

GCE

Edexcel GCE in Mathematics

Mathematical Formulae and Statistical Tables

advancing learning, changing lives

For use in Edexcel Advanced Subsidiary GCE and Advanced GCE examinations

Core Mathematics C1 - C4
Further Pure Mathematics FP1 - FP3
Mechanics M1 - M5
Statistics S1 - S4

For use from June 2009

This copy is the property of Edexcel. It is not to be removed from the examination room or marked in any way.

TABLE OF CONTENTS

Core Mathematics C1
Mensuration
Arithmetic series
Core Mathematics C2
Cosine rule
Binomial series
Logarithms and exponentials
Geometric series
Numerical integration
Core Mathematics C3
Logarithms and exponentials
Trigonometric identities
Differentiation
Core Mathematics C4
Integration
Further Pure Mathematics FP1
Summations
Numerical solution of equations
Conics
Matrix transformations
Further Pure Mathematics FP2
Area of sector
Maclaurin's and Taylor's Series
Further Pure Mathematics FP3
Vectors
Hyperbolics
Differentiation

Integration

Arc length

Surface area of revolution

12

13 13

14 Mechanics M1

14 There are no formulae given for M1 in addition to those candidates are expected to know.

14 Mechanics M2

14 Centres of mass

14 Mechanics M3

- 14 Motion in a circle
- 14 Centres of mass
- 14 Universal law of gravitation

15 Mechanics M4

15 There are no formulae given for M4 in addition to those candidates are expected to know.

15 Mechanics M5

- 15 Moments of inertia
- 15 Moments as vectors

16 Statistics S1

- 16 Probability
- 16 Discrete distributions
- 16 Continuous distributions
- 17 Correlation and regression
- 18 The Normal distribution function
- 19 Percentage points of the Normal distribution

20 Statistics S2

- 20 Discrete distributions
- 20 Continuous distributions
- 21 Binomial cumulative distribution function
- 26 Poisson cumulative distribution function

27 Statistics S3

- 27 Expectation algebra
- 27 Sampling distributions
- 27 Correlation and regression
- 27 Non-parametric tests
- 28 Percentage points of the χ^2 distribution
- 29 Critical values for correlation coefficients
- 30 Random numbers

31 Statistics S4

- 31 Sampling distributions
- 32 Percentage points of Student's t distribution
- *Percentage points of the F distribution*

There are no formulae provided for Decision Mathematics units D1 and D2.

The formulae in this booklet have been arranged according to the unit in which they are first introduced. Thus a candidate sitting a unit may be required to use the formulae that were introduced in a preceding unit (e.g. candidates sitting C3 might be expected to use formulae first introduced in C1 or C2).

It may also be the case that candidates sitting Mechanics and Statistics units need to use formulae introduced in appropriate Core Mathematics units, as outlined in the specification.

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx
$$k \sec^2 kx$$

sec x $\sec x \tan x$
cot x $-\csc^2 x$
cosec x $-\csc x \cot x$

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Candidates sitting C4 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Integration (+ constant)

$$f(x) \qquad \int f(x) dx$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan x \qquad \ln|\sec x|$$

$$\cot x \qquad \ln|\sin x|$$

$$\csc x \qquad -\ln|\csc x + \cot x|, \quad \ln|\tan(\frac{1}{2}x)|$$

$$\sec x \qquad \ln|\sec x + \tan x|, \quad \ln|\tan(\frac{1}{2}x + \frac{1}{4}\pi)|$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	$(at^2, 2at)$	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Further Pure Mathematics FP2

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1–C4.

Area of a sector

$$A = \frac{1}{2} \int r^2 d\theta$$
 (polar coordinates)

Complex numbers

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\{r(\cos\theta + i\sin\theta)\}^n = r^n(\cos n\theta + i\sin n\theta)$$
The roots of $z^n = 1$ are given by $z = e^{\frac{2\pi ki}{n}}$, for $k = 0, 1, 2, ..., n-1$

Maclaurin's and Taylor's Series

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^r}{r!} f^{(r)}(0) + \dots$$

$$f(x) = f(a) + (x - a) f'(a) + \frac{(x - a)^2}{2!} f''(a) + \dots + \frac{(x - a)^r}{r!} f^{(r)}(a) + \dots$$

$$f(a + x) = f(a) + x f'(a) + \frac{x^2}{2!} f''(a) + \dots + \frac{x^r}{r!} f^{(r)}(a) + \dots$$

$$e^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots \quad \text{for all } x$$

$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots \quad (-1 < x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots \quad \text{for all } x$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots \quad \text{for all } x$$

$$\arcsin x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots \quad \text{for all } x$$

$$\arcsin x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots \quad \text{for all } x$$

Further Pure Mathematics FP3

Candidates sitting FP3 may also require those formulae listed under Further Pure Mathematics FP1, and Core Mathematics C1–C4.

Vectors

The resolved part of **a** in the direction of **b** is $\frac{\mathbf{a.b}}{|\mathbf{b}|}$

The point dividing AB in the ratio $\lambda : \mu$ is $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$

Vector product:
$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

$$\mathbf{a.(b\times c)} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \mathbf{b.(c\times a)} = \mathbf{c.(a\times b)}$$

If A is the point with position vector $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and the direction vector \mathbf{b} is given by $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then the straight line through A with direction vector \mathbf{b} has cartesian equation

$$\frac{x-a_1}{b_1} = \frac{y-a_2}{b_2} = \frac{z-a_3}{b_3} (= \lambda)$$

The plane through A with normal vector $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$ has cartesian equation

$$n_1 x + n_2 y + n_3 z + d = 0$$
 where $d = -a.n$

The plane through non-collinear points A, B and C has vector equation

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}) = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}$$

The plane through the point with position vector **a** and parallel to **b** and **c** has equation $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$

The perpendicular distance of
$$(\alpha, \beta, \gamma)$$
 from $n_1x + n_2y + n_3z + d = 0$ is $\frac{\left|n_1\alpha + n_2\beta + n_3\gamma + d\right|}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$.

Hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\operatorname{arcosh} x = \ln \left\{ x + \sqrt{x^{2} - 1} \right\} \quad (x \ge 1)$$

$$\operatorname{arsinh} x = \ln \left\{ x + \sqrt{x^{2} + 1} \right\}$$

$$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad (|x| < 1)$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta,b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta)$ $(\pm a \cosh \theta, b \sinh \theta)$	$\left(ct, \frac{c}{t}\right)$
Eccentricity	$e < 1$ $b^2 = a^2(1 - e^2)$	e=1	$e > 1$ $b^2 = a^2(e^2 - 1)$	$e = \sqrt{2}$
Foci	(±ae, 0)	(a, 0)	(±ae, 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x = \pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2}c$
Asymptotes	ymptotes none none		$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Differentiation

f(x)

f'(x)

arcsin x

$$\frac{1}{\sqrt{1-x^2}}$$

arccos x

$$-\frac{1}{\sqrt{1-x^2}}$$

arctan x

$$\frac{1}{1+x^2}$$

sinh x

$$\cosh x$$

$$\cosh x$$

tanh x

$$\sinh x$$

$$\tanh x$$

$$\frac{1}{\sqrt{1+x^2}}$$

arcosh x

$$\frac{1}{\sqrt{1+x^2}}$$

arch x

$$\frac{1}{\sqrt{x^2-1}}$$

artanh x

$$\frac{1}{1-x^2}$$

Integration (+ constant; a > 0 where relevant)

Arc length

$$s = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}x \qquad \text{(cartesian coordinates)}$$

$$s = \int \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t \quad \text{(parametric form)}$$

Surface area of revolution

$$S_x = 2\pi \int y \, ds = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$
$$= 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Mechanics M1

There are no formulae given for M1 in addition to those candidates are expected to know.

