University of Missouri

MASTER'S PROJECT

A Survey on Character Tables for Representations of Finite Groups

Author: Jared Stewart

Supervisor: Dr. Calin Chindris

A project submitted in fulfilment of the requirements for the degree of Masters of Arts

in the

Department of Mathematics

March 7, 2016

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include Professor Chindris!! ...

Contents

Ac	knov	vledgements	iii
1	Basi	c Notions of Representation Theory	1
	1.1	Group Actions	1
		The Definition of a Representation	2
	1.3	Representations of Cyclic Groups	4
	1.4	Constructions from Linear Algebra	6
		Complete Reducibility and Unitarity	6
		Vector Spaces of Linear Maps	8
	1.7	Schur's Lemma	10
	1.8	Tensor Product	11
	1.9	Isotypical Decomposition	12
		Character Theory	15
Bil	hling	ranhy	19

Chapter 1

Basic Notions of Representation Theory

1.1 Group Actions

Definition 1.1. A *(left)* **group action** of a group G on a set X is a map $\rho \colon G \times X \to X$ (written as $g \cdot a$, for all $g \in G$ and $a \in A$) that satisfies the following two axoims:

$$1 \cdot x = x \qquad \forall x \in X \tag{1.1.1}$$

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 $\forall g, h \in G, x \in X$ (1.1.2)

Note. We could likewise define the concept of a *right* group action, where the set elements would be multiplied by group elements on the right instead of on the left. Throughout we shall use the term *group action* to mean a *left* group action.

Proposition 1.2. Let G act on the set X. For any fixed $g \in G$, the map σ_g from X into X defined by $\sigma_g(x) = g \cdot x$ is a permutation of the set X. That is, $\sigma_g \in S_X$.

Proof. We show that σ_g is a permutation of X by finding a two-sided inverse map, namely $\sigma_{g^{-1}}$. Observe that for any $x \in X$, we have

$$(\sigma_{g^{-1}} \circ \sigma_g)(x) = \sigma_{g^{-1}}(\sigma_g(x)$$

$$= g^{-1} \cdot (g \cdot x) \qquad \text{(by definition of } \sigma_g \text{ and } \sigma_{g^{-1}})$$

$$= (g^{-1}g) \cdot x \qquad \text{(by axiom 1.1.1 of an action)}$$

$$= 1 \cdot x$$

$$= x \qquad \text{(by axiom 1.1.2 of an action)}.$$

Thus $\sigma_{g^{-1}} \circ \sigma_g$ is the identity map on X. We can reverse the roles of g and g^{-1} to see that $\sigma_g \circ \sigma_{g^{-1}}$ is also the identity map on X. Having a two-sided inverse, we conclude that σ_g is a permutation of X.

Proposition 1.3. Let G act on the set X. The map from G into the symmetric group S_X defined by $g \mapsto \sigma_q(x) = g \cdot x$ is a group homomorphism.

Proof. Define the map $\rho: G \to S_X$ by $\rho(g) = \sigma_g$. We have seen from Proposition 1.2 that σ_g is indeed an element of S_X . It remains to show that $\rho(g_1g_2) = \rho(g_1) \circ \rho(g_2)$ for any $g_1, g_2 \in G$. Observe that

$$\begin{split} \rho(g_1g_2)(x) &= \sigma_{g_1g_2}(x) & \text{(by definition of } \rho) \\ &= (g_1g_2) \cdot x & \text{(by definition of } \sigma_{g_1g_2}) \\ &= g_1 \cdot (g_2 \cdot x) & \text{(by axiom 1.1.1 of an action)} \\ &= \sigma_{g_1}(\sigma_{g_2}(x)) & \text{(by definition of } \sigma_{g_1} \text{ and } \sigma g_2) \\ &= \rho(g_1)(\rho(g_2)(x)) & \text{(by definition of } \rho) \\ &= (\rho(g_1) \circ \rho(g_2))(x) & \text{(by definition of function composition)}. \end{split}$$

Since the values of $\rho(g_1g_2)$ and $\rho(g_1)\circ\rho(g_2)$ agree on every element $x\in X$, these two permutations are equal. We conclude that ρ is a homomorphism, since g_1 and g_2 were arbitrary elements of G.

Proposition 1.4. Any homomorphism ψ from the group G into the symmetric group S_X on a set X gives rise to an action of G on X, defined by taking $g \cdot x = \psi(g)(x)$.

Proof. Suppose that we have a homomorphism ψ from G into S_X . We can define a map from $G \times X$ to X by $g \cdot x = \psi(g)(x)$. We verify that this map satisfies the definition of a group action of G on X:

(axiom 1.1.1)
$$1 \cdot x = \psi(1)(x) = id_X(x) = x$$

(axiom 1.1.2) $(gh) \cdot x = \psi(gh)(x) = (\psi(g)\psi(h))(x) = \psi(g)(\psi(h)(x)) = g \cdot (h \cdot x)$

Corollary 1.5. The actions of G on the set X are in bijective correspondence with the homomorphisms from G into the symmetric group S_X .

Proof. By Proposition 1.3, any action of G on X yields a homomorphism from G into S_X . Conversely, any homomorphism from G into S_X establishes an action of G on X by Proposition 1.4.

1.2 The Definition of a Representation

Definition 1.6. Let G be a group. A **representation** of G is a homomorphism $\rho \colon G \to GL_n(\mathbb{C})$ for some positive integer n.

Definition 1.7. Two representations $\rho_1 \colon G \to GL_n(\mathbb{C})$ and $\rho_2 \colon G \to GL_n(\mathbb{C})$ of G are **equivalent** if there exists $P \in GL_n(\mathbb{C})$ such that $\rho_2 = P^{-1}\rho_1 P$.

Equivalent representations are fundamentally "the same" in some sense, but to make this precise we need to shift our thinking to linear maps instead of matrices.

Definition 1.8. Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is any group homomorphism $\rho \colon G \to GL(V)$. If we fix a basis for V, we get a representation in the previous sense.

Definition 1.9 (Alternative definition). Let G be a group, let F be a field, and let V be a vector space over F. A **linear representation** of G is an action of G on V which preserves the linear structure of V, i.e. an action of G on V such that

$$g \cdot (v_1 + v_2) = g \cdot v_1 + g \cdot v_2 \qquad \forall g \in G, v_1, v_2 \in V$$
 (1.9.1)

$$g \cdot (kv) = k(g \cdot v) \qquad \forall g \in G, v \in V, k \in F \qquad (1.9.2)$$

Note. Unless otherwise specificed, we use *representation* to mean *finite-dimensional complex representation*.

