1 Tugas 3 - Analisis Sumber Daya Air

Suatu saluran persegiempat mempunyai lebar 2.5 *meter* dan mempunyai kemiringan dasar saluran sama dengan 1 : 400. Jika konstanta Chezy adalah 30 dalam satuan SI, tentukan kedalaman normal jika debit aliran adalah $0.80 \, m^3 / detik$. Tentukan solusi dengan menggunakan **Metoda Interval Halving**, **Newton Rhapson**, **dan Secant**.

Petunjuk: $Q = AC\sqrt{RS}$, $A = by_n$, dan $y_{n1} = y_{n0} - \frac{f(y_{n0})}{f'(y_{n0})}$, untuk harga awal y_{n0} ditentukan dengan asumsi kecepatan aliran v = 1m/detik.

1.1 Penurunan dan Penentuan Nilai Awal

1.1.1 Fungsi dan Turunannya

Fungsi f(y) diperoleh dari:

$$Q = AC\sqrt{RS} \qquad \leftrightarrow 0 = AC\sqrt{RS} - Q$$

$$f(y) = AC\sqrt{RS} - Q = 0$$

Turunan dari fungsi f(y):

$$f(y) = Cby\sqrt{\frac{bsy}{b+2y}} - Q$$

$$f'(y) = Cb\sqrt{\frac{bsy}{b+2y}} + \frac{C}{s}\sqrt{\frac{bsy}{b+2y}} (b+2y) \left(-\frac{bsy}{(b+2y)^2} + \frac{bs}{2(b+2y)}\right)$$

Disederhanakan, f'(y) menjadi:

$$f'(y) = \frac{Cb\sqrt{\frac{bsy}{b+2y}}}{2(b+2y)}(3b+4y)$$

Catatan: Hasil turunan menggunakan python library sympy.

1.1.2 Menentukan nilai awal y_{n0} dan y_{n1}

Nilai y_{n0} Dengan mengasumsikan kecepatan aliran v=1 m/det, y_{n0} dapat dicari dari persamaan Q=VA:

$$Q = VA \leftrightarrow Q = V (by_{n0})$$

Dimasukkan nilai V = 1 m/det, $b = 2.5 m dan Q = 0.8 m^3/det$, maka diperoleh nilai y_{n0} sebesar:

$$V = 1 \ m/det, b = 2.5 \ m, Q = 0.8 \ m^3/det \rightarrow Q = V \ (b \ y_{n0})$$

$$0.8 = 1 \ (2.5 \ y_{n0})$$

$$y_{n0} = \frac{0.8}{2.5} = 0.32 \ m$$

Nilai y_{n1} Nilai y_{n1} diperoleh dari persamaan yang diberikan di petunjuk yaitu $y_{n1} = y_{n0} - \frac{f(y_{n0})}{f'(y_{n0})}$:

$$y_{n0} = 0.32 \, m, f(y_{n0}) = -0.1942946, f'(y_{n0}) = 2.646344 \rightarrow y_{n1} = y_{n0} - \frac{f(y_{n0})}{f'(y_{n0})}$$

 $y_{n1} = 0.32 - \frac{-0.1942946}{2.646344}$
 $y_{n1} = 0.39342 \, m$

1.1.3 Nilai y_{n0} dan y_{n1}

Disimpulkan bahwa nilai $y_{n0}=0.32\ m$ dan $y_{n1}=0.39342\ m$. Dengan catatan: - Untuk Metoda Interval Halving, nilai batas kiri: $x_a=y_{n0}$ dan batas kanan: $x_b=y_{n1}$. - Untuk Metoda Newton-Rhapson, nilai awal: $x_k=y_{n1}$. - Untuk Metoda Secant, nilai $x_n=y_{n1}$ dan $x_{n-1}=y_{n0}$.

Catatan: Hasil diatas diperoleh dari perhitungan melalui python dibawah ini.

Diketahui									
b = 2.50000 m									
S = 0.00250 m/m									
C = 30.00000									
$Q = 0.80000 \text{ m}^3/\text{det}$									
=======================================									
$\label{eq:mencari} \mbox{Mencari nilai y_{n0} dan y_{n1}} \label{eq:mencari}$									
$y_{n0} = 0.32000 \text{ m}$									
$f(y_{n0}) = -0.19429$									
$f'(y_{n0}) = 2.64634$									
$y_{1} = 0.39342 \text{ m}$									

1.2 Penyelesaian Numerik (Interval Halving, Newton, Secant)

Kode diperoleh dari Latihan Soal Notebook Interval-Halving, Newton-Rhapson, Secant (Minggu 15) atau dapat dilihat dengan nbviewer Interval-Halving, Newton-Rhapson, Secant (Minggu 15). Dan dimodifikasi sesuai kebutuhan.

