Laurea MAGISTRALE in COMPUTER SCIENCE

ARTIFICIAL INTELLIGENCE

Logics / 2

Modal Logics – Non-Monotonic Reasoning, Reasoning under Uncertainty

Questi lucidi sono stati preparati per uso didattico. Essi contengono materiale originale di proprietà dell'Università degli Studi di Bari e/o figure di proprietà di altri autori, società e organizzazioni di cui e' riportato il riferimento. Tutto o parte del materiale può essere fotocopiato per uso personale o didattico ma non può essere distribuito per uso commerciale. Qualunque altro uso richiede una specifica autorizzazione da parte dell'Università degli Studi di Bari e degli altri autori coinvolti.

Non-classic Logics

- Classic logic
 - Propositional logic
 - First-Order Predicate logic
- Non-classic logics adopt different or more additional rules
 - To solve different problems than deductive calculus
 - To represent other forms of reasoning
 - Weaker
 - Linked to contextual factors

Extension/Modification Directions

- Using classical logic in a different way
- Abandoning truth-functionality principle
 - Truth value of a proposition not required anymore to be only a function of its components
 - Dismission of truth tables
- Abandoning bivalence principle
 - A proposition is not assumed anymore to be only true or false

Assumptions in Predicate Logic Reasoning

- 1. descriptions in the form of predicates must be "sufficient" to represent the application domain
 - Each fact is known to be true or false
 - What if information is incomplete or uncertain?
 - Logic programming (CWA): if a fact cannot be proved true, it is assumed to be false
 - Human reasoning: if a fact cannot be proven false, it is assumed to be true
- 2. knowledge base must be consistent
 - In human reasoning, alternate hypotheses are considered, even conflicting ones, and are removed as soon as new evidence is available

Assumptions in Predicate Logic Reasoning

- 3. knowledge monotonically grows through the use of inference rules
 - Need for mechanisms to
 - Add knowledge based on assumptions
 - · Non-monotonic reasoning
 - Delete inferences based on such assumptions, in case subsequent evidence shows the hypothesized assumptions are wrong
 - Truth maintenance

Minsky's Criticisms to Logic

- "logical" reasoning not flexible for thinking
- Cannot handle inconsistent data
- Feasibility of representing knowledge by "true" propositions is doubtful
- Separation of knowledge and rules too radical
- Logic is monotonic
- Procedural descriptions over declarative descriptions

Classical Reasoning

- Systems based on predicate logic are conceptually elegant and rigorous
- Albeit logic is often unsuitable to represent common knowledge, it is used for its ease in automatizing the deduction process
- The truth of an assumed or derived assertion is such indefinitely and assumes the existence of a static world of objects
- Propositions in classical logic are declarative and atemporal
 - E.g.: Property P holds for object x
- In real problems less strict claims may happen

- Moreover, one does not want / cannot express
 - that some property is necessarily true, or
 - the difference between believing, supposing and knowing something
 - E.g., when formalizing juridic norms one must express
 - That taking an action is prohibited or permitted
 - And that if someone takes a prohibited action he must be punished
 - To represent common-sense reasoning, modal formalism were defined that allow to express in what way a proposition is true
 - Propositions may be characterized by a mode (necessary, possible, compulsory, ...)

Modal Logics

- · A family of logics
 - *Temporal*, handles propositions such as "It is always true that p", "Sometimes it is true that p", ...
 - Deontic, handles propositions such as "p is mandatory", "p is permitted", ...
 - Epistemic, handles propositions such as "I know that p", "I believe that p", ...
 - Alethic, handles propositions such as "p is necessary", "p is possible", ...
 - Ethic, handles propositions such as "p is good", "p is bad", ...

Modal Logics

- Allows to model/formalize intelligence
 - To build intelligent agents that can operate in dynamic environments, like humans do

- Consider an agent moving in a dark room and, gropingly, discovering there is a switch on the wall
- Understandably, the agent thinks the switch turns on the light...

- The agent escapes the trapdoor and, gropingly (he did not turn on the light), he reaches another room, again dark...
- He finds another switch... but this time he thinks twice before turning it on!

