

Robin Petit

Année académique 2017-2018

Contents

1	Tra	nsformation de Fourier	2
	1.1	Définitions	2
	1.2	Formule d'inversion	5
	1.3	Discussion sur la définition de la transformée	8
	1.4	Extension de la transformée à $L^1 \cap L^2$	8
	1.5	Exemple d'application de la théorie de Fourier	10
2	Espaces de Hilbert		
	2.1	Orthogonalité	14
	2.2	Systèmes orthonormaux	17
	2.3	Applications linéaires entre espaces vectoriels normés	23
3	Équ	nations aux dérivées partielles et théorie des distributions	30
	3.1^{-}	Rappels	30
		3.1.1 Normes et matrices	
	3.2	Problème de Cauchy pour les EDPs	31

Chapter 1

Transformation de Fourier

1.1 Définitions

On considère \mathbb{R}^n à n fixé en tant qu'espace de mesure $(\mathbb{R}^n, \mathcal{M}, \lambda)$ avec \mathcal{M} la famille des ensembles Lebesgue-mesurables et λ la mesure de Lebesgue sur \mathbb{R}^n .

Définition 1.1. Pour $u \in L^1(\mathbb{R}^n)$, on définit sa transformée de Fourier par :

$$\hat{u}: \mathbb{R}^n \to \mathbb{R}: \xi \mapsto \int e^{-i\langle x,\xi \rangle} u(x) \, \mathrm{d}x.$$
 (1.1)

Cette fonction est bien définie car $x \mapsto e^{-i\langle x,\xi \rangle}$ est bornée en module (et donc L^{∞}), et u est intégrable, donc $x \mapsto e^{-i\langle x,\xi \rangle}u(x)$ est intégrable par Hölder.

Proposition 1.2. Pour $u \in L^1(\mathbb{R}^n)$, \hat{u} est continue.

Proof. Soient $\xi_0 \in \mathbb{R}^n$ et $(h_k)_{k \in \mathbb{N}} \subset \mathbb{R}^n$ t.q. $h_k \xrightarrow[k \to +\infty]{} 0$.

$$\hat{f}(\xi_0 + h_k) = \int e^{-i\langle x, \xi_0 \rangle} e^{-i\langle x, h_k \rangle} f(x) \, \mathrm{d}x.$$

Puisque $\left|e^{-i\langle x,\xi_0\rangle}e^{-i\langle x,h_k\rangle}f(x)\right| = \left|f(x)\right|$ et $e^{-i\langle\cdot,\xi_0\rangle}e^{-i\langle\cdot,h_k\rangle}f(\cdot)$ $\xrightarrow[k\to+\infty]{\lambda\text{-p.p.}} e^{-i\langle\cdot,\xi_0\rangle}f(\cdot)$ (la suite converge même partout). Donc par le théorème de la convergence dominée :

$$\hat{f}(\xi_0 + h_k) \xrightarrow[k \to +\infty]{} \int e^{-i\langle x, \xi_0 \rangle} f(x) dx = \hat{f}(\xi_0).$$

Proposition 1.3. Soit $u \in L^1(\mathbb{R}^n)$. Si $\forall j \in [[1, n]] : x_j f \in L^1$, alors : $\hat{u} \in C^1$ et :

$$\forall j \in [[1, n]] : \frac{\partial \hat{u}}{\partial \xi_j} \Big|_{\xi} = \int e^{-i\langle x, \xi \rangle} (-ix_j) u(x) \, \mathrm{d}x. \tag{1.2}$$

Proof. Soit $(h_k)_{k\in\mathbb{N}}\subset\mathbb{R}$ t.q. $h_k\xrightarrow[k\to+\infty]{}0$, et prenons $\{e_j\}_{j=1}^n$ la base canonique de \mathbb{R}^n .

$$\frac{\hat{u}(\xi + h_k e_j) - \hat{u}(\xi)}{h_k} = \int e^{-i\langle x, \xi \rangle} \underbrace{\frac{e^{-ih_k x_j} - 1}{h_k}}_{h_k \to +\infty} u(x) \, \mathrm{d}x.$$

En module:

$$\left| e^{-i\langle x,\xi\rangle} \frac{e^{-ih_k x_j} - 1}{h_k} f(x) \right| = \left| e^{-i\langle x,\xi\rangle} \right| \left| \frac{e^{-ih_k x_j} - 1}{h_k} \right| \left| f(x) \right| \le C |x_j| |f(x)|,$$

qui est intégrable par hypothèse.

En effet, si $x_j = 0$, alors tout est nul et l'inégalité devient une égalité ; et si $x_j \neq 0$, alors $\frac{\left|e^{-ih_k x_j}-1\right|}{\left|x_j h_k\right|}$ est borné.

Dès lors, par le théorème de convergence dominée, la limite passe sous l'intégrale et on a (1.2).

Corollaire 1.4. Pour $m \in \mathbb{N}^*$, si $(1+|x|)^m u \in L^1$, alors $u \in C^m$ et on peut dériver m fois sous le signe:

$$\partial^{\alpha} \hat{u}(\xi) = \int e^{-i\langle x,\xi\rangle} (-i)^{|\alpha|} x^{\alpha} u(x) \, \mathrm{d}x$$

Proof. Exercice (récurrence sur m).

Définition 1.5. On définit l'ensemble de Schwartz :

$$S(\mathbb{R}^n) := \left\{ u \in C^{\infty}(\mathbb{R}^n) \text{ t.q. } \forall \alpha, \beta \in \mathbb{N}^n : x^{\alpha} \partial^{\beta} u \text{ est born\'e dans } \mathbb{R}^n \right\}$$
$$= \left\{ u \in C^{\infty}(\mathbb{R}^n) \text{ t.q. } \forall \alpha, \beta \in \mathbb{N}^n : x^{\alpha} \partial^{\beta} u \in L^{\infty}(\mathbb{R}^n) \right\}.$$
(1.3)

Dans l'idée, S est l'ensemble dont toutes les dérivées décroissent plus vite vers 0 que tout polynôme.

Proposition 1.6. $\mathcal{S}(\mathbb{R}^n)$ est un \mathbb{R} -espace vectoriel.

Proof. Immédiat par le fait que $C^{\infty}(\mathbb{R}^n)$ et $L^{\infty}(\mathbb{R}^n)$ sont des \mathbb{R} -evs.

Proposition 1.7. Si $C_0^{\infty}(\mathbb{R}^n) = C_c^{\infty}(\mathbb{R}^n)$ désigne l'ensemble des fonctions C^{∞} à support compact, alors :

$$C_0^{\infty}(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n) \subseteq \bigcap_{1 \le p \le +\infty} L^p(\mathbb{R}^n).$$

Proof.

(i) Pour $u \in \mathcal{S}$ et $+\infty > p \ge 1$:

$$\int |u|^p dx = \int \left(\underbrace{|u|(1+|x|)^N}_{\text{borné pour tout }N}\right)^p (1+|x|)^{-Np} dx \le \int (C_N)^p \underbrace{(1+|x|)^{-Np}}_{\text{intégrable pour }Np > n} dx.$$

Dès lors, pour N suffisamment grand (Np > n), on a $\int |u| dx \le c^{\text{ste}}$

Le cas $p = +\infty$ vient uniquement du fait que pour $u \in \mathcal{S}$, pour $\alpha = \beta = (0, \dots, 0) \in \mathbb{N}^n$:

$$u = x^{\alpha} \partial^{\beta} u \in L^{\infty}.$$

(ii) Soit $u \in C_0^\infty(\mathbb{R}^n)$. Pour $\alpha, \beta \in \mathbb{N}^n$: $x^\alpha \partial^\beta u \neq 0 \subseteq \operatorname{supp} u$ compact. Par Heine-Cantor, u est uniformément continue sur supp u.

Proposition 1.8. Pour $u \in \mathcal{S}$ et $\alpha, \beta \in \mathbb{N}^n$, alors : $x^{\alpha} \partial^{\beta} u \in \mathcal{S}$.

Proof. Soient $\lambda, \mu \in \mathbb{N}^n$. Par Leibniz :

$$\partial^{\mu}(fg) = \sum_{\sigma < \mu} \binom{\mu}{\sigma} \partial^{\sigma} f \partial^{\mu - \sigma} g.$$

Donc:

$$x^{\lambda}\partial^{\mu}(x^{\alpha}\partial^{\beta}u) = \sum_{\sigma \leq \mu} \binom{\mu}{\sigma} x^{\lambda}\partial^{\sigma}(x^{\alpha})\partial^{\mu-\sigma}u,$$

où $x^{\lambda}\partial^{\sigma}(x^{\alpha}) \leq c^{\text{ste}}x^{\gamma}$. On en déduit que $x^{\lambda}\partial^{\mu}(x^{\alpha}\partial^{\beta}u)$ est une somme finie de termes essentiellement bornés et est donc essentiellement bornée.

À défaut de définir une topologie sur $\mathcal{S}(\mathbb{R}^n)$, on définit uniquement une notion de convergence.

Définition 1.9. Soit $(u_k)_{k\in\mathbb{N}}\in\mathcal{S}^{\mathbb{N}}$, $u\in\mathcal{S}$, on dit que u_k converge vers u lorsque $k\to+\infty$ (noté $u_k\xrightarrow[k\to+\infty]{\mathcal{S}}$ u) lorsque:

$$\forall \alpha, \beta \in \mathbb{N}^n : \sup_{x \in \mathbb{R}^n} \left| x^{\alpha} \partial^{\beta} (u - u_k) \right| \xrightarrow[k \to +\infty]{} 0. \tag{1.4}$$

Théorème 1.10. Soit $u \in S$. Alors :

1. $\hat{u} \in \mathcal{S}$. De plus si $u_k \xrightarrow[k \to +\infty]{\mathcal{S}} u$, alors $\hat{u_k} \xrightarrow[k \to +\infty]{\mathcal{S}} \hat{u}$.

2.
$$\widehat{D_j u}(\xi) = \xi_j \hat{u}(\xi)$$
 (de plus $\widehat{x_j u} = D_j \hat{u}$).

Proof. Pour le premier point, on calcule :

$$D_{\xi}^{\alpha}\hat{u}(\xi) = \int D_{\xi}^{\alpha}(e^{-i\langle x,\xi\rangle})u(x) dx = \int e^{-i\langle x,\xi\rangle}(-x)^{\alpha}u(x) dx.$$

Donc:

$$\xi^{\beta} D_{\xi}^{\alpha} \hat{u}(\xi) = \int \xi^{\beta} e^{-i\langle x,\xi\rangle} (-x)^{\alpha} u(x) \, \mathrm{d}x = \int (-D_x)^{\beta} (e^{-i\langle x,\xi\rangle}) (-x)^{\alpha} u(x) \, \mathrm{d}x = \int e^{-i\langle x,\xi\rangle} D_x^{\beta} \left((-x)^{\alpha} u(x) \right) \, \mathrm{d}x.$$

Pour montrer cette dernière égalité, intégrons par partie. D'abord observons pour $\phi \in \mathcal{S}$ et $j \in [[1, n]]$:

$$\int \partial_j \phi \, \mathrm{d}x = \int \dots \int \left(\int \partial_j \phi \, \mathrm{d}x_j \right) \mathrm{d}x_1 \dots \mathrm{d}x_{j-1} \, \mathrm{d}x_{j+1} \dots \mathrm{d}x_n.$$

Or:

$$\int \partial_j \phi \, \mathrm{d}x_j = \lim_{N \to +\infty} \int_{-N}^N \partial_j \phi(x) \, \mathrm{d}x_j = \lim_{N \to +\infty} \left(\underbrace{\phi(x_1, \dots, x_{j-1}, N, x_{j+1}, \dots, x_n)}_{N \to +\infty} - \underbrace{\phi(x_1, \dots, x_{j-1}, N, x_{j+1}, \dots, x_n)}_{N \to +\infty} \right) = 0,$$

puisque $\phi \in \mathcal{S}$.

On en déduit donc que $\int \partial_i \phi \, \mathrm{d}x = 0$.

Dès lors, puisque $e^{-i\langle x,\xi\rangle}(-x)^{\alpha}u(x)\in\mathcal{S}$ et par récurrence :

$$\int (-D_x)^{\beta} (e^{-i\langle x,\xi\rangle}) (-x)^{\alpha} u(x) \, \mathrm{d}x = \int e^{-i\langle x,\xi\rangle} D_x^{\beta} \left((-x)^{\alpha} u(x) \right) \, \mathrm{d}x.$$

Montrons alors que $\forall N \in \mathbb{N}: \exists C_N \geq 0$ t.q. $\left|D_x^\beta((-x)^\alpha u(x))\right| \leq C_N(1+|x|)^{-N}$. Par Leibniz :

$$(1+|x|)^N \partial^{\beta}(x^{\alpha}u(x)) = (1+|x|)^N \sum_{\gamma < \beta} {\beta \choose \gamma} \partial^{\gamma} x^{\alpha} \partial^{\beta-\gamma} u(x)$$

est borné car $u \in \mathcal{S}$. Dès lors :

$$\left| \xi^{\beta} D_{\xi}^{\alpha} \hat{u}(x) \right| \le C_N \int (1+|x|)^{-N} dx.$$

Pour N suffisamment grand (N>n), on a $\left|\xi^{\beta}D_{\xi}^{\alpha}\hat{u}(x)\right|\leq \mathrm{c}^{\mathrm{ste}}.$

Dès lors, on trouve :

$$\left| \xi^{\beta} D_{\xi}^{\alpha} \hat{u}(x) \right| \leq \sup_{x \in \mathbb{R}^n} (1 + |x|)^{-N} \left| D_x^{\beta} ((-x)^{\alpha} (u - u_k)) \right| \xrightarrow[k \to +\infty]{} 0.$$

On en déduit donc $\hat{u_k} \xrightarrow[k \to +\infty]{\mathcal{S}} \hat{u}$.

Pour le second point, la seconde formule découle directement du premier pour $\alpha = e_j$:

$$D_j \hat{u}(\xi) = \int e^{-i\langle x,\xi\rangle} (-x_j) u(x) \, \mathrm{d}x = \widehat{x_j u}(\xi).$$

La première égalité se démontre par :

$$\widehat{D_j u}(\xi) = \int e^{-i\langle x, \xi \rangle} D_j u(x) \, \mathrm{d}x = -\int D_{x,j} \left(e^{-i\langle x, \xi \rangle} \right) u(x) \, \mathrm{d}x = \xi_j \int e^{-i\langle x, \xi \rangle} u(x) \, \mathrm{d}x = \xi_j \widehat{u}(\xi).$$

1.2 Formule d'inversion

Théorème 1.11. Soit $u \in S$. Alors :

$$u(x) = (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} \hat{u}(\xi) \,\mathrm{d}\xi. \tag{1.5}$$

La fonction $(y,\xi) \mapsto e^{i\langle x,\xi\rangle} e^{-i\langle y,\xi\rangle} u(y)$ n'est pas intégrable pour (y,ξ) . On ne va donc pas pouvoir appliquer Fubini.

