Donner le modèle statistique avocié à:
1- une observation 1' una = Va Q(1)
entière X (X1,, Xn), genere à partir d'une va
solution:
1- X ~ 9(d), le domaine de déf de la v. a X
= le support de la va X = l'ensemble de touts les réalisations possible de la va X
solvenile - bea = No Tour dotale is my may
le modèle station que avoir à ene observation
· γ γ γ γ (1) 2 ξ;
(IN, 9(IN), { P(H)/4) 03).
* 95°
2- n-èch de X, où X st une v.a entière
$\rightarrow \mathcal{H} = N$
le modèle statistique avocié à un echantillon généré à til
004144
(N, P(N), p)
Ja) où: f = famille des lois
Rendertes su IV
(N, P(N), f) où: f= famille des lois discrètés sur N Remarque: le modèle d'un'èch = (le modèle d'robservation

DX suit une loi de Bernoulli β(P). Montrer que

T = \(\hat{\Sigma}\) \(\times\) \(\times\) \(\times\) tique exhaustive.

Solution:

\(\times\) \(\hat{\Sigma}\) \(\hat{\Sigma}\

 $X \sim P(P) = P(X = SL) = PX q^{1.SL}$ où Sq = 1-P T = ZX où $Xi \sim B(P)$ i = 1.N P = Cponame P = Cponame P = Cponame P = Cponame P = CponameP = Cponame

pour que la statistique $T = E \times i$ soil-exhaustive il faut que: $l(X_1 = x_1, ..., X_n = x_n / T = t)$ ne dépend pas de paramète p

 $P(X=x_1,...,X_n=x_n/T=t) = P(x_1=x_1,...,X_n=x_n/\Sigma X=t)$ = $P(X_1=x_1,...,X_n=x_n,X_$

 $\mathbb{P}\left(\sum_{i=1}^{n} X_{i} = f\right)$

= P(X1=21,-, Xn=21, Xn=xn, X1+ Xe+-+Xin=+)

P(= X:=+)

= P(Xn=xn,-- Xn=xn, Xn=t-pcn+sce+-+scn-1)

P(= X = +)

 $= \underbrace{P(X_{n}=X_{n},...,X_{n-1}=x_{n-1},X_{n}=t-\sum_{i=1}^{n-1}x_{i})}_{i=1}$

P(\$ X: = t)

toute le v in Xnr.Xn

= P(Xn = xn) P(Xe=x2) -- P(Xn, = xn-1) P(Xn 2t - \frac{1}{2})

P(& X: = H)

-1-2-

$$L(\chi, \lambda) = \prod_{i=1}^{n} P(\chi_i = \chi_i) = \prod_{i=1}^{n} e^{-\frac{1}{2} \frac{\chi_i}{2G_1}} = e^{-\frac{1}{n} \frac{1}{2} \frac{\chi_i}{2G_1}}$$

$$= e^{-\frac{1}{n} \frac{1}{2} \frac{\chi_i}{2G_1}}$$

$$= \sum_{i=1}^{n} \frac{1}{2} \frac{\chi_i}{2G_1}$$

$$= \sum_{i$$

d'où:
$$T_{i}(x) = \sum x_{i}$$
 stat exh pour x_{i}
 $T_{i}(x) = \sum x_{i}$ stat exh pour x_{i}
 $T(x) = (T_{i}(x), T_{i}(x)) = (\sum x_{i} > x_{i})$ stat exh pour (m, r^{2})

(b) $X \sim X \cup \{0,0\}$, $X = \{0,0\}$, $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(c) $X \sim X \cup \{0,0\}$, $X = \{0,0\}$, $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(d) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(e) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(e) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(f) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(e) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(f) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2})

(g) $X \sim X \cup \{0,0\}$ stat exh pour (m, r^{2}) stat exh pour (m, r^{2})

Thouser une stat exhaustive poen: 1- Un n- échantillon de X no B(P) 2- Un n- échantillon de X no M(m, p2) -5-