Validación 3 – Arquitectura de Computadores

Juan Francisco Abán Fontecha

GUION 8. Captación, Decodificación y Finalización

Dado un vector de 30 elementos de doble precisión almacenado en memoria, realizar un programa que ordene dicho vector y lo almacene en la misma posición de memoria.

Esta parte la realizare con el código propio, a pesar de que dicho código no consigo la ordenación total como ya comente a Macarena, refiriéndome a que me lo dejara algún compañero para hacerlo.

 Partiendo del fichero de configuración, machinefile, calcule los ciclos de ejecución cuando se modifican las siguientes características del procesador superescalar:
 Sin modificar las características vemos lo siguiente:

Captación, Decodificación y Finalización (1,1,1)

Captación, Decodificación y Finalización (2,2,2)

Captación, Decodificación y Finalización (3,3,3)

Number of Cycles:	129		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

o Captación, Decodificación y Finalización (4,4,4)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

Captación, Decodificación y Finalización (5,5,5)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

- Elabore una gráfica donde se ilustre el comportamiento en ciclos del procesador superescalar y comente los resultados.

Esta grafica como vemos tiene un gran descenso en ciclos ejecución cuando pasa de tener 1 ciclo para Captación, Decodificación y Finalización a 2 por cada uno, pero en el resto vemos como poco a poco se va estabilizando, hasta llegar al momento de que es igual cuando tengamos 4 y 5 ciclos respectivamente.

- Calcule los ciclos de ejecución con las siguientes características del procesador superescalar, comentando los resultados alcanzados:
 - Captación, Decodificación y Finalización (2,4,2)

Number of Cycles:	134		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

o Captación, Decodificación y Finalización (1,5,3)

Number of Cycles:	170		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

Como vemos en los resultados de ambos, se emplea menos ciclos en ejecución en el primero, esto es debido a que la captación es mayor, y al captar una sola instrucción se realiza un cuello de botella, que no permite decodificar bien el resto de instrucciones sino que conforme las va captando.

- Busca una combinación de ciclos de Captación, Decodificación y Finalización que genere un numero de ciclos en ejecución adecuado, buscando optimizar recursos.

Comparando la mejor combinación optimizando recursos es 4,3,2 de forma que obtenemos los siguientes resultados:

GUION 9. Cola de instrucción (CI), Ventana de Instrucción (VI) y Buffer de Reorden(ROB).

Partiendo del guion anterior.

- Calcule los ciclos de ejecución cuando se modifican las siguientes características del procesador superescalar:
 - o Captación, Decodificación y Finalización (5,5,5) "Siempre"
 - CI,VI y ROB (4,4,4)

Number of Cycles:	123		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

CI,VI y ROB (8,8,8)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

CI,VI y ROB (12,12,12)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

CI,VI y ROB (16,16,16)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

CI,VI y ROB (20,20,20)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

- Calcule los ciclos de ejecución cuando se modifican las siguientes características del procesador superescalar:
 - o Captación, Decodificación y Finalización (5,5,5) "Siempre"
 - o CI: 16 "Siempre"
 - VI y ROB para enteros (4,4) VI y ROB para flotantes (8,8)

Number of Cycles:	123		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

VI y ROB para enteros (4,4) VI y ROB para flotantes (16,16)

Number of Cycles:	123	
Instructions Fetched:	118	
Instructions Decoded:	108	91,525 % of total Fetched

VI y ROB para enteros (8,8) VI y ROB para flotantes (16,16)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

VI y ROB para enteros (8,8) VI y ROB para flotantes (4,4)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

VI y ROB para enteros (16,16) VI y ROB para flotantes (4,4)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

VI y ROB para enteros (16,16) VI y ROB para flotantes (8,8)

Number of Cycles:	119		
Instructions Fetched:	118		
Instructions Decoded:	108	91,525	% of total Fetched

 Busque una combinación de numero de instrucciones captadas, decodificadas y finalizadas por ciclo junto con el tamaño de la cola de instrucción, ventana de instrucción(enteros y flotantes) y buffer de reorden (enteros y flotantes) que genere un numero de ciclos de ejecución adecuado, buscando optimizar los recursos.

