3 Лабораторная работа "Численное интегрирование"

3.1 Краткий теоретический материал

Для приближенного вычисления интеграла $I = \int_a^b f(x) dx$ рассматривается число $I_n = \sum_{i=1}^n c_i f(x_i)$. Последняя формула, служащая для приближенного вычисления интеграла, называется квадратурной формулой. Числа c_i (не зависящие от выбора функции f(x)) называются коэффициентами квадратурной формулы, а значения $x_i: a \leq x_1 < x_2 < \dots < x_n \leq b - узлами квадратурной формулы.$

Погрешностью квадратурной формулы называется величина

$$R_n(f) = \int_a^b f(x) dx - \sum_{i=1}^n c_i f(x_i),$$
 или $R_n(f) = I - I_n.$

Коэффициенты и узлы квадратурной формулы имеет смысл выбирать так, чтобы минимизировать величину погрешности.

Простые квадратурные формулы для вычисления интеграла $\int_a^b f(x) dx$:

Формула прямоугольников $I_1=(b-a)f(\xi)$, где ξ – некоторая точка отрезка [a,b]. Если $\xi=a$, то формула называется формулой левых прямоугольников, если $\xi=b$, то формула называется формулой правых прямоугольников, если $\xi=(a+b)/2$, то формула называется формулой средних прямоугольников. (Узлом здесь является точка $x_1=\xi$, коэффициентом $c_1=b-a$.)

Формула трапеций $I_2=\frac{(b-a)}{2}\left(f(a)+f(b)\right)$. (Узлами здесь являются точки $x_1=a$, $x_2=b$, коэффициентами $c_1=c_2=(b-a)/2$.)

Формула Симпсона $I_3=\frac{(b-a)}{6}\left(f(a)+4f(\frac{a+b}{2})+f(b)\right)$. (Узлами здесь являются точки $x_1=a$, $x_2=\frac{a+b}{2}$, $x_3=b$, коэффициентами $c_1=c_3=\frac{b-a}{6}$, $c_2=\frac{2}{3}(b-a)$.)

Оценками для погрешностей этих формул являются соответствено

$$|R_1| \le \frac{(b-a)^3}{24} \max_{t \in [a,b]} |f''(t)| \quad (\text{ести } \xi = (a+b)/2),$$
 (16)

$$|R_2| \le \frac{(b-a)^3}{12} \max_{t \in [a,b]} |f''(t)|.$$
 (17)

$$|R_3| \le \frac{(b-a)^5}{1536} \max_{t \in [a,b]} |f^{(4)}(t)|.$$
 (18)

Как видно, при достаточно большом отрезке [a,b] погрешность может быть велика, поэтому вместо простых квадратурных формул часто применяют составные формулы.

На отрезке [a,b] вводится сетка с шагом h=(b-a)/m (m-некоторое целое число). $x_i = a + ih$, i = 0, ..., m.

На каждом из отрезков $[x_i, x_{i+1}]$ применяют простую квадратурную формулу. Результат суммируют.

В результате получают следующие составные формулы:

Составная формула левых прямоугольников $I_m = \sum_{i=0}^{m-1} hf(x_i)$.

Составная формула правых прямоугольников $I_m = \sum_{i=1}^m hf(x_i)$. Составная формула трапеций $I_m = \frac{f(x_0) + f(x_m)}{2}h + \sum_{i=1}^{m-1} hf(x_i)$.

Составная формула Симпсона

$$I_{m} = \frac{f(x_{0}) + f(x_{m})}{6}h + \sum_{i=1}^{m-1} \frac{h}{3}f(x_{i}) + \sum_{i=0}^{m-1} \frac{2h}{3}f(x_{i} + \frac{h}{2}).$$

Константу m следут выбирать так, чтобы погрешность интегрирования не превосходила заданную точность ε . Это можно сделать, используя правило Рунге практической оценки погрешности.

Правило Рунге состоит в следующем: возьмем произвольное m ($h = \frac{b-a}{m}$) и по составной формуле найдем I_m . Затем увеличим вдвое число узлов и вычислим по той же составной формуле I_{2m} . Найдем величину $\varepsilon_m = \frac{|I_m - I_{2m}|}{2^s - 1}$ (s=1)для составной формулы прямоугольников; s=2 для составной формулы трапеций; s = 4 для составной формулы Симпсона).

