

Approximate Bayesian Computation

Dennis Prangle

Newcastle University

18th June 2018

Intractability

- Statistical inference:
 - Given some data (e.g. forensic evidence at a crime scene)
 - Set up random process model that could have produced it
 - Infer unknowns parameters in the model (e.g. identity of perpetrator)
- Standard methods (e.g. maximum likelihood, Bayes) based on probability calculations under the model
- Can be intractable: impossible or impractically time consuming!
- Especially for complex modern models

Intractability

- Statistical inference:
 - Given some data (e.g. forensic evidence at a crime scene)
 - Set up random process model that could have produced it
 - Infer unknowns parameters in the model (e.g. identity of perpetrator)
- Standard methods (e.g. maximum likelihood, Bayes) based on probability calculations under the model
- Can be intractable: impossible or impractically time consuming!
- Especially for complex modern models

ABC idea

- Often models are **generative**
- i.e. can simulate data from model given parameters
- Can be used for inference without probability calculations!
- Simulate data under many parameter values
- Accept parameters giving data "close" to observations
- Gives approximation to exact inference
- Main idea of approximate Bayesian computation (ABC)
- One of several likelihood-free methods

ABC idea

- Often models are **generative**
- i.e. can simulate data from model given parameters
- Can be used for inference without probability calculations!
- Simulate data under many parameter values
- Accept parameters giving data "close" to observations
- Gives approximation to exact inference
- Main idea of approximate Bayesian computation (ABC)
- One of several likelihood-free methods

ABC idea

- Often models are generative
- i.e. can simulate data from model given parameters
- Can be used for inference without probability calculations!
- Simulate data under many parameter values
- Accept parameters giving data "close" to observations
- Gives approximation to exact inference
- Main idea of approximate Bayesian computation (ABC)
- One of several likelihood-free methods

Example applications

- Population genetics
- Infectious disease epidemiology
- Systems biology / molecular dynamics
- Ecology
- Astrophysics / high energy physics
- Finance
- Agent based models
- Weather / climate

Overview of talk

- Recap of Bayesian inference
- Example of intractable likelihoods
- Introduction to ABC
- Summary statistics I
- Example analysis
- Summary statistics II
- Post-processing
- Efficient ABC algorithms
- Software
- Other likelihood-free methods
- More methodology
- Pros and cons
- References

Likelihood

- Observed data y_{obs}
- Model proposed with density $\pi(y|\theta)$
- \blacksquare We wish to infer parameters θ
- The likelihood function is $L(\theta) = \pi(y_{\text{obs}}|\theta)$
- Maximum likelihood finds θ maximising $L(\theta)$

• n.b. for discrete data use probabilities instead of densities

Likelihood

- Observed data y_{obs}
- Model proposed with density $\pi(y|\theta)$
- \blacksquare We wish to infer parameters θ
- The likelihood function is $L(\theta) = \pi(y_{obs}|\theta)$
- Maximum likelihood finds θ maximising $L(\theta)$

n.b. for discrete data use probabilities instead of densities

Likelihood

- Observed data y_{obs}
- Model proposed with density $\pi(y|\theta)$
- \blacksquare We wish to infer parameters θ
- The likelihood function is $L(\theta) = \pi(y_{obs}|\theta)$
- Maximum likelihood finds θ maximising $L(\theta)$
- n.b. for discrete data use probabilities instead of densities

- We must specify a **prior distribution** $\pi(\theta)$
 - Beliefs about parameters before data observed
- We're interested in the **posterior distribution** $\pi(\theta|y_{\text{obs}})$
 - Beliefs updated to take data into account
- Posterior depends on prior and likelihood through Bayes theorem:

$$\pi(\theta|y_{\rm obs}) = \pi(\theta)\pi(y_{\rm obs}|\theta)/Z$$

i.e. posterior \propto prior \times likelihood

• where $Z = \int \pi(\theta)\pi(y_{\rm obs}|\theta)d\theta$ (normalising constant)

