## Отчёт по лабораторной работе №8

Уткина Алина Дмитриевна

# Содержание

| 1 | Цель работы |                                    |    |
|---|-------------|------------------------------------|----|
| 2 | Вып         | олнение лабораторной работы        | 6  |
|   | 2.1         | Реализация переходов в NASM        | 6  |
|   | 2.2         | Изучение структуры файлов листинга | 10 |
|   | 2.3         | Самостоятельная работа             | 11 |
| 3 | Выв         | воды                               | 14 |

# Список иллюстраций

| 2.1  | Листинг 8.1. Программа с использованием инструкции јтр        | 6  |
|------|---------------------------------------------------------------|----|
| 2.2  | Результат работы программы lab8-1.asm                         | 7  |
| 2.3  | Листинг 8.2. Измененный текст программы lab8-1.asm            | 7  |
| 2.4  | Результат измененной программы                                | 8  |
| 2.5  | Другой вариант программы lab8-1.asm                           | 8  |
| 2.6  | Результат работы третьей программы                            | 8  |
| 2.7  | Листинг 8.3. Программа определения максимального из 3 чисел . | 9  |
| 2.8  | Результат работы программы lab8-2.asm                         | 9  |
| 2.9  | Создание файла листинга                                       | 10 |
| 2.10 | Формат файла листинга                                         | 10 |
| 2.11 | Область изменения программы                                   | 11 |
| 2.12 | Результат трансляции файла с ошибкой                          | 11 |
| 2.13 | Запись в файле листинга с указанием ошибки                    | 11 |
|      | программа для первого задания самостоятельной работы          | 12 |
| 2.15 | Результат выполнения первой программы                         | 12 |
| 2.16 | Функция для выполнения второй программы                       | 12 |
| 2.17 | Вторая программа                                              | 13 |
| 2.18 | Результат выполнения второй программы                         | 13 |

## Список таблиц

## 1 Цель работы

Цель данной работы является изучение команд условного и безусловного переходов, приобретение навыков написания программ с использованием переходов, знакомство с назначением и структурой файла листинга.

### 2 Выполнение лабораторной работы

### 2.1 Реализация переходов в NASM

Создадим каталог для программам лабораторной работы № 8, перейдем в него и создадим файл lab8-1.asm. Инструкция jmp в NASM используется для реализации безусловных переходов. Рассмотрим пример программы с использованием инструкции jmp. Введем в файл lab8-1.asm текст программы из листинга 8.1 (рис. 2.1).



Рис. 2.1: Листинг 8.1. Программа с использованием инструкции јтр

Создадим исполняемый файл и запустим его. В результате работы данной программы будут выведены строки "Сооющение  $N^2$ " и "Сообщение  $N^2$ " (рис. 2.2).

```
[adutkina@fedora lab08]$ touch lab8-1.asm
[adutkina@fedora lab08]$ gedit lab8-1.asm
[adutkina@fedora lab08]$ nasm -f elf lab8-1.asm
[adutkina@fedora lab08]$ ld -m elf_1386 -o lab8-1 lab8-1.o
[adutkina@fedora lab08]$ ./lab8-1
Сообщение № 2
Сообщение № 3
[adutkina@fedora lab08]$
```

Рис. 2.2: Результат работы программы lab8-1.asm

Таким образом, использование инструкции jmp \_label2 меняет порядок исполнения инструкций и позволяет выполнить инструкции начиная с метки \_label2, пропустив вывод первого сообщения.

Инструкция јтр позволяет осуществлять переходы не только вперед но и назад. Изменим программу таким образом, чтобы она выводила сначала 'Сообщение № 2', потом 'Сообщение № 1' и завершала работу. Для этого в текст программы после вывода сообщения № 2 добавим инструкцию јтр с меткой \_label1 (т.е. переход к инструкциям вывода сообщения № 1) и после вывода сообщения № 1 добавим инструкцию јтр с меткой \_end (т.е. переход к инструкции call quit). Изменим текст программы в соответствии с листингом 8.2 (рис. 2.3). При запуске программы выводится именно то, что нам нужно (рис. 2.4).

```
report.md ж *lab8-lasm ж

1 %include 'in_out.asm'; подключение внешнего файла
2
3 $$CCTION .data
4 msg1: D8 'Cообщение № 1',0
5 msg2: D8 'Cooбщение № 2',0
6 msg3: D8 'Cooбщение № 2',0
7
8 $$CCTION .text
9 GLOBAL _start
10 _start:
11
12 jmp _label2
13
14 _label1:
15 mov eax, msg1; Вывод на экран строки
16 call sprintLF; 'Cooбщение № 1'
17
18 jmp _end
19
0 _label2:
21 mov eax, msg2; Вывод на экран строки
22 call sprintLF; 'Cooбщение № 2'
23
24 jmp _label1
55
6 _label3:
27 mov eax, msg3; Вывод на экран строки
28 call sprintLF; 'Cooбщение № 3'
29
30 _end:
31 call quit; вызов подпограммы завершения
32
```

