	、选择题(每小题3分, 共24分)
1.	微分方程 $y' = p(x)y$ 的通解是()
	(A) $y = e^{\int p(x)dx}$ (B) $y = Ce^{\int -p(x)dx}$
	(C) $y = Ce^{\int p(x)dx}$ (D) $y = Cp(x)$
2.	已知曲线 $ \begin{cases} x^2+y^2+z^2=2\\ x+y+z=a \end{cases}$ 在 yoz 坐标面上的投影曲线为 $ \begin{cases} y^2+yz+z^2=1\\ x=0 \end{cases}$,则 $a=$
	()
3.	(A) -1 (B) 0 (C) 1 (D) 2 设 $z = e^y \tan x$, 則 $dz = ($
	(A) $e^y \tan x dx + e^y \sec^2 x dy$ (B) $\frac{e^y}{1+x^2} dx + e^y \tan x dy$
	(C) $e^x \tan y dx + e^x \sec^2 y dy$ (D) $e^y \sec^2 x dx + e^y \tan x dy$
4.	设积分区域 $D: x^2 + y^2 \le 4$,则二重积分 $\iint_D \sqrt{x^2 + y^2} \mathrm{d}x \mathrm{d}y = ($)
	(A) $\int_{0}^{2\pi} d\theta \int_{0}^{2} \rho^{2} d\rho$ (B) $\int_{0}^{2\pi} d\theta \int_{\rho}^{4} d\rho$ (C) $\int_{0}^{2\pi} d\theta \int_{0}^{1} \rho^{2} d\rho$ (D) $\int_{0}^{2\pi} d\theta \int_{1}^{2} \rho d\rho$
5.	设 Ω 由圆锥面 $z=1-\sqrt{x^2+y^2}$ 与平面 $z=0$ 围成的闭区域,则 $\iint_{\Omega}z\mathrm{d}v=($)
	(A) $\int_0^{\pi} d\theta \int_0^1 \rho d\rho \int_0^{1-\rho} z dz$ (B) $\int_0^{2\pi} d\theta \int_0^1 d\rho \int_0^{1-\rho} z dz$
	(C) $\int_0^{\pi} d\theta \int_0^1 d\rho \int_0^{1-\rho} z dz$ (D) $\int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_0^{1-\rho} z dz$
6.	设 L 为圆周 $\begin{cases} x = a \cos t, \\ y = a \sin t, \end{cases}$ $(0 \leqslant t \leqslant 2\pi), \; \text{则} \oint_L (x^2 + y^2) \mathrm{d}s = ()$
	(A) a^3 (B) πa^3 (C) $2\pi a^3$ (D) $3\pi a^3$
7.	L 为平面闭区域: $-1 \le x \le 1$, $0 \le y \le 1$ 的正向边界, 则
	$\int_{L} \left(\frac{1}{2} y + 3x e^{x} \right) dx - \left(\frac{1}{2} x - y \sin y \right) dy = ($)
	(A) -2 (B) 2 (C) -1 (D) 1
8.	设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 R $(0 < R < +\infty)$,则幂级数 $\sum_{n=1}^{\infty} a_n \left(\frac{x}{2}\right)^n$ 的收敛半径为
	()
	(A) $\frac{R}{2}$ (B) $2R$ (C) R (D) $\frac{2}{R}$

二、填空题(每空3分, 共24分)

- 1. 以 e^x , xe^x 为解的阶数最低的常系数线性齐次微分方程是
- 2. 过点A(1,-2,1)且以 $\vec{n}=(1,2,3)$ 为法向量的平面方程是
- 3. 设 $z = \sin(x^2 + y)$,则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\qquad}$.
- 5. 设见为球体: $x^2+y^2+z^2 \leq 4$,则 $\iint_{\Omega} x^2 \sin(yz) dx dy dz =$ _______.

- 8. 级数 $\frac{1}{3} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[n]{3}} + \dots$ 是______(填收敛或发散).
- 三、综合题(请写出求解过程,8小题,共52分)
- 1. 求过点(2,0,-3), 且与直线 $\begin{cases} x-2y+4z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程. (6分)

2. 设 $z = x^y(x > 0)$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$. (6分)

3. 计算 $\iint_D x^2 y^2 dx dy$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$. (6分)

4. 计算
$$I = \iiint_{\Omega} (x^2 + y^2) dv$$
,其中 Ω 为旋转抛物面 $z = x^2 + y^2$ 与平面 $z = 4$ 所围成的区域. (6分)

5.
$$L$$
是圆环区域D: $1 \le x^2 + y^2 \le 4$ 的正向边界曲线, 计算曲线积分
$$\oint_L \sqrt{x^2 + y^2} \, \mathrm{d}x + \left[xy^2 + y \ln \left(x + \sqrt{x^2 + y^2} \right) \right] \mathrm{d}y.$$
 (8分)

6. 计算
$$\iint_{\Sigma} \frac{2}{z} dS$$
, 其中Σ是球面 $x^2 + y^2 + z^2 = 1$ 在平面 $z = \frac{1}{2}$ 上方的部分. (8分)

7. 判断级数
$$\sum_{n=1}^{\infty} \frac{3^n}{n \cdot 2^n}$$
 的敛散性. (6分)

8. 求幂级数
$$\sum_{n=0}^{\infty} (n+1)x^n$$
 在收敛域 $(-1,1)$ 的和函数 $s(x)$. (6分)

江理竞赛小分队: 552839044

江理高数研讨群: 273027128

江理18学习群: 806650494

江理17大物线代C交流群: 469094854

江理数学编辑爱好者: 734148635