

${\mathfrak l}_{1^-}^{\#2}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
	$\frac{t_2)}{t_2}$	<u>2)</u>	<u>(2</u>				
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1^+}^{#2}$ $ au_{1^+}^{#1}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2} \qquad \frac{i \sqrt{2} k(t_1 - 2t_2)}{3(1 + k^2)t_1}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2} \frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2} \frac{k^2(t_1+4t_2)}{3(1+k^2)^2t_1}$	0 0	0 0	0 0	0 0
	į	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	_	$\sigma_{1}^{\#1} + \alpha = 0$ 0 0 0	$\sigma_1^{\#2} + \alpha$ 0 0 0	$t_1^{\#1} + \alpha$ 0 0 0 0	$\tau_1^{\#2} \dagger^{\alpha} \qquad 0 \qquad 0 \qquad 0 \qquad 0$

$\omega_{1^{-}}^{#2} _{\alpha} f_{1^{-}}^{#1} _{\alpha} f_{1^{-}}^{#2} _{\alpha}$	0	0	0	ikt_1	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ \bar{i} k $(t_1 + t_2)$	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	1 6	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha eta$	$\omega_1^{\#_2^2} +^{\alpha \beta}$	$f_1^{\#_1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} \dagger^{\alpha}$

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_2^{\pi,1} \uparrow^{\alpha P \lambda}$	0	0	$\kappa^{-} r_1 + \frac{1}{2}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2^+}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\sigma_0^{\sharp 1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$ au_{0}^{\#1} +$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Source constraints	
SO(3) irreps	#
r ₀₊ ^{#2} == 0	1
$\sigma_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1
$ \tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0 $	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Γotal #:	16

Massive particle		
Pole residue:	$-\frac{1}{r_1} > 0$	
Polarisations:	5	
Square mass:	$-\frac{t_1}{2r_1} > 0$	
Spin:	2	
Parity:	Odd	
	Pole residue: Polarisations: Square mass: Spin:	

Massive particle			
Pole residue:	$-\frac{1}{r_2} > 0$		
Polarisations:	1		
Square mass:	$-\frac{t_2}{r_2} > 0$		
Spin:	0		
Parity:	Odd		

(No massless particles)

 $r_1 < 0 \&\& r_2 < 0 \&\& t_1 > 0 \&\& t_2 > 0$