This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

Substituted 3-(Phenylsulfonyl)-1-phenylimidazolidine-2,4-dione Derivatives as Novel Nonpeptide Inhibitors of Human Heart Chymase

Shinjiro Niwata, Harukazu Fukami, ** Motoo Sumida, Akiko Ito, Saki Kakutani, Masayuki Saitoh, Kenji Suzuki, Masahiro Imoto, Hiroshi Shibata, Seiichi Imajo, Yoshinobu Kiso, Takaharu Tanaka, Hiroshi Nakazato, Takafumi Ishihara, Shinji Takai, Daisuke Yamamoto, Naotaka Shiota, Mizuo Miyazaki, Hideki Okunishi," Akio Kinoshita,- Hidenori Urata,- and Kikuo Arakawa-

Institute for Biomedical Research, Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618, Japan. Department of Pharmacology and Medical Computation Center, Osaka Medical College, 2-7 Daigaku-cho. Takatsuki 569, Japan, Department of Pharmacology, Shimane Medical University, 89-1 Enya-cho, Izumo. Shimane 693. Japan, and Department of Internal Medicine, School of Medicine, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka 314-01, Japan

Received November 15, 1996°

A series of 3-(phenylsulfonyl)-1-phenylimidazolidine-2,4-dione-dorivatives have been synthesized and evaluated for their ability to selectively inhibit human heart chymase. The structureactivity relationship studies on these compounds gave the following results. The 1-phenyl moiety participates in a hydrophobic interaction where an optimum size is required. At this position, 3,4-dimethylphenyl is the best moiety for inhibiting chymase and showed high selectivity compared with chymotrypsin and cathepsin G. A 3-phenylsulfonyl moiety substituted with hydrogen-bond acceptors such as nitrile and methoxycarbonyl enhances its activity. Molecular-modeling studies on the interaction of 3-[(4-chlorophenyl)sulfonyl]-1-(4-chlorophenyl) imidazolidine-2,4-dione (29) with the active site of human heart chymase suggested that the 1-phenyl moiety interacts with the hydrophobic P_1 pocket, the 3-phenylsulfonyl moiety resides in the $S_1 - S_2$ subsites, and the 4-carbonyl of the imidazolidine ring and sulfonyl group interact with the oxyanion hole and the His-45 side chain of chymase, respectively. The complex model is consistent with the structure-activity relationships.

Introduction

Angiotensin-I converting enzyme (ACE), a dipeptidyl carboxylase, is a key enzyme in the formation of angiotensin II (Ang II) from angiotensin I (Ang I).1 However, the conversion of Ang I to Ang II has been demonstrated to occur in the presence of ACE inhibitors in many tissues including the heart.2-5 The non-ACE enzyme is inhibited by chymostatin, an inhibitor of chymotrypsin-like enzymes.3,4,6,7 DNA analysis indicates that this enzyme belongs to chymases.3 Chymase converts Ang I to Ang II with greater efficiency and selectivity than ACE.4.9 Although physiological and pathological roles of this enzyme have not been fully elucidated yet, increases in chymase activity and mRNA level have been observed in balloon-injury induced hypertrophied vessels in dogs¹⁰ and also in the heart of cardiomyopathic hamsters.¹¹ Thus, chymase may play an important role in vascular hypertrophy and in cardiovascular diseases such as hypertension, ischaemic heart disease, and congestive heart failure.

Several synthetic inhibitors of chymase are known, such as 2-(Z-NHCH2CONH)C6H4SO2F,12 methoxysuccinyl-Ala-Ala-Pro-(L)boro-Phe-OH, 13 Boc-Val-Pro-Phe-CO₂Me, ¹⁴ Z-Ile-Glu-Pro-Phe-CO₂Me, and (F)-Phe-CO-Glu-Asp-ArgOMe. 15 At present, however, no clinically applicable chymase inhibitor has been found. In the course of our study to provide nonpeptide inhibitors of

chymotrypsin-type serine proteases, we found that compound 29 showed potent inhibitory activity for chymase. We will describe here the structure-activity relationships of 29 and its related compounds and the fitting and interaction studies with a chymase model.

Results and Discussion

section of the manufacture of the section of

Most of compounds 1-15, 18-24, 27-29, 33-38, 40-46, 48, and 50 were generally prepared by the reaction of the corresponding arylsulfonyl isocyanates or benzoyl isocyanate and N-aryl or heteroarylglycine or their ester derivatives, followed by cyclization with ethyl chloroformate as shown in Scheme 1. The corresponding arylsulfonyl isocyanates were obtained commercially or by the reaction of sulfonamide with chlorosulfonyl isocyanate. 16 Substituted N-phenylglycine derivatives were prepared by reductive alkylation of the corresponding anilines and glyoxylic acid with NaBH3CN. N-(3,4-Dimethylphenyl)glycine was obtained by N-alkylation of 3.4-dimethylacetoanilide with ethyl bromoacetate in the presence of NaH, followed by hydrolysis by hydrochloric acid. p-Chlorobenzoyl derivative 47 was prepared by the reaction of 1-phenylimidazolidine-2.4dione with p-chlorobenzoyl chloride in pyridine (Scheme 3-1). Carboxylic acid derivatives 16, 17, 30-32 were obtained by treating the corresponding allyl esters with Pd complex catalyst17 or treating the corresponding tertbutyl esters with TFA (Scheme 2). Subsequently, the corresponding carboxylic acid amides 25, 26, and 39 were prepared by the usual method (Scheme 2). 1-[(p-Chlorophenyl)sulfonyl]imidazolidine-2,4-dione derivative 49 was obtained by cyclizing N-[(p-chlorophenyl)sulfonyllglycine with p-chlorophenyl isocyanate (Scheme 3-2). 3-[(Benzoyloxy)methyl]imidazolidine-2.4-dione de-

Author to whom correspondence should be addressed.

