機器學習基礎part2

Outline

- Numpy Introduction
- Pandas Introduction
- Matplotlib Introduction
- scikit-learn Introduction
- Different Competition Platform

What's Numpy

What's Numpy

- a library for the Python that support for large, multi-dimensional arrays/matrices
 - http://www.numpy.org/
- core functionality of NumPy is its "ndarray" data structure
 - ▶ for *n*-dimensional array
- all elements of a single array must be of the same type

N-dimensional array

Dimensions	Example	Terminology
1	0 1 2	Vector
	0 1 2	
2	3 4 5	Matrix
	6 7 8	
***************************************	0 1 2	
3	3 4 5	3D Array (3 rd order Tensor)
	6 7 8	(
N		ND Array

3D Tensor Example

- Each image contain many pixels
 - Each pixels compose red, green, blue(RGB)
- ▶ Each channel have brightness levels between 0~255

3D Tensor Example

3D Tensor Example

A image is a 3D-tensor

Data type in Numpy

Data type	Description
bool	Boolean (True or False) stored as a byte
int	Platform integer (normally either int32 or int64)
int8	Byte (-128 to 127)
int16	Integer (-32768 to 32767)
int32	Integer (-2147483648 to 2147483647)
int64	Integer (9223372036854775808 to 9223372036854775807)
uint8	Unsigned integer (0 to 255)
uint16	Unsigned integer (0 to 65535)
uint32	Unsigned integer (0 to 4294967295)
uint64	Unsigned integer (0 to 18446744073709551615)

float	Shorthand for float64.
float16	Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32	Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64	Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex	Shorthand for complex128.
complex64	Complex number, represented by two 32-bit floats
complex128	Complex number, represented by two 64-bit floats

What's axis?

Numpy array creation

Code	Result	Code	Result
Z = zeros(9)		Z = zeros((5,9))	
Z = ones(9)		Z = ones((5,9))	
Z = array([0,0,0,0,0,0,0,0])		<pre>Z = array([[0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0]])</pre>	
Z = arange(9)		<pre>Z = arange(5*9).reshape(5,9)</pre>	
Z = random.uniform(0,1,9)		<pre>Z = random.uniform(0,1,(5,9))</pre>	650

Numpy array reshape

Code	Result	Code	Result
Z[2,2] = 1		Z = Z.reshape(1,12)	
Z = Z.reshape(4,3)		Z = Z.reshape(12,1)	
Z = Z.reshape(6,2)			
Z = Z.reshape(2,6)			

Numpy array indexing/slicing

```
>>> a[0,3:5]
array([3,4])
>>> a[4:,4:]
array([[44, 45],
       [54, 55]])
>>> a[:,2]
array([2,12,22,32,42,52])
>>> a[2::2,::2]
array([[20,22,24]
       [40,42,44]])
```


Numpy array indexing/slicing

Numpy array indexing/slicing

Code	Result	Code	Result
Z		Z[] = 1	
Z[1,1] = 1	•	Z[:,0] = 1	
Z[0,:] = 1		Z[2:,2:] = 1	
Z[:,::2] = 1		Z[::2,:] = 1	
Z[:-2,:-2] = 1		Z[2:4,2:4] = 1	
Z[::2,::2] = 1		Z[3::2,3::2] = 1	

Numpy array broadcasting

Numpy array broadcasting

Numpy array operations

Numpy array operations

ndarray.sum(axis = 0) -> array([12, 15, 18])

ndarray.sum(axis = 1) -> array([6, 15, 24])

Most popular Numpy functions

What's Pandas

What's Pandas

- Pandas is python library that is very useful to manipulate data, especially structure data
- Provide data structures and operations for manipulating numerical tables and time series

Popularity in Pandas

Tags often visited by Python users

'Python user' is a logged-in vistor with >=50 total visits in summer 2017 whose most visited tag is Python Not showing the Python tag itself.

