Plant Modeling for an Autonomous Vehicle

Nick Nauman, Hannah Grady, Advisor: Dr. Suruz Miah

Department of Electrical and Computer Engineering, Bradley University, Peoria IL

Objective and Contributions

Objective

- Provide accurate plant models of each autonomous vehicle subsystem to be used for designing controllers **Contribution**
- Determine if System Identification or Neural Network modeling produces better models
- Non-linearity modeling

Applications

- Use in testing to help develop more accurate vehicle controllers
- Create a guide for modeling future vehicle subsystems

Problem Setup

- Conducted a literature review to look for existing solutions
- System Architecture

Figure 1:Steering subsystem block diagram.

Figure 2:Acceleration subsystem block diagram

Figure 3:Brake subsystem block diagram

Figure 4:Speed Control subsystem block diagram

Acceleration pedal position

r · · · · · · · · · · · · · · · · · · ·		
Brake pedal position	Speed sub-	Vehicle Speed
Shifter Gear	sys- tem	

Figure 5:Speed subsystem block diagram

Figure 6:Shift subsystem block diagram

- Data Collection Setup
- Lexus RX450H vehicle platform
- Laptop
- PACMod ECU
- CANCase
- CAN Bus

- Transfer Function Modeling
 MATLAB's System Identification Toolbox used to create models
- Models needed to meet best fit and error requirements

Figure 7:Steering System Estimated Steering Angle Comparison

Figure 8:Acceleration System Estimated Pedal Position Comparison

- Neural Network Modeling
 Used MATLAB's Neural Network Time Series App
- Generated models using the Bayesian Regularization Algorithm
- Models trained using collected log data

Figure 9:Steering System Training Plots

Figure 10:Acceleration System Training Plots

 Neural Network Algorithm
 Uses neural network based on difference between desired and actual orientation to determine optimal gain

Figure 12:ADP Neural Network

Experimental Results Figure 13:Experimental Setup

(a)(b)

Figure 14:ADP experimental results for (a) the main rotor and (b) the tail rotor given a step input

(a)(b)

Figure 15:Comparison between P and PI control for a step input is shown for (a) the main rotor and (b) the tail rotor

Figure 16:(a) Time = 0 and (b) Time = 10

Conclusion and Future Work

- Using Neural Networks produced more accurate models than System Identification
- Test models using Hardware-in-the-Loop
- Create new vehicle controllers