

Regression

Explaining the data – before cleaning

Variable	Mean	Standard Dev.	Minimum	20%	50%	Maximum
mother_body_mass_index	27.17	6.76	13.00	21.60	25.70	69.80
mother_marital_status	1.40	0.49	1.00	1.00	1.00	2.00
mother_delivery_weight	188.32	41.37	100.00	154.00	181.00	400.00
mother_race	1.52	1.11	1.00	1.00	1.00	6.00
mother_height	64.12	2.84	30.00	62.00	64.00	78.00
mother_weight_gain	29.48	15.15	0.00	17.00	29.00	98.00
father_age	31.80	6.81	11.00	26.00	31.00	98.00
father_education	4.90	2.31	1.00	3.00	4.00	9.00
cigarettes_before_pregnancy	1.10	4.73	0.00	0.00	0.00	98.00
prenatal_care_month	5.30	15.06	0.00	2.00	3.00	99.00
number_prenatal_visits	11.29	4.20	0.00	9.00	12.00	98.00
newborn_weight	3261.84	590.47	227.00	2865.00	3300.00	8165.00
Variable	Unique	Тор	Frequency			
previous_cesarean	3	N	2020874			
newborn_gender	2	М	1225891			

Variables distribution – after cleaning

Data cleaning & preparation

Missing values:

- a. mother_height, mother_body_mass_index calculated using a BMI formula
- b. mother_delivery_weight, number_prenatal_visits, father_age, mother_weight_gain filled with mean values
- c. mother_marital_status new, o variable for 'other marital status' (since the missing % was big)
- d. cigarettes_before_pregnancy missings replaced with o (optimistic approach)
- e. prenatal_care_month 99 replaced with 9, with an assumption that a minimum of care was provided at/before birth
- f. No missing values, or outliers were removed, as the model performance was <u>not improved</u>. We believe there is a valid reason for outliers and they seem to be providing better fit.

2. One-hot encoding:

a. mother_marital_status, mother_race, father_education, previous_cesarean, newborn_gender

3. Feature engineering:

- a. mother_height * mother_delivery_weight,
- b. mother_weight_gain * mother_body_mass_index,
- c. number_prenatal_visits * prenatal_care_month

Feature engineering - reasons for features added

Model comparison

	Model	MAE
0	XGBoost	403.57
1	Neural network	404.45
2	Ridge	410.33
3	Linear Regression	410.33
4	Elastic Net	410.86
5	Random forest	412.85
6	K-nearest neighbours	445.14
7	Decision tree	592.93
	Model	MAPE
0	XGBoost	15.59
1	Neural network	15.65
2	Random forest	15.66
3	Ridge	16.20
4	LinearRegression	16.20
5	Elastic Net	16.28
6	K-nearest neighbours	17.00
7	Decision tree	21.26

Overall, **XGBoost** proved to be the most efficient, with a MAPE score of 15.59%.

The other models were dropped, with Decision Tree yielding the worst score of 21.26%.

XGBoost predictions

Quick glance at the data

	mean	std	min	50%	max
customer_id	550508.99	261237.66	100069.00	552548.00	999911.00
customer_age	46.32	8.00	26.00	46.00	73.00
customer_number_of_dependents	2.35	1.30	0.00	2.00	5.00
customer_relationship_length	35.93	7.99	13.00	36.00	56.00
customer_available_credit_limit	10036.34	17629.71	1438.30	4696.00	310644.00
total_products	4.15	3.18	1.00	4.00	36.00
period_inactive	2.34	1.01	0.00	2.00	6.00
contacts_in_last_year	2.46	1.11	0.00	2.00	6.00
<pre>credit_card_debt_balance</pre>	1162.81	814.99	0.00	1276.00	2517.00
remaining_credit_limit	7469.14	9090.69	3.00	3474.00	34516.00
transaction_amount_ratio	0.76	0.22	0.00	0.74	3.40
total_transaction_amount	5253.71	7402.26	510.00	3971.00	117159.00
total_transaction_count	64.86	23.47	10.00	67.00	139.00
transaction_count_ratio	0.82	0.62	0.00	0.71	16.25
average_utilization	0.27	0.28	0.00	0.18	1.00

Categorical Variables

	unique	top	freq
customer_sex	2	F	4838
customer_education	7	Graduate	3128
customer_civil_status	4	Married	4687
customer_salary_range	6	below 40K	3327
credit_card_classification	4	Blue	9436
account_status	2	open	8500

!size of train dataset: 10127 observations!

