

Apellidos:

Nombre: D.N.I.:

Introducción a la Programación - E.P. de Ingeniería de Gijón 17 de Enero de 2019

1.	(1 p)	Suponiendo	que ya has	declarado un	a variable o	de tipo er	ntero x ,	declara,	con una so	$la\ instrucci$	$i\acute{o}n$, un v	ector que
	conter	nga los siguie	entes valores	s reales: el m	ismo valor	que el de	e x, la r	nitad del	valor de x	, el valor c	onstante	e 3,1416.

2. (2 p) Dada la siguiente definición de variables y sus valores iniciales,

indica para las siguientes expresiones, si son o no correctas (SI/NO), en caso de resultar incorrectas JUSTIFICA por qué lo son, y en el caso de ser correctas indica el TIPO y el VALOR que producen.

Nota: Los dígitos, al igual que las letras del alfabeto, ocupan posiciones consecutivas en la tabla de códigos.

		Tipo	Valor	Motivo
s == t	□Si □No			
12 = x + y	□Si □No			
r - x == '0'	□Si □No			
x = y = s + t	□Si □No			

3. (3 p) Suponiendo que $N \ge 0$ es **par** indica cuántos asteriscos imprime cada uno de los bucles siguientes, así como el valor de la variable i a la salida del bucle.

<pre>int i = 1; while (i != N) { System.out.print('*'); i+=2; }</pre>	<pre>for (int i = 1; i <= 2*N; i+=2) { System.out.print('*'); }</pre>	<pre>int i = 0; do { i += 2; System.out.print('*'); } while (i <= N);</pre>
¿Cuántos asteriscos?	¿Cuántos asteriscos?	¿Cuántos asteriscos?
¿Valor de i?	¿Valor de i?	¿Valor de i?

4. (6 p) Implementa un método seno(x, n) que calcule de forma aproximada el seno del ángulo x (expresado en radianes) utilizando los n primeros términos de la siguiente serie de McLaurin:

$$\mathrm{sen}(x) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{(2i-1)!} x^{2i-1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots \qquad \text{Notas: Atención a la alternancia de signo en la suma de términos. Puedes utilizar Math.pow() y factorial(), a unque éste último deberás implementarlo también.}$$

(2 p) Dadas las variables enteras $i, j y k$, y utilizando sintáxis de lenguaje Java escequivalentes a las siguientes expresiones:	ribe las condiciones boolean
El valor de i está en el intervalo $[j,k]$	
i es múltiplo de j pero j no es divisor de k	
i,jy k son las longitudes de los lados de un triángulo (la suma de dos cualesquiera es	s mayor que la tercera)
Recorrer una distancia de j cm. requiere dar k pasos de i cm. cada uno y todavía nos	quedarían 8 cm. por recorre
(6 p) Una empresa de transporte aplica distintas tarifas dependiendo del tipo de carga y la zona de destino según la siguiente tabla. Se pide hacer un programa de consola completo (importando las clases que necesites) que pida por teclado los valores de tipo y zona e imprima la tarifa que debe aplicarse (A, B, D, E o F). Se valorará especialmente el diseño del esquema condicional. Nota: No hace falta incluir código para comprobar sin son correctos.	Zona Destino 1 2 3 4 1 A B B B B 2 A F F F 3 A E F F 4 A E E F 5 A D D D

7. (6 p) Escribe el método público y estático esHexadecimal() que recibe un objeto String y retorna cierto si la cadena representa un número en base 16, o falso en caso contrario. Para representar un número en hexadecimal necesitamos los dígitos (0 al 9) así como las letras de la A a la F. Ejemplos: "50" retorna cierto, "J673" retorna falso, "b" retorna cierto, "A1Fc" retorna cierto. Puedes crear métodos adicionales si lo consideras apropiado.

8. (6 p) Escribir el método público y estático lt2vector(), que recibe una matriz cuadrada de reales y retorna un vector de reales con los valores del triángulo inferior de la matriz. El vector debe tener la dimensión adecuada y se rellenará recorriendo la matriz por filas, tal como se muestra en el ejemplo:

$$M = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix} \implies V = \begin{pmatrix} 5 & 9 & 10 & 13 & 14 & 15 \end{pmatrix}$$

- Deben implementarse los siguientes métodos públicos:
 - Cuatro constructores: constructor por defecto, con los valores mínimos en cada atributo; con un parámetro, que será el valor para Rb (los demás atributos tendrán el mínimo valor posible); con tres parámetros; y constructor copia.
 - Métodos set() y get(). Cuando se suministre un valor fuera del rango permitido para cualquier atributo, éste tomará el mínimo valor posible.
 - Métodos áreaBase() y áreaLuz() que retornan la superficie de la semiesfera correspondiente (área de una esfera: $4\pi r^2$).
 - Método precioVentaRecomendado(), que retorna el coste de los materiales de la lámpara más un 10 % de beneficio empresarial. El material de los brazos cuesta 38€/m y el de las planchas para hacer las semiesferas cuesta 50€/m².
 - Método másBarata(), para comparar el precio de venta recomendado entre dos lámparas. Ejemplo: 11.másBarata(12) retorna true si el precio de 11 < precio de 12.

