#### УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

## Курсовая работа

Часть 1 Вариант 25

Преподаватель Поляков Владимир Иванович Функция  $f(x_1, x_2, x_3, x_4, x_5)$  принимает значение 1 при  $1 < |x_1x_2x_5 - x_3x_4| \le 4$  и неопределенное значение при  $|x_1x_2x_5 - x_3x_4| = 2$ .

#### Таблица истинности

| №  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_1 x_2 x_5$ | $x_3x_4$ | $x_1 x_2 x_5$ | $x_3x_4$ | f |
|----|-------|-------|-------|-------|-------|---------------|----------|---------------|----------|---|
| 0  | 0     | 0     | 0     | 0     | 0     | 0             | 0        | 0             | 0        | 0 |
| 1  | 0     | 0     | 0     | 0     | 1     | 1             | 0        | 1             | 0        | 0 |
| 2  | 0     | 0     | 0     | 1     | 0     | 0             | 1        | 0             | 1        | 0 |
| 3  | 0     | 0     | 0     | 1     | 1     | 1             | 1        | 1             | 1        | 0 |
| 4  | 0     | 0     | 1     | 0     | 0     | 0             | 2        | 0             | 2        | d |
| 5  | 0     | 0     | 1     | 0     | 1     | 1             | 2        | 1             | 2        | 0 |
| 6  | 0     | 0     | 1     | 1     | 0     | 0             | 3        | 0             | 3        | 1 |
| 7  | 0     | 0     | 1     | 1     | 1     | 1             | 3        | 1             | 3        | d |
| 8  | 0     | 1     | 0     | 0     | 0     | 2             | 0        | 2             | 0        | d |
| 9  | 0     | 1     | 0     | 0     | 1     | 3             | 0        | 3             | 0        | 1 |
| 10 | 0     | 1     | 0     | 1     | 0     | 2             | 1        | 2             | 1        | 0 |
| 11 | 0     | 1     | 0     | 1     | 1     | 3             | 1        | 3             | 1        | d |
| 12 | 0     | 1     | 1     | 0     | 0     | 2             | 2        | 2             | 2        | 0 |
| 13 | 0     | 1     | 1     | 0     | 1     | 3             | 2        | 3             | 2        | 0 |
| 14 | 0     | 1     | 1     | 1     | 0     | 2             | 3        | 2             | 3        | 0 |
| 15 | 0     | 1     | 1     | 1     | 1     | 3             | 3        | 3             | 3        | 0 |
| 16 | 1     | 0     | 0     | 0     | 0     | 4             | 0        | 4             | 0        | 1 |
| 17 | 1     | 0     | 0     | 0     | 1     | 5             | 0        | 5             | 0        | 0 |
| 18 | 1     | 0     | 0     | 1     | 0     | 4             | 1        | 4             | 1        | 1 |
| 19 | 1     | 0     | 0     | 1     | 1     | 5             | 1        | 5             | 1        | 1 |
| 20 | 1     | 0     | 1     | 0     | 0     | 4             | 2        | 4             | 2        | d |
| 21 | 1     | 0     | 1     | 0     | 1     | 5             | 2        | 5             | 2        | 1 |
| 22 | 1     | 0     | 1     | 1     | 0     | 4             | 3        | 4             | 3        | 0 |
| 23 | 1     | 0     | 1     | 1     | 1     | 5             | 3        | 5             | 3        | d |
| 24 | 1     | 1     | 0     | 0     | 0     | 6             | 0        | 6             | 0        | 0 |
| 25 | 1     | 1     | 0     | 0     | 1     | 7             | 0        | 7             | 0        | 0 |
| 26 | 1     | 1     | 0     | 1     | 0     | 6             | 1        | 6             | 1        | 0 |
| 27 | 1     | 1     | 0     | 1     | 1     | 7             | 1        | 7             | 1        | 0 |
| 28 | 1     | 1     | 1     | 0     | 0     | 6             | 2        | 6             | 2        | 1 |
| 29 | 1     | 1     | 1     | 0     | 1     | 7             | 2        | 7             | 2        | 0 |
| 30 | 1     | 1     | 1     | 1     | 0     | 6             | 3        | 6             | 3        | 1 |
| 31 | 1     | 1     | 1     | 1     | 1     | 7             | 3        | 7             | 3        | 1 |

