EL RAKAAWI HANI

5 janvier 2023

- etape1:

1. telechargement de la base de donnees :(download dataset)

```
In [282]: import pandas as pd

df = pd.read_csv('spambase.txt', sep='\t')

df.head(10)
```

Out[282]:

	wf_make	wf_address	wf_all	wf_3d	wf_our	wf_over	wf_remove	wf_internet	wf_order	wf_m
0	0.00	0.52	0.52	0.0	0.52	0.00	0.00	0.00	0.00	0.
1	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.
2	0.00	0.00	0.66	0.0	0.00	0.66	0.00	0.00	0.00	0.
3	0.08	0.00	0.16	0.0	0.00	0.08	0.00	0.08	0.73	0.
4	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.
5	0.00	0.36	0.00	0.0	0.00	0.36	1.47	0.00	0.00	0.
6	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.
7	0.00	0.00	1.85	0.0	0.00	0.00	0.00	0.00	0.00	1.
8	0.00	0.00	0.53	0.0	0.00	0.53	0.00	0.00	0.00	0.
9	0.40	0.40	0.26	0.0	0.13	0.20	0.06	0.33	0.00	1.

10 rows × 57 columns

In [283]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4601 entries, 0 to 4600
Data columns (total 57 columns):

	columns (total 57 columns):		
#	Column	Non-Null Count	Dtype
0	wf make	4601 non-null	float64
1	wf_address	4601 non-null	float64
2	wf all	4601 non-null	
3	wf 3d	4601 non-null	
4	wf_our	4601 non-null	
5	wf over	4601 non-null	
6	wf remove	4601 non-null	
7	wf internet	4601 non-null	float64
8	wf order	4601 non-null	float64
9	wf mail	4601 non-null	
10	wf receive	4601 non-null	
11	wf will	4601 non-null	
12	wf people	4601 non-null	
13	wf report	4601 non-null	
14	wf addresses	4601 non-null	
15	wf free	4601 non-null	
16	wf business	4601 non-null	
17	wf_email	4601 non-null	
18	wf you	4601 non-null	
19	wf credit	4601 non-null	
	wf your	4601 non-null	
	wf font	4601 non-null	
	wf 000	4601 non-null	
23	wf money		
24	wf_hp	4601 non-null 4601 non-null	float64
25	wf hpl	4601 non-null	
26	wf lab	4601 non-null	
27	wf labs	4601 non-null	
	wf telnet	4601 non-null	
	wf 857	4601 non-null	
	wf_data	4601 non-null	float64
31	wf_415	4601 non-null 4601 non-null	float64
32	wf_85	4601 non-null	float64
33	wf technology	4601 non-null	float64
34	wf 1999	4601 non-null	float64
35	wf parts	4601 non-null	float64
36	wf pm	4601 non-null	float64
37	wf direct	4601 non-null	float64
38	wf cs	4601 non-null	float64
39	wf meeting	4601 non-null	float64
40	wf_original	4601 non-null	float64
41	wf_project	4601 non-null	float64
42	wf re	4601 non-null	float64
43	wf_edu	4601 non-null	float64
44	wf table	4601 non-null	float64
45	wf_conference	4601 non-null	float64
46	cf comma	4601 non-null	float64
47	cf bracket	4601 non-null	float64
48	cf_sqbracket	4601 non-null	float64
49	cf exclam	4601 non-null	float64
50	cf_dollar	4601 non-null	
51	cf hash	4601 non-null	float64
21	CI_IIGSII	-1001 HOH-HULL	1100004

```
52 capital_run_length_average 4601 non-null
                                                          float64
           53 capital_run_length_longest
                                          4601 non-null
                                                          int64
           54 capital run_length_total
                                           4601 non-null
                                                          int64
           55 spam
                                           4601 non-null
                                                          object
           56 status
                                           4601 non-null
                                                          object
          dtypes: float64(53), int64(2), object(2)
          memory usage: 2.0+ MB
In [284]:
          df_num = df.drop(columns=['spam', 'status'])
          df num
```

Out[284]:

	wf_make	wf_address	wf_all	wf_3d	wf_our	wf_over	wf_remove	wf_internet	wf_order	w
0	0.00	0.52	0.52	0.0	0.52	0.00	0.00	0.00	0.00	
1	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	
2	0.00	0.00	0.66	0.0	0.00	0.66	0.00	0.00	0.00	
3	0.08	0.00	0.16	0.0	0.00	0.08	0.00	0.08	0.73	
4	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	
4596	0.00	0.44	0.44	0.0	0.00	0.00	0.00	0.00	0.00	
4597	0.28	0.14	0.14	0.0	0.00	0.00	0.14	0.00	0.42	
4598	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	
4599	0.32	0.00	1.64	0.0	0.98	0.00	0.32	0.00	0.65	
4600	0.00	0.00	0.00	0.0	0.43	0.43	0.43	0.00	0.00	

