

Hi3798M V100 硬件设计 使用指南

文档版本 06

发布日期 2015-11-02

版权所有 © 深圳市海思半导体有限公司 2015。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

商标声明

(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为总部 邮编: 518129

网址: http://www.hisilicon.com

客户服务邮箱: support@hisilicon.com

前言

概述

本文档主要介绍硬件设计中关于单板阻抗控制原理以及方法和案例;提供CPU、CORE 电源 DC-DC 外围电阻值选型指导。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3798M	V1XX

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 硬件开发工程师

作者信息

章节号	章节名称	作者信息	
全文	全文	T00171014/00182267	

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本	修订说明	
2014-07-22	00B01	第1次临时版本发布。	
2014-08-15	00B02	新增3、4、5章节。	
2014-10-30	01	更新第5章。删除之前的版本升级内容,新增3个FAQ。 修改第一章关于阻抗计算工具的描述。	
2014-11-20	02	新增插入第3章"单板待机设计说明"。	
2015-04-30	03	新增 6.4、6.5 章节 QFP 封装的 FAQ。	
2015-06-04	04	新增 6.6 章节。	
2015-07-29	05	新增 6.7 章节。	
2015-11-02	06	新增 6.8 章节。	

目录

前	〕 言	iii
1	单板阻抗控制说明	1-1
	1.2 阻抗控制方法	1-2
	1.2.1 阻抗计算工具	1-2
	1.2.2 Hi3798MV100 单板阻抗控制要求	1-5
	1.3 单板阻抗控制案例	1-5
	1.3.1 两层板阻抗控制	1-5
	1.3.2 四层板阻抗控制	1-8
	1.4 制板参数确认	1-12
2 (CPU、CORE 电源 DC-DC 外围电阻值选型	2-1
3	单板待机设计说明	3-1
4	网口浪涌差模过 500V 设计	4-1
5	单板 ESD 过 6kV 设计	5-1
6]	FAQ	6-1
	6.1 GPIO 电源域问题	6-1
	6.2 eMMC 相关上电时序说明	6-1
	6.3 fSD/eMMC CLK IO 驱动能力说明	6-2
	6.4 QFP 封装增强 ESD 性能说明	6-3
	6.5 QFP 封装增强散热性能说明	6-4
	6.6 启动模式异常说明	6-5
	6.7 DDR 768M 容量配置硬件说明	6-6
	6.8 Hi3798MV100 1F/1G 版本提升系统稳定性措施	6-6

插图目录

图 1-1 海思两层板 DDR 部分和主芯片部分走线参考设计	1-1
图 1-2 海思四层板 DDR 部分和主芯片部分走线参考设计	1-2
图 1-3 两层板单端阻抗计算模型	1-3
图 1-4 四层板单端阻抗计算模型	1-3
图 1-5 两层板差分阻抗计算模型	1-4
图 1-6 四层板差分阻抗计算模型	1-4
图 1-7 两层板叠层信息	1-6
图 1-8 两层板差分阻抗计 100Ω 计算模型	1-6
图 1-9 两层板差分阻抗计 90Ω 计算模型	1-7
图 1-10 四层板叠层信息	1-9
图 1-11 四层板差分阻抗计 100Ω 计算模型	1-9
图 1-12 四层板差分阻抗计 90Ω 计算模型	1-10
图 1-13 四层板单端阻抗计 50Ω 计算模型	1-11
图 2-2 PWM 调压原理结构图	2-2
图 3-1 海思 DMO 板电源树	3-1
图 4-1 网口浪涌差模过 500V 方案原理图	4-1
图 5-1 Hi3798MDMO1A 单板 BOTTOM 面屏蔽罩	5-1
图 5-2 Hi3798MHi3798MDMO1B 单板 BOTTOM 面屏蔽罩	5-2
图 5-3 Hi3798MHi3798MDMO1C 单板 BOTTOM 面屏蔽罩	5-2
图 5-4 Hi3798MHi3798MDMO1D 单板 BOTTOM 面屏蔽罩	5-3
图 6-1 1.8V GPIO 说明	6-1
图 6-2 3V3_MOS 缓启电路图	6-2
图 6-3 STANDBY_PWROFF 电路	6-3
图 6-4 3V3_STANDBY 电路	6-3
图 6-5 PLL 电路	6-4