Proof. Pour $\chi \in \mathcal{S}$, $(y,\xi) \mapsto e^{-i\langle y,\xi \rangle} e^{i\langle x,\xi \rangle} \chi(\xi) u(y)$ est intégrable. Donc par Fubini :

$$\int e^{i\langle x,\xi\rangle} \chi(\xi) \hat{u}(\xi) \,\mathrm{d}\xi = \int e^{i\langle x,\xi\rangle} \chi(\xi) \int e^{-i\langle y,\xi\rangle} u(y) \,\mathrm{d}y \,\mathrm{d}\xi = \int u(y) \int e^{-i\langle y-x,\xi\rangle} \chi(\xi) \,\mathrm{d}\xi \,\mathrm{d}y = \int u(y) \hat{\chi}(y-x) \,\mathrm{d}y.$$

Pour $\psi \in \mathcal{S}$, $\delta > 0$ tels que $\chi(\xi) = \psi(\delta \xi)$:

$$\hat{\chi}(\xi) = \int e^{-i\langle y,\xi\rangle} \psi(\delta\xi) \,d\xi = \delta^{-n} \hat{\psi}(\xi/\delta).$$

Alors:

$$\int e^{i\langle x,\xi\rangle} \psi(\delta\xi) \hat{u}(\xi) \,\mathrm{d}\xi = \int u(x+y) \delta^{-n} \psi(y/\delta) \,\mathrm{d}y = \int u(x+\delta y) \hat{\psi}(y) \,\mathrm{d}y.$$

Par le théorème de convergence dominée :

$$\int u(x+\delta y)\hat{\psi}(y)\,\mathrm{d}y \xrightarrow[\delta\to+\infty]{} u(x)\int \hat{\psi}(y)\,\mathrm{d}y,$$

or:

$$\int e^{i\langle x,\xi\rangle} \psi(\delta\xi) \hat{u}(\xi) d\xi \xrightarrow[\delta \to +\infty]{} \psi(0) \int e^{i\langle x,\xi\rangle} \hat{u}(\xi) d\xi.$$

Par unicité de la limite, si $\int \hat{\psi} dy \neq 0$:

$$u(x) = \frac{\psi(0)}{\int \hat{\psi}(y) \, \mathrm{d}y} \int e^{i\langle x,\xi \rangle} \hat{u}(\xi) \, \mathrm{d}\xi$$

Dans le cas n=1, on prend $\psi_1: x\mapsto e^{-x^2/2}$. En intégrant $z\mapsto e^{-z^2/2}$ sur un chemin rectangulaire $[a,b,c,d]\subset\mathbb{C}$, on trouve :

$$\int_{a}^{b} e^{-x^{2}/2} dx + \int_{b}^{c} e^{-z^{2}/2} dz + \int_{c}^{d} e^{-z^{2}/2} dz + \int_{d}^{a} e^{-z^{2}/2} dz = 0$$

par Cauchy. Pour $(a,b) \to (-\infty,+\infty)$, on trouve que $\int_b^c e^{-z^2/2}$ et $\int_d^a e^{-z^2/2}$ tendent vers 0. Donc à la limite :

$$\int_{a}^{b} e^{-x^{2}/2} dx = \int_{\Im z = t} e^{-z^{2}/2} dz = \int e^{(x^{2} - t^{2})/2} e^{-itx} dx.$$

Donc $\hat{\psi}(t) = \psi(t) \int \psi \, dx$. On en déduit :

$$\int \hat{\psi}(t) dt = \left(\int \psi(x) dx \right)^2 = \left(\int e^{-x^2/2} \right)^2 = 2\pi.$$

Dès lors $\psi(0)=1$ et $\int \hat{\psi} dx=2\pi$, qui donne bien la formule.

Dans le cas général n>1, on prend $\psi(x)=e^{-|x|^2/2}=\prod_{j=1}^n\psi_1(x_j).$ Donc :

$$\hat{\psi}(\xi) = \int e^{-i\langle x,\xi\rangle} \psi(x) \, \mathrm{d}x = \int e^{-i\langle x,\xi\rangle} \prod_{j=1}^n e^{-x_j^2/2} \, \mathrm{d}x = \int \prod_{j=1}^n e^{-ix_j\xi_j} \prod_{j=1}^n e^{-x_j^2/2} \, \mathrm{d}x = \int \prod_{j=1}^n \left(e^{-ix_j\xi_j} e^{-x_k^2/2} \right) \mathrm{d}x.$$

Par Fubini:

$$\hat{\psi}(\xi) = \prod_{j=1}^{n} \int e^{-ix_j \xi_j} e^{-x_j^2/2} dx = \prod_{j=1}^{n} \hat{\psi}_1(\xi_j).$$

On trouve alors:

$$\int \hat{\psi}(\xi) \, d\xi = \int \prod_{j=1}^{n} \hat{\psi}_{j}(\xi_{j}) \, d\xi = \prod_{j=1}^{n} \int \hat{\psi}_{1}(\xi_{j}) \, d\xi_{j} = (2\pi)^{-n},$$

où l'avant dernière égalité s'obtient en appliquant Fubini.

Puisque $\hat{\psi}(0) = 1$, on a bien (1.5).

On définit une application transformée de Fourier $\mathcal{F}: \mathcal{S} \to \mathcal{S}: u \mapsto \mathcal{F}u := \hat{u}$.

Proposition 1.12. \mathcal{F} est une bijection linéaire.

Proof. Par la formule d'inversion, \mathcal{F} est injective : si $\mathcal{F}u = 0$, alors u = 0.

De plus, \mathcal{F} est surjective. Pour $f \in \mathcal{S}$, montrons qu'il existe $u \in \mathcal{S}$ t.q. $\mathcal{F}u = f$. Prenons $u(x) = (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} f(\xi) \,\mathrm{d}\xi$. Alors :

$$\mathcal{F}f(x) = \int e^{-i\langle x,\xi\rangle} f(\xi) \,\mathrm{d}\xi = (2\pi)^n u(-x).$$

De plus:

$$\hat{u}(\xi) = \int e^{-i\langle x,\xi\rangle} \hat{u}(x) \, \mathrm{d}x = (2\pi)^n (2\pi)^{-n} \int e^{-i\langle x,\xi\rangle} \hat{u}(x) \, \mathrm{d}x = (2\pi)^n u(-\xi),$$

donc $\hat{f} = \hat{u}$ pour tout x, et puisque \mathcal{F} est injective, $f = \hat{u}$. Donc \mathcal{F} est surjective, et donc surjective.

La linéarité est triviale :

$$\mathcal{F}(f+\lambda g)(\xi) = \int e^{-i\langle x,\xi\rangle} (f+\lambda g)(x) \, \mathrm{d}x = \int e^{-i\langle x,\xi\rangle} f(x) \, \mathrm{d}x + \lambda \int e^{-i\langle x,\xi\rangle} g(x) \, \mathrm{d}x = \left(\hat{f}+\lambda \hat{g}\right)(\xi).$$

En posant $\tilde{\mathcal{F}}: \mathcal{S} \to \mathcal{S}: u \mapsto \tilde{\mathcal{F}}u$ où $\tilde{\mathcal{F}}u(x) = (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} u(\xi) \,\mathrm{d}\xi$. Par un raisonnement similaire à la Proposition précédente, on trouve $\tilde{\mathcal{F}}$ est une bijection linéaire. De plus $\mathcal{F}^{-1} = \tilde{\mathcal{F}}$.

De plus, puisque \mathcal{F} transforme des suites convergentes en suites convergentes sur \mathcal{S} , $\tilde{\mathcal{F}}$ fait de même.

Cela veut dire que \mathcal{F} est une homéomorphisme linéaire de \mathcal{S} dans \mathcal{S} pour la topologie non définie ici.

Proposition 1.13. Pour $u, v \in \mathcal{S}$:

- 1. $\int u\hat{v} = \int \hat{u}v$;
- 2. $\int u\overline{v} = (2\pi)^{-n} \int \hat{u}\hat{\overline{v}}$. Cette égalité est appelée identité de Parseval.

Proof. Le premier point se montre par la formule de la preuve du Théorème 1.11 pour $u, \chi \in \mathcal{S}$:

$$\int e^{i\langle x,\xi\rangle} \chi(\xi) \hat{u}(\xi) d\xi = \int u(x+y)\hat{\chi}(y) dy$$

en x = 0.

Le second point, prenons $u, w \in \mathcal{S}$ et posons $v := (2\pi)^{-n} \overline{\hat{w}}$. Par le premier point :

$$\int \hat{u}v = \int u\hat{v} = \int u(2\pi)^{-n} \hat{\overline{\hat{w}}}.$$

On peut voir que:

$$(2\pi)^{-n} \hat{\overline{w}}(\xi) = (2\pi)^{-n} \int e^{-i\langle x,\xi\rangle} \overline{\widehat{w}}(x) \, \mathrm{d}x = (2\pi)^{-n} \overline{\int e^{i\langle x,\xi\rangle} \widehat{w}(x) \, \mathrm{d}x} = \overline{w(\xi)}.$$

Dès lors :

$$\int \hat{u}(2\pi)^{-n}\overline{\hat{w}} = \int u\overline{w}.$$

Corollaire 1.14 (Formule de Plancherel). Pour $u \in \mathcal{S}$, on a:

$$\int |u|^2 dx = (2\pi)^{-n} \int |\hat{u}|^2 d\xi$$
 (1.6)

1.3 Discussion sur la définition de la transformée

On peut définir la transformée de Fourier de plusieurs manières, paramétrisé par $a,b \in \mathbb{R}$:

$$\mathcal{F}_{a,b}u(\xi) = a \int e^{-ib\langle x,\xi\rangle}u(x) dx.$$

La théorie reste la même à homothétie près puisque :

$$\mathcal{F}u(\xi) = \frac{1}{a} \mathcal{F}_{a,b} u(\xi/b).$$

$$(2\pi)^{-n} \int \hat{u}(\xi) \overline{\hat{v}}(\xi) d\xi = \frac{(2\pi)^{-n} b^n}{a^n} \int \mathcal{F}_{a,b} u(\eta) \overline{\mathcal{F}_{a,b} v(\eta)} d\eta.$$

Donc on peut choisir a=1 et $b=2\pi$ ou encore $a=(2\pi)^{n/2}$ et b=1 afin de simplifier la formule de Parseval qui devient :

$$\int u\overline{v} = \int \mathcal{F}u\overline{\mathcal{F}v}.$$

Cependant le choix a=b=1 permet de ne pas avoir de terme b^k lors des dérivations sous le signe intégral.

1.4 Extension de la transformée à $L^1 \cap L^2$

Proposition 1.15. Il existe une unique application linéaire continue $\mathbb{F}: L^2 \to L^2$ tel que $\mathbb{F} \Big|_{\mathcal{S}} = \mathcal{F}$ et :

$$\int u\overline{v} = (2\pi)^{-n} \int \mathbb{F}u\overline{\mathbb{F}v} \,\mathrm{d}\xi,$$

i.e. F préserve l'identité de Parseval.

Proof. Admettons que $C_0^{\infty}(\mathbb{R}^n)$ est dense dans $L^2(\mathbb{R}^n)$. Puisque $C_0^{\infty}(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n)$, on a $\mathcal{S}(\mathbb{R}^n)$ dense dans $L^2(\mathbb{R}^n)$. Par cette densité, pour $u \in \mathcal{S}$, il existe $(u_k)_{k \in \mathbb{N}} \in \mathcal{S}^{\mathbb{N}}$ tel que $u_k \xrightarrow[k \to +\infty]{L^2} u$, et donc (u_k) est de Cauchy pour cette norme. $(\hat{u_k})_{k \in \mathbb{N}}$ est également de Cauchy car :

$$\|\hat{u}_k - \hat{u}_m\| = (2\pi)^{n/2} \|u_k - u_m\|.$$

Par cette complétude, il existe $z \in \mathcal{S}$ t.q. $\hat{u_k} \xrightarrow[k \to +\infty]{L^2} z$. On pose alors $\mathbb{F}u \coloneqq z$. Montrons que z ne dépend pas de la suite $(\hat{u_k})$ choisie pour montrer que \mathbb{F} est bien définie.

Soit
$$(v_k)_{k\in\mathbb{N}}$$
 t.q. $v_k \xrightarrow[k\to+\infty]{L^2} z$. Alors $v_k - u_k \xrightarrow[k\to+\infty]{L^2} 0$. Par Plancherel, $\hat{v_k} - \hat{u_k} \xrightarrow[k\to+\infty]{L^2} 0$. Dès lors $\hat{v_k} \xrightarrow[k\to+\infty]{L^2} z$.

Montrons alors que \mathbb{F} est linéaire.

Soient $u, v \in L^2$. Soient $(u_k)_{k \in \mathbb{N}}, (v_k)_{k \in \mathbb{N}} \in \mathcal{S}^{\mathbb{N}}$ telles que $u_k \xrightarrow[k \to +\infty]{L^2} u$ et $v_k \xrightarrow[k \to +\infty]{L^2} v$. Alors $u_k + v_k \xrightarrow[k \to +\infty]{L^2} u + v$. Par linéarité de \mathcal{F} , $\hat{u_k} + \hat{v_k} = \widehat{u_k + v_k} \xrightarrow[k \to +\infty]{L^2} \mathbb{F}(u + v)$.

Donc $\hat{u_k} + \hat{v_k} \xrightarrow[k \to +\infty]{L^2} \mathbb{F}u + \mathbb{F}v$ et $\hat{u_k} + \hat{v_k} \xrightarrow[k \to +\infty]{L^2} \mathbb{F}(u+v)$. On en déduit $\mathbb{F}u + \mathbb{F}v = \mathbb{F}(u+v)$. Il est également trivial que pour $\lambda \in \mathbb{R} : \mathbb{F}(\lambda u) = \lambda \mathbb{F}u$.

Pour montrer que $\mathbb{F}\Big|_{\mathcal{S}} = \mathcal{F}$, prenons $u \in \mathcal{S}$, et la suite $(u_k)_{k \in \mathbb{N}}$ constante $u_k = u$. Par définition de \mathbb{F} , on a $\mathbb{F}u = \hat{u}$ car $\forall k \in [[1, n]] : \hat{u_k} = \hat{u}$, donc $\hat{u_k} \xrightarrow[k \to +\infty]{} \hat{u}$.

Montrons finalement que \mathbb{F} vérifie Parseval.

Premier cas : $u \in L^2$ et $v \in \mathcal{S}$. Il existe $\mathcal{S}^{\mathbb{N}} \ni (u_k)_{k \in \mathbb{N}} \xrightarrow[k \to +\infty]{L^2} u$. Donc :

$$\int u\overline{v} = \int u_k\overline{v} + \int (u - u_k)\overline{v}.$$

Puisque:

$$\left| \int (u - u_k) \overline{v} \right| \leq \underbrace{\|u - u_k\|_{L^2}}_{k \to +\infty} \|v\| \xrightarrow[k \to +\infty]{} 0,$$

on sait:

$$\int u_k \overline{v} \xrightarrow[k \to +\infty]{} \int u \overline{v}.$$

Or $u_k, v \in \mathcal{S}$. Donc pour $k \to +\infty$, par Cauchy-Schwarz et par Parseval pour \mathcal{F} :

$$\int u\overline{v} = \int u_k \overline{v} \xrightarrow[k \to +\infty]{L^2} (2\pi)^{-n} \int \mathbb{F}u\overline{\hat{v}}.$$

Dans le cas général $u, v \in L^2$, par le premier point pour $(v_k)_{k \in \mathbb{N}}$ t.q. $v_k \xrightarrow[k \to +\infty]{} v$:

$$\int u\overline{v_k} = (2\pi)^{-n} \int \mathbb{F}u\overline{\hat{v_k}}.$$

Or $v_k \xrightarrow[k \to +\infty]{L^2} \mathbb{F}v$. Par Cauchy-Schwarz, on a :

1.
$$\int u\overline{v_k} \xrightarrow[k\to+\infty]{L^2} \int u\overline{v}$$
;

2. et
$$\int \mathbb{F}u\overline{\hat{v_k}} \xrightarrow[k \to +\infty]{L^2} \int \mathbb{F}u\overline{\mathbb{F}v}$$
.

