BMS COLLEGE OF ENGINEERING, BENGALURU-19 Autonomous Institute, Affiliated to VTU DEPARTMENT OF MATHEMATICS

Sem & Branch	FOURTH SEMESTER (BT/CH/MECH/AS/CV/EEE/ECE/EIE/ML/TCE)						
Time:		1.00-2.15 PM Test Date: 17-5-2021 Max Marks 40)				
Test No.	Q. No.						
		PART-A					
		If θ is an angle between the two regression lines, then show that					
		$\tan \theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$. Explain the significance when $r = 0$ and $r = \pm 1$.					
		Solution:					
		Regression line of $y \text{ on } x$: $y - \overline{y} = r \frac{\sigma_y}{\sigma_x} (x - \overline{x})$	1M				
	1	Regression line of x on y : $x - \overline{x} = r \frac{\sigma_x}{\sigma_y} (y - \overline{y})$	INI				
	1	Angle between the lines is given by					
		$\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2}$ where $m_1 = \frac{r \sigma_y}{\sigma_x}$ and $\frac{\sigma_y}{r \sigma_x}$	1M				
ľ.1		$\tan \theta = \left(\frac{1 - r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$	2M				
TEST 1		When $r = 0$, the regression lines are perpendicular					
L		When $r = \pm 1$, the regression lines are parallel					
	PART-B						
	2	(a) The distributions of two stochastically independent random variables <i>X</i> and <i>Y</i> defined on the same sample space are given by the following tables:					
		$\begin{bmatrix} x & 1 & 2 \end{bmatrix}$					
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
		Find the joint distributions of X and Y. Also, evaluate $E(X)$ and $E(Y)$.					
		Solution:	3M				
		X 2 3 4					
		1 0.06 0.15 0.09 2 0.14 0.35 0.21					
		$E(X) = \sum_{i} x_{i} f(x_{i}) = 1.7$ $E(Y) = \sum_{j} y_{j} g(y_{j}) = 3.1$	2M				

Test No.	Q. No.	N							
		(b) A source of liquid is known to contain bacteria with the mean number of bacteria per cubic centimetre equal to 2. Five 1cc test tubes are filled with the liquid. Assuming that the Poisson distribution is applicable, calculate the probability that all the five test tubes will show growth i.e. contain at least 1 bacterium each. Solution: X- Number of bacteria $X \sim P(\lambda = 2); p(x) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0,1,2$							
		P(Test tube will show growth) = $P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0) = 0.8647$							
		Probability that all the test tubes will show growth = $0.8647^5 = 0.4833$							
		(c) In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as $4x-5y+33=0$ and $20x-9y=107$ respectively. Calculate							
		the mean of x, mean of y and the co-efficient of correlation between X and Y. Solution: $\overline{x} = 13$, $\overline{y} = 17$							
		$b_{yx} = 4/5; b_{xy} = 9/20 - \rightarrow r = \sqrt{b_{yx}b_{xy}} = 0.6$							
		PART-C							
TEST 1	3	(a) Estimate the chlorine residual in a swimming pool <i>five</i> hours after it has been treated with chemicals by fitting an exponential curve of the form $y = ab^x$ to the following data: x (No.hours) y							
		y(chlorine residual parts/million) 1.8 1.5 1.4 1.1 1.1 0.9							
		$\log y = \log a + x \log b$ Solution: The linear form is $i.e.Y = A + xB$							
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
		2 1.8 0.587787 1.175573 4							
		4 1.5 0.405465 1.62186 16	2M						
		6 1.4 0.336472 2.018833 36 8 1.1 0.09531 0.762481 64	2111						
		10 1.1 0.09531 0.702481 04							
		12 0.9 -0.1054 -1.2648 144							
		Total:42 7.8 1.415 5.2672 364							
		Normal Equations: $\sum Y = nA + B \sum x$							
		$\sum xY = A\sum x + B\sum x^2$							
		$A = 0.6996, B = -0.0663 \Rightarrow a = 2.0129, b = 0.9359$							
		Solution : At $x = 5$, $y = 1.445$							
	OR								

