Simplifying loan graphs

Rodion "rodde" Efremov

February 28, 2014

Abstract

We choose to tackle a problem of optimizing loan graphs in terms of edge amount. Whenever we have a directed, weighted graph, edges denote the direction of "resource flow" and the weight of each denotes the "velocity" of the flow. Assuming each party honors its debts, and returning a debt requires time and energy, it might be sensible to produce a loan graph "equivalent" to the original, but having less edges.

1 Stating the problem

A loan graph is a directed, weighted graph G = (V, E), where $E \subseteq V^2$. Whenever there is a loan from node u to node v, $(u, v) \in E$. The amount lent is given by the weight function $w \colon E \to \mathfrak{R}_{>}$. The equity function $e_G \colon G.V \to \mathfrak{R}$ is defined as follows:

$$e_G(u) = \sum_{(u,v) \in G.E} w(u,v) - \sum_{(v,u) \in G.E} w(v,u).$$

Definition 1. Two loan graphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are said to be **equivalent** if and only if there exists a bijection $f: V_1 \to V_2$ such that for all $v \in V_1$, $e_{G_1}(v) = e_{G_2}(f(v))$ and we denote such a fact by stating $G_1 \sim G_2$.

Given an input loan graph G, we wish to find a loan graph G' such that

$$G' \in \operatorname*{arg\,min}_{G'' \sim G} |G''.E|.$$

Definition 2. A group is any vertex set $\mathfrak{G} \subseteq V$ such that $\sum_{u \in \mathfrak{G}} e(u) = 0$. A group \mathfrak{G} is said to be a **proper group** if and only if it cannot be partitioned in two sets S and $\mathfrak{G} \setminus S$ such that S and $\mathfrak{G} \setminus S$ are groups.

It follows from the definition of a loan graph that for any loan graph G, G.V is a group. Also it is clear that a proper group $\mathfrak G$ can be reconnected with exactly $|\mathfrak G|-1$ edges such that equities are preserved. In order to minimize the edge amount, we need to maximize the amount of groups. Whenever we have $V_+ = \{u \in V : e(u) > 0\}$ and $V_- = \{u \in V : e(u) < 0\}$, the amount of proper groups in V is no more than $\min\{|V_+|, |V_-|\}$ as any non-trivial group contains at least one node from V_+ and at least one node from V_- .

Definition 3. The **order** of a group \mathfrak{G} is simply the amount of vertices in a group, i.e., $|\mathfrak{G}|$.

Definition 4. A binary group $\{u,v\}$ from G, is a proper group of order 2 $(e_G(u) = -e_G(v) \neq 0)$.

Definition 5. A trivial group is any vertex u with e(u) = 0.

Theorem 1 (Binary group theorem). In any loan graph G with N proper groups, $k \leq N$ of which are binary, resolving all binary groups in greedy fashion before computing the higher-order groups does not necessarily lead to suboptimal solution.

Proof. Suppose the contrary: resolving all k binary groups leaves in the graph N-k proper groups. Now, by definition of suboptimality we have k+(N-k) < N, which is absurd.

2 Exact solutions

Suppose we are given V_+ and V_- . One solution is to generate all partitions of V_+ , and for each partition of V_+ generate all possible partitions of V_- . Once generating a single partition requires O(n) time, it is obvious that running time of an exact, yet brute-force algorithm to simplify a graph G = (V, E) is

$$O\left(|V_{+}|\sum_{i=1}^{|V_{+}|} {|V_{+}| \choose i} \left(|V_{-}|\sum_{j=1}^{|V_{-}|} {|V_{-}| \choose j}\right)\right).$$

We , nonetheless, can do better. Suppose we have along the general partition generator (capable to generate all the partitions) a specialized generator generating only all k-partitions. Assuming the latter can do it in linear time, the running time for the entire algorithm reduces to

$$O\Bigg(|V_{+}||V_{-}|\sum_{i=1}^{\min\{|V_{+}|,|V_{-}|\}} {\min\{|V_{+}|,|V_{-}|\} \brace i} \Bigg\} \frac{\max\{|V_{+}|,|V_{-}|\}}{i} \Bigg\}.$$