What is Trust

Orfeas Stefanos Thyfronitis Litos

University of Edinburgh o.thyfronitis@ed.ac.uk

Abstract. We will try to define all the abstract properties that we would like "Trust" to have.

1 Introduction

Consider the UC setting, with an environment \mathcal{E} , an adversary \mathcal{A} and a set of ITIs that follow a given protocol Π .

Definition 1 (Player). A player is an ITM that follows Π . Let \mathcal{P} be the set of all players.

Intuitively, players spontaneously feel different desires of varying intensities and seek to satisfy them, either on their own, consuming part of their input tokens in the process, or by delegating the process to other players and paying them for their help with part of their input tokens. The choice depends on the perceived difference in price and whether other players are trustworthy enough to satisfy the desire as promised. Each player plays rationally, always attempting to maximize her utility.

2 Mechanics

More precisely, let \mathcal{D} be a set containing all possible desires. At arbitrary moments during execution, \mathcal{E} can provide input to any player $Alice \in \mathcal{P}$ in the form (idx, d), where $idx \in \mathbb{N}, d \in \mathcal{D}, u \in \mathbb{R}^+$. idx represents an index number that is unique for each input generated by \mathcal{E} and d represents the desire. d is satisfied when Alice learns the string s (idx, d, Alice), either by directly calculating it or by receiving it as a message from another player. Some of the players, given as input the tuple (idx, d, Alice), can calculate s (idx, d, Alice) more efficiently than Alice, which means that they need to consume less input tokens than Alice for this calculation. Alice can choose to delegate this calculation to a more efficient player Bob and provide the necessary input tokens for his computation with a surplus to

compensate Bob for his effort. Both players are better off, because Alice spent less tokens than she would if she had calculated s(idx, d, Alice) herself, whilst Bob obtained some tokens which can in turn be used to satisfy some of his future desires.

Since Bob can commit fraud and get the tokens without satisfying Alice's desire in exchange, Alice must be well informed on the trustworthiness of potential collaborators before handing in the tokens. Alice can use any out-of-band means to this end, which we model as an oracle \mathcal{O}_{Trust} which is input a desire and a list of potential players and returns the player that increases the utility the most (on expectation), along with the expected utility increase.

Definition 2 (Cost of desire). The cost of Alice's indexed desire, say $(idx,d) \in (\mathbb{N},\mathcal{D})$, when satisfied by Bob is equal to the input tokens that Alice is required by Bob to give to him in order for him to calculate s(idx,d,Alice) and is represented by c(idx,d,Alice,Bob). The cost of satisfying this desire herself is represented by c(idx,d,Alice) and is equal to the number of input tokens Alice must consume in order to calculate s(idx,d,Alice) herself. Let c(idx,d,Alice,Alice) = c(idx,d,Alice).

It is reasonable to assume that there exists an absolute minimum of tokens that must be spent for the satisfaction of a desire, no matter how efficient the calculating party is.

Definition 3 (Minimum cost of desire). The minimum cost of Alice's indexed desire, say $(idx, d) \in (\mathbb{N}, \mathcal{D})$, is equal to the theoretical minimum of input tokens required for the calculation of s(idx, d, Alice) and is represented by $c_{min}(idx, d, Alice)$.

Note that
$$1 \leq c_{min} (idx, d, Alice) \leq \min_{v \in \mathcal{P}} c(idx, d, Alice, v)$$
.

Definition 4 (Player of desire function).

The function $Player: \mathbb{N} \times \mathcal{D} \to \mathcal{P}$ takes as input an indexed desire and returns the player to which this desire was input by the environment.

Definition 5 (Is the desire satisfied? property).

The property is Satisfied: $\mathbb{N} \times \mathcal{D} \to \{True, False\}$ takes as input an indexed desire and returns whether it has been satisfied.

Definition 6 (Desires of Player function).

