Logic

Symbols: $\geq \leq \neq \neg \land \lor \oplus \equiv \rightarrow \leftrightarrow \Box \exists \forall$

T1 444	() -		D 11 M .:
Identities:	$\neg(\neg p) \equiv p$		Double Negation
	$p \wedge T \equiv p$	$p \vee F \equiv p$	Identity
	$p \vee T \equiv T$	$p \wedge F \equiv F$	Domination
	$p \wedge p \equiv p$	$p \lor p \equiv p$	Idempotent
	$p \vee q \equiv q \vee p$	$p \wedge q \equiv q \wedge p$	Commutative
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$		Associative
	$(p \land q) \land r \equiv p \land (q \land r)$		cc
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$		Distributive
	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$		cc
	$\neg (p \land q) \equiv \neg p \lor \neg q$		DeMorgan's
	$\neg (p \lor q) \equiv \neg p \land \neg q$		cc
	$p \lor (p \land q) \equiv p$		Absorption
	$p \land (p \lor q) \equiv p$		"
	$p \to q \equiv \neg q \to \neg p$		Contrapositive
	$p \oplus q \equiv q \oplus p$		"
	$p \to q \equiv \neg p \lor q$		Implication
	$p \leftrightarrow q \equiv (p \to q) \ \land (q \to p)$		Biconditional Equivalence
	$(p \land q) \to r \equiv p \to (q \to r)$		Exportation
	$(p \to q) \land (p \to \neg q) \equiv \neg p$		Absurdity
	$p \lor q \equiv \neg p \to q$		Alternate Implication
	$p \land q \equiv \neg (p \to \neg q)$		"
	$\neg(p \to q) \equiv p \land \neg q$		cc
	$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$		DeMorgan's for Quantifiers

Proofs

Direct Assume P and prove Q

Contrapositive: Assume Not Q and prove Not P

 $\neg \exists x \ Q(x) \equiv \forall x \neg Q(x)$

Contradiction: Assume P and Not Q and prove a contradiction

Induction: Prove base(s), assume P(m), prove P(k+1)

Sets

Symbols: $\in \notin \subseteq \subset \supseteq \supset \emptyset \cup \cap \times$

Common Sets:
$$N = \{0, 1, 2, ...\}$$
 = natural numbers

$$Z = {..., -1, 0, 1, 2, ...} = integers$$

$$Z^{+} = \{1, 2, 3, ...\}$$
 = positive integers

$$Q = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\}$$
 rational numbers

$$U = {*}$$
 universal

Identities:
$$A \cup \emptyset = A$$
 $A \cap U = A$ Identity $A \cup U = U$ $A \cap \emptyset = \emptyset$ Domination $A \cup A = A$ $A \cap A = A$ Idempotent $A \cup A^{C} = \emptyset$ $A \cap A^{C} = U$ Complement $A \cup B = B \cup A$ $A \cap B = B \cap A$ Commutative $(A \cup B) \cup C = A \cup (B \cup C)$ Associative $(A \cap B) \cap C = A \cap (B \cap C)$ " $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributive $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ " $(A \cup B)^{C} = A^{C} \cap B^{C}$ DeMorgan's $(A \cap B)^{C} = A^{C} \cup B^{C}$ " $A \cup (A \cap B) = A$ Absorption $A \cap (A \cup B) = A$ "

Proofs

Structural Induction: Prove P(e) for base(s), assume P(e), prove P(f) for any new element added

Series & Sums

Symbols: \sum •

Sum equations:

Progression

$$a_n = a \cdot r'$$

$$a_n = a \cdot r^n$$

$$\sum_{k=0}^n r^k = \frac{(r^{(n+1)} - 1)}{(r-1)}$$

Arithmetic

$$a_n = a + d \cdot n$$
 $\sum_{k=1}^n k = \frac{1}{2} (n^2 + n)$

Counting

Symbols: λ

Equations:

Sum Rule:

for a union of disjoint sets the total number of elements is:

$$S(m) = |S_1| \cdot |S_2| \cdot \ldots \cdot |S_m|$$

Product Rule: for a sequence of k choices the total number of elements is:

$$P(m) = |P_1| \cdot |P_2| \cdot \ldots \cdot |P_m|$$

Subset Exclusion: when a set to be counted is the difference of two sets A - B, where $A \subseteq B$

$$C(m) = |A| - |B|$$

Inclusion/Exclusion: when a set to be counted is the union of non-disjoint sets A and B

$$D(m) = |A| + |B| - |A \cap B|$$