Kínai karakterek felismerése konvolúciós neurális hálók használatával

Szilvási Péter

Miskolci Egyetem, 2019. január 18.

Kínai karakterek felépítése

OCR

- Dokumentumok digitalizálása
- Feldolgozási szintek: [2] Alacsony szintű Középső szintű Magas szintű

Jellemzők kinyerése, Dimenzió redukció

- Főkomponens analízis (*PCA*)
 - lacksquare Magas dimenzió ightarrow Alsó dimenzió
 - $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- Kernelek alkalmazása
 - Nem lineáris leképezések
- Neurális háló szerkezete

Mesterséges neurális hálók

Neurális hálózatok [5]

- Rétegek
- Elemei

Backpropagation

- Hiba $E_{total} = \sum \frac{1}{2} (target output)^2$.
- Láncszabály $\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} \cdot \frac{\partial out_{o1}}{\partial net_{o1}} \cdot \frac{\partial net_{o1}}{\partial w_5}$.

Konvolúciós neurális háló

- Hálózat felépítése (konvolúciós rétegek \rightarrow hagyományos ANN)
- Bemenet \rightarrow (Konvolúció \rightarrow RELU \rightarrow POOL) \rightarrow Kimenet(FC)

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

Input x Filter

Feature Map

Hálózat tanítás

- 1. Előre terjesztés
- 3. Hiba visszaterjesztés
- 2. Veszteség számítás
- 4. Súly frissítés

Dropout

Felismerés

A hálózat architektúrája

Előfeldolgozás

Adathalmaz: nyomtatott, kézzel írott, generált

■ Kép manipulálás:

Átméretezés Forgatás Zajosítás Vágás

def resize(): def rotate(): def noise():

Konvertálás:

```
for myFile in files:
    image = cv2.imread (myFile)
    train.append (image)
    train_labels.append([1., 0., 0., 0., 0.])

np.reshape() -> np.save()
```

Futtatás

```
time python3 train.py | tee log
Epoch 1/80
 12/2000 [......]
                       loss:0.6964 acc: 0.7833
 24/2000 [.....]
                       loss:0.7951 acc: 0.7833
 36/2000 [......
                       loss:1.0486 acc: 0.7278
Epoch 80/80
 1992/2000 ======>. loss:0.0385 acc:0.9871
 2000/2000 [=====] loss:0.0383 acc:0.9872
 real
       19m40,397s
       55m4,422s
user
       5m41,888s
 SYS
```

Tesztelés

- Kimenet létrehozés (.cvs)
- Model beolvasás

```
model = load\_model('model1.h5')
```

Kép átalakítás

$$x = x. reshape((28, 28, 3))$$

Megjósolás

$$x = model.predict(x)$$

■ Eredmény -> Kimeneti fájl

Hivatkozások

- 1 Tikk Domonkos: *Optikai karakterfelismerés*, online melléklet, TypoTeX kiadó, 2006.
- 2 Rövid A., Vámossy Z., Sergyán S.: A gépi látás és képfeldolgozás párhuzamos modelljei és algoritmusai, 2014.
- 3 Liu, Yin, Wang, Wang: Online and offline handwritten chinese character recognition: benchmarking on new databases, Pattern Recognition, 2013.
- 4 X. Wu, M. Wu: A recognition algorithm for chinese characters in diverse fonts, Image Processing, 2002.
- 5 Fazekas István: Neurális hálózatok, Debreceni Egyetem, 2013.

Köszönöm szépen a figyelmet!