图 6-6 PCB 散热通孔示意图	6-5
图 6-7 启动管脚上下拉电阻电路图	6-6
图 6-8 C264 示意截图	6-7
图 6-9 sysctrl_CA 和 sysctrl_noCA 页面修改截图	6-7
图 6-10 ddrphy 页面修改截图	6-7
图 6-11 ddr_poweron 页面修改截图	6-7
图 6-12 ddrphy 页面修改截图	6-7

表格目录

表 1-1 单端阻抗控制参数说明	1-3
表 1-2 差分阻抗控制参数说明	1-4
表 1-3 阻抗控制要求	1-5
表 1-4 100Ω 差分阻抗控制参数说明	1-6
表 1-5 90Ω 差分阻抗控制参数说明	1-7
表 1-6 100Ω 差分阻抗控制参数说明	1-9
表 1-7 90Ω 差分阻抗控制参数说明	1-10
表 1-8 50Ω 单端阻抗控制参数说明	1-11
表 2-1 CPU、CORE 电源 DC-DC 外围电阻值	2-1
表 3-1 Hi3798MV100 DMO 板待机功耗数据	3-2

单板信号线阻抗控制非常重要,影响到接口指标及性能,尤其是 DDR 部分,直接影响到系统的稳定性。在重要信号阻抗控制上,建议按照以下方式进行阻抗控制。

无论是两层板还是四层板, DDR 部分和主芯片部分走线完全拷贝海思 DEMO 板

图1-2 海思四层板 DDR 部分和主芯片部分走线参考设计

1.2 阻抗控制方法

单板设计中通过以下方法进行线宽、线距调整,达到阻抗控制的目的。

1.2.1 阻抗计算工具

采用单板阻抗计算工具,不同阻抗计算工具可能略有差别,但计算方法基本相同,归结为以下五个步骤来计算阻抗。

- 步骤1 选择单端走线阻抗控制或者差分阻抗控制。
- 步骤 2 根据两层板和四层板选择相应的选项。
- 步骤3 输入单板板材、信号走线等参数。
- 步骤 4 计算阻抗。
- 步骤 5 查看阻抗计算结果是否符合目标阻抗,若符合目标阻抗,按相关参数控制走线宽度及间距,若不符合返回步骤三。

----结束

在以上阻抗计算过程中,步骤三中的参数包括: H1、Er1、W1、W2、S1、G1、G2、D1、T1、C1、C2、C3、Cer,它们是影响阻抗的主要因素。

对于单端阻抗,阻抗计算模型和参数说明如图 1-3、图 1-4 所示。

图1-3 两层板单端阻抗计算模型

图1-4 四层板单端阻抗计算模型

表1-1 单端阻抗控制参数说明

参数	定义说明	取值说明	
H1	除去表层铜皮厚度的板材厚度	两层板可取单板厚度; 四层板是到参考平面的厚度	
Er1	PCB 板材介质常数	跟板材类型相关,推荐使用 FR-4 取值 4.2	
W1	信号线底层宽度	可变,根据阻抗值调整	
W2	信号线顶层宽度	信号线底层宽度减去 1mil	
G1	信号伴随地底层宽度	可变,推荐至少 20mil	
G2	信号伴随地顶层宽度	信号伴随地底层宽度减去 1mil	
D1	信号与伴随地空气距离	推荐两层板 5mil; 四层板大于 1.5 倍线宽	
T1	表层铜皮厚度	推荐 1.5mil	
C1	绿油厚度 1	对阻抗影响较小,默认 1mil	
C2	绿油厚度 2	对阻抗影响较小,默认 1mil	

