

Outline

- 1. Data Overview
- 2. Data Preprocessing
- 3. The Models
- 4. Result

Data Overview

The Features

Numerical

- On_promotion
- Oil price

Categorical

- Store_nbr
- Family
- Store type
- Earthquake
- Holidays
- ☐ City

Target Feature

□ Sales

Problem

 Predict sales for each store and product category in the retail industry.

 Accurate sales forecasting allows for optimization of inventory management and promotional strategies.

Data Preprocessing and Feature Engineering

Improvements in Our Approach

Reduced the number of features

Created new, effective features

What we used to use:

- Store_nbr
- Family
- Day_of_week
- Year
- Onpromotion
- Lags
- Dcoilwtico
- Store
- Event
- City
- Day
- Quarter
- Day_of_year

- Family
- Day_of_week
- Year
- Onpromotion
- Lags

Specific Improvements

- Removed unnecessary categorical columns
- Used LightGBM for efficient handling of categorical data

Simplified Date Features

- Focused on two features: day_of_week and year
- Sufficient for effective model learning

Enhanced Lag Features

- Used multiple lags: 1 day, 7 days, 30 days
- Applied Exponentially Weighted Moving Average (EWMA)
- Captured sales trends more accurately

Data Combination and Cleaning

- Combined training and test data for consistent feature engineering
- Cleaned data to remove noise

Conclusion

- Reduced features to simplify the model
- Prevented overfitting

The Models

Things to keep in mind

- Handling discrete variables
- The target variable is continuous
- The data is a time series

The Basic: Decision Tree

Core characteristic:

- Good at learning discrete data
- Extremely prior to noises in the data
- Not robust against a big amount of data
- Is not a time series model

Our Model: Light Gradient Boosting Machine Regressor

Core characteristic:

- Good at learning discrete
 data
- Prior to noises in the data
- Is not a time series model
- Need hyperparameter tuning

LGBM vs GBM

LGBM GBM

Sales:	Sales-1:	Sales-2:	Sales-n:
1	Nan	Nan	Nan
2	2	Nan	Nan
3	3	1	 Nan
4	4	2	Nan
5	5	3	
6	6	4	1

Before

After

Sales:	Sales-1:	Sales-2:	Sales-n:
1	Nan	Nan	Nan
2	EMA(2)	Nan	Nan
3	EMA(3)	EMA(1)	 Nan
4	EMA(4)	EMA(2)	Nan
5	EMA(5)	EMA(3)	
6	EMA(6)	EMA(4)	EMA(1)

Gain of Each Features Ranked

Hyperparameter Tuning

Learning rate : 0.1

Feature fracition : 0.800087645

Bagging fraction: 0.851134158

Bagging frequency: 5

Verbose : 0

Max depth : 50

Num leaf : 128

Max bin : 512

What did we improve from before, and why?

- We changed our model from the regular GBM into LGBM.
- We improve our sliding window, which now gives better result
- We did hyperparameter tuning, the most important thing to do to get better result at GBM models.
- We optimized the timeframe used for training

Results

Our best result:

submission.csv

Complete · Ikhsan Rabbani · 11h ago · LGBM only train data without hp tuning

0.61289

Model Evaluation: Learning Curve

What did we learn?

Things We Notice....

 Preprocessing the data and exploratory data analysis are the most important thing to do before building a model

 Sliding windows can't just be added, but also needs to be optimized to give best prediction for time series data

 Hyperparameter needs to be fine tuned to give the best result

Thank You

Any Question?