- We must specify a **prior distribution** $\pi(\theta)$
 - Beliefs about parameters before data observed
- We're interested in the **posterior distribution** $\pi(\theta|y_{\text{obs}})$
 - Beliefs updated to take data into account
- Posterior depends on prior and likelihood through Bayes theorem:

$$\pi(\theta|y_{\rm obs}) = \pi(\theta)\pi(y_{\rm obs}|\theta)/Z$$

i.e. posterior \propto prior \times likelihood

• where $Z = \int \pi(\theta)\pi(y_{\text{obs}}|\theta)d\theta$ (normalising constant)

- We must specify a **prior distribution** $\pi(\theta)$
 - Beliefs about parameters before data observed
- We're interested in the **posterior distribution** $\pi(\theta|y_{\text{obs}})$
 - Beliefs updated to take data into account
- Posterior depends on prior and likelihood through Bayes theorem:

$$\pi(\theta|y_{\text{obs}}) = \pi(\theta)\pi(y_{\text{obs}}|\theta)/Z$$

i.e. posterior \propto prior \times likelihood

• where $Z = \int \pi(\theta)\pi(y_{\text{obs}}|\theta)d\theta$ (normalising constant)

- We must specify a **prior distribution** $\pi(\theta)$
 - Beliefs about parameters before data observed
- We're interested in the **posterior distribution** $\pi(\theta|y_{\text{obs}})$
 - Beliefs updated to take data into account
- Posterior depends on prior and likelihood through Bayes theorem:

$$\pi(\theta|y_{\text{obs}}) = \pi(\theta)\pi(y_{\text{obs}}|\theta)/Z$$

i.e. posterior \propto prior \times likelihood

• where $Z = \int \pi(\theta)\pi(y_{\text{obs}}|\theta)d\theta$ (normalising constant)

Monte Carlo

- Direct calculation of posterior generally infeasible
- Common alternative approach is **Monte Carlo**
- Monte Carlo aims to produce a sample $\theta_1, \theta_2, \ldots$ from the posterior distribution
- Can then estimate posterior quantities (point estimates, interval estimates, quantiles etc)
- Or produce density estimates (histograms, contour plots etc)

Monte Carlo methods

- Many standard Monte Carlo algorithms:
 - Rejection sampling
 - Importance sampling
 - Markov chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC)
- All require many evaluations of the likelihood function
- Not feasible for intractable likelihoods evaluation not possible or very slow
- n.b. some Monte Carlo methods only require unbiased estimates of the likelihood function
- Helps with some cases of intractable likelihood

Monte Carlo methods

- Many standard Monte Carlo algorithms:
 - Rejection sampling
 - Importance sampling
 - Markov chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC)
- All require many evaluations of the likelihood function
- Not feasible for intractable likelihoods evaluation not possible or very slow
- n.b. some Monte Carlo methods only require unbiased estimates of the likelihood function
- Helps with some cases of intractable likelihood

Examples of intractable likelihoods

Computer models

- Some models exist as computer simulation programs
- Equation for likelihood not available (and would be extremely complicated)
- Example: agent based models
- Each agent obeys simple rules, interact to form a complex system
- Applications include
 - ecology (e.g. agents represent animals)
 - systems biology (e.g. agents represent cells)
 - economics (e.g. agents represent firms)

Partial observation

- Suppose we have a tractable probability model $\pi(x, y|\theta)$ for complete data (x, y)
- However we only observe that $y = y_{obs}$ (i.e. partial data)
- So x is an unobserved latent variable
- Likelihood is

$$L(\theta) = \pi(y_{\text{obs}}|\theta) = \int \pi(x, y_{\text{obs}}|\theta) dx$$

■ Integral typically intractable, especially if x high dimensional

Partial observation: examples

- Epidemic models
 - x is times of all infections/recoveries, y is final number affected
- Biochemical networks
 - \blacksquare x is all reaction times, y is partial measurements of one species
- Population genetics
 - x is coalescent/mutation/recombination history, y is observed sequences

