2024 秋物理化学 I 第三次测验

课堂号: 003154.04 姓名: 学号:

H 1.008																	He 4.003
Li 6.941	Be 9.012											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
Na 22.99	Mg 24.31											Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	Kr 83.80
Rb 85.47	Sr 87.62	Y 88.91	$\operatorname{Zr}_{91.22}$	Nb 92.91	Mo 95.94	Tc [98]	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	$\operatorname*{Cd}_{112.4}$	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
Cs 132.9	Ba 137.3	Ln	Hf 178.5	Ta 180.9	W 183.8	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po [210]	At [210]	Rn [222]
Fr [223]	Ra [226]	An	Rf [267]	Db [268]	Sg [269]	Bh [274]	Hs [277]	Mt [278]	Ds [281]	Rg [282]	Cn [285]	Nh [284]	Fl [289]	Mc [288]	Lv [292]	Ts [294]	Og [294]
		La 138.9	Ce 140.1	Pr 140.9	Nd 144.2	Pm [145]	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0	
		Ac [227]	Th [232]	Pa [231]	U [238]	Np [237]	Pu [239]	Am [243]	Cm [247]	Bk [247]	Cf [251]	Es [252]	Fm [257]	Md [258]	No [259]	Lr [262]	

单项选择 40′ 请将选择题的答案按照相应的题号填入下表.

No.	1	2	3	4	5	6	7	8	9	10
Ans										

1. 以下表达式中, 既不是化学势又不是偏摩尔量的是

A.
$$\left(\frac{\partial H}{\partial n_{\rm B}}\right)_{T,p,n_{{\rm C}\neq {\rm B}}}$$

B.
$$\left(\frac{\partial G}{\partial n_{\rm B}}\right)_{T,p,n_{{\rm C}\neq{\rm B}}}$$

C.
$$\left(\frac{\partial U}{\partial n_{\rm B}}\right)_{T,V,n_{\rm C\neq B}}$$

D.
$$\left(\frac{\partial A}{\partial n_{\rm B}}\right)_{T,V,n_{{\rm C}\neq {\rm B}}}$$

- 2. 溶剂中加入非挥发性溶质后沸点升高, 该过程中, 溶剂与溶质的化学势分别如何变化?
 - A. 升高; 升高
 - B. 降低; 升高
 - C. 降低; 不变
 - D. 降低; 降低
- 3. 在 25 ℃ 下, 0.01 mol/L 的葡萄糖水溶液与 0.01 mol/L 的氯化钠水溶液, 渗透压分别为 Π_1, Π_2, \mathbb{Q} A. $\Pi_1 > \Pi_2$

- B. $\Pi_1 = \Pi_2$
- C. $\Pi_1 < \Pi_2$
- D. 无法确定
- 4. 对于 A, B 组成的液态混合物, 分子间作用力 $F_{A-B} < F_{A-A}, F_{A-B} < F_{B-B}$, 下列关于蒸汽压与混合过程体积变化的结论, 正确的是
 - A. $p_A > p_A^* x_A, \Delta_{\text{mix}} V > 0$
 - B. $p_A < p_A^* x_A, \Delta_{\text{mix}} V > 0$
 - C. $p_A > p_A^* x_A, \Delta_{\text{mix}} V < 0$
 - D. $p_A < p_A^* x_A, \Delta_{\text{mix}} V < 0$
- 5. 以下说法中错误的是
 - A. 为使得化学势平衡, 物质 B 总是倾向于从浓度高的相迁移至浓度低的相.
 - B. 糖易溶于水, 说明糖 (aq) 比糖 (s) 具有更低的化学势.
 - C. 过饱和溶液的溶剂化学势低于纯溶剂化学势.
 - D. 稀溶液沸点可能低于纯溶剂.
- 6. 以下关于标准态的说法中, 错误的是
 - A. 标准态是人为指定的状态,每一个热力学温度下都有对应的标准态.
 - B. 固定一温度下, 选定 c° 标准态或 m° 标准态对 μ° 的值无影响.
 - C. 同一温度下, 理想气体与非理想气体的标准态一致, 化学势表达式中仅以逸度替代压强.
 - D. 对于一确定的过程, 其态函数的变化与标准态的选择无关.
- 7. 对于 n=1 mol 的单原子理想气体, 从始态 T=273 K, p=100 kPa, $S=nR\ln 2$, 变到终态 546 K, 50 kPa, 则

