

ITESO

Universidad Jesuita de Guadalajara

Diseño y Verificación
Practica 2: Módulo Aritmético (MDR)

Abisai Ramírez

Alumnos:

Robin Moisés Salgado. Esteban González Moreno. Esta práctica tiene como objetivo el desarrollar un módulo aritmético que calcule la multiplicación, división y raíz cuadrada de un número entero con signo.

La interfaz del Multiplicador, Divisor y Raíz cuadrada (MDR) cuadrada se muestra se muestra en la Fig. 1 y sus señales se describen en la Tabla 1.

Figura 1: Interfaz del MDR

Entradas	
Señal	Descripción
Data	Es el puerto de entrada de datos de 16 bits.
Start	Cuando esta señal es igual a 1 lógico, el modulo comienza a trabajar.
Load	Cuando es igual a 1 lógico, el valor que se encuentra en la señal Data se carga dentro del MDR.
Ор	Selecciona la operación a realizar: 0: Multiplicación 1: División 2: Raíz cuadrada
clk	Señal de reloj.
reset	Señal de reinicio.
	Salidas
result	Este puerto entrega el resultado de la operación ejecutada, tiene un ancho de 16 bits.
ready	Cuando es igual a 1 lógico indica que el resultado en el puerto Result es válido.
Remainder	Es el puerto donde se muestra el residuo de la operaciones de división y raíz cuadrada.
Load X	Cuando es igual a 1 lógico indica que se debe colocar el valor de X a cargar en el puerto Data .
Load Y	Cuando es igual a 1 lógico indica que se debe colocar el valor de Y a cargar en el puerto Data .
error	Indica un error en el resultado.

ALGORITMO DE BOOTH PARA MULTIPLICACIÓN.

El algoritmo de Booth es un algoritmo de multiplicación que multiplica dos números binarios con signo en la notación complemento a 2.

- 1. Dejemos que M sea el multiplicando.
- 2. Q será el multiplicador.
- 3. Consideramos un registro de 1 bit Q_{-1} y lo inicializamos en 0.
- 4. Consideramos un registro A y lo inicializamos en 0.
 - 1. Si Q[0] y Q_{-1} son iguales por ejemplo 00 o 11 entonces, hacemos un corrimiento a la derecha de 1 bit.
 - 2. Si Q[0] y $Q_{-1} = 1$ 0, entonces se realiza (A \leftarrow A M) y hacemos un corrimiento a la derecha de 1 bit.
 - 3. Si Q[0] y $Q_{-1} = 0$ 1, entonces se realiza (A \leftarrow A + M) y hacemos un corrimiento a la derecha de 1 bit.

Arquitectura para Algoritmo de Booth.

```
int main(void)
        int Q = 0;
        int D = 127;
        int R = 0;
        int i = 0;
        for (;;) {
                for (i = 8; i >= 0; i--)
                       {
                                if (R >= 0)
                                R = (R << 2) | (D >> (i + i) & 3);
                                       R = R - ((Q << 2) | 1);
                                }
                                else
                                R = (R << 2) | (D >> (i + i) & 3);
                                       R = R + ((Q << 2) | 3);
                                }
                                if (R >= 0)
                                       Q = (Q << 1) | 1;
                                else
                                        Q = (Q << 1) | 0;
                if (R<0)
                              R = R + ((Q << 1) | 1);
    /* Never leave main */
    return 0;
}
                /*Código en lenguaje C para calcular Raíz Cuadrada*/
```

Arquitectura basada en código en c para la raíz cuadrada.

RTL del Divisor

