

FIG. 1

FIG. 2

FIG. 3

FIG. 4

β -Gal clone with different substrates

- cells were stained with FDG,
 CMFDG or
 C12FDG,
 incubated for 30 min. at 70°C,
 spotted onto a slide and exposed to UV light.
- bright spot indicates staining of cells

FDG

C12FDG

CMFDG

FIG. 5

6/16

FIG. 6

$$R_1$$
 0 -Flour. $H_2\bar{0}$ R_1 0 -Flour $H_2\bar{0}$ R_1 0 - + -0-Flour $H_2\bar{0}$

FIG. 7

FIG. 8

$$H_2N \longrightarrow MH_2 + H_2N \longrightarrow MH_2 +$$

FIG. 13

Process Compatibility

Buffer Compatibility

Expression Level

Stability
Solvent Stability

Enzyme Activity

Relative

of small molecule from host

Co-encapsulation Library + Eukaryote

Growth and expression

Receptor binding of small molecule & GFP reporting

SM=Small molecule R=Eukaryotic receptor L=Large insert library GFP= Green fluorescent protein E=Eukaryotic assay organism

FIG. 14

bioactive expression (e.g. live/dead, groth rate, metabolic stains etc.)

FIG. 15

Streptomyces "diversa" Unicells

FIG. 17

