진법 강의노트

Numeric Representation

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa-decimal	16	0, 1, 9, A, B, F	No	No

Number Counting

Base-10	Base-2	Base-8	Base-16
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Base-10	Base-2	Base-8	Base-16
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12

Transitions Between Representations

How Decimal Number is Represented

Each digit in a decimal number is multiplied by power of 10 with the digit index starting from 0

```
• 125_{10}

1 * 10^3 = 100

2 * 10^2 = 20

5 * 10^0 = 5
```

How Binary Number is Represented

• Similar to Decimal number, each digit in the binary representation is multiplied by power of 2 with the digit index starting from 0

```
• 11111101_2 = 125_{10}

1 * 2^6 = 64

1 * 2^5 = 32

1 * 2^4 = 16

1 * 2^3 = 8

1 * 2^2 = 4

0 * 2^1 = 0

1 * 2^0 = 1
```

Similar steps apply to Octal and Hexa-Decimal

How to Convert Decimal to Binary

$$125_{10} = ?_2$$

Converting to Octal and Hexa-decimal follows the same sequence

$$125_{10} = 1111101_2$$

Converting From Binary

- Note that Binary number is represented with 0 and 1
 - 1 Bit is necessary
- Octal is represented with 0, 1, 2, 3, 4, 5, 6, 7
 - 3 Bit is necessary
 - Note that each bit can be 0 or 1
 - $000_2 \rightarrow 0$, $001_2 \rightarrow 1$, $010_2 \rightarrow 2$, $011_2 \rightarrow 3$
 - $100_2 \rightarrow 4$, $101_2 \rightarrow 5$, $110_2 \rightarrow 6$, $111_2 \rightarrow 7$
- In order to convert Binary value to Octal, convert every three digits to Octal number
 - $11111101_2 = 175_8$

Converting From Binary

- How about transforming binary to hexa-decimal?
- Note that Hexa-decimal can be represented with 4 bit
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E
 - $0000_2 \sim 1111_2$
 - Similar to Octal, convert every four digits into hexa-decimal number
 - 1111101₂ Hexa-decimal value?

Express Negative Value In Binary Format

- Two's complement
 - A way for a computer to understand (express) negative value in a binary format
- MSB (the left-most bit) decides the sign of a value
 - 0 : Positive
 - 1 : Negative
 - MSB stands for Most Significant Bit
 - LSB stands for Least Significant Bit

How Two's Complement Works

- If the MSB is 1, it will take -2ⁱ⁻¹, where i is the bit length
- Converting an integer to negative
 - 0001 0011 \rightarrow 19
- First, flip every digit $(0 \rightarrow 1, 1 \rightarrow 0)$
 - 1110 1100
- Next, add 1 and add other digits number
 - 1110 1101 \rightarrow -128 + 64 + 32 + 8 + 4 + 1 = -128 + 109 = -19