L'identité de Parseval est donc bien vérifiée pour $\mathbb F$. Il reste à vérifier que $\mathbb F$ est continue et qu'elle est unique.

La continuité découle de Parseval :

$$||u||_{L^2} = (2\pi)^{-n/2} ||\mathbb{F}u||_{L^2}$$
,

 $\text{donc pour } \varepsilon>0, \, \text{pour } \delta=(2\pi)^{-n/2}\varepsilon, \, \text{on a que si} \, \|u-v\|_{L^2}<\delta, \, \text{alors} \, \|\mathbb{F}u-\mathbb{F}v\|_{L^2}<\varepsilon.$

Si il existe $\mathbb{F}_1: L^2 \to L^2$ continue et linéaire telle que $\mathbb{F}_1 \Big|_{\mathcal{S}} = \mathcal{F}$, alors par densité, pour $u \in L^2$, il existe $(u_k)_{k \in \mathbb{N}} \in \mathcal{S}^{\mathbb{N}}$ t.q. $u_k \xrightarrow[k \to +\infty]{} u$, et donc, par continuité :

$$\underbrace{\mathbb{F}(u_k)}_{k \to +\infty} = \underbrace{\mathbb{F}_1(u_k)}_{k \to +\infty}.$$

Donc puisque deux application continues qui coïncident sur une sous-ensemble dense coïncident partout, on a bien que $\mathbb{F} = \mathbb{F}_1$.

De la même manière, $\tilde{\mathcal{F}}$ se prolonge sur L^2 en $\tilde{\mathbb{F}}$

Proposition 1.16. $\mathbb{F} \circ \tilde{\mathbb{F}} = \mathrm{Id}_{L^2} = \tilde{\mathbb{F}} \circ \mathbb{F}$.

Proof. Ceci vient directement de la même propriété sur \mathcal{F} et $\tilde{\mathbb{F}}$. Soit $u \in L^2$ et soit $\mathcal{S}^{\mathbb{N}} \ni (u_k)_{k \in \mathbb{N}} \xrightarrow[k \to +\infty]{L^2} u$. On sait :

$$S \ni \tilde{\mathcal{F}}(u_k) = \tilde{\mathbb{F}}(u_k) \xrightarrow[k \to +\infty]{L^2} \tilde{\mathbb{F}}(u)$$

par continuité de $\tilde{\mathbb{F}}$. Par continuité de \mathbb{F} , on a :

$$\mathcal{F} \circ \tilde{\mathcal{F}}(u_k) = \mathbb{F} \circ \tilde{\mathbb{F}}(u_k) \xrightarrow[k \to +\infty]{L^2} \mathbb{F} \circ \tilde{\mathbb{F}}(u).$$

Or $\mathcal{F} \circ \tilde{\mathcal{F}}(u_k) = u_k \xrightarrow[k \to +\infty]{L^2} u$. Par unicité de la limite, on a $\mathbb{F} \circ \tilde{\mathbb{F}}(u)$. L'autre égalité se démontre de la même manière.

À ce stade, il est légitime de se demander si les définitions que l'on a sur L^1 (la formule intégrale définie depuis S) et sur L^2 (la définition de \mathbb{F}) sont compatibles, i.e. si pour $u \in L^1 \cap L^2$ on a bien $\hat{u} = \mathbb{F}u$. Cette égalité tient bien (démonstration à venir).

1.5 Exemple d'application de la théorie de Fourier

Pour $\Delta = \sum_{j=1}^n \partial_j^2$ le Laplacien sur \mathbb{R}^n et $f \in \mathcal{S}$, soit la PDE suivante :

$$(1 + \sum_{j=1}^{n} D_j^2)u = u - \Delta u = f, \tag{1.7}$$

ou plus généralement, pour des $a_{\alpha} \in \mathbb{C}$:

$$\sum_{\substack{|\alpha| \le m \\ P(D) \text{ polynôme}}} a_{\alpha} D^{\alpha} \ u = f, \tag{1.8}$$

dans le cas du Laplacien, ce polynôme est $P(\xi) = 1 + |\xi|^2$.

Sous l'hypothèse $\inf_{\xi \in \mathbb{R}^n} |P(\xi)| \ge 0$, trouvons u t.q. P(D)u = f.

Formellement:

$$\widehat{P(D)u}(\xi) = \widehat{f}(\xi)$$

$$P(\xi)\widehat{u}(\xi) = \widehat{f}(\xi)$$

$$\widehat{u}(\xi) = \frac{\widehat{f}(\xi)}{P(\xi)}$$

$$u(x) = (2\pi)^{-n} \int e^{i\langle x,\xi\rangle} \frac{\widehat{f}(\xi)}{P(\xi)} d\xi.$$

Plus rigoureusement, puisque $f \in \mathcal{S}$, on sait $\hat{f} \in \mathcal{S}$. De plus, P est borné par dessous. Donc $\left|\hat{f}/P\right| \leq C_N(1+|\xi|)^{-N}$, et du coup la fonction sous l'intégrale $(\xi \mapsto e^{i\langle x,\xi\rangle}\frac{\hat{f}(\xi)}{P(\xi)})$ est L^1 , et cette intégrale est bien définie pour N > n.

De plus, puisque la dérivation selon x sur u fait juste descendre du ξ de l'exponentielle, par récurrence avec le théorème de convergence dominée et par la borne supérieure ci-dessus, on trouve que $u \in C^{\infty}(\mathbb{R}^n)$. On peut alors vérifier que la fonction u ainsi trouvée est bien une solution de (1.8):

$$\sum_{|\alpha| \le m} a_{\alpha} D^{\alpha} u = (2\pi)^{-n} \int e^{i\langle x, \xi \rangle} \underbrace{\sum_{|\alpha| \le m} a_{\alpha} \xi^{\alpha}}_{=P(\xi)} \frac{\hat{f}(\xi)}{P(\xi)} d\xi = (2\pi)^{-n} \int e^{i\langle x, \xi \rangle} \hat{f}(\xi) d\xi = f(x).$$

Chapter 2

Espaces de Hilbert

Définition 2.1. Soit H un \mathbb{C} -espace vectoriel. Un produit scalaire (forme hermitienne définie positive) sur H est une application $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ t.q. :

- (i) à $y \in \mathbb{C}$ fixé : $x \mapsto \langle x, y \rangle$ est une application linéaire de H dans \mathbb{C} ;
- (ii) pour $x, y \in \mathbb{C}$: $\langle x, y \rangle = \overline{\langle y, x \rangle}$;
- (iii) pour $x \in \mathbb{C}$: $\langle x, x \rangle \ge 0$ où $\langle x, x \rangle = 0 \iff x = 0$.

Sur un produit scalaire, on peut définir une norme $||x|| := \langle x, x \rangle^{1/2}$.

Remarque. Une forme hermitienne définie positive est donc anti-linéaire pour le 2e paramètre : $\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$.

Proposition 2.2. $\|\cdot\|: H \to \mathbb{R}^+$ est une norme.

Proposition 2.3. $\|\cdot\|$ vérifie Cauchy-Schwarz, i.e. :

$$\forall x, y \in H : |\langle x, y \rangle| \le ||x|| ||y||.$$

Proof. Soit $\alpha \in \mathbb{C}$ t.q. $|\alpha| = 1$ et $\alpha \langle y, x \rangle \in \mathbb{R}^+$ (i.e. $\alpha \langle y, x \rangle = |\langle x, y \rangle|$). Soit $r \in \mathbb{R}$.

$$\begin{split} 0 & \leq \langle x - r\alpha y, x - r\alpha y \rangle = \langle x, x \rangle - r\alpha \, \langle y, x \rangle - r\overline{\alpha} \, \langle x, y \rangle + r^2 \, \langle y, y \rangle \\ & = \langle x, x \rangle - r\underbrace{\alpha \, \langle y, x \rangle}_{=|\langle y, x \rangle|} - r\underbrace{\overline{\alpha} \, \langle x, y \rangle}_{=|\langle y, x \rangle|} + r^2 \underbrace{\alpha \overline{\alpha}}_{=|\alpha|=1} \, \langle y, y \rangle = A - 2Br + Cr^2, \end{split}$$

 $\text{pour } A = \langle x, x \rangle \in \mathbb{R}^+, \, B = \alpha \, \langle x, y \rangle = \left| \langle x, y \rangle \right| \in \mathbb{R}^+, \, C = \langle y, y \rangle \in \mathbb{R}^+.$

Si C=0, alors B=0, et donc $\langle y,x\rangle=0$ et Cauchy-Schwarz est vérifié.

Si $C \ngeq 0$, alors pour r = B/C: $0 \le A - 2Br + Cr^2 = \frac{AC - B^2}{C}$, donc $B^2 \le AC$, donc Cauchy-Schwarz est vérifié.

Proposition 2.4. $\|\cdot\|$ vérifie l'inégalité triangulaire, i.e. :

$$||x + y||^2 \le ||x||^2 + ||y||^2$$
.

$$Proof. \ \|x+y\|^2 = \langle x,x\rangle + \langle x,y\rangle + \langle y,x\rangle + \langle y,y\rangle \leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$$

On a donc $(H, \|\cdot\|)$ un e.v. normé, depuis lequel on peut alors définir une distance : $d(x, y) := \|x - y\|$.

Définition 2.5. Si H est complet pour d, on dit que H est un espace de Hilbert.

Quelques exemples d'espaces de Hilbert :

- (0) \mathbb{C}^n pour $\langle x, y \rangle \coloneqq \sum_{j=1}^n x_j \overline{y_j}$;
- (1) Pour $(\Omega, \mathcal{A}, \mu)$ un espace de mesure, $L^2(\Omega, \mathcal{A}, \mu)$ muni du produit scalaire $\langle f, g \rangle \coloneqq \int f \overline{g} \, \mathrm{d} \mu$;
- (2) Pour $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \#)$ comme espace de mesure, on a l'équivalent dénombrable de l'exemple (0):

$$\langle f, g \rangle_{\ell^2} \coloneqq \int f \overline{g} \, \mathrm{d} \# = \sum_{k > 1} f_k \overline{g_k}.$$

On note $\ell^2(\mathbb{N}) := L^2(\mathbb{N}, \mathcal{P}(\mathbb{N}), \#)$.

Un dernière exemple bien moins trivial : les espaces de Sobolev.

Définition 2.6. Soit $s \geq 0$ un paramètre, on définit l'espace de Sobolev d'ordre s sur \mathbb{R}^n par :

$$H^{s}(\mathbb{R}^{n}) := \left\{ u \in L^{2}(\mathbb{R}^{n}) \text{ t.q. } (2\pi)^{-n} \int |\mathbb{F}u(\xi)|^{2} (1+|\xi|)^{s} d\xi \leq +\infty \right\}.$$
 (2.1)

On y définit le produit scalaire suivante pour $u, v \in H^s(\mathbb{R}^n)$:

$$\langle u, v \rangle_s := (2\pi)^{-n} \int \mathbb{F}u\overline{\mathbb{F}v}(1+|\xi|)^s \,\mathrm{d}\xi.$$
 (2.2)

 $Remarque. \ \ \text{Remarquons que } u \in H^s \iff \xi \mapsto (1+|\xi|^2)^{s/2} \mathbb{F} u(\xi) \ \text{est dans } L^2.$

Proposition 2.7. $(u,v) \mapsto \langle u,v \rangle_s$ est un produit scalaire.

Proof. À v fixé, $u\mapsto \langle u,v\rangle_s$ est linéaire par linéarité de $\mathbb F$ et par linéarité de l'intégrale. Soient $u,v\in H^s$.

$$\langle u,v\rangle_s=(2\pi)^{-n}\int \mathbb{F} u\overline{\mathbb{F} v}\underbrace{(1+|\xi|)^s}_{\in\mathbb{P}^+}\mathrm{d}\xi=(2\pi)^{-n}\overline{\int \mathbb{F} v\overline{\mathbb{F} u}(1+|\xi|)^s\,\mathrm{d}\xi}=\overline{\langle v,u\rangle_s}.$$

Finalement, pour $u \in H^s$:

$$\langle u, u \rangle_s = (2\pi)^{-n} \int \underbrace{|\mathbb{F}u|^2}_{>0} \underbrace{(1+|\xi|)^s}_{>0} d\xi \ge 0,$$

et de plus, il est évident que $\langle u,u\rangle_s=0\iff u=0$ puisque $\hat{u}=0\iff u=0.$

Par linéarité de Fourier, $H^s(\mathbb{R}^n)$ est un espace vectoriel, et de plus il est normé par le produit scalaire défini ci-dessus. Montrons alors que c'est un espace ce Hilbert.

Soit $(u_k)_{k\in\mathbb{N}}\in H^s$ une suite de Cauchy. $(1+|\xi|^2)^{s/2}\mathbb{F}u_k$ est de Cauchy dans L^2 , qui est complet. Donc il en existe une limite $V\in L^2$ t.q. $(1+|\xi|^2)^{s/2}\mathbb{F}u_k\xrightarrow{L^2}V$. Il existe $u\in L^2$ t.q. $(1+|\xi|^2)^{s/2}\mathbb{F}u=V$ car $(1+|\xi|^2)^{-s/2}V\in L^2$, et \mathbb{F} est une bijection sur L^2 . De plus, $u\in H^s$ car $V=(1+|\xi|^2)^{s/2}\mathbb{F}u\in L^2$. Puisque $u_k\xrightarrow[k\to +\infty]{H^s}u$, on a que H^s est complet.

Pour un contre-exemple, on a $C_0^{\infty}(\mathbb{R}^n)$ muni du produit scalaire $\langle f,g \rangle \coloneqq \int f\overline{g} \,\mathrm{d}x$ n'est pas un Hilbert. En effet, pour $f \in L^2 \setminus C_0^{\infty}$, par densité de C_0^{∞} dans L^2 , $\exists (f_k)_{k \in \mathbb{N}} \in C_0^{\infty}$ t.q. $f_k \xrightarrow{L^2} f$. De plus, (f_k) est de Cauchy dans C_0^{∞} . Par l'absurde, si $\exists g \in C_0^{\infty}$ t.q. $f_k \xrightarrow{L^2} g$, par unicité de la limite, g = f, or $f \notin C_0^{\infty}$.

À partir d'ici, H désigne un espace de Hilbert quelconque.

Définition 2.8. Soit $y \in H$. On définit :

$$\begin{cases} f_1: x \mapsto \langle x, y \rangle \\ f_2: x \mapsto \langle y, x \rangle \\ f_3: x \mapsto ||x|| \end{cases}$$

Proposition 2.9. f_i est continue pour i = 1, 2, 3.

