2021 年度 解析学特論 (Lebesgue 積分編) (担当:松澤 寛) 自己チェックシート No.7

学科 (コース)・プログラム・領域_____ 学籍番号____ 氏名____

- 1. X, $E \subset X$ を空でない集合とする. E の定義関数とは何ですか.
- 2. (X, \mathcal{F}, μ) を測度空間, $A \in \mathcal{F}$ とする. A 上の単関数とは何ですか. また, その A 上の積分は どのように定義されますか。
- 3. (X, \mathcal{F}, μ) を測度空間, $A \in \mathcal{F}$ とする. $f: A \to \mathbb{R}$ を $f \ge 0$ なる可測関数とする. このとき f の積分はどのように定義されますか?
- 4. (X, \mathcal{F}, μ) を測度空間, $A \in \mathcal{F}$ とする. $f: A \to \mathbb{R}$ を $f \geq 0$ とは限らない可測関数とする. この とき f の積分はどのように定義されますか?また,f が積分確定,f が A 上で積分可能(可積分)であることの定義を述べよ.
- 5. (X, \mathcal{F}, μ) を測度空間, $A \in \mathcal{F}$ とする。 $f: A \to \mathbb{R}$ を $f \geq 0$ なる可測関数とする。このとき授業で述べた f に A 上各点収束する単関数の列 $\{\varphi_n\}$ を答えよ(証明は不要).
- 6. (Chebyshev の不等式) (X, \mathcal{F}, μ) を測度空間, $f: X \to \mathbb{R}$ を可測関数とする(簡単のため X 上の可測関数とした).このとき,任意の $\varepsilon > 0$ に対して $A_{\varepsilon} = \{x \in X : |f(x)| \geq \varepsilon\}$ とすると $A_{\varepsilon} \in \mathcal{F}$ であり

$$\mu(A_{\varepsilon}) \le \frac{1}{\varepsilon^2} \int_X f^2 d\mu$$

を証明せよ.