# **Problem Set 5 (SOLUTIONS)**

This problem set will revise some of the material covered in Handout 5 on panel data models. This will require you to familiarize yourself with Stata's panel-data commands.

```
help xttab
help xtreg
```

You will be using a dataset that comes with Stata: psidextract.dta. The data is a correct version of the PSID sample in Cornwell and Rupert (1988), found in Baltagi and Khanti-Akom (1990). It includes a sample of 595 individuals observed for the years 1976-82.

#### Preamble

```
<IPython.core.display.HTML object>
```

Create a do-file for this problem set and include a preamble that sets the directory and opens the data. For example,

```
clear
//or, to remove all stored values (including macros, matrices, scalars, etc.)
*clear all

* Replace $rootdir with the relevant path to on your local harddrive.
cd "$rootdir/problem-sets/ps-5"

cap log close
log using problem-set-5-log.txt, replace

use problem-set-5-data.dta, clear
```

```
C:\Users\neil_\OneDrive - University of Warwick\Documents\EC910\website\warwick > -ec910\problem-sets\ps-5
```

\_\_\_\_\_\_

```
name: <unnamed>
    log: C:\Users\neil_\OneDrive - University of Warwick\Documents\EC910\we
> bsite\warwick-ec910\problem-sets\ps-5\problem-set-5-log.txt
    log type: smcl
    opened on: 11 Nov 2024, 14:07:07
(PSID wage data 1976-82 from Baltagi and Khanti-Akom (1990))
```

# Questions

1. Set the unit identifier and time variable using xtset. Note, you can also use tsset for this task. This will allow you to use xt package commands.

#### xtset id t

Panel variable: id (strongly balanced)

Time variable: t, 1 to 7

Delta: 1 unit

2. Describe and summarise the variables in the dataset using the normal describe and summarize commands.

#### des

sum id t lwage ed exper weeks south

Contains data from problem-set-5-data.dta

Observations: 4,165 PSID wage data 1976-82 from

Baltagi and Khanti-Akom (1990)

Variables: 14 11 Nov 2024 11:19

(\_dta has notes)

| Variable name | Storage<br>type | Display<br>format | Value<br>label | Variable label                                                       |
|---------------|-----------------|-------------------|----------------|----------------------------------------------------------------------|
| exper         | float           | %9.0g             |                | years of full-time work experience                                   |
| weeks         | float           | %9.0g             |                | weeks worked                                                         |
| occup         | float           | %9.0g             |                | occupation; occ==1 if in a blue-collar occupation                    |
| industry      | float           | %9.0g             |                | <pre>industry; ind==1 if working in a   manufacturing industry</pre> |
| south         | float           | %9.0g             |                | residence; south==1 if in the South area                             |
| smsa          | float           | %9.0g             |                | <pre>smsa==1 if in the Standard metropolitan statistical area</pre>  |
| ms            | float           | %9.0g             |                | marital status                                                       |
| female        | float           | %9.0g             |                | female or male                                                       |

| union | float | %9.0g | if wage set be a union contract |
|-------|-------|-------|---------------------------------|
| educ  | float | %9.0g | years of education              |
| black | float | %9.0g | black                           |
| lwage | float | %9.0g | log wage                        |
| id    | float | %9.0g |                                 |
| t     | float | %9.0g |                                 |

Sorted by: id t

| Variable | Obs   | Mean     | Std. dev. | Min     | Max   |
|----------|-------|----------|-----------|---------|-------|
| id       | 4,165 | 298      | 171.7821  | <br>1   | 595   |
| t        | 4,165 | 4        | 2.00024   | 1       | 7     |
| lwage    | 4,165 | 6.676346 | .4615122  | 4.60517 | 8.537 |
| educ     | 4,165 | 12.84538 | 2.787995  | 4       | 17    |
| exper    | 4,165 | 19.85378 | 10.96637  | 1       | 51    |
| weeks    | 4,165 | 46.81152 | 5.129098  | 5       | 52    |
| south    | 4,165 | .2902761 | .4539442  | 0       | 1     |

