

Sonómetro integrador analizador de espectro en tiempo real por bandas de octava

Aplicaciones

- Análisis frecuencial de ruido industrial y medioambiental
- Evaluación de la exposición de los trabajadores al ruido en el trabajo simultáneamente a la verificación de Equipos de Protección Individual
- Medición de niveles sonoros de precisión
- Medición de aislamientos

Fácil manejo

- Mide todos los parámetros simultáneamente con ponderación frecuencial A, C y Z (ver tabla)
- Una única escala: 23 137 dBA; hasta 140 dB de pico
- Pantalla gráfica y teclado de membrana de fácil manejo

Características

- Sonómetro integrador tipo 1 según EN 60651:94/A1:97/A2:01 y EN 60804:01
- Analizador de espectros en tiempo real, bandas de octava 31,5 Hz a 16 kHz. EN 61260:95/A1:01 tipo 1
- Permite almacenar los resultados de las mediciones en memoria
- Incluye software para captura en tiempo real y transmisión de todos los datos medidos y registrados a un ordenador PC
- La captura en tiempo real admite sistema de comunicación inalámbrico Bluetooth®
- Preamplificador extraíble, para uso del cable prolongador (CN-010) y del kit de intemperie (TK-1000)
- Guarda en memoria la fecha de la última vez que se modificó la sensibilidad
- Cumple con la normativa vigente sobre METROLOGIA LEGAL (29/12/98)

02 I.111 01037 El SC-30 es un sonómetro integrador tipo 1 de fácil manejo que permite realizar mediciones acústicas de manera rápida, cómoda y sencilla. Tiene una única escala, y por ello no es necesario ningún ajuste de escala previo.

El SC-30 mide simultáneamente todas las funciones para cada modo de funcionamiento (sonómetro o analizador de espectro) con las ponderaciones frecuenciales A, C y Z (ponderación frecuencial igual a 0 dB de 10 Hz a 20 kHz). La pantalla gráfica del SC-30 permite la representación gráfica y numérica de las funciones medidas. La visualización gráfica es muy práctica a la hora de evaluar la evolución temporal de un suceso sonoro o analizar su contenido espectral. La pantalla del SC-30 dispone de luz para trabajar en ambientes de poca luminosidad.

Los datos medidos y registrados por el **SC-30** se pueden volcar a un ordenador personal para disponer de ellos en formato electrónico. La salida AC permite adquirir la señal del preamplificador, pudiendo hacer un registro calibrado de esta en so-

SC-30

CESVA

porte D.A.T. y poder analizarla posteriormente tanto cuantitativamente (análisis sonométrico, de impulsividad o tonal) como cualitativamente (detección de sucesos singulares: gritos, etc.)

El preamplificador es extraíble, de esta manera se puede desacoplar y alejarlo del SC-30 mediante un cable prolongador (CNR-010). También es posible utilizar un kit de intemperie (TK-1000) para realizar mediciones en exteriores. El modo sonómetro está indicado para la medición de niveles globales de presión sonora. El SC-30 puede funcionar como sonómetro o como analizador de espectro.

El SC-30 mide todas las funciones simultáneamente con todas las ponderaciones frecuenciales y calcula datos estadísticos como valores máximos y mínimos y percentiles.

El modo analizador de espectro permite medir, simultáneamente y en tiempo real, los niveles de presión sonora y el nivel de pico para las bandas de octava centradas en las frecuencias 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 y 16000 Hz (sin ponderación frecuencial) y los valores de presión sonora globales y de pico con todas las ponderaciones frecuenciales.

Diagrama de la estructura de pantallas Funciones disponibles

Modo sonómetro

Modo analizador espectro 1/1

Modo sonómetro

L_{AF}	L_CF	L_{ZF}
L_{AFmax}	L_{CFmax}	L_{ZFmax}
L_{AFmin}	L_{CFmin}	L_{ZFmin}
L_{AS}	Lcs	L_{ZS}
L_{ASmax}	L_{CSmax}	L_{ZSmax}
L_{ASmin}	L_{CSmin}	L_{ZSmin}
L_Al	L_{CI}	L_{ZI}
L_{Almax}	L_{CImax}	L_{ZImax}
L_{Almin}	L_{Clmin}	L_{ZImin}
L_{AT}	L_CT	L_{ZT}
L_{ATmax}	L_{CTmax}	L_{ZTmax}
L_{ATmin}	L_{CTmin}	L_{ZTmin}
L_{At}	L_{Ct}	L_{Zt}
L_AE	L_CE	L_{ZE}
L_{Apeak}	L_{Cpeak}	L_{Zpeak}
	t, T	
L ₁ , L ₅ , L ₁₀ ,	L ₅₀ . L ₉₀ .	L95. L99

