Project 2: Machine Model Training **

Purpose

In this project, you will use a training dataset to train and test a machine model. The purpose is to distinguish between meal and no meal time series data.

Objectives

Learners will be able to:

- Develop code to train a machine model.
- Assess the accuracy of a machine model.

Technology Requirements

- Python 3.6 to 3.8 (do not use 3.9).
- scikit-learn==0.21.2
- pandas==0.25.1
- Python pickle

Project Description

In this project, you will train a machine model to assess whether a person has eaten a meal or not eaten a meal. A training data set is provided.

Please watch the **three introductory videos on Project 2** before beginning.

- <u>Project 2: Machine Model Training Introductory Video 1</u>
 (https://canvas.asu.edu/courses/140907/files/62424119/download?
 <u>wrap=1)</u>
- <u>Project 2: Machine Model Training Introductory Video 2</u>
 (https://canvas.asu.edu/courses/140907/files/62424121/download?
 <u>wrap=1)</u>

<u>Project 2: Machine Model Training Introductory Video 3</u>
 (https://canvas.asu.edu/courses/140907/files/62424124/download?wrap=1)

Directions

Meal data can be extracted as follows:

- From the InsulinData.csv file, search the column Y for a non NAN non zo indicates the start of meal consumption time tm. Meal data comprises a CGM data that starts from tm-30min and extends to tm+2hrs.
- No meal data comprises 2 hrs of raw data that does not have meal intak

Extraction: Meal data

Start of a meal can be obtained from InsulinData.csv. Search column Y for a value. This time indicates the start of a meal. There can be three conditions

- 1. There is no meal from time tm to time tm+2hrs. Then use this stretch as
- 2. There is a meal at some time tp in between tp>tm and tp< tm+2hrs. Ignotime tm and consider the meal at time tp instead.
- 3. There is a meal at time tm+2hrs, then consider the stretch from tm+1hr; meal data.

Extraction: No Meal data

Start of no meal is at time tm+2hrs where tm is the start of some meal. We stretch of no meal time. So you need to find all 2 hr stretches in a day that h not fall within 2 hrs of the start of a meal.

Handling missing data:

You have to carefully handle missing data. This is an important data mining for many applications. Here there are several approaches:

- 1. Ignore the meal or no meal data stretch if the number of missing data pogreater than a certain threshold.
- 2. Use linear interpolation (not a good idea for meal data but maybe for no
- 3. Use polynomial regression to fill up missing data (untested in this domai

Choose wisely.

Feature Extraction and Selection:

You have to carefully select features from the meal time series that are disc meal and no meal classes.

Test Data:

The test data will be a matrix of size N×24, where N is the total number of te of the CGM time series. N will have some distribution of meal and no meal of

Note here that for meal data you are asked to obtain a 2 hr 30 min time seri meal you are taking 2 hr. However, a machine will not take data with differe the feature extraction step, you have to ensure that features extracted from meal data have the same length.

Output format:

You have to output an N×1 vector of 1s and 0s, where if a row is determined the corresponding entry will be 1, and if determined to be no meal, the corre 0.

This vector should be saved in a "Result.csv" file.

Given:

- Meal Data and No Meal Data of subjects 1 and 2
- Ground truth labels of Meal and No Meal for subjects 1 and 2

Using Python, train a machine model to recognize whether a sample in the represents a person who has eaten (Meal), or not eaten (No Meal). The traground truth labels of Meal and No Meal for 5 subjects.

You will need to perform the following tasks:

- 1. Extract features from Meal and No Meal training data set.
- 2. Make sure that the features are discriminatory.
- 3. Train a machine to recognize Meal or No Meal data.
- 4. Use k fold cross validation on the training data to evaluate your recognit
- 5. Write a function that takes a single test sample as input, and outputs 1 if sample as meal or 0 if it predicts test sample as No meal.

Submission Directions for Project Deliverables:

Two python files: 1) train.py and 2) test.py

- The train.py reads CGMData.csv, CGM_patient2.csv and InsulinData.cs extracts meal and no-meal data, extracts features, trains your machine t no-meal classes, and stores the machine in a pickle file (Python API pickle).
- The test.py reads test.csv which has the N x 24 matrix and outputs a Re N x 1 vector of 1s and 0s, where 1 denotes meal, 0 denotes no meal.
- Assume that CGMData.csv, CGM_patient2.csv and InsulinData.csv, Insulare all in your compilation and execution folder. Avoid using static paths.

Submission Guidelines:

- Please submit a zipped file containing train.py and test.py as "yourfirstname_lastname_Project2.zip".
- The submission space is located at the bottom of module 4 as "Project.
 2: Machine Model Training Submission".

Evaluation

Graders will evaluate your code as well as the accuracy of your results base and No Meal data that is not included in the training set.

- 50 points for developing a code in Python that takes the given dataset, ε
 Meal data, and trains a machine model
- 20 points for developing a code in Python that implements a function to run the trained machine to provide the class label as output
- 30 points will be evaluated on the accuracy, F1 score, Precision, and Re by your machine.

<u>Project-2-Files.zip (https://canvas.asu.edu/courses/140907/files/62424384?w</u> (https://canvas.asu.edu/courses/140907/files/62424384/download_f

Assignment 2 - Rubric

Criteria	Ratings		
Extraction of meal data	10 pts Full Marks	0 pts No Execution	10
Extraction of non-meal data	10 pts Full Marks	0 pts No Marks	10
Classify and train data using K-fold cross validation.	30 pts Full Marks	0 pts No Marks	3(
Test the model and generate results file without any error	20 pts Full Marks	0 pts No Marks	21
Calculate Accuracy of the training model	10 pts Full Marks	0 pts No Marks	10
Calculate Precision, recall of the training model	10 pts Full Marks	0 pts No Marks	10
Calculate F1 Score of the training model	10 pts Full Marks	0 pts No Marks	10