

Ciência da Computação Engenharia de Computação Mestrado em Informática

Teoria dos Grafos

Maria Claudia Silva Boeres boeres@inf.ufes.br

Programa

- 1.Conceitos Básicos
- 2. Grafos Eulerianos e Hamiltonianos
- 3. Caminhos, Ciclos e Conectividade
- 4. Árvores
- 5. Representação matricial de grafos
- 6.Conjuntos de Corte
- 7. Coloração de grafos e Cobertura
- 8. Conjuntos Independentes
- 9. Grafos Planares
- **10.Grafos Direcionados**
- 11. Alguns Problemas Famosos em Grafos

Motivação

- Por que estudar grafos?
 - Importante ferramenta matemática com aplicação em diversas áreas do conhecimento
 - Utilizados na definição e/ou resolução de problemas
 - Existem centenas de problemas computacionais que empregam grafos com sucesso.

Primeiras motivações da área...

Königsberg Bridge Problem

Duas ilhas C e D, existentes no rio Pregel em Königsberg (Rússia), foram ligadas às margens do rio (A e B) através de 7 pontes. É possível iniciar uma caminhada a partir de um dos blocos de terra (A, B, C ou D), passar por cada uma das pontes e voltar ao ponto de partida sem nadar pelo rio?

As pontes de Königsberg

O problema das 7 pontes

 1736: Euler foi o primeiro a representar esse problema usando grafos e provou que uma solução para o mesmo não existe!

- 1847: G.R.Kirchnoff desenvolveu a teoria de árvores para trabalhar com aplicações em circuitos elétricos.
- 1852:F. Guthrie apresentou informalmente o problema das 4 cores: São suficientes apenas 4 cores para colorir qualquer mapa em superfície plana, de maneira que regiões fronteiriças recebam cores distintas.

- 1878: Cayley apresentou o problema para o London Mathematical
- 1879: Kempe publica uma prova incorreta
- 1976: Appel & Haken execução de ± 1200 horas de CPU do computador CDC6700, testando inúmeras configurações.
- 1977: Appel & Haken provaram a conjectura, usando indução matemática

 1859: Sir W.R. Hamilton inventou um jogo que consistia em um dodecaedro com 12 faces e 20 vértices, com cada face sendo um pentágono regular e três arestas se encontrando em cada vértice e os vértices foram rotulados com nomes de 20 cidades importantes. O objetivo do jogo é achar uma rota pelas arestas do dodecaedro passando por cada vértice apenas uma Vez.

Ciclo Hamiltoniano

 A solução para esse problema específico é fácil de se obter. No entanto, ainda não se tem uma condição necessária e suficiente para se verificar a existência de um ciclo hamiltoniano em um grafo arbitrário

Caminho e Ciclo Hamiltoniano

2010/1

- Depois desta época pouca coisa foi investigada em teoria dos grafos por quase um século.
- O interesse ressurgiu na década de 20 com os estudos de D. König que se transformaram em um livro, publicado em 1936.

A importância do modelo

Utilities Problem

Considere 3 casas (C1, C2 e C3), cada uma com três utilidades: água (A), gás (G) e eletricidade (E). As utilidades estão conectadas às casas por meio de fios e canos.

Considerando que todos os fios e canos estão no mesmo plano, é possível fazer as instalações sem cruzá-los?

Seating Problem

Nove membros de um clube se encontram diariamente para almoçar e se sentam em volta de uma mesa redonda. A cada dia, cada membro do clube quer se sentar ao lado de um colega diferente. Quantos dias são necessários para dispor arranjos distintos de pessoas?

1234567891

1352749681

1573928461

1795836241

Seating Problem

Nove membros de um clube se encontram diariamente para almoçar e se sentam em volta de uma mesa redonda. A cada dia, cada membro do clube quer se sentar ao lado de um colega diferente. Quantos dias são necessários para dispor arranjos distintos de pessoas?

1234567891

1357924681

1472583961

1594826371

Conceitos Básicos

Conceitos Básicos

O que é um grafo?