Modal Logics

- Agent's action was wrong (he shouldn't turn on the switch), not stupid
 - Objective: building rational, not omniscent software agents
 - At any time, makes the choice it believes is the best
 - Modal logics allow to build rational agents
 - Let us try and build in modal logic our sample scenery

Modal Logics

- The rooms in which the agent remembers having been are just worlds accessible to him. In them, formula $I \rightarrow L$ holds, where I is fact "pushed button" and L "light is on"
- As a consequence, in the current room, i.e. the world in which the agent is moving, (I → L) is necessarily/probably true, even if, as the agent will discover, in this world I → L is false
- Warning! The agent has no access to the world in which he
 moves: he falls in the trapdoor because he cannot see that, in it, I

 → L is false
- When the agent is in the new room, he recalls that, in the previous one, I → L was false (now, he has access to an additional possible world), and so he thinks twice before pressing the button

Temporal Modal Logic

- Allows representing knowledge with temporal references
- Extend classical logic with operators such as
 - □A "A is always true"
 - A "A will be sooner or later true"
 - OA "A will be true in the next temporal moment"
- Interpreted in a structure consisting of a discrete set of temporal intervals (worlds)

Temporal Operators

- Meaning defined by determining when a formula is true in a world w
 - □A is true in w if it is true at timepoint w itself and in all subsequent ones
 - ◇A is true in w if it is true at timepoint w itself or there exist a timepoint w' following w in which A is true
 - OA is true in w if A is true at the timepoint immediately following w

- Example: proposition leave(train,rome)
 - "the train to Rome is leaving"
 - (a) $[\neg leave(train, rome)] \Rightarrow [\Box \neg leave(train, rome)]$
 - If the train to Rome is not leaving now, then it will never leave
 - (b) [¬leave(train,rome)] ⇒ [O ¬leave(train,rome)]
 - If the train to Rome is not leaving now, then it will leave in a moment
 - · It might be appropriate to explicitly add time
 - leave(t,train,rome)
 - · In which case the logic must include an arithmetic
 - (a') ¬leave(0,train,rome) ⇒ ∀t (0 ≤ t ⇒ ¬leave(t,train,rome))
 Equivalent to (a)
 - (b') \neg leave(0,train,rome) \Rightarrow leave(1,train,rome)
 - Equivalent to (b)

- Temporal aspects may also be represented by reifying propositions
 - treating them as objects to talk about using higher level predicates such as
 - holds(p,t)
 - "p holds at time t"
 - Example: Formulas (a) and (b) above become
 - (a") \neg holds(leave(train,rome),0) \Rightarrow $\forall t \ (0 \le t \Rightarrow \neg \text{holds(leave(train,rome)},t))$
 - (b") —holds(leave(train,rome),0) ⇒ holds(leave(train,rome),1)

- One may even talk about the duration of an event, thanks to a predicate such as
 - happens(p,t1,t2)
 - "the duration of event *p* covers the temporal interval between *t1* and *t2*"
 - Example: This allows to express the fact that if the train travels from Rome to Turin in interval (t1,t2), then it arrives in Turin
 - happens(travel(train,rome,turin), t1, t2) ⇒ holds(arrive(train,turin), t2)

Deontic Logic

- Allows to express obligation or permission
 - E.g., in juridic norms, one must be able to express
 - · Making an action is prohibited or permitted
 - If someone makes a *prohibited* action he *must* be punished
 - Operators: given a proposition A
 - OA A is mandatory
 - PA A is permitted
 - O ¬A A is prohibited
 - · Axioms describing operators features
 - PA ⇔ ¬O ¬A
 - · All and only non-prohibited things are permitted
 - OA ⇒ PA
 - What is mandatory must be permitted

Reasoning about Knowledge

- Sometimes one needs to reason about knowledge and about reasoning itself
 - "If I know that the train to Turin leaves at time X I go to the station ten minutes before time X; if I have no idea about the time then I check the Internet"
 - "If it is not possible to prove that the defendant is guilty then one must conclude he is innocent"
- Need for modal logics that can work on a metalevel
 - Meta-knowledge
 - Meta-reasoning

Epistemic Modal Logics

- Knowledge ≠ Belief
- Operators
 - K denotes what an agent knows
 - KA the agent knows that proposition A is true
 - B denotes what an agent believes
 - BA the agent believes that proposition A is true
 - Examples
 - K ∃x thief(x,C)
 - The agent knows that someone stole the picture
 - K $\forall x$ (thief(x,C) \Rightarrow previous_offender(x))
 - $\exists x \text{ K thief}(x,C)$
 - The agent knows who stole the picture

Epistemic Modal Logics

- What is known is true (KA ⇒ A), but an agent may believe something false
- Possibility of representing situations with many agents and to use modal operators to represent what agents know or believe about each other
 - Example: agents α and β
 - K (α , A) \Leftrightarrow K_{α} (A) agent α knows that A is true
 - B_a (A) agent α believes that A is true
 - $\mbox{ K}_{_{\alpha}}\mbox{K}_{_{\beta}}$ A agent α knows that agent β knows A

Well-Formed Formulas

- Syntax in first-order modal languages
 - All wff in first-order predicate calculus are also wff in the modal language
 - If Φ is a closed formula in the modal language
 - Without free variables
 - and α is a ground term, then $K(\alpha,\Phi)$ is a wff in the modal language
 - If Φ and Ψ are wff, then all expressions that may be built from Φ and Ψ using the usual propositional connectives are wff, as well

Monotonic Reasoning

- Scheme based on certainty of deduction
 - Principle 1: In a monotonic reasoning system, the number of propositions proved true continuously increases
 - Knowledge is
 - Complete
 - All facts needed to solve a problem are present or may be derived)
 - Consistent
 - Updatable only by adding new facts that are consistent with those already asserted (monotonicity)

Non-monotonic Reasoning

 Often information may be incomplete, albeit temporarily, or conditions may change in time

- Need to formulate (even incorrect) hypotheses, to restart the reasoning process when it reaches a deadend
- Non-monotonic reasoning system
 - Keeps track of a set of hypothetical assumptions and continuously revises them based on new observed or deduced knowledge

- Classical logic (FOPL)
 - Once a fact is asserted, its' forever true
 - Theorems never decrease with the increase of axioms
- Non-monotonic Reasoning
 - The set of currently true (or believed) facts does NOT increase monotonically
 - · Can shrink or grow with reasoning
 - Adding a new fact might lead to an inconsistency
 - Need to remove one of the contradictory facts
 - Hypotheses based on default assumptions evolve as long as new information is acquired
 - Adding new information may change the correctness of the conclusion
 - From a formal viewpoint, adding new axioms to a theory T, not necessarily all theorems in T are preserved

Non-monotonic Reasoning

Example

- You are a student, it's 8am, you are in bed.
- You slip out of your dreams and think: Today is Sunday. No classes today. I don't have to get up. You go back to sleep.
- You wake up again. It's 9:30am now and it is slowly coming to your mind: Today is Tuesday. What an unpleasant surprise.

P1 = today-is-Tuesday P2 = today-is-Sunday

P3 = have-class-at-10am P4 = no-classes

P5 = have-to-get-up P6 = can-stay-in-bed

- 3 problems to be solved
 - How to extend the knowledge base so as to allow inferences based both on the absence and on the presence of knowledge
 - It is known that ¬P
 - It is not known if P
 - How to update correctly the knowledge base when a new fact is added or an old one is removed
 - How to use knowledge to try and solve conflicts that are generated when different non-monotonic, mutually inconsistent, inferences can be carried out

- A formalism should:
 - 1. Be able to define the set of worlds that may exist, given the facts that are certain
 - I.e., allow to define the set of models of any set of wffs
 - Interpretation of a set of wffs: a domain (set of objects) D with a function that maps
 - Each predicate to a relationship
 - Each n-ary function to an operator from Dⁿ to D
 - Each constant to a member of D
 - Model of a set of wffs: an iterpretation that satisfies them
 - 2. provide a way to choose a model
 - 3. provide the basis for implementing reasoning
 - 4. provide a model whose conclusions correspond to our intuitions

