1. Приближение функций алгебраическими полиномами

1.1 Интерполяционный полином Лагранжа

Пусть на отрезке [a,b] заданы точки $x_1,x_2,\ldots,x_n\in[a,b]$. Предполагаем, что $x_k\neq x_j$ при $k\neq j$. Для непрерывной функции f будем рассматривать следующую задачу.

Задача. Найти алгебраический полином $L_n(f;x)$ наименьшей степени и такой, что

$$L_n(f; x_j) = f(x_j), \quad j = 1, 2, \dots, n.$$

 $L_n(f;x)$ называют интерполяционным полиномом Лагранжа, а точки x_j $(j=1,\ldots n)$ — узлами интерполяционного полинома Лагранжа или узлами интерполирования.

Теорема 1. Для любой функции $f \in C[a,b]$ и заданных узлов x_1, x_2, \ldots, x_n интерполяционный полином $L_n(f;x)$ степени не выше n-1 существует и определяется единственным образом.

Далее приведем основное представление для полинома Лагранжа в виде явной формулы, включающей узлы интерполирования x_1, x_2, \ldots, x_n и значения интерполируемой функции в этих точках. Основное представление интерполяционного полинома Лагранжа имеет вид

$$L_n(f; x) = \sum_{k=1}^n f(x_k) l_k(x),$$

где

$$l_k(x) = \prod_{j=1, j \neq k}^n (x - x_j) / \prod_{j=1, j \neq k}^n (x_k - x_j) =$$

$$= \frac{(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}.$$

Отметим, что $l_k(x)$ называются **фундаментальными полиномами Лагранжа**. В узлах интерполирования получаем

$$l_k(x_j) = \delta_{k_j} = egin{cases} 1, & ext{если } k = j \ 0, & ext{если } k
eq j \end{cases}.$$

Часто удобнее пользоваться другой записью основного представления. Рассмотрим произведение

$$\omega_n(x) = (x - x_1)(x - x_2) \dots (x - x_n) = \prod_{j=1}^n (x - x_j).$$

Легко видеть, что

$$l_k(x) = \frac{A}{B},$$

где

$$A = \frac{\omega_n(x)}{x - x_k}, \qquad B = \omega'_n(x_k) = \prod_{j=1, j \neq k}^n (x_k - x_j),$$

так как

$$\omega'_n(x) = (x - x_2) \dots (x - x_n) + (x - x_1)(x - x_3) \dots (x - x_n) + \dots + (x - x_1)(x - x_2) \dots (x - x_{n-1}).$$

Таким образом, получаем следующее, равносильное основному, представление

$$L_n(f;x) = \sum_{k=1}^n f(x_k) \frac{\omega_n(x)}{(x - x_k)\omega_n'(x_k)}.$$
(1.1)

Пример 1. Построить интерполяционный полином Лагранжа для функции $f(x) = x^2$ по узлам

$$x_1 = -1, \quad x_2 = 0, \quad x_3 = 1.$$

Решение.

Имеем три узла, т. е. n=3. Применив основное представление полинома Лагранжа, получим

$$L_n(f;x) = f(x_1)l_1(x) + f(x_2)l_2(x) + f(x_2)l_3(x) = l_1(x) + l_3(x),$$

где

$$l_1(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)} = \frac{x^2}{2} - \frac{x}{2},$$

$$l_3(x) = \frac{(x+1)(x-0)}{(1+1)(1-0)} = \frac{x^2}{2} + \frac{x}{2}.$$

Таким образом,

$$L_3(f;x) = x^2.$$

Рис. 1: График полинома Лагранжа.

Пример 2. Используя $\omega_n(x)$, построить интерполяционный полином Лагранжа для функции $f(x) = x^4$ по узлам

$$x_1 = -1, \quad x_2 = 0, \quad x_3 = 1.$$

Решение.

Имеем три узла, т. е. n=3. Используя второе представление полинома Лагранжа, а именно формулу (1.1), получаем

$$L_3(f;x) = f(x_1) \frac{\omega_3(x)}{(x-x_1)\omega_3'(x_1)} + f(x_2) \frac{\omega_3(x)}{(x-x_2)\omega_3'(x_2)} + f(x_3) \frac{\omega_3(x)}{(x-x_3)\omega_3'(x_3)},$$

где

$$\omega_3(x) = (x - x_1)(x - x_2)(x - x_3).$$

В нашем случае имеем

$$\omega_3(x) = (x+1)x(x-1) = x^3 - x,$$

$$\omega_3'(x) = 3x^2 - 1.$$

В итоге,

$$L_3(f;x) = \frac{(x+1)x(x-1)}{(x+1)(3-1)} + \frac{(x+1)x(x-1)}{(x-1)(3-1)} = \frac{x^2}{2} - \frac{x}{2} + \frac{x^2}{2} + \frac{x}{2} = x^2.$$

Рис. 2: График полинома Лагранжа и интерполируемой функции.

Задания для самостоятельного решения.

1. Построить интерполяционый полином Лагранжа для функции $f(x) = x^3$ по узлам

$$x_1 = -1, \quad x_2 = 0, \quad x_3 = 1.$$

2. Используя $\omega_n(x)$, построить интерполяционый полином Лагранжа для функции $f(x)=x^6$ по узлам

$$x_1 = -2$$
, $x_2 = -1$, $x_3 = 0$, $x_4 = 1$, $x_5 = 2$.