SAR Test Report

Report No.: AGC08745161201FH01

FCC ID : 2AI8UWT

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: 4G FREE ROAMING

BRAND NAME : World Touch

MODEL NAME : WT

CLIENT: Dai Shogun Holdings

DATE OF ISSUE: Apr. 26,2017

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC08745161201FH01 Page 2 of 90

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Apr. 26,2017	Valid	Original Report

Report No.: AGC08745161201FH01 Page 3 of 90

	Test Report Certification
Applicant Name	Dai Shogun Holdings
Applicant Address	33rd Floor, Shui On Center, 6-8 Harbour Road, Wanchai
Manufacturer Name	Shenzhen EasyLink Technology Co., Ltd
Manufacturer Address	1701B, 1701B BAK Technology Building, NO.9 Keyan Road, Nanshan District, Shenzhen, China.
Product Designation	4G FREE ROAMING
Brand Name	World Touch
Model Name	WT
Different Description	N/A
EUT Voltage	DC3.7V by battery
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005
Test Date	Mar. 17,2017 to Apr. 24,2017
	Attestation of Global Compliance(Shenzhen) Co., Ltd.
Performed Location	2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China
Report Template	AGCRT-US-4G/SAR (2016-01-01)

	Front Thou				
Tested By	Eric Zhou(Zhou Yongkang)	Apr. 17,2017			
	Angola li				
Checked By	Angela Li(Li Jiao)	Apr. 26,2017			
Authorized By	solya shong				
	Solger Zhang(Zhang Hongyi) Authorized Officer	Apr. 26,2017			

Report No.: AGC08745161201FH01 Page 4 of 90

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	10 10 11
4. SAR MEASUREMENT PROCEDURE	12
4.1. SPECIFIC ABSORPTION RATE (SAR)	13
5. TISSUE SIMULATING LIQUID	16
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	16
6. SAR SYSTEM CHECK PROCEDURE	19
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	21
7.1. TEST POSITION	21
8. SAR EXPOSURE LIMITS	22
9. TEST EQUIPMENT LIST	23
10. MEASUREMENT UNCERTAINTY	24
11. CONDUCTED POWER MEASUREMENT	25
12. TEST RESULTS	40
12.1. SAR TEST RESULTS SUMMARY	40
APPENDIX A. SAR SYSTEM CHECK DATA	52
APPENDIX B. SAR MEASUREMENT DATA	68
APPENDIX C. TEST SETUP PHOTOGRAPHS	87
APPENDIX D. CALIBRATION DATA	91

Page 5 of 90

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Fraguency Bond	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit (W/Kg)	
Frequency Band —	Body-worn (with 0mm separation)		
GSM 850	0.510		
PCS 1900	0.923		
UMTS Band II	0.770		
UMTS Band V	0.499		
LTE Band 5	0.567	1.6	
LTE Band 17	0.225		
LTE Band 41	0.668		
WIFI 2.4G	0.484		
Simultaneous	1.407		
Reported SAR	וודעו		
SAR Test Result	PASS		

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std.1528:2013; FCC 47CFR§2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D06 Hotspot Mode v02r01
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D05 SAR for LTE Devices v02r05

Report No.: AGC08745161201FH01 Page 6 of 90

2. GENERAL INFORMATION

2.1 FUT Description

2.1. EUT Description General Information					
Product Designation	4G FREE ROAMING				
Test Model	WT				
Hardware Version	V1.3				
Software Version	V1.0				
Device Category	Portable				
RF Exposure Environment	Uncontrolled				
Antenna Type	Internal				
GSM and GPRS& EGPRS					
Support Band	⊠GSM 850 ⊠GSM 900 ⊠DCS 1800 ⊠PCS 1900				
GPRS & EGPRS Type	Class B				
GPRS & EGPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)				
TX Frequency Range	GSM 850 : 820-850MHz; PCS 1900: 1850-1910MHz;				
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz				
Release Version	R99				
Type of modulation	GMSK for GSM/GPRS; GMSK & 8-PSK for EGPRS				
Antenna Gain	1.0dBi				
Max. Average Power	GSM850: 31.31dBm; PCS1900: 28.05dBm				
WCDMA					
Support Band	☑UMTS FDD Band II ☑UMTS FDD Band V ☐UMTS FDD Band IV ☑UMTS FDD Band I ☐UMTS FDD Band III ☑UMTS FDD Band VIII				
HS Type	HSPA(HSUPA/HSDPA)				
TX Frequency Range	FDD Band II: 1850-1910MHz; FDD Band V: 820-850MHz				
RX Frequency Range	FDD Band II: 1930-1990MHz; FDD Band V: 869-894MHz				
Release Version	Rel-6				
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK				
Antenna Gain	1.0dBi				
Max. Average Power	Band II: 19.93dBm; Band V: 19.88dBm				

Page 7 of 90

EUT Description(Continue)

EUT Description (Continue)				
WIFI				
WIFI Specification	☐802.11a ☐802.11b ☐802.11g ☐802.11n(20) ☐802.11n(40)			
Operation Frequency	2412~2472MHz			
Avg. Burst Power	11b: 14.51dBm,11g:11.32dBm,11n(20):11.18dBm,11n(40):10.73dBm			
Antenna Gain	1.12dBi			
LTE				
Support Band	□FDD Band 2 □FDD Band 4 □FDD Band 5 □FDD Band 17 □FDD Band 19 □FDD Band 25 □FDD Band 26 □TDD Band 41 (U.S. Bands) □FDD Band 1 □FDD Band 3 □FDD Band 7 □FDD Band 8 □FDD Band 20 □TDD Band 33 □TDD Band 34 □TDD Band 38 □FDD Band 40 □FDD Band 42 □FDD Band 43 (Non-U.S. Bands)			
TX Frequency Range	Band 5:824-849MHz;Band 17: 704-716 MHz; Band 41: 2496-2690 MHz;			
RX Frequency Range	Band 5:869-894MHz;Band 17 734-746 MHz; Band 41: 2496-2690 MHz;			
Release Version	Rel-8			
Type of modulation	QPSK,16QAM			
Antenna Gain	1.1dBi(LTE band 5),1.3dBi(LTE band 17), 1.1dBi(LTE band 19), 0.6dBi(LTE band 41)			
Max. Average Power	Band 5: 23.33dBm; Band 17: 22.96dBm Band 41: 22.99dBm			
Bluetooth				
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0+HS □V4.0 □V4.1			
Operation Frequency	2402~2480MHz			
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK			
Peak Power	4.796dBm			
Antenna Gain	1.12dBi			
Li-ion Battery				
Brand Name	N/A			
Model Name	535081			
Manufacturer Name	DongGuan New Cell Energy Technical Co., Ltd.			
Manufacturer Address	NO.11, Lingheng Road, Lingxia Management Area, Liaobu Town, Dongguan, Guangdong, China.			
Capacitance 6000mAh				
Rated Voltage/ Charging Voltage	DC3.7V/ DC4.2V			

Note:1.CMU200 can measure the average power and Peak power at the same time 2.The sample used for testing is end product.

Product

Type

Production unit

Identical Prototype

Page 8 of 90

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

Report No.: AGC08745161201FH01 Page 9 of 90

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5
Manufacture	MVG
Identification No.	SN 14/16 EP308
Frequency	0.3GHz-3.7GHz Linearity:±0.08dB(300MHz -3.7GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.08dB
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.

Model	SSE5	
Manufacture	MVG	
Identification No.	SN 14/16 EP307	
Frequency	0.7GHz-3GHz Linearity:±0.05dB(700MHz-3GHz)	ランエチナ
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.05dB	77333
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm	
Application	High precision dosimetric measurements in any ex (e.g., very strong gradient fields). Only probe which compliance testing for frequencies up to 3 GHz with 30%.	n enables

Page 10 of 90

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

- ☐ High precision (repeatability 0.02 mm)
- ☐ High reliability (industrial design)
- ☐ Jerk-free straight movements
- ☐ Low ELF interference (the closed metallic

construction shields against motor control fields)

☐ 6-axis controller

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the

horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position

has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Page 11 of 90

3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- □ Left head
- □ Right head
- ☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Page 12 of 90

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
σ is the conductivity of the tissue in siemens per metre;
ρ is the density of the tissue in kilograms per cubic metre;
c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt} \mid t=0 \quad \text{is the initial time derivative of temperature in the tissue in kelvins per second}$

Page 13 of 90

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 14 of 90

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 3 - 4 GHz: \leq 5 m 2 - 3 GHz: \leq 5 mm* 4 - 6 GHz: \leq 4 m	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	$\begin{array}{c} \Delta z_{Z00m}(1)\text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Z00m}(n > 1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		3 - 4 GHz: ≥ 28 mm ≥ 30 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: AGC08745161201FH01 Page 15 of 90

4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GPRS/EGPRS, HSPA, LTE, WIFI, BT, and support hot spot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

4.3.1. Antenna Location: (back view)

Page 16 of 90

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Bactericide	DGBE	1,2 Propanediol	Triton X-100
750 Body	55	1	0.0	0.0	44	0.0
835 Body	54.00	1	0.0	15	0.0	30
1900 Body	70	1	0.0	9	0.0	20
2450 Body	70	1	0.0	9	0.0	20
2600 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	he	ad	l	oody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
750	41.9	0.89	55.5	0.96
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1750	40.1	1.37	53.4	1.49
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.00	1.96	52.51	2.16
3000	38.5	2.40	52.0	2.73

($\epsilon r = relative permittivity$, $\sigma = conductivity and <math>\rho = 1000 \text{ kg/m}3$)

Page 17 of 90

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

	Tissue Stimulant Measurement for 750MHz							
	Fr.	Dielectric Parameters (±5%)		Tissue				
	(MHz)	εr 55.5(52.725-58.275)	δ[s/m]0.96(0.912-1.008)	Temp [°C]	Test time			
Body	709	55.63	0.93					
	710	54.99	0.94	20.5	Mar.			
	711	54.13	0.95	20.5	17,2017			
	750	53.62	0.97					

