

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

1/13

MURINE SOLUBLE RAGE_FC

1 ATGCCAGCGG GGACAGCAGC TAGAGCCTGG GTGCTGGTTC TTGCTCTATG
51 GGGAGCTGTA GCTGGTGGTC AGAACATCAC AGCCCGGATT GGAGAGCCAC
101 TTGTGCTAAG CTGTAAGGGG GCCCTAAAGA AGCCGGCCCA GCAGCTAGAA
151 TGGAAACTGA ACACAGGAAG AACTGAAGCT TGGAAAGGTCC TCTCTCCCCA
201 GGGAGGCCCG TGGGACAGCG TGGCTCAAAT CCTCCCAAT GGTTCCCTCC
251 TCCTTCCAGC CACTGGAATT GTCGATGAGG GGACGTTCCG GTGTCGGGCA
301 ACTAACAGGC GAGGGAAAGGA GGTCAAGTCC AACTACCGAG TCCGAGTCTA
351 CCAGATTCCCT GGGAAAGCCAG AAATTGTGGA TCCTGCCTCT GAACTCACAG
401 CCAGTGTCCC TAATAAGGTG GGGACATGTG TGTCTGAGGG AAGCTACCCCT
451 GCAGGGACCC TTAGCTGGCA CTTAGATGGG AAACCTCTGA TTCCCGATGG
501 CAAAGAAACA CTCGTGAAGG AAGAGACCAG GAGACACCCCT GAGACGGGAC
551 TCTTTACACT GCGGTCAGAG CTGACAGTGA TCCCCACCCA AGGAGGAACC
601 ACCCATCCTA CCTTCTCCTG CAGTTTCAGC CTGGGCCTTC CCCGGCGCAG
651 ACCCCTGAAC ACAGCCCCTA TCCAACCTCCG AGTCAGGGAG CCTGGGCCTC
701 CAGAGGGCAT TCAGCTGTTG GTTGAGCCTG AAGGTGGAAT AGTCGCTCCT
751 GGTGGGACTG TGACCTTGAC CTGTGCCATC TCTGCCAGC CCCCTCCTCA
801 GGTCCACTGG ATAAAGGATG GTGCACCCCTT GCCCCCTGGCT CCCAGCCCTG
851 TGCTGCTCCT CCCTGAGGTG GGGCACGCGG ATGAGGGCAC CTATAGCTGC
901 GTGCCACCC ACCCTAGCCA CGGACCTCAG GAAAGCCCTC CTGTCAGCAT
951 CAGGGTCACA GAAACCGGCG ATGAGGGGCC AGCTGAAGGC TCTGTGGGTG
1001 AGTCTGGGCT GGGTACGCTA GCCCTGGCCG AGCCCCGCGG ACCGACAATC
1051 AAGCCCTGTC CTCCATGCAA ATGCCAGGT AAGTCACTAG ACCAGAGCTC
1101 CACTCCGGG AGAATGGTAA GTGCTATAAA CATCCCTGCA CTAGAGGATA
1151 AGCCATGTCA AGATCCATT CCATCTCTCC TCATCAGCAC CTAACCTCGA
1201 GGGTGGACCA TCCGTCTTCA TCTTCCCTCC AAAGATCAAG GATGTACTCA
1251 TGATCTCCCT GAGCCCCATA GTCACATGTG TGGTGGTGGA TGTGAGCGAG
1301 GATGACCCAG ATGTCCAGAT CAGCTGGTTT GTGAACAACG TGGAAAGTACA
1351 CACAGCTCAG ACACAAACCC ATAGAGAGGA TTACAACAGT ACTCTCCGGG
1401 TGGTCAGTGC CCTCCCCATC CAGCACCAAGG ACTGGATGAG TGGCAAGGCT
1451 TTCGCATGCG CCGTCAACAA CAAAGACCTC CCAGGCCCA TCGAGAGAAC
1501 CATCTAAAA CCCAAAGGTG AGAGCTGCAG CCTGACTGCA TGGGGGCTGG
1551 GATGGGCATA AGGATAAAAGG TCTGTGTGGA CAGCCTCTG CTTCAGCCAT
1601 GACCTTGTG TATGTTCTA CCCTCACAGG GTCAGTAAGA GCTCCACAGG
1651 TATATGTCTT GCCTCCACCA GAAGAAGAGA TGACTAAGAA ACAGGTCACT
1701 CTGACCTGCA TGGTCACAGA CTTCATGCCT GAAGACATTT ACGTGGAGTG
1751 GACCAACAAAC GGGAAAACAG AGCTAAACTA CAAGAACACT GAACCCAGTCC
1801 TGGACTCTGA TGGTTCTTAC TTCATGTACA GCAAGCTGAG AGTGGAAAAG
1851 AAGAACTGGG TGGAAAGAAA TAGCTACTCC TGTTCACTGG TCCACGAGGG
1901 TCTGCACAAT CACCAACACGA CTAAGAGCTT CTCCGGACT CGGGTAAAT
1951 GAGCTCAGCA CCCACAAAC TCTCAGGTCC AAAGAGACAC CCACACTCAT
2001 CTCCATGCTT CCCTTGTATA AATAAAGCAC CCAGCAATGC CTGGGACCAT
2051 GTAATAG

