ЛЕКЦИЯ 10. ПРИБЛИЖЕНИЕ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ.

ЛИТЕРАТУРА. Учебник [1] §11.1, §11.13

§ 10.1 ОБСУЖДЕНИЕ ЗАДАЧ ПО ПРИБЛИЖЕНИЮ ФУНКЦИЙ.

В практической деятельности чаще всего приходится сталкиваться с задачами обработки данных, когда известны значения некоторой функции f(x) только на множестве дискретных точек X_0 , X_1 , ... X_n , но само аналитическое выражение для функции неизвестно. Общий подход к решению задачи восстановления аналитического выражения функции состоит в замене функции f(x) некоторой известной и достаточно легко вычисляемой функцией $\Phi(x)$ такой, что $\Phi(x) \approx f(x)$. Подобный процесс замены неизвестной функции некоторой близкой функцией называется *аппроксимацией*, а функция $\Phi(x)$ называется *аппроксимирующей функцией*.

Для аппроксимации функций широко используются классы функций вида:

$$\Phi_m(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_m \varphi_m(x),$$

являющиеся линейными комбинациями фиксированного набора базисных функций $\varphi_0(x)\,, \varphi_1(x)\,, \dots \varphi_m(x)\,. \ \, \text{Функцию} \ \, \Phi_m(x) \,\, \text{называют обобщенным многочленом по}$ системе функций $\varphi_0(x)\,, \varphi_1(x)\,, \dots \varphi_m(x)\,, \text{а число } m\,\text{- называют степенью многочлена}.$ Если в качестве базисных функций берутся степенные функции $\varphi_0(x)=1\,,$

 $\varphi_1(x) = \cos(2\pi x)$, $\varphi_2(x) = \sin(2\pi x)$, то возникает задача приближения функции тригонометрическими многочленами:

$$T_m(x) = \alpha_0 + \sum_{1 \le k \le m/2} \alpha_k \cos(2\pi kx) + \beta_k \sin(2\pi kx)$$

Выбор класса аппроксимирующих функций осуществляется с учетом того, насколько хорошо может быть приближена функция f(x) функциями из этого класса.

Существуют два основных подхода в аппроксимации функций:

- 1. Пусть точки $f(x_i)$, i=0,1,...n получены в результате достаточно точных измерений или вычислений, т.е. есть основания считать их лишенными ошибок. Тогда следует выбирать аппроксимирующую функцию $\Phi(x)$ такой, чтобы она совпадала со значениями исходной функции в заданных точках. Геометрически это означает, что кривая $\Phi(x)$ проходит через точки $(x_i, f(x_i))$ плоскости. Такой метод приближения называется интерполяцией.
- 2. Если точки $f(x_i)$, i=0,1,...n содержат ошибки (данные экспериментов, статистические данные и т.п.), то функция $\Phi(x)$ выбирается из условия минимума некоторого функционала, обеспечивающего сглаживание ошибок. Такой прием называется аппроксимацией функции « в среднем». Мы будем рассматривать

аппроксимацию функции по методу наименьших квадратов. Геометрически это будет означать, что кривая $\Phi(x)$ будет занимать некоторое «среднее» положение, не обязательно совпадая с исходными точками $(x_i, f(x_i))$ плоскости.

§10.2 АЛГОРИТМ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ.

Постановка задачи. Пусть даны точки X_0 , X_1 , ... X_n , и известны значения исходной функции в этих точках $f_i = f(x_i)$, i = 0,1,...n. Требуется найти такую аппроксимирующую функцию $\Phi_m(x)$, чтобы величина среднеквадратичного отклонения

$$\sigma(\Phi_m, f) = \sqrt{\frac{1}{n+1} \sum_{i=0}^{n} (\Phi_m(x_i) - f_i)^2}$$
(10.1)

была минимальной. Обычно используют аббревиатуру СКО.

Это означает, что корень квадратный из среднего арифметического квадратов разности между приближающей функцией и исходной был минимальным.

Предположим, что в качестве аппроксимирующей функции берется многочлен

$$\Phi_m(x) = P_m(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m = \sum_{j=0}^m a_j x^j$$

Тогда конкретизируем задачу.

