Spectra processing, functional integration and covariate adjustment of global metabolomics data using MetaboAnalyst 5.0

Section I: Metabolomics Raw Spectra data processing & functional analysis

TA: Zhiqiang Pang (zhiqiang.pang@mail.mcgill.ca)

Learning Questions...

- What the algorithm MetaboAnalyst is using for raw spectra processing?
- How many data files we are supporting for processing online at the maximum?

What is raw spectra (pre-)processing?

- Convert the raw spectra data from MS instrument into metabolic features (MS peaks);
- Usually contains 2~3 dimensions. For DI-MS, the raw spectra includes m/z and intensity (2D); while for the LC-MS, the raw spectra data includes m/z, retention time and intensity (3D);
- The most common vendor raw data file formats are .raw/.RAW/.wiff/.d/.D/ etc. They need to be converted into open-source format for further processing with open-source software.

Profile or Centroid?

- The vendor raw spectra data is usually in profile format, which is redundant for regular LC-MS based metabolomics analysis;
- We need to convert the MS data into centroid mode to condense the Gaussian Profile peaks into centroids.
- Open-source formats (.mzML/ etc.)..

Open-source Software for raw spectra processing..

centWave

ROI Extraction

- Data-driven ROI extraction;
- Regions with high abundance of MS signals;
- Both low intensity peaks as well as high intensity peaks will be retained;

DoE-based Parameter Optimization

DoE -- Central composite design

3 level for every parameters (-1, 0, 1)

- The most important parameters are evaluated with 44 DoE runs
- Instead of 38 = 6561 one-variable-at-a-time runs.

Performance Evaluation - Speed

+ 3 datasets: Standard Mixture (SM), NIST-SRM 1950 and IBD data from iHMP2.

Bench markings

	Default	Optimized	
Total peaks	2,492	2,423	
Isotopes / Adducts	667 (26.8%)	1,112 (45.9%)	
Formula Assigned	663	762	
Potential compounds	1,085	1,692	
Variance (PC1 + PC2)	37%	50%	
Significant peaks	855	1,091	

	Default	Optimized
Total peaks	4,344	5,113 (+ 17.7%)
Isotopes	760	1,274 (+ 67.6%)
Adducts	927	1,132 (+ 22.1%)
Formulas assigned	632	687 (+ 8.7%)
Potential compound matches	1,587	1,803 (+ 13.6%)
Variance explained (PC1 + PC2)	76.5%	81.3% (+ 4.8%)

Workflow Overview

• Our optimization approach is designed to extract a region abundant with MS signals for a design of experiment (DoE)-based optimization.

MetaboAnalyst 5.0 - user-friendly, streamlined metabolomics data analysis

<u>Home</u>

Data Formats

Tutorials

OmicsForum

APIs

Update History

MetaboAnalystR

Contact

User Stats

Publications

COVID-19 Data

About

GenomeCanada

GenomeQuébec

Module Overview

Input Data Type	Available Modules (click on a module to proceed, or scroll down for more details)						
Raw Spectra (mzML, mzXML or mzData)	LC-MS Spectra Processing						
MS Peaks (peak list or intensity table)			Functional Analysis	Functional Meta-analysis			
Annotated Features (compound list or table)		Enrichment Analysis	Pathway Analysis	Joint-Pathway Analysis	Network Analysis		
Generic Format (.csv or .txt table files)	Statistical Analysis [one factor]	Statistical Analysis [metadata table]	Biomarker Analysis	Statistical Meta-analysis	Power Analysis	Other Utilities	

>> Statistical Analysis [one factor]

This module offers various commonly used statistical and machine learning methods including t-tests, ANOVA, PCA, PLS-DA and Orthogonal PLS-DA. It also provides clustering and visualization tools to create dendrograms and heatmaps as well as to classify data based on random forests and SVM.

>> Statistical Analysis [metadata table]

This module aims to detect associations between phenotypes and metabolomics features with considerations of other experimental factors / covariates based on general linear models coupled with PCA and heatmaps for visualization. More options are available for two-factors / time-series data.

>> Biomarker Analysis

This module performs various biomarker analyses based on receiver operating characteristic (ROC) curves for a single or multiple biomarkers using well-established methods. It also allows users to manually specify biomarker models and perform new sample prediction.

Xia Lab @ McGill (last updated 2022-06-17)

Functional Utilities

- Raw Data Uploading (.mzML/.mzXML/.mzData/.cdf);
- Centroiding on the fly;
- Parameters Optimization (automatically);
- Peak Profiling (Peak Picking/Alignment/Gap filling);
- Peak Annotation (Adducts + Isotopes);
- Putative Compound Mapping;
- Result visualization...

Functional Analysis

Functions describe the collective behavior of groups of molecules acting together to complete a task (e.g., lysine degradation).

The goal of enrichment analysis is to evaluate whether the members involved in a particular tasks how more consistent behaviors (e.g.,more changes larger than normal) compared with random variations.

Mummichog provides a practical solution of one-step functional analysis, bypassing the bottleneck of upfront metabolite identification.

Implementation in MetaboAnalyst

Functional Analysis Results

- Mummichog: implements an over-representation analysis (ORA) method to evaluate pathway-level enrichment based on significant peaks. Users need to specify a pre-defined cutoff.
- GSEA: considers the overall ranks of features without using a significance cutoff, and is claimed to be able to detect subtle and consistent changes.
- <u>Integrated</u>: combines both Mummichog and GSEA together with Fisher's Method.

Metabolic Pattern-based functional analysis

From raw spectra into biological insight

Tutorials

- Publication: https://www.nature.com/articles/s41596-022-00710-w
- Or our manuscript: https://www.dropbox.com/s/7184c4dheeiiz2p/NP-MetaboAnalyst-2022.pdf?dl=0
 - Stage 1: LC-HRMS raw spectra processing
 - Stage 2: functional analysis of LC-HRMS peaks

Questions?

- https://www.omicsforum.ca/
- If your question is not covered, please create a new topic we will try to answer them in the coming days.

Caution:

- 1. For raw spectra processing, you are strongly encouraged to use 1st example rather than the 2nd one to avoid waiting in queue for learning purpose;
- 2. Avoid downloading and uploading any example raw spectra data due the limited bandwidth.
- 3. Default MetaboAnalyst includes <u>www.metaboanalyst.ca</u> and <u>dev.metaboanalyst.ca</u>, please use backup node <u>genap.metaboanalyst.ca</u> ONLY if the defaults are not accessible.