VERSUCH NUMMER

TITEL

AUTOR A authorA@udo.edu

AUTOR B authorB@udo.edu

Durchführung: DATUM

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

Lit	teratur	8
4	Diskussion	8
3	<u> </u>	3
2	Durchführung	3
1	Theorie	3

1 Theorie

[1]

2 Durchführung

3 Auswertung

3.1 Bestimmung des Elastizitätsmoduls mit einseitiger Einspannung

Im folgenden soll das Elastizitätsmodul des rechteckigen Stabes und des zylindrischen Stabes bei einseitiger Einspannung bestimmt werden. Man erhält durch Messung die in Tabelle 1 gezeigten Werte.

 ${\bf Tabelle~1:~Mess daten~zum~rechteckigen~Stab}$

x / mm	D_1 / mm	D_2 / mm	D(x) / mm	$f(x) = Lx^2 - \frac{x^3}{3}$
505	6.96	3.12	3.83	9.35
500	7.01	3.24	3.77	9.20
495	7.12	3.32	3.80	9.06
490	7.06	3.40	3.66	8.92
485	7.04	3.43	3.60	8.78
480	7.07	3.53	3.54	8.64
475	7.11	3.61	3.50	8.49
470	7.12	3.64	3.47	8.35
465	7.14	3.70	3.43	8.21
460	7.18	3.83	3.35	8.07
455	7.30	3.87	3.43	7.93
450	7.27	3.99	3.28	7.79
445	7.34	4.09	3.25	7.65
440	7.30	4.15	3.14	7.51
435	7.33	4.25	3.08	7.37
430	7.36	4.30	3.06	7.24
425	7.40	4.38	3.02	7.10
420	7.40	4.42	2.99	6.96
415	7.41 7.45	4.42 4.56	2.89	6.83
410	7.48		$\frac{2.89}{2.87}$	6.69
		4.60		
405	7.50	4.67	2.83	6.56
400	7.52	4.75	2.77	6.42
390	7.57	4.88	2.68	6.16
380	7.59	5.01	2.58	5.89
370	7.65	5.25	2.39	5.63
360	7.65	5.28	2.37	5.37
350	7.68	5.40	2.28	5.12
340	7.70	5.54	2.16	4.87
330	7.74	5.65	2.08	4.62
330	9.27	7.25	2.02	4.62
320	9.32	7.40	1.91	4.38
310	9.42	7.55	1.87	4.14
300	9.40	7.67	1.72	3.91
290	9.39	7.78	1.61	3.68
280	9.46	7.92	1.54	3.46
270	9.51	8.06	1.44	3.24
260	9.57	8.12	1.44	3.03
250	9.60	8.29	1.31	2.82
240	9.63	8.43	1.19	2.62
230	9.70	8.54	1.15	2.42
220	9.72	8.67	1.05	2.23
210	9.79	8.80	0.98	2.05
200	9.82	8.92	0.90	1.87
180	9.91	9.16	4 0.75	1.53
160	10.00	9.37	0.63	1.23
140	10.11	9.60	0.51	0.95
120	10.23	9.81	0.41	0.71
100	10.33	10.01	0.32	0.50
80	10.43	10.21	0.22	0.32
60	10.55	10.40	0.14	0.19
40	10.65	10.56	0.08	0.08

