

INDEX OF AUTHORS

VOLUME L

TRANSACTIONS OF AMERICAN SOCIETY FOR METALS

1958

A

- Abrahamson, E. P. II.....705-721
Averbach, B. L.....517-540, 634-655
Avery, C. H.....814-829

B

- Backofen, W. A.....478-497
Baldwin, W. M. Jr.....803-813
Bartholomew, E. L. Jr.....370-383
Beck, F. H.....759-772
Bendel, S.....1047-1062
Berger, L. W.....384-397
Borik, F.....242-257
Brown, Norman.....541-561
Burke, J. E.....943-953

C

- Carlson, O. N.....348-369
Chapman, R. D.....242-257
Christakos, J.....105-128
Chubb, W.....298-304
Clark, Donald S.....14-20, 656-681
Cohen, M.....517-540, 634-655

D

- Day, D. L.....398-417
Dieter, G. E.....722-737
Domagala, R. F.....323-339
Dorn, J. E.....856-883
Douglass, D. L.....305-322
Dulis, E. J.....773-802
Duwell, E. J.....208-226

E

- Eichelberger, T. W.....738-758
Elliott, R. P.....617-633

F

- Fontana, M. G.....759-772
Fortney, R. E.....814-829

G

- Gibson, E. D.....348-369
Grant, N. J.....705-721
Gurland, J.....1063-1071
Gurry, R. W.....105-128
- Hagel, W. C.....184-207
Harmon, E. L.....418-437
Harrison, Eleanor.....994-1005
Hauser, F. E.....856-883
Hendrickson, J. A.....498-516, 656-681
Hsiao, Chi-Mei.....773-802

J

- Jaffee, R. I.....384-397
Johnston, T. L.....1047-1062
Jominy, W. E.....163-183, 242-257

K

- Kalish, Herbert A.....272-297
Kessler, H. D.....398-417
Koistinen, D. P.....227-241
Kozol, J.....418-437
Kramer, A.....803-813

L

- Lagerberg, G.....141-162
Landon, P. R.....856-883
Lement, B. S.....141-162
Levinson, D. W.....323-339

Li, C. H.....	1047-1062	Ross, S. T.....	163-183
Liu, Tien-Shih	455-477	Rostoker, W.....	
Lloyd, L. T.....	954-980	617-633, 838-855, 1090-1105
Loomis, B. A.....	348-369	Ruoff, M. N.....	184-207

M

McKinsey, C. R.....	438-454
McNutt, J. E.....	1006-1030
McPherson, D. J.....	323-339
Mallett, M. W.....	981-993
Manning, G. K.....	305-322
Marsh, L. L. Jr.....	305-322
Marshall, E. R.....	478-497
Martin, W. G.....	572-588
Mayfield, R. M.....	905-925, 926-942, 954-980
Mehl, R. F.....	1006-1030
Mickelson, Robert	340-348
Mikus, E. B.....	682-704
Muehlenkamp, G. T.....	298-304
Mueller, M. H.....	905-925
Murphy, Daniel J.....	884-904

N

Newkirk, J. B.....	572-588
--------------------	---------

O

Owen, W. S.....	517-540, 634-655
-----------------	------------------

P

Paliwoda, E. J.....	208-226, 258-270
Parker, Earl R.....	46, 52-104
Pechin, W. H.....	1081-1089
Perkins, R. A.....	438-454
Peterson, David	340-348
Pond, R. B.....	994-1030
Powell, G. W.....	478-497
Pugh, J. W.....	1072-1080

R

Richards, R. S.....	398-417
Roberts, Earl C.....	129-140

Sartell, J. A.....	1047-1062
Schwope, A. D.....	298-304
Semchyshen, M.....	830-837
Sernka, R. P.....	163-183
Siebert, C. A.....	682-704
Sinnott, M. J.....	1031-1046
Spachner, S. A.....	838-855
Sperry, Philip R.....	589-616
Steinberg, Morris A.....	455-477
Stern, M.....	438-454
Stricker, C. D.....	105-128

T

Thurman, J. W.....	208-226
Torgerson, C. S.....	830-837
Troiano, A. R.....	418-437
Trzeciak, M. J.....	981-993
Turkalo, A. M.....	943-953

U

Upp, J. R.....	759-772
Upthegrove, W. R.....	1031-1046

W

Wang, T. P.....	541-561
Williams, D. E.....	1081-1089
Williams, D. N.....	384-397
Williams, R. O.....	562-571
Wood, D. S.....	498-516, 656-681

Y

Yamamoto, A. S.....	1090-1105
---------------------	-----------

Z

Zegler, S. T.....	905-925
-------------------	---------

SUBJECT INDEX

- ASM Awards**.....12, 13, 19, 32, 47-52
ASM Educational Lecture Series.9, 10
ASM Foundation for Education and Research.....41-45
ASM Gold Medal.....51, 52
ASM Medal for Advancement of Research Award.....49, 50
ASM Periodicals.....29, 30
ASM Publications.....28, 30, 31, 37
Acid pickling of titanium
 hydrogen absorbed in.....438-454
Activation energy
 for grain boundary self-diffusion.....1039, 1044, 1045
 for recrystallization of Ti alloy RC55.377, 378, 380-383
 for release of a dislocation.....500, 505, 508, 514
 of creep and growth in uranium.....940, 942, 949
 of temper embrittlement.691, 695, 697
Age hardening
 classification of systems.....562-571
 in Ti-Cb alloys.....394-396
 in Ti-V alloys.418, 427, 428, 435, 437
 treatments for high temperature alloys738, 739
Aging
 of Cr-Mn-C-N steels.....775
 of iron-base alloy, hardened with Ti, effect of-cycles
 on properties738-758
 of Ti-4Al-3Mo-1V405-408, 412
 of Ti-V alloys.....427-437
 types of cycles used for high temperature alloys738, 739
Alcoholic extraction of carbides from steel.....105-128
Allotropic modifications of uranium986, 987
Alloys
 for high temperature use
 See High temperature alloys
 for nuclear reactors.271, 272, 298, 348
 for use at 800 °F.....398
Alloying elements
 in Al-1.25 Mn
 Alloying elements (cont.)
 in Al-1.25 Mn (cont.)
 distribution by lineal analysis593, 594
 in chromium, effect on BDT temperature705-721
 in magnesium
 effect on axial ratio...859, 877, 878
 effect on transition temperature880
 in temper embrittlement.683, 691, 695
Alloy steels, hypoeutectoid
 transformation structures .187-207
Alpha-gamma transformation
 in pure iron, sensitivity of hot hardness tester at.....834, 835
Aluminum
 coefficient of work hardening64
 strain induced growth in absence of recrystallization....373
Aluminum, bicrystalline
 grain boundary movement .994-1005
 micrograph of grain boundary999
 plastic deformation in.....994-1005
 ruptured surface996, 998
 specimen preparation995-998
Aluminum, single crystal
 strain hardening in.....64
 stress-strain curve....64, 1000, 1001
Aluminum alloys, airframe
 structural
 effects of temperature-time histories on tensile properties814-829
 prediction of tensile properties827, 829
 sampling and analysis of variation815
Aluminum alloys, trade designations
 2024-T3, alclad, effects of temperature-time histories on tensile properties....814-829
 3003 (3S), relation between constitution and ultimate grain size589-616

- Aluminum alloys (cont.)**
 7075-T6, alclad, effects of temperature-time histories on tensile properties 814-829
- Aluminum-1.25 Mn alloy**
 hardness changes during processing 591
 microstructure 592, 595-599
 properties of, unhomogenized and homogenized 591
 relation between constitution and grain size 589-616
 solid solution composition as affected by microstructure 592
- Aluminum-silicon alloys**
 thermally induced stresses in 1063
- Andrade theory of creep** 79
- Annealing**
 of austenitic stainless steels,
 effect on tensile ductility at various temperatures 803-813
 of ingot iron, stored energy measured during 549-554
 of titanium and its alloys,
 effect of temp. and time on final grain size 371-373, 376, 380
 of uranium, effect of alpha phase, upon growth 907-909, 914, 923
- Annual Address of President** 14-20
- Apparatus for determining the hardness of metals up to 3000 °F.** 830-837
- Aqueous extraction of carbides in steel** 105-128
- Argon in cathodic etching** 574, 576, 579-581, 587
- Atomic diameters (Goldschmidt) table** 619
- Austenite**
 in Cr-Mn-C-N steels
 hardening of 794
 stability of 782-786, 797
 in Fe-Cr-Ni alloys, effect on intergranular corrosion 763-770
 in stainless steel, stability of 478, 489, 492, 495
- Austenite, banded and retained in stainless steel**, effect on transverse properties 730-736
- Austenite transformation**
 effect of tension, torsion and compression strains on 493-496
- Austenitic stainless steel**
See Stainless steel, austenitic
- Austenitizing**
 of high C steel, effect on property-relationships 163-183
 of mild steel, effect of temps. on critical stresses 529-531
- Autoradiography**
 methods in 685, 686
 of carbon 14 in steel 687-696
 of intergranular microsegregation of radioactive P in steel 698
 of role of C in temper embrittlement 687, 691, 696
 of self diffusion of nickel 1033, 1034
 photographs 687, 691-694
 resolution in 700, 701, 703
- Axial ratio (c/a)**
 relation to prismatic slip in Mg-Li alloys
 856, 859, 874, 877, 878, 881, 883
- BDT of binary Cr-base alloys** 705-721
- BDT temperature**
 bend test for 706, 707, 718
 correlation with electron configuration 712, 713, 715-717
 definition 716
 theory for 716, 717
- Becker theory of creep** 79, 80
- Bend test for BDT** 706, 707, 718
- Bens hot hardness tester** 831, 834, 836
- Beryllium**
 correlation of slip mechanisms with axial ratios 877, 883
- Bicrystals from single crystals**
 illustrations and schematic 996-998
 specimen preparation 995-998
- Binary alloys**
 Laves phases in, of transition elements 618-623
- Brillouin zones**
 in Laves phases 617, 618, 622, 628-630
 theory 878

- Brass**
 effect of grain size on creep
 in 70-30 89
 strain induced growth in absence
 of recrystallization 373
 thermal stresses in two-phase
 alloys 1070
- Brittle-ductile transition**
See BDT
- Brittle fracture**
 contrasted with ductile.....
 661, 662, 678, 680
 Griffith-Orowan theory of.....
 635, 647, 651
 in chromium alloys.....705-721
 in mild steel
 critical tensile stress for .673, 676
 effect of notch geometry.....
 656, 658, 675
 effect of stress rate.....675
 effect of temperature.675, 677, 680
 initiation of656-681
 under tension at -196 °C..635-655
 relationship to crystal structure..657
- Brittle fracture strength**
 equation for857
 of magnesium858
- Brittleness**
 in austenitic stainless steel, and
 carbide precipitation ..803-813
 in chromium, theories on.....853
- Burger's mechanism of strain hardening**65
- Burger's vectors in slip** ..876, 877, 879
- C-T diagrams**
 for Cr-Mo-V steel.....190
 for Ni-Cr-Mo steel.....190, 191
 for Ni-Mo steel.....189
 for 4340 steel.....202
- Cadmium**
 correlation of slip mechanisms
 with axial ratios.....877
 growth of, from vapor.....1006-1030
- Campbell Memorial Lecture** 46, 52-104
- Campbell dislocation theory of yield point**
 502, 505, 508, 509, 512, 514
- Carbide extraction**
 data114, 115
 electrolyte111-114
 equipment106-111
 handling of residue.....118-123
 variations in conditions.....115-118
 variations in tempering
 temp.123-126
- Carbide precipitation**
 globular type in alloy steels.194, 200
 in austenitic stainless steels
 brittleness and803-813
 microstructure805, 810
- Carbides, grain boundary**
 in stainless steel, effect on
 properties734-736
- Carbides, residual**
 in Cr-Mn-C-N steels...780-782, 794
- Carbides**
 in carbon steel, extraction
 method for105-128
 in steel, thermo-magnetic
 properties150
- Carbon**
 diffusion gradients in carbon
 steels201, 202, 206
 in case of a carburized steel....
 228, 233, 235, 240
 in cementite, Curie temperature analysis135, 136
 in Cr-Mn-C-N steels, stabilizing
 effect of, on austenite.....
 783, 784, 788, 789, 793
 in leaded steels, effect on
 machinability266, 270
 in 3140 steel, temper embrittlement
 and682-704
 in thorium, solubility of.....340-347
 in uranium-low titanium alloys
 903, 904
- Carbon 14**
 in autoradiography of steel..685, 686
- Carbon steel**
 carbon diffusion gradients.....
 201, 202, 206
 extraction of carbides from..105-128
 temper embrittlement in.683, 699, 702

