

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

عنوان: تكليف اول درس يادگيري عميق

نام و نام خانوادگی: علیرضا ابره فروش شماره دانشجویی: ۹۸۱۶۶۰۳ نیم سال تحصیلی: پاییز ۱۴۰۲ مدرّس: دکتر سمانه حسینی سمنانی دستیاران آموزشی: مریم محمدی-علی بزرگ زادارباب

١

٢

٣

١.٣ الف

تابع تانژانت هایپربولیک (tanh) اغلب به عنوان نسخه مقیاس شده ای از تابع سیگموید توصیف می شود، به خصوص تابع سیگموید لجستیک. این رابطه به دلیل شباهتهای تابع تانژانت و تابع سیگموید وجود دارد، اما در بازه و مقیاس شان تفاوت دارند. تابع سیگموید که اغلب با نماد $\sigma(x)$ نشان داده می شود، به شرح زیر تعریف می شود:

$$\sigma\left(x\right) = \frac{1}{1 + e^{-x}}$$

این تابع هر عدد حقیقی را به یک مقدار بین \cdot و \cdot نگاشت می کند. وقتی x یک عدد مثبت بزرگ است، $\sigma(x)$ به \cdot نزدیک می شود و وقتی x یک عدد منفی بزرگ است، $\sigma(x)$ به \cdot نزدیک می شود. این به این معناست که تابع سیگموید ورودی خود را در بازه $\sigma(x)$ فشرده می کند که برای مسائل دسته بندی دودویی مفید است، چون می توان از آن تعبیر احتمالاتی کرد. تابع تانژانت هاییر بولیک، به شکل زیر تعریف می شود:

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

تابع تانژانت هایپربولیک هر عدد حقیقی را به یک مقدار بین ۱- و ۱ نگاشت می دهد. وقتی x یک عدد مثبت بزرگ است، tanh(x) به ۱- نزدیک می شود.

رابطه بین توابع تانژانت هایپربولیک و سیگموید به شرح زیر است:

۱. مقیاس دهی: تابع تانژانت هایپربولیک، انتقال داده شده و مقیاس شدهی تابع سیگموید به منظور داشتن رنج (-1,1) به جای (0,1) است. این مقیاس دهی با کم کردن (0,1) از تابع سیگموید و سپس ضرب آن در ۲ انجام می شود:

$$\begin{array}{l} 2\sigma\left(2x\right) - 1 = 2 \times \frac{1}{1 + e^{-2x}} - 1 = \frac{1 - e^{-2x}}{1 + e^{-2x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} \times \frac{e^{2x}}{e^{2x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \tanh\left(x\right) \\ \Rightarrow \tanh(x) = 2\sigma\left(2x\right) - 1 \end{array}$$

tanh(-x) = tanh(-x) . تقارن: یکی از تفاوتهای کلیدی این است که تابع تانژانت هایپربولیک در اطراف مبدأ متقارن است (در واقع -tanh(-x))، در حالی که تابع سیگموید این تقارن را ندارد.

تابع تانژانت هایپربولیک اغلب به عنوان یک جایگزین برای تابع سیگموید در شبکههای عصبی استفاده می شود. زیرا به دلیل ماهیت مرکز شده حول صفری که دارد، یادگیری در شبکههای عمیق را سریع تر می کند. اینکه تابع تانژانت هایپربولیک مقادیر منفی را نیز خروجی دهد به معنای این است که می تواند تغییرات مثبت و منفی را در واحدهای مخفی شبکه در طول آموزش ایجاد کند که می تواند به همگرایی کمک کند. با این حال، هر دو تابع هنوز در متنوعی از زمینه ها استفاده می شوند و انتخاب بین آن ها بستگی به مسئله خاص و معماری شبکه دارد.

۲.۳ ب

 $p(x) = x \log (1 + \tanh (e^x))$

علیرضا ابره فروش

$$\begin{split} &\frac{d}{dx}p\left(x\right) = \left(\frac{d}{dx}x\right) \times \log\left(1 + \tanh\left(e^{x}\right)\right) + \left(\frac{d}{dx}\left(\log\left(1 + \tanh\left(e^{x}\right)\right)\right)\right) \times x \\ &= \log\left(1 + \tanh\left(e^{x}\right)\right) + x\left(\frac{d}{dx}\left(1 + \tanh\left(e^{x}\right)\right)\right) \times \frac{1}{1 + \tanh(e^{x})} \\ &= \log\left(1 + \tanh\left(e^{x}\right)\right) + \frac{x}{1 + \tanh(e^{x})} \times \left(\frac{d}{dx}\left(\tanh\left(e^{x}\right)\right)\right) \\ &= \log\left(1 + \tanh\left(e^{x}\right)\right) + \frac{x}{1 + \tanh(e^{x})} \times \left(\frac{d}{dx}\left(e^{x}\right)\right) \times \left(1 - \tanh^{2}\left(e^{x}\right)\right) \\ &= \log\left(1 + \tanh\left(e^{x}\right)\right) + xe^{x}\left(1 - \tanh\left(e^{x}\right)\right) \end{split}$$

۴

Input	Hidden	Output
layer	layer	layer
	$h_0^{(1)}$	
	$h_1^{(1)}$	
x_0		
	$h_2^{(1)}$	
x_1		\hat{y}_1
x_2	$h_3^{(1)}$	\hat{y}_2
	$h_4^{(1)}$	92
x_3		\hat{y}_3
	$h_5^{(1)}$	
x_4		
	$h_6^{(1)}$	
	$h_7^{(1)}$	

با توجه به شبکهی بالا، نورونهای سبز، بنفش، و قرمز به ترتیب لایهی ورودی، لایهی مخفی، و لایهی خروجی را تشکیل می دهند و همچنین نورونهای زرد abias هستند که همگی مقدار ۱ دارند. پارامترهای قابل یادگیری شبکه وزنهای موجود بین نورونهاست که تعدادشان برابر است با: $4 \times 7 + 7 + 7 \times 3 + 3 = 50$

۵

۶

منابع

[1] Stošić, Lazar, and Milena Bogdanović. "RC4 stream cipher and possible attacks on WEP." Editorial Preface 3.3 (2012).

علیرضا ابره فروش