પ્રશ્ન 1(અ) [3 ગુણ]

ATmega32 ની વિશેષતાઓ લખો.

જવાબ:

વિશેષતા	વર્ણન
આર્કિટેક્ચર	8-bit RISC પ્રોસેસર
મેમરી	32KB ફ્લેશ, 2KB SRAM, 1KB EEPROM
I/O પોર્ટ્સ	32 પ્રોગ્રામેબલ I/O પિન્સ
ટાઇમર્સ	3 ટાઇમર્સ (Timer0, Timer1, Timer2)
ADC	10-bit, 8-channel ADC
કમ્યુનિકેશન	USART, SPI, I2C (TWI)

• **હાઇ บรฺโห์-ล**: 16MHz นะ 16 MIPS

• લો પાવર: બહુવિધ સ્લીપ મોડ્સ

• **ઓપરેટિંગ વોલ્ટેજ**: 2.7V થી 5.5V

મેમરી ટ્રીક: "ARM-TIC" (Architecture-RISC, Memory-32KB, Timers-3, I/O-32pins, Communication-3types)

પ્રશ્ન 1(બ) [4 ગુણ]

માઇક્રોકંટ્રોલર પસંદ કરવા માટેના માપદંડો લખી સમજાવો.

ม เนธ์ร	વિચારણા
પર્ફોર્મન્સ	સ્પીડ, ઇન્સ્ટ્રક્શન સેટ, આર્કિટેક્ચર
મેમરી	RAM, ROM, EEPROM આવશ્યકતાઓ
I/O જરૂરિયાતો	પિન્સની સંખ્યા, સ્પેશિયલ ફંક્શન્સ
પાવર કન્ઝમ્પશન	બેટરી લાઇફ, સ્લીપ મોડ્સ
કિંમત	યુનિટ પ્રાઇસ, ડેવલપમેન્ટ કોસ્ટ
ડેવલપમેન્ટ ટૂલ્સ	કમ્પાઇલર, ડીબગર ઉપલબ્ધતા

- એપ્લિકેશન જરૂરિયાતો: રિયલ-ટાઇમ કન્સ્ટ્રેઇન્ટ્સ, પ્રોસેસિંગ નીડ્સ
- પેકેજ સાઇઝ: ફાઇનલ પ્રોડક્ટમાં સ્પેસ લિમિટેશન્સ
- પેરિફેરલ સપોર્ટ: ADC, ટાઇમર્સ, કમ્યુનિકેશન ઇન્ટરફેસ

ਮੇਮਣੀ ਟ੍ਰੀਡ: "PM-IPCD" (Performance, Memory, I/O, Power, Cost, Development)

પ્રશ્ન 1(ક) [7 ગુણ]

Embedded System ને વ્યાખ્યાયિત કરો. નાના, મધ્યમ અને વિશાળ Embedded System ની ઉપયોગિતાની યાદી બનાવો.

જવાબ:

વ્યાખ્યા: Embedded System એ મોટા યાંત્રિક અથવા ઇલેક્ટ્રિકલ સિસ્ટમમાં ચોક્કસ કામ કરતું કમ્પ્યુટર સિસ્ટમ છે, જે વિશિષ્ટ કામો રિયલ-ટાઇમ મર્યાદા સાથે કરવા માટે ડિઝાઇન કરવામાં આવે છે.

એપ્લિકેશન ટેબલ:

સિસ્ટમ પ્રકાર	મેમરી સાઇઝ	એપ્લિકેશન્સ
નાના સ્કેલ	<64KB	કેલ્ક્યુલેટર, ડિજિટલ વોચ, રમકડાં
મધ્યમ સ્કેલ	64KB-1MB	મોબાઇલ ફ્રોન, રાઉટર, પ્રિન્ટર
વિશાળ સ્કેલ	>1MB	ઓટોમોબાઇલ, એરક્રાફ્ટ સિસ્ટમ, સેટેલાઇટ

લાક્ષણિકતાઓ:

• **રિયલ-ટાઇમ ઓપરેશન**: પ્રિડિક્ટેબલ રિસ્પોન્સ ટાઇમ

• રિસોર્સ કન્સ્ટ્રેઇન્ટ્સ: મર્યાદિત મેમરી અને પ્રોસેસિંગ પાવર

• ડેડિકેટેડ ફંક્શનાલિટી: સિંગલ-પર્પઝ ડિઝાઇન

ਮੇਮਣੀ ਟ੍ਰੀਡ: "SML-CMP" (Small-Calculator/Medium-Mobile/Large-Lifesupport)

પ્રશ્ન 1(ક) OR [7 ગુણ]

Embedded system નો સામાન્ય બ્લોક ડાયાગ્રામ દોરી સમજાવો.

જવાબ:

બ્લોક ફંક્શન્સ:

બ્લોક	รเช้
પ્રોસેસર	સેન્ટ્રલ પ્રોસેસિંગ યુનિટ (CPU/MCU)
ઇનપુટ ઇન્ટરફેસ	સેન્સર ડેટા એક્વિઝિશન, યુઝર ઇનપુટ
આઉટપુટ ઇન્ટરફેસ	એક્ચ્યુએટર કંટ્રોલ, ડિસ્પ્લે આઉટપુટ
મેમરી	પ્રોગ્રામ સ્ટોરેજ, ડેટા સ્ટોરેજ
કમ્યુનિકેશન	બાહ્ય સિસ્ટમ કનેક્ટિવિટી

- **ઇનપુટ પ્રોસેસિંગ**: ADC, ડિજિટલ ઇનપુટ કન્ડિશનિંગ
- **આઉટપુટ કંટ્રોલ**: PWM, રિલે ડ્રાઇવર્સ, LED ડિસ્પ્લે
- પાવર મેનેજમેન્ટ: વોલ્ટેજ રેગ્યુલેશન, પાવર ઓપ્ટિમાઇઝેશન

મેમરી ટ્રીક: "PIOMCP" (Processor, Input, Output, Memory, Communication, Power)

પ્રશ્ન 2(અ) [3 ગુણ]

EEPROM નું પૂરું નામ લખો અને તેના વિશે સમજાવો.

