Conceitos Banco de Dados

Prof. Nelson Bellincanta Filho

Conceitos Banco de Dados

- ► Segundo Heuser(1998), um modelo de banco de dados é uma descrição dos tipos de informações que estão sendo armazenadas em um banco de dados;
- ▶ Um modelo de dados é descrito em três níveis diferentes de abstração de dados: o modelo conceitual, lógico e físico.

- ▶ O modelo conceitual é o modelo mais abstrato por não depender de implementação em um Sistema Gerenciador de Banco de Dados (SGBD);
- O modelo conceitual envolve uma descrição do ambiente em que o software será implantado;
- Nessa descrição, são identificados as regras de negócio e os requisitos funcionais e os requisitos não funcionais que o software deve atender;
- Essa descrição é chamada de minimundo;

- ▶ O modelo entidade relacionamento (MER) é gerado a partir da descrição do minimundo;
- ▶ Os componentes do MER são: entidade, atributo, relacionamento, generalização/especialização e a entidade associativa;
- ▶ O MER é representado graficamente, através de um diagrama entidade relacionamento (DER).

- Entidade
 - ► A entidade representa um conjunto de objetos sobre os quais se deseja guardar informações (Heuser, 1998);
 - ▶ Uma entidade pode representar objetos concretos (ex. cliente, aluno) e objetos abstratos (ex. endereço) da realidade modelada;
 - ▶ Por convenção, o nome de uma entidade deve estar no singular.

CLIENTE

ENDEREÇO

Representação gráfica de uma entidade.

- Atributo
 - ▶ Um conjunto de características está associado a cada ocorrência de uma entidade;
 - ▶ Por exemplo, cada ocorrência de uma entidade cliente possui um nome, um CPF, um e-mail e o endereço referentes a um determinado cliente.

Representação gráfica dos atributos de uma entidade.

Relacionamentos

- ▶ Um relacionamento representa uma relação entre dois tipos de entidades onde estas precisam compartilhar as informações.;
- ▶ O relacionamento deve acontecer com no mínimo duas entidades (relacionamento binário);
- Existem três tipos de relacionamentos:
 - ▶ Um-para-um;
 - Um-para-muitos;
 - Muitos-para-muitos

▶ Um-para-um: uma ocorrência da entidade X pode se relacionar com no máximo uma ocorrência da entidade Y e uma ocorrência da entidade Y pode se relacionar com no máximo uma ocorrência da entidade X.

Representação gráfica de um relacionamento 1:1.

▶ Um-para-muitos: uma ocorrência da entidade X pode se relacionar com mais de uma ocorrência da entidade Y e uma ocorrência Y pode se relacionar com no máximo uma ocorrência da entidade X.

Representação gráfica de um relacionamento 1:N.

Muitos-para-muitos: uma ocorrência da entidade X pode ser relacionar com mais de uma ocorrência da entidade Y e uma ocorrência Y pode se relacionar com mais de uma ocorrência da entidade X.

Representação gráfica de um relacionamento N:N.

- Generalização/Especialização
 - ► Esse conceito permite a existência de superclasses e de subclasses;
 - ▶ Uma entidade superclasse possui características genéricas que são aplicadas a qualquer entidade de um determinado tipo;
 - ▶ Uma entidade subclasse possui características específicas, além de herdar as características de uma entidade superclasse.

- Por exemplo, a entidade superclasse cliente possui como características o código, o nome e o telefone;
- A subclasse Física possui como característica específica o CPF e a subclasse Jurídica possui o CNPJ como característica específica;
- As subclasses Físicas e Jurídicas herdam as características o código, o nome e telefone da superclasse cliente.

Representação gráfica de generalização/especialização.

- Entidade associativa
 - ► Esse conceito permite que entidades relacionadas possam se relacionar com outra entidade;
 - ▶ Segundo Heuser (1998), uma entidade associativa nada mais é que a redefinição de um relacionamento, que passa ser tratado como se fosse também uma entidade.

