Concours commun Centrale

MATHÉMATIQUES II. FILIERE MP

Partie I - Cas d'un hyperplan de $\mathcal{L}(E)$.

I. A -

I. A. 1) Soit $a \in \mathcal{L}(E)$. Puisque la base (e) est orthonormée, la i-ème coordonnée du vecteur $a(\overrightarrow{e_i})$ dans la base (e) est $(\overrightarrow{e_i}|a(\overrightarrow{e_i}))$ et donc

$$\operatorname{Tr}\, \mathfrak{a} = \sum_{\mathfrak{i}=1}^{\mathfrak{n}} \big(\overrightarrow{e_{\mathfrak{i}}}|\mathfrak{a}(\overrightarrow{e_{\mathfrak{i}}})\big).$$

I. A. 2) Soit $(a, b) \in (\mathcal{L}(E))^2$. Notons $(a_{i,j})_{1 \le i,j \le n}$ (resp. $(b_{i,j})_{1 \le i,j \le n}$) la matrice de a (resp. b) dans la base (e). Puisque la base (e) est orthonormée, pour $j \in [1, n]$, on a

$$\left(\overrightarrow{e_j}|\alpha^*b(\overrightarrow{e_j})\right) = \left(\alpha(\overrightarrow{e_j}), b(\overrightarrow{e_j})\right) = \sum_{i=1}^n \alpha_{i,j} b_{i,j},$$

et donc

$$\langle\langle a,b\rangle\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{i,j} = \sum_{1 \leq i,j \leq n} a_{i,j} b_{i,j}.$$

On reconnaît alors le produit scalaire canonique sur $\mathcal{L}(\mathsf{E})$ et donc

$$\label{eq:continuous} \langle \langle \; , \; \rangle \rangle \text{ est un produit scalaire sur } \mathcal{L}(E).$$

On notera dorénavant F^{\perp} l'orthogonal d'un sous-espace F de $\mathcal{L}(E)$ pour ce produit scalaire.

I. A. 3) Soit $(a, b) \in \mathcal{S}(E) \times \mathcal{A}(E)$.

$$\langle \langle b, a \rangle \rangle = \operatorname{Tr}(b^*a) = -\operatorname{Tr}(ba) = -\operatorname{Tr}(ab) = -\operatorname{Tr}(a^*b) = -\langle \langle a, b \rangle \rangle$$

et donc $\langle \langle a, b \rangle \rangle = 0$. Ainsi, $(\mathcal{S}(E))^{\perp} \subset \mathcal{A}(E)$ et puisque d'autre part on sait que $\mathcal{S}(E)$ et $\mathcal{A}(E)$ sont supplémentaires,

$$\mathcal{L}(\mathsf{E}) = \mathcal{S}(\mathsf{E}) \stackrel{\perp}{\oplus} \mathcal{A}(\mathsf{E}).$$

I. B -

I. B. 1) a) On a bien sur $Ker(\mathfrak{a}) \subset Ker(\mathfrak{a}^*\mathfrak{a})$.

Inversement, soit $\overrightarrow{x} \in E$.

$$\overrightarrow{x} \in \mathrm{Ker}(\alpha^*\alpha) \Rightarrow \alpha^*\alpha(\overrightarrow{x}) = \overrightarrow{0} \Rightarrow (\overrightarrow{x}|\alpha^*\alpha(\overrightarrow{x})) = 0 \Rightarrow (\alpha(\overrightarrow{x})|\alpha(\overrightarrow{x})) = 0 \Rightarrow \alpha(\overrightarrow{x}) = \overrightarrow{0} \Rightarrow \overrightarrow{x} \in \mathrm{Ker}(\alpha),$$

et finalement, $\operatorname{Ker}(\mathfrak{a}) = \operatorname{Ker}(\mathfrak{a}^*\mathfrak{a})$. Avec le théorème du rang, on en déduit encore que $\operatorname{rg}(\mathfrak{a}) = \operatorname{rg}(\mathfrak{a}^*\mathfrak{a})$.

$$\forall \alpha \in \mathcal{L}(E), \ \mathrm{Ker}(\alpha^*\alpha) = \mathrm{Ker}(\alpha) \ \mathrm{et} \ \mathrm{rg}(\alpha^*\alpha) = \mathrm{rg}(\alpha).$$

b) a^*a est un endomorphisme symétrique car $(a^*a)^* = a^*(a^*)^* = a^*a$. D'après le théorème spectral, le polynôme caractéristique de a^*a est scindé sur \mathbb{R} et a^*a est diagonalisable. En particulier, l'ordre de multiplicité de la valeur propre 0 est $\dim(\operatorname{Ker}(a^*a))$.

$$\dim(\operatorname{Ker}(\mathfrak{a}^*\mathfrak{a})) = \dim(\operatorname{Ker}(\mathfrak{a})) = \mathfrak{n} - \mathfrak{r} \le \mathfrak{n} - 1 < \mathfrak{n},$$

et donc

a^*a possède au moins une valeur propre non nulle.

