Matemática

d) 2¹⁴

e) 2^{19}

AULA 1 – FRENTE 1

1 A progressão geométrica (a₁, a₂, 4, ...) é tal que a_5 . a_8 = 64. Calcule o valor do décimo termo desta progressão.

 $a_{10} = 16$

Numa progressão geométrica sabe-se que a_2 . $a_5 = 243$. Então podemos afirmar que a_3 . a_4 é igual a:

- **a)** 27
- **b)** 81
- **(c)**) 243
- **d)** 729
- **e)** 849

5 O produto dos 8 primeiros termos da progressão geo-

4 O produto dos 10 primeiros termos da progressão geo-

c) -2^{14}

métrica (2, 4, 8, ...) é: **a)** 2³³

a) -2^{45}

b) 2³⁴

métrica (-1, -2, -4, ...) é igual a:

(b)) 2⁴⁵

- **c)** 2³⁵
- **(d)** 2³⁶
- **e)** 2^{37}

3 O produto dos 8 primeiros termos da progressão geométrica (1, 3, 9, ...) é igual a:

- **a)** 3⁴
- **b)** 3⁷ **c)** 3¹¹
- **d)** 3²¹
- **(e)**) 3²⁸

Exercícios-Tarefa

1 A progressão geométrica (a₁, a₂, a₃, 5, ...) é tal que a_2 . $a_9 = 60$. Calcule o sétimo termo desta progressão.

Resolução

 $a_4 \cdot a_7 = a_2 \cdot a_9$ $a_4 \cdot a_7 = 60$

 $5 \cdot a_7 = 60$

 $a_7 = 12$

Resposta: $a_7 = 12$

2 O produto dos 12 primeiros termos da progressão geométrica (1, 2, 4, ...) é igual a:

a) 2¹¹

b) 2¹² **c)** 2⁶⁶

d) 2¹⁰⁰

e) 2^{132}

Resolução:

resolução:

$$a_{12} = a_1 \cdot q^{11} | P_{12} | = \sqrt{(a_1 \cdot a_{12})^{12}}$$

 $a_{12} = 1 \cdot 2^{11}$ $| P_{12} | = \sqrt{(1 \cdot 2^{11})^{12}}$
 $a_{12} = 2^{11}$ $| P_{12} | = (2^{11})^6$
 $| P_{12} | = 2^{66} \Rightarrow P_{12} = 2^{66}$

Resposta: C

3 O produto dos 15 primeiros termos da progressão geométrica estritamente crescente em que $a_1 = -4$ e

a) -1 b) 1 c) 2^{15} d) -2^{15} e) 2^{30}

Resolução:

$$\begin{aligned} \left| P_{15} \right| &= \sqrt{\left(a_1 \cdot a_{15} \right)^{15}} \\ \left| P_{15} \right| &= \sqrt{\left[\left(-4 \right) \cdot \left(-\frac{1}{4} \right) \right]^{15}} \\ \left| P_{15} \right| &= \sqrt{\left(1 \right)^{15}} \\ \left| P_{15} \right| &= 1 \implies P_{15} = -1 \end{aligned}$$

Resposta: A

Numa progressão geométrica sabe-se que a_2 . $a_6 = 2^{-6}$. Então podemos afirmar que a_3 . a_5 é igual a:

a) 2⁻⁴ b) 2⁻⁵

c) 2^{-6} d) 2^{-7}

Resolução:

$$a_2 \cdot a_6 = a_3 \cdot a_5$$

 $2^{-6} = a_3 \cdot a_5$

Resposta: C

5 O produto dos 10 primeiros termos da progressão geométrica (1, 3, 9, ...) é:

a) 3⁴⁵

b) 3^{44} **c)** 3^{43} **d)** 3^{42}

e) 3⁴¹

Resolução:

$$a_{10} = a_{1} \cdot q^{9} |P_{10}| = \sqrt{(a_{1} \cdot a_{10})^{10}}$$

$$a_{10} = 1 \cdot 3^{9} \qquad |P_{10}| = \sqrt{(1 \cdot 3^{9})^{10}}$$

$$a_{10} = 3^{9} \qquad |P_{10}| = (3^{9})^{5}$$

$$|P_{10}| = 3^{45} \Rightarrow P_{10} = 3^{45}$$

Resposta: A

AULA 2 – FRENTE 2

1 A soma dos 11 primeiros termos da progressão geométrica (2, 4, 8, ...) é:

(a) 4094 b) 3012 c) 2048 d) 1024 e) 1012

2 Calcule a soma dos 8 primeiros termos da progressão geométrica $\left(1, \frac{1}{2}, \frac{1}{4}, \dots\right)$

$$S_8 = \frac{255}{128}$$

3 Quantos termos da progressão geométrica (1, 4, 16, ...) foram somados para obter 1365?

a) 4

b) 5

(c) 6

d) 7

e) 8

A soma dos infinitos termos da P.G. $\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \dots\right)$ é

igual a:

a) 2

b) $\frac{1}{3}$ ©) $\frac{2}{3}$ d) $\frac{1}{6}$ e) 1

- Resolvendo a equação $x + x^2 + x^3 + x^4 + ... = 7$, obtemos:

- b) $\frac{1}{7}$ c) $\frac{1}{8}$ d) $\frac{2}{7}$ e) $\frac{3}{7}$

- 6 Se x for um número real positivo e se valer a igualdade $1 + x + x^2 + x^3 + ... = 3$, então o valor de **x** será:

- a) 1 b) 2 c) $\frac{1}{3}$ d) $\frac{3}{2}$ e) $\frac{2}{3}$

- 2 A soma dos 7 primeiros termos da progressão geométrica (1, 3, 9, ...) é:

- a) 1024 b) 1093 c) 2048 d) 2096
- **e)** 3123

Resolução:

Resolução:

$$S_{7} = \frac{a_{1} \cdot (q^{7} - 1)}{q - 1}$$

$$S_{7} = \frac{1 \cdot (3^{7} - 1)}{3 - 1}$$

$$S_{7} = \frac{2187 - 1}{2}$$

$$S_{7} = \frac{2186}{2} \Rightarrow S_{7} = 1093$$

Resposta: B

3 Quantos termos da progressão geométrica (1, 2, 4, ...) devemos adicionar para que a soma seja 127?

Resolução:

$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1} \Rightarrow 127 = \frac{1 \cdot (2^n - 1)}{2 - 1}$$

127 = $2^n - 1 \Rightarrow 128 = 2^n \Rightarrow n = 7$

Resposta: 7 termos

Exercícios-Tarefa

1 Calcule a soma dos 11 primeiros termos da progressão geométrica (1, 2, 4, ...)

Resolução:

$$S_{11} = \frac{a_1 \cdot (q^{11} - 1)}{q - 1}$$

$$S_{11} = \frac{1 \cdot (2^{11} - 1)}{2 - 1}$$

$$S_{11} = 2048 - 1$$

$$S_{11} = 2047$$

Resposta: $S_{11} = 2047$

- 4 Numa progressão geométrica tem-se o primeiro termo igual a 2 e a razão igual a 3. A soma dos 7 primeiros termos é igual a:
- **a)** 1023 **b)** 1225 **c)** 2186 **d)** 2194

Resolução:

$$S_7 = \frac{a_1 \cdot (q^7 - 1)}{q - 1} \Rightarrow S_7 = \frac{2 \cdot (3^7 - 1)}{3 - 1}$$

Resposta: C

5 A soma dos infinitos termos da progressão geométri $ca\left(-1, -\frac{1}{4}, -\frac{1}{16}, ...\right)$ é:

a)
$$-\frac{4}{3}$$

a)
$$-\frac{4}{3}$$
 b) $-\frac{3}{4}$ c) $\frac{3}{4}$ d) $\frac{4}{3}$

c)
$$\frac{3}{4}$$

d)
$$\frac{4}{3}$$

Resolução:

$$S\infty = \frac{a_1}{1 - q} \Rightarrow S\infty = \frac{-1}{1 - \frac{1}{4}}$$
$$S\infty = \frac{-1}{\frac{3}{4}} \Rightarrow S\infty = -1 \cdot \frac{4}{3} = -\frac{4}{3}$$

Resposta: A

6 Na equação $x + x^2 + x^3 + x^4 + ... = \frac{7}{3}$, obtemos para **x** o

a)
$$\frac{10}{7}$$

b)
$$\frac{7}{10}$$

a)
$$\frac{10}{7}$$
 b) $\frac{7}{10}$ c) $\frac{3}{10}$ d) $\frac{10}{3}$ e) $\frac{3}{7}$

d)
$$\frac{10}{3}$$

e)
$$\frac{3}{7}$$

Resolução:

$$S = \frac{a_1}{1 - q} \Rightarrow \frac{7}{3} = \frac{x}{1 - x} \Rightarrow 3x = 7 \cdot (1 - x) \Rightarrow 3x = 7 - 7x$$

$$10x = 7 \Rightarrow x = \frac{7}{10}$$

Resposta: B

7 Se x for um número real positivo e se valer a igualdade $1 + x + x^2 + x^3 + ... = 20$, então o valor de **x** será: a) $\frac{20}{19}$ b) $\frac{19}{20}$ c) $\frac{21}{20}$ d) $\frac{20}{21}$ e) $\frac{19}{20}$

a)
$$\frac{20}{10}$$

b)
$$\frac{19}{20}$$

c)
$$\frac{21}{20}$$

d)
$$\frac{20}{21}$$

e)
$$\frac{19}{21}$$

$$S = \frac{a_1}{1 - q} \Rightarrow 20 = \frac{1}{1 - x} \Rightarrow 1 = 20 \cdot (1 - x) \Rightarrow 1 = 20 - 20x$$
$$20x = 20 - 1 \Rightarrow 20x = 19 \Rightarrow x = \frac{19}{20}$$

Resposta: B

AULA 3 – FRENTE 2

1 Um automóvel com velocidade de 60 km/h faz o percurso entre as cidades A e B em 3 horas. Quanto tempo levará se fizer o mesmo percurso a uma velocidade de 90 km/h?