Fig. 1A

MURINE SOLUBLE RAGE_FC
1 MPAGTAARAW VLVLALWGAV AGGQNITARI GEPLVLSCKG APKKPPQQLE
51 WKLNTGRTEA WKVLSPQGGP WDSVAQILPN GSLLLPATGI VDEGTFRCRA
101 TNRRGKEVKS NYRVRVYQIP GKPEIVDPAS ELTASVPNKV GTCVSEGSYP
151 AGTLSWHL DG KLLIPDGKET LVKEETRRHP ETGLFTLRSE LTVIPTQGGT
201 THPTFSCSFS LGLPRRRPLN TAPIQLRVRE PGPPEGIQLL VEPEGGIVAP
251 GGTVTLTCAI SAQPPPQVHW IKDGAPLPLA PSPVLLPEV GHADEGTYSC
301 VATHPSHGPQ ESPPVSI RVT ETGDEGPAEG SVGESGLGTL ALA

Fig. 1B

MURINE solTNFRII_FC

```

1 ATGGCGCCCG CCGCCCTCTG GGTCGCGCTG GTCTTCGAAC TGCAGCTGTG
51 GGCCACCGGG CACACAGTGC CCGCCCAGGT TGTCTTGACA CCCTACAAAC
101 CGGAACCTGG GTACGAGTGC CAGATCTCAC AGGAATACTA TGACAGGAAG
151 GCTCAGATGT GCTGTGCTAA GTGTCCTCCT GGCCAATATG TGAAACATTG
201 CTGCAACAAG ACCTCGGACA CTGTGTGTGC GGACTGTGAG GCAAGCATGT
251 ATACCCAGGT CTGGAACCAG TTTCGTACAT GTTTGAGCTG CAGTTCTTCC
301 TGTAGCACTG ACCAGGTGGA GACCCGCGCC TGCACAAAC AGCAGAACCG
351 AGTGTGTGCT TGCGAAGCTG GCAGGTACTG CGCCTTGAAA ACCCATTCTG
401 GCAGCTGTGCG ACAGTGCATG AGGCTGAGCA AGTGCGGCCC TGGCTTCGGA
451 GTGGCCAGTT CAAGAGCCCC AAATGGAAAT GTGCTATGCA AGGCCTGTGC
501 CCCAGGGACG TTCTCTGACA CCACATCATC CACAGATGTG TGCAGGCC
551 ACCGCATCTG TAGCATCCTG GCTATTCCCG GAAATGCAAG CACAGATGCA
601 GTCTGTGCGC CCGAGTCCCC AACTCTAAGT GCCATCCCAA GGACACTCTA
651 CGTATCTCAG CCAGAGCCCC CAAGATCCCA ACCCCTGGAT CAAGAGCCAG
701 GGCCAGGCC AACTCCAAGC ATCCTTACAT CGTTGGGTTC AACCCCCATT
751 ATTGAACAAA GTACCAAGGG TGGCGAGCCC CGCGGACCGA CAATCAAGCC
801 CTGTCCTCCA TGCAAATGCC CAGGTAAAGTC ACTAGACCAG AGCTCCACTC
851 CCGGGAGAAAT GGTAAGTGCT ATAAACATCC CTGCACTAGA GGATAAGCCA
