Aluminum Nitride (AlN)

Space group: P6₃mc, 186, wurtzite

Lattice vectors: $R_1 = (a, 0, 0)$; $R_2 = (-a/2, a \times sqrt[3]/2, 0)$; $R_3 = (0, 0, c)$

Atom positions: Al₁ = (0, a/sqrt[3], 0); Al₂ = $(a/2, a/(2 \times sqrt[3]), c/2)$; N₁ = $(0, a/sqrt[3], u \times c)$; N₂

= $(a/2, a/(2 \times sqrt[3]), (1/2+u) \times c)$. Note that u is an internal degree of freedom.

[crystal: Al₁ = (1/3, 2/3, 0); Al₂ = (2/3, 1/3, 1/2); N₁ = (1/3, 2/3, u); N₂ = (2/3, 1/3, 1/2+u)]

Isotopes: **consider isotopically pure** (Al is pure and N is relatively pure)

DFT: PBEsol PAW

QE - Al.pbesol-n-kjpaw_psl.1.0.0.UPF and N.pbesol-n-kjpaw_psl.1.0.0.UPF

VASP - standard version with sol flag

Checklist (all data should be reported for the 4-atom primitive cell)

Structure

- Converged relaxed 'temperature (T)=0' lattice constants a, c, and u (target accuracy < 0.01 Å) where a is the in-plane lattice parameter, c is the cross-plane parameter, and u is the internal degree of freedom between AlN formula units
 - Three values with 3 significant figures: X.XX
- Methods / convergence criteria
 - Energy / force thresholds
- Other notes / cpu hours (e.g., multiple relaxations, compilers, hardware)
- All input files to run fully converged calculations (e.g., qe.scf.in, POSCAR)

Electrons

- Converged electron band dispersion (target accuracy < 0.1 eV for Γ point energies)
 - Numerical data: normalized wavevectors (q) and band energies (E): top 6 valence bands and 6 conduction bands (excel or text file)
 - q in units of π/a for in-plane and π/c for cross-plane; E in eV
 - 2 in-plane segments: $\Gamma \rightarrow M$, $\Gamma \rightarrow K \rightarrow M$, and 1 cross plane segment: $\Gamma \rightarrow A$, evenly divided with ~ 100 q points per segment
 - 3 files, one for each segment. For each scaled q from 0 to 1 list (~100 rows): q, E₁, E₂, E₃, E₄, E₅, E₆, E₇, E₈, E₉, E₁₀, E₁₁, E₁₂
- Methods / convergence criteria
 - Thresholds/ Integration mesh / grid shifting
- Other notes / cpu hours
- All input files to run fully converged calculations

Harmonic

- Converged dispersion (target accuracy < 0.1 THz for Γ point frequencies)
 - Numerical data: normalized wavevectors (q) and frequencies (f) for 12 polarizations (j) (excel or text file)
 - q in units of π/a for in-plane and π/c for cross-plane; f in THz (f= $\omega/2\pi$)
 - 2 in-plane segments: $\Gamma \rightarrow M$, $\Gamma \rightarrow K \rightarrow M$, and 1 cross-plane segment $\Gamma \rightarrow A$, evenly

- divided with ~100 q points per segment
- 3 files, one for each segment. For each scaled q from 0 to 1 list (~100 rows): q, f₁, f₂, f₃, f₄, f₅, f₆, f₇, f₈, f₉, f₁₀, f₁₁, f₁₂
- phonon density of states
- Converged harmonic interatomic force constants (IFCs)
 - Standard format for code used (e.g., QE, Phonopy)
 - Will be supplied as supplemental material upon publication
- Long range Coulomb corrections
 - Dielectric matrix (1 matrix)
 - Born effective charge matrices (4 matrices)
 - Method of long-range Coulomb corrections
- Methods / convergence criteria
 - Thresholds
 - Supercell size / integration mesh
 - Symmetries / irreducibility / number of calculations (*linked to cpu hours below*)
 - Post-processing (e.g., enforce invariance constraints)
- Evidence of converged dispersion
 - Dispersions with varying supercell sizes and integration meshes
- Other notes / cpu hours (e.g., accuracy vs cpu cost, shifted meshes)
- All input files to run fully converged calculations

Anharmonic thermal transport

- Six converged T-dependent thermal conductivities (k) (target accuracy <2% difference between successive grids): isotopically pure with full BTE solution ($k_{pure,full}$), and isotopically pure with RTA ($k_{pure,RTA}$) for two in-plane directions (x and y) and one crossplane direction (z). If only RTA available, then only $k_{pure,RTA}$.
 - Do not include boundary scattering, even at low T. We want to see how the codes behave at low T without this extrinsic scattering.
 - Numerical data: T (K) and k (W/m/K) in range 20K < T < 1000K (excel or text file)
 - For 20K ≤ T ≤ 50K increments of 10K (4 data points); for 50K < T ≤ 300K increments of 25K (10 data points); for 300K < T ≤ 1000K increments of 100K (7 data points).
 - 1 file with T from 20K to 1000K list (21 rows): T, kpure.full, kpure.RTA
- Accumulated T=20K and T=300K k_{acc} vs frequency (1 curve for each T) for converged $k_{pure,RTA}$
- Accumulated T=20K and T=300K k_{acc} vs mean free path (mfp) for converged $k_{pure,RTA}$: 3 curves for each T, one for each in-plane (mfp_x=| v_x ×lifetime| and mfp_y=| v_y ×lifetime|in nm) and one for cross-plane (mfp cross=| v_z ×lifetime| in nm).
 - Numerical data for each mode (q, j) sampled in the Brillouin zone integration: f (THz), mfp (nm), mode contribution to k (W/m/K) for $k_{pure,RTA}$
 - 2 files (excel or text; one for each T) with row for each mode (q, j): f, mfp x, mfp y, and mfp z, mode contribution to k
- RTA T=300K three-phonon scattering rates $(1/\tau_{3ph})$
 - Numerical data: f(THz), $1/\tau_{3ph}$ (THz=1/ps)
 - 1 file (excel or text) with row for each mode (q, j): f, $1/\tau_{3ph}$

- Converged third-order anharmonic IFCs
 - Standard format for code used
 - Will be supplied as supplemental material upon publication
- Methods / convergence criteria: thermal conductivity
 - Delta function representation (with details; e.g., adaptive smearing, cutoff)
 - Integration grid
 - Symmetries used
- Methods / convergence criteria: anharmonic IFCs
 - Cutoff radius, supercell size, integration mesh, thresholds, displacement parameter for supercell derivatives
 - Post-processing
- Evidence of converged k at T=20K and T=300K (Do not go to extreme numerical cost for T=20K. If convergence seems not possible please consult Alan and Lucas).
 - Varying integration meshes
 - Target accuracy <2% difference between successive grids
- Other notes / cpu hours
- All input files to run fully converged calculations