ALGEBRA LINEARE E GEOMETRIA

2º appello — 2 luglio 2021

Esercizio 1. In \mathbb{R}^4 sia V il sottospazio vettoriale di equazione $x_1 + x_4 = 0$ e sia U il sottospazio generato dai vettori $u_1 = (2, 1, -1, -2), u_2 = (-1, 2, 0, 1), u_3 = (3, 4, -2, -3).$

- (a) Determinare la dimensione e una base di V.
- (b) Determinare la dimensione e una base di U e verificare che $U \subset V$.
- (c) Trovare un sottospazio $L \subset \mathbb{R}^4$ tale che $U \oplus L = V$. Tale L è unico?
- (d) Esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che Im f = V e Ker f = L? Esiste una funzione lineare $g: \mathbb{R}^4 \to \mathbb{R}^4$ tale che Im g = U e Ker g = L? (Le risposte devono essere qiustificate)

Soluzione. (a) Da $x_1 + x_4 = 0$ ricaviamo $x_4 = -x_1$. Una base di V è quindi formata dai vettori $v_1 = (1, 0, 0, -1), v_2 = (0, 1, 0, 0), v_3 = (0, 0, 1, 0),$ e dunque dim V = 3.

- (b) Si ha $u_3 = 2u_1 + u_2$, mentre i vettori u_1 e u_2 sono linearmente indipendenti. Quindi u_1, u_2 sono una base di U e dunque dim U = 2. Inoltre si verifica subito che i vettori u_1 e u_2 soddisfano l'equazione $x_1 + x_4 = 0$ di V, quindi $u_1, u_2 \in V$ e pertanto $U \subset V$.
- (c) Dato che dim U=2 e dim V=3, deve essere dim L=1. Una base di L è quindi formata da un qualunque vettore di V che non appartiene a U (ci sono infiniti vettori con queste proprietà, quindi L non è unico). Come base di L possiamo prendere, ad esempio, il vettore $v_2=(0,1,0,0)$. Si verifica facilmente che v_2 non può essere scritto come combinazione lineare di u_1 e u_2 , quindi $v_2 \notin U$.
- (d) Dato che dim V=3 e dim L=1, per la funzione f si ha dim (Ker f) + dim (Im f) = 1+3 = 4, come deve essere. Da ciò si deduce che f esiste. Una tale f può essere definita come segue: $f(e_1) = v_1$, $f(e_2) = 0$, $f(e_3) = v_2$, $f(e_4) = v_3$. Da questa definizione si vede che Ker f è generato dal vettore $e_2 = (0, 1, 0, 0) = v_2$, il quale è una base di L, quindi Ker f = L, mentre Im f è generata da $f(e_1) = v_1$, $f(e_3) = v_2$, $f(e_4) = v_3$, quindi Im f = V.

Dato che dim U=2 e dim L=1, per la funzione g si ha dim $(\operatorname{Ker} g) + \operatorname{dim}(\operatorname{Im} g) = 1+2=3$, mentre se una tale g esistesse, si dovrebbe avere dim $(\operatorname{Ker} g) + \operatorname{dim}(\operatorname{Im} g) = 4$. Da ciò si deduce che g non esiste.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ una funzione lineare che contiene il vettore (3, -2, 1) nel nucleo e il cui polinomio caratteristico è $x(x-2)^2$. Sappiamo inoltre che l'autospazio relativo all'autovalore non nullo è il piano di equazione $x_1 - x_2 + x_3 = 0$.

- (a) Trovare una base di \mathbb{R}^3 rispetto alla quale la matrice di f è diagonale.
- (b) Consideriamo ora la matrice

$$A = \begin{pmatrix} -2 & 6 & -2 \\ 1 & 1 & 1 \\ 5 & -7 & 5 \end{pmatrix}$$

Determinare gli autovalori e gli autovettori di A e stabilire se A è diagonalizzabile.

