MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- 1. A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül
- 3. **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- 4. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 5. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- 6. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- 7. Egy feladatra adott többféle helyes megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**.
- 8. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

írásbeli vizsga 0803 2 / 17 2009. október 20.

I.

1. a)		
Az $0.5^{2-\log_{0.5} x} = 3$ egyenletben a hatványozás		
megfelelő azonosságát alkalmazva, az $\frac{0.5^2}{0.5^{\log_{0.5} x}} = 3$	1 pont	
egyenlethez jutunk.		
Innen (a logaritmus definíciója szerint) a $\frac{0.5^2}{x} = 3$	2 pont	
egyenlet adódik.		
Ebből $x = \frac{1}{12}$.	1 pont	
Összesen:	4 pont	

1. b)		
Mivel $\log_x \frac{1}{2} = \frac{\log_2 \frac{1}{2}}{\log_2 x} = -\frac{1}{\log_2 x}$,	1 pont	
így a megoldandó egyenlet: $7 - \frac{6}{\log_2 x} = \log_2 x$.	1 pont	
Mindkét oldalt $\log_2 x$ -szel szorozva, és az egyenletet nullára redukálva: $\log_2^2 x - 7\log_2 x + 6 = 0$.	1 pont	
A $\log_2 x$ -re másodfokú egyenlet megoldásai: $\log_2 x = 6$ vagy $\log_2 x = 1$.	1 pont	
x = 64 vagy x = 2.	1 pont	
Mivel $1 < x \le 2$, a 64 nem megoldás.	1 pont	
A megadott halmazon az egyenletnek egy megoldása van, a 2.	1 pont	Ha az alaphalmazt nem veszi figyelembe, akkor l pontot veszít.
Összesen:	7 pont	

2. a) első megoldás		
Jelöljük az ABCD négyszög derékszögű csúcsát A-		
val, és legyen a $BCD_{\angle} = 120^{\circ}$. Ekkor	1 mant	
AB = AD = 20. Pitagorasz tételét alkalmazva az	1 pont	
ABD derékszögű háromszögre, $BD = 20\sqrt{2}$.		
A BCD háromszög BD oldalára alkalmazva a		
koszinusztételt ($BC = CD = b$ jelölés mellett),	1 pont	
$800 = 2b^2 - 2b^2 \cos 120^\circ.$		
$800 = 2b^2 + b^2.$		
A $3b^2 = 800$ egyenlet egyetlen pozitív megoldása:	14	
$b = \sqrt{\frac{800}{3}} \ (\approx 16,33 \ m).$	1 pont	
Tehát a kerítés hossza: $40 + 2 \cdot \sqrt{\frac{800}{3}} \approx 72,7$ (m).	1 pont	
Összesen:	4 pont	

2. a) második megoldás		
$BD = 20\sqrt{2}$	1 pont	
A <i>BDC</i> egyenlő szárú háromszögben a <i>BDC</i> $\angle = 30^{\circ}$. A háromszög <i>C</i> csúcsából húzott magasság felezi a <i>DB</i> alapot (Jelölje <i>F</i> a <i>DB</i> oldal felezőpontját.). A <i>DFC</i> derékszögű háromszögben $\cos 30^{\circ} = \frac{DF}{DC}$.	1 pont	
Így $\frac{\sqrt{3}}{2} = \frac{10\sqrt{2}}{b}$, azaz $b = \frac{20\sqrt{2}}{\sqrt{3}}$.	1 pont	
Tehát a kerítés hossza: $40 + \frac{40\sqrt{2}}{\sqrt{3}} \approx 72,7 (m)$.	1 pont	
Összesen:	4 pont	

írásbeli vizsga 0803 4/17 2009. október 20.

2. b)		
István konvex négyszög alakú telket látott. D C B	1 pont	
Péter konkáv négyszögre gondolt. D C A B	1 pont	
Összesen:	2 pont	A pont a konvex, illetve konkáv négyszög rajzo- lásáért jár. Ne vonjunk le pontot, ha egyéb feltéte- leknek (pl. két-két oldala nem egyenlő) nem tesz eleget a vizsgázó rajza.

írásbeli vizsga 0803 5/17 2009. október 20.

2. c) első megoldás		
A négyzet alapú ház alapterülete akkor a lehető legnagyobb, ha a négyzet A-val szembeni csúcsa a C pont. D A B Az ABCD négyszögbe berajzolva a négyzetet, az a négyszögben két egybevágó derékszögű háromszöget	2 pont	Ezt a megállapítást indoklás nélkül el kell fogadni. Ha csak a vizsgázó ábráján jelenik meg ez a gondolat, akkor is jár a pont. A lehető legnagyobb négyzetek megtalálása 1–1 pont.
hoz létre. Jelölje T a C csúcsból húzott, AD oldalra merőleges egyenesnek és az AD oldalnak a metszéspontját. Ekkor TC a keresett négyzet oldala. István konvex négyszögében $TCD \angle = 15^{\circ}$.	1 pont	
A TCD derékszögű háromszögben: $\cos 15^{\circ} = \frac{CT}{h}$.	1 pont	
Mivel $b = \frac{20\sqrt{2}}{\sqrt{3}}$, így $CT = \frac{20\sqrt{2}}{\sqrt{3}} \cdot \cos 15^{\circ} \approx 15,77 \text{ (m)}.$ Ekkor a ház alapterülete: kb. 249 m² lenne.	1 pont	
Péter konkáv négyszöge esetében $TCD \angle = 75^{\circ}$. Mivel ekkor $\cos 75^{\circ} = \frac{CT}{b}$,	1 pont	
így $CT = \frac{20\sqrt{2}}{\sqrt{3}} \cdot \cos 75^{\circ} \approx 4,23 \text{ (m)}.$ Ekkor a ház alapterülete: kb. 18 m² lenne.	1 pont	
Összesen:	7 pont	

