Use row operations on the matrix $A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 1 & -2 & 6 & 3 \\ 2 & 4 & -6 & -2 \end{pmatrix}$ to obtain an upper triangular

matrix, then use Theorem 59 to find $\det A$. (You will get no credit for using a row/column expansion.)

We have

$$\det A = \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 3 & 2 \\ 1 & -2 & 6 & 3 \\ 2 & 4 & -6 & -2 \end{pmatrix}$$

$$= \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & -2 & 4 & 2 \\ 0 & 4 & -10 & -4 \end{pmatrix}$$

$$= \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & -12 & -6 \end{pmatrix}$$

$$= -6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

$$= 6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

$$= 6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \end{pmatrix}$$

$$= 6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 5 & 3 \end{pmatrix}$$

$$= 6 \det \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$= 6(1)(2)(2) \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$= 12$$

Let
$$T = T_A : \mathbb{Q}^5 \to \mathbb{Q}^5$$
 where $A = \begin{pmatrix} 1 & 0 & 1 & -2 & 0 \\ 3 & 0 & 1 & 0 & -2 \\ 2 & 0 & 0 & 2 & -2 \\ 2 & 0 & 0 & 1 & -2 \\ 2 & 0 & 1 & -2 & -1 \end{pmatrix}$.

(a) Find C_T and the eigenvalues of T.

$$C_{T}(\lambda) = \det(\lambda I - T)$$

$$= \det\begin{pmatrix} \lambda - 1 & 0 & -1 & 2 & 0 \\ -3 & \lambda & -1 & 0 & 2 \\ -2 & 0 & \lambda & -2 & 2 \\ -2 & 0 & 0 & \lambda - 1 & 2 \\ -2 & 0 & -1 & 2 & \lambda + 1 \end{pmatrix}$$

$$= -\lambda \det\begin{pmatrix} \lambda - 1 & -1 & 2 & 0 \\ -2 & \lambda & -2 & 2 \\ -2 & 0 & \lambda - 1 & 2 \\ -2 & -1 & 2 & \lambda + 1 \end{pmatrix}$$

$$= -\lambda \det\begin{pmatrix} \lambda + 1 & 0 & 0 & -\lambda - 1 \\ -2 & \lambda & -2 & 2 \\ -2 & 0 & \lambda - 1 & 2 \\ -2 & -1 & 2 & \lambda + 1 \end{pmatrix}$$

$$= -\lambda \left((\lambda + 1) \det\begin{pmatrix} \lambda & -2 & 2 \\ 0 & \lambda - 1 & 2 \\ -2 & -1 & 2 & \lambda + 1 \end{pmatrix} + (\lambda + 1) \det\begin{pmatrix} -2 & \lambda & -2 \\ -2 & 0 & \lambda - 1 \\ -2 & -1 & 2 \end{pmatrix} \right)$$

$$= \lambda(\lambda + 1) \left(-(\lambda - 1)(\lambda(\lambda + 1) + 2) + 2(2\lambda - 2) + -2(2\lambda - 2) + (\lambda - 1)(2 + 2\lambda) \right)$$

$$= \lambda(\lambda + 1) \left((\lambda - 1)(2 - \lambda - \lambda^{2} - 2 + 2\lambda) \right)$$

$$= \lambda(\lambda + 1)(\lambda - 1)(\lambda - \lambda^{2})$$

$$= -\lambda^{2}(\lambda - 1)^{2}(\lambda + 1)$$

The eigenvalues are the roots of C_T , which are $\lambda = 0, 1, -1$.

(b) For each eigenvalue, find a basis for the corresponding eigenspace. For $\lambda = 0$ we solve the equation Ax = 0 via row reduction:

$$\begin{pmatrix} 1 & 0 & 1 & -2 & 0 & | & 0 \\ 3 & 0 & 1 & 0 & -2 & | & 0 \\ 2 & 0 & 0 & 2 & -2 & | & 0 \\ 2 & 0 & 0 & 1 & -2 & | & 0 \\ 2 & 0 & 1 & -2 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & -2 & 0 & | & 0 \\ 0 & 0 & -2 & 6 & -2 & | & 0 \\ 0 & 0 & -2 & 5 & -2 & | & 0 \\ 0 & 0 & -1 & 2 & -1 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 3 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & -1 & 0 & | & 0 \\ 0 & 0 & 0 & -1 & 0 & | & 0 \end{pmatrix}$$

We get that $x_1 = 0, x_4 = 0, x_3 + x_5 = 0$. We parametrize $x_2 = t, x_3 = s$ and get

$$x = \begin{pmatrix} 0 \\ t \\ s \\ 0 \\ -s \end{pmatrix} = te_2 + s \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$

Thus a basis for $E_0(T)$ is $\left\{ e_2, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \right\}$.

