RNA-Seq

Experimental design, analysis and interpretation

RNA-seq Experimental design considerations

What are my aims and what is my hypothesis? How will RNA-seq allow me to test my hypothesis?

What is the integrity of my RNA (RIN)? How much RNA do I have?

What type(s) of RNA do I want to measure?

- Total RNA
- PolyA transcripts
- Small RNA (i.e. miRNA)
- Non-coding RNA
- Splice variants
- Anti-sense transcripts

Details like this help select the RNA-seq library preparation method.

RNA-seq Experimental design considerations

- Does the organism under study have a good reference genome/transcriptome assembly?
- Do I need to perform a de novo transcriptome assembly
- Am I trying to detect and differentially test genes with low expression levels?
- How deep should I sequence each library?
- Will my samples be processed in batches, and if so, how will I control for batch effects?

What are other things you might consider?

A generic roadmap of RNA-seq analyses

Example dataset

RNA-seq

Human CD4+ T-cells: Unstimulated vs Stimulated

In the first two sections, we will just be working with chromosome 22 data from 4 libraries to enable efficient processing

ARTICLES https://doi.org/10.1038/s41588-019-0505-9 nature genetics

Landscape of stimulation-responsive chromatin across diverse human immune cells

Diego Calderon^{1,18}, Michelle L. T. Nguyen^{2,3,18}, Anja Mezger^{4,5,18}, Arwa Kathiria⁴, Fabian Müller ¹, Vinh Nguyen³, Ninnia Lescano³, Beijing Wu⁴, John Trombetta⁴, Jessica V. Ribado⁴, David A. Knowles^{4,6}, Ziyue Gao^{4,7}, Franziska Blaeschke^{2,3,8}, Audrey V. Parent³, Trevor D. Burt^{9,10}, Mark S. Anderson³, Lindsey A. Criswell^{11,19*}, William J. Greenleaf ¹, ^{4,12,13,19*}, Alexander Marson ¹, ^{2,3,8,11,13,14,15,16,19*} and Jonathan K. Pritchard ¹, ^{4,7,17,19*}

Getting started

- 1. This workshop is designed to demonstrate a few ways RNA-seq data can be easily analysed in-depth primarily using R packages.
- 2. There are many ways to approach RNA-seq analysis, and I encourage you to explore more than what is presented here
- 3. If possible, work in pairs or in small groups through these exercises and explore how you could modify the analyses.

Getting started

- 1. **Open RStudio** on your own computer or navigate to http://35.226.108.244:8787 to use a virtual machine server with RStudio
- 2. Within RStudio, select File > New project and then click 'Version control', then click 'Git'.
- 3. In the Repository URL box, enter https://github.com/SamBuckberry/RNAseq-workshop.git

