Inhaltsverzeichnis		R.6.6 Elektrolyse	8
		Organische Chemie	8
Atomlehre	2	O.1 Kohlenwasserstoffe	8
A.1 Atommodelle	2	O.1.1 Alkane, Alkene, Alkine, Aromaten	
Bindungslehre	2	O.1.2 Isomere	
		O.2 Erdöl	10
B.1.1 Strukturschreibweisen	2 2	O.2.1 Allgemein	10
tronennegativität, Polarität	2 2	O.2.3 Probleme von Erdöl	10
B.1.4 Eigenschaften molekularer Stoffe	2	O.2.6 Saurer Regen	
B.2 Ionenbindung	2	O.2.7 Oktanzahl & Cetanzahl	
B.2.1 Struktur und Aufbau von Salzen	2	O.2.8 Raffination	11
B.2.2 Entstehung von Salzen	3	O.3 Kunststoffe	11
B.2.3 Eigenschaften von Salzen	3	O.3.1 Polymere	
B.3 Metallbindung	3	O.3.2 Einteilung	
B.3.1 Aufbau von Metallen	3	O.3.3 Polymerisation	
B.3.2 Eigenschaften von Metallen	3	O.3.4 Polykondensation	
Reaktionslehre	3	O.3.5 Polyaddition	
		O.3.6 Spezielle Materialien	
R.1 Chemisches Rechnen	3	O.4 Aminosäuren und Proteine	13
R.1.1 Stöchiometrisches Rechnen	3		
R.1.2 Konzentrationsberechnungen	_		
R.2 Kinetik	4		
R.2.1 Grundlagen	4		
Reaktionen	4		
R.2.3 Empirisches Zeitgesetz	4		
R.3 Chemisches Gleichgewicht	4		
R.3.1 Grundlagen der Thermodynamik	4		
R.3.2 Enthalpie ΔH	4		
R.3.3 Entropie ΔS	4		
R.3.4 Freie Enthalpie ΔG	4		
R.3.5 Die Gibbs-Energie	5		
R.3.6 Massenwirkungsgesetz	5		
Ansatz)	5		
R.3.8 Satz von Le Châtelier	5		
R.3.9 Lage des Gleichgewichts	5		
R.4 Ozon	5		
R.4.1 Funktion & Bedeutung	5		
R.4.2 Ozonschicht & Ozonloch	5		
R.5 Säure-Base Reaktionen	6		
R.5.1 Definition nach Brönsted	6		
R.5.2 Säure-Base Reaktionen (Protolyse)	6		
R.5.3 pH Berechnungen	6		
R.5.4 Puffer	7		
R.5.5 Neutralisationen	7		
R.5.6 Titrationen	7		
R.6 Redox-Reaktionen	7		
R.6.1 Grundlagen	7		
R.6.2 Galvanisches Element	8		
R.6.4 Brennstoffzelle	8		
R.6.5 Akkus	8		

SEITE 1

Atomlehre

A.1 Atommodelle

Dalton. Im Dalton-Modell stellt man sich die Atome als Kugeln vor. Nach Ansicht von Dalton besteht jedes Element aus gleichen kleinsten Teilchen, welche auch er als Atome bezeichnet.

Rutherford. Kern-Hülle-Modell; ein Atom hat einen positiv geladenen Kern. Diese positiven Anteile bekamen den Namen Protonen. Um den Kern herum kreisen Elektronen auf Kreisbahnen und stellen den negativ geladenen Teil des Atoms dar. Erscheint ein Atom nach außen hin elektrisch neutral, muss der Anteil an positiven und negativen Ladungen gleich groß sein.

Bohr. Elektronen können nur ganz bestimmte Energiezustände einnehmen. Elektronen können allerdings nur ganz bestimmte - also nicht beliebige - Abstände vom Kern einnehmen. Diese jeweiligen stabilen Kreisbahnen verhindern den Sturz der Elektronen auf den Atomkern.

• K-Schale: 2 Elektronen

• L-Schale: 8 Elektronen

• M-Schale: 18 Elektronen

• N-Schale: 32 Elektronen

Valenzelektronen: Elektronen auf nicht gesättigten Elektronenschalen

Bindungslehre

B.1 Kovalente Bindung

B.1.1 Strukturschreibweisen

- Strukturformel
- Skelettformel = Lewis-Formel = Strich-Formel
- Gruppenformel

B.1.2 Struktur und Geometrie von Molekülen, Elektronennegativität, Polarität

B.1.2.1 Elektronennegativität

Elektronennegativität: χ ; relatives Mass für die Fähigkeit eines Atoms, in einer chemischen Bindung Elektronenpaare an sich zu ziehen. Von 0.7 bis 4.

Bei $\Delta_{\chi} \geqslant 1.8$: Ionenbindung.

Bindungspolarität: Eine Bindung eines Atoms mit hoher und eines Atoms mit tiefer Elektronegativität ist polar. Auf der Seite des Atoms mit der höheren Elektronegativität ist die Partialladung negativ $(\delta-)$, auf der Seite des Atoms mit der

tieferen Elektronegativität positiv ($\delta+$). Beispiel: Chlor (Cl) hat eine Elektronegativität von 3.0, bei Brom (Br) beträgt sie nur 2.8. Gehen nun ein Chlor- und ein Brom-Atom eine Verbindung ein, ist diese polar (Cl : $\delta-$, Br : $\delta+$). Da die Differenz nur gerade 0.2 beträgt, ist die Bindung nur schwach polar. Je höher die Differenz der beiden Elektronegativitäten, desto stärker ist die Bindungspolarität.

B.1.3 Zwischenmolekulare Kräfte

Wasserstoffbrücken. Wasserstoffbrücken sind elektrostatische Kräfte zwischen Wasserstoffatomen, die an F-, O- oder N-Atome gebunden sind und den freien Elektronenpaaren solcher Atome in benachbarten Molekülen. Sie wirken, weil Wasserstoff von allen Nichtmetallen die kleinste Elektronegativität hat.

