Notatki do Analizy I R

Na podstawie wykładu głoszonego przez prof. Sołtana w 2023 r.

red. Filip Baciak

November 2023

1 Wstęp

1.1 Relacje

Definicja 1.1. Relacja

Relacją R ze zbioru A do zbioru B nazywamy podzbiór iloczynu kartezjańskiego tych dwu zbiorów:

$$R \subseteq A \times B. \tag{1}$$

Jeśli (x, y) ∈ R to piszemy xRy.

Przykłady relacji:

• Relacja równości $R \subseteq A \times A$, zdefioniowana:

$$R = \{(a, a) | a \in A\}. \tag{2}$$

• Na zbiorze \mathbb{N} mamy relację wewnętrzną (tj. będącą podzbiorem \mathbb{N}^2):

$$R = \{(n, m) | n \le m\}. \tag{3}$$

Definicja 1.2. Relacja równoważności

Relacją równoważności nazywamy relację $R \subseteq A \times A$, spełniającą następujące aksjomaty:

1. Zwrotność:

$$\forall_{x \in A} : xRx. \tag{4}$$

2. Symetryczność:

$$\forall_{x,v \in A} : xRy \implies yRx. \tag{5}$$

3. Przechodniość:

$$\forall_{x,y,z \in A} : xRy \land yRz \implies xRz. \tag{6}$$

Przykładem relacji równoważności jest relacja R_f zadana przez funkcję $f: A \rightarrow B$:

$$xR_f y \iff f(x) = f(y).$$
 (7)

Definicja 1.3. Częściowy porządek

Częściowym porządkiem na zbiorze A nazywamy relację $R \subseteq A^2$ (którą oznaczamy \leq i piszemy $x \leq y$ zamiast xRy), jeśli ma następujące cechy:

1. Zwrotność:

$$\forall_{x \in A} : x \leqslant x. \tag{8}$$

2. Antysymetryczność:

$$\forall_{x,y \in A} : x \leqslant y \land y \leqslant x \implies x = y. \tag{9}$$

3. Przechodniość:

$$\forall_{x,v,z \in A} : xRy \land yRz \implies xRz. \tag{10}$$

Zbiór parę (A, \leq) nazywamy zbiorem częsciowo uporządkowanym.

Na przykład relacja wewnętrzna na zbiorze \mathbb{N}^2 zdefiniowana następująco:

$$(a,b) \leq (a',b') \iff a \leq a' \land b \leq b'$$

zadaje częsciowy porządek nad \mathbb{N}^2 .

Definicja 1.4. Porządek liniowy

Porządek częściowy ≤ nad *A* nazywamy **liniowym**, jeśli:

$$\forall_{x,y \in A}: \quad x \leq y \lor x \leq y. \tag{11}$$

Zbiór z określonym porządkiem liniowym nazywamy **uporządkowanym liniowo**. Jeśli $x \le y \land x \ne y$ to piszemy x < y.

Zauważmy, że porządek częściowy - jak sama nazwa wskazuje - niekoniecznie określa relację większości między każdymi dwoma elementami zbioru na którym jest określony. Tę własność ma dopiero porządek liniowy.

Definicja 1.5. Ograniczenia

Podzbiór $X\subseteq A$ zbioru uporządkowanego liniowo (A,\leqslant) nazywamy **ograniczonym z góry**, jeśli:

$$\exists_{u \in A} \forall_{x \in X} : x \leq B. \tag{12}$$

Podobnie definiujemy ograniczenie z dołu:

$$\exists_{l \in A} \forall_{x \in X} : l \leqslant x. \tag{13}$$

Elementy u i l nazywamy odpowiednio **ograniczeniem górnym** i **ograniczeniem dolnym**.

Definicja 1.6. Kresy górne i dolne

Kresem górnym podzbioru $X \subseteq A$ uporządkowanego (A, \leq) nazwiemy najmniejsze jego ograniczenie górne, to znaczy taka liczbe $b \in A$, że:

- b jest ograniczeniem górnym X,
- jeśli l jest ograniczeniem górnym X, to $b \le l$.

Podobnie - jako największe ograniczenie dolne - definiujemy **kres dolny**. Kres górny zbioru X oznaczamy sup X, a kres dolny inf X

Zauważmy, że w ogólności zbiór nie musi mieć kresu górnego lub dolnego, a jeśli go ma to kres nie musi być elementem tegoż zbioru.

1.2 Liczby rzeczywiste

Definicja 1.7. R

Liczbami rzeczywistymi nazywamy zbiór \mathbb{R} z określonymi działaniami dodawania + i mnożenia ·, wyróżnionymi, różnymi elementami 0 i 1 i określoną relacją porządku liniowego \leqslant - w skrócie (\mathbb{R} , +, ·, 0, 1, \leqslant) - taki że:

- 1. R jest ciałem, tzn. spełnia:
 - (a) Zamkniętość dodawania i mnożenia:

$$\forall_{a,b\in\mathbb{R}}: a+b\in R \land a\cdot b\in\mathbb{R}; \tag{14}$$

(b) 0 jest elementem neutralnym dodawania:

$$\forall_{a \in \mathbb{R}} : a + 0 = a; \tag{15}$$

(c) Istnieją elementy odwrotne względem dodwania:

$$\forall_{a \in \mathbb{R}} \exists_{-a \in \mathbb{R}} : a + (-a) = 0; \tag{16}$$

(d) Dodawanie jest łączne:

$$\forall_{a,b,c \in \mathbb{R}} : (a+b) + c = a + (b+c);$$
 (17)

(e) Dodawanie jest przemienne:

$$\forall_{a,b\in\mathbb{R}}: a+b=b+a; \tag{18}$$

(f) 1 jest elementem neutralnym mnożenia:

$$\forall_{a \in \mathbb{R}} : a \cdot 1 = a; \tag{19}$$

(g) Mnożenie jest łączne:

$$\forall_{a,b,c \in \mathbb{R}} : (a \cdot b) \cdot c = a \cdot (b \cdot c); \tag{20}$$

(h) Mnożenie jest przemienne:

$$\forall_{a,b\in\mathbb{R}}: a\cdot b = b\cdot a; \tag{21}$$

(i) Istnieją elementy przeciwne względem mnożenia (z wyjątkiem 0):

$$\forall_{a \in \mathbb{R} \setminus \{0\}} \exists_{a^{-1} \in R} : a \cdot a^{-1} = 1;$$
 (22)

(j) Dodawanie jest rozdzielne względem mnożenia:

$$\forall_{a,b,c \in \mathbb{R}} : a \cdot (b+c) = a \cdot b + a \cdot c. \tag{23}$$

- 2. Porządek liniowy ≤ spełnia:
 - (a) Możliwość dodawania "stronami":

$$\forall_{a,b,t \in R} : a \le b \implies a + t \le b + t; \tag{24}$$

(b) Mnożenie dodatnich zachowuje dodatniość

$$\forall_{a,b \in \mathbb{R}} : 0 < a \land 0 < b \implies 0 < a \cdot b. \tag{25}$$

3. R jest zwarty, tj. każdy niepusty zbiór ograniczony z góry ma kres górny w R.

Można podać konstrukcję ciała o podanych własnościach (np. kontrukcja Dedekina, kontrukcja Riemana) i dowieść, że z dokładnością do izomorfizmu istnieje tylko jedno takie ciało.

Twierdzenie 1.1. Własność Archimedesa

$$\forall_{x>0,y\in\mathbb{R}}\exists_{n\in\mathbb{N}}:nx>y. \tag{26}$$

Dowód

Twiedzenia dowiedziemy nie wprost:

Niech $X = nx | n \in \mathbb{N}$ i załóżmy, że X jest ograniczony z góry przez y. Zatem posiada supremum: $\alpha = \sup X$. Wiemy, że $\alpha - x < \alpha$, więc nie może to być ograniczenie górne. Zatem:

$$\exists_{n_0 \in \mathbb{N}} : n_0 x > \alpha - x.$$

Ale wtedy:

$$X \ni (n_0 + 1)x > \alpha = \sup X$$
.

Sprzeczność! Istotnie więc, zbiór $nx|n \in \mathbb{N}$ nie może być ograniczony przez żadną liczbę, co dowodzi tezy.

Twierdzenie 1.2. Gęstość Q w R

$$\forall_{x,y \in \mathbb{R}, x < y} \exists_{r \in \mathbb{Q}} : x < r < y. \tag{27}$$

Dowód

Skoro y-x>0, to $\exists n\in\mathbb{N}: n(y-x)>1$. Ponadto, skoro 1>0, to $\exists_{m_1,m_2\in\mathbb{N}}: m_1>nx \land m_2>-nx$. Zatem $-m_2< nx < m_1$, tzn. nx leży pomiędzy dwiema liczami całkowitymi. Istnieje więc takie $m\in\mathbb{Z}$, takie że:

$$m-1 \le nx < m$$
.

Stad już prosto:

$$nx < m \le nx + 1 < ny,$$

$$x < \frac{m}{n} < y.$$

Na koniec krótka notka - zbiór $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$, to jest liczby rzeczywiste z dołączonymi symbolami (nie liczbami!) plus i minus nieskończoności, nazywami **rozszerzonymi liczbami rzeczywistymi**.

2 Ciagi rzeczywiste

2.1 Pojęcie ciągu i ogólne rezulataty

Definicja 2.1. Ciąg

Ciagiem elementów z zbioru X nazywamy funkcję:

$$a: \mathbb{N} \to X$$
 (28)

i zamiast a(n) piszemy a_n . Cały ciąg oznaczamy $(a_n)_{n\in\mathbb{N}}$. My w szczególności zajmować się będziemy ciągami rzeczywistymi i zespolonymi.

W sekcji tej, o ile nie powiedziano inaczej, zakładamy, że wszystkie ciągi są rzeczywiste.

Definicja 2.2. ZBIEŻNOŚĆ CIĄGU

Ciąg rzeczywisty $(a_n)_{n\in\mathbb{N}}$ nazywamy zbieżnym do granicy g, jeśli:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon} \in \mathbb{N}} \forall_{n \geqslant N} : |a_n - g| \leqslant \varepsilon. \tag{29}$$

Piszemy wtedy: $\lim_{n\to\infty} a_n = g \text{ lub } a_n \xrightarrow{n\to\infty} g$.

Ciąg $(a_n)_{n\in\mathbb{N}}$ nazywamy **ograniczonym**, jeśli:

$$\exists_C \forall_{n \in \mathbb{N}} : |a_n| \leqslant C. \tag{30}$$

Obserwacja 1. Obserwacja

Każdy ciąg zbieżny jest ograniczony.

Twierdzenie 2.1. Arytmetyka granic

Niech $(a_n)_{n\in\mathbb{N}}$ i $(b_n)_{n\in\mathbb{N}}$ będą ciągami rzeczywistymi, takimi, że $\lim_{n\to\infty}a_n=a$ i $\lim_{n\to\infty}b_n=b$. Wtedy:

$$\lim_{n \to \infty} a + b_n = a + b \tag{31}$$

2.

$$\lim_{n \to \infty} a \cdot b_n = a \cdot b \tag{32}$$

3.

$$\lim_{n \to \infty} |a|_n = |a| \tag{33}$$

4. Jeśli $b_n \neq 0$ DDD n (dla dostatecznie dużych n) i $b \neq 0$:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \tag{34}$$

Dowód

W dowodach wszystkich tych twierdzeń chcemy dla dowolnego ε skonstruować takie N, że dla wszystkich $n \ge N$ różnica między wyrazami ciągu po lewej a granicą po prawej stronie jest mniejsza od ε . Pamiętamy tutaj, że:

$$\forall_{\varepsilon>0} \exists_{M_{\varepsilon} \in \mathbb{N}} \forall n \geqslant M_{\varepsilon} : |a_n - a| \leqslant \varepsilon, \tag{35}$$

$$\forall_{\varepsilon>0} \exists_{K_{\varepsilon} \in \mathbb{N}} \forall n \geqslant K_{\varepsilon} : |b_n - b| \leqslant \varepsilon, \tag{36}$$

1. Mamy:

$$|a_n + b_n - a - b| \le |a_n - a| + |b_n - b|,\tag{37}$$

więc dla $n \ge N = \max\{M_{\frac{\varepsilon}{2}}, K_{\frac{\varepsilon}{2}}\}$:

$$|a_n + b_n - a - b| \le |a_n - a| + |b_n - b| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
(38)

2.

