Satisfiability Of Connected Contact Logics

Anton Dudov 2019-9-28

Contents

1	Tab	leau Method For Classic Propositional Logic	3
	1.1	What Is A Tableau?	3
	1.2	Classical Propositional Tableaus	3
2	Contact Logics		7
	2.1	Syntax	7
	2.2	Relational semantics	8
	2.3		10
	2.4	·	11
		2.4.1 Modal points	11
	2.5	Model building	12
3	Connected Contact Logics		
	3.1	Connectivity	14
	3.2	Connected model building	14
4	Imp	lementation Introduction	16
5	Tableaux Implementation		17
_			40
6	Model Implementation		18
7	Con	nected Contact Logics Implementation	19

1 Tableau Method For Classic Propositional Logic

1.1 What Is A Tableau?

A tableau method is a formal proof procedure. First, it could be used as a refutation procedure: to show a formula X is valid we begin with some syntactical expression intended to assert it is not. This expression is broken down syntactically, generally splitting things into several cases. This part of a tableau procedure - the tableau expansion stage - can be thought of as a generalization of disjunctive normal form expansion. Generally, it moves from formulas to subformulas. Finally, there are rules for closing cases: impossibility conditions based on syntax. If each case closes, the tableau itself is said to be closed. A closed tableau beginning with an expression asserting that X is not valid is a tableau proof of X.

There is a second way of thinking about the tableau method: as a search procedure for models meeting certain conditions. Each branch of a tableau can be considered to be a partial description of a model. In automated theorem-proving, tableaus can be used to generate counter-examples.

The connection between the two roles for tableaus - as a proof procedure and as a model search procedure - is simple. If we use tableaus to search for a model in which X is false, and we produce a closed tableau, no such model exists, so X must be valid.

1.2 Classical Propositional Tableaus

We will look into the signed tableau system for classical propositional logic.

First, we need syntactical machinery for asserting the invalidity of a formula, and for doing case analysis. For this purpose two signs are introduced: T and F, where these are simply two new symbols, not part of the language of formulas. *Signed formulas* are expressions of the form FX and TX, where X is a formula. The intuitive meaning of FX is that X is false (in some model). Similarly, TX intuitively asserts that X is true. Then FX is the syntactical device for (informally) asserting the invalidity of X. A tableau proof of X begins with FX.

Next, we need machinery (rules) for breaking signed formulas down and doing a case division. We will define rules for each logical operator $(\neg \land \lor \Rightarrow \Leftrightarrow)$.

The treatment of **negation** is straightforward: from $T \neg X$ we get F X and from $F \neg X$ we get T X. These rules can be conveniently presented as follows.

$$\frac{T\neg X}{FX} \qquad \qquad \frac{F\neg X}{TX}$$

The rules for **conjunction** are somewhat more complex. From truth tables we know that if $X \wedge Y$ is *true*, X must be *true* and Y must be *true*. Likewise, if $X \wedge Y$ is *false*, eigher X is *false* or Y is *false*. This involves a split into two cases. Corresponding syntactic rules are as follows.

$$\frac{TX \wedge Y}{TX} \qquad \frac{FX \wedge Y}{FX \mid FY}$$

The rules for **disjunction** are similar. From truth tables we know that if $X \vee Y$ is *true*, eigher X is *true* or Y is *true*. This involves a split into two cases. Likewise, if $X \vee Y$ is *false*, X must be *false* and Y must be *false*. Corresponding syntactic rules are as follows.

$$\frac{TX \vee Y}{TX \mid TY} \qquad \frac{FX \vee Y}{FX} \\
FY$$

The rules for **implication**. From truth tables we know that if $X \Rightarrow Y$ is *true*, eigher X is *false* or Y is *true*. Likewise, if $X \Rightarrow Y$ is *false*, X must be *true* and Y must be *false*. Corresponding syntactic rules are as follows.

$$\begin{array}{c} TX \Rightarrow Y \\ FX \mid TY \end{array} \qquad \begin{array}{c} FX \Rightarrow Y \\ TX \\ FY \end{array}$$

