Introduction to Text Generation

Outline

- > Problem Introduction
- > Simple Examples
- > Code Implementation

Definition

Text generation is the process of using a computer program or algorithm to automatically create human-like text based on certain inputs. Techniques range from rule-based systems to advanced AI models like LSTMs and Transformers

INPUT

Inputs can vary from simple prompts or seed text to more complex data like keywords, structured information, or images, which the model uses to generate relevant text.

OUTPUT

The output is the coherent and contextually relevant text generated by the model, which aims to mimic human writing for various applications

Definition

The task is to predict what word comes next.

$$P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})$$

- Input: a sequence of words $x^{(1)}, x^{(2)}, \dots, x^{(t)}$
- Output: The most probable next word $\boldsymbol{x}^{(t+1)}$

$$\boldsymbol{x}^{(t+1)} \in V = \{ \boldsymbol{w}_1, ..., \boldsymbol{w}_{|V|} \}$$

the students opened their _____exams minds

Example:

- The students opened their → books
- He was good at \rightarrow basketball
- I enjoyed reading this → books
- He was a part \rightarrow of

Why Text Generation?

Application Area	Description		
Content Creation	Generating articles, blog posts, stories, and poetry to assist in creative writing and content development.		
Customer Service Automation	Powering chatbots and virtual assistants to provide instant responses to customer inquiries, improving service efficiency.		
Language Translation	Providing rough translations between languages, useful for less commonly spoken languages with scarce resources.		
Programming Assistance	Generating code snippets, explaining code, and offering debugging suggestions to speed up software development.		
Educational Tools	Creating educational content like summaries, quizzes, and explanatory notes tailored to students' understanding levels.		
Email and Communication Assistance	Assisting in drafting emails, reports, and presentations with appropriate tone and style for the audience.		

n-gram

- **Definition**: A **n-gram** is a chunk of **n** consecutive words
 - o unigrams: "the", "students", "opened", "their"
 - o bigrams: "the students", "students opened", "opened their"
 - o trigrams: "the students opened", "students opened their"
 - 4-grams: "the students opened their"
- **Idea**: Collect statistics about how frequent different n-grams are, and use these to predict next word.

n-gram

Text Generation Model

output distribution

$$\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h} + \boldsymbol{b}_2) \in \mathbb{R}^{|V|}$$

hidden layer

$$\boldsymbol{h} = f(\boldsymbol{W}\boldsymbol{e} + \boldsymbol{b}_1)$$

concatenated word embeddings

$$e = [e^{(1)}; e^{(2)}; e^{(3)}; e^{(4)}]$$

words / one-hot vectors $oldsymbol{x}^{(1)}, oldsymbol{x}^{(2)}, oldsymbol{x}^{(3)}, oldsymbol{x}^{(4)}$

♦ Text Generation Model

"Both the brown fox and the brown dog slept."

```
"Both the brown fox and the brown dog slept."
{ (Both, the): [brown] }
        "Both the brown fox and the brown dog slept."
{ (Both, the): [brown],
 (the, brown): [fox], }
        "Both the brown fox and the brown dog slept."
{ (Both, the): [brown],
 (the, brown): [fox],
 (brown,fox): [and], }
        "Both the brown fox and the brown dog slept."
```

```
"Both the brown fox and the brown dog slept."

{ (Both, the): [brown],
  (the, brown): [fox],
  (brown,fox): [and],
  (fox, and): [the], }
```

```
"Both the brown fox and the brown dog slept."

{ (Both, the): [brown],
  (the, brown): [fox],
  (brown,fox): [and],
  (fox, and): [the],
  (and, the): [brown],}
```

```
"Both the brown fox and the brown dog slept."

{ (Both, the): [brown],
    (the, brown): [fox, dog],
    (brown,fox): [and],
    (fox, and): [the],
    (and, the): [brown],}
```

