1 FW All-Pairs SPs

1.1 Data structure

d(i,j,k) =

- shortest distance between nodes i and j
- using only the nodes 1,,k as potential allowed intermediary points

1.2 Initialisation of data structure

 $d(i,j,0) = \text{best distance between nodes i and j, but not using any intermediate nodes, so only using a single edge, hence <math>d(i,j,0) = w(i,j)$ if there is an edge i to j, otherwise Inf

1.3 All-Pairs SPs

- Now suppose that we add the node n1 to the set of nodes that can be intermediates, i.e. consider k=1
- Best path is now the best of either direct, or via n1.
- d(i,j,1)
 = min (d(i,j,0), w(i,n1) + w(n1,j))
 = min (d(i,j,0), d(i,n1,0) + d(n1,j,0))

- Now suppose that we add the new node (k+1) to the set of via nodes that can be intermediates, but have already considered k of them
- Best path is now either direct using only the k via nodes already accounted for, or else also via node k+1 (and using the previous k vias)
- d(i,j,k+1) = min (d(i,j,k), d(i,k+1,k) + d(k+1,j,k))

1.4 Equations

- d(i,j,0)
 w(i,j) if there is an edge i to j
 Inf otherwise
- d(i,j,k+1) = min (d(i,j,k), d(i,k+1,k) + d(k+1,j,k))
- d(i, i) = 0 forall i

1.5 Complexity

Because we have 3 variables, i,j,k we will need 3 levels nested for loop, where i = j = k = |V|, so worst case is $O(|V|^3)$

1.6 Digraphs (Directional graphs)

The algorithm also works on directional graphs. The initial matrix d(i,j,0) need not be symmetric, but then the remaining calculations use exactly the same formulas

1.7 Negative edges

FW even works if some (directed) edge weights are negative

- BUT it is essential that there are no cycles of total negative weight
- Otherwise simply repeatedly following around the negative cycle may reduce lengths to be as negative as desired, so there is **no shortest path**