# Аналитический вид

#### Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee$ 

#### Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$   $(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$   $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$   $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$   $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$ 

# Минимизация булевой функции методом Квайна-Мак-Класки

#### Кубы различной размерности и простые импликанты

|          | $K^0(f)$ |              | $K^1$               | Z(f)  |       |  |
|----------|----------|--------------|---------------------|-------|-------|--|
| $m_{16}$ | 10000    | <b>√</b>     | $m_4$ - $m_6$       | 001X0 | 001X0 |  |
| $m_4$    | 00100    | $\checkmark$ | $m_8$ - $m_9$       | 0100X | 0100X |  |
| $m_8$    | 01000    | $\checkmark$ | $m_{16}$ - $m_{18}$ | 100X0 | 100X0 |  |
| $m_6$    | 00110    | <b>√</b>     | $m_{16}$ - $m_{20}$ | 10X00 | 10X00 |  |
| $m_9$    | 01001    | $\checkmark$ | $m_4$ - $m_{20}$    | X0100 | X0100 |  |
| $m_{18}$ | 10010    | $\checkmark$ | $m_6$ - $m_7$       | 0011X | 0011X |  |
| $m_{20}$ | 10100    | $\checkmark$ | $m_9$ - $m_{11}$    | 010X1 | 010X1 |  |
| $m_{19}$ | 10011    | <b>√</b>     | $m_{18}$ - $m_{19}$ | 1001X | 1001X |  |
| $m_{21}$ | 10101    | $\checkmark$ | $m_{20}$ - $m_{21}$ | 1010X | 1010X |  |
| $m_{28}$ | 11100    | $\checkmark$ | $m_{20}$ - $m_{28}$ | 1X100 | 1X100 |  |
| $m_7$    | 00111    | $\checkmark$ | $m_{21}$ - $m_{23}$ | 101X1 | 101X1 |  |
| $m_{11}$ | 01011    | $\checkmark$ | $m_{19}$ - $m_{23}$ | 10X11 | 10X11 |  |
| $m_{30}$ | 11110    | <b>√</b>     | $m_{28}$ - $m_{30}$ | 111X0 | 111X0 |  |
| $m_{23}$ | 10111    | $\checkmark$ | $m_7$ - $m_{23}$    | X0111 | X0111 |  |
| $m_{31}$ | 11111    | <b>√</b>     | $m_{30}$ - $m_{31}$ | 1111X | 1111X |  |
|          |          |              | $m_{23}$ - $m_{31}$ | 1X111 | 1X111 |  |

#### Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

|                    |       | 0-кубы |   |    |    |    |    |    |    |    |
|--------------------|-------|--------|---|----|----|----|----|----|----|----|
|                    |       |        | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| Простые импликанты |       | 0      | 1 | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
|                    |       | 1      | 0 | 0  | 0  | 0  | 1  | 1  | 1  | 1  |
|                    |       | 1      | 0 | 0  | 1  | 1  | 0  | 0  | 1  | 1  |
|                    |       |        | 1 | 0  | 0  | 1  | 1  | 0  | 0  | 1  |
|                    |       |        | 9 | 16 | 18 | 19 | 21 | 28 | 30 | 31 |
| A                  | 001X0 | X      |   |    |    |    |    |    |    |    |
| В                  | 0100X |        | X |    |    |    |    |    |    |    |
| С                  | 100X0 |        |   | X  | X  |    |    |    |    |    |
| D                  | 10X00 |        |   | X  |    |    |    |    |    |    |
|                    | X0100 |        |   |    |    |    |    |    |    |    |
| E                  | 0011X | X      |   |    |    |    |    |    |    |    |
| F                  | 010X1 |        | X |    |    |    |    |    |    |    |
| G                  | 1001X |        |   |    | X  | X  |    |    |    |    |
| Η                  | 1010X |        |   |    |    |    | X  |    |    |    |
| I                  | 1X100 |        |   |    |    |    |    | X  |    |    |
| J                  | 101X1 |        |   |    |    |    | X  |    |    |    |
| K                  | 10X11 |        |   |    |    | X  |    |    |    |    |
| L                  | 111X0 |        |   |    |    |    |    | X  | X  |    |
|                    | X0111 |        |   |    |    |    |    |    |    |    |
| M                  | 1111X |        |   |    |    |    |    |    | X  | X  |
| N                  | 1X111 |        |   |    |    |    |    |    |    | X  |

