Chapitre IV

Optimisation avec contraintes

Dans cette leçon, nous voyons les principes d'optimisation avec contrainte :

- comment les contraintes sont définies et caractérisées,
- les conditions d'optimalité pour un programme avec contrainte,
- la méthode du simplexe (problème linéaire sous contraintes linéaires),
- le gradient projeté (projection de gradient du l'hyperplan tangent)
- le Lagrangien augmenté (pénalisation des contraintes avec les multiplicateurs de Lagrange)

Rappel : la quasi-totalité des transparents de ce cours provient du cours d'optimisation de Max Cerf (Université Paris 6 / Ariane Espace).

1 Introduction

Problème non linéaire sous contraintes

$$\min_{\mathbf{x} \in \mathbf{R}^n} \mathbf{f}(\mathbf{x}) \quad \text{sous} \quad \begin{cases} \mathbf{c}_{\mathrm{E}}(\mathbf{x}) = 0 \\ \mathbf{c}_{\mathrm{I}}(\mathbf{x}) \le 0 \end{cases} \longrightarrow \text{Problème noté (PO)}$$

Catégories de problèmes

- Programmation linéaire
- 40
- Programmation non linéaire
- \rightarrow Fonctions f, c_E , c_I linéaires
- \rightarrow Fonctions f, c_E , c_I quelconques

Traitement des contraintes

- Méthodes de contraintes actives
- → Identification des inégalités actives

 Transformation en un problème avec contraintes égalité

 Respect des contraintes à chaque itération
- Méthodes de point intérieur
- → Fonction barrière (pénalisation intérieure) Suivi d'un chemin central intérieur aux contraintes
- Méthodes de pénalisation
- → Critère augmenté (pénalisation extérieure)

 Transformation en un problème sans contraintes

Problème non linéaire sous contraintes

$$\min_{\mathbf{x} \in \mathbf{R}^n} \mathbf{f}(\mathbf{x}) \quad \text{sous} \quad \begin{cases} c_{\mathrm{E}}(\mathbf{x}) = 0 \\ c_{\mathrm{I}}(\mathbf{x}) \leq 0 \end{cases} \longrightarrow \text{Problème noté (PO)}$$

Classification des méthodes

	Méthode primale	Méthode primale-duale	Méthode duale
Problème traité	problème primal	problème primal	problème dual
Objectif	min f - méthode directe - point stationnaire	solution KKT - méthode indirecte - point stationnaire	max w - méthode indirecte - point col
Itérations	admissibles	admissibles ou non	non admissibles
Variables	primales x	primales x , duales λ	primales x , duales λ
Algorithmes	simplexe (LP)gradient projetépénalisation	- point intérieur (LP, NLP) - séquentiel quadratique	simplexe dual (LP)lagrangien augmentéUzawa

2 Contraintes

2.1 Définition

a) Solution admissible

Qu'est-ce qu'une solution admissible?

2. Contraintes 105

Solution admissible

x solution admissible de (PO) \Leftrightarrow x satisfait les contraintes (ou point admissible)

$$\begin{cases} c_{E}(x) = 0 \\ c_{I}(x) \le 0 \\ x \in X \end{cases}$$

Ensemble admissible

$$X_{adm} = \left\{ x \in R^n / c_E(x) = 0, c_I(x) \le 0, x \in X \right\}$$

Non admissible

Illustration dans R²

- $c_1(x) = 0 \rightarrow courbe$
- $c_2(x) \le 0 \rightarrow \text{région du plan}$
- $c_3(x) \le 0 \rightarrow \text{région du plan}$

Dans Rn

- $c(x) = 0 \rightarrow hypersurface$ (dimension n-1)
- $a^Tx = 0 \rightarrow hyperplan \perp a \in \mathbb{R}^n$ (linéaire)

Erratum: $c_3(x) \ge 0$ (aussi une région du plus pour une contrainte ≥ 0)

Contrainte active

Une contrainte active est une contrainte qui atteinte (on est sur le contour de la contrainte).

Contrainte active

Une contrainte du problème (PO) est active (ou saturée) en x si elle s'annule en x.

Ensemble des contraintes actives

$$C_{act}(x) = \{j/c_{Ej}(x) = 0\} \bigcup \{j/c_{Ij}(x) = 0\}$$

- $\begin{array}{lll} \text{Contrainte \'egalit\'e} & c_E: & x \text{ admissible } \Rightarrow c_E(x) = 0 \Rightarrow c_E & \text{active en } x \\ \text{Contrainte in\'egalit\'e} & c_I: & x \text{ admissible } \Rightarrow c_I(x) \leq 0 \Rightarrow c_I & \text{active en } x & \text{si } c_I(x) = 0 \\ \end{array}$ c_1 inactive en x si $c_1(x) < 0$

Intérêt

- Les contraintes inégalité inactives n'ont pas d'influence sur la solution x* du problème (PO). On peut les ignorer, si on identifie l'ensemble $C_{\rm act}(x^*)$. Mais x^* n'est pas connu au départ ...
- Le problème (PO) est équivalent au problème (PO)_{act} réduit aux contraintes actives prises comme des contraintes égalité.

$$\min_{x \in R^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases} \iff \min_{x \in R^n} f(x) \text{ sous } c_j(x) = 0, j \in C_{act}(x^*) \quad \text{note } \boxed{\min_{x \in R^n} f(x) \text{ sous } c(x) = 0}$$

Exemple:

$$\min_{x \in \mathbb{R}} x^2 + 1 \text{ sous } \begin{cases} x \ge 1 \\ x \le 2 \end{cases} \rightarrow x^* = 1$$

1. Minimum sans contrainte

$$\min_{x \in R} x^2 + 1 \rightarrow x^* = 0$$

- Respecte la contrainte $x \le 2$
- Ne respecte pas la contrainte $x \ge 1$ \rightarrow Activation de la contrainte x = 1
- 2. Minimum avec contrainte active x = 1

$$\min_{x \in R} x^2 + 1 \text{ sous } x = 1 \rightarrow x^* = 1$$

- Respecte la contrainte $x \le 2$
- Respecte la contrainte x ≥ 1
 → Solution du problème

- Minimum sans contrainte
- Minimum avec contrainte
- 3. Bilan : 1 contrainte active $x \ge 1$ \rightarrow transformée en égalité 1 contrainte inactive $x \le 2$ \rightarrow ignorée

Donc, si une contrainte est active, la solution vérifie cette contrainte transformée en égalité.

c) Point intérieur

Un point intérieur est un point à l'intérieur de l'espace des valeurs admissibles (contraintes comprises).

Point intérieur

y point intérieur à Y

 \Leftrightarrow Il existe un voisinage de y contenu dans Y : $\exists \epsilon > 0 \ / \ \forall z, \|z - y\| \le \epsilon$, $z \in Y$ Un problème avec contraintes égalité n'admet pas de point intérieur

Solution intérieure aux contraintes

- x* minimum local du problème avec contraintes inégalité
- Si x* est un point intérieur, alors
 x* minimum local du problème sans contraintes
- $\min_{x \in \mathbb{R}^n} f(x) \quad \text{sous } c_I(x) \le 0$
- $\min_{x \in \mathbb{R}^n} f(x) \longrightarrow \text{plus simple}$

2. Contraintes

Exemple:

$$\min_{x \in R} x^2 + 1 \text{ sous } x \le 1 \rightarrow x^* = 0$$

1. Ensemble admissible

$$X_{adm} = \{x \in R / x \le 1\} =]-\infty,1]$$

2. Ensemble intérieur à la contrainte

$$X_{int} = \{x \in R / x < 1\} =]-\infty, 1[$$

$$\mathbf{X}_{int} \, = \mathbf{X}_{adm} - \left\{ \! 1 \right\}$$

 $x \in X_{int}$ \rightarrow voisinage de x inclus dans X_{int} \rightarrow intervalle ouvert

Minimum avec contrainte

3. Solution: x*=0

 $x^* \in X_{int}$ intérieur à la contrainte \rightarrow contrainte inactive

d) Direction admissible

Direction admissible

 $d \in R^n$ direction de déplacement à partir de $x \in X_{adm}$ point admissible

Définition: d direction admissible

$$\Leftrightarrow \exists \epsilon > 0 \, / \, \forall s, \ 0 < s \le \epsilon \ \Rightarrow \ x + sd \in X_{adm}$$

On peut se déplacer d'au moins ε suivant d à partir de x en restant admissible

Contrainte égalité : ∇c_E(x)^Td = 0 → tangent
 Contrainte inégalité : ∇c_I(x)^Td ≤ 0 → intérieur

Ensemble convexe

$$X_{adm}$$
 convexe, $y \neq x$, $x,y \in X_{adm} \Rightarrow [x,y] \subset X_{adm}$

 \Rightarrow d=y-x est une direction admissible à partir de x

Point intérieur

x point intérieur à X_{adm}

 \Rightarrow Toute direction $d \in R^n$ est admissible à partir de x

Pour une contrainte

- d'égalité : il faut suivre la surface correspondant à l'égalité, la direction est tangente (orthogonale à la normale à la surface)
- d'inégalité : vers l'intérieur du domaine de la contrainte.

Contraintes linéaires 2.2

Dans le cas des contraintes linéaires :

- une contrainte linéaire définit un espace délimité par des hyperplans (= polytope).
- la forme standard d'une contrainte linéaire permet de la réexprimer sous une forme où toutes les contraintes sont des contraintes d'égalités et les variables positives.
- sous cette forme, chaque résolution partielle permet d'obtenir l'un des sommets du polytopes.
- les directions admissibles peuvent être alors engendrées à partir de ces sommets.

Des contraintes linéaires sont sous la forme standard s'il n'y a que des contraintes d'égalité, avec des variables positives.

Contraintes linéaires

ntraintes linéaires
Contraintes linéaires sous forme standard :
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$
$$X_{adm} = \left\{ x \in R^n \ / \ Ax = b, \ x \ge 0 \right\}$$

Direction admissible

$$d \in R^n \text{ direction admissible à partir de } x \text{ point admissible } \Leftrightarrow \begin{cases} Ad = 0 \\ d_i \ge 0 \text{ si } x_i = 0 \end{cases}$$

Preuve: Pour
$$s > 0$$
 petit, on doit avoir $: (x + sd) \in X_{adm} \Leftrightarrow \begin{cases} A(x + sd) = b \\ x + sd \ge 0 \end{cases} \Leftrightarrow \begin{cases} Ad = 0 \quad car \quad Ax = b \\ x + sd \ge 0 \end{cases}$

Si
$$x_i > 0$$
, alors $x_i + sd_i > 0$ pour s assez petit
Si $x_i = 0$, alors $x_i + sd_i \ge 0$ si $d_i \ge 0$

Combinaison de directions admissibles

Toute combinaison linéaire à coefficients positifs de directions admissibles est une direction admissible.

Preuve : Une combinaison linéaire à coefficients positifs vérifie également $\begin{cases} Ad = 0 \\ d_i \ge 0 \text{ si } x_i = 0 \end{cases}$

2. Contraintes 109

Direction admissible

Un polytope est une zone de l'espace délimitée par un ensemble d'hyperplan.

Définition

Polytope P dans Rⁿ

$$P = \left\{ x \in \mathbb{R}^n / Ax \le b \right\} \qquad A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m$$

$$A \in R^{m \times n} \ , \ b \in R^n$$

Interprétation géométrique

$$Ax = b \iff \begin{cases} A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,n}x_n = b_1 & \rightarrow \text{ hyperplan 1} \\ A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,n}x_n = b_2 & \rightarrow \text{ hyperplan 2} \\ \dots & \dots & \dots \\ A_{m,1}x_1 + A_{m,2}x_2 + \dots + A_{m,n}x_n = b_m & \rightarrow \text{ hyperplan m} \end{cases}$$

Chaque hyperplan j sépare R^n en 2 sous-espaces : $\begin{cases} A_{j,.}x \leq b_j \\ A_{j,.}x \geq b_j \end{cases}$

- \rightarrow Polytope dans $R^2 =$ polygone
- \rightarrow Polytope dans $R^3 =$ polyèdre

Noter qu'un polytope est **toujours convexe**.

On obtient la forme standard en :

- supprimant les contraintes redondantes (exemple : $-1 \le x \le 12$ et $x \ge 5$ sont redondants, à réduire en $5 \le x \le 12$),
- en ajoutant des variables ou en effectuant des changements de variable,

de manières à ce que l'ensemble des variables exprimant les contraintes soient positives.

83

Forme standard

Polytope P dans Rⁿ sous forme standard

Passage sous forme standard

• Contrainte inégalité : Transformation en contrainte égalité Ajout d'une variable d'écart positive

$$c(x) \le b \iff \begin{cases} c(x) + z = b \\ z \ge 0 \end{cases} \iff \begin{cases} c'(x) = b & \text{avec} \quad c'(x) = c(x) + z \\ z \ge 0 \end{cases}$$
$$c(x) \ge b \iff \begin{cases} c(x) - z = b \\ z \ge 0 \end{cases} \iff \begin{cases} c'(x) = b & \text{avec} \quad c'(x) = c(x) - z \\ z \ge 0 \end{cases}$$

• Contraintes de bornes : Changement de variable → borne inférieure Ajout d'une variable d'écart positive → borne supérieure

$$x_{1} \leq x \leq x_{u} \iff 0 \leq x - x_{1} \leq x_{u} - x_{1} \iff \begin{cases} x' = x - x_{1}, & x' \geq 0 \\ x' \leq x_{u} - x_{1} \end{cases} \Leftrightarrow \begin{cases} x' = x - x_{1}, & x' \geq 0 \\ x' + z = x_{u} - x_{1}, & z \geq 0 \end{cases}$$

• Variable libre : Différence de 2 variables positives $x \in R \iff x = z - y, y, z \ge 0$

Mise sous forme standard

• Problème linéaire (P)

$$\min_{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3} \mathbf{x}_1 + 2\mathbf{x}_2 + 3\mathbf{x}_3 \quad \text{sous} \begin{cases} -\mathbf{x}_1 + 3\mathbf{x}_2 &= 5\\ 2\mathbf{x}_1 - \mathbf{x}_2 + 3\mathbf{x}_3 \ge 6\\ \mathbf{x}_1 \in \mathbf{R}, \ \mathbf{x}_2 \ge 1, \ \mathbf{x}_3 \le 4 \end{cases}$$

• Changement de variables pour les bornes

$$\begin{cases} x_1 \in R \\ x_2 \ge 1 \\ x_3 \le 4 \end{cases} \Leftrightarrow \begin{cases} x_1 = z_1 - y_1 & \to y_1, z_1 \ge 0 \\ x_2' = x_2 - 1 & \to x_2' \ge 0 \\ x_3' = 4 - x_3 & \to x_3' \ge 0 \end{cases}$$

· Variables d'écart pour les contraintes inégalité

$$2x_1 - x_2 + 3x_3 \ge 6 \Leftrightarrow 2x_1 - x_2 + 3x_3 - z_2 = 6 \rightarrow z_2 \ge 0$$

• Problème équivalent à (P) sous forme standard

$$\min_{y_1, z_1, z_2, x_2', x_3'} z_1 - y_1 + 2x_2' - 3x_3' + 14 \quad sous \begin{cases} y_1 - z_1 + 3x_2' = 2\\ 2z_1 - 2y_1 - x_2' - 3x_3' - z_2 = -5 \end{cases}$$

Exercice 24: Forme standard

Mettre sous forme standard les problèmes linéaires suivants :

1.
$$\min_{x_1, x_2} 3x_1 - x_2 \text{ sous } \begin{cases} x_1 \ge 1 \\ 0 \le x_2 \le 5 \end{cases}$$
2. $\min_{x_1, x_2} x_2 - 2x_1 \text{ sous } \begin{cases} 2 \le x_1 \le 8 \\ x_2 \le x_1 \le x_2 + 2 \end{cases}$

2. Contraintes 111

Sommet

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in R^n \ / \ Ax = b \, , \ x \ge 0 \right\} \qquad \begin{array}{l} A \in R^{m \times n}, \ b \in R^m \\ A \ de \ rang \ plein : rang(A) = r = m \le n \end{array}$$

Définition

 $x \in P$ est un sommet de P

On ne peut pas trouver y,z∈P, différents de x tels que x soit combinaison convexe de y et z i.e. $x = \lambda y + (1 - \lambda)z$ avec $0 \le \lambda \le 1$

Existence

Tout polytope non vide possède au moins un sommet.

Sur la figure ci-dessus, les non-sommets sont obtenus comme une combinaison linéaire de deux autres sommets (premier : le sommet de l'arête, le second à partir des deux sommets distants)

Une base est obtenue en prenant m colonnes parmi les n possibles dans la matrice A du système linéaire.

La résolution du système linéaire fournit un point correspondant à l'intersection de m parmi n hyperplans possibles.

Si ce point est admissible (car la solution peut être l'extérieur du domaine), constitue un sommet du polytope.

Base

 $\begin{array}{l} Polytope \ P \ dans \ R^n \ sous \ forme \ standard \\ P = \ \left\{ \!\! x \in R^n \ / \ Ax = b \, , \ x \geq 0 \right\} \qquad A \in R^{m \times n}, \ b \in R^m \end{array}$

- A est de rang plein $r=m \le n \implies II$ existe m colonnes indépendantes.
- On choisit une sous-matrice $B \in R^{m \times m}$ de rang plein (parmi C^m_n combinaisons possibles)

E matrice de permutation des colonnes de A : EE^T=I

- $\begin{array}{ll} A_{.,k} = & k^{\grave{e}me} \; colonne \; de \; AE \\ B & = & \textbf{matrice } \, \textbf{de } \, \textbf{base} & \rightarrow \; B \in R^{m \times m} \; inversible \end{array}$
- $N = matrice hors base \rightarrow N \in R^{m \times (n-m)}$

Ci-dessous, si B est constitué par le colonne d'indice (i_1, \ldots, i_n) de A, alors x_b est construit comme

$$x_B = \begin{bmatrix} x_{i_1} & \dots & x_{i_n} \end{bmatrix}.$$

Identification des sommets

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in \mathbb{R}^n / Ax = b, x \ge 0 \right\} \qquad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

Choix d'une base $B \in R^{m \times m}$

$$AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix} \qquad E^{T}x = \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix}$$

 $x_B \in R^m$ = variables en base (ou liées ou dépendantes) $x_N \in R^{n-m}$ = variables hors base (ou libres ou indépendantes)

• Point admissible:
$$x \in P \iff \begin{cases} Ax = b \\ x \ge 0 \end{cases} \Leftrightarrow \begin{cases} Bx_B + Nx_N = b \\ x \ge 0 \end{cases} \Leftrightarrow \begin{cases} x_B = B^{-1}(b - Nx_N) \\ x \ge 0 \end{cases}$$

Identification des sommets

Tout point x tel que :
$$\begin{cases} x_B = B^{-1}b \ge 0 \\ x_N = 0 \end{cases} \implies E^T x = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \text{ est un sommet du polytope.}$$

→ « solutions de base »

Donc un point obtenu est admissible s'il est dans le domaine des contraintes sous forme normale, à savoir $x_B \ge 0$ et $x_N = 0$.

Pour résumer les propriétés d'une solution de base :

Solution de base

Polytope P dans Rⁿ sous forme standard

$$P = \begin{cases} x \in R^n \ / \ Ax = b, \ x \ge 0 \end{cases} \qquad \begin{array}{l} A \in R^{m \times n}, \ b \in R^m \\ A \ de \ rang \ plein : rang(A) = r = m \le n \end{array}$$

Définition

 $x \in R^n$ est une solution de base de P

Il existe m indices $i_1,...,i_m$ tels que

- La matrice $B \in R^{m \times m}$ composée des colonnes $i_1, ..., i_m$ de A est de rang plein Les n-m composantes x_i , $i \neq i_1, ..., i_m$ sont nulles $\rightarrow x_N = 0$ $\rightarrow x$ vérifie Ax = b $\rightarrow x_B = B^{-1}b$

Solution de base admissible

Une solution de base x est admissible si toutes ses composantes sont positives ($x \in P$). x vérifie également $x \ge 0 \implies x_B = B^{-1}b \ge 0$

→ Base admissible ou réalisable, solution de base admissible ou réalisable

Solution de base dégénérée

Une solution de base x est **dégénérée** si plus de n-m composantes de x sont nulles. $x_N=0$ par définition (n-m composantes) $\Rightarrow x_B$ comporte des composantes nulles

2. Contraintes 113

Lien avec les sommets du polytopes :

Lien sommet – solution de base

Polytope P dans Rⁿ sous forme standard

$$P = \begin{cases} x \in R^n / Ax = b, x \ge 0 \end{cases} \qquad A \in R^{m \times n}, b \in R^m$$

$$A \text{ de rang plein : rang}(A) = r = m \le n$$

- I=indices des composantes nulles en $x^* \in P : I^* = \{i / x_i^* = 0\}$ (= contraintes inégalités actives)
- S=variété linéaire définie par : $S^* = \{x \in R^n \mid Ax = b, x_i = 0, \forall i \in I^*\}$

 $x^* \in R^n$ est un sommet de $P \Leftrightarrow S^* = \{x^*\} \Leftrightarrow x^*$ est une solution de base admissible de P

Lien sommet – contraintes actives

 $x^* \in P$ est un sommet de $P \Leftrightarrow Au$ moins n contraintes sont actives en x^*

- $Ax^* = b$ m contraintes égalité:
- n-m contraintes inégalité : $x_N^* = 0$

Les m contraintes inégalité sur x_B peuvent être actives ou non : $x_B^* = B^{-1}b \ge 0 \longrightarrow dégénérescence$

$$x_B^* = B^{-1}b \ge 0 \rightarrow \text{dégénérescence}$$

Recherche des solutions de base

Polytope P dans R⁴ sous forme standard

$$P = \{(x_1, x_2, x_3, x_4) / Ax = b, x \ge 0\} \text{ avec } A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

On utilise les contraintes pour réduire le problème à (x_1,x_2)

$$Ax = b \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 - x_2 + x_4 = 1 \end{cases} \Leftrightarrow \begin{cases} x_3 = 1 - x_1 - x_2 \\ x_4 = 1 - x_1 + x_2 \end{cases}$$
$$x \ge 0 \Rightarrow \begin{cases} x_3 \ge 0 \\ x_4 \ge 0 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{cases}$$

Polytope P' réduit dans R²

$$P' = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} / \left\{ \begin{matrix} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{matrix} \right. , \left. \begin{cases} x_1 \ge 0 \\ x_2 \ge 0 \right\} \right.$$

 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x \end{pmatrix} \in P \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in P'$ Les polytopes P dans R^4 et P' dans R^2 sont équivalents :

Remarque : P = forme standard de P'

Recherche des solutions de base

• Représentation de P' dans R²

$$P' = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} / \left\{ \begin{matrix} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{matrix} \right., \left\{ \begin{matrix} x_1 \ge 0 \\ x_2 \ge 0 \end{matrix} \right\}$$

→ représentation des valeurs possibles de (x_1,x_2) pour $(x_1,x_2,x_3,x_4) \in P$

- → choisir 2 colonnes indépendantes de A
- → 6 combinaisons possibles

Solution de base

- \rightarrow fixer les 2 variables hors base x_N à 0
- $\rightarrow\,$ calculer les 2 variables de base x_B pour vérifier Ax=b
- → base admissible si $x_B \ge 0$

93

Recherche des solutions de base

Examen des 6 bases possibles de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad x_B = B^{-1}b$$

- **Base** $(\mathbf{x_1}, \mathbf{x_2})$: $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{x} = (1 \ 0 \ 0 \ 0) \text{ admissible} \rightarrow \mathbf{point } \mathbf{B}$
- Base $(\mathbf{x_1, x_3})$: $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{x} = (1 \ 0 \ 0 \ 0) \text{ admissible} \rightarrow \mathbf{point B}$
- Base $(\mathbf{x_1, x_4})$: $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $\mathbf{x}_{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{x} = (1 \ 0 \ 0 \ 0)$ admissible \rightarrow point \mathbf{B}

Recherche des solutions de base

Examen des 6 bases possibles de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} , b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad x_B = B^{-1}b$$

- Base $(\mathbf{x}_2, \mathbf{x}_3)$: $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ $\mathbf{x} = (0 -1 \ 2 \ 0) \text{ non admissible } \rightarrow \mathbf{point D}$
- Base $(\mathbf{x_2}, \mathbf{x_4})$: $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\mathbf{x} = (0 \ 1 \ 0 \ 2) \text{ admissible} \rightarrow \mathbf{point C}$
- Base $(\mathbf{x_3, x_4})$: $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{x}_{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\mathbf{x} = (0 \ 0 \ 1 \ 1) \text{ admissible} \rightarrow \mathbf{point A}$

95

Exercice 25: Recherche des solutions de base

$$\min_{x_1, x_2} x_1 + x_2 \text{ sous } \begin{cases} x_1 \le 1 \\ x_2 \le 1 \end{cases}$$

- 1. Donner la forme standard de ce problème.
- 2. Écrire le polytope des contraintes sous forme matricielle.
- 3. Combien y-a-t-il de bases possibles?
- 4. Examiner l'ensemble des solutions de base. On précisera à chaque fois si la solution est admissible.
- 5. Représenter les contraintes sur un dessin, et l'ensemble des solutions trouvées à la question précédente.

On se déplace à partir d'un sommet à partir d'une solution de base.

Direction de déplacement à partir d'un sommet

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in \mathbb{R}^n \mid Ax = b, \ x \ge 0 \right\} \qquad A \in \mathbb{R}^{m \times n} \text{ de rang plein, } b \in \mathbb{R}^m$$

$$x \in \mathbb{R}^n \text{ solution de base admissible de } P : \qquad E^T x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$$

$$d \in \mathbb{R}^n \text{ direction de déplacement :} \qquad E^T d = \begin{pmatrix} d_B \\ d_A \end{pmatrix}$$

Direction admissible

d direction admissible en x
$$\Leftrightarrow$$

$$\begin{cases} Ad = 0 \\ d_i \ge 0 \text{ si } x_i = 0 \end{cases}$$
 (contraintes linéaires)
$$Ad = 0 \Leftrightarrow Bd_R + Nd_N = 0 \Leftrightarrow d_R = -B^{-1}Nd_N$$

→ « directions de base »

La direction à prendre dans la base est $d_B = -B^{-1}Nd_N$.

Attention, si la base est dégénérée (= l'une des coordonnées de la solution de base nulle), alors la coordonnée de la direction doit être positive (sens de $d_{B_i} \ge 0$ si $x_{B_i} = 0$).

La $k^{\text{ème}}$ direction de base consiste, à partir d'une solution de base admissible, de prendre la $k^{\text{ème}}$ direction associé à une variable hors base.

Direction de base

$$\mathbf{x} \in \mathbf{R}^{n}$$
 solution de base admissible de \mathbf{P} : $\mathbf{E}^{T}\mathbf{x} = \begin{pmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{N} \end{pmatrix} = \begin{pmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{pmatrix} \ge \mathbf{0}$

$$\mathbf{k} = \mathbf{indice} \ \mathbf{d'une} \ \mathbf{variable} \ \mathbf{hors-base}$$

$$\mathbf{d}^{k} = \mathbf{k}^{\text{ème}} \ \mathbf{direction} \ \mathbf{de} \ \mathbf{base} \ \mathbf{en} \ \mathbf{x} : \qquad \mathbf{E}^{T}\mathbf{d}^{k} = \begin{pmatrix} \mathbf{d}_{B}^{k} \\ \mathbf{d}_{N}^{k} \end{pmatrix} \ \mathbf{not\acute{e}} \ \begin{pmatrix} \mathbf{d}_{B} \\ \mathbf{d}_{N}^{k} \end{pmatrix}$$

• Les composantes d_N sur les variables hors base sont toutes nulles, sauf sur la variable x_k

$$E^{T}\begin{pmatrix}0\\d_{N}\end{pmatrix}=e_{k}=\begin{pmatrix}1&&&&^{k-1}&k&&^{k+1}&&&&^{n}\\0&\cdots&0&1&0&\cdots&0\end{pmatrix}^{T}$$

• Les composantes d_B sur les variables en base vérifient la 1^{ère} condition de direction admissible

$$Ad = 0 \implies Bd_{B} + Nd_{N} = 0 \implies d_{B} = -B^{-1}Nd_{N} = -B^{-1}\sum_{j \text{ hors base}} A_{.,j}d_{j}$$

$$\implies d_{B} = -B^{-1}A_{.,k} \qquad (A_{.,k} = k^{\text{ème}} \text{ colonne de AE})$$

• **Définition**
La kème direction de base en x est :
$$E^T d^k = \begin{pmatrix} d_B^k \\ d_N^k \end{pmatrix} = \begin{pmatrix} -B^{-1}A_{..k} \\ 0 \end{pmatrix} + e_k = \begin{pmatrix} 1 & m & m+1 & k-1 & k & k+1 & n \\ d_1 & \cdots & d_m & 0 & \cdots & 0 & 1 & 0 & \cdots \end{pmatrix}^T$$

• Interprétation géométrique : directions de base = arêtes du polytope en x

= dans un base admissible, la direction de base est obtenue en prenant chaque colonne de A hors base (notée A_k) et à calculer $-B^{-1}.A_k$, les autres colonnes à 0 sauf 1 à la $k^{\text{ème}}$ colonne.

2. Contraintes

Il faut également vérifier que cette $k^{\text{ème}}$ direction de base est admissible.