જવાબ:

પૂરું નામ: Electrically Erasable Programmable Read-Only Memory

EEPROM રજિસ્ટર્સ:

રજિસ્ટર	รเช้
EEAR	EEPROM Address Register
EEDR	EEPROM Data Register
EECR	EEPROM Control Register

• **EEAR**: EEPROM એક્સેસ માટે 10-bit એડ્રેસ (0-1023) હોલ્ડ કરે છે

• **EEDR**: રીડ/રાઇટ ઓપરેશન માટે ડેટા રજિસ્ટર

• **EECR**: કંટ્રોલ બિર્સ - EERE (Read Enable), EEWE (Write Enable)

મેમરી ટ્રીક: "AAD-CRE" (Address-EEAR, Data-EEDR, Control-EECR)

પ્રશ્ન 2(બ) [4 ગુણ]

ATmega32માં રીસેટ સર્કિટ વિશે સમજાવો.

જવાબ:

રીસેટ સોર્સ ટેબલ:

રીસેટ પ્રકાર	ટ્રિગર કન્ડિશન	
પાવર-ઓન રીસેટ	VCC થ્રેશહોલ્ડ ઉપર વધે છે	
એક્સટર્નલ રીસેટ	RESET પિન લો પુલ કરવામાં આવે છે	
બ્રાઉન-આઉટ રીસેટ	VCC થ્રેશહોલ્ડ નીચે પડે છે	
વોચડોગ રીસેટ	વોચડોગ ટાઇમર ઓવરફ્લો	

• **રીસેટ ક્યુરેશન**: મિનિમમ 2 ક્લોક સાઇક્લ્સ

• **રીસેટ વેક્ટર**: પ્રોગ્રામ એક્ઝિક્યુશન એડ્રેસ 0x0000 થી શરૂ થાય છે

• હાર્ડવેર કનેક્શન: એક્સટર્નલ રીસેટ માટે પુલ-અપ રેઝિસ્ટર જરૂરી

મેમરી ટ્રીક: "PEBW" (Power-on, External, Brown-out, Watchdog)

પ્રશ્ન 2(ક) [7 ગુણ]

રિયલ ટાઇમ ઓપરેટિંગ સિસ્ટમની વ્યાખ્યા આપો અને તેની લાક્ષણિકતાઓ સમજાવો.

જવાબ:

વ્યાખ્યા: રિયલ ટાઇમ ઓપરેટિંગ સિસ્ટમ (RTOS) એ એવું ઓપરેટિંગ સિસ્ટમ છે જે કડક ટાઇમિંગ કન્સ્ટ્રેઇન્ટ્સ અને પ્રિડિક્ટેબલ રિસ્પોન્સ ટાઇમ સાથે રિયલ-ટાઇમ એપ્લિકેશન્સ હેન્ડલ કરવા માટે ડિઝાઇન કરવામાં આવે છે.

લાક્ષણિકતાઓ ટેબલ:

લાક્ષણિકતા	વર્ણન
ડિટર્મિનિસ્ટિક	પ્રિડિક્ટેબલ એક્ઝિક્યુશન ટાઇમ
પ્રીએમ્પ્ટિવ	હાઇ પ્રાયોરિટી ટાસ્ક લો પ્રાયોરિટીને ઇન્ટરપ્ટ કરે છે
મલ્ટિટાસ્કિંગ	મલ્ટિપલ ટાસ્ક એક્ઝિક્યુશન
ફાસ્ટ રિસ્પોન્સ	મિનિમલ ઇન્ટરપ્ટ લેટન્સી
પ્રાયોરિટી-બેસ્ડ	પ્રાયોરિટી આદ્યારિત ટાસ્ક શિક્યુલિંગ
રિસોર્સ મેનેજમેન્ટ	એફિશિયન્ટ મેમરી અને CPU ઉપયોગ

- ટાસ્ક શિક્યુલિંગ: રાઉન્ડ-રોબિન, પ્રાયોરિટી-બેસ્ક અબ્ગોરિધમ્સ
- ઇન્ટર-ટાસ્ક કમ્યુનિકેશન: સેમાફોર્સ, મેસેજ ક્યુ
- મેમરી મેનેજમેન્ટ: પ્રિડિક્ટેબિલિટી માટે સ્ટેટિક એલોકેશન

ਮੇਮਣੀ ਟ੍ਰੀਡ: "DPM-FPR" (Deterministic, Preemptive, Multitasking, Fast, Priority, Resource)

પ્રશ્ન 2(અ) OR [3 ગુણ]

AVR ફેમિલી વિશે સમજાવો.

જવાબ:

AVR ફેમિલી વર્ગીકરણ:

AVR ysiz	વિશેષતાઓ
ATtiny	8-32 પિન્સ, બેસિક ફીચર્સ
ATmega	28-100 પિન્સ, ફુલ ફીચર્સ
ATxmega	એડવાન્સ ફીચર્સ, DMA

• **આર્કિટેક્ચર**: 8-bit RISC, હાર્વર્ડ આર્કિટેક્ચર

• **ઇન્સ્ટ્રક્શન સેટ**: 130+ ઇન્સ્ટ્રક્શન્સ, સિંગલ સાઇકલ એક્ઝિક્યુશન

• **મેમરી**: ફ્લેશ પ્રોગ્રામ મેમરી, SRAM, EEPROM

મેમરી ટ્રીક: "TAX" (Tiny-basic, mega-full, Xmega-advanced)

પ્રશ્ન 2(બ) OR [4 ગુણ]

ATmega32માં ક્લોક સોર્સની પસંદગી માટે ફ્યૂઝ બિટ્સનું મહત્વ સમજાવો.

