SQL PROJECT-1

ScienceQtech Employee Performance Mapping

sceinceqtech_empl
.sql File: oyee_performance S

SUBMITTED BY:

SAUMYA GUREJA

ScienceQtech Employee Performance Mapping

Course-end Project 1

Description

ScienceQtech is a startup that works in the Data Science field. ScienceQtech has worked on fraud detection, market basket, self-driving cars, supply chain, algorithmic early detection of lung cancer, customer sentiment, and the drug discovery field. With the annual appraisal cycle around the corner, the HR department has asked you (Junior Database Administrator) to generate reports on employee details, their performance, and on the project that the employees have undertaken, to analyze the employee database and extract specific data based on different requirements.

Objective:

To facilitate a better understanding, managers have provided ratings for each employee which will help the HR department to finalize the employee performance mapping. As a DBA, you should find the maximum salary of the employees and ensure that all jobs are meeting the organization's profile standard. You also need to calculate bonuses to find extra cost for expenses. This will raise the overall performance of the organization by ensuring that all required employees receive training.

Dataset description:

emp_record_table: It contains the information of all the employees.

- EMP_ID ID of the employee
- FIRST_NAME First name of the employee
- LAST_NAME Last name of the employee
- GENDER Gender of the employee
- ROLE Post of the employee
- DEPT Field of the employee
- EXP Years of experience the employee has
- COUNTRY Country in which the employee is presently living
- CONTINENT Continent in which the country is
- SALARY Salary of the employee
- EMP_RATING Performance rating of the employee
- MANAGER_ID The manager under which the employee is assigned
- PROJ ID The project on which the employee is working or has worked on

Proj_table: It contains information about the projects.

- PROJECT_ID ID for the project
- PROJ_Name Name of the project
- DOMAIN Field of the project
- START_DATE Day the project began
- CLOSURE_DATE Day the project was or will be completed
- DEV_QTR Quarter in which the project was scheduled
- STATUS Status of the project currently

Data_science_team: It contains information about all the employees in the Data Science team.

- EMP ID ID of the employee
- FIRST_NAME First name of the employee
- LAST_NAME Last name of the employee
- GENDER Gender of the employee
- ROLE Post of the employee
- DEPT Field of the employee
- EXP Years of experience the employee has
- COUNTRY Country in which the employee is presently living
- CONTINENT Continent in which the country is

Dataset: scienceqtech performance mapping dataset.zip

1.Create a database named employee, then import data_science_team.csv, proj_table.csv and emp_record_table.csv into the employee database from the given resources.

CREATE DATABASE employee;

USE employee;

93 23:32:06 CREATE DATABASE employee

1 row(s) affected

I imported the csv files using table import wizard and then altered them:

ALTER TABLE proj_table CHANGE `START_DATE `START_DATE varchar(10);

ALTER TABLE proj_table

MODIFY PROJECT ID varchar(10) primary key,

MODIFY PROJ NAME varchar(50),

MODIFY DOMAIN varchar(50),

MODIFY CLOSURE_DATE varchar(10),

MODIFY DEV_QTR varchar(2),

MODIFY STATUS varchar(10);

UPDATE emp_record_table SET PROJ_ID = NULL WHERE PROJ_ID = 'NA';

ALTER TABLE emp_record_table

MODIFY EMP ID varchar(10) PRIMARY KEY,

MODIFY FIRST_NAME varchar(50),

MODIFY LAST_NAME varchar(50),

MODIFY GENDER varchar(1),

MODIFY ROLE varchar(50),

MODIFY DEPT varchar(50),

MODIFY EXP int,

MODIFY COUNTRY varchar(50),

MODIFY CONTINENT varchar(50),

MODIFY SALARY int,
MODIFY EMP_RATING int,
MODIFY MANAGER_ID varchar(50),
MODIFY PROJ_ID varchar(10),
ADD FOREIGN KEY (PROJ_ID) REFERENCES proj_table(PROJECT_ID);

ALTER TABLE data_science_team
MODIFY EMP_ID varchar(10) primary key,
MODIFY FIRST_NAME varchar(50),
MODIFY LAST_NAME varchar(50),
MODIFY GENDER varchar(1),
MODIFY ROLE varchar(50),
MODIFY DEPT varchar(50),
MODIFY EXP int,
MODIFY COUNTRY varchar(50),
MODIFY COUNTRY varchar(50),

ADD foreign key (EMP_ID) REFERENCES emp_record_table(EMP_ID);

2. Create an ER diagram for the given employee database.

PDF link: science q tech er diagram pdf.pdf

3. Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, and DEPARTMENT from the employee record table, and make a list of employees and details of their department.

SELECT emp_id, first_name, last_name, gender, dept FROM emp_record_table;

4. Write a query to fetch EMP_ID, FIRST_NAME, LAST_NAME, GENDER, DEPARTMENT, and EMP_RATING if the EMP_RATING is:

- less than two
- · greater than four
- between two and four

SELECT emp_id, first_name, last_name, gender, dept, emp_rating FROM emp_record_table WHERE emp_rating<2;

SELECT emp_id, first_name, last_name, gender, dept, emp_rating FROM emp_record_table WHERE emp_rating>4;

SELECT emp_id, first_name, last_name, gender, dept, emp_rating FROM emp_record_table WHERE emp_rating BETWEEN 2 AND 4;

5. Write a query to concatenate the FIRST_NAME and the LAST_NAME of employees in the Finance department from the employee table and then give the resultant column alias as NAME.