For $\lambda = 1$, to solve (A - I)x = 0, we get the system

$$\begin{pmatrix} 0 & 0 & 1 & -2 & 0 & | & 0 \\ 3 & -1 & 1 & 0 & -2 & | & 0 \\ 2 & 0 & -1 & 2 & -2 & | & 0 \\ 2 & 0 & 0 & 0 & -2 & | & 0 \\ 2 & 0 & 1 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 1 & -2 & 0 & | & 0 \\ 1 & -1 & 2 & -2 & 0 & | & 0 \\ 2 & 0 & -1 & 2 & -2 & | & 0 \\ 0 & 0 & 1 & -2 & 0 & | & 0 \\ 0 & 0 & 2 & -4 & 0 & | & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 0 & 0 & 1 & -2 & 0 & | & 0 \\ 1 & -1 & 0 & 2 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

We parametrize $x_4 = t, x_5 = s$ to get

$$x = \begin{pmatrix} s \\ 2t + s \\ 2t \\ t \\ s \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$

Thus a basis for
$$E_1(T)$$
 is $\left\{ \begin{pmatrix} 1\\1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\2\\1\\0 \end{pmatrix} \right\}$.

$$\begin{array}{c|ccccc}
 & (1/& 0/) \\
 & \text{solve } (A+I)x = 0: \\
 & \begin{pmatrix} 2 & 0 & 1 & -2 & 0 & | & 0 \\
 3 & 1 & 1 & 0 & -2 & | & 0 \\
 2 & 0 & 1 & 2 & -2 & | & 0 \\
 2 & 0 & 0 & 2 & -2 & | & 0 \\
 2 & 0 & 1 & -2 & 0 & | & 0 \end{pmatrix}
 & \rightarrow \begin{pmatrix} 2 & 0 & 1 & -2 & 0 & | & 0 \\
 1 & 1 & 0 & 2 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}
 & \rightarrow \begin{pmatrix} 1 & 1 & 0 & 2 & -2 & | & 0 \\
 2 & 0 & 1 & -2 & 0 & | & 0 \\
 0 & 0 & -1 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}
 & \rightarrow \begin{pmatrix} 1 & 1 & 0 & 2 & -2 & | & 0 \\
 0 & -2 & 0 & 0 & 2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}
 & \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & -1 & | & 0 \\
 0 & -2 & 0 & 0 & 2 & | & 0 \\
 0 & 0 & 0 & 0 & 0 & | & 0 \\
 0 & 0 & 0 & 4 & -2 & | & 0 \\
 0 & 0 & 0 & 0 & 0 & | & 0 \\
 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\
 0 & 0 & 0 & 0 & 0 & | & 0 \\
 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\
 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\
 0 & 0 & 0 & 1 & -\frac{1}{2} & 0
 \end{pmatrix}$$

Let $x_5 = t$. The general solution is

$$x = t \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

So a basis for $E_{-1}(T)$ is $\left\{ \begin{pmatrix} 0\\2\\0\\1\\0 \end{pmatrix} \right\}$.

(c) Determine if T is diagonalizable, and if so, find a basis β so that $[T]_{\beta}$ is diagonal. Since the dimension of each eigenspace matches the algebraic multiplicity of each corresponding eigenvalue, T is diagonalizable and the basis β that makes $[T]_{\beta}$ diagonal is exactly the basis consisting of the basis vectors of each eigenspace. In particular,

$$\beta = \left\{ e_2, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

- (a) Read the proof of Theorem 58 from the additional file in the Week 10 Readings on the course page.
- (b) Prove Part 1 of Theorem 59 using a strategy similar to the proof of Theorem 58. (You cannot use other parts of Theorem 59 in this proof.)

Let $A \in M_n(\mathbb{F})$ with $n \geq 2$. If A has a row of 0's, then det A = 0.

Proof. Write $A = \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$, where r_j represents the rows of A. Suppose that $r_i = \vec{0}$. If i = 1,

the result is immediate by cofactor expansion. Otherwise, if i > 1, we do induction on n. Let n = 2. The only possibility is i = 2, so denote

$$A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}.$$

From here, it is easy to see that $\det A = 0$.

