

Element Distinctness, Birthday Paradox, and

30

1-out Pseudorandom Graphs

Hongxun Wu

IIIS, Tsinghua University

Authors of this work

Ce Jin

R. Ryan Williams

Hongxun Wu

Lijie Chen, Ce Jin, and R. Ryan Williams are from MIT.

- INPUT: *n* positive integers a_1, a_2, \ldots, a_n with $a_i \leq \text{poly}(n)$.
- Decide whether all a's are distinct.

1 3 12 15 23 30 42 42

Comparision model

- No direct access to the INPUT a.
- Each query (i,j) returns one of $a_i < a_j$, $a_i = a_j$, $a_i > a_j$.

Comparision model

Time-Space tradeoff [BFMADH⁺87, Yao88]

Element distictness requires $TS = \Omega\left(n^{2-o(1)}\right)$ in Comparision model.

Comparision model

Time-Space tradeoff [BFMADH⁺87, Yao88]

Element distictness requires $TS = \Omega\left(n^{2-o(1)}\right)$ in Comparision model.

• When S = O(polylog n), $T = \Omega(n^{2-o(1)})$.

RAM model

- Random access to read-only input.
- Working memory has a (relatively small) size S.

RAM model

Time-Space tradeoff [BCM13]

• Assuming the existence of *Random Oracle*, there is an algorithm with $T^2S = \tilde{O}(n^3)$.

RAM model

Time-Space tradeoff [BCM13]

- Assuming the existence of *Random Oracle*, there is an algorithm with $T^2S = \tilde{O}\left(n^3\right)$.
- When $S = \tilde{O}(1)$, $T = \tilde{O}\left(n^{1.5}\right)$.

Pollards ρ method [BCM13]

Assuming the existence of *Random Oracle*, when $S = \tilde{O}(1)$, there is an algorithm with $T = \tilde{O}(n^{1.5})$.

• For random oracle R, define graph $x \mapsto R(a_x)$ with $x \in [n]$.

Pollards ρ method [BCM13]

Assuming the existence of *Random Oracle*, when $S = \tilde{O}(1)$, there is an algorithm with $T = \tilde{O}\left(n^{1.5}\right)$.

- For random oracle R, define graph $x \mapsto R(a_x)$ with $x \in [n]$.
- Pick a random starting point s.

Pollards ρ method [BCM13]

Assuming the existence of *Random Oracle*, when $S = \tilde{O}(1)$, there is an algorithm with $T = \tilde{O}(n^{1.5})$.

- For random oracle R, define graph $x \mapsto R(a_x)$ with $x \in [n]$.
- Pick a random starting point s.
- Run Floyds cycle finding.

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

• $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

• So each cycle-finding takes $O(\sqrt{n})$ time and finds any collision u, v with probability $\Omega(1/n)$.

Birthday Paradox Type Properties [BCM13]

Suppose $f^*(s)$ is the set of vertices reachable from s.

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

- So each cycle-finding takes $O(\sqrt{n})$ time and finds any collision u, v with probability $\Omega(1/n)$.
- Repeat O(n) times, it takes $O(n^{1.5})$ time in total.

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

• $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$

Our Result

Assuming the existence of *Random Oracle*, when S = O(polylog n), there is a RAM algorithm for Element Distinctness with $T = \tilde{O}(n^{1.5})$.

Subset Sum

Low-space Algorithm for Subset Sum [BGNV18]

Assuming the existence of *Random Oracle*, Subset Sum and Knapsack can be solved by a Monte Carlo algorithm in $O^*(2^{0.86n})$ time, with O(poly(n)) space.

Subset Sum

Low-space Algorithm for Subset Sum [BGNV18]

Assuming the existence of *Random Oracle*, Subset Sum and Knapsack can be solved by a Monte Carlo algorithm in $O^*(2^{0.86n})$ time, with O(poly(n)) space.

Our Result

Assuming the existence of *Random Oracle*, Subset Sum and Knapsack can be solved by a Monte Carlo algorithm in $O^*(2^{0.86n})$ time, with O(poly(n)) space.

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

• $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

• $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$

$$\Pr[u, v \in f^*(s)] \ge \Omega(1/n), \ \forall u, v \in [n]$$

Our Main Lemma

There exsits a family $\{r_{\text{seed}}\}$ of hash functions efficiently samplable with seed length O(polylog n), and the graph defined by $\{r_{\text{seed}}\}$ (instead of Random Oracle R) satisfy

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$

Construction

Random Restriction and Håstads Switching Lemma

This is Ryan O'Donnells Youtube lecture which is a masterpiece.