4601 rows × 55 columns

2 .repartistion de la base de donnees d'entrainement et de donnees de test :

```
In [285]: spam_train_all=df[df.status=="train"]
    spam_test_all=df[df.status=="test"]

    X_train=spam_train_all.drop(columns=['spam', 'status'])
    X_test=spam_test_all.drop(columns=['spam', 'status'])
```

3. Réalisez une standardisation des deux sousensembles des données

```
In [286]: #df.isnull().sum()
           missing_row = df[df.isnull().any(axis=1)]
           missing_row
Out[286]:
             wf_make wf_address wf_all wf_3d wf_our wf_over wf_remove wf_internet wf_order wf_ma
           0 rows × 57 columns
In [287]: import seaborn as sns
           import matplotlib.pyplot as plt
           #on verifie si y a des outliers
           sns.boxplot(df["wf_make"])
           # Show the plot
           plt.show()
                      i
                               2
                                       3
                                               4
                               wf_make
In [288]: from sklearn.preprocessing import RobustScaler
           scaler = RobustScaler()
           X train = scaler.fit transform(X train)
           X_test = scaler.fit_transform(X_test)
In [289]: | print(X_train.shape)
           print(X_test.shape)
           (3601, 55)
```

4.Déterminez la taille des deux sous-ensembles de données

(1000, 55)

```
In [290]: # donnees de test
    print(f"le nombre de vars est : {X_test.shape[1]}")
    print(f"le nombre de individual est : {X_test.shape[0]}")

le nombre de vars est : 55
    le nombre de individual est : 1000

In [291]: # donnees d<entrainements
    print(f"le nombre de vars est : {X_train.shape[1]}")
    print(f"le nombre de individual est : {X_train.shape[0]}")

le nombre de vars est : 55
    le nombre de individual est : 3601</pre>
In []:
```

5. diagramme de dispersion de paires de variables par classes

(spam), représentez la dispersion des 6 premières variables

```
In [292]: from pandas.plotting import scatter_matrix
```

```
In [293]: plt.figure(figsize=(50,50))
featur = ['wf_make','wf_address','wf_all','wf_3d','wf_our','wf_over']
scatter_matrix(df[featur])
```

Out[293]: array([[<matplotlib.axes. subplots.AxesSubplot object at 0x7fba9d73a160 <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9da91cd0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9d8a3430</pre> <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9d8edbb0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9d922370</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e297a30</pre> >], [<matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e297b20</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fbabb7be340</pre> <matplotlib.axes._subplots.AxesSubplot object at 0x7fba9d97d1f0</pre> <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9d9a6970</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e41d130</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e4458b0</pre> >], [<matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e4700d0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e7d17f0</pre> <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e7fbf70</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e830730</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e85ceb0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e892670</pre> >], [<matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e8bbdf0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e9585b0</pre> <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e982d30</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e9b94f0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9e9e2c70</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9ea19430</pre> >], [<matplotlib.axes. subplots.AxesSubplot object at 0x7fba9ea43bb0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9ea7b370</pre> <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9eaa4af0</pre> <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9eada2b0</pre> >, <matplotlib.axes. subplots.AxesSubplot object at 0x7fba9eb06a30</pre>

<Figure size 3600x3600 with 0 Axes>

-6 des informations préliminaires sur l'importance

(pouvoir discriminant) de ces variables

selons les graphes on remarque que y a une forte correlation entre certaines features comme wf_our et wf_all

et d'autres qui ne l'ónt pas' comme wf_adresse et wf_3d

```
In [ ]:
```

etape 2:

1. Réalisez un encodage de la variable cible en vue d'une régression logistique.m

2.Représentez la dispersion de la variable cible (spam) encodée en fonction de la variable wf_cs.

```
In [296]: plt.figure(figsize=(12,4))
    plt.scatter(X[Y==0,0], Y[Y==0], label="No")
    plt.scatter(X[Y==1,0], Y[Y==1], label="Yes", )
    plt.xlabel('Y',fontsize=2)
    plt.ylabel('wf_csh',fontsize=20)
    plt.title('spam en fonction de wf_csh' ,fontsize=20)
    plt.legend(loc="center right", fontsize=20)
    plt.show()
```


3.En considérant la variable wf_cs, entrainez un modèle de régressionlogistique sur l'ensemble des données d'entrainement (Standardisées).(random_state=20)

```
In [297]: from sklearn.linear model import LogisticRegression
          from sklearn.model_selection import train_test_split
          # Crer le model regression logistique
          log reg = LogisticRegression(max iter =1000 ,random state =42)
          # entrainement le model sur les donnees d'entrainement
          log reg.fit(X train, y train)
```

