# Week 07 Report

Jeffrey Li

#### **Previous Week**

- Used power transformer function on purged data.
- Performed k-Means clustering on newly standardized data.
  - Identified k using elbow method.

## k = 4: ustat, alph1, alph2





## k = 3: ustat, alph1, beta





## k = 5: ustat, alph2, beta





## k = 3: alph1, alph2, beta





#### Updates

- Analyzed clusters.
  - Reduced k to k = 2 and analyzed clusters.
  - Added new features 'diff' and dropped 'alph1' and 'alph2.'
- Gaussian Mixture Model.

## Clusters (k Determined by Elbow Method)



## Clusters (k = 2)



## Adding 'Diff' as Feature





## Adding 'Diff' as Feature (cont.)



### Gaussian Mixture Model (GMM)

- Assumes data is generated from a Gaussian distribution.
- The resulting fit is not a clustering model, but a generative probabilistic model describing the distribution of the data.
- In the simplest case, GMMs can be used for finding clusters in the same manner as k-means.
  - k-Means is a form of hard clustering, resulting in a partition.
  - GMM is a form of soft clustering, resulting in a probability.



oubs.acs.org/JCTC

Articlo

Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space

Lixue Cheng, Jiace Sun, and Thomas F. Miller, III\*