Candidates sitting M1 may also require those formulae listed under Core Mathematics C1.

Mechanics M2

Candidates sitting M2 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Centres of mass

For uniform bodies:

Triangular lamina: $\frac{2}{3}$ along median from vertex

Circular arc, radius r, angle at centre 2α : $\frac{r \sin \alpha}{\alpha}$ from centre

Sector of circle, radius r, angle at centre 2α : $\frac{2r\sin\alpha}{3\alpha}$ from centre

Mechanics M3

Candidates sitting M3 may also require those formulae listed under Mechanics M2, and also those formulae listed under Core Mathematics C1–C4.

Motion in a circle

Transverse velocity: $v = r\dot{\theta}$

Transverse acceleration: $\dot{v} = r\ddot{\theta}$

Radial acceleration: $-r\dot{\theta}^2 = -\frac{v^2}{r}$

Centres of mass

For uniform bodies:

Solid hemisphere, radius r: $\frac{3}{8}r$ from centre

Hemispherical shell, radius r: $\frac{1}{2}r$ from centre

Solid cone or pyramid of height $h: \frac{1}{4}h$ above the base on the line from centre of base to vertex

Conical shell of height h: $\frac{1}{3}h$ above the base on the line from centre of base to vertex

Universal law of gravitation

$$Force = \frac{Gm_1m_2}{d^2}$$

Mechanics M4

There are no formulae given for M4 in addition to those candidates are expected to know.

Candidates sitting M4 may also require those formulae listed under Mechanics M2 and M3, and also those formulae listed under Core Mathematics C1–C4 and Further Pure Mathematics FP3.

Mechanics M5

Candidates sitting M5 may also require those formulae listed under Mechanics M2 and M3, and also those formulae listed under Core Mathematics C1–C4 and Further Pure Mathematics FP3.

Moments of inertia

For uniform bodies of mass *m*:

Thin rod, length 2*l*, about perpendicular axis through centre: $\frac{1}{3}ml^2$

Rectangular lamina about axis in plane bisecting edges of length 2l: $\frac{1}{3}ml^2$

Thin rod, length 2*l*, about perpendicular axis through end: $\frac{4}{3}ml^2$

Rectangular lamina about edge perpendicular to edges of length 2l: $\frac{4}{3}ml^2$

Rectangular lamina, sides 2a and 2b, about perpendicular axis through centre: $\frac{1}{3}m(a^2+b^2)$

Hoop or cylindrical shell of radius r about axis through centre: mr^2

Hoop of radius r about a diameter: $\frac{1}{2}mr^2$

Disc or solid cylinder of radius r about axis through centre: $\frac{1}{2}mr^2$

Disc of radius r about a diameter: $\frac{1}{4}mr^2$

Solid sphere, radius r, about diameter: $\frac{2}{5}mr^2$

Spherical shell of radius r about a diameter: $\frac{2}{3}mr^2$

Parallel axes theorem: $I_A = I_G + m(AG)^2$

Perpendicular axes theorem: $I_z = I_x + I_y$ (for a lamina in the x-y plane)

Moments as vectors

The moment about O of F acting at r is $r \times F$

Statistics S1

Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B \mid A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A')P(A')}$$

Discrete distributions

For a discrete random variable X taking values x_i with probabilities $P(X = x_i)$

Expectation (mean):
$$E(X) = \mu = \sum x_i P(X = x_i)$$

Variance:
$$Var(X) = \sigma^2 = \Sigma (x_i - \mu)^2 P(X = x_i) = \Sigma x_i^2 P(X = x_i) - \mu^2$$

For a function
$$g(X)$$
: $E(g(X)) = \Sigma g(x_i) P(X = x_i)$

Continuous distributions

Standard continuous distribution:

Distribution of X	P.D.F.	Mean	Variance
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	$\sigma^{^2}$

Correlation and regression

For a set of *n* pairs of values (x_i, y_i)

$$S_{xx} = \Sigma (x_i - \overline{x})^2 = \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}$$

$$S_{yy} = \Sigma (y_i - \overline{y})^2 = \Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}$$

$$S_{xy} = \Sigma (x_i - \overline{x})(y_i - \overline{y}) = \Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}$$

The product moment correlation coefficient is

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\Sigma(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left\{\Sigma(x_i - \overline{x})^2\right\}\left\{\Sigma(y_i - \overline{y})^2\right\}}} = \frac{\Sigma x_i y_i - \frac{(\Sigma x_i)(\Sigma y_i)}{n}}{\sqrt{\left(\Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}\right)\left(\Sigma y_i^2 - \frac{(\Sigma y_i)^2}{n}\right)}}$$

The regression coefficient of y on x is $b = \frac{S_{xy}}{S_{xx}} = \frac{\Sigma(x_i - \overline{x})(y_i - \overline{y})}{\Sigma(x_i - \overline{x})^2}$

Least squares regression line of y on x is y = a + bx where $a = \overline{y} - b\overline{x}$

THE NORMAL DISTRIBUTION FUNCTION

The function tabulated below is $\Phi(z)$, defined as $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}t^2} dt$.

