **contingency table.** Suppose that $x \in \{0,1\}$, and consider the logistic regression model logit(π_i) = $\beta_0 + \beta_1 x_i$. For example, suppose that $x \in \{0,1\}$ encodes treatment (1) and control (0) in a clinical trial, and $y_i \in \{0,1\}$ encodes success (1) and failure (0). We make n observations of (x_i, y_i) in this ungrouped setup. The parameter e^{β_1} can be interpreted as the *odds ratio*:

$$e^{\beta_1} = \frac{\mathbb{P}[y=1|x=1]/\mathbb{P}[y=0|x=1]}{\mathbb{P}[y=1|x=0]/\mathbb{P}[y=0|x=0]}.$$
 (4)

This parameter is the multiple by which the odds of success increase when going from control to treatment. We can summarize such data via the 2×2 contingency table (Table 1). A grouped version of this data would be $\{(x_1, y_1) = (0, 7/24), (x_2, y_2) = (1, 9/21)\}$. The null hypothesis $H_0: \beta_1 = 0 \iff H_0: e^{\beta_1} = 1$ states that the success probability in both rows of the table is the same.

	Success	Failure	Total
Treatment	9	12	21
Control	7	17	24
Total	16	29	45

Table 1: An example of a 2×2 contingency table.

Logistic regression with case-control studies. In a prospective study (e.g. a clinical trial), we assign treatment or control (i.e., x) to individuals, and then observe a binary outcome (i.e., y). Sometimes, the outcome y takes a long time to measure or has highly imbalanced distribution in the population (e.g. the development of lung cancer). In this case, an appealing study design is the retrospective study, where individuals are sampled based on their response values (e.g. presence of lung cancer) rather than their treatment/exposure status (e.g. smoking). It turns out that a logistic regression model is appropriate for such retrospective study designs as well. Indeed, suppose that y|x follows a logistic regression model. Let's try to figure out the distribution of y|x in the retrospectively gathered sample. Letting $z \in \{0,1\}$ denote the indicator that an observation is sampled, define $\rho_1 \equiv \mathbb{P}[z=1|y=1]$ and $\rho_0 \equiv \mathbb{P}[z=1|y=0]$, and assume that $\mathbb{P}[z=1,y,x] = \mathbb{P}[z=1|y]$. The latter assumption states that the predictors x were not used in the retrospective sampling process. Then,

$$\operatorname{logit}(\mathbb{P}[y=1|z=1,\boldsymbol{x}]) = \operatorname{log}\frac{\rho_1\mathbb{P}[y=1|\boldsymbol{x}]}{\rho_0\mathbb{P}[y=0|\boldsymbol{x}]} = \operatorname{log}\frac{\rho_1}{\rho_0} + \operatorname{logit}(\mathbb{P}[y=1|\boldsymbol{x}]) = \left(\operatorname{log}\frac{\rho_1}{\rho_0} + \beta_0\right) + \boldsymbol{x}^T\boldsymbol{\beta}_{-0}.$$

Thus, conditioning on retrospective sampling changes only the intercept term, but preserves the coefficients of x. Therefore, we can carry out inference for β_{-0} in the same way regardless of whether the study design is prospective or retrospective.

1.2 Estimation and inference

Score and Fisher information. We recall from Unit 4 that the score is

$$\frac{\partial}{\partial \boldsymbol{\beta}} \log \mathcal{L}(\boldsymbol{\beta}) = \boldsymbol{X}^T \boldsymbol{D} \boldsymbol{V}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}) = \boldsymbol{X}^T \operatorname{diag} \left(\frac{\partial \mu_i / \partial \eta_i}{\operatorname{Var}[y_i]} \right) (\boldsymbol{y} - \boldsymbol{\mu}).$$
 (5)

Note that

$$\frac{\partial \mu_i / \partial \eta_i}{\operatorname{Var}[y_i]} = \frac{\partial \mu_i / \partial \theta_i}{\operatorname{Var}[y_i]} = \frac{\ddot{\psi}(\theta_i)}{\operatorname{Var}[y_i]} = m_i.$$
 (6)