Рис. 2.3: Листинг 8.2. Измененный текст программы lab8-1.asm

```
[adutkina@fedora lab08]$ ./lab8-1
Сообщение № 2
Сообщение № 1
[adutkina@fedora lab08]$
```

Рис. 2.4: Результат измененной программы

Изменим текст программы добавив или изменив инструкции jmp, чтобы программа выводила сообщения в обратном порядке (рис. 2.5). Запустим исполняемый файл, чтобы проверить его работу (рис. 2.6).

```
report.md
  1 %include 'in_out.asm' ; подключение внешнего файла
 3 SECTION .data
 4 msg1: DB 'Сообщение № 1',0
5 msg2: DB 'Сообщение № 2',0
 6 msg3: DB 'Сообщение № 3',0
 8 SECTION .text
9 GLOBAL _start
10 _start:
12 jmp _label3
14 _label1:
15 mov eax, msg1 ; Вывод на экран строки
16 call sprintLF ; 'Сообщение № 1'
18 jmp _end
21 mov eax, msg2 ; Вывод на экран строки
22 call sprintLF ; 'Сообщение № 2'
24 jmp label1
27 mov eax, msg3 ; Вывод на экран строки
28 call sprintLF ; 'Сообщение № 3'
30 jmp _label2
33 call quit ; вызов подпрограммы завершения
```

Рис. 2.5: Другой вариант программы lab8-1.asm

```
[adutkina@fedora lab08]$ ./lab8-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
[adutkina@fedora lab08]$
```

Рис. 2.6: Результат работы третьей программы

Использование инструкции jmp приводит к переходу в любом случае. Однако, часто при написании программ необходимо использовать условные переходы, т.е. переход должен происходить если выполнено какое-либо условие. В качестве примера рассмотрим программу, которая определяет и выводит на экран наибольшую из 3 целочисленных переменных: А,В и С. Значения для А и С задаются

в программе, значение В вводиться с клавиатуры. Создадим файл lab8-2.asm в каталоге ~/work/arch-pc/lab08. Внимательно изучим текст программы из листинга 8.3 и введем его в lab8-2.asm (рис. 2.7). Создадим исполнительный файл и запустим его (рис. 2.8)

```
🚰 adutkina [Работает] - Oracle VM VirtualBox
  Файл Машина Вид Ввод Устройства Справка
  1 %include 'in_out.asm'
2 section .data
  2 section .data
3 msg1 db 'Введите В: ',0h
4 msg2 db "Наибольшее число: ",0h
   5 A dd '20'
6 C dd '50'
 ---- Вывод сообщения 'Введите В: '
 16; ------
17 mov ecx,B
                   --- Ввод 'В'
wo mov [max],ecx ; 'max = A'
27; -------- Сравниваем 'A' и 'C' (как символы)
28 cmp ecx,[C] ; Сравниваем 'A' и 'C'
29 jg check_В ; если 'A⊳C', то переход на метку 'check_В',
30 mov ecx,[C] ; иначе 'ecx = C'
31 mov [max],ecx ; 'max = C'
 ; Сравниваем 'max(A,C)' и 'В
 38 mov ecx,[max]
39 cmp ecx,[B] ; Сравниваем 'max(A,C)' и 'B'
40 jg fin ; если 'max(A,C)' в', то переход на 'fin',
41 mov ecx,[B] ; иначе 'ecx = B'
42 mov [max], есх
43 ; ------- Вывод результата
44 fin:
45 mov eax, msg2
46 call sprint ; Вывод сообщения 'Наибольшее число: '
 747 mov eax,[max] 48 call iprintLF ; Вывод 'max(A,B,C)' 49 call quit ; Выход
```

Рис. 2.7: Листинг 8.3. Программа определения максимального из 3 чисел

```
[adutkina@fedora lab08]$ ./lab8-2
Введите В: 5
Наибольшее число: 50
[adutkina@fedora lab08]$ ./lab8-2
Введите В: 60
Наибольшее число: 60
[adutkina@fedora lab08]$
```

Рис. 2.8: Результат работы программы lab8-2.asm

Следует заметить, что в данном примере переменные A и C сравниваются как символы, а переменная B и максимум из A и C как числа (для этого используется функция atoi преобразования символа в число). Это сделано для демонстрации

того, как сравниваются данные. Данную программу можно упростить и сравнивать все 3 переменные как символы (т.е. не использовать функцию atoi). Однако если переменные преобразовать из символов в числа, над ними можно корректно проводить арифметические операции.

