итмо

Физический факультет

Группа: Z3144

Студент: Григорий Горбушкин

1 Цели работы

Экспериментальное измерение удельной теплоёмкости мате риала образца.

2 Задачи

Получить зависимость увеличения температуры образцов с течением времени при нагревании.

3 Теоретическое введение

Теплоёмкостью называется величина, равная отношению бесконечно малого количества теплоты δQ , полученного телом при нагревании, к приращению его температуры dT:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Теплоёмкость, отнесённая к единице массы вещества, называется удельной теплоёмкостью:

$$c = \frac{C}{m} = \frac{1}{m} \frac{\delta Q}{dT} \tag{2}$$

В данной лабораторной работе производится нагревание исследуемого образца в тепловой камере. Обозначим теплоёмкость образца через C, а теплоёмкость камеры - через C_0 . Мощность нагревателя определяется как произведение измеряемых в ходе эксперимента силы тока и напряжения в его цепи:

$$P = IU. (3)$$

Часть энергии, выделяемой нагревателем за интервал времени dt, расходуется на увеличение температуры образца и тепловой камеры на dT, часть уходит в окружающую среду через её стенки:

$$(C + C_0) dT = Pdt - K (T - T_{\text{OKD}}) dt.$$

$$(4)$$

Здесь T - температура образца, $T_{\text{окр}}$ - температура воздуха вокруг камеры, которая поддерживается постоянной в ходе всего эксперимента. Коэффициент K в этой формуле определяется только параметрами установки и разностью температур рабочего объёма камеры и воздуха вокруг неё. Поскольку в ходе эксперимента относительное изменение температуры образца не очень велико, последней зависимостью можно пренебречь и считать коэффициент K неизменным на протяжении всего эксперимента. Решаем уравнение (4), чтобы получить зависимость температуры образца от времени нагревания:

$$\frac{\left(C + C_0\right)dT}{P - K\left(T - T_{\text{OKD}}\right)} = dt \tag{5}$$

Для того, чтобы решить уравнение, перейдём к новой переменной:

$$Z = P - K \left(T - T_{\text{OKD}} \right), dZ = -K dT. \tag{6}$$

Формула (5) с новой переменной приобретает вид:

$$\frac{(C+C_0)\,dZ}{KZ} = -dt\tag{7}$$

После интегрирования и подстановки выражения (6) для Z получим:

$$\ln\left(P - K\left(T - T_{\text{okp}}\right)\right) = -\frac{Kt}{C + C_0} + \text{ const }. \tag{8}$$

Постоянную в этом уравнении определяем из условия, что в момент начала отсчёта времени t=0 температура рабочего объёма камеры была равна температуре окружающей среды $T_{\rm окр}$, т.е. const = $\ln(P)$. С учетом этого после потенцирования уравнения (8) получаем:

$$P - K\left(T - T_{\text{окр}}\right) = P \exp\left(-\frac{Kt}{C + C_0}\right). \tag{9}$$

Отсюда зависимость температуры камеры от времени для процесса нагревания камеры с образцом имеет вид:

$$T - T_{\text{okp}} = \frac{P}{K} \left(1 - \exp\left(-\frac{K}{C_0 + C} t \right) \right). \tag{10}$$

Аналогично для нагревания пустой камеры находим:

$$T - T_{\text{okp}} = \frac{P}{K} \left(1 - \exp\left(-\frac{K}{C_0}t\right) \right). \tag{11}$$

Продифференцируем уравнения (10) и (11) по времени и прологарифмируем получившиеся уравнения. Для нагревания камеры с образцом получим:

$$\ln\left(\frac{d\left(T - T_{\text{окр}}\right)}{dt}\right) = \ln\frac{P}{C_0 + C} - \frac{K}{C_0 + C}t,\tag{12}$$

а для нагревания пустой камеры:

$$\ln\left(\frac{d\left(T - T_{\text{окр}}\right)}{dt}\right) = \ln\frac{P}{C_0} - \frac{K}{C_0}t. \tag{13}$$

