INF9380

Cloud computing intro

Outline of cloud session

- 1. Cloud, HPC, Scheduling systems rough overview
- 2. Create a cluster on the cloud Elasticluster tutorial
 - Intro to Elasticluster
 - Set up and submit a job to your own cluster tutorial
- 3. Distributed computing computing grids example with Worldwide LHC computing grid (WLCG)
 - Introduction to the WLCG
 - Send a job to the grid

Part 1. Cloud, HPC, Scheduling systems rough overview

"Traditional" computing cluster resource versus cloud resource

Traditional cluster

Cluster Worker/Compute nodes Login Laptop Jobs interactive session Login, copy files, install software Perform analysis submit jobs Compile large monitor jobs packages Node: One computer with X number of processors, each with Y number of cores Example: 1 node with 2 processors, each with Marken Pedersen - Cloud computing - INF9380 2020

20 cores per processor. Total cores: 40

Cloud Virtualisation

Machine Virtualization

"Traditional" computing cluster resource

- All machines have the same CPU chip architecture, let's say Intel or AMD processors
- High performance processors, not the regular standard processors (usually)
- All machines have the same OS, e.g. Red Hat 8
- Some speciality nodes: big-mem, GPU's
- Fast interconnect between nodes
- Access to common shared file system
- Queue system, some times with a long waiting time

Queueing system (SLURM):

"Please wait in line.

The big-mem nodes you are requesting are busy, and will be so for another 2 weeks.

If you hold the line you will move forward

User:

In the queue. "

Fast and powerful system, but waiting time can be long

HPC on cloud

- Virtualisation is used to provision servers
- Dynamic set of servers i.e. virtual servers are fired up as needed, and destroyed when not needed anymore
- You can pick and choose the type of (virtual) server you want: size (number of virtual cpu's, size of RAM, size of disk etc etc)
- Can set up as many queues as you want or as many clusters as you want – you create the cluster that suits your needs
- You do not have to wait in line!
- Flexible!!
- Not necessarily high performance hardware can be "off-the-shelf" processors
- Not necessarily very good interconnect between nodes (no infiniband)

Small cluster

High RAM cluster

etc

Some cloud platforms/providers

- Google Cloud Platform
- Amazon Web Services (AWS)
- Microsoft Azure
- Oracle Cloud
- ...https://www.guru99.com/cloud-computing-serviceprovider.html

- Openstack free open standard
 - NREC: *Norwegian* Research and Education Cloud
 - This is what we will be working in

commercia

Terminology and workflow - clouds

Region

- When you create virtual machines you do that in a geographical region e.g. North Éurope, Oslo, Bergen etc
- Your virtual machines will then be created on host machines in a data center belonging to that region
- Can be performance issues and/or political reasons for choosing a certain region

- A virtual machine
- **Images**
 - What OS image to install on your instance
- Flavor
 - The specifications of the virtual machine:
 - Number of virtual CPU's (vCPU)
 - Amount of RAM
 - Amount of disk
 - Processor type (AMD/Intel/ARM)
- Key pairs
 - To connect to your instances you use an ssh private-public key pair
- Network security group
 - 2-Set20fonetwork rules

Workflow - clouds

Launch

Create the virtual machine with a base OS

Configure

• Install necessary software like e.g. database software, web application software, scientific software etc etc

Automation tools

Connect

 Remotely connect to your instance via ssh

Working with HPCs or other clusters with a scheduling system

Computing on a cluster – scheduling systems

- To handle the compute jobs that are submitted by the users, the cluster has a queuing system installed
- Examples: <u>SLURM</u>, <u>HTCondor</u>, PBS, Torque...
- Job is scheduled based on: Priorities, special requests (node with large RAM), cpuhours left in project, etc etc