Direction de base admissible

 $x \in \mathbb{R}^n$ solution de base admissible de P, k = indice d'une variable hors-base

La kème direction de base d^k en x vérifie par définition : $\begin{cases} Ad=0\\ d_{\rm N}\geq 0 \end{cases}$

Pour que d^k soit une direction admissible, il faut également vérifier : $d_{Bi} \ge 0$ si $x_{Bi} = 0$

Cas d'une base non dégénérée

x solution de base admissible non dégénérée $(x_B > 0)$

Toutes les directions de base en x sont admissibles

Combinaison de directions de base

 $x \in R^n$ solution de base admissible de P

Toute direction admissible d en x est combinaison linéaire des directions de base d^k en x

$$d = \sum_{k \text{ hors base}} \alpha_k d^k$$
 avec $d^k = k^{\text{ème}}$ direction de base en x

Les directions admissibles à partir d'une solution de base admissible peuvent être construite comme une combinaison linéaire des $k^{\text{ème}}$ direction de base.

Méthode pratique de recherche des directions de base :

Recherche des directions de base

Polytope P dans R⁴ sous forme standard

$$P = \{(x_1, x_2, x_3, x_4) / Ax = b, x \ge 0\}$$

$$A = \begin{cases} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{cases}, b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- Direction de base en une solution de base admissible
 - \rightarrow choisir une variable hors base (k)
 - \rightarrow fixer la composante hors base correspondante d_{Nk} à 1
 - \rightarrow fixer les autres composantes hors base d_N à 0
 - \rightarrow calculer les composantes en base d_B par $-B^{-1}A_{...k}$
- Si la base est non dégénérée, la direction est admissible.
 Sinon, il faut vérifier d_B ≥ 0 sur les composantes x_B = 0
- Sommets de P
 - \rightarrow 2 variables hors base à chaque sommet
 - → 2 directions de base (= arêtes du polytope)

Recherche des directions de base

Examen de directions de base de P

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

• Base admissible (x_2,x_4) : $x = (0 \ 1 \ 0 \ 2) \rightarrow point C$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \ \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

• Direction de base d^1 correspondant à la variable hors base x_1

$$d_{B} = -B^{-1}A_{.,1} = -\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$d^1 = (1 -1 0 -2) \rightarrow admissible$$

• Direction de base d³ correspondant à la variable hors base x₃

$$d_{B} = -B^{-1}A_{.,3} = -\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$d^3 = (0 -1 1 -1) \rightarrow admissible$$

Recherche des directions de base

Examen de directions de base de P

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

• Base admissible $(\mathbf{x}_1, \mathbf{x}_4)$: $\mathbf{x} = (1 \ 0 \ 0 \ 0) \rightarrow \mathbf{point} \mathbf{B}$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

base dégénérée

• Direction de base
$$d^2$$
 correspondant à la variable hors base x_2

$$d_{B} = -B^{-1}A_{.,2} = -\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$d^2 = (-1 \ 1 \ 0 \ 2) \rightarrow admissible$$

• Direction de base d³ correspondant à la variable hors base x₃

$$d_{B} = -B^{-1}A_{.,3} = -\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$d^3 = (-1 \ 0 \ 1 \ 1) \rightarrow admissible$$

Recherche des directions de base

Examen de directions de base de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

• Base admissible $(\mathbf{x}_1, \mathbf{x}_2)$: $\mathbf{x} = (1 \ 0 \ 0 \ 0) \rightarrow \mathbf{point} \ \mathbf{B}$

$$B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix}$$
 base dégénérée

• Direction de base d^3 correspondant à la variable hors base x_3 A

$$d_{B} = -B^{-1}A_{.,3} = -\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

 $d^3 = (-0.5 - 0.5 \ 1 \ 0) \rightarrow \text{non admissible (base dégénérée)}$

Direction de base d⁴ correspondant à la variable hors base x₄

$$d_{B} = -B^{-1}A_{.,4} = -\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$

 $d^4 = (-0.5 \ 0.5 \ 0.1) \rightarrow admissible$

Exercice 26: Directions admissibles

On reprend les solutions des bases trouvées dans l'exercice 25 précédent.

- 1. Rechercher l'ensemble des directions de base pour chaque bases admissibles.

 On indiquera si la base est dégénérée, et si les directions trouvées sont admissibles ou non.
- 2. Représenter les contraintes, les solutions et les directions admissibles sur un dessin.

2.3 Contraintes non linéaires

a) Indépendance linéaire

Contraintes linéaires

Pour des contraintes linéaires Ax=b, $A \in R^{m \times n}$, si A est de rang déficient : rang(A) = r < m, on peut toujours extraire de A une sous-matrice $\tilde{A} \in R^{r \times n}$ de rang plein : $rang(\tilde{A}) = r$, telle que $\tilde{A}x = \tilde{b} \iff Ax = b \implies$ élimination des contraintes redondantes (cf §1.2.1)

Contraintes non linéaires

Pour des contraintes non linéaires, on considère un modèle linéaire local.

- x_0 point admissible : $\begin{cases} c_E(x_0) = 0 \\ c_I(x_0) \le 0 \end{cases} \Leftrightarrow c(x_0) = 0 \qquad \text{(contraintes actives en } x_0)$
- Contraintes actives linéarisées : $\hat{c}_0(x) = c(x_0) + \nabla c(x_0)^T (x x_0)$ avec $c(x_0) = 0$ $\hat{c}_0(x) = 0 \iff \nabla \underline{c(x_0)}^T x = \nabla \underline{c(x_0)}^T x_0 \iff Ax = b$

On se ramène au cas de contraintes linéaires avec $A = \nabla c(x_0)^T$ (gradient des contraintes actives)

Condition d'indépendance linéaire

Les contraintes sont dites **linéairement indépendantes** en x_0 si les gradients des contraintes actives sont linéairement indépendants en x_0 . \Leftrightarrow La matrice jacobienne des contraintes actives $J(x_0) = \nabla c(x_0)$ est de rang plein.

Exemple:

Indépendance linéaire

• 1 contrainte égalité + 1 contrainte inégalité dans R^2

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \in \mathbf{R}^2 \qquad \begin{cases} \mathbf{c}_1(\mathbf{x}) = \mathbf{x}_2 - \mathbf{x}_1^2 = 0 \\ \mathbf{c}_2(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \end{cases}$$

• En
$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\nabla c_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \qquad \nabla c_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

- → linéairement indépendants
- En $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\nabla c_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \nabla c_2 = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$

→ linéairement dépendants

Direction admissible

Définition générale

- x point admissible: $\begin{cases} c_E(x_0) = 0 \\ c_I(x_0) \le 0 \end{cases} \Leftrightarrow c(x_0) = 0 \qquad \text{(contraintes actives en } x_0\text{)}$
- **d direction admissible à partir de x** $\Leftrightarrow \exists \eta > 0 / \forall s, 0 < s < \eta, x + sd$ admissible On peut se déplacer sur un segment de longueur ε suivant d à partir de x en restant admissible.

Applicabilité

Applicable aux contraintes inégalité et aux contraintes égalité linéaires

- Inapplicable aux contraintes égalité non linéaires
 - → Définition à partir de suites de points admissibles

Suite de points admissibles

x point admissible

$$\begin{array}{l} x \text{ point admissible} \\ \text{D\'efinition}: \quad (x_k)_{k \in N} \text{ suite admissible en } x \iff \begin{cases} \forall k \text{ , } x_k \neq x \\ \lim\limits_{k \to \infty} x_k = x \\ \exists k_0 \text{ / } \forall k \geq k_0 \text{ , } x_k \text{ admissible} \end{cases}$$

Direction admissible à la limite

- On considère la suite des directions d_k reliant x_k à x: $d_k = \frac{x_k x}{\|x_k x\|}$
- Définition d direction admissible à la limite en x pour la suite $(x_k)_{k \in N}$ \Leftrightarrow Il existe une sous-suite $(d_{k_i})_{i \in N}$ telle que : $\lim_{i \to \infty} d_{k_i} = d$
- Direction admissible à la limite = direction tangente

c) Cône des directions

Définition

x point admissible

Le cône des directions D(x) en x est l'ensemble des directions $d \in \mathbb{R}^n$ vérifiant

- $\nabla c_{Ei}(x)^T d = 0$ pour toutes les contraintes égalité
 - $c_{Ej}(x) = 0, j=1 \text{ à p}$
- $\nabla c_{Ij}(x)^T d \le 0$ pour les contraintes inégalité actives : $c_{Ij}(x) = 0$, j=1 à q

 $d \in D(x)$ \rightarrow direction **tangente** aux contraintes égalité \rightarrow direction **intérieure** aux contraintes inégalité actives

Propriété

Toute direction admissible à la limite en x appartient au cône des directions en x

 $\begin{aligned} &\textit{Preuve}: \\ &(x_k) \textit{ suite admissible de limite } x \quad \Rightarrow \begin{cases} c_E(x_k) = 0 \\ c_I(x_k) \leq 0 \end{cases} \quad \Rightarrow \textit{directions} \quad d_k = \frac{x_k - x}{\|x_k - x\|} \\ &\textit{c contrainte active en } x : c(x) = 0 \qquad c(x_k) = c(x) + \nabla c(x)^T (x_k - x) + o(\|x_k - x\|) \\ &\nabla c(x)^T d_k = \frac{c(x_k) - c(x)}{\|x_k - x\|} - \frac{o(\|x_k - x\|)}{\|x_k - x\|} \Rightarrow \nabla c(x)^T d = \lim_{k \to \infty} \frac{c(x_k)}{\|x_k - x\|} \rightarrow \begin{cases} = 0 & (\textit{égalit\'e}) \\ \leq 0 & (\textit{in\'egalit\'e}) \end{cases} \end{aligned}$

d) Qualification

Caractérisation des directions admissibles

• Le cône des directions D(x) au point x admissible est simple à manipuler en pratique.

 $d \in D(x) \Leftrightarrow \begin{cases} \nabla c_E(x)^T d = 0 & \rightarrow \text{ pour toutes les contraintes égalité} \\ \nabla c_I(x)^T d \leq 0 & \rightarrow \text{ pour les contraintes inégalité actives en } x \end{cases}$

- Toutes les directions admissibles à la limite en x appartiennent à D(x), mais D(x) peut contenir également des directions non admissibles.
 - \rightarrow D(x) ne caractérise pas les directions admissibles.

Qualification des contraintes

Les contraintes vérifient la **condition de qualification** au point admissible x si toute direction du cône D(x) est admissible à la limite.

→ Condition très importante dans les algorithmes

Conditions suffisantes de qualification des contraintes

- Contraintes linéaires : Ax=b
- Contraintes linéairement indépendantes en $x : \nabla c(x)$ de rang plein
 - → réalisable simplement en pratique par extraction d'une sous-matrice de rang plein

2. Contraintes

2.4 Déplacement admissible

a) Principes

Problème sous contraintes non linéaires

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$$

On cherche à construire un déplacement p admissible et améliorant à partir d'un point initial x₀.
 On se ramène à un problème avec contraintes égalité (contraintes actives en x₀).

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives en x_0

• Les n composantes du déplacement p doivent vérifier : $\begin{cases} c(x_0 + p) = 0 \\ f(x_0 + p) < f(x_0) \end{cases}$

Méthodes possibles

• Elimination directe

On exprime m variables à partir des n-m autres à partir des contraintes. On substitue dans l'expression de f \rightarrow problème sans contraintes

• Réduction généralisée

On linéarise les contraintes en x₀.

On applique la méthode de réduction des contraintes linéaires (matrices Y et Z).

On corrige le déplacement pour prendre en compte les non-linéarités.

b) Méthode d'élimination directe

Principe

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives

• Les contraintes sont de la forme : $c(x) = c(x_{lié}, x_{libre}), x_{lié} \in \mathbb{R}^m, x_{libre} \in \mathbb{R}^{n-m}$

• Si l'on sait résoudre : $c(x_{lié}, x_{libre}) = 0 \Leftrightarrow x_{lié} = \psi(x_{libre})$

le problème devient :
$$\min_{x_{libre} \in R^{n-m}} \phi(x_{libre})$$
 avec $\phi(x_{libre}) = f(x_{lié}, x_{libre}) = f(\psi(x_{libre}), x_{libre})$

→ problème de dimension n-m, sans contrainte

Difficultés

- Il faut faire attention au domaine de définition des variables (contraintes implicites)
 → voir exemples
- Il faut disposer de l'expression analytique des fonctions (rarement réalisé en pratique)

Elimination directe

• Exemple 1:
$$\min_{x_1, x_2} x_1^2 + x_2^2$$
 sous $x_1^2 - x_2^2 = 1$

Elimination de
$$x_1$$
: $x_1^2 - x_2^2 = 1 \Rightarrow x_1^2 = 1 + x_2^2$
 $\Rightarrow \min_{x_2} 1 + 2x_2^2 \Rightarrow x_2 = 0$

Solution correcte:
$$\begin{cases} x_1 = 1 \\ x_2 = 0 \end{cases}$$

• Exemple 2:
$$\min_{x_1, x_2} x_1^2 + x_2^2 \text{ sous } x_1^2 + 4x_2^2 = 1$$

Elimination de
$$x_1$$
: $x_1^2 + 4x_2^2 = 1 \Rightarrow x_1^2 = 1 - 4x_2^2$
 $\rightarrow \min_{x_2} 1 - 3x_2^2 \Rightarrow x_2 = \pm \infty$

Solution incorrecte

Contrainte implicite :
$$x_1^2 \ge 0 \Rightarrow 1 - 4x_2^2 \ge 0$$

 $\Rightarrow -\frac{1}{2} \le x_2 \le \frac{1}{2}$

→ à prendre en compte explicitement dans la résolution

3 Condition d'optimalité

3.1 Dualité

Dualité critère-contrainte

Problème avec contraintes égalité

$$\min_{x \in R^n} f(x) \text{ sous } c(x) = 0 \longrightarrow \text{m contraintes d'égalité (= contraintes actives)}$$

Dualité

Difficulté de résolution due aux 2 objectifs antagonistes :

- Minimiser le critère f(x)
- $\rightarrow \min_{x} f(x)$
- Satisfaire les contraintes c(x)=0
- $\rightarrow \min_{\mathbf{x}} ||\mathbf{c}(\mathbf{x})||$
- → Dualité critère-contraintes

Méthodes duales

Prise en compte des contraintes avec pondération dans la fonction coût

- Critère augmenté → pondération = pénalisation des contraintes
- Lagrangien → pondération = multiplicateurs de Lagrange
- Lagrangien augmenté → pondération = pénalisation + multiplicateurs
 - → Problème sans contraintes plus simple
 Réglages des pondérations / Equivalence au problème avec contraintes

Critère augmenté

Problème avec contraintes égalité

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes d'égalité (= contraintes actives)

Critère augmenté

$$f_{\rho}(x) = f(x) + \frac{1}{2} \rho ||c(x)||^2$$

$$\rho$$
 = coefficient de pénalisation > 0 \rightarrow Pénalise la violation des contraintes

→ Pondération critère-contraintes

Problème pénalisé sans contraintes

$$\min_{x \in R^n} f_{\rho}(x)$$

 \rightarrow Problème équivalent au problème avec contraintes si la pénalisation ρ est assez grande

Problème pénalisé avec contraintes

$$\min_{x \in \mathbb{R}^n} f_{\rho}(x) \text{ sous } c(x) = 0$$

→ Problème équivalent au problème avec contraintes Renforce le poids des contraintes dans le critère

Critère augmenté

 $c(x) = x_1 - 1$

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{ sous } x_1 = 1$$

$$f(x) = \frac{1}{2} \left(x_2^2 - x_1^2 \right) \implies x^* = (1 \ 0)$$

$$f_{\rho}(x_1, x_2) = \frac{1}{2}(x_2^2 - x_1^2) + \frac{1}{2}\rho(x_1 - 1)^2 \implies x * (\rho) = \left(\frac{\rho}{\rho - 1}\right)$$

-2,0

Problème de la boîte

• Réaliser une boîte cylindrique de volume donné V_0 et de surface S minimale Dimensions : hauteur = h , rayon = r

Surface: $S = 2\pi r^2 + 2\pi rh$

Volume: $V = \pi r^2 h$

• Formulation avec contrainte (en divisant S et V par π)

 $\min_{h,r} f(h,r) = 2r^2 + 2rh$ sous $c(h,r) = r^2h - 2v_0 = 0$ avec $V_0 = 2\pi v_0$

Solution exacte

• La contrainte permet d'éliminer h : $h = \frac{2v_0}{r^2}$

En reportant dans la fonction coût : $\min_{r} \left(2r^2 + \frac{4v_0}{r} \right) \Rightarrow \boxed{r = v_0^{\frac{1}{3}}} \Rightarrow \boxed{h = 2v_0^{\frac{1}{3}}}$

• Valeur optimale du coût : $f = 6v_0^{\frac{2}{3}}$

Solution par pénalisation

• Formulation avec contrainte

$$\min_{h,r} f(h,r) = 2r^2 + 2rh$$
 sous $c(h,r) = r^2h - 2v_0 = 0$

$$\min_{h,r} f_{\rho}(h,r) = 2r^2 + 2rh + \frac{1}{2}\rho(r^2h - 2v_0)^2$$

 $\begin{array}{ll} \text{Conditions de minimum}: & \begin{cases} \dfrac{\partial f_{\rho}}{\partial h} = 0 \ \Rightarrow \ 2r + \rho r^2 (r^2 h - 2 v_0) = 0 \\ \dfrac{\partial f_{\rho}}{\partial r} = 0 \ \Rightarrow \ 4r + 2h + 2\rho r h (r^2 h - 2 v_0) = 0 \end{cases}$

La 1^{ère} équation donne :

$$\rho r(r^2h - 2v_0) = -2$$

En remplaçant dans la $2^{\text{ème}}$ équation : h = 2r

Application numérique

• Volume : $v_0 = 1000$

• Solution exacte: r = 10, h = 20, f = 600

• Solution pénalisée pour ρ allant de 10^{-3} à 10^2 .

Résolution numérique de : $\rho r(r^3 - v_0) + 1 = 0 \rightarrow r$, h = 2r

ρ	r	h	f	c
0.001	9.641582	19.28316	557.761	792.565
0.01	9.966442	19.93288	595.980	979.933
0.1	9.996664	19.99333	599.600	997.999
1	9.999667	19.99933	599.960	999.800
10	9.999967	19.99993	599.996	999.980
100	9.999997	19.99999	600.000	999.998

- → Pénalisation faible Contrainte mal respectée Écart important à la solution exacte
- → Pénalisation forte
 Contrainte bien respectée
 Écart faible à la solution exacte

Lagrangien augmenté

Problème avec contraintes égalité et inégalité

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases} \quad \text{(PO)} \quad \xrightarrow{} \text{ p contraintes d'égalité} \\ \xrightarrow{} \text{ q contraintes d'inégalité}$$

Multiplicateurs de Lagrange

1 multiplicateur par contrainte

- $\lambda \in \mathbb{R}^p$ \rightarrow multiplicateurs des contraintes d'égalité
- $\mu \in \mathbb{R}^q \longrightarrow \text{multiplicateurs des contraintes d'inégalité}$

Fonction de Lagrange (ou lagrangien)

Le **lagrangien** du problème (PO) est la fonction L de R^{n+p+q} dans R $x \in R^n, \lambda \in R^p, \mu \in R^q \mapsto L(x,\lambda,\mu) \in R$

$$L(x,\lambda,\mu) = f(x) + \lambda^{T} c_{E}(x) + \mu^{T} c_{I}(x)$$

$$\Leftrightarrow L(x,\lambda,\mu) = f(x) + \sum_{j=1}^{p} \lambda_{j} c_{Ej}(x) + \sum_{j=1}^{q} \mu_{j} c_{Ij}(x)$$

- → multiplicateurs ≈ coefficients de pénalisation des contraintes
- → interprétation comme des sensibilités aux niveaux des contraintes

Problème pénalisé avec contraintes égalité

Critère augmenté : coefficient de pénalisation $\rho > 0$

$$\min_{x \in \mathbb{R}^n} f_{\rho}(x) \text{ sous } c(x) = 0 \quad \text{avec} \quad f_{\rho}(x) = f(x) + \frac{1}{2} \rho ||c(x)||^2$$

Lagrangien du problème pénalisé avec contraintes

$$\begin{split} L_{\rho}(x,\lambda) &= f_{\rho}(x) + \lambda^{T} c(x) \\ &= f(x) + \lambda^{T} c(x) + \frac{1}{2} \rho \left\| c(x) \right\|^{2} \\ &= L(x,\lambda) + \frac{1}{2} \rho \left\| c(x) \right\|^{2} \end{split}$$

 $L_o =$ lagrangien augmenté = lagrangien initial + pénalisation des contraintes

- Utilisation du lagrangien augmenté
 - Démonstration des conditions suffisantes d'optimalité
 - Algorithme de lagrangien augmenté = suite de minimisations sans contraintes

Lagrangien augmenté

Fonction de 2 variables

$$\min_{x_1, x_2} \frac{1}{2} (x_2^2 - x_1^2) \text{ sous } x_1 = 1$$

 \rightarrow minimum en $x^* = (1 \ 0)$

Critère augmenté

$$f_{\rho}(x_1, x_2) = \frac{1}{2}(x_2^2 - x_1^2) + \frac{1}{2}\rho(x_1 - 1)^2$$

 \rightarrow minimum en $|x^*(\rho)|$

Lagrangien augmenté
$$L_{\rho}(x_1, x_2, \lambda) = \frac{1}{2}(x_2^2 - x_1^2) + \lambda(x_1 - 1) + \frac{1}{2}\rho(x_1 - 1)^2 \rightarrow \text{minimum en } x * (\rho, \lambda) = 0$$

Pour $\lambda = \lambda^* = 1$, le minimum sans contrainte du lagrangien augmenté est la solution x* du problème initial.

143

Exercice: calculer le minimum pour chacun des cas ci-dessus (utiliser la condition d'ordre 1, sur le

1/1/

Lagrangien, le critère augmenté, et le Lagrangien augmenté).

Lagrangien augmenté

Lagrangien augmenté

b) Problème dual

Fonction duale

La fonction duale du problème (PO) est la fonction w de R^{p+q} dans R

$$w(\lambda, \mu) = \min_{x \in \mathbb{R}^n} L(x, \lambda, \mu)$$

 $\frac{w(\lambda, \mu) = \min_{x \in \mathbb{R}^n} L(x, \lambda, \mu)}{\sum_{x \in \mathbb{R}^n} L(x, \lambda, \mu)} \rightarrow \text{Minimisation du lagrangien à } \lambda \text{ et } \mu \text{ fixés}$ x = variables primales

$$x = variables primales$$

 $\lambda et \mu = variables duales$

Concavité - Convexité

- La fonction duale w est concave
- Le domaine X_w est convexe

Preuve : on note : $\gamma = (\lambda, \mu)$

- $L(x,\alpha\gamma_1+(1-\alpha)\gamma_2)=\alpha L(x,\gamma_1)+(1-\alpha)L(x,\gamma_2)$ car L linéaire en λ et μ
- $\Rightarrow w(\alpha \gamma_1 + (1-\alpha)\gamma_2) \geq \alpha w(\gamma_1) + (1-\alpha)w(\gamma_2)$ pour le minimum/x de chaque membre \rightarrow w concave
- $Si \gamma_1 et \gamma_2 \in X_w$, $w(\alpha \gamma_1 + (1-\alpha)\gamma_2) \ge \alpha w(\gamma_1) + (1-\alpha)w(\gamma_2) > -\infty$
- $\Rightarrow \alpha \gamma_1 + (1-\alpha)\gamma_2 \in X_w$ $\rightarrow X_w$ convexe

Problème dual

- $\min_{x \in \mathbb{R}^{n}} f(x) \text{ sous } \begin{cases} c_{E}(x) = 0 \\ c_{I}(x) \leq 0 \end{cases}$ $w(\lambda, \mu) = \min_{x \in \mathbb{R}^{n}} L(x, \lambda, \mu)$ Problème primal:
- $\rightarrow x(\lambda, \mu) / \nabla_x L(x, \lambda, \mu) = 0$ Fonction duale:
- $X_{_{w}}=\left\{\!\lambda\in R^{\,p}\;,\mu\in R^{\,q}\;/\;\;w(\lambda,\mu)>-\infty\right\}\qquad\rightarrow\;w\;\text{born\'ee}$ Domaine de w :
- Problème dual :

$$\begin{aligned} &\textbf{ual}: & \max_{\boldsymbol{\lambda} \in \mathbb{R}^p, \boldsymbol{\mu} \in \mathbb{R}^q} w(\boldsymbol{\lambda}, \boldsymbol{\mu}) \text{ sous } (\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \boldsymbol{X}_w \text{ , } \boldsymbol{\mu} \geq 0 \\ & \Leftrightarrow \max_{\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{\lambda} \in \mathbb{R}^p, \boldsymbol{\mu} \in \mathbb{R}^q} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \text{ sous } \begin{cases} \nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0 & \to & \boldsymbol{x}(\boldsymbol{\lambda}, \boldsymbol{\mu}) \\ (\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \boldsymbol{X}_w \text{ , } \boldsymbol{\mu} \geq 0 \end{cases} & \to & \text{dual de Wolfe} \end{aligned}$$

Borne sur la fonction duale

- x* solution du problème primal $\Rightarrow | w(\lambda, \mu) \le f(x^*)$
- $(\lambda, \mu) \in X_w, \mu \ge 0$

Preuve:

$$w(\lambda, \mu) = \min_{x \in R^n} L(x, \lambda, \mu) \le L(x^*, \lambda, \mu) = f(x^*) + \lambda^T c_E(x^*) + \mu^T c_I(x^*)$$

$$= f(x^*) + \mu^T c_I(x^*) \quad car \ x^* \ admissible \Rightarrow c_E(x^*) = 0$$

$$\le f(x^*) \quad car \ x^* \ admissible \Rightarrow c_I(x^*) \le 0 \quad et \ \mu \ge 0$$

Fonction duale

Problème primal: $\min_{x_1, x_2} \frac{1}{2} (x_2^2 - x_1^2) \text{ sous } x_1 = 1$

 $L(x,\lambda) = \frac{1}{2} \left(x_2^2 - x_1^2 \right) + \lambda \left(x_1 - 1 \right)$ $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \lambda^* = 1$ Lagrangien:

Solution:

Fonction duale: $w(\lambda) = \min_{x} L(x, \lambda)$ $\Rightarrow \frac{\partial L}{\partial x} = 0 \Rightarrow \begin{cases} -x_1 + \lambda = 0 \\ x_2 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \lambda \\ x_2 = 0 \end{cases}$ \Rightarrow w(\lambda) = $\frac{1}{2}\lambda^2 - \lambda$ avec $\begin{cases} x_1 = \lambda \\ x_2 = 0 \end{cases}$

 $\max_{\lambda} w(\lambda) \qquad \Rightarrow \frac{\partial w}{\partial \lambda} = 0 \Rightarrow \lambda = 1$ $\lambda^* = 1, \quad x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ Problème dual:

Solution:

Dualité faible

Théorème de la dualité faible

 x^* solution du problème primal $\Rightarrow w(\lambda^*, \mu^*) \le f(x^*)$

• λ^*, μ^* solution du problème dual

Preuve: $\forall \lambda, \forall \mu \geq 0, \ w(\lambda, \mu) \leq f(x^*) \implies w(\lambda^*, \mu^*) \leq f(x^*)$

Dualité et admissibilité

- Si le problème primal est non borné, le problème dual est non admissible.
- Si le problème dual est non borné, le problème primal est non admissible.

Preuve: en utilisant $w^*(\lambda^*, \mu^*) \leq f(x^*)$ Existence de solutions x^* , λ^* , $\mu^* \Rightarrow$ fonctions bornées

Saut de dualité

Le saut de dualité est la différence entre la solution du problème primal et du problème dual.

$$\delta = f(x^*) - w(\lambda^*, \mu^*) \ge 0$$

Dans le cas général δ n'est pas nul, il n'est pas équivalent de minimiser f ou maximiser w.

Dualité forte

Point col

 $(x^*,\lambda^*,\mu^*\geq 0)$ est un **point col** (ou **point selle**) du lagrangien si

$$\forall (x,\lambda,\mu \geq 0), \begin{cases} L(x^*,\lambda,\ \mu) & \leq L(x^*,\lambda^*,\mu^*) \\ L(x^*,\lambda^*,\mu^*) \leq L(x,\ \lambda^*,\mu^*) \end{cases} \rightarrow \text{maximisation de L par rapport \grave{a} } (\lambda,\mu) \\ \rightarrow \text{minimisation de L par rapport \grave{a} } (x)$$

Caractérisation

$$(x^*,\!\lambda^*,\!\mu^*\!\!\ge\!\!0) \text{ est un point col du lagrangien si et seulement si} \begin{cases} L(x^*,\!\lambda^*,\!\mu^*) = \min_x L(x,\!\lambda^*,\!\mu^*) \\ c_E(x^*) = 0 \\ c_I(x^*) \le 0 \\ \mu^*c_I(x^*) = 0 \end{cases}$$

Théorème de la dualité forte

Le lagrangien admet un point col (x^*,λ^*,μ^*) si et seulement si le saut de dualité est nul.

$$(x^*,\lambda^*,\mu^* \ge 0)$$
 un point col \Leftrightarrow $w(\lambda^*,\mu^*) = f(x^*)$

Il est alors équivalent de minimiser f(x) ou maximiser $w(\lambda,\mu)$.