Suntory Ltd.

Department of Pharmacology, Osaka Medical College.

Medical Computation Center, Osaka Medical College.

[&]quot;Shimane Medical University.

Fukuoka University

^{*} Abstract published in Advance ACS Abstracts, June 15, 1997...

Scheme 1ª

a (a) Substituted N-phenylacetic acid methyl ester; (b) 1 N NaOH; (c) substituted N-phenylacetic acid; (d) ethyl chloroformate/Et3N.

Scheme 2

e: Pd(Ph3P)4 formic acid f: SOCl2 g: N-methylpiperazine

Scheme 3

rivative 51 was prepared from 3-(bromomethyl)imidazolidine-2,4-dione derivative and benzoic acid under basic conditions (Scheme 3-3).¹⁸

The compounds were tested in vitro for inhibition of human heart chymase, bovine pancreas α -chymotrypsin, and human neutrophil cathepsin G. The results are given as IC₅₀ values as shown in Tables 1-4.

First, we investigated the substituent effect of the phenylsulfonyl moiety as shown in Table 1. This

substitution gave IC₅₀ values between 10⁻⁶ and 10⁻⁸ M. The unsubstituted compound (1) was the least active among them. Substituents such as chlorine (2-4), fluorine (5), bromine (6), methoxy (9 and 10), nitro (13), and phenoxy (20 and 21) increased the activity moderately (IC₅₀ = $\sim 10^{-7}$ M). Methyl substitution did not improve potency as much (IC₅₀ = $1.2-2.6 \mu M$). On the other hand, nitrile (11 and 12) and methoxycarbonyl substitutions (14 and 15) remarkably increased potency (IC₅₀ = $\sim 10^{-8}$ M). The following observations were made regarding the effect of substitution patterns. Ortho-substituted analogs tended to be less potent than both meta- and para-substituted analogs. Meta- and para-substituted analogs were approximately equipotent except for the carboxylic acid (16 vs 17), (methoxycarbonyl)methyl (18 vs 19), and 4-methylpiperazinyl amide (25 vs 26) analogs. Among these exceptions, meta substitution was more effective than para substitution. Meta, para-disubstituted compounds (22 and 23) were some of the most active compounds. It is interesting that 3,4-dimethyl derivative 23 gave excellent activity despite the poor activity of 4-methyl derivative 8. These results show that the region binding phenylsulfonyl moieties is rather hydrophobic and has enough space to allow a phenoxyphenyl group (20 and 21). The potent activity of nitrile (11 and 12) and methoxycarbonyl derivatives (14 and 15) may be the result of their hydrogen-bond-accepting properties.

Next, we examined the substitution on the 1-phenyl moiety (Table 2). Generally, hydrophilic substituents

Table 1. Enzyme Inhibitory Activities of Substituted Benzenesulfonyl Derivatives

			IC ₅₀ , ² μM	
compd	X	chymase	chymotrypsin	cathepsin G
1	Н	6.2	1.4	4.5
2	2-C1	1.1	1.2	2.2
3	3-C1	0.13	> 100	2.5
4	4-C1	0.38	1.1	0.7
5	4-F	0.37	2.6	1.5
6	4-Br	0.17	2.4	0.60
7	2-Me	1.8	1.1	1.8
8	4-Me	2.6	7.0	4.5
9	3-OMe	0.58	3.7	8.0
10	4-OMe	0.55	5.8	4.2
11	3-CN	0.068	0.73	0.78
12	4-CN	0.040	15	0.33
13	4-NO ₂	0.70	8.0	6.5
14	3-CO ₂ Me	0.082	1.7	0.64
15	4-CO ₂ Me	0.029	1.8	0.34
16	3-CO ₂ H	0.86	8.5	1.0
17	4-CO₂H	5.9	44	1.9
18	3-CH ₂ CO ₂ Me	0.50	4.0	5.4
19	4-CH ₂ CO ₂ Me	5.0	11	6.5
20	3-OPh	0.80	1.4	3.3
21	4-OPb	0.70	8.0	3.7
22	3,4-Cl ₂	0.018	3.8	0.23
23	3,4-Me ₂	0.030	2.0	0.22
24	3,4-(OMe) ₂	0.11	> 100	4.1
25	3-(Me-N N)	0.90	1.4	4.8
26	4-(Me -N N -)	3.3	6.4	16

^a Concentration inhibiting 50% of the corresponding enzyme. Deviations of data are less than 10% of the mean. Conditions are described in the Experimental Section.

