Applied Algorithms CSCI-B505 / INFO-I500

Lecture 6.

Amortized Analysis - 1

- Amortized Analysis
 - Aggregate Method
 - Accounting Method
 - Potential Method

Amortized Analysis?

Amortize:

- gradually write off the initial cost of (an asset) over a period
- reduce or pay off (a debt) with regular payments
- In an algorithm, there may be cheap operations and expensive operations.
- Regular worst-case analysis assumes the expensive operations always dominate the execution.
- However, there can be a **deterministic** limit on the number of times *expensive* happens.

Let's see on an example...

Stack-2

Stack-1

Implement a queue by using two stacks.

Enqueue(x):

Push x into stack-1.

Dequeue():

If stack-2 is empty, then
Pop everything from stack-1 and push into stack-2;
Pop from stack-2

Enqueue(7) Enqueue(2) Enqueue(9) Dequeu() Enqueue(8)

Dequeu() Dequeu() Enqueue(1) Enqueue(2) Dequeu()

Assume n insert or fetch operations will be executed. What will be the time-complexity on this implementation?

```
for (i=1 to n){
    operation = randomSelect(enqueue, dequeue);
    execute the operation;}
```

- Enqueue() is cheap, worst case O(1)-time.
- Dequeue() is expensive, worst-case O(n)-time.
- If I always do the expensive operation then worst-case complexity becomes $O(n^2)$!?

Is this correct?

Once an expensive 'dequeue' happens, some of the following 'dequeue's will always be cheap.

Once an expensive dequeue happens, the following ones are always cheap.

- How many times an item is inserted into the stack-1 and stack-2?
- How many times it is popped from stack-1 and stack-2?
- For n enquee/dequee, at most 4n push/pop are achieved $\frac{4n}{n} = 4 \in O(1) \text{ per each enqueue/dequeu operation.}$

This is **NOT average-case** analysis, but a **worst-case** analysis.

Binary Counter

Assume we have a k-bit binary counter, and the cost of incrementing this counter is defined as being equal to the number of bits flipped. What is the cost of incrementing this counter n times?

A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	COST
0	0	0	0	0	0	
0	0	0	0	0	1	1
0	0	0	0	1	0	2
0	0	0	0	1	1	1
0	0	0	1	0	0	3
0	0	0	1	0	1	1
••••	••••	•••••	•••••	••••	••••	

INCREMENT(A)

$$1 i = 0$$

2 while
$$i < A$$
. length and $A[i] == 1$

$$A[i] = 0$$

$$i = i + 1$$

5 if
$$i < A.length$$

$$6 A[i] = 1$$

Binary Counter

Regular worst-case analysis:

- At most how many bits can be flipped?
 - All of the k bits, e.g., $011111 \rightarrow 100000$
- Thus, if we consider n increments then it makes $O(n \cdot k)$

increments with k-bits flip! So...

A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	COST	Increment(A)
0	0	0	0	0	0		1 i = 0
0	0	0	0	0	1	1	2 while $i < A$. length and $A[i] == 1$
0	0	0	0	1	0	2	$ \begin{array}{ccc} 3 & A[i] = 0 \\ 4 & i = i + 1 \end{array} $
0	0	0	0	1	1	1	5 if $i < A.length$
0	0	0	1	0	0	3	6 A[i] = 1
0	0	0	1	0	1	1	However, it is not possible to have consecutive

Binary Counter

\circ	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]
COST	0	0	0	0	0	0
1	1	0	0	0	0	0
2	0	1	0	0	0	0
1	1	1	0	0	0	0
3	0	0	1	0	0	0
1 2	1	0	1	0	0	0
2	1 0	1	1	0	0	0

A[0] flips at each increment

A[1] flips once at each 2 increments

A[2] flips once at each 4 increments

.

A[k] flips once at each 2^i increments

So total cost of n increment operations is

$$n + \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{4} \right\rfloor + \dots + \left\lfloor \frac{n}{2^{k-1}} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n$$

n increment operations cost less than 2n flips.

Thus, each increment costs 2, which makes O(1) time per increment.

Aggregate Method

- Compute the total cost of n operations.
- Divide this cost by n to compute the cost of one operation.
- This is the aggregate method of amortized analysis.
- We have two alternative approaches, accounting and potential

- Again we assume n operations will be achieved.
- We compute an amortized cost per operation
- Before each operation, we deposit in an account the amortized cost of that operation.
- Each operation drops exactly the regular **required** amount from the account, where the excess amount from cheap operations are expected to **amortize** the expensive ones.
- If there appears a case that there is not enough money in the account (**bankruptcy**), then the operation can not be performed. Thus, it should be strictly avoided.
- What should we assume the amortized cost to avoid the bankruptcy?

$$\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} \hat{c}_i$$

- The regular cost of the i^{th} operation is c_i
- The amortized cost of i^{th} operation is \hat{c}_i
- For any k=1...n, the total regular cost should never exceed the total amortized cost.