fogadni. Ha csa. vizsgázó ábráján je meg ez a gondolat, a is jár a pont. A lehető legnag négyszögben két egybevágó derékszögű háromszöget hoz létre. A ház négyszt alapjának oldalhosszát x -szel jelölve, Pitagorasz tétele szerint mindkét esetben $(20-x)^2+x^2=\frac{800}{3}$. A kijelölt műveletek elvégzése után a $2x^2-40x+\frac{400}{3}=0$, azaz $x^2-20x+\frac{200}{3}=0$ 1 pont egyenlethez jutunk. Az egyenlet két pozitív megoldása: $x=10+\frac{10}{\sqrt{z}}\approx15,77$ és				2. c) második megoldás
legnagyobb, ha a négyzet A -val szembeni csúcsa a C pont. D A B A B A B A A				A négyzet alapú ház alapterülete akkor a lehető
D A B A B A A B A A B A A B A A				
indoklás nélkül el fogadni. Ha csalvizsgázó ábráján je meg ez a gondolat, a is jár a pont. A lehető legnag négyszögben két egybevágó derékszögű háromszöget hoz létre. A ház négyzet alapjának oldalhosszát x-szel jelölve, Pitagorasz tétele szerint mindkét esetben $(20-x)^2+x^2=\frac{800}{3}$. A kijelölt műveletek elvégzése után a $2x^2-40x+\frac{400}{3}=0$, azaz $x^2-20x+\frac{200}{3}=0$ 1 pont egyenlethez jutunk. Az egyenlet két pozitív megoldása: $x=10+\frac{10}{15}\approx 15,77$ és	(4 /	E-4		
négyszögben két egybevágó derékszögű háromszöget hoz létre. A ház négyzet alapjának oldalhosszát x -szel jelölve, Pitagorasz tétele szerint mindkét esetben $(20-x)^2+x^2=\frac{800}{3}$. A kijelölt műveletek elvégzése után a $2x^2-40x+\frac{400}{3}=0$, azaz $x^2-20x+\frac{200}{3}=0$ 1 pont egyenlethez jutunk. Az egyenlet két pozitív megoldása: $x=10+\frac{10}{\sqrt{x}}\approx 15,77$ és	kell k a elenik akkor gyobb	indoklás nélkül el fogadni. Ha csak vizsgázó ábráján jele meg ez a gondolat, ak is jár a pont. A lehető legnagy négyzetek megtalál	2 pont	
Pitagorasz tétele szerint mindkét esetben $(20-x)^2 + x^2 = \frac{800}{3}$. A kijelölt műveletek elvégzése után a $2x^2 - 40x + \frac{400}{3} = 0$, azaz $x^2 - 20x + \frac{200}{3} = 0$ 1 pont egyenlethez jutunk. Az egyenlet két pozitív megoldása: $x = 10 + \frac{10}{\sqrt{5}} \approx 15,77$ és		1-1 poni.		négyszögben két egybevágó derékszögű háromszöget hoz létre.
$2x^{2} - 40x + \frac{400}{3} = 0, \text{ azaz } x^{2} - 20x + \frac{200}{3} = 0$ 1 pont egyenlethez jutunk. Az egyenlet két pozitív megoldása: $x = 10 + \frac{10}{\sqrt{5}} \approx 15,77 \text{ és}$			1 pont	Pitagorasz tétele szerint mindkét esetben
$2x^{2} - 40x + \frac{400}{3} = 0, \text{ azaz } x^{2} - 20x + \frac{200}{3} = 0$ 1 pont egyenlethez jutunk. Az egyenlet két pozitív megoldása: $x = 10 + \frac{10}{\sqrt{5}} \approx 15,77 \text{ és}$				A kijelölt műveletek elvégzése után a
Az egyenlet két pozitív megoldása: $x = 10 + \frac{10}{\sqrt{2}} \approx 15,77$ és			1 pont	
$x = 10 + \frac{10}{\sqrt{2}} \approx 15,77$ és				egyenlethez jutunk.
$x = 10 - \frac{10}{\sqrt{3}} \approx 4,23$.			1 pont	$x = 10 + \frac{10}{\sqrt{3}} \approx 15,77$ és
ház alanterülete: kh. 249 m² lenne	ıélkül	Ezek a pontok, akkor járnak, ha indoklás né	1 pont	x > 10, így ekkor a négyzet oldala 15,77 m, ekkor a
A konkáv négyszög esetében x < 20 - x azaz dajd meg egyik és i		adja meg egyik és mási esetben a négyzet oldalá illetve területét.	1 pont	A konkáv négyszög esetében $x < 20 - x$, azaz $x < 10$, így ekkor a négyzet oldala 4,23 m, ekkor a
Összesen: 7 pont			7 pont	