Table 2. Enzyme Inhibitory Activities of Substituted Phenyl Derivatives

compd	Y		IC ₅₀ , μΜ			
		chymase	chymotrypsin	cathepsin G		
4	Н	0.38	1.1	0.7		
27	2-C1	0.22	20	2.0		
28	3-Cl	0.066	0.20	3.9		
29	4-C1	0.30	0.50	1.5		
30	2-CO ₂ H	3.3	73	26		
31	3-CO ₂ H	65	> 100	> 100		
32	4-CO ₂ H	100	42	> 100		
33	2-OPh	4.6	37	5.9		
34	4-OPh	28	39	4.8		
35	4-NHAc	> 100	> 100	> 100		
36	3,4-Cl ₂	0.023	4.0	22		
37	3.4-Me ₂	0.035	43	3.7		
38	3,4-OMe)2	14	> 100	> 100		
39		27	> 100	> 100		
•	+(- -N-Me	·)				

Concentration inhibiting 50% of the corresponding enzyme. Deviations of data are less than 10% of the mean. Conditions are described in the Experimental Section.

were less potent than hydrophobic substituents. Hydrophilic substituents such as carboxylic acid (30, 31,

Table 3. Enzyme Inhibitory Activities of Tetrasubstituted Derivatives

compd	. X		IC50,° µM			
		Y	chymase	chymotrypsin	cathepsin G	
40	3.4-Cl>	3,4-Me ₂	0.020	63	20	
41	3.4-(OMe)2			> 100	> 100	
42	3.4-Me ₂	3.4-Me ₂	0.060	> 100	1.7	
43	3.4-Cl ₂	3,4-Cl ₂	0.17	3.7	2.3	

 Concentration inhibiting 50% of the corresponding enzyme. Deviations of data are less than 10% of the mean. Conditions are described in the Experimental Section.

and 32), N-acetylamino (35), and 4-methylpiperazinyl amide (39) decreased the activity. The rather hindered phenoxy derivative (34) also decreased the activity. The highest activity observed for the 3,4-disubstituted derivatives (36 and 37) was on the order of 10^{-8} M. These data show that the 1-phenyl moiety is bound by hydrophobic interaction in a rather small space. This space is most likely the P_1 pocket in chymase.

From the above results, we examined the hybrid tetrasubstituted derivatives 40-43 (Table 3). We found compounds 40, 41, and 42 to be equipotent to or have greater potency than the disubstituted analogs 22, 23, 24, and 29. However, tetrachloro derivative 43 was less potent than 22 and 36. The 3,4-dimethylphenyl group is presumably the most acceptable residue for the Pi pocket. Compounds 40 and 41 showed high specificity for chymase although chymase, chymotrypsin, and cathepsin G belong to the same family of serine proteases.

Finally, we prepared other imidazolidindione derivatives (Table 4). Instead of a 1-phenyl moiety, the introduction of cyclohexyl (44), 2-pyridyl (45), and 2-pyrimidinyl group (46), respectively, decreased the activity. Therefore, a benzene ring is optimal for the P₁ pocket. When the (4-chlorophenyl)sulfonyl group was introduced at the 1-position of imidazolidine ring (49), the activity disappeared. This might suggest that the sulfonyl group in 49 could not interact with the hydrophobic P₁ pocket. The activity of the amides 47 and 48 was substantially eliminated when compared to the sulfonamide analogs. These compounds were potent selective chymotrypsin inhibitors as illustrated by 48, which had an IC₅₀ of 10⁻⁸ M for chymotrypsin. This result shows the difference between benzoyl and phenylsulfonyl substitutions and suggests that the sulfonyl group provides a specific interaction and conformational bias for inhibition of chymase whereas amides cannot achieve the same interaction but are selective for chymotrypsin. The incorporation of a 1-benzylsulfonyl group (50) in place of the 1-phenylsulfonyl substituent eliminated the activity. The direction of the benzyl group relative to the imidazolidine ring is different from that of the phenyl group and creates steric hindrance in the active site of the enzyme. This may be the reason for the remarkable difference of activity between 50 and 1. 1-(Benzoyloxy)methyl derivative (51), which is used in the case of elastase inhibitors,18 did not show any activity. In the imidazolidine derivatives, the sulfonyl moiety is essential for activity.

Table 4. Enzyme Inhibitory Activities of Other Derivatives

			IC _{SO} , a µM		
	RI	R2	Chymase	Chymotrypsin	Cathepsin G
44	a-/_>-×4	\neg	35	30	75
45	a−∑≻w;	-:-	18	>100	8.5
46	a−/= ≻·vo,	~~~	33	52	100
17 ·	n-/	$ \sqrt{\underline{}} $	>100	0.23	3.0
78	(<u> </u>	~ <u></u>	20 .	0.048	7.0
49	0	0 35	>100	>100	>100
50	() s	(>100	37	100
51	Q_{2}	<u> </u>	>100	>100	>100

^a Concentration inhibiting 50% of the corresponding enzyme. Deviations of data are less than 10% of the mean. Conditions are described in the Experimental Section.

Fitting studies of compound 29 with human chymase were performed based on the hypotheses that the 1-phenyl moiety of inhibitors interacts with the P_1 pocket and the 4-carbonyl group of the imidazolidine ring is located in the oxyanion hole in chymase to interact with the catalytic serine residue. The latter hypothesis was based on the chemical reaction of compound 29 with sodium methoxide in methanol to give N-[(4-chlorophenyl)sulfonyl]-N-(4-chlorophenyl)-N-[(methoxycarbonyl)methyl]urea which was the ring-opened product at the N3-C4 bond of the imidazolidine. Thus, a stable complex of compound 29 with the active site of chymase could be formed as shown in Figure 1.

