2011 Specialist Maths Trial Exam 2 Solutions

Free download from www.itute.com © Copyright 2011 itute.com

Section 1

1	2	3	4	5	6	7	8	9	10	11
D	В	С	С	В	Α	Е	Е	A	Α	D

12	13	14	15	16	17	18	19	20	21	22
С	Α	В	D	Α	С	В	Е	Α	D	A

Q1
$$z_1^2 + 3z_2^2 = 0$$
, $z_1 = \pm i\sqrt{3}z_2$
 $|z_1 - z_2| = |\pm i\sqrt{3}z_2 - z_2| = |(\pm i\sqrt{3} - 1)z_2| = |\pm i\sqrt{3} - 1||z_2| = 2|z_2|$

Q3
$$P(z) = z^3 + 3iz^2 - 3z - i = (z + i)^3$$

Q4 Let
$$z = x + iy$$
, $Im(z) = |z - i|$, $(Im(z))^2 = |z - i|^2$
 $y^2 = x^2 + (y - 1)^2$, $y = \frac{1}{2}x^2 + \frac{1}{2}$

Q6 For $y = \frac{2}{a + bx + 4ax^2}$ to have only one asymptote, the discriminant of $a + bx + 4ax^2$ must be a negative value. $\Delta = b^2 - 16a^2 < 0$, A = -4a < b < 4aSince a > 1, $-1 \le b \le 4$ satisfies the requirement -4a < b < 4a.

Q7 The equation of the hyperbola is $\frac{(x+1)^2}{1^2} - \frac{(y-2)^2}{h^2} = 1.$

The gradients of the asymptotes are $\pm b = \pm 2$ (best approximation determined from the scaled graph). Equations of the asymptotes: $y-2=\pm 2(x+1)$,

i.e.
$$y = -2x$$
, $y = 2x + 4$

Q8
$$\tan^{-1}(a) = \tan^{-1}(-\sqrt{3}) = -\frac{\pi}{3}$$

$$\sin^{-1}(b) = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$$

D

В

C

В

:
$$\sec(\tan^{-1}(a) + \sin^{-1}(b)) = \sec(-\frac{2\pi}{3}) = \frac{1}{\cos(-\frac{2\pi}{3})} = -2$$
 E

Q9 The values of a and b do not change the range of f. The range of $\cos^{-1}(x)$ is $[0,\pi]$, ... the range of $\cos^{-1}\left(\frac{x}{a}+b\right)+c$ is $[c,\pi+c].$

Q10
$$\tan^{-1}(x-a+1) = \tan^{-1}(x-a) + \frac{\pi}{4}$$

 $\tan^{-1}(x-a+1) - \tan^{-1}(x-a) = \frac{\pi}{4}$
 $\tan(\tan^{-1}(x-a+1) - \tan^{-1}(x-a)) = \tan(\frac{\pi}{4})$
 $\frac{(x-a+1)-(x-a)}{1+(x-a+1)(x-a)} = 1$, .: $1 = 1 + (x-a+1)(x-a)$
.: $(x-a+1)(x-a) = 0$, .: $x = a-1$ or $x = a$

Q11
$$\overrightarrow{OP} = \widetilde{i} - \widetilde{j}$$
, $\overrightarrow{OQ} = -\widetilde{j} + \widetilde{k}$, $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = -\widetilde{i} + \widetilde{k}$

$$|\overrightarrow{PQ}| = |\overrightarrow{OQ}| = |\overrightarrow{OP}|$$

 $.: \Delta OPQ$ is equilateral.

$$\therefore \angle OPQ = 60^{\circ}$$
 D

Q12 $2\tilde{i} + p\tilde{j} + 3\tilde{k}$, $-\tilde{i} + 3\tilde{j} + q\tilde{k}$ and $\tilde{i} - \tilde{j} + \tilde{k}$ are linearly

$$2\tilde{i} + p\tilde{j} + 3\tilde{k} + m(-\tilde{i} + 3\tilde{j} + q\tilde{k}) + n(\tilde{i} - \tilde{j} + \tilde{k}) = 0, m, n \neq 0$$

$$\therefore 2 - m + n = 0 \dots (1)$$

$$p + 3m - n = 0 \dots (2)$$

$$p + 3m \quad n = 0 \quad(2)$$

$$3 + am + n = 0 \quad (3)$$

$$3 + qm + n = 0$$
(3)