- c) On a bien sûr $\operatorname{Im}(\mathfrak{a}^*\mathfrak{a}) \subset \operatorname{Im}(\mathfrak{a})$ puis, comme ces sous-espaces ont même dimension finie, $\operatorname{Im}(\mathfrak{a}^*) = \operatorname{Im}(\mathfrak{a}^*\mathfrak{a})$.
- Puisque $\mathfrak{a}^*\mathfrak{a}$ est diagonalisable d'après le théorème spectral, on a $\mathsf{E} = \left(\bigoplus_{1 \le i \le s} \mathsf{E}(\lambda_i) \right) \oplus \mathrm{Ker}(\mathfrak{a}^*\mathfrak{a})$. En particulier, la $\mathrm{somme} \ \sum_{i=1}^s \mathsf{E}(\lambda_i) \ \mathrm{est} \ \mathrm{directe} \ \mathrm{et} \ \mathrm{dim} \left(\underset{1 < i < s}{\oplus} \mathsf{E}(\lambda_i) \right) = \mathrm{dim} (\mathrm{Im} (\mathfrak{a}^* \mathfrak{a})).$
- $\bullet \text{ Pour } \mathfrak{i} \in \llbracket 1,s \rrbracket \text{ puis } \overrightarrow{x} \in \mathsf{E}(\lambda_{\mathfrak{i}}), \ \overrightarrow{x} = \frac{1}{\lambda_{\mathfrak{i}}} \alpha^* \alpha(\overrightarrow{x}) = \alpha^* \alpha\left(\frac{1}{\lambda_{\mathfrak{i}}}\overrightarrow{x}\right) \in \mathrm{Im}(\alpha^* \alpha). \text{ Ainsi, } \forall \mathfrak{i} \in \llbracket 1,s \rrbracket, \ \mathsf{E}(\lambda_{\mathfrak{i}}) \subset \mathrm{Im}(\alpha^* \alpha) \text{ et donc}$ $\underset{1 < i < s}{\oplus} E(\lambda_i) \subset \operatorname{Im}(\mathfrak{a}^*\mathfrak{a}).$

 $\mathrm{En}\ \mathrm{r\acute{e}sum\acute{e}},\ \underset{1\leq i\leq s}{\oplus} E(\lambda_i) \subset \mathrm{Im}(\mathfrak{a}^*\mathfrak{a})\ \mathrm{et}\ \mathrm{dim}\left(\underset{1\leq i\leq s}{\oplus} E(\lambda_i)\right) = \mathrm{dim}\left(\mathrm{Im}(\mathfrak{a}^*\mathfrak{a})\right) < +\infty\ \mathrm{et}\ \mathrm{donc}\ \underset{1\leq i\leq s}{\oplus} E(\lambda_i) = \mathrm{Im}(\mathfrak{a}^*\mathfrak{a}).$

$$\mathrm{Im}(\alpha^*) = \mathrm{Im}(\alpha^*\alpha) = \underset{1 \leq i \leq s}{\oplus} E(\lambda_i).$$

d) Soit λ une valeur propre de $\mathfrak{a}^*\mathfrak{a}$ et \overrightarrow{x} un vecteur propre associé.

$$\lambda \|\overrightarrow{x}\|^2 = (\lambda \overrightarrow{x}|\overrightarrow{x}) = (\alpha^*\alpha(\overrightarrow{x})|\overrightarrow{x}) = (\alpha(\overrightarrow{x})|\alpha(\overrightarrow{x})) = \|\alpha(\overrightarrow{x})\|^2,$$

et puisque $||x||^2 > 0$,

$$\lambda = \frac{\|\alpha(\overrightarrow{x})\|^2}{\|\overrightarrow{x}\|^2} \ge 0.$$

Ainsi, les valeurs propres de a*a sont des réels positifs. On rappelle alors que le rang de a*a est r et que a*a est diagonalisable. On peut donc classer les valeurs propres de a*a de sorte que les r premières soient strictement positives et les n-r dernières soient nulles et on note $\mu_1,\ldots,\,\mu_n$ les racines carrées de ces valeurs propres. On a donc $\operatorname{Sp}(a^*a)=$ $(\mu_1^2, \dots \mu_r^2, \mu_{r+1}^2, \dots \mu_n^2) \text{ avec } \mu_i \neq 0 \text{ si } i \in \llbracket 1, r \rrbracket \text{ et } \mu_i = 0 \text{ si } i > r.$ D'après le théorème spectral, il existe une base orthonormée $(\overrightarrow{e_1}, \dots, \overrightarrow{e_n}) \text{ de E telle que } \forall i \in \llbracket 1, n \rrbracket, \ \alpha^*\alpha(\overrightarrow{e_i}) = \mu_i^2 \overrightarrow{e_i}.$

e) Pour $i \in [1, r]$, posons $\overrightarrow{f_i} = \frac{1}{U_i} \alpha(\overrightarrow{e_i})$ et vérifions que $(\overrightarrow{f_i})_{1 \le i \le r}$ est une famille orthonormée.

Soit $(i,j) \in [1,r]^2$.

$$(\overrightarrow{f_i}|\overrightarrow{f_j}) = \frac{1}{\mu_i\mu_j}(\alpha(\overrightarrow{e_i})|\alpha(\overrightarrow{e_j})) = \frac{1}{\mu_i\mu_j}(\overrightarrow{e_i}|\alpha^*\alpha(\overrightarrow{e_j})) = \frac{1}{\mu_i\mu_j}(\overrightarrow{e_i}|\mu_j^2\overrightarrow{e_j}) = \frac{\mu_j}{\mu_i}\delta_{i,j} = \delta_{i,j}.$$

La famille $(\overrightarrow{f_i})_{1 \leq i \leq r}$ est bien une famille orthonormée. On la complète en une base orthonormée $(\overrightarrow{f_i})_{1 \leq i \leq n}$ de E. Puisque les μ_i sont nuls pour i > r, par construction on $a : \forall i \in [1, n], \ \alpha(\overrightarrow{e_i}) = \mu_i \overrightarrow{f_i}$.

Il existe une base orthonormée
$$(\overrightarrow{f_i})_{1 \leq i \leq n}$$
 de E telle que $\forall i \in [\![1,n]\!], \ \alpha(\overrightarrow{e_i}) = \mu_i \overrightarrow{f_i}.$

I. B. 2) Soit u l'endomorphisme de E défini par $\forall i \in [1, n], \ u(\overrightarrow{f_i}) = \overrightarrow{e_i}$. L'image par u d'une base orthonormée de E est une base orthonormée de E et donc $u \in O(E)$.

