FELADATOK – MEGOLDÁSOK a 2. zárthelyihez

1. Feladat:

Egy mintavételes, zárt szabályozási körben az e[k] hibajel az r[k] alapjel és az y[k] szabályozott jellemző különbsége: e[k] = r[k] - y[k].

A hibajel z-transzformáltja $E(z) = z^{-1} + 0.6z^{-2} + 0.2z^{-3}$. Határozza meg és vázolja fel az y[k] kimenőjel időbeli lefolyását a k=0,1,2,3,4,5 mintavételi időpillanatokra, ha az alapjel egységsebességugrás függvény.

Megoldás:

$$\overline{e[k] = Z^{-1}} \{ E(z) \} = 0 \cdot \delta[k] + 1 \cdot \delta[k-1] + 0.6 \cdot \delta[k-2] + 0.2 \cdot \delta[k-3] + 0 \cdot \delta[k-4] + 0 \cdot \delta[k-5]$$

$$r[k] = k \cdot 1[k] = 0 \cdot \delta[k] + 1 \cdot \delta[k-1] + 2 \cdot \delta[k-2] + 3 \cdot \delta[k-3] + 4 \cdot \delta[k-4] + 5 \cdot \delta[k-5] + \dots$$

$$y[k] = r[k] - e[k] = 0 \cdot \delta[k] + 0 \cdot \delta[k-1] + 1.4 \cdot \delta[k-2] + 2.8 \cdot \delta[k-3] + 4 \cdot \delta[k-4] + 5 \cdot \delta[k-5]$$

2. Feladat:

<u>Határozza meg</u> egy matematikailag mintavételezett x(t) időfüggvény Laplace transzformáltját.

Megoldás:

A T_s mintavételi idővel matematikailag mintavételezett jel:

$$x_s(t) = \sum_{k=0}^{\infty} x(t)\delta(t - kT_s) = \sum_{k=0}^{\infty} x(kT_s)\delta(t - kT_s)$$

 $x_s(t)$ Laplace transzformáltja:

$$L\{x_{s}(t)\} = \int_{0}^{\infty} \sum_{k=0}^{\infty} x(kT_{s}) \delta(t - kT_{s}) e^{-st} dt = \sum_{k=0}^{\infty} x(kT_{s}) \int_{0}^{\infty} \delta(t - kT_{s}) e^{-skT_{s}} dt =$$

$$= \sum_{k=0}^{\infty} x(kT_{s}) e^{-skT_{s}} \int_{0}^{\infty} \delta(t - kT_{s}) dt = \sum_{k=0}^{\infty} x(kT_{s}) e^{-skT_{s}} \cdot 1 = \sum_{k=0}^{\infty} x(kT_{s}) e^{-skT_{s}} = \sum_{k=0}^{\infty} x(kT_{s})$$

ahol
$$z = e^{sT_s}$$
 és $x[k] = x(kT_s)$.

<u>Származtassa</u> [vezesse le] a bilineáris transzformáció w=f(z) összefüggését.

Megoldás:

Az x[k] mintavételi értékek használatán alapuló integráláskor az integrál növekménye a trapéz szabály szerinti közelítő integrálással:

$$I[k+1] - I[k] = \frac{x[k+1] + x[k]}{2}T_s$$

ahol T_s a mintavételezési idő. A z-transzformáltakkal kifejezve

$$\frac{I(z)}{X(z)} = \frac{z+1}{2(z-1)}T_s$$

A digitális integrátor fenti átviteli függvénye a folytonos integrálás $\frac{1}{s}$ átviteli függvényét közelíti:

$$\frac{1}{w} \cong \frac{T_s}{2} \cdot \frac{z+1}{z-1} \quad \Rightarrow \quad w \cong \frac{2}{T_s} \cdot \frac{z-1}{z+1}$$

ahol az s változót a közelítésre utalva a w változóval szokásos felváltani.

4. Feladat:

Tekintsük a $H(s) = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$ átviteli függvényű harmadrendű rendszer

fázisváltozós alakját. Határozza meg a $k = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$ visszacsatolás értékét úgy, hogy az állapotvisszacsatolással kapott zárt rendszer pólusai a $p_1 = -1$, $p_2 = -2$, $p_3 = -3$ helyre kerüljenek.

Megoldás:

$$H(s) = \frac{Y(s)}{U(s)} = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3} \implies \frac{U(s)}{s^3 + a_1 s^2 + a_2 s + a_3} = \xi(s) = \frac{Y(s)}{b_1 s^2 + b_2 s + b_3}$$

ahonnan

$$s^{3}\xi(s) = U(s) - a_{1}s^{2}\xi(s) - a_{2}s\xi(s) - a_{3}\xi(s)$$

Az időtartományban a fázisváltozók bevezetésével:

$$\dot{x}_3 = x_2$$

$$\dot{x}_2 = x_1$$

$$\dot{x}_1 = -a_1 x_1 - a_2 x_2 - a_3 x_3 + u(t)$$

$$y(t) = b_1 x_1 + b_2 x_2 + b_3 x_3$$

Az állapotteres modell:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = Ax + bu = \begin{bmatrix} -a_1 & -a_2 & -a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(t)$$

$$y(t) = cx = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

A zárt kör karakterisztikus egyenlete az állapotvisszacsatolással:

$$|sI - A + bk| = \begin{vmatrix} s + a_1 + k_1 & a_2 + k_2 & a_3 + k_3 \\ -1 & s & 0 \\ 0 & -1 & s \end{vmatrix} = s^3 + (a_1 + k_1)s^2 + (a_2 + k_2)s + (a_3 + k_3) = 0 \quad A$$

zárt kör előírt karakterisztikus egyenlete:

$$\alpha_c(s) = (s - p_1)(s - p_2)(s - p_3) = (s + 1)(s + 2)(s + 3) = s^3 + 6s^2 + 11s + 6$$

Az együtthatók összehasonlításával:

$$k_1 = 6 - a_1$$

$$k_2 = 11 - a_2$$

$$k_3 = 6 - a_3$$

Egy <u>mintavételes</u> (diszkrét idejû) szabályozó az u[k] = u[k-1] + 3e[k] - 2.7145e[k-1] rekurzív egyenlet szerint működik, ahol u[k] a szabályozó kimenőjele, e[k] pedig a szabályozó bemenőjele, azaz a szabályozás hibajele. $T_s = 1$ sec mintavételi időt feltételezve adja meg annak a <u>folytonos</u> szabályozónak az átviteli függvényét, amelynek a Tuschák-módszer szerinti kisfrekvenciás közelítését a megadott szabályozó megvalósítja. Vázolja fel a folytonos szabályozó közelítő BODE amplitúdó diagramját.

Megoldás:

A mintavételes PI szabályozó egyenlete

$$W_{PI}(z) = \frac{U(z)}{E(z)} = K \cdot \frac{z - z_1}{z - 1}$$

ahol

$$z_1 = e^{-T_s/T_I}$$

továbbá u a szabályozó kimenete, e pedig a hibajel.