We can notice a presence of large outliers with the MAX and STD statistics of some variables, as well as high imbalance of our target variable.

Data preparation - missing values

1	Missing Values	Percentage
customer_sex	1018	10.05
customer_salary_range	681	6.72
customer_age	624	6.16
total_transaction_amount	407	4.02

Only 4 variables contain missing values but in high volume, so it was decided to fill the NaNs.

ī			
	2	total_transaction_amount	total_transaction_count
4	D	NaN	63
	103	NaN	27
	107	NaN	81
	116	NaN	121
	146	NaN	35
	9958	NaN	63
1	9979	NaN	32
I	10031	NaN	38
I	10081	NaN	78
	10107	NaN	114
•			
	[407 r	ows x 2 columnsl	

We suspected that some NaNs could be connected to other variables, but unfortunately that wasn't the case so we proceeded with standard way of filling the missing values.

Variable	Customer sex	Customer salary range	Customer age	Total transaction amount
NaNs replaced	New category ("Unknown")	Mode ("below 40k")	Mean	Mean

Data preparation - visualization of numerical variables

Data preparation - visualization of categorical variables

Feature engineering - numerical variables

the outliers with changing the values to the logarithm created a relatively normal distribution, but for some it couldn't deal with the high volume of values close to o.

Feature engineering - categorical variables

customer_age
customer_number_of_dependents
customer_relationship_length
period_inactive
contacts_in_last_year
credit_card_debt_balance
total_transaction_count
log_customer_available_credit_limit
log_total_transaction_amount
log_total_products
log_average_utilization
log_transaction_amount_ratio
log_transaction_count_ratio

customer sex F _customer_sex_M customer_education_College customer_education_Doctorate customer_education_Graduate customer_education_High School customer_education_Post-Graduate customer_education_Uneducated customer civil status Divorced customer_civil_status_Married customer_civil_status_Single customer_salary_range_120K and more customer_salary_range_4o-6oK customer_salary_range_6o-8oK customer_salary_range_8o-12oK customer_salary_range_below 4oK credit_card_classification_Gold credit_card_classification_Platinum credit_card_classification_Silver account_status_open

We One-Hot **Encoded** all categorical variables deleting columns representing one category from each variable as we don't need to represent all of them to have a full information.