901 TGTACAGATC CATTTCACATC TCTCCTCATC AGCACCTAAC CTCGAGGGTG
951 GACCATCCGT CTTCATCTTC CCTCCAAAGA TCAAGGATGT ACTCATGATC
1001 TCCCTGAGCC CCATAGTCAC ATGTGTGGTG GTGGATGTGA GCGAGGATGA
1051 CCCAGATGTC CAGATCAGCT GGTTTGTGAA CAACGTGGAA GTACACACAG
1101 CTCAGACACA AACCCATAGA GAGGATTACA ACAGTACTCT CCGGGTGGTC
1151 AGTGCCTCTCC CCATCCAGCA CCAGGACTGG ATGAGTGGCA AGGCTTCGC
1201 ATGCGCCGTC AACAAACAAAG ACCTCCCGC GCCCATCGAG AGAACCATCT
1251 CAAAACCAA AGGTGAGAGC TGCAAGCCTGA CTGCATGGGG GCTGGGATGG
1301 GCATAAGGAT AAAGGTCTGT GTGGACAGCC TTCTGCTTCA GCCATGACCT
1351 TTGTGTATGT TTCTACCCCTC ACAGGGTCAG TAAGAGCTCC ACAGGTATAT
1401 GTCTGCCTC CACCAGAAGA AGAGATGACT AAGAAACAGG TCACTCTGAC
1451 CTGCATGGTC ACAGACTTCA TGCCCTGAAGA CATTACGTG GAGTGGACCA
1501 ACAACGGAA AACAGAGCTA AACTACAAGA ACACTGAACC AGTCCTGGAC
1551 TCTGATGGTT CTTACTTCAT GTACAGCAAG CTGAGAGTGG AAAAGAAGAA
1601 CTGGGTGGAA AGAAATAGCT ACTCCTGTTC AGTGGTCCAC GAGGGTCTGC
1651 ACAATCACCA CACGACTAAG AGCTTCTCCC GGACTCCGGG TAAATGAGCT
1701 CAGCACCCAC AAAACTCTCA GGTCCAAAGA GACACCCACA CTCATCTCCA
1751 TGCTTCCCTT GTATAAATAA AGCACCCAGC AATGCCTGGG ACCATGTAAT
1801 AGGAATTATC

```

Fig. 2A

MURINE solTNFRII_FC
MAPAALWVAL VFELQLWATG HTVPAQVVLT PYKPEPGYEC QISQEYYDRK 51
AQMCCKAKCPP GQYVKHFCNK TSDTVCADCE ASMYTQVWNQ FRTCLSCSSS 101
CSTDQVETRA CTKQQNRVCA CEAGRYCALK THSGSCRQCM RLSKCGPGFG 151
VASSRAPNGN VLCKACAPGT FSDTTSSSTDV CRPHRICKSIL AIPGNASTDA 201
VCAPESPTLS AIPRTLYVSQ PEPTRSQPLD QEPGPSQTPS ILTSLGSTPI 251
IEQSTKGG

Fig. 2B

AN EXAMPLE OF A HUMAN RAGE-LBE FUSED
TO AN Fc (AMINO ACID SEQUENCE)

