Strange Curves

ゆじ

2020年6月13日

このノートでは、Strange な非特異射影曲線の構造に関する Samuel の定理 [Ha, 定理 IV.3.9] に、Hartshorne によるものとは別の証明を与える。

Definition 1. k を代数閉体、 $C \subset \mathbb{P}^n$ を射影的な曲線とする。C のすべての正則な点での接線が同じ点 $p \in \mathbb{P}^n$ を通るとき、C を (埋め込みのもと、 \mathbb{P}^n 内で、) **Strange** であるという。

Notations.

- スキームの射 $f: T \to S$ と S 上の対象 F (S-スキームや、S 上のスキームの射や、S 上の準連接層など) に対し、 F_T で F の射 $T \to S$ による基底変換を表す。
- k を代数閉体とする。
- k-線形空間 V に対し、 $\mathbb{P}(V):\stackrel{\text{def}}{=}\operatorname{Proj}(\operatorname{Sym}(V))$ と書く。 $\mathcal{O}_{\mathbb{P}(V)}(1)$ を $\mathbb{P}(V)$ 上のトートロジカル直線束とする。
- \bullet \mathbb{P}^n と $\mathbb{P}(H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)))$ は自然に同型なので、このノートではこれらを同一視する。
- k 上の代数多様体 X に対し、 $\Delta_{(1)}$ で対角射 $X \to X \times_k X$ の一次無限小近傍、つまりイデアル層 \mathcal{I}^2_Δ に対応する $X \times_k X$ の閉部分スキームとする。第一、第二射影を $\operatorname{pr}_1, \operatorname{pr}_2 : X \times_k X \rightrightarrows X$ と書き、 $p_1, p_2 : \Delta_{(1)} \rightrightarrows X$ をそれぞれ $\operatorname{pr}_1, \operatorname{pr}_2$ と閉埋め込み $\Delta_{(1)} \to X \times_k X$ の合成とする。代数多様体 X 上の準連接層 \mathcal{F} に対し、 $\mathcal{P}^1(\mathcal{F}) : \stackrel{\operatorname{def}}{=} p_{2,*} p_1^* \mathcal{F}$ と置く。

Remark 2.

- 代数多様体 X 上の準連接層 \mathcal{F} に対し、平坦基底変換により $\operatorname{pr}_{2,*}\operatorname{pr}_1^*\mathcal{F} \cong H^0(X,\mathcal{F}) \otimes_k \mathcal{O}_X$ であるから、射の列 $H^0(X,\mathcal{F}) \otimes_k \mathcal{O}_X \to p_{2,*}p_1^*\mathcal{F} \to \mathcal{F}$ ができる。
- V を有限次元 k-線形空間とする。代数多様体 X から $\mathbb{P}(V)$ への射は、X 上の直線東 L への全射 $V_X \to L$ と対応する (cf. [Ha, Theorem II.7.12])。射 $V_X \to L$ は k-線形空間の射 $V \to H^0(X,L)$ と 対応し、これにより $V_X \to \mathcal{P}^1(L)$ を引き起こす。 $X \to \mathbb{P}(V)$ が閉埋め込みであれば射 $V_X \to \mathcal{P}^1(L)$ は全射となる (cf. $[\Phi]$)。
- V を有限次元 k-線形空間とする。 $X \subset \mathbb{P}(V)$ を射影代数多様体とすると、X 上で直線束 $L = \mathcal{O}_{\mathbb{P}(V)}(1)|_{X}$ と全射 $V_{X} \to \mathcal{P}^{1}(L)$ を得る。閉点 $x \in X$ を正則点とする。全射 $V_{X} \to \mathcal{P}^{1}(L)$ を点 x へ基底変換すると、全射 $V \to k(x) \oplus \mathfrak{m}_{x}/\mathfrak{m}_{x}^{2}$ を得る。この全射が定める線形部分多様体 $\mathbb{P}(k(x) \oplus \mathfrak{m}_{x}/\mathfrak{m}_{x}^{2}) \subset \mathbb{P}(V)$ は、X の点 $x \in X$ での接平面 (embedded tangent plane) である。

Theorem 3 ([Ha, 定理 IV.3.9]). k を代数閉体、 $C \subset \mathbb{P}^n$ を非特異射影曲線とする。このとき $C \cong \mathbb{P}^1$ であり、さらに C は \mathbb{P}^n 内の直線か、または、ある平面 $\mathbb{P}^2 \subset \mathbb{P}^n$ に含まれる次数 2 の曲線のいずれかとなる。

 $Proof.\ g$ を C の種数、d を C の次数とする。 $g=0, d\leq 2$ を示せば良い。 $V:\stackrel{\mathrm{def}}{=} H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$ と置き、 $\mathbb{P}^n=\mathbb{P}(V)$ と書く。 $L=\mathcal{O}_{\mathbb{P}(V)}(1)|_C$ と置く。全射の列 $V_C\to\mathcal{P}^1(L)\to L$ ができ、埋め込み $C\subset\mathbb{P}(V)$ は全射 $V_C\to L$ により引き起こされている。

