WECOYBS06

Demonstration of THz Oscillation via Resonant Coherent Diffraction Radiation

Y.Honda, M.Shimada, T.Miyajima, T.Obina, N.Yamamoto, R.Takai, T.Uchiyama, A.Aryshev, R.Kato (KEK)

- Supported by SRF accelerator application team in KEK and cERL collaboration.
- Financially supported by JSPS KAKENHI 16H05991 and 18H03473
- Phys. Rev. Lett. **121,** 184801 (2018), Phys. Rev. Accel. Beams **22,** 04073 (2019)

Contents

- Introduction
 - Coherent diffraction radiation
 - Stimulated radiation
 - Broad-band excitation
- Experimental Setup
- Experimental Result
 - Resonance peak and waveform
 - Beam deceleration
- Next Step for CSR-Inverse Compton scattering
- Summary

Introduction

- Purpose
- Principle of stimulated radiation
- Broad-band excitation

Overview

Optical Cavity

Multi-bunch beam

Coherent Diffraction Radiation Stimulated radiation (Coherent stacking)

Possible layout only by modern linacs.

low emittance

⇒ small aperture

short bunch⇒ THz coherent radiation

high rep.rate ⇒ multi-bunch stacking

•What is this?

- A mode-lock laser pumped by electron beam.
- A pre-bunch seeded FEL (~1 THz radiation from 1.3 GHz modulation)
- A broad-band FEL, compact and without an undulator.

Coherent Diffraction Radiation

- Beam pass through a small hole on a metal target.
- Radiation is produced at the electromagnetic boundary.
 - Similar as transition radiation, but beam is not destroyed.
 - Coherent radiation if the bunch length < wavelength.

- Characteristics
 - 1/γ angular distribution
 - Radial polarization
 - Forward and backward direction
 - Flat spectrum (HF cut-off by hole)

Stimulated radiation

- Radiation produced in an optical cavity and by a multibunch beam
- Emit radiation in the existing field.
 - Coherent stacking by amplitude addition.
 - Extract more energy (Stimulated).

Coherent Stacking

(1) Incoherent stacking (add by Intensity)

$$P_{out} = TP_{in} = T[P_1 + P_1(1-T) + P_1(1-T)^2 + \cdots]$$

= P_1

(2) Coherent stacking (add by amplitude)

$$P_{out} = TP_{in} = T \left| v_1 + v_1 \sqrt{1 - T} + v_1 (\sqrt{1 - T})^2 + \cdots \right|^2$$

$$= \frac{4}{T}P_1$$

Gain by factor 4/T Extract more energy (Stimulated radiation)

Longitudinal Field

- Decelerating field exists in the radial polarization mode.

Stacked field stimulate further radiation emission.

Mode-lock

- Wavelength << Cavity length
 - Many longitudinal modes (~1000)
 - CEP: carrier-envelope-phase

 Δφ= 0 (Zero-CEP) is necessary for multibunch coherent stacking

- CEP is determined by cavity design
 - R=L (confocal) \rightarrow Zero-CEP

$$\Delta \phi = 8 \tan^{-1} \left(\sqrt{\frac{L/R}{2 - L/R}} \right)$$

Optical Cavity Design

- Phase shift between the two cavity mirror is important
- Optimum parameter is $L = \rho$
 - L: cavity length
 - ρ : curvature radius cavity mirror

115 mm
$\pm 10~\mathrm{mm}$
50 mm
10 mm
$115 \pm 3 \text{ mm}$
3 mm (tapered to 6 mm)
Au-coated Cu

Rayleigh length of the eigenmode [unit of cavity length] (z₀/L)

Simulation

- Situation in an experiment
 - Fixed beam repetition (f)
 - Measure radiation power while changing cavity length (L)
- This is a single mode calculation.
 - There are many modes of broad wavelength and the resonance conditions are different in general.

$$v_m = v_1 + v_1 \sqrt{1 - \eta} e^{i\theta} + v_1 (\sqrt{1 - \eta} e^{i\theta})^2 + \dots + v_1 (\sqrt{1 - \eta} e^{i\theta})^{m-1}$$

Broad spectrum

- Many longitudinl modes (1THz = ~700-th modes (f=1.3GHz))
 Generally, different wavelength → different resonance condition.
 Exception: Zero-CEP case, a common resonance condition.