MAAGTAVGAWVLVLSLWGAVVGAQNI TARIGEPLVLKC
KGAPKKPQRLEWLNTGRTEAWKVLS PQGGGPWDSVA
RVL PNGSLFLPAVG IQDEGI FRCQAMN RNGKETKS NYRV
RVY QIPEKPEIVD SASELTAG VPKVGT CVSEG SY PAGTL
SWHLDGKPLVLNEKG VSVKEQTRRH PETGLFTLQ SELMV
TPARGGDPRPTFSCSFSPGLFRH RALRTAPIQPRVWE PVPL
EEVQLVVEPEGGAVAPGGTVTLTCEVPAQPS PQIHW MKD
GVPLPLPPSPV LILPEIGPQDQGT YSCVATHSSHPQESRA
VSISIIEPGEEGPTAGS VGGSGL GTLALACAGSGSGS GEPK
SCDKTHTCPCPAPEALGAPS VFLFPDKPKDTLMISRTPE
VTCVVVDVSHEDPEVKFNWYVDGVEXQNAKT KPREEQY
NSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPI EKT
ISKAKGQPREPVYTLPPSREEMTKNQVSLTCLVKGFYPS
DIAV EWE SNGQ PENK CTT PPVLDSDGSFFLYSKL TVDKS
RWQQGNVFSCS VMHEALHNHYTQKSLSLSPGK Stop

Fig. 3A

AN EXAMPLE OF A HUMAN RAGE-LBE FUSED
TO AN Fc (NUCLEIC ACID SEQUENCE)

atggcagccg gaacagcagt tggagcctgg gtgctggtcc tcagtctgtg
gggggcagta gtaggtgctc aaaacatcac agcccggatt ggcgagccac
tggtgctgaa gtgttaagggg gcccccaaga aaccacccca gcggctggaa
tggaaactga acacaggccg gacagaagct tggaaaggccc tgcctccca
gggaggaggc ccctgggaca gtgtggctcg tgccttc aacggctccc
tcttcctcc ggctgtcggt atccaggatg aggggattt ccgggtgccag
gcaatgaaca ggaatggaaa ggagaccaag tccaactacc gagtccgtgt
ctaccagatt cctgagaagc cagaaattgt agattctgcc tctgaactca
cggtctgggtgt tcccaataag gtggggacat gtgtgtcaga gggaaagctac
cctgcaggga ctcttagctg gcacttggat gggaaagcccc tgggtctgaa
tgagaaggga gtatctgtga aggaacagac caggagacac cctgagacag
ggctcttac actcgatcg gagctaattgg tgaccccagc ccggggagga
gatcccgtc ccaccttctc ctgttagctc agcccaggcc ttccccgaca
ccgggccttgc cgacagcccc ccattcagcc ccgtgtctgg gagctgtgc
ctctggagga ggtccaatttggtggagc cagaagggtgg agcagtagct
cttggggaa ccgtaaacctt gacctgtgaa gtccctgccc agccctctcc
tcaaattccac tgatgtaaagg atgggtgtgcc cttggccccc cccccccagcc
ctgtgtctgat cctccctgtgg ataggccctc aggaggccgg aacccatcagc
tgtgtggccca ccatttccatg ccacggggcc caggaaaggcc gtgtgtcag
catcagcatc atcgaacccatc gcgaggaggg gccaactgca ggctctgtgg
gaggatcagg gctgggaaactt ctagccctgg cttgtcgccagg tagggctcc
ggaagtgggg agcccaaaatc ttgtgacaaa actcacacat gcccaccgtg
cccagcacct gaaggccctgg gggcaccgtc agtcttcctc ttccccgaca
aacccaaagga caccctcatg atctcccgaa cccctgaggt cacatgcgtg
gtgggtggacg tgagccacga agacccttagt gtcaaggttca actggtaacgt
ggacggcgtg gaggigcaga atgccaagac aaagccgggg gaggagcagt
acaacagcac gtaccgtgtg gtcagcgtcc tcaaccgtct gcaccaggac
tggctgaatg gcaaggaggtt caagtgtcaag gtctccaaca aagccctccc
agccccatc gagaaaaacca tctccaaagc caaagggcag ccccgagaac
cacagggtta caccctgccc ccattccccc agaggatgac caagaaccag
gtcagcctga cctgcctggt cttttttcc tatcccagcg acatcgccgt
ggagtgggg agcaatgggc agccggagaa caagtgtcaag accacgcctc
ccgtgttggc ctccgacggc tctttttcc tctatagcaa gtcaccgtg
gacaagagca ggtggcagca gggaaacgtc ttctcatgtc ccgtgtatgca
tgaggctctg cacaaccact acacgcagaa gagcctctcc ctgtccccgg
gtaaatgagt g