De plus, $\forall i \in [1, n]$, $ua(\overrightarrow{e_i}) = \mu_i \overrightarrow{e_i}$. Ainsi, l'endomorphisme ua diagonalise en base orthonormée et ses valeurs propres sont des réels positifs. On en déduit que $ua \in S^+(E)$.

Enfin,
$$\operatorname{Tr}(u\alpha) = \sum_{i=1}^{n} \mu_i > 0$$
.

$$\forall \alpha \in \mathcal{L}(E) \setminus \{0\}, \ \exists u \in O(E) / \ u\alpha \in \mathcal{S}^+(E) \ \mathrm{et} \ \mathrm{Tr}(u\alpha) > 0.$$

I. C - On supposera $n \geq 2$.

I. C. 1) Soit ν l'endomorphisme de E tel que $\forall i \in [1, n], \ \nu(\overrightarrow{e_i}) = e_{i+1}$ avec la convention $\overrightarrow{e_{n+1}} = \overrightarrow{e_1}$ puis $h = \nu u$. Puisque ν transforme une base orthonormée en une base orthonormée, $\nu \in O(E)$ et puisque $(O(E), \circ)$ est un groupe, $h \in O(E)$. Enfin, pour $i \in [1, n]$,

$$\text{ha}(\overrightarrow{e_i}) = \mu_i \nu(\overrightarrow{e_i}) = \mu_i \overrightarrow{e_{i+1}} \in \left(\text{Vect}(\overrightarrow{e_i}) \right)^o.$$

I. C. 2) Mais alors,

$$\langle\langle h^*, a \rangle\rangle = \operatorname{Tr}(ha) = \sum_{i=1}^n (\overrightarrow{e_i}|ha(\overrightarrow{e_i})) = 0$$

et donc $h^* \in \mathfrak{a}^{\perp} = \mathcal{H}$. Enfin, $h^* = h^{-1} \in O(E)$ car $(O(E), \circ)$ est un groupe.

Tout hyperplan \mathcal{H} de $\mathcal{L}(\mathsf{E})$ contient un automorphisme orthogonal.

Partie II - Cas où dim E = 3.

II. A -

II. A. 1) On complète la famille orthonormée (\overrightarrow{k}) en une base orthonormée directe $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ de E. On a

$$\langle\langle \alpha, \mathfrak{p}_{\overrightarrow{k}} \rangle\rangle = (\overrightarrow{i} | \alpha^* \mathfrak{p}_{\overrightarrow{k}}(\overrightarrow{i})) + (\overrightarrow{j} | \alpha^* \mathfrak{p}_{\overrightarrow{k}}(\overrightarrow{j})) + (\overrightarrow{k} | \alpha^* \mathfrak{p}_{\overrightarrow{k}}(\overrightarrow{k})) = (\overrightarrow{k} | \alpha^*(\overrightarrow{k})) = (\alpha(\overrightarrow{k}) | \overrightarrow{k}).$$

$$\forall \alpha \in \mathcal{L}(E), \; \langle \langle \alpha | p_{\overrightarrow{k}} \rangle \rangle = (\alpha(\overrightarrow{k}), \overrightarrow{k}).$$

II. A. 2) Soit $\overrightarrow{x} \in E$. Posons $\overrightarrow{x_1} = p_{\overrightarrow{k}}(\overrightarrow{x})$ et $\overrightarrow{x_2} = \overrightarrow{x} - p_{\overrightarrow{k}}(\overrightarrow{x})$. On a

$$\begin{split} r_{\theta, \overrightarrow{k}}(\overrightarrow{x}) &= r_{\theta, \overrightarrow{k}}(\overrightarrow{x_1}) + r_{\theta, \overrightarrow{k}}(\overrightarrow{x_2}) = \overrightarrow{x_1} + \left(\cos\theta \overrightarrow{x_2} + \sin\theta(\overrightarrow{k} \wedge \overrightarrow{x_2})\right) \\ &= p_{\overrightarrow{k}}(\overrightarrow{x}) + \cos\theta(\overrightarrow{x} - p_{\overrightarrow{k}}(\overrightarrow{x})) + \sin\theta\left(\overrightarrow{k} \wedge \overrightarrow{x}\right) \end{split}$$

et donc

$$r_{\theta, \, \overrightarrow{k}} = \cos \theta I d_E + (1 - \cos \theta) p_{\overrightarrow{k}} + \sin \theta \omega_{\overrightarrow{k}}.$$

 $\mathrm{Maintenant},\ \langle\langle\alpha,\mathrm{Id}_{\mathsf{E}}\rangle\rangle=\mathrm{Tr}(\mathrm{Id}_{\mathsf{E}}^*\alpha)=\mathrm{Tr}(\alpha)\ \mathrm{et}\ \langle\langle\alpha,p_{\overrightarrow{k}}\rangle\rangle=(\overrightarrow{k}|\alpha(\overrightarrow{k}))\ \mathrm{d'après}\ \mathrm{la}\ \mathrm{question}\ \mathrm{pr\'ec\'edente}.\ \mathrm{Donc}$

$$\forall \alpha \in \mathcal{L}(E), \; \langle \langle \alpha, r_{\theta, \overrightarrow{k}} \rangle \rangle = \cos \theta \; \mathrm{Tr}(\alpha) + (1 - \cos \theta) \left(\overrightarrow{k}, \alpha(\overrightarrow{k}) \right) + \sin \theta \langle \langle \alpha, \omega_{\overrightarrow{k}} \rangle \rangle.$$

