$$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$$

$$(\frac{1}{3}) \mapsto x + 3$$

$$Lf \int_{t_{1}}^{k_{1}} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$

$$Lev(t) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = \sigma^{2} \Leftrightarrow x_{12} = \sigma^{2} \Leftrightarrow \begin{cases} \{x \} | x \in \mathbb{R}\}^{2} \leq ran(\left(\frac{1}{1}\right)) \end{cases}$$

$$det(f) = 1 \implies nani \text{ to unknow of close is to prostown}$$

$$rank(f) = 1 \text{ (patie dimense of close is to prostown}$$

$$rank(f) = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text{ (patie dimense of close is to prostown}$$

$$\Rightarrow in \{f\} = 1 \text$$

	p216	R >	. ((3))											
٢	608	Σ R 7 ι	<u>-</u> ∫ γ	-l 1) =	T		٢	7 k.	ι					
	608	٦Ť	()		/	\int_{k_1}	→Ř .	Lbo	ターデ						
						[[Ř k,	(1)							
						C197	k, = 1	(3)							
_					_										
	d	imll)= 4		7 × (ì	> -> Ta 1 Vz	125/1	(m)							
		LZ											()) .		
	٠	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		, , , ,	~)	E - DAV	Jvr)					Lspan (1		
	V	4 Z	-7 -7				·)		7	=>	spsn (m):	Panli	10211	7)
					ī	E 5 pm	φ _ 5 B:0	7 6	5 gr						
							i '		ı						
	rı	neger	ernje	=> l	mje L	-2									
			γ.	<i>'</i>											
	<i>r</i>	t gener	nje	(z M	je l	LNZ ?	o din	r (SPS1	· (03)):	:4					