

Report

Assignment 2: Q Learning

Submission By: 2024JRB2029, Varun Vilas Shinde 2024JRB2030, Nishant Govindrao Wankhade

Course: COL778

Contents

<u>Contents.</u>	1
Part I: Tabular Q-Learning.	3
a. Learn the policy.	3
Discounted Return vs. Iterations (Left Plot)	3
• Interpretation:	3
● Trend Analysis:	3
• Key Observations:	3
Maximum Distance Traveled vs. Iterations (Right Plot)	3
• Interpretation:	4
• Trend Analysis:	<u>4</u>
• Key Observations:	
II. Visualization of Lane:	
Lane values dynamically adjust based on traffic conditions:	
Smooth value transitions suggest the agent may not aggressively switch lanes unles	s necessary:
The agent may prioritize central lanes over extreme left/right lanes:	1
Obstacle distribution significantly influences lane preferences:	
III. Visualization of Speed:	
Consistent Policy Convergence in 4/5 Trajectories.	
• Observation:	
• Implications:	
Outlier Trajectory Reveals High-Reward State.	
• Observation:	
• Implications:	
Dynamic Lane-Speed Adaptation.	5
• Observation:	5
• Implications:	<u> 6</u>
Smooth Policy Transitions Suggest Caution.	6
• Observation:	6
• Implications:	<u> 6</u>
b. Experiment with different discount factors.	6
Key Insight:	<u>8</u>
c. Experiment with different learning rates.	
Key Insight:	
d. Experiment with different exploration strategies.	10
I. Constant epsilon strategy:	10
Key Insights:	
• Exploration-Exploitation Trade-off:	12
Convergence Speed vs. Quality:	12
Policy Stability:	12

Recommendations:	12
II. Variable epsilon strategy:	
Key Insights	13
1. Trade-offs:	13
2. Agent Behavior:	.13
3. Decay Dynamics:	.14
e. Study the impact of modifying the reward model.	14
1. Modifying reward to no. of overtakes done:	. 14
I. Descriptive Analysis of Discounted Returns and Average Maximum Distance travelled:	. 14
Performance:	. 14
Interpretation of Results:	.14
II. Visualization of value of staying in lane:	
Dominant Pattern: Two Distinct Lane Values.	15
Lane Preference Hierarchy.	.15
Policy Behavior Insights.	. 15
Training Implications.	. 15
III. Visualization of value of maintaining the speed:	.16
Dominant Pattern: Consistent High Value in Most Cases.	.16
Lane-Specific Insights	
Speed Maintenance Policy.	. 16
Training Implications.	. 16
2. Change quantization to three:	
I. Descriptive Analysis of Discounted Returns and Average Maximum Distance travelled: Performance: Discounted Returns:	
• Interpretation of Results:	17
II. Visualization of value of staying in lane:	
Policy Behavior Insights.	<u>. 18</u>
Training Observations.	. 18
III. Visualization of value of maintaining the speed:	.18
Policy Behavior Insights.	. 18
Training Observations.	. 18
f. Best Hyperparameters.	19
Part II: Deep Q-Learning (Neural Network as Q-Function).	20
a. Implement and train a DQN agent.	. 20
Hard Model Update	20
Soft Model Update	20
Solution for Catastrophic Forgetting.	22
Epsilon Decay.	. 23
b. Implement the DQN agent on the continuous state representation of environment.	0.4
b. Implement the Box agent on the continuous state representation of environment.	<u>. 24</u>
Hard Model Update.	
	24
Hard Model Update	24
Hard Model Update	24 25 26
Hard Model Update	24 25 26 26

Part I: Tabular Q-Learning

a. Learn the policy

I. Descriptive analysis of discounted returns and maximum distance travelled, averaged over 1000 trajectories using learned policy

Averaged over 100 trajectories:

Maximum Distance :- 462.345000000002

Avg. Return at start state :- 1.1066789672989885

Discounted Return vs. Iterations (Left Plot)

• Interpretation:

- This metric represents the cumulative discounted reward collected by the agent, averaged over **1,000 trajectories**, at different stages of training.
- A higher discounted return indicates better policy performance, meaning the agent is taking actions that lead to long-term rewards.