Z	$\Phi(z)$								
0.00	0.5000	0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772
0.01	0.5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.02	0.9783
0.02	0.5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.04	0.9793
0.03	0.5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.06	0.9803
0.04	0.5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.08	0.9812
0.05	0.5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.10	0.9821
0.06	0.5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.12	0.9830
0.07	0.5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.14	0.9838
0.08	0.5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.16	0.9846
0.09	0.5359	0.59	0.7224	1.09	0.8621	1.59	0.9441	2.18	0.9854
0.10	0.5398	0.60	0.7257	1.10	0.8643	1.60	0.9452	2.20	0.9861
0.11	0.5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.22	0.9868
0.11	0.5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.24	0.9875
0.13	0.5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.26	0.9881
0.13	0.5557	0.64	0.7389	1.13	0.8729	1.64	0.9495	2.28	0.9887
0.15	0.5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.30	0.9893
0.16	0.5636	0.66	0.7454	1.16	0.8770	1.66	0.9515	2.32	0.9898
0.10	0.5675	0.67	0.7486	1.17	0.8770	1.67	0.9515	2.34	0.9898
0.17	0.5714	0.68	0.7517	1.17	0.8810	1.68	0.9535	2.36	0.9909
0.19	0.5753	0.69	0.7549	1.19	0.8830	1.69	0.9545	2.38	0.9913
0.20	0.5793	0.70	0.7580	1.20	0.8849	1.70	0.9554	2.40	0.9918
0.21	0.5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.42	0.9922
0.21	0.5852	0.71	0.7642	1.21	0.8888	1.71	0.9573	2.44	0.9927
0.23	0.5910	0.72	0.7673	1.23	0.8907	1.72	0.9582	2.46	0.9931
0.24	0.5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.48	0.9934
0.25	0.5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.50	0.9938
0.26	0.6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.55	0.9946
0.20	0.6064	0.70	0.7794	1.20	0.8980	1.70	0.9616	2.53	0.9940
0.27	0.6103	0.77	0.7794	1.28	0.8997	1.78	0.9625	2.65	0.9960
0.29	0.6141	0.78	0.7852	1.29	0.9015	1.79	0.9633	2.70	0.9965
0.30	0.6179	0.80	0.7881	1.30	0.9032	1.80	0.9641	2.75	0.9970
0.31	0.6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.80	0.9974
0.31	0.6217	0.81	0.7910	1.31	0.9049	1.82	0.9656	2.85	0.9974
0.33	0.6293	0.82	0.7967	1.33	0.9082	1.83	0.9664	2.90	0.9981
0.34	0.6331	0.84	0.7995	1.34	0.9099	1.84	0.9671	2.95	0.9984
0.35	0.6368	0.85	0.8023	1.35	0.9115	1.85	0.9678	3.00	0.9987
0.36	0.6406	0.86	0.8051	1.36	0.9131	1.86	0.9686	3.05	0.9989
0.37	0.6443	0.87	0.8078	1.37	0.9147	1.87	0.9693	3.10	0.9990
0.38	0.6480	0.88	0.8106	1.38	0.9162	1.88	0.9699	3.15	0.9992
0.39	0.6517	0.89	0.8133	1.39	0.9177	1.89	0.9706	3.20	0.9993
0.40	0.6554	0.90	0.8159	1.40	0.9192	1.90	0.9713	3.25	0.9994
0.41	0.6591	0.91	0.8186	1.41	0.9207	1.91	0.9719	3.30	0.9995
0.42	0.6628	0.92	0.8212	1.42	0.9222	1.92	0.9726	3.35	0.9996
0.43	0.6664	0.93	0.8238	1.43	0.9236	1.93	0.9732	3.40	0.9997
0.44	0.6700	0.94	0.8264	1.44	0.9251	1.94	0.9738	3.50	0.9998
0.45	0.6736	0.95	0.8289	1.45	0.9265	1.95	0.9744	3.60	0.9998
0.46	0.6772	0.96	0.8315	1.46	0.9279	1.96	0.9750	3.70	0.9999
0.47	0.6808	0.97	0.8340	1.47	0.9292	1.97	0.9756	3.80	0.9999
0.48	0.6844	0.98	0.8365	1.48	0.9306	1.98	0.9761	3.90	1.0000
0.49	0.6879	0.99	0.8389	1.49	0.9319	1.99	0.9767	4.00	1.0000
0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.9772		

PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

The values z in the table are those which a random variable $Z \sim N(0, 1)$ exceeds with probability p; that is, $P(Z > z) = 1 - \Phi(z) = p$.

р	Z	р	Z
0.5000	0.0000	0.0500	1.6449
0.4000	0.2533	0.0250	1.9600
0.3000	0.5244	0.0100	2.3263
0.2000	0.8416	0.0050	2.5758
0.1500	1.0364	0.0010	3.0902
0.1000	1.2816	0.0005	3.2905

Statistics S2

Candidates sitting S2 may also require those formulae listed under Statistics S1, and also those listed under Core Mathematics C1 and C2.

Discrete distributions

Standard discrete distributions:

Distribution of X	P(X=x)	Mean	Variance
Binomial $B(n, p)$	$\binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)
Poisson $Po(\lambda)$	$e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ

Continuous distributions

For a continuous random variable X having probability density function f

Expectation (mean): $E(X) = \mu = \int x f(x) dx$

Variance: $Var(X) = \sigma^2 = \int (x - \mu)^2 f(x) dx = \int x^2 f(x) dx - \mu^2$

For a function g(X): $E(g(X)) = \int g(x) f(x) dx$

Cumulative distribution function: $F(x_0) = P(X \le x_0) = \int_0^{x_0} f(t) dt$

Standard continuous distribution:

Distribution of X	P.D.F.	Mean	Variance
Uniform (Rectangular) on [a, b]	$\frac{1}{b-a}$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$

BINOMIAL CUMULATIVE DISTRIBUTION FUNCTION

The tabulated value is $P(X \le x)$, where *X* has a binomial distribution with index *n* and parameter *p*.