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab| \le |a_n| |b_n - b| + |b| |a_n - a|.$$
(39)

Ale $(a_n)_{n\in\mathbb{N}}$ jest ograniczony, więc $a_n \leq C$ i mamy:

$$|a_n b_n - ab| \le |a_n||b_n - b| + b|a_n - a| \le (|C| + 1)|b_n - b| + (|b| + 1)|a_n - a|. \tag{40}$$

Zatem dla $n \ge \max\{M_{\frac{\varepsilon}{2|h+1|}}, K_{\frac{\varepsilon}{2(|C|+1)}}\}$:

$$|a_n b_n - ab| \le (|C| + 1) \frac{\varepsilon}{2(|C| + 1)} + (|b| + 1) \frac{\varepsilon}{2|b + 1|} = \varepsilon.$$

$$\tag{41}$$

Dodaliśmy tutaj 1 do |C| i |b|, żeby uniknąć ewentualnego dzielenia przez 0.

3. Jeśli a > 0, to ciąg od pewnego miejsca musi być dodatni: $|a_n| = a_n$ dla $n > M_{|a|}$, więc dla $n > N = \max\{M_{|x|}, M_{\varepsilon}\}$:

$$||a_n| - |a|| = |a_n - a| < \varepsilon.$$

Podobnie, jeśli a < 0, to ciąg od pewnego miejsca jest ujemny i $|a_n| = -a_n$ dla $n > M_{|a|}$, więc dla $n > N = \max\{M_{|x|}, M_{\varepsilon}\}$:

$$||a_n| - a| = |-a_n - |a|| = |a_n - a| < \varepsilon.$$

Dla a = 0, mamy prosto:

$$|a_n| < \varepsilon \implies ||a_n|| < \varepsilon$$
.

4. Zakładamy, że $b_n \neq 0$ DDD n, więc istnieje takie K_0 , że dla $n \geqslant K_0$ $b_n \neq 0$. Wtedy:

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| = \left| \frac{a_n b - ab_n}{b_n b} \right| = \left| \frac{a_n b - ab + ab - ab_n}{b_n b} \right| = \left| \frac{b(a_n - a) + a(b - b_n)}{b_n b} \right| \tag{42}$$

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \le \left|\frac{a_n - a}{b_n}\right| + \left|\frac{a}{b_n b}\right| \left|b_n - b\right| \le \left|\frac{a_n - a}{b_n}\right| + \left(\left|\frac{a}{b_n b}\right| + 1\right) \left|b_n - b\right| \tag{43}$$

Zauważmy, że dla $n\geqslant K_{|\frac{b}{2}|}$ mamy $|b_n-b|\leqslant |\frac{b}{2}|$, więc $\frac{1}{2}|b|\leqslant |b_n|$, przez co:

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \le \left|\frac{a_n - a}{b_n}\right| + \left(\left|\frac{a}{b_n b}\right| + 1\right)\left|b_n - b\right| \le \left|\frac{2}{b}\right|\left|a_n - a\right| + \left(\left|\frac{2a}{b}\right| + 1\right)\left|b_n - b\right| \tag{44}$$

Ostatecznie dla $n>\max\{K_0,K_{\lfloor\frac{b}{2}\rfloor},K_{\frac{\varepsilon}{2(\lfloor\frac{2n}{2n}\rfloor+1)}},M_{\frac{\varepsilon}{4|b|}}\}$:

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| \le \left| \frac{2}{b} \left| \frac{\varepsilon}{4|b|} + \left(\left| \frac{2a}{b} \right| + 1 \right) \frac{\varepsilon}{2\left(\left| \frac{2a}{b} \right| + 1 \right)} = \varepsilon.$$
 (45)

Powiemy teraz o mocnym twierdzeniu, pozwalającym stwierdzić, czy ciąg ma granicę, bez jej wyznaczania.

Twierdzenie 2.2. Twierdzenie o ciągu monotonicznym i ograniczonym

Każdzy ciąg monotoniczny i ograniczony jest zbieżny.

- Jeśli ciąg jest niemalejący, to jest on zbieżny do supremum zbioru wyrazów ciągu.
- Jeśli ciąg jest nierosnący, to jest on zbieżny do infimum zbioru wyrazów ciągu.

Uwaga - dla ciągu $(a_n)_{n\in\mathbb{N}}$ supremum jego wyrazów - tj. $\sup\{a_n\,|\,n\in\mathbb{N}\}$ - oznaczamy $\sup_{n\in\mathbb{N}}a_n$. Analogicznie piszemy $\inf_{n\in\mathbb{N}}a_n$ dla infimum jego wyrazów.

Dowód

Załóżmy, że $(a_n)_{n\in\mathbb{N}}$ jest niemalejący. Zbiór $\{a_n \mid n\in\mathbb{N}\}$ jest ograniczony, zatem posiada supremum. Oznaczmy je g. Zatem dla każdego $\varepsilon>0$ liczba $g-\varepsilon$ nie jest ograniczeniem górnym:

$$\exists_m : g - \varepsilon \leqslant a_m \leqslant g. \tag{46}$$

Ale wtedy, z racji monotoniczności $(a_n)_{n \in \mathbb{N}}$:

$$\forall_{n \geqslant m} : g - \varepsilon \leqslant a_m \leqslant a_n \leqslant g \leqslant g + \varepsilon. \tag{47}$$

Czyli:

$$\forall_{n \geqslant m} : |a_n - g| \leqslant \varepsilon, \tag{48}$$

co chcieliśmy pokazać. Dla $(a_n)_{n\in\mathbb{N}}$ nierosnącego dowód jest zupełnie analogiczny (można też rozważać zbieżność niemalejącego ciągu $(-a_n)_{n\in\mathbb{N}}$).

Twierdzenie 2.3. Twiedzenie o trzech ciągach

Niech $(a_n)_{n\in\mathbb{N}}$ i $(c_n)_{n\in\mathbb{N}}$ będą dwoma ciągami zbieżnymi do wspólnej granicy g. Wtedy, jeśli dla ciągu $(b_n)_{n\in\mathbb{N}}$ istnieje takie N, że:

$$\forall_{n \geqslant N} : a_n \leqslant b_n \leqslant c_n, \tag{49}$$

to $\lim_{n\to\infty}b_n=g$.

Dowód

Dowód jest bardzo krótki. Dla dowolnego ε bierzemy takie M_{ε} , że $\forall_{n\geqslant M_{\varepsilon}}:|a_n-g|\leqslant \varepsilon$ i takie K_{ε} , że: $\forall_{n\geqslant K_{\varepsilon}}:|c_n-g|\leqslant \varepsilon$. Wtedy dla $n\geqslant \max\{N,M_{\varepsilon},K_{\varepsilon}\}$:

$$g - \varepsilon \leqslant a_n \leqslant b_n \leqslant c_n \leqslant g - \varepsilon, \tag{50}$$

wiec $|b_n - g| \le \varepsilon$.

Definicja 2.3. Rozbieżność do $\pm \infty$

Powiemy, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest rozbieżny do $+\infty$, jeśli:

$$\forall_C \exists_{N_C \in \mathbb{N}} \forall_{n \geqslant N_C} : a_n \geqslant C. \tag{51}$$

Analogicznie, powiemy, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest rozbieżny do $-\infty$, jeśli:

$$\forall_C \exists_{N_C \in \mathbb{N}} \forall_{n \geqslant N_C} : a_n \leqslant C. \tag{52}$$

Mówimy też o "zbieżności"
do $\pm \infty$, tj. zbieżności w zbiorze $\overline{\mathbb{R}}$

Obserwacja 2.

Ciąg monotoniczny, nieograniczony jest rozbieżny do $\pm \infty$.

Definicja 2.4. Podciąg

Podciągiem ciagu $(a_n)_{n\in\mathbb{N}}$ nazywamy ciąg $(a_{n_k})_{k\in\mathbb{N}}$, gdzie $n\ni k\mapsto n_k\in\mathbb{N}$ jest funkcją ściśle rosnącą.

Obserwacja 3.

Jeśli $a_n \rightarrow g$, to każdy podciąg $a_{n_k} \rightarrow g$

2.2 lim sup i lim inf

Załóżmy, że mamy dany ciąg liczb rzeczywistych $(a_n)_{n\in\mathbb{N}}$. Zdefiniujmy wtedy następujące dwa ciągi: $(\alpha_n)_{n\in\mathbb{N}}$ oraz $(\beta_n)_{n\in\mathbb{N}}$, takie że:

$$\alpha_n = \inf\{a_k \mid k \geqslant n\} \tag{53}$$

$$\beta_n = \sup\{a_k \mid k \geqslant n\} \tag{54}$$

Wtedy, $(\alpha_n)_{n\in\mathbb{N}}$ jest ciągiem niemalejącym, co wynika z faktu, że:

$$\inf\{a_k \mid k \ge n+1\} \subseteq \inf\{a_k \mid k \ge n\}$$

Podobnież, $(\beta_n)_{n\in\mathbb{N}}$ jest ciągiem nierosnącym. Z tego wynika więc, że są to ciągi zbieżne w $\overline{\mathbb{R}}$. Mamy więc:

$$\lim_{n \to \infty} \alpha_n = \sup \alpha_n,\tag{55}$$

gdyż $(\alpha_n)_{n\in\mathbb{N}}$ to ciąg nierosnący oraz podobnie:

$$\lim_{n \to \infty} \beta = \inf \beta. \tag{56}$$

Definicja 2.5. Granice górne i dolne ciągu

Wielkość:

$$\lim_{n \to \infty} \inf\{a_k \mid k \ge n\} = \lim_{n \to \infty} \alpha_n = \sup \alpha_n \tag{57}$$

nazywamy **granicą dolną** ciągu $(a_n)_{n\in\mathbb{N}}$ i oznaczamy $\liminf_{n\to\infty}a_n$. Podobnie, wielkość:

$$\lim_{n \to \infty} \sup\{a_k \mid k \ge n\} = \lim_{n \to \infty} \beta_n = \inf \beta_n$$
 (58)

nazywamy **granicą górną** ciągu i oznaczamy $\limsup_{n\to\infty} a_n$.

Twierdzenie 2.4. Bolzano-Weierestrassa I

Niech L będzie zbiorem punktów skupienia zbioru $\{a_n | n \in \mathbb{N}\}$, tzn. takich liczb, dla których istnieje podciąg ciągu $((a_n)_{n \in \mathbb{N}}$ zbieżny do tej liczby:

$$L = \{ x \in \overline{\mathbb{R}} \mid \exists_{\text{podciag}(a_{n_k})_{k \in \mathbb{N}}} : \lim_{k \to \infty} a_{n_k} = x \}.$$
 (59)

Wtedy:

1.

$$L \neq \emptyset$$
 (60)

2.

$$\liminf a_n \in L \quad \wedge \quad \limsup a_n \in L \tag{61}$$

3.

$$\lim \inf a_n = \inf L \quad \wedge \quad \lim \sup a_n = \sup L \tag{62}$$

Dowód

TODO

Nietrudnym wnioskiem z tego twierdzenia jest następujące:

Twierdzenie 2.5. Kryterium zbieżności

Ciąg $(a_n)_{n\in\mathbb{N}}$ jest zbieżny do $a\in\overline{\mathbb{R}}$ wtedy i tylko wtedy, gdy:

$$\liminf a_n = \limsup a_n.$$
(63)

Dowód

 \implies Jeśli $\lim_{n\to\infty}a_n=a$, to także każdy podciąg $(a_n)_{n\in\mathbb{N}}$ dąży do a, więc $L=\{a\}$. Ale $\liminf a_n\in L$ i $\limsup a_n\in L$, więc:

$$\liminf a_n = a = \limsup a_n.$$
(64)

← Oczywiście zachodzi nierówność:

$$\alpha_n \leqslant a_n \leqslant \beta_n. \tag{65}$$

Skoro mamy:

$$\lim_{n \to \infty} \alpha_n = \liminf_{n \to \infty} a_n = \lim_{n \to \infty} \beta_n, \tag{66}$$

więc z twierdzenia o trzech ciągach mamy:

$$\lim_{n \to \infty} a_n = \liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n. \tag{67}$$

Twierdzenie 2.6. Warunek Cauchy'ego

Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem rzeczywistym. Wtedy następujące warunki są rónoważne:

1.

$$\lim_{n \to \infty} a_n = a \in \mathbb{R} \tag{68}$$

2.

$$\forall_{\varepsilon>0} \exists_{M_c} \forall_{n,m \geqslant M_c} |a_n - a_m| \leqslant \varepsilon. \tag{69}$$

Jeśli ciąg spełnia ten warunek, mówimy, że spełnia warunek Cauchy'ego.

