浙江大学 2013 - 2014 学年 春夏 学期 《 数字系统设计 I 》课程期末考试试卷

课程号: 111C0120 , 开课学院: 信息与电子工程学系

考试试卷: √A卷、B卷(请在选定项上打√)

考试形式: √) 闭、开卷(请在选定项上打√),允许带 计算器 入场

考试日期: __2014_年_7_月_3_日, 考试时间: __120_分钟

诚信考试, 沉着应考, 杜绝违纪。

考生姓名:				学号		所属院系(专业):						_
The second second	题序	_			四	五.	六	七	八	总	分	
	得分								14			
	评卷人											
	(1)	<i>是非题</i> (2014 个	"1"异耳	 找的结果	再与 117	个"0"	同或, 復	身到的结	· 果是"0"。		(X)
	(2) 有一 8421BCD 数码 10010011,它相当于十进制数"147"。 (X) (3) 三态门输出为高阻时,其输出线上电压为高电平。 (X)											
(4) 红金亚人目上语文和信义(4)												
(6)将JK 触发器的 K 端接到触发器反向输出端,把J端接到输入 T,就能把JK 無									仙			
		发器改造	i成 T 触	发器。	4.5			10000	11137 4 2 7 7 7		X	
	(7)	超前进位	立加法器	比串行进	拉加法律	器速度慢					X	•
	(8)组合逻辑电路产生竞争冒险的内因是信号在电路内部的电平不一致而且有尖峰											
		脉冲噪声	存在。							(X	
	(9)	施密特制	上发器电点	路具有两	「个稳态」	且每个稳	态需要标	目应的输	入条件维	持。(V)
		五进制								(V)
	(11)	当时序:	逻辑电路	存在无效	效循环时	该电路	不能自启	动。		(V)
	(12)	米里(1	Mealy)	伏态机和	I莫尔(I	Moore)	伏态机可	以相互纳	专换。	(X)
	(13)	最少 64	片容量	为 256×	4的RAI	M 可组合	成容量	为 4K×8	的 RAM	。 (X)
	(14)	流水线	操作算法	结构一定	定比并行	算法结构	均所需要	的运算时	村间少。	(X)
	(15)	大批量的	定型产品	的生产国	因为是成	熟设计例	斤以不需	要测试。		(X)

二、组合电路(15分,得分)

璐璐设计了一种全新的 ISEE门,它的逻辑符号如下图所示,与其它的门不一样, ISEE门具有三个输入,输入输出真值表如下表所示。

- (1) 请问输入 A, B, C的顺序可以调换吗? 为什么?
- (2) 写出 N 的布尔表达式,并且化简成为两项相加的形式。
- (3) 试仅用 4.个逻辑门实现 *ISEE*门的功能, 画出电路图。
- (可以选用的门包括:与门、或门、非门、与非门、或非门)。
- (4)以 A、B作为地址,用 4 选 1 数据选择器实现 ISEE门(可用反相器),画出电路图。

(4) A B N 0 0 C 0 1 E 1 0 0

4分组公

三、时序电路设计(14分,得分_

题 3 图中为某时序电路的状态转换图,其中 m为 输入信号, y为输出信号,试用 D触发器及与非门设计此同步时序电路,要求:

四、时序电路分析(14分,得分____)

综合分析下图所示电路, RAM 的低 16 个地址单元中的数据在表中列出。要求:

- (1) 说明 555 定时器构成什么电路? 试计算其工作频率。
- (2) 说明 74LS160 构成多少进制计数器?
- (3) 分析整个电路的功能,并说明 RAM 在此处起什么作用? 输出信号有什么规律?

题 4表 RAM 中的内容

-									
A3	A2	A1	A0	D3	D2	.D1	D0		
0	0	0	0	0	0	0	0		
0	0	0	1	0	0	Ö	1		
0	0	1	0.	0	0	1	1		
0	0	1	1	0	0	1	0		
0	1	0	0	0	1	1	0		
0	1	0	1	0	-1	1	1		
0	1	1	0	0	1	0	1		
0	1	1	1	0	1	0	0		
1	0	0	0	1	1	0	0		
1	0	0	1	1.	1	0	1		
1	0	1	0	1	1	- 1	1		
1	0	1	1	1	1	1	0		
1	1	0	0	1	0	1	0		
1	1	0	1	1	0	1	1		
1	1	1	0	1	0	0	1		
1	1	1	1	1	0	0	0		

4位同步二进制计数器 74LS160 的功能表

THE PARTY OF THE P								
CLK	R'_D	LD'	EP	ET	工作状态			
X	0	х	х	x	清零			
1	1	0	х	x	预置数			
х	1	1	0	1	保持			
х	1	1	х	0	保持 (但 C=0)			
	1	1	1	1	计数			

555 时基电路功能框图

科: (1) 多谐振荡器 f = (R₁+2R₂)·C· ln²

四九组制 (1000)2 (0000)2

② RAM中存储 4 位格雷码 RAM是信号序列, 输出是 0~8 的格雷码 循环序列.

後电路是周期为9的循环格雷 码信号序列发生器.

五、测试(8分,得分)

假设题 5 图所示电路可能出现固定型 SAI 与 SAO 故障,需要写出寻找图中故障点的测试向量。在三输入的 8 种测试信号组合中,能测试该电路所有可能故障的最小测试集是什么? (注:最小测试集是指最少数量的输入信号 W1, W2, W3 的数字组合。)

所以最小例试集是(000,011,101,111) 或 (010,011,101,111) 或 (011,100,101,111)

六、控制器设计(12分,得分)

已知 ASM 如下图示,请设计一个 MUX 型控制器,写出设计过程,并画出电路图。

DUTC

-outD

Da

4/6

MuxA

七、Verilog HDL (10分, 得分)

有限状态机(FSM)是表示有限个状态及在这些状态之间的转移和动作等行为的数学模型。

- (1) 如下代码是一个 FSM 的 Verilog 语言硬件描述,请根据下面的代码画出状态转换图,并画出代码所对应的电路。
- (2) 假设输入一串测试数据,其格式为 test={reset, A[1:0]},并且在每个时钟的上升沿来临前 test 分别为 100_2 , 000_2 , 000_2 , 001_2 , 011_2 。请写出测试数据结束 state, q的最后值,并写出求解过程。

八、脉冲电路(12分,得分)

如题 8 图所示为一跳频信号发生器, 其中 NE555 为 555 定时器, 74LS194 为四位 双向移位寄存器,74LS160 为十进制加法计数器。

- (1) NE555 构成什么功能电路? 当 2K 的滑动电阻处于中心位置时,求 CP2 频率。
- (2) 当 74LS194 的状态为 0001 时, 画出 74LS160 的状态转换图, 说明它是几进制 计数器,并求输出 Y 的频率。
- (3) 已知 74LS194 工作在循环右移状态, 当它的状态为 0001 时, 画出 74LS194 的 状态转换图;(注: $Q_3Q_2Q_1Q_0$ 右移一次后为 $D_{IR}Q_3Q_2Q_1$)

(4) 该跳频电路输出 Y 会出现哪几种频率成分?

 $T_0 = \frac{1}{f_0}$. $T' = 9T_0$

(3) 7415/94.右线到及。

(4). 当7415194的车前出伏态分别为 1000 () 741110 () 为九进制 小进制 大进制