Consider $V = \mathbb{C}^3$ with the standard inner product. Let W be the subspace of V spanned by (2, i, 0) and (0, 1, i).

Problem. Find an orthogonal basis β of W.

Solution.

i	v_i	$\sum_{j=1}^{i-1} \frac{\langle v_i, u_j \rangle}{\langle u_j, u_j \rangle} u_j$	u_i	$ u_i ^2$
1	(2, i, 0)	-	(2, i, 0)	5
2	(0, 1, i)	$ \begin{array}{l} \frac{2 \cdot 0 + (-i) \cdot 1 + 0 \cdot i}{5} u_1 \\ = (-2/5 \ i, 1/5, 0) \end{array} $		9/5

Therefore,

$$\beta = \{(2, i, 0), (2/5 \ i, 4/5, i)\}$$

Problem. Find an orthogonal basis of V that contains the basis β .

Solution. Suppose $(1,0,0) \in \operatorname{span} \beta$. Therefore, there exist $a,b \in \mathbb{C}$ such that

$$a(2, i, 0) + b(2/5 i, 4/5, i) = (1, 0, 0)$$
 (1)

Thus, $a \cdot 0 + bi = 0$ and hence b = 0. But then ai = 0, and thus a = 0. Therefore, (1, 0, 0) is not in the span of β .

Let $v_3 = (1, 0, 0)$. Observe that $\beta \cup \{v_3\}$ is linearly independent.

Using the values in the table and applying the Gram-Shmidt procedure, we obtain

$$u_{3} = v_{3} - \frac{\langle v_{3}, u_{1} \rangle}{\|u_{1}\|^{2}} u_{1} - \frac{\langle v_{3}, u_{2} \rangle}{\|u_{2}\|^{2}} u_{2}$$

$$= (1, 0, 0) - \frac{2}{5} (2, i, 0) - \frac{-2/5i}{9/5} (2/5 i, 4/5, i)$$

$$= (1/5, -2/5i, 0) + \frac{2}{9} i (2/5 i, 4/5, i)$$

$$= (1/9, -2/9i, -2/9)$$

Therefore, $\gamma = \beta \cup \{(1/9, -2/9i, -2/9)\}$ is an orthogonal linearly independent set of length 3 which contains β .

Thus, since γ has the right length, it is a basis of \mathbb{C}^3 .