

人體活動辨識模組 Human activity recognition module

國立台灣科技大學電子系

Department of Electronic and Computer Engineering, NTUST

單元一:Cat & Dog分類CNN模型 實驗

Unit 1: Cat & Dog classification and CNN model experiment

國立台灣科技大學電子系

Department of Electronic and Computer Engineering, NTUST

Unit 1: Cat & Dog classification and CNN model experiment

- What is machine learning?
- Perceptron
- Fully connected layer
- Convolution
- Transfer learning
- Lab 1

What is machine learning?

What is machine learning?

- Define a set of function $f(w_1, w_2, ..., w_n)$.
- Get a best function f(0,1,...,0).

Training

- Loss Function: Measure the difference between ground truth and model output.
- Optimization: Try to get better weights for the model.

Overfitting

- Overfitting means that prediction is too close to the training data.
- It may get a bad accuracy at unseen data.

Perceptron

· Perceptron is a mathematical function modeled on the working of biological neurons.

Perceptron

 The output of perceptron is weighted sum of input and passed through a activation function.

Input

$$y = \sigma \left(\sum_{i=1}^{n} w_i x_i + b \right)$$

Activation function

 Activation function is a nonlinear function that mapping the result value in a range.

ex.

Sigmoid: $[-\infty, +\infty] \rightarrow [0, 1]$

Tanh : $[-\infty, +\infty] \rightarrow [-1, 1]$

Activation function

Common activation function

limit output value between 0 and 1

limit output value between -1 and 1

$$\mathsf{ReLU} : \sigma = \begin{cases} 0 \ if \ x < 0 \\ x \ if \ x \ge 0 \end{cases}$$

ignore negative output

AND gate

$$w = [0.4, 0.5], b = -0.8, \sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

$$x = [0,0], y = \sigma(0.4 * 0 + 0.5 * 0 - 0.8) = \sigma(-0.8) = 0$$

$$x = [0,1], y = \sigma(0.4 * 0 + 0.5 * 1 - 0.8) = \sigma(-0.3) = 0$$

$$x = [1,0], y = \sigma(0.4 * 1 + 0.5 * 0 - 0.8) = \sigma(-0.4) = 0$$

$$x = [1,1], y = \sigma(0.4 * 1 + 0.5 * 1 - 0.8) = \sigma(+0.1) = 1$$

· AND gate

Single level perceptron can learn only linearly separable patterns

X ₁	X ₂	Q (label)
0	0	0
0	1	0
1	0	0
1	1	1

$$w = [0.4, 0.5], b = -0.8, \sigma(x) = egin{cases} 1 & ext{if } x > 0 \ 0 & ext{if } x \leq 0 \end{cases}$$

XOR gate

 Cannot find a suitable parameter for simulating XOR gate.

X ₁	X ₂	Q (label)
0	0	0
0	1	1
1	0	1
1	1	0

 Single layer perceptron can learn only linear separable pattern.

 For more complicate problem, we need more perceptrons.

- XOR gate
 - Idea: Combine more linear separable gates to perform XOR gate.

XOR gate

Fully connected layer

 Fully connected layer is a neuron network that all neurons are connected all the input neuron.

$$y_1 = \sigma(w_{11}x_1 + w_{21}x_2 + b_1)$$

$$y_2 = \sigma(w_{12}x_1 + w_{22}x_2 + b_2)$$

$$y_3 = \sigma(w_{13}x_1 + w_{23}x_2 + b_3)$$

$$y_4 = \sigma(w_{14}x_1 + w_{24}x_2 + b_4)$$

Fully connected layer

 If we cannot classify the training data, we may need more layers.

 If we want to find a pattern: Vertical line in a image, we can use the below kernel (filter) to calculate the convolution.

1	0	0	0	1
0	1	0	1	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0

input

Kernel (filter)

 Then we slide window and calculate the next value.

1	0	0	0	1
0	1	0	1	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0

input

Kernel (filter)

 Then we slide window and calculate the next value.

1	0	0	0	1
0	1	0	1	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0

input

Kernel (filter)

 Then we slide window and calculate the next value.

1	0	0	0	1
0	1	0	1	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0

input

Kernel (filter)

$$1*0 + 0*1 + 0*0 +$$
 $1*0 + 0*1 + 0*0 +$
 $1*0 + 0*1 + 0*0$

1	0	0	0	1
0	1	0	1	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0

input

Kernel (filter)

0	1	0
0	1	0
0	1	0

1	1	1
1	2	1
0	3	0

 The output indicates how many (vertical line) features the input has.

vertical line feature

1	0	0	0	1
0	1	0	1	0
0	0	1	0	0
0	0	1	0	0
0	0	1	0	0

input

max value

*

Kernel (filter)

- Convolution operation can extract features on the image.
- · But handicraft kernel is not efficient.
- So we use training data to train the kernel parameters.