Tissue Stimulant Measurement for 835MHz						
	Fr.	Dielectric Par	ameters (±5%)	Tissue		
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [°C]	Test time	
Body	824.2	56.37	0.93			
	835	55.41	0.95	21.3	Mar.	
	836	55.03	0.96	21.3	21,2017	
	848.8	54.13	0.98			

Tissue Stimulant Measurement for 835MHz							
	Fr.	Dielectric Parameters (±5%)		Tissue			
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [°C]	Test time		
Body	826.6	55.71	0.94				
	835	55.32	0.95	21.5	Mar.		
	836	54.95	0.95	21.5	24,2017		
	846.4	54.51	0.96				

Tissue Stimulant Measurement for 835MHz							
	Fr.	Dielectric Parameters (±5%)					
	(MHz)	er 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [°C]	Test time		
Body	829	55.31	0.94				
	835	54.82	0.95	21.1	Mar.		
	836.5	54.26	0.97	21.1	25,2017		
	844	53.89	0.98				

Page 18 of 90

	Tissue Stimulant Measurement for 1900MHz							
	Fr.	Dielectric Par	ameters (±5%)	Tissue				
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [°C]	Test time			
	1850.2	54.28	1.47					
Body	1852.6	53.96	1.48					
	1880	53.54	1.50	20.7	Apr.07,2017			
	1900	53.03	1.52	20.7	Apr.07,2017			
	1907.4	51.67	1.53					
	1909.8	51.42	1.54					

Tissue Stimulant Measurement for 1900MHz							
	Fr.	Dielectric Parameters (±5%)		Tissue			
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [°C]	Test time		
Body	1860	54.00	1.49		Max		
	1880	53.86	1.50	22.3	Mar. 21,2017		
	1900	53.53	1.52		21,2017		

Tissue Stimulant Measurement for 2450MHz							
	Fr.	Dielectric Parameters (±5%)		Tissue			
	(MHz)	er52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [°C]	Test time		
Body	2412	54.86	1.89				
	2437	53.98	1.92	21.5	Apr 17 2017		
	2450	53.11	1.95	21.5	Apr.17,2017		
	2462	52.65	1.96				

Tissue Stimulant Measurement for2600MHz							
	Fr.	Dielectric Parameters (±5%)		Tissue			
	(MHz)	Er52.51 (49.88-55.14)	δ[s/m] 2.16 (2.05-2.27)	Temp [°C]	Test time		
Body	2560	52.85	2.11				
	2593	51.97	2.14	20.6	Apr 24 2017		
	2600	51.68	2.15	20.6	Apr. 24,2017		
	2680	50.52	2.18				

Page 19 of 90

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Page 20 of 90

6.2. SAR System Check

6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
750MHz	176	100	6.35
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6
2450MHz	51.5	30.4	3.6
2600MHz	48.5	28.8	3.6

6.2.2. System Check Result

System Performance Check at 750 MHz & 835 MHz&1900MHz & 2450MHz& 2600MHz for Body								
Validation K	Validation Kit: SN47/14 DIP 0G750-340&SN29/15 DIP 0G835-383&SN 29/15 DIP 1G900-389& SN 29/15DIP							
2G450-393 8	% SN 47/1	4 DIP 2G	600-342					
	Tar	get	Reference	ce Result	Tes	sted	Tissue	
Frequency	Value(W/Kg)	(± 1	0%)	Value	W/Kg)	Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
750	8.78	5.86	7.902-9.658	5.274-6.446	9.093	5.944	20.5	Mar. 17,2017
835	9.85	6.45	8.865-10.835	5.805-7.095	9.859	6.332	21.3	Mar. 21,2017
835	9.85	6.45	8.865-10.835	5.805-7.095	10.256	6.546	21.5	Mar. 24,2017
835	9.85	6.45	8.865-10.835	5.805-7.095	9.921	6.359	21.1	Mar. 25,2017
1900	39.38	20.86	35.442-43.318	18.774-22.946	42.116	21.936	20.7	Apr.07,2017
1900	39.38	20.86	35.442-43.318	18.774-22.946	37.586	19.964	22.3	Mar. 21,2017
2450	49.92	23.16	44.928-54.912	20.844-25.476	52.334	23.427	21.5	Apr.17,2017
2600	52.19	23.58	46.971-57.409	21.222-25.938	53.922	24.273	20.6	Apr. 24,2017

Note:

⁽¹⁾ We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.

Page 21 of 90

7. EUT TEST POSITION

This EUT was tested in Body back, Body front and 4 edges.

7.1. Test Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 0mm.

Page 22 of 90

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-2005 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 23 of 90

9. TEST EQUIPMENT LIST

Equipment description Manufacturer/ Model Identification No. Current calibration date Next calibratio date SAR Probe MVG SN 14/16 EP307 07/05/2016 07/04/2017 SAR Probe MVG SN 14/16 EP308 12/05/2016 12/04/2017 TISSUE Probe SATIMO SN 23/16 OCPG 75 07/05/2016 07/04/2017 Phantom SATIMO SN_4511_SAM90 Validated. No cal required. Validated. No cal required. Liquid SATIMO - Validated. No cal required. Validated. No cal required. Comm Tester Agilent-8960 GB46310822 03/02/2017 03/01/2018 Comm Tester R&S- CMW500 S/N121209 07/18/2016 07/17/2017 Multimeter Keithley 2000 1188656 03/02/2017 03/01/2018	
SAR Probe MVG SN 14/16 EP308 12/05/2016 12/04/2017 TISSUE Probe SATIMO SN 23/16 OCPG 75 07/05/2016 07/04/2017 Phantom SATIMO SN_4511_SAM90 Validated. No cal required. Validated. No cal required. Liquid SATIMO - Validated. No cal required. Validated. No cal required. Comm Tester Agilent-8960 GB46310822 03/02/2017 03/01/2018 Comm Tester R&S- CMW500 S/N121209 07/18/2016 07/17/2017 Multimeter Keithley 2000 1188656 03/02/2017 03/01/2018	aescription
TISSUE Probe SATIMO SN 23/16 OCPG 75 07/05/2016 07/04/2017 Phantom SATIMO SN_4511_SAM90 Validated. No cal required. Validated. No cal required. Liquid SATIMO - Validated. No cal required. Validated. No cal required. Comm Tester Agilent-8960 GB46310822 03/02/2017 03/01/2018 Comm Tester R&S- CMW500 S/N121209 07/18/2016 07/17/2017 Multimeter Keithley 2000 1188656 03/02/2017 03/01/2018	SAR Probe
Phantom SATIMO SN_4511_SAM90 Validated. No cal required. Validate	SAR Probe
Liquid SATIMO SN_4511_SAM90 required. required.	ISSUE Probe
Liquid SATIMO required. required. required. Comm Tester Agilent-8960 GB46310822 03/02/2017 03/01/2018 Comm Tester R&S- CMW500 S/N121209 07/18/2016 07/17/2017 Multimeter Keithley 2000 1188656 03/02/2017 03/01/2018 SN47/14 DIP	Phantom
Comm Tester R&S- CMW500 S/N121209 07/18/2016 07/17/2017 Multimeter Keithley 2000 1188656 03/02/2017 03/01/2018	Liquid
Multimeter Keithley 2000 1188656 03/02/2017 03/01/2018	Comm Tester
SN47/14 DIP	Comm Tester
SN47/14 DIP	Multimeter
Dipole SATIMO SID750 0G750-340 12/03/2014 12/02/2017	Dipole
Dipole SATIMO SID835 SN29/15 DIP 07/05/2016 07/04/2019	Dipole
Dipole SATIMO SID1900 SN 29/15 DIP 1G900-389 07/05/2016 07/04/2019	Dipole
Dipole SATIMO SID2450 SN29/15 DIP 2G450-393 07/05/2016 07/04/2019	Dipole
Dipole SATIMO SID2600 SN47/14 DIP 2G600-342 12/03/2014 12/02/2017	Dipole
Signal Generator Agilent-E4438C US41461365 03/02/2017 03/01/2018	gnal Generator
Vector Analyzer Agilent / E4440A US40420298 07/02/2016 07/01/2017	ector Analyzer
Network Analyzer Rhode & Schwarz ZVL6 SN100132 03/02/2017 03/01/2018	twork Analyzer
Attenuator Warison /WATT-6SR1211 N/A N/A N/A	Attenuator
Attenuator Mini-circuits / N/A N/A N/A N/A	Attenuator
Amplifier EM30180 SN060552 03/02/2017 03/01/2018	-
Directional	Couple
Directional Werlatone/ SN99482 07/02/2016 07/01/2017	
Power Sensor NRP-Z21 1137.6000.02 10/10/2016 10/09/2017	Power Sensor
Power Sensor NRP-Z23 US38261498 03/02/2017 03/01/2018	Power Sensor
Power Viewer R&S V2.3.1.0 N/A N/A	Power Viewer

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 24 of 90

10. MEASUREMENT UNCERTAINTY

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is< 1.5 W/Kg, the extensive SAR measurement uncertainty analysis described in IEEE 1528-2013 is not required in SAR reports submitted for equipment approval.