The rules for **equivalence**. From truth tables we know that if $X \Leftrightarrow Y$ is *true*, eigher X is *true* and Y is *true* or X is *false* and Y is *false*. Likewise, if $X \Rightarrow Y$ is *false*, eigher X is *true* and Y is *false* or X is *false* and Y is *true*. Corresponding syntactic rules are as follows.

$$\begin{array}{ccc} TX \Leftrightarrow Y & & FX \Leftrightarrow Y \\ TX \mid FX & & TX \mid FX \\ TY \mid FY & & FY \mid TY \end{array}$$

The standard way of displaying tableaus is as downward branching trees with signed formulas as node labels. Indeed, the tableau method is often referred to as the tree method. Think of a tree as representing the disjunction of its branches, and a branch as representing the conjunction of the signed formulas on it.

When using a tree display, a tableau expansion is thought of temporally, and one talks about the stages of constructing a tableau, meaning the stages of growing a tree. The rules given above are thought of as branch-lengthening rules. Thus, a branch containing $T \neg X$ can be lengthened by adding a new node to its end, with FX as a label. Likewise a branch containing $FX \lor Y$ can be lengthened with two new nodes, labelled FX and FY (take the node with FY as the child of the one labelled FX). A branch containing $FX \lor Y$ can be split - its leaf is given a new left and a new right child, with one labelled FX, the other FX. This is how the schematic rules above are applied to trees.

An important point to note is that the tableau rules are non-deterministic. They say what can be done, not what must be done. At each stage, we choose a signed formula occurrence on a branch and apply a rule to it. Since the order of choice is arbitrary, there can be many tableaus for a single signed formula.

Here is the final stage of a tableau expansion beginning with the signed formula $F(X \wedge Y) \Rightarrow (\neg X \wedge \neg Y)$.

1.
$$F(X \wedge Y) \Rightarrow \neg(\neg X \vee \neg Y)$$

2.
$$TX \wedge Y$$

3.
$$F \neg (\neg X \lor \neg Y)$$

4. TX

5. TY

In this we have added numbers for reference purposes. Items 2 and 3 are from 1 by $F \Rightarrow 4$ and 5 are from 2 by $T \land 6$ is from 3 by $F \neg 7$ and 8 are from 6 by $T \lor 7$ is from 7 by $T \neg 7$. 10 is from 8 by $T \neg 7$.

Finaly, the conditions for closing off a case (declaring a branch closed) are simple. A **branch** is **closed** if it contains a contradiction, i.e. TA and FA for some formula A. A **branch** is **opened** if it does not contain any contradiction. If each branch is closed, then the **tableau** is **closed**. A closed tableau for FX is a tableau proof of X, meaning that A is a tautology. The tableau displayed above is closed, so the formula $(X \land Y) \Rightarrow (\neg X \land \neg Y)$ has a tableau proof.

It may happen that no tableau proof is forthcoming, and we can think of the tableau construction as providing us with contraexamples. Consider the following attempt to prove $(X \Rightarrow Y) \Rightarrow ((Y \Rightarrow X) \Rightarrow \neg Y)$

1.
$$F(X \Rightarrow Y) \Rightarrow ((Y \Rightarrow X) \Rightarrow \neg Y)$$

2. $TX \Rightarrow Y$
3. $F(Y \Rightarrow X) \Rightarrow \neg Y$
4. $TY \Rightarrow X$
5. $F \neg Y$
6. TY
7. FX
8. TY
9. FY
10. TX
11. FY
12. TX