2 horas

2 Se 30 operários, trabalhando 12 horas por dia, durante um certo número de dias, abriram um túnel de 180 m de comprimento, quantos operários serão necessários para abrir 240 m do mesmo túnel, durante o mesmo número de dias, trabalhando 10 horas por dia?

48 operários

3 Um quadro no valor de R\$ 1200,00 foi vendido por R\$ 1380,00. Neste caso podemos afirmar que o lucro, em relação ao preço de custo, foi de:

a) 14% (b)) 15% c) 18% d) 19%

4 Um valor de 80 após um aumento de 35% passa a ser:

(a)) 108

b) 109

c) 110

d) 111

e) 112

5 Um valor de 80 após um decréscimo de 35% passa a ser:

a) 50

b) 51

(c)) 52

d) 53

e) 54

6 Uma mercadoria teve um aumento de 20% e, logo depois, um aumento de 30% sobre isso. Para encontrar o preço da mercadoria após os aumentos, basta multiplicar o preço inicial por:

a) 1,20

b) 1,30

c) 1,50

d) 1,52

(e) 1,56

7 Uma mercadoria que custava R\$ 12,50 teve um aumento e passou a custar R\$ 13,50. Esse aumento corresponde a:

a) 1%

b) 10%

c) 12,5%

(d)) 8%

e) 10,8%

Exercícios-Tarefa

1 Um ciclista percorre 32 km em 2 horas. Supondo que a velocidade permaneça constante, ele percorrerá 48 km em:

a) 2,5 horas

d) 4 horas

b) 3 horas

e) 4,5 horas

c) 3,5 horas

Resolução:

32 km —— 2 horas

48 km —— x

diretamente proporcional

$$\frac{32}{48} = \frac{2}{x}$$
 \Rightarrow 32x = 2 . 48 \Rightarrow 16x = 48 \Rightarrow x = 3 horas

Resposta: B

2 Com 16 máquinas de costura aprontam-se 720 uniformes em 6 dias de trabalho. Quantas máquinas de costura serão necessárias para confeccionar 2160 uniformes em 24 dias?

a) 20

b) 18

c) 15

d) 12

e) 10

Resolução:

16 máquinas 720 uniformes 6 dias x 2160 uniformes 24 dias

diretamente

inversamente

$$\frac{16}{x} = \frac{720}{2160} \cdot \frac{24}{6}$$

720.24x = 16.2160.6

720.4x = 16.2160

720x = 4.2160

720x = 8640

x = 12 máquinas

Resposta: D

3 Um valor de 70, após um decréscimo de 20%, passa a ser:

a) 45

b) 50

c) 54

d) 56

e) 62

Resolução:

Decréscimo de 20% = 100% - 20% = 80% = 0,80 $0.80 \cdot 70 = 56$

Resposta: D

4 Um valor de 70, após um aumento de 20%, passa a ser:

a) 84

b) 86

c) 88

d) 90

e) 93

Resolução:

Aumento de $20\% \Rightarrow 100\% + 20\% = 120\% = 1,20$ 1,20 . 70 = 84

Resposta: A

Uma mercadoria teve um aumento de 10% e, logo depois, um aumento de 50% sobre isso. Para encontrar o preço da mercadoria após os aumentos, basta multiplicar o preço inicial por:

a) 1,45

b) 1,56

c) 1,60

d) 1,65

e) 1,72

Resolução:

Aumento de $10\% \Rightarrow 100\% + 10\% = 110\% = 1,10$ Aumento de $50\% \Rightarrow 100\% + 50\% = 150\% = 1,50$

1,1 . 1,5 = 1,65

Resposta: D

6 Um carro foi comprado por R\$ 25000,00 e vendido com decréscimo de 40%. Qual foi o preço da venda?

Resolução:

Decréscimo de $40\% \Rightarrow 100\% - 40\% = 60\% = 0,60$ 0,6 . 25000 = 15000 \Rightarrow R\$ 15000,00

Resposta: R\$15000,00

AULA 4 – FRENTE 2

1 O valor de $(20\%)^2 + \sqrt{81\%} - 0,60$ é igual a:

a) 20%

b) 24%

c) 32%

(d)) 34%

e) 48%

2 Qual o percentual que 40 representa num total de 200?

20%

3 35% da terça parte de 2100 é igual a:

(a) 245

b) 275

c) 290

d) 310

e) 350

4 O valor de $\frac{80\%}{2\%}$ é igual a:

a) 0,4%

b) 4%

c) 40%

d) 400%

(e)) 4000%

5 Determine os juros simples produzidos por um capital de R\$ 30000,00 empregado à taxa de 20% ao ano durante 6 anos.

R\$ 36000,00

6 Um capital de R\$ 12000,00 rendeu em 4 anos a importância de R\$ 2400,00. A taxa anual, supondo que a aplicação foi feita a juros simples, é igual a:

- a) 3%
- **(b)** 5%
- **c)** 7%
- **d)** 10%
- **e)** 15%

7 Um capital **C** aplicado a juros simples, a taxa de 3% ao mês, produz R\$ 4500,00 de juros em 10 meses. O valor de C é:

- a) R\$ 9000.00
- d) R\$ 18000,00
- **b)** R\$ 12000,00
- e) R\$ 18500,00
- (c)) R\$ 15000,00

Exercícios-Tarefa

- 1 25% de 3000 é igual a:
- **a)** 750
- **b)** 760
- **c)** 770
- **d)** 780
- **e)** 790

Resolução:

25% de 3000 =
$$\frac{25}{100}$$
 . 3000 = 750

Resposta: A

- 2 O valor de (10%)² é:
- a) 1000% b) 100% c) 10% d) 1%

- **e)** 0,1%

Resolução:

$$(10\%)^2 = \left(\frac{10}{100}\right)^2 = \left(\frac{1}{10}\right)^2 = \frac{1}{100} = 1\%$$

Resposta: D

- 3 O valor de $\sqrt{49\%}$ (30%) + 0,15 é igual a:
- a) 20%
- **b)** 33% **c)** 55% **d)** 57%
- **e)** 76%

Resolução:

$$\sqrt{49\%} = \sqrt{\frac{49}{100}} = \frac{7}{10} \cdot \frac{10}{10} = \frac{70}{100} = 70\%$$

$$0,15 = \frac{15}{100} = 15\%$$

$$\sqrt{49\%}$$
 – (30%) + 0,15 = 70% – (30%) + 15% = 55%

Resposta: C

4 Qual o percentual que 45 representa num total de 300?

Resolução:

$$300x = 45.100\%$$

$$3x = 45\%$$

$$x = 15\%$$

Resposta: 15%

Determine os juros simples produzidos por um capital de R\$ 12000,00 empregado à taxa de 10% ao ano durante 5 anos.

Resolução:

$$J = \frac{C \cdot i \cdot t}{100}$$

$$J = \frac{12000 \cdot 10 \cdot 5}{100}$$

$$J = 1200 \cdot 5$$

$$J = 6000 \implies R\$ 6000,00$$

Resposta: R\$ 6000,00

6 Qual é o tempo em que o capital de R\$ 5000,00, a 12% ao ano, rende, a juros simples, a quantia de R\$ 3600,00?

Resolução:

$$J = \frac{C \cdot i \cdot t}{100}$$

$$3600 = \frac{5000 \cdot 12 \cdot t}{100}$$

$$3600 = 50 \cdot 12 \cdot t$$

$$3600 = 600t$$

$$t = \frac{3600}{600}$$

$$t = 6$$

Resposta: 6 anos

Matemática

FRENTE 1 - AULA 1

1 Considere a elipse:

Com os dados da figura, determine:

a) o eixo maior

20

b) o eixo menor

12

c) a distância focal

16

d) a excentricidade

$$e = \frac{4}{5} = 0.8$$

e) a equação da elipse

$$\frac{x^2}{100} + \frac{y^2}{36} = 1$$

2 A figura que melhor representa a cônica de equação

 $\frac{y^2}{16} + \frac{x^2}{9} = 1$ é:

a)

b)

(c)

d)

e)

3 Determine a equação da elipse cujos focos são (5; 0) e (-5; 0) e o eixo maior é igual a 12.

$$\frac{x^2}{36} + \frac{y^2}{11} = 1$$

4 A equação da elipse cuja distância focal mede 12 e cujo eixo maior vertical é igual a 6 $\sqrt{5}$ é:

a)
$$\frac{x^2}{45} + \frac{y^2}{9} = 1$$

(d)
$$\frac{y^2}{45} + \frac{x^2}{9} = 1$$

b)
$$\frac{x^2}{45} - \frac{y^2}{9} = 1$$

e)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

c)
$$\frac{y^2}{45} - \frac{x^2}{9} = 1$$

Exercícios-Tarefa

1 Os pontos B_1 e B_2 , representados no sistema cartesia- $\overline{\text{no}}$, são os polos de uma elipse, e F₁ é um de seus focos.

Pede-se:

a) as coordenadas dos vértices

Resolução:

$$b = 6$$
, $f = 8$ e $a^2 = b^2 + f^2 \Rightarrow a^2 = 6^2 + 8^2 \Rightarrow a = 10$

Resposta:

 A_1 (0; 10) e A_2 (0; -10)

b) a medida do eixo maior (2a)

Resolução:

$$a = 10 \Rightarrow 2a = 20$$

Resposta:

$$2a = 20$$

c) as coordenadas dos focos

Resolução:

$$f = 8 \Rightarrow F_1 (0; 8) e F_2 (0; -8)$$

Resposta:

$$F_1$$
 (0; 8) e F_2 (0; -8)

d) a distância focal (2f)

Resolução:

$$f = 8 \Rightarrow 2f = 16$$

Resposta:

$$2f = 16$$

e) a medida do eixo menor (2b)

Resolução:

$$b = 6 \Rightarrow 2b = 12$$

Resposta:

$$2b = 12$$

f) as coordenadas dos polos

Resolução:

$$b = 6 \Rightarrow B_1 (6; 0) e B_2 (-6, 0)$$

Resposta:

$$B_1(6; 0) \in B_2(-6; 0)$$

g) a excentricidade da elipse

Resolução:

$$e = \frac{f}{a} \Rightarrow e = \frac{8}{10} = 0.8$$

$$e = \frac{4}{5} = 0.8$$

h) desenhar a elipse

Resposta:

i) a equação da elipse

Resolução:

