DIMENSION FINIE

FAMILLE GÉNÉRATRICE

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Définition d'une famille génératrice

Définition 1 Soient E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}^*$ et $\{x_1, x_2, ..., x_n\}$ une famille de vecteurs de E. On dit que la famille $\{x_1, x_2, ..., x_n\}$ est **génératrice** de E si

$$Vect({x_1, x_2, ..., x_n}) = E,$$

c'est-à-dire tout vecteur de E est combinaison linéaire des vecteurs $x_1, x_2, ..., x_n$, ou encore

$$\forall x \in E, \exists (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{K}^n : x = \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n.$$

On dit aussi que la famille $\{x_1, x_2, ..., x_n\}$ engendre E.

2 Propriétés

Proposition 1 Soient E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}^*$ et $F_1 = \{x_1, x_2, ..., x_n\}$ une famille génératrice de E. Alors $F_2 = \{y_1, y_2, ..., y_n\}$ est aussi une famille génératrice de E si et seulement si tout vecteur de F_1 est une combinaison linéaire de vecteurs de F_2 .

Proposition 2 Si la famille de vecteurs $\{x_1, x_2, ..., x_n\}$ engendre E et si l'un des vecteurs x_i est combinaison linéaire des autres, alors la famille $\{x_1, x_2, ..., x_n\} - \{x_i\}$ est encore une famille génératrice de E.

1 IONISX