II. A. 3) Montrons que $\omega_{\overrightarrow{k}} \in \mathcal{A}(E)$. Soit $(\overrightarrow{x}, \overrightarrow{y}) \in E^2$.

$$(\omega_{\overrightarrow{k}}(\overrightarrow{x})|\overrightarrow{y}) = \left((\overrightarrow{k} \wedge \overrightarrow{x})|\overrightarrow{y}\right) = [\overrightarrow{k}, \overrightarrow{x}, \overrightarrow{y}] = -[\overrightarrow{k}, \overrightarrow{y}, \overrightarrow{x}] = -\left((\overrightarrow{k} \wedge \overrightarrow{y})|\overrightarrow{x}\right) = -(\overrightarrow{x}|\omega_{\overrightarrow{k}}(\overrightarrow{y})).$$

 $\mathrm{Ainsi},\, \omega_{\overrightarrow{k}} \in \mathcal{A}(E). \; \mathrm{On \; sait \; d'autre \; part \; que \; } p_{\overrightarrow{k}} \in \mathcal{S}(E). \; \mathrm{Comme \; } \mathcal{A}(E) = (\mathcal{S}(E))^{\perp},$

$$\boxed{ \text{ si } \alpha \in \mathcal{S}(E), \, \langle \langle \alpha, r_{\theta, \overrightarrow{k}} \rangle \rangle = \cos \theta \, \operatorname{Tr}(\alpha) + (1 - \cos \theta) \left(\overrightarrow{k}, \alpha(\overrightarrow{k}) \right) \, \text{et si } \alpha \in \mathcal{A}(E), \, \langle \langle \alpha, r_{\theta, \overrightarrow{k}} \rangle \rangle = \sin \theta \langle \langle \alpha, \omega_{\overrightarrow{k}} \rangle \rangle. }$$

II.B-

II. B. 1) Montrons que la famille (s, v) est libre. Soit $(\alpha, \beta) \in \mathbb{R}^2$.

$$\alpha s + \beta v = 0 \Rightarrow \operatorname{Tr}(\alpha s + \beta v) = 0 \Rightarrow \alpha \operatorname{Tr}(s) + \beta \operatorname{Tr}(v) = 0 \Rightarrow \alpha = 0.$$

Il reste alors $\beta \nu = 0$ et donc $\beta = 0$ car $\nu \neq 0$. Ainsi, la famille (s, ν) est libre.

On en déduit que $\dim(\mathcal{V}) = \dim(\mathcal{L}(\mathsf{E})) - \dim(\mathrm{Vect}(\mathsf{s}, \mathsf{v})) = 9 - 2 = 7.$

$$\dim(\mathcal{V}) = 7.$$

$$\begin{split} \sum_{\epsilon \in \{-1,1\}^3} \left(\overrightarrow{x_\epsilon} | s(\overrightarrow{x_\epsilon})\right) &= \frac{1}{3} \sum_{\epsilon \in \{-1,1\}^3} \sum_{1 \leq i,j \leq 3} \epsilon_i \epsilon_j \left(\overrightarrow{e_i} | s(\overrightarrow{e_j})\right) \\ &= \frac{1}{3} \sum_{\epsilon \in \{-1,1\}^3} \left(\sum_{i=1}^3 \epsilon_i^2 \left(\overrightarrow{e_i} | s(\overrightarrow{e_i})\right) \right) + \frac{1}{3} \sum_{\epsilon \in \{-1,1\}^3} \left(\sum_{i \neq j} \epsilon_i \epsilon_j \left(\overrightarrow{e_i} | s(\overrightarrow{e_j})\right) \right) \\ &= \frac{1}{3} \sum_{\epsilon \in \{-1,1\}^3} \operatorname{Tr}(s) + \frac{1}{3} \sum_{i \neq j} \left(\sum_{\epsilon \in \{-1,1\}^3} \epsilon_i \epsilon_j \right) \left(\overrightarrow{e_i} | s(\overrightarrow{e_j})\right) \end{split}$$

 $\text{Maintenant, card}(\{-1,1\}^3=8 \text{ et donc } \sum_{\epsilon \in \{-1,1\}^3} \operatorname{Tr}(s)=8 \operatorname{Tr}(s)=8. \text{ D'autre part pour } \mathfrak{i} \neq \mathfrak{j}, \text{ par symétrie des rôles, } \mathfrak{g}(s)=8 \operatorname{Tr}(s)=8 \operatorname{Tr$

$$\sum_{\epsilon\in\{-1,1\}^3}\epsilon_{\mathfrak{i}}\epsilon_{\mathfrak{j}}=\sum_{\epsilon\in\{-1,1\}^3}\epsilon_{1}\epsilon_{2}=1\times 1+1\times 1+1\times (-1)+1\times (-1)-1\times 1-1\times 1-1\times (-1)-1\times (-1)=0.$$

Fianlement,

$$\sum_{\epsilon \in \{-1,1\}^3} \left(\overrightarrow{x_\epsilon} | s(\overrightarrow{x_\epsilon})\right) = \frac{8}{3}.$$

