Question Number	Scheme	Marks	
8(a)(i)	$\cos 2A = \cos^2 A - \sin^2 A$	M1	
	$= (1 - \sin^2 A) - \sin^2 A, = 1 - 2\sin^2 A$	M1,A1	(3)
(ii)	$\sin 2A = 2\sin A\cos A$	B1	(1)
(b)	$\sin 3A = \sin 2A \cos A + \cos 2A \sin A$	M1	
	$= \sin A \left(1 - 2\sin^2 A\right) + 2\sin A \cos^2 A$	M1	
	$\sin A - 2\sin^3 A + 2(1-\sin^2 A)\sin A$	M1	
	$=3\sin A - 4\sin^3 A$	A1	(4)
(c)	$\sin 3A = -\frac{1}{2}$	M1	
	$3A = 210^{\circ}, -30^{\circ}, -150^{\circ}$	M1 (any one)	
	A = 70°, -10°, -50°	A1A1	(4)
(d)	(i) $\int \sin^3 \theta d\theta = \frac{1}{4} \int (3\sin \theta - \sin 3\theta) d\theta$	M1	
	$= \frac{1}{4} \left[-3\cos\theta + \frac{1}{3}\cos 3\theta \right]$	M1A1	
	(ii) $\frac{1}{4} \left[-3\cos\frac{\pi}{4} + \frac{1}{3}\cos\frac{3\pi}{4} - \left(-3\cos0 + \frac{1}{3}\cos0 \right) \right]$		
	$ \frac{1}{4} \left[-\frac{3}{\sqrt{2}} - \frac{1}{3} \times \frac{1}{\sqrt{2}} - \left(-3 + \frac{1}{3} \right) \right] $	M1	
	$\frac{8-5\sqrt{2}}{12}$ oe for 5,8,12	A1	(5)

(d) ALT for (d)
(i)
$$\int \sin^3 \theta \, d\theta = \int (\sin \theta - \cos^2 \theta \sin \theta) \, d\theta$$
 M1

$$= \left[-\cos \theta + \frac{1}{3} \cos^3 \theta \right] \quad (+ c)$$
(ii) $-\cos \frac{\pi}{4} + \frac{1}{3} \cos^3 \frac{\pi}{4} - \left(\cos 0 + \frac{1}{3} \cos^3 0 \right)$

$$= -\frac{1}{\sqrt{2}} + \frac{1}{3} \times \frac{1}{2\sqrt{2}} - \left(1 + \frac{1}{3} \right) = \frac{8 - 5\sqrt{2}}{12}$$
M1dd A1

Notes

- (a) (ii)
- M1 for the correct expression for $\cos 2A$
- M1 for using $\cos^2 A + \sin^2 A = 1$, and substituting into the expression for $\cos 2A$
- A1 for the correct identity as shown. Note this is show question!
 - (ii)
- B1 for the correct identity for $\sin 2A$
- (b)
- M1 for substituting $\sin 2A$ into their expression in part (a) to give $\sin (2A + A)$
- M1 for using the given $\cos 2A$ and their $\sin 2A$ in their expression for $\sin 3A$
- M1 for using $\cos^2 A + \sin^2 A = 1$
- A1 for the final identity as shown. Note: this is a show question
- (c)
- M1 for $8\sin^3 A 6\sin A = 1 \Rightarrow -2(3\sin A 4\sin^3 A) = 1 \Rightarrow \sin 3A = k$, where $-1 \le k \le 1$
- M1 for 3A equal to any one of 210° , -30° , -150°
- A1 for any **two** correct angles
- A1 for all three correct angles

If there are extra angles outside of range, ignore. If there are extra angles within the range deduct one A mark for each up to a maximum of 2 marks.

(d) (i)

(ii)

- M1 for re-arranging the GIVEN expression for $\sin 3A$ to make $\sin^3 A$ the subject
- M1 for an attempt at integrating their re-arranged expression

As a minimum for this mark, $\int \sin 3A dA \Rightarrow \pm \frac{1}{3} \cos 3A$ (+c) (+c not required)

- A1 for the correct integrated expression as shown (+c not required)
- M1dd for substituting $\frac{\pi}{4}$ and 0 into their integrated expression and attempting to evaluate (there must be a final answer given for this mark).
- A1 for the final answer as shown

ALT

M1 for finding
$$\sin^3 A = \sin A (1 - \cos^2 A) = \sin A - \sin A \cos^2 A$$

M1 for attempting to integrate.
$$\int \sin A dA - \int \cos^2 A \sin A dA = \left\{ -\cos A + \frac{1}{3}\cos^3 A(+c) \right\}$$
For a minimum attempt you need to see;
$$\int \cos^2 A \sin A dA = \pm \frac{1}{3}\cos^3 A(+c)$$

A1 for
$$-\cos A + \frac{1}{3}\cos^3 A(+c)$$

(ii)

M1dd for substituting $\frac{\pi}{4}$ and 0 into their integrated expression and attempting to evaluate (there must be a final answer given for this mark).

A1 for the final answer as shown

ALT (Using substitution)

(i)

M1 for writing the integral as $\sin \theta \sin^2 \theta \Rightarrow \sin \theta \left(1 - \cos^2 \theta\right)$ and substituting $\cos \theta = u$ and differentiating to achieve $\frac{du}{d\theta} = -\sin \theta$

M1 for substituting and integrating $-\int \sin\theta (1-u^2) \frac{du}{d\theta} d\theta \Rightarrow -\int 1-u^2 du \Rightarrow -\left[u-\frac{u^3}{3}\right]$ For definition of an attempt, see General Guidance

A1 for substituting
$$u = \cos \theta$$
 to give $-\cos A + \frac{1}{3}\cos^3 A(+c)$

(ii)

M1dd for substituting $\frac{\pi}{4}$ and 0 into their integrated expression and attempting to evaluate (there must be a final answer given for this mark).

A1 for the final answer as shown