Out[297]: LogisticRegression(max iter=1000, random state=42)

4 - Déterminez les paramètres du modèle et écrivez l'équation du modèle

de régression.

```
In [298]: print(f"le coefficient est de valeur {log req.coef }")
          print(f"lintercept est de valeur {log reg.intercept }")
          le coefficient est de valeur [[-1.87290172e-01 -1.15067551e-01
          537e-01 1.07851947e+00
             2.16634748e-01 6.03948059e-01 2.45363136e+00 7.48753840e-01
             4.18500518e-01 2.55282565e-02 2.47255901e-02 -1.03119966e-01
             1.89302183e-02 2.64029162e-01 4.95910157e-01 8.90255735e-02
             1.18504276e+00 1.87208514e-01 2.85531887e-01 7.62840970e-01
             3.05287916e-01 3.21204803e-01 1.91324071e+00 4.49413616e-01
            -1.85399225e+00 -6.60353305e-01 -1.22947363e+00 -1.77671336e-01
            -8.82663186e-01 -3.02224859e-01 -9.55006959e-01 -4.49905671e-01
            -1.41920656e+00 7.22107870e-01 -3.44553385e-01 -9.69964453e-02
            -4.55571443e-01 -7.06480127e-01 -1.42343030e+00 -1.60598278e+00
            -1.02460694e+00 -1.17464882e+00 -9.66961469e-02 -1.41350335e+00
            -9.11195491e-01 -1.65118299e+00 -1.21132868e+00 -1.83450736e-03
            -4.57047751e-01 1.17541532e-01 3.77930232e-01 1.06815448e+00
            -3.30052713e-02 3.51818406e-01 1.75750682e-01]]
          lintercept est de valeur [-1.55089411]
```

5-la frontiere de decision

6- Déterminez la probabilité d'appartenance à la classe (spam) de l'observation

dont la valeur de wf_cs = 1.07

ETAPE 3:

1. En utilisant la libraire Sklearn, développez un perceptron simple pourprédire la classe (spam) (random_state=100, max_iter = 1500).

2. Représentez la matrice de confusion et évaluez les performances. Déterminez la valeur du score F1.

```
In [302]: import seaborn as sns
sns.heatmap(confusion_matrix ,annot=True)
```

Out[302]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbab8a938b0>

3. Quelle est la valeur du biais du modèle de perceptron obtenu ?

```
In [303]: from sklearn.metrics import confusion_matrix, classification_report
    from sklearn.linear_model import Perceptron

# Utilisez le perceptron entraîné pour prédire
    y_pred = perceptron.predict(X_test)

# Représentez la matrice de confusion en utilisant les étiquettes de cla
    sse prédites et réelles
    confusion_matrix = confusion_matrix(y_test, y_pred)
    print(confusion_matrix)

[[516 93]
    [55 336]]

In [304]: perceptron.score(X_train,y_train )
```

In [305]: pred=perceptron.predict(X_test)
print(pred)

```
[1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0
      1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
       1 1
      0 1
      1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
        0 1
      1 1
        1 1
       0 1
        1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
        1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
       1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 1 \;\; 1 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\; 0 \;\;
0 1
       11
```

```
In [306]: from sklearn.metrics import accuracy_score
    import sklearn.metrics as metrics
    print("l'erreur esr : "+str(1-metrics.accuracy_score(y_test,pred)))

l'erreur esr : 0.1480000000000000
```

4. Combien de paramètres possède ce modèle. Pourquoi ?

notre model a 55 parametres, le nombre de paramètres est égal au nombre de coefficients de régression

on a 55 descripteurs

5. En se basant sur les poids synaptique, réalisez un ordonnancement de

l'importance des caractéristiques. Justifiez la faisabilité de l'ordonnancement des caractéristiques à partir des poids synaptiques.