p = 0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
$n = 5, x = 0 \ 0.$		0.5905	0.4437	0.3277	0.2373	0.1681	0.1160	0.0778	0.0503	0.0312
,		0.9185	0.8352	0.7373	0.6328	0.5282	0.4284	0.3370	0.2562	0.1875
		0.9914	0.9734	0.7373	0.8965	0.8369	0.7648	0.6826	0.5931	0.5000
		0.9995	0.9978	0.9933	0.9844	0.9692	0.9460	0.0020	0.8688	0.8125
		1.0000	0.9999	0.9997	0.9990	0.9976	0.9947	0.9898	0.9815	0.9688
		0.5314	0.3771	0.2621	0.1780	0.1176	0.0754	0.0467	0.0277	0.0156
		0.8857	0.7765	0.6554	0.5339	0.4202	0.3191	0.2333	0.1636	0.1094
		0.9842	0.9527	0.9011	0.8306	0.7443	0.6471	0.5443	0.4415	0.3438
		0.9987	0.9941	0.9830	0.9624	0.9295	0.8826	0.8208	0.7447	0.6563
		0.9999	0.9996	0.9984	0.9954	0.9891	0.9777	0.9590	0.9308	0.8906
5 1.0	.0000	1.0000	1.0000	0.9999	0.9998	0.9993	0.9982	0.9959	0.9917	0.9844
		0.4783	0.3206	0.2097	0.1335	0.0824	0.0490	0.0280	0.0152	0.0078
1 0.9	9556	0.8503	0.7166	0.5767	0.4449	0.3294	0.2338	0.1586	0.1024	0.0625
2 0.9	.9962	0.9743	0.9262	0.8520	0.7564	0.6471	0.5323	0.4199	0.3164	0.2266
3 0.9	9998	0.9973	0.9879	0.9667	0.9294	0.8740	0.8002	0.7102	0.6083	0.5000
4 1.0	.0000	0.9998	0.9988	0.9953	0.9871	0.9712	0.9444	0.9037	0.8471	0.7734
5 1.0	.0000	1.0000	0.9999	0.9996	0.9987	0.9962	0.9910	0.9812	0.9643	0.9375
6 1.0	.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9994	0.9984	0.9963	0.9922
n = 8, x = 0 0.0	.6634	0.4305	0.2725	0.1678	0.1001	0.0576	0.0319	0.0168	0.0084	0.0039
1 0.9	9428	0.8131	0.6572	0.5033	0.3671	0.2553	0.1691	0.1064	0.0632	0.0352
		0.9619	0.8948	0.7969	0.6785	0.5518	0.4278	0.3154	0.2201	0.1445
3 0.9	9996	0.9950	0.9786	0.9437	0.8862	0.8059	0.7064	0.5941	0.4770	0.3633
4 1.0	.0000	0.9996	0.9971	0.9896	0.9727	0.9420	0.8939	0.8263	0.7396	0.6367
5 1.0	.0000	1.0000	0.9998	0.9988	0.9958	0.9887	0.9747	0.9502	0.9115	0.8555
6 1.0	.0000	1.0000	1.0000	0.9999	0.9996	0.9987	0.9964	0.9915	0.9819	0.9648
7 1.0	.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9993	0.9983	0.9961
$n = 9, x = 0 \mid 0.0$.6302	0.3874	0.2316	0.1342	0.0751	0.0404	0.0207	0.0101	0.0046	0.0020
1 0.9	.9288	0.7748	0.5995	0.4362	0.3003	0.1960	0.1211	0.0705	0.0385	0.0195
2 0.9	9916	0.9470	0.8591	0.7382	0.6007	0.4628	0.3373	0.2318	0.1495	0.0898
3 0.9	9994	0.9917	0.9661	0.9144	0.8343	0.7297	0.6089	0.4826	0.3614	0.2539
		0.9991	0.9944	0.9804	0.9511	0.9012		0.7334		0.5000
5 1.0	.0000	0.9999	0.9994	0.9969	0.9900	0.9747	0.9464	0.9006	0.8342	0.7461
6 1.0	.0000	1.0000	1.0000	0.9997	0.9987	0.9957	0.9888	0.9750	0.9502	0.9102
7 1.0	.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9986	0.9962	0.9909	0.9805
8 1.0	.0000	1.0000	1.0000	1.0000	1.0000	1.0000		0.9997	0.9992	0.9980
$n = 10, x = 0 \mid 0.3$.5987	0.3487	0.1969	0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010
1 0.9	9139	0.7361	0.5443	0.3758	0.2440	0.1493	0.0860	0.0464	0.0233	0.0107
		0.9298	0.8202	0.6778	0.5256	0.3828	0.2616	0.1673	0.0996	0.0547
		0.9872	0.9500	0.8791	0.7759	0.6496	0.5138	0.3823	0.2660	0.1719
		0.9984	0.9901	0.9672	0.9219	0.8497	0.7515	0.6331	0.5044	0.3770
5 1.0	.0000	0.9999	0.9986	0.9936	0.9803	0.9527	0.9051	0.8338	0.7384	0.6230
		1.0000	0.9999	0.9991	0.9965	0.9894	0.9740	0.9452	0.8980	0.8281
		1.0000	1.0000	0.9999	0.9996	0.9984	0.9952	0.9877	0.9726	0.9453
		1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9983	0.9955	0.9893
9 1.0	.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990

<i>p</i> =	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
n = 12, x = 0	0.5404	0.2824	0.1422	0.0687	0.0317	0.0138	0.0057	0.0022	0.0008	0.0002
1	0.8816	0.6590	0.4435	0.2749	0.1584	0.0850	0.0424	0.0196	0.0083	0.0032
$\frac{2}{3}$	0.9804 0.9978	0.8891 0.9744	0.7358 0.9078	0.5583 0.7946	0.3907 0.6488	0.2528 0.4925	0.1513 0.3467	0.0834 0.2253	0.0421 0.1345	0.0193 0.0730
4	0.9978	0.9744	0.9078	0.7940	0.8424	0.4923	0.5833	0.2233	0.1343	0.0730
5	1.0000	0.9995	0.9954	0.9806	0.9456	0.8822	0.7873	0.6652	0.5269	0.3872
6	1.0000	0.9999	0.9993	0.9961	0.9857	0.9614	0.9154	0.8418	0.7393	0.6128
7	1.0000	1.0000	0.9999	0.9994	0.9972	0.9905	0.9745	0.9427	0.8883	0.8062
8	1.0000	1.0000	1.0000	0.9999	0.9996	0.9983	0.9944	0.9847	0.9644	0.9270
9	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9992	0.9972	0.9921	0.9807
10		1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9989	0.9968
		1.0000 0.2059	1.0000 0.0874	1.0000 0.0352	1.0000 0.0134	1.0000	1.0000 0.0016	1.0000 0.0005	0.9999	0.9998
n-13, x-0	0.4033			0.0332					0.0001	0.0005
2	0.8290	0.5490 0.8159	0.3186 0.6042	0.16/1	0.0802 0.2361	0.0353 0.1268	0.0142 0.0617	0.0052 0.0271	0.0017	0.0003
3	0.9945	0.9444	0.8227	0.6482	0.4613	0.1266	0.1727	0.0271	0.0424	0.0176
4	0.9994	0.9873	0.9383	0.8358	0.6865	0.5155	0.3519	0.2173	0.1204	0.0592
5	0.9999	0.9978	0.9832	0.9389	0.8516	0.7216	0.5643	0.4032	0.2608	0.1509
6	1.0000	0.9997	0.9964	0.9819	0.9434	0.8689	0.7548	0.6098	0.4522	0.3036
7	1.0000	1.0000	0.9994	0.9958	0.9827	0.9500	0.8868	0.7869	0.6535	0.5000
8 9	1.0000	1.0000 1.0000	0.9999 1.0000	0.9992 0.9999	0.9958 0.9992	0.9848 0.9963	0.9578 0.9876	0.9050 0.9662	0.8182 0.9231	0.6964 0.8491
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9903	0.9972	0.9002	0.9231	0.9408
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995	0.9981	0.9937	0.9824
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9989	0.9963
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
n = 20, x = 0		0.1216	0.0388	0.0115	0.0032	0.0008	0.0002	0.0000	0.0000	0.0000
$\frac{1}{2}$	0.7358 0.9245	0.3917 0.6769	0.1756	0.0692	0.0243	0.0076	0.0021	0.0005	0.0001	0.0000
2 3	0.9243	0.8670	0.4049 0.6477	0.2061 0.4114	0.0913 0.2252	0.0355 0.1071	0.0121 0.0444	0.0036 0.0160	0.0009 0.0049	0.0002 0.0013
4		0.9568								
5	0.9997		0.9327		0.6172					0.0207
6	1.0000	0.9976	0.9781	0.9133	0.7858	0.6080	0.4166	0.2500	0.1299	0.0577
7	1.0000	0.9996	0.9941	0.9679	0.8982	0.7723	0.6010	0.4159	0.2520	0.1316
	1.0000	0.9999	0.9987	0.9900	0.9591	0.8867	0.7624	0.5956	0.4143	0.2517
	1.0000 1.0000	1.0000 1.0000	0.9998 1.0000	0.9974 0.9994	0.9861 0.9961	0.9520 0.9829	0.8782 0.9468	0.7553 0.8725	0.5914 0.7507	0.4119 0.5881
	1.0000	1.0000	1.0000	0.9999	0.9991	0.9949	0.9804	0.9435	0.8692	0.7483
	1.0000	1.0000	1.0000	1.0000	0.9991	0.9949	0.9804	0.9433	0.8092	0.7483
	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9935	0.9786	0.9423
		1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9936	0.9793
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9941
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9987
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

