RESULTADO DE APRENDIZAJE

RdA de la asignatura:

• **RdA 2:** Aplicar modelos de aprendizaje automático supervisado y no supervisado, así como su validación y optimización, en la resolución de problemas tanto reales como simulados.

RdA de la actividad:

- Describir y diferenciar los algoritmos jerárquicos aglomerativos y divisivos, junto con sus ventajas y desventajas.
- Analizar y construir dendogramas para entender los resultados de un agrupamiento jerárquico.
- Aplicar diferentes criterios de enlace en algoritmos de agrupamiento jerárquico.
- Implementar algoritmos de agrupamiento jerárquico en un conjunto de datos utilizando Python.

INTRODUCCIÓN

Pregunta inicial: ¿Cómo podemos agrupar datos de manera jerárquica y visualizar las relaciones entre los grupos?

DESARROLLO

Actividad 1: Presentación teórica sobre algoritmos de agrupamiento jerárquico

se introducirá a los estudiantes los fundamentos del agrupamiento jerárquico, incluyendo los métodos aglomerativos y divisivos, y los criterios de enlace para calcular las distancias entre grupos. También se explicará el uso de los dendogramas como herramienta visual para entender las jerarquías de los grupos.

¿Cómo lo haremos?

• Introducción a los algoritmos jerárquicos: Explicaremos los principios de los algoritmos aglomerativos y divisivos. Se destacará cómo los métodos aglomerativos comienzan con cada punto como un clúster individual y los unen iterativamente, mientras que los divisivos parten de un clúster único y lo dividen sucesivamente.

- **Dendogramas:** Introduciremos los dendogramas como una herramienta para visualizar la jerarquía de los agrupamientos. Analizaremos cómo interpretar las uniones y las distancias representadas en el gráfico.
- **Criterios de enlace:** Explicaremos los tres criterios principales para determinar las distancias entre clústeres:
 - Enlace sencillo (Single Linkage): Distancia mínima entre dos clústeres.
 - Enlace completo (Complete Linkage): Distancia máxima entre dos clústeres.
 - Enlace promedio (Average Linkage): Promedio de todas las distancias entre puntos de los dos clústeres.

Verificación de aprendizaje: Los estudiantes deberán:

- Identificar correctamente las diferencias entre los métodos aglomerativos y divisivos.
- Explicar qué representa un dendograma y cómo se interpreta.
- Comparar los efectos de los diferentes criterios de enlace en un ejemplo dado.

Actividad 2 : Agrupamiento jerárquico con una lista de números

Se realizará un ejercicio práctico para agrupar una lista de números utilizando un enfoque jerárquico. Se construirán grupos utilizando diferentes criterios de enlace y se visualizará el proceso en un dendograma manual.

¿Cómo lo haremos?

- Datos iniciales: Se trabajará con la siguiente lista de números:
 - [10, 4, 20, 30, 38, 87, 82, 56, 66, 70]
- Cálculo de distancias: Se calcularán las distancias absolutas entre todos los pares de números para construir una matriz de distancias inicial. La distancia entre dos números será la diferencia absoluta entre ellos.
- **Construcción del dendograma:** Se fusionarán los números o grupos más cercanos según el criterio de enlace seleccionado:
 - Enlace sencillo: Se tomará la distancia mínima entre elementos de los dos grupos.
 - Enlace completo: Se tomará la distancia máxima entre elementos de los dos grupos.
 - Enlace promedio: Se calculará el promedio de todas las distancias entre elementos de los dos grupos.
- **Representación manual:** A medida que se fusionan los grupos, se registrarán los pasos y se dibujará un dendograma manualmente en el pizarrón o en hojas de trabajo distribuidas a los estudiantes.

Verificación de aprendizaje: Replicar el proceso con otro conjunto de números.

Actividad 3 : Visualización de video sobre algoritmos de agrupamiento jerárquico

Se utilizará un video educativo para que los estudiantes comprendan los conceptos fundamentales del agrupamiento jerárquico, incluyendo los métodos aglomerativos y divisivos, los criterios de enlace, y la interpretación de dendogramas.

¿Cómo lo haremos?

• **Proyección de video:** Se presentará un video educativo que explique los fundamentos del agrupamiento jerárquico.

Enlace al video: Hierarchical Cluster Analysis.

 Interacción con ChatGPT: Después del video, cada estudiante formulará preguntas a ChatGPT relacionadas con términos o conceptos que no comprendieron durante la visualización.

Verificación de aprendizaje: Se realizará una discusión grupal donde los estudiantes compartirán:

- Las preguntas que realizaron a ChatGPT.
- Las respuestas que obtuvieron y cómo estas les ayudaron a comprender mejor el tema.

Actividad 4: Implementación directa del agrupamiento jerárquico

Los estudiantes ejecutarán el siguiente código para generar un agrupamiento jerárquico sobre el conjunto de datos y visualizar el dendograma.

Datos iniciales: Se trabajará con el siguiente conjunto de datos:

```
[10, 4, 20, 30, 38, 87, 82, 56, 66, 70]
```

Código a ejecutar:

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage

# Datos de entrada
data = np.array([10, 4, 20, 30, 38, 87, 82, 56, 66, 70]).reshape(-1, 1)

# Aplicar el agrupamiento jerárquico con criterio de enlace promedio
linkage_matrix = linkage(data, method='average')

# Visualizar el dendograma
plt.figure(figsize=(8, 5))
dendrogram(linkage_matrix, labels=data.flatten())
```

```
plt.title('Dendograma — Enlace Promedio')
plt.xlabel('Puntos de datos')
plt.ylabel('Distancia')
plt.show()
```

Resultados esperados: Los estudiantes deben analizar el dendograma generado e identificar:

- El orden en que se formaron los clusters.
- Las distancias a las que se unieron los diferentes grupos.

Verificación de aprendizaje: Responder las siguientes preguntas basadas en los resultados:

- ¿Cuál fue la distancia más grande entre dos clusters antes de unirse?
- ¿Qué estructura jerárquica muestran los datos?
- ¿Cómo podría cambiar el resultado si utilizáramos un criterio de enlace diferente (e.g., enlace sencillo o completo)?

CIERRE

Tarea: Implementar el algoritmos en los datos seleccionados la clase anterior.

Pregunta de investigación:

- 1. ¿Qué información podemos obtener de un dendograma que no podemos obtener directamente de otros modelos?
- 2. ¿Cómo afecta el criterio de enlace (sencillo, completo o promedio) a la forma final de los grupos en el agrupamiento jerárquico?
- 3. ¿En qué casos prácticos sería más útil un método divisivo en lugar de uno aglomerativo?