Correlation matrix and normalization

	mean	std	min	25%	50%	75%	max
customer_age	0.00	1.00	-2.94	-0.57	0.28	0.79	1.47
customer_number_of_dependents	-0.01	1.00	-2.01	-0.41	0.38	0.38	1.98
customer_relationship_length	0.01	1.00	-3.02	-0.52	0.36	0.50	3.29
period_inactive	0.01	1.01	-2.62	-0.28	-0.28	0.88	2.05
contacts_in_last_year	0.00	1.00	-2.31	-0.37	-0.37	0.60	1.57
credit_card_debt_balance	-0.00	1.00	-1.40	-1.40	0.14	0.76	1.69
total_transaction_count	-0.00	1.00	-2.51	-0.86	0.12	0.66	2.90
log_customer_available_credit_limit	0.00	1.00	-1.46	-0.81	-0.19	0.78	2.17
log_total_transaction_amount	-0.01	1.00	-3.23	-0.71	0.15	0.43	2.60
log_total_products	-0.00	1.00	-2.23	-0.35	0.26	0.75	1.17
log_average_utilization	-0.00	1.00	-1.12	-1.12	-0.24	0.91	2.21
log_transaction_amount_ratio	0.00	1.01	-3.20	-0.64	-0.04	0.61	3.50
log_transaction_count_ratio	0.00	1.00	-4.00	-0.55	0.03	0.57	4.52
customer_sex_F	0.01	1.00	-1.01	-1.01	0.99	0.99	0.99
customer_sex_M	-0.00	1.00	-0.80	-0.80	-0.80	1.25	1.25
customer_education_College	-0.00	0.99	-0.33	-0.33	-0.33	-0.33	3.01
customer_education_Doctorate	0.00	1.00	-0.21	-0.21	-0.21	-0.21	4.67
customer_education_Graduate	-0.01	0.99	-0.67	-0.67	-0.67	1.49	1.49
customer_education_High School	0.00	1.00	-0.50	-0.50	-0.50	-0.50	2.02
customer_education_Post-Graduate	0.01	1.02	-0.24	-0.24	-0.24	-0.24	4.21
customer_education_Uneducated	0.00	1.00	-0.41	-0.41	-0.41	-0.41	2.44
customer_civil_status_Divorced	0.01	1.01	-0.30	-0.30	-0.30	-0.30	3.38
customer_civil_status_Married	0.01	1.00	-0.91	-0.91	-0.91	1.10	1.10
customer_civil_status_Single	-0.01	1.00	-0.80	-0.80	-0.80	1.26	1.26
customer_salary_range_120K and more	0.01	1.02	-0.22	-0.22	-0.22	-0.22	4.57
customer_salary_range_40-60K	0.01	1.01	-0.46	-0.46	-0.46	-0.46	2.16
customer_salary_range_60-80K	0.00	1.01	-0.40	-0.40	-0.40	-0.40	2.52
customer_salary_range_80-120K	-0.01	0.99	-0.37	-0.37	-0.37	-0.37	2.68
customer_salary_range_below 40K	-0.01	1.00	-0.85	-0.85	-0.85	1.18	1.18
credit_card_classification_Gold	0.00	1.02	-0.07	-0.07	-0.07	-0.07	13.48
credit_card_classification_Platinum	-0.00	0.97	-0.03	-0.03	-0.03	-0.03	39.98
credit_card_classification_Silver	0.01	1.03	-0.18	-0.18	-0.18	-0.18	5.52

Training the models and finding best parameters with GridSearch

```
K-Nearest Neighbors
    parameter space = {
        'n neighbors':np.arange(8,20),
        "weights": ["uniform", "distance"],
        "algorithm": ["ball_tree", "kd_tree", "brute"],
        "leaf_size": [1,2,20,50,200]
    cv = StratifiedKFold(n splits=5, shuffle=True, random state=42)
    clf = GridSearchCV(KNeighborsClassifier(), parameter space, cv=cv, scoring="balanced accuracy", n jobs=4)
    clf.fit(X train, y train)
    print("Best parameters:")
    print(clf.best params )
    print("Best Score:" + str(clf.best score ))
    print("Best Parameters: " + str(clf.best params ))
 Best parameters:
 {'algorithm': 'ball tree', 'leaf size': 1, 'n neighbors': 8, 'weights': 'uniform'}
 Best Score: 0.6847075075564258
 Best Parameters: {'algorithm': 'ball tree', 'leaf size': 1, 'n neighbors': 8, 'weights': 'uniform'}
```


Comparing the models

	Balanced Accuracy	F1 Score	ROC AUC	1	Accuracy	Precision	Recall	Specificity
XGBoost	0.90	0.97	0.98	1	0.95	0.97	0.98	0.81
Random Forest	0.88	0.97	0.97	Τ	0.95	0.96	0.97	0.79
Logistic Regression	0.85	0.91	0.92	1	0.86	0.97	0.86	0.84
SVC	0.81	0.95	NaN	1	0.92	0.94	0.97	0.65
KNN	0.67	0.93	0.85	I	0.88	0.89	0.98	0.35

Accuracy score equal to 1 may suggest model being overfitted, however also high score on validation set only further confirm winning model **XGBoost** performance.

	Training Set	Validation Set	Null Accuracy
XGBoost	1.00	0.95	0.85
Random Forest	1.00	0.95	0.85
SVC	0.99	0.92	0.85
KNN	0.91	0.88	0.85
Logistic Regression	0.86	0.86	0.85

Thank you for your attention