

Micro-power CMOS input RRIO 1.4V Push-Pull Output Comparator

Features

- Ultra Low Power Consumption:
 1.35µA (TYP) at V+ = 1.4V
- Wide Supply Voltage Range: 1.4V to 5.5V
- Propagation Delay: 1.3μs (TYP) at V+ = 1.4V
- Push-Pull Output Current Drive:
 25mA (TYP) at V+ = 5V
- Rail-to-Rail Input
- -40°C to 85°C Operating Temperature Range
- Available in the Green SOT23-5, SC70-5, SOIC-8, MSOP-8, SOP-14 and TSSOP-14 Packages

Applications

- RC Timers
- Window Detectors
- IR Receiver
- Multivibrators
- Alarm and Monitoring Circuits

Descriptions

The DIO2087X is an ultra low-power comparator with a typical power supply current of 1.35μA. It has the best-in-class power supply current versus propagation delay performance. The propagation delay is as low as 1.3μs with 100mV overdrive at 1.4V supply.

Designed to operate over a wide range of supply voltages, from 1.4V to 5.5V, with guaranteed operation at 1.4V, 2.5V and 5.0V, the DIO2087X is ideal for use in a variety of battery-powered applications. With rail-to-rail common mode voltage range, the DIO2087X is well suited for single-supply operation.

Featuring a push-pull output stage, the DIO2087X allows for operation with absolute minimum power consumption when driving any capacitive or resistive load.

DIO2087X is available in the Green SOT23-5, SC70-5, SOIC-8, MSOP-8, SOP-14 and TSSOP-14 packages. The DIO2087X is ideal for use in handheld electronics and mobile phone applications. It is rated over the -40°C to 85°C temperature range

Ordering Information

Order Part Number	Top Marking		TA	Package		
DIO20871ST5	YW71	Green	-40 to 85°C	SOT23-5	Tape & Reel, 3000	
DIO20871SC5	YW71	Green	-40 to 85°C	SC70-5	Tape & Reel, 3000	
DIO20871ASC5	W71A	Green	-40 to 85°C	SC70-5	Tape & Reel, 3000	
DIO20871AST5	W71A	Green	-40 to 85°C	SOT23-5	Tape & Reel, 3000	
DIO20872SO8	D20872	Green	-40 to 85°C	SOIC-8	Tape & Reel, 2500	
DIO20872MP8	D20872	Green	-40 to 85°C	MSOP-8	Tape & Reel, 3000	
DIO20874CS14	D20874	Green	-40 to 85°C	SOP-14	Tape & Reel, 2500	
DIO20874TP14	D20874	Green	-40 to 85°C	TSSOP-14	Tape & Reel, 2500	
DIO20875SO8	D20875	Green	-40 to 85°C	SOIC-8	Tape & Reel, 2500	
DIO20875MP8	D20875	Green	-40 to 85°C	MSOP-8	Tape & Reel, 3000	

Pin Assignments

DIO20871

SOT23-5/SC70-5

DIO20872

SOIC-8/MSOP-8

DIO20871A

SOT23-5/SC70-5

DIO20874

SOP-14/TSSOP-14

DIO20875

Figure 1 Pin Assignment (Top View)

Pin Description

Pin name	Description
OUTX	Output
V-	Negative supply
+INX	Positive Input
-INX	Negative Input
V+	Positive supply
Œ	Enable
OUT	Negative Output
NC	No Connect

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxim rating conditions for extended periods may affect device reliability.

Parameter		Rating	Unit
Supply Voltage (V+ – V-)		7.5	V
Input Voltage		(V-)-0.5V to (V+)+0.5V	V
Difference Input Voltage		±2.5V	V
Operating Temperature Range (T _A)		-40 to 85	°C
Storage Temperature Range (TsTO)		-55 to 150	°C
Junction Temperature (Tj)		160	°C
Lead Temperature Range		260	°C
ESD	HBM, JEDEC: JESD22-A114	4000	.,
	CDM, JEDEC: JESD22-C101	400	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation to ensure optimal performance to the datasheet specifications. DIOO does not recommend exceeding them or designing to Absolute Maximum Ratings.

Parameter	Rating	Unit
Supply Voltage	1.4 to 5.5	V
Operating Temperature Range	-40 to 85	°C

Electrical Characteristics: V+ = 1.4V

(At T_A = 25°C, V_+ = 1.4V, V_- = 0V, $V_{\overline{LE}}$ = 1.4V, V_{CM} = V_+ /2 and V_O = V-, unless otherwise noted.)