Modo analizador 1/1

L_{AT}	L_CT	L_{ZT}
$L_{AT_{f}}$	$L_{CT_{f}}$	L_{ZT_f}
L_{Apeak}	L_{Cpeak}	L_{Zpeak}
L_{Apeak_f}	$L_{Cpeak_{f}}$	L_{Zpeak_f}
	NR, NR_f	
	NC, NC_f	
	donde f: [31,5	16 kHz]

Nom	Descripción funciones modo sonómetro					
L _{XF}	Nivel de presión sonora con ponderación temporal rápida (Fast)					
L _{xs}	Nivel de presión sonora con ponderación temporal lenta (Slow)					
L _{XI}	Nivel de presión sonora con ponderación temporal impulsional (Impulse)					
L _{XT}	Nivel de presión sonora continuo equivalente con tiempo de integración T					
L _{Xt}	Nivel de presión sonora continuo equivalente de toda la medición					
L _{XE}	Nivel de exposición sonora S.E.L.					
L _{Xpeak}	Nivel de presión sonora de pico					
t	Tiempo de medición					
Т	Tiempo de integración programable					
L _{n [n=1, 5, 10, 50, 90, 95, 99]}	Percentiles, con ponderación frecuencial A					

Nom	Descripción funciones modo analizador 1/1
L _{XT}	Nivel de presión sonora continuo equivalente con tiempo de integración T
L_{XT_f}	Nivel de presión sonora continuo equivalente con tiempo de integración T para la banda de octava f. (Ver gráfico inferior)
L _{Xpeak}	Nivel de presión sonora de pico
L _{Xpeak_f}	Nivel de presión sonora de pico para la banda de octava f. (Ver gráfico inferior)
NC	Curva NC que no ha excedido el espectro de ruido evaluado
NR	Curva NR que no ha excedido el espectro de ruido evaluado
NC_f	Valor de la curva NC no excedido en la banda f (ver gráfico inferior)
NR_f	Valor de la curva NR no excedido en la banda f (ver gráfico inferior)

X: Ponderación frecuencial A, C y Z

			4k	

Accesorios

Dispositivo para comunicación inalámbrica Bluetooth[®] para sonómetro, BT001

Dispositivo para comunicación inalámbrica Bluetooth[®] para PC, BT002

Cable de audio para sonómetro, CN-DAT

Alimentador de red A-200 y convertidor para batería A-100

Cable prolongador de 3, 10 o 30 m para preamplificador y micrófono, CN-003, CN-010 y CN-030

Accesorios suministrados

FNS-030	Funda
PVM-05	Pantalla antiviento
STF030	Programa para PC
CN-201	Cable de conexión a PC
	Pila de 9 voltios

Accesorios opcionales

CB-5	Calibrador Sonoro
TR001	Adaptador para trípode
TR-40	Trípode (altura 1,1 m)
TR050	Trípode (altura 1,55 m)
TK-1000	Kit de intemperie
CN-USB	Conversor serie-USB
CN-003	Cable prolongador de micrófono
CN-010	Cable prolongador de micrófono
CN-030	Cable prolongador de micrófono
CN-DAT	Cable para audio
A-200	Alimentador de red 230 V 50 Hz a 9 V
A-100	Convertidor para batería 12 V a 9 V
BT001	Dispositivo Bluetooth® para sonómetro
BT002	Dispositivo Bluetooth® para PC
ML-50	Maleta de transporte (49 x 36 x 14 cm)
ML-10	Maleta de transporte (30 x 38 x 8 cm)
IM003	Impresora de 40 columnas serie
RT-030	Módulo de tiempo de reverberación
DS030	Módulo dosímetro para la medición de ruido laboral