- Many formalisms proposed
 - Default logic (Reiter, 1987)
 - Non-monotonic logic (McDermott, Doyle, 1980)
 - Autoepistemic logic (Moore, 1985)
 - Circumscription (McCarthy, 1980)
 - Negation as Failure (Clark, 1978)
- All have to do with what we "know" at a given moment
 - Central question in the logic formalism has to do with the *extension* of operator ∃

- Example: "All A's are B's"
 - A statement that many logics try to "weaken", to reach more generality
 - Classical logic
 - $\forall x : x \in A \Rightarrow x \in B$
 - Default logic
 - An A is a B, unless exceptions
 - Non-monotonic modal logic
 - · If B is conceivable and if A, then B
 - Autoepistemic logic
 - If a given A were not B, we should know
 - Circumscription
 - Any A which is not abnormal is B
 - Negation as Failure
 - If, given A, B cannot be proved, then B is assumed to be false

Non-monotonic Logic

- Extends the FOPL language with a modal operator M, meaning "is consistent"
 - Example: formula
 - $\forall x,y$: brothers $(x,y) \land M$ go_along_well $(x,y) \Rightarrow$ defends(x,y)
 - "For all x's and y's, if x and y are brothers and it is conceivable
 Consistent with what one believes
 that x goes along well with y, then one concludes that x will defend y"
 - Need to define the meaning "is consistent" for the theory to be at least semi-decidable
 - Normally the Prolog notion of Negation as Failure or some variant of it is used
 - To show that P is consistent:
 - Try and prove ¬P
 - If failure: assume ¬P to be false, declare P as consistent

- Problem: possibility that many non-monotonic propositions, taken singularly, suggest extensions that are overall inconsistent
 - Example

```
    ∀x : ignorant(x) ∧ M studies(x) ⇒ studies(x)
    ∀x : studies(x) ∧ M passes_test(x) ⇒ passes_test(x)
    ∀x : ignorant(x) ⇒ ¬passes_test(x)
    ignorant(pippo) ⇒ studies(pippo)
    ↓ ↓
    ¬passes test(pippo) passes test(pippo)
```

Non-monotonic Logics

- Defines the set of theorems that can be derived from a set A of wffs as the intersection of the sets of theorems resulting from all possible ways in which the wffs in A can be combined
- Assertions, albeit looking like rules, are wffs that can be manipulated using the traditional laws to combine logistic expressions

Default Logics (DL)

· Introduces a new class of rules

- "If A is true (provable) and it is consistent to assume B, then conclude C"
 - A requirement
 - B justification
 - C conclusion

Default Logics (DL)

Example

· Sentence "Birds typically fly" can be expressed as

$$\frac{\mathsf{bird}(x) : \mathsf{fly}(x)}{\mathsf{fly}(x)}$$

or

$$\frac{: \mathsf{bird}(x) \Rightarrow \mathsf{fly}(x)}{\mathsf{bird}(x) \Rightarrow \mathsf{fly}(x)}$$

- "If it is conceivable that birds fly then I conclude that birds fly"
- A belief becomes a theorem!

Default Logic (DL)

- Extension: a set of beliefs
 - The new inference rules are used as a basis to compute a set of plausible extensions of the knowledge base
 - Each extension 'increments' the knowledge base
 - Maximal consistent augmentation
 - Generated by applying inference rules without violating consistency
 - Logics admits as theorem an expression that is satisfied in some extension
 - If it's needed to decide among extension, a decision is not made

Default Logic (DL)

- Expressions are inference rules rather than expressions in the language
 - Cannot be manipulated by other inference rules
 - Example: given two rules and no assertion about A
 - From

$$\frac{A:B}{B}$$
 $\frac{\neg A:B}{B}$

no conclusion can be drawn about B

- Inheritance
 - Non-monotonic reasoning typically used in objectcentered representation in order for instances of a class to inherit some attributes from a typical description of the class itself
 - Algorithm based on the fact that an object inherits an attribute value from all classes to which it belongs, unless this leads to a contradiction,
 - in which case a value coming from a more specific class has priority over that of a more general one

