

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Generating Discrete Random Variates

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

Prerequisite

We assume the knowledge of discrete random variables (sect.6.1). In particular:

- Equilakely(a,b)
- Geometric(p)
- Bernoulli(p)
- Binomial(n,p)
- Pascal(n,p)
- $Poisson(\mu)$

Prof. Vittoria de Nitto Personè

2

```
sis2.c
#include <stdio.h>
#include "rng.h"
#define MINIMUM
                  20
#define MAXIMUM
                  80
#define STOP
                 100
                         /* 100 weeks = about 2 years*/
                  ((x) * (x))
#define sqr(x)
long Equilikely(long a, long b)
{ return (a + (long) ((b - a + 1) * Random()));}
long GetDemand(void)
       return (Equilikely(10, 50)); }
```

3

```
ssq2.c
                                distribution-driven simulation
#include <stdio.h>
#include <math.h>
#include "rng.h"
#define LAST
                       10000L
                                 /* number of jobs processed */
#define START
                       0.0
double Exponential(double m)
                                                  /* ----*
{return (-m * log(1.0 - Random())); }
                                                    m > 0.0
double Uniform(double a, double b)
\{\text{return } (a + (b - a) * \text{Random}());
                                                     a < b
                                                    ----*/
                  double GetArrival(void)
             {static double arrival = START;
               arrival += Exponential(2.0);
                    return (arrival);}
                 double GetService(void)
              {return (Uniform(1.0, 2.0));}
                      Prof. Vittoria de Nitto Personè
```

Preliminary Definitions

X random variable, $F(\cdot)$ is the cdf of X

The inverse distribution function (idf) of X is the function

 $F^*: (0, 1) \to \chi, \forall u \in (0, 1)$

$$F^*(u) = \min_{x} \{x : u < F(x)\}$$

that is, if $F^*(u)=x$, x is the smallest possible value of X for which F(x) is greater than u

Prof. Vittoria de Nitto Personè

5

5

Discrete Simulation Generating Discrete Random Variates

- $\chi = \{a, a+1, \ldots, b\}$, where b may be $\infty, F(\cdot)$ is the cdf of X,
- $F(x) = \text{Prob}\{X \le x\} = u_1 > u$ $F^*(u) = \min_{x} \{x : u < F(x)\}$

Theorem

- if u < F(a), $F^*(u) = a$
- else $F^*(u) = x$ where $x \in \chi$ is the unique possible value of X for which $F(x-1) \le u < F(x)$

Prof. Vittoria de Nitto Personè

6

Algorithm 1

```
x = a;

while (F(x) \le u)

x++;

return x; /*x is F*(u)*/
```

Average case analysis:

- let Y be the number of while loop passes
- Y = X a
- $E[Y] = E[X-a] = E[X] a = \mu a$

Linear search algorithm!

Prof. Vittoria de Nitto Personè

.

7

Discrete Simulation Generating Discrete Random Variates

Idea: start at a more likely point

For $\chi=\{a,a+1,...,b\}$, a more efficient linear search algorithm defines $F^*(u)$

Algorithm 2

 $F^*(u) = x$ u = ---- $a \mod x \mod b$

For large χ , consider binary search

Prof. Vittoria de Nitto Personè

8

Idf Examples

- In some cases $F^*(u)$ can be determined explicitly
- If *X* is *Bernoulli(p)* and *F*(*x*) = *u*, then *x*=0 iff 0 < *u* < 1-*p*

$$F^*(u) = \begin{cases} 0 & 0 < u < 1 - p \\ 1 & 1 - p \le u < 1 \end{cases}$$

Prof. Vittoria de Nitto Personè

9

9

Discrete Simulation Generating Discrete Random Variates

Random Variate Generation By Inversion

- X is a discrete random variable with idf $F^*(\cdot)$
- continuous random variable *U* is *Uniform*(0,1)
- Z is the discrete random variable defined by $Z = F^*(U)$

Theorem

Z and X are identically distributed

this Theorem allows any discrete random variable (with known idf) to be generated with one call to Random()

Algorithm 3

u = Random(); return F*(u);

Prof. Vittoria de Nitto Personè

10

Inversion Examples

• Consider X with pdf

$$f(x) = \begin{cases} 0.1 & x = 2 \\ 0.3 & x = 3 \\ 0.6 & x = 6 \end{cases}$$

• The cdf for X is plotted using two formats

Prof. Vittoria de Nitto Personè

11

11

Discrete Simulation Generating Discrete Random Variates

if (u < 0.1) return 2; else if (u < 0.4)

else if (u < 0.4) return 3;

else return 6;

This algorithm returns

2 with probability 0.1, 3 with probability 0.3 and 6 with probability 0.6.