				MAX	Unit	
I _S	-40°C≤Ta≤85°C, V _{CM} = 0.3V		1.20		μΑ	
	-40°C≤T _A ≤85°C, V _{CM} = 1.1V		1.35			
Vos		-5	0	5	mV	
ΔVos/ΔT			2.7		μV/°C	
	V _{CM} Stepped from 0V to 0.3V		60			
CMRR	V _{CM} Stepped from 0.8V to 1.4V		78		dB	
	V _{CM} Stepped from 0V to 1.4V		68			
PSRR	V+ = 2.5V to 5.5V, V _{CM} = (- V+) +0.5V		80		dB	
V _{IH}			0.85		V	
V _{IL}			0.5		V	
I _{IL}	V _{LE} =0V		7.5		nA	
V _{OH}	V+ = 1.8V, I ₀ = 500μA		1.65		- V	
	V+ = 1.8V, I ₀ = 1mA		1.55			
V _{OL}	V+ = 1.8V, I ₀ = -500μA		100		- mV	
	V+ = 1.8V, I _O = -1mA		200			
Гоит	Source		0.98		- mA	
	Sink		1.38			
	Overdrive = 10mV		3.5			
	Overdrive = 100mV		1.1		μs	
	Overdrive = 10mV		2.2			
	Overdrive = 100mV		1.4		μs	
	Overdrive = 10mV,		160			
t _{Rise}	$C_L = 30pF, R_L = 1M\Omega$		160		ns	
			160			
ten	Overdrive = 10mV,			ns		
	$C_L = 30$ pF, $R_L = 1$ M Ω		160			
-raii	Overdrive = 100 mV, $C_1 = 30$ pE, $R_2 = 1$ MO		160		110	
	ΔVos/ΔT CMRR PSRR V _{IH} V _{IL} I _{IL} V _{OH}			Vos -5 0 ΔVos/ΔT 2.7 CMRR Vc _M Stepped from 0V to 0.3V 60 Vc _M Stepped from 0.8V to 1.4V 78 Vc _M Stepped from 0V to 1.4V 68 PSRR V+ = 2.5V to 5.5V, Vc _M = (- V+) +0.5V 80 V _I 0.85 V _I 0.5 I _{IL} V _{IE} =0V 7.5 V _O V+ = 1.8V, I ₀ = 500μA 1.65 V _O V+ = 1.8V, I ₀ = -500μA 100 V ₊ = 1.8V, I ₀ = -1mA 200 Source 0.98 Sink 1.38 Overdrive = 10mV 3.5 Overdrive = 10mV 2.2 Overdrive = 10mV 1.4 V _{Rise} 0 Overdrive = 10mV, C _I = 30pF, R _I = 1MΩ 160 V _{Fall} 0 Overdrive = 10mV, C _I = 30pF, R _I = 1MΩ 160 Overdrive = 100mV, C _I = 30pF, R _I = 1MΩ 160 Overdrive = 100mV, C _I = 30pF, R _I = 1MΩ 160 Overdrive = 100mV, C _I = 30pF, R _I = 1MΩ 160	Vos -5 0 5 ΔVos/ΔT 2.7 2.7 CMRR Vom Stepped from 0V to 0.3V 60 60 Vom Stepped from 0.8V to 1.4V 78 Vom Stepped from 0V to 1.4V 68 PSRR V+ = 2.5V to 5.5V, Vom = (-V+) +0.5V 80 Vii 0.85 Vii 0.5 Vii 0.5 Voh V+ = 1.8V, I ₀ = 500µA 1.65 Voh V+ = 1.8V, I ₀ = -500µA 100 V+ = 1.8V, I ₀ = -500µA 100 V+ = 1.8V, I ₀ = -1mA 200 Source 0.98 Sink 1.38 Overdrive = 10mV 3.5 Overdrive = 10mV 2.2 Overdrive = 10mV 1.4 Overdrive = 10mV, C ₁ = 30pF, R ₁ = 1MΩ 160 Overdrive = 10mV, C ₁ = 30pF, R ₁ = 1MΩ 160 Overdrive = 10mV, C ₁ = 30pF, R ₁ = 1MΩ 160 Overdrive = 10mV, O ₁ = 30pF, R ₁ = 1MΩ 160	

ELECTRICAL CHARACTERISTICS: V+ = 2.5V

(At T_A = 25°C, V_+ = 2.5V, V_- = 0V, $V_{\overline{LE}}$ = 2.5V, V_{CM} = $V_+/2$ and V_0 = V_- , unless otherwise noted.)

Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Supply Current	Is	-40°C≤TA≤85°C, V _{CM} = 0.3V		1.25		μΑ
		-40°C≤TA≤85°C , V _{CM} = 2.2V		1.4		
Input Offset Voltage	Vos		-5	0	5	mV
Input Offset Average Drift				2		μV/°C
		V _{CM} Stepped from 0V to 1.4V		77		
Common Mode Rejection Ratio	CMRR	V _{CM} Stepped from 1.9V to 2.5V		85		dB
		V _{CM} Stepped from 0V to 2.5V		77		
Power Supply Rejection Ratio	PSRR			90		dB
Latch Enable Pin High Input Voltage	V _{IH}			1.4		V
Latch Enable Pin Low Input Voltage	VIL			0.9		V
Latch Enable Pin Bias Current	I _{IL}	V _{LE} =0V		13.		nA
Large Signal Voltage Gain	Avo			90		dB
	Vон	Ιο = 500μΑ		2.4		V
Output Swing High		I _O = 1mA		2.3		
	VoL	Ιο = -500μΑ		60		- mV
Output Swing Low		I _O = -1mA		120		
	Іоит	Source		5.8		- mA
Output Current		Sink		7.1		
Propagation Delay		Overdrive = 10mV		2.8		110
(High to Low)		Overdrive = 100mV		0.95		μs
Propagation Delay		Overdrive = 10mV		2.00		μs
(Low to High)		Overdrive = 100mV		1.10		μο
	t _{Rise}	Overdrive = 10mV, C _L = 30pF,		80		
Rise Time		$R_L = 1M\Omega$ Overdrive = 100mV, $C_L = 30pF$,				ns
		$R_L = 1M\Omega$		50		
	t _{Fall}	Overdrive = 10mV, C _L = 30pF,		80		
Fall Time		R _L = 1ΜΩ		00		ns
		Overdrive = 100mV, C_L = 30pF, R_L = 1M Ω		50		

ELECTRICAL CHARACTERISTICS: V+ = 5.0V

(At T_A = 25°C, V_+ = 5.0V, V_- = 0V, $\overline{V_L}$ E = 5.0V, V_{CM} = V_+ /2 and V_0 = V_- , unless otherwise noted.)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Uni	
Supply Current		-40°C≤Ta≤85°C, V _{CM} = 0.3V		1.35		T	
Supply Current	l _S	-40°C≤TA≤85°C, V _{CM} = 4.7V		1.5		μA	
Input Offset Voltage	Vos		-5	1	5	mV	
Input Offset Average Drift	ΔVos/ΔT			2.7		μV/	
		V _{CM} Stepped from 0V to 3.9V		85			
Common Mode Rejection Ratio	CMRR	V _{CM} Stepped from 4.4V to 5V		89		dB	
		V _{CM} Stepped from 0V to 5V		85			
Power Supply Rejection Ratio	PSRR	V+=2.5V to 5.5V, V _{CM} =(- V+) +0.5V		70		dB	
Latch Enable Pin High Input Voltage	V _{IH}			2.52		V	
Latch Enable Pin Low Input Voltage	V _{IL}			1.97		V	
Latch Enable Pin Bias Current	I _{IL}	V _{LE} =0V		26.5		nA	
	V _{OH}	Ι ₀ = 500μΑ		4.95		- v	
Output Swing High		I _O = 1mA		4.90			
	V _{OL}	Ι ₀ = -500μΑ		30		mV	
Output Swing Low		I ₀ = -1mA		60			
	Іоит	Source		25		mA	
Output Current		Sink		25			
Propagation Delay		Overdrive = 10mV		3.50			
(High to Low)		Overdrive = 100mV		0.95		μs	
Propagation Delay		Overdrive = 10mV		2.85			
(Low to High)		Overdrive = 100mV		1.10		μs	
Rise Time	t _{Rise}	Overdrive = 10mV, $C_L = 30pF$, $R_1 = 1M\Omega$		75		ns	
		Overdrive= 100mV, C_L = 30pF, R_L = 1M Ω		45			
Fall Time	t _{Fall}	Overdrive = 10mV, C_L = 30pF, R_L = 1M Ω		75			
raii tiitie		Overdrive= 100mV, C_L = 30pF, R_L = 1M Ω		45		ns	

CONTACT US

Dioo is a professional design and sales corporation for high-quality and performance analog semiconductors. The company focuses on industry markets, such as, cell phone, handheld products, laptop, and medical equipment and so on. Dioo's product families include analog signal processing and amplifying, LED drivers and charger IC. Go to http://www.dioo.com for a complete list of Dioo product families

For additional product information, or full datasheet, please contact with our Sales Department or Representatives.