Test No.	Q. No.		Marks						
		(b) The following table shows the recorded data of the test scores made by the							
		salesman on an intelligence test and their weekly sales.							
		Salesman 1 2 3 4 5							
		Test scores 92 89 87 86 83							
		Sales (000) 86 88 91 77 68							
		Calculate the coefficient of correlation between the test scores and the sales. Hence							
		find the regression line of sales on test scores and estimate the most probable weekly sales volume if a salesman makes a score of 85.							
		Solution: $\overline{x} = \frac{\sum x}{n} = 87.4; \overline{y} = \frac{\sum y}{n} = 82;$							
	3								
		$\sigma_x^2 = \frac{\sum (x_i - \bar{x})^2}{n} = 3.0067^2; \sigma_y^2 = \frac{\sum (y_i - \bar{y})^2}{n} = 8.4143^2$							
		n							
		$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}} = 0.7352$							
		$r = \frac{-1}{\sqrt{\sum_{i} (-1)^{2} \sum_{i} (-1)^{2}}} = 0.7352$	3M						
		$\sqrt{\sum(x-x)}\sum(y-y)$	2M						
		$b_{y} = v_{y}^{\sigma_{y}} = 2.0575$	ZIVI						
FEST 1		$b_{yx} = r \frac{\sigma_y}{\sigma_x} = 2.0575$							
		$(y-y)=b_{yx}(x-x) \Rightarrow y-82=2.0575(x-87.4) \Rightarrow y=2.0575x-97.8255$							
L									
		At $x = 85 \Rightarrow y = 77.0620$ (a) A radioactive material was observed for α particles in 100 emissions, each							
		time the duration being ten seconds. The data consisting of 100 observations are							
		arranged in a frequency table as follows: Fit a Poisson distribution.							
		No. of particle(x) 0 1 2 3 4 5 No. of emissions(f) 11 20 28 24 9 8							
		Solution: X – Alpha particle emission by a radioactive material.							
		$X \sim P(\lambda); p(x) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0, 1, 2; \text{ Mean } \bar{x} = \lambda = \frac{\sum fx}{\sum f} = \frac{221}{100} = 2.21$							
		$x!$ $\sum f$ 100							
	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
		1 20 20 0.2424 24.24~24 2 28 56 0.2679 26.79~27							
		2 28 56 0.2679 26.79~27 3 24 72 0.1973 19.73~20	5M						
		4 12 48 0.1090 10.90~11							
		5 5 25 0.0482 4.82~5							
		>5 0 0 0.0255 2.55~2							
		15 100 221 0.9745							

Test No.	Q. No.					
	5.	OR				
		(b) Business schools require applicants for admission to take the Graduate Management Admission Council's GMAT examination. Scores on the GMAT are normally distributed with a mean of 527 and a standard deviation of 112. (i) What is the probability of an individual scoring above 500 on the GMAT? (ii) How high must an individual score on the GMAT in order to score in the highest 5%? (Given $\phi(0.24)=0.0948$ and $\phi(1.65)=0.45$ where $\phi(z)$ is an area bounded by standard normal curve from 0 to z) Solution: X - Scores in GMAT $X \sim N(\mu = 527, \sigma^2 = 112^2); f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)^2}, -\infty < x, \mu < \infty$				
		i) $P(x > 500) = P(z > -0.241) = 0.5948$				
		ii) $P(x > a) = 0.05$; $P(z > A) = 0.05$ where $A = \frac{a - \mu}{\sigma}$, $A = 1.65$ from normal table $a = 711.8 \sim 712$	4M			
TEST 1		(a) The joint probability distribution of two random variables X and Y is given below: Y 0 1 2 0 1/6 2/9 1/36 1 1/3 1/6 0 2 1/12 0 0 Find the coefficient of correlation between the variables X and Y . Solution: $E(X) = \sum_{i} x_{i} f(x_{i}) = 24/36 = 2/3 \qquad E(Y) = \sum_{j} y_{j} g(y_{j}) = 16/36 = 4/9$ $E(XY) = \sum_{i} \sum_{j} x_{i} y_{j} p_{ij} = 6/36 = 1/6$ $\sigma_{x}^{2} = E(X^{2}) - (E(X))^{2} = 5/6 - (2/3)^{2} = 0.3889$ $\sigma_{y}^{2} = E(Y^{2}) - (E(Y))^{2} = (1/2) - (4/9)^{2} = 0.3024$ $cov(X, Y) = E(XY) - E(X)E(Y) = -0.1296$ $\rho(X, Y) = \frac{cov(X, Y)}{\sigma_{x}\sigma_{y}} = -0.3779$ OR	2M 1M 1M 1M 1M			

Test No.	Q.							Marks
TEST I	No. 5	numbered of two numbered of t	d 1,2,2,3, imbers and). : :,5,6}, Y at Probab $\frac{4/20}{4/20}$ $\frac{0}{0}$ $8/20$	3. Find the find Y denoted $Y = \{1, 2, 3\}$ will the distribution of $Y = \{1, 2, 3\}$ will the distribution of $Y = \{1, 2, 3\}$ will the distribution of $Y = \{1, 2, 3\}$ and $Y = \{1, 2, 3\}$ will the distribution of $Y = \{1, 2, 3\}$ and $Y = \{1, 2, 3\}$	3 0 0 2/20 2/20	of X and 4/20 6/20 8/20 2/20 1	from a box which contains five cards ons of X and Y where X denotes the sum of two numbers drawn. Also determine Y $\sum_{j} y_{j} g(y_{j}) = 17/10 = 1.7$	4M
	$E(XY) = \sum_{i} \sum_{j} x_{i} y_{j} p_{ij} = 8$ $cov(X,Y) = E(XY) - E(X)E(Y) = 0.52$						3M	

Suitable marks to be allotted for alternate methods Scheme and Solutions prepared by (Mrs. Shazia P.A.)

.....