Proposition 1.10. The definitions of a linear representation given in 1.8 and 1.9 above are equivalent.

- *Proof.* (\rightarrow) Suppose that we have a homomorphism $\rho\colon G\to GL(V)$. Note that GL(V) is a subgroup of the symmetric group S_V on V, so we can apply Proposition 1.4 to obtain an action of G on V by $g\cdot v=\rho(g)(v)$. We check that this action preserves the linear structure of V.
 - 1.9.1 For any $g \in G$, $v_1, v_2 \in V$ we have $g \cdot (v_1 + v_2) = \rho(g)(v_1 + v_2) = \rho(g)(v_1) + \rho(g)(v_2) = g \cdot v_1 + g \cdot v_2$.
 - 1.9.2 For any $g \in G, v \in V, k \in F$ we have $g \cdot (kv) = \rho(g)(kv) = k(\rho(g)(v)) = k(g \cdot v)$.
- (\leftarrow) Suppose that we have an action of G on V which preserves the linear structure of V in the sense of Definition 1.9. We can apply Proposition 1.3 to obtain a homorphism $\rho\colon G\to S_V$ given by $\rho(g)=\sigma_g$ where $\sigma_g(v)=g\cdot v$. It remains to show that the image $\rho(G)$ of G under ρ is actually contained in GL(V), i.e. that for each $g\in G$ the map σ_g is linear. Fix an element $g\in G$. For any $k\in F$ and $v\in V$, we have

$$\sigma_g(kv) = g \cdot (kv)$$
 (by definition of σ_g)
$$= k(g \cdot v)$$
 (by property 1.9.1)
$$= k(\sigma_g(v))$$
 (by definition of σ_g).

Also, for any $v_1, v_2 \in V$ we have

$$\begin{split} \sigma_g(v_1+v_2) &= g\cdot(v_1+v_2) & \text{(by definition of } \sigma_g) \\ &= g\cdot v_1 + g\cdot v_2 & \text{(by property 1.9.2)} \\ &= \sigma_g(v_1) + \sigma_g(v_2) & \text{(by definition of } \sigma_g). \end{split}$$

Thus σ_g is linear, and $\rho(G) \subset GL(V)$ proves that we have a homomorphism $\rho \colon G \to GL(V)$.

Definition 1.11. Let G be a group, let F be a field, let V be a vector space over F, and let $\rho: G \to GL(V)$ be a representation of G. The **dimension** of the representation is the dimension of V over F.

- **Example 1.12.** 1. Let V be a 1-dimensional vector space over the field F. The map $\rho\colon G\to GL(V)$ defined by $\rho(g)=1$ for all $g\in G$ is a representation called the *trival representation* of G. The trivial representation has dimension 1.
 - 2. If G is a finite group that acts on a finite set X, and F is any field, then there is an associated *permutation representation* on the vector space V over F with basis $\{e_x\colon x\in X\}$. We let G act on the basis elements by the permutation $g\cdot e_x=e_{gx}$ for all $x\in X$ and $g\in G$. This representation has dimension |X|.
 - 3. A fundamental special case of a permutation representation that we shall return to later on is that when a finite group acts on itself by left multiplication. In this case, the elements of G form a basis for V, and each $g \in G$ permutes the basis

elements by $g \cdot g_i = gg_i$. This representation is called the *regular representation* of G and has dimension |G|. We shall see later that this representation encodes information about all other representations of G.

4. For any symmetric group S_n , the alternating representation on $V=\mathbb{C}$ is given by the map $\rho\colon S_n\to GL(\mathbb{C})=\mathbb{C}^\times$ defined by $\rho(\sigma)=\mathrm{sgn}(\sigma)$. More generally, for any group G with a subgroup H of index 2, we can define an alternating representation $\rho\colon G\to GL(\mathbb{C})$ by letting $\rho(g)=1$ if $g\in H$ and $\rho(g)=-1$ if $g\notin H$. (We recover our original example by taking $G=S_n$ and $H=A_n$.)

Definition 1.13. A homomorphism between two representations $\rho_1 \colon G \to GL(V)$ and $\rho_2 \colon G \to GL(W)$ is a linear map $\psi \colon V \to W$ that interwines with (respects) the G-action, i.e. a map ψ such that

$$\psi(\rho_1(g)(v)) = \rho_2(g)(\psi(v)) \quad \forall v \in V, g \in G$$

An **isomorphism** of representations is a homomorphism of representations that is also an invertible map.

Note. If we have representations (ρ_1, V) and (ρ_2, W) and an isomorphism of vector spaces $\psi \colon V \to W$ then we can rewrite the compatibility requirement above as $\rho_2(g) = \psi \circ \rho_1(g) \circ \psi^{-1}$ for all $g \in G$.

Given any representation (ρ,V) of a group G on a vector space V over a field F of dimension n, we can fix a basis for V to obtain an isomorphism of vector spaces $\psi\colon V\to F^n$. This yields a representation ϕ of G on F^n by defining $\phi(g)=\psi\circ\rho(g)\circ\psi^{-1}$ for all $g\in G$. Clearly, this representation is isomorphic to our original representation (ρ,V) . In particular, this means we can always choose to view n-dimensional complex representations as representations on \mathbb{C}^n where each $\phi(g)$ is given by an $n\times n$ matrix with entries in \mathbb{C} .

Suppose that we have two representations $\rho_1 \colon G \to GL_n(F)$ and $\rho_2 \colon G \to GL_m(F)$ given by $\rho_1(g) = X_g$ and $\rho_2(g) = Y_g$. A homomorphism between these representations is then an $m \times n$ matrix A such that $AX_g = Y_gA$ for all $g \in G$. An isomorphism is given precisely when such A is square and invertible. Thus, two representations $\rho_1 \colon G \to GL_n(F)$ and $\rho_2 \colon G \to GL_n(F)$ are isomorphic if and only if there exists $A \in GL_n(F)$ such that $\rho_1(g) = A\rho_2(g)A^{-1}$ for all $g \in G$. This establishes the following proposition:

Proposition 1.14. The isomorphism classes of n-dimensional representations of G on \mathbb{C} are in bijection with the quotient $Hom(G; GL_n(\mathbb{C}))/GL_n(\mathbb{C})$ of group homomorphisms $G \to GL_n(\mathbb{C})$ modulo the conjugation action of $GL_n(\mathbb{C})$.

