

DISCIPLINA

BUILDING RELATIONAL DATABASE

PROFº DRº FRANCISCO D. L.

□ ABREU

PROFFRANCISCO@FIAP.COM.BR

SUMÁRIO

- DQL
 - ☐ Sobre Selecionar Dados com Agregação
 - ☐ Tipos de Função (SQL Worksheet)
 - Exercício Prático

OBJETIVO

Introduzir conceitos iniciais do SQL/DQL

Aplicar os conceitos no Oracle SQL Developer

SOBRE SELECT GROUP BY

SOBRE

- Data Query Language (DQL) Linguagem de Consulta de Dados, expressa o comando que especifica a:
 - CONSULTAR 1 ou vários dados (SELECT)

- Os comandos da DQL viabiliza o acesso aos dados de forma compatível ao modelo de dados projetado.
- Em algumas literaturas colocam o SELECT dentro da DML

SOBRE SELECT GROUP BY

• O SELECT GROUP BY permite o agrupamento de dados em tabelas separada por meio de uma ou mais colunas.

 Isso é útil quando você deseja resumir dados e realizar operações agregadas, como contar, somar ou encontrar médias em grupos de registros que compartilham valores semelhantes em uma ou mais colunas.

Para usar o SELECT GROUP BY é necessário utilizar as funções disponíveis no SGBDR

SINTAXE SELECT GROUP BY

- SELECT lista as colunas que serão selecionas além das funções de agregação
- FROM específica o nome das tabelas que serão selecionadas
- WHERE condição para consulta (impor uma filtragem)
- GROUP BY [coluna] lista as colunas pelas quais deseja agrupar os dados.
- HAVING limita os dados a serem mostrados no agrupamento, isto é, funciona similarmente ao WHERE porém é restrito ao GROUP BY.
- ORDER BY especifica em ordem os resultado da consultado é exibido [asc] ascendente ou descendente [desc]

```
SELECT coluna1, coluna2, funcao_agregada(coluna)

FROM nome_da_tabela

WHERE condicao_logica

GROUP BY coluna1, coluna2

HAVING condicao_logica_agregada

ORDER BY coluna1;
```

TIPOS DE FUNÇÃO

PRINCIPAIS FUNÇÕES DE AGREGAÇÃO

FUNÇÃO	DESCRIÇÃO
AVG ()	RETORNA A MÉDIA OBTIDA ENTRE OS VALORES
COUNT ()	RETORNA A QUANTIDADE DE OCORRÊNCIAS (LINHAS)
MAX ()	RETORNA O MAIOR VALOR DO CONJUNTO
MIN()	RETORNA O MENOR VALOR DO CONJUNTO
SUM ()	RETORNA A SOMATÓRIA DOS VALORES DE UM CONJUNTO
STDDEV ()	RETORNA O DESVIO PADRÃO DO CONJUNTO
VARIANCE ()	RETORNA A VARIÂNCIA DO CONJUNTO

EXEMPLO DE TABELA


```
. . .
-- Cria a tabela "Clientes"
CREATE TABLE Clientes (
    ID NUMBER(5) PRIMARY KEY,
    Nome VARCHAR2(255),
    Cidade VARCHAR2(255),
    Sexo VARCHAR2(1),
    idade NUMBER
);
-- Insercao de dados na tabela "Clientes"
 INSERT INTO Clientes VALUES (1, 'João', 'São Paulo', 'M', 20);
 INSERT INTO Clientes VALUES (2, 'Maria', 'Rio de Janeiro','F',30);
 INSERT INTO Clientes VALUES (3, 'Carlos', 'Belo Horizonte','M',20);
 INSERT INTO Clientes VALUES (4, 'Ana', 'São Paulo', 'F', 25);
 INSERT INTO Clientes VALUES (5, 'Rafael', 'Rio de Janeiro','M',50);
```

```
. . .
-- Cria a tabela "Pedidos"
CREATE TABLE Pedidos (
    id NUMBER(5) PRIMARY KEY,
    cliente_id NUMBER(5),
    ds_produto VARCHAR2(255),
    vl_pedido Number (5,2),
    FOREIGN KEY (cliente_id) REFERENCES
        Clientes (id)
);
-- Insercao de dados na tabela "Pedidos"
INSERT INTO Pedidos VALUES(101, 1, 'Celular', 1100.00);
INSERT INTO Pedidos VALUES(102, 2, 'Laptop', 4000.00);
INSERT INTO Pedidos VALUES(103, 3, 'Tablet', 3500.00);
INSERT INTO Pedidos VALUES(104, 1, 'TV', 5000.00);
INSERT INTO Pedidos VALUES(105, 4, 'Geladeira', 3000.00);
```