Для того чтобы найти теплоемкость образца, необходимо дважды провести измерения: в первом случае - нагревать пустую камеру, во втором случае - камеру с образцом. По результатам этих измерений необходимо построить графики зависимости от времени выражений, стоящих в левых частях уравнений (12) и (13). Зная мощность нагревателя, по свободным коэффициентам этих графиков можно будет определить теплоемкость камеры с образцом $C+C_0$, теплоёмкость самой камеры C_0 и по разности этих теплоемкостей найти теплоёмкость образца. По известным теплоемкости C и массе m образца по формуле (2) можно вычислить удельную теплоёмкость материала образца. Масса образца измеряется в работе с помощью лабораторных весов. Дополнительна проверка теории, приводящей к формулам (12) и (13) состоит в следующем. Отношение теплоемкостей $\frac{C_0+C}{C_0}$ можно оценить по частному угловых коэффициентов в этих формулах и сравнить с соответствующим результатом, полученным из анализа свободных коэффициентов. Хорошее совпадение результатов подтвердит, что предложенная теория применима к данному эксперименту.

4 Экспериментальная установка

- 1. Моноблок "Измерение теплоёмкости тел" с набором функци ональных модулей;
- 2. Тепловая камера, в которой осуществляется нагрев образцов;
- 3. Кнопка включение питания моноблока;
- 4. Индикаторы значений напряжения и тока нагревательного элемента тепловой камеры;
- 5. Индикаторы значений текущей температуры (красный) и предельной температуры (зеленый);
- 6. Ручка регулятора напряжения, подаваемого на нагревательный элемент;
- 7. Индикатор подачи напряжения на нагревательный элемент;
- 8. Графический сенсорный дисплей для отображения графика тем пературы и контроля управления стендом;
- 9. Блок питания вентилятора, закрепленного под камерой (тум блер включения расположен на блоке питания);
- 10. Съёмная крышка тепловой камеры.

5 Данные

Измеряемые величины			Измеряемые величины			I, A	U, B	m, r
T, °C	Т - Токр, ⁰С	t, c	T, ºC	Т - Токр, ⁰С	t, c	0.5	7.1	42.5
26,00	0	1:18	27	0	1:15			
27,00	1	2:51	28	1	2:52			
28,00	2	3:27	29	2	3:39			
29,00	3	4:05	30	3	4:27			
30,00	4	4:49	31	4	5:18			
31,00	5	5:31	32	5	6:12			
32,00	6	6:16	33	6	7:07			
33,00	7	7:01	34	7	8:05			
34,00	8	7:50	35	8	9:03			
35,00	9	8:41	36	9	10:08			
36,00	10	9:35	37	10	11:18			
37,00	11	10:31	38	11	12:24			
38,00	12	11:31	39	12	13:40			
39,00	13	12:33	40	13	14:54			
40,00	14	13:41	41	14	16:17			
41,00	15	14:52	42	15	17:46			
42,00	16	16:09	43	16	19:20			
43,00	17	17:33	44	17	21:04			
44,00	18	18:59	45	18	22:57			
45,00	19	20:39	46	19	25:01			
46,00	20	22:27	47	20	27:23			
47,00	21	24:28	48	21	29:51			
48,00	22	26:45	49	22	32:44			
49,00	23	29:05	50	23	36:08			
50,00	24	31:51	51	24	39:49			
51,00	25	35:02	52	25	44:19			
52,00	26	39:00						

6 Обработка результатов

Для нахождения численного хначения производной, воспользуемся формулой (14).

$$\frac{d(T-T)}{dt} \approx \frac{2^{\circ}C}{t_{i+1} - t_{i-1}}.$$
(14)

В python строим графики зависимости $\frac{d(T-T)}{dt}$ от t.