1.3 Representations of Cyclic Groups

Example 1.15 (Representations of \mathbb{Z}). We want to classify all representations of the group \mathbb{Z} under addition. Consider an n-dimensional representation $\rho \colon \mathbb{Z} \to GL_n(\mathbb{C})$. For ρ to be a group homomorphism requires that $\rho(0) = \mathrm{Id}$. Observe that for any $0 \neq n \in \mathbb{Z}$, we have $\rho(n) = \rho(1 + \ldots + 1) = \rho(1)^n$. Thus ρ is completely determined by the matrix $\rho(1) \in GL_n(\mathbb{C})$, and any such matrix determines a representation of \mathbb{Z} . It follows that the n-dimensional isomorphism classes of representations of \mathbb{Z} are in bijection with the conjugacy classes in $GL_n(\mathbb{C})$. These conjugacy classes can be parameterized by the *Jordan canonical form*.

Example 1.16 (Representations of the cyclic group of order n). We shall classify all representations of the cyclic group $G=\{g,g^2,\ldots,g^{n-1},g^n=1\}$ of order n. Consider a representation $\rho\colon G\to GL(V)$. As in the previous example, we know that $\rho(1)=\mathrm{Id}$ and $\rho(g^k)=\rho(g)^k$. Thus our representation ρ is determined completely by the linear transformation $\rho(g)$. It will be helpful to fix a basis of V so that we may view $\rho(g)$ as a matrix. Recall from linear algebra that there exists a basis in which $\rho(g)$ takes the *Jordan canonical form*

$$\rho(g) = \begin{bmatrix} J_1 & 0 & \dots & 0 \\ 0 & J_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_m \end{bmatrix}$$

where each *Jordan block* J_k is of the form

$$J_k = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \ddots & 0 & 0 \\ 0 & 0 & \lambda & \ddots & 0 & 0 \\ 0 & 0 & 0 & \ddots & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{bmatrix}.$$

Now $I = \rho(g)^n$ is a block-diagonal matrix with diagonal blocks J_k^n , so we must have that each block $J_k^n = \text{Id}$. Observe that we can write each block J_k as $J_k = \lambda \text{Id} + N$ where N is the Jordan block with $\lambda = 0$. Thus we have

$$\mathrm{Id} = J_k^n = (\lambda \mathrm{Id} + N)^n = \lambda^n \mathrm{Id} + \binom{n}{1} \lambda^{n-1} N + \binom{n}{2} \lambda^{n-2} N^2 + \ldots + \binom{n}{n-1} \lambda N^{n-1} + N^n$$

. The following lemma will show that in fact N=0.

Lemma 1.17. Let N be the Jordan block with $\lambda=0$ of size $n\times n$. For any integer p with $1\leq p\leq n-1$, then N^p is the matrix with ones in the positions (i,j) where j=i+p and zeroes everywhere else. (The ones lie along a line parallel to the diagonal, p steps above it.)

Proof. (By induction.)

Base case: This is simply the definition of N.

Inductive step: Suppose that the lemma holds for N^p . We compute the (i, j) entry of N^{p+1} :

$$(N^{p+1})_{i,j} = \sum_{k=1}^{n} (N^p)_{i,k} N_{k,j} = (N^p)_{i,i+p} N_{i+p,j} = N_{i+p,j} = \begin{cases} 1 & \text{if } j = i + (p+1) \\ 0 & \text{otherwise} \end{cases}$$

Now, if $N \neq 0$ then each term $\binom{n}{k} \lambda^{n-k} N^k$ for k > 0 would yield some non-zero non-diagonal entries (in the positions (i,j) where j=i+k) and hence our sum could not equal the identity matrix. We must conclude that N=0, $J_k=\lambda \mathrm{Id}$ is a 1×1 block, and $J_k^n=\lambda^n\mathrm{Id}$. Thus $\rho(g)$ is a diagonal matrix with nth roots of unity as diagonal entries.

To summarize, every m-dimensional representation ρ of the cyclic group $G = \langle g \rangle$ of order n can be seen to act (with the right choice of basis) as $m \times m$ diagonal matrices all with nth roots of unity along the diagonal. In particular, these representations are determined completely by the value of $\rho(g)$ and are classified up to isomorphism by unordered m-tuples of nth roots of unity.

1.4 Constructions from Linear Algebra

Definition 1.18. A **subrepresentation** of V is a G-invariant subspace $W \subseteq V$; that is, a subspace $W \subseteq V$ with the property that $\rho(g)(w) \in W$ for all $g \in G$ and $w \in W$. Note that W itself is a representation of G under the action $\rho(g)|_{W}$.

From elementary linear algebra, we know that given a subspace $W \subseteq V$, we can form the **quotient space** V/W consisting of cosets v+W in V. If W is a subrepresentation of V, we would like to define an action of G on V/W by the natural choice of $g(v+W)=\rho(g)(v)+W$. It remains to verify that this action is well defined. If we choose another $v'\in v+W$, then $v-v'\in W$, so that $\rho(g)(v-v')\in W$ since W is G-invariant. Thus, the cosets $\rho(g)(v)+W$ and $\rho(g)(v')+W$ agree and this action is indeed well defined. This justifies the following definition:

Definition 1.19. Let W be a G-subrepresentation of V. Then V/W forms a representation of G called the **quotient representation** of V under W with the action $g(v+W)=\rho(g)(v)+W$.

Recall also from linear algebra that given two vector spaces V_1 and V_2 , we can form the **direct sum** $V_1 \oplus V_2$ consisting of ordered pairs (v_1, v_2) where $v_1 \in V_1, v_2 \in V_2$.

Definition 1.20. Let V_1 and V_2 be representations of G. Then $V_1 \oplus V_2$ forms a representation of G called the **direct sum representation** of V_1 and V_2 with the action $g(v_1, v_2) = (g \cdot v_1, g \cdot v_2)$.

1.5 Complete Reducibility and Unitarity

Definition 1.21. A representation is said to be **irreducible** if it contains no proper invariant subspaces. It is called **completely reducible** if it decomposes into a direct sum of irreducible subrepresentations.

Example 1.22. 1. Any irreducible representation is completely reducible.

2. Any 1-dimensional representations has no proper subspaces, and is thus irreducible.

Theorem 1.23. If $A_1, A_2, ..., A_r$ are linear operators on V and each A_i is diagonalizable, they are simultaneously diagonalizable if and only if they commute.

Proof. See Conrad [2, Theorem 5.1].

Theorem 1.24. Every complex representation of a finite abelian group is completely reducible into irreducible representations of dimension 1.