જવાબ:

કલોક સોર્સ સિલેક્શન:

ફ્યૂઝ બિટ્સ	ક્લોક સોર્સ
CKSEL3:0	ક્લોક સોર્સ સિલેક્શન
SUT1:0	સ્ટાર્ટ-અપ ટાઇમ સિલેક્શન

કલોક ઓપ્શન્સ ટેબલ:

CKSEL મૂલ્ય	ક્લોક સોર્સ	ફ્રીક્વન્સી
0001	એક્સટર્નલ ક્રિસ્ટલ	1-8 MHz
0010	એક્સટર્નલ ક્રિસ્ટલ	8+ MHz
0100	ઇન્ટર્નલ RC	8 MHz
0000	એક્સટર્નલ ક્લોક	યુઝર ડિફાઇન્ડ

• ક્રિસ્ટલ સિલેક્શન: એક્સટર્નલ ક્રિસ્ટલ અને કૅપેસિટર જરૂરી

• RC **ઓસિલેટર**: બિલ્ટ-ઇન, ઓછું એક્યુરેટ પણ સુવિધાજનક

• સ્ટાર્ટ-અપ ટાઇમ: ક્રિસ્ટલ સ્ટેબિલાઇઝેશનની મંજૂરી આપે છે

મેમરી ટ્રીક: "CRIS" (Crystal, RC, Internal, Start-up)

પ્રશ્ન 2(ક) OR [7 ગુણ]

ATmega32નો પિન ડાયાગ્રામ દોરી MISO, MOSI, SCK &AREF Pin નું કાર્ય સમજાવો.

જવાબ:

PB0	1 40	PA0
PB1	2 39	PA1
PB2	3 38	PA2
PB3	4 37	PA3
PB4	5 36	PA4
MOSI PB5	6 35	PA5
MISO PB6	7 34	PA6
SCK PB7	8 33	PA7
RESET	9 32	AREF
VCC	10 31	GND
GND	11 30	AVCC
XTAL2	12 29	PC7
XTAL1	13 28	PC6
+-		+

પિન ફંક્શન્સ ટેબલ:

પિન	รเช้	વર્ણન
MOSI	Master Out Slave In	માસ્ટરથી સ્લેવમાં SPI ડેટા આઉટપુટ
MISO	Master In Slave Out	સ્લેવથી માસ્ટરમાં SPI ડેટા ઇનપુટ
SCK	Serial Clock	SPI ક્લોક સિગ્નલ
AREF	Analog Reference	ADC રેફરન્સ વોલ્ટેજ

• SPI કમ્યુનિકેશન: MOSI, MISO, SCK મળીને સીરિયલ ડેટા ટ્રાન્સફર માટે કામ કરે છે

• ADC રેકરન્સ: AREF, ADC કન્વર્ઝન માટે સ્થિર વોલ્ટેજ રેફરન્સ પ્રદાન કરે છે

• **પિન મલ્ટિપ્લેક્સિંગ**: આ પિન્સ GPIO તરીકે વૈકલ્પિક કાર્યો ધરાવે છે

મેમરી ટ્રીક: "MMS-A" (MOSI-out, MISO-in, SCK-clock, AREF-reference)

પ્રશ્ન 3(અ) [3 ગુણ]

ATmega32 માં DDR I/O રજિસ્ટરની ભૂમિકા સમજાવો.

જવાબ:

DDR (Data Direction Register) รเข้า

બિટ મૂલ્ય	પિન કન્ફિગરેશન
0	ઇનપુટ પિન
1	આઉટપુટ પિન

- **પોર્ટ કંટ્રોલ**: દરેક પોર્ટનું અનુરૂપ DDR (DDRA, DDRB, DDRC, DDRD) છે
- બિટ-વાઇઝ કંટ્રોલ: વ્યક્તિગત પિન દિશા કંટ્રોલ
- ડિફોલ્ટ સ્થિતિ: રીસેટ પછી બધા પિન્સ ઇનપુટ (DDR = 0x00)

કોડ ઉદાહરણ:

```
DDRA = 0xFF; // ਯધા Port A પિન્સ આઉટપુટ તરીકે
DDRB = 0x0F; // PB0-PB3 આઉટપુટ, PB4-PB7 ઇનપુટ
```

મેમરી ટ્રીક: "DDR-IO" (Data Direction Register controls Input/Output)

પ્રશ્ન 3(બ) [4 ગુણ]

Port B પરથી ડેટાને રીડ કરાવી Port C પર મોકલવા માટેનો AVR C પ્રોગ્રામ લખો.

```
#include <avr/io.h>

int main(void)
{

    unsigned char data;

    // Port B ને ઇનપુટ dરીકે કન્ફિંગર કરો

    DDRB = 0x00;

    // Port C ને આઉટપુટ dરીકે કન્ફિંગર કરો

    DDRC = 0xFF;

while(1)
{

    // Port B થી ડેટા રીડ કરો

    data = PINB;

    // Port C પર ડેટા મોડલો

    PORTC = data;
}
```

```
return 0;
}
```

પ્રોગ્રામ સમજૂતી:

- DDRB = 0x00: બધા Port B પિન્સને ઇનપુટ તરીકે સેટ કરે છે
- DDRC = 0xFF: બધા Port C પિન્સને આઉટપુટ તરીકે સેટ કરે છે
- PINB: Port B પિન્સની વર્તમાન સ્થિતિ રીડ કરે છે
- **PORTC**: Port C આઉટપુટ પિન્સ પર ડેટા લખે છે

મેમરી ટ્રીક: "RSTO" (Read-PINB, Set-DDR, Transfer-data, Output-PORTC)

પ્રશ્ન 3(ક) [7 ગુણ]

PORT B ના પિન નં 1 પર ડોર સેન્સર જોડાયેલ છે અને PORT C ના પિન નં 7 પર LED જોડાયેલ છે. દરવાજા ઉપર લાગેલા સેન્સરને મોનિટર કરતાં રહો અને જ્યારે દરવાજો ખુલે ત્યારે LED ચાલુ થાય તે માટેનો AVR C પ્રોગ્રામ લખો.

```
#include <avr/io.h>
int main(void)
    // PB1 ને ઇનપુટ તરીકે કન્ફિગર કરો (ડોર સેન્સર)
    DDRB &= ~(1<<1); // બિટ 1 ક્લિયર કરો
    // PC7 ને આઉટપુટ તરીકે કન્ફિગર કરો (LED)
    DDRC |= (1<<7); // 여2 7 원2 S원
    // PB1 માટે પુલ-અપ એનેબલ કરો
    PORTB = (1<<1);
    while(1)
         // ડોર સેન્સરની સ્થિતિ ચેક કરો
         if(PINB & (1<<1))
             // દરવાજો બંધ – LED બંધ કરો
             PORTC &= \sim (1 << 7);
         }
         else
             // દરવાજો ખુલ્લો – LED ચાલુ કરો
             PORTC |= (1<<7);
    }
    return 0;
```

