

FCC Part 15C Test Report

Report No.: BCTC-160101150E

FCC ID: 2AE4OGLINT20

Product Name:	Drones/Quadcopter/UAV (Unmanned Aerial Vehicle)
Trademark:	Keyshare
Model Name :	GLINT 2.0
Prepared For :	Hunan Keyshare Information Technology Co., Ltd
Address :	Room 707-712,7/F,Headquarters,Changsha CEC Software Park,No.39 Jianshan Road,High-Tech Industrial Eatate,Yuelu District, Changsha, Hunan, P.R.China
Prepared By :	Shenzhen BCTC Technology Co., Ltd.
Address :	No.101, Yousong Road, Longhua New District, Shenzhen, China
Test Date:	Mar. 21– Mar. 28, 2016
Date of Report :	Mar. 29, 2016
Report No.:	BCTC-160101150E

VERIFICATION OF COMPLIANCE

Report No.: BCTC-160101150E

Applicant's name	Hunan Keyshare Information Technology Co., Ltd					
Address:	Room 707-712,7/F,Headquarters,Changsha CEC					
	Software Park,No.39 Jianshan Road,High-Tech Industrial					
	Eatate, Yuelu District, Changsha, Hunan, P.R.China					
Manufacture's Name:	Hunan Keyshare Information Technology Co., Ltd					
Address:	oom 707-712,7/F,Headquarters,Changsha CEC					
	Software Park,No.39 Jianshan Road,High-Tech Industrial					
	Eatate, Yuelu District, Changsha, Hunan, P.R.China					
Product description						
Product name:	Drones/Quadcopter/UAV (Unmanned Aerial Vehicle)					
Trademark:	Keyshare Keyshare					
Model Name:	GLINT 2.0					
FCC Part15.407						
Test Standards:	ANSI C63.10-2013					
equipment under test (EUT) is	has been tested by BCTC, and the test results show that the s in compliance with the FCC requirements. And it is sample identified in the report.					
·	duced except in full, without the written approval of BCTC, d or revised by BCTC, personal only, and shall be noted in					
Test Result	: Pass					
Testing Engineer :	Frie Yang					
	(Eric Yang)					
Technical Manager :	Sophie Lu					
	(Sophia Lee)					
Authorized Signatory	Conson . 2 hay APPROVED S					

(Carson. Zhang)

TABLE OF CONTENTS

Test R	eport Declaration	Page
1. TE	ST SUMMARY	4
2. GE	ENERAL PRODUCT INFORMATION	5
2.1. 2.2. 2.3. 2.4.	Product Function Description of Device (EUT) Test Supporting System Independent Operation Modes	5
2.5.	Test Sites	
2.6.	List of Test and Measurement Instruments	
3. TE	ST SET-UP AND OPERATION MODES	8
3.1.	Principle of Configuration Selection	
3.2.	Block Diagram of Test Set-up	
3.3.	Test Operation Mode and Test Software	
3.4. 3.5.	Special Accessories and Auxiliary Equipment Countermeasures to Achieve EMC Compliance	
	AISSION TEST RESULTS	
4.1. 4.2.	Conducted Emission MeasurementRadiated Emission Measurement	
	AND EDGE COMPLIANCE TEST	
5.1. 5.2.	Limits Test setup	
5.2. 5.3.	Test Data	
	BB AND 99% BANDWIDTH TEST	
6.1.	Measurement Procedure	
_	JTPUT POWER TEST	
7.1. 7.2.	Limits Test setup	
7.2. 7.3.	Test result	
	EAK POWER SPECTRAL DENSITY TEST	
8.1.	Limits	
8.2.	Test setup	
8.3.	Test data	
9. AN	ITENNA REQUIREMENT	
9.1.		
9.2. 0.		
10.	PHOTOGRAPHS OF TEST SET-UP	31
	PHOTOGRAPHS OF THE EUT	

1.TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emissions	15.207	N/A
Radiated Emissions	15.407(b), 15.209	PASS
26dB bandwidth and 99%dB Bandwidth	15.407 (a)	PASS
Power density	15.407 (a)	PASS
Maximum Peak Output Power	15.407 (a)	PASS
Emissions from out of band	15.407 (b)	PASS
Antenna Requirement	15.203	PASS

