МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса

Студент гр. 9382	 Михайлов Д.А.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Изучение и получение практических навыков по режимам адресации основной памяти в языке Ассемблер.

Постановка задачи.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы предыдущей лабораторной работы. На защите студенты должны уметь объяснить результат выполнения каждой команды.

Выполнение работы.

Вариант №3.

Сначала режиме редактирования в текстовом редакторе NotePad++ в программе был изменён набор значений исходных данных (массивов) vec1, vec2 и matr, согласно заданному варианту.

После этого был запущен эмулятор DOSBox, создающий DOS-

окружение. В нём при помощи команды:

> mount c:\MASM

Был смонтирован диск с, в который потом был совершён переход командой:

> c:

После данных операций была произведена настройка поддержки кириллицы в окружении DOS, путём ввода команды:

> Keyb Ru 866

Далее, программа была протранслирована в эмуляторе DOSBox с помощью команды masm:

> masm LR2_comp.ASM

Был создан файл листинга L1.LST, через который были просмотрены и проанализированы причины возникновения ошибок: всего при трансляции было выведено 5 сообщений об ошибках и 2 предупреждения.

Были обнаружены и закомментированы 6 ошибок: mov mem3,[bx]

6mov al,[bx]+3

mov cx,vec2[di] mov cx,matr[bx][di]

mov ax,matr[bx*4][di]

mov ax,matr[bp+bx]

mov ax,matr[bp+di+si]

Обработка результатов эксперимента.

mov mem3,[bx] Ошибка: "Improper operand type" Improper operand type" Нельзя прямо передавать объекты с памяти в память. Если нужно передать данные из ячейки [bx] в ячейку, на которую ссылается переменная mem3 то это следует делать через регистр АХ.

6mov al,[bx]+3 Ошибка: "Improper operand type" Extra characters on line" Следует просто исправить опечатку.

mov cx,vec2[di] Ошибка: "Improper operand type" Operand types must match" Переменная vec2 — массив, и каждая его ячейка имеет тип DB т.е. занимает ровно 1 байт. В то же время регистр СХ занимает 2 байта. Место, которое

занимают операнды должно быть одинаковым. Можно передать vec2[di] в CH или CL, но не в CX.

mov cx,matr[bx][di] Ошибка: "Improper operand type" Operand types must match" То же самое, что и в прошлой ошибке. Ячейки двумерного массива имеют размерность 1 байт (DB), а регистр СХ – 2 байта.

mov ax,matr[bx*4][di] Ошибка: "Improper operand type"Illegal register value" Операцию умножение на число можно применять только к регистрам с префиксом E.

mov ax,matr[bp+bx] Ошибка: "Improper operand type"Multiple base registers" 8 Нельзя использовать более одного базового регистра. Размер элементов матрицы matr 1 байт, а AX - 2 байта .

mov ax, matr[bp+di+si] Ошибка: "Improper operand type" Multiple index registers" Нельзя использовать более одного индексного регистра. Нельзя использовать более двух регистров. Размер элементов матрицы matr 1 байт, а AX-2 байта .

После изучения всех ошибок, строки, их содержащие, были закомментированы.

Далее программа была вновь протранслирована и был сформирован загрузочный модуль. Для этого использовались команды:

>masm LR2_comp.ASM

>link LR2_comp.OBJ

Затем программа была выполнена в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

Данн	Смещение в		
ые	сегменте DS		
mem1	0000		
mem2	0002		
mem3	0004		
vec1	0006		
vec2	000E		
matr	0016		

Имя	Значение	Шестнадцатеричный код
EOL	' \$'	24
ind	2	2
n1	500	1F4
n2	-50	FFCE

			Содержимое регистров и	
Адрес	Символьный код	16-ричный	ячеек	
коман	команды	код команды	До	После
ДЫ	DUCH DC	1 🗆	выполнения	выполнения
0000	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			(IP) = 0000	(IP) = 0001
			Stack: +0 0000	Stack: +0
			+2 0000	119C
			+4 0000	+2
			+6 0000	0000
				+4
				0000
				+6
0001	CUD AV AV	2000	(4)()	0000
0001	SUB AX, AX	2BC0	(AX) = 0000	(AX) = 0000
0002	DUCLLAY	Γ0	(IP) = 0001	(IP) = 0003
0003	PUSH AX	50	(AX) = 0000	(AX) = 0000
			(SP) = 0016	(SP) = 0014
			(IP) = 0003	(IP) = 0004
			Stack: +0 119C	Stack: +0 0000
			+2 0000	+2 119C
			+4 0000	+4 0000
0004	MOVAY 11 AF	DOAE11	+6 0000	+6 0000
0004	MOV AX, 11 AE	B8AE11	(AX) = 0000	(AX) = 11AE
0007	MOV DS,AX	8ED8	(IP) = 0004 (AX) = 11AE	(IP) = 0007 (AX) = 11AE
0007	MOV D3,AX	OLDO	(DS) = 119C	(DS) = 11AE
			(D3) = 119C (IP) = 0007	(IP) = 0009
0009	MOV AX, 01F4	B8F401	(AX) = 11AE	(AX) = 01F4
0003	140 V AX, 011 4	D01 401	(IP) = 0009	(IP) = 000C
			,	, ,
000C	MOV CX,AX	8BC8	(AX) = 01F4	(AX) = 01F4
			(IP) = 000C	(IP) = 000E
			(CX) = 00B6	(CX) = 01F4
000E	MOV BL,24	B324	(BX) = 0000	(BX) = 0024
			(IP) = 000E	(IP) = 0010
0010	MOV BH,CE	B7CE	(BX) = 0024	(BX) = CE24
	1.04 511,62	D, 32	(IP) = 0010	(IP) = 0012
			,	, ,
0012	MOV [0002],FFCE	C7060200CEFF	(IP) = 0012	(IP) = 0018
			DS[0002] = 00	DS[0002] = CE
0.0.5.5	140)/ 57/ 577	D	DS[0003] = 0	DS[0003] = FF
0018	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006
			(IP) = 0018	(IP) = 001B

