

Pertemuan 3

ANALISIS REGRESI

(Kode MK: K203313)

Lack of Fit Test pada RLS

LACK OF FIT TEST

- Digunakan untuk pengujian kecocokan model untuk model dengan amatan berulang pada variabel bebas
- Contoh data yang bisa diperiksa dengan Lack of Fit Test (Kutner et al, p. 122)

Number of New Accounts

LACK OF FIT TEST

ASUMSI

- Y_i saling bebas pada setiap nilai X
- Y_i berdistribusi Normal
- $Var(Y_i) = \sigma^2$

SYARAT:

Ada amatan berulang pada satu atau lebih nilai X.

LACK OF FIT TEST

HIPOTESIS

 H_0 : $E(Y_i) = \beta_0 + \beta_1 X_i$

Model linier cocok untuk menjelaskan hubungan antara X dan Y

 H_1 : $E(Y_i) \neq \beta_0 + \beta_1 X_i$

Model linier tidak cocok untuk menjelaskan hubungan antara X dan Y

Kesimpulan:

Bila H_o gagal ditolak, artinya model linier cocok untuk menjelaskan hubungan antara X dan Y

ANOVA UNTUK LACK OF FIT TEST

Mendekomposisi SSE = SSPE +SSLF

$$\sum \sum (Y_{ij} - \hat{Y}_{ij})^2 = \sum \sum (Y_{ij} - \bar{Y}_j)^2 + \sum \sum (\bar{Y}_j - \hat{Y}_{ij})^2$$

$$SSE = SSPE + SSLF$$

$$Y_{ij} - \hat{Y}_{ij} = Y_{ij} - \overline{Y}_{j} + \overline{Y}_{j} - \hat{Y}_{ij}$$

Error deviation

Pure error deviation

Lack of fit deviation

Source of Variation	SS	df	MS
Regression	$SSR = \sum \sum (\hat{Y}_{ij} - \bar{Y})^2$	1	$MSR = \frac{SSR}{1}$
Error	$SSE = \sum \sum (Y_{ij} - \hat{Y}_{ij})^2$	n – 2	$MSE = \frac{SSE}{n-2}$
Lack of fit	$SSLF = \sum \sum (\vec{Y}_j - \hat{Y}_{ij})^2$	<i>c</i> − 2	$MSLF = \frac{SSLF}{c - 2}$
Pure error	$SSPE = \sum \sum (Y_{ij} - \bar{Y}_j)^2$	n – c	$MSPE = \frac{SSPE}{n - c}$
Total	$SSTO = \sum \sum (Y_{ij} - \bar{Y})^2$	<i>n</i> – 1	

c = banyaknya amatan variable bebas yang berulang

$$F^* = \frac{SSLF}{c - 2} \div \frac{SSPE}{n - c}$$
$$= \frac{MSLF}{MSPE}$$

ANOVA UNTUK LACK OF FIT TEST

$$F^* = \frac{SSLF}{c - 2} \div \frac{SSPE}{n - c}$$
$$= \frac{MSLF}{MSPE}$$

If
$$F^* \leq F(1-\alpha; c-2, n-c)$$
, conclude H_0
If $F^* > F(1-\alpha; c-2, n-c)$, conclude H_a

CONTOH (Bank example, Kutner et al, p. 120)

(a) Data					
Branch i	Size of Minimum Deposit (dollars) X _i	Number of New Accounts Y _i	Branch <i>i</i>	Size of Minimum Deposit (dollars) X _i	Number of New Accounts Y _i
1	125	160	7	75	42
2	100	112	8	175	124
3	200	124	9	125	150
4	75	28	10	200	104
5	150	152	11	100	136
6	175	156			

		Size of Minimum Deposit (dollars)				
Replicate	$j=1$ $X_1=75$	$j = 2$ $X_2 = 100$	$j=3$ $X_3=125$	$j=4$ $X_4=150$	j = 5 $X_5 = 175$	$j=6$ $X_6=200$
i = 1 i = 2	28 42	112 136	160 150	152	156 124	124 104
Mean \bar{Y}_j	35	124	155	152	140	114

CONTOH

$$SSPE = (28 - 35)^{2} + (42 - 35)^{2} + (112 - 124)^{2} + (136 - 124)^{2} + (160 - 155)^{2}$$

$$+ (150 - 155)^{2} + (152 - 152)^{2} + (156 - 140)^{2} + (124 - 140)^{2}$$

$$+ (124 - 114)^{2} + (104 - 114)^{2}$$

$$= 1,148$$

(b) Bank Example				
Source of Variation	SS	df	MS	
Regression Error	5,141.3 14,741.6	1 9	5,141.3 1,638.0	
Lack of fit Pure error	13,593.6 1,148.0	4 5	3,398.4 229.6	
Total	19,882.9	10		

$$F^* = \frac{13,593.6}{4} \div \frac{1,148.0}{5}$$
$$= \frac{3,398.4}{229.6} = 14.80$$

Misal
$$F_{(0,99;4,5)} = 11.4 \rightarrow \text{Tolak } H_0$$

Maka dengan tingkat signifikansi 1 % cukup bukti menyatakan bahawa fungsi regresi tidak linier / model linier tidak cocok menjelaskan hubungan X dan Y.

CONTOH

Terimakasih