Постановка задачи приближения таблично заданной функции многочленом по методу НК. Требуется найти многочлен P_m заданной степени m (m=n) такой, чтобы величина среднеквадратичного отклонения (СКО)

$$\sigma(P_m, f) = \sqrt{\frac{1}{n+1} \sum_{i=0}^{n} \left(P_m(x_i) - f_i \right)^2} = \sqrt{\frac{1}{n+1} \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_j x_i^j - f_i \right)^2}$$

была минимальной.

Заметим, что при фиксированной степени m среднеквадратичное отклонение $\sigma(P_m,f)$ является функцией m+1 коэффициента многочлена $a_0,a_1,...,a_m$. Минимум среднеквадратичного отклонения достигается при тех же значениях $a_0,a_1,...,a_m$, что и минимум функции:

$$\rho(a_0, a_1, \dots a_m, f) = \sum_{i=0}^n (P_m(x_i) - f_i)^2 = \sum_{i=0}^n \left(\sum_{j=0}^m a_j x_i^j - f_i\right)^2$$

Алгоритм метода. Существуют различные подходы к решению задачи. Простейший метод состоит в том, чтобы использовать необходимое условие экстремума функции нескольких переменных:

$$\frac{\partial \rho}{\partial a_k} = 0$$
, $k=0,1,...m$

ПРИМЕР 10.1. Пусть исходная таблично заданная функция

$$x_0, x_1, \dots x_n$$

 $f_0, f_1, \dots f_n$

Приближается многочленом нулевой степени. Тогда $P_0=a_0$

$$\rho(a_0, f) = \sum_{i=0}^{n} (P_0(x_i) - f_i)^2 = \sum_{i=0}^{n} (a_0 - f_i)^2 =$$

$$= (a_0 - f_0)^2 + (a_0 - f_1)^2 + (a_0 - f_2)^2 + \dots + (a_0 - f_n)^2$$

Найдем производную функции $\rho(a_0,f)$ по a_0 :

$$\frac{\partial \rho}{\partial a_0} = 2 \cdot (a_0 - f_0) + 2 \cdot (a_0 - f_1) + \dots + 2 \cdot (a_0 - f_n) = 0$$

Собирая коэффициенты, получим: $(n+1)a_0 = f_0 + f_1 + ... + f_n$

Тогда a_0 равно среднему арифметическому : $a_0 = \frac{\displaystyle\sum_{i=0}^n f_i}{n+1}$

Решим задачу в общем случае многочлена степени т.

$$\rho(a_0, a_1, \dots a_m, f) = \sum_{i=0}^n \left(P_m(x_i) - f_i \right)^2 = \sum_{i=0}^n \left(\sum_{j=0}^m a_j x_i^j - f_i \right)^2$$

Вычислим и приравняем к нулю частную производную по переменной $\,{\it a}_k$:

$$\frac{\partial \rho}{\partial a_k} = 2\sum_{i=0}^n \left(\sum_{j=0}^m a_j x_i^j - f_i\right) x_i^k = 0 \qquad k=0,1,\dots m.$$

Сократим на 2, поменяем порядок суммирования и запишем систему чуть иначе:

$$\sum_{i=0}^{m} a_{j} \sum_{i=0}^{n} x_{i}^{k+j} = \sum_{i=0}^{n} f_{i} x_{i}^{k} \qquad k=0,1,...m$$
 (10.2)

Полученная система называется нормальной системой метода наименьших квадратов.

$$\sum_{i=0}^{m} a_{j} \sum_{i=0}^{n} x_{i}^{k+j} = \sum_{i=0}^{n} f_{i} x_{i}^{k}, \quad k=0,1,...m$$

Распишем систему более подробно:

$$\begin{cases}
\left(\sum_{i=0}^{n} x_{i}^{0}\right) a_{0} + \left(\sum_{i=0}^{n} x_{i}\right) a_{1} + \left(\sum_{i=0}^{n} x_{i}^{2}\right) a_{2} + \dots + \left(\sum_{i=0}^{n} x_{i}^{m}\right) a_{m} = \sum_{i=0}^{n} f_{i} \\
\left(\sum_{i=0}^{n} x_{i}\right) a_{0} + \left(\sum_{i=0}^{n} x_{i}^{2}\right) a_{1} + \left(\sum_{i=0}^{n} x_{i}^{3}\right) a_{2} + \dots + \left(\sum_{i=0}^{n} x_{i}^{m+1}\right) a_{m} = \sum_{i=0}^{n} f_{i} x_{i} \\
\left(\sum_{i=0}^{n} x_{i}^{m}\right) a_{0} + \left(\sum_{i=0}^{n} x_{i}^{m+1}\right) a_{1} + \left(\sum_{i=0}^{n} x_{i}^{m+2}\right) a_{2} + \dots + \left(\sum_{i=0}^{n} x_{i}^{2m}\right) a_{m} = \sum_{i=0}^{n} f_{i} x_{i}^{m}
\end{cases} \tag{10.2}$$

