# Computational Image Formation Based on Surface Light Fields

Georgi Chunev PhD Thesis Proposal

June 4<sup>th</sup> 2015





#### **Outline**

- 1. Background
- 2. Related Open Problems
- 3. Thesis Statement and Backing
- 4. Proposed Renderers and Case Studies
- 5. Conclusion



## Plenoptic Data

The 5D plenoptic function represents the flow of light through 3D space:



• Light fields are 4D slices from the plenoptic function, which can represent the flow of light in free space, or the radiance/irradiance at a 2D manifold:



## Surface Light Fields

 A discontinuous 4D light field can be mapped to the radiance sources in a scene.



**LF(q',p')** – light field away from the scene. Can be used to reconstruct the plenoptic function in free space, e.g. inside a camera.

**SLF(q,p)** – light field on the scene surfaces. Can be used to reconstruct the plenoptic function of the scene. Implicitly stores information about the refocusable radiance sources in the scene.

## Surface Light Fields

SLFs are a view-dependent generalization of texturing.



## Light Field Capture

Camera Array



Sub-aperture Mosaic



Sub-aperture Image



Microlens Array



Microimage Mosaic



Microimage



## Light Field Rendering

 A captured light field can be transformed to any focal surface where it can be integrated to form an image:





#### **Outline**

- 1. Background
- 2. Related Open Problems
  - 1. Ghosting Artifacts
  - 2. Limited Depth of Field Effects
  - 3. Plenoptic Vignetting
- 3. Thesis Statement and Backing
- 4. Proposed Renderers and Case Studies
- 5. Conclusion

## Sparse Light Field Refocusing Artifacts

 Projecting neighboring views results in defocus mismatches, which can produce ghosting artifacts for scene features placed sufficiently out of focus.



Foreground in focus;
Background has ghosting artifacts.



Background in focus; Foreground has ghosting artifacts.

## Sparse Light Field Refocusing Artifacts

 Projecting neighboring views results in defocus mismatches, which can produce ghosting artifacts for scene features placed sufficiently out of focus.



## Fixing Ghosting Artifacts

- Wide Aperture Microlens Filtering:
  - Results in over-blurring.









- Depth-dependent Microimage Filtering/Blurring:
  - Focus-dependent;
  - Needs to be precomputed as it is too slow for real-time rendering.
- Rendering from a Scene Model:
  - Prior solutions are based on view interpolation techniques, suitable for all-in-focus novel view synthesis.
  - For wide-aperture renditions, view-independent models could be utilized more directly, e.g., consider rendering from an SLF reconstruction.

## Generalized Depth of Field

- Optical systems specify DoF indirectly and coarsely though parameters like focal length, F-stop, aperture, and focal surface;
- The goal of generalized DoF is to allow per-point focusing, which is useful both for esthetic purposes and cognitive cues (e.g., directing attention).



## Generalized Depth of Field

- Prior solutions have been non-physically-based and have relied on substituting defocus with depth-dependent blurring, which fails to account for a large number of photographic effects:
  - Light attenuation;
  - Partial occlusions;
  - Shaped bokeh;
  - Positive and negative defocus.
- Prior solutions have targeted static scenes and static cameras. This
  has left a number of open questions:
  - How to specify focusing at the scene objects themselves;
  - How to specify focusing relative to a changeable view distance.
- Prior solutions have neglected scattered, refracted, and retransmitted light.



## Plenoptic Vignetting

 Re-parameterizing a captured light field may result in shrinking the stereo window for neighboring views:





- Fixing Plenoptic Vignetting:
  - Color reweighting does not work, as missing views result in geometric aberrations – warped perspective;
  - Missing views need to be reconstructed, e.g., via SLF extrapolation.



#### **Outline**

- 1. Background
- 2. Related Open Problems
- 3. Thesis Statement and Backing
- 4. Proposed Renderers and Case Studies
- 5. Conclusion



## **Thesis Statement**

"Knowing the positions, from which radiance originates in a scene, allows for the implementation of more general and less artifact-prone refocusing algorithms than what is achievable just with 4D light field data captured away from that scene."