A példában adott esetre

$$\frac{U(z)}{E(z)} = K \cdot \frac{z - z_1}{z - 1} = 3 \cdot \frac{z - 0.7148}{z - 1}$$

tehát K = 3 és $z_1 = 0.7148$, így a $z_1 = e^{-T_s/T_I}$ feltételből:

$$\ln(0.7148) = -\frac{T_s}{T_I} = -\frac{1}{T_I}$$
 \Rightarrow $T_I = -\frac{1}{\ln(0.7148)} = -\frac{1}{-0.3357} \cong 3\sec^2$

6. Feladat:

Az

$$A = \begin{bmatrix} \alpha & 1 \\ 0 & \beta \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad c = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad d = 0$$

állapottér-modellel adott rendszert $k = \begin{bmatrix} 1 & 1 \end{bmatrix}$ erősítéssel negatívan visszacsatolva a <u>zárt</u> rendszer pólusai: $p_{1,2} = -2 \pm j$. <u>Határozza meg</u> α és β értékét.

Megoldás:

A zárt rendszer karakterisztikus egyenlete:

$$|sI - A + bk| = \begin{vmatrix} s - \alpha & -1 \\ 1 & s - \beta + 1 \end{vmatrix} = s^2 + (1 - \alpha - \beta) \cdot s + \alpha \cdot \beta - \alpha + 1$$

illetve

$$\alpha_c(s) = (s - p_1)(s - p_2) = s^2 + 4s + 5$$

majd az együtthatók összehasonlításával:

$$1 - \alpha - \beta = 4$$
 illetve $\alpha \cdot \beta - a + 1 = 5$.

Innen

$$\alpha = -2$$
 és $\beta = -1$.

Egy mintavételes szabályozási körben a diszkretizált szakasz $P(z) = \frac{1}{z}$, a soros szabályozó pedig $C(z) = \frac{Kz}{z-1}$, ahol K>0. Határozza meg K maximális értékét (K_{max}) , amely mellett a zárt kör még stabilis. Ezekután $K=K_{max}/2$ mellett számítsa ki P(z) bemenetének és kimenetének értékét a k=0, 1 és 2 mintavételi időpillanatokban, ha az alapjel egységugrás.

Megoldás:

A felnyitott kör átviteli függvénye:

$$L(z) = C(z)P(z) = \frac{Kz}{z-1} \cdot \frac{1}{z} = \frac{K}{z-1}$$

A zárt kör karakterisztikus egyenlete:

$$1 + L(z) = 0 \quad \Rightarrow \quad z - 1 + K = 0$$

A stabilitáshoz a diszkrét pólusoknak a |z| < 1 tartományba kell esniük, innen $K_{\text{max}} = 2$.

$$K = K_{\text{max}} / 2 = 1$$
 mellett $L(z) = \frac{K}{z - 1} = \frac{1}{z - 1}$, az eredő átviteli függvény:

$$\frac{Y(z)}{R(z)} = \frac{L(z)}{1 + L(z)} = \frac{\frac{1}{z - 1}}{1 + \frac{1}{z - 1}} = \frac{1}{z} = z^{-1}$$

$$y[k] = 1[k-1]$$
 \Rightarrow $y[0] = 0, y[1] = 1, y[2] = 1.$

A bemenőjel
$$U(z) = \frac{Y(z)}{P(z)} = \frac{Y(z)}{\frac{1}{z}} = zY(z)$$
 \Rightarrow $u[0] = 1, u[1] = 1, u[2] = 1.$

Egy $P(s) = \frac{e^{-0.1s}}{s^2 + 5s + 6}$ átviteli függvényű folytonos folyamatot merev visszacsatolás mellett egy C(z) soros mintavételes [azaz impulzusátviteli függvénnyel adott] kompenzátorral, nulladrendû tartószerv közbeiktatásával szabályozunk.

- a/ T_s =0.05 másodperces mintavételi idő mellett <u>adja meg</u> a kisfrekvenciás közelítés Tuschák-módszerével tervezett PID szabályozó átviteli függvényét úgy, hogy egységugrás alakú alapjel esetén a beavatkozójel kezdeti értéke u[0]=10 legyen.
- b/ Adja meg (továbbra is egységugrás alakú alapjel esetén) a beavatkozójel értékét a k=0,1 és 2 mintavételi időpillanatokban.

<u>Segítség</u>: egy $\frac{1}{1+sT}$ átviteli függvényű folytonos szakasz nulladrendű tartószervvel együttesen vett impulzusátviteli függvénye $\frac{1-e^{-T_s/T}}{z-e^{-T_s/T}}$, ahol T_s a mintavételezési idő.

Megoldás:

a/ Mivel a holtidő és a mintavételezési idő hányadosa 2, így

$$P(z) = z^{-2}(1-z^{-1})Z\left\{\frac{1}{s(s^2+5s+6)}\right\} = z^{-2}(1-z^{-1})Z\left\{\frac{1}{s(s+2)} - \frac{1}{s(s+3)}\right\} =$$

$$= z^{-2} \cdot \frac{1}{2} \cdot \frac{1-e^{-T_s/0.5}}{z-e^{-T_s/0.5}} - z^{-2} \cdot \frac{1}{3} \cdot \frac{1-e^{-T_s/0.33}}{z-e^{-T_s/0.33}} = z^{-2}\left(\frac{0.0476}{z-0.9048} - \frac{0.0464}{z-0.8607}\right) =$$

$$= 0.0012 \cdot \frac{z^{-2}(z+0.92)}{(z-0.9048)(z-0.8607)}$$

A szabályozó:

$$C(z) = K \cdot \frac{z - 0.9048}{z - 1} \cdot \frac{z - 0.8607}{z}$$

A szabályozó bemenete a hibajel, kimenete a beavatkozó jel:

$$C(z) = \frac{U(z)}{E(z)} = K \cdot \frac{z - 0.9048}{z - 1} \cdot \frac{z - 0.8607}{z} = K \cdot \frac{z^2 - 1.7655z + 0.7788}{z(z - 1)}$$

avagy az időtartományban:

$$u[k] = u[k-1] + Ke[k] - 1.7655Ke[k-1] + 0.7788Ke[k-2]$$

Az u[0]=10 feltételből K=10

b/ A holtidő miatt e[0]=e[1]=e[2]=1, így

$$u[0] = 10$$

$$u[1] = 10 + 10 - 17.655 = 2.345$$

$$u[2] = 2.345 + 10 - 17.655 + 7.788 = 2.478$$

Tekintsünk egy folytonos kettős integrátort: $P(s) = \frac{1}{s^2}$.