La combinación de numero de instrucciones captadas, decodificadas y finalizadas es de (4,3,2) por ciclo, junto con el tamaño de cola de instrucción 4, ventana de instrucción de enteros 8 y de flotantes 4, y buffer de reorden de enteros de 8 y de flotantes 4, consiguiendo asi el siguiente resultado:

GUION 10. Predicción de saltos y Coste.

- Partiendo del guión anterior
 - Repetir guiones 8 y 9. Activando la opción de predicción de saltos y comente los resultados.

Repitiendo todos los ejercicios anteriores podemos observar como la predicción de salto nos ahorra muchos ciclos, vamos a ver el cambio brusco que pega, por ejemplo con la configuración ideal que habíamos cogido como gran optimización en el ultimo ejercicio del guion 9:

Number of Cycles:	78		
Instructions Fetched:	141		
Instructions Decoded:	111	78,723	% of total Fetched

Como vemos el numero de ciclos en ejecución pasa de 119 a 78 lo que es una gran optimización gracias a la predicción de saltos.

- A partir de los resultados obtenidos, busque una configuración que permita obtener el mayor rendimiento teniendo en cuenta los siguientes costes y estando limitado al gasto de 35€
 - Prediccion de saltos: 15€
 - Cada línea de captación, decodificación y finalización:
 - 1 inst/ciclo: 0€
 - 2 inst/ciclo:3€
 - 3 inst/ciclo:4€
 - 4 inst/ciclo:5€
 - 5 inst/ciclo:6€
 - Tamaño de CI,VI(enteros-flotantes) y ROB (enteros-flotantes)
 - 4 lineas: 0€
 - 8 lineas: 3€
 - 12 lineas: 4€
 - 16 lineas: 5€
 - 20 lineas: 6€

Cogiendo la configuración ideal anterior obtenemos:

- Captación, Decodificación y Finalización (4,3,2): 5+4+3=12€
- o CI: 4: 0€
- o VI(enteros y flotantes): 8,4: 3€

o ROB(enteros y flotantes): 8,4: 3€

○ Predicción de salto: 15€

Este presupuesto nos haría un total de 33€, nos pasaríamos del presupuesto, por lo que no nos seria de utilidad.

Si cambiamos algunas propiedades nos quedaría así:

- o Captación, Decodificación y Finalización (4,3,2): 5+4+3=12€
- o CI: 4: 0€
- o VI(enteros y flotantes): 4,4: 0€
- o ROB(enteros y flotantes): 4,4: 0€
- o predicción de salto: 15€

Este presupuesto nos haría un total de 27€, no nos pasaríamos del presupuesto, por lo que nos seria de utilidad dado al rendimiento que podemos obtener.

Si cambiamos algunas propiedades nos quedaría así:

- o Captación, Decodificación y Finalización (4,3,2): 5+4+3=12€
- o CI: 4: 0€
- VI(enteros y flotantes): 4,4: 0€
- o ROB(enteros y flotantes): 8,4: 3€
- o predicción de salto: 15€

Este presupuesto nos haría un total de 30€, no nos pasaríamos del presupuesto, por lo que nos seria de utilidad dado al rendimiento que podemos obtener esta configuración seria la ideal, de cara al rendimiento obtenido y al precio del mismo.

GUION 8. Captación, Decodificación y Finalización

Dado un vector de 30 elementos de doble precisión almacenado en memoria, realizar un programa que ordene dicho vector y lo almacene en la misma posición de memoria.

Esta parte la realizare con el código obtenido en la página web http://apuntes.ujacraft.es/, dicho código no lo he revisado simplemente copiado de cara hacer esta practica, ya que no me interesa copiar código sino saber realizarlo por mi mismo.