II. B. 3) a) Soit $(e) = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ une base orthonormée formée de vecteurs propres de ν et $(\lambda_1, \lambda_2, \lambda_3)$ la famille des valeurs propres associées. (e) existe car ν est symétrique. Pour $\varepsilon \in \{-1, 1\}^3$, on a

$$\begin{split} \left(\overrightarrow{x_{\epsilon}}|\nu(\overrightarrow{x_{\epsilon}})\right) &= \frac{1}{3} \sum_{1 \leq i,j \leq 3} \epsilon_{i} \epsilon_{j} \left(\overrightarrow{e_{i}}|\nu(\overrightarrow{e_{j}})\right) = \frac{1}{3} \sum_{1 \leq i,j \leq 3} \lambda_{j} \epsilon_{i} \epsilon_{j} \left(\overrightarrow{e_{i}}|\overrightarrow{e_{j}}\right) = \frac{1}{3} \sum_{i=1}^{3} \lambda_{i} \\ &= \frac{1}{3} \mathrm{Tr}(\nu) = 0. \end{split}$$

b) Si pour chaque $\varepsilon \in \{-1,1\}^3$, on a $(\overrightarrow{x_\varepsilon}|s(\overrightarrow{x_\varepsilon})) > \frac{1}{3}$, alors $\sum_{\varepsilon \in \{-1,1\}^3} (\overrightarrow{x_\varepsilon}|s(\overrightarrow{x_\varepsilon})) > \frac{8}{3}$ ce qui contredit le résultat de II.B.2). Donc, l'un au moins des vecteurs $\overrightarrow{x_\varepsilon}$ est tel que $(\overrightarrow{x_\varepsilon}|s(\overrightarrow{x_\varepsilon})) \leq \frac{1}{3}$. On le note \overrightarrow{k} .

 $\overrightarrow{k} \text{ est un vecteur unitaire, vérifie } \left(\overrightarrow{k}, \nu(\overrightarrow{k})\right) = 0 \text{ et } \left(\overrightarrow{k}, s(\overrightarrow{k})\right) \leq \frac{1}{3}. \text{ Enfin, puisque s est positif, on a aussi } \left(\overrightarrow{k}, s(\overrightarrow{k})\right) \geq 0.$

c) Soit $\theta \in \mathbb{R}$. D'après la question II.A.3)

$$\langle\langle \nu, r_{\theta, \overrightarrow{k}} \rangle\rangle = \cos\theta \; \mathrm{Tr}(\nu) + (1-\cos\theta) \left(\overrightarrow{k}, \nu(\overrightarrow{k})\right) = 0.$$

D'autre part,

$$\langle \langle s, r_{\theta, \overrightarrow{k}} \rangle \rangle = \cos \theta \; \mathrm{Tr}(s) + (1 - \cos \theta) \left(\overrightarrow{k}, s(\overrightarrow{k}) \right) = \left(\overrightarrow{k}, s(\overrightarrow{k}) \right) + \cos \theta \left(1 - \left(\overrightarrow{k}, s(\overrightarrow{k}) \right) \right),$$

et donc

$$\langle\langle s, r_{\theta, \overrightarrow{k}} \rangle\rangle = 0 \Leftrightarrow \cos\theta = -\frac{\left(\overrightarrow{k}, s(\overrightarrow{k})\right)}{1 - \left(\overrightarrow{k}, s(\overrightarrow{k})\right)} \ (*).$$

 $\begin{array}{l} \text{Maintenant, la fonction } f \ : \ x \mapsto -\frac{x}{1-x} = 1 - \frac{1}{1-x} \ \text{r\'ealise une bijection de } [0,\frac{1}{3}] \ \text{sur } [f(\frac{1}{3}),f(0)] = [-\frac{1}{2},0] \ \subset]-1,0]. \\ \text{Comme} \ \left(\overrightarrow{k},s(\overrightarrow{k})\right) \in [0,\frac{1}{3}], \ l\'e\text{equation } (*) \ \text{admet au moins une solution } \theta \in [\frac{\pi}{2},\pi[.$

Pour ce réel θ , on a $\langle\langle s, r_{\theta, \overrightarrow{k}} \rangle\rangle = \langle\langle \nu, r_{\theta, \overrightarrow{k}} \rangle\rangle = 0$ et donc $r_{\theta, \overrightarrow{k}} \in \mathcal{V}$.

$$\exists \theta \in [\frac{\pi}{2}, \pi[/\ r_{\theta, \overrightarrow{k}} \in \mathcal{V}.$$

II. B. 4) a) Soit \overrightarrow{k} un vecteur unitaire. Puisque s est symétrique et que Tr(s) = 1.

$$\langle\langle s, \mathbf{r}_{\pi, \overrightarrow{\mathbf{k}_2}} \rangle\rangle = -1 + 2\left(\overrightarrow{\mathbf{k}_2} | s(\overrightarrow{\mathbf{k}_2})\right).$$

On rappelle maintenant que s est symétrique positif, de rang au plus 2 et de trace 1. Soit alors $(e) = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ une base orthonormée de E formée de vecteurs propres de s, $\overrightarrow{e_3}$ étant dans le noyau de s. Quite à remplacer $\overrightarrow{k_1}$ par $-\overrightarrow{k_1}$, on supposera que $c_1 \ge 0$.

Posons alors $\overrightarrow{k_2} = \frac{\operatorname{sgn}(\alpha_1)}{\sqrt{2}} \overrightarrow{e_1} + \frac{\operatorname{sgn}(\alpha_2)}{\sqrt{2}} \overrightarrow{e_2}$. $\overrightarrow{k_2}$ est unitaire et ses coordonnées sont de mêmes signes que celles de $\overrightarrow{k_1}$. De plus,

