

LUDDY SCHOOL OF INFORMATICS

YELP REVIEWS CLASSIFICATION

By: Shyam kumar kanuru Sumanth muvva Sri Venkata Sai Anoop Bulusu

OVERVIEW

- Abstract
- Motivation
- About the dataset
- Approach
- Modelling and Results
- Conclusion
- Future work

ABSTRACT

ABSTRACT

- Yelp is a local business directory and forum to review products, services, or places.
- Used Yelp's review data to determine user's sentiment or opinion about products, services, or places.
- Sentiment or opinion are classified into positive reviews, or negative reviews.

MOTIVATION

MOTIVATION

- Considering 92% of consumers now read online reviews before purchasing, it
 might be time for all small businesses to start caring about what is said online;
 and more specifically, about their Yelp reviews.
- Our study is one such attempt to filter out fake reviews on social media making it easy for the user to assess the product, services and places

ABOUT THE DATASET

DATASET DESCRIPTION

- The Yelp reviews polarity dataset is built using the various customer ratings.
- The dataset contains 560,000 training samples and 38,000 testing samples.
- The dataset has 2 classes:
 - 1. Class 1: Negative polarity
 - 2. Class 2: positive polarity
- The files train.csv and test.csv contain all the training samples as comma-separated values.
- There are 2 columns in them, corresponding to class index (1 and 2) and review text.

APPROACH

APPROACH

SECTION 4.1

EXPLORATORY DATA ANALYSIS(EDA)

EDA

Target data is equally distributed

Length of negative reviews in the training data seems to be more.

Frequent Bigram and Trigram for positive and negative reviews

SECTION 4.2

PRE-PROCESSING

TEXT CLEANING

 Removed all the punctuations, URL's, numbers, unwanted characters, etc.

```
#cleaning the reviews
def cleaning text(review):
    #removing the url's
    review = re.sub('http\S+\s*', ' ', review)
    #removing the punctuations
    review = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>@[\]^_`{|}~"""), ' ', review)
    #removing non-ascii characters
    review = re.sub(r'[^\x00-\x7f]',r'', review)
    #removing mentions (i.e, @)
    review = re.sub('@\S+', ' ', review)
    #removing hashtags
    review = re.sub('#\S+', ' ', review)
    #remove numbers
    review = re.sub("\d+", ' ', review)
    #removing extra whitespaces, wherever applicable
    review = re.sub('\s+', ' ',review)
    #converting the text into lowercase
    review = review.lower()
    return reviews
```

FEATURE ENGINEERING

 Added few custom features like number of words in each review, average length of each word in a review, etc.

FEATURE ENGINEERING

 The following is the data frame obtained after performing feature engineering

#train data after adding custom features
yelp_train_data.head()

	•	class_index	review_text	clean_review_text	no_of_words	avg_length_word	no_of_characters	no_of_unique_words
•		1	Unfortunately, the frustration of being Dr. Go	unfortunately the frustration of being dr gold	118	4.237288	618	80
[1 2	2 1	Been going to Dr. Goldberg for over 10 years	been going to dr goldberg for over years i thi	98	3.908163	481	71
2	2	1	I don't know what Dr. Goldberg was like before	i don t know what dr goldberg was like before	213	4.234742	1115	132
;	3	1	I'm writing this review to give you a heads up	i m writing this review to give you a heads up	203	4.029557	1021	108
4	1 2	2	All the food is great here. But the best thing	all the food is great here but the best thing	76	4.105263	388	53

VECTORIZATION

- Bag of words (Count Vectorizer)
- Term Frequency inverse document frequency (TF-IDF Vectorizer)

Experimented all the models using both the techniques.

SECTION 4.3

MODELLING AND RESULTS

RESULTS

MODEL	TRAINING ACCURACY	TEST ACCURACY	OVERFITTING OR NOT
Logistic Regression- CV	85.86	86.02	NO
Logistic Regression- TFIDF	91.56	91.7	NO
Support Vector Machines -CV	90.94	91.06	NO
Support Vector Machines - TFIDF	89.94	90.02	NO
Naive-Bayes - CV	88.72	88.18	NO
Naive-Bayes - TFIDF	76.82	76.41	NO
XGBoost - CV	85.08	85.11	NO
XGBoost - TFIDF	85.14	85.14	NO
Random Forest - CV	92.95	85.82	YES
Random Forest-TFIDF	93.94	86.21	YES
DL MODEL- CV (LSTM/CNN)	Future work	Future work	
DL MODEL-TFIDF (LSTM/CNN)	Future work	Future work	

CONCLUSION

CONCLUSION

- 1. From the above table we incur that Logistic regression with TFIDF and SVM are giving better results with the test data
- 2. The Random forest model is overfitting with both count vectorizer and TFIDF data.

FUTURE WORK

FUTURE WORK

- 1. Perform feature selection and then implement Random forest with better parameters in order avoid overfitting.
- 2. In future we will try to implement and explore more deep learning model such as CNN, LSTM.

REFERENCES

REFERENCES:

- 1. https://towardsdatascience.com/building-a-sentiment-analysis-model-using-yelp-reviews-and-ml-ensemble-methods-80e45db6d0c7
- 2. https://www.yelp.com/dataset
- 3. https://www.ics.uci.edu/~vpsaini/
- 4. https://xgboost.readthedocs.io/en/stable/
- 5. https://scikit-learn.org/stable/modules/svm.html