3. a)		
$\mathbf{a}\left(\cos\frac{5\pi}{6};\sin\frac{5\pi}{6}\right) = \mathbf{a}\left(-\frac{\sqrt{3}}{2};\frac{1}{2}\right).$	1 pont	
$\mathbf{b}\left(\sin^2\frac{5\pi}{6};\cos^2\frac{5\pi}{6}\right) = \mathbf{b}\left(\frac{1}{4};\frac{3}{4}\right).$	1 pont	
Összesen:	2 pont	

3. b) első megoldás		
Jelöljük a két vektor által bezárt szöget α -val. A koordinátáival adott vektorok skaláris szorzata kétféleképpen is kiszámítható: $\mathbf{ab} = \left(-\frac{\sqrt{3}}{2}\right) \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{4} = \frac{3 - \sqrt{3}}{8},$	1 pont	
illetve $\mathbf{ab} = \mathbf{a} \mathbf{b} \cos\alpha$.	1 pont	
Mivel $ \mathbf{a} = 1$ és $ \mathbf{b} = \sqrt{\frac{10}{16}} = \frac{\sqrt{10}}{4}$,	1 pont	
Ezért $\frac{\sqrt{10}}{4}\cos\alpha = \frac{3-\sqrt{3}}{8}$, ebből $\cos\alpha = \frac{3-\sqrt{3}}{2\sqrt{10}} \approx 0,2005$.	1 pont	
Innen $\alpha \approx 78,43^{\circ}$. Tehát a két vektor ebben az esetben kb. 78° -os szöget zár be.	1 pont	Ezt a pontot csak akkor adjuk meg, ha a vizsgázó a kért szöget egészre kerekítve is megadja.
Összesen:	5 pont	

3. b) második megoldás		
Az a vektor az i bázisvektor +150° -os elforgatottja.	1 pont	
A $\mathbf{b}\left(\frac{1}{4}; \frac{3}{4}\right)$ vektor irányszöge β , $tg\beta = \frac{\frac{3}{4}}{\frac{1}{4}} = 3$.	2 pont	
Ebből $\beta \approx 71,57^{\circ}$.	1 pont	
Így a két vektor által bezárt α szögre $\alpha = 150^{\circ} - \beta \approx 78,43^{\circ}$ adódik. A két vektor tehát kb. 78° -os szöget zár be.	1 pont	Ezt a pontot csak akkor adjuk meg, ha a vizsgázó a kért szöget egészre kerekítve is megadja.
Összesen:	5 pont	

írásbeli vizsga 0803 8/17 2009. október 20.

3. c)		
A két vektor akkor és csak akkor merőleges egymásra, ha ab = 0.	1 pont	
A keresett <i>t</i> ismeretlent a szokásosabb módon <i>x</i> jelöli.		
Mivel $\mathbf{ab} = \cos x \sin^2 x + \sin x \cos^2 x$, így a $\cos x \sin^2 x + \sin x \cos^2 x = 0$ egyenlet megoldása a feladat. Azonos átalakítással adódik: $\cos x \sin x (\sin x + \cos x) = 0$.	1 pont	
Ez a szorzat pontosan akkor nulla, ha $\cos x = 0$ vagy $\sin x = 0$ vagy $\sin x + \cos x = 0$.	1 pont	
(1) $x = \frac{\pi}{2} + n\pi$, ahol $n \in \mathbb{Z}$ vagy	1 pont*	
(2) $x = k\pi$, ahol $k \in \mathbb{Z}$ vagy	1 pont*	
(3) $\sin x + \cos x = 0$. A (3) alatti egyenletnek nem megoldásai azok az x számok, amelyek koszinusza 0, így az egyenlet megoldáshalmaza azonos a tg $x = -1$ egyenletével.	1 pont	
Azaz $x = \frac{3\pi}{4} + m\pi$, ahol $m \in \mathbb{Z}$.	1 pont*	
A két vektor tehát pontosan akkor merőleges egymásra, ha $t = n \cdot \frac{\pi}{2}$ vagy $t = \frac{3\pi}{4} + m\pi$, ahol $n, m \in \mathbb{Z}$.		A megoldások összevont alakjának megadását nem várjuk el.
Összesen:	7 pont	

- 1. A *-gal jelölt pontok abban az esetben is járnak, ha a megoldásokat a vizsgázó fokban adja meg. Ha hiányzik, vagy rossz a periódus, ezek a pontok nem adhatók.
- 2. A *-gal jelölt 3 pontból csak 1-et vonjunk le, ha az n, m és k lehetséges értékére a vizsgázó nem ad utalást.
- 3. Ha a vizsgázó elveszti az (1) vagy (2) alatti megoldásokat, a c) részre maximum 4 pontot kaphat.