• Trend Analysis:

- The curve exhibits an initial rapid increase in discounted return during the first 20,000 iterations.
- This steep rise suggests that the agent quickly learns effective strategies for navigating the highway and avoiding collisions.
- After **20,000 iterations**, the curve begins to plateau around **1.1**, indicating that the agent has found a relatively stable policy.
- Minor fluctuations in the later iterations suggest continued fine-tuning, possibly due to exploration.

• Key Observations:

- The agent improves significantly in the early training phase, reflecting effective policy learning.
- The final stability of the curve implies that further training does not drastically improve performance, suggesting near-optimal policy convergence.
- The small oscillations in later iterations indicate that the agent is still exploring suboptimal actions occasionally but remains close to the best policy.

Maximum Distance Traveled vs. Iterations (Right Plot)

• Interpretation:

- This metric tracks the **average maximum distance** the agent drives before a collision, averaged over **1,000 trajectories** at each evaluation point.
- A higher value means the agent is learning to drive further along the highway without colliding.

• Trend Analysis:

- Unlike the smooth increase seen in the discounted return, this plot has more variance throughout training.
- The **early phase (0–20,000 iterations)** shows a steady rise, indicating that the agent is improving in maintaining longer trajectories without collisions.
- The **mid-phase (20,000–60,000 iterations)** continues to see gradual improvements but also exhibits fluctuations.
- The later phase (after 60,000 iterations) shows more pronounced peaks and dips, reflecting variability in performance—possibly due to risk-taking behavior or situational challenges in the environment.

• Key Observations:

- The increasing trend confirms that the agent is learning to drive longer distances as training progresses.
- The high variance suggests occasional failures or exploratory actions that result in shorter trajectories.
- Unlike the discounted return, which stabilizes early, this metric keeps improving even after 100,000 iterations, showing that the agent's driving ability is still refining.
- The late-phase oscillations might be caused by the balance between **exploitation** (sticking to a safe policy) and exploration (trying new strategies to improve further).

II. Visualization of Lane:

Lane values dynamically adjust based on traffic conditions:

- Lanes with fewer obstacles tend to have higher values.
- Lanes with multiple red cars (especially closely spaced) have lower values.

Smooth value transitions suggest the agent may not aggressively switch lanes unless necessary:

• The gradient of shading indicates that lane-switching is considered **only when beneficial** rather than constantly.

The agent may prioritize central lanes over extreme left/right lanes:

• If middle lanes consistently appear lighter, it suggests they provide **better maneuverability** and **lower risk of collisions**.

Obstacle distribution significantly influences lane preferences:

• If obstacles are **clustered** in a specific lane, its value drops considerably.

III. Visualization of Speed:

Consistent Policy Convergence in 4/5 Trajectories

Observation:

- Identical Q-value (1.5) for no-op appears in 4 GIFs, showing stable convergence for maintaining speed in neutral states.
- Minimal visual variation between these trajectories suggests the agent reliably defaults to moderate-risk, moderate-reward behavior.

Implications:

- The policy has learned a safe baseline for states without clear obstacles or advantages.
- Real-world analog: Like a driver maintaining speed in light traffic without lane changes.

Outlier Trajectory Reveals High-Reward State

Observation:

One GIF (3rd) shows a divergent Q-value (4.0), indicating either:

- A high-reward state (e.g., optimal lane/speed combo with no traffic).
- A training artifact (e.g., overestimation due to exploration noise).
- Visual contrast: This trajectory's unique value suggests rare but critical opportunities for no-op.

Implications:

The agent may under-exploit high-value states due to insufficient exploration.

