

OUTLINE

- Principle
- Instrumental point of view
- Calibration issue
- Recommendations

OUTLINE

- Principle
- Instrumental point of view
- Calibration issue
- Recommendations

GNSS Time Transfer

GNSS Time transfer

What can be this common reference:

- •GPS time
- •IGS time (IGS = International GNSS Service)
- Satellite clock (in common view)
- •Glonass time
- •Galileo time

•....

Common view

All in View (also PPP)

Observation modeling

Observation equations

Pseudorange:

To be determined $P_{1,2}^{sat} = \mid\mid \mathbf{x}_{sat} - \mathbf{x}_{rec} \mid\mid -c [\underbrace{(t_{rec} - ref)}_{rec} - (t_{sat} - ref)] + I_{1,2} + Tr + \delta_{1,2} + \mathcal{E}_{1,2}$

Satellite position

To be determined

$$P_{1,2}^{sat} = |\mathbf{x}_{sat} + \mathbf{x}_{rec}|| - c[(t_{rec} - ref) - (t_{sat} - ref)] + I_{1,2} + Tr + \delta_{1,2} + \varepsilon_{1,2}$$

From NAVIGATION message

Or

from precise IGS orbits

Receiver position

To be determined

$$P_{1,2}^{sat} = ||\mathbf{x}_{sat} + \mathbf{x}_{rec}|| - c[(t_{rec} - ref) - (t_{sat} - ref)] + I_{1,2} + Tr + \delta_{1,2} + \varepsilon_{1,2}$$

Fixed

Or

determined in PPP, i.e. using code and carrier phase data

Satellite clock

To be determined

$$P_{1,2}^{sat} = \parallel \mathbf{x}_{sat} - \mathbf{x}_{rec} \parallel -c \underbrace{\left[t_{rec} - ref \right] - \left(t_{sat} - ref \right)}_{+I_{1,2}} + Tr + \delta_{1,2} + \varepsilon_{1,2}$$

From NAVIGATION message

or

from precise IGS clock products

Ionosphère

To be determined

$$P_{1,2}^{sat} = \|\mathbf{x}_{sat} - \mathbf{x}_{rec}\| - c[(t_{rec} - ref) - (t_{sat} - ref)]$$

$$+ I_{1,2} + Tr + \delta_{1,2} + \varepsilon_{1,2}$$

From Klobuchar model (using parameters given in the NAVIGATION message)

or

Removed using the ionosphere-free combination P3

P3 removes 99.9% of the ionosphere delays While models like Klobuchar, only 60%.

Tropospheric delay

To be determined

$$P_3^{sat} = \|\mathbf{x}_{sat} - \mathbf{x}_{rec}\| - c[(t_{rec} - ref) - (t_{sat} - ref)] + Tr + \delta_3 + \varepsilon_3$$

Hydrostatic part:

modeled

Wet part:

Must be determined from the observations but only in PPP (small : < 1 ns)

Hardware delay

To be determined
$$P_3^{sat} = \parallel \mathbf{x}_{sat} - \mathbf{x}_{rec} \parallel -c[\underbrace{t_{rec} - ref}) - (t_{sat} - ref)] \\ + Tr + \delta_3 + \varepsilon_3$$

To be determined by calibration

GNSS code data analysis and CGGTTS Format

Common GPS GLONASS Time Transfer Standard

Results for $(t_{rec} - REF)$ from GNSS code measurements

Using satellite positions and clocks from the navigation message

Using broadcasted satellite orbits and clocks:

 For each point: Correction for geometric distance, troposphere relativistic effect, hardware delays ionosphere (if not P3)

