## Team G20

| Amal Sony             | asony   |
|-----------------------|---------|
| Mohd Sharique Khan    | mkhan8  |
| Siddu Madhure Jayanna | smadhur |

1)

- Constructing decision tree on the given data by using Information Gain (IG)
   Assuming class T→TRUE , F→FALSE
  - → Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 9         |

$$H(C) = -\frac{9}{16}\log_2\frac{9}{16} - \frac{7}{16}\log_2\frac{7}{16} = 0.9886$$

→ Checking for best split for continuous attribute V1:

When split happens at V1=7

 $V1 \leq 7$ 

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C|V1 \le 7) = 0$$

*V*1 > 7

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 8         |

$$H(C|V1 > 7) = 0.99$$
  
 $H(C|V1) = 0 * \frac{1}{16} + \frac{15}{16} * .99 = 0.928$ 

When split happens at V1=10

 $V1 \leq 10$ 

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$H(C|V1 \le 10) = 0$$

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 7         |

$$H(C|V1 > 10) = 1$$
  
 $H(C|V1) = 0.875$ 

## $V1 \leq 11$

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 2         |

$$H(C|V1 \le 11) = 0.91$$

#### V1 > 11

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 7         |

$$H(C|V1 > 11) = 0.99$$
  
 $H(C|V1) = 0.975$ 

## When split happens at V1=13

## $V1 \le 13$

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$H(C|V1 \le 13) = 0.811$$

## *V*1 > 13

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 6         |

$$H(C|V1 > 13) = 1$$
  
 $H(C|V) = 0.9527$ 

## When split happens at V1=15

## *V*1 ≤ 15

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 3         |

$$H(C|V1 \le 15) = 0.970$$

## V1 > 15

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 6         |

$$H(C|V1 > 15) = .994$$
  
 $H(C|V) = 0.9865$ 

## When split happens at V1=18

## *V*1 ≤ 18

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 4         |

$$H(C|V1 \le 18) = 0.91$$

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 5         |

$$H(C|V1 > 18) = 1$$
  
 $H(C|V) = 0.96625$ 

*V*1 ≤ 20

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 5         |

$$H(C|V1 \le 20) = 0.86$$

## V1 > 20

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 4         |

$$H(C|V1 > 20) = .991$$
  
 $H(C|V) = 0.933$ 

## When split happens at V1=22

 $V1 \le 22$ 

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$H(C|V1 \le 22) = 0.811$$

## V1 > 22

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$H(C|V1 > 22) = .954$$
  
 $H(C|V) = 0.8825$ 

## When split happens at V1=27

 $V1 \le 27$ 

| Class | Frequency |
|-------|-----------|
| True  | 3         |
| False | 6         |

$$H(C|V1 \le 27) = 0.91$$

## V1 > 27

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 3         |

$$H(C|V1 > 27) = .985$$
  
 $H(C|V) = 0.9428$ 

## When split happens at V1=30

 $V1 \leq 30$ 

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 6         |

$$H(C|V1 \le 30) = 0.970$$

| Class Frequency |
|-----------------|
|-----------------|

| True  | 3 |
|-------|---|
| False | 3 |

$$H(C|V1 > 30) = 1$$
  
 $H(C|V) = 0.98125$ 

 $V1 \leq 32$ 

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 6         |

$$H(C|V1 \le 32) = 0.99$$

## V1 > 32

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 3         |

$$H(C|V1 > 32) = 0.97$$
  
 $H(C|V) = 0.983$ 

When split happens at V1=35

 $V1 \leq 35$ 

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 6         |

$$H(C|V1 \le 35) = 1$$

## V1 > 35

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$H(C|V1 > 35) = 0.811$$
  
 $H(C|V) = 0.952$ 

When split happens at V1=37

 $V1 \leq 37$ 

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 7         |

$$H(C|V1 \le 37) = 0.995$$

## V1 > 37

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 2         |

$$H(C|V1 > 37) = 0.91$$
  
 $H(C|V) = 0.979$ 

When split happens at V1=40

 $V1 \le 40$ 

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 7         |

$$H(C|V1 \le 40) = 1$$

V1 > 40

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$H(C|V1 > 40) = 0$$
  
 $H(C|V) = 0.875$ 

When split happens at V1=43

 $V1 \le 43$ 

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 8         |

$$H(C|V1 \le 43) = 0.996$$

V1 > 43

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C|V1 > 43) = 0$$
  
 $H(C|V) = 0.993$ 

Information gain for the splits:

| Split | IG                   |
|-------|----------------------|
| V1=7  | 0.9886-0.928 = 0.060 |
| V1=10 | 0.1136               |
| V1=11 | 0.0136               |
| V1=13 | 0.035                |
| V1=15 | 0.002                |
| V1=18 | 0.02                 |
| V1=20 | 0.05                 |
| V1=22 | 0.106                |
| V1=27 | 0.04                 |
| V1=30 | 0.007                |
| V1=32 | 0.005                |
| V1=35 | 0.03                 |
| V1=37 | 0.009                |
| V1=40 | 0.113                |
| V1=43 | 0.004                |

The maximum IG occurs at Split V1=10 and V1=40. Taking the first into consideration and modifying splitting the categorical attribute V1 as  $V1 \le 10$  and V1 > 10

