

(9) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 101 39 132 A 1

(5) Int. Cl.⁷: C 08 G 77/38

DEUTSCHES
PATENT- UND
MARKENAMT

(2) Aktenzeichen: 101 39 132.3
 (2) Anmeldetag: 9. 8. 2001
 (3) Offenlegungstag: 27. 2. 2003

C 08 L 83/i0 C 08 L 101/10

(7) Anmelder:

Consortium für elektrochemische Industrie GmbH, 81379 München, DE

(4) Vertreter:

Franke, E., Dr., 81737 München

② Erfinder:

Schindler, Wolfram, Dipl.-Chem. Dr., 82008 Unterhaching, DE; Bauer, Andreas, Dipl.-Chem. Dr., 81371 München, DE; Stanjek, Volker, Dipl.-Chem. Dr., 81479 München, DE; Pachaly, Bernd, Dipl.-Chem. Dr., 84561 Mehring, DE

(56) Entgegenhaltungen:

US 52 54 657 A

CA 1988, Bd. 109, Ref. 109:130628 (JP 63-83166 A); DERWENT 1988, Ref. 88-142747/21 (JP 63-83167 A); DERWENT 1992, Ref. 91-355597/49 Hochmolekularbericht 1968, Ref. H. 9449/68; CA 1997, Bd. 127, Ref. 127:249426;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

lenwasserstoffrest und

a eine ganze Zahl von 1 bis 3 bedeuten.

- (A) Alkoxyvernetzende einkomponentige feuchtigkeitshärtende Massen
- Gegenstand der Erfindung sind alkoxyvernetzende einkomponentige Massen, die (A) alkoxysilanterminiertes Polymer mit Endgruppen der allgemeinen Formel (1) - A-Si(R)a(CH3)3-a und (B) Silan, das ausgewählt wird aus Silanen der allgemeinen Formeln (2) bis (4) NET FORMER (2, 3.5).

 X-CH₂-Si(R)_a(CH₃)_{3-a} (2)

 R''N[CH₂-Si(R)_a(CH₃)_{3-a}]₂ (3)

 N[CH₂-Si(R)_a(CH₃)_{3-a}]₃ (4) enthalten, wobei A ein zweibindiger gegebenenfalls halogensubstituierter Kohlenwasserstoffrest mit 1 bis 18 C-Atomen, R eine Methoxy- oder Ethoxygruppe, X eine Gruppe R"O-, R"NH- oder Halogen, R" Wasserstoff, einen gegebenenfalls halogensubstituierten cyclischen, linearen oder verzweigten C1-18 Alkyloder C6-18-Arylrest oder ein Rest R'-O-CO- oder R'-NH-CO-, R' einen gegebenenfalls halogensubstituierten C₁₋₈-Koh-

Beschreibung

[0001] Die Erfindung betrifft alkoxyvernetzende einkomponentige Dichtstoffmassen auf Basis Alkoxyorganosilan-terminierten Polymeren mit hervorragender Lagerstabilität und Härtungscharakteristik.

[0002] Organische Polymere mit Silanendgruppen in Form von einkomponentigen mit Luftfeuchtigkeit aushärtenden Massen (RTV-1) sind bekannt und werden vielfach zur Herstellung von elastischen Dicht- und Klebstoffen verwendet. Derartige Polymere können aus unterschiedlichen Bausteinen aufgebaut sein. Üblicherweise sind dies Polyurethane, Polyether, Polyester, Polyacrylate, Polyvinylester, Ethylen-Olefincopolymere, Styrol-Butadiencopolymere oder Polyolefine. Es ist bekannt, dass zur Stabilisierung bei der Verarbeitung und Lagerung der Compounds diesen einkomponentigen Massen niedermolekulare Verbindungen zugesetzt werden, die über hydrolysierbare Gruppen verfügen, die eine höhere Reaktivität gegenüber Wasser als die silanterminierten Polymere haben. Die Menge an zugesetzten Wasserfängern richtet sich nach dem Wassergehalt der Bestandteile der Rezeptur und nach den gewünschten Lagerstabilitäten und Verarbeitungszeiten. Meist sind dies organofunktionelle Silane, wobei der organische Rest vielfach ausschlaggebend für die Reaktivität ist. Beispiele für solche Silane sind Vinyltrimethoxysilan, Alkylaminopropyltrimethoxysilane aber auch beispielsweise unter Bildung von Ammoniak wasserbindende Silane wie Hexamethyldisilazan.

[0003] Meist werden für die Endterminierung substituierte Propyltrimethoxysilane eingesetzt, da sie in der Regel günstig verfügbar sind und in den Massen eine sehr gute Reaktivität aufweisen. Allerdings sind diese Polymere, bedingt durch die hohe Reaktivität auch problematisch hinsichtlich der Verarbeitung, z. B. bei der Einarbeitung von wasserhaltigen Füllstoffen oder auch Additiven, die die Reaktivität weiter erhöhen, ferner sind die Lagerstabiltäten vielfach unzu-

20 reichend.