}

હાર્ડવેર કનેક્શન:

• **ડોર સેન્સર**: PB1 અને GND વચ્ચે જોડાયેલ

• LED: કરન્ટ લિમિટિંગ રેઝિસ્ટર દ્વારા PC7 સાથે જોડાયેલ

• **પુલ-અપ**: PB1 માટે ઇન્ટર્નલ પુલ-અપ એનેબલ

પ્રોગ્રામ લોજિક:

• સેન્સર બંધ: PB1 = HIGH, LED OFF

• સેન્સર ખુલ્લું: PB1 = LOW, LED ON

મેમરી ટ્રીક: "DCOL" (Door-sensor, Configure-pins, Open-check, LED-control)

પ્રશ્ન 3(અ) OR [3 ગુણ]

AVR C પ્રોગ્રામ ના ડેટા ટાઇપની ચર્ચા કરો.

જવાબ:

AVR C ડેટા ટાઇપ્સ ટેબલ:

ร้2เ 2เย่น	સાઇઝ	રેન્જ
char	8-bit	-128 થી 127
unsigned char	8-bit	0 થી 255
int	16-bit	-32768 થી 32767
unsigned int	16-bit	0 થી 65535
long	32-bit	-2 ³¹ થી 2 ³¹ -1
float	32-bit	IEEE 754 ફોર્મેટ

• મેમરી એફિશિયન્સી: સૌથી નાનો યોગ્ય ડેટા ટાઇપ વાપરો

• અનસાઇન્ડ ટાઇપ્સ: ફક્ત પોઝિટિવ વેલ્યુ માટે, રેન્જ બમાવે છે

• બિટ ફિલ્ફસ: સ્પેસિફિક બિટ-વિડ્થ વેરિએબલ્સ ડિફાઇન કરી શકાય છે

મેમરી ટ્રીક: "CIL-FUB" (Char-8bit, Int-16bit, Long-32bit, Float-32bit, Unsigned-positive, Bit-specific)

પ્રશ્ન 3(બ) OR [4 ગુણ]

સિરિયલ કોમ્યુનિકેશન પ્રોટોકોલ સમજાવો.

સિરિયલ કોમ્યુનિકેશન પેરામીટર્સ:

પેરામીટર	વર્ણન
બોડ રેટ	ડેટા ટ્રાન્સમિશન સ્પીડ (બિટ્સ/સેકન્ડ)
ડેટા બિટ્સ	ડેટા બિટ્સની સંખ્યા (5-9)
પેરિટી	એરર ચેકિંગ (None, Even, Odd)
સ્ટોપ બિટ્સ	ફ્રેમના અંતનું માર્કર (1 અથવા 2)

- એસિંકોનસ: કોઈ ક્લોક સિગ્નલ નથી, સ્ટાર્ટ/સ્ટોપ બિટ્સ વાપરે છે
- **RS232 સ્ટાન્ડર્ડ**: ±12V લેવલ્સ, TTL લેવલ્સમાં કન્વર્ટ થાય છે
- સામાન્ય બોડ રેટ્સ: 9600, 19200, 38400, 115200

મેમરી ટ્રીક: "BDPS" (Baud-rate, Data-bits, Parity-check, Stop-bits)

પ્રશ્ન 3(ક) OR [7 ગુણ]

Port B ના પિન નં. 0 અને પિન નં. 1 ને રીડ કરી નીચે આપેલા ટેબલ પ્રમાણે ASCII કેરેક્ટર Port D પર મોકલાવા માટેનો AVR C પ્રોગ્રામ લખો

```
#include <avr/io.h>
int main(void)
{
```

```
unsigned char input;
    // PB1 અને PB0 ને ઇનપુટ તરીકે કન્ફિગર કરો
    DDRB &= \sim ((1 << 1) | (1 << 0));
    // Port D ને આઉટપુટ તરીકે કન્ફિગર કરો
    DDRD = 0xFF;
    // PB1 અને PB0 માટે પુલ-અપ એનેબલ કરો
    PORTB |= (1<<1) | (1<<0);
    while(1)
         // PB1 અને PB0 રીડ કરો
         input = PINB & 0x03; // અન્ય બિટ્સ માસ્ક કરો
         switch(input)
             case 0x00: // Pin1=0, Pin0=0
                  PORTD = '0'; // \text{ ASCII '0'} = 0 \times 30
                  break;
             case 0x01: // Pin1=0, Pin0=1
                  PORTD = '1'; // \text{ ASCII '1'} = 0 \times 31
                  break;
             case 0x02: // Pin1=1, Pin0=0
                  PORTD = '2'; // ASCII '2' = 0x32
                  break;
             case 0x03: // Pin1=1, Pin0=1
                  PORTD = '3'; // \text{ ASCII '3'} = 0x33
                  break;
         }
    }
    return 0;
}
```

ટુથ ટેબલ અમલીકરણ:

Pin1	Pin0	ઇનપુટ મૂલ્ય	ASCII આઉટપુટ
0	0	0x00	'0' (0x30)
0	1	0x01	'1' (0x31)
1	0	0x02	'2' (0x32)
1	1	0x03	'3' (0x33)

મેમરી ટ્રીક: "MATS" (Mask-inputs, ASCII-conversion, Truth-table, Switch-case)

પ્રશ્ન 4(અ) [3 ગુણ]

ATmega32 સાથે રિલે ડ્રાઇવર ULN2803નું ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો.

