

Efficient Model Reconstruction Leveraging Interpretability

Pasan Dissanayake

PhD Advisor: Sanghamitra Dutta Northrop Grumman Tech Lead: Kerry Brown

MOTIVATION

Ever-Increasing Model Size

NORTHROP

GRUMMAN

Resource Constrained **Environments:**

Trust in High-Stakes Applications

HIRING

FINANCE

HEALTHCARE

DEFENSE

AUTONOMY

Can we build **Efficient** and **Trustworthy AI** by systematically leveraging **Interpretability**?

MODEL RECONSTRUCTION USING COUNTERFACTUAL EXPLANATIONS

Dissanayake & Dutta NeurIPS 2024

Model Compression

Replicate A Large Model Using A Small Model

Security

Understand Limits of Model Extraction & Stealing Global Explainability/Audit in High-Stakes ML

Global Understanding From **Local Crowdsourced Information**

This Work: Model Reconstruction using an Interpretability technique called **Counterfactual Explanations**

Counterfactual explanation: "Closest" point on the other side of the decision boundary

Our Problem Setup

For each query, user knows the following: Accepted (Predicted Label =1)

Denied (Predicted Label =0) & Counterfactual (Closest Accepted Point)

How faithfully can one reconstruct a model using counterfactual explanations?

Counterfactuals treated as ordinary labelled instances? Boundary shift issue

Question: Can we improve model reconstruction using counterfactuals specifically leveraging that the counterfactuals are quite close to the boundary?

Main Contribution: New Reconstruction Strategies & Fundamental Limits From Polytope Theory

MAIN RESULTS

1. Convex Decision Boundaries and Closest Counterfactuals

Theoretical guarantees on volume approximation using counterfactuals leveraging polytope theory

2. ReLU Networks and Closest Counterfactuals

 $\mathbb{P}\left[Reconstruction\right] \geq 1 - k(\epsilon)(1 - v^*(\epsilon))^n$

Continuous Piece-Wise Linear (CPWL) Functions

3. Beyond Closest Counterfactuals

Theorem 3.11. Suppose the target m and surrogate \tilde{m} are locally Lipschitz (not necessarily ReLU) such that $m(\mathbf{w}) = m(\mathbf{w})$ for every counterfactual \mathbf{w} . Assume the counterfactuals are well-spaced out and forms a δ -cover over the decision boundary. Then $|\tilde{m}(x) - m(x)| \leq (\gamma_m + \gamma_{\tilde{m}})\delta$, over the target decision boundary.

4. Counterfactual Clamping Attack (CCA)

anger moder mas modern rayers wi	ith neurons (20, 30, 10). Surrog Fidelity over D _{test}			unoguio	Fidelity over D _{uni}				HELOC - Archi
CF method	n=100		n=200		n=100		n=200		- 37.341 (3.830)
	Base.	CCA	Base.	CCA	Base.	CCA	Base.	CCA	- 428.546
MCCF L2-norm	91	95	93	96	91	93	93	95	1.0
MCCF L1-norm	93	95	94	96	89	92	91	95	0.9
DiCE Actionable	93	94	95	95	90	91	93	94	0.8
1-Nearest-Neightbor	93	95	94	96	93	93	94	95	0.7
ROAR [Upadhyay et al., 2021]	91	92	93	95	87	85	92	92	
-CHVAE [Pawelczyk et al., 2020]	77	80	78	82	90	89	85	78	0.6

ferent Lipschitz Constants **-** 37.341 (3.830) **-** 124.902 (22.515)

Query size

Different Model Architectures
 0.91
 0.90
 0.94
 0.93
 0.91
 0.89
 0.93
 0.94
 0.97
 0.97
 0.98
 0.99

 0.91
 0.91
 0.93
 0.94
 0.97
 0.97
 0.98
 0.99

 0.91
 0.91
 0.93
 0.94
 0.91
 0.97
 0.97
 0.97
 0.98
 0.98

CCA outperforms baselines: A small set of curated data points are sufficient for model extraction with high fidelity!