[0004] Beispielsweise kann der Zusatz von größeren Mengen an Aminosilanen als Haftvermittler die Lagerstabilität stark verringern. Die Massen müssen meist über weitere Zusatzkomponenten, wie beispielsweise die in DE-A-199 23 300 beschriebenen Phosphorsäureester, stabilisiert werden, um die Katalysatoraktivität zu moderieren. Auch der Zusatz von Standard-Wasserfängern wie Vinyltrimethoxysilan ist nur bedingt geeignet um die Massen zu stabilisieren.
 [0005] Analog zu den bereits oben beschriebenen organischen Polymeren sind auch Polydiorganosiloxane mit hohen Reaktivitäten bekannt. In US-A-5254657 werden feuchtigkeitshärtende Massen auf Silicon-Basis beschrieben, bei denen die vernetzbaren Silaneinheiten analog zu den organischen Polymeren über die Umsetzung eines Aminosilicons mit einem Isocyanatoalkylalkoxysilan hergestellt werden. Auch diese zeigen aufgrund der hohen Reaktivität der Silanendgruppen eine problematische Lagerstabilität.

[0006] Gegenstand der Erfindung sind alkoxyvernetzende einkomponentige Massen, die

(A) alkoxysilanterminiertes Polymer mit Endgruppen der allgemeinen Formel (1)

 $-A-Si(R)_a(CH_3)_{3-a}$ (1)

und

35

(B) Silan, das ausgewählt wird aus Silanen der allgemeinen Formeln (2) bis (4)

 $X-CH_2-Si(R)_a(CH_3)_{3-a}$ (2)

 $R"N[CH_2Si(R)_a(CH_3)_{3-a}]_2$ (3)

 $N[CH_2Si(R)_a(CH_3)_{3-a}]_3$ (4)

45 enthalten, wobei

A ein zweibindiger gegebenenfalls halogensubstuierter Kohlenwasserstoffrest mit 1 bis 18 C-Atomen,

R eine Methoxy- oder Ethoxygruppe,

X eine Gruppe R"O-, R"NH- oder Halogen,

R" Wasserstoff, einen gegebenenfalls halogensubstuierten cyclischen, linearen oder verzweigten C₁₋₁₈-Alkyl- oder C₆₋₁₈-Arylrest, oder ein Rest R'-O-CO- oder R'-NH-CO-,

R' einen gegebenenfalls halogensubstuierten C_{i-8} -Kohlenwasserstoffrest und

a eine ganze Zahl von 1 bis 3 bedeuten.

[0007] Die Massen auf Basis Alkoxyorganosilan-terminierter Polymere (A) weisen eine ausgezeichnete Lagerstabilität und Härtungscharakteristik auf. Es hat sich nämlich gezeigt, dass der Zusatz von Silanen der allgemeinen Formeln (2) bis (4) zu Polymeren (A) geeignet ist, derartige Massen mit einer verbesserten Lagerstabilität herzustellen, ohne einen negativen Einfluss auf die Härtungskinetik und die Durchhärtung der Materialien zu haben. Im Gegensatz zu den bisherigen Zusammensetzungen sind aufgrund der sehr hohen Reaktivität der Silane der allgemeinen Formel (2) bis (4) die Massen hinsichtlich der Verarbeitung ausreichend lange verarbeitbar ohne zu gelieren. Dabei kann die Verarbeitungszeit durch die zugesetzte Silanmenge eingestellt werden. Dadurch dass die Silane der allgemeinen Formel (2) bis (4) aber eine hinreichend hohe Reaktivität zeigen, sind die Hautbildungs- und Durchhärtungszeiten nur wenig abhängig von der Silanmenge. Damit können Massen hergestellt werden, die sehr gut gegen größere Wassermengen, welche z. B. aus den Füllstoffen bei der Lagerung austreten, stabilisiert sind, ohne die Härtungscharakteristik zu verschlechtern.

[0008] Die Herstellung von unterschiedlichen silanterminierten Polymeren (A) ist beispielsweise in US-A-3971751, EP-A-70475, DE-A-198 49 817, US-A-6124387 oder US-A-5990257 beschrieben. Unterschiedliche Produkte sind kommerziell verfügbar, wie MS-Polymer S203H und S303H (von Kaneka Corp.), Desmoseal® LS 2237 (Bayer AG), Polymer ST50 (Hanse-Chemie GmbH), Excestar® S2410 und S2420 (Asahi Glass), Permapol® MS (Courtaulds Coatings Inc.) oder WSP 725-80 (Witton Chemical Co.). Daneben sind auch weitere silanterminierte Polymere (A) mit organi-

