

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

American Anthropologist

NEW SERIES

VOL. 9

JULY-SEPTEMBER, 1907

No. 3

HEREDITY IN ANTHROPOMETRIC TRAITS

By FRANZ BOAS

A number of years ago I published the results of a study of heredity in head form which was based on material that Dr Maurice Fishberg had the great kindness to collect for me among the Russian Jews of New York City.¹ The results seemed sufficiently interesting to justify a continuation of the work. This has been made possible by a grant from the Esther Herrman Fund of the Scientific Alliance of New York. While my first report was based on observations on 48 families, I have been able, through the kind assistance of Dr Fishberg and Mr Joseph Fish, to collect data relating to 192 families. The extended calculations were made by Dr A. B. Lewis.

All the families from which measurements were collected were East European Jews, and almost all of them Russian Jews. I have confined myself to gathering measurements of length and width of head. Only in the first series of 48 families was the width of face also observed. The principal question that I have had to investigate is, whether there is a tendency in offspring to group themselves around the middle value of the parents (Galton's midparent), or whether they rather tend to revert to either the paternal or the maternal type. I have shown in a previous paper that in regard to some head measurements the latter tendency is found in the mixture of American Indian and of White blood,² and the preliminary investigation tended to show that in the intraracial marriages of Russian Jews the same tendency prevailed. It seemed, however, necessary to base this conclusion on more extensive material.

¹ Heredity in Head Form, *American Anthropologist*, N. S., 1903, v, pp. 530-538.

² *Verhandlungen der Berliner anthropologischen Gesellschaft*, 1895, pp. 406-409; *Popular Science Monthly*, October, 1894, pp. 761-770.

The series at my disposal has been measured partly by Dr Fishberg (I), partly by Mr Fish (II), partly — for the sake of obtaining uniformity — by the two observers jointly (III). It seems, therefore, necessary to show in how far the three series are comparable. The following table gives the results of these comparisons:

Males, 21 years and more *Females, 19 years and more*

LENGTH OF HEAD

Series	Average	Variability	No. of Cases	Average	Variability	No. of Cases
I	188.7	± 6.4	57	181.9	± 6.2	54
II	189.2	± 5.7	82	182.6	± 6.1	84
III	188.6	± 6.0	80	180.5	± 4.5	79
Total	188.9	± 6.0	219	181.7	± 5.7	217

WIDTH OF HEAD

I	153.0	± 5.3	57	150.1	± 5.0	54
II	155.5	± 4.7	82	149.8	± 5.5	84
III	154.4	± 4.7	80	150.3	± 4.7	79
Total	154.5	± 5.0	219	150.0	± 5.1	217

CEPHALIC INDEX

I	81.3	± 3.0	57	82.6	± 3.2	54
II	82.2	± 2.5	82	82.0	± 3.3	84
III	82.0	± 3.5	80	83.3	± 2.6	79
Total	81.9	± 3.1	219	82.7	± 3.1	217

It will be seen that none of these results shows individual differences that are not adequately explained by accidental variation of the group investigated.

I have examined the same question by having the calculation made of the correlation of length and width of head in individuals, and of correlation of cephalic index of parents and children and of brothers and sisters. The following table gives the results of this calculation:

Index of Correlation of Length and Width of Head

<i>Males, 21 years and more</i>			<i>Females, 19 years and more</i>			
Series	r	Error	n	r	Error	
I	0.40	± 0.10	57	0.36	± 0.12	54
II	0.52	± 0.08	82	0.37	± 0.10	84
III	0.03	± 0.11	80	0.45	± 0.09	79
Total	0.31	± 0.06	219	0.39	± 0.06	217

Index of Correlation of Cephalic Index of

<i>Fathers and Children</i>			<i>Mothers and Children</i>			<i>Brothers and Sisters</i>			
Series	r	Error	n	r	Error	n	r	Error	
I	0.29	± 0.07	158	0.27	± 0.06	158	0.23	± 0.06	157
II	0.19	± 0.06	266	0.16	± 0.06	266	0.46	± 0.05	258
III	0.15	± 0.07	201	0.34	± 0.07	209	0.50	± 0.05	199
Total	0.20	± 0.04	625	0.25	± 0.04	633	0.42	± 0.03	614

On the whole the differences of these values do not exceed chance deviations. There might be some doubt regarding the correlation of length and width of head of males in series III, but the peculiar anomaly that occurs in this case does not recur in other measurements of the same kind.

In order to make sure that preconceived notions of the observers had no effect upon the results, I had all the head measurements reduced to adult values. Since the total amount of growth of the diameter of the head after the first few years of life is slight, it seemed justifiable to make this reduction, for which I have utilized the averages given by G. M. West.¹

Index of Correlation of Length of Head of

<i>Fathers and Sons</i>			<i>Fathers and Daughters</i>			<i>Mothers and Sons</i>			<i>Mothers and Daughters</i>		
Series	r	n	r	n	r	n	n	r	n	r	n
I	0.10	80	0.06	53	-0.01	80	80	0.53	53		
II	0.33	98	0.54	113	0.37	98	98	0.39	113		
III	0.27	91	0.23	82	0.20	95	95	0.52	86		
Total	0.24	269	0.34	248	0.20	273	273	0.46	252		

Index of Correlation of Width of Head of

<i>Fathers and Sons</i>			<i>Fathers and Daughters</i>			<i>Mothers and Sons</i>			<i>Mothers and Daughters</i>		
Series	r	n	r	n	r	n	n	r	n	r	n
I	0.32	80	0.31	53	0.50	80	80	0.22	53		
II	0.30	98	0.18	113	0.40	98	98	0.24	113		
III	0.01	91	0.24	82	0.12	95	95	0.33	86		
Total	0.21	269	0.23	248	0.33	273	273	0.27	252		

The average of the index of correlation for length of head of parents and children is 0.31, for width of head of parents and children 0.26; values comparable to those found for the cephalic index. The differences of the individual values seem rather large, but they are distributed quite irregularly.

