Towards a Logic-Independent Proof Language

Florian Rabe

Computer Science, University Erlangen-Nürnberg, Germany LRI, University Paris-Sud, France

Upscale Meeting, Paris, March 19 2018

Goals

- Library integration
 - merge libraries
 - move libraries to other systems
 - dynamically use other systems in a proof
- Heterogeneous development
 - global library independent of tools
 - move to concrete tools for proving
 - different tools for different parts
- Verification
 - ▶ independently check proofs
 - redundancy by using multiple tools
 - guard against mis-formalization

like specification like implementation

Challenges

- Incompatible foundations
 - type system
 - logic
 - proof system
- Incompatible tools
 - extra-logical features
 - e.g., module system, unification hints, reflection
 - tactic system
 - auxiliary systems e.g., decision procedures, automated provers
- Incompatible libraries
 - choice of definitions
 - ▶ module structure e.g., flat vs. parametric vs. packaged
 - coding of inexpressible features
 - e.g., partial functions, subtyping

Modular Foundation

- Define foundational features in logical framework e.g., dependent function types, type-indexed universal quantifier
- Aim for coherence
 - features should be combinable

e.g., any type system with any logic

- features should be translatable
 - e.g., simply-typed into dependently-typed functions
- compatible notations across all features
- ► Aim for tool-independence
 - features should be naturally embeddable into tool foundations
 - avoid features that are biased towards one tool
- Focus on specification
 - domain objects, propositions, truth
 - type- and proof-checking
 - no support for finding proofs

Modular Foundation: Usage

- Specify a problem
 - import minimal set of needed foundational features
 - axiomatize assumptions
 - state conjecture
- Generate stubs for different proof tools
- Proof tools find, export proofs
- ▶ Independent proof checker(s) for reference foundation

Framework: MMT

Design principle

- few orthogonal concepts
- uniform representations of diverse languages

sweet spot in the expressivity-simplicity trade off

MMT Concepts

- ▶ theory = named set of declarations
 - ▶ foundations, logics, type theories, classes, specifications, . . .
- theory morphism = compositional translation
 - inclusions, translations, models, katamorphisms, . . .
- constant = named atomic declaration
 - ▶ function symbols, theorems, rules, ...
 - may have type, definition, notation
- term = unnamed complex entity, formed from constants
 - expressions, types, formulas, proofs, . . .
- ▶ typing $\vdash_T s$: t between terms relative to a theory
 - ▶ well-formedness, truth, consequence . . .

Small Scale Example (1)

Logical frameworks in MMT

Logics in MMT/LF

```
theory Logic: LF { prop : type \\ ded : prop \rightarrow type \ \# \vdash 1 \qquad judgments-as-types \}  theory FOL: LF { include \ Logic \\ term : type \qquad higher-order \ abstract \ syntax \\ for all : (term \rightarrow prop) \rightarrow prop \ \# \ \forall \ V1 \ . \ 2  }
```

Small Scale Example (2)

FOL from previous slide:

```
theory FOL: LF { include Logic term : type forall : (term \rightarrow prop) \rightarrow prop \# \forall V1 . 2 }
```

Proof-theoretical semantics of FOL

```
theory FOLPF: LF { include FOL rules are constants for all Intro: \Pi F: term \rightarrow prop.  (\Pi x: term . \vdash (F x)) \rightarrow \vdash \forall (\lambda x: term . F x)  for all Elim: \Pi F: term \rightarrow prop.  \vdash \forall (\lambda x: term . F x) \rightarrow \Pi x: term . \vdash (F x)  }
```

Small Scale Example (3)

FOL from previous slide:

```
theory FOL: LF { include Logic term : type forall : (term \rightarrow prop) \rightarrow prop \# \forall V1 . 2 }
```

Algebraic theories in MMT/LF/FOL:

```
theory Magma : FOL {
   comp : term → term → term # 1 ∘ 2
}
theory SemiGroup : FOL {include Magma, ...}
theory CommutativeGroup : FOL {include SemiGroup, ...}
theory Ring : FOL {
   additive: CommutativeGroup
   multiplicative: Semigroup
   ...
}
```