(c) Esiste una base di \mathbb{R}^3 rispetto alla quale la matrice di f è A? (la risposta deve essere giustificata)

Soluzione. (a) Il vettore $v_1 = (3, -2, 1)$ è un autovettore relativo all'autovalore $\lambda = 0$. Dato che il polinomio caratteristico è $x(x-2)^2$, oltre all'autovalore 0 c'è anche l'autovalore $\lambda = 2$,

con molteplicità 2. Il suo autospazio è il piano di equazione $x_1 - x_2 + x_3 = 0$, da cui si ricava $x_2 = x_1 + x_3$. Una base di tale autospazio è quindi data dai vettori $v_2 = (1, 1, 0)$ e $v_3 = (0, 1, 1)$. In conclusione: v_1, v_2, v_3 è una base di \mathbb{R}^3 formata da autovettori di f, quindi rispetto a tale base la matrice di f è diagonale, con gli autovalori 0, 2, 2 sulla diagonale.

(b) Il polinomio caratteristico della matrice A è $x(x-2)^2$, quindi anche la matrice A ha gli autovalori $\lambda = 0$ (con molteplicità 1) e $\lambda = 2$ (con molteplicità 2). Per l'autovalore 0 si trova l'autovettore $w_1 = (1, 0, -1)$. Cercando gli autovettori relativi all'autovalore 2 si trova il sistema

$$\begin{cases}
-4x_1 + 6x_2 - 2x_3 = 0 \\
x_1 - x_2 + x_3 = 0 \\
5x_1 - 7x_2 + 3x_3 = 0
\end{cases}$$

da cui si ricava

$$\begin{cases} x_1 = -2x_3 \\ x_2 = -x_3 \end{cases}$$

Questo significa che l'autospazio relativo all'autovalore 2 ha dimensione 1 ed è generato dal vettore $w_2 = (2, 1, -1)$, pertanto la matrice A non è diagonalizzabile.

(c) No, non può esistere una base di \mathbb{R}^3 rispetto alla quale la matrice di f è A, perché abbiamo visto che, nonostante f e A abbiano lo stesso polinomio caratteristico e quindi gli stessi autovalori, f è diagonalizzabile mentre A non lo è.

Esercizio 3. Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} 4 & -2 & 2 & 0 \\ -2 & 2 & -3 & 1 \\ 2 & -3 & 5 & -2 \\ 0 & 1 & -2 & 1 \end{pmatrix}$$

- (a) Trovare una base di Im f e una base di $(\operatorname{Im} f)^{\perp}$ e verificare che $(\operatorname{Im} f)^{\perp} = \operatorname{Ker} f$.
- (b) Usando il procedimento di Gram-Schmidt trovare una base ortogonale di Im f.
- (c) Dato il vettore v = (1, 5, -3, 1), trovare $u \in \text{Ker } f \in w \in \text{Im } f \text{ tali che } v = u + w$.

Soluzione. (a) Riducendo la matrice A in forma a scala si ottiene

$$\begin{pmatrix}
2 & -1 & 1 & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

quindi A ha rango 2, cioè dim(Im f) = 2 e come base di Im f possiamo prendere le prime due colonne di A: $v_1 = (4, -2, 2, 0), v_2 = (-2, 2, -3, 1).$

I vettori di $(\operatorname{Im} f)^{\perp}$ devono essere ortogonali ai vettori v_1 e v_2 . Si ottiene quindi il sistema

$$\begin{cases} 4x_1 - 2x_2 + 2x_3 = 0 \\ -2x_1 + 2x_2 - 3x_3 + x_4 = 0 \end{cases}$$

da cui si ricava

$$\begin{cases} x_2 = 2x_1 + x_3 \\ x_4 = -2x_1 + x_3 \end{cases}$$

Una base di $(\operatorname{Im} f)^{\perp}$ è quindi data dai vettori $w_1 = (1, 2, 0, -2), w_2 = (0, 1, 1, 1)$. Dato che $Aw_1 = 0$ e $Aw_2 = 0$, si ha $w_1, w_2 \in \operatorname{Ker} f$, quindi $(\operatorname{Im} f)^{\perp} \subset \operatorname{Ker} f$. D'altra parte $\dim(\operatorname{Ker} f) = 2$ e anche $\dim(\operatorname{Im} f)^{\perp} = 2$, quindi deve essere $(\operatorname{Im} f)^{\perp} = \operatorname{Ker} f$.

