September 9, 2017

This HW will be done in pairs. Each team will have a single submission. Make sure to include both names in the submission. This HW will weigh 3 points.

PROBLEM 1 30 points

Recall that for functions $f, g: N \to A$, we say that f = O(g) if there exists a constant c > 0 such that $f(n) \le c \ g(n)$ for all n. We say that $f = \Omega(g)$ if $f(n) \ge c \ g(n)$ for all n and $f = \Theta(g)$ if f = O(g) and $f = \Omega(g)$.

Shown below is a list of functions that map from $N \to N$.

$$n^{0.1}$$
 $\frac{n}{\log_2 n}$ $n + 2\sqrt{n} + 100 \log n$ $3^{(\log_2 n)}$ $n \log_2 n$ $\log_2(n!)$

For each pair (f, g) of the above functions, determine if f(n) = O(g(n)), $f(n) = \Omega(g(n))$, $f(n) = \Theta(g(n))$ or none of the above. Create a table to exhibit your result. For each pair of functions f, g, compute the limit $\lim_{n\to\infty}\frac{f(n)}{g(n)}$. If the limit is 0, then conclude that f = O(g); if it is some finite c > 0, then conclude that $f = \Theta(g)$; if the limit is ∞ , then conclude that $f = \Omega(g)$. (You can assume basic facts such as:

$$\lim_{n \to \infty} \frac{n^t}{(\log n)^k} = \infty.$$

for any real numbers t, k where t > 0.)

PROBLEM 2 15 points

Exercise 1.21

PROBLEM 3 15 points

Exercise 1.27

PROBLEM 4 15 points

If n is an odd number, what is the inverse of $n \mod (n+2)$?