弗兰克-赫兹实验

马江岩

2021年11月7日

摘要

弗兰克-赫兹实验证明原子内部结构存在分立的定态能级. 这个事实直接证明了汞原子具有玻尔所设想的那种"完全确定的、互相分立的能量状态", 是对玻尔的原子量子化模型的第一个决定性的证据.

1 汞管的弗兰克-赫兹实验

本实验的实验装置如图 1 所示, 它采用的是四栅极式 F-H 管.

此管采用傍热式加热, 灯丝 F 和阴极 K 是分离的. 灯丝加热后使阴极 K 发射电子, K 上涂敷的特殊物质使其发射系数远大于直热式阴极. 控制灯丝电压 U_F 可改变灯丝的温度, 从而控制发射电子的多寡. 测第一激发态时, 第一栅极 g_1 的电位略高于阴极 K 的电位, 用于消除热发射电子在阴极附近的空间电荷效应 (电子堆积), 改变电压 U_{Kg_1} 可控制阴极发射电子流的强弱. 第二栅极 g_2 与阴极 K 之间加一可变正电压, 它使电子获得能量, 速度加快并在这个区域内不断与原子发生碰撞, 减速电压 U_{g_2p} 的作用是使到达第二栅极 g_2 处的能量较低的电子不能到达板极 p, 即刚在 g_2 附近发生了非弹性碰撞动能小于 eU_{g_2p} 的电子不能到达 p. 减速电压 U_{g_2p} 越高, 板流 I_p 越小.

首先加热汞管, 将炉温设定至 $178\,^{\circ}$ C 并开始加热. 在加热的同时, 按图 1 连接电路. 将各电源的输出调到最小, 扫描电源选择 "手动", 用数字万用表的电压档测量输出电压 $U_{\rm out}$, $U_{\rm out}$ 与 $I_{\rm p}$ 成正比. 为减小误差、使实验现象明显, 我们应控制实验过程中 $U_{\rm out}$ 的最大值在 $0.1\,^{\circ}$ 区 $1\,^{\circ}$ 之间. 随后我们调节 $U_{\rm Kg_1}$ 和 $U_{\rm g_2p}$, 使输出信号峰-谷比大并且大小适中. 我的实验中 $U_{\rm Kg_1}=1.01\,^{\circ}$ V, $U_{\rm g_2p}=2.01\,^{\circ}$ V.

正式开始测量 $U_{\text{out}} - U_{\text{Kg}_2}$ 曲线之前, 我们首先粗测各个峰的位置, 如表 1 所示.

在正式测量中, 在 U_{Kg_2} 与我们所粗测的峰值处电压相差约 1V 时, 我们应减小每次改变 U_{Kg_2} 的幅度, 使峰值附近的电压测量更准确. 在 $0 \sim 30\,\text{V}$ 范围内调节 U_{Kg_2} , 每次改变 U_{Kg_2} 约 $0.1 \sim 0.2\,\text{V}$, 所测实验数据见附录 A, $U_{\text{out}} - U_{\text{Kg}_2}$ 曲线如图 2 所示.

形成这种曲线的原因如下: U_{Kg_2} 从零开始增加时, 电子动能也随之增加, 射向阳极的电子

图 1: 四栅式 F-H 管示意图.

表 1: 粗测各个输出电压峰值的位置实验数据.

i	1	2	3	4	5	6
$U_{\mathrm{Kg}_2}(\mathrm{V})$	4.8	9.6	14.3	19.2	24	29.1

图 2: 测量 Hg 的第一激发态的弗兰克-赫兹曲线.

数也增加, 这时虽然电子与汞原子间有碰撞, 但这时属于弹性碰撞, 电子并不损失能量因而电流随电压增加而增加. 当电压超过 $4.9\,\mathrm{V}$ 时, 电流突然下降说明电子与汞原子发生了非弹性碰撞, 电子使汞原子从基态跃迁到激发态, 电子因损失了动能而不能克服反向电压 $U_{\mathrm{g}_{2}\mathrm{P}}$ 的阻滞到达极板 p , 从而电流下降. 如电压继续增加, 发生非弹性碰撞后的电子动能继续增加, 当电子的动能大于 $|eU_{\mathrm{g}_{2}\mathrm{P}}|$ 时, 它就能到达极板 p , 从而使电流上升. 当电压超过 $2\times4.9\,\mathrm{V}=9.8\,\mathrm{V}$ 时, 电子与汞原子又发生非弹性碰撞, 电流再次下降. 这样多次重复就形成了图 2 所示的特性曲线.