- a/ Az $x_1 = y$, $x_2 = \dot{x}_1$ állapotváltozók bevezetésével <u>írja fel</u> P(s) állapotteres modelljét.
- b/ <u>Határozza meg</u> azt a $k = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$ erősítési vektort, amelyen keresztüli negatív állapotvisszacsatolással a zárt rendszer természetes frekvenciája ω_0 =4, csillapítása pedig ζ =0.5 lesz.
- c/ *T_s* mintavételezési idő és nulladrendű tartószerv feltételezésével származtassa [vezesse le] az a/ pontban kapott folytonos állapotteres modell diszkretizált alakját.

d/ Egy $k_d = \begin{bmatrix} k_{d1} & k_{d2} \end{bmatrix}$ erősítési vektoron keresztül negatívan visszacsatoljuk a c/ pontban kapott állapotteres modellt. Írja fel a zárt rendszer karakterisztikus egyenletét.

Megoldás:

a/Az

 $x_1=y$, $\dot{x}_1=x_2$, $\dot{x}_2=u\,$ egyenletekből felírható az állapotmodell:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = Ax + bu = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = cx = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

b/ A zárt kör karakterisztikus egyenlete:

$$|sI - A + bk| = \begin{vmatrix} s & -1 \\ k_1 & s + k_2 \end{vmatrix} = s^2 + k_2 s + k_1 = s^2 + 2\varsigma \omega_o s + \omega_o^2$$

ahonnan

$$k_1 = \omega_o^2 = 16$$
 illetve $k_2 = 2\varsigma\omega_o = 4$.

c/ A diszkretizált modell:

$$x[k+1] = A_d x[k] + b_d u[k]$$
$$y[k] = c_d x[k] + d_d u[k]$$

ahol

$$A_d = e^{AT_s}$$
 $b_d = \int_0^{T_s} e^{A\eta} d\eta \cdot b$ $c_d = c$ $d_d = d$

$$e^{At} = L^{-1} \left\{ (sI - A)^{-1} \right\} = L^{-1} \left\{ \begin{bmatrix} s & -1 \\ 0 & s \end{bmatrix}^{-1} \right\} = L^{-1} \left\{ \begin{bmatrix} \frac{1}{s} & \frac{1}{s^2} \\ 0 & \frac{1}{s} \end{bmatrix} \right\} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \implies A_d = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix}$$

$$b_d = \int_0^{T_s} e^{A\eta} d\eta \cdot b = \begin{bmatrix} T_s & \frac{T_s^2}{2} \\ 0 & T_s \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{T_s^2}{2} \\ T_s \end{bmatrix}$$

d/ A zárt rendszer karakterisztikus egyenlete:

$$\alpha_{cd}(z) = |zI - A_d + b_d k_d| = \begin{vmatrix} z - 1 + k_{d1} \frac{T_s^2}{2} & -T_s + k_{d2} \frac{T_s^2}{2} \\ k_{d2} T_s & z - 1 + k_{d2} T_s \end{vmatrix} =$$

$$= z^2 + z(k_{d1} \frac{T_s^2}{2} + k_{d2} T_s - 2) + (k_{d1} \frac{T_s^2}{2} - 1)(k_{d2} T_s - 1) + k_{d2} T_s (T_s - k_{d2} \frac{T_s^2}{2})$$

A $P(s) = \frac{4}{1+2s}$ átviteli függvényű folytonos szakaszt mereven visszacsatolva <u>mintavételesen</u> szabályozzuk zárt körben. Azt tapasztaljuk, hogy a zárt szabályozási kör a stabilitás határhelyzetében van. Határozza meg a mintavételezési időt.

11. Feladat:

Egy $P(s) = \frac{1}{s^2 + 5s + 6}$ átviteli függvényű folytonos folyamatot merev visszacsatolás mellett egy C(s) soros folytonos kompenzátorral szabályozunk.

- a/ Az $x_1 = y$, $x_2 = \dot{x}_1$ állapotváltozók bevezetésével <u>írja fel</u> a megadott P(s) folytonos folyamat állapotteres modelljét, majd <u>határozza meg</u> annak a $C(s) = K \frac{s+3}{1+sT}$ szabályozónak a K és T paraméterét, amely a szakasz állapotteres modelljének a $k = \begin{bmatrix} 42 & 9 \end{bmatrix}$ erősítési vektoron keresztül történő negatív állapotvisszacsatolásával ekvivalens karakterisztikus egyenletet biztosítja a <u>zárt körre</u>.
- b/ Vázolja fel az a/ pontban kapott C(s) szabályozó mellett a rendszer gyökhelygörbéjét.
- c/ *T*=0.2*sec* esetén <u>határozza meg</u> *K* azon értékét, amely mellett a zárt rendszer egységugrás alapjelre adott válaszában 15%-os túllendülés lesz megfigyelhető. <u>Határozza meg</u> továbbá, hogy mekkora lesz ebben az esetben a statikus hiba értéke.
- d/ Adja meg K>0 maximális értékét, amely mellett a zárt kör stabilis marad.

12. Feladat:

Tekintsünk egy folytonos, $\{A,b,c,d\}$ négyessel definiált állapotteres rendszert u bemenettel, x állapotvektorral és y kimenettel.

- a/ <u>Ismertesse</u> az állapotvisszacsatolás Ackermann-féle összefüggését és alkalmazhatóságának feltételét
- b/ Negatív visszacsatolást feltételezve számítsa ki az állapotvisszacsatolás erősítési vektorát, ha

$$A = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

és a visszacsatolással a zárt rendszer pólusait a $p_1 = -1$ és $p_2 = -2$ pozícióba kívánjuk áthelyezni.

c/ Feltételezve, hogy az állapotváltozók nem állnak rendelkezésre a visszacsatolás realizálásához, mutassa meg, hogyan választandók egy $\dot{\hat{x}} = F\hat{x} + gy + hu$ lineáris becslőhálózat dimenziói <u>és</u> paraméterei azzal a feltétellel, hogy a becslőhálózat (másnéven megfigyelő) $\alpha_0(s)$ karakterisztikus polinomja adott.

13. Feladat:

A $P(s) = \frac{e^{-2s}}{s(1+s)}$ átviteli függvényű folytonos szakaszt mereven visszacsatolva mintavételesen

szabályozzuk zárt körben. $T_s=1$ sec mintavételezési idő <u>és</u> egységugrás alakú alapjel esetén határozza meg azt a soros C(z) szabályozót, amely véges beállást biztosít:

a/ Minimális beállási idővel a mintavételezési pontok közötti hullámosság megengedésével

b/ Minimális beállási idővel a mintavételezési pontok közötti hullámosság kizárásával.

<u>Segítség</u>: Egy $\frac{K}{1+e^T}$ átviteli függvényű folytonos szakasz nulladrendű tartószervvel együttesen vett impulzusátviteli függvénye $K \cdot \frac{1 - e^{-T_s/T}}{T - e^{-T_s/T}}$, továbbá egy $\frac{K}{s}$ átviteli függvényű integrator nulladrendű tartószervvel együttesen vett impulzusátviteli függvénye $\frac{KT_s}{z-1}$, ahol T_s a mintavételezési idő.

