EM Algorithm

Jur van den Berg

Kalman Filtering vs. Smoothing

Dynamics and Observation model

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim W_t = N(\mathbf{0}, Q)$$

$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim V_t = N(\mathbf{0}, R)$$

- Kalman Filter:
 - Compute $(X_t | Y_0 = \mathbf{y}_0, ..., Y_t = \mathbf{y}_t)$
 - Real-time, given data so far
- Kalman Smoother:

- Compute
$$(X_t | Y_0 = \mathbf{y}_0, ..., Y_T = \mathbf{y}_T), \quad 0 \le t \le T$$

- Post-processing, given all data

EM Algorithm

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim W_t = N(\mathbf{0}, Q)$$

$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim V_t = N(\mathbf{0}, R)$$

- Kalman smoother:
 - Compute distributions X_0 , ..., X_t given parameters A, C, Q, R, and data \mathbf{y}_0 , ..., \mathbf{y}_t .
- EM Algorithm:
 - Simultaneously optimize X_0 , ..., X_t and A, C, Q, R given data \mathbf{y}_0 , ..., \mathbf{y}_t .

Probability vs. Likelihood

 Probability: predict unknown outcomes based on known parameters:

$$-p(x \mid \theta)$$

• Likelihood: estimate unknown *parameters* based on known *outcomes*:

$$-L(\theta \mid x) = p(x \mid \theta)$$

- Coin-flip example:
 - $-\theta$ is probability of "heads" (parameter)
 - -x = HHHTTH is outcome

Likelihood for Coin-flip Example

- Probability of outcome given parameter:
 - $p(x = HHHTTH | \theta = 0.5) = 0.5^6 = 0.016$
- Likelihood of parameter given outcome:

$$-L(\theta = 0.5 \mid x = HHHTTH) = p(x \mid \theta) = 0.016$$

- Likelihood *maximal* when $\theta = 0.6666...$
- Likelihood function not a probability density

Likelihood for Cont. Distributions

• Six samples $\{-3, -2, -1, 1, 2, 3\}$ believed to be drawn from some Gaussian N(0, σ^2)

• Likelihood of σ :

$$L(\sigma | \{-3,-2,-1,1,2,3\}) = p(x = -3 | \sigma) \cdot p(x = -2 | \sigma) \cdots p(x = 3 | \sigma)$$

Maximum likelihood:

$$\sigma = \sqrt{\frac{(-3)^2 + (-2)^2 + (-1)^2 + 1^2 + 2^2 + 3^2}{6}} = 2.16$$

Likelihood for Stochastic Model

Dynamics model

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim W_t = N(\mathbf{0}, Q)$$

$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim V_t = N(\mathbf{0}, R)$$

- Suppose \mathbf{x}_t and \mathbf{y}_t are given for $0 \le t \le T$, what is likelihood of A, C, Q and R?
- $L(A, C, Q, R \mid \mathbf{x}, \mathbf{y}) = p(\mathbf{x}, \mathbf{y} \mid A, C, Q, R) = \prod_{t=0}^{T} p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) p(\mathbf{y}_{t} \mid \mathbf{x}_{t})$
- Compute *log-likelihood*:

$$\log p(\mathbf{x}, \mathbf{y} | A, C, Q, R)$$

Log-likelihood

$$\log p(\mathbf{x}, \mathbf{y} \mid A, C, Q, R) = \log \prod_{t=0}^{T} p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}) p(\mathbf{y}_{t} \mid \mathbf{x}_{t}) = \sum_{t=0}^{T-1} \log p(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}) + \sum_{t=0}^{T} \log p(\mathbf{y}_{t} \mid \mathbf{x}_{t}) = \dots$$

- Multivariate normal distribution $N(\mu, \Sigma)$ has pdf: $p(\mathbf{x}) = (2\pi)^{-k/2} |\Sigma^{-1}|^{1/2} \exp(-\frac{1}{2}(\mathbf{x} \mu)^T \Sigma^{-1}(\mathbf{x} \mu))$
- From model: $\mathbf{x}_{t+1} \sim N(A\mathbf{x}_t, Q)$ $\mathbf{y}_t \sim N(C\mathbf{x}_t, R)$

$$= \left(\sum_{t=0}^{T-1} \frac{1}{2} \log |Q^{-1}| - \frac{1}{2} (\mathbf{x}_{t+1} - A\mathbf{x}_{t})^{T} Q^{-1} (\mathbf{x}_{t+1} - A\mathbf{x}_{t}) \right) + \left(\sum_{t=0}^{T} \frac{1}{2} \log |R^{-1}| - \frac{1}{2} (\mathbf{y}_{t} - C\mathbf{x}_{t})^{T} R^{-1} (\mathbf{y}_{t} - C\mathbf{x}_{t}) \right) + \text{const}$$

