2.3 行列式的计算

本节的前三个小节讲的是**行列式的一般计算方法**:按行(列)展开法、化为三角行列式的方法、先化简再展开的方法。

本节后四个小节讲的是<mark>具有特殊结构的行列式的特殊计算方法</mark>,内容包括四种特殊类型的行列式: 范德蒙德行列式、各行(列)元素之和相等的行列式、箭形行列式、三对角行列式。

通过看课外书和做题还要进一步学习一些具有特殊结构的行列式的特殊计算方法。遇到特殊结构的行列式时,要把它记住。

计算行列式时,首先要观察所给行列式结构上具有什么特点,然后利用这些特点对 行列式进行化简、计算.

2.3.1 按行(列)展开法

该方法适合某些行(列)中零元素较多的行列式.。

注:一行(或一列)中0的个数超过一半或接近一半时,就可看成0很多。

例 2-2 关于上(下)三角行列式,可通过按行(或按列)展开直接算出来。

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}^{\frac{1}{2}} = a_{11} \cdot (-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

因为下三角行列式的转置是上三角行列式,所以有结论:上三角、下三角及对角行列式都等于其对角元的乘积.

 $= a_{11}a_{22}\cdots a_{nn}$

知识拓展:下面讨论"按副对角线来看的下三角、上三角及对角行列式"。

$$=(-1)^{n-1}(-1)^{n-2}\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 2 & 2 & \cdots & 2 & 2 \\ 0 & 0 & 0 & \cdots & 0 & n \\ 0 & 0 & 0 & \cdots & n-1 & n-1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 3 & \cdots & 3 & 3 \end{vmatrix}$$
 这一步的做法是: 把最后一行先换到倒数第三行,依次做下去,最后换到第三行。 总共对调了 $n-2$ 次

= · · · · ·

$$= (-1)^{(n-1)+(n-2)+\cdots+1} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 2 & 2 & \cdots & 2 & 2 \\ 0 & 0 & 3 & \cdots & 3 & 3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 & n-1 \\ 0 & 0 & 0 & 0 & 0 & n \end{vmatrix}$$

$$= (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 2 & 2 & \cdots & 2 & 2 \\ 0 & 0 & 3 & \cdots & 3 & 3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 & n-1 \\ 0 & 0 & 0 & 0 & 0 & n \end{vmatrix}$$

注: (1) 要记住公式中的符号 $(-1)^{\frac{n(n-1)}{2}}$. (2)通过上面的做法,将按副对角线看的 下三角行列式转换成了按主对角线看的 上三角行列式。

 $0 \ 0 \ \cdots \ n-1 \ n-1 \ (3)$ 最后这个行列式相当于把开头那个 n | 行列式进行了上下翻转。

同理可得:

$$egin{bmatrix} n & n & \cdots & n & n \\ n-1 & n-1 & \cdots & n-1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 2 & 2 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ \end{bmatrix} = (-1)^{\frac{n(n-1)}{2}} egin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 2 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ n-1 & n-1 & \cdots & n-1 & 0 \\ n & n & \cdots & n & n \\ \end{bmatrix}$$
将按副对角线看的上三
角形转换成了按主对角线
看的下三角形。

$$\begin{vmatrix} 0 & 0 & \cdots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{22} & \cdots & 0 \\ a_{11} & 0 & \cdots & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

注: 如果知道阶数 n 的奇偶性,也可将第1行与最后一行对调,将第2行与倒数第二 行对调……

例 2-3 计算n 阶行列式

请注意a,b的位置, a在主对角线上

注:对于该行列式,按第一列展开或按最后一行展开,比按其他行或列展开简单。

请注意*a*,*b*的位置,*a*在副对角线上。对于这个行列式,按照第一行(或第一列)展开比较简单。

$$\begin{vmatrix} 0 & 0 & \cdots & 0 & b & a \\ 0 & 0 & \cdots & b & a & 0 \\ 0 & 0 & \cdots & a & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ b & a & \cdots & 0 & 0 & 0 \\ a & 0 & \cdots & 0 & 0 & b \end{vmatrix}$$