Sprawdzając warunek Cauchy'ego, możemy dowodzić zbieżności ciągu do granicy rzeczywistej bez wyznaczania tej granicy.

Dowód

1. \Longrightarrow 2. Skoro $(a_n)_{n\in\mathbb{N}}$ zbieżny do $a\in R$, to dla dowolnego $\varepsilon>0$ istnieje takie $N_{\frac{\varepsilon}{2}}$, że:

$$\forall_{n,m \geqslant N_{\frac{\varepsilon}{2}}} : |a_n - a| \leqslant \frac{\varepsilon}{2} \wedge |a_m - a| \leqslant \frac{\varepsilon}{2},\tag{70}$$

ale wtedy:

$$|a_n - a_m| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \tag{71}$$

2. \Longrightarrow 1. Zauważmy, że $(a_n)_{n\in\mathbb{N}}$ jest ciągiem ograniczonym. Istotnie, weźmy $\varepsilon=1$:

$$\exists_{M_1} \forall_{n \ge M_1} : |a_n - a_{M_1}| \le 1, \tag{72}$$

więc:

$$\min\{a_{M_1} - 1; a_k \mid k < M_1\} \le a_n \le \max\{a_{M_1} + 1; a_k \mid k < M_1\}. \tag{73}$$

Weźmy teraz dowolny $\varepsilon > 0$. Z ograniczoności $(a_n)_{n \in \mathbb{N}}$ wynika: $\alpha = \liminf a_n \in \mathbb{R}$ i $\beta = \limsup a_n \in \mathbb{R}$. Oznacza to, że:

$$\forall_{\varepsilon>0} \exists_{A_{\varepsilon}} \forall_{n \geqslant A_{\varepsilon}} : |\alpha_n - \alpha| \leqslant \varepsilon, \tag{74}$$

$$\forall_{\varepsilon>0} \exists_{B_{\varepsilon}} \forall_{n \geqslant B_{\varepsilon}} : |\beta_n - \beta| \le \varepsilon, \tag{75}$$

Zauważmy, że:

$$|\alpha - \beta| \le |\alpha - \alpha_n| + |\beta - \beta_n| + |\alpha_n - \beta_N|. \tag{76}$$

Dwa pierwsze czynniki po prawej potrafimy ograniczyć, zbadajmy więc ostatni wyraz:

$$|\alpha_{n} - \beta_{N}| \leq |\alpha_{n} - a_{n}| + |\beta_{n} - a_{n}| = \inf\{a_{n}, a_{n+1}, ...\} - a_{n}| + |\sup\{a_{n}, a_{n+1}, ...\} - a_{n}|$$

$$= \inf\{|a_{m} - a_{n}| \mid m \geq n\} + \sup\{|a_{m} - a_{n}| \mid m \geq n\}.$$
(77)

Możemy teraz skorzystać z warunku Cauchy'ego i znaleźć takie $M_{\frac{\varepsilon}{2}}$, że:

$$\forall_{m \geqslant n \geqslant M_{\frac{\varepsilon}{6}}} : |a_m - a_n| \leqslant \frac{\varepsilon}{6}. \tag{78}$$

Zatem dla $n \ge M_{\frac{\varepsilon}{6}}$:

$$\inf\{|a_m - a_n| \, \Big| \, m \geqslant n\} \leqslant \frac{\varepsilon}{6} \tag{79}$$

$$\sup\{|a_m - a_n| \mid m \geqslant n\} \leqslant \frac{\varepsilon}{6} \tag{80}$$

Ostecznie otrzymujemy dla $n \ge \max\{A_{\frac{\varepsilon}{3}}, B_{\frac{\varepsilon}{3}}, M_{\frac{\varepsilon}{6}}\}:$

$$|\alpha - \beta| \le |\alpha - \alpha_n| + |\beta - \beta_n| + |\alpha_n - a_n| + |\beta_n - a_n| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} = \varepsilon. \tag{81}$$

Pokazaliśmy, że różnica | lim inf a_n – lim sup a_n | jest mniejsza od dowolnej liczby dodatniej, zatem musi być równa 0. Oznacza to, że lim inf a_n = lim sup $a_n \in \mathbb{R}$, a więc - co udowodniliśmy już wcześniej - ciąg jest zbieżny do rzeczywiśtej granicy.

3 Szeregi liczbowe

3.1 Szeregi o wyrazach dodatnich

Załóżmy, że $\sum_{n=1}^{\infty} a_n$ jest szeregiem o wyrazach dodatnich $(a_n > 0)$. Ostatnio zauważyliśmy, że:

$$\sum_{n=1}^{\infty} a_n = \sup_{\substack{F \subset \mathbb{N} \\ |F| < +\infty}} \sum_{n \in F} a_n.$$

Wynikają z tego następujące wnioski:

Twierdzenie 3.1.

1.

$$\sum_{n=1}^{\infty} a_n < +\infty \quad \iff \quad \exists_{C>0} \forall_{F \subset \mathbb{N}, |F| < +\infty} \sum_{n \in F} a_n \leq C$$

(Zbiór wszystkich sum elementów o indeksach pochodzących ze SKOŃCZONEGO podzbioru IN jest ograniczony)

2. Jeśli $\sigma : \mathbb{N} \to \mathbb{N}$ jest bijekcją (permutacją indeksów), to:

$$\sum_{n=1}^{\infty} a_{\sigma(n)} = \sum_{n=1}^{\infty} a_n.$$

Oznacza to, że zmiana kolejności sumowania nie wpływa na wynik.

3. Jeśli:

$$\mathbb{N} = \bigsqcup_{i=1}^{\infty} A_i \quad \text{(jest to suma rozłączna, tj. } A_i \cap A_j = \emptyset \text{ dla } i \neq j\text{)}$$

i:

$$S_i = \sum_{n \in A_i} a_n,$$

to:

$$\sum_{i=0}^{\infty} S_i = \sum_{n=1}^{\infty} a_n.$$

Jest to grupowania (łączności i przemienności) dla szeregu.

Dowód wniosków

1. Ograniczoność sum po prawej jest oczywiście równoważne istnieniu skończonego ich supremum, co równe jest sumie po lewej.

2. σ zachowuje klasę skończonych podzbiorów i wyznacza bijekcję:

$$\sigma: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$$

$$\sigma(F) = {\sigma(n) | n \in F},$$

która zachowuje moc zbioru F i przeprowadza zbiory skończone na skończone. Zatem:

$$\left\{\sum_{n\in F}a_n\,\bigg|\,F\subset\mathbb{N},\,|F|<\infty\right\}=\left\{\sum_{n\in\sigma(F)}a_n\,\bigg|\,F\subset\mathbb{N},\,|F|<\infty\right\},$$

więc:

$$\sum_{n=1}^{\infty}a_n=\sup\left\{\sum_{n\in F}a_n\,\middle|\,F\in2^{\mathbb{N}}\right\}=\sup\left\{\sum_{n\in\sigma(F)}a_n\,\middle|\,F\subset\mathbb{N},\,|F|<\infty\right\}=\sum_{n=1}^{\infty}a_{\sigma(n)}$$

3. **a)** Jeśli $\exists_i : S_i = \infty$, to:

$$\sum_{i=1}^{\infty} S_i = \infty$$

i:

$$\sum_{n=1}^{\infty} a_n \geqslant \sum_{n \in A_i} a_n = \infty.$$

Stad:

$$\sum_{i=1}^{\infty} S_i = \infty = \sum_{n=1}^{\infty} a_n$$

b) Niech $\forall_i : S_i < \infty$. Ustalmy $\varepsilon > 0$ i weźmy dowolny:

$$K \subset \mathbb{N}$$
, $|K| < \infty$.

Przypomnijmy:

$$\sum_{i=1}^{\infty} S_i = \sup_{\substack{K \subset \mathbb{N}, \\ |K| < \infty}} \sum_{j \in K} S_j.$$

Niech $K = \{i_1, i_2, ..., i_l\}$ i wybierzmy:

$$C_1 \subseteq A_{i_1}, C_2 \subseteq A_{i_2}, \dots, C_l \subseteq A_{i_l},$$

takie, że:

$$\forall_j: \quad \sum_{n \in C_i} a_n \geq S_{i_j} - \frac{\varepsilon}{l},$$

co jest możliwe, gdyż S_{ij} jest supremum sum po skończonych podzbiorach. Jeśli A_{ij} jest skończony, możemy przyjąć $C_j=A_{ij}$. Wtedy:

$$\sum_{i \in K} S_i = S_{i_1} + S_{i_2} + \ldots + S_{i_l} \leqslant \left(\sum_{n \in C_1} a_n + \frac{\varepsilon}{l}\right) + \left(\sum_{n \in C_l} a_n + \frac{\varepsilon}{l}\right) + \ldots \left(\sum_{n \in C_l} a_n + \frac{\varepsilon}{l}\right) = \varepsilon + \sum_{n \in \bigcup_{j=1}^l C_j} a_n.$$

NB: $\bigcup_{j=1}^{l} C_j$ jest zbiorem skończonym, więc:

$$\sum_{i \in K} S_i \leqslant \varepsilon + \sup_{\substack{F \subset \mathbb{IN} \\ |F| < +\infty}} \sum_{n \in F} a_n = \varepsilon + \sum_{n=1}^{\infty} a_n.$$

Rozumowanie to przeprowadziliśmy dla dowolnego K i ε , więc:

$$\sum_{i=1}^{\infty} S_i = \sup_{\substack{K \subset \mathbb{N} \\ |K| < \infty}} \sum_{i \in K} S_i \leqslant \sum_{n=1}^{\infty} a_n.$$

W drugą stronę, weźmy $F \subset \mathbb{N}$, $|F| < \infty$ i niech:

$$K = \{i \in \mathbb{N} \mid A_i \cap F \neq \emptyset\},\$$

wtedy $|K| < \infty$, bo F jest skończony, a A_i są rozłączne. Wtedy mamy:

$$\sum_{n \in F} a_n = \sum_{i \in K} \sum_{n \in A_i \cap F} a_n \leqslant \sum_{i \in K} \sum_{n \in A_i} a_n = \sum_{i \in K} S_i.$$

Z tego:

$$\sum_{n \in F} a_n \leqslant \sum_{i \in K} S_i \leqslant \sup_{\substack{K \subset \mathbb{N} \\ |K| < \infty}} \sum_{i \in K} S_i = \sum_{i=1}^{\infty} S_i,$$

co zachodzi dla dowolnego F skończonego. Zatem:

$$\sup_{\substack{F \subset \mathbb{N} \\ |F| < \infty}} \sum_{n \in F} a_n = \sum_{n=1}^{\infty} a_n \leqslant \sum_{i=1}^{\infty} S_i.$$

Porównując dwie otrzymane nierówności, otrzymujemy tezę.