Item 2 and 3 are from 1 by $F \Rightarrow$, as are 4 and 5 from 3. Item 6 is from 5 by $F \neg$. Items 7 and 8 are from 2 by $T \Rightarrow$, as are 9 and 10 from 4. Items 11 and 12 are also from 4 by $T \Rightarrow$. The leftmost branch is closed because of 6 and 9. The left-right branch is closed because of 7 and 10. The right-left branch is closed because of 8 and 11. But the rightmost branch is not closed. Notice that every non-atomic signed formula has had a rule applied to it on this branch and there is nothing left to do. (For clasical propositional logic it is sufficient to apply a rule to a formula on a branch only once.) In fact the branch yields a counterexample, as follows. Let v be a propositional valuation that maps X to true and Y to true in accordance to 8 and 12. Now, we work our way back up the branch. Since v(Y) = true, $v(\neg Y) = false$, item 5. From v(X) = true follows that $v(Y \Rightarrow X) = true$, item 4. From v(Y) = true follows that $v(X \Rightarrow Y) = true$, item 2. Since $v(Y \Rightarrow X) = true$ and $v(\neg Y) = false$ we have $v(Y \Rightarrow X) \Rightarrow \neg Y = false$, item 3. Finally, $v(X \Rightarrow Y) \Rightarrow (Y \Rightarrow X) \Rightarrow \neg Y = false$, item 1.

Later, we are going to use the tableau method to produce a model in which the initial formula is valid.

From a different point of view, we can think of a classical tableau simply as a set

of sets of signed formulas: a tableau is the set of its all branches, and a branch is the set of signed formulas that occur on it. Semantically, we think of the outer set as the disjunction of its members, and these members, the inner sets, as conjunctions of signed formulas they contain. Considered this way, a tableau is a generalization of disjunctive normal form (a generalization because of formulas more complex than literals can occur). Now, the tableau construction process can be thought of as a variation of the process of converting a formula into a disjunctive normal form.

2 Contact Logics

2.1 Syntax

The language of contact logic consist of:

- *Boolean variables* (a denumeratable set V)
- Boolean constants: 0 and 1
- Boolean operations:
 - □ boolean meat
 - ⊔ boolean join
 - * boolean complement
- Boolean terms (or simply terms)
- *Propositional connectivies*: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Propositional constants: \top and \bot
- *Modal connectives*: \leq (part-of) and C(contact)
- Complex formulas (or simply formulas)

Terms are defined in the following inductive process:

- Each Boolean variable is a term
- Each Boolean constant is a term
- If a is a term then a^* is a term
- If a and b are terms then $a \sqcap b$ and $a \sqcup b$ are terms

Atomic formulas are of the form $a \le b$ and aCb, where a and b are terms. **Formulas** are defined in the following inductive process:

- Each propositional constant is a formula
- Each atomic formula is a formula
- If ϕ is a formula then $\neg \phi$ is a formula
- If ϕ and ψ are formulas then $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$ and $(\phi \Leftrightarrow \psi)$ are formulas

Abbreviations: $a = b \stackrel{\text{def}}{=} (a \le b) \land (b \le a), a \nleq b \stackrel{\text{def}}{=} \neg (a \le b), a \ne b \stackrel{\text{def}}{=} \neg (a = b)$

7

2.2 Relational semantics

Let $\mathcal{F} = (W, R)$ be a relational system with $W \neq \emptyset$ and $R \subseteq W^2$. We call such systems frames. Following Galton[TODO] we may give a spatial meaning of frames naming the elements of W, cells and the relation R, adjacency relation. Then \mathcal{F} is called adjacency space. An example of adjacency space is the chess-board table, the cells are the squares, and two squares are adjacent if they have a common point.

Originally Galton assumed R to be a reflexive and symmetric relation but it is more natural for R to be an arbitrary relation. *Regions* in an adjacency space are arbitrary subsets of W and two sets a and b are in *contact* (aC_Rb) if for some $x \in a$ and $y \in b$ we have xRy. Another way to define this relation is the following. For a subset $a \subseteq W$ define as in modal logic $\langle R \rangle a = \{x \in W : (\exists y \in W)(xRy \text{ and } y \in a)\}$. Then aC_Rb iff $a \cap \langle R \rangle b \neq \emptyset$ iff $\langle R^{-1} \rangle a \cap b \neq \emptyset$, where R^{-1} is the converse relation of R. Note that if R is a symmetric relation then aCb iff $a \cap \langle R \rangle b \neq \emptyset$ iff $\langle R \rangle a \cap b \neq \emptyset$.