为了求出曲线上各个峰值的位置, 我们可以对每个峰值附近的数据用抛物线进行拟合, 抛物线的最高点对应的 U_{Kg_2} , 即为相应的峰值处的电压. 拟合结果如表 2 所示.

表 2: Hg 的弗兰克-赫兹实验曲线中各个峰的位置.

i	1.0	2.0	3.0	4.0	5.0	6.0
$U_{\mathrm{Kg}_2}(\mathrm{V})$	5.0	9.6	14.3	19.2	24.2	29.1

我们可以用最小二乘法算出 Hg 的第一激发电位 U_1 及其标准差 σ_{U_1} . 设

$$U_{\mathrm{Kg}_2}(i) = a + U_1 i,$$

其中 $U_{\text{Kg}_2}(i)$ 表示第 i 个峰的扫描电压值, U_1 为 Hg 的第一激发电位, a 为常量. 设 U_{Kg_2} 和 i 的相关系数为 r, 简记 U_{Kg_2} 为 U, 由最小二乘法的相关公式, 我们有

$$U_1 = \frac{\sum_{k=1}^{6} (i_k - \overline{i})(U_k - \overline{U})}{\sum_{k=1}^{6} (i_k - \overline{i})^2},$$
$$r = \frac{\overline{i}\overline{U} - \overline{i}\overline{U}}{\sqrt{\left(\overline{i}^2 - (\overline{i})^2\right)\left(\overline{U}^2 - (\overline{U})^2\right)}}.$$

代入相关数据,解得

$$U_1 \approx 4.83 \,\text{V},$$

 $r \approx 0.999878.$

再求 U_1 的标准差. 由最小二乘法的相关公式,

$$\sigma_{U_1} = U_1 \sqrt{\frac{\frac{1}{r^2} - 1}{n - 2}},$$

代入相关数据,解得

$$\sigma_{U_1} = 0.04 \, \text{V}.$$

综上, 我们所测得的 Hg 原子的第一激发能为

$$E_{\rm Hg} = (4.83 \pm 0.04) \, {\rm eV}.$$

这与原子物理相关资料中 Hg 原子 $6^{3}P_{1}$ 态与基态 $6^{1}S_{0}$ 态的能量差 $4.89\,\mathrm{eV}$ 较接近.

观察图 2, 我们发现图中第一个峰的输出电压值明显偏小, 可能我们在测量第一个峰的实验过程中存在较大误差. 如果我们移除第一个峰的数据, 仅用后面的 5 个峰进行计算, 得到的第一激发能为 4.89 eV, 与相关资料中的值更接近.

2 氩管的弗兰克-赫兹实验

仍按图 1 所示连接电路, 但不需要加热. 设置微电流放大器量程为 10^{-9} 挡, 极性选 "-". 调节各参量, 使得输出信号峰-谷比较大且信号大小适中. 我的实验中 $U_{\rm G_1K}=2.0\,\rm V,\,U_{\rm AG_2}=5.5\,\rm V,\,U_{\rm HH}=2.5\,\rm V.$

正式开始测量 $I_p - U_{Kg_2}$ 曲线之前, 我们首先粗测各个峰的位置, 如表 3 所示.

在正式测量中, 在 $U_{\rm Kg_2}$ 与我们所粗测的峰值处电压相差约 1V 时, 我们应减小每次改变 $U_{\rm Kg_2}$ 的幅度, 使峰值附近的电压测量更准确. 在 $0\sim80\,\rm V$ 范围内调节 $U_{\rm Kg_2}$, 每次改变 $U_{\rm Kg_2}$ 约 $0.2\sim0.4\,\rm V$, 所测实验数据见附录 B, $I_{\rm p}-U_{\rm Kg_2}$ 曲线如图 3 所示.

表 3: 粗测各个输出电流峰值的位置实验数据.

\overline{i}	1	2	3	4	5	6
$U_{\mathrm{Kg}_2}(\mathrm{V})$	15.7	27.4	39.0	51.9	65.0	78.5

图 3: 测量 Ar 的第一激发态的弗兰克-赫兹曲线.