3.2 Szeregi o wyrazach dowolnych

W tej podsekcji rozważamy szeregi o dowolnych wyrazach zespolonych:

$$\sum_{n=1}^{\infty} z_n, \quad z_n \in \mathbb{C}.$$

Twierdzenie 3.2. Kryterium zbieżności bezwzględnej

Jeśli następujący szereg jest zbieżny:

$$\sum_{n=1}^{\infty} |z_n| < +\infty$$

to i:

$$\sum_{n=1}^{\infty} z_n$$

jest zbieżny.

Dowód

Korzystamy z warunku Cauchy'ego dla szeregu modułów:

$$\forall_{\varepsilon} \exists_{N_{\varepsilon}} \forall_{n > m \geqslant N_{\varepsilon}} : |\sum_{k=m+1}^{n} |z_{k}|| \leq \varepsilon,$$

ale:

$$|\sum_{k=m+1}^{n} z_k| \le |\sum_{k=m+1}^{n} |z_k||,$$

więc:

$$\forall_{\varepsilon} \exists_{M_{\varepsilon} = N_{\varepsilon}} \forall_{n > m \geqslant M_{\varepsilon}} : |\sum_{k = m+1}^{n} z_{k}| \leq \varepsilon.$$

To dowodzi, że warunek Cauchy'ego zachodzi dla $\sum_{n=1}^{\infty} z_n$, zatem jest to szereg zbieżny.

Definicja 3.1. Zbieżność bezwzględna

- Szereg $\sum_{n=1}^{\infty} z_n$ nazywamy zbieżnym bezwzględnie, jeśli szereg $\sum_{n=1}^{\infty} |z_n|$ jest zbieżny.
- Jeśli szereg $\sum_{n=1}^{\infty} z_n$ jest zbieżny, ale $\sum_{n=1}^{\infty} |z_n|$ już nie, to szereg nazywamy zbieżnym warunkowo.

Dla szeregów o wyrazach dowolnych obowiązują inne kryteria zbieżności niż dla szeregów o wyrazach dodatnich. Jednym z nich, jest:

Twierdzenie 3.3. Kryterium Dirichleta

Załóżmy, że:

• Mamy ciągi:

$$(a_n)_{n\in\mathbb{N}}, \quad a_n\in\mathbb{C}$$
 $(b_n)_{n\in\mathbb{N}}, \quad b_n\in\mathbb{R}, \quad b_n\geqslant 0$

- b_n zbiega monotonicznie do 0.
- Ciąg sum częściowych wyrazów (a_n) jest ograniczony:

$$\exists_{C \in \mathbb{R}} \forall_{N \in \mathbb{N}} : \left| \sum_{n=1}^{N} a_n \right| \leq C.$$

Wtedy szereg $\sum_{n=1}^{\infty} a_n b_n$ jest zbieżny.

Przykład - szeregi naprzemienne. Weźmy szereg postaci:

$$\sum_{n=1}^{\infty} (-1)^n b_n,$$

gdzie $b_n \searrow 0$ (dąży monotonicznie z góry do 0). Szereg taki nazywamy szeregiem naprzemiennym. Z kryterium Dirichleta wynika, że każdy szereg takiej postaci jest zbieżny (co nazywa się czasem kryterium Leibnitza). W szczególności:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \ln 2.$$

Dowód kryterium Dirichleta

Niech $\sum_{n=1}^{N} a_n = z_N$. Zauważmy, że (z_N) jest ciągiem ograniczonym. Zapiszmy sumy częściowe docelowego szerego:

$$\sum_{n=1}^{N} a_n b_n = a_1 b_1 + a_2 b_2 + \dots + a_N b_N = z_1 b_1 + (z_2 - z_1) b_2 + \dots + (z_N - z_{N-1}) b_N = a_1 b_1 + a_2 b_2 + \dots + a_N b_$$

$$= z_1(b_1 - b_2) + z_2(b_2 - b_3) + \dots + z_{N-1}(b_{N-1} - b_N) + z_N b_N.$$

Zauważmy, że wyraz $z_N b_N$ jest zbieżny do 0 (jako iloczyn czynnika ograniczonego i czynnika dążącego do 0). Zajmijmy się więc otrzymaną sumą. Zauważmy, że zachodzi:

$$\sum_{n=1}^{\infty} |z_n(b_n - b_{n+1})| = \sum_{n=1}^{\infty} |z_n| |(b_n - b_{n+1})| \le C \sum_{n=1}^{\infty} |(b_n - b_{n+1})| =$$

$$= C \lim_{N \to \infty} (b_1 - b_{N+1}) = Cb_1 < +\infty$$

Zatem szereg $\sum_{n=1}^{\infty} z_n(b_n - b_{n+1})$ jest zbieżny bezwzględnie, a więc i zbieżny. Z tego i z równości:

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} z_n (b_n - b_{n+1}) + \lim_{n \to \infty} z_n b_n,$$

Wynika, że szereg $\sum_{n=1}^{\infty} a_n b_n$ musi być zbieżny.

Kolejnym kryterium zbieżności dla szeregów o wyrazach dowolnych jest prosto wynikające z kryterium Dirichleta tzw.:

Twierdzenie 3.4. Kryterium Abela

Jeśli:

• mamy ciągi:

$$(a_n)_{n\in\mathbb{N}}, \quad a_n\in\mathbb{C}$$

$$(b_n)_{n\in\mathbb{N}}, \quad b_n\in\mathbb{R}$$

• b_n jest monotoniczny i ograniczony,

•
$$\sum_{n=1}^{\infty} a_n$$
 jest zbieżny.

Wtedy szereg $\sum_{n=1}^{\infty} a_n b_n$ jest zbieżny.

Dowód

Oczywiście $b = \lim_{n \to \infty} b_n$ istnieje. Wtedy:

$$\sum_{n=1}^{N} a_n b_n = \sum_{n=1}^{N} a_n (b_n - b) + b \sum_{n=1}^{N} a_n.$$

Szereg $b\sum_{n=1}^{\infty}a_n$ jest oczywiście zbieżny na mocy założenia. Za to $\sum_{n=1}^{\infty}a_n(b_n-b)$ jest zbieżne na mocy kryterium Dirichleta, zauważmy bowiem, że:

$$\sum_{n=1}^{N} a_n (b_n - b) = \text{sign}(b_n - b) \sum_{n=1}^{N} a_n |b_n - b|,$$

ale $|b_n - b| \searrow 0$ na mocy założenia, a sumy częściowe $|\sum_{n=1}^N a_n|$ muszą być ograniczone, gdyż są zbieżne. Warunki kryterium Dirichleta są więc spełnione. Ostatecznie:

$$\sum_{n=1}^{\infty} a_n b_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n b_n = \sum_{n=1}^{\infty} a_n (b_n - b) + b \sum_{n=1}^{\infty} a_n.$$

Wszystkie składniki po prawej są zbieżne, zatem szereg $\sum_{n=1}^{\infty} a_n b_n$ także musi być zbieżny.

Grupowanie składników Zajmijmy się teraz kwestią grupowania składników w szeregach o wyrazach dowolnych i kiedy taka operacja nie zmienia wartości szeregu. Prowadźmy jednak trochę notacji.

Definicja 3.2. Rozbicie na wyrazy dodatnie

Dla szeregu $\sum_{n=1}^{\infty} z_n$ definiujemy następujące ciągi:

•

$$a_n = \operatorname{Re}(z_n)$$

•

$$b_n = \operatorname{Im}(z_n)$$

•

$$a_n^+ = \max\{0, a_n\}$$

•

$$a_n^- = -\min\{0, a_n\}$$

•

$$b_n^+ = \max\{0, b_n\}$$

•

$$b_n^- = -\min\{0, b_n\}$$

Jasnym jest, że:

$$z_n = a_n^+ - a_n^- + ib_n^+ - ib_n^-$$

oraz:

$$0 \le a_n^+, a_n^-, b_n^+, b_n^- \le |z_n|.$$

Z ostatniej nierówności wynika (kryterium porównawcze), że jeśli szereg $\sum_{n=1}^{\infty} |z_n|$ jest zbieżny, to i sze-

regi $\sum_{n=1}^{\infty} a_n^{\pm}$, $\sum_{n=1}^{\infty} b_n^{\pm}$ muszą być zbieżne. Wtedy:

$$\sum_{n=1}^{\infty} z_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- + i \sum_{n=1}^{\infty} b_n^+ - i \sum_{n=1}^{\infty} b_n^-,$$

jako że:

$$\sum_{n=1}^{N} z_n = \sum_{n=1}^{N} a_n^+ - \sum_{n=1}^{N} a_n^- + i \sum_{n=1}^{N} b_n^+ - i \sum_{n=1}^{N} b_n^-,$$

Z tego wynika następujący wniosek:

Twierdzenie 3.5. Grupowanie szeregów zbieżnych bezwzględnie

Niech szereg $\sum_{n=1}^{\infty} z_n$ będzie zbieżny bezwzględnie. Wtedy:

1. Jeśli $\sigma: \mathbb{N} \to \mathbb{N}$ jest bijekcją (permutacją indeksów), to:

$$\sum_{n=1}^{\infty} z_{\sigma(n)} = \sum_{n=1}^{\infty} z_n.$$

Oznacza to, że zmiana kolejności sumowania nie wpływa na wynik.

2. Jeśli:

$$\mathbb{N} = \bigsqcup_{j=1}^{\infty} A_j$$

i:

$$S_j = \sum_{n \in A_j} z_n,$$

to $\sum_{j=1}^{\infty} S_j$ jest zbieżny bezwzględnie i:

$$\sum_{j=0}^{\infty} S_j = \sum_{n=1}^{\infty} z_n.$$

Są to prawa grupowania dla szeregów o wyrazach dowolnych, analogiczne do tych, które zachodzą dla szeregów o wyrazach dodatnich.

Dowód

1. Mamy następujące równości:

$$\sum_{n=1}^{\infty} z_{\sigma(n)} = \sum_{n=1}^{\infty} a_{\sigma(n)}^{+} - \sum_{n=1}^{\infty} a_{\sigma(n)}^{-} + i \sum_{n=1}^{\infty} b_{\sigma(n)}^{+} - i \sum_{n=1}^{\infty} b_{\sigma(n)}^{-} =$$

$$= \sum_{n=1}^{\infty} a_{n}^{+} - \sum_{n=1}^{\infty} a_{n}^{-} + i \sum_{n=1}^{\infty} b_{n}^{+} - i \sum_{n=1}^{\infty} b_{n}^{-} = \sum_{n=1}^{\infty} z_{n}$$

W 2 równości korzystamy z analogicznego prawa dla zbieżnych szeregów dodatnich.

Oczywiście, jako że $\sum_{n=1}^{\infty} z_n$ jest zbieżny bezwzględnie, to mamy:

$$\sum_{n=1}^{\infty} |z_n| = \sum_{n=1}^{\infty} |z_{\sigma(n)}|,$$

więc permutacja szeregu zbieżnego bezwzględnie jest także zbieżna bezwzględnie.