Proof. 1. $|f_1(x_1) - f_1(x_2)| = |\langle x_1 - x_2, y \rangle| \le ||x_1 - x_2|| ||y|| \xrightarrow[x_1 \to x_2]{} 0$. $(f_1 \text{ est même uniformément continue et Lipschitzienne}).$

- 2. Idem pour f_2 , à permutation près.
- 3. La continuité vient directement de $||x|| ||z||| \le ||x z||$.

Proposition 2.10. Pour $F \leq H$, $\overline{F} \leq H$.

Proof. Pour $x, y \in \overline{F}$, il existe $(x_k), (y_k) \in F^{\mathbb{N}}$ t.q. $x_k \xrightarrow[k \to +\infty]{} x$ et $y_k \xrightarrow[k \to +\infty]{} y$.

Donc
$$F \ni x_k + y_k \xrightarrow[k \to +\infty]{} x + y$$
. De plus, pour $\lambda \in \mathbb{C}$, $\underbrace{\lambda x_k}_{\in F} \xrightarrow[k \to +\infty]{} \lambda x \in \overline{F}$.

Remarque. Contrairement aux e.v. de dimension finie, en dimension infinie, il est possible d'avoir un sous-e.v. strict dense (e.g. C_0^{∞} dans L^2).

Proposition 2.11. $F := \{ f \in L^2 \ t.q. \ f = 0 \ sur \ x_n > 0 \}$ est un e.v. fermé dans L^2 .

Proof. Soit $g \in \overline{F}$. Il existe $(f_k)_{k \in \mathbb{N}} \in F^{\mathbb{N}}$ t.q. $f_k \xrightarrow[k \to +\infty]{L^2} g$. Pour $k \in \mathbb{N}$:

$$\int_{x_n > 0} |g|^2 dx = \int_{x_n > 0} |g - f_k|^2 dx \le |g - f_k|_{L^2}^2 \xrightarrow[k \to +\infty]{} 0$$

car $f_k \in F$ et $f_k \xrightarrow[k \to +\infty]{L^2} g$. Dès lors $\int_{x_n>0} |g|^2 dx = 0$, i.e. $g \in F$. Donc $\overline{F} = F$.

2.1 Orthogonalité

Définition 2.12. Pour $x, y \in H$, x et y sont orthogonaux, noté $x \perp y$ lorsque $\langle x, y \rangle = 0$.

Pour $x \in H$, on définit $x^{\perp} := \{y \in H \text{ t.q. } \langle x,y \rangle = 0\}$, et pour $M \subset H$, on définit $M^{\perp} := \{y \in H \text{ t.q. } \forall x \in M : \langle x,y \rangle = 0\} = \bigcap_{x \in M} x^{\perp}$.

Proposition 2.13. Pour $x \in H$, $x^{\perp} \leq H$, et x^{\perp} est fermé.

Proof. À $x \in H$ fixé, on remarque que $x^{\perp} = f_1^{-1}(\{0\})$, or f_2 est continue. Donc x^{\perp} est fermé. Vérifier que x^{\perp} est un sous-e.v. est trivial.

Corollaire 2.14. Pour $M \leq H$, M^{\perp} est un sous-e.v. fermé de H.

Ce résultat découle directement du fait que M^{\perp} est une intersection d'e.v. fermés.

Définition 2.15. $E \subseteq H$ est dit convexe lorsque $\forall x, y \in E : \forall t \in [0, 1] : (1 - t)x + ty \in E$.

Exemple 2.1.

- tout sous-e.v. de H est convexe;
- toute boule (ouverte ou fermée) dans H est convexe;
- pour $\Omega \subseteq \mathbb{R}^n, u \in L^2(\Omega), E = \{v \in L^2 \text{ t.q. } u = v \text{ sur } \Omega\}$ est convexe.

Montrons également que E est fermé dans L^2 . Soit $f \in \overline{E}$. Il existe $(f_k)_{k \in \mathbb{N}} \in E^{\mathbb{N}}$ t.q. $f_k \xrightarrow[k \to +\infty]{L^2} f$.

$$\int_{\Omega} |u - f|^2 dx = \int_{\Omega} |f_k - f| dx \le \int_{\mathbb{R}^n} |f_k - f|^2 dx \xrightarrow[k \to +\infty]{} 0.$$

Théorème 2.16. Soit $E \neq \emptyset$ convexe fermé dans H. Alors $\exists !x \in E \ t.q. \ ||x|| = \min_{z \in E} ||z|| = \inf_{z \in E} ||z|| = \delta$.

Proof. unicité : soient $x, y \in E$ t.q. $||x|| = ||y|| = \delta$. Par la formule du parallélogramme :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Par convexité de $E, \frac{1}{2}(x+y) \in E$. Donc $\left\| \frac{1}{2}(x+y) \right\| \ge \delta$. On trouve alors :

$$||x - y||^2 \le 2(||x||^2 + ||y||^2) - 4\delta^2 = 0.$$

On en déduit ||x - y|| = 0, i.e. x = y.

<u>existence</u>: Soit $(y_k)_{k\in\mathbb{N}}\in E^{\mathbb{N}}$ t.q. $||y_k||\xrightarrow[k\to+\infty]{}\delta$ qui existe par définition de l'infimum. Par la règle du parallélogramme:

$$||y_k - y_m||^2 \le 2(||y_k||^2 + ||y_m||^2) -4\delta^2 \xrightarrow[k,m\to+\infty]{} -4\delta^2 \xrightarrow[k,m\to+\infty]{} 0.$$

Donc (y_k) est de Cauchy. Par complétude de H, $\exists x_0 \in H$ t.q. $y_k \xrightarrow[k \to +\infty]{} x_0$, et par fermeture de E, $x_0 \in E$.

De plus, par continuité de la norme,
$$\|y_k\| \xrightarrow[k \to +\infty]{} \|x_0\|$$
, et par unicité de la limite, $\|x_0\| = \delta$.

Exemple 2.2. Si $\Omega \subseteq \mathbb{R}^n$ est un ouvert, $u \in L^2(\Omega)$, $E = \{v \in L^2 \text{ t.q. } u = v \text{ sur } \Omega\}$ est un convexe fermé, donc par ce théorème, il existe un unique $u^* \in E$ qui minimise la norme : $u^* = u \text{ sur } \Omega$ et $u^* = 0 \text{ sur } \mathbb{R}^n \setminus \Omega$.

Théorème 2.17 (Décomposition orthogonale). Soit $M \leq H$ fermé. Alors :

- 1. $\forall x \in H : \exists !(y,z) \in M \times M^{\perp} \ t.q. \ x = y + z ;$
- 2. ces valeurs y, z sont les points les plus proches de x dans M et M^{\perp} respectivement;
- 3. Les applications $P: x \mapsto y$ et $Q: x \mapsto z$ sont linéaires ;

- 4. $||x||^2 = ||Px||^2 + ||Qx||^2$ (et donc P, Q sont continues);
- 5. P et Q sont les projections orthogonales de x sur M et M^{\perp} respectivement.

Proof.

1. <u>unicité</u>: si $x = y_1 + z_1 = y_2 + z_2$, pour $y_1, y_2 \in M$ et $z_1, z_2 \in M^{\perp}$, on a $\underbrace{y_1 - y_2}_{\in M} = \underbrace{z_2 - z_1}_{\in M^{\perp}}$. Or $M \cap M^{\perp} = \{0\}$. Donc $y_1 = y_2$ et $z_1 = z_2$.

<u>existence</u>: x + M est convexe (trivial par le fait que $M \le H$). Montrons que x + M est fermé. Soit $u \in \overline{x + M}$. Il existe $(u_k)_{k \in \mathbb{N}} \in (x + M)^{\mathbb{N}}$ t.q. $u_k \xrightarrow[k \to +\infty]{} u$. $\forall k \in \mathbb{N} : x + M \ni u_k = x + y_k$. On en déduit $y_k \xrightarrow[k \to +\infty]{} u - x$. Par fermeture de M, on a $u - x \in M$, et donc $u \in x + M$ (i.e. x + M est fermé).

Soit $z \in x + M$ l'élément qui minimise la norme. On pose $y \coloneqq x - z \in M$. Montrons alors que $z \in x + M$. Soit $w \in M$; WLOG, supposons $\|w\| = 1$. Puisque $z \in x + M$, $\forall \alpha \in \mathbb{C} : z - \alpha w \in x + M$. Donc :

$$||z||^2 \le ||z - \alpha w||^2 = ||z||^2 - 2\Re\alpha \langle w, z \rangle + |\alpha|^2$$
.

 $0 = 2\Re\alpha \langle w, z \rangle - |\alpha|^2$. En particulier, pour $\alpha = \langle z, w \rangle$: $0 = ||\langle z, w \rangle||^2$, donc $\langle z, w \rangle = 0$. Dès lors $z \in M^{\perp}$.

2. Soit $Y \in M$. Montrons que $||x - Y|| \ge ||x - y|| = ||z||$. Par Pythagore :

$$||x - Y||^2 = ||y + z - Y||^2 = ||(y - Y) + z||^2 = ||y - Y||^2 + ||z||^2 \ge ||z||^2$$
.

Idem pour $Z \in M^{\perp} : ||x - Z|| \ge ||x - z|| = y$.

3. Soient $x_1, x_2 \in H$, $\alpha_1, \alpha_2 \in \mathbb{C}$. On a $\alpha_1 x_1 = \alpha_1 P x_1 + \alpha_1 Q x_1$, et $\alpha_2 x_2 = \alpha_2 P x_2 + \alpha_2 Q x_2$. Donc:

$$P(\alpha_1 x_1 + \alpha_2 x_2) + Q(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 P x_1 + \alpha_1 Q x_1 + \alpha_2 P x_2 + \alpha_2 Q x_2,$$

et donc:

$$\underbrace{P(\alpha_1 x_1 + \alpha_2 x_2) - \alpha_1 P x_1 - \alpha_2 p x_2}_{\in M} = \underbrace{\alpha_1 Q x_1 + \alpha_2 Q x_2 - Q(\alpha_1 x_1 + \alpha_2 x_2)}_{\in M^{\perp}}.$$

Or $M \cap M^{\perp} = \{0\}$, donc $P(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 P x_1 - \alpha_2 p x_2$, et $\alpha_1 Q x_1 + \alpha_2 Q x_2 = Q(\alpha_1 x_1 + \alpha_2 x_2)$.

4. Par Pythagore $||x||^2 = ||Px||^2 + ||Qx||^2$. Donc $||Px|| \le ||x||$ et $||Qx|| \le ||x||$, i.e. P et Q sont Lipschitziennes, donc en particulier continues.

Corollaire 2.18. Si $M \leq H$, avec $M \neq H$, il existe $y \in H \setminus \{0\}$ t.q. $y \perp M$.

Proof. Pour
$$x \in H \setminus M$$
, $x = Px + Qx$, où $Qx \neq 0$, et $Qx \perp M$.

Corollaire 2.19. Si $M \leq H$ est fermé, alors $M = M^{\perp}$.

Proof. La première inclusion est triviale : si $x \in M$, alors $x \perp M^{\perp}$.

La seconde inclusion se démontre comme suit : soit $x \in M^{\perp^{\perp}} \subseteq H$. x = y + z où $y \in M$ et $z \in M^{\perp}$. Or $0 = \langle x, z \rangle = \langle y + z, z \rangle = \langle y, z \rangle + \|z\|^2$, et $\langle y, z \rangle = 0$ par définition d'orthogonalité. Donc |z| = 0 et z = 0, i.e. $x = y \in M$.

Lemme 2.20 (Lemme de Riesz). Soit $L: H \to \mathbb{C}$, une forme linéaire continue. Alors $\exists ! y \in H \ t.q. \ L = \langle \cdot, y \rangle$.

Proof. <u>unicité</u>: pour $y_1, y_2 \in H$ t.q. $\forall x \in H : \langle x, y_1 \rangle = \langle x, y_2 \rangle$, on a $\langle x, y_1 - y_2 \rangle = 0$, donc $y_1 - y_2 \in H^{\perp} = \{0\}$, i.e. $y_1 = y_2$.

<u>existence</u>: si $L \equiv 0$, alors y = 0. Supposons alors que L n'est pas identiquement nulle. Ker $L \nleq H$ et est fermé par continuité de L. Dès lors, il existe $z \in H$, $z \neq 0$ t.q. $z \perp$ Ker L. WLOG, supposons ||z|| = 1. Posons $y := (\overline{Lz})z$ et u := (Lx)z - (Lz)x. Calculons:

$$Lu = (Lx)Lz - (Lz)Lx = 0,$$

donc $u \in \text{Ker } L$, et donc $0 = \langle u, z \rangle = (Lx) \langle z, z \rangle - (Lz) \langle x, z \rangle = Lx - (Lz) \langle x, z \rangle$. Dès lors, $Lx = (Lz) \langle x, z \rangle = \langle x, y \rangle$.

2.2 Systèmes orthonormaux

Définition 2.21. Pour V un e.v. et $S \subseteq V$, on note $\operatorname{Vect} S = \operatorname{Span} S$ l'e.v. engendré par S.

 $(e_{\alpha})_{\alpha \in A} \subset V$ est appelé orthonormal lorsque $\forall \alpha, \beta \in A : \langle e_{\alpha}, e_{\beta} \rangle = \delta_{\alpha, \beta}$.

Pour $x \in H$, on définit $\hat{x}(\alpha) := \langle x, e_{\alpha} \rangle$.

Les $\hat{x}(\alpha)$ sont les coefficients de Fourier relativement au système $(e_{\alpha})_{\alpha \in A}$.

Exemple 2.3. Sur $L^2(\mathbb{R}^n)$, les $(e_{\alpha})_{\alpha \in \mathbb{Z}}$ sont les $e_{\alpha} : [0, 2\pi) \to \mathbb{C} : t \mapsto \frac{e^{i\alpha t}}{\sqrt{2\pi}}$.

Théorème 2.22. Pour H un espace de Hilbert et $(e_{\alpha})_{\alpha \in A}$ un système orthonormal, $F \subset A$ fini, et $M_F := \text{Vect } \{e_{\alpha}\}_{\alpha \in F}$, on a:

1. $si \varphi : A \to \mathbb{C}$ est nulle $sur A \setminus F$, pour $y = \sum_{\alpha \in F} \varphi(\alpha) e_{\alpha}$, alors :

$$\forall \alpha \in A : \varphi(\alpha) = \hat{y}(\alpha).$$

De plus, $\|y\|^2 = \sum_{\alpha \in F} |\varphi(\alpha)|^2$.

2. Si $x \in H$, $s_F(x) := \sum_{\alpha \in F} \hat{x}(\alpha) e_{\alpha} \in M_F$. Si $s \in M_F \setminus \{s_F(x)\}$, alors:

$$||x - s_F(x)|| \leq ||x - s||.$$

De plus : $\sum_{\alpha \in F} |\hat{x}(\alpha)|^2 \le ||x||^2$ (inégalité de Bessel).

Proof.