Likelihood-free inference

- General idea:
 - Simulate data y from various parameter values θ
 - Consider closest matches of y to y_{obs}
 - Use corresponding parameters for inference
- Can be implemented in many different ways
- Many approaches suggested in various fields over last 40+ years
- ABC puts this idea into a Bayesian framework

Likelihood-free inference timeline

- 1970s Various applications Hoel and Mitchell, Ross etc
- 1984 Inference for implicit models Diggle and Gratton
- 1984 Bayesian inference by simulating data Rubin
- 1989 **Simulated method of moments** *McFadden* (Econometrics)
- 1992 GLUE Beven and Binley (Hydrology)
- 1993 Indirect inference Gourieroux et al (Econometrics)
- 1997 **ABC** Tavaré et al/Fu and Li (Population genetics)
- 2005 Convolution filter Rossi and Vila
- 2006 **Iterated filtering** *lonides et al*
- 2010 Synthetic likelihood Wood
- ...and many more!

ABC algorithm - simplest version

Input: observed data y_{obs} , threshold $h \ge 0$

For i = 1, 2, ..., N:

- 1 Sample parameter vector θ_i from prior $\pi(\theta)$
- 2 Simulate data from $\pi(y|\theta_i)$
- If $d(y, y_{\text{obs}}) \leq h$ accept θ_i

where $d(y, y_{obs})$ is a distance function e.g. Euclidean

Output: accepted θ_i values

This is a rejection sampling algorithm

ABC algorithm - simplest version

Input: observed data y_{obs} , threshold $h \ge 0$

For i = 1, 2, ..., N:

- 1 Sample parameter vector θ_i from prior $\pi(\theta)$
- 2 Simulate data from $\pi(y|\theta_i)$
- If $d(y, y_{\text{obs}}) \leq h$ accept θ_i

where $d(y, y_{obs})$ is a distance function e.g. Euclidean

Output: accepted θ_i values

This is a rejection sampling algorithm

ABC target distribution

- Consider a proposed (θ, y) pair
- Sampled from $\pi(\theta)\pi(y|\theta) = \pi(\theta,y)$
- Acceptance is conditional on $y \approx y_{\text{obs}}$
- So accepted pairs drawn from $\pi(\theta, y|y \approx y_{\text{obs}})$
- And θ from $\pi(\theta|y \approx y_{\text{obs}})$
- An approx to exact posterior $\pi(\theta|y=y_{\text{obs}})$
- Taking h = 0 only accepts when $y = y_{obs}$
- Samples from exact posterior, but typically not practical (acceptances impossible/rare)

ABC target distribution

- Consider a proposed (θ, y) pair
- Sampled from $\pi(\theta)\pi(y|\theta) = \pi(\theta,y)$
- Acceptance is conditional on $y \approx y_{\text{obs}}$
- So accepted pairs drawn from $\pi(\theta, y|y \approx y_{\text{obs}})$
- And θ from $\pi(\theta|y \approx y_{\text{obs}})$
- An approx to exact posterior $\pi(\theta|y=y_{\text{obs}})$
- Taking h = 0 only accepts when $y = y_{obs}$
- Samples from exact posterior, but typically not practical (acceptances impossible/rare)

- Model: 5 draws from $N(\mu, 1)$
- Data is ordered draws: $y_1 \le y_2 \le ... \le y_5$
- Prior: Uniform(0,6)

ABC algorithm example

Tuning ABC

- ABC has several tuning choices
- e.g. threshold *h* and distance function *d*
- Affect quality of approximate results
- Some key choices discussed next

ABC algorithm - effect of h

- h too large
 - Some accepted simulations are far from observations
 - Distribution of accepted θ s poor approx of posterior
- h too small
 - Distribution of accepted θ s better approx
 - But too few acceptances to learn distribution well!
- \blacksquare So choosing h is a trade-off between two source of error

Choice of *h* in practice

- Often rather than choose *h* in advance, the number *k* of desired acceptances is specified (e.g. 200)
- Then h is chosen to achieve k acceptances
- So chosen after distances computed
- This seems a good pragmatic approach
- Also some asymptotic theory available
- Blum (2010) "Approximate Bayesian Computation: A Nonparametric Perspective" (on h)
- Biau et al (2014) "New insights into Approximate Bayesian Computation" (on *k*)