p = 0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
n = 25, x = 0 0.2774	0.0718	0.0172	0.0038	0.0008	0.0001	0.0000	0.0000	0.0000	0.0000
1 0.6424	0.2712	0.0931	0.0274	0.0070	0.0016	0.0003	0.0001	0.0000	0.0000
2 0.8729	0.5371	0.2537	0.0982	0.0321	0.0090	0.0021	0.0004	0.0001	0.0000
3 0.9659	0.7636	0.4711	0.2340	0.0962	0.0332	0.0097	0.0024	0.0005	0.0001
4 0.9928	0.9020	0.6821	0.4207	0.2137	0.0905	0.0320	0.0095	0.0023	0.0005
5 0.9988	0.9666	0.8385	0.6167	0.3783	0.1935	0.0826	0.0294	0.0086	0.0020
6 0.9998	0.9905	0.9305	0.7800	0.5611	0.3407	0.1734	0.0736	0.0258	0.0073
7 1.0000	0.9977	0.9745	0.8909	0.7265	0.5118	0.3061	0.1536	0.0639	0.0216
8 1.0000	0.9995	0.9920	0.9532	0.8506	0.6769	0.4668	0.2735	0.1340	0.0539
9 1.0000	0.9999	0.9979	0.9827	0.9287	0.8106	0.6303	0.4246	0.2424	0.1148
10 1.0000	1.0000	0.9995	0.9944	0.9703	0.9022	0.7712	0.5858	0.3843	0.2122
11 1.0000	1.0000	0.9999	0.9985	0.9893	0.9558	0.8746	0.7323	0.5426	0.3450
12 1.0000	1.0000	1.0000	0.9996	0.9966	0.9825	0.9396	0.8462	0.6937	0.5000
13 1.0000	1.0000	1.0000	0.9999	0.9991	0.9940	0.9745	0.9222	0.8173	0.6550
14 1.0000	1.0000	1.0000	1.0000	0.9998	0.9982	0.9907	0.9656	0.9040	0.7878
15 1.0000	1.0000	1.0000	1.0000	1.0000	0.9995	0.9971	0.9868	0.9560	0.8852
16 1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9992	0.9957	0.9826	0.9461
17 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9988	0.9942	0.9784
18 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9927
19 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9996	0.9980
20 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9995
21 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
22 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$n = 30, x = 0 \mid 0.2146$	0.0424	0.0076	0.0012	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
1 0.5535	0.1837	0.0480	0.0105	0.0020	0.0003	0.0000	0.0000	0.0000	0.0000
2 0.8122	0.4114	0.1514	0.0442	0.0106	0.0021	0.0003	0.0000	0.0000	0.0000
3 0.9392	0.6474	0.3217	0.1227	0.0374	0.0093	0.0019	0.0003	0.0000	0.0000
4 0.9844	0.8245	0.5245	0.2552	0.0979	0.0302	0.0075	0.0015	0.0002	0.0000
5 0.9967	0.9268	0.7106	0.4275	0.2026	0.0766	0.0233	0.0057	0.0011	0.0002
6 0.9994	0.9742	0.8474	0.6070	0.3481	0.1595	0.0586	0.0172	0.0040	0.0007
7 0.9999	0.9922	0.9302	0.7608	0.5143	0.2814	0.1238	0.0435	0.0121	0.0026
								0.0312	
9 1.0000			0.9389					0.0694	
10 1.0000	0.9999	0.9971	0.9744	0.8943	0.7304		0.2915	0.1350	0.0494
11 1.0000	1.0000	0.9992	0.9905	0.9493	0.8407	0.6548	0.4311	0.2327	0.1002
12 1.0000	1.0000	0.9998	0.9969	0.9784	0.9155	0.7802	0.5785	0.3592	0.1808
13 1.0000	1.0000	1.0000	0.9991	0.9918	0.9599	0.8737	0.7145	0.5025	0.2923
14 1.0000 15 1.0000	1.0000 1.0000	1.0000 1.0000	0.9998 0.9999	0.9973 0.9992	0.9831 0.9936	0.9348 0.9699	0.8246 0.9029	0.6448 0.7691	0.4278 0.5722
16 1.0000	1.0000	1.0000	1.0000	0.9998	0.9979	0.9876	0.9519	0.8644	0.7077
17 1.0000	1.0000	1.0000	1.0000	0.9999	0.9994	0.9955	0.9788	0.9286	0.8192
18 1.0000 19 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	0.9998 1.0000	0.9986 0.9996	0.9917 0.9971	0.9666 0.9862	0.8998 0.9506
20 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9971	0.9862	0.9306
21 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998	0.9984	0.9919
22 1.0000 23 1.0000	1.0000 1.0000	0.9996 0.9999	0.9974 0.9993						
24 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9993
25 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
23 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

p =	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
n = 40, x = 0	0.1285	0.0148	0.0015	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.3991	0.0805	0.0121	0.0015	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.6767	0.2228	0.0486	0.0079	0.0010	0.0001	0.0000	0.0000	0.0000	0.0000
3	0.8619	0.4231	0.1302	0.0285	0.0047	0.0006	0.0001	0.0000	0.0000	0.0000
4	0.9520	0.6290	0.2633	0.0759	0.0160	0.0026	0.0003	0.0000	0.0000	0.0000
5	0.9861	0.7937	0.4325	0.1613	0.0433	0.0086	0.0013	0.0001	0.0000	0.0000
6	0.9966	0.9005	0.6067	0.2859	0.0962	0.0238	0.0044	0.0006	0.0001	0.0000
7	0.9993	0.9581	0.7559	0.4371	0.1820	0.0553	0.0124	0.0021	0.0002	0.0000
8	0.9999	0.9845	0.8646	0.5931	0.2998	0.1110	0.0303	0.0061	0.0009	0.0001
9	1.0000	0.9949	0.9328	0.7318	0.4395	0.1959	0.0644	0.0156	0.0027	0.0003
10	1.0000	0.9985	0.9701	0.8392	0.5839	0.3087	0.1215	0.0352	0.0074	0.0011
11	1.0000	0.9996	0.9880	0.9125	0.7151	0.4406	0.2053	0.0709	0.0179	0.0032
12	1.0000	0.9999	0.9957	0.9568	0.8209	0.5772	0.3143	0.1285	0.0386	0.0083
13	1.0000	1.0000	0.9986	0.9806	0.8968	0.7032	0.4408	0.2112	0.0751	0.0192
14	1.0000	1.0000	0.9996	0.9921	0.9456	0.8074	0.5721	0.3174	0.1326	0.0403
15	1.0000	1.0000	0.9999	0.9971	0.9738	0.8849	0.6946	0.4402	0.2142	0.0769
16	1.0000	1.0000	1.0000	0.9990	0.9884	0.9367	0.7978	0.5681	0.3185	0.1341
17	1.0000	1.0000	1.0000	0.9997	0.9953	0.9680	0.8761	0.6885	0.4391	0.2148
18	1.0000	1.0000	1.0000	0.9999	0.9983	0.9852	0.9301	0.7911	0.5651	0.3179
19	1.0000	1.0000	1.0000	1.0000	0.9994	0.9937	0.9637	0.8702	0.6844	0.4373
20	1.0000	1.0000	1.0000	1.0000	0.9998	0.9976	0.9827	0.9256	0.7870	0.5627
21	1.0000	1.0000	1.0000	1.0000	1.0000	0.9991	0.9925	0.9608	0.8669	0.6821
22	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9970	0.9811	0.9233	0.7852
23	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9989	0.9917	0.9595	0.8659
24	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9966	0.9804	0.9231
25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9988	0.9914	0.9597
26	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9966	0.9808
27	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9988	0.9917
28	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9996	0.9968
29	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9989
30	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997
31	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
32	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