Megoldás:

a/ Határozzuk meg először P(z) értékét. Annak érdekében, hogy a fent megadott összefüggéseket alkalmazni tudjuk, bontsuk részlettörtekre P(s) holtidőmentes részét:

$$P'(s) = \frac{1}{s(1+s)} = \frac{1}{s} + \frac{-1}{1+s}$$

$$P'(z) = (1 - z^{-1})\mathbf{Z} \left\{ \frac{P'(s)}{s} \right\} = \frac{1}{z - 1} - \frac{1 - e^{-1}}{z - e^{-1}} = \frac{1}{z - 1} - \frac{1 - 0.3679}{z - 0.3679} = \frac{0.3679z + 0.2642}{z^2 - 1.3679z + 0.3679}$$

A holtidő figyelembevételével

$$P(z) = z^{-2}P'(z) = \frac{0.3679z + 0.2642}{z^4 - 1.3679z^3 + 0.3679z^2}$$

 $P(z) = z^{-2}P'(z) = \frac{0.3679z + 0.2642}{z^4 - 1.3679z^3 + 0.3679z^2}$ Mivel P(s) nem stabil, így a stabilis folyamatokra levezetett összefüggések közvetlenül nem alkalmazhatók, viszont a zárt rendszer átviteli függvényére felírható, hogy

$$W_z(z) = \frac{C(z)P(z)}{1 + C(z)P(z)} = z^{-3}$$

ahonnan C(z) kifejezhető:

$$C(z) = \frac{z^{-3}(z-1)(z-0.3679)}{(1-z^{-3})0.3679(z+0.7183)z^{-2}} = \frac{z^2(z-1)(z-0.3679)}{0.3679(z^3-1)(z+0.7183)} = \frac{z^2(z-0.3679)}{0.3679(z^2+z+1)(z+0.7183)}$$

Látható, hogy a felnyitott körnek a hibamentes beálláshoz szükséges integrátorát most a szakasz, és nem a szabályozó tartalmazza.

A fenti szabályozó alkalmazásával egységugrás alakú alapjel esetén a kimenőjel mintavett értékei $Y(z) = z^{-3}R(z)$ szerint:

$$y[0] = 0$$
 $y[1] = 0$ $y[2] = 0$ $y[3] = 1$ $y[4] = 1$ $y[5] = 1$...

b/ P(z)-nek egyetlen zérusa van: $z_1 = -0.7183$. A mintavételezési pontok közötti hullámosság elkerülésére ezt a zérust hagynunk kell megjelenni a zárt kör átviteli függvényében:

$$W_z(z) = \frac{C(z)P(z)}{1 + C(z)P(z)} = B^{-}(z)z^{-4}$$

$$B^{-}(z) = \frac{z + 0.7183}{1 + 0.7183} = 0.582z + 0.418$$

$$C(z) = \frac{z^2(0.582z + 0.418)(z - 1)(z - 0.3679)}{0.3679(z^4 - 0.582z - 0.418)(z + 0.7183)} = \frac{z^2(0.582z + 0.418)(z - 0.3679)}{0.3679(z^3 + z^2 + z + 0.418)(z + 0.7183)}$$

A fenti szabályozó alkalmazásával egységugrás alakú alapjel esetén a kimenőjel mintavett értékei $Y(z) = B^{-}(z)z^{-4}R(z)$ szerint:

$$y[0] = 0$$
 $y[1] = 0$ $y[2] = 0$ $y[3] = 0.582$ $y[4] = 1$ $y[5] = 1$...

A $W(s) = \frac{1}{s}$ átviteli függvénnyel jellemzett integráló tagot T_s mintavételi idővel mintavételezzük. A tag bemenetén zérusrendű tartószervet (ZOH - zero order hold) alkalmazunk. Határozza meg (vezesse le) a tag impulzusátviteli függvényét. Segítség: a tag bemenetén tételezzünk fel $\delta(t)$ gerjesztést.

Megoldás:

A $\delta(t)$ gerjesztés hatására a tartószerv kimenetén egy egységnyi amplitúdójú, T_s szélességű négyszögimpulzus jön létre. Az ábra mutatja ennek hatására az integrátor folytonos és mintavételezett kimenőjelét.

Az integrátor kimenetén a mintavételezett kimenőjel:

$$y(t) = 0 + T_s[\delta(t - T_s) + \delta(t - 2T_s) + \delta(t - 3T_s) + ...]$$

A jel z-transzformáltja:

$$y(z) = 0 + T_s(z^{-1} + z^{-2} + z^{-3} + ...) = T_s z^{-1}(1 + z^{-1} + z^{-2} + ...)$$

illetve az egyenlet jobboldalán szereplő geometriai sort összegképletével helyettesítve

$$y(z) = \frac{T_s z^{-1}}{1 - z^{-1}} = \frac{T_s}{z - 1}.$$

Mivel a bemenőjel z-transzformáltja 1, az impulzusátviteli függvény:

$$W(z) = \frac{y(z)}{u(z)} = \frac{T_s}{z - 1}.$$

15. Feladat:

 T_s mintavételi idő mellett adja meg a zérusrendű tartószervvel ellátott és a kimenetén mintavételezett integráló tag differenciaegyenletét.

Írja fel a bilineáris transzformációs formulával jellemzett diszkrét integrátor differenciaegyenletét is.

Mindkét esetre határozza meg a kimenőjel értékeit a $t = 0, T_s, 2T_s, 3T_s, 4T_s$ időpontokban, ha a bemeneten mintavételezett egységugrás, illetve $\delta(t)$ jel hat.

Megoldás:

A zérusrendű tartószervvel ellátott integrátor impulzusátviteli függvénye:

$$W_1(z) = \frac{y_1(z)}{u(z)} = \frac{T_s}{z-1}.$$

Differenciaegyenlete:

$$y_1[nT_s] = T_s u[(n-1)T_s] + y_1[(n-1)T_s]$$

A bilineáris transzformációval közelített integrátor impulzusátviteli függvénye:

$$W_2(z) = \frac{y_2(z)}{u(z)} = \frac{T_s}{2} \frac{z+1}{z-1}.$$

Differenciaegyenlete:

$$y_2[nT_s] = \frac{T_s}{2}u[nT_s] + \frac{T_s}{2}u[(n-1)T_s] + y_2[(n-1)T_s]$$

Számítsuk ki az n=0,1,2,3,4 pontokban a kimenőjel értékeit mindkét formulával az egységugrás bemenőjelre.

n	0	1	2	3	4
<i>y</i> ₁	0	T_{s}	$2 T_{\rm s}$	$3 T_{\rm s}$	4 T _s
<i>y</i> ₂	$T_{\rm s}/2$	$3 T_{\rm s}/2$	$5 T_{\rm s}/2$	$7 T_{\rm s}/2$	$9 T_{\rm s}/2$

A $\delta(t)$ bemenőjelre:

n	0	1	2	3	4
<i>y</i> ₁	0	T_{s}	$T_{\rm s}$	T_{s}	$T_{ m s}$
<i>y</i> ₂	$T_{\rm s}/2$	T_{s}	T_{s}	T_{s}	T_{s}

16. Feladat:

A $W(s) = \frac{1}{1 + sT_1}$ átviteli függvénnyel jellemzett egytárolós arányos tagot T_s mintavételi

idővel mintavételezzük. A tag bemenetén zérusrendű tartószervet alkalmazunk. Határozza meg (vezesse le) a tag impulzusátviteli függvényét.