https://stackoverflow.blog/2017/09/14/python-

Popularity in Pandas

Stack Overflow Traffic to Questions About Selected Python Packages

Pandas Data structure

- Pandas series
 - ▶ I-D data
- Pandas dataframe
 - > 2-D data

Series

indet	Ogico
1	'A'
2	'B'
3	'C'
4	'D'
5	'E'

Dataframe

	GEOID	State	2005	2006	2007	2008	2009	2010	2011	2012	2013
0	04000US01	Alabama	37150	37952	42212	44476	39980	40933	42590	43464	41381
1	04000US02	Alaska	55891	56418	62993	63989	61604	57848	57431	63648	61137
2	04000US04	Arizona	45245	46657	47215	46914	45739	46896	48621	47044	50602
3	04000US05	Arkansas	36658	37057	40795	39586	36538	38587	41302	39018	39919
4	04000US06	California	51755	55319	55734	57014	56134	54283	53367	57020	57528

Dataframe is consists of rows or columns

Create dataframe

```
Dictionary
                                                               List
                                               df = pd.DataFrame(sales)
                                     account
                                             Jan
                                                    Feb
                                                           Mar
     default
                                                                            from_records
                               0
                                    Jones LLC
                                             150
                                                    200
                                                           140
                                    Alpha Co
                                             200
                                                    210
                                                           215
                               2
                                     Blue Inc
                                             50
                                                           95
Column Oriented
                                              df = pd.DataFrame.from_dict(sales)
                                              df = pd.DataFrame.from items(sales)
    from dict
                                                                             from items
          When using a dictionary, column order is not preserved.
                  Explicitly order them:
           df = df[['account', 'Jan', 'Feb', 'Mar']]
                                                       Practical Business Python - pbpython.com
```

DataFrame Basic Functionality

Function	Description
count()	Number of non-null observations
sum()	Sum of values
mean()	Mean of Values
median()	Median of Values
mode()	Mode of values
std()	Standard Deviation of the Values
min()	Minimum Value
max()	Maximum Value
abs()	Absolute Value
prod()	Product of Values
cumsum()	Cumulative Sum
cumprod()	Cumulative Product

What's CSV file

- comma-separated values (CSV) file stores tabular data (numbers and text) in plain text
- Each line of the file is a data record
- ▶ Each record consists of one or more fields, separated by commas

What's CSV file

1	A	В	С
1	student name	age	score
2	isaac	18	100
3	kevin	20	70
4	jack	15	90
5			
6			

student name, age, score isaac, 18, 100 kevin, 20, 70 jack, 15, 90

Json form

- Json(JavaScript Object Notation) include two symbol
 - {} (object)
 - ▶ [] (Array)

```
key-value pair

{"subject":"Math","score":80}

["Tom", "John", "Amy", "Ivy"]
```

object array

Json form

Name	Tom Chen
Math	80
English	90

Name	e	Amy Lin
Math		86
English	1	88

```
[{"name":"Tom Chen", "report":[{"subject":"Math", "score":80}, {"subject":"English", "score":90}]}, {"name":"Amy Lin", "report":[{"subject":"Math", "score":86}, {"subject":"English", "score":88}]}]
```

Pandas read/write

File format	Read method	Write method
CSV	read_csv	to_csv
JSON	read_json	to_json
HTML	read_html	to_html
•••		
•••	•••	

Pandas merge

LEFT	key	Α	В
0	KO	AO	ВО
1	K1	A1	B1
2	K2	A2	B2
3	K3	A3	В3

RIGHT	key	С	D
0	КО	8	D0
1	K1	C1	D1
2	K1	C2	D2
3	K4	C3	D3

Left Merge

RESULT	key	Α	В	С	D
0	KO	A0	В0	CO	D0
1	K1	A1	B1	C1	D1
2	K1	A1	B1	C2	D2
3	K2	A2	В2	NaN	Na N
4	КЗ	А3	В3	NaN	NaN

Right Merge

RESULT	key	Α	В	С	D
0	КО	A0	В0	CO	D0
1	K1	A1	B1	C1	D1
2	K1	A1	B1	C2	D2
3	K4	NaN	NaN	C3	D3

Inner Merge

RESULT	key	Α	В	U	D
0	КО	A0	ВО	СО	DO
1	K1	A1	B1	C1	D1
2	K1	A1	B1	C2	D2

Outer Merge

RESULT	key	А	В	С	D
0	КО	A0	во	СО	DO
1	K1	A1	B1	C1	D1
2	K1	A1	В1	C2	D2
3	K2	A2	B2	NaN	NaN
4	КЗ	АЗ	В3	NaN	NaN
5	K4	NaN	NaN	СЗ	D3