## Thesis Backing

- Surface light field samples can easily be interpolated and extrapolated to reconstruct missing views;
- Surface light field propagation can be done with no aliasing caused by directional undersampling;
- Surface light field refocusing allows for direct implementation of physically-based generalized depth of field effects;
- Going back to the scene surfaces allows us to undo all camera-specific effects on the captured light field data.



## Outline of Thesis Contributions





#### **Outline**

- 1. Background
- 2. Related Open Problems
- 3. Thesis Statement and Backing
- 4. Proposed Renderers and Case Studies
- 5. Conclusion



## Proposed Focusing Generalization



- In standard image formation, focusing is specified indirectly, though a number of parameters (camera distance, f/stop, and main lens focal length) specified globally for the image formation process.
- One way we could generalize image formation could be to consider a per-ray specification of the imaging transformation variables (refraction coefficient, f, and transmission distance, t).



## Image Formation with Offset Focusing







Standard Point Refocusing

Proposed Offset Refocusing

Proposed Offset Image Formation

- Generalized DoF effects can be implemented just by varying the transmission distance, t. This parameter can be specified at each scene point and can be interpreted as distance, relative to: the main lens; the true focal conjugate; or any focal surface.
- To form a final image, each ray can be projected to an output image surface according to a desired output image perspective.

# Real-time Offset Refocusing from Surface-Aperture Light Fields (SALFs)



**Proposed Offset** Image Formation



Focus Maps







Example Rendition

- For static cameras, most of the radiance transfer can be precomputed – up to a set of partially occluded aperture images. These images can be stored as super-pixels in an unwrapped texture space and passed onto a GPU for real-time rendering.
- The proposed imaging model is also very well suited for implementing intuitive generalized DoF tools, i.e. a focus brush.



## **Practical Case Studies**

- Virtual Scene Photography
- Photography of Multi-view Reconstructed Scenes
- Plenoptic Camera Photography



## Virtual Scene SLF Photography

#### Challenges

- Baking view-dependent radiance onto surfaces is non-standard in PBR;
- Consider non-refocusable radiance sources (e.g., scattered, refracted, and re-transmitted light);
- Consider real-time rendering implementations.



Rendered with V-Ray



## Multi-view Reconstructed SLF Photography

#### Challenges

- Consider how to map directional samples onto scene reconstructions;
- Consider avoiding light field resampling;
- The MV acquisition technique is restricted to static objects and scenes;







Multi-view SLF Reconstruction

## Plenoptic Camera SLF Photography

#### Challenges

- Plenoptic camera calibration;
- Small parallax scene reconstruction;
- Consider disparity-space implementations.



For general scenes, layered depth reconstructions are the most suitable choice.



Close-ups of isolated objects can additionally be smoothed though filtering.

#### **Outline**

- 1. Background
- 2. Related Open Problems
- 3. Thesis Statement and Backing
- 4. Proposed Renderers and Case Studies
- 5. Conclusion



## **Expected Specific Contributions**

- Physically-based generalized refocusing;
- Interactive implementations and interfaces for generalized refocusing – the focus brush.
- Surface light field photography, as artifact-free plenoptic rendering.



# Remaining Work

| Task                                                                                                                                                                   | Timeline              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Consider a Paper                                                                                                                                                       | Fall 2015             |
| <ul> <li>Implement Renderers</li> <li>Lytro Renditions</li> <li>Blender GE / Focus Brush</li> <li>Cycles Implementations</li> <li>3D Photo-modeling Results</li> </ul> | Now – May 2016        |
| Thesis Writing                                                                                                                                                         | Fall 2015 – Fall 2016 |
| Thesis Defense                                                                                                                                                         | Fall 2016             |



## Conclusion

"Even though, a light field captured away from the scene is sufficient for implementing post-capture photographic effects, starting the image formation process from the surface light fields of the scene allows for a direct implementation of more general and less artifact-prone rendering algorithms."