Definition 1. By a valuation of the Boolean variables in \mathcal{F} we mean any function $\upsilon: \mathcal{V} \to \mathcal{P}(W)$ assigning to each Boolean variable b a subset $\upsilon(b) \subseteq W$. The valuation υ is then extended inductively to all Boolean terms as follows:

- $v(0) = \emptyset$
- v(1) = W
- $\upsilon(a \sqcap b) = \upsilon(a) \cap \upsilon(b)$
- $v(a \sqcup b) = v(a) \cup v(b)$
- $v(a^*) = W \setminus v(a) = -v(a)$

Definition 2. The pair $\mathcal{M} = (\mathcal{F}, v)$ is called **model**. The truth of a formula ϕ in \mathcal{M} ($\mathcal{M} \models \phi$ or $\mathcal{F}, v \models \phi$) is extended inductively to all Boolean terms as follows:

- For atomic formulas:
 - $-\mathcal{M} \models \top$
 - *M* ⊭ ⊥
 - $-\mathcal{M} \models a \leq b \iff v(a) \subseteq v(b)$
 - $\mathcal{M} \models aCb \iff v(a) C_R v(b \iff (\exists x \in v(a))(\exists y \in v(b))(xRy)$
- For complex formulas:
 - $-\mathcal{M} \models \neg \phi \iff \mathcal{M} \not\models \phi$
 - $-\mathcal{M} \models \phi \land \psi \iff \mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi$
 - $-\mathcal{M} \models \phi \lor \psi \iff \mathcal{M} \models \phi \text{ or } \mathcal{M} \models \psi$
 - $-\mathcal{M} \models \phi \Rightarrow \psi \iff \mathcal{M} \not\models \phi \text{ or } \mathcal{M} \models \psi$
 - $-\mathcal{M} \models \phi \Leftrightarrow \psi \iff (\mathcal{M} \models \phi \text{ and } \mathcal{M} \models \psi) \text{ or } (\mathcal{M} \not\models \phi \text{ and } \mathcal{M} \not\models \psi)$

Let us note that in the above semantics we evaluate formulas not locally at points[TODO ??], as it is in the standard modal semantics, but globally in the whole model and this is one of the main differences of the present modal approach with the standard Kripke approach.

Definition 3. A model \mathcal{M} is a model of a formula ϕ if ϕ is true in \mathcal{M} .

Deffinition 4. *If* ϕ *has a model* \mathcal{M} , *then* ϕ *is satisfiable*.

Definition 5. \mathcal{M} is a model of a set of formulas A if \mathcal{M} is a model of all formulas from A.

Definition 6. A formula ϕ is true (or valid) in a frame \mathcal{F} ($\mathcal{F} \models \phi$), if $\mathcal{M} \models \phi$ for all models \mathcal{M} based on \mathcal{F} , i.e. for all valuations v we have $\mathcal{F}, v \models \phi$.

Lemma 7. (Equality of formulas) Let f and g are formulas. Then $f = g \implies v(f) = v(g)$.

Lemma 8. (Equality of terms) Let a and b are terms. Then $a = b \implies v(a) = v(b)$.

Lemma 9. (*Zero term*) Let a and b are terms. Then $a \le b \implies a \sqcap b^* = 0$

Lemma 10. (Non-zero term) Let a and b are terms. Then $\neg(a \le b) \implies a \sqcap b^* \ne 0$

TODO: axiom or lemma or neither??

Axiom 11. (Reflexivity) Let a be a term. Then $a \neq 0 \implies aCa$.

Axiom 12. (Symmetry) Let a and b are terms. Then $aCb \iff bCa$.

Lemma 13. (Monotonicity) Let a and b are terms. Then $aCb \wedge a \leq a' \wedge b \leq b' \implies a'Cb'$.

Lemma 14. (Distributivity) Let a and b are terms. Then $aC(b \sqcup c) \iff aCb \lor aCc$, TODO what is the other one? $aC(b \sqcup c) \iff aCb \lor aCc$.