请注意*a*,*b*的位置,*a*在副对角线上。 对于这个行列式,按照最后一行 (或最后一列)展开比较简单。

2.3.2 化为三角行列式

这种方法最常用,其做法是:通过初等变换将所给的行列式化成上(下)三角行列式进行计算。要注意:

- (1) 直接对行列式进行化简, 化简过程要用等号表示。
- (2) 计算行列式时,行变换、列变换都可用。
- (3) 做对调变换时,要想着添加负号。

2.3.3 先化简再展开

该方法的做法是:选取行列式的一行(或一列),利用倍加变换将该行(列)化为只剩下一个数不为零的情形,再按该行(列)展开。

简单地说就是: 化简展开, 再化简再展开, 重复做下去。

注意: 要选择数比较简单的行或列进行化简。

2.3.4 范德蒙德行列式

这一部分重点掌握范德蒙德行列式的特点和结论。

例 2-6
$$n$$
 阶方阵 $\mathbf{V}_n = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}$ 叫做范德蒙德(Vandermonde)矩

阵, $\det(\mathbf{V}_n)$ 称为范德蒙德行列式. 证明: $\det(\mathbf{V}_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$,

其中, "Ⅱ"为连乘符号.

注: 范德蒙德行列式的结果具体写出来是:

证明 用数学归纳法.

当 n=2 时,
$$\det(\mathbf{V}_2) = \begin{vmatrix} 1 & 1 \\ x_1 & x_2 \end{vmatrix} = x_2 - x_1 = \prod_{1 \le i < j \le 2} (x_j - x_i)$$
, 结论成立.

假设结论对 n-1 阶范德蒙德行列式成立,下面对 n 阶的情况加以证明.

从 $det(V_n)$ 的最后一行开始,每行减去上一行的 x_1 倍,得

$$\det(\mathbf{V}_n) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ 0 & x_2(x_2 - x_1) & x_3(x_3 - x_1) & \cdots & x_n(x_n - x_1) \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & x_2^{n-2}(x_2 - x_1) & x_3^{n-2}(x_3 - x_1) & \cdots & x_n^{n-2}(x_n - x_1) \end{vmatrix}$$

$$\frac{1}{2} \begin{bmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ x_2(x_2 - x_1) & x_3(x_3 - x_1) & \cdots & x_n(x_n - x_1) \\ \vdots & & \vdots & & \vdots \\ x_2^{n-2}(x_2 - x_1) & x_3^{n-2}(x_3 - x_1) & \cdots & x_n^{n-2}(x_n - x_1) \end{vmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{vmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{vmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{bmatrix}$$

通过转置可得到范德蒙德行列式的另一种形式:

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \vdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

2.3.5 各行(列)元素之和相等的行列式

注:该行列式的对角元都为a,非对角元都为b.

解法 1
$$\begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & & \vdots \\ b & b & \cdots & a \end{vmatrix}$$
 $\stackrel{\hat{g}_{2}\widehat{g}_{n}\widehat{$

第2至第
$$n$$
行都减第1行
= $a + (n-1)b$ b \cdots b 0 $a-b$ \cdots 0 \vdots \vdots \vdots \vdots 0 0 \cdots $a-b$ $(这是一个上三角行列式)$

$$= [a + (n-1)b](a-b)^{n-1}.$$

解法 2
$$\begin{vmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & & \vdots \\ b & b & \cdots & a \end{vmatrix}$$
 第2至第 n 行都加到第1行
$$b \qquad a \qquad \cdots \qquad b$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b \qquad b \qquad \cdots \qquad a$$

$$= [a + (n-1)b](a-b)^{n-1}.$$

$$egin{bmatrix} 1+s & 1 & 1 & \cdots & 1 \ 2 & 2+s & 2 & \cdots & 2 \ 3 & 3 & 3+s & \cdots & 3 \ dots & dots & dots & dots & dots \ n & n & n & \cdots & n+s \ \end{bmatrix}$$
 这个行列式的各列元素之和都相等,可按照例2-7的解法2 做。

解:
$$\begin{vmatrix} 0 & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{vmatrix} = \begin{vmatrix} a + (-a) & b + 0 & b + 0 \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{vmatrix}$$
(第一行的构造是非常重要的一步)

2.3.6 箭形行列式

例 2-8 计算箭形行列式

$$\begin{vmatrix} x & b_1 & b_2 & \cdots & b_n \\ c_1 & a_1 & 0 & \cdots & 0 \\ c_2 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & 0 & 0 & \cdots & a_n \end{vmatrix}, a_i \neq 0 \ (i = 1, 2, \dots, n).$$

解法1: 做倍加列变换,将第1列下方全化为0.

