UNIVERSIDADE FEDERAL DO PIAUÍ

CENTRO DE CIÊNCIAS DA NATUREZA

DEPARTAMENTO DE MATEMÁTICA

PROFESSOR: ÍTALO AUGUSTO OLIVEIRA DE ALBUQUERQUE

DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL III

Lista de Exercícios - Integral de Superfície

- 1. Identifique a superfície parametrizada por $\varphi(u,v) = (v\cos u, v\sin u, 1 v^2)$ e encontre a equação da reta normal e do plano tangente a superfície em (0,1).
 - 2. Encontre uma parametrização para as superfícies abaixo:
 - a. S: parte da esfera $x^2 + y^2 + z^2 = 4$ que fica acima do plano $z = \sqrt{2}$.
 - b. S: parte do cilindro $x^2 + y^2 = 4$ que fica entre os planos z = -2 e z = 2 y.
 - c. S: parte do plano x + y + z = 2 no interior do cilindro $x^2 + y^2 = 1$.
 - d. S: é o cone gerado pela semireta $z = 2y, y \ge 0$ girada em torno do eixo z.
 - 3. Calcule a área das superfícies abaixo:
- a. S: é a parte do cilindro $x^2 + y^2 = 4$, com $0 \le z \le 5$, delimitada pelos semiplanos y = 2x, y = x e $x \ge 0$.
 - b. S: é a parte da esfera $x^2 + y^2 + z^2 = 4$ no interior do cone $3z^2 = x^2 + y^2, z > 0$.
- c. S: é a parte do cone $z^2 = x^2 + y^2$ que se encontra dentro do cilindro $x^2 + y^2 \le 2y$ e fora do cilindro $x^2 + y^2 \le 1$.
 - d. S: é a parte do cone $z = \sqrt{x^2 + y^2}$ que está entre os planos xy e 2z y = 2.
- 4. Calcula a massa de uma lâmina, que tem a forma da parte do plano z = x recortada pelo cilindro $(x-1)^2 + y^2 = 1$ cuja densidade no ponto (x,y,z) é proporcional à distância desse ponto ao plano xy.
 - 5. Abaixo, determine o momento de inércia em relação a superfície S:
- a. S: parte do cone $z^2 = x^2 + y^2$ entre os planos z = 1 e z = 2, sendo a densidade constante.
- b. S: é a parte do cone $z^2=x^2+y^2, z\geqslant 0$ em relação ao eixo z, de altura h que está no primeiro octante.
- c. S: é uma superfície homogênea, de massa M e equação $x^2+y^2=R^2, R>0,$ com $0\leqslant z\leqslant 1,$ em torno do eixo z.
 - 5. Calcule o fluxo do campo vetorial pedidos abaixo:
- a. F = (x y 4, y, z) através da semi-esfera superior $x^2 + y^2 + z^2 = 1$, com campo de vetores normais \mathbf{n} tal que $\mathbf{n} \cdot \overrightarrow{\mathbf{k}} > 0$.
- b. F = (0, 0, -z) e S é a parte da esfera $x^2 + y^2 + z^2 = 4$ fora do cilindro $x^2 + y^2 = 1$ com **n** apontando para fora.

- c. $\mathsf{F} = (-\mathsf{x}, -\mathsf{y}, 3\mathsf{y}^2 z)$ sobre o cilindro $\mathsf{x}^2 + \mathsf{y}^2 = 16$ situado no primeiro octante entre z = 0 e $z = 5 \mathsf{y}$ com orientação normal que aponta para o eixo z.
 - 6. Calcule $\iint_S F \cdot \mathbf{n} dS$, onde:
- a. $F = (xze^y, -xze^y, z)$ e S é a parte do plano x + y + z = 1 no primeiro octante com orientação para baixo.
- b. F = (-x, 0, 2z) e S é a fronteira com a região limitada por z = 1 e $z = x^2 + y^2$, com \mathbf{n} exterior a S.
- 7. Seja Q uma carga elétrica localizada na origem. Pela Lei de Coulomb, a força elétrica F exercida por essa carga sobre uma carga $\mathfrak q$ localizada no ponto (x,y,z) com vetor posição X é $\frac{\varepsilon \mathfrak q Q}{\|x\|^3}X$, onde ε é uma constante. Considere a força por unidade de carga:

$$\mathsf{E}(\mathsf{X}) = \frac{1}{\mathsf{q}} \mathsf{F}(\mathsf{X}) = \frac{\varepsilon \mathsf{Q}}{\|\mathsf{x}\|^3} \mathsf{X} = \frac{\varepsilon \mathsf{Q}(\mathsf{x}, \mathsf{y}, z)}{(\mathsf{x}^2 + \mathsf{y}^2 + z^2)^{3/2}}$$

chamada de campo elétrico de Q. Mostre que o fluxo elétrico de E é igual a $4\pi\epsilon Q$, através de qualquer superfície fechada S que contenha a origem, com normal \mathbf{n} apontando para fora de S. Essa é a Lei de Gauss para uma carga simples.

- 8.Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ de classe C^2 tal que $\nabla^2 f = x^2 + y^2$ e $\frac{\partial f}{\partial z} = 1/3$. Calcule $\iint_S \frac{\partial f}{\partial \mathbf{n}} dS$, onde S é a lata cilíndrica com fundo e sem tampa dada por $x^2 + y^2 = 1$, $0 \le z \le 1$, $x^2 + y^2 \le 1$ e z = 0, com a normal apontando para fora de S.
- 9. Sejam $\mathsf{F} = (\frac{-\mathsf{c} \mathsf{y}}{2} + z e^{\mathsf{x}}, \frac{\mathsf{c} \mathsf{x}}{2} z e^{\mathsf{y}}, \mathsf{x} \mathsf{y})$ com $\mathsf{c} > 0$, e S uma superfície aberta união do hiperbolóide folha $\mathsf{x}^2 + \mathsf{y}^2 \mathsf{z}^2 = 1, 0 \leqslant z \leqslant \sqrt{\mathsf{c}}$ com o disco $\mathsf{x}^2 + \mathsf{y}^2 \leqslant 1, z = 0$. Calcule o valor c sabendo que $\iint_{\mathsf{S}} \mathsf{rot} \mathsf{F} \cdot \mathsf{nd} \mathsf{S} = -6\pi$ com n apontando para fora de S.
- 10. Calcule a circulação do campo $F = (y, xz, z^2)$ ao redor da curva C fronteira do triângulo cortado do plano x+y+z=1 pelo primeiro octante, no sentido horário quando vista da origem.
- 11. Calcule o trabalho realizado pelo campo $\mathsf{F} = (\mathsf{x}^\mathsf{x} + \mathsf{z}^2, \mathsf{y}^\mathsf{y} + \mathsf{x}^2, \mathsf{z}^\mathsf{z} \mathsf{y}^2)$ quando uma partícula se move sob sua influência ao redor da borda da esfera $\mathsf{x}^2 + \mathsf{y}^2 + \mathsf{z}^2 = 4$ que está no primeiro octante, na direção anti-horário quando vista por cima.
- 12. Calcule $\int_C \mathsf{Fdr}$ onde $\mathsf{F} = (-2\mathsf{y} + e^{\sin \mathsf{x}}, -z + \mathsf{y}, \mathsf{x}^2 + e^{\sin \mathsf{x}})$ e C é a curva interseção da superfície $z = \mathsf{y}^2$ com o plano $\mathsf{x} + \mathsf{y} = 1$, orientada no sentido de crescimento de y .