- 10. (6 p) Escribir la clase Cliente que representa los datos de un cliente de una compañia de luz y gas. Los datos que tiene un objeto Cliente son:
 - El nombre del titular: cadena de caracteres.
 - La dirección de su vivienda: cadena de caracteres.
 - Los atributos luz y gas: son objetos de la clase Contrato. Tiene dos atributos: el número de contrato y el código de la tarifa, ambos enteros.
 - El consumo: cantidad en euros gastada por el cliente.

Notas: No hay que implementar los métodos get() y set(), pero debes usarlos para acceder a los atributos en el resto de métodos como si existiesen. En el constructor, los atributos luz y gas NO hay que inicializarlos con su método set correspondiente; si lo haces así, entonces debes programar ademas dichos métodos. cargarFactura() y cambiarTarifa() tienen que comprobar que el núm. de contrato es del cliente y el importe positivo. Hay que emplear siempre los métodos de la clase Contrato, por ejemplo, toString() con el atributo luz de c1 imprimiría: "No: 123879 Tarifa: 2".

Contrato

número: inttarifa: int

- + Contrato(int,int)
 + Contrato(Contrato)
- + getContrato(): int
- + setContrato(int)
- + getTarifa(): int
 + setTarifa(int)
- + toString():string

Los metodos a implementar deben hacer funcionar el codigo siguiente:

```
Cliente c1=new Cliente("Ana", "Uría,6 2°I",123879, 2, 345536,4);

//nombre, dirección, núm. Luz, tarifa Luz, núm. Gas, tarifa Gas
c1.cargarFactura(123879,35.6); // consumoTotal = 35.6
c1.cargarFactura(346456,124.96); //no se carga, no coincide núm de contrato
c1.cambiarTarifa(345536,3); //la tarifa de gas pasa a ser 3
System.out.print(c1); //Nombre: Ana Dirección: Uría 6, 2°I

//Contrato Luz No: 123879 Tarifa: 2

//Contrato Gas No: 345536 Tarifa: 3

//Consumo: 35.6
```

- 10. (6 p) Escribir la clase Cliente que representa los datos de un cliente de una compañia de luz y gas. Los datos que tiene un objeto Cliente son:
 - El nombre del titular: cadena de caracteres.
 - La dirección de su vivienda: cadena de caracteres.
 - Los atributos luz y gas: son objetos de la clase Contrato. Tiene dos atributos: el número de contrato y el código de la tarifa, ambos enteros.
 - El consumo: cantidad en euros gastada por el cliente.

Notas: No hay que implementar los métodos get() y set(), pero debes usarlos para acceder a los atributos en el resto de métodos como si existiesen. En el constructor, los atributos luz y gas NO hay que inicializarlos con su método set correspondiente; si lo haces así, entonces debes programar ademas dichos métodos. cargarFactura() y cambiarTarifa() tienen que comprobar que el núm. de contrato es del cliente y el importe positivo. Hay que emplear siempre los métodos de la clase Contrato, por ejemplo, toString() con el atributo luz de c1 imprimiría: "No: 123879 Tarifa: 2".

Contrato

número: inttarifa: int

- + Contrato(int,int)
- + Contrato(Contrato)
 + getContrato(): int
- + setContrato(int)
- + getTarifa(): int
- + setTarifa(int)
 + toString():string

Los metodos a implementar deben hacer funcionar el codigo siguiente:

```
Cliente c1=new Cliente("Ana", "Uría,6 2°I",123879, 2, 345536,4);

//nombre, dirección, núm. Luz, tarifa Luz, núm. Gas, tarifa Gas
c1.cargarFactura(123879,35.6); // consumoTotal = 35.6
c1.cargarFactura(346456,124.96); //no se carga, no coincide núm de contrato
c1.cambiarTarifa(345536,3); //la tarifa de gas pasa a ser 3
System.out.print(c1); //Nombre: Ana Dirección: Uría 6, 2°I

//Contrato Luz No: 123879 Tarifa: 2

//Contrato Gas No: 345536 Tarifa: 3

//Consumo: 35.6
```