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	Drones/Quadcopter/UAV (Unmanned Aerial Vehicle)
Model No.:	GLINT 2.0
Operation Frequency:	5745-5825 MHz(5G 802.11a/n(HT20))
Channel numbers:	5channels for 5G 802.11a/n(HT20)
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)
Data and 1/1555 200 444)	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps,
Data speed (IEEE 802.11g):	36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2dBi for (declare by Applicant)
Battery:	DC 14.8V 5300mA

Ant.	Brand	Model Name	Antenna Type	Gain (dBi)	Directional Gain
1	N/A	SPEH00FP-00-00-A	Internal Antenna	2.0	E 04 dD:
2	N/A	SPEH00FP-00-00-A	Internal Antenna	2.0	5.01dBi

NOTE: All data is two with antenna at transmit simultaneously test. Directional Gain=2dBi+10log(2)=5.01dBi

2.3. Test Supporting System

Personal computer

2.4. Independent Operation Modes

The basic operation modes are:

For 802.11a/n(HT20):

1.lowest channel : 5745MHz (Channel 149)
 2. middle channel : 5785MHz (Channel 157)
 3. highest channel : 5825MHz (Channel 165)

Note: for conducted emission test, we pretest all mode, the worst mode was 802.11a channel 36.

for radiated emissions test, we pretest all mode, the worst mode was 802.11a.

The worst mode's data was recording and show in the test report.

2.5. Test Sites

2.5.1. Test Facilities

Lab Qualifications : FCC Registration No.:187086

2.6. List of Test and Measurement Instruments

Conduction test equipment

	Conduction tool oquipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	1166.5950K0 3-101165-ha	2015.08.25	2016.08.24	1 year
2	LISN	R&S	NSLK81 26	812646 6	2015.08.25	2016.08.24	1 year
3	LISN	R&S	NSLK81 26	812648 7	2015.08.24	2016.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.06.07	2016.06.06	1 year
5	RF cables	R&S	R204	R20X	2015.06.07	2016.06.06	1 year

Radiation test, Band-edge test and 6db bandwith test equipment

	Radiation test, band-edge test and odb bandwith test equipment						
Item	Kind of equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2015.08.25	2016.08.24	1 year
2	Test Receiver	R&S	ESPI	101318	2015.08.25	2016.08.24	1 year
3	Bilog Antenna	R&S	VULB 9160	VULB91 68-438	2015.08.25	2016.08.24	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.06.07	2016.06.06	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.06.07	2016.06.06	1 year
6	Horn Antenna	SCHWARZBEC K	9120D	9120D-1275	2015.08.25	2016.08.24	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	R&S	BBV9743	9743-01 9	2015.08.25	2016.08.24	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.06.08	2016.06.07	1 year
10	RF cables	R&S	N/A	N/A	2015.07.06	2016.07.05	1 year
11	Power Sensor	R&S	URV5-Z4	0395.1619.0 5	2015.07.06	2016.07.05	1 year
12	Power Meter	R&S	NRVS	100696	2015.07.06	2016.07.05	1 year
13	Amplifier	SCHWARZBEC K	BBV9718	9718-270	2015.08.25	2016.08.24	1 year
14	Spectrum Analyzer	Agilent	N9020A	MY53217432	2015.07.06	2016.07.05	1 year

3. TEST SET-UP AND OPERATION MODES

3.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

Report No.: BCTC-160101150E

3.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

EUT

(EUT: Drones/Quadcopter/UAV (Unmanned Aerial Vehicle))

3.3. Test Operation Mode and Test Software

Test Software: MKU

3.4. Special Accessories and Auxiliary Equipment

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Drones/Quadcopter/UA\ (Unmanned Aerial Vehicle)	Keyshare	GLINT 2.0	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

3.5. Countermeasures to Achieve EMC Compliance

None.

