If the marks obtained by a Student in five different subjects are input, write a c, java, python program to find the aggegrate marks and percentage marks obtained by the student assuming the maximum marks as 100.

C	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	def main():
		print("Enter marks of 5 subjects (out of 100):")
int main() {	public class StudentMarks {	m1 = int(input())
int m1, m2, m3, m4, m5, sum;	<pre>public static void main(String[] args) {</pre>	m2 = int(input())
float percentage;	Scanner scanner = new Scanner(System.in);	m3 = int(input())
		m4 = int(input())
printf("Enter marks of 5 subjects (out of	System.out.println("Enter marks of 5 subjects	m5 = int(input())
100):\n");	(out of 100):");	
scanf("%d %d %d %d %d", &m1, &m2, &m3,	int m1 = scanner.nextInt();	total = m1 + m2 + m3 + m4 + m5
&m4, &m5);	int m2 = scanner.nextInt();	percentage = total / 5
	int m3 = scanner.nextInt();	
sum = m1 + m2 + m3 + m4 + m5;	int m4 = scanner.nextInt();	<pre>print(f"Aggregate Marks: {total}")</pre>
percentage = (float)sum / 5;	int m5 = scanner.nextInt();	<pre>print(f"Percentage Marks: {percentage:.2f}%")</pre>
printf("Aggregate Marks: %d\n", sum);	int sum = $m1 + m2 + m3 + m4 + m5$;	ifname == "main":
printf("Percentage Marks: %.2f%%\n",	float percentage = (float) sum / 5;	main()
percentage);		
	System.out.println("Aggregate Marks: " + sum);	
return 0;	System.out.printf("Percentage Marks: %.2f%%\n",	
}	percentage);	
m a l	scanner.close(); } }	

Time Complexity

- 1. Input: Each mark is entered individually (O(1) per input). Since there are 5 inputs, the total time complexity for input is O(1) as it's a constant size.
- 2. Computation: Adding 5 values is O(1), and calculating the percentage is also O(1). Overall: O(1).

Space Complexity

• Variables: Only individual variables (m1, m2, m3, m4, m5) are used for input, plus sum and percentage for computation. Overall: O(1).

Temperature of a city in foreign degrees is input, write a c, java, python program to convert this temperature into centigrade degrees.

\mathbf{C}	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	def main():
		fahrenheit = float(input("Enter temperature in
int main() {	public class TemperatureConverter {	Fahrenheit: "))
float fahrenheit, celsius;	<pre>public static void main(String[] args) {</pre>	celsius = $(5.0 / 9.0) * (fahrenheit - 32)$
	Scanner scanner = new Scanner(System.in);	<pre>print(f"Temperature in Celsius: {celsius:.2f}")</pre>
<pre>printf("Enter temperature in Fahrenheit: ");</pre>		
scanf("%f", &fahrenheit);	System.out.print("Enter temperature in	ifname == "main":
	Fahrenheit: ");	main()
celsius = $(5.0 / 9.0) * (fahrenheit - 32);$	float fahrenheit = scanner.nextFloat();	-
printf("Temperature in Celsius: %.2f\n", celsius);	*	
	float celsius = $(5.0f / 9.0f) * (fahrenheit - 32);$	
return 0;	System.out.printf("Temperature in Celsius:	
}	%.2f\n", celsius);	
	scanner.close();	
	}	
	}	

- Only one temperature conversion formula is applied, which involves subtraction and multiplication/division.
- Input and output operations are constant.

Overall Time Complexity: O(1).

Space Complexity:

• Only a few variables are used for computation.

Overall Space Complexity: O(1).

The length and breadth of a rectangle and radius of a circle is input, write a c, java, python program to calculate area, perimeter of rectangle and the area, circumference of the circle.

