Data Appendix

YIXIAO XIE and YEYUXI YI

December 14, 2023

The following data summarizes the properties of the collected data and variables. All data is from either the Bloomberg or Yahoo finance. There is total 161 observation.

```
##
## Table 1: Summary Statistics
## ===============
## Statistic N Mean St. Dev. Min
## D1
            161 -0.007 0.066
                                -0.374 0.183
            161 0.005
## D2
                        0.058
                                -0.266 0.216
            161 0.003
                        0.036
                                -0.136 0.133
## D3
## D5
            161 0.003
                        0.031
                                -0.071 0.145
## D10
            161 0.007
                        0.438
                                -3.784 1.025
## D20
            161 0.002
                        0.025
                                -0.088 0.101
## Beta
            161 1.155
                        0.400
                                0.082 2.519
            161 0.002
                        0.008
                                -0.018 0.019
## M1
            161 0.003
                        0.010
                                -0.017 0.019
## M2
            161 0.0003
                                -0.017 0.019
## M3
                        0.010
            161 0.002
                        0.009
                                -0.017 0.019
## M5
## M10
            161 0.001
                        0.009
                                -0.020 0.019
## M20
            155 0.002
                        0.005
                                -0.015 0.013
```

D1~20: Return of a stock on Day 1~20 of earning report release M1~20: Return of the market on Day 1~20

of earning report release Beta: the linear relationship of the stock related to the market based on historical data Dnews – News Categories — Extremely Bad/Bad/No News/Good/Extremely Good

Now we want to see the stock return's normal distribution.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Now we want to see the market return's normal distribution

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 6 rows containing non-finite outside the scale range
('stat_bin()').

Under different news categories whether the stock return is distributed or not

Whether there is a linear relationship between stock return and market return.

Warning: Removed 6 rows containing missing values or values outside the scale range
('geom_point()').

