

#### Dr. Nick Feamster Professor

# Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.

## **This Module: The Control Plane**

- Three Lessons
  - Control Plane Basics (OpenFlow 1.0 and Beyond)
  - SDN Controllers
  - Using SDN Controllers to Customize Control
- Programming Assignment (and Quiz)
- Quiz

## **OpenFlow Protocol Specification**



- OpenFlow controller communicates with switch over a secure channel
  - OpenFlow protocol defines message format
  - Purpose of control channel: update flow table
  - Logic is executed at controller

## **Switch Components**

- Flow table: Performs packet lookup
  - All packets compared to flow table for match
  - Actions depend on match being found
  - If no match, traffic is sent to controller

Secure channel: Communication to external controller

## Matching (OpenFlow v. 1.0)



- Packet header fields matched against one of N tables
- If no match, packet is sent to controller
- Otherwise, switch performs action

## Match: Fields in Lookup (v. 1.0)



## **Actions: Forward/Drop**

- Forward
  - ALL: Send out all interfaces, not including the incoming interface.
  - CONTROLLER: Encapsulate and send to the controller.
  - LOCAL: Send to the switch's local networking stack.
  - TABLE: Perform actions in flow table. Only for packet-out messages.
  - IN PORT: Send the packet out the input port
  - Optional: Normal forwarding, spanning tree
- Drop: A flow-entry with no specified action indicates that all matching packets should be dropped.

## **Optional Actions: Modify/Enqueue**

- Modify: Option to modify packet header values in the packet (e.g., VLAN ID)
  - Set VLAN ID, priority, etc.
  - Set destination IP address

 Enqueue: Send the packet through a queue attached to a port

## **Example: dpctl Control Channel**



- \$ sudo mn --topo single, 3 --mac --switch
  ovsk --controller remote
- dpctl to communicate with switches
  - Switches listen on port 6634
  - Can inspect flow table entries, modify flows, etc.

## OpenFlow (v. 1.3) Enhancements



- Action set: Set of actions to be performed on each packet.
- Group: A list of action sets
- Each table updates fields, modifies action set

## **Action Group Options**

- Execute all action sets in a group
  - Useful for implementing multicast: One packet is cloned for each action set in the group

- Indirect groups
  - Execute the one defined bucket in the group.
     Useful for pointing multiple flow entries to a common action (similar to RCP optimizations)

## **Example Actions**

TTL: Decrement, copy inwards/outwards

• MPLS: apply MPLS push action to packet

 QoS: apply QoS actions (e.g., set\_queue) to the packet

## **OpenFlow: Other Details**

- Metering and traffic monitoring
- Control channel details
  - Encryption
  - Handling control messages from multiple controllers
- More details on the ONF page: <u>https://www.opennetworking.org/sdn-resources/onf-specifications/openflow</u>

## **Other SDN Control Architectures**

- Juniper's Contrail Controller (Linux)
  - XMPP as control plane
  - L2 and L3 virtual networks
  - Contributions to OpenDaylight
- Cisco's Open Network Environment
  - Centralized software controller
  - Programmable data plane
  - Ability to provide virtual overlays

## **Summary: Control Plane Basics**

- OpenFlow Switch Components
  - Secure channel
  - Flow tables (match and action)
  - (New) Group tables
- OpenFlow Protocol is evolving
- dpctl connects directly to a switch to poll, manipulate, etc.
- Next lesson: SDN Controllers

## **This Module: Introduction**

- Needs and Expectations
  - Determine if this course applies to you
  - Identify whether you have the necessary prerequisites
  - Learn how much time commitment each module will require
- Course Overview