为了求出曲线上各个峰值的位置, 我们可以对每个峰值附近的数据用抛物线进行拟合, 抛物线的最高点对应的 U_{Kg_2} , 即为相应的峰值处的电压. 拟合结果如表 4 所示.

表 4: Ar 的弗兰克-赫兹实验曲线中各个峰的位置.

\overline{i}	1.0	2.0	3.0	4.0	5.0	6.0
$U_{\mathrm{Kg}_2}(\mathrm{V})$	13.0	27.6	39.1	52.1	65.0	78.5

我们可以用最小二乘法算出 Ar 的第一激发电位 U_1 及其标准差 σ_{U_1} . 设

$$U_{\mathrm{Kg}_2}(i) = a + U_1 i,$$

其中 $U_{\text{Kg}_2}(i)$ 表示第 i 个峰的扫描电压值, U_1 为 Ar 的第一激发电位, a 为常量. 设 U_{Kg_2} 和 i 的相关系数为 r, 简记 U_{Kg_2} 为 U, 由最小二乘法的相关公式, 我们有

$$U_1 = \frac{\sum_{k=1}^{6} (i_k - \overline{i})(U_k - \overline{U})}{\sum_{k=1}^{6} (i_k - \overline{i})^2},$$
$$r = \frac{\overline{i}\overline{U} - \overline{i}\overline{U}}{\sqrt{(\overline{i}^2 - (\overline{i})^2)(\overline{U}^2 - (\overline{U})^2)}}.$$

代入相关数据,解得

$$U_1 \approx 12.9 \,\text{V},$$

 $r \approx 0.999680.$

再求 U_1 的标准差. 由最小二乘法的相关公式,

$$\sigma_{U_1} = U_1 \sqrt{\frac{\frac{1}{r^2} - 1}{n - 2}},$$

代入相关数据,解得

$$\sigma_{U_1} = 0.2 \, \text{V}.$$

综上, 我们所测得的 Ar 原子的第一激发能为

$$E_{\rm Ar} = (12.9 \pm 0.2) \, {\rm eV}.$$

查阅资料可知, Ar 原子的第一激发能为 11.8 eV. 本次实验的结果偏大, 观察图 3 中的曲线, 发现最后一个峰的电流值明显偏大, 可能是由于对最后一个峰的测量误差导致的.

3 探究汞管弗兰克-赫兹实验中反向电压的影响

在汞管的弗兰克-赫兹实验中, 我们取 $U_{\rm g_2p}=2.01\,\rm V$, 测量了 $U_{\rm out}-U_{\rm Kg_2}$ 的关系. 下面, 我们改变 $U_{\rm g_2p}$, 使其分别取 $1.00\,\rm V$, $2.01\,\rm V$, $3.01\,\rm V$, $4.02\,\rm V$, 同时测量 $U_{\rm out}-U_{\rm Kg_2}$ 曲线中后两个峰附近的数据, 探究 $U_{\rm g_2p}$ 对 $U_{\rm out}-U_{\rm Kg_2}$ 曲线的影响. 实验数据见附录 C, 将各组数据绘成曲线, 如图 4 所示.

图 4: 不同的反向电压所对应的汞管的弗兰克-赫兹曲线.

我们可以观察到两个现象:

- 随着 U_{gop} 的增大, 曲线的峰值减小;
- 随着 $U_{g_{2P}}$ 的增大, 曲线的两个峰所对应的 $U_{Kg_{2}}$ 增大, 即峰值右移. 我们可以用图 5 形象地解释这两个现象出现的原因.

由于反向电压的存在, 经过栅极 g_2 的电子并不能全部到达极板 p. 事实上, 只有当电子的 动能 E_k 满足 $eU_{g_2p} < E_k < eU_1$ 时, 电子才能被极板 p 接收到, 其中 U_1 是汞原子的第一激 发能. 我们可以在图 5 中将通过 g_2 的不同动能的电子的数量用曲线表示出来, 横坐标表示电子的动能, 纵坐标表示具有某种动能的电子的数量, 则最终能被探测到的电子数量, 就是曲线、 $E_k = eU_{g_2p}$ 、 $E_k = eU_1$ 和横坐标轴所围成的面积. 固定 U_{Kg_2} 不变, 即曲线不变, 当 U_{g_2p} 增大 时, 直线 $E_k = eU_{g_2p}$ 右移, 曲线、 $E_k = eU_{g_2p}$ 、 $E_k = eU_1$ 和横坐标轴所围成的面积减少, 故极板

4 分析与讨论 8

图 5: 随着反向电压变化出现对应现象的原因图解.