- Carbon steel, high**
fracture behavior vs.
hardness 163-183
torsional strength and electron
microstructure 163-183
- Carburization of steel**
stress distribution in case 227-241
x-ray diffraction study 227-238
- Cathode ion bombardment** 572
- Cathodic etching** 572-588
argon used in 574, 579, 587
cathode cooling in 580, 581, 583, 587
cathode shielding 580, 581, 587
conditions for several alloys 579
equipotential lines in model 581
ionization efficiency in
..... 573, 574, 578-580, 584, 587
krypton use in 587
magnetic field use in 578, 580, 585
normal and oblique incidence ...
..... 582-585, 587
of copper-2.5 iron alloy 578
of gold-nickel 577
of electroplated steel 582-585
of radioactive and nonradio-
active materials 585
of sintered compacts 579, 585
of stainless steel 577
operation procedure 575-578
power supply 575
safety precautions 575
time and temperature
characteristics 582, 586, 587
time-pressure elements, with
and without magnetic field
..... 578, 586, 587
vacuum equipment 573-576, 580, 581
- Cathodic reaction to lessen**
corrosion in titanium 438, 440, 441
- Cementite**
in high carbon steel 175-177, 179
in steel, effect of Mn on
Curie point 129-140
phase changes during quench-
aging 141-162
thermo-magnetic properties 150
- Ceramic single crystals**
ductility at room temp 100, 101
- Chemistry**
of lead in leaded high S steels ..
..... 208-226
- Chinese script structure**
in Mg-Th-Zr alloys
..... 1100, 1101, 1103, 1104
- Chromium**
ductile-brittle transition
..... 843, 845, 854, 1077, 1079
ductility with strain rate 718
effect of alloying elements
on BDT temperature 705-721
effect of contaminants on
transition temperature 838
effect of Fe and W on transition
temperature 848
effect of purity on ductility
..... 838, 847, 848
Goldschmidt atomic diameter 619
hardness vs. aging temperature 1073
high temp. properties of
forged 842-847
in Al-5 Mg alloy
effect on recrystallization ...
..... 610-612
in Cr-Mn-C-N steels, stabiliz-
ing effect of 784, 799
mechanical properties of
forged 838-855
preparation of ingot 1072, 1073
rheotropic recovery in 848-850
strain rate sensitivity 718, 720
stress-rupture properties 1072-1080
tensile properties 1072-1080
transition temperature 848-850
valencies used by different
investigators 630
- Chromium alloys**
for high temperature use 1072, 1080
- Chromium-aluminum alloys** 711, 712
- Chromium binary alloys**
BDT temperatures 705-721
electronic configuration and
mechanical behavior 705-721
- Chromium-boron alloys** 711, 712
- Chromium-beryllium alloys** 711, 713
- Chromium-carbon alloys** 711, 712
- Chromium-cobalt alloys**
..... 708-710, 713-715

- Chromium-columbium alloys** 709, 711, 713
Chromium-copper alloys 713
Chromium-hafnium alloys 713
Chromium-iridium alloys 708-710, 713-715
Chromium-iron alloys 708-710, 713-715
Chromium-manganese alloys 708-710, 713-715
Chromium-Mn-C-N stainless steel
phase relationships in 773-802
Chromium-Mn-C steels
isothermal section at 2100 °F. 781
Chromium-molybdenum alloys 709, 710, 713, 715
Chromium-Mo-V steel
hardness with various quenching
treatments 187, 206
isothermal and cooling trans-
formation curves 190
transformation structures in 195, 196, 198
Chromium-nickel alloys 708-710, 713-715
Chromium-nitrogen 707, 712, 718
Chromium-oxygen 712
Chromium-palladium alloys 708-711, 713-715, 718, 720
Chromium-platinum alloys 708-710, 713-715
Chromium-rhenium alloys 708-710, 713-715
Chromium-rhodium alloys 708, 709, 713, 714
Chromium-ruthenium alloys 708-710, 713-715, 717, 719
Chromium-silicon alloys 711, 712
Chromium steels
influence of Ni on intergranular
corrosion of 18% Cr. 759-772
Chromium-tantalum alloys 709, 711, 713
Chromium-technetium alloys 713
Chromium-titanium alloys 709, 711, 713
Chromium-tungsten alloys 709, 710, 713
Chromium-vanadium alloys 709
Chromium-zirconium alloys 709, 711, 713
Clark-Wood yield theory 519, 533
Classification of precipitation
systems 562-571
Coalescence in precipitation
of Al-1.25 Mn alloy 601, 616
Cobalt
coefficient of linear expansion 1065
effect of, on WC lattice
spacing 1066
Goldschmidt atomic diameter 619
Poisson's ratio 1065
valencies used by various inves-
tigators 630
Young's modulus 1065
Cobalt-base alloy, trade designation
HS-21 (effect of double aging
on stress-rupture) 757, 758
S-816, hardness (70-2300 °F.) 834, 835
Coefficient of expansion
of cobalt 1065
of uranium 954, 970
Coherency in precipitation 568, 569
Columbium
effect on alpha and beta Ti 384
Goldschmidt atomic diameter 619
Laves phases in 617-633
plastic strain prior to abrupt
yielding 536
stress-strain prior to abrupt
yielding 538
Composition
of Cr-Mn-C-N steels, effect of
solution treatments and, on
hardness 788, 792, 795, 796
of leaded steels (type A)
effect on machinability 261, 262, 264-267, 269
of nonleaded open hearth free-
cutting steel, effect on
machinability 258
of uranium, effect on thermal
cycling growth 947

- Compression testing**
of austenitic stainless steels..... 481, 488, 489, 496
- Constitution of Al-1.25 Mn alloy**
effect on grain size..... 589-616
- Constitutional diagram**
See Phase diagram
- Contaminants in chromium**
effect on transition temperature.. 838
- Continuous cooling**
microstructure of low alloy steel
produced by 244
- Cooling rates in thermal cycling**
for uranium, effect on growth...
.. 912, 918, 919, 931, 932, 935,
937, 938
- Cooling rates (quenching)**
for U-low Ti alloys, effect of
heat treatment and, on
properties .888-896, 899, 903, 904
- Cooling transformations in steel**
See C-T diagrams
- Copper**
creep rate vs. grain diameter
in polycrystalline 90
- Goldschmidt atomic diameter.... 619
- stress-strain curves for
single crystal 97
- Copper alloys**
effect of electron concentration
on yield strength..... 97
- stress-strain curves for
single crystal 96, 97
- Copper-2.5 iron alloy**
cathodically etched 578
- Copper-nickel alloy (62:38)**
oxidation behavior 1047-1062
- Copper oxides (CuO) and (Cu₂O)**
growth rates in oxidation-
kinetics study on Cu-Ni
alloy 1051-1057
- orientation 1062
- Corrosion rates for Fe-Cr-Ni**
alloys 763-770
- Corrosion resistance**
of uranium 898
- of U-low Ti alloys..... 894, 897-899
- Corrosion tests on stainless**
steel 762, 763
- Cottrell atmosphere**
..... 83, 92-94, 98, 500, 516, 537
- Cottrell-Bilby theory of initial**
dislocation release 500, 501, 514
- Cottrell mechanism of**
hardening 92-94
- Cottrell strain aging theory**..... 878
- Cottrell theory of creep** 83, 91, 92
- Creep**
activation energy for 87
deformational mechanisms for ..
..... 976, 977
- effect of grain size on..... 89, 90
- in high purity nickel..... 85, 86
- in mild steel, in nonelastic
deformation .. 521, 522, 524, 534
- in uranium 949, 951
effect of temperature
variation 936, 940, 942
- shape of curves 84-86
- theories of 79-91
- Andrade 79
- Becker 79, 80
- Cottrell atmosphere
..... 83, 91, 92, 94, 98
- exhaustion 80, 81
- Kauzmann rate process 81
- K. 83, 84
- Kochendorfer 82, 83
- Nowick and Machlin rate..... 82
- Orowan modification of
Becker 80
- recent 84
- thermal cycling growth com-
pared with 954, 976-978
- Creep-rupture properties**
of high temperature alloys,
effects of aging treatments
on 738-758
- of iron-base alloy, hardened
with Ti, effect of aging
cycles on 743, 744, 748-753
- effect of notched and plain
bar tests 743, 744, 748-753
- Critical size nucleus** 739-741
- Crystal growth in cadmium**
effect of temperature
..... 1016, 1018, 1024, 1028, 1029
- hexagonal symmetry 1016

- Crystal growth in cadmium** (cont.)
 mesa growth 1026
 no screw dislocations in 1028
 ridge boundaries 1011-1013
 sloping growth fronts 1025-1027
 step growth 1012-1027
 trigonal wakes and ramps 1023, 1025
- Crystal growth from vapor**
 cadmium 1006-1030
 continuous microscopic and interferometer observations during 1001-1007
 defects appearing at low temperature 1023, 1025, 1026
 equipment and process 1007-1011
- Crystal orientation**
 of copper oxides 1062
 of titanium hydrides 468, 474-476
- Crystal structure**
 in precipitation 569
 relationship to brittle fracture 657
- Crystallographic deformation**
 in uranium during thermal cycling 970-976
- Crystallography**
 of zirconium hydride precipitation 455-477
- Crystals, metallic**
 dislocation in f.c.c. 95
 schematic diagram of dislocation in 71
 strain hardening in 62-72
- Crystals, nonmetallic**
 plastic properties in 100, 101
- Cycling unit, vertical tube** 929
- Debye-Scherrer powder camera** 210, 211
- Defects in crystal growth from vapor** 1011-1013, 1023, 1025-1027
- Deformation**
 in ingot iron at low temps 541-561
 in Ti and Ti alloy, effect of amount on final grain size 371-375, 380, 382
 of alpha solid solutions of lithium in magnesium 856-883
- Deformation** (cont.)
 of various Mg alloys at 78 °K 861-864
 type or mode influencing transformation in stainless steel 485-496
- Delay time**
 in low C steel vs. tensile stress 503, 511
 in mild steel, before fracture 640, 648, 649, 651, 654
 in yield phenomena 498, 499, 505-507, 513-516, 519, 535, 536
- Delta ferrite**
 in Cr-Mn-C-N steels 774, 775, 778, 780, 797, 799
 in stainless steel 431
 effect on transverse properties 722-737
 microstructure 728, 729
- Diffusion anneals of nickel** 1033
- Diffusion**
 in oxidation kinetics of 62:38
 Cu-Ni alloy 1057-1059, 1061
 of hydrogen into titanium 441
 of hydrogen into uranium 987-993
 of nickel 63 into nickel 1031-1046
- Dimensional instability of uranium upon thermal cycling** 905, 926, 943, 954
- Dislocation** 54-62
 climb 74, 75, 87-90
 density in ingot iron 553, 554, 560
 edge or line 55, 56, 61
 in lithium fluoride crystal 57
 in nucleation 566, 567, 568
 loop 58-60
 generation of 500, 508, 514
 schematic at barriers 88
 screw 56, 61
 sessile 71, 72
- Dislocation pile-up theory of fracture** 634, 647, 651-653, 655
- Discontinuous grain growth**
 in Al-Mg alloys 610, 615
- Discontinuous yield theories** 517, 518
 applied to mild steel 498-516