A.
$$\Delta \mu = \left(\frac{5}{2} - 4 \ln 2\right) RT$$

B.
$$\Delta H = \frac{3}{2}nRT$$

C.
$$\Delta A = \left(\frac{3}{2} - 8\ln 2\right) nRT$$

$$D. \ \Delta S = \frac{5}{2} nR \ln 2$$

- 8. 对二甲苯经液相空气氧化得到有机物 A, A 可用作生产聚酯 (尤其是 PET) 的原料, 其可形成分子间 氢键从而发生缔合. 现将 0.114~kg 的 A 完全溶于 1~kg 的苯, 测得沸点升高了 0.514~K,已知苯的沸点升高常数 $k_b = 2.60~K \cdot kg \cdot mol^{-1}$,平均缔合度被定义为溶液中真实存在形式所具有的平均单体数, 则在该苯溶液中
 - A. 有机物 A 的平均缔合度小于 1, 即发生了解离
 - B. 有机物 A 的平均缔合度介于 1 和 2
 - C. 有机物 A 的平均缔合度介于 2 和 3
 - D. 有机物 A 的平均缔合度大于 3
- 9. 挥发性溶质 B 溶于溶剂 A 形成理想稀溶液, 气相与液相平衡时, 总压 p = 47.73 kPa. 气相中 A 的摩尔分数为 0.89, 液相中 B 的摩尔分数为 0.15, 则溶质 B 的 Henry 常数 $k_{x,B} =$
 - A. 42.5 kPa

- B. 35.0 kPa
- $C.~65.1~\mathrm{kPa}$
- D. 47.8 kPa

10. 化学势的概念可以适用于任何具有粒子数变化的系统,考虑一个具有固定体积和温度的系统,对于其内部的电子湮灭反应

$$e^- + e^+ \longrightarrow \gamma + \gamma$$
,

其中 γ 是光子, 此处为真空环境, 光子化学势为 0. 若以 n_+ 表示 e^+ 的物质的量, n_- 表示 e^- 的物质的量, 则以下叙述错误的是

- A. 系统的平衡使得 Helmholtz 函数取极小值, 即 $\left(\frac{\partial A}{\partial n_+}\right)_{T,V,n_-} = 0$.
- B. 体系电荷守恒, 即 $dn_{+} + dn_{-} = 0$.
- C. 该体系下, 光子不具有守恒律.
- D. 正负电子的化学势互为相反数.

解答题 60'(+12') 第 14 题为附加题, 试卷总分不超过 100'.

11. 把一个含有 0.1 mol 萘与 0.9 mol 苯的溶液冷却至一部分固体苯析出, 并将固液相分离, 加热分离后的液相至 353 K, 测得其蒸汽压为 89.33 kPa.

苯在常压 (1 atm) 下的凝固点与沸点分别为 278.5 K 与 353 K, 摩尔熔化焓 $\Delta_{\rm fus}H_{\rm m}^{\circ}=10.66$ kJ/mol 可视作常数, 萘在该条件下为纯液相, 求

- (1) 固体苯刚刚析出时的温度.
- (2) 固体苯析出的总物质的量.

12. "三级膨胀法" 是工业中用以测定气体饱和蒸汽压的一种方法. 如下图所示, 将一定体积的饱和空气的液体物质 B 试样注入具有活塞的容器中, 在密封的活塞下进行等温三级膨胀, 得到平衡状态下三组压强与体积的数据, 由此推得 B 的饱和蒸汽压.

由于空气的物质的量远少于物质 B, 在此过程中, 气相中物质 B 的压强可始终视作为 B 的饱和蒸汽压, 空气溶解于 B 的 Henry 常数可视作定值, 液相的体积可视作保持不变, 气体视作理想气体. 实验测得物质 B 为乙醇时, 在 37.8 °C 下的一组数据, 根据其计算乙醇在该温度下的饱和蒸汽压 p^* .

i	1	2	3		
V_i/mL	1.70	2.50	5.00		
p_i/kPa	35.98	25.31	19.54		

- 13. 在 884 °C 时, 5.62 mmol K_2CO_3 及 11.10 mmol $CaCO_3$ 共热发生分解反应. 平衡时 CO_2 分压为 1.01×10^2 kPa, 熔融液中有 $CaCO_3$ 和 K_2CO_3 , 固相为纯 CaO. 冷却后称重, 发现整个体系失去相当于 3.98 mmol CO_2 的质量.
- (1) 计算熔融物中 CaCO₃ 的摩尔分数.
- (2) 反应 $CaCO_3(l) \longrightarrow CaO(s) + CO_2(g)$ 的标准平衡常数为 3.50, 气相可视作理想气体, 计算熔融物中 $CaCO_3$ 的活度系数.

14. (附加) 热力学系统的巨热力学势 (简称巨势) Φ 被定义为

$$\Phi = A - \sum_{\mathbf{B}} \mu_{\mathbf{B}} n_{\mathbf{B}},$$

其中 A 是系统的 Helmholtz 函数, 现考虑一般的 p, V, T 系统 (即无非膨胀功).

- (1) 利用已知热力学函数的定义说明, 巨势 $\Phi=-pV$ 等价于 Gibbs 函数 $G=\sum_{\rm B}\mu_{\rm B}n_{\rm B}.$
- (2) 根据第二定律的微分表达式, 指出热力学函数 U, H, A, G, Φ 中, 自然变量全部为系统的广延量的热力学函数, 并写出其对应的微分表达式.
- (3) 证明化学势作为偏摩尔量的加和公式, 即 Gibbs 函数 $G = \sum_{\rm B} \mu_{\rm B} n_{\rm B}$.

Hint: 对 (2) 中的热力学函数做 Lagrange 乘子法将有帮助.