





# **NORTHWESTERN UNIVERSITY**

## DEPARTMENT OF MATERIALS SCIENCE

Technical Report No. 18 June 15, 1977 Office of Naval Research Contract NO0014-75-C-0580 NR 031-733

GEOMETRICAL PROBLEMS WITH A POSITION SENSITIVE DETECTOR EMPLOYED ON A DIFFRACTOMETER: ITS USE IN THE MEASUREMENT OF STRESS

by

M. R. James and J. B. Cohen

Distribution of this Document is Unlimited.



EVANSTON, ILLINOIS

Reproduction in whole or in part is permitted for any purpose of the United States Government.



AD NO.

GEOMETRICAL PROBLEMS WITH A POSITION SENSITIVE DETECTOR EMPLOYED ON .

A DIFFRACTOMETER: ITS USE IN THE MEASUREMENT OF STRESS

M. R. James and J. B. Cohen Northwestern University Evanston, Illinois 60201

## ABSTRACT

Defocussing errors associated with the use of a straight one dimensional position sensitive detector on a diffractometer are examined. Over a  $10^{\circ}2\theta$  range the error is  $0.02^{\circ}2\theta$  at worst.

DEG. OF 2 THETA ANGULA)

O. 02 DEG.

O. 02

GEOMETRICAL PROBLEMS WITH A POSITION SENSITIVE DETECTOR EMPLOYED ON A DIFFRACTOMETER: ITS USE IN THE MEASUREMENT OF STRESS

## 1. INTRODUCTION

In measurements of lattice strain a modified form of Seeman-Bohlin  $\stackrel{*}{*}$  geometrical conditions for focusing are employed. This permits a divergent primary beam and hence illumination of a considerable area of the specimen, yet results in a sharp diffracted beam at the focal point. The focusing circle defined by the target, specimen and receiving slit as shown in Fig. 1. is related to the radius of the diffractometer circle,  $R_{\rm GC}$ , as follows  $^{(108)}$ :

$$R_{FC} = R_{GC}/2\sin(\theta+\psi)$$
 1.

Where  $\psi$  is defined in Fig. 1.b., Fig. 1. illustrates two possible conditions. For  $\psi$  = 0, the focal point lies on the goniometer circle at all 26 angles. This is termed symmetrical or Bragg-Brentano focusing. A receiving slit placed on the 20 arm at the position of the goniometer circle is always at the point of focus. For  $\psi$  not equal to zero, the point of focus

As pointed out by Kunze<sup>109</sup> the usual symmetric or Bragg-Brentano arrangement is geometrically (though not mechanically) equivalent to a Seeman-Bohlin arrangement with  $\psi$ =0. Residual stress measurements usually employ the mechanical movement of the Bragg-Brentano diffractometer with the geometrical conditions of Seeman-Bohlin focusing.





FIGURE 1 Geometry of the focusing error with a PSD.

changes to point B in Fig. 1.b. The distance from the sample to B is given by (108):

$$R_{p} = R_{GC} \frac{\cos(\psi + (90 - \theta))}{\cos(\psi - (90 - \theta))}$$
 2.

Equation 2. is valid for either a positive # tilt

or for a negative  $\psi$  tilt. The receiving slit or counter may be moved to this position in the X-ray measurement of residual stress.

The position sensitive detector (PSD) used in this study is effectively a long, straight wire. With parafocusing geometry the entire detector length cannot be located on the focusing circle. Only that portion of the detector tangent to the circle will be at the true focusing position. The length of the PSD also prohibits its location on the focusing circle at high angles (greater than  $140^{\circ}2\theta$ ) because the PSD is obstructed by the X-ray source on most diffractometers.

In the Appendix it was shown that for peak shifts less than 3°20, the non-linear relationship between angles on the curved focusing circle and along the straight detector is small and a linear relation can be used. The defocusing error is shown below to be small so that correction factors are not necessary (over a range of 3°) in determining the true angular position from the linear position along the PSD.

## DEFOCUSING ERROR

## 2.1. Treatment of Diffraction Profile Aberrations

Although a crystal will reflect over a small range of 20 depending on the spectial dispersion of the primary beam, the crystallite size, microstrain, faults, etc., it will be assumed that there is only one



FIGURE 2 Geometry of the powder  ${\tt diffractometer}$ .

wavelength and that Bragg's law applies exactly. For any hkl plane the diffraction angle is fixed.