Page 25 of 90

11. CONDUCTED POWER MEASUREMENT

GSM BAND				
Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	>			
GPRS 850	824.2	31.31	-9	22.31
(1 Slot)	836.6	31.28	-9	22.28
(1 0101)	848.8	31.15	-9	22.15
GPRS 850	824.2	28.76	-6	22.76
(2 Slot)	836.6	28.62	-6	22.62
(2 0101)	848.8	28.27	-6	22.27
GPRS 850	824.2	26.74	-4.26	22.48
(3 Slot)	836.6	26.03	-4.26	21.77
(3 3101)	848.8	26.10	-4.26	21.84
0000000	824.2	25.88	-3	22.88
GPRS 850 (4 Slot)	836.6	25.59	-3	22.59
(4 0101)	848.8	25.61	-3	22.61
E0000 050	824.2	24.14	-9	15.14
EGPRS 850 (1 Slot)	836.6	24.21	-9	15.21
(1 3101)	848.8	24.04	-9	15.04
E0000 050	824.2	21.93	-6	15.93
EGPRS 850 (2 Slot)	836.6	21.77	-6	15.77
(2 3101)	848.8	21.98	-6	15.98
E0000 050	824.2	20.90	-4.26	16.64
EGPRS 850 (3 Slot)	836.6	20.66	-4.26	16.40
(3 3101)	848.8	21.03	-4.26	16.77
E0000 050	824.2	18.62	-3	15.62
EGPRS 850 (4 Slot)	836.6	18.44	-3	15.44
(4 3101)	848.8	18.76	-3	15.76

Page 26 of 90

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	>			
GPRS1900	1850.2	28.05	-9	19.05
(1 Slot)	1880	28.04	-9	19.04
(1 300)	1909.8	27.78	-9	18.78
GPRS1900	1850.2	25.37	-6	19.37
(2 Slot)	1880	25.56	-6	19.56
(2 300)	1909.8	25.18	-6	19.18
00001000	1850.2	23.54	-4.26	19.28
GPRS1900 (3 Slot)	1880	23.53	-4.26	19.27
(3 3101)	1909.8	23.30	-4.26	19.04
00004000	1850.2	22.25	-3	19.25
GPRS1900 (4 Slot)	1880	22.31	-3	19.31
(4 300)	1909.8	22.20	-3	19.20
505504000	1850.2	23.98	-9	14.98
EGPRS1900 (1 Slot)	1880	24.12	-9	15.12
(1 3101)	1909.8	23.98	-9	14.98
505504000	1850.2	21.31	-6	15.31
EGPRS1900 (2 Slot)	1880	21.78	-6	15.78
(2 3101)	1909.8	21.12	-6	15.12
	1850.2	20.25	-4.26	15.99
EGPRS1900	1880	20.15	-4.26	15.89
(3 Slot)	1909.8	20.45	-4.26	16.19
E0DD 04005	1850.2	19.43	-3	16.43
EGPRS1900	1880	19.39	-3	16.39
(4 Slot)	1909.8	19.56	-3	16.56

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dBFrame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) – 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

Page 27 of 90

UMTS BAND HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(βc and βd) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- •The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc (Note5)	βd	βd (SF)	β с /β d	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, \Box hs/ \Box c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the \Box c/ \Box d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to \Box c = 11/15 and \Box d = 15/15.

Page 28 of 90

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- · A call was established between EUT and Base Station with following setting *:
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (β c and β d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- · The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βс	βd	βd (SF)	β с /βd	βHS (Note 1)	βес	βed (Note 4) (Note 5)	βed (SF)	βed (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with β_{hs} = 5/15 * β_c .

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, \Box hs/ \Box c=24/15. For all other combinations of DPDCH, DPCCH, HS DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the \Box c/ \Box d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to \Box c = 10/15 and \Box d = 15/15. Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: βed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

Report No.: AGC08745161201FH01 Page 29 of 90

UMTS BAND II

Mada	Frequency	Avg. Burst Power		
Mode	(MHz)	(dBm)		
LIODDA	1852.6	19.93		
HSDPA	1880	19.74		
Subtest 1	1907.4	19.85		
LIODDA	1852.6	19.71		
HSDPA	1880	19.50		
Subtest 2	1907.4	19.60		
	1852.6	19.65		
HSDPA	1880	19.62		
Subtest 3	1907.4	19.66		
LIODDA	1852.6	19.48		
HSDPA	1880	19.50		
Subtest 4	1907.4	19.53		
LIQUIDA	1852.6	19.50		
HSUPA	1880	19.57		
Subtest 1	1907.4	19.45		
LIQUIDA	1852.6	19.48		
HSUPA	1880	19.50		
Subtest 2	1907.4	19.45		
LIOLIDA	1852.6	19.62		
HSUPA	1880	19.57		
Subtest 3	1907.4	19.45		
LIOLIDA	1852.6	19.68		
HSUPA	1880	19.62		
Subtest 4	1907.4	19.43		
LICLIDA	1852.6	19.50		
HSUPA	1880	19.57		
Subtest 5	1907.4	19.38		

Report No.: AGC08745161201FH01 Page 30 of 90

UMTS BAND V

Mode	Frequency	Avg. Burst Power
Mode	(MHz)	(dBm)
110000	826.6	19.88
HSDPA	836.4	19.77
Subtest 1	846.4	19.82
110000	826.6	19.61
HSDPA	836.4	19.65
Subtest 2	846.4	19.30
11000	826.6	19.58
HSDPA	836.4	19.53
Subtest 3	846.4	19.66
110000	826.6	19.53
HSDPA	836.4	19.60
Subtest 4	846.4	18.94
1101104	826.6	19.51
HSUPA	836.4	19.65
Subtest 1	846.4	19.52
LICLIDA	826.6	19.55
HSUPA	836.4	19.67
Subtest 2	846.4	19.74
1101104	826.6	19.58
HSUPA	836.4	19.62
Subtest 3	846.4	19.61
LICLIDA	826.6	19.60
HSUPA	836.4	19.66
Subtest 4	846.4	19.48
LICLIDA	826.6	19.57
HSUPA	836.4	19.71
Subtest 5	846.4	19.54

Page 31 of 90

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

, ,									
UE Transmit Channel Configuration	CM(db)	MPR(db)							
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)							
Note: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.For all ot	ther combinations of DP	DCH, DPCCH, HS-DPCCH,							
E-DPDCH and E-DPCCH the MPR is based on the r	E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.								

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Report No.: AGC08745161201FH01 Page 32 of 90

LTE Band

Conducted Power of LTE Band 5(dBm)									
			RB	Target	Channel	Channel	Channel		
Bandwidth	Modulation	RB size	offset	MPR	20407	20525	20643		
			0	0	22.49	22.35	23.05		
		1	2	0	22.58	23.05	22.76		
			5	0	22.95	22.43	22.83		
	QPSK		0	0	22.47	22.51	22.97		
		3	1	0	22.19	23.01	22.94		
			2	0	22.49	22.64	22.34		
4 40011-		6	0	1	21.84	21.91	22.19		
1.4MHz			0	1	21.81	21.52	21.19		
		1	2	1	22.33	22.01	21.66		
			5	1	21.72	22.04	22.25		
	16QAM	3	0	1	22.26	22.02	22.12		
			1	1	22.24	21.42	21.17		
			2	1	21.76	21.17	21.76		
		6	0	2	22.01	21.01	21.47		
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel		
Bandwidth	Woddiation	ND 3126	offset	MPR	20415	20525	20635		
					20413	20020	20000		
			0	0	22.67	22.55	22.50		
		1	0 7						
		1		0	22.67	22.55	22.50		
	QPSK	1	7	0	22.67 22.43	22.55 22.31	22.50 22.95		
	QPSK	1 8	7 14	0 0 0	22.67 22.43 22.12	22.55 22.31 23.24	22.50 22.95 22.25		
	QPSK		7 14 0	0 0 0	22.67 22.43 22.12 22.82	22.55 22.31 23.24 22.26	22.50 22.95 22.25 22.00		
2MU~	QPSK		7 14 0 4	0 0 0 1	22.67 22.43 22.12 22.82 21.59	22.55 22.31 23.24 22.26 22.09	22.50 22.95 22.25 22.00 22.54		
3MHz	QPSK	8	7 14 0 4 7	0 0 0 1 1	22.67 22.43 22.12 22.82 21.59 21.60	22.55 22.31 23.24 22.26 22.09 22.23	22.50 22.95 22.25 22.00 22.54 21.75		
3MHz	QPSK	8	7 14 0 4 7 0	0 0 0 1 1 1	22.67 22.43 22.12 22.82 21.59 21.60 22.14	22.55 22.31 23.24 22.26 22.09 22.23 22.78	22.50 22.95 22.25 22.00 22.54 21.75 21.71		
3MHz	QPSK	8 15	7 14 0 4 7 0	0 0 0 1 1 1 1	22.67 22.43 22.12 22.82 21.59 21.60 22.14 21.78	22.55 22.31 23.24 22.26 22.09 22.23 22.78 21.87	22.50 22.95 22.25 22.00 22.54 21.75 21.71 21.96		
3MHz	QPSK 16QAM	8 15	7 14 0 4 7 0 0 7	0 0 0 1 1 1 1 1	22.67 22.43 22.12 22.82 21.59 21.60 22.14 21.78 21.38	22.55 22.31 23.24 22.26 22.09 22.23 22.78 21.87 21.61	22.50 22.95 22.25 22.00 22.54 21.75 21.71 21.96 22.14		
3MHz		8 15	7 14 0 4 7 0 0 0 7 14	0 0 0 1 1 1 1 1 1	22.67 22.43 22.12 22.82 21.59 21.60 22.14 21.78 21.38 21.74	22.55 22.31 23.24 22.26 22.09 22.23 22.78 21.87 21.61 21.96	22.50 22.95 22.25 22.00 22.54 21.75 21.71 21.96 22.14 22.43		
3MHz		8 15 1	7 14 0 4 7 0 0 7 14 0	0 0 0 1 1 1 1 1 1 1 2	22.67 22.43 22.12 22.82 21.59 21.60 22.14 21.78 21.38 21.74 21.93	22.55 22.31 23.24 22.26 22.09 22.23 22.78 21.87 21.61 21.96 22.56	22.50 22.95 22.25 22.00 22.54 21.75 21.71 21.96 22.14 22.43 21.74		

