Removing Bias from Word Embeddings

Fairness in AI: A replication study

Kylian van Geijtenbeek Thom Visser Martine Toering Iulia Ionescu

> MSc Artificial Intelligence University of Amsterdam

January 31, 2020

1/15

Method Results and Discussion Conclusion
00000 00 00 0

Introduction

Introduction

OOOO

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings.

- Gender bias in word embeddings
- Bias removed with debiasing algorithms (2)
- Performance of embeddings does not deteriorate
- Similar biases in other publicly available embeddings

Introduction

Popular word embeddings:

- Word2vec
- GloVe
- FastText

Method Results and Discussion Conclusion
00000 00 0

Introduction

Introduction

Word2vec example: dog

- The man was walking his dog, when he tripped.
- The dog is chasing the cat.
- The dog barked a few times but then ate his food.

Context words: man, walking, tripped, chasing, cat, barked, ate, food

Word2vec example: dog

Context words: man, walking, tripped, chasing, cat, barked, ate, food Not context words: girl, car, tree, dishwasher, table, laptop, water, war

Positive samples:

- (dog, man)
- (dog, walking)
- (dog, tripped)
- (dog, cat)
- ..

Negative samples:

- (dog, girl)
- (dog, car)
- (dog, tree)
- (dog, dishwasher)
- ..

Introduction

Introduction 00000

Word2vec example: dog

Let each word be a d-dimensional vector, e.g.:

```
dog = [0.0134, 0.0692, 0.0273, \dots]
man = [0.0621, 0.0074, 0.0922, \dots]
```

We call this the *embedding* of a word.

Now we train the embeddings such that:

- the cosine similarity between two words in a positive sample is high.
- the cosine similarity between two words in a negative sample is low.

(UvA)

troduction Method Results and Discussion Conclusion

OOOO ●OOOOO OO O

Method

Claim 1: There is gender bias in word embeddings

- Qualitative analysis:
 - Inspect analogies (male vs female)
 - Inspect projection professions on gender subspace
- Quantitative analysis: WEAT score [-2, 2]

Figure 1: Vector differences between words represent relationship

(UvA) FACT AI January 31, 2020 7/15

Method

Claim 2: This bias can be removed with their debiasing algorithms (2)

1. Identify gender subspace

- calculate means of defining sets (Equation 1)
- calculate SVD (C) (Equation 2)
- k-dimensional gender subspace B is first k rows of SVD (k = 1 to match original paper)

$$\mu_i := \sum_{w \in D_i} \frac{\vec{w}}{|D_i|} \tag{1}$$

$$C := \sum_{i=1}^{n} \sum_{w \in D_i} \frac{(\vec{w} - \mu_i)(\vec{w} - \mu_i)^T}{|D_i|}$$
 (2)

duction Method Results and Discussion Conclusion

OO OO OO OO OO OO O

Method

Claim 2: This bias can be removed with their debiasing algorithms (2)

2a. Hard debiasing (neutralize and equalize)

- gender neutral words shifted to zero in the gender subspace (neutralized) by subtracting projection of neutral word embedding vector onto gender subspace and renormalizing resulting embedding to unit length
- embedding is equalized, gender-pairs (princess-prince) adjusted in a way that all gender neutral words are equidistant to both female and male word in pair

$$\mu := \sum_{w \in E} \frac{\vec{w}}{|E|} \tag{3}$$

$$\vec{w} := \mu - \mu_B + \sqrt{1 - ||\mu - \mu_B||^2} \frac{\vec{w}_B - \mu_B}{||\vec{w}_B - \mu_B||} \tag{4}$$

→□▶→□▶→重▶→重 ● の○

Method

Claim 2: This bias can be removed with their debiasing algorithms (2)

2b. Soft debiasing

$$\min_{T} ||(TW)^{T}(TW) - W^{T}W||_{F}^{2} + \lambda ||(TN)^{T}(TB)||_{F}^{2}$$
 (5)

Optimization problem:

$$\min_{X} ||\Sigma U^{T}(X - I)U\Sigma||_{F}^{2} + \lambda ||N^{T}XB||_{F}^{2} \qquad s.t.X \succeq 0.$$
 (6)

