Patterns, squares and roots

- Calculating square numbers and square roots
- Recognising the relationship between odd numbers and square numbers
- **Identifying triangular numbers**
- Recognising the relationship between triangular numbers and square

Keywords

You should know

explanation 1

1 Here is a sequence of diagrams showing the square numbers 1, 4 and 9.

$$\begin{array}{c}
\bullet \\
1^2 = 1 \times 1 \\
= 1
\end{array}$$

$$= 9$$

- a Copy and continue the pattern to show the next two square numbers.
- **b** Copy and complete the table.

You should learn the square numbers.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n^2															

- **2** Find the square number between each pair of numbers.
 - **a** 11, 17
- **b** 23, 31 **c** 57, 66 **d** 70, 82

- e 101, 130 f 200, 250 g 180, 200 h 59.8, 72.6
- **3** Work out these calculations.

 - **a** $7^2 + 1^2$ **b** $3^2 + 4^2$ **c** $4^2 + 8^2$ **d** $10^2 7^2$

- **e** $6^2 5^2$ **f** Twice 3^2 **g** Half of 8^2 **h** $6^2 \div 4$
- **4** Copy and complete the following calculations.

 - **a** $3^2 + 4^2 = \square^2$ **b** $13^2 12^2 = \square^2$ **c** $10^2 \square^2 = 6^2$

- **5** a Write two consecutive odd numbers. Multiply them together, and then add 1. Repeat the process several times with different numbers.
 - **b** What do you notice about your final answers?
 - **c** What happens if you start with even numbers instead?
- **6** a Copy and complete the diagram to show the factor pairs of 16.

- **b** Draw a diagram to show the factor pairs of 36.
- **c** What can you say about the number of factors of a square number? Explain your answer.

explanation 2

- **7** Write the value of each of these.
 - **a** √16

- **b** $\sqrt{100}$
- $c \sqrt{36}$

 $d \sqrt{144}$

- e √49
- $f \sqrt{25}$
- **g** √64

h √169

- i √121
- i √225
- **k** √1

 $1 \sqrt{0}$

- $\mathbf{m} \ 2 \times \sqrt{64}$
- n $5 \times \sqrt{9}$
- $\sqrt{4} \times \sqrt{196}$
- **p** $32 \div \sqrt{16}$
- 8 a Copy and complete: $\sqrt{900} = \sqrt{9} \times \sqrt{100} = \square \times \square = \square$
 - **b** Use the method of part **a** to work out these square roots:
 - i √400
- ii $\sqrt{2500}$
- iii √1600
- iv $\sqrt{4900}$

9 $\sqrt{10}$ is not a whole number.

You can tell that $\sqrt{10}$ lies between 3 and 4 because $3 \times 3 = 9$ and $4 \times 4 = 16$.

Copy and complete the following statements by using two consecutive numbers.

- a $\sqrt{3}$ lies between \square and \square because ...
- **b** $\sqrt{20}$ lies between \square and \square because ...

10 These diagrams show square numbers. They show the relationship between square numbers and odd numbers.

- a Copy and continue the pattern for the next three square numbers.
- **b** Copy and complete.
 - i The sum of the first 5 odd numbers is \square^2 .
 - ii The sum of the first 10 odd numbers is \square^2 .
- **c** What is the sum of the first 100 odd numbers?

 Use what you know about square numbers to help you.
- 11 This diagram shows the first three triangular numbers.

- a Copy and continue the pattern to show the first six triangular numbers.
- **b** The first three square numbers are shown here. What connection do you think there is between triangular numbers and square numbers?

- **c** Find these sums.
 - i The 9th and 10th triangular numbers
 - ii The 99th and 100th triangular numbers