Page 33 of 90

		Соі	nducted Pow	er of LTE	E Band 5(dBm)		
			RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	MPR	20425	20525	20625
			0	0	22.71	22.41	22.08
		1	12	0	22.44	22.97	22.14
			24	0	22.59	22.92	22.71
	QPSK		0	1	22.68	21.30	22.45
		12	6	1	22.41	22.20	22.41
			11	1	22.21	22.66	22.31
5MHz		25	0	1	21.59	22.71	22.13
SIVITZ			0	1	21.97	21.56	21.06
		1	12	1	21.41	21.69	22.02
			24	1	21.85	22.31	21.61
	16QAM		0	2	21.74	22.37	21.84
		12	6	2	22.39	22.04	21.72
			11	2	21.65	21.97	21.71
		25	0	2	21.35	21.18	22.20
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel
Danuwium	Wodulation	KD SIZE	offset	MPR	20450	20525	20600
			0	0	22.41	22.61	22.88
		1	24	0	23.33	22.58	22.86
			49	0	23.13	22.60	22.34
	QPSK		0	1	22.49	22.70	22.56
		25	12	1	22.84	22.75	23.01
			25	1	22.53	22.66	23.05
10MU=		50	0	1	22.44	22.79	22.35
10MHz			0	1	22.10	21.41	22.71
		1	24	1	21.24	21.48	21.98
			49	1	21.97	21.63	22.01
	16QAM		0	2	22.01	21.53	22.26
		25	12	2	22.27	21.91	21.81
			25	2	22.49	21.90	21.11
		50	0	2	21.28	21.31	21.95

Page 34 of 90

		Cond	lucted Power	of LTE Ba	and 17(dBm)		
D 1 141		RB	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	size	offset	MPR	23755	23790	23825
			0	0	22.80	22.41	22.74
		1	12	0	22.36	22.92	22.40
			24	0	22.84	22.17	22.44
	QPSK		0	1	22.84	22.51	22.30
		12	6	1	22.26	22.75	22.90
			11	1	22.33	22.22	22.59
ENALL-		25	0	1	22.21	22.41	22.64
5MHz			0	1	21.35	22.14	21.68
		1	12	1	22.26	22.42	22.07
	16QAM		24	1	21.73	21.39	21.32
		12	0	2	21.87	21.72	21.67
			6	2	21.73	22.29	21.93
			11	2	22.54	21.56	22.18
		25	0	2	21.92	21.90	21.53
Bandwidth	Modulation	RB size	RB	Target	Channel	Channel	Channel
Danuwium	Wiodulation	ND SIZE	offset	MPR	23780	23790	23800
			0	0	22.94	22.44	22.22
		1	24	0	22.58	22.49	22.65
			49	0	22.52	22.43	22.00
	QPSK		0	1	22.76	22.96	22.81
		25	12	1	22.05	22.06	22.82
			25	1	21.88	22.29	22.50
10MU=		50	0	1	22.16	22.19	22.59
10MHz			0	1	21.52	22.14	21.40
		1	24	1	21.10	21.46	22.20
			49	1	21.65	21.80	21.78
	16QAM		0	2	21.54	21.41	21.86
		25	12	2	22.11	21.77	21.88
			25	2	21.74	22.47	21.58
			25		21.77	22.71	21.00

Report No.: AGC08745161201FH01 Page 35 of 90

	Conducted Power of LTE Band 41 (dBm)										
B 1 1 1 1 1 1		- ·	RB	Target	Channel	Channel	Channel				
Bandwidth	Modulation	RB size	offset	MPR	39675	40620	41565				
			0	0	22.40	22.63	22.45				
		1	12	0	22.53	22.84	22.27				
			24	0	22.95	22.04	22.50				
	QPSK		0	1	22.51	22.62	22.69				
		12	6	1	22.12	22.66	22.63				
			13	1	22.10	22.42	22.62				
5MHz		25	0	1	22.53	22.42	22.50				
ЭМП			0	1	22.50	22.12	22.64				
		1	12	1	22.48	22.72	22.52				
	16QAM		24	1	22.57	22.07	22.05				
		12	0	2	22.27	22.13	22.76				
			6	2	22.07	21.85	22.64				
			13	2	22.57	22.09	22.42				
		25	0	2	22.76	21.88	22.41				
Bandwidth	Modulation	RB size		Target	Channel	Channel	Channel				
Danawian	modulation	IND SIZE	offset	MPR	39700	40620	41540				
		_	0	0	22.96	22.96	22.29				
		1	24	0	22.53	22.78	22.14				
			49	0	22.97	22.03	22.33				
	QPSK	_	0	1	22.23	22.26	22.83				
		25	12	1	22.43	22.45	22.74				
			25	1	22.49	22.62	22.25				
10MHz		50	0	1	22.90	22.68	22.85				
10.71112			0	1	22.61	22.25	22.36				
		1	24	1	22.36	22.54	22.56				
			49	1	22.08	22.28	22.32				
	16QAM		0	2	22.84	22.19	21.47				
		25	12	2	21.68	21.45	21.68				
			25	2	22.68	22.21	22.64				
		50	0	2	22.20	22.36	22.24				

Page 36 of 90

Conducted Power of LTE Band 41 (dBm)							
Bandwidth	Modulation	RB size	RB offset	Target MPR	Channel	Channel	Channel
					39725	40620	41515
15MHz	QPSK	1	0	0	22.61	22.79	22.27
			37	0	22.73	22.23	22.78
			74	0	21.95	22.60	22.61
		37	0	1	21.68	22.81	22.31
			19	1	22.43	22.36	22.59
			38	1	21.47	22.73	22.79
		75	0	1	21.75	22.36	22.97
	16QAM	1	0	1	21.70	22.27	22.63
			37	1	21.80	21.99	22.54
			74	1	21.12	22.29	21.74
		37	0	2	21.03	22.45	22.42
			19	2	21.41	22.64	22.06
			38	2	21.65	21.96	22.04
		75	0	2	21.71	22.08	22.16
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
			offset		39750	40620	41490
20MHz	QPSK	1	0	0	22.66	22.48	22.57
			49	0	22.21	22.48	22.72
			99	0	22.21	22.38	22.59
		50	0	1	22.22	22.44	22.71
			25	1	22.29	22.76	22.34
			50	1	22.88	22.37	22.04
		100	0	1	22.64	22.00	22.99
	16QAM	1	0	1	22.30	21.86	22.48
			49	1	22.03	21.62	22.24
			99	1	21.02	21.83	21.34
		50	0	2	21.88	21.61	22.16
			25	2	21.22	22.31	22.50
			50	2	21.93	22.17	21.70
		100	0	2	21.81	21.52	22.58

Page 37 of 90

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3.3-1 of the 3GPP TS36.101.

Table 6.2.3.3-1 Maximum Power Reduction (MPR) for Power class3

Modulation	Maximum Power Reduction (MPR) for Power[RB]										
Modulation	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	MPR(dB)				
QPSK	>5	>4	>8	>12	>16	>18	≤1				
16QAM	≤5	≤4	≤8	≤12	≤16	≤18	≤1				
16QAM	>5	>4	>8	>12	>16	>18	≤2				

The allowed A-MPR values specified below in Table 6.2.4.3-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".3

Report No.: AGC08745161201FH01 Page 38 of 90

Table 6.2.4.3-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signaling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (<i>N</i> _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.2-1	1.4,3,5,10,15,20	Table 5.4.2-1	N/A
			3	>5	≤ 1
		2 4 40 22	5	>6	≤ 1
NS_03	6.6.2.2.3.1	2,4,10, 23, 25,35,36	10	>6	≤1
		25,55,50	15	>8	≤ 1
			20	>10	≤ 1
NS_04	6.6.2.2.3.2	41	5	>6	≤1
143_04	0.0.2.2.3.2	41	10, 15, 20	Table 6	.2.4.3-4
NS_05	6.6.3.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.4.2-1	N/A
NS_07	6.6.2.2.3.3 6.6.3.3.3.2	13	10	Table 6.2.4.3-2	Table 6.2.4.3-2
NS_08	6.6.3.3.3.3	19	10, 15	> 44	≤ 3
NS_09	6.6.3.3.3.4	21	10, 15	> 40 > 55	≤ 1 ≤ 2
NS_10		20	15, 20	Table 6.2.4.3-3	Table 6.2.4.3-3
NS_11	6.6.2.2.1 6.6.3.3.13	231	1.4, 3, 5, 10,15,20	Table 6.2.4.3-5	Table 6.2.4.3-5
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table 6.2.4.3-6	Table 6.2.4.3-6
NS_13	6.6.3.3.6	26	5	Table 6.2.4.3-7	Table 6.2.4.3-7
NS_14	6.6.3.3.7	26	10, 15	Table 6.2.4.3-8	Table 6.2.4.3-8
NS_15	6.6.3.3.8	26	1.4, 3, 5, 10, 15	Table 6.2.4.3-9	Table 6.2.4.3-9,
140_13	0.0.3.3.0	20	1.4, 3, 3, 10, 13	Table 6.2.4.3-10	
NS_16	6.6.3.3.9	27	3, 5, 10		Table 6.2.4.3-12, 2.4.3-13
NC 47	6.6.3.3.10	28	5, 10	Table 5.4.2-1	N/A
NS_17	6.6.3.3.11	28	5	≥ 2	≤ 1
NS_18			10, 15, 20	≥ 1	≤ 4
NS_19			10, 15, 20	Table 6.2.4.3-15	Table 6.2.4.3-15
NS_20			5, 10, 15, 20	Table 6.2.4.3-14	Table 6.2.4.3-14
NS_20	-	-	-	-	-

Report No.: AGC08745161201FH01 Page 39 of 90

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
		01	2412	14.05
802.11b	1	06	2437	14.51
		11	2462	14.03
		01	2412	11.32
802.11g	6	06	2437	11.23
		11	2462	10.62
		01	2412	11.18
802.11n(20)	6.5	06	2437	11.05
		11	2462	10.76
		03	2422	9.32
802.11n(40)	13.5	06	2437	10.73
		09	2452	8.91

Bluetooth_V3.0

Modulation Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	4.568
GFSK	39	2441	4.796
	78	2480	2.992
	0	2402	3.387
π /4-DQPSK	39	2441	3.763
	78	2480	1.872
	0	2402	3.287
8-DPSK	39	2441	3.637
	78	2480	1.679

Bluetooth V4.0

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	-2.738
GFSK	19	2440	-2.177
	39	2480	-4.157

Page 40 of 90

12. TEST RESULTS

12.1. SAR Test Results Summary

12.1.1. Test position and configuration

Body SAR was performed with the device 0mm from the phantom.