2. Mamy:

$$\sum_{j=1}^{\infty} |S_j| = \sum_j^{\infty} \left| \sum_{n \in A_j} z_n \right| \leqslant \sum_{j=1}^{\infty} \sum_{n \in A_j} |z_n| = \sum_{n=1}^{\infty} |z_n| < +\infty.$$

Widzimy więc, że $\sum_{i=1}^{\infty} S_j$ jest także zbieżny bezwzględnie. Jako że $\sum_{n=1}^{\infty} z_n$ jest zbieżny bez-

względnie, więc tym bardziej jego podszeregi muszą być zbieżne bezwzględnie. Możemy więc zapisać:

$$\sum_{j=1}^{N} S_{j} = \sum_{j=1}^{N} \sum_{n \in A_{j}} z_{n} = \sum_{j=1}^{N} \left(\sum_{n \in A_{j}} a_{n}^{+} - \sum_{n \in A_{j}} a_{n}^{-} + i \sum_{n \in A_{j}} b_{n}^{+} - i \sum_{n \in A_{j}} b_{n}^{-} \right) =$$

$$\sum_{j=1}^{N} \sum_{n \in A_j} a_n^+ - \sum_{j=1}^{N} \sum_{n \in A_j} a_n^- + i \sum_{j=1}^{N} \sum_{n \in A_j} b_n^+ - i \sum_{j=1}^{N} \sum_{n \in A_j} b_n^-.$$

Każdy z szeregów po prawej stronie jest szeregiem zbieżnym o wyrazach dodatnich. Biorąc granicę $N \to \infty$ otrzymamy więc:

$$\sum_{j=1}^{\infty} S_j = \sum_{j=1}^{\infty} \sum_{n \in A_i} a_n^+ - \sum_{j=1}^{\infty} \sum_{n \in A_i} a_n^- + i \sum_{j=1}^{\infty} \sum_{n \in A_i} b_n^+ - i \sum_{j=1}^{\infty} \sum_{n \in A_i} b_n^- = \sum_{n=1}^{\infty} z_n,$$

co wynika z odpowiednich twierdzeń dla szeregów dodatnich.

4 Przestrzenie metryczne

4.1 Podstawowe definicje. Otwartość i domkniętość

Zmienimy teraz temat, odchodząc od analizy zbieżności w liczbach zespolonych i rozpoczniemy rozważania o temacie znacznie bardziej ogólnym, mianowicie o przestrzeniach z metrykami, będących uogólnieniem znanego pojęcia odległości w C.

Definicja 4.1. Metryka

Ustalmy *X* będące dowolnym niepustym zbiorem. Funkcję:

$$d: X \times X \rightarrow [0; +\infty[$$

nazywamy metryką, jeśli spełnia następujące aksjomaty:

1.

$$\forall_{x,v\in X}: d(x,y) = d(y,x),$$

2.

$$\forall_{x,y\in X}: d(x,y)=0 \iff x=y,$$

3.

$$\forall_{x,y,z\in X}: d(x,z) \leq d(x,y) + d(y,z).$$

O metryce myśleć można, jako o funkcji zwracającej "odległość" między dwoma elementami w zbiorze *X*. Podane aksjomaty zapewniają, że nasza metryka spełniać będzie "zdroworozsądkowe" własności odległości. **1.** nakłada warunek symetryczności na metrykę - odległość z *x* do *y* musi być równa odległości z *y* do *x*. **2.** normalizuje metrykę, mówiąc, że punkt jest odległy o 0 od samego siebie i **tylko** od samego siebie. **3.** to tak zwana **nierówność trójkąta** - dodając na drodze między dwoma punktami trzeci punkt nie można odległości skrócić.

Definicja 4.2. Przestrzeń metryczna

Parę (X,d) - gdzie X to niepusty zbiór, a $d: X \times X \to [0;+\infty[$ to metryka - nazywamy **przestrzenią metryczną**.

Przykłady Pokażemy parę przykładów przestrzeni metrycznych, aby dać pojęcie, jak mogą one wyglądać.

- $X = \mathbb{R} d(x, y) = |x y|$ jest to odległość między dwiema liczbami rzeczywistymi, z której korzystaliśmy np. przy definicji granicy ciągu.
- $X = \mathbb{R}^{\nu}$, gdzie $\nu \in \mathbb{N}$ jest wymiarem przestrzeni,

$$d_p(x,y) = \left(\sum_{n=1}^{\nu} |x_n - y_n|^p\right)^{\frac{1}{p}}.$$

Podstawiając za p różne wartości możemy otrzymać wiele alternatywnych metryk. Np. dla p=1 otrzymujemy tzw. **metrykę Manhattanu**:

$$d_1(x,y) = \sum_{n=1}^{\nu} |x_n - y_n|.$$

Nazwa pochodzi od tego, że jest to odległość jaką trzeba pokonać między dwoma punktami, mogąc przemieszczać się tylko równolegle do osi współrzędnych - tak jak na Manhattanie, gdzie ulice są do się prostopadłe.

Dla p = 2 otrzymujemy znaną **odległość Euklidesową**:

$$d_2(x,y) = \sqrt{\sum_{n=1}^{\nu} (x_n - y_n)^2}.$$

• $X = \mathbb{R}^{\nu}$,

$$d_{\infty}(x,y) = \max_{1 \le n \le \nu} |x_n - y_n|.$$

Jest to tak zwana **metryka maximum**. Indeks ∞ wziął się z faktu, że o d_{∞} myśleć można o jako o granicy d_p dla $p \to \infty$, mamy bowiem:

$$\lim_{p\to\infty} \left(\sum_{n=1}^{\nu} a_n^p\right)^{\frac{1}{p}} = \max_{1\leqslant n\leqslant \nu} a_n.$$

• Dla dowolnego zbioru *X* definiujemy **metrykę dyskretną**:

$$d(x,y) = \delta_{x,y} = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$$
 (82)

• Niech *X* będzie zbiorem funkcji klasy *C*⁰ (tj, funkcji ciągłych) z [0;1] na C. Wtedy za odległość między dwiema funkcjami przyjąć możemy:

$$d(f,g) = \sup_{x \in [0;1]} |f(x) - g(x)|. \tag{83}$$

• Dla X takiego samego jak w poprzednim punkcie można określić także:

$$d_p(f,g) = \left(\int_0^1 |f(x) - g(x)|^p\right)^{\frac{1}{p}}.$$
 (84)

Definicja 4.3. Zbieżność w przestrzeni metrycznej

Niech (X,d) będzie przestrzenią metryczną i niech $(x_n)_{n\in\mathbb{N}}$ będzie ciągiem elementów z X. Powiemy, że $(x_n)_{n\in\mathbb{N}}$ jest zbieżny do $g\in X$, jeśli:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon} \in \mathbb{N}} \forall_{n \geqslant N_{\varepsilon}} : d(x_n, g) < \varepsilon, \tag{85}$$

co możemy alternatywnie zapisać, jako:

$$\lim_{n \to \infty} d(x_n, g) = 0. \tag{86}$$

Oczywiście jeśli $x_n \to g$ i $x_n \to g'$, to g = g' - co wynika z faktu, że jedynym elementem odległym o 0 od g jest g. Ponadto jeśli $x_n \to g$ to każdy podciąg $(x_{n_k})_{k \in \mathbb{N}}$ także dąży do g: $x_{n_k} \xrightarrow{k \to \infty} g$.

Definicja 4.4. Równoważność metryk

Niech d i δ będą metrykami na X. Powiemy, że d i δ są równoważne, jeśli:

$$\exists_{C_1, C_2 \in \mathbb{R}} : \forall_{x, v \in X} : C_1 d(x, y) \leqslant \delta(x, y) \leqslant C_2 d(x, y). \tag{87}$$

Łatwo widać, że jest to relacja symetryczna, przechodnia i zwrotna.

Przykład Metryk d_p i d_∞ na \mathbb{R}^{ν} są równoważne, albowiem:

$$d_{o}o(x,y) = \max_{i} |x_{i} - y_{i}| \le d_{p}(x,y) = \left(\sum_{n=1}^{\nu} |x_{n} - y_{n}|^{p}\right)^{\frac{1}{p}}.$$
 (88)

Ponadto:

$$d_p(x,y)^p \leqslant \nu d_{\infty}(x,y)^p \implies d_p(x,y) \leqslant \nu^{\frac{1}{p}} d_{\infty}(x,y) \tag{89}$$

Wystarczy więc wziąć $C_1 = 1$ i $C_2 = v^{\frac{1}{p}}$.

Obserwacja 4.

Jeśli di δ są równoważne, to $x_n \to g \le (X,d) \iff x_n \to g \le (X,\delta).$

Definicja 4.5. Warunek Cauchy'ego

Powiemy, że ciąg $(x_n)_{n\in\mathbb{N}}$ spełnia warunek Cauchy'ego (i.e. że jest ciągiem Cauchy'ego), jeśli:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon} \in \mathbb{N}} \forall (m, n \geqslant N_{\varepsilon}) : d(x_m, x_n) \leqslant \varepsilon. \tag{90}$$

Definicja 4.6. Przestrzeń zupełna

Powiemy, że przestrzeń (X,d) jest **zupełna** jeśli każdy ciąg Cauchy'ego w tej przestrzeni jest zbieżny.

Zauważmy, że () \mathbb{R} , d_2) (czyli liczby rzeczywiste ze standardową metryką Euklidesową) to przestrzeń zupełna, co udowodniliśmy. (\mathbb{Q} , d_2) nie jest przestrzenią zupełną (gdyż np. ciąg kolejnych przybliżeń dziesiętnych $\sqrt{2}$ spełnia warunek Cauchy'ego, jednak nie ma w \mathbb{Q} granicy).

Definicja 4.7. Kule

Niech (X,d) - p-ń metryczna. Wtedy **kulą (otwartą)** o środku $x_0 \in X$ i promieniu $r \in \mathbb{R}_+$ nazwiemy zbiór:

$$Ball(x_0, r) = \{ x \in X \mid d(x, x_0) < r \}.$$
(91)

Definicja 4.8. Punkty wewnętrzne

Niech (X, d) - p-ń metryczna, $A \subseteq X$ i $a \in A$. Powiemy, że a jest **punktem wewnętrznym** A, jeśli:

$$\exists_{r>0} : \text{Ball}(a, r) \subseteq A. \tag{92}$$

Widzimy więc, że jeśli *a* jest punktem wewnętrznym *A*, to znajduje się w *A* razem z pewną kulą wokół siebie - można potocznie sobie więc wyobrazić, że *a* nie może być na "brzegu" *A*.

Definicja 4.9. Zbiór otwarty

Powiemy, że A jest **otwarty** (w ustalonej p-ń metrycznej (X,d)), jeśli każdy jego punkt jest punktem wewnętrznym:

$$\forall_{a \in A} \exists_{r > 0} : Ball(a, r) \subseteq A. \tag{93}$$

Dla ustalonej przestrzenii metrycznej zdefiniujemy \mathcal{T} jako rodzinę wszystkich zbiorów otwartych w tej przestrzenii. Wprowadzimy też zapis:

$$U \subseteq X$$
, (94)

jeśli U jest otwartym podzbiorem X (i.e. jeśli $U \in \mathcal{T}$).

Twierdzenie 4.1. Właności \mathcal{T}

- 1. $\emptyset \in \mathcal{T}$ oraz $X \in \mathcal{T}$.
- 2. $U, V \in \mathcal{T} \implies U \cap V \in \mathcal{T}$. Inaczej mówiąc (rozszerzywszy łątwo twierdzenie za pomocą indukcji), skończony iloczyn zbiorów otwartych jest otwarty.

3. $\{U_i\}_{i\in I}$ - rodzina zbiorów otwartych. Wtedy

$$\bigcup_{i \in I} U_i \in \mathcal{T}. \tag{95}$$

Zauważmy, że nie zakładamy, że jest to skończona (ani nawet przeliczalna) rodzina.

Dowód

1. Prawdziwym jest zdanie, że dla każego elementu należącego do \emptyset jest on punktem wewnętrzym. Ponadto:

$$\forall_{x \in X, r > 0} \text{Ball}(x, r) \subseteq X, \tag{96}$$

co wynika za samej definicji Ball.

2. Skoro U, V są otwarte, to dla każdego $x \in U \cap V$ istnieją r_1 i r_2 takie, że:

$$Ball(x, r_1) \in U$$
, $Ball(x, r_2) \in V$.

Wtedy jednak:

$$Ball(x, min\{r_1, r_2\}) \in U$$
, $Ball(x, min\{r_1, r_2\}) \in V$.

