UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE

LABORATORIO FUND. DE CIRCUITOS ELÉCTRICOS

Nombres: Andrés Santos, Sebastián Manotoa

NRC: 4877

Fecha: 22/12/2020

PRÁCTICA No. 1 LEYES DE KIRCHHOFF

1.1. OBJETIVO DE LA PRÁCTICA

Explicar y demostrar experimentalmente la Ley de Kirchhoff de Voltajes y la Ley de Kirchhoff de Corrientes.

1.2. REQUISITOS PREVIOS.

Se requiere el análisis analítico del circuito mostrado en la figura 1.1. Anote los resultados obtenidos en las tablas 1.1, 1.2. y 1.3.

1.3. INFORMACIÓN GENERAL

Uno de los métodos ampliamente utilizados en el análisis de circuitos eléctricos son las Leyes de Kirchhoff de voltaje y corriente, ya que con ellas se puede determinar el valor de voltaje o corriente en cualquier elemento que forme parte del circuito. Las Leyes de Kirchhoff se enuncian a continuación:

- Ley de Kirchhoff de Corrientes: La suma de las corrientes que entran a un nodo es igual a la suma de las corrientes que salen del mismo.
- b) Ley de Kirchhoff de Voltajes: La suma de las caídas de voltaje en una trayectoria cerrada es igual a la suma de las elevaciones de voltaje en la misma.

1.4. MATERIAL Y EQUIPO REQUERIDO

Cantidad	Material o Equipo			
1	Fuente de Voltaje C.D			
2	Multímetros Digitales			
1	Resistor de 1 k Ω			
2	Resistores de $2.2 \text{ k}\Omega$			
1	Resistor de 1.8 kΩ			

1	Resistor de 3.9 kΩ				
1	Protoboard				

1.5. PROCEDIMIENTO

1.5.1. Arme el circuito que se muestra en la figura 1.1.

Figura 1.1. Circuito Resistivo Mixto

- 1.5.2. Mida el voltaje y corriente en cada uno de los elementos del circuito. Anote los resultados de las mediciones en la tabla 1.1.
- 1.5.2. Mida el voltaje y corriente en cada uno de los elementos del circuito. Anote los resultados de las mediciones en la tabla 1.1.

Tabla 1.1. Resultados obtenidos de voltaje y corriente, en cada elemento del circuito.

	VALOR	VALOR		
VARIABLE	CALCULADO	MEDIDO		
VR1 (V)	2.053	2.05		
IR1 (mA)	2.053	2.05		
VR2 (V)	4.24	4.25		
IR2 (mA)	1.088	1.09		
VR3 (V)	2.123	2.12		
IR3 (mA)	0.965	0.965		
VR4 (V)	2.123	2.12		
IR4 (mA)	0.965	0.965		
VR5 (V)	3.695	3.7		
IR5 (mA)	2.053	2.05		

1.5.3. Verifique si se cumple la Ley de Kirchhoff de Voltajes en cada trayectoria cerrada, considerando las elevaciones de voltaje con signo positivo y las caídas de voltaje con signo negativo. Anote los resultados en la tabla 1.2.

Tabla 1.2. Verificación de la LVK.

VOLTAJE	Trayectoria 1		Trayec	toria 2	Trayectoria 3		
	Calculado	Medido	Calculado	Medido	Calculado	Medido	
V _⊤ (V)	+10	+10			+10	+10	
V _{R1} (V)	-2.053	-2.05			-2.053	-2.05	
V _{R2} (V)	-4.24	-4.25	+4.24	+4.25			
V _{R3} (V)			-2.123	-2.12	-2.123	-2.12	
V _{R4} (V)			-2.123	-2.12	-2.123	-2.12	
V _{R5} (V)	-3.695	-3.7			-3.695	-3.7	
$\sum \mathbf{V}$	-0.012	0	-0.006	0.01	0.006	0.01	

1.5.4. Verifique si se cumple la Ley de Kirchhoff de Corrientes en cada nodo, tomando con signo positivo las corrientes que entran al nodo y con signo negativo las que salen del nodo. Anote los resultados en la tabla 1.3.

Tabla 1.3. Verificación de la LCK.

Corriente	Nodo 1		Nodo 2		Nodo 3		Nodo 4		Nodo5	
	Calculado	Medido								
$I_t(mA)$	+2.053	+2.05							-2.053	-2.05
$I_{R1}(mA)$	-2.053	-2.05	+2.053	+2.05						
$I_{R2}(mA)$			-1.088	-1.09			+1.088	+1.09		
$I_{R3}(mA)$			-0.965	-0.965	+0.965	+0.965				
$I_{R4}(mA)$					-0.965	+0.965	+0.965	+0.965		
$I_{R5}(mA)$							-2.053	-2.05	+2.053	-2.05
ΣΙ	0	0	0	0.005	0	0	0	0.005	0	0

1.5.5. Compare los resultados medidos con los valores obtenidos al analizar el circuito analíticamente y concluya al respecto.

Calculo del error porcentual de la LVK

Trayectoria 1

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{-0.012 - 0}{-0.012} \times 100 = 1\%$$

Trayectoria 2

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{-0.006 - 0.01}{-0.006} \times 100 = 2.66\%$$

Trayectoria 3

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{0.006 - 0.01}{0.006} \times 100 = 0.67\%$$

Cálculo del error porcentual de la LCK

• Nodo 1

$$e\% = \frac{Vt - Ve}{Vt} \times 100\% = 0\%$$

Nodo 2

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{0.005 - 0}{0.005} \times 100 = 1\%$$

Nodo 3

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = 0\%$$

Nodo 4

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{0.005 - 0}{0.005} \times 100 = 1\%$$

Nodo 5

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = 0\%$$