Photogrammetry & Robotics Lab

Machine Learning for Robotics and Computer Vision

Beyond CNNs

Jens Behley

Last Lecture

- Labeling large amounts of data is expensive
- Discussed two paradigms to overcome lack of data:
 - Supervised pretraining on large existing datasets and finetuning of last layers on target dataset
 - Self-supervised pretraining on target dataset
- Discussed different state-of-the-art strategies:
 SimCLR, MoCo, and BYOL

Convolution Neural Networks

- Until now: Convolutions as main building block
- Inductive bias → spatial neighborhood of pixels and translation equivariance
- Deep architectures enable to have large receptive fields (long range dependencies)
- Are convolutions the only way to solve vision tasks?

Transformer in NLP

- Since 2017, Transformer are the method of choice for Natural Language Processing (NLP) tasks
- Transformer architecture radically changed the way NLP is performed
- Very recently, Transformer were applied to a range of vision tasks with state-of-the-art performance
- Important: No convolutions involved!

NLP before 2017

- NLP was all about recurrent neural networks (RNN)
 → Long-term Short-Term Memory (LSTM)
- Sequence models with a memory
 → Problem: memory needs to capture all information from before
- Showed especially limitations for long sequences

Transformer for Translation

- Now: whole sequence of tokens $\mathbf{x} \in \mathbb{R}^D$ as input
- For machine translation: produce token at a time and use previous output tokens as input to decoder
- Details see [Vaswani, 2017]

[Vaswani, 2017]

Transformer Block

- Each block consists of attention module and fullyconnected layers with non-linearity (MLP)
- Skip-connections

[Vaswani, 2017]

- Weighted combination of the inputs (= complete sequence!)
- Enables to adapt compute on-the-fly depending on similarity between query and key
- Projections learn similarity function [Vaswani, 2017]

Multi-Head Attention

- Use multiple self attention blocks in parallel
 → multi-head attention (#heads = H)
- Use D/H as dimension of projections to keep compute independent of H
- Each SDA defines different attention pattern (similar to convolutional kernel)

Multi Layer Perceptron

 Fully-connected layers are applied to each of the N feature vectors of the N feature vectors:

$$MLP(\mathbf{X}) = \max(0, \mathbf{X}\mathbf{W}_1 + \mathbf{b}_1)\mathbf{W}_2 + \mathbf{b}_1$$

$$\mathbf{W}_1 \in \mathbb{R}^{D \times D_{\mathrm{ff}}}, \mathbf{W}_2 \in \mathbb{R}^{D_{\mathrm{ff}} \times D}, b_1 \in \mathbb{R}^{D_{\mathrm{ff}}}, b_2 \in \mathbb{R}^D$$

• In the NLP Transformer: $D=512, D_{\mathrm{ff}}=2048$ [Vaswani, 2017]

Positional Encoding

- Transformer has no notion of position → order of tokens does not matter!
- Introduce constants, i.e., positional encoding to provide positional information!

$$PE(pos, 2i) = \sin(pos/10000^{2i/D})$$

$$PE(pos, 2i + 1) = \cos(pos/10000^{2i/D})$$

Add PE to each token in the input sequence

[Vaswani, 2017] 11

Example: Positional Encoding

Promising Results

Model	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	3.3 ·	10 ¹⁸	
Transformer (big)	28.4	41.8	2.3 ·	10^{19}	

Transformer provided superior results for machine translation tasks

Transformer in NLP

- Larger Transformer models with wide range of capabilities for different NLP tasks
- Interestingly, self-supervised pretrained
 Transformer models transfer well to novel tasks!
- Bigger models got only better at providing compelling results (e.g. BERT, XLNet, GPT-3)

Can we use Transformer for images?

Complexity of Self Attention

- Attention weights are a $N \times N$ matrix (e.g., $O(N^2)$)
- Just taking an image as sequence of HW elements would result in N = 50,176 tokens (for 224x224 image)!
- Different way to employ Transformer for images?

Vision Transformer

- Motivated by the success of Transformer in NLP, many works tried to use ideas for vision tasks
- Vision Transformer (ViT) achiev state-of-the-art results with minimal adjustments to the encoder

Patches instead of Pixels

- Split image in patches of size 16×16
- Treat each image patch as $3 \cdot 16 \cdot 16$ vector and project to D = 768/1024/1280

Positional Encoding

Use 1D linear index as position with standard positional encoding

Class Token

- Use special class token [CLS] as "aggregator" to gather information for classification
- Fully-connected layer (MLP) maps feature to classes

Pretraining with large datasets

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	$76.29 \pm \textbf{1.70}$	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

- Essential for achieving state-of-the-art: pretraining with large-scale dataset → JTF dataset with 300M images for supervised pre-training
- ViT-Huge with 32 Transformer layers and 632M parameters

Receptive field of ViT

- Even in lower layers, attention weights cover a large range in the image
- Long-range dependencies can be exploited in early layers.