I. Posição vertical, a = 10, b = 6 e c (0; 0)

II.
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \Rightarrow \frac{x^2}{36} + \frac{y^2}{100} = 1$$

Resposta:
$$\frac{y^2}{100} + \frac{x^2}{36} = 1$$

2 Determine a equação da elipse cujos polos são (0; 3) e (0; -3) e o eixo maior horizontal é igual a 8.

Resolução:

I. B_1 , $B_2 \in 0$ y \Rightarrow horizontal, C (0; 0) e b = 3

II.
$$2a = 8 \Rightarrow a = 4$$

III.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{x^2}{16} + \frac{y^2}{9} = 1$$

Resposta:
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

3

A equação da elipse acima é:

a)
$$\frac{x^2}{80} + \frac{y^2}{16} = 1$$

d)
$$\frac{y^2}{80} + \frac{x^2}{16} = 1$$

b)
$$\frac{x^2}{80} - \frac{y^2}{16} = 1$$

e)
$$\frac{y^2}{64} + \frac{x^2}{16} = 1$$

c)
$$\frac{y^2}{16} - \frac{x^2}{80} = 1$$

I.
$$b = 4$$
, $f = 8$ e $a^2 = b^2 + f^2 \Rightarrow a^2 = 4^2 + 8^2 \Rightarrow a^2 = 80$

II. C (0; 0) e vertical
$$\Rightarrow \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \Rightarrow \frac{x^2}{16} + \frac{y^2}{80} = 1$$

Resposta: D

Esboce o gráfico da elipse $\frac{x^2}{20} + \frac{y^2}{4} = 1$, indicando os polos, focos e vértices.

Resolução:

I.
$$a^2 = 20 \Rightarrow a = 2\sqrt{5} \text{ e } b^2 = 4 \Rightarrow b = 2$$

II.
$$a^2 = b^2 + f^2 \Rightarrow 20 = 4 + f^2 \Rightarrow f = 4$$

III. C (0; 0) e horizontal

Resposta:

5 O gráfico que melhor representa a cônica de equação

$$\frac{x^2}{49} + \frac{y^2}{25} = 1$$
 é:

a)

d)

b)

e)

c)

Resolução:

I.
$$a^2 = 49 \Rightarrow a = 7 \text{ e } b^2 = 25 \Rightarrow b = 5$$

II. A cônica é uma elipse horizontal de C (0; 0):

Resposta: B

FRENTE 1 - AULA 2

1

Na hipérbole da figura acima, determine:

a) as coordenadas dos vértices

$$A_1$$
 (0; 12) e A_2 (0; -12)

b) as coordenadas dos focos

$$F_1$$
 (0; 13) e F_2 (0; -13)

c) as coordenadas dos polos

$$B_1$$
 (5; 0) e B_2 (-5; 0)

d) o eixo transverso

24

e) o eixo conjugado

10

f) a distância focal

26

g) a excentricidade

$$e = \frac{13}{12}$$

h) a equação da hipérbole

$$\frac{y^2}{144} - \frac{x^2}{25} = 1$$

- Os focos F_1 e F_2 da hipérbole de equação $\frac{x^2}{10}$ y^2 = 1 estão, respectivamente, nas coordenadas:
- (a) $(\sqrt{11}; 0)$ e $(-\sqrt{11}; 0)$
- **b)** $(0; \sqrt{11})$ e $(0; -\sqrt{11})$
- **c)** (10; 0) e (-10; 0)
- **d)** (0; 10) e (0; -10)
- **e)** (1; 0) e (-1; 0)
- 3

Relativamente à parábola de foco no ponto ${\bf F}$ e vértice no ponto ${\bf V}$, representados na figura acima, pede(m)-se:

a) a equação da reta diretriz

$$y = -3$$

b) as coordenadas do foco

F (0; 3)

c) as coordenadas do vértice

V (0; 0)

d) o parâmetro

2 f = 6

e) a equação da parábola

 $x^2 = 12 y$

4

Relativamente à parábola de foco no ponto ${\bf F}$ e vértice no ponto ${\bf V}$, representada na figura acima, pede(m)-se:

a) a equação da reta diretriz

x = 2

b) as coordenadas do foco

F(-4; -2)

c) as coordenadas do vértice

V (-1; -2)

d) o parâmetro

2 f = 6

e) a equação da parábola

 $(y + 2)^2 = -12(x + 1)$

1

Na hipérbole da figura acima, determine:

a) as coordenadas dos vértices

Resolução:

$$A_1, A_2 \in 0 \text{ y} \Rightarrow A_1 (0; 1) \text{ e } A_2 (0; -1)$$

Resposta:

$$A_1(0; 1) e A_2(0; -1)$$

b) as coordenadas dos focos

Resolução:

$$F_1, F_2 \in 0 \text{ y} \Rightarrow F_1(0; \sqrt{3}) \text{ e } F_2(0; -\sqrt{3})$$