- (b) Applichiamo il procedimento di Gram–Schmidt ai vettori $v_1=(4,-2,2,0), v_2=(-2,2,-3,1).$ Poniamo $v_1'=v_1$ e $v_2'=v_2+\alpha v_1'.$ Imponendo che sia $v_1'\cdot v_2'=0$ si trova $\alpha=3/4$, quindi $v_2'=v_2+\frac{3}{4}v_1$, da cui si ricava $v_2'=(1,1/2,-3/2,1).$
- (c) Dato che $w \in \text{Im } f$ si deve avere $w = \alpha v_1 + \beta v_2 = (4\alpha 2\beta, -2\alpha + 2\beta, 2\alpha 3\beta, \beta)$. Da v = u + w ricaviamo $u = v - w = (1 - 4\alpha + 2\beta, 5 + 2\alpha - 2\beta, -3 - 2\alpha + 3\beta, 1 - \beta)$. Dato che $u \in \text{Ker } f$ si deve avere Au = 0 (per velocizzare i calcoli, invece della matrice A si può usare la sua forma a scala che abbiamo già determinato), da cui si ricava il sistema

$$\begin{cases} -12\alpha + 9\beta = 6\\ 6\alpha - 9\beta = -12 \end{cases}$$

la cui soluzione è

$$\begin{cases} \alpha = 1 \\ \beta = 2 \end{cases}$$

Sostituendo i valori di α e β appena trovati si ottiene u=(1,3,1,-1) e w=(0,2,-4,2).

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ consideriamo l'insieme $\mathcal{F}_{\alpha,\beta,\gamma}$ dei piani di equazione

$$\mathcal{F}_{\alpha,\beta,\gamma}: (\alpha+\gamma)x + (\beta-\alpha)y + (\gamma+2\beta)z = \gamma, \qquad \alpha,\beta,\gamma \in \mathbb{R}, \text{ non tutti nulli.}$$

- (a) Verificare che tutti questi piani passano per uno stesso punto P e trovare tale punto.
- (b) Fra tutti i piani di $\mathcal{F}_{\alpha,\beta,\gamma}$ trovare quello parallelo al piano di equazione 3x + y = 1.
- (c) Sia s la retta passante per l'origine e parallela al vettore $v_s = (0, 1, 1)$. Trovare l'unico piano di $\mathcal{F}_{\alpha,\beta,\gamma}$ che contiene la retta s.

Soluzione. (a) Ponendo $\alpha = 1$, $\beta = 0$, $\gamma = 0$ si trova il piano di equazione x - y = 0. Ponendo $\alpha = 0$, $\beta = 1$, $\gamma = 0$ si trova il piano di equazione y + 2z = 0.

Ponendo $\alpha = 0$, $\beta = 0$, $\gamma = 1$ si trova il piano di equazione x + z = 1.

Mettendo a sistema queste tre equazioni si trova il punto P=(2,2,-1). Ora basta sostituire le coordinate di P nell'equazione di $\mathcal{F}_{\alpha,\beta,\gamma}$ per verificare che $P\in\mathcal{F}_{\alpha,\beta,\gamma}$, per ogni α,β,γ .

(b) Un vettore ortogonale al piano di equazione 3x + y = 1 è (3, 1, 0). Un vettore ortogonale al generico piano di $\mathcal{F}_{\alpha,\beta,\gamma}$ è $(\alpha + \gamma, \beta - \alpha, \gamma + 2\beta)$. Possiamo quindi porre

$$\begin{cases} \alpha + \gamma = 3 \\ \beta - \alpha = 1 \\ \gamma + 2\beta = 0 \end{cases}$$

da cui si ricava $\alpha = -5$, $\beta = -4$, $\gamma = 8$. Il piano corrispondente ha equazione 3x + y = 8. Oppure è sufficiente trovare il piano passante per P e parallelo al piano di equazione 3x + y = 1. Tale piano avrà quindi un'equazione del tipo 3x + y = d e per trovare il valore di d basta imporre la condizione di passaggio per P. In questo modo si trova d = 8 e quindi l'equazione cercata è 3x + y = 8.

(c) La retta s passa per i punti O = (0,0,0) e $S = O + v_s = (0,1,1)$, quindi il piano di $\mathcal{F}_{\alpha,\beta,\gamma}$ che contiene la retta s deve contenere i punti O = (0,0,0) e S = (0,1,1). Imponendo le condizioni di passaggio per questi due punti si trova

$$\begin{cases} \gamma = 0 \\ \alpha = 3\beta \end{cases}$$

Possiamo quindi porre $\beta=1$ da cui si ricava $\alpha=3$ e $\gamma=0$. Il piano cercato ha quindi equazione 3x-2y+2z=0.