Ядро покрытия:

$$T = \{\}$$

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \lor E) \ (B \lor F) \ (C \lor D) \ (C \lor G) \ (G \lor K) \ (H \lor J) \ (I \lor L) \ (L \lor M) \ (M \lor N)$$

Приведем выражение в ДНФ:

 $Y = ABCGHIM \lor ABCGHLM \lor ABCGHLN \lor ABCGIJM \lor ABCGJLM \lor ABCGJLN \lor ABCHIKM \lor ABCHKLM \lor ABCHKLN \lor \dots$  (термы высших рангов)

Возможны следующие покрытия:

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 001X0\\0100X\\100X0\\1001X\\1010X\\1X100\\1111X \end{cases}$$
$$S^{a} = 28$$
$$S^{b} = 35$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_2} \, x_3 \, \overline{x_4} \vee x_1 \, x_3 \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_5} \vee x_1 \, x_2 \, x_3 \, x_4 \vee x_1 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_5} \vee x_1 \, \overline{x_5} \vee x_1$$

### Минимизация булевой функции на картах Карно

#### Определение МДНФ



 $f = \overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5} \vee \overline{x_1}\,x_2\,\overline{x_3}\,\overline{x_4} \vee x_1\,\overline{x_2}\,\overline{x_3}\,\overline{x_5} \vee x_1\,\overline{x_2}\,\overline{x_3}\,x_4 \vee x_1\,\overline{x_2}\,x_3\,\overline{x_4} \vee x_1\,x_3\,\overline{x_4}\,\overline{x_5} \vee x_1\,x_2\,x_3\,x_4$ 

#### Определение МКНФ



 $f = (x_1 \vee x_2 \vee x_3) \ (x_1 \vee \overline{x_2} \vee x_5) \ (x_1 \vee \overline{x_3} \vee \overline{x_5}) \ (\overline{x_1} \vee \overline{x_2} \vee x_3) \ (x_2 \vee x_3 \vee x_4 \vee \overline{x_5}) \ (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) \ (\overline{x_1} \vee \overline{x_2} \vee x_4 \vee \overline{x_5})$ 

# Преобразование минимальных форм булевой функции

#### Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5}\vee\overline{x_1}\,x_2\,\overline{x_3}\,\overline{x_4}\vee x_1\,\overline{x_2}\,\overline{x_3}\,\overline{x_5}\vee x_1\,\overline{x_2}\,\overline{x_3}\,x_4\vee x_1\,\overline{x_2}\,x_3\,\overline{x_4}\vee x_1\,x_3\,\overline{x_4}\,\overline{x_5}\vee x_1\,x_2\,x_3\,x_4\qquad S_Q=35\quad \tau=2$$
 Декомпозиция невозможна 
$$f=x_1\,x_3\,\overline{x_4}\,\left(\overline{x_2}\vee\overline{x_5}\right)\vee x_1\,\overline{x_2}\,\overline{x_3}\,\left(x_4\vee\overline{x_5}\right)\vee\overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5}\vee\overline{x_1}\,x_2\,\overline{x_3}\,\overline{x_4}\vee x_1\,x_2\,x_3\,x_4\qquad S_Q=29\quad \tau=3$$