In this complex, the position of the 4-carbonyl and 3-N-sulfonyl groups of the imidazolidine ring are fixed by hydrogen bonds with the oxyanion hole and the His-45 side chain of chymase, respectively. The 1-(4-chlorophenyl) moiety is located in the P_1 pocket. It seems that directions and positions of the carbonyl and sulfonyl groups relative to the phenyl moiety are fundamental to the inhibition of chymase. The 3-[(4-chlorophenyl)-sulfonyl] moiety was placed near the Arg-130 and Lys-179 side chains in the S_1 - S_2 subsites, capable of acting as hydrogen-bond donors due to their positive charges.

We could explain the inhibitory data from the complex model. The significant decrease of the inhibitory activity of compounds with bulky or hydrophilic groups at the 1-phenyl moiety in Table 2 may be because these substituents are unable to fit to the P1 pocket, making the 4-carbonyl and 3-N-sulfonyl groups unable to interact with the oxyanion hole and the His-45 side chain of chymase, respectively. In the case of the carboxylic acid substituent on the 1-phenyl moiety (30, 31, and 32), the activity decreased in the order of ortho, meta, and para. This result may suggest that the o-carboxylic acid stays in front of the P1 pocket, thereby retaining activity. This complex model was consistent with the inhibitory increase by meta and/or para substitution of the 3-phenylsulfonyl moiety with hydrogen-bond acceptors such as methoxycarbonyl and nitrile. In the carboxylic acid (16 and 17) and (methoxycarbonyl)methyl (18 and 19) analogs, the direction for an electrostatic or hydrogenbonding interaction may be important for the difference in activity between meta and para positions. It was made certain that the activity and specificity of these inhibitors would be improved by the modification of meta and/or para substitution in the benzenesulfonvl moiety.

In summary, we have reported that 1-phenylimidazolidine-2,4-dione derivatives are novel inhibitors endowed with good potency and selectivity toward human heart chymase.

Figure 1. Stereoview of the optimized conformation for human heart chymase and compound 29. Active triad (Ser-182, His-45, Asp-89), the other residues of chymase and compound 29 are shown by orange, green, and yellow, respectively. 1-Phenyl, imidazolidine, and 3-phenylsulfonyl moieties are placed near the P_1 hole, oxyanion hole and Arg-130/Lys-179 of chymase, respectively, and the 4-carbonyl and 3-N-sulfonyl of the imidazolidine are fixed by hydrogen bonds with the oxyanion hole and His-45 side chain (2.70 and 3.04 Å), respectively.

Synthesis. Melting points were measured by using a Mettler FP-61 (automatic melting apparatus) and are uncorrected. ¹H-NMR spectra were recorded on a JEOL FX-100, JEOL EX-400, and Bruker ARX-400 using TMS as an internal reference. Mass spectra were obtained on a JEOL JMX-AX500 by FAB ionization method. Elemental analyses were performed on a Perkin-Elmer 240B elemental analyzer, and all compounds submitted for testing had analytical results 0.4% of the theoretical values.

General Method 1 (Scheme 1). 3-[(4-Chlorophenyl)sulfonyl]-1-(4-chlorophenyl)imidazolidine-2,4-dione (29). To a solution of methyl [(4-chlorophenyl)amino]acetate (3 g, 15 mmol) in 40 mL of benzene was added (4-chlorophenyl)sulfonyl isocyanate (2.2 mL. 15 mmol), the mixture was stirred for 1 h. Crystals formed were filtered to obtain N-[(4-chlorophenyl)sulfonyl]-N'-(4-chlorophenyl)-N'-((methoxycarbonyl)methyl]urea (6.1 g, 100% yield).

The obtained urea derivative (2.6 g, 6.4 mmol) was dissolved in a mixture of MeOH (25 mL) and 1 N NaOH (25 mL) and then stirred for 5 h. The reaction mixture was acidified with 1 N HCl and then extracted with AcOEt. The resulting extract was washed with water, dried over MgSO₁, and then evaporated to a residue, which was crystallized from n-hexane/AcOEt to give N-[(4-chlorophenyl)sulfonyl]-N'-(4-chlorophenyl)-N'-(carboxymethyl)urea (2.2 g, 88% yield).

A mixture of the above urea (2.2 g, 5.5 mmol) and $\rm Et_3N$ (2 mL, 15.5 mmol) in THF (50 mL) was cooled at 0 °C, and then ethyl chloroformate (0.66 mL, 6.9 mmol) was added. After 1 h, the mixture was stirred for an additional 2 h at room temperature. The resulting solution was extracted with AcOEt, washed with saline, dried over MgSO4, and then evaporated to dryness. The residue was crystallized from n-hexane/AcOEt to obtain the title compound (1.3 g) as white crystals: yield 59% (from urea); mp 239–240 °C; 1 H-NMR (DMSO- d_8) 1 (4.49 (s, 2H), 7.4–8.1 (m, 8H). Anal. (C₁₅H₁₀-Cl₂N₂O₄S) C, H, N.

By the same manner, compound 1, 2, 4, 7, 8, and 48 were prepared. Their physical data, yield, and analytical data were cited as follows.

3-(Phenylsulfonyl)-1-phenylimidazolidine-2,4-dione (1): white crystals; yield 37% (from urea); mp 212.5-214 °C; $^1\text{H-NMR}$ (DMSO- d_6) δ 4.53 (s, 2H), 7.1-8.1 (m, 10H). Anal. (C₁₅H₁₂N₂O₄S) C, H, N.