4. a)		
Felírva a hatodik elemeket az első elem és a kvóciens	1 ,	
(q), illetve a differencia (d) segítségével kapjuk, hogy $q = -1$;	1 pont	
$d = -\frac{2}{5}.$	1 pont	
A mértani sorozat első öt eleme: 1; -1; 1; -1; 1.	1 pont	
A számtani sorozat első öt eleme: 1; $\frac{3}{5}$; $\frac{1}{5}$; $-\frac{1}{5}$; $-\frac{3}{5}$.	1 pont	
Összesen:	4 pont	

4. b) első megoldás		
A mértani sorozat első n tagjának összege: $S_n = 1 \cdot \frac{1 - (-1)^n}{1 - (-1)} = \begin{cases} 0, \text{ ha } n \text{ páros} \\ 1, \text{ ha } n \text{ páratlan.} \end{cases}$	2 pont	A képlet felírásáért l pont, a szétválasztá- sáért l pont.
A számtani sorozat <i>n</i> -edik tagja: $b_n = 1 - \frac{2}{5}(n-1)$.	1 pont	
A számtani sorozat első n tagjának összege: $s_n = \frac{2 - \frac{2}{5}(n-1)}{2} \cdot n,$ azaz $s_n = \frac{6}{5}n - \frac{1}{5}n^2$.	1 pont	
$s_n = 0$, azaz a $\frac{6}{5}n - \frac{1}{5}n^2 = 0$ egyenletnek pontosan egy pozitív egész megoldása van, az n = 6.	2 pont	
$s_n = 1$, tehát $\frac{6}{5}n - \frac{1}{5}n^2 = 1$, azaz $n^2 - 6n + 5 = 0$ egyenlet megoldásai: $n = 1$ vagy $n = 5$.	2 pont	
Tehát a két sorozat első 1, vagy első 5, vagy első 6 tagjának összege ugyanakkora.	1 pont	
Osszesen:	9 pont	

4. b) második megoldás		
Az a) rész megoldása alapján észrevehető, hogy	1 pont	
$S_1 = S_1$; azaz n = 1.	1 point	
$S_5 = S_5; \text{ azaz } n = 5.$	2 pont	
$S_6 = s_6; \text{ azaz n} = 6.$	2 pont	
Az első hat tagnál több tag összege nem lehet egyenlő a két sorozatnál, mivel a számtani sorozat csökkenő (már a negyedik tag negatív), és az első hat tag összege 0.	2 pont	
Így $s_n < 0$, ha $6 < n$, ugyanakkor $S_n = 0$ vagy 1, tehát nem lehet $s_n = S_n$.	2 pont	
Összesen:	9 pont	

írásbeli vizsga 0803 10 / 17 2009. október 20.

II.

5. a) első megoldás B betűsök K Balázs Balázs Bori Zoli Bori Barbara Barbara X Bea Bea Y X Zoli Y Jelölje T a teniszezők, K a kerékpározók halmazát a Kovács családon belül. A vizsgázó a halmazok Venn-diagramjába jól helyezi 1 pont el Barbarát, Balázst, Beát, Borit. Zoli elhelyezése. 1 pont A vizsgázó a T halmazban jól jelöl ki egy újabb 1 pont családtagot; a K halmazban is bejelöl egy újabb családtagot. 1 pont Hibás válasz esetén ez a A Kovács családnak tehát legalább 7 tagja van. 1 pont pont nem jár. Összesen: 5 pont

5. a) második megoldás		
Jelöljük B-vel a család azon tagjainak halmazát,		
akiknek a keresztneve <i>B</i> betűvel kezdődik, <i>T</i> -vel a		
teniszezők, K-val a kerékpározók halmazát.		
A szöveg szerint:	1 4	
$B = \{ Barbara, Bea, Bori, Balázs \}.$	1 pont	
Balázs nem eleme T-nek és K-nak sem.		
$B \cap T \cap K = \{Barbara, Bea\}.$		
$T \cap K = \{ Barbara, Bea \}.$		
$Bori \in B \cap T$, és $Zoli \in K$.	1 pont	
T = K = 4.		
Vagyis a T halmazban a három B betűs családtagon kívül van – a szövegben nem nevesített – családtag, jelöljük őt X-szel. $T = \{Barbara, Bea, Bori, X\}.$	1 pont	
A K halmazban is van még egy családtag a három – a szövegben is nevesített – családtagon kívül, jelöljük őt Y-nal: $K = \{Barbara, Bea, Zoli, Y\}$.	1 pont	
A Kovács családnak tehát legalább 7 tagja van.	1 pont	Hibás válasz esetén ez a pont nem jár.
Összesen:	5 pont	

5. b)		
A háromjegyű szám minden számjegye 5 vagy 6 lehet csak.	1 pont	
Minden számjegy 2-féleképpen választható meg, tehát $2 \cdot 2 \cdot 2 = 8$ ilyen különböző háromjegyű szám van.	1 pont	
Mivel a társaság minden tagja különböző számot mondott, így legfeljebb 8 tagú lehet a társaság.	1 pont	
Összesen:	3 pont	

