

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS CRATEÚS CIÊNCIA DA COMPUTAÇÃO E SISTEMAS DE INFORMAÇÃO

Aluno/o\:	Matricula:
Aluno(a):	Período: 2022.1
CRT0390 - Algoritmos em grafos	Prof. Rennan Dantas

N		ta	•	
I	U	ια		_

2^a . ETAPA

Instruções para resolução da lista:

- 1. Cada aluno resolverá um único problema. O nome do aluno estará ao lado do número do problema.
- 2. O trabalho é individual apesar de existir mais de uma pessoa realizando trabalho sobre o mesmo problema.
- 3. O prazo de entrega é 23h59 do dia 12/06/2022.
- 4. Cada aluno deverá gravar um vídeo com duração mínima de 5 minutos e máxima de 10 minutos explicando o trabalho. O vídeo deve ter o trabalho mostrado no compilador e uma janela com o rosto do aluno explicando o trabalho. Ao fim da explicação, o aluno deverá executar o programa e mostrar o resultado de um teste.
- 5. O trabalho deve ser enviado pelo SIGAA em arquivo PDF. Utilize o editor de texto de sua preferência.
- 1. Alunos: Marlon, Letícia, Luan, Zairo
 - (a) Implemente o algoritmo de Prim visto em sala de aula. O seu algoritmo deve mostrar o valor do menor caminho entre um par de vértices escolhidos pelo usuário e apresentar quais os vértices que compõe esse caminho. Apresente a execução do seu algoritmo para um grafo com pelo menos sete vértices.
 - (b) Uma sequência é bitônica se cresce monotonicamente e depois decresce monotonicamente ou se, por um deslocamento circular, cresce monotonicamente e depois decresce monotonicamente. Por exemplo, as sequências <1,4,6,8,3,-2>, <9,2,-4,-10,-5> e <1,2,3,4> são bitônicas, mas <1,3,12,4,2,10> não é bitônica.
 - Suponha que tenhamos um grafo dirigido G=(V,E) com função peso $w:E\to\mathbb{R}$ e desejamos encontrar caminhos mínimos de fonte única que partam de um vértice fonte s. Temos uma informação adicional: para cada vértice $v\in V$, os pesos das arestas ao longo de qualquer caminho mínimo de s a v formam uma sequência bitônica. Implemente o algoritmo mais eficiente que puder para resolver esse problema e analise seu tempo de execução. Apresente a execução do seu algoritmo para um grafo com pelo menos sete vértices.
- 2. Alunos: Herica, Raylander, Ericles, Luis Felipe
 - (a) Implemente o algoritmo de Kruskal visto em sala de aula. O seu algoritmo deve mostrar o valor do menor caminho entre um par de vértices escolhido pelo usuário e apresentar quais os vértices que compõe esse caminho. Você deve mostrar o seu algoritmo funcionando para um grafo que contém ciclos negativos e para um grafo que não contém ciclos negativos.
 - (b) Suponha que um grafo dirigido ponderado G=(V,E) tenha um ciclo de peso negativo. Implemente um algoritmo eficiente para produzir uma lista de vértices de tal ciclo. Apresente o seu algoritmo funcionando para algum exemplo com pelo menos sete vértices.
- 3. Alunos: Laissa, João Victor, Aguiar, Wesley
 - (a) Implemente o algoritmo de Prim visto em sala de aula. O seu algoritmo deve mostrar o valor do menor caminho entre um par de vértices escolhidos pelo usuário e apresentar quais os vértices que compõe esse caminho. Apresente a execução do seu algoritmo para um grafo com pelo menos sete vértices.
 - (b) Temos um grafo dirigido G=(V,E) no qual cada aresta $(u,v)\in E$ tem um valor associado r(u,v), que é um número real na faixa $0\leq r(u,v)\leq 1$ que representa a confiabilidade de um canal de comunicação do vértice u ao vértice v. Interpretamos r(u,v) como a probabilidade de o canal de u a v não falhar e consideramos que essas probabilidades são independentes. Dê um algoritmo eficiente para encontrar o caminho mais confiável entre dois vértices dados. Apresente o seu algoritmo funcionando para algum exemplo com pelo menos sete vértices.

4.	Alun	nos: Gabriel, Dirlia, João Matheus, Saulo
	(a)	Implemente o algoritmo de Kruskal visto em sala de aula. O seu algoritmo deve mostrar o valor do menor caminho entre um par de vértices escolhido pelo usuário e apresentar quais os vértices que compõe esse caminho. Você deve mostrar o seu algoritmo funcionando para um grafo que contém ciclos negativos e para um grafo que não contém ciclos negativos.
	(b) Implemente um algoritmo eficiente para contar o número total de caminhos em um grafo acíclico dirigio	
		Analise seu algoritmo.
		2