EXEMPLO DE ORDER BY

COMANDO

RESULTADO

ASC

	∯ ID	♦ NOME			∯ IDADE
1	4	Ana	São Paulo	F	25
2	3	Carlos	Belo Horizonte	M	20
3	1	João	São Paulo	M	20
4	2	Maria	Rio de Janeiro	F	30
5	5	Rafael	Rio de Janeiro	M	50

DESC

				∯ IDADE
1	5 Rafael	Rio de Janeiro	М	50
2	2 Maria	Rio de Janeiro	F	30
3	1 João	São Paulo	М	20
4	3 Carlos	Belo Horizonte	М	20
5	4 Ana	São Paulo	F	25

```
SELECT * FROM Clientes ORDER BY nome ASC;
SELECT * FROM Clientes ORDER BY nome DESC;
```

EXEMPLO DE GROUP BY

COMANDO

RESULTADO

COMANDO: AVG ()

SINTAXE

 O comando AVG () é utilizado para retorna a média do conjunto

```
SELECT AVG(coluna1)
FROM nome_tabela;
```

COMANDO: MIN ()

SINTAXE

O comando MIN () é utilizado para retorna <u>o menor</u>
 <u>valor</u> do conjunto

COMANDO: MAX ()

SINTAXE

O comando MAX () é utilizado para retorna <u>o maior</u>
 <u>valor</u> do conjunto

COMANDO: SUM ()

SINTAXE

O comando SUM () é utilizado para retorna <u>a</u>
 <u>somatório de valores</u> do conjunto

```
SELECT SUM(coluna1)
FROM nome_tabela;
```

COMANDO: COUNT ()

SINTAXE

O comando COUNT () é utilizado para retorna <u>a</u>
 <u>quantidade de ocorrências</u> do conjunto

COMANDO: STDDEV ()

SINTAXE

 O comando STDDEV () é utilizado para retorna o desvio padrão do conjunto

COMANDO: VARIANCE ()

SINTAXE

O comando VARIANCE () é utilizado para retorna <u>a</u>
 <u>variância</u> do conjunto

COMANDO

RESULTADO

AVG(IDADE)	COUNT(NOME)		⊕ MAX(IDADE)	♦ STDDEV(IDADE)	♦ VARIANCE(IDADE)
29	5	20	50	12,44989959798873237483597066678220624365	155

```
• • •
SELECT
    AVG(idade),
    COUNT(nome),
    MIN(idade),
    MAX(idade),
    STDDEV(idade),
    VARIANCE(idade)
FROM Clientes;
```

FUNÇÃO COM AGREGAÇÃO

SOBRE

 Muitas vezes, é necessário estabelecer condições para conseguir um resultado específico no SELECT

Portanto, pode ser comum utilizar as funções do SQL em agregação (GROUP BY).

 Mas Atenção! Recomenda-se utilizar a instrução HAVING para englobar essas funções, uma vez que estaremos utilizando o GROUP BY

COMANDO

RESULTADO

encontrar clientes que têm a média de idade maior que 25 anos

1 Maria	
- Halla	30
2 Rafael	50

```
SELECT C.nome, AVG(C.idade) as media_idade

FROM Clientes C

GROUP BY C.nome

HAVING AVG(C.idade) > 25;
```


COMANDO

RESULTADO

encontrar produtos que têm um preço médio superior a 3000:

1	TV	5000
2	Laptop	4000
3	Tablet	3500

```
SELECT P.ds_produto, AVG(P.vl_pedido) as

media_preco

FROM Pedidos P

GROUP BY P.ds_produto

HAVING AVG(P.vl_pedido) > 3000.00;
```


COMANDO

RESULTADO

encontrar clientes que fizeram mais de 2 pedidos


```
SELECT C.nome, COUNT(P.id) as total_pedidos

FROM Clientes C

LEFT JOIN Pedidos P ON C.id = P.cliente_id

GROUP BY C.nome

HAVING COUNT(P.id) > 1;
```

EXERCÍCIO PRÁTICO

EXERCÍCIO PRÁTICO

I ALTERAÇÃO DDL

- Altere as estruturas das tabelas no SQL Developer:
 - Adicione o campo <u>SITUACAO (CHAR(1))</u> na tabela ALUNO e PROFESSOR;
 - Altere o nome do campo <u>CARGA HORARIA</u> para CH da tabela DISCIPLINA;
 - Altere o nome da tabela ALUNO para DISCENTE e PROFESSOR para DOCENTE;
 - Altere o tipo das colunas <u>EMENTA</u>, <u>REF BIBLIOGRAFICA</u> E <u>METODOLOGIA</u> para LONG VARCHAR;
 - Remova todas as tabelas existentes (Observe que há uma ordem correta de exclusão);

Copyright © 2023 Prof^o Dr^o Francisco Douglas Lima Abreu

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito ao autor

