Computação Gráfica

Aula 26: Rasterização (continuação)

Vicente Helano Feitosa Batista Sobrinho Faculdade Paraíso do Ceará Sistemas de Informação 10. semestre de 2011

Relembrando

Pipeline gráfico (básico) de renderização por varredura

O que veremos hoje?

Exemplo de rasterização

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	X	\ <u></u>				×	×	×	×	×	×
×	×	×	×	×	X	X	X	×	×	×	×	×	>	×	×	×	×	×
×	×	×	×		×	×	×	×	×	×	×	×	3	×	×	×	×	×
×	×	×		×	×	×	×	×	×	×	×	×	1	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	1	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	X		×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Exemplo de rasterização

Exemplo de rasterização

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Idéia básica.

Se um pixel (i,j) é pintado, então o próximo pixel a ser pintado é o $\mathsf{E}(i,j)$ ou o $\mathsf{NE}(i,j)$

Idéia básica.

Se um pixel (i,j) é pintado, então o próximo pixel a ser pintado é o $\mathsf{E}(i,j)$ ou o $\mathsf{NE}(i,j)$

	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	NO	N	NE	×	×	×	×	×	×	×
j	×	×	×	×	×	×	×	×	×	0		Е	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	SO	S	SE	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Idéia básica.

Se um pixel (i,j) é pintado, então o próximo pixel a ser pintado é o $\mathsf{E}(i,j)$ ou o $\mathsf{NE}(i,j)$

	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×		×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	X	×	• (i	ont × 1	×	1 2 2	dio	×
j	×	×	×	×	×	×	×	×	×	×	×	×	×	$\begin{array}{ c c c c }\hline & \iota & \\ \times & & \\ \hline \end{array}$	т т, ×	J \times	$\left[\begin{array}{c} \overline{2} \\ \times \end{array}\right]$	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	y	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Predicado de decisão.

Predicado de decisão.

$$F(x,y) = ax + by + c$$

Predicado de decisão.

Predicado de decisão.

$$F(x,y) = ax + by + c$$

Predicado de decisão.

$$F(x,y) = ax + by + c$$

Predicado de decisão.

$$F(x,y) = ax + by + c$$

$$a = y_0 - y_1$$

$$b = x_1 - x_0$$

$$c = x_0 y_1 - x_1 y_0$$

$$F(x,y) = 0$$

Podemos aplicar a ideia do algoritmo de Bresenham

Podemos aplicar a ideia do algoritmo de Bresenham

Basta considerar o 2º octante

Assumimos que o centro está em (0,0)

Podemos aplicar a ideia do algoritmo de Bresenham

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	¥	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	K	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Podemos aplicar a ideia do algoritmo de Bresenham

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	¥	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	<i> </i>	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	K	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Podemos aplicar a ideia do algoritmo de Bresenham

Podemos aplicar a ideia do algoritmo de Bresenham

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	¥	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	<i> </i>	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	K	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Podemos aplicar a ideia do algoritmo de Bresenham

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	0	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	<i> </i>	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	K	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Podemos aplicar a ideia do algoritmo de Bresenham

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	~	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	<i> </i>	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	K	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Podemos aplicar a ideia do algoritmo de Bresenham

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	~	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	/	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Podemos aplicar a ideia do algoritmo de Bresenham

Basta considerar o 2º octante

Com a função de decisão:

$$F(p) = 0 \implies p$$
 está sobre F $F(p) < 0 \implies p$ está dentro $F(p) > 0 \implies p$ está fora

Assumimos que o centro está em (0,0)

Podemos aplicar a ideia do algoritmo de Bresenham

Se formos para o pixel E

$$F(x_0 + 2, y_0 - 1/2) = F(x_0 + 1, y - 1/2) + 2x_0 + 3$$

Se formos para o pixel SE

$$F(x_0 + 2, y_0 - 3/2) = F(x_0 + 1, y - 1/2) + 2x_0 - 2y_0 + 5$$

onde o primeiro ponto médio será em (1, r-1/2).

$$F(x_0 + 1, y_0 - 1/2) = F(1, r - 1/2) = 5/4 - r$$

Dada uma região *conexa* delimitada por um conjunto de *pixels* no espaço da imagem, como podemos preencher seu interior, dado um *pixel* "semente"?

Dada uma região *conexa* delimitada por um conjunto de *pixels* no espaço da imagem, como podemos preencher seu interior, dado um *pixel* "semente"?

O que é uma região conexa?

Dada uma região *conexa* delimitada por um conjunto de *pixels* no espaço da imagem, como podemos preencher seu interior, dado um *pixel* "semente"?

O que é uma região conexa?

É toda região na qual quaisquer dois *pixels* em seu interior podem ser conectados por um caminho através de seus *pixels* vizinhos internos

Dada uma região *conexa* delimitada por um conjunto de *pixels* no espaço da imagem, como podemos preencher seu interior, dado um *pixel* "semente"?

O que é uma região conexa?

É toda região na qual quaisquer dois *pixels* em seu interior podem ser conectados por um caminho através de seus *pixels* vizinhos internos

Podemos considerar dois modelos de vizinhança:

4-vizinhança

8-vizinhança

Dada uma região *conexa* delimitada por um conjunto de *pixels* no espaço da imagem, como podemos preencher seu interior, dado um *pixel* "semente"?