જવાબ:

ATmega32	ULN2803	Relay
PC0> 1	18	> +12V
PC1> 2	17	
PC2> 3	16	
PC3> 4	15	
PC4> 5	14	
PC5> 6	13	
PC6> 7	12	
PC7> 8	11	
9	10	> GND
ULN2	803	
COM1 of Rel	ay connected to	+12V
NO1 of Rela	y connected to	Load
GND common	for all	

કોમ્પોનન્ટ ફંક્શન્સ:

- ULN2803: ડાર્લિંગ્ટન ટ્રાન્ઝિસ્ટર એરે, કરન્ટ એમ્પ્લિફિકેશન
- **પ્રોટેક્શન ડાયોડ્સ**: ઇન્ડક્ટિવ લોડ્સ માટે બિલ્ટ-ઇન ફ્લાયબેક ડાયોડ્સ
- **રિલે કોઇલ**: 12V જરૂરી, ULN2803 આઉટપુટ દ્વારા કંટ્રોલ

મેમરી ટ્રીક: "UPC" (ULN-driver, Port-control, Current-amplify)

પ્રશ્ન 4(બ) [4 ગુણ]

પોલિંગ મેથડથી A/D કન્વર્ટરને પ્રોગ્રામ કરવા માટેના સ્ટેપ્સ લખો.

જવાબ:

ADC પ્રોગ્રામિંગ સ્ટેપ્સ:

સ્ટેપ	ક્રિયા
1	ADMUX રજિસ્ટર કન્ફિગર કરો (રેફરન્સ, ચેનલ)
2	ADCSRA રજિસ્ટર કન્ફિગર કરો (એનેબલ, પ્રીસ્કેલર)
3	કન્વર્ઝન સ્ટાર્ટ કરો (ADSC બિટ સેટ કરો)
4	કન્વર્ઝન પૂર્ણ થવાની રાહ જુઓ (ADIF ફ્લેગ પોલ કરો)
5	ADCL અને ADCH થી પરિણામ રીડ કરો

કોડ અમલીકરણ:

```
// સ્ટેપ 1: ADMUX કન્ફિંગર કરો

ADMUX = (1<<REFS0); // AVCC ટેફરત્સ, ચેનલ 0

// સ્ટેપ 2: પ્રીસ્કેલર સાથે ADC એનેબલ કરો

ADCSRA = (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);

// સ્ટેપ 3: કન્વર્ઝન સ્ટાર્ટ કરો

ADCSRA |= (1<<ADSC);

// સ્ટેપ 4: પૂર્ણતાની રાહ જુઓ

while(!(ADCSRA & (1<<ADIF)));

// સ્ટેપ 5: પરિણામ રીડ કરો

result = ADC; // ADCL અને ADCH નું સંચોજન
```

મેમરી ટ્રીક: "CCSWR" (Configure-ADMUX, Configure-ADCSRA, Start-conversion, Wait-complete, Read-result)

પ્રશ્ન 4(ક) [7 ગુણ]

I2C 2 વાયર સિરિયલ ઇન્ટરફેસ પ્રોટોકોલ વિસ્તારવાર સમજાવો

જવાબ:

I2C પ્રોટોકોલ ફીચર્સ:

ફીચર	นย์า
બે વાયર	SDA (ડેટા) અને SCL (ક્લોક)
મલ્ટિ-માસ્ટર	બહુવિધ માસ્ટર બસ કંટ્રોલ કરી શકે છે
એડ્રેસિંગ	7-bit અથવા 10-bit ડિવાઇસ એડ્રેસ
બાઇડાયરેક્શનલ	બંને દિશામાં ડેટા ફ ્લો

I2C ફ્રેમ સ્ટ્રક્ચર:

• સ્ટાર્ટ કન્ડિશન: SCL હાઇ હોય ત્યારે SDA લો જાય છે

• **એડ્રેસ ફ્રેમ**: 7-bit એડ્રેસ + R/W બિટ

• ร้**ะเ** รู้**ม**: 8-bit ร้ะเ + ACK/NACK

• સ્ટોપ કન્ડિશન: SCL હાઇ હોય ત્યારે SDA હાઇ જાય છે

ATmega32 માં TWI રજિસ્ટર્સ:

રજિસ્ટર	รเช็
TWCR	કંટ્રોલ અને સ્ટેટસ
TWDR	ડેટા રજિસ્ટર
TWAR	એડ્રેસ રજિસ્ટર
TWSR	સ્ટેટસ રજિસ્ટર

- કલોક સ્ટ્રેચિંગ: સ્લેવ માસ્ટરને ધીરે કરવા માટે SCL લો હોલ્ડ કરી શકે છે
- આર્બિટ્રેશન: મલ્ટિ-માસ્ટર સિસ્ટમ્સમાં કોલિઝન અટકાવે છે
- **પુલ-અપ રેઝિસ્ટર્સ**: SDA અને SCL બંને લાઇન્સ પર જરૂરી (સામાન્ય રીતે 4.7kΩ)

મેમરી ટ્રીક: "SAD-CSA" (Start-Address-Data, Control-Status-Address)

પ્રશ્ન 4(અ) OR [3 ગુણ]

8-બિટ ટાઇમરનો ઉપયોગ કરી DC મોટરની સ્પીડ કંટ્રોલ કરવા માટે કોઈ પણ એક PWM મોડ સમજાવો.

જવાબ:

ફાસ્ટ PWM મોડ (મોડ 3):

પેરામીટર	મૂલ્ય
WGM બિટ્સ	WGM01=1, WGM00=1
TOP મૂલ્ચ	0xFF (255)
રેઝોલ્યુશન	8-bit
ફ્રીક્વન્સી	fclk/(256×prescaler)

PWM કન્ફિગરેશન:

```
// ફાસ્ટ PWM માટે Timer0 કન્ફિગર કરો

TCCR0 = (1<<WGM01)|(1<<WGM00)|(1<<COM01)|(1<<CS01);

// ક્યુટી સાઇકલ સેટ કરો (0-255)

OCR0 = 128; // 50% ક્યુટી સાઇકલ
```


- **ક્યુટી સાઇકલ કંટ્રોલ**: OCR0 મૂલ્ય મોટરની સ્પીડ નક્કી કરે છે
- **નોન-ઇન્વર્ટિંગ મોડ**: હાઇ પલ્સ વિડ્થ = OCR0/255
- **મોટર કંટ્રોલ**: વધારે ક્યુટી સાઇકલ = વધારે સ્પીડ

મેમરી ટ્રીક: "FTO" (Fast-PWM, Timer0, OCR0-control)

પ્રશ્ન 4(બ) OR [4 ગુણ]

SPI ડિવાઇસમાંથી ડેટા રીડ કરવા માટેના સ્ટેપ્સ લખો.

