CẦU TRÚC DỮ LIỆU VÀ GIẢI THUẬT

ĐỒ THỊ VÀ ỨNG DỤNG

Đồ thị và ứng dụng

- Khái niệm và định nghĩa
- Biểu diễn đồ thị
- Duyệt đồ thị
- Đồ thị Euler và đồ thị Hamilton
- Cây khung nhỏ nhất của đồ thị
- Đường đi ngắn nhất trên đồ thị

Khái niệm và định nghĩa

- Đồ thị là một đối tượng toán học mô hình hoá các thực thể và các liên kết giữa các thực thể đó
- Đồ thị G = (V, E) trong đó V là tập đỉnh và E là tập cạnh (cung)
- Với mỗi $(u, v) \in E$: ta nói v kề với u

Đồ thị vô hướng

- $V = \{1, 2, 3, 4, 5, 6\}$
- $E = \{(1, 3), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 6), (4, 5)\}$

Đồ thị vô hướng

- $V = \{1, 2, 3, 4, 5, 6\}$
- $E = \{(1, 3), (1,6), (2, 4), (2, 5), (6, 2), (3, 4), (6, 3), (4, 5)\}$

Khái niệm và định nghĩa

• Bậc của một đỉnh trên đồ thị vô hướng là số đỉnh kề với đỉnh đó:

$$deg(v) = \#\{u \mid (u, v) \in E\}$$

 Bán bậc vào (ra) của một đỉnh trên đồ thị có hướng là số cung đi vào (ra) đỉnh đó:

$$deg^{-}(v) = \#\{u \mid (u, v) \in E\}, deg^{+}(v) = \#\{u \mid (v, u) \in E\}$$

đồ thị vô hướng deg(1) = 2, deg(4) = 3

đồ thị có hướng $deg^{-}(1) = 0$, $deg^{+}(1)=2$

Khái niệm và định nghĩa

• Cho đồ thị G=(V, E) và 2 đỉnh $s, t \in V$, đường đi từ s đến t trên G là dãy $s=x_0, x_1, ..., x_k=t$ trong đó $(x_i, x_{i+1}) \in E$, với $\forall i=0,1,...,k-1$

Đường đi từ 1 đến 5:

- 1, 3, 4, 5
- 1, 6, 2, 5

Đường đi từ 1 đến 5:

- 1, 3, 4, 5
- 1, 6, 4, 5

Biểu diễn đồ thị

Ma trận kề

Ma trận trọng số

Biểu diễn đồ thị

- Danh sách kề
 - Với mỗi $v \in V$, A(v) là tập các bộ (v, u, w) trong đó w là trọng số của cung (v, u)
 - $A(1) = \{(1, 6, 3), (1, 3, 7)\}$
 - $A(2) = \{(2, 4, 9), (2, 5, 6)\}$
 - $A(3) = \{(3, 4, 8)\}$
 - $A(4) = \{(4, 5, 2)\}$
 - $A(5) = \{ \}$
 - $A(6) = \{(6, 3, 5), (6, 2, 4)\}$

Duyệt đồ thị

- Duyệt các đỉnh của đồ thị theo một thứ tự nào đó
- Các đỉnh được duyệt (thăm) đúng 1 lần
- Hai phương pháp cơ bản:
 - Duyệt theo chiều sâu
 - Duyệt theo chiều rộng