	<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₁₃		
	W ₂₁	W ₂₂	W ₂₃		
	W ₃₁	W ₃₂	W ₃₃		
Kernel (filter)					

Learnable parameter

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

image with padding zero

image without padding zero

Pooling

 Downsample the image to reduce the calculated complexity.

1	1	2	3	4	2				
4	8	2	4	7	1		0	4	
3	4	9	1	8	3	max pooling	8	4	
3	3	2	4	8	3	pool size = 2 x 2	4	9	
2	2	1	9	6	3	•	8	9	
2	8	9	2	4	5				

 A pre-trained model is a saved network that was previously trained on a large dataset.

 You can customize the pre-trained model for your task.

VGG-16

 The model accuracy is 92.7% on top-5 test of ImageNet, which is a dataset of over 14 million images belonging to 1000 classes.

Image
Conv 64
Conv 64
Max pooling
Conv 128
Conv 128
Max pooling
Conv 256
Conv 256
Max pooling
Conv 512
Conv 512
Conv 512
Max pooling
Conv 512
Conv 512
Conv 512
Max pooling
FC 4096
FC 4096
FC 1000
.07

- · Task:
 - classify dog and cat

- · Idea:
 - change last FC layer

Image
Conv 64
Conv 64
Max pooling
Conv 128
Conv 128
Max pooling
Conv 256
Conv 256
Max pooling
Conv 512
Conv 512
Conv 512
Max pooling
Conv 512
Conv 512
Conv 512
Max pooling
FC 4096
FC 4096
FC 1000

Image
Conv 64
Conv 64
Max pooling
Conv 128
Conv 128
Max pooling
Conv 256
Conv 256
Max pooling
Conv 512
Conv 512
Conv 512
Max pooling
Conv 512
Conv 512
Conv 512
Max pooling
FC 4096
FC 4096
FC 2

 Try to use pre-trained weights when training in a small dataset.

pre-train from ImageNet

Image Conv 64 Conv 64 Max pooling **Conv 128 Conv 128** Max pooling Conv 256 Conv 256 Max pooling Conv 512 Conv 512 Conv 512 Max pooling Conv 512 Conv 512 Conv 512 Max pooling FC 4096 FC 4096 FC 2

reinitialize and train

 Use fewer pre-trained weights when training in a larger dataset.

pre-train from ImageNet

Image Conv 64 Conv 64 Max pooling **Conv 128 Conv 128** Max pooling Conv 256 Conv 256 Max pooling Conv 512 Conv 512 Conv 512 Max pooling Conv 512 Conv 512 Conv 512 Max pooling FC 4096 FC 4096 FC₂

reinitialize and train

Lab 1 Cat & Dog classification and CNN model experiment

Flowchart

Open Colab

https://colab.research.google.com/?utm_source=scs-index

Colab setting

Computing on a GPU in Colab.

Download dataset

 The dataset is excerpted from the "Dogs vs. Cats" dataset on Kaggle.

Train data : 2000 JPG of cats and dogs

Validation data: 1000 JPG of cats and dogs

```
!wget —no-check-certificate \
    https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip \
    -0 /tmp/cats_and_dogs_filtered.zip
```


Download dataset

Unzip the file.

```
import zipfile

local_zip = '/tmp/cats_and_dogs_filtered.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('/tmp')
zip_ref.close()
```


Download dataset

- Check the file hierarchy.
 - Go to the parent directory and check tmp/cats_and_dogs_filtered.

Files

 \square \times

Data preprocessing

Use image_dataset_from_directory to load image.

Data preprocessing

- Seed: random seed for shuffling data.
- Label_mode : 'binary' means that the labels are encoded as scalars with values 0 or 1.
- Image size: resize the image.

```
image_size = (224, 224)
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
        //tmp/cats_and_dogs_filtered/train/,
        seed=1337.
        image_size=image_size,
        label_mode="binary",
        batch size=20
```


Data preprocessing

• Rescale an input in the [0, 255] range to be in the [0, 1] range.

```
normalization_layer = tf.keras.layers.Rescaling(1./255)
train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
```

Check the value.

```
image_batch, labels_batch = next(iter(train_ds))
first_image = image_batch[0]
print(np.min(first_image), np.max(first_image))
```


Show image with label

```
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow((images[i].numpy()*255).astype("uint8"))
        plt.title(int(labels[i]))
        plt.axis("off")
```

0 : cat 1 : dog

Import the layers you need.

```
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense from tensorflow.keras.layers import Activation, Flatten, Input
```

Define input layer.

The shape of image

Forward propagation the value by cascade layer.

```
input_tensor=Input(shape=(224, 224, 3))

x = Conv2D(64, (3, 3), activation='relu', padding='same')(input_tensor)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)

x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)

x = Flatten()(x)
x = Dense(128, activation='relu')(x)
output_tensor = Dense(1, activation='sigmoid')(x)
model = Model(input_tensor, output_tensor)
```


Specifies how far the pooling window moves for each pooling step.