(Segítség: a tag bemenetén tételezzen fel egységugrás alakú gerjesztést.)

Mutassa meg, hogy $\delta(t)$ alakú bemenőjel feltételezésével ugyanaz az eredmény adódik.

Megoldás:

A egységugrás gerjesztés a mintavételezés és tartás után egységugrás alakú marad. Az egytárolós tag kimenetén exponenciális lefolyású jel jön létre, amelyet mintavételezünk.

Az egytárolós tag kimenetén a folytonos y(t) jel analitikus formában:

$$y(t) = 1 - e^{-t/T_1}$$

A mintavételezett kimenőjel:

$$y^{*}(t) = 0 + (1 - e^{-\frac{2T_{s}}{T_{1}}})\delta(t - T_{s}) + (1 - e^{-\frac{2T_{s}}{T_{1}}})\delta(t - 2T_{s}) + (1 - e^{-\frac{3T_{s}}{T_{1}}})\delta(t - 3T_{s}) + \dots$$

A jel z-transzformáltja:

$$y(z) = (1 - e^{-\frac{T_s}{T_1}})z^{-1} + (1 - e^{-\frac{2T_s}{T_1}})z^{-2} + (1 - e^{-\frac{3T_s}{T_1}})z^{-3} + \dots =$$

$$= z^{-1}(1 + z^{-1} + z^{-2} + \dots) - e^{-\frac{T_s}{T_1}}z^{-1}(1 + e^{-\frac{T_s}{T_1}}z^{-1} + e^{-\frac{2T_s}{T_1}}z^{-2} + \dots)$$

illetve a geometriai sorokat összegképletükkel felírva:

$$y(z) = \frac{z^{-1}}{1 - z^{-1}} - \frac{e^{\frac{T_s}{T_1}} z^{-1}}{1 - e^{\frac{T_s}{T_1}} z^{-1}}$$

Az impulzusátviteli függvényt megkapjuk, ha a kimenőjel z-transzformáltját elosztjuk a bemenőjel z-transzformáltjával.

$$u(z) = \frac{z}{z-1} = \frac{1}{1-z^{-1}}$$

és

$$W(z) = \frac{y(z)}{u(z)} = z^{-1} - \frac{e^{-\frac{T_s}{T_1}}z^{-1}(1-z^{-1})}{1-e^{-\frac{T_s}{T_1}}z^{-1}} = \frac{(1-e^{-\frac{T_s}{T_1}})z^{-1}}{1-e^{-\frac{T_s}{T_1}}z^{-1}} = \frac{1-e^{-\frac{T_s}{T_1}}}{z-e^{-\frac{T_s}{T_1}}}$$

Hasonlóan $\delta(t)$ gerjesztés hatására a zérusrendű tartószerv kimenetén $T_{\rm s}$ ideig tartó egységnyi amplitúdójú négyszögimpulzus jön létre. Ennek hatására a tag kimenetén a folytonos kimenőjel $T_{\rm s}$ ideig exponenciálisan nő, azután pedig exponenciálisan csökken $T_{\rm l}$ időállandóval.

A kimenőjel z-transzformáltja:

$$y(z) = 0 + (1 - e^{-\frac{T_s}{T_1}})z^{-1} + (1 - e^{-\frac{T_s}{T_1}})e^{-\frac{T_s}{T_1}}z^{-2} + (1 - e^{-\frac{T_s}{T_1}})e^{-\frac{2T_s}{T_1}}z^{-3} + \dots$$

illetve

$$y(z) = (1 - e^{-\frac{T_s}{T_1}})z^{-1}(1 + e^{-\frac{T_s}{T_1}}z^{-1} + e^{-\frac{2T_s}{T_1}}z^{-2} + ...) = \frac{(1 - e^{-\frac{T_s}{T_1}})z^{-1}}{1 - e^{-\frac{T_s}{T_1}}z^{-1}}$$

A bemenőjel z-transzformáltja 1, így

$$W(z) = \frac{y(z)}{u(z)} = \frac{(1 - e^{-\frac{T_s}{T_1}})z^{-1}}{1 - e^{-\frac{T_s}{T_1}}z^{-1}} = \frac{1 - e^{-\frac{T_s}{T_1}}}{z - e^{-\frac{T_s}{T_1}}}.$$

Látható, hogy mind egységugrás, mind pedig $\delta(t)$ gerjesztés feltételezésével ugyanazt az impulzusátviteli függvényt kapjuk.

17. Feladat:

Egy kéttárolós arányos tag átviteli függvénye $\frac{1}{(1+sT_1)(1+sT_2)}$. A tagot T_s mintavételi idővel

mintavételezzük. A tag bemenetén zérusrendű tartószervet alkalmazunk. Adja meg a tag impulzusátviteli függvényét.

Megoldás:

A kéttárolós szakasz átviteli függvényét részlettörtekre bontjuk.

ZOH
$$\frac{1}{(1+sT_1)(1+sT_2)}$$

Az egyenértékű mintavételezett rendszer vázlata látható az alábbi ábrán.

Egy $\frac{1}{1+sT_1}$ átviteli függvényű folytonos szakasz nulladrendű tartószervvel együttesen vett

impulzusátviteli függvénye
$$\frac{1 - e^{-T_s/T}}{z - e^{-T_s/T}}.$$

A két részlettörtnek megfelelő impulzusátviteli függvényt összegezve majd közös nevezőre hozva kaphatjuk meg a kéttárolós szakasz impulzusátviteli függvényét.