Accounting Method Queue with Two Stacks

	Stack operations	Stack-1	Stack-2	Actual Cost	Deposit	Remaining Balance
Enqueue(7)	1-push	7		1	\$2	\$1
Enqueue(2)	1-push	7,2		1	\$2	\$2
Enqueue(9)	1-push	7,2,9		1	\$2	\$3
Dequeue()	3-pop, 3-push, 1-pop		9,2	7	\$0	BANKRUPTCY!
Dequeue()	1-pop		2	1		
Enqueue(8)	1-push	8	2	1		
Dequeue()	1-pop	8		1		
Enqueue(7)	1-push	8,7		1		
Dequeue()	2-pop, 2-push, 1-pop		2,7	5		

Assume the amortized cost for enqueue is **\$2**, and dequeue is **free**! Not a good choice! We may face a bankruptcy

Queue with Two Stacks

	Stack operations	Stack-1	Stack-2	Actual Cost	Deposit	Remaining Balance
Enqueue(7)	1-push	7		1	\$4	\$3
Enqueue(2)	1-push	7,2		1	\$4	\$6
Enqueue(9)	1-push	7,2,9		1	\$4	\$9
Dequeue()	3-pop, 3-push, 1-pop		9,2	7	\$0	\$2
Dequeue()	1-pop		2	1	\$0	\$1
Enqueue(8)	1-push	8	2	1	\$4	\$4
Dequeue()	1-pop	8		1	\$0	\$3
Enqueue(7)	1-push	8,7		1	\$4	\$6
Dequeue()	2-pop, 2-push, 1-pop		7	5	\$0	\$1

If we the amortized cost for enqueue is \$4, and dequeue is free, then it seems no bankruptcy!

We know it takes no more than 4 stack operations per each item in the queue. So, we pay \$4 dollars at the enqueue phase, and use the remaining \$3 during the later dequeue operations.

Binary Counter

```
INCREMENT(A)

1  i=0

2  while i < A. length and A[i] == 1

3  A[i] = 0

4  i=i+1

5  if i < A. length

6  A[i] = 1

1 A[i] = 0

0 A[i] = 1

0 A[i] = 1
```

- There are two different flip operations as $1 \to 0$ and $0 \to 1$.
- At each increment some number of ones flip into 0, and one zero at the end flips to 1.
- Assume $1 \to 0$ is free, so no worries on 'some number of'
- What should be the amortized cost of $0 \rightarrow 1$ to accommodate this?

Potential Method

$$\sum_{i=1}^{i=n} \hat{c}_i = \sum_{i=1}^{i=n} c_i + \phi(D_i) - \phi(D_{i-1}) = \phi(D_n) - \phi(D_0) + \sum_{i=0}^{i=n} c_i$$

- ullet Again we consider n operations, but the focus is on the used data structure D.
- Function $\phi(D)$ that defines the potential energy of the data structure D.
- The amortized cost $\hat{c}_i = c_i + \phi(D_i) \phi(D_{i-1})$, where c_i is the actual real cost.
- If $\phi(D_n) \ge \phi(D_0)$ can be maintained, then the amortized cost is fine since potential never goes negative.
- The issue is to propose such a ϕ function.

Potential Method

Queue with two stacks

Assume $\phi = 2 \cdot x$, where x is the number of items in stack-1.

After enqueue operation the potential increases by $2 = \phi(k+1) - \phi(k)$.

Therefore, the amortized cost is $\hat{c}_E = c_E + \phi(k+1) - \phi(k) = 1 + 2 = 3$.

How about amortized cost of \hat{c}_D . Two cases:

- 1) Stack-2 is not empty. Then, no change in the potential and the amortized cost is equal to actual cost of 1.
- 2) Stack-2 is empty, and stack-1 has k elements. Then the potential difference is -2k. The actual cost is 2k + 1 (why?). So, amortized cost is -2k + 2k + 1 = 1.

Potential Method

Binary counter

 ϕ is the number of set bits (equal to 1) in the counter.

After an increment, assume t_i bits are flipped from 1 to 0. Then the actual cost is $t_i + 1$.

$$\phi(D_i) - \phi(D_{i-1}) = [\phi(D_{i-1}) - t_i + 1] - \phi(D_{i-1}) = 1 - t_i.$$

Then the amortized cost is $t_i + 1 + 1 - t_i = 2$.

Reading assignment

- Read chapter 14 Amortized Analysis from Cormen.
- Read the paper 'Amortized Computational Complexity' by Tarjan, which dates back to 1985, on a very nice review of what amortized analysis is. Here is the link https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/Amortized.pdf
- Yet another paper I suggest you to look at is Amortized Efficiency of List Update and Paging Rules available at https://scholar.google.com/scholar?output=instlink&q=info:gElaOowSipkJ:scholar.google.com/
 &hl=en&as sdt=0,15&scillfp=3816853723830843295&oi=lle
- We will study some further examples in the next lecture.