Choice of *h* in practice

- Often rather than choose *h* in advance, the number *k* of desired acceptances is specified (e.g. 200)
- Then h is chosen to achieve k acceptances
- So chosen after distances computed
- This seems a good pragmatic approach
- Also some asymptotic theory available
- Blum (2010) "Approximate Bayesian Computation: A Nonparametric Perspective" (on h)
- Biau et al (2014) "New insights into Approximate Bayesian Computation" (on k)

Choice of *d* in practice

■ Euclidean distance often used i.e.

$$d(a,b) = \left[\sum_{i}(a_i - b_i)^2\right]^{1/2}$$

(where *i* indexes data components)

- Not sensible if data on widely different scales
- A popular alternative is weighted Euclidean distance,

$$d(a,b) = \left[\sum_{i} \left(\frac{a_{i}-b_{i}}{\sigma_{i}}\right)^{2}\right]^{1/2}$$

- Here σ_i could be standard deviation of *i*th data component samples
- Many other distances possible impact on results modest in general

Choice of *d* for repeated observations

- Special case: data is IID (e.g. repeated time series)
- Recent work has found good ABC distance measures here:
 - Kernel MMD (Park et al 2016)
 - Wasserstein distance (Bernton et al 2017)
 - Kullback-Leibler divergence (Jiang et al 2018)

Summary statistics in ABC

- Earlier algorithm accepts when $d(y, y_{obs}) \le h$
- In practice the data is usually reduced to a vector of summary statistics s = S(y)
- Acceptance occurs when $d(s, s_{obs}) \le h$ (where $s_{obs} = S(y_{obs})$)
- Clearly necessary for non-numeric data such as genetic sequences
- Also turns out to be necessary more generally

Need for summary statistics

- Beaumont et al (2002), reviewing early work on ABC:

 "A crucial limitation of the... method is that only a small number of summary statistics can usually be handled.

 Otherwise, either acceptance rates become prohibitively low or the tolerance... must be increased, which can distort the approximation."
- Crucial that only a small number of summaries used
- Recognised from earliest work on ABC

Curse of dimensionality

- Quote is about a curse of dimensionality problem in ABC
- Informal statement:
 - More summary statistics means more opportunities for mismatches between S(y) and $S(y_{obs})$
 - So distances $d(S(y), S(y_{obs}))$ typically larger
 - Need large h, which causes approximation error
- Formal statement:
 - ABC converges to correct posterior as $h \to 0$, $N \to \infty$
 - Asymptotic rate of convergence worsens with dim y
 - Proved (at least partially) for most varieties of ABC

Curse of dimensionality

- Quote is about a curse of dimensionality problem in ABC
- Informal statement:
 - More summary statistics means more opportunities for mismatches between S(y) and $S(y_{obs})$
 - So distances $d(S(y), S(y_{obs}))$ typically larger
 - \blacksquare Need large h, which causes approximation error
- Formal statement:
 - ABC converges to correct posterior as $h \to 0$, $N \to \infty$
 - \blacksquare Asymptotic rate of convergence worsens with dim y
 - Proved (at least partially) for most varieties of ABC

Curse of dimensionality example

- Same example as before but with higher dimensional data
- Model: d draws from $N(\mu, 1)$
- Data is ordered draws: $y_1 \le y_2 \le ... \le y_d$
- Uniform prior on [0,6]
- \blacksquare $N = 10^4$ ABC iterations
- k = 200 acceptances
- Density estimate of ABC output compared to true posterior

Curse of dimensionality example

Need for summary statistics

- Dimension of data usually high so must be replaced with low-dimensional summaries
- Now ABC approximates $\pi(\theta|s_{obs})$
- i.e. posterior conditional on observed summaries
- We want this to be similar to $\pi(\theta|y_{obs})$
- lacktriangle So we want **informative summaries** about heta
- How to meet both requirements?

