4.3 环面蜗杆传动

环面蜗杆传动的蜗杆外形,是以一个凹圆弧为母 线绕蜗杆轴线回转而形成的回转面,故称圆环回转面 蜗杆,简称环面蜗杆。

4.3.1 环面蜗杆传动的分类及特点

环面蜗杆传动的类别,取决于形成螺旋齿面的母线或母面。母线为直线时,称为直廓环面蜗杆传动 (TSL型);母面为平面时,称为平面包络环面蜗杆传动。平面包络环面蜗杆传动泛指平面一次包络环面蜗杆传动 (TVP型)和平面二次包络环面蜗杆传动 (TOP型)。在平面一次包络环面蜗杆传动中,又有直齿平面包络环面蜗杆传动和斜齿平面包络环面蜗杆传动之分。

直廓环面蜗杆传动(TSL型)和平面二次包络环面蜗杆传动,都是多齿接触和双接触线接触。因此,扩大了接触面积、改善了油膜形成条件、增大了齿面间的相对曲率半径等,这就是提高传动效率和承载能力的原因所在;平面一次包络环面蜗杆传动虽是单接触线接触,但也有多齿接触等优点,所以其传动效率和承载能力也比圆柱蜗杆传动大得多。

平面包络环面蜗杆比较容易实现完全符合其 啮合原理的精确加工和淬硬磨削,尤其对于平面 一次包络环面蜗杆传动的蜗轮不需制作滚刀,因 而工艺更简易。

4.3.2 环面蜗杆传动的形成原理

(1) 直廓环面蜗杆的形成原理

在图 14-4-11 中,蜗杆毛坯轴线 O_1 一 O_1 与刀座 回转中心 O_2 的垂距等于蜗杆传动的中心距 a,毛坯 以 ω_1 角速度回转,刀座以 ω_2 角速度回转, $\frac{\omega_1}{\omega_2}$ 等于蜗杆传动的传动比,刀刃(即母线)为直线,这样切制出的螺旋面是"原始型"的直廓环面蜗杆的螺旋面,其轴向齿廓为直线。

(2) 平面包络环面蜗杆的形成原理

如图 14-4-12 所示,设平面 F 与基锥 A 相切并一起绕轴线 O_2-O_2 以角速度 ω_2 回转。与此同时蜗杆毛坯绕其轴线 O_1-O_1 以角速度 ω_1 回转,这样,平面 F 在蜗杆毛坯上包络出的曲面便是平面

图 14-4-11 直廓环面蜗杆形成原理

图 14-4-12 平面包络蜗杆形成原理

包络环面蜗杆的螺旋齿面。平面 F 就是母面,实际上是平面齿工艺齿轮的齿面,在传动中,也就是配对蜗轮的齿面。这种传动称为平面一次包络环面蜗杆传动。中间平面与基锥 A 截得的圆称为基圆,其直径为 d_b 。当平面 F 与轴线 O_2-O_2 的夹角 $\beta=0$ 时,是直齿平面包络环面蜗杆,适用于大传动比分度机构;当 $\beta>0$ 时,是斜齿平面包络环面蜗杆,适用于传递动力。