$$(1) + (2): m = \frac{-p-2}{2}$$

(2) + (3):
$$m = \frac{-p-3}{q+3}$$

$$\therefore \frac{-p-2}{2} = \frac{-p-3}{q+3}$$

$$\therefore q = \frac{-p}{p+2}$$

Q13
$$\angle ACB = \angle ADB$$

 $\cos \angle ACB = \cos \angle ADB$
 $\frac{\overrightarrow{AC}.\overrightarrow{BC}}{|\overrightarrow{AC}||\overrightarrow{BC}|} = \frac{\overrightarrow{AD}.\overrightarrow{BD}}{|\overrightarrow{AD}||\overrightarrow{BD}|}$

Α

Q14
$$\tilde{a} = \cos\left(\frac{\pi}{n}\right)\tilde{i} + \sin\left(\frac{\pi}{n}\right)\tilde{j}$$
, $\tilde{b} = \cos\left(\frac{2\pi}{n}\right)\tilde{i} + \sin\left(\frac{2\pi}{n}\right)\tilde{j}$

 \tilde{a} and \tilde{b} have the same magnitude.

Angle between vectors $\tilde{a} + \tilde{b}$ and \tilde{i} is $\frac{\pi}{n} + \frac{\pi}{2n} = \frac{3\pi}{2n}$.

Q15
$$v(t) = 2\sin^{-1}\left(\frac{t}{10} - 1\right) + \pi$$
, $0 \le t \le 10$

 $Average \ velocity = \frac{displacement}{time}$

$$= \frac{\int_{0}^{10} \left(2\sin^{-1}\left(\frac{t}{10} - 1\right) + \pi\right) dt}{10} = 2$$

Q16
$$\int_{0}^{1} \frac{1 - 2x - x^{2}}{\sqrt{1 - x^{2}}} dx = \int_{0}^{1} \frac{1 - x^{2}}{\sqrt{1 - x^{2}}} dx + \int_{0}^{1} \frac{-2x}{\sqrt{1 - x^{2}}} dx$$
$$= \int_{0}^{1} \sqrt{1 - x^{2}} dx + \int_{0}^{1} \frac{-2x}{\sqrt{1 - x^{2}}} dx$$
$$= \frac{\pi}{4} - 2$$

Q17
$$\tilde{r} = 2\cos^{-1}(t)\tilde{i} - 2\cos^{-1}(t)\tilde{j} + \cos^{-1}(t)\tilde{k}$$
, $0 \le t \le 1$
 $\tilde{r} = (2\tilde{i} - 2\tilde{j} + \tilde{k})\cos^{-1}(t)$
 $\tilde{v} = (2\tilde{i} - 2\tilde{j} + \tilde{k})\frac{-1}{\sqrt{1 - t^2}}$
 $\tilde{a} = (2\tilde{i} - 2\tilde{j} + \tilde{k})\frac{-t}{\sqrt{1 - t^2}}$

$$\widetilde{a} = \left(2\widetilde{i} - 2\widetilde{j} + \widetilde{k}\right) \frac{-t}{\left(1 - t^2\right)^{\frac{3}{2}}}$$

Q18
$$a=^{+}2$$
, $u=^{-}10$, $s=^{+}16-^{+}5=^{+}11$, t ?
 $s = ut + \frac{1}{2}at^{2}$, $t = 11$

Q20

В

D

A

Е

The diagram shows the particle sliding down the inclined plane. If the particle slides up the plane the force due to friction points in the opposite direction. Since $mg \sin 35^{\circ} > 0.4mg \cos 35^{\circ}$

- .: there is always a resultant force down the plane.
- :: the particle does not move at constant velocity.

Α

D

Q21
$$v^2 = x - 2$$
, $a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{1}{2}$

Since $v^2 = x - 2 \ge 0$, .: $x \ge 2$, i.e. the particle moves along the positive *x*-axis.

Since $v^2 = x - 2$, .: $v = \pm \sqrt{x - 2}$. When $v = -\sqrt{x - 2}$, the particle moves towards the origin.