schen Polymergrundgerüst einsetzbar. [0009] Die Polymere (A) enthalten vorzugsweise ein Grundgerüst aus Polyurethan, Polyether, Polyester, Polyacrylat, Polyvinylester, Ethylen-Olefincopolymer, Styrol-Butadiencopolymer oder Polyolefin. Besonders bevorzugt sind Polyether, Polycster, Polyurethane mit Molmassen Mn von 5000-50 000, insbesondere 10 000-25 000. Die Viskositäten der Polymere (A) liegen vorzugsweise bei maximal 200 Pa · s. insbesondere maximal 100 Pa · s. [0010] In den vorstehenden allgemeinen Formeln (1) bis (4) bedeuten bevorzugt: R" Wasserstoff, einen cyclischen oder linearen C₁₋₆-Alkyl- oder C₆₋₁₀-Arylrest, speziell Butyl, Cyclohexyl oder Phenyl, R' einen C1-4-Alkyl- oder Phenylrest, speziell Methyl oder Ethyl, A einen verzweigten oder linearen C1-6-Alkylrest, insbesondere eine Methylen oder eine Trimethylengruppe, a die Werte 2 oder 3. 10 [0011] Zur Herstellung der silanterminierten Polymere (A) sind eine Vielzahl von Möglichkeiten bekannt, insbeson- Copolymerisation von ungesättigten Monomeren mit solchen, die z. B. Alkoxysilylgruppen, wie Vinyltrimethoxysilan aufweisen. 15 Aufpfropfung von ungesättigten Monomeren wie Vinyltrimethoxysilan auf Thermoplaste wie Polyethylen. Die Addition von H-Silanen wie Methyldimethoxysilan an die Kohlenstoff-Doppelbindungen unter Edelmetall-- Umsetzung von Organosilanen mit Präpolymeren. Hierbei wird eine funktionelle Gruppe des Präpolymeren mit einer funktionellen Gruppe des Silans umgesetzt. 20 [0012] Der vielfach beschrittene und einfachste Weg für den zuletzt genannten Fall ist eine Umsetzung von NCO-Gruppen eines Isocyanat-Präpolymeren mit einem Aminosilan der allgemeinen Formel (5): R^{1} -NH-A-Si(R)_a(CH₃)_{3-a} (5) 25 [0013] Ferner können entsprechend OH-Gruppen eines Isocyanat-Präpolymers, aber auch von unterschiedlichsten anderen Polymergrundbausteinen wie z. B. reinen Polyethern mit einem Isocyanatosilan der allgemeinen Formel (6) umgesetzt werden: 30 OCN-A-Si(R) $_a$ (CH₃)_{3-a} (6) [0014] In den allgemeinen Formeln (5) und (6) bedeuten R¹ Wasserstoff oder einen gegebenenfalls mit Halogen substituierten Alkylrest mit 1 bis 18, insbesondere 1 bis 6 C-Atomen, oder Arylrest mit 6 bis 18, insbesondere 6 bis 10 C-Atomen, 35 A, R und a weisen die vorstehenden Bedeutungen auf. [0015] Vorzugsweise bedeuten A Trimethylen, R Methoxy, R¹ Phenyl oder einen linearen Alkylrest, wie Ethyl oder Butyl und a hat den Wert 3. [0016] In einer bevorzugten Ausführungsform weist das alkoxysilanterminierte Polymer (A) Endgruppen der allgemeinen Formel (7), $-NR^1-CH_2-Si(R)_a(CH_3)_{3-a}$ (7) [0017] Dieses kann analog zu den oben beschriebenen Verfahren hergestellt werden durch Umsetzung von NCO-Gruppen eines Isocyanat-Präpolymeren mit einem Aminosilan der allgemeinen Formel (8): [0018] $R^1NH-CH_2-Si(R)_a(CH_3)_{3-a}$ (8) [0019] Ferner können entsprechend OH-Gruppen eines Isocyanat-Präpolymeren, aber auch von unterschiedlichsten anderen Polymergrundbausteinen wie z. B. reinen Polyethern mit einem Isocyanatosilan der allgemeinen Formel (9) umgesetzt werden. OCN-CH₂-Si(R)_a(CH₃)_{3-a} (9) [0020] In den allgemeinen Formeln (7) und (8) und (9) haben R¹, R, und a die vorstehenden Bedeutungen. Vorzugsweise bedeuten R₁ Phenyl oder ein linearer Alkylrest wie Ethyl oder Butyl und a die Werte 2 oder 3. [0021] Bei silanterminierten Polymeren (A) mit Endgruppen der allgemeinen Formel (7) hat sich gezeigt, dass diese aufgrund ihrer sehr hohen Reaktivität sehr schwierig nur noch compoundiert werden können. Dabei führt der Wassergehalt gängiger Füllstoffe und Additive vielfach bereits zu einem Durchgelieren der Masse während der Compoundierung oder zu einer deutlichen Verstrammung, die zu meist kaum noch verarbeitbaren Massen führt. Ferner sind diese Massen hinsichtlich ihrer Lagerstabilität problematisch und können über längere Zeit nicht gelagert werden. Bei der Verarbeitung dieser RTV-1 Mischungen ziehen die Massen so schnell an, dass eine gleichmäßige Verarbeitung unmöglich ist. Der Versuch, diese Massen mit den oben beschriebenen Standard-Wasserfängern zu stabilisieren, führte zu keinem Erfolg. [0022] Im Gegensatz zu den bisherigen Wasserfängern sind aufgrund der sehr hohen Reaktivität der Silane der allgemeinen Formel (2), (3) und (4), silanterminierte Polymere (A) nach der allgemeinen Formel (7) hinsichtlich der Verarbeitung ausreichend lange stabilisierbar ohne zu gelieren. Die Verarbeitungszeit kann auch hier durch die zugesetzte Silanmenge eingestellt werden. Allerdings sind die Verarbeitungszeiten und die Hautbildungs- und Durchhärtungszeiten

deutlich schneller. Damit können nun auch lagerstabile schnelle RTV-1 Massen mit silanterminierten Polymeren (A)

nach der allgemeinen Formel (7) hergestellt werden.

[0023] Als Polymere (A) können auch Polymere mit einem Grundgerüst aus Polydiorganosiloxan und Endgruppen der allgemeinen Formel (1) eingesetzt werden. Vorzugsweise werden dabei Silane der allgemeine Formel (6) an Hydroxyalkyl- oder Aminoalkyl-endständige Siliconöle addiert.

[0024] Gängige Siliconpolymere, hergestellt durch Endblockierung von Si-OH-terminierten Siliconölen mit alkoxyfunktionellen Silanen wie Vinyltrimethoxysilan oder Methyltrimethoxysilan sind als weitere Ausführungsform anstelle

der Polymere (A) ebenso einsetzbar.