001B	MOV [0000], AX	A30000	(AX) = 01F4 (IP) = 001B DS[0000] = 00 DS[0001] = 00	(AX) = 01F4 (IP) = 001E DS[0000] = F4 DS[0001] = 01
001E	MOV AL, [BX]	8A07	(AX) = 01F4 (BX) = 0006 (IP) = 001E	(AX) = 0108 (BX) = 0006 (IP) = 0020
0020	MOV AL, [BX+03]	8A4703	(IP) = 0020 (AX) = 0108	(IP) = 0023 (AX) = 0105
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4 (BX) = 0006 (IP) = 0023	(CX) = 0105 (BX) = 0006 (IP) = 0026
0026	MOV DI, 0002	BF0200	(DI) = 0000 (IP) = 0026	(DI) = 0002 (IP) = 0029
0029	MOV AL, [DI+ 000E]	8A850E00	(AX) = 0105 (DI) = 0002 (IP) = 0029	(AX) = 011E (DI) = 0002 (IP) = 002D
002D	MOV CX, [DI+ 000E]	8A850E00	(CX) = 0105 (DI) = 0002 (IP) = 002D	(CX) = 281E (DI) = 0002 (IP) = 0031
0031	MOV BX, 0003	BB03000	(IP) = 0031 (BX) = 0006	(IP) = 0034 (BX) = 0003
0034	MOV AL, [BX+DI+0016]	8A811600	(AX) = 011E (IP) = 0034 (DI) = 0002 (BX) = 0003	(AX) = 0107 (IP) = 0038 (DI) = 0002 (BX) = 0003
0038	MOV CX, [BX+DI+0016]	8B891600	(IP) = 0034 (DI) = 0002 (BX) = 0003 (CX) = 281E	(IP) = 003C (DI) = 0002 (BX) = 0003 (CX) = 0203
003C	MOV AX, 11AE	B8AE11	(AX) = 0107 (IP) = 003C	(AX) = 11AE (IP) = 003F
003F	MOV ES, AX	8EC0	(AX) = 11AE (ES) = 119C (IP) = 003F	(AX) = 11AE (ES) = 11AE (IP) = 0041
0041	MOV AX, ES:[BX]	268B07	(AX) = 11AE (ES) = 11AE (BX) = 0003 (IP) = 0041	(AX) = 00FF (ES) = 11AE (BX) = 0003 (IP) = 0044
0044	MOV AX, 0000	B80000	(AX) = 00FF (IP) = 0044	(AX) = 0000 (IP) = 0047
0047	MOV ES, AX	8EC0	(AX) = 0000 (ES) = 11AE (IP) = 0047	(AX) = 0000 (ES) = 0000 (IP) = 0049

0049	PUSH DS	1E	(SP) = 0014 (DS) = 11AE (IP) = 0049 Stack: +0 0000 +2 119C +4 0000 +6 0000	(SP) = 0012 (DS) = 11AE (IP) = 004A Stack: +0 11AE +2 0000 +4 119C +6 0000
004A	POP ES	07	(SP) = 0012 (ES) = 0000 (IP) = 004A Stack: +0 11AE +2 0000 +4 119C +6 0000	(SP) = 0014 (ES) = 11AE (IP) = 004B Stack: +0 0000 +2 119C +4 0000 +6 0000
004B	MOV CX, ES:[BX-01]	268B4FFF	(CX) = 0607 (ES) = 11AE (BX) = 0003 (IP) = 004B	(CX) = FFCE (ES) = 11AE (BX) = 0003 (IP) = 004F
004F	XCHG AX, CX	91	(AX) = 0000 (CX) = FFCE (IP) = 004F	(AX) = FFCE (CX) = 0000 (IP) = 0050
0050	MOV DI, 0002	BF0200	(DI) = 0002 (IP) = 0050	(DI) = 0002 (IP) = 0053
0053	MOV ES:[BX+DI], AX	268901	(ES) = 11AE DS[0005] = 00 DS[0006] = 12 (DI) = 0002 (BX) = 0003 (IP) = 0053	(ES) = 11AE DS[0005] = CE DS[0006] = FF (DI) = 0002 (BX) = 0003 (IP) = 0056
0056	MOV BP, SP	8BEC	(BP) = 0000 (SP) = 0014 (IP) = 0056	(BP) = 0014 (SP) = 0014 (IP) = 0058
0058	PUSH [0000]	FF360000	(SP) = 0014 (IP) = 0058 Stack: +0 0000 +2 119C +4 0000 +6 0000	(SP) = 0012 (IP) = 005C Stack: +0 01F4 +2 0000