Point col (ou point selle)

Optimum global

Si
$$(x^*,\lambda^*,\mu^*\geq 0)$$
 est un point col du lagrangien :
$$\begin{cases} x^* \to \min_x L(x,\lambda^*,\mu^*) \\ c_E(x^*) = 0 \\ \mu^* c_I(x^*) = 0 \end{cases}$$

alors x* est un **optimum global** du problème primal : $\min_{x \in \mathbb{R}^n} f(x)$ sous $\begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$

En pratique

- Si le lagrangien admet un point col, on peut obtenir l'optimum global x*.
- Pour un problème non convexe, il n'existe en général pas de point col.

$$\begin{array}{ll} \textbf{Exemple} & \min_{x} f(x) = -x^2 \; \text{sous} \left\{ \begin{matrix} 2x-1 \leq 0 \\ 0 \leq x \leq 1 \end{matrix} \right. \rightarrow \; \text{solution} : x^* = 0.5 \\ & L(x,\mu) = -x^2 + \mu(2x-1) \; \text{avec} \left\{ \begin{matrix} 0 \leq x \leq 1 \\ \mu \geq 0 \end{matrix} \right. \\ & \left\{ \begin{matrix} \min_{x} L(x,\mu) \\ 0 \leq x \leq 1 \end{matrix} \right\} \rightarrow \begin{array}{ll} x = 0 \; \text{si} \; \mu > 0.5 \\ x = 1 \; \text{si} \; \mu < 0.5 \end{matrix} \\ & 2x-1 \leq 0 \quad \rightarrow \quad x = 0 \\ \mu(2x-1) = 0 \quad \rightarrow \quad \mu = 0 < 0.5 \quad \rightarrow \quad x = 1 \end{array} \right\} \rightarrow \quad \text{Il n'existe pas de point col.}$$

c) Programmation linéaire

Problème primal

$$\begin{array}{ll} \underset{x}{\text{min}}\,c^Tx \;\; \text{sous} \; \begin{cases} Ax = b \\ x \geq 0 \end{cases} & \to \; \text{problème linéaire sous forme standard} \\ \Leftrightarrow \underset{x}{\text{min}}\,c^Tx \;\; \text{sous} \; \begin{cases} b - Ax = 0 \\ -x \leq 0 \end{cases} & \to \; \text{multiplicateur} \; \lambda \\ \to \; \text{multiplicateur} \; \mu \end{array}$$

• Fonction de Lagrange :
$$L(x,\lambda,\mu) = c^T x + \lambda^T (b - Ax) + \mu^T (-x)$$

= $(c - A^T \lambda - \mu)^T x + \lambda^T b$ \rightarrow linéaire en x

• Fonction duale :
$$w(\lambda, \mu) = \min_{x} L(x, \lambda, \mu)$$

• Domaine de définition :
$$X_w = \{(\lambda, \mu) / w(\lambda, \mu) > -\infty\}$$

• La fonction duale n'est définie que si $L(x, \lambda, \mu)$ est borné inférieurement. $L(x, \lambda, \mu)$ est linéaire en $x \rightarrow Le$ coefficient de x doit être nul.

$$\begin{split} (\lambda, \mu) \in X_w \; \Rightarrow \; & c - A^T \lambda - \mu = 0 \\ \Rightarrow \; & L(x, \lambda, \mu) = \; \lambda^T b \quad \Rightarrow \boxed{w(\lambda, \mu) = \lambda^T b} \end{split}$$

Problème dual

$$\max_{\lambda,\mu} w(\lambda,\mu) \text{ sous } \begin{cases} (\lambda,\mu) \in X_w \\ \mu \ge 0 \end{cases}$$

$$\begin{split} \max_{\lambda,\mu} \ w(\lambda,\mu) \ sous \ & \left\{ \begin{matrix} (\lambda,\mu) \in X_w \\ \mu \geq 0 \end{matrix} \right. \\ \Leftrightarrow \ \max_{\lambda,\mu} \ \lambda^T b \quad sous \ & \left\{ \begin{matrix} c - A^T \lambda - \mu = 0 \\ \mu \geq 0 \end{matrix} \right. \\ \to \ ne \ d\text{\'epend pas de } \mu \end{split}$$

$$\Leftrightarrow \max_{\lambda} b^{T} \lambda \quad \text{sous} \quad c - A^{T} \lambda \ge 0 \qquad \to \text{nouveau problème linéaire en } \lambda$$

Le problème dual est également un problème linéaire dont la variable est λ . On met le problème dual sous forme standard en notant la variable y au lieu de λ

$$\min_{\mathbf{y}} - \mathbf{b}^{\mathrm{T}} \mathbf{y} \text{ sous } \mathbf{A}^{\mathrm{T}} \mathbf{y} - \mathbf{c} \leq \mathbf{0}$$
 \rightarrow multiplicateur \mathbf{v}

On peut ensuite définir les fonctions associées à ce problème linéaire.

• Fonction de Lagrange notée
$$L_d(y, v)$$
: $L_d(y, v) = -b^T y + v^T (A^T y - c)$
= $(Av - b)^T y - v^T c$ \rightarrow bornée si $Av - b = 0$

• Fonction duale notée
$$\mathbf{w_d}(\mathbf{v})$$
: $\mathbf{w_d}(\mathbf{v}) = \min_{\mathbf{y}} \mathbf{L_d}(\mathbf{y}, \mathbf{v}) = -\mathbf{v}^T \mathbf{c}$ si $\mathbf{A}\mathbf{v} - \mathbf{b} = \mathbf{0}$

Problème dual du problème dual

Le problème dual admet lui-même pour dual :

$$\max_{v} w_{d}(v) \text{ sous } \begin{cases} v \in X_{w_{d}} \\ v \ge 0 \end{cases}$$

$$\Leftrightarrow \max_{v} - v^{\mathsf{T}} c \text{ sous } \begin{cases} Av = b \\ v \ge 0 \end{cases} \Leftrightarrow \min_{x} c^{\mathsf{T}} x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases} \rightarrow \text{identique au problème primal}$$

- Le problème dual du problème dual est le problème primal.
- Pour un problème linéaire, il est équivalent de résoudre le problème primal ou problème dual. Les solutions du problème primal et du problème dual ont le même coût → dualité forte

Solutions possibles		Dual			
		Optimum fini	Optimum infini	Sans solution	
	Optimum fini	dualité forte	impossible	impossible	
Primal	Optimum infini	impossible	impossible	dualité faible	
	Sans solution	impossible	dualité faible	contraintes incompatibles	

Correspondances primal – dual

- Problème primal (P) sous forme standard:
- (P) $\min_{x} c^{T}x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases}$
- Problème dual (D) du problème (P):
- Le nombre de variables de (P) est égal au nombre de contraintes de (D).
- Le nombre de contraintes de (P) est égal au nombre de variables de (D).
- La matrice des contraintes de (D) est la transposée de la matrice des contraintes de (P).
- Une variable $x_j \ge 0$ de coût c_j donne une contrainte \le de niveau c_j : $\begin{cases} c_j x_j \\ x_j \ge 0 \end{cases} \rightarrow \sum_{i=1}^m a_{ij} y_i \le c_j$ Une contrainte = de niveau b_i donne une variable $y_j \in R$ de coût b_i : $\sum_{j=1}^n a_{ij} x_j = b_i \rightarrow \begin{cases} b_i y_i \\ y_i \in R \end{cases}$
 - → généralisation à un problème linéaire quelconque (signe des variables, sens des contraintes)

Correspondance primal-dual

Problème primal (P)

$$\min_{\substack{x_1 \in R^{n_1} \\ x_2 \in R^{n_2} \\ x_3 \in R^{n_3}}} c_1^T x_1 + c_2^T x_2 + c_3^T x_3 \quad sous \begin{cases} A_1 x_1 + B_1 x_2 + C_1 x_3 = b_1, & b_1 \in R^{m_1} & \rightarrow m_1 \text{ \'egalit\'es} \\ A_2 x_1 + B_2 x_2 + C_2 x_3 \leq b_2, & b_2 \in R^{m_2} & \rightarrow m_2 \text{ in\'egalit\'es in\'erieur} \\ A_3 x_1 + B_3 x_2 + C_3 x_3 \geq b_3, & b_3 \in R^{m_3} & \rightarrow m_3 \text{ in\'egalit\'es sup\'erieur} \\ x_1 \geq 0 & \rightarrow n_1 \text{ variables positives} \\ x_2 \leq 0 & \rightarrow n_2 \text{ variables n\'egatives} \\ x_3 \in R^{n_3} & \rightarrow n_3 \text{ variables libres} \end{cases}$$

Problème dual (D)

$$\max_{\substack{y_1 \in R^{m_1} \\ y_2 \in R^{m_2} \\ y_3 \in R^{m_3}}} b_1^T y_1 + b_2^T y_2 + b_3^T y_3 \quad sous \begin{cases} A_1^T y_1 + A_2^T y_2 + A_3^T y_3 \leq c_1, \ c_1 \in R^{n_1} & \rightarrow n_1 \text{ inégalités inférieur} \\ B_1^T y_1 + B_2^T y_2 + B_3^T y_3 \geq c_2, \ c_2 \in R^{n_2} & \rightarrow n_2 \text{ inégalités supérieur} \\ C_1^T y_1 + C_2^T y_2 + C_3^T y_3 = c_3, \ c_3 \in R^{n_3} & \rightarrow n_3 \text{ égalités} \\ y_1 \in R^{m_1} & \rightarrow m_1 \text{ variables libres} \\ y_2 \leq 0 & \rightarrow m_2 \text{ variables négatives} \\ y_3 \geq 0 & \rightarrow m_3 \text{ variables positives} \end{cases}$$

Correspondance primal-dual

Preuve

• Lagrangien du problème primal (P)

$$\begin{split} L\big(x_1,x_2,x_3,\lambda_1,\lambda_2,\lambda_3,\mu_1,\mu_2\big) &= \quad c_1^Tx_1 + c_2^Tx_2 + c_3^Tx_3 \\ &+ \lambda_1^T\big(b_1 - A_1x_1 - B_1x_2 - C_1x_3\big) \\ &+ \lambda_2^T\big(A_2x_1 + B_2x_2 + C_2x_3 - b_2\big) \\ &+ \lambda_3^T\big(b_3 - A_3x_1 - B_3x_2 - C_3x_3\big) \\ &- \mu_1^Tx_1 + \mu_2^Tx_2 \end{split} \qquad \begin{matrix} \rightarrow \quad m_1 \text{ multiplicateurs } \lambda_1 \\ \rightarrow \quad m_2 \text{ multiplicateurs } \lambda_2 \geq 0 \\ \rightarrow \quad m_3 \text{ multiplicateurs } \lambda_3 \geq 0 \\ \rightarrow \quad n_1 \text{ multiplicateurs } \mu_1 \geq 0 \\ \rightarrow \quad n_2 \text{ multiplicateurs } \mu_2 \geq 0 \end{matrix}$$

• On regroupe les termes en x_1, x_2, x_3 :

$$\begin{split} L\big(x_1,x_2,x_3,\lambda_1,\lambda_2,\lambda_3,\mu_1,\mu_2\big) &= b_1^T\lambda_1 - b_2^T\lambda_2 + b_3^T\lambda_3 \\ &\quad + \left(c_1 - A_1^T\lambda_1 + A_2^T\lambda_2 - A_3^T\lambda_3 - \mu_1\right)^Tx_1 & \rightarrow lin\acute{e}aire\ en\ x \\ &\quad + \left(c_2 - B_1^T\lambda_1 + B_2^T\lambda_2 - B_3^T\lambda_3 + \mu_2\right)^Tx_2 \\ &\quad + \left(c_3 - C_1^T\lambda_1 + C_2^T\lambda_2 - C_3^T\lambda_3\right)^Tx_3 \end{split}$$

• La fonction duale est définie par : $w(\lambda, \mu) = \min_{x} L(x, \lambda, \mu)$ \rightarrow bornée si les coefficients $de \ x_1, x_2, x_3$ sont nuls

Correspondance primal-dual

•
$$L(x_1, x_2, x_3, \lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2) = b_1^T \lambda_1 - b_2^T \lambda_2 + b_3^T \lambda_3 + (c_1 - A_1^T \lambda_1 + A_2^T \lambda_2 - A_3^T \lambda_3 - \mu_1)^T x_1 + (c_2 - B_1^T \lambda_1 + B_2^T \lambda_2 - B_3^T \lambda_3 + \mu_2)^T x_2 + (c_3 - C_1^T \lambda_1 + C_2^T \lambda_2 - C_3^T \lambda_3)^T x_3$$

• L bornée
$$\Rightarrow \begin{cases} c_1 - A_1^T \lambda_1 + A_2^T \lambda_2 - A_3^T \lambda_3 - \mu_1 = 0 \\ c_2 - B_1^T \lambda_1 + B_2^T \lambda_2 - B_3^T \lambda_3 + \mu_2 = 0 \\ c_3 - C_1^T \lambda_1 + C_2^T \lambda_2 - C_3^T \lambda_3 = 0 \end{cases} \text{ avec } \begin{cases} \mu_1, \mu_2 \ge 0 \\ \lambda_2, \lambda_3 \ge 0 \end{cases}$$

• En posant:
$$\begin{cases} y_1 = \lambda_1 \\ y_2 = -\lambda_2 \le 0 \\ y_3 = \lambda_3 \ge 0 \end{cases} \Rightarrow \begin{cases} A_1^T y_1 + A_2^T y_2 + A_3^T y_3 = c_1 + \mu_1 \le c_1 & car \ \mu_1 \ge 0 \\ B_1^T y_1 + B_2^T y_2 + B_3^T y_3 = c_2 - \mu_2 \ge c_2 & car \ \mu_2 \ge 0 \\ C_1^T y_1 + C_2^T y_2 + C_3^T y_3 = c_3 \end{cases}$$

• Fonction duale:
$$w(y_1, y_2, y_3) = L(\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2) \implies w(y_1, y_2, y_3) = b_1^T y_1 + b_2^T y_2 + b_3^T y_3$$

• Problème dual:
$$\max_{y_1, y_2, y_3} w(y_1, y_2, y_3) = b_1^T y_1 + b_2^T y_2 + b_3^T y_3 \quad sous \begin{cases} A_1^T y_1 + A_2^T y_2 + A_3^T y_3 \le c_1 \\ B_1^T y_1 + B_2^T y_2 + B_3^T y_3 \ge c_2 \\ C_1^T y_1 + C_2^T y_2 + C_3^T y_3 = c_3 \end{cases}$$

Correspondance primal-dual

Problème primal (P)

(P)
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3$$
 sous
$$\begin{cases} -x_1 + 3x_2 &= 5\\ 2x_1 - x_2 + 3x_3 \ge 6\\ x_3 \le 4\\ x_1 \ge 0, x_2 \le 0, x_3 \in R \end{cases}$$

Problème dual (D)

$$\begin{array}{ll} \text{(D)} & \max_{y_1,y_2,y_3} 5y_1 + 6y_2 + 4y_3 & \text{sous} \\ \begin{cases} -y_1 + 2y_2 & \leq 1 \\ 3y_1 - y_2 & \geq 2 \\ 3y_2 + y_3 = 3 \\ y_1 \in \mathbb{R}, \ y_2 \geq 0, \ y_3 \leq 0 \end{cases} \\ \Leftrightarrow & \min_{y_1,y_2,y_3} -5y_1 - 6y_2 - 4y_3 & \text{sous} \\ \begin{cases} y_1 - 2y_2 & \geq -1 \\ -3y_1 + y_2 & \leq -2 \\ -3y_2 - y_3 = -3 \\ y_1 \in \mathbb{R}, \ y_2 \geq 0, \ y_3 \leq 0 \end{cases}$$

$$\Leftrightarrow \min_{y_1, y_2, y_3} -5y_1 - 6y_2 - 4y_3 \quad sous \begin{cases} y_1 - 2y_2 & \ge -1 \\ -3y_1 + y_2 & \le -2 \\ -3y_2 - y_3 & = -3 \\ y_1 \in \mathbb{R}, \ y_2 \ge 0, \ y_3 \le 0 \end{cases}$$

Problème dual du dual : on retrouve le problème primal (P)

3.2 Conditions nécessaires

Problème avec contrainte

$$\min_{\mathbf{x} \in \mathbf{R}^n} \mathbf{f}(\mathbf{x}) \text{ sous } \begin{cases} \mathbf{c}_{\mathrm{E}}(\mathbf{x}) = 0 \\ \mathbf{c}_{\mathrm{I}}(\mathbf{x}) \leq 0 \end{cases} \rightarrow \text{p contraintes d'égalité}$$

$$\rightarrow \mathbf{q} \text{ contraintes d'inégalité}$$

Conditions nécessaires

 x^* minimum local $\Rightarrow \nabla f(x^*)^T d \ge 0$ pour toute direction d admissible à la limite en x^*

Méthode directe

Nécessite de connaître l'ensemble des directions admissibles en x*

- Cas de contraintes linéaires
 - → Définition des directions admissibles à partir des directions de base (§1.2.2)
- Cas de contraintes non linéaires
 - → Définition des directions admissibles à la limite
 - → Pas de caractérisation des directions admissibles dans le cas général sauf hypothèse de qualification des contraintes : cône des directions (§1.3.1)

Méthode indirecte

A partir des multiplicateurs de Lagrange

→ Conditions d'optimalité dans le cas général

Problème avec contraintes

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$$

- → p contraintes d'égalité
 - → q contraintes d'inégalité

Conditions nécessaires

Hypothèse: Contraintes linéairement indépendantes en x* x^* minimum local \Rightarrow Il existe un unique $\lambda^* \in \mathbb{R}^p$ et un unique $\mu^* \in \mathbb{R}^q$ tels que :

- $\begin{array}{lll} \textbf{Ordre 1}: \begin{cases} \nabla_x L(x^*,\lambda^*,\mu^*) = 0 & \rightarrow \text{ conditions n\'ecessaires d'ordre 1} \\ \nabla_\lambda L(x^*,\lambda^*,\mu^*) = 0 & \rightarrow \text{ contraintes \'egalit\'e } c_E(x^*) = 0 \\ \nabla_\mu L(x^*,\lambda^*,\mu^*) \leq 0 & \rightarrow \text{ contraintes in\'egalit\'e } c_I(x^*) \leq 0 \\ \mu^* \geq 0 & \rightarrow \text{ conditions compl\'ementaires} \end{cases}$
- Ordre 2: Pour toute direction d tangente aux contraintes actives $(c(x^*)=0)$: $d^T \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) d \ge 0 \rightarrow \text{conditions nécessaires d'ordre } 2$ $\forall d / d^T \nabla c(x^*) = 0$
 - → Conditions nécessaires de Karush-Kuhn-Tucker (conditions KKT) (1939)(1951)

Conditions nécessaires

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{sous } x_1 \le 1$$

Lagrangien: $L(x_1, x_2, \mu) = \frac{1}{2}(x_2^2 - x_1^2) + \mu(x_1 - 1)$

Conditions nécessaires d'ordre 1

Conditions necessaries d'ordre 1
$$\begin{cases}
-x_1 + \mu = 0 \\
x_2 = 0 \\
x_1 \le 1 \\
\mu \ge 0 \\
\mu(x_1 - 1) = 0
\end{cases}$$
vérifiées en $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mu^* = 1$

Conditions nécessaires d'ordre 2 Conditions nécessaires d'ordre 2 d direction tangente aux contraintes actives : $d^T \nabla c(x^*) = 0 \Rightarrow \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \Rightarrow d_1 = 0$ $d^T \nabla_{xx}^2 L(x^*, \mu^*) d = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}^T \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = -d_1^2 + d_2^2 = d_2^2 \ge 0$ qui est vérifié pour tout d

$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mu^* = 1$ vérifie les conditions nécessaires d'ordre 1 et 2.

Conditions nécessaires

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) sous \ x_1 \le 1$$

Lagrangien:
$$L(x_1, x_2, \mu) = \frac{1}{2}(x_2^2 - x_1^2) + \mu(x_1 - 1)$$

Conditions necessaries d'ordre 1
$$\begin{cases}
-x_1 + \mu = 0 \\
x_2 = 0 \\
x_1 \le 1 \\
\mu \ge 0 \\
\mu(x_1 - 1) = 0
\end{cases}$$
vérifiées en $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mu^* = 0$

• Conditions nécessaires d'ordre 2

Aucune contrainte n'est active en $x_1=0$. Pour toute direction d on doit avoir :

$$\mathbf{d}^{\mathsf{T}}\nabla_{\mathbf{x}\mathbf{x}}^{2}\mathbf{L}(\mathbf{x}^{*},\boldsymbol{\mu}^{*})\mathbf{d} = \begin{pmatrix} \mathbf{d}_{1} \\ \mathbf{d}_{2} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{1} \\ \mathbf{d}_{2} \end{pmatrix} = -\mathbf{d}_{1}^{2} + \mathbf{d}_{2}^{2} \ge 0 \qquad \text{qui n'est pas v\'erifi\'e pour } \mathbf{d} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\mu^* = 0$ vérifie les conditions nécessaires d'ordre 1, mais pas d'ordre 2.

Multiplicateur du critère

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes d'égalité (= contraintes actives)

• Dans le cas général, il faut définir le lagrangien avec un multiplicateur λ_0 sur le critère.

 $L(x,\lambda,\lambda_0) = \lambda_0 f(x) + \lambda^T c(x) \qquad \text{avec } \lambda \in R^m : \text{multiplicateurs des contraintes} \\ \lambda_0 \in R : \text{multiplicateur du critère } \to \lambda_0 \geq 0$

Les conditions KKT donnent un système de n+m équations à n+m+1 inconnues.

$$\begin{array}{ccc} \nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}, \lambda, \lambda_0) = 0 & \to & \mathbf{n} \\ \nabla_{\lambda} \mathbf{L}(\mathbf{x}, \lambda, \lambda_0) = 0 & \to & \mathbf{m} \end{array}$$

- Dans le cas normal, le système admet une solution pour toute valeur $\lambda_0 > 0$. Les multiplicateurs sont définis à une constante multiplicative près \rightarrow on choisit $\lambda_0 = 1$.
- Dans le cas anormal, le système n'admet une solution que si λ₀ = 0.
 Ce cas correspond à un ensemble admissible réduit à des points isolés.
 La solution satisfait les contraintes, mais la valeur du critère n'est pas « minimisable ».
 → équivaut à une valeur infinie des multiplicateurs λ

181

Multiplicateur du critère

 $\min_{x_1, x_2} x_1$ sous $x_1^2 + x_2^2 = 0$ \rightarrow solution unique vérifiant la contrainte

Lagrangien: $L(x_1, x_2, \lambda, \lambda_0) = \lambda_0 x_1 + \lambda (x_1^2 + x_2^2)$ avec $\lambda_0 \ge 0$

• Conditions nécessaires d'ordre 1

$$\begin{cases} \lambda_0 + 2\lambda x_1 = 0 \\ 2\lambda x_2 = 0 \\ x_1^2 + x_2^2 = 0 \end{cases} \rightarrow \text{système de 3 équations à 4 inconnues}$$

 $\begin{array}{ll} \bullet & \text{Solution}: & \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \implies \begin{cases} \lambda_0 = 0 \\ \lambda \text{ quelconque} \end{cases} \rightarrow \begin{array}{ll} \text{cas anormal} \end{array}$

La contrainte n'est satisfaite qu'en un point isolé (0, 0). Le multiplicateur λ_0 du critère est nul $(\Leftrightarrow$ critère indifférent, pas de minimisation possible).

• Si l'on écrit le lagrangien sans le multiplicateur λ_0 , les conditions KKT sont

$$\begin{cases} 1 + 2\lambda x_1 = 0 \\ 2\lambda x_2 = 0 \\ x_1^2 + x_2^2 = 0 \end{cases} \rightarrow \text{solution} \quad \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \Rightarrow \lambda = \infty \quad (\Leftrightarrow \text{ crit\`ere indiff\'erent})$$

3.3 Conditions suffisantes

Problème avec contraintes

$$\min_{\mathbf{x} \in \mathbf{R}^n} \mathbf{f}(\mathbf{x}) \text{ sous } \begin{cases} \mathbf{c}_{\mathrm{E}}(\mathbf{x}) = 0 \\ \mathbf{c}_{\mathrm{I}}(\mathbf{x}) \leq 0 \end{cases} \rightarrow \text{p contraintes d'égalité}$$

$$\rightarrow \mathbf{q} \text{ contraintes d'inégalité}$$

Conditions suffisantes

S'il existe $x^* \in \mathbb{R}^n$, $\lambda^* \in \mathbb{R}^p$, $\mu^* \in \mathbb{R}^q$ tels que:

• Ordre 1 :
$$\begin{cases} \nabla_x L(x^*, \lambda^*, \mu^*) = 0 & \rightarrow \text{ conditions d'ordre 1} \\ \nabla_\lambda L(x^*, \lambda^*, \mu^*) = 0 & \rightarrow \text{ contraintes \'egalit\'e } c_E(x^*) = 0 \\ \nabla_\mu L(x^*, \lambda^*, \mu^*) \leq 0 & \rightarrow \text{ contraintes in\'egalit\'e } c_I(x^*) \leq 0 \end{cases}$$

$$\mu^* \geq 0$$

$$\mu^* c_I(x^*) = 0 \qquad \rightarrow \text{ conditions compl\'ementaires}$$

$$\mu_k^* > 0 \text{ si } c_{Ik}(x^*) = 0 \qquad \rightarrow \text{ contraintes actives : multiplicateur} > 0$$

• Ordre 2: Pour toute direction d tangente aux contraintes actives $(c(x^*)=0)$:

$$d^{T}\nabla_{xx}^{2}L(x^{*},\lambda^{*},\mu^{*})d > 0 \rightarrow \text{ conditions d'ordre 2}$$

 $\forall d \mid d^{T}\nabla c(x^{*}) = 0$

 \Rightarrow x* est un minimum local strict

Remarque : Pas d'hypothèse de qualification des contraintes dans les conditions suffisantes

Eléments de la démonstration

Cas de contraintes égalité : c(x)=0

On suppose que (x^*, λ^*) vérifie les conditions suffisantes.

On considère le problème sans contrainte

$$\min_{x \in \mathbb{R}^n} L_{\rho}(x, \lambda^*) = L(x, \lambda^*) + \frac{1}{2} \rho \|c(x)\|^2 = f(x) + \lambda^{*T} c(x) + \frac{1}{2} \rho \|c(x)\|^2$$

 $L_o(x,\lambda) = lagrangien augmenté$

 $\rho > 0$ = pénalisation de la violation des contraintes

$$\begin{array}{cccc} \bullet & \nabla_x L_\rho(x^*,\lambda^*) = \nabla f(x^*) + \nabla c(x^*)\lambda^* + \rho \nabla c(x^*)c(x^*) \\ & = \nabla f(x^*) + \nabla c(x^*)\lambda^* & \rightarrow car \ x^* \ admissible \\ & = \nabla_x L(x^*,\lambda^*) = 0 & \rightarrow par \ hypoth\`ese \ sur \ x^*,\lambda^* \\ \bullet & \nabla^2_{xx} L_\rho(x^*,\lambda^*) = \nabla^2_{xx} L(x^*,\lambda^*) + \rho \nabla c(x^*) \nabla c(x^*)^T & \rightarrow d\acute{e}finie \ positive \ pour \ \rho \ assez \ grand \end{array}$$

•
$$\nabla^2_{xx} L_{\rho}(x^*, \lambda^*) = \nabla^2_{xx} L(x^*, \lambda^*) + \rho \nabla c(x^*) \nabla c(x^*)^T \rightarrow d\acute{e}finie\ positive\ pour\ \rho\ assez\ grand$$

 $\Rightarrow x^*$ est un minimum local du lagrangien augmenté $L_o(x,\lambda^*)$ pour $\lambda=\lambda^*$.

Au voisinage de x^* : $L_{\rho}(x^*,\lambda^*) \leq L_{\rho}(x,\lambda^*) \Rightarrow f(x^*,\lambda^*) \leq f(x,\lambda^*), \forall x / c(x) = 0$ $\Rightarrow x^*$ est un minimum local de f

Exemples

Conditions suffisantes

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{sous } x_1 \le 1$$

$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mu^* = 1$ vérifie les conditions nécessaires

Conditions suffisantes d'ordre 1

Contrainte active \rightarrow multiplicateur > 0

$$x*-1=0$$
 $\mu^*=1>0$

Conditions suffisantes d'ordre 2 d direction tangente aux contraintes actives : $\mathbf{d}^T \nabla \mathbf{c}(\mathbf{x}^*) = 0 \Rightarrow \begin{pmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{pmatrix}^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \Rightarrow \mathbf{d}_1 = 0$

$$d^{T}\nabla_{xx}^{2}L(x^{*},\mu^{*})d = \begin{pmatrix} d_{1} \\ d_{2} \end{pmatrix}^{T} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d_{1} \\ d_{2} \end{pmatrix} = -d_{1}^{2} + d_{2}^{2} = d_{2}^{2} > 0 \quad car \ d = \begin{pmatrix} 0 \\ d_{2} \end{pmatrix} \neq 0 \Rightarrow d_{2} \neq 0$$

$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mu^* = 1$ vérifie les conditions suffisantes d'ordre 1 et 2 \rightarrow minimum local strict.

Remarque sur la condition d'ordre 2

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{ sous } x_1 \le 1 \longrightarrow x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mu^* = 1$$

$$d = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \text{ est une direction admissible en } x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

mais la condition d'ordre 2 ne porte que sur les directions tangentes aux contraintes actives.