Capacidades de almacenamiento

Modo sonómetro

Mode Schollette				
Tipo grabación				
Todo cada segundo	1	hora	30	minutos
F1, F2 y F3 cada seg [*]	36	horas	21	minutos
F1 cada segundo *	84	horas	50	minutos
L_{T} y percentiles parciales cada T				
T= 1 s	12	horas		
T= 1 min	1	mes		
T= 1 hora	5	años		

Modo analizador de espectro 1/1 octava

Tipo grabación

L_T + L_{peak} de cada banda de octava

 L_T + L_{peak} global con ponderación frecuencial A, C y Z

Cada T

* F1, F2 y F3 son las funciones acústicas escogidas por el usuario en la pantalla preferente del SC-30. Pueden ser cualesquiera de las 54 funciones que mide el SC-30 en modo sonómetro.

El SC-30 puede registrar en su memoria interna los valores de las funciones medidas. Al apagarlo, estos datos no se pierden y pueden recuperarse y visualizarse directamente desde el SC-30 o ser transmitidos a un ordenador personal. La memoria puede ser borrada directamente desde el mismo SC-30.

En la memoria del **SC-30** se pueden guardar los resultados finales de una medición o grabaciones continuas de diferentes funciones con tiempo de registro programable.

Especificaciones técnicas

Certificados y normas

Aprobación de modelo 02/01037 con fecha 20/09/2001.

- UNE-EN 60651:96 (A1:97) tipo 1, UNE-EN 60804:02 tipo 1, UNE-EN 60260:95 (A1:01) tipo 1
- EN 60651:94 (A1:94) (A2:01) tipo 1 EN 60804:00 tipo 1, EN 61260:95 (A1:01) tipo 1
- ANSI S1.4:83 (A1:01) tipo 1, ANSI S1.43:97 (A2:02) tipo 1, ANSI S1.11:04 tipo 1
- Marca
 € . Cumple la directiva de baja tensión 73/23/CEE y la directiva CEM 89/336/CEE modificada por 93/68/CEE.

Rango de medida

• L_F, L_S, L_I, L_T y L_t

Límites del indicador:		0 -	- 137 dB					
Elittics del indicador.		U	107 40					
	C-1	30 + P	<u>A-13 </u>	_	C-2	250 + PA	\ -14	
Margen primario	Α	С	Z		Α	С	Ζ	
Limite superior	120	120	120	•	120	120	120	
Limite inferior	50	50	50		50	50	50	
Margen medición:								
Límite superior:	137	137	137	•	137	137	137	
Factor de cresta 3:	130	130	130	•	130	130	130	
Factor de cresta 5:	126	126	126	•	126	126	126	
Factor de cresta10:	120	120	120	•	120	120	120	
Límite inferior:	24	27	32		22	23	27	

 $[\]mathsf{L}_{\mathsf{peak}}$

Límites del indicador: 0 – 140 dB

Ruido eléctrico

_	C-130 + PA-13				A-2	50 + P	\-14	
Ruido eléctrico:	Α	С	Z		Α	С	Z	
Máximo	15,5	22,0	23,5		14,5	22,0	22,5	
Típico	14,5	17,3	21,3		8,6	8,8	15,4	
 Ruido total (eléctrico + térmico micrófono) 								
Máximo	21,2	23,0	26,0		19,3	23,3	24,0	
Típico	19,0	22,0	24,0		16,9	16,9	21,9	

Ponderación frecuencial

Cumple la norma EN 60651 tipo 1 Ponderaciones A, C y Z

Salida AC

Ponderación frecuencial: lineal

Sensibilidad a 137 dB y 1 kHz (Ganancia = 0dB): 7,4 Vrms (max) Límite superior: 8,1 Vrms (típico) ; Impedancia de salida: 100 Ω

Ganancia: 0 y 40 ± 0,2 dB

Especificaciones técnicas

Micrófono

- Modelo CESVA C-130: Micrófono de condensador de ½". Polarización: 200 V. Capacidad nominal: 22,5 pF. Sensibilidad nominal: 17,5 mV/Pa ± 0,5 dB en condiciones de referencia.
- Modelo CESVA C-250: Micrófono de condensador de ½". Polarización: 0 V. Capacidad nominal: 17,0 pF. Sensibilidad nominal: 46,4 mV/Pa en condiciones de referencia.