Random Restriction and Håstads Switching Lemma

Figure 14.1. Circuit before Håstad switching transformation.

Figure from Arora & Barak.

Random Restriction and Håstads Switching Lemma

Figure 14.2. Circuit after Håstad switching transformation. Notice that the new layer of \land gates can be collapsed with the single \land parent gate, to reduce the number of levels by one.

Figure from Arora & Barak.

Iterative Restriction

Iterative Restriction

Iterative Restriction

Toy Example: Two levels

Recall the input $a_1, a_2, \ldots, a_n \in [m]$.

Two Level Example

Suppose we have the following:

- O(polylog n)-wise independent functions $g:[m] \to \{0,1\}$ and $r:[m] \to [n]$.
- Random Oracle R.

Toy Example: Two levels

Recall the input $a_1, a_2, \ldots, a_n \in [m]$.

Two Level Example

Suppose we have the following:

- O(polylog n)-wise independent functions $g:[m] \to \{0,1\}$ and $r:[m] \to [n]$.
- Random Oracle R.

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Toy Example: Two levels

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = egin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2

$$g(a_x)=0$$

$$g(a_{\times})=1$$

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = egin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2

$$g(a_x)=0$$

$$g(a_x)=1$$

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2

$$g(a_x)=0$$

$$g(a_x)=1$$

Two Level Example

We define the graph $x \mapsto h(a_x)$ with

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2 $g(a_x) = 0$ level 1 $g(a_x) = 1$ s

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

level 2
$$g(a_x) = 0$$
level 1
$$g(a_x) = 1$$
 s

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Two Level Example

$$h(a_x) = \begin{cases} R(a_x) & g(a_x) = 0 \\ r(a_x) & g(a_x) = 1 \end{cases}$$

Sanity Check

• Why this might be a good idea?

Sanity Check

• Why this might be a good idea?

• Each subpath has length $O(\log n)$.

Sanity Check

• Why this might be a good idea?

- Each subpath has length $O(\log n)$.
- Every level 2 edge is an independent sample of a subpath.

Our Construction

Now we sample $O(\log n)$ many hash functions $\{r_i, g_i\}_{i \in [\ell]}$.

Each $r_i : [m] \to [n]$ and $g_i : [m] \to [2]$ are $O(\log n)$ -wise independent.

Our Construction

Now we sample $O(\log n)$ many hash functions $\{r_i, g_i\}_{i \in [\ell]}$.

Each $r_i : [m] \to [n]$ and $g_i : [m] \to [2]$ are $O(\log n)$ -wise independent.

Then we set $h_{\ell+1}(a_x) = \perp$ and

$$h_i(a_x) = \begin{cases} h_{i+1}(a_x) & g_i(a_x) = 0 \\ r_i(a_x) & g_i(a_x) = 1 \end{cases}$$

Finally, we set $h = h_1$.

level 5

level 4

level 3

level 2

level 1

 $g_1(a_x) = 1$ s

level 5

level 4

level 3

level 2

$$\begin{array}{ccc} |\text{evel } 1 & \bullet & \bigcirc \\ g_1(a_x) = 0 & s & \end{array}$$

level 5

level 4

level 3

$$\frac{|\text{evel } 2|}{g_2(a_x) = 0}$$

$$\begin{array}{ccc} |\text{evel } 1 & \bullet \\ g_1(a_x) = 0 & s \end{array}$$

• 0

0

level 5

level 4

$$g_3(a_x)=0$$

$$g_2(a_x)=0$$

$$\begin{array}{ccc} |\text{evel } 1 & \bullet & \bigcirc \\ g_1(a_x) = 0 & s & \end{array}$$

level 5

- level 4 $g_4(a_x) = 1$ level 3
- $g_3(a_x)=0$
- $\frac{|\text{evel 2}|}{g_2(a_x) = 0}$
 - level 1 O

 $g_1(a_x)=0$ s

Key Ideas in Our Analysis

The Random Walk

• We index a node by the shape of its path, e.g. $\vec{k}_{10} = (0,0,1,2)$.

• We index a node by the shape of its path, e.g. $\vec{k}_{11} = (0,0,2,2)$.