A method developed by A. J. C. Wilson 110 to study aberrations arising from the practical impossibility of achieving the ideal arrangement in powder diffractometry will be used. Wilson's purpose for treating these aberrations was to determine what could be done to eliminate, as far as practicable, the effect of the aberrations on the observed positions, breadths and profiles of diffraction maxima. In this treatment, it is desired solely to determine if aberrations due to defocusing cause errors in the measurement of residual stress using a position sensitive detector.

Wilson's treatment mathematically correlates the effect of each aberration such as horizontal divergence, specimen shape, specimen transparency to the X-ray beam, receiving slit position, etc. on the measured Bragg angle. In this treatment, we only need be concerned with the effect of the receiving slit position on the measured Bragg angle.

Fig. 2. details the theoretical approach. A ray diverging from point C, a distance  $\overline{X}_f$  from A, the centroid of the source, is diffracted at point P in the specimen a distance  $\overline{X}_s$  from 0, (the ideal position of the specimen), and passes through the receiving slit at D, at distance  $\overline{X}_r$  from B, the point at which rays would be focused under ideal conditions. The main concern here for a PSD is with errors associated with the vector  $\overline{X}_r$ . The other missettings are included because of possible cross terms involving  $\overline{X}_f$  and  $\overline{X}_s$ .

Following Wilson's coordinate system, unit vectors may be chosen with

 $\widetilde{z}$  and  $\widetilde{j}$  in the equatorial plane,  $\widetilde{z}$  radially outward from the focusing circle,  $\widetilde{j}$  tangential to the focusing circle, and  $\widetilde{k}$  axial. Ine  $\widetilde{X}$  direction is thus normal to the circle and  $\widetilde{Y}$  and  $\widetilde{Z}$  are tangential to it. Orthogonal components for the small vectors  $\mathbf{x}_f$ ,  $\mathbf{x}_s$ ,  $\mathbf{x}_r$  may be chosen so that (see Fig. 2.),

 $x_s, y_s, z_s$  are parallel to  $\tilde{\epsilon}, \tilde{j}, \tilde{k}$ 

 $\mathbf{x}_{\mathbf{f}}$ , and  $\mathbf{y}_{\mathbf{f}}$  are equatorial and respectively parallel and perpendicular to  $\overline{\mathbf{S}}$  in Fig. 2. and  $\mathbf{z}_{\mathbf{f}}$  is parallel to  $\widetilde{\mathbf{K}}$ 

 $x_r$ , and  $y_r$  are equatorial and respectively parallel and perpendicular to  $\overline{R}$ , and  $z_r$  is parallel to  $\overline{k}$ 

Let 2e represent the error in 20 due to the aberrations. Then

$$2\theta = 2\varphi + 2\varepsilon$$

where the angular reading on the diffractometer is actually  $2\phi$  . To calculate  $2\varepsilon$  :

$$\cos 2\varphi - \cos 2\theta = \cos 2\varphi - \cos(2\varphi + 2\varepsilon)$$
 4.

or

$$2\epsilon = [\cos 2\varphi - \cos 2\theta]/\sin 2\varphi$$
 5.

where  $2\varepsilon$  is in radians. Letting  $\cos 2\phi - \cos 2\theta = \delta$  this term can be separated into its components:

$$\delta = \delta_f + \delta_r + \delta_s + \delta_{fr} + \delta_{fs} + \delta_{rs}$$
 6.

where  $\delta_f$ ,  $\delta_r$ ,  $\delta_s$  represent the scalar components involving only the focal spot, receiving slit, and specimen respectively.  $\delta_{fr}$ ,  $\delta_{fs}$ , and  $\delta_{rs}$  are cross terms involving the designated constituents. These cross terms represent the correlation of one aberration on the others. For instance, if the

focal spot and effective diffracting position were perfectly positioned with the angular divergence of the beam being extremely small, there would be no receiving slit missetting because the diffracted beam would be a straight line. The receiving slit could be placed anywhere along this line. The correlation of the focal spot and receiving slit and specimen position and receiving slit must be accounted for. As the present concern is only with terms involving the receiving slit:

$$\delta = \delta_{\mathbf{r}} + \delta_{\mathbf{f}\mathbf{r}} + \delta_{\mathbf{r}\mathbf{s}}$$
 7.