4. EMISSION TEST RESULTS

4.1. Conducted Emission Measurement

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class B (dE	Standard	
PREQUENCT (IVIHZ)	Quasi -peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

4.1.1. TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.2. DEVIATION FROM TEST STANDARD

No deviation

4.1.3. TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.4. EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest all adapter's emission, only the adapter 1's data was worst and the data was recording in the report.

The data only show the worst mode.

If peak level comply with Quasi-Peak limit, then the Quasi-Peak level is deemed to comply with Quasi-Peak limit.

NOTE: This EUT is powered by the battery only, this test item is not applicable.

4.2. Radiated Emission Measurement

4.2.1. Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74 54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2.2. TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 and 1.5 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
 - The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3. DEVIATION FROM TEST STANDARD

No deviation

4.2.4. TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5. EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

We pretest all adapter's emission, only the adapter 1's data was worst and the data was recording in the report.
The data only show the worst mode.

Radiated Spurious Emission (Below 30MHz)

	Drones/Quadcopter/UAV (Unmanned Aerial Vehicle)	Model Name :	GLINT 2.0
Temperature:	24 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Polarization :	
Test Voltage :	DC 14.8V from Battery		
Test Mode :	TX		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Radiated Spurious Emission (Between 30MHz – 1GHz)

	Drones/Quadcopter/UAV (Unmanned Aerial Vehicle)	Model Name :	GLINT 2.0
Temperature :	24 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Horizontal
Test Voltage :	DC 14.8V from Battery		
Test Mode : (Worst)	Link Mode		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atom Trima
(MHz)	(dBµV)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Detector Type
38.7518	37.68	-8.79	28.89	40.00	-11.11	QP
197.8926	51.30	-16.07	35.23	43.50	-8.27	QP
226.0994	56.93	-15.29	41.64	46.00	-4.36	QP
244.2321	56.16	-14.37	41.79	46.00	-4.21	QP
324.4561	45.29	-11.95	33.34	46.00	-12.66	QP
400.4319	40.54	-10.17	30.37	46.00	-15.63	QP

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Pretest all mode, the data only show the worst mode.

	Drones/Quadcopter/UAV (Unmanned Aerial Vehicle)	Model Name :	GLINT 2.0
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 14.8V from Battery		
Test Mode : (Worst)	Link Mode		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Taura
(MHz)	(dBµV)	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Detector Type
33.5624	45.91	-8.42	37.49	40.00	-2.51	QP
38.2120	44.97	-8.76	36.21	40.00	-3.79	QP
66.7325	47.03	-13.22	33.81	40.00	-6.19	QP
171.9946	49.19	-13.64	35.55	43.50	-7.95	QP
244.2321	57.34	-14.37	42.97	46.00	-3.03	QP
400.4319	33.24	-10.17	23.07	46.00	-22.93	QP

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Pretest all mode, the data only show the worst mode.

Radiated Spurious Emission (1GHz to 5th harmonics) 802.11a

	Freq.	Receiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Result
	(MHz)	(dBµV)	(PK/QP/Ave)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	
	11490.00	49.59	PK	Н	17.69	67.28	74.00	Pass
Lower Channel	11490.00	29.35	Ave	Н	17.69	47.04	54.00	Pass
	17235.00	46.33	PK	Н	22.95	69.28	74.00	Pass
5745MHz	17235.00	25.24	Ave	Н	22.95	48.19	54.00	Pass
	11490.00	48.97	PK	V	17.69	66.66	74.00	Pass
	11490.00	28.86	Ave	V	17.69	46.55	54.00	Pass
	17235.00	46.72	PK	V	22.95	69.67	74.00	Pass
	17235.00	26.85	Ave	V	22.95	49.80	54.00	Pass
	11570.00	49.32	PK	Н	17.75	67.07	74.00	Pass
	11570.00	29.54	Ave	Н	17.75	47.29	54.00	Pass
	17355.00	46.36	PK	Н	23.43	69.79	74.00	Pass
Middle Channel	17355.00	29.47	Ave	Н	23.43	52.90	54.00	Pass
5785MHz	11570.00	48.96	PK	V	17.75	66.71	74.00	Pass
	11570.00	29.74	Ave	V	17.75	47.49	54.00	Pass
	17355.00	48.56	PK	V	23.43	71.99	74.00	Pass
	17355.00	27.84	Ave	V	23.43	51.27	54.00	Pass
	11650.00	48.98	PK	Н	17.81	66.79	74.00	Pass
	11650.00	28.74	Ave	Н	17.81	46.55	54.00	Pass
	17475.00	46.42	PK	Н	23.9	70.32	74.00	Pass
Upper Channel	17475.00	26.75	Ave	Н	23.9	50.65	54.00	Pass
5825MHz	11650.00	49.11	PK	V	17.81	66.92	74.00	Pass
	11650.00	29.76	Ave	V	17.81	47.57	54.00	Pass
	17475.00	45.82	PK	V	23.9	69.72	74.00	Pass
	17475.00	25.61	Ave	V	23.9	49.51	54.00	Pass

