情報領域演習第二 L 演習 (クラス 3) レポート

学籍番号: 1810678

名前: 山田朔也

2019年6月24日

- 問1. (a) まず、与えられた論理式 f の否定 \overline{f} を計算し、それを積和標準形に変形する。その後、積和標準形で表された論理式 \overline{f} のさらに否定 $\overline{\overline{f}}$ を計算することで、和積標準形に変換することができる。これらの計算は全てド・モルガンの法則を適用し、分配律に沿って計算することで求めることが可能である
 - (b) i. まず、与えられた論理式 f_1 の否定 $\overline{f_1}$ を計算する

$$\overline{f_1} = \overline{(x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}\overline{y}z)}
= \overline{(x\overline{y}\overline{z})} \cdot \overline{(x\overline{y}\overline{z})} \cdot \overline{(x\overline{y}z)}
= (\overline{x} + y + z) \cdot (x + \overline{y} + z) \cdot (x + y + \overline{z})
= \overline{xyz} + \overline{x}yz + xyz + xy\overline{z} + x\overline{y}z$$
(1)

更にこの論理式 $\overline{f_1}$ の否定 $\overline{\overline{f_1}}$ を計算すると

$$\overline{\overline{f_1}} = f_1 = \overline{(\overline{xyz} + \overline{x}yz + xyz + xy\overline{z} + x\overline{y}z)}
= \overline{(\overline{xyz})} \cdot \overline{(\overline{x}yz)} \cdot \overline{(xyz)} \cdot \overline{(xyz)} \cdot \overline{(xy\overline{z})} \cdot \overline{(x\overline{y}z)}
= (x + y + z) \cdot (x + \overline{y} + \overline{z}) \cdot (\overline{x} + \overline{y} + \overline{z}) \cdot (\overline{x} + \overline{y} + z) \cdot (\overline{x} + y + \overline{z})$$
(2)

となる。よって、 f_1 の和積標準形は式 (2) のようになる。

ii. まず、与えられた論理式 f_2 の否定 $\overline{f_2}$ を計算する

$$\overline{f_2} = \overline{(\overline{xy}z + \overline{x}y\overline{z} + \overline{x}yz + x\overline{y}z + xy\overline{z})}
= \overline{(\overline{xy}z)} \cdot \overline{(\overline{x}y\overline{z})} \cdot \overline{(\overline{x}yz)} \cdot \overline{(x\overline{y}z)} \cdot \overline{(xy\overline{z})}
= (x + y + \overline{z}) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z}) \cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z)
= xyz + x\overline{yz} + \overline{x}yz$$
(3)

更にこの論理式 $\overline{f_2}$ の否定 $\overline{f_2}$ を計算すると

$$\overline{\overline{f_2}} = f_2 = \overline{(xyz + x\overline{y}\overline{z} + \overline{x}yz)}$$

$$= \overline{(xyz)} \cdot \overline{(x\overline{y}\overline{z})} \cdot \overline{(\overline{x}yz)}$$

$$= (\overline{x} + \overline{y} + \overline{z}) \cdot (\overline{x} + y + z) \cdot (x + \overline{y} + \overline{z})$$
(4)

となる。よって、 f_2 の和積標準形は式 (4) のようになる。

問 2. (a) i. まず、論理式 f_1 のカルノー図は以下の図 1 のようになった。

図 1 f_1 のカルノー図

この図から分かるように、論理式 f_1 は元々これ以上簡略化できない形で表されている。よって

$$f_1 = x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}\overline{y}z \tag{5}$$

となる。

ii. まず、論理式 f_2 のカルノー図は以下の図 2 のようになった。

この図から論理式 f_2 を簡略化すると

$$f_2 = \overline{x}z + y\overline{z} + \overline{y}z \tag{6}$$

となる。

(b) i. まず、キューブ表現における 1 の個数ごとに最小項をグループ化し、変数消去の第 1 段階の表を以下の表 1 にまとめた

表1 第1段階の表

キューブ表現	10 進表現	チェック
001	1	
010	2	
100	4	

この表から分かるように、論理式 f_1 は元々これ以上簡略化できない形で表されている。よって

$$f_1 = x\overline{y}\overline{z} + \overline{x}y\overline{z} + \overline{x}\overline{y}z \tag{7}$$

となる。

ii. まず、変数消去の第1,第2段階の表を以下の表23にまとめた。

表 2 第 1 段階の表

キューブ表現	10 進表現	チェック	
001	1	✓	
010	2	✓	
011	3	✓	
101	5	✓	
110	6	✓	

表 3 第 2 段階の表

キューブ表現	10 進表現	チェック
0-1	1, 3	
01-	2, 3	
-01	1, 5	
-10	2, 6	

これらの表から主項表を作成し、表4にまとめた。

表 4 f_2 の主項表

	1	2	3	5	6
$\overline{x}z(1,3)$	√		√		
$\overline{x}y(2,3)$		√	√		
$\overline{y}z(1,5)$	√			√	
$y\overline{z}(2,6)$		√			√

この表から必要な項は $\bar{x}z$, $y\bar{z}$, $\bar{y}z$ と分かる。よって、論理式 f_2 を簡略化すると

$$f_2 = \overline{x}z + y\overline{z} + \overline{y}z \tag{8}$$

となる。

(c) まず、論理変数の種類数が n で、キューブ表現における 1 の個数が k の時の最小項の数は、最大で

$$\binom{n}{k} \tag{9}$$

と表される。更にここで、変数消去が進み - が l 個ある場合の項の数は、最大で

$$\binom{n}{l} \cdot \binom{n-l}{k} = \binom{n}{k} \cdot \frac{1}{l!} \tag{10}$$

と表される。ここから、比較回数として計算しなければいけないのは — の個数が 0 から n-1 個のときまでなので、最大数は

$$\sum_{l=0}^{n-1} \sum_{k=0}^{n-1} \left(\frac{1}{l!}\right)^2 \binom{n}{k} \binom{n}{k+1} \tag{11}$$

と表され、nが大きくなると実用的ではないのが分かる。

- 問 3. (a) まず、NAND,NOR は論理的完全系であることは既知の事実とする。ここで $\{AND,NOT\}$ と $\{OR,NOT\}$ について考える。 $\{AND,NOT\}$ はそれぞれ組み合わせることで NAND を作ることができる。このとき NAND は論理的完全系なので、 $\{AND,NOT\}$ も論理的完全系である。同様に、 $\{OR,NOT\}$ も組み合わせることで NOR を作ることができる。このとき NOR は論理的完全系なので、 $\{OR,NOT\}$ も論理的完全系である。
 - (b) 一つ上げるとすれば $\{1,AND,XOR\}$ がある。NOT は 1 と入力を XOR にかけることで表す事ができる。AND は含まれている。OR は一度 XOR に入力したものと、一度 AND に入力したものを再び XOR に入力することで表す事ができる。よって、 $\{1,AND,XOR\}$ は論理的完全系の一つの組である。
 - (c) XNOR を NAND で表した回路図を図 3 に表した。

図 3 XNOR を NAND で表した回路図

(d) i. 論理式 f_1 を NOR で表した回路図を図 4 に表した

図 4 f_1 を NAND で表した回路図

ii. 論理式 f_2 を NOR で表した回路図を図 5 に表した

図 5 f_2 を NAND で表した回路図

問 4. 2 進数の入力に 1 を加算した結果を出力する組み合わせ回路を作成し、図 6 に記した。

図 6 1を加算した結果を出力する回路図