Document Reprentations

Natural Language Processing — Lecture 3

Kenneth Enevoldsen 2024

Before we start

Perspectives in NLP x Humanities, Cognition, and Social Sciences

Workshop at IMC

Before we start

Kasper Groes 10:32 AM

Or are you interested in joining a group effort on one of the cool open source projects listed below?

- 1. Use an LLM to generate a synthetic dataset for training an embedding model
- 2. Run the scandeval LLM evaluation framework on models not yet included in the benchmark
- 3. Fine tune LLMs, e.g. Llama 3.2 8b
- 4. Translate the Fineweb dataset to Danish
- 5. Train a Danish/Scandinavian version of the Knowledgator gliner models

Express your interest at ddsc.kontakt@gmail.com or send us a brief description of what you want to do with the GPU.

@channel

Agenda

- Document Representations
 - What attributes do we want?
 - What do we use document representations for
- How do we construct them
 - Sparse approaches: Count-based approached
 - Reweighting: TF-IDF
 - Dense approaches:
 - Matrix decomposition
 - Aggregation of word embeddings
- Optional: Perspectives from last class

Document representations

Which should be close?

Go to:

https://huggingface.co/spaces/mteb/arena

Then

Click STS

Try 1-3 examples

Document representations

• What attributes do we want?

Classification


```
from sklearn.linear_model import LogisticRegression

embeddings = ... # shape (n_docs, embedding)
y = ... # shape (n_docs)
clf = LogisticRegression()
clf.fit(embeddings, y)

new_embeddings = ...
clf.predict(new_embeddings)
```


- Classification
- Semantic representations
 - Bulk labelling

- Classification
- Semantic representations
 - Bulk labelling
 - Thematic clustering
 https://huggingface.co/spaces/
 mteb/arena

- Classification
- Semantic representations
 - Bulk labelling
 - Thematic clustering
- Retrieval

https://huggingface.co/spaces/ mteb/arena

- Classification
- Semantic representations
 - Bulk labelling
 - Thematic clustering
- Retrieval
 - Retrieval augmented generation*

- Classification
- Semantic representations
 - Bulk labelling
 - Thematic clustering
- Retrieval
 - Retrieval augmented generation*
- •
- What other uses could you imagine?

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good fool	(114	80	62	89
fool	36	58	1	4)
wit	20	15	2	3

From word to document vectors

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Code example

A lot of assumptions go here

- Code example
- What could these assumptions be?

- Code example
- What could these assumptions be?
 - Tokenization
 - What happened to the t?
 - Couldn't the questionmark be meaningful?
 - Casing?

```
1 from sklearn.feature_extraction.text import CountVectorizer

√ 8.4s

 1 texts = ["isn't this a word?"]
      vectorizer = CountVectorizer()
      embeddings = vectorizer.fit_transform(texts)
      vectorizer.get_feature_names_out()
 ✓ 0.0s
array(['isn', 'this', 'word'], dtype=object)
      embeddings = vectorizer.fit_transform(["CASING MATTERS!"])
      vectorizer.get_feature_names_out()
 ✓ 0.0s
array(['casing', 'matters'], dtype=object)
```


- Code example
- What could these assumptions be?
 - Tokenization
 - N-grams
 - Why is this important?
 - Why is it problematic?

```
1 texts = ["This is a text", "This is another text", "This is also a text"]
   vectorizer = CountVectorizer(ngram_range=(1, 2))
      embeddings = vectorizer.fit_transform(texts)
      vectorizer.get_feature_names_out()

√ 0.0s

array(['also', 'also text', 'another', 'another text', 'is', 'is also',
       'is another', 'is text', 'text', 'this', 'this is'], dtype=object)
   1 texts = ["This is a text", "This is another text", "This is also a text"]
      vectorizer = CountVectorizer(ngram_range=(1, 3))
      embeddings = vectorizer.fit_transform(texts)
      vectorizer.get_feature_names_out()

√ 0.0s

array(['also', 'also text', 'another', 'another text', 'is', 'is also',
      'is also text', 'is another', 'is another text', 'is text', 'text',
      'this', 'this is', 'this is also', 'this is another',
      'this is text'], dtype=object)
```


- A few tricks:
 - Binary
 - Just knowing if a word appear is often enough
 - Removing stop words
 - Using a list: ["the", "and", "a", ...]
 - Word should not appear in >50% of documents
 - Don't overdo it on vocabulary size

Problems?