5. c)		
A feladat szerint Barbara, Bea, Bori és Balázs vagy		
az 1, 3, 5 és 7-es számú székeken, vagy a 2, 4, 6 és 8-	1 pont	
as számú székeken foglalnak helyet, és mindkét	1 pont	
esetben a maradék 4 helyre a 4 barát ül le.		
Az első esetben az adott 4 helyre Barbara, Bea, Bori	1 pont	
és Balázs 4!-féleképpen helyezkedhet el.	1 pont	
Barbara, Bea, Bori és Balázs bármelyik		
elhelyezkedése esetén a maradék 4 helyre a 4 barát	1 pont	
szintén 4!-féleképpen foglalhat helyet.		
Így az első esetben a 8 embernek 4!-4! (= 576) -féle	1	
ülésrendje alakulhat ki.	1 pont	
A második esetben is ugyanennyi, ezért a 8 embernek	1 4	
összesen 2 · 4!·4! (= 1152) ülésrendje alakulhat ki.	1 pont	
Összesen:	5 pont	

5. d)		
A 8 ember összes ülésrendjének száma: 8! (= 40320).	1 pont	
Mivel bármelyik ülésrend egyenlően valószínű, a kérdéses valószínűség: $p = \frac{2 \cdot 4! \cdot 4!}{8!} = \frac{1152}{40320} = \frac{1}{35} (\approx 0.0286).$	2 pont	Ha a c) rész rossz eredményével jól számol, akkor is jár a 2 pont.
Összesen:	3 pont	

6. a)		
A 12 liter 10%-os ecet tömény tartalma: 1,2 liter; a 8		
liter 15%-os eceté is 1,2 liter, az 5 liter 20%-os eceté	1 pont	
pedig 1 liter.		
Az összeöntés utáni 25 liter keverékben a tömény	1 pont	
ecet: 3,4 liter.	1 point	
Ezért a keverék $\frac{3.4}{25} = \frac{13.6}{100} = 13.6\%$ -os.	1 pont	
Összesen:	3 pont	

6. b)		
Ha a palackban a tömény ecet mennyisége a , a tiszta vízé b (liter), Kázmér kalkulációja alapján egy palack ára: $1,2 \cdot (500a + 10b + 30)$ forint, ami	2 pont	
a 10%-os palack esetében 1,2 · $(500 \cdot 0,1 + 10 \cdot 0,9 + 30) \approx 107 \text{ Ft};$	1 pont	
a 15%-os palack esetében 1,2 · (500 · 0,15 + 10 · 0,85 + 30) \approx 136 Ft;	1 pont	
a 20%-os palack esetében $1,2 \cdot (500 \cdot 0,2 + 10 \cdot 0,8 + 30) \approx 166 \text{ Ft.}$	1 pont	
Összesen:	5 pont	

6. c)		
Kázmér kalkulációja alapján a kereskedelmi árrés nélkül megállapított árak a 10%-os palack esetében 120 Ft, a 15%-os palackra 125 Ft a 20%-ra pedig 130 Ft.	2 pont	
Jelölje a palack árát forintban p , a tömény ecet literjének árát t és a víz literjének árát v . Felírhatók az alábbi egyenletek: (1) $p + 0.1 \cdot t + 0.9 \cdot v = 120$ (2) $p + 0.15 \cdot t + 0.85 \cdot v = 125$ (3) $p + 0.2 \cdot t + 0.8 \cdot v = 130$	2 pont	Két helyes egyenlet felírásáért l pont jár.
A (2)-(1) egyenletekből kaphatjuk, hogy: $0.05 \cdot t - 0.05 \cdot v = 5$ (vagy pl. $t - v = 100$).	1 pont	
Ugyanezt az összefüggést kaphatjuk a (3)-(2) egyenletekből is.	1 pont	
A három egyenlet tehát nem független egymástól. A p, t és v egyértelmű értékének megállapítása ezekből az adatokból nem lehetséges.	2 pont	Ha a helyes következtetés levonása elmarad, ez a 2 pont nem jár.
Összesen:	8 pont	

Ha megad két olyan pozitív számokból álló különböző számhármast, amelyből ezek az árak kalkulálhatók és ezt be is mutatja, akkor is jár a teljes pontszám.