12.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06, for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04, for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is \geq 0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Per KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- 6. Per KDB 941225 D06 V02r01, When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations.
- 7. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 8. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1RB allocation using the RB offset and required test channel combination with highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 9. Per KDB 941125 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 10. Per KDB 941125 D05v02r03. For QPSK with 100% RB allocation. SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1RB allocation and the highest reported SAR is >1.45 W/Kg, the remaining required test channels must also be tested.

Page 41 of 90

11. Per KDB 941125 D05v02r03. 16QAM output power for each RB allocation configuration is not 1/2 dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤1.45W/Kg, Per KDB 941225 D05v02r02, 16QAM SAR testing is not required.

12. Per KDB 941125 D05v02r03. Smaller bandwidth output power for each RB allocation configuration is >not 1/2 dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤1.45W/Kg. Per KDB 941125 D05v02r03, smaller bandwidth SAR testing is not required.

Page 42 of 90

12.1.3. Test Result

1211101 10011													
SAR MEASUREM	MENT												
Depth of Liquid (c	:m):>15			Relative H	lumidity (%): 55.5							
Product: 4G FRE	E ROAMING												
Test Mode: GSM8	350 with GMSK m	nodulatio	on										
Position	tion Mode Ch. Fr. Power SAR (1g) (W/kg)						Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)				
Body back	GPRS-4 slot	190	836.6	-0.23	0.454	26.00	25.59	0.499	1.6				
Body front	GPRS-4 slot	190	836.6	1.66	0.171	26.00	25.59	0.188	1.6				
Edge 1 (Top)	GPRS-4 slot	190	836.6	0.02	0.036	26.00	25.59	0.040	1.6				
Edge 2(Right)	GPRS-4 slot	190	836.6	-0.23	0.464	26.00	25.59	0.510	1.6				
Edge 3(Bottom)	Edge 3(Bottom) GPRS-4 slot 190 836.6 1.23 0.236 26.00 25.59 0.259 1.6												
Edge 4(Left)	GPRS-4 slot	190	836.6	-0.56	0.424	26.00	25.59	0.466	1.6				

Note:

SAR MEASUREI	SAR MEASUREMENT													
Depth of Liquid (d	cm):>15			Relative Humidity (%): 52.8										
Product: 4G FRE	E ROAMING													
Test Mode: PCS1	1900 with GMSK	modulat	ion											
Position	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)							
Body back	GPRS-2 slot	512	1850.2	-0.23	0.838	25.60	25.37	0.884	1.6					
Body back	GPRS-2 slot	661	1880.0	1.56	0.869	25.60	25.56	0.877	1.6					
Body back	GPRS-2 slot	810	1909.8	0.23	0.838	25.60	25.18	0.923	1.6					
Body front	GPRS-2 slot	661	1880.0	-1.56	0.278	25.60	25.56	0.281	1.6					
Edge 1 (Top)	GPRS-2 slot	661	1880.0	0.65	0.055	25.60	25.56	0.056	1.6					
Edge 2(Right)	GPRS-2 slot	661	1880.0	0.32	0.059	25.60	25.56	0.060	1.6					
Edge 3(Bottom)	GPRS-2 slot	512	1850.2	-0.15	0.758	25.60	25.37	0.799	1.6					
Edge 3(Bottom)	GPRS-2 slot	661	1880.0	1.56	0.771	25.60	25.56	0.778	1.6					
Edge 3(Bottom)	GPRS-2 slot	810	1909.8	0.23	0.770	25.60	25.18	0.848	1.6					
Edge 4(Left)	GPRS-2 slot	661	1880.0	-0.15	0.524	25.60	25.56	0.529	1.6					
Note:														

[·] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. ·The test separation of all above tableis 0mm.

[•] When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[·]The test separation of all above tableis 0mm.

Page 43 of 90

SAR MEASURE	SAR MEASUREMENT												
Depth of Liquid (d	cm):>15			Relative I	Humidity (9	%): 52.8							
Product: 4G FREE ROAMING													
Test Mode: WCDMA Band II with QPSK modulation													
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)				
Body back	HSDPA Subtest 1	9400	1880	-0.36	0.725	20.00	19.74	0.770	1.6				
Body front	HSDPA Subtest 1	9400	1880	0.23	0.257	20.00	19.74	0.273	1.6				
Edge 1 (Top)	HSDPA Subtest 1	9400	1880	1.56	0.121	20.00	19.74	0.128	1.6				
Edge 2(Right) HSDPA Subtest 1 9400 1880 -0.56 0.065 20.00 19.74 0.069 1.6													
Edge 3(Bottom)	HSDPA Subtest 1	9400	1880	0.23	0.662	20.00	19.74	0.703	1.6				
Edge 4(Left)	HSDPA Subtest 1	9400	1880	-1.56	0.613	20.00	19.74	0.651	1.6				

Note:

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

•The test separation of all above tableis 0mm.

SAR MEASUREMENT												
Depth of Liquid (c	:m):>15			Relative I	Humidity (%	%): 55.6						
Product: 4G FREE ROAMING												
Test Mode: WCDMA Band V with QPSK modulation												
Docition Mode Ch 111 Driff /1a) 1111 Dewer SAD 1								Limit (W/kg)				
Body back	HSDPA Subtest 1	4183	836.4	-0.23	0.473	20.00	19.77	0.499	1.6			
Body front	HSDPA Subtest 1	4183	836.4	1.55	0.155	20.00	19.77	0.163	1.6			
Edge 1 (Top)	HSDPA Subtest 1	4183	836.4	0.02	0.040	20.00	19.77	0.042	1.6			
Edge 2(Right)	HSDPA Subtest 1	4183	836.4	-1.51	0.448	20.00	19.77	0.472	1.6			
Edge 3(Bottom)	Edge 3(Bottom) HSDPA Subtest 1 4183 836.4 0.21 0.029 20.00 19.77 0.031 1.6											
Edge 4(Left)	HSDPA Subtest 1	4183	836.4	-0.46	0.088	20.00	19.77	0.093	1.6			

Note:

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

·The test separation of all above tableis 0mm.

Page 44 of 90

SAR MEASUREMENT	SAR MEASUREMENT									
Depth of Liquid (cm):>15	Relative Humidity (%): 51.3									
Product: 4G FREE ROAMING										
Test Mode: LTE Band 5										

			Test Mode					0.15	Max. Tuneu	Meas.		
BM MHz	MOD	Position	UL RB Allocation	UL RB OFF SET	Ch.	Freq. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	p Power (dBm)	output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
		Body back	1	24	20450	829	-0.23	0.484	23.50	23.33	0.503	1.6
		Body front	1	24	20450	829	-1.56	0.167	23.50	23.33	0.174	1.6
		Edge 1 (Top)	1	24	20450	829	0.23	0.335	23.50	23.33	0.348	1.6
10	QPSK	Edge 2(Right)	1	24	20450	829	-0.23	0.545	23.50	23.33	0.567	1.6
		Edge 3(Bottom)	1	24	20450	829	1.25	0.217	23.50	23.33	0.226	1.6
		Edge 4(Left)	1	24	20450	829	-0.23	0.448	23.50	23.33	0.466	1.6

Note:

SAR MEASUREMENT

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

•The test separation of all above tableis 0mm.

02 00 0	OAK MEAGOREMENT													
Depth	of Liquid	I (cm):>15			Relative	e Humio	dity (%): 52	2.3						
Produ	Product: 4G FREE ROAMING													
Test N	Test Mode: LTE Band 17													
ВМ			Test M	ode		Fre q.	Power	SAR (1g)	Max. Tuneup	Meas. output	Scaled SAR (W/Kg)	Limit (W/kg)		
MHz MOL	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MH z)	Drift (<±5%)	(W/kg	Power (dBm)	Power (dBm)				
		Body back	1	0	23780	709	-0.59	0.199	23.00	22.94	0.202	1.6		
		Body front	1	0	23780	709	0.23	0.072	23.00	22.94	0.073	1.6		
		Edge 1 (Top)	1	0	23780	709	1.52	0.027	23.00	22.94	0.027	1.6		
10	QPSK	Edge 2(Right)	1	0	23780	709	-0.26	0.150	23.00	22.94	0.152	1.6		
		Edge 3(Bottom)	1	0	23780	709	0.16	0.071	23.00	22.94	0.072	1.6		
N. .		Edge 4(Left)	1	0	23780	709	-0.65	0.222	23.00	22.94	0.225	1.6		

Note:

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

•The test separation of all above tableis 0mm.

Page 45 of 90

SAR MEASUREMENT	SAR MEASUREMENT						
Depth of Liquid (cm):>15 Relative Humidity (%):							
Product: 4G FREE ROAMING							
Toot Moder LTC Dand 44							

BM MHz		Position	Test Mode			Freg.	Power	SAR (1g)	Max. Tuneu	Meas. output	Scaled	Limit
	MOD		UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(W/kg	p Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
		Body back	1	0	40620	2593	-0.23	0.456	23.00	22.48	0.514	1.6
		Body front	1	0	40620	2593	1.22	0.151	23.00	22.48	0.170	1.6
		Edge 1 (Top)	1	0	40620	2593	0.30	0.052	23.00	22.48	0.059	1.6
10	QPSK	Edge 2(Right)	1	0	40620	2593	-2.56	0.054	23.00	22.48	0.061	1.6
		Edge 3(Bottom)	1	0	40620	2593	1.33	0.285	23.00	22.48	0.321	1.6
		Edge 4(Left)	1	0	40620	2593	-0.02	0.593	23.00	22.48	0.668	1.6

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

• The test separation of all above tableis 0mm.

Page 46 of 90

SAR MEASUREM	SAR MEASUREMENT										
Depth of Liquid (cr	n):>15			Relative H	umidity (%):	54.9					
Product: 4G FREE ROAMING											
Test Mode:802.11b											
Position Mode Ch. Fr. (MHz)				Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)		
Body back	DTS	06	2437	-0.81	0.474	14.60	14.51	0.484	1.6		
Body front	DTS	06	2437	0.55	0.131	14.60	14.51	0.134	1.6		
Edge 1 (Top)	DTS	06	2437	1.90	0.343	14.60	14.51	0.350	1.6		
Edge 2(Right)	DTS	06	2437	0.62	0.419	14.60	14.51	0.428	1.6		
Edge 3(Bottom) DTS 06 2437 -0.63 0.109 14.60 14.51 0.111 1.6											
Edge 4(Left)	DTS	06	2437	-1.36	0.042	14.60	14.51	0.043	1.6		

- According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels.
- · All of above "DTS" means data transmitters.
- ·The test separation of all above tableis 0mm.

