BIOSTAT 651 Notes: GLM Diagnostics

- Topics:
 - o Goodness of fit
 - Residuals
 - o Influence Measure

Goodness of Fit: General Considerations

- Measure goodness of fit by how well $\widehat{\mu}_i$ replace Y_i
 - \circ Y: n-dimensional
 - $\circ \widehat{\beta}$: q-dimensional
- Saturated model: n parameters (one per unique data point)
 - fits data perfectly
 - o no data reduction
- Null model:
 - $\circ \widehat{\mu}_i = \widehat{\mu} \text{ for all } i$
 - e.g., intercept-only model
 - \circ maximum degree of data summarization
 - fit may be very poor
- The above models are use typically useful only for *judging the fit* of the current model

Deviance: Derivation

- Deviance: generalization of the sum of squares of residuals in linear regression.
- Derived by first comparing the likelihoods of the fitted and saturated models,

$$\left\{\frac{L(\widetilde{\boldsymbol{\theta}})}{L(\widehat{\boldsymbol{\theta}})}\right\}^2$$

where $\widetilde{\boldsymbol{\theta}}$ is based on the saturated model

• Then, work on the log scale,

$$2 \times \{\ell(\widetilde{\boldsymbol{\theta}}) - \ell(\widehat{\boldsymbol{\theta}})\}$$

• Now, consider a single data point:

$$\ell(\widehat{\theta}_i) = \frac{Y_i \widehat{\theta}_i - b(\widehat{\theta}_i)}{a(\phi)}$$

$$\ell(\widetilde{\theta}_i) = \frac{Y_i \widetilde{\theta}_i - b(\widetilde{\theta}_i)}{a(\phi)}$$

$$\ell(\widetilde{\theta}_i) = \frac{Y_i \widetilde{\theta}_i - b(\widetilde{\theta}_i)}{a(\phi)}$$

Deviance: Derivation (continued)

• Take difference, sum over all subjects, remove scaling:

$$D = 2\sum_{i=1}^{n} \left[Y_i(\widetilde{\theta}_i - \widehat{\theta}_i) - \{b(\widetilde{\theta}_i) - b(\widehat{\theta}_i)\} \right]$$

which is known as the *Deviance*

- $D^* = D/a(\phi)$ is referred to as the *Scaled Deviance*
 - Note: In the book, $\frac{1}{a(\phi)} 2 \sum_{i=1}^{n} \left[Y_i(\widetilde{\theta}_i \widehat{\theta}_i) \{b(\widetilde{\theta}_i) b(\widehat{\theta}_i)\} \right] \text{ is the Deviance, and } a(\phi)D \text{ is the Scaled}$ Deviance.
- When the model fits well, $D^* \sim \chi_{n-q}^2$ asymptotically.

• Examples:

Normal
$$D = \sum_{i=1}^{n} (Y_i - \widehat{\mu}_i)^2$$

$$D^* = \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \widehat{\mu}_i)^2$$
Poisson
$$D = D^* = 2 \left[\sum_{i=1}^{n} Y_i \log \frac{Y_i}{\widehat{\mu}_i} - \sum_{i=1}^{n} (Y_i - \widehat{\mu}_i) \right]$$
Binomial
$$D = D^* = 2 \sum_{j=1}^{m} \left[Y_j \log \left(\frac{Y_j}{\widehat{\mu}_j} \right) + (n_j - Y_j) \log \left(\frac{n_j - Y_j}{n_j - \widehat{\mu}_j} \right) \right]$$

Pearson Chi-Square Statistic

• Another measure of a model's fit, the *Pearson Chi-Square Statistic*,

$$X_P^2 = \sum_{i=1}^n \frac{(Y_i - \widehat{\mu}_i)^2}{\widehat{V}(Y_i)}$$

• When the model fits well, $X_P^2 \sim \chi_{n-q}^2$ asymptotically.

Goodness of fit tests

- In principle, both (scaled) Deviance and Pearson statistics asymptotically follows χ_{n-q}^2 distribution, so we can test GOF.
- However, it does not always work. Especially in logistic regression.
- There exists several modifications, including a test proposed by Hosmer and Lemeshow. (We will cover later)

Comparing GOF Statistics

- Deviance decreases when covariates are added to a model
 - \circ note: applies to *nested* models
- Pearson X^2 has intuitive appeal
- Can carry out hypothesis testing using Deviance
 - applies to nested models
 - o equivalent to Likelihood Ratio Test

Difference in Deviances: LRT

- Scaled deviance
 - \circ for a given model, with MLE $\widehat{\beta}$,

$$D^* = 2 \times \{\ell(\widetilde{\boldsymbol{\beta}}) - \ell(\widehat{\boldsymbol{\beta}})\}$$

where $\widetilde{\boldsymbol{\beta}}$ corresponds to a *saturated* model i.e., one parameter for each unique covariate pattern

