- 1) Add header on biniary file with
 - 1)ID of the digitizer
 - 2) Data structure (in Setup directory?)
 - 3)Run number
- 2) Structure of the data director with separate subdirectory fot tracker, PID, gamma e setup
- 3) The macro that convert binary to root file take the link between digitizer and anode section from separate configuration file. The macro should provide for different level of

min level all the original data are kept to havemaximum flexibility during test.

max level only the usefull data are kept and all the other are not copied to save space

4) Separation of the flag variable in two different variable (to be alligned with the digitizers documentation)

Assunto come riferimento il fascio la x cresce da dx verso sx

Sistema di riferimento come quello del FPD

Everything start from 0

DEFINITIONS

- Hit: All the information relate to the signal in a single pad entry is related to the organization of this information on a root or binry file, hit is the corresponding physical phenomenon
- (Physical) Event: It is the totality of hit generated by a single physical event (e.g. charged particle crossing the detector)
- (Software) Event: Is a group of hit in a given time window where to look for one or more *Physical events*.
- Cluster: Group of hit that are close in space and time (not necessarely part of a physical event)
- *Row:* is the totality of pad or strip tha have same z-coordinate (in the final detector a row is made or of 60x4). It is divided in four segments corresponding to the four sections of the anode.
- *Strip:* Is the sensible area of the anode between two rows. Each strip is made of four long segment (300 mm) each one corresponding to a section of the anode.

Inside the code *strip* and *row* are both called *row*. The proper raw have an index that run from 0 to 4 and 60x4 pads, the strips instead have an index between 5 and 10 and just 4 pads.

Top view / External view of the full anode

19	18	17	16	
15	14	13	12	
11	10	9	8	
7	6	5	4	
3	2	1	0	Section number
Column 3	Column 2	Column 1	Column 0	
Full anode (group of all 4 anodes)		beam	Bottom vie (internal vie	w w).
i dii diiode (group o	$\frac{1}{2}$ $\frac{1}$			

Single anode (single anodic board corresponding to a column)

Anode section (group of pad and strip linked to a digitizer)
At each anode section is linked one and only one digitizer and a preamplifier

Anode section 0 1 2 3 4 5 6	row 0 0 0 0 1 1 1	column 0 1 2 3 0 1 2 :	ID dig ID preampl xxx yyyy xxy yyyx
6	1	2	
!	!	!	
19	4	3	

Example of template for the anode map file.

Software nomenclature

Electronics nomenclature

Electronics nomenclature

Bottom view / internal view of a single anodic board

row View from Bottom side (Scale 1:1.08154877784988) PI6 Ε PI5 D PI4 PI3 Вз PI2 60 59 58 4 3 2 PI1

Connector channels elec. nom. Channel software nom.

JA row A + Pl1 row 0 + row 5

JB row B + Pl2 row 1 + row 6

JC row C + PI3 row 2 + row 7

JD row D + PI4 row 3 + row 8

JE row E + PI5 + PI6 row 4 + row 9 + row 10

Top view / External view of the full anode with an highlight (red) on a single section of the anode

The active area of the detector start from +7 mm
The metallization of the anode start from +2 mm

Raw	centre	Close edge	Far edge	width
5	7.75	2	13.5	11.5
0	18.60	13.5	23.7	10.2
6	29.20	23.7	34.7	11
1	39.8	34.7	44.9	10.2
7	50.4	44.9	55.9	11
2	61	55.9	66.1	10.2
8	71.6	66.1	77.1	11
3	82.20	77.1	87.3	10.2
9	92.80	87.3	98.3	11
4	103.4	98.3	108.5	10.2
10	114.25	108.5	120.0	11.5

Size of the anode 128 mm Metal-coated size 118 mm

The insulation layer between the raws has been neglected!

Active area start from 7 to 115
Row 5 and 10 have an effective size of 6.5 mm

THGEM

Heigth of the metallized surface 118 mm Heigth of the drilled surface 108 mm

The active area of the tracher is 108x300 mm therefore the first and last strip of the anode extend below the partition grid.

It must take into account when you determine the tracks and choice the reference sistem

Anode

Heigth of the metallized surface 118 mm

Adpater Samtec flat – 64 Ch ERF8

In adapter	Out preamp
0	0
1	16
2	1
3	17
4	2
5	18
6	3
7	19
8	4
9	20
10	5
11	21
12	6
13	22
14	7
15	23

In adpter	Out preamp
16	8
17	24
18	9
19	25
20	10
21	26
22	11
23	27
24	12
25	28
26	13
27	29
28	14
29	30
30	15
31	31

In adapter	Out preamp
32	32
33	48
34	33
35	49
36	34
37	50
38	35
39	51
40	36
41	52
42	37
43	53
44	38
45	54
46	39
47	55

In adapter	Out preamp
48	40
49	56
50	41
51	57
52	42
53	58
54	43
55	59
56	44
57	60
58	45
59	61
60	46
61	62
62	47
63	63

Pinout of different elements

Pad number 0		1	t channel PA
1		2	
2		3	
3	ĺ	4	
i	İ	į	
59	İ	60	
Strip Strip2		61 62	(if row is 4)

Pin number SAMTEC ERF8	channel PA
1 2 3 4 5 6 7 8 9 10	bias 0:31 bias 0:31 N.C N.C N.C 16 0 17 1 18 2
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	30 14 31 15 N.C. N.C. GND GND GND N.C. N.C. 48 32 49 33 50 34
71 72 73 74 75 76 77 78 79 80	61 45 62 46 63 47 N.C. N.C. bias 32:63 bias 32:63

Pinout of different elements

SAMTEC to Flat converter (by Fabio L.)

Pin number SAMTEC ERF8	out channel in flat cable
1 2 3 4 5 6 7 8 9 10	N.C. N.C. N.C. N.C. 16 0 17 1 18 2
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	30 14 31 15 N.C. N.C. N.C. N.C. N.C. N.C. N.C. 48 32 49 33 50 34
71 72 73 74 75 76 77 78 79 80	61 45 62 46 63 47 N.C. N.C.

First pin in SAMTEC connectors and cables

CAEN A1015G

Angles (top view)

Lab frame

Analysis frame

 $\begin{array}{l} \alpha_{\text{A}} \text{ is positive} \\ \text{(coefficiente angoalre retta)} \\ \theta_{\text{A}} \text{ is positive} \\ \text{(angolo rispetto alla direzione del fascio)} \\ \alpha_{\text{A}} + \theta_{\text{A}} = 90 \end{array}$

Angles

theta_deg=-90-alpha_deg;

theta_deg=-90-alpha_deg; if(theta_deg<-90){theta_deg=-90-alpha_deg+180;}