Checking the best attribute to split the decision tree on below data:

| V1   | V2    | V3    | V4   | V5   | Class |
|------|-------|-------|------|------|-------|
| <=10 | BLUE  | LONG  | HOT  | HIGH | F     |
| <=10 | WHITE | SHORT | COOL | HIGH | F     |

| >10 | BLUE  | SHORT | НОТ  | HIGH | Т |
|-----|-------|-------|------|------|---|
| >10 | WHITE | LONG  | НОТ  | HIGH | F |
| >10 | BLUE  | SHORT | COOL | HIGH | Т |
| >10 | WHITE | SHORT | HOT  | HIGH | F |
| >10 | BLUE  | LONG  | COOL | HIGH | F |
| >10 | WHITE | LONG  | COOL | HIGH | F |
| >10 | WHITE | LONG  | COOL | LOW  | Т |
| >10 | BLUE  | SHORT | COOL | LOW  | Т |
| >10 | WHITE | SHORT | COOL | LOW  | Т |
| >10 | BLUE  | SHORT | НОТ  | LOW  | Т |
| >10 | WHITE | SHORT | НОТ  | LOW  | F |
| >10 | BLUE  | LONG  | COOL | LOW  | Т |
| >10 | WHITE | LONG  | НОТ  | LOW  | F |
| >10 | BLUE  | LONG  | НОТ  | LOW  | F |

## Checking information gain for V5:

V5 = HIGH

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$H(C|V5 = HIGH) = 0.811$$

V5=LOW

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$H(C|V5 = LOW) = 0.954$$
  
 $H(C|V5) = 0.8825$ 

# Checking information gain for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$H(C|V4 = COOL) = 0.954$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$H(C|V4 = HOT) = 0.811$$
  
 $H(C|V4) = 0.8825$ 

Checking information gain for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$H(C|V3 = LONG) = 0.811$$

#### V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$H(C|V3 = SHORT) = 0.954$$
  
 $H(C|V3) = 0.8825$ 

## Checking information gain for V2:

## V2=BLUE

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$H(C|V2 = BLUE) = 0.954$$

#### V2=WHITE

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$H(C|V2 = WHITE) = 0.811$$
  
 $H(C|V2) = 0.8825$ 

## Checking information gain for V1:

## $V1 \leq 7$

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C|V1 \le 7) = 0$$

## V1 > 7

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 8         |

$$H(C|V1 > 7) = 0.99$$
  
 $H(C|V1) = 0 * \frac{1}{16} + \frac{15}{16} * .99 = 0.928$ 

#### Information Gains Table:

| Attribute | IG                   |
|-----------|----------------------|
| V1        | 0.9886-0.875=0.116   |
| V2        | 0.9886-0.8825=0.1061 |
| V3        | 0.9886-0.8825=0.1061 |
| V4        | 0.9886-0.8825=0.1061 |

| V5 0.9886-0.8825=0.1061 |
|-------------------------|
|-------------------------|

The best attribute to split on is V1. Using the attribute V1 to split while building the decision tree:

## Tree:



# Checking for split if V1<=10:

→ Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$H(C) = 0$$

Therefor we don't need to split if V1<=10. It will be a leaf node.

## Tree:



# Checking for next split if V1>10:

→ Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 7         |

$$H(C) = 1$$

## Checking information gain for V5:

V5 = HIGH

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 4         |

$$H(C|V5 = HIGH) = 0.918$$

V5=LOW

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$H(C|V5 = LOW) = 0.954$$
  
 $H(C|V5) = 0.938$ 

Checking information gain for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 2         |

$$H(C|V4 = COOL) = 0.863$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 5         |

$$H(C|V4 = HOT) = 0.863$$
  
 $H(C|V4) = 0.863$ 

Checking information gain for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 2         |

$$H(C|V3 = LONG) = 0.863$$

V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 5         |

$$H(C|V3 = SHORT) = 0.863$$
  
 $H(C|V3) = 0.863$ 

Checking information gain for V2:

## V2=BLUE

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 2         |

$$H(C|V2 = BLUE) = 0.863$$

## V2=WHITE

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 5         |

$$H(C|V2 = WHITE) = 0.863$$
  
 $H(C|V2) = 0.863$ 

## Information Gains Table:

| Attribute | IG                 |
|-----------|--------------------|
| V2        | 0.9886-0.863=0.131 |
| V3        | 0.9886-0.863=0.131 |
| V4        | 0.9886-0.863=0.131 |
| V5        | 0.9886-0.938=0.06  |

The next best attribute to split on are V2, V3 and V4. Using the attribute V2 to split while building the decision tree:

#### Tree:



# Checking for next split if V1>10 and V2 = BLUE:

## → Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 5         |

| False | 2 |
|-------|---|
|       |   |

$$H(C) = 0.863$$

Checking information gain for V5:

V5 = HIGH

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 1         |

$$H(C|V5 = HIGH) = 0.918$$

V5=LOW

| Class | Frequency |
|-------|-----------|
| True  | 3         |
| False | 1         |

$$H(C|V5 = LOW) = 0.811$$
  
 $H(C|V5) = 0.856$ 

Checking information gain for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 3         |
| False | 1         |

$$H(C|V4 = COOL) = 0.811$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 1         |

$$H(C|V4 = HOT) = 0.918$$
  
 $H(C|V4) = 0.856$ 

Checking information gain for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 2         |

$$H(C|V3 = LONG) = 0.918$$

V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 0         |

$$H(C|V3 = SHORT) = 0$$
  
$$H(C|V3) = 0.393$$

Information Gains Table:

| Attribute | IG                |
|-----------|-------------------|
| V3        | 0.863-0.393=0.47  |
| V4        | 0.863-0.856=0.006 |
| V5        | 0.863-0.856=0.006 |

The next best attribute to split on are V3 based on IG. Using the attribute V3 to split while building the decision tree:

#### Tree:



## Checking for split if V1>10 and V2=BLUE and V3 = SHORT:

# → Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 0         |

$$H(C) = 0$$

Therefor we don't need to split if V1>10 and V2=BLUE and V3 = SHORT. It will be a leaf node.