- Use of delineation to deduce properties
 - Always requires to proceed from specific to general
 - With such an ordering defined on matching and retrieval processes, information present in lower levels protects the system from contradictory deductions based on higher levels
 - Example
 - Rule that considers inheritance of a default value for the height of a basketball player

basketball_player(
$$x$$
): height(x , 1.85)
height(x , 1.85)

In any case, a declared value blocks inheritance of a default value

Non-monotonic Reasoning

• When conflicts arise due to multiple inheritance, *delineation by default*, using this kind of rules, can be used

elephant(x) :
$$\neg albino(x) \land color(x, gray)$$

color(x, gray)

 This rule can prevent application of default knowledge about elephants when more specific knowledge coming from class albino is available

Agent under Uncertain Conditions

Kinds of Uncertainty

- Uncertainty in prior knowledge
 - Example: in an expert system for medical diagnosis, some causes of the disease are not known and not represented in the knowledge base
- Uncertainty in action
 - Example: it is expected that the agent must turn on the light when entering a room, but it is necessary/ expected that there is power, that the switch works, that the bulb is not blown, etc.
- Uncertainty in perception
 - Example: sensors do not return the exact position, the environment is not enough well-lit, etc.

Fuzzy Theory

- A mathematical theory that encodes qualitative evaluations
 - Particularly suited for what people express in everyday language
 - Allows to deal with knowledge expressed qualitatively
- An extension of Boolean logics to values in the continuous range [0,1]
 - A fuzzy expression must not be true or false, but several degrees of truth are admitted

- Used to describe and operate with vague definitions
 - Example (controlling a cement plant)
 - If temperature is high, add few cement and much increase water
- Based on the idea that the elements of a set are defined through a degree of membership
 - Increased expressive power: many quantities can be represented in a fuzzy way
 - Examples:
 - The engine is very hot
 - · John is very tall

- Typically used
 - Strictly speaking
 - It is a branch of fuzzy set theory, that deals with knowledge representation and inference
 - It deals with imprecise knowledge
 - Broadly speaking
 - Considered as a synonym of fuzzy set theory

- A set of mathematical principles for knowledge representation based on degrees of membership to a set
- Uses a continuum of logic values between 0 (completely false) and 1 (completely true)

- The degree of membership can be interpreted as a probability
 - Logic mechanisms of probabilistic type can be defined
 - Example
 - very_bad = [0, 0.2]; bad = [0.2, 0.5]; good = [0.5, 0.8]; very_good = [0.8, 1]
 - With different degrees of membership, e.g.:
 - 0 is very bad with degree 1
 - 0.2 is bad with degree 0.5 and bad with degree 0.5
 - etc
 - The membership function of a fuzzy set associates the features of each element (or instance, or individual) the value of the degree of membership to the set itself

- Many kinds of membership functions are available
 - Can be chosen for pure mathematical convenience convenience or determined through experimental obsevations
 - Example: membership function for fuzzy category "quite tall" Membership

- Traditional (Crisp) sets vs Fuzzy sets
 - x-axis = universe of discourse
 - All possible values applicable to a given variable
 - y-axis = value of membership to the fuzzy set

Fuzzy Theory

- Membership functions
 - Triangular

Trapezoidal

Gaussian

- Example: age of a person
 - A 30-years old person is young
 - How is a 31-years old person defined?
 - The fuzzy approach:

- Membership
 - In traditional sets, all elements in a set entirely belong to the superset
 - In fuzzy sets, each element may or may not belong both to the subset and to the superset
 - An element of a fuzzy set may have less degree of membership to the subset than to the superset

Fuzzy Theory

- Based on linguistic variables
- Linguistic variable
 - A fuzzy variable whose values are linguistic terms
 - E.g., the claim "John is tall" implies that linguistic variable John has linguistic value "tall"
 - In rule-based fuzzy systems, linguistic variables are used in fuzzy rules
 - E.g.:
 - IF wind is strong
 - THEN sailing is fine
 - or
 - IF speed is slow
 - THEN stopping_distance is short

Fuzzy Theory

- Linguistic variables
 - Variable whose values are words or sentences in a natural or artificial language
 - Example: Variable temperature whose values are very low, low, medium, etc.

