Counting Sort Proof of Correctness

Josh Cohen

December 3, 2020

We define counting sort as the following pseudocode:

```
function countingSort<A>(a: A[], k: int, key: A -> int): A[] {
    b = new int[k]; //initialized to 0
    for(int i = 0; i < a.Length; i++) {
        b[key(a[i])] += 1;
    }
    b[0] -= 1; //for 1 indexing
    for(int i = 1; i < k; i++) {
        b[i] += b[i-1];
    }
    c = new A[a.Length];
    for(int i = a.Length - 1; i >= 0; i--) {
        c[b[key(a[i])]] = a[i];
        b[key(a[i])] -= 1;
    }
    return c;
}
```

As expected for counting sort, we require that, for all x in a, $0 \le key(x) \le k$. For talking about slices of arrays, we will use the notation a[x..y], consisting of a[x], a[x+1], ..., a[y-1]. We now define the following functions:

- 1. numLt(a, x) :=the number of elements in array a with key smaller than x.
- 2. numEq(a,x) := the number of elements in array a with key equal to x.
- 3. numLeq(a, x) := numLt(a, x) + numEq(a, x).
- 4. position(x, i, a) := numLt(x, a) + numEq(x, a[0..i+1]) 1. This is meant to represent the position of an element in a sorted, stable array consisting of elements of a. To see this, consider position(key(a[i]), i, a). How many elements occur to the left of a[i] in the sorted, stable array? All of the elements with smaller keys must occur before a[i], as well as all of the elements with equal keys in the array a[0..i+1]. We subtract 1 because the array is 0-indexed.
- 5. filter(a, f) filters the array a by predicate f it keeps all elements in a that satisfy f, in order.

Now we begin the proof of correctness.

```
Lemma 1. After the first loop, for all i, b[i] = numEq(a, i).
```

Proof. The proof is easy; for each element x in a with key(x) = i, we increment b[i] exactly once.

```
Lemma 2. After the second loop, b[i] = numLeq(a, i) - 1.
```

Proof. We prove the claim by induction on i. When i = 0, since all keys are nonnegative, numLt(a, 0) = 0, so numLeq(a, i) = numEq(a, i). Since we subtract 1 from b[0], the claim holds. Now assume the claim is true for i - 1. Then b[i] = b[i] + b[i - 1] = numEq(a, i) + numLeq(a, i - 1) - 1. Since numLeq(a, i - 1) = numLt(a, i), the claim holds.

Now we need to handle the third loop. We will let c_j denote the portion of c that has been filled in when i = j. We will use the following loop invariants:

- 1. a[(i+1)..a.Length] and c_i are permutations of each other.
- 2. For all $0 \le j \le k$, b[j] = position(j, i, a).
- 3. For all j such that $c_i[j]$ exists (ie, position j has been filled in), there exists a k such that i < k < a.Length and $c_i[j] = a[k]$ and j = position(key(a[k]), k, a).
- 4. For all integers x, $filter(a[i+1..a.Length], y \to y = x) = filter(c_i, y \to y = x)$ (ie, the portion of a considered so far and the portion of c completed so far are stable with respect to each other).

Lemma 3. All invariants hold before the third loop.

Proof. Since i = a.Length - 1, a[i + 1..a.Length] is empty, as is c_i . Thus, the only nontrivial invariant is invariant 2.

```
Since i = a.Length - 1, position(j, i, a) = numLt(j, a) + numEq(j, a[0..a.Length]) - 1 = numLt(j, a) + numEq(j, a) - 1 = numLeq(j, a) - 1. This is true by Lemma 2.
```

Now, we will prove that each invariant is preserved during the loop by first proving the following lemmas:

Lemma 4. position is injective in the following sense: for any i, j, if position(key(a[i]), i, a) = position(key(a[j]), j, a), then i = j.

Proof. Suppose not. We consider 2 cases:

1. If key(a[i]) = key(a[j]), let k = key(a[i]). Then

```
\begin{aligned} position(key(a[i]),i,a) &= numLt(k,a) + numEq(k,a[0..i+1]-1\\ position(key(a[j]),j,a) &= numLt(k,a) + numEq(k,a[0..j+1])-1 \end{aligned}
```

WLOG, suppose i < j. Then numEq(k, a[0..i+1]) + numEq(k, a[i+1..j+1]) = numEq(k, a[0..j+1]). Since i < j and a[j] = k, numEq(k, a[i+1..j+1]) > 0. This contradicts the fact that the positions were equal.

2. If $key(a[i]) \neq key(a[j])$, WLOG assume key(a[i]) < key(a[j]). We have the following bounds straight from the definition of position:

```
position(key(a[i]), i, a) \leq numLeq(key(a[i]), a) - 1numLt(key(a[j]), a) \leq position(key(a[j]), j, a)
```

Note that we can write numLt(key(a[j]), a) = numLeq(key(a[j]) - 1, a) (since we are working with integers). Now $key(a[i]) \le key(a[j]) - 1$, so

```
\begin{aligned} position(key(a[i]), i, a) &\leq numLeq(key(a[i]), a) - 1 \\ &\leq numLeq(key(a[j]) - 1, a) - 1 \\ &= numLt(key(a[j]), a) - 1 \\ &< numLt(key(a[j]), a) \\ &\leq position(key(a[j]), j, a) \end{aligned}
```

This again contradicts the position equality.

Lemma 5. At the beginning of each iteration of the loop, c[b[key(a[i)]]] has not yet been filled in.

