Bits of Architecture

Integer Basics

How Do We Represent Numbers?

Base 10 Numbers (Decimal)

Decimal Numbers

 724_{10}

Decimal Numbers

Decimal Numbers

Base 2 Numbers (Binary)

Binary Numbers - Unsigned Integers

$$11 = 1011_2$$

Binary Numbers - Unsigned Integers

Binary Numbers - Unsigned Integers

Some Terminology...

Binary Numbers

- Least Significant Bit (LSB)
 - Rightmost bit
 - Smallest power (typically 0)
- Most Significant Bit (MSB)
 - Leftmost bit
 - Largest power

What About Signed Numbers?

Binary Numbers - Signed Integers

$$-5 = 1011_2$$

Binary Numbers - Signed Integers

$$-5 = 1011_2$$

$$-1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Binary Numbers - Signed Integers

What Range of Values Can We Represent?

Range of Integer Numbers

$$Range_{Unsigned} = 0 \rightarrow 2^n - 1$$

$$Min_{4bit} = 0000_2 \ Max_{4bit} = 1111_2$$

Range of Integer Numbers

$$Range_{Signed} = -2^{n-1} \rightarrow 2^{n-1} - 1$$

$$Min_{4bit} = 1000_2 \ Max_{4bit} = 0111_2$$