Lemma 15. Let a, b, c are terms and f, g are formulas. The following formulas are true:

- $f \wedge T \implies f, T \wedge f \implies f$
- $\bullet \ f \wedge F \implies F, F \wedge f \implies F$
- $f \lor T \implies T, T \lor f \implies T$
- $\bullet \ f \vee F \implies f, F \vee f \implies f$

- $\bullet \ a \sqcap 0 \implies 0, 0 \sqcap a \implies 0$
- $a \sqcup 0 \implies a, 0 \sqcup a \implies a$
- $\bullet \ a \sqcap 1 \implies a, 1 \sqcap a \implies a$
- $a \sqcup 1 \implies 1, 1 \sqcup a \implies 1$
- $(a \sqcup b)Cc \iff aCc \vee bCc$
- $(a \sqcup b) \le c \iff a \le c \land b \le c$
- $aCb \implies a \neq 0 \land b \neq 0$
- $a \sqcap b \neq 0 \implies aCb$
- $a = 0 \lor b = 0 \implies \neg(aCb)$
- $0 \le a \implies T$
- $a \le 1 \implies T$
- $0C0 \implies F$
- $aC0 \implies F$
- 1 $C1 \implies T$
- $aC1 \implies a \neq 0$
- $a \neq 0 \implies aCa$

2.3 Formula satsfiability

Let ψ be a propositional formula. Let us build a tableau beginning with ψ . If the tableau has an opened branch then ψ is satisfiable. Unfortunately, for the contact logic this is not enough because we need to verify the modal connectives (\leq and C).

Let ϕ be a formula. Let us build a tableau beginning with ϕ . Let the tableau has an opened branch B. The branch B is a set of signed atomic formulas of the following type:

- *TC*(*a*, *b*)
- *FC*(*e*, *f*)
- $Ta \leq b$
- $Fa \leq b$

where a and b are terms.

B is an opened branch, so there are no contradicting formulas in it, i.e. $(\neg \exists X)(TX \in B \land FX \in B)$. The signed atomic formulas could be written as atomic formulas as follows:

- $TC(a,b) \rightarrow C(a,b)$
- $FC(a,b) \rightarrow \neg C(a,b)$
- $Ta \le b \to a \le b \to a \cap b^* = 0 \to g = 0$ (zero term)
- $Fa \le b \to \neg (a \le b) \to a \sqcap b^* \ne 0 \to d \ne 0$ (non-zero term)

where a,b,d and g are terms.

All atomic formulas in the branch should be satisfied, so we can think of it as a conjunction of them. Let's call it a **branch conjunction**. It is sufficient to build a satisfiable model for the branch conjunction to verify that ϕ is satisfiable. Building such a model could be done a lot more effective than building a model for an arbitrary formula because it is just a conjunction.

Definition 16. Let ϕ be a formula. Let T be a tableau beginning with ϕ . Let B be a set of all atomic signed formulas in a branch of T, as follows:

$$B = \{TC(a_i, b_i) \mid i \in \{1, \dots, I\}\} \cup \{Fd_j = 0 \mid j \in \{1, \dots, J\}\} \cup \{FC(e_k, f_k) \mid k \in \{1, \dots, K\}\} \cup \{Tg_l = 0 \mid l \in \{1, \dots, L\}\}$$

A **branch cojnuction** β is the following formula:

$$\bigwedge_{i=1}^{I} C(a_i, b_i) \wedge \bigwedge_{j=1}^{J} d_j \neq 0 \wedge \bigwedge_{k=1}^{K} \neg C(e_k, f_k) \wedge \bigwedge_{l=1}^{L} g_l = 0$$
 (2)

2.4 Branch conjunction model building

The branch conjunction formula β is satisfiable if β has a model \mathcal{M} . We have to construct such a model $\mathcal{M} = (\mathcal{F}, v) = ((W, R), v)$. The contacts and non-zero terms in β require an existence of points. Let $C(a_i, b_i)$ be a conjunct in β . $C(a_i, b_i)$ implies the existence of two points

TODO: zapiski sa tova. != 0 implies the existence of one point. So, we need to be able to construct points on demand belonging to arbitary term. The point representation should be a convinenient one to be able to do that thing. Fix the N sets and just extend them on demand. We will look at the points in W not as individual cells, but as in which sets they participate in. Find an easy way of adding points to the sets. With N sets there are 2^n combinations between them. So, the new point could be one of the 2^n variations.

