METODE BISEKSI (Dr.Jemakmun, M.Si)

CARA 1 MATODE BISEKSI.

Prinsip:

Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian. Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari dua bagian ini dipilih bagian mana yang mengandung akar sedangkan bagian yang tidak mengandung akar dibuang. Hal ini dilakukan berulang-ulang hingga diperoleh akar persamaan.

Langkah-langkah Biseksi

Algoritma Biseksi;

- Jika f(x) kontinu pada interval [a,b] dan f(a).f(b) < o maka terdapat minimal satu akar.
- Algoritma sederhana metode biseksi :
 - Mulai dengan interval [a,b] dan toleransi ε
 - 2. Hitung f(a) dan f(b)
 - 3. Hitung $c = (a + b)/2 \operatorname{dan} f(c)$
 - 4. Jika f(a).f(c) < o maka b = c dan f(b) = f(c) jika tidak a = c dan f(a) = f(c)
 - 5. Jika | a-b | < ε maka proses dihentikan dan di dapat akar x = c
 - 6. Ulangi langkah 3

Contoh 1: Temukan akar $f(x) = e^x - 5x^2$ di dalam selang [0, 1] dan $\varepsilon = 0.00001$.

Penyelesaian:

r	a	c	b	f(a)	f(c)	f(b)	Selang baru	Lebarnya
0	0.000000	0.500000	1.000000	1.000000	0.398721	-2.281718	[c, b]	0.500000
1	0.500000	0.750000	1.000000	0.398721	-0.695500	-2.281718	[a, c]	0.250000
2	0.500000	0.625000	0.750000	0.398721	-0.084879	-0.695500	[a, c]	0.125000
3	0.500000	0.562500	0.625000	0.398721	0.173023	-0.084879	[c, b]	0.062500
4	0.562500	0.593750	0.625000	0.173023	0.048071	-0.084879	[c, b]	0.031250
5	0.593750	0.609375	0.625000	0.048071	-0.017408	-0.084879	[a, c]	0.015625
6	0.593750	0.601563	0.609375	0.048071	0.015581	-0.017408	[c, b]	0.007813
7	0.601563	0.605469	0.609375	0.015581	-0.000851	-0.017408	[a, c]	0.003906
8	0.601563	0.603516	0.605469	0.015581	0.007380	-0.000851	[c, b]	0.001953
9	0.603516	0.604492	0.605469	0.007380	0.003268	-0.000851	[c, b]	0.000977
10	0.604492	0.604980	0.605469	0.003268	0.001210	-0.000851	[c, b]	0.000488
11	0.604980	0.605225	0.605469	0.001210	0.000179	-0.000851	[c, b]	0.000244
12	0.605225	0.605347	0.605469	0.000179	-0.000336	-0.000851	[a, c]	0.000122
13	0.605225	0.605286	0.605347	0.000179	-0.000078	-0.000336	[a, c]	0.000061
14	0.605225	0.605255	0.605286	0.000179	0.000051	-0.000078	[c, b]	0.000031
15	0.605255	0.605270	0.605286	0.000051	-0.000014	-0.000078	[a, c]	0.000015
16	0.605255	0.605263	0.605270	0.000051	0.000018	-0.000014	[c, b]	80000008

Jadi, hampiran akarnya adalah x = 0.605263

CARA II METODE BISEKSI

f(x) = 0 menghitung akar dari f(x), jika r akar f(x) \longrightarrow f(r) = 0

 $I \; x_{k+1} \; \text{-} \; x_k \; I < \boldsymbol{\mathcal{E}}$

Yang mengandung akar dari f(x) = 0

PROSEDUR

1. Pilih interval awal [x_0 , x_1] tentukan nilai δ, ε

$$2. \quad \boxed{ x_2 = [x_0 + x_1]/2 }$$

- 3. membuang interval yang tidak berguna tinjau $f(x_0)$. $f(x_2)$
 - ightharpoonup Jika $f(x_0)$. $f(x_2) > 0$ maka x_2 mengantikan x_0
 - ightharpoonup Jika $f(x_0)$. $f(x_2) = 0$ maka STOP x_2 akar
 - ightharpoonup Jika $f(x_0)$. $f(x_2) < 0$ maka x_2 mengantikan x_1
- 4. STOP. I $x_1 x_0 I < \delta$ atau I $f(x_0) f(x_2) I < \varepsilon$

Metode Biseksi menjamin bahwa selalu berhasil menemukan akar yang kita cari. Hanya kelemahan dari metode tersebut bekerja sangat lambat karena slalu menentukan titik tengah x₂ sebagai titik ujung interval berikutnya, padahal mungkin tadinya sudah mendekati akar.

Contoh 1: Carilah hampiran x yg mendekati $f(x) = x^3 - x - 1$, batas $\partial = 0,1$

Itera si	X ₀	X ₁	X_2	f(X ₀)	f(X ₂)	$f(\mathbf{X}_0)f(\mathbf{X}_2)$	$ X_0 - X_1 $
1	1	2	1.5	-1	0,875	-0,875	1
2	1	1,5	1,25	-1	-0,297	0,297	0,5
3	1,25	1,5	1,375	-0,297	0,225	-0,067	0,25
4	1,25	1,375	1,312	-0,297	-0,053	0,016	0,125

Disimpulkan nilai X mendekati adalah x = 1,312

Contoh 2. Carilah hampiran x yang mendekati $f(x) = e^{x} -5x^{2}$, batas $\partial = 0.01$

Itera	X_0	X_1	\mathbf{X}_2	$f(X_0)$	$f(X_2)$	$f(X_0)f(X_2)$	$ X_0 - X_1 $
si							
1	0	1	0,5	1	0,3987	0,3987	1
2	0,5	1	0,75	0,3987	-0,6955	-0,2773	0,5
3	0,5	0,75	0,625	0,3987	-0,0849	-0,0338	0,25
4	0,5	0,625	0,5625	0,3987	0,1730	0,0690	0,125
5	0,5625	0,625	0,5937	0,1730	0,0481	0,0083	0,0625

6	0,5937	0,625	0,6094	0,0481	-0,0174	-0,0008	0,0313
7	0,5937	0,6094	0,6016	0,0481	0,0156	0,0008	0,0157
8	0,6016	,6094	0,6055	0,0156	-0,0009	-0,00001	0,0078

Disimpulkan nilai X mendekati adalah x = 0,6055

SOAL-SOAL YANG HARUS DIKERJAKAN , KEMUDIAN JAWABAN DI SUBMIT.....

- 1. Carilah nilai x yang mendekati dengan **lima kali iterasi** dari fungsi;
 - a. $e^x + x^4 + x = 2$, dengan batas a = 0 dan b = 1
 - b. $x^2 = \ln(x) + 3$, dengan batas a = 1 dan b = 2
- 2. Carilah nilai x yang mendekati **sampai dua posis desimal** dari fungsi;
 - a. $X^4 + 4x^3 + 1 = 0$, dengan batas a = -1 dan b = 0
 - b. $Cos(x) e^{-x} = 0$, dengan batas a = 1 dan b = 2

SELAMAT MENGERJAKAN DAN KIRIM JAWABANNYA.