3-[(2-Chlorophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (2): white crystals: yield 28% (from (2-chlorophenyl)sulfonyl isocyanate); mp 217–220 °C; ¹H-NMR (DMSO- d_6) δ 4.70 (s, 2H), 7.0–8.2 (m, 9H). Anal. ($C_{15}H_{11}\text{ClN}_2\text{O}_4\text{S}$) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (4): white crystals; yield 81% (from urea); mp 188–192 $^{\circ}$ C; $^{\circ}$ H-NMR (DMSO- d_6) δ 4.27 (s, 2H), 7.2–8.2 (m, 9H). Anal. (C₁₅H₁₁ClN₂O₄S) C, H, N.

1-Phenyl-3-(2-tolylsulfonyl)imidazolidine-2,4-dione (7): white crystals: yield 18% (from urea); mp 186–190 °C; 1 H-NMR (DMSO- d_6) δ 2.64 (s. 3H), 4.59 (s. 2H), 7.1–8.1 (m, 9H). Anal. ($C_{16}H_{14}N_2O_4S$) C, H, N

1-Phenyl-3-(4-tolylsulfonyl)imidazolidine-2,4-dione (8): white crystals; yield 32% (from urea); mp 204-206 °C; 1 H-NMR (DMSO- d_5) δ 2.42 (s, 3H), 4.25 (s, 2H), 7.2-8.2 (m, 9H). Anal. ($C_{16}H_{14}N_2O_4S$) C, H, N.

3-Benzoyl-1-phenylimidazolidine-2,4-dione (48): white crystals: yield 76% (from urea); mp 188–192 °C; ¹H-NMR (DMSO- d_8) ∂ 4.66 (s, 2H), 7.1–8.1 (m, 10H). Anal. (C₁₆H₁₂N₂O₃) C, H, N.

General method 2 (Scheme 1). 3-[(4-Phenoxyphenyl)-sulfonyl]-1-phenylimidazolidine-2,4-dione (21). To a solution of (phenylamino)acetic acid (1.25 g, 8.29 mmol) in THF (100 mL) was added (4-phenoxyphenyl)sulfonyl isocyanate (2.0 g, 8.29 mmol) at room temperature, and the mixture was stirred for 16 h. After completion of the reaction, the mixture was cooled to 0 °C and reacted with Et₃N (2.09 g, 20.7 mmol) and ethyl chloroformate (0.9 g, 8.29 mmol) followed by stirring at 0 °C for 1 h. After the reaction, the resulting solution was poured into 1 N HCl (40 mL) and saline (60 mL) and subjected

dried over Na₂SO₄, and then concentrated to dryness. The residue was purified by silica gel chromatography (n-hexane/AcOEt = 3:1) and crystallized from n-hexane/AcOEt to give the title compound (0.31 g) as white crystals: yield 9.2%; mp 157–157.5 °C; 'H-NMR (CDCl₃) δ 4.32 (s, 2H), 7.0–8.2 (m, 14H). Anal. (C₂₁H₁₆N₂O₅S) C, H, N.

By the same manner, compound 3. 5, 6, 9-15, 18-20, 22-24, 27, 28, 33-38, 40-46, and 50 were prepared. Their physical data, yield, and analytical data were cited as follows.

3-[(3-Chlorophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (3): white crystals: yield 21% (from (3-chlorophenyl)sulfonyl isocyanate): mp >250 °C; 1 H-NMR (DMSO- d_6) δ 4.52 (s, 2H), 7.1–8.1 (m, 9H). Anal. ($C_{15}H_{11}CIN_2O_4S$) C, H, N.

3-[(4-Fluorophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (5): white crystals; yield 50% (from (4-fluorophenyl)sulfonyl isocyanate); mp 196.5–197 °C; 'H-NMR (DMSOd6) δ 4.51 (s. 2H), 7.1–8.2 (m, 9H). Anal. (C₁₅H₁₁FN₂O₄S) C, H, N.

3-[(4-Bromophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (6): white crystals; yield 57% (from (4-bromophenyl)sulfonyl isocyanate); mp 190–191 °C; ¹H-NMR (DMSO- d_8) δ 4.50 (s, 2H), 7.0–8.0 (m, 9H). Anal. ($C_{15}H_{11}BrN_2O_4S$) C, H. N.

3-[(3-Methoxyphenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (9): white crystals; yield 3.8% (from (3-methoxyphenyl)sulfonyl isocyanate); mp 201–201.5 °C; 1 H-NMR (CDCl₃) δ 3.89 (s, 3H), 4.31 (s, 2H), 7.1–7.8 (m, 9H). Anal. (C₁₆H₁₄N₂O₅S) C, H, N.

3-[(4-Methoxyphenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (10): white crystals; yield 35% (from (4-methoxyphenyl)sulfonyl isocyanate); mp 210.5–211 °C; ¹H-NMR (DMSOdb) δ 3.86 (s, 3H), 4.51 (s, 2H), 7.1–8.0 (m, 9H). Anal. (C₁₆H₁₄N₂O₅S) C, H, N.

3-[(3-Cyanophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (11): white crystals; yield 26% (from (3-cyanophenyl)sulfonyl isocyanate); mp 194–195 °C; ¹H NMR (DMSO- d_8) δ 4.52 (s, 2H), 7.1–8.5 (m, 9H). Anal. ($C_{16}H_{11}N_3O_4S$) C, H, N.