Conceitos Banco de Dados

- O modelo lógico é a segunda etapa do projeto de banco de dados;
- É derivado a partir de um determinado diagrama entidade-relacionamento;
- O modelo lógico é a base para a criação e implementação do modelo físico.

- Segundo Heuser (1998), um modelo lógico é uma descrição de um banco de dados no nível de abstração visto pelo usuário do Sistema Gerenciador de Banco de Dados - SGBD;
- Sendo assim, o modelo lógico depende do tipo de SGBD e por isso, é dito que o modelo lógico é atrelado a uma tecnologia;
- ▶ O modelo lógico representa uma estrutura de dados.

Diagrama entidade-relacionamento de uma loja.

- 1. Para todas as entidades do modelo conceitual deve-se criar uma tabela no modelo lógico.
 - Os atributos de cada entidade no modelo conceitual serão as colunas da tabela criada.
 - Os identificadores das entidades no modelo conceitual são nomeados no modelo lógico como chaves primárias e essas devem ser sublinhadas para a identificação.
 - No diagrama entidade-relacionamento do exemplo possui cinco entidades (Produto, Fornecedor, Cliente, Física e Jurídica).

- As entidades mapeadas para o modelo lógico ficam da seguinte forma:
 - Produto (codPdto, descrição, preço)
 - ► Fornecedor (codFrncdr, nome, endereço)
 - Cliente (codCli, nome, telefone)
 - ► Física (CPF)
 - Jurídica (CNPJ)

- 2. O próximo passo é mapear os relacionamentos do modelo conceitual para o modelo lógico.
 - ▶ O relacionamento 1:N é mapeado para o modelo lógico incorporando a chave primária da entidade de cardinalidade 1 na entidade de cardinalidade N;
 - O relacionamento 1:1 do modelo conceitual é mapeado para o modelo lógico com a incorporação da chave primária de uma entidade na outra entidade;
 - ▶ O relacionamento N:N do modelo conceitual é mapeado para o modelo lógico através da criação de uma tabela e que receberão como colunas as chaves primárias das duas entidades e os atributos de relacionamento.

- O mapeamento do relacionamento 1:N fica da seguinte forma:
 - ▶ Produto (código, descrição, preço, codFornec) codFornec referencia Fornecedor
 - ► Fornecedor (codFornec, nome, endereço)
 - ► Cliente (codCli, nome, telefone)
 - ► Física (CPF)
 - ► Jurídica (CNPJ)

- O mapeamento do relacionamento N:N fica da seguinte forma:
 - Produto (<u>codPdto</u>, descrição, preço, codFornec)
 codFornece referencia Fornecedor
 - ► Fornecedor (<u>codPronec</u>, nome, endereço)
 - Cliente (codCli, nome, telefone)
 - Física (CPF)
 - Jurídica (CNPJ)
 - Compra (<u>codPdto</u>, <u>codCli</u>, qtd, dataCompra)

codPdto referencia Produto codCli referencia Cliente

- 3. Mapear uma estrutura de Generalização/Especialização do modelo conceitual para o modelo lógico.
 - Acrescentar a chave primária da entidade superclasse nas tabelas das entidades subclasses;

- O mapeamento do primeiro modo fica da seguinte forma:
 - Produto (<u>codPdto</u>, descrição, preço, codFornec)
 codFornec referencia Fornecedor
 - ► Fornecedor (<u>codFornec</u>, nome, endereço)
 - Cliente (codCli, nome, telefone)
 - ► Física (codCli ,CPF)

 codCli referencia Cliente
 - Jurídica (<u>codCli</u>, CNPJ)
 codCli referencia Cliente
 - Compra (codPdto, codCli, Qtd, dataCompra)
 codPdto referencia Produto
 codCli referencia Cliente

- O modelo físico é terceira etapa de um projeto de banco de dados;
- Esse modelo mostra com detalhes como os dados são armazenados em um banco de dados e por isso, possui o menor nível de abstração se comparado aos demais modelos;
- Para definir e manipular a estrutura de banco de dados relacional é utilizado a Linguagem de Consulta Estruturada SQL.