- We index a node by the shape of its path, e.g. $\vec{k}_{11} = (0,0,2,2)$.
- Consider \vec{k}_x . Fix x, \vec{k} is a random variable. Fix \vec{k} , x is a random variable.

- We index a node by the shape of its path, e.g. $\vec{k}_{11} = (0, 0, 2, 2)$.
- Consider \vec{k}_x . Fix x, \vec{k} is a random variable. Fix \vec{k} , x is a random variable.
- We fix index \vec{k} and let $\mu^{\vec{k}} = x$ be the random variable (which may equal \perp).

• Fix
$$\vec{k} = (0, 0, 2, 2)$$
.

- Fix $\vec{k} = (0, 0, 2, 2)$.
- One Issue: What if $a_{x_2} = a_{x_9}$?

(Locally Simulatable) Extended Walk

• Instead of original walk w, we looks at extended walk w^* .

(Locally Simulatable) Extended Walk

- Instead of original walk w, we looks at extended walk w^* .
- Once a collision occur in a path within a single level, we replace all the rest queries of that level with true randomness.

(Locally Simulatable) Extended Walk

- Instead of original walk w, we looks at extended walk w^* .
- Once a collision occur in a path within a single level, we replace all the rest queries of that level with true randomness.
- w and w* agree before the first collision.

Recall our goal.

Our Main Lemma

- $\mathbb{E}[|f^*(s)|] \leq O(\sqrt{n})$
- $\Pr[u \in f^*(s)] \ge \Omega(1/\sqrt{n}), \ \forall u \in [n]$

$$\sum_{\vec{k}} \frac{2^{-(k_1+k_2+\cdots+k_\ell)}}{n} - \sum_{\vec{k},\vec{k}',\vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^3}$$

$$\sum_{\vec{k}} \frac{2^{-(k_1+k_2+\cdots+k_\ell)}}{n} - \sum_{\vec{k},\vec{k}',\vec{k}''} \frac{2^{-||\vec{k}||_1 - ||\vec{k}'||_1 - ||\vec{k}''||_1}}{n^3}$$

$$\sum_{\vec{i}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} = \frac{1}{n} \prod_{i=1}^{\ell} \sum_{k_i = 0}^{\infty} 2^{-k_i} = \frac{2^{\ell}}{n}$$

$$\sum_{\vec{k}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} - \sum_{\vec{k}, \vec{k}', \vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^3}$$

$$\sum_{\vec{k}} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^3} = \frac{8^\ell}{n^3}$$

$$\sum_{\vec{k}} \frac{2^{-(k_1 + k_2 + \dots + k_\ell)}}{n} - \sum_{\vec{k}, \vec{k}', \vec{k}''} \frac{2^{-\|\vec{k}\|_1 - \|\vec{k}'\|_1 - \|\vec{k}''\|_1}}{n^3} = \frac{2^\ell}{n} - \frac{8^\ell}{n^3}$$

Let

$$\ell \leftarrow \log n - 100$$

• Issue: What if $a_{x_3} = a_{x_8}$?

- Issue: What if $a_{x_3} = a_{x_8}$?
- Extended walk eliminate the collisions within a path.

- Issue: What if $a_{x_3} = a_{x_8}$?
- Extended walk eliminate the collisions within a path.
- But there can still be collision between two paths.

• Issue: What if $a_{x_3} = a_{x_8}$?

- Issue: What if $a_{x_3} = a_{x_8}$?
- We pick the first collision to be the blue paths.

• Issue: What if there is collision between blue and red path?

• We move the blue path when it has a collision with the red path.

Open Problems

Open Problems

- Time-space Tradeoffs In this work, we only solved the case when $S = \tilde{O}(1)$. Can we extend it to the full tradeoff?
- Shorter Seed Length
 In this work, our seed length is O(log³ n log log n). Can this be improved?

References I

Deterministic simulation of probabilistic constant depth circuits. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages 11–19. IEEE, 1985.

Allan Borodin, Faith Fich, F Meyer Auf Der Heide, Eli Upfal, and Avi Wigderson.

A time-space tradeoff for element distinctness. SIAM Journal on Computing, 16(1):97–99, 1987.

References II

Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient algorithms for subset sum, k-sum, and related problems.

SIAM Journal on Computing, 47(5):1755–1777, 2018.

Andrew Chi-Chih Yao.

Near-optimal time-space tradeoff for element distinctness. In <u>FOCS</u>, pages 91–97, 1988.