These values may also be compared with the correlations obtained from the measurements of 150 pairs of brothers and sisters measured in the public schools of Worcester, Mass.² The deviations

¹ Antropometrische Untersuchungen über die Schulkinder in Worcester, Mass., *Archiv für Anthropologie*, 1893, xxii, 13-18.

² Franz Boas and Clark Wissler: Statistics of Growth, *Report of the U. S. Commissioner of Education for 1904*, Washington, 1905, pp. 125-128.

of stature and weight were determined as multiples of standard deviations. This made it possible to compare children of different ages.

Index of Correlation of Brothers and Sisters

Worcester, Mass. Russian Jews

Stature.....	0.42	—
Weight	0.31	—
Length of Head.....	0.54	0.37
Width of Head	0.55	0.36
Cephalic Index ¹	0.50	0.42

All these indices are somewhat smaller for the Russian Jews than for the children in Worcester. If these differences are significant they must not necessarily be explained by greater errors in the series of Jews, but they may perhaps be due to the greater dishomogeneity of the Worcester material. Provided a considerable number of distinct types are represented in this series, brothers and sisters of each type would be more likely to differ in the same direction from the general average than in a homogeneous series. For correlations in each individual the Worcester series of 300 individuals, constituting all the brothers and sisters, gives

for stature and length of head	0.42
for stature and width of head	0.21
for length and width of head	0.25

For the last of these values the Russian Jews give a coefficient of 0.35, a value that seems rather high, but which is quite in accord with the uniformity of the series.

It seems remarkable that in the series of Worcester children the correlation of stature is as great as that obtained by Galton in his series of adult brothers and sisters.

The general traits of the series of Russian Jews are contained in the table on next page.

In discussing the occurrence or nonoccurrence of alternating heredity, the same method must be followed which I developed in my previous paper, but a few additions to the theory seem desirable. In my former communication I calculated the variability of the children in each family. It seems possible to determine this value with greater accuracy than I had done before. If the deviation of

¹ Average: 79.3 ± 3.3

Age	Length of Head				Width of Head			
	Male		Female		Male		Female	
	mm	n	mm	n	mm	n	mm	n
1	158.3	3	161.8	14	128.6	3	135.4	14
2	164.6	13	164.1	21	140.1	13	135.0	21
3	168.6	16	168.1	18	140.2	16	141.8	18
4	169.9	19			142.8	19		
5	171.2	24	168.2	14	143.6	24	141.0	14
6	172.0	26	168.5	26	144.1	26	143.0	26
7	170.8	22	170.3	22	145.5	22	142.1	22
8	174.4	18	172.4	26	145.2	18	143.2	26
9	176.5	15	169.9	19	145.5	15	144.5	19
10	179.5	18	174.2	19	147.4	18	145.3	19
11	177.1	22	175.4	11	146.5	22	144.6	11
12	178.3	18	176.5	21	148.4	19	146.4	21
13	178.7	20	179.8	12	150.0	20	147.8	12
14	182.3	9	178.7	17	149.2	11	147.0	17
15	182.3	9	178.9	7	149.3	9	148.6	7
16	185.0	14	177.2	10	152.0	14	150.2	10
17	186.9	11	177.7	9	153.1	11	148.3	9
18	190.4	5	182.7	13	153.6	5	148.9	13
19	186.6	9			156.7	9		
20	190.1	7	} 181.7 217		155.3	7	} 150.0 217	
20+	188.9	219			154.5	219		

The cephalic index decreases slightly with age :

Age	Males	Females
1-4	83.6	83.6
5-9	83.8	84.0
10-14	83.1	82.7
15-19	82.6	83.4
20+	81.9	82.7

any particular child from the general average of children be called x , the deviations of the children of a family of n children x_1, x_2, \dots, x_n ; the coefficient of correlation between children of the same family r_c ; and the variability of children of a family around their mean s_n^2 :

$$s_n^2 = \frac{1}{n} \sum \left(x - \frac{\Sigma x}{n} \right)^2 = \frac{1}{n} \left\{ \Sigma x^2 - \left(\frac{\Sigma x}{n} \right)^2 \right\} = \frac{(n-1)\Sigma x^2 - \Sigma x_p x_q}{n^2}.$$

On the average, the variability of a family of n children will be, therefore, if σ designates the standard variability of the whole series,

$$[s_n^2] = \sigma^2 \frac{n(n-1) - n(n-1)r_c}{n^2} = \sigma^2(1 - r_c) \frac{n-1}{n}.$$

It seems also desirable to determine the coëfficient of correlation of children of each family of n children, each family being taken as a separate unit.