Resposta:

$$F_1(0; \sqrt{3}) \in F_2(0; -\sqrt{3})$$

c) as coordenadas dos polos

Resolução:

I.
$$a = 1$$
, $f = \sqrt{3}$ e $f^2 = a^2 + b^2 \Rightarrow (\sqrt{3})^2 = 1^2 + b^2 \Rightarrow b = \sqrt{2}$
II. B_1 , $B_2 \in 0$ x $\Rightarrow B_1$ ($\sqrt{2}$; 0) e B_2 ($-\sqrt{2}$; 0)

Resposta:

$$B_1(\sqrt{2}; 0) \in B_2(-\sqrt{2}; 0)$$

d) o eixo transverso

Resolução:

$$a = 1 \Rightarrow 2a = 2$$

Resposta:

$$2a = 2$$

e) o eixo conjugado

Resolução:

$$b = \sqrt{2} \Rightarrow 2b = 2\sqrt{2}$$

Resposta:

$$2b = 2\sqrt{2}$$

f) a distância focal

Resolução:

$$f = \sqrt{3} \Rightarrow 2f = 2\sqrt{3}$$

Resposta:

$$2f = 2\sqrt{3}$$

g) a excentricidade

Resolução:

$$e = \frac{f}{a} \Rightarrow e = \sqrt{3}$$

Resposta:

$$e = \sqrt{3}$$

h) a equação da hipérbole

Resolução:

I. Posição vertical, C (0; 0), $a = 1 e b = \sqrt{2}$

II.
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \Rightarrow \frac{y^2}{1} - \frac{x^2}{2} = 1 \Rightarrow y^2 - \frac{x^2}{2} = 1$$

Resposta:

$$y^2 - \frac{x^2}{2} = 1$$

Esboce o gráfico da hipérbole de equação $x^2 - y^2 = 1$, destacando os respectivos vértices, focos e polos.

Resolução:

I.
$$a^2 = 1 \Rightarrow a = 1 \text{ e } b^2 = 1 \Rightarrow b = 1$$

II.
$$f^2 = a^2 + b^2 \Rightarrow f^2 = 1 + 1 \Rightarrow f = \sqrt{2}$$

III. Posição horizontal e C (0; 0)

Resposta:

Determine a equação da hipérbole cujos vértices são (0; 3) e (0; -3) e cuja distância focal é igual a $2\sqrt{10}$.

Resolução:

I.
$$A_1$$
, $A_2 \in 0$ y \Rightarrow vertical, C (0; 0) e a = 3

II.
$$2f = 2\sqrt{10} \Rightarrow f = \sqrt{10}$$

III.
$$f^2 = a^2 + b^2 \Rightarrow (\sqrt{10})^2 = 3^2 + b^2 \Rightarrow b = 1$$

IV.
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \Rightarrow \frac{y^2}{9} - \frac{x^2}{1} = 1 \Rightarrow \frac{y^2}{9} - x^2 = 1$$

Resposta:

$$\frac{y^2}{9} - x^2 = 1$$

Relativamente à parábola de foco no ponto \mathbf{F} e vértice no ponto \mathbf{V} , representados na figura acima, pede(m)-se:

a) a equação da reta diretriz

Resolução:

$$Vd = VF = f = 2 \Rightarrow (d) y = 2 \Rightarrow (d) y - 2 = 0$$

Resposta:

$$y = 2 \text{ ou } y - 2 = 0$$

b) as coordenadas do foco

Resolução:

$$F \in 0 \text{ y} \Rightarrow F(0; 2)$$

Resposta:

F(0; -2)

c) as coordenadas do vértice

Resolução:

O vértice é a origem \Rightarrow V (0; 0)

Resposta:

V (0; 0)

d) o parâmetro

Resolução:

$$f = 2 \Rightarrow p = 2f = 4$$

Resposta:

$$2 f = 4$$

e) a equação da parábola

Resolução:

V (0; 0) e concavidade para baixo

$$x^2 = -4$$
 fy $\Rightarrow x^2 = -8y$

Resposta:

$$x^2 = -8y$$

5

Em relação à parábola de foco no ponto **F** e vértice no ponto **V**, representada na figura acima, pede(m)-se:

a) a equação da reta diretriz

Resolução:

$$Vd = VF = f = 3 \Rightarrow (d) y = -1 \text{ ou } (d) y + 1 = 0$$

Resposta:

$$y = -1$$
 ou $y + 1 = 0$

b) as coordenadas do foco

Resolução:

I.
$$x_F = x_V = 3 \text{ e } y_F = y_V + 3 \Rightarrow y_F = 5$$

II. F (3, 5)

Resposta:

F (3; 5)

c) as coordenadas do vértice

Resolução:

$$x_V = 3 \text{ e } y_V = 2 \Rightarrow V (3; 2)$$

Resposta:

V (3; 2)

d) o parâmetro

Resolução:

 $f = 3 \Rightarrow p = 2f = 6$

Resposta:

p = 2f = 6

e) a equação da parábola

Resolução:

V (3; 2) e concavidade para cima

$$(x - x_V)^2 = 4f (y - y_V) \Rightarrow (x - 3)^2 = 12 (y - 2)$$

Resposta:

 $(x-3)^2 = 12 (y-2)$

FRENTE 2 - AULA 3

1

Considerando a aresta \overline{AB} do cubo ABCDEFGH da figura acima, enumere as retas suportes das:

a) arestas paralelas a AB

 \leftrightarrow \leftrightarrow \leftrightarrow EF, GH, CD

b) arestas perpendiculares a AB

 \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow AE, AD, BF, BC

c) arestas nem paralelas nem perpendiculares a \overrightarrow{AB} (reversas)

 \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow EH, FG, DH, CG

2 Assinale com V, se verdadeiras, e com F, se falsas, as afirmações a seguir:

I. (F) Duas retas que não têm ponto em comum são paralelas.

II. (V) Duas retas distintas que têm ponto em comum são concorrentes.

III. () Duas retas coplanares que não têm ponto em comum são paralelas.

IV. (V) Duas retas reversas não têm ponto em comum.

V. (V) Duas retas não coplanares são reversas.

VI. () Se uma reta não tem ponto em comum com um plano, ela é paralela a ele.

VII. (V) Se uma reta tem ponto em comum com um plano pode ser incidente a ele.

VIII. (F) Sendo dois planos paralelos, todo plano secante a um deles é paralelo ao outro.

IX. (V) Dois planos secantes possuem como intersecção uma reta.

3

Na figura acima, α , β , γ e δ são planos paralelos e **r** e **s**, duas retas transversais. A medida A' D' é:

a) 33

d) 108

b) 66

(e)) 132

c) 86

4 Se um poliedro convexo possui 20 faces e 12 vértices, então o número de arestas deste poliedro é:

a) 12

(d)) 30

b) 18

e) 32

c) 28

5 Um poliedro convexo de onze faces tem seis faces triangulares e cinco faces quadrangulares. Calcule o número de arestas e de vértices do poliedro.

$$A = 19 e V = 10$$

Exercícios-Tarefa

1 Coloque V ou F conforme as sentenças sejam verdadeiras ou falsas.

- a) (F) Duas retas que têm ponto em comum são concorrentes.
- **b)** (F) Duas retas que não têm ponto em comum são paralelas distintas.
- c) (V) Duas retas não coplanares são sempre reversas.
- d) (V) Se uma reta não tem ponto em comum com um plano, ela é paralela a ele.
- e) (V) Dois planos paralelos interceptados por um terceiro determinam neste último intersecções paralelas.
- f) (V) Dois planos, sendo paralelos, se um terceiro os interceptar, o fará em retas paralelas.
- g) (V) Para se obter a intersecção de dois planos secantes é suficiente obter dois pontos distintos da intersecção, ou seja, dois pontos distintos comuns aos planos.
- h) (V) Se três retas são, duas a duas, paralelas distintas, ou elas determinam um plano ou determinam três planos.
- i) (V) Dois planos, sendo paralelos, toda reta que fura um, fura o outro.
- j) (V) Dois planos, sendo paralelos, todo plano que intercepta um, intercepta o outro.

Resolução:

- a) Falsa. Podem ser coincidentes.
- b) Falsa. Podem ser reversas.

2 Duas retas são reversas quando:

- a) não existe plano que contém ambas.
- b) existe um único plano que as contém.
- c) não se interceptam.
- d) não são paralelas.
- e) são paralelas, mas estão contidas em planos distintos.

Resolução:

Duas retas são reversas quando não são coplanares.

Resposta: A

3

São dados: um feixe de quatro planos paralelos, uma reta incidente a eles nos pontos A, B, C e D e uma outra reta incidente a eles nos pontos E, F, G e H. Sabendo-se que AB = 8, CD = 16, FG = 18 e BC = EF, o valor de EH é:

- **a)** 22
- **d)** 48
- **b)** 27
- **e)** 54

c) 36

Resolução:

1.
$$\frac{8}{x} = \frac{x}{18} \Rightarrow x^2 = 144 \Rightarrow x = 12$$
, pois $x > 0$.

II.
$$\frac{AB}{AD} = \frac{EF}{FH} \Rightarrow \frac{8}{36} = \frac{12}{FH} \Rightarrow EH = 54$$

Resposta: E

4 Um poliedro convexo possui duas faces triangulares e três faces quadrangulares. Determine o número de vértices e de arestas desse poliedro.

Resolução:

I.
$$F = 2 + 3 \Rightarrow F = 5$$

II.
$$A = \frac{2 \cdot 3 + 3 \cdot 4}{2} \Rightarrow A = 9$$

III.
$$V - A + F = 2 \Rightarrow V - 9 + 5 = 2 \Rightarrow V = 6$$

Resposta:

9 arestas e 6 vértices

Determine o número de vértices de um poliedro convexo que tem 3 faces triangulares, 1 face quadrangular, 1 pentagonal e 2 hexagonais.