电流 I_p 减少, 从而弗兰克-赫兹实验中 $U_{\text{out}} - U_{\text{Kg}_2}$ 曲线的峰值减小.

那么为什么 $U_{\text{out}} - U_{\text{Kg}_2}$ 曲线的峰值会右移呢?我们可以看出,峰值所对应的 U_{Kg_2} ,即是使得图 5 中曲线、 $E_k = eU_{\text{g2p}}$ 、 $E_k = eU_1$ 和横坐标轴所围成的面积最大的曲线所对应的 U_{Kg_2} . 当 U_{g2p} 从 $U_{\text{g2p}}^{\text{small}}$ 增大到 $U_{\text{g2p}}^{\text{large}}$,直线 $E_k = eU_{\text{g2p}}$ 也从 $E_k = eU_{\text{g2p}}^{\text{small}}$ 右移到 $E_k = eU_{\text{g2p}}^{\text{large}}$,此时原来的 $U_{\text{Kg}_2}^{\text{small}}$ 所对应的曲线,不再是使曲线、 $E_k = eU_{\text{g2p}}$ 、 $E_k = eU_1$ 和横坐标轴所围成的面积最大的曲线。满足条件的曲线相比原曲线靠右,对应的 $U_{\text{Kg}_2}^{\text{large}}$ 也更大。因此,弗兰克-赫兹实验中 $U_{\text{out}} - U_{\text{Kg}_2}$ 曲线的峰值会右移。

4 分析与讨论

1. 实验中测得的各种曲线有什么主要特征? 如何理解?

实验中测得的曲线主要有两个特征:

- 曲线随着 U_{Kg_2} 的增大周期性增减, 并且相邻峰值的间距大致相等;
- 曲线整体是上升的, 即每个周期的输出信号的平均值依次上升.

第一个特征是因为原子存在能级,它会与特定能量的电子发生非弹性碰撞并跃迁,故每当电子的动能升高 4.9 eV 时,由于电子的能量在非弹性碰撞中损失,极板接收到的信号会骤

5 收获与感想 9

降, 随后则回升, 如此往复. 第二个特征是因为实验中 F-H 管内存在本底电流, 它与 U_{Kg_2} 呈正相关.

2. 分析测量第一激发电位时误差的主要来源.

本实验的误差来源有:

- 仪器的示数显示不稳定, 读数一直在跳动, 这是本实验的主要误差来源;
- 对曲线峰值的判断存在主观误差,由于我们只是隔一段距离测一组数据,输出信号极大的那组数据不一定就是曲线的极大值.我们可以用曲线拟合的方法,用抛物线拟合峰值附近的数据,从而得到峰值位置,这样误差会更小.

特别地, 在我的实验中, Hg 管实验所测值相比相关资料中的值偏小, Ar 管实验所测值相比相关资料中的值偏大. 我认为, 前者是因为 Hg 管实验中电压范围较小, 第一个峰对应的电压自然就更小, 相对误差较大, 且峰-谷比较小, 曲线峰值不明显. 这导致我们所测的第一个峰的输出信号偏小, 最终计算出的值偏小. 而 Ar 管实验中电压范围较大, 最后一个峰对应的电压自然就更大, 可能会带来一些实验装置中其他因素导致的系统误差 (如本底电流等), 导致我们所测的最后一个峰的输出信号偏大, 最终计算出的值偏大.

5 收获与感想

本次实验让我感触最深的是其巧妙的设计. 原子的能级是一个微观、抽象的概念, 是量子力学的一个推论, 但我们无法直接测量到它. 而弗兰克-赫兹实验利用原子只会与特定能量的电子发生非弹性碰撞的性质, 谨慎设计实验参数使得原子只会跃迁到第一激发态, 利用板极电流和加速电压的关系曲线, 证明了能级的存在. 这种思路是值得我们借鉴的. 由于本次实验数据较多, 也锻炼了我处理和计算大量数据的能力.

