CS2601 Linear and Convex Optimization Homework 9

Due: 2021.12.2

1. Consider the equality constrained quadratic program

$$\min_{x_1, x_2} f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1x_2 + x_2^2 - x_1 - 3x_2$$
s.t. $x_1 + 2x_2 = 1$

- (a). Find the optimal solution x_1^*, x_2^* by reduction to an unconstrained problem.
- (b). Find the optimal solution and the corresponding Lagrange multiplier λ^* using the Lagragian multipliers method.
- 2. Consider the equality constrained quadratic program

$$\min_{\boldsymbol{x}} \quad \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{g}^T \boldsymbol{x} + c$$
s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}$

where $Q \in \mathbb{R}^{n \times n}$, $Q \succ O$, $g \in \mathbb{R}^n$, $c \in \mathbb{R}$, $A \in \mathbb{R}^{k \times n}$ with rank A = k, and $b \in \mathbb{R}^k$.

- (a). Write down the Lagrange condition for this problem.
- (b). Find a closed form solution for the optimal solution x^* and the corresponding Lagrange multiplier λ^* . Hint: Show $AQ^{-1}A^T \succ O$ and hence is invertible.
- (c). Use part (b) to find the projection $\mathcal{P}_S(\boldsymbol{x}_0)$ of a point \boldsymbol{x}_0 onto the affine space $S = \{\boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}\}$, i.e. solve

$$\min_{\boldsymbol{x}} \quad \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{x}_0\|_2^2$$

When $x_0 = 0$, you should recover the result on slide 11 of §9.

(d). Consider a hyperplane $P = \{ \boldsymbol{x} : \boldsymbol{w}^T \boldsymbol{x} = b \}$. Use the result in (c) to find the distance $\operatorname{dist}(\boldsymbol{x}_0, P)$ between \boldsymbol{x}_0 and P. You should recover the result on slide 12 of §1.

1

3. Solve the following problem,

$$\min_{x_1, x_2} \quad f(x_1, x_2) = x_1 x_2$$
s.t.
$$x_1^2 + 4x_2^2 = 1$$

- **4.** In this problem, we characterize the eigenvalues of a symmetric matrix A as the optimal values of certain optimization problems. Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A.
- (a). Consider the following optimization problem,

$$\min_{\boldsymbol{x}} \quad \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \\
\text{s.t.} \quad \|\boldsymbol{x}\|_2^2 = 1$$
(1)

Use the Lagrange multipliers method to show that a solution x^* to problem (1) is an eigenvector of A associated to λ_1 , and the optimal value is λ_1 .

(b). Let v_1 be an eigenvector of A associated to the eigenvalue λ_1 . Consider the following optimization problem,

$$\min_{\boldsymbol{x}} \quad \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$$
s.t. $\|\boldsymbol{x}\|_2^2 = 1$ (2)
$$\boldsymbol{v}_1^T \boldsymbol{x} = 0$$

Let x^* be an optimal solution to (2).

i) Use the Lagrange multipliers method to show that there exist some $c_0, c_1 \in \mathbb{R}$ s.t.

$$\boldsymbol{A}\boldsymbol{x}^* = c_0\boldsymbol{x}^* + c_1\boldsymbol{v}_1$$

- ii) Show $c_1 = 0$ in i).
- iii) Conclude x^* is an eigenvector of A associated to λ_2 , and the optimal value of (2) is λ_2 . You can assume the fact that an eigenvector orthogonal to v_1 must be associated to one of the eigenvalues $\lambda_2, \ldots, \lambda_n$.

Remark. The same argument can be used to show the following generalization. Let v_1, \ldots, v_{k-1} be linearly independent eigenvectors of A associated to $\lambda_1, \ldots, \lambda_{k-1}$, respectively. Then λ_k is the optimal value of the following problem,

$$\begin{aligned} & \min_{\boldsymbol{x}} \quad \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} \\ & \text{s.t.} \quad \|\boldsymbol{x}\|_2^2 = 1 \\ & \quad \boldsymbol{v}_i^T \boldsymbol{x} = 0, \quad i = 1, 2, \dots, k-1 \end{aligned}$$

and the optimal solution is an eigenvector associated to λ_k .