• If we let D_0^* and D_1^* denote the scaled deviances under H_0 and H_1 , respectively, then the LRT can be computed as

$$X_L^2 = D_0^* - D_1^*$$

Residuals

- ullet Deviance and Pearson X^2 are global measures of goodness-of-fit
 - o summary of model's fit
- Also useful to evaluate the model's performance for individual subjects or groups of subjects
- Pearson residuals:

$$\widehat{r}_i^P = \frac{Y_i - \widehat{\mu}_i}{\widehat{V}(Y_i)^{1/2}}$$

 $\circ~$ Combining the Pearson residuals $\Rightarrow X_p^2$

$$X_P^2 = \sum_{i=1}^n \{ \hat{r}_i^P \}^2$$

• Deviance residuals:

$$D = \sum_{i=1}^{n} D_{i}$$

$$D_{i} = 2 \left[Y_{i}(\widetilde{\theta}_{i} - \widehat{\theta}_{i}) - \{b(\widetilde{\theta}_{i}) - b(\widehat{\theta}_{i})\} \right]$$

• then, define

$$\widehat{r}_i^D = \operatorname{sign}(Y_i - \widehat{\mu}_i) \sqrt{|D_i|}$$

i.e, such that $D = \sum_{i=1}^{n} \{ \hat{r}_i^D \}^2$

Examples

• Generate data from the following model

$$log(\lambda_i) = 1 + 0.5x + 0.5x^2, \quad 2 < x < 3$$
$$Y_i \sim Poisson(\lambda_i)$$

- Use the following model to fit the data
 - True model

$$log(\lambda_i) = \beta_0 + \beta_1 x + \beta_2 x^2$$

- Missing x^2 term

$$log(\lambda_i) = \beta_0 + \beta_1 x$$

- Identity link

$$\lambda_i = \beta_0 + \beta_1 x + \beta_2 x^2$$

True Model

Sunday, Ja

The GENMOD Procedure

Model Information					
Data Set	WORK.A				
Distribution	Poisson				
Link Function	Log				
Dependent Variable	Y				

Number of Observations Read	1000
Number of Observations Used	1000

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value Value/				
Deviance	997	974.5321	0.9775			
Scaled Deviance	997	974.5321	0.9775			
Pearson Chi-Square	997	972.9738	0.9759			
Scaled Pearson X2	997	972.9738	0.9759			
Log Likelihood		1708332.3290				
Full Log Likelihood		-4127.4402				
AIC (smaller is better)		8260.8803				
AICC (smaller is better)		8260.9044				
BIC (smaller is better)		8275.6036				

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq	
Intercept	1	0.9810	0.1904	0.6078	1.3543	26.54	<.0001	
х	1	0.5049	0.1469	0.2171	0.7928	11.82	0.0006	
X2	1	0.5005	0.0281	0.4454	0.5556	316.95	<.0001	
Scale	0	1.0000	0.0000	1.0000	1.0000			

Note: The scale parameter was held fixed. 13

True Model Sunday, January 31, 2016 12:27:48 PM 5

The GENMOD Procedure

Missing x^2

Sunday, Ja

The GENMOD Procedure

Model Information				
Data Set	WORK.A			
Distribution	Poisson			
Link Function	Log			
Dependent Variable	Y			

Number of Observations Read	1000
Number of Observations Used	1000

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value Value/				
Deviance	998	1287.4319	1.2900			
Scaled Deviance	998	1287.4319	1.2900			
Pearson Chi-Square	998	1299.1010	1.3017			
Scaled Pearson X2	998	1299.1010	1.3017			
Log Likelihood		1708175.8791				
Full Log Likelihood		-4283.8901				
AIC (smaller is better)		8571.7802				
AICC (smaller is better)		8571.7922				
BIC (smaller is better)		8581.5957				

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi-Square	Pr > ChiSq		
Intercept	1	-2.3963	0.0205	-2.4365	-2.3561	13649.5	<.0001		
х	1	3.1187	0.0075	3.1040	3.1333	174126	<.0001		
Scale	0	1.0000	0.0000	1.0000	1.0000				

Note: The scale parameter was held fixed.

Missing x^2

Sunday, January 31, 2016 12:27:48 PM **7**

The GENMOD Procedure

Identity link

Sunday, Ja

The GENMOD Procedure

Model Information					
Data Set	WORK.A				
Distribution	Poisson				
Link Function	Identity				
Dependent Variable	Y				

Number of Observations Read	1000
Number of Observations Used	1000

Criteria For Assessing Goodness Of Fit						
Criterion	DF	Value Value/				
Deviance	997	4143.7880	4.1563			
Scaled Deviance	997	4143.7880	4.1563			
Pearson Chi-Square	997	4142.1266	4.1546			
Scaled Pearson X2	997	4142.1266	4.1546			
Log Likelihood		1706747.7011				
Full Log Likelihood		-5712.0681				
AIC (smaller is better)		11430.1363				
AICC (smaller is better)		11430.1603				
BIC (smaller is better)		11444.8595				

Algorithm converged.