Importance de la condition de complémentarité

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) sous \ x_1 \le 0$$

$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\mu^* = 0$ vérifie les conditions suffisantes d'ordre 1 et 2 sauf la condition de complémentarité

Si la contrainte inégalité est active, le multiplicateur doit être strictement positif.

 $x_1^* = 0$ est active et $\mu^* = 0$ n'est pas strictement positif $\rightarrow x^*$ n'est pas un minimum local (f décroit suivant $x_1 < 0$)

3.5 Interprétation géométrique

Interprétation

Condition complémentaire

$$\mu_{j}c_{lj}(x)=0, \quad j=1,...,q \quad \Rightarrow \begin{cases} \mu_{j}=0 & \rightarrow \text{ sensibilit\'e nulle} \\ \text{ou} \\ c_{lj}(x)=0 & \rightarrow \text{ contrainte active} \end{cases}$$

• Condition d'ordre 1

$$\begin{split} \nabla_{x}L(x,\lambda,\mu) &= 0 \quad \Rightarrow \quad \nabla f(x) + \nabla c_{E}(x).\lambda + \nabla c_{I}(x).\mu = 0 \\ &\Rightarrow -\nabla f(x) = \nabla c_{E}(x).\lambda + \nabla c_{I}(x).\mu \\ &\Rightarrow -\nabla f(x) = \nabla c(x).\nu \quad \to \text{ contraintes actives } c(x) \end{split}$$

La direction $-\nabla f(x)$ est la direction de plus forte descente en x. Les directions $\nabla c(x)$ sont orthogonales à l'hyperplan tangent aux contraintes actives en x. Equation de l'hyperplan tangent aux contraintes actives en x : $d^T \nabla c(x) = 0$

- → Les déplacements admissibles (dans l'hyperplan tangent) sont orthogonaux au gradient.
- → Déplacements suivant les lignes de niveau de f, sans diminution du critère.

Fonction de 2 variables - 1 contrainte égalité

Fonction de 2 variables – 1 contrainte inégalité

Fonction de 2 variables – 1 contrainte égalité – 1 contrainte inégalité

Fonction de 2 variables – 2 contraintes inégalité

Fonction de 2 variables – 1 contrainte inégalité

Fonction de 2 variables – 1 contrainte égalité – 1 contrainte inégalité

Méthode pratique 3.6

146

Problème avec contraintes

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 & \rightarrow \text{ p contraintes d'égalité} \\ c_I(x) \leq 0 & \rightarrow \text{ q contraintes d'inégalité} \end{cases}$$

La résolution analytique ou numérique nécessite d'identifier les contraintes actives.

On se ramène à un problème avec contraintes égalité plus simple.

- → résolution des conditions KKT d'ordre 1
- → vérification des conditions réduites d'ordre 2

Identification des contraintes actives

- Résolution analytique \rightarrow problème combinatoire (conditions complémentaires)
- Résolution numérique -> mise à jour itérative de l'ensemble des contraintes actives

Stratégie itérative d'identification

- On cherche un déplacement à partir du point courant sans tenir compte des contraintes inégalité
- Le déplacement peut rendre actives certaines contraintes inégalité.
- On reprend la recherche en ajoutant la première contrainte inégalité activée.
 - → résolution d'une succession de problèmes avec contraintes égalité $\min f(x)$ sous c(x) = 0 \rightarrow m contraintes actives

Problème avec 2 contraintes inégalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

Conditions KKT d'ordre 1

$$\begin{cases} 1 + 2\mu_1 x_1 = 0 \\ 1 + 2\mu_1 (x_2 - 1) - \mu_2 = 0 \\ x_1^2 + (x_2 - 1)^2 - 1 \le 0 \\ 1 - x_2 \le 0 \\ \mu_1 c_1(x) = 0 \\ \mu_2 c_2(x) = 0 \\ \mu_1, \mu_2 \ge 0 \end{cases} \rightarrow \text{conditions complémentaires} : \textbf{4 combinaisons possibles}$$

Identification des contraintes actives

Problème combinatoire : il faut essayer les 4 possibilités $\begin{cases} \mu_1 = 0 \text{ ou } c_1(x) = 0 \\ \mu_2 = 0 \text{ ou } c_2(x) = 0 \end{cases}$

Problème avec 2 contraintes inégalité

$$\min_{x_1, x_2} f(x) = x_1 + x_2 \quad \text{sous} \quad \begin{cases} c_1(x) = x_1^2 + (x_2 - 1)^2 - 1 \le 0 \\ c_2(x) = 1 - x_2 \le 0 \end{cases}$$

• Si $\mu_1 = 0$ \rightarrow incompatible équation $1 + 2\mu_1 x_1 = 0$

$$\Rightarrow$$
 $c_1(x) = 0 \rightarrow c_1$ contrainte active

• Si
$$\mu_2 = 0$$
 $\Rightarrow 1 + 2\mu_1(x_2 - 1) = 0$
 \Rightarrow incompatible équations
$$\begin{cases} 1 - x_2 \le 0 \\ \mu_1 \ge 0 \end{cases}$$

$$\Rightarrow$$
 $c_2(x) = 0 \rightarrow c_2$ contrainte active

$$\begin{cases} c_1(x) = 0 \\ c_2(x) = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \pm 1 \\ x_2 = 1 \end{cases} \Rightarrow \begin{cases} \mu_1 = \mp 0.5 & \text{et } \mu_1 \ge 0 \\ \mu_2 = 1 \end{cases} \Rightarrow x_1 = -1$$

• Solution :
$$\begin{cases} x_1 = -1 \\ x_2 = 1 \\ \mu_1 = 0.5 \\ \mu_2 = 1 \end{cases}$$

Vérification condition d'ordre 2 : cône admissible vide (2 contraintes actives)

→ minimum local

Changement de sens contrainte 2

$$\min_{\mathbf{x}_1, \mathbf{x}_2} \mathbf{f}(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \\ c_2(\mathbf{x}) = \mathbf{x}_2 - 1 \le 0 \end{cases}$$

• Lagrangien :
$$L(x,\mu) = f(x) + \mu_1 c_1(x) + \mu_2 c_2(x)$$

= $x_1 + x_2 + \mu_1 (x_1^2 + (x_2 - 1)^2 - 1) + \mu_2 (x_2 - 1)$

Conditions KKT d'ordre 1

$$\begin{cases} 1 + 2\mu_1 x_1 = 0 \\ 1 + 2\mu_1 (x_2 - 1) + \mu_2 = 0 \\ x_1^2 + (x_2 - 1)^2 - 1 \le 0 \\ x_2 - 1 \le 0 \\ \mu_1 c_1(x) = 0 \end{cases}$$

 $\begin{vmatrix} \mu_1 c_1(x) = 0 \\ \mu_2 c_2(x) = 0 \\ \mu_1, \mu_2 \ge 0 \end{vmatrix} \rightarrow \text{ conditions complémentaires : 4 combinaisons possibles}$

Identification des contraintes actives

Problème combinatoire : il faut essayer les 4 possibilités $\begin{cases} \mu_1 = 0 \text{ ou } c_1(x) = 0 \\ \mu_2 = 0 \text{ ou } c_2(x) = 0 \end{cases}$

Changement de sens contrainte 2

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \\ c_2(\mathbf{x}) = \mathbf{x}_2 - 1 \le 0 \end{cases}$$

- Si $\mu_1 = 0$ \rightarrow incompatible équation $1 + 2\mu_1 x_1 = 0$
 - \Rightarrow $c_1(x) = 0 \rightarrow c_1$ contrainte active

 \rightarrow incompatible condition $\mu_2 \ge 0$

$$\bullet \quad \text{Si } \mu_2 = 0 \quad \Rightarrow \begin{cases} 1 + 2\mu_1 x_1 = 0 \\ 1 + 2\mu_1 (x_2 - 1) = 0 \\ x_1^2 + (x_2 - 1)^2 - 1 = 0 \end{cases} \quad \Rightarrow \begin{cases} x_1 = -1/(2\mu_1) \\ x_2 = 1 - 1/(2\mu_1) \\ \mu_1 = 1/\sqrt{2} > 0 \end{cases} \quad \Rightarrow \begin{cases} x_1 = -1/\sqrt{2} \\ x_2 = 1 - 1/\sqrt{2} \\ \mu_1 = 1/\sqrt{2} \end{cases}$$

• Vérification condition d'ordre 2 : $\nabla^2_{xx}L(x,\mu) = \begin{pmatrix} 2\mu_1 & 0 \\ 0 & 2\mu_1 \end{pmatrix} > 0 \rightarrow \text{minimum local}$ (1 contrainte active)

Passage contrainte 1 en égalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 = 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

- Lagrangien : $L(x, \mu) = f(x) + \lambda_1 c_1(x) + \mu_2 c_2(x)$ = $x_1 + x_2 + \lambda_1 (x_1^2 + (x_2 - 1)^2 - 1) + \mu_2 (1 - x_2)$
- 1.5 0.5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

Conditions KKT d'ordre 1

$$\begin{cases} 1+2\lambda_1x_1=0\\ 1+2\lambda_1(x_2-1)-\mu_2=0\\ x_1^2+(x_2-1)^2-1=0\\ 1-x_2\leq 0\\ \mu_2c_2(x)=0 \end{cases} \rightarrow \text{conditions complémentaires}: \textbf{2 combinaisons possibles}$$

$$\mu_2\geq 0$$

Identification des contraintes actives

Problème combinatoire : il faut essayer les 2 possibilités $\mu_2 = 0$ ou $c_2(x) = 0$

Passage contrainte 1 en égalité

$$\min_{x_1, x_2} f(x) = x_1 + x_2 \quad \text{sous} \quad \begin{cases} c_1(x) = x_1^2 + (x_2 - 1)^2 - 1 = 0 \\ c_2(x) = 1 - x_2 \le 0 \end{cases}$$

• Si
$$\mu_2 = 0$$
 \Rightarrow
$$\begin{cases} 1 + 2\lambda_1 x_1 = 0 \\ 1 + 2\lambda_1 (x_2 - 1) = 0 \\ x_1^2 + (x_2 - 1)^2 - 1 = 0 \end{cases} \Rightarrow \lambda_1 \neq 0$$
$$\Rightarrow \begin{cases} x_1 = -1/(2\lambda_1) \\ x_2 = 1 - 1/(2\lambda_1) \\ \lambda_1 = \pm 1/\sqrt{2} \end{cases}$$

$$1 - x_2 \le 0 \implies \begin{cases} x_1 = 1/\sqrt{2} \\ x_2 = 1 + 1/\sqrt{2} \\ \lambda_1 = -1/\sqrt{2} \end{cases}$$

Vérification condition d'ordre 2: $\nabla^2_{xx}L(x,\mu) = \begin{pmatrix} 2\lambda_1 & 0 \\ 0 & 2\lambda_1 \end{pmatrix} < 0 \rightarrow \text{maximum local}$ (1 contrainte active) \rightarrow solution rejetée (1 contrainte active)

Passage contrainte 1 en égalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 = 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

$$\nabla_{xx}^2 L(x,\mu) = \begin{pmatrix} 2\lambda_1 & 0 \\ 0 & 2\lambda_1 \end{pmatrix}$$

Cône admissible vide : $\nabla c_1 = \begin{pmatrix} 2x_1 \\ 2(x_2 - 1) \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 0 \end{pmatrix}$, $\nabla c_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \rightarrow 2$ contraintes actives

⇒ 2 minima locaux :
$$\begin{cases} x_1 = -1 \\ x_2 = 1 \\ \lambda_1 = 0.5 \\ \mu_2 = 1 \end{cases}$$
 → $f(x) = 0$ et
$$\begin{cases} x_1 = 1 \\ x_2 = 1 \\ \lambda_1 = -0.5 \\ \mu_2 = 1 \end{cases}$$
 → $f(x) = 2$

Problème avec contraintes actives

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives

Résolution des conditions KKT

On cherche $x^* \in R^n$ et $\lambda^* \in R^m$ vérifiant les conditions KKT.

Condition nécessaire du 1^{er} ordre

$$\begin{cases} \nabla_x L(x^*, \lambda^*) = 0 & \to \text{ n \'equations} \\ \nabla_\lambda L(x^*, \lambda^*) = 0 & \to \text{ m \'equations} \end{cases}$$

Les n équations $\nabla_x L(x^*,\lambda^*)$ permettent d'exprimer $x^* \in R^n$ en fonction de $\lambda^* \in R^m$ On remplace ensuite $x^*(\lambda^*)$ dans les m équations $\nabla_{\lambda} L(x^*,\lambda^*)$. \rightarrow système de m équations à m inconnues $\lambda^* \in R^m$

Condition nécessaire du 2^{ème} ordre

Il faut vérifier que :
$$\begin{cases} d^T \nabla^2_{xx} L(x^*, \lambda^*) d \geq 0 \\ \forall d \ / \ d^T \nabla c(x^*) = 0 \end{cases} \rightarrow \text{hessien du lagrangien semi-défini positif}$$
 sur le cône admissible

Condition difficile à vérifier sous cette forme → passage au hessien réduit

Problème avec contraintes actives

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives

Problème équivalent

• Les conditions nécessaires de minimum de f sous contraintes sont :

$$\begin{cases} \nabla_{x} L(x^*, \lambda^*) = 0 \\ \nabla_{\lambda} L(x^*, \lambda^*) = 0 \\ d^{T} \nabla_{xx}^{2} L(x^*, \lambda^*) d \ge 0 , \forall d / d^{T} \nabla c(x^*) = 0 \end{cases}$$

• On observe qu'il s'agit également des conditions nécessaires du problème :

$$\min_{x \in \mathbb{R}^n} L(x, \lambda^*)$$
 sous $c(x) = 0$

• Il est équivalent de minimiser f(x) ou $L(x,\lambda^*)$, si l'on connaît λ^* .

$$\min_{x \in R^n} f(x) \text{ sous } c(x) = 0 \quad \Leftrightarrow \quad \min_{x \in R^n} L(x, \lambda^*) \text{ sous } c(x) = 0$$

• On écrit les conditions nécessaires sur le modèle quadratique-linéaire local, puis on applique la technique de réduction des contraintes linéaires.

- - -

Problème équivalent

$$\min_{x \in \mathbb{R}^n} L(x, \lambda^*) \text{ sous } c(x) = 0$$

Modèle quadratique-linéaire

- Modèle quadratique du critère : $\hat{L}(x^*+p) = L(x^*,\lambda^*) + p^T \nabla_x L(x^*,\lambda^*) + \frac{1}{2} p^T \nabla_{xx}^2 L(x^*,\lambda^*) p$ En notant : $\begin{cases} g_L(x^*) = \nabla_x L(x^*,\lambda^*) & \to \text{ gradient du lagrangien par rapport à } x \\ H_L(x^*) = \nabla_{xx}^2 L(x^*,\lambda^*) & \to \text{ hessien du lagrangien par rapport à } x \end{cases}$ $\to \hat{L}(x^*+p) = L(x^*,\lambda^*) + p^T g_L(x^*) + \frac{1}{2} p^T H_L(x^*) p$
- Modèle linéaire des contraintes : $\hat{c}(x^*+p) = c(x^*) + \nabla c(x^*)^T p$ avec $c(x^*) = 0$

$$\begin{array}{ll} \text{En notant}: & \begin{cases} A = \nabla c(x^*)^T & \text{avec} & \text{AY inversible} \\ p = Y p_Y + Z p_Z & \text{AZ} = 0 \text{ (espace nul)} \end{cases} \\ & \nabla c(x^*)^T p = 0 \iff \begin{cases} A Y p_Y = 0 \\ p_Z \text{ libre} \end{cases} \Leftrightarrow \begin{cases} p_Y = 0 \\ p_Z \text{ libre} \end{cases} \text{ car AY inversible}$$

• Problème réduit : $\overline{\min_{p \in \mathbb{R}^n} \hat{L}(x^* + p) \text{ sous } \hat{c}(x^* + p) = 0} \iff \overline{\min_{p_z \in \mathbb{R}^{n-m}} \hat{L}(x^* + Zp_z)}$

Problème réduit

$$\min_{p_Z \in \mathbb{R}^{n-m}} \hat{L}(x^* + Zp_Z) \rightarrow \text{problème sans contrainte à n-m variables } p_Z$$

$$\text{avec } \hat{L}(x^* + Zp_Z) = L(x^*, \lambda^*) + p_Z^T Z^T g_L(x^*) + \frac{1}{2} p_Z^T Z^T H_L(x^*) Zp_Z$$

Conditions nécessaires de minimum du problème réduit

$$\hat{L}(x^* + Zp_Z) \ge \hat{L}(x^*), \forall p_Z \implies p_Z^T Z^T g_L(x^*) + \frac{1}{2} p_Z^T Z^T H_L(x^*) Zp_Z \ge 0, \forall p_Z \implies \begin{cases} Z^T g_L(x^*) = 0 \\ Z^T H_L(x^*) Z \ge 0 \end{cases}$$

- Condition réduite d'ordre 1 : $Z^T g_L(x^*) = 0 \iff Z^T \nabla_x L(x^*, \lambda^*) = Z^T \Big(\nabla f(x^*) + \nabla c(x^*) \lambda^{*T} \Big) = 0$ $\iff Z^T \nabla f(x^*) = 0 \text{ car } \nabla c(x^*)^T Z = 0$
- Condition réduite d'ordre 2 : $Z^T H_L(x^*)Z \ge 0$

$$\begin{array}{ll} \bullet & \begin{cases} g_Z = Z^T g & \rightarrow \text{ gradient r\'eduit du crit\`ere} & g(x) = \nabla f(x) \\ H_Z = Z^T H_L Z & \rightarrow \text{ hessien r\'eduit du lagrangien} & H_L(x) = \nabla_{xx}^2 L(x, \lambda^*) \end{cases}$$

• x^* minimum local $\Rightarrow \begin{cases} g_Z(x^*) = 0 & \rightarrow \text{ gradient r\'eduit du crit\`ere nul} \\ H_Z(x^*) \ge 0 & \rightarrow \text{ hessien r\'eduit du lagrangien semi-d\'efini positif} \end{cases}$

Problème de la boîte

- Réaliser une boîte cylindrique de volume donné V₀ et de surface minimale
- Dimensions: hauteur = h, rayon = r

Formulation du problème

• Surface: $S=2\pi r^2+2\pi rh$ • Volume: $V=\pi r^2h$ $\rightarrow \min_{h,r} S(h,r)$ sous $V(h,r)=V_0$

On note : $V_0 = 2\pi v_0$

• Lagrangien: $L(h,r,\lambda) = 2\pi r^2 + 2\pi rh + \lambda (\pi r^2 h - 2\pi v_0)$

Conditions KKT

$$\begin{cases} 2\pi r + \lambda \pi r^2 &= 0 \\ 4\pi r + 2\pi h + 2\lambda \pi r h &= 0 \\ \pi r^2 h - 2\pi v_0 &= 0 \end{cases} \begin{cases} \lambda r + 2 &= 0 \\ 2r + h + \lambda r h &= 0 \\ r^2 h - 2v_0 &= 0 \end{cases} \Rightarrow \begin{cases} \lambda r = -2 \\ h &= 2r \\ r^3 &= v_0 \end{cases}$$

• Solution: $\begin{cases} r = v_0^{\frac{1}{3}} \\ h = 2v_0^{\frac{1}{3}} \end{cases} \Rightarrow S = 6\pi v_0^{\frac{2}{3}} = 3(2\pi)^{\frac{1}{3}} V_0^{\frac{2}{3}}$

Vérification des conditions réduites

Il faut choisir une base de réduction, puis vérifier les conditions réduites de minimum local.

$$\begin{cases} g_Z(x^*) = Z^T \nabla f(x^*) = 0 & \rightarrow \text{ gradient réduit du critère nul} \\ H_Z(x^*) = Z^T \nabla_{xx}^2 L(x, \lambda^*) Z \ge 0 & \rightarrow \text{ hessien réduit du lagrangien semi-défini positif} \end{cases}$$

• Gradient du critère :
$$g(h,r) = \nabla_{h,r} f(h,r) = 2\pi \binom{r}{2r+h}$$

• Hessien du lagrangien : $L(h, r, \lambda) = 2\pi r^2 + 2\pi r h + \lambda (\pi r^2 h - 2\pi v_0)$

$$\Rightarrow g_L(h,r) = \nabla_{h,r} L(h,r,\lambda) = \pi \begin{pmatrix} 2r + \lambda r^2 \\ 4r + 2h + 2\lambda rh \end{pmatrix} , \quad H_L(h,r) = \nabla_{h,r}^2 L(h,r,\lambda) = 2\pi \begin{pmatrix} 0 & 1 + \lambda r \\ 1 + \lambda r & 2 + \lambda h \end{pmatrix}$$

Choix d'une base de réduction

• Contrainte: $c(h,r) = \pi r^2 h - 2\pi v_0 = 0 \implies \nabla c^T = (\pi r^2 \quad 2\pi r h)$

• Choix de la base avec la variable h : $A = \nabla c^T = (\pi r^2 \quad 2\pi rh) = \begin{pmatrix} h & r \\ B & N \end{pmatrix}$

Base de l'espace nul :
$$Z = \begin{pmatrix} -B^{-1}N \\ I \end{pmatrix} = \begin{pmatrix} -2\pi rh/\pi r^2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2h/r \\ 1 \end{pmatrix}$$

Vérification des conditions réduites

• Gradient réduit du critère : $g_Z(h,r) = Z^T g(h,r) = 2\pi \binom{-2h/r}{1}^T \binom{r}{2r+h} = 2\pi (2r-h)$

On vérifie que le gradient réduit est nul : $h = 2r \implies g_Z(h,r) = 0$

• Hessien réduit du lagrangien : $H_Z(h,r) = Z^T H(h,r) Z = 2\pi \begin{pmatrix} -2h/r \\ 1 \end{pmatrix}^T \begin{pmatrix} 0 & 1+\lambda r \\ 1+\lambda r & 2+\lambda r \end{pmatrix} \begin{pmatrix} -2h/r \\ 1 \end{pmatrix}$ $\Rightarrow H_Z(h,r) = 2\pi \begin{pmatrix} 2-4\frac{h}{r}-3\lambda h \end{pmatrix}$

On vérifie que le hessien réduit est semi-défini positif

$$\begin{cases} \lambda r = -2 \\ h = 2r \end{cases} \Rightarrow H_Z(h,r) = 2\pi \left(2 - \frac{h}{r}(4 + 3\lambda r)\right) = 12\pi > 0$$

Résolution par élimination

- Contrainte : $c(h,r) = \pi r^2 h 2\pi v_0 = 0 \implies h = \frac{2v_0}{r^2}$
- Elimination de la variable h : $S(h,r) = 2\pi r^2 + 2\pi rh \implies S(r) = 2\pi r^2 + \frac{4\pi v_0}{r}$
- Gradient: $\frac{dS}{dr}(r) = 4\pi r \frac{4\pi v_0}{r^2} = 4\pi r \left(1 \frac{v_0}{r^3}\right)$
- Hessien: $\frac{d^2S}{dr^2}(r) = 4\pi + \frac{8\pi v_0}{r^3} = 4\pi \left(1 + 2\frac{v_0}{r^3}\right)$
- Minimum de S(r): $\begin{cases} \frac{dS}{dr}(r) = 0 \\ \frac{d^2S}{dr^2}(r) \ge 0 \end{cases} \Rightarrow \begin{cases} r^3 = v_0 \\ \frac{d^2S}{dr^2}(r) = 12\pi > 0 \end{cases}$

Lien avec les conditions réduites

- Gradient réduit $g_Z(h,r) = 2\pi \left(2r h\right) \quad \text{avec } h = \frac{2v_0}{r^2} \implies g_Z(h,r) = 2\pi \left(2r \frac{2v_0}{r^2}\right) = 4\pi r \left(1 \frac{v_0}{r^2}\right) = \frac{dS}{dr}(r)$
- Hessien réduit \rightarrow pas de relation directe entre H_Z et $\frac{d^2S}{dr^2}$ (contrainte non linéaire)

209

Problème du skieur

- Descendre du départ à l'arrivée le plus vite possible
- 2 zones de pentes différentes : vitesse v₁, puis v₂

Problème du sauveteur

- Aller secourir le baigneur qui se noie le plus vite possible
- Course sur terre, puis nage dans l'eau : vitesse v₁, puis v₂

Sauveteur

Problème du sauveteur

Données du problème : l₀, l₁, l₂, v₁, v₂

Distance sur terre : $d_1 = \frac{l_1}{\cos \theta_1}$

Durée de course : $t_1 = \frac{d_1}{v_1}$ Distance dans l'eau : $d_2 = \frac{l_2}{\cos \theta_2}$

Durée de nage :

Distance suivant x : $L = d_1 \sin \theta_1 + d_2 \sin \theta_2$

Formulation du problème

 θ_1 , θ_2 Variables:

e: $L = l_0$ \rightarrow atteindre le point visé $T = t_1 + t_2$ \rightarrow durée totale à minimiser Contrainte : $L = l_0^2$ Critère :

Problème du sauveteur

Formulation du problème

$$\min_{\theta_1,\theta_2} T(\theta_1,\theta_2) \text{ sous } L(\theta_1,\theta_2) = l_0$$

$$\iff \min_{\theta_1,\theta_2} T = \frac{l_1}{v_1 \cos \theta_1} + \frac{l_2}{v_2 \cos \theta_2} \quad sous \quad L = l_1 \tan \theta_1 + l_2 \tan \theta_2 = l_0$$

Résolution du problème

Lagrangien: $L(\theta_1, \theta_2, \lambda) = \frac{l_1}{v_1 \cos \theta_1} + \frac{l_2}{v_2 \cos \theta_2} + \lambda (l_1 \tan \theta_1 + l_2 \tan \theta_2 - l_0)$

 $\label{eq:conditions} \text{Conditions KKT}: \quad \begin{cases} \frac{l_1 \sin \theta_1}{v_1 \cos^2 \theta_1} + \lambda l_1 \; \frac{1}{\cos^2 \theta_1} = 0 \\ \frac{l_2 \sin \theta_2}{v_2 \cos^2 \theta_2} + \lambda l_2 \; \frac{1}{\cos^2 \theta_2} = 0 \end{cases} \quad \Rightarrow \begin{cases} \sin \theta_1 \; + \lambda v_1 = 0 \\ \sin \theta_2 + \lambda v_2 = 0 \\ l_1 \tan \theta_1 + l_2 \tan \theta_2 = l_0 \end{cases}$ $\left| \mathbf{1}_1 \tan \theta_1 + \mathbf{1}_2 \tan \theta_2 \right| = \mathbf{1}_0$

Problème du sauveteur

 $\label{eq:conditions} \begin{array}{ll} Conditions \ KKT: & \begin{cases} \sin\theta_1 \ + \lambda v_1 = 0 \\ \sin\theta_2 \ + \lambda v_2 = 0 \\ l_1 \tan\theta_1 \ + l_2 \tan\theta_2 \ = l_0 \end{cases} \end{array}$

- $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} \rightarrow \text{loi de la réfraction de Descartes}$ • θ_1, θ_2 vérifient :
- Pour résoudre complètement

On exprime
$$\theta_1, \theta_2$$
 en fonction de λ :
$$\begin{cases} \sin \theta_1 = -\lambda v_1 \implies \cos \theta_1 = \sqrt{1 - \lambda^2 v_1^2} \\ \sin \theta_2 = -\lambda v_2 \implies \cos \theta_2 = \sqrt{1 - \lambda^2 v_2^2} \end{cases}$$

On remplace dans la contrainte :
$$l_1 \tan \theta_1 + l_2 \tan \theta_2 = l_0 \Rightarrow \frac{\lambda l_1 v_1}{\sqrt{1 - \lambda^2 v_1^2}} + \frac{\lambda l_2 v_2}{\sqrt{1 - \lambda^2 v_2^2}} = -l_0$$

On obtient une équation en
$$\lambda$$
:
$$\lambda l_1 v_1 \sqrt{1 - \lambda^2 v_2^2} + \lambda l_2 v_2 \sqrt{1 - \lambda^2 v_1^2} = -l_0 \sqrt{1 - \lambda^2 v_2^2} \sqrt{1 - \lambda^2 v_1^2}$$
 équation de degré 4

 \rightarrow solution $\lambda^* \rightarrow \theta_1^*, \theta_2^*$

Cas linéaire

Problème linéaire

$$\min_{x \in R^n} c^T x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases} \qquad A \in R^{m \times n} \text{ , } b \in R^m \text{ , } c \in R^n$$

→ problème linéaire sous forme standard (PL)

Conditions nécessaires d'optimalité à partir du lagrangien

Lagrangien:
$$L(x,\lambda,s) = c^{T}x + \lambda^{T}(b-Ax) - s^{T}x \implies \begin{cases} \nabla_{x} L(x,\lambda,s) = c - A^{T}\lambda - s \\ \nabla_{xx}^{2} L(x,\lambda,s) = 0 \end{cases}$$

 (x,λ,s) minimum local de (PL)

- Condition nécessaire d'ordre 1 : $\begin{cases} c A^T \lambda s = 0 \\ s \ge 0 \end{cases} \rightarrow \text{contraintes du problème dual}$ Condition nécessaire d'ordre 2 : $\nabla^2_{xx} L(x,\lambda,s) \ge 0 \rightarrow \text{vérifiée}$
- $Condition \ complémentaire: \qquad \quad s_i x_i = 0, \ i = 1,...n$