જવાબ:

SPI રીડ સ્ટેપ્સ:

સ્ટેપ	ક્રિયા
1	SPI કંટ્રોલ રજિસ્ટર (SPCR) કન્ફિગર કરો
2	સ્લેવ સિલેક્ટ કરવા માટે SS પિન લો કરો
3	SPDR માં ડમી ડેટા લખો
4	ટ્રાન્સમિશન પૂર્ણ થવાની રાહ જુઓ (SPIF ફ્લેગ)
5	SPDR થી રિસીવ કરેલો ડેટા રીડ કરો
6	સ્લેવ ડિસિલેક્ટ કરવા માટે SS પિન હાઇ કરો

કોડ અમલીકરણ:

```
// સ્ટેપ 1: SPI ને માસ્ટર તરીકે કિફગર કરો
SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

// સ્ટેપ 2: સ્લેવ સિલેક્ટ કરો
PORTB &= ~(1<<SS);

// સ્ટેપ 3: Sમી બાઇટ મોકલો
SPDR = 0xFF;

// સ્ટેપ 4: પૂર્ણતાની શહ જુઓ
while(!(SPSR & (1<<SPIF)));

// સ્ટેપ 5: ડેટા રીડ કરો
data = SPDR;

// સ્ટેપ 6: સ્લેવ ડિસિલેક્ટ કરો
PORTB |= (1<<SS);
```

SPI ટાઇમિંગ:

- **કલોક પોલેરિટી**: CPOL બિટ આઇડલ સ્ટેટ નક્કી કરે છે
- કલોક ફેઝ: CPHA બિટ સેમ્પલિંગ એજ નક્કી કરે છે
- **ડેટા ઓર્ડર**: MSB ફર્સ્ટ (ડિફોલ્ટ) અથવા LSB ફર્સ્ટ

મેમરી ટ્રીક: "CSWWRD" (Configure, Select, Write-dummy, Wait, Read-data, Deselect)

પ્રશ્ન 4(ક) OR [7 ગુણ]

ATmega32 સાથે LM35 ઇન્ટરફેસિંગ ડાયાગ્રામ દોરી સમજાવો.

```
LM35 Temperature Sensor

+5V ----> VCC (Pin 1)

ATmega32 | LM35

PA0 <---- OUTPUT (Pin 2)

GND ----> GND (Pin 3)

Optional: 0.1µF capacitor between

VCC and GND for noise filtering
```

LM35 સ્પેસિફિકેશન્સ:

પેરામીટર	મૂલ્ય
આઉટપુટ	10mV/°C
रेन्छ	0°C થી 100°C
સપ્લાય	4V થી 30V
એક્યુરસી	±0.5°C

ટેમ્પરેચર રીડિંગ માટે ADC કોડ:

```
#include <avr/io.h>
unsigned int readTemperature(void)
   unsigned int adcValue, temperature;
   // ADC કન્ફિગર કરો
   ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);
   // કન્વર્ઝન સ્ટાર્ટ કરો
   ADCSRA = (1 << ADSC);
   // પૂર્ણતાની રાહ જુઓ
   while(!(ADCSRA & (1<<ADIF)));
   // ADC મૂલ્ય રીડ કરો
   adcValue = ADC;
   // ટેમ્પરેથરમાં કન્વર્ટ કરો
   // ADC = (Vin × 1024) / Vref
   // Vin = (10mV/°C) × Temp
   temperature = (adcValue * 500) / 1024;
   return temperature;
```

}

ટેમ્પરેચર કેલ્ક્યુલેશન:

• **ADC રેઝોલ્યુશન**: 10-bit (0-1023)

• **રેફરન્સ વોલ્ટેજ**: 5V

મેમરી ટ્રીક: "VARC" (Voltage-output, ADC-conversion, Reference-5V, Calculation-formula)

પ્રશ્ન 5(અ) [3 ગુણ]

Timer 0 માટે વર્કિંગ બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

Timer0 કોમ્પોનન્ટ્સ:

કોમ્પોનન્ટ	รเช็
પ્રીસ્કેલર	ક્લોક ડિવિઝન (1,8,64,256,1024)
કાઉન્ટર	8-bit અપ કાઉન્ટર (0-255)
કોમ્પેર યુનિટ	કાઉન્ટરને OCR0 સાથે કોમ્પેર કરે છે
ઓવરફ્લો	કાઉન્ટર ઓવરફલો થાય ત્યારે ફલેગ સેટ કરે છે

- ક્લોક સોર્સ: ઇન્ટર્નલ ક્લોક અથવા એક્સટર્નલ પિન
- **મોડ્સ**: નોર્મલ, CTC, ફાસ્ટ PWM, ફેઝ કરેક્ટ PWM
- ઇન્ટરપ્ટ: ટાઇમર ઓવરફલો અને કોમ્પેર મેથ

મેમરી ટ્રીક: "PCCO" (Prescaler, Counter, Compare, Overflow)

પ્રશ્ન 5(બ) [4 ગુણ]

ATmega32 સાથે MAX7221 ઇન્ટરફેસિંગ ડાયાગ્રામ દોરો

જવાબ:

```
ATmega32

MAX7221

PB5(MOSI) ------> DIN (Pin 1)

PB7(SCK) -----> CLK (Pin 13)

PB4(SS) ----> CS (Pin 12)

V+ (Pin 19) <--- +5V

GND(Pin 4,9) <--- GND

7-Segment Display Connections:

SEG A-G, DP connected to Pins 14-17, 20-23

DIG 0-7 connected to Pins 2-3, 5-8, 10-11
```


ફીચર	นต์า
ડિસ્પ્લે ડ્રાઇવર	8-digit 7-segment LED ડ્રાઇવર
SPI ઇન્ટરફેસ	સીરિયલ ડેટા ઇનપુટ
કરન્ટ કંટ્રોલ	એડજસ્ટેબલ સેગમેન્ટ કરન્ટ
શટડાઉન મોડ	પાવર સેવિંગ ફીચર