- Discontinuous yielding**
in austenitic stainless steel..... 478, 483, 485, 486, 490-495
- Dissociation pressures**
of hydrogen-uranium 983-986, 988, 990
- Documentation** 27
- Domain structure**
in zirconium-uranium alloys.... 320, 321
- Double age**
advantages 738, 739
application to Fe-base alloy, hardened with Ti..... 749, 751, 757
definition 738, 739
- Ductile-brittle transition**
See also BDT
- Ductile-brittle transition temperature for chromium**..... 843, 845, 854, 1077, 1079
effect of grain size on..... 850, 851
effect of impurities on..... 848
effect of prestrain and strain rate on 848-851
- Ductile fracture vs. brittle**..... 661, 662, 678, 680
- Ductility**
of austenitic stainless steels
vs. strain rate at various temperatures 806, 807
of chromium... 838, 845-848, 851-854
effect of strain rate 845-847
of chromium alloys 718
of Mg-Li alloys at low temperatures 856-883
of Ti-Cb alloys.... 388, 389, 391, 396
- Educational Lectures** 9, 10
- Effect of manganese on the Curie point of cementite** 129-140
- Effect of oxide recrystallization on oxidation kinetics of a 62:38 Cu-Ni alloy** 1047-1062
- Effect of percent tempered martensite on endurance limit** 242-257
- Elastic limit**
definition 517, 533
effect of temperature on..... 534
- Elastic-plastic boundary around notch in mild steel** 660, 665, 666, 668-677, 680
- Elastic-plastic stress analysis of notched specimens of mild steel** 656-681
- Election of Officers** 45, 46
- Electrical resistance of Ta-Cb alloys (30-1000 °C.)** 1083, 1086, 1087
- Electro-etching**
of U-low Ti alloys 903
- Electrolytic extraction of carbides from carbon steel**... 105-128
- Electron: atom ratio**
for binary and ternary alloys...
calculated vs. theoretical..... 622-628
..... 627, 628
- Electron configuration in chromium alloys, correlation with rate of transition temperature change** 705-721
- Electron microscopy**
of high carbon steel 51100..... 163-183
of hypoeutectoid alloy steels 184-207
of iron-base alloy hardened with titanium 754, 755
of role of carbon in temper embrittlement of steel 682-704
of steel during quench-aging. 141-162
of steel, phase identification..... 145
- Elongation in tensile fracture behavior of mild steel at -196 °C.** 637, 641, 642
- Embrittlement**
in austenitic stainless steels
effect of microstructure on, 803-813
extent after sensitization..... 807
in steel, effect of P and N on.... 267
in alpha Ti and alpha Ti alloy..
..... 455-477
- in Ti-V alloys 418, 429, 431, 433, 435-437
- Endurance limit**
of steel vs. percent martensite.. 242-257

- Energy (stored) from plastic deformation, release by annealing** 541-561
- Engineering Education** 14-16
- Etchants for revealing grain boundary segregation in steel** 695, 701, 702
- Etching by gas ion bombardment** 572-588
See also Cathodic etching
- Evaluation of a new titanium-base sheet alloy, Ti-4Al-3Mo-1 V** 398-417
- Exhaustion theory of creep** 80, 81
- Extraction, electrolytic of carbides**
 from carbon steel 105-128
 cell for 106-111
 handling the residue 118-123
 methods 111-118
 variations in conditions 115-118
- Fabrication of uranium, effect of upon thermal cycling** 905-925
- Fatigue strength of low alloy steel**
 effect of hardness on 255, 256
 effect of microstructure on 242-257
 effect of stress raisers on 255, 256
- Fatigue testing of low alloy steel** 249-251
 need of statistical treatment in 256, 257
- Ferrite**
 decomposition of, during quenching 141-162
 in Fe-Cr-Ni alloys, effect on intergranular corrosion 763-770
 in stainless steel 431, effect on transverse ductility 726-730, 734, 735
 phase changes during quenching 141-162
- Ferromagnetism of cementite**
 effect of manganese on 129-140
 effect of temperature 130
- Fick's diffusion laws** 1034
- Fisher activation energy** 508, 513, 514
- Fisher diffusion formula** 1039-1041
- Fisher mechanism of hardening** 94, 96
- Flow and fracture**
 modern concepts of 52-104
- Flow curves for Ti-Cb alloys** 390, 391
- Forging of chromium** 841, 851
- Formability of**
 Ti-4Al-3Mo-1V 401, 411, 413, 415
- Fracture**
 dislocations in 99, 100
 in alpha solid solutions of
 Li in Mg 858-883
 in mild steel at -196 °F 634-655
 in notched specimens of
 mild steel 667, 671, 674-678
 in 51100 steel 168
 in various Mg alloys at
 78 °K 861-864
 resistance to initiation and propagation in 678-681
- Fracture strength**
 of Mg-Li alloys 871, 872
- Frank-Read sources** 56-60, 98
 in dislocation 654
 in low carbon steel
 .499, 500, 506, 508, 509, 514, 515
 in slip 875, 876
 in yield phenomena 534
- Free grain boundaries** 995
- Fringe motion in microinterferometry** 1010
- Gas ion bombardment etching** 572-588
- Genauge treatment**
 application to Fe-base alloy 749-751, 754-756, 758
 definition 739
- Gold nickel, cathodically etched compact** 577
- Goldschmidt atomic diameters**
 table 619
- Grain boundary**
 angle, defined 1032
 changes in 971-974
 flow in uranium, upon thermal cycling 944-953
 free 995
 movement in bicrystalline
 aluminum 994-1005
 illustrations of 998, 999, 1002
 self-diffusion of nickel 1031-1046

- Grain boundary** (cont.)
 self-diffusion of nickel (cont.)
 calculation of coefficients
 by various formulae..... 1039-1044
 experimental procedures..... 1031-1034
 parameter for various misfit
 angles vs. reciprocal
 temperature 1043
 sliding or flow in thermal cycling
 of uranium..... 946, 947, 949,
 951-953, 964, 971-976, 980
 transverse
 method of
 production..... 977, 998, 1004
 translation in 998, 999, 1002
- Grain coarsening in titanium
 and various Ti alloys.** 370-383, 459
- Grain growth**
 in commercial Ti RC 55..... 370-383
 in superalloys during solution
 treatment 758
 in Ti alloy TI-100A 370-383
- Grain refinement Al-1.25**
 Mn alloy 606, 614, 615
- Grain size**
 effect on creep rate..... 89, 90
 in Al-1.25 Mn alloy
 effect of constitution on..... 589-616
 effect of homogenization.....
 .. 594, 595, 598, 601, 602,
 605-610, 613
 of precipitate in recrystalliza-
 zation 605, 613-616
 in chromium, effect on
 ductility 850, 851, 854
 in Cr-Mn-C-N steels
 effect of solution treatment
 on 782, 794
 in Mg-14.5 Li alloy
 heat treatment and 861
 in flow and fracture stress...
 872, 873
 in mild steel, effect on elastic
 limit and critical
 stresses 526-529, 533, 534
 in pure magnesium, in flow and
 fracture stress 872, 873
- Grain size** (cont.)
 in titanium and its alloys, effect
 of prior- to deformation on
 final size .. 371-376, 380, 382, 383
 in tungsten carbide, effect of-
 on lattice spacing 1067, 1068
 in uranium
 during growth 919, 922, 923
 effect on creep 977
 effect on thermal cycling
 growth 956-970, 975, 977
 in zirconium-uranium
 alloys 287-289
- Griffith-Orowan theory of brittle
 fracture** 635, 647, 651
- Grip effect in tensile testing
 on aluminum bicrystals.** 994-1005
- Growth**
 of cadmium from vapor..... 1006-1030
 of uranium upon thermal
 cycling 905-925, 926-942,
 943-953, 954-980
- Growth-cell assembly** 1007, 1008
 sensitivity of 1007, 1010
- Growth rate in thermal cycling**
 mathematical analysis 930, 931
 proposed mechanisms for
 954, 955, 976
- Habit planes in precipitation for
 titanium hydrides** 468, 474-476
- Hafnium**
 allotropy 349
 atomic radius 349, 367
 Goldschmidt atomic diameter..... 619
 Laves phases in 617-633
 melting and transformation
 temperatures 367
 physical properties 349, 367
- Hafnium binary alloys** 631
- Hagg type pericarbide**
 163, 170, 179, 182, 183
- Hardening**
 by interstitial and substitutional
 atoms 98
 in Cr-Mn-C-N steels, effect
 of constituents on.. 786, 792-796
 in two phase systems..... 99

Hardness

- of alloy steels 205-207
 - of Al-1.25 Mn alloy 591, 593, 595, 598, 600, 601, 604
 - of austenitic steels, effect of composition on 794-797
 - of Cr-Mn-C-N steels effect of composition and solution treatment on. 794-796
 - of chromium versus aging temperatures 1073, 1074, 1079
 - of ingot iron vs. annealing temperature 557
 - of iron-base alloy hardened with titanium effect of aging cycles on 744
 - effect of heating rate on 745
 - of low alloy steels effect of-on fatigue 255, 256
 - vs. percent martensite 246-249
 - of mild steel at low temperatures, notched specimens 668, 669, 671, 677
 - of Mo and Mo-0.5 Ti alloy, correlation with creep-rupture properties 835, 837
 - of 51100 steel, vs. torsional yield strength 167
 - of thorium-carbon 340, 345, 346
 - of Ti-4Al-3Mo-1V 414
 - of Ti-Cb alloys 388, 389, 393, 396
 - of uranium-low titanium alloys 894-896, 898-901, 904
 - of zirconium-uranium alloys 298-304
 - isotherms in system 302
 - table 301
 - temperature relationships 303
- Hardness at elevated temperatures**
See Hot Hardness
- Hardness testing up to 3000 °F.**
 equipment 830-837
 variations in readings 836
- Heat of solution**
 of hydrogen in uranium 990, 991
- Heat resistant alloys**
See High temperature alloys and Superalloys
- Heating and cooling rates in thermal cycling of uranium,**
 effect of-on growth 931, 932, 935, 937, 938, 946, 947, 951
- Heat treatment**
 of Al-1.25 Mn alloy, effect on ultimate grain size 589-616
- of 430 chromium steel, effect on intergranular corrosion 759, 760, 762, 764
- of high carbon steel, effect on property relationships 163-183
- of iron-base alloy, hardened with titanium, effect on properties 743, 744
- of magnesium alloys, grain sizes and 861
- of stainless steel 304, to produce susceptibility to intergranular corrosion 759, 760, 762
- of stainless steel 431, effect on mechanical properties 722-737
- of thorium-carbon alloys 341, 342
- of thorium-hafnium alloys 351
- of thorium-zirconium alloys 351
- of Ti-4Al-3Mo-1V 399, 400, 402, 403, 405, 406, 410-412, 415
- of Ti-Cb alloys 384-397
- of Ti-V alloys 418, 420-424, 431, 435
- of turbine blades, effect on microstructure and properties 757, 758
- of uranium, effect of variables on growth 910-922
- of uranium-low titanium alloys effect on microstructure and properties 888-901
- of zirconium-tin alloys, effect on transformation kinetics 323, 326, 334, 337, 338
- on zirconium-titanium alloys, effect on transformation kinetics 326, 330, 337, 338