Log-likelihood #2

$$\left(\sum_{t=0}^{T-1} \frac{1}{2} \log |Q^{-1}| - \frac{1}{2} (\mathbf{x}_{t+1} - A\mathbf{x}_{t})^{T} Q^{-1} (\mathbf{x}_{t+1} - A\mathbf{x}_{t})\right) + \left(\sum_{t=0}^{T} \frac{1}{2} \log |R^{-1}| - \frac{1}{2} (\mathbf{y}_{t} - C\mathbf{x}_{t})^{T} R^{-1} (\mathbf{y}_{t} - C\mathbf{x}_{t})\right) + \text{const} = \dots$$

- a = Tr(a) if a is scalar
- Bring summation inward

$$= \frac{T}{2} \log |Q^{-1}| - \frac{1}{2} \left(\sum_{t=0}^{T-1} \text{Tr}((\mathbf{x}_{t+1} - A\mathbf{x}_t)^T Q^{-1}(\mathbf{x}_{t+1} - A\mathbf{x}_t)) \right) + \frac{T+1}{2} \log |R^{-1}| - \frac{1}{2} \left(\sum_{t=0}^{T} \text{Tr}((\mathbf{y}_t - C\mathbf{x}_t)^T R^{-1}(\mathbf{y}_t - C\mathbf{x}_t)) \right) + \text{const}$$

Log-likelihood #3

$$\frac{T}{2}\log|Q^{-1}| - \frac{1}{2}\left(\sum_{t=0}^{T-1} \text{Tr}((\mathbf{x}_{t+1} - A\mathbf{x}_{t})^{T} Q^{-1}(\mathbf{x}_{t+1} - A\mathbf{x}_{t}))\right) + \frac{T+1}{2}\log|R^{-1}| - \frac{1}{2}\left(\sum_{t=0}^{T} \text{Tr}((\mathbf{y}_{t} - C\mathbf{x}_{t})^{T} R^{-1}(\mathbf{y}_{t} - C\mathbf{x}_{t}))\right) + \text{const} = \dots$$

- Tr(AB) = Tr(BA)
- Tr(A) + Tr(B) = Tr(A+B)

$$= \frac{T}{2} \log \left| Q^{-1} \right| - \frac{1}{2} \operatorname{Tr} \left(Q^{-1} \left(\sum_{t=0}^{T-1} (\mathbf{x}_{t+1} - A\mathbf{x}_{t}) (\mathbf{x}_{t+1} - A\mathbf{x}_{t})^{T} \right) \right) +$$

$$\frac{T+1}{2} \log \left| R^{-1} \right| - \frac{1}{2} \operatorname{Tr} \left(R^{-1} \left(\sum_{t=0}^{T} (\mathbf{y}_{t} - C\mathbf{x}_{t}) (\mathbf{y}_{t} - C\mathbf{x}_{t})^{T} \right) \right) + \operatorname{const}$$

Log-likelihood #4

$$\frac{T}{2}\log\left|Q^{-1}\right| - \frac{1}{2}\operatorname{Tr}\left(Q^{-1}\left(\sum_{t=0}^{T-1}(\mathbf{x}_{t+1} - A\mathbf{x}_{t})(\mathbf{x}_{t+1} - A\mathbf{x}_{t})^{T}\right)\right) +$$

$$\frac{T+1}{2}\log\left|R^{-1}\right| - \frac{1}{2}\operatorname{Tr}\left(R^{-1}\left(\sum_{t=0}^{T}(\mathbf{y}_{t} - C\mathbf{x}_{t})(\mathbf{y}_{t} - C\mathbf{x}_{t})^{T}\right)\right) + \operatorname{const} = \dots$$

Expand

$$\begin{split} &l(A, C, Q, R \mid \mathbf{x}, \mathbf{y}) = \\ &\frac{T}{2} \log \left| Q^{-1} \right| - \frac{1}{2} \operatorname{Tr} \left(Q^{-1} \left(\sum_{t=0}^{T-1} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^{T} - \mathbf{x}_{t+1} \mathbf{x}_{t}^{T} A^{T} - A \mathbf{x}_{t} \mathbf{x}_{t+1}^{T} + A \mathbf{x}_{t} \mathbf{x}_{t}^{T} A^{T} \right) \right) + \\ &\frac{T+1}{2} \log \left| R^{-1} \right| - \frac{1}{2} \operatorname{Tr} \left(R^{-1} \left(\sum_{t=0}^{T} \mathbf{y}_{t} \mathbf{y}_{t}^{T} - \mathbf{y}_{t} \mathbf{x}_{t}^{T} C^{T} - C \mathbf{x}_{t} \mathbf{y}_{t+1}^{T} + C \mathbf{x}_{t} \mathbf{x}_{t}^{T} C^{T} \right) \right) + \text{const} \end{split}$$

