2.2.3 Измерение теплопроводности воздуха при атмосферном давлении

Сидорчук Максим Б01-204

1 Цель

Измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

2 Оборудование

Цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); источник постоянного напряжения; реостат (или магазин сопротивлений).

3 Теоретические сведения

Теплопроводность - это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). Закон Фурье:

$$\overrightarrow{q} = -\kappa \cdot \nabla T \tag{1}$$

 \overrightarrow{q} - плотность потока энергии, $\kappa \backsim \lambda \overline{v} \cdot nc_v$ - коэффицент теплопроводности. Для цилиндрической геометрии (рис. 1)

Рис. 1: Геометрия измерений

Для стационарного режима и малого перепада температуры между нитью и стенками цилиндра:

 $Q = -2\pi r L \cdot \kappa \frac{dT}{dr} = \frac{2\pi L}{\ln \frac{r_0}{r_1}} \kappa \cdot \Delta T$ (2)

4 Экспериментальная установка и методика измерений

Схема установки представлена на рис. 2. Полость трубки заполнена воздухом при атмосферном давлении, металлическая нить - источник тепла и датчик температуры. Электрическая схема установки на рис. 3

Рис. 2: Схема установки

Рис. 3: Электрическая схема установки

Ток цепи регулируется с помощью магазина сопротивлений, включенного последовательно с источником напряжения.

Измерение нагрузочных кривых позволяет получить температурную зависимость сопротивления нити (при $Q \to 0, T \approx T_0$)

Для исследуемых температур:

$$R(t) = R_{273} \cdot (1 + \alpha t) \tag{3}$$

 $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ - температурный коэффициент сопротивления материала. По наклонам нагрузочных кривых можно получить значение коэффициента теплопроводности.

5 Измерения и обработка данных

Результаты измерений представлены в таблице 1.

Таблица 1: Результаты измерений

T = 297 K		T = 303 K		T = 308 K		T = 313 K		T = 323 K	
U, мВ	I, MA	U, MB	I, мА						
218.0	10.8399	215.2	10.4727	219.0	10.4750	222.7	10.4773	217.5	10.0010
429.0	21.2783	430.7	20.9276	438.3	20.9357	445.8	20.9302	435.7	20.0030
643.0	31.8114	647.3	31.3537	658.4	31.3384	669.8	31.3549	656.1	30.0140
857.0	42.2430	866.8	41.7930	880.9	41.7642	895.3	41.7402	876.8	40.0070
1081.0	52.9298	1087.2	52.1480	1104.9	52.1063	1124.2	52.1435	1101.9	50.0413
1527.0	73.6798	1311.0	62.4825	1334.0	62.5326	1355.0	62.4739	1329.0	60.0319
1732.0	82.8991	1771.0	83.0506	1564.0	72.7582	1591.0	72.8143	1559.0	69.9339
1969.0	93.3041	2008.0	93.2471	1799.0	82.9729	1830.0	83.0501	1799.0	80.0707
2207.0	103.4000	2250.0	103.3453	2044.0	93.3470	2074.0	93.2044	2040.0	89.9312
				2290.0	103.4776	2330.0	103.5982	2287.0	99.9344

Для всех температур построим график зависимости сопротивления нити от мощности. (рис. 4). Из графиков получаются следующие значения (табл. 2)

Рис. 4: Нагрузочные кривые для различных температур

Таблица 2: Результаты обработки данных

T, K	297	303	308	313	317
R/Q, мОм/мВт	5.46	5.31	5.23	5.15	5.04
$\sigma_{R/Q}$, мОм/мВт	0.23	0.23	0.22	0.22	0.21

Построим график зависимости сопротивления нити от её температуры (рис. 5)

Рис. 5: Зависимость сопротивления от температуры

Погрешность на графике заметна, но не чересчур велика, что указывает на приемлемое качество измерений.

Из графика и линейной зависимости сопротивления от температуры найдем температурный коэффициент сопротивления:

$$\alpha = \frac{1}{R_{273}} \frac{dR}{dT} = (3.3 \pm 0.7) \cdot 10^{-3} 1/\text{K}$$
 (4)

Используя полученное значение и нагрузочные кривые, получим коэффицент теплопроводности для разных температур (табл. 3)

Таблица 3: Коэффициент теплопроводности для разных температур

T, K	297	303	308	313	323
κ , MBT/(M·K)	21.86	22.9	24.09	25.09	25.90
σ_{κ} , MBT/(M·K)	0.40	0.42	0.44	0.43	0.44

Погрешности полученных значений заметны, но не критичны. На приведенном ниже графике четко видна линейная зависимость.

Выводы 6

- 1. Получен линейных характер нагрузочных кривых, рассчитаны значения сопротивления при Q=0 и коэффицент наклона прямой.
- 2. Получен температурный коэффициент сопротивления: $\alpha = (3.3 \pm 0.7) \cdot 10^{-3} 1/\mathrm{K}$. 3. Получена явная линейная зависимость κ от температуры с коэффицентом $\frac{dQ}{d(\Delta T)} =$ (0.16 ± 0.01) .