Dipol-Wechselwirkung. $\Delta_{\chi} \geqslant 0.5$. Zwischen Dipol-Molekülen wirken die Dipol-Dipol-Kräfte. Diese Kräfte sind relativ stark und von der Molekülgestalt und der Bindungspolarität (Differenz der Elektronegativität) abhängig.

Van der Waals-Kräfte. Die Van-der-Waals-Kräfte entstehen aufgrund der zeitweise asymmetrischen Ladungsverteilung, die bei der Bewegung von Elektronen um einen Atomkern auftreten. Es entstehen momentane Dipole. Je grösser die Molekülmasse und die Moleküloberfläche, desto stärker die Van-der-Waals-Kräfte. Bei kleinen Dipol-Molekülen sind die Dipol-Dipol-Kräfte in der Regel stärker als die Van-der-Waals-Kräfte.

B.1.4 Eigenschaften molekularer Stoffe

Schmelzpunkt, Siedepunkt. Eher tief, viele Molekülverbindungen sind bei Raumtemperatur flüssig oder gasförmig. Abhängig von zwischenmolekularen Kräften (ZMK).

Löslichkeit. Abhängig von ZMK. Polare Moleküle wasserlöslich, unpolare löslich in unpolaren Lösungsmitteln (Benzin).

Sonstiges. Elektrische Nichtleiter.

B.2 Ionenbindung

B.2.1 Struktur und Aufbau von Salzen

Ionengitter mit Kationen und Anionen.

Kation: Gibt ein Metall-Atom Valenzelektronen ab, wird aus ihm ein positiv geladenes Metall-Ion, Kation.

Anion: Nimmt ein Nichtmetall-Atom Valenzelektronen auf, wird aus ihm ein negativ geladenes Nichtmetall-Ion, Anion.

Anorganische Salze: Es liegen Kationen von Metallen vor, die Anionen sind Nichtmetalle oder deren Oxide. Natriumchlorid: Na: Metall. Cl: Nichtmetall.

Organische Salze: Mindestens ein Kation oder Anion ist eine organische Verbindung.

SEITE 2 MAX MATHYS

B.2.2 Entstehung von Salzen

- Zunächst muss die Aktivierungsenergie zugeführt werden, damit die Reaktion in Gang kommt. Natrium muss vom festen in den gasförmigen Zustand überführt werden, dazu muss Sublimationsenergie aufgewendet werden. Da Chlor in der Natur nur als Chlor-Verbindung Cl₂ vorkommt, müssen die beiden Chlor-Atome voneinander getrennt werden. Dazu wird Bindungsenergie aufgewendet.
- \bullet Die Natrium-Atome geben alle ihre Valenzelektronen ab. Die Natrium-Kationen (Na+) verlieren damit ihre Valenzschale und haben nun nur noch 2 Elektronenschalen (Elektronenkonfiguration: 2/8). Die Entfernung der Valenzelektronen erfordert Ionisierungsenergie. Bei einer Reaktion mit Nichtmetallen zu Salz geben Hauptgruppen-Metalle in der Regel alle ihre Valenzelektronen ab und erreichen dadurch Edelgaskonfiguration.
- Die Chlor-Atome füllen ihre Valenzschale mit den freigewordenen Elektronen. Dabei wird der Energiebetrag der Elektronenaffinität freigesetzt. Aus den Chlor-Atomen sind nun Chlor-Anionen (Cl-) geworden (Elektronenkonfiguration: 2/8/8, Edelgaskonfiguration).
- Na+ und Cl- verbinden sich zu einem Kristall (Ionengitter). Dabei wird die Gitterenergie freigesetzt. Eine solche Verbindung wird als Ionenverbindung bezeichnet.

B.2.3 Eigenschaften von Salzen

Schmelzpunkt, Siedepunkt. Hoch, bei Raumtemperatur sind alle Salze fest Abhängig von Gitterenergie

Löslichkeit. Mehr oder weniger in Wasser löslich, je nach Gitterenergie und Hydratationsenergie. Faustregel: unlöslich, wenn beide Ionen Ladung 2 oder höher haben (Ausnahmen: AgCl, AgI) Nicht löslich in unpolaren Lösungsmitteln

Sonstiges. Spröde, in Lösung oder als Schmelze: elektrisch leitfähig (es können sich die geladenen Ionen als Ladungsträger frei in der Flüssigkeit bewegen). Feststoff: nicht leitend.

Reaktionen. Salzbildung, Elektrolyse, Lösen, Fällen

B.3 Metallbindung

B.3.1 Aufbau von Metallen

Im festen Zustand bilden Metall-Atome ein Metallgitter. Die Atomrümpfe sind dicht gepackt. Dazwischen bewegen sich die VE frei umher (Elektronengas). Zwischen den negativ geladenen Elektronen und den positiv geladenen Atomrümpfen herrschen elektrostatische Kräfte, welche das Gitter zusammenhalten (metallische Bindung).

B.3.1.1 Bedeutung des Aufbaus

• Die verschiebbaren Elektronen ermöglichen die elektrische Leitfähigkeit.

- Die metallische Bindung (die starken Gitterkräfte) führen zu einer hohen Härte und hohen Schmelz- und Siedetemperaturen.
- Die Gitterebenen lassen sich leicht gegeneinander verschieben, wodurch Metalle duktil (verformbar) werden.

B.3.2 Eigenschaften von Metallen

Schmelzpunkt, Siedepunkt. In der Regel relativ hoch, abhängig von Anzahl Valenzelektronen, bei Raumtemperatur, fest (ausser Hg).

Löslichkeit. Unlöslich.

Sonstiges. Gute elektrische Leiter, gute Wärmeleiter, Metallglanz, duktil (verformbar).

Reaktionslehre

R.1 Chemisches Rechnen

R.1.1 Stöchiometrisches Rechnen

mol: 1 $mol = 6.022 \cdot 10^{23}$ Teilchen

m: Gewicht absolut in [g]

 \mathbf{n} : Teilchenanzahl; in [mol].

M: Molare Masse in [g/mol]

 \mathbf{V} : Volumen; in [l]

c: Konzentration in [mol/l], manchmal Einheit als [M] bezeichnet.

T: Konzentration; in [K]

p: Druck; in [Pa].