- DFS(u): duyệt theo chiều sâu bắt đầu từ đỉnh u
 - Nếu tồn tại đỉnh *v* trong danh sách kề của *u* chưa được thăm thì tiến hành thăm *v* và gọi DFS(*v*)
 - Nếu tất cả các đỉnh kề với u đã được thăm thì DFS quay trở lại đỉnh x mà từ đó thăm u để tiến hành thăm các đỉnh khác kề với x mà chưa được thăm. Lúc này đỉnh u được gọi là đã duyệt xong
- Cấu trúc dữ liệu: với mỗi đỉnh v của đồ thị
 - p(v): là đỉnh từ đó thăm v
 - d(v): thời điểm v được thăm nhưng chưa duyệt xong
 - f(v): thời điểm đỉnh v đã được duyệt xong
 - color(*v*)
 - WHITE: chưa thăm
 - GRAY: đã được thăm nhưng chưa duyệt xong
 - BACK: đã duyệt xong

```
DFS(u) {
  t = t + 1;
 d(u) = t;
  color(u) = GRAY;
  foreach (đỉnh v kề với u) {
    if(color(v) = WHITE) {
     p(v) = u;
      DFS(v);
  t = t + 1;
 f(u) = t;
  color(u) = BLACK;
```

```
DFS() {
  foreach (đỉnh u thuộc V) {
    color(u) = WHITE;
    p(u) = NIL;
  foreach(đỉnh u thuộc V) {
    if(color(u) = WHITE) {
       DFS(u);
```


đỉnh	1	2	3	4	5	6	7
d							
f							
p	-	-	-	-	-	-	-
color	W	W	W	W	W	W	W

DFS(1)

1

đỉnh	1	2	3	4	5	6	7
d	1						
f							
p	1	-	-	-	-	-	-
color	G	W	W	W	W	W	W

đỉnh	1	2	3	4	5	6	7
d	1		2				
f							
p	-	-	1	-	-	-	-
color	G	W	G	W	W	W	W

đỉnh	1	2	3	4	5	6	7
d	1		2	3			
f							
p	-	_	1	3	-	-	-
color	G	W	G	G	W	W	W

đỉnh	1	2	3	4	5	6	7
d	1		2	3	4		
f							
p	-	-	1	3	4	-	-
color	G	W	G	G	G	W	W

đỉnh	1	2	3	4	5	6	7
d	1		2	3	4		
f					5		
p	-	-	1	3	4	-	-
color	G	W	G	G	В	W	W

đỉnh	1	2	3	4	5	6	7
d	1		2	3	4		6
f					5		
p	-	-	1	3	4	-	4
color	G	W	G	G	В	W	G

đỉnh	1	2	3	4	5	6	7
d	1		2	3	4		6
f					5		7
p	-	-	1	3	4	-	4
color	G	W	G	G	В	W	В

đỉnh	1	2	3	4	5	6	7
d	1		2	3	4		6
f				8	5		7
p	-	_	1	3	4	-	4
color	G	W	G	В	В	W	В

đỉnh	1	2	3	4	5	6	7
d	1		2	3	4		6
f			9	8	5		7
p	-	-	1	3	4	-	4
color	G	W	В	В	В	W	В

đỉnh	1	2	3	4	5	6	7
d	1		2	3	4	10	6
f			9	8	5		7
p	-	-	1	3	4	1	4
color	G	W	В	В	В	G	В

đỉnh	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f			9	8	5		7
p	-	6	1	3	4	1	4
color	G	G	В	В	В	G	В

đỉnh	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f		12	9	8	5		7
p	-	6	1	3	4	1	4
color	G	В	В	В	В	G	В

đỉnh	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f		12	9	8	5	13	7
p	-	6	1	3	4	1	4
color	G	В	В	В	В	В	В

đỉnh	1	2	3	4	5	6	7
d	1	11	2	3	4	10	6
f	14	12	9	8	5	13	7
p	-	6	1	3	4	1	4
color	В	В	В	В	В	В	В

- BFS(*u*): duyệt theo chiều rộng xuất phát từ đỉnh *u*
 - Thăm các đỉnh u
 - Thăm các đỉnh kề với u mà chưa được thăm (gọi là các đỉnh mức 1)
 - Thăm các đỉnh kề với các đỉnh mức 1 mà chưa được thăm (gọi là các đỉnh mức 2)
 - Thăm các đỉnh kề với các đỉnh mức 2 mà chưa được thăm (gọi là các đỉnh mức 3)
 - •
- Sử dụng cấu trúc hàng đợi (queue) để cài đặt

```
BFS(u) {
 d(u) = 0;
  khởi tạo hàng đợi Q;
  enqueue(Q,u);
  color(u) = GRAY;
 while(Q khác rỗng) {
    v = dequeue(Q);
    foreach(x kề với v) {
      if(color(x) = WHITE){
        d(x) = d(v) + 1;
        color(x) = GRAY;
        enqueue(Q,x);
```

```
BFS() {
  foreach (đỉnh u thuộc V) {
    color(u) = WHITE;
    p(u) = NIL;
  foreach(đỉnh u thuộc V) {
    if(color(u) = WHITE) {
       BFS(u);
```