Q22
$${}^{+}R + 4 \times {}^{-}9.8 = 4 \times {}^{+}2.2$$
, .: $R = {}^{+}48 \text{ N}$

Section 2

Q1a
$$4x^2 + 9y^2 = 36$$
, : $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Q1b
$$4x^2 + 9y^2 = 36$$

Implicit differentiation: $8x + 18y \frac{dy}{dx} = 0$, $\frac{dy}{dx} = -\frac{4x}{9y}$

At
$$y = 1$$
, $4x^2 = 27$, $x = \pm \frac{3\sqrt{3}}{2}$

$$\therefore \frac{dy}{dx} = \pm \frac{2\sqrt{3}}{3}$$

Q1c $x^2 + 3y = c$ is an inverted parabola. It touches the ellipse at (0,-2) if c = -6. It touches the ellipse at (0,2) if c = 6. There are two other possible points:

Solve simultaneously, $x^2 + 3y = c$, $4x^2 + 9y^2 = 36$

$$4(c-3y)+9y^2=36$$
,

$$y^2 - 12y + (4c - 36) = 0$$

Same y-coordinate at the contact points.

To have only one y value, let the discriminant be 0.

$$(-12)^2 - 4 \times 9 \times (4c - 36) = 0$$

$$c = 10$$

$$\therefore 9y^2 - 12y + 4 = 0, y = \frac{2}{3}, x = \pm 2\sqrt{2}$$

Two other possible points are $\left(2\sqrt{2}, \frac{2}{3}\right)$ and $\left(-2\sqrt{2}, \frac{2}{3}\right)$ if c = 10.

Q1di At P(0,-2), $x^2 + 3y = -6$ is the minimum value.

Q1dii At
$$P\left(-2\sqrt{2}, \frac{2}{3}\right)$$
 or $P\left(2\sqrt{2}, \frac{2}{3}\right)$, $x^2 + 3y = 10$ is the maximum value.

Q2ai Let
$$z = x + iy$$

$$|z-1|=1$$
, $|(x-1)+yi|=1$, $|(x-1)+yi|^2=1$, $(x-1)^2+y^2=1$

Q2aii

Q2bi

2011 Specialist Maths Trial Exam 2 Solutions

$$\frac{r}{2} = 1\cos\theta$$
, .: $r = 2\cos\theta$

Q2bii
$$\frac{1}{z} = \frac{1}{rcis\theta} = \frac{cis(-\theta)}{r} = \frac{\cos(-\theta) + i\sin(-\theta)}{2\cos\theta}$$
$$= \frac{\cos\theta - i\sin\theta}{2\cos\theta} = \frac{1}{2} - i\frac{\tan\theta}{2}$$

Q2biii Im(z) z-r 0 Re(z)

$$Arg\left(\frac{z-r}{z+r}\right) = Arg\left(z-r\right) - Arg\left(z+r\right)$$

= angle formed by z-r, 0 and z+r

 $=\frac{\pi}{2}$ because 0 is on the circumference of the circle of radius r centred at z.

Refer to the diagram: $|z-r| = 2 \times r \sin \frac{\theta}{2}$, $|z+r| = 2 \times r \cos \frac{\theta}{2}$

Q2ci
$$\frac{z-r}{z+r} = \left| \frac{z-r}{z+r} \right| cis \left(Arg\left(\frac{z-r}{z+r} \right) \right) = \left(\tan \frac{\theta}{2} \right) cis \frac{\pi}{2} = i \tan \frac{\theta}{2}$$

$$\therefore \frac{z_1 - r_1}{z_1 + r_1} == i \tan \frac{\theta_1}{2}, \quad \frac{z_2 - r_2}{z_2 + r_2} = i \tan \frac{\theta_2}{2}, \quad \frac{z_3 - r_3}{z_3 + r_3} = i \tan \frac{\theta_3}{2}$$

:: all three complex numbers are purely imaginary (has no real part), so they are on the imaginary axis and :: collinear.

Q2cii
$$\frac{1}{z} = \frac{1}{2} - i \frac{\tan \theta}{2}$$

$$\therefore \frac{1}{z_1} = \frac{1}{2} - i \frac{\tan \theta_1}{2}, \frac{1}{z_2} = \frac{1}{2} - i \frac{\tan \theta_2}{2}, \frac{1}{z_2} = \frac{1}{2} - i \frac{\tan \theta_3}{2}$$

All three complex numbers have the same real part of 2, .: they line up vertically on the line $Re(z) = \frac{1}{2}$.