2. Linear fit: UTC(lab) - Tsat (value at mid-point)

3. For each point: Correction for satellite clock

4. Linear fit: UTC(lab) – TGPS (value at mid-point)

CGGTTS FILE

```
CGGTTS GPS/GLONASS DATA FORMAT VERSION = 02
REV DATE = 2002-07-01
RCVR = Z-XII3T
                           R2CGGTTS v4.0
CH = 12 (GPS)
IMS = Z-XII3T
LAB = ORB
X = +4027896.26 \text{ m (GPS)}
Y = +307045.98 \text{ m (GPS)}
                                          UTC(lab) - Tsat
Z = +4919478.21 \text{ m (GPS)}
FRAME = ITRF
                                                         UTC(lab) - REF
COMMENTS = NO COMMENTS
INT DLY = 303.5 ns (GPS P1), 312.8 ns (GPS P2)
CAB DLY = 333.8 \text{ ns} (GPS)
REFDLY = 50.6 \, ns
REF = HORB
CKSUM = 22
```

```
PRN CL MJD STTIME TRKL ELV AZTH REFSV SRSV REFGPS SRGPS DSG
                                                                       IOE MDTR SMDT MDIO SMDI MSIO SMSI ISC
      hhmmss
                   s .1dg .1dg
                                  .1ns
                                         .1ps/s
                                                 .1ns .1ps/s .1ns
                                                                 .1ns
                                                                           .1ps/s .1ns .1ps/s .1ns .1ps/s .1ns
2 FF 53734 000200 780 426 2415
                                +234362
                                                  125
                                                        -9
                                                             27
                                                                            +11 42 -4 42 -4 17 0 0 L3P AA
                                          -18
                                                                  140
                                                                      118
4 FF 53734 000200 780 275 2018
                                          -76
                                                  156
                                                            75
                                                                       173 +41 44 -21 44 -21 57 0 0 L3P 13
                                -1015499
                                                                  208
                                                       +48
27 FF 53734 000200 780 687 1429
                                                             23
                                                                                 23 -32 23 -32 16 0 0 L3P D0
                                 -293114
                                          +25
                                                  147
                                                       +41
                                                                   45
                                                                         86
                                                                              -3
8 FF 53734 000200 780 429 1868
                                 +517006
                                          +30
                                                       +16
                                                             32
                                                                        118 -18
                                                                                 44 -42 44 -42 22 0 0 L3P E5
                                                  120
                                                                  140
13 FF 53734 000200 780 486 696
                                 -319349
                                           -34
                                                  132
                                                       -12
                                                             23
                                                                  201
                                                                        107 +12
                                                                                 32 +16 32 16 18 0 0 L3P DB
                                                             44
                                                                                 30 -56 30 -56 33 0 0 L3P F6
10 FF 53734 000200 780 353 3019
                                 -762212 +57
                                                  142
                                                       +64
                                                                  202
                                                                       138
                                                                            -24
16 FF 53734 000200 780 78
                          247
                                 -196937 -122
                                                       -108
                                                                       567 +209
                                                                                 23 +68 23 68 104 0 0 L3P 3D
                                                  121
                                                            134
                                                                  231
23 FF 53734 000200 780 143
                          766
                                -1568279
                                                        -16
                                                             76
                                                                       322 +134
                                                                                 44 +19 44 19 56 0 0 L3P 9
                                           +1
                                                  140
                                                                  167
2 FF 53734 001800 780 375 2339
                                 +234348
                                                        -21
                                                                       131
                                                                                 50 +24 50 24 25 0 0 L3P CD
                                           -30
                                                  120
                                                             34
                                                                  140
                                                                            +17
 4 FF 53734 001800 780 207 1993
                                -1015610 -185
                                                                  208
                                                                       226
                                                                            +72
                                                                                 47 +29 47 29 56 0 0 L3P 27
                                                  164
                                                        -61
                                                             75
27 FF 53734 001800 780 719 1229
                                 -293116
                                                  159
                                                        +18
                                                              22
                                                                   45
                                                                        84
                                                                              -1
                                                                                  9 -13
                                                                                          9 -13 15 0 0 L3P A5
                                           +2
                                                              22
 8 FF 53734 001800 780 507 1861
                                 +516997
                                          +15
                                                   98
                                                         +1
                                                                  140
                                                                       103
                                                                            -12
                                                                                 36 -11 36 -11 16 0 0 L3P CF
13 FF 53734 001800 780 419 737
                                            -5
                                                  143
                                                              28
                                                                  201
                                                                       120
                                                                            +16
                                                                                 26
                                                                                         26 -4 23 0 0 L3P BD
                                 -319359
                                                       +17
                                                                                     -4
```

« Geodetic » Time and Frequency Transfer

i.e. code + carrier phase data

Precise Point Positioning (PPP)

- -Needs precise satellite clocks/orbits like the ones delivered by the IGS
- -No advantage of using precise carrier phases if broadcast orbits and clocks are used.