Now, suppose that this is true for some n. We will show that it is true for n+1. Define $\tilde{r}_{j,k}$ to be the row obtained by deleting the kth entry of r_j . Using cofactor expansion along the first row, we have

$$\det A = \sum_{k=1}^{n+1} A_{1k} \det \tilde{A}_{1k}$$

Observe that \tilde{A}_{1k} are $n \times n$ matrices, and since the *i*th row was 0 in the original matrix (and i > 1), the i-1th row in \tilde{A}_{1k} is 0, so by the induction hypothesis det $\tilde{A}_{1k} = 0$, thus det A = 0 and we are done.

Г

Assume that Parts 1 and 2 of Theorem 59 have been proved. You cannot use Parts 4 through 7 of Theorem 59 in the following problem.

- (a) Prove Part 3 using induction on n. (Check n = 1, 2 by hand, then in the inductive step assume $n + 1 \ge 3$.)
- (b) Prove Part 4 using row-swapping matrices and properties of determinants.

Proof.

(a):

We prove Part 3 using induction on n.

Let n=1. The statement is vacuously true, as A cannot have 2 identical rows.

Let n=2. Then it must be true that

$$A = \begin{pmatrix} a & b \\ a & b \end{pmatrix}$$
, for $a, b \in \mathbb{F}$.

Then $\det A = ab - ab = 0$ as expected.

Now, suppose that this statement is true for some $n \in \mathbb{N}$, where n > 1. We will show it also holds for n + 1. Let r_i, r_j be the identical rows. Since n + 1 > 2, we are guaranteed to have one other row r_k that is not r_i or r_i . We perform a row k expansion of det A and see that

$$\det A = \sum_{l=1}^{n+1} A_{kl} \det \tilde{A}_{kl}$$

Notice that A_{kl} is a $n \times n$ matrix, and contain both r_i and r_j with the lth entry deleted. But these rows are still identical because the same entry got deleted. By the induction hypothesis,

$$\det A = \sum_{l=1}^{n+1} A_{kl} 0 = 0$$

which was what we wanted.

(b):

Suppose that B is obtained from A by swapping row i and row j. Denote these rows as r_i, r_j respectively. Using linearity in one row of the determinant, and the previous result we proved,

$$0 = \det \begin{pmatrix} r_1 \\ \vdots \\ r_i + r_j \\ \vdots \\ r_i + r_j \\ \vdots \\ r_n \end{pmatrix} = \det \begin{pmatrix} r_1 \\ \vdots \\ r_i \\ \vdots \\ r_i + r_j \\ \vdots \\ r_n \end{pmatrix} + \det \begin{pmatrix} r_1 \\ \vdots \\ r_j \\ \vdots \\ r_i + r_j \\ \vdots \\ r_n \end{pmatrix}$$

$$\implies 0 = \det \begin{pmatrix} r_1 \\ \vdots \\ r_i \\ \vdots \\ r_j \\ \vdots \\ r_n \end{pmatrix} + \det \begin{pmatrix} r_1 \\ \vdots \\ r_i \\ \vdots \\ r_n \end{pmatrix} + \det \begin{pmatrix} r_1 \\ \vdots \\ r_j \\ \vdots \\ r_i \\ \vdots \\ r_n \end{pmatrix} + \det \begin{pmatrix} r_1 \\ \vdots \\ r_j \\ \vdots \\ r_j \\ \vdots \\ r_n \end{pmatrix}$$

$$\implies 0 = \det A + 0 + \det B + 0$$

as needed

٥

Prove that if $U \in M_{n \times n}(F)$ is upper triangular, then $\det U = \prod_{i=1}^n U_{ii}$.

Proof. We proceed using induction on n. If n = 1, the result is immediate. Suppose that the statement holds for some $n \in \mathbb{N}$. We will show the same is the case for n + 1. Let $U \in M_{n+1}(\mathbb{F})$ be upper triangular. We have

$$\det U = \sum_{j=1}^{n+1} U_{1j} \det \tilde{U}_{1j}.$$

For $j \neq 1$, notice that the entries of the first column of \tilde{U}_{1j} are 0, as $(\tilde{U}_{1j})_{i1} = U_{(i+1)1} = 0$. Thus

$$\det \tilde{U}_{1j} = \det \tilde{U}_{1j}^t = 0$$

as the transpose has a row of 0's. The cofacter expansion of $\det U$ reduces to

$$\det U = U_{11} \det \tilde{U}_{11}$$

but $\tilde{U}_{11} \in M_n(\mathbb{F})$ is upper triangular, so

$$\det U = U_{11} \prod_{i=1}^{n} \tilde{U}_{ii} = U_{11} \prod_{i=2}^{n+1} U_{ii} = \prod_{i=1}^{n+1} U_{ii}.$$

which completes the proof.

