· BASE CASE: RHS: STEP: ASSURE THAT, FOR KEIN,

RHS:
$$\frac{\times^{0+1}-1}{\times^{-1}} = \frac{\times^{-1}-1}{\times^{-1}} = \frac{\times^{-1}-1}{\times^{-1}}$$

NDUCTION STEP: ASSURE THAT, FOR $\left(\frac{\times^{0+1}-1}{\times^{-1}}\right)$ (1.H)

= xk+1-1+(x-1)x4+1 X-1

· CONCLUSION: BY & INDUCTION, YMEIN

F(n+2) = F(n) + F(n+1)
$$\forall n \in \mathbb{N}$$

F(n+2) = F(m) + F(n+1) $\forall n \in \mathbb{N}$

FROME: $\forall m \in \mathbb{N} \setminus \{0\}$ $f(n-1) \cdot F(m+1) - F(n)^2 = f(1)^2$

• BASE CASE: $[M=1]$: $F(0) F(2) - F(1)^2 = 20 \cdot (0+1) - 1^2 = 0-1 = (-1)^1$

• IND. STEP: ASSUME, FOR $A \in \mathbb{N} \setminus \{0\}$, $[k \ge 1]$

• WART: $F(k-1) \cdot F(k+1) - F(k+1)^2 = (-1)^k$ $(1, M)$

WHART: $F(k+1-1) \cdot F(k+1) - F(k+1)^2 = (-1)^{k+1}$
 $F(k) \cdot F(k) \cdot F(k+1) - F(k+1) = F(k+1)^2 = F(k+1) \cdot F(k) \cdot F(k+1)$
 $F(k)^2 + F(k) \cdot F(k+1) - F(k+1) = F(k+1)^2 = F(k+1) \cdot F(k-1) - F(k)^2$

I.M. $= (-1)^{k+1} = (-1)^{k+1}$

• CONCLUSION; BY INDUCTION, $\forall m \in \mathbb{N} \setminus \{0\}$
 $F(m-1) \cdot F(m+1) - F(m)^2 = (-1)^m \quad \forall m \in \mathbb{N} \setminus \{0\}$
 $F(m-1) \cdot F(m+1) - F(m)^2 = (-1)^m \quad \forall m \in \mathbb{N} \setminus \{0\}$