The product P of the deviations of brothers and sisters of the same family,

$$\begin{aligned} P_n &= \frac{I}{n(n-1)} \Sigma \left(x_p - \frac{\Sigma x}{n} \right) \left(x_q - \frac{\Sigma x}{n} \right) \\ &= \frac{I}{n(n-1)} \left\{ \Sigma x_p x_q - n(n-1) \left(\frac{\Sigma x}{n} \right)^2 \right\} \\ &= - \frac{I}{n-1} \frac{(n-1)\Sigma x^2 - \Sigma x_p x_q}{n^2} = - \frac{I}{n-1} s_n^2. \end{aligned}$$

It follows that the coëfficient of correlation of children of families of n children, each family treated as a unit, will be

$$r_n = \frac{P_n}{s_n^2} = - \frac{I}{n-1}$$

Provided the parents show no difference among themselves, so that the separate influence of father and mother may be neglected, the value [s_n^2] represents the variability of the children of a family with n children. For the series of observations on the cephalic index $\sigma^2 = 9.61$, $r_c = 0.42$, and the average number of children observed in each family is about 3.5 ; therefore

$$\sigma^2(1 - r_c) \frac{n-1}{n} = 3.9.$$

Observations of the variability for 86 children whose parents differ in regard to their cephalic index by less than 1% gives

$$\sigma^2 = 3.8,$$

a very satisfactory agreement with the theoretical value.

When we take into consideration the influence of father and mother, it can easily be shown that, according to the theory that the children vary around the midparental value, no influence upon the variability of one family should be exerted by the amount of difference of the parents. If the deviations of the parents are called x and y , each child's deviation may be represented by

$$z = r_{pr}(x + y) + \xi,$$

and each difference from the average of all the children of the family

$$z_1 - \frac{z_1 + z_2 + \cdots + z_n}{n} = \xi - \frac{\xi_1 + \xi_2 + \cdots + \xi_n}{n},$$

so that the values x and y disappear. Hence, according to this theory the variability of children of one family measured from the family average will not be influenced by the difference of the parents.

If we assume that one half of the children resemble the father, one-half the mother, the former group will be represented by the type

$$r'_{pc}x + \xi - \frac{\frac{n}{2}r'_{pc}x + \Sigma\xi + \frac{n}{2}r'_{pc}y + \Sigma\eta}{n} = r'_{pc} \frac{x - y}{2} + \xi - \frac{\Sigma(\xi + \eta)}{n};$$

and in the same way the latter group will be represented by the value

$$-r'_{pc} \frac{x - y}{2} + \eta - \frac{\Sigma(\xi + \eta)}{n}.$$

The mean square variability of this value will therefore increase for increasing values of $(x - y)$ by the amounts

$$r'^2_{pc} \frac{(x - y)^2}{4}.$$

It has been shown in my previous paper¹ that

$$r'_{pc} = 2r_{pc}.$$

In our series $r_{pc} = 0.22$. Thus a series of theoretical values for the variabilities of children can be calculated. The following table gives the variabilities according to observations and according to theory :

Difference of Parents, $x - y$	Cases	Observed Variability	Theoretical Variability
0.0—0.9	86	3.80	3.8
1.0—1.9	141	3.38	3.9
2.0—2.9	79	5.11	4.1
3.0—3.9	90	3.30	4.4
4.0—4.9	71	4.20	4.8
5.0—5.9	43	3.81	5.3
6.0—6.9	28	4.54	5.9
7.0—7.9	15	6.26	6.4
8.0—8.9	32	8.45	7.4
>9.0	21	16.86	9.2

¹ Loc. cit. 2, 2*, 2**, p. 534.

Unfortunately the number of observations for the greater differences being very few, no great accuracy for these variabilities can be expected. Still, the very rapid increase with increasing differences is obvious, so that it appears that the assumption of a midparental type is not tenable. Apparently the increase in variability is first slighter, then greater, than our theory demands; but the numerical values are too uncertain to allow a further theoretical discussion that might account for the characteristics of these values. It may, however, be pointed out that with the increase of differences of parents, the frequency of considerable differences in the measurements of the grandparents must materially increase. Hence, in case the same alternative inheritance of grandparental traits exists, the variability of the offspring of parents differing in type will be further increased.

It seemed desirable to test these results by a different arrangement of the material which will bring other individuals and families near the extreme end of the series. This may be done by considering only the effect of the deviation of a single parent from the average.

If we consider, as before, each child as correlated to its parents, we have

$$z = r_{pc}(x + y) + \xi,$$

and¹

$$[z^2] = r_{pc}^2[(x + y)^2] + \sigma^2(1 - 2r_{pc}^2).$$

For a constant value of x and variable values of y , this variability assumed the value

$$[z_x^2] = r_{pc}^2(x^2 + \sigma^2) + \sigma^2(1 - 2r_{pc}^2) = r_{pc}^2x^2 + \sigma^2(1 - r_{pc}^2).$$

If, on the other hand, we assume the case of alternating inheritance, we have

$$[z'^2] = \frac{1}{2}(r'_{pc}x + \xi)^2 + \frac{1}{2}(r'_{pc}y + \eta)^2 = \frac{1}{2}r'^2_{pc}(x^2 + y^2) + \sigma^2(1 - r'^2_{pc}),$$

and for a constant value of x and variable values of y

$$[z_x^2] = \frac{1}{2}r'^2_{pc}(x^2 + \sigma^2) + \sigma^2(1 - r'^2_{pc}) = \frac{1}{2}r'^2_{pc}x^2 + \sigma^2(1 - \frac{1}{2}r'^2_{pc});$$

and, since

$$r'_{pc} = 2r_{pc}, \quad [z_z^2] = 2r^2_{pc}x^2 + \sigma^2(1 - 2r^2_{pc}).$$

¹Loc. cit. 7*, p. 536.