Let n be the number of the unique boolean variables in β . Let \mathcal{V}_n be the set of them. In order to define v we need to assing a set of modal points to each boolean variable $x \in \mathcal{V}_n$.

The modal connectives \leq and C are over the valuations of the terms in them.

2.4.1 Modal points

With n boolean variables we can uniquely identify 2^n objects. It is sufficient to define a modal point representation which satisfies it. For n variables it should be able to give 2^n unique points.

Deffinition 17. Let V_n be a denumeratable set of n boolean variables, as follows:

$$V_n = \{x_1, x_2, \dots, x_n\}$$
 (3)

A **boolean evaluation** \mathcal{E}_n for n variables is a sequence of 1s and 0s, as follows:

$$\mathcal{E}_n = \langle e_1, e_2, \dots, e_n \rangle, \text{ where } e_1, \dots, e_n \in \{0, 1\}$$
 (4)

For n boolean variables there are 2^n unique boolean evaluations. We will define the modal points as boolean evaluations, i.e. each modal point is an unique boolean evaluation.

Definition 18. Let V_n be a denumeratable set of n boolean variables. The set of **all** unique points W_n over n variables is defined as follows:

$$W_n = \{ \langle e_1, e_2, \dots, e_n \rangle | e_1, \dots, e_n \in \{0, 1\} \}$$
 (5)

Definition 19. Let \mathcal{E}_n be a boolean evaluation for n variables. Then $(\mathcal{E}_n)^i$ is the i-th element in the sequence \mathcal{E}_n .

Definition 20. Let V_n be a denumeratable set of n boolean variables, as in 3. Let W_n be the set of all unique points over n variables as in 5. We will define a **valuation** $v_n : V_n \to \mathcal{P}(W_n)$ inductively as follows:

- Boolean constants
 - $\upsilon_n(0) = \emptyset$
 - $\upsilon_n(1) = W_n$
- Boolean variables

$$- \upsilon_n(x_i) = \{ \mathcal{E}_n \mid \mathcal{E}_n \in W_n \land (\mathcal{E}_n)^i = 1 \}, \text{ for } i \in \{1, \dots, n\}$$

- Boolean terms
 - $\upsilon_n(a \sqcap b) = \upsilon_n(a) \cap \upsilon_n(b)$
 - $\upsilon_n(a \sqcup b) = \upsilon_n(a) \cup \upsilon_n(b)$
 - $\upsilon_n(a^*) = W_n \setminus \upsilon_n(a) = -\upsilon_n(a)$

2.5 Model building

Let ϕ be a branch conjunction as in 16:

$$\bigwedge_{i=1}^{I} C(a_i, b_i) \wedge \bigwedge_{j=1}^{J} d_j \neq 0 \wedge \bigwedge_{k=1}^{K} \neg C(e_k, f_k) \wedge \bigwedge_{l=1}^{L} g_l = 0$$

