FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RDG180611004-00A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure										
Frequency Range (MHz) Electric Field Strength (V/m)		Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)						
0.3-1.34	614	1.63	*(100)	30						
1.34–30	824/f	2.19/f	*(180/f²)	30						
30–300	27.5	0.073	0.2	30						
300–1500	/	/	f/1500	30						
1500-100,000	/	/	1.0	30						

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency Range (MHz)	Antenna Gain		Max. Target Power including Tolerance		Evaluation Distance	Power Density (W/m²)	MPE Limit (W/m²)
(MITZ)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(((((((((((((((((((((vv/III)
824-849	1.3	1.35	31	1258.93	20.00	0.34	0.55
1850-1910	3.1	2.04	29	794.33	20.00	0.32	1.0

Note: the Max. Target Power including Tolerance was declared by manufacturer.

Result: Compliance, The device meets MPE requirement for Devices Used by the General Public (Uncontrolled Environment) at distance ≥20 cm.

FCC Part 22H/24E Page 9 of 28