Очевидно, что система является симметричной. Для практического использования запишем систему в виде:

$$\begin{cases} s_0 a_0 + s_1 a_1 + s_2 a_2 + \dots + s_m a_m = b_0 \\ s_1 a_0 + s_2 a_1 + s_3 a_2 + \dots + s_{m+1} a_m = b_1 \\ \dots \\ s_m a_0 + s_{m+1} a_1 + s_{m+2} a_2 + \dots + s_{2m} a_m = b_m \end{cases}$$

где
$$s_k = \sum_{i=0}^n x_i^k$$
, $b_k = \sum_{i=0}^n f_i x_i^k$.

Пример 10.2. Приблизить функцию заданную таблично многочленами нулевой, первой второй степеней. Сравнить величины среднеквадратичного уклонения.

X_i	-2	-1	0	1	2
y_i	-2	0	-1	1	0

1.
$$P_0(x) = a_0$$
, $a_0 = \frac{-2 + 0 - 1 + 1 + 0}{5} = -0.4$

2.Приблизим функцию многочленом 1-ой степени. $P_1(x) = a_0 + a_1 x$, m=1. Нормальная система наименьших квадратов при этом примет вид:

$$\begin{cases} s_0 a_0 + s_1 a_1 = b_0 \\ s_1 a_0 + s_2 a_1 = b_1 \end{cases}$$
 Вычислим коэффициенты системы: $s_0 = \sum_{i=0}^n x_i^0 = \sum_{i=0}^4 1 = 5$,

$$s_1 = \sum_{i=0}^{n} x_i^1 = 0, \quad s_2 = \sum_{i=0}^{n} x_i^2 = 10, \quad b_0 = \sum_{i=0}^{4} y_i \cdot x_i^0 = -2$$

$$b_1 = \sum_{i=0}^{4} y_i \cdot x_i^1 = 5$$

Таким образом, система имеет вид:

$$\begin{cases} 5a_0 + 0a_1 = -2 \\ 0a_0 + 10a_1 = 5 \end{cases}, \quad a_0 = -0.4, \quad a_1 = 0.5$$

$$P_1(x) = -0.4 + 0.5x$$

Для нахождения среднеквадратичного отклонения вычислим значения многочлена в узлах таблицы:

$$P_1(-2) = -1.4$$
, $P_1(-1) = -0.9$, $P_1(0) = -0.4$, $P_1(1) = 0.1$, $P_1(2) = 0.6$.

Тогда

$$\sigma(P_1, f) = \sqrt{\frac{1}{5} \sum_{i=0}^{4} (P(x_i) - f_i)^2} = \sqrt{\frac{1}{5} [(-1.4 + 2)^2 + 0.9^2 + (-0.4 + 1)^2 + (0.1 - 1)^2 + 0.6^2]}$$

$$= \sqrt{\frac{1}{5} (3 \cdot 0.6^2 + 2 \cdot 0.9^2)} = \sqrt{\frac{1}{5} 2.7} = \sqrt{0.54} = 0.73$$

2.Приблизим функцию многочленом 2-ой степени. $P_2(x) = a_0 + a_1 x + a_2 x^2$, m=2. Нормальная система наименьших квадратов при этом примет вид:

$$\begin{cases} s_0 a_0 + s_1 a_1 + s_2 a_2 = b_0 \\ s_1 a_0 + s_2 a_1 + s_3 a_2 = b_1 \\ s_2 a_0 + s_3 a_1 + s_4 a_2 = b_2 \end{cases}$$

Вычислим недостающие коэффициенты системы: $s_3 = \sum_{i=0}^n x_i^3 = 0$

$$s_4 = \sum_{i=0}^n x_i^4 = 34$$
, $b_2 = \sum_{i=0}^4 y_i \cdot x_i^2 = -7$

Таким образом, система имеет вид:

$$\begin{cases} 5a_0 + 0a_1 + 10a_2 = -2\\ 0a_0 + 10a_1 + 0a_2 = 5\\ 10a_0 + 0a_1 + 34a_2 = -7 \end{cases}$$

