UNIVERSITY OF STRATHCLYDE DEPARTMENT OF MATHEMATICS AND STATISTICS

MM101 Introduction to Calculus

Exercises: Chapter 5

1. State the degree of the following polynomials:

(i)
$$6x^3 - 5x^2 + 10x - 15$$
, (ii) $3 + x - 15x^5 + x^7$.

2. Classify the following as proper or improper rational functions:

(i)
$$\frac{x}{x^2 + x + 1}$$
, (ii) $\frac{1}{x^2 - 1}$

(i)
$$\frac{x}{x^2 + x + 1}$$
, (ii) $\frac{1}{x^2 - 4}$, (iii) $\frac{x^3}{x^2 - 1}$,

(iv)
$$\frac{x^3+1}{x^3-1}$$

$$(v) \quad \frac{x}{(x-3)(x+4)}$$

(iv)
$$\frac{x^3+1}{x^3-1}$$
, (v) $\frac{x}{(x-3)(x+4)}$, (vi) $\frac{x(x+1)(x^2+4)}{x^3+2}$.

3. Simplify the following rational functions by factorising the numerator and/or denominator and cancelling common factors:

(i)
$$\frac{x}{x^2 + x}$$
,

(ii)
$$\frac{x-2}{x^2-4}$$
,

(i)
$$\frac{x}{x^2+x}$$
, (ii) $\frac{x-2}{x^2-4}$, (iii) $\frac{x^3}{x^4+x^2}$,

(iv)
$$\frac{x^2 + 2x + 1}{x^2 - 4x - 4}$$
, (v) $\frac{2 - x}{x^4 - 16}$, (vi) $\frac{x^3 - 3x^2 + 2x}{x^2 + 2x - 8}$

(v)
$$\frac{2-x}{x^4-16}$$
,

(vi)
$$\frac{x^3 - 3x^2 + 2x}{x^2 + 2x - 8}$$

4. Use long division to simplify these improper rational functions and identify the quotient and the remainder in each

(i)
$$\frac{2x^2+x+7}{x-4}$$
, (ii) $\frac{3x^3+4x^2+2x+1}{x^2+2x+2}$, (iii) $\frac{4x^2+4x-2}{x-5}$, (iv) $\frac{x^3+2x^2-x-3}{-x^2+2x+1}$.

5. Sketch the graphs of the following linear functions:

(i)
$$f(x) = 2x - 1$$
,

(ii)
$$g(x) = 4 - x$$
,

(i)
$$f(x) = 2x - 1$$
, (ii) $g(x) = 4 - x$, (iii) $h(x) = \frac{1}{5}x + 1$.

6. Solve the following linear equations:

(i)
$$5x + 9 = 0$$

(ii)
$$17 - 3x = 4$$
,

(i)
$$5x + 9 = 0$$
, (ii) $17 - 3x = 4$, (iii) $\frac{3}{7}x + \frac{1}{5} = \frac{2}{3}$

7. Complete the square in the following quadratics and hence find the minimum value taken by each quadratic over all x values.

(i)
$$x^2 + 4x - 7$$
, (ii) $-2x^2 + 3x + 1$.

8. Solve the following quadratic equations:

(i)
$$x^2 - 8x + 15 = 0$$
, (ii) $12 - 4x - x^2 = 0$,
(iii) $2x^2 - x - 3 = 0$, (iv) $x^2 - 6x + 6 = 0$,
(v) $3x^2 - 4x - 2 = 0$, (vi) $2x^2 - x + 3 = 0$.

(ii)
$$12 - 4x - x^2 = 0$$

(iii)
$$2x^2 - x - 3 = 0$$
,

(iv)
$$x^2 - 6x + 6 = 0$$
,

(v)
$$3x^2 - 4x - 2 = 0$$
,

(vi)
$$2x^2 - x + 3 = 0$$
.

9. Find all real solutions of the following polynomial equations:

(i)
$$x^3 - 6x^2 - 9x + 14 = 0$$
,

(i)
$$x^3 - 6x^2 - 9x + 14 = 0$$
, (ii) $x^4 - 7x^3 + 8x^2 + 28x - 48 = 0$.

10. Factorise the following polynomials:

(a)
$$x^3 + 5x^2 - 2x - 24$$
, (b) $x^3 - x^2 - 5x - 3$, (c) $x^3 + x^2 + x + 1$, (d) $x^3 - x$.