7. a) első megoldás		
Ha a 8 fős társaság minden tagja mindenkivel beszélt		
volna egy alkalommal, akkor		
$\frac{8 \cdot 7}{2}$ = 28 telefonbeszélgetést folytattak volna le	2 pont	
csütörtökön.		
Az azonos nemzetiségűek egymással nem beszéltek,		
tehát a három német összesen 3-mal	1 pont	
kevesebb,		
míg a négy magyar meghívott összesen $\frac{4 \cdot 3}{2} = 6$ -tal	1 pont	
kevesebb beszélgetést folytatott le.		
Mindezek alapján a csütörtöki beszélgetések száma	1 nont	
28 - (3+6) = 19.	1 pont	
Összesen:	5 pont	

7. a) második megoldás		
A házigazda 7 beszélgetést folytatott.	1 pont	
Mind a 3 német vendég 5-5 alkalommal telefonált,	1 nont	
mert a 2 német társával nem beszélt.	1 pont	Ezek a pontok akkor is
Mind a 4 magyar meghívott 4-4 beszélgetést	1 pont	járnak, ha a gondolat nem ennyire részletező, és
folytatott, mert 3 magyar társával nem beszélt.	1 pont	nem ennyire részletező, és
Az egyénenként összeszámolt beszélgetések összege		pl. csak egy rajzban
a társaság beszélgetései számának kétszerese, mert	1 pont	fokszámként jelenik meg
minden beszélgetést 2-2 embernél számoltunk meg.		
Mindezek alapján a csütörtöki beszélgetések száma		
$\frac{7+3\cdot 5+4\cdot 4}{3}=\frac{38}{3}=19$	1 pont	
${2}$ $\equiv {2}$ $\equiv 19$.	1	
Összesen:	5 pont	

7. b)		
Legyen <i>p</i> az a valószínűség, amit mindannyian mondtak. Mivel egymástól függetlenül döntöttek,	1 pont	
annak a valószínűsége, hogy mindenki elmegy $p^7 = 0.028$.	2 pont	
Innen $p = \sqrt[7]{0,028} \approx 0,600$.	2 pont	
Annak a valószínűsége, hogy valaki nem megy el: 1 – p.	1 pont	
Annak a valószínűsége, hogy senki sem megy el: $(1-p)^7 (\approx 0.4^7 \approx 0.0016)$.	2 pont	
Tehát annak a valószínűsége, hogy legalább egy elmegy $1 - (1 - p)^7$,	2 pont	
ami közelítőleg 0,998.	1 pont	
Összesen:	11 pont	

írásbeli vizsga 0803 14/17 2009. október 20.

8. a)		
A keresett két csúcs rajta van a C középpontú $\sqrt{53}$ egység sugarú körön. A kör egyenlete: $x^2 + (y-7)^2 = 53$.	1 pont	
A keresett pontokat a következő egyenletrendszer megoldása adja: $y = -\frac{1}{4}x^2 + 1$	1 pont	
$x^{2} + (y-7)^{2} = 53$		
Az első egyenlet átalakításával: $x^2 = -4y + 4$. Az x^2 kifejezését behelyettesítve a második egyenletbe, kapjuk, hogy $y^2 - 18y = 0$.	1 pont	
Innen $y_1 = 0$ és $y_2 = 18$.	1 pont	
Ezek közül csak az $y_1 = 0$ ad megoldást.	1 pont	
Behelyettesítve az első egyenletbe: $x^2 = 4$.		
Innen $x_1 = -2$ és $x_2 = 2$.	1 pont	
A keresett két pont: $A(-2;0)$ és $B(2;0)$.		
Összesen:	6 pont	

8. b)		
A BC egyenes egyenlete: $7x + 2y = 14$.	1 pont	Az AC egyenes egyenlete $7x-2y=-14$.
A D pont koordinátáit a $7x+2y=14$ és a		
$y = -\frac{1}{4}x^2 + 1$ görbék <i>B</i> -től különböző	1 pont	
metszéspontjai adják.		
$7x - \frac{1}{2}x^2 = 12$ gyökei: $x_1 = 2$; $x_2 = 12$.	1 pont	$7x + \frac{1}{2}x^2 = -12$ $x_1 = -2; \ x_2 = -12.$
D(12, 25)		\
D(12;-35).	1 pont	D(-12;-35)
Összesen:	4 pont	

_	
0	~)
Λ.	\cdot
•	~,

Az ABC háromszög területe: $\frac{AB \cdot m_c}{2} = \frac{4 \cdot 7}{2} = 14$.	1 pont	
A parabola két készre osztja a háromszöget.	1 pont	Ha a gondolatot jól hasz- nálja, jár a pont.
A kisebbik rész területének fele a szimmetria miatt:		
$\int_{0}^{2} \left(-\frac{1}{4}x^{2} + 1 \right) dx = \frac{4}{3}.$	2 pont	
A háromszögnek a parabolaív alá eső területe: $\frac{8}{3}$ (területegység).	1 pont	
A háromszögnek a parabolaív fölé eső területe:		
$14 - \frac{8}{3} = \frac{34}{3} (\approx 11,33) \text{ (területegység)}.$	1 pont	
Összesen:	6 pont	