R.1.2 Konzentrationsberechnungen

$$n = \frac{m}{M}$$

$$M = \frac{m}{n}$$

$$c = \frac{N}{V}$$

$$n = \frac{V}{V_m}$$

$$1l = 1 dm^3 = 0.001 m^3$$

$$p \cdot v = n \cdot R \cdot T$$

$$R = 8.31448 \frac{J}{K \cdot mol}$$

$$0^{\circ}C = 273.15K$$

$$1 bar = 10^5 Pa; p_n = 1 bar = 1013.25 hPa$$

SEITE 3 MAX MATHYS

R.2 Kinetik

R.2.1 Grundlagen

Beschreibt die Geschwindigkeit chemischer Reaktionen.

R.2.2 Faktoren der Geschwindigkeit von chemischen Reaktionen

- Temperatur (†)
- Konzentration (↑)
- Reaktionsoberfläche (↑)
- Katalysator (·)

R.2.3 Empirisches Zeitgesetz

$$\begin{aligned} v &= k \cdot c^a(A) \cdot c^b(B) \\ \text{bei} \\ a &A + b \ B \to Produkt \end{aligned}$$

R.3 Chemisches Gleichgewicht

R.3.1 Grundlagen der Thermodynamik

Aktivierungsenergie: Energiezufuhr, die eingesetzt werden muss, damit die Reaktion anfängt, abzulaufen.

innere Energie U:

$$\Delta U = q + w$$

$$= \Delta H - p \cdot \Delta V \tag{1}$$

 ΔU : Änderung der inneren Energie q: als Wärme zugeführte Energie

 \boldsymbol{w} : als Arbeit zugeführte Energie, kann zum Beispiel Volumenveränderung sein.

Volumenarbeit:

$$w = p \cdot \Delta V \tag{2}$$

w: Volumenarbeit

p: Druck

 ΔV : Volumenänderung

 ΔH : Enthalpie

R.3.2 Enthalpie ΔH

Wärmemenge, die während einer Reaktion bei konstanten Druck auf ein System übertragen wird.

$$\Delta H = \Sigma \Delta H_R^0 = \Sigma \Delta H_f^0(Produkte) - \Sigma \Delta H_f^0(Edukte)$$

Standardbildungsenthalpie: Stoffparameter, in den Bindungen gespeicherte Energie, die als Wärme freigesetzt werden kann.

 ΔH_f^0 in kJ/mol

Hinweis: $\Delta H_{f,O_2}^0 = 0$

endotherme Reaktion: $\Delta H_R^0 > 0$ Wärme wird von der Umgebung aufgenommen. Das Reaktionsgemisch kühlt sich ab.

exotherme Reaktion: $\Delta H_R^0 < 0$ Wärme wird an die Umgebung abgegeben. Das Reaktionsgemisch erwärmt sich.

R.3.3 Entropie ΔS

Die Entropie ist ein Zustand, die den Ordnungsgrad beschreibt. Hohe Entropie = Hohes Chaos. Alle Reaktionen streben nach einem hohen Entropiegrad. Ludvig Boltzmann.

$$\Delta S_R^0 = \Sigma \Delta S^0(Produkte) - \Sigma \Delta S^0(Edukte)$$
 (4)

Entropie formel:

$$S = k \cdot ln(W) \tag{5}$$

S: Entropie

 $k = R/N_A = 1.38 \cdot 10^{-23} J/K$: Boltzmann-Konstante

W: idk man

Die Entropie ist proportional zum Logarithmus der zugänglichen innerer Energie.

Entropie anderung: $\Delta S_R^0 > 0$: Mehr Entropie $\Delta S_R^0 < 0$: Weniger Entropie

Generell sind aus entropischer Sicht Reaktionen bevorzugt, welche Unordnung produzieren:

 $\Delta S_{gesamt} = \Delta S_{System} + \Delta S_{Umgebung}$

Ein spontaner Vorgang ist nur dann möglich, wenn eine Zunahme der Gesamtentropie von System und Umgebung erfolgt.

R.3.4 Freie Enthalpie ΔG

Gesamtenergieumsatz einer chemischen Reaktion.

$$\Delta G_R^0 = \Sigma \Delta G_f^0(Produkte) - \Sigma \Delta G_f^0(Edukte) \quad (6)$$

endergonische Reaktion: Die Reaktion läuft nicht freiwillig ab.

$$\Delta G_R^0 > 0$$

exergonische Reaktion: Die Reaktion läuft freiwillig ab, evtl. Aktivierungsenergie nötig.

$$\Delta G_R^0 < 0$$

SEITE 4 MAX MATHYS

R.3.5Die Gibbs-Energie

 $\Delta G = \Delta H - T \cdot \Delta S$

 ΔG : Freie Enthalpie

 ΔH : Enthalpie T: Temperatur ΔS : Entropie

Exotherme Reaktionen, die Unordnung produzieren: H < 0; S > 0

Endotherme Reaktionen, die Unordnung produzieren: H > 0; S > 0

Exotherme Reaktionen, die Ordnung produzieren: H < 0; S < 0

R.3.6Massenwirkungsgesetz

Im Zusammenhang mit dem chemischen Gleichgewicht: Stoffmengen bleiben auf beiden Seiten konstant.

Bei $a A + b B \rightarrow c C + d D$:

$$v_{hin} = k_{hin} \cdot c^a(A) \cdot c^b(B)$$

$$v_{rück} = k_{rück} \cdot c^c(C) \cdot c^d(D)$$

$$v_{hin} = v_{r\ddot{u}ck} \Rightarrow \frac{k_{hin}}{k_{r\ddot{u}ck}} = K_c = \frac{c^c(C) \cdot c^d(D)}{c^a(A) \cdot c^b(B)}$$
 (8)

Gleichgewichtskonstante: $K_c = \frac{k_{hin}}{k_{r\ddot{u}ck}}$ Je grösser K_c , desto stärker liegt das Gleichgewicht auf der Produktseite.