Real-world analog: Discovering an open highway lane where maintaining speed maximizes efficiency.

Dynamic Lane-Speed Adaptation

Observation:

- GIFs with Q=1.5 likely represent states where:
 - Lane matters: Middle lanes (l=2,3) may appear brighter (higher value) than edges (l=1,4).
 - Speed matters: High speeds (s=3,4) are rewarded only in low-traffic lanes.
- GIF with Q=4.0 could show a lane/speed combo with zero obstacles (e.g., s=3, l=2, all d_i =0).

Implications:

The policy dynamically adjusts to lane/speed conditions but may miss optimizations.

Smooth Policy Transitions Suggest Caution

Observation:

- No abrupt shifts between GIFs imply the agent avoids aggressive changes even when Q-values differ.
- Gradient-like transitions (e.g., $Q=1.5 \rightarrow 4.0$) hint that the agent requires clear incentives to deviate from no-op.

Implications:

The policy prioritizes stability over opportunistic gains, reducing collision risks.

b. Experiment with different discount factors

$$\bullet \quad \gamma = 0.9$$
:

 Slower convergence but higher final return (~1.1–1.2), reflecting a balance between short- and long-term rewards.

The agent learns to avoid risky actions (e.g., frequent lane changes) that might penalize future rewards.

• Achieves a higher max distance than $\gamma = 0.8$, as the agent balances exploration and exploitation to reach farther states while maintaining safety.

Averaged over 100 trajectories:

Avg. Distance: -462.345000000002

Avg. Return at start state :- 1.1066789672989885

• $\gamma = 0.99$:

○ Slowest convergence, with the highest final return (~7.8–8), emphasizing long-term rewards.

The agent optimizes for sustained safe driving (e.g., smooth lane changes, steady speed) over many steps.

 The highest max distance, as the agent's long-term focus encourages exploration and efficient navigation (e.g., strategic lane changes to avoid traffic).

Averaged over 100 trajectories:

Avg. Distance :- 551.4330000000009

Avg. Return at start state :- 7.99639645187273

Key Insight:

- (Discounted Return) Higher γ leads to better long-term performance but requires more iterations to converge. Lower γ achieves stable but suboptimal policies faster.
- (Max Distance travelled) Higher γ correlates with greater exploration and distance coverage, as the agent values future rewards more highly.

c. Experiment with different learning rates

overestimations may lead to suboptimal policies.

Trade-off: Efficient training time with minor performance sacrifices.

 Moderate max distance (~180–200), with faster initial progress but occasional exploration gaps.

May miss optimal routes due to premature convergence.

Averaged over 100 trajectories:

Avg. Distance: - 171.1109999999985

Avg. Return at start state :- 1.0966313203653852

• $\alpha = 0.5$ (High Learning Rate):

• Convergence: Rapid initial progress but unstable, plateauing at the lowest return (~0.96–1.1).

Behavior: Aggressive updates risk "overshooting" optimal actions, causing high variance in returns.

Trade-off: Fast early learning but prone to instability and local optima.

Lowest max distance
 (~92–110), as aggressive
 updates lead to erratic policies
 (e.g., frequent lane/speed
 changes).
 Exploration is less systematic,
 hindering distance coverage.

Averaged over 100 trajectories:

Avg. Distance: - 92.1330000000001

Avg. Return at start state :- 0.9878974118976542

Key Insight:

- (Discounted Return) Lower α (0.1) yields higher final performance, while higher α (0.5) speeds up early learning at the cost of stability.
- (Max Distance travelled) Lower α correlates with better exploration and distance maximization, while higher α sacrifices exploration for speed.

d. Experiment with different exploration strategies

I. <u>Constant epsilon strategy:</u>

$\varepsilon = 0.75$ (Balanced Exploration)

• Trend:

- Achieves the highest average return (~500–520) after sufficient iterations.
- O Initial progress is slower but surpasses other ε values long-term.

