Université Badji Mokhtar, Annaba Licence Mathématiques 3^{ième} année

Année universitaire 2021/2022

Examen de Mesure et intégration (Durée 01h00)

<u>Exercice 1</u> I- Dire si les propositions suivantes sont vraies ou fausses, en justifiant chaque réponse.

- a) La fonction continue $f: \mathbb{R} \longrightarrow \mathbb{R}$ est intégrable au sens de Riemann $\iff |f|$ est intégrable au sens de Lebesgue.
- b) Une fonction en escalier est une fonction étagée.
- c) Toute partie négligeable est de mesure nulle.

II- Donner les définitions de

(a) Une σ -algèbre sur un ensemble $E \neq \emptyset$.. (b) Une mesure. μ .

Exercice 2 On définie pour tout $n \geq 0$, la fonction $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ par

$$f_n(x) = \begin{cases} \frac{1 + \cos^n x}{1 + x^2} & : x \ge 0\\ 0 & : \text{ sinon} \end{cases}$$

- (a) Montrer que f_n est λ -intégrable, pour tout $n \geq 0$.
- (b) Calculer $\lim_{n\to+\infty} \int_{\mathbb{R}} f_n d\lambda$.

Exercice 3 Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction dérivable.

- 1- Montrer que f est borélienne (mesurable).
- 2- Définissons la suites $\{f_n\}_{n\geq 1}$ par

$$f_n(x) = n \left[f\left(x + \frac{1}{n}\right) - f(x) \right]; \text{ pour tout } x \in \mathbb{R}.$$

Caculer $\lim_{n\to+\infty} f_n(x)$. Que peut-on conclure?

Exercice 4 On définie sur $\mathbb R$ la fonction F par

$$F(x) = \int_{0}^{+\infty} \sin(x+t) e^{-t} dt$$

- 1- Montrer que F est bien définie sur et continue sur $\mathbb R.$
- 2- Montrer que la fonction F est de classe C^1 sur \mathbb{R} .

Exercice Supplémentaire On définit la fonction $f(x,y) = 2e^{-2xy} - e^{-xy}$ sur \mathbb{R}^2 .

- 1- Montrer que $\int_{0}^{1} f(x,y)dy > 0$, pour tout $x \in]0, +\infty[$.
- 2- En déduire que $\int_{0}^{+\infty} \int_{0}^{1} f(x,y) dy dx \neq \int_{0}^{1} \int_{0}^{+\infty} f(x,y) dx dy$. Que peut-on conclure?

Corrigé de l'examen.

Exercice 1

T-

a) Faux (0.5 pt), car |f| est intégrable au sens de Lebesgue \iff |f| est intégrable au sens de Riemann $\implies f$ est intégrable au sens de Riemann. (0.5 pt)

b) Vraie (0.5 pt), car si f est une fonction en escalier, elle est de la forme $f=\sum \alpha_i.\mathbb{I}_{A_i}$, où

 $A_i = [a_i, a_{i+1}].(0.5 pt)$

c) Faux (0.5 pt), car par définition A est négligeable alors, $\exists B$ une partie mesurable telle que $A \subset B$ et $\mu(B) = 0..(0.5 pt)$

TT-

(a) Soient $E \neq \emptyset$ et $\mathcal{A} \subset \mathcal{P}\left(E\right)$ est dite σ -algèbre sur E si on a

$$i) E \text{ (ou } \emptyset) \in \mathcal{A}$$

$$ii)$$
 Si $A \in \mathcal{A} \implies A^c \in \mathcal{A}$

$$(1.5 pts)$$
 Si $(A, B) \in \mathcal{A}^2 \implies A \cup B \in \mathcal{A}$

$$\begin{cases}
i) & \text{L} (\text{of } b) \in \mathcal{A} \\
ii) & \text{Si } A \in \mathcal{A} \implies A^c \in \mathcal{A} \\
iii) & \text{Si } (A, B) \in \mathcal{A}^2 \implies A \cup B \in \mathcal{A} \\
iv) & \text{Soit } \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A} \implies \bigcup_{n \geq 0} A_n \in \mathcal{A}
\end{cases}$$

$$(1.5 \text{ } pts)$$

(b) Une mesure. μ sur un espace mesurable (E, \mathcal{A}) est une application définie de \mathcal{A} vers \mathbb{R}_+

$$\begin{cases} i) \ \mu(\emptyset) = 0 \\ ii) \ \text{Soit} \ \left\{ A_n \right\}_{n \in \mathbb{N}} \subset \mathcal{A} \text{ telle que } A_n \cap A_m = \emptyset \text{ pour } n \neq m, \text{ alors } \mu\left(\bigcup_{n \geq 0} A_n\right) = \sum_{n \geq 0} \mu\left(A_n\right) \end{cases}$$
 (1.5 pts)

Exercice 2

(a) f_n est continue sur \mathbb{R}^* alors elle est borélienne pour tout $n \geq 0$. En plus on a

$$|f_n(x)| = \left| \frac{1 + \cos^n x}{1 + x^2} \right| . \mathbb{I}_{\mathbb{R}_+}(x) \le \frac{2}{1 + x^2} . \mathbb{I}_{\mathbb{R}_+}(x) = g(x), \forall n \ (0.5 \ pt)$$

et

$$\int_{\mathbb{R}} g(x)d\lambda = \int_{\mathbb{R}_{+}} \frac{2}{1+x^{2}}d\lambda = \int_{0}^{+\infty} \frac{2dx}{1+x^{2}} (g \text{ est continue et positive sur}\mathbb{R}_{+})$$

$$= \left[2 \arctan x\right]_{x=0}^{x\to +\infty} (0.25 \ pt) = \pi < +\infty (0.25 \ pt)$$

$$\Longrightarrow g \in \mathcal{L}^1(\mathbb{R}) \ (0.25 \ pt) \Longrightarrow f_n \in \mathcal{L}^1(\mathbb{R}), \text{ pour tout } n \ge 0.(0.25 \ pt)$$
 (b)

$$\lim_{n \to +\infty} f_n(x) = \frac{1}{1+x^2} \mathbb{I}_{\mathbb{R}_+}(x), \text{ pour } x \neq k\pi \text{ où } k \in \mathbb{N} \quad (0.5 \text{ } pt)$$

alors $\{f_n\}_n$ converge p.p. sur \mathbb{R} . Comme $\{f_n\}_n$ est dominée par une fonction intégrable, alors d'aprés le T.C.D. $(0.5 \ pt)$ on a

$$\int_{\mathbb{R}} f_n d\lambda = \int_{\mathbb{R}} \lim_{n \to +\infty} f_n d\lambda (0.5 \ pt) = \int_{\mathbb{R}_+} \frac{1}{1 + x^2} d\lambda$$
$$= \int_{0}^{+\infty} \frac{dx}{1 + x^2} (0.5 \ pt) = [\arctan \ x]_{x=0}^{x \to +\infty} = \pi/2. (0.5 \ pt)$$

Exercice 3

- 1) f est une fonction dérivable $\Longrightarrow f$ est continue $(0.5 pt) \Longrightarrow f$ est borélienne.(0.5 pt)
- 2) Comme f est dérivable on écrit:

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{\left[f\left(x + \frac{1}{n}\right) - f(x) \right]}{\frac{1}{n}} = f'(x) \cdot (1 \ pt)$$

 $f(f \text{ est mesurable} \Longrightarrow \{f_n\}_n \text{ est une suite de fonctions mesurables } (0.5 pt) \Longrightarrow f' = \lim_{n \to +\infty} f_n$ est aussi mesurable. (0.5 pt)

Exercice 4
$$F(x) = \int_{0}^{+\infty} \sin(x+t) e^{-t} dt$$
, pour tout $x \in \mathbb{R}$

1- Pour tout $x \in \mathbb{R}$, la fonction $t \longmapsto f(x,t) = \sin(x+t) e^{-t}$ est continue sur \mathbb{R}_+ (0.5 pt) et elle vérifie

$$|f(x,t)| \le e^{-t} (0.5 \ pt) \in \mathcal{L}^1 (\mathbb{R}_+), (0.25 \ pt)$$

donc F est bien définie sur $\mathbb{R}(0.25 \ pt)$.

La fonction $x \longmapsto f(x,t)$ est continue sur $\mathbb{R} (0.5 \ pt) \Longrightarrow F$ est aussi continue sur $\mathbb{R} (0.5 \ pt)$.

2- La fonction $x \longmapsto f(x,t)$ est dérivable (0.5 pt) et on a pour tout $x \in \mathbb{R}$

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| \cos(x+t) e^{-t} \right| (0.5 \ pt) \le e^{-t} \in \mathcal{L}^1(\mathbb{R}_+) (0.5 \ pt).$$

Donc F est dérivable sur \mathbb{R} et sa dérivée est donnée par

$$F'(x) = \int_{0}^{+\infty} \cos(x+t) e^{-t} dt, \text{ pour tout } x \in \mathbb{R} (0.5 \text{ } pt)$$

La fonction $x \longmapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $\mathbb{R}(0.5 \ pt) \Longrightarrow F'$ est aussi continue sur $\mathbb{R}(0.5 \ pt)$.

Par conséquent F est de classe C^1 sur $\mathbb{R}.(0.5 pt)$

Exercice Supplémentaire

1_

$$\int_{0}^{1} f(x,y)dy = \int_{0}^{1} \left(2e^{-2xy} - e^{-xy}\right) dy = \left[-\frac{e^{-2xy}}{x}\right]_{y=0}^{y=1} - \left[-\frac{e^{-xy}}{x}\right]_{y=0}^{y=1} (0.25 \ pt)$$
$$= \frac{e^{-x}}{x} \left(1 - e^{-x}\right) (0.25 \ pt) > 0, \text{ pour tout } x \ge 0. (0.25 \ pt)$$

2-
$$\int_{0}^{1} f(x,y)dy > 0 \Longrightarrow \int_{0}^{+\infty} \int_{0}^{1} f(x,y)dydx > 0. (0.25 pt)$$

$$\int_{0}^{1} \int_{0}^{+\infty} f(x,y) dx dy = \int_{0}^{1} \left[\left(2e^{-2xy} - e^{-xy} \right) dx \right] dy$$

$$= \int_{0}^{1} \left(\left[-\frac{e^{-2xy}}{y} \right]_{x=0}^{x=1} - \left[-\frac{e^{-xy}}{y} \right]_{x=0}^{x=1} \right) dy (0.25 pt)$$

$$= \int_{0}^{1} \left(\frac{1}{y} - \frac{1}{y} \right) dy = 0. (0.25 pt)$$

Donc
$$\int_{0}^{+\infty} \int_{0}^{1} f(x,y) dy dx \neq \int_{0}^{1} \int_{0}^{+\infty} f(x,y) dx dy (0.25 pt) \Longrightarrow f \notin \mathcal{L}^{1}([0,+\infty] \times [0,1]) (0.25 pt).$$