Package 'RobustANOVA'

December 5, 2022

Type Package		
Title Robust One-Way ANOVA Tests under Heteroscedasticity and Nonnormality		
Version 0.3.0		
Author Gamze Guven [aut, cre], Sukru Acitas [aut], Birdal Senoglu [aut]		
Maintainer Gamze Guven <gamzeguven@ogu.edu.tr></gamzeguven@ogu.edu.tr>		
Description Robust tests (RW, RPB and RGF) are provided for testing the equality of several long-tailed symmetric (LTS) means when the variances are unknown and arbitrary. RW, RPB and RGF tests are robust versions of Welch's F test proposed by Welch (1951) <doi:10.2307 2332579="">, parametric bootstrap test proposed by Krishnamoorthy et. al (2007) <doi:10.1016 j.csda.2006.09.039="">; and generalized F test proposed by Weerahandi (1995) <doi:10.2307 2532947="">;, respectively. These tests are based on the modified maximum likelihood (MML) estimators proposed by Tiku(1967, 1968) <doi:10.2307 2333859="">, <doi:10.1080 01621459.1968.11009228="">.</doi:10.1080></doi:10.2307></doi:10.2307></doi:10.1016></doi:10.2307>		
License GPL (>= 3)		
Imports stats, PEIP, optimbase		
Encoding UTF-8		
NeedsCompilation no		
Repository CRAN		
Date/Publication 2022-12-05 19:42:31 UTC		
R topics documented:		
peak_discharge RGF RPB RW Index		
IIIUVA		

2 RGF

peak_discharge

Peak Disharge Data

Description

The "peak discharge data" first given by Montgomery (2005) consists of four different methods of estimating flood flow frequency.

Usage

```
peak_discharge
```

Value

obs Flood flow frequency (in cubic feet per second)
methods Methods of estimating flood flow frequency.

Author(s)

Gamze Guven

References

D. C. Montgomery. Design and analysis of experiments. John wiley & sons, 2005.

Examples

```
library(RobustANOVA)
peak_discharge$obs;
peak_discharge$methods;
```

RGF

Robust Generalized F Test based on MML estimators

Description

Computes the p-value of the robust generalized F (RGF) test for the equality of means of several long-tailed symmetric (LTS) distributions when the variances are unknown and arbitrary.

Usage

```
RGF(formula, data, alpha, verbose = TRUE, p_shape, repn)
```

RGF 3

Arguments

formula a formula of the form left-hand-side(lhs) ~ right-hand-side(rhs). lhs shows

the observed values and rhs shows the group corresponding to the observed

values.

data frame containing the variables in the formula.

alpha the level of significance. Default is set to alpha = 0.05.

verbose a logical for printing output to R console.

p_shape shape parameter of the LTS distribution.

repn replication number for performing the RGF test.

Details

RGF test based on modified maximum likelihood (MML) estimators is proposed as a robust alternative to generalized F (GF) test proposed by Weerahandi (1995). See also Tiku (1967, 1968) for the details of MML estimators. The p-value for the RGF test is based on the replication number in the algorithm given by Guven et. al (2022).

Value

A list with class "htest" containing the following components:

p.value the p-value for the RGF test.

alpha the level of significance.

method a character string "Robust Generalized F Test based on MML Estimators" indi-

cating which test is used.

data a data frame containing the variables.

formula a formula of the form left-hand-side(1hs) ~ right-hand-side(rhs). 1hs shows

the observed values and rhs shows the group corresponding to the observed

values.

Author(s)

Gamze Guven <gamzeguven@ogu.edu.tr>

References

G. Guven, S. Acitas and B. Senoglu, B. RobustANOVA: An R Package for one-way ANOVA under heteroscedasticity and nonnormality. *Under review*, 2022.

M. L. Tiku. Estimating the mean and standard deviation from a censored normal sample. *Biometrika*, 54:155-165, 1967.

M. L. Tiku. Estimating the parameters of log-normal distribution from censored samples. *Journal of the American Statistical Association*, 63(321): 134-140, 1968.

S. Weerahandi. Anova under unequal error variances. Biometrics, 51(2): 589-599, 1995.

4 RPB

Examples

```
library(RobustANOVA)
```

RGF(obs ~ methods, data = peak_discharge, alpha = 0.05, verbose = TRUE, p_shape=2.3, repn=5000)

RPB

Robust Parametric Bootstrap Test based on MML estimators

Description

Computes the p-value of the robust parametric bootstrap (RPB) test for the equality of means of several long-tailed symmetric (LTS) distributions when the variances are unknown and arbitrary.

Usage

```
RPB(formula, data, alpha, verbose = TRUE, p_shape, repn)
```

Arguments

formula a formula of the form left-hand-side(lhs) ~ right-hand-side(rhs). 1hs shows

the observed values and rhs shows the group corresponding to the observed

values.

data frame containing the variables in the formula. alpha the level of significance. Default is set to alpha = 0.05.

verbose a logical for printing output to R console.

p_shape shape parameter of the LTS distribution.

repn replication number for performing the RPB test.

Details

RPB test based on modified maximum likelihood (MML) estimators is proposed as a robust alternative to parametric bootstrap (PB) test proposed by Krishnamoorthy et. al (2007). See also Tiku (1967, 1968) for the details of MML estimators. The p-value for the RPB test is based on the replication number in the algorithm given by Guven et. al (2022).