Logic Diagrams in LATIN

An example fragment of the LATIN logic diagram

- nodes: MMT/LF theories
- edges: MMT/LF theory morphisms

- each node is root for library of that logic
- each edge yields library translation functor

library integration very difficult though

Domain Formalization

- Foundational features must be coupled with reference formalizations of domain knowledge
 - base values various number types, strings, etc.
 - ► standard datatypes lists, sets, finite maps, etc.
 - mathematical structures algebraic hierarchy, polynomials, etc.
- Relatively easy because only axiomatizations needed
- Must be aligned with implementations in tool libraries
 - initially collect from tool libraries
 - gradually drive tool communities to add compatibility layer

Proof Levels

- low level: proof terms
 - foundation-specific but not tool-specific
 - independently checkable
 - possibly large, typically unstructured
- mid level: sequence of steps to recreate proof

e.g., LCF inference rules, imperative tactic invocations

- foundation-specific, often tool-specific
- can be a good trade-off between size and reproducibility
- but recreation may fail even if same tool is used

e.g., different versions, timeouts, etc.

- high level: focus on insight-relevant structure
 e.g., intermediate assertions, induction hypothesis, case splits
 - very robust in the long run
 - may be irreproducible in the short run
 - commonly foundation- and tool-specific
 - foundation-independent solution possible

Theorem Statements

Based on reference library:

- ▶ theory identifiers *T* foundational or domain feature
- contexts C
- expressions E terms, types, formulas, proof terms, etc.

Theorem ::=
$$x$$
 assert $C \vdash_{T^*} E$ proof P

where

- a: identifier
- ► *T**: list of needed foundation/domain features
- ► C: assumptions e.g., type variables
- ▶ *E*: theorem statement
- P: high-level proof (see sequel)

High-Level Proofs

The non-controversial cases

```
P ::= E | low-level proof term | use a^* | partial proof using theorems/tactics a_i | let x : E = E; P | local definition | hence x : E by P; P | forward step
```

More difficult:

- tactic invocation (including most primitive rules)
- local assumptions (implies/forall introduction)
- case distinction (or elimination, induction)
- backward steps (change the current goal(s))

Tactic Invocation

$$P ::= E$$
 | low-level proof term | use a^* | partial proof using theorems/tactics a_i | let $x : E = E$; P | local definition | hence $x : E$ by $P : P$ | forward step | $a(P^*)$ | proof rule/tactic a applied to arguments

But:

- also need reference library for tactics
 - declare names a with type/notation information
 - ▶ no definition/implementation needed
- ightharpoonup $a(P^*)$ expressive enough for some high-level structure, e.g.,

Indispensable: needed for foundation/tool-specific extensibility

- ightharpoonup a =use
- ightharpoonup a = cases

Which of these should be distinguished production?

Local Assumptions

```
P ::= E | low-level proof term | use a^* | partial proof using theorems/tactics a_i | let x : E = E; P | local definition | hence x : E by P;P | forward step | a(P^*) | proof rule/tactic a applied to arguments | assume x : E;P | local parameter/assumption
```

Meaning:

- **assume** x : E; P corresponds to $a(\lambda x : E.P)$
- ▶ implicit application of *a* based on type of *P*

Questions:

- Redundant?
- How to choose a?

Case Distinction

$$P ::= E$$
 low-level proof term $|$ use a^* partial proof $|$ let $x : E = E ; P$ local definition $|$ hence $x : E$ by $P ; P$ forward step $|$ a(P^*) proof rule/tactic application $|$ assume $x : E ; P$ local parameter/assumption $|$ case $P \{(x : E \rightarrow P)^*\}$ case distinction

Meaning:

- ▶ case $P\{x: E_1 \to P_1, \dots, x: E_n \to P_n\}$ corresponds to $a(P, \lambda x: E_1.P_1, \dots, \lambda x: E_n.P_n)$
- ▶ implicit application of a based on type of P

Questions:

- ► Redundant?
- ► How to choose *a*?

Backward Steps

```
P ::= E | low-level proof term | use a^* | partial proof using theorems/tactics a_i | let x : E = E; P | local definition | hence x : E by P;P | forward step | goals (x : E)^* by P;P | backward step | close x by P;P | close specific subgoal
```

Purpose:

- Not needed for verification
- ▶ Needed to capture high-level proof structure
 - ► human readability
 - reproduce original proof script

Questions:

- ► Special case for reduction to a single goal?
 - no goal name needed
- ► Should original goal have a name?
- Allow operations on the entire set of open goals?