ESO204A, Fluid Mechanics and rate Processes

# Dimensional Analysis: application to model testing

Chapter 5 of F M White Chapter 7 of Fox McDonald

# A running car experiences fluid resistance known as 'drag force' $F = f(L, u, \rho, \mu)$

We are interested to measure the drag on a similar to estimate the drag on the prototype

$$\frac{F}{\rho u^2 L^2} = \psi \left( \frac{\mu}{\rho u L} \right) \qquad C_D = \psi \left( \frac{1}{\text{Re}} \right)$$

To conduct useful model test, we need to match **Re**, which may need model testing at high-speed

Our crude experiment indicated  $C_D$  = constant!!

We can explain this result from the dimensional  $\frac{F}{\rho u^2 L^2} = \psi \left(\frac{\mu}{\rho u L}\right)$   $C_D = \psi \left(\frac{1}{\mathrm{Re}}\right)$ 

 $C_D = \frac{\text{drag}}{\text{inertia}}$ 

 $\frac{1}{Re} = \frac{\text{viscous}}{\text{inertia}}$ 

- o Dim. analysis indicates three forces
- o Dim. analysis scales other forces w. r. t. inertia

Drag force has two sources: viscous + pressure (or 'form' drag)

Form drag becomes more important at high velocity

High Re ≡ viscous << inertia

$$\frac{F}{\rho u^2 L^2} = \psi \left( \frac{\mu}{\rho u L} \right)$$

$$C_D = \psi \left( \frac{1}{\text{Re}} \right)$$

$$C_D = \frac{\text{drag}}{\text{inertia}}$$

$$\frac{1}{\text{Re}} = \frac{\text{viscous}}{\text{inertia}}$$

Form drag dominates



Re = 0.1



Re = 10,000

Flow over cylinders at varying Re

High Re case 
$$F = f(L, u, \rho)$$
 Dropping  $\mu$ 

Conduct dimensional analysis  $\pi_1 = \frac{F}{\rho u^2 L^2}$ 

$$\Rightarrow \psi \left( \frac{F}{\rho u^2 L^2} \right) = 0 \quad \Rightarrow \frac{F}{\rho u^2 L^2} = C_D = \text{constant}$$

Above relation usually holds for  $Re \sim 10^3$  or more

The model study can be conducted up to the point where  $C_{\rm D}$  reaches the Re-independent value

## **Example: model testing of a truck**



|   | Model        | Prototype              |
|---|--------------|------------------------|
| L | .991m        | 15.9m                  |
| и | 70m/s<br>max | 26.8 m/s<br>(100km/hr) |

For Re matching  $(uL)_m = (uL)_p$   $u_m = 429 \text{ m/s}$ 

The model speed is in compressible regime and also cannot be attained in the present wind-tunnel





$$F = f(L, u, \rho, \mu) \quad \frac{F}{\rho u^2 L^2} = \psi \left(\frac{\mu}{\rho u L}\right) \qquad C_D = \psi \left(\frac{1}{\text{Re}}\right)$$
$$C_D = \frac{\text{drag}}{\text{inertia}} \qquad \frac{1}{\text{Re}} = \frac{\text{viscous}}{\text{inertia}}$$

**Low Re case**  $\Rightarrow$  small inertia  $\Rightarrow$  drag  $\sim$  viscous

As discussed before, drag force has two components: pressure (form) and viscous

For low Re, viscous part dominates

Low Re case 
$$F = f(L, u, \mu)$$
 Dropping  $\rho$ 

Conduct dimensional analysis  $\pi_1 = \frac{F}{\mu u L}$ 

$$\Rightarrow \psi \left( \frac{F}{\mu u L} \right) = 0 \Rightarrow \frac{F}{\mu u L} = \text{constant} \Rightarrow \frac{F}{\rho u^2 L^2} = \frac{\text{constant.} \mu u L}{\rho u^2 L^2}$$

$$\Rightarrow C_D = \frac{\text{constant}}{\text{Re}}$$

Above relation holds for Re <1 (creeping flow or Stoke's flow) and is very useful for viscosity measurement, microflows, biological systems

#### Low Re

## High Re

Drag = constant. $\mu uL$ 

Drag = constant. $\rho u^2 L^2$ 

At high speed drag is proportional to  $u^2$  while at low speed drag is proportional to u

In a highly viscous (low Re) environment, it is very difficult to start/maintain motion





# **Example: terminal speed of a falling object**

Terminal speed: steady speed of the falling object when drag = weight  $Drag = constant.L^3$ 

Low Re

High Re

Drag = constant. $\mu uL$ 

Drag = constant. $\rho u^2 L^2$ 

 $u \propto L^2$ 

 $u \propto \sqrt{L}$ 

Terminal speed varies differently with lengthscale for smaller and larger objects

