

planetmath.org

Math for the people, by the people.

universal nets in compact spaces are convergent

 ${\bf Canonical\ name} \quad {\bf UniversalNetsInCompactSpacesAreConvergent}$

Date of creation 2013-03-22 17:31:29 Last modified on 2013-03-22 17:31:29 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Theorem Classification msc 54A20 **Theorem -** A universal net $(x_{\alpha})_{\alpha \in \mathcal{A}}$ in a compact space X is convergent. **Proof:** Suppose by contradiction that $(x_{\alpha})_{\alpha \in \mathcal{A}}$ was not convergent. Then for every $x \in X$ we would find neighborhoods U_x such that

$$\forall_{\alpha \in \mathcal{A}} \ \exists_{\alpha < \alpha_0} \ x_{\alpha_0} \notin U_x$$

The collection of all this neighborhoods cover X, and as X is compact, a finite number $U_{x_1}, U_{x_2}, \ldots, U_{x_n}$ also cover X.

The net $(x_{\alpha})_{\alpha \in \mathcal{A}}$ is not eventually in U_{x_k} so it must be eventually in $X - U_{x_k}$ (because it is a net). Therefore we can find $\alpha_k \in \mathcal{A}$ such that

$$\forall_{\alpha_k \le \alpha} \ x_\alpha \in X - U_{x_k}$$

Because we have a finite number $\alpha_1, \alpha_2 \dots, \alpha_n \in \mathcal{A}$ we can find $\gamma \in \mathcal{A}$ such that $\alpha_k \leq \gamma$ for each $1 \leq k \leq n$.

Then $x_{\gamma} \in X - U_{x_k}$ for all k, i.e. $x_{\gamma} \notin U_{x_k}$ for all k. But $U_{x_1}, U_{x_2}, \dots, U_{x_n}$ cover X and thus we have a contradiction. \square