Application of the Level Method for Computing Locational Convex Hull Prices

Nicolas Stevens & Anthony Papavasiliou

July 2021

EURO2021

Pricing under non-convexities

$$\min_{c,p,u,f} \sum_{g \in \mathcal{G}} c_g \tag{1a}$$

$$(\pi_t^i) \sum_{g \in \mathcal{G}_i} p_{g,t} - D_t^i = \sum_{\substack{l \in \\ from(i)}} f_{l,t} - \sum_{\substack{l \in \\ to(i)}} f_{l,t} \quad \forall i, t \quad (1b)$$

$$(c_g, p_{g,t}, u_{g,t}) \in \mathcal{X}_g \quad \forall g \in \mathcal{G}$$
 (1c)

$$f \in \mathcal{F}$$
 (1d)

- In a competitive market, a **market operator** computes:
 - Market matches (commitment & dispatch)
 - Market **prices**
- Good price signals are essential in a competitive market

Typical market clearing problem

Minimize costs

Market clearing constraint (supply = demand)

Supply (generator / orders) technical constraints

Network constraints

$$\max_{c,p,u} \sum_{t} p_{g,t} \pi_t^{i(g)} - c_g$$

$$(c_g, p_{g,t}, u_{g,t}) \in \mathcal{X}_g$$

$$(2a)$$

$$(c_g, p_{g,t}, u_{g,t}) \in \mathcal{X}_g \tag{2b}$$

In convex cases, the dual variable associated to (1b) is an equilibrium price

Pricing under non-convexities

$$\min_{c,p,u,f} \sum_{g \in \mathcal{G}} c_g \tag{1a}$$

$$(\pi_t^i) \sum_{g \in \mathcal{G}_i} p_{g,t} - D_t^i = \sum_{\substack{l \in \\ from(i)}} f_{l,t} - \sum_{\substack{l \in \\ to(i)}} f_{l,t} \quad \forall i, t \quad \text{(1b)}$$

$$(c_g, p_{g,t}, u_{g,t}) \in \mathcal{X}_g \quad \forall g \in \mathcal{G} \quad \text{(1c)}$$

$$(c_g, p_{g,t}, u_{g,t}) \in \mathcal{X}_g \quad \forall g \in \mathcal{G}$$
 (1c)

$$f \in \mathcal{F}$$
 (1d)

Typical market clearing problem

Minimize costs

Market clearing constraint (supply = demand)

Supply (generator / orders) technical constraints

Network constraints

- In a competitive marke
 - Market matches (
 - Market **prices**
- Good price signals are

Non-convexities are at the heart of power system operations:

- the Network model (the AC power flow equations)
- Market orders (the MIP constraints that describe the market offers)

$$c_g$$
 (2a)

$$\in \mathcal{X}_g$$
 (2b)

In convex cases, the dual variable associated to (1b) is an equilibrium price

Convex hull pricing (CHP) minimizes uplifts

- Under non-convexity: impossible to find a set of equilibrium uniform prices
- Combine the **uniform price** with **discriminatory payments** (**uplifts**) to restore the proper incentives

- Popular non-uniform pricing schemes include:
 - IP pricing proposed by O'Neill [1]
 - Convex hull pricing proposed by Gribik and Hogan [2-3]
 - Extended LMP pricing, applied in the PJM market [4]

- Convex Hull Pricing minimize uplifts
- Uplifts are undesirable
 - Distort the incentives of bidders
 - Create revenue adequacy problems for the market operator
- But CHP is computationally challenging!
- → Our research aims at addressing these computational challenges

CHP is also considered in the EU day-ahead market

CHP has been so far mainly debated in the US (e.g. PJM)

But it has recently received consideration by the European NEMOs
as a possible option for the European DA energy auction [5]

- The European DA market is a huge market
 - Runs once per day
 - Couples EU countries
 - Set the dispatch and the electricity prices
 - Complex institutional structure:
 - TSO (regulated monopoly): Elia, RTE, Statnett, etc.
 - **NEMO**: EPEX SPOT, Nord Pool, etc.
 - Market clearing algorithm: EUPHEMIA

