Assignment Section_4.1 due 05/01/2014 at 11:58pm MST

1.	(1	pt)	The	function	f(x)	= (2	2x +	$5)e^{3x}$	has	one	critical
numb	er.	Fine	l it.								

Answer(s) submitted:

−17/6

(correct)

Correct Answers:

- 2. (1 pt) Find all critical values for the function

$$f(r) = \frac{3r}{10r^2 + 6}$$

and then list them (separated by commas) in the box below.

List of critical numbers: _

Answer(s) submitted:

• -sqrt(3/5),sqrt(3/5)

(correct)

Correct Answers:

- -0.774596669241483, 0.774596669241483
- 3. (1 pt) The critical numbers of the function

$$f(t) = 7t^{2/3} + t^{5/3}$$

are $t_1 =$ and $t_2 =$ with $t_1 < t_2$.

Answer(s) submitted:

- −14/5
- 0

(correct)

Correct Answers:

- -(2*7/5)
- 0
- **4.** (1 pt) Consider the function $f(x) = 1 7x^2$, $-3 \le x \le 1$. The absolute maximum value is _____ and this occurs at x equals _____ The absolute minimum value is _____

- 1
- 0
- −62
- -3

(correct)

Correct Answers:

- 1
- 0
- −62
- -3

5. (1 pt) Consider the function $f(x) = 2x^3 + 21x^2 - 48x + 4$, $-8 \le x \le 2$. This function has an absolute minimum value equal to _____

and an absolute maximum value equal to _____

Answer(s) submitted:

- −21
- 708

(correct)

Correct Answers:

- −21
- 708

6. (1 pt) Find the absolute maximum and absolute minimum values of the function

$$f(x) = (x-3)(x-7)^3 + 9$$

on each of the indicated intervals.

Enter 'NONE' for any absolute extrema that does not exist.

(A) Interval = [1, 4].

Absolute maximum = _____

Absolute minimum = _____

(B) Interval = [1, 8].

Absolute maximum = ____

Absolute minimum = ____

(C) Interval = [4, 9].

Absolute maximum = ____

Absolute minimum = ____

Answer(s) submitted:

- 441
- −18
- 441
- −18
- 57

(correct)

−18

Correct Answers:

- 441
- −18
- 441
- −18

- 57
- −18

7. (1 pt) Consider the function $f(x) = -\frac{x}{3x^2 + 1}$, $0 \le x \le 2$.

This function has an absolute minimum value equal to: _____ which is attained at x =____ and an absolute maximum value equal to: ____ which is attained at x =____

Answer(s) submitted:

- 0.288675
- 1/sqrt(3)
- 0
- 0

(score 0.75)

Correct Answers:

- -1/(2*sqrt(3))
- 1/sqrt(3)
- 0
- 0

8. (1 pt) Find the absolute maximum and absolute minimum values of the function

$$f(x) = x^3 + 12x^2 - 27x + 4$$

over each of the indicated intervals.

- (a) Interval = [-10, 0].
- 1. Absolute maximum = _____
- 2. Absolute minimum = _____
- (b) Interval = [-7, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum = _____
- (c) Interval = [-10, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum =

Answer(s) submitted:

490

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

- 4
- 438
- −1.0
- 490

• -10 (correct)

Correct Answers:

- 490
- 4
- 438
- −10
- 490
- −10

9. (1 pt) Find the x-coordinate of the absolute minimum for the function

$$f(x) = 4x\ln(x) - 7x, \qquad x > 0.$$

x-coordinate of absolute minimum = _____

Answer(s) submitted:

• $e^{(3/4)}$

(correct)

Correct Answers:

• 2.11700001661267

10. (1 pt) Find the *x*-coordinate of the absolute maximum for the function

$$f(x) = \frac{2 + 6\ln(x)}{x}, \qquad x > 0.$$

x-coordinate of absolute maximum = ____

 $Answer(s)\ submitted:$

• (e^(2/3))

(correct)

Correct Answers:

• 1.94773404105468