**3.** Describe and summarise the variables in the dataset using the panel commands: xtdescribe and xtsummarize. Comment on the information provided.

xtdescribe
xtsum id t lwage ed exper weeks south

id: 1, 2, ..., 595 n = 595t: 1, 2, ..., 7 T = 7Delta(t) = 1 unit Span(t) = 7 periods(id\*t uniquely identifies each observation)

Distribution of T\_i: min 5% 25% 50% 75% 95% max 7 7 7 7 7 7 7 7 7

| -       | Percent |        |  |         |
|---------|---------|--------|--|---------|
| <br>595 | 100.00  | 100.00 |  | 1111111 |
|         | 100.00  |        |  | XXXXXXX |

| Variabl | e l     | Mean            | Std. dev. | Min      | Max      | Obse       | rvations |
|---------|---------|-----------------|-----------|----------|----------|------------|----------|
| id      | overall | 298             | 171.7821  | 1        | <br>595  | N =        | 4165     |
|         | between |                 | 171.906   | 1        | 595      | n =        | 595      |
|         | within  |                 | 0         | 298      | 298      | T =        | : 7      |
| t       | overall | l 4             | 2.00024   | 1        | 7        | I N =      | 4165     |
|         | between |                 | 0         | 4        | 4        | n =        | 595      |
|         | within  | <br>            | 2.00024   | 1        | 7        | T =        | 7        |
| lwage   | overall | <br>  6.676346  | .4615122  | 4.60517  | 8.537    | N =        | 4165     |
|         | between |                 | .3942387  | 5.3364   | 7.813596 | n =        | 595      |
|         | within  | <br>            | .2404023  | 4.781808 | 8.621092 | T =        | 7        |
| educ    | overall | ı<br>  12.84538 | 2.787995  | 4        | 17       | N =        | 4165     |
|         | between |                 | 2.790006  | 4        | 17       | n =        | 595      |
|         | within  | <br>            | 0         | 12.84538 | 12.84538 | T =        | 7        |
| exper   | overall | I<br>  19.85378 | 10.96637  | 1        | 51       | I<br>  N = | 4165     |
|         | between |                 | 10.79018  | 4        | 48       | n =        | 595      |
|         | within  | <br>            | 2.00024   | 16.85378 | 22.85378 | T =        | 7        |
| weeks   | overall | 46.81152        | 5.129098  | 5        | 52       | N =        | 4165     |
|         | between |                 | 3.284016  | 31.57143 | 51.57143 | n =        | 595      |
|         | within  | <br>            | 3.941881  | 12.2401  | 63.66867 | T =        | . 7      |
| south   | overall | .2902761        | .4539442  | 0        | 1        | ı<br>  N = | 4165     |
|         | between |                 | .4489462  | 0        | 1        | n =        |          |
|         | within  |                 | .0693042  | 5668667  | 1.147419 | T =        |          |

 ${\bf 4.}$  Use the command  ${\tt xttab}$  and  ${\tt xtrans}$  ,  ${\tt freq}$  to describe transitions over time in the variable south.

xttab south
xttrans south, freq

|       | C    | verall    | В    | etween    | Within  |
|-------|------|-----------|------|-----------|---------|
| south | Freq | . Percent | Freq | . Percent | Percent |
| 0     | 2956 | 70.97     | 428  | 71.93     | 98.66   |
| 1     | 1209 | 29.03     | 182  | 30.59     | 94.90   |

Total | 4165 100.00 610 102.52 97.54 (n = 595)

| residence; |       |         |             |         |        |
|------------|-------|---------|-------------|---------|--------|
| south==1   | re    | sidence | e; south==1 |         |        |
| if in the  | if    | in the  | South area  |         |        |
| South area | I     | 0       | 1           |         | Total  |
|            | +     |         |             | -+-     |        |
| 0          | l     | 2,527   | 8           | ı       | 2,535  |
|            | 1     | 99.68   | 0.32        |         | 100.00 |
| 1          | +<br> | 8       | 1,027       | -+-<br> | 1,035  |
|            | İ     | 0.77    | 99.23       | Ţ.      | 100.00 |
|            | +     |         |             | -+-     |        |
| Total      |       | 2,535   | 1,035       |         | 3,570  |
|            |       | 71.01   | 28.99       |         | 100.00 |