Sufficient statistics

- Sufficient statistics satisfy $\pi(\theta|s_{obs}) = \pi(\theta|y_{obs})$
- Low dimensional sufficient statistics would be ideal for ABC
- However they essentially only exist for exponential family models
- Very few intractable likelihood models are in this class
- So generally we must use **insufficient statistics** and accept some loss of information

Application

- We analyse the "human" dataset from the abc R package
- Population genetic data from Italy population (16 individuals)
- A coalescent model investigated with a population bottleneck. Parameters are:
 - Ne: Effective population size
 - a: Intensity of bottleneck (ratio of pop size before and during)
 - duration: Bottleneck duration
 - start: Start of bottleneck
- Data is genetic sequences from various regions of genome
- 3 summary statistics used, believed to be informative about demographic history
 - Average nucleotide diversity, $\bar{\pi}$
 - Mean of Tajima's D
 - Variance of Tajima's D

ABC setup

- $\sim N = 50,000$ ABC iterations
- k = 500 acceptances (1%)
- Weighted Euclidean distance used

```
library(abc)
data(human)
## Initialise data
sumstats = subset(stat.3pops.sim, models=="bott")
params = par.italy.sim
sumstats.obs = stat.voight[2,]
## Tuning choice
mytol = 500/nrow(sumstats) # i.e. 500 acceptances
## Do ABC
abc.out = abc(target=sumstats.obs, param=params,
              sumstat=sumstats, tol=mytol,
              method="rejection")
```

ABC output histograms

Recap

- lacktriangle We typically have high dimensional data y
- Want summary statistics S(y) which are:
 - (1) Low dimensional
 - (2) Informative about θ
- How to choose these?

Choosing summary statistics

- One option is to make a subjective choice
- More automatic methods have been proposed:
 - Subset selection

Find best subset of many *candidate summaries*. e.g. run ABC for each subset on test datasets and minimise error.

- **Projection**Find projections of many *data features* z(y) which are informative about θ . e.g. fit $\theta \sim N(Az(y), \Sigma)$ or use machine learning
- Auxiliary model Use a tractable auxiliary model. e.g. let S(y) be its MLEs.
- These methods typically do better than subjective choice
- But no obvious best method
- Lots of user input still required in choosing/tuning/testing method

Choosing summary statistics

- One option is to make a subjective choice
- More automatic methods have been proposed:

■ Subset selection

Find best subset of many *candidate summaries*. e.g. run ABC for each subset on test datasets and minimise error.

- Projection
 - Find projections of many data features z(y) which are informative about θ . e.g. fit $\theta \sim N(Az(y), \Sigma)$ or use machine learning
- Auxiliary model Use a tractable auxiliary model. e.g. let S(y) be its MLEs.
- These methods typically do better than subjective choice
- But no obvious best method
- Lots of user input still required in choosing/tuning/testing method

Idea

- ABC accepts a sample $\theta_1, \theta_2, \dots, \theta_k$
- The associated summary statistics are $s_1, s_2, ..., s_k$
- Can we **correct** θ_i to take account of the difference between s_i and s_{obs} ?

Illustration: human dataset

Approach

- Fit a model to the accepted (θ_i, s_i) pairs
- e.g. regression $\theta \sim N(As + b, \Sigma)$ (Beaumont et al 2002)
- So $E(\theta|s) = As + b$
- Now correct θ_i to $\theta_i E(\theta|s_i) + E(\theta|s_{obs})$
- i.e. to $\theta_i + A(s_{obs} s_i)$

Illustration: human dataset

Example: human dataset

Variations

- Regression correction can be applied to output of most ABC algorithms
- Methods using more flexible regression models have been proposed
- e.g. heteroskedastic regression, neural networks (Blum and François 2010)
- Similar ideas for ABC model choice (Beaumont et al 2008)