In [309]: cdf.sort_values(by = 'poids')

Out[309]:

	variable	poids
24	wf_hp	-150.460000
37	wf_direct	-103.060000
39	wf_meeting	-99.570000
43	wf_edu	-84.810000
32	wf_85	-74.280000
46	cf_comma	-64.514000
25	wf_hpl	-60.240000
30	wf_data	-57.450000
28	wf_telnet	-56.230000
45	wf_conference	-50.870000
41	wf_project	-48.870000
38	wf_cs	-47.730000
26	wf_lab	-45.180000
42	wf_re	-40.000000
34	wf_1999	-38.570000
40	wf_original	-34.150000
9	wf_mail	-32.888889
48	cf_sqbracket	-32.647000
54	capital_run_length_total	-29.414634
36	wf_pm	-28.780000
47	cf_bracket	-23.730159
27	wf_labs	-13.430000
44	wf_table	-9.570000
29	wf_857	-8.280000
21	wf_font	-7.010000
31	wf_415	-6.970000
0	wf_make	-6.730000
10	wf_receive	-5.910000
12	wf_people	-2.620000
11	wf_will	0.075949
35	wf_parts	1.800000
20	wf_your	2.676923
1	wf_address	4.050000
51	cf_hash	4.664000

	variable	poids
23	wf_money	5.690000
15	wf_free	7.250000
17	wf_email	8.140000
8	wf_order	11.790000
53	capital_run_length_longest	13.666667
13	wf_report	15.520000
2	wf_all	21.095238
18	wf_you	28.235741
49	cf_exclam	29.231481
5	wf_over	29.570000
50	cf_dollar	33.192982
3	wf_3d	38.180000
14	wf_addresses	38.850000
4	wf_our	40.641026
33	wf_technology	47.170000
19	wf_credit	52.870000
16	wf_business	83.510000
7	wf_internet	89.310000
22	wf_000	90.920000
6	wf_remove	141.210000
52	capital_run_length_average	423.124186

```
In [310]: perceptron.intercept_
```

Out[310]: array([-45.])

6. Représentez graphiquement l'importance des caractéristiques. Interprétez

les résultats. Quelles sont les caractéristiques les plus importantes (discriminantes). 2

```
In [311]: fi = plt.subplots(figsize=(20,6))
sns.barplot(x="variable",y="poids",data=cdf ,color='red')
plt.show()

**Model and substitute and a substitute and production a
```

les caractreistique les plus importantes sont : wf_technology 47.170000 wf_credit wf_business wf_internet wf_000 wf_remove capital_run_length_average

7. En utilisant la libraire Sklearn, développez un perceptron multicouche

(hidden_layer_sizes=(2),activation='logistic',random_state=100, max_iter=1500).

```
In [312]: import numpy as np
    from sklearn.neural_network import MLPClassifier

# Creation du modèle de perceptron multicouche
    mlp = MLPClassifier(hidden_layer_sizes=(2), activation='logistic', rand
    om_state=100, max_iter=1500)

# on entraine le modèle sur les données d'entraînement
    mlp.fit(X_train, y_train)

# on Évalue le modèle sur les données de test
    accuracy = mlp.score(X_test, y_test)
    print("Accuracy: ", accuracy)
```

Accuracy: 0.915

8. Représentez la matrice de confusion et évaluez les performances.

In [313]: mat_confu =metrics.plot_confusion_matrix(mlp,X_test,y_test)

9 .comparez les performances du perceptron simple avec le perceptron multicouche :

le nscore du perceptron simple est : 0.852

```
In [314]: print(f"le score du perceptron multicouche est : {mlp.score(X_test,y_t est)}")
    print(f"le nscore du perceptron simple est : {perceptron.score(X_test,y_test)}")
    le score du perceptron multicouche est : 0.915
```

les performances :

```
In [315]: from sklearn.metrics import classification_report
    #performances perceptron simple
    per= perceptron.predict(X_test)

print(classification_report(y_test,per))
```

	precision	recall	f1-score	support
0	0.90	0.85	0.87	609
1	0.78	0.86	0.82	391
accuracy			0.85	1000
macro avg	0.84	0.85	0.85	1000
weighted avg	0.86	0.85	0.85	1000

```
In [316]:
           #performances multicouches
           ppper= mlp.predict(X test)
           print(classification_report(y_test,ppper))
                          precision
                                        recall
                                                f1-score
                                                            support
                      0
                               0.92
                                          0.94
                                                     0.93
                                                                 609
                       1
                               0.91
                                          0.87
                                                     0.89
                                                                 391
                                                     0.92
                                                                1000
               accuracy
                                                     0.91
              macro avg
                               0.91
                                          0.91
                                                                1000
                                                     0.91
           weighted avg
                               0.91
                                          0.92
                                                                1000
```

on remarque que les performance dans le perceptron multicouche est bcp plus elevee que le perceptron simple

10 la variation de la fonction perte du perceptron multicouches en fonction du nombre díteration :

```
In [317]:
           pd.DataFrame(mlp.loss curve ).plot()
Out[317]: <matplotlib.axes. subplots.AxesSubplot at 0x7fba9d8175e0>
            0.7
            0.6
            0.5
            0.4
            0.3
            0.2
                         100
                                  200
                                          300
                                                  400
                                                           500
  In [ ]:
  In [ ]:
```