Reaktionsenthalpie (Thermodynami-R.3.7scher Ansatz)

$$\Delta G_R^0 = -R \cdot T \cdot ln(K_c) \tag{9}$$

$$K_c = e^{-\frac{\Delta G_R^0}{R \cdot T}} \tag{10}$$

Satz von Le Châtelier R.3.8

Satz von Le Châtlier: Übt man auf ein sich im Gleichgewicht befindliches System einen Zwang aus, so reagiert das System so, dass der Zwang kleiner wird.

Lage des Gleichgewichts R.3.9

Temperatur. Temperaturerhöhung: Gleichgewicht schiebt sich in Richtung der endothermen Reaktion.

Druck. Bei einer Erhöhung des Druckes verschiebt sich die Lage des chemischen Gleichgewichts auf diejenige Seite, auf der sich weniger gasförmige Teilchen befinden.

Konzentration. Erhöht man die Konzentration eines Edukts, erhöht man automatisch auch die Konzentrationen aller Produkte. Erhöht man die Konzentration eines Produkts, erhöht man automatisch auch die Konzentrationen aller Edukte. Die Gleichgewichtskonstante behält ihren Wert, keinen Einfluss (!).

R.4 Ozon

 O_3 : Ozon

R.4.1 Funktion & Bedeutung

 \bullet O_3 absorbiert schädliche UV-b- und UV-c-Strahlung

Ozonschicht & Ozonloch

Die Ozonschicht liegt in der Stratosphäre.

R.4.2.1 Bildung von Ozon

• Unter Einwirkung UV-Strahlen; ΔH von $+286 \ kJ/mol$:

$$O_2 \rightarrow O_3$$

• Künstliche Herstellung des Menschen, Automobilverkehr, die NO_2 ausstossen:

$$NO_2 + O_2 \rightarrow NO + O_3$$

 $NO_2 \stackrel{UV-Licht}{\longrightarrow} NO + O$
 $O + O_2 \rightarrow O_3$

R.4.2.2 Abbau von Ozon

Hauptsächlich durch Bindung mit Radikalen: O_3 wird abgebaut zu O_2 im Ozonabbaukreislauf. Radikale entstehen durch Aufspaltung von FCKW-Stoffen durch UV-Strahlung. Der Ozonabbaukreislauf kann nur gestoppt werden, wenn die Radikale sich mit Hydroxid-(OH) und Stickstoffdioxidradikalen (NO_2) binden.

FCKW: Fluor-Chlor-Kohlenwasserstoffe. Beispiel: CF_2Cl_2

Bildung von Radikalen: $CF_2Cl_2 \rightarrow CF_2CL + Cl^{\ominus}$

Ozonabbaukreislauf:

1)
$$Cl^{\ominus} + O_3 \rightarrow ClO + O_2$$

2)
$$ClO + O_2 \rightarrow Cl^{\ominus} + 2 O_2$$

Stoppen der Ozonabbaukreislaufs:

$$\begin{array}{c} ClO + OH^{\ominus} \rightarrow HO_{2}Cl \\ ClO + NO_{2}^{\oplus} \rightarrow NO_{3}Cl \end{array}$$

Grund für das Vorkommen von Ozonlöchern an Polen: Niedrige Temperatur bewirkt, dass HO_2Cl und NO_3Cl in Eiswolken erstarren und katalytisch umgewandelt werden zu HNO_3 , Cl_2 , HCl. Bei Auftauen wird so das Ozon sprungartig abgebaut.

R.5 Säure-Base Reaktionen

R.5.1 Definition nach Brönsted

Säuren sind Protonenspender, Basen sind Protonenakzeptoren.

R.5.2 Säure-Base Reaktionen (Protolyse)

- Nichtmetalloxide erzeugen saure Lösungen, Metalloxide erzeugen basische Lösungen.
- Saure und basische Lösungen leiten Strom: Die Lösungen enthalten Ionen.
- Säuren enthalten Wasserstoffatome, Basen enthalten stark elektronegative Atome mit nichtbindenden Elektronenpaaren.

Protolyse: Säure-Base-Reaktion: Ein Stoff gibt ein Proton ab, ein Stoff nimmt ein Proton auf.

Beispiel Säure: HCl

Beispiel Säurereaktion: $HCl + H_2O \rightarrow Cl^{\ominus} + H_3O^{\oplus}$

Beispiel Base: NH_3

Beispiel Basereaktion: $NH_3 + H_2O \rightarrow NH_4^{\oplus} + OH^{\ominus}$

Hydronium-Ion: H_3O^{\oplus}

Hydroxid-Ion: OH^{\ominus}

Ampholyte: Stoffe, die die Funktion einer Säure und einer Base einnehmen können. Zum Beispiel H_2O

Autoprotolyse von Wasser:

$$H_2O + H_2O \rightarrow H_3O^{\oplus} + OH^{\ominus}$$

R.5.3 pH Berechnungen

R.5.3.1 Allgemein

Das Massenwirkungsgesetz (R.3.6) auf Autoprotolyse anwenden:

$$K_c = \frac{c^c(C) \cdot c^d(D)}{c^a(A) \cdot c^b(B)} = \frac{c(H_3 O^{\oplus}) \cdot c(OH^{\ominus})}{c^2(H_2 O)}$$
(11)

Man kann nun annehmen, dass $c(H_2O)$ konstant ist im Reaktionssystem, wenn nur kleine Mengen an Säuren und Basen reagieren \rightarrow *Ionenprodukt*.

Ionenprodukt:

$$K_w = K_c \cdot c^2(H_2O)$$

$$= c(H_3O^{\oplus}) \cdot c(OH^{\ominus})$$

$$= K_S \cdot K_W$$

$$= 10^{-14} M^2$$
(12)

$$K_w=K_c\cdot c^2(H_2O)=c(H_3O^\oplus)\cdot c(OH^\ominus)=10^{-14}~M^2$$
 (Bei 25°C)

Saure Lösung: $c(H3O^{\oplus}) > 10^{-7}M$

Neutrale Lösung: $c(H3O^{\oplus}) = 10^{-7}M$

Basische Lösung: $c(H3O^{\oplus}) < 10^{-7}M$

pH-Wert: Negativer 10-er Logarithmus der Konzentration der Hydroniumionen.

$$pH = -log_{10} c(H_3 O^{\oplus})$$

= 14 - pOH (13)

pOH-Wert: Negativer 10-er Logarithmus der Konzentration der Hydroxidionen.

$$pOH = -log_{10} \ c(OH^{\ominus})$$
$$= 14 - pH \tag{14}$$

Skala reicht von 0 bis $14.\ 0$ ist sauer, 7 ist neutral, 14 ist basisch.

