Continuous variables

 Quantities that can take any value, not just discrete values

Michelson's speed of light experiment

measured speed of light (1000 km/s)

```
299.98
               299.98
               299.93
                      299.65
                              299.76
               300.00
                      299.96
                              299.96
               299.96
                      299.94
                              299.88
               299.88
                      299.90
                              299.84
                      299.88
               299.81
                              299.88
                      299.76
               299.79
                      299.86
              299.88
              299.86
                      299.97
               299.85
               299.84
               299.81
                      299.82
                      299.75
               299.74
       299.92
              299.89
                      299.86
              299.85
                      299.85
                              299.78
299.72 299.84
                              299.76
              299.78
                      299.81
               299.81
                      299.82
                      299.81 299.87
              299.80
```

Image: public domain, Smithsonian

Data: Michelson, 1880

Probability density function (PDF)

- Continuous analog to the PMF
- Mathematical description of the relative likelihood of observing a value of a continuous variable

Normal PDF

Normal PDF

Normal CDF

STATISTICAL THINKING IN PYTHON I

Let's practice!

STATISTICAL THINKING IN PYTHON I

Introduction to the Normal distribution

 Describes a continuous variable whose PDF has a single symmetric peak.

<u>Parameter</u>

Calculated from data

mean of a Normal distribution

#

mean computed from data

st. dev. of a Normal distribution

standard deviation computed from data

Comparing data to a Normal PDF

Checking Normality of Michelson data

```
In [1]: import numpy as np
In [2]: mean = np.mean(michelson_speed_of_light)
In [3]: std = np.std(michelson_speed_of_light)
In [4]: samples = np.random.normal(mean, std, size=10000)
In [5]: x, y = ecdf(michelson_speed_of_light)
In [6]: x_theor, y_theor = ecdf(samples)
```

Checking Normality of Michelson data

```
In [1]: import matplotlib.pyplot as plt
In [2]: import seaborn as sns
In [3]: sns.set()
In [4]: _ = plt.plot(x_theor, y_theor)
In [5]: _ = plt.plot(x, y, marker='.', linestyle='none')
In [6]: _ = plt.xlabel('speed of light (km/s)')
In [7]: _ = plt.ylabel('CDF')
In [8]: plt.show()
```

Checking Normality of Michelson data

Data: Michelson, 1880

The Gaussian distribution

Length of MA large mouth bass

Length of MA large mouth bass

Mass of MA large mouth bass

Light tails of the Normal distribution

The Exponential distribution

The waiting time between arrivals of a Poisson process is Exponentially distributed

The Exponential PDF

Possible Poisson process

- Nuclear incidents:
 - Timing of one is independent of all others

Exponential inter-incident times

```
In [1]: mean = np.mean(inter_times)
In [2]: samples = np.random.exponential(mean, size=10000)
In [3]: x, y = ecdf(inter_times)
In [4]: x_theor, y_theor = ecdf(samples)
In [5]: _ = plt.plot(x_theor, y_theor)
In [6]: _ = plt.plot(x, y, marker='.', linestyle='none')
In [7]: _ = plt.xlabel('time (days)')
In [8]: _ = plt.ylabel('CDF')
In [9]: plt.show()
```

Exponential inter-incident times

You now can...

- Construct (beautiful) instructive plots
- Compute informative summary statistics
- Use hacker statistics
- Think probabilistically

In the sequel, you will...

- Estimate parameter values
- Perform linear regressions
- Compute confidence intervals
- Perform hypothesis tests