Proof. Take an arbitrary element $g \in G$. Since G is finite, we can find an integer n such that $g^n = 1$ and $\rho(g)^n = Id$. Hence the minimal polynomial of $\rho(g)$ divides $x^n - 1$. Recall that $x^n - 1$ has n distinct roots over $\mathbb C$, which are generated by taking powers of $\xi = e^{\frac{2\pi i}{n}}$. This means that the minimal polynomial $\rho(g)$ factors into linear factors only over $\mathbb C$ so that $\rho(g)$ is diagonalizable. We conclude that each $\rho(g)$ is (separately) diagonalizable since $g \in G$ was arbitrary.

Now, given any two elements $g_1, g_2 \in G$ we have

$$ho(g_1)
ho(g_2) =
ho(g_1g_2)$$
 (since ho is a homomorphism)
$$=
ho(g_2g_1)$$
 (since G is abeilian)
$$=
ho(g_2)
ho(g_1)$$
 (since ho is a homomorphism).

Thus the matrices $\{\rho(g)\}$ commute, so we may apply theorem 1.23 to conclude that $\{\rho(g)\}$ are simultaneously diagonalizable, say with basis $\{e_1,...,e_k\}$. Then we have $V = \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \ldots \oplus \mathbb{C}e_n$, with each subspace $\mathbb{C}e_1$ invariant under the action of G. \square

We recall the following definition from linear algebra:

Definition 1.25. Let V be a complex vector space. A **Hermitian inner product** on V is a map $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$ that satisfies the following properties for all $u, v, w \in V$ and $c \in \mathbb{C}$:

- 1. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$.
- 2. $\langle cu, v \rangle = c \langle u, v \rangle$.
- 3. $\langle u, v \rangle = \overline{\langle v, u \rangle}$.
- 4. $\langle v, v \rangle \geq 0$ with equality if and only if v = 0.

Definition 1.26. A representation ρ of G on a complex vector space V is **unitary** if V has been equipped with a hermetian inner product $\langle \cdot, \cdot \rangle$ which is preserved by the action of G, that is,

$$\langle v, w \rangle = \langle \rho(g)(v), \rho(g)(w) \rangle \quad \forall v, w \in V, g \in G.$$

A representation is said to be **unitarisable** if it can be equipped with such a product (even without one being specified).

Theorem 1.27. [Weyl's unitary trick] Finite-dimensional representations of finite groups are unitarisable.

Proof. Take any Hermetian inner product on V, say $\langle \cdot, \cdot \rangle'$. We define a new inner product on V by *averaging over G*:

$$\langle v, w \rangle := \frac{1}{|G|} \sum_{g \in G} \langle \rho(g)v, \rho(g)w \rangle'.$$

This new inner product satisfies properties 1, 2, and 3 of Definition 1.25 by linearity. It remains to check positivity (4). Clearly $\langle v,v\rangle=0$ when v=0, since each term of the sum will equal zero. In the case where $v\neq 0$, observe that

$$\langle v, v \rangle = \frac{1}{|G|} \sum_{g \in G} \langle \rho(g)v, \rho(g)v \rangle' \ge 0$$

since each term of the sum is non-negative by the positivity of $\langle \cdot, \cdot \rangle'$. The only problem would occur if each term of this sum is equal to zero. But $\langle \rho(e)v, \rho(e)v \rangle' = \langle v,v \rangle' > 0$. Thus $\langle v,v \rangle > 0$.

Finally, we show that our new inner product is G-invariant. For any $h \in G$, we have

$$\begin{split} \langle \rho(h)v, & \rho(h)w \rangle = \frac{1}{|G|} \sum_{g \in G} \langle \rho(g)\rho(h)v, \rho(g)\rho(h)w \rangle' \\ & = \frac{1}{|G|} \sum_{g \in G} \langle \rho(gh)v, \rho(gh)w \rangle' \qquad \qquad \text{(since ρ is a homomorphism)} \\ & = \frac{1}{|G|} \sum_{k \in G} \langle \rho(k)v, \rho(k)w \rangle' \qquad \qquad \text{(by a change of variables)} \\ & = \langle v, w \rangle. \end{split}$$

Lemma 1.28. Let V be a unitary representation of G and let $W \subseteq V$ be a G-invariant subspace. Then the orthogonal complement W^{\perp} is also G-invariant.

Proof. Choose arbitrary elements $v \in W^{\perp}$ and $g \in G$. We need to show that $gv \in W^{\perp}$. Now for any $w \in W$, we have $\langle v, w \rangle = 0$. Thus $\langle gv, gw \rangle = g\overline{g}\langle v, w \rangle = 0$ for any $w \in W$. Notice that $w' = gw \in W$ since W is G-invariant. This implies that $\langle gv, w' \rangle = 0$, i.e. $gv \in W^{\perp}$.

Theorem 1.29. A finite-dimensional unitary representation of a group is fully reducible into unitary irreducible subrepresentations.

Proof. Let V be a finite dimensional unitary representation of G. We proceed by induction on the dimension of V. If $\dim(V)=1$, then V is necessarily irreducible. Now, suppose the theorem holds for all W with $\dim(V) \leq n-1$ and suppose $\dim(V)=n$. If V is irreducible, we are done. Otherwise, there exists a proper G-invariant subspace $W(\neq 0,V)$. We can write $V=W\oplus W^\perp$ by Lemma 1.28. Applying the inductive hypothesis to W and W^\perp , we obtain a decomposition into irreducibles

$$V = (W_1 \oplus \ldots \oplus W_j) \oplus (W_{j+1} \oplus \ldots \oplus W_k).$$

Corollary 1.30. Every complex representation of a finite group is completely reducible.

Proof. Any such representation is unitarisable y by Theorem 1.27. We can then apply Theorem 1.29 to obtain full reduciblility. \Box

1.6 Vector Spaces of Linear Maps

Definition 1.31. Let V and W be vector spaces. Recall that the set $\mathbf{Hom}(\mathbf{V}, \mathbf{W})$ of linear maps from V to W is itself a vector space. If f_1, f_2 are two linear maps from V to W, then we define their sum by

$$(f_1 + f_2) \colon V \to W$$

 $x \mapsto f_1(x) + f_2(x)$

and we define scalar multiplication of $\lambda \in \mathbb{C}$ by

$$(\lambda f_1) \colon V \to W$$

 $x \mapsto \lambda f_1(x).$

Now suppose we have representations $\rho_V \colon G \to GL(V)$ and $\rho_W \colon G \to GL(W)$ of G. Then there is a natural representation of G on the vector space Hom(V,W) given by

$$\rho_{\operatorname{Hom}(V,W)}(g) \colon \operatorname{Hom}(V,W) \to \operatorname{Hom}(V,W)$$

$$f \mapsto \rho_W(g) \circ f \circ \rho_V(g^{-1})$$

for all $g \in G$. Note that $\rho_{\text{Hom}(V,W)}(g)(f)$ is certainly a linear map from V to W since the composition of linear maps is linear.