参数	定义说明	取值说明	
C3	绿油厚度 3	对阻抗影响较小,默认 1mil	
CEr	绿油介质常数	推荐取值 4.2	

对于差分阻抗,阻抗计算模型和参数说明如图 1-5、图 1-6 和表 1-1 所示。

图1-5 两层板差分阻抗计算模型

图1-6 四层板差分阻抗计算模型

表1-2 差分阻抗控制参数说明

参数	定义说明	取值说明
Н1	除去表层铜皮厚度的板材厚度	两层板可取单板厚度; 四层板是到参考平面的厚度
Er1	PCB 板材介质常数	跟板材类型相关,推荐使用 FR-4 取值 4.2
W1	信号线底层宽度	可变,根据阻抗值调整
S1	差分信号线间距,空气距离	可变,根据阻抗值调整
W2	信号线顶层宽度	信号线底层宽度减去 1mil
G1	信号伴随地底层宽度	可变,推荐至少 20mil

参数	定义说明	取值说明	
G2	信号伴随地顶层宽度	信号伴随地底层宽度减去 1mil	
D1	信号与伴随地空气距离	推荐两层板 5mil; 四层板大于 1.5 倍线宽	
T1	表层铜皮厚度	推荐 1.5mil	
C1	绿油厚度 1	对阻抗影响较小,默认 1mil	
C2	绿油厚度 2	对阻抗影响较小,默认 1mil	
C3	绿油厚度 3	对阻抗影响较小,默认 1mil	
CEr	绿油介质常数	推荐取值 4.2	

1.2.2 Hi3798MV100 单板阻抗控制要求

Hi3798M V100 单板总共有 3 种阻抗(100 Ω 、90 Ω 、50 Ω)需要控制,如表 1-3 所示。

表1-3 阻抗控制要求

需控制阻抗信号线	四层板要求	两层板要求	误差
HDMI 四对差分线	100Ω	100Ω	±10%
DDR 四对 DQS 差分线	100Ω	100Ω	±10%
DDR 两对 CLK 差分线	100Ω	100Ω	±10%
网口两对差分线	100Ω	100Ω	±10%
USB 差分线	90Ω	90Ω	±10%
DDR 单端走线	50Ω	优先控线宽和线距,一般 阻抗约为 60~70Ω	±10%

1.3 单板阻抗控制案例

1.3.1 两层板阻抗控制

参看 PCB 叠层信息

板厚: 1.6mm≈63mil;

TOP 层和 BOTTOM 层铜厚 1.8mil;

图1-7 两层板叠层信息

	Layer Stack up	Thickness (mil)
	Silk Top Solder Top	Default
ART01	Solder Top	1.8(0.5az+plating)
PREPREG		\
ART02		1.8(0.5oz+plating)
	Solder Bot Silk Bot	Default

100Ω阻抗控制

需要控制 100Ω 阻抗的走线主要是 HDMI 四对差分线、DDR_DQS 差分线、DDR_CLK 差分线和网口两对差分线。

通过阻抗计算工具计算目标阻抗,如图 1-8 和表 1-4 所示。

图1-8 两层板差分阻抗计 100Ω 计算模型

表1-4 100Ω 差分阻抗控制参数说明

参数	定义说明	取值(mil)
H1	除去表层铜皮厚度的板材厚度	63
Er1	PCB 板材介质常数	4.2
W1	信号线底层宽度	5.5
W2	信号线顶层宽度	4.5
S1	差分信号线间距,空气距离	6
G1	信号伴随地底层宽度	20
G2	信号伴随地顶层宽度	19
D1	信号与伴随地空气距离	5

参数	定义说明	取值(mil)
T1	表层铜皮厚度	1.8
C1	绿油厚度 1	1
C2	绿油厚度 2	1
C3	绿油厚度 3	1
CEr	绿油介质常数	4.2

通过以上参数计算得阻抗为 104.78Ω。

因此, 在板厚 **1.6mm**, 板材介质常数 4.2 的情况下, 信号走线需要控制 **W1=5.5mil**; 差分信号空气距离需要控制 **S1=6mil**; 信号伴随地与信号走线空气距离需要控制 **D1=5mil**; 表层铜皮厚度需要控制 **T1=1.8mil**。