 \Box

Let V be a vector space over F, and $T: V \to V$ a linear map. If $W \subseteq V$ is a T-invariant subspace, then we can restrict T to W, to obtain a map $T_W: W \to W$. We call T_W the restriction map.

- (a) Let β_W be a basis for W. In HW#3 we proved that if $\beta = \beta_W \beta_1$ is an extension of β_W to a basis for V, then $[T]_{\beta} = \begin{pmatrix} A & B \\ \hline O & C \end{pmatrix}$. Prove that $A = [T_W]_{\beta_W}$.
- (b) Let $M = \begin{pmatrix} A & B \\ \hline O & C \end{pmatrix}$. Prove that $\det M = \det A \det C$.

Proof.

(a):

Let $n = \dim V$, $k = \dim W$. Denote $\beta = \{w_1, ..., w_n\}$. Then the *j*th column of $\left(\frac{A}{O}\right)$ is $[T(w_j)]_{\beta}$, so

$$T(w_j) = \sum_{i=1}^k A_{ij} w_i.$$

But since $w_i \in W$, we have

$$T_W(w_j) = T(w_j) = \sum_{i=1}^k A_{ij} w_i.$$

which implies that $[T_W(w_j)]_{\beta_W}$ is exactly the jth column of A, from which we can conclude that $[T_W]_{\beta_W} = A$.

(b):

We will use the following 2 lemmas:

Lemma 1: Let k < n. For matrices $B \in M_{k \times (n-k)}(\mathbb{F})$, $C \in M_{(n-k) \times (n-k)}(\mathbb{F})$, Let $M = \left(\frac{I_k \mid B}{O \mid C}\right) \in M_n(\mathbb{F})$. Then det $M = \det C$.

Proceed using induction on k. If k=1, then

$$\det M = \det C + \sum_{j=2}^{n} M_{1j} \det \tilde{M}_{1j}.$$

For j > 1, \tilde{M}_{1j} has a column full of 0's, so $\det \tilde{M}_{1j} = 0$ and the result follows. Now suppose that the lemma is true for some $k \in \mathbb{N}$. Using a similar argument,

$$\det M = \sum_{j=1}^{n} M_{1j} \det \tilde{M}_{1j} = \det \tilde{M}_{11} + \sum_{j=k+2}^{n} M_{1j} \det \tilde{M}_{1j} = \det \tilde{M}_{11}$$

Notice that \tilde{M}_{11} satisfies our assumption in the induction hypthoesis, so det $M = \det \tilde{M}_{11} = \det C$.

Lemma 2:
$$\det \left(\frac{A \mid O}{O \mid I} \right) = \det A$$
.

The proof is analogous to the proof of Lemma 1, so we omit it. We now proceed with the main result.

First, consider the case where A is not invertible. Then its columns are linearly dependent. But this means that M also has linearly dependent columns, so $\det M = 0 = \det A \det C$.

Otherwise, if A is invertible, define
$$N = \begin{pmatrix} A^{-1} & O \\ O & I \end{pmatrix}$$
. Then $MN = \begin{pmatrix} I & B \\ O & C \end{pmatrix}$ and we get

$$\det C = \det MN = \det M \det N = \det M \det A^{-1} = \frac{\det M}{\det A}$$

$$\implies \det M = \det A \det C$$

and we are done.

Г

Question 7.

Deduce from Question 6 that if W is a T-invariant subspace, then C_{T_W} divides C_T .

Proof. Suppose that W is a T-invariant subspace. Fix a basis β such that $[T]_{\beta} = \left(\frac{[T_W]_{\beta_W}}{C} \mid B\right)$. Then

$$C_T(\lambda) = \det(\lambda I - T) = \det\left(\frac{\lambda I_k - [T_W]_{\beta_W}}{O} \frac{-B}{\lambda I_{n-k} - C}\right) = \det(\lambda I_k - T_W) \det(I_{n-k} - C)$$

 $C_T(\lambda) = C_{T_W}(\lambda) \det(I_{n-k} - C)$

as expected.