1. $\hat{y}(\alpha) = \langle y, e_{\alpha} \rangle = \sum_{\beta \in F} \varphi(\beta) \langle e_{\beta}, e_{\alpha} \rangle = \varphi(\alpha)$ et :

$$\|y\|^{2} = \left\| \sum_{\beta \in F} \varphi(\beta) e_{\beta} \right\|^{2} \stackrel{\text{Pythagore}}{=} \sum_{\beta \in F} |\varphi(\beta)|^{2} \|e_{\beta}\|^{2} = \sum_{\beta \in F} |\varphi(\beta)|^{2}.$$

2. Soit $s \in M_F$. $\forall \alpha \in F : x - s_F(x) \perp e_\alpha$ et $x - s_F(x) \perp s_F(x) - s \in M_F$. En effet :

$$\langle x - s_F(x), e_\alpha \rangle = \langle x, e_\alpha \rangle - \langle s_F(x), e_\alpha \rangle = \hat{x}(\alpha) - \hat{x}(\alpha) = 0.$$

Dès lors:

$$x - s = (x - s_F(x)) + (s_F(x) - s),$$

et donc, par Pythagore:

$$||x - s||^2 = ||x - s_F(x)||^2 + ||s_F(x) - s||^2.$$
 (2.3)

Cette norme est minimisée (strictement) en $s = s_F(x)$ et donc :

$$||x - s_F(x)|| \leq ||x - s||$$

si $s \neq s_F(x)$. Ensuite :

$$||s_F(x)||^2 \le ||s_F(x)||^2 + ||x - s_F(x)||^2$$
.

Par l'équation 2.3 : si s = 0 :

$$||s_F(x)||^2 \le ||s_F(x)||^2 \le ||s_F(x)||^2 + ||x - s_F(x)||^2 = ||x||^2$$
.

Or:

$$||s_F(x)||^2 = \sum_{\alpha \in F} |\hat{x}(\alpha)|^2$$
.

Dès lors $||s_F(x)||^2 \le ||x||^2$.

Remarque. Sur A, on a un espace mesuré canonique : $(A, \mathcal{P}(A), \#)$ pour lequel on adopte les notations :

$$\forall B \in \mathcal{P}(A) : \int_{B} \varphi \, d\# =: \sum_{\alpha \in B} \varphi(\alpha).$$

Remarquons également que par définition de l'intégrale, si $\varphi:A\to [0,+\infty]$:

$$\sum_{\alpha \in A} \varphi(\alpha) = \sup_{\substack{B \subset A \\ |B| \leq +\infty}} \sum_{\alpha \in B} \varphi(\alpha).$$

Et si $\varphi \in \ell^1(A)$ et $\varphi \geq 0$, alors pour $A_k = \{\varphi \geq k^{-1}\}$ $(k \geq 1)$, on a $|A_k| \not \leq +\infty$ puisque $\varphi \in \ell^1(A)$. Or $\bigcup_{k \geq 1} A_k = \{\varphi \not \geq 0\}$, et donc $\{\varphi \neq 0\}$ est au plus dénombrable.

Dans le cas général, pour $\varphi:A\to\mathbb{C}$, alors $(\Re\varphi)^{\pm}$ et $(\Im\varphi)^{\pm}$ sont non-nulles sur un ensemble au plus dénombrable, et donc $\{\varphi\neq0\}$ est au plus dénombrable.

Lemme 2.23. Pour $(\Omega, \mathcal{F}, \mu)$ un espace mesuré, l'ensemble des fonctions simples mesurables nulles hors d'un ensemble de mesure finie est dense dans $L^p(\Omega, \mathcal{F}, \mu)$ pour $p \in [1, +\infty)$.

Lemme 2.24. Soient X un espace métrique complet, Y un espace métrique, et $X_0 \subset X$, un sous-ensemble dense. Si $f \in C^0(X,Y)$ telle que $f\Big|_{X_0}$ une isométrie et $f(X_0)$ est dense dans Y, alors f est surjective et est une isométrie.

Proof. Fixons $x, y \in X$. Il existe $(x_k)_{k \geq 0}, (y_k)_{k \geq 0} \in X_0^{\mathbb{N}}$ telles que $x_k \xrightarrow[k \to +\infty]{} x$ et $y_k \xrightarrow[k \to +\infty]{} y$. Pour $k \geq 0$:

$$d(x_k, y_k) \xrightarrow[k \to +\infty]{} d(x, y)$$

car la distance est continue sur un espace métrique. De plus :

$$d(x_k, y_k) = d\left(f(x_k), f(y_k)\right) \xrightarrow[k \to +\infty]{} d\left(f(x), f(y)\right),$$

à nouveau par continuité de la métrique, et par continuité de f. Donc par unicité de la limite, on a d(x,y) = d(f(x), f(y)), et donc f est une isométrie.

Il reste à montrer que f est surjective. Soit $y \in Y$. $f(X_0)$ est dense dans Y, et donc par continuité de f, on sait : $\exists (x_k)_{k \geq 0} \in X_0^{\mathbb{N}}$ telle que $f(x_k) \xrightarrow[k \to +\infty]{} y$. $(f(x_k))_k$ est de Cauchy dans Y, et puisque f est une isométrie, $(x_k)_k$ est de Cauchy dans X. Par complétude, on sait que $\exists x \in X$ t.q. $x_k \xrightarrow[k \to +\infty]{} x$.

Finalement, par continuité de $f: f(x_k) \xrightarrow[k \to +\infty]{} f(x)$, et par construction $f(x_k) \xrightarrow[k \to +\infty]{} y$. Par unicité de la limite dans les espaces métriques, on a f(x) = y, et donc y admet une préimage par f.

Théorème 2.25. Soit $(e_{\alpha})_{\alpha \in A}$, un système orthonormal dans H. Soit $P = \text{Span}\{e_{\alpha}\}_{\alpha \in A}$. Alors :

- 1. $\forall x \in H : \sum_{\alpha \in A} |\hat{x}(\alpha)|^2 \le ||x||^2$ (inégalité de Bessel généralisée);
- 2. $f: H \to \ell^2(A): x \mapsto \hat{x}$ est linéaire, continue, et surjective ;
- 3. $f\Big|_{\overline{P}}$ est une isométrie surjective $\overline{P} \to \ell^2(A)$.

Proof.

1. Pour tout $F \subset A$ fini, on a :

$$\sum_{\alpha \in F} \left| \hat{x}(\alpha) \right|^2 \le \|x\|^2.$$

Or par la remarque précédente :

$$\sum_{\alpha \in A} \left| \hat{x}(\alpha) \right|^2 = \sup_{\substack{B \subset A \\ |B| \leq +\infty}} \sum_{\alpha \in B} \left| \hat{x}(\alpha) \right|^2 \leq \|x\|^2$$

par passage au supremum (à la limite) et par l'inégalité de Bessel finie.

2. Soit $x \in H$. Puisque $||x||^2 \nleq +\infty$, par l'inégalité de Bessel, on sait $\sum_{\alpha \in A} |\hat{x}(\alpha)|^2 \nleq +\infty$, i.e. $\hat{x} \in \ell^2(A)$. f est linéaire par linéarité de $x \mapsto \langle x, e_\alpha \rangle$ pour tout $\alpha \in A$. f est continue car Lipschitzienne :

$$||f(x) - f(y)||_{\ell^2(A)}^2 = \sum_{\alpha \in A} |\widehat{x - y}(\alpha)|^2 \le ||x - y||_H^2.$$

La surjectivité vient du point 3 : si $f\Big|_{\overline{P}}$ est surjective, alors en particulier f est surjective.

3. Pour $X = \overline{P}$, $X_0 = P$, $Y = \ell^2(A)$, remarquons que :

$$\underbrace{\left\{\chi\in\ell^2(A)\text{ t.q. }\chi(\alpha)=0\text{ si }\alpha\not\in F\subset A\text{ fini }\right\}}_{\text{dense dans }\ell^2(A)}\subset f(P).$$

De plus $f\Big|_P$ est une isométrie. En effet, pour $x \in P$, on sait qu'il existe $F \subset A$ fini et $\lambda_\alpha \in \mathbb{C}$ $(\alpha \in F)$ tels que $x = \sum_{\alpha \in F} \lambda_\alpha e_\alpha$. Dès lors :

$$||f(x)||_{\ell^{2}(A)}^{2} = ||x||_{\ell^{2}(A)}^{2} = \sum_{\alpha \in A} |\hat{x}(\alpha)|^{2} = \sum_{\alpha \in F} |\hat{x}(\alpha)|^{2} = \sum_{\alpha \in A} \left| \sum_{\beta \in F} \lambda_{\beta} \left\langle e_{\beta}, e_{\alpha} \right\rangle \right|^{2} = \sum_{\alpha \in F} |\lambda_{\alpha}|^{2},$$

et:

$$\|x\|_{H}^{2} = \langle x, x \rangle_{H} = \left\langle \sum_{\alpha \in F} \lambda_{\alpha} e_{\alpha}, \sum_{\beta \in F} \lambda_{\beta} e_{\beta} \right\rangle = \sum_{\alpha \in F} \sum_{\beta \in F} \lambda_{\alpha} \overline{\lambda_{\beta}} \left\langle e_{\alpha}, e_{\beta} \right\rangle = \sum_{\alpha \in F} |\lambda_{\alpha}|^{2}.$$

Finalement, puisque \overline{P} est complet (car sous-ensemble fermé de H), on peut ensuite appliquer le lemme 2.24 qui affirme que $f|_{\overline{D}}$ est une isométrie surjective sur Y.

Définition 2.26. Un système orthonormal maximal (SOM) est un système orthonormal qui est maximal au sens de l'inclusion.

Théorème 2.27. Soit $(e_{\alpha})_{\alpha \in A}$ un système orthonormal dans H. Alors les conditions suivantes sont équivalentes :

- 1. $(e_{\alpha})_{\alpha}$ est un SOM.
- 2. $M := \operatorname{Span}\{e_{\alpha}\}_{\alpha}$ est dense dans H.
- 3. $\forall x \in H : \sum_{\alpha \in A} |\hat{x}(\alpha)|^2 = ||x||^2$.
- 4. $\forall x, y \in H : \sum_{\alpha \in A} \hat{x}(\alpha) \overline{\hat{y}(\alpha)} = \langle x, y \rangle$ (Identité de Parseval).
- 5. $\forall x \in H : \forall \varepsilon > 0 : \exists A_0 \subset A \text{ fini tel que } \forall A_1 \supset A_0 : \text{si } A_1 \text{ est fini, alors } \left\| x \sum_{\alpha \in A_1} \hat{x}(\alpha) e_\alpha \right\| \leq \varepsilon.$

Proof.

- $1\Rightarrow 2$ Par l'absurde, supposons que $M\subsetneq A$. Alors il existe $y\in A\setminus\{0\}$ tel que $y\perp M$ et donc le système n'est pas maximal car on peut lui ajouter $\frac{y}{\|y\|_H}$.
- $2 \Rightarrow 3$ Par le Théorème 2.25 (point 3), on sait que $\overline{M} \to \ell^2(A) : x \mapsto \hat{x}$ est une isométrie, ce qui revient à dire que si $x \in \overline{M}$, alors l'inégalité de Bessel est une égalité, i.e. :

$$||x||^2 = \sum_{\alpha \in A} |\hat{x}(\alpha)|^2.$$

 $3\Rightarrow 4$ On veut montrer que $\|\hat{\cdot}\|_{\ell^2(A)} = \|\cdot\|_H \Rightarrow \langle \hat{\cdot}, \hat{\cdot} \rangle_{\ell^2(A)} = \langle \cdot, \cdot \rangle_H$. Dans \mathcal{H} , un espace de Hilbert quelconque (e.g. $\mathcal{H} = H$ ou $\mathcal{H} = \ell^2(A)$), on a :

$$4\left\langle x,y\right\rangle _{\mathcal{H}}=\left\Vert x+y\right\Vert _{\mathcal{H}}^{2}-\left\Vert x-y\right\Vert _{\mathcal{H}}^{2}+i\left\Vert x+iy\right\Vert _{\mathcal{H}}^{2}-i\left\Vert x-iy\right\Vert _{\mathcal{H}}^{2}.$$

Or par hypothèse, $\|\cdot\|_H = \|\cdot\|_{\ell^2(A)}$. Donc :

$$\begin{split} 4 \left\langle \hat{x}, \hat{y} \right\rangle_{\ell^{2}(A)} &= \left\| \hat{x} + \hat{y} \right\|_{\ell^{2}(A)}^{2} - \left\| \hat{x} - \hat{y} \right\|_{\ell^{2}(A)}^{2} + i \left\| \hat{x} + i \hat{y} \right\|_{\ell^{2}(A)}^{2} - i \left\| \hat{x} - i \hat{y} \right\|_{\ell^{2}(A)}^{2} \\ &= \left\| x + y \right\|_{H}^{2} - \left\| x - y \right\|_{H}^{2} + i \left\| x + i y \right\|_{H}^{2} - i \left\| x - i y \right\|_{H}^{2} = 4 \left\langle x, y \right\rangle_{H}. \end{split}$$

- $4 \Rightarrow 1$ Par l'absurde, supposons qu'il existe $u \neq 0$ tel que $\forall \alpha \in A : u \perp e_{\alpha}$. Alors $\forall \alpha \in A : \hat{u}(\alpha) = 0$. Or $0 \neq \|u\|^2 = \sum_{\alpha \in A} \hat{u}(\alpha) \overline{\hat{u}(\alpha)} = \sum_{\alpha \in A} |\hat{u}(\alpha)|^2 = 0$, ce qui est une contradiction.
- $5\Rightarrow 2$ Fixons $x\in H$ et $\varepsilon=\frac{1}{k}$. Pour tout k, il existe $x_k=\sum_{\alpha\in A_1}\langle x,e_{\alpha}\rangle\,e_{\alpha}\in M$ tel que $\|x-x_k\|\leq \frac{1}{k}=\varepsilon$

 $3 \Rightarrow 5$

$$\sum_{\alpha \in A} \bigl| \hat{x}(\alpha) \bigr|^2 = \sup_{B \subset A \text{ fini }} \sum_{\beta \in B} \bigl| \hat{x}(\beta) \bigr|^2 \,.$$

Par définition du sup : $\forall \varepsilon > 0 : \exists A_0 \text{ fini } \subset A \text{ t.q. } \forall A_1 \text{ fini } \supset A_0 :$

$$\left\| x - \sum_{\alpha \in A_1} \hat{x}(\alpha) e_{\alpha} \right\|^2 = \left\| x \right\|^2 - \sum_{\alpha \in A_1} \left| \hat{x}(\alpha) \right|^2 \le \varepsilon^2.$$

Théorème 2.28. Tout espace de Hiblert possède un système orthonormal maximal.

Proof. Soit A l'ensemble des SOMs de H. (A,\subseteq) est ordonné. Soit $\mathcal{S}\subset A$ une partie totalement ordonnée. On pose :

 $\hat{S} \coloneqq \bigcup_{s \in \mathcal{S}} s.$

 $\operatorname{Mq} \hat{S} \in A.$

Soient $a_1, a_2 \in \hat{S}$. Il existe $s_1, s_2 \in \mathcal{S}$ tels que $a_1 \in s_1$ et $a_2 \in s_2$, or \mathcal{S} est totalement ordonné. Donc soit $s_1 \subseteq s_2$, soit $s_2 \subseteq s_1$, donc $a_1, a_2 \in s_1$ ou $a_1, a_2 \in s_2$. En particulier, ils sont orthogonaux, et de plus \hat{S} majore tout $s \in \mathcal{S}$.