90Ω阻抗控制

需要控制 90Ω 阻抗的走线主要是 USB2.0 和 USB3.0 差分线。

通过阻抗计算工具计算目标阻抗,如图 1-9 和表 1-5 所示。

图1-9 两层板差分阻抗计 90Ω 计算模型

表1-5 90公差分阻抗控制参数说明

参数	定义说明	取值(mil)
H1	除去表层铜皮厚度的板材厚度	63
Er1	PCB 板材介质常数	4.2
W1	信号线底层宽度	6
W2	信号线顶层宽度	5
S1	差分信号线间距,空气距离	5

参数	定义说明	取值(mil)
G1	信号伴随地底层宽度	20
G2	信号伴随地顶层宽度	19
D1	信号与伴随地空气距离	5
T1	表层铜皮厚度	1.8
C1	绿油厚度 1	1
C2	绿油厚度 2	1
C3	绿油厚度 3	1
CEr	绿油介质常数	4.2

通过以上参数计算得阻抗为 96.85Ω。

因此,在板厚 **1.6mm**,板材介质常数 4.2 的情况下,信号走线需要控制 **W1=6mil**;差 分信号空气距离需要控制 **S1=5mil**;信号伴随地与信号走线空气距离需要控制 **D1=5mil**;表层铜皮厚度需要控制 **T1=1.8mil**

两层板 DDR 单端阻抗控制

两层板 DDR 单端走线优先控制信号走线线宽和线距、信号线与伴随地距离,建议完全按照海思 DEMO 板走线线宽和线距、伴随地和地过孔设计。

从 DEMO 板中可以看到,在板厚 **1.6mm**,板材介质常数 4.2 的情况下,信号走线需要控制 **W1=5mil**;两根包地信号空气距离需要控制 **S1=10mil**;信号伴随地与信号走线空气距离需要控制 **D1=5mil**;表层铜皮厚度需要控制 **T1=1.8mil**。

1.3.2 四层板阻抗控制

参看 PCB 叠层信息

板厚: 1.6mm≈63mil;

TOP 层和 BOTTOM 层铜厚: 1.8mil;

TOP 层和 BOTTOM 层到各自参考层距离: 4mil;

图1-10 四层板叠层信息

	Layer Stack up	Thickness (mil)
	Silk Top Solder Top	Default
ART01		1.8(0.5oz+plating)
PREPREG		4.0
GND 02		1.2(1.0oz)
CORE		XXX
POWWE03		1.2(1.0oz)
PREPREG		4.0
ART04		1.8(0.5oz+plating)
	Solder Bot Silk Bot	Default

100Ω阻抗控制

需要控制 100Ω 阻抗的走线主要是 HDMI 四对差分线、DDR DQS 差分线、DDR_CLK 差分线和网口两对差分线。

通过阻抗计算工具计算目标阻抗,如图 1-11 和表 1-6 所示。

图1-11 四层板差分阻抗计 100Ω 计算模型

表1-6 100Ω 差分阻抗控制参数说明

参数	定义说明	取值(mil)
H1	除去表层铜皮厚度的板材厚度	4
Er1	PCB 板材介质常数	4.2
W1	信号线底层宽度	4.5
W2	信号线顶层宽度	3.5
S1	差分信号线间距,空气距离	6
G1	信号伴随地底层宽度	20
G2	信号伴随地顶层宽度	19

参数	定义说明	取值(mil)
D1	信号与伴随地空气距离	6.75
T1	表层铜皮厚度	1.8
C1	绿油厚度 1	1
C2	绿油厚度 2	1
С3	绿油厚度 3	1
CEr	绿油介质常数	4.2