Säurekonstante: Bei einer vorhandenen Protolyse, bei der eine Säure mit Wasser reagiert, wird die Gleichgewichtskonstante (K_c) mit der Konzentration des Wassers $(c(H_2O))$ multipliziert, da sich diese ja konstant verhält.

$$K_S = K_C \cdot c(H_2O) = \frac{c(H_3O^{\oplus}) \cdot c(X^{\ominus})}{c(HX)}$$

$$pK_S = -log_{10} K_S$$
(15)

Hoher K_S -Wert oder niedriger pK_S -Wert: Vollständige Protonenabgabe.

Tiefer K_S -Wert oder hoher pK_S -Wert: Unvollständige Protonenabgabe.

Basenkonstante: Das gleiche wie Säurekonstante, einfach für basische Reaktionen.

$$K_B = K_C \cdot c(H_2O) = \frac{c(OH^{\ominus}) \cdot c(HB^{\oplus})}{c(B)}$$

$$pK_B = -log_{10} K_B$$
(16)

Hoher K_B -Wert oder niedriger pK_B -Wert: Vollständige Protonenaufnahme.

Tiefer K_B -Wert oder hoher pK_B -Wert: Unvollständige Protonenaufnahme.

$$pK_S + pK_B = 14.$$
 (17)

Starke Säure: Sie geben ihre Protonen vollständig ab. $pK_S < 0$

SEITE 6 MAX MATHYS

Starke Base: Sie nehmen Protonen vollständig auf. $pK_B < 0$

R.5.3.2 pH-Berechnung mit starken Säuren/Basen

Annahme: Bei starken Säuren oder starken Basen reagiert die Säure oder die Base völlig.

 $K_S = c_{GGW}(H_3O^{\oplus}) = c_0(HX)$

Für
$$HCl\ (pK_S = -6;\ c(HCl) = 10^{-2}M)$$
:
 $HCl + H_2O \to H_3O^{\oplus} + Cl^{\ominus}$
 $c_{GGW}(H_3O^{\oplus}) = c_0(HCl);\ K_S = 10^{-2};\ pK_S = 2$

18: Starke Säure

$$K_B = c_{GGW}(OH^{\ominus}) = c_0(B) \tag{19}$$

19: Starke Säure

$$HX + H_2O \rightarrow H_3O^{\oplus} + H^{\ominus}$$

 $c_0 - x \quad konst. \quad x \quad x$

$$B + H_2O \rightarrow OH^{\ominus} + HB$$

 $c_0 - x \quad konst. \quad x \quad x$

$$K_{\{S|B\}} = \frac{x^2}{c_0 - x} \tag{20}$$

$$x^{2} + x \cdot K_{\{S|B\}} - c_{0} \cdot K_{\{S|B\}} = 0$$
 (21)

$$\{pH \mid pOH\} = -log_{10} x$$
$$= 14 - \{pOH \mid pH\}$$

R.5.4 Puffer

Stoffe, die eingetragene Säure- und Basenteilchen abfangen und neutralisieren können. Ein Paar aus einer schwachen Säure HPu und einer schwachen Base Pu^{\ominus} . Bsp: NH_4 / NH_3^{\ominus}

$$HPu + H_2O \rightarrow Pu^{\ominus} + H_3O^{\ominus}$$
 (23)

23: Puffergleichnung

$$Pu^{\ominus} + H_3O^{\ominus} \to HPu + H_2O$$

$$HPu + OH^{\ominus} \to Pu^{\ominus} + H_2O$$
(24)

24: Ausgleich der Puffergleichung von Hinzugabe von Hydronium- und Hydroxidionen.

$$K_{S} = \frac{c(Pu^{\ominus}) \cdot c(H_{3}O^{\oplus})}{HPu}$$

$$pK_{S, Puffer} = pH - log_{10} \frac{c(Pu^{\ominus})}{c(HPu)}$$
(25)

25: K_S -Wert

(18)

(22)

$$pH = pK_{S, Puffer} + log_{10} \frac{c(Pu^{\ominus})}{c(HPu)}$$
 (26)

26: Puffergleichung

R.5.4.1 Existenzgebiete von Teilchen

 $pH = pK_s \Rightarrow \frac{c(Pu^{\ominus})}{c(HPu)} = 1$: Je 50% Säure und Säurerest in der Pufferlösung.

 $pH > pK_s \Rightarrow \frac{c(Pu^{\odot})}{c(HPu)} > 1$: Mehr Säure, weniger Säurerest in der Pufferlösung.

 $pH < pK_s \Rightarrow \frac{c(Pu^{\ominus})}{c(HPu)} < 1$: Weniger Säure, mehr Säurerest in der Pufferlösung.

R.5.5 Neutralisationen

Ziel der Neutralisation: Durch Zugabe von Säure oder Base den Stoff zu einem neutralen pH-Wert zu führen.

Zweck: Bestimmen der Konzentrationen von Säuren und Basen.

R.5.5.1 Konzentrationsbestimmung von starken Säuren/Basen

TODO, auf ChiCD schlecht erklärt...

R.5.5.2 Konzentrationsbestimmung von schwachen Säuren/Basen

Neutralisationsgleichung.... TODO andere source.

R.5.6 Titrationen

TODO, nicht in ChiCD vorhanden.

R.6 Redox-Reaktionen

R.6.1 Grundlagen

Redoxreaktion: Elektronenaustauschreaktion

Oxidationszahl: Beschreibt formell die Ladung eines Atoms.

- $\bullet\,$ Atome bei Elementarbindungen besitzen die Ladung 0
- Bei kovalenten Bindungen werden die Elektronen dem elektronegativeren Partner zugeordnet
- Summe der Oxidationszahlen muss der Gesamtladung der Bindung entsprechen

SEITE 7

- H hat immer die Oxidationszahl +I (H^{+I}) ausser bei $H_2 \ (=2 \ H^0)$
- O hat immer die Oxidationszahl -II (O^{-II}) ausser bei O_2 (= 2 O^0), Peroxiden (O-O) und Fluorverbindungen.

