CS480 HW1

NAME: solution

Collaborators: N/A

1. Solve the 5-queens problem (place 5 queens on a 5x5 board so that none is attacked) using DFS-Tree Search. The initial state is an empty board. Available actions at each state is to fill the left-most empty column. Order your actions from up to down for a given column. (This is a similar setup to the 4-queens problem we solved in class). Show the search tree.

SOLUTION: There are two solutions for this problem, one is shown as following, and the other is search for the most right branch.

2. Solve the 5-queens problem (place 5 queens on a 5x5 board so that none is attacked) using BFS-Tree Search. The initial state is an empty board. Available actions at each state is to fill the left-most empty column. Order your actions from up to down for a given column. (This is a similar setup to the 4-queens problem we solved in class). Show the search tree.

For the remaining questions, please use the following figure. We want to travel from S to G, where some of the roads allow only one way traffic. The distances between two locations are given on the figure. The estimates, h, from a location to G are given on the side.

3. Hand trace uniform-cost graph search. What is the solution path found and what is its cost? Show the search tree. **SOLUTION:**

SOLUTION PATH: S->A->D->E->G
SOLUTION COST: 12

4. Hand trace greedy best-first tree search. What is the solution path found and what is its cost? Show the search tree. **SOLUTION:**

5. Hand trace A* tree search. What is the solution path found and what is its cost? Show the search tree. **SOLUTION:**

6. Come up with an admissible heuristic function h^* that dominates every possible admissible heuristic for this map; specify $h^*(n)$ for all n. Remember the definition of dominates: h^2 if $h^2(n) \ge h^2(n)$ for all h^2 .

SOLUTION:

$$h*(S) = 12 h*(A) = 10$$

$$h^*(B) = 7$$
 $h^*(C) = 7$

$$h^*(D) = 7$$
 $h^*(E) = 3$

$$h*(F) = 17 h*(G) = 0$$