

Course Project

Tutorial of EE4146

Presenter: Wuyang LI

E-mail: wuyangli2-c@my.cityu.edu.hk

Department of Electrical Engineering City University of Hong Kong 03/11/2021

Outline

Course Project

- 1. Objective
- 2. Kaggle Competition
- 3. General Pipeline

Basic Techniques

- 1. Better Classifiers
- 2. Better Features
- 3. Offline Validation

Outline

- Course Project
 - 1. Objective
 - 2. Kaggle Competition
 - 3. General Pipeline
- Basic Techniques
 - 1. Better Classifiers
 - 2. Better Features
 - 3. Offline Validation

Objective

Task: 6-class image classification

- Project objective:
 - Find and solve machine learning problems
 - Learn to read official documents and implement machine learning algorithms
 - Optimize your model with offline validation

Kaggle Competition

How to participate:

URL: https://www.kaggle.com/t/5032b0f015b412f29411ddceb93b55c7

- Data Information
 - Train/Test raw images
 - Off-the-shelled image features
 - Tarin set labels (csv file)
- Quick start
 - A baseline folder helping you quickly get start.
- Deadline:
 - 8/12/2021

- ▼ □ raw_images
 - ▶ □ test
- ▶ 🗖 train
- ▼ □ res50_features
 - ▶ □ test feat
 - train_feat
 - train_labels.csv
- ▼ □ naive_baseline
 - feature_extractor.ipynb
 - naive_baseline.ipynb

Kaggle Competition

Result submission

Generate two-column results (.csv)
 Image ID (referred to image name) and Corresponding Predictions. (Arbitrary order is OK)

1	ID	label	
2	0	street	
3	1	forest	
4	2	sea	
5	3	forest	
6	4	street	
7	5	forest	

Evaluation matrix: classification accuracy

$$Accuracy = \frac{Number of correct predictions}{Total number of predictions}$$

- Leaderboard rules:
 - 50% test data for the public leaderboard
 - The other 50% test data for the final rank

#	Team Name	Notebook	Team Members	Score @	Entries	Last
1	naive-baseline		9	0.77636	1	2d

- Scoring
 - 5% performance, 5% report

General Pipeline

General Pipeline (Coding)

Load training labels and training/testing image features (pandas, numpy)

```
# load training data labels
train_labels_info = pd.read_csv('train_labels.csv', header=0)
categories = list(np.unique(train_labels_info['label']))

# load train features
for feat in os.listdir(train_feat_root):
    img_id = int(feat.split('_')[0])
    train_feats.append(np.load(os.path.join(train_feat_root, feat)))
    label = train_labels_info['label'][img_id]
    train_labels.append(cat2num[label])

# load test features and corresponding ID
for feat in os.listdir(test_feat_root):
    img_id = int(feat.split('_')[0])
    test_img_id.append(img_id)
    test_feats.append(np.load(os.path.join(test_feat_root, feat)))
```

2. Improve your training features (Sklearn)

```
# Improve your features using dimensionality reduction
pca = decomposition.KernelPCA(n_components=1024,kernel='rbf')
trainW = pca.fit_transform(trainX)  # fit the training set
valW = pca.transform(valX)  # use the pca model to transform the test set
```

3. Adopt classification algorithms (Sklearn)

```
# Training your classifiers
svmclf =svm.SVC(kernel='linear')
svmclf.fit(trainW, trainY)
predY_svm = svmclf.predict(valW)
acc_svm = metrics.accuracy_score(valY, predY_svm)
print("Kernel PCA svm validation accuracy =", acc_svm)
```

4. Predict on test data and generate submission files (Sklearn)

```
# Generate submission files
predY = svmclf.predict(test_feats)
write_csv_kaggle_sub('naive_baseline.csv', test_img_id, predY)
```

Refer to "naive_baseline.ipynb"

naive_baseline
feature_extractor.ipynb
naive_baseline.ipynb

You can also follow "featre_extractor.ipynb" to extract your own features

Outline

- Course Project
 - 1. Objective
 - 2. Kaggle Competition
 - 3. General Pipeline
- Basic Techniques
 - 1. Better Features
 - 2. Better Classifiers
 - 3. Offline Validation

Better Features: Dimensionality Reduction

Linear dimensionality reduction (PCA, NMF, etc.)
 Project high-dim data on a low-dim linear surface (line, plane, etc.)

