Somewhat counter intuitively, in high dimensional space, volume gets concentrated at the boundaries. In the world of decision boundaries, this means that presence of a linearly separating hyperplane increases with the number of dimensions, and in fact is guaranteed to exist at ... great news!?!?!

Curse of dimensionality

is occupied by the inner hypercube with sides of length d/2?

$$\frac{v}{v_0} = \frac{1}{4}$$

/

X)

$$\frac{1}{v_0} \approx \frac{1}{1 \times 10^{-301}}$$

N = 1000

1

d

 $\frac{d}{2}$

Curse of dimensionality

• Somewhat counter intuitively, in high dimensional space, volume gets concentrated at the boundaries. In the world of decision boundaries, this means that presence of a linearly separating hyperplane increases with the number of dimensions, and in fact is guaranteed to exist at $N \rightarrow \infty$... great news!?!?!

intuition: given a hypercube $\in \mathbb{R}^N$ with sides of length d, what fraction of space is occupied by the inner hypercube with sides of length d/2?

$$\frac{N=1}{v_0} = \frac{1}{2}$$

$$N = 2$$

$$\frac{v}{v_0} = \frac{1}{4}$$

$$N = 3$$

$$\frac{v}{-} = \frac{1}{-}$$

$$\frac{v}{v_0} = \frac{1}{16}$$

$$N = 5$$

$$\frac{v}{-} = \frac{1}{32}$$

$$N = 3$$
 $N = 4$ $N = 5$ $N = 1000$ $\frac{v}{v_0} = \frac{1}{8}$ $\frac{v}{v_0} = \frac{1}{16}$ $\frac{v}{v_0} = \frac{1}{32}$ $\frac{v}{v_0} \approx \frac{1}{1 \times 10^{-301}}$

$$\frac{v}{v_0} = \frac{1}{4} \qquad \frac{v}{v_0} = \frac{1}{8} \qquad \frac{v}{v_0} = \frac{1}{16} \qquad \frac{v}{v_0} = \frac{1}{32} \qquad \frac{v}{v_0} \approx \frac{1}{1 \times 10^{-301}} \qquad \frac{v}{v_0} = \frac{1}{2^N}$$

the "curse"

The Perceptron