Wystarczy więc wziąć $r = \min\{r_1, r_2\}$

3. Dla każdego $x \in \bigcup_{i \in I} U_i$ mamy $i \in I$ takie, że $x \in U_i$. Wtedy jednak istnieje takie r, że Ball $(x, r) \in U_i$, przeto Ball $(x, r) \in \bigcup_{i \in I} U_i$.

Twierdzenie 4.2.

Kula otwarta jest otwarta.

dowód

Istotnie, jeśli niech $y \in Ball(x, r)$. Wtedy d(x, y) < r. Zauważmy, że $Ball(y, r - d(x, y)) \subseteq Ball(x, r)$, bowiem jeśli $z \in Ball(y, r - d(x, y))$, to d(z, y) < r - d(x, y), zatem:

$$d(z, x) < d(z, y) + d(y, z) < r$$
,

czyli $z \in Ball(x, r)$.

Definicja 4.10. Punkt skupienia

Niech (X,d) - p-ń metryczna i $A\subseteq X$, wtedy punkt $x\in X$ nazwiemy **punktem skupienia** A, jeśli:

$$\forall_{r>0} : \text{Ball}(x, r) \cap A \neq \emptyset. \tag{97}$$

Definicja 4.11. Zbiór domknięty

Zbiór *A* nazwiemy **domkniętym** jeśli zawiera wszystkie swoje punkty skupienia. To znaczy:

$$\forall_{x \in X} [\forall_{r > 0} : Ball(x, r) \cap A \neq \emptyset \implies x \in A]. \tag{98}$$

Podobnie jak $\mathcal T$, zdefiniujemy $\mathcal F$ jako rodzinę wszystkich zbiorów domkniętych w danej przestrzenii. Będziemy również pisać:

$$U \subseteq X$$
, (99)

jeśli U jest domkniętym podzbiorem X.

Definicja 4.12. Kula domknieta

Kulą domkniętą o środku $x_0 \in X$ i promieniu $r \in \mathbb{R}_+$ nazwiemy zbiór:

$$\overline{\text{Ball}}(x, r) = \{ x \in X \mid d(x, x_0) \le r \}. \tag{100}$$

Twierdzenie 4.3.

Kula domknięta jest domknięta.

Dowód

Niech $y \notin \overline{\text{Ball}}(x, r)$. Wtedy d(y, x) > r. Weźmy R = d(y, x) - r > 0. Wtedy $\text{Ball}(y, R) \cap \overline{\text{Ball}}(x, r) = \emptyset$. Albowiem, jeśli $z \in \text{Ball}(y, R)$, to d(z, y) < d(y, x) - r, zatem $d(x, z) \ge d(x, y) - d(z, y) > r$, czyli $z \notin \overline{\text{Ball}}(x, r)$.

Twierdzenie 4.4. Dopełnienie zbioru otwartego jest domknięte

Niech $A \subseteq X$. A jest otwarty wtedy i tylko wtedy, gdy $X \setminus A$ jest domknięty.

Dowód

Mamy następujący ciąg równoważności:

$$(X \setminus A)$$
 - domkniety \iff (101)

$$\forall_{v \notin (X \setminus A)} \exists_{r > 0} : Ball(y, r) \cap (X \setminus A) = \emptyset \iff (102)$$

$$\forall_{v \in A} \exists_{r > 0} : \text{Ball}(y, r) \subseteq X \setminus (X \setminus A) = A \iff (103)$$

$$A$$
 - otwarty (104)

Zauważmy, że istnieją zbiory jednocześnie domknięte i otwarte. Na przykład w każdej przestrzenii metrycznej są to \emptyset oraz cała przestrzeń. W $\mathbb R$ są to jedynie takie zbiory. Za to w przestrzenii dyskretnej, wszystkie zbiory mają te własność.

Twierdzenie 4.5.

Zbiór A jest otwarty wtedy i tylko wtedy, gdy A jest sumą kul.

Dowód

⇒ Możemy wybrać sumę rodziny generowanej w tej sposób, że każdemu elementowi przypisujemy kulę mu odpowiadającą, która należy do *A*:

$$\forall_{y \in A} \exists_{r(y) > 0} : \text{Ball}(y, r(y)) \subseteq A. \tag{105}$$

Zatem:

$$A = \bigcup_{y \in A} \{y\} \subseteq \bigcup_{y \in A} \text{Ball}(y, r(y))$$
 (106)

oraz:

$$\bigcup_{y \in A} \text{Ball}(y, r(y)) \subseteq A, \tag{107}$$

więc:

$$A = \bigcup_{y \in A} \text{Ball}(y, r(y)) \tag{108}$$

← W drugą stronę sprawa jest jasna - suma każdej rodziny kul (i.e. zbiorów otwarty) będzie otwarta.

Obserwacja 5. na temat \mathcal{F}

- 1. \emptyset , $X \in \mathcal{F}$.
- 2. $\mathcal{F} = \{X \setminus A \mid A \in \mathcal{T}\}.$
- 3. $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$. Inaczej mówiąc skończony iloczyn zbiorów domkniętych jest domknięty.
- 4. $\{V_i\}_{i\in I}$ rodzina zbiorów domkniętych. Wtedy

$$\bigcap_{i \in I} V_i \in \mathcal{T}. \tag{109}$$

Fakty te są oczywistą konsekwencją własności \mathcal{T} i prawa, które mówi, że dopełnienie zbioru otwartego jest domknięte.

Spójrzmy jeszcze na przykład, pokazujący, że w 3. właność ta zachodzi tylko dla sum skończonych:

$$]0,1[=\bigcup_{i=1}^{\infty}[\frac{1}{n},1-\frac{1}{n}].$$

Definicja 4.13. Wnętrze i domknięcie

Niech $B \subseteq X$.

Wnętrznem zbioru B, oznaczanym B° , nazywamy zbiór wszyskich punktów wewnętrznych B.

Domknięciem zbioru B, oznaczanym \overline{B} , nazywamy zbiór punktów skupienia B. Innymi słowy:

$$x \in B \deg \iff \exists_r : Ball(x, r) \subseteq B.$$
 (110)

$$x \in \overline{B} \iff \forall_r : \text{Ball}(x, r) \cap B \neq \emptyset.$$
 (111)

Obserwacja 6.

$$B^{\circ} \subseteq B \subseteq \overline{B} \tag{112}$$

Obserwacja 7.

- B otwarty $\iff B^{\circ} = B$.
- B domknięty $\iff \overline{B} = B$.

Twierdzenie 4.6.

$$X \backslash \overline{B} = (X \backslash B)^{\circ} \tag{113}$$

lub

$$\overline{B} = X \setminus (X \setminus B)^{\circ}. \tag{114}$$

Dowód

 $x \in X \setminus \overline{B} \iff x$ nie jest punktem skupienia $B \iff \exists_r \operatorname{Ball}(x,r) \cap B = \emptyset \iff \exists_r \operatorname{Ball}(x,r) \cap B \subseteq X \setminus B \iff x \in (X \setminus B)^{\circ}.$

Powiemy teraz o bardzo ważnym twierdzeniu pozwalającym utożsamić punkty skupienia z granicami ciągów ze zbioru.

Twierdzenie 4.7.

Niech $B \subseteq X$. Wtedy domknięcie B to zbiór granic ciągów z B, tj.:

$$\overline{B} = \{ \lim_{n \to \infty} x_n \, \middle| \, (x_n)_{n \in \mathbb{N}} \land \forall_n x_n \in B \}.$$
(115)

Dowód

- \supseteq Dla każdego $x \in \overline{B}$ zdefiniujmy ciąg $(x_n)_{n \in \mathbb{N}}$ następująco niech x_n to dowolny element należący do Ball $(x, \frac{1}{n}) \cap B$ (jest to zbiór zawsze niepusty na mocy tego, że x jest punktem skupienia B). Oczywiście $x_n \to x$, gdyż $d(x_n, x) < \frac{1}{n} \to 0$.
- \subseteq Odwrotnie, jeśli $x_n \to x$ i $\forall_n : x_n \in B$, to:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon}} \forall_{n \geq N_{\varepsilon}} : B \ni x_n \in \text{Ball}(x, \varepsilon) \implies \forall \varepsilon > 0 \text{Ball}(x, \varepsilon) \cap B \neq \emptyset, \tag{116}$$

skąd mamy $x \in \overline{B}$.

Definicja 4.14. Ograniczoność

Powiemy, że $B \subseteq X$ jest **ograniczony**, jeśli:

$$\exists_{x \in X, r > 0} : B \subseteq Ball(x, r). \tag{117}$$

Definicja 4.15. Gęstość

Powiemy, że $A \subseteq X$ jest **gęsty** w $B \subseteq X$, jeśli:

$$B \subseteq \overline{A}. \tag{118}$$

Uwaga! Mówiąc po prostu, że zbiór jest gęsty, mamy na myśli, że jest gęsty w X.

Przykład \mathbb{Q} jest gęsty w \mathbb{R} .

Definicja 4.16. Otoczenie

 $A \subseteq X$ jest otoczeniem punktu $x \in X$, jeśli:

$$\exists_{U \subseteq X} : x \in U \subseteq A. \tag{119}$$

Waruneke ten jest równoważny temu, żę $x \in A^{\circ}$.

Dla danego punktu rodzinę wszyskich jego otoczeń oznaczać będziemy $\mathcal{N}(x)$:

$$\mathcal{N}(x) = \{ A \in \mathcal{P}(X) = 2^X \mid x \in A^\circ \}.$$
 (120)

Twierdzenie 4.8.

Niech $(x_n)_{n\in\mathbb{N}}$ będzie ciągiem elementów X. Wtedy:

$$\lim_{n \to \infty} x_n = x \iff \forall_{A \in \mathcal{N}(x)} \exists_{N_A \in \mathbb{N}} \forall_{n \geqslant N_A} : x_n \in A.$$
 (121)

Dowód

 \leftarrow Weźmy $A_ε$ Ball(x, ε). Wtedy:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon}} \forall_{n \geqslant N_{\varepsilon}} : x_n \in \text{Ball}(x, \varepsilon) \implies d(x_n, x) < \varepsilon. \tag{122}$$

implies x_n zbiega do x, zatem:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon}} \forall_{n \geq N_{\varepsilon}} : d(x_n, x) < \varepsilon.$$

Mamy też:

$$A \in \mathcal{N}(x) \implies \exists_{\varepsilon} : \text{Ball}(x, \varepsilon) \subseteq A.$$

Wystarczy więc wziąć $N_A = N_{\varepsilon}$. Wtedy będzie:

$$\forall_{\varepsilon>0} \exists_{N_{\varepsilon}} \forall_{n \geqslant N_{\varepsilon}} : (d(x_n, x) < \varepsilon \land \text{Ball}(x, \varepsilon) \subseteq A) \implies x_n \in A. \tag{123}$$

Twierdzenie to mówi nie mniej, nie więcej niż to, że jeśli ciąg zbiega do jakiegoś punktu, to w każdym otoczeniu tego punktu znajdą się prawie wszystkie wyrazy tego ciągu.

Twierdzenie 4.9.

Niech (X, d) - p-ń. metryczna, niech $Y \subseteq X$ i niech $d_y = d|_{Y \times Y}$ będzie obcięciem d do Y. Wtedy:

- 1. $A \subseteq Y$ jest otwarty w $(Y, d_y) \iff \exists_{\substack{U \subseteq X \\ \text{otw.}}} : A = Y \cap U$.
- 2. $A \subseteq Y$ jest domknięty w $(Y, d_y) \iff \exists_{F \subseteq X} : A = Y \cap F$.

Twierdzenie to daje nam pojęcie o tym, jak wyglądają zbiory otwarte i domknięte w jakimś zawężeniu metryki - mianowicie są to zawężenia odpowiednich zbiorów otwartych i domkniętych.

Dowód

Zaczniemy od dowodu 2.

 \implies Niech A domknięty w Y i niech F będzie domknięciem A w X (więc F musi być domknięty w X). Wtedy:

$$F = \{ \lim_{n \to \infty} a_n \in X \mid a_n \in A \},$$

za to:

$$A = \{ \lim_{n \to \infty} a_n \in Y \mid a_n \in A \},$$

gdyż A jest domknięty w Y. Widzimy z tych definicji łatwo, że $A = F \cap Y$.

