OBJECT DETECTION IN A VIDEO

Mentor

Dr. Prerana Mukherjee

Group Members

Chinthala Sai Pranay Raju(S20170010036)

S B Koushik(S20170010131)

D Sai Karthik(S20170010037)

Group Code PM03

Introduction

- Object detection is one of the fundamental problems in Computer Vision.
- There has been a long history of detecting objects in static images, but now we see people shifting their interest into videos.

- However, cameras on robots, surveillance systems, vehicles, wearable devices, etc., receive videos instead of static images.
- Thus, for these systems to recognize the key objects and their interactions, it is critical that they be equipped with accurate video object detectors.

Problem Statement

- Video perception is an important aspect of every autonomous machine which uses cameras to perceive environment.
- But, due to the different biases and challenges of video (e.g., motion blur, low-resolution, compression ,etc..), a static object detector on video frames doesn't work well.
- Videos also provide rich temporal and motion information which should be utilized by the detector.
- Also there might be dependencies between frames of videos, which play a crucial role and must be taken into account.
- Therefore by aggregating information across time and taking challenges into account we would design a good video object detector.

Literature

- The recent works of Zhu learn to combine features of different frames with a feedforward network for improved detection accuracy. Our method differs in that it produces a spatial-temporal memory that can carry on information across long and variable number of frames
- whereas the methods in [4,5] can only aggregate information over a small and fixed number of frames.
- Although the approach of Kang et al. [3] uses memory to aggregate temporal information, it uses a vector representation. Since spatial information is lost, it computes a separate memory vector for each region tube (sequence of proposals) which can make the approach very slow. In contrast, our approach only needs to compute a single frame-level spatial memory, whose computation is independent of the number of proposals.

Objectives

- To design a model which could detect and classify an object using temporal and spatial information.
- To design a model to maintain the alignment of memory along different frames preventing hallucinations.

Methodology [1]

- We use a newly defined memory module called STMM to transfer information among different frames. Here we use ConvGRU's.
- Architecture

RFCN

Methodology(Contd..)

■ The STMM gets updated using the formulae mentioned below (Similar to GRU)

$$\begin{split} z_t &= \mathtt{BN}^*(\mathtt{ReLU}(W_z*F_t + U_z*M_{t-1})),\\ r_t &= \mathtt{BN}^*(\mathtt{ReLU}(W_r*F_t + U_r*M_{t-1})),\\ \tilde{M}_t &= \mathtt{ReLU}(W*F_t + U*(M_{t-1}\odot r_t)),\\ M_t &= (1-z_t)\odot M_{t-1} + z_t\odot \tilde{M}_t, \end{split}$$

GRU Internal Structure [2]

Zt : update gate

Rt: reset gate

h-t : Current memory

Ht: Final Memory

Methodology(Contd..)

Here the weights of ConvGRN are replaced by weights of RFCN Static Image detector, and continue to fine tune it on ImageNet VID videos.

Problem of hallucination

Methodology(Contd..)

 To avoid hallucination we use MatchTrans for proper alignment of memory

Transforming Coefficient

$$\Gamma_{x,y}(i,j) = \frac{F_t(x,y) \cdot F_{t-1}(x+i,y+j)}{\sum_{i,j \in \{-k,\dots,k\}} F_t(x,y) \cdot F_{t-1}(x+i,y+j)},$$

Memory Update into alignment

$$M'_{t-1}(x,y) = \sum_{i,j \in \{-k,\dots,k\}} \Gamma_{x,y}(i,j) \cdot M_{t-1}(x+i,y+j).$$

Dataset

■ ImageNet VID Videos

Plan

- 1st quartile: Reading research papers and gathering required information and dataset.
- 2nd quartile : Implementing the paper.
- 3rd and 4th quartile: Trying new techniques to solve the problem and optimizing

References

- 1. http://fanyix.cs.ucdavis.edu/project/stmn/project.html (Research paper)
- 2. https://medium.com/@george.drakos62/what-is-a-recurrent-nns-and-gated-recurrent-unit-grus-ea71d2a05a69 (Article)
- 3. Kang, K., Li, H., Xiao, T., Ouyang, W., Yan, J., Liu, X., Wang, X.: Object detection in videos with tubelet proposal networks. In: CVPR (2017)
- 4. Zhu, X., Dai, J., Yuan, L., Wei, Y.: Towards high performance video object detection. CVPR (2018)
- 5. Zhu, X., Wang, Y., Dai, J., Yuan, L., Wei, Y.: Flow-guided feature aggregation for video object detection. ICCV (2017)