Решение 1 задачи. Обозначения: PNE - Pure Strategy NE, σ, η – стратегии из условия задачи.

(і) Условие отсутствия РNЕ выглядит так:

$$(a_{12} < a_{11} \mid a_{11} < a_{21}) \& (a_{11} < a_{12} \mid a_{12} < a_{22})$$

& $(a_{22} < a_{21} \mid a_{21} < a_{11}) \& (a_{21} < a_{22} \mid a_{22} < a_{12}).$

В частности, выполнено хотя бы одно из неравенств $a_{11} < a_{12}$ и $a_{12} < a_{22}$. Пусть $a_{11} < a_{12}$. Тогда

$$a_{11} < a_{12} \Rightarrow a_{11} < a_{21} \Rightarrow a_{22} < a_{21} \Rightarrow a_{22} < a_{12}$$

 $\Rightarrow \max(a_{11}, a_{22}) \le \min(a_{12}, a_{21}), \ a_{11} + a_{22} < a_{12} + a_{21}.$

В случае $a_{12} < a_{22}$ получаем

$$a_{12} < a_{22} \Rightarrow a_{21} < a_{22} \Rightarrow a_{21} < a_{11} \Rightarrow a_{12} < a_{11}$$

 $\Rightarrow \max(a_{12}, a_{21}) \le \min(a_{11}, a_{22}), \ a_{12} + a_{21} < a_{11} + a_{22}.$

(ii) Пусть $\sigma_R = (p, 1-p), \ \sigma_C = (q, 1-q).$ Тогда $\Pi_R(\sigma_R, \sigma_C) = p(qa_{11} + (1-q)a_{12}) + (1-p)(qa_{21} + (1-q)a_{22}).$

Найдём $\min_{\sigma_C} \max_{\sigma_R} \Pi_R(\sigma_R, \sigma_C) = \Pi_R(\sigma_R^*, \sigma_C^*)$ в классе смешанных стратегий. По второй задаче

$$\Pi_R(s_R^1, \sigma_C^*) = \Pi_R(s_R^2, \sigma_C^*) = \Pi_R(\sigma_R^*, s_C^1) = \Pi_R(\sigma_R^*, s_C^2).$$

Отсюда $\sigma_R^* = \sigma$, $\sigma_C^* = \eta$. Соответствующие вероятности корректно определены в силу предыдущего пункта. По второй задаче такой профиль является NE, а значит, и образует пару минимаксных стратегий.

Решение 2 задачи. Обозначение: BR – Best Response.

(i) Если $\Pi_R(s_R^1, \sigma_C^*) = \Pi_R(s_R^2, \sigma_C^*)$, то $\Pi_R(\sigma_R, \sigma_C^*)$ не зависит от σ_R , и σ_R^* является BR.

В другую сторону: пусть $\Pi_R(s_R^1, \sigma_C^*) > \Pi_R(s_R^2, \sigma_C^*)$. Тогда

$$\Pi_R(\sigma_R^*, \sigma_C^*) = p^* \Pi_R(s_R^1, \sigma_C^*) + (1 - p^*) \Pi_R(s_R^2, \sigma_C^*) < \Pi_R(s_R^1, \sigma_C^*),$$

а это означает, что σ_R^* не является BR.

- (ii) Аналогично.
- (iii) В силу (i) и (ii) достаточно доказать, что (σ_R^*, σ_C^*) NE тогда и только тогда, когда каждая из стратегий является BR на противоположную. А это просто является определением NE.

Решение 3 задачи. Пусть $\sigma_R = (p, 1-p), \ \sigma_C = (q, 1-q).$ Заметим, что $\Pi_R(\sigma_R, \sigma_C)$ не зависит от σ_R , откуда следует, что σ_P является BR для любого p. При этом,

$$\Pi_C(\sigma_R, \sigma_C) = p + q(2 - 3p).$$

Значит, множество равновесий Нэша имеет следующий вид:

$$\{(\sigma_R, \sigma_C) : (2/3 p \& q = 1)\}.$$

Решение 4 задачи. Обозначение: SNE — симметричное NE. Найдём строго смешанную стратегию SNE:

$$\sigma = \lambda A^{-1}\overline{1} = (1/3, 1/3, 1/3).$$

Она является единственной в своём классе. Найдём SNE, в стратегиях которых две ненулевые вероятности. Без ограничения общности, можно считать, что $\sigma_R = \sigma_C = (p, 1-p, 0)$ для некоторого $p \in (0, 1)$, а количество найденных стратегий в конце умножить на 3.

Ясно, что необходимым условием SNE является то, что (p,1-p) образует SNE в игре с матрицей

$$\widehat{A} = \begin{pmatrix} -a & 1 \\ -1 & a \end{pmatrix}$$

Воспользуемся утверждением лекции:

$$(p, 1-p) = \lambda \widehat{A}^{-1} \overline{1} = \frac{1}{2a} (a+1, a-1) \Rightarrow |a| > 1.$$

Чтобы такой профиль образовал SNE в исходной игре, необходимо и достаточно, чтобы каждому игроку было невыгодно отклониться к третьей стратегии, то есть,

$$\frac{1}{2a}(a+1)(-a) + \frac{1}{2a}(a-1) \ge \frac{1}{2a}(a+1) - \frac{1}{2a}(a-1) \Leftrightarrow a \le 0.$$

В совокупности с условием |a| > 1 получаем, что в классе стратегий с двумя ненулевыми вероятностями SNE существуют iff a < -1, и их количество -3.

SNE в чистых стратегиях существует iff $(-a \ge -1)$ & $(-a \ge 1) \Leftrightarrow a \le -1$.

Решение 5 задачи. 1. (R) – доминирующая стратегия, потому что

$$\Pi_C(H,C) = -c + pf - \overline{p}l \le -l = \Pi_C(H,R), \ \Pi_C(P,C) = -c < 0 = \Pi_C(P,R).$$

В свою очередь,

$$\Pi_R(H, R) = r + l > \Pi_R(P, R) = r,$$

значит, (H, R) – NE.

2. (H) – доминирующая стратегия, потому что

$$\Pi_R(H,C) = r + \overline{p}l - pf \ge r = \Pi_R(P,C), \ \Pi_R(H,R) = r + l > r = \Pi_R(P,R).$$

В свою очередь,

$$\Pi_C(H,C) = -c + pf - \overline{p}l \ge -l = \Pi_C(H,R),$$

значит, (H, C) – NE.

- 3. Переберём случаи:
 - (a) Если $\sigma_R = H$, то $\sigma_C = C$ в силу неравенства. Но тогда в силу того же неравенства первому выгодно отклониться.
 - (b) Если $\sigma_R = P$, то $\sigma_C = R$, но тогда первому вновь выгодно отклониться.

- (c) Если $\sigma_C = C$, то $\sigma_R = P$, но тогда второму выгодно отклониться.
- (d) Если $\sigma_C=R$, то $\sigma_R=H$, но тогда второму вновь выгодно отклониться
- (e) В смешанных стратегиях пользуемся второй задачей и получаем профиль $((\beta, \overline{\beta}), (\alpha, \overline{\alpha}))$. Вероятности корректно определены в силу неравенств из условия, поэтому такой профиль образует NE.