[0025] Als Komponente (B) sind organofunktionelle Silane der allgemeinen Formeln (2), (3) und (4) mit Methylenspacer einsetzbar. Beispiele für derartige Silane sind Aminomethyltrimethoxysilan, Aminomethyl-methyldimethoxysilan, Bis-(trimethoxysilylmethyl)amin, Aminomethyl-triethoxysilan, Aminomethyl-methyldiethoxysilan, Bis-(triethoxysilylmethyl)amin, Phenylaminomethyl-trimethoxysilan, Phenylaminomethyl-methyldimethoxysilan, Butylaminomethyl-trimethoxysilan, Butylaminomethyl-methyldimethoxysilan, Cyclohexylaminomethyltrimethoxysilan, Cyclohexylaminomethyl-methyldimethoxysilan, Methoxymethyl-trimethoxysilan, Methoxymethyl-methyldimethoxysilan, Ethoxymethyl-triethoxysilan, Ethoxymethylmethyldiethoxysilan, Methylcarbamatomethyl-trimethoxysilan, Methylcarbamatomethyl-methyldimethoxysilan, Ethylcarbamatomethyl-triethoxysilan, Ethylcarbamatomethylmethyldiethoxysilan, Chlormethyl-trimethoxysilan und Chlormethyl-methyldimethoxysilan.

[0026] Bevorzugt sind dabei Aminomethyl-trimethoxysilan und Aminomethyl-methyldimethoxysilan besonders bevorzugt Phenylaminomethyl-trimethoxysilan, Phenylaminomethyl-methyldimethoxysilan, Methoxymethyltrimethoxysilan und Methoxymethyl-methyldimethoxysilan, Methylcarbamatomethyl-trimethoxysilan, Methylcarbamatomethylmethyldimethoxysilan, Ethylcarbamatomethyl-triethoxysilan, Ethylcarbamatomethyl-methyldiethoxysilan, die auf-

grund ihrer geringeren Basizität keinen zusätzlichen beschleunigenden Einfluss auf die Reaktivität haben.

[0027] Auf 100 Gewichtsteile Polymer (A) enthalten die Massen vorzugsweise 0,1 bis 20 Gewichtsteile, besonders bevorzugt 0,5 bis 10 Gewichtsteile, insbesondere 2 bis 6 Gewichtsteile Silane (B).

[0028] Die Massen können als Komponente (C) einen Katalysator zur Aushärtung enthalten. Als Komponente (C) können bevorzugt alle metallorganischen Katalysatoren eingesetzt werden, die bekanntermaßen die Silankondensation fördern. Dies sind insbesondere Zinnverbindungen und Titanverbindungen. Bevorzugte Zinnverbindungen sind Dibutylzinndilaurat, Dibutylzinndiacetat, Dibutylzinn-bis-acetylacetonat. Bevorzugt Titanverbindungen sind Alkyltitantate wie Tetraisoproyltitanat, Tetrabutyltitanat. Ferner können basische Amine als Cokatalysatoren aber auch soweit geeignet als Katalysator selbst eingesetzt werden. Bevorzugt sind beispielsweise Verbindungen wie 1,8-Diazabicyclo[5,4,0]undec-7en oder 4-Dimethylaminopyridin. Ferner können auch organische Stickstoffverbindungen eingesetzt werden, die mindestens eine Silylgruppe tragen. Geeignete Basen mit einer Silylgruppe sind beispielsweise aminogruppenhaltige Silane wie Aminopropyl-trimethoxysilan, Aminopropyl-triethoxysilan, Aminomethyl-trimethoxysilan, Aminomethyl-triethoxysilan, Aminoethylaminopropyl-trimethoxysilan, Butylaminopropyl-trimethoxysilan, Butylaminomethyl-trimethoxysilan, Cyclohexylaminomethyltrimethoxysilan, Cyclohexylaminopropyl-trimethoxysilan.

[0029] Die Massen können ferner als Komponente (D) an sich bekannte Hilfsstoffe, wie Haftvermittler, Weichmacher, Füllstoffe, Thixotropiermittel, Lichtschutzmittel, Fungizide und Pigmente enthalten, die für den Einsatz in alkoxyvernet-

zenden einkomponentigen Massen bekannt sind.

[0030] Alle vorstehenden Symbole der vorstehenden Formeln weisen ihre Bedeutungen jeweils unabhängig voneinan-

der auf. In allen Formeln ist das Siliciumatom vierwertig.

[0031] Die folgenden Beispiele dienen der Erläuterung der Erfindung ohne diese zu beschränken. Soweit nicht anders angegeben sind alle Mengen- und Prozentangaben auf das Gewicht bezogen, alle Drücke 0,10 MPa (abs.) und alle Temperaturen 20°C.

Beispiele

45

Herstellung von Isocyanatomethyl-trimethoxysilan

[0032] Ausgehend von Chlormethyltrimethoxysilan wird Methylcarbamatomethyl-trimethoxysilan gemäß bekannter Verfahren (US 3,494,951) synthetisiert.