- Contorno 8-conexo
- Interior 4-conexo

- Contorno 4-conexo
- Interior 8-conexo

Dada uma região *conexa* delimitada por um conjunto de *pixels* no espaço da imagem, como podemos preencher seu interior, dado um *pixel* "semente"?

```
flood_fill_4(x, y, cor, cor_desejada) {
   Se pixel(x, y).cor ≠ cor, então:
     Retorne;
   pixel(x, y).cor ← cor_desejada;
   flood_fill(x - 1, y, cor, cor_desejada);
   flood_fill(x + 1, y, cor, cor_desejada);
   flood_fill(x, y + 1, cor, cor_desejada);
   flood_fill(x, y - 1, cor, cor_desejada);
   Retorne;
}
```


Dada uma região *conexa* delimitada por um conjunto de *pixels* no espaço da imagem, como podemos preencher seu interior, dado um *pixel* "semente"?

```
flood_fill_4(x, y, cor, cor_desejada) {
   Se pixel(x, y).cor ≠ cor, então:
     Retorne;
   pixel(x, y).cor ← cor_desejada;
   flood_fill(x - 1, y, cor, cor_desejada);
   flood_fill(x + 1, y, cor, cor_desejada);
   flood_fill(x, y + 1, cor, cor_desejada);
   flood_fill(x, y - 1, cor, cor_desejada);
   Retorne;
}
```

É possível melhorar a performance com um *flag* para designar se um *pixel* já foi testado

E se quisermos preencher o interior de um polígono ${\cal P}$ arbitrário?

Estratégias clássicas para preencher P:

Aplicar Bresenham nas arestas + flood_fill

Estratégias clássicas para preencher P:

- Aplicar Bresenham nas arestas + flood_fill
- Algoritmo da linha de varredura

Estratégias clássicas para preencher P:

- Aplicar Bresenham nas arestas + flood_fill
- Algoritmo da linha de varredura
- ullet Triangular P, depois preencher cada triângulo

Ilustração do algoritmo da linha de varredura

Ilustração do algoritmo da linha de varredura

Faculdade Paraíso - CE

linha de varredura

Ilustração do algoritmo da linha de varredura

1) Calcular os pontos de interseção entre L e P

Faculdade Paraíso - CE

linha de varredura

Ilustração do algoritmo da linha de varredura

1) Calcular os pontos de interseção entre L e P

linha de varredura

2) Ordená-los segundo o eixo x

Ilustração do algoritmo da linha de varredura

3) Preencher os *pixels* entre pares consecutivos de interseções

Ilustração do algoritmo da linha de varredura

3) Preencher os *pixels* entre pares consecutivos de interseções

Ilustração do algoritmo da linha de varredura

3) Preencher os pixels entre pares consecutivos de interseções

Ilustração do algoritmo da linha de varredura

3) Preencher os pixels entre pares consecutivos de interseções

Ilustração do algoritmo da linha de varredura

3) Preencher os pixels entre pares consecutivos de interseções

Algoritmo baseado em triangulação

- Estratégia adotada pela OpenGL: rasterizar apenas triângulos
- Polígonos convexos: triangulação trivial (orientação)

• Polígonos não-convexos: usar GLUtessellator

Algoritmo baseado em triangulação

- Estratégia adotada pela OpenGL: rasterizar apenas triângulos
- Polígonos convexos: triangulação trivial (orientação)

• Polígonos não-convexos: usar GLUtessellator

Triangulação de P (sem pontos de Steiner)

Algoritmo baseado em triangulação

- Estratégia adotada pela OpenGL: rasterizar apenas triângulos
- Polígonos convexos: triangulação trivial (orientação)
- Polígonos não-convexos: usar GLUtessellator

Triangulação de P (sem pontos de Steiner)

Então como rasterizar triângulos? A seguir...

Triângulo: primitiva básica para rasterização de polígonos da OpenGL

Triângulo: primitiva básica para rasterização de polígonos da OpenGL \Longrightarrow Mas apenas polígonos convexos!

$$\lambda p + (1 - \lambda)q \in P$$
$$0 \le \lambda \le 1$$

Lembre-se: para polígonos não-convexos, usar GLUTesselator

Triângulo: primitiva básica para rasterização de polígonos da OpenGL

Triangulação de P

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	X	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	X	×	×	×	X	K	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	X	X	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	X	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

1) Determinar a caixa limitante alinhada com os eixos B de T_1

- 1) Determinar a caixa limitante alinhada com os eixos B de T_1
- 2) Para cada pixel em B, faça:

- 1) Determinar a caixa limitante alinhada com os eixos B de T_1
- 2) Para cada *pixel* em B, faça: Se *pixel* $\in T_1$, então pinte *pixel*

- 1) Determinar a caixa limitante alinhada com os eixos B de T_1
- 2) Para cada *pixel* em B, faça: Se *pixel* $\in T_1$, então pinte *pixel*

Problema.

• Como determinar se um *pixel* está dentro do triângulo?

Problema.

Como determinar se um pixel está dentro do triângulo?
 R.: Usar função implícita da reta

Se $F_i(p) > 0$, i = 0, 1, 2, então p pertence ao triângulo

Problema.

• O que fazer com um *pixel* na aresta do triângulo?

Problema.

- O que fazer com um *pixel* na aresta do triângulo?
 - R.: Usar um ponto auxiliar

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	×	X	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	X	X	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	*	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Problema.

- O que fazer com um *pixel* na aresta do triângulo?
 - R.: Usar um ponto auxiliar

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	
×	×	×	×	×	X		×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	X		X	×	×	×	×	×	×	×	F(q) > 0?
×	×	×	×	×	×	×	×	×	×	×	×	×	Ж	·	X	×	×	×	(1)
×	×	×	×	×	×	×	×	×	X	×	X	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	X	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	