通过以上参数计算得阻抗为 95.32Ω。

因此,在板厚 **1.6mm**,板材介质常数 4.2 的情况下,信号走线需要控制 **W1=4.5mil**; 差分信号空气距离需要控制 **S1=6mil**; 信号伴随地与信号走线空气距离需要控制 **D1 大于 6.75mil** (可以不包地); 表层铜皮厚度需要控制 **T1=1.8mil**。

90Ω 阻抗控制

需要控制 90Ω 阻抗的走线主要是 USB2.0 和 USB3.0 差分线。

通过阻抗计算工具计算目标阻抗,如图 1-12 和表 1-7 所示。

表1-7 90Ω 差分阻抗控制参数说明

参数	定义说明	取值(mil)
H1	除去表层铜皮厚度的板材厚度	4
Er1	PCB 板材介质常数	4.2
W1	信号线底层宽度	6
W2	信号线顶层宽度	5

参数	定义说明	取值(mil)
S1	差分信号线间距,空气距离	7
G1	信号伴随地底层宽度	20
G2	信号伴随地顶层宽度	19
D1	信号与伴随地空气距离	6.75
T1	表层铜皮厚度	1.8
C1	绿油厚度 1	1
C2	绿油厚度 2	1
СЗ	绿油厚度 3	1
CEr	绿油介质常数	4.2

通过以上参数计算得阻抗为 87.35Ω。

因此,在板厚 **1.6mm**,板材介质常数 4.2 的情况下,信号走线需要控制 **W1=6mil**;差 分信号空气距离需要控制 **S1=7mil**;信号伴随地与信号走线空气距离需要控制 **D1 大于6.75mil**(可以不包地);表层铜皮厚度需要控制 **T1=1.8mil**。

50Ω阻抗控制

需要控制 50Ω 阻抗的走线主要是 DDR 单端走线。

通过阻抗计算工具计算目标阻抗,如图 1-13 和表 1-8 所示。

图1-13 四层板单端阻抗计 50Ω 计算模型

表1-8 50Ω 单端阻抗控制参数说明

参数	定义说明	取值(mil)
H1	除去表层铜皮厚度的板材厚度	4

参数	定义说明	取值(mil)
Er1	PCB 板材介质常数	4.2
W1	信号线底层宽度	5
W2	信号线顶层宽度	4
G1	信号伴随地底层宽度	20
G2	信号伴随地顶层宽度	19
D1	信号与伴随地空气距离	7.5
T1	表层铜皮厚度	1.8
C1	绿油厚度 1	1
C2	绿油厚度 2	1
C3	绿油厚度 3	1
CEr	绿油介质常数	4.2

通过以上参数计算得阻抗为 52.82Ω。

因此,在板厚 1.6mm,板材介质常数 4.2 的情况下,信号走线需要控制 W1=5mil;信号伴随地与信号走线空气距离需要控制 D1 大于 6.75mil(可以不包地);表层铜皮厚度需要控制 T1=1.8mil。

1.4 制板参数确认

按以上参数 Layout 完成后,投给板厂制板,板厂会根据阻抗控制要求微调走线线宽、线距甚至板材等参数,会发给 PCB Layout 工程师确认,建议 PCB Layout 工程师根据板厂给的参数重新用阻抗计算工具核对下阻抗是否正确。

2 CPU、CORE 电源 DC-DC 外围电阻值选型

表2-1 CPU、CORE 电源 DC-DC 外围电阻值

		2-1 0101 01						
Hi3798M	V100 CPU	,电源外围电	阻值推荐(V	/max=1.5,Vn	nin=0.92)			
Vref(V)	R1(kΩ)	R2(kΩ)	R3(kΩ)	R4(kΩ)	R5(kΩ)	C(uF)	Vmax(V)	Umin(V)
0.6	15	11.3	33	51	1	2.2	1.50	0.92
0.765	20	24.9	10	100	1	2.2	1.52	0.92
0.803	34.8	49.9	47	150	1	2.2	1.50	0.92
0.807	34.8	51	47	150	1	2.2	1.50	0.92
Hi3798M	V100 COR	E 电源外围印	· 电阻值推荐((Vmax=1.32,	Vmin=0.9)			
Vref(V)	R1(kΩ)	R2(kΩ)	R3(kΩ)	R4(kΩ)	R5(kΩ)	C(uF)	Vmax(V)	Umin(V)
0.6	14.7	13.7	14.7	100	1	2.2	1.32	0.90
0.8	26.1	49.9	4.99	200	1	2.2	1.32	0.90
0.807	20	39.2	5.49	150	1	2.2	1.32	0.90
0.765	27	45.3	12	200	1	2.2	1.32	0.90
0.92	12	39	11	82	1	2.2	1.32	0.90
0.923	18.7	61.9	33	113	1	2.2	1.32	0.90
0.925	20	66.5	34.8	121	1	2.2	1.32	0.90

