

Operations Research

Vorlesung 3

Technische

Lineare Programmierung: Simplex-Algorithmus

Wiederholung

- Die drei Schritte im Operations Research
 - Problem, Modell, Lösung
- Typische Problemszenarien
 - Z.B. Transportproblem, Energieflussproblem, Auswahlproblem
- Standardform der linearen Programmierung
- Intuitive Lösungsverfahren
 - Systematisches Durchsuchen und Grafisches Lösen

Heutige Fragestellungen

- Wie können wir (größere) lineare Probleme lösen?
- Ist jedes lineare Programm lösbar?
- Gibt es Ausnahmen und wie erkennen wir sie?

Überblick

- 1. Simplex-Algorithmus
- 2. Anwendungsbeispiel zum Simplex-Algorithmus
- 3. Sonderfälle der linearen Programmierung

Überblick

- 1. Simplex-Algorithmus
- 2. Anwendungsbeispiel zum Simplex-Algorithmus
- 3. Sonderfälle der linearen Programmierung

Simplex-Algorithmus (Dantzig, 1947): Idee

- Eine Lösung der m Restriktionen $a_{i,1}x_1 + \cdots + a_{i,n+m}x_{n+m} = b_i$ i = 1, ..., m heißt Basislösung, falls gilt:
 - n der Variablen x_1, \dots, x_{n+m} sind Null (Nichtbasisvariablen)
 - Jede der verbleibenden m Variablen (Basisvariablen) tritt in nur jeweils einer Gleichung, und zwar mit dem Koeffizienten 1, auf.
- Eine Basislösung heißt zulässig, falls alle Basisvariablen (BV) nicht-negativ sind.

Variablennotation

- Strukturvariablen:
 - originale Entscheidungsvariablen
 - Wirken sich auf Zielfunktion aus
- Schlupfvariablen:
 - Repräsentieren Nebenbedingungen
 - Keine Auswirkung auf Zielfunktion
- Basisvariablen einer Lösung:
 - Sind ungleich 0
 - Haben einen einzigen Eintrag in unserem Gleichungssystem
- Nichtbasisvariablen:
 - Sind 0
 - Können in mehreren Gleichungen auftreten

Struktur-, Schlupf-, Basis- und Nichtbasisvariablen

Strukturvariable ist Basisvariable:

- originale Entscheidungsvariablen
- I.d.R. ungleich 0 (kommt in der Lösung vor)
- Strukturvariable ist Nichtbasisvariable:
 - originale Entscheidungsvariablen
 - Gleich 0 (kommt nicht in der Lösung vor)

Schlupfvariable ist Basisvariable:

- Repräsentiert Nebenbedingung
- I.d.R. ungleich 0 (Nebenbedingung bindet nicht)
- Schlupfvariable ist Nichtbasisvariable:
 - Repräsentiert Nebenbedingung
 - Gleich 0 (Nebenbedingung bindet)

Simplex-Algorithmus (Dantzig, 1947): Idee

- Eine Lösung der m Restriktionen $a_{i,1}x_1 + \cdots + a_{i,n+m}x_{n+m} = b_i$ i = 1, ..., m heißt Basislösung, falls gilt:
 - n der Variablen x_1, \dots, x_{n+m} sind Null (Nichtbasisvariablen)
 - Jede der verbleibenden m Variablen (Basisvariablen) tritt in nur jeweils einer Gleichung, und zwar mit dem Koeffizienten 1, auf.
- Eine Basislösung heißt zulässig, falls alle Basisvariablen (BV) nicht-negativ sind.
- Idee des Simplex-Algorithmus:
 Ausgehend von einer zulässigen Basislösung wird eine neue zulässige Basislösung mit verbessertem Zielfunktionswert konstruiert, bis ein Abbruchkriterium erreicht wird.

