Machine Learning Assignment 1

M22MA003

Bhawna Bhoria

Task 1: Simple Linear Regression

Steps Followed:

- 1. Imported the libraries
- 2. Import the input dataset

Saving Rainfall_dataset.csv to Rainfall_dataset (1).csv (52, 5)

	Unnamed:	0	Year	Rainfall (mm)	Yield (hg/ha)	Remarks
0		0	1970	631.8	30197	Normal
1		1	1971	268.5	20698	Normal
2		2	1972	237.0	24388	Defict
3		3	1973	651.8	29976	Excess
4		4	1974	194.4	24745	Defict

- 3. Identified independent and dependent variables
- 4. Obtained the value of mean value of variables
- 5. Draw the scatter plot

Mean value of Rainfall is 367.3807692307692 Mean value of Yield is 20330.51923076923 Value of coefficient of regresion is 8.972274380148036

b0 is 17034.278167240922

- 6. Obtained the coefficient of regression
- 7. Obtain the y_predicted values
- 8. Draw the regression line

- 9. Obtained the value of MAE and MSE
- 10. Predicted the value of crop yield for year 2022

MAE is 9764,615081494698

MSE is 122363336.42449355

Predicted crop yield for the year 2022 is 22058.75182012382

Colab link: https://colab.research.google.com/drive/1Wx_ROesJIFUUtjeM-XDRQ9kBB9BXyZBs#scrollTo=tuwK0bwl6J99

Reference: https://www.youtube.com/watch?v=E5RjzSKOfvY

Task 2: Multi Variant Regression

Steps Followed:

- 1. Imported the libraries
- 2. Cleaning the dataset to handle '?' missing data and outliers
- 3. Import the input dataset

Saving Ques_2.csv to Ques_2 (2).csv (159, 26) symboling normalized losses make fuel type aspiration num of doors body style drive wheels engine location wheel base ... engine size 164.0 std four 4wd front 136 audi gas sedan 99.4 158.0 std fwd 105.8 136 158.0 four fwd front 105.8 131 turbo sedan gas 10 2 192.0 bmw std sedan front 101.2

5 rows × 26 columns

4. Add Index column to the dataset to maximize the cardinality of dataset.

```
data['index_col'] = data.inc
print(data.shape)
data.head()

(205, 27)
    symboling normalized_lo

0     3

1     3

2     1

3     2

4     2

5 rows × 27 columns
```

- 5. Find the correlation between the variables to identify dependent and independent variables
- 6. Using Heatmap for visualization

7. Identify the variables with high correlation factor.

8. Draw scatter plot between the dependent and independent variables having high correlation

9. Plot regression line.

r2 value is 0.7609686443622008

Colab Link:

 $\frac{https://colab.research.google.com/drive/14imVu3hKidMqbyoiFw57Y4aeFMYbtNRJ\#scrollTo=OkLAijY}{z5gS1}$

 $Reference: \underline{https://towardsdatascience.com/how-to-identify-the-right-independent-variables-for-machine-learning-supervised-algorithms-439986562d32}\\$

Reference: https://www.youtube.com/watch?v=VCVhwjbl6h8

Task 3: Polynomial Regression

Steps Followed:

1. Imported the libraries

3

2. Import the input dataset

Saving Ques_3.csv to Ques_3 (1).csv (32, 3)										
Unnamed	l: 0	x	у							
0	0	34.33159	6.504940e+04							
1	1	26.94935	3.238074e+04							
2	2	111.47824	2.061468e+06							

51.18001 2.079118e+05

7.95172 1.083245e+03

3. Draw Linear Regression Line

4. Draw Polynomial Regression with degree of freedom 2

Polynomial Regression with degree 2

5. Draw Polynomial Regression with degree 3

Polynomial Regression with degree 3

Colab Link:

 $\underline{https://colab.research.google.com/drive/1YAGcwsdGZFOK9IKX1Bi4aM7CEvkTOtHS\#scrollTo=O0YbG}\\ \underline{FtaRDsU}$

Reference: https://www.youtube.com/watch?v=SSmpyoIdJTc

Task 5: Logistic Regression

Steps Followed:

- 1. Imported the libraries
- 2. Import the input dataset

Saving Algerian_forest_fires_dataset_UPDATE.csv to Algerian_forest_fires_dataset_UPDATE (244, 14)

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes
0	1	6	2012	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	not fire
1	2	6	2012	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	not fire
2	3	6	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not fire
3	4	6	2012	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0	not fire
4	5	6	2012	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	not fire

3. Plotting sigmoid function in range(-10,+10)

- 4. Importing Algerian forest fires dataset (Odd Roll Number)
- 5. Cleaning the dataset.
- 6. Marking the class of Non fire as 0 and fire as 1

	day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes
0	1	6	2012	29	57	18	0.0	65.7	3.4	7.6	1.3	3.4	0.5	0
1	2	6	2012	29	61	13	1.3	64.4	4.1	7.6	1.0	3.9	0.4	0
2	3	6	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	0
3	4	6	2012	25	89	13	2.5	28.6	1.3	6.9	0.0	1.7	0	0
4	5	6	2012	27	77	16	0.0	64.8	3.0	14.2	1.2	3.9	0.5	0
239	26	9	2012	30	65	14	0.0	85.4	16.0	44.5	4.5	16.9	6.5	1
240	27	9	2012	28	87	15	4.4	41.1	6.5	8.0	0.1	6.2	0	0
241	28	9	2012	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	0
242	29	9	2012	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	0
243	30	9	2012	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	1

244 roug v 44 columno

- 7. Splitting data into test and training set of ratio 60:40.
- 8. Making model with logistic regression of binary classification
- 9. Prediction of test data

10. Making CNF Matrix for evaluating the performance of a classification model

11. Draw ROC Curve

Colab Link:

https://colab.research.google.com/drive/1pXMVK8WZpAZvc_ug6d0XEYYCDoGTGw8T#scroll To=E6NihJHGelu1

Reference: https://www.youtube.com/watch?v=VCJdg7YBbAQ
Reference: https://www.youtube.com/watch?v=OCwZyYH14uw

Reference: https://towardsdatascience.com/logistic-regression-detailed-overview-

46c4da4303bc

Colab Folder Link:

https://drive.google.com/drive/folders/13Mgi2A4JBoUA5gl0iwNgmeTCu7F-3ErU?usp=sharing