

Localizing Visual Sounds the Easy Way

Shentong Mo¹, Pedro Morgado^{1,2}

¹Carnegie Mellon University & ²University of Wisconsin-Madison

Paper, code, and data are available: https://github.com/stoneMo/EZ-VSL

Contributions

- ★ We present a simple yet effective multiple instance learning framework for unsupervised sound source visual localization, which we call EZ-VSL.
- ♦ We propose a novel object-guided localization scheme that favors object regions, which are more likely to contain sound

- **Training**: the audio-visual feature extractor computes global audio and localization visual features. Audio-visual alignment is learned by a *multiple instance contrastive learning* objective.
- Inference: At inference time, we use another visual encoder pre-trained on object recognition to compute object

localization maps, which are combined with audio-visual localization maps for the final prediction.

Comparison with state-of-the-arts

Ablation Study

AVL	L1-OGL	CLS-OGL	Flickr SoundNet		VGG-SS	
AVL LI-OGL	L1-OGL		$\mathrm{CIoU}(\%)$	$\mathrm{AUC}(\%)$	$\mathrm{CIoU}(\%)$	$\mathrm{AUC}(\%)$
✓			78.31	61.74	35.96	38.20
	\checkmark		78.31	61.17	36.77	38.69
		\checkmark	75.10	58.18	35.13	38.08
\checkmark		\checkmark	81.93	62.50	38.58	39.59
✓	✓		83.94	63.60	39.34	39.78

Qualitative Visualizations

Cross-dataset Generalization

Test set	Training set	Method	$\mathrm{CIoU}(\%)$	$\mathrm{AUC}(\%)$
	VGG-Sound 10k	LVS [6]	61.80	53.60
	, 0.0.000110 1011	EZ-VSL	78.71	61.56
Flickr SoundNet	VGG-Sound 144k VGG-Sound Full	LVS [6]	71.90	58.20
		EZ-VSL	84.34	63.77
		LVS [6]	73.59	59.00
		EZ-VSL	83.94	63.60
	Flickr 10k	LVS [6]	18.71	30.29
VGG-SS	I HCKI TOK	EZ-VSL	35.54	38.18
V GG-55	Flickr 144k	LVS [6]	26.95	34.30
	FIICKI 144K	EZ-VSL	38.62	39.20

Open Set Source Localization

Test class	Method	CIoU(%)	AUC(%)
Heard 110	LVS [6]	28.90	36.20
	EZ-VSL	37.25	38.97
Unheard 110	LVS [6]	26.30	34.70
	EZ-VSL	39.57	39.60

A-V Matching Strategies

Flickr SoundNet		VGG-SS	
$\mathrm{oU}(\%)$	$\mathrm{AUC}(\%)$	$\mathrm{CIoU}(\%)$	$\mathrm{AUC}(\%)$
19.40	48.97	12.72	27.10
33.33	37.56	6.03	19.44
8.31	61.74	35.96	38.20
1		oU(%) AUC(%) 49.40 48.97 33.33 37.56	oU(%) AUC(%) CIoU(%) 49.40 48.97 12.72 33.33 37.56 6.03

Project Website

Feel free to scan for more details!