- Eine Unternehmung stellt die Produkte P₁ und P₂ her, die mit einem Gewinn (Deckungsbeitrag) von 3 € bzw. 4 € pro ME verkauft werden können.
- Zur Fertigung der beiden Produkte sind erforderlich
 - (a) eine Maschine, die (in dem Planungszeitraum) maximal 1200 Std. eingesetzt werden kann
 - (b) ein Rohstoff, von dem (in dem Planungszeitraum) höchstens 3000 ME zur Verfügung stehen
 - (c) Arbeitskräfte, die (in dem Planungszeitraum) höchstens 125 Std. eingesetzt werden können
- Für die Herstellung einer ME des Produktes P₁ (bzw. P₂) werden benötigt:

Maschine 3 Std. (bzw. 2 Std.)
Rohstoff 5 ME (bzw. 10 ME)
Arbeitskräfte - (bzw. 0,5 Std.)

Gesucht: Produktionsprogramm mit maximalem (Gesamt-)Gewinn

Simplex-Algorithmus: Problemformulierung (Produktionsprogrammplanung)

$$\max z = 3x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5$$

u.d.N.
$$3x_1 + 2x_2 + x_3 = 1200$$

$$5x_1 + 10x_2 + x_4 = 3000 (2)$$

$$0.5x_2 + x_5 = 125 \tag{3}$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

Zulässige Basislösung:

$$x_1 = 0$$
, $x_2 = 0$

$$x_3 = 1200$$
, $x_4 = 3000$, $x_5 = 125$

$$z = 0$$

Nichtbasisvariablen

Basisvariablen

(1)

Austausch x_5 gegen x_2 :

$$(1) - 4 * (3): 3x_1 + x_3$$

$$(2) - 20 * (3): 5x_1$$

$$2*(3)$$
:

$$+ x_3 - 4x_5 = 700$$

$$+ x_4 - 20x_5 = 500$$

$$x_2 + 2x_5 = 250 \implies x_2 = 250 - 2x_5$$

BV: x_2, x_3, x_4

NBV: x_1, x_5

Zielfunktion:

$$\max 3x_1 + 4 * (250 - 2x_5) \Leftrightarrow \max 3x_1 - 8x_5 + 1000$$

Neue zulässige Basislösung:

$$x_1 = 0, x_5 = 0$$

$$x_2 = 250, x_3 = 700, x_4 = 500$$

$$z = 1000$$

Nichtbasisvariablen

Basisvariablen

Ein Austauschschritt wird gewöhnlich im **Simplex-Tableau** durchgeführt. Zur Veranschaulichung liege eine zulässige Basislösung mit

NBV $x_1, ..., x_n$ und BV $x_{n+1}, ..., x_{n+m}$ vor.

x_1	<i>x</i> ₂	\mathcal{X}_{S}	<i>x</i> _n	x_{n+1}	x_{n+2}	2	x_{n+1}	r	x_{n+m}	RS
c_1			<i>c</i> _n							
a_{11}	<i>a</i> ₁₂	$\overline{a_{1s}}$	a _{1n}	1	0		0		0	b_1
a_{21}	<i>a</i> ₂₂	a_{2s}	$\dots a_{2n}$	0	1		0		0	b_2
			a _{rn}				1		0	b_r
a_{m1}	a_{m2}	a_{ms}	a_{mn}	0	0		0		1	b_m

Wahl eines Pivotelements, das festlegt, welche Variable in die Basis aufgenommen wird und welche Variable Nichtbasisvariable wird.

[3	x_1	x_2		x_{s}	x_n	x_{n+1}	x_{n+2}	2	x_{n+1}	r :	x_{n+m}	RS
	$\overline{c_1}$				<i>c</i> _n							
($\overline{a_{11}}$	$\overline{a_{12}}$		$\overline{a_{1s}}$	a _{1n}	1	0		0		0	b_1
	a ₂₁	a_{22}		a_{2s}	$\dots a_{2n}$	0	1		0		0	b_2
	a_{r1}	a_{r2}	(a_{rs}	$] a_{rn}$	0	0		1		0	b_r
0	a_{m1}	a_{m2}	(a_{ms}	a_{mn}	0	0		0		1	b_m

 a_{rs} : "Pivotelement"