$$\begin{split} \left(\overrightarrow{k_2}|s(\overrightarrow{k_2})\right) &= \left(\frac{\operatorname{sgn}(\alpha_1)}{\sqrt{2}}\overrightarrow{e_1} + \frac{\operatorname{sgn}(\alpha_2)}{\sqrt{2}}\overrightarrow{e_2}, s\left(\frac{\operatorname{sgn}(\alpha_1)}{\sqrt{2}}\overrightarrow{e_1} + \frac{\operatorname{sgn}(\alpha_2)}{\sqrt{2}}\overrightarrow{e_2}\right)\right) \right) \\ &= \frac{1}{2}\left(\left(\overrightarrow{e_1}|s(\overrightarrow{e_1})\right) + \left(\overrightarrow{e_2}|s(\overrightarrow{e_2})\right)\right) \; (\operatorname{car}\;(e)\; \operatorname{est}\; \operatorname{orthonorm\acute{e}e}\; \operatorname{et}\; \operatorname{car}\; \forall i \in \llbracket 1, 3 \rrbracket, \; s(e_i) \; \operatorname{est}\; \operatorname{colin\acute{e}aire}\; \grave{a}\; e_i) \\ &= \frac{1}{2}\left(\left(\overrightarrow{e_1}|s(\overrightarrow{e_1})\right) + \left(\overrightarrow{e_2}|s(\overrightarrow{e_2})\right) + \left(\overrightarrow{e_3}|s(\overrightarrow{e_3})\right)\right) \\ &= \frac{1}{2} \; \operatorname{Tr}(s) = \frac{1}{2}. \end{split}$$

Mais alors

$$\langle\langle s, r_{\pi, \overrightarrow{k_2}} \rangle\rangle = -1 + 2\left(\overrightarrow{k_2}|s(\overrightarrow{k_2})\right) = 0$$

et le vecteur $\overrightarrow{k_2}$ convient.

b) La fonction $t \mapsto 2t\alpha_2^2 + (1-2t)\alpha_1^2$ est affine sur $[0,\frac{1}{2}]$ et ses valeurs aux bornes de $[0,\frac{1}{2}]$, à savoir α_1^2 et α_2^2 , sont positives. On en déduit que la fonction $t \mapsto 2t\alpha_2^2 + (1-2t)\alpha_1^2$ est positive sur $[0,\frac{1}{2}]$. La fonction α est donc définie sur $[0,\frac{1}{2}]$ puis sur [0,1] par symétrie. De même, les fonctions α et α sont définies sur [0,1] et finalement

la fonction
$$t \mapsto \overrightarrow{k}(t)$$
 est définie sur $[0,1]$.

Pour $t \in [0, \frac{1}{2}],$

$$\begin{split} \left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right) &= (a(t))^2 \left(\overrightarrow{e_1}, s(\overrightarrow{e_1})\right) + (b(t))^2 \left(\overrightarrow{e_2}, s(\overrightarrow{e_2})\right) + (c(t))^2 \left(\overrightarrow{e_3}, s(\overrightarrow{e_3})\right) \\ &= (2ta_2^2 + (1-2t)a_1^2) \left(\overrightarrow{e_1}, s(\overrightarrow{e_1})\right) + (2tb_2^2 + (1-2t)b_1^2) \left(\overrightarrow{e_2}, s(\overrightarrow{e_2})\right) + (2tc_2^2 + (1-2t)c_1^2) \left(\overrightarrow{e_3}, s(\overrightarrow{e_3})\right) \\ &= 2t \left(a_2^2 \left(\overrightarrow{e_1}, s(\overrightarrow{e_1})\right) + b_2^2 \left(\overrightarrow{e_2}, s(\overrightarrow{e_2})\right) + c_2^2 \left(\overrightarrow{e_3}, s(\overrightarrow{e_3})\right)\right) \\ &+ (1-2t) \left(a_1^2 \left(\overrightarrow{e_1}, s(\overrightarrow{e_1})\right) + b_1^2 \left(\overrightarrow{e_2}, s(\overrightarrow{e_2})\right) + c_1^2 \left(\overrightarrow{e_3}, s(\overrightarrow{e_3})\right)\right) \\ &= 2t \left(\overrightarrow{k_2}|s(\overrightarrow{k_2})\right) + (1-2t) \left(\overrightarrow{k_1}|s(\overrightarrow{k_1})\right). \end{split}$$

 $\mathrm{Maintenant}, \ \left(\overrightarrow{k_1}|s(\overrightarrow{k_1})\right) \in [0,\frac{1}{3}] \ \mathrm{et} \ \left(\overrightarrow{k_2}|s(\overrightarrow{k_2})\right) = \frac{1}{2}. \ \mathrm{Donc}, \ \mathrm{puisque} \ 2t \geq 0 \ \mathrm{et} \ 1 - 2t \geq 0,$

$$\left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right) = \operatorname{bar}\left\{\left(\overrightarrow{k_2}|s(\overrightarrow{k_2})\right) \quad (2t), \left(\overrightarrow{k_1}|s(\overrightarrow{k_1})\right) \quad (1-2t)\right\} \in [0,\frac{1}{2}].$$

Mais alors, à l'aide de la fonction f de la question II.B.3)c),

$$\forall t \in [0,\frac{1}{2}], \ \frac{\left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right)}{\left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right)-1} \ \mathrm{existe} \ \mathrm{et} \ \mathrm{et} \ \mathrm{et} \ \mathrm{de} \ [-1,0].$$

On en déduit que la fonction $t\mapsto \theta(t)$ est définie sur $[0,\frac{1}{2}]$ puis sur [0,1] par symétrie.