Fig. 3B

7/13

Fig. 4

Fig. 5

9/13

BEST AVAILABLE COPY

Fig. 6

HUMAN RAGE AMINO ACID SEQUENCE
(FULL LENGTH PRECURSOR SEQUENCE)

1 maagtavgaw vlvlslwgav vgaqnitari geplvlkckg apkppqrle wklntgrtea
61 wkvlspqggg pwdsvvarvlp ngsflfpavg iqdegifrcq amnrrngketh snyrvrvyqi
121 pgkpeivdsa seltagvpnk vgtcvsegsy pagtlswhld gkplvpnek vsvkeqtrrh
181 petglftlqs elmvtpargg dprptfscsf spglprhral rtapiqprvw epvpleevql
241 vvepeggava pggtvltce vpaqpspqih wmkdgvplpl ppspvilpe igpqdqgtys
301 cvathsshgp qesravsis iepgeegpta gsvggsglgt lalalgilgg lgtaalligv
361 ilwqrrqrrg eerkapenq eeeeraelnq seepeageess tggp

Fig. 7

HUMAN RAGE NUCLEIC ACID cDNA SEQUENCE

1	gtccctggaa	ggaaggcagga	tggcagccgg	aacagcagtt	ggagcctggg	tgctggtcct
61	cagtctgtgg	ggggcagtag	taggtgctca	aaacatcaca	gcccggattt	gcgagccact
121	ggtgtctgaag	tgttaaaaaaaaa	cccccaagaa	accaccccg	cggctggaat	ggaaactgaa
181	cacaggccgg	acagaagctt	ggaaggctt	gtctccccag	ggaggaggcc	cctgggacag
241	tgtggctcg	gtccttccca	acggctccct	tttccttccg	gttgtcgaa	tccaggatga
301	ggggatttt	cggtgccagg	caatgaacag	aatggaaag	gagccaagt	ccaactaccg
361	agtccgtgtc	taccagattt	ctgggaagcc	agaaaatttta	gattctgcct	ctgaactcac
421	ggctgggtt	cccaataagg	tggggacatg	tgttgtcgag	ggaagctacc	ctgcaggagac
481	tcttagctgg	cacttggatg	ggaaggccct	ggtgccta	gagaaggggag	tatctgtgaa
541	ggaacagaccc	aggagacacc	ctgagacagg	gctttcaca	ctgcagtcgg	agctaattgg
601	gaccccgagcc	cggggaggag	atccccgtcc	caccccttcc	tgtagcttca	gcccaggcc
661	tcccccacac	cggggcttgc	gcacagcccc	catccagccc	cgtgtctggg	agcctgtgcc
721	tctggaggag	gtcccaatttgg	tggtgagcc	agaagggttga	gcagtagctc	ctgggtggaa
781	cgttaaccctg	acctgtgaag	tccctgcccc	gccctcttct	caaattccact	ggatgaagga
841	tggtgtgccc	ttggcccttc	cccccagccc	tgtgtgtatc	ctccctgaga	tagggcctca
901	ggaccaggga	acctacagct	gtgtggccac	ccattccagc	cacggggcccc	aggaaaaggcc
961	tgctgtcagc	atcagcatca	tgcgaaaccagg	cgaggagggg	ccaaactgcag	gctctgtggg
1021	aggatcaggg	ctgggaactc	tagccctggc	cctggggatc	ctggggaggcc	tggggacagc
1081	cgcctgtctc	attggggatc	tcttgtggca	aaggcgccaa	cgcggaggag	aggagagagaa
1141	ggccccagaa	aaccaggagg	aagaggagg	gcgtgcagaa	ctgaatcagt	cggaggaaacc
1201	tgaggcaggc	gagagtagta	ctggaggggcc	ttgaggggcc	cacagacaga	tcccatccat
1261	cagctccctt	ttcttttcc	cttgaactgt	tctggctca	gaccaactct	ctccctgtata
1321	atctctctcc	tgtataaccc	caccccttgc	agtttttcc	tacaaccaga	gccccccacaa
1381	tgtatgattaa	acacctgaca	catctaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa

Fig. 8

Fig. 9

Fig. 10