# Checking for next split if V1>10 and V2 = BLUE and V3 = LONG:

# → Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 2         |

$$H(C) = 0.918$$

# Checking information gain for V5:

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C|V5 = HIGH) = 0$$

## V5=LOW

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 1         |

$$H(C|V5 = LOW) = 1$$
$$H(C|V5) = 0.66$$

Checking information gain for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 1         |

$$H(C|V4 = COOL) = 1$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C|V4 = HOT) = 0$$
$$H(C|V4) = 0.66$$

Information Gains Table:

| Attribute | IG               |
|-----------|------------------|
| V4        | 0.918-0.66=0.258 |
| V5        | 0.918-0.66=0.258 |

The next best attribute to split can be both V4 and V5 based on IG. Using the attribute V4 to split while building the decision tree:



# Checking for split if V1>10 and V2=BLUE and V3 = LONG and V4 = HOT:

# → Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C) = 0$$

Therefor we don't need to split if V1>10 and V2=BLUE and V3 = SHORT and V4 = HOT. It will be a leaf node.



# Checking for next split if V1>10 and V2 = WHITE:

→ Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 5         |

$$H(C) = 0.863$$

## Checking information gain for V5:

V5 = HIGH

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 3         |

$$H(C|V5 = HIGH) = 0$$

V5=LOW

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 2         |

$$H(C|V5 = LOW) = 1$$
  
 $H(C|V5) = 0.571$ 

## Checking information gain for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 1         |

$$H(C|V4 = COOL) = 0.918$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 4         |

$$H(C|V4 = HOT) = 0$$
  
 $H(C|V4) = 0.393$ 

## Checking information gain for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$H(C|V3 = LONG) = 0.811$$

V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 2         |

$$H(C|V3 = SHORT) = 918$$
$$H(C|V3) = 0.856$$

## Information Gains Table:

| Attribute | IG                |
|-----------|-------------------|
| V3        | 0.863-0.856=0.006 |
| V4        | 0.863-0.393=0.46  |
| V5        | 0.863-0.571=0.29  |

The next best attribute to split will be V4 based on IG. Using the attribute V4 to split while building the decision tree:



# Checking for split if V1>10 and V2=WHITE and V4 = HOT:

→ Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 4         |

$$H(C) = 0$$

Therefor we don't need to split if V1>10 and V2=WHITE and V4 = HOT. It will be a leaf node.

## Tree:



Checking for next split if V1>10 and V2 = WHITE and V4 = COOL:

→ Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 1         |

$$H(C) = 0.918$$

Checking information gain for V5:

V5 = HIGH

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C|V5 = HIGH) = 0$$

V5=LOW

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 0         |

$$H(C|V5 = LOW) = 0$$
$$H(C|V5) = 0$$

Checking information gain for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 1         |

$$H(C|V3 = LONG) = 1$$

V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 0         |

$$H(C|V3 = SHORT) = 0$$
$$H(C|V3) = 0.66$$

Information Gains Table:

| Attribute | IG               |
|-----------|------------------|
| V3        | 0.918-0.66=0.258 |
| V5        | 0.918-0=0.918    |

The next best attribute to split will be V5 based on IG. Using the attribute V5 to split while building the decision tree:



# Checking for split if V1>10 and V2=WHITE and V4 = COOL and V5=HIGH:

# → Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$H(C) = 0$$

Therefor we don't need to split if V1>10 and V2=WHITE and V4 = COOL and V5=HIGH. It will be a leaf node.



# Checking for split if V1>10 and V2=WHITE and V4 = COOL and V5=LOW:

# → Entropy of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 0         |

$$H(C) = 0$$

Therefor we don't need to split if V1>10 and V2=WHITE and V4 = COOL and V5=LOW. It will be a leaf node.



## **Final Decision Tree:**



## 2. Constructing decision tree on the given data by using GINI INDEX

GINI INDEX of Class: H(C)

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 9         |

$$GINI(C) = 1 - \left(\frac{9}{16}\right)^2 - \left(\frac{7}{16}\right)^2 = 0.492$$

Checking for best split for continuous attribute V1:

When split happens at V1=7

 $V1 \le 7$ 

|       | _          |
|-------|------------|
| Class | Frequency  |
| Liass | FIEGUEIICY |
|       | - 1 /      |