Hexagonal symmetry in crystal growth 1015, 1016

High temperature alloys 1072, 1080
See also Superalloys

cathodically etched 584

- High temperature alloys** (cont.)
 effect of aging cycle on
 properties 738-758
 Ti-4Al-3Mo-1V 398
 trade designations
 GMR 235, cathodically etched. 584
- High temperature properties**
 of chromium 1072-1080
 of 62.38 Cu-Ni alloy 1047-1062
 of forged chromium 842-847
 of Fe-Cr-Mn-C-N alloys 801
 of molybdenum 1076-1078
 of Ti-4Al-3Mo-1V 398, 401, 408-410
 of tungsten 1076-1078
- High temperature X-ray analysis**
 equipment 352
- Homogenization**
 of Al-1.25 Mn alloy, effect on
 ultimate grain size 589-616
 of powdered compact alloys of
 Zr-U 271, 278-288, 292
- Hot hardness**
 of Fe-Cr-Mn-C-N alloys 795, 801
 of Zr-U system 298-304
- Hot hardness testing**
 methods and equipment 299, 300, 800-837
 vacuum machine 299, 300
- Huey corrosion test on stainless**
 steel 762, 763
- Hydride layer on titanium**
 significance of 449-451
 stability of 446-448, 451
- Hydride precipitation in alpha**
 titanium and alpha titanium
 alloys 455-477
- Hydrogen contamination in**
 titanium 438, 439
- Hydrogen embrittlement**
 in Ti and Ti alloys 455-477
 surface hydride layer 449-451
 in zirconium 457
- Hydrogen**
 in titanium
 absorption and distribution
 during pickling 438-454
- Hydrogen** (cont.)
 in titanium (cont.)
 environmental factors affecting
 absorption and distribution 438-454
 metallurgical factors 441
 significance and stability of
 hydride layer 446-451
 solubility in 456, 472
 in uranium
 absorption by powdered 982, 983
 heat of solution 990, 991
 solubility in 981-987, 990-992
 in zirconium, phase study 457
 -uranium relationships 981-993
- Hydrogenation treatment**
 modified Sievert's apparatus 460-462
- Hypo-eutectoid alloy steels**
 transformation structures 184-207
- Impact brittleness in alpha Ti**
 and alpha Ti alloys, hydride
 precipitation and 455-477
- Impact properties**
 of Ti-V alloys 420, 421, 425-427, 432-435
 of U-low Ti alloys 894-896, 898
- Impact transition curves for**
 Ti-V alloys 426, 427, 434
- Impurities in chromium**
 effect on properties 1072-1074, 1079
- Inclusions in free-cutting steels**
 effect on machinability 258-268, 270
 effect of size 267, 268
- Induction thermal cycling**
 equipment 927, 928
- Ingot**
 segregation in 218, 219
 solidification in a large 213, 214, 216, 218
- Ingot iron**
See Iron, ingot
- Inhibition of recrystallization**
 in Al-1.25 Mn alloy 607-610, 613, 614
- Intergranular corrosion**
 in 18% chromium steels, effect
 of nickel on 759-772

- Intergranular corrosion** (cont.)
 in chromium steel 430, effect of heat treatment and stabilizing elements on 760, 761
 in Fe-Cr-Ni alloys 763-770
 in stainless steel 304, effect of heat treatment and stabilizing elements on 760
- Intermediate phases in alloys of the transition elements** 617-633
- Iodide extraction of carbides from steel** 105-128
- Ionization efficiency increased by use of magnetic field** 573, 578, 587
- Iron**
 Goldschmidt atomic diameter 619
 hardness (R.T.-2300 °F.) of
 pure 834, 835
 in forged chromium 848
 valencies used by various investigators 630
- Iron, ingot**
 energy stored in, deformed by
 torsion 541-561
 test method 543-546
 plastic deformation by
 torsion 549-560
 specific heat at various temperatures 543, 547, 548
- Iron-base alloy**, hardened with Ti
 effect of aging on properties 738-758
- Iron-carbon alloy**
 phase changes during quench-aging 145-149, 158, 160
 thermo-magnetic analysis 133
- Iron-carbon-nitrogen alloy**
 phase changes during quench-aging 154-160
- Iron-Cr-Mn-C-N alloys**
 development of nickel-free steels for high temperature use 773, 774
 high temperature properties 801
 phase relationships in 773-802
- Iron-Cr-Mn-N alloys**
 phase relationships in 800
- Iron-nickel**, single crystal habit planes in precipitation 475
- Iron-nitrogen alloy**
 phase changes during quench-aging 149-154, 159, 160
- Iso-embrittlement diagrams for steels** 699
- Isothermal annealing of titanium RC-55** 376, 378, 379
- Isothermal and cooling transformation**
 in Cr-Mo-V steel 190
 in Ni-Cr-Mo steel 190, 191
 in Ni-Mo steel 189
 in 4340 steel 202
 in Ti-V alloys 420, 421
 in Zr-U alloys 305, 306, 308, 315-320
- Kauzmann rate process theory of creep** 81, 82
- K. analysis of creep** 83, 84
- Kirkendall diffusion experiments** 1061, 1062
- Kochendorfer theory of creep** 82, 83
- Krypton as etching agent** 572-588
- Larson-Miller parameter for rupture and creep tests** 817
- Laszlo stress calculations** 1064, 1069, 1070
- Lattice constants**
 of thorium-carbon 341-347
 of thorium-hafnium alloys 364, 365
 of thorium-zirconium alloys 349, 356, 359
- Lattice parameters**
 of alloys containing transition elements 620, 621
 of magnesium alloys 862, 874
 vs. composition Ta-Cb alloy 1084
- Lattice self-diffusion coefficients for Ni 63 into Ni** 1034, 1037, 1039, 1040, 1045, 1046
- effect of misfit angle on ratio of grain boundary diffusion coefficient to lattice diffusion coefficient** 1042

- Lattice spacing**
 of WC in WC-Co alloys... 1066, 1067
 of WC leached powder..... 1066
- Lattice symmetry in crystal**
 growth 1015, 1016
- Laves phases**
 crystal structure in transition
 elements 622
 general characteristics 618
 in transition element alloys... 617-633
 melting points of binary..... 620
 miscibility ranges of, in
 quasi-binary systems 624
 occurrences as function of
 diameter ratio 621
 stability ranges of, in transi-
 tion element alloys 629
- Lead**
 in leaded high S steels
 effect of casting and rolling
 on dispersion 213-222
 microdispersion 208-226
 morphology and chemistry
 of 208-222
 in leaded steels
 effect on machinability... 258-270
- Liquid Metals, ASM Seminar**
 Program 1, 2
- Lithium fluoride, dislocation in.... 57**
- Lithium in magnesium**
 effect on axial ratio (c/a)....
 877, 878, 881
 effect on lattice parameters 874
 effect on low temperature
 ductility 871, 880
 effect on strain hardening... 866, 880
 effect on yield strength.. 866, 870, 871
- Lloyd-Mayfield creep and relax-
 ation theory 949, 952**
- Loading of mild steel**
 patterns, effect on yield
 point 508, 511
 rate at -196 °C., effect on
 properties 634, 638-642, 651
 time, effect on stress-strain
 curves 521
 tests on notched specimens
 at low temperatures.... 664-667
- Low carbon steel (0, 17 C)**
 effect of stress rate and temper-
 ature on yield stress... 498-516
 initiation of brittle fracture
 in 656-681
 log. delay time vs. tensile stress.. 503
 upper yield point vs. stress rate.. 504
- Low microcrack theory of
 fracture.** 634, 635, 646-648, 651, 652
- Low temperature deformation**
 in austenitic stainless
 steel 481-489, 492
 in ingot iron 541-561
 in mild steel 517-540
- Low temperature properties**
 of low carbon steel..... 498-516
 of magnesium-lithium alloys 856-883
 of mild steel..... 634, 655-681
- Low temperature tensile testing
 of notched specimens of mild
 steel** 656-681
- Low temperature yield stress of
 a low carbon steel, effect of
 variables on** 498-516
- Lüders' bands in mild steel**
 at -196 °C.... 634-649, 651, 653, 654
 in dislocation 509, 516
 in yield phenomena.... 517-520,
 524-526, 531-533, 536-539
- Machinability**
 index of
 definition 259
 formula based on percentage
 composition 260-264, 269
 of steel 208, 219, 224, 225
 of type A leaded steel..... 258-270
 effect of P and N on..... 267
 of free cutting steel..... 258-270
 test method 259, 260
- Macrostructure of uranium** 922
- Magnesium**
 BDT with alloying..... 875, 880
 brittleness at low temperatures..
 856, 858, 866, 867, 875, 879, 880
 coefficient of work hardening.... 64
 correlation of slip mechanisms
 and axial ratios 887
 deformation in single crystal.... 859

- Magnesium** (cont.)
 heat treatment and grain sizes...861
 slip in875, 879
 strain hardening in single crystal879
- Magnesium-binary alloys**
 deformation in861-864
 stress-strain curves at 78°F.861-864
- Magnesium-lithium alloys**
 axial ratios and prismatic slip in. 856, 859, 874, 877, 878, 881, 883
 correlation of slip mechanisms and axial ratios.....877
 deformation and fracture in. 856-883
 ductility and prismatic slip856-883
 ductile fracture in880
 heat treatment and grain sizes861
 stress-strain curves at low temperatures.....865, 866, 873
- Magnesium-14.8 Li alloy**
 grain sizes in861, 872, 873
 pole figures for882
 strain hardening and recovery in873, 874, 878
 stress-strain curve at 78° K873, 878
- Magnesium oxide**, ductility at room temperature of single crystals101
- Magnesium-thorium alloys**
 partial phase diagram....1095, 1096
 phase studies1090-1099
 preparation of alloys....1092, 1094
 survey of literature on phase analysis1090, 1091
- Magnesium-Th-Zr system**
 Chinese script structure...1103, 1104
 crystallization1102
 microstructure1101, 1103, 1104
 partial phase diagram ...1099, 1102
 phase studies1099-1104
 preparation of alloys.....1100
 segment of liquid surface of...1102
 solid solubility1103
- Magnetic behavior in austenitic stainless steels** vs. strain rate at various temperatures809
- Magnetic field used in cathodic etching**572-588
- Magnetic tests on Cr-Mn-C-N steels**775
- Manganese**
 effect on Curie point of cementite129-140
 Goldschmidt atomic diameter619
 in aluminum
 effect on recrystallization temperature589
 effect on grain size.....589, 608
 in Al-5 Mg alloy, effect on recrystallization589, 592-594, 610-612
 in cementite, Curie temperature analysis134-136, 138
 in Cr-Mn-C-N steels, stabilizing effect on austenite.....783, 784, 799-801
 in ferrite, Curie temperature analysis137, 138
 in leaded steels, effect on machinability266, 267
 valencies used by various investigators630
- Manganese sulphide in leaded high S steel**, morphology of....208-226
- Marker technique in oxidation studies**1048, 1049, 1061, 1062
 significance of1051-1054
- Martensite**
 in austenitic stainless steels
 contribution to strain hardening482, 490-493
 density of482
 non-correlation with ductility807-809, 811
 volume produced by tension, torsion and compression..485, 486, 488-490, 493, 494
 in Cr-Mn-C-N steel.....782, 786
 in steel
 effect on endurance limit.....242-257
 effect on impact properties....255