BFS(1)

1

- Cho đồ thị vô hướng G = (V, E)
 - Chu trình Euler trên G là chu trình đi qua tất cả các cạnh, mỗi cạnh đúng 1 lần.
 - Chu trình Hamilton là chu trình đi qua tất cả các đỉnh, mỗi đỉnh đúng 1 lần (trừ đỉnh xuất phát)
- Đồ thị chứa chu trình Euler được gọi là đồ thị Euler
- Đồ thị chứa chu trình Hamilton được gọi là đồ thị Hamilton

- Chu trình Euler: 1, 6, 3, 7, 6, 2, 5, 4, 2, 7, 4, 3, 1
- Chu trình Hamilton: 1, 6, 2, 5, 4, 7, 3, 1

- Định lí: Đồ thị vô hướng là đồ thị Euler khi và chỉ khi nó là đồ thị liên thông trong đó các đỉnh có bậc là số chẵn
- Định lí: Đồ thị vô hướng n đỉnh trong đó mỗi đỉnh có bậc lớn hơn hoặc bằng n/2 là đồ thị Hamilton

- Thuật toán tìm chu trình Euler, sử dụng ngăn xếp
- Đồ thị đầu vào G = (V, E) trong đó A(x) là tập các đỉnh kề với đỉnh x

```
euler(G = (V, E)) {
  khởi tạo stack S, CE;
  chọn v là một đỉnh bất kỳ thuộc V;
  push(S,v);
  while(S khác rồng) {
    x là nút ở đỉnh của S;
    if(A(x) khác rồng) {
      chọn y là một đỉnh bất kỳ \in A(x);
      push(S,y);
      loại bỏ cạnh (x,y) khỏi G;
    }else{
      x = pop(S); push(CE,x);
  thứ tự các đỉnh trong CE tạo chu trình euler
}
```

- Thuật toán tìm chu trình Hamilton, sử dụng duyệt đệ quy quay lui
- Đồ thị đầu vào G = (V, E) trong đó
 - $V = \{1, 2, ..., n\}$
 - A(v) là tập các đỉnh kề với đỉnh v
- Mô hình hoá: mảng x[1..n]
- Mảng đánh dấu mark[v] = true nếu đỉnh v đã được dùng và mark[v] = false, ngược lại

```
TRY(k) {
  for (v \in A(x[k-1]))
    if(not mark[v]) {
      x[k] = v;
      mark[v] = true;
      if(k == n) {
        if(v \in A(x[1]) \{
          ghi nhận chu trình Hamilton trong x;
      }else{
        TRY(k+1);
      mark[v] = false;
```

- Cho đồ thị vô hướng liên thông G = (V, E, w).
 - Mỗi cạnh $(u, v) \in E$ có w(u, v) là trọng số
 - Nếu $(u, v) \in E$ thì $w(u, v) = \infty$
- Đồ thị là đồ thị vô hướng, liên thông và không có chu trình chứa tất cả các đỉnh của *G*.
- Cây T = (V, F) trong đó $F \subseteq E$ gọi là một cây khung của G
 - Trọng số $w(T) = \sum_{e \in F} w(e)$
- Tìm cây khung của *G* có trọng số nhỏ nhất
- Úng dụng
 - Thiết kế mạng truyền thông