Value

A list with class "htest" containing the following components:

p.value the p-value for the RPB test. alpha the level of significance.

method a character string "Robust Parametric Bootstrap Test based on MML Estimators"

indicating which test is used.

data a data frame containing the variables.

formula a formula of the form left-hand-side(lhs) ~ right-hand-side(rhs). lhs shows

the observed values and rhs shows the group corresponding to the observed

values.

RW 5

Author(s)

Gamze Guven <gamzeguven@ogu.edu.tr>

References

G. Guven, S. Acitas, and B. Senoglu, B. RobustANOVA: An R Package for one-way ANOVA under heteroscedasticity and nonnormality. *Under review*, 2022.

K. Krishnamoorthy, F. Lu, and T. Mathew. A parametric bootstrap approach for anova with unequal variances: Fixed and random models. *Computational Statistics & Data Analysis*, 51(12): 5731-5742,2007.

M. L. Tiku. Estimating the mean and standard deviation from a censored normal sample. *Biometrika*, 54:155-165, 1967.

M. L. Tiku. Estimating the parameters of log-normal distribution from censored samples. *Journal of the American Statistical Association*, 63(321): 134-140, 1968.

Examples

```
library(RobustANOVA)
```

```
RPB(obs ~ methods, data = peak_discharge, alpha = 0.05, verbose = TRUE, p_shape=2.3, repn=5000)
```

RW

Robust Welch Test based on MML Estimators

Description

Computes the observed value of robust Welch (RW) test, degrees of freedoms (numerator and denominator) and the corresponding p-value for the equality of means of several long-tailed symmetric (LTS) distributions when the variances are unknown and arbitrary.

Usage

```
RW(formula, data, alpha=0.05, verbose = TRUE, p_shape)
```

Arguments

formula	a formula of the form left-hand-side(1hs) \sim right-hand-side(rhs). 1hs shows the observed values and rhs shows the group corresponding to the observed values.
data	data frame containing the variables in the formula.
alpha	the level of significance. Default is set to alpha = 0.05 .
verbose	a logical for printing output to R console.
p_shape	shape parameter of the LTS distribution

6

Details

RW test based on modified maximum likelihood (MML) estimators is proposed as a robust alternative to Welch's F test (Welch, 1951). The test statistic is formulated as follows

$$RW = \frac{T(\hat{\mu}_1, \dots, \hat{\mu}_a; \hat{\sigma}_1^2, \dots, \hat{\sigma}_a^2)/(a-1)}{1 + (2(a-2)/(3\nu_1))}$$

where

$$T(\hat{\mu}_1, \dots, \hat{\mu}_a; \hat{\sigma}_1^2, \dots, \hat{\sigma}_a^2) = \sum_{i=1}^a \frac{M_i}{\hat{\sigma}_i^2} \hat{\mu}_i^2 - \frac{(\sum_{i=1}^a M_i \hat{\mu}_i / \hat{\sigma}_i^2)^2}{\sum_{i=1}^a M_i / \hat{\sigma}_i^2},$$

$$\nu_1 = \left[\frac{3}{a^2 - 1} \sum_{i=1}^{a} \frac{1}{n_i - 1} (1 - (M_i/\hat{\sigma}_i^2) / (\sum_{j=1}^{a} M_j/\hat{\sigma}_j^2))^2\right]^{-1},$$

 $\hat{\mu}_i$ and $\hat{\sigma}_i$ (i=1,2,...,a) are the MML estimators of the location and scale parameters, respectively, see Tiku (1967, 1968) for the details of MML estimators.

The null hypothesis is rejected if the computed RW statistic is higher than the $(1 - \alpha)$ th quantile of the F distribution with a-1 and ν_1 degrees of freedom.

For further details, see Guven et al. (2022).

Value

A list with class "htest" containing the following components:

statistic the observed value of the RW test statistic.

dfs the numerator and the denominator degrees of freedom of the approximate F

distribution.

p.value the p-value for the RW test.

alpha the level of significance.

method a character string "Robust Welch Test based on MML Estimators" indicating

which test is used.

data a data frame containing the variables.

formula a formula of the form left-hand-side(lhs) ~ right-hand-side(rhs). lhs shows

the observed values and rhs shows the group corresponding to the observed

values.

Author(s)

Gamze Guven <gamzeguven@ogu.edu.tr>

RW 7

References

G. Guven, S. Acitas, and B. Senoglu, B. RobustANOVA: An R Package for one-way ANOVA under heteroscedasticity and nonnormality. *Under review*, 2022.

M. L. Tiku. Estimating the mean and standard deviation from a censored normal sample. *Biometrika*, 54:155-165, 1967.

M. L. Tiku. Estimating the parameters of log-normal distribution from censored samples. *Journal of the American Statistical Association*, 63(321): 134-140, 1968.

B. L. Welch. On the comparison of several mean values: an alternative approach. *Biometrika*, 38(3): 330-336, 1951.

Examples

library(RobustANOVA)

RW(obs ~ methods, data = peak_discharge, alpha = 0.05, verbose = TRUE, p_shape=2.3)

Index

```
* file

RGF, 2

RPB, 4

RW, 5

peak_discharge, 2

RGF, 2

RPB, 4

RW, 5
```