

Extracting and Analyzing Hidden Graphs from Relational Databases

Konstantinos Xirogiannopoulos, Amol Deshpande

University of Maryland, College Park

I. Graph Data Management

Graph Analysis Tasks Vary Widely

- Different types of Graph Queries
- Continuous Queries / Real-Time Analysis
- Batch Graph Analytics
- Machine Learning

Many different ways to deal with graph data

- Graph Databases (neo4j, orientDB, RDF stores)
- Distributed Batch Analysis Frameworks (Giraph, GraphX, GraphLab)
- In-Memory Systems(Ligra, Green-Marl, X-Stream) GraphLab
- Many research prototypes / custom indexes

2. But first...Where is your data?

- Users' data typically in RDBMSs or Key-Value Stores with some sort of schema
- Graph systems require lists of **nodes** & edges
- Extraction step often overlooked but can be quite involved
 - »User needs to write custom SQL queries for ETL
 - »Can be *unintuitive* & time consuming
 - »Large selectivity estimation errors due to complex joins
 - »Need to **repeat** every time database is updated

Part	Part_Supp		LineItem
part_key	part_key		→ order_key
name	supp_key		— → part_key
brand	avail_quantity	Orders	→ supp_key
type	supply_cost	order_key	lineitem_num
	1 -	cust_key Employe	quantity
Supplier	Customer	order_status employee_k	discount
supp_key	cust_key	total_price name	-
name	name	order_date address	
address	address	clerk_key phone	Region
nation_key	→ nation_key	salary	region_key
phone		Nation	name
		manager_ke	y
		name	
		region key ◀	

Graph	Representation	Edges	Extraction Time (s
DBLP	Condensed	17,147,302	105.552
10M rows	Full Graph	86,190,578	> 1200.000
IMDB	Condensed	8,437,792	108.647
4.7M rows	Full Graph	33,066,098	687.223
TPCH	Condensed	52,850	15.52
765K rows	Full Graph	99,990,000	> 1200.000
UNIV	Condensed	60,000	0.033
32K rows	Full Graph	3,592,176	82.042

3. GraphGen

- A software layer over relational/structured databases (implemented as a library)
- User specifies graph extraction queries in a **Datalog-based** DSL
- Can serialize the graph and load it into other frameworks/ libraries
- Exposes vertex-centric API or **direct** graph access through Java API
 - WIP: Supporting a Datalog Based DSL for Querying/Analytics

eneo4i

✓ Orient DB®

4. Condensed Representation

Key Challenge #1: Graphs often orders-of-magnitude larger than input. May **not fit** in-memory!

Solution: Instead extract a

Condensed Representation

- Translate *Nodes* statements to SQL and **execute** them.
- Edges statements (acyclic, aggregation-free) are **split** by join.
- For each join between R_i , R_{i+1} retrieve number of distinct values d for the join condition attribute(s).
- Every join where
- $|R_i||R_{i+1}|/d > 2 (|R_i|+|R_{i+1}|)$ marked **large-output**
- Create virtual nodes for every large-output join. Execute rest of joins in-database

5. Duplicate Elimination

- On-the fly de-duplication caching every getNeighbors() call
- Great for graph queries that touch Single-path per pair of small portions of the graph
- Most storage-efficient solution
- a2

DEDUP-I

- Structural de-duplication of C-DUP.
- Most **portable** solution

neighbors

Add a **bitmap** at every virtual

Bitmaps

a2 1 0 0 a3 1 0 0

• **Guides** iteration for every getNeighbors() call to avoid duplicates

Solution: Override the getNeighbors() iterator to enable any algorithm over the Condensed Representation

Works on Multi-layered

Apply algorithm at every layer

Condensed graphs

6. Structural De-duplication

DEDUP-1: Algorithms

- Naive Virtual-Nodes-First: Choose which real node to remove randomly
- Naive Real-Nodes-First: Same, remove all duplication for each real node u before moving on the next one
- **Greedy** Virtual-Nodes-First: Heuristic: Compute "global" benefit/cost ratio of disconnecting real node **u** from virtual node pl
- vs p2 **Greedy** Real-Nodes-First: Heuristic: Compute benefit based on reduction in

De-duplication: Given a condensed graph remove edges until there is one path between each pair of neighbors

Bi-clique Compression: Partition edges into minimum set of bipartite cliques (NP-Complete) [Feder, Motwani '94]

Same complexity, same output, different input

DEDUP-2: Optimization for Symmetric Graphs

Uses undirected edges between virtual nodes Can lead to

Ox or more compression u (comp. to DEDUP-1) for dense graphs

7. De-duplication using Bitmaps

Optimization Problem

• Let $O(V_n)$ the set of real nodes connected to virtual node Vn.

Key Challenge #2: There may be **multiple**

paths between pairs of nodes in the Condensed

Representation

- Given a real node **u**, and its virtual nodes $\{V_1,V_2,...,V_n\}$, find the **smallest subset** of $\{O(V_1), O(V_2),...,O(V_n)\}$ that covers their **union**
- Heuristic based on standard greedy set cover

Bad Bitmap placement Good Bitmap placement

Main idea: Use bitmaps at duplicate paths

8. Trade-offs and Benefits

PageRank time mem Layered-I 1.421 GB 2.737 GB 245 1.613 GB 2.258 GB Layered-2 1.276 GB 1.493 GB Single-I 256 Single-2 9.9 GB 13.042 GB .023 GB .049 GB 2,573 **293** Layered-I 382 s 2,874

Layered-2 129 s IIIs Single-I 0.01 s 0.02 s Syn-4 1.3 s 0.12 s TPCH

GraphGen: Efficient inmemory extraction and analysis of larger-thanmemory graphs hidden within relational datasets

every virtual node to avoid

Small Datasets

312

495

2,194

Integration with Apache Graph **Large Datasets**