【高速先生原创|高速串行系列】高速信号仿真之 IBIS

作者: 袁波 一博科技高速先生团队成员

对于很多初学 PCB 设计的人员来说,高速信号是神秘的,设计人员可能更多关注的是怎么布局,怎么调整布线拓扑,怎么把信号走通,对信号仿真模型更是了解的不多。而对于初学仿真的小伙伴们,则可能从学习传输线开始,需要了解高速信号是怎么传输的,要学习反射,串扰,端接,匹配,损耗.....然而,当我们真正准备仿真一个 DDR 信号质量时,却是从学会调用 IBIS 模型开始的。

我们在接到仿真项目时,总是免不了要向客户索要芯片模型。俗话说:巧妇难为无米之炊。没有米,是不可能做出香喷喷的米饭的,没有准确的芯片模型,我们的仿真就无法进行。 在仿真分析中,最常见的模型就是 IBIS 模型了。小编这篇文章不是要介绍怎么去使用 IBIS,也不是要去阐述 IBIS 是怎么得来的,只是先让初学者对 IBIS 有一个感性的认识。

进入正题。我们知道 IBIS 模型是行为级模型,它描述了芯片的输入输出状态,它不同于 Spice 模型,不会泄露芯片内部的电路结构。

首先,让我们来思考一下仿真分析为什么需要 IBIS 模型。

从根源说起。在数字电路中,芯片与芯片之间传输的是数字信号,数字信号是 0、1 这样的脉冲信号。完美的数字信号应该是图一这样的,它的上升时间和下降时间几乎为零

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

但实际传输的信号,可能是图二这样的,或者是图三这样的

我们可以看到,上图这些信号都是幅值为 5V 的脉冲,频率为 100M,但是它们的特点不一样。图二波形的上升沿很陡峭,图三波形的上升沿却很平缓。

实际应用中,我们使用的芯片也是这样,不同芯片输出的波形也不一样。它们不仅 周期频率不同,上升时间、幅值也会不同。

先来了解一下芯片的构造。看来做为一名 SI 工程师,需要学习和掌握的东西还真不少。不光是关注传输线外部互连,还需要学习很多芯片知识。

我们姑且认为 IC 芯片由三部分组成: Core、Buffer 和封装。Core 是芯片内部的核心逻辑电路,工作电压较低,驱动能力也低。Buffer 是终端接口电路,电源电压一般较高,驱动能力较强,是 core 和其他 IC 之间的连接桥梁,封装则是连接 Buffer 和外部器件的金线和管脚。芯片核心与核心之间的通信就是通过 buffer、封装和传输线来完成的。Buffer 和封装是外围电路能"看见"的部分。就是说芯片内的指令是由 core 来发出的,至于指令是以什么形式,以多高的电压来表现,这就要看 Buffer 来发挥作用了。

说到 Buffer,那么 Buffer 究竟是什么呢?就像传输线可以用分布模型 RLGC 来定义,Buffer 也可以用一些等效电路来描述。IBIS 里面的 Buffer 有 Input Buffer,Output Buffer,Input/Output Buffer 等类型。

下图就是 Buffer 和封装的等效电路,图四是 Output buffer,图五是 Input Buffer。这里要强调一下,下图是包含了 Buffer 和封装的,图四右边部分是封装等效电路。图五左边部分是封装等效电路。我们需要明白的是 IBIS 模型是考虑了封装的影响的。小编的模电学的不是很好,不想去详细分析这些器件是怎么工作的。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

那么仿真时调用不同的 IBIS 模型有什么区别呢? 我们调用实际的 IBIS 模型来仿真一下,看看仿真时调用不同的 IBIS 模型之间到底有什么区别。

首先来挑选几个不同的 IBIS 模型,加载一个上升沿,输出的结果如图六:

上图这些上升沿的上升边陡峭程度不一样,对应的幅值也不一样。可见,调用不同的模型,同样是一个上升沿,会有这么多的表现形式。

我们再来看看接收端模型对信号有什么影响。驱动端加载一个上升沿,输入到输出之间的线很短,可以忽略传输线对信号的影响。终端调用了不同的 Input 模型,结果如下图七。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

仿真时,驱动端加载的是 5V 上升沿信号。接收端接收的电压有 5V, 3.3V。同样的 输入,但是在终端接收的电压不一样。对于供电电压是 3.3V 的接收端器件,就算驱动 电压是 5V, 它也会在保护二极管的作用下, 最终电压被拉回到 3.3V。而对于供电电压 本来就是 5V 的器件,调用不同的 Input buffer 模型对信号波形的影响是比较小的。这 里我们就明白了,为什么在仿真中,如果我们不能准确找到接收芯片模型,可以用类似 的模型去替代。

通过仿真我们了解到, Buffer 本身并不能产生信号波形, 它本身是个被动器件, 只 是起驱动的作用。我们在仿真的时候自己会定义各种码型,码型只是定义一种逻辑关系 而已,至于这种逻辑关系是以什么形式表现出来,就要看芯片的 Buffer 了。在仿真中, 我们想要知道主控芯片输出的波形长什么样,那就要借助我们的 IBIS 模型了。

以上是我对 IBIS 模型的一点认识,欢迎讨论。

问题来了

IBIS 模型是通过什么方式来模拟芯片 Buffer 工作的?