Решая систему, получим требуемый многочлен $P_2(x) = 0.0286 + 0.5x - 0.214x^2$ Среднеквадратичное отклонение при этом, равно: $\sigma(P_2, f) = 0.64$ Ниже имеем графики представленных функций.

$$\mathbf{x} = \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1 \\ 2 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} -2 \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{P(a1,1,x)} = \begin{pmatrix} -1.4 \\ -0.9 \\ -0.4 \\ 0.1 \\ 0.6 \end{pmatrix} \qquad \mathbf{P(a2,2,x)} = \begin{pmatrix} -1.829 \\ -0.686 \\ 0.029 \\ 0.314 \\ 0.171 \end{pmatrix}$$

Введем в рассмотрение матрицу системы:

$$\Gamma_{\text{ с элементами}} \Gamma_{k,j} = \sum_{i=0}^{n} x_i^{k+j}$$
 и вектор b с элементами $b_k = \sum_{i=0}^{n} f_i x_i^k$, $j,k = 0...m$.

Тогда систему (1) можно записать в матричном виде: $\Gamma a = b$, где a - вектор неизвестных коэффициентов многочлена P_m

Докажем следующую теорему.

Теорема 10.1. Многочлен наилучшего среднеквадратичного приближения $P_m(x)$ существует и единственен.

Доказательство. Вернемся к нормальной системе уравнений (10.2)

$$\sum_{i=0}^{m} a_{j} \sum_{i=0}^{n} x_{i}^{k+j} = \sum_{i=0}^{n} f_{i} x_{i}^{k}, \ k = 0...m$$

Докажем сначала, что однородная система имеет только нулевое решение:

$$\sum_{j=0}^{m} a_j \sum_{i=0}^{n} x_i^{k+j} = 0 , \quad k = 0...m$$

Для этого умножим k-ое уравнение системы на a_k и просуммируем все уравнения:

$$\sum_{k=0}^{m} a_k \sum_{i=0}^{m} a_j \sum_{i=0}^{n} x_i^{k+j} = 0$$
. Теперь выполним перегруппировку слагаемых:

$$\sum_{k=0}^{m} a_k \sum_{j=0}^{m} a_j \sum_{i=0}^{n} x_i^{k+j} = \sum_{i=0}^{n} \sum_{j=0}^{m} \sum_{k=0}^{m} a_j a_k x_i^j x_i^k = \sum_{i=0}^{n} \sum_{j=0}^{m} a_j x_i^j \sum_{k=0}^{m} a_k x_i^k = \sum_{i=0}^{n} (P_m(x_i))^2 = 0$$

Так как (m < n), то из основной теоремы алгебры следует, что $P_m(x) \equiv 0$, то есть $a_j = 0$, $\forall j = 0,...m$.

Пусть теперь система решена и найдены коэффициенты многочлена. Докажем, что найденный многочлен решает поставленную задачу. Возьмем другой многочлен с произвольными коэффициентами

$$Q_m(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m = \sum_{j=0}^m b_j x^j$$

Найдем

$$\rho(Q_m, f) = \sum_{i=0}^n (Q_m(x_i) - f_i)^2 = \sum_{i=0}^n (Q_m(x_i) - P_m(x_i) + P_m(x_i) - f_i)^2 =$$

$$= \sum_{i=0}^n (Q_m(x_i) - P_m(x_i))^2 + 2\sum_{i=0}^n (Q_m(x_i) - P_m(x_i)) (P_m(x_i) - f_i) + \sum_{i=0}^n (P_m(x_i) - f_i)^2 =$$

$$= \sum_{i=0}^n (Q_m(x_i) - P_m(x_i))^2 + 2S + \rho(P_m, f)$$

Рассмотрим среднюю сумму.

$$S = \sum_{i=0}^{n} \sum_{j=0}^{m} (b_{j} - a_{j}) x_{i}^{j} \left(\sum_{k=0}^{m} a_{k} x_{i}^{k} - f_{i} \right) = \sum_{i=0}^{n} \sum_{j=0}^{m} (b_{j} - a_{j}) \left(\sum_{k=0}^{m} a_{k} x_{i}^{k+j} - f_{i} x_{i}^{j} \right) = \sum_{i=0}^{m} (b_{j} - a_{j}) \left(\sum_{k=0}^{m} a_{k} \sum_{j=0}^{n} x_{i}^{k+j} - \sum_{j=0}^{n} f_{i} x_{i}^{j} \right) = 0$$

Так как коэффициенты полинома удовлетворяют нормальной системе уравнений (1). Очевидно, что $\rho(Q_m,f)$ будет минимальной, если взять $Q_m(x)\equiv P_m(x)$. Ч.т.д.

