ASSEGNMENT -Statistics

1. Plot a histogram

(10.13, 18, 22, 27, 32, 38, 40, 45, 51, 56, 57, 88, 90, 92, 94, 99 }

is already arranged in ascending order Ans:

Lets ray bins given = 5 hange as we can her = 0 to 100

Bins size = 100

Plotting histogram

3) A car believes that the percentage of citizens in city ABC that owns a vehicle is 60% or hers. A rates manager disagrees with this. He conducted a hypothesis testing purveying 250 residents 4 tound that 170 residents susponded yes to burning a car as state the hull hypotheis & alternate. b) At a 10%. significance level, is there enough eardened to support the idea that velocite owner in ABC (ity is 60% or less. N=170 Ans. Ho: Po = 60% M1 : Po 2 60%. $\hat{p} = \frac{\chi}{100} = \frac{170}{250} = \frac{17}{25} = 0.68$ 90= 1-0.60 = 0.4 Po = ? Acceptance Réjection area -1.64 +1.64 Z-Test with proportion 0(08 × 10xx 0.68 - 0.60 P-Po \$ 600 x 1000 1 10160X0.4 J Po 90 250×1000

So we reject the mell hypothesis citizens own a velicible is less than 60%.

4) What is the value of the 19 percentile? 2,2,3,4,5,5,5,6,7,8,8,8,8,8,9,9,10,11,11,12 100 x (20+1) => Value = $\frac{99}{100}$ x21 > 20.79 20 is our index 5) In left & right skewed data, what is the relationship blue mean, median I mode? 12 is 99 percentre value Draw the graph to represent the same Ans: Comider a data set 4,5,6,6,6,7,7,7,7,7,7,8,8,8,8,9,10 Plotting Wistogram This histogram represents symmetrical distribution 5 6 7 8 9 10 So in perfectly symmetrical distribution. the mean 4 the median are same Considering another distribution (4,5,6,6,7,7,7,7,7)

Other Assignment Questions

I) log normal distribution problem.

Let us consider incomes of people

20, 22, 25, 30,60

20,00,	of each incom	re		In (income a)
Taking log	In Cincome	1	In Lincometel	0.1327
income	2.9957	3.36	-0.269	0.0123
20	3-0910	3.36	04412	0.0017
25	3-2188	3.36	0.7343	0.5393
10	4.0943	1	2- 3.30	

Ñ = 2.99 + 3.09 + 3.21 + 3.40 + 4.09 ≥ 3.36

$$\sigma = \int \frac{\sum (\ln x - \hat{M})^{2}}{n-1}$$

$$\sigma = \frac{0.1327 + 0.07244 + 0.0199 + 0.0017 + 0.5393}{5-1}$$

=> 0.4376

Test statistics
$$\hat{P}_{1} = \frac{3000}{500} = .60$$

$$\hat{P}_{2}^{2} = \frac{2000}{500} = 0.40$$

$$\frac{2000}{0.50(0.50)} = \frac{2493}{2000} = 36.34$$

we reject the mull hypothesis