An information-theoretic perspective of tf-idf measures (paper review)

Kholkin I., Kovrigin A., Shibaev E.

Faculty of Computer Scince Constructor University Bremen

October 2023

Table of Contents

Introduction

- Extending the notion of tf-idf
 - Basic formulae of information theory
 - Information-theoretic view of tf-idf
 - Problems

Table of Contents

Introduction

- Extending the notion of tf-idf
 - Basic formulae of information theory
 - Information-theoretic view of tf-idf
 - Problems

Intro

Information retrieval abstraction

We have a set of N documents $D = \{d_1, \ldots, d_N\}$ and a set of M terms (words) from these documents $W = \{w_1, \ldots, w_M\}$.

tf-idf

The term frequency–inverse document frequency (tf–idf) is a common measure to weigh words in information retrieval systems: For a term w_i and a document d_i , its score is $tf_{i,j} \cdot \log(idf_i)$, where

- $tf_{i,j}$ is a frequency of w_i in d_j
- *idf*_i is the inverse fraction of documents the word is present in.

It has numerous variations and is often considered as an empirical method. We'll derive the tf-idf from a information-theoretical perspective and try generalizing it.

4 / 13

Table of Contents

Introduction

- Extending the notion of tf-idf
 - Basic formulae of information theory
 - Information-theoretic view of tf-idf
 - Problems

Basic formulae

Let x_i and y_j be two distinct events from finite event spaces X and Y. A probability distribution $P(x_i, y_j)$ is given for $x_i \in X$ and $y_j \in Y$.

Marginal probability

The probability $P(x_i)$ is then calculated as $\sum_{y_j \in Y} P(x_i, y_j)$

Amount of information

The **amount of information** of x_i is then: $-\log P(x_i)$.

Let's $\mathcal X$ and $\mathcal Y$ be random variables representing distinct events from X and Y respectively. Then:

Self-entropy

The expected amount of information or **self-entropy** is defined as $\mathcal{H}(\mathcal{X}) = -\sum_{x_i \in X} P(x_i) \log P(x_i)$.

Basic formulae

Pairwise mutual information

The **pairwise mutual information** between x_i and y_j is the difference between the amounts of information based on (i) the actual joint probability, $P(x_i, y_j)$, and (ii) the expected probability when the independence of the two events are assumed, $P(x_i)P(y_j)$:

$$\mathcal{M}(x_i, y_j) = \log \frac{P(x_i, y_j)}{P(x_i)(y_j)}$$

Expected mutual information

Then, the **expected mutual information**, or mutual information between \mathcal{X} and \mathcal{Y} is defined as: $\mathcal{F}(\mathcal{X},\mathcal{Y}) = \sum_{x_i,y_i} P(x_i,y_j) \mathcal{M}(x_i,y_j) =$

$$\sum_{x_i,y_i} P(x_i,y_j) \log \frac{P(x_i,y_j)}{P(x_i)(y_j)} = \mathcal{H}(\mathcal{X}) - \mathcal{H}(\mathcal{X}|\mathcal{Y}) = \mathcal{H}(\mathcal{X}) + \mathcal{H}(\mathcal{Y}) - \mathcal{H}(\mathcal{X}\mathcal{Y})$$

Basic formulae

The reduction of uncertainty \mathcal{Y} after observing a specific x_i can be expressed using

Kullback-Leibler information

Basically the Kullback-Leibler divergence between $P(\mathcal{Y}|x_i)$ and $P(\mathcal{Y})$:

$$\mathcal{K}(P(\mathcal{Y}|x_i)||P(\mathcal{Y})) = \sum_{y_j \in Y} P(y_j|x_i) \log \frac{P(y_j|x_i)}{P(y_j)}.$$

As you might have noticed, our mutual information thing looks a lot like it. In fact:

$$\mathcal{F}(\mathcal{X}, \mathcal{Y}) = \sum_{x_i \in X} P(x_i) \mathcal{K}(P(\mathcal{Y}|x_i) || P(\mathcal{Y})) = \sum_{y_j \in Y} P(y_j) \mathcal{K}(P(\mathcal{X}|y_j) || P(\mathcal{X}))$$

Back to our problem.

We have a set of N documents $D = \{d_1, \ldots, d_N\}$ and a set of M terms from these documents $W = \{w_1, \ldots, w_M\}$. Let's say d_i is also an event of picking a document d_i (similarly with w_i).

Now, let $\mathcal D$ and $\mathcal W$ be random variables defined over D and W respectively. Our objective is to calculate the expected mutual information between $\mathcal D$ and $\mathcal W$.

Let's assume that $P(d_j|w_j)=\frac{1}{N_j}$ and $P(d_j)=\frac{1}{N}$. Meaning that, in the first case, we know the word and that it comes from one of the N_j documents equally likely. And, in the second case, we don't have any word as a query. Hence, let's say that all the documents are equally likely to fit. With these assumptions:

Self-entropy for \mathcal{D}

$$\mathcal{H}(\mathcal{D}) = -\sum_{d_i \in D} P(d_i) \log P(d_i) = -N \frac{1}{N} \log \frac{1}{N} = -\log \frac{1}{N}$$

Self-entropy for $\mathcal{D}|w_i$

$$\mathcal{H}(\mathcal{D}|w_i) = -\sum_{d_j \in \mathcal{D}} P(d_j|w_i) \log P(d_j|w_i) = -N_i \frac{1}{N_i} \log \frac{1}{N_i} = -\log \frac{1}{N_i}$$

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ②

Finally, let's assume that we randomly select a query term w_i from the whole document set. Denoting the frequency of w_i with in d_j as f_{ij} , the frequency of w_i in the whole document set as f_{w_i} and the total frequency of all terms appearing in the whole document set as F, the probability that a specific w_i is selected is f_{w_i}/F . Then, the expected mutual information is calculated as

$$\begin{split} \mathcal{F}(\mathcal{D}, \mathcal{W}) &= \mathcal{H}(\mathcal{D}) - \mathcal{H}(\mathcal{D}|\mathcal{W}) = \sum_{w_i \in \mathcal{W}} P(w_i) (\mathcal{H}(\mathcal{D}) - \mathcal{H}(\mathcal{D}|w_i)) = \\ &\sum_{w_i \in \mathcal{W}} P(w_i) (-\log \frac{1}{N} + \log \frac{1}{N_i}) = \sum_{w_i \in \mathcal{W}} \frac{f_{w_i}}{F} \log \frac{N}{N_i} = \sum_{w_i \in \mathcal{W}} \sum_{d_j \in \mathcal{D}} \frac{f_{ij}}{F} \log \frac{N}{N_i} \end{split}$$

tf-idf in expected mutual information

$$\mathcal{F}(\mathcal{D}, \mathcal{W}) = \sum_{w_i \in \mathcal{W}} \frac{f_{w_i}}{F} \log \frac{N}{N_i} = \sum_{w_i \in \mathcal{W}} \sum_{d_j \in D} \frac{f_{ij}}{F} \log \frac{N}{N_i}$$

Hence, tf—idf can be interpreted as the quantity required for the calculation of the expected mutual information. The idf factor expresses the change in the amount of information after observing a specific term, and the tf factor expresses the probability estimation that the term is actually observed.

Assumptions

- The distribution of query terms is basically the same as the distribution of the terms in documents.
- We assumed that: $P(d_j) = \sum_{w_i \in d_j} \frac{f_{w_j}}{F} \frac{1}{N_i} \approx \frac{1}{N}$
- And that $P(w_i,d_j) = rac{f_{w_j}}{F}rac{1}{N_i}pprox rac{f_{ij}}{F}$