Package 'dydea'

October 13, 2022

Type Package
Title Detection of Chaotic and Regular Intervals in the Data
Version 0.1.0
Description Finds regular and chaotic intervals in the data using the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) DOI:10.1137/080718851 >.
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
NeedsCompilation no
Imports Chaos01
RoxygenNote 6.1.1
Author Radek Halfar [aut, cre]
Maintainer Radek Halfar < radek . halfar@vsb.cz>
Repository CRAN
Date/Publication 2019-03-25 11:00:03 UTC
R topics documented:
find_chaos
Index

2 find_chaos

-	٠				
+	٦.	nn	С	hっ	2
	1	HU		нa	υs

Find chaotic motions in the data.

Description

Find chaotic motions in the data.

Usage

```
find_chaos(data, window_length, skip_window, skip_test01 = 1,
  test01_thresh = 0.05, find_thresh = 20)
```

Arguments

data	Analyzed data.
window_length	Length of the window for in which the 0-1 test for chaos will be computed.
skip_window	Length of the skip of the window moving in the data.
skip_test01	Length of the skip to take data for calculation the 0-1 test for chaos in the window.
test01_thresh	The threshold to decide about motion.
find_thresh	Precision of found intervals.

Value

The list of optimized chaotic motion borders.

Examples

```
# Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)</pre>
vec.x[1] \leftarrow (2^0.5)/2
for (i in 2:data.len){
  \# x_n+1 = r*x_n(1-x_n)
  vec.x[i] \leftarrow 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <-cons</pre>
vec.x[(chaos.start[2]+1):data.len] <-cons</pre>
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)</pre>
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)</pre>
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1</pre>
vec.x[chaos.start[2]:(chaos.start[2]+2000)] <- tr2</pre>
# Find chaotic intervals in vec.x and plot results.
chaotic_borders <- find_chaos(vec.x, "skip_window" = 1000,</pre>
  "window_length" = 3000, "find_thresh" = 300)
```

find_motions 3

_										
+	7	n	М	m	\sim	+	7	0	n	C

Find regular and chaotic motions in the data and plots the results.

Description

Find regular and chaotic motions in the data and plots the results.

Usage

```
find_motions(data, window_length, skip_window, skip_test01 = 1,
  test01_thresh = 0.05, find_thresh = 20)
```

Arguments

data	Analyzed data.
window_length	Length of the window for in which the 0-1 test for chaos will be computed
skip_window	Length of the skip of the window moving in the data.
skip_test01	Length of the skip to take data for calculation the 0-1 test for chaos in the window.
test01_thresh	The threshold to decide about motion.
find_thresh	Precision of found intervals.

Value

The list of optimized regular and chaotic motion borders.

Examples

```
# Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)</pre>
vec.x[1] <- (2^0.5)/2
for (i in 2:data.len){
  \# x_n+1 = r*x_n(1-x_n)
  vec.x[i] \leftarrow 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <-cons</pre>
vec.x[(chaos.start[2]+1):data.len] <-cons</pre>
tr1 \leftarrow seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)</pre>
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1</pre>
vec.x[chaos.start[2]:(chaos.start[2]+2000)] <- tr2</pre>
# Find chaotic and regular intervals in vec.x and plot results.
find_motions(vec.x, "skip_window" = 1000, "window_length" = 3000, "find_thresh" = 300)
```

4 find_regularity

\sim	- 1				٠		
111	าต	reg	uΤ	ar	1	T.V	

Find regular motions in the data.

Description

Find regular motions in the data.

Usage

```
find_regularity(data, window_length, skip_window, skip_test01 = 1,
  test01_thresh = 0.05, find_thresh = 20)
```

Arguments

data Analyzed data.

window_length Length of the window for in which the 0-1 test for chaos will be computed.

skip_window Length of the skip of the window moving in the data.

skip_test01 Length of the skip to take data for calculation the 0-1 test for chaos in the window.

test01_thresh The threshold to decide about motion.

find thresh Precision of found intervals.

Value

The list of optimized regular and chaotic motion borders.

Examples

```
# Calculate the logistic map.
cons <- 0.5
data.len <- 17000
chaos.start <- c(5536, 9768)
vec.x <- matrix(cons, data.len, 1)</pre>
vec.x[1] \leftarrow (2^0.5)/2
for (i in 2:data.len){
  \# x_n+1 = r*x_n(1-x_n)
  vec.x[i] <- 3.7*vec.x[i-1]*(1-vec.x[i-1])
}
vec.x[1:(chaos.start[1]-1)] <-cons</pre>
vec.x[(chaos.start[2]+1):data.len] <-cons</pre>
tr1 <- seq(from = cons, to = vec.x[chaos.start[1]], length.out = 2001)</pre>
tr2 <- seq(from = vec.x[chaos.start[2]], to = cons, length.out = 2001)
vec.x[(chaos.start[1]-2000):chaos.start[1]] <- tr1</pre>
vec.x[chaos.start[2]:(chaos.start[2]+2000)] <- tr2</pre>
# Find regular intervals in vec.x and plot results.
regular_borders <- find_regularity(vec.x, "skip_window" = 1000,</pre>
  "window_length" = 3000, "find_thresh" = 300)
```

Index

find_chaos, 2
find_motions, 3
find_regularity, 4