Empirical Analysis II Simon Sangmin Oh

1 Recap

1.1 Motivation

Consider the transition matrix \mathbb{P} :

$$\mathbb{P} = \left[\begin{array}{ccc} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Note that \mathbb{P} is not ergodic. Furthermore, recall that

- $ightharpoonup \Lambda$ is invariant if $\mathbb{S}^{-1}(\Lambda) = \Lambda$
- $ightharpoonup \mathbb{S}$ is ergodic if $Pr(\Lambda) = 0$ or 1 where Λ is invariant.

1.2 Sufficient conditions for ergodicity

Define

$$\mathbb{T}f\left(x\right) = \mathbb{E}\left[f\left(X_{t+1}\right) | X_{t} = x\right]$$

Then f is an eigenfunction with unit eigenvalue if $\mathbb{T}f = f$. This implies

$$X_{t} = x \Rightarrow \underbrace{\mathbb{E}\left[f\left(X_{t+1}\right)|X_{t} = x\right]}_{=\mathbb{T}f(x)} = f\left(x\right) = f\left(X_{t}\right)$$

Proposition 1.1. (3.4.1) When the solution to $\mathbb{T}f = f$ is a constant function (with Q measure one), then we can find some \mathbb{S} such that

$$X_{t}\left(\omega\right)=X\left(S^{t}\left(\omega\right)\right),\quad\mathbb{S}\text{ is ergodic}$$

Proposition 1.2. (3.4.2) Suppose that for any (i) $f \ge 0$ such that (ii) $\int f(x)Q(dx) > 0$, it is the case that Mf > 0 where M is the discounted sum of conditional expectations,

$$\mathbb{M}f(x) = (1 - \delta) \sum_{j=0}^{\infty} \delta^{j} \mathbb{T}^{j} f$$

Then any solution to $\mathbb{T} \tilde{f} = \tilde{f}$ is constant with respect to Q.

- ► TA's Proof:
 - * Consider an eigenfunction \tilde{f} . Then define f as the following:

$$f(x) = \phi\left(\tilde{f}(x)\right), \quad \phi(x) = \begin{cases} 1 & \text{if } x \in \mathcal{B} \\ 0 & \text{otherwise} \end{cases}$$

where \mathcal{B} is a Borel set. Note that this satisfies $\mathbb{T}f=f$ since

$$\mathbb{T}f = \mathbb{E}\left[f\left(X_{t+1}\right)|X_{t} = x\right]$$
$$= \mathbb{E}\left[\phi\left(\tilde{f}\left(x\right)\right)|X_{t} = x\right]$$
$$=$$

Empirical Analysis II Simon Sangmin Oh

* This also means Mf = f since

$$\mathbb{M}f = (1 - \delta) \sum_{j=0}^{\infty} \delta^j \mathbb{T}^j f = (1 - \delta) \sum_{j=0}^{\infty} \delta^j f = f$$

- * Suppose $\int f(x) Q(dx) > 0$. Then by the hypothesis of the proposition Mf = f > 0 with probability 1. Since ϕ only takes values of 1 and 0, it must be the case that f(x) = 1.
- * Given this fact, suppose there is a number y that \tilde{f} takes on, i.e.

$$\Pr\left\{\tilde{f}\left(x\right)=y\right\}>0$$

Then take the set $\mathcal{B} = \{y\}$ which implies

$$f\left(x\right)=\phi\left(\tilde{f}\left(x\right)\right)=1\Rightarrow\tilde{f}\left(x\right)=y$$
 with probability 1

➤ Taks' proof:

* Let \tilde{f} be an arbitrary function such that $\mathbb{T}\tilde{f} = \tilde{f}$. Then the function $f_{\mathfrak{b}} = \phi_{\mathfrak{b}} \circ \tilde{f}$ also solves $\mathbb{T}f_{\mathfrak{b}} = f_{\mathfrak{b}}$, where ϕ is defined as

$$f_{\mathfrak{b}}(x) := \left(\phi_{\mathfrak{b}} \circ \tilde{f}\right)(x) = \begin{cases} 1 & \text{if } \tilde{f}(x) \in \mathfrak{b} \\ 0 & \text{if } \tilde{f}(x) \notin \mathfrak{b} \end{cases}.$$

for some Borel set \mathfrak{b} in \mathbb{R} .

- Since f can only take values zero or one, we have condition (i). If f does not meet condition (ii), then it must be that $f_b = 0$ with Q-measure one, which implies that we must have $\tilde{f} = 0$ with Q-measure 1 so that \tilde{f} is a constant.
- * Consider the case when f_b meets condition (ii).
 - Then, by the hypothesis of the proposition, we must have

$$(\mathbb{M}f_{\mathfrak{b}})(x) > 0, \ \forall x \in \mathcal{X}$$

with Q-measure one.

• Since $f_{\mathfrak{b}}$ is also an eigenfunction of \mathbb{T} associated with a unit vector, $f_{\mathfrak{b}} = \mathbb{M} f_{\mathfrak{b}}$ so that, together, we have

$$f_{h}(x) = (\mathbb{M}f_{h})(x) > 0, \ \forall x \in \mathcal{X}$$

with Q-measure one. But because f only takes values zero or one, if it is strictly positive, it must be 1.

- This implies that $\tilde{f}(x) \in \mathfrak{b}$ with Q-measure 1.
- * If $\mathfrak b$ consists of two subsets $\mathfrak b'$ and $\mathfrak b''$ each of positive Q-measure, then we can define $f_{\mathfrak b'}$ and $f_{\mathfrak b''}$. These satisfy the conditions of the proposition—but they cannot both be strictly positive with Q-measure 1. Thus, it must be that $\mathfrak b$ is a singleton set. This means that $\tilde f(x) = \mathfrak b$ with Q-measure one; i.e. $\tilde f$ is constant.

1.3 More ergodicity

Reconsider the matrix

$$\mathbb{P} = \left[\begin{array}{ccc} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Then the stationary distribution is

$$\mu = \left[\begin{array}{ccc} \alpha & \alpha & 1 - 2\alpha \end{array}\right]^T, \forall \alpha \in \left[0, \frac{1}{2}\right]$$