Therefore, the score equations are

$$0 = \mathbf{X}^T \operatorname{diag}(m_i) (\mathbf{y} - \widehat{\boldsymbol{\mu}}) \iff \sum_{i=1}^n m_i x_{ij} (y_i - \widehat{\pi}_i) = 0, \quad j = 0, \dots, p - 1.$$
 (7)

We can solve these equations using IRLS. The Fisher information is

$$I(\boldsymbol{\beta}) = \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X}, \quad W_{ii} = \frac{(\partial \mu_i / \partial \eta_i)^2}{\operatorname{Var}[y_i]} = \frac{\ddot{\psi}(\theta_i)^2}{\operatorname{Var}[y_i]} = m_i^2 \operatorname{Var}[y_i] = m_i \pi_i (1 - \pi_i).$$
 (8)

Wald inference. Using the results in the previous paragraph, we can carry out Wald inference based on the normal approximation

$$\hat{\boldsymbol{\beta}} \stackrel{\cdot}{\sim} N\left(\boldsymbol{\beta}, \left(\boldsymbol{X}^T \operatorname{diag}(m_i \hat{\pi}_i (1 - \hat{\pi}_i)) \boldsymbol{X}\right)^{-1}\right).$$
 (9)

This approximation holds for $\sum_{i=1}^{n} m_i \to \infty$. Unfortunately, Wald inference in finite samples does not always perform very well. The Wald test above is known to be conservative due to the *Hauck-Donner effect*. As an example, consider testing $H_0: \beta_0 = 0.5$ in the intercept-only model

$$ny \sim \text{Bin}(n,\pi); \quad \text{logit}(\pi) = \beta_0.$$
 (10)

The Wald test statistic is $z \equiv \widehat{\beta}/\text{SE} = \text{logit}(y)\sqrt{ny(1-y)}$. This test statistic actually tends to decrease as $y \to 1$, since the standard error grows faster than the estimate itself. For example, take n = 25. Then, z = 3.3 for n = 23/25 but z = 3.1 for n = 24/25. So the test statistic becomes less significant as we go further away from the null!

Perfect separability. If we have a situation where a hyperplane in covariate space separates observations with $y_i = 0$ from those with $y_i = 1$, we have *perfect separability*. It turns out that some of the maximum likelihood estimates are infinite in this case. The Wald test completely fails in this case, since it uses the parameter estimates as test statistics.

Likelihood ratio inference. Let's first compute the deviance of a logistic regression model. We have

$$L(\mathbf{y}; \boldsymbol{\pi}) = \sum_{i=1}^{n} m_i y_i \log \pi_i + m_i (1 - y_i) \log(1 - \pi_i),$$
(11)

so

$$D(\boldsymbol{y}; \widehat{\boldsymbol{\pi}}) = 2(L(\boldsymbol{y}; \boldsymbol{y}) - L(\boldsymbol{y}; \widehat{\boldsymbol{\pi}})) = 2\sum_{i=1}^{n} \left(m_i y_i \log \frac{y_i}{\widehat{\pi}_i} + m_i (1 - y_i) \log \frac{1 - y_i}{1 - \widehat{\pi}_i} \right).$$
(12)

Letting $\hat{\pi}_0$ and $\hat{\pi}_1$ be the MLEs from two nested models, we can then express the likelihood ratio statistic as

$$T^{\text{LRT}} = 2(L(\boldsymbol{y}; \widehat{\boldsymbol{\pi}}_1) - L(\boldsymbol{y}; \widehat{\boldsymbol{\pi}}_0)) = 2\sum_{i=1}^n \left(m_i y_i \log \frac{\widehat{\pi}_{i1}}{\widehat{\pi}_{i0}} + m_i (1 - y_i) \log \frac{1 - \widehat{\pi}_{i1}}{1 - \widehat{\pi}_{i0}} \right).$$
(13)

We can then construct a likelihood ratio test in the usual way. Likelihood ratio inference can give nontrivial conclusions in cases when Wald inference cannot, e.g. in the case of perfect separability. Indeed, suppose that

$$m_i y_i \sim \text{Bin}(m_i, \pi_i), \quad \text{logit}(\pi_i) = \beta_0 + \beta_1 x_i, \quad i = 1, 2.$$
 (14)