Modifikation der Pivotspalte und -zeile zur Durchführung des Basistausches

NBV	NBV			BV	BV	NBV	BV	
x_1	<i>x</i> ₂	$\mathcal{X}_{\mathcal{S}}$	x_n	x_{n+1}	x_{n+2}	$\dots x_{n+r} \dots$	x_{n+m}	RS
 $c_1^{'}$	$c_2^{'}$	0	$$ c_n	0	0	$\ldots c_{n+r} \ldots$	0	$-z_0$
$a_{11}^{'}$	$a_{11}^{'}$	0	$$ $a_{1n}^{'}$	1	0	$\dots a_{1,n+r}$. 0	$b_1^{'}$
$\frac{a_{r1}}{a_{rs}}$	$\frac{a_{r2}}{a_{rs}} \dots$	1	$\frac{a_{rn}}{a_{rs}}$	0	0	$\frac{1}{a_{rs}}$	0	$\frac{b_r}{a_{rs}}$
$\begin{vmatrix} \dot{a_{m1}} \end{vmatrix}$	$a_{m2}^{'}$	0	a _{mn}	0	0	$\dots a_{m,n+r}$	1	b_m

Simplex-Algorithmus: Kreisregel

Transformation der Elemente außerhalb von Pivotspalte und -zeile

Allgemein gilt für die Elemente außerhalb von Pivotspalte/-zeile:

neues Element = altes Element -

Pivotzeilenelement * Pivotspaltenelement

Pivotelement

Simplex-Algorithmus: Bestimmung des Pivotelements

Regel I (Auswahl der Pivotspalte s):

Ist der größte Zielfunktionskoeffizient *positiv*, so wähle man die (oder eine) bei diesem Koeffizienten stehende Variable zur Basisvariable.

Regel II (Auswahl der Pivotzeile r):

Man wähle das Pivotelement a_{rs} so, dass $a_{rs} > 0$ und $\min_{i=1,\dots,m} \left\{ \frac{b_i}{a_{is}} \middle| a_{is} > 0 \right\}$ erfüllt sind.

Abbruch:

- Ist Regel I nicht anwendbar, so ist das Optimum gefunden und das Verfahren terminiert.
- Ist Regel II nicht anwendbar, so existiert keine optimale Lösungen und das Verfahren terminiert.

Simplex-Algorithmus: Bestimmung des Pivotelements

Regel I garantiert eine Verbesserung des Zielfunktionswertes

$$z'_0 = z_0 + b_r \frac{c_s}{a_{rs}} \ge z_0$$
 , da b_r , c_s , $a_{rs} \ge 0$

Regel II garantiert die Zulässigkeit der neuen Basislösung

$$a_{is} > 0$$
: $b'_i = b_i - a_{is} \frac{b_r}{a_{rs}} \ge b_i - a_{is} \frac{b_i}{a_{is}} = 0$, da $\frac{b_r}{a_{rs}} = \min \frac{b_i}{a_{is}}$

$$a_{is} < 0$$
: $b'_i = b_i - a_{is} \frac{b_r}{a_{rs}} \ge b_i \ge 0$, da $\frac{b_r}{a_{rs}} \ge 0$

Exkurs: Wahl der "falschen Pivotzeile"

- Auswirkung des Ressourcenverbrauchs bei der Herstellung von x₂ wird ignoriert
- Es werden zu viele Einheiten x_2 hergestellt
- Die Verfügbarkeit von Ressourcen x₄ und x₅ wird überschritten
- Die Strukturvariable x_2 wird Basisvariable
- Die Schlupfvariable x_3 wird Nichtbasisvariable
- Die Variablen x₄ und x₅ nehmen negative Werte an → Negative rechte Seite
- $x_1 = 0, x_3 = 0$: $x_2 = 600, x_4 = -3000,$ $x_5 = -175 \rightarrow$ keine zulässige Lösung

Simplex-Algorithmus

Idee:

- Nimm verbessernde NBV in Basis auf.
- Entferne erste limitierende BV: neue NBV.
- Löse Tableau, erhalte neue Basislösung