				+4 119C
				+6
				0000
005C	PUSH [0002]	FF360200	(SP) = 0012	(SP) = 0010
			(IP) = 005C	(IP) = 0060
			Stack: +0 01F4	Stack: +0 FFCE
			+2 0000	+2 01F4
			+4 119C	
			+6 0000	+4 0000
				+6 119C
0060	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
			(SP) = 0010	(SP) = 0010
			(IP) = 0060	(IP) = 0062
0062	MOX DX, [BP+02]	8B5602	(DX) = 0000	(DX) = 01F4
			(BP) = 0010	(BP) = 0010
			(IP) = 0062	(IP) = 0065
0065	RET FAR	CA0200	(CS) = 11B1	(CS) = 01F4
			(SP) = 0010	(SP) = 0014
			(IP) = 0065	(IP) = FFCE
			Stack: +0 FFCE	Stack: +0 0000
			+2 01F4	
			+4 0000	+2 119C
			+6 119C	
				+4 0000
				+6 0000

Выводы.

В ходе работы были получены теоретические практические навыки по использованию режимов адресации основной памяти в языке Ассемблер, были изучены некоторые ошибки, возникающие при неправильной адресации.

ПРИЛОЖЕНИЕ А

исходный код

Название файла: LR2_comp.ASM

```
1$1
     EOU
E0L
            2
     EQU
ind
           500
n1
     EOU
n2
     EOU
           -50
AStack
                     STACK ; CTEK
           SEGMENT
                                     программы
           DW 12 DUP(?)
AStack
           ENDS
           SEGMENT ; Данные программы
DATA
   Директивы описания данных
           DW
                  0
mem1
           DW
                  0
mem2
           DW
                  0
mem3
           DB
vec1
                  8, 7, 6, 5, 1, 2, 3, 4
           DB
                  -30, -40, 30, 40, -10, -20, 10, 20
vec2
matr
           DB
                  -1, -2, -3, -4, 8, 7, 6, 5, -5, -6, -7, -8, 4, 3, 2, 1
           ENDS
DATA
CODE
           SEGMENT ; Код программы
           ASSUME CS:CODE, DS:DATA, SS:AStack
Main
                  FAR ; Головная процедура
           PR0C
           push
                  DS
                  AX, AX
           sub
           push
                  \mathsf{AX}
                  AX, DATA
           mov
           mov
                  DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
           mov
                 ax, n1
           mov
                 cx, ax
                 bl,EOL
           mov
           mov
                 bh, n2
; Прямая
            адресация
                 mem2, n2
           mov
           mov
                 bx, OFFSET vec1
           mov
                 mem1,ax
; Косвенная адресация
           mov
                 al, [bx]
                 mem3,[bx]
           ;mov
; Базированная адресация
                 al, [bx]+3
           mov
           mov
                 cx,3[bx]
; Индексированная адресация
                 di,ind
           mov
                 al, vec2[di]
           mov
           mov
                 cx, vec2[di]
; Адресация с базированием и индексированием
           mov
                 bx,3
                 al, matr[bx][di]
           mov
```

```
mov cx,matr[bx][di]
          ;mov ax,matr[bx*4][di]
; ПРОВЕРКА АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; Вариант 1
               ax, SEG vec2
          mov
               es, ax
          mov
          mov
               ax, es:[bx]
       mov
            ax, 0
; Вариант 2
          mov
               es, ax
          push ds
          pop
               es
               cx, es:[bx-1]
          mov
          xchg cx, ax
; Вариант 3
               di,ind
          mov
               es:[bx+di],ax
          mov
; Вариант 4
          mov
               bp, sp
                ax,matr[bp+bx]
          ;mov
          ;mov
                 ax, matr[bp+di+si]
; Использование сегмента стека
          push
                mem1
                mem2
          push
                 bp, sp
          mov
          mov
                 dx,[bp]+2
          ret
Main
          ENDP
CODE
          ENDS
          END Main
```