La fonction $t\mapsto \theta(t)$ est définie sur [0,1].

c) Soit $t \in [0, \frac{1}{2}]$.

$$\|\overrightarrow{k}(t)\|^2 = 2t(\alpha_2^2 + b_2^2 + c_2^2) + (1 - 2t)(\alpha_1^2 + b_1^2 + c_1^2) = 2t\|\overrightarrow{k_2}\|^2 + (1 - 2t)\|\overrightarrow{k_1}\|^2 = 2t + 1 - 2t = 1.$$

Ceci reste vrai pour $t \in [\frac{1}{2}, 1]$ par symétrie et donc

$$\forall t \in [0,1], \ \|\overrightarrow{\overline{k}}(t)\| = 1.$$

Soit $t \in [0, \frac{1}{2}]$. D'après la relation (1),

$$\begin{split} \langle \langle s, \rho(t) \rangle \rangle &= \cos(\theta(t)) + (1 - \cos(\theta(t))) \left(\overrightarrow{k}(t) | s(\overrightarrow{k}(t)) \right) = \cos(\theta(t)) \left(1 - \left(\overrightarrow{k}(t) | s(\overrightarrow{k}(t)) \right) \right) + \left(\overrightarrow{k}(t) | s(\overrightarrow{k}(t)) \right) \\ &= \frac{\left(\overrightarrow{k}(t) | s(\overrightarrow{k}(t)) \right)}{\left(\overrightarrow{k}(t) | s(\overrightarrow{k}(t)) \right) - 1} \left(1 - \left(\overrightarrow{k}(t) | s(\overrightarrow{k}(t)) \right) \right) + \left(\overrightarrow{k}(t) | s(\overrightarrow{k}(t)) \right) \\ &= 0, \end{split}$$

ce qui reste vrai si $t \in [\frac{1}{2}, 1]$ par symétrie.

$$\forall t \in [0,1], \ \langle \langle s, \rho(t) \rangle \rangle = 0.$$

- d) On note $\theta_1 = \theta(0)$ (resp. $\theta_2 = \theta\left(\frac{1}{2}\right)$) le réel associé à $\overrightarrow{k_1}$ (resp. $\overrightarrow{k_2}$). D'après II.B.3)c), $\theta_1 \in [\frac{\pi}{2}, \pi[$ et d'après II.B.4)a), $\theta_2 = \pi$.
- La fonction $\mathfrak a$ est continue sur $[0,\frac{1}{2}]$ et sur $]\frac{1}{2},1]$. De plus, pour $t>\frac{1}{2},$ $\mathfrak a(t)=\mathfrak a(1-t)$. On en déduit que $\mathfrak a\left(\frac{1}{2}^+\right)=\mathfrak a\left(\frac{1}{2}^-\right)=\mathfrak a\left(\frac{1}{2}^-\right)$ et la fonction est également continue à droite en $\frac{1}{2}$. Ainsi, la fonction $\mathfrak a$ est continue sur [0,1]. Il en est de même des fonctions $\mathfrak b$ et $\mathfrak c$ et finalement de la fonction \overrightarrow{k} .
- La fonction $t \mapsto \frac{\left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right)}{\left(\overrightarrow{k}(t)|s(\overrightarrow{k}(t))\right)-1}$ est continue sur $[0,\frac{1}{2}]$ et sur $]\frac{1}{2},1]$ en tant que quotient de fonctions continues sur $[0,\frac{1}{2}]$ et sur $]\frac{1}{2},1]$ dont le dénominateur ne s'annule pas sur $[0,\frac{1}{2}]$ et sur $]\frac{1}{2},1]$. Il en est de même de la fonction θ . De plus, $\theta\left(\frac{1}{2}^+\right)=2\pi-\theta\left(\frac{1}{2}^-\right)=2\pi-\pi=\theta\left(\frac{1}{2}\right)$ La fonction θ est donc continue sur [0,1].
- Soit $t \in [0,1]$. Puisque a est antisymétrique, Tr(a) = 0 et donc $Tr(v_1) = Tr(v) = 0$. On en déduit que

$$\langle \langle \rho(t), \nu \rangle \rangle = \langle \langle \rho(t), \nu_1 \rangle \rangle + \langle \langle \rho(t), \alpha \rangle \rangle = (1 - \cos(\theta(t))) \left(\overrightarrow{k}(t) | \nu_1(\overrightarrow{k}(t)) \right) + \sin(\theta(t)) \langle \langle \alpha, \omega_{\overrightarrow{k}(t)} \rangle \rangle \quad (*).$$

 $\text{Puisque la fonction } \overrightarrow{k} \text{ est continue sur } [0,1], \text{ il en est de même de la fonction } t \mapsto \langle \langle \alpha, \omega_{\overrightarrow{k}(t)} \rangle \rangle = \sum_{i=1}^{3} \Big(\overrightarrow{e_i} | \alpha^* (\overrightarrow{k}(t) \wedge \overrightarrow{e_i}) \Big).$ Finalement

 $\label{eq:continue} \begin{picture}(0,0) \put(0,0){\overline{t}} \put($

$$\bullet \ \mathrm{On} \ \mathrm{a} \ \overrightarrow{k}(0) = \overrightarrow{k}(1) = \overrightarrow{k_1}. \ \mathrm{Puis} \ \theta(0) = \theta_1 \ \mathrm{et} \ \theta(1) = 2\pi - \theta_1. \ \mathrm{Ainsi}, \ \sin(\theta(1)) = -\sin(\theta(0)). \ \mathrm{Mais} \ \mathrm{alors}, \ \mathrm{d'après} \ (*)$$

$$\langle \langle \rho(0), \nu \rangle \rangle = (1 - \cos(\theta_1)) \left(\overrightarrow{k_1}) | \nu_1(\overrightarrow{k_1}) \right) + \sin(\theta_1) \langle \langle \alpha, \omega_{\overrightarrow{k_1}} \rangle \rangle = \sin(\theta_1) \langle \langle \alpha, \omega_{\overrightarrow{k_1}} \rangle \rangle = -\langle \langle \rho(1), \nu \rangle \rangle.$$

Puisque la fonction $t \mapsto \langle \langle \rho(t), \nu \rangle \rangle$ est continue sur [0,1] et prend des valeurs de signes contraires en 0 et 1, le théorème des valeurs intermédiaires permet d'affirmer que la fonction $t \mapsto \langle \langle \rho(0), \nu \rangle \rangle$ s'annule au moins une fois sur [0,1]. Ainsi, il existe un réel t tel que $\langle \langle r_{\theta(t), \overrightarrow{k}(t)}, \nu \rangle \rangle = 0$. Comme d'autre part $\langle \langle r_{\theta(t), \overrightarrow{k}(t)}, s \rangle \rangle = 0$ d'après la question précédente, pour ce réel t, $r_{\theta(t), \overrightarrow{k}(t)} \in \mathcal{V}$.