[0033] Dieses wird in ein Quarz-Pyrolyserohr, das mit Quarzwolle gefüllt ist, im Argon-Gasstrom eingepumpt. Die Temperatur im Pyrolyserohr beträgt zwischen 420 und 470 C. Das Rohprodukt wird am Ende der beheizten Strecke mit Hilfe eines Kühlers auskondensiert und gesammelt. Die farblose Flüssigkeit wird durch Destillation unter reduziertem Druck gereinigt. Über Kopf geht bei ca. 88-90 C (82 mbar) das gewünschte Produkt in über 99% iger Reinheit über, während im Sumpf das nicht umgesetzte Carbamat reisoliert werden kann. Dieses wird der Pyrolyse direkt wieder zugeführt. [0034] Ausgehend von 56,9 g (273 mmol) Methylcarbamatomethyltrimethoxysilan werden so 33,9 g (191 mmol) des gewünschten Produkts Isocyanatomethyl-trimethoxysilan in einer Reinheit > 97% enthalten. Dies entspricht einer Ausbeute von 70% d. Th.

Herstellung von N-Phenylaminomethyl-trimethoxysilan

[0035] 537 g (5,77 mol) Anilin werden in einem Laborreaktor komplett vorgelegt und anschließend mit Stickstoff inertisieren. Man heizt auf eine Temperatur von 115°C auf und tropft 328 g (1,92 mol) Chlormethyl-trimethoxysilan über 1.5 h zu und rührt für weitere 30 Minuten bei 125-130°C nach. Nach einer Zugabe von ca. 150 g des Silans fällt vermehrt Aniliniumhydrochlorid als Salz aus, jedoch bleibt die Suspension bis zum Dosierende gut rührbar. Überschüssig eingesetztes Anilin (ca. 180 g) wird bei gutem Vakuum (62°C bei 7 mbar) entfernt. Anschließend gibt man bei ca. 50°C 350 ml Toluol zu und rührt die Suspension für 30 min bei 10°C um Anilinhydrochlorid vollständig zu kristallisieren. Dieses wird anschließend abfiltriert. Das Lösungsmittel Toluol wird im Teilvakuum bei 60-70°C entfernt. Der Rückstand wird destillativ gereinigt (89-91°C bei 0,16 mbar).

[0036] Es wird eine Ausbeute von 331 g, d. h. 75,9% der Theorie, erreicht bei einer Produktreinheit von ca. 96,5%. Das Produkt enthält etwa 3,5% N,N-bis-[trimethoxysilylmethyl]-phenylamin als Verunreinigung.

Herstellung von Methoxymethyl-trimethoxysilan

[0037] 340 g (6,3 mol) Natriummethylat (95%ig) werden in einem mit Stickstoff inertisieren Laborreaktor in 2,5 l Methanol portionsweise gelöst. Dabei heizt sich die Lösung auf 65°C auf. Anschließend tropft man 995 g (5,8 mol) Chlormethyltrimethoxysilan über 1,5 h zu und rührt für weitere 30 Minuten in der Siedehitze. Bei der Zugabe des Silans fällt Natriumchlorid spontan als Salz aus, jedoch bleibt die Suspension bis zum Dosierende gut rührbar. Das ausgefallene Natriumchlorid wird abgesaugt und das Methanol im Teilvakuum bei 40–50°C entfernt. Der Rückstand wird destillativ gereinigt (97–98°C bei 172 mbar).

[0038] Es wird eine Ausbeute von 678,0 g, d. h. 70,3% der Theorie, erreicht bei einer Produktreinheit von ca. 99,5%.

Beispiel 1

Vergleichsbeispiel

15

40

60

[0039] 400 g eines Polypropylenglykols mit einem mittleren Molekulargewicht von 8000 g/mol werden mit 23,0 g Isophorondiisocyanat bei 100°C innerhalb von 60 min. polymerisiert. Das erhaltene Polyurethanpräpolymer wird anschließend auf 60°C abgekühlt und mit 12,8 g Phenylaminopropyltrimethoxysilan (erhältlich von CK-Witco unter Silquest® Y-9669) versetzt und 60 min gerührt, bis im IR-Spektrum keine Isocyanatbande mehr zu sehen ist. Das so erhaltene silanterminierte Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 21,0 g Vinyltrimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Ein Teil der Paste wird mit einer Schichtdicke von 5 mm auf einer Teflonplatte aufgerakelt und unter Einwirkung der Luftfeuchtigkeit zu einem elastischen Gummi vernetzt. Dabei werden die Hautbildungszeiten (Tack-free-time) und die Durchhärtung des Probekörpers bestimmt (23°C/50% rel. Luftfeuchtigkeit).

[0040] Ein weiterer Teil der Paste wird in Aluminium-Kartuschen abgefüllt und 4 Tage bei 70°C gelagert. Anschließend wird die Konsistenz geprüft und die Hautbildungszeiten (Tack-free-time) und die Durchhärtung wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 2

[0041] Ein nach Beipiel 1 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 21,0 g Methoxymethyltrimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet, Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. [0042] Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 3

[0043] Ein nach Beipiel 1 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 42,0 g Methoxymethyltrimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. [0044] Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 4

[0045] Ein nach Beipiel 1 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 42,0 g Phenylaminomethyl-trimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 5

(Vergleichsbeispiel)

[0046] 300 g Desmoseal® LS 2237 (silanterminiertes Polyurethan, erhältich von der Bayer AG) werden bei ca. 25°C mit 108 g Diisoundecylphthalat, 16,7 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 16,7 g Vinyltrimethoxysilan und 328 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt.