| True  | 0 |
|-------|---|
| False | 1 |

$$GINI(V1 \le 7) = 0$$

V1 > 7

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 8         |

$$GINI(V1 > 7) = 0.4977$$
  
 $GINI(V1) = 0.465$ 

## When split happens at V1=10

 $V1 \le 10$ 

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$GINI(V1 \le 10) = 0$$

*V*1 > 10

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 7         |

$$GINI(V1 > 10) = 0.5$$
  
 $GINI(V1) = 0.4375$ 

## When split happens at V1=11

*V*1 ≤ 11

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 2         |

$$GINI(V1 \le 11) = 0.44$$

V1 > 11

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 7         |

$$GINI(V1 > 11) = 0.497$$
  
 $GINI(V1) = 0.4863$ 

## When split happens at V1=13

 $V1 \le 13$ 

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$GINI(V1 \le 13) = 0.375$$

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 6         |

$$GINI(V1 > 13) = 0.5$$
  
 $GINI(V) = 0.468$ 

## $V1 \le 15$

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 3         |

$$GINI(V1 \le 15) = 0.48$$

#### V1 > 15

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 6         |

$$GINI(V1 > 15) = 0.495$$
  
 $GINI(V) = 0.49$ 

## When split happens at V1=18

## $V1 \le 18$

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 4         |

$$GINI(V1 \le 18) = 0.44$$

## *V*1 > 18

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 5         |

$$GINI(V1 > 18) = 0.5$$
  
 $GINI(V) = 0.4775$ 

## When split happens at V1=20

## *V*1 ≤ 20

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 5         |

$$GINI(V1 \le 20) = 0.408$$

## V1 > 20

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 4         |

$$GINI(V1 > 20) = .494$$
  
 $GINI(V) = 0.456$ 

## When split happens at V1=22

## *V*1 ≤ 22

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$GINI(V1 \le 22) = 0.375$$

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$GINI(V1 > 22) = .468$$
  
 $GINI(V1) = 0.4215$ 

 $V1 \le 27$ 

| Class | Frequency |
|-------|-----------|
| True  | 3         |
| False | 6         |

$$GINI(V1 \le 27) = 0.44$$

## V1 > 27

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 3         |

$$GINI(V1 > 27) = .489$$
  
 $GINI(V1) = 0.4614$ 

## When split happens at V1=30

 $V1 \leq 30$ 

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 6         |

$$GINI(V1 \le 30) = 0.480$$

#### V1 > 30

| Class | Frequency |
|-------|-----------|
| True  | 3         |
| False | 3         |

$$GINI(V1 > 30) = 0.5$$
  
 $H(C|V) = 0.4875$ 

## When split happens at V1=32

 $V1 \leq 32$ 

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 6         |

$$GINI(V1 \le 32) = 0.496$$

#### V1 > 32

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 3         |

$$GINI(V1 > 32) = 0.48$$
  
 $GINI(V1) = 0.491$ 

## When split happens at V1=35

 $V1 \leq 35$ 

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 6         |

$$GINI(V1 \le 35) = 0.5$$

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$GINI(V1 > 35) = 0.375$$
  
 $H(C|V) = 0.4687$ 

 $V1 \leq 37$ 

| Class | Frequency |
|-------|-----------|
| True  | 6         |
| False | 7         |

$$GINI(V1 \le 37) = 0.497$$

## V1 > 37

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 2         |

$$GINI(V1 > 37) = 0.44$$
  
 $GINI(V1) = 0.4375$ 

When split happens at V1=40

 $V1 \le 40$ 

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 7         |

$$GINI(V1 \le 40) = 0.5$$

## V1 > 40

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$GINI(V1 > 40) = 0$$
  
 $H(C|V) = 0.4375$ 

When split happens at V1=43

## $V1 \le 43$

| Class | Frequency |
|-------|-----------|
| True  | 7         |
| False | 8         |

$$GINI(V1 \le 43) = 0.497$$

## V1 > 43

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 1         |

$$GINI(V1 > 43) = 0$$
  
 $GINI(V1) = 0.465$ 

The minimum GINI INDEX occurs at Split V1=22. Splitting the categorical attribute V1 as  $V1 \le 22$  and V1 > 22. Modified Data:

|      | 1.70  |       |                | l    |       |
|------|-------|-------|----------------|------|-------|
| I V1 | 1 1/2 | 1 1/2 | 1 1/4          | I V5 | Clacc |
| V I  | V Z   | V J   | V <del>4</del> | V J  | Class |
|      |       |       |                |      |       |

| <=22 | BLUE  | LONG  | НОТ  | HIGH | F |
|------|-------|-------|------|------|---|
| <=22 | BLUE  | LONG  | COOL | HIGH | F |
| <=22 | WHITE | LONG  | HOT  | HIGH | F |
| <=22 | WHITE | LONG  | COOL | HIGH | F |
| <=22 | WHITE | SHORT | COOL | HIGH | F |
| <=22 | WHITE | SHORT | HOT  | HIGH | F |
| <=22 | BLUE  | SHORT | HOT  | HIGH | Т |
| <=22 | BLUE  | SHORT | COOL | HIGH | Т |
| >22  | BLUE  | LONG  | HOT  | LOW  | F |
| >22  | WHITE | LONG  | HOT  | LOW  | F |
| >22  | WHITE | SHORT | HOT  | LOW  | F |
| >22  | BLUE  | LONG  | COOL | LOW  | Т |
| >22  | BLUE  | SHORT | COOL | LOW  | Т |
| >22  | BLUE  | SHORT | НОТ  | LOW  | Т |
| >22  | WHITE | LONG  | COOL | LOW  | Т |
| >22  | WHITE | SHORT | COOL | LOW  | Т |

# Checking GINI Index for V5:

V5 = HIGH

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$GINI(V5 = HIGH) = 0.375$$

## V5=LOW

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$GINI(V5 = LOW) = 0.468$$
  
 $GINI(V5) = 0.4215$ 

# Checking GINI Index for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$\overline{GINI(V4 = COOL)} = 0.468$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$GINI(V4 = HOT) = 0.375$$
  
 $GINI(V4) = 0.4215$ 

# Checking GINI Index for V3:

#### V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$GINI(V3 = LONG) = 0.375$$

## V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$GINI(V3 = SHORT) = 0.468$$
$$GINI(V3) = 0.4215$$

## Checking GINI Index for V2:

#### V2=BLUE

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$GINI(V2 = BLUE) = 0.468$$

#### V2=WHITE

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$GINI(V2 = WHITE) = 0.375$$
  
 $GINI(V2) = 0.4215$ 

## Checking GINI Index for V1:

## $V1 \leq 22$

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$GINI(V1 \le 22) = .375$$

## V1 > 22

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$GINI(V1 > 22) = 0.468$$
  
 $GINI(V1) = 0.4215$ 

Since the GINI index for all the attributes Is same, we choose to V1 node to split upon.