Applying these two formulas, we obtain the following observed and theoretical results for variabilities of children of families in which one parent has a definite deviation from the general average :

Deviation of One of Parents from Average	Number of Cases	Variability		
		Observation	Theory	
			Midparent	Alternating Inheritance ($r=0.4$)
0.0—0.9	335	9.2	9.1	6.5
1.0—1.9	232	11.4	9.2	7.1
2.0—2.9	225	11.2	9.4	8.5
3.0—3.9	131	8.1	9.7	10.5
4.0—4.9	149	10.9	10.1	13.1
5.0—5.9	77	17.1	10.6	16.5
6.0—6.9	33	15.5	11.2	20.5
7.0 and more	32	24.6	11.9	26.2

Neither of these theories gives satisfactory results. For slight differences the midparental theory gives the better results, for great differences the alternating inheritance gives the better values. No change in the value of r can make the theoretical values increase with sufficient rapidity to give satisfactory results for great differences. On the other hand the theoretical values obtained for alternating inheritance are too small, when the differences of the parents from the average are small. Provided we assume that there is also a tendency of reversion to ancestral types more remote than the parents, this difficulty may be overcome. In the extreme case of some individuals reverting to the racial type as represented by the whole ancestral series, their presence will increase the variabilities for those families in which one parent is near the average, while in those in which one parent is remote from the average, the variability will be decreased.

Our series justifies, therefore, the conclusion that the cephalic index shows alternating inheritance, largely reversion to the type of father and mother, but also to more remote ancestral types.

It is important to note that this alternating inheritance appears much less distinctly, if at all, in the absolute measurement of length and width of head. Both have been tabulated in the same way as the cephalic index.

Difference of Parents	Number of Cases	Length of Head [x^2]	Number of Cases	Width of Head [x^2]
0	26	14.2	24	17.9
1	38	9.3	41	5.0
2	21	18.3	60	6.9
3	58	14.6	31	14.5
4	48	14.7	56	10.0
5	33	10.0	37	14.7
6	19	17.0	46	11.6
7	57	17.4	29	11.4
8	24	42.7	18	8.6
9	14	33.5	34	16.0
10	27	14.5	33	11.9
11	18	17.7	18	8.0
12	18	6.2	14	12.8
13	19	12.4	17	15.5
14	12	14.8	19	5.0
15	18	7.6		
16-21	26	22.9		

It will be seen that these differences are so irregularly distributed that they may very well be considered as representing the same average.

When we group the same material in such a manner that we select families with one parent having a certain deviation, the number of cases becomes somewhat larger, and we find:

Deviation of One Parent from Average	LENGTH OF HEAD			WIDTH OF HEAD		
	Number of Cases	Variability		Number of Cases	Variability	
		Observation	Midparent		Observation	Alternating Inheritance
0 and 1	216	35.1	34.0	31.8	243	22.1
2 " 3	274	27.1	34.5	32.8	217	20.2
4 " 5	149	35.6	35.6	34.8	218	21.2
6 " 7	110	38.1	37.0	37.8	154	24.5
8 " 9	90	39.0	39.0	40.5	67	30.9
10 " 11	57	33.4	41.0	46.1	55	44.1
12 " more	58	50.5	45.0	54.1		30.5

It is hardly possible to say in this case which theory gives the better fit. For width of head the midparental theory seems to give too slight an increase of variability. More material is required to solve this problem. In the case of stature it has been found that in mixed types the stature does not revert to the parental types.¹

The following tables contain the material on which the preceding discussion is based.

¹ *Verhandlungen der Berliner anthropologischen Gesellschaft*, 1895, pp. 381-386.

