TTT4275 Summary Detection Spring 2019

Lecturer: Magne Hallstein Johnsen,

IES, NTNU

Intro to detection - 1

- Detection of (rare) events s(n) based on noisy observations x(n) n = 0, ..., N-1
- Binary hypothesis

$$H_1 : x(n) = s(n) + w(n)$$

 $H_0 : x(n) = w(n)$

- Some practical issues not included in this course :
 - Multiple (more than two) hypotheses
 - How to estimate time window; i.e. n = 0 and n = N 1
 - How often to detect?

Intro to detection - 2

- Assuming random w(n), i.e. a density p(w) the hypotheses must also have distributions $p(x, H_1)$ and $p(x, H_0)$. Thus we will focus on **statistically** based detection
- Often the densities have a parametric form, $p(x, H_i) = p(x, \theta_i)$, i = 0, 1
- Then we can recast the detection to a socalled *simple test* ·

$$H_1$$
 : $\theta = \theta_1$

$$H_0$$
 : $\theta = \theta_0$

- In general we have $p(x, \theta_i) = p(x/\theta_i)p(\theta_i)$ i = 0, 1
- ullet In most cases $heta_i$ is unknown but deterministic, thus we can drop the priors $p(heta_i)$

Intro to detection - 3

- In detection we have two true regions H_1, H_0 and two decision regions Ω_1, Ω_0
- Thus we have four different detection outcomes
 - Correct detection : $P_D = P(x \in \Omega_1/H_1)$
 - Correct rejection : $P_D = P(x \in \Omega_0/H_0)$
 - Missed detection : $P_M = P(x \in \Omega_0/H_1)$
 - False accept/alarm : $P_{FA} = P(x \in \Omega_1/H_0)$
- The two types of errors do mutually conflict; decreasing one increases the other
- ullet Performance is usually given as a function of P_{FA} with y-axis being
 - P_D (Receiver Operating Characteristics ROC)
 - P_M (Detection Error Tradeoff DET) where equal error rate (EER) is shown

The Likelihood Ratio Test (LRT) - 1

• Given hypothesis distributions $p(x, H_i) = p(x, \theta_i)$ i = 0, 1 the so-called "most powerful" test is the LRT

$$L(x) = \frac{p(x/H_1)}{p(x/H_0)} \le \lambda \tag{1}$$

- The ratio (i.e distributions) is problem dependent while the threshold λ is mainly dependent of the choice of detection method.
- The simplest method is the maximum likelihood test, i.e. $\lambda = 1$
- The most general method is called the Bayes risk where

$$\lambda = \frac{P_0 C_{10}}{P_1 C_{01}} \tag{2}$$

where P_i i = 0, 1 is the hypothesis priors while C_{01} and C_{10} are respectively the costs of miss and false alarm. These two costs are usually chosen by the developer.

The Likelihood Ratio Test (LRT) - 2

- In for instance medical applications the misses usually are more costly than false alarms.
- In other applications the two types of errors are equally costly, i.e $C_{01}=C_{10}$. Using the Bayes law $p(x/H_i)P_i=P(H_i/x)p(x)$ we then can reformulate the LRT to

$$L(x) = \frac{P(H_1/x)}{P(H_0/x)} \le 1 \tag{3}$$

- This is called the Maximum A Posteriori (MAP) detector and corresponds to the detector with minimum number of errors.
- In some applications there is a required maximum value on one of the error types.
- The Neyman-Pearson (NP) detector assumes a fixed P_{FA} . From this the threshold and thus the P_M is found.
- ullet Instead we can start with a fixed P_M and derive the threshold and P_{FA}

Different detection cases

- ullet The LR treshold λ is mostly dependent on choice of detection method
- The LR is dependent on the problem case
- In this course we will assume gaussian noise $p(w) = N(0, \sigma^2)$, i.e.

$$H_0 : x(n) = w(n) \ n = 0, ..., N-1$$

- ullet We will investigate the following cases for H_1 :
 - Constant in noise x(n) = A + w(n)
 - Random signal in noise x(n) = s(n) + w(n) where $p(s) = N/A, \sigma_s^2$
 - Deterministic sequence in noise x(n) = s(n) + w(n)

