MA 515-001, Fall 2017, Homework 4

Due: Mon Oct 23, 2017, in-class.

Problem 1. Given $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ two normed spaces, let $T_n : X \to Y$ be bounded linear operators with

$$||T_n||_{\infty} < M \qquad \forall n \in \mathbb{N}$$

for some constant M > 0. Assume that

$$\lim_{n \to \infty} T_n(x) = T(x) \in Y \qquad \forall x \in X.$$

Show that $T: X \to Y$ is a bounded linear operator and

$$||T||_{\infty} \leq M$$
.

Problem 2. Recalling that

$$l^{\infty} \left\{ x = \{x_i\}_{i \ge 1} \mid \{x_i\}_{i \ge 1} \text{ is bounded} \right\}$$

and

$$||x||_{l^{\infty}} \doteq \sup_{i>1} |x_i|.$$

Define the operator $\Lambda: l^{\infty} \to l^{\infty}$ such that for any $x \in l^{\infty}$,

$$\Lambda(x) = y = \{y_n\}_{n \ge 1}$$
 with $y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$.

Show that Λ is bounded and compute $\|\Lambda\|_{\infty}$.

Problem 3. Let $T: X \to Y$ be a bounded linear operators such that

- T is surjective, i.e., T(X) = Y;
- There is a positive constant b such that

$$||T(x)|| \ge b \cdot ||x|| \quad \forall x \in X.$$

Show that $T^{-1}: Y \to X$ exists and is a linear bounded operator.

Problem 4. Given $(X, \|\cdot\|_X)$ and $(Y, \|Y\|_Y)$ two normed spaces, let $\{T_n\}_{n\geq 1} \subset B(x,Y)$ converge T in B(X,Y) and let $\{x_n\}_{n\geq 1} \subset X$ converges to x in X. Show that $\{T_n(x_n)\}_{n\geq 1}$ converges to T(x) in Y.

Problem 5. Given $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ normed spaces, let $T: X \to Y$ and $S: Y \to S$ be bounded linear operators. Show that the composition $S \circ T: X \to Z$, denoted by

$$(S\circ T)(x)\ =\ S(T(x)) \qquad \forall x\in X\ ,$$

is also be bounded linear operator.

Problem 6. Let $(X, \|\cdot\|)$ be a Banach space and $T: X \to X$ be a bounded linear operator such that $\|T\|_{\infty} < 1$. Recalling that $I: X \to X$ such that

$$I(x) = x \quad \forall x \in X.$$

- (a) Use the Contraction Mapping Principle to show that I-T is one-to-one and onto.
- (b) Denote by $T^0 = I$ and $T^n = T^{n-1} \circ T$, show that the series $\sum_{n \to 0}^{\infty} T^n$ converges in $(B(X,X), \|\cdot\|_{\infty})$.
- (c) Show that $\sum_{n=0}^{\infty} T^n = (I-T)^{-1}\,.$

Problem 7. Let $(X, \|\cdot\|)$ be a Banach space and $T: X \to X$ be a bounded linear operator.

(a) Show that the series

$$\sum_{n=0}^{+\infty} \frac{T^n}{n!}$$

converges in $(B(X,X), \|\cdot\|_{\infty})$

(b) Denote by

$$S \doteq \sum_{n=0}^{+\infty} \frac{T^n}{n!} \, .$$

Show that

$$||S||_{\infty} \leq e^{||T||_{\infty}}.$$