(b)
$$x^3 - x^2 - 5x - 3$$
.

(c)
$$x^3 + x^2 + x + 1$$
,

(d)
$$x^3 - x$$
.

11. Show that $(x+y)^2 = x^2 + y^2$ if and only if x=0 or y=0, and that $(x+y)^3 = x^3 + y^3$ if and only if x = 0 or y = 0 or x = -y.

12. Show that x-1 is a factor of a polynomial P of positive degree if and only if the sum of the coefficients of P is zero. What conditions should the coefficients of a polynomial satisfy to ensure that x + 1 is a factor of that polynomial?

13. Solve the following inequalities for x

(a)
$$2x + 3 > 1 - 4x$$
,

(b)
$$x^2 - 11x + 24 < 0$$
,

(c)
$$6 + x \le 4x + 3$$
,

(d)
$$0 \le 1 - 2x \le 3$$

(e)
$$\frac{1}{2x-1} > 1$$
,

(a)
$$2x+3>1-4x$$
, (b) $x^2-11x+24<0$, (c) $6+x \le 4x+3$, (d) $0 \le 1-2x \le 3$, (e) $\frac{1}{2x-1}>1$, (f) $\frac{1}{2x-1}>\frac{1}{3x+2}$.

14. Express the solution sets of the following inequalities using interval notation

(a)
$$|x-4| < 2$$

(a)
$$|x-4| < 2$$
, (b) $|4x+3| \le 1$, (c) $|2x+5| \ge 7$,

(c)
$$|2x+5| \ge 7$$
,

(d)
$$|x-2| < 3$$
,

(d)
$$|x-2| < 3$$
, (e) $|4x+3| \ge 1$, (f) $|2-3x| \le 1$.

(f)
$$|2 - 3x| \le 1$$

15. Solve the following simultaneous linear equations:

$$(i) \quad 5x + 3y = 1,$$

(ii)
$$3x - 7y = -9$$
,
 $2x + 3y = 17$.

(i)
$$5x + 3y = 1$$
, (ii) $3x - 7y = -9$, (iii) $4x + 5y = 3$, $x - 4y = 14$. $2x + 3y = 17$. $3x - \frac{5}{2}y = 1$.

16. Solve the following simultaneous nonlinear equations:

(i)
$$(x+1)(y-2) = 0$$
,

(ii)
$$x^2 + 2y^2 = 8$$

 $x - y^2 = 4$

(i)
$$(x+1)(y-2) = 0$$
, (ii) $x^2 + 2y^2 = 8$, (iii) $4x^2 - y^2 = 0$, $x(y-1) = 0$. $x-y^2 = 4$. $x^2 + y = 1$.

Exercises: Chapter 6

1. Without using a calculator, complete the following table, giving *exact* values (using surds where necessary).

Angle in degrees	0°	30°	45°	60°	90°
Aligie ili degrees	U	30	40	00	90
Fraction of circle	0	$\frac{1}{12}$			
Angle θ in radians					
$\sin(\theta)$					
$\cos(\theta)$					
$\tan(\theta)$					

- 2. Evaluate each of the following *exactly*, i.e as surds:
- (i) $\cos(210^\circ)$, $\sin(135^\circ)$, $\tan(330^\circ)$, $\cot(225^\circ)$, $\sec(-60^\circ)$, $\csc(-240^\circ)$.

(ii)
$$\sin\left(\frac{5\pi}{2}\right)$$
, $\tan\left(\frac{5\pi}{4}\right)$, $\cos\left(\frac{13\pi}{4}\right)$, $\cos\left(\frac{7\pi}{4}\right)$, $\cos\left(-\frac{2\pi}{3}\right)$.

- 3. Find all values of θ (in radians) such that
 - (i) $\tan(\theta) = -2;$
- (ii) $\sin \theta = 0.1$;
- (iii) $\cos \theta = -0.9$.
- 4. Find all values of $x \in \mathbb{R}$ such that

(i)
$$\tan(x) = -\frac{1}{\sqrt{3}}$$
, (ii) $\cos(x) = -\frac{\sqrt{3}}{2}$.