Reduktion: Elektronenaufnahme; Beispiel: $4 O^0 + 8 e^{\ominus} \rightarrow 4 O - II$

Oxidation: Elektronenabgabe; Beispiel: $C^{-IV} \rightarrow C^{+IV} + 8 e^{\ominus}$

R.6.2 Galvanisches Element

Funktion: Gewinnung von Energie aus Redoxreaktionen.

- Zwei Metalle: Edleres Metall und weniger edles Metall.
- Edleres Metall wird reduziert, unedles Metall wird oxidiert.

Anode: Pol, an dem die Oxidation stattfindet (Elektronenabgabe); meistens negativer Pol; unedles Metall.

Kathode: Pol, an dem die Reduktion stattfindet (Elektronenaufnahme); meistens positiver Pol; edles Metall.

Stromfluss: Anode \rightarrow Kathode

Standardreduktionspotential: Gibt die Edelheit eines Stoffes an. Platinelektrode, die von $25^{\circ}C$ heissen 1M-Salzsäurelösung umströmt wird weist eine Spannung von 0 auf. Edelmetalle: > 0V Nicht von Antoniadis behandelt (TO-DO prüfen).

Nasszelle gehabt bei Antoniadis? TODO.

R.6.3 Batterien

ein galv element TODO, nicht gut in ChiCD beschrieben & genaue Anforderungen von Antoniadis prüfen

R.6.4 Brennstoffzelle

ein galv element TODO, nicht gut in ChiCD beschrieben & genaue Anforderungen von Antoniadis prüfen

R.6.5 Akkus

ein galv element TODO, nicht gut in ChiCD beschrieben & genaue Anforderungen von Antoniadis prüfen

R.6.6 Elektrolyse

Erzwungene Redoxreaktion. Die Anode ist neuerdings der Pluspol, die Kathode der Minuspol. Anlegen einer Spannung bei der Kathode.

Gesamt: $2 H_2O \rightarrow 2 H_2 + O_2$ Reduktion: $2 H^{+I} \rightarrow 2 e^{\ominus} + 2 H^0$ (27) Oxidation: $O^{-II} + 2 e^{\ominus} \rightarrow 2 O^0$ 27: Beispiel: Elektrolyse von Wasser.

Galvanisieren: TODO ergänzen.

Organische Chemie

O.1 Kohlenwasserstoffe

O.1.1 Alkane, Alkene, Alkine, Aromaten

O.1.1.1 Allgemein

Alkane: Weisen ausschliesslich Einfachbindungen auf.

Alkene: Weisen mindestens eine Doppelbindung auf.

Alkine: Weisen mindestens eine Dreifachbindung auf.

Aromate: Ringförmige Moleküle, welche über eine ungerade Anzahl alternierender Doppelbindungen verfügen

O.1.1.2 Wichtige Vertreter

Vertreter Alkane: Wasser, Ethanol

Vertreter Alkene: Werden verwendet für Synthetisierung von Alkohol, Glycerin.

Vertreter Alkine: Fungizide

Vertreter Aromate: Aminosäuren wie z. B. Phenylalnin.

O.1.1.3 Aromate

Aromat: (Zyklische) Kohlenwasserstoffe, die ein delokalisiertes Elektronensystem besitzen.

Hückel-Regel: Aromatische Moleküle mit 4n+2 Elektronen enthalten ein delokalisiertes Elektronensystem.

Benzol: C_6H_6 , Ring von 6 C-Atomen mit einem delokalisiertem Elektronensystem.

Delokalisiertes Elektronensystem: Elektronen verteilen sich gleichmässig über alle Kohlenstoffatome hinweg.

Kekulé-Formel: In Wirklichkeit nicht so. Delokalisiertes Elektronensystem ist aktuell; ΔH_R^0 wäre viel zu krass (viel

zu klein, ist Wirklichkeit etwas grösser, d. H. weniger Energie O.1.3.2 Stammnamen freigesetzt).

0.1.2Isomere

Chiralität: Ein C-Atom hat vier verschiedene Bindungspartner. Chirale Atome in einem Molekül sind Voraussetzung für Enantiomere (1 chirales Atom) und Diastereomere (mindestens 2 chirale Atome).

- Konstitutionsisomere: Moleküle haben gleiche Summenformel, aber andere Verknüpfung von Atomen, andere Namen.
- Stereoisomere: Moleküle haben gleiche Summenformel, gleiche Verknüpfung und gleichen Namen, unterschiedliche räumliche Anordnung.

Konfigurationsisomere:

- → **Enantiomere**: Verhalten sich wie Spiegelbilder, weisen aber keine Symmetrieebene auf. 1 chirales Atom.
 - \rightarrow **Diastereomere**: Mindestens 2 chirale Atome.
- \rightarrow cis-trans-Isomere: an einer C = C-Doppelbindung sind je zwei verschiedene Substituenten entgegengesetzt (trans) oder auf einer Seite (cis) gebunden.

Konformationsisomere: Können durch Rotation ineinander überführt werden.

0.1.3Nomenklatur

Beispiel: 2-Methylpropanol

O.1.3.1 Vorgehen

- Stammname: Längste C-Kette ergibt den Stammnamen. So nummerieren, dass die längste Kette gewählt wird und die Substituenten eine möglichst kleine Zahl besitzen
- Funktionelle Gruppen: Funktionelle Gruppen bestimmen
- Substituenten: Substituenten bestimmen
- Doppel- und Dreifachbindungen: Doppel- und Dreifachbindungen mit -en und -in bezeichnen.

Format: Substituenten, Stammname, Zwei- / Dreifachbindun- Reihenfolge der Verbindungen: CCCAKATE gen, Funktionelle Gruppe.

\mathbf{Z} ahl	Stammname	Zahlwort
1	Meth	
2	Eth	Di
3	Prop	Tri
4	But	Tetra
5	Pent	Penta
6	Hex	Hexa
7	Hept	Hepta
8	Oct	Octa
9	Non	Nona
10	Dec	Deca

O.1.3.3 Substituenten

Bei Einfachbindung: {Name}-yl anhängen.