• Behavior:

- Optimal balance: explores enough to discover high-reward policies while exploiting learned knowledge.
- Avoids erratic decisions seen with higher ε.

• Trade-off:

• **Best performance** but requires patience during early training.

Averaged over 100 trajectories:

Avg. Distance :- 541.0410000000027

Avg. Return at start state :- 1.112807491706412

$\varepsilon = 0.85$ (High Exploration)

• Trend:

- Lowest average return (~400–450) with large fluctuations.
- Fails to stabilize due to excessive randomness in actions.

• Behavior:

- Over-exploration leads to frequent low-reward actions (e.g., unnecessary lane changes).
- Struggles to refine policies because of high noise.

• Trade-off:

 Poor exploitation; only useful for early-stage exploration in complex environments.

Averaged over 100 trajectories:

Avg. Distance: - 501.8910000000021

Avg. Return at start state :- 1.1070269475866197

Key Insights:

• Exploration-Exploitation Trade-off:

Higher ε (0.85) harms performance by prioritizing randomness over learned policies. Lower ε (0.65) is stable but suboptimal.

 $\varepsilon = 0.75$ is the "sweet spot" for this environment.

• Convergence Speed vs. Quality:

 $\varepsilon = 0.75$ converges slower but to a higher return.

 $\varepsilon = 0.65$ converges faster but plateaus earlier.

• Policy Stability:

The last-5-average metric confirms $\varepsilon = 0.75$ achieves both stability and high rewards.

Recommendations:

- **Default Choice**: $\varepsilon = 0.75$ for most scenarios, as it balances exploration and exploitation effectively.
- Conservative Choice: $\varepsilon = 0.65$ if the environment heavily penalizes random actions (e.g., collision risks).
- Avoid $\varepsilon = 0.85$ unless paired with ε -decay schedules to reduce exploration over time.

II. <u>Variable epsilon strategy:</u>

to 1.25 units/10k iterations

 Suggests under-exploration in late stages

Averaged over 100 trajectories:

Avg. Distance: - 612.8250000000037

Avg. Return at start state :- 1.1103932255211442

b. Exponential Decay Strategy

- Early Phase (0-30k iterations):
 - Rapid climb from 0 to 600 average return
 - Slope = 20 return units/10k iterations (3× faster than linear)
 - Initial high exploration enables faster discovery of good policies
- Plateau Analysis:
 - o Final 20% of training:
 - Sustained growth (600 → 700)
 - Maintains 5 units/10k iteration improvement
 - Continued exploration prevents premature convergence

Averaged over 100 trajectories:

Avg. Distance :- 660.2970000000038

Avg. Return at start state :- 1.1088887546449628

Key Insights

1. Trade-offs:

- Linear decay is safer but may converge to local optima.
- Exponential decay **prioritizes early exploration**, yielding better long-term policies but with higher initial variance.

Agent Behavior:

• Linear: Prefers gradual policy refinement (e.g., lane-keeping with rare overtakes).

• **Exponential**: More aggressive early (e.g., frequent lane changes), then refines to optimal strategies.

Decay Dynamics:

• Exponential decay's long tail ($\varepsilon \to 0.01$) ensures minimal late-stage exploration, while linear decay cuts off exploration abruptly.

e. Study the impact of modifying the reward model

1. Modifying reward to no. of overtakes done:

I. Descriptive Analysis of Discounted Returns and Average Maximum Distance travelled:

It leads to high-risk, high-variance policies with poor long-term returns.

Averaged over 100 trajectories

Avg. Distance :- 264.629999999995

Avg. Return at start state :- 0.4742014885989074

Performance:

Discounted Returns:

- Shows a declining trend from -0.1 to -0.5, indicating that optimizing for overtakes alone leads to poor long-term performance.
- The agent likely becomes overly aggressive, causing collisions or penalties that reduce overall returns.