 ${\bf Tabelle~2:~Mess daten~zum~zylindrischen~Stab}$

m / 20200	D / mm	D / mm	D(m) /	$f(x) = Lx^2 - \frac{x^3}{2}$
$\frac{x / \text{mm}}{}$	$\frac{D_1 / \text{mm}}{e = 100}$	D_2 / mm	D(x) / mm	$\frac{f(x) - Ex}{3}$
505	6.52	1.52	5.00	9.09
500	6.57	1.62	4.95	8.95
495	6.51	1.73	4.78	8.82
490	6.60	1.78	4.82	8.68
485	6.65	1.93	4.71	8.54
480	6.63	2.05	4.58	8.40
475	6.64	2.11	4.53	8.27
470	6.75	2.22	4.53	8.13
465	6.70	2.30	4.40	8.00
460	6.74	2.32	4.41	7.86
455	6.76	2.45	4.31	7.72
450	6.82	2.69	4.12	7.59
445	6.86	2.72	4.13	7.45
440	6.89	2.83	4.06	7.32
435	6.92	2.90	4.02	7.19
430	6.97	2.98	3.99	7.05
425	6.94	3.07	3.87	6.92
420	6.96	3.18	3.78	6.79
415	6.99	3.29	3.70	6.65
410	7.03	3.38	3.64	6.52
405	7.06	3.43	3.62	6.39
400	7.11	3.59	3.52	6.26
395	7.12	3.66	3.45	6.13
390	7.15	3.74	3.41	6.00
385	7.16	3.82	3.33	5.87
380	7.19	3.90	3.29	5.75
370	8.75	5.62	3.12	5.49
360	8.72	5.79	2.93	5.24
350	8.79	5.93	2.85	5.00
340	8.83	6.10	2.72	4.75
330	8.83	6.27	2.56	4.51
320	8.85	6.41	2.43	4.28
310	8.91	6.55	2.35	4.05
300	8.89	6.68	2.20	3.82
290	8.91	6.78	2.12	3.60
280	8.96	6.96	2.00	3.38
$\frac{250}{270}$	9.00	7.14	1.86	3.17
260	9.02	7.28	1.73	2.96
250	9.04	7.39	1.65	2.76
$\frac{240}{240}$	9.05	7.50	1.55	2.56
230	9.09	7.62	1.46	2.37
$\frac{230}{220}$	9.09	7.73	1.40 1.35	2.18
210	9.08	$7.75 \\ 7.85$	1.33 1.22	$\frac{2.18}{2.00}$
200	9.10		5 1.15	1.83
180	9.10	8.16	0.95	1.50
160	9.11	8.32	$0.93 \\ 0.79$	1.30 1.20
140	9.11	8.49	$0.79 \\ 0.63$	0.93
$\frac{140}{120}$	9.12	8.49 8.62	$0.03 \\ 0.48$	$0.95 \\ 0.69$
100	9.11	8.02 8.74	0.48 0.36	$0.69 \\ 0.49$
80	9.11	8.83	$0.36 \\ 0.26$	0.49 0.31
60	9.09	8.92	0.17	0.18

 ${\bf Tabelle~3:}~{\bf Mess daten~zum~zweiseitig~eingespannten~rechteckigen~Stab.~Linke~Seite$

x / mm	D_1 / mm	D_2/mm	$D(x) / \mathrm{mm}$	$f(x) = Lx^2 - \frac{x^3}{3}$
290	8.31	7.72	5.89	3.83
295	8.31	7.74	5.70	3.95
300	8.33	7.74	5.89	4.07
305	8.31	7.73	5.80	4.19
310	8.31	7.72	5.89	4.32
315	8.33	7.72	6.09	4.44
320	8.32	7.78	5.40	4.57
325	8.32	7.78	5.40	4.69
330	8.31	7.79	5.20	4.82
335	8.32	7.79	5.29	4.95
340	8.32	7.80	5.20	5.08
345	8.32	7.81	5.10	5.21
350	8.31	7.82	4.89	5.34
355	8.33	7.83	5.00	5.47
360	8.33	7.84	4.89	5.61
370	8.33	7.87	4.60	5.88
380	8.34	7.89	4.49	6.15
390	8.35	7.93	4.19	6.43
400	8.36	7.96	4.00	6.71
420	8.37	7.99	3.80	7.28
440	8.40	8.09	3.09	7.86
460	8.41	8.13	2.80	8.45
480	8.43	8.20	2.30	9.05
500	8.46	8.30	1.60	9.65
520	8.47	8.36	1.10	10.26

Tabelle 4: Messdaten zum zweiseitig eingespannten rechteckigen Stab. Linke Seite

x / mm	D_1 / mm	D_2 / mm	D(x) / mm	$f(x) = Lx^2 - \frac{x^3}{3}$
255	10.08	9.50	5.80	3.04
250	10.08	9.55	5.29	2.93
245	10.07	9.56	5.10	2.82
240	10.09	9.57	5.20	2.72
235	10.08	9.58	5.00	2.62
230	10.11	9.60	5.10	2.51
225	10.11	9.62	4.89	2.41
220	10.13	9.64	4.89	2.32
215	10.13	9.66	4.70	2.22
210	10.15	9.69	4.60	2.13
205	10.16	9.72	4.40	2.03
200	10.17	9.73	4.40	1.94
195	10.18	9.76	4.19	1.85
190	10.20	9.79	4.10	1.76
185	10.21	9.80	4.10	1.68
175	10.23	9.86	3.69	1.51
165	10.26	9.90	3.59	1.35
155	10.30	9.97	3.29	1.20
145	10.32	10.02	2.99	1.06
125	10.40	10.15	2.50	0.79
105	10.45	10.26	1.90	0.57
85	10.54	10.38	1.60	0.37
65	10.62	10.51	1.10	0.22
45	10.69	10.62	0.70	0.10

4 Diskussion

Literatur

 $[1] \quad {\rm TU~Dortmund}.~\textit{Versuch~zum~Literaturverzeichnis}.~2014.$