- Thuật toán PRIM tìm cây khung nhỏ nhất
- Ý tưởng chính
 - Xây dựng cây bằng cách kết nạp lần lượt các cạnh vào cây T theo chiến lược tham lam
 - \bullet Ban đầu, tập đỉnh V_T của cây chỉ gồm 1 đỉnh được chọn ngẫu nhiên
 - Mỗi bước, chọn đỉnh (chưa thuộc V_T) gần T nhất để kết nạp đỉnh và cạnh vào cây T
- Cấu trúc dữ liệu
 - Với mỗi đinh $v \notin V_T$
 - d(v) là khoảng cách từ v đến V_T :

$$d(v) = \min\{w(v, u) \mid u \in V_T, (u, v) \in E\}$$

• near(v): $dinh \in V_T có w(v, near(v)) = d(v)$;

```
PRIM(G = (V, E, w))  {
  chọn s là một đỉnh nào đó của V;
  for (v \in V) {
      d(v) = w(s,v); near(v) = s;
  E_{\tau} = \{\}; V_{\tau} = \{s\};
  while(|V_T| \neq |V|) {
     v = \text{chon dinh} \in V \setminus V_{\tau} \text{ có } d(v) \text{ nhỏ nhất};
     V_T = V_T \cup \{v\}; E_T = E_T \cup \{(v, near(v))\};
     for (x \in V \setminus V_{\tau}) {
        if(d(x) > w(x,v) {
          d(x) = w(x,v);
          near(x) = v;
  return (V_T, E_T);
```


- Mỗi ô ứng với đỉnh v của bảng chứa nhãn (d(v), near(v))
- Đỉnh xuất phát s = 1

	1	2	3	4	5	6	E_T
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	$(\infty, 1)$	(3,1)	
Bước 1	-						
Bước 2	-						
Bước 3	-						
Bước 4	-						
Bước 5	-						

	1	2	3	4	5	6	$oxed{E_T}$
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *	(1,6)
Bước 1	-	(4,6)	(5,6)	(1,6)	(∞,1)	-	
Bước 2	-					-	
Bước 3	-					-	
Bước 4	-					-	
Bước 5	-					-	

	1	2	3	4	5	6	$oxed{E_T}$
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *	(1,6)
Bước 1	-	(4,6)	(5,6)	(1,6) *	(∞,1)	-	(1,6), (4,6)
Bước 2	-	(4,6)	(5,6)	-	(2,4)	-	
Bước 3	-			-		-	
Bước 4	-			-		-	
Bước 5	-			-		-	

	1	2	3	4	5	6	$oxed{E_T}$
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *	(1,6)
Bước 1	-	(4,6)	(5,6)	(1,6) *	(∞,1)	-	(1,6),(4,6)
Bước 2	-	(4,6)	(5,6)	-	(2,4) *	-	(1,6),(4,6),(4,5)
Bước 3	-	(4,6)	(5,6)	-	-	-	
Bước 4	-			-	-	-	
Bước 5	-			-	-	-	

	1	2	3	4	5	6	E_T
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *	(1,6)
Bước 1	-	(4,6)	(5,6)	(1,6) *	(∞,1)	-	(1,6),(4,6)
Bước 2	-	(4,6)	(5,6)	-	(2,4) *	-	(1,6),(4,6),(4,5)
Bước 3	-	(4,6) *	(5,6)	-	-	-	(1,6),(4,6),(4,5),(2,6)
Bước 4	-	-	(5,6)	-	-	-	
Bước 5	-	-		-	-	-	

