DEPARTAMENTO DE ENGENHARIA ELÉTRICA TAREFA FFT

ENTREGAR INDIVIDUAL

Nome: Lucas Anjos da Silva Cod. aluno : <u>00329736</u>

Exercício 1:

Faça um comparativo em termos de desempenho entre o cálculo da transformada discreta de Fourier (DFT), usando o algoritmo tradicional e FFT. Para tanto utilizar os arquivos de sinal fornecidos pelo professor Dados do ambiente de teste:

CPU: 13th Gen Intel(R) Core(TM) i7-1360P

Clock da CPU: 2.20 GHz

Memória: 16,0 GB (utilizável: 15,7 GB)

Clock memória: 2128.1 MHz

Sist. operacional: Windows 11 Home Single Language (v. 24H2)

Plataforma (matlab, python, etc) Python

Tamanho do sinal	Algoritmo DFT tradicional (ms)	Algoritmo FFT (ms)	Ganho (tempo_DFT / tempo_FFT)
1024 amostras	945,228	4,789	197,378
2048 amostras	3818,826	0,215	17728,996
4096 amostras	15666,082	0,231	67789,185

Exercício 2:

Sobre o sinal anterior com 4096 amostras aplique um ruído branco de amplitude 0,1. Aplique o algoritmo FFT sobre o sinal com ruído. Avalie o resultado obtido e identifique quais componentes mais relevantes. Calculo da energia

$$E_n = \frac{1}{n} \sum_{i=1}^n y_i^2$$

Avalie dois cenários:

- Mantendo os coeficientes responsáveis por 93% da energia do sinal, zerando os demais.
- Mantendo os coeficientes responsáveis por 96% da energia do sinal, zerando os demais.

Reconstrua o sinal e compare com o arquivo de sinal sem ruído. Calcular taxa de erro (MSE) sobre erros medidos $\binom{n}{1}$

MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$

Exibição dos sinais original e com ruído aplicado (limitado à 1000 elementos para melhor visualização):

Após realizar o tratamento de filtragem considerando a energia das harmônicas, obtemos o seguinte resultado:

Observa-se que a MSE para o sinal reconstruído com as harmônicas que compões 93% da energia ficou 3% maior que o sinal reconstruído com as harmônicas que representam 96% da energia do sinal, o que confirma que quanto maior a quantidade de harmônicas utilizadas para reconstrução do sinal, menor o erro que existirá.

Também, é possível visulizar que em ambos os casos o ruído branco foi completamente filtrado após realizado o tratamento com uma porcentagem específica das harmônicas.