参考文献

[1] 吕斯骅, 段家低, 张朝晖. 新编基础物理实验[M]. 北京: 高等教育出版社, 2006.

A Hg 管的弗兰克-赫兹实验数据

$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$						
0.0	0.0	4.9	10.8	8.7	38.8	13.5	70.7
0.5	1.0	5.0	11.0	8.9	45.0	13.8	90.4
0.7	1.2	5.1	10.6	9.2	54.5	14.0	99.6
0.9	1.6	5.3	8.6	9.3	58.6	14.1	105.1
1.2	1.8	5.5	6.9	9.4	62.5	14.3	109.8
1.3	2.0	5.6	6.1	9.6	63.7	14.4	108.9
1.6	2.2	5.7	6.5	9.7	60.3	14.5	104.1
1.8	2.2	5.9	6.0	9.8	54.0	14.8	80.6
1.9	2.5	6.0	6.1	9.9	46.0	15.1	47.1
2.4	2.9	6.2	6.4	10.1	32.3	15.3	28.6
2.7	3.1	6.5	6.6	10.3	22.4	15.5	22.9
2.9	3.3	6.7	7.5	10.4	17.1	15.9	17.1
3.0	3.4	6.8	8.0	10.7	11.5	16.0	16.9
3.1	3.6	7.1	9.6	11.3	11.2	16.4	20.2
3.4	4.2	7.2	11.4	11.4	12.3	16.9	31.3
3.8	4.3	7.6	15.8	11.6	14.5	17.3	45.7
4.0	4.6	7.8	18.2	11.8	16.8	17.4	48.9
4.2	4.7	7.9	20.3	12.3	26.5	17.8	70.1
4.3	5.2	8.0	23.1	12.5	31.4	18.2	90.5
4.4	7.2	8.1	24.0	12.6	35.6	18.3	93.7
4.6	7.7	8.2	27.3	12.8	42.6	18.5	104.3
4.7	9.5	8.5	32.6	13.0	51.0	18.7	122.1
4.8	10.6	8.6	37.6	13.2	57.5	19.0	140.1

$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$
19.2	148.7	24.1	181.5	28.5	174.5
19.3	146.0	24.2	183.0	28.6	186.6
19.6	128.2	24.4	177.5	28.8	201.1
19.7	119.9	24.5	165.9	28.9	205.5
20.0	75.1	24.8	130.6	29.0	209.6
20.3	51.3	24.9	117.5	29.1	212.4
20.6	34.1	25.2	84.9	29.2	211.9
20.8	29.1	25.5	63.0	29.4	199.5
21.0	27.1	25.7	51.8	29.5	194.0
21.2	26.8	25.9	46.8	29.6	182.6
21.4	30.1	26.2	41.8	29.7	184.1
21.6	35.4	26.3	42.3	29.8	166.5
21.8	42.1	26.4	43.6	30.0	137.6
21.9	44.5	26.5	45.8	30.1	141.0
22.2	58.3	26.8	54.2	30.2	123.2
22.5	70.3	27.0	63.0	30.3	115.1
22.8	89.1	27.2	72.0	30.4	104.3
22.9	101.5	27.5	90.0		
23.3	129.4	27.9	116.0		
23.4	137.6	28.0	126.7		
23.5	141.4	28.2	146.0		
23.7	161.5	28.3	156.3		
23.9	174.9	28.4	169.0		

