I - Exercice 1 : Saponification d'un ester

	RCOOR'	+	HO^-	=	$RCOO^-$	+	R'OH
$c_{initial}(mol \ L^{-1})$	$c_{1,i} = 1.0 * 10^{-2}$		$c_{2,i} = 1.0 * 10^{-2}$		0		0
$c_{final}(mol \ L^{-1})$	$c_{1,f} = 1.0 * 10^{-2} - \xi_v$		$c_{2,f} = 1.0 * 10^{-2} - \xi_v$		ξ_v		ξ_v

I.A -

En posant $c = c_{1,i} = c_{2,i} = 1.0 * 10^{-2} \, mol \cdot L^{-1}$, on a

$$v = k[RCOOR'][HO^{-}] = \frac{d[R'OH]}{dt}$$

d'où
$$k(c-\xi_v)^2 = \frac{d\xi_v}{dt}$$

Donc

$$\frac{-1}{\xi_v - c} - \frac{1}{c} = kt$$

Donc
$$x = \xi_v = c - \frac{1}{kt + \frac{1}{c}}$$

I.B -

On a au bout de t = 2h, $\frac{c_{2,f}}{c_{2,i}} = 25\%$, donc $\xi_v = \frac{3}{4}c$, on a donc $\frac{3}{4}c = c - \frac{1}{kt + \frac{1}{c}}$.

Donc,
$$k = \frac{3}{ct}$$
. A.N. $k = \frac{3}{1.0*10^{-2}*2*3600} = 0.042 \, mol \cdot L^{-1}$

la demi-réaction $t_{1/2}$ est définie par $\frac{[HO^-](t_{1/2})}{c}=0.5,$ donc $\xi_v^{'}=\frac{1}{2}c.$

On obtient
$$t_{1/2} = \frac{1}{kc}$$
. A.N. $t_{1/2} = \frac{1}{1.0 * 10^{-2} * 0.042} = 2.4 * 10^3 s$, soit $40 \, min$

II - Exercice 2 : Substitution nucléophile

	RBr	+	HO^-	=	ROH	+	Br^-
$c_{initial}(mol \ L^{-1})$	$c_{1,i} = 0.010$		$c_{2,i} = 1.0$		0		0
$c_{final}(mol \ L^{-1})$	$c_{1,f} = 0.010 - \xi_v$		$c_{2,f} = 1.0 - \xi_v$		ξ_v		ξ_v

FIGURE 1 – Ajustement de courbe

II.A -

On va chercher à déterminer l'ordre de RBr, car HO^- est en large excès.

Donc $[HO^-]_t \simeq [HO^-]_0$ au cours de cette réaction

Donc
$$k_{app,1} = k[OH^{-}]_{0,1}, v = k_{app,1}[RBr]$$

Par ajustement du courbe, on en déduit que cette réaction est d'ordre 1 par rapport à RBr

Sa pente
$$k_{app,1} = -1 * (-0.0012) = 1.2 * 10^{-3} s^{-1}$$
, donc $k = \frac{k_{app,1}}{[OH^{-}]_{0,1}} = 1.2 * 10^{-3} L \cdot mol^{-1} \cdot s^{-1}$

II.B -

FIGURE 2 – Ajustement de courbe

De la même méthode, si on suppose que $v = k_{app,2}[HBr]$, avec $k_{app,2} = k[OH^-]_{0,2}$

Par ajustement du courbe, on en déduit que cette réaction est d'ordre 1 par rapport à RBr

Sa pente
$$k_{app,2} = -1 * (-0.0006) = 0.6 * 10^{-3} s^{-1}$$
, donc $k = \frac{k_{app,2}}{[OH^-]_{0,2}} = 1.2 * 10^{-3} L \cdot mol^{-1} \cdot s^{-1}$

 k_{app} est proportionnel à $[OH^-]$ (supposé constante au cours de la réaction), on en déduit que la loi de vitesse $v = k[OH^-][HBr]$, où $[HBr] = [HBr]_0 * e^{-k_{app}t}$, avec $k = 1.2*10^{-3} L \cdot mol^{-1} \cdot s^{-1}$, $k_{app} = k[OH^-]$

II.C -

La transformation chimique peut s'expliquer par ${\cal S}_N 2$