EI M5

2010-11

MATHEMATIK

2. Probeklausur - Pflichtteil

In diesem Teil sind weder GTR noch die Formelsammlung erlaubt. Um den Wahlteil, deinen GTR und die Formelsammlung zu erhalten, gib bitte diesen Pflichtteil bearbeitet ab.

1. Aufgabe (nochmal Ableitungsregeln)

(5 Punkte)

Leite die folgenden Funktionsterme nach der Variablen ab und vereinfache sie!

$$a(x) = \sin(x)\cos(x)$$

$$b(x) = xe^x$$

$$c(x) = e^{x^2 + x}$$

$$c(x) = e^{x^2 + x} \qquad \qquad d(x) = (x+1) \cdot \sqrt{e^x}$$

2. Aufgabe (Verständnisfragen)

(3 Punkte)

Welche der folgenden Aussagen sind falsch? Begründe kurz. (Tipp: Gegenbeispiel)

- a) Ein Extremwert a einer Funktion f erfüllt immer die Bedingung f'(a)=0.
- b) Gilt f'(a)=0, so ist a immer ein Extremwert für die Funktion f.
- c) Die Exponentialfunktion e^x besitzt keinen Extrempunkt.
- d) Die Funktion 1-e^x besitzt keine Nullstelle.
- e) Es qilt $e^2 + e^3 = e^5$.
- f) Es ailt $e^2 \cdot e^3 = e^6$.

3. Aufgabe (Tangentenprobleme)

(2 Punkte)

Gegeben ist die Funktion f mit $f(x)=3x^3-7x^2-4x$ für reelle x-Werte.

- a) Bestimme die Tangente t für x=1.
- b) An welcher Stelle schneidet die Tangente t die x-Achse?

4. Aufgabe (Normalenprobleme)

(2 Punkte)

Gegeben ist die Funktion f mit $f(x)=x\cdot\cos(x)$ für reelle x-Werte.

- a) Bestimme die Normale n für x=1. (Tipp: $cos(1) \approx 0.54$ und $sin(1) \approx 0.84$)
- b) Unter welchem Winkel schneidet diese Normale n die x-Achse? (Tipp: Vielleicht ist hier etwas dabei: $tan^{-1}(-0,3) \approx -0,3$ bzw. $tan^{-1}(-10/3) \approx -1,3$ bzw. $tan^{-1}(10/3) \approx 1,3$)

EI M5

MATHEMATIK

2010-11

2. Probeklausur – Wahlteil

In diesem Teil sind GTR und Formelsammlung erlaubt. Vergiss nicht, deinen Gedankengang zu dokumentieren (damit ich weiß, was du dir so überlegt hast).

5. Aufgabe (Kurvenschar im GTR)

(3 Punkte)

Gegeben ist die Kurvenschar f_t über $f_t(x) = x^2 + tx - 2$ (t > 0) für reelle Zahlen x. Fertige für x-Werte zwischen -3 und 3 eine Skizze der drei Parabeln f_1 , f_2 bzw. f_3 an (L.E. 1cm).

6. Aufgabe – große Kurvenschar

(7 Punkte)

Gegeben ist die Kurvenschar f_t über $f_t(x) = -tx^3 + x + t^2$ (t < 0) für reellen Zahlen x.

- a) Liegt eine Symmetrie vor? Begründe kurz.
- b) Bestimme $f_3(0)$ und $f_4(1)$.
- c) Bestimme alle Wendepunkte der Kurvenschar.
- d) Bestimme die Ortskurve für den Wendepunkt bei x=0.

7. Aufgabe (Anwendungsproblem zur e-Funktion)

(8 Punkte)

Die normale Körpertemperatur eines gesunden Menschen liegt bei 36,5°C. Die Funktion f mit

$$f(t) = 36.5 + t \cdot e^{-0.1t}$$

beschreibt modellhaft den Verlauf einer Fieberkurve bei einem Erkrankten. Dabei ist t>0 die Zeit in Stunden nach Ausbruch der Krankheit und f(t) die Körpertemperatur in °C. Der Erkrankte erhielt 5 Stunden nach Beginn der Aufzeichnungen (t=5) ein Medikament.

- a) Wann innerhalb der ersten 48 Stunden ist die Temperatur am höchsten? Wie hoch ist sie da?
- b) Skizziere die Fieberkurve für die ersten 48 Stunden in einem geeigneten Koordinatensystem.
- c) Zu welchem Zeitpunkt in dieser Zeit nimmt die Körpertemperatur am stärksten zu bzw. ab?
- d) Fieber hat man ab einer Körpertemperatur von 38°C. Wie lange hatte der Erkrankte Fieber?