Mathematical Statistics (I)

Assignment 1

Spring, 2021

Define $\mathcal{F} = \bigcap \{ \mathcal{G}; \mathcal{F}_0 \subset \mathcal{G}, \text{ where } \mathcal{G} \text{ is a } \sigma\text{-field } \}.$ Show that \mathcal{F} is a σ -field.

(\mathcal{F} is the smallest σ -field which contains \mathcal{F}_0 and is referred to as the σ -field generated by \mathcal{F}_0 .)

- 2. Prove Theorem 1.3 for decreasing sequence of events.
- 3. Consider the sample space is $\mathcal{C} = R = (-\infty, \infty)$ with the Borel σ -field \mathcal{B} . Define a set function $Q(B) = \int_B e^{-|x|} dx \quad \forall B \in \mathcal{B}$. Show that Q is not a probability defined on \mathcal{B} . What constant do we multiply the integrand by to make it a Probability?
- 4. A median of a distribution of one random variable X of the discrete or continuous type is a value of x such that $P(X < x) \le \frac{1}{2}$ and $P(X \le x) \ge \frac{1}{2}$. Find a median of
- each of the following distributions: (a) $p(x) = \frac{4!}{x!(4-x)!} (\frac{1}{4})^x (\frac{3}{4})^{4-x}$, x = 0, 1, 2, 3, 4, zero elsewhere.

 - (b) $f(x) = 3x^2 I(0 < x < 1)$. (c) $f(x) = \frac{1}{\pi(1+x^2)} I(-\infty < x < \infty)$.
- 5. Let X have the uniform pdf $f(x) = \frac{1}{\pi}I(-\frac{\pi}{2} < x < \frac{\pi}{2})$. Find the pdf of $Y = \tan X$.
- 6. Let $f(x) = \frac{1}{4}I(-1 < x < 3)$ be the pdf of random variable X. Find the cdf and pdf of $Y = X^2$.
- 7. A median of a distribution of a random variable X of the discrete or continuous type is a value of x such that $P(X < x) \le \frac{1}{2}$ and $P(X \le x) \ge \frac{1}{2}$. Let X be a random variable of the continuous type that has pdf f(x). If m is the unique median of the distribution of X and b is a real constant, show that

$$E(|X - b|) = E(|X - m|) + 2\int_{m}^{b} (b - x)f(x)dx,$$

provided that the expectations exist. For what value of b is E(|X-b|) a minimum?

8. Let X be a random variable of the continuous type with pdf f(x) of which support is (0,b), where $0 < b < \infty$. Show that

$$E(X) = \int_0^b (1 - F(x))dx,$$

where F(x) is the cdf of X.

- 9. Let X have the pdf $f(x) = \lambda e^{-\lambda x} I(0 < x < \infty)$. Find the mgf, the mean, and the variance of X.
- 10. Let X and Y have the joint pdf

$$f(x,y) = 6(1-x-y)I(x+y < 1, 0 < x, 0 < y).$$

Compute P(2X + 3Y < 1) and $E(XY + 2X^2)$.

11. Let X_1 and X_2 be continuous random variables with the joint pdf, $f_{X_1,X_2}(x_1,x_2)$. Let $Y = X_1 + X_2$. Show that the pdf $f_Y(y)$ can be obtained by

$$f_Y(y) = \int f_{X_1, X_2}(y - x, x) dx.$$

12. Let the joint pdf of random variables X and Y be

$$f(x,y) = 2I(0 < x < y, 0 < y < 1).$$

- (a) Find the conditional means E(X|Y), E(Y|X).
- (b) Find the correlation coefficient ρ of X and Y.
- 13. Let the joint pdf of random variables X and Y be

$$f(x,y) = \frac{1}{\pi} 2I((x-1)^2 + (y+2)^2 < 1).$$

- (a) Find the marginal pdf's of X and Y.
- (b) Are they independent?
- 14. Suppose that X_1, X_2, X_3 , and X_4 are four independent random variables with the same pdf.

$$f(x) = 3(1-x)^2 I(0 < x < 1).$$

Let Y be the smallest of the four, that is, $Y = \min\{X_1, X_2, X_3, X_4\}$. Find the cdf and pdf of Y.

15. Let X_1, X_2, X_3, X_4 have the joint pdf $f(x_1, x_2, x_3, x_4) = 24I(0 < x_1 < x_2 < x_3 < x_4 < 1)$. Let

$$Y_1 = X_1/X_2$$
, $Y_2 = X_2/X_3$, $Y_3 = X_3/X_4$, $Y_4 = X_4$.

Show that Y_1, Y_2, Y_3, Y_4 are mutually independent.

16. Let $(X_1, \dots, X_{k-1})'$ have a multinomial distribution, that is,

$$(X_1, \dots, X_{k-1})' \sim m(n, p_1, \dots, p_{k-1}).$$

- (a) Find the mgf of $(X_2, \dots, X_{k-1})'$.
- (b) What is the pmf of $(X_2, \dots, X_{k-1})'$?
- (c) Determine the conditional pmf of X_1 given that $X_2 = x_2, \dots, X_{k-1} = x_{k-1}$.
- (d) Find the conditional expectation $E(X_1|X_2=x_2,\cdots,X_{k-1}=x_{k-1})$.
- 17. Let $(X_1, X_2)' \sim m(n, p_1, p_2)$ (trinomial distribution). Find $Var(X_1 X_2)$.