A Summary

- Rigid body transformations preserve orientation and direction
- They're affine transformations (Rx + p), rotation then translation
- Points can translate, but vectors simply rotate (since they only represent direction)
- Homogeneous coordinates can help us represent this movement

$$P = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ 1 \end{bmatrix} \qquad \begin{array}{c} \overrightarrow{V} = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ 0 \end{bmatrix}$$

• Now we can represent rigid transformations for both points and vectors using a single matrix (convert from affine form to linear form)

$$2a = \begin{bmatrix} 2a \\ 1 \end{bmatrix} = \begin{bmatrix} Rab \\ 0 \end{bmatrix} \begin{bmatrix} 9b \\ 1 \end{bmatrix} \begin{bmatrix} 9b \\ 1 \end{bmatrix} = \begin{bmatrix} 9ab \\ 9b \end{bmatrix}$$

$$9 = \begin{bmatrix} R \\ D \end{bmatrix}$$

Can stack and invert

- If we want to parametrize our motion by time, then we can use
 exponential coordinates to generate our transformation matrices
- Create rotation matrix:

$$R(t) = e^{i\omega t}$$

 $w = axis$ of rotation
Same as the Rodrigues Formula

- Can also create homogeneous transformation matrix
- Use the twist (both linear and angular velocity)

Pure rotation (revolute joint)

• Pure translation (prismatic joint)

Rotation and translation (screw)

Exponential coordinates:

$$(\xi, \Theta)$$
 (ξ, Θ)
 (ξ, Θ)

$$e^{\hat{\xi}\theta} = \begin{cases} \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix} & \omega = 0 \\ \\ \begin{bmatrix} e^{\hat{\omega}\theta} & \left(I - e^{\hat{\omega}\theta}\right)(\omega \times v) + \omega\omega^T v\theta \\ 0 & 1 \end{bmatrix} & \omega \neq 0, \ ||\omega|| = 1 \end{cases}$$

Discussion 2: Exponential Coordinates

Tarun Amarnath

Announcements:

- Homework 2 released! Due on Tuesday
 - Much longer than HW 1, start early!
 - About what to expect for the rest of the semester
- Lab 1 this week, Lab 2 next week
- Thursday discussions now in-person because Wi-Fi garbo
 - We'll still post recordings

1. Rigid Body Transformations

• Length-Preserving $\|P-q\| = \|q(P)-q(q)\|$

All points stay the same distance from each other

• Orientation-Preserving

• Points don't switch positions g(v * w) = g(v) * g(w)

Same angle relative to each other

- o If your camera is on the top of your phone, it stays on the top
- In other words, a rigid body stays rigid. It's a solid solid.
- Rotations are rigid body transformations

Rigid Transformation of a Point

- We can move and rotate a coordinate frame
- Points on that frame move and rotate with it
- Ex. Robot arm: flips upside down and moves by 1 unit in the y-direction

Rigid Transformation of a Vector

- Just a rotation
- Vectors only have direction, no positional information

$$g(v) = g(s - r) = g(s) - g(r)$$

$$= Pab + Rab + S - Pab - Rab + r$$

$$= Rab + S - Rab + r$$

$$= Rab + (S - r)$$

$$= Rab + \sqrt{r}$$

Homogeneous Coordinates

- Can be used with both points and vectors
 - 4-dimensional array

Point:
$$q = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ 1 \end{bmatrix}$$
 Vector: $\vec{\nabla} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ 0 \end{bmatrix}$

• Combine rotation and translation

$$9ab = \begin{bmatrix} Rab & Pab \\ Pab & Pab \end{bmatrix} \in \mathbb{R}^{4\times 4} = 9ab \cdot 2b$$

Ex. Flip z-axis and move in the +x direction by 1 unit

$$g_{ab} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \\ \begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \\ \begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{cases}$$

$$\begin{cases} 2b &= \begin{bmatrix} 2 \\ 2$$

Vector:
$$(9ab Vb) = \begin{bmatrix} -2\\2\\-2\\0 \end{bmatrix}$$
 —> Has not moved
 (-2) O in the 4th position

Composition Rule

- Product of 2 rigid body transforms performs both of them
- Go from right to left
- Same as rotation matrices basically, but this also includes translation

Invertibility

- They're invertible
- Can go from one place to another and back

$$g = \begin{bmatrix} R & P \\ O & I \end{bmatrix}$$

$$g^{-1} = \begin{bmatrix} R^{T} & -R^{T}P \\ O & I \end{bmatrix}$$

2. Exponential Coordinates

Matrix Exponential

Recall from homework 0 some definitions

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 — Taylor Series

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!} \qquad \longrightarrow \text{ with a matrix!}$$

$$=I+A+\frac{A^2}{2!}+\frac{A^3}{3!}+...$$

• Differential equation

$$\frac{dx}{dt} = \dot{x} = Ax \qquad x(0) = x_0$$

$$x(t) = e^{At} x(0)$$

• Some exercises

1. By differentiating the series representation, show that if $Y(t) = e^{At}$ then $\dot{Y}(t) = Ae^{At} = e^{At}A$.

A Check Solutions

2. By differentiating the function $y(t) = e^{-At}x(t)$, show that $x(t) = e^{At}x_0$ is the unique solution to $\dot{x} = Ax$ with initial condition $x(0) = x_0$.

