Package 'pedigreeTools'

October 12, 2024

Version 0.3
Date 2024-10-10
Title Versatile Functions for Working with Pedigrees
Author Ana Ines Vazquez [aut], Douglas Bates [aut], Siddharth Avadhanam [aut], Paulino Perez Rodriguez [aut, cre], Gregor Gorjanc [ctb]
Maintainer Paulino Perez Rodriguez <perpdgo@colpos.mx></perpdgo@colpos.mx>
Description Tools to sort, edit and prune pedigrees and to extract the inbreeding coefficients and the relationship matrix (includes code for pedigrees from self-pollinated species). The use of pedigree data is central to genetics research within the animal and plant breeding communities to predict breeding values. The relationship matrix between the individuals can be derived from pedigree structure ('Vazquez et al., 2010') <doi:10.2527 jas.2009-1952="">.</doi:10.2527>
Depends $R(>=3.0.0)$, methods
Imports Matrix (>= 1.0)
LazyLoad yes
License GPL-3
<pre>URL https://github.com/Rpedigree/pedigreeTools/</pre>
RoxygenNote 7.2.3
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-10-12 03:50:02 UTC
Contents
Dmat

2

2 Dmat

editPed	3
getA	4
getAInv	5
getASelfing	6
getASubset	7
getGenAncestors	8
getT	9
getTInv	9
inbreeding	0
ped2DF	1
pedigree	2
pedigree-class	2
prunePed	
relfactor	
relfactorInv	5
1	_
ı	7

Dmat

Index

Mendelian sampling variance

Description

Determine the diagonal factor in the decomposition of the relationship matrix A as TDT' where T is unit lower triangular.

Usage

```
Dmat(ped, vector = TRUE)
getD(ped, vector = TRUE)
getDInv(ped, vector = TRUE)
```

Arguments

ped pedigree

vector logical, return a vector or sparse matrix

Value

a numeric vector

Functions

- getD(): Mendelian sampling variance
- getDInv(): Mendelian sampling precision (= 1 / variance)

editPed 3

Examples

editPed

Edits a disordered or incomplete pedigree

Description

Edits a disordered or incomplete pedigree by: 1) adding labels for the sires and dams not listed as labels before and 2) ordering pedigree based on recursive calls to getGenAncestors.

Usage

```
editPed(sire, dam, label, verbose = FALSE)
```

Arguments

sire integer vector or factor representation of the sires
dam integer vector or factor representation of the dams

label character vector of labels

verbose logical to print the row of the pedigree that the function is ordering. Default is

FALSE.

Value

a data frame with the pedigree ordered.

4 getA

getA

Additive relationship matrix

Description

Returns the additive relationship matrix for the pedigree.

pedigree

Usage

```
getA(ped, labs = NULL)
```

Arguments

ped

labs

a character vector or a factor giving individual labels to which to restrict the relationship matrix and corresponding factor. If labs is a factor then the levels of the factor are used as the labels. Default is the complete set of individuals in the pedigree.

Value

```
matrix (dsCMatrix - symmetric sparse)
```

getAInv 5

getAInv

Inverse of the additive relationship matrix

Description

Returns the inverse of additive relationship matrix for the pedigree.

Usage

```
getAInv(ped)
```

Arguments

ped

pedigree

Value

```
matrix (dsCMatrix - symmetric sparse)
```

```
ped <- pedigree(sire = c(NA, NA, 1, 1, 4, 5),
                dam = c(NA, NA, 2, NA, 3, 2),
                label = 1:6)
(AInv <- getAInv(ped))</pre>
# Test for correctness
AInvExp \leftarrow matrix(data = c(1.833, 0.500, -1.000, -0.667, 0.000, 0.000,
                           -0.667, 0.000, 0.500, 1.833, -1.000, 0.000,
                            0.000, \quad 0.533, \ -1.000, \ -1.000, \quad 2.533, \ -1.067,
                             0.000, \ -1.067, \quad 0.000, \quad 0.000, \ -1.067, \quad 2.133), 
                  byrow = TRUE, nrow = 6)
stopifnot(!any(abs(round(AInv, digits = 3) - AInvExp) > .Machine$double.eps))
AInvExp <- solve(getA(ped))
stopifnot(!any(abs(round(AInv, digits = 14) - round(AInvExp, digits = 14)) > .Machine$double.eps))
stopifnot(is(AInv, "sparseMatrix"))
stopifnot(Matrix::isSymmetric(AInv))
```

6 getASelfing

getASelfing Extends the pedigree according to number of selfing cycles and also optionally computes the Additive Relationship Matrix for that pedigree.	
--	--

Description

Extends the pedigree according to number of selfing cycles and also optionally computes the Additive Relationship Matrix for that pedigree.