///////////////////////////CODIGO///	///////////////////////////////////////			
		.data 1000		
		.global numbers		
numbers: .word 11				
		.word 8,10,13,2,5,3,4,1,6,10		
		.word 11,20,3,8,19,12,8,10,19,20		
		.word 21,1,3,45,67,5,65,67,65,32		
		.global tam		
tam:	word 40			
		.text 256		
		add r15,r0,tam		; r15=[tam]
		lw r15,(r15)		; r15=tam;
		addi r2,r0,#4		; r2=i=4
		addi r1,r0,numbers	; r1=[num	bers]
BUCLE1:	add r6,r1,r	2	; r6=[num	bers[i]]
		lw r4,(r6)		; r4=numbers[i]
		subi r3,r2,4		; r3=a=i-1
BUCLE2:	sge r12,r3,	0	; a>=0	
		;BEQZ r12,BUCLE1CONT		
		;ADD r6,r1,r3		; [r6=numbers[a]]
		;LW r10,(r6)		; r10=numbers[a]
		;SGT r12,r10,r4		; numbers[a]>numbers[i]
		;beqz r12,BUCLE1CONT		

```
;ADDI r7,r3,#4
                                                                                       ; r7=a+1
                             ;ADD r5,r1,r3
                                                                                       ; r5=[numbers[a]]
                             ;ADD r7,r1,r7
                                                                                        ; r7=[numbers[a+1]]
                                                                                                 ; r6=[numbers[a]]
                             ;LW r6,(r5)
                             ;SW(r7),r6
                                                                                        ; r7=[numbers[a]]
                             :SUBI r3.r3.#4
                                                                                        ; a=a-1
                             ;SGE r12,r3,r0
                                                                                        ; comprobamos si a = 0
                             ;bnez r12,BUCLE2
BUCLE1CONT:
                   addi r7,r3,#4
                                                                              ; a=a+1
                             add r7,r1,r7
                                                                                       ; r7=[numbers[a+1]]
                             sw (r7),r4
                                                                                       ; numbers[a+1]=index(numbers[i])
                             addi r2,r2,#4
                                                                                        ; i++
                             slt r12,r2,r15
                                                                              ; si i es menor que 40 salta a bucle, sino fin
                             bnez r12,BUCLE1;
FIN:
                   trap #0;
```

Partiendo del fichero de configuración, machinefile, calcule los ciclos de ejecución cuando se modifican las siguientes características del procesador superescalar:

Sin modificar las características vemos lo siguiente:

o Captación, Decodificación y Finalización (1,1,1)

- Elabore una gráfica donde se ilustre el comportamiento en ciclos del procesador superescalar y comente los resultados.

Esta grafica como vemos tiene un gran descenso en ciclos ejecución cuando pasa de tener 1 ciclo para Captación, Decodificación y Finalización a 2 por cada uno, pero en el resto vemos como se estabiliza, poco a poco, conforme van aumentando el numero de instrucciones captadas, decodificadas y finalizadas por ciclo.

- Calcule los ciclos de ejecución con las siguientes características del procesador superescalar, comentando los resultados alcanzados:
 - Captación, Decodificación y Finalización (2,4,2)

Number of Cycles:	77		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

Captación, Decodificación y Finalización (1,5,3)

Number of Cycles:	114		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

Como vemos en los resultados de ambos, se emplea menos ciclos en ejecución en el primero, esto es debido a que la captación es mayor, y al captar una sola instrucción se realiza un cuello de botella, que no permite decodificar bien el resto de instrucciones sino que conforme las va captando.

- Busca una combinación de ciclos de Captación, Decodificación y Finalización que genere un numero de ciclos en ejecución adecuado, buscando optimizar recursos.

Comparando la mejor combinación optimizando recursos es 4,3,3 de forma que obtenemos los siguientes resultados:

GUION 9. Cola de instrucción (CI), Ventana de Instrucción (VI) y Buffer de Reorden(ROB).

Partiendo del guion anterior.

- Calcule los ciclos de ejecución cuando se modifican las siguientes características del procesador superescalar:
 - o Captación, Decodificación y Finalización (5,5,5) "Siempre"

■ CI,VI y ROB (4,4	1,4)		. (0,0,0,
Number of Cycles:	105		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched
■ CI,VI y ROB (8,8	3,8)		
Number of Cycles:	76		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched
■ CI,VI y ROB (12,	,12,12)		
Number of Cycles:	58		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched
• CI,VI y ROB (16,	,16,16)		
Number of Cycles:	57		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched
 CI,VI y ROB (20) 	,20,20)		
Number of Cycles:	57		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

- Calcule los ciclos de ejecución cuando se modifican las siguientes características del procesador superescalar:
 - o Captación, Decodificación y Finalización (5,5,5) "Siempre"
 - o CI: 16 "Siempre"
 - VI y ROB para enteros (4,4) VI y ROB para flotantes (8,8)