Par le lemme de Zorn, on a l'existence d'un élément maximal pour l'inclusion, i.e. un SOM. □

Théorème 2.29 (Gram-Schmidt). Soit $\{x_1, x_2, \ldots\} \subseteq H$ une suite finie ou dénombrable de vecteurs linéairement indépendants. Alors il existe un système orthonormal $\{u_1, u_2, \ldots\}$ fini et de même cardinalité que $\{x_1, \ldots\}$ si ce dernier est fini ou dénombrable si $\{x_1, x_2, \ldots\}$ est dénombrable tel que $\mathrm{Span}\{u_1, \ldots\}$ = $\mathrm{Span}\{x_1, \ldots\}$.

Proof. Les x_j sont non-nuls car $\{x_1, x_2, \ldots\}$ est linéairement indépendant. Posons $y_1 \coloneqq x_1$ et $u_1 \coloneqq \frac{y_1}{\|y_1\|}$ et pour tout n > 1 posons $y_n \coloneqq x_n - \sum_{j=1}^n \left\langle x_n, u_j \right\rangle u_j$ et $u_n \coloneqq \frac{y_n}{\|y_n\|}$.

Il faut maintenant s'assurer que pour tout $n \ge 1$: $y_n \ne 0$ afin que les u_n soient bien définis. Par l'absurde, supposons qu'il existe $n \ge 1$ tel que $y_n = 0$. Alors :

$$x_n \in \text{Span}\{u_1, \dots, u_{n-1}\} \subset \text{Span}\{y_1, \dots, y_{n-1}\} \subset \text{Span}\{x_1, \dots, x_{n-1}\}.$$

Or les x_j sont linéairement indépendants.

Il est évident que $u_n \in \operatorname{Span}\{x_1, \dots, x_n\}$ et $x_n \in \operatorname{Span}\{u_1, \dots, u_n\}$ pour tout $n \geq 1$. Il reste alors uniquement à montrer que $u_n \perp u_j$ (j < n), ou de manière équivalente $y_n \perp u_j$, et cette dernière formulation est évidente par définition de y_n .

Définition 2.30. Un espace topologique E est dit séparable s'il admet une partie dense dénombrable.

Théorème 2.31. Un espace de Hilbert est séparable ssi il possède un système orthonormal maximal.

Proof. \Rightarrow : Soit $\{a_1, a_2, ...\}$ une suite dense dans H. Soit $\{a'_1, a'_2, ...\}$ la suite partielle (possiblement finie) de $\{a_1, ...\}$ consitituée des $a_i \notin \operatorname{Span}\{a_1, ..., a_{i-1}\}$. Par définition, on a que les a'_i sont indépendants et tous les a_j sont combinaisons linéaires des a'_i , i.e. $\{a_1, a_2, ...\}$ ⊂ $\operatorname{Span}\{a'_1, a'_2, ...\}$.

On en déduit alors que $\operatorname{Span}\{a_1', a_2', \ldots\}$ est dense dans H Par Gram-Schmidt sur $\{a_1', a_2', \ldots\}$, on a un système orthonormal $\{u_1, \ldots\}$ tel que $\operatorname{Span}\{u_1, \ldots\}$ est dense dans H. Dès lors, par le Théorème 2.27, $\{u_1, \ldots\}$ est un SOM.

 \leq : Soit $(e_k)_{k\in\mathbb{N}}$ un SOM. Pour $N\in\mathbb{N}^*$, on pose :

$$E_N \coloneqq \left\{ \sum_{j=1}^N q_j e_j \text{ t.q. } q_j \in \mathbb{Q}[i] \right\}.$$

 E_N est dénombrable, et donc $E := \bigcup_{N>0} E_N$ est également dénombrable. Par le théorème 2.27, on a $\forall \varepsilon > 0 : \exists A_0 \subset A$ fini tel que :

$$\forall A_1 \supset A_0 : \left\| x - \sum_{\alpha \in A_1} \hat{x}(\alpha) e_{\alpha} \right\| \le \varepsilon.$$

Montrons que $\forall \varepsilon > 0 : \exists y \in E \text{ t.q. } ||x - y|| \le \varepsilon$. Soit $(q_{\alpha})_{\alpha \in A_1} \subset \mathbb{Q}[i] \text{ t.q. } \sum_{\alpha \in A_1} ||q_{\alpha} - \hat{x}(\alpha)||^2 \le \varepsilon^2$. De tels q_{α} existent bien par densité de \mathbb{Q} dans \mathbb{R} , et donc par densité de $\mathbb{Q}[i]$ dans \mathbb{C} .

$$\left\| x - \sum_{\alpha \in A_1} q_{\alpha} e_{\alpha} \right\|^2 = \left\| x - \sum_{\alpha \in A_1} \hat{x}(\alpha) e_{\alpha} \right\|^2 + \sum_{\alpha \in A_1} \left\| q_{\alpha} - \hat{x}(\alpha) \right\| \le 2\varepsilon^2.$$

Donc pour $y = \sum_{\alpha \in A_1} q_{\alpha} e_{\alpha}$, on a bien le résultat.

Exemple 2.4.

(0) \mathbb{C}^N muni du produit scalaire usuel admet une base canonique. Cette dernière est orthonormale et maximale.

(1) Dans $\ell^2(\mathbb{N}_0)$, posons le suites e_k $(k \in \mathbb{Z})$ telles que $e_{k,j} = 1$ si k = j et 0 sinon. $(e_k)_{k \in \mathbb{Z}}$ est un système orthonormal maximal car :

$$||x||^2 = \langle x, x \rangle = \sum_{j>1} x_j \overline{x_j} = \sum_{j>1} |x_j|^2.$$

Par le point 3 du Théorème 2.27, on a que $(e_k)_{k\in\mathbb{Z}}$ est un SOM.

(2) Dans $L^2[0,2\pi)$, on définit (pour $k \in \mathbb{Z}$):

$$e_k:[0,2\pi)\to\mathbb{C}:t\mapsto \frac{e^{ikt}}{\sqrt{2\pi}}.$$

Pour le produit scalaire usuel de L^2 , on a :

$$\langle e_k, e_\ell \rangle_{L^2} = \int_0^{2\pi} \frac{e^{i(k-\ell)t}}{2\pi} dt = \begin{cases} 1 & \text{si } k-\ell = 0 \\ 0 & \text{sinon} \end{cases}.$$

Pour montrer que $(e_k)_{k\in\mathbb{Z}}$ est maximal, prenons $f\in L^2[0,2\pi)$. $S_k f:=\sum_{m=-k}^k \langle f,e_m\rangle e_m$. Montrons que $S_k f\xrightarrow[k\to+\infty]{L^2} f$. Pour $\varepsilon>0, \exists \varphi\in C_0^\infty((0,2\pi)): \|f-\varphi\|_{L^2}\leq \varepsilon$ (par densité de C_0^∞ dans L^2).

On a $S_k \varphi \xrightarrow[k \to +\infty]{\text{CVU}} \varphi$ (théorème de Dirichlet global), ce qui implique $S_k \varphi \xrightarrow[k \to +\infty]{\text{CVU}} \varphi$. Finalement, remarquons:

$$||f - S_k f||_{L^2} \le ||f - S_k \varphi||_{L^2} \le ||f - \varphi||_{L^2} + ||\varphi - S_k \varphi|| \le 2\varepsilon$$

si k est assez grand.

Attention, $\{e_k\}_k$ n'est **pas** une base au sens algébrique car $\forall k \in \mathbb{Z} : e_k \in C^{\infty}$. Donc si $\{e_k\}_k$ est une base, toute fonction $f \in L^2$ est égale à $\sum_{j=1}^N c_j e_{k_j} \in C^{\infty}$. Or $L^2 \nsubseteq C^{\infty}$.

2.3 Applications linéaires entre espaces vectoriels normés

Soient E, F deux espaces de Banach. Pour $T: E \to F$ linéaire, on dit que T est bornée lorsque :

$$\sup_{\|x\| \le 1} \|Tx\| \nleq +\infty.$$

Remarque. borné doit se comprendre borné sur la boule unité car T n'est pas borné puisque linéaire.

Proposition 2.32. *Soit* $T : E \to F$ *linéaire.*

$$\sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| \le 1} \|Tx\| = \sup_{\|x\| = 1} \|Tx\|.$$

Proof. On note $A = \{ \|Tx\| \}_{\|x\| \le 1}, \ B = \{ \|Tx\| \}_{\|x\| < 1}, \ \text{et} \ C = \{ \|Tx\| \}_{\|x\| = 1}.$ Notons également $a = \sup A, b = \sup B \text{ et } c = \sup C.$

Puisque $A\supset B\cup C$, on sait que $a\geq b$ et $a\geq c$. Maintenant, si $x\neq 0$ t.q. $\|x\|\leq 1$, alors $B\ni T\frac{x}{\|x\|}=\frac{1}{\|x\|}Tx\geq \|Tx\|$. En particulier, $c\geq a$, et donc c=a.

Si $a \nleq +\infty$, alors $\forall \delta > 0$: $\exists x$ t.q. ||x|| = 1 et $||Tx|| \geq a - \delta$ (par définition du sup et puisque a = c). Pour $\varepsilon \in (0,1)$:

$$||T((1-\varepsilon)x)|| = (1-\varepsilon)||Tx|| \ge (1-\varepsilon)(a-\delta) \ge a - \eta,$$

pour $\eta = \varepsilon a - \varepsilon \delta + \delta$. Pour $\delta, \varepsilon \to 0$, on a $\eta \to 0$ et donc $b \ge a$.

Finalement, si $a=+\infty$, alors $\forall M>0: \exists x_M$ t.q. $\|x_M\|\leq 1$ et $\|Tx_M\|\geq M$. Or par linéarité de T, on a $\|x_{M/2}\| \nleq 1$, et finalement :

$$\forall M > 0 : \exists \tilde{x}_M (= x_{M/2}) \text{ t.q. } ||\tilde{x}_M|| < 1 \text{ et } ||T\tilde{x}_M|| > M.$$

On en déduit également que a = b.

Dès lors, on a bien a = b = c.

Définition 2.33. L'ensemble des applications linéaires bornées de E dans F est noté $\mathcal{L}(E,F)$. On munit cet ensemble de la norme :

$$\|\cdot\|_{\mathcal{L}(E,F)}: \mathcal{L}(E,F) \to \mathbb{R}^+: T \mapsto \|T\|_{\mathcal{L}(E,F)} \coloneqq \sup_{\|x\| \le 1} \|Tx\|.$$

On note également $\mathcal{L}(E) := \mathcal{L}(E, E)$.

Remarque. Il est à noter que cette norme sur $\mathcal{L}(E,F)$ dépend des normes sur E et sur F!

Proposition 2.34. $\|\cdot\|_{\mathcal{L}(E,F)}$ est une norme.

Proposition 2.35. Soit $T \in \mathcal{L}(E, F)$. Pour tout $y \in E$, on $a||Ty|| \le ||T|| ||y||$.

Proof. Si y=0, alors Ty=0, et donc ok. Sinon, $Ty=\|y\|\,T\frac{y}{\|y\|}$. Par passage à la norme dans F:

$$||Ty|| = ||y|| \underbrace{\left\| T \frac{y}{||y||} \right\|}_{\leq ||T||} \leq ||y|| ||T||.$$

On remarque également que $\|(T_2 \circ T_1)(x)\| \le \|T_2\| \|T_1x\| \le \|T_2\| \|T_1\| \|x\|$, et donc $\|T_2T_1\| \le \|T_2\| \|T_1\|$. Dès lors si $T_1 \in \mathcal{L}(E,F)$ et $T_2 \in \mathcal{L}(F,G)$, alors $T_2T_1 \in \mathcal{L}(E,G)$.

Théorème 2.36. Soit $T: E \to F$ linéaire. Alors les conditions suivantes sont équivalentes :

- (i) T est bornée;
- (ii) T est continue en tous points ;
- (iii) $\exists x_0 \in E \text{ t.q. } T \text{ est continue en } x_0.$

Proof.

- $(i) \Rightarrow (ii)$ Soit $y \in E$. $||Tx Ty|| = ||T(x y)|| \le ||T|| ||x y||$. Dès lors, T est Lipschitzienne et donc continue.
- $(ii) \Rightarrow (iii)$ Trivial (je cite: Si vous avez un problème ici, je crois qu'il y a un sérieux problème dans l'enseignement).
- $(iii) \Rightarrow (i)$ Pour $\varepsilon > 0$, il existe $\delta > 0$ tel que si $||x x_0|| < \delta$, alors $||T(x x_0)|| < \varepsilon$. En posant $y := x x_0$, si $||y|| < \delta$, alors $||Ty|| < \varepsilon$. Autrement dit, $T(B(0, \delta)) \subset B(0, \varepsilon)$. Pour $z \in B(0, 1)$ (i.e. ||z|| < 1), on a:

$$||Tz|| = \frac{1}{\delta} ||T(\delta z)|| < \frac{1}{\delta} \varepsilon.$$

Dès lors $\forall z: \|z\| < 1 \Rightarrow \|Tz\| < \varepsilon/\delta$, et donc $\|T\| \nleq +\infty$, i.e. T est bornée.

Exemple 2.5.

- (0) Un opérateur linéaire $T: \mathbb{C}^n \to \mathbb{C}^m$ est déterminé par une matrice $(T_{k\ell})_{k,\ell}$ dans les bases canoniques de \mathbb{C}^m et \mathbb{C}^n . T est continue¹ donc bornée.
- (1) $T: L^1(\Omega, \mathcal{A}, \mu) \to \mathbb{C}: f \mapsto \int f \, d\mu$ est borné car :

$$|Tf| = \left| \int f \, \mathrm{d}\mu \right| \le \int |f| \, \mathrm{d}\mu = \|f\|_{L^1}.$$

Dès lors l'opérateur T d'intégration est continue.

(2) Si $1 \le p, q \le +\infty$ sont conjugués, pour $g \in L^q(\Omega, \mathcal{A}, \mu)$ on définit :

$$T_g: L^p(\Omega, \mathcal{A}, \mu) \to \mathbb{C}: f \mapsto \int fg \,\mathrm{d}\mu.$$

 T_g est bien défini par l'inégalité de Hölder. De plus : $\left|T_g f\right| \leq \|f\|_{L^p} \|g\|_{L^q}$, et donc $\left\|T_g\right\| \leq \|g\|_{L^q}$.

(3) $\mathbb{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ est un opérateur linéaire. De plus, par Plancherel, on a $\|\mathbb{F}f\|_{L^2} = (2\pi)^{n/2} \|f\|_{L^2}$, et donc $\|\mathbb{F}\| = (2\pi)^{n/2}$, i.e. la transformée de Fourier est un opérateur borné (donc continu).

¹En dimension finie, toute application linéaire entre espaces vectoriels est continue.

- (4) Pour H, un espace de Hilbert quelconque et M un sous-espace vectoriel fermé, $P: H \to M$, la projection orthogonale sur M est bornée car Lipschitzienne (et donc également continue).
- (5) Dans $(\Omega, \mathcal{A}, \mu)$ un espace mesuré, on fixe $K \in L^2(\Omega \times \Omega, \mathcal{A} \otimes \mathcal{A}, \mu \otimes \mu)$, et on pose :

$$T: L^2(\Omega, \mathcal{A}, \mu) \to L^2(\Omega, \mathcal{A}, \mu): f \mapsto \int_{\Omega} K(\cdot, y) f(y) \, \mathrm{d}\mu(y).$$

Par Fubini, $\forall x \in \Omega : \int_{\Omega} |K(x,y)|^2 d\mu(y)$ est bien défini, et pour presque tout $x \in \Omega : |K(x,\cdot)|^2 \in L^1(\Omega, \mathcal{A}, \mu)$. En particulier, $|K(x,\cdot)| \in L^2(\Omega, \mathcal{A}, \mu)$.

