

Arief Hamdani Gunawan

21 November 2009

Main Topics

- Introduction
- Network Architecture
- System Architecture Evolution
- Channels
- Downlink Transmission Scheme
- Uplink Transmission Scheme
- MIMO
- LTE-Advanced
- Conclusion

Introduction to LTE

- 3GPP Long Term Evolution the next generation of wireless cellular technology beyond 3G
- Initiative taken by the 3rd Generation Partnership Project in 2004
- Introduced in Release 8 of 3GPP
- Mobile systems likely to be deployed by 2010

3G deployment in the world

Trend of B3G

4G Technologies

LTE Network Architecture

E-UTRAN (Evolved Universal Terrestrial Radio Access Network)

LTE Will Ensure the Success of Mobile Internet

Meeting Higher Demand for Data Speed

-Peak Data Rate: Downlink > 100Mbps /
Uplink > 50Mbps

-Newest Standard Peak Downlink: 326Mbps

/Uplink: 86Mbps

 Increased Data Speed at Cell Edge

Increasing Spectral Efficiency

 Is 2 – 4 Times of 3GPP release 6 HSPA

Flexible Spectrum Allocation

Lowering Packet Delay

Delay < 10 ms

< 50 ms

Wireless User Data Packet

Control Plane Wake-up Delay

- Can Be Deployed on Different Band Sizes
- Can Support Both FDD or TDD

LTE Offers 10-30x Improvement on cost/performance ratio vs. existing technologies

Significant improvement of spectral efficiency and higher bearing data rate with shorter latency

Irresistible attraction on value to mobile internet users at premium pricing

Leapfrog user experience

User Experience

Same level Flat Data Charging Rate for Mobile internet access

Incremental ARPU from Mobile Internet Service LTE significant improvement on cost/performance make new Mobile internet business model feasible

Business Model

LTE - The Right Solution for Mobile internet

Issues

Always On

Bursty Traffic

LTE Offers

- Multi-connection radio
- Ad Hoc networking
- Large-scale mobile IP access

QoS Cost / MB

CAPEX & OPEX

- All-IP distributed network architecture
- Distributed radio architecture
- P2P cloud based core network design
- Macro-MIMO collaborative basestation technology

What's Happening in Mobile Internet World -- Device Providers

To Be a digital content & service provider

- Purchased the global leading mobile ad company--Enpocket in Sept. 2007
- Purchased digital map giant--Navteq in Oct. 2007
- Carried out OVI program in 4th Quarter 2007, providing comprehensive services to subscribers

Terminal innovation & Totally new business model

- Launched iTunes digital music channel in 2003
- First iPhone become available in 2007
- •3G version iPhone is ready to market in 2008

LTE Key Parameters

Frequency Range	UMTS FDD bands and UMTS TDD bands					
Channel	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
bandwidth, 1 Resource Block=180 kHz	6 Resource Blocks	15 Resource Blocks	25 Resource Blocks	50 Resource Blocks	75 Resource Blocks	100 Resource Blocks
Modulation Schemes	Downlink: QPSK, 16QAM, 64QAM Uplink: QPSK, 16QAM, 64QAM (optional for handset)					
Multiple Access	Downlink: OFDMA (Orthogonal Frequency Division Multiple Access) Uplink: SC-FDMA (Single Carrier Frequency Division Multiple Access)					
MIMO technology	Downlink: Wide choice of MIMO configuration options for transmit diversity, spatial multiplexing, and cyclic delay diversity (max. 4 antennas at base station and handset) Uplink: Multi user collaborative MIMO					
Peak Data Rate	Downlink: 150 Mbps (UE category 4, 2x2 MIMO, 20 MHz) 300 Mbps (UE category 5, 4x4 MIMO, 20 MHz) Uplink: 75 Mbps (20 MHz)					

Modulation

- QPSK, 16 QAM and 64 QAM used for the payload channels (spectrally efficient)
- BPSK and QPSK used for the control channels (Reliability and coverage)
- Adaptive modulation and coding

Requirements to be met by LTE Fast, Efficient, Cheap, Simple

- Peak Data Rates
- Spectrum efficiency
- Reduced Latency
- Mobility
- Spectrum flexibility
- Coverage
- Low complexity and cost
- Interoperability
- Simple packet-oriented E-UTRAN architecture

Simplified LTE network elements and interfaces 3GPP TS 36.300 Figure 4: Overall Architecture

eNB = **E-UTRAN Node B**All radio interface-related functions

MME = Mobile Management entity
Manages mobility, UE identity, and security parameters.

S-GW = **Serving Gateway**– Node that terminates the interface towards E-UTRAN.

P-GW = PDN (Packet Data Network)
Gateway

- Node that terminates the interface towards PDN.

E-UTRAN

LTE Network Architecture

- Simple Architecture
- Flat IP-Based Architecture
- Reduction in latency and cost
- Split between EPC and E-UTRAN
- Compatibility with 3GPP and non-3GPP technologies
- eNB-radio interface-related functions
- MME-manages mobility, UE identity and security parameters
- S-GW-node that terminates the interface towards E-UTRAN

- •EPC = Evolved Packet Core
- •E-UTRAN = Evolved Universal Radio Access Network
- •MME = Mobile Management entity
- ·S-GW = Serving Gateway
- •SAE = System Architecture Evolution
- •eNB = E-UTRAN Node B

One RAN node: eNB

PDCP = Packet Data Convergence Protocol

RRC = Radio Resource Control

RLC = Radio Link Control

Protocol

System Architecture Evolution

- SAE is a study within 3GPP targeting at the evolution of the overall system architecture.
- Objective is "to develop a framework for an evolution or migration of the 3GPP system to a higher-data-rate, lower-latency, packet optimized system that supports multiple radio access technologies.
- The focus of this work is on the PS domain with the assumption that voice services are supported in this domain". This study includes the vision of an all-IP network.

Why LTE/SAE?

- Packet Switched data is becoming more and more dominant
- VoIP is the most efficient method to transfer voice data
- → Need for PS optimised system
- Amount of data is continuously growing
- → Need for higher data rates at lower cost
- Users demand better quality to accept new services
- → High quality needs to be quaranteed
- > Alternative solution for non-3GPP technologies (WiMAX) needed
- LTE will enhance the system to satisfy these requirements.