<i>p</i> =	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
n = 50, x = 0	0.0769	0.0052	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.2794	0.0338	0.0029	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.5405	0.1117	0.0142	0.0013	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
	0.7604	0.2503	0.0460	0.0057	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000
	0.8964	0.4312	0.1121	0.0185	0.0021	0.0002	0.0000	0.0000	0.0000	0.0000
5	0.9622	0.6161	0.2194	0.0480	0.0070	0.0007	0.0001	0.0000	0.0000	0.0000
	0.9882	0.7702	0.3613	0.1034	0.0194	0.0025	0.0002	0.0000	0.0000	0.0000
	0.9968	0.8779	0.5188	0.1904	0.0453	0.0073	0.0008	0.0001	0.0000	0.0000
	0.9992	0.9421	0.6681	0.3073	0.0916	0.0183	0.0025	0.0002	0.0000	0.0000
	0.9998	0.9755	0.7911	0.4437	0.1637	0.0402	0.0067	0.0008	0.0001	0.0000
10	1.0000	0.9906	0.8801	0.5836	0.2622	0.0789	0.0160	0.0022	0.0002	0.0000
	1.0000	0.9968	0.9372	0.7107	0.3816	0.1390	0.0342	0.0057	0.0006	0.0000
	1.0000	0.9990	0.9699	0.8139	0.5110	0.2229	0.0661	0.0133	0.0018	0.0002
	1.0000	0.9997	0.9868	0.8894	0.6370	0.3279	0.1163	0.0280	0.0045	0.0005
	1.0000	0.9999	0.9947	0.9393	0.7481	0.4468	0.1878	0.0540	0.0104	0.0013
	1.0000	1.0000	0.9981	0.9692	0.8369	0.5692	0.2801	0.0955	0.0220	0.0033
	1.0000	1.0000	0.9993	0.9856	0.9017	0.6839	0.3889	0.1561	0.0427	0.0077
	1.0000	1.0000	0.9998	0.9937	0.9449	0.7822	0.5060	0.2369	0.0765	0.0164
	1.0000	1.0000	0.9999	0.9975	0.9713	0.8594	0.6216	0.3356	0.1273	0.0325
	1.0000	1.0000	1.0000	0.9991	0.9861	0.9152	0.7264	0.4465	0.1974	0.0595
	1.0000	1.0000	1.0000	0.9997	0.9937	0.9522	0.8139	0.5610	0.2862	0.1013
	1.0000	1.0000	1.0000	0.9999	0.9974	0.9749	0.8813	0.6701	0.3900	0.1611
	1.0000	1.0000	1.0000	1.0000	0.9990	0.9877	0.9290	0.7660	0.5019	0.2399
	1.0000	1.0000	1.0000	1.0000	0.9996	0.9944	0.9604	0.8438	0.6134	0.3359
	1.0000	1.0000	1.0000	1.0000	0.9999	0.9976	0.9793	0.9022	0.7160	0.4439
	1.0000	1.0000	1.0000	1.0000	1.0000	0.9991	0.9900	0.9427	0.8034	0.5561
	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9955	0.9686	0.8721	0.6641
	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9981	0.9840	0.9220	0.7601
	1.0000 1.0000	1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	0.9993 0.9997	0.9924 0.9966	0.9556 0.9765	0.8389
	1.0000	1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	0.9997	0.9986	0.9763	0.8987 0.9405
	1.0000		1.0000				1.0000		0.9947	0.9675
	1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998 0.9999	0.9978	0.9836
	1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000	0.9991 0.9997	0.9923 0.9967
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9987
	1.0000	1.0000	1.0000 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000 1.0000	1.0000	0.9995 0.9998
	1.0000 1.0000	1.0000 1.0000	1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000	1.0000 1.0000	1.0000
38	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

POISSON CUMULATIVE DISTRIBUTION FUNCTION

The tabulated value is $P(X \le x)$, where *X* has a Poisson distribution with parameter λ .

$\lambda =$	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
x = 0	0.6065	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.9098	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9856	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9982	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9998	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	1.0000	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	1.0000	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8	1.0000	1.0000	1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9	1.0000	1.0000	1.0000	1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9980
13	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993
14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998
15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999
16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
$\lambda =$	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
x = 0	0.0041	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001	0.0000
1	0.0266	0.0174	0.0113	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008	0.0005
2	0.0884	0.0620	0.0430	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042	0.0028
3	0.2017	0.1512	0.1118	0.0818	0.0591	0.0424	0.0301	0.0212	0.0149	0.0103
4	0.3575	0.2851	0.2237	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403	0.0293
5	0.5289	0.4457	0.3690	0.3007	0.2414	0.1912	0.1496	0.1157	0.0885	0.0671
6	0.6860	0.6063	0.5265	0.4497	0.3782	0.3134	0.2562	0.2068	0.1649	0.1301
7	0.8095	0.7440	0.6728	0.5987	0.5246	0.4530	0.3856	0.3239	0.2687	0.2202
8	0.8944	0.8472	0.7916	0.7291	0.6620	0.5925	0.5231	0.4557	0.3918	0.3328
9	0.9462	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530	0.5874	0.5218	0.4579
10	0.9747	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060	0.6453	0.5830
11	0.9890	0.9799	0.9661	0.9467	0.9208	0.8881	0.8487	0.8030	0.7520	0.6968
12	0.9955	0.9912	0.9840	0.9730	0.9573	0.9362	0.9091	0.8758	0.8364	0.7916
13	0.9983	0.9964	0.9929	0.9872	0.9784	0.9658	0.9486	0.9261	0.8981	0.8645
14	0.9994	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400	0.9165
15	0.9998	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665	0.9513
16	0.9999	0.9998	0.9996	0.9990	0.9980	0.9963	0.9934	0.9889	0.9823	0.9730
17	1.0000	0.9999	0.9998	0.9996	0.9992	0.9984	0.9970	0.9947	0.9911	0.9857
18	1.0000	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9976	0.9957	0.9928
19	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9995	0.9989	0.9980	0.9965
20	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9991	0.9984
21	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9996	0.9993
22	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9997

Statistics S3

Candidates sitting S3 may also require those formulae listed under Statistics S1 and S2.

