1	(i)	$\frac{21-3}{4-1} = \frac{18}{3} = 6$	M1		Uses $\frac{y_2 - y_1}{x_2 - x_1}$
			A1	2	6 (not left as $\frac{18}{3}$)
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 1$	B1		
		$2 \times 3 + 1 = 7$	B1	2	
2	(i)	$27^{-\frac{2}{3}} = \frac{1}{27^{\frac{2}{3}}} = \frac{1}{9}$	M1		$\frac{1}{27^{\frac{2}{3}}}$ or $27^{\frac{2}{3}} = 9$ or 3^{-2} soi
			A1	2	$\frac{1}{9}$
	(ii)	$5\sqrt{5}=5^{\frac{3}{2}}$	B1	1	
	(iii)	$\frac{1-\sqrt{5}}{3+\sqrt{5}} = \frac{\left(1-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}$	M1		Multiply numerator and denominator by conjugate
		$=\frac{8-4\sqrt{5}}{4}$	B1		$\left(\sqrt{5}\right)^2 = 5$ soi
		$=2-\sqrt{5}$	A1	3	$2-\sqrt{5}$
3	(i)	$2x^{2} + 12x + 13 = 2(x^{2} + 6x) + 13$ $= 2[(x+3)^{2} - 9] + 13$	B1 B1 M1		a = 2 b = 3 $13-2b^2$ or $13-b^2$ or $\frac{13}{2}-b^2$ (their b)
		$=2\left(x+3\right) ^{2}-5$	A1	4	c= -5
	(ii)	$2(x+3)^2 - 5 = 0$	M1		Uses correct quadratic formula or completing square method
		$2(x+3)^{2} - 5 = 0$ $(x+3)^{2} = \frac{5}{2}$ $x = -3 \pm \sqrt{\frac{5}{2}}$	A1		$x = \frac{-12 \pm \sqrt{40}}{4}$ or $(x+3)^2 = \frac{5}{2}$
		$x = -3 \pm \sqrt{\frac{3}{2}}$	A1	3	$x = -3 \pm \sqrt{\frac{5}{2}}$ or $-3 \pm \frac{1}{2}\sqrt{10}$

4	(i)	(x-4)(x-3)(x+1)	B1		$x^2 - 7x + 12$ or $x^2 - 2x - 3$ or $x^2 - 3x - 4$ seen
		$\equiv (x^2 - 7x + 12)(x+1)$ $\equiv x^3 + x^2 - 7x^2 - 7x + 12x + 12$	M1		Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term expansion of all 3 brackets
		$\equiv x^3 - 6x^2 + 5x + 12$	A1	3	$x^3 - 6x^2 + 5x + 12$ (AG) obtained (no wrong working seen)
	(ii) (iii)	/c1	B1		+ve cubic with 3 roots (not 3 line segments)
	()		B1		
			B1		(0, 12) labelled or indicated on <i>y</i> -axis
		-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	D 1	3	(-1, 0), (3,0), (4, 0) labelled or indicated on <i>x</i> -axis
			M1		5 6 4 4 4 7 7 7 7 7 7 7
		C2 _e	A1√	2	Reflect <i>their</i> (ii) in either <i>x</i> - or <i>y</i> -axis
					Reflect their (ii) in x-axis
5	(i)	$ \begin{array}{r} 1 < 4x - 9 < 5 \\ 10 < 4x < 14 \end{array} $	M1		2 equations or inequalities both dealing with all 3 terms
		2.5 < x < 3.5	A1		2.5 and 3.5 seen oe
			A1	3	2.5 < x < 3.5 (or 'x > 2.5 and x < 3.5')
	(ii)	$y^2 \ge 4y + 5$	B1		$y^2 - 4y - 5 = 0$ soi
		$y^2 - 4y - 5 \ge 0$	M1		Correct method to solve quadratic
		$(y-5)(y+1) \ge 0$	A1		-1, 5 (SR If both values obtained from trial
		$y \le -1, \ y \ge 5$			and improvement, award B3)
			M1		Correct method to solve inequality
			A1	5	$y \le -1, \ y \ge 5$

