Machine Learning Week-5

ramay7

March 13, 2017

Contents

1	Hypothesis	1
2	SVM Decision Boundary	2
3	Kernels and Similarity	2
4	SVM Parameters	2
5	Logistic Regression vs SVMs	2

1 Hypothesis

Logistic regression:

$$\min_{\theta} -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}$$

support vector machine hypothesis:

$$\min_{\theta} C \left[\sum_{i=1}^{m} y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$

for some obvious reason, we can know: $C = \frac{1}{\lambda}$

2 SVM Decision Boundary

Then the next two pictures show the curve of logistic function while in the case of y = 1 and y = 0:

So we can simplify the hypothesis as:

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_j^2$$

Due to the fact that $\theta^T x^{(i)} \ge 1$ if $y^{(i)} = 1$ and $\theta^T x^{(i)} \le -1$ if $y^{(i)} = 0$.

3 Kernels and Similarity

$$f_1 = similarity(x, l^{(1)}) = \exp(-\frac{||x - l^{(1)}||^2}{2\delta^2})$$

If $x \approx l^{(1)}$, $f_1 = 1$; If x is far from $l^{(1)}$, $f_1 = 0$.

4 SVM Parameters

 $C(=\frac{1}{\lambda}).$

- Large C: Lower bias, high variance
- Small C: Higher bias, low variance

 δ^2 :

- Large δ^2 : Feature f_i vary more smoothly; Higher bias, lower variance
- Small δ^2 : Feature f_i vary less smoothly; Lower bias, higher variance

5 Logistic Regression vs SVMs

n = number of features, m = number of training examples If n is large(relative to m):

• use logistic regression, or SVM without a kernel("linear kernel")

If n is small, m is intermediate:

• use SVM with Gaussian Kernel

If n is small, m is large:

• Create/add more features, then use logistic regression or SVM withut a kernel

Neural network is likely to work well for most of these settings, but may be slower to train.