Рис. 1: Пустая камера и камера с образцом

Проводя аналогичные вычисления для обеих таблиц, а также логарифмируя полученные величины, получаем следующие значения:

(dT-dToκp)/dt	ln((dT-dToκp)/dt)	d(T-Токр)/dt	ln(d(T-Tokp)/dt)
0,027027027	-3,611	0,021052632	-3,860729711
0,024390244	-3,714	0,02020202	-3,90197267
0,023255814	-3,761	0,019047619	-3,96081317
0,022988506	-3,773	0,018348624	-3,998200702
0,02222222	-3,807	0,017699115	-4,034240638
0,021276596	-3,850	0.017241379	-4,060443011
0,02	-3,912	0.016260163	-4.119037175
0,019047619	-3,961	0,014814815	-4,212127598
0,018181818	-4,007	0,014705882	-4,219507705
0,017241379	-4,060	0,014084507	-4,262679877
0,016393443	-4,111	0,013333333	-4,317488114
0,015384615	-4,174		
0,014388489	-4,241	0,012738854	-4,363098625
0,013513514	-4,304	0,011627907	-4,454347296
0,01242236	-4,388	0,010928962	-4,516338972
0,011764706	-4,443	0,01010101	-4,59511985
0,010752688	-4,533	0,00921659	-4,686750173
0,009615385	-4,644	0,008438819	-4,774912961
0,008733624	-4,741	0,007518797	-4,890349128
0,007751938	-4,860	0,006896552	-4,976733742
0,007220217	-4,931	0,00623053	-5,078293943
0,006535948	-5,030	0,00530504	-5,239098007
0,005602241	-5,185	0,004705882	-5,358941988
0,004662005	-5,368	0,00407332	-5,503296947

Рис. 2: Пустая камера и камера с образцом

Так же получаем два графика:

Найдем коэффициенты прямой по МНК. Для начала найдем \bar{t} и $\overline{\ln\left(\frac{d(T-T)}{dt}\right)}$. $\bar{t}=886$ с; $\overline{\ln\left(\frac{d(T-T)}{dt}\right)}=-4.37$ Далее находим коэффициенты прямой a и b.

$$b = \frac{\sum (t_i - \bar{t}) \cdot \left(\ln\left(\frac{d(T-T)}{dt}\right)_i - \overline{\ln\left(\frac{d(T-T)}{dt}\right)}\right)}{\sum (t_i - \bar{t})^2} = -3.5$$

$$a = \overline{\ln\left(\frac{d(T-T)}{dt}\right)} - b \cdot \bar{t} = -0.0009$$

По аналогии находим коэффициенты прямой a и b для камеры с образцом: $a=-0.00076,\ b=-3.7$ Мощность нагревателя $P=I\cdot U=7.1\cdot 0.5=3.55$ Вт

Из формулы (13) получаем выражение для C_0 в пустой камере:

$$C_0 = P/\exp[b] \approx 117.61 \pm 0.05 \; [Дж/°C]$$

. По аналогии из формулы (13) получаем выражения для $C_0 + C$:

$$C_0 + C = P/\exp[b] \approx 144.51 \pm 0.05 \; [Дж/°C]$$

Тогда теплоемкость образца $C=26.9~{\rm Дж/^\circ C},$ удельная теплоемкость $c=C/m\approx 633~{\rm Дж/^\circ C}\cdot {\rm кr}$

Из отношения угловых коэфициентов:
$$\frac{C_0+C}{C_0}=1.18$$
, из найденных C и C_0 : $\frac{C_0+C}{C_0}=1.24$

7 Вывод

В данной работе было проведено измерение удельной теплоемкости тела c=633 (у железа удельная теплоемкость примерно 600) и получена зависимость изменения скорости роста температуры от времени, на графиках видно, что если прологарифмировать эту зависимость, то получается прямая, откуда можно сделать вывод что изначалальная зависимость - экспонента, что подтверждается теорией. Разность полученных значений для отношения теплоемкостей в случае поиска через угловые коэфициеты и через подсчет теплоемкостей лежит в пределая погрешности, а именно они отличаются примерно на 0.05, отсюда можно сделать вывод что теория соответствует эксперименту.