1.2.1 Metode Interval Halving

Langkah Pengerjaan Solusi menggunakan metode *Interval Halving* dengan langkah sebagai berikut: - Nilai batas kiri dan kanan yang digunakan diperoleh dari perhitungan sebelumnya untuk mendapatkan nilai y_{n0} dan y_{n1} .

Batas bawah/kiri:
$$x_a = y_{n0}$$
 Batas atas/kanan: $x_b = y_{n1}$ $x_a = 0.32 \ m$ $x_b = 0.39342 \ m$

• Periksa nilai $f(x_a)$ dan $f(x_b)$ lebih kecil dari 0. Langkah ini memastikan bahwa akar persamaannya berada di antara x_a dan x_b . Dan diperoleh bahwa nilai akar-akarnya berada di antara x_a dan x_b

$$f(x_a) = -0.19429; f(x_b) = 0.00704$$

 $f(x_a)f(x_b) < 0 \to OK$

• Cari nilai tengah (x_h) yang merupakan titik tengah dari x_a dan x_b :

$$x_h = \frac{x_a + x_b}{2}$$

• Tentukan batas atas/bawah berikutnya. Nilai x_h sebagai batas atas ketika $f(x_a)f(x_h) < 0$ dan sebaliknya menjadi batas bawah ketika $f(x_b)f(x_h) < 0$.

$$x_b \leftarrow x_h : \text{if } f(x_a) f(x_h) < 0 \text{ TRUE}$$

 $x_a \leftarrow x_h : \text{if } f(x_h) f(x_b) < 0 \text{ TRUE}$

```
Periksa nilai akarnya berada diantara xa dan xb f(x_a) \times f(x_b) < 0 === 0K dengan nilai f(x_a) = -0.19429 dan f(x_b) = 0.00704
```

		Solusi Numer:	======= ik Metoda Inte	rval Halving		
n	x_a	x_b	f(x_a)	f(x_b)	x_h	f(x_h)
1	0.3200000 0.3567100 0.3750650 0.3842425 0.3888313 0.3889785 0.3905521 0.3908389 0.3908389 0.3909105 0.3909285	0.3934200 0.3934200 0.3934200 0.3934200 0.3934200 0.3911256 0.3911256 0.3911256 0.3911256 0.3909822 0.3909822 0.3909464 0.3909464	-0.1942946 -0.0953224 -0.0445413 -0.0188469 -0.0059261 -0.0059261 -0.0026883 -0.0010683 -0.0002580 -0.0002580 -0.0000554 -0.0000554 -0.0000048	0.0070430 0.0070430 0.0070430 0.0070430 0.0070430 0.0005525 0.0005525 0.0005525 0.0005525 0.0001472 0.0001472 0.0000459	0.3567100 0.3750650 0.3842425 0.3888313 0.3911256 0.3899785 0.3905521 0.3908389 0.3909822 0.3909105 0.3909464 0.3909285 0.3909374	-0.0953224 -0.0445413 -0.0188469 -0.0059261 0.0005525 -0.0026883 -0.0010683 -0.0002580 0.0001472 -0.0000554 0.0000459 -0.0000206
14 15	0.3909285	0.3909374 0.3909330	-0.0000048 -0.0000048	0.0000206 0.0000079	0.3909330	0.0000079 0.0000016
16 17 18	0.3909285 0.3909296 0.3909302	0.3909307 0.3909307 0.3909307	-0.0000048 -0.0000016 -0.0000000	0.0000016 0.0000016 0.0000016	0.3909296 0.3909302 0.3909304	-0.0000016 -0.0000000 0.0000008
19 20	0.3909302 0.3909302	0.3909304 0.3909303	-0.0000000	0.0000008 0.0000004	0.3909303	0.0000004 0.0000002

Maka diperoleh nilai akar-akarnya = 0.390930 dengan hasil $f(x_h) = 0.0000001907$

Solusi Numerik Metoda Interval Halving Dengan menggunakan prosedur diatas dan dilakukan iterasi sebanyak 20 kali, diperoleh bahwa nilai $y_n=0.390930\ m$ dengan nilai $f(x_h)=0.0000001907$. Dari tabel hasil perhitungan dibawah, dapat dilihat bahwa nilai akarnya sudah dapat ditemukan pada langkah ke 16 jika error yang ditargetkan $\epsilon=0.000001$.