若再以上述蜗杆齿面为母面,即用与上述蜗杆齿面相同的滚刀,对蜗轮毛坯进行滚刀(包络)得到蜗轮,用此蜗轮与上述蜗杆所组成的传动称为平面二次包络环面蜗杆传动。

4.3.3 环面蜗杆传动的参数选择和几何 尺寸计算

首先根据承载能力的要求确定中心距 a, 再按直 廓环面蜗杆传动 (表 14-4-23) 和平面二次包络环面 蜗杆传动 (表 14-4-24) 分别计算几何尺寸。

表 14-4-23

直廓环面蜗杆传动参数和几何尺寸计算

名 称	代号/单位	计算公式和说明
中心距	a/mm	根据承载能力确定
传动比	i	$i = \frac{z_2}{z_1}$,根据工作要求确定
蜗杆头数	\mathbf{z}_1	按 i 和使用要求确定
蜗轮齿数	z ₂	$z_2 = i z_1$
蜗杆分度圆直径	d_1/mm	$d_1 \approx 0.681a^{0.875}$
基圆直径	$d_{ m b}/{ m mm}$	d _b ≈0. 625a
蜗轮齿宽	b ₂ /mm	b ₂ ≈ψ _a a(ψ _a 按 0.25、0.315 选)
蜗轮分度圆直径	d_2/mm	$d_2 = 2a - d_1$
蜗杆分度圆导程角	γ/(°)	$\gamma = \arctan[d_2/(id_1)]$
齿距角	τ/(°)	r=360°/z ₂
蜗杆包围蜗轮齿数	z'	z₂<40 B† z'=4
料作已回购化 囚奴		$z_2 \geqslant 40$ 时 $z' = z_2/10$ (四舍五人)
蜗杆包围蜗轮工作半角	φ _h /(°)	$\varphi_{\rm h} = 0.5 \tau(z' - 0.45)$
		φ _h =0.5τ(z'-0.50)(用于等齿厚)
蜗杆工作长度	b_1/mm	$b_1 = d_2 \sin \varphi_{ m h}$
蜗轮端面模数	$m_{\rm t}/{ m mm}$	$m_{\mathrm{t}} = d_2/z_2$
径向间隙	c/mm	$c = 0.2m_1$
齿根圆角半径	$ ho_{ m f}/{ m mm}$	$\rho_i = c$
齿顶倒角尺寸	c _a /mm	$c_a = 0.6c$
齿顶高	h_a/mm	$h_{\rm a} = 0.75 m_{\rm t}$
全齿高	h/mm	$h = 1.7m_t$
蜗杆齿顶圆直径	$d_{ m al}/{ m mm}$	$d_{a1} = d_1 + 2h_a$
蜗杆齿根圆直径	$d_{\mathrm{fl}}/\mathrm{mm}$	$d_{\rm fl} = d_{\rm al} - 2h$
蜗轮齿顶圆直径	$d_{\rm a2}/{ m mm}$	$d_{a2} = d_2 + 2h_a$