	/:\	4 2		I	
6	(i)	$x^{4} - 10x^{2} + 25 = 0$ Let $y = x^{2}$	*M1		Use a substitution to obtain a quadratic or $(x^2 - 5)(x^2 - 5) = 0$
		$y^{2} - 10y + 25 = 0$ $(y-5)^{2} = 0$	dep*M1		Correct method to solve a quadratic
		y = 5	A1		5 (not $x = 5$ with no subsequent
		$x^2 = 5$			working)
		$x = \pm \sqrt{5}$	A1	4	$x = \pm \sqrt{5}$
	(ii)	$y = \frac{2x^5}{5} - \frac{20x^3}{3} + 50x + 3$	B1		$2x^4$ or $-20x^2$ oe seen
		$\frac{dy}{dx} = 2x^4 - 20x^2 + 50$	B1	2	$2x^4$ - $20x^2$ + 50 (integers required)
	(iii)	$2x^4 - 20x^2 + 50 = 0$ $x^4 - 10x^2 + 25 = 0$	M1		their $\frac{dy}{dx} = 0$ seen (or implied by correct
		which has 2 roots	A1	2	answer) 2 stationary points www in any part
7	(i)	$y = x^2 - 5x + 4$			
		$y = x - 1$ $x^2 - 5x + 4 = x - 1$	M1		Substitute to find an equation in <i>x</i> (or <i>y</i>)
		$x^2 - 6x + 5 = 0$	M1		Correct method to solve quadratic
		(x-1)(x-5) = 0			·
		x = 1 x = 5 $y = 0 y = 4$	A1 A1	4	x = 1, 5 y = 0, 4 (N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part (ii)) SR one correct (x,y) pair www B1
	(ii)	2 points of intersection	B1	1	
	(iii)	EITHER $x^2 - 5x + 4 = x + c$ has 1 solution $x^2 - 6x + (4 - c) = 0$	M1		$x^2 - 5x + 4 = x + c$ has 1 soln seen or implied
		$b^2 - 4ac = 0$	M1		Discriminant = 0 or $(x - a)^2 = 0$ soi
		36 - 4(4 - c) = 0	A1 A1	4	36 - 4(4 - c) = 0 or 9 = 4 - c c = -5
		c = -5 OR		7	<i>u</i> – – 5
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 = 2x - 5$	M1		Algebraic expression for gradient of curve = non-zero gradient of line
		x = 3 y = -2 $-2 = 3 + c$	A1		used $2x - 5 = 1$
		c = -5	A1 A1	4	x = 3 c = -5 SR $c = -5$ without any working B1

8	(i)	Height of box = $\frac{8}{x^2}$	*B1		Area of 1 vertical face = $\frac{8}{x^2} \times x$
		4 vertical faces = $4 \times \frac{8}{x}$ = $\frac{32}{x}$	*B1		$=\frac{8}{x}$
		Total surface area = $x^2 + x^2 + \frac{32}{x}$	B1 dep on both **		Correct final expression
		$A = 2x^2 + \frac{32}{x}$	DOUT	3	
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4x - \frac{32}{x^2}$	B1 B1 B1	3	4x kx ⁻² -32x ⁻²
	(iii)	$4x - \frac{32}{x^2} = 0$ $4x^3 = 32$	M1		$\frac{dA}{dx} = 0 \text{soi}$
		$4x^3 = 32$ $x = 2$	A1		x = 2
			M1 A1	4	Check for minimum Correctly justified
					SR If <i>x</i> = 2 stated www but with no evidence of differentiated expression(s) having been used in part (iii) B1

9	(i)	$\left(\frac{4+10}{2}, \frac{-2+6}{2}\right)$	M1		Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
		(7, 2)	A1	2	(7, 2) (integers required)
	(ii)	$\sqrt{(7-4)^2+(22)^2}$	M1		Uses $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
		$= \sqrt{3^2 + 4^2}$ $= 5$	A1	2	5
	(iii)	$(x-7)^2 + (y-2)^2 = 25$	B1√		$(x-7)^2$ and $(y-2)^2$ used (their centre)
			B1√		$r^2 = 25$ used (their r^2)
			B1	3	$(x-7)^2 + (y-2)^2 = 25$ cao
					Expanded form: -14x and -4y used B1 \sqrt{r} $r = \sqrt{g^2 + f^2 - c}$ used B1 $\sqrt{x^2 + y^2 - 14x - 4y + 28} = 0$ B1 cao
					By using ends of diameter: (x - 4)(x - 10) + (y + 2)(y - 6) = 0 Both x brackets correct B1 Both y brackets correct B1 Final equation fully correct B1
	(iv)	Gradient of $AB = \frac{6 - 2}{10 - 4} = \frac{4}{3}$	B1		oe
		Gradient of tangent = $-\frac{3}{4}$	B1√		
			M1		Correct equation of straight line through A, any non-zero gradient
		$y2 = -\frac{3}{4}(x - 4)$ $3x + 4y = 4$	A1		
		3x + 4y = 4	A1	5	a ,b, c need not be integers