A KBC derékszögű háromszög befogóinak hossza $m-10$ és r , átfogója 10 cm. Alkalmazzuk Pitagorasz tételét a KBC háromszögre: $(m-10)^2+r^2=100$ Ebből $r^2=20m-m^2$. 1 pont A váza térfogata: $V=\frac{\pi}{6}m\cdot(3r^2+m^2)+r^2\pi m$. 1 pont A váza térfogata m függvényében: $V(m)=\frac{\pi}{6}m\cdot[3(20m-m^2)+m^2]+\pi(20m-m^2)m$, 2 pont azaz $V(m)=\pi\left(-\frac{4}{3}m^2+30m^2\right)=\frac{2\pi}{3}\left(45m^2-2m^3\right)$, 1 pont A V függvény differenciálható a $[0;20]$ nyílt intervallumon, s a deriváltja: $V'(m)=\pi(-4m^2+60m)=4\pi(15-m)m$ 2 pont A $[0;20]$ nyílt intervallumon $V'(m)=0$ pontosan akkor, ha $m=15$. $10 < m < 15$ $V'(m)$ $V'($	9.	
$ \begin{array}{c} m-10 \text{ és } r, \text{ átfogója } 10 \text{ cm.} \\ \hline Alkalmazzuk Pitagorasz tételét a KBC háromszögre:} \\ (m-10)^2 + r^2 = 100 \\ \hline \text{Ebből } r^2 = 20m - m^2. \\ \hline \text{A váza térfogata: } V = \frac{\pi}{6}m \cdot (3r^2 + m^2) + r^2 \pi n. \\ \hline \text{A váza térfogata } m \text{ függvényében:} \\ V(m) = \frac{\pi}{6}m \cdot \left[3(20m - m^2) + m^2\right] + \pi(20m - m^2)m, \\ \hline \text{azaz} \\ V(m) = \pi \left(-\frac{4}{3}m^3 + 30m^2\right) = \frac{2\pi}{3}\left(45m^2 - 2m^3\right), \\ \hline \text{ahol } 10 < m < 20. \\ \hline \text{A V függvény differenciálható a } 10;20[\text{ nyílt intervallumon, s a deriváltja:} \\ \hline V(m) = \pi(-4m^2 + 60m) = 4\pi(15 - m)m \\ \hline \text{A } 10;20[\text{ nyílt intervallumon } V(m) = 0 \text{ pontosan akkor, ha } m = 15. \\ \hline \hline \begin{array}{c} 10 < m < 15 \\ \hline V(m) \end{array} \begin{array}{c} m = 15 \\ \hline V(m) \end{array} \begin{array}{c} \text{Szigorúan individual maximum helye is, figy ekkor lesz a váza térfogata a lehető legnagyobb.} \\ \hline \text{Az } m = 15 \text{ a V függvény abszolút maximum helye is, figy ekkor lesz a váza térfogata a lehető legnagyobb.} \\ \hline \text{Al pont } V \end{array} \begin{array}{c} 1 \text{ pont } V \end{array} $	$A \qquad C \qquad r \qquad B \qquad K \qquad 10$	
Ebből $r^2 = 20m - m^2$. 1 pont A váza térfogata: $V = \frac{\pi}{6}m \cdot (3r^2 + m^2) + r^2\pi m$. 1 pont A váza térfogata m függvényében: $V(m) = \frac{\pi}{6}m \cdot [3(20m - m^2) + m^2] + \pi(20m - m^2)m$, 2 pont azaz $V(m) = \pi \left(-\frac{4}{3}m^3 + 30m^2\right) = \frac{2\pi}{3}\left(45m^2 - 2m^3\right),$ 1 pont A V függvény differenciálható a V függvény a pontosan akkor, ha V függvény differenciálható a V függvény a pontosan akkor, ha V függvény abszolút maximum helye is, figy ekkor lesz a váza térfogata a lehető legnagyobb. 1 pont V függvény abszolút maximum helye is, figy ekkor lesz a váza térfogata a lehető legnagyobb. 1 pont V függvény abszolút maximum helye is, figy ekkor lesz a váza térfogata a lehető legnagyobb. 1 pont		2 pont
Ebből $r^2 = 20m - m^2$. 1 pont A váza térfogata: $V = \frac{\pi}{6}m \cdot (3r^2 + m^2) + r^2 \pi m$. 1 pont A váza térfogata m függvényében: $V(m) = \frac{\pi}{6}m \cdot \left[3(20m - m^2) + m^2\right] + \pi(20m - m^2)m,$ 2 pont azaz $V(m) = \pi\left(-\frac{4}{3}m^3 + 30m^2\right) = \frac{2\pi}{3}\left(45m^2 - 2m^3\right),$ 1 pont ahol $10 < m < 20$. 1 pont A V függvény differenciálható a $\left[10;20\right]$ nyílt intervallumon, s a deriváltja: $V'(m) = \pi(-4m^2 + 60m) = 4\pi(15 - m)m$ 2 pont A $\left[10;20\right]$ nyílt intervallumon $V'(m) = 0$ pontosan akkor, ha $m = 15$. $10 < m < 15 \qquad m = 15 \qquad 15 < m < 20$ $V'(m) \qquad \text{pozitív} \qquad = 0 \qquad \text{negatív}$ $V \qquad \text{Szigorúan Helyi maximum csökkenő}$ Az $m = 15$ a V függvény abszolút maximum helye is, így ekkor lesz a váza térfogata a lehető legnagyobb. ($V_{\text{max}} = 2250\pi \approx 7069 \text{ (cm}^3)$)		2 pont