The function Desires: $\mathcal{P} \to 2^{(\mathbb{N} \times \mathcal{D})}$ takes as input a player and returns the set of desires that the player was assinged throughout the game.

$$Desires(v) = \bigcup_{(idx,d) \in \mathbb{N} \times \mathcal{D}} \{(idx,d) : Player(idx,d) = v\}$$

We define $SatDesires: \mathcal{P} \to 2^{(\mathbb{N} \times \mathcal{D})}$ and $UnsatDesires: \mathcal{P} \to 2^{(\mathbb{N} \times \mathcal{D})}$ as well:

$$SatDesires\left(v\right) = \bigcup_{(idx,d) \in \mathbb{N} \times \mathcal{D}} \left\{ (idx,d) : Player\left(idx,d\right) = v \land \\ \wedge isSatisfied\left(idx,d\right) = True \right\}$$

$$UnsatDesires\left(v\right) = \bigcup_{(idx,d) \in \mathbb{N} \times \mathcal{D}} \left\{ (idx,d) : Player\left(idx,d\right) = v \land \\ \wedge isSatisfied\left(idx,d\right) = False \right\}$$

It is straightforward to see that

$$\forall v \in \mathcal{P}, SatDesires(v) \cap UnsatDesires(v) = \emptyset$$
.

If additionally we suppose that isSatisfied() is always a computable function, then

$$\forall v \in \mathcal{P}, Desires(v) = SatDesires(v) \cup UnsatDesires(v)$$
.

 \mathcal{E} can calculate the functions and the property defined above for all inputs at any moment in time.

The game begins with all players being created by \mathcal{E} , each allocated a number of tokens determined by the \mathcal{F}_{Ledger} functionality (more on that later). The game ends at a moment specified by the \mathcal{E} , which is unknown to the players. At that moment \mathcal{E} assigns a utility to each player depending on which desires were satisfied throughout the game.

Definition 7 (Utility).

$$\forall v \in \mathcal{P}, u_v = f\left(SatDesires\left(v\right), UnsatDesires\left(v\right)\right),$$
$$U = \bigcup_{v \in \mathcal{P}} \left\{u_v\right\}$$

3 High-level idea

Fig. 1: (Almost) all functionalities

Fig. 2: Trade functionality and protocol

4 Utility Function Properties

Let $v \in \mathcal{P}$. The only property that any utility function should satisfy is that having more desires satisfied and less desires unsatisfied leads to a higher utility. More formally, consider two executions of the game (1) and (2):

$$\left. \begin{array}{l} SatDesires_{1}\left(v\right)\subseteq SatDesires_{2}\left(v\right)\\ UnsatDesires_{2}\left(v\right)\subseteq UnsatDesires_{1}\left(v\right) \end{array} \right\} \Rightarrow u_{v,1}\leq u_{v,2} \ .$$

If one of the two subset is strict, then the inequality becomes strict as well.

As an example, consider two executions of the game (1) and (2) in which v was input exactly the same desires and satisfied the same desires, except for (idx, d), which was satisfied only in game (2) and remained unsatisfied in game (1). Then $u_{v,1} < u_{v,2}$. Going in some detail:

```
 \begin{aligned} \text{Let } Desires_1\left(v\right) &= Desires_2\left(v\right) = \left\{(idx,d)\right\} \cup Rest \ . \\ SatDesires_1\left(v\right) &= Rest \ , \\ \text{It is:} & & UnsatDesires_1\left(v\right) = Rest \cup \left\{(idx,d)\right\} \ , \\ SatDesires_2\left(v\right) &= Rest \cup \left\{(idx,d)\right\} \ \text{and} \\ & & UnsatDesires_2\left(v\right) = Rest \ , \\ \text{thus:} & & & SatDesires_1\left(v\right) \subset SatDesires_2\left(v\right) \\ & & & UnsatDesires_2\left(v\right) \subset UnsatDesires_1\left(v\right) \end{aligned} \\ \Rightarrow u_{v,1} < u_{v,2} \ . \end{aligned}
```

5 Protocol

In this section we will describe the real protocol executed by the players in the absence of the \mathcal{F}_{SAT} ideal functionality. The description of this protocol does not need any utility function; all the "important" decisions are taken by the environment.

