

Mapping and Valuing Ecosystem Services

Steve Polasky

Natural Capital Project

University of Minnesota

ECOSYSTEM SERVICES

Ecosystem services

- Ecosystems provide a wide array of goods and services of value to people (ecosystem services)
- The provision of ecosystem services often not factored into important decisions
- Distortions in decision-making damage the provision of ecosystem services making human society and the environment poorer

Natural Capital Project Goals

- Generate an accounting of the value for the full set of goods and services from ecosystems under alternative management scenarios
- Link this information to policy & management decisions incentives to provide ecosystem services

© 2008 ("mainstream ecosystem services") [[[o]

Conceptual Approach

Mapping and Valuing Ecosystem Services

 Focus in this session is on the first goal (mapping and valuing services)

 InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs): set of tools for mapping and valuing ecosystem services

- Map at each table showing
 - Range for two species:
 - red-legged frog
 - tiger salamander
 - Currently protected areas
- Rules for exercise on each table

Goals:

Protect

43 squares tiger salamander habitat

32 squares red-legged frog habitat

Rules:

- Edges are bad
- Connectivity is good
- All squares cost the same
- Minimize total costs

- Inclusion of ecosystem services and biodiversity conservation
 - Carbon
 - Water quality
- Transparency giving areas of high priority for carbon and water quality

- Re-do site selection:
 - Can you reach same biodiversity goals and get more ecosystem services?
 - Water quality and carbon are equally valuable
- How well did you do?

Natural Capital Project

Strategic Foci:

 Developing new science, methods and tools

2. Applying new approaches in demonstration sites

3. Magnifying our impact

Demonstration Sites

Test and apply tools in real-world conservation priorities

Integrated Valuation of Ecosystem Services and Tradeoffs

- Biodiversity and multiple services/sectors
- Driven by future scenarios
- Spatially explicit
- Biophysical and economic terms
- Flexible and transferable

InVEST Attributes:

Biodiversity and multiple services/sectors

ECOSYSTEM SERVICES

Multi-service, multi-sector

- Biodiversity
- Service modules
 - Carbon sequestration
 - Sediment retention
 - Water quality
 - Native pollination (for ag)
 - Commercial timber production
 - Flood control
 - Hydropower
 - Agricultural crop production
 - Irrigation water (for ag)
 - Non-timber forest products
 - Real estate value
 - Recreation and tourism

© 2008 Wat little and eaesthetic values

InVEST Attributes:

- Biodiversity and multiple services/sectors
- Driven by future scenarios (management choices and drivers)
- Spatially explicit

Choices

- Scenarios are maps
- Example:
 - Changes in land use or land cover resulting from management decisions
- Evaluate impact on:
 - Biodiversity
 - Carbon sequestration...

Scenario Drivers

- Management
 - Water release schedule
 - Fertilizer application rate
- Climate Change
 - Land cover change
 - Precipitation and temperature
- Population Growth
 - Land cover change
 - Increased demand

InVEST Attributes:

- Biodiversity and multiple services/sectors
- Driven by future scenarios
- Spatially explicit
- Biophysical and economic terms

Choices/Scenarios

Changes in Management, Climate, Population

Biophysical Models

Ecosystem process/biodiversity
Ecological production functions (services)

Economic Models

Valuation

InVEST Attributes:

- Biodiversity and multiple services/sectors
- Driven by future scenarios
- Spatially explicit
- Biophysical and economic terms
- Flexible and transferable

ECOSYSTEM SERVICES

Tiered Approach

Flexible Structure

ECOSYSTEM SERVICES

InVEST Applications

- Hawai'i
- Amazon Basin
- Oregon
- Tanzania
- California
- China
- Colombia
- Future Work

InVEST Applications

- Hawai'i
- Amazon Basin
- Oregon
- Tanzania
- California
- China
- Colombia
- Future Work

Hawai'i

- Kamehameha Schools:
 - Large private land owner
- Objective: Multi-objective land planning and asset management
 - Income
 - Agriculture
 - Cultural and educational values
 - Carbon sequestration
 - NTFP harvest
 - Biodiversity

ECOSYSTEM SERVICES Kamehameha Lands

Kawailoa Property

ECOSYSTEM SERVICES

Kawailoa Property

Current Landscape

Biofuels Future

Development Future

ECOSYSTEM SERVICES Sustainable Ag & Forestry Future

Scenarios

Biofuels Subdivision

The state of the stat

Sust. Agriculture & Forestry

Current Landscape

Future Carbon

Spatial Changes

General Changes

Lessons and Next Steps

 Kamehameha Schools soon to decide on use of InVEST for assessment of all land holdings.

 Plantation income can increase alongside increased service provision (but not always!)