Resolução:

I.
$$F = 3 + 1 + 1 + 2 \Rightarrow F = 7$$

II.
$$A = \frac{3 \cdot 3 + 1 \cdot 4 + 1 \cdot 5 + 2 \cdot 6}{2} \Rightarrow A = 15$$

III.
$$V - A + F = 2 \Rightarrow V - 15 + 7 = 2 \Rightarrow V = 10$$

Resposta:

V = 10

6 Num poliedro convexo de 10 arestas, o número de faces é igual ao número de vértices. Quantas faces tem esse poliedro?

Resolução:

I.
$$A = 10 e V = F$$

II.
$$V - A + F = 2 \Rightarrow F - 10 + F = 2 \Rightarrow F = 6$$

Resposta:

F = 6

FRENTE 2 - AULA 4

1 Classifique as afirmações a seguir como verdadeiras (V) ou falsas (F):

- (V) Sendo dois planos paralelos distintos, toda reta incidente a um deles é incidente ao outro.
- Sendo dois planos secantes, toda reta inciden-II. (F) te a um deles é incidente ao outro.
- III. (F) Uma reta concorrente a uma reta de um plano é incidente ao plano.
- IV. (F) Uma reta paralela a uma reta de um plano está contida no plano.
- V. (F) Se uma reta é paralela a um plano, ela é reversa a todas as retas do plano.
- Se dois planos são paralelos distintos, uma **VI**. (V) reta de um deles é paralela ou reversa a qualquer reta do outro.
- VII. (F) Por um ponto fora de uma reta pode-se traçar um único plano paralelo à mesma reta.

2

No tetraedro da figura, enumere duas a duas as retas suportes das arestas que são reversas.

 \leftrightarrow

AC e BD

BC e AD

AB e CD

3 Quais são os poliedros de Platão? E os regulares?

Platão: — tetraedro

- hexaedro
- octaedro
- dodecaedro
- icosaedro

Regulares: os mesmos, porém com faces regulares e congruentes.

4 Calcule o número de arestas e de vértices de um dodecaedro regular.

A = 30 e V = 20

- 5 O número de faces triangulares de uma pirâmide é 11. Pode-se, então, afirmar que esta pirâmide possui:
- a) 33 vértices e 22 arestas
- b) 12 vértices e 11 arestas
- c) 22 vértices e 11 arestas
- d) 11 vértices e 22 arestas
- (e)) 12 vértices e 22 arestas

Exercícios-Tarefa

- 1 Classifique as sentenças como verdadeiras (V) ou falsas (F).
- a) (F) Dois planos distintos perpendiculares a um mesmo plano são paralelos.
- b) (F) Por uma reta não pertencente a um plano pode-se conduzir apenas um plano perpendicular a este.
- c) (F) Se dois planos são perpendiculares, uma reta contida num deles é perpendicular ao outro.
- d) (V) Por um ponto não pertencente a um plano pode-se conduzir uma única reta perpendicular
- e) (V) Se dois planos são paralelos, uma reta perpendicular a um deles é ortogonal ou perpendicular a qualquer reta do outro.

Resolução:

- a) Falsa. Podem ser secantes.
- b) Falsa. Se a reta for perpendicular ao plano, teremos infinitos planos perpendiculares a esse plano passando
- c) Falsa. Pode ser perpendicular, paralela ou incidente no outro.

- 2 Marque a opção que indica quantos pares de retas reversas são formados pelas retas suportes das arestas de um tetraedro.
- a) um par

- d) quatro pares
- b) dois pares
- e) cinco pares
- c) três pares

Resolução:

são 3 pares.

 \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow \leftrightarrow AC e BD, AB e CD e AD e BC.

Resposta: C

- O número de faces perpendiculares a uma certa aresta de um cubo é:
- **a)** 2
- **b)** 3
- c) 4
- **d)** 5
- **e)** 6

Resolução:

Considerando-es a aresta \overline{AE} (por exemplo), temos 2 faces.

Resposta: A

- 4 Assinale com V (verdadeiro) ou F (falso).
- a) (F) Duas retas coplanares são sempre concorrentes.
- b) (F) Se dois planos são paralelos, então toda reta de um deles é paralela a qualquer reta do outro.
- c) (V) Se dois planos são secantes, então uma reta de um deles pode não interceptar o outro plano.
- d) (V) Se dois planos são paralelos, então toda reta de um deles é paralela ao outro plano.
- e) (F) Se dois planos são perpendiculares, então toda reta de um deles é perpendicular ao outro plano.

Resolução:

- a) Falsa. Podem ser paralelas.
- b) Falsa. Pode ser reversa.
- e) Falsa. Pode também ser paralela ou incidente.
- 5 Quantas classes de poliedros regulares existem?
- **a)** 4
- **b)** 5
- **c)** 6
- **d)** 14
- e) infinitas

Resolução:

Existem 5 classes de poliedros regulares: tetraedro, hexaedro, octaedro, dodecaedro e icosaedro (THODI).

Resposta: B

6 Determine o número de arestas de um hexaedro regular.

Resolução:

- I. Hexaedro regular \Rightarrow F = 6
- II. As faces são quadrangulares:

$$A = \frac{6 \cdot 4}{2} \Rightarrow A = 12$$

Resposta: A = 12