1.2.2 Metoda Newton-Rhapson

Langkah Pengerjaan Solusi Numerik menggunakan metoda Newton-Rhapson dimulai dari:

- Nilai awal x_k menggunakan nilai y_{n0} maka $x_k = 0.32 m$
- ullet Dalam metoda Newton-Rhapson diperlukan turunan dari fungsi f(y). Persamaan yang digunakan:

$$f(y) = Cby\sqrt{\frac{bsy}{b+2y}} - Q$$

$$f'(y) = \frac{Cb\sqrt{\frac{bsy}{b+2y}}}{2(b+2y)}(3b+4y)$$

dengan: $C = 30, b = 2.5 m, s = \frac{1}{400} m/m$

• Akar persamaan x_{k+1} diperoleh dengan melakukan iterasi sebanyak k dengan menggunakan persamaan:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

	:=====:	Solusi	===== Numeri	====== k Metoda N	=== Iewt	on Rhapsor	==== 1	=======	===
	k	x_k	===== 	f(x_k)		f'(x_k)		x_{k+1}	===
	1	0.3200	00	 -0.194295		2.646344		0.393420	
	2	0.3934	20	0.007043		2.831491		0.390933	
	3	0.3909	33	0.000007		2.825843		0.390930	
	4	0.3909	30	0.000000		2.825838		0.390930	
	5	0.3909	30	0.000000		2.825838		0.390930	
	6	0.3909	30	0.000000		2.825838		0.390930	
	7	0.3909	30	0.000000		2.825838		0.390930	
	8	0.3909	30	0.000000		2.825838		0.390930	
	9	0.3909	30	0.000000		2.825838		0.390930	
	10	0.3909	30 	0.000000		2.825838		0.390930	

Maka diperoleh nilai akar-akarnya = 0.390930 dengan hasil $f(x_k) = 0.00000000000$

Solusi Numerik Metoda Newton Rhapson Dengan menggunakan prosedur diatas dan dilakukan iterasi sebanyak 10 kali, diperoleh bahwa nilai $y_n = 0.390930 \ m$ dengan nilai $f(x_k) = 0.00000000000$. Dari tabel hasil perhitungan diatas, dapat dilihat bahwa nilai akarnya sudah dapat ditemukan pada langkah ke 4 jika error yang ditargetkan $\epsilon = 0.000001$.

1.2.3 Metoda Secant

Langkah Pengerjaan Solusi Numerik menggunakan metoda Secant dimulai dari:

• Menentukan nilai $x_0 = x_{n-1}$ dan $x_1 = x_n$ dari nilai y_{n0} dan y_{n1} :

$$x_0 = x_{n-1} = y_{n0} = 0.32 m$$

 $x_1 = x_n = y_{n1} = 0.39342 m$

• Dalam metoda *Secant* hanya diperlukan fungsi f(y). Persamaan yang digunakan:

$$f(y) = Cby\sqrt{\frac{bsy}{b+2y}} - Q$$

dengan: $C = 30, b = 2.5 m, s = \frac{1}{400} m/m$

• Akar persamaan x_{n+1} diperoleh dengan melakukan iterasi sebanyak n dengan menggunakan persamaan:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Solusi Numerik Menggunakan Metoda Secant										
n		x_{n-1}		x_n	N_n		D_n	 	x_{n+1}-x_n	
1		0.393420		0.320000	0.01426	 5	-0.201338	 	0.070852	
2		0.320000		0.390852	-0.00001	3	0.194073		0.000081	
3		0.390852		0.390933	0.00000)	0.000229		-0.000002	
4		0.390933		0.390930	0.00000)	-0.000007		0.000000	
5		0.390930		0.390930	-0.00000) (0.000000		0.000000	
6		0.390930		0.390930	0.00000) (0.000000		0.000000	
======										
Maka dip	eroleh	nilai akar	-ak	arnya =	0.390930 de:	ngan	$f(x_{n+1})$	=	0.0000000	000

Solusi Numerik Metoda *Secant* Dengan menggunakan prosedur diatas dan dilakukan iterasi sebanyak 6 kali, diperoleh bahwa nilai $y_n = 0.390930 \ m$ dengan nilai $f(x_k) = 0.0000000000$. Dari tabel hasil perhitungan diatas, dapat dilihat bahwa nilai akarnya sudah dapat ditemukan pada langkah ke 4 jika error yang ditargetkan $\epsilon = 0.000001$.

1.3 Kesimpulan

Ringkasan dari penyelesaian permasalahan dengan 3 metoda yaitu *Interval-Halving, Newton-Rhapson, Secant*:

Metoda	Jumlah Iterasi Coba	y_{n0}	$f(y_{n0})$	Jumlah Iterasi jika $\epsilon=0.000001$
Interval-Halving	20	0.390930	0.0000001907	16
Newton-Rhapson	10	0.390930	0.0000000000	4
Secant	6	0.390930	0.0000000000	4

Dari ketiga metoda diatas, metoda *Newton-Rhapson* dan *Secant* memiliki iterasi yang lebih sedikit dengan $\epsilon = 1 \times 10^{-6}$, akan tetapi metoda *Newton-Rhapson* memerlukan persamaan turunan f'(y) yang jika persamaannya akan sulit diturunkan jika dilakukan secara manual. Sedangkan metoda *Secant* hanya menggunakan persamaan f(y).

Kode dapat diakses di: https://nbviewer.jupyter.org/github/taruma/belajartsa/blob/master/ansis/Tugas%203%20-%20Taruma%20S.%20%2825017046%29.ipynb atau scan barcode dibawah

