# 测定金属的杨氏模量

# 一、数据及处理

## 1、数据记录

## 1) 金属丝长度L

由于使用米尺也可以使相对误差控制在 $\frac{1mm}{1000mm}=0.1\%$ 的数量级,远小于结果中其他项的相对误差,所以用米尺测量一次即可:

$$l_1 = 105.03cm$$
  $l_2 = 25.60cm$ 

## 2) 金属丝直径d

金属丝的直径测量的相对误差大约为 $\frac{0.01mm}{0.3mm} \approx 3\%$ ,所以需要多次测量以减小误差,使用螺旋测微器测量十次:

螺旋测微器零点读数  $d_0 = 0.000mm$ 

| i         | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $d_i/m$ m | 0.319 | 0.321 | 0.321 | 0.319 | 0.320 | 0.321 | 0.322 | 0.320 | 0.321 | 0.320 |

#### 3) 砝码质量m

| i       | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $m_i/g$ | 199.95 | 199.56 | 199.75 | 199.90 | 199.92 | 200.44 | 199.73 | 199.98 | 199.66 |

对砝码质量的测量认为是对一个质量约为200g的砝码测量了 10 次,这样便于之后处理过程中的不确定度的评估;

## 4) 金属丝拉伸量δL

| i  | m/g     | $r_i/mm$ | $r_i'/mm$ | $\overline{r_i}/mm$ | $\delta \overline{r_i}/mm$ |
|----|---------|----------|-----------|---------------------|----------------------------|
| 1  | 0.00    | 4.00     | 3.99      | 3.995               | 0.615                      |
| 2  | 199.95  | 3.86     | 3.86      | 3.860               | 0.605                      |
| 3  | 399.51  | 3.75     | 3.74      | 3.745               | 0.605                      |
| 4  | 599.26  | 3.62     | 3.62      | 3.620               | 0.595                      |
| 5  | 799.16  | 3.50     | 3.50      | 3.500               | 0.590                      |
| 6  | 999.08  | 3.38     | 3.38      | 3.380               |                            |
| 7  | 1199.52 | 3.25     | 3.26      | 3.255               |                            |
| 8  | 1399.25 | 3.14     | 3.14      | 3.140               |                            |
| 9  | 1599.23 | 3.03     | 3.02      | 3.025               |                            |
| 10 | 1798.89 | 2.91     | 2.91      | 2.910               |                            |

 $\delta r_i$ 是挂上 5 个砝码后金属丝的伸长量,所以挂上一个砝码后的 $\delta L = \frac{\delta r_i}{5}$ ;

5) 重力加速度g: 由实验室给出参考值,认为是精确的

$$g = 9.801m/s^2$$

# 2、数据处理

1) 金属丝长度L

$$L = l_1 - l_2 = 79.43cm$$

极限不确定度估计为米尺的允差: e = 0.15cm

单次测量认为误差均匀分布:  $\sigma_L = \frac{e}{\sqrt{3}} = 0.087cm$ 

2) 金属丝直径d

$$\bar{d} = \frac{\sum_{i=1}^{10} d_i}{10} = 0.3204mm$$

A类不确定度:

$$\sigma_{dA} = \sqrt{\frac{\sum_{i=1}^{10} (d_i - \bar{d})^2}{10 \times (10 - 1)}} = 0.0003mm$$

极限不确定度估计为千分尺的允差: e = 0.004mm

$$\sigma_{dB} = \frac{e}{\sqrt{3}} = 0.0023mm$$

$$\sigma_d = \sqrt{\sigma_{dA}^2 + \sigma_{dB}^2} = 0.0023mm$$

3) 砝码质量m

$$\bar{m} = \frac{\sum_{i=1}^{9} m_i}{9} = 199.877g$$

A类不确定度:

$$\sigma_{mA} = \sqrt{\frac{\sum_{i=1}^{9} (m_i - \overline{m})^2}{9 \times (9 - 1)}} = 0.085g$$

不确定度估计为电子天平的最小分度值:  $\sigma_{mB}=0.01g$ 

$$\sigma_m = \sqrt{\sigma_{mA}^2 + \sigma_{mB}^2} = 0.086g$$

4) 金属丝拉伸量

$$\overline{\delta \overline{r_i}} = \frac{\sum \delta \overline{r_i}}{n} = 0.6020mm$$

