Numéro d'anonymat:

Examen 2I003

Mercredi 4 Janvier 2017, 2 heures aucun document autorisé

Exercice 1 – Le pic - 10 points

On dit qu'un tableau T[0.n-1] de n entiers admet un pic s'il existe un indice p (compris au sens large entre 0 et n-1) tel que :

- le sous-tableau T [0..p] est strictement croissant
- le sous-tableau T [p..n−1] est strictement décroissant.

Par exemple:

- [2, 3, 5, 6, 8, 9, 7, 1] admet un pic en position 5,
- [45, 13, 6, 4, 2] admet un pic en position 0,
- [1, 3, 5, 7, 23] admet un pic en position 4.

Dans cet exercice on considère des tableaux de n entiers qui admettent un pic et on étudie des algorithmes qui calculent la position de ce pic.

Le pic en itératif

On dispose de la fonction Lambda (T, k) ainsi définie, pour $0 \le k \le n-1$:

```
def Lambda(T, k):
    n = len(T)
    if k == n - 1:
        return True
    return T[k] > T[k + 1]
```

On considère la fonction picIte (T) ainsi définie :

```
def picIte(T):
    k = 0
    while not(Lambda(T, k)):
        k = k + 1
    return k
```

Question 1

Donner le résultat de picRec (ExT, 0, 13), avec ExT = [1, 3, 5, 7, 8, 13, 16, 17, 19, 23, 45, 11, 6, 4].

Question 2

Montrer que picIte (T) se termine.

z ia <i>v</i> -eme iterati	ion $h = i$ at $T[0]$ is a statistic mention of	ı fin
	ion, $k_i = i$ et T [0i] est strictement croissant.	
uestion 4		
éduire des deux	questions précédentes que $picIte(T)$ calcule la position du pic de T .	
elle est la com	aplexité (en nombre de comparaisons entre éléments du tableau) de picIte(T) dan	s le
elle est la com		s le
elle est la com		s le
elle est la com		s le
elle est la com		s le
elle est la com		s le
elle est la com		s le
nestion 5 nelle est la com eilleur cas ? Dan		s le

Le pic en récursif

```
On considère la fonction picRec (T, i, j) ainsi définie, pour 0 \le i \le j \le n-1:
def picRec(T, i, j):
     print("Recherche_du_pic_entre_", i, "_et_", j)
     if i == j:
          return i
     m = (i + j) // 2
     print("m_=_", m)
     if T[m] < T[m + 1]:
          return picRec(T, m + 1, j)
     return picRec(T, i, m)
On rappelle que // est l'opérateur de la division entière (par exemple : 7//2 = 3, 8//2 = 4).
Question 6
Exécuter l'appel de picRec (ExT, 0, 13), avec ExT = [1, 3, 5, 7, 8, 13, 16, 17, 19, 23, 45, 11, 6, 4],
en donnant les affichages successifs et le résultat final.
Question 7
Soit i, j des entiers naturels tels que i < j. On pose m = (i + j) / / 2 et t = j - i + 1. Montrer que :
  a) i \leq m < j,
  b) 1 \le m - i + 1 < t et 1 \le j - m < t.
```

, I	ir recurrence	forte sur $t =$	= j - i + 1	,quepicR	ec(T,i,j) se termine	e, pour $t \leq 1$	l.
estion 9 ntrer, pa	ar récurrence	forte sur t	= j - i	+ 1, que p	icRec(T,	i,j) calcu	ıle la positio	on du pic o
trer, pa	ar récurrence	forte sur t	= j - i	+ 1, que p	icRec(T,	i,j) calcu	lle la positio	on du pic o
trer, pa	ar récurrence	forte sur t	= j - i	+ 1, que p	icRec(T,	i,j) calcu	ıle la positio	on du pic o
trer, pa	ar récurrence	forte sur t	= j - i	+ 1, que p	icRec(T,	i,j) calcu	ile la positio	on du pic o
trer, pa	ar récurrence	forte sur t	=j-i	+ 1, que p	icRec(T,	i,j) calcu	ile la positio	on du pic o
trer, pa	ar récurrence	forte sur t	=j-i	+ 1, que p	icRec(T,	i,j) calcu	ile la positio	on du pic d
trer, pa	ar récurrence	forte sur t	=j-i	+ 1, que p	icRec(T,	i,j) calcu	ile la positio	on du pic o
itrer, pa	ar récurrence	forte sur t	=j-i	+ 1, que p	icRec(T,	i,j) calcu	lle la positio	on du pic o
trer, pa	ar récurrence	forte sur t	=j-i	+ 1, que p	icRec(T,	i,j) calcu	ile la positio	on du pic o
itrer, pa	ar récurrence	forte sur t	=j-i	+ 1, que p	icRec(T,	i,j) calcu	le la positio	on du pic o

Question 10 On considère la fonction pic (T) ainsi définie :
<pre>def pic(T): return picRec(T, 0, len(T)-1)</pre>
Déduire des deux questions précédentes que $pic(T)$ calcule la position du pic de T .
Question 11 Quelle est la complexité (en nombre de comparaisons entre éléments du tableau) de pic(T) ? Justifier la réponse.
Exercice 2 – Graphes et arbres - 10 points
Dans cet exercice, $G=(V,E)$ désigne un graphe non orienté. $n= V $ désigne le nombre de sommets, et $m= E $ le nombre d'arêtes.
Question 1 Dans cette question, on suppose que $G=(V,E)$ est défini par $V=\{1,2,3,4,5\}$ et $E=\{\{1,2\},\{1,3\},\{1,5\},\{3,4\},\{2,4\}\}$. Que valent m et n ? Représentez la matrice sommets-sommets M de G .

Question 2
1. Qu'est ce qu'un graphe connexe ? Est-ce que le graphe de la question précédente est connexe ?
2. Qu'est ce qu'un arbre ? Est-ce que le graphe de la question précédente est un arbre ? Quelles sont les arêtes que l'on peut rajouter ou supprimer pour obtenir un arbre ?
Question 3 Soit la relation $\mathcal R$ définie sur V^2 par $u\mathcal Rv$ ssi $u=v$ ou si il existe une arête entre u et v .
1. Donnez la définition de \mathcal{R} pour le graphe de la question 1.
2. Décrire le principe d'un algorithme qui permet de calculer la fermeture transitive \mathcal{R}' de \mathcal{R} dans le cas général. Ne pas écrire l'algorithme en (pseudo)-code. Quelle est sa complexité?
3. Que vérifie \mathcal{R}' si G est connexe ? En déduire un algorithme qui teste si un graphe est connexe. Quelle est sa complexité ?

Question 4 On rappelle qu'un graphe non orienté $G=(V,E)$ est minimal connexe si il est connexe et que, pour tout arête $e\in E, G'=(V,E-\{e\})$ ne l'est pas.	
1. Représentez un graphe de 5 sommets qui est connexe, mais pas minimal connexe.	
2. Démontrez que, si G est un arbre, alors G est minimal connexe. Utilisez la contraposée.	
3. Démontrez que si G est minimal connexe, alors G est un arbre. Utilisez la contraposée.	
	_

Question	on 5
GDéeffQu	appelez sans démonstration la relation entre le nombre de sommets et le nombre d'arêtes d'un graphe connexe. Émontrez que si $m=n-1$ et que G est connexe, alors G est un arbre. La démonstration doit être fectuée par l'absurde. La démonstration de la réciproque (sans démonstration). La déduire un algorithme simple qui teste si un graphe G est un arbre.