Exemplo

$$G = (V, E)$$

Grafo simples

$$V = \{a,b,c,d,e\}$$

E = \{\{a,b\},\{a,c\},\{b,c\},\{b,d\},\{c,d\},\{c,e\}\} =
\{\{e1,\{e2,\{e4,\{e5,\{e7,\{e9\}\}}\}}

$$G = (V, E)$$

$$V = \{a,b,c,d,e\}$$

$$E = \{\{a,b\},\{a,c\},\{b,b\},\{b,c\},\{b,d\},\{c,d\},\{c,d\},\{c,d\},\{c,e\}\}\} = \{e1, e2, e3, e4, e5, e6, e7, e8, e9\}$$

- Uma aresta do tipo {v_i, v_i} é denominada laço.
 - A aresta e₃ do exemplo anterior é um laço.
- Arestas que possuem os mesmos vértices extremos são ditas paralelas.
 - As arestas e₆, e₇ e e₈ do exemplo anterior são paralelas.
- Um grafo que possui arestas paralelas é denominado multigrafo.
- Um grafo sem laços nem arestas paralelas é denominado grafo simples.

 Os extremos de uma aresta são ditos incidentes com a aresta, e vice-versa.

u e v são incidentes a e e é incidente a u e a v

 Dois vértices que são incidentes a uma mesma aresta são ditos adjacentes.

u e v são adjacentes

 Duas arestas que são incidentes a um mesmo vértice são ditas adjacentes.

e1 e e2 são adjacentes

Observação

O conceito de incidência ou adjacência é importante para a representação da estrutura de um grafo como um diagrama

- O número de vértices de um grafo G é denotado por n = |V|. O valor n também é conhecido como ordem de G
- O número de arestas de um grafo é denotado por m = |E|
- Se n e m são finitos, o grafo é finito. Caso contrário é dito infinito.
 - Exemplo de grafo infinito: malhas

 O número de arestas incidentes a um vértice v é denominado grau(v) e representado por d(v).

$$d(a) = 2$$

$$d(e) = 2$$

Grau também é conhecido como valência.

- Vértice isolado é o vértice que não possui arestas incidentes (grau nulo)
- Vértice folha ou terminal é o vértice que possui grau
 1
- Vizinhos de um vértice são os vértices adjacentes a ele.

d é um vértice folha ee é um vértice isoladob e c são vizinhos de a

- Pares de vértices (ou de arestas) não adjacentes são denominadas independentes.
- Um conjunto de vértices (ou arestas) é independente se nenhum par de seus elementos é adjacente.

Exemplo

- •e1 e e5 são independentes
- •a e d são independentes
- *{b,e,g} é um conjunto independente
- *{e1, e5 } é um conjunto independente

Teorema 1:

Seja G = (V,E) um grafo simples com n vértices e m arestas. Então

$$\sum_{\mathbf{v} \in \mathbf{V}} d(\mathbf{v}) = 2\mathbf{m}$$

Prova:

- A aresta e é incidente aos vértices v e w
- É contabilizada no cômputo do grau de *v* e também de *w*.

Corolário 1:

O número de vértices de grau ímpar, de um grafo G, é par.

Prova:

Exercícios

 Mostre que o grau máximo de qualquer vértice em um grafo simples com n vértices é n-1.

 Mostre que o número máximo de arestas em um grafo simples com n vértices é n(n-1)/2

Exercícios

Construa um grafo com 10 vértices, que possua a seguinte seqüência de graus: {1,1,1,3,3,3,4,6,7,9}, ou mostre ser impossível construí-lo.

Exercícios

Os turistas John, Leuzinger, Dufois e Medeiros se encontram em um bar em Paris e começam a conversar. As línguas disponíveis são o inglês, o francês, o português e o alemão. John fala todas as línguas, Leuzinger não fala o português, Dufois fala francês e alemão e Medeiros fala inglês e português. Represente por meio de um grafo todas as possibilidades de um deles dirigir-se a outro, sendo compreendido.