Consider an environment \mathcal{E} , and adversary \mathcal{A} and n players executing copies of the same protocol Π_1, \ldots, Π_n . \mathcal{E} can send the following messages to Π_i :

- 1. Manage player desires
 - (a) Satisfy $d \in \mathcal{D}$ through a player in $L \subseteq [n]$
 - (b) Abort attempt to satisfy $d \in \mathcal{D}$
- 2. Manage offered desires satisfaction
 - (a) Gain the ability to satisfy $d \in \mathcal{D}$ for players in $L \subseteq [n]$ for a price $x \in \mathbb{N}$
 - (b) Lose the ability to satisfy $d \in \mathcal{D}$ for players in $L \subseteq [n]$ for a price $x \in \mathbb{N}$
- 3. Satisfy another player's desire
 - (a) Satisfy player's $i \in [n]$ desire $d \in \mathcal{D}$ with the corresponding satisfaction string s
 - (b) Satisfy player's $i \in [n]$ desire $d \in \mathcal{D}$ with the satisfaction string s' (normally suitable for satisfying $d' \neq d, d' \in \mathcal{D}$)

- (c) Ignore player's $i \in [n]$ desire $d \in \mathcal{D}$
- 4. Manage direct trusts
 - (a) Increase direct trust to player $i \in [n]$ by $x \in \mathbb{N}$
 - (b) Decrease direct trust to player $i \in [n]$ by $x \in \mathbb{N}$
 - (c) Steal direct trust $x \in \mathbb{N}$ from player $i \in [n]$

Some of these messages (e.g. 1b) are meaningful only when some other messages have been delivered previously (e.g. 1a). \mathcal{E} may send such messages even when they are not meaningful; the protocol should take care to reject/ignore such messages.

Let $i \in [n]$. Π_i can send the following messages to \mathcal{E} :

- 1. No player in L can satisfy my desire $d \in \mathcal{D}$
- 2. Desire $d \in \mathcal{D}$ made available for satisfaction amongst $L \subseteq [n]$ for price $x \in \mathbb{N}$
- 3. Desire $d \in \mathcal{D}$ made unavailable for satisfaction amongst $L \subseteq [n]$ for price $x \in \mathbb{N}$
- 4. Payment $x \in \mathbb{N}$ has been sent to player $j \in [n]$ for the satisfaction of desire $d \in \mathcal{D}$
- 5. Correct Payment $x \in \mathbb{N}$ from player $j \in [n]$ for the satisfaction of desire $d \in \mathcal{D}$ has been received
- 6. Wrong Payment $x \in \mathbb{N}$ from player $j \in [n]$ for the satisfaction of desire $d \in \mathcal{D}$ has been received
- 7. Player $j \in [n]$ has satisfied my desire $d \in \mathcal{D}$ with satisfaction string s
- 8. Player $j \in [n]$ has partially satisfied my desire $d \in \mathcal{D}$ with satisfaction string s' (normally suitable for satisfying $d' \neq d, d' \in \mathcal{D}$)
- 9. Player $j \in [n]$ has ignored my desire $d \in \mathcal{D}$
- 10. Direct trust to player $i \in [n]$ increased by $x \in \mathbb{N}$
- 11. Direct trust to player $i \in [n]$ decreased by $x \in \mathbb{N}$
- 12. Stole $x \in \mathbb{N}$ from player's $i \in [n]$ direct trust

 Π_i should only send these messages when \mathcal{E} is expecting them.

Let $i, j \in [n]$ The messages that can be sent between Π_i and Π_j are the following:

- 1. Can you satisfy $d \in \mathcal{D}$?
- 2. I can satisfy $d \in \mathcal{D}$ for a price $x \in \mathbb{N}$
- 3. I cannot satisfy $d \in \mathcal{D}$
- 4. Payment of $x \in \mathbb{N}$ for satisfaction of $d \in \mathcal{D}$ sent
- 5. Satisfaction string s', response to payment of $x \in \mathbb{N}$ for $d \in \mathcal{D}$

 Π_i is supposed to send 4 when it has already paid through \mathcal{F}_{Ledger} . Similarly, it is supposed to send 5 when it has verified that the other party has sent the corresponding payment on \mathcal{F}_{Ledger} .