Proposition 1.32. $\rho_{Hom(V,W)}$ is a representation of G. That is, the map

$$\rho_{Hom(V,W)} \colon G \to GL(Hom(V,W))$$

$$g \mapsto \rho_{Hom(V,W)}(g).$$

is a homomorphism.

Proof. We must check two things:

- 1. The map $g \mapsto \rho_{\text{Hom}(V,W)}(g)$ is a homomorphism.
- 2. For every $g \in G$, $\rho_{\text{Hom}(V,W)}(g)$ is invertible.

First, we check that

$$\begin{split} \rho_{\operatorname{Hom}(V,W)}(g) \circ \rho_{\operatorname{Hom}(V,W)}(h) \colon f &\mapsto \rho_{\operatorname{Hom}(V,W)}(g) (\rho_W(h) \circ f \circ \rho_V(h^{-1})) \\ &= \rho_W(g) \circ \rho_w(h) \circ f \circ \rho_V(h^{-1}) \circ \rho_V(g^{-1}) \\ &= \rho_W(gh) \circ f \circ \rho_V(g^{-1}h^{-1}) \\ &= \rho_{\operatorname{Hom}(V,W)}(gh)(f) \end{split}$$

so indeed $\rho_{\operatorname{Hom}(V,W)}$ is a homomorphism. We can use this fact to see that $\rho_{\operatorname{Hom}(V,W)}(g^{-1})$ is inverse to $\rho_{\operatorname{Hom}(V,W)}(g)$ as

$$\begin{split} \rho_{\operatorname{Hom}(V,W)}(g) \circ \rho_{\operatorname{Hom}(V,W)}(g^{-1}) &= \rho_{\operatorname{Hom}(V,W)}(e) \\ &= \operatorname{Id}_{\operatorname{Hom}(V,W)} \\ &= \rho_{\operatorname{Hom}(V,W)}(g^{-1}) \circ \rho_{\operatorname{Hom}(V,W)}(g). \end{split}$$

Thus $\rho_{\operatorname{Hom}(V,W)}(g)$ is invertible for every $g \in G$, and $\rho_{\operatorname{Hom}(V,W)}$ is a representation of G.

Definition 1.33. Let V and W be two representations of G. The set of G-linear maps from V to W forms a subspace of $\operatorname{Hom}(V,W)$, which we denote by $\operatorname{Hom}_{\mathbf{G}}(\mathbf{V},\mathbf{W})$. In other words, $\operatorname{Hom}_{G}(V,W)$ is the vector space consisting of all *homomorphisms of representations* between V and W.

Definition 1.34. Let $\rho \colon G \to GL(V)$ be a representation. We define the **invariant sub-representation** $V^G \subset V$ to be the set

$$\{v \in V \mid \rho(q)(v) = v, \forall q \in G\}.$$

Note that V^G is a subspace of V, and is also clearly a subrepresentation. It is isomorphic to a trivial representation of some dimension.

Proposition 1.35. Let $\rho_V \colon G \to GL(V)$ and $\rho_W \colon G \to GL(W)$ be representations of G. Then the subrepresentation

$$Hom_G(V, W) \subset Hom(V, W)$$

is precisely the invariant subrepresentation $Hom(V, W)^G$ of Hom(V, W).

Proof. Let $f \in \text{Hom}(V, W)$. Then f is an element of the invariant subrepresentation $\text{Hom}(V, W)^G$ iff we have

$$f = \rho_{\operatorname{Hom}(V,W)}(g)(f) \quad \forall g \in G$$

$$\iff f = \rho_W(g) \circ f \circ \rho_V(g^{-1}) \quad \forall g \in G$$

$$\iff f \circ \rho_V(g) = \rho_W(g) \circ f \quad \forall g \in G$$

which is exactly the condition that f is G-linear, i.e. that $f \in \text{Hom}_G(V, W)$.

Lemma 1.36. Let A and B be two representations of G. Then

$$(A \oplus B)^G = A^G \oplus B^G.$$

Proof. Observe that

$$(a,b) \in (A \oplus B)^G \iff \rho_{A \oplus B}(g)(a,b) = (a,b) \qquad \forall g \in G$$

$$\iff (\rho_A(g)(a), \rho_B(g)(b)) = (a,b) \qquad \forall g \in G$$

$$\iff (a,b) \in A^G \oplus B^G.$$

Lemma 1.37. Let $\psi \colon A \to B$ be an isomorphism between representations of G. Then ψ induces an isomorphism between their invariant subrepresentations

$$\psi\!\!\upharpoonright_{A^G}\colon A^G\to B^G.$$

Proof. Clearly the restriction of ψ to $A^G \subset A$ induces an isomorphism to some subrepresentation of B, but we must check that the image of this restriction actually equals B^G . We verify that

$$a \in A^G \iff \rho_A(g)(a) = a \qquad \forall g \in G$$

$$\iff \psi(\rho_A(g)(a)) = \psi(a) \qquad \forall g \in G$$

$$\iff \rho_B(g)\psi(a) = \psi(a) \qquad \forall g \in G$$

$$\iff \psi(a) \in B^G.$$

1.7 Schur's Lemma

Theorem 1.38. [Schur's Lemma over \mathbb{C} .] If V is an irreducible G-representation over \mathbb{C} , then evey linear operator $\phi \colon V \to V$ commuting with G is a scalar.

Proof. Let λ be an eigenvalue of ϕ . Observe that the eigenspace E_{λ} is G-invariant: If $v \in E_{\lambda}$, then $\phi(v) = \lambda v$. This implies that $\phi(gv) = g\phi(v) = g(\lambda v) = \lambda(gv)$, i.e. $gv \in E_{\lambda}$. Since g was arbitrary, E_{λ} is indeed G-invariant. Now $E_{\lambda} \neq 0$, so by irreducibility $E_{\lambda} = V$. Thus $\phi = \lambda \mathrm{Id}$.