This corresponds to the pdf of X.

more efficiency: check the ranges for u associated with x = 6 first (the mode), then x = 3, then x = 2

• problems may arise when $|\chi|$ is large or infinite

Prof. Vittoria de Nitto Personè

12

More inversion examples

Generating a Bernoulli(p) random variate

```
u = Random();
if (u < 1-p)
return 0;
else
return 1;
```

Generating an Equilikely(a,b) random variate

```
u = Random();
return a + (long) (u * (b - a + 1));
```

Prof. Vittoria de Nitto Personè

13

13

Discrete Simulation Generating Discrete Random Variates

Library rvgs

- Includes 6 discrete random variate generators (as below) and 7 continuous random variate generators
 - long Bernoulli(double p)
 - long Binomial(long n, double p)
 - long Equilikely(long a, long b)
 - long Geometric(double p)
 - long Pascal(long n, double p)
 - long Poisson(double μ)
- Functions Bernoulli, Equilikely, Geometric use inversion; essentially ideal
- Functions Binomial, Pascal, Poisson do not use inversion

Prof. Vittoria de Nitto Personè

Library rvms

- Provides accurate pdf, cdf, idf functions for many random variates
- Idfs can be used to generate random variates by inversion
- Functions idfBinomial, idfPascal, idfPoisson may have high marginal execution times
- Not recommended when many observations are needed due to time inefficiency
- · Array of cdf values with inversion may be preferred

Prof. Vittoria de Nitto Personè

15

15

Discrete Simulation
Discrete Random Variates

Truncation

Sometimes, the realistic values of a variable are restricted to a subset

X random variable with possible values $\chi = \{0, 1, 2, ...\}$ and cdf $F(x) = Pr(X \le x)$

- want to restrict *X* to the finite range $0 \le a \le x \le b < \infty$
- if a > 0, $\alpha = \Pr(X < a)$, $\beta = \Pr(X > b)$

$$\alpha = \Pr(X < a) = \Pr(X \le a-1) = F(a-1)$$

$$\beta = \Pr(X > b) = 1 - \Pr(X \le b) = 1 - F(b)$$

$$Pr(a \le X \le b) = Pr(X \le b) - Pr(X \le a) = F(b) - F(a-1)$$

essentially, always true iff $F(b) \cong 1.0$ and $F(a-1) \cong 0.0$

Prof. Vittoria de Nitto Personè

Discrete Simulation
Discrete Random Variates

Specifying truncation points

• if a and b are specified

Left-tail, right-tail probabilities α and β obtained using cdf

$$\alpha = \Pr(X < a) = F(a-1)$$
 and $\beta = \Pr(X > b) = 1-F(b)$
transformation is exact

• if α and β are specified

idf can be used to obtain a and b $a = F^*(\alpha) \quad \text{and} \quad b = F^*(1-\beta)$

transformation is not exact because X is discrete

$$\Pr(X < a) \le \alpha \text{ and } \Pr(X > b) < \beta$$

Prof. Vittoria de Nitto Personè

17

17

$$F(x-1) \le u < F(x)$$

Specifying truncation points

• if α and β are specified

 $\Pr(X < a) \le \alpha$

 $b = F^*(1-\beta)$

 $F(b) > 1 - \beta$ $Pr(X \le b) > 1 - \beta$

 $-\Pr(X \le b) < \beta - 1$ $-\Pr(X \le b) < \beta - 1$ $1-\Pr(X \le b) < \beta$

 $-\Pr(X \le b) < \beta$ $\Pr(X > b) < \beta$

Prof. Vittoria de Nitto Personè

18

Discrete Simulation Discrete Random Variates

Effects of truncation

sometimes truncation is insignificant: truncated and un-truncated random variables have (essentially) the same distribution

Truncation is useful for efficiency:

- When idf is complex, inversion requires cdf searchcdf values are typically stored in an array
- Small range gives improved space/time efficiency

Truncation is useful for realism:

• Prevents arbitrarily large values possible from some variates

In some applications, truncation is significant

- Produces a new random variable
- Must be done correctly!

Prof. Vittoria de Nitto Personè

19