Max Distance Traveled:

Peaks around 300 units but fluctuates significantly, suggesting inconsistent performance. High variance implies the agent sacrifices stability for frequent overtakes, leading to erratic trajectories.

Interpretation of Results:

- Pros: Encourages proactive behavior, high max distance in some runs.
- Cons: Leads to penalty accumulation (collisions, unsafe lane changes).

Poor discounted returns indicate the policy is not sustainable.

II. Visualization of value of staying in lane:

Dominant Pattern: Two Distinct Lane Values

- Observation:
 - 3/5 GIFs show the equation $[1\ 2 \div 3 = 5]$ or $[1\ 2 \div 3 = 4]$, yielding lane values of 5.0 or 4.0.
 - 2/5 GIFs show $[x = \frac{1}{2} \times 3]$, yielding a lane value of 1.5.
- Interpretation:
 - The higher values (4.0–5.0) likely represent low-risk lanes (e.g., middle lanes with sparse traffic).
 - The lower value (1.5) suggests higher-risk lanes (e.g., edge lanes or lanes with dense traffic).

Lane Preference Hierarchy

- High-Value Lanes (4.0–5.0):
 - Likely middle lanes (1=2,3), where:
 - Traffic is smoother.
 - Distance to obstacles (d_i) is maximized.
 - The slight variation (4.0 vs. 5.0) may reflect temporary traffic fluctuations.
- Low-Value Lane (1.5):
 - Likely an edge lane (l=1 or 4), where:
 - Merging/exit traffic increases collision risk.
 - Obstacle distances (d_i) are smaller.

Policy Behavior Insights

- Risk-Averse Lane Selection:
 - The agent strongly prefers middle lanes (high average Q-values for no-op).
 - Edge lanes are deprioritized unless necessary (low Q-values).
- Dynamic Adaptation:
 - The variability in high values (4.0 vs. 5.0) suggests the policy adjusts to real-time traffic density.
 - The consistency of low values (1.5) implies edge lanes are consistently riskier.

Training Implications

- Exploration Coverage:
 - The recurrence of 1.5 in 2/5 GIFs confirms edge lanes are explored but deemed suboptimal.
 - The higher values (4.0–5.0) dominate, indicating the policy converges to safe defaults.
- Potential Blind Spots:
 - If edge lanes are always low-value, the agent may miss scenarios where they're temporarily optimal (e.g., during congestion in middle lanes).

III. Visualization of value of maintaining the speed:

Dominant Pattern: Consistent High Value in Most Cases

- Observation:
 - 4/5 GIFs show values clustered around 1.5 (from equations like $x = \frac{1}{2} \times 3$ and $x = \frac{1}{2} \times 3/4$)
 - 1/5 GIFs shows a lower base value of 0.5 (x = $\frac{1}{2}$)
- Interpretation:
 - The 1.5 values represent lanes where maintaining speed (no-op) is moderately optimal likely middle lanes (l=2,3) with normal traffic conditions
 - The 0.5 value suggests either:
 - An edge lane (l=1 or 4) with higher risk
 - A lane with dense traffic that makes maintaining speed suboptimal

Lane-Specific Insights

- High-Value Lanes (1.5):
 - Appear in 80% of trajectories
 - Characteristics:
 - Likely middle lanes (l=2,3)
 - Balanced traffic flow (no nearby obstacles)
 - Optimal for maintaining speed without adjustments
- Low-Value Lane (0.5):
 - Appears in 1 trajectory
 - Characteristics:
 - Likely edge lane or lane with traffic congestion
 - Maintaining speed may lead to collisions or penalties
 - Agent should consider lane changes or speed adjustments

Speed Maintenance Policy

- General Behavior:
 - Agent learns that maintaining speed is usually safe (1.5 value dominates)
 - But recognizes specific lanes/situations where it's risky (0.5 value)
- Adaptive Decision-Making:
 - Policy automatically adjusts value based on lane position
 - Shows understanding of lane-specific risk profiles

Training Implications

- Effective Learning:
 - Majority of cases correctly identify safe speed maintenance
 - Minority case shows recognition of dangerous situations

- Potential Improvements:
 - Could benefit from more exploration of edge cases
 - May need reward adjustments for better differentiation

2. Change quantization to three:

I. Descriptive Analysis of Discounted Returns and Average Maximum Distance travelled:

It produces safer, more stable driving but may lack aggressiveness.