Count Distributions

Any questions?

- We previously saw PPMI
- Term-Frequency inverse Document
 Frequency
 - Term-Frequency

$$tf_{t,d} = count(t,d)$$
Document
Term/word

	ML	Food	Sports	Maths
curve	O	1	1	O
sugar	O	20	10	O
sphere	10	O	15	40
foul	O	O	O	50
the	352500	431230	239000	748901

- We previously saw PPMI
- Term-Frequency inverse Document
 Frequency
 - Term-Frequency

$$tf_{t,d} = log(count(t,d) + 1)$$
normalizes large numbers
Recall Zipf's law
Why?
hint: what happens if count is 0?

	ML	Food	Sports	Maths
curve	O	1	1	O
sugar	O	20	10	O
sphere	10	0	15	40
foul	O	0	O	50
the	352500	431230	239000	748901

- We previously saw PPMI
- Term-Frequency inverse-Document-Frequency
 - Term-Frequency $tf_{t,d} = log(count(t,d) + 1)$
 - inverse-Document-Frequency

$$idf_t = log\left(\frac{N}{df_t}\right)$$
 Number of documents

How much information does the word provides (is it common?)

Num	har of	docum	ont w	ith t

	ML	Food	Sports	Maths
curve	O	1	1	O
sugar	O	20	10	O
sphere	10	O	15	40
foul	O	O	O	50
the	352500	431230	239000	748901

- We previously saw PPMI
- Term-Frequency inverse-Document-Frequency
 - Term-Frequency

$$tf_{t,d} = log(count(t,d) + 1)$$

• inverse-Document-Frequency

$$idf_t = log\left(\frac{N}{df_t}\right)$$

TF-iDF

$$tf_{i,d} \cdot idf_t$$

	ML	Food	Sports	Maths
curve	O	1	1	Ο
sugar	O	20	10	O
sphere	10	O	15	40
foul	O	O	O	50
the	352500	431230	239000	748901

TF-iDF Variations

Multiple formulations exist

Raw counts
$$tf_{t,d} = count(t,d)$$

Normalized
$$tf_{t,d} = log(count(t,d) + 1)$$

Binary
$$tf_{t,d} = \begin{cases} 1, & \text{if } count(t,d) > 0 \\ 0, & \text{otherwise} \end{cases}$$

• • •

Log normalized
$$idf_t = log\left(\frac{N}{df_t}\right)$$

+ Smoothing
$$idf_t = log\left(\frac{N}{df_t + 1}\right) + 1$$

• • •

√ 0.0s

array([[0. , 0. , 0.57735027, 0.57735027, 0.57735027],

[0. , 0.69903033, 0.41285857, 0.41285857, 0.41285857],

[0.69903033, 0. , 0.41285857, 0.41285857, 0.41285857]])

Where are the

assumptions?

Any questions?

Dense Document representations

- Matrix decomposition
- Recall Singular Value Decomposition

Dense Document representations

- Matrix decomposition
- Recall Singular Value Decomposition

Dense Document representations

- Matrix decomposition
- Recall Singular Value Decomposition

Intuitions

Intuitions

Can effectively be reduced

Aggregating word vectors

- Documents representations
 - aggregate word representations

	W1	W2	•••	
Battle	0	1		
Good	O	O		Sum
fool	O	O		
wit	1	0		

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle		0	7	13
good	14	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Aggregation word embeddings?

 What happens when we aggregate word embeddings using the mean?

Aggregating Contextual word embeddings

- mean
- Used in many state-of-the-art retrieval systems
 - e.g. SentenceTransformers

Aggregation Methods

- Simple Aggregations
 - Mean
 - Sum
 - •
- Model-based Aggregation
 - Recurrent Neural Networks
 - Transformers/Attention*

We are just going for the ideas

Idea: Recurrent Neural Networks

Idea: Transformers and Attention

- Less dependence
- Can run in parallel

Combining Vector representation

Any questions?

Next Class: Neural Networks

- Reading:
 - Focus on Ideas and how information flows through the network
 - We have tools for Backpropergation and gradient descent
 - Encourage you to see 3B1B video ch3-4 as well

Perspectives on Word Vectors (missing from last class)