A váza térfogata m függvényében: $V(m) = \frac{\pi}{6} m \cdot \left[3(20m - m^2) + m^2 \right] + \pi (20m - m^2) m,$ azaz $V(m) = \pi \left(-\frac{4}{3} m^3 + 30m^2 \right) = \frac{2\pi}{3} \left(45m^2 - 2m^3 \right),$ 1 pont $A V \text{ függvény differenciálható a } 10;20 \left[\text{ nyílt intervallumon, s a deriváltja:} \right]$ 2 pont $V(m) = \pi \left(-4m^2 + 60m \right) = 4\pi \left(15 - m \right) m$ 2 pont $A \left[10;20 \right] \text{ nyílt intervallumon } V(m) = 0 \text{ pontosan akkor, ha } m = 15.$ $10 < m < 15 m = 15 15 < m < 20$ $V(m) \text{pozitív} = 0 \text{negatív}$ $V(m) \text{pozitív} = 0 \text{pozitív}$ $V(m) \text{pozitív} = 0 \text{pozitív}$ $V(m) \text{pozitív} = 0 pozit$	Ebből $r^2 = 20m - m^2$.	1 pont
$V(m) = \frac{\pi}{6} m \cdot \left[3(20m - m^2) + m^2 \right] + \pi (20m - m^2) m,$ 2 pont 2 azaz $V(m) = \pi \left(-\frac{4}{3} m^3 + 30m^2 \right) = \frac{2\pi}{3} \left(45m^2 - 2m^3 \right),$ 1 pont $A V \text{ függvény differenciálható a } \left[10;20 \right] \text{ nyílt}$ $1 \text{ intervallumon, s a deriváltja:}$ $V'(m) = \pi (-4m^2 + 60m) = 4\pi (15 - m)m$ 2 pont $A \left[10;20 \right] \text{ nyílt intervallumon } V'(m) = 0 \text{ pontosan akkor, ha } m = 15.$ $10 < m < 15 m = 15 15 < m < 20$ $V'(m) \text{pozitív} = 0 \text{negatív}$ $V''(m) \text{pozitív} = 0 \text{pozitív}$ $V''(m) \text{pozitív} = 0 \text{pozitív}$ $V''(m) \text{pozitív} = 0 \text{pozitív}$	A váza térfogata: $V = \frac{\pi}{6}m \cdot (3r^2 + m^2) + r^2\pi m$.	1 pont
$V(m) = \pi \left(-\frac{4}{3}m^3 + 30m^2\right) = \frac{2\pi}{3} \left(45m^2 - 2m^3\right), \qquad 1 \text{ pont}$ $A V \text{ függvény differenciálható a } 10;20 \text{ nyílt intervallumon, s a deriváltja:}$ $V'(m) = \pi (-4m^2 + 60m) = 4\pi (15 - m)m \qquad 2 \text{ pont}$ $A 10;20 \text{ nyílt intervallumon } V'(m) = 0 \text{ pontosan akkor, ha } m = 15.$ $10 < m < 15 m = 15 15 < m < 20$ $V'(m) \text{pozitív} = 0 \text{negatív}$ $V''(m) \text{pozitív} = 0 \text{negatív}$ $V''(m) \text{Szigorúan Helyi Szigorúan növő maximum csökkenő}$ $Az m = 15 \text{ a } V \text{ függvény abszolút maximum helye is, így ekkor lesz a váza térfogata a lehető legnagyobb.}$ $(V''(m) \text{pozitív} \text{1 pont}$ $V''(m) \text{pozitív} \text{2 pont}$	c	2 pont
A V függvény differenciálható a $]10;20[$ nyílt intervallumon, s a deriváltja: $V'(m) = \pi(-4m^2 + 60m) = 4\pi(15 - m)m$ 2 pont A $]10;20[$ nyílt intervallumon $V'(m) = 0$ pontosan akkor, ha $m = 15$.		1 pont
intervallumon, s a deriváltja: $V'(m) = \pi(-4m^2 + 60m) = 4\pi(15 - m)m$ A]10;20[nyílt intervallumon $V'(m) = 0$ pontosan akkor, ha $m = 15$.	3 - E	1 pont
$V(m)$ pozitív $= 0$ negatív V Szigorúan növőHelyi maximumSzigorúan csökkenőAz $m = 15$ a V függvény abszolút maximum helye is, így ekkor lesz a váza térfogata a lehető legnagyobb. $(V_{max} = 2250\pi \approx 7069 (cm^3))$ 1 pont	intervallumon, s a deriváltja: $V'(m) = \pi(-4m^2 + 60m) = 4\pi(15 - m)m$ A]10;20[nyílt intervallumon $V'(m) = 0$ pontosan	2 pont
így ekkor lesz a váza térfogata a lehető legnagyobb. 1 pont $(V_{\text{max}} = 2250\pi \approx 7069 (\text{cm}^3))$	V(m) pozitív = 0 negatív V Szigorúan Helyi Szigorúan	3 pont
Összesen: 16 pont	így ekkor lesz a váza térfogata a lehető legnagyobb.	1 pont
	Összesen:	16 pont