MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2015 SOLUTION KEY

Round 4

A) Completing the square on the right side,

$$x = y^{2} - 10y + 3 \Leftrightarrow x = (y^{2} - 10y + 25) + 3 - 25 \Leftrightarrow (y - 5)^{2} - 22$$

For all values of y, $(y-5)^2 \ge 0$. Therefore, the minimum value of x (namely m) is -22 and it occurs when y = 5. The required ordered pair is (m,k) = (-22,5).

B) $2m^2x^2 - 7mx = -3m(1+x) \Leftrightarrow 2m^2x^2 - 4mx + 3m = 0 \Leftrightarrow m(2mx^2 - 4x + 3) = 0$

Examining the discriminant of the quadratic factor, $16-24m > 0 \Leftrightarrow m < \frac{2}{3}$ (but the quadratic equation disappears for m = 0). Thus, $m < \frac{2}{3}$ $m \neq 0$

equation disappears for m = 0). Thus, $m < \frac{2}{3}, m \neq 0$.

C) If k = -7, the equation becomes linear and has only one solution.

If $k \neq -7$, the equation is quadratic and, if the discriminant equals zero, there will be exactly one solution. $k^2 - 36(k+7) = 0 \Rightarrow k^2 - 36k - 252 = (k+6)(k-42) = 0$.

Thus, there are three values, k = 42, -6, -7 (in any order).