[0047] Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 6

[0048] 300 g Desmoseal® LS 2237 werden bei ca. 25°C mit 108 g Diisoundecylphthalat, 16,7 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 16,7 g Methoxymethyltrimethoxysilan und 328 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Die Hautbildungszeiten (Tack-freetime), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 7

[0049] 300 g Desmoseal® LS 2237 werden bei ca. 25°C mit 108 g Diisoundecylphthalat, 16,7 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 33,4 g Methoxymethyltrimethoxysilan und 328 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Die Hautbildungszeiten (Tack-freetime), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.</p>

Beispiel 8

[0050] 300 g Desmoseal® LS 2237 werden bei ca. 25°C mit 108,0 g Diisoundecylphthalat, 16,7 g 3-(2-Aminoethyl)aminopropyltrimethoxysilan, 16,7 g Phenylaminomethyltrimethoxysilan und 328 g gefällter und getrockneter Kreide
(Wassergehalt < 300 ppm) versetzt und innerhalb 0,5 h in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Letztlich werden 2,0 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt.
[0051] Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben
bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 9

30

55

65

Vergleichsbeispiel

[0052] 500 g α,ω-Aminopropylpolydimethylsiloxan mit einem mittleren Molekulargewicht von 15 000 g/mol werden in einem beheizbaren mit Vakuumpumpe versehenen Laborplanetenmischer auf 80°C erwärmt und 0,5 h im Vakuum ausgezeizt. Nach Abkühlung auf 30-35°C werden 16,4 g Isocyanatopropyl-trimethoxysilan (erhältlich von CK-Witco unter Silquest[®] Y-5187) zugegeben und weiter 30 min. gerührt. Das so erhaltene silanterminierte Polymer wird bei ca. 25°C mit 230 g eines trimethylsilylterminierten Polydimethylsiloxans mit einer Viskosität von 100 Pa·s, 16,7 g 3-(2-40 Aminoethyl)-aminopropyltrimethoxysilan, 16,7 g Vinyltrimethoxysilan und 85 g einer hydrophilen pyrogenen Kieselsüre (erhältlich von der Wacher-Chemie-GmbH unter HDK[®]-V15) versetzt und innerhalb 0,5 h zu einer standfesten Paste verarbeitet. Letztlich werden 0,75 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 10

[0053] Ein nach Beipiel 8 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 230 g eines trimethylsilylterminierten Polydimethylsiloxans mit einer Viskosität von 100 Pa·s, 16,7 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 16,7 g Methoxymethyl-trimethoxysilan und 85 g einer hydrophilen pyrogenen Kieselsäure versetzt und innerhalb 0,5 h zu einer standfesten Paste verarbeitet. Letztlich werden 0,75 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 11

[0054] Ein nach Beipiel 8 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 230 g eines trimethylsilylterminierten Polydimethylsiloxans mit einer Viskosität von 100 Pa·s, 16,7 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 33,4 g Methoxymethyl-trimethoxysilan und 85 g einer hydrophilen pyrogenen Kieselsäure versetzt und innerhalb 0,5 h zu einer standfesten Paste verarbeitet. Letztlich werden 0,75 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 12

[0055] Ein nach Beipiel 8 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 230 g eines trimethylsilylterminierten Polydimethylsiloxans mit einer Viskosität von 100 Pa·s, 16,7 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 16,7 g Phenylaminomethyl-trimethoxysilan und 85 g einer hydrophilen pyrogenen Kieselsäure versetzt und inner-

halb 0,5 h zu einer standfesten Paste verarbeitet. Letztlich werden 0,75 g Dibutylzinndilaurat als Katalysator 10 min. eingemischt. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 13

5

10

15

2N

25

35

45

60

Vergleichsbeispiel

[0056] 400 g eines Polypropylenglykols mit einem mittleren Molekulargewicht von 8000 g/mol werden mit 23,0 g Isophorondiisocyanat bei 100°C innerhalb von 60 min. polymerisiert. Das erhaltene Polyurethanpräpolymer wird anschließend auf 60°C abgekühlt und mit 10,5 g Phenylaminomethyl-trimethoxysilan versetzt und 60 min gerührt, bis im IR-Spektrum keine Isocyanatbande mehr zu sehen ist. Das so erhaltene silanterminierte Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 21,0 g Vinyltrimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Das Produkt geliert bereits bei der Einarbeitung der Füllstoffe.

Beispiel 14

Vergleichsbeispiel

[0057] Ein nach Beispiel 13 hergestelltes silanterminiertes Polymer wird wie dort beschrieben compoundiert, unter Verwendung von 63,0 g Vinyltrimethoxysilan. Das Produkt konnte im Laborplantenmischer noch zu einer standfesten Paste verarbeitet werden, ist jedoch bei der Herstellung der Prüfkörper spontan ausgehärtet.

Beispiel 15

Vergleichsbeipiel

[0058] 400 g eines Polypropylenglykols mit einem mittleren Molekulargewicht von 8000 g/mol werden mit 12,5 g Isophorondiisocyanat bei 100°C innerhalb von 60 min. polymerisiert. Das erhaltene Polyurethanpräpolymer wird anschließend auf 60°C abgekühlt und mit 19,7 g Isocyanatomethyltrimethoxysilan versetzt und 60 min gerührt, bis im IR-Spektrum keine Isocyanatbande mehr zu sehen ist. Das so erhaltene silanterminierte Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 21,0 g Vinyltrimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Das Produkt geliert bereits bei der Einarbeitung der Füllstoffe.