Introduction

CHP formulation

The Level Method

Numerical Results

Conclusion

- Pricing under non-convexity
- Main concepts related to Convex Hull Pricing (CHP)
- EU day-ahead market context
- Mathematical formulation of CHP
- Algorithmic schemes to compute CHP
- Kelley's algorithm
- Level stabilization
- Adaptation of the basic algorithm to CHP specificities
- Size of the EU day-ahead market problem
- Comparison of the Level Method and the Dantzig Wolfe algorithm on EU instances

Introduction

CHP formulation

The Level Method

Numerical Results

Conclusion

- Pricing under non-convexity
- Main concepts related to Convex Hull Pricing (CHP)
- EU day-ahead market context
- Mathematical formulation of CHP
- Algorithmic schemes to compute CHP
- Kelley's algorithm
- Level stabilization
- Adaptation of the basic algorithm to CHP specificities
- Size of the EU day-ahead market problem
- Comparison of the Level Method and the Dantzig Wolfe algorithm on EU instances

Minimizing the uplifts amounts to solving a Lagrangian relaxation

$$\pi^{CHP} = \operatorname*{arg\,max}_{\pi} L(\pi) \tag{3}$$

$$L(\pi) = \sum_{i,t} \pi_t^i D_t^i \tag{4a}$$

$$-\sum_{g \in \mathcal{G}} \max_{(c,p,u)_g \in \mathcal{X}_g} \left\{ \sum_t p_{g,t} \pi_t^{i(g)} - c_g \right\}$$
 (4b)

$$+ \min_{f \in \mathcal{F}} \left\{ \sum_{i,t} \pi_t^i \left(\sum_{\substack{l \in \\ from(i)}} f_{l,t} - \sum_{\substack{l \in to(i)}} f_{l,t} \right) \right\}$$
(4c)

Property 1 (Concave).

Function $L(\pi)$ is concave in π .

Property 2 (Non-smooth).

Function $L(\pi)$ is a non-smooth (piecewise linear) function, i.e. each facet can be seen as corresponding to a set of binary (commitment) decisions u_q .

Property 3 (First-order oracle).

A first-order oracle is available, i.e. given a price π , both the function value $L(\pi)$ as well as its supergradient $g \in \partial L(\pi)$ can be evaluated.

Property 4 (Supergradient).

Let (c^*, p^*, u^*, f^*) be the optimal reactions to π (solving respectively (4b) and (4c)). Then

$$g = D_t^i - \sum_{g \in \mathcal{G}} p_{g,t}^* + \sum_{l \in from(i)} f_{l,t}^* - \sum_{l \in to(i)} f_{l,t}^*$$
 is a supergradient of L in π ; i.e. $g \in \partial L(\pi)$

Toy example [6]						
Demand: [30, 40] <i>MW</i>		Two-periods, single node				
G	C_q^P	$\mid C_q^{SU}$	P_q^{\min}	$\mid P_q^{ m max} \mid$		
SMOKESTACK01	3	53	0	16		
SMOKESTACK02	3	53	0	16		
SMOKESTACK03	3	53	0	16		
$HIGH_TECH01$	2	30	0	7		
$HIGH_TECH02$	2	30	0	7		
MED_TECH01	7	0	2	$\mid 6 \mid$		

GENERIC ALGORITHMIC SCHEME

- 1. Given a price π_k , $L(\pi_k)$ and $\partial L(\pi_k)$ are evaluated
- 2. Given this information, a new price π_{k+1} is generated
- 3. If stopping criterion, stop. Otherwise, go to 1

- Supgradient algorithm is memoryless
- Typical oscillation behavior
- → In moderate dimension, such as for our CHP problem, there are more optimistic algorithmic schemes

Introduction

CHP formulation

The Level Method

Numerical Results

Conclusion

- Pricing under non-convexity
- Main concepts related to Convex Hull Pricing (CHP)
- EU day-ahead market context
- Mathematical formulation of CHP
- Algorithmic schemes to compute CHP
- Kelley's algorithm
- Level stabilization
- Adaptation of the basic algorithm to CHP specificities
- Size of the EU day-ahead market problem
- Comparison of the Level Method and the Dantzig Wolfe algorithm on EU instances

The Kelley's algorithm [7]