Going in more detail, the actual protocol is as follows:

```
\Pi_{SAT}
    Initalization:
      util = \bot
   Upon receiving type(t) from \mathcal{E}:
      util = t
   Upon receiving message satisfy (d, L) from \mathcal{E}:
      If util == \perp:
        send message utilityNotSet() to \mathcal E
        go to Idle state
10
      aux = L
11
      While (aux \neq \emptyset):
12
        send message chooseBestSeller(d, aux) to \mathcal{F}_{Trust}
        wait for response1 from \mathcal{F}_{Trust}
        If response1 == bestSeller(d, L, Bob):
          send message canYouSatisfy(d) to Bob
          wait for response2 from Bob
17
          If response2 == IcanSatisfy(d, x, s):
18
             If util(with s, w/o x) > util(with x, w/o s):
19
               send message trade(x, s, Bob) to \mathcal{F}_{Trade}
20
               wait for response3 from \mathcal{F}_{Trade}
21
                 If response3 == traded(x, s, Bob):
                    send message satisfied(d, x, s, Bob) to \mathcal{F}_{Trust}
                    # maybe send only utility difference to \mathcal{F}_{Trust}
24
                    send message satisfied (d, L) to \mathcal{E}
25
                    go to Idle state
26
                 Else If response3 == cheated(x, s, Bob):
                    send message cheated(d, x, s, Bob) to \mathcal{F}_{Trust}
                    send message cheated (d, L) to \mathcal{E}
                    go to Idle state
        Else: # if response1 == \perp
31
          send message unsatisfied (d, L) to \mathcal{E}
32
          go to Idle state
33
        aux = aux \setminus \{Bob\} # only when response2 is not good
      send message unsatisfied (d, L) to \mathcal{E}
35
   Upon receiving message obtain(s) from \mathcal{E}:
      send message obtain(s) to \mathcal{F}_{Trade}
38
      wait for response from \mathcal{F}_{Trade}
39
```

```
If response == obtained(s):
40
        send message obtained(s) to \mathcal{E}
41
     Else:
42
        send message notObtained(s) to \mathcal{E}
43
44
   Upon receiving message lose(s) from \mathcal{E}:
45
      send message lose(s) to \mathcal{F}_{Trade}
      wait for response from \mathcal{F}_{Trade}
      If response == lost(s):
48
        send message lost(s) to \mathcal{E}
49
     Else:
50
        send message notLost(s) to \mathcal{E}
51
52
   Upon receiving message canYouSatisfy(d) from Alice:
      If util == \perp:
        ignore request, go to Idle state
55
      If util(proposing to Alice to trade our s for her x) >
56
          util(not proposing):
        send message IcanSatisfy(d, x, s) to Alice \# x is the price
57
     Else:
58
        send message IcannotSatisfy(d) to Alice
59
60
   Upon receiving message willWeCheat(x, s, Alice) from \mathcal{F}_{Trade}:
61
      If util == \bot: # (Unreachable since we've already engaged)
62
        ignore request, go to Idle state
63
      If util(not cheating x, s, Alice) > util(cheating x, s, Alice):
64
        send message doNotCheat(x, s, Alice) to \mathcal{F}_{Trade}
65
      Else:
66
        send message cheat(x, s, Alice) to \mathcal{F}_{Trade}
67
```

6 Desire Satisfaction Ideal Functionality

Following the UC paradigm, in this section we define the ideal functionality for desire satisfaction, \mathcal{F}_{SAT} . In this setting, all the desires that are generated by the environment and are input to the players are immediately forwarded to \mathcal{F}_{SAT} ; the functionality decides which desires to satisfy. Since the players are dummy and all desires are satisfied by the functionality, no trust semantics amongst the players are necessary.

Nevertheless, given that all desires have a minimum cost, the cost semantics are still necessary, as we show with the following example: Consider a set of desires D with more elements than the total number of tokens all players have. D could never be satisfied by the players because of the high total cost, but a \mathcal{F}_{SAT} with no consideration for cost could in principle satisfy all desires in D.

The functionality can calculate the properties and functions defined in 4, 5 and 6 for all inputs at any moment in time.

Without knowledge of the utilities the environment is going to give to each satisfied desire, the functionality may fail spectacularly. So knowledge of the utility of each desire, or at least some function of the utility given the desires is needed. We can assume that \mathcal{F}_{SAT} knows U or an approximation of it.

