Series Temporales y Predicción Práctica 6

Análisis de una serie temporal

1. Análisis de una serie temporal

1.1. Función de autocorrelación extendida

La función de autocorrelación extendida nos ayudará a decidir que orden AR/MA tiene la serie; función eacf() en R

1.2. Test de Dickey-Fuller Aumentado

El contraste Dickey-Fuller es comúnmente aplicado en econometría para comprobar la presencia de tendencia sobre las series temporales.

El siguiente vídeo os puede ayudar a entender del porque realizar el contraste: https://www.youtube.com/watch?v=fMqwBJrxJ8s

Hipótesis del contraste:

Ho: La serie tiene alguna raíz unitaria (No es estacionaria)

H₁: La serie no tiene ninguna raíz unitaria (Es estacionaria)

Bibliografía:

- http://finanzaszone.com/analisis-y-prediccion-de-series-temporales-con-r-ii-estacionariedad-y-raices-unitarias/
- https://economipedia.com/definiciones/contraste-de-dickey-fuller.html
- http://www3.uah.es/juanmuro/Modelos_econometricos_1502.pdf (página 19-28)

1.3. Diferenciación una serie temporal

En el siguiente enlace: http://estadistica-dma.ulpgc.es/cursoR4ULPGC/14-seriesTemporales.html encontraréis información interesante sobre series temporales y un apartado dedicado a la diferenciación que tenéis a continuación más unos ejemplos.

Diferenciación

Diferenciar una serie temporal X_t en tiempo discreto, consiste en transformar X_t en una nueva serie $D_t^{(1)}$ definida como:

$$D_t^{(1)} = D\left(X_t\right) = X_t - X_{t-1}$$

El procedimiento de diferenciación puede volver a aplicarse sobre una serie previamente diferenciada; obtenemos así las diferencias de segundo orden:

$$D_t^{(2)} = D\left(D_t^{(1)}
ight) = D_t^{(1)} - D_{t-1}^{(1)}$$

En general, la diferencia de orden m se obtiene como:

$$D_t^{(m)} = D\left(D_t^{(m-1)}
ight) = D_t^{(m-1)} - D_{t-1}^{(m-1)}$$

En general la diferenciación es una técnica utilizada habitualmente para eliminar la tendencia en una serie temporal. Las diferencias pueden calcularse también sobre valores de la serie separados un desfase k:

$$D_{t,k}^{(1)} = D\left(X_{t}\right) = X_{t} - X_{t-k}$$

y, en general:

$$D_{t,k}^{(m)} = D_t^{(m-1)} - D_{t-k}^{(m-1)}$$

En series temporales mensuales la diferenciación con desfase k=12 suele recibir el nombre de diferenciación estacional.

En R, la función diff() permite diferenciar una o más veces una serie temporal. Concretamente:

$$D_{t,k}^{(m)} = \mathsf{diff}(X_t, \mathsf{lag} = k, \mathsf{order} = m)$$

1.4. Análisis de los residuos

En la siguiente práctica veremos algunas funciones de R para estudiar si los residuos siguen un ruido blanco:

- Checkresiduals()
- Test de Box-Pierce
- Test de Ljung-Box

Bibliografía:

- https://otexts.com/fpp2/residuals.html
- https://es.wikipedia.org/wiki/Prueba_de_Ljung-Box
- Ruido blanco: https://rpubs.com/Meca/376836

Con todo lo aprendido en las anteriores prácticas más estos dos nuevos conceptos vamos a realizar a continuación una serie de ejercicios prácticos.

Práctica 1.1

En el Campus Virtual encontraréis el fichero "prac6TS_1.txt". Cargad los datos a R y a través de las herramientas disponibles intentad proponed un modelo que pueda ajustar bien estas datos.

Práctica 1.2

En el Campus Virtual encontraréis el fichero "prac6TS_2.txt".

- a) Cargad los datos a R y a través de les herramientas disponibles intentad proponed un modelo que pueda ajustar bien estas datos.
- b) De acuerdo con el modelo propuesto, calculad los estimadores de Yule-Walker de los parámetros correspondientes.

Práctica 1.3

En el Campus Virtual encontraréis el fichero "prac6TS_3.txt". Cargad los datos a R y a través de les herramientas disponibles intentad proponed un modelo que pueda ajustar bien estas datos.

Práctica 1.4

En el Campus Virtual encontraréis el fichero "prac6TS_4.txt". Cargad los datos a R y a través de les herramientas disponibles intentad proponed un modelo que pueda ajustar bien estas datos. Dad respuesta a las siguientes preguntas:

- a) ¿Es un proceso estacionario? En caso que no sea un proceso estacionario, ¿cómo lo podemos hacer estacionario?
- b) En caso de obtener un proceso estacionario ya sea de la serie original o transformándola, ¿qué modelo propondrías para ajustarlo?
- c) De acuerdo con el modelo propuesto, ¿cuál sería la estimación del valor de la serie correspondiente con la última observación? ¿Es una buena estimación? ¿Por qué?