Insper

Visão Computacional

Aula 2 - Imagens e Visão Humana

2018 - Engenharia

Fábio Ayres <fabioja@insper.edu.br>

Objetivos

Ao término desta aula o aluno será capaz de

- Conceituar imagens contínuas e imagens digitais
- Explicar como imagens são percebidas pela visão humana
- Explicar porque muitos modelos de cores são tridimensionais a partir de um entendimento da percepção de cores na visão humana
- Conceituar amostragem, quantização, e resolução espacial

- Inicialmente, aquilo que a gente vê
 - Mas tem muito mais que isso!

http://blog.cpv.com.br/blog/2018/03/13/vestibular-insper-2018-2/

https://upload.wikimedia.org/wikipedia/commons/b/b7/X-ray_applications.svg

https://blogs.msdn.microsoft.com/uk_faculty_connection/2017/05/15/image-based-motion-analysis-with-kinect-v2-and-opencv/

Como representar imagens?

Modelagem contínua (impossível de tratar no computador, mas é um começo)

$$\vec{v} = f(\vec{p})$$

 $\vec{p} \in \mathbb{R}^M$: coordenadas de posição

 $\vec{v} \in \mathbb{R}^N$: valor da imagem na posição dada

Exemplos:

Imagem de raio-X

Imagem colorida

Imagem de tomografia

Vídeo colorido

Mapa topográfico do globo terrestre

$$v = f(x, y)$$

$$(R,G,B) = f(x,y)$$

$$v = f(x, y, z)$$

$$(R,G,B) = f(x,y,t)$$

altura = f (latitude, longitude)

Amostragem e quantização

Uma imagem contínua não pode ser armazenada em um computador digital, é necessário:

- Amostrar: coletar amostras da imagem contínua em posições pré-determinadas, geralmente espaçadas regularmente
- Quantizar: o valor da amostra deve ser aproximado por um número dentre um conjunto fixo de valores, para que possamos guardar esse valor aproximado na memória de um computador.

Amostragem

Imagem: f(x, y)

x, y: distância em m

intervalo de amostragem h (distância em m)

Cuidado com a inversão (x,y) para (linha, coluna)!

Imagem amostrada: $img[r,c] = f(c \cdot h, r \cdot h)$

i, *j*: indices (inteiros)

Resolução

Resolução pode significar:

- Tamanho da imagem amostrada, em pixels
- Resolução espacial: tamanho da menor característica distinguível na imagem (em unidades de distância, ou ângulo, etc)

https://en.wikipedia.org/wiki/Image_resolution

Resolução

Algumas métricas comuns de resolução espacial:

- PPI: points per inch pontos por polegada
- line-pairs per inch pares de linhas por polegada

Atividade

Qual a resolução espacial típica (tamanho de pixel, PPI, ou linepairs per inch) das seguinte imagens:

- Material impresso na impressora laser
- Imagens de tomografia computadorizada
 - É a mesma resolução em todos os eixos?
- Monitor de laptop

Quantização

https://commons.wikimedia.org/wiki/File:Dithering_example_undithered.png
https://en.wikipedia.org/wiki/File:Dithering_example_undithered_16color_palette.png

Imagens coloridas

• O que é cor?

 Como percebemos uma imagem colorida?

https://en.wikipedia.org/wiki/File:Dark_Side_of_the_Moon.png

Luz

Câmera

Visão humana

Cones e bastonetes

- · Cones e bastonetes: células sensíveis à luz
- Cones:
 - Visão central
 - Alta resolução
 - Sensibilidade a cores
 - Requer alta intensidade luminosa
- Bastonetes
 - · Visão periférica
 - Baixa resolução
 - Visão monocromática
 - Funcionam em baixa luz

Curiosidade: ponto cego

- Feche o olho esquerdo
- Estique os braços e faça um "L" com ambas as mãos, apontando os indicadores para cima
- Toque as pontas dos polegares
- Mantenha o foco na unha do indicador da mão esquerda
- A ponta do dedo direito deve desaparecer! Mova a mão direita um pouco e observe o dedo direito reaparecendo e desaparecendo!
- Discuta com seu vizinho: como você acha que o cérebro não percebe o ponto cego o tempo todo? (2 min)

O sistema visual é super complexo! Vamos nos concentrar em um aspecto: a percepção de cores

Cones

Daltonismo

Cerca de 8% da população tem daltonismo: uma deficiência na presença de cones de tipos específicos que altera a percepção de cores;

- Protanopia: problema com tons vermelhos, misturando vermelho e verde.
- Deuteranopia: problema com tons verdes, misturando vermelho e verde.
- Tritanopia: problema com tons azuis e amarelos

Modelos de cor

- O modelo mais "direto" de cores é o LMS, que é a representação direta de quanta energia foi percebida pelos cones de cada tipo:
 - L: cones de alto comprimento de onda (baixa frequência)
 - M: cones de comprimento médio de onda
 - S: cones de baixo comprimento de onda (alta frequência)

- O modelo mais usado é o RGB
- Outros modelos existem: HSV, YUV, e modelos mais sofisticados que representam mais de uma banda de energia

Modelo RGB

Modelo HSV

https://en.wikipedia.org/wiki/HSL_and_HSV

Projeto

Para entender melhor como cores funcionam, vamos simular a visão daltônica no computador!

Em grupos de 2 alunos vocês devem implementar um programa Python que converte imagens coloridas segundo a técnica descrita no artigo "Digital Video Colourmaps for Checking the Legibility of Displays by Dichromats", no blackboard.

Projeto

Vocês devem entregar via BlackBoard um relatório na forma de um notebook Jupyter (e demais arquivos, tudo num arquivo .zip) contendo:

- Implementação de um código de conversão de cores para simular protanopia e deuteranopia (o artigo não discute tritanopia, que é rara)
- Demonstração da aplicação do código a imagens de exemplo
- Discussão das seguintes questões:
 - Como validar esses resultados? Como sabemos que esse simulador realmente representa a experiência sensorial de uma pessoa com daltonismo?
 - Quais as aplicações deste trabalho? Como você usaria esta técnica para melhorar o design de um produto? Que outras aplicações você imagina?

Rubrica

I (Insuficiente)

 Não entregou, entregou nonsense, ou o código não funciona – eu tenho que poder rodar seu notebook. Arquivos faltantes podem invalidar seu relatório também, seja cuidadoso.

D (Em Desenvolvimento)

Entregou apenas o código funcionando.

C (Minimamente aceitável)

 Entregou o código funcionando e exemplos de funcionamento, respondeu minimamente as questões.

B (Satisfatório)

• Entregou o código funcionando e respondeu as questões com pesquisa de exemplos reais de aplicações e uma análise crítica do potencial desta tecnologia.

A (Avançado)

- Conseguiu expandir o trabalho em alguma direção de investigação interessante venha conversar comigo depois de chegar na rubrica B.
- (A+) Implementou um simulador de visão daltônica usando os "head-mounted displays" da disciplina de Realidade Virtual do Luciano, vai conversar com ele.

Prazo de entrega

15/08

(quarta-feira)

23:59

Insper

www.insper.edu.br