Repeated S	Repeated SAR										
Product: 40	Product: 4G FREE ROAMING										
Test Mode:	Test Mode: PCS1900										
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±5%)	Third SAR (1g) (W/kg)	Limit (W/kg)	
Body back	GPRS-2 slot	661	1880.0	0.05	0.850					1.6	

Page 47 of 90

NO	Cimultaneous state	Portable Handset			
NO	Simultaneous state	Head	Body-worn		
1	GSM(Data)+ WIFI 2.4GHz (data)		Yes		
2	WCDMA(HSPA)+ WIFI 2.4GHz (data)		Yes		
3	LTE+WIFI 2.4GHz (data)		Yes		
4	GSM(Data)+ Bluetooth(data)		Yes		
5	WCDMA(HSPA)+ Bluetooth(data)		Yes		
6	LTE+ Bluetooth(data)		Yes		

NOTE:

- 1. Simultaneous with every transmitter must be the same test position.
- 2. WIFI and BT share the same antenna, and cannot transmit simultaneously.
- 3. KDB 447498 D01, BT SAR is excluded as below table.
- 4. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for body-worn SAR.
- 5. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 6. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 7. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

8. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR			luding Tune-up ance	Separation Distance (mm)	Estimated SAR (W/kg)	
		dBm	mW	Distance (IIIII)		
BT Body		5 3.16		0	0.132	

Page 48 of 90

Frequency Band	RF Exposure	Test Position	Simultaneous Scen		Σ1-g SAR	SPLSR (Yee/Ne)
Dallu	Conditions	Position	GSM/WCDMA	WIFI	(W/Kg)	(Yes/No)
		Body back	0.499	0.484	0.983	No
		Body Front	0.188	0.134	0.322	No
GSM 850	Body-worn	Edge 1	0.040	0.350	0.390	No
G3W 630	Body-worri	Edge 2	0.510	0.428	0.938	No
		Edge 3	0.259	0.111	0.370	No
		Edge 4	0.466	0.043	0.509	No
		Body back	0.923	0.484	1.407	No
	Body-worn	Body Front	0.281	0.134	0.415	No
PCS 1900		Edge 1	0.056	0.350	0.406	No
PCS 1900		Edge 2	0.060	0.428	0.488	No
		Edge 3	0.848	0.111	0.959	No
		Edge 4	0.529	0.043	0.572	No
		Body back	0.770	0.484	1.254	No
		Body Front	0.273	0.134	0.407	No
UMTS	Dadwara	Edge 1	0.128	0.350	0.478	No
Band II	Body-worn	Edge 2	0.069	0.428	0.497	No
		Edge 3	0.703	0.111	0.814	No
		Edge 4	0.651	0.043	0.694	No
		Body back	0.499	0.484	0.983	No
		Body Front	0.163	0.134	0.297	No
UMTS	Pody worn	Edge 1	0.042	0.350	0.392	No
Band V	Body-worn	Edge 2	0.472	0.428	0.900	No
		Edge 3	0.031	0.111	0.142	No
		Edge 4	0.093	0.043	0.136	No

[·]According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 49 of 90

Frequency Band	RF Exposure	Test Position		Transmission nario	Σ1-g SAR (W/Kg)	SPLSR (Yes/No)
Dallu	Conditions	FUSILIUII	LTE	WIFI	(VV/Kg)	(165/140)
		Body back	0.503	0.484	0.987	No
		Body Front	0.174	0.134	0.308	No
LTE Band 5	Pody worn	Edge 1	0.348	0.350	0.698	No
LIE Ballu 3	Body-worn	Edge 2	0.567	0.428	0.995	No
		Edge 3	0.226	0.111	0.337	No
		Edge 4	0.466	0.043	0.509	No
	Body-worn	Body back	0.202	0.484	0.686	No
		Body Front	0.073	0.134	0.207	No
LTE Band		Edge 1	0.027	0.350	0.377	No
17		Edge 2	0.152	0.428	0.580	No
		Edge 3	0.072	0.111	0.183	No
		Edge 4	0.225	0.043	0.268	No
		Body back	0.514	0.484	0.998	No
		Body Front	0.170	0.134	0.304	No
LTE Band	Pody worn	Edge 1	0.059	0.350	0.409	No
41	Body-worn	Edge 2	0.061	0.428	0.489	No
		Edge 3	0.321	0.111	0.432	No
		Edge 4	0.668	0.043	0.711	No

[·]According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 50 of 90

Frequency Band	RF Exposure	Test Position	Simultaneous Scen		Σ1-g SAR	SPLSR (Yes/No)
Dallu	Conditions	Position	GSM/WCDMA	Bluetooth	(W/Kg)	(Yes/No)
		Body back	0.499	0.132	0.631	No
		Body Front	0.188	0.132	0.320	No
GSM 850	Pody worn	Edge 1	0.040	0.132	0.172	No
G3W 650	Body-worn	Edge 2	0.510	0.132	0.642	No
		Edge 3	0.259	0.132	0.391	No
		Edge 4	0.466	0.132	0.598	No
		Body back	0.923	0.132	1.055	No
	Body-worn	Body Front	0.281	0.132	0.413	No
PCS 1900		Edge 1	0.056	0.132	0.188	No
PCS 1900		Edge 2	0.060	0.132	0.192	No
		Edge 3	0.848	0.132	0.980	No
		Edge 4	0.529	0.132	0.661	No
		Body back	0.770	0.132	0.902	No
		Body Front	0.273	0.132	0.405	No
UMTS	Dodywara	Edge 1	0.128	0.132	0.260	No
Band II	Body-worn	Edge 2	0.069	0.132	0.201	No
		Edge 3	0.703	0.132	0.835	No
		Edge 4	0.651	0.132	0.783	No
		Body back	0.499	0.132	0.631	No
		Body Front	0.163	0.132	0.295	No
UMTS	Pody wors	Edge 1	0.042	0.132	0.174	No
Band V	Body-worn	Edge 2	0.472	0.132	0.604	No
		Edge 3	0.031	0.132	0.163	No
		Edge 4	0.093	0.132	0.225	No

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 51 of 90

Frequency Band	RF Exposure	Test Position		Transmission nario	Σ1-g SAR (W/Kg)	SPLSR (Yes/No)
Dallu	Conditions	FUSILIUII	LTE	Bluetooth	(W/Kg)	(163/140)
		Body back	0.503	0.132	0.635	No
		Body Front	0.174	0.132	0.306	No
LTE Band 5	Pody worn	Edge 1	0.348	0.132	0.480	No
LIE Band 5	Body-worn	Edge 2	0.567	0.132	0.699	No
		Edge 3	0.226	0.132	0.358	No
		Edge 4	0.466	0.132	0.598	No
	Body-worn	Body back	0.202	0.132	0.334	No
		Body Front	0.073	0.132	0.205	No
LTE Band		Edge 1	0.027	0.132	0.159	No
17		Edge 2	0.152	0.132	0.284	No
		Edge 3	0.072	0.132	0.204	No
		Edge 4	0.225	0.132	0.357	No
		Body back	0.514	0.132	0.646	No
		Body Front	0.170	0.132	0.302	No
LTE Band	Pody worn	Edge 1	0.059	0.132	0.191	No
41	Body-worn	Edge 2	0.061	0.132	0.193	No
		Edge 3	0.321	0.132	0.453	No
		Edge 4	0.668	0.132	0.800	No

[·]According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 52 of 90

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Mar. 17,2017

System Check Body 750 MHz

DUT: Dipole 750 MHz Type: SID 750

Communication System CW; Communication System Band: D750 (750.0 MHz); Duty Cycle: 1:1; Conv.F=5.30 Frequency: 750 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.97$ mho/m; $\epsilon r = 53.62$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.2, Liquid temperature ($^{\circ}$ C): 20.5

SATIMO Configuration:

• Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/System Check 750MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 750MHz Body/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Maximum location: X=0.00, Y=-1.00 SAR Peak: 0.73 W/kg

C + T + 10 (TTTT)	0.075010		
SAR 10g (W/Kg)	0.375012		
SAR 1g (W/Kg)	0.573736		

Report No.: AGC08745161201FH01 Page 53 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00				
SAR	0.7899	0.5768	0.3919	0.2737	0.1930	0.1382	0.1000				
(W/Kg)											
0.8-											
	0.7-	\longrightarrow	+	\rightarrow							
	0.6-	$\mathbf{X} + \mathbf{I}$									
	(%) 0.5- (%) 0.5-	+	++++	+++	 						
	≥ 0.4-	\rightarrow									
	N 0.3-		$N \mid \cdot \mid$								
	0.3-										
	0.2-	+++	 		++++						
	0.1-	02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0					
	0.	02.55.01.5			11.5 32.5	40.0					
				Z (mm)							

Date: Mar. 21,2017

Page 54 of 90

Test Laboratory: AGC Lab System Check Body 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.94 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 55.41$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.8 Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration

• Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=1.00, Y=0.00 SAR Peak: 0.91 W/kg

SAR 10g (W/Kg)	0.399523		
SAR 1g (W/Kg)	0.622053		

Report No.: AGC08745161201FH01 Page 55 of 90

0.00	4.00	9.00	14.00	19.00	24.00	29.00
0.9035	0.6458	0.4257	0.2883	0.1971	0.1362	0.0951
0.9-				 		
0.8-	\longrightarrow					
8,0.0-						
	++			 		
뗯 0.4~	- 	+	-	++++		
o.3_	\rightarrow	+	-	+		
0.2-						
0.2						
0.1-		1 1 1				
0.	02.55.07.5			27.5 32.5	40.0	
			Z (mm)			
	0.9035 0.9- 0.8- 0.7- 0.6- (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	0.9035 0.6458 0.9035 0.6458 0.700.60 0.500.50 0.300.20	0.9035 0.6458 0.4257 0.9 0.8 0.7 0.6 0.5 0.3 0.2 0.1 0.02.55.07.5 12.5 17.	0.9035	0.9035	0.9035