**5.** Create the variable: expsq=exper^2/1000. Why would you scale the variable in this way?

### gen expsq=exp\*exp/1000

**6.** Estimate the following model using pooled OLS, between-group, feasible GLS, within-group, LSDV, and first-difference. For the first-difference estimator, you can define a first-difference in Stata using the time-series operator: D.variable.

$$\ln(Wage_{it}) = \beta_1 + \beta_2 Exper_{it} + \beta_3 Exper_{it}^2 + \beta_4 Weeks_{it} + \beta_5 Eduyrs_{it} + \varepsilon_{it}$$

With each model, store the results using estimates store. For example,

\* clear existing stored estimates
est clear

\* Pooled OLS
regress lwage exper expsq weeks ed
est store OlS

\* alternatively,
eststo OLS: regress lwage exper expsq weeks ed

```
est clear
* Pooled-OLS
eststo OLS: regress lwage exper expsq weeks ed

* Between-group
eststo BG: xtreg lwage exper expsq weeks ed, be

* Feasible-GLS
eststo FGLS: xtreg lwage exper expsq weeks ed, re theta

* Within-group
eststo WG: xtreg lwage exper expsq weeks ed, fe

* LSDV
eststo LSDV: areg lwage exper expsq weeks ed, absorb(id)

* First-differnce
eststo FD: reg D.(lwage exper expsq weeks), noconst
```

| Source         | SS            | df         | MS        | Numbe    | er of ob | s =   | 4,165     |
|----------------|---------------|------------|-----------|----------|----------|-------|-----------|
| +              |               |            |           | - F(4,   | 4160)    | =     | 411.62    |
| Model          | 251.491445    | 4          | 62.872861 | 2 Prob   | > F      | =     | 0.0000    |
| Residual       | 635.413457    | 4,160      | .15274361 | 9 R-squ  | ared     | =     | 0.2836    |
| +              |               |            |           | - Adj F  | l-square | d =   | 0.2829    |
| Total          | 886.904902    | 4,164      | .21299349 | 2 Root   | MSE      | =     | .39082    |
|                |               |            |           |          |          |       |           |
| _              | Coefficient   |            |           |          | [95%     | conf. | interval] |
| exper          | .044675       | .0023929   | 18.67     | 0.000    | .0399    | 838   | .0493663  |
| expsq          | 715631        | .0527938   | -13.56    | 0.000    | 8191     | 351   | 6121268   |
| weeks          | .005827       | .0011827   | 4.93      | 0.000    | .0035    | 084   | .0081456  |
| educ           | .0760407      | .0022266   | 34.15     | 0.000    | .0716    | 754   | .080406   |
| _cons          | 4.907961      | .0673297   | 72.89     | 0.000    | 4.775    | 959   | 5.039963  |
| Between regres | sion (regress | ion on gro | un means) | Number o | of obs   | =     | 4,165     |
| Group variable | _             | ion on gro | up means, |          |          |       | 595       |
| Group variable | ;. 1u         |            |           | Number o | ı group  | D -   | 595       |
| R-squared:     |               |            |           | Obs per  | group:   |       |           |
| Within =       | 0.1357        |            |           | _        | m        | in =  | 7         |