- 注意
- 推荐使用 Vref 精度≤2%的 DC/DC。
- DC-DC 选型要求使用工作频率≥640kHz。

图2-2 PWM 调压原理结构图

3 单板待机设计说明

Hi3798MV100 芯片支持真待机,由于客户采用的板级 DC-DC 电源和 AC-DC 电源适配器存在效率差异,对于待机功耗有较大影响。针对待机功耗小于 0.5W 要求,下面给出了电源设计说明。

图3-1 海思 DMO 板电源树

海思参考设计方案采用 5V0 电源适配器方案,图 3-1 中蓝色字体是待机时候需要关断的电源,红色字体是待机不能关断的电源。

单板在正常工作的时候,海思 DMO 板上的待机功耗如表 3-1 所示。

表3-1 Hi3798MV100 DMO 板待机功耗数据

功率计功耗(W)	5V0 适配器电流(mA)	5V0 适配器电压(V)
0.44	32	5.35

待机时单板功耗: 5.35V×32mA=171.2mW

待机时整机功耗: 440mW

由此可知,在待机时实测电源适配器的效率η为:

 $\eta = 171.2 \text{mW} \div 440 \text{mW} \times 100\% = 38.9\%$

若要做到待机功耗小于 0.5W, 根据实测结果推算电源适配器最低效率 η min 为:

 $\eta_{min} = 171.2 \text{mW} \div 500 \text{mW} \times 100\% = 34.2\%$

低功耗设计一方面和主板功耗相关,另外一方面和电源适配器的转换效率相关。上面 计算出来的数值 38.9%就是海思使用的电源适配器在待机时候的转换效率。

待机功耗与电源适配器设计严重相关,最重要的指标要求就是电源适配器在轻载状态下的转换效率。根据测试情况,要做到待机功耗小于 0.5W,电源适配器最低转换效率不能低于 34.2%。

除考虑电源适配器效率外,板级 DC-DC 效率也很重要,DC-DC 一般在轻载状态下,效率很低,设计时也需要特别注意。

4 网口浪涌差模过 500V 设计

在主芯片和网口变压器之间并靠近变压器侧的 TX 和 RX 上增加 TVS 管 CS2033 或串接 4 个 10Ω 电阻。串联 4 个 10Ω 电阻浪涌差模指标只能到 500V,如有 1000V 或 1500V 的需求,建议采用 TVS 管方案。

图4-1 网口浪涌差模过 500V 方案原理图

5 单板 ESD 过 6kV 设计

为了使单板达到 ESD 接触放电 6kV 的目的,需要在单板 BOTTOM 面预留屏蔽罩,将主芯片和 DDR 部分保护住。

图5-1 Hi3798MDMO1A 单板 BOTTOM 面屏蔽罩

图5-2 Hi3798MHi3798MDMO1B 单板 BOTTOM 面屏蔽罩

图5-3 Hi3798MHi3798MDMO1C 单板 BOTTOM 面屏蔽罩

图5-4 Hi3798MHi3798MDMO1D 单板 BOTTOM 面屏蔽罩

6 FAQ

6.1 GPIO 电源域问题

问题描述

使用 SDIO3.0 同时使用 1.8V SD 卡时,GPIO7_0、GPIO7_1、GPIO7_2、GPIO7_4、GPIO7_5、GPIO7_6、GPIO7_7、GPIO6_5、GPIO6_6、GPIO6_7 会变成 1.8V GPIO。

