MECHANICAL VIBRATIONS - Examination task 1

Name:

Problem 1:1

Let $q=q_1,...,q_n$ be generalized coordinates for a material system B subjected to the generalized forces $Q_i=\int_{\mathsf{B}} f_a \cdot \frac{\partial \pmb{r}}{\partial q_i} dm$, where f_a is the (specific) active accelerating force. The position vector of a material point $P\in\mathsf{B}$ is then given by $\pmb{r}=\pmb{r}(q;P)$. Let $\pmb{a}=\pmb{a}(q,\dot{q},\ddot{q};P)$ denote the acceleration of the material point.

a) Show that

$$\boldsymbol{a} = \sum_{j=1}^{n} \frac{\partial \boldsymbol{r}}{\partial q_{j}} \dot{q}_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} \boldsymbol{r}}{\partial q_{j} \partial q_{k}} \dot{q}_{j} \dot{q}_{k}$$
 (1)

b) Show that the equations of motion may be written

$$\sum_{j=1}^{n} a_{ij} \ddot{q}_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} C_{ijk} \dot{q}_{j} \dot{q}_{k} = Q_{i} \quad i = 1, ..., n$$
 (2)

where a_{ij} and C_{ijk} are defined by

$$a_{ij} = \int_{\mathsf{B}} \frac{\partial \mathbf{r}}{\partial q_i} \cdot \frac{\partial \mathbf{r}}{\partial q_j} dm, \quad C_{ijk} = \int_{\mathsf{B}} \frac{\partial \mathbf{r}}{\partial q_i} \cdot \frac{\partial^2 \mathbf{r}}{\partial q_j \partial q_k} dm \tag{3}$$

(Hint: Use d'Alembert's principle, equation (4.5) on page 31 in the Lecture Notes).

c) Show that if $f_a = g - cvv$ where g is a constant vector, $v = \dot{r}$, v = |v| and c > 0 is a constant, then

$$Q_{i} = -\frac{\partial V}{\partial q_{i}} - \frac{\partial D}{\partial \dot{q}_{i}} \tag{4}$$

where

$$V = -m\mathbf{g} \cdot \mathbf{r}_c \quad \text{and} \quad D = \int_{\mathsf{B}} \frac{c v^3}{3} dm \tag{5}$$

	b 2020 Examination task 1	2
Name:	and \mathbf{r}_c is the position vector of the <i>centre of mass c</i> of the body and \mathbf{m} is its total mass. (Hint: Use relation (4.7) on page 32 in the Lecture Notes).	

Solution:

Problem 1:2

A particle P, which may slide *without friction* on a *horizontal* table, is connected to a fixed point A on the table with a linear elastic spring, see figure below. The table is rotating around a vertical axis through O with the *constant* angular velocity O. Distance OA = a. Particle mass OA = a. Spring constant OA = a and spring natural (unstressed) length OA = a. Using coordinates OA = a and OA = a.

- a) Give an expression for the position vector of the particle $P: \mathbf{r} = \mathbf{r}(r, \varphi; P)$. (Hint: use the orthonormal base $(\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z)$ fixed to the rotating table, see figure below).
- b) Derive an expression for the velocity $\mathbf{v} = \dot{\mathbf{r}}$ of the particle. (Hint. use the kinematical relations $\dot{\mathbf{e}}_x = \boldsymbol{\omega} \times \mathbf{e}_x$, $\dot{\mathbf{e}}_y = \boldsymbol{\omega} \times \mathbf{e}_y$ where $\boldsymbol{\omega} = \mathbf{e}_z \boldsymbol{\omega}$).
- c) Derive the kinetic energy $T = T(r, \varphi, \dot{r}, \dot{\varphi})$ for the system. Give the expressions for T_0 , T_1 and T_2 .
- d) Derive the potential energy $V = V(r, \varphi)$ for the system.
- e) Derive (by using Lagranges method) the equations of motion for the system.
- f) Determine the (relative) *equilibrium states* ($r(t) = r_o$, $\varphi(t) = \varphi_o$, $r_o > 0$ and φ_o are constants) of the particle. (Note that the existence of equilibrium states will depend on the relation between the parameters: ω , a, m, k and r_n).
- g) Consider the modified potential energy $V^* = V T_0$. Characterize the modified potential energy at the equilibrium states (maximum, minimum or indifferent?).
- h) Linearize the equations of motion at the equilibrium state where the modified potential energy has a minimum. Put the equation on matrix format and identify the mass matrix, the stiffness matrix, the damping matrix and the gyroscopic matrix. (Hint: For the linearization use the Maclaurin series for trigonometric functions, i.e.

$$\sin x = x - \frac{x^3}{3!} + \dots$$
 and $\cos x = 1 - \frac{x^2}{2!} + \dots$)

Mech vib 2019 Examination task 1	4
Name:	·
Solution:	

Problem 2:1

An *n*-dimensional mechanical system with positive definite mass matrix \underline{M} and positive semi-definite stiffness matrix \underline{K} has the eigenfrequencies ω_1 , ω_2 , ..., ω_n and the modal matrix $\underline{X} = [\overline{x}_1 \dots \overline{x}_n]$ where

$$(-\omega_i^2 M + K)\overline{x}_i = \overline{0}, \quad i = 1, ..., n$$
 (1)

and

$$\underline{X}^{T}\underline{M}\ \underline{X} = \underline{\mu} = diag(\mu_{1} \dots \mu_{n}) \ and \ \underline{X}^{T}\underline{K}\ \underline{X} = \underline{\kappa} = diag(\kappa_{1} \dots \kappa_{n})$$
 (2)

where μ_1, \dots, μ_n and $\kappa_1, \dots, \kappa_n$ are constants satisfying $\mu_i > 0$ and $\kappa_i \ge 0$. The kinetic and potential energies of the system are given by

$$T = \frac{1}{2} \dot{\overline{q}}^T \underline{M} \dot{\overline{q}} \quad \text{and} \quad V = \frac{1}{2} \overline{q}^T \underline{K} \overline{q}$$
 (3)

respectively. Using *normal coordinates* $\bar{\eta} = (\eta_1 \quad \eta_2 \quad \cdot \quad \cdot \quad \eta_n)^T$, (see Lecture Notes on p.100) defined by

$$\overline{q} = \underline{X}\overline{\eta} \tag{4}$$

Show that

a) the kinetic and potential energies may be written

$$T = \frac{1}{2} \dot{\overline{\eta}}^T \underline{\mu} \dot{\overline{\eta}} = \frac{1}{2} \sum_{i=1}^n \mu_i \dot{\eta}_i^2 \quad \text{and} \quad V = \frac{1}{2} \overline{\eta}^T \underline{\kappa} \overline{\eta} = \frac{1}{2} \sum_{i=1}^n \kappa_i \eta_i^2$$
 (5)

b) the equation for the free motion of the system may be written

$$\ddot{\overline{\eta}} + \underline{\omega}^2 \overline{\eta} = \overline{0}$$
, where $\underline{\omega}^2 = \mu^{-1} \underline{\kappa}$ (6)

Solution:

Mech vib 2	2019 Ex	amination	task 1

6