Fuzzy Sets

Operations

Fuzzy Sets

Union

Complement

Intersection

- Traditional sets: which elements do not belong to the set?
 - Opposite of the set
 - E.g.: the complement of the set of tall persons is the set of NOT tall persons
 - Removing tall persons from the universe of discourse, the complement is obtained
- Fuzzy sets: by what degree an element does not belong to the set?
 - Complement ~A of a fuzzy set A obtained as follows:

$$\mu_{\sim A}(x) = 1 - \mu_{A}(x)$$

Fuzzy Sets

- Intersection
 - Traditional sets: Which elements belong to both sets?
 - Shared elements
 - Fuzzy sets: How much an element belongs to both sets?
 - An element may partially belong to the two sets with different degrees of membership
 - Defined as the lowest degree of belonging
 - Intersection between two fuzzy sets A and B on the universe of discourse X:

 $- \qquad \mu_{A \cap B}(x) = \min[\mu_{A}(x), \mu_{B}(x)]$ $= \mu_{A}(x) \cap \mu_{B}(x)$ where $x \in X$

Fuzzy Sets

- Union
 - Traditional sets: which elements belong to either or both sets?
 - Elements belonging to at least one set
 - Fuzzy sets: how much an element belongs to either or both sets?
 - Reverse of intersection
 - Defined as the highest degree of belonging
 - Intersection between two fuzzy sets A and B on the universe of discourse X:

$$- \qquad \qquad \mu_{\mathsf{A} \cup \mathsf{B}}(x) = \max[\mu_{\mathsf{A}}(x), \mu_{\mathsf{B}}(x)] \\ = \mu_{\mathsf{A}}(x) \, \cup \, \mu_{\mathsf{B}}(x) \\ \text{where } x \in X$$

Fuzzy Sets

Operators

- AND (Intersection)
- $\mu_{A \cap B}(x) = \min \left(\mu_A(x), \mu_B(x) \right) \quad \forall x \in X$
- •
- •
- OR (Union)
- $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)) \quad \forall x \in X$
- •
- •
- NOT (Complement)

$$\mu_{\overline{A}}(x) = 1 - \mu_{A}(x) \quad \forall x \in X$$

Fuzzy Sets

Properties

- Equality
 - A fuzzy set is equal to another if
 - $\mu_{A}(\mathbf{x}) = \mu_{B}(\mathbf{x}), \ \forall \mathbf{x} \in \mathbf{X}$
 - Example
 - A = 0.3/1 + 0.5/2 + 1/3
 - B = 0.3/1 + 0.5/2 + 1/3
 - Thus, A = B

Inclusion

- A fuzzy set A, A ⊆ X, is inlouded in a fuzzy set B, B ⊆ X, if
- $\mu_{A}(\mathbf{X}) \leq \mu_{B}(\mathbf{X}), \forall \mathbf{X} \in \mathbf{X}$
- A is a subset of B
 - Example
 - Consider X = {1, 2, 3} and sets A and B
 - A = 0.3/1 + 0.5/2 + 1/3
 - B = 0.5/1 + 0.55/2 + 1/3
 - Then, $A \subseteq B$

Further Readings

- P. Smets, E.H. Mamdani, D. Dubois, H. Prade (Eds.) "Non–Standard Logics for Automated Reasoning" Academic Press, 1988.
- E. Allen Emerson "Temporal and Modal Logic" Report 1995, University of Texas, Austin
- G. Brewka, I. Niemela, M. Trusczynski "Non Monotonic Reasoning" 2007 Elsevier
- L. Zadeh "Fuzzy Logic and approximate reasoning" Synthese, 30: 407-428, 1975