Usefulness

- Originally hoped post-processing would reduce curse of dimensionality
- However it's been proved that the rate of convergence issue is essentially unchanged (Blum 2010)
- Nonetheless post-processing sometimes improves results greatly in practice (Blum et al 2013)
- Li and Fearnhead (2018) give some asymptotic support for use in case of large data
- But Frazier et al (2018) argue it's poor under misspecified models

More efficient ABC algorithms

Inefficiency of rejection ABC

- Always samples θ from prior distribution
- Typically posterior is much more concentrated than prior
- Therefore most simulations will be very poor
- We'd like to propose better θ values
- Ideally learn good proposal distribution during algorithm

ABC importance sampling

```
Input: y_{\text{obs}}, h \ge 0, d(\cdot, \cdot), importance density g(\theta)
For i = 1, 2, ..., N:
```

- **1** Sample parameter vector θ_i from $g(\theta)$
- 2 Simulate data from $\pi(y|\theta_i)$
- 3 If $d(y, y_{\text{obs}}) \le h$ accept θ_i with weight $w_i = \pi(\theta)/g(\theta)$

Output: accepted (θ_i, w_i) pairs

Monte Carlo inference now possible as for standard importance sampling

Issue: need a sensible choice of g

ABC-SMC (very rough overview)

- Run standard ABC with threshold h_1
- Use output to choose importance density $g(\theta)$
- Run ABC importance sampling with threshold $h_2 < h_1$
- And so on
- Adaptively learns $g(\theta)$
- Various schemes along these lines
- (Technical point: some are population Monte Carlo methods and others are true SMC algorithms)

ABC-MCMC

- o Initialise some θ_0 and simulate corresponding y. Let t=0.
- 1 Propose θ' from $q(\cdot|\theta_t)$ e.g. $\theta' \sim N(\theta_t, \Sigma)$
- 2 Simulate y' from model conditional on θ'
- $\textbf{3} \ \mathsf{Calculate} \ \alpha = \min \left[1, \frac{\pi(\theta') q(\theta'|\theta_t) \mathbb{1} \left[d(s(y'), s_{\mathsf{obs}}) \leq h \right]}{\pi(\theta_t) q(\theta_t|\theta') \mathbb{1} \left[d(s(y), s_{\mathsf{obs}}) \leq h \right]} \right]$
- 4 With probability lpha accept

Acceptance: Let $\theta_{t+1} = \theta'$ and y = y'Rejection: Let $\theta_{t+1} = \theta_t$ and leave y unchanged

- 5 Increment t and return to 1
- Discard initial results as burn-in
- Remainder can be used as Monte Carlo sample

Comparison of ABC algorithms

- All sample from same approximate distribution given h etc.
- So can choose based on efficiency/convenience
- ABC rejection
 - Least efficient
 - But simple to implement, esp parallelisation
 - Simulations can be reused for other analyses e.g. checking performance on simulated datasets
 - Model choice version easy
- ABC-SMC
 - Allows adaptation of h
 - Complicated to code
 - Some parallelisation possible
 - Lots of tuning choices
 - Model choice version easy

Comparison of ABC algorithms, continued

ABC-MCMC

- Must fix *h* in advance (some research on varying it)
- Parallelisation not possible
- Several tuning choices
- Model choice version tricky
- Some convergence theory exists (which shows alternative "one-hit" MCMC kernel is more efficient)

Software options

- python: "ABCPy" and "PyABC" (many algorithms, very up to date)
- python: "ABCSysBio" (sequential ABC algorithm, systems biology)
- R: "abc" package (rejection sampling)
- R: "easyABC" package (multiple algorithms)
- standalone: "DIY-ABC" (rejection sampling, population genetics)
- standalone: "pop-ABC" (rejection sampling, population genetics)
- **.** . . .
- Or code your own!
 - Especially feasible for rejection ABC as algorithm v simple

Other likelihood-free methods

- Indirect inference
 - Tries to find θ minimising average distance $d(s, s_{obs})$
 - Can be viewed as maximum likelihood analogue of ABC
- Synthetic likelihood
- Likelihood-free expectation propagation
- History matching
- Conditional density estimation (e.g. via random forests or deep learning)
- Bayesian optimisation of estimated likelihoods
- Likelihood ratio estimation

Summary

- ABC is a likelihood-free method for inference
- Useful for generative models with intractable likelihood
- Idea is to find θ values that produce $S(y) \approx S(y_{\text{obs}})$
- These approximate posterior
- Informative low-dimensional summaries crucial for method to work well
- Lots of algorithms/methodology exists to improve the method
- Research in more general likelihood-free methods very active!