解决办法

在单板设计时,使用 1.8V SD 卡的如图 6-1 所示管脚,不要与 3.3V 电源域管脚连接。

图6-1 1.8V GPIO 说明

```
E3
     SDIO0 CCLK OUT/GPIO7 2
C1
     SDIO0 CWPR/GPIO6 7
E2
     SDIO0 CCMD/GPIO7 3
F1
                                                              В1
     SDIO0 CARD DETECT/GPIO7 6
                                         GPIO6 5/FE LED ACT
F3
     SDIO0 CARD POWER EN/GPIO7 7
                                                              В2
                                         GPIO6 6/FE LED BASE
D3
     SDIO0 CDATA0/GPIO7 1
C2
     SDIO0 CDATA1/GPIO7 0
F2
     SDIO0 CDATA2/GPIO7 5
E1
     SDIO0 CDATA3/GPIO7 4
```

6.2 eMMC 相关上电时序说明

问题描述

客户使用 eMMC 器件烧写成功,但有概率无法启动,打印 Read eMMC Error。

解决办法

修改主芯片 I/O 和 eMMC 3.3V 电源的上电时序,需增加缓起电路,如 DMO 参考设计图 6-2 所示,主芯片 I/O 和 eMMC 电源使用 $3V3_MOS$,保证 $3V3_MOS$ 电源在 $1V1_CORE$ 电源之后 10ms 上电。

图6-2 3V3 MOS 缓启电路图

6.3 fSD/eMMC CLK IO 驱动能力说明

问题描述

Hi3798MV100 两层板, fSD/eMMC CLK IO 驱动能力存在 1mA 和 2mA 两个版本。

解决办法

- fSD/eMMC CLK IO 驱动能力设置为 1mA, 芯片 rise time 超 spec, 信号时序上有风险, 可能会导致数据采样出错, 所以采用 1mA 驱动能力有风险。现有采用 1mA 驱动能力的需要改为 2mA 的驱动能力。具体查看 fastboot 配置表格pin_mux_drv_emmc 页中的 0xf8a21030 寄存器的值, 2mA 为 0xd01 (默认配置)。
- fSD/eMMC CLK IO 驱动能力设置为 2mA, 信号时序和采样电平是安全的,不会影响到数据读写,但 CLK 信号上有过冲,可能会带来 EMC 风险。建议对 EMC 有严格要求的客户在 CLK 上串联 75Ω 匹配电阻,其他客户可不修改硬件。

6.4 QFP 封装增强 ESD 性能说明

问题描述

Hi3798MV100 QFP 封装单板,整机 ESD 性能较差。

解决办法

- 在 TOP 层和 BOTTOM 层预留屏蔽罩位置,罩住主芯片、晶体和 DDR 颗粒。
- STANDBY_PWROFF 上预留 0402 封装 600Ω@100M 磁珠 LB3 和 0402 封装 100nF 对地电容 C118 和 C119,如 DMO 参考设计图 6-3 所示,PCB layout 时靠近主芯片 放置。遇到 ESD 问题时根据具体情况调整磁珠和电容值。
- 3V3_STANDBY 上预留 0402 封装 600Ω@100M 磁珠 LB5 和 0402 封装 100nF 对地 电容 C108 和 C122,如 DMO 参考设计图 6-4 所示,PCB layout 时靠近主芯片放 置。遇到 ESD 问题时根据具体情况调整磁珠和电容值。
- PLL 上预留 600Ω@100M 磁珠 LB21 和 LB22, 如 DMO 参考设计图 6-5 所示, PCB layout 时靠近主芯片放置。遇到 ESD 问题时根据具体情况调整磁珠和电容值。

