

WHAT IS CLAIMED IS:

1 1. An integrated circuit device, the device comprising:
2 a substrate;
3 an insulating layer overlying the substrate;
4 a copper metal layer overlying the insulating layer;
5 an etch stop layer overlying the copper metal layer;
6 an interlayer dielectric material overlying the etch stop layer, the interlayer
7 dielectric material including an upper surface;
8 a plurality of via openings defined within a region of the interlayer dielectric
9 layer from the upper surface through the etch stop layer to the copper metal layer;
10 a copper fill material within each of the plurality of via openings to define a
11 plurality of copper structure extending from the upper surface through the etch stop layer to
12 the copper metal layer;
13 a first barrier metal layer overlying each of the plurality of copper structures to
14 define a first electrode of a capacitor structure;
15 an insulating layer overlying the first barrier metal layer to define an insulating
16 layer for the capacitor structure; and
17 a second barrier metal layer overlying the insulating layer to define the second
18 electrode.

1 2. The device claim 1 wherein the insulating layer is silicon nitride and
2 the etch stop layer is nitride.

1 3. The device of claim 1 wherein the insulating layer has a thickness of
2 about 200 to about 1000 Angstroms and more preferably 300 to 700 Angstroms.

1 4. The device of claim 1 wherein the insulating layer is PECVD nitride.

1 5. The device of claim 1 wherein the first barrier metal layer and the
2 second barrier metal layer comprises a tantalum material or a titanium material.

1 6. The device of claim 1 wherein each of the plurality of metal structures
2 has a width of less than 0.3 microns and a height of greater than about 7000 Angstroms.

1 7. The device of claim 1 wherein the capacitor structure has a capacitance
2 ranging from about 0.5 to about 5 Femto Farads per square micron.

1 8. The device of claim 1 further comprising a metal connector layer
2 overlying the second barrier metal layer.

1 9. The device of claim 1 wherein the plurality of metal structures includes
2 at least ten or more.

1 10. The device of claim 1 wherein the copper layer comprises a second
2 portion, the second portion defines an interconnect layer.

1 11. An integrated circuit device, the device comprising:
2 a substrate;
3 an insulating layer overlying the substrate;
4 a copper metal interconnect layer overlying the insulating layer;
5 a capping layer overlying the copper interconnect metal layer to isolate the
6 copper metal interconnect layer from overlying structures;
7 a first barrier metal layer overlying the capping layer, the first barrier metal
8 layer being free from the copper interconnect layer to define a first electrode structure;
9 an insulating layer overlying the first barrier metal layer to define a capacitor
10 dielectric structure;
11 a second barrier metal layer overlying the insulating layer to define a second
12 electrode structure;
13 an etch stop layer overlying the second barrier metal layer;
14 an interlayer dielectric material overlying the etch stop layer, the interlayer
15 dielectric material including an upper surface;
16 a plurality of via openings defined within a region of the interlayer dielectric
17 layer from the upper surface through the etch stop layer to the second barrier metal layer;
18 a copper fill material within each of the plurality of via openings to define a
19 plurality of copper structure extending from the upper surface through the etch stop layer to
20 the second barrier metal layer; and
21 an upper metal layer formed overlying the plurality of copper metal structures.

1 12. The device of claim 11 wherein the capping layer and the first barrier
2 metal layer maintain the capacitor insulating layer free from copper impurities.

1 13. The device of claim 11 wherein the capping layer maintains the
2 capacitor-insulating layer free from copper impurities during subsequent processing of the
3 device.

1 14. The device of claim 11 wherein the device is a mixed signal device
2 having a frequency range from about 1 MHz and greater.

1 15. The device of claim 11 wherein the capping layer PE CVD nitride.

1 16. The device of claim 11 wherein the capping layer has a thickness of
2 over 300 Angstroms.

1 17. A method for manufacturing integrated circuit devices, the method
2 comprising:

3 providing a substrate;

4 forming an insulating layer overlying the substrate;

5 forming a copper metal interconnect layer overlying the insulating layer;

6 forming a capping layer overlying the copper interconnect metal layer to

7 isolate the copper metal interconnect layer form overlying structures;

8 forming a first barrier metal layer overlying the capping layer, the first barrier
9 metal layer being free from the copper interconnect layer to define a first electrode structure;

10 forming an insulating layer overlying the first barrier metal layer to define a

11 capacitor dielectric structure;

12 forming a second barrier metal layer overlying the insulating layer to define a
13 second electrode structure;

14 forming an etch stop layer overlying the second barrier metal layer;

15 forming an interlayer dielectric material overlying the etch stop layer, the
16 interlayer dielectric material including an upper surface;

17 forming a plurality of via openings defined within a region of the interlayer
18 dielectric layer from the upper surface through the etch stop layer to the second barrier metal
19 layer;

20 providing a copper fill material within each of the plurality of via openings to
21 define a plurality of copper structure extending from the upper surface through the etch stop
22 layer to the second barrier metal layer; and

23 forming an upper metal layer formed overlying the plurality of copper metal
24 structures.

1 18. The method of claim 17 further comprising planarizing exposed
2 portions of the copper fill material.

1 19. The method of claim 17 wherein the upper metal layer comprises
2 copper material.

1 20. A method for forming an integrated circuit device, the method
2 comprising:

3 providing a substrate;
4 forming an insulating layer overlying the substrate;
5 forming a copper metal layer overlying the insulating layer;
6 forming an etch stop layer overlying the copper metal layer;
7 forming an interlayer dielectric material overlying the etch stop layer, the
8 interlayer dielectric material including an upper surface;

9 forming a plurality of via openings defined within a region of the interlayer
10 dielectric layer from the upper surface through the etch stop layer to the copper metal layer;
11 forming a copper fill material within each of the plurality of via openings to
12 define a plurality of copper structure extending from the upper surface through the etch stop
13 layer to the copper metal layer;

14 forming a first barrier metal layer overlying each of the plurality of copper
15 structures to define a first electrode of a capacitor structure;

16 forming an insulating layer overlying the first barrier metal layer to define an
17 insulating layer for the capacitor structure; and

18 forming a second barrier metal layer overlying the insulating layer to define
19 the second electrode.