Hashing

• Q1: Hash function = key % 13, number of buckets = 13. Using linear probing to insert pairs whose keys are 6, 13, 34, 29, 41, 11, 23, 7, 0, 33, 30, 45. Write out the hash table.

Hashing

• Q1: Hash function = key % 13, number of buckets = 13. Using linear probing to insert pairs whose keys are 6, 13, 34, 29, 41, 11, 23, 7, 0, 33, 30, 45. Write out the hash table.

Answers needed to be corrected:

13,0,41,29,45,-,6,7,34,33,23,11,30 The positions of 30 and 45 are incorrect.

13,0,41,29,30,6,7,34,33,23,11,45 There should be a **null** in the bucket[5].

Hashing

Q2: A hash function h defined as key % 7 with linear probing.
 Insert the keys 37, 38, 72, 48, 98, 11, and 56 into a table. Where will be 11 in the table?

Given m = 13 (size of bit array for the bloom filter BF)

h = 3 (number of hash functions)

- $f_1(k) = (3k) \mod m$
- $f_2(k) = (2k) \mod m$
- $f_3(k) = k^2 \mod m$

Q3: Please write out the bit array after inserting 11.

Q4: (Continue of Q3) Please write out the bit array after inserting 1.

Q5: (Continue of Q4) What is the results of Member(3, BF).

Given m = 13 (size of bit array for the bloom filter BF)

h = 3 (number of hash functions)

 $f_1(k) = (3k) \mod m$ $f_2(k) = (2k) \mod m$ $f_3(k) = k^2 \mod m$

Q3: Please write out the bit array after inserting 11.

Q4: (Continue of Q3) Please write out the bit array after inserting 1.

Q5: (Continue of Q4) What are the results of Member(3, BF)?

f1 = 9 mod 13=9, f2 = 6 mod 13=6, f3 = 9 mod 13=9 BH[6]=0, BH[9]=1 \rightarrow NO

- Given a bloom filter with m bits of memory size and storing u elements. We set m = 8u.
 - Q6: Please compute the optimum number of hash functions that minimizes the false positive probability *f*. Round the number to have an integer.

$$h = \frac{m}{u} \ln(2) = \frac{8u}{u} \ln(2) = 8 \ln(2) \approx 5.545$$

Round(5.545) = 6

- To have an integer value, you can compare 5 and 6 to select the one with better performance.
- Here, we use round(N) to get an answer.
- Q7: (Continue of Q6) Please compute the false positive probability f.

$$f = (1 - e^{-hu/m})^h$$

= $(1 - e^{-6/8})^6$
= 0.02157714

If you use the following two equations, it means that you assume that p is $\frac{1}{2}$. However, the number of hash functions is 6, which is not the optimal value. Thus, the probability p is not $\frac{1}{2}$.

$$f \approx 0.6185^{m/u}$$

= 0.6185⁸
 ≈ 0.021414

$$f = (1 - p)^{h}$$

$$= (1 - 1/2)^{6}$$

$$= 1/64 = 0.015625$$

• Q8: Into an empty B-heap, insert elements with priorities 20, 10, 5, 18, 6, 12, 14, 4, and 22 (in this order). Each insertion operation includes min-tree joining (pairwise combine). Please write the roots and degrees of min trees in the final B-heap.

• Inserting 20, 10, 5, 18, 6, 12, 14, 4, and 22 (in this order).

• Q8: Into an empty B-heap, insert elements with priorities 20, 10, 5, 18, 6, 12, 14, 4, and 22 (in this order). Each insertion operation includes min-tree joining (pairwise combine). Please write the roots and degrees of min trees in the final B-heap.

Roots: 4, 22

Degree of min-trees: 3, 0

In B heap:

Degree of a node = number of its children Degree of tree = root's degree

• Q9: Delete the min element from the final B-heap of Q8. Please write the roots and degrees of min trees in the resulting B-heap.

Then, we perform min-tree joining (pairwise combine).

• Q9: Delete the min element from the final B-heap of Q8. Please write the roots and degrees of min trees in the resulting B-heap.

Roots: 5

Degree of min-trees: 3