- Advantages:
 - Reduce noise (outliers)
 - More abstracted (representative) features
- For classification
 - Accelerate classification
 - Improve accuracy (not always)

Without PCA 89.2% 15.5s

2048D→ 512D 89.3% (+0.1%) 6.8s

sklearn.decomposition.PCA

class sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated power='auto', random state=None)

[source]

Better Features: Dimensionality Reduction

- Non-Linear dimensionality reduction (Kernel PCA)
 Project high-dim data on a low-dim non-flat surface
- How to do it?
 - Apply non-linear transformation on data $\mathbf{x}_i \Rightarrow \phi(\mathbf{x}_i)$
 - Project data on low-dim linear surface (i.e. run PCA on $\phi(\mathbf{x}_i)$)
- Advantages:
 - Reduce noise (outliers)
 - More abstracted (representative) features
 - Introduce more nonlinear representations
- For classification
 - Accelerate classification (not always)
 - Improve accuracy (not always)

```
svmclf = svm.SVC(kernel='linear')
svmclf.fit(trainX, trainY)
predY_svm = svmclf.predict(valX)
acc_svm = metrics.accuracy_score(valY, predY_svm)
print("linear svm accuracy =", acc_svm)
$\square$ 15.5s
linear svm accuracy = 0.8928571428571429
```

Without Kernel PCA 89.2% 15.5s

2048D→ 512D 91.5% (+2.3%) 18.8s

sklearn.decomposition.KernelPCA

class sklearn.decomposition.KernelPCA(n_components=None, *, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver='auto', tol=0, max_iter=None, iterated_power='auto', remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=None) [source]

Better Features: Dimensionality Reduction

Try to find the optimal number of reduced dimension
 e.g. Plotting the curve of accuracy vs. dimension

Better Features: Dimensionality Reduction (Extension)

Linear/ Non-Linear dimensionality reduction

Project high-dim data on a low-dim Euclidean space:

Pair-wise distance is defined as Euclidean distance, e.g. L1/L2/Cosine (dashed lines)

Extension: manifold embedding (T-SNE reduction)

- Advantages:
 - Evaluation the quality of deep features: deep features are always embedded in manifold.

 $class \ sklearn.manifold.TSNE(n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate='warn', n_iter=1000, \\ n_iter_without_progress=300, min_grad_norm=1e-07, metric='euclidean', init='warn', verbose=0, random_state=None, \\ method='barnes_hut', angle=0.5, n_jobs=None, square_distances='legacy') \\ [source]$

Better Features: Better Feature Extractors

- Deep feature extractors
 - ImageNet pre-trained deep feature extractors (VGG / ResNet / EfficientNet / DenseNet)
 - These models have been well-integrated in the torchvision library, and you can easily use them
 - The released features are extracted from ResNet 50
 - ▼ □ res50_features
 - test_feat
 - train_feat
 - More toys you can play with: https://pytorch.org/vision/stable/models.html

Model	Params (M)	CIFAR-10 (%)	CIFAR-100 (%)
alexnet	2.47	22.78	56.13
vgg19_bn	20.04	6.66	28.05
ResNet-110	1.70	6.11	28.86
PreResNet-110	1.70	4.94	23.65
WRN-28-10 (drop 0.3)	36.48	3.79	18.14
ResNeXt-29, 8x64	34.43	3.69	17.38
ResNeXt-29, 16x64	68.16	3.53	17.30
DenseNet-BC (L=100, k=12)	0.77	4.54	22.88
DenseNet-BC (L=190, k=40)	25.62	3.32	17.17

- Linear classifier (SVM/ Logistic Regression):
 Train a linear surface to distinguish two categories
- Support Vector Machines (SVM)
 Maximum margin of "margin points" (support vector)
- How to do it?
 - Define the most neared margin (margin points)

$$d_i = rac{|f(\mathbf{x}_i)|}{||\mathbf{w}||} \qquad \gamma = \min_i rac{|f(\mathbf{x}_i)|}{||\mathbf{w}||}$$