Dès lors, à $x \in \Omega$ fixé, $y \mapsto K(x,y)f(y)$ est L^1 par Hölder. Donc il existe $N \in \mathcal{A}$ t.q. $\mu(N) = 0$ et $\forall x \notin N : K(x,\cdot)f(\cdot) \in L^1(\Omega,\mathcal{A},\mu)$. On pose alors :

$$g: x \mapsto \begin{cases} \int_{\Omega} K(x, y) f(y) \, \mathrm{d}\mu(y) & \text{si } x \notin N, \\ 0 & \text{sinon.} \end{cases}$$

Montrons que $g = Tf \in L^2(\Omega, \mathcal{A}, \mu)$. Si $x \notin N$, alors par Cauchy-Schwarz :

$$\left|g(x)\right|^2 \le \left(\int \left|K(x,y)\right| \left|f(y)\right| \mathrm{d}\mu(y)\right)^2 \le \int_{\Omega} \left|K(x,y)\right|^2 \mathrm{d}\mu(y) \int_{\Omega} \left|f(y)\right|^2 \mathrm{d}\mu(y).$$

Or le second facteur ne dépend pas de x (notons le C) et est fini puisque $f \in L^2(\Omega, \mathcal{A}, \mu)$. Dès lors :

$$\int |g(x)|^2 d\mu(x) = C \int_{\Omega} \left(\int_{\Omega} |K(x,y)|^2 d\mu(y) \right) d\mu(y).$$

Par Fubini (puisque $K \in L^2(\Omega \times \Omega, \mathcal{A} \otimes \mathcal{A}, \mu \otimes \mu)$), on a finalement :

$$\int_{\Omega} \left| g(x) \right|^2 \mathrm{d}\mu(x) \leq C \int_{\Omega \times \Omega} \left| K(x,y) \right|^2 \mathrm{d}(\mu \otimes \mu)(x,y) \lesseqgtr +\infty.$$

On en déduit également $||g||_{L^2} \le ||f||_{L^2} ||K||_{L^2}$, et donc $||T|| \le ||K||_{L^2}$.

Définition 2.37. Un opérateur de la forme suivante :

$$T: L^2(\Omega, \mathcal{A}, \mu) \to L^2(\Omega, \mathcal{A}, \mu): f \mapsto \int_{\Omega} K(\cdot, y) f(y) \, \mathrm{d}\mu(y),$$

pour $K \in L^2(\Omega \times \Omega, \mathcal{A} \otimes \mathcal{A}, \mu \otimes \mu)$ est appelé opérateur intégral de Hilbert-Schmidt.

Soient $T \in \mathcal{L}(H), x \in H$ et $\Phi : H \to \mathbb{C} : y \mapsto \langle Ty, x \rangle$, une forme linéaire bornée. Par Cauchy-Schwarz : $|\Phi y| \leq ||Ty|| ||x|| \leq ||T|| ||y|| ||x||$.

Par le lemme de Riesz, on sait qu'il existe un unique $z_x \in H$ tel que $\forall y \in H : \Phi y = \langle y, z \rangle$. On a alors une application $x \mapsto z_x$. Notons-la T^* .

Proposition 2.38. T^* est une application linéaire.

Proof. Soient $x_1, x_2 \in H, \lambda \in \mathbb{C}$. Alors:

$$\langle y, T^*(\lambda x_1 + x_2) \rangle = \langle Ty, \lambda x_1 + x_2 \rangle = \overline{\lambda} \langle Ty, x_1 \rangle + \langle Ty, x_2 \rangle = \overline{\lambda} \langle y, T^*x_1 \rangle + \langle y, T^*x_2 \rangle = \langle y, \lambda T^*x_1 + x_2 \rangle.$$

Or cette égalité vaut pour pour tous $x_1, x_2 \in H$, donc $T^*(\lambda x_1 + x_2) = \lambda T^* x_1 + T^* x_2$.

Lemme 2.39. $\sup_{\|x\|<1} \|Tx\| = \sup_{\|x\|<1, \|y\|<1} |\langle Tx, y \rangle|$.

Proof. Par Cauchy-Schwarz, si $||y|| \le 1$: $\left| \langle Tx,y \rangle \right| \le ||Tx|| ||y|| \le ||Tx||$. En particulier, par passage au sup, on a l'inégalité \ge .

Pour l'autre inégalité, Si $T \equiv 0$, le résultat est trivial. Donc supposons $T \not\equiv 0$. On sait alors que Ker $T \neq H$, et donc $\exists x \in H \setminus \text{Ker } T$. En posant $z \coloneqq \frac{Tx}{\|Tx\|}$, on observe :

$$\sup_{\substack{\|x\|\leq 1\\\|y\|\leq 1}}\left|\langle Tx,y\rangle\right|\geq \sup_{\|x\|\leq 1}\left|\langle Tx,z\rangle\right|=\sup_{\|x\|\leq 1}\frac{\left\|Tx\right\|^2}{\left\|Tx\right\|}.$$

Théorème 2.40. *Pour* $T \in \mathcal{L}(H)$, *on* $a ||T|| = ||T^*||$.

Proof. Par le lemme précédent :

$$\|T^*\| = \sup_{\|x\| \le 1} \|T^*x\| = \sup_{\substack{\|x\| \le 1 \\ \|y\| \le 1}} \left| \langle T^*x, y \rangle \right| = \sup_{\substack{\|x\| \le 1 \\ \|y\| \le 1}} \left| \langle y, T^*x \rangle \right| = \sup_{\substack{\|x\| \le 1 \\ \|y\| \le 1}} \left| \langle Ty, x \rangle \right| = \sup_{\|x\| \le 1} \|Tx\| = \|T\|$$

Définition 2.41. Cet opérateur T^* est appelé l'opérateur adjoint de T.

Proposition 2.42. Soient $S, T \in \mathcal{L}(H)$. Pour $\alpha, \beta \in \mathbb{C}$, on a :

1.
$$(\alpha S + \beta T)^* x = \overline{\alpha} S^* + \overline{\beta} T^*$$
;

2.
$$(ST)^* = T^*S^*$$
.

Proof.

1. Fixons $x, y \in H$.

$$\left\langle x, (\alpha S + \beta T)^* y \right\rangle = \left\langle (\alpha S + \beta T) x, y \right\rangle = \alpha \left\langle S x, y \right\rangle + \beta \left\langle T x, y \right\rangle = \alpha \left\langle x, S^* y \right\rangle + \beta \left\langle x, T^* y \right\rangle = \left\langle x, \overline{\alpha} S^* y + \overline{\beta} T^* y \right\rangle.$$

2. Montrons que $\forall x \in H : (ST)^*x = T^*S^*x$. Soient $x, y \in H$.

$$\langle y, (ST)^*x \rangle = \langle STy, x \rangle = \langle Ty, S^*x \rangle = \langle y, T^*S^*x \rangle.$$

Définition 2.43. Si $T = T^*$, on dit que T est auto-adjoint.

Exemple 2.6.

(1) Soit un opérateur linéaire $T \in \mathcal{L}(\mathbb{C}^n)$. T est défini par une matrice $(T_{k\ell})_{k,\ell} \in \mathbb{C}^{n \times n}$. L'adjoint T^* de T est également un opérateur linéaire de \mathbb{C}^n et est donc également définit par une matrice $(T^*_{k\ell})_{k,\ell}$. Fixons $z, w \in \mathbb{C}^n$ et calculons :

$$\sum_{j=1}^{n} \sum_{k=1}^{n} T^*_{jk} z_k \overline{w_j} = \langle T^* z, w \rangle = \langle z, Tw \rangle = \sum_{j=1}^{n} \sum_{k=1}^{n} z_k \overline{T_{kj}} \overline{w_j}.$$

Cette égalité étant vraie $\forall z, w \in \mathbb{C}^n$, on en déduit $T^*_{jk} = \overline{T_{kj}}$, i.e. la matrice adjointe est la conjuguée de la transposée.

D'ailleurs, si $T = T^*$, alors $(T_{jk})_{jk}$ est une matrice hermitienne.

(2) Pour un opérateur intégral de Hilbert-Schmidt, fixons $K \in L^2(\Omega \times \Omega, \mathcal{A} \otimes \mathcal{A}, \mu \otimes \mu)$ et considérons :

$$T_K: L^2(\Omega, \mathcal{A}, \mu) \to L^2(\Omega, \mathcal{A}, \mu): f \mapsto \int K(\cdot, y) f(y) d\mu(y).$$

Soient $f, g \in L^2(\Omega, \mathcal{A}, \mu)$. Partons de $\langle T_K f, g \rangle = \langle f, T_K^* f \rangle$ et calculons :

$$\langle Tf,g\rangle = \int_{\Omega} \overline{g}(x) \int_{\Omega} K(x,y) f(y) \, \mathrm{d}\mu(y) \, \mathrm{d}\mu(x) \stackrel{\mathrm{Fubini}}{=} \int_{\Omega} f(y) \int_{\Omega} K(x,y) \overline{g}(x) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) = \langle f, T_K^* g \rangle \, .$$

Donc:

$$T_K^*g(y) = \overline{\int_{\Omega} K(x,y)\overline{g}(x) d\mu(x)},$$

ou en changeant simplement les variables x et y:

$$T_K^* g(x) = \int_{\Omega} \overline{K}(y, x) g(y) \, \mathrm{d}\mu(y).$$

 T_K^* est donc également un opérateur intégral de Hilbert-Schmidt et on a bien transposé/conjugué le noyau K de T_K pour trouver celui de T_K^* .

(2) Reconsidérons M un sous-espace fermé de H et la projection orthogonale $P: H \to M$. Montrons que $P = P^*$.

Soient $x_1, x_2 \in H$ et soit Q la projection orthogonale sur M^{\perp} . Calculons :

$$\langle Px_1, x_2 \rangle = \langle Px_1, Px_2 + Qx_2 \rangle = \langle Px_1, Px_2 \rangle + \underbrace{\langle Px_1, Qx_2 \rangle}_{=0} = \langle Px_1, Px_2 \rangle.$$

Et:

$$\langle x_1, Px_2 \rangle = \langle Px_1 + Qx_1, Px_2 \rangle = \langle Px_1, Px_2 \rangle + \underbrace{\langle Qx_1, Px_2 \rangle}_{=0} = \langle Px_1, Px_2 \rangle.$$

On a donc $\forall x_1, x_2 \in H : \langle x_1, P^*x_2 \rangle = \langle Px_1, x_2 \rangle = \langle x_1, Px_2 \rangle$. Dès lors $P = P^*$. La projection orthogonale est donc auto-adjointe.

Pour E, F espaces vectoriels normés, plusieurs normes semblent canoniques. À $p \ge 1$ fixé, on peut définir :

$$\|(e,f)\|_{E\times E:n} := (\|e\|_E^p + \|f\|_F^p)^{1/p}.$$

De même, si E et F sont munis d'un produit scalaire, on a un produit scalaires canonique sur $E \times F$:

$$\langle (e_1, f_1), (e_2, f_2) \rangle_{E \times F} := \langle e_1, e_2 \rangle_E + \langle f_1, f_2 \rangle_F,$$

et donc la norme $\|\cdot\|_{E\times F;2}$ semble particulièrement intuitive.

Il est cependant à noter que les normes $\|\cdot\|_{E\times F;p}$ sont équivalentes pour toutes les valeurs de $p\geq 1$, et donc que les topologies induites par ces normes sont homéomorphes (elles sont même strictement identiques, et cette topologie est la topologie produit). Dès lors, la norme $\|\cdot\|_{E\times F;1}$ va être posée canoniquement sur $E\times F$, mais les résultats qui suivront seront également valables pour toute valeur de p>1.

Définition 2.44. Pour un opérateur linéaire $T: E \to F$, on note $\Gamma_T = \{(x, Tx)\}_{x \in E} \subset E \times F$ le graphe de T

Théorème 2.45. Si T est bornée, alors Γ_T est fermé dans $E \times F$.

Proof. Soit $(x,y) \in \overline{\Gamma_T}$. Prenons une suite $(x_n,y_n)_{n \in \mathbb{N}} \subset \Gamma_T$ telle que $(x_n,y_n) \xrightarrow[n \to +\infty]{} (x,y)$. De plus T est continue car bornée. Dès lors :

$$\begin{cases}
Tx_n = y_n \\
Tx_n \xrightarrow[n \to +\infty]{} Tx \\
y_n \xrightarrow[n \to +\infty]{} y.
\end{cases}$$

Or $x \in E$ et par unicité de la limite, Tx = y. Dès lors, $(x, y) \in \Gamma_T$.

Définition 2.46. Une application $f: E \to F$ est ouverte si l'image de tout ouvert de E par f est un ouvert de F.

Théorème 2.47 (de Baire). Soit X un espace métrique complet. Si $(V_n)_{n\geq 0}$ est une suite d'ouverts denses dans X, alors $\bigcap_{n\geq 0} V_n$ est également dense dans X.

Proof. Soient $(V_n)_n$ ouverts denses dans X. Si pour tout $W \subset X$ ouvert non vide, $W \cap \bigcap_{n \geq 0} V_n \neq \emptyset$, alors $\bigcap_{n \geq 0} V_n$ ests dense dans X. Fixons donc $W \subset X$ ouvert de X non vide et trouvons $x \in W \cap \bigcap_{n \geq 0} V_n$.

 V_1 est dense. Donc $\exists x_1 \in W \cap V_1$ et $r_1 \in (0,1)$ tel que $\overline{B(x_1,r_1)} \subset W \cap V_1$. $B(x_X1,r_1)$ est un ouvert de X, donc $\exists x_2 \in B(x_1,r_1) \cap V_2$ et $r_2 \in (0,1/2)$ tel que $\overline{B(x_2,r_2)} \subset B(x_1,r_1) \cap V_2$, etc. On construit ainsi une suite $(x_n)_{n\geq 1}$ et $(r_n)_{n\geq 1}$ tels que :

$$\forall n \geq 2 : x_n \in B(x_{n-1}, r_{n-1}) \cap V_n \text{ et } r_n \in (0, 1/n) \text{ t.q. } \overline{B(x_n, r_n)} \subset B(x_{n-1}, r_{n-1}) \cap V_n.$$

À n fixé, pour $k \ge n$, $x_k \in B(x_n, r_n)$ et donc pour $k, \ell \ge n : d(x_k, x_\ell) \le d(x_k, x_n) + d(x_\ell, x_n) \le 2r_n = \frac{2}{n}$. Donc la suite $(x_n)_n$ est de Cauchy dans X. Dès lors $\exists x \in X$ t.q. $x_n \xrightarrow[n \to +\infty]{} x$. De plus, pour $k \ge n$:

$$x_k \in \overline{B(x_n, r_n)} \subset B(x_{n-1}, r_{n-1}) \cap V_n \subset V_n.$$

Dès lors $\forall n \geq 1 : \forall k \geq n : x_k \in V_n$, et donc $\forall k \geq 1 : x_k \in \bigcap_{k=1}^n V_n$. En particulier : $x \in \bigcap_{n \geq 1} V_n$.