Next steps:

Amazon Basin

- UK Department for International Development:
 - Development Donor
 - Granted £4.8 billion last year

 Special thanks to the Northern Tropical Andes Program and Silvia Benitez

Amazon Basin

- Objective: poverty alleviation from PES
 - NTFPs
 - Carbon Sequestration
 - Tourism
 - Biodiversity
 - Water Services
- Examine current conditions and change in 2020

Habitat Types

12.5 million km²

© 2008 Natural Capital Project

Habitat Quality

Food Supply

Lessons & Next Steps

- Protected areas largely ineffective at curbing losses
- Next: identify areas where poor people control ecosystem services, potential for PES
- Next: national level mapping in Ecuador and Colombia

Willamette Basin

 Modeling multiple ecosystem services and tradeoffs at landscape scales

- Special thanks to the Oregon Chapter of TNC and Cathy MacDonald
- Nelson, et al. 2008. Frontiers in Ecology and Environment. In Press.

© 2008 Natural Capital Project

Willamette Basin

Modeling multiple services under alternative scenarios

- Three scenarios of land use / land cover change for the Willamette Basin developed by the Pacific Northwest Ecosystem Research Consortium for 1990
 - -2050

Modeling multiple services under alternative scenarios

- Model outputs: service provision and biodiversity
 - Water quality
 - Storm peak mitigation
 - Soil conservation (sediment retention)
 - Climate stabilization (carbon sequestration)
 - Biodiversity (species conservation)
 - Market returns to landowners (agricultural crop production, timber harvest and housing values)

Willamette Basin

Land use by category for the three scenarios and the 1990 landscape

Outputs Through Time

Balance Sheet

Total discounted economic value of commodities and carbon sequestration produced in the Basin from 1990 to 2050 under the three scenarios (values in billion \$)

	Plan trend	Development	Conservation
Market commodity production	\$15.29	\$15.29	\$14.80
Carbon sequestration	\$0.90	\$0.80	\$1.60
Total	\$16.19	\$16.09	\$16.40

ECOSYSTEM SERVICES Lessons & Next Steps

- Inclusion of value of ecosystem services can shift planning outcomes towards conservation
- Next: inclusion of a wider range of services
- Next: link to specific policy and management questions

InVEST: Status

Tier 1 Version 1.0 AVAILABLE NOW!

See our Toolshed Booth

Modules contained

- Water pollution
- Managed timber
- Carbon
- Pollination
- Biodiversity (habitat quality & rarity)

InVEST: Coming soon!

Modules

- Flood mitigation
- Hydropower production
- Irrigation
- Agricultural production
- Open Access Timber & Non-Timber Forest Products
- Marine InVEST in development

InVEST

Software available on the web:

http://invest.ecoinformatics.org

Requires ArcGIS 9.2

InVEST

site map

vou are here: home

Welcome to InVEST

by admin - last modified 2008-10-10 12:21

A collaboration area for the Integrated Valuation of Ecosystem Services and Tradeoffs tool.

If you are a registered user, use the navigation links on the left to explore content folders or enter the discussion board ('Discuss'). Although most directories are read-only, all registered users can upload files to the 'Shared' folder. Feel free to use 'preferences' link in the top bar to flesh out your user information -- and add a portrait!

New user? Click on the join link above, or on the New User link below on the left.

DOWNLOADING InVEST

InVEST, a.k.a. Integrated Valuation of Ecosystem Services and Tradeoffs, is a suite of models and software tools under development by the Natural Capital Project. InVEST aims to provide a consistent methodology for measuring and comparing the value of multiple ecosystem services across real landscapes. For more information, visit the \(\mathbb{O} \) Natural Capital Project website.

http://invest.ecoinformatics.org/

InVEST

InVEST and Ecoregional Planning

- Would adding ecosystem service priorities change TNC's ecoregional plan?
- What ecosystem services will be gained if TNC acquires and restores all the sites in its current ecoregional plan?

What About You?

- How would you use InVEST in your work?
- Your application here...

Acknowledgements

Collaborators

Gretchen Daily Chris Colvin

Peter Kareiva Nasser Olwero

Taylor Ricketts Stacie Wolny

Heather Tallis Driss Ennaanay

Erik Nelson Juliann Aukema

Guillermo Mendoza Kari Vigerstol

Josh Goldstein

Jim RegetzJohn FosterMarc ConteJon HoekstraDick CameronChristine Tam

Vic Adamowicz

Stan Wood

Rebecca Shaw

Eric Lonsdorf

Paul Armsworth

Robin Naidoo

Kai Chan

Neil Burgess

Andrew Balmford

Sue White

© 2008 Natural Capital Project

Funders

P. and H. Bing

V. and R. Sant

The Packard Foundation

The Winslow Foundation

NCEAS (NSF, UCSB,

State of California)

The Nature Conservancy

Thank you for your attention

Questions?

http://invest.ecoinformatics.org