Number of Cycles:	105		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

VI y ROB para enteros (4,4) VI y ROB para flotantes (16,16)

Number of Cycles:	105		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

VI y ROB para enteros (8,8) VI y ROB para flotantes (16,16)

Number of Cycles:	76		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

VI y ROB para enteros (8,8) VI y ROB para flotantes (4,4)

Number of Cycles:	76		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

VI y ROB para enteros (16,16) VI y ROB para flotantes (4,4)

Number of Cycles:	57		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

VI y ROB para enteros (16,16) VI y ROB para flotantes (8,8)

Number of Cycles:	57		
Instructions Fetched:	94		
Instructions Decoded:	94	100	% of total Fetched

- Busque una combinación de numero de instrucciones captadas, decodificadas y finalizadas por ciclo junto con el tamaño de la cola de instrucción, ventana de instrucción(enteros y flotantes) y buffer de reorden (enteros y flotantes) que genere un numero de ciclos de ejecución adecuado, buscando optimizar los recursos.

La combinación de numero de instrucciones captadas, decodificadas y finalizadas es de (4,3,4) por ciclo, junto con el tamaño de cola de instrucción 4, ventana de instrucción de enteros 8 y de flotantes 4, y buffer de reorden de enteros de 8 y de flotantes 4, consiguiendo asi el siguiente resultado:

GUION 10. Predicción de saltos y Coste.

- Partiendo del guión anterior
 - Repetir guiones 8 y 9. Activando la opción de predicción de saltos y comente los resultados.

Repitiendo todos los ejercicios anteriores podemos observar como la predicción de salto nos ahorra muchos ciclos, vamos a ver el cambio brusco que pega, por ejemplo con la configuración ideal que habíamos cogido como gran optimización en el ultimo ejercicio del guion 9:

Como vemos el número de ciclos en ejecución pasa de 76 a 52 lo que es una gran optimización gracias a la predicción de saltos.

- A partir de los resultados obtenidos, busque una configuración que permita obtener el mayor rendimiento teniendo en cuenta los siguientes costes y estando limitado al gasto de 35€
 - Prediccion de saltos: 15€
 - Cada línea de captación, decodificación y finalización:
 - 1 inst/ciclo: 0€
 - 2 inst/ciclo:3€
 - 3 inst/ciclo:4€
 - 4 inst/ciclo:5€
 - 5 inst/ciclo:6€
 - Tamaño de CI,VI(enteros-flotantes) y ROB (enteros-flotantes)

4 lineas: 0€
8 lineas: 3€
12 lineas: 4€
16 lineas: 5€
20 lineas: 6€

Cogiendo la configuración ideal anterior obtenemos:

- o Captación, Decodificación y Finalización (4,3,4): 5+4+5=14€
- o CI: 4: 0€

VI(enteros y flotantes): 8,4: 3€
 ROB(enteros y flotantes): 8,4: 3€

○ Predicción de salto: 15€

Este presupuesto nos haría un total de 36€, nos pasaríamos del presupuesto, por lo que no nos seria de utilidad.

Si cambiamos algunas propiedades nos quedaría así:

- o Captación, Decodificación y Finalización (4,3,2): 5+4+3=12€
- o CI: 4: 0€
- ∨I(enteros y flotantes): 8,4: 3€ROB(enteros y flotantes): 8,4: 3€
- o predicción de salto: 15€

Este presupuesto nos haría un total de 33€, nos pasaríamos del presupuesto, por lo que no nos seria de utilidad dado al rendimiento que podemos obtener, a pesar de que solo es 1€.

Si cambiamos algunas propiedades nos quedaría así:

- o Captación, Decodificación y Finalización (4,3,2): 5+4+3=12€
- o CI: 4: 0€
- o VI(enteros y flotantes): 4,4: 0€
- o ROB(enteros y flotantes): 8,4: 3€
- predicción de salto: 15€

Este presupuesto nos haría un total de 30€, no nos pasaríamos del presupuesto, por lo que nos seria de utilidad dado al rendimiento que podemos obtener esta configuración seria la ideal, de cara al rendimiento obtenido y al precio del mismo.