

Claims

[c1] What is claimed is:

1.A nonlinear overlap method for time scaling to synthesize an $S_3[n]$ signal from an $S_1[n]$ signal and an $S_2[n]$ signal, the $S_1[n]$ signal having N_1 elements and the $S_2[n]$ signal having N_2 elements, the method comprising:
(a)delaying the $S_2[n]$ signal by a predetermined number of elements and forming an $S_5[n]$ signal;
(b)establishing a cross-correlogram of a cross-correlation function of the $S_1[n]$ signal and the $S_5[n]$ signal, the cross-correlogram including a plurality of magnitudes, each of the magnitudes corresponding to an index; and
(c)setting the $S_3[n]$ signal as values of the elements of: $S_1[n]$, where $0 \leq n < (\text{the predetermined number} + \text{a first threshold value} + \text{a maximum index})$, the maximum index corresponding a largest magnitude among all of the magnitudes of the cross-correlogram;
 $S_1[n]$ weighted and added to an $S_4[n]$ signal that lags the $S_5[n]$ signal by the maximum index, where $(\text{the predetermined number} + \text{the first threshold value} + \text{the maximum index}) \leq n < (N_1 + \text{a second threshold value})$; and
 $S_4[n - (\text{the predetermined number} + \text{the maximum in-}4$

dex)], where (N_1 – the second threshold value) $\leq n \leq$ (N_2 + the predetermined number + the maximum index); wherein the first and second threshold values are not equal to zero at the same time.

- [c2] 2.The method of claim 1 wherein the $S_3[n]$ signal is equal to $(N_1 - \text{the second threshold value} - n)/(N_1 - (\text{the predetermined number} + \text{the maximum index} + \text{the first threshold value} + \text{the second threshold value})) * S_1[n] + (n - (\text{the predetermined number} + \text{the maximum index} + \text{the first threshold value})) / (N_1 - (\text{the predetermined number} + \text{the maximum index} + \text{the first threshold value} + \text{the second threshold value})) * S_4[n - (\text{the predetermined number} + \text{the maximum index})]$ while $(\text{the predetermined number} + \text{the maximum index} + \text{the first threshold value}) \leq n < (N_1 - \text{the second threshold value})$.
- [c3] 3.The method of claim 1 wherein the $S_3[n]$ signal is equal to $(N_1 - n) / (N_1 - (\text{the predetermined number} + \text{the maximum index})) * S_1[n] + (n - (\text{the predetermined number} + \text{the maximum index})) / (N_1 - (\text{the predetermined number} + \text{the maximum index})) * S_4[n - (\text{the predetermined number} + \text{the maximum index})]$.
- [c4] 4.The method of claim 1 wherein the $S_1[n]$ signal and the $S_2[n]$ signal are sampled from an $S_1(t)$ signal and an $S_2(t)$ signal respectively.

- [c5] 5.The method of claim 4 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are both derived from an original signal.
- [c6] 6.The method of claim 5 wherein the original signal is an audio signal.
- [c7] 7.The method of claim 5 wherein the original signal is a video signal.
- [c8] 8.The method of claim 4 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are identical.
- [c9] 9.The method of claim 4 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are different from each other.
- [c10] 10.The method of claim 1 wherein the predetermined number is equal to $[N_1 / 3]$.
- [c11] 11.A nonlinear overlap method for time scaling to synthesize an $S_3[n]$ signal from an $S_1[n]$ signal and an $S_2[n]$ signal, the $S_1[n]$ signal having N_1 elements and the $S_2[n]$ signal having N_2 elements, the method comprising:
 - (a)establishing a cross-correlogram of a cross-correlation function of the $S_1[n]$ signal and the $S_2[n]$ signal, the cross-correlogram including a plurality of magnitudes, each of the magnitudes corresponding to an index; and
 - (b)setting the $S_3[n]$ signal as values of the elements of:

$S_1[n]$, where $0 \leq n < (\text{a first threshold value} + \text{a maximum index})$, the maximum index corresponding a largest magnitude among all of the magnitudes of the cross-corrolegram;

$S_1[n]$ weighted and added to an $S_4[n]$ signal that lags the $S_2[n]$ signal by the maximum index, where (the first threshold value + the maximum index) $\leq n < (N_1 - \text{a second threshold value})$; and

$S_4[n - \text{the maximum index}]$, where ($N_1 - \text{the second threshold value}$) $\leq n \leq (N_2 + \text{the maximum index})$; wherein the first and second threshold values are not equal to zero at the same time.

[c12] 12. The method of claim 11 wherein the $S_3[n]$ signal is equal to $(N_1 - \text{the second threshold value} - n)/(N_1 - (\text{the maximum index} + \text{the first threshold value} + \text{the second threshold value})) * S_1[n] + (n - (\text{the maximum index} + \text{the first threshold value}))/(N_1 - (\text{the maximum index} + \text{the first threshold value} + \text{the second threshold value})) * S_4[n - (\text{the maximum index})]$ while $(\text{the maximum index} + \text{the first threshold value}) \leq n < (N_1 - \text{the second threshold value})$.

[c13] 13. The method of claim 11 wherein the $S_3[n]$ signal is equal to $(N_1 - n)/(N_1 - \text{the maximum index}) * S_1[n] + (n - \text{the maximum index}) / (N_1 - \text{the maximum index}) * S_4[n - \text{the maximum index}]$.

- [c14] 14.The method of claim 11 wherein the $S_1[n]$ signal and the $S_2[n]$ signal are sampled from an $S_1(t)$ signal and an $S_2(t)$ signal respectively.
- [c15] 15.The method of claim 14 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are both derived from an original signal.
- [c16] 16.The method of claim 15 wherein the original signal is an audio signal.
- [c17] 17.The method of claim 15 wherein the original signal is a video signal.
- [c18] 18.The method of claim 14 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are identical.
- [c19] 19.The method of claim 14 wherein the $S_1(t)$ signal and the $S_2(t)$ signal are different from each other.