续表

		21.71
名 称	代号/单位	计算公式和说明
蜗轮齿根圆直径	$d_{\mathrm{f2}}/\mathrm{mm}$	$d_{\rm f2}=d_{\rm a2}-2h$
蜗杆齿顶圆弧半径	$R_{ m al}/{ m mm}$	$R_{\mathrm{al}} = a - d_{\mathrm{al}}/2$
蜗杆齿根圆弧半径	$R_{\mathrm{fl}}/\mathrm{mm}$	$R_{\rm fl} = a - d_{\rm fl}/2$
分度圆压力角	α/(°)	$\alpha = \arcsin(d_b/d_2)$
圆周齿侧间隙	$j_{\rm t}/{ m mm}$	由表 14-4-71 查得
圆周齿侧间隙半角	α _j /(°)	$a_{\rm j} = \arcsin(j_{\rm t}/d_2)$
蜗杆齿厚半角	γ ₁ /(°)	$ \gamma_1 = 0.225\tau - \alpha_j $ $ \gamma_1 = 0.25\tau - \alpha_j (用于等齿厚) $
蜗轮齿厚半角	γ ₂ /(°)	γ ₂ =0.275 _τ γ ₂ =0.25 _τ (用于等齿厚)
蜗杆轴线截面齿形半角	α ₁ /(°)	$\alpha_1 = \alpha + \gamma_1$
蜗轮齿形角	α ₂ /(°)	$\alpha_2 = \alpha_1 - 0.5\tau + \alpha_j$
蜗杆螺旋人口修形量	$\Delta_{\rm f}/{ m mm}$	$\Delta_{\rm f} = (0.0003 + 0.000034i)a$
蜗杆中间平面齿厚修形减薄量	$\Delta s_{n1}/\mathbf{mm}$	$\Delta s_{\rm nl} = 2\Delta_{\rm f} \left(0.3 - \frac{56.7}{z_2 \varphi_{\rm h}}\right)^2 \cos \gamma$ 等齿厚时 $\Delta s_{\rm nl} = 2\Delta_{\rm f} \left(0.3 - \frac{63}{z_2 \varphi_{\rm h}}\right)^2 \cos \gamma$
蜗杆中间平面法向弦齿厚	$\overline{s}_{ m nl}/ m mm$	$\bar{s}_{n1} = d_2 \sin \gamma_1 \cos \gamma$ 中间平面有修形量时 $\bar{s}_{n1} = d_2 \sin \gamma_1 \cos \gamma - \Delta s_{n1}$
蜗杆法向弦齿厚测量齿高	$\overline{h}_{\mathrm{al}}/\mathrm{mm}$	$\overline{h}_{a1} = h_a - 0.5 d_2 (1 - \cos \gamma_1)$
蜗轮中间平面法向弦齿厚	\bar{s}_{n2}/mm	$\bar{s}_{n2} = d_2 \sin \gamma_2 \cos \gamma$
蜗轮法向弦齿厚测量齿高	$\overline{h}_{\mathrm{a}2}/\mathrm{mm}$	$\overline{h}_{n2} = h_n + 0.5d_2(1 - \cos\gamma_2)$
蜗杆外径处肩带宽度	δ/mm	$\delta=0.5m_{\rm t}(圆整)$
蜗杆螺旋人口修缘量	$\Delta_{\rm j}/{ m mm}$	$\Delta_{\rm j} = 0.03h$
人口修缘对应角	ψ/(°)	$\psi = \varphi_{\rm h} - 0.6 \tau$
蜗杆顶圆最大直径	d _{esl} /mm	$d_{\text{cal}} = 2[a - (R_{\text{al}}^2 - 0.25b_1)^{0.5}]$
蜗杆齿根圆最大直径	d _{ef1} /mm	作图确定
蜗轮齿顶圆最大直径	d_{ea2}/mm	作图确定
蜗轮齿顶圆弧半径	$R_{\rm s2}/{ m mm}$	$R_{\rm a2} \geqslant 0.53 d_{\rm fl}$
	φ _s /(°)	

注: 1. 通常蜗杆和蜗轮的齿厚角分别为 0. 45τ 和 0. 55τ , 当中心距 $a \leq 160 \mathrm{mm}$ 、传动比 i > 25 时,为防止蜗轮刀具刀顶过窄,可按等齿厚分配。

2. 表中算例按抛物线修形计算,若按其他方法修形,相关公式应作变动。

表 14-4-24

平面二次包络环面蜗杆传动的参数和几何尺寸计算

名 称	代号/单位	计算公式和说明
中心距	a/mm	根据承载能力确定
传动比	i	$i = \frac{z_2}{z_1}$ 根据工作要求确定
蜗杆头数	z_1	根据 i 和工作要求确定
蜗轮齿数	z_2	$z_2 = i z_1$

