Support Vector Machine

Alternate view of Logistic Regression

$$h_{ heta}(x) = rac{1}{1 + e^{- heta^T x}}$$

If y=1, we want $h_{ heta}(x) pprox 1$, which is $heta^T x >> 0$

If y=0, we want $h_{ heta}(x)pprox 0$, which is $heta^Tx<<1$

The term which a single training example contributes to the overall logistic regression:

$$\begin{aligned} \text{Cost of Example} &= -(y \log h_{\theta}(x) + (1-y) \log(1-h_{\theta}(x))) \\ &= -y \log \frac{1}{1+e^{-\theta^T x}} - (1-y) \log(1-\frac{1}{1+e^{-\theta^T x}}) \end{aligned}$$

If y=1 (want $heta^Tx>>0$):

If y=0 (want $\theta^T x << 1$):

We had the cost function for Logistic Regression as:

$$\min_{ heta} rac{1}{m} \Big[\sum_{i=1}^m y^{(i)} ig(-\log_{ heta}(x^{(i)}) ig) + (1-y^{(i)}) ig(-\log(1-h_{ heta}(x^{(i)})) ig) \Big] + rac{\lambda}{2m} \sum_{j=1}^n heta_j^2$$

Support Vector Machine

Cost Function:

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \operatorname{cost}_{1}(\theta^{T} x^{(i)}) + (1 - y^{(i)}) \operatorname{cost}_{0}(\theta^{T} x^{(i)}) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$
Getting rid of $\frac{1}{m}$ terms

$$\min_{ heta} igg[\sum_{i=1}^m y^{(i)} \mathrm{cost}_1(heta^T x^{(i)}) + (1-y^{(i)}) \mathrm{cost}_0(heta^T x^{(i)}) igg] + rac{\lambda}{2} \sum_{j=1}^n heta_j^2$$

Getting rid of λ and adding new constant C

$$\min_{ heta} C igg[\sum_{i=1}^m y^{(i)} \mathrm{cost}_1(heta^T x^{(i)}) + (1-y^{(i)}) \mathrm{cost}_0(heta^T x^{(i)}) igg] + rac{\lambda}{2} \sum_{j=1}^n heta_j^2$$

Where $C pprox rac{1}{\lambda}$

Hypothesis:

$$h_{ heta}(x) = \left\{ egin{array}{ll} 1 & ext{if } heta^x >> 0 \ 0 & ext{otherwise} \end{array}
ight.$$

 \rightarrow If y=1, we want $\theta^T x \ge 1$ (not just ≥ 0) \rightarrow If y=0, we want $\theta^T x \le -1$ (not just < 0)

SVM Decision Boundary

• Whenever $y^{(i)}=1$

$$heta^T x^{(i)} \geq 1$$

 $\bullet \quad \text{Whenever} \ y^{(i)} = 0 \\$

$$heta^T x^{(i)} \leq -1$$

Large margin classifier