I¹

	Age	L	W	F		Age	L	W	F		Age	L	W	F
1 F	40	189	157	134	S	16	181	152	136	S	30	190	158	134
M	38	179	158	142	D	14	182	149	131	S	26	188	159	130
D	14	184	154	129	D	10	169	146	128	S	19	181	152	126
D	12	173	146	118	S	5	169	147	110	S	17	185	151	122
S	10	181	160	128						20 F	56	191	149	135
D	8	169	145	117	II F	39	196	146	138	M	40	179	154	130
2 F	57	190	148	131	M	38	181	156	141	S	17	182	157	132
M	48	162.	145	119	S	17	166	145	139	D	16	174	143	118
S	20	199	154	136	D	12	166	142	139	S	13	172	—	122
D	17	166	145	120	S	8	187	143	129					
D	14	176	141	108	12 F	33	186	150	142	21 F	32	196	153	143
S	9	179	141	112	M	32	191	156	144	M	30	181	155	143
S	7	175	145	113	D	15	183	147	130	S	8	172	146	120
S	5	174	146	110	S	11	184	151	136	S	4	173	141	114
3 F	27	176	153	136	13 F	68	185	153	138	22 F	38	181	150	136
M	24	183	157	130	M	65	181	147	129	M	37	185	148	126
S	6	169	146	98	S	28	187	151	140	S	14	175	148	119
D	4	170	145	102	S	23	186	147	136	D	8	173	144	112
4 F	38	184	150	143	D	19	183	144	131	S	4	168	141	113
M	28	185	150	130	14 F	29	184	147	135	23 F	33	192	153	139
S	11	183	152	137	M	28	194	151	131	M	32	178	149	128
D	9	172	146	114	D	8	190	140	118	D	7	178	147	115
S	6	177	145	108	D	6	176	141	115	S	5	169	142	114
5 F	49	185	153	147	S	4	171	138	110	D	3	174	140	—
M	48	182	146	131	15 F	63	179	154	136	24 F	30	181	142	138
S	19	178	153	136	M	53	185	141	116	M	28	192	161	137
S	17	189	153	138	D	19	170	147	121	D	3	151	120	101
D	12	178	144	126	D	17	181	157	138	D	1	153	121	91
D	8	177	145	114	S	14	(?)	146	123	25 F	53	205	153	141
6 F	28	183	151	139	D	12	170	144	119	M	36	182	151	142
M	25	179	150	132	S	10	188	143	113	S	11	184	148	121
S	6	168	145	124	S	8	178	134	112	S	10	189	144	118
D	3	169	144	102	16 F	36	197	161	146	S ²	7	174	150	118
7 F	63	192	157	124	M	34	182	153	123	S	3	171	148	121
M	60	179	154	132	S	10	181	147	120	26 F	37	177	144	122
S	21	193	155	130	S	8	167	149	108	M	40	177	152	128
D	29	196	156	135	D	6	178	143	98	S	13	179	141	118
S	27	192	160	135	17 F	38	180	145	128	S	11	182	144	121
8 F	38	187	152	130	M	37	181	145	122	S	8	178	148	116
M	39	193	155	135	D	12	165	136	106	D	6	174	142	115
S	16	190	155	136	S	10	182	149	120	27 F	34	184	153	131
D	14	182	153	125	S	9	175	140	102	M	33	188	151	138
D	11	183	156	109	D	6	170	137	110	S	12	179	148	123
9 F	34	192	161	148	D	4	177	142	103	S	9	181	138	116
M	31	192	145	133	18 F	40	200	161	132	D	7	172	138	106
S	13	174	151	129	M	36	180	147	126	D	3	171	141	—
S	11	180	143	122	S	13	181	159	132	28 F	30	193	149	120
D	8	167	145	118	D	10	178	141	108	M	28	186	150	—
10 F	42	203	158	141	19 F	65	187	155	133	S	13	182	146	107
M	39	186	152	134	M	58	183	152	128	S	11	179	142	98
S	18	192	155	135	D	33	189	152	138	S	10	175	139	95

¹ F = Father. M = Mother. S = Son. D = Daughter. L = Length of Head.
 W = Width of Head. F = Width of Face. ² Twins.

I—Continued

	Age	L	W	F		Age	L	W	F		Age	L	W	F
29	F 37	192	151	137	37	F 38	183	155	120	44	F 46	197	163	140
	M 31	179	145	128		M 32	171	149	102		M 41	179	149	124
	D 12	178	141	161		D 9	169	143	119		D 19	181	148	125
	S 9	181	146	115		D 6	165	143	115		S 13	183	150	122
	D 8	161	136	110		S 4	166	143	118		D 11	177	143	—
	S 5	172	148	118	38	F 36	184	163	141		D 7	169	138	—
30	F 50	194	142	121		M 40	181	154	131		S 2	151	130	—
	M 36	179	139	118		S 10	171	148	119					
	S 18	186	140	115		S 7	166	142	114					
	S 14	182	139	119		D 5	173	142	115					
31	F 35	188	153	139	39	F 32	191	159	134	45	F 25	189	157	136
	M 30	180	144	130		M 30	190	159	129		M 24	179	158	138
	D 5	172	141	115		S 5	176	152	116		S 6	174	151	118
	D 3	160	133	107		D 2	161	137	106		D 4	139	124	—
32	F 54	192	157	138	40	F 29	181	153	139	46	F 48	196	154	144
	M 36	176	145	129		M 29	175	145	133		M 34	174	144	128
	S 8	174	142	117		S 7	170	141	112		S 16	182	142	142
	D 7	164	139	114		D 5	168	142	104		S 14	179	147	121
33	F 60	196	158	136		S 3	169	141	96		D 10	171	148	99
	M 38	177	145	123	41	F 40	187	155	130		S 8	165	141	97
	D 12	181	151	121		M 32	185	151	134	47	F 37	187	158	128
	S 9	183	148	115		S 16	186	153	134		M 39	181	154	133
34	F 29	189	153	141		S 11	176	140	118		D 13	176	151	115
	M 30	187	156	131		D 7	169	139	104		D 11	175	149	101
	S 6	179	151	130		S 2	163	134	98		S 7	169	141	92
35	F 40	176	144	129	42	F 39	184	152	137	48	F 73	188	145	139
	M 45	184	155	136		M 36	180	142	131		M 69	182	147	133
	S 17	185	158	144		S 14	183	149	122		S 35	192	156	141
	S 10	178	157	132		S 12	184	154	124		S 32	182	146	137
36	F 45	188	162	130		D 9	163	140	103		D 25	184	153	134
	M 38	170	153	123		D 7	175	141	105		S 21	185	149	140
	S 6	160	134	117		D 4	173	140	99					
	D 4	158	138	97		S 2	172	143	—					
	D 3	161	132	105	43	F 34	196	150	132					
	S 1	159	130	98		M 33	186	144	122					