#### Факторизация и декомпозиция МКНФ

$$f = \underbrace{(x_1 \vee x_2 \vee x_3) \ (x_1 \vee \overline{x_2} \vee x_5) \ (x_1 \vee \overline{x_3} \vee \overline{x_5}) \ (\overline{x_1} \vee \overline{x_2} \vee x_3) \ (x_2 \vee x_3 \vee x_4 \vee \overline{x_5}) \ (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5)}_{Q} \quad S_Q = 31 \quad \tau = 2$$

Декомпозиция невозможна

$$f = (x_2 \vee x_3 \vee x_1 \ (x_4 \vee \overline{x_5})) \ (\overline{x_1} \vee \overline{x_2} \vee x_3 \ (x_4 \vee \overline{x_5})) \ (x_1 \vee \overline{x_2} \vee x_5) \ (x_1 \vee \overline{x_3} \vee \overline{x_5}) \ (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) \quad S_Q = 29 \quad \tau = 4$$

#### Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

#### Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \, x_3 \, \overline{x_4} \, (\overline{x_2} \vee \overline{x_5}) \vee x_1 \, \overline{x_2} \, \overline{x_3} \, (x_4 \vee \overline{x_5}) \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \vee x_1 \, x_2 \, x_3 \, x_4 \quad (S_Q = 29, \tau = 3)$$



Схема по упрощенной МКНФ:

$$f = (x_2 \vee x_3 \vee x_1 \ (x_4 \vee \overline{x_5})) \ (\overline{x_1} \vee \overline{x_2} \vee x_3 \ (x_4 \vee \overline{x_5})) \ (x_1 \vee \overline{x_2} \vee x_5) \ (x_1 \vee \overline{x_3} \vee \overline{x_5}) \ (\overline{x_1} \vee x_2 \vee \overline{x_3} \vee x_5) \quad (S_Q = 29, \tau = 4)$$



#### Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДН $\Phi$  в базисе И, НЕ:

$$f = \overline{\overline{x_1 \, x_3 \, \overline{x_4} \, \overline{x_2 \, x_5}}} \, \overline{x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5} \, \overline{x_1 \, \overline{x_2} \, x_3 \, \overline{x_5}} \, \overline{x_1 \, x_2 \, \overline{x_3} \, \overline{x_4}} \, \overline{x_1 \, x_2 \, x_3 \, x_4}} \quad (S_Q = 37, \tau = 6)$$



Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{\overline{x_2}\,\overline{x_3}}\,\overline{\overline{x_1}\,\overline{\overline{x_4}\,x_5}}\,\overline{x_1}\,\overline{x_2}\,\overline{\overline{x_3}\,\overline{\overline{x_4}\,x_5}}\,\overline{\overline{x_1}}\,\overline{x_2}\,\overline{x_5}\,\overline{\overline{x_1}}\,\overline{x_3}\,\overline{x_5}\,\overline{x_1}\,\overline{x_2}\,\overline{x_3}\,\overline{\overline{x_5}} \quad (S_Q = 38, \tau = 7)$$



### Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_1} \, \overline{x_3} \, \overline{\overline{\overline{x_4}} \, \overline{x_2} \, \overline{x_5}} \, \overline{\overline{x_2} \, \overline{x_4}} \, \overline{\overline{x_2}} \, \overline{\overline{\overline{x_3}} \, \overline{\overline{x_4}}} \, \overline{\overline{x_5}} \, \overline{\overline{x_1}} \, \overline{\overline{\overline{x_2}} \, \overline{\overline{x_3}} \, \overline{\overline{x_5}}} \, \overline{\overline{x_2}} \, \overline{\overline{\overline{x_3}} \, \overline{\overline{x_4}}} \qquad (S_Q = 40, \tau = 7)$$



Схема по упрощенной МКН $\Phi$  в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_1}} \overline{\overline{x_4}} \overline{\overline{x_5}} \overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{\overline{x_5}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{\overline{x_3}} \overline{\overline{x_4}} \overline{\overline{x_5}}$$
 
$$(S_Q = 42, \tau = 9)$$