Motivation

- We want to construct a transformation matrix
- Understand how some point moves with coordinate axes
 - o Ex. Where in the world frame does some point on a robot arm end up

- But the thing with robots is that they have continuous motion
- A joint can spin around or move forward and back

- Our transformation matrix changes with movement
- This means we need the matrix to be a **function of theta** (how much the arm has moved)
- How do we do that?
- We look at how the joint moves (i.e. linear and angular velocities)
- Then integrate!
 - o (But this is a DE as we'll see, so it's really an exponential

Exponential Coordinates for Rotation

- Basically, we're constructing the rotation matrix using this technique
- (We'll get to the full homogeneous matrix next)

Problem 1. Find the rotation matrix $R(\omega, \theta)$ for a rotation about some axis ω by amount θ . How is

Find the exponential coordinates of the following rotation matrices:

- 1. $R_x(\pi/2)$, the Euler x rotation matrix.
- 2. $R_y(-\pi/2)$ morld x
- 3. $R = (R_x(\pi/2)R_y(-\pi))$

 $e^{\hat{\omega}_{1}\theta_{1}} \cdot e^{\hat{\omega}_{2}\theta_{2}} \rightarrow e^{\hat{\omega}_{1}\theta_{1} + \hat{\omega}_{2}\theta_{2}}$

2.

X - x has been flipped - y & Z have switched Rotation by T by axis in y-Z Rotation around the middle (rotated by same ant in

3. Exponential Coordinates for All Rigid Motion

Twists

- Usually we want to find more than just the rotation matrix
- See how position changes too
- We want the full homogeneous transformation
- We can use twists to capture this idea
 - Use both linear and angular velocities

(R)

Problem 2. Write the expressions for the velocity of the point p (ie. $\dot{p}(t)$) when attached to both the revolute and prismatic joints in Fig. 2. Assume that $\omega \in \mathbb{R}^3$, $||\omega|| = 1$, and $q \in \mathbb{R}^3$ is some point along the axis of ω .

Figure 2: a) A revolute joint and b) a prismatic joint.

Twist of a Revolute Joint (Rotational Motion)

Now, let's make the velocity into a DE in homogeneous coordinates

Twist of a Prismatic Joint (Linear Motion)

More on Twists

3.4 Solution to differential equation gives us the exponential map

Problem 5. Write the general solution to the differential equation $\dot{\bar{p}} = \hat{\xi}\bar{p}$. Then, make use of the fact that $||\omega|| = 1$ to reparameterize t to be θ . Specifically, find the expression for $p(\theta)$ in terms of p(0).

$$\dot{p} = \dot{\xi} \cdot p(t)$$

$$p(t) = e^{\dot{\xi}t} p(0)$$

Themogeneous (60rds

e Et -> Homogeneous Transformation Matrix

- It's a mapping of points from initial coordinates to final coordinates after motion with parameter
- Not a mapping between coordinate frames

$$\underbrace{e^{\hat{\xi}\theta}}_{} = \begin{cases}
\begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix} & \omega = 0 \\
\begin{bmatrix} e^{\hat{\omega}\theta} & (I - e^{\hat{\omega}\theta}) (\omega \times v) + \omega \omega^T v\theta \\ 0 & 1 \end{bmatrix} & \omega \neq 0, \ ||\omega|| = 1
\end{cases}$$

Exponential Coordinates:

$$\begin{array}{c}
(\xi, \Theta) \\
([v, w]^T, \Theta)
\end{array}$$

4. Screw Motion

- Any rigid body translation can be simplified
- Instead of having a rotation and then a translation
- Finite rotation about some axis and then translation about that axis
 - Axis I
 - Magnitude M (like theta)
 - Pitch h ratio of translation : rotation
 - ► h = 0: pure rotation
 - ► h infinite: pure translation
- Rotation by M (theta)
- Translation by hM (apply ratio)

The transformation g corresponding to S has the following effect on a point p:

$$gp = q + e^{\hat{\omega}\theta}(p - q) + h\theta\omega \tag{11}$$

Problem 6. Convert this transformation to homogeneous coordinates. What do you notice between this expression and the one in Eq. 10?

one in Eq. 10?
$$g\left[P\right] = \left[\hat{e}^{\omega\theta} \left(I - e^{\omega\theta}\right)g + h\omega\right]\left[P\right]$$

-> Very similar in form to
equation above

Every twist => Equivalent screw

5. Twists from Screw Motion

- Screws correspond to rotation and translation
- Can convert them into twists
- 2 cases: pure translation and nonzero rotation + translation

A) Pure Translation (h infinite)

$$\hat{\xi} = \begin{bmatrix} v \\ 0 \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix}$$

B) Nonzero rotation (h finite)

- Rotation by theta
- Axis w
 - Passes through point q
- Translation by h0 units

$$\hat{\xi} = \begin{bmatrix} -\omega \times q + h\omega \\ \omega \end{bmatrix}^{\wedge} = \begin{bmatrix} \hat{\omega} & -\omega \times q + h\omega \\ 0 & 0 \end{bmatrix}$$

Exercise: Find the twist for the following revolute joint:

Exercise: Find the twist for this prismatic joint:

Exercise: Find the exponential coordinates for this rigid body transform using the equivalent screw motion.

Axis =
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $M = \Theta = \pi/2$
 $N = \frac{1}{\pi/2} = \frac{2}{\pi}$

tinyurl.com/106a-disc-2