- Martensite (cont.)**
 in steel (cont.)
 methods to produce predetermined amounts of.....245-249
 in U-low Ti alloys900-904
- Martensitic transformation**
 in austenitic stainless steels....
478-498
 effect of tension, torsion
 and compression on.....493-496
 effect of strain rate.....495
 in zirconium-uranium alloys....307
- Massive transformation**
 definition321, 322
- Mechanized Literature Searching Project**27, 28
- Mechanical properties**
 effect of orientation characteristics on994, 995
 of aluminum bicrystals,995
 of forged chromium.....838-855
 of stainless steel 431, effect
 of microstructure and heat
 treatment on722-737
 of Ti-Cb alloys.....384-397
 of Ti-V alloys.....418-437
 of uranium898
 of U-low Ti alloys.....894-899
 of Zr-Sn alloys.....333-335
 of Zr-Ti alloys.....328-330
- Melting of chromium**840, 841, 854
- Melting points**
 of alloys of transition
 elements620
 of Ta-Cb alloys.1082, 1083, 1088, 1089
- Membership Award, Honorary**49
- Mesa**, growth front in crystal
 growth1026
- Metal-hydrogen systems**
 interaction types456
- Metallography**
See also Microstructure and Morphology
- Metallography**
 of Mg-Th alloys.....1093, 1095
 of oxide scales.....1061
 of Ta-Cb alloys.....1083, 1087
- Metallographic etching by gas**
 ion bombardment572-588
- Metallurgical Congress, Second**
 World Program10-12, 40, 41
- Metallurgical Engineering**
 Education14-16
- Metals Engineering Institute**37, 38
- Metals for nuclear reactors**272-298
- Microcracks**
 in brittle fracture.....679
 in mild steel at -196 °C.....
634, 635, 643-651, 653, 655
- Microcreep**
 at low temperatures, theories
 of518, 533
 in brittle fracture of mild
 steel at -196 °C.....635
 in nonelastic deformation.....
 ..518, 521, 523, 532, 533, 539, 540
- Microdispersion of lead in**
 steel261, 264
- Microinterferometer in study**
 of crystal growth1009, 1010
- Microradiography**
 of leaded high S steel...209-213, 223
 definition208, 209
 sampling of ingot.....213, 214
 techniques209-213
 of leaded steels.....261-264
- Microstrain in stress-strain**
 analysis at low temperatures
 517, 518, 521, 523, 533, 534, 539, 540
- Microstructure**
 cathodic etching572-588
 of Al-1.25 Mn alloy592-606
 of austenitic stainless
 steel803-813
 of chromium, arc-melted.....839
 of Cr-Mn-C-N steels...785-793, 802
 of 62:38 Cu-Ni alloy.1051-1053, 1056
 of hydrogen pickup in
 Ti442, 444-446
 of ingot iron, plastic deformation by torsion.....549, 556, 558
 of Fe-base alloy, hardened with
 titanium752-755
 of Fe-Cr-Ni alloys763-772
 of Mg-Li alloys.....867-870
 of Mg-Th alloys.....1095, 1097, 1098
 of Mg-Th-Zr alloys.....1100-1104
 of mild steel at -196 °C.....642-646

- Microstructure (cont.)**
- of stainless steel AM 350.....728
 - of stainless steel 431.....722-737
 - of steel
 - effect on endurance limit..242-257
 - during quench-aging.....144, 145
 - of Ta-Cb alloys.....1087
 - of Th-C alloys.....343, 344, 346
 - of Th-Hf alloys.....360-365
 - of Th-Zr alloys.....353, 354
 - of titanium RC 55.....372, 379
 - of Ti alloy Ti-100A.....372, 377
 - of Ti-4 Al-3 Mo-1 V.....404, 416, 417
 - of Ti-Cb alloys.....390-393
 - of Ti-V alloys.....420, 435
 - of uranium924
 - during thermal cycling.....954-980
 - of U-low Ti alloys.....889-894, 898, 899, 902-904
 - of Zr-U alloys.....280, 284-289, 291, 292, 308-319
- Misfit angle**
- definition1032
 - in grain boundary self-diffusion of nickel.....1037-1043
- Modern concepts of flow and fracture**52-104
- Molybdenum**
- Goldschmidt atomic diameter...619
 - hardness (70-3000 °F.) of
 - strain hardened834, 835
 - plastic strain prior to abrupt yielding536
 - stress-rupture properties
 - vs. temperature1078
 - stress-rupture strength of
 - strain hardened835
 - stress-strain relationship prior to abrupt yielding.....539
 - tensile properties vs. temperature1076
- Molybdenum-base alloys**
- hot hardness tester (70-3000 °F.) for830-837
- Molybdenum-0.5 Ti alloy**
- hot hardness of strain-hardened834-837
 - stress-rupture strength at high temperatures.....835
- Morphological and phase changes during quench-aging of ferrite containing C and N**141-162
- Morphology**
- of hypoeutectoid alloy steels184-207
 - of lead in leaded high S steels208-226
- Mott and Nabarro theory of creep**80, 81, 91
- Nabarro-Herring diffusion theory of growth during thermal cycling**948, 952
- Necking, multiple in austenitic stainless steel**478, 483, 485, 486, 490-495
- Nickel**
- constant creep curves for high purity85, 86
 - crystallographic misorientation of bicrystals1033
 - diffusion of radioactive Ni
 - into1035-1040
 - Goldschmidt atomic diameter...619
 - grain boundary self-diffusion of-into Ni.....1031-1046
 - in 18% chromium steels, effect on intergranular corrosion759-772
 - production of bicrystals...1031, 1032
 - stress-strain curve of poly-crystalline76
- Nickel oxide (NiO)**
- growth rate in oxidation kinetics study of 62:38 Cu-Ni.1051-1056
 - orientation1062
- Nickel-Cr-Mo steel**
- hardness with various quenching treatments187, 206
 - isothermal and cooling transformation curves190, 191
 - transformation structures in....192, 193, 198
- Nickel-molybdenum steel**
- hardness with various quenching treatments187, 206

- Nickel-molybdenum steel** (cont.)
 isothermal and cooling trans-
 formation curves 189
 transformation structures in
 192, 193, 195, 196
- Nickel steels**
 temper embrittlement in 699, 702
- Niobium**
See Columbium
- Nitrides**
 in Cr-Mn-C-N alloys 780-782
- Nitrogen**
 in chromium (forged)
 838, 839, 842, 851, 853, 854
 in Cr-Mn-C-N steels, stabilizing
 effect on austenite
 783, 784, 788-793
 in Fe-Cr-Ni alloys, effect on
 intergranular corrosion 772
 in leaded steel 267
 in stainless steels, martensitic,
 effect on microstructure 734
 in thorium-carbon alloys 346, 347
- Nonelastic strain in mild steel**
 518, 521, 529-534
 stages in 518, 635
- Nonmartensitic structure in low-**
alloy steel, effect on endur-
 ance limit 243, 251-256
- Notch**
 depth
 definition 425
 in Ti-V alloys 425, 435
- geometry, effect on brittle
 fracture in mild steel
 658, 660-666, 669, 670, 675, 681
- machining by generating
 process 663, 664, 677
- plane hyperbolic 658-664, 667
- Notch ductility**
 in martensitic stainless steel
 effect of microstructure on
 732, 735, 736
 of Ti-V alloys 425, 426, 429
- Notch sensitivity**
 of Fe-base alloy, hardened with
 Ti, effect of aging on creep
 738-758
- Notch sensitivity** (cont.)
 of Ti-V alloys, effect of
 aging on 425, 432-435
- Notch tensile properties**
 of Ti-V alloys 421, 433
- Nowick and Machlin theory**
 of creep 82
- Nuclear reactors**, metals and
 alloys for 271, 272, 298, 348
- Nucleation**
 growth and, in yield phenomena 510
 in age hardening alloys 739-741
 in precipitation
 complex 563, 564, 566, 567
 discontinuous 563, 564
 simple 563, 566, 570
 strain energy and 566
 in precipitation hardening
 739-741, 757
 in recrystallization 607, 612
- Occurrence of Laves phases in**
transition elements 617-633
- Ordering**
 kinetics of 568
 of matrix and precipitate
 563, 564, 568, 569
- Orowan-Becker theory of creep** 80
- Oxidation kinetics of 62:38**
 Cu-Ni alloy 1047-1062
 effect of temperature on 1055, 1058
 marker techniques in 1048,
 1049, 1051, 1053, 1054, 1061, 1062
 orientation of oxide layers 1062
 procedure and equipment 1048
 rate curves 1049-1051
- Oxide scale**, metallography of 1061
- Oxygen in chromium**
 effect on transition temperature
 and other properties
 838-840, 853
- Padden and Cain apparatus for gas**
ion bombardment
 572, 575, 580, 583, 586, 588
- Particle shape in precipi-**
tation 563, 567-569
- Passivation of titanium** 438

- Peak sharpness in X-ray diffraction study of stress distribution** 233-237
- Peierls's force to move a dislocation** 876, 877, 883
- Pericarbide, Hagg-type, in high carbon steel** 163, 164, 166, 170-175, 179, 182, 183
- Phosphorus**
in leaded steel 267
in temper embrittled steel,
autoradiography of 698
- Phase changes during quenching of ferrite** 141-162
- Phase identification in U-low Ti alloys** 888-894, 898, 899
- Phase diagrams**
of Mg-Th 1095, 1096
of Mg-Th-Zr 1099, 1102
of Ta-Cb 1083, 1084
of Th-Hf 359, 360, 366
of Th-Zr 349, 353, 365
of Ti-Cb 385
of U-H 985, 986
of U-Ti 886, 898, 899, 904
of Zr-U 279, 285, 288, 294-297, 303, 305, 306
- Phase relationships**
in austenitic Cr-Mn-C-N
stainless steels 773-802
in 18% Cr-Fe base alloys,
effect of Ni on 763
in Fe-Cr-Mn-N system 800
- Phase studies**
in precipitation 569, 570
of alloys of transition elements 617-633
of high carbon steel 163-183
of iron alloys by electron diffraction 145
of Mg-Th system 1090-1099
of Mg-Th-Zr system 1099-1104
of Ta-Cb alloys 1083, 1084, 1088
of Th-Hf alloys 359-368
of Th-Zr alloys 353-357, 366, 368
of Ti-Cb alloys 384, 385, 388-393, 395, 397
of Zr-U alloys 279-285, 288, 291-294, 298-304
- Physical properties**
See also Mechanical properties
- Physical properties**
of Fe-base alloy, hardened with
Ti, effect of aging on 738-758
of Zr-U alloys 289-292, 297
- Plastic deformation**
by torsion in ingot iron 549-550
in brittle fracture 658-660
in polycrystalline aggregates 856-858
measurement of stored energy in, survey 541-543
twinning in 857, 858
- Plastic flow in mild steel**
at low temperatures 517-540
influence of metallurgical variables 526-531, 534
metallography of 525, 526, 533, 534
strain measurement in 519-526, 534
- Plastic properties of magnesium-lithium alloys** 864-867
- Plastic stress level in free grain boundaries** 1000, 1002
- Pole figures for Mg-14.8 Li alloys** 882
- Polycrystalline aggregates,**
plastic deformation theories 856-858
- Polycrystalline metals**
creep in 83, 88
grain boundary shearing 88
- Polygonization in uranium upon thermal cycling** 974, 977
- Polyhedra in precipitation,**
definition 564
- Porosity in uranium after thermal cycling** 964, 965, 968, 976, 977
- Powder metallurgy of zirconium-uranium alloys** 271-297
- Precipitate**
effect of size on recrystallization in Al-1.25 Mn alloy 608, 613, 614
effect on recrystallization in Al-1.25 Mn alloy 600, 607-610, 613, 614
in silver alloy 608
- Precipitation**
cellular 564