- Basis for the Level Method
- Based on the idea of iteratively constructing a **model**: the piecewise linear function $L(\pi)$ is **upper-approximated** at each iterate by a model function $\hat{L}(\pi, k)$ consisting of **supporting hyperplanes**

Model function

$$\hat{L}(\pi, k) = \min_{j=0..k} \left[\langle g_j, \pi - \pi_j \rangle + L(\pi_j) \right] \tag{5}$$

Master program

$$\max_{\pi \in Q, \theta} \theta$$

$$s.t. \quad \theta \le \langle g_j, \pi \rangle + b_j \quad \forall j = 0..k$$
(6)

Update rule

$$\pi_{k+1} = \arg\max_{\pi} \hat{L}(\pi, k). \tag{7}$$

Stopping criterion

$$\frac{UB_k - LB_k}{|UB_k|} \le \epsilon \tag{8}$$

Lagrangian value function and Kelley path

- Oscillations already appear in low dimension
- Unstable in high dimension: adding a new supporting hyperplane can move the optimum far from the previous point

- The underlying idea of the Level Method is to update prices more smoothly
- Select the next iterate π_{k+1} so that it is better than π_k (as evaluated by $\widehat{L}(\pi,k)$), without being optimal at all costs

Same **Model function** as Kelley

Same **Master** program as Kelley

NEW **Update rule** Projection prog.

$$\min_{\pi \in Q} ||\pi - \pi_k||_2^2$$

$$s.t. \langle g_j, \pi \rangle + b_j \ge \alpha U B_k + (1 - \alpha) L B_k \quad \forall j = 0...k$$
(9)

Same **Stopping criterion** as Kelley

 α is the **projection parameter**

- $\alpha = 1$: Kelley's algorithm
- $\alpha = 0$: the iterate does not move

The Level Method stabilizes Kelley's path – illustration on 2D example

Two adaptation of the Level Method to the CHP specificities

Two tricks can improve the classical Level formulation to the specificities of the CHP problem

$$L(\pi) = \sum_{i,t} \pi_t^i D_t^i \tag{4a}$$

$$-\left(\sum_{g\in\mathcal{G}} \max_{(c,p,u)_g\in\mathcal{X}_g} \left\{ \sum_t p_{g,t} \pi_t^{i(g)} - c_g \right\}$$
 (4b)

$$+ \left\{ \min_{f \in \mathcal{F}} \left\{ \sum_{i,t} \pi_t^i \left(\sum_{\substack{l \in \\ from(i)}} f_{l,t} - \sum_{\substack{l \in to(i)}} f_{l,t} \right) \right\}$$
 (4c)

All generators are separable \rightarrow write one upper approximation θ_g per generator (one cut per generator)

- Dualize the convex network equations
- Insert it back into the Lagrangian function (i.e. it becomes explicit variable of the master & projection)

2

Introduction

CHP formulation

The Level Method

Numerical Results

Conclusion

- Pricing under non-convexity
- Main concepts related to Convex Hull Pricing (CHP)
- EU day-ahead market context
- Mathematical formulation of CHP
- Algorithmic schemes to compute CHP
- Kelley's algorithm
- Level stabilization
- Adaptation of the basic algorithm to CHP specificities
- Size of the EU day-ahead market problem
- Comparison of the Level Method and the Dantzig Wolfe algorithm on EU instances

Computing CHP in the European dayahead auction

• Euphemia is afforded 12 minutes of run time

• The market model includes a network of \sim 40 bidding zones, and its geographic footprint is expected to be further enlarged

 The market model is expected to move towards 15-minute granularity by 2022 (a horizon of 96 periods)

• We focus on the sensitivity of the algorithms towards the **dimension of** the price space (the ultimate goal is to compute prices optimizing $L(\pi)$)

Tested on 2 sets of cases

• **FERC data** (11 instances, no network, >900 generators) [8]

Central Europe data (6 times series, 2 different networks) [9]

TABLE II						
DESCRIPTION OF THE SIZE OF THE EU INSTANCES.						