高速先生欢迎您和我们一起进行交流,关注微信名(高速先生),直接将答案通过会话 回复,参与互动答题即有机会获得奖品,回复关键词"奖品"查看更多。

上篇文章我们对 DDR 做了一些基本的介绍,了解了 DDR 信号分组以及各组信号之间的 长度匹配关系。那么,一般什么情况我们需要仿真分析呢?作者认为,多数情况下是我 们的设计人员对这一块的把握不大的时候,因为 DDR 信号 Net 多,走线密度大,速率 较高, DDR 信号质量直接关系到整块板子的设计成败。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

闲话不多说,本期将通过几个案例让初学者对 DDR 仿真有一个初步的认识。DDR 信号仿真分为信号质量分析与时序分析,两者的侧重点不一样。下面来看看,某设计人员 DDR3 布线绕完等长之后,让我们仿真,拓扑结构如图 1 所示

图 1

从拓扑结构来看,该设计是一个主控拖动四片 DDR 颗粒,采用 T 型结构。该设计分支等长做的都很好,貌似没什么问题,但是仿真出来的波形却是图 2 这样的:

该波形电压虽然都通过了门限电平,但是裕量很小,波形也是参差不齐,显然不够 理想。我们这里仅仅仿真了单根信号的质量,如果把串扰也考虑进来,波形就很难保证 不出问题。作者以前也仿真过这种拓扑结构,但是波形没有这么糟糕啊。为了验证一下, 作者把驱动芯片的 IBIS 换了,拓扑结构保持不变,结果得到的波形是这样的,如图 3

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

图 3 信号质量与图 2 比起来要好一些,但结果不理想,过冲还是很大。其实这里,作者使用不同的 IBIS 模型,就是为了证明不同主控芯片输出的波形是不一样的。有时我们的 Layout 人员会有这样一个疑问,改版的时候仅仅只是换了一块主控芯片而已,PCB 本身的布局没有改版,甚至芯片管脚对应的连接关系都没变,板子上的布线完全不用再改动了,这种想法是不对的,同一块板子,拓扑结构保持不变的情况,更换主控芯片,信号的质量也会受到影响的,这时我们的拓扑结构必须重新评估。

好了,造成图 2 与图 3 信号质量不好的原因是什么呢? 经验丰富的网友们也许发现了,上面的 T 型结构没有做端接处理。同样,作者也发现了这个问题,结果加上端接电阻后,信号质量得到了改善,如图 4 所示

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

再来看一个 DDR3 设计案例,某设计人员在数据信号中加入了串阻,拓扑结构如下图 5:

DDR3 颗粒端有 ODT 功能,且有 6 种阻值可选,作者扫面这几种模式得到的波形如图 6

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

图 6 的波形,在开 ODT 的情况下波形裕量较小,DDR3 本身带有 ODT 功能啊,为什么还要加串阻呢?于是我果断把串阻去掉,仿真波形如图 7

去掉串阻之后,波形的裕量更大了,且上升沿没那么缓了。所以,对于有 ODT 功能的 DDR 颗粒,布线时不用加串阻,这样不仅节省了元件,也节省了布线空间。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

看来 SI 工程师是十分重要的哈,高速设计的成功离不开 SI 工程师的努力。拓扑结构的设计不是一劳永逸的,什么驱动芯片适合什么样的拓扑结构,需要仿真评估。仿真是一个不断尝试与探索的过程,它帮助我们找到互连与器件的最佳匹配。

问题来了

ODT 阻值选择与接收端电压幅值呈什么关系,为什么?

高速先生欢迎您和我们一起进行交流,关注微信名(高速先生),直接将答案通过会话回复,参与互动答题即有机会获得奖品,回复关键词"奖品"查看更多。

【关于一博】

- 一博科技专注于高速 PCB 设计、PCB 制板、焊接加工、物料供应等服务。作为全球最大的高速 PCB 设计公司,我司在中国、美国、日本设立研发机构,全球研发工程师 500 余人。超大规模的高速 PCB 设计团队,引领技术前沿,贴近客户需求。
- 一博旗下 PCB 板厂成立于 2009 年,位于广东四会(广州北 50KM),采用来自日本、德国的一流加工设备,TPS 精益生产管理以及品质管控体系的引入,致力为广大客户提供高品质、高多层的制板服务。
- 一博旗下 PCBA 总厂位于深圳,并在上海设立分厂,现有 12 条 SMT 产线,配备全新进口富士 XPF、NXT3、全自动锡膏印刷机、十温区回流炉等高端设备,并配有波峰焊、AOI、XRAY、BGA 返修台等配套设备,专注研发打样、中小批量的 SMT 贴片、组装等服务。

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

扫一扫,即可关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