Usage

```
getASelfing(
   ID,
   Par1,
   Par2,
   nCycles,
   nCyclesDefault,
   sepChar = "-F",
   verbose = FALSE,
   fileNewPed = NULL,
   computeA = TRUE
)
```

Arguments

ID	is a vector of individual IDs
Par1	vector of IDs of one of the parents
Par2	vector of IDs of the other parent

nCycles vector that indicates number of selfing cycles for each individual.

nCyclesDefault default value of nCycles

sepChar character, used for expanded pedigree IDs

verbose logical, print progress

fileNewPed Output csv file (comma separated value) with columns 'label', 'sire', 'dam', with

the full pull pedigree expanded taking into account the selfing cycles

computeA Indicates if the A matrix is to be computed

Value

Returns A matrix computed for the extended pedigree if computeA=TRUE

getASubset 7

ge	t.A	Su	h	se	t
50	-	Ju	\sim	\sim	··

Subset of additive relationship matrix

Description

Returns subset of the additive relationship matrix for the pedigree.

Usage

```
getASubset(ped, labs)
```

Arguments

ped

pedigree

labs

a character vector or a factor giving individual labels to which to restrict the relationship matrix and corresponding factor using Colleau et al. (2002) algorithm. If labs is a factor then the levels of the factor are used as the labels. Default is the complete set of individuals in the pedigree.

Value

```
matrix (dsCMatrix - symmetric sparse)
```

References

Colleau, J.-J. An indirect approach to the extensive calculation of relationship coefficients. Genet Sel Evol 34, 409 (2002). https://doi.org/10.1186/1297-9686-34-4-409

8 getGenAncestors

getGenAncestors	Counts number of generations of ancestors for one subject. Use recursion.

Description

Counts number of generations of ancestors for one subject. Use recursion.

Usage

```
getGenAncestors(ped, id, ngen = NULL)
```

Arguments

ped	data.frame with a pedigree and a column for the number of generations of each subject.
id	subject for which we want the number of generations.
ngen	number of generation

Value

a data frame object with the pedigree and generation of ancestors for subject id.

getT 9

getT

Gene flow from a pedigree

Description

Get gene flow matrix from a pedigree.

Usage

```
getT(ped)
```

Arguments

ped

pedigree

Value

```
matrix (dtCMatrix - lower unitriangular sparse)
```

Examples

getTInv

Inverse gene flow from a pedigree

Description

Get inverse gene flow matrix from a pedigree.

Usage

```
getTInv(ped)
```

10 inbreeding

Arguments

ped pedigree

Value

```
matrix (dtCMatrix - lower unitriangular sparse)
```

Examples

inbreeding

Inbreeding coefficients from a pedigree

Description

Create the inbreeding coefficients according to the algorithm given in "Comparison of four direct algorithms for computing inbreeding coefficients" by Mehdi Sargolzaei and Hiroaki Iwaisaki, Animal Science Journal (2005) 76, 401–406.

Usage

```
inbreeding(ped)
```

Arguments

ped pedigree

Value

the inbreeding coefficients as a numeric vector

ped2DF

Examples

ped2DF

Convert a pedigree to a data frame

Description

Express a pedigree as a data frame with sire and dam stored as factors. If the pedigree is an object of class pedinbred then the inbreeding coefficients are appended as the variable F

Usage

```
ped2DF(x)
```

Arguments

x pedigree

Value

a data frame

```
ped <- pedigree(sire = c(NA, NA, 1, 1, 4, 5),

dam = c(NA, NA, 2, NA, 3, 2),

label = 1:6)

ped2DF(ped)
```

12 pedigree-class

pedigree

Constructor for pedigree objects

Description

A simple constructor for a pedigree object. The main point for the constructor is to use coercions to make the calls easier.

Usage

```
pedigree(sire, dam, label)
```

Arguments

sire integer vector or factor representation of the sires

dam integer vector or factor representation of the dams

label character vector of individual labels

Value

an pedigree object of class pedigree

Note

sire, dam and label must all have the same length and all labels in sire and dam must occur in label

Examples

```
ped <- pedigree(sire = c(NA, NA, 1, 1, 4, 5),

dam = c(NA, NA, 2, NA, 3, 2),

label = 1:6)
```

pedigree-class

Pedigree class

Description

Pedigree class

prunePed 13

prunePed	Subsets a pedigree for a specified vector of individuals up to a specified number of previous generations using recursion.

Description

Subsets a pedigree for a specified vector of individuals up to a specified number of previous generations using recursion.

Usage

```
prunePed(ped, selectVector, ngen = 2)
```

Arguments

ped Data Frame pedigree to be subset

selectVector Vector of individuals to select from pedigree

ngen Number of previous generations of parents to select starting from selectVector.

Value

Returns Subsetted pedigree as a DataFrame.

Examples

```
ped <- pedigree(sire = c(NA, NA, 1, 1, 4, 5),

dam = c(NA, NA, 2, NA, 3, 2),

label = 1:6)
```

relfactor

Relationship factor from a pedigree

Description

Determine the right Cholesky factor of the relationship matrix for the pedigree ped, possibly restricted to the specific labels that occur in labs.