Strengths

- The **only** way to do inference in some situations!
- Lots of freedom in what model can be used
 - Just need to be able to simulate data in reasonable time
- Simplicity
 - Simplest ABC algorithm very easy to understand/implement

Weaknesses

- Tuning requirements
 - Acceptance threshold, summary statistics, algorithm specific choices...
- Results are approximate
 - And it's hard to quantify how approximate
- Computationally expensive
 - Since very large number of simulations often required
- Only possible for a small number of parameters (up to around 10)
 - ABC curse of dimensionality limits number of summary statistics
 - Identifiability generally requires at least one summary statistic for each parameter

Review papers

- Beaumont et al "Approximate Bayesian computation in evolution and ecology" (2010)
- Bertorelle et al "ABC as a flexible framework to estimate demography over space and time: some cons, many pros" (2010)
- Csillery et al "Approximate Bayesian computation (ABC) in practice" (2010)
- Marin et al "Approximate Bayesian computational methods" (2011)
- Sunnaker et al "Approximate Bayesian computation" (2013) (basis of the ABC wikipedia page!)
- Baragatti and Pudlo "An overview on approximate Bayesian computation" (2014)
- Lintusaari et al "Fundamentals and recent developments in approximate Bayesian computation" (2017)
- Handbook of ABC (2018)

Bonus material!

ABC for model choice

Bayesian model choice

- Suppose there are several proposed models for the data
- i.e. $M_1, M_2, ..., M_k$
- We'll usually consider k = 2 or 3
- Each has a pdf $\pi(y|\theta, M_i)$ and a prior $\pi(\theta|M_i)$
- n.b. θ may represent **different** set of parameters for each model
- We also have prior model weights $\pi(M_1), \pi(M_2), \ldots$
- We want posterior models weights $\pi(M_1|y_{\text{obs}}), \ldots$
- Maybe also parameter estimates $\pi(\theta|y_{\text{obs}}, M_1), \ldots$
- All based on Bayes theorem

Difficulties with Bayesian model choice

Computational

Likelihood-based calculation of posterior model weights notoriously hard in sufficiently complicated problems Motivates methods like reversible-jump MCMC etc

Robustness

Results can be very sensitive to details of prior distributions Sensitivity analysis required

■ Interpretation

Depends on whether we assume one model really is correct Or that we search for the best approximation

■ However still useful in practice!

ABC model choice

- Some or all models may have intractable likelihoods
- Human dataset example:
 - 3 coalescent models compared representing different demographic histories
 - 1 Model 1: bottleneck
 - 2 Model 2: constant population
 - 3 Model 3: exponential population growth
 - Each model has different number of parameters
- ABC algorithms can be adapted to this problem

ABC model choice: rejection sampling

```
Input: y_{\text{obs}}, h, d(\cdot, \cdot), S(\cdot)

For i = 1, 2, ..., N:

1 Sample model m_i from model prior

2 Sample parameter vector \theta_i from prior \pi(\theta|m_i)

3 Simulate data from \pi(y|\theta_i, m_i)

4 If d(S(y), s_{\text{obs}}) \leq h accept (m_i, \theta_i)

Output: accepted (m_i, \theta_i) values
```

Estimate posterior weight of model M_i by its frequency in output

Example: human dataset

- Equal prior model weights
- \blacksquare N = 150,000 ABC iterations
- k = 500 acceptances (0.3%)
- Results for 3 sets of observed data: Hausa (Cameroon),
 Chinese and Italian (each 16 individuals)
- Same ABC simulations used for each analysis
- Output proportions:

Population	Bottleneck	Constant	Exp growth
Hausa	0.012	0.288	0.702
Chinese	0.776	0.226	0.000
Italian	0.966	0.036	0.000

■ Especially important to do sensitivity analyses etc. See abc package vignette for worked details.

