Simple Linear Model

1. Motivation

▶ Given the data

x	y
1	1.1
2	1.8
3	2.7
4	4.5

Scatter plot

Which line is closer to the points?

Linear Model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- Model Assumptions
 - \blacktriangleright (A1) The response variable y_i is a random variable and the predictor x_i is non-random
 - $\blacktriangleright \text{ (A2) } \epsilon_i \sim^{iid} N(0,\sigma^2)$

Parameters Estimation

The best fitted line

▶ The least squared methods give us the formula for the closest line or the best fitted line:

$$y = \hat{\beta_1}x + \hat{\beta_0}$$

 \blacktriangleright The estimated parameters $\hat{\beta}_0$ and $\hat{\beta}_1$ are

$$\begin{split} \hat{\beta_1} &= \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \\ &= \frac{\sum_{i=1}^n x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^n x_i^2 - n \bar{x}^2} = \frac{S_{xy}}{S_{xx}} \\ \hat{\beta_0} &= \bar{y} - \hat{\beta_1} \bar{x} \end{split}$$

Example: Calculate from Data

\overline{x}	y
1	1.1
2	1.8
3	2.7
4	4.5

$$\bar{x} = \frac{1+2+3+4}{4} = 2.5$$

$$\bar{y} = \frac{1.1+1.8+2.4+4.5}{4} = 2.525$$

$$\frac{4}{\sum} \frac{4.5}{30.8} \frac{18}{30}$$

$$\hat{\beta_1} = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} = 1.11$$

 $\hat{\beta}_0 = \bar{y} - \hat{\beta_1}\bar{x} = -0.25$

Best fitted line

Example: Calculate from Sumations

The regression model is $y = \beta_0 + \beta_1 x + \epsilon$. There are six observations. The summary statistics are

$$\begin{split} \sum y_i &= 42, \\ \sum x_i &= 21, \\ \sum x_i^2 &= 91, \\ \sum x_i y_i &= 187, \\ \sum y_i^2 &= 390 \end{split}$$

Calculate the least squares estimate of β_1 .

Example: Calculate from Sumations

The regression model is $y=\beta_0+\beta_1x+\epsilon$. There are five observations. The summary statistics are

$$\begin{split} \sum y_i &= 30, \\ \sum x_i &= 15, \\ \sum (x_i - \bar{x})(y_i - \bar{y}) &= 25, \\ \sum (x_i - \bar{x})^2 &= 10, \\ \sum (y_i - \bar{y})^2 &= 64, \end{split}$$

Write the equation of the best fitted line using the least squares method.

Goodness of Fit

Coefficient of Determination

Baseline model:

$$y = \beta_0 + \epsilon$$

- \blacktriangleright In this model, y_i is estimated by one number, \bar{y}
- Linear Model:

$$y = \beta_0 + \beta_1 x + \epsilon$$

 \blacktriangleright In this model, y_i is estimated by

$$\hat{y_i} = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + 2 \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)(\hat{y}_i - \bar{y})}_{n}$$

 $= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2.$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
TSS RSS Reg SS

Reg SS

Coefficient of Determination

$$R^2 = 1 - \frac{RSS}{TSS}$$

 $ightharpoonup R^2$ runs from 0 to 1. The larger R^2 , the better the model

Example

You are given the following results from a regression model.

Observation number (i)	y_i	$\hat{f}(x_i)$
1	1	1
2	2	3
3	3	7
4	5	9
5	9	10

Calculate the sum of squared errors (SSE) , the total sum squares (TSS), and the regression sum squares, and the ${\cal R}^2$ of the model.

For a simple linear regression model the total sum of squares (TSS)
is 150 and the \mathbb{R}^2 statistic is 0.7. Calculate the sum of squares of

the residuals for this model.

F-test

i.i.d model (Baseline Model)

$$y = \beta_0 + \epsilon$$

SLR model

$$y = \beta_0 + \beta_1 x + \epsilon$$

$$\underbrace{H_0: \beta_1 = 0}_{\text{i.i.d. model}}$$

vs. $\underline{\mathbf{H}_a: \beta_1 \neq 0}$,

SLR model

$$F = \frac{\text{Reg SS/1}}{\text{RSS/}(n-2)}$$

- lacktriangle The smaller p-value (the larger F-statistics) supports H_1
- Small p-value ($\leq .05$): We reject H_0 . The linear model is a significant improvement over the baseline model.
- Large p-value (> .05): Fail to reject H_0

Example

Two actuaries are analyzing car accident claims for a group of n=52 participants. The predictor x is driving experience (years).

Actuary 1 uses the following regression model:

$$Y = \beta + \epsilon$$

Actuary 2 uses the following regression model:

$$Y = \beta_0 + \beta_1 \times x + \epsilon$$

The residual sum of squares for the regression of Actuary 2 is 120 and the total sum of squares is 150.

Calculate the F-statistic to test whether the model of Actuary 2 is a significant improvement over the model of Actuary 1.

t-test

and

 \blacktriangleright We use t-test to test the value of β_1 and β_0

$$t(\hat{\beta}_j) = \frac{\hat{\beta}_j - d}{\operatorname{SE}(\hat{\beta}_j)}, \quad j = 0, 1,$$

$$\operatorname{SE}(\hat{\beta}_0) = \sqrt{s^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right)} = \sqrt{\frac{s^2 \sum_{i=1}^n x_i^2}{nS_{xx}}}$$

$$\operatorname{SE}(\hat{\beta}_1) = \sqrt{\frac{s^2}{S_{xx}}}.$$

$$s^2 = \frac{\operatorname{RSS}}{1 - 2} = \frac{\sum_{i=1}^n e_i^2}{2},$$

Example

The results of fitting five observations by the regression model, $y=\beta_0+\beta_1x+\epsilon$, are given below.

				,
Intercept -1.	5 (0.7416	-2.023	0.13631
× 2.5	. (0.2236	11.180	0.00153

Determine the test results of the hypothesis $H_0: \beta_1=0$ against $H_\alpha: \beta_1\neq 0$.