| Between =<br>Overall = |                |           |           |            | avg = max = | _         |
|------------------------|----------------|-----------|-----------|------------|-------------|-----------|
| sd(u_i + avg(e         | e_i.)) = .3246 | 56        |           |            | =           |           |
| lwage                  | Coefficient    | Std. err. | t         | P> t       | [95% conf.  | interval] |
| exper                  | .038153        | .0056967  | 6.70      | 0.000      | .0269647    | .0493412  |
| expsq                  | 631272         | .1256812  | -5.02     | 0.000      | 8781089     | 384435    |
| weeks                  | .0130903       | .0040659  | 3.22      | 0.001      | .0051048    | .0210757  |
|                        | .0737838       |           |           |            |             |           |
| _cons                  | 4.683039       | .2100989  | 22.29     | 0.000      | 4.270407    | 5.095672  |
|                        |                |           |           |            |             |           |
| Random-effects         | s GLS regressi | on        |           | Number of  | obs =       | 4,165     |
| Group variable         | e: id          |           |           | Number of  | groups =    | 595       |
| R-squared:             |                |           | Obs per g | roup:      |             |           |
| Within =               | = 0.6340       |           |           |            | min =       | 7         |
| Between =              |                |           |           |            | avg =       | 7.0       |
| Overall =              | = 0.1830       |           |           |            | max =       | 7         |
|                        |                |           |           | Wald chi2  | (4) =       | 3012.45   |
| corr(u_i, X) =         | = 0 (assumed)  |           |           |            | i2 =        |           |
| theta =                |                |           |           |            |             |           |
|                        |                |           |           |            |             |           |
| _                      | Coefficient    |           | z         | P> z       | [95% conf.  | interval] |
| •                      | .0888609       |           | 31.54     | 0.000      | .0833382    | .0943837  |
| expsq                  | 772565         | .0622619  | -12.41    | 0.000      | 894596      | 6505339   |
| weeks                  | .0009658       | .0007433  | 1.30      | 0.194      | 000491      | .0024226  |
| educ                   | .1117099       | .0060572  | 18.44     | 0.000      | .0998381    | .1235818  |
| _cons                  | 3.829366       | .0936336  |           |            | 3.645848    | 4.012885  |
| _                      | .31951859      |           |           |            |             |           |
| •                      | .15220316      |           |           | ,          |             |           |
| rho                    | .81505521      | (fraction | of varian | nce due to | u_i)<br>    |           |

note: educ omitted because of collinearity.

| Fixed-effects (within) regression Group variable: id                                            |                                 |                                                           |                        |                         | of obs = of groups =                       |                                            |  |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|------------------------|-------------------------|--------------------------------------------|--------------------------------------------|--|--|--|
| R-squared: Within = Between = Overall =                                                         | Obs per                         | min =                                                     | 7.0                    |                         |                                            |                                            |  |  |  |
| corr(u_i, Xb)                                                                                   | = -0.9107                       |                                                           |                        | 67) =<br>F =            |                                            |                                            |  |  |  |
| •                                                                                               | Coefficient                     |                                                           | t                      | P> t                    | [95% conf.                                 | interval]                                  |  |  |  |
| exper  <br>expsq  <br>weeks  <br>educ                                                           | .1137879<br>4243693<br>.0008359 | .0024689<br>.0546316<br>.0005997<br>(omitted)             | -7.77<br>1.39          | 0.000<br>0.163          | 5314816<br>0003399                         | 317257<br>.0020116                         |  |  |  |
| sigma_u   1.0362039<br>sigma_e   .15220316<br>rho   .97888036 (fraction of variance due to u_i) |                                 |                                                           |                        |                         |                                            |                                            |  |  |  |
| F test that al note: educ omi                                                                   |                                 |                                                           |                        |                         | Prob >                                     | F = 0.0000                                 |  |  |  |
| ů ·                                                                                             |                                 |                                                           |                        |                         |                                            | = 595<br>= 2273.74<br>= 0.0000<br>= 0.9068 |  |  |  |
| lwage                                                                                           | Coefficient                     | Std. err.                                                 | t                      | P> t                    | [95% conf.                                 | interval]                                  |  |  |  |
| exper  <br>expsq  <br>weeks  <br>educ  <br>_cons                                                | 4243693<br>.0008359             | .0024689<br>.0546316<br>.0005997<br>(omitted)<br>.0389061 | 46.09<br>-7.77<br>1.39 | 0.000<br>0.000<br>0.163 | .1089473<br>5314816<br>0003399<br>4.520116 | .1186284<br>317257<br>.0020116<br>4.672677 |  |  |  |