Pandas merge

Merge method	SQL Join Name	Description
left	LEFT OUTER JOIN	Use keys from left frame only
right	RIGHT OUTER JOIN	Use keys from right frame only
outer	FULL OUTER JOIN	Use union of keys from both frames
inner	INNER JOIN	Use intersection of keys from both frames

Pandas merge

Pandas append

Pandas groupby

What's Matplotlib

What's matplotlib

- A plotting library for the Python
 - https://matplotlib.org/
- Numerical mathematics extension NumPy
- Matplotlib 1.2 is the first version of matplotlib to support Python 3.x

What's matplotlib

3D plot

What's matplotlib

- more example
 - https://matplotlib.org/gallery.html

Figure

- ▶ A figure is the windows in the GUI that has "Figure #" as title.
 - figures are numbered starting from I
 - several parameters that determine what the figure looks like:

Default	Description number of figure							
1								
figure.figsize	figure size in in inches (width, height)							
figure.dpi	resolution in dots per inch							
figure.facecolor	color of the drawing background							
figure.edgecolor	color of edge around the drawing background							
True	draw figure frame or not							
	figure.figsize figure.dpi figure.facecolor figure.edgecolor							

Figure

Subplot

- Subplot allow user to arrange plots in a regular grid
 - need to specify # of rows/columns and # of the plot

Subplot

Ticks

Ticks help specify where ticks should appear and tick formatters to give ticks the appearance you want

Legend

Lengend help user to describe figure easily

Line property

Property alpha (or a)	Description	Appearance										
	alpha transparency on 0-1 scale	I.	1	Ţ	Į	1	Ţ	1	1	1	L	
antialiased	True or False - use antialised rendering	Aliased Anti-aliased										
color (or c)	matplotlib color arg			1		1	1	T.	1	1	1	
linestyle (or ls)	see Line properties											
linewidth (or lw)	float, the line width in points	- 12	1	-		-	-1					
solid_capstyle	Cap style for solid lines											
solid_joinstyle	Join style for solid lines											
dash_capstyle	Cap style for dashes	-										
dash_joinstyle	Join style for dashes						,	-				
marker	see Markers											
markeredgewidth (mew)	line width around the marker symbol	0	0	0	0	0	0	0	0	0	0	
markeredgecolor (mec)	edge color if a marker is used	0	0	0	0	0	0	0	0	0	0	
markerfacecolor (mfc)	face color if a marker is used	-										
markersize (ms)	size of the marker in points			0	0							

Color

Marker

Filled markers in Matplotlib

Line style Example

Line style

Line styles

'None'
..... ':'
--- '--!
--- '--!

......

What's scikit-learn Introduction

What's Scikit-learn

- scikit-learn is a machine learning library for python programming language
 - http://scikit-learn.org/stable/
 - https://github.com/scikit-learn/scikit-learn
- support many famous machine learning algorithm
 - classification, regression, clustering

Machine Learning Open Source

Different Competition Platform

What's Kaggle

- Kaggle is a platform that statisticians and data miners compete to produce the best models for predicting
 - https://www.kaggle.com/
- Datasets are uploaded by companies and users
- Google acquire Kaggle on 8 March 2017

What's "天池"

- ▶ Tianchi(天池) is chinese version of kaggle
 - https://tianchi.aliyun.com/index.htm?spm=5176.100066.5610778.10.5198 d780qaVmpq
- A data platform hosted by Alibaba Cloud