Averaged over 100 trajectories

Avg. Distance :- 74.4779999999994

Avg. Return at start state :- 0.849852025079705

Performance:

Discounted Returns:

- Expected to show more stable returns compared to overtakes, as maintaining safe distances promotes consistent performance.
- Likely less negative than overtake-focused rewards, as the agent prioritizes safety over aggressive maneuvers.
- Max Distance Traveled:
 - Should exhibit smoother growth with fewer fluctuations.
 - The agent maintains steady progress by balancing speed and safety, avoiding extreme behaviors.

Interpretation of Results:

Pros:

Promotes safe driving by maintaining optimal gaps.

Stable returns suggest better long-term performance.

Cons:

May be too conservative, reducing overtaking opportunities.

Lower peak distances if the agent avoids high-speed scenarios.

II. Visualization of value of staying in lane:

Policy Behavior Insights

- Risk-Aware Speed Maintenance:
 - Agent consistently assigns highest value (1.5) to safest lanes
 - Automatically devalues maintenance in risky lanes (0.5, 0.375)
- Dynamic Adaptation:
 - Values adjust precisely to lane conditions
 - Shows understanding of positional risk (edge vs middle)
- Conservative Defaults:
 - Prefers maintaining speed when safe (common case)
 - Only reduces value when clear risks exist

Training Observations

- Effective Convergence:
 - Majority cases show correct high valuation
 - Minority cases properly identify danger zones
- Potential Blind Spot:
 - Minimal variation between 0.5 and 0.375 cases
 - May need finer granularity in risk assessment

III. Visualization of value of maintaining the speed:

Policy Behavior Insights

- Risk-Aware Speed Maintenance:
 - Agent consistently assigns highest value (1.5) to safest lanes
 - Automatically devalues maintenance in risky lanes (0.5, 0.375)
- Dynamic Adaptation:
 - Values adjust precisely to lane conditions
 - Shows understanding of positional risk (edge vs middle)
- Conservative Defaults:
 - Prefers maintaining speed when safe (common case)
 - Only reduces value when clear risks exist

Training Observations

Effective Convergence:

- Majority cases show correct high valuation
- Minority cases properly identify danger zones
- Potential Blind Spot:
 - Minimal variation between 0.5 and 0.375 cases
 - May need finer granularity in risk assessment

f. Best Hyperparameters

Learning rate $(\alpha) = 0.1$

Discount Factor $(\gamma) = 0.9$

Best Strategy = Variable $\varepsilon = 0.75$, ε -decay-type = Exponential, ε -decay = 1 - 1e-4

Part II: Deep Q-Learning (Neural Network as Q-Function)

a. Implement and train a DQN agent

Hard Model Update

Hard Update \rightarrow Updating model weights with the new weights after every "k" episodes

Soft Model Update

Soft Update → Updating model weights with the new weights after every episode however with a factor of tau.

Solution for Catastrophic Forgetting

Implementation of Priority Experience Replay

Epsilon Decay

Decay in exploration rate over iterations

Plots	Hyperparameters	Observation
Discounted Return vs. Iterations Max Distance vs. Iterations 130 120 100 100 100 100 100 100	- e = 0.75 - e_decay = 0.999 - min_e = 0.01 - df = 0.99 - Batch = 256 - Lr = 1e-3 - Training Eps - 200K - Loss - MSE	 Applying exploration decay reduces fluctuations over the iterations Converges to stability
Trajectory out of 10 output trajectories.	Strategy - Learning at the end of episode - Epsilon decay over iterations	Evaluation Averaged over 100 trajectories Maximum Distance :- 139.1220000000038 Values of start state :- 2.942857034225591

b. Implement the DQN agent on the continuous state representation of environment

Hard Model Update

Hard Update \rightarrow Updating model weights with the new weights after every "k" episodes

Soft Model Update

Soft Update → Updating model weights with the new weights after every episode however with a factor of tau.