-----

| F | test | of | absorbed | $\verb"indicators":$ | F(594, | 3567) | = 53 | .118 | Prob > | F = | 0.000 |
|---|------|----|----------|----------------------|--------|-------|------|------|--------|-----|-------|
|   |      |    |          |                      |        |       |      |      |        |     |       |

| Source   | SS         | df    | MS         | Number of obs | = | 3,570  |
|----------|------------|-------|------------|---------------|---|--------|
| +        |            |       |            | F(3, 3567)    | = | 337.12 |
| Model    | 33.3371458 | 3     | 11.1123819 | Prob > F      | = | 0.0000 |
| Residual | 117.57812  | 3,567 | .032962747 | R-squared     | = | 0.2209 |
| +        |            |       |            | Adj R-squared | = | 0.2202 |
| Total    | 150.915266 | 3,570 | .042273184 | Root MSE      | = | .18156 |

|                   |       |       |           | Coefficient      | · ·          |
|-------------------|-------|-------|-----------|------------------|--------------|
| .1046927 .1294381 | 0.000 | 18.55 | .0063106  | <br> -           | exper<br>D1. |
| 8051857259056     | 0.000 | -3.82 | . 1392741 | <br> 5321208<br> | expsq<br>D1. |
| 0013757 .0008392  | 0.635 | -0.47 | .0005648  | <br> 0002683     | weeks<br>D1. |

7. Using the formula from Handout 5, replicate the value of  $\theta$  reported above by the FGLS estimator. Note, you will need to use the stored values of  $\sigma_{\varepsilon}^2$  and  $\sigma_{\alpha}^2$ .

```
qui xtreg lwage exper expsq weeks ed, re theta
display "theta = " 1 - sqrt(e(sigma_e)^2 / (7*e(sigma_u)^2+e(sigma_e)^2))
```

theta = .82280511

8. Make a table of the computed estimates. You can either use estimates table or esttab. The latter is part of the estout package, which you may need to install: ssc install estout.

esttab OLS BG FGLS, se scalar(N r2 r2\_o r2\_b r2\_w sigma\_u sigma\_e rho) mtitle("OLS" "BG" "FG esttab WG LSDV FD, se scalar(N r2 r2\_o r2\_b r2\_w sigma\_u sigma\_e rho) rename(D.exper exper D



|         | OLS                     | BG                     | FGLS                    |
|---------|-------------------------|------------------------|-------------------------|
| exper   | 0.0447***               | 0.0382***<br>(0.00570) | 0.0889***               |
| expsq   | -0.716***<br>(0.0528)   | -0.631***<br>(0.126)   | -0.773***<br>(0.0623)   |
| weeks   | 0.00583***<br>(0.00118) | 0.0131**<br>(0.00407)  | 0.000966<br>(0.000743)  |
| educ    | 0.0760***<br>(0.00223)  | 0.0738***<br>(0.00490) | 0.112***<br>(0.00606)   |
| _cons   | 4.908***<br>(0.0673)    | 4.683***<br>(0.210)    | 3.829***<br>(0.0936)    |
| N<br>r2 | 4165<br>0.284           | 4165<br>0.326          | 4165                    |
| r2_o    |                         | 0.272                  | 0.183                   |
| r2_b    |                         | 0.326                  | 0.172                   |
| r2_w    |                         | 0.136                  | 0.634                   |
| sigma_u |                         |                        | 0.320                   |
| sigma_e |                         |                        | 0.152                   |
| rho     |                         |                        | 0.815                   |
|         | rs in parentheses       |                        |                         |
|         | (1)<br>WG               | (2)<br>LSDV            | (3)<br>FD               |
| exper   | 0.114***                | 0.114***               | 0.117***                |
| expsq   | -0.424***<br>(0.0546)   | -0.424***<br>(0.0546)  | -0.532***<br>(0.139)    |
| weeks   | 0.000836<br>(0.000600)  | 0.000836<br>(0.000600) | -0.000268<br>(0.000565) |
| educ    | 0                       | 0                      |                         |