- Precipitation** (cont.)
 coherency in 568, 569
 degree of complexity in
 nucleation 562-564, 566, 570
 inter-relationships of aspects 565
 kinetics of 562, 564, 565
 nucleation in 563, 564, 566, 570
 in quench-aging of steel 141-162
 of titanium hydrides 455-477
 order in 563, 564, 568, 569
 particle shape in 563, 567-569
 polyhedra in 564
 recrystallization 564
 vacancies in 567
- Precipitation hardening**
 general considerations 739, 740
 of U-Ti alloys 895-900
 treatments for 738, 739
- Precipitation reactions**
 in alloys 739, 740, 757, 758
 in Cr-Mn-C-N steels
 786-788, 797, 800, 801
- Precipitation systems**
 classification of 562-571
 dependence of physical properties
 on characteristics of 569
 illustrations of classifications 570, 571
 proposed classification 563
 three early methods of
 classification 562, 563
- Prediction of tensile properties**
 in structural aluminum
 alloys 827, 829
- Preferred orientation in U** 916, 923
- President's Annual Address** 14-20
- Press forging of chromium** 841, 851
- Prestrain**
 effect on ductility and
 transition temperature
 of chromium 849-851
- Pre-yield microstrain in mild steel**
 in brittle fracture at -196°C
 635, 637, 639, 647, 654
 in dislocation 512, 515, 516
- Pre-yield phenomena**
 in mild steel at low temperatures 517-546
 in other B.C.C. metals 536, 537
- Prismatic slip in Mg-Li alloys**
 859, 867-871, 874-876, 879, 881, 883
- Pyramid penetration hardness**
 (70 to 3000 °F)
 equipment 830-837
 reproducibility in testing 836, 837
- Quartz tube casting of**
 chromium alloys 706
- Quench-aging**
 electron microscopy techniques 143, 144
 internal friction techniques 142
 of ferrite 141-162
- Quenching**
 of stainless steels, water-
 effect on intergranular corrosion 770, 771
 of steels, study of different media 245, 248, 249
- Quinney-Taylor method of measuring stored energy** 543-546
- Rate process theory of creep** 81, 82
- Kate of transition temperature change in Cr alloys** 705-721
- Recovery** 72-79
 in deformed ingot iron during
 annealing 555-559
 schematic 559
 macrostructure of 556, 558
 in zinc crystal 72-75
 of heat in plastically deformed ingot iron 555-559
 schematic of dislocation climb 75
 Washburn demonstration of 72-74
- Recrystallization**
 in Al-1.25 Mn alloy 594-600, 604-614
 effect of Mn 589, 592-594, 610-612
 effect of 2nd phase 607, 610
 effect of Si 594, 608, 614, 615
 effect of temperature 605
 in ingot iron after deformation 548, 549, 556, 558
 in oxidation kinetics of 62:38
 Cu-Ni 1055, 1056, 1058-1061
 in Ti (RC 55) 370-383

- Recrystallization** (cont.)
 in Ti alloy (Ti-100A) 370-383
- Reversed age**, definition 739
- Ridge boundaries in crystal growth** 1011-1013
- definition 1010
- illustration 1013
- Rheotropic recovery in forged chromium** 848-850, 853, 855
- Rolling of uranium**
 effect of variables on
 growth 906-910, 913-920
 reduction effects 909, 910, 914-916
 temperature effects 906, 907, 913, 920
- Ruthenium in chromium alloys**,
 decrease in BDT temperature..
 707-711, 717, 719
- S-N curves**
 for Al single crystals and bi-crystals 64, 1000, 1001
 for copper alloys 96
 for Mg-Li alloys at low temperatures 863-866, 873, 878
 for mild steel 77, 521
 for polycrystalline Ni 76
 for solid solutions in Mg at 78 °K. 861-864
 for stainless steel 301, 484, 485, 487
 for stainless steel 304, 483, 486, 487
 for steel 1020 77
 for steel 5140 250
 for Ti-4 Al-3 Mo-1 V 411, 412
 for zinc crystal 67, 69, 70
- Sapphire hardness penetrator** 831
- Sauveur Achievement Award** 47-49
- Second World Metallurgical Congress** 10-12
- Secondary recrystallization**
 in Al-5 Mg alloy 610
 in Al-1.25 Mn alloy 615
- Secretary's Report** 25-41
- Segregation in stainless steel**,
 431, theory of temper embrittlement 697, 698, 703, 735
- Self-diffusion of Ni 63 into Ni at grain boundary** 1031-1046
- Sensitization**
 definition 812, 813
- Sensitization** (cont.)
 of austenitic stainless steels,
 effect on tensile ductility...
 803-813
 relation to intergranular attack 813
- Sequence of transformations in case and core of carburized steels** 227-241
- Sequential exposures (Temperature-Time) on airframe structural Al alloys**
 compared to single 824-826
 effect on tensile properties 823-827
 procedures 815, 816
 question regarding random 829
- Shrinkage in sintering** 275-277, 296
- Sievert's apparatus for hydrogenation treatment** 460-462
- Sigma phase**
 in Cr-Mn-C-N steels
 788, 792-794, 797
- Silicon**
 in Al-1.25 Mn alloy, effect on
 microstructure 594, 608, 614, 615
 in leaded steels, effect on
 machinability 265-267, 270
- Silver alloy**, single crystal,
 effect of precipitate on recrystallization 608
- Single exposure (Temperature-Time) on airframe structural Al alloys**
 compared to sequential 823-827
 effect on tensile properties 817-826
 procedures 815, 816
- Sintering of Zr-U alloys**
 decomposition during 296
 effect of temperature
 273, 275, 277-279, 281-283, 293
 oxygen pickup during 278, 295, 296
 shrinkage in 275-277
- Slack quenching of uranium-low Ti alloys** 902, 904
- Slip**
 in mild steel -196 °C 645, 646
 in uranium upon thermal cycling 943, 944, 949, 958-960, 970, 971, 977, 978

- Slip mechanisms in fracture**
- correlation with axial ratios 876-879
 - effect of alpha solid solution alloying 859
 - in Mg-Li alloys 867-870, 875, 879, 881
 - in polycrystalline aggregates 857, 858
 - work hardening and 879
- Sloping front in crystal growth** 1025-1027
- Smith theory of creep** 80, 81
- Solid solubility**
- in Al-1.25 Mn alloy 592, 600-603, 608
 - in Ta-Cb system 1083, 1084, 1088
 - of Th in Mg 1096, 1099, 1104
 - of Ti in U 886-889, 903
 - of Zr in Mg-Th 1101, 1104
- Solid state physics** 53
- Solidification, ASM Seminar Program** 1, 2
- Solubility**
- of C in Th 340-347
 - of Hf in Th 365
 - of H in massive uranium 981, 982, 985-987, 990-993
 - effect of purity of U 992, 993
 - of H in powdered U 981, 982, 985-988, 990, 993
 - of Th-Zr system 352-355, 358, 359
- Solution hardening**
- by interstitial and substitutional atoms 98
 - Cottrell mechanism 91, 92
 - Fisher mechanism 94, 95
 - in two phase systems 98
 - mechanisms of 91-96
 - Suzuki mechanism 93, 94
- Solution treatments**
- for Cr-Mn-C-N steels 775, 779, 780, 794-796
 - for Fe-base alloy, hardened with Ti, effect on properties 743-745, 757, 758
 - for Ti-4 Al-3 Mo-1 V, effect on properties 403, 405-412, 415
 - for Ti-Cb alloys 384, 393-395
 - for Ti-V alloys 421-424, 431, 435, 437
- Some relationships between torsional strength and electron microstructure in a high C steel** 163-183
- Specific heat**
- of ingot iron 547, 548
 - test method at various temperatures 543-546
- Stabilization**
- in austenitic stainless steels 782-786, 797
 - of stainless steels, effect on intergranular corrosion 760, 761, 772
- Stainless steel**
- ductility of annealed and sensitized 808-811
 - Stainless steel, austenitic**
 - carbide precipitation and brittleness 803-813
 - Cr-Mn-C-N, phase relationships in 773-802
 - classification by microstructure 777
 - development of Ni-free-for high temperature use 773, 774
 - intergranular corrosion, theories for 760
 - mechanical behavior 478, 479
 - strain hardening of 478-498
- Stainless steel, ferritic**
- intergranular corrosion, theories for 760, 761
- Stainless steel, martensitic**
- effect of microstructure and heat treatment on transverse properties 722-737
- Stainless steel, trade designations**
- 17-4 PH, effect of microstructure on transverse properties 731
 - 18-8,
 - cathodically etched 577
 - influence of Ni on intergranular corrosion 759-772
 - 301, strain hardening 478-498
 - 302, carbide precipitation and brittleness in 803-813

- Stainless steel, trade designations** (cont.)
304
carbide precipitation and brittleness in 803-813
influence of Ni on intergranular corrosion 759-772
strain hardening 478-498
- AM 350**
effect of microstructure and heat treatment on transverse properties 728, 731, 735-737
tensile properties 727
- 410, effect of microstructure and heat treatment on transverse properties 731
- 414, effect of microstructure and heat treatment on transverse properties 731
- 430 (18% Cr), influence of Ni on intergranular corrosion 759-772
- 431
effect of microstructure and heat treatment on mechanical properties 722-737
transverse properties 726, 727
- Steel,**
effect of Mn on Curie point of cementite 129-140
effect of martensite on endurance limit 242-257
hydrogen diffusion through 439
lead and machinability in 208, 219
residual stress in carburized case 227-241
stress-strain in aircraft 77
thermo-magnetic analysis of, containing low Mn 132, 133
- Steel, Bessemer screw, machinability** 264, 270
- Steel, electroplated with Cu-Ni-Cr, cathodically etched** 582, 583
- Steel, free-cutting, effect of S and Pb on machinability** 264
- Steel, leaded high sulphur**
effect of casting and rolling
on dispersion of Pb in 213-222
microradiography of 209-223
- Steel, leaded high sulphur** (cont.)
morphology and chemistry of lead in 208-226
- Steel, leaded type A, machinability of** 258-270
- Steel, low alloy, effect of martensite on endurance limit** 242-257
- Steel, mild**
brittle fracture at -196 °C 634-655
effect of cold work on Charpy curve 78
effect of reheating on cold-worked 78
- effect of stress rate and temperature on yield stress 498-516
elongation vs. strain rate 641, 642
initiation of brittle fracture 656-681
physical properties at -196 °C 636, 638
plastic strain prior to abrupt yielding 536
prediction of yield stress 498-516
preyield phenomena at low temperatures 517-540
quench-aging 141-162
stress-strain curve 77
stress-strain relationships prior to abrupt yielding 537
tensile fracture behavior 636, 637
- Steel, open hearth, machinability of** 267
- Steel, rimmed, brittle fracture at -196 °C** 634-655
- Steel, ship, preyield phenomena at low temperatures** 517-540
- Steel, two phase alloy, thermal stresses in** 1070
- Steel, trade designations**
1018, carburized
microhardness 236
residual stresses and retained austenite in 234, 235
X-ray diffraction peak sharpness 234-236
- 1020, stress-strain curve 77
- 1045, electrolytic extraction of carbides from 105-128