B Ar 管的弗兰克-赫兹实验数据

$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{\mathrm{p}}(\mathrm{nA})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{ m p}({ m nA})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{\mathrm{p}}(\mathrm{nA})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{\rm p}({\rm nA})$
4.2	0.0	13.7	26.5	21.4	6.0	28.5	45.9
5.5	0.1	13.9	26.2	21.8	5.7	28.8	44.9
6.1	0.1	14.3	26.3	22.2	6.3	29.0	43.4
6.8	0.5	14.5	26.2	22.3	6.9	29.4	40.8
7.0	0.9	14.7	26.2	22.5	8.4	29.9	36.4
7.3	1.6	14.9	26.0	22.7	10.4	30.3	31.7
7.9	2.8	15.2	25.9	23.0	13.3	30.6	27.5
8.3	4.0	16.0	25.8	23.2	16.3	31.1	21.0
8.6	5.4	16.2	25.6	23.4	19.7	31.4	17.1
9.0	7.6	16.4	25.4	23.8	25.3	31.8	12.4
9.3	9.8	16.8	25.3	24.2	30.0	32.3	9.0
9.6	11.4	17.4	24.3	24.6	34.5	32.5	7.2
9.9	14.3	17.8	23.1	24.8	36.3	32.8	6.2
10.3	18.1	18.3	21.0	25.4	41.5	33.1	5.9
10.6	20.0	18.6	19.0	25.7	42.2	33.3	6.8
11.0	22.0	19.0	17.1	26.1	45.0	33.5	8.3
11.2	22.1	19.5	13.9	26.4	45.7	33.7	11.1
11.5	23.0	19.8	12.1	26.6	46.2	33.9	13.6
11.7	23.3	20.2	9.8	26.9	46.7	34.5	23.5
12.0	24.0	20.4	8.8	27.0	46.9	34.8	30.1
12.4	25.2	20.6	8.0	27.3	47.3	35.3	36.4
13.0	26.8	20.8	7.5	27.6	47.4	35.9	45.7
13.4	26.7	21.2	6.4	28.0	46.8	36.5	52.4

$U_{\mathrm{Kg}_{2}}(\mathrm{V})$	$I_{\mathrm{p}}(\mathrm{nA})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{\rm p}({\rm nA})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{ m p}({ m nA})$
37.1	58.0	45.5	16.7	53.3	78.8
37.4	59.0	45.6	19.7	53.5	77.4
37.6	60.0	45.9	23.6	54.2	70.2
37.9	61.7	46.2	28.4	54.9	62.7
38.2	63.2	46.4	33.1	55.4	55.3
38.4	63.4	47.0	42.0	55.8	48.9
38.8	64.4	47.3	47.4	56.2	43.8
39.1	65.0	47.8	54.1	56.6	40.0
39.5	64.9	48.4	62.1	57.0	37.7
39.7	64.6	49.0	68.0	57.4	38.0
40.0	64.1	49.5	72.8	57.6	39.4
40.3	63.2	49.8	74.6	57.8	40.8
40.7	61.3	50.3	77.8	58.2	43.9
41.1	59.2	50.5	78.7	58.5	48.8
41.5	55.8	51.1	81.3	58.9	53.5
41.9	51.2	51.3	81.7	59.1	56.6
42.3	43.5	51.5	82.2	59.4	60.6
42.8	38.8	51.8	82.5	59.9	65.6
43.2	32.4	52.1	82.6	60.1	68.2
43.9	22.2	52.3	82.4	60.6	74.6
44.3	18.2	52.6	81.4	61.0	78.5
44.6	15.6	52.8	80.8	61.4	82.8
45.1	14.5	53.0	80.2	61.7	86.0

$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{\mathrm{p}}(\mathrm{nA})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{\mathrm{p}}(\mathrm{nA})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$I_{\mathrm{p}}(\mathrm{nA})$
62.2	90.5	70.3	71.3	77.9	130.1
62.6	94.1	70.8	72.9	78.2	130.4
63.1	96.8	70.9	74.4	78.5	130.7
63.3	98.3	71.2	76.5	78.9	130.5
63.6	99.6	71.4	77.8	79.1	130.0
63.8	100.7	71.6	79.2	79.4	129.6
64.2	102.1	71.9	81.9	79.7	128.5
64.5	102.9	72.2	84.6	80.1	127.3
64.7	103.2	72.6	88.5	80.4	125.4
64.8	103.4	73.0	92.2	80.8	123.8
65.0	103.5	73.4	96.1	81.1	122.3
65.3	103.3	73.7	99.2		
65.6	102.8	74.0	102.4		
65.9	102.0	74.3	105.2		
66.1	100.6	74.6	108.0		
66.6	97.8	75.2	114.0		
66.9	95.7	75.4	116.3		
67.3	91.5	75.7	118.4		
67.8	86.5	76.3	122.6		
68.3	81.5	76.7	125.1		
68.8	76.3	77.0	127.4		
69.2	73.4	77.3	128.4		
69.8	71.3	77.7	129.5		

C 探究汞管弗兰克-赫兹实验中反向电压影响实验数据

 $\mathbf{C.1}$ 取 $U_{\mathrm{g_{2}p}}=1.00\,\mathrm{V}$ 的实验数据

	021		
$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{\rm out}({\rm mV})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{\mathrm{out}}(\mathrm{mV})$
23.0	173.0	27.4	166.1
23.1	181.9	27.8	197.1
23.5	214.3	28.0	223.1
23.6	232.5	28.2	235.1
23.8	252.3	28.4	263.0
23.9	255.7	28.5	272.2
24.0	263.0	28.6	283.2
24.1	261.9	28.7	287.5
24.2	259.4	28.8	304.2
24.4	229.9	28.9	305.6
24.6	213.2	29.0	308.7
24.8	188.7	29.1	302.0
25.0	166.2	29.2	300.5
25.1	149.2	29.3	293.5
25.3	121.2	29.6	270.2
25.7	98.4	29.8	239.0
25.8	97.2	30.1	204.2
25.9	93.2		
26.1	92.0		
26.5	105.3		
26.7	114.3		
27.0	132.6		
27.3	153.6		

 $\mathbf{C.2}$ 取 $U_{\mathrm{g_{2}p}}=2.01\,\mathrm{V}$ 的实验数据

$U_{\mathrm{Kg}_{2}}(\mathrm{V})$	$U_{ m out}({ m mV})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$
22.9	101.5	27.5	90.0
23.3	129.4	27.9	116.0
23.4	137.6	28.0	126.7
23.5	141.4	28.2	146.0
23.7	161.5	28.3	156.3
23.9	174.9	28.4	169.0
24.1	181.5	28.5	174.5
24.2	183.0	28.6	186.6
24.4	177.5	28.8	201.1
24.5	165.9	28.9	205.5
24.8	130.6	29.0	209.6
24.9	117.5	29.1	$\boldsymbol{212.4}$
25.2	84.9	29.2	211.9
25.5	63.0	29.4	199.5
25.7	51.8	29.5	194.0
25.9	46.8	29.6	182.6
26.2	41.8	29.7	184.1
26.3	42.3	29.8	166.5
26.4	43.6	30.0	137.6
26.5	45.8	30.1	141.0
26.8	54.2	30.2	123.2
27.0	63.0	30.3	115.1
27.2	72.0	30.4	104.3

 $\mathbf{C.3}$ 取 $U_{\mathrm{g_{2}p}}=3.01\,\mathrm{V}$ 的实验数据

$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$
22.7	31.9	26.4	25.1
22.9	39.8	26.6	24.9
23.0	46.7	26.8	25.2
23.3	59.3	26.9	26.6
23.4	66.7	27.1	27.9
23.5	71.0	27.4	36.0
23.7	83.8	27.5	38.2
23.9	93.4	28.1	61.8
24.0	97.6	28.5	88.1
24.1	104.4	28.8	108.2
24.2	106.5	29.1	120.9
24.3	106.6	29.6	120.2
24.4	106.9	29.8	107.9
24.5	103.5	29.9	101.4
24.6	99.9	30.1	94.5
24.7	95.7	30.2	81.9
24.9	82.0	30.4	73.3
25.1	72.2		
25.3	55.1		
25.8	34.7		
25.9	34.1		
26.0	29.9		
26.2	27.2		

 $\mathbf{C.4}$ 取 $U_{\mathrm{g_{2}p}}=4.02\,\mathrm{V}$ 的实验数据

$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$	$U_{\mathrm{Kg}_2}(\mathrm{V})$	$U_{ m out}({ m mV})$
23.2	18.2	28.2	28.7
23.5	26.3	28.4	34.7
23.7	32.7	28.9	49.5
23.8	37.0	29.0	54.0
23.9	39.0	29.2	55.0
24.0	43.2	29.3	59.5
24.2	48.0	29.4	60.0
24.4	50.6	29.6	60.2
24.5	50.5	29.8	57.4
24.6	48.8	29.9	57.6
24.7	48.8	30.2	48.5
24.8	43.4	30.4	45.3
25.0	42.0	30.6	39.9
25.4	33.1		
25.5	31.4		
25.8	27.2		
26.2	22.5		
26.8	20.8		
27.0	20.6		
27.2	20.6		
27.4	20.7		
27.5	21.5		
28.0	25.4		