Topic to discuss

- -> Interpolation
- -> Extra polation
- -> Difference between Interpolation & Extrapolation
- -> Graph Representation
- -> Operators in interbolation
- -> Methods to solve interpolation

Interpolation: Interpolation is the process of estimating unknown values within

Lea	YAM Q.C.	01	Known	data	points
The	range	<u> </u>			

		esti	im ating	unkn	own	Values
2	range	9	Known	data	poin	tso
	X	y			100	
	2	5		S		
	4	8		CXO		
	6	13				
	8	22	So)			
	OJ	35	177			
		4				

Extrapolation: Extrapolation is the process of estimating unknown values outside the range of known data points.

X	y
2	5
4	8
6	13
8	22
OJ	35

Comparison

Aspect	Interpolation	Extrapolation
Data Range	Within the range of known data points	Outside the range of known data points
Accuracy	Generally higher, more reliable	Generally lower, more prone to errors
Risk	Lower risk, as estimates are within the observed range	Higher risk, as estimates rely on the assumption that trends continue beyond the known data
Common Methods	Linear, polynomial (Lagrange, Newton), spline	Linear, polynomial, various models
Application	Estimating intermediate values	Predicting future values or values beyond observed range

Graph Representation

Operators in Numerical Method

Operators are used to facilitate the process of estimating unknown values between known data points.

Difference Operators:

- 1) Forward différence operators (A)
- 2) Backward difference operators (V)
- 3) Central différence Opérators (8)

Shift Operators

- 1) Forward shift operators (E)
- 2) Backward shift Operators (E-1)
 veraging Operator (H)

Averaging Operator (4)

Methods to solve Interpolation

For Equal Intervals:

- -> Newton Forward
- -> Newton Backward
- -> central difference
- → Gauss forward

 → Gauss backward

 - -> Stirling central difference

-> Bessel's Central difference

	X	y
formand	2	5
xo (3)	4	8
	6	13
io.	8	22
	10	35
Rackward		

Un equal Intervals:

- -> Lagrange's interpolation
- → Newton divide and difference

Connect with me