Il existe
$$t \in [0,1]$$
 tel que $r_{\theta(t),\overrightarrow{k}(t)} \in \mathcal{V}$.

II. C -

II. C. 1) Soit \mathcal{V} un sous-espace de $\mathcal{L}(\mathsf{E})$ de dimension 7. Posons $\mathcal{W} = \mathcal{V}^{\perp}$.

- W est de dimension 2. Soit donc (f, g) une base de W.
- Montrons tout d'abord que \mathcal{W} contient un endomorphisme \mathfrak{a} de rang \mathfrak{r} tel que $1 \le \mathfrak{r} \le 2$. Si \mathfrak{f} n'est pas inversible, $\mathfrak{a} = \mathfrak{f}$ convient. Sinon, le polynôme

$$P(\lambda) = \det(g + \lambda f) = (\det f) \times \det(f^{-1}g + \lambda Id_{E}) = \det(f) \times \chi_{f^{-1}g}(-\lambda)$$

est un polynôme à coefficients réels de degré 3 et admet donc au moins une racine λ_0 dans \mathbb{R} . L'endomorphisme $\mathfrak{a}=\lambda_0 f+\mathfrak{g}$ est alors non inversible, mais n'est pas nul car la famille (f,\mathfrak{g}) est libre.

Dans tous les cas, \mathcal{W} contient un endomorphisme \mathfrak{a} de rang \mathfrak{r} tel que $1 \leq \mathfrak{r} \leq 2$. La question I.B.2) fournit alors un automorphisme orthogonal \mathfrak{u} tel que l'endomorphisme $\mathfrak{s}' = \mathfrak{u}\mathfrak{a}$ soit symétrique positif de rang au plus 2 (car $\operatorname{rg}(\mathfrak{s}') = \operatorname{rg}(\mathfrak{a})$) et tel que $\operatorname{Tr}(\mathfrak{u}\mathfrak{a}) > 0$.

On complète alors la famille libre (a) de W en une base (a, b) de W. Soit $h \in \mathcal{L}(E)$.

$$\begin{split} h &\in \mathcal{V} \Leftrightarrow \langle \langle h, \alpha \rangle \rangle = \langle \langle h, b \rangle \rangle = 0 \Leftrightarrow \langle \langle h, u^{-1} s' \rangle \rangle = \langle \langle h, b \rangle \rangle = 0 \\ &\Leftrightarrow \operatorname{Tr}(h^* u^{-1} s') = \operatorname{Tr}(h^* b) = 0 \Leftrightarrow \operatorname{Tr}((uh)^* s') = \operatorname{Tr}((uh)^* ub) = 0 \text{ (car } u^{-1} = u^*) \\ &\Leftrightarrow \langle \langle uh, s' \rangle \rangle = \langle \langle uh, ub \rangle \rangle = 0 \Leftrightarrow uh \in (s', ub)^{\perp}. \end{split}$$

Ceci montre que uW = Vect(s', ub) ou encore que $W = u^{-1}Vect(s', ub)$. Posons $V' = (s', ub)^{\perp}$.

• Montrons que $(\mathcal{V}')^{\perp}$ contient un endomorphisme s symétrique positif de rang au plus 2 et de trace égale à 1 et aussi un endomorphisme ν non nul de trace nulle.

Soit $s = \frac{1}{\operatorname{Tr}(s')}s'$. s est un endomorphisme symétrique positif de trace 1 et $s \in (\mathcal{V}')^{\perp}$ car $(\mathcal{V}')^{\perp}$ est un sous-espace de $\mathcal{L}(E)$. Soit ensuite $v = ub - \operatorname{Tr}(ub)s$. v est dans $(\mathcal{V}')^{\perp}$ et de plus $\operatorname{Tr}(v) = \operatorname{Tr}(ub) - \operatorname{Tr}(ub)\operatorname{Tr}(s) = 0$. Enfin, $v \neq 0$ car (s, ub) est libre.

D'après la partie II.B., il existe une rotation ρ dans $\mathcal{V}'=(s',\mathfrak{u}b)^{\perp}$. Mais alors $h=\mathfrak{u}^{-1}\rho$ est un automorphisme orthogonal car $(O(E),\circ)$ est un groupe et $h\in\mathcal{V}$ car $\mathfrak{u}h\in\mathcal{V}'$.

Tout sous-espace de $\mathcal{L}(\mathsf{E})$ de dimension 7 contient au moins un automorphisme.

II. C. 2) Soit $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ une base orthonormmée de E. Considérons $\mathcal V$ l'ensemble des endomorphismes de E qui s'annulent en $\overrightarrow{e_1}$. $\mathcal V$ est constitué des endomorphismes dont la matrice dans la base $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ est de la forme

$$\left(\begin{array}{ccc} 0 & a & d \\ 0 & b & e \\ 0 & c & f \end{array}\right), (a,b,c,d,e,f) \in \mathbb{R}^6,$$

et est donc un sous-espace de $\mathcal{L}(E)$ de dimension 6. Mais tous les éléments de \mathcal{V} ont un noyau non nul et donc aucun des éléments de \mathcal{V} n'est un automorphisme de E.

Un sous-espace de $\mathcal{L}(E)$ de dimension 6 ne contient pas nécessairement un automorphisme orthogonal.