- Maximum the margin
- Soft-SVM:
 - Allow some samples to violate the margin
 - Controlled by C

class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None) [source]

- Support Vector Machines (SVM)
 Maximum Margin of "margin points" (support vector)
- Advantages
 - · Works well on high-dimensional data
 - Fast
- Disadvantages
 - Decision boundary can only be linear

Linear SVM: 91.3%

- Kernel-based classifier
 Similar to Kernel PCA: transform inputs with non-linear kernel function
- A toy example:

- How to do it?
 - Transform input features with kernel function
 Different kernel functions: RBF, Poly-nomal, Sigmoid ,etc.
 - Train a linear classifier in the transformed space.

sklearn.svm.SVC

class sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, $cache_size=200$, $class_weight=None$, verbose=False, $max_iter=-1$, $decision_function_shape='ovr'$, $break_ties=False$, $random_state=None$) [source]

kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'}, default='rbf'

Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

Kernel-based classifier

Similar to Kernel PCA: transform inputs with non-linear kernel function

- Advantages
 - Non-linear decision boundary
 - Kernel function can be used in various data format instead of vector-data
- Disadvantages
 - Sensitive to the used kernel function
 - Computationally expensive on large-scale data (large kernel matrix)

Linear SVM: 91.3%

RBF kernel SVM: 93.3% (+2%)

- Ensemble method: Boosting
 - Training multiple classifiers, each focusing on the errors made by the previous classifiers (larger weight)
- A toy example:

How to do it?

Weighted data sample & weighted classifier

- Choose and train a weak learner with minimized classification error using weighted data
- Set the classifier weight of weak learners according to classification error
- Add to ensemble according to classifier weight : Classifier = A1 classifier + A2 classifier +...
- Update data weight for each sample (To focus on those misclassified data)

- Ensemble method: Boosting
 - Training multiple classifiers, each focusing on the errors made by the previous classifiers
- Advantages
 - Good generalization
 - Build-in feature selection: which feature is more important
- Disadvantages
 - Can be sensitive to outliers

sklearn.ensemble.AdaBoostClassifier

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None) [source]

sklearn.ensemble.GradientBoostingClassifier¶

class sklearn.ensemble.GradientBoostingClassifier(*, loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0) [source]

- Bagging method: Random Forest
 Training multiple classifiers from randomly selected training data
- A toy example:

- How to do it?
 - Train: For each tree (classifier):
 - Create a new subset of data by randomly sampling from all training data
 - Train this tree using sampled subset features
 - Test: For each test sample :
 - Aggregating all predictions given by trees (voting)

- Ensemble method: Random Forest
 - Training multiple classifiers from randomly selected training data
- Advantages
 - Non-linear decision boundary
 - Good generalization
 - Fast in training (in parallel)
- Disadvantages
 - Can be sensitive to outliers
 - Tree-based classifier: hard to represent "diagonal" decision boundary

sklearn.ensemble.RandomForestClassifier¶

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]

Offline Validation

Cross-validation

Run experiments on the training set several times to obtain the optimal setting

- Split training data into batches of training and validation set
- Try different settings on each splitting
- Pick the best one working well on all splitting

Integrated Validation

Sklearn library has integrated grid-search to perform validation automatically and obtain the best parameters

sklearn.model_selection.GridSearchCV

class sklearn.model_selection.GridSearchCV(estimator, param_grid, *, scoring=None, n_jobs=None, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, return_train_score=False) [source]

Summary

- Better features
 - Use some tricks, e.g. dimensionality reduction
 - Use stronger feature extractors (VGG/ ResNet/ DenseNet...)
- Better Classifiers
 - Linear Classifiers (SVM, Logistic Regression)
 - Non-linear Classifier:
 - Kernel-based methods
 - Boosting: Ada boosting/ Gradient boosting...
 - Bagging: Random forest...

Necessary Libraries

- Python: https://www.python.org/ Basic coding language
- Numpy https://numpy.org/Comprehensive matrix calculation library
- Sklearn: https://scikit-learn.org/stable/
 Off-the-shelled machine algorithms
- Matplotlib https://matplotlib.org/
 Do visualization, e.g. plotting figures
- Pytorch*(selective) https://pytorch.org/
 Deep feature extractors

Practice more! Have fun!