Homework #13

20221059 정상목

1. Mesh

이번 과제에서 사용할 mesh는 다음과 같다.

이번 과제에서 사용한 mesh는 Double gate mosfet의 구조를 가지고 있다. 이 구조는 3가지 Region으로 각각 ox, si, ox 순서로 구성되어 있다. 각 Region은 왼쪽부터 Region 1, Region 2, Region 3로 설정했다. 각 Region별 vertex수는 다음 표와 같습니다.

Region 1	Region 2	Region 3	Region 4	Region 5	entire
33	12	28	12	33	118

Table 1. Number of vertex

2. HW#10

Nonlinear Poisson 을 푸는 코드가 잘 동작하지 않아 새롭게 수정하였습니다. 결과는 다음과 같습니다.

먼저 초기해를 구하기 위해 charge부분에 doping density만을 고려하여 초기 potential을 구할 수 있었습니다. 이때 구한 potential을 바탕으로 n과 p의 농도를 구했습니다. 사용한 식은 다음과 같습니다.

$$\begin{array}{l} \nabla ~ \bullet ~ (- \, \nabla \, \epsilon \phi) = q \, (\, N_{dop}^+) \\ \\ n = n_i c^{\frac{\phi}{V_i}} \\ \\ p = n_i c^{-\frac{\phi}{V_i}} \end{array}$$

이 초기해의 결과는 다음과 같습니다.

그림상으로는 ox region에서 potential과 carreier density가 변하는 것처럼 보이지만 node수가 적어 색이 그렇게 보이는 것이다.

3. Newton method

앞서 얻은 값을 초기해로 삼아서 nonlinear possion 방정식을 풀어주었다. 이때 solution vector는 si region에서 [phi1; n1; p1; phi2; n2; p2; phi3; n3; p3]로 9x1 행렬을 만들어 주었고 이에 따라 Jacobian matrix로 9x9행렬이 되었다. 결과는 다음과 같다.

20번의 반복을 수행했고 약 5회부터 수렴이 진행됨을 확인할 수 있었다.

Fig 3. 수렴성 확인

최종적으로 초기 해와 최종 해를 비교해 얼마나 차이가 발생했는지 확인했다.

contact으로 지정해준 부분에서 멀어질수록 차이가 많이 발생했음을 확인했다.

4. Drift-diffusion

앞서 얻은 possion 방정식을 활용해 drift-diffusion 모델을 시도했다. scharfetter-gummel scheme을 이용하여 Jn와 Jp를 정리했고 phi, n, p에 대해 각각 편미분해주어 jaco를 만들어 주었지만 수렴하지 않아 현재 확인중에 있습니다.