We would like to test $H_0: \beta_1 = 0$. Suppose that we observe $(x_1, y_1) = (0, 0), (x_2, y_2) = (1, 1)$, giving us complete separability. Can we still get a meaningful test of H_0 ? We can write out the likelihood ratio test statistic, which is

$$D(\boldsymbol{y}; \widehat{\boldsymbol{\pi}}) = 2\left(m_1 \log \frac{1}{1 - \frac{m_2}{m_1 + m_2}} + m_2 \log \frac{1}{\frac{m_2}{m_1 + m_2}}\right) = 2\left(m_1 \log \frac{m_1 + m_2}{m_1} + m_2 \log \frac{m_1 + m_2}{m_2}\right).$$

This is a number that we can compare to the χ_1^2 distribution to get a p-value, as usual.

Goodness of fit tests. We can test goodness of fit in the grouped logistic regression model by comparing the deviance statistic (12) to the asymptotic null distribution χ^2_{n-p} . We can alternatively use the score test, which gives us Pearson's X^2 statistic:

$$X^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \widehat{\pi}_{i})^{2}}{\widehat{\pi}_{i}(1 - \widehat{\pi}_{i})/m_{i}}.$$
(15)

Fisher's exact test. As an alternative to asymptotic tests for logistic regression, in the case of 2×2 tables there is an *exact* test of $H_0: \beta_1 = 0$. Suppose we have

$$s_1 = m_1 y_1 \sim \text{Bin}(m_1, \pi_1) \quad and \quad s_2 = m_2 y_2 \sim \text{Bin}(m_2, \pi_2).$$
 (16)

The trick is to conduct inference conditional on $s_1 + s_2$. Note that under $H_0: \pi_1 = \pi_2$, we have

$$\mathbb{P}[s_{1} = t | s_{1} + s_{2} = v] = \mathbb{P}[s_{1} = t | s_{1} + s_{2} = v]
= \frac{\mathbb{P}[s_{1} = t, s_{2} = v - t]}{\mathbb{P}[s_{1} + s_{2} = v]}
= \frac{\binom{m_{1}}{t} \pi^{t} (1 - \pi)^{m_{1} - t} \binom{m_{2}}{v - t} \pi^{v - t} (1 - \pi)^{m_{2} - (v - t)}}{\binom{m_{1} + m_{2}}{v} \pi^{v} (1 - \pi)^{m_{1} + m_{2} - v}}
= \frac{\binom{m_{1}}{t} \binom{m_{2}}{v - t}}{\binom{m_{1} + m_{2}}{v}}.$$
(17)

Therefore, a finite-sample p-value to test $H_0: \pi_1 = \pi_2$ versus $H_1: \pi_1 > \pi_2$ is $\mathbb{P}[s_1 \ge t | s_1 + s_2]$, which can be computed exactly based on the formula above.

2 Poisson regression

The Poisson regression model (with offsets) is

$$y_i \stackrel{\text{ind}}{\sim} \text{Poi}(\mu_i); \quad \log \mu_i = o_i + \boldsymbol{x}_{i*}^T \boldsymbol{\beta}.$$
 (18)

Because the log of the mean is linear in the predictors, Poisson regression models are often called *loglinear models*. We have seen in Unit 4 how to carry out inference for this model based on the Wald, likelihood ratio, and score tests. Recall, for example, that the deviance of this model is

$$D(\mathbf{y}; \widehat{\boldsymbol{\mu}}) = \sum_{i=1}^{n} y_i \log \frac{y_i}{\widehat{\mu}_i}.$$
 (19)

2.1 Modeling rates

One cool feature of the Poisson model is that rates can be easily modeled with the help of offsets. Let's say that the count y_i is collected over the course of a time interval of length t_i , or a spatial region with area t_i , or a population of size t_i , etc. Then, it is meaningful to model

$$y_i \stackrel{\text{ind}}{\sim} \text{Poi}(\pi_i t_i), \quad \log \pi_i = \boldsymbol{x}_{i*}^T \boldsymbol{\beta},$$
 (20)

where π_i represents the rate of events per day / per square mile / per capita, etc. In other words,

$$y_i \stackrel{\text{ind}}{\sim} \text{Poi}(\mu_i), \quad \log \mu_i = \log t_i + \boldsymbol{x}_{i*}^T \boldsymbol{\beta},$$
 (21)

which is exactly equation (18) with offsets $o_i = \log t_i$. For example, in single cell RNA-sequencing, y_i is the number of reads aligning to a gene in cell i and t_i is the total number of reads measured in the cell, a quantity called the *sequencing depth*. We might use a Poisson regression model to carry out a differential expression analysis between two cell types.

