Asymptotic Analysis

CPSC 320 2024S

Asymptotic bounds

- It's useful to be able to compare the growth rate of running times in a way that's insensitive to constant factors and lower-order terms. For this we use O, Ω , and Θ .
- We say that $f \in O(g)$ if there exist positive constants c and n_0 such that, for all $n \ge n_0$, we have $f(n) \le c \cdot g(n)$.
 - Example: $2n \in O(n)$ because for any $c \ge 2$, we have $2n \le cn$ for all positive n. We also have $2n \in O(n^2)$, because if we choose (for example) c = 1, then $2n \le cn^2$ for all $n \ge 2$.
- Conversely, $f \in \Omega(g)$ exactly when $g \in O(f)$.
- $f \in \Theta(g)$ (and $g \in \Theta(f)$) when $f \in \Omega(g)$ and $f \in O(g)$.

Not exactly "best" and "worst" cases

- Common misunderstanding: "big-O means the worst case and big-Omega means the best case"
- Best-case and worst-case are properties of an algorithm.
 - E.g., worst-case for QuickSort with first element chosen as pivot is a list that's already sorted (gives a $\Theta(n^2)$ runtime).
- ${\it O}$ and Ω are ways to compare functions and don't *inherently* have anything to do with algorithms.
 - E.g., if f(n) = 3n + 16 then $f(n) \in O(n)$ and $f(n) \in O(n^2)$.

Suppose I told you to give an Ω -bound on the worst-case runtime of QuickSort. Which of the following bounds apply?

- A. $\Omega(n \log n)$
- B. $\Omega(n^2)$
- C. Both A and B
- D. Neither A nor B
- E. It is impossible to provide an Ω -bound on the worst-case runtime of a function

Suppose I told you to give an Ω -bound on the worst-case runtime of QuickSort. Which of the following bounds apply?

- A. $\Omega(n \log n)$
- B. $\Omega(n^2)$
- C. Both A and B
- D. Neither A nor B
- E. It is impossible to provide an Ω -bound on the worst-case runtime of a function

Little-o/ω

- Big 0, Ω , and Θ are *roughly* the asymptotic equivalents of \leq , =, \geq on functions. Little-o and little- ω are like < and >.
- A function f is little-o of another function g if the growth of f is strictly slower than <math>g
- Formally: $f \in o(g)$ when, for **every** positive real number c, there is a positive integer n_0 such that, for all $n \ge n_0$, $f(n) \le c \cdot g(n)$.
 - Example: $2n \in o(n^2)$ because even for very small c, we will have $2n \le cn^2$ for all sufficiently large n. However, $2n \notin o(n)$ because we do not have $2n \le cn$ for, say, c = 0.1.
- Conversely, $f \in \omega(g)$ exactly when $g \in o(f)$

Little- o/ω definitions via limits

- A handy tool to observe how functions are related asymptotically is to compare the value of f(n)/g(n) as n gets very large
- When $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ is well-defined, we can apply the following:
 - If $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$ then $g(n)\in o\bigl(f(n)\bigr)$ and $f(n)\in\omega\bigl(g(n)\bigr)$
 - If $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$ then $f(n)\in o\big(g(n)\big)$ and $g(n)\in\omega\big(f(n)\big)$
 - If $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ (not equal to ∞ or 0) then $f(n)\in\Theta(g(n))$ (and $g(n)\in\Theta(f(n))$)

What is the relationship between f(x) and g(x)?

$$A. f(x) \in o(g(x))$$

B.
$$f(x) \in \Theta(g(x))$$

C.
$$f(x) \in \omega(g(x))$$

D. None of the above relations hold for all \boldsymbol{x}

E. Impossible to determine

What is the relationship between f(x) and g(x)?

$$A. f(x) \in o(g(x))$$

B.
$$f(x) \in \Theta(g(x))$$

C.
$$f(x) \in \omega(g(x))$$

D. None of the above relations hold for all x

E. Impossible to determine

What is the relationship between f(x) and g(x)?

$$A. f(x) \in o(g(x))$$

B.
$$f(x) \in \Theta(g(x))$$

C.
$$f(x) \in \omega(g(x))$$

D. None of the above relations hold for all x

E. Impossible to determine

$$f(x) = 3x^2$$
$$g(x) = \frac{1}{1000}x^3 + 100x + 2000$$

Which is the **worst** (i.e., fastest-growing) of the following runtimes?

A.
$$\log(n^{100})$$

B.
$$(\log n)^{100}$$

C.
$$\sqrt[100]{n}$$

Which is the **worst** (i.e., fastest-growing) of the following runtimes?

A.
$$\log(n^{100})$$

B.
$$(\log n)^{100}$$

C.
$$\sqrt[100]{n}$$