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Emission Level - Limit

Other harmonics emissions are lower than 20dB below the allowable limit.

802.11n(HT20)

02.1111(1112)	Freq.	Receiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Result
	(MHz)	(dBµV)	(PK/QP/Ave)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	
	11490.00	49.55	PK	Н	17.69	67.24	74	Pass
Lower	11490.00	29.35	Ave	Η	17.69	47.04	54	Pass
Channel 5745MHz	17235.00	46.33	PK	Н	22.95	69.28	74	Pass
	17235.00 11490.00	25.24 48.97	Ave PK	H V	22.95 17.69	48.19 66.66	54 74	Pass Pass
	11490.00	28.86	Ave	V	17.69	46.55	54	Pass
	17235.00	46.72	PK	V	22.95	69.67	74	Pass
	17235.00	26.85	Ave	V	22.95	49.80	54	Pass
	11570.00	49.25	PK	Н	17.75	67.00	74	Pass
	11570.00	29.57	Ave	Н	17.75	47.32	54	Pass
	17355.00	46.39	PK	Н	23.43	69.82	74	Pass
Middle Channel	17355.00	29.38	Ave	Η	23.43	52.81	54	Pass
5785MHz	11570.00	48.79	PK	V	17.75	66.54	74	Pass
	11570.00	29.53	Ave	V	17.75	47.28	54	Pass
	17355.00	48.58	PK	V	23.43	72.01	74	Pass
	17355.00	27.82	Ave	٧	23.43	51.25	54	Pass
	11650.00	48.56	PK	Н	17.81	66.37	74	Pass
	11650.00	29.37	Ave	Н	17.81	47.18	54	Pass
Upper Channel 5825MHz	17475.00	44.41	PK	Н	23.9	68.31	74	Pass
	17475.00	26.48	Ave	Н	23.9	50.38	54	Pass
	11650.00	49.61	PK	V	17.81	67.42	74	Pass
	11650.00	29.79	Ave	V	17.81	47.60	54	Pass
	17475.00	45.57	PK	V	23.9	69.47	74	Pass
	17475.00	25.39	Ave	V	23.9	49.29	54	Pass

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission Level = Meter Reading + Factor

Margin = Emission Level - Limit

Other harmonics emissions are lower than 20dB below the allowable limit.

5. BAND EDGE COMPLIANCE TEST

5.1. Limits

Band 5.725-5.825GHz:

FCC: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz.

5.2. Test setup

Test method: FCC KDB 789033 G)& Parts 15.407(b)(4) & 15.209(a)

Same as Clause 4.2.

5.3. Test Data

Please see data as below:

Note: we pretest horizontal and vertical, the worst was horizontal and show in the report.

Modulation	Test Frequency (MHz)	Max Level (dBµV/m)	EIRP[dBm]	Limit[dBm]	Result
902 110	5745 50.22		-44.98	-27.00	Pass
802.11a	5825	50.67	-44.53	-27.00	Pass
000 44×/UT00)	5745	50.78	-44.42	-27.00	Pass
802.11n(HT20)	5825	50.66	-44.54	-27.00	Pass

Remark: 1. According to KDB 789033 D02 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows: EIRP[dBm] = $E[dB\mu V/m] - 95.2$

6.6DB AND 99% BANDWIDTH TEST

6.1. Measurement Procedure

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum power control level, as defined in KDB 789033, at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26 dB bandwidth.