Bei Doppelbindung: {Name}-ylen anhängen.

Bei Dreifachbindung: {Name}-ylidin anhängen.

Bei Bei Cycloverbindungen: Cyclo-{Name} einfügen.

Substituent	\mathbf{Name}
$-CH_3$	Methyl
$-C_2H_5$	Ethyl
$-C_nH_{2n}$?yl
-F	Fluor
-Cl	Chlor
-Br	Brom
-I	Iod
$-NH_2$	Amino
-OH	Hydroxy
$-NO_2$	Nitro
-SH	Mercapto

Hinweis: Substituenten, Funktionelle Gruppen und Doppel-/Dreifachbindungen werden immer mit dem Format

 $\{a_0, ..., a_n\} - \{Zahlwort\}\{Name\}, z. B. 3,4-dien$

bezeichnet. a: Der Ort auf der C-Kette, wo gebunden.

Funktionelle Gruppen 0.1.3.4

Halogene Wasserstoffe: Enthalten mindestens ein Halogenatom F, Cl, Br, I. Struktur: R-X

Als Name für die funktionelle Gruppe dient der Name des Halogenatoms.

SEITE 9 MAX MATHYS

(28)

Name + Benennung

Carbonsäure {Stamm}säure

Carbonsäureester {Stamm}säure-{R'}ester

Carbonsäureamide $\{Stamm\}$ säure-N- $\{R'\}$ yl-N- $\{R''\}$ ylamid $\{Stamm\}$ säure-N-N-di $\{R'\}$ ylamid

Aldehvde $\{Stamm\}al$

Ketone {Stamm}on

Alkohole $\{Stamm\}ol$

Thiole {Stamm}thiol

Amine

 $\{Stamm\}ylamin$

Ether $\{R'\}$ yl- $\{R''\}$ ylether

Formel

R - OH

R - SH

 $R - NH_2$

0.1.3.5Cycloalkane

Stamm: $Cyclo\{Stamm\}\{en/in\}$

Substituent: $Cyclo\{Gruppe\}yl-\{Stamm\}\{en/in\}$

0.1.3.6Aromate

Als Stamm: {Substituenten}benzol Als Substituent: Phenyl-{Stamm}

(Phenol)

 NH_2

O.2

0.2.1

Erdöl

Allgemein

Länge

1 - 4

5 - 7

6 - 10

10 - 16

12 - 18

14 - 20

> 20

(Phenylamin oder Anilin)

Erdöl: C-Verbindungen, aus Rohöl. Formel:

0.2.2Fördern von Erdöl

Erdöl entsteht beim Zusammenpressen von abgesunkenen Plankton. Suchen durch seismische Messungen (Reflektionsseismik) und Computermodellen. Förderung durch Abpumpen oder Fracking (Einpumpen von Lösestoffen).

 C_nH_{2n}

Raffineriegas

Leichtbenzin

Schwerbenzin

Destillationsrückstand

Name

Kerosin

Paraffinöl

Schweröl

0.2.3Probleme von Erdöl

Ertrag entspricht nicht der Nachfrage; Weiterverarbeitung des Erdöls.

0.2.4Cracken

Sinn: Lange C-Ketten kürzer machen.

Vorgang: Erhitzen + Katalysator (meistens Eisenwatte)

TO 1 1 4

Bromwasser Indikator: Verfärbt sich bei Kontakt von reaktionsfreudigen Partnern wie zum Beispiel Alkene, welche man in Kondensat findet und nicht in langkettigen Ölen.

Produkt	Edukt
Alkane	kleinere Alkane, Cycloalkane
Cycloalkane	Alkane, verzweigte Alkene
Alkene	kleinere Aklene
Alkine	verzweigte Alkane und Alkine

O.2.4.1 Coken

Lange, $> 500^{\circ}$

O.2.4.2 Katalytisches Cracken

Am weitesten verbreitet, scharf katalytisch und $480^{\circ}C$ – $600 \degree C$

O.2.4.3 Hydrocracken

Mild katalytisch und $300^{\circ}C-450^{\circ}C$

O.2.5 Entschweflung

Ziel: Organische Schwefelverbindungen H_2S und SO_2 entfernen, sodass Katalysator besser funktioniert.

Katalytische Hydrierung: Schädlicher Schwefelwasserstoff H_2S wird zur weiterverarbeitung in Schwefeloxid SO_2 umgesetzt.

$$H_2S + 2 O_2 \rightarrow SO_2 + 2 H_2O$$
 (29)

Claus-Prozess: Schwefelwasserstoff + Schwefeloxid entfernen und zu elementaren Schwefelstoff umwandeln, sodass Katalysator besser funktioniert.

$$8 SO_2 + 16 H_2S \rightarrow 3 S_8 + 16 H_2O$$
 (30)

O.2.6 Saurer Regen

Entstehung: Wenn SO_2 in die Luft gelangt. Schwefelsäure ist eine Säure, die Sachen zerfrisst.

Verbrennung:

$$H_2S + 2 O_2 \rightarrow SO_2 + 2 H_2O$$
 (31)

Entstehung Schwefeltrioxid:

$$2 SO_2 + O_2 \rightarrow 2 SO_3 + 2 H_2O$$
 (32)

Entstehung Schwefelsäure:

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (33)

Reaktion Schwefelsäure:

$$H_2SO_4 + H_2O \rightarrow HSO_4^{\ominus} + H_3O^{\oplus}$$
 (34)

Schweflige Säure:

$$H_2SO_3 \tag{35}$$

O.2.7 Oktanzahl & Cetanzahl

Oktanzahl: Mass für den Widerstand gegen Selbstentzündung, Klopffestigkeit, bei Benzin.

Tiefe OZ: Hohe Zündwilligkeit Hohe OZ: Geringe Zündwilligkeit

 ${\cal O}Z=0$: n-Heptan; Hohe Zündwilligkeit

OZ=100: Isooctan, 2,2,4-Trimethylpentan; Tiefe Zündwilligkeit

 $95\% = 5\% \ n - Hepton + 95\% \ Isoocton$

Cetanzahl: Mass für den Widerstand gegen Selbstentzündung, Klopffestigkeit, bei Diesel.