-		7.4						
[centos@from								
	PARTITION	NAME	USER		TIME	NODES		NODELIST(REASON)
219365		data16_1	grid		0:00	1	7	(Resources)
219366		data16_1	grid		0:00	1	7	(Priority)
219367		data16_1	grid		0:00	1	7	(Priority)
219370		data16_1	grid		0:00	1	7	(Priority)
219369		data16_1	grid		0:00	1	7	(Priority)
219375		data16_1	grid		0:00	1	7	(Priority)
219377		data16_1	grid		0:00	1	7	(Priority)
219349	main	mc16_13T	grid	PD	0:00	1	7	(Priority)
219351	main	mc16_13T	grid	PD	0:00	1	7	(Priority)
219371	main	mc16_13T	grid	PD	0:00	1	7	(Priority)
219372	main	mc16_13T	grid	PD	0:00	1	7	(Priority)
219374	main	mc16_13T	grid	PD	0:00	1	7	(Priority)
219381	main	data16_1	grid	PD	0:00	1	7	(Priority)
219383	main	data16_1	grid	PD	0:00	1	7	(Priority)
219384	main	data16_1	grid	PD	0:00	1	7	(Priority)
219386	main	data16_1	grid	PD	0:00	1	7	(Priority)
219389	main	data16_1	grid	PD	0:00	1	7	(Priority)
219481	main	mc16_13T	grid	PD	0:00	1	1	(Priority)
219364	main	data16_1	grid	R	2:40	1	8	compute041
219363	main	data16_1	grid	R	2:50	1	8	computec023
219362	main	data16_1	grid	R	6:47	1	8	compute031
219361	main	data16_1	grid	R	8:42	1	8	computec010
219359	main	data16_1	grid	R	15:10	1	8	computeb007
219360	main	data16_1	grid	R	14:44	1	8	computec004
219333	main	mc16_13T	grid	R	19:21	1	8	computeb009
219332	main	mc16_13T	grid	R	21:53	1	8	compute039
213618	main	mc15_13T	grid	R	5-07:37:11	1	1	compute035
219331	main	mc16_13T	grid	R	33:07	1	8	computec011
219330	main	mc16_13T	grid	R	33:09	1	8	compute032
219343		_ data16_1	grid	R	1:02:21	1	8	compute036
219354		data16_1	grid	R	42:41	1	8	compute046
219325		mc16_13T	grid	R	1:02:08	1	8	compute033
219358		_ data16_1	grid	R	36:05	1	8	computec017
219327		mc16_13T	grid	R	38:13	1	8	computec014

Slurm command examples:

- squeue
- sinfo
- sbatch
- srun

```
[[centos@frontend001 ~]$ sinfo
```

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

main* up infinite 1 mix compute035

main* 27/Qp/202pnfinite 63 alloc compute[002,005/01k/p014=015/p021/p030-030/p038-94/NF23mpv20-010],computec[001-028]

```
#!/bin/bash #  
#SBATCH --job-name=student00  
#SBATCH --output=student00_slurmid_%j.out #  
#SBATCH --ntasks=1  
#SBATCH --time=10:00  
#SBATCH --time=10:00  
#SBATCH --mem-per-cpu=100  
**SBATCH --mem-per-cpu=100  
*
```

- Submit job with sbatch <jobscript-name>
- https://slurm.schedmd.com/sbat ch.html

```
#!/bin/bash

#SBATCH --ntasks=1

srun sleep 10 &
srun sleep 12 &
wait
```

srun sleep 60

```
sacct -j515058 --format=JobID,Start,End,Elapsed,NCPUS
                                                          Elapsed
        JobID
                            Start
                                                  End
                                                                       NCPUS
515058
             2018-12-13T20:51:44 2018-12-13T20:52:06
                                                        00:00:22
515058.batch 2018-12-13T20:51:44 2018-12-13T20:52:06
                                                        00:00:22
515058.0
             2018-12-13T20:51:44 2018-12-13T20:51:56
                                                        00:00:12
515058.1
             2018-12-13T20:51:56 2018-12-13T20:52:06
                                                        00:00:10
```

```
#!/bin/bash

#SBATCH --ntasks=2

srun --ntasks=1 sleep 10 &
srun --ntasks=1 sleep 12 &
wait 27/03/2020
```

```
sacct -j 515064 --format=JobID,Start,End,Elapsed,NCPUS
JobID
                    Start
                                           End
                                                  Elapsed
                                                               NCPUS
                                                        00:00:12
515064
             2018-12-13T21:34:08 2018-12-13T21:34:20
515064.batch 2018-12-13T21:34:08 2018-12-13T21:34:20
                                                        00:00:12
                                                        00:00:12
515064.0
             2018-12-13T21:34:08 2018-12-13T21:34:20
515064.1 Maiker 2018 - 13 T21: 34: 08 12018 12013 T21: 34: 18
                                                        00:00:10
                                                                             12
```