Corollary 1.39. If V and W are irreducible, the space $Hom_G(V, W)$ is 1-dimensional if the representations are isomorphic, and in this case any non-zero map is an isomorphism. Otherwise, $Hom^G(V, W) = \{0\}.$

Proof. We claim $\ker(\phi)$ and $\operatorname{im}(\phi)$ are both G-invariant. Let $0 \neq \phi \in \operatorname{Hom}_G(V, W)$. If $v \in \ker(\phi)$, then $\phi(v) = 0$ implies that $\phi(gv) = g\phi(v) = g0 = 0$, i.e. $gv \in \ker(\phi)$. Similarly, if $v \in \operatorname{im}(\phi)$, then $v = \phi(w)$ implies that $\phi(gw) = g\phi(w) = gv$, i.e. $gv \in \operatorname{im}(\phi)$.

Irreducibility yields $\ker(\phi)=0$ or V and $\operatorname{im}(\phi)=0$ or W as the only possibilities. If $\phi\neq 0$, then $\ker(\phi)=0$. This means that ϕ is injective, $\operatorname{im}(\phi)=W$, and ϕ is an isomorphism.

Let ψ be another interwining operator from V to W. Then $\phi^{-1} \circ \psi$ is also an intertwining operator from V to V. We can apply Schur's Lemma over $\mathbb C$ to see that $\phi^{-1} \circ \psi = \lambda \mathrm{Id}$, hence $\psi = \lambda \phi$.

More definitions are required before we can state a more general Schur's Lemma (not restricted to just \mathbb{C}).

Definition 1.40. An **algebra** over a field K is a ring with unit, containing a distinguished copy of K that commutes with every algebra element, and with $1 \in K$ begin the algebra unit. A **division ring** is a ring where every non-zero element is invertible, and a **division algebra** is a division ring which is also a K-algebra.

Definition 1.41. Let V be a representation of G over K. The **endomorphism algebra** $\operatorname{End}^G(V)$ is the space of linear self-maps $\phi\colon V\to V$ which commute with the group action, that is, $\rho(g)\circ\phi=\phi\circ\rho(g)\quad\forall g\in G.$ The addition is the usual addition of linear maps (pointwise), and the multiplication is function composition. The distinguished copy of K is given by KId.

Theorem 1.42. [Schur's Lemma] If V is an irreducible finite-dimensional representation of G over K, then $\operatorname{End}^G(V)$ is a finite-dimensional division algebra over K.

1.8 Tensor Product

Definition 1.43. Suppose V and W are two vector spaces over a field K. Then we define a new vector space called the **tensor product** of V and W, denoted by $V \otimes_K W$. This space is the quotient of the free vector space on $V \times W$ (with basis given by formal symbols $v \otimes w, v \in V, w \in W$), by the subspace spanned by the difference of left- and right-hand sides in the following identities for all $v \in V, w \in W, k \in K$:

$$(v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w$$
$$v \otimes (w_1 + w_2) = v \otimes w_1 + v \otimes w_2$$
$$(k \cdot v) \otimes w = v \otimes (k \cdot w) = k \cdot (v \otimes w).$$

When the ground field *K* is clear it can be omitted from the notation.

Definition 1.44. Let V and W be vector spaces over K. A map $\phi \colon V \times W \to K$ is called **K-balanced** if

$$\phi(v_1 + v_2, w) = \phi(v_1, w) + \phi(v_2, w)$$
$$\phi(v, w_1 + w_2) = \phi(v, w_1) + \phi(v, w_2)$$
$$\phi(v, kw) = \phi(kv, w)$$

for all $v \in V, w \in W, k \in K$.

Proposition 1.45 (Universal property of the tensor product). *Suppose* V *and* W *are vector spaces over the field* K.

Proposition 1.46. Let $\{e_i\}_{i\in I}$ and $\{f_j\}_{j\in J}$ be bases for V and W. Then $\{e_i\otimes f_j|i\in I,j\in J\}$ is a basis for $V\otimes W$.

Proof. An elementory tensor in $V \otimes W$ has the form $v \otimes w$. Write $v = \sum_i a_i e_i$ and $w = \sum_i b_j f_j$, where all but finitely many of a_i and b_j are 0. Then

$$m \otimes n = \sum_{i} a_{i}e_{i} \otimes \sum_{j} b_{j}f_{j} = \sum_{i,j} a_{i}b_{j}e_{i} \otimes f_{j}$$

is a linear combination of the tensors $e_i \otimes f_j$. Since every tensor can be written as a sum of elementary tensors, the elements $e_i \otimes f_j$ span $V \otimes W$.

Now, we must show that this spanning set is linearly independent. Suppose that $\sum_{i,j} c_{ij} e_i \otimes f_j = 0$, where all but finitely many c_{ij} are 0. We want to show that $c_{ij} = 0$ for every $i \in I, j \in J$. Fix two elements $i_0 \in I$ and $j_0 \in J$. To show that $c_{i_0j_0} = 0$, consider the bilinear map

$$V \times W \to K$$

 $(v, w) \mapsto a_{i_0} b_{i_0}$

where $v=\sum_i a_i e_i$ and $w=\sum_j b_j f_j$. By the universal property of tensor products, there is a linear map $f_0\colon V\otimes W\to K$ such that $f_0(v\otimes w)=a_{i_0}b_{j_0}$ on any elementary tensor $v\otimes w$. In particular, $f_0(e_{i_0}\otimes f_{j_0})=1$ and $f_0(e_i\otimes f_j)=0$ for $(i,j)\neq (i_0,j_0)$. Applying f_0 to our assumption that $\sum_{i,j} c_{ij}e_i\otimes f_j=0$ in $V\otimes W$ tells us that $c_{i_0j_0}=0$ in K.

Now let V and W be two representations of G.

Definition 1.47. We can define a representation of G on $V \otimes W$ called the **tensor product representation**. We define

$$\rho_{V \otimes W}(q) \colon V \otimes W \to V \otimes W$$

to be the linear map given by

$$\rho_{V\otimes W}(g): a_i\otimes b_i\mapsto \rho_V(g)(a_i)\otimes \rho_W(g)(b_i).$$

, and assume we have bases $\{a_1,\ldots,a_n\}$ for V and $\{b_1,\ldots,b_m\}$ for W.

1.9 Isotypical Decomposition

Lemma 1.48. Let U, V, W be three vector spaces. Then we have natural isomorphisms

- 1. $Hom(V, U \oplus W) = Hom(V, U) \oplus Hom(V, W)$
- 2. $Hom(U \oplus W, V) = Hom(U, V) \oplus Hom(W, V)$.

Additionally, if U, V, W carry representations of G, then (1) and (2) are isomorphisms of representations.