II

	Age	L	W		Age	L	W		Age	L	W		
49	F 40	190	153		D 13	173	148		S 11	163	137		
	M 40	190	151		S 12	178	150		S 9	167	145		
	S 19	191	157		S 9	180	145		S 8	171	145		
	D 18	192	151		S 6	165	145		S 7	175	152		
	D 16	189	154		S 2	165	138		53	F 37	186	151	
	D 12	183	150							M 36	186	154	
	D 8	180	145		51	F 48	190	150		S 15	171	138	
	D 6	176	146		M 40	171	140		S 7	167	140		
	S 4	178	145		D 20	176	147		54	F 45	186	150	
50	F 55	186	152		D 14	177	147			M 42	180	156	
	M 40	183	152		S 12	177	149			D 18	178	146	
	S 21	181	159		S 8	169	141			S 16	182	151	
	S 19	192	160							D 13	177	138	
	S 16	180	150		52	F —	180	152		D 11	174	145	
					M —	—	176	148					

II—Continued

	Age	L	W		Age	L	W		Age	L	W		
S	10	180	147	64	F	31	186	158	74	F	27	188	154
D	9	170	145	M	27	175	146	M	26	175	146		
D	6	165	138	D	7	170	151	S	5	167	147		
55	F	34	190	161	S	4	170	150	75	F	25	191	149
M	30	186	145	65	F	25	182	151	M	28	186	152	
S	15	187	153	M	20	172	145	S	2	160	140		
D	10	176	145	S	6	170	141	76	F	35	193	165	
D	8	180	143	66	F	27	189	159	M	34	188	148	
D	6	175	139	M	25	174	140	S	14	190	162		
D	3	170	130	S	5	169	140	S	12	185	153		
S	1	161	129	S	3	156	134	S	7	165	147		
56	F	52	188	157	D	2	168	140	D	2	168	140	
M	49	181	155	67	F	39	180	145	77	F	40	189	150
S	19	186	160	M	41	185	154	M	36	180	140		
S	15	176	155	S	11	181	148	D ¹	15	165	140		
D	12	179	152	D	7	172	146	S ¹	15	173	144		
D	9	166	146	D	5	165	140	S	12	175	142		
57	F	52	182	153	68	F	27	195	160	S	9	165	143
M	49	187	159	M	25	182	150	78	F	34	184	145	
D	16	174	156	S	5	170	146	M	26	175	145		
S	13	178	158	S	3	170	142	S	5	156	130		
S	11	173	157	69	F	24	194	158	S	3	164	134	
D	6	158	145	M	22	192	156	79	F	38	188	154	
58	F	50	200	153	D	6	168	145	M	36	181	141	
M	49	180	154	D	4	161	145	S	19	186	151		
D	24	190	155	D	2	160	142	D	14	175	138		
S	20	195	164	70	F	43	181	154	D	13	180	146	
D	12	184	151	M	38	172	155	S	11	170	142		
59	F	35	193	165	D	6	168	135	D	8	163	138	
M	28	181	146	D	3	162	130	D	6	165	141		
D	9	175	147	71	F	40	190	152	S	4	167	138	
D	8	172	141	M	38	184	161	80	F	33	179	155	
60	F	32	185	156	D	12	175	145	M	30	187	147	
M	26	174	138	D	11	170	135	S	10	177	141		
D	7	160	140	D	9	172	148	D	8	170	142		
S ¹	4	166	136	S	5	175	145	S	8	171	141		
S ¹	4	175	148	72	F	40	203	160	S	3	162	140	
61	F	45	187	155	M	40	186	143	81	F	37	201	160
M	42	190	157	S	21	198	155	M	36	190	160		
D	20	183	157	D	18	190	145	S	13	185	161		
D	16	180	154	D	15	185	153	D	8	182	154		
S	10	183	151	D	13	190	151	S	6	178	150		
S	8	181	149	S	12	181	146	D	2	173	140		
D	4	169	155	D	10	184	148	82	F	42	185	153	
62	F	32	190	160	D	7	178	146	M	33	187	160	
M	29	193	153	D	4	169	137	S	7	190	152		
D	5	172	141	73	F	31	188	148	D	6	165	141	
S	3	171	139	M	30	185	147	D	2	171	140		
63	F	27	195	165	S	11	177	143	83	F	27	182	153
M	28	180	141	S	2	175	134	M ²	25	185	146		
S	5	174	140					D	2	155	131		
								S	1	155	127		

¹ Twins.² Eldest daughter of 84 M.