Solution for Catastrophic Forgetting

Implementation of Priority Experience Replay

c. Conclusions

- Prioritized Experience Replay converges very well.
- Soft Update of model gives good results on discrete case.
- Epsilon decay is the most important parameter to reduce degradation after gaining some experience.

Part III: Deep Q-Learning (Neural Network as Q-Function)

Best Parameters From Part I

- Learning rate $(\alpha) = 0.1$
- Discount Factor $(\gamma) = 0.9$
- Best Strategy = Variable $\varepsilon = 0.75$, ε -decay-type = Exponential, ε -decay = 1 1e-4

Conclusions From Part II

- Prioritized Experience Replay converges very well.
- Soft Update of model gives good results on discrete case.
- Epsilon decay is the most important parameter to reduce degradation after gaining some experience

Contribution:

Candidate A = Nishant Wankhade Candidate B = Varun Shindee

Part I	Candidate A Responsibilities	Candidate B Responsibilities	Collaboration Points
1. Base Implementation	 Develop core Q-table update logic Implement state-action matrix Create trajectory logging system 	 Build environment wrapper Design policy evaluation framework Implement seed management 	Jointly verify Q-value convergenceAlign on visualization standards
2. Discount Factors (γ)	 γ=0.8 configuration: Fast convergence analysis Short-term reward profiling 	 γ=0.99 configuration: Long-term policy analysis Delayed reward studies 	 Compare γ=0.9 results Co-author findings report
3. Learning Rates (α)	 α=0.1 implementation: Stable learning verification Slow adaptation analysis 	α=0.5 implementation:Oscillation monitoringDivergence prevention	 Joint analysis of α=0.3 Develop learning rate scheduler
4. Exploration Strategies	- Linear decay system: $\varepsilon \square = \max(0.01, 0.75 - (0.74t/100k))$ - Plot ε vs iteration	- Exponential decay system: $\epsilon \Box = \max(0.01, 0.99995^{t})$ - Adaptive ϵ algorithms	Compare exploration efficiencyDesign hybrid decay strategy
5. Reward Modifications	Overtake reward system:Counting mechanismCollision penalty tuning	 3-level quantization: State space adaptation Information loss analysis	Cross-validate reward scalingJoint performance benchmarking
Visualizations	Lane value heatmapsGIF generation pipelineMatplotlib styling	Speed value diagramsVideo compressionPlot annotations	Unified visualization themeShared legend conventions

Part II	Candidate A	Candidate B
1. Base DQN Implementation	- Design neural network architecture (2x32 hidden layers) - Implement forward/backward passes - Set up GPU acceleration	 Build experience replay buffer (FIFO 100k capacity) Develop batch sampling system Optimize memory usage
2. Training & Evaluation	- Discrete state training pipeline - Hyperparameter tuning (LR=1e-4, γ=0.99) - Monitor loss landscapes	 Continuous state adaptation Feature scaling implementation Handle non-discrete observations
3. Performance Analysis	- Compare DQN vs tabular convergence - Identify catastrophic forgetting cases - Benchmark inference speed	 Analyze replay buffer efficiency Study target network update effects Document exploration challenges

Part III	Candidate A	Candidate B
1. Advanced Techniques	- Double DQN implementation - Adaptive ε-greedy strategies - Learning rate scheduling	 Prioritized experience replay N-step returns Implement curiosity-driven exploration
2. Final Optimization	- Discrete state final model - Hyperparameter grid search - Training time optimization	- Continuous state final model - Memory efficiency improvements