C	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	def main():
#define PI 3.14159		length = float(input("Enter length of the
	public class GeometryCalculator {	rectangle: "))
int main() {	<pre>public static void main(String[] args) {</pre>	breadth = float(input("Enter breadth of the
float length, breadth, radius;	Scanner scanner = new Scanner(System.in);	rectangle: "))
float rect_area, rect_perimeter, circle_area,		radius = float(input("Enter radius of the circle:
circle_circumference;	System.out.print("Enter length and breadth of	"))
	the rectangle: ");	
printf("Enter length and breadth of the rectangle:	float length = scanner.nextFloat();	rect_area = length * breadth
");	float breadth = scanner.nextFloat();	rect_perimeter = 2 * (length + breadth)
scanf("%f %f", &length, &breadth);		circle_area = 3.14159 * radius**2
	System.out.print("Enter radius of the circle: ");	circle_circumference = 2 * 3.14159 * radius
<pre>printf("Enter radius of the circle: ");</pre>	float radius = scanner.nextFloat();	
scanf("%f", &radius);		<pre>print(f"Rectangle Area: {rect_area:.2f}")</pre>
	float rectArea = length * breadth;	print(f"Rectangle Perimeter:
rect_area = length * breadth;	float rectPerimeter = 2 * (length + breadth);	{rect_perimeter:.2f}")
rect_perimeter = 2 * (length + breadth);	float circleArea = (float) Math.PI * radius *	<pre>print(f"Circle Area: {circle_area:.2f}")</pre>
circle_area = PI * radius * radius;	radius;	print(f"Circle Circumference:
circle_circumference = 2 * PI * radius;	float circleCircumference = 2 * (float) Math.PI	{circle_circumference:.2f}")
	* radius;	
printf("Rectangle Area: %.2f\n", rect_area);		ifname == "main":
printf("Rectangle Perimeter: %.2f\n",	System.out.printf("Rectangle Area: %.2f\n",	main()
rect_perimeter);	rectArea);	
printf("Circle Area: %.2f\n", circle_area);	System.out.printf("Rectangle Perimeter:	
printf("Circle Circumference: %.2f\n",	%.2f\n", rectPerimeter);	
circle_circumference);	System.out.printf("Circle Area: %.2f\n",	
	circleArea);	
return 0;	System.out.printf("Circle Circumference:	
}	%.2f\n", circleCircumference);	
Tri C 1 1	scanner.close(); }}	
Time Complexity		

- Input: Reading three inputs (length, breadth, radius): O(1).
 Computation: Each formula involves a constant number of operations: O(1).
- 3. Output: Displaying the results involves constant time: O(1). **Overall Time Complexity: O(1).**

Space Complexity

- 1. **Variables**: Only a fixed number of variables are used: O(1).

2. No additional data structures are needed. Overall Space Complexity: O(1).

If the total selling price of 15 items and the total profit earned on them is input, write a c, java, python program to find the cost price of one item

С	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	def main():
		# Input
int main() {	public class CostPriceCalculator {	total_selling_price = float(input("Enter the total
float total_selling_price, total_profit,	<pre>public static void main(String[] args) {</pre>	selling price of 15 items: "))
total_cost_price, cost_price_per_item;	Scanner scanner = new Scanner(System.in);	total_profit = float(input("Enter the total profit earned: "))
// Input	// Input	
printf("Enter the total selling price of 15 items:	System.out.print("Enter the total selling price	# Calculations
");	of 15 items: ");	total_cost_price = total_selling_price -
<pre>scanf("%f", &total_selling_price);</pre>	double totalSellingPrice =	total_profit
<pre>printf("Enter the total profit earned: ");</pre>	scanner.nextDouble();	cost_price_per_item = total_cost_price / 15
<pre>scanf("%f", &total_profit);</pre>	System.out.print("Enter the total profit earned:	
	");	# Output
// Calculations	double totalProfit = scanner.nextDouble();	print(f"Cost Price of one item:
total_cost_price = total_selling_price -		{cost_price_per_item:.2f}")
total_profit;	// Calculations	
cost_price_per_item = total_cost_price / 15;	double totalCostPrice = totalSellingPrice -	ifname == "main":
	totalProfit;	main()
// Output	double costPricePerItem = totalCostPrice / 15;	
printf("Cost Price of one item: %.2f\n",	W 0	
cost_price_per_item);	// Output	
0	System.out.printf("Cost Price of one item:	
return 0;	%.2f\n", costPricePerItem);	
}	scanner.close(); }}	
Time Complexity	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1. Input : Reading two inputs (O(1)).		
2. Computation:		
 Subtraction for total cost price O(1).	
 Division for cost price per item O 	(1).	
3. Output: Printing the result O(1).	Overall Time Complexity:	O(1).
Space Complexity		
 Variables: Only a fixed number of variable 	es are used O(1).	
2. No additional data structures are require	ed. Overall Space Complexity:	O(1).