KNOWLEDGE DISTILLATION USING PARTIAL INFORMATION DECOMPOSITION Dissanayake, Hamman, Halder, Sucholutsky, Zhang, Dutta

AISTATS 2025

Benefits of distillation:

- Training is energy/data efficient
- **❖** Simpler student → runs on limited resources (e.g. edge devices)
- **❖** Student can be more interpretable → good for high-stakes applications

Propose using

Redundant Information for Task-Aware Knowledge Distillation

+ Incorporate it into Optimization

This Work: Explain and Quantify knowledge Distillation using **Partial Information Decomposition**

Main Contributions:

Formally show limits of existing distillation frameworks

Quantify the knowledge to distill and the transferred knowledge using PID

 $| I(Y; T) = Uni(Y:T\S) + Red(Y:T,S) \rightarrow constant$

Y = Task, T=Teacher, S=Student

 $|I(Y; S)| = Uni(Y:S\setminus T) + Red(Y:T,S) \rightarrow need to increase$ Provide a new technique of using redundant information as a regularizer

Computationally efficient definition of Redundant Info.:

 $Red_{\cap}(Y:T,S) \coloneqq \max_{P(Q|Y)} I(Y:Q)$ subject to

Definition 4.1 (I_{α} measure – Griffith & Ho, 2015).

Red(Y:T,S)

Syn(Y:T,S)

Propose novel distillation framework – RID – with alternating optimization

MAIN RESULTS

Definition 3.1 (Knowledge to distill). The knowledge to distill from T to S is defined as $Uni(Y : T \setminus S)$, the unique information about Y that is in T but not in S.

Total information in the teacher -- I(Y;T) -- is constant. Therefore,

Definition 3.2 (Transferred knowledge). The <u>transferred knowledge</u> from T to S is defined as Red(Y:T,S), the redundant information about Y between T and S.

Exact computation of PID [Bertschinger et al.'14]: **Definition 3.3** (Unique and redundant information). Let P be the joint distribution of Y, T and S, and Δ be the set of all joint distributions over $Y \times T \times S$. Then,

 $Uni(Y:T\setminus S) := \min_{O\in\Delta_P} I_Q(Y;T\mid S)$ $Red(Y:T,S) := I(Y;T) - \min_{Q \in \Delta_{P}} I_{Q}(Y;T \mid S)$

Theorem 4.1 (Transferred knowledge lower bound). For three

random variables Y, T and S,

 $Red_{\cap}(Y:T,S) \leq Red(Y:T,S)$ where $Red_{\cap}(Y:T,S)$ and Red(Y:T,S) are defined as per Definitions 4.1 and 3.3.

 $I(Y; Q | f_t(T)) = I(Y; Q | f_s(S)) = 0$ New bilevel optimization Set $Q = f_t(T)$ in Definition 4.1 which results in the optimization problem $\max_{t \in S} I(Y : f_t(T; \theta_t)) \text{ subject to } I(Y : f_t(T; \theta_t) | f_s(S; \theta_s, \eta_s)) = 0$ Minimize cross-entropy Regression – minimize MSE

Our strategy leads to more effective task-relevant distillation: RID resists against nuisance or non-informative teachers, more robust to teacher instabilities

Experiments on

OTHER SELECTED WORKS

Quantifying Prediction Consistency Under Model Multiplicity in Tabular LLMs

Hamman, Dissanayake, Mishra, Lecue, Dutta, ICML 2025.

Few-Shot Knowledge Distillation of LLMs With

ImageNet → CUB-200-2011: Transfer Learning

Counterfactual Explanations Hamman, Dissanayake, Fu, Dutta, In Review.