A részlettörtek együtthatói:

$$r_1 = \frac{T_1}{T_1 - T_2}; \quad r_2 = \frac{T_2}{T_2 - T_1}.$$

Az impulzusátviteli függvény:

$$W(z) = \frac{T_1}{T_1 - T_2} \frac{1 - e^{-\frac{T_s}{T_1}}}{z - e^{-\frac{T_s}{T_1}}} + \frac{T_2}{T_2 - T_1} \frac{1 - e^{-\frac{T_s}{T_2}}}{z - e^{-\frac{T_s}{T_2}}} = K \frac{z + \sigma}{(z - e^{-\frac{T_s}{T_1}})(z - e^{-\frac{T_s}{T_2}})}$$

ahol

$$K = \frac{T_1(1 - e^{-\frac{T_s}{T_1}}) - T_2(1 - e^{-\frac{T_s}{T_2}})}{T_1 - T_2}$$

és

$$\sigma = \frac{T_2 e^{-\frac{T_s}{T_1}} (1 - e^{-\frac{T_s}{T_2}}) - T_1 e^{-\frac{T_s}{T_2}} (1 - e^{-\frac{T_s}{T_1}})}{T_1 (1 - e^{-\frac{T_s}{T_1}}) - T_2 (1 - e^{-\frac{T_s}{T_2}})}.$$

Egy folytonos szakasz átviteli függvénye $\frac{e^{-2s}}{1+0.5s}$. A szakaszt mereven visszacsatolva

mintavételesen szabályozzuk zárt körben. A mintavételezési idő T_s =0.5 sec. A szakasz bemenetén zérusrendű tartószervet alkalmazunk.

Tervezzen diszkrét PI szabályozót, a szakasz pólusának kiejtésével. A szabályozó átviteli tényezőjét határozza meg oly módon, hogy a felnyitott kör közelítő Bode amplitudó-körfrekvencia diagramjában a vágási körfrekvencia kb. 0.2 legyen. Adja meg a szabályozó impulzusátviteli függvényét és differenciaegyenletét.

Ellenőrizze a fázistöbblet értékét.

Adja meg a szabályozó kimenetén megjelenő beavatkozójel kezdeti és végértékét egységugrás alapjel esetén.

Egységugrás alapjel esetén adja meg a szabályozott jellemző értékeit az első 15 mintavételi időpontban.

Megoldás:

A szakasz impulzusátviteli függvénye:

$$P(z) = \frac{(1 - e^{-1})}{z - e^{-1}} z^{-4} = \frac{0.6321}{z - 0.3679} z^{-4}$$

A diszkrét PI szabályozó impulzusátviteli függvénye, amely kompenzálja a szakasz pólusát:

$$C(z) = A \frac{z - 0.3679}{z - 1}.$$

A felnyitott kör impulzusátviteli függvénye:

$$W_o(z) = C(z)P(z) = \frac{0.6321A}{z-1}z^{-4}$$
.

A kisfrekvenciás ($\omega < \frac{1}{T_s} = 2$) tartományban a közelítő frekvenciafüggvény:

$$W_o(j\omega) \approx \frac{0.6321A}{0.5j\omega} e^{-2.25j\omega}$$

Itt figyelembe vettünk a mintavételezésből adódó kb. $T_s/2$ nagyságú járulékos holtidőt.

A tranziens viselkedés szempontjából megfelelő, kb. 60° fázistöbblet biztosításához a vágási körfrekvenciát a holtidő reciprokának felére célszerű felvenni. A vágási körfrekvenciára tett előírás tehát megfelelő.

A vágási körfrekvenciánál az abszolút érték 1, tehát

$$|W_o(j\omega_c)| = \frac{0.6321A}{0.5\omega_c} = 1$$
, ahonnan $A = 0.1582$.

A szabályozó impulzusátviteli függvénye, ami megadja az átviteli kapcsolatot a beavatkozójel és a szabályozás hibajele között:

$$C(z) = \frac{u(z)}{e(z)} = 0.1582 \frac{z - 0.3679}{z - 1} = \frac{0.1582 - 0.0582z^{-1}}{1 - z^{-1}}$$

Differenciaegyenlete pedig:

$$u[nT_s] = u[(n-1)T_s] + 0.1582e[nT_s] - 0.0582e[(n-1)T_s]$$

A fázistöbblet értéke a felnyitott kör közelítő frekvenciafüggvénye alapján:

$$\varphi_t = 180^\circ + \varphi(\omega_c) = 180^\circ - 90^\circ - 0.2 \cdot 2.25 \cdot 180^\circ / \pi = 64.22^\circ$$

Határozzuk meg a szabályozási körben a szabályozó kimenetén megjelenő beavatkozójel kezdeti és végértékét.

Mivel a szabályozás 1 típusú, az egységugrást állandósult állapotban hiba nélkül követi. A szakasz átviteli tényezője 1, így a beavatkozójel állandósult értéke is 1.

A kezdeti időpontban a szabályozott jellemző értéke a tárolós és a holtidős hatás miatt zérus. Így a teljes alapjel gerjeszti a szabályozót. Alkalmazzuk a z-transzformáció kezdeti érték tételét:

$$\lim_{t \to 0} u(t) = \lim_{z \to \infty} \frac{z}{z - 1} \cdot 0.1582 \cdot \frac{z - 0.3679}{z - 1} = 0.1582$$

A kimenőjel értékeinek meghatározásához írjuk fel a szabályozott jellemző és az alapjel közötti eredő átviteli függvényt.

$$\frac{y(z)}{r(z)} = \frac{W_o(z)}{1 + W_o(z)} = \frac{0.1582 \cdot 0.6321z^{-4}}{z - 1 + 0.1582 \cdot 0.6321z^{-4}} = \frac{0.1z^{-5}}{1 - z^{-1} + 0.1z^{-5}} \text{ A differenciaegyenlet:}$$

$$y[nT_s] = 0.1r[(n - 5)T_s] + y[(n - 1)T_s] - 0.1y[(n - 5)T_s]$$

Egységugrás alapjelre a kimenőjel értéke az első 15 mintavételi időpontban:

n	у
0	0
1	0
2 3 4	0
3	0
4	0
5	0.1
6	0.2
7	0.3
8	0.4
9	0.5
10	0.59
11	0.67
12	0.74
13	0.8
14	0.85
15	0.9

19. Feladat:

Egy folytonos szakasz átviteli függvénye $\frac{e^{-2s}}{1+0.5s}$. A szakaszt mereven visszacsatolva

mintavételesen szabályozzuk zárt körben. A mintavételezési idő T_s =0.5sec. A szakasz bemenetén zérusrendű tartószervet alkalmazunk. Az alapjel egységugrás.

Határozza meg a véges beállást biztosító szabályozó impulzusátviteli függvényét.

Adja meg a szabályozott jellemző és a szabályozó kimenetén megjelenő beavatkozójel értékeit az első 8 mintavételi időpontban.

Megoldás:

A szakasz impulzusátviteli függvénye:

$$P(z) = \frac{(1 - e^{-1})}{z - e^{-1}} z^{-4} = \frac{0.6321}{z - 0.3679} z^{-4}$$

A zárt szabályozási kör pontos beállását az egységugrás alapjelre d=5 mintavételi időpont alatt kívánjuk biztosítani (holtidő+1).

A szabályozó impulzusátviteli függvényét jelöljük C(z)-vel.

