

Department of Electronics & Telecommunication

CLASS: S.E. E &TC SUBJECT: DC

EXPT. NO.: 6 DATE: 05/12/2020

ROLL NO:22119

: Study of Counter ICs (74LS90/74LS93) TITLE

PRE-REQUISTITES

FOR EXPT. Definition of Asynchronous Counter, Implementation

and operation of Asynchronous Counter using

74LS90/74LS93 (Refer Data-Sheet)

OBJECTIVE

1. Design and Implement MOD-2 / MOD-5 / MOD-10 / MOD-N / MOD-NN using IC-74LS90. Draw the Timing Diagram.

2. Design and Implement MOD-2 / MOD-8 / MOD-16 / MOD-N / MOD-NN using IC-74LS93. Draw the Timing Diagram.

APPARATUS

Digital-Board, GP-4Patch-Cords, IC-74LS32,IC-74LS00 /

IC-74LS04/IC-74LS08, IC-74LS90,74LS93

THEORY

IC 74LS90 is 4-bit Ripple MOD-10 (Decade) Counter. Internal Structures of IC-74LS90 contained 4 MS-JK Flip-Flop.IC-74LS90 contained MOD-2 and MOD-5.IC-74HC90 contains two set & reset pin (R0 (1) & R0 (2) are reset pins which are active high and R9 (1) and R9 (2) are set pins which are active high). IC-74LS90 output will set to 1001 when R9 (1) and R9(2) are given with VCC logic, And IC-74LS90 output will reset when R0(1) and R0(2) are given with VCC logic. To implement Decade counter cascade MOD-2 and MOD-5 Counter available in IC-7490. Connect set & reset pins to ground.

IC-74LS93 is a 4-bit ripple Up-Counter (4-bit binary Up-Counter), IC-74LS93 has MOD-2 and MOD-8 counter. To implement MOD-16, make a cascading of MOD-2 and MOD8.

PIN Diagram:

PROCEDURE:

- 1. Make the connections as per the Logic circuit of MOD-2 / MOD-5 / MOD-10 / MOD-N /MOD-NN using IC74LS90 and verify its state Table.
- 2. Make the connections as per the Logic circuit of MOD-2 / MOD-8 / MOD-16 /MOD-N / MOD-NN using IC74LS93 and verify its state Table.

Logic Diagram: (MOD-2 /MOD-5 and MOD-10 using IC-74LS90)

MOD 20 & MOD 50:

MOD: 100

MOD 96 & MOD 78:

Design of MOD-7 Ripple Counter:

OUTI	PUT	RESET			
Q _D	Qc	Qв	QA	LOGIC	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	1	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

K-Map for RESET Logic

Logic Diagram: (MOD-N Counter using IC-74LS90)

Logic Diagram: (MOD-2 /MOD-8 and MOD-16 using IC-74LS93) XLA1 7493N Param Chordiya **ROLL NO: 22119** Grapher View File Edit View Graph Trace Cursor Legend Tools Help
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
Logic Analyzer-XLA1 | MOD-2 7493 Time (s) 3.564m 230.780μ 1.898m 5.231m 6.898m 8.565m 10.232m 11.899m 13.566m 15.232m 16.899m CLOCK Term 5 Term 8 QA Term 10 Term 12 Term 14 Term 16 Clock_Qu Clock_Int Trigger Line

Design of MOD-N using IC-74LS93

OUTI	PUT	RESET			
Q _D	Q c	Qв	QΑ	LOGIC	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	0	
0	1	1	0	0	
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	1	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	1	

K-Map for RESET Logic

Q_DQ_Q	. 00	01	11	10				
OO	0	0	1	0				
01	0	0	1	1				
11	0	0	1	1				
10	0	0	1	1				
Y(Reset Logic) = Q _D Q _c + Q _D Q _A + Q _D Q _B								

Logic Diagram: (MOD-9 using IC-74LS93)

Logic Diagram: (MOD-24 using IC-74LS93)

Logic Diagram: (MOD-42 using IC-74LS93)

CONCLUSION:

Designed and Implemented MOD-2, MOD-5, MOD-10 using IC-74LS90. Drawn the Timing Diagram.

Designed and Implemented MOD-N - MOD-7 using IC-74LS90

Designed and Implemented MOD-NN - MOD-20, MOD-50, MOD-100, MOD-96, MOD-78 using IC-74LS90

Design and Implement MOD-2, MOD-8, MOD-16 using IC-74LS93. Drawn the Timing Diagram.

Design and Implement MOD-N - MOD-9 using IC-74LS93.

Designed and Implemented MOD-NN - MOD-24, MOD-42 using IC-74LS93

REFFRENCE:

1): R.P. Jain, "Modern digital electronics", 3rd edition

2): A. Anand Kumar, "Fundamentals of digital circuits" 1st edition

Subject teacher Sign with Date

Remark