- Steel, trade designations (cont.)**
- 1118, carburized
 - residual stresses and retained austenite in 234, 235
 - X-ray diffraction peak sharpness 233, 234
 - C 1213, machinability 258-270
 - 1340, effect of martensite on endurance limit 242-257
 - 3140, role of C in temper embrittlement 682-704
 - 4042, effect of martensite on endurance limit 242-257
 - 4340
 - C-T diagram 202
 - effect of martensite on endurance limit 242-257
 - hardenability 203-205
 - hardness traverses 204
 - transverse properties 725, 726
 - 5140
 - cooling curves of carburized 232
 - correlation of transition temperature and lattice parameter after various heat treatments 701, 702
 - effect of martensite on endurance limit 242-257
 - residual stresses and retained austenite in carburized 236, 237
 - 80B40, effect of martensite on endurance limit 242-257
 - 8620, carburized
 - cooling curves 232
 - residual stresses and retained austenite in 229-233, 239, 240
 - 51100
 - electron microstructure and torsional strength 163-183
 - isothermal transformation diagram 165
 - Step growth in crystals** 1011-1027
 - changes in 1018-1024
 - crystallography of 1016
 - defects in. 1011-1013, 1023, 1025-1027
 - rate of propagation 1016-1018
 - Stereoscopy in microradiography**
 - of alpha Ti and Ti alloy 462
 - of leaded high S steels 215-218 - Stored energy in ingot iron, released during annealing** 541-561
 - calculated density of dislocations 553, 554, 560
 - 1st and 2nd stage releases 554, 558, 560
 - graphical results 551-553
 - mathematical analysis 549
 - recovery and recrystallization in 554, 558, 560
 - temperature difference curves 551-553
 - Strain-aging**
 - of chromium 1074, 1077, 1079
 - of ingot iron 554, 555
 - of molybdenum 1077, 1078
 - of tungsten 1077, 1078 - Strain hardening**
 - in aluminum single and binary crystals 64, 1000, 1002
 - in austenitic stainless steel 478-498
 - in Cr 846, 847, 1074, 1077, 1079
 - in Mg and Mg alloys 64, 867, 878-880
 - in Mg-14.5 Li alloy with recovery 873, 874, 878
 - in Mo and W 1077, 1078
 - in tensile testing 635, 648
 - theories of 62-72 - Strain induced boundary migration in Ti RC 55, deduced from micrographs** 378-380
 - Strain induced martensitic transformation in Ti-Cb alloys** 384, 389, 390, 393, 395
 - Strain induced recrystallization in 62:38 Cu-Ni alloy** 1048
 - Strain measurement during plastic flow in mild steel** 519-526, 534, 536
 - Strain mechanism theory of temper embrittlement** 695, 696, 698, 700, 703
 - Strain pattern analysis at -196 °C., tensile fracture behavior of mild steel** 636-655

- Strain rate**
 in austenitic stainless steels
 effect on magnetic behavior...809
 effect on mechanical
 properties813
 effect on strain hardening...
 478, 479, 481-483, 491, 492, 495
 effect on tensile ductility...803-813
 in chromium, sensitivity
 716, 718, 720, 1077
 in forging chromium ...841, 842, 851
 effect on transition
 temperature848
 in mild steel at constant load. 522, 523
 in Mo and W, sensitivity.....1077
- Strain transformation in Ti-V**
 alloys418, 436
- Strength-ductility with various solution treatments for Ti-V alloys**427-433, 437
- Stress**
 application rate effect on yield
 stress in a low C steel..498-516
 critical vs. ferrite grain size in
 mild steel527, 528
 distribution in carburized and
 quenched steel239
 in notched specimens of mild
 steel....667, 669, 671, 672, 675
 residual in carburized case..227-241
- Stress analysis**
 of mild steel at
 -196 °C.637-639, 654
 of a notched specimen of mild
 steel ..658-660, 665-670, 674, 675
 of two phase alloy, WC-Co....
 1063-1071
- Stress calculation in and around a spherical inclusion due to uniform temperature change**....
 1064, 1069, 1070
- Stress-rupture properties**
 of Cr, effect of temperature
 on1076-1079
 of Mo and Mo-0.5 Ti alloy,
 correlation with hardness..
 835, 837
- Stress stability**
 in Ti-Al-Mo alloys.....416
- Stress stability (cont.)**
 in Ti-4 Al-3 Mo-1 V.....
 398, 401, 410-412, 415-417
- Stress-strain curves**
See S-N curves
- Stress-strain tests for transition temperature of chromium**...843
- Stroh-Petch theory of brittle fracture**....634, 635, 646, 648, 655
- Subcell structure in Zr-U alloys**320, 321
- Subgrain formation in U upon thermal cycling**
 961, 963, 964, 970, 974-976
- Sub-interferometric processes**
 1027, 1028
- Substructure, effect on stress-strain curves**76, 77, 86
- Sulphur in type A leaded steels, effect on machinability**.....258-267
- Superalloys**
See also High temperature alloys
- Superalloys**
 effect of aging cycles on
 properties738-758
 effect of solution treatments
 on properties757, 758
 trade designations
 HS-21, effect of double aging
 on stress-rupture properties757, 758
- Surface roughening in U**. 905, 923, 925
- Surface tension in alloys, effect of alpha solid solution alloying**
 on858, 859
- Suzuki mechanism of hardening**. 93, 94
- TTT curves**
 for Ti-V alloys...420-424, 430, 433
 for Zr-U alloys308-310
- Tantalum**
 Goldschmidt atomic diameter...619
 Laves phases in617-633
 plastic strain prior to abrupt yielding537
 stress-strain relationships
 prior to abrupt yielding....538
- Tantalum-chromium**
 Laves phases in631

- Tantalum-columbium system**..... 1081-1089
 impurities in 1082
 phase diagram 1083, 1084
 preparation of alloys..... 1081, 1082
 properties 1082, 1083
- Technical Program, 39th Annual Convention** 1-9
- Temper embrittlement**
 alloys with no 683
 correlation of transition temperature and lattice parameter with 702
 in alloy steels 699
 in carbon steels 683, 699, 702
 in nickel steels 699, 702
 in steel, mechanism of..... 682-704
 role of alloying elements
 in 683, 695, 697
 role of carbon in..... 682-704
 role of temperature in 700
 segregation theories of 697, 703
 strain mechanism theory
 of 695, 696, 698, 700, 703
 theories of 682-684
- Temperature**
 effect on tensile and stress-rupture properties of Cr.. 1072-1080
 effect on tensile ductility of austenitic stainless steels...
 803-813
 effect on upper yield stress of
 a low carbon steel..... 498-516
 immunization for stainless steels
 and Fe-Cr-Ni alloys..... 770
 in crystal growth in Cd.....
 1016, 1018, 1024, 1028, 1029
 in oxidation kinetics of 62:38
 Cu-Ni alloy 1055, 1058
 in self-diffusion, effect on
 penetration of Ni 63.....
 1035-1040, 1044, 1045
 stresses
 in Al-Si alloys 1063
 in brass and steel 1070
 in WC-Co alloys 1063-1071
 calculated and experimental 1064-1068
- Temperature (cont.)**
 time and, exposures of airframe structural Al alloys... 814-829
 time and, variables in thermal cycling of U, effect on
 growth 930-942
- Tensile ductility**
 of austenitic stainless steels ...
 803-813
 of stainless steels .. 302, 304, 803-813
- Tensile fracture behavior of mild steel at low temperatures**.....
 634-655, 656-681
- Tensile properties**
 of aluminum alloys, 2024-T3 and
 7075-T6, both alclad.... 814-829
 prediction of 827, 829
 of Al-1.25 Mn alloy..... 591
 of chromium
 effect of temperature on. 1074-1077
 forged 847
 methods of test 1074, 1075
 of Fe-base alloy, hardened with
 Ti, effect of constant strain rate 746-748
 of Mo and W at high temperatures 1076
 of stainless steels AM 350 and
 431 725-727, 731
 of Ti-4 Al-3 Mo-1 V
 effect of aging and heat treatment 402-410, 415
 effect of welding 414
 of Ti-Ch alloys 387-389, 396
 of Ti-V alloys 420, 424-435, 437
 of U-low Ti alloys..... 901, 904
- Tensile stress in notched specimens of mild steel**..... 666, 673, 675-678
- Tensile testing**
 of austenitic stainless steels....
 481-488, 495, 496
 of bicrystals of aluminum..... 997
- Ternary alloys of transition elements**, Laves phases in. 623-629
- Texture in uranium, effect on growth rate** 945, 946, 953
- Thermal analysis**
 of Mg-Th alloys 1092-1096
 of Mg-Th-Zr alloys..... 1100

- Thermal analysis** (cont.)
of Ta-Cb alloys 1082-1084
- Thermal arrest**
in martensitic transformation 307
in Th-Hf alloys 360
- Thermal cycling**
growth in Cd, Sn and Zn 949, 955
growth in uranium 905-925, 926-942, 943-953, 954-980
comparison with creep 976-978
effect of cycling variables 912, 913, 920, 923
effect of time and temperature
variables 930-939, 941
equipment and procedure 927-929
microstructural changes 954-980
mechanisms for 976
- Thermal expansion anisotropy**
in uranium 954, 970
- Thermal ratchet**
applied to bicrystals 944, 946, 947
explains growth of U in
thermal cycling 943-953
mechanisms of 943, 944, 949, 952, 953
- Thermal sluggishness**
in Ti-7 Al-3 Mo 417
in Ti-Cb alloys 391
- Thermally-induced stresses**
in WC-Co alloys 1063-1071
in two-phase alloys
Al-Si alloys 1063
brass and steel 1070
- Thermo-magnetic analysis of
cementite in steel** 132, 133
- Thorium**
allotropy 349
atomic radius 349, 367
physical properties 349, 367
solubility of C in 340-347
- Thorium-carbon alloys** 340-347
hardness 340, 345, 346
heat treatment 341, 342
lattice constants 341-343, 345-347
microstructure 343, 344, 346
nitrogen in 346, 347
solubility of C in 340-347
X-ray diffraction analysis 341-343
- Thorium-hafnium alloys**
heat treatment 351
- Thorium-hafnium alloys** (cont.)
lattice constants 364, 365
microstructure 360-365
phase diagram 359, 360, 366
phase studies 359-368
solubilities in 365
thermal arrest in 360
X-ray diffraction analysis 352, 361-365
- Thorium-zirconium alloys**
heat treatment 351
lattice constants 349, 356-359
microstructure 353, 354
phase diagram 349, 353, 365
phase studies 353-357, 366, 368
solid immiscibility loop 359
solubilities in 352, 354-359
X-ray diffraction analysis 354-358
- Time-temperature-transformation**
See TTT curves and Transformation
- Titanium**
alteration of cathodic reaction
minimizes H pickup 438
correlation of slip mechanisms
with axial ratios 877, 883
factors affecting absorption and
distribution of H in, during
acid pickling 438-454
Goldschmidt atomic diameter 619
hydrides in polycrystalline 469
hydrides in single crystals 463-466, 475
hydrogen absorption in 438-454
hydrogenation equipment 460-462
in iron-base alloy
effect on heat treatment and
properties 738-758
in uranium, effect on corrosion
resistance and mechanical
properties 884-904
Laves phases in 617-633
microscopy of hydrogenated
single crystals 463-467
passivation to minimize
hydrogen pickup 438
valency 630
X-ray reflection pattern in
single crystals 464