A zárt rendszer eredő átviteli függvénye:

$$\frac{C(z)P(z)}{1+C(z)P(z)} = z^{-d}$$

ahonnan

$$C(z) = \frac{z^{-d}}{P(z)(1-z^{-d})}.$$

Behelyettesítve P(z) kifejezését és d értékét:

$$C(z) = 1.582 \frac{1 - 0.3679z^{-1}}{1 - z^{-5}}$$
.

A szabályozott jellemző értékei a k=0,1,2,...,8 mintavételi időpontokban:

A beavatkozójelre vonatkozó eredő átviteli függvény, amely az u beavatkozójel és az r alapjel z-transzformáltjainak hányadosa:

$$\frac{u(z)}{r(z)} = \frac{C(z)}{1 + C(z)P(z)} = 1.582(1 - 0.3679z^{-1}) = 1.582 - 0.582z^{-1}$$

A beavatkozójel értékei az első 8 mintavételi időpontban: 1.582, 1, 1, 1, 1, 1, 1, 1, ...

Mivel a szakasz impulzusátviteli függvényének nincs zérusa, a kimenőjelben a mintavételi pontok között nem lesznek lengések.

20. Feladat

Egy folytonos szakasz átviteli függvénye $\frac{e^{-2s}}{1+0.5s}$. A szakaszt mereven visszacsatolva

mintavételesen szabályozzuk zárt körben. A mintavételezési idő T_s =0.5 sec. A szakasz bemenetén zérusrendű tartószervet alkalmazunk.

Adja meg a Smith prediktor elvén működő szabályozó impulzusátviteli függvényét. (A szabályozót PI kompenzációs elven tervezze meg, a szakasz pólusának kiejtésével, kb. 60° fázistöbbletre.)

Adja meg a szabályozó kimenetén megjelenő beavatkozójel kezdeti és végértékét.

Egységugrás alapjel esetén adja meg a szabályozott jellemző értékeit az első 8 mintavételi időpontban.

Megoldás:

A szakasz impulzusátviteli függvénye:

$$P(z) = \frac{(1 - e^{-1})}{z - e^{-1}} z^{-4} = \frac{0.6321}{z - 0.3679} z^{-4}$$

A Smith prediktoros tervezés szerint a holtidős rendszert hatásvázlat átalakítással olyan struktúrává alakítjuk át, ahol a holtidő a zárt körön kívül jelenik meg. A C szabályozót a holtidő nélküli szabályozási körhöz tervezzük. Ez a szabályozó gyors működést eredményezhet, mivel a holtidő nem korlátozza a vágási körfrekvencia beállítható értékét. A tényleges realizáláshoz a C_{cSmp} Smith prediktoros szabályozót számítjuk ki.

$$C_{cSmp} = \frac{C}{1 + \left(1 - e^{-sT_h}\right)CP}.$$

Illetve diszkrét szabályozóval

$$C_{cSmp}(z) = \frac{C(z)}{1 + (1 - z^{-d})C(z)P(z)}$$

ahol d a diszkrét holtidő, $d = entier(\frac{T_h}{T_c})$.

A holtidőmentes szabályozási körben a diszkrét PI szabályozó impulzusátviteli függvénye:

$$C(z) = A \frac{z - 0.3679}{z - 1}.$$

A felnyitott kör impulzusátviteli függvénye pedig $W_o(z) = C(z)P(z) = \frac{A \cdot 0.6321}{z - 1}$.

A kisfrekvenciás ($\omega < \frac{1}{T_c} = 2$) tartományban a közelítő frekvenciafüggvény:

$$W_o(j\omega) \approx \frac{0.6321A}{0.5j\omega} e^{-0.25j\omega}$$

Itt figyelembe vettünk a mintavételezésből adódó kb. $T_s/2$ nagyságú járulékos holtidőt. A tranziens viselkedés szempontjából megfelelő, kb. 60° fázistöbblet biztosításához a vágási

körfrekvenciát a járulékos holtidő reciprokának felére célszerű felvenni: $\omega_c \approx \frac{1}{2.0.25} = 2$.

A vágási körfrekvenciánál az abszolút érték 1, tehát

$$|W_o(j\omega_c)| = \frac{0.6321A}{0.5\omega_c} = 1$$
, ahonnan $A = 1.582$.

A Smith prediktoros szabályozó:

$$C_{cSmp}(z) = \frac{1.582(z - 0.3679)}{z - 1 + (1 - z^{-4})1.582 \cdot 0.6321} = \frac{1.582 - 0.582z^{-1}}{1 - z^{-5}}.$$

A beavatkozójel állandósult értéke 1, mivel a szabályozás 1 típusú, integráló hatást tartalmaz, és a szakasz átviteli tényezője egységnyi. Így a szabályozó kimenete statikusan megegyezik a szabályozott jellemző állandósult értékével.

A kezdeti időpontban a holtidő és a tároló miatt a szabályozott jellemző értéke zérus. Az egységugrás alapjel a szabályozót gerjeszti. A z-transzformáció kezdeti érték tétele alapján

$$\lim_{t \to 0} u(t) = \lim_{z \to \infty} \frac{z}{z - 1} \frac{1.582 - 0.582z^{-1}}{1 - z^{-5}} = 1.582$$

A szabályozott jellemző z-transzformáltja:

$$y(z) = \frac{z}{z - 1} \frac{\frac{1.582 \cdot 0.6321}{z - 1}}{1 + \frac{1.582 \cdot 0.6321}{z - 1}} \cdot z^{-4} = \frac{z}{z - 1} \cdot z^{-5}$$

Vagyis a kimenőjel értékei az első mintavételi pontokban: 0, 0, 0, 0, 0, 1, 1, 1,...

A beállás lényegesen gyorsabb, mint a hagyományos PI szabályozó tervezés esetén, és gyakorlatilag megegyezik a véges beállással tervezett szabályozóval. (Természetesen kisebb vágási körfrekvencia beállítása esetén az eredmény nem egyezne meg teljesen a véges beállású tervezéssel.)

21. Feladat:

Tekintsük az alábbi impulzusátviteli függvényekkel adott szakaszokat:

$$\frac{y_1(z)}{u(z)} = \frac{0.2}{z - 0.8}; \quad \frac{y_2(z)}{u(z)} = \frac{1.8}{z + 0.8}; \quad \frac{y_3(z)}{u(z)} = \frac{2}{z + 1}; \quad \frac{y_4(z)}{u(z)} = \frac{2}{z - 1}; \quad \frac{y_5(z)}{u(z)} = \frac{1.25}{(z - j0.5)(z + j0.5)}.$$

A szakaszok differenciaegyenlete alapján adja meg egységugrás bemenőjelre a kimenőjel értékét az első 10 mintavételi időpontban.

Értékelje a pólusoknak a komplex számsíkon való elhelyezkedése és az időbeli dinamikus viselkedés közötti kapcsolatot.

