Name:

ABE 307 Fall 2017 Test 1 Sep 29th , 2017 25 minutes

This test has 2 problems. For derivations, step marking is involved so show all your work clearly and for assumptions write one line of explanation. Without explanation, assumptions will only fetch half points.

Problem	Points	Points Obtained
1	5	
2	20	
Total	25	

- 1. Choose the correct answer for following. (5 points)
- A. Which of the following simplifying assumptions fail in "Thin film" scenario if the width (W) of the plate is not large compared to the film thickness (δ)
- B. Which of the following boundary conditions pertain to a liquid-liquid interface:
 - a. tangential velocity component and molecular stress components are continuous
 - b. shear stress is 0
 - c. relative velocity is 0
 - d. all of these
 - e) a and c

2. Consider a fluid flowing through a channel bounded by wall on two sides. Assume steady, laminar flow along the wall. Derive an expression for shear stress variation in the slit and draw a diagram to show the stress profile. (20 Points). Step marking is involved for:

- b. Clearly showing the co-ordinates and geometry of your shell considered for writing shell momentum balance. (3)
- c. Write the components of the total momentum transfer that will be considered for the total momentum balance along with explanation (2)
- d. Final momentum balance equation in simplified form where all the components (pressure, shear and convective) have been evaluated for the flow situation along with the body forces. (3)
- e. Writing all boundary conditions for this flow situation. (5)
- f. Final expression for shear stress variation in the slit and diagram to show the profile. (5)

VX = 0, VZ = VZ(X), VY = 0No relocity in y-direction. Fully developed, steady flow. ŭz is only function of) consider the shell at the center of the slit. Notice that the wordinate fxz Section selected here is X=0 at center.

\$22/2=0 > 2 momentum in zdirection entering the shell at z=0 PZZ/Z=L > z momentum in z-direction leaving the shell at z=L \$\frac{1}{2} \langle = \frac{1}{2} \text{ momentum in } \frac{1}{2} \text{ direction} \\
\frac{1}{2} \langle = \frac{1}{2} \text{ momentum in } \frac{1}{2} \text{ direction} \\
\frac{1}{2} \langle = \frac{1}{2} \text{ entering the shell at } \frac{1}{2} \text{ direction} \\
\frac{1}{2} \langle = \frac{1}{2} \text{ entering the shell at } \frac{1}{2} \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ direction} \\
\frac{1}{2} \text{ entering the shell at } \text{ entering the PXZ X= X+DX , momentum in x-direction leaving the shell at x=X+OX , B <<< W, we assume no velocity gradient in y diretion dy is zero) & vy=0 (so convective component is also zero) LW (QXZ X - PXZ X+OX)+ $+ W\Delta X (\varphi_{ZZ}|_{Z=0} - \varphi_{ZZ}|_{Z=L})$ $+ LW\Delta X (fg) = 0$

Since, we do not know anything about shear stress boundary Condition, we will have to use relocity conditions.

$$-\mu \frac{dv_z}{dx} = \left(\frac{P_0 - P_L}{L}\right) x + C_1$$

$$\frac{dx}{\sqrt{2}} = \frac{-(R_0 - R_1)x^2 - Gx + Gx}{2ML}$$

$$\frac{dx}{\sqrt{2}} = \frac{2ML}{2ML}$$

$$\frac{dx}{\sqrt{2}} = \frac{R_0 - R_1}{2ML}$$

$$\frac{dx}{\sqrt{2}} = \frac{R_0 - R_1}{2ML}$$

$$\frac{dx}{\sqrt{2}} = \frac{R_0 - R_1}{2ML}$$

$$C_1 = 0$$
, $C_2 = \frac{P_0 - P_L}{2 \ln L}$

$$T_{X2} = \left(\frac{P_0 - P_L}{L}\right) X$$

This
Straight line
Shows the variation
of shear stress from X=0 to X=-B. X=-B