Going into more detail, \mathcal{F}_{SAT} is a stateful process that acts as a market and as a bank for the players. The market does not offer a particular product for the same price to all users; For some users it may be cheaper than for others, reflecting the fact that some players can realize some desires more efficiently than others.

 \mathcal{F}_{SAT} stores a number for each player that represents the amount of tokens this player has and a table with the price of each desire for each player. It provides the functions cost(u,d) which returns the cost of the desire d for player u with no side effects, sat(u,d) that returns the string that satisfies the desire d to u and reduces the amount of the tokens belonging to u by cost(u,d). There exists also the function $transfer(u_1,u_2,t)$ which reduces the amount of tokens u_1 has by t and increases the tokens of u_2 by t, given that initially the tokens belonging to u_1 were equal or more than t. This function is private to the functionality, thus can be used only internally.

```
\mathcal{F}_{SAT}
    Initialisation:
      \forall Alice \in \mathcal{P},
2
        util(Alice) = \bot
        assets(Alice) = \bot
    Upon receiving type(t) from Alice:
      util(Alice) = t
    Upon receiving satisfy(d, L) from Alice:
      If util(Alice) == \bot:
10
        send message utilityNotSet() to Alice
11
        go to Idle state
12
      Find sat = (Bob, x, s) \in L \times \mathbb{R} \times Assets:
13
```

```
s \in \mathtt{assets}(Bob) and
       x \ge 0 and
15
       Alice has at least x coins available and
       util(Alice) (after trade) > util(Alice) (before trade)
17
       util(Bob) (after trade) > util(Bob) (before trade)
       util(Bob) (after trade) > util(Bob) (after cheating)
       and
       util(Alice)(after trade) maximum amongst possible choices
23
     With sat as (Bob, x, s):
24
       If x > 0:
25
         Pay x from Alice to Bob
26
       assets(Bob) = assets(Bob) \setminus \{s\}
       assets(Alice) = assets(Alice) \cup \{s\}
       send message satisfied (d, L) to Alice
     Else If sat == \perp
30
       send message unsatisfied (d, L) to Alice
31
32
   Upon receiving obtain(s) from Alice:
33
     assets(Alice) = assets(Alice) \cup \{s\}
34
     send message obtained(s) to Alice
35
   Upon receiving lose(s) from Alice:
37
     assets(Alice) = assets(Alice) \setminus \{s\}
38
     send message lost(s) to Alice
39
   \mathcal{F}_{Trade}
   Initialisation:
     \forall Alice \in \mathcal{P},
       assets(Alice) = \bot
   Upon receiving trade(ours, theirs, Bob) from Alice:
     If not isAvailable(ours, Alice):
       send message youDontHave(ours) to Alice
       go to Idle state
     If transfer(ours, Alice, Bob) == True:
       send message willWeCheat(ours, theirs, Alice) to Bob
       wait for response from Bob
       If (response == complete(x, s, Alice) and
12
```

```
not is Available (s, Bob)) or
         response \neq complete(x, s, Alice):
14
           send message youDontHave(s) to Bob
15
           send message cheated(ours, theirs, Bob) to Alice
16
           go to Idle state
       Else If transfer(theirs, Bob, Alice) == True:
         send message traded(ours, theirs, Bob) to Alice
     Else # failed to give (Unreachable for a good \mathcal{F}_{Ledger})
       send message failed(ours, theirs, Bob) to Alice
22
   isAvailable(object, player):
23
     If object is money:
24
       send doIhaveBalance(object) to \mathcal{F}_{Ledqer} as player
25
       wait for response from \mathcal{F}_{Ledger}
26
       return response
27
     Else: # object is asset
       If object \in assets(player):
         return True
30
       Else:
31
         return False
32
33
   transfer(object, sender, receiver):
     If isAvailable(object):
       If object is money:
         send pay(object, receiver) to \mathcal{F}_{Ledger} as sender
37
         wait for response from \mathcal{F}_{Ledger}
38
         Upon receiving paymentDone(object, receiver):
39
           return True
       Else: # object is asset
41
         assets(sender) = assets(sender) \ { object }
         assets(receiver) = assets(receiver) ∪{object}