	1	2	3	4	5	6	$oxed{E_T}$
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1)	
Bước 1	-	(4,6)	(5,6)	(1,6) *	(∞,1)	-	(1,6)
Bước 2	-	(4,6)	(5,6)	-	(2,4) *	-	(1,6), (4,6)
Bước 3	-	(4,6) *	(5,6)	-	-	-	(1,6), (4,6), (4,5)
Bước 4	-	-	(5,6) *	-	-	-	(1,6), (4,6), (4,5), (2,6)
Bước 5	-	-	-	-	-	-	(1,6), (4,6), (4,5), (2,6), (3,6)

```
#include <stdio.h>
#include <set>
#include <map>
#include <stack>
using namespace std;
struct Arc{
         int nod;
         int w;
};
set<int> V;// set of nodes
map<int, set<Arc*> > A;// A[v] is the set of adjacent arcs of v
// data structure for prim
map<int, int> d;
map<int, int> near;
set<int> S;
```

```
int findMin(){
  // find a node v of NonFixed having minimum d[v]
  int min = 1000000;
  int v \min = -1;
  for(set<int>::iterator p = S.begin(); p != S.end(); p++){
    int v = *p;
    if(d[v] < min){</pre>
      min = d[v];
      v min = v;
  return v min;
}
```

```
void prim(int s){
  // initialization
  for(set<int>::iterator pi = V.begin(); pi != V.end(); pi++){
    int x = *pi; d[x] = 100000000;
  d[s] = 0;
  for(set<Arc*>::iterator ps = A[s].begin(); ps != A[s].end(); ps++){
    Arc* a = *ps;
    int x = a \rightarrow nod; int w = a \rightarrow w;
    d[x] = w; near[x] = s;
  for(set<int>::iterator pi = V.begin(); pi != V.end(); pi++){
    int v = *pi;
    if(v != s)
      S.insert(v);
  }
```

```
//L00P
while(S.size() > 0){
  int v = findMin();
  printf("select edge (%d,%d) with d = %d n', v, near[v], d[v]);
  S.erase(v);
  // update d of non-fixed nodes
  for(set<Arc*>::iterator pv = A[v].begin(); pv != A[v].end(); pv++){
    Arc* a = *pv;
    int x = a - > nod;
    int w = a \rightarrow w;
    if(d[x] > w){
      d[x] = w;
      near[x] = v;
```

- Cho đồ thị vô hướng liên thông G = (V, E, w).
 - Mỗi cạnh $(u, v) \in E$ có w(u, v) là trọng số không âm
 - Nếu $(u, v) \notin E$ thì $w(u, v) = \infty$
- Cho *s* là một đỉnh thuộc *V*, tìm đường đi ngắn nhất từ *s* đến tất cả các đỉnh còn lai

- Ý tưởng thuật toán Dijkstra:
 - Với mỗi đỉnh $v \in V$, duy trì:
 - $\mathcal{P}(v)$ là đường đi cận trên của đường đi ngắn nhất từ s đến v
 - d(v): trọng số của $\mathcal{F}(v)$
 - p(v): đỉnh trước đỉnh v trên $\mathcal{F}(v)$
 - Khởi tạo
 - $\mathcal{P}(v) = \langle s, v \rangle, d(v) = w(s, v), p(v) = s$
 - Làm tốt cận trên
 - Mỗi khi phát hiện có đỉnh u sao cho d(v) > d(u) + w(u, v) thì cập nhật
 - d(v) = d(u) + w(u, v)
 - p(v) = u

```
Dijkstra(G = (V, E, w)) {
  for (v \in V) {
      d(v) = w(s,v); p(v) = s;
  S = V \setminus \{s\};
  while(S \neq \{\}) {
     u = \text{chọn đỉnh} \in S \text{ có } d(u) \text{ nhỏ nhất};
     S = S \setminus \{u\};
     for (v \in S) {
        if(d(v) > d(u) + w(u,v) \{
          d(v) = d(u) + w(u,v);
          p(v) = u;
```


- Mỗi ô ứng với đỉnh v của bảng chứa nhãn (d(v), p(v))
- Đỉnh xuất phát s = 1

	1	2	3	4	5	6
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1)
Bước 1	-					
Bước 2	-					
Bước 3	-					
Bước 4	-					
Bước 5	-					

- Mỗi ô ứng với đỉnh v của bảng chứa nhãn (d(v), p(v))
- Đỉnh xuất phát s = 1

			_			
	1	2	3	4	5	6
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *
Bước 1	-	(7,6)	(7,1)	(4,6)	(∞,1)	-
Bước 2	-					-
Bước 3	-					-
Bước 4	-					-
Bước 5	-					-

