Linear Algebra

Practice Quiz, 5 questions

Congratulations! You passed!

Next Item

Let two matrices be

$$A = egin{bmatrix} 1 & -4 \ -2 & 1 \end{bmatrix}, \qquad B = egin{bmatrix} 0 & 3 \ 5 & 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

What is A - B?

$$\bigcap_{-1}^{1}$$

$$\begin{bmatrix}
1 & -7 \\
-7 & -7
\end{bmatrix}$$

Correct

$$\begin{bmatrix} 1 & 7 \\ 7 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -7 \\ -7 & 7 \end{bmatrix}$$

2.

Linear Algebra
Practice Quiz,
$$\overline{5}$$
 questions

What is $\frac{1}{2} * x$?

$$egin{bmatrix} 1 \ rac{7}{2} \ 2 \ rac{1}{1} \end{bmatrix}$$

Correct

To multiply the vector x by $\frac{1}{2}$, take each element of x and multiply that element by $\frac{1}{2}$.

 $1 \frac{7}{2} \frac{2}{2} \frac{1}{2}$

1/1 point

3.

Let u be a 3-dimensional vector, where specifically

$$u = egin{bmatrix} 8 \ 1 \ 4 \end{bmatrix}$$

What is u^{T} ?

Correct

 $\begin{bmatrix} 4 & 1 & 8 \end{bmatrix}$

point

Let u and v be 3-dimensional vectors, where specifically

$$u = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$$

and

$$v = egin{bmatrix} 1 \ 2 \ 5 \end{bmatrix}$$

What is $u^T v$?

(Hint: u^T is a

1x3 dimensional matrix, and v can also be seen as a 3x1

matrix. The answer you want can be obtained by taking

the matrix product of \boldsymbol{u}^T and \boldsymbol{v} .) Do not add brackets to your answer.

13

Correct Response

1/1

point

5.

Linear Algebra (square) matrices. Which of the following

Practice Quiz, 5 questions

must necessarily hold true? Check all that apply.

If C = A * B, then C is a 6x6 matrix.

Un-selected is correct

Un-selected is correct

If A is the 3x3 identity matrix, then A*B=B*A

Correct

Even though matrix multiplication is not commutative in general ($A*B \neq B*A$ for general matrices A,B), for the special case where A=I, we have A*B=I*B=B, and also B*A=B*I=B. So, A*B=B*A.

Correct

We add matrices element-wise. So, this must be true.

 ∇ F