         return True
44
     return False
45
46
   Upon receiving obtain(s) from Alice:
47
     assets(Alice) = assets(Alice) \cup \{s\}
48
     send message obtained(s) to Alice
49
   Upon receiving lose(s) from Alice:
51
     assets(Alice) = assets(Alice) \setminus \{s\}
52
```

```
send message lost(s) to Alice
   \mathcal{F}_{Assets}
   Initialisation:
     \forall Alice \in \mathcal{P},
        assets(Alice) = \bot
   Upon receiving add(asset) from Alice:
     If asset \in assets(Alice):
        send youAlreadyHave(asset) to Alice
     Else:
        assets(Alice) = assets(Alice) \cup \{asset\}
        send added(asset) to Alice
10
11
   Upon receiving remove(asset) from Alice:
     If asset \in assets(Alice):
        assets(Alice) = assets(Alice) \setminus \{asset\}
14
        send removed(asset) to Alice
15
     Else:
16
        send unableToRemove(asset) to Alice
17
18
   Upon receiving doIhave(asset) from Alice:
19
     If asset \in assets(Alice):
        send youHave(asset) to Alice
21
     Else:
22
        send youDoNotHave(asset) to Alice
23
   Upon receiving transfer(asset, Bob) from Alice:
25
     If asset \in assets(Alice):
26
        assets(Alice) = assets(Alice) \setminus \{asset\}
27
        assets(Alice) = assets(Bob) \cup \{asset\}
        send transferred(asset, Bob) to Alice
     Else:
30
        send unableToTransfer(asset, Bob) to Alice
31
   \Pi_{Trade}
   Upon receiving trade(ours, theirs, Bob) from \mathcal{E}:
     Send letsTrade(ours, theirs) to Bob
     If transfer(ours, Bob) == True:
        Send transferred(ours, Bob) to Bob and {\cal E}
       Wait for response from Bob
```

```
If response == transferred(theirs, Bob):
          send message traded(ours, theirs, Bob) to {\cal E}
        Else:
          send message cheated(ours, theirs, Bob) to {\cal E}
   Upon receiving letsTrade(theirs, ours) from Bob:
     Send willWeCheat(theirs, ours, Bob) to {\cal E}
     Wait for response from {\mathcal E}
     If response is doNotCheat(theirs, ours, Bob):
        If transfer(ours, Bob) == True:
15
          Send transferred(ours, Bob) to Bob and {\cal E}
16
17
   transfer(object, receiver):
     If isAvailable(object):
        If object is money:
          send pay(object, receiver) to \mathcal{F}_{Ledger}
          wait for response from \mathcal{F}_{Ledger}
          Upon receiving paymentDone(object, receiver):
23
            return True
24
        Else: # object is asset
25
          send transfer(object, receiver) to \mathcal{F}_{Assets}
          wait for response from \mathcal{F}_{Assets}
27
          Upon receiving transferDone(object, receiver):
            return True
     return False
30
31
   isAvailable(object):
32
     If object is money:
33
        send doIhaveBalance(object) to \mathcal{F}_{Ledger}
34
        wait for response from \mathcal{F}_{Ledger}
        return response
     Else: # object is asset
37
        Send doIHave(object) to \mathcal{F}_{Assets}
38
        wait for response from \mathcal{F}_{Assets}
39
        If response == youHave(object):
40
          return True
41
        Else:
42
          return False
   Upon receiving message obtain(s) from \mathcal{E}:
```

```
send message add(s) to \mathcal{F}_{Assets}
46
      wait for response from \mathcal{F}_{Assets}
47
      If response == added(s)
48
         send message obtained(s) to \mathcal{E}
49
      Else
50
         send message notObtained(s) to \mathcal{E}
51
    Upon receiving message lose(s) from \mathcal{E}:
53
      send message remove(s) to \mathcal{F}_{Assets}
54
      wait for response from \mathcal{F}_{Assets}
55
      If response == removed(s)
56
         send message lost(s) to \mathcal{E}
57
      Else
58
         send message notLost(s) to \mathcal E
```

7 Trust definitions

We define two kinds of trust: direct and indirect. Direct trust from Alice to Bob is represented by input tokens (initially belonging to Alice) actively put by her in a common account from which Bob can also take them. As long as Bob does not take these tokens, Alice directly trusts him equally to the amount of tokens deposited in the common account.