Data-efficient training

												top-1 a	ccuracy
Ablation on↓	Pre-training	Fine-tuning	Rand-Augment	AutoAug	Mixup	CutMix	Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.	pre-trained 224 ²	fine-tuned 384^2
none: DeiT-B	adamw	adamw	1	X	✓	1	1	✓	✓	X	X	81.8 ± 0.2	$83.1{\scriptstyle~\pm 0.1}$
optimizer	SGD adamw	adamw SGD	1	X	1	1	1	1	1	X	X X	74.5 81.8	77.3 83.1
data augmentation	adamw adamw adamw adamw adamw	adamw adamw adamw adamw adamw	X X ✓ ✓	× × × ×	✓ X ✓	√ √ X X	1 1 1 1	\ \ \ \ \	\ \ \ \ \	х х х х	х х х х	79.6 81.2 78.7 80.0 75.8	80.4 81.9 79.8 80.6 76.7
regularization	adamw adamw adamw adamw adamw	adamw adamw adamw adamw adamw	\ \ \ \ \	х х х х	\ \ \ \	\ \ \ \ \	X ✓ ✓	✓ X ✓ ✓	√	× × × ×	X X X X	4.3* 3.4* 76.5 81.3 81.9	0.1 0.1 77.4 83.1 83.1

top-1 accuracy

- Essential for training with "smaller" datasets:
 - 1. Strong Data Augmentation: RandAugment, Mixup, Cutmix
 - Better Regularization: Erasing, Stochastic Depth, Repeated Augmentation
- Transformers need to see more variation

Training of Vision Transformer

How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers

Andreas Steiner*, Alexander Kolesnikov*, Xiaohua Zhai* Ross Wightman[†], Jakob Uszkoreit, Lucas Beyer*

Google Research, Brain Team; †independent researcher {andstein,akolesnikov,xzhai,usz,lbeyer}@google.com,rwightman@gmail.com

- Data Augmentation and Regularization key to achieve good performance
- Large-scale study on trade-offs between regularization, data augmentation, training data size and compute budget → over 50k experiments!

[Steiner, 2021] 23

AugReg vs. Pre-training size

 Right amount of regularization and image augmentation leads to similar gains as increasing dataset size

Transfer is the better option

- Transfer learning leads to better performance with less compute
- Warning: For small datasets training from scratch will not result in models as good as transfer!

Better transfer with more data

- Pretraining on more data yields more transferable models
- Again: more variations allow to "induce" inductive biases from CNNs.

Self-supervision for ViT

- Student and teacher have same architecture
- Student tries to replicate outputs of teacher of augmented views
- As in MoCo and BYOL, teacher parameters are updated via momentum

Results of self-supervised pretraining Method Arch. Para Supervised RN50 23

- Superior performance of pre-training scheme
- Large Transformer on par or better then CNNs

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	ViT-S	21	1007	79.8	79.8
BYOL* [30]	ViT-S	21	1007	71.4	66.6
MoCov2* [15]	ViT-S	21	1007	72.7	64.4
SwAV* [10]	ViT-S	21	1007	73.5	66.3
DINO	ViT-S	21	1007	77.0	74.5
Comparison act	ross architectures	·			
SCLR [12]	RN50w4	375	117	76.8	69.3
SwAV [10]	RN50w2	93	384	77.3	67.3
BYOL [30]	RN50w2	93	384	77.4	_
DINO	ViT-B/16	85	312	78.2	76.1
SwAV [10]	RN50w5	586	76	78.5	67.1
BYOL [30]	RN50w4	375	117	78.6	_
BYOL [30]	RN200w2	250	123	79.6	73.9
DINO	ViT-S/8	21	180	79.7	78.3
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1
DINO	ViT-B/8	85	63	80.1	77.4

Emerging Properties of ViT

- Interestingly, self-supervised training leads to class-specific features
- Visualization of attention from [CLS] token leads to unsupervised object segmentation

Transformer for other Vision Tasks

- Results on image classification motivated investigation of other vision tasks
- Here two examples: Object Detection and Semantic Segmentation

Transformer for Detection

- DETR uses Transformer encoder and decoder to generate object detections
- Predictions head produce N object/no object predictions
- No non-maximum suppression needed!