Beispiel: Identifikation des Pivotelements (Tableau 1)

		x_1	x_2	x_3	x_4	<i>x</i> ₅	RS
		3	4	0	0	0	0
•		3	2	1	0	0	1200
		5	10	0	1	0	3000
Pivotze	eile	0	0,5	0	0	1	125

Größter positiver

Zielfunktionskoeffizient: 4

$$1200 / 2 = 600$$

$$3000 / 10 = 300$$

$$125 / 0,5 = 250$$

Pivotspalte

Pivotelement

Basiswechsel: $x_2 \rightarrow BV$

 $x_5 \rightarrow NBV$

Beispiel: Identifikation des Pivotelements (Tableau 2)

Größter positiver

Zielfunktionskoeffizient: 3

 $700 / 3 \approx 233,3$

500 / 5 = 100

Basiswechsel: $x_1 \rightarrow BV$

 $x_4 \rightarrow \mathsf{NBV}$

Beispiel: Transformation von Pivotzeile und -spalte

 x_1	x_2	x_3	x_4	x_5	RS	
3	0	0	0	-8	-1000	
3	0	1	0	-4	700	_
5	0	0	1	-20	500	
0	1	0	0	2	250	

	$ x_1 $	x_2	x_3	x_4	<i>x</i> ₅	RS
	0					
	0					
	1	0	0	0,2	-4	100
	0					

Pivotspalte:
$$a'_{ij} = \begin{cases} 1 & i = r \\ 0 & sonst \end{cases}$$
 $(i = 1,...,m)$

Pivotzeile:
$$a'_{ij} = \frac{a_{rj}}{a_{rs}}$$
 $(j = 1,...,n);$ $b'_{i} = \frac{b_{i}}{a_{rs}}$

Beispiel:
$$a'_{22} = \frac{a_{22}}{a_{21}} = \frac{0}{5} = 0$$

$$a'_{23} = \frac{a_{23}}{a_{21}} = \frac{0}{5} = 0$$

$$a'_{24} = \frac{a_{24}}{a_{21}} = \frac{1}{5}$$

$$a'_{25} = \frac{a_{25}}{a_{21}} = \frac{-20}{5} = -4$$

$$b'_2 = \frac{b_2}{a_{21}} = \frac{500}{5} = 100$$

Beispiel: Kreisregel – Zielfunktionszeile

x_1	x_2	x_3	x_4	x_5	RS
3	0	0	0	-8	-1000
3	0	1	0	-4	700
5	0	0	1	-20	500
0	1	0	0	2	250

Regeln:	$c'_{j} = c_{j} - c_{s} \frac{a_{rj}}{a_{rs}} (j \neq s)$
	$-z'_0 = -z_0 - b_r \frac{c_s}{a_{rs}}$

Beispiel:
$$c'_2 = c_2 - c_1 \frac{a_{22}}{a_{21}} = 0 - 3 * \frac{0}{5} = 0$$

$$c'_3 = c_3 - c_1 \frac{a_{23}}{a_{21}} = 0 - 3 * \frac{0}{5} = 0$$

$$c'_4 = c_4 - c_1 \frac{a_{24}}{a_{21}} = 0 - 3 * \frac{1}{5} = -\frac{3}{5}$$

$$c'_{5} = c_{5} - c_{1} \frac{a_{25}}{a_{21}} = -8 - 3 * \frac{-20}{5} = 4$$

$$-z'_0 = -z_0 - b_2 \frac{c_1}{a_{21}} = -1000 - 500 * \frac{3}{5} = -1300$$

Beispiel: Kreisregel – Zeile 1

x_1	x_2	x_3	x_4	x_5	RS	_
3	0	0	0	-8	-1000	
3	0	1	0	-4	700	_
5	0	0	1	-20	500	
0	1	0	0	2	250	

