ENSET – LOKOSSA

Année scolaire: 2022 - 2023

Devoir: Mesures et Essais

<u>Filières</u>: ELT1 – ELE1 – FC1

Durée: 1 H - 30 mn

Exercice 1

Calcule l'incertitude relative sur l'énergie consommée par un récepteur de résistance R branché sous une tension U pendant un temps t. On donne : R = $150 \pm 1,5 \Omega$; U = $230 \pm 3,10 \text{ V}$ et t = $15 \pm 0,5 \text{ s}$.

Exercice 2

On dispose d'un milliampèremètre tel que :

- sa résistance interne vaut 10Ω ,
- sa déviation totale correspond à un courant de 1 mA.
- 1- Calcule le shunt nécessaire pour obtenir une sensibilité de 0,5 A.
- 1- Le shunt précédent étant débranché, quelle résistance additionnelle doit-on mettre en série avec ce milliampèremètre pour obtenir une sensibilité de 3 V. Quelle est la sensibilité de cet appareil ?
 - 4- Quelle devait être sa résistance interne si l'on veut mesurer un courant sur une échelle de 5 A ?

Exercice 3

On se propose de mesurer les puissances active P, réactive Q et apparente S d'un moteur asynchrone triphasé.

Pour mesurer la puissance apparente S, on utilise un ampèremètre (A) et un voltmètre (V). Pour mesurer les puissances active et réactive P et Q, on utilise deux wattmètres (W_1) et (W_2).

- 2- Donne les schémas de branchement des appareils de mesure.
- 3- Sachant que les caractéristiques des appareils de mesure sont

Appareil	Type	Calibre	Lecture	Echelle	Classe
V	Magnétoélectrique avec redresseur	700 V	96	150	1,5
А	Magnétoélectrique avec redresseur	25 A	75	100	1
W ₁	Electrodynamique	600 V – 25 A	76	200	1,5
W ₂	Electrodynamique	600 V – 25 A	28	150	1,5

- a) Calcule ΔI et ΔV . Déduis en $\frac{\Delta S}{S}$ et ΔS .
- b) Calcule Δ P₁ et Δ P₂. Déduis en Δ P, Δ Q, $\frac{\Delta$ P}{P} et $\frac{\Delta$ Q.
- c) Exprime de deux manières différentes les résultats de mesure.