REPORT: MATROIDS AND DERANDOMIZATION OF ISOLATION LEMMA

Instructor: Rohit Gurjar

SOHAM CHATTERJEE

SOHAMCHATTERJEE999@GMAIL.COM Website: sohamch08.github.io

Contents

CHAPIER I	INTRODUCTION	PAGE 3
1.1	Matroids	3
1.2	2 Examples of Matroids	3
	1.2.1 Uniform Matroid	3
	1.2.2 Partition Matroid	3
	1.2.3 Linear Matroid	4
	1.2.4 Representable Matroid	4
	1.2.5 Regular Matroid	4
	1.2.6 Graphic Matroid / Cyclic Matroid	4
	1.2.7 Matching Matroids	4
1.3	3 Circuits	5
CHAPTER 2	Axiom systems for a matroi	PAGE 6
CHAPTER 3	Bibliography	PAGE 7
	DIDLIOGRAM III	

CHAPTER 1

Introduction

1.1 Matroids

Definition 1.1.1: Matroid

A matroid $M = (E, \mathcal{I})$ has a ground set E and a collection I of subsets of E called the *Independent Sets* st

- 1. Downward Closure: If $Y \in \mathcal{I}$ then $\forall X \subseteq Y, X \in \mathcal{I}$.
- 2. Extension Property: If $X, Y \in \mathcal{I}$, |X| < |Y| then $\exists e \in Y X$ such that $X \cup \{e\}$ also written as $X + e \in \mathcal{I}$

Observation. A maximal independent set in a matroid is also a maximum independent set. All maximal independent sets have the same size.

Base: Maximal Independent sets are called bases.

Rank of $S \in I$: We define the rank function of a matroid $r : \mathcal{P}(E) \to \mathbb{Z}$ where $r(S) = \max\{|X| : X \subseteq S, X \in I\}$ We def

Rank of a Matroid: Size of the base.

Span of $S \in I$: $\{e \in E : rank(S) = rank(S + e)\}$

1.2 Examples of Matroids

1.2.1 Uniform Matroid

It is denoted as $U_{k,n}$ where E = [n] and $I = \{X \subseteq E \mid |X| \le k\}$.

Free Matroid: When k = n we take all possible subsets of E into I. This matroid is called Free Matroid i.e. $U_{n,n}$

1.2.2 Partition Matroid

Given $E = E_1 \sqcup E_2 \sqcup \cdots \sqcup E_l$ where $\{E_1, \ldots, E_l\}$ is a partition of E and $k_1, \ldots, k_l \in \mathbb{N} \cup \{0\}$

$$I = \{X \subset E \colon |X \cap E_i| < k_i \ \forall \ i \in [l]\}$$

then M = (E, I) is a partition matroid.

♦ Note:-

If the E_i 's are not a partition then suppose E_1 , E_2 has nonempty partition then we will not have a matroid. For example: $E_1 = \{1,2\}$, $E_2 = \{2,3\}$ and $k_1 = k_2 = 1$ then $X = \{1,3\}$ is independent but $Y = \{2\} \subsetneq X$ is not a matroid.

1.2: Examples of Matroids Page 4

Linear Matroid 1.2.3

Given a $m \times n$ matrix denote its columns as A_1, \ldots, A_n . Then

$$I = \{X \subseteq [n] : \text{Columns corresponding to } X \text{ are linearly independent} \}$$

Here if the underlying field is \mathbb{F}_2 then it is called *Binary Matroid* and for \mathbb{F}_3 it is called *Ternary Matroid*.

Representable Matroid

A matroid with which we can associate a linear matroid is called a representable matroid.

roid with which we can associate a linear matroid is called a representable matroid.

Eg:
$$U_{2,3}$$
. It can be represented by the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, over \mathbb{F}_2 . Over \mathbb{F}_3 it is same as $U_{3,3}$.

Note:-

There are matroids which are not representable as linear matroids in some field. There are matroids which are not representable on any field as well.

Lemma 1.2.1

 $U_{2,4}$ is not representable over \mathbb{F}_2 but representable over \mathbb{F}_3

1.2.5 **Regular Matroid**

There are the matroids which are representable over all fields.

Lemma 1.2.2

Regular Matroids are precisely those which can be represented over $\mathbb R$ by a Totally Uni-modular matrix

Graphic Matroid / Cyclic Matroid

For a graph G = (V, E) the graphic matroid $M_G = (E, I)$ where

$$I = \{F \subseteq E \colon F \text{ is acyclic}\}\$$

Hence I is the collection of forests of G. It follows the downward closure trivially. For extension property let $k = |F_1| < |F_2| = l$ and then there are n - k and n - l components. So n - k > n - l. So \exists an edge in F_2 which joins 2 components in F_1 .

Lemma 1.2.3

A subset of columns is linearly independent iff the corresponding edges don't contain a cycle in the incidence matrix

Lemma 1.2.4

Graphic Matroids are Regular Matroids

Proof Idea: Use Incidence Matrix. ■

Matching Matroids

We can try to define it like this but it will not work:

Page 5 Chapter 1: Introduction

Problem 1.1

Is the following a matroid: $E = \text{Edges of a graph and } I = \{F \subseteq E \colon F \text{ is a matching}\}$

Solution: It is not a matroid since maximal matchings can not be extended to a maximum matching.

Correct way will be: For a graph G = (V, E) the ground set = V and

 $I = \{S \subseteq V \colon \exists a \text{ matching that matches all vertices in } S\}$

The downward closure property trivially holds. For extension property is |S| < |S'| then there exists another vertex in S' which is not matched with S, so we can add that vertex to S.

1.3 Circuits

Assume we have a matroid M = (E, I).

Definition 1.3.1: Circuit

A minimal dependent set *C* such that $\forall e \in C, C - e$ is an independent set.

Theorem 1.3.1

Let $S \in I$. $S + e \notin I$. Then $\exists ! C \subseteq S + e$.

Proof. Given $S + e \notin I$. Take the set Σ where $T \in \Sigma$ if $t \notin I$ and $T \subseteq S + e$. Σ is nonempty since $S + e \in \Sigma$. Now under the ordering of inclusion T has a minimal element. Hence this minimal element is the desired circuit C which is minimal dependent set contained in S + e.

Now suppose it is not unique. Let $C_1, C_2 \subseteq S + e$ be circuits. Suppose $f \in C_1 - C_2$. Then S - e + f will still be dependent since $C_2 \subseteq S - e + f$. Now by definition we get that $C_1 - f$ is independent. Therefore we extend $C_1 - f$ to an independent set by adding the elements of S till we reach same size as |S|. Now $e \in C$ since C_1 was formed because of addition of e. Hence if we extend $C_1 - f$ till same cardinality as S we will add all the edges of S not in $C_1 - f$ except f since adding f will make C be a dependent subset of an independent set which is not possible. Hence $C_1 - f$ will be extended to S - f + e. Therefore S + e - f is independent which contradicts our previous conclusion that S + e - f is dependent. Hence contradiction.

CHAPTER 2

Axiom systems for a matroi

CHAPTER 3 Bibliography