Proof. We have inclusion and projection maps

$$U \xleftarrow{\iota_U} U \oplus W \xleftarrow{\pi_W} W$$

given by

$$\iota_U \colon x \mapsto (x,0)$$

 $\pi_U \colon (x,y) \mapsto x$

and similarly for ι_W and π_W . It is clear that

$$\mathrm{Id}_{U\oplus W}=\iota_U\circ\pi_U+\iota_W\circ\pi_W.$$

We also note that the four spaces under consideration all have dimension $(\dim V)(\dim W + \dim U)$.

(1) We define a map

$$\psi \colon \operatorname{Hom}(V, U \oplus W) \to \operatorname{Hom}(V, U) \oplus \operatorname{Hom}(V, W)$$

$$f \mapsto (\pi_U \circ f, \pi_W \circ f).$$

We claim that this map has an inverse given by

$$\psi^{-1} \colon \operatorname{Hom}(V, U) \oplus \operatorname{Hom}(V, W) \to \operatorname{Hom}(V, U \oplus W)$$

$$(f_U, f_W) \mapsto \iota_U \circ f_U + \iota_W \circ f_W.$$

Check that

$$\psi^{-1} \circ \psi \colon f \mapsto \iota_U \circ \pi_U \circ f + \iota_W \circ \pi_W \circ f$$
$$= (\iota_U \circ \pi_U + \iota_W \circ \pi_W) \circ f$$
$$= \operatorname{Id}_{\operatorname{Hom}(V,W)} \circ f = f.$$

Since both vector spaces have the same dimension, $\psi \circ \psi^{-1}$ must be the identity map as well, and ψ is an isomorphism of vector spaces. Now suppose we have representations ρ_V, ρ_W, ρ_U of G on V, W and U. Then we claim ψ is G-linear. Recall that by definition,

$$\rho_{\operatorname{Hom}(V,U\oplus W)}(g)(f) = \rho_{U\oplus W}(g) \circ f \circ \rho_V(g^{-1}).$$

Observe that for any $g \in G$ and $f \in \text{Hom}(V, U \oplus W)$,

$$\begin{split} \pi_U \circ (\rho_{\operatorname{Hom}(V,U \oplus W)}(g)(f)) &= \pi_U \circ \rho_{U \oplus W}(g) \circ f \circ \rho_V(g^{-1}) \\ &= \rho_U(g) \circ \pi_U \circ f \circ \rho_V(g^{-1}) \quad \text{(since π_U is G-linear)} \\ &= \rho_{\operatorname{Hom}(U,V)}(g)(f) \end{split}$$

and similarly for W, so that

$$\psi(\rho_{\operatorname{Hom}(V,U \oplus W)}(g)(f)) = (\pi_U \circ \rho_{\operatorname{Hom}(V,U \oplus W)}(g)(f), \pi_W \circ \rho_{\operatorname{Hom}(V,U \oplus W)}(g)(f))$$

$$= (\rho_{\operatorname{Hom}(V,U)}(g)(\pi_U \circ f), \rho_{\operatorname{Hom}(V,W)}(g)(\pi_W \circ f))$$

$$= \rho_{\operatorname{Hom}(V,U) \oplus \operatorname{Hom}(V,W)}(g)(\pi_U \circ f, \pi_W \circ f).$$

Thus ψ is *G*-linear, and we've proved (1).

(2) Define a map

$$\phi \colon \operatorname{Hom}(U \oplus W, V) \to \operatorname{Hom}(U, V) \oplus \operatorname{Hom}(W, V)$$
$$= (f \circ \iota_U, f \circ \iota_W).$$

We [finish me]. The book says proof is like (1)

Corollary 1.49. If U, V, W are representations of G, then there are natural isomorphisms

1.
$$Hom_G(V, U \oplus W) = Hom_G(V, U) \oplus Hom_G(V, W)$$

2.
$$Hom_G(U \oplus W, V) = Hom_G(U, V) \oplus Hom_G(W, V)$$

Proof. (1). By Lemma (1.48), we have an isomorphism of representations

$$\psi \colon \operatorname{Hom}(V, U \oplus W) \to \operatorname{Hom}(V, U) \oplus \operatorname{Hom}(V, W).$$

We can apply Lemma (1.37) to obtain an isomorphism on the invariant subrepresentations

$$\operatorname{Hom}(V, U \oplus W)^G \cong (\operatorname{Hom}(V, U) \oplus \operatorname{Hom}(V, W))^G.$$

Then Lemma (1.36) implies that

$$\operatorname{Hom}(V, U \oplus W)^G \cong \operatorname{Hom}(V, U)^G \oplus \operatorname{Hom}(V, W)^G.$$

The statement now follows from Proposition (1.35).

(2). The argument is similar to the one above.

Proposition 1.50. Let V and W be irreducible representations of G. Then

$$\dim \operatorname{Hom}_G(V,W) = egin{cases} 1 & \text{if } V \text{ and } W \text{ are isomorphic} \\ 0 & \text{if } V \text{ and } W \text{ are not isomorphic} \end{cases}$$

Proof. Suppose V and W are not isomorphic. Then Schur's Lemma states that the only G-linear map from V to W is the zero map, hence $\operatorname{Hom}_G(V,W)=\{0\}$.

On the other hand, suppose that $f \colon V \to W$ is an isomorphism. Then for any $h \in \operatorname{Hom}_G(V, W)$, we have $f^{-1} \circ h \in \operatorname{Hom}_G(V, V)$. By Schur's Lemma, $f^{-1} \circ h = \lambda \operatorname{Id}_V$, i.e. $h = \lambda f$ for some $\lambda \in \mathbb{C}$. Thus f spans $\operatorname{Hom}_G(V, W)$.

Proposition 1.51. Let $\rho: G \to GL(V)$ be a representation, and let

$$V = U_1 \oplus \ldots \oplus U_s$$

be a decomposition of V into irreducibles. Let W be any irreducible representation of G. Then the number of irreducible representations in the set $\{U_1, \ldots, U_s\}$ which are isomorphic to W is equal to the dimension of $Hom_G(V, W)$, and also equal to the dimension of $Hom_G(W, V)$.