T debiasing transformation

W matrix of all embedding vectors

 λ hyperparameter to balance bias removal and conservation

N matrix of embedding vectors of gender neutral words

B gender subspace

$$X = T^T T$$

 $\boldsymbol{\Sigma}$ diagonal matrix after SVD on W

 $W = U \Sigma V^T$, U and V orthogonal matrices

(UvA) FACT AI January 31, 2020 10 / 15

 troduction
 Method
 Results and Discussion
 Conclusion

 0000
 0000€0
 00
 0
 0

Method

Claim 3: The performance of the embeddings does not deteriorate after using these algorithms

• Similarity benchmarks: RG-65 and WS-353

Analogy benchmark: MSR

Figure 2: Similarity benchmarks.

11 / 15

 troduction
 Method
 Results and Discussion
 Conclusion

 0000
 00000 ●
 00
 0
 0

Method

Claim 4: There are similar biases in other publicly available embeddings

- Word2vec
- FastText
- GloVe

Figure 3: Similar occupational bias between word embeddings Word2vec and FastText. Datapoints represent occupation words.

(UvA) FACT AI January 31, 2020 12/15

roduction Method Results and Discussion Conclusion

○○○○ ○○○○ ●○ ○ ○

Results and Discussion

Qualitative analysis bias:

FastText					
Professions closest to <i>she</i>					
nurse	librarian				
socialite	dancer				
housekeeper	singer				
receptionist	vocalist				
Professions closest to he					
inventor	commander				
pundit	electrician				
carpenter	footballer				
headmaster	architect				
Analogies woman : man					
supermodel:footballer					
beautiful:brilliant					

Table 1: Examples of bias present in analogies created from the word embeddings FastText before debiasing as well as gender bias in relation to occupations

(UvA) FACT AI January 31, 2020 13 / 15

<ロト <部ト < 注 ト < 注 ト

oduction Method Results and Discussion Conclusion

OOO OOOOO O O O

Results and Discussion

Quantitative analysis bias and Performance of embeddings:

Word2vec	RG-65	WS-353	MSR	WEAT
Before	77.7	68.8	46.8	1.5
Hard-debiased	77.5	68.5	47.0	0.4
Soft-debiased	77.7	68.8	46.8	-0.1
GloVe	RG-65	WS-353	MSR	WEAT
Before	83.1	66.4	37.5	1.7
Hard-debiased	83.4	66.6	37.6	0.5
Soft-debiased	83.1	66.4	37.4	0.8
FastText	RG-65	WS-353	MSR	WEAT
Before	83.9	74.1	55.9	1.5
Hard-debiased	83.5	74.2	56.0	0.5
Soft-debiased	84.3	74.1	54.7	0.4

Table 2: Performance of small sets of Word2vec, GloVe and FastText embeddings and WEAT before and after debiasing.

(UvA) FACT AI January 31, 2020 14 / 15

4日 > 4回 > 4 厘 > 4 厘 >

d Results and

Conclusion

- Gender bias in word embeddings
- Bias removed with debiasing algorithms (2)
- Performance of embeddings does not deteriorate
- Similar biases in other publicly available embeddings

Conclusion

- Gender bias in word embeddings ✓
- Bias removed with debiasing algorithms (2)
- Performance of embeddings does not deteriorate
- Similar biases in other publicly available embeddings

d Results and

ntroduction 00000

Conclusion

- Gender bias in word embeddings ✓
- Bias removed with debiasing algorithms (2)
- Performance of embeddings does not deteriorate
- Similar biases in other publicly available embeddings

d Results and

Conclusion

Claims from paper

- Gender bias in word embeddings ✓
- Bias removed with debiasing algorithms (2)
- Performance of embeddings does not deteriorate
- Similar biases in other publicly available embeddings

Conclusion

od Results

Conclusion

Claims from paper

- Gender bias in word embeddings ✓
- Bias removed with debiasing algorithms (2)
- Performance of embeddings does not deteriorate ✓
- Similar biases in other publicly available embeddings \checkmark

Conclusion