Physique des particules – TD5

www.antoinebourget.org/teaching/particules/

Exercice 1 : $\mathfrak{sl}(2,\mathbb{C})$ et représentations

On considère l'algèbre du moment cinétique $\mathfrak{su}(2)$ définie par les relations de commutation

$$\left[\hat{L}_x, \hat{L}_y\right] = i\hat{L}_z, \quad \left[\hat{L}_y, \hat{L}_z\right] = i\hat{L}_x, \quad \left[\hat{L}_z, \hat{L}_x\right] = i\hat{L}_y. \tag{1}$$

On pose $\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$.

1. Montrer que

$$\left[\hat{L}^2, \hat{L}_x\right] = \left[\hat{L}^2, \hat{L}_y\right] = \left[\hat{L}^2, \hat{L}_z\right] = 0.$$
 (2)

Donner l'interprétation physique de ce résultat.

2. On considère maintenant l'algèbre complexifiée $\mathfrak{sl}(2,\mathbb{C})$, c'est-à-dire qu'on autorise à former des combinaisons linéaires à coefficients complexes. On pose ainsi $\hat{L}_{\pm} = \hat{L}_x \pm \mathrm{i}\hat{L}_y$. Montrer que

$$\left[\hat{L}_z, \hat{L}_{\pm}\right] = \pm \hat{L}_{\pm}, \quad \left[\hat{L}_+, \hat{L}_-\right] = 2\hat{L}_z. \tag{3}$$

 et

$$\hat{L}^2 = \hat{L}_- \hat{L}_+ + \hat{L}_z + \hat{L}_z^2. \tag{4}$$

3. Montrer qu'il existe une base $\{h, e, f\}$ de l'algèbre $\mathfrak{sl}(2, \mathbb{C})$ telle que les relations de commutation prennent la forme canonique

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$
 (5)

On veut maintenant étudier les représentations de l'algèbre $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$. Celle-ci est définie de façon abstraite par les axiomes des algèbres de Lie,

$$\forall (x,y) \in \mathfrak{g}^2, \quad [x,y] = -[y,x] . \tag{6}$$

$$\forall (x, y, z) \in \mathfrak{g}^3, \quad [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.$$
 (7)

et les relations de commutation (5).

On suppose qu'il existe un autre \mathbb{C} -espace vectoriel V de dimension finie $p \in \mathbb{N}^*$ et une application linéaire $\phi : \mathfrak{g} \to \operatorname{End}(V)$ qui vérifie

$$\forall (x,y) \in \mathfrak{g}^2, \quad \phi([x,y]) = \phi(x) \circ \phi(y) - \phi(y) \circ \phi(x) . \tag{8}$$

Un tel couple (V, ϕ) est appelé représentation de dimension p de \mathfrak{g} . On suppose enfin que la représentation est irréductible : si W est un sous-espace vectoriel de V invariant sous ϕ (i.e. $\forall x \in \mathfrak{g}, \phi(x)(W) \subset W$) alors $W = \{0\}$ ou W = V.

- 4. Soit $v \in V$ un vecteur propre pour $\phi(h) : \exists \lambda \in \mathbb{C}, \phi(h)(v) = \lambda v$. Montrer que, s'ils sont non nuls, $\phi(e)(v)$ et $\phi(f)(v)$ sont des vecteurs propres de $\phi(h)$ et déterminer les valeurs propres associées.
- 5. Montrer qu'il existe un vecteur propre v_0 pour $\phi(h)$ (valeur propre λ) tel que $\phi(f)(v_0) = 0$ et qu'il existe un entier $n \leq p-1$ tel que $\phi(e)^{n+1}(v_0) = 0$ mais $\phi(e)^n(v_0) \neq 0$.
- 6. Pour $k \in \{0, \dots, n\}$ on pose $v_k = \phi(e)^k(v_0)$. Montrer que

$$\forall k \in \mathbb{N}^*, \quad \phi(f)(v_k) = k(1 - \lambda - k)v_{k-1}. \tag{9}$$

- 7. En déduire n et λ en fonction de p.
- 8. Montrer que

$$\phi(f) \circ \phi(e) + \frac{\phi(h)}{2} + \frac{\phi(h)^2}{4} = \frac{(p-1)(p+1)}{4} \operatorname{Id}_V.$$
 (10)

En mécanique quantique, des représentations de cette algèbre de Lie apparaissent naturellement lorsque l'on s'intéresse au moment angulaire d'une particule. Le spin $l \in \mathbb{N}/2$ est alors défini par p = 2l + 1.

