本讲内容

- 5.1 剪枝方法论与人员安排问题
- 5.2 旅行商问题
- 5.3 A*算法

A*算法的基本思想

- · A*算法与分支界限策略的比较
 - 分支界限策略是为了剪掉不能达到优化解 的分支
 - 分支界限策略的关键是"界限"
 - A*算法的核心是告诉我们在某些情况下, 我们得到的解一定是优化解,于是算法可以 停止
 - A*算法试图尽早地发现优化解
 - A*算法经常使用Best-first策略求解优化问题

- · A*算法关键—代价函数
 - 对于任意节点n
 - •g(n)=从树根到n的代价
 - h*(n)=从n到目标节点的优化路径的代价
 - •f*(n)=g(n)+h*(n)是节点n的代价
 - What is the value of $h^*(n)$?
 - 不知道!
 - 于是, f*(n)也不知道
 - 估计h*(n)
 - 使用任何方法去估计*h**(*n*), 用*h*(*n*)表示*h**(*n*) 的估计
 - h(n)≤h*(n)总为真
 - $f(n)=g(n)+h(n)\leq g(n)+h*(n)=f*(n)定义为n的$

例1. 最短路径问题:

-输入:

-输出:发现一个从S到T的最短路径

$$g(V_1)=2, \ g(V_2)=3, \ g(V_3)=4$$

$$h^*(V_1)=5, \ f^*(V_1)=g(V_1)+h^*(V_1)=7$$

- 估计h*(n)

- · 从V₁出发有两种可能: 代价为2, 代价为3, 最小者为2
- $h*(V_I)$ ≥2, 选择h(n)=2为 $h*(V_I)$ 的估计值
- $f(V_1)=g(v_1)+h(V_1)=4为V_1$ 的代价

- · A*算法本质—已经发现的解是优化解
 - 定理1. 使用Best-first策略搜索树,如果A*选择的节点是标节点,则该节点表示的解是优化解.
 - 证明. 令n是任意扩展到的节点, t是选中目标节点.

往证f(t)=g(t)是优化解代价.

- (1). A*算法使用Best-first策略, *f*(*t*)≤*f*(*n*).
- (2). A^* 算 法 使 用 $h(n) \le h^*(n)$ 估 计 规 则 , $f(t) \le f(n) \le f^*(n)$.
- (3). $\{f^*(n)\}$ 中必有一个为优化解的代价,令其为 $f^*(s)$. 我们有 $f(t) \leq f^*(s)$.
- (4). t 是 目 标 节 点 h(t)=0, 所 以 $f(t)=g(t)+h(t)=g(t)\leq f^*(s)$.
- (5). f(t)=g(t) 是 一 个 可 能 解 , $g(t)\geq f^*(s)$, $f(t)=g(t)=f^*(s)$.

A*算法的规则

- (1). 使用Best-first策略搜索树;
- (2). 节点n的代价函数为f(n)=g(n)+h(n), g(n)是从根到n的路径代价,h(n)是从n到某个目标节点的优化路径代价;
- (3). 对于所有 $n, h(n) \le h*(n)$;
- (4). 当选择到的节点是目标节点时, 算法停止, 返回一个优化解.

应用A*算法求解最短路径问题

• 问题的输入:

· A*算法的执行全过程

Step 1

$$g(V_1)=2$$
 $h(V_1)=min\{2,3\}=2$ $f(V_1)=2+2=4$
 $g(V_3)=4$ $h(V_3)=min\{2\}=2$ $f(V_3)=4+2=6$
 $g(V_2)=3$ $h(V_2)=min\{2,2\}=2$ $f(V_2)=2+2=5$

Step 2. 扩展V,

$$g(V_4)=2+2=4 h(V_4)=min{3,1}=1 f(V_4)=4+1=5$$

 $g(V_2)=2+3=5 h(V_2)=min{2, 2}=2 f(V_2)=5+2=7$

$$g(V_4)=3+2=5 h(V_4)=min{3,1}=1 f(V_4)=5+1=6$$

 $g(V_5)=3+2=5 h(V_5)=min{5}=5 f(V_5)=5+5=10$

$$g(V_5)=2+2+1=5$$
 $h(V_5)=min\{5\}=5$ $f(V_5)=5+5=10$
 $g(T)=2+2+3=7$ $h(T)=0$ $f(T)=7+0=7$

$$g(V_5)=4+2=6$$
 $h(V_5)=min\{5\}=5$ $f(V_5)=6+5=11$

$$g(V_5)=3+2+1=6 \ h(V_5)=min\{5\}=5 \ f(V_5)=6+5=11$$

 $g(T)=3+2+3=8 \ h(T)=0 \ f(T)=8+0=8$

因为T是目标节点,所以我们得到解: $S \rightarrow V_I \rightarrow V_A \rightarrow T$