## Tree:



# Checking for next split if V1<=22:

Checking GINI Index for V5:

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 6         |

$$GINI(V5) = 0.375$$

# Checking GINI Index for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$GINI(V4 = COOL) = 0.375$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$GINI(V4 = HOT) = 0.375$$
  
 $GINI(V4) = 0.375$ 

# Checking GINI Index for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 4         |

$$GINI(V3 = LONG) = 0$$

V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 2         |

$$GINI(V3 = SHORT) = 0.5$$

## Checking GINI Index for V2:

V2=BLUE

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 2         |

$$GINI(V2 = BLUE) = 0.5$$

V2=WHITE

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 4         |

$$GINI(V2 = WHITE) = 0$$
  
 $GINI(V2) = 0.25$ 

V2 and V3 both have the lowest GINI. Therefor selecting V2 to split upon next.

#### Tree:



# Checking for next split if V1<=22 and V2 = WHITE:

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 4         |

GINI = 0. There is no need to split. This will lead to leaf node in the tree.



# Checking for next split if V1<=22 and V2 = BLUE:

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 2         |

GINI(Class) = 0.5

# Checking GINI Index for V5:

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 2         |

GINI(V5) = 0.5

# Checking GINI Index for V4:

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 1         |

$$GINI(V4 = COOL) = 0.5$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 1         |

$$GINI(V4 = HOT) = 0.5$$
$$GINI(V4) = 0.5$$

# Checking GINI Index for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$GINI(V3 = LONG) = 0$$

V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 0         |

$$GINI(V3 = SHORT) = 0$$
$$GINI(V3) = 0$$

V3 has have the lowest GINI. Therefor selecting V3 to split upon next. Since we need to construct the tree only till depth 2.



# Checking for next split if V1>22:

Checking GINI Index for V5:

| Class | Frequency |
|-------|-----------|
| True  | 5         |
| False | 3         |

$$GINI(V5) = 0.468$$

## Checking GINI Index for V4:

V4 = COOL

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 0         |

$$GINI(V4 = COOL) = 0$$

V4 = HOT

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

$$GINI(V4 = HOT) = 0.375$$
  
 $GINI(V4) = 0.1875$ 

## Checking GINI Index for V3:

V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 2         |
| False | 2         |

$$GINI(V3 = LONG) = 0.5$$

V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 3         |
| False | 1         |

$$GINI(V3 = SHORT) = 0.375$$
$$GINI(V3) = 0.4375$$

## Checking GINI Index for V2:

V2=BLUE

| Class | Frequency |
|-------|-----------|
| True  | 3         |
| False | 1         |

$$GINI(V2 = BLUE) = 0.375$$

V2=WHITE

| Class | Frequency |
|-------|-----------|
| True  | 2         |

| False                  | 2 |  |
|------------------------|---|--|
| GINI(V2 = WHITE) = 0.5 |   |  |
| GINI(V2) = 0.4375      |   |  |

V4 has the lowest GINI. Therefor selecting V4 to split upon next.

## Tree:



# Checking for next split if V1>22 and V4=COLD:

| Class | Frequency |
|-------|-----------|
| True  | 4         |
| False | 0         |

GINI(C) = 0, We don need to split is further. It will be a leaf node in the tree.



# Checking for next split if V1>22 and V4=HOT:

Checking GINI Index for V5:

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 3         |

GINI(V5) = 0.375

# Checking GINI Index for V3:

## V3=LONG

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$GINI(V3 = LONG) = 0$$

# V3=SHORT

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 1         |

$$GINI(V3 = SHORT) = 0.5$$
$$GINI(V3) = 0.25$$

Checking GINI Index for V2:

#### V2=BLUE

| Class | Frequency |
|-------|-----------|
| True  | 1         |
| False | 1         |

$$GINI(V2 = BLUE) = 0.5$$

#### V2=WHITE

| Class | Frequency |
|-------|-----------|
| True  | 0         |
| False | 2         |

$$GINI(V2 = WHITE) = 0$$
$$GINI(V2) = 0.25$$

V2 and V3 have the lowest GINI. Therefore, V2 will be selected to split on next. As the decision tree should have max depth of 2. We will not split the tree anymore.

#### Tree:



# **Final Decision Tree Using GINI Index:**



- 3. The two Trees mainly differs with respect to the value of V1(The continuous attribute value). The first Tree splits the continuous attribute into range V1<=10 and V1>10 and the second tree splits the same as V1<=22 and V1>22. Both trees may behave similar in some cases but are very different from each other due to the different split of the continuous attribute.
  - The trees may result in different class label when V1<=10. The First tree doesn't consider
    any other attributes on the range V1<=10 and directly classifies the record with a label 'F'
    while the second tree will consider other attributes as well and hence may result in a
    different class label.</li>
    - For example: Consider the test record R(10,BLUE,SHORT,HOT,HIGH) (10,BLUE,SHORT,HOT,HIGH)  $\rightarrow$  Classified as False by first tree but the second tree can classify the same as true (if the tree gives priority to 'T' label in case of a tie).
  - Similarly, the trees will behave differently when V1>22 and V4 = COOL. The first try will look for other attributes and try to assign a label based on the attributes whereas the second tree will directly assign the label 'T' for such records.

For Example: R(50,WHITE,LONG,COOL,HIGH)

(50,WHITE,LONG,COOL,HIGH)→Classifies as 'False' by the first decision tree while as 'True' by the second decision tree.

