Homework 2 STA 307

Malcolm Kahora, Vejay, Rohan, Tyler

February 22, 2024

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from ISLP import load_data
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
AUTO = load_data("Auto")
```

Question 1

```
selected_coloumns = ['mpg','cylinders', 'displacement', 'weight', 'acceleration',]
X = AUTO[selected_coloumns]
y = AUTO['origin'] # Origin of car (1. American, 2. European, 3. Japanese)
print(X.head)

print("American cars: {0}".format((y == 1).sum())) # American
print("European cars: {0}".format((y == 2).sum())) # European
print("Japanese cars: {0}".format((y == 3).sum())) # Japanese
```

<pre><bound method="" ndframe.head="" of<="" pre=""></bound></pre>				mpg	cylinders	displacement	weight	acceleration
0	18.0	8	307.0	350	04	12.0		
1	15.0	8	350.0	369	93	11.5		
2	18.0	8	318.0	343	36	11.0		
3	16.0	8	304.0	343	33	12.0		
4	17.0	8	302.0	344	19	10.5		
387	27.0	4	140.0	279	90	15.6		
388	44.0	4	97.0	213	30	24.6		
389	32.0	4	135.0	229	95	11.6		
390	28.0	4	120.0	262	25	18.6		
391	31.0	4	119.0	272	20	19.4		

[392 rows x 5 columns]>

American cars: 245 European cars: 68 Japanese cars: 79

Question 2

```
print("Standard deviation")
print(X.std())
print("\n")
print("Mean")
print(X.mean())
```

Standard deviation

mpg 7.805007 cylinders 1.705783 displacement 104.644004 weight 849.402560 acceleration 2.758864

dtype: float64

Mean

mpg 23.445918 cylinders 5.471939 displacement 194.411990 weight 2977.584184 acceleration 15.541327

dtype: float64

Qustion 3

a

```
print("Original data size:",X.shape)
pca = PCA(n_components=2)

X_reduced = pca.fit_transform(X)
print("Reduced data size:", X_reduced.shape)

components = pca.components_
    x = np.arange(components.shape[1]) # 6

plt.plot(x, components[0], label='1')
plt.plot(x, components[1], label='2')

names = X.coloumns
plt.xticks(ticks=x, labels=names, rotation=45)

plt.xlabel('Features')
plt.ylabel('Principal Component Weights')
plt.title('Principal Component Weights per Feature')
plt.legend()
```

```
# Show plot
plt.tight_layout()
plt.savefig("plot.png", bbox_inches='tight')
plt.show()
plt.close()
```


\mathbf{b}

It appears that PCA is capturing features with larger scales, which can lead to misleading conclusions regarding the importance of these features.

Question 4

```
# Manually standardize the data to have mean 0 and standard deviation 1
means = np.mean(X, axis=0)
stds = np.std(X, axis=0)
Z = (X - means) / stds

# Verify that all features in Z have a mean of approximately zero and a standard deviation of one
means_Z = np.mean(Z, axis=0)
stds_Z = np.std(Z, axis=0)
print("means")
print(means_Z)
print("std")
```

print(stds_Z)

```
means
                1.450087e-16
mpg
cylinders
               -1.087565e-16
displacement
               -7.250436e-17
weight
               -1.812609e-17
acceleration
                4.350262e-16
dtype: float64
std
                1.0
mpg
cylinders
                1.0
displacement
                1.0
weight
                1.0
acceleration
                1.0
dtype: float64
```

Question 5

 \mathbf{a}

```
pca = PCA(n_components=2)
Z_reduced = pca.fit_transform(Z)
print("Reduced data size:", Z_reduced.shape)
components = pca.components_
plt.plot(x, components[0], label='1')
plt.plot(x, components[1], label='2')

plt.xticks(ticks=x, labels=selected_coloumns, rotation=45)

plt.xlabel('Features')
plt.ylabel('Principal Component Weights')
plt.title('Principal Component Weights per Feature')
plt.legend()

# Show plot
plt.tight_layout()
plt.savefig("plot_standarized.png", bbox_inches='tight')
plt.close()
```


• This plot is less sharp and considers more features than the plot that was not normalized

b

It seems that the three most important features are 'cylinders', 'displacement', and 'weight', as the first principal component (ϕ 1) weighs these more heavily, with 'displacement' appearing to have the highest contribution to variance by a small margin.

 \mathbf{c}

```
dot_product = np.dot(components[0], components[1])
print("Dot product: ",dot_product)
magnitude_phi1 = np.linalg.norm(components[0])
print("PC 1 magnitude: ",magnitude_phi1)
magnitude_phi2 = np.linalg.norm(components[1])
print("PC 2 magnitude: ",magnitude_phi2)
```

Dot product: 0.0

Question 6