Observation equations

Codes:

$$P_3^{sat} = \|\mathbf{x}_{sat} - \mathbf{x}_{rec}\| - c[(t_{rec} - ref) - (t_{sat} - ref)] + Tr + \delta_3 + \varepsilon_3$$

Carrier Phases:

$$L_3^{sat} = \|\mathbf{x}_{sat} - \mathbf{x}_{rec}\| - c[(t_{rec} - ref) - (t_{sat} - ref)] + Tr + (\lambda_3 N_3) + \mathcal{E}'_3$$

Working with GPS codes and phases

Called « geodetic time transfer »

Code Wavelength:

P code: 29.3 m, C/A code: 293 m

Carrier wavelength: 19 cm (L1) and 24 cm (L2)

→ Carrier phase measurements about 100 times more precise than codes measurements

BUT carrier phases ambiguous

- → only usable for frequency transfer, no time
- → need code data for time transfer

Carrier phase data will give the shape of the clock solution Code data will give the numerical value of the clock solution.

ionosphere-free P code vs carrier phase

ionosphere-free P code vs carrier phase

Available PPP tools

Bernese, NRCan, Atomium, Gipsy,

Just as an example

OUTLINE

Principle

Instrumental point of view

Calibration issue

Recommendations

GNSS set up

Receiver

Time receivers (possibly Geodetic)

Advantage:

- calibration procedure is easy, as long as the 1PPS is the reference for calibrations and the trigger level of the receiver is known.
- -Proper operation as a time receiver is simpler, in general.
- CGGTTS files directly available

Drawback:

- -Not all are dual-frequency (→ no P3, e.g. TTS2)
- -Not all are code + carrier phase (→ no PPP)
- If RINEX data reported to UTC(k): may be affected by the TIC measurement
- ⇒phase noise is larger (e.g. GTR50) or even data affected more generally (e.g. TTS3).
- -If RINEX data reported to the internal reference: calibration procedure more complicate

Geodetic receivers (possibly Time)

using the clock signal as internal reference

Advantage:

No additional noise from a TIC

Drawback:

Calibration issue: need additional measurements to get UTC(k), following the definition of the internal reference from the combination of external 1 PPS and frequency.

Not all provide the CGGTTS, but these can be created from RINEX

(Ashtech Z12T, Septentrio, Javad, Novatel)

R2CGGTTS:

Software developed at the Royal Observatory of Belgium

Goal: Generate CGGTTS files from RINEX files

Input files: RINEX obs files

RINEX nav files

parameter file (position, receiver and cable delays)

Output file: CGGTTS

Present version 5.0 : allows for GPS and possibly GLONASS

Available on the BIPM ftp: tai.bipm.org, user: labotai,

password: dataTAI, remote directory: /soft/r2cggtts

Antenna

Choose an antenna which reduces multipath

CGGTTS influenced by multipath

Influence of multipath on PPP solution: day-boundary discontinuities

Ideal setup

Reduces near-field effects

Temperature influences

Influence of temperature variations on the carrier phase measurements

0.5 ns/℃ cause = amplificateur

Temperature sensitivity

Indoor: Amplifier: 0.5 ns/°C

Receiver: up to 100 ps/°C (large differences between receivers)

Solution: temperature stabilized with 0.1°C

Outdoor:

antenna: code: expected up to 2 ns /day

carrier phase: 0.2 to 2 ps/°C (diurnal) or to 10 ps/°C (long term)

example : 20 °C diurnal \rightarrow max 40 ps

30 °C long term \rightarrow max 300 ps

<u>Cable</u>:

Choose cable with low sensitivity to temperature variations,

e.g. Andrew company: about 0.02ps/m/°C

example : 30 m , 20 °C \rightarrow 3 ps

OUTLINE

- Principle
- Instrumental point of view
- Calibration issue
- Recommendations

Calibration issue

Absolute Calibration

Absolute calibration of one receiver
 Using GNSS signal simulator
 Precision about 1 ns (Proia et al., 2011)

Absolute Calibration

 Absolute calibration of antenna
 Using GNSS signal simulator
 Precision about 1 ns (Proia et al., 2011)

Relative Calibration:

Relative calibration of the chain receiver + antenna

 $P_1(Ref)-P_1(Rec)$ -cable delays $P_2(Ref)-P_2(Rec)$ -cable delays

OUTLINE

- Principle
- Instrumental point of view
- Calibration issue
- Recommendations

Some recommendations

- Temperature stabilization in the laboratory
- Use dual-frequency receivers (→P3) and also measuring the carrier phases (→PPP)
- Choose an antenna setup which reduces multipath
- Use antenna cable with low temperature sensitivity
- Contact BIPM/RMO to conduct regular calibration