4. Consider the training data set:

Assumption: the tree gives priority to 'T' label in case of a tie.

| V1 | V2    | V3    | V4   | V5   | Class | Classification<br>Decision<br>tree (IG) | Classification<br>Decision<br>tree (GINI) |
|----|-------|-------|------|------|-------|-----------------------------------------|-------------------------------------------|
| 7  | BLUE  | LONG  | НОТ  | HIGH | F     | F                                       | T                                         |
| 10 | WHITE | SHORT | COOL | HIGH | F     | F                                       | F                                         |
| 11 | BLUE  | SHORT | НОТ  | HIGH | Т     | T                                       | Т                                         |
| 13 | WHITE | LONG  | HOT  | HIGH | F     | F                                       | F                                         |
| 15 | BLUE  | SHORT | COOL | HIGH | T     | Т                                       | Т                                         |
| 18 | WHITE | SHORT | HOT  | HIGH | F     | F                                       | F                                         |
| 20 | BLUE  | LONG  | COOL | HIGH | F     | T                                       | T                                         |
| 22 | WHITE | LONG  | COOL | HIGH | F     | F                                       | F                                         |
| 27 | WHITE | LONG  | COOL | LOW  | T     | Т                                       | Т                                         |
| 30 | BLUE  | SHORT | COOL | LOW  | Т     | Т                                       | Т                                         |
| 32 | WHITE | SHORT | COOL | LOW  | T     | Т                                       | Т                                         |
| 35 | BLUE  | SHORT | HOT  | LOW  | T     | Т                                       | F                                         |
| 37 | WHITE | SHORT | НОТ  | LOW  | F     | F                                       | F                                         |
| 40 | BLUE  | LONG  | COOL | LOW  | T     | T                                       | Т                                         |
| 43 | WHITE | LONG  | НОТ  | LOW  | F     | F                                       | F                                         |
| 50 | BLUE  | LONG  | НОТ  | LOW  | F     | F                                       | F                                         |

Optimistic training error for DT1(IG) = 1/16

Optimistic training error for DT1(GINI) = 3/16

So, we can say that the decision tree constructed using Information Gain performs better on the training data than the decision tree constructed using GINI index.

The outcome of the test data can't be determined. The performance the decision trees will completely depend upon the type of the test data used.

2)

a. Number of misclassifications = 2+2+4=8
 Number of instances classified = 34

$$Optimistic\; error = \frac{8}{34} = 0.235$$

Pessimistic error = 
$$\frac{8 + (7 * 0.5)}{34} = \frac{11.5}{34} = 0.338$$

| Width | Temperature | Size  | Color | Label | Predicted Label |
|-------|-------------|-------|-------|-------|-----------------|
| Long  | Low         | Small | White | No    | Yes             |
| Short | Low         | Big   | Red   | No    | Yes             |
| Short | Low         | Big   | Red   | No    | Yes             |
| Short | Low         | Big   | Blue  | No    | No              |
| Short | Low         | Small | Blue  | No    | No              |
| Short | Low         | Big   | White | No    | Yes             |
| Long  | Low         | Big   | Blue  | Yes   | Yes             |
| Long  | Low         | Big   | Red   | Yes   | Yes             |
| Long  | Low         | Big   | Blue  | Yes   | Yes             |
| Long  | Low         | Small | Red   | Yes   | Yes             |
| Long  | Low         | Small | Red   | Yes   | Yes             |
| Long  | Low         | Small | White | Yes   | Yes             |
| Short | Low         | Big   | Green | Yes   | Yes             |
| Short | Low         | Big   | Red   | Yes   | Yes             |
| Short | High        | Big   | Blue  | Yes   | Yes             |
| Short | Low         | Small | Blue  | Yes   | No              |
| Short | High        | Small | Red   | Yes   | No              |
| Short | Low         | Small | Red   | Yes   | Yes             |
| Short | High        | Big   | Green | Yes   | Yes             |
| Short | Low         | Big   | White | Yes   | Yes             |

|        | Predicted |     |    |  |
|--------|-----------|-----|----|--|
|        |           | Yes | No |  |
| Actual | Yes       | 12  | 2  |  |
|        | No        | 4   | 2  |  |

| Accuracy:   | 14/20 | 0.7   |
|-------------|-------|-------|
| Precision:  | 12/16 | 0.75  |
| Recall:     | 12/14 | 0.857 |
| F1 score:   | 24/30 | 0.8   |
| Error rate: | 6/20  | 0.3   |

### a. Before splitting on node 'Color'

Number of misclassifications = 10

Total number of instances =25

Optimistic error = 10/25 = 0.4

## After splitting on node 'Color'

Number of misclassifications = 8

Total number of instances = 25

Optimistic error = 8/25 = 0.32

Since the optimistic error reduced after splitting, the node should not be pruned.

## b. Before splitting on node 'Color'

Number of misclassifications = 10

Number of leaf nodes = 1

Total number of instances =25

Pessimistic error = (10+0.8)/25 = 0.432

#### After splitting on node 'Color'

Number of misclassifications = 8

Number of leaf nodes = 4

Total number of instances = 25

Pessimistic error = (8+4\*0.8)/25 = 0.448

Since the pessimistic error increased after splitting, the node should be pruned.

