Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie LABORATORIUM MASZYN I NAPĘDU ELEKTRYCZNEGO Elektrotechnika z Napędami Elektrycznymi

Ćwiczenie EA10 Silnik indukcyjny sterowany falownikiem

Wydz. EAIiIB kier. AiR rok II		Grupa ćwicz: B	Grupa laborat: 4b
Lp.	Imię i nazwisko	Ocena	Data zaliczenia
1	Aleksandra Stachniak		
2	Martyna Wolny		
3	Julita Wójcik		
4	Tomisław Tarnawski		
5	Jakub Szczypek		
6	Piotr Stosik		

Data i podpis prowadzącego: Uwagi:

1. Dane znamionowe silnika:

 $P_N=1,5 \text{ kW}$

U_N=380V(gwiazda)

 $I_{N}=3,5 A$

 $\cos^{\varphi_N}=0.8$

 $n_N=1420$ obr./min.

Ip44, Izolacja kl. E, Praca S1

2. Dane znamionowe falownika:

Typ: Schneider Altivar 71HD11N4

 $P_N=11 \text{ kW}$

 $U_N = 380 - 480 V$

3. Schemat ideowy stanowiska.

Rys. 1. Schemat ideowy stanowiska.

4. Schemat ideowy części energoelektronicznej przemiennika częstotliwości.

Rys. 2. Schemat ideowy części energoelektronicznej przemiennika częstotliwości.

5. Konfiguracja falownika

Tabela nastaw użytkownika:

1. **LAC** – Expert access

Kod	Nastawa	
an t	użytkownika	
	PLY STAR	
TCC	2-wire cont	trol
CFG	Standard	
DED	start/stop	M-4
BFR	50Hz frequency	Motor
IPL	Freewheel	stop
	on fault	жор
PHR	A-B-C	phase
	rotation	
NPR	2,20 kW	
UNS	380V	
FRS	50Hz	
NCR	6,9A	
INSP	x1 rpm	
NSP	1420 obr/	min
ITH	5,5A	
TFR	60Hz	
LPS	5Hz	
HSP	60Hz	
ACC	0,01s	
DEC	3,0s	
SETTI	NGS	
Ramp		
ACC	0,01s	
AC2		
DCF	0%	
DEC	3s	
DE2		
TA1	0%	
TA2	0%	
TA3	0%	
TA4	0%	

Frequency range		
LSP	5Hz	
HSP	60Hz	
TLS	60s	
	DC injection	
IDC	2,7A	
TDC	0,1sec	
IDC2	2,7A	
TDI	0,1sec	
SDC1	2,7A	
TDC1	0,1sec	
SDC2	2,7A	
TDC2	0,0sec	
	ptimization	
ITH	5,5A	
UFR	100%	
SLP	100%	
SFR	4,0kHz	
FLU		
CLI	10A	
CL2	10A	
LBC	0,0Hz	
	regulator	
RPG	0	
RIG	0	
RDG	0	
PRP	0	
POL	0	
РОН	50Hz	
PAL	0	
PAH	1500	
PER	1500	
PSR	100%	
RP2	750	
RP3	1000	

RP4	1500	
Detection thresholds conf		
CTD	10A	
TTH	100%	
TTL	50%	
F2D	50Hz	
FTD	50Hz	
TTD	100%	
MOTOR CONTROL		
	characteristics	
BFR	50Hz Motor	
1100	frequency	
NPR	2,20 kW	
UNS	380V	
NCR	6,9A	
FRS	50Hz	
INSP	x1 rpm	
NSP	1420	
	obr/min	
AUT	No	
ITH	5,5A	
TFR	60Hz	
	ptor control	
AUT	No	
CTT	2 point voltage	
	/frequency	
U0	20V	
U1	380V	
F1	50Hz	
U2	0V	
F2	0Hz	
U3	0V	
F3	0Hz	
U4	0V	
F4	0Hz	
U5	0V	

F5	0Hz	
VC2	No	
UCP	400V	
FCP		
UFR		
SLP		
Applicati	ion optimization	
OFI	No	
SFR		
CLI		
NRD	No	
SVL	No	
SOP	10μS	
VBR	785V	
BBA	No	
IN-	IN-OUT CONF	
	Logical inputs	
TCC	2-wire control	
TCT		
RRS		
L1D-	0ms	
L14D		
Analog input		
AI1T		
UIL1		
UIH1		
AI1F		

AI1E		
AI1S		
AI2T	AI in voltage	
	selected	
UIL2	0V	
UIH2	7,2V	
AI2F	0sec	
AI2E	0%	
AI2S	0%	
CRL2	0,0Ma	
CRLH2	20Ma	
AI2L	positive only	
CONTROL COMMAND		
RIN	Yes	
FR1	Ref. via	
	remote	
	terminal	
FR2		
PST		
RFC		
CHCF		
CCS		
CD1		
CD2		
COP		
APPLICATION		
FUNCTIONS		

PID regulator		
PIF	Analog input	
	AI2	
AIC1	Not assigned	
PIF1	0 obr/min	
PIF2	1500	
PIP1	0	
PIP2	1500	
PII	No	
RPI	1000	
RPG	0,01	
RIG	0,01	
RDG	0	
PRP	0	
PIC	No	
POL	0	
POH	50	
PAL	0	
PAH	1500	
PER	1500	
PIS	Not assigned	
FPI	Not assigned	
PSR	100%	
PAU	Not assigned	
PIM	Not assigned	
TLS	60sec	
RSL	0	

Puste pola w tabeli oznaczają parametry domyślne ustawionymi przez producenta – pozostały bez zmian.