将第 2 列的 $-\frac{c_1}{a_1}$ 倍,第 3 列的 $-\frac{c_2}{a_2}$ 倍, ……,第 n+1 列的 $-\frac{c_n}{a_n}$ 都加到第 1 列,得

原式 =
$$\begin{vmatrix} x - \sum_{i=1}^{n} \frac{b_{i}c_{i}}{a_{i}} & b_{1} & b_{2} & \cdots & b_{n} \\ 0 & a_{1} & 0 & \cdots & 0 \\ 0 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{n} \end{vmatrix}$$
 (这是一个上三角行列式)

$$= a_1 a_2 \cdots a_n (x - \sum_{i=1}^n \frac{b_i c_i}{a_i}).$$

解法 2: 做倍加行变换,将第1行后面全化为0。

将第 2 行的 $-\frac{b_1}{a_1}$ 倍,第 3 行的 $-\frac{b_2}{a_2}$ 倍, ……,第 n+1 行的 $-\frac{b_n}{a_n}$ 都加到第 1 行,得

原式=
$$\begin{vmatrix} x - \sum_{i=1}^{n} \frac{b_{i}c_{i}}{a_{i}} & 0 & 0 & \cdots & 0 \\ c_{1} & a_{1} & 0 & \cdots & 0 \\ c_{2} & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n} & 0 & 0 & \cdots & a_{n} \end{vmatrix}$$
 (这是一个上三角行列式)

$$= a_1 a_2 \cdots a_n (x - \sum_{i=1}^n \frac{b_i c_i}{a_i}).$$

注意,有很多行列式可通过初等变换化成箭形行列式。例如:

$$\begin{vmatrix} k_1+1 & 1 & 1 & 1 \\ 2 & k_2+2 & 2 & 2 \\ 3 & 3 & k_3+3 & 3 \\ 4 & 4 & 4 & k_4+4 \end{vmatrix} \begin{vmatrix} r_2-2r_1 \\ r_3-3r_1 \\ -2k_1 & k_2 & 0 & 0 \\ -3k_1 & 0 & k_3 & 0 \\ -4k_1 & 0 & 0 & k_4 \end{vmatrix}$$

*2.3.7 递推法及三对角行列式

例 2-9 计算三对角行列式
$$D_n = \begin{bmatrix} 5 & 2 & 0 & \cdots & 0 & 0 \\ 3 & 5 & 2 & \cdots & 0 & 0 \\ 0 & 3 & 5 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 5 & 2 \\ 0 & 0 & 0 & \cdots & 3 & 5 \end{bmatrix}$$

将该行列式按第1行展开,得

$$D_n = 5D_{n-1} - 2\begin{vmatrix} 3 & 2 & 0 & \cdots & 0 & 0 \\ 0 & 5 & 2 & \cdots & 0 & 0 \\ 0 & 3 & 5 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 5 & 2 \\ 0 & 0 & 0 & \cdots & 3 & 5 \end{vmatrix}$$
将这个行列式
再按第一列展开

求得递推关系式 $D_n = 5D_{n-1} - 6D_{n-2}$.

下面要做的事情是: 怎样通过递推公式 $D_n = 5D_{n-1} - 6D_{n-2}$,求出 D_n .

【注意,所有形如 $D_n = 5D_{n-1} - 6D_{n-2}$ 的递推公式都可转换成 $D_n - kD_{n-1} = l(D_{n-1} - kD_{n-2})$ 的形式。】

下面设 $D_n = 5D_{n-1} - 6D_{n-2}$ 可转换成 $D_n - kD_{n-1} = l(D_{n-1} - kD_{n-2})$,比较这两个式子的系

数可得
$$\begin{cases} k+l=5 \\ kl=6 \end{cases}$$
,解得 $\begin{cases} k=2 \\ l=3 \end{cases}$ 或 $\begin{cases} k=3 \\ l=2 \end{cases}$.