Example: human dataset

- Equal prior model weights
- \blacksquare N = 150,000 ABC iterations
- k = 500 acceptances (0.3%)
- Results for 3 sets of observed data: Hausa (Cameroon), Chinese and Italian (each 16 individuals)
- Same ABC simulations used for each analysis
- Output proportions:

Population	Bottleneck	Constant	Exp growth
Hausa	0.012	0.288	0.702
Chinese	0.776	0.226	0.000
Italian	0.966	0.036	0.000

Especially important to do sensitivity analyses etc. See abc package vignette for worked details.

Summary statistics for ABC model choice

- Can't simply use good parameter inference summaries
- Example: suppose x_1, x_2, \ldots, x_n iid $N(\mu, 1)$ Then sample mean good to infer μ But sample variance needed for model comparison
- Various summary statistic selection methods can be generalised to model choice

ABC model choice and classification

- ABC model choice similar to classification
- We simulate data-label pairs (y_i, m_i)
- Aim is to infer label for a further point y_{obs}
- Many statistics/machine learning methods for this
- Could be used to choose ABC summary statistics (Prangle et al 2013)
- Or to replace ABC entirely (Pudlo et al 2014 advocate random forest classifiers instead)

Why weight distances

- So far ABC simulations are accepted or rejected
- Discards some information about distance of accepted simulations
- Instead we can weight close matches higher
- We introduce a ABC kernel K(x)
- Then $K([s s_{obs}]/h)$ maps summaries s to a weight
- h affects the scale, acting as a "bandwidth"
- Examples:
 - Uniform kernel: $K(x) = \begin{cases} 1 & \text{for } x^T x \leq 1 \\ 0 & \text{otherwise} \end{cases}$
 - Gaussian kernel: $K(x) = \exp(-x^T x)$
- So uniform kernel gives an accept/reject algorithm
- (n.b. can easily include weight terms in kernels)

ABC algorithm with kernel

```
Input: y_{\text{obs}}, h \ge 0, S(\cdot), ABC kernel K(x).
```

For
$$i = 1, 2, ..., N$$
:

- 1 Sample parameter vector θ_i from prior $\pi(\theta)$
- 2 Simulate data from $\pi(y|\theta_i)$

3 Let
$$w_i = K([S(y) - s_{obs}]/h)$$

Output: accepted (θ_i, w_i) pairs

Use for Monte Carlo as in importance sampling

n.b. distance $d(\cdot, \cdot)$ no longer used $-K(\cdot)$ performs similar role.

Kernels in other ABC algorithms

- Same idea can be used in all the algorithms described earlier
- Can help ABC-MCMC/ABC-SMC work well
- Alternatively can modify algorithms to accept with probability w_i
- Little theory on best choice of kernel
- Practice suggests it's not as important to results as summary statistics

Effect of kernel

- Assume *K* is a pdf
- Then ABC samples from posterior for a misspecified model

summary statistics \sim model of interest + hz

- \blacksquare where z is an independent draw from $K(\cdot)$
- See "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error" Wilkinson 2013
- Can occasionally allow exact inference if model can be expressed in this form
- Or can be used to capture effect of model misspecification

Sequential ABC analysis

Motivation

- Time series setting
- We have data at every time point
- If model has a helpful structure we can do inference sequentially
- i.e. analyse data at t = 1 by ABC, then data at t = 2, ...
- Each step has low dimensional data! So low approximation error
- Can be done by an ABC version of particle filtering
- For a review see Jasra (2014) "Approximate Bayesian computation for a class of time series models"

Challenges

- Sequential ABC is promising
- Algorithms have been developed with good theoretical properties
- But still challenging in practice
- Can be very computationally demanding
- Prone to getting "stuck" at outlying observations
- Tuning well is difficult
- Data at each time point could be complicated, requiring introduction of summaries