Zero-CEP is necessary for broad excitation

Experimental Setup

- Beam parameter
- Optical cavity
- Measurement system

Beam parameter

	target	established(2016.3)	this experiment
Beam energy	35 MeV	20 MeV	17.8 MeV
Average current	10 mA	1 mA	1μs burst
Bunch charge	77 pC/b	7.7 pC/b	1.2 pC/b
Bunch repetition	1.3 GHz	1.3 GHz, 162.5 MHz	1.3 GHz
Norm. emittance	0.3 mm•mrad	0.3 mm•mrad (0.5pC/b) 1.5 mm•mrad (7.7pC/b)	1.4 mm∙mrad
Bunch length(RMS)	3 ps 100 fs (compressed)	3 ps 250 fs (compressed)	<200 fs

Optical cavity

- •L=115mm. (Rep.rate 1.3GHz)
- R=115mm (Designed to be Zero-CEP)
- Au-coated Copper mirror
- Beam hole diameter 3mm
- Cavity length can be scanned by a piezo stage.

Parameter		value
Bunch repetition	f	1.3 GHz
Beam energy	E	20 MeV
Bunch charge	q	1 pC
Normalized emittance	ϵ_n	$1~\mu\mathrm{m}$
Bunch length	σ_t	150 fs
Cavity length	L	115 mm
Mirror curvature radius	R	115 mm
Mirror hole diameter	d	3 mm
Mirror diameter	D	50 mm
Cavity loss	η	0.05
Extraction efficiency	T	0.025
Target frequency	ν	0.5 THz

Setup

- Two THz detectors
 - Bolometer
 - •sensitive at 0.4~5 THz
 - •with/without BPF 0.5THz
 - QOD
 - •fast response
 - •low freq. mainly <0.4 THz

Experimental Result

- Observation of resonance peaks
- Signal growth waveform
- Beam deceleration

Resonance peak

- Scan cavity length, measuring THz power.
 A sharp peak was observed

Wide-band

Narrow-band (with 0.5THz BPF)

 $\lambda/2$ of 0.5THz (λ =600um)

Confirms zero-CEP design

Scan in this range

Fine scan

- The resonance peak has a fine structure.
 - (May be caused by higher-order transverse modes.)
- The peaks disappear when the cavity was blocked by inserting a screen monitor. (confirm resonance)

Scan in this range

Deceleration measurement

• H beam size: ~1.3mm(RMS)

Dispersion: 0.49m.

•0.5mm shift for 10^-3 energy variation.

Beam deceleration

Energy conservation

- Estimation: ~90 W in the above parameter (too ideal).
- More reasonable estimation: ~10 W
- •(considering cut-off effects of hole, finite bunch length etc.) Energy loss for 17.8 MeV beam should be 10⁻³

Deceleration

 Scan the cavity length while measuring THz power and beam energy.

Waveform

- Measured by a fast diode detector (QOD)
- Time constant τ = 67ns +- 5ns
 - •Loss estimated from τ is η = 0.0114

$$au = rac{2L}{c\eta}$$

Growth/decay time constant shows resonance nature

Future plan for CSR inverse Compton scattering

Inverse Compton Scattering by Coherent Synchrotron Radiation

Head-on ICS
$$E_X = \frac{4\gamma^2}{1 + K^2} E_L$$

Scattered photon energy E_x Laser energy E_I

CSR-ICS proposal

	GeV class ERL	GeV class ERL Compact EF	
	Case 1	Case 2	Case 3
Electron beam			
Beam energy	5 GeV	200 MeV	60 MeV
Electron Charge	1nC	1 nC	0.5 nC
Bunch length	30 fs	1 ps	1 ps
Scattered photon			
Photon energy	8 MeV	0.4 keV	0.04 keV
Flux	3x10e16	3x10e13	0.7x10e13

Intense gamma-ray for ILC positron source

Soft X-ray source at cERL

CSR-ICS plan at cERL

- We have a plan of CSR-ICS at the entrance of the return arc in the future.
- Expected scattered photon is VUV (20-30 eV)
- Start from two mirror scheme

(a) Schematic of Compton scattering

Beam Optics of Bunch Compression at the Compact ERL (poster WEPNEC12)

Tracking simulation by General Particle Tracer

Summary

- •We performed an experiment showing Stimulated Coherent Diffraction Radiation in Optical Cavity using a modern ERL test accelerator.
- Extract more power from the beam by coherent stacking mechanism.
- Key in the design is Zero-CEP for broad-band excitation.
- Experimental Results
 - Observed sharp resonance peak, showing broadband excitation.
 - Time domain measurement shows time constant characteristics.
 - Observed beam deceleration simultaneously with THz radiation.
- Next step
 - Understanding the fine structure in the resonance peak.
 - •CW beam operation with the small aperture.
- Future plan for CSR inverse Compton scattering
 - High-intensity X-ray and gamma-ray source based on the ERL