Máquinas de Estado

- Mostrar como construir um contador de módulo 4 utilizando uma máquina de estados
- Implementação utilizando Flip-Flops D
- Implementando utilizando Flip-Flops JK

Estado Atual Q ₁ ⁿ Q ₀ ⁿ	Saída	Próximo Estado	
		$M=0$ $Q_1^{n+1}Q_0^{n+1}$	$M=1$ $Q_1^{n+1}Q_0^{n+1}$
00	00	11	01
01	01	00	10
10	10	01	11
11	11	10	00

IMPLEMENTANDO COM FLIP-FLOPS D

Neste Exemplo, as equações de saída Z1 e Z2 são iguais ao estado atual

Ou seja, Z1 = Q1 e Z2 = Q2. Determina-se as equações para o próximo estado Q_1^{n+1} , utilizando os elementos marcados em vermelho na tabela

$\sqrt{Q_1Q}$	0			
M	00	01	11	10
0	1	0	1	0
1	0	1	0	1

$$D1 = \overline{MQ_1Q_0} + \overline{MQ_1Q_0} + M\overline{Q_1Q_0} + MQ_1\overline{Q_0}$$

Estado Atual Q ₁ ⁿ Q ₀ ⁿ	Saída	Próximo Estado	
		$M=0 \\ Q_1^{n+1}Q_0^{n+1}$	$M=1$ $Q_1^{n+1}Q_0^{n+1}$
00	00	$\sqrt{1}$ 1	$\bigcirc 1$
01	01	00	10
10	10	01	11
11	11	10	00

Determina-se as equações para o próximo estado Q_0^{n+1} , utilizando os elementos marcados em vermelho na tabela

D0=
$$\overline{Q_0}$$

Estado Atual Q ₁ ⁿ Q ₀ ⁿ	Saída	Próximo Estado	
		$M=0$ $Q_1^{n+1}Q_0^{n+1}$	$M=1$ $Q_1^{n+1}Q_0^{n+1}$
00	00	1/1	Ø1\
01	01	00	10
10	10	01	11
11	11	10	00

Vamos agora implementar a mesma máquina de estados com Flip-Flops JK

Estado Atual	Saída	Próximo	Estado	
$Q_1^nQ_0^n$				Van Qua
		M=0	$M=1$ $Q_1^{n+1}Q_0^{n+1}$	Inic
00	00	$Q_1^{n+1}Q_0^{n+1}$	01	Q_1^n
01	01	00	10	Q_1^n
10	10	01	11	Q_1^n
		10		O n
	11	JO	00	Q_1^n

Vamos analisar o Q1 Quando M=0 Inicialmente está em:

$$Q_1^n = 0 \text{ passa a } Q_1^{n+1} = 1$$

$$Q_1^n = 0$$
 passa a $Q_1^{n+1} = 0$

$$Q_1^n = 1 \text{ passa a } Q_1^{n+1} = 0$$

$$Q_1^n = 1 \text{ passa a } Q_1^{n+1} = 1$$

Tabela de transições para prox. estado

$Q_1^n \to Q_1^{n+1}$	\mathbf{J}_1	\mathbf{K}_1
0 >0	0	X
0 ->1	1	X
1 →0	X	1
1 > 1	X	0

Tabela Verdade de um JK

J	K	Q
0	0	Q_ant
0	1	0
1	0	1
1	1	\overline{Q} _ant

Se estava em Zero e passou para Zero, pode ser: forçou 0 (K=1) Ou manteve o valor (j=0,k=0)

Se estava em 0 e passou para 1, pode ser: forçou 1 (J=1) Ou inverteu o valor (j=1,k=1)

Se estava em 1 e passou para 0, pode ser: forçou 0 (K=1)
Ou inverteu o valor (j=1,k=1)

Se estava em 1 e passou para 1, pode ser: forçou 1 (J=1) Ou manteve o valor (j=0,k=0)

Vamos criar as equações para J₁ e K₁

J1=Q0.M+M'.Q0'

Vamos criar as equações para J₁ e K₁

Estado Atual Q ₁ ⁿ Q ₀ ⁿ	Saída	Próximo Estado	
		$M=0$ $Q_1^{n+1}Q_0^{n+1}$	$M=1$ $Q_1^{n+1}Q_0^{n+1}$
00	00	11	01
01	01	00	10
10	10	01	11
II	11	10	00

K1=Q0'.M'+M.Q0

Vamos criar as equações para J₀

J0=1

Vamos criar as equações para K₀

K0=1

Curiosamente o FF0 somente Inverterá o seu valor anterior Pois sua configuração é J=1, K=1

Observe que neste circuito (CRIADO COM FLIP-FLOPS JK) fica mais Difícil indicar qual é o estado futuro, pois teremos os sinais J0 e K0 e J1 e K1 e não diretamente o valor numérico do estado futuro como nos Flip-Flops D