Evaluation Metric

Precision and Recall of Words

Predict/Candidate/Output: Tôi học NLP của AI VIET NAM

Reference: Tôi đang học lớp AI của AI VIET NAM

```
\frac{\text{correct}}{\text{candidate\_length}} = \frac{6}{7}
\frac{\text{correct}}{\text{candidate\_length}} = \frac{6}{7}
\frac{\text{correct}}{\text{reference\_length}} = \frac{6}{9}
F1-score 1-gram
\frac{\text{precision} \times \text{recall}}{\text{(precision} + \text{recall)/2}} = 0.75
```

Evaluation Metric

• BLEU Score

$$\frac{\text{correct}}{\text{candidate_length}} = \frac{6}{7}$$

$$\frac{\text{correct}}{\text{reference_length}} = \frac{6}{9}$$

N-gram overlap between machine translation candidate and reference translation

Compute precision for n-grams of size 1 to 4

With 4-gram and add brevity penalty (for too short translations):

BLEU = min
$$\left(1, \frac{\text{candidate_length}}{\text{reference_length}}\right) \left(\prod_{i=1}^{4} \text{Precision}_i\right)^{1/4}$$

Evaluation Metric

Precision and Recall of Words

Predict/Candidate/Output: Tôi học NLP của AI VIET NAM

Reference: Tôi đang học lớp CV và NLP của AI

Precision	1-gram	2-gram	3-gram	4-gram
	6/7	3/6	2/5	1/4

Multiple reference: N-grams may match in any of the reference and closest reference length used

$$BLEU = min\left(1, \frac{candidate_length}{reference_length}\right) \left(\prod_{i=1}^{4} Precision_i\right)^{1/4}$$

Brevity penalty = 7/9

BLEU = 0.35

Text Generation Code Overview

Text Generation Code Overview

Import Library

import torch: Imports PyTorch, a library for tensor computation and deep learning.

import torch.nn as nn: Brings in PyTorch's neural network module, aliased as nn, for building network layers.

from torchtext.data.utils import
 get_tokenizer: This function is used
 to split text into tokens (e.g., words or
 subwords), which is a common
 preprocessing step in NLP.

```
import torch
import torch.nn as nn
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import matplotlib.pyplot as plt
```

import matplotlib.pyplot as plt:is a
library for creating static, interactive, and
animated visualizations in Python

from torchtext.vocab import build_vocab_from_iterator:
This function is used to build a vocabulary from an iterator. The
vocabulary maps tokens (words) to indices and is used to convert text
data into numerical form that can be processed by neural networks.

Data Preparation

```
SET corpus TO
    "ăn quả nhớ kẻ trồng cây",
    "có chí thì nên"
SET data size TO len(corpus)
SET voca\overline{b} size T0 12
SET sequence length TO 5
SET tokenizer TO get tokenizer('basic english')
DEFINE FUNCTION yield tokens(examples):
    FOR text IN examples:
        yield tokenizer(text)
SET vocab TO build vocab from iterator(yield tokens(corpus),
                                   max tokens=vocab size,
                                   specials=["<unk>", "<pad>"]
vocab.set default index(vocab["<unk>"])
vocab.get stoi()
```


vocab.get stoi(

Code Implementation

```
Data Preparation
    corpus TO
    "ăn quả nhớ kẻ trồng cây",
    "có chí thì nên"
SET data size TO len(corpus)
SET vocab size TO 12
SET sequence length TO 5
SET tokenizer TO get tokenizer('basic english'
DEFINE FUNCTION yield_tokens(examples):
    FOR text IN examples:
        yield tokenizer(text)
SET vocab TO build vocab from iterator(yield tokens(sorpus),
                                  max tokens=vocab size,
                                  specials=["<unk>", "<pad>"
vocab.set default index(vocab["<unk>"])
```

Defines a list named `corpus` containing two phrases. This serves as the dataset for this example.

Configuration for dataset and modeling.

- Calculates the size of the corpus by counting the number of items in the list and stores it in `data_size`
- Sets the maximum size of the vocabulary to 12. This means only the first 12 unique tokens will be considered in the vocabulary.
- Defines the sequence length as 5, meaning that inputs/outputs will be processed or generated in chunks of 5 tokens at a time.