# c. <u>Classification when 'Color' node is pruned</u>

| Width | Temperature | Size  | Label | Predicted Label |
|-------|-------------|-------|-------|-----------------|
| Long  | Low         | Small | No    | Yes             |
| Short | Low         | Big   | No    | Yes             |
| Short | Low         | Big   | No    | Yes             |
| Short | Low         | Big   | No    | Yes             |
| Short | Low         | Small | No    | Yes             |
| Short | Low         | Big   | No    | Yes             |
| Long  | Low         | Big   | Yes   | Yes             |
| Long  | Low         | Big   | Yes   | Yes             |
| Long  | Low         | Big   | Yes   | Yes             |
| Long  | Low         | Small | Yes   | Yes             |
| Long  | Low         | Small | Yes   | Yes             |
| Long  | Low         | Small | Yes   | Yes             |
| Short | Low         | Big   | Yes   | Yes             |
| Short | Low         | Big   | Yes   | Yes             |
| Short | High        | Big   | Yes   | Yes             |
| Short | Low         | Small | Yes   | Yes             |
| Short | High        | Small | Yes   | No              |
| Short | Low         | Small | Yes   | Yes             |
| Short | High        | Big   | Yes   | Yes             |
| Short | Low         | Big   | Yes   | Yes             |

|        | Predicted |     |    |  |
|--------|-----------|-----|----|--|
|        |           | Yes | No |  |
| Actual | Yes       | 13  | 1  |  |
|        | No        | 6   | 0  |  |

| Accuracy:   | 13/20 | 0.65 |
|-------------|-------|------|
| Precision:  | 13/19 | 0.68 |
| Recall:     | 13/14 | 0.93 |
| F1 score:   | 24/30 | 0.79 |
| Error rate: | 7/20  | 0.35 |

|                | Before Splitting | After Splitting |
|----------------|------------------|-----------------|
| Training Error | 0.294            | 0.235           |
| Test Error     | 0.35             | 0.3             |

Since both the training error and test error reduced after splitting, the original tree was not over fitting.

4)

## a. Euclidean distance formula:

```
euclidean_distance <- function(x1, y1, x2, y2){ sqrt((x1-y1)^2) + (x2-y2)^2)}
```

# **Distance Matrix:**

| ID | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       |
|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 1  | 0       | 32.7452 | 24.6272 | 9.8488  | 33.5596 | 13.6014 | 10.1980 | 5.8309  | 27.5408 |
| 2  | 32.7452 | 0       | 8.1394  | 41.5000 | 2.2360  | 45.5000 | 42.5470 | 35.5140 | 5.5901  |
| 3  | 24.6272 | 8.1394  | 0       | 33.5335 | 9.0138  | 37.5299 | 34.5036 | 27.6134 | 3.1622  |
| 4  | 9.8488  | 41.5000 | 33.5335 | 0       | 42.5470 | 4.0000  | 2.2360  | 6.0827  | 36.5855 |
| 5  | 33.5596 | 2.2360  | 9.0138  | 42.5470 | 0       | 46.5429 | 43.5000 | 36.6230 | 6.0207  |
| 6  | 13.6014 | 45.5000 | 37.5299 | 4.0000  | 46.5429 | 0       | 3.6055  | 10.0498 | 40.5770 |
| 7  | 10.1980 | 42.5470 | 34.5036 | 2.2360  | 43.5000 | 3.6055  | 0       | 7.6157  | 37.5033 |
| 8  | 5.8309  | 35.5140 | 27.6134 | 6.0827  | 36.6230 | 10.0498 | 7.6157  | 0       | 30.7001 |
| 9  | 27.5408 | 5.5901  | 3.1622  | 36.5855 | 6.0207  | 40.5770 | 37.5033 | 30.7001 | 0       |

(b)

# i. A holdout test dataset consisting of last 4 instances

## Test set:

| 6 | 48.0 | 11.0 | + |
|---|------|------|---|
| 7 | 45.0 | 13.0 | - |
| 8 | 38.0 | 10.0 | + |
| 9 | 7.5  | 13.5 | - |

Closest point to 6 is 4 and 4's class is (+)

Closest point to 7 is 4 and 4's class is (+)

Closest point to 8 is 1 and 1's class is (-)

Closest point to 9 is 3 and 3's class is (+)

#### **Confusion Matrix:**

|            | Actual |      |       |  |  |  |
|------------|--------|------|-------|--|--|--|
|            |        | TRUE | FALSE |  |  |  |
| Prediction | TRUE   | 1    | 2     |  |  |  |
|            | FALSE  | 1    | 0     |  |  |  |

Testing accuracy: 1/4 = 0.25

# ii. 3-fold cross-validation, using the following folds with IDs: [3,6,9], [1,4,7], [2,5,8] respectively

# Round 1 – when [3,6,9] is used as test set:

Closest point to 3 is 2 and 2's class is (-)

Closest point to 6 is 7 and 7's class is (-)

Closest point to 9 is 2 and 2's class is (-)

#### **Confusion Matrix:**

|            | Actual |      |       |  |  |  |
|------------|--------|------|-------|--|--|--|
|            |        | TRUE | FALSE |  |  |  |
| Prediction | TRUE   | 0    | 0     |  |  |  |
|            | FALSE  | 2    | 1     |  |  |  |

Testing accuracy: 1/3 = 0.33

## Round 2 – when [1,4,7] is used as test set:

Closest point to 1 is 8 and 8's class is (+)

Closest point to 4 is 6 and 6's class is (+)

Closest point to 7 is 6 and 6's class is (+)

#### **Confusion Matrix:**

|            | Actual |      |       |  |  |  |
|------------|--------|------|-------|--|--|--|
|            |        | TRUE | FALSE |  |  |  |
| Prediction | TRUE   | 1    | 2     |  |  |  |
|            | FALSE  | 0    | 0     |  |  |  |

Testing accuracy: 1/3 = 0.33

# Round 3 – when [2,5,8] is used as test set:

Closest point to 2 is 9 and 9's class is (-)

Closest point to 5 is 9 and 9's class is (-)

Closest point to 8 is 1 and 1's class is (-)