Regeln:	$a'_{ij} = a_{ij} - \frac{a_{is}a_{ij}}{a_{r}}$	$(i \neq r, j \neq s)$

$$b'_{i} = b_{i} - b_{r} \frac{a_{is}}{a_{rs}} (i \neq r)$$

Beispiel: $a'_{12} = a_{12} - \frac{a_{11}a_{22}}{a_{21}} = 0 - \frac{3*0}{5} = 0$

$$a'_{13} = a_{13} - \frac{a_{11}a_{23}}{a_{21}} = 1 - \frac{3*0}{5} = 1$$

$$a'_{14} = a_{14} - \frac{a_{11}a_{24}}{a_{21}} = 0 - \frac{3*1}{5} = -\frac{3}{5}$$

$$a'_{15} = a_{15} - \frac{a_{11}a_{25}}{a_{21}} = -4 - \frac{3*(-20)}{5} = 8$$

$$b'_1 = b_1 - b_2 \frac{a_{11}}{a_{rs}} = 700 - 500 \frac{3}{5} = 400$$

Überblick

- 1. Simplex-Algorithmus
- 2. Anwendungsbeispiel zum Simplex-Algorithmus
- 3. Sonderfälle der linearen Programmierung

Der Simplexalgorithmus (Wiederholung)

- 1. Starte mit zulässiger Basislösung
- 2. Wenn kein positiver Zielfunktionskoeffizient existiert, gehe zu 3. sonst Basistausch:
 - a) Wähle Pivotspalte **s** (maximaler Zielfunktionskoeffizient)
 - b) Wähle Pivotzeile **r** (limitierende Zeile):

$$a_{rs} > 0$$
, $\frac{b_r}{a_{rs}} = \min_{i=1,\dots,m} \left\{ \frac{b_i}{a_{is}} \mid a_{is} > 0 \right\}$

- a) Aktualisiere Tableau mit Kreisregel
- b) Gehe zu 2.
- Abbruchkriterium.
- 4. Lösungsdetails:
 - a) (negativer) Zielfunktionswert oben rechts im Tableau
 - b) Entscheidung ist Wert b für die zugehörige Basisvariable

Max
$$z = 3 x_1 + 4x_2$$

u.d.N. $3 x_1 + 2x_2 + x_3 = 1200$
 $5 x_1 + 10x_2 + x_4 = 3000$
 $0.5x_2 + x_5 = 125$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Basislösung:

$$x_1 \ _0, x_2 = 0, z = 0$$

	x_1	x_2	x_3	x_4	x_5	RS			
	3	4	0	0	0	0			
	3	2	1	0	0	1200			
	5	10	0	1	0	3000			
	0	0,5	0	0	1	125			
Pivotspalte									

x_1	=	x_2	=	(
x_3	=	120	00	
x_4	=	300	00	
x_5	=	12	25	
7 =	= ()		

Pivotzeile

600

300

250

Pivotelement

Basiswechsel: $x_2 \rightarrow BV$

 $x_5 \rightarrow NBV$

Neue Basislösung:

$$x_1 = 0, x_2 = 250, z = 1000$$

Basiswechsel: $x_1 \rightarrow BV$

 $x_4 \rightarrow NBV$

Neue Basislösung:

$$x_1 = 100, x_2 = 250, z = 1300$$

Basiswechsel: $x_5 \rightarrow BV$

 $x_3 \rightarrow NBV$

Neue Basislösung:

$$x_1 = 300, x_2 = 150, z = 1500$$

_	x_1	x_2	x_3	x_4	x_5	RS
	0	0	-1/2	-3/10	0	-1500
	0	0	1/8	-3/40	1	50
	1	0	1/2	-1/10	0	300
	0	1	-1/4	3/20	0	150

$$x_3 = x_4 = 0$$

 $x_1 = 300$
 $x_2 = 150$
 $x_5 = 50$
 $x_5 = 1500$

Abbruchkriterium: alle ZF-Koeffizienten ≤ 0 (d.h. keine ZF-Wert-Verbesserung mehr möglich)

optimale Lösung: $x_1^* = 300$, $x_2^* = 150$, $z^* = 1500$

Verkürztes Simplextableau

NBV B			BV					NBV			
x_1	x_2	x_3	x_4	x_5	RS				x_1	x_2	RS
3	4	0	0	0	0			_z	3	4	0
3	2	1	0	0	1200	\Leftrightarrow		x_3	3	2	1200
5	10	0	1	0	3000		BV ≺	x_4	5	10	3000
0	0,5	0	0	1	125			x_5	0	0,5	125