Test case	Bidding Zones	Lines	Generators	
BE	30	30	74	
BE-NL	59	63	145	

The Level Method is benchmarked against a Dantzig-Wolfe algorithm [10]

Comparison of the Level Method and Dantzig-Wolfe algorithm

TABLE III

RESULTS OF THE LEVEL METHOD AND THE DANTZIG-WOLFE ALGORITHM ON THE BE TEST CASE FOR DIFFERENT TIME HORIZONS (AVERAGE OVER 6 INSTANCES).

-	norizon	Dispatch Cost [€]	IP Uplifts [€]	CHP Uplifts [€]	Level iter	Level av. time per iter ^a [s]	D-W iter	D-W av. time per iter ^a [s]
1:	2	2,767,841	398,003	6,621	22	0.5 (0.05)	18	0.3 (0.02)
2	4	4,963,246	144,125	10,149	28	0.8 (0.1)	39	0.6 (0.1)
4	8	11,335,441	288,741	20,746	32	1.9 (0.4)	78	1.9 (0.3)
9	6	24,104,303	2,587,632	28,987	46	6.4 (1.8)	241	6.5 (2.1)

^a (·) denotes the average time per iterate for solving the "master programs" (i.e. master plus projection in the case of the Level Method).

- Julia (JuMP)
- Run on a personal computer (Intel Core i5, 2.6 GHz, 8 GB of RAM)
- Gurobi 9.1.1
- Stopping criterion: 0.01%
- **Iteration count**: < 50 iterates
- **Robustness**: the Level Method reaches quickly good price candidates (valuable since clearing time limited to 12 min)

Introduction

CHP formulation

The Level Method

Numerical Results

Conclusion

- Pricing under non-convexity
- Main concepts related to Convex Hull Pricing (CHP)
- EU day-ahead market context
- Mathematical formulation of CHP
- Algorithmic schemes to compute CHP
- Kelley's algorithm
- Level stabilization
- Adaptation of the basic algorithm to CHP specificities
- Size of the EU day-ahead market problem
- Comparison of the Level Method and the Dantzig Wolfe algorithm on EU instances

Conclusion

- The Level Method exhibits favorable empirical performance to solve Convex Hull Pricing problem
- It is capable to compute Convex Hull Prices on large instances including network and a horizon of 96 periods (which anticipates future EU DA market evolution)
- Further promising paths of research:
 - 1. Expanding tests on realistic instances of Euphemia
 - 2. Examining the effects of non-uniform pricing on enhancing welfare in the EU day-ahead market
 - 3. Understanding distributional effects of non-uniform pricing as well as gaming effects

Thank you!

Nicolas Stevens nicolas.stevens@uclouvain.be

References

- [1] R. P. O'Neill, P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf, and W. R. Stewart Jr, "Efficient market-clearing prices in markets with nonconvexities", *European journal of operational research*, vol. 164, no. 1, pp. 269–285, 2005.
- [2] W. W. Hogan and B. J. Ring, "On minimum-uplift pricing for electricity markets", *Electricity Policy Group*, pp. 1–30, 2003.
- [3] P. R. Gribik, W. W. Hogan, S. L. Pope *et al.*, "Market-clearing electricity prices and energy uplift", *Cambridge*, *MA*, 2007.
- [4] PJM Interconnection, "Proposed enhancements to energy price formation", 2017.
- [5] Nemo Committee, "CACM annual report 2019", July 2020. [Online]. Available: http://www.nemo-committee.eu/assets/files/cacm- annual-report-2019.pdf
- [6] Carlos Ruiz, Antonio J Conejo, and Steven A Gabriel. Pricing non-convexities in an electricity pool. *Power Systems, IEEE Transactions on*, 27(3):1334–1342, 2012.
- [7] Y. Nesterov, Introductory lectures on convex optimization: a basic course. Springer, 2004.
- [8] E. Krall, M. Higgins, and R. P. ONeill, "Rto unit commitment test system", Federal Energy Regulatory Commission, vol. 98, 2012.
- [9] I. Aravena and A. Papavasiliou, "Renewable energy integration in zonal markets", *IEEE Transactions on Power Systems*, vol. 32, no. 2, pp. 1334–1349, 2016.
- [10] P. Andrianesis, M. C. Caramanis, and W. W. Hogan, "Computation of convex hull prices in electricity markets with non-convexities using dantzig-wolfe decomposition", arXiv preprint arXiv:2012.13331, 2020.