Grundbegriffe der Informatik Aufgabenblatt 1

Matr.nr.:				
Nachname:				
Vorname:				
Tutorium:	Nr.	Name des Tutors:		
Ausgabe:	22. Oktober	2014		
Abgabe:	31. Oktober	1. Oktober 2014, 12:30 Uhr		
	im GBI-Briefkasten im Untergeschoss			
von Gebäude 50.34				
Lösungen werden nur korrigiert, wenn sie				
• rechtzeitig,		1		
• in Ihrer eigenen Handschrift,				
• mit dieser Seite als Deckblatt und				
• in der oberen linken Ecke zusammengeheftet				
abgegeben wei	ruen.			
Vom Tutor au	ıszufüllen:			
erreichte Punkte				
Blatt 1:	/ 15	+3		
Blätter 1 – 1:	: / 15	+3		

Aufgabe 1.1 (6 Punkte)

Eine Relation R auf einer Menge M heißt genau dann konfluent, wenn

$$\forall x \in M \forall y_1, y_2 \in M : (xRy_1 \land xRy_2 \implies \exists z \in M : y_1Rz \land y_2Rz).$$

Solche Relationen treten bei Termersetzungssystemen auf, die von funktionalen Programmiersprachen zum Musterabgleich benutzt werden.

Gegeben seien die folgenden Relationen auf \mathbb{N}_0 : $R_1 = \{\}$, $R_2 = \{(0,0)\}$, $R_3 = \{(0,1), (0,2), (0,3), (1,3), (2,3), (3,3)\}$, $R_4 = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x = y\}$, $R_5 = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x < y\}$ und $R_6 = \{(x,y) \in \mathbb{N}_0 \times \mathbb{N}_0 \mid x \text{ teilt } y\}$.

Begründen Sie für jede dieser Relationen, ob sie konfluent ist oder nicht.

Hinweis: Eine ganze Zahl $a \in \mathbb{Z}$ teilt eine ganze Zahl $b \in \mathbb{Z}$ genau dann, wenn eine ganze Zahl $x \in \mathbb{Z}$ existiert so, dass ax = b gilt.

Aufgabe 1.2 (2+1 Punkte)

Für zwei Relationen $R_1 \subseteq A \times B$ und $R_2 \subseteq A \times C$ heißt die Relation

$$R_1 \bowtie R_2 = \{(y,z) \in B \times C \mid \exists x \in A : (x,y) \in R_1 \land (x,z) \in R_2\}$$

Verbund von R_1 und R_2 . Diese und verwandte Operationen kommen bei relationelen Datenbanken vor, die in vielen Unternehmen verwendet werden.

a) Es seien $A = \mathbb{N}_0$, $B = \{a, b, c, d, e\}$ und $C = \{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \varphi, \psi\}$ drei Mengen. Ferner seien

$$R_1 = \{(1,c), (2,a), (3,b), (4,d), (5,e)\}$$
 und $R_2 = \{(1,\alpha), (1,\zeta), (1,\psi), (3,\alpha), (3,\gamma), (4,\epsilon)\}.$

Geben Sie die Relation $R_1 \bowtie R_2$ an.

b) Geben Sie konkrete Mengen A, B und C und Relationen R_1 und R_2 so an, dass $R_1 \bowtie R_2 = B \times C$ gilt.

Aufgabe 1.3 (3 Punkte)

Für jedes $n \in \mathbb{N}_0$ sei die Relation R_n auf \mathbb{N}_0 gegeben durch

$$\forall x,y \in \mathbb{N}_0 : (xR_ny \iff n \text{ teilt } x-y) .$$

Geben Sie R_0 , R_1 und R_2 an.

Aufgabe 1.4 (3 Punkte)

Es seien A und B zwei Mengen. Wie viele Relationen $R \subseteq A \times B$ gibt es, die rechtstotal und linkseindeutig sind? Begründen Sie ihre Antwort.

*Aufgabe 1.5 (3 Extrapunkte)

Es seien A und B zwei endliche Mengen. Beweisen Sie, dass |A| = |B| genau dann gilt, wenn eine linkseindeutige, rechtseindeutige, linkstotale und rechtstotale Relation zwischen A und B existiert.