Date: Mar. 24,2017

Page 56 of 90

Test Laboratory: AGC Lab System Check Body 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.89 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 55.32$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.8, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Maximum location: X=-1.00, Y=0.00 SAR Peak: 0.89 W/kg

SAR 10g (W/Kg)	0.413052		
SAR 1g (W/Kg)	0.647119		

Report No.: AGC08745161201FH01 Page 57 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.9457	0.6848	0.4591	0.3152	0.2190	0.1547	0.1091
(W/Kg)							
	0.9-						
	0.8-						
	<u></u>	$\mathbb{I} \setminus \mathbb{I}$					
	8 0.6-				+++		
	<u>چ</u>	\perp					
	SAR 0.4-	 	\longrightarrow	-	+		
	,						
	0.2-						
	0.1-				200		
	0.0	2.5 5.0 7.5 10		20.0 25.0	30.0 35	5.0 40.0	
				Z (mm)			

Date: Mar. 25,2017

Page 58 of 90

Test Laboratory: AGC Lab System Check Body 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.94 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 54.82$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$):21.8 Liquid temperature ($^{\circ}$): 21.1

SATIMO Configuration

• Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.93 W/kg

SAR 10g (W/Kg)	0.401230		
SAR 1g (W/Kg)	0.625946		

Report No.: AGC08745161201FH01 Page 59 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.9038	0.6463	0.4261	0.2883	0.1975	0.1364	0.0953
(W/Kg)							
	0.9-						
	0.8-	\longrightarrow	\bot	\perp	\perp		
	0.7-	\rightarrow					
	(2) 0.6- (2) 0.5-						
	왕 0.4-				111		
	0.3-	-	+	+++	+++		
	0.2-	+++	++	\leftarrow	+++-		
	0.1-		12.5 17.	.5 22.5 2	27.5 32.5	40.0	
	0.	02.33.01.3			21.5 32.5	40.0	
				Z (mm)			

Date: Apr. 07,2017

Page 60 of 90

Test Laboratory: AGC Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.34 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 53.03$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 20.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Maximum location: X=1.00, Y=1.00 SAR Peak: 3.63 W/kg

SAR 10g (W/Kg)	1.384043		
SAR 1g (W/Kg)	2.657340		

Report No.: AGC08745161201FH01 Page 61 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	3.6456	2.3638	1.3545	0.8063	0.4809	0.2892	0.1728
(W/Kg)							
	3.6-						
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	3.0-	\					
	2.5-	+	++++	+++	+++		
	(a) 2.5						
	2.0	$ \cdot $					
	₩ 1.5-		[
	1.0-		\longrightarrow	+++	+++		
	0.5-						
	0.1-¦	2.5 5.0 7.5 10	0.0 15.0	20.0 25.0	30.0 35	.0 40.0	
	0.0	2.0 0.0 7.0 10		Z (mm)	50.0 50	40.0	
				2 yılıı)			

Date: Mar. 21,2017

Page 62 of 90

Test Laboratory: AGC Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.34 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 53.53$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.7, Liquid temperature ($^{\circ}$ C): 22.3

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Maximum location: X=1.00, Y=1.00 SAR Peak: 3.90 W/kg

SAR 10g (W/Kg)	1.259653		
SAR 1g (W/Kg)	2.371535		

Report No.: AGC08745161201FH01 Page 63 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	3.8949	2.5395	1.4611	0.8693	0.5148	0.3093	0.1871
(W/Kg)	3.9- 3.5- 3.0- 2.5- 2.0- 8W 2.0- 1.5- 1.0- 0.5- 0.0	2.5 5.0 7.5 10		20.0 25.0 Z (mm)	30.0 35	.0 40.0	

Date: Apr. 17,2017

Page 64 of 90

Test Laboratory: AGC Lab System Check Body 2450 MHz

DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=5.19 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 53.11$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.8, Liquid temperature (°C): 21.5

SATIMO Configuration

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_35

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=-1.00, Y=-1.00 SAR Peak: 6.02 W/kg

SAR 10g (W/Kg)	1.478141
SAR 1g (W/Kg)	3.302083

Report No.: AGC08745161201FH01 Page 65 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	6.0808	3.5445	1.6976	0.8396	0.4187	0.2121	0.1090
	6.08- 5.00- (54.00- 3.00- 2.00- 1.00- 0.06-	0 2.5 5.0 7.5 1		20.0 25.0 Z (mm)	30.0 35	0.0 40.0	

Date: Apr. 24,2017

Page 66 of 90

Test Laboratory: AGC Lab System Check Head 2600MHz

DUT: Dipole 2600 MHz; Type: SID 2600

Communication System: CW; Communication System Band: D2600 (2600.0 MHz); Duty Cycle: 1:1; Conv.F=5.19 Frequency:2600 MHz; Medium parameters used: f = 2600 MHz; $\sigma = 2.15 \text{mho/m}$; $\epsilon = 51.68$; $\epsilon = 1000 \text{ kg/m}$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C): 21.8, Liquid temperature (°C): 20.6

SATIMO Configuration:

Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2600 Head/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 2600 Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Area Scan	sam_direct_droit2_surf8mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	SAM twin phantom			
Device Position	Flat			
Band	CW 2600			
Channels	Middle			
Signal	Crest factor: 1.0			

Maximum location: X=-1.00, Y=-2.00 SAR Peak: 6.42 W/kg

SAR 10g (W/Kg)	1.531528
SAR 1g (W/Kg)	3.402264

Report No.: AGC08745161201FH01 Page 67 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	6.3994	3.6089	1.6238	0.7507	0.3475	0.1618	0.0759
	6.40-						
	5.00- (%) 4.00- 3.00- 88 2.00- 1.00- 0.04-						
	0	.02.55.07.5	12.5 17		27.5 32.5	40.0	
				Z (mm)			

Page 68 of 90

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Mar. 21,2017

GPRS 850 Mid - Edge 2((4up)<SIM 1> DUT: 4G FREE ROAMING; Type: WT

Communication System: GPRS-4Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.1; Conv.F=5.94 Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 55.03$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):21.8, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration

• Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/ GPRS 850 Mid - Edge 2/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/ GPRS 850 Mid - Edge 2/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt				
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete				
Phantom	Validation plane				
Device Position	Edge 1				
Band	GPRS 850				
Channels	Middle				
Signal	TDMA (Crest factor: 2.0)				

Maximum location: X=-1.00, Y=-15.00 SAR Peak: 0.64 W/kg

SAR 10g (W/Kg)	0.320824
SAR 1g (W/Kg)	0.464105

Report No.: AGC08745161201FH01 Page 69 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.6237	0.4849	0.3555	0.2607	0.1870	0.1371	0.0944
(W/Kg)							
	0.6-						
		\setminus					
	0.5-	\longrightarrow	+				
	- a						
	(29 0.4-)≹						
	∞ N 3-						
	왕 0.3-						
	0.2-	+++	++	+++			
	0.1-		+	- -		- .	
		02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
Z (mm)							

Page 70 of 90

Test Laboratory: AGC Lab Date: Apr. 07,2017

GPRS 1900 Mid -Body-Back (2up) DUT: 4G FREE ROAMING; Type: WT

Communication System: GPRS-2Slot; Communication System Band: PCS 1900; Duty Cycle: 1:4.2; Conv.F=5.34 Frequency: 1880.0 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 53.54$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):22.1, Liquid temperature (°C): 20.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4 02 35

Configuration/GPRS1900 Mid -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/GPRS1900 Mid -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt			
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Validation plane			
Device Position	Body Back			
Band	PCS 1900			
Channels	Mid			
Signal	TDMA (Crest factor: 4.0)			

Maximum location: X=11.00, Y=-52.00 SAR Peak: 1.54 W/kg

	8
SAR 10g (W/Kg)	0.444937
SAR 1g (W/Kg)	0.869457

Report No.: AGC08745161201FH01 Page 71 of 90

0.00	4.00	9.00	14.00	19.00	24.00	29.00
1.4815	0.9004	0.4667	0.2758	0.1493	0.0849	0.0485
1.5-						
\						
1.2-	lack		+++	+++-		
≘ 1.0−	$\overline{}$	++++	-			
Š ∩ 0-L						
S 0.0						
₹ 0.6-	++					
0.4-	+++	\longrightarrow	+++			
0.2-						
		$ \cdot \cdot $				
0.0-1	2.5 5.0 7.5 10	0.0 15.0	20.0 25.0	30.0 35	0 40.0	
5.5						
	1.4815 1.5- 1.2- (S) 1.0- (W) 0.8- WY 0.6- 0.4- 0.2- 0.0-	1.4815 0.9004 1.5- 1.2- (BY) 0.8- WY 0.6- 0.4- 0.2- 0.0-	1.4815 0.9004 0.4667 1.5 1.2 0.9004 0.4667 0.8 0.8 0.6 0.4 0.2 0.0 0.0 2.5 5.0 7.5 10.0 15.0	1.4815 0.9004 0.4667 0.2758 1.5 1.2 0.9004 0.4667 0.2758	1.4815 0.9004 0.4667 0.2758 0.1493	1.4815 0.9004 0.4667 0.2758 0.1493 0.0849 1.5 1.2 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Page 72 of 90

Test Laboratory: AGC Lab Date: Apr. 07,2017

WCDMA Band II Mid-Body-Towards Grounds (HSDPA Subtest 1)

DUT: 4G FREE ROAMING; Type: WT

Communication System: UMTS; Communication System Band: Band II UTRA/FDD; Duty Cycle:1:1; Conv.F=5.34 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{mho/m}$; $\epsilon = 53.54$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 20.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/ WCDMA band II **Mid-Body-back/Area Scan:** Measurement grid: dx=10mm, dy=10mm **Configuration/ WCDMA band** II **Mid-Body-back/Zoom Scan:** Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf10mm.txt			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Validation plane			
Device Position	Body Back			
Band	WCDMA band II			
Channels	Middle			
Signal	CDMA (Crest factor: 1.0)			