Defines the tokenizer: This tokenizer splits text into words, lowercasing, and removing punctuation.

Defines a generator function `yield_tokens` that takes an iterable of text examples (such as sentences) and yields lists of tokens for each example.

Data Preparation

```
corpus TO
    "ăn quả nhớ kẻ trồng cây",
    "có chí thì nên"
SET data size TO len(corpus)
   vocab size TO 12
SET sequence length TO 5
SET tokenizer TO get tokenizer('basic english')
DEFINE FUNCTION yield tokens(examples):
    FOR text IN examples:
        vield tokenizer(text)
SET vocab TO build vocab from iterator(yield tokens(corpus),
                                  max tokens=vocab size,
                                  specials=["<unk>", "<pad>"]
vocab.set default index(vocab["<unk>"])
vocab.get stoi(
```

Creates a vocabulary from the tokenized data and then configures the vocabulary to handle unknown tokens. It limits the vocabulary to vocab_size most frequent tokens and includes special tokens <unk> for unknown words and <pad> for padding.

- Sets the default index for the vocabulary to be the index of the <unk> token (any token not found in the vocabulary will be treated as an unknown token)
- Retrieves the mapping of tokens to indices from the vocabulary and prints it.

```
Data Preparation
```

```
1 corpus = [
2     "ăn quả nhớ kẻ trông cây",
3     "có chí thì nên"
4 ]
```

```
{'ăn': 11,
      'thì': 9,
     'nhớ': 6,
     'ke': 5,
      'trông': 10
      'qua': 8,
      'cây': 3,
      'chí': 2,
9
      '<pad>': 1,
10
      'nên': 7,
      'có': 4,
11
      '<unk>': 0}
12
```


ăn quả nhớ kẻ trồng cây

```
{'ăn': 11,
      'thì': 9,
      'nhớ': 6,
      'ke': 5,
      'trông': 10
      'qua': 8,
      'cây': 3,
      'chí': 2,
      '<pad>': 1,
      'nên': 7,
10
      'có': 4,
11
      '<unk>': 0}
12
```


ăn quả nhớ kẻ trồng cây

```
{'ăn': 11,
      'thì': 9,
      'nhớ': 6,
      'ke': 5,
      'trông': 10
      'qua': 8,
      'cây': 3,
      'chí': 2,
      '<pad>': 1,
      'nên': 7,
10
      'có': 4,
11
      '<unk>': 0}
12
```

Text Generation Example

ăn quả quên kẻ trồng cây

```
{'ăn': 11,
      'thì': 9,
      'nhớ': 6,
      'kẻ': 5,
      'trông': 10
      'quả': 8,
      'cây': 3,
      'chí': 2,
      '<pad>': 1,
      'nên': 7,
10
      'có': 4,
11
12
      '<unk>': 0}
```

Text Generation Example

có chí thì nên

```
{'ăn': 11,
      'thì': 9,
      'nhớ': 6,
     'ke': 5,
      'trông': 10
      'qua': 8,
      'cây': 3,
      'chí': 2,
      '<pad>': 1,
      'nên': 7,
10
      'có': 4,
11
12
      '<unk>': 0}
```

Text Generation Example

có chí thì nên

```
{'ăn': 11,
      'thì': 9,
      'nhớ': 6,
      'kẻ': 5,
      'trông': 10
      'qua': 8,
      'cây': 3,
      'chí': 2,
      '<pad>': 1,
      'nên': 7,
10
      'có': 4,
11
12
      '<unk>': 0}
```

Text Generation Example

ăn quả nhớ kẻ trồng cây

Data Preparation

```
SET data x T0 []
SET data y TO []
FOR vector IN corpus:
    SET vector TO vector.split()
    SET x T0 vector[:-1]
    SET y TO vector[1:]
    FOR i IN range(len(x)):
        data x.append(x[:i+1])
        data y.append(y[i])
DEFINE FUNCTION vectorize(x, y, vocab, sequence length):
    SET x ids TO [vocab[token] FOR token IN x][:sequence length]
    SET x ids T0 x ids + [vocab["<pad>"]] * (sequence length - len(x))
    RETURN x ids, vocab[y]
SET data x ids T0 []
SET data y ids T0 []
FOR x, y IN zip(data x, data y):
    SET x ids, y ids TO vectorize(x, y, vocab, sequence length)
    data x ids.append(x ids)
    data y ids.append(y ids)
```

