ORFE 524: Statistical Theory and Methods Homework 1

Zachary Hervieux-Moore

Friday 30th September, 2016

Exercise 1: Recall the definition of σ -Algebra. Let (Ω, Σ) be a measurable space, that is, Σ satisfies the following three properties:

- 1. $\Sigma \neq \emptyset$, $\Sigma \subseteq 2^{\Omega}$.
- 2. $A \in \Sigma$ implies that $A^c \in \Sigma$. Here we use A^c to denote the complement of A.
- 3. $\forall A_1, A_2, \ldots \in \Sigma$, we have $\cap_{i>1} A_i \in \Sigma$.

Based on these properties, solve the following problems:

- 1) Show that Σ is closed under union.
- 2) Show that Σ must contain \emptyset and Ω .
- 3) Suppose $A \subseteq \Omega$, what is the smallest σ -algebra containing A?
- 4) Show that the set of all rational numbers, denoted by \mathcal{Q} , is Borel measurable. That is, $\mathcal{Q} \in \mathcal{B}(\mathcal{R})$.

Answer:

1) We know by De Morgan's law that $A \cup B = (A^c \cap B^c)^c$. Let $A, B \in \Sigma$:

$$A, B \in \Sigma \implies A^c, B^c \in \Sigma$$
 By property 2
 $\implies A^c \cap B^c \in \Sigma$ By property 3
 $\implies (A^c \cap B^c)^c \in \Sigma$ By property 2
 $\implies A \cup B \in \Sigma$ By De Morgan's

2) Let $A \in \Sigma$ then $A^c \in \Sigma$ by property 2. Now,

$$A \cap A^c = \emptyset \in \Sigma$$
 by property 3 $\emptyset^c = \Omega \in \Sigma$ by property 2

Thus, $\emptyset, \Omega \in \Sigma$.

3) If $A \in \Sigma$ then $A^c \in \Sigma$ necessarily. Also, by 2), $\emptyset, \Omega \in \Sigma$, so the smallest possible set is:

$$\Sigma = \{\emptyset, A, A^c, \Omega\}$$

This is clearly closed under complementation. It is also very quick to verify that this set is closed under intersection:

$$X \cap \Omega = X \in \Sigma$$
, for all $X \in \Sigma$
 $X \cap \emptyset = \emptyset \in \Sigma$, for all $X \in \Sigma$
Lastly, $A \cap A^c = \emptyset \in \Sigma$

4) Recall that $\mathcal{B}(\mathbb{R})$ is the σ -algebra formed by the open sets of \mathbb{R} . Equivalently, it is also formed by the closed sets. Also recall the facts from real analysis that singletons are closed and the rational numbers are countable. Using 1) that $\mathcal{B}(\mathbb{R})$ is closed under countable union,

$$\mathbb{Q} = \big(\bigcup_{q \text{ rational}} q\big) \in \mathcal{B}(\mathbb{R})$$

That is, \mathbb{Q} is the union of a countable number of closed sets, therefore, $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$

Exercise 2: let P be a probability measure on (Ω, Σ) . Only utilizing the definition of probability measure given in the class, solve the following problem.

- 1) Show that for any $A, B \in \Sigma$ satisfying $A \subseteq B$, we have $0 \le P(A) \le P(B)$.
- 2) Show that for any positive k, we have

$$P\big(\bigcup_{i=1}^k A_i\big) \le \sum_{i=1}^k P(A_i)$$

3) Does the previous inequality still hold when $k = \infty$?

Answer:

1) In general, we can write $B = B \setminus A \cup B \cap A$. But, $B \cap A = A$ since $A \subseteq B$. So, $B = B \setminus A \cup A$. By definition, $B \setminus A$ and A are disjoint. So we can use the property of probability measures:

$$P(B) = P(B \setminus A \cup A) = P(B \setminus A) + P(A)$$

 $P(B) > P(A) \text{ since } P(B \setminus A) > 0$

Also, $P(A) \ge 0$ since it is a probability measure. Thus, $0 \le P(A) \le P(B)$.

2) We use a similar idea as in 1). We construct a new sequence that is a partition. Define:

$$B_1 = A_1$$

$$B_i = A_i \setminus (A_{i-1} \cup A_{i-2} \cup \ldots \cup A_1)$$

By construction, $B_i \subseteq A_i$ and $\bigcup_{i=1}^k A_i = \bigcup_{i=1}^k B_i$. So,

$$P(\bigcup_{i=1}^{k} A_i) = P(\bigcup_{i=1}^{k} B_i) = \sum_{i=1}^{k} P(B_i)$$

Since $B_i \subseteq A_i$, by the previous part,

$$\sum_{i=1}^k P(B_i) \le \sum_{i=1}^k P(A_i)$$

Which gives us the result $P(\bigcup_{i=1}^k A_i) \leq \sum_{i=1}^k P(A_i)$.