II—Continued

	Age	L	W		Age	L	W		Age	L	W	
84	F 40	200	160		D 6	170	147	104	F 42	185	159	
M ¹	38	179	150		D 4	170	137	M	38	185	150	
D ²	25	185	146	93	F 34	188	155	S	14	183	164	
D	19	190	145	M	35	174	152	S	12	172	151	
D	18	181	140	D	14	174	145	D	10	164	148	
S	14	178	138	D	11	184	146	D	6	168	151	
S	11	180	140	S	6	175	148	D	5	166	142	
D	11	175	139	94	F 40	182	155	105	F 25	186	150	
D	7	178	138	M	37	182	145	M	23	188	145	
S	5	169	132	D	14	185	146	S	4	170	142	
85	3	64	192	156	D	12	170	146	D	2	160	135
F	38	190	153	D	11	173	143	106	F 42	188	150	
M	35	187	153	95	F 37	190	160	M	32	187	155	
D	17	181	145	M	26	190	155	D	16	175	150	
D	14	180	150	S	4	170	146	D	14	177	153	
D	10	178	146	96	F 33	182	152	S	12	182	153	
D	7	175	140	M	29	176	145	D	7	168	142	
S	9	175	146	D	8	170	134	107	F 49	190	158	
D	5	161	137	S	4	166	139	M	47	182	150	
86	F 30	183	152	S	2	177	156	? 17	178	148		
M	27	191	147	97	F 32	196	160	S 16	180	153		
D	7	178	138	M	29	180	155	S 13	182	156		
D	6	182	141	S	6	172	140	D 7	164	136		
S	3	162	129	S	3	168	139	108	F 33	182	150	
87	F 38	180	157	98	F 38	197	156	M 30	181	151		
M	31	186	146	M	36	191	146	S 7	174	148		
S	13	176	144	D	8	182	148	D 4	166	140		
D	7	163	140	D	7	176	140	D 2	152	130		
D	6	157	140	S 3	183	141	109	F 50	193	161		
S	4	170	140	99	F 30	191	159	M 46	189	154		
S	2	159	136	M	28	170	146	D 17	181	156		
88	F 28	182	151	D	10	178	145	D 16	177	153		
M	25	191	145	S	6	165	148	S 10	178	150		
S	7	162	151	100	F 31	200	160	D 6	182	150		
89	F 35	193	160	M	26	177	145	110	F 40	202	156	
M	28	183	155	S	5	179	152	M 39	180	152		
D	6	167	151	D	4	169	140	S 12	180	149		
D	4	165	140	101	F 50	184	148	D 10	177	150		
90	F 35	190	157	M	48	175	147	D 8	168	145		
M	29	170	142	D	17	182	148	D 6	165	143		
D	8	172	140	D	13	178	150	S 4	173	150		
S	6	169	144	D	9	175	141	D 2	160	130		
S	5	165	142	102	F 29	187	151	111	F 39	190	158	
91	F 36	182	157	M	25	188	157	M 38	180	147		
M	30	190	155	S	4	177	141	S 20	187	150		
S	9	171	147	103	F 40	188	153	D 11	172	145		
D	8	171	145	M	38	185	148	S 9	180	151		
D	6	171	143	S	13	183	147	S 6	175	148		
S	2	165	145	D	8	170	143	D 5	175	151		
92	F 37	199	166	112	F 37	193	150	112	F 37	193	150	
M	28	180	153	M	35	183	147	M 35	183	147		

¹ Mother of 83 M. The ages in this family are improbable. ² Same as 83 M.

³ Mother's father.

II—Continued

	Age	L	W		Age	L	W		Age	L	W
S	5	173	140	D	10	172	145	M	50	185	150
D	3	169	136	D	6	171	140	S	12	183	150
I13 F	58	190	156	S	3	166	144	D	6	167	145
M	55	190	158	I16 F	32	186	155	I19 F	40	199	161
D	21	180	147	M	28	174	155	M	38	185	146
D	18	185	148	S	5	170	147	S	13	185	155
S	17	200	160	S	3	168	142	S	11	176	148
I14 F	55	189	153	I17 F	40	196	155	D	3	170	144
M	50	181	142	M	40	192	150	D	3	165	138
S	23	187	146	D	12	186	149	I20 F	28	193	156
I15 F	55	193	160	D	10	180	148	M	28	178	158
M	40	180	155	S	6	185	148	S	6	176	150
S	13	176	149	I18 F	67	183	155	S	4	173	141