Finalement, puisque
$$x \in \overline{B(x_1, r_1)} \subset W$$
, on a bien $x \in W \cap \bigcap_{n \geq 1} V_n$.

Remarque. Le théorème de Baire peut se formuler de la manière équivalente suivante: si dans X, $(F_n)_{n\geq 0}$ est une suite de fermés d'intérieur vide, alors $\bigcup_{n\geq 0} F_n$ est également d'intérieur vide.

Théorème 2.48 (de l'application ouverte, Banach). Soient E, F espaces de Banach, $T \in \mathcal{L}(E, F)$. Si T est surjective, alors T est ouverte.

Proof. Notons B_E (resp. B_F) la boule unité dans E (resp. dans F). Il suffit de montrer que $\exists \delta > 0$ t.q. $T(B_E) \supset \delta B_F$. En effet, en supposant que cette inclusion est vérifiée, on a $T(x_0 + \lambda B_E) = Tx_0 + \lambda T(B_E)$. Dès lors, si U est un voisinage de x_0 dans E, alors T(U) est un voisinage de Tx_0 dans T(U), et donc T(U) est un voisinage de tout T(U), et donc T(U) est ouvert dans T(U) est ouvert dans T(U).

Montrons donc qu'il existe un tel $\delta > 0$. On sait que $E = \bigcup_{n>0} nB_E$, et donc :

$$F = T(E) = T\left(\bigcup_{n \ge 0} nB_E\right) = \bigcup_{n \ge 0} T(nB_E).$$

Supposons alors par l'absure que $\forall n \geq 0 : \overline{T(nB_E)} = \emptyset$. Par Baire, on a $F = \mathring{F} = \emptyset$, ce qui est une contradiction.

Dès lors, il existe n>0 te que $T(nB_E)\supseteq \overline{T(nB_E)}\neq\emptyset$, et donc il existe un ouvert $W\subset \overline{T(nB_E)}$. Soient $y_0\in W$ et r>0 t.q. $y_0+rB_F\subset W$. Fixons également $y\in F$ t.q. $\|y\|< r$. Soit également $(x_k')_{k\geq 0}\subset nB_E$ t.q. $Tx_k'\xrightarrow[k\to +\infty]{}y_0$.

Puisque $y_0 + y \in W \subset \overline{T(nB_E)}$, prenons une autre suite $(x_k'')_{k \geq 0} \subset nB_E$ t.q. $Tx_k'' \xrightarrow[k \to +\infty]{} y_0 + y$.

On note $x_k := x_k' - x_k''$. $||x_k|| \le ||x_k''|| + ||x_k'|| \le 2n$ et $Tx_k = Tx_k'' - Tx_k' \xrightarrow[k \to +\infty]{} y_0 + y - y_0 = y$. Dès lors $\forall \varepsilon > 0 : \forall y \in rB_F : \exists x \in E \text{ t.q. } ||x|| \le 2n$ et $||Tx - y|| \le \varepsilon$. Ce qui est équivalent à :

$$\forall y \in F : \forall \varepsilon > 0 : \exists x \in E \text{ t.q. } ||x|| \le \frac{4n}{r} ||y|| \text{ et } ||Tx - y|| \le \varepsilon.$$
 (\Delta)

En effet, si y = 0, on prend x = 0, et si $y \neq 0$, on sait qu'il existe $\tilde{x} \in E$ t.q. $||x|| \leq 2n$ et $\left||T\tilde{x} - \frac{2}{2||y||}y\right|| \leq \varepsilon$. On peut dès lors poser $x := \frac{2||y||}{r}x$.

Posons $\delta := \frac{r}{4n}$, et prenons $\omega > 0$. Montrons alors que :

$$\forall y \in F : ||y|| \le \delta \Rightarrow \exists x \in E \text{ t.q. } ||x|| \le 1 + \omega \text{ et } Tx = y.$$
 (\$\pmu\$)

Par (Δ) :

$$\exists x_1 \in E \text{ t.q. } ||x_1|| \le \frac{1}{\delta} ||y|| \le 1 \text{ et } ||Tx_1 - y|| \frac{\delta \omega}{2}.$$

De même:

$$\exists x_2 \in E \text{ t.q. } ||x_2|| \le \frac{4n}{r} ||Tx_1 - y|| \le \frac{\omega}{2} \text{ et } ||(y - Tx_1 - Tx_2)|| \le \frac{\delta\omega}{2^2}.$$

On construit ainsi x_1, \ldots, x_n tels que $||x_n|| \le 2^{-(n-1)}\omega$. Pour $\varepsilon = 2^{-n}\delta\omega$, on a l'existence de x_n t.q. $||x_n|| \le 2^{-(n-1)}\omega$ et $||y - Tx_1 - \ldots - Tx_n|| \le \varepsilon$.

De plus, puisque $(x_n)_n$ est de Cauchy, la suite $(\sum_{j=1}^n x_j)_n$ est également de Cauchy. Donc :

$$\exists x \in E \text{ t.q. } \sum_{i=1}^{n} x_j \xrightarrow[n \to +\infty]{} x.$$

Par continuité de la norme $\|\cdot\|$, on a également $\left\|\sum_{j=1}^n x_j\right\| \xrightarrow[n \to +\infty]{} \|x\|$. or $\exists \eta > 0$ t.q. $\left\|\sum_{j=1}^n x_j\right\| \le 1 + \omega - \eta$ et donc $\|x\| \le 1 + \omega$. Finalement, par continuité de T, on a $T(\sum_{j=1}^n x_j) \xrightarrow[n \to +\infty]{} Tx$. Or puisque $T(\sum_{j=1}^n x_j) = \sum_{j=1}^n Tx_j \xrightarrow[n \to +\infty]{} y$, par unicité de la limite (dans les espaces métriques complets), on a Tx = y, ce qui montre bien (\sharp).

Théorème 2.49 (du graphe fermé, Banach). Soient E, F espaces de Banach, $T: E \to F$ linéaire. Si Γ_T est fermé dans $E \times F$, alors T est bornée.

Proof. Γ_T est un sous-espace vectoriel fermé de $E \times F$. Or $E \times F$ est un espace de Banach puisque le produit d'espaces de Banach en est un. Dès lors Γ_T est un espace de Banach également. On décompose T en $T_1: E \to \Gamma_T: x \mapsto (x, Tx)$ et $T_2: E \times F \to F: (x, y) \mapsto y$ $(T = T_2T_1)$. T_1 est bijective par définition du graphe d'une application et $T_1^{-1}: (x, Tx) \mapsto x$ est bornée (donc continue). Par le théorème de l'application ouverte de Banach, on déduit que T_1^{-1} est ouverte, i.e. T_2 est continue.

De plus, T_2 est continue car les projections sont toujours continues pour la topologie produit. Donc $T = T_2T_1$ est composition d'applications continues, et est donc continue.

Chapter 3

Équations aux dérivées partielles et théorie des distributions

3.1 Rappels

Dans le cadre des EDOs, on cherche une fonction $u:[-T,T]\to\mathbb{C}$ telle que :

$$F(t, u(t), u'(t), \dots, u^{(m)}(t)) = 0.$$

On généralise à $u:\mathbb{R}^m \to \mathbb{C}$, et une EDP est donc sous la forme :

$$F\left(x,\left(\partial^{\alpha}u(x)\right)_{|\alpha|\leq m}\right)=0.$$

Dans le cadre des EDOs, la solution du problème de Cauchy suivant :

$$\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}t}(t) + Au(t) = f(t) \\ u(0) = u^0, \end{cases}$$

pour $A\in\mathbb{C}^{n\times n},\,f:\mathbb{R}\to\mathbb{C}^n$ continue, et $u^0\in\mathbb{C}^n$ est donnée par :

$$u(t) = u^{0}e^{-tA} + \int_{0}^{t} e^{(s-t)A}f(s) ds,$$

où l'exponentielle d'une matrice est définie par la série :

$$e^A \coloneqq \sum_{k \ge 0} \frac{A^k}{k!}.$$

3.1.1 Normes et matrices

Remarquons que les matrices définissent des opérateurs linéaires. Elles sont donc canoniquement munies de la norme associée :

$$||A|| \coloneqq \sup_{|x|=1} |Ax|.$$

Proposition 3.1. Les normes $\|\cdot\|$ et $\|\cdot\|_{\infty}$: $A \mapsto \|A\|_{\infty} := \sup_{1 \le i,j \le m} |A_{ij}|$ sont équivalentes.

Proof. Soit $A \in \mathbb{C}^{m \times m}$. Pour tous $1 \leq i, j \leq m$, on a :

$$|A_{ij}| \le |Ae_j| \le |A|$$

 $\operatorname{car} |e_j| = 1$. De plus :

$$||A|| = \sup_{|x|=1} |Ax| = \sup_{|x|=1} \left(\sum_{i=1}^{m} \left| \sum_{j=1}^{m} A_{ij} x_j \right|^2 \right)^{1/2} \le \sup_{|x|=1} ||A||_{\infty} \left(\sum_{i=1}^{m} \sum_{j=1}^{m} \left| x_j \right|^2 \right)^{1/2}.$$

Or $x \mapsto \sum_{i=1}^{m} \sum_{j=1}^{m} \left| x_j \right|^2$ est continue sur $\{x \in \mathbb{C}^m \text{ t.q. } |x|=1\}$ (qui est fermé), et donc $\exists M>0$ tel que :

$$||A|| \leq M||A||_{\infty}$$
.

Proposition 3.2. Pour $A \in \mathbb{C}^{m \times m}$: $\|\exp(A)\| \le \exp(\|A\|)$.

Proof. Par propriété de la norme opérateur :

$$\left\| e^A \right\| = \left\| \sum_{k \ge 0} \frac{A^k}{k!} \right\| \le \sum_{k \ge 0} \frac{\left\| A^k \right\|}{k!} \le \sum_{k \ge 0} \frac{\left\| A \right\|^k}{k!} = e^{\|A\|}.$$

3.2 Problème de Cauchy pour les EDPs

On va étudier des problèmes sous la forme (P.C.) avec $u = [u_1, \dots, u_m]^\top$ où $u_j : \mathbb{R} \times \mathbb{R}^n \to \mathbb{C}$, $f = [f_1, \dots, f_n]^\top$ où $f_j : \mathbb{R} \times \mathbb{R}^n \to \mathbb{C}$, $A_j \in \mathbb{C}^{m \times m}$, et $u^0 : \mathbb{R}^n \to \mathbb{C}$.

$$\begin{cases} \frac{\partial u}{\partial t} + \sum_{j=1}^{n} A_j \frac{\partial u}{\partial x_j} = f \\ u\Big|_{t=0} = u^0 \end{cases}$$
 (P.C.)

Proposition 3.3. Le problème de Cauchy suivant (équivalent) (P.C.) pour n = m = 1):

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = f \\ u \Big|_{t=0} = u^{0}, \end{cases}$$

pour $a \in \mathbb{C}$, $u^0 \in C^1(\mathbb{R})$ et $f \in C^1(\mathbb{R}^2)$ possède une unique solution $C^1(\mathbb{R}^2)$ si $a \in \mathbb{R}$ et ne possède (en général) pas de solution $C^1(\mathbb{R}^2)$ si $a \in \mathbb{C} \setminus \mathbb{R}$.

Proof. Supposons que $a \in \mathbb{R}$. On procède au changement de variable $(t,x) \mapsto (t,y)$ (et u(t,x) = U(t,y)). On a alors :

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = \frac{\partial U}{\partial t} + \left(\frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x}\right) \frac{\partial U}{\partial y}.$$

En particulier, pour y = x - at (afin d'annuler la parenthèse), on a :

$$\begin{cases} & \frac{\partial U}{\partial t} = f(t, y + at) \\ & U(0, y) = u^{0}(y) \end{cases}$$

qui revient à résoudre une EDO pour tout $y \in \mathbb{R}$. On a donc la solution :

$$U(t,y) = u^{0}(y) + \int_{0}^{t} f(s, y + as) ds,$$

ou encore, pour u et non U:

$$u(t,x) = u^{0}(x - at) + \int_{0}^{t} f(s, x - a(t - s)) ds.$$

Dans le cas où $a \in \mathbb{C} \setminus \mathbb{R}$, justifions pourquoi trouver une solution est en général pas faisable.

On peut réécrire $a=\alpha+i\beta$ avec $\beta\neq 0$. En faisant le même changement de variable que précédemment $(y=x-\alpha t)$, on trouve :

$$\begin{cases} \frac{\partial U}{\partial t} + i\beta \frac{\partial U}{\partial y} = f(t, y + \alpha t) \\ U\Big|_{t=0} = u^{0}. \end{cases}$$

on peut supposer WLOG que a=i car en posant $y':=\frac{y}{\beta}$ (bien défini car $\beta\neq 0$), on trouve :

$$\frac{\partial U'}{\partial t} + i \frac{\partial U'}{\partial y'} = f(t, \beta y' + \alpha t).$$

Dans le cas le plus simple, supposons $f \equiv 0$ et regardons le P.C. :

$$\begin{cases} \frac{\partial u}{\partial t} + i \frac{\partial u}{\partial x} = 0 \\ u \Big|_{t=0} = u^0 \end{cases}$$

La première équation est celle de Cauchy-Riemann en t + ix, et donc u doit être une fonction holomorphe de t + ix. Si une solution u existe à ce problème, alors :

$$u(t,x) = \sum_{k>0} c_k (t+ix)^k,$$

qui converge uniformément en les variables d'origine. En particulier, pour t=0 :

$$u^{0}(x) = u(0, x) = \sum_{k>0} c_{k}(ix)^{k}.$$

Dès lors u^0 est analytique, et donc $u^0 \in C^{\infty}(\mathbb{R})$. On a donc une condition extrêmement restrictive sur le choix de u^0 : il est nécessaire (mais pas suffisant !) que $u^0 \in C^{\infty}(\mathbb{R})$ pour que le système admette une solution.

Définissons alors des espaces dans lesquelles on espère pouvoir résoudre (P.C.)

Définition 3.4. Pour $p \in \mathbb{N}$, on définit :

$$C_b^p(\mathbb{R}^n) \coloneqq \left\{ v \in C^p(\mathbb{R}^n) \text{ t.q. } \forall \alpha \in \mathbb{N}^n : |\alpha| \le p \Rightarrow \partial^\alpha v \in L^\infty(\mathbb{R}^n) \right\}.$$

De manière similaire, pour T>0, on introduit :

$$C_b^p([-T,T]\times\mathbb{R}^n) \coloneqq \left\{v\in C^p([-T,T]\times\mathbb{R}^n) \text{ t.q. } \forall \alpha\in\mathbb{N}^n: |\alpha|\leq p \Rightarrow \partial^\alpha v\in L^\infty([-T,T]\times\mathbb{R}^n)\right\}.$$

Proposition 3.5. L'application suivante est une norme sur $C^p_b(\mathbb{R}^n)$:

$$\left\|\cdot\right\|_{C^p_b(\mathbb{R}^n)}:C^p_b(\mathbb{R}^n)\to\mathbb{R}^+:v\mapsto \left\|v\right\|_{C^p_b(\mathbb{R}^n)}:=\sum_{|\alpha|\leq p}\sup_{x\in\mathbb{R}^n}\left|\partial^\alpha v(x)\right|.$$

Proposition 3.6. $C_b^p(\mathbb{R}^n)$ est un espace de Banach.

Proof. TODO