6. Sterowanie skalarne 2-punktowe:

a) dobór nastaw regulatora PID prędkości – eksperyment Zieglera-Nicholsa

Zmieniliśmy nastawy regulatora z użyciem terminala na podane w instrukcji. Parametr RPI ustawiliśmy na 1000 obr/min. Początkowo wyzerowaliśmy wzmocnienia RIG oraz RDG członów I oraz D i podnosiliśmy wzmocnienie członu P tak długo, aż pojawiły się oscylacje prędkości. Wzmocnienie RPG dla członu P wynosiło w tym momencie 3,3. Następnie ustaliliśmy wartość RPG na poziomie 1,65 (połowa wartości dla której występują oscylacje) i podnosiliśmy wartość RIG, aż odpowiedź prędkości silnika na skok prędkości zadanej charakteryzowała się niewielkim pojedynczym przeregulowaniem. Ostatecznie wyniosło 2,8. Niestety nie zanotowaliśmy parametrów potrzebnych do wyznaczenia czasu oscylacji.

b) rejestracje przebiegów prędkości, napięć i prądów silnika przy odpowiedzi napędu na skok prędkości referencyjnej

Poniżej prezentujemy otrzymane przebiegi z dobranymi nastawami regulatora:

Rys. 3. Przebieg czasowy prędkości obrotowej – spadek prędkości.

Rys. 4. Przebieg czasowy prędkości obrotowej – wzrost prędkości.

Podczas spadku i wzrostu prędkości zaobserwowaliśmy spadek częstotliwości zmian napięcia przewodowego U_{ab} oraz U_{cb} :

Rys. 5. Spadek częstotliwości zmian napięcia przewodowego \mathbf{U}_{ab} .

Rys. 6. Spadek częstotliwości zmian napięcia przewodowego Ucb.

Współczynnik RMS w tym przedziale wartości napięcia U_{ab} wynosi 195,27V, natomiast U_{cb} 179,4V. Natomiast na całym wykresie (zarówno przed zmianą prędkości, w trakcie jak i po) wartość ta oscylowała wokół 270V.

Podczas zmian prędkości obrotowej nastąpiły również zmiany w przebiegu czasowym prądu przewodowego I_A oraz I_B .

Rys. 7. Wzrost wartości prądu przewodowego I_A w chwili spadku prędkości obrotowej.

Rys. 8. Wzrost wartości prądu przewodowego I_C w chwili spadku prędkości obrotowej.

Współczynnik RMS w tym przedziale wartości prądu I_A wyniósł 1,48A, natomiast I_C 1,49A.

Pomiędzy spadkiem, a wzrostem prędkości widać nieznaczny wzrost wartości prądu przewodowego $I_{\rm A}$ oraz $I_{\rm B}$.

Rys. 9. Przebieg czasowy prądu I_A pomiędzy spadkiem, a wzrostem prędkości obrotowej.

Rys. 10. Przebieg czasowy prądu I_C pomiędzy spadkiem, a wzrostem prędkości obrotowej. Współczynnik RMS w tym przedziale wartości prądu I_A wyniósł 1,12A, natomiast I_C 1,14A.

Rys. 11. Wzrost wartości prądu przewodowego I_A w chwili wzrostu prędkości obrotowej.

Rys. 12. Wzrost wartości prądu przewodowego I_C w chwili wzrostu prędkości obrotowej.

Współczynnik RMS w tym przedziale wartości prądu I_A wyniósł 1,25A, natomiast I_C 1,27A. Natomiast na całym wykresie (zarówno przed zmianą prędkości, w trakcie jak i po) wartość ta oscylowała wokół 1,21A.

7. Wnioski z przeprowadzonego ćwiczenia.

Na ćwiczeniach zapoznaliśmy się dynamiką układu regulacji prędkości obrotowej silnika indukcyjnego zasilanego z przemiennika częstotliwości oraz z programem konfigurującym falownik.

Sterowanie silnika indukcyjnego można robić na wiele różnych sposobów z pomocą przemiennika częstotliwości. Programując go podajemy wiele istotnych parametrów, przez co sterowanie prędkością silnika staje się bardzo dokładne. Wprowadzanie tych parametrów było czasochłonne. Nie obyło się bez problemów również tych technicznych przez co nie udało nam się zrealizować całości ćwiczenia.