- Titanium, alpha**
- crystal orientation 468, 469, 474, 475
 - hydride precipitation in 455-477
 - hydrogen pickup in 438, 443-446, 451
 - microstructure 463-466
- Titanium, beta**
- hydrogen pickup in 438, 443-446, 451
- Titanium, sponge** 370-383
- Titanium, trade designation**
- RC 55, commercial
 - activation energy for recrystallization 377, 378, 380-383
 - effect of prior grain size, deformation and annealing on final grain size 370-383
 - grain growth and recrystallization in 370-383
 - microstructure 372, 379
 - recrystallization rates 378-380
 - strain-induced boundary migration in 378-380
- Titanium alloys, alpha**
- crystal orientation 468, 475
 - habit plane analysis 468, 475
 - hydride precipitation in 455-477
 - hydrides in 467-472, 475
 - microscopy of hydrogenated 467-472
 - microstructure 470-473
- Titanium alloys, trade designation**
- Ti-100A
 - effect of prior grain size, deformation and annealing on final grain size 370-383
 - grain growth and recrystallization 370-383
 - microstructure 372, 377
- Titanium-3 Al, alpha**
- crystal orientation 468, 475
 - hydride precipitation in 455-477
 - microstructure 472, 473
- Titanium-Al-Mo**
- stress stability 416
 - thermal sluggishness 417
- Ti-4 Al-3 Mo-1 V** 398-417
- aging 405-408, 412
 - formability 401, 411, 413, 415
 - hardness 414
 - heat treatment 399-405, 411, 415
- Ti-4 Al-3 Mo-1 V (cont.)**
- high temperature properties 398, 401, 408-410
 - microstructure 404, 407, 416
 - physical properties 402-405, 411, 414, 415
 - solution heat treatment 403, 405, 406, 410-412, 415
 - stress stability 398, 401, 410-412, 415-417
 - stress-strain curves 411, 412
 - tensile properties 402-410, 414, 415
 - welding of 402, 413-415
- Titanium-7 Al-3 Mo**
- thermal sluggishness 417
- Titanium-cobalt alloys**
- crystal structure 633
 - Laves phases in 631, 633
- Titanium hydride**
- orientation of 468, 474-476
- Titanium-columbium alloys**
- age hardening 394-396
 - ductility 388, 389, 391, 396
 - flow curves 390, 391
 - hardness 388, 389, 393, 396
 - heat treatment 387-397
 - mechanical properties 387-391, 396
 - microstructure 391-393
 - phase diagram 385
 - phase studies 384, 385, 388-395, 397
 - solution heat treatment 384, 393-395
 - strain-induced martensite transformation in 384, 389, 390, 393, 395
 - thermal sluggishness 391
 - work hardening 391
- Titanium-3 tantalum, alpha**
- crystal orientation 468, 475
 - hydride precipitation 455-477
 - microstructure 472
- Titanium-vanadium alloys**
- age hardening 427, 428, 435, 437
 - embrittlement in 429, 431, 433, 435-437
 - heat treatment 420-424, 431-435
 - impact properties 420, 421, 425-427, 433-435
 - isothermal transformation 420, 421

- Titanium-vanadium alloys (cont.)**
- mechanical properties and transformations in 418-437
 - microstructure 420, 435
 - notch sensitivity 425, 426, 432, 433, 435
 - solution heat treatment 421-424, 435, 437
 - strain transformation 418, 436
 - strength-ductility with various solution treatments 427-433, 437
 - tensile properties 424-430, 433-437
 - TTT curves 421-424, 430, 433
- Titanium-2 vanadium, alpha**
- crystal orientation 468, 475
 - hydride precipitation 455-477
 - microstructure 470, 471
- Titanium-10 zirconium, alpha**
- crystal orientation 468, 475
 - hydride precipitation 455-477
 - microstructure 470
- Tools, wear test on** 259, 260, 268-270
- Torsion testing**
- of austenitic stainless steels 481, 484-488, 496
 - of chromium, apparatus for 842, 843
- Torsional deformation at low temperature**
- equipment 545, 547, 548
 - radius of elastic zone 550
- Torsional mechanical properties of forged chromium (30-1000 °C)** 838-855
- Torsional strength-ductility behavior of chromium** 844-848
- effect of purity of Cr on 847, 848
- Torsional yield strength**
- of high carbon steel 163-183
 - of 51100 steel 163-183
- Transformation kinetics**
- of carburized steels 241-277
 - of high speed embrittlement of austenitic stainless steels 803-813
 - of Ti-V alloys 418-437
 - of Zr-Sn alloys 332, 333, 337
 - of Zr-Ti alloys 326-331
 - of Zr-U alloys 305-322
- Transformation structures in hypoeutectoid alloy steels** 184-207
- Transformation thermodynamics in Ti and Ti alloys** 380
- Transition elements**
- Laves phases in 617-633
 - valencies used in alloy formation 630
- Transition temperatures for binary chromium-base alloys** 705-721
- effect of various elements on 707-711
- theories 713-717
- for chromium 843-845, 848-851
- effect of grain size 850, 851
 - effect of impurities 848
 - effect of prestrain on 848-851
 - effect of strain rate on 848, 851
- for pure iron
- sensitivity of hot hardness tester 834, 835
- Transverse tensile properties of stainless steel** 431, effect of microstructure and heat treatment on 722-737
- Treasurer's Report** 21-25
- Tresca yield condition** 659
- Trigonal wakes and ramps in crystal growth** 1023, 1025
- Tungsten**
- Goldschmidt atomic diameter 619
 - hardness (70-3000 °F.) 834, 835
 - in forged chromium 848, 854
 - stress-rupture properties vs. temperature 1078
 - tensile properties vs. temperature 1076
- Tungsten carbide, properties** 1065
- Tungsten carbide-cobalt alloys**
- lattice spacing 1066
 - properties 1065
 - temperature stresses in two-phase 1063-1071
- Turnbull-Hoffman grain boundary diffusion** 1042-1044
- Twinning**
- in deformation 857, 858, 870

- Twining (cont.)**
- in uranium in thermal cycling..... 957, 958, 961, 964, 970, 978
- Uranium**
- coefficient of expansion..... 954, 970
 - corrosion resistance 884-904
 - effect of composition and purity
 - on growth 947, 992, 993
 - effects of cycling variables on
 - growth 912, 913, 926-942
 - effect of grain size on
 - growth 956-970
 - effect of fabrication on growth..
 - 906-910, 913-916, 919, 920
 - effect of heat treatment on
 - growth 907-912, 914-923
 - growth upon thermal cycling...
 - 905-925, 926-942, 943-953
 - mechanical properties 884-904
 - microstructural changes upon
 - thermal cycling..... 954-980
 - orientation in coarse grained
 - specimens 957
 - phases in 986
 - solubility of hydrogen in.....
 - 981, 982, 985-988, 990-993
 - thermal ratchet model applied
 - to growth 943-953
 - X-ray photographs of 958, 964
- Uranium hydride**, possible use in
- alloy preparation..... 273-277, 293, 297
- Uranium-hydrogen relations**
- ships 981-993
- Uranium-low-titanium alloys**
- corrosion resistance 884-904
 - mechanical properties 884-904
- Uranium-zirconium alloys**
- See Zirconium-uranium alloys
- Vacancies in nucleation** 567
- Vacuum cathodic etching** 572-588
- Valencies**
- electronic, of transition
 - elements 626, 629, 630
 - mathematical calculation from
 - X-ray diffraction data on
 - phases in transition element
 - alloys 617-633
- Vanadium**
- Goldschmidt atomic diameter..... 619
 - valencies used by different
 - investigators 630
- Vanishing phase method**, applied
- to Th-Zr system 355-357
- Virtual pressure in hydrogen diffusion through steel** 439, 440
- Wear test on tools** 259; 260, 268-270
- Weertman theory of creep** 84
- Welding of Ti-4 Al-3 Mo-1 V** 402, 413-415
- Whipple diffusion formula** 1039-1041
- Widmanstatten structure in deformation of mild steel** 520, 529-533
- Work hardening**
- in Mg-14.5 Li alloys 879
 - in Ti-Cb alloys 391
 - slip mechanisms and 879
- Wrinkling behavior in U** 922-925
- X-ray diffraction analysis**
- of alloys of transition
 - elements 619, 620
 - of Laves phases 620
 - of Mg-Th system 1093, 1096
 - of peak sharpness in carburized
 - steels 233-237
 - of stress distributions in
 - carburized steels 229-238
 - of Ta-Cb alloys 1083-1085
 - of Th-C alloys 341-343
 - of Th-Hf alloys 352, 361-365
 - of Th-Zr alloys 352-358
 - high temperature equipment.. 352
 - of WC phase in WC-Co alloys..
 - 1065-1068
 - single and two exposure
 - methods 1070, 1071
 - of Zr-U alloys 307, 315
- X-ray photographs of U** 958, 964
- Yield phenomena after plastic deformation**, 517, 521, 522, 533, 534
- in B.C.C. metals 509, 513
 - in mild steel at low
 - temperatures 517-540

- Yield phenomena after plastic deformation** (cont.)
 in tensile fracture of mild steel
 at -196 °C. 637-642, 648, 651
 rate experiments for mild steel 509, 510
- Yield strength**
 of Al alloys: 2024-T3 and 7075-T6, both alclad
 effects of single and sequential temperature-time exposures on 814-829
 of chromium, effect of repeated strains on 853
 of Mg-Li alloys 870, 871, 874
 of stainless steel 431
 effect of retained austenite 730-735
 of Ti-V alloys, ratio to tensile strength 425
 of uranium, 0.2% offset 941
- Yield stress**
 of a low carbon steel, effect of variables on 498-516
 of mild steel specimens, notched and unnotched. 667, 671, 674-678
- Yokobori theory of dislocations** 505, 512-515
- Zener-Hollomon thermal spike theory** 878, 879
- Zinc**
 brittle fracture at low temperature in polycrystalline 858
 correlation of slip mechanisms with axial ratios 877, 883
 growth on thermal cycling, thermal ratchet model for 943, 946, 948-950, 952
- Zinc crystal**
 dimple, recovery of 73, 74
 dislocation boundary 63
 recovery after strain 5, 72-74
 slip in 66
 strain hardening and reversals in 668-670
 stress-strain curves 67, 70
- Zircaloy** 298
- Zirconium**
 allotropy 349
- Zirconium** (cont.)
 atomic radius 349, 367
 correlation of slip mechanism with axial ratios 87
 Goldschmidt atomic diameter 619
 hydrogen embrittlement and precipitation in 457, 475
 Laves phases in 617-633
 mechanical properties with heat treatment 326
 melting vs. transformation temperature 367
 physical properties 349
 transformation kinetics 325, 326
- Zirconium-tin alloys**
 heat treatment 323, 326, 334, 337
 mechanical properties 333-335
 microstructure 332, 334, 336, 337
 partial phase diagram 331, 332
 transformation kinetics 332, 333, 337
- Zirconium-titanium alloys**
 heat treatment 326, 330, 337
 mechanical properties 328-331
 microstructure 327, 330
 transformation kinetics 326-331
- Zirconium-uranium alloys**
 densification in sintering 277-283
 density 273-283, 289-293
 ductility 292
 electrical resistivity 289-292
 hardness 289-292, 301
 heat treatment 306, 307
 homogenization 280-288, 292
 hot hardness survey 298-304
 martensite transformation 307
 microstructure 280, 284-289, 292, 308-319
 phase diagram 279, 285, 288, 294-297, 305, 306
 phase studies 293-297
 powder metallurgy 271-297
 production method 272, 273
 properties 289-292
 TTT diagrams 308-310
 tensile strength 291, 292, 296
 transformation kinetics 305-322
- Zirconium-uranium-oxygen**
 tentative ternary section 295, 297
- Zirconium-vanadium**
 Laves phase in 631