The 26 dB bandwidth is used to determine the conducted power limits.

The minimum of 6dB Bandwidth measurement is 0.5 MHz for U-NII-3

	Channel number	Frequency (MHz)	6dB Bar (Ml		99% Ban (MF		Limit (MHz)
			Ant A	Ant B	Ant A	Ant B	
	149	5745	16.34	16.31	16.58	16.52	>0.5
802.11a	157	5785	16.35	16.35	16.58	16.28	>0.5
	165	5825	16.05	15.95	16.42	16.21	>0.5
	149	5745	17.62	17.60	17.75	17.65	>0.5
802.11n (HT20)	157	5785	17.76	17.55	17.73	17.69	>0.5
	165	5825	17.64	17.34	17.63	17.55	>0.5

Note: The data only show the antenna A plots.

802.11a 5745MHz

802.11a 5785MHz

802.11a 5825MHz

802.11n(HT20) 5745MHz

Shenzhen BCTC Technology Co., Ltd.

802.11n(HT20) 5785MHz

802.11n(HT20) 5825MHz

7. OUTPUT POWER TEST

7.1. Limits

Band 5.725-5.825GHz:

FCC: For the band 5.725-5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: BCTC-160101150E

7.2. Test setup

- The maximum average conducted output power can be measured using Method PM-G (Measurement using a gated RF average power meter):
- 2. Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- a. The Transmitter output (antenna port) was connected to the power meter.
- b. Turn on the EUT and power meter and then record the power value.
- c. Repeat above procedures on all channels needed to be tested.

7.3. Test result

Frequency (MHz)	Average Output Power(dBm)		Average Output Power(mW)		Total Power	FCC Limit (dBm)	Result	
		Ant A	Ant B	Ant A	Ant B	(dBm)	, ,	
	5745	9.75	9.45	9.44	8.81	12.62	30.0	Pass
802.11a	5785	9.28	9.00	8.47	7.94	12.17	30.0	Pass
	5825	9.26	9.15	8.43	8.22	12.23	30.0	Pass
	5745	8.56	8.42	7.18	6.95	11.52	30.0	Pass
802.11n (HT20)	5785	8.25	8.05	6.68	6.38	11.17	30.0	Pass
	5825	8.65	8.36	7.33	6.85	11.52	30.0	Pass

8. PEAK POWER SPECTRAL DENSITY TEST

8.1. Limits

Band 5.725-5.825GHz:

In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

8.2. Test setup

Methods refer to FCC KDB 789033

- 1) Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...".
- 2) Use the peak search function on the instrument to find the peak of the spectrum.
- 3) The result is the PPSD.
- 4) The above procedures make use of 1 MHz resolution bandwidth to satisfy the 1 MHz Measurement bandwidth specified in the 15.407(a)(5). That rule section also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth

8.3. Test data

Test data as below

	Frequency (MHz)	POWER SPECTRAL DENSITY (dBm)		FCC Limit (dBm)	Result
		Ant A	Ant B		
	5745	1.300	1.256	30.0	Pass
802.11a	5785	2.212	1.985	30.0	Pass
	5825	1.390	1.210	30.0	Pass
	5745	-0.965	-1.265	30.0	Pass
802.11n (HT20)	5785	-1.617	-2.018	30.0	Pass
(*** = 0)	5825	-0.850	-1.867	30.0	Pass

Note: The data only show the antenna A plots.

802.11a 5745MHz

802.11a 5785MHz

802.11a 5825MHz

802.11n (HT20) 5745MHz

802.11n (HT20) 5785MHz

802.11n (HT20) 5825MHz

9. ANTENNA REQUIREMENT

9.1. STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Report No.: BCTC-160101150E

9.2. 0.1 EUT ANTENNA

The EUT antenna is Internal antenna. It complies with the standard requirement.

10. PHOTOGRAPHS OF TEST SET-UP

11. PHOTOGRAPHS OF THE EUT

----END-----