Esercizi di Geometria differenziale

Bernardo Tomelleri* (587829)

18 ottobre 2021

1 ESERCIZI DEL 02/10/2021

Esercizio 1.1. Siano X e Y due spazi topologici. La topologia prodotto su $X \times Y$ è definita nel modo seguente: un sottoinsieme $A \subseteq X \times Y$ è aperto se e solo se è unione arbitraria di sottoinsiemi $U \times V$ dove $U \subseteq X$ e $V \subseteq Y$ sono entrambi aperti. Mostra che questa è veramente una topologia su $X \times Y$.

Svolgimento. Sicuramente l'insieme vuoto \emptyset e l'intero insieme $X \times Y$ sono aperti nella topologia prodotto, visto che si possono scrivere come prodotto di sottoinsiemi aperti di X e Y. Basta prendere come sottoinsiemi aperti gli insiemi vuoti \emptyset_X e \emptyset_Y degli spazi di partenza e i sottoinsiemi interi X e Y aperti per definizione negli spazi topologici X e Y.

Esercizio 1.2. Sia $f: X \to Y$ una funzione suriettiva da uno spazio topologico X su un insieme Y. La topologia quoziente su Y è definita nel modo seguente: un sottoinsieme $A \subseteq Y$ è aperto se e solo se la sua controimmagine $f^{-1}(A)$ è aperta. Mostra che questa è veramente una topologia su X.

Svolgimento. Osserviamo che la controimmagine dell'insieme vuoto \emptyset e dell'insieme delle classi di equivalenza Y definite da f sono rispettivamente $f^{-1}(\emptyset) = \emptyset$ e $f^{-1}(Y) = X$, che sono entrambi aperti in X per definizione di spazio topologico.

Esercizio 1.3. Sia $f: X \to Y$ una funzione fra spazi topologici. Mostra che f è continua se e solo se vale il fatto seguente: per ogni $x \in X$ e per ogni intorno A di f(x), la controimmagine $f^{-1}(A)$ è un intorno di x.

^{*}Esercizi svolti in collaborazione con Marco Romagnoli (578061)

Svolgimento. Per definizione f è continua se la controimmagine di ogni sottoinsieme aperto di Y è un aperto in X: Se $A \in \tau_Y \implies f^{-1}(A) \in \tau_X$. Per prima cosa supponiamo f continua e prendiamo un generico punto $x \in X$ e un intorno A di f(x) in Y. Per ipotesi $f^{-1}(A)$ è un aperto di X che contiene x (visto che per costruzione $f(x) \in A$) quindi è un intorno di x.

Viceversa, se $\forall x \in X$ e $\forall A$ intorno di f(x) in Y la sua controimmagine $f^{-1}(A) \subseteq X$ è un intorno di x, consideriamo un aperto $B \subseteq Y$ qualsiasi:

- 1. Se $B \cap f(X) = \emptyset$, allora $f^{-1}(B) = \emptyset$ che per definizione di spazio topologico è sempre un aperto di X.
- 2. Se invece $B \cap f(X) \neq \emptyset \implies \exists x : f(x) \in B$, cioè B è un intorno di f(x). Per ipotesi allora $f^{-1}(B) \subseteq X$ è a sua volta un intorno di x e, a maggior ragione, $f^{-1}(B)$ è un aperto di X.

Esercizio 1.4. Sia K uno spazio topologico compatto. Sia $C \subseteq K$ un sottoinsieme chiuso. Mostra che C è compatto.

Svolgimento. Per ipotesi tutti i ricoprimenti aperti di K, $\{A_i\}_{i\in I}: K\subseteq \bigcup_{i\in I}A_i$ ammettono un sottoricoprimento finito $\{A_i\}$ tale che $\bigcup_i A_i = K$. È chiaro come ogni ricoprimento aperto di C $\{U_i\}_{i\in I}$ tale che $K\subseteq \bigcup_{i\in I}U_i$ debba essere anche un ricoprimento di K, quindi per ipotesi ammette sottoricoprimento finito $\{U_i\}: \bigcup_i U_i = K$ la cui intersezione con C è sicuramente un suo sottoricoprimento aperto finito $\{U_i\cap C\}: \bigcup_i U_i\cap C = C$.

Nel caso opposto $K \nsubseteq \bigcup_{i \in I} U_i$ basta considerare come ricoprimento $\{U_i\}_{i \in I} \cup C^c$, che è ancora aperto in quanto unione di aperti ($C^c = K \setminus C$ aperto perché C-chiuso per ipotesi). Questo è un ricoprimento di K, quindi come prima per compattezza sappiamo che ammette sottoricoprimento finito $\{U_i \cup C^c\}_i : \bigcup_i U_i \cup C^c = K$ la cui restrizione a C è un suo sottoricoprimento aperto finito.

Esercizio 1.5. Mostra che il segmento [0,1] è connesso, usando solo la definizione di connesso (e nessun altro teorema: di solito questo fatto si mostra subito dopo la definizione).

Dimostrazione. Per assurdo supponiamo che [0,1] sia unione disgiunta di due sottoinsiemi aperti $A,B\subseteq [0,1]:A\cup B=[0,1]$ con $A\neq\emptyset$, $B\neq\emptyset$ e $A\cap B=\emptyset$. Supponiamo che $0\in A$, poiché A è aperto $\exists \epsilon>0$ tale che un intorno $U(0)_{\epsilon}=[0,\epsilon)\subseteq A$. Consideriamo il $\sup_{\epsilon}\{U(0)_{\epsilon}\}=U(0)_{\eta}$ di questi intorni; per ipotesi dev'essere $\eta\neq 1$ (altrimenti [0,1) sarebbe contenuto in A, dunque A=[0,1] chiuso). Ora, poiché $A\cap B=\emptyset$ sono aperti disgiunti, $\eta\not\in B$, ma $\eta\in A$. Ma allora sempre per apertura di A dovrebbe esistere un intorno di η contenuto in [0,1) e quindi un secondo raggio $\eta'>\eta$ per cui vale ancora $U(0)'_{\eta}=[0,\eta')\subseteq A$. Assurdo per definizione di η come sup. Da cui concludiamo che $\eta\in A$, A=[0,1] e $B=\emptyset$, cioè [0,1] non è sconnesso.

Esercizio 1.6. Mostra che il sottoinsieme seguente in \mathbb{R}^2 è connesso ma non connesso per archi:

$$X = \{(0,y)|y \in [-1,1]\} \bigcup \{(x,\sin 1/x)|x > 0\}.$$

Svolgimento.

Esercizio 1.7. Scrivere le funzioni di transizione di uno dei due atlanti che abbiamo scelto per S^n e verifica che sono lisce.

Svolgimento.

Esercizio 1.8. Mostra che la mappa

$$f: S^n \to \mathbb{RP}^n, (x_1, x_2, \dots, x_{n+1}) \mapsto [x_1, x_2, \dots, x_{n+1}]$$

è liscia.

Svolgimento.

Un *diffeomorfismo* è una mappa liscia $f: M \to N$ fra varietà lisce che ha un'inversa, anch'essa liscia.

Esercizio 1.9. Costruisci due atlanti *non* compatibili per la varietà topologica \mathbb{R} . Mostra però che le due varietà lisce risultanti sono comunque diffeomorfe!

Svolgimento.

Esercizio 1.10. Mostra che \mathbb{RP}^1 e S^1 sono diffeomorfi.

Svolgimento.