Maximum location: X=19.00, Y=-22.00 SAR Peak: 1.20 W/kg

SAR 10g (W/Kg)	0.391637
SAR 1g (W/Kg)	0.724549

Report No.: AGC08745161201FH01 Page 73 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.1839	0.7631	0.4264	0.2473	0.1352	0.0777	0.0439
(W/Kg)							
	1.2-						
	1.0-						
	1.0	\					
	⊚ 0.8-	+					
	0.8 0.6						
	€ 0.6-						
	S 0.4-	++	$\sqcup \sqcup \sqcup$	\perp			
	0.2-						
	0.0-				+-		
	0.0	2.5 5.0 7.5 10	0.0 15.0	20.0 25.0	30.0 35	.0 40.0	
	Z (mm)						

Page 74 of 90

Test Laboratory: AGC Lab Date: Mar. 24,2017

WCDMA Band VMid -Body- Back (HSDPA Subtest 1)

DUT: 4G FREE ROAMING; Type: WT

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=5.89;

Frequency: 836.4MHz; Medium parameters used: f = 835MHz; $\sigma = 0.95 \text{ mho/m}$; $\epsilon r = 54.95$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):21.8, Liquid temperature (°C): 21.5

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/ WCDMA Band V Mid -Body- Back /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/ WCDMA Band V Mid -Body- Back /Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	WCDMA Band V		
Channels	Mid		
Signal	CDMA (Crest factor: 1.0)		

Maximum location: X=-3.00, Y=-39.00 SAR Peak: 0.74 W/kg

SAR 10g (W/Kg)	0.285327
SAR 1g (W/Kg)	0.472555

Page 75 of 90

Report No.: AGC08745161201FH01 Page 76 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.7272	0.4865	0.2938	0.1849	0.1188	0.0780	0.0517
(W/Kg)							
	0.7-						
	0.0	\setminus					
	0.6-						
	(6) 0.5 (8) 0.4	+					
	€ 0.4-	+N	++++				
	SA 0.3-	++					
	0.2-		$N \sqcup 1$				
	0.1-						
	0.0-¦ 0.0	2.5 5.0 7.5 1	0.0 15.0	20.0 25.0	30.0 35	.0 40.0	
				Z (mm)		-2.2	

Page 77 of 90

Test Laboratory: AGC Lab Date: Mar. 25,2017

LTE Band 5 Low- Edge 2 (1 RB#24) DUT: 4G FREE ROAMING; Type: WT

Communication System: LTE; Communication System Band: LTE Band 5; Duty Cycle:1:1; Conv.F=5.94 Frequency: 829 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\epsilon r = 55.31$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C):21.8 Liquid temperature (°C): 21.1

SATIMO Configuration

• Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 5 Low - Edge 2/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/ LTE Band 5 Low - Edge 2/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf10mm.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Validation plane		
Device Position	Edge 2		
Band	LTE Band 5		
Channels	Low		
Signal	OFDM (Crest factor: 1.0)		

Maximum location: X=1.00, Y=-5.00

SAR Peak: 0.77 W/kg

SAR 10g (W/Kg)	0.358883	
SAR 1g (W/Kg)	0.545012	

Report No.: AGC08745161201FH01 Page 78 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.7689	0.5685	0.3930	0.2784	0.1992	0.1432	0.1036
(W/Kg)							
	0.8-		1 1 1 1				
	0.7-	$\overline{}$	+ + + + +	+++	++++		
	0.6-	\rightarrow					
		-1 \times 1					
	(2) 0.5						
	훈 0.4-	++		-			
	₩ 0.3-		\mathcal{N}				
	0.2-		+++7				
		\rightarrow	+	\rightarrow	+-		
	0. 1 –∏ ∩	02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
	Z (mm)						
				L (IIII)			

Page 79 of 90

Test Laboratory: AGC Lab Date: Mar. 17,2017

LTE Band 17 Low - Edge 4 (1 RB#49) DUT: 4G FREE ROAMING; Type: WT

Communication System: LTE; Communication System Band: LTE Band 17; Duty Cycle:1:1; Conv.F=5.30 Frequency: 709 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.93$ mho/m; $\epsilon = 55.63$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):21.2, Liquid temperature ($^{\circ}$ C): 20.5

SATIMO Configuration:

• Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 17 Low - Edge 4/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/ LTE Band 17 Low - Edge 4/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf10mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Edge 4
Band	LTE Band 17
Channels	Low
Signal	OFDM (Crest factor: 1.0)

Maximum location: X=-6.00, Y=-37.00 SAR Peak: 0.30 W/kg

SAR 10g (W/Kg)	0.150305		
SAR 1g (W/Kg)	0.222382		

Report No.: AGC08745161201FH01 Page 80 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.3008	0.2273	0.1613	0.1160	0.0845	0.0620	0.0451
(**/116)	0.30-						
	0.25-	\perp					
	‰ n. 2n-						
	(%) 0.20- (%) (%) (0.15-	$ \ \ \ \rangle$					
	SAT						
	0.10-						
	0.03-				++++	+,	
		.02.55.07.5	12.5 17		27.5 32.5	40.0	
				Z (mm)			

Page 81 of 90

Test Laboratory: AGC Lab Date: Apr. 24,2017

LTE Band 41 Mid- Edge 4 (1 RB#0) DUT: 4G FREE ROAMING; Type: WT

Communication System: LTE; Communication System Band: LTE Band 41; Duty Cycle:1:1.58; Conv.F=5.19 Frequency: 2593MHz; Medium parameters used: f = 2600 MHz; $\sigma = 2.14 \text{mho/m}$; $\epsilon r = 51.97$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C): 21.8, Liquid temperature (°C): 20.6

SATIMO Configuration:

• Probe: SSE5; Calibrated: 12/05/2016; Serial No.: SN 14/16 EP308

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4_02_32

Configuration/ LTE Band 41 Mid Edge 4/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/ LTE Band 41 Mid- Edge 4/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Edge 4
Band	LTE Band 41
Channels	Middle
Signal	Crest factor: 1.58

Maximum location: X=-9.00, Y=-13.00 SAR Peak: 1.13 W/kg

SAR 10g (W/Kg)	0.268491		
SAR 1g (W/Kg)	0.593002		

Report No.: AGC08745161201FH01 Page 82 of 90

Z (mm)	0.00	4.00	8.00	12.00	16.00	20.00	24.00	28.00
SAR (W/Kg)	1.1348	0.6668	0.3749	0.2096	0.1180	0.0677	0.0397	0.0242
	3.0 3.0 3.0 3.0 3.0 4.0	3-4-2-	0 7.510.0	15. 0 20 Z (mm	0.0 25.0	30.0	36.0	

Page 83 of 90

WIFI MODE

Test Laboratory: AGC Lab Date: Apr. 17,2017

802.11bMid-Body- Worn- Back DUT: 4G FREE ROAMING; Type: WT

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.19; Frequency: 2437MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.92$ mho/m; $\epsilon r = 53.98$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.8, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:

• Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

· Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/802.11b Mid - Body- Back /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11b Mid - Body- Back /Zoom Scan: Measurement grid: dx=5mm, dy=5mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt		
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm		
Phantom	Validation plane		
Device Position	Body Back		
Band	2450MHz		
Channels	Mid		
Signal	Crest factor: 1.0		

Maximum location: X=0.00, Y=50.00 SAR Peak: 0.77 W/kg

SAR 10g (W/Kg)	0.279441			
SAR 1g (W/Kg)	0.473610			

Report No.: AGC08745161201FH01 Page 84 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.8333	0.5102	0.2755	0.1895	0.1064	0.0724	0.0369
(W/Kg)							
	0.8-						
	0.7-						
	SAR (W/kg)	+					
	0.4- 0.3-						
	0.2-	+++-					
	0.1-	25.50.75.10		200 250	200 05	0 400	
	0.0	2.5 5.0 7.5 10		20.0 25.0 Z (mm)	30.0 35	.0 40.0	

Page 85 of 90

Repeated SAR

Test Laboratory: AGC Lab Date: Apr. 07,2017

GPRS 1900 Mid -Body-Back (2up) DUT: 4G FREE ROAMING; Type: WT

Communication System: GPRS-2Slot; Communication System Band: PCS 1900; Duty Cycle: 1:4.2; Conv.F=5.34 Frequency: 1880.0 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{mho/m}$; $\epsilon r = 53.54$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section

Ambient temperature (°C):22.1, Liquid temperature (°C): 20.7

SATIMO Configuration:

Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

· Measurement SW: OpenSAR V4 02 35

Configuration/GPRS1900 Mid -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/GPRS1900 Mid -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf10mm.txt				
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete				
Phantom	Validation plane				
Device Position	Body Back				
Band	PCS 1900				
Channels	Mid				
Signal	TDMA (Crest factor: 4.0)				

Maximum location: X=11.00, Y=-52.00

SAR Peak: 1.49 W/kg

SAR 10g (W/Kg)	0.440254			
SAR 1g (W/Kg)	0.849751			

Report No.: AGC08745161201FH01 Page 86 of 90

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.4780	0.8916	0.4604	0.2769	0.1551	0.0852	0.0500
(W/Kg)	_						
	1.5-						
	1.2-	ackslash					
	 1.0−	$\overline{}$		+++			
	@ 1.0- 0.8-	+		\perp			
	8 00						
	9.0 SA						
	0.4-	+++		+++			
	0.2-	+		\Box			
	0.0-			7-1-	┿┿┷┤		
	0.0	2.5 5.0 7.5 10	0.0 15.0	20.0 25.0	30.0 35	.0 40.0	
				Z (mm)			

Page 87 of 90

APPENDIX C. TEST SETUP PHOTOGRAPHS

Body Back 0mm

Report No.: AGC08745161201FH01 Page 88 of 90

Report No.: AGC08745161201FH01 Page 89 of 90

Page 90 of 90

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

Page 91 of 90

APPENDIX D. CALIBRATION DATA

Refer to Attached files.