A类不确定度:

$$\sigma_{\Delta \bar{r}_i A} = 0.00436mm$$

将每个 $\Delta \overline{r}_i$ 视为直接测量量,则其极限不确定度估计为仪器最小分度值: e=0.05mm

$$\sigma_{\Delta \overline{r_i}B} = \frac{e}{\sqrt{3}} = 0.02887mm$$

$$\sigma_{\overline{\delta \overline{r_i}}} = \sqrt{\sigma_{\delta \overline{r_i}A}^2 + \sigma_{\delta \overline{r_i}B}^2} = 0.02920mm$$

$$\delta L = \frac{\overline{\delta \overline{r_i}}}{5} = 0.1204mm$$

$$\sigma_{\delta L} = \frac{\sigma_{\overline{\delta \overline{r_i}}}}{5} = 0.0059mm$$

#### 3、杨氏模量计算

1) 逐差法

之前在数据处理部分已经用逐差法处理过金属丝伸长量的数据,直接利用处理结果 计算杨氏模量:

$$E = \frac{4mgL}{\pi d^2 \delta L} = 1.60294 \times 10^{11} Pa$$

$$\sigma_E = E \times \sqrt{(\frac{\sigma_m}{m})^2 + (\frac{\sigma_L}{L})^2 + (\frac{2\sigma_d}{d})^2 + (\frac{\sigma_{\delta L}}{\delta L})^2} = 0.082 \times 10^{11} Pa$$

$$E \pm \sigma_E = (1.603 \pm 0.082) \times 10^{11} Pa$$

## 2) 最小二乘法

对杨氏模量计算公式做变形,得到:

$$\Delta L = \frac{4mgL}{\pi d^2 E} n \tag{1}$$

其中 $\Delta L = \overline{r}_i - \overline{r}_0$ 表示金属丝总伸长量,m表示单个砝码的质量,n表示砝码的个数 对 $\overline{r}_i - n$ 线性拟合可以得到斜率,通过斜率可以反解出杨氏模量的大小

$$\overline{r_i} = a + bn$$



根据最小二乘法理论,可以算出斜率b的A类不确定度:

$$\sigma_{bA} = \sqrt{\frac{1/r^2 - 1}{n - 2}} = 0.000677$$

由于 $\overline{r}$ 存在误差,所以斜率b的B类不确定度为:

$$\sigma_{bB} = \sqrt{\sum_{i=1}^{n} (\frac{\partial b}{\partial \bar{r}_{i}} \sigma_{\Delta \bar{r}_{i}B})^{2}} = \sqrt{\sigma_{\Delta \bar{r}_{i}B}^{2} \sum_{i=1}^{n} [\frac{n_{i} - \bar{n}}{\sum_{i=1}^{n} (n_{i} - \bar{n})^{2}}]^{2}} = \frac{\sigma_{\Delta \bar{r}_{i}B}}{\sqrt{\sum_{i=1}^{n} (n_{i} - \bar{n})^{2}}} = 0.003178$$

$$\sigma_b = \sqrt{(\sigma_{bA})^2 + (\sigma_{bB})^2} = 0.00325$$

由(1)式得到杨氏模量与斜率的关系为:

$$E = \frac{4mgL}{\pi d^2|b|} = 1.60427 \times 10^{11} Pa$$

$$\sigma_E = E \times \sqrt{(\frac{\sigma_m}{m})^2 + (\frac{\sigma_L}{L})^2 + (\frac{2\sigma_d}{d})^2 + (\frac{\sigma_b}{b})^2} = 0.049 \times 10^{11} Pa$$

$$E \pm \sigma_E = (1.604 \pm 0.049) \times 10^{11} Pa$$

可见对于相同的测量数据,最小二乘法得到的不确定度小于逐差法所得到的不确定度, 也就是对数据进行了更好的利用。

#### 二、分析与讨论

在测量过程中,如果开始加第一、二个砝码时r的变化量大于正常量,产生这种现象的原因是开始时金属丝有弯折,挂上砝码后金属丝的伸长不仅是因为受力拉伸,还有因为弯折被拉直,所以这种情况测得的杨氏模量会比正常值偏小。

#### 三、收获与感想

杨氏模量虽然是个基础实验,但认真做一做还是能学到很多东西的。我在这次实验中犯了低级错误,用外卡口卡住,结果用内卡口读数,这样的错误直接使我的结果偏离了将近10%。在这次实验中我不仅学到了很多与物理实验相关的知识,还学到了很多并非物理相关的知识,虽然可能是小事,但注意到的话可以节省很多精力。做实验不是仅仅知道原理就能做好,还要积累好的实验习惯。