Proof. Suppose it had, then by invariant 3, there is some k such that i < k < a.Length, $c_i[b[key(a[i])]] = a[k]$, and b[key(a[i])] = position(key(a[k]), k, a). But by invariant 2, b[key(a[i])] = position(key(a[i]), i, a). By Lemma 4, then, i = k, a contradiction.

Lemma 6. At the beginning of each iteration of the loop, for all $0 \le j < b[key(a[i])]$, if $c_i[j]$ exists (ie, position j has been filled), then $key(c_i[j]) \ne key(a[i])$. In other words, we fill in all the values with key = key(a[i]) from right to left.

Proof. Suppose not, so there is some j < b[key(a[i])] where $key(c_i[j]) = key(a[i])$. By invariant 3, there is some k with i < k < a.Length, $c_i[j] = a[k]$, and j = position(key(a[k]), k, a). By assumption, key(a[k]) = key(a[i]). By invariant 2, b[key(a[i])] = position(key(a[i]), i, a). Thus, we get that position(key(a[i]), k, a) < position(key(a[i]), i, a). Since i < k, this is a contradiction (ie, we cannot decrease the number of equal elements in the array by extending the range we are considering).

Now, we can prove that each invariant is preserved.

Lemma 7. Each invariant is preserved by the body of the third loop.

Proof. Let b_{old} represent b at the beginning of the current iteration of the loop, and b_{new} represent b after the body of the loop.

By Lemma 5, c_{i-1} is the same as c_i , except that we fill in $c_{i-1}[b_{old}[key(a[i])]]$ with a[i]. All other positions are the same. Also note that a[i..a.Length] is just a[i+1..a.Length] with a[i] added at beginning. Finally, b_{new} is the same as b_{old} except that the only change to b is that $b_{new}[key(a[i])] = b_{old}(key(a[i])] - 1$.

- 1. By above, we add a[i] to both sides, so they are still permutations of each other.
- 2. We consider 2 cases:
 - (a) If j = key(a[i]), then $b_{new}[j] = b_{old}[j] 1 = position(j, i, a) 1$. But position(j, i 1, a) = position(j, i, a) 1, since key(a[i]) appears at position a[i].
 - (b) If $j \neq key(a[i])$, then position(j, i, a) = position(j, i 1, a), since the number of equal keys in the given range did not change; we just removed an unequal element.

Thus, invariant 2 is preserved.

- 3. For all $j \neq key(a[i])$, the claim follows from the invariant. If $j = b_{old}[key(a[i])]$, we have i 1 < i < a.Length, $c_{i-1}[j] = a[i]$, and by invariant 2, j = position(key(a[i]), i, a), proving the claim.
- 4. If $x \neq key(a[i])$, then, since we added a[i] to both sides, we did not change anything with respect to stability, so the claim continues to hold.

If x = key(a[i]), then by Lemma 6, there were no elements with equal keys before index $b_{old}[key(a[i])]$, so we added a[i] to the beginning of the filtered list. Thus, if we consider the list of elements with key = key(a[i]) in c_i , we have added a[i] before all of the others. Likewise, we added a[i] to the beginning of a[i+1..a.Length], so the claim holds.

Therefore, we know that, once the third loop exits, the following are true (define $c_{ret} := c_{-1}$ - the array c when the loop exits):

- 1. a and c_{ret} are permutations.
- 2. a and c_{ret} are stable with respect to each other.
- 3. For every index j where $c_{ret}[j]$ exists, there exists a k such that $0 \le k < a.Length$ and $c_{ret}[j] = a[k]$ and j = position(key(a[k]), k, a).

The first condition implies that $|a| = |c_{ret}|$ and thus, all indices of c_{ret} are filled in (since we created c such that c.Length = a.Length). Thus, the third condition is really equivalent to:

• For every $0 \le j < c.Length$, there exists a k such that $0 \le k < a.Length$ and $c_{ret}[j] = a[k]$ and j = position(key(a[k]), k, a).

All that remains is to prove that the above condition implies sortedness. We do so in the following lemma:

Theorem 8. c_{ret} is sorted.

Proof. We prove this in two parts: first, we claim that, for every $0 \le j < c_{ret}$. Length, $numLt(key(c_{ret}[j]), c_{ret}) \le j \le numLeq(key(c_{ret}[j]), c_{ret}) - 1$. To prove this, we consider the k such that $0 \le k < a$. Length, $c_{ret}[j] = a[k]$, and j = position(key(a[k]), k, a). Let $x = key(a[k]) = key(c_{ret}[j])$. Again, we know that:

$$numLt(x, a) \le position(x, k, a) \le numLeq(x, a) - 1$$

 $numLt(x, a) \le j \le numLeq(x, a) - 1$

It is clear by definition, that numLt and numLeq are preserved over permutations. Thus,

$$numLt(x, c_{ret}) \le j \le numLeq(x, c_{ret}) - 1$$

which is what we wanted to show.

Now we prove that the above condition implies sortedness. We want to prove that, for all $i \leq j$, $key(c_{ret}[i]) \leq key(c_{ret}[j])$.

Suppose not, so $key(c_{ret}[j]) < key(c_{ret}[i])$.

Then, using a similar idea as in Lemma 4,

```
j \leq numLeq(key(c_{ret}[j]), c_{ret}) - 1
< numLeq(key(c_{ret}[j]), c_{ret})
\leq numLeq(key(c_{ret}[i]) - 1, c_{ret})
= numLt(key(c_{ret}[i]), c_{ret})
\leq i
```

So j < i, a contradiction. Thus, c_{ret} is sorted.

We have shown, therefore, that the returned array is a permutation of the input, is sorted, and is stable with respect to the input.