SELECT concat(first_name, " ", last_name),dept FROM emp_record_table WHERE dept="Finance";

6. Write a query to list only those employees who have someone reporting to them. Also, show the number of reporters (including the President).

SELECT DISTINCT manager_id, count(emp_id) OVER (PARTITION BY manager_id) no_of_reporters FROM emp_record_table WHERE manager_id IS NOT NULL;

7. Write a query to list down all the employees from the healthcare and finance departments using union. Take data from the employee record table.

SELECT emp_id,first_name,last_name,dept FROM emp_record_table WHERE dept="healthcare"

UNION

SELECT emp_id,first_name,last_name,dept FROM emp_record_table WHERE dept="finance";

8. Write a query to list down employee details such as EMP_ID, FIRST_NAME, LAST_NAME, ROLE, DEPARTMENT, and EMP_RATING grouped by dept. Also include the respective employee rating along with the max emp rating for the department.

SELECT emp_id, first_name, last_name, role, emp_rating, dept, max(emp_rating) OVER (PARTITION BY dept) max_dept_rating FROM emp_record_table;

9. Write a query to calculate the minimum and the maximum salary of the employees in each role. Take data from the employee record table.

SELECT role, MAX(salary) maximum_salary, MIN(salary) minimum_salary FROM emp_record_table GROUP BY role;

10. Write a query to assign ranks to each employee based on their experience. Take data from the employee record table.

SELECT emp_id, first_name,last_name,dept,exp, dense_rank() OVER (ORDER BY exp desc) rank_ FROM emp_record_table;

11. Write a query to create a view that displays employees in various countries whose salary is more than six thousand. Take data from the employee record table.

CREATE VIEW employee_salary_more_than_6000 AS

SELECT country, emp_id, concat(first_name," ",last_name) emp_name, salary, emp_rating, role, dept, manager_id, proj_id, gender, continent FROM emp_record_table WHERE salary>6000 ORDER BY country asc;

SELECT * FROM employee_salary_more_than_6000;

12. Write a nested query to find employees with experience of more than ten years. Take data from the employee record table.

SELECT * FROM emp_record_table WHERE exp>10;

13. Write a query to create a stored procedure to retrieve the details of the employees whose experience is more than three years. Take data from the employee record table.

DELIMITER //

CREATE PROCEDURE exp_more_than_three()

BEGIN

SELECT * FROM emp_record_table WHERE exp > 3;

END //

DELIMITER;

CALL exp_more_than_three();

14. Write a query using stored functions in the project table to check whether the job profile assigned to each employee in the data science team matches the organization's set standard.

The standard being:

For an employee with experience less than or equal to 2 years assign 'JUNIOR DATA SCIENTIST',

For an employee with the experience of 2 to 5 years assign 'ASSOCIATE DATA SCIENTIST',

For an employee with the experience of 5 to 10 years assign 'SENIOR DATA SCIENTIST',

For an employee with the experience of 10 to 12 years assign 'LEAD DATA SCIENTIST',

For an employee with the experience of 12 to 16 years assign 'MANAGER'.

```
DELIMITER //
CREATE FUNCTION get expected job profile(exp INT)
RETURNS VARCHAR(50)
DETERMINISTIC
BEGIN
 DECLARE job_profile VARCHAR(50);
 IF exp <= 2 THEN
   SET job_profile = 'JUNIOR DATA SCIENTIST';
 ELSEIF exp > 2 AND exp <= 5 THEN
   SET job_profile = 'ASSOCIATE DATA SCIENTIST';
 ELSEIF exp > 5 AND exp <= 10 THEN
   SET job_profile = 'SENIOR DATA SCIENTIST';
 ELSEIF exp > 10 AND exp <= 12 THEN
   SET job_profile = 'LEAD DATA SCIENTIST';
 ELSEIF exp > 12 AND exp <= 16 THEN
   SET job_profile = 'MANAGER';
 ELSE
   SET job_profile = 'UNKNOWN PROFILE';
 END IF;
 RETURN job_profile;
END //
DELIMITER;
```

```
SELECT

d.EMP_ID,

d.FIRST_NAME,

d.LAST_NAME,

d.EXP,

d.ROLE AS assigned_role,

get_expected_job_profile(d.EXP) AS expected_role,

CASE

WHEN d.ROLE = get_expected_job_profile(d.EXP) THEN 'MATCH'

ELSE 'DOES NOT MATCH'

END AS profile_check

FROM

data_science_team d;
```


15. Create an index to improve the cost and performance of the query to find the employee whose FIRST_NAME is 'Eric' in the employee table after checking the execution plan.

CREATE INDEX idx_first_name ON emp_record_table(first_name);

EXPLAIN SELECT * FROM emp_record_table WHERE first_name="Eric";

16. Write a query to calculate the bonus for all the employees, based on their ratings and salaries (Use the formula: 5% of salary * employee rating).

SELECT emp_id,concat(first_name," ",last_name) emp_name, emp_rating, salary, (0.05*salary*emp_rating) bonus FROM emp_record_table;

17. Write a query to calculate the average salary distribution based on the continent and country. Take data from the employee record table.

SELECT DISTINCT continent, country, AVG(salary) OVER (PARTITION BY continent, country) average_salary FROM emp_record_table;