Results of DETR

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP ₇₅	AP_S	AP_{M}	$\mathrm{AP_L}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
${\bf Faster~RCNN\text{-}R101\text{-}FPN+}$	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

 Highly competitive results for object detection on COCO

Transformer for Segmentation

- Segmentation Transformer (SETR) uses patch-wise encoder to extract patch features
- Investigates two decoders to upsample patch features

Progressive Upsampling in SETR

 Upsample 16x16 patch features to full resolution via convolutions and bilinear upsampling

Multi-level Feature Aggregation

- Use patch features from different Transformer layer
- Convolutional combination of upsampled feature maps

Results of SETR

Method	Backbone	mIoU	Pixel Acc.
FCN (16, 160k, SS) [39]	ResNet-101	39.91	79.52
FCN (16, 160k, MS) [39]	ResNet-101	41.40	80.65
EncNet [54]	ResNet-101	44.65	81.69
PSPNet [59]	ResNet-269	44.94	81.69
DMNet [18]	ResNet-101	45.50	-
CCNet [25]	ResNet-101	45.22	-
Strip pooling [23]	ResNet-101	45.60	82.09
APCNet [19]	ResNet-101	45.38	-
OCNet [53]	ResNet-101	45.45	-
SETR-Naïve (16, 160k, SS)	T-Large	48.06	82.40
SETR-Naïve (16, 160k, MS)	T-Large	48.80	82.92
SETR-PUP (16, 160k, SS)	T-Large	48.58	82.90
SETR-PUP (16, 160k, MS)	T-Large	50.09	83.58
SETR-MLA (16, 160k, SS)	T-Large	48.64	82.64
SETR-MLA (16, 160k, MS)	T-Large	50.28	83.46

Method	Backbone	mIoU
PSPNet [59]	ResNet-101	78.40
DenseASPP [49]	DenseNet-161	80.60
BiSeNet [51]	ResNet-101	78.90
PSANet [60]	ResNet-101	80.10
DANet [17]	ResNet-101	81.50
OCNet [53]	ResNet-101	80.10
CCNet [25]	ResNet-101	81.90
Axial-DeepLab-L [47]	Axial-ResNet-L	79.50
Axial-DeepLab-XL [47]	Axial-ResNet-XL	79.90
SETR-PUP (100k)	T-Large	81.08
SETR-PUP [‡]	T-Large	81.64

Cityscapes

ADE20K

Strong results on ADE20K and Cityscapes

Self Attention Needed?

 Another line of research investigated to replace self-attention with MLPs

MLP-Mixer

- Replace self-attention with MLP on transposed feature vectors
- All operations are MLPs on image patches

Results of MLP Mixer

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days			
Pre-trained on ImageNet-21k (public)									
HaloNet [51]	85.8	_	_	_	120	0.10k			
Mixer-L/16	84.15	87.86	93.91	74.95	105	0.41k			
 ViT-L/16 [14] 	85.30	88.62	94.39	72.72	32	0.18k			
BiT-R152x4 [22]	85.39	_	94.04	70.64	26	0.94k			
	Pre-trained on JFT-300M (proprietary)								
• NFNet-F4+ [7]	89.2	_	_	_	46	1.86k			
Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k			
 BiT-R152x4 [22] 	87.54	90.54	95.33	76.29	26	9.90k			
• ViT-H/14 [14]	88.55	90.72	95.97	77.63	15	2.30k			
Pre-trained on unlabelled or weakly labelled data (proprietary)									
• MPL [34]	90.0	91.12			_	20.48k			
ALIGN [21]	88.64	_	_	79.99	15	14.82k			

 Slightly worse results then competing Vision Transformers

Outlook

- Highly active research area
- Combination of CNNs (early layers) and Transformer shows promising results
- Other directions in Transformer research:
 - Deeper Transformer architectures (e.g. CaiT)
 - Reduce cost of self-attention (e.g. Perceiver)
 - Hierarchical Vision Transformer (e.g. PVT)
 - Better decoder for segmentation(e.g., SegFormer)

Summary

- Success of Transformer in NLP motivated investigation for vision tasks
- Transformer have less inductive bias and produce promising results
- Paradigm shift for vision tasks?

See you next year!

References

- Chen et al. An Empirical Study of Training Self-supervised Vision Transformers, arxiv, 2021.
- Carion et al. End-to-End Object Detection with Transformers, ECCV, 2020.
- Caron et al. Emerging Properties in Self-Supervised Vision Transformers, arxiv, 2021.
- Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR, 2021.
- Jaegle et al. Perceiver: General Perception with Iterative Attention, ICML, 2021.
- Melas-Kyriazi. Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet, arxiv, 2021.
- Steiner et al. How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers, arxiv, 2021.
- Tolstikhin et al. MLP-Mixer: An all-MLP Architecture for Vision, arxiv, 2021.
- Touvron et al. Training data-efficient image transformers & distillation through attention, ICML, 2021.
- Touvron et al. ResMLP: Feedforward networks for image classification with data-efficient training, arxiv, 2021.
- Touvron et al. Going deepter with Image Transformers, arxiv, 2021.
- Vaswani et al. Attention is all you need. NeurIPS, 2017.
- Wang et al. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions, arxiv, 2021.
- Xiao et al. Early Convolutions Help Transformers See Better, arxiv, 2021.
- Xie et al. SegFormer: Simple and Efficient Design for Segmentation with Transformers, arxiv, 2021.
- Zheng et al. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers, arxiv, 2021.