CARLINGFORD HIGH SCHOOL

	CARLINGFORD	
	HS	
101	ENTURE IN LEARNING	,G

NAME:			
Teacher:	 	 	

2021

Semester 2/Term 4 YEARLY EXAMINATION

Year 9 (5.3) Mathematics

General Instructions

- Write using black or blue pen.
- Time allowed: 50 minutes
- NESA approved calculators may be used.
- Show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for incorrect working or no working.

TOPICS	MARKS
Linear Relationships	/8
Geometry	/9
Surface Area & Volume	/9
Equations	/9
Trigonometry	/7
Indices	/8
TOTAL	/50

Linear Relationships (8 marks)

1. Find the equation of the line, in general form, through the origin and perpendicular to y = 7x - 5.

2

- 2. A(2, 1), B(-5, -6), C(-6, -1) and D(1, 6) form a parallelogram.
 - (i) Plot points A, B, C and D on the number plane below

1

(ii) Find the gradient of AB

(iii) Show that the equation of AB is: x - y - 1 = 0

1

(iv) Find the exact length of AB		
	_	
	_	
(v) Find the coordinates where the diagonals of ABCD intersect. Label it as point E on your diagram.	_	
	-	
	_	
	_	

Geometry (9 marks)

1. Find the value of x, giving reasons.

95°/ B

2. ABCDEF Is a regular hexagon, and $CP \parallel AB$.

2

3

i. Find the size of $\angle BCP$, giving reasons.

ii. Prove that $\triangle BCP \equiv \triangle DCP$.

3. A conveyor belt loading luggage onto a plane is 12.5 m long. A vertical support 1.6 m high is placed under the conveyor belt so that it is 4 m along the conveyor belt as shown.

Find the height (AE) of the luggage door above the ground.			
	<u></u>		

Surface Area and Volume (9 marks)

1. Find the perimeter of this shape. Express your answer to 1 decimal place.

2. The sides and floor of this swimming pool are to be tiled. The tiles cost \$22 per square metre and there is a further charge of \$1500 for labour.

- (ii) Calculate the area to be tiled. 2

 (iii) Find the cost of tiling the pool. 1

 (iii) Find the volume of the pool. 1
- (iv) How many litres of water is needed to completely fill the pool?

3. A closed cylinder has a **curved surface area** of 72π cm² and a height of 6 cm.

Calculate the radius of the cylinder. Must show working.		
	-	
	_	

Equations (9 marks)

1. Solve:

8(3x - 2) - 2(5 - 4x) + 58 = 0

2. Solve:

$$\frac{5e}{6} - 3 = 12$$

3.	Solve
J.	30146

4. The area of an equilateral triangle of side x cm is given by the formula $A = \frac{\sqrt{3}}{4}x^2$. Find, correct to 2 decimal places, the side length of an equilateral triangle with an

area 30 cm².

5. Make x the subject

 $t = \frac{x}{x - 3}$

Trigonometry (7 marks)

1. A ski slope of length 815 m has a vertical drop of 320 m. Calculate the angle between the ski slope and the horizontal. Round your answer to the nearest minute.

2

2. From a point on top of a building that is 98 m tall, the angle of depression of a car is 37°.

How far is the car from the foot of the building? Give your answer correct to the

nearest metre.

98 m

3. Two towns, A and B, are 12 km apart. The bearing of B from A is 250°.

(i) How far west of Δ is R	, correct to 3 significant figures?
(I) HOW IN WEST OF A IS D	, correct to 5 significant rightes:

Indices (8 marks)

$$3p^4 \times 4p^5 \times 3p$$

$$(8g)^0 + 8g^0$$

3.	Simp	lifv
J.	Jiiip	· · · · y

$$\frac{5d^2 \times 2 d^2e^2}{\left(2d\right)^4}$$

$$a^5b^{-4} \times a^{-3}b^{-5}$$

$$\frac{1}{x \times \sqrt[3]{x}}$$

6. The distance from Earth to the moon is approximately 3.844×10^5 km. If you could drive there without breaking the speed limit of 110 km/h, how many days would it take?

2

2

1