#### 2.2 Изучение структуры файлов листинга

Обычно nasm создаёт в результате ассемблирования только объектный файл. Получить файл листинга можно, указав ключ -l и задав имя файла листинга в командной строке. Создадим файл листинга для программы из файла lab8-2.asm (рис. 2.9).

```
[adutkina@fedora lab08]$ nasm -f elf -l lab8-2.lst lab8-2.asm
[adutkina@fedora lab08]$ ls
in_out.asm lab8-1.asm l<mark>ab8-2 lab8-2.lst</mark>
lab8-1 lab8-1.o lab8-2.asm lab8-2.o
```

Рис. 2.9: Создание файла листинга

Откроем файл листинга lab8-2.lst с помощью текстового редактора, ознакомиться с его форматом и содержимым. Рассмотрим содержимое трёх строк (192-194) файла листинга (рис. 2.10).

```
192 17 ; ------ Вывод сообщения 'Введите В: '
193 18 000000EB B8[0000000] mov eax,msgl
194 19 00000ED E81DFFFFFF call sprint
```

Рис. 2.10: Формат файла листинга

Можно замеить, что номера строки файла листиинга не совпадают с номерами строк исходного текста программ. Это связано с тем, что перед самой программой в листинге присутствует информация о функциях, используемых из подключаемого файла. В первой из трех рассматриваемых строк нет адреса и машинного кода, так как исходный текст программы - это только комментарий, а значит и машинный код не генерируется. В следующих двух строчках исходного кода содуржатся команды, поэтому у них есть и адрес - смещение машинного кода от

начала сегмента, и машинный код - ассемблированная исходная строка, инструкция на машинном языке, вызывающая прерывние ядра: 000000EB и B8[00000000] - адрес и код соответсвенно для команды mov, 000000ED и E81DFFFFFF - для команды call sprint.

Откроем файл с программой lab8-2.asm и в инструкции mov (строка 22) с двумя операндами (есх, В) удалим второй операнд (рис. 2.11). Выполним трансляцию с получением файла листинга (рис. 2.12). В результате работы выдается ошибка с указанием на номер неправильной строки (22). Создается файл lab8-2.lst, в котором добавляется дополнительная строка (с тем же номером) отмеченная звездочками с указанием проблемы (рис. 2.13).

```
21; ------ BBOД 'B'

22 mov ecx, B|
23 mov edx, 10
24 call sread
```

Рис. 2.11: Область изменения программы

```
[adutkina@fedora lab08]$ nasm -f elf -l lab8-2.lst lab8-2.asm
lab8-2.asm:22: error: invalid combination of opcode and operands
[adutkina@fedora lab08]$ ls
in_out.asm lab8-1 lab8-1.asm lab8-1.o lab8-2 lab8-2.asm lab8-2.lst
```

Рис. 2.12: Результат трансляции файла с ошибкой

Рис. 2.13: Запись в файле листинга с указанием ошибки

### 2.3 Самостоятельная работа

Напишем программу нахождения наименьшей из 3 целочисленных переменных а, b и c, где значения переменных равны 32, 6 и 54 соответственно (рис. 2.14). Создадим исполняемый файл и проверим его работу (рис. 2.15).



Рис. 2.14: программа для первого задания самостоятельной работы

```
[adutkina@fedora report]$ cd
[adutkina@fedora ~]$ cd work/arch-pc/lab08/
[adutkina@fedora lab08]$ ./var8-1
Наибольшее число: 54
```

Рис. 2.15: Результат выполнения первой программы

Напишем программу, которая для введенных с клавиатуры значений х и а вычисляет значение заданной функции №15 (рис. 2.16) и выводит результат вычислений (рис. 2.17). Создадим исполняемый файл и проверим его работу для значений х и а равныч 2, 3 соответственно для первого теста и 4, 2 - для второго (рис. 2.18).

$$\begin{cases}
a+10, & x < a \\
x+10, & x \ge a
\end{cases}$$

Рис. 2.16: Функция для выполнения второй программы

Рис. 2.17: Вторая программа

```
[adutkina@fedora lab08]$ ./var8-2
Введите X: 2
ВВедите A: 3
f(x) = 13
[adutkina@fedora lab08]$ ./var8-2
Введите X: 4
ВВедите A: 2
f(x) = 14
[adutkina@fedora lab08]$
```

Рис. 2.18: Результат выполнения второй программы

# 3 Выводы

В ходе данной работы были изучены команды условного, безусловного переходов и назначение, структура файла листинга, приобретены навыки написания программ с использованием переходов.