Lab: Conditional Statements

Problems for lab exercise for the "Programming Basics" course @ SoftUni Global.

Submit your code in the Judge system: https://judge.softuni.org/Contests/2389/Conditional-Statements-Lab

1. Excellent Result

Write a console program that reads a rating (integer) entered by the user and prints "Excellent!" if the score is 5 or higher.

Input	Output
6	Excellent!

Input	Output	
4	(no output)	

Input	Output
5	Excellent!

Input	Output	
3	(no output)	

Hints and Guidelines:

1. Create a **new class** in the existing IntelliJ project. Right-click on the "**src**" **folder**. Select [New] → [Java Class]:

You already have a project with one class in it. It remains to write the code to solve the task.

2. Create a main method by going to the "ExcellentResult" class (between curly brackets) and type:

```
public class ExcellentResult {
    public static void main(String[] args) {
    }
```

3. Go to the body of the main (String [] args) method (between the curly braces). Create a Scanner object to read from the console and read a **floating-point** number - the grade:


```
public class ExcellentResult {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int grade = Integer.pαrseInt(scanner.nextLine());
}
```

4. Check the value of the assessment. If it is greater than or equal to 5, print the conditional output:

```
public class ExcellentResult {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int grade = Integer.parseInt(scanner.nextLine());
        if (grade >= 5) {
            System.out.println("Excellent!");
```

5. Start the program with [Ctrl + Shift + F10] and test it with different input values:

2. Greater Number

Write a program that reads two integers entered by the user and prints the larger of the two.

Sample Input and Output

Input	Output
5	5
3	

Input	Output
3	5
5	

Input	Output
10	10
10	

Input	Output
-5	5
5	

Hints and Guidelines

1. Read two **integers** from the console:


```
public class GreaterNumber {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int num1 = Integer.parseInt(scan.nextLine());
        int num2 = Integer.parseInt(scan.nextLine());
    }
```

2. Compare whether the first number num1 is greater than the second num2. Print the larger number.

```
if (num1 > num2) {
    System.out.println(num1);
    System.out.println(num2);
```

3. Even or Odd

Write a program that reads an integer entered by the user and prints whether it is even or odd.

Sample Input and Output

Input	Output
2	even

Input	Output
3	odd

Input	Output
25	odd

Input	Output
1024	even

Hints and Guidelines

- 1. First, add a **new Java class** to the existing project.
- 2. Create a **Scanner** object and read an integer from the console:

```
public class OddOrEven {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int number = Integer.parseInt(scan.nextLine());
    }
```

3. Check that the number is even by dividing it by 2, and check what is the remainder of the division. Print the output depending on the condition:


```
public class OddOrEven {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int number = Integer.parseInt(scan.nextLine());
        if (number % 2 == 0) {
            System.out.println("even");
        } else {
            System.out.println("odd");
        }
    }
```

4. Password Guess

Write a program that reads a password (string) entered by the user and checks if the entered password matches the phrase "s3cr3t!P@ssw0rd". In case of coincidence, display "Welcome". In case of discrepancy, display "Wrong password!".

Sample Input and Output

Input	Output	
qwerty	Wrong password!	

Input	Output
s3cr3t!P@ssw0rd	Welcome

Input	Output
s3cr3t!p@ss	Wrong password!

5. Number 100...200

Write a program that reads an integer entered by the user and checks if it is below 100, between 100 and 200 or above 200. If the number is:

- below 100 print: "Less than 100"
- between 100 and 200 print: "Between 100 and 200"
- above 200 print: "Greater than 200"

Sample Input and Output

Input	Output		
95	Less than 100		

Input	Output			
120	Between 1	.00	and	200

Input	Output		
210	Greater than 200		

6. Speed Info

Write a program that reads the speed (floating-point number) entered by the user and prints speed information.

- At speed up to 10 (inclusive) print "slow"
- At speed between 10 and 50 (inclusive) print "average"
- At speed between 50 and 150 (inclusive) print "fast"
- At speed between 150 and 1000 (inclusive) print "ultra fast"
- At a higher speed print "extremely fast"

Sample Input and Output

Input	Output
8	slow

Input	Output
49.5	average

Input	Output
126	fast

Input	Output
160	ultra fast

Input	Output
3500	extremely fast

7. Area of Figures

Write a program in which the user enters the type and dimensions of a geometric figure and calculates its area. The figures are of four types: square, rectangle, circle, and triangle. The first line of the input reads the type of figure (string with the following options: square, rectangle, circle, or triangle).

- If the figure is a square: on the next line read a floating-point number the length of its side
- If the figure is a rectangle: on the next two lines read two floating-point numbers the lengths of its sides
- If the figure is a circle: on the next line read a floating-point number the radius of the circle
- If the figure is a triangle: on the next two lines read two floating-point numbers the length of its side and the length of the height to it

Round the result up to 3 digits after the decimal point.

Sample Input and Output

Input	Output
square 5	25.000

Input	Output
rectangle 7 2.5	17.500

Input	Output
circle 6	113.097

Input	Output
triangle 4.5 20	45.000