ઇનિશિયલાઇઝેશન કોડ:

```
void MAX7221_init(void)
{
    // SPI પિના કિલ્ગર કરો
    DDRB |= (1<<PB5)|(1<<PB7)|(1<<PB4);    // MOSI, SCK, SS આઉટપુટ તરીકે

    // SPI ઇનિશિયલાઇઝ કરો
    SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

    // MAX7221 વેક અમ કરો
    MAX7221_write(0x0C, 0x01);    // શટડાઉન રજિસ્ટર

    // ડિકોડ મોડ સેટ કરો
    MAX7221_write(0x09, 0xFF);    // બધા ડિજિટ્સ માટે BCD ડિકોડ

    // ઇન્ટેન્સિટી સેટ કરો
    MAX7221_write(0x0A, 0x08);    // મધ્યમ બ્રાઇટનેસ

    // સ્કેન લિમિટ સેટ કરો
    MAX7221_write(0x0B, 0x07);    // બધા 8 ડિજિટ્સ ડિસ્પ્લે કરો
}
```

ਮੇਮਰੀ ਟ੍ਰੀਡ: "SCD-ISS" (SPI-interface, Current-control, Decode-mode, Initialize-setup, Scan-limit)

પ્રશ્ન 5(ક) [7 ગુણ]

વેધર મોનિટરિંગ સિસ્ટમ સમજાવો.

જવાબ:

સિસ્ટમ બ્લોક ડાયાગ્રામ:

સિસ્ટમ કોમ્પોનન્ટ્સ:

કોમ્પોનન્ટ	รเช่	ઇન્ટરફેસ
LM35	ટેમ્પરેચર માપન	ADC
DHT11	દ્યુમિડિટી અને ટેમ્પરેચર	િકિષ્ટિલ I/O
BMP180	વાતાવરણીય દબાણ	I2C
LCD	લોકલ ડિસ્પ્લે	પેરેલલ
ESP8266	WiFi કનેક્ટિવિટી	UART
EEPROM	ડેટા સ્ટોરેજ	I2C

કીચર્સ અને એપ્લિકેશન્સ:

- રિયલ-ટાઇમ મોનિટરિંગ: સતત સેન્સર ડેટા કલેક્શન
- **ડેટા લોગિંગ**: EEPROM માં હિસ્ટોરિકલ ડેટા સ્ટોરેજ
- **રિમોટ એક્સેસ**: ક્લાઉડ અપલોડ માટે WiFi કનેક્ટિવિટી
- **પાવર મેનેજમેન્ટ**: સોલાર ચાર્જિંગ સાથે બેટરી બેકઅપ
- એલર્ટ સિસ્ટમ: થ્રેશહોલ્ડ-બેસ્ડ વોર્નિંગ્સ

• એગ્રિકલ્ચરલ યુઝ: ક્રોપ મોનિટરિંગ, ઇરિગેશન કંટ્રોલ

• **હોમ ઓટોમેશન**: HVAC કંટ્રોલ, એનર્જી મેનેજમેન્ટ

સોફ્ટવેર ફંક્શન્સ:

• **સેન્સર રીડિંગ**: ADC કન્વર્ઝન, I2C કમ્યુનિકેશન

• ડેટા પ્રોસેસિંગ: કેલિબ્રેશન, ફિલ્ટરિંગ, એવરેજિંગ

• **ડિસ્પ્લે અપડેટ**: LCD ફોર્મેટિંગ, યુઝર ઇન્ટરફેસ

• **કમ્યુનિકેશન**: WiFi ડેટા ટ્રાન્સમિશન, પ્રોટોકોલ હેન્ડલિંગ

• સ્ટોરેજ મેનેજમેન્ટ: EEPROM રીડ/રાઇટ, ડેટા કમ્પ્રેશન

મેમરી ટ્રીક: "SMART-W" (Sensors, Monitoring, Alert, Remote, Temperature, Weather)

પ્રશ્ન 5(અ) OR [3 ગુણ]

ટાઇમર/કાઉન્ટર કંટ્રોલ રજિસ્ટર TCCR0 દોરી સમજાવો.

જવાબ:

TCCR0 રજિસ્ટર બિટ સ્ટ્રક્ચર:

```
Bit: 7 6 5 4 3 2 1 0

+---+---+---+
TCCR0 | FOC0 | WGM00 | COM01 | COM00 | WGM01 | CS02 | CS01 | CS00 |

+---+---+----+----+----+
```

બિટ ફંક્શન્સ ટેબલ:

બિટ	નામ	รเช้
FOC0	Force Output Compare	ફોર્સ કોમ્પેર મેથ
WGM01:00	Waveform Generation	ટાઇમર મોડ સિલેક્શન
COM01:00	Compare Output Mode	આઉટપુટ પિન બિહેવિયર
CS02:00	Clock Select	પ્રીસ્કેલર સિલેક્શન

ક્લોક સિલેક્ટ ઓપ્શન્સ:

CS02:00	ક્લોક સોર્સ
000	કોઈ ક્લોક નહીં (બંધ)
001	clk/1 (કોઈ પ્રીસ્કેલિંગ નહીં)
010	clk/8
011	clk/64
100	clk/256
101	clk/1024
110	T0 પર એક્સટર્નલ ક્લોક (ફોલિંગ)
111	T0 પર એક્સટર્નલ ક્લોક (રાઇઝિંગ)

વેવફોર્મ જનરેશન મોડ્સ:

WGM01:00	મોડ	વર્ણન
00	નોર્મલ	0xFF સુધી કાઉન્ટ
01	PWM, ફેઝ કરેક્ટ	અપ/ડાઉન કાઉન્ટ
10	СТС	કોમ્પેર પર ટાઇમર ક્લિયર
11	ફાસ્ટ PWM	0xFF સુધી કાઉન્ટ

મેમરી ટ્રીક: "FWC-CS" (Force, Waveform, Compare, Clock-Select)

પ્રશ્ન 5(બ) OR [4 ગુણ]

મોટર ડ્રાઇવર L293D નું કાર્ય સમજાવો.