	Analysis Of Maximum Likelihood Parameter Estimates								
Parameter	DF	Estimate	Standard Error		95% ce Limits	Wald Chi-Square	Pr > ChiSq		
Intercept	1	5197.430	39.1953	5120.608	5274.251	17583.6	<.0001		
x	1	-4823.30	32.4826	-4886.96	-4759.63	22049.0	<.0001		
X2	1	1134.439	6.6743	1121.357	1147.520	28890.5	<.0001		
Scale	0	1.0000	0.0000	1.0000	1.0000				

Note: The scale parameter was held fixed.

Identity link Sunday

Sunday, January 31, 2016 12:27:48 PM 9

The GENMOD Procedure

Leverage

• In linear regression, the projection matrix (Hat matrix) is

$$H = X(X^T X)^{-1} X^T$$

- h_{ii} , ith diagonal element of H, is called the leverage of the ith observation.
- In GLM, the projection matrix (from IRWLS)

$$H = V^{1/2} X (X^T V X)^{-1} X^T V^{1/2}$$

- As the same as the linear regression, h_{ii} is leverage.

• The first order approximation of the variance of raw Pearson residual

$$Var(Y_i - \widehat{\mu}_i) \approx (1 - h_{ii}) Var(Y_i)$$

• Standardized Pearson residual

$$\widehat{r}_i^{PS} = \frac{\widehat{r}_i^P}{\sqrt{1 - h_{ii}}}$$

• Similarly, standardized Deviance residual

$$\widehat{r}_i^{DS} = \frac{\widehat{r}_i^D}{\sqrt{1 - h_{ii}}}$$

Influence measure

- In linear regression, there are a number of diagnostic measures for the influence of one observation based on leave it out, refitting the model, and checking the changes.
 - DFBETA

$$DFBETA_i \approx \widehat{\beta} - \widehat{\beta}_{-i}$$

Cook's distance

$$D_{i} = \frac{1}{q\widehat{\sigma}^{2}} (\widehat{\beta} - \widehat{\beta}_{-i})^{T} X^{T} X (\widehat{\beta} - \widehat{\beta}_{-i})$$
$$= \frac{1}{q} \left(\frac{h_{ii}}{1 - h_{ii}} \right) r_{i}^{2} \tag{1}$$

- In the linear regression, these statistics can be calculated without refitting the model n times. Explicit shortcut is available based on H.
- In GLM, the exact solution for the explicit shortcut is not available. But the one-step approximation method has been developed to avoid to fitting n times.

- One-step approximation:
 - Cook's distance:

$$D_i = \frac{1}{q} \left(\frac{h_{ii}}{1 - h_{ii}} \right) (r_i^{PS})^2$$

 One-step approximation for DFBETA is also available. Examples

• Previous example:

$$log(\lambda_i) = 1 + 0.5x + 0.5x^2, \quad 2 < x < 3$$
$$Y_i \sim Poisson(\lambda_i)$$

- Add two outliers (Obervation 1001 and 1002)
 - Obs 1001: X=2, Y=0
 - Obs 1002: X=3.5, Y from the true model

Outlier

The GENMOD Procedure

Sunday, January 31, 2016 12:27:48 PM **42**

Outlier Sunday, January 31, 2016 12:27:48 PM 43

The GENMOD Procedure

Outlier Sunday, January 31, 2016 12:27:48 PM **44**

The GENMOD Procedure

- Obs 1001: X=2, Y=0
 - Leverage: 0.0037
 - Cook's distance: 0.066
- Obs 1002: X=3.5, Y from the true model
 - Leverage: 0.76
 - Cook's distance: 0.014

Multicollinearity

- Explanatory variable (X) are highly correlated with one another.
- Can cause several undesirable consequences.
 - $-\widehat{\beta}$ will be very unstable.
 - Variances of some $\widehat{\beta}$ can be very large.
- Variance inflation factor

$$VIF_{j} = \frac{1}{1 - R_{(j)}^{2}}$$

- $R_{(j)}^2$: R^2 obtained from regressing the jth variable against all other variables.
- -VIF = 1: Not correlated
- -1 < VIF < 5: moderately correlated
- -VIF > 5 to 10: highly correlated

- In linear regression, we are concerning about the collinearity in the predictors (X)
- In GLM, we are concerning about the collinearity in the weighted predictor $(V^{1/2}X)$
- SAS proc genmod does not provide VIF, so you have to calculate it using proc reg with the weight statement.