3-[(4-Cyanophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (12): white crystals; yield 15% (from (4-cyanophenyl)sulfonyl isocyanate); mp 224–226 °C; ¹H NMR (DMSO- d_6) δ 4.53 (s, 2H), 7.1–8.3 (m, 9H). Anal. ($C_{16}H_{11}N_3O_4S$) C, H, N.

3-[(4-Nitrophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (13): white crystals; yield 12% (from (4-nitrophenyl)sulfonyl isocyanate); mp 203.5-204.5 °C; ¹H-NMR (DMSO- d_6) δ 4.52 (s, 2H), 7.1-8.5 (m, 9H). Anal. ($C_{15}H_{11}N_3O_6S$), C, H, N.

3-[[3-(Methoxycarbonyl)phenyl]sulfonyl]-1-phenylimidazolidine-2,4-dione (14): white crystals; yield 47% (from [3-(methoxycarbonyl)phenyl]sulfonyl isocyanate); mp 170-171 °C; 1 H-NMR (DMSO- d_{6}) δ 3.92 (s, 3H), 4.51 (s, 2H), 7.1-8.4 (m, 8H), 9.28 (s, 1H). Anal. (C_{17} H₁₄N₂O₆S) C, H, N.

3-[[4-(Methoxycarbonyl)phenyl]sulfonyl]-1-phenylimidazolidine-2,4-dione (15): white crystals, yield 32% (from [4-(methoxycarbonyl)phenyl]sulfonyl isocyanate); mp 186.5-187.5 °C; 1 H-NMR (DMSO- d_6) δ 3.90 (s, 3H), 4.52 (s, 2H), 7.1-7.6 (m, 5H), 8.1-8.3 (m, 4H). Anal. ($C_{17}H_{14}N_2O_6S$) C, H, N.

3-[[3-[(Methoxycarbonyl)methyl]phenyl]sulfonyl]-1-phenylimidazolidine-2,4-dione (18): white crystals; yield 27% (from 3-((methoxycarbonyl)methyl]phenyl]sulfonyl isocyanate); mp 151.5–152 °C; 1 H-NMR (DMSO- 1 do) δ 3.63 (s, 3H), 3.89 (s, 2H), 4.54 (s, 2H), 7.1–8.0 (m, 9H). Anal. (1 do) δ 3.65 C, H, N.

3-[[4-[(Mcthoxycarbonyl)methyl]phenyl]sulfonyl]-1-phenylimidazolidine-2,4-dione (19): white crystals, yield 33% (from [4-](methoxycarbonyl)methyl]phenyl]sulfonyl isocyanate); mp 204–206 °C; ¹H-NMR (DMSO- d_6) δ 3.62 (s, 3H), 3.86 (s, 2H), 4.53 (s, 2H), 7.1–8.1 (m, 9H). Anal. ($C_{18}H_{16}N_2O_6S$) C, H, N.

3-[(3-Phenoxyphenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (20): white crystals; yield 45% (from (3-phenoxy-

phenyl/sulfonyl isocyanate); mp 150-151 °C; ¹H-NMR (DMSO- d_6) δ 4.52 (s, 2H), 7.1-7.8 (m, 14H). Anal. (C₂₁H₁₆N₂O₅S) C. H. N.

3-[(3,4-Dichlorophenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (22): white crystals; yield 5.0% (from (3,4-dichlorophenyl)sulfonyl isocyanate); mp 217–218 °C; 1 H-NMR (DM-SO- d_8) δ 4.42 (s, 2H), 7.3–7.6 (m, 5H), 7.8–8.3 (m, 3H). Anal. ($C_{15}H_{10}Cl_2N_2O_4S$) C, H, N.

3-[(3,4-Dimethylphenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (23): white crystals: yield 50% (from (3,4-dimethylphenyl)sulfonyl isocyanate); mp 227–228 °C; \[^1\text{H-NMR} \] (DMSO-d_6) \(^1\) \(^2\) (2.32 (s, 6H), 4.52 (s, 2H), 7.1–7.8 (m, 8H). Anal. (C_1; H_{16}N_2O_4S) C, H, N.

3-[(3,4-Dimethoxyphenyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (24): white crystals; yield 39% (from (3,4-dimethoxyphenyl)sulfonyl isocyanate); mp 209-210 °C; 1 H-NMR (DMSO- d_{6}) δ 3.83 (s. 3H), 3.87 (s, 3H), 4.51 (s, 2H), 7.1-7.7 (m, 8H). Anal. (C_{17} H₁₆N₂O₆S) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(2-chlorophenyl)imidazolidine-2,4-dione (27): white crystals; yield 25% (from (4-chlorophenyl)sulfonyl isocyanate); mp 175–178 °C; 1 H-NMR (DMSO- 1 d₅) δ 4.32 (s. 2H), 7.2–8.2 (m, 8H). Anal. (1 C₁₅H₁₀-Cl₂N₂O₄S) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(3-chlorophenyl)imidazolidine-2,4-dione (28): white crystals; yield 2.1% (from (4-chlorophenyl)sulfonyl isocyanate); mp >200 °C; 'H-NMR (DMSO- d_6) δ 4.32 (s, 2H), 7.1-8.2 (m, 8H). Anal. (C₁₅H₁₀-Cl₂N₂O₄S) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(2-phenoxyphenyl)-imidazolidine-2,4-dione (33): white crystals; yield 88% (from (4-chlorophenyl)sulfonyl isocyanate); mp 180–181 °C; 1 H-NMR (DMSO- d_6) δ 4.32 (s, 2H), 6.8–8.0 (m, 13H). Anal. ($C_{21}H_{15}ClN_2O_5S$) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(4-phenoxyphenyl)-imidazolidine-2,4-dione (34): white crystals; yield 51% (from (4-chlorophenyl)sulfonyl isocyanate); mp 179.5–181 °C; 1 H-NMR (DMSO- d_6) δ 4.50 (s, 2H), 6.9–8.1 (m, 13H). Anal. 1 C₂₁H₁₅ClN₂O₅S) C, H, N.