Maximize likelihood

- log is monotone function
 - $\max \log(f(x)) \Leftrightarrow \max f(x)$
- Maximize l(A, C, Q, R | x, y) in turn for A, C, Q and R.
 - Solve $\frac{\partial l(A,C,Q,R|x,y)}{\partial A} = 0$ for A

 - Solve $\frac{\partial l(A,C,Q,R|x,y)}{\partial C} = 0$ for C Solve $\frac{\partial l(A,C,Q,R|x,y)}{\partial O} = 0$ for Q
 - Solve $\partial l(A, C, Q, R \mid x, y) = 0$ for R

Matrix derivatives

Defined for scalar functions f: R^{n*m} -> R

$$\frac{\partial f}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial f}{\partial X_{1,1}} & \cdots & \frac{\partial f}{\partial X_{n,1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial X_{1,m}} & \cdots & \frac{\partial f}{\partial X_{n,m}} \end{bmatrix}.$$

Key identities

$$\frac{\partial \mathbf{x}^{T} A \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^{T} (A^{T} + A)$$

$$\frac{\partial B^{T} A B}{\partial B} = B^{T} (A^{T} + A)$$

$$\frac{\partial \text{Tr}(AB)}{\partial A} = \frac{\partial \text{Tr}(BA)}{\partial A} = \frac{\partial \text{Tr}(B^{T} A^{T})}{\partial A} = B^{T}$$

$$\frac{\partial \log|A|}{\partial A} = A^{-T}$$

Optimizing A

Derivative

$$\frac{\partial l(A, C, Q, R \mid x, y)}{\partial A} = \frac{1}{2} Q^{-1} \left(\sum_{t=0}^{T-1} 2\mathbf{x}_{t+1} \mathbf{x}_{t}^{T} - 2A\mathbf{x}_{t} \mathbf{x}_{t}^{T} \right)$$

$$A = \left(\sum_{t=0}^{T-1} \mathbf{x}_{t+1} \mathbf{x}_t^T\right) \left(\sum_{t=0}^{T-1} \mathbf{x}_t \mathbf{x}_t^T\right)^{-1}$$

Optimizing C

Derivative

$$\frac{\partial l(A, C, Q, R \mid x, y)}{\partial C} = \frac{1}{2} R^{-1} \left(\sum_{t=0}^{T} 2\mathbf{y}_{t} \mathbf{x}_{t}^{T} - 2C\mathbf{x}_{t} \mathbf{x}_{t}^{T} \right)$$

$$C = \left(\sum_{t=0}^{T} \mathbf{y}_{t} \mathbf{x}_{t}^{T}\right) \left(\sum_{t=0}^{T} \mathbf{x}_{t} \mathbf{x}_{t}^{T}\right)^{-1}$$

Optimizing Q

Derivative with respect to inverse

$$\frac{\partial l(A,C,Q,R \mid x,y)}{\partial Q^{-1}} = \frac{T}{2}Q - \frac{1}{2} \left(\sum_{t=0}^{T-1} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^T - \mathbf{x}_{t+1} \mathbf{x}_t^T A^T - A \mathbf{x}_t \mathbf{x}_{t+1}^T + A \mathbf{x}_t \mathbf{x}_t^T A^T \right)^T$$

$$Q = \frac{1}{T} \left(\sum_{t=0}^{T-1} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^T - \mathbf{x}_{t+1} \mathbf{x}_t^T A^T - A \mathbf{x}_t \mathbf{x}_{t+1}^T + A \mathbf{x}_t \mathbf{x}_t^T A^T \right)$$

Optimizing R

Derivative with respect to inverse

$$\frac{\partial l(A, C, Q, R \mid x, y)}{\partial R^{-1}} = \frac{T+1}{2}R - \frac{1}{2} \left(\sum_{t=0}^{T} \mathbf{y}_{t} \mathbf{y}_{t}^{T} - \mathbf{y}_{t} \mathbf{x}_{t}^{T} C^{T} - C \mathbf{x}_{t} \mathbf{y}_{t}^{T} + C \mathbf{x}_{t} \mathbf{x}_{t}^{T} C^{T} \right)^{T}$$

$$R = \frac{1}{T+1} \left(\sum_{t=0}^{T} \mathbf{y}_{t} \mathbf{y}_{t}^{T} - \mathbf{y}_{t} \mathbf{x}_{t}^{T} C^{T} - C \mathbf{x}_{t} \mathbf{y}_{t}^{T} + C \mathbf{x}_{t} \mathbf{x}_{t}^{T} C^{T} \right)$$