Usage

```
relfactor(ped, labs = NULL)
getL(ped, labs = NULL)
```

14 relfactor

Arguments

ped pedigree

labs a character vector or a factor giving individual labels to which to restrict the rela-

tionship matrix and corresponding factor using Colleau et al. (2002) algorithm. If labs is a factor then the levels of the factor are used as the labels. Default is

the complete set of individuals in the pedigree.

Details

Note that the right Cholesky factor is returned, which is upper triangular, that is from A = LL' = R'R (lower (upper triangular) and not L (lower triangular) as the function name might suggest.

Value

```
matrix (dtCMatrix - upper triangular sparse)
```

Functions

• getL(): Relationship factor from a pedigree

References

Colleau, J.-J. An indirect approach to the extensive calculation of relationship coefficients. Genet Sel Evol 34, 409 (2002). https://doi.org/10.1186/1297-9686-34-4-409

```
ped <- pedigree(sire = c(NA, NA, 1, 1, 4, 5),
                dam = c(NA, NA, 2, NA, 3, 2),
                label = 1:6)
(L <- getL(ped))
chol(getA(ped))
# Test for correctness
LExp < -matrix(data = c(1.0000, 0.0000, 0.5000, 0.5000, 0.5000, 0.2500,
                        0.0000, 1.0000, 0.5000, 0.0000, 0.2500, 0.6250,
                        0.0000, 0.0000, 0.7071, 0.0000, 0.3536, 0.1768,
                        0.0000, 0.0000, 0.0000, 0.8660, 0.4330, 0.2165,
                        0.0000, 0.0000, 0.0000, 0.0000, 0.7071, 0.3536,
                        0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.6847),
               byrow = TRUE, nrow = 6)
stopifnot(!any(abs(round(L, digits = 4) - LExp) > .Machine$double.eps))
LExp <- chol(getA(ped))</pre>
stopifnot(!any(abs(L - LExp) > .Machine$double.eps))
(L \leftarrow getL(ped, labs = 4:6))
(LExp <- chol(getA(ped)[4:6, 4:6]))
stopifnot(!any(abs(L - LExp) > .Machine$double.eps))
```

relfactorInv 15

relfactorInv

Inverse relationship factor from a pedigree

Description

Get inverse of the left Cholesky factor of the relationship matrix for the pedigree ped.

Usage

```
relfactorInv(ped)
getLInv(ped)
```

Arguments

ped

pedigree

Details

Note that the inverse of the left Cholesky factor is returned, which is lower triangular, that is from A = LL' (lower inv(A) = inv(LL') = inv(L)' inv(L) (upper triangular).

Value

```
matrix (dtCMatrix - triangular sparse)
```

Functions

• getLInv(): Inverse relationship factor from a pedigree

```
ped <- pedigree(sire = c(NA, NA, 1, 1, 4, 5),
                dam = c(NA, NA, 2, NA, 3, 2),
                label = 1:6)
(LInv <- getLInv(ped))
solve(Matrix::t(getL(ped)))
# Test for correctness
LInvExp <- matrix(data = c(1.0000, 0.0000, 0.0000, 0.0000)
                                                                0.0000, 0.0000,
                            0.0000, 1.0000, 0.0000, 0.0000,
                                                                0.0000, 0.0000,
                           -0.7071, -0.7071, 1.4142, 0.0000, 0.0000, 0.0000,
                           -0.5774, 0.0000, 0.0000, 1.1547, 0.0000, 0.0000,
                             0.0000, \quad 0.0000, \ -0.7071, \ -0.7071, \quad 1.4142, \ 0.0000, \\
                            0.0000, -0.7303, 0.0000, 0.0000, -0.7303, 1.4606),
                  byrow = TRUE, nrow = 6)
stopifnot(!any(abs(round(LInv, digits = 4) - LInvExp) > .Machine$double.eps))
L <- t(chol(getA(ped)))
LInvExp <- solve(L)
```

16 relfactorInv

```
stopifnot(!any(abs(LInv - LInvExp) > .Machine$double.eps))
stopifnot(is(LInv, "sparseMatrix"))
```

Index

```
Dmat, 2
dsCMatrix, 4, 5, 7
dtCMatrix, 9, 10, 14, 15
editPed, 3
getA, 4
getAInv, 5
getASelfing, 6
getASubset, 7
getD (Dmat), 2
getDInv (Dmat), 2
getGenAncestors, 3, 8
getL (relfactor), 13
getLInv (relfactorInv), 15
getT, 9
getTInv, 9
inbreeding, 10
ped2DF, 11
pedigree, 2, 4, 5, 7, 9–12, 12, 14, 15
pedigree-class, 12
pedinbred, 11
pedinbred-class(pedigree-class), 12
prunePed, 13
relfactor, 13
relfactorInv, 15
```