2.2 Relationship between Poisson and multinomial distributions

Suppose that $y_i \stackrel{\text{ind}}{\sim} \text{Poi}(\mu_i)$ for i = 1, ..., n. Then,

$$\mathbb{P}\left[y_{1} = m_{1}, \dots, y_{n} = m_{n} \middle| \sum_{i} y_{i} = m\right] = \frac{\mathbb{P}[y_{1} = m_{1}, \dots, y_{n} = m_{n}]}{\mathbb{P}[\sum_{i} y_{i} = m]}$$

$$= \frac{\prod_{i=1}^{n} e^{-\mu_{i}} \frac{\mu_{i}^{y_{i}}}{y_{i}!}}{e^{-\sum_{i} \mu_{i}} \frac{(\sum_{i} \mu_{i})^{m}}{m!}}$$

$$= \binom{m}{m_{1}, \dots, m_{n}} \prod_{i=1}^{n} \pi_{i}^{y_{i}}; \quad \pi_{i} \equiv \frac{\mu_{i}}{\sum_{i'=1}^{n} \mu_{i'}}.$$
(22)

We recognize the last expression as the probability mass function of the multinomial distribution with parameters (π_1, \ldots, π_n) summing to one. In words, the joint distribution of a set of independent Poisson distributions conditional on their sum is a multinomial distribution.

2.3 Poisson model for 2×2 contingency tables

Let's say that we have two binary random variables $x_1, x_2 \in \{0, 1\}$ with joint distribution $\mathbb{P}(x_1 = j, x_2 = k) = \pi_{jk}$ for $j, k \in \{0, 1\}$. We collect a total of n samples from this joint distribution and summarize the counts in a 2×2 table, where y_{jk} is the number of times we observed $(x_1, x_2) = (j, k)$, so that

$$(y_{00}, y_{01}, y_{10}, y_{11})|n \sim \text{Mult}(n, (\pi_{00}, \pi_{01}, \pi_{10}, \pi_{11})).$$
 (23)

Our primary question is whether these two random variables are independent, i.e.

$$\pi_{jk} = \pi_{j+}\pi_{+k}$$
, where $\pi_{j+} \equiv \mathbb{P}[x_1 = j] = \pi_{j1} + \pi_{j2}$; $\pi_{+k} \equiv \mathbb{P}[x_2 = k] = \pi_{1k} + \pi_{2k}$. (24)

We can express this equivalently as

$$\pi_{00}(\pi_{00} + \pi_{01} + \pi_{10} + \pi_{11}) = \pi_{00} = \pi_{0+}\pi_{+0} = (\pi_{00} + \pi_{01})(\pi_{00} + \pi_{10}) \iff \pi_{00}\pi_{11} = \pi_{01}\pi_{10}.$$
 (25)

In other words, we can express the independence hypothesis concisely as

$$H_0: \frac{\pi_{11}\pi_{00}}{\pi_{10}\pi_{01}} = 1. \tag{26}$$

Let's arbitrarily assume that, additionally, $n \sim \text{Poi}(\mu_{++})$. Then,

$$(y_{00}, y_{01}, y_{10}, y_{11}) \sim \text{Poi}(\mu_{++}\pi_{00}) \times \text{Poi}(\mu_{++}\pi_{01}) \times \text{Poi}(\mu_{++}\pi_{10}) \times \text{Poi}(\mu_{++}\pi_{11}).$$
 (27)

Let $i \in \{1, 2, 3, 4 \text{ index the four pairs } (x_1, x_2) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$, so that

$$y_i \stackrel{\text{ind}}{\sim} \text{Poi}(\mu_i); \quad \log \mu_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_{12} x_{i1} x_{i2}, \quad i = 1, \dots, 4,$$
 (28)

where

$$\beta_0 = \log \mu_{++} + \log \pi_{00}; \quad \beta_1 = \log \frac{\pi_{10}}{\pi_{00}}; \quad \beta_2 = \log \frac{\pi_{01}}{\pi_{00}}; \quad \beta_{12} = \log \frac{\pi_{11}\pi_{00}}{\pi_{10}\pi_{01}}.$$
 (29)