		
名 称	代号/单位	计算公式和说明
		$d_1 \approx k_1 a$ (圆整)
蜗杆分度圆直径	d_1/mm	$i > 20, k_1 = 0.33 \sim 0.38$
MITTOCALL	W17 mm	$i > 10$, $k_1 = 0$, $36 \sim 0$, 42
·		$i \leq 10, k_1 = 0.40 \sim 0.50$
蜗轮分度圆直径	d_2/mm	$d_2 = 2a - d_1$
蜗轮端面模数	$m_{ m t}/{ m mm}$	$m_1 = d_2/z_2$
齿顶高	h _a /mm	$h_a = 0.7 m_t$
齿根高	$h_{ m f}/{ m mm}$	$h_{\rm f} = 0$, $9m_{\rm t}$
全齿高	h/mm	$h = h_a + h_f$
齿顶间隙	c/mm	$c=0.2m_{\rm t}$
蜗杆齿根圆直径	$d_{\mathrm{fl}}/\mathrm{mm}$	$d_{\mathrm{fl}} = d_{\mathrm{l}} - 2h_{\mathrm{f}}$
蜗杆齿顶圆直径	$d_{ m al}/{ m mm}$	$d_{\rm al}=d_1+2h_{\rm a}$
蜗杆齿根圆弧半径	$R_{\rm fl}/{ m mm}$	$R_{\rm fl} = a - 0.5 d_{\rm fl}$
蜗杆齿顶圆弧半径	R _{al} /mm	$R_{\rm al} = a - 0.5 d_{\rm al}$
蜗轮齿根圆直径	$d_{\mathrm{f2}}/\mathrm{mm}$	$d_{12} = d_2 - 2h_1$
蜗轮齿顶圆直径	$d_{\rm a2}/{ m mm}$	$d_{a2} = d_2 + 2h_a$
蜗杆喉部分度圆导程角	γ/(°)	$\gamma = \arctan[d_2/(d_1i_{12})]$
齿距角	τ/(°)	$ au = 360/z_2$
		$d_b = k_2 a($ 國整 $)$
主基圆直径	$d_{ m b}/{ m mm}$	$k_2 = 0.5 \sim 0.67$
		一般取 $k_2=0.63$,小传动比可取较小值
和於八座間行士及	α/(°)	$\alpha = \arcsin(d_b/d_2)$
蜗轮分度圆压力角	α/()	$(a=20^{\circ}\sim25^{\circ})$
蜗杆包围蜗轮齿数	z'	$z' = z_2/10$ (圆整)
蜗杆包围蜗轮的工作半角	φ _h /(°)	$\varphi_h = 0.5_{\tau}(z' - 0.45)$
工作起始角	φ _s /(°)	$arphi_{ m s}\!=\!lpha\!-\!arphi_{ m h}$
蜗轮齿宽	b_2/mm	$b_2 = (0.9 \sim 1.0) d_{f1} (\mathbf{M})$
蜗杆工作长度	b_1/mm	$b_1 = d_2 \sin \varphi_{ m h}$
蜗杆外径处肩带宽度	∂/mm	$\delta \leqslant m_i$
蜗杆最大齿顶圆直径	$d_{ m eal}/{ m mm}$	$d_{\text{eal}} = 2[a - (R_{\text{al}}^2 - 0.25b_1^2)^{0.5}]$
蜗杆最大齿根圆直径	$d_{ m efl}/{ m mm}$	作图确定
蜗轮分度圆齿距	$p_{\rm t}/{ m mm}$	$p_{\rm t} = \pi m_{ m t}$
圆周齿侧间隙	j/mm	由表 14-4-75 查得
蜗轮分度圆齿厚	s ₂ /mm	$i_{12} > 10 \text{ BJ}$, $s_2 = 0.55 p_t$
ит лумен	\$2 / IIIII	$i_{12} \leqslant 10 \text{ bt}, s_2 = p_t - s_1 - j$
		$i_{12} > 10 \text{ BJ}, s_1 = p_1 - s_2 - j$
	s ₁ /mm	$i_{12} \leqslant 10 \text{ HJ}, s_1 = k_3 p_1$
根据公开 III 加州 中国		$z_1 < 4 \text{ ff}, k_3 \approx 0.45$
蜗杆分度圆弧齿厚		$z_1 = 4$, $k_3 = 0$. 46 $z_1 = 5$, $k_3 = 0$. 47
		$z_1 = 5, k_3 = 0.47$ $z_1 = 6, k_3 = 0.48$
		$z_1 = 8, k_3 = 0.49$