Detection of constant in gaussian noise

Defining the log lilkelihood ratio test

$$LL(\mathbf{x}) = log[p(\mathbf{x}/H_1) - log[p(\mathbf{x}/H_0) \le log(\lambda)]$$

• Using the independence assumption $p(\mathbf{x}) = \prod_{n=0}^{N-1} p(x(n))$ we get

$$LL(\mathbf{x})) = \frac{NA}{\sigma^2} z - \frac{NA^2}{2\sigma^2} \le \log(\lambda) \Rightarrow$$

$$z \le \frac{A\sigma^2}{N} \log(\lambda) + \frac{A}{2} = \eta \tag{4}$$

where $z = T(x) = \frac{1}{N} \sum x(n)$ is the sample mean

- Note that eq. 4 is an equivalent test for the LRT. In general the term z=T(x) is called a sufficient statistic
- The false alarm is then given by

$$P_{FA} = \int_{\eta}^{\infty} p(z/H_0)dz = \int_{\eta}^{\infty} N(0, \sigma^2/N)dz = Q(\frac{\eta\sqrt{N}}{\sigma})$$
 (5)

Detecting a random variable

- Now we have H_1 : x(n) = s(n) + w(n) n = 0, ..., N-1 where s is a random variable with density $p(s) = N(A, \sigma_s^2)$
- This leads to the distributions $p(x/H_0) = N(0, \sigma^2)$ and $p(x/H_1) = N(A, \sigma_x^2)$ where $\sigma_x^2 = \sigma_s^2 + \sigma^2$
- Deriving the test for the sufficient statistics we get

$$z = T(\mathbf{x}) = \sigma_s^2 \bar{x}_{sp} + 2A\sigma^2 \bar{x}_{sm} \leq \sigma^2 A^2 + \sigma_s^2 \sigma_x^2 \left[log(\frac{\sigma_x^2}{\sigma^2}) + \frac{2}{N}log(\lambda)\right]$$
 (6)

where $\bar{x}_{sp} = \sum_n x^2(n)/N$ (power estimate) and $\bar{x}_{sm} = \sum_n x(n)/N$ (sample mean)

- ullet z does not have a simple density, thus P_{FA} and P_{M} are not easily derived
- ullet For the case A=0 we have a power/energy detector; i.e. $z=\bar{x}_{sp}$

Detecting a deterministic sequence

- The hypothesis densities are $p(x(n)/H_1) = N(s(n), \sigma^2)$ and $p(x(n)/H_0) = N(0, \sigma^2)$
- Deriving $LLRT(\mathbf{x})$ we end up with

$$z = T(\mathbf{x}) = \sum_{n} x(n)s(n) \leq 2\sigma^{2}log(\lambda) + E_{s} = \eta$$
 (7) where $E_{s} = \sum_{n} s^{2}(n)$

- This detector is called a correlator and/or a matched filter
- We showed that $p(z/H_0) = N(0, \sigma^2 E_s)$ and $p(z/H_1) = N(E_s, \sigma^2 E_s)$
- Thus the false alarm is given by

$$P_{FA} = \int_{\eta}^{\infty} p(z/H_0)dz = \int_{\eta}^{\infty} N(0, \sigma^2 E_s)dz = Q(\frac{\eta}{\sqrt{E_s}\sigma})$$
 (8)

Generalized LLRT

- ullet The value of the constant A in the H_1 hypothesis is usually not known
- We measure $\mathbf{x} = [x(n), n = 0, ..., N-1]$ but we do not know the mean A of $p(x/H_1) = N(A, \sigma^2)$
- What about using the estimate $\hat{A} = \sum_{n} x(n)/N$?
- Problem is that we do not know if we have the case H_1 (estimate is good) or H_0 (estimate is wrong)
- The estimator gives $H_1: \widehat{A} = A + q(n)$ or $H_0: \widehat{A} = q(n)$ where $p(q) = N(0, \sigma^2/N)$
- If we know the sign of A we can can set up a treshold η based on $P(x/H_0) = P(q/H_0) = \eta << 1$.
- Another option is to use the absolute value |x(n)|, however p(|x|) is not Gaussian.

NTNU