Note that the independence hypothesis (26) reduces to the hypothesis $H_0: \beta_{12} = 0$:

$$H_0: \frac{\pi_{11}\pi_{00}}{\pi_{10}\pi_{01}} = 1 \iff H_0: \beta_{12} = 0.$$
 (30)

So the presence of an interaction in the Poisson regression is equivalent to a lack of independence between x_1 and x_2 . We can test the latter hypothesis using our standard tools for Poisson regression. For example, we can use the Pearson X^2 goodness of fit test. To apply this test, we must find the fitted means under the null hypothesis. The normal equations state that the observed cell counts equal those that would have been expected under the null hypothesis. Using the formulation (24), we obtain

$$y_{jk} = \mathbb{E}[y_{jk}] = \widehat{\mu}_{++} \widehat{\pi}_{j+} \widehat{\pi}_{+k}, \tag{31}$$

so that

$$\hat{\mu} = y_{++}; \quad \hat{\mu}_{++} \hat{\pi}_{j+} = y_{j+}; \quad \hat{\mu}_{++} \hat{\pi}_{+k} = y_{+k},$$
 (32)

from which it follows that

$$\widehat{\mu}_{jk} = \widehat{\mu}_{++} \widehat{\pi}_{j+} \widehat{\pi}_{+k} = y_{++} \frac{y_{j+}}{y_{++}} \frac{y_{+k}}{y_{++}} = \frac{y_{j+} y_{+k}}{y_{++}}.$$
(33)

Hence, we have

$$X^{2} = \sum_{j,k=0}^{1} \frac{(y_{jk} - \hat{\mu}_{jk})^{2}}{\hat{\mu}_{jk}}.$$
 (34)

Alternatively, we can use the likelihood ratio test, which gives

$$G^{2} = \sum_{j,k=0}^{1} y_{jk} \log \frac{y_{jk}}{\hat{\mu}_{jk}}.$$
 (35)

2.4 Inference is the same regardless of conditioning on margins

Now, our data might actually have been collected such that $n \sim \text{Poi}(\mu)$, or maybe n was fixed in advance. Is the Poisson inference proposed above actually valid in the latter case? In fact, it is! To see this, we claim that the likelihood ratio statistic is the same for the Poisson and multinomial models. Indeed, let's write the Poisson likelihood as follows:

$$p_{\mu}(\mathbf{y}) = p_{\mu_{++}}(y_{++} = n)p_{\pi}(\mathbf{y}|y_{++} = n). \tag{36}$$

Note that the fitted parameter $\hat{\mu}_{++}$ is the same under the null and alternative hypotheses: $\hat{\mu}_{++}^0 = \hat{\mu}_{++}^1$, so we have

$$\frac{p_{\widehat{\boldsymbol{\mu}}^{1}}(\boldsymbol{y})}{p_{\widehat{\boldsymbol{\mu}}^{0}}(\boldsymbol{y})} = \frac{p_{\widehat{\boldsymbol{\mu}}^{1}_{++}}(y_{++}=n)p_{\widehat{\boldsymbol{\pi}}^{1}}(\boldsymbol{y}|y_{++}=n)}{p_{\widehat{\boldsymbol{\mu}}^{0}_{+}}(y_{++}=n)p_{\widehat{\boldsymbol{\pi}}^{0}}(\boldsymbol{y}|y_{++}=n)} = \frac{p_{\widehat{\boldsymbol{\pi}}^{1}}(\boldsymbol{y}|y_{++}=n)}{p_{\widehat{\boldsymbol{\pi}}^{0}}(\boldsymbol{y}|y_{++}=n)}.$$
(37)

The latter expression is the likelihood ratio statistic for the multinomial model. The same argument shows that conditioning on the row or column totals (as opposed to the overall total) also yields the same exact inference. Therefore, regardless of the sampling mechanism, we can always conduct an independence test in a 2×2 table via a Poisson regression.