Let \mathcal{V}_n be the set of variables in ϕ . Let $\mathcal{F} = (W, R)$ be a relational system with $W \subseteq W_n$ and $R \subseteq W^2$. Let $\mathcal{M} = (\mathcal{F}, \upsilon)$ be a model, where $\upsilon : \mathcal{V}_n \to \mathcal{P}(W)$ is a valuation defined as in 20 over W. There are four types of atomic formulas: contacts C, $\neg C$, zero terms and non-zero terms. Only the contacts and non-zero terms requires point existence. We will create points only for them. The pseudocode bellow implements the main idea for building \mathcal{M} as a model of ϕ . Note that there are some more details and optimizations which will be shown in the implementation section.

```
1 Function CheckNegContact(p):
  2
                        for k \leftarrow 1 to K by 1 do
                                       /* Checking \neg C(e_k, f_k)
                                      if (p \in \upsilon_n(e_k) \land p \in \upsilon_n(f_k) then
  3
                                                  return false
  5
                        end
                        return true
  6
  7 Function CheckNegContact(p_1, p_2):
  8
                        for k \leftarrow 1 to K by 1 do
                                        /* Checking \neg C(e_k, f_k)
                                      if (p_1 \in \upsilon_n(e_k) \land p_1 \in \upsilon_n(f_k)) \lor (p_2 \in \upsilon_n(e_k) \land p_2 \in \upsilon_n(f_k)) \lor (p_1 \in \upsilon_n(f_k)) \lor (p_1 \in \upsilon_n(f_k)) \lor (p_2 \in \upsilon_n
                                            \upsilon_n(e_k) \land p_2 \in \upsilon_n(f_k)) \lor (p_2 \in \upsilon_n(e_k) \land p_1 \in \upsilon_n(f_k))) then
                                                   return false
10
11
                        end
12
                        return true
13 Function CheckZeroTerms(p):
                        for l \leftarrow 1 to L by 1 do
14
                                       /* Checking g_l = 0
                                      if (x \in v_n(g_l) then
15
                                                   return false
16
17
                        end
                        return true
18
19
20 R \leftarrow \emptyset
21 W \leftarrow \emptyset
           /* Create points for the contacts
22 for i \leftarrow 1 to I by 1 do
                         /st Processing C(a_i,b_i)
23
                        for x \in v_n(a_i) do
                                       for y \in \nu_n(b_i) do
24
                                                     /* Verify that the pair <x, y> does not breaks any \neg C and zero
                                                     if CheckNegContact(x, y) \land CheckZeroTerms(x) \land
25
                                                          CheckZeroTerms(y) then
                                                                   W \leftarrow W \cup \{x, y\}
26
                                                                   R \leftarrow R \cup \{ < x, x >, < y, y >, < x, y >, < y, x > \}
27
                                                                   go to 22
28
                                      end
29
                        end
30
                        Model building fails.
31
32 end
           /* Create points for the non-zero terms
33 for j \leftarrow 1 to J by 1 do
                        /* Processing d_i \neq 0
34
                        for x \in v_n(d_i) do
                                        /* Verify that x does not breaks any \neg C and zero term
                                      if CheckNegContact(x) \land CheckZeroTerms(x) then
35
                                                     W \leftarrow W \cup \{x\}
36
                                                                                                                                                       13
                                                     R \leftarrow R \cup \{\langle x, x \rangle\}
37
                                                     go to 33
38
                        end
39
                        Model building fails.
40
41 end
```

3 Connected Contact Logics

3.1 Connectivity

In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

Theorem 21. (Connectivity) Let b is a term. Then

$$b \neq 0 \land b \neq 1 \implies bCb^* \tag{5}$$

Let $\mathcal{F} = (W, R)$ be a relational system with $W \neq \emptyset$, $R \subseteq W^2$ and a, b are terms. Let us recall the deficition of C:

$$aCb \iff (\exists x \in v(a))(\exists y \in v(b))(xRy)$$
 (5)

The connectivity theorem can be written as follows:

$$\upsilon(b) \neq \emptyset \land \upsilon(b) \neq W \implies (\exists x \in \upsilon(b))(\exists y \in W \setminus \upsilon(b))(xRy) \tag{5}$$

Definition 22. Let G = (W, R) be a graph. W is the set of vertexes and R the set of edges. A **path** $\pi(v_1, v_n)$ is a sequence of vertexes (v_1, v_2, \ldots, v_n) such that $v_1, \ldots, v_n \in V$ and $v_i R v_{i+1}$, for $i \in \{1, \ldots, n-1\}$.

Let us think of W and R as an undirected graph G = (W, R). W is the set of vertexes and R the set of edges. The connectivity theorem implies that the graph G should be connected, i.e. for each vertex $x \in W$ there should be a path to each vertex in W.

$$(\forall x \in W)(\forall y \in W)(\exists \pi(x, y))(\pi(x, y) \text{ is a path in } G)$$
 (5)

Definition 23. A connected model is a model which satisfies the connectivity theorem(21).