Problème linéaire

$$\min_{x \in R^n} c^T x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases} \qquad A \in R^{m \times n} \text{ , } b \in R^m \text{ , } c \in R^n$$

→ problème linéaire sous forme standard (PL)

Conditions nécessaires d'optimalité à partir des dérivées directionnelles

x minimum local de (PL)

Pour toute direction admissible d: $\nabla f(x)^T d \ge 0 \implies c^T d \ge 0$

 Toute direction admissible d est combinaison linéaire des directions de base d_j. (contraintes linéaires)

$$d_{j} = E \begin{pmatrix} d_{jB} \\ d_{jN} \end{pmatrix} \text{ avec } \begin{cases} d_{jB} = -B^{-1}A_{j} \\ E^{T}e_{j} = \begin{pmatrix} 0 \\ d_{jN} \end{pmatrix} \implies c^{T}d_{j} = c_{B}^{T}d_{jB} + c_{N}^{T}d_{jN} = -c_{B}^{T}B^{-1}A_{j} + c_{j} \end{cases}$$

• Il suffit de vérifier : $c^T d_j \ge 0$

Coûts réduits

x solution de base admissible : $x = E\begin{pmatrix} x_B \\ x_N \end{pmatrix} = E\begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \xrightarrow[]{} m \\ \xrightarrow[]{} n - m$

Le **coût réduit** associé à la variable hors base x_j est défini par : $\overline{c_j = c^T d_j = c_j - c_B^T B^{-1} A_j}$

= dérivée directionnelle de f suivant la j^{ème} direction de base pour une variable hors base

= 0 par extension pour une variable de base

$$AE = \begin{pmatrix} B & N \end{pmatrix} \Rightarrow B^{-1}AE = \begin{pmatrix} I & B^{-1}N \end{pmatrix} \Rightarrow c_B^TB^{-1}AE = \begin{pmatrix} c_B^T & c_B^TB^{-1}N \end{pmatrix} \quad \Rightarrow \ \overline{c} = \begin{pmatrix} 0 & \overline{c}_N^T \end{pmatrix}$$

Conditions nécessaires d'optimalité

x* solution de base non dégénérée

$$x^*$$
 solution de PL $\Rightarrow \overline{c} \ge 0$

Conditions suffisantes d'optimalité

x* solution de base admissible

$$\overline{c} \ge 0 \implies x^* \text{ solution de PL}$$

Lien entre multiplicateurs et coûts réduits

- Problème linéaire sous forme standard : $\min_{x \in \mathbb{R}^n} c^T x$ sous $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$
- Lagrangien: $L(x,\lambda,s) = c^T x + \lambda^T (b Ax) s^T x \implies \nabla_x L(x,\lambda,s) = c A^T \lambda s$
- Conditions d'ordre 1 : $\begin{cases} A^T \lambda + s = c \\ s \ge 0, s_i x_i = 0, i = 1, \dots, n \end{cases}$
- Base B: $AE = (B \ N) \Rightarrow c = \begin{pmatrix} c_B \\ c_N \end{pmatrix}, s = \begin{pmatrix} s_B \\ s_N \end{pmatrix}, x = \begin{pmatrix} x_B = B^{-1}b \\ x_N = 0 \end{pmatrix}$ $A^T \lambda + s = c \qquad \Leftrightarrow \begin{pmatrix} B^T \\ N^T \end{pmatrix} \lambda + \begin{pmatrix} s_B \\ s_N \end{pmatrix} = \begin{pmatrix} c_B \\ c_N \end{pmatrix}$ $s \ge 0, s_i x_i = 0, i = 1, \dots, n \Leftrightarrow \begin{cases} s_B \ge 0, s_i x_i = 0, i \in B \\ s_N \ge 0, s_i x_i = 0, i \in N \end{cases} \Rightarrow \text{ vérifié en prenant } s_B = 0$ $B^T \lambda = c_B \qquad \Rightarrow \begin{pmatrix} \lambda = B^{-T}c_B \\ \lambda = B^{-T}c_B \end{cases} \Rightarrow \begin{pmatrix} s_B \end{pmatrix} \begin{pmatrix} s_B \end{pmatrix}$

$$\begin{cases} B^{T}\lambda = c_{B} \\ N^{T}\lambda + s_{N} = c_{N} \end{cases} \Rightarrow \begin{cases} \lambda = B^{-T}c_{B} \\ s_{N} = c_{N} - (B^{-1}N)^{T}c_{B} = \overline{c}_{N} \ge 0 \end{cases} \Rightarrow s = \begin{pmatrix} s_{B} \\ s_{N} \end{pmatrix} = \begin{pmatrix} 0 \\ \overline{c}_{N} \end{pmatrix} = \overline{c} \ge 0$$

• Les coûts réduits sont les multiplicateurs des variables \rightarrow $s = \overline{c} \ge 0$

225

3.7 Exercices

Exercice 27: Multiplicateurs de Lagrange (1)

Trouver le maximum de la fonction f(x, y) = xyz respectant les contraintes $(x, y, z) \in \mathbb{R}^3$, $x + y + z \le 1$ et $x, y, z \ge 0$.

Exercice 28: Multiplicateurs de Lagrange (2)

Trouver le minimum de la fonction $f(x, y) = 2y - x^2$ respectant les contraintes $(x, y) \in \mathbb{R}^2$, $x^2 + y^2 \le 1$ et $x, y \ge 0$.

Exercice 29: Multiplicateurs de Lagrange (3)

Résoudre le problème de minimisation : $\min x^2 + y^2 - 20x$ tel que $25x^2 + 4y^2 \le 100$.

Exercice 30: Multiplicateurs de Lagrange (4)

Maximiser x + y - 2z tel que $z \ge x^2 + y^2$ et $x, y, z \ge 0$.

4 Simplexe

4.1 Problème linéaire

a) Forme standard

Problème linéaire sous forme standard

$$\min_{x} c^{T}x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases} \qquad A \in R^{m \times n}, \ b \in R^{m}, \ c \in R^{n} \\ \text{rang}(A) = m \end{cases} \rightarrow \text{problème noté (PL)}$$

Rappels

• Base B = $(A_{j1}, ..., A_{jm})$ = m colonnes indépendantes de A \Rightarrow B inversible AE = (B N) avec E = matrice de permutation de colonnes (EE^T = I)

• Solution de base :
$$x = E \begin{pmatrix} x_B \\ x_N \end{pmatrix} \xrightarrow{m} \text{ avec } \begin{cases} Ax = b \\ x_N = 0 \end{cases} \Rightarrow x = E \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$$

• Direction de base d_i , $j \in N$

• Coût réduit = dérivée directionnelle suivant la direction de base d_j : $\bar{c}_j = c^T d_j = c_j - c_B^T B^{-1} A_j$ Coût réduit négatif \rightarrow direction de descente

Problème linéaire sous forme standard

$$\min_{x} c^{T} x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases} \qquad A \in R^{m \times n}, b \in R^{m}, c \in R^{n}$$

$$rang(A) = m$$

Solution

On note P le polytope associé aux contraintes : $P = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ Si le problème (PL) admet une solution, alors il existe un sommet optimal x^* .

Preuve: On suppose que PL admet une solution de coût f^* On considère un sommet x^* du polytope Q inclus dans $P: Q = \{x \in P/c^T x = f^*\}$ On suppose par l'absurde que x^* n'est pas un sommet de P. $x^* = \alpha * y + (1 - \alpha *)z$ avec $y, z \in P$, $y \neq z, 0 < \alpha * < 1$

$$x^* = \alpha * y + (1 - \alpha^*)z \quad avec \boxed{y, z \in P}, y \neq z, 0 < \alpha^* < 1$$

$$La fonction \ linéaire \begin{cases} \varphi(\alpha) = \alpha c^T y + (1 - \alpha)c^T z \\ 0 \leq \alpha \leq 1 \end{cases} \text{ est minimale en } \alpha^* : \begin{cases} \varphi(\alpha^*) = c^T x^* = f * \\ 0 < \alpha^* < 1 \end{cases}$$

La fonction φ est donc constante (sinon elle décroît d'un côté de α^*) \Rightarrow $c^Ty = c^Tz = f^*$ \Rightarrow $y, z \in Q$

On a donc: $x^* = \alpha * y + (1 - \alpha^*)z$ avec $y, z \in Q$ $y \neq z, 0 < \alpha^* < 1$ en contradiction avec l'hypothèse que x est un sommet de Q.

b) Recherche systématique

Recherche systématique

Si (PL) admet une solution x*, x* est un sommet du polytope P associé aux contraintes. On peut donc trouver la solution : en parcourant tous les sommets de P (= bases) en calculant les solutions de base associées en conservant la meilleure solution de base réalisable

- Choix de m colonnes parmi les n colonnes de $A \rightarrow$ base B possible
- Vérification que la base est réalisable : B inversible et B-1b≥0

→ Solution de base admissible : $x = E\begin{pmatrix} x_B \\ x_N \end{pmatrix} = E\begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$

- Valeur du coût associé à la base B : $f = c^T x = c_B^T x_B + c_N^T x_N = c_B^T x_B$
- Sélection de la meilleure solution (f minimal)

Inconvénient

$$C_n^m = \frac{n!}{m!(n-m)!}$$
 combinaisons possibles \rightarrow inapplicable en pratique

Recherche systématique

$$\min_{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4} - \mathbf{x}_1 - 2\mathbf{x}_2 \text{ sous } \begin{cases} \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = 1 \\ \mathbf{x}_1 - \mathbf{x}_2 + \mathbf{x}_4 = 1 \\ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \ge 0 \end{cases}$$

• Représentation graphique dans R²

$$P' = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} / \left\{ \begin{matrix} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{matrix} \right., \left\{ \begin{matrix} x_1 \ge 0 \\ x_2 \ge 0 \end{matrix} \right\}$$

- Solution graphique : point C (f = -2)
- Solution par énumération des sommets

Base	X	f
x ₁ ,x ₂	$(1 0 0 0) \rightarrow B$	-1
x ₁ ,x ₃	$(1 0 0 0) \rightarrow B$	-1
X_1, X_4	$(1 0 0 0) \rightarrow B$	-1
x ₂ ,x ₃	$(0 -1 2 0) \rightarrow D$	Non admissible
x ₂ ,x ₄	$(0 1 0 2) \rightarrow C$	-2
X_3, X_4	$(0 \ 0 \ 1 \ 1) \rightarrow A$	0

c) Recherche optimisée

Recherche optimisée

On évite l'énumération systématique en parcourant les sommets de façon ordonnée

→ Méthode du simplexe = méthode de contraintes actives

Principes

- On se déplace d'une solution de base admissible à une autre solution de base admissible.
 - → Les solutions non admissibles ne sont pas examinées.
- Les bases successives ne diffèrent que par l'une des variables (bases adjacentes)
- Le déplacement d'un sommet à un autre est choisi à partir des directions de base
 - → Déplacement suivant les arêtes du polytope
- Les **coûts réduits** déterminent les directions de descente possibles.
 - → Sélection d'une direction de déplacement (plusieurs règles de sélection possibles)
- Le problème est mis sous forme canonique dans la base B
 - → Permet de vérifier l'optimalité de la base B
 - → Permet de construire le déplacement vers une base adjacente

d) Recherche canonique

Réduction dans la base B

• Forme standard :
$$\min_{x} c^{T}x$$
 sous
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$
 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$, $c \in \mathbb{R}^{n}$

• Base B:
$$AE = \begin{pmatrix} B & N \end{pmatrix}, \quad x = E \begin{pmatrix} x_B \\ x_N \end{pmatrix}_{\to n-m}^{\to m} \implies \begin{cases} Ax = Bx_B + Nx_N \\ c^T x = c_B^T x_B + c_N^T x_N \end{cases}$$

Réduction aux variables hors base

$$\begin{aligned} \min_{\mathbf{x}} c^{\mathsf{T}} \mathbf{x} \ \text{sous} \left\{ \begin{aligned} A \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq 0 \end{aligned} \right. &\Leftrightarrow \min_{\substack{\mathbf{x}_B \in \mathbb{R}^m \\ \mathbf{x}_N \in \mathbb{R}^{n-m}}} c^{\mathsf{T}}_B \mathbf{x}_B + c^{\mathsf{T}}_N \mathbf{x}_N \ \text{sous} \ \left\{ \begin{aligned} B \mathbf{x}_B + \mathbf{N} \mathbf{x}_N &= \mathbf{b} \\ \mathbf{x}_B &\geq 0, \mathbf{x}_N \geq 0 \end{aligned} \right. \\ &\Leftrightarrow \min_{\mathbf{x}_N \in \mathbb{R}^{n-m}} c^{\mathsf{T}}_B B^{-1} \mathbf{b} + \left(c^{\mathsf{T}}_N - c^{\mathsf{T}}_B B^{-1} \mathbf{N} \right) \mathbf{x}_N \ \text{sous} \left\{ \begin{aligned} \mathbf{x}_B &= B^{-1} \mathbf{b} - B^{-1} \mathbf{N} \mathbf{x}_N \geq 0 \\ \mathbf{x}_N &\geq 0 \end{aligned} \right. \end{aligned}$$

• Forme canonique dans la base B

$$\min_{\substack{x_N \in \mathbf{R}^{\mathbf{n}-\mathbf{m}} \\ x_N \geq 0}} \overline{z} + \overline{c}_N^{\mathsf{T}} x_N \quad \text{sous} \quad x_B = \overline{b} - B^{-1} N x_N \geq 0 \qquad \text{avec} \begin{cases} \overline{b} = B^{-1} b \\ \overline{z} = c_B^{\mathsf{T}} \overline{b} \\ \overline{c}_N^{\mathsf{T}} = c_N^{\mathsf{T}} - c_B^{\mathsf{T}} B^{-1} N \end{cases}$$

 \rightarrow Réduction à n-m variables = variables hors-base x_N

Evaluation de la base B

La solution x* du problème linéaire correspond à un sommet = solution de base admissible

- → Evaluer l'optimalité de la solution de base associée à la base B
- → Construire le déplacement vers une nouvelle base B' meilleure que B
- Forme canonique dans B: $\min_{\substack{x_N \in R^{n-m} \\ x_N \geq 0}} \overline{z} + \overline{c}_N^T x_N \text{ sous } x_B = \overline{b} B^{-1} N x_N \geq 0$
- Solution de base associée à B : $x_N = 0 \implies \begin{cases} z = \overline{z} \\ x_B = \overline{b} \ge 0 \end{cases}$ si B est admissible (ou réalisable)
- Variation du coût : $z(x_N) = \overline{z} + \overline{c}_N^T x_N = \overline{z} + \sum_{j \in N} \overline{c}_j x_j \implies \frac{\partial z}{\partial x_j} = \overline{c}_j$

Optimalité

- Coût réduit \bar{c}_i = dérivée directionnelle suivant la direction de base d_i associée à x_i , $j \in N$
- Si tous les coûts réduits sont positifs ou nuls, la solution est optimale.
- Sinon le coût décroît suivant une direction de base d_j de coût réduit négatif = direction de descente

4.2 Déplacement

a) Règles de déplacement

Notations

• Matrices: B, N = matrice de base et hors base $AE = (B \ N)$

• Par extension : B, N = numéros des variables de base x_B et hors base x_N

• Solution de base associée à B: $E^T x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$ avec $\begin{cases} Ax = b \\ x_N = 0 \end{cases} \Rightarrow Bx_B = b$

Direction de déplacement

- Si tous les coûts réduits sont positifs ou nuls, la solution courante est optimale.
- Sinon on choisit un indice hors base $e \in N$ de coût réduit strictement négatif : $\overline{c}_e < 0$ \rightarrow La direction de base associée d_e est une direction de descente.
- On se déplace à partir de x d'un pas $\alpha \ge 0$ suivant la direction de base $d_e \rightarrow x' = x + \alpha d_e$
- Le nouveau point $x'=x + \alpha d_e$ doit rester admissible :

$$\begin{cases} Ax' = b \\ x' \geq 0 \end{cases} \Leftrightarrow \begin{cases} A(x + \alpha d_e) = b \\ x + \alpha d_e \geq 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ x_N + \alpha d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifi\'e car } x_N = 0 \text{ et } d_{eN} \geq 0 \end{cases} \Rightarrow \begin{cases} \text{v\'erifi\'e par d\'efinition de } d_e \\ \text{v\'erifical d\'efinition de } d_e \\ \text{v\'erifical d\'efinition de } d_e \\ \text{v\'erifical d\'efinition de } d_e \\ \text{v$$

• Le déplacement est limité par le fait que les variables de base doivent rester positives.

Pas de déplacement

Le déplacement α suivant la direction de base d_e est limité par les contraintes $x_B \ge 0$ $x_B + \alpha d_{eB} \ge 0$ \rightarrow Borne α_i pour chacune des m variables de base x_i , $i \in B$

- Si la composante d_{eB_i} est positive, le pas n'est pas borné : $\alpha_i = +\infty$
- Si la composante d_{eB_i} est négative, le pas est borné par : $\alpha_i = \frac{X_i}{-d_{eB_i}}$ (annulation de x_i)

Déplacement maximal

On note s le numéro de la 1^{ère} variable de base x_i qui s'annule suivant la direction d_e.

- \rightarrow Le **pas maximal admissible** suivant la direction d_e est : $\alpha_s = \min_{i \in R} \alpha_i$
- Si $d_{eB} \ge 0$, le pas n'est pas borné suivant d_e
 - → Le problème PL n'a pas de solution (problème non borné).
- Sinon on réalise le pas maximal α_s suivant la direction d_e : $x' = x + \alpha_s d_e$
 - → Changement de base ou pivotage
 - \rightarrow Echange des variables x_s (variable de base sortant de la base courante) et x_e (variable hors base entrant dans la nouvelle base)

b) Changement de base

Pivotage

La direction de base d_e associé à la variable hors base x_e est définie par

$$E^{T}d_{e} = \begin{pmatrix} d_{eB} \\ d_{eN} \end{pmatrix} \text{ avec } \begin{cases} d_{eB} = -B^{-1}A_{e} & \rightarrow \text{ pour v\'erifier Ax=b} \\ E^{T}e_{e} = \begin{pmatrix} 0 \\ d_{eN} \end{pmatrix} & \rightarrow \text{ composantes nulles sauf =1 sur la composante e} \end{cases}$$

- Le nouveau point $x' = x + \alpha_s d_e$ est admissible car : la direction d_e est admissible le pas α_s respecte les contraintes $x' \ge 0$
- Variables de base x_i , $i \in B$: $x_i' = x_i + \alpha_s (d_{eB})_i$ $\begin{cases} \geq 0 \text{ si } i \neq s \\ = 0 \text{ si } i = s \end{cases} \rightarrow \text{car } \alpha_s \leq \alpha$ \Rightarrow par construction du pas α_s
- Variables hors base $x_j, j \in N$: $x_j' = x_j + \alpha_s (d_{eB})_j$ $\begin{cases} = 0 & \text{si } j \neq e \\ = \alpha_s \ge 0 & \text{si } j = e \end{cases} \text{ car } (d_{eB})_j \quad \begin{cases} = 0 & \text{si } j \neq e \\ = 1 & \text{si } j = e \end{cases}$

Nouvelle base

- Nouvelles variables hors base : $\begin{cases} x_j' = 0 \text{ pour } j \in N \{e\} \\ x_s' = 0 \text{ pour } i = s \end{cases} \Rightarrow N' = N \{e\} + \{s\}$
- Nouvelles variables de base : $\begin{cases} x_i \geq 0 \text{ pour } i \in B \{s\} \\ x_e \geq 0 \text{ pour } j = e \end{cases} \Rightarrow B' = B \{s\} + \{e\}$

464

Variation du coût

- Le nouveau coût est : $c^T x' = c^T (x + \alpha_s d_e) = c^T x + \alpha_s \overline{c}_e \implies z' = z + \alpha_s \overline{c}_e \le z$
- Si la base n'est pas dégénérée ($x_R > 0$), toutes les directions de base sont admissibles
 - → Déplacement non nul possible : $\alpha_s > 0$
 - \rightarrow Le coût décroît strictement : z' < z car on a choisi $e \in N$ tel que $\overline{c}_e < 0$

Méthode pratique

- La nouvelle base ne diffère de la base courante que par une seule variable (= une colonne de A)
 - → Limitations des calculs correspondant à un pivotage
 - → Méthode des tableaux
- Les variables hors base sont constantes ou croissantes suivant les directions de base.
 - → Toutes les variables hors base sont candidates pour entrer dans la base.
- Plusieurs règles de choix sont possibles pour la variable entrant dans la base.
 - → Règles de pivotage
- L'algorithme nécessite une base initiale admissible.
 - → Etape préliminaire de détermination de la base initiale

Règles de pivotage

- Choix de la variable entrante → différents choix possibles
- Détermination de la variable sortante → imposé

Variable entrante

- La variable hors base entrant dans la base doit avoir un coût réduit négatif.
- Choix de la variable de plus petit indice
 - → Règle de Bland (évite le cyclage pouvant se produire lorsque une base est dégénérée)
- Choix de la variable de coût réduit le plus négatif (plus forte descente)
 - → 1ère règle de Dantzig
- Choix de la variable conduisant à la plus forte diminution de la fonction coût
- Choix aléatoire avec une probabilité proportionnelle au coût réduit

Variable sortante

- La variable de base sortant de la base est la 1ère à s'annuler suivant la direction de base choisie
 - → 2^{ème} règle de Dantzig

Illustration

Forme canonique

On écrit le problème sous forme canonique dans la base B.

Formulation matricielle

$$\min_{\substack{x_N \in R^{n-m} \\ x_N \geq 0}} \overline{z} + \overline{c}_N^T x_N \quad sous \quad x_B = \overline{b} - B^{-1} N x_N \geq 0 \qquad \qquad avec \quad \begin{cases} \overline{b} = B^{-1} b \\ \overline{z} = c_B^T \overline{b} \\ \overline{c}_N^T = c_N^T - c_B^T B^{-1} N \end{cases}$$

• Formulation explicite en fonction des variables hors base \boldsymbol{x}_j , $j \in N$

$$\min_{x_{N} \geq 0} \overline{z} + \sum_{j \in N} \overline{c}_{j} x_{j} \text{ sous } x_{i} = \overline{b}_{i} - \sum_{j \in N} \overline{a}_{ij} x_{j} \geq 0, i \in B$$
 avec
$$\begin{cases} \overline{b} = B^{-1} b \\ B^{-1} N = (\overline{a}_{ij})_{i \in B, j \in N} \\ \overline{z} = \sum_{i \in B} c_{i} \overline{b}_{i} \\ \overline{c}_{j} = c_{j} - \sum_{i \in B} c_{i} \overline{a}_{ij}, j \in N \end{cases}$$

c) Formule de pivotage

Changement de base

- Le pivotage consiste à remplacer la variable hors base x_e (entrante) : $B' = B \{s\} + \{e\}$ par la variable de base x_s (sortante) : $N' = N \{e\} + \{s\}$
- Forme canonique dans la base B: $z = \overline{z} + \sum_{i \in N} \overline{c}_j x_j$ $x_i = \overline{b}_i \sum_{i \in N} \overline{a}_{ij} x_j$, $i \in B$
 - \rightarrow Expression en fonction des variables x_i , $j \in N$
- Forme canonique dans la base B': $z = \overline{z}' + \sum_{j \in N'} \overline{c}_j' x_j$ $x_i = \overline{b}_i' \sum_{j \in N'} \overline{a}_{ij}' x_j$, $i \in B'$
 - \rightarrow Expression en fonction des variables x_i , $j \in \mathbb{N}'=\mathbb{N}-\{e\}+\{s\}$

Pour passer de la forme canonique dans la base B à la forme canonique dans la base B', il faut :

- exprimer x_e en fonction de x_s ,
- remplacer x_e dans les expressions du coût z et des variables de base x_i , $i \in B'=B-\{s\}+\{e\}$ On obtient les formules de pivotage.

Expression de x_e en fonction de x_s

•
$$x_e$$
 est dans la nouvelle base B': $i=e \in B'$ $\rightarrow x_e = \overline{b}_e' - \sum_{j \in N'} \overline{a}_{ej}' x_j$

En identifiant les coefficients :
$$\begin{cases} \overline{b}_e' = \frac{\overline{b}_s}{\overline{a}_{se}} \\ \overline{a}_{es}' = \frac{1}{\overline{a}_{se}} & \rightarrow j = s \\ \overline{a}_{ej}' = \frac{\overline{a}_{se}}{\overline{a}_{se}} & \rightarrow j \in N - \{e\} \end{cases}$$

On exprime ensuite les autres variables de base x_i , $i \in B - \{s\}$ en remplaçant x_e .

Expression des autres variables de base

- $\begin{array}{l} \bullet \quad x_i \text{ est dans 1'ancienne base } B: \qquad i \in B \{s\} \quad \rightarrow \quad x_i = \overline{b}_i \sum_{j \in N} \overline{a}_{ij} x_j \\ x_i = \overline{b}_i \overline{a}_{ie} x_e \sum_{j \in N \{e\}} \overline{a}_{ij} x_j = \overline{b}_i \overline{a}_{ie} \left(\frac{1}{\overline{a}_{se}} \overline{b}_s \frac{1}{\overline{a}_{se}} x_s \sum_{j \in N \{e\}} \frac{\overline{a}_{sj}}{\overline{a}_{se}} x_j \right) \sum_{j \in N \{e\}} \overline{a}_{ij} x_j \\ \Rightarrow \overline{x_i} = \overline{b}_i \overline{a}_{ie} \overline{b}_s + \overline{a}_{ie} \overline{b}_s x_s \sum_{j \in N \{e\}} \left(\overline{a}_{ij} \overline{a}_{ie} \overline{a}_{se} \overline{a}_{sj} \right) x_j \\ \end{array}$
- x_i reste dans la nouvelle base B': $i \in B'$ \rightarrow $x_i = \overline{b}_i' \sum_{j \in N'} \overline{a}_{ij}' x_j$

En identifiant les coefficients : $\begin{cases} \overline{b}_i ' = \overline{b}_i - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{b}_s \\ \overline{a}_{is} ' = -\frac{\overline{a}_{ie}}{\overline{a}_{se}} & \rightarrow j = s \\ \overline{a}_{ij} ' = \overline{a}_{ij} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{a}_{sj} & \rightarrow j \in N - \{e\} \end{cases}$

Expression du coût

- $\begin{array}{ll} \bullet & \text{Dans 1'ancienne base B}: & z = \overline{z} + \sum\limits_{j \in N} \overline{c}_j x_j \\ z = \overline{z} + \overline{c}_e x_e + \sum\limits_{j \in N \{e\}} \overline{c}_j x_j = \overline{z} + \overline{c}_e \left(\frac{1}{\overline{a}_{se}} \frac{\overline{b}_s}{\overline{b}_s} \frac{1}{\overline{a}_{se}} x_s \sum\limits_{j \in N \{e\}} \frac{\overline{a}_{sj}}{\overline{a}_{se}} x_j \right) + \sum\limits_{j \in N \{e\}} \overline{c}_j x_j \\ \Rightarrow & \overline{z} = \overline{z} + \overline{c}_e \frac{\overline{b}_s}{\overline{a}_{se}} \frac{\overline{c}_e}{\overline{a}_{se}} x_s + \sum\limits_{j \in N \{e\}} \left(\overline{c}_j \overline{c}_e \frac{\overline{a}_{sj}}{\overline{a}_{se}} \right) x_j \end{array}$
- Dans la nouvelle base B': $z = \overline{z}' + \sum_{j \in N'} \overline{c}_j' x_j$

En identifiant les coefficients : $\begin{cases} \overline{z}' = \overline{z} + \overline{c}_e \, \frac{\overline{b}_s}{\overline{a}_{se}} \\ \overline{c}_s' = -\frac{\overline{c}_e}{\overline{a}_{se}} & \to j = s \\ \overline{c}_j' = \overline{c}_j - \overline{c}_e \, \frac{\overline{a}_{sj}}{\overline{a}_{se}} & \to j \in N - \{e\} \end{cases}$

Récapitulatif

• Nouvelles variables de base : $i \in B'=B-\{s\}+\{e\}$

$$\begin{split} i = e \rightarrow \begin{cases} \overline{b}_{e}' = \frac{\overline{b}_{s}}{\overline{a}_{se}} \\ \overline{a}_{es}' = \frac{1}{\overline{a}_{se}} & \rightarrow j = s \\ \overline{a}_{ej}' = \frac{\overline{a}_{ie}}{\overline{a}_{se}} & \rightarrow j \in N - \{e\} \end{cases} \qquad i \in B - \{s\} \rightarrow \begin{cases} \overline{b}_{i}' = \overline{b}_{i} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{b}_{s} \\ \overline{a}_{is}' = -\frac{\overline{a}_{ie}}{\overline{a}_{se}} & \rightarrow j = s \\ \overline{a}_{ij}' = \overline{a}_{ij} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{a}_{sj} & \rightarrow j \in N - \{e\} \end{cases} \end{split}$$

Nouveau coût

$$\begin{cases} \overline{z}' = \overline{z} + \overline{c}_e \frac{\overline{b}_s}{\overline{a}_{se}} \\ \overline{c}_s' = -\frac{\overline{c}_e}{\overline{a}_{se}} & \to j = s \\ \overline{c}_j' = \overline{c}_j - \overline{c}_e \frac{\overline{a}_{sj}}{\overline{a}_{se}} & \to j \in N - \{e\} \end{cases}$$