Beispiel 16

[0059] Ein nach Beispiel 13 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 21,0 g Methoxymethyltrimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 17

[0060] Ein nach Beipiel 13 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 42,0 g Methoxymethyltrimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 18

[0061] Ein nach Beipiel 13 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 21,0 g Phenylaminomethyl-trimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Beispiel 19

[0062] Ein nach Beipiel 15 hergestelltes silanterminiertes Polymer wird bei ca. 25°C mit 155 g Diisoundecylphthalat, 21,0 g 3-(2-Aminoethyl)-aminopropyltrimethoxysilan, 42,0 g Methoxymethyl-trimethoxysilan und 435 g gefällter und getrockneter Kreide (Wassergehalt < 300 ppm) versetzt und in einem Laborplantenmischer zu einer standfesten Paste verarbeitet. Die Hautbildungszeiten (Tack-free-time), die Durchhärtung und die Lagerstabilität wird wie oben beschrieben bestimmt. Die Kennwerte des Produkts sind in Tabelle 1 zusammengestellt.

Tabelle 1
Härtungscharakteristik und Lagerstabilität der feuchtigkeitshärtenden Massen

Hartungscharakteristic und Engert										
5	Beispiel	Haut (tack- free) [min]	Durch- härtung [mm/d]	Haut 4d/60°C (tack- free)[min]	härtung 4d/60°C [mm/d]	Lager- stabilität (Bemerkung)				
10	Bsp. 1 (Vergl.)	60	2-3	35	2	Paste deutlich viskoser				
15	Bsp. 2	40	3	40	2-3	Paste etwas viskoser				
20	Bsp. 3	45	3	40	3	Paste unverändert				
20		<u> </u>	<u> </u>	<u> </u>		•				

Beispiel Bsp. 4	Haut (tack-free) [min]	Durch-härtung [mm/d]	Haut 4d/60°C (tack-free)[min]	Durch- härtung 4d/60°C [mm/d]	Lager- stabilität (Bemerkung) Paste unverändert	5
Bsp. 5 (Vergl.)	70	3-4	45	2-3	Paste deutlich viskoser	15
Bsp. 6	60	3-4	.55	3-4	Paste unverändert	-
Bsp. 7	65	3-4	65	3-4	Paste unverändert	20
Bsp. 8	65	3-4	. 55	4	Paste etwas viskoser	25
Bsp. 9 (Vergl.)	15	5-6	5	10-12	Paste deutlich viskoser	30
Bsp. 10	15	6-7	10	6-7	Paste etwas viskoser	
Bsp. 11	15	6-7	15	6-7	Paste unverändert	35
Bsp. 12	15	6-7	15	6-7.	Paste unverändert	. 40
Bsp. 16	4	> 15	3	> 15	Paste etwas viskoser	45
Bsp. 17	7	> 15	6	> 15	Paste unverändert	
Bsp. 18	4	> 15	3 ·	> 15	Paste etwas viskoser	50
Bsp. 19	6	> 15	5	> 15	Paste unverändert	55

Patentansprüche

60

 $-A-Si(R)_a(CH_3)_{3-a}$ (1)

Alkoxyvernetzende einkomponentige Massen, die

 (A) alkoxysilanterminiertes Polymer mit Endgruppen der allgemeinen Formel (1)

und
(B) Silan, das ausgewählt wird aus Silanen der allgemeinen Formeln (2) bis (4)

 $X-CH_2-Si(R)_a(CH_3)_{3-a}$ (2)

65

 $R"N[CH_2-Si(R)_a(CH_3)_{3-a}]_2$ (3) 5 $N[CH_2-Si(R)_a(CH_3)_{3-a}]_3$ (4) A ein zweibindiger gegebenenfalls halogensubstuierter Kohlenwasserstoffrest mit 1 bis 18 C-Atomen, R eine Methoxy = oder Ethoxygruppe, R" Wasserstoff, einen gegebenenfalls halogensubstuierten cyclischen, linearen oder verzweigten C_{1-18} -Alkyl- oder 10 C₆₋₁₈-Arylrest, oder ein Rest R'-O-CO- oder R'-NH-CO-, R' einen gegebenenfalls halogensubstuierten C_{1-8} -Kohlenwasserstoffrest und 2. Massen nach Anspruch 1, bei denen das alkoxysilanterminierte Polymer (A) Endgruppen der allgemeinen For-15 NR^{1} - CH_{2} - $Si(R)_{a}(CH_{3})_{3-a}$ (7) R¹ Wasserstoff oder einen gegebenenfalls mit Halogen substituierten Alkylrest mit 1 bis 18 C-Atomen, oder Aryl-20 rest mit 6 bis 18 C-Atomen bedeutet und R und a die die in Anspruch 1 angegebenen Bedeutungen aufweisen. 3. Massen nach Anspruch 1 oder 2, welche auf 100 Gewichtsteile Polymer (A) 0,1 bis 20 Gewichtsteile Silane (B) 25 4. Massen nach Anspruch 1 bis 3, welche als Komponente (C) einen Katalysator zur Aushärtung enthalten. 5. Massen nach Anspruch 1 bis 4, bei denen die Polymere (A) ein Grundgerüst aufweisen, das ausgewählt wird aus Polyurethan, Polyether, Polyester, Polyacrylat, Polyvinylester, Ethylen-Olefincopolymer, Styrol-Butadiencopoly-6. Massen nach Anspruch 1 bis 5, bei denen die Polymere (A) ein Grundgerüst aus Polydiorganosiloxan aufweisen. mer und Polyolefin. 30 35 40 45 50 55 60