32

	Amazon	+CoD	0.758 ± 0.027	0.795 ± 0.033	$0.819_{\pm 0.035}$	0.812 ± 0.004	0.837 ± 0.014	0.860 ±0.015
DeBERT-v3 and Qwen2.	5 Polarity	LWD +CoD	0.676 ±0.090 0.724 ±0.052	0.738 ±0.033 0.779 ±0.056	0.777 ±0.009 0.811 ±0.015	0.809 ±0.015 0.828 ±0.015	0.827 ±0.025 0.816 ±0.020	0.842 ±0.019 0.841 ±0.013
families	CoLA	KD +CoD	0.693 ±0.062 0.739 ±0.026	0.707 ±0.029 0.755 ±0.017	0.721 ±0.012 0.769 ±0.011	0.747 ±0.005 0.769 ±0.016	0.758 ±0.009 0.772 ±0.006	0.771 ±0.003 0.791 ±0.004
and 6 benchmark datase		LWD + CoD	0.713 ±0.031 0.730 ±0.035	0.698 ±0.037 0.744 ±0.031	0.731 ±0.021 0.762 ±0.011	0.744 ±0.007 0.752 ±0.009	$0.750 \pm 0.018 \\ 0.756 \pm 0.010$	0.761 ±0.011 0.784 ±0.003
(NLP tasks)	IMDB	KD + CoD	$\begin{array}{c} 0.714 \pm 0.047 \\ \textbf{0.835} \pm 0.078 \end{array}$	$\begin{array}{c} 0.817 \pm 0.028 \\ \textbf{0.888} \pm 0.005 \end{array}$	$\begin{array}{c} 0.875 \pm 0.027 \\ \textbf{0.890} \pm 0.011 \end{array}$	$0.896 \pm 0.008 \\ 0.899 \pm 0.007$	0.912 ±0.009 0.907 ±0.006	0.917 ±0.006 0.913 ±0.005
(1121 (33)		LWD + CoD	$0.760 \pm 0.046 \\ 0.861 \pm 0.017$	$0.836 \pm 0.045 \\ 0.886 \pm 0.011$	$0.875 \pm 0.024 \\ 0.893 \pm 0.006$	$\begin{array}{c} 0.889 {\scriptstyle \pm 0.013} \\ \textbf{0.898} {\scriptstyle \pm 0.005} \end{array}$	$0.905 \pm 0.008 \\ 0.905 \pm 0.010$	0.914 ±0.006 0.913 ±0.010
Achieves More With Less:	SST2	KD + CoD	$0.617 \pm 0.042 \\ 0.719 \pm 0.063$	$0.712 \pm 0.052 \\ 0.781 \pm 0.034$	0.757 ± 0.063 0.821 ± 0.013	$0.820 \pm 0.019 \\ 0.827 \pm 0.008$	0.848 ±0.013 0.853 ±0.015	0.899 ±0.007 0.892 ±0.018
		LWD + CoD	0.627 ±0.053 0.694 ±0.079	0.721 ±0.055 0.785 ±0.028	0.776 ±0.031 0.832 ±0.011	$0.817 \pm 0.005 \\ 0.830 \pm 0.007$	0.829 ±0.013 0.835 ±0.012	0.892 ±0.012 0.880 ±0.020
Improves accuracy in few-	Yelp	KD + CoD	0.714 ±0.058 0.740 ±0.094	0.817 ±0.031 0.832 ±0.045	0.855 ±0.021 0.860 ±0.018	0.878 ±0.006 0.874 ±0.006	0.885 ±0.018 0.888 ±0.013	0.916 ±0.007 0.913 ±0.011
shot settings		LWD + CoD	0.733 ±0.070 0.738 ±0.093	0.832 ±0.026 0.865 ±0.010	0.857 ±0.011 0.870 ±0.017	0.868 ±0.006 0.871 ±0.019	0.881 ±0.017 0.885 ±0.007	0.920 ±0.010 0.913 ±0.013
with as low as 8, 16, 32 samples	Sentiment140	KD + CoD	0.580 ±0.039 0.629 ±0.036	0.597 ±0.042 0.640 ±0.048	0.645 ±0.023 0.731 ±0.022	0.690 ±0.035 0.754 ±0.017	0.752 ±0.011 0.778 ±0.007	0.802 ±0.006 0.784 ±0.019
Samples		LWD + CoD	0.581 ±0.041 0.628 ±0.034	0.593 ±0.039 0.652 ±0.038	0.665 ±0.027 0.706 ±0.016	0.708 ±0.029 0.741 ±0.014	0.751 ±0.009 0.729 ±0.063	0.785 ±0.019 0.760 ±0.023

References:

- [1] Y. Wang, H. Qian, and C. Miao. DualCF: Efficient model extraction attack from counterfactual explanations. In ACM FAccT 2022. [2] C. Yadav, M. Moshkovitz, and K. Chaudhuri. Xaudit: A theoretical look at auditing with explanations. arXiv:2206.04740, 2023.
- [3] N. Bertschinger, J. Rauh, E. Olbrich, J. Jost, N. Ay, Quantifying Unique Information. Entropy, 2014.
- [4] V. Griffith and T. Ho. Quantifying redundant information in predicting a target random variable. Entropy, 2015. [5] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, & Z. Dai, Variational information distillation for knowledge transfer. IEEE CVF 2019.
- [6] P. P. Liang et al., Quantifying & modeling multimodal interactions: An information decomposition framework. NeurIPS 2023.

Total Runtime (hrs)