This information can be used by another player *Charlie* that directly trusts *Alice* in order to derive information regarding *Bob*'s trustworthiness, even if *Charlie* does not directly trust *Bob*. Through a transitive property, *Dean*, who directly trusts *Charlie*, can in turn derive information from the direct trust from *Alice* to *Bob*. This reasoning can be extended to an arbitrary number of players, as long as they have at least one trust path to *Alice*. This is called indirect trust.

Definition 8 (Direct Trust). The direct trust from Alice to Bob, represented by $DTr_{Alice \to Bob}$, is equal to the total tokens that Alice has given as input to \mathcal{F}_{Trust} with entrust(Bob, 1^{tokens}) and also equal to the available tokens count sent by \mathcal{F}_{Trust} as a response to a message query_direct_trust(Alice, Bob).

Definition 9 (Indirect Trust). The indirect trust from Alice to Bob, $Tr_{Alice \to Bob}$, is measured in input tokens and can be calculated deterministically given the existing direct trusts between all pairs of players. It is equal to the number sent by \mathcal{F}_{Trust} as a response to a message query_indirect_trust(Alice, Bob).

By convention $DTr_{Alice \to Alice} = Tr_{Alice \to Alice}$ and are both equal to the quantity of input tokens Alice has.

We would like to provide players with an ideal functionality where they:

- 1. Directly trust tokens to another player
- 2. Steal tokens previously directly entrusted by another player
- 3. Retract tokens previously directly entrusted to another player
- 4. Query indirect trust towards another player

The following functionality provides such an interface:

 \mathcal{F}_{Trust}

 $_{\scriptscriptstyle 1}$ Has oracle access to the players' utility functions U

- $^{_{
 m B}}$ Upon receiving chooseBestSeller(d, L) from Alice:
- choose $Bob \in L$ that will maximise U_{Alice} after the transaction (goes through with the trade and offers the minimum price and maximum quality of product)
- If $U_{Alice,before} > U_{Alice,after}$:
- $Bob = \bot$
- $_{7}$ send message bestSeller(d, L, Bob) to Alice

Assumptions:

- Trades are atomic. \mathcal{F}_{Trust} can deterministically decide whether Bob will complete the trade.
- The internal workings of \mathcal{F}_{Trust} is common knowledge to the players. Their utility depends on it.

Note: It would be interesting to see how utilities (as algorithms) and \mathcal{F}_{Trust} have a "fixed point".

8 Desired Properties for Indirect Trust

- 1. $Tr_{Alice \to Bob} \ge DTr_{Alice \to Bob}$
- 2. If universe (1) and (2) are identical except for $DTr_{Alice \to Bob}$, then

$$Tr^2_{Alice \to Bob} = Tr^1_{Alice \to Bob} - DTr^1_{Alice \to Bob} + DTr^2_{Alice \to Bob} \ .$$

3. Consider an indexed desire (idx, d) Alice has. Let p(idx, d, Alice) be a function that returns the player that Alice should rationally delegate the calculation of s(idx, d, Alice) to.

(a) If a player is cheaper and more trustworthy than all other players, delegate the calculation to him.

$$\exists Bob \in \mathcal{P} : \forall Charlie \in \mathcal{P} \setminus \{Bob\}$$

$$(c(idx, d, Alice, Bob) < c(idx, d, Alice, Charlie) \land$$

$$\land Tr_{Alice \to Bob} > Tr_{Alice \to Charlie}) \Rightarrow$$

$$\Rightarrow p(idx, d, Alice) = Bob .$$

(b) If there exists a player *Bob* that is both cheaper and more trustworthy than *Charlie*, do not delegate the calculation to *Charlie*.

$$\exists Bob, Charlie \in \mathcal{P}:$$

$$(c (idx, d, Alice, Bob) < c (idx, d, Alice, Charlie) \land$$

$$\land Tr_{Alice \to Bob} > Tr_{Alice \to Charlie}) \Rightarrow$$

$$\Rightarrow p (idx, d, Alice) \neq Charlie.$$

Note that the first property can be deduced from the second.