On dispose dans un tableau les éléments nécessaires au pivotage \rightarrow tableau du simplexe.

d) Méthode des tableaux

Tableau du simplexe

• On écrit le problème sous forme canonique dans la base B.

$$\min_{\boldsymbol{x}_{N}\geq 0}\boldsymbol{z} = \overline{\boldsymbol{z}} + \overline{\boldsymbol{c}}_{N}^{T}\boldsymbol{x}_{N} \quad sous \quad \boldsymbol{x}_{B} = \overline{\boldsymbol{b}} - \boldsymbol{B}^{-1}\boldsymbol{N}\boldsymbol{x}_{N} \geq 0 \qquad avec \begin{cases} \overline{\boldsymbol{b}} = \boldsymbol{B}^{-1}\boldsymbol{b} \\ \overline{\boldsymbol{z}} = \boldsymbol{c}_{B}^{T}\overline{\boldsymbol{b}} \\ \overline{\boldsymbol{c}}_{N}^{T} = \boldsymbol{c}_{N}^{T} - \boldsymbol{c}_{B}^{T}\boldsymbol{B}^{-1}\boldsymbol{N} \end{cases}$$

• La solution de base associée à B est : $\begin{cases} x_B = \overline{b} \\ x_N = 0 \\ z = \overline{z} \end{cases}$

• Le tableau du simplexe est :
$$T = \begin{bmatrix} B^{-1}A & \overline{b} \\ \overline{c}^{T} & -\overline{z} \end{bmatrix} = \begin{bmatrix} x_1 & x_{\overline{j}} & x_{\overline{n}} \\ B^{-1}A_1 & \cdots & B^{-1}A_{\overline{j}} & \cdots & B^{-1}A_{\overline{n}} & x_{\overline{B}} \\ \overline{c}_1 & \cdots & \overline{c}_{\overline{j}} & \cdots & \overline{c}_{\overline{n}} & -c_{\overline{B}}^{T}x_{\overline{B}} \end{bmatrix}$$

 $A_j = j^{\text{ème}}$ colonne de A

 $\overrightarrow{AE} = (B \ N)$ avec $E = \text{matrice de permutation de colonnes} \implies B^{-1}A = (I \ B^{-1}N) E^{T}$

• En permutant les colonnes : $T = \begin{bmatrix} x_B & x_N \\ \hline I & B^{-1}N & \overline{b} \\ \hline 0 & \overline{c}_N^T & -\overline{z} \end{bmatrix} \rightarrow x_B + B^{-1}Nx_N = \overline{b}$ $\rightarrow \overline{c}_N^T x_N = z - \overline{z}$

Description du tableau

Le tableau du simplexe est noté T(i,j): i=1 à m+1, j=1 à n+1

T(1:m,1:n): Matrice $B^{-1}A$ \rightarrow m×n

 $B^{-1}A = (I \quad B^{-1}N)E^{T}$ en plaçant les variables de base en premier

T(m+1,1:n) : Coûts réduits

$$\overline{c}^{\,T} = c - c_{\scriptscriptstyle B}^{\,T} B^{\scriptscriptstyle -1} A \, \Rightarrow \, \begin{cases} \overline{c}_{\scriptscriptstyle B}^{\,T} = 0 \\ \overline{c}_{\scriptscriptstyle N}^{\,T} = c_{\scriptscriptstyle N}^{\,T} - c_{\scriptscriptstyle B}^{\,T} B^{\scriptscriptstyle -1} N \end{cases}$$

T(1:m,n+1): **Solution de base** \rightarrow m×1

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathrm{B}} \\ \mathbf{x}_{\mathrm{N}} \end{pmatrix} = \begin{pmatrix} \overline{\mathbf{b}} \\ \mathbf{0} \end{pmatrix}$$

 $T(m+1,n+1) : Opposé du coût \rightarrow 1\times 1$ $-z = -\overline{z} = -\overline{c}_{p}^{T}\overline{b}$

Utilisation du tableau

Le tableau du simplexe permet de :

- Repérer les variables de base → colonnes = matrice identité, coûts réduits nuls
- Vérifier si la base est admissible → valeurs positives ou nulles des variables de base
- Vérifier si la base est **optimale** → valeurs strictement positives des coûts réduits
- Sélectionner un pivotage pour passer à une base adjacente meilleure
- Mettre à jour la forme canonique dans la nouvelle base

Méthode de pivotage

- On choisit une variable hors base de coût réduit négatif
- On examine la variation des variables de base suivant la direction d_e

$$x_i = \overline{b}_i - \overline{a}_{ie} x_e, i \in B$$
 s'annule pour : $x_e = \frac{\overline{b}_i}{\overline{a}_{ie}}$

- La première variable de base à s'annuler sort de la base \rightarrow ligne s
- Le pivotage e-s consiste à faire apparaître une colonne de la matrice identité en colonne e.
 - → forme canonique dans la nouvelle base
 - → par combinaison linéaire des lignes du tableau

Réalisation du pivotage

La variable x_e entre dans la nouvelle base B'=B-{s}+{e}

Pour faire apparaître une colonne de la matrice identité en colonne e, on réalise des combinaisons linéaires des lignes du tableau, y compris la dernière colonne.

- Division de la ligne s par le **pivot** $\bar{a}_{se} \rightarrow \bar{a}_{se}'=1$
- Addition de la ligne s aux autres lignes pour annuler les coefficients dans la colonne e
- Annulation du coût réduit dans la colonne e

Algorithme de pivotage

1. Choix du pivot

Variable hors base entrante $x_e = 1^{er}$ coût réduit négatif

 $\alpha_i = \frac{T(i,n+1)}{T(i,e)}, \ i \in B, \ si \ T(i,e) > 0$ Pas maximal admissible pour chaque variable de base :

• Variable de base sortante
$$x_s$$
 :
$$\alpha_s = \min_{\substack{i \in B \\ T(i,e)>0}} \alpha_i$$

2. Réalisation du pivotage

Pivot = T(s,e)

• Lignes
$$i=1,\ldots,m+1,\ i\neq s$$

$$T(i,k)=T(i,k)-\frac{T(i,e)}{T(s,e)}T(s,k),\ k=1,\cdots,n+1$$
 • Ligne s du pivot
$$T(s,k)=\frac{T(s,k)}{T(s,e)},\ k=1,\cdots,n+1$$

• Ligne s du pivot
$$T(s,k) = \frac{T(s,k)}{T(s,e)}, k = 1,\dots, n+1$$

→ méthode similaire à la méthode du pivot de Gauss

171

Méthode des tableaux

Problème linéaire à 3 variables x₁, x₂, x₃

$$\min_{x_1, x_2, x_3} -10x_1 - 12x_2 - 12x_3 \text{ sous } \begin{cases} x_1 + 2x_2 + 2x_3 \leq 20 \\ 2x_1 + x_2 + 2x_3 \leq 20 \\ 2x_1 + 2x_2 + x_3 \leq 20 \\ x_1, x_2, x_3 \geq 0 \end{cases}$$

- Forme standard
 - \rightarrow Variables d'écart x_4, x_5, x_6 positives

$$\min_{\substack{x_1, x_2, x_3, x_4, x_5, x_6 \\ x_1, x_2, x_3, x_4, x_5, x_6}} -10x_1 - 12x_2 - 12x_3 \text{ sous } \begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 20 \\ 2x_1 + x_2 + 2x_3 + x_5 = 20 \\ 2x_1 + 2x_2 + x_3 + x_6 = 20 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

Méthode des tableaux

• Tableau du simplexe

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	\mathbf{x}_6			
1	2	2	1	0	0	20	x ₄	Base initiale admissible
2	1	2	0	1	0	20	X ₅	(x_4, x_5, x_6)
2	2	1	0	0	1	20	x ₆	
-10	-12	-12	0	0	0	0	-z	

- Solution de base **non optimale** : coûts réduits négatifs (= directions de descente)
- Variable entrante : 1^{er} coût réduit négatif $\rightarrow x$
- Variable sortante : $1^{\text{ère}}$ variable de base à s'annuler $\rightarrow x_5$
- Pivot: $\overline{a}_{51} = 2$

Méthode des tableaux

1er **pivotage** : entrée x_1 , sortie x_5

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	\mathbf{x}_6	
1	2	2	1	0	0	20
2	1	2	0	1	0	20
2	2	1	0	0	1	20
-10	-12	-12	0	0	0	0

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	x_6	
0	1.5	1	1	-0.5	0	10
1	0.5	1	0	0.5	0	10
0	1	-1	0	-1	1	0
0	-7	-2	0	5	0	100

Nouvelle base
$$(x_1, x_4, x_6)$$

Pas

 \rightarrow s₁₄=20

→ s_{15} =10

→ s_{16} =10

 X_4

X₅

X₆

Z

Z

Méthode des tableaux

 $2^{\text{ème}}$ pivotage : entrée x_2 , sortie x_6

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	x_4	X_5	x_6			Pas
0	1.5	1	1	-0.5	0	10	$\mathbf{x_4}$	\rightarrow s ₂₄ =20/3
1	0.5	1	0	0.5	0	10	$\mathbf{x_1}$	\rightarrow s ₂₁ =20
0	1	-1	0	-1	1	0	x ₆	\rightarrow s ₂₆ =0
0	-7	-2	0	5	0	100	z	

x ₁	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X_5	x ₆	
0	0	2.5	1	1	-1.5	10
1	0	1.5	0	1	-0.5	10
0	1	-1	0	-1	1	0
0	0	-9	0	-2	7	100

$$\mathbf{x_4}$$
 Nouvelle base $\mathbf{x_1}$ $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_4})$ $\mathbf{x_2}$ \mathbf{z}

Pas

 $s_{31}=20/3$

 $s_{32}=+\infty$

Nouvelle base

 (x_1, x_2, x_3)

 X_3

 $\mathbf{X_1}$

 \mathbf{X}_2

 $s_{34}=4$

Méthode des tableaux

• **3**ème **pivotage** : entrée x₃, sortie x₄

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	x_6			
0	0	2.5	1	1	-1.5	10	$\mathbf{x_4}$	\rightarrow
1	0	1.5	0	1	-0.5	10	$\mathbf{x_1}$	\rightarrow
0	1	-1	0	-1	1	0	$\mathbf{x_2}$	\rightarrow
0	0	-9	0	-2	7	100	Z	

• Solution optimale:
$$\bar{c} \ge 0 \rightarrow \begin{cases} x^* = (4 \ 4 \ 4 \ 0 \ 0 \ 0)^T \\ z^* = -136 \end{cases}$$

Méthode des tableaux

Récapitulatif des itérations

k	В		c		\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	x_5	x ₆		d_{B}		s _{max}	e	s	z
0	4 5 6	-10	-12	-12	0	0	0	20	20	20	-1	-2	-2	10	1	5	0
1	1 4 6	-7	-2	5	10	0	0	10	0	0	-1.5	-0.5	-1	0	2	6	-100
2	1 2 4	-9	-2	7	10	0	0	10	0	0	-2.5	-1.5	1	4	3	4	-100
3	1 2 3	3.6	31.6	1.6	4	4	4	0	0	0							-136

Commentaires

- La mise sous forme standard nécessite d'introduire des variables supplémentaires.
 - → Variables d'écart positives
- On dispose directement d'une base initiale admissible formée des variables d'écart.
 - → Ce n'est pas toujours le cas.
 - → Phase préliminaire pour construire une base initiale
- Certains pivotages ne réduisent pas le coût (exemple : pivotage numéro 2).
 - → Base dégénérée + risque de cyclage (= retrouver une base précédente)
- La solution optimale ne comporte que les variables initiales.
 - → Ce n'est pas toujours le cas.
 - → Des pivotages supplémentaires peuvent être nécessaires.

511

4.3 Simplexe dual

a) Problème dual

Méthode du simplexe dual

L'algorithme du simplexe dual consiste à appliquer la méthode du simplexe au problème dual.

• Correspondances primal (P) – dual (D) :

Le tableau est utilisable dans les 2 sens : de (P) vers (D) ou de (D) vers (P) car le dual de (D) est (P).

Primal (P)		Dual (D)
$\min_{\mathbf{x} \in \mathbf{R}^{n}} \mathbf{c}^{T} \mathbf{x}$	1	max b ^T y
Ax = b	m	y∈R
$Ax \le b$	m	$y \ge 0$
x ≥ 0	n	$A^T y \le c$
$x \in R$	n	$A^{T}y = c$

Forme canonique de (P) dans la base B

$$\min_{x_N \geq 0} z = \overline{z} + \overline{c}_N^T x_N \quad sous \quad \begin{cases} x_B + B^{-1} N x_N = \overline{b} \\ x \geq 0 \end{cases} \quad avec \quad \begin{cases} \overline{b} = B^{-1} b \\ \overline{z} = c_B^T \overline{b} \\ \overline{c}_N^T = c_N^T - c_B^T B^{-1} N \end{cases}$$

Pour appliquer la méthode du simplexe au problème dual, on doit écrire la forme canonique du problème dual dans la base B.

b) Forme canonique

Forme canonique du dual

• On part de la forme canonique du problème primal (P) dans la base B.

(P)
$$\min_{\mathbf{x}_{B}, \mathbf{x}_{N}} \overline{\mathbf{z}} + \overline{\mathbf{c}}_{N}^{T} \mathbf{x}_{N}$$
 sous $\begin{cases} \mathbf{x}_{B} + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{N} = \overline{\mathbf{b}} \\ \mathbf{x}_{B}, \mathbf{x}_{N} \ge 0 \end{cases} \rightarrow \text{m contraintes}$ \rightarrow n variables

On peut considérer les variables de base x_B comme des variables d'écart positives.
 On obtient un problème (P') ne portant que sur les variables hors base x_N.

$$(P') \quad \min_{x_N} \overline{c}_N^T x_N \quad \text{ sous } \begin{cases} B^{-1} N x_N \leq \overline{b} \\ x_N \geq 0 \end{cases} \quad \begin{array}{c} \rightarrow \text{ m contraintes} \\ \rightarrow \text{ n-m variables} \end{cases}$$

• On écrit (P') comme un problème de maximisation, pour obtenir un problème de minimisation en passant au dual.

$$\begin{array}{lll} (P') & \underset{x_N}{max} - \overline{c}_N^T x_N & sous & \begin{cases} B^{-1} N x_N \leq \overline{b} & & \to m \ contraintes \\ x_N \geq 0 & & \to n - m \ variables \end{cases}$$

• On passe au dual (D') de (P')

→ en utilisant le tableau de correspondances dans le sens de (D) vers (P)

4. Simplexe

175

Forme canonique du dual

- Le dual (D') de (P') s'écrit :
 - $\begin{array}{lll} (P') & \underset{x_N}{max} \overline{c}_N^T x_N & sous & \begin{cases} B^{-1} N x_N \leq \overline{b} & & \to m \ contraintes \\ x_N \geq 0 & & \to n m \ variables \end{cases}$
 - $\begin{array}{ll} (D') & \underset{y_B}{\min} \, \overline{b}^T y_B & sous \ \begin{cases} \left(B^{-1} N\right)^T y_B \leq -\overline{c}_N & \to & n-m \text{ contraintes} \\ y_B \geq 0 & \to & m \text{ variables} \end{cases}$
- On met (D') sous forme standard avec des variables d'écart y_N positives.
 On obtient un problème (D) à n variables.

(D)
$$\min_{y_B, y_N} \overline{b}^T y_B$$
 sous $\begin{cases} y_N - (B^{-1}N)^T y_B = \overline{c}_N \rightarrow n-m \text{ contraintes} \\ y_B, y_N \ge 0 \rightarrow n \text{ variables} \end{cases}$

- Le problème (D) est sous forme canonique dans la base B:
 - variables de base
- $\rightarrow y_N$
- → notations inversées par rapport au problème primal
- variables hors base $\rightarrow y_B$

On peut écrire le tableau simplexe pour le problème (D) et appliquer les règles de pivotage.

c) Tableau dual

Tableau simplexe du dual

• Forme canonique de (D) dans la base B.

$$(D) \quad \min_{y_B,y_N} \overline{b}^T y_B \quad \text{ sous } \begin{cases} y_N - \left(B^{-1}N\right)^T y_B = \overline{c}_N & \to \text{ n-m contraintes} \\ y_B, y_N \geq 0 & \to \text{ n variables} \end{cases}$$

 $\textbf{ Tableau T}_{D} \, \textbf{du simplexe de (D) dans la base B}: \quad T_{D} = \begin{array}{c|c} y_{N} & y_{B} \\ \hline I & -(B^{-1}N)^{T} & \overline{c}_{N}^{T} \\ \hline 0 & \overline{b} & -\overline{z} \end{array}$

 $\begin{array}{lll} \mbox{Variables de base}: & \mbox{y_N} & \rightarrow \mbox{ valeurs } & \overline{c}_N \\ \mbox{Variables hors base}: & \mbox{y_B} & \rightarrow \mbox{ coûts réduits } & \overline{b} \\ \mbox{Matrice des contraintes}: & -A^T & \rightarrow -(B^{-1}N)^T \end{array}$

- La solution de base associée à la base B est : $\begin{cases} y_N = \overline{c}_N \\ y_B = 0 \end{cases}$
- La base B est admissible si $y_N = \overline{c}_N \ge 0 \rightarrow$ base dual-admissible
- On applique les règles de pivotage du simplexe :
 - variable hors base entrante : coût réduit négatif
 - variable de base sortante : première variable à s'annuler

Pivotage

Pivotage sur le tableau dual

Les notations sont inversées par rapport au problème primal

- indices $B \rightarrow \text{variables hors base}$
- indices $N \rightarrow \text{variables de base}$

$$T_D = \begin{array}{|c|c|c|c|c|c|}\hline y_N & y_B \\ \hline I & -(B^{-1}N)^T & \overline{c}_N^T \\ \hline 0 & \overline{b} & -\overline{z} \\ \hline \end{array}$$

- 1. Choix du pivot
- Variable hors base entrante $y_e = 1^{er}$ coût réduit négatif
- $\alpha_{i} = \frac{\overline{c}_{Ni}}{-\overline{a}_{ie}}, i \in N, si -\overline{a}_{ie} > 0$ Pas maximal admissible pour chaque variable de base :
- Variable de base sortante y_s :

$$\text{Ligne s de la variable sortante:} \quad \boxed{s \in N \ \rightarrow \ \min_{\substack{i \in N \\ \overline{a}_{ie} < 0}} \frac{\overline{c}_{Ni}}{-\overline{a}_{ie}}} \ \Leftrightarrow \ \max_{\substack{i \in N \\ \overline{a}_{ie} < 0}} \frac{\overline{c}_{Ni}}{\overline{a}_{ie}}$$

- 2. Réalisation du pivotage
- Pivot = $\bar{a}_{se} < 0$
- Elimination pour faire apparaître des zéros sur la colonne e du pivot

Pivotage sur le tableau primal

On observe que le pivotage dual peut être réalisé à partir du tableau primal sans écrire explicitement le tableau dual.

$$T_{D} = \begin{bmatrix} y_{N} & y_{B} \\ I & -(B^{-1}N)^{T} & \overline{c}_{N}^{T} \\ 0 & \overline{b} & -\overline{z} \end{bmatrix}$$

- \rightarrow n-m contraintes \rightarrow n-m variables de base y_N

$$T_{P} = \begin{array}{|c|c|c|c|c|c|}\hline x_{B} & x_{N} \\ \hline I & B^{-1}N & \overline{b} \\ \hline 0 & \overline{c}_{N}^{T} & -\overline{z} \\ \hline \end{array}$$

- \rightarrow m contraintes
- \rightarrow m variables de base x_B
- Choisir la 1^{ère} variable de base négative x_e:

$$\overline{b}_e < 0$$
, $e \in B$

- \rightarrow ligne e
- → variable **sortante**
- Déterminer la 1ère variable hors base x_s à s'annuler : $s \rightarrow \max_{\substack{j \in \mathbb{N} \\ \overline{a}_{ej} < 0}} \frac{\overline{c}_{Nj}}{\overline{a}_{ej}}$

$$\rightarrow \max_{\substack{j \in N \\ \overline{a}_{ej} < 0}} \frac{\overline{c}_{Nj}}{\overline{a}_{ej}} \rightarrow \text{colonne s}$$

$$\rightarrow \text{variable entrante}$$

Effectuer le pivotage e-s de façon usuelle.

4. Simplexe 177

e) Comparaison simplexe primal-dual

Comparaison simplexe primal et dual

• L'algorithme du simplexe primal maintient une base **primal-admissible** : $\overline{b} \ge 0$ L'optimum est atteint lorsque les coûts réduits sont positifs ou nuls : $\overline{c}_N \ge 0$

• L'algorithme du simplexe dual maintient une base dual—admissible : $\overline{c}_N \ge 0$ L'optimum est atteint lorsque les variables de base sont positives ou nulles : $\overline{b} \ge 0$

Intérêt du simplexe dual

L'algorithme du simplexe dual est adapté si l'on dispose d'une base dual-admissible.

Ceci se produit lorsque l'on modifie un problème linéaire déjà résolu par le simplexe primal

- en ajoutant des contraintes au problème
- en modifiant les seuils des contraintes
- en fixant des variables à une valeur différente de la solution

Ces modifications : - ne changent pas les coûts réduits ($\rightarrow \bar{c}_N \ge 0$)

- rendent certaines variables de base négatives

→ La solution de base n'est plus primal-admissible, mais reste dual-admissible.

Application : problèmes de programmation linéaire mixte (entiers et réels)

f) Exemple

Simplexe dual

• Problème linéaire à 5 variables x_1, x_2, x_3, x_4, x_5

$$\min_{\substack{x_1,x_2,x_3,x_4,x_5}} \ x_1 + 2x_2 + 2x_3 + 3x_4 + x_5 \ \text{sous} \begin{cases} x_1 + x_2 = 1 \\ -x_2 - x_3 + x_5 = 0 \\ -x_1 + x_3 + x_4 = 0 \\ x_1,x_2,x_3,x_4,x_5 \ge 0 \end{cases}$$

• On choisit comme base initiale (x_2,x_3,x_4) .

La solution de base associée est : $\begin{cases} x_1 = 0 \\ x_5 = 0 \end{cases} \Rightarrow \begin{cases} x_2 = 1 \\ x_3 = -1 \\ x_4 = 1 \end{cases} \rightarrow \text{base non primal admissible}$

- La matrice des contraintes est : $A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 & 0 \end{pmatrix}$ $b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
- Pour construire le tableau du simplexe, il faut mettre le problème sous **forme canonique** dans la base (x_2,x_3,x_4) en faisant apparaître des zéros par élimination dans les colonnes 2, 3 et 4.

Simplexe dual

• Problème linéaire à 5 variables x_1, x_2, x_3, x_4, x_5

$$\min_{x_1, x_2, x_3, x_4, x_5} \ x_1 + 2x_2 + 2x_3 + 3x_4 + x_5 \ \text{sous} \begin{cases} x_1 + x_2 = 1 \\ -x_2 - x_3 + x_5 = 0 \\ -x_1 + x_3 + x_4 = 0 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

• Tableau de départ

\mathbf{x}_1	$\mathbf{X_2}$	$\mathbf{x_3}$	$\mathbf{X_4}$	X_5		
1	1	0	0	0	1	
0	-1	-1	0	1	0	→ contraintes
-1	0	1	1	0	0	
1	2	2	3	1	0	→ coût

On fait apparaître : - une matrice identité sur les colonnes de x₂, x₃, x₄
 - des zéros sur les coûts de x₂, x₃, x₄

Simplexe dual

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	\mathbf{x}_{5}			\mathbf{x}_1	$\mathbf{x_2}$	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_{5}	
1	1	0	0	0	1	Elimination x ₂	1	1	0	0	0	1
0	-1	-1	0	1	0	Elimination X ₂	1	0	-1	0	1	1
-1	0	1	1	0	0		-1	0	1	1	0	0
1	2	2	3	1	0		-1	0	2	3	1	-2
						•						
x ₁	x ₂	X ₃	X ₄	X ₅			x ₁	x ₂	X ₃	X ₄	X ₅	
1	1	0	0	0	1	Elimination v	1	1	0	0	0	1
1	0	-1	0	1	1	Elimination x_3	-1	0	1	0	-1	-1
-1	0	1	1	0	0		0	0	0	1	1	1
-1	0	2	3	1	-2		1	0	0	3	3	0
						•		•				
x ₁	x ₂	x ₃	x ₄	x ₅			x ₁	x ₂	\mathbf{x}_3	X ₄	X ₅	
1	1	0	0	0	1	Flimination v	1	1	0	0	0	1
-1	0	1	0	-1	-1	Elimination x_4	-1	0	1	0	-1	-1
0	0	0	1	1	1		0	0	0	1	1	1
1	0	0	3	3	0		1	0	0	0	0	-3

Simplexe dual

• Tableau du simplexe dans la base (x_2,x_3,x_4) .

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X_5							
c =	1	2	2	3	1							
	1	1	0	0	0	1	X ₂		c_{B}	c_N		_
	-1	0	1	0	-1	-1	X ₃		I	B-1N	B-1b	X _I
	0	0	0	1	1	1	X ₄	•	0	$c_N - c_B^T B^{-1} N$	$-c_B^T B^{-1} b$	-z
	1	0	0	0	0	-3	-z		· ·			-

- On vérifie bien que la dernière ligne correspond à $\begin{cases} \overline{c}_N = c_N c_B^T B^{-1} N \\ -z = -c_B^T B^{-1} b \end{cases}$
- La base est : non admissible pour le primal (x₃ < 0)
 admissible pour le dual (c

 N

 On peut appliquer l'algorithme dual du simplexe pour résoudre le problème.

Simplexe dual

• Tableau du simplexe dans la base (x_2,x_3,x_4) .

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X_5			
1	1	0	0	0	1	$\mathbf{X_2}$	Base dual–admissible (x_2, x_3, x_4)
-1	0	1	0	-1	-1	$\mathbf{x_3}$	
0	0	0	1	1	1	$\mathbf{X_4}$	
1	0	0	0	0	-3	-Z	

- Solution de base **non optimale** : variables de base négatives
- Variable entrante : 1^{er} coût réduit à s'annuler $\rightarrow \mathbf{x}_5$ s $\rightarrow \max_{\substack{j \in N \\ \overline{a}_{ej} < 0}} \frac{\overline{c}_{Nj}}{\overline{a}_{ej}}$
- Pivot: $\overline{a}_{35} = -1$

Simplexe du	al
-------------	----

• 1 er pivotage : entrée x₅, sortie x₃

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X ₅		
1	1	0	0	0	1	X ₂
-1	0	1	0	-1	-1	X ₃
0	0	0	1	1	1	X ₄
1	0	0	0	0	-3	-z

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	
1	1	0	0	0	1
1	0	-1	0	1	1
-1	0	1	1	0	0
1	0	0	0	0	-3

Nouvelle base (x_2, x_4, x_5) - primal-admissible
- dual-admissible $\overline{c}_N \ge 0$ x_4 Only in the second $\overline{c}_N \ge 0$

Solution:
$$x^* = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 $z^* = 3$

5 Gradient projeté

5.1 Principes

Problème avec contraintes égalité

$$\min_{x \in R^n} f(x) \ \text{sous} \ \begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases} \Leftrightarrow \quad \min_{x \in R^n} f(x) \ \text{sous} \ c(x) = 0 \quad \to \ m \ \text{contraintes actives}$$

Etapes principales

A chaque itération :

- Construction d'une direction de descente d_k à partir du point x_k
- Réglage du pas de déplacement s_k suivant d_k

Direction de descente

On construit la direction d_k dans l'hyperplan tangent aux contraintes (= espace nul) en x_k

- Gradient projeté
- → projection du gradient sur l'hyperplan tangent
- Gradient réduit
- → réduction du gradient sur une base de l'espace nul

Pas de déplacement

- Recherche linéaire suivant $d_k \rightarrow pas \ s_k$
- Restauration de l'admissibilité → méthode de Newton
- Règles d'acceptation du pas → Armijo, Goldstein, Wolfe

Direction de déplacement 5.2

Hyperplan tangent aux contraintes a)

Problème avec contraintes linéaires

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $Ax = b$

$$\begin{array}{ll} x_0 \text{ point admissible} & \rightarrow Ax_0 = b \\ \text{d d\'eplacement admissible \`a partir de } x_0 & \rightarrow A(x_0 + d) = b \end{array} \right\} \rightarrow Ad = 0$$

- Ad = 0 définit l'espace nul des contraintes = hyperplan des contraintes
- Le déplacement d∈Rⁿ est admissible si d est dans l'hyperplan des contraintes.

Problème avec contraintes non linéaires

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0$$

- On définit l'espace nul tangent ou hyperplan tangent en x_0 avec $A = \nabla c(x_0)^T \rightarrow Ad = 0$
- On cherche un déplacement $d \in \mathbb{R}^n$ dans l'hyperplan tangent : $\nabla c(x_0)^T d = 0$ Un déplacement complémentaire est ensuite nécessaire pour restaurer l'admissibilité.

Gradient projeté

Définition

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0$$

Le gradient projeté est la projection orthogonale du gradient de f sur l'hyperplan tangent.