Expectation algebra

For independent random variables *X* and *Y*

$$E(XY) = E(X)E(Y)$$
, $Var(aX \pm bY) = a^2 Var(X) + b^2 Var(Y)$

Sampling distributions

For a random sample $X_1, X_2, ..., X_n$ of *n* independent observations from a distribution having mean μ and variance σ^2

$$\overline{X}$$
 is an unbiased estimator of μ , with $Var(\overline{X}) = \frac{\sigma^2}{n}$

$$S^2$$
 is an unbiased estimator of σ^2 , where $S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$

For a random sample of *n* observations from $N(\mu, \sigma^2)$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

For a random sample of n_x observations from $N(\mu_x, \sigma_x^2)$ and, independently, a random sample of n_y observations from $N(\mu_y, \sigma_y^2)$

$$\frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \sim N(0, 1)$$

Correlation and regression

Spearman's rank correlation coefficient is $r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$

Non-parametric tests

Goodness-of-fit test and contingency tables: $\sum \frac{(O_i - E_i)^2}{E_i} \sim \chi_{\nu}^2$

PERCENTAGE POINTS OF THE χ^2 DISTRIBUTION

The values in the table are those which a random variable with the χ^2 distribution on ν degrees of freedom exceeds with the probability shown.

ν	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.000	0.000	0.001	0.004	0.016	2.705	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.580	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.194	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.088	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672

CRITICAL VALUES FOR CORRELATION COEFFICIENTS

These tables concern tests of the hypothesis that a population correlation coefficient ρ is 0. The values in the tables are the minimum values which need to be reached by a sample correlation coefficient in order to be significant at the level shown, on a one-tailed test.

	Product	Moment Co	efficient			Spear	man's Coef	ficient
		Level			Sample		Level	
0.10	0.05	0.025	0.01	0.005	Level	0.05	0.025	0.01
0.8000	0.9000	0.9500	0.9800	0.9900	4	1.0000	-	-
0.6870	0.8054	0.8783	0.9343	0.9587	5	0.9000	1.0000	1.0000
0.6084	0.7293	0.8114	0.8822	0.9172	6	0.8286	0.8857	0.9429
0.5509	0.6694	0.7545	0.8329	0.8745	7	0.7143	0.7857	0.8929
0.5067	0.6215	0.7067	0.7887	0.8343	8	0.6429	0.7381	0.8333
0.4716	0.5822	0.6664	0.7498	0.7977	9	0.6000	0.7000	0.7833
0.4428	0.5494	0.6319	0.7155	0.7646	10	0.5636	0.6485	0.7455
0.4187	0.5214	0.6021	0.6851	0.7348	11	0.5364	0.6182	0.7091
0.3981	0.4973	0.5760	0.6581	0.7079	12	0.5035	0.5874	0.6783
0.3802	0.4762	0.5529	0.6339	0.6835	13	0.4835	0.5604	0.6484
0.3646	0.4575	0.5324	0.6120	0.6614	14	0.4637	0.5385	0.6264
0.3507	0.4409	0.5140	0.5923	0.6411	15	0.4464	0.5214	0.6036
0.3383	0.4259	0.4973	0.5742	0.6226	16	0.4294	0.5029	0.5824
0.3271	0.4124	0.4821	0.5577	0.6055	17	0.4142	0.4877	0.5662
0.3170	0.4000	0.4683	0.5425	0.5897	18	0.4014	0.4716	0.5501
0.3077	0.3887	0.4555	0.5285	0.5751	19	0.3912	0.4596	0.5351
0.2992	0.3783	0.4438	0.5155	0.5614	20	0.3805	0.4466	0.5218
0.2914	0.3687	0.4329	0.5034	0.5487	21	0.3701	0.4364	0.5091
0.2841	0.3598	0.4227	0.4921	0.5368	22	0.3608	0.4252	0.4975
0.2774	0.3515	0.4133	0.4815	0.5256	23	0.3528	0.4160	0.4862
0.2711	0.3438	0.4044	0.4716	0.5151	24	0.3443	0.4070	0.4757
0.2653	0.3365	0.3961	0.4622	0.5052	25	0.3369	0.3977	0.4662
0.2598	0.3297	0.3882	0.4534	0.4958	26	0.3306	0.3901	0.4571
0.2546	0.3233	0.3809	0.4451	0.4869	27	0.3242	0.3828	0.4487
0.2497	0.3172	0.3739	0.4372	0.4785	28	0.3180	0.3755	0.4401
0.2451	0.3115	0.3673	0.4297	0.4705	29	0.3118	0.3685	0.4325
0.2407	0.3061	0.3610	0.4226	0.4629	30	0.3063	0.3624	0.4251
0.2070	0.2638	0.3120	0.3665	0.4026	40	0.2640	0.3128	0.3681
0.1843	0.2353	0.2787	0.3281	0.3610	50	0.2353	0.2791	0.3293
0.1678	0.2144	0.2542	0.2997	0.3301	60	0.2144	0.2545	0.3005
0.1550	0.1982	0.2352	0.2776	0.3060	70	0.1982	0.2354	0.2782
0.1448	0.1852	0.2199	0.2597	0.2864	80	0.1852	0.2201	0.2602
0.1364	0.1745	0.2072	0.2449	0.2702	90	0.1745	0.2074	0.2453
0.1292	0.1654	0.1966	0.2324	0.2565	100	0.1654	0.1967	0.2327

RANDOM NUMBERS

86 13	84 10	07 30	39 05	97 96	88 07	37 26	04 89	13 48	19 20
60 78	48 12	99 47	09 46	91 33	17 21	03 94	79 00	08 50	40 16
78 48	06 37	82 26	01 06	64 65	94 41	17 26	74 66	61 93	24 97
80 56	90 79	66 94	18 40	97 79	93 20	41 51	25 04	20 71	76 04
99 09	39 25	66 31	70 56	30 15	52 17	87 55	31 11	10 68	98 23
56 32	32 72	91 65	97 36	56 61	12 79	95 17	57 16	53 58	96 36
66 02	49 93	97 44	99 15	56 86	80 57	11 78	40 23	58 40	86 14
31 77	53 94	05 93	56 14	71 23	60 46	05 33	23 72	93 10	81 23
98 79	72 43	14 76	54 77	66 29	84 09	88 56	75 86	41 67	04 42
50 97	92 15	10 01	57 01	87 33	73 17	70 18	40 21	24 20	66 62
90 51	94 50	12 48	88 95	09 34	09 30	22 27	25 56	40 76	01 59
31 99	52 24	13 43	27 88	11 39	41 65	00 84	13 06	31 79	74 97
22 96	23 34	46 12	67 11	48 06	99 24	14 83	78 37	65 73	39 47
06 84	55 41	27 06	74 59	14 29	20 14	45 75	31 16	05 41	22 96
08 64	89 30	25 25	71 35	33 31	04 56	12 67	03 74	07 16	49 32
86 87	62 43	15 11	76 49	79 13	78 80	93 89	09 57	07 14	40 74
94 44	97 13	77 04	35 02	12 76	60 91	93 40	81 06	85 85	72 84
63 25	55 14	66 47	99 90	02 90	83 43	16 01	19 69	11 78	87 16
11 22	83 98	15 21	18 57	53 42	91 91	26 52	89 13	86 00	47 61
01 70	10 83	94 71	13 67	11 12	36 54	53 32	90 43	79 01	95 15

Statistics S4

Candidates sitting S4 may also require those formulae listed under Statistics S1, S2 and S3.