- A SQL é uma linguagem considerada padrão para banco de dados relacional e foi desenvolvida pela IBM;
- ► A SQL pode ser dividida em dois conjuntos principais:
 - Linguagem de Definição de Dados DDL;
 - Linguagem de Manipulação de Dados DML.

- ▶ A DDL permite à criação da estrutura física que irá armazenar os dados, como as tabelas, as colunas, os índices, as chaves estrangeiras e primárias entre outras.
- ► A DML permite a inserção, a remoção, a alteração e a consulta dos registros em um banco de dados.

- ▶ O Sistema Gerenciador de Banco de Dados SGBD é software que facilita a definição, a construção, a manipulação de uma base de dados;
- ▶ O SGBD oferece ainda outros recursos como controle de redundância, operações de backup e restauração, acesso multiusuário entre outros;
- Dentre os SGBD disponíveis podem ser citados:
 - MySQL;
 - Oracle Database;
 - Microsoft SQL Server;
 - PostgreSQL;
 - MongoDB.

- O MySQL será utilizado nessa e nas próximas aulas como SGBD;
- O MySQL Workbench é uma ferramenta gráfica para a administração de uma base de dados MySQL;
- Essa ferramenta será utilizada a fim de facilitar o processo de gerenciamento de um base dados MySQL através de uma interface gráfica.
- Antes da instalação da ferramenta do MySQL Workbench, certifique-se de que o SGBD MySQL esteja instalado.

- Após a instalação do MySQL Workbench, a estrutura física do banco de dados deve ser criada, utilizando a Linguagem de Definição de Banco de Dados -DDL;
- Os principais comandos DDL são: create, alter e o drop;
- ▶ O comando para criar um banco de dados é:

CREATE DATABASE nome_do_banco;

▶ O comando para criar uma tabela é:

```
CREATE TABLE nome_do_tabela (
nome_coluna1 tipo_dados1 definições1,
nome_coluna2 tipo_dados2 definições2,
nome_colunaN tipo_dadosN definiçõesN );
```


- Os tipos de dados permitidos pelo MySQL podem ser divididos em três grupos:
 - Numéricos;
 - ▶ Data e hora;
 - Texto.

Tipos de dados: numéricos no MySQL		
	Descrição	
TINYINT	Inteiro muito pequeno	
SMALLINT	Inteiro pequeno	
MEDIUMINT	Inteiro de tamanho médio	
INT	Inteiro normal	
BIGINT	Inteiro de tamanho grande	
DECIMAL	Número decimal de ponto fixo	
FLOAT	Número de ponto flutuante de precisão simples	
DOUBLE	Número de ponto flutuante de precisão dupla	
BIT	Um bit	

Tipos de dados numéricos no MySQL.

Tipos de dados: data e hora no MySQL		
Tipo	Descrição	
DATE	Armazena uma data no formato 'YY-MM-DD'. Ex.: 1989-11-09	
TIME	Armazena um valor horário no formato' hh:mm:ss'. Ex. 08:40:10	
TIMESTAMP	Armazena um valor no formato 'YY-MM-DD hh:mm:ss'	

Tipos de dados data e hora no MySQL.

Principais tipos de dados: string no MySQL		
Tipo	Descrição	
CHAR	String de tamanho fixo	
VARCHAR	String de tamanho variável	
TEXT	String não binária	

Tipos de dados string no MySQL.

- As definições mais usadas no comando create são:
 - NOT NULL: é uma restrição que especifica que uma coluna precisa ter um valor não nulo;
 - ▶ UNIQUE: é uma restrição que determina que uma coluna possua apenas valores não repetidos;
 - ▶ PRIMARY KEY: a chave primária permite identificar exclusivamente uma tabela;
 - ► FOREIGN KEY: a chave estrangeira em uma coluna da tabela precisa combinar com uma chave primária existente na tabela referenciada;
 - ▶ AUTO_INCREMENT: é usado para gerar uma identificação única para um novo registro.

Comando para a criação da tabela Fornecedor:

```
create table Fornecedor(
codFornec int auto_increment primary key,
nome varchar(50) not null,
endereco varchar(20) not null
)
```