Если $\varepsilon_m \leq \varepsilon$, то $I = I_{2m} \pm \varepsilon$ и вычисления заканчивают, в другом случае вновь увеличивают вдвое число m и повторяют описанную выше процедуру, полагая m := 2m.

Формулами высокой точности являются квадратурные формулы Гауссова muna. Напомним, что квадратурная формула I_n является mounou для многочленов степени m, если для любого многочлена p(x) степени меньше либо равной m точное значение интеграла $I(p) = I_n(p)$.

Узлы квадратуры Гауссова типа $I_n = \sum_{i=0}^n A_i f(x_i)$ можно определить из следующей системы:

$$\int_{a}^{b} (x - x_0)(x - x_1) \dots (x - x_n) x^l dx = 0, \quad l = 0, 1, \dots, n - 1.$$
 (19)

Коэффициенты Гауссовой квадратуры находятся по формуле:

$$A_{k} = \int_{a}^{b} \frac{(x - x_{0})(x - x_{1}) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_{n})}{(x_{k} - x_{0})(x_{k} - x_{1}) \dots (x_{k} - x_{k-1})(x_{k} - x_{k+1}) \dots (x_{k} - x_{n})} dx, \quad (20)$$

$$k = 0, \dots, m$$

Квадратура Гауссова типа I_n точна для многочленов степени 2n-1 .

3.2 Примеры

1. Вычислить $\int_0^1 x^2 f(x) dx$, если f(0) = -1, $f(\frac{1}{2}) = 1$, $f(1) = 2\frac{1}{2}$. Решение.

Воспользуемся простой формулой Симсона.

$$\int_0^1 x^2 f(x) dx = \frac{1-0}{6} \left(0^2 f(0) + 4 \left(\frac{1}{2} \right)^2 f\left(\frac{1}{2} \right) + 1^2 f(1) \right) =$$

$$= \frac{1}{6} (0 + \frac{1}{4} \cdot 1 + 1 \cdot 2.5) = 0.46.$$

2. С какой погрешностью вычисляется интеграл $\int_{-1}^{0} \sin x dx$ по формуле средних прямоугольников?

Решение.

Воспользуемся формулой (17.)

$$|R_2| \le \frac{(0 - (-1))^3}{12} \max_{t \in [-1,0]} |(\sin x)''| = \frac{1}{12} \max_{t \in [-1,0]} |(\sin x)| \le \frac{\sin 1}{12} = 0.07.$$

3. Найти узлы и коэффициенты Гауссовой квадратуры $\int_0^1 f(x)dx = A_0 f(x_0) + A_1 f(x_1)$.

Решение.

n=2 (два узла, два коэффициента). Воспользуемся формулой (19) для поиска узлов. Имеем

$$\begin{cases} \int_0^1 (x - x_0)(x - x_1) dx = 0, \\ \int_0^1 (x - x_0)(x - x_1) x dx = 0. \end{cases}$$

Раскроем скобки и приведем подобные члены

$$\begin{cases} \int_0^1 x^2 - (x_0 + x_1)x + x_0 x_1 dx = 0, \\ \int_0^1 x^3 - (x_0 + x_1)x^2 + x_0 x_1 x dx = 0. \end{cases}$$

Введем замену $x_0 + x_1 = u$, $x_0 x_1 = v$. Тогда

$$\begin{cases} \frac{1}{3} + u\frac{1}{2} + v = 0, \\ \frac{1}{4} + u\frac{1}{3} + v\frac{1}{2} = 0. \end{cases}$$

Решением этой системы являются $u=-1, v=\frac{1}{6}$, или $x_1=\frac{\sqrt{3}-1}{2\sqrt{3}}$ $x_2=\frac{\sqrt{3}+1}{2\sqrt{3}}$.

Определим теперь коэффициенты по формуле (20).

$$\int_{0}^{1} \frac{x - \frac{\sqrt{3} - 1}{2\sqrt{3}}}{\frac{\sqrt{3} - 1}{2\sqrt{3}} - \frac{\sqrt{3} + 1}{2\sqrt{3}}} dx = \frac{1}{2},$$

$$\int_{0}^{1} \frac{x - \frac{\sqrt{3} + 1}{2\sqrt{3}}}{\frac{\sqrt{3} + 1}{2\sqrt{3}} - \frac{\sqrt{3} - 1}{2\sqrt{3}}} dx = \frac{1}{2}.$$

Таким образом $\int_0^1 f(x)dx = \frac{1}{2}f(\frac{\sqrt{3}-1}{2\sqrt{3}}) + \frac{1}{2}f(\frac{\sqrt{3}+1}{2\sqrt{3}})$.