				安衣	
	名 称 产形面倾角 蜗杆分度圆法向齿厚		名 称 代号/单位 计		
			β/(°)	$ aneta pprox rac{\cos(\alpha+\Delta)rac{d_2}{2a}\cos\alpha}{\cos(\alpha+\Delta)-rac{d_2}{2a}\cos\alpha} imes rac{1}{i}$ $i \geqslant 30$, $\Delta=8^\circ$; $i < 30$, $\Delta=6^\circ$ $i < 10$, $\Delta=1^\circ \sim 4^\circ$ 或 $\Delta=i$ (0.1° \sim 0.2°)	
			s _{n1} /mm	$s_{\rm nl} = s_1 \cos \gamma$	
	蜗轮分度圆法向齿厚		s _{n2} /mm	$s_{n2} = s_2 \cos \gamma$	
蜗轮齿顶圆弧半径 蜗杆齿厚测量齿高 蜗轮齿厚测量齿高		蜗轮齿顶圆弧半径	$R_{ m a2}/{ m mm}$	$R_{\rm s2} \gg 0.53 d_{\rm fl}$	
		蜗杆齿厚测量齿高	$\overline{h}_{\rm al}/{ m mm}$	$\overline{h}_{a1} = h_a - 0.5 d_2 \{1 - \cos[\arcsin(s_1/d_2)]\}$	
		蜗轮齿厚测量齿高	$\overline{h}_{\mathrm{a2}}/\mathrm{mm}$	$\overline{h}_{a2} = h_a + 0.5d_2\{1 - \cos[\arcsin(s_2/d_2)]\}$	
n.	스	修缘值	e _a /mm	$e_a = 0.3 \sim 1$	
呙干多象官	口端	修缘长度	$E_{\rm s}/{ m mm}$	$E_{\rm a} = (1/4 \sim 1) p_{\rm t}$	
多	出	修缘值	$e_{ m b}/{ m mm}$	$e_b = 0.2 \sim 0.8$	
1	山端	修缘长度	$E_{\rm b}/{ m mm}$	$E_{\rm b} = (1/3 \sim 1) p_{\rm t}$	

续表

4.3.4 环面蜗杆传动的修形和修缘计算

环面蜗杆的修形,是为了使传动获得较高的承载 能力和传动效率。环面蜗杆啮入口或啮出口的修缘, 是为了保证蜗杆螺牙能平稳地进入啮合或退出啮合。

(1) 直廓环面蜗杆

直廓环面蜗杆的修形,是将"原始形"直廓环面蜗杆(如图 14-4-13 细实线部分所示,特点为等齿厚)的螺牙从中间向两端逐渐减薄而成(如图 14-4-13 实线部分所示,其特点是近似于"原始形"蜗杆磨损后的形状)。目前在工业生产中使用的直廓环面蜗杆传动一般均经修形,即"修正形"。"修正形"又有"全修形"和"对称修形"等形式。"全修形"的修形曲线其特征是没有拐点,极值点对应的角度值等于1.42_{¢h}。修形曲线按抛物线确定(即"全修形"的蜗杆螺牙的螺旋线在展开的全长上与"原始形"的偏离数值),其方程为:

$$\Delta_y = \Delta_f \left(0.3 - 0.7 \frac{\varphi_y}{\varphi_h}\right)^2$$

式中 Δ_f 一啮人口修形量,见表 14-4-26;

 φ_y ——用来确定 Δ_y 的角度值。

实现"全修形"环面蜗杆传动,需要具有机械修 正装置或数控的专用机床,故当前应用较少。

"对称修形"是在增大中心距、成形圆直径和改变分齿挂轮的速比后,对"原始形"蜗杆进行修形而获得的。"对称修形"的修形曲线接近于"全修形"的修形曲线。因此,"对称修形"也可获得较好的啮

合性能。由于实现"对称修形"不需增设新的修正机构或专用机床,故当前应用较广。

"对称修形"的修形计算公式见表 14-4-25。

图 14-4-13 直廓环面蜗杆螺牙截面展开图