Step1: Build Training Data

- Processes the corpus to create training data
 (data_x and data_y) for a sequence prediction task
- Each sentence in the corpus is split into words
- For each prefix of words in a sentence, it creates an input sequence (data_x) and the corresponding next word in the sequence (data_y)

Step2 & 3: Convert to ID & Pad and Truncate

- Defines a function vectorize to convert input sequences (x) and target words (y) into their numerical representations using a given vocabulary (vocab)
- All input sequences are padded or truncated to a specified length (sequence_length)

Applies this function to each pair of input sequence and target word in data_x and data_y, creating lists of numericalized inputs (data_x_ids) and targets (data_y_ids).

Text Generation Model

```
7 SET data_size TO len(corpus)
8 SET vocab_size TO 12
9 SET sequence_length TO 5
```


Text Generation Model

```
from torchinfo import summary
    input data = torch.randint(low=0, high=vocab_size-1, size=(8, sequence_length))
     summary(model, input data = input data)
Layer (type:depth-idx)
                                          Output Shape
                                                                    Param #
Text Generation Model
                                          [8, 12]
                                          [8, 5, 4]
—Embedding: 1-1
 -RNN: 1-2
                                          [8, 5, 4]
 -Linear: 1-3
                                          [8, 12]
                                                                    252
Total params: 340
Trainable params: 340
Non-trainable params: 0
Total mult-adds (M): 0.00
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 0.01
```

Compile and Train

```
SET criterion TO nn.CrossEntropyLoss()
       optimizer TO torch.optim.Adam(model.parameters(), lr=0.05)
   SET EPOCH TO 35
    SET losses TO []
   FOR i IN range(EPOCH):
        model.train()
10
11
        optimizer.zero grad()
12
13
        SET outputs TO model(data x ids)
14
15
        SET loss TO criterion(outputs, data y ids)
16
        losses.append(loss.item())
17
        OUTPUT(losses[i])
18
19
        loss.backward()
20
21
        optimizer.step()
```


{'ăn': 11,

'thì': 9, 'nhớ': 6, 'kẻ': 5,

'trông': 10,

'quả': 8,

'cây': 3,

'chí': 2,

'nên': 7,

'<pad>': 1,

Inference

SET promt TO 'có chí'

```
Processing a prompt example
>> OUTPUT: [4, 2, 1, 1, 1]
```

```
2 SET promt TO promt.split()
3 SET promt_ids TO [vocab[token] FOR token IN promt][:sequence_length]
4 SET promt_ids TO promt_ids + [vocab["<pad>"]] * (sequence_length - len(promt))
5
6
7 FOR i IN range(sequence_length - len(promt)):
8 SET promt_tensor TO torch.tensor(promt_ids, dtype=torch.long).reshape(1, -1)
9 SET outputs TO model(promt_tensor)
10 SET next_id TO torch.argmax(outputs, axis=-1)
11 SET promt_ids[len(promt)+i] TO next_id.item()
```

Inference

- >> OUTPUT: [4, 2, 9, 1, 1]
- >> OUTPUT: [4, 2, 9, 7, 1]
- >> OUTPUT: [4, 2, 9, 7, 10]

model loss

epoch

Plot Results

```
2.5
                                         2.0
plt.plot(losses, label='Train')
                                         1.5
plt.title('model loss')
                                       loss
plt.ylabel('loss')
plt.xlabel('epoch')
                                         1.0
plt.show()
                                         0.5
                                         0.0
                                                    5
                                                                15
                                                                             25
                                                          10
                                                                      20
                                                                                          35
                                                                                   30
```