2.5 Equivalence among Poisson and logistic regressions

We've talked above two ways to view a 2×2 contingency table. In the logistic regression view, we thought about one variable as a predictor and the other as a response, seeking to test whether the predictor has an impact on the response. In the Poisson regression view, we thought about the two variables symmetrically, seeking to test independence. It turns out that these two perspectives are equivalent. Note that under the Poisson model, we have

logit
$$\mathbb{P}[x_2 = 1 | x_1 = 0] = \log \frac{\pi_{01}}{\pi_{00}} = \beta_2$$
 (38)

and

logit
$$\mathbb{P}[x_2 = 1 | x_1 = 1] = \log \frac{\pi_{11}}{\pi_{10}} = \log \frac{\pi_{01}}{\pi_{00}} + \log \frac{\pi_{11}\pi_{00}}{\pi_{10}\pi_{01}} = \beta_2 + \beta_{12}.$$
 (39)

In other words,

$$logit \mathbb{P}[x_2 = 1|x_1] = \beta_2 + \beta_{12}x_1. \tag{40}$$

Therefore, the β_{12} parameter for the Poisson regression (28) is the same as it is for the logistic regression (40).

2.6 Poisson models for $J \times K$ contingency tables

Suppose now that $x_1 \in \{1, ..., J\}$ and $x_2 \in \{1, ..., K\}$. Then, we denote $\mathbb{P}[x_1 = j, x_2 = k] = \pi_{jk}$. We still are interested in testing for independence between j and k, which amounts to a goodness-of-fit test for the Poisson model

$$y_{jk} \stackrel{\text{ind}}{\sim} \text{Poi}(\mu_{jk}); \quad \log \mu_{jk} = \beta_0 + \beta_j^1 + \beta_k^2.$$
 (41)

The Pearson statistic for this test is

$$\sum_{i=1}^{J} \sum_{k=1}^{K} \frac{(y_{ij} - \widehat{\mu}_{ij})^2}{\widehat{\mu}_{ij}}; \quad \widehat{\mu}_{ij} = \widehat{y}_{++} \frac{y_{i+}}{y_{++}} \frac{y_{+j}}{y_{++}}. \tag{42}$$

Like with the 2×2 case, the test is the same regardless if we condition on the row sums, column sums, total count, or if we do not condition at all. The degrees of freedom in the full model is JK, while the degrees of freedom in the partial model is J + K - 1, so the degrees of freedom for the goodness-of-fit test is JK - J - K + 1 = (J - 1)(K - 1). Pearson erroneously concluded that the test had JK - 1 degrees of freedom, which when Fisher corrected created a lot of animosity between these two statisticians.

2.7 Poisson models for $J \times K \times L$ contingency tables

These ideas can be extended to multi-way tables, for example three-way tables. If we have $x_1 \in \{1, ..., J\}, x_2 \in \{1, ..., K\}, x_3 \in \{1, ..., L\}$, then we might be interested in testing several kinds of null hypotheses:

• Mutual independence: $H_0: x_1 \perp \!\!\!\perp x_2 \perp \!\!\!\perp x_3$.

- Joint independence: $H_0: x_1 \perp \!\!\! \perp (x_2, x_3)$.
- Conditional independence: $H_0: x_1 \perp \!\!\! \perp x_2 \mid x_3$.

These three null hypotheses can be shown to be equivalent to the Poisson regression model

$$y_{jkl} \stackrel{\text{ind}}{\sim} \text{Poi}(\mu_{jkl}),$$
 (43)

where

$$\log \mu_{ijk} = \beta_0 + \beta_j^1 + \beta_k^2 + \beta_l^3 \quad \text{(mutual independence)}; \tag{44}$$

$$\log \mu_{ijk} = \beta_0 + \beta_j^1 + \beta_k^2 + \beta_l^3 + \beta_{kl}^{2,3} \quad \text{(joint independence)}; \tag{45}$$

$$\log \mu_{ijk} = \beta_0 + \beta_j^1 + \beta_k^2 + \beta_l^3 + \beta_{jk}^{1,2} + \beta_{jl}^{1,3} \quad \text{(mutual independence)}.$$
 (46)

3 Negative binomial regression

TBD.