III

III — *Continued*

	Age	L	W		Age	L	W		Age	L	W
139	F 64	186	149		S 9	175	145		159	F —	185
	M 54	184	155		S 6	170	146		M 34	176	144
	S 36	181	147		150 F 36	187	154		S 14	178	143
	S 32	188	144		M 30	179	151		D 12	172	144
	D 30	183	153		S 12	175	153		D 9	167	145
	S 28	183	151		S 7	168	146		S 7	166	144
	S 21	182	154		D 9	167	143		S 5	161	141
140	F 36	185	161		151 F 28	190	159		D 2	164	130
	M 36	187	150		M 23	180	150		160 F 49	188	147
	D 14	182	145		S 3	158	145		M 46	191	151
	S 11	175	151		152 M 60	187	150		S 24	195	150
	S 7	164	140		D ¹ 23	185	145		S 21	192	152
	S 3	167	133		D ¹ 23	185	147		D 18	182	146
141	F 28	182	155		S 18	191	158		S 16	185	152
	M 26	176	141		S 16	193	153		D 14	180	144
	D 6	161	140		152*F 27	192	160		D 9	178	148
	D 4	161	138		M Same as 2d				D 5	176	141
	S 2	162	135		last family				161 F 50	186	153
142	F 34	185	160		S 3	181	140		M 50	176	145
	M 26	180	151		153 F 36	185	155		D 17	176	143
	S 7	168	135		M 26	187	160		S 16	186	152
	D 4	168	145		D 9	166	151		S 10	169	150
143	F 48	187	156		S 7	175	146		162 F 34	188	163
	M 42	184	148		D 3	166	140		M 33	179	152
	S 21	188	154		154 F 53	185	153		S 5	163	144
	S 18	194	158		M 50	182	152		D 2	153	142
	S 16	191	149		S 24	186	156		163 F 65	186	156
144	F 35	186	153		S 22	182	149		M 55	184	153
	M 33	185	150		155 F 46	200	155		S 33	192	158
	S 11	177	141		M 36	180	157		D 31	179	153
	D 9	174	139		S 17	202	150		D 24	175	151
	D 5	166	134		S 15	185	142		S 22	181	154
145	F 28	178	158		D 9	174	146		S 19	186	151
	M 24	175	151		156 F 25	195	161		164 M 68	192	155
	D 3	155	138		M 26	184	153		D 40	180	151
146	F 40	193	154		D 4	176	145		164*F 45	192	150
	M 35	185	156		D 2	166	145		M Same as 164 D		
	D 13	182	152		157 F 42	182	160		S 20	195	162
	D 9	172	145		M 40	182	165		D 16	180	149
	S 7	177	150		S 24	184	168		S 10	186	150
147	F 30	192	155		D 22	176	152		165 F 28	182	148
	M 28	183	156		D 15	170	156		M 21	178	150
	D 8	169	146		S 13	174	152		D 5	158	133
	D 4	166	145		D 10	171	153		D 3	155	136
148	F 31	196	151		D 10	160	145		166 F 32	200	159
	M 30	183	157		158 F 31	196	151		M 28	179	152
	S 11	183	151		M 30	186	157		D 10	177	146
	D 6	168	147		D 6	166	147		D 9	174	150
149	F 36	190	146		D 4	166	147		167 F 33	190	160
	M 34	181	147		S 2	156	149		M 27	181	147
	D 12	166	140		159 F 31	196	151		D 7	177	145
					M 30	186	157		S 5	176	145

Twins

III—Continued

	Age	L	W		Age	L	W		Age	L	W			
	F	184	151		S	6	170	145	D	18	185	152		
	M	182	155		D	2	156	128	S	17	185	155		
168	F	56	184	151										
	M	45	182	155	178	F ¹	32	192	155	185	F	46	187	154
	S	28	177	158		M	30	182	155		M	42	177	148
	D	22	178	146		D	8	183	140		D	20	175	144
	S	19	183	161		S	5	176	142		D	18	175	151
169	F	45	191	157		S	3	176	145		D	16	171	140
	M	43	181	151	179	F ²	28	185	154		D	12	165	143
	D	17	182	151		M	25	180	152		D	8	160	140
	S	14	185	147		S	3	169	136		S	6	165	136
170	F	32	202	165	180	F	49	187	160	186	F	34	188	155
	M	26	174	151		M	38	171	149		M	28	170	140
	S	7	171	150		D	14	178	151		D	9	160	142
	D	5	172	150		S	13	174	150		D	8	160	142
171	F	37	188	150		D	7	162	140	187	F	55	185	155
	M	35	183	145		D	3	155	133		M	50	182	158
	D	3	177	141	181	F	48	190	147		S	19	195	165
172	F	40	200	148		M	42	190	153		S	14	190	158
	M	35	174	144		S	17	183	155		D	12	180	159
	D	15	172	154		S	15	186	152		D	8	178	145
	S	13	182	150	182	F	39	200	158	188	F	42	199	155
	S	11	172	155		M	32	182	149		M	34	179	148
	D	7	165	145		D	13	184	145		S	12	178	145
173	F	21	184	162		S	12	182	150		D	10	175	138
	M	23	186	152		S	9	186	152	189	F	38	190	157
	S	4	162	145		D	7	171	150		M	38	176	148
174	F	23	191	157		S	5	177	139		S	20	189	148
	M	20	181	148	183	F	42	202	159		D	17	172	142
	D	2	166	126		M	40	175	140		S	13	168	143
175	F	40	187	159		D	20	183	156		S	11	178	150
	M	38	180	153		S	18	189	157		S	6	173	143
	S	15	186	148		D	13	182	155	190	F	34	188	155
	S	13	186	146		S	10	177	151		M	28	170	140
	S	11	177	150		D	7	168	146		D	9	160	141
	S	8	178	142	184	F	50	191	151		D	8	160	142
176	F	32	196	156		M	46	186	151	191	F	52	186	154
	M	30	173	145		D	25	180	152		M	48	175	155
	S	6	164	143		D	20	187	145		D	22	175	150
	S	5	164	143		S	12	182	153		D	18	180	153
	D	3	159	126	184	F	50	191	151		D	14	183	155
177	F	34	185	154		M	46	186	151		S	12	182	153
	M	29	178	146		D	25	180	152					
						D	20	187	145					

¹ Brother of 179 F.² Brother of 178 F.COLUMBIA UNIVERSITY,
NEW YORK CITY.