Megoldás:

A szakaszok differenciaegyenletei:

$$y_{1}[nT_{s}] = 0.2u[(n-1)T_{s}] + 0.8y_{1}[(n-1)T_{s}]$$

$$y_{2}[nT_{s}] = 1.8u[(n-1)T_{s}] - 0.8y_{2}[(n-1)T_{s}]$$

$$y_{3}[nT_{s}] = 2u[(n-1)T_{s}] - y_{3}[(n-1)T_{s}]$$

$$y_{4}[nT_{s}] = 2u[(n-1)T_{s}] + y_{4}[(n-1)T_{s}]$$

$$y_{5}[nT_{s}] = 1.25u[(n-2)T_{s}] - 0.25y_{5}[(n-2)T_{s}]$$

A kimenőjelek értékei egységugrás bemenőjelre:

n	y ₁	y ₂	y ₃	y ₄	y 5
0	0	0	0	0	0
1	0.2	1.8	2	2	0
2	0.36	0.36	0	4	1.25
3	0.488	0.512	2	6	1.25
4	0.5904	1.3904	0	8	0.9375
5	0.6723	0.6877	2	10	0.9375
6	0.7378	1.2499	0	12	1.0156
7	0.7902	0.8001	2	14	1.0156
8	0.8322	1.1599	0	16	0.9961
9	0.8658	0.8721	2	18	0.9961
10	0.8926	1.1023	0	20	1.001

Az 1., 2. és 5. tag átviteli tényezője 1.

Az 1. tag impulzusátviteli függvényének pólusa pozitív valós, az egységkörön belül van, az időbeli lefolyás exponenciális jellegű.

A 2. tag impulzusátviteli függvényének pólusa negatív valós, az egységkörön belül van, az átmeneti függvényben csillapodó lengések mutatkoznak.

A 3. tag pólusa -1, az átmeneti függvényben állandósult lengések jönnek létre.

A 4. tag pólusa +1, a tag integráló jellegű.

Az 5. tag impulzusátviteli függvényének pólusai az egységkörön belül az imaginárius tengelyen vannak, az átmeneti függvény állandósult értéke kis lengésekkel áll be.

22. Feladat:

Egy folytonos szakasz átviteli függvénye $\frac{K}{s}$. A szakaszt mereven visszacsatolva

mintavételesen szabályozzuk zárt körben. A mintavételezési idő T_s . A szakasz bemenetén zérusrendű tartószervet alkalmazunk. A szabályozó egységnyi.

Adja meg a zárt rendszer differenciaegyenletét, valamint a kimenőjel értékeit az első 5 mintavételi időpontban egységugrás alakú alapjelre, ha K=1 és a mintavételezési időre az alábbi értékeket választjuk: $T_s=0.5,\ 1,\ 1.5$ ill. 3.

Határozza meg a zárt rendszer impulzusátviteli függvényét és adja meg a kimenőjel időfüggvényének analitikus alakját.

Adja meg a stabilitás feltételét.

Megoldás:

A szabályozás *e* hibajelének és az integráló tag *y* kimenőjelének (a szabályozási kör szabályozott jellemzőjének) jellegét az alábbi ábra szemlélteti.

A kimenőjel és a hibajel között az alábbi differenciaegyenlet írható fel:

$$y[nT_s] = y[(n-1)T_s] + KT_se[(n-1)T_s] = y[(n-1)T_s] + KT_s(r[(n-1)T_s] - y[(n-1)T_s])$$

Itt figyelembe vettük, hogy az *e* hibajel az *r* alapjel és az y szabályozott jellemző különbsége.

Az egyenletet átrendezve a zárt körre az alábbi differenciaegyenletet kapjuk:

$$y[nT_s] = (1 - KT_s)y[(n-1)T_s] + KT_sr[(n-1)T_s]$$

(Az egyenlet az alábbi alakban is felírható:

$$\frac{y[nT_s] - y[(n-1)T_s]}{T_s} + Ky[(n-1)T_s] = KT_s r[(n-1)T_s], \quad \text{ami} \quad T_s \to 0 \quad \text{eset\'en} \quad \text{az} \quad \text{al\'abbi}$$

elsőrendű differenciálegyenletet közelíti: $\frac{dy(t)}{dt} + Ky(t) = Kr(t)$. A folytonos rendszer struktúrálisan stabilis, stabilitását bármilyen K erősítés érték mellett megtartja.)

A differenciaegyenlet alapján egységugrás alapjelre a kimenőjel értékei a mintavételi időpontokban

 T_s =0.5-nél: 0; 0.5; 0.75; 0.875; 0.9375.

 T_s =1-nél: 0; 1; 1; 1; 1.

 T_s =1.5-nél: 0; 1.5; 0.75; 1.125; 0.9375.

 T_s =3-nál: 0; 3; -3; 9; -15.

 T_s =0.5-nél a rendszer stabilis, a kimenőjel aszimptotikusan tart 1-hez.

 T_s =1-nél ún. véges beállást kapunk, a kimenőjel egy mintavételnyi idő alatt beáll kívánt értékére.

 T_s =1.5-nél lengő viselkedést kapunk. T_s =3-nál a rendszer labilis.

(A mintavételes rendszer nem őrízte meg a folytonos rendszer struktúrálisan stabilis jellegét!)

A zárt rendszer eredő impulzusátviteli függvénye az y kimenőjel és az r alapjel között:

$$W(z) = \frac{y(z)}{r(z)} = \frac{\frac{KT_s}{z-1}}{1 + \frac{KT_s}{z-1}} = \frac{KT_s}{z - (1 - KT_s)}$$

A zárt rendszer stabilis, ha pólusai az egységsugarú körön belül vannak.

$$|z_1| = |1 - KT_s| < 1$$

A stabilitás feltétele:

$$0 < KT_s < 2$$

Vezessük be a következő jelölést: $b = 1 - KT_s = e^{-aT_s}$.

Egységugrás alapjelre zérus kezdeti feltételek mellett a kimenőjel z-transzformáltja:

$$y(z) = \frac{z}{z - 1} \frac{KT_s}{z - b}$$

Részlettörtekre bontva:

$$y(z) = KT_s z(\frac{\alpha}{z-1} + \frac{\beta}{z-b})$$

ahol

$$\alpha = \frac{1}{1-h}$$
 és $\beta = \frac{1}{h-1}$.

Mivel

$$KT_s = 1 - b$$
, $y(z) = \frac{z}{z - 1} - \frac{z}{z - b}$.

Az időfüggvény pedig

$$y[nT_s] = 1[nT_s] - e^{-anT_s} = 1[nT_s] - (e^{-aT_s})^n = 1[nT_s] - b^n$$

Ellenőrizzük a kimenőjel értékeit K=1 és $T_s=0.5$ -re.

 $b=1-KT_{s}=0.5$.

$$y[0] = 0$$
; $y[1T_s] = 1-0.5^1 = 0.5$; $y[2T_s] = 1-0.5^2 = 0.75$; $y[3T_s] = 1-0.5^3 = 0.875$.