1

MA-2011

EE24Btech11022 - Eshan Sharma

- 1) For the rings $L = \frac{\mathbb{R}[x]}{\langle x^2 x + 1 \rangle}$; $M = \frac{\mathbb{R}[x]}{\langle x^2 + x + 1 \rangle}$; $N = \frac{\mathbb{R}[x]}{\langle x^2 + 2x + 1 \rangle}$; which of the following is **TRUE**? (ma-2011)
 - a) L is isomorphic to M; L is not isomorphic to N; M is not isomorphic to N
 - b) M is isomorphic to N; M is not isomorphic to L; N is not isomorphic to L
 - c) L is isomorphic to M; M is isomorphic to N
 - d) L is not isomorphic to M; L is not isomorphic to N; M is not isomorphic to N
- 2) The time to failure(in hours) of a component is a continuous random variable T with the probability density function

$$f(t) = \begin{cases} \frac{1}{10}e^{-\frac{t}{10}}, & t > 0, \\ 0, & t \le 0. \end{cases}$$

Ten of these components are installed in a system and they work independently. Then ,the probability than **NONE** of these fail before ten hours, is (ma-2011)

a)
$$e^{-10}$$

b)
$$1 - e^{-10}$$

c)
$$10e^{-10}$$

d)
$$1 - 10e^{-10}$$

3) Let X be the normal linear space of all real sequences with finitely many non-zero terms, with supremum norm and $T: X \to X$ be a one to one and onto linear operator defined by

$$\mathbf{T}(x_1, x_2, x_3...) = (x_1, \frac{x_2}{2}, \frac{x_3}{3}, ...)$$

Then, which of the following is **TRUE**?

(ma-2011)

- a) T is bounded but T^{-1} is not bounded b) T is not bounded but T^{-1} is bounded c) both T and T^{-1} are bounded d) neither T nor T^{-1} are bounded

- 4) Let $e_i = (0, \dots, 0, 1, 0, \dots)$ (i.e., e_i is the vector with 1 at the i^{th} place and 0 elsewhere) for $i = 1, 2, \dots$ Consider the statements:
 - P: $\{f(e_i)\}\$ converges for every continuous linear functional on ℓ^2 .
 - \mathbf{Q} : $\{e_i\}$ converges in l^2 .

Then, which of the following holds?

- a) Both P and Q are TRUE
- b) **P** is TRUE but **Q** is not TRUE
- c) P is not TRUE but Q is TRUE
- d) Neither **P** nor **Q** is TRUE
- 5) For which subspace $X \subset \mathbb{R}$ with the usual topology and with $\{0,1\} \subseteq X$, will a continuous function $f: X \to \{0, 1\}$ satisfying f(0) = 0 and f(1) = 1 exist?
 - a) X = [0, 1]
 - b) X = [-1, 1]
 - c) $X = \mathbb{R}$
 - d) $[0,1] \subset X$
- 6) Suppose X is a finite set with more than five elements. Which of the following is TRUE?
 - a) There is a topology on X which is T_1

- b) There is a topology on X which is T_3 but not T_1
- c) There is a topology on X which is T_2 but not T_1
- d) There is no topology on X which is T_1
- 7) A massless wire is bent in the form of a parabola $z = r^2$ and a bead slides on it smoothly. The wire is rotated about the z-axis with a constant angular acceleration α . Assume that m is the mass of the bead, ω is the initial angular velocity and g is the acceleration due to gravity. Then, the Lagrangian at any time t is
 - a) $\frac{m}{2} \left(\frac{dr}{dt}\right)^2 (1 + 4r^2)r^2 + (\omega + \alpha t)^2 + 2gr$ b) $\frac{m}{2} \left(\frac{dr}{dt}\right)^2 (1 + 4r^2)r^2 + (\omega + \alpha t)^2 2gr$

 - c) $\frac{m}{2} \left(\frac{dr}{dt} \right)^2 (1 + 4r^2)r^2 + (\omega + \alpha t)^2 2gr$
 - d) $\frac{m}{2} \left(\frac{dr}{dt}\right)^2 (1 + 4r^2)r^2 + (\omega + \alpha t)^2 + 2gr$
- 8) On the interval [0, 1], let y be a twice continuously differentiable function which is an extremal of the functional

$$J(y) = \int_0^1 \sqrt{1 + 2y'^2} \frac{y'}{x} dx$$

with y(0) = 1, y(1) = 2. Then, for some arbitrary constant c, y satisfies

- a) $v'^2(2-cx^2)=cx^2$
- b) $y'^2(2+cx^2) = cx^2$
- c) $y'(1 cx^2) = cx^2$
- d) $y'(1 + cx^2) = cx^2$

Let X and Y be two continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} 2, & 0 < x + y < 1, \ x > 0, \ y > 0, \\ 0, & \text{elsewhere.} \end{cases}$$

- 9) $P(X + Y < \frac{1}{2})$ is
 - a) $\frac{1}{4}$

b) $\frac{1}{2}$

c) $\frac{3}{4}$

d) 1

- 10) $E(X | Y = \frac{1}{2})$ is
 - a) $\frac{1}{4}$

b) $\frac{1}{2}$

c) 1

d) 2

Let $f(z) = \frac{z}{8-z^2}$, z = x + iy.

- 11) $Res_{z=2} f(z)$ is
 - a) $\frac{1}{9}$

b) $\frac{1}{6}$

c) $-\frac{1}{6}$

d) $-\frac{1}{8}$

- 12) The Cauchy principal value of $\int_{-\infty}^{\infty} f(x) dx$ is
 - a) $-\frac{\pi\sqrt{3}}{6}$
- b) $-\frac{\pi\sqrt{3}}{9}$

c) $\frac{\pi\sqrt{3}}{6}$

- d) $\pi \sqrt{3}$
- 13) Let $f_j(x) = \frac{x}{(j-1)x+j}$ and $s_n(x) = \sum_{j=1}^n f_j(x)$ for $x \in [0, 1]$. The sequence $\{s_n\}$
 - a) converges uniformly on [0, 1]
 - b) converges pointwise on [0, 1] but not uniformly
 - c) converges pointwise for x = 0 but not for $x \in (0, 1]$
 - d) does not converge for $x \in [0, 1]$