Q3a
$$\tilde{r}(t) = \sqrt{\frac{1 + (t - 1)^2}{2}} \tilde{i} - (t - 1)\tilde{j} + \frac{\sqrt{2}|t - 2|}{4} \tilde{k}$$
, $t \ge 0$
 $x = \sqrt{\frac{1 + (t - 1)^2}{2}}$, $y = -(t - 1)$
 $x^2 = \frac{1 + (t - 1)^2}{2}$, $y^2 = (t - 1)^2$
 $\therefore x^2 = \frac{1 + y^2}{2}$, $2x^2 - y^2 = 1$
 $\therefore \frac{x^2}{\left(\frac{1}{t}\right)^2} - y^2 = 1$

Q3b When t = 0, the shadow is at (1,1).

Q3c
$$|\tilde{r}|^2 = \frac{1 + (t - 1)^2}{2} + (t - 1)^2 + \frac{(t - 2)^2}{8}$$

 $|\tilde{r}|^2 = \frac{1}{2} + \frac{3(t - 1)^2}{2} + \frac{(t - 2)^2}{8}$

Let
$$\frac{d}{dt} |\tilde{r}|^2 = 0$$
..: $3(t-1) + \frac{t-2}{4} = 0$

 $t = \frac{14}{13}$, the time when the aeroplane was closest to the controller.

Q3di
$$\widetilde{r}(t) = \sqrt{\frac{1 + (t - 1)^2}{2}} \widetilde{i} - (t - 1)\widetilde{j} + \frac{\sqrt{2}|t - 2|}{4} \widetilde{k}$$

$$\therefore \widetilde{v} = \frac{d}{dt} \widetilde{r} = \frac{t - 1}{2\sqrt{\frac{1 + (t - 1)^2}{2}}} \widetilde{i} - \widetilde{j} - \frac{\sqrt{2}}{4} \widetilde{k} \text{ for } t < 2$$

When
$$t = 0$$
, $\tilde{v} = -\frac{1}{2}\tilde{i} - \tilde{j} - \frac{\sqrt{2}}{4}\tilde{k}$
and speed $|\tilde{v}| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-1\right)^2 + \left(-\frac{\sqrt{2}}{4}\right)^2} = \sqrt{\frac{11}{8}} = \frac{\sqrt{22}}{4}$

Q3dii When
$$t = 0$$
, $\tilde{v} = -\frac{1}{2}\tilde{i} - \tilde{j} - \frac{\sqrt{2}}{4}\tilde{k}$

$$\hat{v} = \frac{\tilde{v}}{|\tilde{v}|} = \sqrt{\frac{8}{11}} \left(-\frac{1}{2}\tilde{i} - \tilde{j} - \frac{\sqrt{2}}{4}\tilde{k} \right)$$

Let θ be the angle between \hat{v} and \tilde{k} .

$$\hat{v}.\tilde{k} = -\sqrt{\frac{8}{11}} \times \frac{\sqrt{2}}{4} = -\frac{1}{\sqrt{11}} = \cos\theta$$
, .: $\theta \approx 108^{\circ}$

.: angle between flight path and ground = $108 - 90 = 18^{\circ}$

Q3e Asymptote:
$$y = -\sqrt{2}x$$

$$\therefore \tan \phi = -\sqrt{2}$$

$$\phi \approx -55^{\circ}$$

True bearing of destination from controller = 90 + 55 = 145°T

Q3f

P is at any position above the rectangle ABCD.

$$\overrightarrow{AC} = \overrightarrow{PC} - \overrightarrow{PA}$$
. $\overrightarrow{BD} = \overrightarrow{PD} - \overrightarrow{PB}$

 $|\overrightarrow{AC}| = |\overrightarrow{BD}|$, diagonals of rectangle ABCD

$$:: \left| \overrightarrow{PC} - \overrightarrow{PA} \right|^2 = \left| \overrightarrow{PD} - \overrightarrow{PB} \right|^2$$

$$: \left| \overrightarrow{PC} \right|^2 + \left| \overrightarrow{PA} \right|^2 - 2 \times \overrightarrow{PC}.\overrightarrow{PA} = \left| \overrightarrow{PD} \right|^2 + \left| \overrightarrow{PB} \right|^2 - 2 \times \overrightarrow{PD}.\overrightarrow{PB} \dots (1)$$

M is the midpoint of the diagonals.