图6-3 STANDBY_PWROFF 电路

图6-4 3V3 STANDBY 电路

图6-5 PLL 电路

6.5 QFP 封装增强散热性能说明

问题描述

Hi3798MV100 QFP 封装单板,增强散热性能,降低芯片结温。

解决办法

在主芯片 EPAD 下部的 PCB 散热焊盘上打散热通孔,如图 6-6 所示,并进行灌锡处理。注意该焊盘是接地焊盘,需要与主芯片 EPAD 良好焊接,建议客户根据焊接工艺自行调整散热通孔大小。

图6-6 PCB 散热通孔示意图

6.6 启动模式异常说明

问题描述

Hi3798MV100 默认 eMMC 启动时,会概率性识别成 NAND 启动。

问题分析

Hi3798MV100 启动配置管脚 BOOT_SEL1 与 SPDIF 管脚复用,当外接 SPDIF 时,由于部分 SPDIF 器件内部有下拉电阻,当上拉电阻 R39=10k 时(图 6-7),BOOT_SEL1 管脚上的电压经分压后判为低电平,误判为 NAND 启动。

解决办法

如果有 SPDIF 接口,将启动配置 BOOT_SEL1 的上拉电阻 R39 由 10k 改为 1k,如果没有 SPDIF 接口,保持 R39=10k 不变。如图 6-7 所示。

图6-7 启动管脚上下拉电阻电路图

6.7 DDR 768M 容量配置硬件说明

问题描述

Hi3798MV100 如果 DDR 容量需要用成 768M, 硬件上应该注意什么?

解决办法

- BOM: 512M 和 256M 的两个颗粒,必须 DQ 的低 16bit 贴 512M 的颗粒(对应发布包 SCH 的 U3), DQ 的高 16bit 贴 256M 的颗粒(对应发布包 SCH 的 U6);
- 表格:表格必须用包含"768mbyte"字样的表格;
- 版本: Hi3798M 的 1A、1B、1C、1F、1G 版本支持 DDR 768M 容量配置; 1D 版本 暂时不支持这个。

6.8 Hi3798MV100 1F/1G 版本提升系统稳定性措施

问题描述

解决办法

• SCH:

对应海思发布包的原理图的 C264 的 10NF 电容必须确保是 NC 的。

图6-8 C264 示意截图

- 表格: boot 表格需要更新到使用 2015 年 11 月之后海思发布的表格;针对这个问题的改动是在表格的 DDR 部分,表格 DDR 的部分关键修改点如下:
 - 在表格 sysctrl_CA 和 sysctrl_noCA 页面分别各修改一个标黄行,修改的是标黄行的红色字样,Hi3798MV100 1F 和 1G 版本都需要修改,截图如图 6-9 所示。

图6-9 sysctrl CA和 sysctrl noCA页面修改截图

DR_TRAINING_CFG 0xd0 0x100	0 write	e 31 0	0x000000FF
----------------------------	---------	--------	------------

- 在表格 ddrphy、ddr_poweron、ddr_wakeup 页面分别各新加一个标黄行(共三行), Hi3798MV100 1F 和 1G 版本都需要修改, 截图如图 6-10、图 6-11 所示。

图6-10 ddrphy 页面修改截图

			-				
ODTCTRL	0 x44	0 x1	0	write	31	0	0x0000000FF
TRAINCTRLO	0 x4 8	0xd04410c0	0	write	31	0	0x0000000FF
TRAINCTRL	0xd0	0xb036f026	0	write	31	0	0x0000000FF

图6-11 ddr_poweron 页面修改截图

MISC	0xa38070	0 x1	0	write	0	16	0x0000000FD

- 在表格 ddrphy 页面修改两个标黄行,只有 Hi3798MV100 1F 版本需要修改,截 图如图 6-12 所示。

图6-12 ddrphy 页面修改截图

ACCMDBDL2	0x128	0x4	0	write	31	0	0x0000000FF
ACCMDBDL3	0x1a8	0x4	0	write	31	0	0x0000000FF

- ddrphy 页面的 DQ 读写默认值也有修改, Hi3798MV100 1F 和 1G 版本都需要修改, 这个由于截图不便,请直接参考表格。