Verkürztes Simplextableau: Bestimmung Pivotelement

Basistausch: $x_2 \rightarrow BV$

 $x_5 \rightarrow NBV$

Verkürztes Simplextableau: Basistausch

- lediglich Darstellung der Nichtbasisvariablen im Tableau
- Anwendung der Transformationsregeln auf die Koeffizienten der Nichtbasisvariablen

Transformationsregeln:

- Pivotelement → Kehrwert
- Pivotzeile → dividieren durch Pivotelement
- 3. Pivotspalte → mit (-1) multiplizieren und durch Pivotelement dividieren
- 4. übrige Elemente → altes Element Pivotzeilenelement * Pivotspaltenelement Pivotelement

Verkürztes Simplextableau: Simplexschritt

	x_1	x_2	RS
-z	3	4	0
x_3	3	2	1200
x_4	5	10	3000
x_5	0	0,5	125

2.	x_1	x_5	RS
-z		-8	
x_3		-4	
x_4		-20	
x_2	0	2	250

<u>Transformationsregeln:</u>

- 1. Pivotelement → Kehrwert
- Pivotzeile → dividieren durch Pivotelement
- B. Pivotspalte → mit (-1) multiplizieren und durch Pivotelement dividieren

Verkürztes Simplextableau: Simplexschritt

	x_1	x_2	RS
-z	3	4	0
x_3	3	2	1200
x_4	5	10	3000
x_5	0	0,5	125

Transformationsregeln:

4. übrige Elemente –

(Analog zur Kreisregel!)

Bsp:
$$c'_1 = 3 - \frac{0*4}{0.5} = 3$$

$$-z'_0 = 0 - \frac{125*4}{0.5} = -1000$$

$$b_1 = 1200 - \frac{125*2}{0.5} = 700$$

Verkürztes Simplextableau: Endtableau

Hinweis: Ein Simplex-Schritt übersprungen

	x_4	x_3	RS
-z	-3/10	-1/2	-1500
x_5	-3/40	1/8	50
x_1	-1/10	1/2	300
x_2	3/20	-1/4	150
	I		I

optimale Lösung: $x_1^* = 300$, $x_2^* = 150$, $z^* = 1500$

Überblick

- 1. Simplex-Algorithmus
- 2. Anwendungsbeispiel zum Simplex-Algorithmus
- 3. Sonderfälle der linearen Programmierung

Sonderfall 1: Unendlich viele optimale Lösungen

$$\max z = x_1 + x_2$$
 u.d.N.
$$x_1 + x_2 \le 4$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Optimalwert z = 4

Optimale Lösungen:

$$\{(x_1, x_2) \mid x_1 + x_2 = 4, x_2 \le 2\}$$

Sonderfall 1: Unendlich viele optimale Lösungen

	x_1	x_2	x_3	x_4	RS	
-z	1	1	0	0	0	
x_3	1	1	1	0	4	
x_4	0	1	0	1	2	
-z	1	0	0	-1	-2	
$\overline{x_3}$	(1)	0	1	-1	2	
x_2)0	1	0	1	2	
-z	0	0	-1	0	-4	
$\overline{x_1}$	1	0	1	-1	2	
x_2	0	1	0	(1)	2	ر ا
-z	0	0	-1	0	-4	
$\frac{-z}{x_1}$	0	0	-1 1	0	-4 4	-

$$\max z = x_1 + x_2$$
u.d.N. $x_1 + x_2 \le 4$
 $x_2 \le 2$
 $x_1, x_2 \ge 0$

optimale Lösung:

$$x_1 = 2, x_2 = 2, x_3 = x_4 = 0$$

 $z = 4$

Hinweis: theoretisch würde der Simplex hier terminieren

optimale Lösung:

$$x_1 = 4, x_2 = x_3 = 0, x_4 = 2$$

 $z = 4$

Sonderfall 2: Zulässiger Bereich unbeschränkt

$$\max z = x_1 - 2x_2$$
u.d.N. $x_1 - x_2 \le 1$

$$-2x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Die Menge der zulässigen Lösungen ist unbeschränkt. Die Zielfunktion ist allerdings auf dieser Menge nach oben beschränkt.