3.3 Вопросы и задачи для самостоятельной работы

- 1. Оценить погрешность составных формул прямоугольников, трапеций, Симпсона и определить погрешность вычисления $\int_{-1}^{1} \frac{x}{1+x^2} dx$ по составной формуле Симпсона с шагом h=0.01.
- 2. Повторите, что называется квадратурной формулой интерполяционного типа и решите следующую задачу: Вычислить $\int_{-2}^3 x f(x) dx$, если известно, что f(0) = 1, f(3) = 4, f(-1) = 1. Можио ли оценить погрешность интегрирования, если известно, что $|f'''(x)| \leq 4$?
- 3. Являются ли интерполяционными формулы Симпсона, трапеций, составная формула прямоугольников, составная формула трапеций?
- 4. Выведите кубатурные формулы типа Симисона, прямоугольников, трапеций.
- 5. Для вычисления интеграла предложена квадратурная формула Гауссова типа $\int_{-1}^1 f(x)dx = A_0f(x_0) + A_1f(x_1) + A_2f(x_2)$. Найти значения ее узлов и коэффициентов.
- 6. Определить, в каких случаях формула прямоугольников (трапеций) дает верхнюю оценку для интеграла, в каких – нижнюю оценку.
- 7. Для вычисления интеграла с особенностью предложена квадратурная формула Гауссова типа $\int_{-1}^1 \delta(x) f(x) dx = A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2)$. ($\delta(x)$

- фукция, имеющая особенность на отрезке [-1,1]). Как найти значения ее узлов и коэффициентов?
- 8. Для вычисления интеграла предложена квадратурная формула Гауссова типа $\int_{-1}^1 f(x)dx = A_0f(x_0) + A_1f(x_1) + A_2f(x_2)$. Как использовать ее для вычисления $\int_a^b f(x)dx$?

3.4 Задание к лабораторной работе

- 1. С точностью $\varepsilon = 10^{-4}$ найти значение интеграда $\int_a^b f(x) dx$. Значения a,b, функция f определяются вариантом задания.
- 2. Найти значение интеграла $\int_a^b f(x)dx$ по квадратурной формуле Гаусса с тремя узлами.

Номер варианта определяется как остаток от деления N на 15. N – количество букв в $\Phi. \text{H.O.}$

тество букв в Ф.И.О.			
Номер	f(x)	[a,b]	вид составной
варианта			квадратурной формулы
1	$\frac{1}{1+10x}$	[0, 1]	левых прямоугольников
2	$\frac{1}{1+x^2}$	[0,1]	правых прямоугольников
3	$\frac{1}{1+10x^3}$	[0, 1]	левых прямоугольников
4	$\frac{x^2}{1-x-x^2}$	[0, 1]	транеций
5	$\frac{0.1+x^2\sin x}{x^2+0.5}$	[-0.2, 0.4]	трапеций
6	$\sin \frac{1}{1+10x}$	[0, 1]	Симисона
7	$\sqrt{2-\cos\frac{1}{1+x^2}}$	[0, 1]	левых прямоугольников
8	$e^{\frac{-1}{1+r}}$	[0, 1]	правых прямоугольников
9	$\frac{\cos \frac{1}{1+x^2}}{\cos \frac{1}{1+x^2}}$	$\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$	транеций
10	$\sqrt{\pi - \arctan \frac{1}{1+x^2}}$	$\left[\frac{\pi}{4},\frac{\pi}{2}\right]$	правых прямоугольников
11	$\sqrt{1+\sin^2\frac{1}{1+x^2}}$	$[0,\pi]$	Симпсона
12	$\sin \frac{1}{1+x^2}$	$[0, \frac{\pi}{2}]$	трапеций
13	$\ln\left(1+e^{\frac{1}{1+x^2}}\right)$	[0, 1]	правых прямоугольников
14	$\cos \frac{1}{2-x^2}$	[0, 1]	левых прямоугольников
0	$\sqrt{1 + e^{\frac{2}{1+x^2}}}$	[0,1]	Симпсона