Ponderación temporal

L_F, L_S, L_I y L_{peak} conforme tolerancias clase 1

Parámetros

Ver tabla| Resolución: 0,1dB

Filtros de octava

Tipo 1 según EN 61260:95/ A1:01. Frecuencias centrales nominales de las bandas de octava: 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000 Hz

Influencia de la humedad

Margen de funcionamiento: 30 a 90 % Error máximo para 30%<H.R.<90% a 40 °C y 1 kHz: 0,5 dB Almacenamiento sin pilas: < 93 %

Influencia de los campos magnéticos

En un campo magnético de 80 A/m (1 oersted) a 50 Hz da una lectura inferior a 25 dB(A)

Influencia de la temperatura

Margen de funcionamiento: $-10 \text{ a} +50 \text{ }^{\circ}\text{C}$ Error máximo (-10 a +50°C): 0,5 dBAlmacenamiento sin pilas: $-20 \text{ a} +60 \text{ }^{\circ}\text{C}$

Influencia de las vibraciones

Para frecuencias de 20 a 1000 Hz y 1 m/s²: < 75 dB(A)

Alimentación

Pila de 9 V tipo 6LF22.

Duración típica con funcionamiento continuo:

Modo sonómetro:Modo analizador espectro 1/1:8 horas6 horas

Alimentador de red: A-200

Dimensiones y peso

Dimensiones: 341 x 82 x 19 mm

Peso:

Con pila: 627 gSin pila: 573 g

Software Cesva Capture Studio

Captura de datos modo sonómetro

Visualización gráfica de datos

Visualización gráfica de datos

Con el SC-30 se suministra la aplicación software **CAPTURE Studio** que permite:

- Configurar el SC-30
- Capturar datos del SC-30 en tiempo real.
- Volcar al PC registros almacenados en la memoria del SC-30.
- Borrar la memoria del SC-30.
- Visualizar gráfica y numéricamente ficheros de datos y convertirlos a diferentes formatos (.txt, .xls, .mdb)
- Sistema de ficheros encriptados. Los ficheros se guardan en un formato propio *.ccf que no puede ser alterado y garantiza la integridad y legalidad de estos.

Exportación de datos a otras aplicaciones

CAPTURE Studio proporciona un entorno cómodo y de fácil manejo para obtener en formato digital los datos adquiridos por el SC-30. Funciona bajo entorno Windows 9x/Me/2000/NT/XP/VISTA.

Las características, especificaciones técnicas y accesorios pueden variar sin previo aviso

Módulo de tiempo de reverberación

Modo tiempo de reverberación 1/1 por bandas de octava

	LN B	<u>△ 48</u>	T30 S	Teo s	RI/I
63	42.0	59.0	0.69	0.56	
125	35.3	73.0	0.65	0.55	
250	38.1	78.2	0.64	0.58	
500	35.1	77.4	0.79	0.76	
Hk	31.2	77.6	0.90	0.94	
2k	25.7	80.2	0.87	0.84	
46	20.1	78.9	0.78	0.77	

Normas de medición y cálculo

- ISO 3382:1997: Medición del tiempo de reverberación de salas.
- ISO 354:1985: Medición del coeficiente de absorción en cámara reverberante.
- ISO 140:1998: Medición del aislamiento en los edificios y de los elementos de construcción.

Procedimiento para el cálculo de RT

- 1. Seleccione el modo RT
- 2. Pulse 🄰 para empezar la medición
- 3. Valide el nivel de ruido de fondo pulsando ok
- Encienda la fuente de ruido y el sonómetro empezará a medir el incremento de ruido
- 5. Una vez alcanzado el nivel de ruido suficiente y estabilizado dicho nivel, valide pulsando ok
- 6. Apague la fuente de ruido
- Transcurrido un breve instante de tiempo el RT aparecerá en la pantalla del SC-30

El módulo de medición del tiempo de reverberación del sonómetro **SC-30** permite:

- La medición simultánea del tiempo de reverberación T_{20} y T_{30} en tiempo real por el método del ruido interrumpido para las bandas de octava de 63, 125, 250, 500, 1000, 2000 y 4000 Hz.
 - **T**₃₀ Es el tiempo, expresado en segundos, que se requiere para que el nivel de presión sonora disminuya en 60 dB. El T₃₀ es el resultado de multiplicar x 2 el tiempo necesario para que el nivel se reduzca 30 dB.
 - T₂₀ Es el tiempo, expresado en segundos, que se requiere para que el nivel de presión sonora disminuya en 60 dB. El T₂₀ es el resultado de multiplicar x 3 el tiempo necesario para que el nivel se reduzca 20 dB.
- Margen de medición (depende de la banda de frecuencia):