|         | (.,                  | (.,                  |       |
|---------|----------------------|----------------------|-------|
| _cons   | 4.596***<br>(0.0389) | 4.596***<br>(0.0389) |       |
| N       | 4165                 | 4165                 | 3570  |
| r2      | 0.657                | 0.907                | 0.221 |
| r2_o    | 0.0476               |                      |       |
| r2_b    | 0.0276               |                      |       |
| r2_w    | 0.657                |                      |       |
| sigma_u | 1.036                |                      |       |
| sigma_e | 0.152                |                      |       |
| rho     | 0.979                |                      |       |
|         |                      |                      |       |

(.)

Standard errors in parentheses

- \* p<0.05, \*\* p<0.01, \*\*\* p<0.001
- 9. Perform a Hausman test comparing the results of the FLGS and WG estimators. You should use the hausman command, with the option sigmamore. Be sure to get the order of the estimates correct. What do you learn from the test?

(.)

## hausman WG FGLS, sigmamore

|       | Coeffi   | cients   |            |                                |
|-------|----------|----------|------------|--------------------------------|
|       | (b)      | (B)      | (b-B)      | <pre>sqrt(diag(V_b-V_B))</pre> |
| 1     | WG       | FGLS     | Difference | Std. err.                      |
| exper | .1137879 | .0888609 | .0249269   | .0012778                       |
| expsq | 4243693  | 772565   | .3481957   | .0284727                       |
| weeks | .0008359 | .0009658 | 0001299    | .0001108                       |

b = Consistent under HO and Ha; obtained from xtreg.

B = Inconsistent under Ha, efficient under HO; obtained from xtreg.

Test of HO: Difference in coefficients not systematic

$$chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B)$$
  
= 1513.02

Prob > chi2 = 0.0000

10. Estimate FGLS for the model below:

$$\begin{split} \ln(Wage_{it}) = & \beta_1 + \beta_2 Exper_{it} + \beta_3 Exper_{it}^2 + \beta_4 Weeks_{it} + \beta_5 Eduyrs_{it} \\ & + \gamma_2 \overline{Exper}_i + \gamma_3 \overline{Exper}_i^2 + \gamma_4 \overline{Weeks}_i + \varepsilon_{it} \end{split}$$

You will need to manually create the variables:  $\{\overline{Exper}_i, \overline{Exper}_i^2, \overline{Weeks}_i\}$  - the individual-level averages of each variable. This is referred to as the Mundlack correction. Once you have estimated the model, repeat the Hausman test comparing these results with those of the WG estimator. What is the significance of the Mundlack correction?

```
foreach var in exper expsq weeks{
    bys id: egen av`var' = mean(`var')
}
eststo MUN: xtreg lwage exper expsq weeks ed avexper avexpsq avweeks, re theta
esttab WG LSDV FD MUN, se scalar(N r2 r2_o r2_b r2_w sigma_u sigma_e rho) rename(D.exper expended by the boundary of the sigma of th
```

| Random-effects GLS :<br>Group variable: id                | regression                                                        |                        |                                  | obs = groups =                                         | 4,165<br>595                                           |
|-----------------------------------------------------------|-------------------------------------------------------------------|------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| R-squared: Within = 0.656 Between = 0.326 Overall = 0.416 | 64                                                                |                        | Obs per g                        | roup:  min = avg = max =                               | 7<br>7.0<br>7                                          |
| $corr(u_i, X) = 0$ (as theta = .8228                      |                                                                   |                        |                                  | (7) =<br>i2 =                                          |                                                        |
| lwage   Coef:                                             | ficient Std. err.                                                 | z                      | P> z                             | [95% conf.                                             | interval]                                              |
| expsq  49<br>weeks   .00<br>educ   .00                    | .0005997<br>737838 .0048985<br>756349 .0062087<br>069027 .1370415 | -7.77<br>1.39<br>15.06 | 0.000<br>0.163<br>0.000<br>0.000 | .108948953144520003395 .064182908780364754991 .0041991 | 3172934<br>.0020112<br>.0833846<br>0634662<br>.0616937 |