Expression du gradient projeté

- Hyperplan tangent aux contraintes en x_0 admissible Ad = 0 avec A = $\nabla c(x_0)^T$
- Matrice de projection sur l'hyperplan tangent $P = I - A^{T} (AA^{T})^{-1} A$
- **Notations**

$$\begin{split} g(x_0) & \text{ gradient de f en } x_0 & \to g(x_0) = \nabla f(x_0) \\ g_p(x_0) & \text{ gradient projeté} & \to g_p(x_0) = Pg(x_0) \\ & \to g_p = \left(I - A^T \left(AA^T\right)^{-1}A\right)g \quad \text{avec} \quad A = \nabla c(x_0)^T \\ g_p & \text{ vérifie : } \begin{cases} Ag_p = 0 & \to g_p \in \text{ hyperplan tangent} \\ g_p^T \left(g - g_p\right) = 0 & \to g - g_p \perp \text{ hyperplan tangent} \end{cases} \end{split}$$

•
$$g_p$$
 vérifie :
$$\begin{cases} Ag_p = 0 & \rightarrow g_p \in \text{hyperplan tangent} \\ g_p^T(g - g_p) = 0 & \rightarrow g - g_p \perp \text{hyperplan tangent} \end{cases}$$

$$\operatorname{car} \begin{cases} P^{T} = P \\ P^{2} = P \end{cases}$$

Direction de descente

La direction du gradient projeté est la direction de plus forte pente dans l'hyperplan tangent = direction dans l'hyperplan qui maximise la dérivée directionnelle de f

Preuve

La direction d dans l'hyperplan maximisant la dérivée directionnelle de f est solution de

$$\min_{d \in \mathbb{R}^n} g^t d \quad sous \quad \begin{cases} Ad = 0 & \rightarrow d \in hyperplan \ tangent \\ \|d\| = 1 \Leftrightarrow d^T d = 1 & \rightarrow norme = 1 \end{cases}$$

Lagrangien:
$$L(d, \lambda, \mu) = g^t d + \lambda^T A d + \mu (d^T d - I)$$
 avec $\lambda \in \mathbb{R}^m$, $\mu \in \mathbb{R}$

$$\begin{aligned} & Lagrangien: L(d,\lambda,\mu) = g'd + \lambda^T A d + \mu \Big(d^T d - 1 \Big) \quad \text{avec } \lambda \in \mathbb{R}^m \ , \ \mu \in \mathbb{R} \\ & Conditions \ KKT: \quad \begin{cases} g + A^T \lambda + 2\mu d = 0 \ \to \ d = -\Big(g + A^T \lambda \Big) / (2\mu) \\ A d = 0 \quad \to \quad A g + A A^T \lambda = 0 \ \to \quad \lambda = -\Big(A A^T \Big)^{-1} A g \\ \| d \| = 1 \quad \to \quad 2\mu = \pm \| g + A^T \lambda \| \end{aligned}$$

d est bien un vecteur normé colinéaire à $(I - A^T (AA^T)^{-1} A)g$

- La méthode du gradient projeté équivaut à la méthode de plus forte pente appliquée dans l'espace nul des contraintes → méthode d'ordre 1 peu efficace
 - → amélioration par méthode de quasi-Newton

Gradient réduit

Définition

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0$$

Le gradient réduit est le gradient de la fonction réduite sur une base de l'espace nul tangent.

Expression du gradient réduit

- Base Z de l'espace nul tangent aux contraintes : AZ = 0 avec A = $\nabla c(x_0)^T$
- $\label{eq:position} \mbox{D\'{e}composition du d\'{e}placement}: \ p = Yp_Y + Zp_Z \ \ avec \ \begin{cases} AZ = 0 \\ AY \ inversible \end{cases}$
- Déplacement admissible : $Ap = 0 \implies \begin{cases} p_Y = 0 \\ p = Zp_Z \end{cases}$
- Fonction réduite f_r : $\min_{p \in \mathbb{R}^n} f(x_0 + p)$ sous $A(x_0 + p) = b \iff \min_{p_z \in \mathbb{R}^{n-m}} f_r(p_z) = f(x_0 + Zp_z)$
- **Notations**

$$\begin{array}{ll} g(x_0) \ \ \text{gradient de f en } x_0 & \to \ g(x_0) = \nabla f(x_0) & \to \ g \ \in R^n \\ g_r(x_0) \ \ \text{gradient r\'eduit} & \to \ g_r(x_0) = \nabla f_r(p_Z = 0) & \to \ g_r \in R^{n-m} \ \ (m = \text{nombre de contraintes}) \\ f_r(p_Z) = f\left(x_0 + Zp_Z\right) \ \ \Rightarrow \ \ \nabla f_r(p_Z) = Z^T \nabla f\left(x_0 + Zp_Z\right) & \to \ \ g_r = Z^T g \end{array} \quad \text{en } p_Z = 0 \end{array}$$

 \rightarrow g_r est le gradient de la fonction réduite f_r (= fonction de n-m variables p₇)

Direction de descente

Le déplacement à partir du point x₀ admissible est décomposé en

$$p = Yp_{Y} + Zp_{Z} \quad avec \quad \begin{cases} AZ = 0 \\ AY \ inversible \end{cases} \qquad Ap = 0 \quad \Rightarrow \quad \begin{cases} p_{Y} = 0 \\ p = Zp_{Z} \end{cases}$$

- Le gradient réduit g_r donne la direction de plus forte pente suivant les variables p_Z. La direction de déplacement dans R^n est : $d = Zg_r$.
- On peut choisir les matrices Y et Z
 - à partir de matrices orthogonales
- → factorisation QR de A
- à partir d'une base de A \rightarrow B \in R^{m×m} (= m colonnes indépendantes de A)

Gradient réduit sur une base B de A

•
$$AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix}$$
 $\Rightarrow g = \begin{pmatrix} g_B \\ g_N \end{pmatrix}$ $Y = \begin{pmatrix} B^{-1} \\ 0 \end{pmatrix}_{n-m}^m$ $Z = \begin{pmatrix} -B^{-1}N \\ I \end{pmatrix}_{n-m}^m$

(E = matrice de permutation de colonnes de A)

Le gradient réduit par rapport à la base B est : $\left| g_r = Z^T g = g_N - \left(B^{-1} N \right)^T g_B \right|$

Direction de déplacement

Problème avec contraintes égalité

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives

- On construit la direction de déplacement $d \in \mathbb{R}^n$ dans l'hyperplan tangent aux contraintes en x_0 Ad = 0 avec $A = \nabla c(x_0)^T$
 - → 2 méthodes de construction de la direction d

Méthode du gradient projeté

La direction d est celle du gradient projeté : $d = g_p$

$$d = Pg$$
 avec $P = I - A^{T}(AA^{T})^{-1}A$ (P = matrice de projection sur l'hyperplan tangent)

Méthode du gradient réduit

La direction d est obtenue à partir du gradient de la fonction réduite : $d = Zg_r$ avec $g_r = Z^Tg$

$$d = ZZ^{T}g$$
 avec $AZ=0$ (Z = base de l'hyperplan tangent)

On cherche un pas de déplacement suivant –d pour minimiser f. Un déplacement complémentaire est nécessaire pour restaurer l'admissibilité.

Exemple

Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 - 1)^2 - 1 = 0$

$$\nabla f(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \nabla c(x) = \begin{pmatrix} 2x_1 \\ 2(x_2 - 1) \end{pmatrix}$$

Changement de variables (coordonnées polaires)

$$\begin{cases} x_1 = r\cos\theta \\ x_2 = r\sin\theta + 1 \end{cases} \rightarrow \begin{cases} f(r,\theta) = r(\cos\theta + \sin\theta) + 1 \\ c(r,\theta) = r^2 - 1 \end{cases}$$

Elimination variable r

$$r = 1 \rightarrow f(\theta) = \cos \theta + \sin \theta + 1$$

Minimum

$$\begin{cases} f'(\theta) = -\sin\theta + \cos\theta = 0 & \to & \tan\theta = 1 \\ f''(\theta) = -\cos\theta - \sin\theta \ge 0 & \to & -\cos\theta (1 + \tan\theta) \ge 0 & \to & -\cos\theta \ge 0 \end{cases} \rightarrow \theta^* = \frac{\pi}{4} \circ u \cdot \frac{\pi}{4} + \pi$$

$$\rightarrow \begin{cases} x_1^* = -1/\sqrt{2} \approx -0.70711 \\ x_2^* = 1 - 1/\sqrt{2} \approx 0.29289 \end{cases}$$

Gradient projeté

Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 - 1)^2 - 1 = 0$ Point admissible $x_0 (r_0=1, \theta_0) \rightarrow \nabla f(x_0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\nabla c(x_0) = \begin{pmatrix} 2x_1 \\ 2(x_2-1) \end{pmatrix} = 2r_0 \begin{pmatrix} \cos \theta_0 \\ \sin \theta_0 \end{pmatrix}$

Gradient projeté au point x₀

$$g_p = Pg$$
 avec
$$\begin{cases} A = \nabla c(x_0)^T, g = \nabla f(x_0) \\ P = I - A^T (AA^T)^{-1} A \end{cases}$$

$$A = 2r_0(\cos\theta_0 - \sin\theta_0)$$

$$\mathbf{P} = \begin{pmatrix} \sin^2 \theta_0 & -\sin \theta_0 \cos \theta_0 \\ -\sin \theta_0 \cos \theta_0 & \cos^2 \theta_0 \end{pmatrix}$$

$$\rightarrow \boxed{g_p = (\cos \theta_0 - \sin \theta_0) \begin{pmatrix} -\sin \theta_0 \\ \cos \theta_0 \end{pmatrix}}$$

Direction de descente au point x_0

$$d = -\frac{g_p}{\|g_p\|} = \pm \begin{pmatrix} -\sin\theta_0 \\ \cos\theta_0 \end{pmatrix} \rightarrow \textbf{tangente} \text{ au cercle en } x_0$$

 $g=\nabla 1$

595

 $\nabla \mathbf{c}$

c(x)=0

Gradient réduit

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$ Point admissible x_0 ($r_0 = 1$, θ_0) $\rightarrow \nabla f(x_0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\nabla c(x_0) = \begin{pmatrix} 2x_1 \\ 2(x_2 - 1) \end{pmatrix} = 2r_0 \begin{pmatrix} \cos \theta_0 \\ \sin \theta_0 \end{pmatrix}$
- Gradient réduit au point x₀

x*

5.3 Restauration

a) Point initial

Itérations admissibles

La méthode du gradient projeté ou réduit construit une suite de solutions admissibles

- → point initial admissible
- → restauration de la faisabilité à chaque itération

Point initial

- On peut construire un point initial admissible du problème $\min_{x \in \mathbb{R}^n} f(x)$ sous $\begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$ en résolvant le **problème préliminaire sans contrainte** $\min_{x \in \mathbb{R}^n} \|c_E(x)\|_2 + \|\max(0, c_I(x))\|_2$
- La solution x_0 de ce problème préliminaire est admissible si le coût est nul.

$$\left\| c_{E}(x_{0}) \right\|_{2} + \left\| \max(0, c_{I}(x_{0})) \right\|_{2} = 0 \implies \begin{cases} c_{E}(x_{0}) = 0 \\ \max(0, c_{I}(x_{0})) = 0 \end{cases} \implies \begin{cases} c_{E}(x_{0}) = 0 \\ c_{I}(x_{0}) \leq 0 \end{cases}$$

Restauration de la faisabilité

- La direction de descente d est dans l'hyperplan tangent aux contraintes au point courant.
- Si les contraintes ne sont pas linéaires, un pas s suivant d donne un point non admissible.
 - → Il faut restaurer la faisabilité <u>avant</u> d'évaluer si le pas s est acceptable.

b) Itérations admissibles

Déplacement admissible

 $\min_{x \in \mathbb{R}^n} f(x)$ sous c(x) = 0 \rightarrow m contraintes actives

On construit le déplacement p à partir du point initial x_0 en 2 étapes : $\mathbf{p} = \mathbf{p_1} + \mathbf{p_2}$

 Le déplacement p₁ est suivant la direction de descente d dans l'hyperplan tangent : p₁ = -sd d∈Rⁿ = direction construite à partir du gradient projeté ou du gradient réduit

s > 0 = pas de déplacement suivant –d (pour minimisation)

On obtient un point $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{p}_1$ dans l'hyperplan tangent \rightarrow non admissible si contraintes non linéaires

- Le déplacement p₂ restaure un point admissible à partir du point x₁.
 - → linéarisation des contraintes en x₁
 - → résolution d'un système sous-déterminé

On obtient un point $x_2 = x_1 + p_2$ admissible.

Recherche linéaire

- On évalue le point x₂ correspondant au pas s de recherche linéaire suivant d.
- Le pas s est modifié par dichotomie jusqu'à trouver un point $x_2(s)$ acceptable.
 - → règles d'Armijo, Goldstein, Wolfe,...

c) Méthode de restauration

Méthode de restauration

 $\text{Le d\'eplacement p}_2 \text{ doit v\'erifier}: \quad A_1 p = b_1 \quad \text{avec} \ \begin{cases} A_1 = \nabla c(x_1)^T \approx \nabla c(x_0)^T = A_0 \\ b_1 = -c(x_1) = -c_1 \end{cases}$

- Solution de norme minimale \rightarrow projection sur l'hyperplan tangent aux contraintes actives $\min_{p \in \mathbb{R}^n} \|p\| \text{ sous } A_1 p = b_1 \qquad \rightarrow p_2 = A_1^T \left(A_1 A_1^T\right)^{-1} b_1 \qquad \text{(cf § 1.2.4)}$
- Solution de base \rightarrow pour ne pas dégrader la minimisation apportée par p_1 (cf §1.2.3) $A_1(Yp_Y + Zp_Z) = b_1 \Rightarrow p_Y = (A_1Y)^{-1}b_1 \rightarrow p_2 = Y(A_1Y)^{-1}b_1$

601

Illustrations

5.4 Algorithme

a) Algorithme de gradient projeté/réduit

Algorithme de gradient projeté/réduit

Les principales étapes d'une itération de gradient projeté/réduit sont

- construire la direction de descente au point courant
- effectuer une recherche linéaire avec restauration

Direction de descente

- Sélection des contraintes actives
- Projection ou réduction dans l'hyperplan tangent
- Mise à jour du hessien (quasi-Newton)

Recherche linéaire

- Méthode de dichotomie sur le pas de déplacement
- Restauration avant évaluation du pas
- Règles d'acceptation (Armijo,...)

Principales difficultés

- Amélioration critère → grands pas
- Restauration contraintes → petits pas
 - → difficultés sur problèmes très non-linéaires
 - → réglages à adapter au cas par cas

b) **Exemple**

Exemple

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Solution: $\begin{cases} x_1^* = -1/\sqrt{2} \approx -0.70711 \\ x_2^* = 1 1/\sqrt{2} \approx 0.29289 \end{cases}$

Itérations

- rations Point courant: $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} r \cos \theta \\ r \sin \theta + 1 \end{pmatrix}$
- Descente: $\mathbf{x'} = \mathbf{x} \mathbf{s}_1 \mathbf{d}_1$ avec $\mathbf{d}_1 = \pm \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$ \leftarrow $\mathbf{g}_p = (\cos\theta \sin\theta)\begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$
 - \rightarrow pas s₁ suivant le gradient projeté
- Restauration: $\mathbf{x}'' = \mathbf{x}' \mathbf{s}_2 \mathbf{d}_2$ avec $\mathbf{d}_2 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ $\leftarrow \nabla c(\mathbf{x}) = \begin{pmatrix} 2\mathbf{x}_1 \\ 2(\mathbf{x}_2 1) \end{pmatrix}$
 - \rightarrow pas s₂ suivant le gradient des contraintes
- Réglage des pas : s_2 est calculé pour restaurer c(x") = 0 s_1 est choisi pour vérifier une décroissance suffisante $f(x^n) < f(x)$

Exemple

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Point initial: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 1 \end{pmatrix}$ \rightarrow Restauration initiale: $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Itération	x ₁	\mathbf{x}_2	f(x)	c(x)	Descente s ₁	x ₁ '	x ₂ '	c(x')	Restauration s ₂
1	0,10000	1,00000	1,10000	-0,99000	0,00000	0,10000	1,00000	-0,99000	4,50000
2	1,00000	1,00000	2,00000	0,00000	1,00000	1,00000	0,00000	1,00000	-0,50000
3	0,00000	0,00000	0,00000	0,00000	0,50000	-0,50000	0,00000	0,25000	-0,06699
4	-0,50000	0,13397	-0,36603	0,00000	0,18301	-0,65849	0,22548	0,03349	-0,00844
5	-0,65005	0,24011	-0,40994	0,00000	5,492E-02	-0,69178	0,27581	3,016E-03	-7,547E-04
6	-0,69080	0,27696	-0,41385	0,00000	1,612E-02	-0,70246	0,28809	2,599E-04	-6,497E-05
7	-0,70237	0,28819	-0,41418	0,00000	4,722E-03	-0,70573	0,29150	2,230E-05	-5,576E-06
8	-0,70572	0,29151	-0,41421	0,00000	1,383E-03	-0,70670	0,29249	1,913E-06	-4,783E-07
9	-0,70670	0,29249	-0,41421	0,00000	4,051E-04	-0,70699	0,29277	1,641E-07	-4,103E-08
10	-0,70699	0,29277	-0,41421	0,00000	1,187E-04	-0,70707	0,29286	1,408E-08	-3,520E-09
11	-0,70707	0,29286	-0,41421	0,00000	3,475E-05	-0,70710	0,29288	1,208E-09	-3,020E-10
12	-0,70710	0,29288	-0,41421	0,00000					

Exemple

Minimisation de
$$f(x) = x_1 + x_2$$
 sous $c(x) = x_1^2 + (x_2 - 1)^2 - 1 = 0$

Point initial

Solution

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 1 \end{pmatrix} \xrightarrow{\text{restauration initiale}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{\text{itérations}} \begin{pmatrix} x_1 * \\ x_2 * \end{pmatrix} = \begin{pmatrix} -1/\sqrt{2} \approx -0.70711 \\ 1-1/\sqrt{2} \approx 0.29289 \end{pmatrix}$$

6 Lagrangien augmenté

6.1 Principes

Problème avec contraintes égalité

$$\min_{x \in R^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases} \iff \min_{x \in R^n} f(x) \text{ sous } c(x) = 0 \longrightarrow \text{ contraintes actives}$$

La difficulté de résolution vient des 2 objectifs antagonistes :

- Minimiser le critère f(x)
- Satisfaire les contraintes c(x)=0

Méthodes de pénalisation

Les contraintes sont ajoutées à la fonction coût avec une pondération :

- Critère augmenté → pondération = pénalisation des contraintes
- Lagrangien → pondération = multiplicateurs de Lagrange
- Lagrangien augmenté → pondération = pénalisation + multiplicateurs
 - → On se ramène à un **problème sans contraintes** plus simple

Les difficultés viennent du réglage de la pondération :

- Le problème pénalisé sans contraintes doit être équivalent au problème avec contraintes.
- Le problème pénalisé est mal conditionné lorsque la pénalisation est grande.

- - -

6.2 Pénalisation

a) Critère augmenté

Problème avec contraintes égalité

$$\min_{x \in R^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases} \iff \min_{x \in R^n} f(x) \text{ sous } c(x) = 0 \longrightarrow \text{ contraintes actives}$$

On note x* la solution du problème avec contraintes.

Critère augmenté

On ajoute au critère un terme positif fonction de la violation des contraintes avec un coefficient de pénalisation $\rho > 0 \rightarrow 2$ méthodes usuelles de pénalisation

• Pénalisation en norme 2 (pénalisation quadratique)

$$f_{\rho}(x) = f(x) + \frac{1}{2}\rho \left\| \left| c_{E}(x) \right|_{2}^{2} + \left\| \max(0, c_{I}(x)) \right\|_{2}^{2} \right\}$$
 \iff $f_{\rho}(x) = f(x) + \frac{1}{2}\rho \left\| c(x) \right\|_{2}^{2}$

• Pénalisation en norme 1

$$f_{\rho}(x) = f(x) + \rho \left\| c_{E}(x) \right\|_{1} + \left\| \max(0, c_{I}(x)) \right\|_{1}$$
 $\iff f_{\rho}(x) = f(x) + \rho \left\| c(x) \right\|_{1}$

Problème sans contraintes

$$\min_{x \in R^n} f_{\rho}(x) \longrightarrow \text{solution } x_{\rho}$$

b) Pénalisation quadratique

Problème pénalisé l₂

$$\begin{split} \min_{x \in R^n} f_{\rho}(x) & \quad \text{avec} \quad f_{\rho}(x) \! = \! f(x) \! + \! \frac{1}{2} \rho \! \left\lVert c_E(x) \right\rVert_2^2 + \! \left\lVert \max \! \left(0, c_I(x) \right) \right\rVert_2^2 \right) \\ & \quad \Leftrightarrow \quad f_{\rho}(x) \! = \! f(x) \! + \! \frac{1}{2} \rho \! \left\lVert c(x) \right\rVert_2^2 & \quad \to \text{ contraintes actives} \end{split}$$

Le critère l_2 est différentiable deux fois pour un problème avec contraintes égalité. On peut appliquer les algorithmes d'optimisation sans contraintes à base de gradient.

Méthode de résolution

- On résout une suite de problèmes pénalisés avec des valeurs croissantes de la pénalisation ρ.
- Chaque problème k+1 est initialisé avec la solution précédente x_k.
- Problème k avec pénalisation ρ_k : $\min_{x \in R^n} f_{\rho_k}(x) \longrightarrow \text{solution } x_k$
- Il faut vérifier que la suite des solutions x_k converge vers la solution x^* du problème initial $\lim_{k\to\infty}x_k=x^*$ si $\lim_{k\to\infty}\rho_k=+\infty$
 - \rightarrow 2 résultats de convergence selon que x_k est une solution exacte ou approchée

Problème pénalisé l₂

- Problème avec contraintes : $\min_{x \in \mathbb{R}^n} f(x)$ sous c(x) = 0 \rightarrow solution x^*
- Problème k avec pénalisation ρ_k : $\min_{x \in R^n} f_{\rho_k}(x)$ \rightarrow solution x_k $\lim_{k \to \infty} \rho_k = +\infty$ $\lim_{k \to \infty} x_k = x_\infty$

Convergence

- Si x_k est le minimum global exact, alors $\lim_{k\to\infty} x_k = x^{\frac{1}{2}}$

alors la limite x_{∞} est : - soit un point non admissible qui minimise $\left\|c(x)\right\|_2^2$

- soit un point x* vérifiant les conditions KKT du problème initial

On a dans ce $2^{\text{ème}}$ cas : $\begin{cases} \lim_{k \to \infty} x_k = x^* \\ \lim_{k \to \infty} \rho_k c(x_k) = \lambda^* \end{cases} \rightarrow \text{minimum local}$ $\rightarrow \text{multiplicateurs des contraintes actives}$

 $\underline{\text{La solution exacte } x^* \text{ n'est obtenue qu'à la limite lorsque la pénalisation } \rho \text{ tend vers l'infini}.}$

Eléments de la démonstration

$$f_{\rho}(x) = f(x) + \frac{1}{2}\rho \|c(x)\|^2 \quad \Rightarrow \quad \nabla f_{\rho}(x) = \nabla f(x) + \rho \nabla c(x)c(x)$$

• Critère d'arrêt sur x_k : $\left\|\nabla f_{\rho_k}(x_k)\right\| \leq \varepsilon_k$

$$\left\|\nabla f_{\rho_k}(x_k)\right\| = \left\|\nabla f(x_k) + \rho_k \nabla c(x_k)c(x_k)\right\| \ge \left\|\rho_k \nabla c(x_k)c(x_k)\right\| - \left\|\nabla f(x_k)\right\| \quad car \left\|a + b\right\| \ge \left\|a\right\| - \left\|b\right\|$$

$$\Rightarrow \|\rho_k \nabla c(x_k) c(x_k)\| \le \varepsilon_k + \|\nabla f(x_k)\| \quad \Rightarrow \|\nabla c(x_k) c(x_k)\| \le \frac{\varepsilon_k + \|\nabla f(x_k)\|}{\rho_k} \xrightarrow[k \to \infty]{} 0$$

$$\Rightarrow \begin{cases} \nabla c(x^*) = 0 \rightarrow \min \| c(x) \| \\ ou \qquad si \ les \ gradients \ sont \ linéairement \ indépendants \\ c(x^*) = 0 \rightarrow admissible \end{cases}$$

• Multiplicateurs de Lagrange

$$\begin{split} \left\| \nabla f_{\rho_k}(x_k) \right\| &= \left\| \nabla f(x_k) + \rho_k \, \nabla c(x_k) c(x_k) \right\| \le \varepsilon_k \xrightarrow[k \to \infty]{} 0 \\ &\to \left\| \nabla f(x^*) + \nabla c(x^*) \lambda^* = 0 \right\| \quad avec \quad \lambda^* = \lim_{k \to \infty} \rho_k c(x_k) \end{split}$$

c) Pénalisation exacte

Problème pénalisé l₁

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}_{\rho}(\mathbf{x}) \qquad \text{avec} \quad \mathbf{f}_{\rho}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \rho \left\| \mathbf{c}_{E}(\mathbf{x}) \right\|_{1} + \left\| \max(0, \mathbf{c}_{I}(\mathbf{x})) \right\|_{1} \right)$$

$$\iff \mathbf{f}_{\rho}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \rho \left\| \mathbf{c}(\mathbf{x}) \right\|_{1} \qquad \rightarrow \text{ contraintes actives}$$

Le critère l₁ n'est pas différentiable.

Méthode de résolution

- On résout une suite de problèmes pénalisés avec des valeurs croissantes de la pénalisation ρ.
- Chaque problème k+1 est initialisé avec la solution précédente x_k.
- Problème k avec pénalisation ρ_k : $\min_{x \in R^n} f_{\rho_k}(x) \longrightarrow \text{solution } x_k$

Convergence

- Si $\rho > \rho^* = \|\lambda^*\|_{\infty} = \max |\lambda_i|$ alors \mathbf{x}^* est un minimum local de \mathbf{f}_{ρ} avec la pénalisation \mathbf{l}_1 .
- La pénalisation l₁ est exacte si est ρ est supérieur au plus grand multiplicateur.
 - \rightarrow ne nécessite pas d'augmenter indéfiniment ρ pour obtenir la solution exacte x^*

d) Mise en œuvre

Méthodes avec critère augmenté

- Type de pénalisation
 - Pénalisation l_2 \rightarrow différentiable, mais nécessite une pénalisation forte pour approcher x^*
 - Pénalisation $l_1 \rightarrow \text{exacte}$, mais non différentiable
- Réglage de la pénalisation
 - Trop faible → risque de divergence (pas de minimum du problème pénalisé)
 - Trop forte → mauvais conditionnement, difficultés numériques
- Utilisation du critère augmenté
 - Difficultés pratiques si l'on veut obtenir une bonne précision sur la solution x*
 - Le critère augmenté peut servir de fonction mérite dans le cadre d'autres algorithmes pour évaluer la progression vers l'optimum.

Méthodes avec lagrangien augmenté

On cherche à se ramener à une suite de problèmes sans contraintes

- en conservant un critère différentiable
- en évitant le mauvais conditionnement du à une pénalisation trop forte
 - → utilisation des multiplicateurs de Lagrange pour réduire la pénalisation
 - → méthode duale ou lagrangienne

e) Lagrangien augmenté

Problème pénalisé l₂

• La méthode de pénalisation consiste à minimiser le critère augmenté.

$$\min_{x \in R^{n}} f_{\rho}(x) = f(x) + \frac{1}{2} \rho ||c(x)||^{2}$$

• La convergence est obtenue pour des valeurs croissantes de pénalisation.

$$\lim_{k\to\infty}\rho_k=+\infty\quad \to \begin{cases} \lim_{k\to\infty}x_k=x^* & \to \text{ minimum local}\\ \lim_{k\to\infty}\rho_kc(x_k)=\lambda^* & \to \text{ multiplicateurs des contraintes actives} \end{cases}$$

- La solution x_k ne respecte qu'approximativement les contraintes : $c(x_k) \approx \frac{\lambda^*}{\rho_k}$
- Pour respecter précisément les contraintes, il faut augmenter fortement la pénalisation.
 → cause de mauvais conditionnement et de difficultés numériques
- On peut appliquer la méthode de pénalisation au problème équivalent

$$\begin{split} & \underset{x \in R^n}{\min} L(x, \lambda^*) \text{ sous } c(x) = 0 \iff \underset{x \in R^n}{\min} f(x) \text{ sous } c(x) = 0 \\ & \to \text{ si l'on connait } \lambda^* \\ & \to \underset{x \in R^n}{\min} L_{\rho}(x, \lambda^*) = L(x, \lambda^*) + \frac{1}{2} \rho \big\| c(x) \big\|_2^2 = f(x) + \lambda^{*T} c(x) + \frac{1}{2} \rho \big\| c(x) \big\|^2 \end{split}$$

Lagrangien augmenté

• La méthode de lagrangien augmenté consiste à résoudre une suite de problèmes :

$$\min_{x \in R^n} L_{\rho_k}\left(x, \lambda_k\right) \!=\! L(x, \! \lambda_k) + \frac{1}{2} \rho_k \big\| c(x) \big\|_2^2 = f(x) + \lambda_k^T c(x) + \frac{1}{2} \rho_k \big\| c(x) \big\|^2$$

avec $\begin{array}{ll} \rho_k = \text{valeur de p\'enalisation du probl\`eme k} \\ \lambda_k = \text{estimation des multiplicateurs pour le probl\`eme k} \end{array}$

• Si $\lim_{k\to\infty}\lambda_k=\lambda^*$ et $\lim_{k\to\infty}\rho_k=+\infty$ les problèmes deviennent équivalents.

$$\min_{\substack{x \in \mathbb{R}^n \\ x \in \mathbb{R}^n}} L(x, \lambda^*) \text{ sous } c(x) = 0 \quad \Leftrightarrow \min_{\substack{x \in \mathbb{R}^n \\ x \in \mathbb{R}^n}} f(x) \text{ sous } c(x) = 0 \\ \Leftrightarrow \min_{\substack{x \in \mathbb{R}^n \\ x \in \mathbb{R}^n}} L_{\rho}(x, \lambda^*) \qquad \Leftrightarrow \min_{\substack{x \in \mathbb{R}^n \\ x \in \mathbb{R}^n}} f_{\rho}(x)$$

La solution x_k du problème $\min_{x \in \mathbb{R}^n} L_{\rho_k}(x, \lambda_k)$ converge vers la solution x^* du problème initial.