$$\therefore \overrightarrow{PM} = \frac{1}{2} \left(\overrightarrow{PC} + \overrightarrow{PA} \right) = \frac{1}{2} \left(\overrightarrow{PD} + \overrightarrow{PB} \right)$$

$$:: \left| \overrightarrow{PM} \right|^2 = \frac{1}{4} \left| \overrightarrow{PC} + \overrightarrow{PA} \right|^2 = \frac{1}{4} \left| \overrightarrow{PD} + \overrightarrow{PB} \right|^2$$

$$\frac{(1)+(2)}{2}: \quad \left|\overrightarrow{PA}\right|^2 + \left|\overrightarrow{PC}\right|^2 = \left|\overrightarrow{PB}\right|^2 + \left|\overrightarrow{PD}\right|^2$$

Q4a
$$f(x) = \frac{p}{\sqrt{p^2 - x^2}} - 1, p \in R^+$$

Asymptotes: $p^2 - x^2 = 0$, $x = \pm p$

y-intercept: x = 0, y = 0

Q4b
$$p = 2$$
, .: $f(x) = \frac{2}{\sqrt{4 - x^2}} - 1$

At
$$y = 2$$
, $\frac{2}{\sqrt{4 - x^2}} - 1 = 2$, $x = \pm \frac{4\sqrt{2}}{3}$

Area =
$$2 \left[\frac{4\sqrt{2}}{3} \times 2 - \int_{0}^{\frac{4\sqrt{2}}{3}} \left(\frac{2}{\sqrt{4 - x^2}} - 1 \right) dx \right]$$

$$= 2 \left[\frac{8\sqrt{2}}{3} - \left[2\sin^{-1}\left(\frac{x}{2}\right) - x \right]_{0}^{\frac{4\sqrt{2}}{3}} \right]$$

$$= 2 \left[\frac{8\sqrt{2}}{3} - 2\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right) + \frac{4\sqrt{2}}{3} \right] = 8\sqrt{2} - 4\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$$

Q4ci
$$y = \frac{2}{\sqrt{4 - x^2}} - 1$$
, .: $x^2 = 4\left(1 - \frac{1}{(y+1)^2}\right)$
 $V = \int_0^2 \pi x^2 dy = \int_0^2 4\pi \left(1 - \frac{1}{(y+1)^2}\right) dy$

Q4cii
$$V = 4\pi \left[y + \frac{1}{y+1} \right]_0^2 = 4\pi \left(2 + \frac{1}{3} - 1 \right) = \frac{16\pi}{3}$$

Q4d Required time = $\frac{\frac{16\pi}{3}}{\frac{\pi}{3}}$ = 16 seconds

Q4e
$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$$

When the depth of water is h, volume of water V

$$= \int_{0}^{h} 4\pi \left(1 - \frac{1}{(y+1)^{2}} \right) dy = 4\pi \left(h + \frac{1}{h+1} - 1 \right)$$

.: $\frac{dV}{dh} = 4\pi \left(1 - \frac{1}{(h+1)^{2}} \right)$

When
$$h=1$$
, $\frac{\pi}{3}=3\pi \frac{dh}{dt}$

$$\frac{dh}{dt} = \frac{1}{9}$$
 cm per second

Q5a

Normal reaction force of the inclined plane on the crate N $=80\times9.8\times\cos30^{\circ}$

Force of friction = $\mu N = 0.25 \times 80 \times 9.8 \times \cos 30^{\circ} \approx 170 \text{ N}$

Q5b Applied force = $T = 170 + 80 \times 9.8 \times \sin 30^{\circ} \approx 562 \text{ N}$

Q5ci

Q5cii $T_{chain} = 2 \times 562 \cos 40^{\circ} \approx 861 \text{ N}$

Q5d

Resultant force = $80 \times 9.8 \times \sin 30^{\circ} - 170 \approx 222 \text{ N}$ $a = \frac{F}{m} = \frac{222}{80} \approx 2.8 \text{ m s}^{-2}$

Q5ei
$$u=0.2$$
, $a=2.8$, $t=0.25$, v ?
 $v=u+at$, $v=0.2+2.8\times0.25=0.5$
.: speed = 0.5 m s⁻¹

Q5eii |momentum| = $mv = 80 \times 0.5 = 40 \text{ kg m s}^{-1}$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors