Definition 1. A uniform space $\langle X, \mathcal{D} \rangle$ is a set X paired with a filter \mathcal{D} (called its uniformity) of relations (called **entourages**) on X such that for each entourage $D \in \mathcal{D}$:

- D is reflexive, i.e., the diagonal $\Delta \subseteq D$.
- Its inverse $D^{-1} = \{ \langle y, x \rangle : \langle x, y \rangle \in D \} \in \mathcal{D}$.
- There exists $\frac{1}{2}D \in \mathcal{D}$ such that

$$2(\frac{1}{2}D) = \frac{1}{2}D \circ \frac{1}{2}D = \{\langle x, z \rangle : \exists y(\langle x, y \rangle, \langle y, z \rangle \in \frac{1}{2}D)\} \subseteq D$$

Note that since \mathcal{D} is a filter, for each $D \in \mathcal{D}$, the symmetric relation $D \cap D^{-1} \in \mathcal{D}$.

Proposition 2. For each $D \in \mathcal{D}$ and $n < \omega$ there exists $\frac{1}{2^n}D \in \mathcal{D}$ such that

$$2^{n}(\frac{1}{2^{n}}D) = \underbrace{\frac{1}{2^{n}}D \circ \cdots \circ \frac{1}{2^{n}}D}_{2^{n}} \subseteq D$$

Definition 3. For an entourage $D \in \mathcal{D}$, let $D[x] = \{y : (x,y) \in D\}$ be the D-neighborhood of x. The uniform topology for a uniform space $\langle X, \mathcal{D} \rangle$ is generated by the base $\{D[x] : x \in X, D \in \mathcal{D}\}$.

Theorem 4. A space X is uniformizable (its topology is the uniform topology for some uniformity) if and only if X is completely regular $(T_{3\frac{1}{\alpha}})$.

Proposition 5. If X is a uniform space, then for all $x \in X$, entourages D, and $1 < m, n < \omega$:

$$y \in \frac{1}{n}D[x] \cap \frac{1}{m}D[z] \Rightarrow (x,z) \in D$$

and

$$x \in \frac{1}{n}D[x] \subseteq \overline{\frac{1}{n}D[x]} \subseteq D[x]$$

Proof. Sufficient to assume n=m=2. Note if $z\in \frac{1}{2}D[x]\cap \frac{1}{2}D[y]$, then $(x,y),(y,z)\in \frac{1}{2}D$, and thus $(x,z)\in D$.

Then if $z \in \overline{\frac{1}{2}D[x]}$, it follows that there is $y \in \frac{1}{2}D[x] \cap \frac{1}{2}D[z]$ since $\frac{1}{2}D[z]$ is an open neighborhood of z. Thus $(x,z) \in D \Rightarrow z \in D[x] \Rightarrow \overline{\frac{1}{2}D[x]} \subseteq D[x]$.

Definition 6. For a uniform space X, Bell's proximity game proceeds as follows.

In round 0, \mathscr{D} chooses an entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.

In round n+1, \mathscr{D} chooses an entourage $D_{n+1}\subseteq D_n$, followed by \mathscr{P} choosing a point $p_{n+1}\in 4D_n[p_n]$.

Player \mathscr{D} wins if either $\bigcap_{n<\omega} 4D_n[p_n] = \emptyset$ or $\langle p_0, p_1, \ldots \rangle$ converges.

proximity.tex - Updated on December 12, 2013

Definition 7. For a uniform space X, the simplified proximal game $Prox_{D,P}(X)$ can be defined as follows:

In round 0, \mathscr{D} chooses a symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.

In round n+1, \mathscr{D} chooses a symmetric entourage D_{n+1} , followed by \mathscr{P} choosing a point $p_{n+1} \in \left(\bigcap_{m \leq n} D_m\right)[p_n]$.

Player
$$\mathscr{D}$$
 wins if either $\bigcap_{n<\omega}\left(\bigcap_{m\leq n}D_m\right)[p_n]=\emptyset$ or $\langle p_0,p_1,\ldots\rangle$ converges.

Theorem 8. \mathscr{D} has a winning perfect-information strategy in Bell's game if and only if $\mathscr{D} \uparrow Prox_{D,P}(X)$.

Proof. Let σ be a winning perfect information strategy for \mathscr{D} in Bell's game. We define a perfect information strategy τ in the simplified game to yield symmetric entourages $\tau(p \upharpoonright n) = \sigma(p \upharpoonright n) \cap (\sigma(p \upharpoonright n))^{-1}$ for all partial attacks $p \upharpoonright n$. Note that $\tau(p \upharpoonright n) = \bigcap_{m \le n} \tau(p \upharpoonright m)$.

If p attacks τ in the simplified game, $p(n+1) \in \left(\bigcap_{m \leq n} \tau(p \upharpoonright m)\right)[p(n)] = \tau(p \upharpoonright n)[p(n)] \subseteq \sigma(p \upharpoonright n)[p(n)] \subseteq 4\sigma(p \upharpoonright n)[p(n)]$, so p attacks σ in Bell's game. Thus either p converges, or

$$\emptyset = \bigcap_{n < \omega} 4\sigma(p \upharpoonright n)[p(n)] \supseteq \bigcap_{n < \omega} \tau(p \upharpoonright n)[p(n)] = \bigcap_{n < \omega} \left(\bigcap_{m \le n} \tau(p \upharpoonright n)\right)[p(n)]$$

For the other direction, let σ be a winning perfect information strategy for \mathscr{D} in the simplified game such that $\sigma(p \upharpoonright n) = \bigcap_{m \leq n} \sigma(p \upharpoonright m)$. Define the perfect information strategy τ in Bell's Game such that $4\tau(p \upharpoonright n) \subseteq \sigma(p \upharpoonright n)$ and $\tau(p \upharpoonright n) = \bigcap_{m \leq n} \tau(p \upharpoonright m)$ for all partial attacks $p \upharpoonright n$.

If p attacks τ in Bell's game, $p(n) \in 4\tau(p \upharpoonright n) \subseteq \sigma(p \upharpoonright n) = \bigcap_{m \le n} \sigma(p \upharpoonright m)$, so p attacks σ in the simplified game. Thus either p converges, or

$$\emptyset = \bigcap_{n < \omega} \left(\bigcap_{m \le n} \sigma(p \upharpoonright n) \right) [p(n)] = \bigcap_{n < \omega} \sigma(p \upharpoonright n) [p(n)] \supseteq \bigcap_{n < \omega} 4\tau(p \upharpoonright n) [p(n)] \supseteq \bigcap_{n < \omega} \tau(p \upharpoonright n) [p(n)]$$

Proposition 9. \mathscr{P} has a winning perfect-information strategy in Bell's game if and only if $\mathscr{P} \uparrow Prox_{D,P}(X)$.

Proof. Similar to the previous.
$$\Box$$

Definition 10. A uniform space is **proximal** if $\mathcal{D} \uparrow Prox_{D,P}(X)$.

Definition 11. For a space X and a point $x \in X$, the W-convergence-game $Con_{O,P}(X,x)$ proceeds as follows.

In round 0, \mathscr{O} chooses a neighborhood U_n of x, followed by \mathscr{P} choosing a point $p_n \in \bigcap_{m \le n} U_m$.

Player \mathscr{O} wins if $\langle p_0, p_1, \ldots \rangle$ converges.

Definition 12. A space is W if $\mathcal{O} \uparrow Con_{O,P}(X,x)$ for all $x \in X$.

Definition 13. For each finite tuple (m_0, \ldots, m_{n-1}) , we define the k-tactical fog-of-war

$$T_k(\langle m_0,\ldots,m_{n-1}\rangle)=\langle m_{n-k},\ldots,m_{n-1}\rangle$$

and the k-Marköv fog-of-war

$$M_k(\langle m_0, \dots, m_{n-1} \rangle) = \langle \langle m_{n-k}, \dots, m_{n-1} \rangle, n \rangle$$

So $P \uparrow_{k\text{-tact}} G$ if and only if there exists a winning strategy for P of the form $\sigma \circ T_k$, and $P \uparrow_{k\text{-mark}} G$ if and only if there exists a winning strategy of the form $\sigma \circ M_k$.

Theorem 14. For all $x \in X$:

- $\mathscr{D} \uparrow Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow Con_{O,P}(X,x)$
- $\mathscr{D} \uparrow_{2k\text{-}tact} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X,x)$
- $\mathscr{D} \uparrow_{2k\text{-}mark} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}mark} Con_{O,P}(X,x)$

Proof. Let σ witness $\mathscr{D} \uparrow_{2k\text{-tact}} Prox_{D,P}(X)$ (resp. $\mathscr{D} \uparrow_{2k\text{-mark}} Prox_{D,P}(X)$, $\mathscr{D} \uparrow Prox_{D,P}(X)$). We define the k-tactical (resp. k-Marköv, perfect info) strategy τ such that

$$\tau \circ L_k(p) = \sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(|p|-1)\rangle)[x] \cap \sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(|p|-1), x\rangle)[x]$$

where L_{2k} is the 2k-tactical fog-of-war (resp. 2k-Marköv fog-of-war, identity) and L_k is the k-tactical fog-of-war (resp. k-Marköv fog-of-war, identity).

Let p attack τ . Consider the attack q against the winning strategy σ such that q(2n) = x and q(2n+1) = p(n), and let $D_n = \sigma \circ L_{2k}(q)$ and $E_n = \bigcap_{m \le n} D_n$.

Certainly, $x \in E_{2n}[x] = E_{2n}[q(2n)]$ for any $n < \omega$. Note also for any $n < \omega$ that

$$p(n) \in \bigcap_{m \le n} \tau \circ L_k(p \upharpoonright n)$$

$$= \bigcap_{m \le n} (\sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(m-1) \rangle)[x] \cap \sigma \circ L_{2k}(\langle x, p(0), \dots, x, p(m-1), x \rangle)[x])$$

$$= \bigcap_{m \le n} (D_{2m}[x] \cap D_{2m+1}[x]) = \bigcap_{m \le 2n+1} D_m[x] = E_{2n+1}[x]$$

so by the symmetry of E_{2n+1} , $x \in E_{2n+1}[p(n)] = E_{2n+1}[q(2n+1)]$. Thus $x \in \bigcap_{n < \omega} E_n[q(n)] \neq \emptyset$, and since σ is a winning strategy, the attack q converges. Since q(2n) = x, q must converge to x. Thus its subsequence p converges to x, and τ is a winning strategy in $Con_{O,P}(X,x)$.

Corollary 15. For all $x \in X$:

- $\mathscr{D} \uparrow_{k\text{-}tact} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X,x)$
- $\mathscr{D} \uparrow_{k\text{-}mark} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}mark} Con_{O,P}(X,x)$

Corollary 16. All proximal spaces are W-spaces.

Theorem 17. Let $X \cup \{\infty\}$ be a uniformizable space such that X is discrete. Then

- $\mathscr{O} \uparrow Con_{O,P}(X \cup \{\infty\}, \infty) \Rightarrow \mathscr{D} \uparrow Prox_{D,P}(X \cup \{\infty\})$
- $\mathscr{O} \uparrow_{k\text{-tact}} Con_{O,P}(X \cup \{\infty\}, \infty) \Rightarrow \mathscr{D} \uparrow_{k\text{-tact}} Prox_{D,P}(X \cup \{\infty\})$
- $\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(X \cup \{\infty\}, \infty) \Rightarrow \mathscr{D} \uparrow_{k\text{-mark}} Prox_{D,P}(X \cup \{\infty\})$

Proof. Note that the topology on $X \cup \{\infty\}$ is induced by the uniformity with equivalence relation entourages $D(U) = \Delta \cup U^2$ for each open neighborhood U of ∞ .

Let σ witness $\mathscr{D} \uparrow_{k\text{-tact}} Con_{O,P}(X \cap \{\infty\}, \infty)$ (resp. $\mathscr{D} \uparrow_{k\text{-mark}} Con_{O,P}(X \cap \{\infty\}, \infty)$), $\mathscr{D} \uparrow Con_{O,P}(X \cap \{\infty\}, \infty)$). We define the k-tactical (resp. k-Marköv, perfect info) strategy τ such that

$$\tau \circ L(p) = D(\sigma \circ L(p))$$

where L is the k-tactical fog-of-war (resp. k-Marköv fog-of-war, identity).

Let
$$p \in (X \cup \{\infty\})^{\omega}$$
 attack τ such that $\bigcap_{n < \omega} \tau(p \upharpoonright n)[p(n)] \neq \emptyset$.

If $\infty \in \bigcap_{n < \omega} \tau(p \upharpoonright n)[p(n)]$, it follows that p is an attack on σ . Since σ is a winning strategy, it follows that q and its subsequence p must coverge to ∞ .

Otherwise, $\infty \notin \tau(p \upharpoonright N)[p(N)]$ for some $N < \omega$, and then $\tau(p \upharpoonright N)[p(N)] = \{p(N)\}$ implies $p \to p(N)$.

Thus $\tau \circ L$ is a winning strategy.

Corollary 18. Let $X \cup \{\infty\}$ be a uniformizable space such that X is discrete. Then

• $\mathscr{O} \uparrow Con_{OP}(X \cup \{\infty\}, \infty) \Leftrightarrow \mathscr{D} \uparrow Prox_{DP}(X \cup \{\infty\})$

- $\mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X \cup \{\infty\}, \infty) \Leftrightarrow \mathscr{D} \uparrow_{k\text{-}tact} Prox_{D,P}(X \cup \{\infty\})$
- $\mathscr{O} \uparrow_{k\text{-}mark} Con_{O,P}(X \cup \{\infty\}, \infty) \Leftrightarrow \mathscr{D} \uparrow_{k\text{-}mark} Prox_{D,P}(X \cup \{\infty\})$

Proposition 19. For any $x \in X$ and $k \ge 1$,

- $\mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X,x) \Leftrightarrow \mathscr{O} \uparrow_{tact} Con_{O,P}(X,x)$
- $\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(X,x) \Leftrightarrow \mathscr{O} \uparrow_{mark} Con_{O,P}(X,x)$

Proof. If σ witnesses $\mathscr{O} \uparrow_{k\text{-tact}} Con_{O,P}(X,x)$, let $\tau(\emptyset) = \sigma(\emptyset)$ and

$$\tau(\langle q \rangle) = \bigcap_{i < k} \sigma(\langle \underbrace{x, \dots, x}_{k-i-1}, q, \underbrace{x, \dots, x}_{i} \rangle)$$

This is easily verified to be a winning strategy. The proof for $\mathcal{O} \uparrow_{k\text{-mark}} Con_{O,P}(X,x)$ is analogous.

Corollary 20. Let $X \cup \{\infty\}$ be a uniformizable space such that X is discrete, and $k \geq 1$. Then

- $\mathscr{D} \uparrow_{k\text{-}tact} Prox_{D,P}(X \cup \{\infty\}) \Leftrightarrow O \uparrow_{tact} Prox_{D,P}(X \cup \{\infty\})$
- $\mathscr{D} \uparrow_{k\text{-}mark} Prox_{D,P}(X \cup \{\infty\}) \Leftrightarrow O \uparrow_{mark} Prox_{D,P}(X \cup \{\infty\})$

Proposition 21. For any uniform space X,

- $\mathscr{O} \uparrow_{k-tact} Prox_{D,P}(X) \Leftrightarrow \mathscr{O} \uparrow_{2-tact} Prox_{D,P}(X)$
- $\mathscr{O} \uparrow_{k\text{-mark}} Prox_{D,P}(X) \Leftrightarrow \mathscr{O} \uparrow_{2\text{-mark}} Prox_{D,P}(X)$

Proof. If σ witnesses $\mathcal{O} \uparrow_{k\text{-tact}} Con_{O,P}(X,x)$, let $\tau(\emptyset) = \sigma(\emptyset)$ and

$$\tau(\langle q \rangle) = \bigcap_{i < k} \sigma(\langle \underbrace{q, \dots, q}_{i} \rangle)$$

$$\tau(\langle q, q' \rangle) = \bigcap_{i < k} \sigma(\langle \underbrace{q, \dots, q}_{k-i}, \underbrace{q', \dots, q'}_{i} \rangle)$$

This is easily verified to be a winning strategy. The proof for $\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(X,x)$ is analogous.

Theorem 22. If $\mathscr{D} \uparrow Prox_{D,P}(X)$, then $\mathscr{O} \uparrow Clus_{O,P}(X,H)$ for all compact $H \subseteq X$.

Proof. Let σ witness $\mathscr{D} \uparrow Prox_{D,P}(X)$ such that $p \supseteq q$ implies $\sigma(p) \subseteq \sigma(q)$.

Let o(t) be the subsequence of t consisting of its odd-indexed terms.

We define $T(\emptyset)$, etc. as follows:

- Let $\emptyset \in T(\emptyset)$.
- Choose $m_{\emptyset} < \omega$, $h_{\emptyset,i} \in H$ for $i < m_{\emptyset}$, and $h_{\emptyset,i,j} \in H \cap \frac{1}{4}\sigma(\emptyset)[h_{\emptyset,i}]$ for $i, j < m_{\emptyset}$ such that

$$\{\frac{1}{4}\sigma(\emptyset)[h_{\emptyset,i}] : i < m_{\emptyset}\}$$

is a cover for H and such that for each $i < m_{\emptyset}$

$$\left\{ \frac{1}{4} \sigma(\langle h_{\emptyset,i} \rangle) [h_{\emptyset,i,j}] : j < m_{\emptyset} \right\}$$

is a cover for $H \cap \frac{1}{4}\sigma(\emptyset)[h_{\emptyset,i}]$.

• Let $\langle i \rangle \in T(\emptyset), \langle i, h_{\emptyset,i} \rangle \in T(\emptyset), \text{ and } \langle i, h_{\emptyset,i}, j \rangle \in T(\emptyset) \text{ for } i, j < m_{\emptyset}.$

Suppose T(a), etc. are defined. We then define $T(a^{\widehat{}}\langle x\rangle)$, etc. for

$$x \in \bigcup_{s \cap \langle i, h_{s,i}, j \rangle \in \max(T(a))} \frac{1}{4} \sigma(o(s) \cap \langle h_{s,i} \rangle) [h_{s,i,j}]$$

as follows:

- Let $T(a) \subseteq T(a^{\frown}\langle x \rangle)$.
- Choose $t = s^{\widehat{}}\langle i, h_{s,i}, j, x \rangle$ such that $s^{\widehat{}}\langle i, h_{s,i}, j \rangle \in \max(T(a))$ and $x \in \frac{1}{4}\sigma(o(s)^{\widehat{}}\langle h_{s,i}\rangle)[h_{s,i,j}]$.
- Note that, assuming $o(s) \cap \langle h_{s,i} \rangle$ is a legal partial attack against σ , then

$$x \in \frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}] \subseteq \frac{1}{4}\sigma(o(s))[h_{s,i,j}]$$

and

$$h_{s,i,j} \in \overline{\frac{1}{4}\sigma(o(s))[h_{s,i}]} \subseteq \frac{1}{2}\sigma(o(s))[h_{s,i}]$$

implies

$$x \in \sigma(o(s))[h_{s,i}]$$

and thus $o(s)^{\widehat{}}\langle h_{s,i}, x \rangle = o(t)$ is a legal partial attack against σ .

proximity.tex - Updated on December 12, 2013

• Choose $m_t < \omega$, $h_{t,k} \in H \cap \frac{1}{4}\sigma(o(s) \cap \langle h_{s,i} \rangle)[h_{s,i,j}]$ for $k < m_t$, and $h_{t,k,l} \in H \cap \frac{1}{4}\sigma(t)[h_{t,k}]$ for $k, l < m_t$ such that

$$\{\frac{1}{4}\sigma(o(t))[h_{t,k}]: k < m_t\}$$

is a cover for $H \cap \frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]$ and such that for each $k < m_t$

$$\{\frac{1}{4}\sigma(o(t)^{\frown}\langle h_{t,k}\rangle)[h_{t,i,j}]: l < m_t\}$$

is a cover for $H \cap \frac{1}{4}\sigma(o(t))[h_{t,k}]$.

• Note that, assuming o(t) is a legal partial attack against σ , then

$$h_{t,k} \in \overline{\frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]} \subseteq \frac{1}{2}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]$$

and

$$x \in \frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]$$

implies

$$h_{t,k} \in \sigma(o(s) \widehat{\ } \langle h_{s,i} \rangle)[x]$$

and thus $o(t) (h_{t,k})$ is a legal partial attack against σ .

- Let $t \in T(a^{\langle x \rangle})$, $t^{\langle k \rangle} \in T(a^{\langle x \rangle})$, $t^{\langle k \rangle} \in T(a^{\langle x \rangle})$, and $t^{\langle k \rangle} \in T(a^{\langle x \rangle})$ for $k, l < m_t$.
- Note that assuming

$$\{\frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]:s^{\frown}\langle i,h_{s,i},j\rangle\in\max(T(a))\}$$

covers H, then since

$$\{\frac{1}{4}\sigma(o(t)^{\frown}\langle h_{t,k}\rangle)[h_{t,k,l}]:s^{\frown}\langle i,h_{s,i},j,x,k,h_{t,k},l\rangle\in\max(T(a^{\frown}\langle x\rangle))\setminus\max(T(a))\}$$

covers $H \cap \frac{1}{4}\sigma(o(s)^{\frown}\langle h_{s,i}\rangle)[h_{s,i,j}]$, we have that

$$\{\frac{1}{4}\sigma(o(t)^{\frown}\langle h_{t,k}\rangle)[h_{t,k,l}]:t^{\frown}\langle k,h_{t,k},l\rangle\in\max(T(a^{\frown}\langle x\rangle))\}$$

covers H.

With this we may define the perfect information strategy τ for $\mathscr O$ in $Con_{O,P}(X,H)$ such that:

$$\tau(p \upharpoonright n) = \bigcup_{s \frown \langle i, h_{s,i}, j \rangle \in \max(T(p \upharpoonright n))} \frac{1}{4} \sigma(o(s) \frown \langle h_{s,i} \rangle) [h_{s,i,j}]$$

If p attacks τ , then it follows that $T(p \upharpoonright n)$ is defined for all $n < \omega$, so let $T(p) = \bigcup_{n < \omega} T(p \upharpoonright n)$. We note T(p) is an infinite tree with finite levels:

- \emptyset has exactly m_{\emptyset} successors $\langle i \rangle$.
- $s^{\hat{}}\langle i\rangle$ has exactly one successor $t^{\hat{}}\langle i, h_{s,i}\rangle$
- $s^{\widehat{}}\langle i, h_{s,i}\rangle$ has exactly m_s successors $t^{\widehat{}}\langle i, h_{s,i}, j\rangle$
- $s^{\hat{}}\langle i, h_{s,i}, j \rangle$ has either no successors or exactly one successor $t^{\hat{}}\langle i, h_{s,i}, j, x \rangle$
- $t = s^{\widehat{}}\langle i, h_{s,i}, j, x \rangle$ has exactly m_t successors $t^{\widehat{}}\langle k \rangle$

Let $q' = \langle i_0, h_0, j_0, x_0, i_1, h_1, j_1, x_1, \ldots \rangle$ correspond to this infinite branch in T(p), and let $q = o(q') = \langle h_0, x_0, h_1, x_1, \ldots \rangle$. Note that by the construction of T(p), q is an attack on σ .

Note that

$$H\supseteq H\cap \overline{rac{1}{4}\sigma(\emptyset)[h_{\emptyset,i}]}\supseteq \text{ need more argument here}$$

yields a chain of decreasing compact sets nested in $\sigma(q \upharpoonright n)[q(n)]$, so $\bigcap_{n < \omega} \sigma(q \upharpoonright n)[q(n)] \neq \emptyset$. Then as σ is a winning strategy, it follows that q converges. Since $q(2n) \in H$, q must converge to H. Thus o(q) converges to H, and since o(q) is a subsequence of p, p clusters at H.

Corollary 23. If $\mathscr{D} \uparrow Prox_{D,P}(X)$, then $\mathscr{O} \uparrow Con_{O,P}(X,H)$ for all compact $H \subseteq X$.

Definition 24. A filter \mathcal{F} on a uniform space X is **Cauchy** if for every entourage D, there exists $A \in \mathcal{F}$ such that $A^2 \subseteq D$.

Definition 25. A fitler \mathcal{F} converges to x ($\mathcal{F} \to x$) if for every neighborhood U of x, there exists $A \in \mathcal{F}$ such that $x \in A \subseteq U$.

Definition 26. A uniform space X is **completely uniform** if every Cauchy filter converges.

Proposition 27. Completely uniform metrizable spaces are completely metrizable.

Proof. ??

Theorem 28. For all completely uniform X, $\mathcal{O} \uparrow_{pre} Prox_{D,P}(X)$ if and only if X is metrizable.

Proof. Assume X is metrizable, and thus completely metrizable. Define the predetermined strategy σ such that if $D_n = \{(x,y) : d(x,y) < \frac{1}{4^n}\}$ then $\sigma(n) = D_{n+1}$. Note that $\sigma(n+1) = D_{n+2} \subseteq 4D_{n+2} = D_{n+1} = \sigma(n)$, so $\bigcap_{m \le n} \sigma(m) = \sigma(n)$.

Let p attack σ . We have $p(n+1) \in 4\sigma(n)[p(n)] = 4D_{n+1}[p(n)] = D_n[p(n)]$, so $d(p(n), p(n+1)) < \frac{1}{4^n}$. Thus p is Cauchy and converges.

Let σ witness $\mathscr{O} \uparrow_{\operatorname{pre}} \operatorname{Prox}_{D,P}(X)$. Claim: $\Delta = \bigcap_{n < \omega} \sigma(n)$.

Clopen partition version

Definition 29. For any partition \mathcal{R} of a space X and $x \in X$, let $\mathcal{R}[x]$ be such that $x \in \mathcal{R}[x] \in \mathcal{R}$.

For partitions $\mathcal{R}_0, \ldots, \mathcal{R}_n$, let $\mathcal{H}_n = \bigwedge_{m \leq n} \mathcal{R}_m$ be the coarsest partition which refines each \mathcal{R}_m .

For partitions \mathcal{R}, \mathcal{S} let $\mathcal{R} \otimes \mathcal{S} = \{r \times s : r \in R, s \in S\}.$

Proposition 30. $x \in \mathcal{R}[y] \Leftrightarrow y \in \mathcal{R}[x]$.

$$\mathcal{H}_n[x] = \left(\bigwedge_{m \le n} \mathcal{R}_m \right) [x] = \bigcap_{m \le n} \mathcal{R}_m[x].$$

Definition 31. For zero-dimensional X, the proximity game $Prox_{D,P}(X)$ proceeds as follows: in round n, \mathscr{R} chooses a clopen partition \mathcal{R}_n of X, followed by \mathscr{P} choosing a point $p_n \in X$.

Player \mathscr{R} wins if either $\bigcap_{n < \omega} \mathcal{H}_n[p_n] = \emptyset$ or p_n converges.

Proposition 32. This game is perfect-information equivalent to the analogous game studied by Bell, requiring \mathscr{P} 's play p_{n+1} to be in $\mathcal{H}_n[p_n]$ in rounds n+1, and requiring \mathscr{O} choose refinements.

Proof. Allowing \mathscr{P} to play $p_{n+1} \notin \mathcal{H}_n[p_n] \Rightarrow \mathcal{H}_n[p_{n+1}] \neq \mathcal{H}_n[p_n]$ does not introduce any new winning plays for \mathscr{P} as for any such move, $\bigcap_{m<\omega} \mathcal{H}_n[p_n] \subseteq \mathcal{H}_{n+1}[p_{n+1}] \cap \mathcal{H}_n[p_n] \subseteq \mathcal{H}_n[p_n] \cap \mathcal{H}_n[p_n] = \emptyset$.

Allowing \mathscr{R} to play non-refining clopen partitions does not introduce any new winning plays for \mathscr{R} as the winning condition relies on the refinement of all \mathcal{R}_n anyway.

Definition 33. A space X is **proximal** iff X is zero-dimensional and $\mathcal{R} \uparrow Prox_{D,P}(X)$.

Definition 34. A space X is Marköv proximal iff X is zero-dimensional and $\mathscr{R} \uparrow_{\text{mark}} Prox_{D,P}(X)$.

Definition 35. For any space X and a point $x \in X$, the W-convergence-game $Con_{O,P}(X,x)$ proceeds as follows: in round n, \mathscr{O} chooses a neighborhood U_n of x, followed by \mathscr{P} choosing a point $p_n \in X$.

For open sets U_0, \ldots, U_n , let $V_n = \bigcap_{m \leq n} U_m$. Player \mathscr{O} wins if either $p_n \notin V_n$ for some $n < \omega$, or if p_n converges.

Definition 36. A space X is a W-space iff $\mathcal{O} \uparrow Con_{O,P}(X,x)$ for all $x \in X$.

Definition 37. For each finite tuple (m_0, \ldots, m_{n-1}) , we define the k-tactical fog-of-war

$$T_k(m_0,\ldots,m_{n-1})=(m_{n-k},\ldots,m_{n-1})$$

and the k-Marköv fog-of-war

$$M_k(m_0,\ldots,m_{n-1})=(m_{n-k},\ldots,m_{n-1},n)$$

So $P \uparrow_{k\text{-tact}} G$ if and only if there exists a winning strategy for P of the form $\sigma \circ T_k$, and $P \uparrow_{k\text{-mark}} G$ if and only if there exists a winning strategy of the form $\sigma \circ M_k$.

Theorem 38. For all $x \in X$:

- $\mathscr{R} \uparrow Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow Con_{O,P}(X,x)$
- $\bullet \ \mathscr{R} \uparrow_{pre} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{pre} Con_{O,P}(X,x)$
- $\mathscr{R} \uparrow_{2k\text{-}tact} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X,x)$
- $\mathscr{R} \uparrow_{2k-mark} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k-mark} Con_{O,P}(X,x)$

Proof. Let σ witness $\mathscr{R} \uparrow_{2k\text{-tact}} Prox_{D,P}(X)$ (resp. $\mathscr{R} \uparrow_{2k\text{-mark}} Prox_{D,P}(X)$, $\mathscr{R} \uparrow Prox_{D,P}(X)$). We define the k-tactical (resp. k-Marköv, perfect info) strategy τ such that

$$\tau \circ L_k(p_0, \dots, p_{n-1}) = \sigma \circ L_{2k}(x, p_0, \dots, x, p_{n-1})[x] \cap \sigma \circ L_{2k}(x, p_0, \dots, x, p_{n-1}, x)[x]$$

where L_{2k} is the 2k-tactical fog-of-war (resp. 2k-Marköv fog-of-war, identity) and L_k is the k-tactical fog-of-war (resp. k-Marköv fog-of-war, identity).

Let p_0, p_1, \ldots attack τ such that $p_n \in V_n = \bigcap_{m \leq n} \tau \circ L_k(p_0, \ldots, p_{m-1})$ for all $n < \omega$. Consider the attack q_0, q_1, \ldots against the winning strategy σ such that $q_{2n} = x$ and $q_{2n+1} = p_n$.

Certainly, $x \in \mathcal{H}_{2n}[x] = \mathcal{H}_{2n}[q_{2n}]$ for any $n < \omega$. Note also for any $n < \omega$ that

$$p_n \in V_n = \bigcap_{m \le n} \tau \circ L_k(p_0, \dots, p_{m-1})$$

$$= \bigcap_{m \le n} (\sigma \circ L_{2k}(x, p_0, \dots, x, p_{m-1})[x] \cap \sigma \circ L_{2k}(x, p_0, \dots, x, p_{m-1}, x)[x])$$

$$= \bigcap_{m \le n} (\sigma \circ L_{2k}(q_0, q_1, \dots, q_{2m-2}, q_{2m-1})[x] \cap \sigma \circ L_{2k}(q_0, q_1, \dots, q_{2m-2}, q_{2m-1}, q_{2m})[x])$$

$$\bigcap_{m \le n} \mathcal{R}_{2m}[x] \cap R_{2m+1}[x] = \mathcal{H}_{2n+1}[x]$$

so $x \in \mathcal{H}_{2n+1}[p_n] = \mathcal{H}_{2n+1}[q_{2n+1}]$. Thus $x \in \bigcap_{n < \omega} \mathcal{H}_n[q_n]$, and since σ is a winning strategy, the attack q_0, q_1, \ldots converges, and must converge to x. Thus p_0, p_1, \ldots converges to x, and τ is also a winning strategy.

Corollary 39. For all $x \in X$:

- $\mathscr{R} \uparrow_{k\text{-}tact} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(X,x)$
- $\mathscr{R} \uparrow_{k\text{-mark}} Prox_{D,P}(X) \Rightarrow \mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(X,x)$

Corollary 40. All proximal spaces are W-spaces.

Definition 41. In the one-point compactification $\kappa^* = \kappa \cup \{\infty\}$ of discrete κ , define the clopen partition $\mathcal{C}(F) = [F]^1 \cup \{\kappa^* \setminus F\}$.

Theorem 42. $\mathscr{R} \uparrow_{code} Prox_{D,P}(\kappa^*)$

Proof. Use the coding strategy $\sigma() = \mathcal{C}(\emptyset) = \{\kappa^*\}$, $\sigma(\mathcal{C}(F), \alpha) = \mathcal{C}(F \cup \{\alpha\})$ for $\alpha < \kappa$ and $\sigma(\mathcal{C}(F), \infty) = \mathcal{C}(F)$. Note $\mathcal{R}_n = \mathcal{H}_n$. For any attack p_0, p_1, \ldots against σ such that $\bigcap_{n < \omega} \mathcal{H}_n[p_n] \neq \emptyset$, suppose

- $\infty \in \bigcap_{n < \omega} \mathcal{H}_n[p_n]$. Then $p_n \in \kappa^* \setminus \{p_m : m < n\}$ shows that the non- ∞ p_n are all distinct. If co-finite $p_n = \infty$, we have $p_n \to \infty$. Otherwise, there are infinite distinct p_n , and since neighborhoods of ∞ are co-finite, we have $p_n \to \infty$.
- $\infty \notin \mathcal{H}_N[p_N]$ for some $N < \omega$, so $\alpha \in \bigcap_{n < \omega} \mathcal{H}_n[p_n]$ for some $\alpha < \kappa$. Then $\mathcal{H}_n[p_n] = \{\alpha\}$ for all $n \geq N$, and thus $p_n \to \alpha$.

Thus σ is a winning coding strategy.

Theorem 43. $\mathscr{O} \uparrow Con_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow Prox_{D,P}(\kappa^*)$

$$\mathscr{O} \uparrow_{pre} Con_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow_{pre} Prox_{D,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow_{k\text{-}tact} Prox_{D,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow_{k\text{-mark}} Prox_{D,P}(\kappa^*)$$

Proof. Let $\sigma \circ L$ be a winning strategy where L is the identify (resp. a k-tactical fog-of-war, a k-Marköv fog-of-war).

Define $\tau \circ L$ such that

$$\tau \circ L(p_0, \dots, p_{n-1}) = \mathcal{R}(\kappa^* \setminus (\sigma \circ L(p_0, \dots, p_{n-1})))$$

For any attack p_0, p_1, \ldots against τ such that $\bigcap_{n < \omega} \mathcal{H}_n[p_n] \neq \emptyset$, suppose

• $\mathcal{H}_n[p_n] = \mathcal{H}_n[\infty] = \bigcap_{m \leq n} \sigma \circ L(p_0, \dots, p_{m-1}) = \bigcap_{m \leq n} U_m = V_n$ for all $n < \omega$. Since σ is a winning strategy, the p_n converge at ∞ .

• $\mathcal{H}_N[p_N] \neq \mathcal{H}_N[\infty]$ for some $N < \omega$. Then $\mathcal{H}_N[p_N] = \{p_N\}$, and since $\bigcap_{n < \omega} \mathcal{H}_n[p_n] \neq \emptyset$, we have $\mathcal{H}_n[p_n] = \mathcal{H}_N[p_N] = \{p_N\} \Rightarrow p_n = p_N$ for all $n \geq N$, and the p_n converge at p_N .

Corollary 44. $\mathcal{O} \uparrow Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathcal{R} \uparrow Prox_{D,P}(\kappa^*)$

$$\mathscr{O} \uparrow_{pre} Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathscr{R} \uparrow_{pre} Prox_{D,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-}tact} Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathscr{R} \uparrow_{k\text{-}tact} Prox_{D,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-mark}} Con_{O,P}(\kappa^*, \infty) \Leftrightarrow \mathscr{R} \uparrow_{k\text{-mark}} Prox_{D,P}(\kappa^*)$$

Corollary 45. $O \uparrow_{pre} Prox_{D,P}(\omega^*)$.

$$O \uparrow_{tact} Prox_{D,P}(\omega^*).$$

$$O \uparrow_{k-mark} Prox_{D,P}(\kappa^*) \text{ for } \kappa \geq \omega_1.$$

Proof. Results hold for \mathscr{O} and $Con_{O,P}(\kappa^*,\infty)$.

Definition 46. The almost-proximal game $aProx_{D,P}(X)$ is analogous to $Prox_{D,P}(X)$ except that the points p_n need only cluster for \mathscr{R} to win the game.

Definition 47. The W-clustering game $Clus_{O,P}(X,x)$ is analogous to $Con_{O,P}(X,x)$ except that the points p_n need only cluster at x for \mathcal{O} to win the game.

Proposition 48. $\mathscr{O} \uparrow Clus_{O,P}(\kappa^*, \infty) \Rightarrow \mathscr{R} \uparrow aProx_{D,P}(\kappa^*)$

$$\mathscr{O}\uparrow_{pre}Clus_{O,P}(\kappa^*,\infty)\Rightarrow \mathscr{R}\uparrow_{pre}aProx_{D,P}(\kappa^*)$$

$$\mathscr{O}\uparrow_{k\text{-}tact}Clus_{O,P}(\kappa^*,\infty)\Rightarrow \mathscr{R}\uparrow_{k\text{-}tact}aProx_{D,P}(\kappa^*)$$

$$\mathscr{O} \uparrow_{k\text{-}mark} Clus_{O,P}(\kappa^*,\infty) \Rightarrow \mathscr{R} \uparrow_{k\text{-}mark} aProx_{D,P}(\kappa^*)$$

Proof. Same proof as before, replacing "converge" with "cluster". \Box

Corollary 49. $\mathscr{R} \uparrow_{mark} aProx_{D,P}(\omega_1^*)$.

Proof. Holds for
$$\mathscr{O}$$
 and $Clus_{O,P}(\omega_1^*,\infty)$.

Proposition 50. If $\sigma \circ L$ is a winning strategy for \mathscr{R} in $Prox_{D,P}(X)$ (resp. $aProx_{D,P}(X)$) where L is the identity (or a k-tactical fog-of-war or a k-Marköv fog-of-war), and C is a closed subspace of X, then

$$\tau \circ L(p_0, \dots, p_{n-1}) = C \cap \sigma \circ L(p_0, \dots, p_{n-1})$$

defines a winning strategy $\tau \circ L$ for \mathscr{R} in $Prox_{D,P}(X)$ (resp. $aProx_{D,P}(X)$).

proximity.tex - Updated on December 12, 2013

Proof. For any attack p_0, p_1, \ldots against $\tau \circ L$ in $Prox_{D,P}(C)$ (resp. $aProx_{D,P}(C)$), note p_0, p_1, \ldots is also an attack against $\sigma \circ L$ in $Prox_{D,P}(X)$ (resp. $aProx_{D,P}(X)$).

If \mathscr{R} wins in $Prox_{D,P}(X)$ (resp. $aProx_{D,P}(X)$) by $\mathcal{H}_n^{\sigma}[p_n] = \emptyset$, then note that $\mathcal{H}_n^{\tau}[p_n] \subseteq \mathcal{H}_n^{\sigma}[p_n] = \emptyset$.

If If \mathscr{R} wins in $Prox_{D,P}(X)$ (resp. $aProx_{D,P}(X)$) because the p_n converge (resp. cluster), then they converge (resp. cluster) in the closed set C.

Either way, $\tau \circ L$ defeats the arbitrary attack and is thus a winning strategy.

Proposition 51. If for any $i < m < \omega$, $\sigma_i \circ L$ is a winning strategy for \mathscr{R} in $Prox_{D,P}(X_i)$ (resp. $aProx_{D,P}(X_i)$) where L is the identity (or a k-tactical fog-of-war or a k-Marköv fog-of-war), then

$$\tau \circ L(p_0, \dots, p_{n-1}) = \bigotimes_{i < m} \sigma_i \circ L(p_0(i), \dots, p_{n-1}(i))$$

defines a winning strategy $\tau \circ L$ for \mathscr{R} in $Prox_{D,P}(\prod_{i < m} X_i)$ (resp. $aProx_{D,P}(\prod_{i < m} X_i)$).

Proof. For any attack p_0, p_1, \ldots against $\tau \circ L$ in $Prox_{D,P}(\prod_{i < m} X_i)$ (resp. $aProx_{D,P}(\prod_{i < m} X_i)$), note that for any $i < m, p_0(i), p_1(i), \ldots$ is an attack against $\sigma_i \circ L$ in $Prox_{D,P}(X_i)$ (resp. $aProx_{D,P}(X)$).

If for some i < m, \mathscr{R} defeats the attack $p_0(i), p_1(i), \ldots$ because $\bigcap_{n < \omega} \mathcal{H}_n^i[p_n(i)] = \emptyset$, then we see immediately that $\bigcap_{n < \omega} \mathcal{H}_n[p_n] = \emptyset$ and τ defeats the attack p_0, p_1, \ldots

Otherwise for all i < m, we have $p_n(i)$ converging (resp. clustering) at some $x_i \in X$. It follows then that p_0, p_1, \ldots converges (resp. clusters) at $x = \langle x_i : i < m \rangle$ and τ defeats the attack p_0, p_1, \ldots

Definition 52. For $H \subseteq X$, the W-subset-convergence-game $Con_{O,P}(X,H)$ is analogous to $Con_{O,P}(X,x)$: \mathscr{O} chooses open neighborhoods of H and tries to force $p_n \to H$.

Theorem 53. For all compact $H \subseteq X$, $\mathscr{R} \uparrow Prox_{D,P}(X)$ implies $\mathscr{O} \uparrow Con_{O,P}(X,H)$.

Proof. Adapted from G's proof.

Let σ witness $\mathscr{R} \uparrow Prox_{D,P}(X)$, assuming $\sigma(p)$ refines $\sigma(q)$ whenever $q \subseteq p$.

For certain finite sequences of points $p \in X^{<\omega}$, we define a tree of finite sequences $\langle T(p), \subseteq \rangle$ as follows:

• $T(\emptyset)$ contains the empty sequence, and for each of the finite nonempty

$$V \in \{U \cap H : U \in \sigma(\emptyset)\}$$

choose a unique $h_V \in V$ and include $\langle h_V \rangle$ in $T(\emptyset)$.

- Assume that whenever T(p) is defined, it satisfies the following:
 - -T(p) is finite
 - $-p' \subseteq p \Rightarrow T(p') \subseteq T(p)$
 - If $\langle h_0, q_0, \dots, h_n \rangle \in T(p)$ then $\langle q_0, \dots, q_{n-1} \rangle$ is a subsequence of p and $q_i \in \sigma(h_0, q_0, \dots, h_{i-1}, q_{i-1})[h_i]$ for all i < n
 - For each sequence $t^{\hat{}}(h,q) \in T(p)$ and for each of the finite nonempty

$$V \in \{U \cap H \cap \sigma(t)[h] : U \in \sigma(t \cap \langle h, q \rangle)\}$$

there is a unique $h_V \in V$ such that $t \cap \langle h, q, h_V \rangle \in T(p)$.

- $\{ \sigma(t)[h] : t^{\frown}\langle h \rangle \text{ is maximal in } T(p) \} \text{ partitions } st \left(\bigwedge_{s \in T(p)} \sigma(s), H \right).$
- Then when T(p) is defined, we define $T(p^{\frown}\langle q\rangle)$ for each $q \in st\left(\bigwedge_{s \in T(p)} \sigma(s), H\right)$ as follows:
 - Assume $T(p) \subseteq T(p \cap \langle q \rangle)$.
 - Find the maximal $t_q^{\widehat{}}\langle h_q \rangle$ in T(p) such that $q \in \sigma(t_q)[h_q]$. Include $t_q^{\widehat{}}\langle h_q, q \rangle$ in $T(p^{\widehat{}}\langle q \rangle)$.
 - For each of the finite nonempty

$$V \in \mathcal{V}(t_q, h_q, q) = \{ U \cap H \cap \sigma(t_q^{\frown} \langle h_q, q \rangle)[h] : U \in \sigma(t_q^{\frown} \langle h_q, q \rangle) \}$$

choose a unique $h_V \in V$ and include $t_q^{\frown} \langle h_q, q, h_V \rangle$ in $T(p^{\frown} \langle q \rangle)$.

- Note that

$$\{\sigma(t)[h]: t^{\frown}\langle h \rangle \text{ is maximal in } T(p), h \neq h_q\}$$

partitions

$$st\left(\bigwedge_{s\in T(p)}\sigma(s),H\right)\setminus\sigma(t_q)[h_q]=st\left(\bigwedge_{s\in T(p^\frown\langle q\rangle)}\sigma(s),H\right)\setminus\sigma(t_q)[h_q]$$

and that

$$\{\sigma(t_q^{\frown}\langle h_q, q\rangle)[h_V]: \mathcal{V} \in V(t_q, h_q, q)\}$$

partitions

$$st\left(\bigwedge_{V\in\mathcal{V}(t_q,h_q,q)}\sigma(t_q^\frown\langle h_q,q,h_V\rangle),H\right)\cap\sigma(t_q)[h_q]=st\left(\bigwedge_{s\in T(p^\frown\langle q\rangle)}\sigma(s),H\right)\cap\sigma(t_q)[h_q]$$

so our definition satisfies the recursion hypotheses.

We may define a strategy τ for $\mathscr O$ in $Con_{O,P}(X,H,)$ as follows. Let $\tau(\emptyset)=st\left(\bigwedge_{s\in T(\emptyset)}\sigma(s),H\right)$. If T(p) is defined and $q\in st\left(\bigwedge_{s\in T(p)}\sigma(s),H\right)$, then let $\tau(p^\frown\langle q\rangle)=st\left(\bigwedge_{s\in T(p^\frown\langle q\rangle)}\sigma(s),H\right)$ (and $\tau(p^\frown\langle q\rangle)=X$ otherwise).

Let $p \in X^{\omega}$ attack τ such that $p(n) \in \tau(p \upharpoonright n)$ always. It follows that $T(p \upharpoonright n)$ is defined for all $n < \omega$, so let $T_p = \bigcup_{n < \omega} T(p \upharpoonright n)$. By definition, it is evident that T_p is an infinite tree with finite levels, so choose an infinite branch $p' = \langle h_0, q_0, \ldots \rangle$.

Since p' is an attack on σ , and $p'(n+1) \in \sigma(p \upharpoonright n+1)[p(n)]$ always, it follows that p' converges. Since $p(2n) = h_n \in H$, p' converges in H, and so does its subsequence $p'' = \langle q_0, q_1, \ldots \rangle$, which is also a subsequence of p.

We've shown p clusters in H, and since $\tau(p \upharpoonright n+1) \subseteq \tau(p)$, it follows analogously to a result of G that p converges in H.

Corollary 54. If X is compact and $\mathcal{R} \uparrow Prox_{D,P}(X)$, then $\mathcal{O} \uparrow Con_{O,P}(X^2, \Delta)$, and thus X is Corson compact.

Proof. Note $\mathcal{R} \uparrow Prox_{D,P}(X^2)$ and Δ is a compact subset of X^2 , so $\mathcal{O} \uparrow Con_{O,P}(X^2, \Delta)$. By a result of G, X is Corson compact.