• La solution x_k vérifie également : $\nabla_x L_{\rho_k}(x_k, \lambda_k) = \nabla f(x_k) + \nabla c(x_k) (\lambda_k + \rho_k c(x_k)) = 0$ à comparer à x^* qui vérifie : $\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \nabla c(x^*) \lambda^* = 0$ $\Rightarrow \boxed{\lim_{k \to \infty} \lambda_k + \rho_k c(x_k) = \lambda^*}$

(même démonstration que pour le critère augmenté avec pénalisation quadratique)

Lagrangien augmenté

• On peut estimer les multiplicateurs à l'itération k.

$$\lim_{k\to\infty} \lambda_k + \rho_k c(x_k) = \lambda^* \quad \to \quad \lambda^* \approx \lambda_k + \rho_k c(x_k) \qquad \text{pour } \rho_k \text{ assez grand}$$

$$\rightarrow \lambda_{k+1} = \lambda_k + \rho_k c(x_k)$$
 pour l'itération k+1

• La valeur des contraintes à l'itération k est :
$$c(x_k) \approx \frac{\lambda^* - \lambda_k}{\rho_k} \qquad \xrightarrow{\lambda_k \to \lambda^*} 0$$

On peut parvenir à respecter les contraintes <u>sans augmenter indéfiniment la pénalisation</u> si λ_k est une bonne estimation des multiplicateurs \rightarrow **méthode duale**

- → meilleur conditionnement
- → convergence plus rapide et précise que la méthode du critère augmenté
- → méthode de lagrangien augmenté appelée aussi méthode des multiplicateurs

Convergence

Pour ρ assez grand, la solution x^* du problème initial est un minimum local du problème $\min_{x \in \mathbb{R}^n} L_{\rho}(x,\lambda^*) = f(x) + \lambda^{*T} c(x) + \frac{1}{2} \rho \|c(x)\|^2 \rightarrow \text{pénalisation exacte si on connaît } \lambda^*$

→ ne nécessite pas d'augmenter indéfiniment ρ pour obtenir la solution exacte x*

6.3 Méthode duale

a) Problème dual

Problème avec contraintes égalité

• Problème primal: $\min_{x \to 0} f(x)$ sous c(x) = 0 \rightarrow m contraintes actives

• Lagrangien : $L(x,\lambda) = f(x) + \lambda^{T}c(x)$ $\rightarrow x = n$ variables primales $\rightarrow \lambda = m$ variables duales

• Fonction duale : $w(\lambda) = \min_{x \in R^n} L(x, \lambda)$ \rightarrow minimisation par rapport à x

• Problème dual : $\max_{\lambda \in \mathbb{P}^m} w(\lambda)$ \rightarrow maximisation par rapport à λ

Méthode duale (ou lagrangienne)

Une méthode duale consiste à résoudre le problème dual : $\max_{\lambda \in \mathbb{R}^m} w(\lambda)$

- Le problème est sans contraintes, mais la fonction $w(\lambda)$ est coûteuse à évaluer.
- La solution (x^*,λ^*) est un point col du lagrangien : $\forall x,\lambda$, $L(x^*,\lambda) \le L(x^*,\lambda^*) \le L(x,\lambda^*)$ \rightarrow existence non garantie (saut de dualité)

b) Maximisation duale

Fonction duale

On note $x_L(\lambda)$ la valeur de x qui minimise $L(x,\lambda)$ à λ fixé.

Condition d'ordre 1 : $\min_{x \in \mathbb{R}^n} L(x, \lambda)$ en $x = x_L(\lambda)$ $\Rightarrow \nabla_x L(x_L(\lambda), \lambda) = 0$

• Fonction w: $w(\lambda) = \min_{x \in \mathbb{R}^n} L(x, \lambda) = L(x_L(\lambda), \lambda) \rightarrow \text{fonction composée}$

• Gradient de w : $\nabla w(\lambda) = \nabla x_L(\lambda).\nabla_x L(x_L(\lambda),\lambda) + \nabla_\lambda L(x_L(\lambda),\lambda)$ $= 0 = c(x_L(\lambda))$ $\Rightarrow \boxed{\nabla w(\lambda) = c(x_L(\lambda))}$

• Hessien de w : $\nabla^2 w(\lambda) = \nabla_{\lambda} c(x_L(\lambda)) = \nabla x_L(\lambda) \nabla c(x_L(\lambda))$ $\Rightarrow \nabla^2 w(\lambda) = -\nabla c(x_L(\lambda))^T \left[\nabla_{xx}^2 L(x_L(\lambda), \lambda) \right]^{-1} \nabla c(x_L(\lambda))$

Preuve: on calcule $\nabla x_I(\lambda)$ à partir de $\nabla_x L(x_I(\lambda), \lambda) = 0$

$$\begin{split} \nabla_{x} L \big(x_{L}(\lambda), \lambda \big) &= 0 \,, \forall \lambda \quad \Rightarrow \quad \nabla_{\lambda} \big[\nabla_{x} L \big(x_{L}(\lambda), \lambda \big) \big] = 0 \quad \Rightarrow \quad \nabla x_{L}(\lambda) \nabla_{xx}^{2} L \big(x_{L}(\lambda), \lambda \big) + \nabla_{\lambda x}^{2} L \big(x_{L}(\lambda), \lambda \big) = 0 \\ &\Rightarrow \quad \nabla x_{L} = - \nabla c^{T} \big[\nabla_{xx}^{2} L \big]^{-1} \qquad \qquad avec \quad \nabla_{\lambda} L = c \end{split}$$

Méthode de maximisation

- La fonction duale est **coûteuse** à évaluer. $w(\lambda) = \min_{x \in \mathbb{R}^n} L(x, \lambda) = L(x_L(\lambda), \lambda) \longrightarrow \text{minimisation en chaque valeur } \lambda \text{ pour obtenir } x_L(\lambda) \longrightarrow \text{on ne peut pas directement maximiser } w$
- On réalise à chaque itération :
 - une minimisation par rapport à x : $(x_k, \lambda_k) \rightarrow (x_{k+1}, \lambda_k)$
 - une maximisation par rapport à $\lambda: (x_{k+1}, \lambda_k) \rightarrow (x_{k+1}, \lambda_{k+1})$

Déplacement

• Le déplacement sur x est construit en minimisant $L(x,\lambda_k)$.

$$\min_{\mathbf{x} \in \mathbf{R}^n} L(\mathbf{x}, \lambda_k) \quad \rightarrow \quad \mathbf{x}_{k+1} = \mathbf{x}_L(\lambda_k) \qquad \qquad \rightarrow \text{ minimisation exacte ou approchée}$$

• Le déplacement sur λ est construit à partir du gradient et éventuellement du hessien de w.

$$\begin{cases} \nabla \ w(\lambda_k) = c(x_{k+1}) \\ \nabla^2 w(\lambda_k) = -\nabla c(x_{k+1})^T \left[\nabla_{xx}^2 L(x_{k+1}, \lambda_k) \right]^{-1} \nabla c(x_{k+1}) \end{cases} \rightarrow \text{minimisation approchée } (\text{pas fixé})$$

• Méthodes de déplacement sur λ : Uzawa, lagrangien augmenté, Newton

c) Méthode d'Uzawa

Principe

Le déplacement en λ est construit par une méthode de plus forte pente.

$$\lambda_{k+1} = \lambda_k + s_k \nabla w(\lambda_k) \implies \lambda_{k+1} = \lambda_k + s_k c(x_{k+1})$$

L'efficacité de la méthode dépend du réglage du pas s_k.

Méthode d'Uzawa (1958)

- On choisit un **pas constant**: $s_k = s_0$.
- Difficulté: pas s₀ trop grand → oscillations autour de la solution
 pas s₀ trop petit → convergence très lente
- La convergence est linéaire (méthode de plus forte pente).
- La vitesse de convergence dépend du conditionnement du hessien de la fonction duale.

$$\nabla^2 w(\lambda^*) = -\nabla c (x^*)^T \left[\nabla_{xx}^2 L(x^*, \lambda^*) \right]^{-1} \nabla c (x^*)$$

Améliorations

- On peut régler le pas à chaque itération par une recherche linéaire suivant $\nabla w(\lambda_k)$.
- On peut appliquer une **méthode de Newton** au problème dual en utilisant $\nabla^2 w(\lambda_k)$.
 - → méthodes nécessitant une globalisation pour contrôler la convergence
 - \rightarrow évaluations coûteuses de w(λ)

d) Méthode de Newton

Principe

L'itération de Newton sur le problème dual est définie par :

$$\lambda_{k+1} = \lambda_k - \left[\nabla^2 w(\lambda_k)\right]^{-1} \nabla w(\lambda_k) \qquad \text{avec} \quad \begin{cases} \nabla w(\lambda_k) = c(x_{k+1}) \\ \nabla^2 w(\lambda_k) = -\nabla c(x_{k+1})^T \left[\nabla_{xx}^2 L(x_{k+1}, \lambda_k)\right]^{-1} \nabla c(x_{k+1}) \end{cases}$$

- On applique une **méthode de quasi-Newton** au problème primal : $\min_{x \in \mathbb{R}^n} L(x, \lambda_k)$ pour obtenir une approximation de l'inverse du hessien de L : $H_k \approx \nabla_{xx}^2 L(x_{k+1}, \lambda_k)^{-1}$
- On applique ensuite une **méthode de Newton** au problème dual.

$$\lambda_{k+1} = \lambda_k - \left[\nabla^2 w(\lambda_k)\right]^{-1} \nabla w(\lambda_k) \implies \left[\lambda_{k+1} = \lambda_k + \left[\nabla c(x_{k+1})^T H_k \nabla c(x_{k+1})\right]^{-1} c(x_{k+1})\right]^{-1} c(x_{k+1})$$

Convergence

- La convergence est superlinéaire (quasi-Newton) ou quadratique (Newton).
- Une globalisation est nécessaire pour vérifier la solution de Newton.
 - \rightarrow évaluations supplémentaires de w(λ) pouvant être coûteuses
- Le point col n'existe pas nécessairement si le problème n'est pas convexe (saut de dualité)
 - → création d'un point col par pénalisation

Exemple

• Minimisation de
$$f(x) = x_1 + x_2$$
 sous $c(x) = x_1^2 + (x_2 - 1)^2 - 2 = 0$

• Lagrangien:
$$L(x,\lambda) = x_1 + x_2 + \lambda (x_1^2 + (x_2 - 1)^2 - 2)$$

• Fonction duale :
$$w(\lambda) = \min_{x \in \mathbb{R}^2} L(x, \lambda) = 1 - 2\lambda - \frac{1}{2\lambda} \quad \text{pour} \quad x_L(\lambda) = \begin{pmatrix} -\frac{1}{2\lambda} \\ -\frac{1}{2\lambda} + 1 \end{pmatrix}$$

• Problème dual : $\max_{\lambda \in \mathbb{R}} w(\lambda) \implies \lambda^* = \frac{1}{2} \rightarrow x^* = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \implies \text{point col}$

• Problème dual:
$$\max_{\lambda \in \mathbb{R}} w(\lambda) \Rightarrow \begin{vmatrix} \lambda^* = \frac{1}{2} \\ \lambda^* = \frac{1}{2} \end{vmatrix} \rightarrow x^* = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \rightarrow \text{point col}$$

• Gradient:
$$\nabla w(\lambda) = c(x_L(\lambda)) = \frac{1}{2\lambda^2} - 2$$

• Hessien:
$$\nabla^2 \mathbf{w}(\lambda) = -\nabla \mathbf{c} \left(\mathbf{x}_{L}(\lambda) \right)^T \left[\nabla_{xx}^2 \mathbf{L} \left(\mathbf{x}_{L}(\lambda), \lambda \right) \right]^{-1} \nabla \mathbf{c} \left(\mathbf{x}_{L}(\lambda) \right) = -\frac{1}{\lambda^3}$$

avec
$$\nabla c(\mathbf{x}_{L}(\lambda)) = -\frac{1}{\lambda} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\nabla_{xx}^{2} L(\mathbf{x}_{L}(\lambda), \lambda) = 2\lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Méthode d'Uzawa

• Minimisation de
$$f(x) = x_1 + x_2$$
 sous $c(x) = x_1^2 + (x_2 - 1)^2 - 2 = 0$

• Itération à pas s fixé :
$$x_{k+1} = \begin{pmatrix} -\frac{1}{2\lambda_k} \\ -\frac{1}{2\lambda_k} + 1 \end{pmatrix}$$
 $\lambda_{k+1} = \lambda_k + s \left(\frac{1}{2\lambda_k^2} - 2 \right)$

• Influence du pas :
$$s=0,1$$
 ou $s=0,2$ \rightarrow oscillations autour de la solution

	Uzaw	Ozawa pas $s = 0,1$					
Itération	X ₁	X ₂	λ	S			
1	-0,10000	1,00000	1,00000	0,1			
2	-0,50000	0,50000	0,85000	0,1			
3	-0,58824	0,41176	0,71920	0,1			
4	-0,69521	0,30479	0,61587	0,1			
5	-0,81186	0,18814	0,54769	0,1			
6	-0,91292	0,08708	0,51438	0,1			
7	-0,97205	0,02795	0,50335	0,1			
8	-0,99334	0,00666	0,50070	0,1			
9	-0,99861	0,00139	0,50014	0,1			
10	-0,99972	0,00028	0,50003	0,1			
11	-0,99994	5,63E-05	0,50001	0,1			
12	-0,99999	1,13E-05	0,50000	0,1			

Hzawa nac c = 0.1

	Uzaw	a pas s =	0,2	
Itération	X ₁	X ₂	λ	S
1	-0,10000	1,00000	1,00000	0,2
2	-0,50000	0,50000	0,70000	0,2
3	-0,71429	0,28571	0,50408	0,2
4	-0,99190	0,00810	0,49763	0,2
5	-1,00476	-0,00476	0,50145	0,2
6	-0,99711	0,00289	0,49914	0,2
7	-1,00172	-0,00172	0,50052	0,2
8	-0,99896	0,00104	0,49969	0,2
9	-1,00062	-0,00062	0,50019	0,2
10	-0,99963	0,00037	0,49989	0,2
11	-1,00022	-2,24E-04	0,50007	0,2
12	-0,99987	1,34E-04	0,49996	0,2

Comparaison Uzawa / Newton

• Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 - 1)^2 - 2 = 0$

• Itération k :
$$x_{k+1} = \begin{pmatrix} -\frac{1}{2\lambda_k} \\ -\frac{1}{2\lambda_k} + 1 \end{pmatrix}$$
 $\lambda_{k+1} = \lambda_k + s \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$ $\lambda_{k+1} = \lambda_k + s \lambda_k^3 \left(\frac{1}{2\lambda_k^2} - 2 \right)$

	Ozaw	a pas s –	0,1	
Itération	X ₁	X ₂	λ	S
1	-0,10000	1,00000	1,00000	0,1
2	-0,50000	0,50000	0,85000	0,1
3	-0,58824	0,41176	0,71920	0,1
4	-0,69521	0,30479	0,61587	0,1
5	-0,81186	0,18814	0,54769	0,1
6	-0,91292	0,08708	0,51438	0,1
7	-0,97205	0,02795	0,50335	0,1
8	-0,99334	0,00666	0,50070	0,1
9	-0,99861	0,00139	0,50014	0,1
10	-0,99972	0,00028	0,50003	0,1
11	-0,99994	5,63E-05	0,50001	0,1
12	-0,99999	1,13E-05	0,50000	0,1

	Newto	m pas s –	- 1	
Itération	X ₁	X ₂	λ	S
1	-0,10000	1,00000	1,00000	0,25
2	-0,50000	0,50000	0,62500	0,50
3	-0,80000	0,20000	0,53711	1,00
4	-0,93091	0,06909	0,49577	1,00
5	-1,00854	-0,00854	0,49995	1,00
6	-1,00011	-0,00011	0,50000	1,00
7	-1,00000	-1,72E-08	0,50000	1,00
8	-1,00000	0,00E+00	0,50000	1,00

627

e) Méthode de lagrangien augmenté

Principe

La méthode de lagrangien augmenté est une méthode duale appliquée au critère augmenté.

• Critère augmenté f_{ρ} : $f_{\rho}(x) = f(x) + \frac{1}{2}\rho \|c(x)\|_{2}^{2}$

• Lagrangien augmenté L_{ρ} : $L_{\rho}(x,\lambda) = f(x) + \lambda^{T}c(x) + \frac{1}{2}\rho ||c(x)||_{2}^{2}$

• Fonction duale augmentée \mathbf{w}_{ρ} : $\mathbf{w}_{\rho}(\lambda) = \min_{\mathbf{x} = \mathbf{p}^n} \mathbf{L}_{\rho}(\mathbf{x}, \lambda)$

Le problème dual devient : $\max_{\lambda \in \mathbb{R}^m} W_{\rho}(\lambda)$

Fonction duale augmentée

Le gradient et le hessien de w_{ρ} sont identiques à ceux de w en remplaçant L par L_{ρ} .

$$\begin{cases} \nabla \ w_{\rho}(\lambda) = c \big(x_{L\rho}(\lambda) \big) \\ \nabla^2 w_{\rho}(\lambda) = - \nabla c \big(x_{L\rho}(\lambda) \big)^T \big[\nabla_{xx}^2 L_{\rho} \big(x_{L\rho}(\lambda), \lambda \big) \big]^{-1} \nabla c \big(x_{L\rho}(\lambda) \big) \end{cases} \quad \text{avec} \quad \min_{x \in \mathbb{R}^n} L_{\rho}(x, \lambda) \quad \text{en} \quad x = x_{L\rho}(\lambda)$$

On réalise à chaque itération :

- une minimisation de L_o par rapport à x
- un déplacement en λ à partir du gradient et du hessien de w_0

Déplacement

• Le déplacement sur x est construit en minimisant $L_{\rho}(x,\lambda_k)$ avec une précision donnée.

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{L}_{\rho}(\mathbf{x}, \lambda_k) \rightarrow \mathbf{x}_{k+1} = \mathbf{x}_{\mathbf{L}\rho}(\lambda_k)$$

• Le déplacement sur λ est construit par une méthode de plus forte pente.

$$\lambda_{k+1} = \lambda_k + s_k \nabla w_{\rho}(\lambda_k) \implies \lambda_{k+1} = \lambda_k + s_k c(x_{k+1})$$

Le pas s_k est chois<u>i</u> à partir de la propriété de convergence : $\lim_{k\to\infty} \lambda_k + \rho_k c(x_k) = \lambda^*$

$$s_k = \rho_k$$
 $\rightarrow \lambda_{k+1} = \lambda_k + \rho_k c(x_{k+1})$

Convergence

- La convergence est linéaire (méthode de plus forte pente).
- La vitesse de convergence dépend du conditionnement des hessiens de L_{ρ} (primal) et w_{ρ} (dual).

$$\nabla_{xx}^{2}L_{\rho} = \nabla_{xx}^{2}L + \rho\nabla c.\nabla c^{T} \xrightarrow{\rho \to \infty} \rho\nabla c.\nabla c^{T} \longrightarrow \text{mal conditionn\'e si } \rho \text{ grand}$$

$$\nabla^{2}w_{\rho} = -\nabla c^{T} \left[\nabla_{xx}^{2}L_{\rho}\right]^{-1}\nabla c \xrightarrow{\rho \to \infty} -\rho^{-1}I \longrightarrow \text{bien conditionn\'e si } \rho \text{ grand}$$

- On peut appliquer une méthode de Newton au dual avec $H_k \approx \left[\nabla_{xx}^2 L_\rho\right]^{-1}$ (quasi-Newton primal) \rightarrow convergence superlinéaire + globalisation nécessaire
- La pénalisation peut créer un point col qui n'existe pas dans le problème initial.

f) Exemple

Exemple

- Minimisation de $f(x) = -x_1x_2$ sous $c(x) = x_1 + x_2 1 = 0$
- Lagrangien: $L(x,\lambda) = -x_1x_2 + \lambda(x_1 + x_2 1)$
- Solution KKT: $\lambda^* = \frac{1}{2}, x_1^* = x_2^* = \frac{1}{2} \rightarrow L(x^*, \lambda^*) = -\frac{1}{4}$
- Fonction duale: $w(\lambda) = \min_{x \in \mathbb{R}^2} L(x, \lambda) = -\infty$ en prenant $\begin{cases} x_1 = -\lambda \\ x_2 \to \pm \infty \text{ (signe de } -\lambda) \end{cases}$

La fonction duale vaut $-\infty$ pour toute valeur de λ .

- Problème dual : $\max_{\lambda \in R} w(\lambda) = -\infty$ \rightarrow $< -\frac{1}{4}$
- Le lagrangien n'admet **pas de point col** (problème non convexe). Le problème non pénalisé présente un **saut de dualité**.
 - → On ne peut pas appliquer une méthode duale (Uzawa) sur ce problème.
 - → On peut créer un point col par pénalisation (méthode de lagrangien augmenté).

Point col

• Problème pénalisé: $f_{\rho}(x) = -x_1 x_2 + \frac{1}{2} \rho (x_1 + x_2 - 1)^2$ sous $c(x) = x_1 + x_2 - 1 = 0$

• Lagrangien augmenté: $L_{\rho}(x,\lambda) = -x_1x_2 + \frac{1}{2}\rho(x_1 + x_2 - 1)^2 + \lambda(x_1 + x_2 - 1)$

• Fonction duale : $w_{\rho}(\lambda) = \min_{x \in \mathbb{R}^2} L_{\rho}(x, \lambda)$

• Minimisation de L_{ρ} par rapport à x

Ordre 1: $\nabla_{x} L_{\rho} = 0 \implies \begin{cases} -x_{2} + \rho(x_{1} + x_{2} - 1) + \lambda = 0 \\ -x_{1} + \rho(x_{1} + x_{2} - 1) + \lambda = 0 \end{cases} \implies x_{1}(\lambda) = x_{2}(\lambda) = \frac{\lambda - \rho}{1 - 2\rho}$

Ordre 2: $\nabla_{xx}^{2}L_{\rho} > 0 \implies \begin{pmatrix} \rho & \rho - 1 \\ \rho - 1 & \rho \end{pmatrix} > 0$

Valeurs propres : $(\rho - \sigma)^2 - (\rho - 1)^2 = 0 \implies \begin{cases} \sigma_1 = 1 \\ \sigma_2 = 2\rho - 1 \end{cases} \rightarrow L_\rho \text{ convexe si } \rho > \frac{1}{2}$

• On obtient si $\rho > \frac{1}{2}$: $w_{\rho}(\lambda) = -\left(\frac{\lambda - \rho}{1 - 2\rho}\right)^2 + \frac{1}{2}\rho\left(\frac{2\lambda - 1}{1 - 2\rho}\right)^2 + \lambda\frac{2\lambda - 1}{1 - 2\rho}$

Point col

• Fonction duale: $W_{\rho}(\lambda) = \frac{1}{(1-2\rho)^2} \left[-(\lambda-\rho)^2 + \frac{1}{2}\rho(2\lambda-1)^2 + (1-2\rho)(2\lambda^2-\lambda) \right]$

• Problème dual : $\max_{\lambda \in R} W_{\rho}(\lambda)$

 $\nabla w_{\rho} = 0 \implies -2(\lambda - \rho) + 2\rho(2\lambda - 1) + (1 - 2\rho)(4\lambda - 1) = 0$

Solution: $\lambda^* = \frac{1}{2} \implies w_{\rho}(\lambda^*) = -\frac{1}{4} \text{ et } x_1(\lambda^*) = x_2(\lambda^*) = \frac{1}{2}$

 $W_{\rho}(\lambda^*) = L_{\rho}(x^*, \lambda^*) = -\frac{1}{4}$

On retrouve la solution du problème primal sans saut de dualité -> point col

• La pénalisation permet de **créer un point col** pour $\rho > \frac{1}{2}$ en rendant le problème convexe.

→ On peut appliquer une méthode duale au problème pénalisé (≠ problème initial).

→ La méthode de lagrangien augmenté élargit le domaine d'application des méthodes duales.

6.4 Algorithme

a) Algorithme de lagrangien augmenté

Méthode de lagrangien augmenté (ou méthode des multiplicateurs)

Les principales étapes d'une itération de lagrangien augmenté sont

- minimiser le lagrangien augmenté
- mettre à jour les paramètres de réglage

Minimisation du lagrangien augmenté

- Méthode de quasi-Newton
- Recherche linéaire ou région de confiance
- Précision d'arrêt sur gradient

Paramètres de réglage

- Multiplicateurs
- Pénalisation
- Précisions (gradient, contraintes)

Principales difficultés

- Précision contraintes → pénalisation forte
- Conditionnement \rightarrow pénalisation faible
 - → convergence précise difficile
 - → réglages à adapter au cas par cas

Méthode de lagrangien augmenté (ou méthode des multiplicateurs)

- Mise à jour des réglages à l'itération k+1 en fonction du respect des contraintes
 - Si $\|c(x_{k+1})\| < \eta_k$ \rightarrow mise à jour des multiplicateurs $\lambda_{k+1} = \lambda_k + \rho_k c(x_k)$ (contraintes bien respectées) \rightarrow résolution plus précise $\epsilon_{k+1} < \epsilon_k$, $\eta_{k+1} < \eta_k$
 - Si $\|c(x_{k+1})\| > \eta_k$ \rightarrow augmentation de la pénalisation $\rho_{k+1} > \rho_k \rightarrow \times 10$ (contraintes mal respectées) \rightarrow résolution moins précise $\epsilon_{k+1} > \epsilon_k$, $\eta_{k+1} > \eta_k$

Estimation des multiplicateurs

• La solution (x^*,λ^*) doit vérifier la condition KKT d'ordre 1.

$$\nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}^*, \lambda^*) = 0$$
 \Leftrightarrow $\nabla f(\mathbf{x}^*) + \nabla c(\mathbf{x}^*) \lambda^* = 0$

• On cherche au point x_0 le multiplicateur qui approche « au mieux » la condition KKT.

$$\min_{\lambda} \left\| \nabla_{\mathbf{x}} L(\mathbf{x}_0, \lambda) \right\|^2 \quad \Leftrightarrow \quad \min_{\lambda} \left\| \nabla c(\mathbf{x}_0) \lambda + \nabla f(\mathbf{x}_0) \right\|^2$$

• Il s'agit d'un problème de moindres carrés de la forme : $\min_{\lambda} \left\| A\lambda - b \right\|^2$ avec $\begin{cases} A = \nabla c(x_0) \\ b = -\nabla f(x_0) \end{cases}$ La solution λ_{MC} vérifie les équations normales : $A^T A \lambda_{MC} = A^T b$

$$\lambda_{\text{MC}} = -\left[\nabla c(x_0)^T \nabla c(x_0)\right]^{-1} \nabla c(x_0)^T \nabla f(x_0)$$
 \rightarrow multiplicateurs « des moindres carrés »

- L'estimation des multiplicateurs par moindres carrés est utile :
 - à la première itération pour initialiser λ_0
 - au cours des itérations pour réinitialiser λ_k (si nécessaire).

b) Exemple

Exemple

- Minimisation de $f(x) = 2(x_1^2 + x_2^2 1) x_1$ sous $c(x) = x_1^2 + x_2^2 1 = 0$
- Point initial: $x = \begin{pmatrix} 0.5 \\ 1.3 \end{pmatrix}$, $\lambda = 0$ Solution: $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\lambda = -\frac{3}{2}$

Exemple

- Minimisation de $f(x) = 2(x_1^2 + x_2^2 1) x_1$ sous $c(x) = x_1^2 + x_2^2 1 = 0$
- Point initial: $x = \begin{pmatrix} 0.5 \\ 1.3 \end{pmatrix}$, $\lambda = 0$ Solution: $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\lambda^* = -\frac{3}{2}$

Itération	\mathbf{x}_1	\mathbf{x}_2	λ	ρ	c(x)	$\left\ \nabla \mathbf{L}_{\rho}(\mathbf{x}, \lambda) \right\ $	Newton
1	0,50000	1,30000	0,00000	1	-0,71238	0,90050	1
2	0,40707	0,34917	-0,71238	10	-0,05788	0,90016	1
3	0,73467	0,63433	-1,29122	10	-0,00905	0,50091	2
4	0,91556	0,39077	-1,38175	10	0,00635	0,41807	2
5	0,98869	0,16985	-1,38175	100	0,00188	0,62061	2
6	0,99953	0,04158	-1,30283	100	-0,00188	0,01728	2
7	0,99905	-0,00320	-1,49103	100	-0,00009	0,00172	1
8	0,99995	0,00171	-1,50003	100	2,06E-06	0,00057	3
9	1,00000	0,00045	-1,50003	100	1,85E-06	0,00031	