9. Trouver des coefficients $\{c_k \in \mathbb{C}^* | 0 \leq k \leq 2l\}$ tels que, si l'on définit, pour $m \in \{-l, -l + 1, \dots, l\}$, $|l, m\rangle = c_{l+m}v_{l+m} \in V$, on ait des vecteurs $|l, m\rangle$ de norme 1. Montrer que l'on a alors

$$\hat{L}_{+}|l,m\rangle = \sqrt{l(l+1) - m(m+1)}|l,m+1\rangle,$$
 (11)

$$\hat{L}_{-}|l,m\rangle = \sqrt{l(l+1) - m(m-1)}|l,m-1\rangle.$$
 (12)

Exercice 2: Isospin

On considère l'espace vectoriel complexe V_2 de dimension 2 ayant pour base $\{u,d\}$. On considère les opérateurs linéaires \hat{T}_x , \hat{T}_y , \hat{T}_z définis par leur expression matricielle dans cette base par $\hat{T}_{x,y,z} = \frac{1}{2}\sigma_{x,y,z}$. Ainsi V_2 constitue une (la) représentation irréductible de dimension 2 de $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$. Dans le cours, on a la notation $V_2 = 2$.

- 1. Expliquer le sens physique de cette représentation en termes de quarks. Quelles sont les hypothèses nécessaires pour que cette interprétation physique soit exacte ? Qu'en est-il en réalité ?
- 2. Une base d'états d'isospin $\phi(I, I_3)$ sont étiquetés par l'isospin total I et la troisième composante I_3 . Ils sont définis par les relations

$$\hat{T}^2\phi(I,I_3) = I(I+1)\phi(I,I_3) \qquad \hat{T}_3\phi(I,I_3) = I_3\phi(I,I_3). \tag{13}$$

Expliquer la raison de ce choix. Comment s'expriment les vecteurs u et v dans cette notation?

3. En utilisant l'exercice précédent, donner $\hat{T}_+\phi(I,I_3)$ et $\hat{T}_-\phi(I,I_3)$. Faire un dessin pour les petites valeurs de I et I_3 .

- 4. Un système de 2 quarks est décrit par l'espace $V_2 \otimes V_2$ (c'est-à-dire $2 \otimes 2$). Donner une base de cet espace en terme des vecteurs u et d, puis en terme des $\phi(I, I_3)$. Expliciter le changement de base.
- 5. Montrer que $V_2 \otimes V_2$ se décompose en deux représentations irréductibles $V_1 \oplus V_3$. On peut noter cette décomposition $\mathbf{2} \otimes \mathbf{2} = \mathbf{1} \oplus \mathbf{3}$. Quelles propriétés physiques distinguent les états de ces deux représentations?
- 6. Un système de 3 quarks est décrit par l'espace $V_2 \otimes V_2 \otimes V_2$. Donner une base de cet espace en terme des vecteurs u et d. Montrer qu'on peut identifier $\phi(\frac{3}{2}, \frac{3}{2}) = uuu$ et en déduire tous les vecteurs de la forme $\phi(\frac{3}{2}, I_3)$. Ces vecteurs forment une représentation irréductible V_4 .
- 7. Il reste 4 combinaisons à identifier, correspondant à l'espace supplémentaire orthogonal V^{\perp} de V_4 dans $V_2 \otimes V_2 \otimes V_2$. En utilisant la théorie de l'addition du moment cinétique, montrer que $V^{\perp} \sim \mathbf{2} \oplus \mathbf{2}$ en termes de représentations.
- 8. En utilisant la décomposition $V_2 \otimes V_2 = V_1 \oplus V_3$, montrer qu'une base de V^{\perp} adaptée à la décomposition $V^{\perp} \sim \mathbf{2} \oplus \mathbf{2}$ est

$$\phi_S\left(\frac{1}{2}, -\frac{1}{2}\right) = -\frac{1}{\sqrt{6}}(2ddu - udd - dud) \qquad \phi_S\left(\frac{1}{2}, +\frac{1}{2}\right) = +\frac{1}{\sqrt{6}}(2uud - udu - duu)$$

$$\phi_A\left(\frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{\sqrt{2}}(udd - dud) \qquad \phi_A\left(\frac{1}{2}, +\frac{1}{2}\right) = \frac{1}{\sqrt{2}}(udu - duu)$$

Discuter l'unicité de ces combinaisons.

9. On a finalement la décomposition $V_2 \otimes V_2 \otimes V_2 = V_4 \oplus V_S \oplus V_A$, que l'on peut aussi écrire $\mathbf{2} \otimes \mathbf{2} \otimes \mathbf{2} = \mathbf{4} \oplus \mathbf{2}_S \oplus \mathbf{2}_A$. Quel est le sens physique des symboles S et A?