Physics

Lecture 4 Kinematics of Curvilinear Motion (Normal & Tangential components)

Contents

- Coordinate systems
- Path coordinate system
- Base vectors of path coordinate system
- Velocity and acceleration in path coordinate
- Components of acceleration
- Radius of curvature
- Length of curve
- Extension to 3D (Frenet-Serre formulae)

Types of Coordinate Systems

Path Coordinates

• When the path along which a particle travels is known

Characteristics

Convention Used in Path Coordinates

- Positive direction for *n* at any position is toward the center of curvature of path
- If the curvature changes direction, the positive *n*-direction will shift from one side to another

Geometric preliminaries

$$|d\mathbf{r}| = ds = \rho \, d\theta$$

$$/\mathbf{v} = \dot{s} = \rho \, \dot{\theta}$$

 ρ is the radius of curvature of the path at point A

 $v = \dot{s}$ is the speed

Base Vectors in Path Coordinates

e_n and e_t are called base vectors

Relationship between the Base Vectors

Derivative of the Base Vectors

Directions of e_n and e_t vary with position of the particle

Time derivative of e_n and e_t

$$\frac{d\mathbf{e}_{t}}{dt} = \frac{v}{\rho}\mathbf{e}_{n}$$

$$\frac{d\mathbf{e}_n}{dt} = -\frac{v}{\rho}\mathbf{e}_t$$

Characteristics of Derivatives of the Base Vectors

Directions of base vectors and its derivatives are mutually perpendicular

Velocity in Path Coordinates

Acceleration in Path Coordinates

 a_{t} refers to the change in speed of the particle

$$\boldsymbol{a} = v \, \mathbf{e}_t + \frac{v^2}{\rho} \mathbf{e}_n$$

 a_n refers to the change in direction of the velocity

Do not Confuse

Definition of Acceleration

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

Magnitude of Acceleration In rectilinear motion

$$a = \frac{dv}{dt}$$

Tangential component of Acceleration in plane curvilinear motion

$$a_t = \frac{dv}{dt}$$

Radius of curvature

• Given velocity and acceleration vectors v and a

 ρ is the radius of curvature of the path at point A

$$\rho = \frac{|\mathbf{v}|^3}{|\mathbf{v} \times \mathbf{a}|}$$

Radius of curvature

• If the curve is given parametrically

$$x = x(t), y = y(t)$$

$$\rho = \frac{(\dot{x}^2 + \dot{y}^2)^{3/2}}{|\dot{x}\,\ddot{y} - \dot{y}\,\ddot{x}|}$$

• Here we use time derivatives

$$\dot{x} = \frac{dx}{dt}, \ \dot{y} = \frac{dy}{dt}, \ \ddot{x} = \frac{d^2x}{dt^2}, \ \ddot{y} = \frac{d^2y}{dt^2}$$

Curvature

- Curvature of a curve is defined as $\kappa = 1/\rho$
- For a straight line and for a circle of radius R
- Curvature depends on the position of the point on the curve

 ρ is the radius of curvature of the path at point A

$$\rho = \frac{|\mathbf{v}|^3}{|\mathbf{v} \times \mathbf{a}|}$$

v and a

Radius of curvature

• If the curve is given as a graph

$$y = y(x)$$
 or $x = x(y)$

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|} = \frac{\left[1 + \left(\frac{dx}{dy}\right)^2\right]^{3/2}}{\left|\frac{d^2x}{dy^2}\right|}$$

Lines in 3D

• If a curve is given parametrically

$$x = x(t), y = y(t), z = z(t) \implies \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

- T-tangent line
- N-normal
- B-binormal

$$T = r'(t)$$
 $B = r'(t) \times r''(t)$
 $N = \{r'(t) \times r''(t)\} \times r'(t)$
 $e_t = T/|T|$
 $e_n = N/|N|$
 $e_b = B/|B|$

