

LUKAS HIMSEL

Softwareentwickler aus Nürnberg, Open-Data "Enthusiast"

lukas@himsel.me

OKLAB NÜRNBERG / CODE FOR NÜRNBERG

Freie Software & Offene Daten für eine lebenswertere Stadt

for Germany

Community Projekte Blog Spenden

Code for Germany ist ein Netzwerk von ehrenamtlich engagierten Menschen, die sich für eine gemeinwohlorientierte digitale Zukunft einsetzen. Wir treffen uns in lokalen Labs und online.

Wer wir sind

Wir sind ein Netzwerk mit rund 300 Communitymitgliedern in Deutschland und darüber hinaus. Wir setzen uns mit dem Stand der Digitalisierung in unserer Stadt, Kommune und Region auseinander. Wir bauen hilfreiche Soft- und Hardware-Projekte. Wir analysieren aktuelle technologische Entwicklungen nach ihrem Nutzen für die Gesellschaft. Wir zeigen den Wert von Offenen Daten und leisten

KLIMA-FAKTOREN-KARTE

- (WORK IN PROGRESS)

- Messung von
 Temperaturen in
 der Stadt über
 öffentliche
 Sensoren, eigene
 Sensoren
- Ziel: Erkennen von städtischen Wärmeinseln

UMWELT-DATEN-WERKSTATT

(WORKSHOPS)

- Projekte:
 - Luftbild-Segmentierung
 - Soil Unsealing
- Umgesetzt mit der OKF, im Rahmen der Datenschule

COMMUNITY, EVENTS, AUSTAUSCH

Unregelmäßige Meetups und Workshops. Koordination via Signal:

BATEN & GEODATEN GRUNDLAGEN

DATEN - UNTERSCHEIDUNG

	Strukturierte Daten	Halbstrukturierte Daten	Unstrukturierte Daten
	Tabellarisch (Zeilen & Spalten)	Teilweise organisiert	Keine feste Organisation
	Relationale Datenbanken	JSON, XML, E-Mails	Text, Bilder, Videos
	Leicht zu analysieren	Mittlere Analyse-komplexität	Schwer zu analysieren
	Beispiel: Kundendatenbank	Beispiel: HTML-Dokumente	Beispiel: Social Media Posts

DATEN-FORMATE

CSV tabellarisch

JSON key-value XML hierarchisch

DATEN-FORMATE

CSV

name, job_title, organization
Lukas, Organizer, CfN
Michael, GF, Urban Lab

JSON

"title": "Datenwerkstatt"
}

XML

<tag>innerText</tag>

GEODATEN

Formate:

KML, GML, GeoJSON, usw.

Wir werden uns auf GeoJSON (JSON=JavaScript Object Notation) konzentrieren.

GeoJSON ermöglicht es uns, Geometrien mit den zugehörigen Metadaten zu speichern.

Offizielle Website: https://geojson.org/ Online-Tool zum Zeichnen von GeoJSON auf einer Karte: https://geojson.io

GEOJSON — FEATURE

Feature

Metadaten
(properties – JSON)

Geometrie
(next slide)

GEOJSON — GEOMETRIEN

Point: einzelne Koordinaten für Breiten- und Längengrad

LineString: eine Liste von Koordinaten, die eine Route darstellen

Polygon: ein geschlossener Kreis von Koordinaten

Koordinatensystem:
WGS 84
(sphärische Koordinaten
Längen- und Breitengraden
in dieser Reihenfolge)

GEOJSON — GEOMETRIEN

Point

LineString

Polygon

einfache Koordinate mehrere, verbundene Koordinaten zyklische Struktur aus Koordinaten

GEOJSON - GEOJSON.IO

Zeichnen von Geometrien

GEOJSON — HIERARCHIE (1)

coordinate

```
[11.5, 49.2]
// [longitude, latitude]
```

geometry

```
{
    "type": "Point",
    "coordinates": [11.5, 49.2]
}
```


GEOJSON - HIERARCHIE (2)

feature

```
"type": "Feature",
"geometry": {
    "type": "Point",
    "coordinates": [11.5, 49.2]
},
"properties": {
    "key": "value",
```


WAS KANN MAN DAMIT MACHEN?

- Geospatial Analysis (z.B. mit Turf)
- Datenvisualisierung
 - Leaflet, Mapbox
 - QGIS
 - Dekart;)