Let x = (idx, d, Alice). Several ideas exist as to what rules p(x) should satisfy:

1. Indirect trust towards Bob is required to be greater than the cost of the calculation requested by Bob in order for Alice to delegate $s\left(idx,d,Alice\right)$ to him. If there exist multiple players that Alice indirectly trusts more than their cost, then the cheapest one is chosen. If multiple trustworthy enough players have the same cost, the most trustworthy one is chosen.

$$c\left(x,Charlie\right) > Tr_{Alice \to Charlie} \qquad \Rightarrow p\left(x\right) \neq Charlie$$
 For the following, $\forall v \in \{Bob,Charlie\}\ c\left(x,v\right) \leq Tr_{Alice \to v}$.
$$c\left(x,Bob\right) < c\left(x,Charlie\right) \qquad \Rightarrow p\left(x\right) \neq Charlie$$

$$c\left(x,Bob\right) = c\left(x,Charlie\right) \qquad \Rightarrow p\left(x\right) \neq Charlie$$

$$Tr_{Alice \to Bob} > Tr_{Alice \to Charlie}$$

$$\Rightarrow p\left(x\right) \neq Charlie$$

2. Similarly to the previous idea, the indirect trust must exceed the cost. In this case however, in case of multiple trustworthy and cheap players, the indirect trust is considered before the cost.

$$c\left(x,Charlie\right) > Tr_{Alice \to Charlie} \qquad \Rightarrow p\left(x\right) \neq Charlie$$
 For the following, $\forall v \in \{Bob,Charlie\}\ c\left(x,v\right) \leq Tr_{Alice \to v}$.
$$Tr_{Alice \to Bob} > Tr_{Alice \to Charlie} \qquad \Rightarrow p\left(x\right) \neq Charlie$$

$$Tr_{Alice \to Bob} = Tr_{Alice \to Charlie}$$

$$\Rightarrow p\left(x\right) \neq Charlie$$

$$\Rightarrow p\left(x\right) \neq Charlie$$

$$\Rightarrow p\left(x\right) \neq Charlie$$

3. The player with the highest difference between indirect trust and cost is chosen.

$$p(x) = \underset{v \in \mathcal{P}}{\operatorname{argmax}} \left(Tr_{Alice \to v} - c(x, v) \right)$$

This aims to maximize trust and minimize cost and, contrary to the previous two approaches, attaches equal importance to these two metrics

4. The player with the lowest difference between indirect trust and cost is chosen.

$$p(x) = \operatorname*{argmin}_{v \in \mathcal{P}} \left(Tr_{Alice \to v} - c(x, v) \right)$$

Note that this last approach constitutes another direction, which departs from choosing the cheapest and most trustworthy vendor, opting for the one whose price and trustworthiness match. It evidently does not follow the property (3).

9 Motivation for our Trust model

Nevertheless, one can say that at first sight it is in Bob's best interest to trick Alice into believing that he can efficiently calculate s (idx, d, Alice) and skip the computation entirely after obtaining Alice's input, thus keeping all the tokens of the defrauded player. Evidently Alice would avoid further interaction with Bob, but without any way to signal other players of this unfortunate encounter, Bob can keep defrauding others until the pool of players is depleted; if the players are numerous or their number is increasing, Bob may keep this enterprise very profitable for an indefinite amount of time. This being a rational strategy, every player would eventually follow it, which through a "tragedy of the commons" effect invariably leads to a world where each player must satisfy all her desires by herself, entirely missing out on the prospect of the division of labor.

One answer to that undesirable turn of events is a method through which *Alice*, prior to interacting with an aspiring helper *Bob*, consults the collective knowledge of her neighborhood of the network regarding him. There are several methods to achieve this, such as star-based global ratings. This method however has several drawbacks:

- Very good ratings cost nothing, thus convey little valuable information.
- Different players may have different preferences, global ratings fail to capture this. Arrow's impossibility theorem is possibly relevant here.

- Susceptible to Sybil attacks; mitigation techniques are ad-hoc and require (partial) centralization and secrecy/obfuscation of methods to succeed, thus undermining the decentralized, transparent nature of the system, a property that we actively seek.

References