- \longleftarrow W drugą stronę, niech $A = Y \cap F$ i F będzie domknięty w X. Niech $(a_n)_{n \in \mathbb{N}}$ będzie ciągiem w A (więc i w F), zbiegającym do g. Wtedy $g \in F$. Zatem jeśli $g \in Y$, to $g \in A$, z konstrukcji A. Pokazaliśmy więc, że każdy ciąg z A zbieżny w Y ma granicę w samym A, zatem A jest domknięty.
- 2. ⇒ 1. Pokażemy teraz, jak z 2. wynika 1. Mamy bowiem ciąg następujących równoważności:

 $A \subseteq Y$ jest otwarty w $Y \iff Y \setminus A$ jest domknięty w $Y \iff \exists_{F \subseteq X} : Y \setminus A = Y \cap F \iff domk.$

$$\exists_{F\subseteq X}: A=Y\cap (X\backslash F) \iff \exists_{U\subseteq X}: A=Y\cap U.$$

Przedostatnia równoważność, wynika z faktu, że jeśli $Y \setminus A = Y \cap F$, to $A = Y \setminus (Y \cap F) = Y \setminus F = Y \cap (X \setminus F)$ (pamiętamy, że $Y \subseteq X$). Ostatnia równoważność jest konsekwencją tego, że dopełnienie zbioru domkniętego jest otwarte (Tw. 4.1).

4.2 Przekształcenia ciągłe

Zaczniemy rozważać teraz przekształcenia (i.e. funkcje) pomiędzy przestrzeniami metrycznymi i wyróżnimy wśród nich szczgólnie ważną klasę funkcji ciągłych.

Twierdzenie 4.10. Warunki ciągłośći

Niech (X,d) i (Y,δ) będą przestrzeniami metrycznymi, a $\Phi: X \to Y$ przekształceniem między nimi. Ustalmy też $x_0 \in X$. Wtedy następujące warunki są równoważne:

1.

$$\forall_{\varepsilon>0} \exists_{\lambda_{\varepsilon}>0} \forall_{x \in X} : d(x, x_0) < \lambda_{\varepsilon} \implies \delta(\Phi(x), \Phi(x_0)) < \varepsilon. \tag{124}$$

2.

$$\forall_{U \in \mathcal{N}(\Phi(x_0))} \exists_{V \in \mathcal{N}(x_0)} : \Phi(V) \subseteq U. \tag{125}$$

3.

$$\forall_{U \in \mathcal{N}(\Phi(x_0))} : \Phi^{-1}(U) \in \mathcal{N}(x_0). \tag{126}$$

(Przypominamy, że $\Phi^{-1}(U)$ to w przeciwobraz U).

4. Jeśli $x_n \to x_0$ w (X, d), to $\Phi(x_n) \to \Phi(x_0)$ w (Y, δ) .

Dowód

1. \Longrightarrow 2. Dla dowolnego $U \in \mathcal{N}(\Phi(x_0))$ istnieje $\varepsilon > 0$:

Ball(
$$\Phi(x_0)$$
, ε) $\subseteq U$.

Z 1. weźmy więc λ_{ε} spełniające podaną implikację i $V = \text{Ball}(x_0, \lambda_{\varepsilon})$. Wtedy:

$$\Phi(x \in V) \in \text{Ball}(\Phi(x_0), \varepsilon),$$

zatem:

$$\Phi(V) \subseteq \text{Ball}(\Phi(x_0), \varepsilon) \subseteq U.$$

2. \Longrightarrow 3. Weźmy dowolne $U \in \mathcal{N}(\Phi(x_0))$. Wtedy:

$$\exists_{V \in \mathcal{N}(x_0)} : \Phi(V) \subseteq U$$

i.e. $V \subseteq \Phi^{-1}(U)$. Ale skoro $V \in \mathcal{N}(x_0)$, to tym bardziej $\Phi^{-1}(U) \in \mathcal{N}(x_0)$, jako rozszerzenie V. 3. \Longrightarrow 4. Weźmy ciąg $(x_n)_{n \in \mathbb{N}}$ zbieżny do x_0 . Niech $U \in \mathcal{N}(\Phi(x_0))$, skąd $\Phi^{-1}(U) \in \mathcal{N}(x_0)$. Zatem:

$$\exists_{N_{II}} \forall_{n \geqslant N_{II}} : x_n \in \Phi^{-1}(U),$$

z twierdzenia udowodnionego wcześniej. Ergo:

$$\forall_{U \in \mathcal{N}(\Phi(x_0))} \exists_{N_U} \forall_{n \geqslant N_U} : \Phi(x_n) \in U.$$

Zatem, z tego samego twierdzenia:

$$\Phi(x_n) \to \Phi(x_0)$$
.

4. \implies 1. Dowodzimy nie wprost, że \neg 1. \implies \neg 4.. Zaprzeczeniem 1. jest:

$$\exists_{\varepsilon>0} \forall_{\lambda} \exists_{x_1 \in X} : d(x_{\lambda}, x_0) < \lambda \land \delta(\Phi(x_{\lambda}, x_0)) \geqslant \varepsilon.$$

Weźmy $\lambda_n = \frac{1}{n}$ i na tej podstawie skonstruujmy ciąg x_n odpowiadjących x_λ w powyższym stwierdzeniu dla odpowiednich λ . Wtedy musi być, że $x_n \to x_0$, gdyż $d(x_n, x_0) < \frac{1}{n}$, ale $\Phi(x_n) \to \Phi(x_0)$, gdyż $\delta(\Phi(x_n), \Phi(x_0)) \ge \varepsilon \forall_n$. Zatem zachodzi $\neg 4$..

Definicja 4.17. Odwzorowanie ciągłe

Odwzorowanie spełniające warunki 1. - 4. Twierdzenia 4.2 dla punktu $x_0 \in X$ nazywamy ciągłym w x_0 (w p-ń. (X,d)). Jeśli odwzorowanie jest ciągłe w każdym punkcie przestrzenii, nazywamy je po prostu ciągłym.

Czasami, mając na myśli warunek 1., mówimy o tzw. zbieżności według Cauchy'ego, zaś o warunku 4. mówimy, jako zbieżności według Heinego.

Twierdzenie 4.11. Złożenie odwzorowań ciągłych jest ciągłe

Jeśli $\Phi: X \to Y$ jest ciągłe w $x_0 \in X$ i $\Psi: Y \to Z$ jest ciągłe w $\Phi(x_0)$, to $\Psi \circ \Phi: X \to Z$ jest ciągłe w X_0 .

Dowód

Korzystając np. z 4. warunku ciągłości, weźmy ciąg $x_n \to x_0$, wtedy $\Phi(x_n) \to \Phi(x_0)$ z ciągłości Φ . Ponadto $\Psi(\Phi(x_n)) \to \Psi(\Phi(x_0))$ z ciągłości Ψ . Widzimy, więc prosto, że $\Psi \circ \Phi$ musi być ciągłe.

Twierdzenie 4.12. Ciągłość na całej dziedzinie

 $\Phi: X \to Y$ jest ciągłe na całym X wtedy i tylko wtedy, gdy:

$$\forall_{\substack{U \subseteq Y \\ \text{otw.}}} : \Phi^{-1}(U) \subseteq X. \tag{127}$$

Inaczej mówiąc, przekształcenie jest ciągłe na całej dziedzinie wtedy i tylko wtedy, gdy przeciwobrazy zbiorów otwartych są otwarte.

Dowód

 \Longrightarrow Niech $U \subseteq Y$ i $x \in \Phi^{-1}(U)$. Zatem $\Phi(x) \in U$. Skoro U jest otwarty, to musi być otoczeniem $\Phi(x)$, i.e. $U \in \mathcal{N}(\Phi(x))$, zatem (warunek 3.):

$$\Phi^{-1}(U) \in \mathcal{N}(x) \quad \forall_{x \in \Phi^{-1}(U)},$$

czyli $\Phi^{-1}(U)$ jest otwarty.

← Udowadniamy warunek 2.:

$$\forall_{U\subseteq Y}:\Phi^{-1}(U)\subseteq X.$$

Weźmy $x \in X$ i $U \in \mathcal{N}(\Phi(x))$. Wtedy:

$$\exists_{\tilde{U}\subseteq X}:\Phi(x)\in \tilde{U}\subseteq U,$$

więc $V = \Phi^{-1}(\tilde{U})$ - otwarty. Pondato $x \in V$. Zatem $V \in \mathcal{N}(x)$, oraz $\Phi(V) \subseteq \tilde{U} \subseteq U$, więc 2. zachodzi.

Definicja 4.18. Ciągłość jednostajna

 $\Phi: X \to Y$ nazwiemy **jednostajnie ciągłym**, jeśli:

$$\forall_{\varepsilon > 0} \exists_{\lambda_{\varepsilon}} : \forall_{x, x' \in X} : d(x, x') \leq \lambda_{\varepsilon} \implies \delta(\Phi(x), \Phi(x')) \leq \varepsilon. \tag{128}$$

Ważną częścią tejże definicji jest to, że wybór λ zależy jedynie od ε , nie zaś od samych punktów x, x'.

Obserwacja 8.

Każda funkcja jednostajnie ciągła, jest ciągła.

Definicja 4.19. Przekształcenie Lipschitzowskie

Przekształcenie $\Phi: X \to Y$ nazwiemy **Lipschitzowskim** (i.e. spełniającym **warunek Lipschitza**), jeśli:

$$\exists_{L>0} \forall_{x,x' \in X} : \delta(\Phi(x), \Phi(x')) \leqslant L \cdot d(x, x'). \tag{129}$$

Warunek ten mówi, że odległość między wartościami funkcji jest zawsze ograniczona przez odległość między jej argumentami (z pewną proporcjonalnością).

Obserwacja 9.

Funkcje Lipschitzowskie są ciągłe jednostajnie.

Istotnie - wystarczy ustalić: $\lambda_{\varepsilon} = \frac{\varepsilon}{L}$.

4.3 Zwartość

Powiemy teraz o bardzo ważnym pojęciu charakteryzującym zbiory w przestrzenii metrycznej - to jest o zwartości.

Definicja 4.20. Pokrycie

Ustalmy (X,d) - p-ń. metryczną. **Pokryciem** zbioru K nazwiemy rodzinę zbiorów $U = \{U\}_{i \in I}$, $U_i \subseteq X$, taką że:

$$K \subseteq \bigcup_{i \in I} U_i. \tag{130}$$

Pokrycie jest otwarte, jeśli wszystkie U_i są otwarte. Pokrycie $V = \{V_i\}_{i \in I'}$ nazwiemy podpokryciem U, jeśli $V \subseteq U$.

Przykład Dla $X = \mathbb{R}$, K = [0, 1], pokryciem K jest rodzina:

$$U_{nn\in\mathbb{N}}: U_n = [0, 1 + \frac{1}{n}].$$

Nie jest to pokrycie otwarte.

Definicja 4.21. Zwartośc (pokryciowa)

Zbiór $K \subseteq X$ nazwiemy **ZWARTYM**, jeśli z każdego pokrycia otwartego tegoż zbioru, można wybrać podpokrycie skończone (tj. mające skończonę liczbę elementów). Jeśli K jest zwartym podzbiorem X, to zapiszemy $K \subseteq \subseteq X$.

Twierdzenie 4.13. Własności zbiorów zwartych

- 1. Każdy zbiór zwarty jest ograniczony.
- 2. Każdy zbiór zwarty jest domknięty.

Dowód

Niech $K \subseteq \subseteq X$.

