计算机安全(2024年春季)

	D. St. A. D. Ing A. St. on a series
绪论	信息安全的概念和 CIA 三要素
	系统研究的方法(还原论、整体论)、系统安全工程、系统安全思维
	风险分析基本方法(资产×漏洞×威胁)
	攻击面、攻击树、社会工程学
计算机安全基础	计算机安全的内涵,CIA 三要素,PDRR/PDR/PPDRR 模型
	计算机安全的五个设计原则
	隐蔽信道 (隐信道)、旁道攻击 (侧信道攻击)
身份识别与认证	口令空间的计算,蛮力攻击的时间(平均、至多)
	用户身份认证可以基于哪些信息
	口令认证机制面临的威胁(猜测、欺骗、文件泄露、遗忘)
	口令认证机制的缺点
访问控制	主角、主体、客体/对象/目标、访问操作
	自主访问控制 DAC、强制访问控制 MAC
	访问控制矩阵、能力、访问控制列表
	中间控制,如组、否定许可、角色、特权
	安全级别的偏序关系、安全标签的格
	基于角色的访问控制 RBAC (角色继承、角色限制)
	基于任务的访问控制 TBAC (上下文环境、动态授权)
使用控制	ABC 模型的三个基本元素和三个授权相关元素
	UCON 的 16 种基本模型(preAO/preA1/preBO/onCO/)
	会用使用控制模型描述 DAC/MAC/RBAC
访问监控器	访问验证机制(访问监控器实现)的三个核心要求
	访问监控器、安全内核、可信计算基
	受控调用/门、可信路径
计算机实体安全	可信计算,TPM,软件狗
Unix/Linux 安全	Unix 的自主访问控制,粒度
	主角 (UID、GID、group、root); 主体 (pid、EUID/EGID/RUID/RGID)
	客体(文件许可位及其二进制表示、八进制表示)
	SUID/SGID 受控调用;强制访问控制(SELinux 优点、类型、域、域切换)
Android 安全	Android 系统架构(Dalvik/ART),主要安全机制(沙箱、权限)
Windows 安全	WinLogon、LSA、SAM、注册表、域、活动目录
	主角、主体、令牌、安全描述符、受限上下文
	DACL, SACL, DEP
数据库安全	关系数据库、视图、快照、存储过程、函数、触发器
	委托授权、递归回收、否定式授权、解决授权冲突的原则
	 视图的优势,用户发放授权和角色发放授权的区别
	三元组安全标签、基于标签的访问判定
	统计数据库的推理、跟踪攻击、差分隐私
	完全备份、差异备份、增量备份
	уетым ступи птим

	乏 林可信引息和 조 林克人引息的具因
系统可信检查机	系统可信引导和系统安全引导的异同
制	世程完整性体现在哪些方面(初始状态、中断过程、片上 Cache/片外存储、
	输出结果)
BLP 模型	状态集 V=B×M×F; ss-property, *-property, ds-property
	基本安全定理;隐蔽信道、隐蔽存储信道、隐蔽定时信道
安全模型	Biba 模型:简单完整性,完整性*-property,动态完整性级别,信息传递路
	一 径,调用性,环属性
	Chinese Wall 模型:公司数据集,利益冲突类,安全标签,ss-property, *-
	property
	信息流模型:强(显示)信息流、弱(隐式)信息流、信息量/条件熵计算、赋值
	语句/条件语句的信息流分析和安全必要条件
安全评估	安全评估框架 (评估对象、评估目标、评估方法)
	TCSEC/ITSEC/CC 的级别和内涵; TCSEC 各个级别的特点
网络安全等级保护	等级保护的内涵、等保 2.0 的十大安全类
	等级保护制度的主要内容(从信息、信息系统、安全产品、安全服务资质、安
	全事件等方面)
	等级保护的主要工作(定级、备案、建设/整改、定期等级测评、定期监督检查)
	等级保护对象的定级方法(业务信息/系统服务/受侵害客体/侵害程度)
	 等级测评流程(测评准备、方案编制、现场测评、报告编制)
	密码应用安全性评估的含义(合规性、正确性、有效性)
密码应用安全性	密码应用基本要求的八大安全类
 评估	 技术标准中"应"、"宜"、"可"的区别
	 等保和密评的区别(方案评估)
云计算安全	 云计算的主要特性(按需自助服务、泛在接入、资源池化、快速伸缩性、服务
	可计量)
	云计算的服务模式(SaaS、PaaS、IaaS)
	云计算的部署模式(公有云、私有云、社区云、混合云)
	云服务商和客户之间的安全责任划分(设施、硬件、资源抽象控制层、虚拟化
	计算资源、软件平台、应用软件)
基于代码的访问	堆栈遍历、惰性计算、热情计算
控制	许可断言
入侵检测	IDS、IPS、DPI、DFI、态势感知
	入侵检测方法(异常检测、误用检测)
	入侵检测系统分类(按照数据来源,基于主机、基于网络、混合型)
	IATF: 一个核心思想、三个核心要素、四个焦点领域
 应急响应与灾备	应急响应的概念、应急响应过程、风险评估过程
恢复	灾难恢复的概念、容灾备份的概念
	RAID 0、RAID 1、RAID 10 和 RAID 5
	א איז איז איז איז איז איז איז איז איז אי