TR mínimo: 0,1 s TR máximo: 10,0 s

- La detección automática de la curva de caída y la evaluación de su pendiente mediante estimación por mínimos cuadráticos.
- Curvas de caída obtenidas a partir de tiempos de promediado entre 10 ms y 40 ms dependiendo de la banda de frecuencia.
- La posibilidad de guardar los resultados en memoria: Valores de T_{20} , T_{30} y curvas de caída, para cada banda de octava.

$\begin{tabular}{lll} \textbf{Capacidad de almacenamiento} \\ \hline \textbf{Tiempo Reverberación (T_{20} y T_{30}) + Ruido fondo (L_N) + nivel máximo (L_N + Δ) + evolución temporal decaimiento } \\ \hline \end{tabular} \begin{tabular}{lll} 100 \ resultados finales \\ \hline \end{tabular}$

El módulo de medición del tiempo de reverberación para el **SC-30** es opcional y puede adquirirse al comprar el **SC-30** o posteriormente. A todos los **SC-30** adquiridos con anterioridad a esta fecha se les podrá incorporar este módulo.

A continuación, se pueden observar los pasos a seguir para el cálculo del tiempo de reverberación.

Módulo dosímetro para la evaluación de ruido laboral

de ruido laboral

Pantalla numérica

Pantalla gráfica

Pantalla analizador de espectro 1/1

Pantalla numérica (parámetros proyectados)

Módulo dosímetro para la evaluación El módulo dosímetro para la evaluación del ruido laboral del SC-30 incorpora un nuevo modo de medición ideal para la aplicación de la Directiva 2003/10/CE que adapta al progreso técnico la normativa sobre protección de la salud y la seguridad de los trabajadores contra los riesgos relacionados con la exposición al ruido; en España, transpuesta en el Real Decreto 286/2006.

> Este módulo dosímetro permite medir simultáneamente todos los parámetros necesarios para evaluar la exposición al ruido del trabajador sin y con protectores auditivos (SNR, HML y Octavas).

El SC-30 mide simultáneamente el nivel equivalente con ponderación A y C [LAt, LCt], el nivel de exposición diario equivalente [L_{EX,8h}, L_{Aeq,d}] (ISO 1999), la exposición sonora en Pa²h [E] y la dosis de ruido [DOSE] respecto a un nivel de criterio programable [L_C]. Y por supuesto también el nivel de pico con ponderación C [L_{Cpeak}] (ISO 1999).

Además permite realizar mediciones de duración inferior al tiempo de exposición, ya que muestra en pantalla los parámetros proyectados al tiempo previsto de exposición (tiempo de proyección [t_p] programable)

Para poder evaluar la exposición al ruido considerando la atenuación que procuran los protectores auditivos individuales utilizados por los trabajadores, el SC-30, a parte de medir el nivel equivalente con ponderación A y C [LAt, LCt] (método SNR y HML), realiza simultáneamente un análisis frecuencial en tiempo real con ponderación A por bandas de octava de 63 Hz a 8 kHz (método Octavas).

La memoria del SC-30 le permite guardar la evolución temporal de los parámetros medidos, pudiendo más tarde recalcularlos para cualquier tramo temporal.

El SC-30 no solo le facilita la tarea de la evaluación y medición del ruido. También le aporta todos los datos necesarios para realizar una correcta información y formación sobre el significado y riesgos potenciales de los resultados de las mediciones efectuadas.

Además, le ayuda en la tarea de diseñar y ejecutar un programa de reducción y a elegir los protectores auditivos más adecuados para cada situación.

El SC-30 es un sonómetro integrador tipo 1 según UNE-EN 60804 y UNE-EN 61672. Así pues, es el instrumento ideal para mediciones tanto en ausencia como en presencia del trabajador, y al ser tipo 1, permite despreciar la incertidumbre metrológica de medición debida a la instrumentación (ISO 9612).

El módulo dosímetro de evaluación del ruido laboral no se incluye con el SC-30. Es un módulo opcional y puede adquirirse en el momento de comprar el **SC-30** o posteriormente.