3) Yes, the inequality still holds if $k = \infty$. Let $\lim_{i \to \infty} A_i = A$. Then by the continuity of the probability measures,

$$\lim_{i \to \infty} P\left(\bigcup_{i=1}^{k} A_i\right) = P\left(\lim_{i \to \infty} \bigcup_{i=1}^{k} A_i\right) = P(A)$$

Now taking the limit on the right side of the inequality,

$$\lim_{i \to \infty} \sum_{i=1}^{k} P(A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Thus, since the left hand side converges,

$$\lim_{i \to \infty} P\left(\bigcup_{i=1}^{k} A_i\right) \le \lim_{i \to \infty} \sum_{i=1}^{k} P(A_i)$$

$$\implies P\left(\bigcup_{i=1}^{\infty} A_i\right) = P(A) \le \sum_{i=1}^{\infty} P(A_i)$$

Exercise 3: For any measurable function f, show that

$$\left| \int f dP \right| < \infty$$
 if and only if $\int |f| dP < \infty$

Answer: Suppose that $\left| \int f dP \right| < \infty$,

$$\left| \int f dP \right| = \left| \int f^+ dP - \int f^- dP \right| < \infty$$

Then f is integrable by definition since this implies $\int f^+ dP < \infty$ and $\int f^- dP < \infty$. Note that $|f| = f^+ + f^-$. So,

$$\int |f|dP = \int f^+ + f^- dP = \int f^+ dP + \int f^- dP$$

But we have shown that both of these integrals are finite. So,

$$\int |f|dP < \infty$$

Now suppose $\int |f| dP < \infty$. Note that,

$$\int f^+ dP \le \int |f| dP < \infty \text{ and}$$
$$\int f^- dP \le \int |f| dP < \infty$$

Which implies $\left| \int f dP \right| = \left| \int f^+ dP - \int f^- dP \right| < \infty$.

Exercise 4: This exercise consists of two questions, concerns the σ -finiteness of a measure.

- 1) Show that the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is σ -finite.
- 2) Show that the counting measure on $(\Omega, 2^{\Omega})$ is σ -finite if and only if Ω is countable.

Answer:

1) Define the sequence of A_i 's as follows,

$$A_i = (i, i+1]$$

Then we have $\mu(A_i) = 1$ for $i \in \mathbb{Z}$ and $\bigcup_{i \in \mathbb{Z}} A_i = \mathbb{R}$. Thus the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is σ -finite.

2) Suppose Ω is countable. That is, without loss of generality, $\Omega = \mathbb{N}$. Define the sequence of $A_i = i$. Then, $P(A_i) = 1$ for all $i \in \mathbb{N}$ and $\bigcup_{i \in \mathbb{N}} A_i = \mathbb{N}$. Thus, if Ω is countable, the counting measure is σ -finite. Now suppose that the counting measure is σ -finite. Thus, there exists $\{A_i\}$ measurable with $\bigcup_{i \in \mathbb{N}} A_i = \Omega$ and $P(A_i) < \infty$ by definition. However, this is a countable union of sets with a finite number of elements. Thus, $\bigcup_{i \in \mathbb{N}} A_i \neq \mathbb{R}$. Therefore, Ω is countable.

Exercise 5: Let $X : \Omega \to \mathbb{R}$ be a discrete random variable on probability space (Ω, Σ, P) and denote the corresponding induced measure by P_X . We define the support of P_X as

$$\Omega_X = \{ x \in \mathbb{R} : P(X = x) > 0 \}$$

Please answer the following two questions.

- 1) First assume that $|\Omega_X| < \infty$, that is, Ω_X contains finite numbers of elements. Show that the probability mass function (pmf) of X, denoted f, is indeed the density of P_X with respect to the counting measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- 2) Show the same thing when $|\Omega_X| = \infty$.

Answer:

1) Let # denote the counting measure. Then $P_X \ll \#$ since,

$$\#(A) = 0 \implies P_X(A) = P(X^{-1}(A)) = P(X^{-1}(\emptyset)) = 0$$

Also, we proved that the counting measure # is σ -finite if Ω_X countable in the previous question. Since it is finite, it is countable. By Radon-Nikodym theorem, if we restrict ourselves to Ω_X , then we know a density exists. In this specific case, we do not need σ -finiteness. We only have to show that $P_X(A) = \int_A f d\#$ to show that f is the density. Since Ω_X is finite, then $f: \Omega \to \mathbb{R}$ is simple and has the form,

$$f = \sum_{x \in A} f(x) 1_{\{x\}}$$

Putting this into the integral above,

$$\int_{A} f d\# = \int_{A} \sum_{x \in A} f(x) 1_{\{x\}} d\# = \sum_{x \in A} f(x)$$

Which is exactly what we desire,

$$P_X(A) = P(X^{-1}(A)) = P(\omega : X(\omega) \in A) = \sum_{x \in A} f(x)$$

Where the last equality is the definition of the pmf Thus, $P_X(A) = \int_A f d\#$ iff f is the pmf. 2) If $|\Omega_X| = \infty$ then we must construct our f different. Since Ω_X is σ -finite, we can construct an increasing sequence of sets (A_i) such that $\bigcup_i A_i = \Omega_X$ and $A_{i-1} \subset A_i$. Then define f_n as,

$$f_n = \sum_{x \in A_n} f(x) \mathbb{1}_{\{x\}}$$

Since (f_n) is an increasing sequence of simple functions with $f_n \to f$. Then,

$$\int_{\Omega_X} f d\# = \lim_{n \to \infty} \int_{\Omega_X} f_n d\# = \lim_{n \to \infty} \int_{\Omega_X} \sum_{x \in A_n} f(x) 1_{\{x\}} d\#$$
$$= \lim_{n \to \infty} \sum_{x \in A_n} f(x) = \sum_{x \in \Omega_X} f(x)$$

We can exchange the limit and the integral due to the monotone convergence theorem. Now, as before,

$$P_X(\Omega_X) = P(X^{-1}(\Omega_X)) = P(\omega : X(\omega) \in \Omega_X) = \sum_{x \in \Omega_X} f(x)$$

Thus, $P_X(A) = \int_A f d\#$ iff f is the pmf.