1-[4-(Acetylamino)phenyl]-3-[(4-chlorophenyl)sulfonyl]-imidazolidine-2,4-dione (35): white crystals; yield 23% (from (4-chlorophenyl)sulfonyl isocyanate); mp 250–251 °C; 1 H-NMR (DMSO- d_6) δ 2.06 (s, 3H), 4.54 (s, 2H), 7.5–7.7 (m, 4H), 7.8–8.3 (m, 4H). Anal. (C_{17} H₁₄ClN₃O₅S) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(3,4-dichlorophenyl)-imidazolidine-2,4-dione (36): white crystals; yield 2.1% (from (4-chlorophenyl)sulfonyl isocyanate); mp > 200 °C; ¹H-NMR (DMSO- d_6) δ 4.31 (s, 2H), 7.3-8.2 (m, 7H). Anal. ($C_{15}H_9Cl_3N_2O_4S$) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(3,4-dimethylphenyl)-imidazolidine-2,4-dione (37): white crystals; yield 11% (from (4-chlorophenyl)sulfonyl isocyanate); mp 211-213 °C; ¹H-NMR (DMSO- d_6) δ 2.23 (s, 3H), 2.25 (s, 3H), 4.23 (s, 2H), 7.11-7.27 (m, 3H), 7.56 (d, 2H), 8.15 (d, 2H). Anal. ($C_{17}H_{15}$ -ClN₂O₄S) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(3,4-dimethoxyphenyl)-imidazolidine-2,4-dione (38): white crystals; yield 45% (from (4-chlorophenyl)sulfonyl isocyanate); mp 186-187 °C; 1 H-NMR (DMSO- d_6) δ 3.72 (s, 3H), 3.73 (s, 3H), 4.48 (s, 2H), 7.0-8.1 (m, 7H). Anal. ($C_{17}H_{15}ClN_2O_6S$) C, H, N.

3-[(3,4-Dichlorophenyl)sulfonyl]-1-(3,4-dimethylphenyl)-imidazolidine-2,4-dione (40): white crystals; yield 46% (from (3,4-dichlorophenyl)sulfonyl isocyanate); mp 247-249 °C; 1 H-NMR (DMSO- d_6) δ 2.23 (s, 3H), 2.26 (s, 3H), 4.31 (s, 2H), 7.1-8.3 (m, 6H). Anal. (C_{17} H₁₄Cl₂N₂O₄S) C, H, N.

3-[(3,4-Dimethoxyphenyl)sulfonyl]-1-(3,4-dimethylphenyl)imidazolidine-2,4-dione (41): white crystals; yield 33% (from (3,4-dimethoxyphenyl)sulfonyl isocyanate); mp 195-197 °C; 1 H-NMR (CDCl₃) δ 2.23 (s, 3H), 2.26 (s, 3H), 4.31 (s, 2H), 7.1-8.3 (m, 6H). Anal. ($C_{19}H_{20}N_{2}O_{6}S$) C, H, N.

3-[(3,4-Dimethylphenyl)sulfonyl)-1-(3,4-dimethylphenyl)imidazolidine-2,4-dione (42): white crystals; yield 18% (from (3,4-dimethylphenyl)sulfonyl isocyanate); mp 165–166 °C: $^{\circ}$ C: $^{\circ}$ H-NMR (CD $_{1}$ OD) δ 2.22 (s. 3H), 2.25 (s, 3H), 4.25 (s, 2H), 7.1–8.0 (m, 6H). Anal. (C $_{19}$ H $_{20}$ N $_{20}$ Q $_{4}$ S) C, H, N.

3[(3,4-Dichlorophenyl)sulfonyl]-1-(3,4-dichlorophenyl)imidazolidine-2,4-dione (43): white crystals; yield 11% (from (3,4-dichlorophenyl)sulfonyl isocyanate); mp 249–251 °C; $^1H\text{-}NMR$ (DMSO- $d_6) <math display="inline">\delta$ 4.52 (s, 2H), 7.5–8.2 (m, 6H). Anal. (C15H8Cl4N2O4S) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-cyclohexylimidazolidine-2,4-dione (44): white crystals; yield 16% (from (4-chlorophenyl)sulfonyl isocyanate); mp 175–176 °C; 1 H-NMR (DMSO- d_{6}) δ 1.0–2.0 (m, 10H), 3.72 (m, 1H), 4.20 (s, 2H), 7.89 (d, J = 4.5 Hz, 2H), 8.14 (d, J = 4.5 Hz, 2H). Anal. ($C_{15}H_{17}ClN_{2}O_{4}S$) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(2-pyridyl)imidazolidine-2,4-dione (45): white crystals; yield 4.5% (from (4-chlorophenyl)sulfonyl isocyanate); mp 211-212 °C; 1 H-NMR (DMSO- d_{6}) δ 4.53 (s, 2H), 7.25 (m, 1H), 7.8-8.2 (m, 6H), 8.43 (m, 1H). Anal. ($C_{14}H_{10}ClN_{3}O_{4}S$) C, H, N.

