COM SCI M152A Lab 2 ez money

Floating Point Conversion Lab

Lab Overview

- Convert a 12-bit linear encoding into a compounded 8-bit FP encoding
- FPGA is not required (simulation only)

Lab Background

- Two's complement conversion into 1-Bit Sign Representation, 3-Bit Exponent, 4-Bit Significand
- Say the Sign-Bit is 1, the Exponent is 001, and the Significand is 0101.
 What is the value?

$$V = (-1)^S \times F \times 2^E$$

How to Convert

Steps

- 1. The sign can be extracted from the most significant bit of the input.
- 2. The exponent can be found by counting the leading zeroes.
- 3. The significand is the first 4 bits after the leading zeroes.

7	6	5	4	3	2	1	0
S	E			F			

$$V = (-1)^S \times F \times 2^E$$

Leading Zeroes	Exponent			
1	7			
2	6			
3	5			
4	4			
5	3			
6	2			
7	1			
≥ 8	0			

Example Conversion

000110100110

What is the sign of this number?

What is the exponent of this number?

What is the significand of this number?

7	6	5	4	3	2	1	0	
S	E			F				

$$V = (-1)^S \times F \times 2^E$$

Leading Zeroes	Exponent			
1	7			
2	6			
3	5			
4	4			
5	3			
6	2			
7	1			
≥ 8	0			

Example Conversion

CIOCOMOMICO Negate it first!

What is the sign of this number?

What is the exponent of this number?

What is the significand of this number?

7	6	5	4	3	2	1	0	
S	E			F				

$$V = (-1)^S \times F \times 2^E$$

Leading Zeroes	Exponent			
1	7			
2	6			
3	5			
4	4			
5	3			
6	2			
7	1			
≥ 8	0			

Lab Design

- 3 Parts of the design
 - Sign Bit
 - Counting Leading Zeroes
 - Rounding

Top Module

Inputs and Outputs?

D, S, E, F

What is done in the top module?

Set up the inputs and outputs, create wires to connect your other modules, instantiate your other modules.

Sign Bit Implementation

- Convert the 12-bit two's complement input to sign-magnitude representation
- Non-negative inputs should be unchanged
- Negative numbers should be complemented (invert all bits) and then incremented (add 1)

Counting Leading Zeroes Implementation

- This is done in order to find the exponent and the significand
- There are several ways to do it but....
 - Easiest way is to use if statements

Rounding Implementation

- Hardest portion of the lab
- Several cases that you need to handle
 - If the fifth bit following the last leading zero of the intermediate FP representation is 1, increment Significand by 1
 - If it overflows, shift significand by one bit and increase exponent by 1

Lab Deliverables

- Demo
 - Explanation of Methodology
 - Test bench design
- Project Code
 - Make sure to include all the project files for golden test bench
- Lab Report

Lab Rubric

Lab 2 Rubric:

Today ~

- Demo (60):
 - No on-board demonstration required in manuscript
 - o Do not share golden test-bench with students, they need to have their own test-bench
 - Students can explain their methodology (30)
 - Overall design logic (5) and test bench design (5)
 - Count Leading Zeros implementation (10)
 - Rounding Logic (8) and test bench coverage (10)
 - Golden Test-bench Result (30)
 - Can be tested after their submission or in the demonstration (to be discussed)
 - Full credit: 30
 - Having errors on edge cases: 20
 - Can only cover <50% test cases: **10**
 - Test failed: 0

- Report (40):
 - Intro and requirement (10)
 - Design Description (15)
 - Overall design (5)
 - Count Leading Zeros (5)
 - Rounding Logic (5)
 - Simulation Documentations (10)
 - General cases (5)
 - Edge cases covered (5)
 - Edge included but not limited to
 - Rounding (General case)
 - Rounding (overflow)
 - Leading zeros >= 8 (E = 0)
 - Special edge cases derived by their own special design
 - Student will receive full edge-cases credit if they can cover two or more
 - o Conclusion (5)