1. Weźmy dowolny $x \in X$. Wtedy $\{Ball(x, n)\}_{n \in \mathbb{N}}$ niewątpliwie jest pokryciem otwartym K. Skoro tak, to można zeń wybrać skończone podpokrycie. Zatem istnieje $N \in \mathbb{N}$, będące największym z indeksów z tegoś podpokrycia, takie że:

$$K \subseteq Ball(x, N)$$
,

jako że kolejne z tych kul zawierają w sobie poprzednie. Widzimy więc, że *K* jest ograniczony.

2. Dowód nie wprost. Przypuśćmy, że $\exists y$ będący punktem skupienia K, t.ż. $y \notin K$. Weźmy rodzinę zbiorów $\{X \setminus \overline{\operatorname{Ball}}(y, \frac{1}{n})\}_{n \in \mathbb{N}}$. Niewątpliwie jest to pokrycie otwarte, gdyż wszystkie z tych zbiorów są otwarte i sumują się one do $X \setminus \{y\}$. Wybierzmy z niego więc skończone podpokrycie i niech N będzie największym z indeksów w tym podpokryciu. Zauważmy, że wtedy sumujw się ono do $X \setminus \overline{\operatorname{Ball}}(y, \frac{1}{N})$, jako że kolejne z tych zbiorów zawierają w sobie poprzednie. Mamy więc, że $K \subseteq X \setminus \overline{\operatorname{Ball}}(y, \frac{1}{N})$. Wtedy jednak $\operatorname{Ball}(y, \frac{1}{N}) \cap K \subseteq \overline{\operatorname{Ball}}(y, \frac{1}{N}) \cap K = \emptyset$, co przeczy temu, że y jest punktem skupienia K. Sprzeczność! Zatem K rzeczywiście musi być domknięty.

Definicja 4.22. Zwartość ciągowa

Powiemy, że podzbiór $K \subseteq X$ jest **ciągowo zwarty**, jeśli każdy ciąg $(x_n)_{n \in \mathbb{N}}$ zawarty w K $(x_n \in K)$ zawiera podciąg zbieżny do granicy w K:

$$\forall_{(x_n)_{n\in\mathbb{N}}, x_n\in K} \exists_{k\mapsto n_k} : x_{n_k} \to g \in K.$$
(131)

Twierdzenie 4.14.

Zbiór *K* ciągowo zwarty jest także domknięty.

Dowód

Istotnie, jeśli ciąg $(x_n)_{n\in\mathbb{N}}$ elementów z K jest zbieżny, to każdy jego podciąg jest zbieżny do tej samej granicy. Ale skoro K jest ciągowo zwarty, to $(x_n)_{n\in\mathbb{N}}$ ma podciąg zbieżny do ele-

mentu z K, który będzie wspólną granicą wszystkich podciągów. Zatem i granica $(x_n)_{n\in\mathbb{N}}$ musi leżeć w K.

Definicja 4.23. ε - sieć

Niech $K \subseteq X$ i $\varepsilon > 0$. Wtedy $S \subseteq X$ nazwiemy ε - siecią dla K jeśli:

$$\forall_{z \in K} \exists_{s \in S} : z \in \text{Ball}(s, \varepsilon). \tag{132}$$

S jest ε - siecią **w** jeśli jest ε - siecią dla K i $S \subseteq K$.

Twierdzenie 4.15.

Jeśli K jest ciągowo zwarty, to dla każdego $\varepsilon > 0$ istnieje skończona ε - sieć w K.

Dowód

Dowód nie wprost. Przypuśćmy, że istnieje $\varepsilon > 0$, t.ż. w K nie ma skończonej ε - sieci. Skonstruujmy wtedy następująco ciąg $(x_n)_{n \in \mathbb{N}}$ i rodzinę zbiorów $(U_n)_{n \in \mathbb{N}}$:

Niech $x_1 \in K$ będzie dowolne i $U_1 = \text{Ball}(x_1, \varepsilon)$. Oczywiście U_1 nie pokrywa K (z założenia): $K \setminus U_1 \neq \emptyset$. Za x_2 bierzemy więc dowolny element w $K \setminus U_1$, a $U_2 = U_1 \cup \text{Ball}(x_2, \varepsilon)$. Ogólnie $x_n \in K \setminus U_{n-1}$ i $U_n = U_{n-1} \cup \text{Ball}(x_n, \varepsilon)$. Oczywiście $K \setminus U_{n-1} \neq \emptyset$, gdyż gdyby było inaczej, to z konstrukcji mielibyśmy wbrew założeniu skończoną ε - sieć pokrywającą K.

Otrzymaliśmy ciąg $(x_n)_{n\in\mathbb{N}}$, który jednak nie może mieć podciągu zbieżnego, gdyż nie spełnia warunku Cauchy'ego - z konstrukcji jasno widać, że $\forall_{i< j}: d(x_i,x_j) \geqslant \varepsilon$, jako że $x_j \in K \setminus U_{i-1} \subseteq K \setminus U_i$. Przeczy to założeniu, że K jest ciągowo zwarty.

Twierdzenie 4.16.

Jeśli K jest ciągowo zwarty, to istnieje przeliczalny $D \subseteq K$, t.ż. $\overline{D} = K$ i.e. D jest gesty w K.

Dowód

Weźmy

$$D=\bigcup_{n=1}^{\infty}S_{\frac{1}{n}}\subseteq K,$$

gdzie jako S_{ε} oznaczyliśmy skończoną ε - sieć w K, która na mocy Tw. 4.3 istnieje. Jasno widać, że D jest przeliczalny. Wtedy $\overline{D} \subseteq K$, gdyż dla każdego $y \in K$ tworzymy ciąg $(x_n)_{n \in \mathbb{N}}$ elementów, takich że $x_n \in S_{\frac{1}{n}}$ i $y \in \operatorname{Ball}(x_n, \frac{1}{n})$, co zawsze możemy zrobić, bo $S_{\frac{1}{n}}$ są ε - sieciami w K. Wtedy $d(x_n, y) < \frac{1}{n} \to 0$, więc $x_n \to y$, czyli $y \in \overline{D}$. Odwrotnie mamy $\overline{D} \supseteq K$, bo $D \subseteq K \implies \overline{D} \subseteq \overline{K}$ (domknięcie jest monotoniczne, a K jest domknięty por. Tw. 4.3). Z tych dwu inkluzji mamy teze.

Twierdzenie 4.17.

Jeśl K jest ciągowo zwarty, do każde jego pokrycie otwarte ma przeliczalne podpokrycie.

Dowód

Niech U - pokrycie otwarte K. Dla dowolnego $y \in K$ zdefiniujmy:

$$n_y = \min\{n \in \mathbb{N} \mid \exists_{U_y \in U} : \text{Ball}(y, \frac{1}{n}) \subseteq U_y\}.$$

Taka liczba będzie bez wątpienia istniała, gdyż U pokrywa K i składa się z samych zbiorów otwartych. Niech U_y będzie zbiorem spełniającym powyższy warunek dla $y \in K$. Niech $V = \{U_y | y \in D\}$, gdzie D to przeliczalny podzbiór gęsty w K (istnieje on na mocy Tw. 4.3). Jasne, że $V \subseteq U$ i że V jest przeliczalny. Pokażemy, że jest to podpokrycie.

Niech $x \in K$. Wiemy, że $\exists_{U_x \in U, N \in \mathbb{N}}$: Ball $(x, \frac{1}{N}) \subseteq U_x$. Ponadto, jako że D jest gęsty w K, to $\exists_{v \in D} : d(y, x) < \frac{1}{2N}$. Wtedy:

$$x \in \text{Ball}(y, \frac{1}{2N}) \implies \text{Ball}(y, \frac{1}{2N}) \subseteq \text{Ball}(x, \frac{1}{N}) \subseteq U_x \in U.$$

Więc $2N \ge n_y$ z konstrukcji n_y . Zatem:

$$x\in \operatorname{Ball}(y,\,\frac{1}{2N})\subseteq\operatorname{Ball}(y,\,\frac{1}{n_v})\subseteq U_y\in V.$$

Czyli V pokrywa K.

Jesteśmy już gotowi, żeby udowodnić najważniejsze twierdzenie w tej sekcji.

Twierdzenie 4.18. Zwartość ciągowa = zwartość pokryciowa

Zbiór K jest ciągowo zwarty wtedy i tylko wtedy gdy jest zwarty (pokryciowo).

Dowód

 \implies Niech $K \subseteq \subseteq X$, $(x_n)_{n \in \mathbb{N}}$ będzie ciągiem elementów z K i niech $Z = \{x_n | n \in \mathbb{N}\}$. Pokażemy, że zachodzi jedna z dwu możliwości:

1.

$$\exists_{y \in K} : \forall_{U \in \mathcal{N}(y), U \subseteq X} : |Z \cap U| = \infty.$$

2. *Z* jest skończony.

Mianowicie, niech $\neg 1$., i.e.:

$$\forall_{y \in K} : \exists_{U_y \in \mathcal{N}(y), U_y \subseteq X} : |Z \cap U_y| < \infty.$$

Oczywiście $\{U_y\}_{y\in K}$ jest pokryciem otwartym K (gdyż każdy y zawiera się np. w odpowiadającym mu U_v). Wybierzmy więc zeń skończone podpokrycie, tak, żeby:

$$K\subseteq U_{y_1}\cup U_{y_2}\cup ...\cup U_{y_N}.$$

Mamy jednak $Z \subseteq K$, zatem:

$$Z = K \cap Z = (U_{y_1} \cap Z) \cup (U_{y_2} \cap Z) \cup \dots \cup (U_{y_N} \cap Z). \tag{133}$$

Każdy z elementów tej sumy jest skończony, na mocy założenia, zatem Z także jest skończony, jako skończona suma skończonych.

Widzimy więc, że zachodzi 1. lub 2.:

1. Jeśli zachodzi pierwszy warunek, to skoro:

$$\exists_{y \in K} : \forall_{U \in \mathcal{N}(y), \ U \subseteq X} : |Z \cap U| = \infty,$$

to konstruujemy $k\mapsto n_k$, tak aby $\forall_k:n_{k+1}>n_k$ i $x_{n_k}\in \mathrm{Ball}(y,\frac{1}{k})$. Jest to możliwe, bo każde otwarte otoczenie y zawiera nieskończenie wiele elementów ciągu x_n , w szczególności zawiera element o indeksie większym od dowolnej liczby. Oczywiście z podanej konstrukcji mamy $x_{n_k}\to y\in K$.

2. Jeśli Z jest skończony, to z zasady szuflatkowej istnieje wartość $x \in Z \subseteq K$, która zostanie odwiedzona nieskończenie wiele razy przez wyrazy ciągu x_n - można więc wziąć podciąg stały równy x i oczywiście do tej liczby zbieżny.

Widzimy więc, że w obu przypadkach potrafimy skonstruować podciąg zbieżny w K, zatem K istotnie jest ciągowo zwarty.

← Dowód składać się będzie z

Twierdzenie 4.19. Bolzano-Weierestrassa II

Każdy ograniczony i domknięty podzbiór R jest zwarty.

Dowód

Wynika on prosto z równoważności zwartości ciągowej i pokryciowej. Jeśli jakiś podzbiór $\mathbb R$ jest ograniczony, to zawiera podciąg zbieżny (Twierdzenie 2.2), a skoro jest domknięty, to ów podciąg zbieżny ma granicę w tymże zbiorze. Zatem podzbiór ten jest ciągowo zwarty, czyli zwarty.

Koniec

Spis treści

I	Wstęp	1
	1.1 Relacje	1
	1.2 Liczby rzeczywiste	3
2	Ciagi rzeczywiste	5
	Ciagi rzeczywiste 2.1 Pojęcie ciągu i ogólne rezulataty	5
	2.2 lim sup i lim inf	8
3	Szeregi liczbowe	11
	3.1 Szeregi o wyrazach dodatnich	11
	3.2 Szeregi o wyrazach dowolnych	
4	Przestrzenie metryczne	19
	4.1 Podstawowe definicje. Otwartość i domkniętość	19
	4.2 Przekształcenia ciągłe	28
	4.3 Zwartość	31