EM-algorithm

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim W_t = N(\mathbf{0}, Q)$$

$$\mathbf{y}_t = C\mathbf{x}_t + \mathbf{v}_t, \quad \mathbf{v}_t \sim V_t = N(\mathbf{0}, R)$$

- Initial guesses of A, C, Q, R
- Kalman smoother (E-step):
 - Compute distributions X_0 , ..., X_T given data \mathbf{y}_0 , ..., \mathbf{y}_T and A, C, Q, R.
- Update parameters (M-step):
 - Update A, C, Q, R such that expected log-likelihood is maximized
- Repeat until convergence (local optimum)

Kalman Smoother

• for (t = 0; t < T; ++t) // Kalman filter
$$\hat{\mathbf{x}}_{t+1|t} = A\hat{\mathbf{x}}_{t|t}$$

$$P_{t+1|t} = AP_{t|t}A^{T} + Q$$

$$K_{t+1} = P_{t+1|t}C^{T}(CP_{t+1|t}C^{T} + R)^{-1}$$

$$\hat{\mathbf{x}}_{t+1|t+1} = \hat{\mathbf{x}}_{t+1|t} + K_{t+1}(\mathbf{y}_{t+1} - C\hat{\mathbf{x}}_{t+1|t})$$

$$P_{t+1|t+1} = P_{t+1|t} - K_{t+1}CP_{t+1|t}$$

• for $(t = T - 1; t \ge 0; --t)$ // Backward pass

$$egin{array}{lcl} L_t & = & P_{t|t} A^T P_{t+1|t}^{-1} \ \hat{\mathbf{x}}_{t|T} & = & \hat{\mathbf{x}}_{t|t} + L_t \Big(\hat{\mathbf{x}}_{t+1|T} - \hat{\mathbf{x}}_{t+1|t} \Big) \ P_{t|T} & = & P_{t|t} + L_t (P_{t+1|T} - P_{t+1|t}) L_t^T \end{array}$$

Update Parameters

Likelihood in terms of x, but only X available

$$l(A, C, Q, R \mid \mathbf{x}, \mathbf{y}) = \frac{T}{2} \log |Q^{-1}| - \frac{1}{2} \operatorname{Tr} \left(Q^{-1} \left(\sum_{t=0}^{T-1} \mathbf{x}_{t+1} \mathbf{x}_{t+1}^{T} - \mathbf{x}_{t+1} \mathbf{x}_{t}^{T} A^{T} - A \mathbf{x}_{t} \mathbf{x}_{t+1}^{T} + A \mathbf{x}_{t} \mathbf{x}_{t}^{T} A^{T} \right) \right) + \frac{T+1}{2} \log |R^{-1}| - \frac{1}{2} \operatorname{Tr} \left(R^{-1} \left(\sum_{t=0}^{T} \mathbf{y}_{t} \mathbf{y}_{t}^{T} - \mathbf{y}_{t} \mathbf{x}_{t}^{T} C^{T} - C \mathbf{x}_{t} \mathbf{y}_{t+1}^{T} + C \mathbf{x}_{t} \mathbf{x}_{t}^{T} C^{T} \right) \right) + \text{const}$$

- Likelihood-function linear in $\mathbf{x}_t, \mathbf{x}_t \mathbf{x}_t^T, \mathbf{x}_t \mathbf{x}_{t+1}^T$
- Expected likelihood: replace them with:

$$\begin{split} E(X_t \mid \mathbf{y}) &= \hat{\mathbf{x}}_{t|T} \\ E(X_t X_t^T \mid \mathbf{y}) &= P_{t|T} + \hat{\mathbf{x}}_{t|T} \hat{\mathbf{x}}_{t|T}^T \\ E(X_t X_{t+1}^T \mid \mathbf{y}) &= \hat{\mathbf{x}}_{t|t} \hat{\mathbf{x}}_{t+1|T}^T + L_t \Big(P_{t+1|T} + (\hat{\mathbf{x}}_{t+1|T} - \hat{\mathbf{x}}_{t+1|t}) \hat{\mathbf{x}}_{t+1|T}^T \Big) \end{split}$$

Use maximizers to update A, C, Q and R.

Convergence

- Convergence is guaranteed to local optimum
- Similar to coordinate ascent

Conclusion

- EM-algorithm to simultaneously optimize state estimates and model parameters
- Given ``training data", EM-algorithm can be used (off-line) to *learn* the model for subsequent use in (real-time) Kalman filters

Next time

- Learning from demonstrations
- Dynamic Time Warping