જવાબ:

L293D મોટર ડ્રાઇવર ફીચર્સ:

ફીયર	સ્પેસિફિકેશન
ચેનલ્સ	ડ્યુઅલ H-બ્રિજ, 2 મોટર્સ
સપ્લાય વોલ્ટેજ	4.5V થી 36V
આઉટપુટ કરન્ટ	ચેનલ દીઠ 600mA
લોજિક વોલ્ટેજ	5V TTL કોમ્પોટિબલ
પ્રોટેક્શન	થર્મલ શટડાઉન

પિન કન્ફિગરેશન:

H-બ્રિજ ઓપરેશન:

IN1	IN2	મોટર એક્શન
0	0	સ્ટોપ (બ્રેક)
0	1	CCW રોટેટ
1	0	CW રોટેટ
1	1	સ્ટોપ (બ્રેક)

કંટ્રોલ ફંક્શન્સ:

• **ડાયરેક્શન કંટ્રોલ**: IN1, IN2 રોટેશન ડાયરેક્શન નક્કી કરે છે

• સ્પીડ કંટ્રોલ: એનેબલ પિન્સ (EN1, EN2) પર PWM

• **ક્યુઅલ સપ્લાય**: લોજિક માટે VCC1, મોટર પાવર માટે VCC2

• **એનેબલ કંટ્રોલ**: EN પિન્સ મોટર ઓપરેશન એનેબલ/ડિસેબલ કરે છે

એપ્લિકેશન્સ:

• રોબોટિક્સ: ડિફરન્શિયલ ડ્રાઇવ રોબોટ્સ

• ઓટોમેશન: કન્વેયર બેલ્ટ કંટ્રોલ

• RC વેહિકલ્સ: મોટર સ્પીડ અને ડાયરેક્શન કંટ્રોલ

મેમરી ટ્રીક: "DHIE" (Dual-channel, H-bridge, Input-control, Enable-PWM)

પ્રશ્ન 5(ક) OR [7 ગુણ]

ઓટોમેટિક જૂસ વેન્ડિંગ મશીન સમજાવો.

જવાબ:

સિસ્ટમ બ્લોક ડાયાગ્રામ:

સિસ્ટમ કોમ્પોનન્ટ્સ:

કોમ્પોનન્ટ	รเช่	ઇન્ટરફેસ
ยใน้ร	જૂસ સિલેક્શન	િકિજિટલ I/O
કોઇન સેન્સર	પેમેન્ટ ડિટેક્શન	ઇન્ટરપ્ટ
LCD ડિસ્પ્લે	યુઝર ઇન્ટરફેસ	પેરેલલ
પંપ મોટર્સ	જૂસ પંપિંગ	PWM કંટ્રોલ
સોલેનોઇડ વાલ્વ	ફ્લો કંટ્રોલ	ડિજિટલ આઉટપુટ
લેવલ સેન્સર્સ	કન્ટેનર મોનિટરિંગ	ADC/ડિજિટલ

ઓપરેશન સિક્વન્સ:

1. **મેન્યુ ડિસ્પ્લે**: ઉપલબ્ધ જૂસ અને કિંમતો બતાવો

2. **યુઝર સિલેક્શન**: કસ્ટમર કીપેડ વાચા જૂસ ટાઇપ સિલેક્ટ કરે છે

3. **પેમેન્ટ પ્રોસેસ**: કોઇન ઇન્સર્શન અને વેલિડેશન

4. લેવલ ચેક: ઇંગ્રીડિયન્ટ ઉપલબ્ધતા વેરિફાઇ કરો

5. **ડિસ્પેન્સિંગ**: સિક્વન્સમાં પંપ્સ અને વાલ્વ એક્ટિવેટ કરો

6. **મિક્સિંગ**: મિક્સિંગ રેશિયો અને ટાઇમ કંટ્રોલ કરો

7. **કમ્પ્લિશન**: કમ્પ્લિશન મેસેજ ડિસ્પ્લે કરો અને ચેન્જ રિટર્ન કરો

કંટ્રોલ અલ્ગોરિધમ:

```
void dispensJuice(uint8_t selection, uint16_t amount)
    // ઇંગ્રીડિયન્ટ લેવલ્સ ચેક કરો
    if(checkLevels(selection))
         // મિક્સિંગ રેશિયો કેલ્ક્યુલેટ કરો
         calculateRatio(selection);
         // ડિસ્પેન્સિંગ સિક્વન્સ સ્ટાર્ટ કરો
         activatePump(selection, amount);
         // મિક્સિંગ ટાઇમ કંટ્રોલ કરો
         startTimer(MIXING_TIME);
         // ટ્રાન્ઝેક્શન પૂર્ણ કરો
         displayMessage("તમારા જૂસનો આનંદ માણો!");
    else
         displayMessage("ઇંગ્રીડિયન્ટ ઉપલબ્ધ નથી");
         returnCoins();
    }
}
```

ફીચર્સ:

- મલ્ટિપલ ફ્લેવર્સ: વિવિધ જૂસ કોમ્બિનેશન્સ
- પેમેન્ટ સિસ્ટમ: કોઇન એક્સેપ્ટન્સ અને ચેન્જ રિટર્ન
- ઇન્વેન્ટરી મેનેજમેન્ટ: લેવલ મોનિટરિંગ અને એલર્ટ્સ
- યુઝર ઇન્ટરફેસ: મેન્યુ ડિસ્પ્લે અને સિલેક્શન
- સેક્ટી કીચર્સ: ઓવરફ્લો પ્રોટેક્શન, ઇમર્જન્સી સ્ટોપ
- મેઇન્ટેનન્સ મોડ: સર્વિસ અને ક્લીનિંગ સાઇકલ્સ

એપ્લિકેશન્સ:

- ક્રમશિંચલ: શોપિંગ મોલ્સ, ઓફિસો, સ્કૂલો
- ઇન્ડસ્ટ્રિયલ: ફેક્ટરી કેફેટેરિયા, હોસ્પિટલો
- પબ્લિક પ્લેસીસ: એરપોર્ટ્સ, ટ્રેન સ્ટેશન્સ

મેમરી ટ્રીક: "JUMPS" (Juice-selection, User-interface, Mixing-control, Payment-system, Sensors-monitoring)