Master – 1ère année – Informatique / MINT

Cryptographie – Examen

15 janvier 2019

Durée : 2h — Tous documents interdits — Aucun accès à un téléphone portable, une calculatrice, un PDA ou tout autre dispositif électronique, connectable ou non.

Questions de cours

1. DES

Expliquer pourquoi on utilise le triple DES. En particulier, quelles sont les raisons pour lesquelles on ne se contente pas du double DES. Expliquer en détails.

2. Le mode de chiffrement CBC

Dans cette question, on considère un algorithme de chiffrement par blocs noté E, avec une clé notée K. On suppose que $E_K : \{0,1\}^n \mapsto \{0,1\}^n$, avec $K \in \{0,1\}^k$. En d'autres termes, $E_K(t)$ désigne le chiffré du message t de longueur n, selon la clé K de k bits.

- (a) Faire le schéma du mode de chiffrement CBC.
- (b) Pour un message clair de la forme $x = x_1 ||x_2|| \dots ||x_\ell|$, où pour chaque $i, x_i \in \{0,1\}^n$, donner les formules qui expriment le message chiffré y en fonction du message clair.
- (c) Expliquer comment on déchiffre le message chiffré y.
- (d) Expliquer le rôle de la "valeur initiale" IV.

3. Fonctions de hachage

- (a) Que dit le paradoxe des anniversaires ? (donner une réponse la plus précise possible, avec si possible une formule)
- (b) Quelle condition nécessaire donne-t-il sur la valeur de n pour qu'une fonction $f: \{0,1\}^* \longrightarrow \{0,1\}^n$ soit à collisions fortes difficiles ?

Exercice 1 (Une attaque sur le mode CBC)

Une fonction de chiffrement sur des blocs de n bits $E:(K,x)\mapsto y=E(K,x)$ est utiliséee en mode CBC pour chiffrer un message $m=(m_1,...,m_t)$. On obtient un cryptogramme $c=(IV,c_1,...,c_t)$, où IV est le vecteur d'initialisation.

- 1. Montrer que si deux blocs du cryptogramme, c_i et c_j sont identiques, avec $1 \le i < j \le t$, alors on dispose d'une information sur les blocs de clairs m_i et m_j (montrer que $m_i \oplus m_j$ est connu).
- 2. On suppose que les blocs de cryptogramme sont répartis aléatoirement. Quelle est la probabilité pour qu'il existe deux blocs de n bits égaux dans un cryptogramme de t blocs? Quelle condition doit satisfaire la taille n des blocs pour que cette probabilité soit inférieure à 1/1000 sur des cryptogrammes d'un million de blocs?

Exercice 2 (Une variante de DES)

Afin d'avoir un algorithme plus rapide, des ingénieurs décident de faire les modifications suivantes sur le DES:

- La permutation des 32 bits après les boîtes-S est supprimée.
- La fonction d'expansion E est modifiée de la façon suivante. On commence par diviser les 32 bits de l'entrée en 8 blocs de 4 bits. Puis on étend chaque bloc à 6 bits en recopiant le 3ème et le 4ème bit, et en les plaçant en 5ème et 6ème positions de la sortie. (En d'autres termes, x_1, x_2, x_3, x_4 devient $x_1, x_2, x_3, x_4, x_3, x_4$.).

Montrer que l'on peut complètement casser cette version modifiée de DES (qui comprend 16 tours comme le DES). Analyser la complexité de votre attaque.

Exercice 3 (Calcul AES)

- 1. Que signifie "AES" ? Qui sont les inventeurs de l'algorithme AES ?
- 2. Rappeler comment est défini le produit de deux octets dans l'algorithme AES. [Rappel : le polynôme $X^8 + X^4 + X^3 + X + 1$ intervient dans la définition.]
- 3. Calculer $\{C7\} \times \{5A\}$. —
- 4. Quelle propriété possède le polynôme $X^8+X^4+X^3+X+1$? Quelle est la conséquence sur l'opération de multiplication des octets ?

Exercice 4 (Fonction de hachage)

- 1. Rappeler la définition d'une fonction :
 - à collisions fortes difficiles (= "collision-resistant")
 - à collisions faibles difficiles (= "second-preimage resistant")
 - à sens unique (= "one-way")
- 2. Soit $f:\{0,1\}^{2m} \longrightarrow \{0,1\}^m$ une fonction de hachage. Soit maintenant une deuxième fonction de hachage définie par

$$h: \begin{cases} \{0,1\}^{4m} & \longrightarrow & \{0,1\}^m \\ x_1||x_2 & \mapsto & f(f(x_1)||f(x_2)) \end{cases}$$

où || désigne l'opération de concaténation. Montrer que si f est à collisions fortes difficiles, alors h est aussi à collisions fortes difficiles.

$\underline{\textbf{Exercice 5}} \quad (\textit{Signature RSA})$

- 1. Calculer le module n et l'entier $\varphi(n)=(p-1)(q-1)$ associés aux nombres premiers p=17 et q=23.
- 2. Quels sont les exposants secrets de signature associés aux exposants publics e=11 et e=13?
- 3. Quelle est la signature de m=100 ?
- 4. Vérifier que la vérification fonctionne.

Exercice 6 (RSA et clairs liés)

Montrer que si un attaquant dispose des chiffrés RSA c et c' d'un clair aléatoire m et d'un clair m' lié à m par la relation m' = m + 1, pour une clé publique (N, e = 3), alors il peut efficacement retrouver m.

Indication : on pourra chercher des nombres entiers α , β , γ , δ tels que $m.(c' + \alpha.c + \beta) = c' + \gamma.c + \delta \mod N$.