- 5. For acute angles θ , use suitably labelled right-angled triangles to find
 - (i) $\tan(\theta)$ given $\sin(\theta) = 5/13$;
 - (ii) $\csc(\theta)$ given $\cos(\theta) = 1/2$.
- 6. If $\tan(\alpha) = 3$ verify that $\frac{\sin(\alpha) \cos(\alpha)}{\sec(\alpha) \csc(\alpha)} = \frac{3}{10}$.
- 7. Express each of the following as a trigonometric ratio of an acute angle with appropriate sign (e.g. $\cos(170^\circ) = \cos(180-10)^\circ = -\cos(10^\circ)$):
- (i) $\cos(252^{\circ})$, $\sin(116^{\circ})$, $\sin(-10^{\circ})$, $\tan(187.5^{\circ})$.
- (ii) $\cos\left(\frac{7\pi}{12}\right)$, $\sin\left(\frac{9\pi}{8}\right)$, $\tan\left(-\frac{11\pi}{12}\right)$, $\sec\left(\frac{7\pi}{5}\right)$, $\csc\left(-\frac{15\pi}{8}\right)$.

- 8. Sketch on the same diagram the graphs of
 - $\sin(x)$ and $\sin(2x)$,
- (ii) $\cos x$ () and $\cos(2x)$,
- (iii) $\cos(x)$ and $\cos\left(x \frac{\pi}{4}\right)$, (iv) $\cos(x)$ and $4\cos\left(3x \frac{\pi}{2}\right)$.
- - (i) $\sin(x)$ and $\csc(x)$,
- (ii) $\cos(x)$ and $\sec(x)$,
- (iii) tan(x) and cot(x).
- 10. If $f(x) = \sqrt{1-x^2}$ and $g(x) = \sin(x)$, determine $f \circ g$ and $g \circ f$, and their domains.
- 11. Determine if the following functions are even, odd or neither even nor odd.
- (a) $x^3 + \sin(x)$, (b) $x + \cos(x)$, (c) $x \sin(x) + x + 1$,

 - (d) $x^2 \tan(x) + \sin(2x)$, (e) $\cos(\pi x) + \sin^2(x) + 3$.
- 12. Show that $\sin\left(\frac{\pi}{2} \alpha\right) \cot\left(\frac{\pi}{2} \alpha\right) = \sin(\alpha)$ for $0 < \alpha < \frac{\pi}{2}$.
- 13. Show that $\frac{\cos\left(\frac{\pi}{2} \beta\right)}{\sec\left(\frac{\pi}{2} \beta\right)} = \sin^2(\beta) \text{ for } 0 < \beta < \frac{\pi}{2}.$
- 14. Simplify
- (i) $\frac{1}{\sin^2(\theta)} 1$, (ii) $\sin^3(A) + \sin(A)\cos^2(A)$,
 - (iii) $\frac{\sec(\alpha) \cos(\alpha)}{\sin(\alpha)}$, (iv) $\frac{\cot(\theta)}{1 + \cot^2(\theta)}$.
- (i) $\frac{1}{1+\sin(x)} + \frac{1}{1-\sin(x)}$, (ii) $\frac{\sin^2(A)}{\tan(A)} \frac{\cos^2(A)}{\cot(A)}$. 15. Simplify
- 16. Prove that
 - tan(A) + cot(A) = sec(A)cosec(A),(i)
- $\sec^2(A) + \csc^2(A) = \sec^2(A)\csc^2(A)$ (ii)
- $\sin^2(A)\cos^2(B) \cos^2(A)\sin^2(B) = \sin^2(A) \sin^2(B),$
- (iv) $\sin^4(A) \cos^4(A) = 1 2\cos^2(A),$
- (v) $\frac{1+\sin(x)}{1-\sin(x)} = (\sec(x)+\tan(x))^2$
- (vi) $\frac{1 \cos(x)}{1 + \cos(x)} = (\csc(x) \cot(x))^2$.

- 17. For each of the following find
 - a) all values of θ which solve the equation, and
 - b) list those solutions that lie in the interval $[0, 2\pi]$:
 - (i) $\cos^2(\theta) \sin(\theta) \frac{1}{4} = 0$,
 - (ii) $2\sin^2(\theta) + 3\cos(\theta) = 0$,
 - (iii) $2\sqrt{3}\cos^2(\theta) = \sin(\theta)$,
 - (iv) $\tan^2(\theta) + \cot^2(\theta) = 2$ (Hint: write in terms of $\tan(\theta)$ only).
 - (v) $\tan^2(\theta)^\circ 4\tan(\theta)^\circ + 1 = 0$ (give answers to 3 decimal places).
 - (vi) $\sin(\theta) + \tan(\theta) = 0$.
- 18. Given that α and β are acute with $\sin(\alpha) = \frac{3}{5}$ and $\cos(\beta) = \frac{9}{41}$, find the values of $\sin(\alpha \beta)$ and $\cos(\alpha + \beta)$.
- 19. Show that $\sin(105^\circ) + \cos(105^\circ) = \frac{1}{\sqrt{2}}$.
- 20. Show that $\sin(A + B)\sin(A B) = \sin^2(A) \sin^2(B)$.
- 21. Show that $\cos(A)\cos(B-A) \sin(A)\sin(B-A) = \cos(B)$ in one line!
- 22. Show that for any number n:

$$\cos[(n+1)A]\cos[(n-1)A] + \sin[(n+1)A]\sin[(n-1)A] = \cos(2A).$$

23. Show that

(i)
$$\frac{\sin(2A)}{1+\cos(2A)} = \tan(A)$$
, (ii) $\frac{1-\cos(2A)}{1+\cos(2A)} = \tan^2(A)$.

- 24. Write the following as sums:
 - (i) $2\cos(3x)\cos(x)$, (ii) $2\sin(3x)\cos(5x)$, (iii) $\sin(4x)\sin(x)$, (iv) $\cos(5x)\sin(2x)$.
- 25. Write the following as products:
 - (i) $\cos(6x) + \cos(4x)$, (ii) $\sin(3x) + \sin(5x)$, (iii) $\sin(x+\alpha) \sin(x-\alpha)$.
- 26. Find R > 0 and α $(0 \le \alpha < 2\pi)$ such that
 - (i) $3\sin(x) + 4\cos(x) = R\sin(x + \alpha)$;
- (ii) $\cos(x) 3\sin(x) = R\cos(x \alpha);$
- (iii) $\sin(3x) \cos(3x) = R\sin(3x + \alpha);$
- (iv) $2\sin(\omega x) + 3\cos(\omega x) = R\cos(\omega x + \alpha)$.

- 27. Express $f(x) = \cos(x) \sin(x)$ in the form $A\cos(x+\alpha)$ and hence determine the value of $x \in [0, \pi]$ for which f(x) has its minimum value.
- 28. Express $g(t) = \sqrt{3}\cos(t) \sin(t)$ in the form $A\cos(t+\alpha)$. Hence find the values of $t \in [-\pi, \pi]$ where g(t) has its maximum and minimum values.
- 29. Express $g(t) = \sqrt{3}\sin(2t) 3\cos(2t)$ in the form $A\sin(2t + \alpha)$. Hence find the values of $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ where g(t) has its maximum and minimum values.
- 30. Solve the equation $\cos(2\theta) 3\sin(\theta) + 1 = 0$ for $0 \le \theta \le 2\pi$.
- 31. Solve the equation $6\sin^2(x) + \cos(x) = 5$ for $0 \le x \le \pi$. Express the answers as decimals.
- 32. Express $\sin(A+B+C)$ and $\cos(A+B+C)$ in terms of $\sin(A)$, $\sin(B)$, $\sin(C)$, $\cos(A)$, $\cos(B)$ and $\cos(C)$.
- 33. Calculate the following (where defined).
 - (a) $\arcsin\left(\sin\frac{\pi}{8}\right)$, (b) $\arcsin\left(\sin\frac{7\pi}{3}\right)$, (c) $\sin\left(\arcsin 2\right)$.
- 34. Without using a calculator, evaluate $\sin(\theta)$ given that $\theta = \arcsin\left(\frac{1}{3}\right) + \arccos\left(\frac{1}{3}\right)$.
- 35. Without using a calculator, show that if $\phi = 2\arcsin\left(\frac{3}{5}\right) \arccos\left(\frac{12}{13}\right)$, then $\sin(\phi) = \frac{253}{325}$.
- 36. Let $\arctan(x) = \alpha$ and $\arctan(y) = \beta$. Show that, provided $-\frac{\pi}{2} < \alpha + \beta < \frac{\pi}{2}$, then $\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$. Verify the result in the case $\alpha = \beta = \frac{\pi}{6}$; and show that the result is false in the case $\alpha = \beta = \frac{\pi}{3}$ when the condition $-\frac{\pi}{2} < \alpha + \beta < \frac{\pi}{2}$ is violated.
- 37. By considering the tangent of both sides, find a value of x that satisfies the equation $\arctan(3x) + \arctan(2x) = \frac{\pi}{4}$. [Hint: Use the result in the previous question.]