Let $\mathcal{F} = (W, R)$ be a relational system with $W \neq \emptyset$, $R \subseteq W^2$. Let $\mathcal{M} = (\mathcal{F}, v)$ be a model, where v is an valuation. In order \mathcal{M} to be a *connected model* the graph G = (W, R) should be connected.

3.2 Connected model building

Let ϕ be a branch conjunction as in 16:

$$\bigwedge_{i=1}^{I} C(a_i, b_i) \wedge \bigwedge_{j=1}^{J} d_j \neq 0 \wedge \bigwedge_{k=1}^{K} \neg C(e_k, f_k) \wedge \bigwedge_{l=1}^{L} g_l = 0$$

Let \mathcal{V}_n be the set of variables in ϕ . Let $\mathcal{F} = (W, R)$ be a relational system with $W \subseteq W_n$ and $R \subseteq W^2$. Let $\mathcal{M} = (\mathcal{F}, v)$ be a model, where $v : \mathcal{V}_n \to \mathcal{P}(W)$ is a valuation defined as in 20 over W. In order \mathcal{M} to be a connected model for ϕ , W should be non-empty and the graph G = (W, R) should be connected (from 3.1). The main idea for building a connected model is as follows:

• Create the set W from all points in W_n which does not interfere with the $\neg C$ and zero terms in ϕ :

$$W = \{ p \mid p \in W_n \land (\forall_l)(p \notin \upsilon_n(g_l)) \land (\forall_k)(p \notin \upsilon_n(e_k) \lor p \notin \upsilon_n(f_k)) \}$$
 (5)

• Validate that all contact terms are non-zero:

$$(\forall_i)(\exists_{p_1 \in W})(\exists_{p_2 \in W})(p_1 \in \nu(a_i) \land p_2 \in \nu(b_i)) \tag{5}$$

• Create relations between all points but skip those which interfere with $\neg C$ actomic formulas:

$$R = \{ \langle x, y \rangle | \ x, y \in W \land \neg(\exists_j)((x \in \upsilon(e_j) \land y \in \upsilon(f_j)) \lor (x \in \upsilon(f_j) \land y \in \upsilon(e_j)) \lor (x \in \upsilon(e_j) \land y \in \upsilon(e_j)) \lor (x \in \upsilon(f_i) \land y \in \upsilon(f_i))) \}$$

• Validate that all atomic contact formulas in ϕ are satisfied:

$$(\forall_i)(\exists_{x \in \nu(a_i)})(\exists_{y \in \nu(b_i)})(xRy \lor yRx) \tag{5}$$

Note that now \mathcal{M} is a model of ϕ .

• Get all connected components of *G* in the set *Comp*:

$$Comp = \{G' = (W', R') \mid W' \subseteq W \land R' \subseteq R \land G' \text{ is connected}\}$$
 (5)

• If Comp has a graph G' which defines a model of ϕ $\mathcal{M}' = (W', R', \upsilon')$, then \mathcal{M}' is a connected model. $\upsilon' : \mathcal{V}_N \to \mathcal{P}(W')$ is defained as υ but over W'. Note that we only have to check the non-zero terms and the contact atomic formulas because \mathcal{M}' does not introduce new points or relations:

$$(\exists_{(W',R')\in Comp})((\forall_j)(\exists_{p\in W'})(p\in \upsilon(d_j))) \wedge (\forall_i)((\exists_{x\in \upsilon'(a_i)})(\exists_{y\in \upsilon'(b_i)})(xR'y\wedge yR'x))$$

4 Implementation Introduction

5 Tableaux Implementation

Model Implementation

7 Connected Contact Logics Implementation

TODO: separate line for the authors

References

- [1] Handbook of Tableau Methods M. DâĂŹAgostino, D. M. Gabbay, R. HÂÍahnle and J. Posegga, eds.
- [2] Modal Logics for Region-based Theories of Space Philippe Balbiani, Thinko Tinchev, Dimiter Vakarelov
- [3] Connected Space or go to the next url: https://en.wikipedia.org/wiki/ Connected_space