Proof. We know from Proposition (1.50) that the number of irreducibles representations in the set $\{U_1, \ldots, U_s\}$ which are isomorphic to W is equal to

$$\sum_{i=1}^{s} \dim \operatorname{Hom}_{G}(U_{i}, W).$$

By Corollary (1.49),

$$\operatorname{Hom}_G(V,W) = \bigoplus_{i=1}^s \operatorname{Hom}_G(U_i,W)$$

so that

$$\dim\operatorname{Hom}_G(V,W)=\sum_{i=1}^s\dim\operatorname{Hom}_G(U_i,W).$$

The same argument works if we consider $\operatorname{Hom}_G(W,V)$ and $\operatorname{Hom}_G(W,U_i)$ in place of $\operatorname{Hom}_G(V,W)$ and $\operatorname{Hom}_G(U_i,W)$.

Theorem 1.52. Let $\rho: G \to GL(V)$ be a representation, and let

$$V = U_1 \oplus \ldots \oplus U_s$$
$$V = \tilde{U_1} \oplus \ldots \oplus \tilde{U_r}$$

be two decompositions of V into irreducible subrepresentations. Then s=r, and (after reordering if necessary) U_i and \tilde{U}_i are isomorphic for every $i \in \{1, \dots, s\}$.

Proof. Let W be any irreducible representation of G. By Proposition (1.51), the number of irreducible subprepresentations in the first decomposition that are isomorphic to W is equal to dim $\operatorname{Hom}_G(V,W)$. On the other hand, the number of irreducible subrepresentations in the second decomposition that are isomorphic to W is also equal to dim $\operatorname{Hom}_G(V,W)$. So for any irreducible representation W, the two decompositions contain the same number of factors isomorphic to W.

1.10 Character Theory

Definition 1.53. The **character** of a representation $\rho \colon G \to GL(V)$ is the function $\chi_V \colon G \to \mathbb{C}$ defined by $\chi_V(g) = \text{Tr}(\rho(g))$.

Note. The character is of a representation is not a homorphism in general, since $Tr(MN) \neq Tr(M)Tr(N)$ in general.

Proposition 1.54. (Basic Properties)

- 1. χ_V is conjugation invariant: $\chi_V(hgh^{-1}) = \chi_V(g)$ for all $g, h \in G$.
- 2. $\chi_V(1) = \dim V$.
- 3. $\chi_V(g^{-1}) = \overline{\chi_V(g)}$ for all $g \in G$.

$$\textit{Proof.} \qquad 1. \ \, \chi_V(hgh^{-1} = \operatorname{Tr}(hgh^{-1}) = \operatorname{Tr}(ghh^{-1}) = \operatorname{Tr}(g) = \chi_V(g) \text{ for any } g,h \in G.$$

2.
$$\chi_V(1) = \text{Tr}(\text{Id}_V) = \dim V$$
.

3. Since G is finite, we have seen that $\rho(g)$ is a diagonal matrix with roots of unity along the diagonal with the right choice of basis. The inverse of a root of unity is given by its complex conjugate, so under this same basis, $\rho(g)^{-1}$ is clearly given by $\overline{\rho(g)}$. Thus, $\chi_V(g^{-1}) = \operatorname{Tr}(\rho(g^{-1})) = \operatorname{Tr}(\rho(g)^{-1}) = \operatorname{Tr}(\overline{\rho(g)}) = \overline{\operatorname{Tr}(\rho(g))} = \overline{\operatorname{Tr}(\rho(g))}$.

Definition 1.55. A **class function** on G is a function on G whose values are invariant by conjugation of elements in G. The value of a class function at an element $g \in G$ depends only on the conjugacy class of g. We may therefore view class functions as functions on the set of conjugacy classes of G.

Note. The character χ_V of a representation V of G is a class function on G.

Proposition 1.56. *Isomorphic representations have the same character.*

Proof. We have seen (CITE ME!!!) that isomorphic representations can be described by the same set of matrices in the right choice of basis. \Box

We will see later that the converse is true - if two representations have the same character, then they are isomorphic.

Proposition 1.57. Let $\rho_V \colon G \to GL(V)$ and $\rho_W \colon G \to GL(W)$ be representations of G with characters χ_V and χ_W .

- 1. $\chi_{V \oplus W} = \chi_V + \chi_W$.
- 2. $\chi_{V \otimes W} = \chi_V \cdot \chi_W$.

Proof. 1. Pick bases for V and W, so that $\rho_V(g)$ and $\rho_W(g)$ are described by matrices M and N. Then $\rho_{V \oplus W}(g)$ is described by the block-diagonal matrix

$$\begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix}$$

So we have $\operatorname{Tr}(\rho_{V \oplus W}(g)) = \operatorname{Tr}(M) + \operatorname{Tr}(N) = \operatorname{Tr}(\rho_{V}(g)) + \operatorname{Tr}(\rho_{W}(g))$.

2. $\rho_{V \otimes W}(g)$ is given by the matrix

$$[M \otimes N]_{js,it} = M_{ji}N_{st}$$

so

$$\operatorname{Tr}(M \otimes N) = \sum_{i,t} [M \otimes N]_{js,it}$$
$$= \sum_{i,t} (M_{ii} N_{tt})$$
$$= \operatorname{Tr}(M) \operatorname{Tr}(N).$$

Thus $\chi_{V \otimes W}(g) = \chi_V(g)\chi_W(g)$.

Proposition 1.58. 1. Let $\{V_i\}$ be the irreducible representations of G, with d_i the dimension of V_i and χ_i the corresponding irreducible character. Then

$$\chi_{reg} = d_1 \chi_1 + \ldots + d_r \chi_r$$

$$\chi_{reg}(g) = egin{cases} |G| & \textit{if } g = e \\ 0 & \textit{if } g
eq e \end{cases}$$

[6] [4] [1] [2] [5] [3]

Bibliography

- [1] Alex Bartel. Introduction to representation theory of finite groups. https://math.berkeley.edu/~teleman/math/RepThry.pdf. Online; accessed 11 November 2015. 2014.
- [2] Keith Conrad. The Minimal Polynomial and Some Applications. http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/minpolyandappns.pdf. Online; accessed 12 December 2015. 2014.
- [3] Robert Donley. *Introduction to Group Representations*. http://www.ureddit.com/class/34878/introduction-to-group-representations. Online; accessed 5 January 2015. 2012.
- [4] D.S. Dummit and R.M. Foote. *Abstract Algebra*. Wiley, 2003. ISBN: 9780471433347. URL: https://books.google.com/books?id=KJDBQgAACAAJ.
- [5] Daphne Kao. Representations of the Symmetric Group. http://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Kao.pdf. Online; accessed 5 January 2015. 2010.
- [6] Constantin Teleman. Representation Theory. https://math.berkeley.edu/~teleman/math/RepThry.pdf. Online; accessed 11 November 2015. 2005.