U.E.2 Les molécules du vivant

7. Organisation du génome humain, méthodes en biotechnologie

7.1 Architecture du génome humain

Jean Muller

Laboratoire Diagnostic Génétique (HUS) Laboratoire de Génétique médicale (Inserm U1112)

<u>jeanmuller@unistra.fr</u>

Plan du cours

- Introduction
 - Notions fondamentales
- Le génome humain
 - Projet de séquençage
 - Architecture globale
 - Génome mitochondrial
 - Génome nucléaire
 - Description des principaux éléments constituants
 - Gènes (codants et non-codants), pseudogènes et éléments répétés
- Comparaison aux autres génomes
- Les types de variations du génome humain et leurs conséquences
- La variabilité du génome humain
- Evolution des génomes: notions essentielles, mécanismes

Introduction

L'arbre de la vie

Notions essentielles:

- Evolution
- Temps
- Adaptation
- Sélection

Arbre des eucaryotes

Choix d'organismes modèles

- Intérêt(s) économique(s)
- Intérêt(s) technique(s)
 - Facilités hébergement,
 - Développement embryonnaire/temps de génération
- Partage d'éléments communs (ADN)
- Hérités/Transmis

Définition

- En biologie, l'homologie désigne un caractère propre à plusieurs espèces hérité d'un ancêtre commun. Les structures en question, qu'elles soient d'ordre anatomique, moléculaire ou génétique, partagent donc une histoire évolutive.
- ≠ analogie (ex: ailes oiseaux et insectes qui est une évolution séparée)
- Orthologie (gènes orthologues): gènes homologues dans 2 espèces ayant évolué à partir d'un gène ancestral suite à une spéciation
- Paralogie (gènes paralogues): gènes homologues au sein de la même espèce ayant évolué à partir d'un gène ancestral par duplication au cours de l'évolution de cette espèce.

Définition

- En biologie, l'homologie désigne un caractère propre à plusieurs espèces hérité d'un ancêtre commun. Les structures en question, qu'elles soient d'ordre anatomique, moléculaire ou génétique, partagent donc une histoire évolutive.
- Orthologie (gènes orthologues): gènes homologues dans 2 espèces ayant évolué à partir d'un gène ancestral suite à une spéciation
- Paralogie (gènes paralogues): gènes homologues au sein de la même espèce ayant évolué à partir d'un gène ancestral par duplication au cours de l'évolution de cette espèce.

Exemple

- Comment déterminer si les gènes sont homologues ou pas?
 - Les séquences des génomes peuvent être alignées entres elles tout comme les séquences des protéines.
 - La comparaison de 2 séquences permet d'établir une évaluation de leur proximité ou de leur éloignement par le calcul:
 - du pourcentage d'identité* entre ces 2 séquences
 - * résidus strictement identique
 - du pourcentage de similarité* entre ces 2 séquences
 - * résidus identique + proche (critère à déterminer; ex: caractéristiques physicochimiques)
 - Seuil de significativité >20% (dépendant de la famille de protéines)

Remarques:

Un % similarité/identité non significatif ne veut pas dire que les gènes, ne sont pas homologues.

- 2 séquences similaires peuvent l'être :
 - par hasard (région de faible complexité)
 - par convergence évolutive

<15% identité

MreB bactérienne

Actine humaine