3-[(4-Chlorophenyl)sulfonyl]-1-(2-pyrimidinyl)imidazolidine-2,4-dione (46): white crystals; yield 66% (from (4-chlorophenyl)sulfonyl isocyanate); mp > 250 °C dec; 1 H-NMR (DMSO- d_6) δ 4.52 (s, 2H), 7.2-8.8 (m, 7H). Anal. (C_{13} H₉- C_{11} N₄O₄S) C, H, N.

3-[(Phenylmethyl)sulfonyl]-1-phenylimidazolidine-2,4-dione (50): white crystals; yield 47% (from (phenylmethyl)sulfonyl isocyanate); mp 205–206 °C; ¹H-NMR (DMSO- d_6) δ 4.56 (s, 2H), 4.97 (s, 2H), 7.1–7.7 (m, 10H). Anal. (C₁₆H₁₄N₂O₄S) C, H, N.

Carboxylic Acid Derivatives and the Corresponding Amide Derivatives (Scheme 2). 3-[(3-Carboxyphenyl)-sulfonyl]-1-phenylimidazolidine-2,4-dione (16). By the general method 2, 3-[[3-[(allyloxy)carbonyl]phenyl]sulfonyl]-1-phenylimidazolidine-2,4-dione was prepared from [3-[(allyloxy)carbonyl]phenyl]sulfonyl isocyanate (56% yield).

In a 10% solution of formic acid in THF (10 mL) was dissolved the above imidazolidine derivative (0.4 g, 1.0 mmol). The resulting solution was deaerated under reduced pressure. To the solution were added tetrakis(triphenylphosphine)-palladium (50 mg, 0.04 mmol) and triphenylphosphine (50 mg, 0.2 mmol), followed by stirring at room temperature for 2 h under shielding from the light. After completion of the reaction, the mixture was concentrated to a residue, which was crystallized from AcOEt to obtain the title compound (0.35 g) as white crystals: yield 97%; mp 231–232 °C dec; 1 H-NMR (DMSO- d_6) δ 4.50 (s, 2H), 7.1–8.4 (m, 8H), 8.54 (s, 1H), 13.68 (s, 1H). Anal. (C₁₆H₁₂N₂O₆S) C, H, N.

3-{(4-Carboxyphenyl)sulfonyl}-1-phenylimidazolidine-2,4-dione (17). By the general method 2, 3-{{4-{(allyloxy)-carbonyl]phenyl}sulfonyl}-1-phenylimidazolidine-2,4-dione was prepared from [4-{(allyloxy)carbonyl]phenyl]sulfonyl isocyanate (76% yield). By the same manner of the preparation of 16, compound 17 (1.10 g) was obtained from the above imidazolidine derivative (2.4 g, 5.62 mmol) as white crystals: yield 54%; mp 230-233 °C dec; $^{1}\text{H-NMR}$ (DMSO-d₆) δ 4.52 (s, 2H), 7.1-8.2 (m, 9H), 13.61 (s, 1H). Anal. (C₁₆H₁₂N₂O₆S) C, H, N.

3-[[3-((4-Methylpiperazinyl)carbonyl]phenyl]sulfonyl]1-phenylimidazolidine-2,4-dione (25). A suspension of 16 (200 mg, 0.56 mmol) in SOCl₂ (1.0 mL) was warmed at 80 °C for 2 h to form the corresponding acid chloride. The resulting solution was evaporated under reduced pressure. The residue was dissolved in THF (25 mL), and N-methylpiperazine (0.065 mL, 0.59 mmol) was added to the resulting solution under icecooling. followed by stirring for 30 min. White crystals were precipitated from the reaction solution and collected by filtration to give the title compound as the hydrochloride (0.14 g); yield 53% mp 151-153 °C; 1 H-NMR (DMSO- d_{6}) δ 2.76 (s, 3H), 2.8-3 8 m. 5H; 4.52 (s, 2H), 7.1-8.2 (m, 9H), 11.1 (s, 1H). Anal. 1 C: 1 H-CIN₄O₅S-HCl) C, H, N.

3-[[4-(4-Methylpiperazinyl)carbonyl]phenyl]sulfonyl]1-phenylimidazolidine-2,4-dione (26). In a similar manner of obtaining 25, the title compound (0.23 g) was prepared as the hydrochloride from 17 (0.20 g, 0.56 mmol): white crystals; yield 87%; mp 212-214 °C; 1 H-NMR (DMSO- 1 d₆) 1 d 2.75 (s, 3H), 2.9-3.8 (m, 8H), 4.53 (s, 2H), 7.1-8.2 (m, 9H), 11.14 (s, 1H). Anal. (1 C₁H₂₂ClN₄O₅S·HCl) C, H, N.

1-(4-Carboxyphenyl)-3-[(4-chlorophenyl)sulfonyl]imidazolidine-2,4-dione (32). By general method 2, 1-[4-(tert-butyloxycarbonyl)phenyl]-3-[(4-chlorophenyl)sulfonyl]imidazolidine-2,4-dione was prepared from (4-chlorophenyl)sulfonyl