1 Análisis Sísmico

1.1 Parámetros de sitio

1.1.1 Factor zona

Este factor se interpreta como la aceleración máxima horizontal en el suelo rígido con una probabilidad de 10~% de ser excedida en 50~años

Table 1: Factor de zona

FACTOR DE ZONA SEGÚN E-030						
ZONA Z						
4	0.45					
3	0.35					
2	0.25					
1	0.10					

Fuente: E-030 (2018)

1.1.2 Factor de suelo

Este factor se interpreta como un factor de modificación de la aceleración pico del suelo para un perfil determinado respecto al pefil tipo $\mathrm{S}1$

Table 2: Factor de suelo

FACTOR DE SUELO SEGÚN E-030								
$oxed{SUELO} egin{array}{ c c c c c c c c c c c c c c c c c c c$								
ZONA								
4	0.80	1.00	1.05	1.10				
3	0.80	1.00	1.15	1.20				
2	0.80	1.00	1.20	1.40				
1	0.80	1.00	1.60	2.00				

Fuente: E-030 (2018)

1.1.3 Periodos de suelo

Table 3: Periodos de suelo

	PERIODO "Tp" y "Tl" SEGÚN E-030					
	Perfil de suelo					
	S0	S1	S2	S3		
Тр	0.30	0.40	0.60	1.00		
Tl	3.00	2.50	2.00	1.60		

Fuente: E-030 (2018)

1.1.4 Sistema Estructural

Después de realizar el análisis sísmico se determino que los sistemas estructurales en X, Y son Pórticos de Concreto Armado y Dual de Concreto Armado respectivamente

Table 4: Coeficiente básico de reducción

SISTEMAS ESTRUCTURALES					
Sistema Estructural	Coeficiente Básico de Reducción Ro				
Acero:					
Porticos Especiales Resistentes a Momento (SMF)	8				
Porticos Intermedios Resistentes a Momento (IMF)	5				
Porticos Ordinarios Resistentes a Momento (OMF)	4				
Porticos Especiales Concentricamente Arrriostrados (SCBF)	7				
Porticos Ordinarios Concentricamente Arrriostrados (OCBF)	4				
Porticos Excentricamente Arriostrados (EBF)	8				
Concreto Armado:					
Porticos	8				
Dual	7				
De muros estructurales	6				
Muros de ductilidad limitada	4				
Albañilería Armada o Confinada	3				
Madera	7				

Fuente: E-030 (2018)

1.1.5 Factor de Amplificación sísmica

Se determina según el artículo 14 de la E-030.

Figure 1: Factor de amplificación

1.1.6 Factor de Importancia

Table 5: Factor de Uso o Importancia

CATEGORIA DE LA EDIFICACION						
CATEGORIA	DESCRIPCION	FACTOR U				
	A1: Establecimiento del sector salud (públicos y pri-	Con aislamiento				
A Edificaciones	vados) del segundo y tercer nivel, según lo normado	1.0 y sin				
Escenciales	por el ministerio de salud.	aislamiento 1.5.				
Liscenciales	A2: Edificaciones escenciales para el manejo de las					
	emergencias, el funcionamiento del gobierno y en	1.50				
	general aquellas que puedan servir de refugio después	1.00				
	de un desastre.					
	Edificaciones donde se reúnen gran cantidad de					
	personas tales como cines, teatros, estadios, col-					
B Edificaciones Im-	iseos, centros comerciales, terminales de buses de	1.30				
portantes	pasajeros, establecimientos penitenciarios, o que	_,,,,				
	guardan patrimonios valiosos como museos y bib-					
	liotecas.					
	Edificaciones comunes tales como: viviendas, ofic-					
C Edificaciones Co-	inas, hoteles, restaurantes, depósitos e instalaciones	1.00				
munes	industriales cuya falla no acarree peligros adicionales	1.00				
	de incendios o fugas de contaminantes.					
D Edificaciones	Construcciones provisionales para depósitos, casetas	A criterio del				
temporales	y otras similares.	proyectista				

Fuente: E-030 (2018)

1.1.7 Tabla resumen de parámetros sísmicos

Table 6: Resumen de parámetros sísmicos

Norma E.030
Factor de Zona (Tabla N° 1)
Factor de Uso (Tabla N° 5)
Factor de Suelo (Tabla N° 3)
Periodos(Tabla N° 4)
Coef. Básico de Reducción (Tabla N°7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Coef. de Reducción (Articulo 22)

PARÁMETROS SÍSMICOS						
	X	Y				
Z	0	45				
U	1.	50				
S	1.	05				
$\mathrm{T_{P}}$	0.0	60				
$\mathbf{T_{L}}$	2.00					
R_{o}	8.00	7.00				
I_a	1.00 1.00					
$I_{ m p}$	1.00 1.00					
R	8.00 7.00					
ZUSg/R	0.87	0.99				

1.1.8 Espectro de respuesta de aceleraciones

Figure 2: Espectro de aceleraciones

1.1.9 Peso sísmico

Art. 26

El peso (P), se calcula adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga. En edificaciones de categoría A y B, se toma el 50% de la carga viva y en edificaciones de categoría C, se toma el 25% de la carga viva.

1.1.10 Excentricidad accidental

Art. 28.5

La incertidumbre en la localización de los centros de masa en cada nivel, se considera mediante una excentricidad accidental perpendicular a la dirección del sismo igual a 0,05 veces la dimensión del edificio en la dirección perpendicular a la dirección de análisis. En cada caso se considera el signo más desfavorable.

1.2 Análisis modal Art. 26.1 E-030

Art. 26.1.1

Los modos de vibración pueden determinarse por un procedimiento de análisis que considere apropiadamente las características de rigidez y la distribución de las masas.

Figure 3: Excentricidad de la masa en ETABS

Art. 29.1.2

En cada dirección se consideran aquellos modos de vibración cuya suma de masas efectivas sea por lo menos el 90% de la masa total, pero se toma en cuenta por lo menos los tres primeros modos predominantes en la dirección de análisis.

Table 7: Periodos y porcentajes de masa participativa

Mode	Period	UX	UY	RZ	$\operatorname{Sum} \operatorname{UX}$	$\operatorname{Sum} \operatorname{UY}$	$\operatorname{Sum} RZ$
1	0.353	0.863	0.000	0.000	0.863	0.000	0.000
2	0.267	0.000	0.871	0.000	0.863	0.871	0.000
3	0.221	0.000	0.000	0.849	0.863	0.871	0.849
4	0.099	0.119	0.000	0.000	0.983	0.871	0.849
5	0.075	0.000	0.113	0.000	0.983	0.984	0.849
6	0.061	0.000	0.000	0.132	0.983	0.984	0.982
7	0.047	0.017	0.000	0.000	1.000	0.984	0.982
8	0.036	0.000	0.016	0.000	1.000	1.000	0.982
9	0.028	0.000	0.000	0.018	1.000	1.000	1.000

1.3 Análisis de Irregularidades

1.3.1 Irregularidad de Rigidez-Piso Blando

Tabla N°9 E-030

Existe irregularidad de rigidez cuando, en cualquiera de las direcciondes de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral del entrepiso inmediato superior, o es menor que 80% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales pueden calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relatibo en el centro de masas, ambos evaluados para la misma condición de carga

Tabla N°9 E-030

Existe irregularidad extrema de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 60% de la rigidez lateral del entrepiso inmediato superior, o es menor que 70% de la rigidez lateral promedio de los tres niveles superiores adyacentes. Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

Las rigideces laterales pueden calcularse como la razon entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaluados para la misma condición de carga.

Table 8: Irregularidad de rigidez

Story	OutputCase	VX	VY	Rigidez Lateral(k)	70%k previo	80%Prom(k)	is_reg
Story3	SDx Max	36.386	9.274	19004.918			Regular
Story2	SDx Max	70.704	18.243	28372.162	13303.443		Regular
Story1	SDx Max	90.325	23.406	35626.027	19860.513		Regular

Table 9: Irregularidad de rigidez

Story	OutputCase	VX	VY	Rigidez Lateral(k)	70%k previo	80%Prom(k)	is_reg
Story3	SDy Max	10.916	30.915	18977.594			Regular
Story2	SDy Max	21.211	60.811	28389.869	13284.316		Regular
Story1	SDy Max	27.098	78.021	35642.302	19872.908		Regular

1.3.2 Irregularidad de Masa o Peso

Tabla N°9 E-030

Se tiene irregularidad de masa (o peso) cuando el peso de un piso determinado según el artículo 26, es nayor que 1,5 veces el peso de un piso adyascente. Este criterio no se aplica en azoteas ni en sótanos

Table 10: Irregularidad de Masa o Peso

Story	Masa	1.5 Masa	Tipo de Piso	is_reg
Story3	8.953		Azotea	Regular
Story2	13.017	19.525	Piso	Regular
Story1	13.779	20.668	Piso	Regular
Base	2.723		Sotano	Regular

1.3.3 Irregularidad Torsional

Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion (Δ_{max}) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la condicion de carga (Δ_{prom}) . Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

Tabla N°9 E-030

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis el desplazamiento relativo de entrepiso en un edificion (Δ_{max}) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1,3 veces el desplazamineto relativo promedio de los extremos del mismo entrepiso para la condicion de carga (Δ_{prom}). Este crriterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento relativo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N° 11

Entrepiso $\frac{\Delta_{m\acute{a}x}}{\Delta_{pROM}} = \frac{\Delta_{m\acute{a}x} + \Delta_{min}}{2}$ Irregularidad Torsional, $I_p = 0.75$ $\frac{\Delta_{m\acute{a}x}}{h_i} > 1.3 \frac{\Delta_{PROM}}{h_i} \quad y \quad \frac{\Delta_{m\acute{a}x}}{h_i} > 0.5 \left(\frac{\Delta}{h}\right) \text{permisible}$ Irregularidad Torsional Extrema, $I_p = 0.60$ $\frac{\Delta_{m\acute{a}x}}{h_i} > 1.5 \frac{\Delta_{PROM}}{h_i} \quad y \quad \frac{\Delta_{m\acute{a}x}}{h_i} > 0.5 \left(\frac{\Delta}{h}\right) \text{permisible}$

Figure 4: Irregularidad torsional

Table 11: Irregularidad Torsional

Story	OutputCase	Direction	Max Drift	Avg Drift	Ratio	Height	Drifts	< Driftmax/2	Es Regular
Story3	SDx Max	X	0.003861	0.003707	1.042	3.6	0.006435	False	Regular
Story3	SDx Max	Y	0.000617	0.000597	1.034	3.6	0.001028	True	Regular
Story2	SDx Max	X	0.00472	0.004551	1.037	3.6	0.007867	False	Regular
Story2	SDx Max	\mathbf{Y}	0.000788	0.000765	1.03	3.6	0.001313	True	Regular
Story1	SDx Max	X	0.004647	0.004487	1.036	5	0.005576	False	Regular
Story1	SDx Max	\mathbf{Y}	0.00079	0.000768	1.028	5	0.000948	True	Regular

Table 12: Irregularidad Torsional

Story	OutputCase	Direction	Max Drift	Avg Drift	Ratio	Height	Drifts	< Driftmax/2	Es Regular
Story3	SDy Max	X	0.001176	0.001121	1.049	3.6	0.001960	True	Regular
Story3	SDy Max	\mathbf{Y}	0.001688	0.00168	1.005	3.6	0.002813	True	Regular
Story2	SDy Max	X	0.001437	0.001376	1.045	3.6	0.002395	True	Regular
Story2	SDy Max	\mathbf{Y}	0.0022	0.00219	1.004	3.6	0.003667	False	Regular
Story1	SDy Max	X	0.001414	0.001356	1.043	5	0.001697	True	Regular
Story1	SDy Max	Y	0.002239	0.00223	1.004	5	0.002687	True	Regular

1.3.4 Irregularidad por Discontinuidad del Diafragma

Tabla N°9 E-030

La estructura se califica como irregular cuando los diafragmas tienen discontinuidades abruptas o variaciones importantes en rigidez, incluyendo aberturas mayores que 50% del área bruta del diafragma.

También existe irregularidad cuando, en cualquiera de los pisos y para cualquiera de las direcciones de análisis, se tiene alguna sección transversal del diafragma con un área neta resistente menor que 25% del área de la sección transversal total de la misma dirección calculada con las dimensiones totales de la planta.

Figure 5: Irregularidad por discontinuidad del diafragma

Table 13: Irregularidad por discontinuidad del diafragma (a)

Longitud del aligerado (L1)	7.51	m
Espesor del aligerado (e1)	0.05	\mathbf{m}
Area del aligerado A1=L1 \cdot e1	0.38	m^2
Longitud de la losa macisa (L2)	2.25	\mathbf{m}
Espesor de la losa macisa (e2)	0.2	\mathbf{m}
Area de la losa macisa A1=L1 \cdot e1	0.45	m^2
Ratio	118.42	%
Ratio límite	25.00	%
Verificación	Regular	
		-

Table 14: Irregularidad por discontinuidad del diafragma (b)

Abertura	Largo (m)	Ancho (m)	Área m^2
1	4.02	2.30	9.25
2	1.10	2.30	2.53
3	1.20	19.00	22.80
	Área total	de aberturas:	$34.58 \ m^2$
	Área tota	l de la planta:	$120.41 \ m^2$
		Ratio:	28.72~%
		Ratio límite:	50.00~%
		Verificación:	Regular

1.3.5 Irregularidad por Esquinas entrantes

Tabla N°9 E-030

La estructura se califica como irregular cuando tiene esquinas entrantes cuyas dimensiones en ambas direcciones son mayores que 20% de la correspondiente dimensión total en planta

Figure 6: Irregularidad por esquinas entrantes

Table 15: Irregularidad por esquinas entrantes

Esquina entrante en X(a)	4.95	m
Esquina entrante en Y(b)	2.3	\mathbf{m}
Dimensión total en $X(A)$	7.51	\mathbf{m}
Dimensión total en $Y(B)$	15.28	\mathbf{m}
a/A	65.91	%
b/B	15.05	%
Limite <	20.0	%
Verificación	Regular	

1.4 Análisis Dinámico Espectral Art. 29 E-030

El análisis dinámico modal espectral consiste calcular la respuesta para cada modo ingresando al espectro de pseudo-aceleraciones definido en 1.1.8, para posteriormente combinar los resultados según los criterios que se menciona en la norma E-030:

1.4.1 Criterios de combinación

Art. 29.3.1

Mediante los criterios de combinación que se indican, se puede obtener la respuesta máxima elástica esperada (r) tanto para las fuerzas internas en los elementos componentes de la estructura, como para los parámetros globales del edificio como fuerza cortante en la base, cortantes de entrepiso, momentos de volteo, desplazamientos totales y relativos de entrepiso.

Art. 29.3.2

La respuesta máxima elástica esperada (r) correspondiente al efecto conjunto de los diferentes modos de vibración empleados (ri) puede determinarse usando la combinación cuadrática completa de los valores calculados para cada modo.

$$r = \sqrt{\sum \sum r_i \, \rho_{ij} \, r_j} \tag{1}$$

Art. 29.3.3

 $Donde\ r\ representa\ las\ respuestas\ modales,\ desplazamientos\ o\ fuerzas,\ los\ coeficientes\ de\ correlación\ est\'an\ dados\ por:$

$$\rho_{ij} = \frac{8\beta^2 (1+\lambda) \lambda^{3/2}}{(1-\lambda^2) + 4\beta^2 \lambda (1+\lambda)^2} \qquad \lambda = \frac{\omega_j}{\omega_i}$$
 (2)

Donde:

 β : fracción del amortiguamiento crítico, que se puede suponer constante para todos los modos igual a 0,05.

 $\omega_j,\!\omega_i$: son las frecuencias angulares de los modos i, j

1.5 Determinación de desplazamientos laterales Art. 31 E-030

Art. 31.3.1

Para estructuras regulares, los desplazamientos laterales se calculan multiplicando por 0,75~R los resultados obtenidos del análisis lineal y elástico con las solicitaciones sísmicas reducidas. Para estructuras irregulares, los desplazamientos laterales se calculan multiplicando por 0,85~R los resultados obtenidos del análisis lineal elástico.

Figure 7: Desplazamientos inelásticos

1.6 Verificación de derivas máximas Art. 32 E-030

Table 16: Derivas máximas

LIMITES PARA LA DISTORSION DE ENTREPISO					
Material predominante:	Δ_i/h_{ei}				
Concreto Armado	0.007				
Acero	0.01				
Albañilería	0.005				
Madera	0.01				
Edificios de concreto armado con muros de ductilidad limitada	0.005				

Fuente: E-030 (2018)

Figure 8: Derivas máxima de entrepiso

1.7 Verificación del sistema estructural

Se verificará que efectivamente se tiene un sistema estructural de muros en la dirección X, en la dirección Y no se verificara dado que no existen muros estructurales. Como se muestra en la figura 10 el valor de cortante que absorben los muros es de 64 ton, y la cortante total es aproximadamente 70 ton (ver figura 12) por lo que el porcentaje que toman los muros es mayor al 90%.

1.8 Análisis estático o de fuerzas estáticas equivalentes Art. 28 E-030

1.8.1 Fuerza cortante en la base Art 28.2 E-030

Art. 28.2.1

La fuerza cortante total en la base de la estructura, correspondiente a la dirección considerada, se determina por la siguiente expresión:

$$V = \frac{Z \cdot U \cdot C \cdot S}{R} P \qquad \frac{C}{R} \ge 0,11$$
 (3)

Según el articulo 28.4.2 el periodo fundamental de vibración puede estimarse con la ecuación:

$$T = 2\pi \cdot \sqrt{\frac{\left(\sum_{i=1}^{n} P_i \cdot d_i^2\right)}{g \cdot \left(\sum_{i=1}^{n} f_i \cdot d_i\right)}}$$
(4)

Donde:

 P_i : es el peso sísmico en el nivel i.

Figure 9: Sistema estructural

Fuente: Muñoz (2020)

Figure 10: Verificación del sistema estructural en X

Fuente: Muñoz (2020)

 f_i : es la fuerza lateral en el nivel i correspondiente a una distribución en altura semejante a la del primer modo en la dirección de análisis.

 d_i : es el desplazamiento lateral del centro de masa del nivel i en traslación pura (restringiendo los giros en planta) debido a las fuerzas f_i . Los desplazamientos se calculan suponiendo comportamiento lineal elástico de la estructura y, para el caso de estructuras de concreto armado y de albañilería, considerando las secciones sin fisurar.

Lo anterior equivale a calcular los modos de vibrar en el modelo matemático restringiendo el grado

de libertad de rotación. Lo anterior equivale a calcular los modos de vibrar en el modelo matemático restringiendo el grado de libertad de rotación.

Figure 11: Periodos fundamentales en traslación pura

Table 17: Análisis sísmico estático

Factor de Zona (Tabla N° 1)
Factor de Uso (Tabla N° 5)
Periodos en traslación pura obtenidos del ETABS (Art. 28.4.2)
Factor de Amplificación (Art. 14)
Factor de Suelo (Tabla N°3)
Coef. Básico de Reducción (Tabla N°7)
Irregularidad en altura (Tabla N°8)
Irregularidad en planta (Tabla N°9)
Coef. de Reducción (Articulo 22)
Verificación (Articulo 28.2.2)
Peso sísmico (ETABS)
Coeficientes
Cortante estática (Art.28.2)
Coeficiente k (Art.28.3.2)

PARÁMETROS SÍSMICOS						
	X	Y				
Z	0	0.45				
U	1.	50				
T	0.35	0.27				
C	2.50	2.50				
S	1.05					
R_{o}	8.00	7.00				
I_a	1.00	1.00				
$I_{ m p}$	1.00	1.00				
R	8.00	7.00				
C/R > 0.11	0.31	0.36				
Ps (Ton)	350.55					
ZUCS/R	0.22	0.25				
V (ton)	77.64	88.73				
k	1.00	1.00				

Table 18: Análisis sísmico estático por pisos

Piso	Peso	Altura	H^{kx}	H^{ky}	PxHx	РхНу	ax	ay	Vx	Vy
Story3	87.789	12.200	12.200	12.200	1071.021	1071.021	0.377	0.377	29.235	33.412
Story2	127.640	8.600	8.600	8.600	1097.705	1097.705	0.386	0.386	29.964	34.244
Story1	135.116	5.000	5.000	5.000	675.578	675.578	0.238	0.238	18.441	21.075

1.9 Fuerza cortante mínima Art. 29.4 E-030

Art. 29.4.1

Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en el primer entrepiso del edificio no puede ser menor que el 80% del valor calculado según el artículo 25 para estructuras regulares, ni menor que el 90% para estructuras irregulares.

Art. 29.4.2

Si fuera necesario incrementar el cortante para cumplir los mínimos señalados, se escalan proporcionalmente todos los otros resultados obtenidos, excepto los desplazamientos.

Figure 12: Cortantes de Entrepiso del Análisis Modal Espectral

Table 19: Escalamiento de la cortante dinámica

	X	Y
V din (Ton)	90.33	78.02
V est (Ton)	-59.25	-59.25
$\% \min$	80.00	80.00
%	152.46	131.69
F.E.	1.00	1.00

1.10 Separación entre edificios Art. 33 E-030

Art. 33.1

Toda estructura está separada de las estructuras vecinas, desde el nivel del terreno natural, una distancia mínima s para evitar el contacto durante un movimiento sísmico.

Art. 33.2

Esta distancia no es menor que los 2/3 de la suma de los desplazamientos máximos de los edificios adyacentes ni menor que:

$$s = 0.006 \ h \ge 0.03 \ m \tag{5}$$

Donde h es la altura medida desde el nivel del terreno natural hasta el nivel considerado para evaluar s

Art. 33.3

El edificio se retira de los límites de propiedad adyacentes a otros lotes edificables, o con edificaciones, distancias no menores que 2/3 del desplazamiento máximo calculado según el artículo 28 ni menores que s/2 si la edificación existente cuenta con una junta sísmica reglamentaria.

Figure 13: Separación entre edificios

Table 20: Cálculo de la junta sísmica

Altura del edificio
Separación mínima entre edificios
Separación mínima del limite de propiedad
Desplazamiento máximo en X
Desplazamiento máximo en Y
Separación del limite de propiedad X
Separación del limite de propiedad Y

h	1220.0	cm
s=0.006h	7.32	>3cm
s/2	3.66	$^{ m cm}$
Δ_x	1.32	$\rm cm$
Δ_y	0.61	$\rm cm$
$2/3\Delta_x$	0.88	cm
$2/3\Delta_y$	0.41	$\rm cm$

Según lo calculado en la tabla 20 el edificio tendrá que ser separado del limite de propiedad $4.00~\rm cm$ como mínimo en ambas direcciones, en el caso que no exista junta reglamentaria el edificio actual se separa del edificio existente el valor de s/2 que le corresponde, más el valor s/2 de la estructura vecina.