

Project (Deadline: Saturday May 3rd, 2025)

For the 3 tasks, use the PDK of a UMC 0.13µm technology:

Task #1:

For an NMOS with Drain and Gate connected to $V_{DD} = 1.2V$ and Source connected to a current source $I_{REF} = 200\mu A$ to GND and Bulk connected to GND. Sweep W from W=L to W=100L.

- 1. For the parameters:
 - \bullet V_{th}
 - Vov
 - VDSAT
 - gmro

Plot each of these parameters vs W/L at L= L_{min} , L= $4L_{min}$, and L= $8L_{min}$ for the following devices:

- N_12_HS_L130E (high-speed NMOS)
- N_LV_12_HS_L130E (Low-Vth high-speed NMOS)

(For each parameter, insert 2 figures next to each other, each having the 4 parametric curves for one of the 2 devices)

- 2. **Mention** the long-channel equation for V_{th} , V_{ov} , &g_mr_o. Is the trend of the simulations similar to the equations?
- 3. **Mention one** advantage and **one** disadvantage for **N_LV_12_HS_L130E** compared to **N_12_HS_L130E**. What do you recommend to be used in a **high-gain amplifier**?

Task #2:

Use the NMOS core high speed HS transistor (N_12_HS_L130E) and the poly resistor (RNPPO_MML130E) to design an accurate high-swing current mirror (according to the architecture shown) operating at $V_{DD} = 1.2V$ with the following specifications:

- $I_{out} = 2I_{REF} = 200 \mu A$, with error < 1% @V_{out}=500mV
- $V_{comp} \le 350mV$ (defined as the minimum output voltage required for all devices to operate in saturation)
- $R_{out} \geq 500 \text{k}\Omega @ V_{out} = 500 mV$

The documentation of your design must include the following:

- 1. Schematic diagram with dimensions and component values annotated.
- 2. Schematic diagram with DC operating point annotated at V_{out} =350mV to verify the V_{comp} specification.
- 3. Simulation results to verify I_{out} and R_{out} specifications
- 4. An estimate of this mirror's area.
- 5. If the area you ended up with is too large and you need to sacrifice one of the specs to have reasonable area, suggest a modification and comment on what you will gain and lose from it.

Task #3:

Design the CMOS ring oscillator shown with $V_{DD} = 1.2V$. The unit cell (stage) consists of a CMOS inverter (M_2 and M_3), an NMOS current source (M_1), and a PMOS current source (M_4). This is called a "Voltage Controlled Oscillator (VCO)".

- Explain why this is called a Voltage Controlled Oscillator (VCO).
- Determine the dimensions of all the transistors (Use 1.2V devices N_12_HSL130E or P_12_HSL130E) to generate an output frequency of **20MHz** using **7-stages** with $V_{cont} = V_{DD}/2$.

The documentation of your design must include the following:

- 1- Schematic diagram showing dimensions of all transistors and bias current (I_B)
- 2- Simulate the ring oscillator and plot the transient waveforms at all inverter outputs showing the output frequency (you might need to add an initial condition to start the oscillation).
- 3- Vary V_{cont} from 0 to V_{DD} and record the output frequency versus V_{cont} in steps of 0.1V. Plot the oscillator output for 3 different steps.
- 4- Provide your observations and conclusions.

Assessment:

- Maximum number of students per group is 5
- You are required to deliver a **pdf report** that clearly describes your work, including all the required items.
- Report size should not exceed 20 pages.
- Late delivery will be penalized
- Copied reports will get a direct **ZERO** grade