- Mỗi ô ứng với đỉnh v của bảng chứa nhãn (d(v), p(v))
- Đỉnh xuất phát s = 1

	1	2	3	4	5	6
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *
Bước 1	-	(7,6)	(7,1)	(4,6) *	(∞,1)	-
Bước 2	-	(7,6)	(7,1)	-	(6, 4)	-
Bước 3	-			-		-
Bước 4	-			-		-
Bước 5	-			-		-

- Mỗi ô ứng với đỉnh v của bảng chứa nhãn (d(v), p(v))
- Đỉnh xuất phát s = 1

	1	2	3	4	5	6
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *
Bước 1	-	(7,6)	(7,1)	(4,6) *	(∞,1)	-
Bước 2	-	(7,6)	(7,1)	-	(6, 4) *	-
Bước 3	-	(7,6)	(7,1)	-	-	-
Bước 4	-			-	-	-
Bước 5	-			-	_	-

- Mỗi ô ứng với đỉnh v của bảng chứa nhãn (d(v), p(v))
- Đỉnh xuất phát s = 1

	1	2	3	4	5	6
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *
Bước 1	-	(7,6)	(7,1)	(4,6) *	(∞,1)	-
Bước 2	-	(7,6)	(7,1)	-	(6, 4) *	-
Bước 3	-	(7,6)	(7,1) *	-	-	-
Bước 4	-	(7,6)	-	-	-	-
Bước 5	-		-	-	-	-

- Mỗi ô ứng với đỉnh v của bảng chứa nhãn (d(v), p(v))
- Đỉnh xuất phát s = 1

	1	2	3	4	5	6
Khởi tạo	(0,1)	(∞,1)	(7, 1)	(∞, 1)	(∞, 1)	(3,1) *
Bước 1	-	(7,6)	(7,1)	(4,6) *	(∞,1)	-
Bước 2	-	(7,6)	(7,1)	-	(6, 4) *	-
Bước 3	-	(7,6)	(7,1) *	-	-	-
Bước 4	-	(7,6) *	-	-	-	-
Bước 5	-	-	-	-	-	-

```
#include <stdio.h>
#include <set>
#include <map>
#include <stack>
using namespace std;
struct Arc{
  int nod;
  int w;
};
set<int> V;// set of nodes
map<int, set<Arc*>> A;// A[v] is the set of adjacent arcs of v
// data strcuture for dijkstra
map<int, int> d;
map<int, int> p;
set<int> S;
```

```
int findMin(){
 // find a node v of NonFixed having minimum d[v]
  int min = 1000000;
  int v_min = -1;
  for(set<int>::iterator p = S.begin(); p != S.end(); p++){
    int v = *p;
    if(d[v] < min){</pre>
      min = d[v];
      v min = v;
  return v_min;
```

```
void dijkstra(int s){
  // initialization
  for(set<int>::iterator pi = V.begin(); pi != V.end(); pi++){
    int x = *pi; d[x] = 100000000;
  d[s] = 0;
  for(set<Arc*>::iterator ps = A[s].begin(); ps != A[s].end(); ps++){
    Arc* a = *ps;
    int x = a \rightarrow nod; int w = a \rightarrow w;
    d[x] = w; p[x] = s;
  for(set<int>::iterator pi = V.begin(); pi != V.end(); pi++){
    int v = *pi;
    if(v != s)
      S.insert(v);
  }
```

```
//L00P
while(S.size() > 0){
  int v = findMin();
  S.erase(v);
  // update label of nodes in S
  for(set<Arc*>::iterator pv = A[v].begin(); pv != A[v].end(); pv++){
    Arc* a = *pv;
    int x = a - > nod;
    int w = a \rightarrow w;
    if(d[x] > d[v] + w){
      d[x] = d[v] + w;
      p[x] = v;
```

```
void printPath(int s, int v){
  stack<int> S;
  int x = v;
  while(x != s){
    S.push(x);
    x = p[x];
  printf("%d ",s);
  while(!S.empty()){
    int x = S.top(); S.pop();
    printf("%d ",x);
  printf("\n");
```