Основной проблемой при аппроксимации функций МНК является выбор степени m аппроксимирующего многочлена.

Существуют различные подходы к решению этой задачи.

- 1. Предположим, что n>>m . Будем решать задачу постепенно увеличивая степень m=0,1,2,....Значения среднеквадратических уклонений с ростом m должны убывать, а затем, достигнув некоторого минимума, при некотором m=m0, начинают возрастать. В качестве приближающей степени следует взять m0-1.
- 2. Иногда задают величину $\mathcal E$ -точность вычислений. Тогда увеличиваем m до тех пор, пока не будет достигнута величина среднеквадратичного приближения, равного $\mathcal E$.

Замечания.

- 1. Обычно ограничиваются невысокими степенями приближающего многочлена (m<=5), так как при больших m нормальная система МНК плохо обусловлена.
- 2. В случае m=n многочлен совпадает с интерполяционным многочленом.
- 3. МНК часто применяют для решения задачи о подборе эмпирической зависимости.

§10.3 ПРИБЛИЖЕНИЕ ФУНКЦИИ ПО МНК ОБОБЩЕННЫМ МНОГОЧЛЕНОМ

Пусть функция $\Phi_m(x)$ представляет собой обобщенный многочлен:

$$\Phi_m(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_m \varphi_m(x)$$
(10.3)

Запишем его в более компактном виде: $\Phi_m(x) = \sum_{j=0}^m a_j \varphi_j(x)$

Задача состоит в том, чтобы найти такие коэффициенты a_0 , a_1 , ... a_m , чтобы величина СКО (10.1) была минимальной.

Будем решать задачу аналогично решению задачи приближения многочленами. Заметим, что при фиксированной степени m среднеквадратичное отклонение $\sigma(P_m,f)$ является функцией m+1 коэффициента многочлена $a_0,a_1,...,a_m$. Минимум среднеквадратичного отклонения достигается при тех же значениях $a_0,a_1,...,a_m$, что и минимум функции:

$$\rho(a_0, a_1, ... a_m, f) = \sum_{i=0}^{n} \left(\Phi_m(x_i) - f_i \right)^2 = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_j \varphi_j(x_i) - f_i \right)^2$$

Запишем необходимое условие экстремума функции нескольких переменных:

$$\frac{\partial \rho}{\partial a_k} = 0$$
, $k=0,1,...m$

Дифференцируя функцию по коэффициенту \mathcal{A}_k , получим следующее выражение:

$$\frac{\partial \rho}{\partial a_k} = 2\sum_{i=0}^n \left(\sum_{j=0}^m a_j \varphi_j(x_i) - f_i \right) \varphi_k(x_i) = 0$$

Меняя порядки суммирования, получим систему алгебраических уравнений относительно неизвестных a_k , к=0,1,...m. В общем виде система выглядит так:

$$\sum_{j=0}^{m} \left(\sum_{i=0}^{n} \varphi_{j}(x_{i}) \varphi_{k}(x_{i}) \right) a_{j} = \sum_{i=0}^{n} f_{i} \varphi_{k}(x_{i}), \text{ k=0,...m}$$
(10.4)