| _cons                              | 4.683039 .2                                          | 2100989 22.29          | 0.000 4.                | 271253 5.094826                                    |
|------------------------------------|------------------------------------------------------|------------------------|-------------------------|----------------------------------------------------|
| sigma_e                            | .31951859<br>.15220316<br>.81505521 (1               | fraction of vari       | ance due to u_i         | )                                                  |
|                                    |                                                      |                        |                         |                                                    |
|                                    | (1)<br>WG                                            | (2)<br>LSDV            | (3)<br>FD               | (4)<br>Mundlack                                    |
| exper                              |                                                      | 0.114***<br>(0.00247)  |                         | 0.114***<br>(0.00247)                              |
| expsq                              | -0.424***<br>(0.0546)                                | -0.424***<br>(0.0546)  |                         | -0.424***<br>(0.0546)                              |
| weeks                              | 0.000836<br>(0.000600)                               | 0.000836<br>(0.000600) | -0.000268<br>(0.000565) |                                                    |
| educ                               | 0 (.)                                                | 0                      |                         | 0.0738***<br>(0.00490)                             |
| avexper                            |                                                      |                        |                         | -0.0756***<br>(0.00621)                            |
| avexpsq                            |                                                      |                        |                         | -0.207<br>(0.137)                                  |
| avweeks                            |                                                      |                        |                         | 0.0123**<br>(0.00411)                              |
| _cons                              | 4.596***<br>(0.0389)                                 | 4.596***<br>(0.0389)   |                         | 4.683***<br>(0.210)                                |
| N<br>r2                            | 4165<br>0.657                                        | 4165<br>0.907          | 3570<br>0.221           | 4165                                               |
| r2_o r2_b r2_w sigma_u sigma_e rho | 0.0476<br>0.0276<br>0.657<br>1.036<br>0.152<br>0.979 |                        |                         | 0.416<br>0.326<br>0.657<br>0.320<br>0.152<br>0.815 |

------

Standard errors in parentheses \* p<0.05, \*\* p<0.01, \*\*\* p<0.001

Note: the rank of the differenced variance matrix (3) does not equal the number of coefficients being tested (4); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.

| 1     | Coeffic<br>(b)<br>MUN | (B)<br>FGLS | (b-B)<br>Difference | <pre>sqrt(diag(V_b-V_B)) Std. err.</pre> |
|-------|-----------------------|-------------|---------------------|------------------------------------------|
| exper | .1137879              | .0888609    | .0249269            | .0012778                                 |
| expsq | 4243693               | 772565      | .3481957            | .0284727                                 |
| weeks | .0008359              | .0009658    | 0001299             | .0001108                                 |
| educ  | .0737838              | .1117099    | 0379262             | .0009972                                 |

b = Consistent under HO and Ha; obtained from xtreg.

B = Inconsistent under Ha, efficient under HO; obtained from xtreg.

Test of HO: Difference in coefficients not systematic

$$chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B)$$
  
= 1513.02  
Prob > chi2 = 0.0000  
(V\_b-V\_B is not positive definite)

11. Export the results as a single CSV/Excel file. You can use esttab for .csv or outreg2 for .xlsx.

esttab using "problem-set-5-results.csv", replace se scalar(N r2 r2\_o r2\_b r2\_w sigma\_u sigma

(output written to problem-set-5-results.csv)

#### **Postamble**

log close

name: <unnamed>

log: C:\Users\neil\_\OneDrive - University of Warwick\Documents\EC910\we

> bsite\warwick-ec910\problem-sets\ps-5\problem-set-5-log.txt

log type: smcl

closed on: 11 Nov 2024, 14:07:10

\_\_\_\_\_\_