Q5. Smoke Status Recognition

Just run the jupyter notebook of `Q5.ipynb`. It uses the given dataset. The program has one output file: * **Q5_output.csv**

a.EDA:

- Load the train and test data. And then view the 'discribet' of data which have the likewise distribution. So I didn't remove the outliers.
- Remove NAN 'train_df = train_df.dropna()'
- Correlation heatmap

Feature distribution

Label distribution

Distribution of smoking status

Scatter relationship

b. choose model

- XGBoost: cross_val_score= 0.8695248062789621
- LightGBM: cross_val_score= 0.8691387378052922
- CatBoost: cross_val_score= 0.8662158517499438

So I choose XGBoost to train the model.

Valuate the model:

The result looks well. But I want to do some improvemnets.

c. Add Preprocessing

- Tranform the feature
- Classify the feature to [scale] and [one hot]
- Use Robustscaler to perform data scaling
- One Hot Encoding the categorical columns
- Tomek Links : Downsampling for getting balanced dataset

d. Model Training

 performing cross-validation using XGBoost (Extreme Gradient Boosting) for a binary classification task

feature importance

Reference:

[1]https://www.kaggle.com/code/anthonynam/smoke-status-prediction

[2]https://www.kaggle.com/code/mostafamohammednouh/smoker-status-prediction-eda

[3]https://www.kaggle.com/code/arunklenin/ps3e24-eda-feature-engineering-ensemble