Tiefe OZ: Geringe Zündwilligkeit Hohe OZ: Hohe Zündwilligkeit

CZ = 0: Methylnaphtalin; Tiefe Zündwilligkeit CZ = 100: Cetan, n-Hexadecan; Hohe Zündwilligkeit

51% = 49% Methylnaphtalin + 95% Cetan

TODO vlt Formeln?

O.2.8 Raffination

Umwandlung von Verbindungen um einen höheren Verzweigungsgrad und Ungesättigtheitsgrad zu erlangen.

Isomerisieren: Reaktionen, die zu Isomeren der ursprünglichen Moleküle führen.

Reformieren: Cyclisieren und Abspalten und Wasserstoffatomen (to reform = neu bilden).

O.3 Kunststoffe

O.3.1 Polymere

- Polymere bestehen aus Makromolekülen.
- Makromoleküle bestehen aus Monomeren.

Grund, dass Polymere schmelzen und nicht ruckartig verflüssigen: Van der Waals-Kräfte und grosse Oberfläche der Makromolekülen.

O.3.2 Einteilung

(33) O.3.2.1 Einteilung nach Struktur

Name	Verzweigung	Andere Eigenschaften
Thermoplast	linear	Schmelzbar & weich
Elastomer	2-D	Nicht schmelzbar
Duroplast	3-D	Nicht schmelzbar & hart

O.3.2.2 Einteilung nach Syntheseart

Synthese	Produkte	Nebenprodukte
Polymerisation	Polymer	Nein
Polykondensation	Polyamide, Polyester	Ja, H_2O od. HX
Polyaddition	Polyaddukt	Nein

O.3.3 Polymerisation

Radikalische Polymerisation: Kettenreaktion, bei der sich Monomere mit einer Doppelbindung zu einem Polymer verbinden. Radikale dienen hier als "Katalysator", die die Doppelbindung aufheben.

Voraussetzungen

R. Startradikal (Aus Azobiisobutyronitril)

Heft anschauen

Wichtige Monomere

Ethen bei Plastiktaschen

Polyvinylchlorid

Polytetrafluorethen bei Pfannen

Polypropen

Polystyrol bei Styropor

Polyacrylnitril

Polymethylmethacrylat bei Plexiglas

O.3.4 Polykondensation

Verknüpfung von Monomeren mit mindestens zwei funktionellen Gruppen, die abgespalten werden, zu einem Makromolekül. Eine Dicarbonsäure oder bei der Carbonsäureamidbildung ein Dicarbonsäurehalogenid spielt immer mit.

O.3.4.1 Carbonsäureamidbildung

Die Entstehung von Polyamiden. Voraussetzung ist immer Diamin und entweder Dicarbonsäure oder Dicarbonsäurehalogenide.

Voraussetzungen

$$\begin{array}{c|c} H & H \\ | & | \\ H-\underline{N_1}-R'-\underline{N_2}-H \text{ Diamin} \\ \hline & O & O \\ | & | & | \\ H-\overline{O}-C_1-R-C_2-\overline{O}-H \text{ Dicarbons\"aure} \end{array}$$

oder

$$\begin{array}{c|c} \text{O} & \text{O} \\ & \text{O} \\ & \text{\parallel} \\ \text{Cl-C}_1-\text{R-C}_2-\text{Cl} \end{array} \text{Dicarbons\"{a}urehalogenid}$$

 N_2 bindet sich mit C_1 und es bildet sich ein Polyamid, es spaltet sich ein HX ab.

$$\begin{array}{c|cccc} H & H & O & O \\ & & \parallel & \parallel \\ |N_1-R'-\underline{N_2}-C_1-R-C_2 \cdot \overline{\underline{X}}| + HX \\ \parallel & H \end{array}$$

Polyamid

Amid-Bindung bei N_2 zu C_1 ; Kette wächst bei N_1 und C_2 .

O.3.4.2 Esterbildung

Entstehung Polyester, wie zum Beispiel PET. Eine (Di) Carbonsäure wird mit einem Molekül das (Zwei) Ein Hydroxygruppe verknüpft, es entsteht dabei immer H_2O .

Voraussetzungen

$$\mathbf{H} - \overline{\mathbf{O}}_1 - \mathbf{R}' - \overline{\mathbf{O}}_2 - \mathbf{H}$$
 Hydroxygruppe

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ H-\overline{\underline{O}}-C_1-R-C_2-\overline{\underline{O}}-H \text{ Dicarbons\"aure} \end{array}$$

 \mathcal{O}_2 und \mathcal{C}_1 werden verbunden, es entsteht ein Polyester.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ \mathbf{H} - \underline{\overline{O_1}} - \mathbf{C_1} - \mathbf{R} - \mathbf{C_2} - \underline{\overline{O_2}} - \mathbf{R'} - \underline{\overline{O_3}} \cdot \mathbf{H} & + \mathbf{H_2O} \end{array}$$

Es wiederholt sich von C_1 zu O_3 n-mal

O.3.5 Polyaddition

Mechanismus kommt nicht an der Prüfung.

O.3.6 Spezielle Materialien

O.3.6.1 PLA (Polylactid)

Synthetische Polymere, die zu Polyester zählen (d. h. aus Hydroxygruppe und (Di-) Carbonsäure hergestellt), aus Milchsäuremolekülen.

O.3.6.2 PVA (Polyvinylalkohol)

Bedeutung: Wasserlöslicher Kunststoff, Krankenhaus.

Struktur:

O.3.6.3 Superabsorber

Retrosynthese von Natriumpolyacrylat:

Ein dreidimensionales Netzwerk entsteht, das besser Flüssigkeit aufnehmen kann.

Aminosäuren und Proteine 0.4

TODO. Nur z.T in ChiCD. Mit ♥ gemacht von Max Mathys •

Schule: MNG Rämibühl

Jahr: 2016

Lehrerin: Antoniadis

SEITE 13MAX MATHYS