· Change the 3d array to 1d array.

$$x = Flatten()(x)$$

Dense means fully connected layer.

2

3

-1

-2

-3

6

7

8

Check your model

model.summary()

Layer (type)	Output Shape	Param #
input_11 (InputLayer)	[(None, 224, 224, 3)]	0
conv2d_25 (Conv2D)	(None, 224, 224, 64)	1792
conv2d_26 (Conv2D)	(None, 224, 224, 32)	18464
max_pooling2d_11 (MaxPooling2D)	(None, 112, 112, 32)	0
conv2d_27 (Conv2D)	(None, 112, 112, 16)	4624
conv2d_28 (Conv2D)	(None, 112, 112, 16)	2320
max_pooling2d_12 (MaxPooling2D)	(None, 56, 56, 16)	0
flatten_9 (Flatten)	(None, 50176)	0
dense_18 (Dense)	(None, 128)	6422656
dense_19 (Dense)	(None, 1)	129

Total params: 6,449,985 Trainable params: 6,449,985 Non-trainable params: 0

Train model

 Configure the model, set optimizer and loss function.

```
adam = tf.keras.optimizers.Adam(learning_rate=0.001)
momentum = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9)
model.compile(optimizer=momentum, loss='binary_crossentropy', metrics=['accuracy'])
```

Now is "momentum"

Train model

 Train the model and store record of training loss values and metrics values.

Epochs: Number of epochs to train the model.

```
hist = model.fit(train_ds,
epochs=100,
validation_data=val_ds,
verbose=1)
```


Train model

```
Epoch 1/100
100/100 [=
                                      =] - 111s 709ms/step - loss: 0.6932 - accuracy: 0.4975 - val loss: 0.6931 - val accuracy: 0.5000
Epoch 2/100
100/100 [=
                                      =] - 71s 707ms/step - loss: 0.6931 - accuracy: 0.4935 - val loss: 0.6930 - val accuracy: 0.5830
Epoch 3/100
                                      =l - 71s 708ms/step - loss: 0.6930 - accuracy: 0.5470 - val loss: 0.6929 - val accuracy: 0.5110
100/100 [=
Epoch 4/100
                                      =] - 71s 707ms/step - loss: 0.6931 - accuracy: 0.4970 - val_loss: 0.6929 - val_accuracy: 0.5040
100/100 [=
Epoch 5/100
                                      =] - 71s 708ms/step - loss: 0.6929 - accuracy: 0.5245 - val loss: 0.6928 - val accuracy: 0.5050
100/100 [=
Epoch 6/100
                                      =] - 71s 707ms/step - loss: 0.6928 - accuracy: 0.5485 - val loss: 0.6927 - val accuracy: 0.5210
100/100 [=
Epoch 7/100
                                      =] - 71s 708ms/step - loss: 0.6929 - accuracy: 0.4985 - val_loss: 0.6926 - val_accuracy: 0.5160
100/100 [=
Epoch 8/100
100/100 [=
                                      =] - 71s 708ms/step - loss: 0.6928 - accuracy: 0.5240 - val_loss: 0.6926 - val_accuracy: 0.5040
Epoch 9/100
                                      =] - 71s 708ms/step - loss: 0.6926 - accuracy: 0.5520 - val_loss: 0.6924 - val_accuracy: 0.5240
100/100 [=
Epoch 10/100
100/100 [=
                                      =] - 71s 707ms/step - loss: 0.6926 - accuracy: 0.5330 - val loss: 0.6923 - val accuracy: 0.6050
Epoch 11/100
100/100 [=
                                      =] - 71s 708ms/step - loss: 0.6926 - accuracy: 0.5430 - val loss: 0.6922 - val accuracy: 0.5710
Epoch 12/100
                                      =] - 71s 707ms/step - loss: 0.6923 - accuracy: 0.5530 - val_loss: 0.6920 - val_accuracy: 0.5580
100/100 [=
Epoch 13/100
100/100 [=
                                      =] - 71s 708ms/step - loss: 0.6921 - accuracy: 0.5530 - val_loss: 0.6918 - val_accuracy: 0.5400
Epoch 14/100
                                      =] - 71s 707ms/step - loss: 0.6921 - accuracy: 0.5455 - val_loss: 0.6917 - val_accuracy: 0.5220
100/100 [=
Epoch 15/100
100/100 [=
                                      =] - 71s 708ms/step - loss: 0.6920 - accuracy: 0.5250 - val loss: 0.6913 - val accuracy: 0.5720
Epoch 16/100
                                      =] - 71s 708ms/step - loss: 0.6916 - accuracy: 0.5495 - val_loss: 0.6910 - val_accuracy: 0.5720 🕬
100/100 [=
Epoch 17/100
100/100 [=
                                      =1 - 71s 708ms/step - loss: 0.6911 - accuracy: 0.5645 - val loss: 0.6907 - val accuracy: 0.5480
Epoch 18/100
                                      = ] - 71s 708ms/step - loss: 0.6911 - accuracy: 0.5465 - val_loss: 0.6905 - val_accuracy: 0.5330
100/100 [==
```