Sampling distributions

For a random sample of *n* observations from $N(\mu, \sigma^2)$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$
 (also valid in matched-pairs situations)

For a random sample of n_x observations from $N(\mu_x, \sigma_x^2)$ and, independently, a random sample of n_y observations from $N(\mu_y, \sigma_y^2)$

$$\frac{S_{x}^{2}/\sigma_{x}^{2}}{S_{y}^{2}/\sigma_{y}^{2}} \sim F_{n_{x}-1, n_{y}-1}$$

If
$$\sigma_x^2 = \sigma_y^2 = \sigma^2$$
 (unknown) then

$$\frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_y)}{\sqrt{S_p^2 \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sim t_{n_x + n_y - 2} \quad \text{where} \quad S_p^2 = \frac{(n_x - 1)S_x^2 + (n_y - 1)S_y^2}{n_x + n_y - 2}$$

PERCENTAGE POINTS OF STUDENT'S t DISTRIBUTION

The values in the table are those which a random variable with Student's t distribution on v degrees of freedom exceeds with the probability shown.

ν	0.10	0.05	0.025	0.01	0.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.343	1.753	2.143	2.602	2.947
16	1.337	1.733	2.131	2.583	2.947
17	1.337	1.740	2.120	2.567	2.898
18	1.333	1.740	2.110	2.552	
19			2.101	2.532	2.878
	1.328	1.729			2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.435	2.719
38	1.304	1.686	2.024	2.429	2.712
40	1.303	1.684	2.021	2.423	2.704
45	1.301	1.679	2.014	2.412	2.690
50	1.299	1.676	2.009	2.403	2.678
55	1.297	1.673	2.004	2.396	2.668
60	1.296	1.671	2.000	2.390	2.660
70	1.294	1.667	1.994	2.381	2.648
80	1.292	1.664	1.990	2.374	2.639
90	1.291	1.662	1.987	2.369	2.632
100	1.290	1.660	1.984	2.364	2.626
110	1.289	1.659	1.982	2.361	2.621
120	1.289	1.658	1.980	2.358	2.617

PERCENTAGE POINTS OF THE F DISTRIBUTION

The values in the table are those which a random variable with the F distribution on v_1 and v_2 degrees of freedom exceeds with probability 0.05 or 0.01.

Probability	ν_2/ν_1	1	2	3	4	5	6	8	10	12	24	∞
	1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	241.9	243.9	249.1	254.3
	2	18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.40	19.41	19.46	19.50
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.85	8.79	8.74	8.64	8.53
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.96	5.91	5.77	5.63
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.74	4.68	4.53	4.37
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.06	4.00	3.84	3.67
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.64	3.57	3.41	3.23
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.35	3.28	3.12	2.93
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.14	3.07	2.90	2.71
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.98	2.91	2.74	2.54
0.05	11	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.85	2.79	2.61	2.40
0.03	12	4.75	3.89	3.49	3.26	3.11	3.00	2.85	2.75	2.69	2.51	2.30
	14	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.60	2.53	2.35	2.13
	16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.49	2.42	2.24	2.01
	18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.41	2.34	2.15	1.92
	20	4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.35	2.28	2.08	1.84
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.34	2.24	2.16	1.96	1.71
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.16	2.09	1.89	1.62
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2.08	2.00	1.79	1.51
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.10	1.99	1.92	1.70	1.39
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.02	1.91	1.83	1.61	1.25
	∞	3.84	3.00	2.60	2.37	2.21	2.10	1.94	1.83	1.75	1.52	1.00
	1	4052. 98.50	5000. 99.00	5403. 99.17	5625. 99.25	5764. 99.30	5859. 99.33	5982. 99.37	6056. 99.40	6106. 99.42	6235. 99.46	6366. 99.50
	2 3	34.12	30.82	29.46	28.71	28.24	99.33 27.91	99.37 27.49	27.23	27.05	26.60	26.13
	4	21.20	18.00	16.69	15.98	15.52	15.21	14.80	14.55	14.37	13.93	13.45
	5	16.26	13.27	12.06	11.39	10.97	10.67	10.29	10.05	9.89	9.47	9.02
	6	13.70	10.90	9.78	9.15	8.75	8.47	8.10	7.87	7.72	7.31	6.88
	7	12.20	9.55	9.78 8.45	7.85	7.46	7.19	6.84	6.62	6.47	6.07	5.65
	8	11.30	8.65	7.59	7.01	6.63	6.37	6.03	5.81	5.67	5.28	4.86
	9	10.60	8.02	6.99	6.42	6.06	5.80	5.47	5.26	5.11	4.73	4.31
	10	10.00	7.56	6.55	5.99	5.64	5.39	5.06	4.85	4.17	4.33	3.91
	11	9.65	7.21	6.22	5.67	5.32	5.07	4.74	4.54	4.40	4.02	3.60
0.01	12	9.33	6.93	5.95	5.41	5.06	4.82	4.50	4.30	4.16	3.78	3.36
	14	8.86	6.51	5.56	5.04	4.70	4.46	4.14	3.94	3.80	3.43	3.00
	16	8.53	6.23	5.29	4.77	4.44	4.20	3.89	3.69	3.55	3.18	2.75
	18	8.29	6.01	5.09	4.58	4.25	4.01	3.71	3.51	3.37	3.00	2.57
	20	8.10	5.85	4.94	4.43	4.10	3.87	3.56	3.37	3.23	2.86	2.42
	25	7.77	5.57	4.68	4.18	3.86	3.63	3.32	3.13	2.99	2.62	2.17
	30	7.56	5.39	4.51	4.02	3.70	3.47	3.17	2.98	2.84	2.47	2.01
	40	7.31	5.18	4.31	3.83	3.51	3.29	2.99	2.80	2.66	2.29	1.80
	60	7.08	4.98	4.13	3.65	3.34	3.12	2.82	2.63	2.50	2.12	1.60
	120	6.85	4.79	3.95	3.48	3.17	2.96	2.66	2.47	2.34	1.95	1.38
	∞	6.63	4.61	3.78	3.32	3.02	2.80	2.51	2.32	2.18	1.79	1.00
	<u> </u>											

If an *upper* percentage point of the F distribution on v_1 and v_2 degrees of freedom is f, then the corresponding *lower* percentage point of the F distribution on v_2 and v_1 degrees of freedom is 1/f.

BLANK PAGE

BLANK PAGE

BLANK PAGE