#### **Confusion Matrix:**

|            | Actual |      |       |  |  |  |
|------------|--------|------|-------|--|--|--|
|            |        | TRUE | FALSE |  |  |  |
| Prediction | TRUE   | 0    | 0     |  |  |  |
|            | FALSE  | 1    | 2     |  |  |  |

Testing accuracy:2/3 = 0.66

## Overall testing accuracy = (0.66 + 0.33 + 0.33) / 3 = 0.44

#### iii. Leave one out cross validation (LOOCV)

Closest point to 2 is 9 and 9's class is (-)

| Test Set Item | Closest Item | Predicted Value | Actual Value | Testing Accuracy |
|---------------|--------------|-----------------|--------------|------------------|
| 1             | 8            | +               | -            | 0                |
| 2             | 5            | -               | -            | 1                |
| 3             | 7            | -               | +            | 0                |
| 4             | 7            | -               | +            | 0                |
| 5             | 2            | -               | -            | 1                |
| 6             | 7            | -               | +            | 0                |
| 7             | 4            | +               | -            | 0                |
| 8             | 1            | -               | +            | 0                |
| 9             | 3            | +               | -            | 0                |

## Overall testing accuracy = 2 / 9 = 0.22

c)

Initially, the ratio of positives to negatives will be equal(given). But, when we take one item out as a test item (as part of LOOCV), the majority class will be always opposite to the class of the test item. Therefore, the prediction will always be wrong and thus the accuracy of the model drops to zero.

5)

e)

#### Overall accuracy comparison

## Analysis of KNN Models:

| Model            | Accuracy |
|------------------|----------|
| KNN (euclidean)  | 0.56     |
| KNN (cosine)     | 0.88     |
| KNN (confidence) | 0.9      |

From the overall accuracy calculations, we can see the KNN Model with confidence performed the best.

## Analysis of Decision Tree Models:

| Model                     | Accuracy |
|---------------------------|----------|
| Decision Tree             | 0.58     |
| Decision Tree with cross  |          |
| validation and complexity |          |
| parameter tuning          | 0.46     |

From the overall accuracy calculations, we can see that the basic decision tree model performed the best.

# Comparison in terms of confusion matrix

## KNN Classifier using Euclidean distance

|            |   | Reference |   |   |   |
|------------|---|-----------|---|---|---|
| Prediction |   | 1         | 2 | 3 | 4 |
|            | 1 | 8         | 5 | 7 | 6 |
|            | 2 | 0         | 9 | 1 | 0 |
|            | 3 | 0         | 0 | 6 | 0 |
|            | 4 | 1         | 1 | 1 | 5 |

# class 1 instances misclassified = 1

# class 2 instances misclassified = 6

# class 3 instances misclassified = 9

# class 4 instances misclassified = 6

Class 3 has had the greatest number of misclassifications.

## KNN classifier using cosine distance

|            |   | Reference |    |    |   |
|------------|---|-----------|----|----|---|
| Prediction |   | 1         | 2  | 3  | 4 |
|            | 1 | 9         | 0  | 1  | 2 |
|            | 2 | 0         | 15 | 1  | 1 |
|            | 3 | 0         | 0  | 13 | 1 |
|            | 4 | 0         | 0  | 0  | 7 |

# class 1 instances misclassified = 0

# class 2 instances misclassified = 0

# class 3 instances misclassified = 2

# class 4 instances misclassified = 4

Class 4 has had the greatest number of misclassifications, but this number is smaller when compared to the KNN Model using Euclidean distance.

# KNN classifier with confidence calculation

|            |   | Reference |    |    |   |
|------------|---|-----------|----|----|---|
| Prediction |   | 1         | 2  | 3  | 4 |
|            | 1 | 9         | 0  | 0  | 1 |
|            | 2 | 0         | 14 | 1  | 1 |
|            | 3 | 0         | 0  | 14 | 1 |
|            | 4 | 0         | 1  | 0  | 8 |

# class 1 instances misclassified = 0

# class 2 instances misclassified = 1

# class 3 instances misclassified = 1

# class 4 instances misclassified = 3

The statistic for this model is even better.

Class 4 still has the greatest number of misclassifications, but the number has gone down again when compared to the previous model.

Also, the total number of misclassifications has also gone down.

#### **Decision Tree Model**

|            |   | Reference |   |   |   |
|------------|---|-----------|---|---|---|
| Prediction |   | 1         | 2 | 3 | 4 |
|            | 1 | 8         | 6 | 7 | 5 |
|            | 2 | 0         | 8 | 0 | 0 |
|            | 3 | 0         | 1 | 8 | 1 |
|            | 4 | 1         | 0 | 0 | 5 |

# class 1 instances misclassified = 1

# class 2 instances misclassified = 7

# class 3 instances misclassified = 7

# class 4 instances misclassified = 6

Class 2 and 3 has the greatest number of misclassifications.

Decision Tree with cross validation and hyperparameter tuning

|            |   | Reference |   |    |   |
|------------|---|-----------|---|----|---|
| Prediction |   | 1         | 2 | 3  | 4 |
|            | 1 | 8         | 7 | 13 | 6 |
|            | 2 | 0         | 8 | 0  | 0 |
|            | 3 | 0         | 0 | 2  | 0 |
|            | 4 | 1         | 0 | 0  | 5 |

# class 1 instances misclassified = 1

# class 2 instances misclassified = 7

# class 3 instances misclassified = 13

# class 4 instances misclassified = 6

Class 3 has the greatest number of misclassifications.

Out of all the classes, the number of misclassifications for class 1 is the least. So, we can conclude that class 1 performs better than all the other classes.