Let V be a finite-dimensional vector space over a field F, and $W_1, W_2 \subseteq V$ subspaces so that $V = W_1 \oplus W_2$. Define the projection maps $P_i : V \to V$ by $P_i(x) = x_i$ where $x = x_1 + x_2$ with $x_1 \in W_1$ and $x_2 \in W_2$.

- (a) Prove that P_i is linear.
- (b) Prove that $P_i^2 = P_i$
- (c) Prove that each W_i is P_i -invariant
- (d) Determine if P_i is diagonalizable and justify your answer.

Proof. For convenience, we will prove the statements for P_1 , as the argument for P_2 will be the exact same.

(a):

Let $x, y \in V$, $c \in \mathbb{F}$. Write $x = x_1 + x_2, y = y_1 + y_2$, where $x_i, y_i \in W_i$. Then

$$P_1(cx+y) = P_1(cx_1 + y_1 + cx_2 + y_2) = cx_1 + y_1 = cP_1(x) + P_i(y)$$

(b):

Let $x = x_1 + x_2 \in V$. Then $P_1(x) = x_1$. Notice that $x_1 = x_1 + 0$, so $P_1^2 x = P_1(x_1) = x_1 = P_1(x)$.

(c):

As we have shown above, for $x_1 \in W_1$, $P_1(x_1) = x_1 \in W_1$, so W_1 is P_1 -invariant. For $x_2 \in W_2$ we have $P_1(x_2) = 0 \in W_2$, so W_2 is also P_1 -invariant.

(d):

Let n_1 be the dimensions of W_1 . Choose $\beta = \beta_1 \cup \beta_2$ to be a basis for V, where β_1, β_2 are bases for W_1, W_2 respectively. Based on part (c), we have

$$[P_1]_{\beta} = \left(\frac{I_{n_1} \mid O}{O \mid O}\right)$$

which is a diagonal matrix, so P_1 is diagonalizable.

In this problem, we carefully define the direct sum for more than two subspaces. Let $W_1, \ldots, W_k \subseteq V$ be subspaces. We say $V = W_1 \oplus \cdots \oplus W_k$ if:

- $\bullet \ V = W_1 + \dots + W_k$
- For each $i \in \{1, \dots, k\}$, we have $W_i \cap \left(\sum_{j \neq i} W_j\right) = \{0\}$.
- (a) Let V be an n-dimensional vector space. Prove that every basis β for V gives a direct sum decomposition $V = W_1 \oplus \cdots \oplus W_n$ where dim $W_i = 1$.
- (b) Prove the converse of (a): If $V = W_1 \oplus \cdots \oplus W_n$ with $\dim W_i = 1$, then choosing non-zero $w_i \in W_i$ forms a basis $\beta = \{w_1, \ldots, w_n\}$ for V.
- (c) Let $T: V \to V$ be linear, and $V = W_1 \oplus \cdots \oplus W_k$, where each W_i is T-invariant. Let β_i be a basis for W_i , and set $\beta = \beta_1 \cup \cdots \cup \beta_k$. Show that $[T]_{\beta} = \begin{pmatrix} A_1 & O & \cdots & O \\ \hline O & A_2 & O & O \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline O & \cdots & O & A_k \end{pmatrix}$ is block diagonal.

Proof.

(a):

For each basis element w_i , set $W_i = \operatorname{span}(w_i)$. It is immediate that $V = W_1 + \cdots + W_n$. Only the second condition remains to be shown. Let $i \in \{1, ..., n\}$. Let $v \in W_i \cap \left(\sum_{j \neq i} W_j\right)$. This means that for some $c_i \in \mathbb{F}$, $-c_i w_i = v = \sum_{j \neq i} c_j w_j$. We rearrange to get that $\sum_{j=1}^n c_i w_i = 0$. By linear independence of β , $c_i = 0$, so v = 0. Thus $V = W_1 \oplus \cdots \oplus W_n$.