$$z = 1, x_1 = 1, x_2 = 0$$

Sonderfall 2: Zulässiger Bereich unbeschränkt

	x_1	x_2	x_3	x_4	RS	
-z	1	-2	0	0	0	
x_3	1	-1	1	0	1	
x_4	-2	1	0	1	2	_
$\overline{-z}$	0	-1	-1	0	-1	
$\overline{x_1}$	1	-1	1	0	1	}
x_4	0	-1	2	1	4	J

(Primaler)
Simplex-Algorithmus

Keine Auffälligkeiten im Tableau!

Sonderfall 3: Keine optimale Lösung

Der zulässige Bereich ist (nach oben) unbeschränkt.

Es existiert keine (optimale) Lösung.

$$\max z = 2x_1 + 3x_2 \\ x_2 \le 3 \\ -x_1 + 2x_2 \le 2 \\ x_1, x_2 \ge 0$$

Sonderfall 3: Keine optimale Lösung

	x_1	x_2	x_3	x_4	RS	
-z	2	3	0	0	0	
x_3	0	1	1	0	3	
x_4	-1	2	0	1	2	
$\overline{-z}$	3,5	0	0	-1,5	-3	
x_3	(0,5)	0	1	-0,5	2	
x_2	-0,5	1	0	0,5	1	
$\overline{-z}$	0	0	-7	2	-17	
$\overline{x_1}$	1	0	2	-1	4	}
x_2	0	1	1	0	3	J

(Primaler) Simplex-Algorithmus

keine Pivotzeile bestimmbar!

Steht unter einem positiven Zielfunktionskoeffizienten eine " ≤ 0 - Spalte", so ist der zulässige Bereich unbeschränkt und das Optimierungsproblem nicht lösbar!

Sonderfall 4: Keine Startlösung bestimmbar

Der zulässige Bereich ist beschränkt und es existiert eine optimale Lösung.

Startecke $(x_1, x_2) = (0,0)$ ist nicht im zulässigen Bereich.

max
$$z = -2x_1 - 2x_2$$

u.d.N. $x_1 + x_2 \le 4$
 $-2x_1 - 2x_2 \le -2$
 $x_1, x_2 \ge 0$

$$z = 2, x_1 = 1, x_2 = 0$$

Sonderfall 4: Keine Startlösung bestimmbar

	x_1	x_2	x_3	x_4	RS
-z	-2	-2	0	0	0
x_3	1	1	1	0	4
x_4	-2	-1	0	1	(-2)

Ein $b_i < 0$, somit <u>kein</u> gültiges Simplex-Tableau.

Das Herstellen einer zulässigen Startlösung mithilfe des Dualen Simplex-Verfahren wird in Vorlesung 5 behandelt.

Sonderfall 5: Keine Lösung

Die Menge der zulässigen Lösungen ist leer. Es existiert keine Lösung.

max
$$z = x_1$$

u.d.N. $-x_1 - x_2 \le -2$
 $x_1 - x_2 \le 3$
 $x_1, x_2 \ge 0$

Sonderfall 5: Keine Lösung

	x_1	x_2	x_3	x_4	RS
-z	1	1	0	0	0
x_3	-1	-1	1	0	(-2)
x_4	1	-1	0	1	3

Ein $b_i < 0$, somit <u>kein</u> gültiges Simplex-Tableau.

Anwendung von Dualem Simplex-Verfahren führt auch zu unzulässigem Simplex-Tableau.

Zusammenfassung

- Umwandlung von Standardproblem in ein Gleichungssystem durch Einführung von Schlupfvariablen
- Basislösung und Basisvariablen
- Simplex-Algorithmus
 - Simplex-Tableau
 - Bestimmung von Pivotelement
 - Basistausch
- Sonderfälle

