CS579: Foundations of Cryptography Spring 2023

Key Agreement

Instructor: Nikos Triandopoulos

Number theory background

Multiplicative inverses

The residues modulo a positive integer n comprise set $Z_n = \{0,1,2,...,n-1\}$

- let x and y be two elements in Z_n such that x y mod n = 1
 - we say: y is the multiplicative inverse of x in Z_n
 - we write: $y = x^{-1}$
- example:
 - multiplicative inverses of the residues modulo 11

Х	0	1	2	3	4	5	6	7	8	9	10
X ⁻¹		1	6	4	3	9	2	8	7	5	10

Multiplicative inverses (cont'ed)

Theorem

An element x in Z_n has a multiplicative inverse iff x, n are relatively prime

- e.g.
 - the only elements of Z₁₀ having a multiplicative inverse are 1, 3, 7, 9

Х	0	1	2	3	4	5	6	7	8	9	TOTAL PROPERTY OF THE PARTY OF
X^{-1}		1		7				3		9	ACTION OF THE PARTY.

Corollary

If p is prime, every non-zero residue in Z_p has a multiplicative inverse

Theorem

A variation of Euclid's GCD algorithm computes the multiplicative inverse of an element x in Z_n or determines that it does not exist

Euclid's GCD algorithm

Computes the greater common divisor by repeatedly applying the formula gcd(a, b) = gcd(b, a mod b)

example

 \bullet gcd(412, 260) = 4

Algorithm EuclidGCD(a, b)
Input integers a and b
Output gcd(a, b)

if b = 0
 return a
else
 return EuclidGCD(b, a mod b)

а	412	260	152	108	44	20	4
b	260	152	108	44	20	4	0

Extended Euclidean algorithm

Theorem

If, given positive integers **a** and **b**, **d** is the smallest positive integer s.t. **d** = **ia** + **jb**, for some integers **i** and **j**, then **d** = gcd(**a**, **b**)

- example
 - a = 21, b = 15
 - d = 3, i = 3, j = -4
 - \bullet 3 = 3.21 + (-4).15 = 63 60 = 3

```
Algorithm Extended-Euclid(a, b)
  Input integers a and b
  Output gcd(a, b), i and j
          s.t. ia+jb = gcd(a,b)
  if \mathbf{b} = 0
     return (a,1,0)
  (d', x', y') = Extended-Euclid(b, a mod b)
  (d, x, y) = (d', y', x' - [a/b]y')
  return (d, x, y)
```

Computing multiplicative inverses

Fact

• given two numbers **a** and **b**, there exist integers x, y s.t.

$$x a + y b = gcd(a,b)$$

which can be computed efficiently by the extended Euclidean algorithm

Thus

- the multiplicative inverse of a in Z_b exists iff gcd(a, b) = 1
- i.e., iff the extended Euclidean algorithm computes x and y s.t. x a + y b = 1
- in this case, the multiplicative inverse of a in Z_b is x

Multiplicative group

A set of elements where multiplication • is defined

- closure, associativity, identity & inverses
- multiplicative groups Z*_n, defined w.r.t. Z_n (residues modulo n)
 - subsets of Z_n containing all integers that are relative prime to n
 - if n is a prime number, then all non-zero elements in Z_n have an inverse
 - \bullet Z*₇ = {1,2,3,4,5,6}, n = 7
 - 2 4 = 1 (mod 7), 3 5 = 1 (mod 7), 6 6 = 1 (mod 7), 1 1 = 1 (mod 7)
 - if n is not prime, then not all integers in Z_n have an inverse
 - \bullet Z*₁₀ = {1,3,7,9}, n = 10
 - ◆ 3 7 = 1 (mod 10), 9 9 = 1 (mod 10), 1 1 = 1 (mod 10)

Order of a multiplicative group

Order of a group: cardinality of group

- multiplicative groups for Z^{*}_n
- the totient function $\phi(n)$ denotes the order of Z_n^* , i.e., $\phi(n) = |Z_n^*|$
 - if n = p is prime, then the order of $Z_p^*=\{1,2,...,p-1\}$ is p-1, i.e., $\varphi(n)=p-1$
 - e.g., $Z_7^* = \{1,2,3,4,5,6\}$, n = 7, $\varphi(7) = 6$
 - if n is not prime, $\phi(n) = n(1-1/p_1)(1-1/p_2)...(1-1/p_k)$, where $n = p^{e_1}p^{e_2}...p^{e_k}$
 - e.g., $Z_{10}^* = \{1,3,7,9\}$, n = 10, $\varphi(10) = 4$
- if n = p q, where p and q are distinct primes, then $\phi(n) = (p-1)(q-1)$
 - difficult problem: given n = pq, where p, q are primes, find p and q or $\varphi(n)$

Fermat's Little Theorem

Theorem

If p is a prime, then for each nonzero x in Z_p , we have x^{p-1} mod p = 1

• example (p = 5):

$$1^4 \mod 5 = 1$$

$$3^4 \mod 5 = 81 \mod 5 = 1$$

$$2^4 \mod 5 = 16 \mod 5 = 1$$

$$4^4 \mod 5 = 256 \mod 5 = 1$$

Corollary

If p is a prime, then the multiplicative inverse of each non-zero residue x in Z_p is x^{p-2} mod p