C のすべての接線が通る点を p とし、点 $p \in \mathbb{P}(V)$ を与える全射も同じ記号 $p:V \to k$ で表す。C のすべての接線が点 p を通ることは、

$$\ker(V_C \to \mathcal{P}^1(L)) \subset \ker(V_C \xrightarrow{p_C} k_C)$$

を意味し、従って全射 $p_C: V_C \to k_C$ は $V_C \to \mathcal{P}^1(L)$ を経由して分解する。こうして全射 $\mathcal{P}^1(L) \to k_C$ を得る。一方で、自然な全射 $\mathcal{P}^1(L) \to L$ もあるが、 $L \not\cong k_C$ であることから、二つの射 $\mathcal{P}^1(L) \to k_C$ と $\mathcal{P}^1(L) \to L$ の核はたがいに他を含まない。従って、これらの射を並べて得られる射 $\mathcal{P}^1(L) \to L \oplus k_C$ は単射となる。det を取れば直線束の単射 $\det(\mathcal{P}^1(L)) \to \det(L \oplus k_C) \cong L$ を得る。完全列

$$0 \longrightarrow \Omega_X \otimes L \longrightarrow \mathcal{P}^1(L) \longrightarrow L \longrightarrow 0$$

より $\det(\mathcal{P}^1(L)) \cong \Omega_X \otimes L^{\otimes 2}$ であり $\deg(\det(\mathcal{P}^1(L))) = 2g - 2 + 2d$ となる。従って不等式

$$\deg(\det(\mathcal{P}^1(L))) = 2g - 2 + 2d \le \deg(L) = d$$

を得る。これを実現する整数 $g \ge 0, d \ge 1$ の組は

$$(g,d) = (0,1), (0,2)$$

Remark 4. ある平面 $\mathbb{P}^2 \subset \mathbb{P}^n$ に含まれる次数 2 の非特異射影曲線 C が strange であるとする。点 $p \in \mathbb{P}^2$ を、C のすべての接線が通る点とする。C は次数 2 であるから、p を通る直線は C と必ず接する。よって、点 p から \mathbb{P}^1 へ射影すると、次数 2 の単射 $f:C \to \mathbb{P}^1$ を得る。このとき f は純非分離であり、次数が 2 であることから、標数 2 でなければならないことがわかる。特に、標数 $p \neq 2$ の strange な非特異射影曲線 $C \subset \mathbb{P}^n$ は直線しかあり得ない。

曲線が特異点を持つ場合には、標数正であれば、strange な曲線はたくさんあり得る。例は [Ha, 演習 IV.3.8.(a)] に載っている通りである。一方、その次の演習問題 [Ha, 演習 IV.3.8.(b)] にある通り、標数 0 では strange な曲線は直線しかあり得ない。

Theorem 5 ([Ha, 演習 IV.3.8.(b)]). k を標数 0 の代数閉体、 $C \subset \mathbb{P}^n$ を (非特異とは限らない) 射影的で strange な曲線とする。このとき C は直線である。

Proof. strange な (非特異とは限らない射影的な) 曲線 $C \subset \mathbb{P}^n$ は、点からの射影を繰り返すことにより、低い次元の射影空間内の strange な曲線と双有理である (cf. [Ha, 演習 I.4.9.])。よって、射 $f: C \to \mathbb{P}^2$ であって以下を満たすものが存在する:

- f は像への双有理射である。
- f の像は \mathbb{P}^2 内で strange である。

よって、 \mathbb{P}^2 内の strange な (非特異とは限らない射影的な) 曲線 $C \subset \mathbb{P}^2$ が直線に限ることを示せば良い。 $\operatorname{Im}(f)$ のすべての正則点での接線が通る点を $p \in \mathbb{P}^2$ と置き、C の正規化を $\sigma: \tilde{C} \to C$ と置く。点 p からの射影 \mathbb{P}^2 $\longrightarrow \mathbb{P}^1$ と $f \circ \sigma$ を合成することで、射 $g: \tilde{C} \to \mathbb{P}^1$ を得る。もし g が一点に潰れるならば、C はそ

の点の fiber、つまりある \mathbb{P}^2 内の直線に含まれるので、C は直線となることがわかる。そうでない場合、g は C の正則点に対応する \tilde{C} の点 (これは無限個ある) の上で分岐する。標数 0 であるので分岐点は有限個でなければならず、これは矛盾である。以上で示された。

参考文献

[Ha] R.Hartshorne, Algebraic Geometry. Springer-Verlag, New Tork, 1977. Graduate Text in Mathematics, No. 52.

[\emptyset] \emptyset じ \mathcal{I} — F , Separating Tangent Vectors.