(b)

Suppose that $V = W_1 \oplus \cdots \oplus W_n$. From each W_i pick a $w_i \neq 0$. Since dim $W_i = 1$, $\{w_i\}$ is actually a basis for W_i . Now, we show that $\beta = \{w_1, \ldots, w_n\}$ forms a basis for V. Let $v \in V$. Then $v = v_1 + \cdots + v_n$, where $v_i \in W_i$. But each v_i can be written as $c_i w_i$, for some $c_i \in \mathbb{F}$, so

$$v = \sum_{i=1}^{n} c_i w_i$$

Next, let $\sum_{i=1}^{n} c_i w_i = 0$. For each $j \in \{1, ..., n\}$ We have that $-c_j w_j = \sum_{i \neq j} c_i w_i$. This means that $-c_j w_j$ is an element of both W_j and $\left(\sum_{i \neq j} W_i\right)$, so $-c_j w_j = 0$, meaning $c_j = 0$ for each j. Thus we can conclude that β is a basis for V.

(c)

Proceed by using induction on k. If k = 1, the entire matrix itself is the block, so the result is trivial.

Suppose the statement holds for some k. We want to show it for k+1. Let $V=W_1\oplus \cdots \oplus W_k\oplus W_{k+1}$. Since each W_i is T-invariant, it follows that $W':=W_1\oplus \cdots \oplus W_k$ is T-invariant.

Thus

$$[T]_{\beta} = \left(\frac{A \mid O}{O \mid A_{k+1}}\right)$$

where $A = [T_{W'}]_{\beta'}$, $A_{k+1} = [T_{W_{k+1}}]_{\beta_{k+1}}$, and $\beta' = \beta_1 \cup \cdots \cup \beta_k$. Note that the top right quadrant is O because W_{k+1} is T-invariant. Finally, by our induction hypothesis, A is actually block diagonal, so

$$[T]_{\beta} = \begin{pmatrix} A & O \\ \hline O & A_{k+1} \end{pmatrix} = \begin{pmatrix} A_1 & O & \cdots & O \\ \hline O & A_2 & O & O \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline O & \cdots & O & A_k \end{pmatrix}$$

and we are done.

Question 10.

Let $W_1, \ldots, W_k \subseteq V$ be subspaces of V with bases β_1, \ldots, β_k . Prove that $V = W_1 \oplus \cdots \oplus W_k$ if and only if $\beta = \beta_1 \cup \cdots \cup \beta_k$ is a basis for V.

Proof. We proceed with induction on k. For k = 1, the result is obvious. Now suppose it holds for some k. Then using a result from the first homework, $V = W_1 \oplus \cdots \oplus W_{k+1}$ if and only if $\beta' \cup \beta_{k+1}$ is a basis for V, where $\beta' = \beta_1 \cup \cdots \cup \beta_k$ is a basis for $W_1 \oplus \cdots \oplus W_k$, which we know from the induction hypothesis. Thus $\beta = \beta_1 \cup \cdots \cup \beta_{k+1}$, so the equivalence in statements has been shown

Question 11.

Determine whether the following statements are true or false. Justify your answers.

- (a) If $V = W_1 \oplus W_2$ and T_{W_1}, T_{W_2} are diagonalizable, then T is diagonalizable.
- (b) If $W_i \cap W_j = \{0\}$ for $i \neq j$ and $V = W_1 + W_2 + W_3$, then $V = W_1 \oplus W_2 \oplus W_3$.
- (c) Let V be a finite dimensional vector space over \mathbb{F} and $T: V \to V$ be a linear map. If $\dim V = 7$, $\dim N(T) = 3$, and $\operatorname{rank}(T I) = 4$, then T is diagonalizable.

Proof.

(a):

This statement is true. Suppose that $V = W_1 \oplus W_2$ and T_{W_1}, T_{W_2} are diagonalizable. Pick bases β_1, β_2 for W_1, W_2 such that $A = [T_{W_1}], B = [T_{W_2}]$ are diagonal. It follows that $\beta = \beta_1 \cup \beta_2$ is a basis for V and moreover

$$[T]_{\beta} = \left(\frac{A \mid O}{O \mid B}\right)$$

which is diagonal.

(b):

This statement is true. Let $\beta_1, \beta_2, \beta_3$ be bases for W_1, W_2, W_3 . Since $W_1 \cap W_2 = \{0\}$, then $W' = W_1 + W_2$ is a direct sum of the subspaces W_1 and W_2 and a basis for W' is given by $\beta' = \beta_1 \cup \beta_2$. As well, from our assumption, $\beta_1, \beta_2, \beta_3$ are pairwise disjoint so β_3 is disjoint from β' . It follows that $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ is a basis for $V = W_1 + W_2 + W_3$, so we indeed have $V = W_1 \oplus W_2 \oplus W_3$.

(c):

Ш