STN Karlsruhe

ANSWER 1 OF 1 WPIDS COPYRIGHT 2006 THE THOMSON CORP on STN 2003-504944 [47] WPIDS ACCESSION NUMBER: C2003-134809 DOC. NO. CPI: Alkoxy-crosslinking, one-component moisture-cured TITLE: materials, used e.g. in elastic sealing materials and adhesives, contain alkoxysilane-terminated polymers and specified alkoxysilane compounds. A18 A28 E11 G03 G04 DERWENT CLASS: BAUER, A; PACHALY, B; SCHINDLER, W; STANJEK, V INVENTOR(S): (CONE) CONSORTIUM ELEKTROCHEM IND GMBH; (BAUE-I) BAUER A; PATENT ASSIGNEE(S): (PACH-I) PACHALY B; (SCHI-I) SCHINDLER W; (STAN-I) STANJEK V COUNTRY COUNT: 28 PATENT INFORMATION: KIND DATE LA PG MAIN IPC PATENT NO WEEK WO 2003014226 A1 20030220 (200347)* GE 31 C08L101-10 RW: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK W: CN JP PL US DE 10139132 A1 20030227 (200347) C08G077-38<--A1 20040506 (200430) GE C08L101-10 EP 1414909 R: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR US 2004181025 A1 20040916 (200461) C08G077-26 -B1 20041013 (200467) GE C08L101-10 EP 1414909 R: BE DE FR GB NL DE 50201325 G 20041118 (200476) C08L101-10 W 20041209 (200481) 45 CO8L101-10 JP 2004536957 A 20041020 (200510) C08L101-10 CN 1538993 APPLICATION DETAILS: APPLICATION PATENT NO KIND DATE _____ ______ WO 2002-EP8019 20020718 WO 2003014226 A1 DE 2001-10139132 20010809 A1 DE 10139132 EP 2002-767228 20020718 EP 1414909 A1 . WO 2002-EP8019 20020718 US 2004181025 WO 2002-EP8019 20020718 A1 . US 2004-484300 20040120 EP 2002-767228 EP 1414909 B1 20020718 WO 2002-EP8019 20020718 DE 2002-00201325 20020718 DE 50201325 EP 2002-767228 20020718 WO 2002-EP8019 20020718 20020718 JP 2004536957 WO 2002-EP8019 JP 2003-519165 20020718

CN 1538993

PATENT NO

EP 1414909

KIND

Al Based on

FILING DETAILS:

CN 2002-815447

PATENT NO

WO 2003014226

20020718

THIS PAGE BLANK (USPTO

STN Karlsruhe

EP 1414909 B1 Based on WO 2003014226
DE 50201325 G Based on EP 1414909
Based on WO 2003014226
JP 2004536957 W Based on WO 2003014226

PRIORITY APPLN. INFO: DE 2001-10139132 20010809

INT. PATENT CLASSIF.:

MAIN: C08G077-26; C08G077-38; C08L101-10

SECONDARY: C08K005-54; C08K005-5419; C08K005-544; C08L083-10

BASIC ABSTRACT:

WO2003014226 A UPAB: 20030723

NOVELTY - Alkoxy-crosslinking, one-component moisture-cured materials containing alkoxysilane-terminated polymers and specified alkoxysilane compounds, have improved storage stability without adverse effects on hardening kinetics or hardening quality

DETAILED DESCRIPTION - Alkoxy-crosslinking, one-component materials contain:

- (A) alkoxysilane-terminated polymers with end groups of formula -ASi(R)a(CH3)3-a (1) and
- (B) silanes of formula XCH2Si(R)a(CH3)3-a (2), R''N(CH2Si(R)a(CH3)3-a)2 (3) or N(CH2Si(R)a(CH3)3-a)3 (4).
 - A = optionally halogen-substituted 1-18C hydrocarbylene;
 - R = methoxy or ethoxy;
 - X = R''O-, R''NH- or halogen;
- R'' = H, optionally halogen-substituted 1-18C alkyl (linear, branched or cyclic) or 6-18C aryl, or R'OC(O) or R'NHC(O);
- R' = optionally halogen-substituted 1-8C hydrocarbyl; and a = 1-3.

USE - For the production of one-component moisture-cured materials such as elastic sealants and adhesives.

ADVANTAGE - The addition of special alkoxysilanes to one-component polymer-based materials with alkoxysilane end groups results in improved storage stability without adverse effects on hardening kinetics or hardening quality. Working times can be adjusted by varying the amount of alkoxysilane added, while tack-free times and cure times are only slightly dependent on the amount. These materials are therefore very well stabilized against large amounts of water (e.g. water from fillers during storage) without adversely affecting their hardening properties. Dwg.0/0

TECHNOLOGY FOCUS:

WO 2003014226 AlUPTX: 20030723

TECHNOLOGY FOCUS - POLYMERS - Preferred Polymers: Polymers (A) have end groups of formula -NR1CH2Si(R)a(CH3)3-a (7).

R1 = H, optionally halogen-substituted 1-18C alkyl, or 6-18C aryl. Preferred (A) have a basic skeleton of polyurethane, polyether, polyester, polyacrylate, polyvinyl ester, ethylene/olefin copolymer,

styrene/butadiene copolymer, polyolefin or polydiorganosiloxane.

Preferred Materials: The materials contain 0.1-20 parts by weight (pts.

wt.) (B) to 100 pts. wt. (A) and also a hardening catalyst

FILE SEGMENT: CPI

FIELD AVAILABILITY: AB; DCN

MANUAL CODES: CPI: A06-A00E; A06-A00E1; A12-A05; A12-R08; E05-E; G03-B01

THIS PAGE BLANK (USPTO)