取
$$k=2, l=3$$
,可得 $D_n-2D_{n-1}=3(D_{n-1}-2D_{n-2})=3^2(D_{n-2}-2D_{n-3})=\cdots=3^{n-2}(D_2-2D_1)=3^n$

其中
$$D_2 = \begin{vmatrix} 5 & 2 \\ 3 & 5 \end{vmatrix} = 19, D_1 = 5$$

通过上面的讨论,将递推公式 $D_n = 5D_{n-1} - 6D_{n-2}$ 转换成了 $D_n - 2D_{n-1} = 3^n$.

按照上面的做法,取k=3,l=2,又可得 $D_n-3D_{n-1}=2^n$.

把
$$\begin{cases} D_n - 2D_{n-1} = 3^n \\ D_n - 3D_{n-1} = 2^n \end{cases}$$
看作一个方程组,消去 D_{n-1} ,求得 $D_n = 3^{n+1} - 2^{n+1}$.

例 (选学) 计算行列式
$$D_n = \begin{bmatrix} 6 & 9 & 0 & \cdots & 0 & 0 \\ 1 & 6 & 9 & \cdots & 0 & 0 \\ 0 & 1 & 6 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 6 & 9 \\ 0 & 0 & 0 & \cdots & 1 & 6 \end{bmatrix}$$

解 将该行列式按第1行展开,得

$$D_n = 6D_{n-1} - 9\begin{vmatrix} 1 & 9 & 0 & \cdots & 0 & 0 \\ 0 & 6 & 9 & \cdots & 0 & 0 \\ 0 & 1 & 6 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 6 & 9 \\ 0 & 0 & 0 & \cdots & 1 & 6 \end{vmatrix}$$
将这个行列式
再按第一列展开

求得递推关系式 $D_n = 6D_{n-1} - 9D_{n-2}$.

设
$$D_n = 6D_{n-1} - 9D_{n-2}$$
可以变形为 $D_n - kD_{n-1} = l(D_{n-1} - kD_{n-2})$,

则有
$$\begin{cases} k+l=6 \\ kl=9 \end{cases}$$
,解得 $\begin{cases} k=3 \\ l=3 \end{cases}$ (注: 在这个题中 $k=l$,与例 2-9 的情况不一样)

这时,得到
$$D_n - 3D_{n-1} = 3(D_{n-1} - 3D_{n-2}) = 3^2(D_{n-2} - 3D_{n-3}) = \dots = 3^{n-2}(D_2 - 3D_1) = 3^n$$
,

其中
$$D_2 = \begin{vmatrix} 6 & 9 \\ 1 & 6 \end{vmatrix} = 27, D_1 = 6$$

这时,将递推公式 $D_n = 6D_{n-1} - 9D_{n-2}$ 转换成 $D_n - 3D_{n-1} = 3^n$,即 $D_n = 3D_{n-1} + 3^n$.

$$D_{n} = 3D_{n-1} + 3^{n} = 3(3D_{n-2} + 3^{n-1}) + 3^{n}$$

$$= 3^{2}D_{n-2} + 2 \cdot 3^{n}$$

$$= \cdots$$

$$= 3^{n-1}D_{1} + (n-1) \cdot 3^{n}$$

$$= 3^{n-1} \cdot 6 + (n-1) \cdot 3^{n}$$

$$= (n+1) \cdot 3^{n}$$

接例 2-9 的做法可证明:
$$\begin{vmatrix} a & b & 0 & \cdots & 0 & 0 \\ c & a & b & \cdots & 0 & 0 \\ 0 & c & a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a & b \\ 0 & 0 & 0 & \cdots & c & a \end{vmatrix} = \begin{cases} (n+1)x_1^n & (x_1 = x_2) \\ \frac{x_1^{n+1} - x_2^{n+1}}{x_1 - x_2} & (x_1 \neq x_2) \end{cases},$$

其中, x_1 和 x_2 是方程 $x^2 - ax + bc = 0$ 的根. 注: x_1 和 x_2 就是上面例题中的k和l.