Feuille 3 - Fonctions usuelles

<u>Méthode</u> : Fonctions usuelles				
Fonction	e^x	sin(x)	cos(x)	tan (x)
Domaine	\mathbb{R}	\mathbb{R}	\mathbb{R}	$\mathbb{R}\backslash\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$
Dérivée	e^x	cos(x)	$-\sin(x)$	$1 + \tan^2(x)$
Fonction	ln(x)	arcsin(x)	arccos(x)	arctan(x)
Domaine	\mathbb{R}_+^*] - 1; 1[] - 1; 1[] - 1; 1[
Dérivée	$\frac{1}{x}$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{-\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$

Formule d'addition trigonométriques : $\forall a, b \in \mathbb{R}$

- $\sin(a \pm b) = \sin(a)\cos(b) \pm \sin(b)\cos(a)\sin(2a) = 2\sin(a)\cos(a)$
- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b) \Rightarrow \cos(2a) = \cos^2(a) \sin^2(a)$

Propriétés utiles :

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\cos(x) - 1}{x} \qquad \qquad 1 + \tan^2 x = \frac{1}{\cos^2(x)}$$

Exercice 1:

- 1. Prouver que $\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$, prouver que $1 + tan^2x = \frac{1}{\cos^2(x)}$
- 2. Calculer la dérivée de $f: x \mapsto \sin^2(x) + \sin^2(x) \tan^2(x)$

Exercice 2 : Calculer

$$\arccos\left(\cos\left(\frac{2\pi}{3}\right)\right) \qquad \arccos\left(\cos\left(-\frac{2\pi}{3}\right)\right) \qquad \arcsin\left(\sin\left(\frac{4\pi}{3}\right)\right) \qquad \arccos\left(\sin\left(\frac{17\pi}{5}\right)\right)$$

Exercice 3: Calculer

$$\lim_{x \to 0} \frac{\sin(2x)}{\sin(x)} \qquad \qquad \lim_{x \to 0} \frac{\sin(3x)}{2x} \qquad \qquad \lim_{x \to +\infty} x^3 - 8x^2 + 44\cos(\sqrt{x})$$

Exercice 4:

- 1. Expliciter tan(a + b) et tan(a b), pour $a, b \in \mathbb{R}$, avec cos(a + b) et cos(a b) différents de 0
- 2. Trouver un couple $(x, y) \in \mathbb{R}^2$, tel que $\frac{\pi}{12} = \frac{x}{4} + \frac{y}{6}$.
- 3. En déduire la valeur de $\tan\left(\frac{\pi}{12}\right)$.
- 4. Montrer que la somme d'un nombre rationnel et d'un nombre irrationnel est un nombre irrationnel.
- 5. En déduire que $\tan\left(\frac{\pi}{12}\right)$ est irrationnel.

Exercice 5:

Soit $\alpha \in \mathbb{R}$, considérons f une fonction $\mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos(x) + \cos(\alpha x)$

- 1. Montrer que si $\alpha = \frac{p}{q} \in \mathbb{Q}$, alors f est $2\pi q$ -périodique.
- 2. Montrer que si $\alpha \notin \mathbb{Q}$, alors f n'est pas périodique. (Indice : on s'intéressera à l'équation f(x) = 2, tout en gardant en tête que le cosinus est borné, et on essaiera de raisonner par contraposée.)