- (1) (a) False
  - (b) False
  - (c) False
  - (d) True
  - (e) True



(b)  $k_T = \{ \omega \mid \omega \in \{ 1, R \}^* \}$ , whas an equal number of L's and R's and starts with an R  $\}$  Assume  $k_T$  is regular. Then the pumping lemma for regular languages holds for L. Let p be the pumping length.

Consider the word  $\omega = R^{p}L^{p} \in L_{T}$ To break w into 3 parts w = xyz, such that |xy| < p, |y| > 0, all of xy must fall within the first p  $R^{s}$ .

... w is broken up as  $w = R^{i}R^{j}R^{p-i-j}L^{p}$ ;  $x = R^{i}$ ;  $y = R^{i}$ ; x = R derived to the pumping lemma  $\forall xy^{k}z \in L_{T}$ But  $xy^{r}z = R^{i}R^{p-i-j}L^{p} = R^{p-j}L^{p} \notin L_{T}$  since  $p-j \neq p$ , j > 0Hence our assumption that  $k_{T}$  is regular was wrong.  $k_{T}$  is not regular.

(c)  $G = (\{S\}, \Sigma = \{\ell, R\}, P = \{f\}, S \rightarrow RS + S = \{f\}, S$