Можно записать ее в более развернутом виде:

$$\begin{cases} \left(\sum_{i=0}^{n} \varphi_{0}(x_{i}) \cdot \varphi_{0}(x_{i})\right) a_{0} + \left(\sum_{i=0}^{n} \varphi_{0}(x_{i}) \cdot \varphi_{1}(x_{i})\right) a_{1} + \dots + \left(\sum_{i=0}^{n} \varphi_{0}(x_{i}) \cdot \varphi_{m}(x_{i})\right) a_{m} = \sum_{i=0}^{n} f_{i} \varphi_{0}(x_{i}) \\ \left(\sum_{i=0}^{n} \varphi_{1}(x_{i}) \cdot \varphi_{1}(x_{i})\right) a_{0} + \left(\sum_{i=0}^{n} \varphi_{1}(x_{i}) \cdot \varphi_{1}(x_{i})\right) a_{1} + \dots + \left(\sum_{i=0}^{n} \varphi_{1}(x_{i}) \cdot \varphi_{m}(x_{i}) x_{i}^{m+1}\right) a_{m} = \sum_{i=0}^{n} f_{i} \varphi_{1}(x_{i}) \\ \left(\sum_{i=0}^{n} \varphi_{m}(x_{i}) \cdot \varphi_{0}(x_{i})\right) a_{0} + \left(\sum_{i=0}^{n} \varphi_{m}(x_{i}) \cdot \varphi_{1}(x_{i})\right) a_{1} + \dots + \left(\sum_{i=0}^{n} \varphi_{m}(x_{i}) \cdot \varphi_{m}(x_{i})\right) a_{m} = \sum_{i=0}^{n} f_{i} \varphi_{m}(x_{i}) \end{cases}$$

ПРИМЕР 10.2. Пусть функция задана таблицей:

X	-1	0	1
f(x)	0.5	1.5	2

Известно, что функция имеет вид: $f(x) = a + b \cdot 2^{-x}$. Найти коэффициенты а и b.

Решение. Функция f(x) задана обобщенным многочленом $\Phi_1(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x)$

 $\varphi_0(x) = 1$, $\varphi_1(x) = 2^{-x}$. Составим нормальную систему метода наименьших квадратов.

$$\sum_{i=0}^{2} \varphi_0(x_i) \cdot \varphi_0(x_i) = 1 + 1 + 1 = 3 \qquad \sum_{i=0}^{2} \varphi_0(x_i) \cdot \varphi_1(x_i) = 1 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} = 3.5$$

$$\sum_{i=0}^{2} \varphi_1(x_i) \cdot \varphi_1(x_i) = 2^{-1} \cdot 2^{-1} + 2^{0} \cdot 2^{0} + 2^{1} \cdot 2^{1} = 5.25$$

Найдем правую часть:

$$\sum_{i=0}^{2} f_i \cdot \varphi_0(x_i) = 0.5 \cdot 1 + 1.5 \cdot 1 + 2 \cdot 1 = 4,$$

$$\sum_{i=0}^{2} f_i \cdot \varphi_1(x_i) = 0.5 \cdot 2^1 + 1.5 \cdot 2^0 + 2 \cdot 2^{-1} = 3.5$$

Получаем систему уравнений $\begin{cases} 3a + 3.5b = 4 \\ 3.5a + 5.25b = 3.5 \end{cases}$

a = 2.5, b = -1. Таким образом, $f(x) = 2.5 - 2^{-x}$. При этом СКО=0

ПРИМЕР КЕПЛЕРА.

В 1601 году астроном Джон Кеплер сформулировал закон движения планет $T=cx^{3/2}$, \mathcal{X} - расстояние до Солнца, измеряемое в миллионах километров, T- период прохождения по орбите в днях, C- постоянная.

Наблюдения пар данных (X , T) для первых четырех планет следующие:

	\mathcal{X}_{i}	\mathcal{Y}_{i}
Меркурий	58 млн км	88 -суток
Венера	108 млн км	225 суток
Земля	150 млн км	365 суток
Mapc	228 млн км	687 суток

Коэффициент С подлежит определению.

Выведем нормальную систему МНК.

$$\rho(C, y) = \sum_{i=0}^{n} (T(x_i) - y_i)^2 = \sum_{i=0}^{3} (Cx_i^{3/2} - y_i)^2.$$

Необходимое условие экстремума:

$$\frac{\partial \rho}{\partial C} = 0$$

примет вид:
$$\frac{d\rho}{dC} = 2\sum_{i=0}^{3} (Cx_i^{3/2} - y_i)x_i^{3/2} = 0$$

Тогда ,очевидно, что:

$$C = \frac{\sum_{i=0}^{3} y_i x_i^{3/2}}{\sum_{i=0}^{3} x_i^3}$$

Вычисляя постоянную по полученным наблюдениям, получаем постоянную Кеплера:

C= 0.199769.