• proof: $x(x^{p-2} \mod p) \mod p = xx^{p-2} \mod p = x^{p-1} \mod p = 1$

Euler's Theorem

Theorem

For each element x in Z_n^* , we have $x^{\phi(n)}$ mod n = 1

- example (n = 10)
 - $Z_{10}^* = \{1,3,7,9\}, n = 10, \varphi(10) = 4$
 - $3^{\phi(10)} \mod 10 = 3^4 \mod 10 = 81 \mod 10 = 1$
 - $7^{\phi(10)} \mod 10 = 7^4 \mod 10 = 2401 \mod 10 = 1$
 - $9^{\phi(10)} \mod 10 = 9^4 \mod 10 = 6561 \mod 10 = 1$

Computing in the exponent

For the multiplicative group Z_n^* , we can reduce the exponent modulo $\varphi(n)$

- $x^y \mod n = x^{k \cdot \phi(n) + r} \mod n = (x^{\phi(n)})^k x^r \mod n = x^{r \mod \phi(n)} \mod n$
- Corollary: For Z*_p, we can reduce the exponent modulo p-1
- example
 - $Z^*_{10} = \{1,3,7,9\}, n = 10, \varphi(10) = 4$
 - \bullet 3¹⁵⁹⁰ mod 10 = 3¹⁵⁹⁰ mod 10 = 3² mod 10 = 9
 - how about 2^8 mod 10?
- example
 - $Z_p^* = \{1, 2, ..., p 1\}, p = 19, \varphi(19) = 18$
 - $15^{39} \mod 19 = 15^{39 \mod 18} \mod 19 = 15^3 \mod 19 = 12$

Powers

Let p be a prime

- the sequences of successive powers of the elements in Z*_p exhibit repeating subsequences
- ◆ the sizes of the repeating subsequences and the number of their repetitions are the divisors of p − 1
- example, p = 7

x	x^2	x^3	x^4	x^5	x^6
1	1	1	1	1	1
2	4	1	2	4	1
3	2	6	4	5	1
4	2	1	4	2	1
5	4	6	2	3	1
6	1	6	1	6	1

The Discrete Log problem & its applications

The discrete logarithm problem

Setting

- if p be an odd prime, then $G = (Z_p^*, \cdot)$ is a cyclic group of order p 1
 - $Z_p^* = \{1, 2, 3, ..., p-1\}$, generated by some g in Z_p^*
 - for i = 0, 1, 2, ..., p-2, the process $g^i \mod p$ produces all elements in Z_p^*
 - for any x in the group, we have that $g^k \mod p = x$, for some integer k
 - k is called the **discrete logarithm** (or log) of x (mod p)

Example

- (Z_{17}^*, \cdot) is a cyclic group G with order 16, 3 is the generator of G and $3^{16} = 1 \mod 17$
- let k = 4, $3^4 = 13 \mod 17$ (which is easy to compute)
- the inverse problem: if 3^k = 13 mod 17, what is k? what about large p?

Computational assumption

Discrete-log setting

• cyclic G = (Z_p^*, \cdot) of order p – 1 generated by g, prime p of length t (|p|=t)

Problem

given G, g, p and x in Z_p*, compute the discrete log k of x (mod p)

Discrete log assumption

- for groups of specific structure, solving the discrete log problem is infeasible
- any efficient algorithm finds discrete logs negligibly often (prob = 2^{-t/2})

Brute force attack

cleverly enumerate and check O(2^{t/2}) solutions

ElGamal encryption

Assumes discrete-log setting (cyclic $G = (Z_p^*, \cdot) = \langle g \rangle$, prime p, message space Z_p) **Gen**

- secret key: random number $x \in Z_p^*$ public key: $A = g^x \mod p$, along w/ G, g, p **Enc**
- pick a fresh <u>random</u> $r \in Z_p^*$ and set $R = A^r$ (= g^{xr})
- send ciphertext $Enc_{PK}(m) = (c_1, c_2)$ where $c_1 = g^r$, $c_2 = m \cdot R \mod p$

Dec

• $Dec_{SK}(c_1,c_2) = c_2 (1/c_1^x) \mod p$ where $c_1^x = g^{xr}$

Security is based on Computational Diffie-Hellman (CDH) assumption

given (g, g^a,g^b) it is hard to compute g^{ab}

A signature scheme can be also derived based on above discussion

Application: Key-agreement (KA) scheme

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line

- instead of meeting in person in a secret place, they want to use the insecure line...
- KA scheme: they run a key-agreement protocol Π to contribute to a shared key K
- correctness: K_A = K_B = K
- ullet security: no PPT adversary \mathcal{A} , given T, can distinguish K from a trully random one

Key agreement: Game-based security definition

- scheme $\Pi(1^n)$ runs to generate $K = K_A = K_B$ and transcript T; random bit b is chosen
- adversary \mathcal{A} is given T and k_b ; if b = 1, then $k_b = K$, else k_b is random (both n-bit long)
- \mathcal{A} outputs bit b' and wins if b' = b
- ◆ then: П is secure if no PPT A has non-negligible advantage than guessing

The Diffie-Hellman key-agreement protocol

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line

- DH KA scheme Π
 - discrete log setting: p, g public, where <g> = Z*_p and p prime

Security

- discrete log assumption is necessary but not sufficient
- decisional DH assumption
 - given g, g^a and g^b, g^{ab} is computationally indistinguishable from uniform

Authenticated Diffie-Hellman