Evaluate model

```
import matplotlib.pyplot as plt
from keras.preprocessing.image import img_to_array, load_img
# Retrieve a list of accuracy results on training and test data
# sets for each training epoch
acc = hist.history['accuracy']
val_acc = hist.history['val_accuracy']
# Retrieve a list of list results on training and test data
# sets for each training epoch
loss = hist.history['loss']
val loss = hist.history['val loss']
# Get number of epochs
epochs = range(len(acc))
# Plot training and validation accuracy per epoch
plt.plot(epochs, acc)
plt.plot(epochs, val acc)
plt.title('Training and validation accuracy')
plt.figure()
# Plot training and validation loss per epoch
plt.plot(epochs, loss)
plt.plot(epochs, val_loss)
plt.title('Training and validation loss')
```


Training and validation accuracy

Evaluate model

 As you can see, the model is overfitting.

 Our training accuracy gets close to 100%, but validation accuracy stalls at 60%.

Overfitting

- Overfitting is a tough problem when we train the model.
- Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data.

Save / load model

 Save your model to deploy on different platform.

You can find your file in /content/myModel.h5.

Inference

```
animal = "cat" # cat or dog
index = 2222 # 2000-2499
img path = f"/tmp/cats and dogs filtered/validation/{animal}s/{animal}.{index}.jpg"
img = load_img(img_path, target_size=(224, 224)) # this is a PIL image
plt.title(img path)
plt.axis("off")
plt.imshow(img)
x = img to array(img) # Numpy array with shape (224, 224, 3)
x = x.reshape((1,) + x.shape) # Numpy array with shape (1, 224, 224, 3)
x /= 255 # Rescale by 1/255
import time
start = time.time() # record start time
result = new model.predict(x) # inference(predict)
if result < 0.5:
 print("It is a cat.")
else:
 print("It is a dog.")
finish = time.time() # record finish time
print ("Result = %f" %result)
print("Test time :%f second." %(finish-start))
```


Upload/load model

Upload pre-trained model and evaluate the model.

Assignment 1

- Select two of the models in the right chart.
- Implement and compare their accuracies.

A	В	C	D	Е
conv3-4	conv3-4	conv3-4	conv3-4	conv3-4
	conv3-4	conv3-4	conv3-4	conv3-4
	maxpoo	ol(size=(2,2),stride	es=(2,2))	
conv3-8 conv3-8 conv3-8	conv3-8	conv3-8	conv3-8	conv3-8
	conv3-8	conv3-8	conv3-8	
	maxpoo	ol(size=(2,2),stride	es=(2,2))	
conv3-16	conv3-16	conv3-16	conv3-16	conv3-16
conv3-16	conv3-16	conv3-16	conv3-16	conv3-16
	conv3-16	conv3-16	conv3-16	
		conv3-16	conv3-16	
	maxpoo	ol(size=(2,2),stride	es=(2,2))	
conv3-32	conv3-32	conv3-32	conv3-32	conv3-32
conv3-32 conv3-32	conv3-32	conv3-32	conv3-32	
	conv3-32	conv3-32	conv3-32	
			conv3-32	
	maxpoo	ol(size=(2,2),stride	es=(2,2))	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
conv3-64 conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	conv3-64	conv3-64	conv3-64	
			conv3-64	
	maxpoo	ol(size=(2,2),stride	es=(2,2))	
		FC-128		
		FC-64		
		FC-1		
		sigmoid		

ConvA-B => kernel size: (A,A), number of the kernerl: B

 $FC-N \Rightarrow$ number of neuron: N

Assignment 1

- Finish a report.
 - What is observed & learned?
 - Screen dump:
 - Model.summary()
 - Plot training and validation accuracy
 - Plot training and validation loss

Submission

- Hierarchy:
 - Model_1.ipynb
 - Model_2.ipynb
 - Report.pdf
- Compress all above files in a single zip file named StudentID_lab1.zip.

References

- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv:1409.1556, 2014.
- Stanford University CS231n, "Deep Learning for Computer Vision." [Online]. Available: http://cs231n.stanford.edu/.
- H. Y. Lee, "Hung-yi Lee youtube channel" [Online]. Available: https://www.youtube.com/c/HungyiLeeNTU.
- Kaggle, "Dogs vs. Cats." [Online]. Available: https://www.kaggle.com/c/dogs-vs-cats.