The scalar terms as derived by Wilson are:

$$\delta_{r} = R^{-2} \sin 2\varphi [Ry_{r} - x_{r}y_{r} + \frac{1}{2}(y_{r}^{2} + z_{r}^{2}) \cot 2\varphi + \dots]$$
 8.

$$\delta_{fr} = (RS)^{-1} (y_f y_r \cos 2\varphi + z_f z_r)$$
9.

$$\begin{split} \delta_{\mathbf{r}\mathbf{s}} &= R^{-2} \left[ -\mathbf{x}_{\mathbf{r}} \mathbf{x}_{\mathbf{s}} \cos(2\varphi - \psi) \sin 2\varphi - \mathbf{y}_{\mathbf{r}} \mathbf{y}_{\mathbf{s}} \cos(2\varphi - \psi) \sin 2\varphi \right. \\ &- \left. \mathbf{x}_{\mathbf{r}} \mathbf{y}_{\mathbf{s}} \sin(2\varphi - \psi) \sin 2\varphi - \mathbf{z}_{\mathbf{r}} \mathbf{z}_{\mathbf{s}} (\cos 2\varphi + \frac{R}{S}) \right. + \\ &- \left. \mathbf{y}_{\mathbf{r}} \mathbf{y}_{\mathbf{s}} (\cos \psi + \frac{R}{S} \cos \psi \cos 2\varphi) \right] \end{split}$$

Some of the scalar components are an order of magnitude smaller than others so the cross terms may be neglected. The term  $y_r$  represents the missetting of the receiving slit normal to the vector R in Fig. 2. For a PSD this term is given by the spatial resolution of the detector and is small, therefore terms involving  $y_r y_f$  and  $y_r y_s$  and  $y_r x_s$  can be neglected since  $y_f y_s$ , and  $x_g$  are also very small. From Eq. 5. and Eq. 7.

$$2\epsilon_{\mathbf{r}} = (\delta_{\mathbf{r}} + \delta_{\mathbf{r}} + \delta_{\mathbf{r}})/\sin 2\varphi$$
 11.

Neglecting the axial divergence terms because the PSD slit height is small (3mm, equal to 1.2° for a diffractometer of radius 14.55 cm):

$$2e_{r} = R^{-2}[Ry_{r} - x_{r}y_{r} + \frac{y_{r}^{2}}{2} \frac{\cot 2\varphi}{\sin 2\varphi} - x_{r}x_{s}\cos(2\varphi - \psi)]$$
 12.

- 
$$x_r y_s \sin(2\phi - \psi)$$

The displacement is found by averaging  $2\epsilon_r$  over the focal spot, specimen, and receiving slit. Neither  $x_r$  and  $x_s$  nor  $x_r$  and  $y_s$  are correlated, thus:

$$2\epsilon_{\mathbf{r}} = R^{-2} \left[ R \langle \mathbf{y}_{\mathbf{r}} \rangle - \langle \mathbf{x}_{\mathbf{r}} \rangle \langle \mathbf{y}_{\mathbf{r}} \rangle + \frac{\langle \mathbf{y}_{\mathbf{r}}^2 \rangle}{2} \frac{\cot 2\phi}{\sin 2\phi} - \langle \mathbf{x}_{\mathbf{r}} \rangle \langle \mathbf{x}_{\mathbf{s}} \rangle \cos (2\phi - \psi) \right]$$

$$- \langle \mathbf{x}_{\mathbf{r}} \rangle \langle \mathbf{y}_{\mathbf{s}} \rangle \sin (2\phi - \psi)$$
13.

where  $\langle x_r y_r \rangle = \langle x_r \rangle \langle y_r \rangle$  is assumed. Now  $\langle x_s \rangle = x_s$  as  $x_s$  is approximately constant for a flat specimen. If the center of gravity of the illuminated area lies on the axis of rotation of the specimen,  $\langle y_s \rangle = 0$ . This is never possible because of the variation in intensity across the beam, but the average is still small. Both  $x_r$  and  $y_r$  will be functions of  $2\phi$  and the position of the PSD. Formulations for each are derived.

## 2.2. Derivation of $\langle x_r \rangle$ and $\langle y_r \rangle$

In the coordinate system for  $X_T$ ,  $x_T$  is the distance between the ideal focal point given by Eq. 2. and the detector in the direction parallel to R.  $y_T$  is defined as being perpendicular to R and dependent on the divergence of the primary beam. An estimate of both these quantitites can be made following a method presented by H. Zantopulos and C. F. Jatczak (111) in which they compared the errors in parafocusing and stationary or non-focusing methods of residual stress analysis. Equations are derived for the path of the incident and diffracted beams. Defining the position of the PSD by an equation in the same coordinate system, the intersection of the diffracted beam and the PSD can be specified. The distance from the focus, point B in Fig. 1., to the intersection of the diffracted ray and the PSD can then be determined and  $x_T$  and  $y_T$  found.

<sup>\*</sup> x is the displacement of the effective center of the diffracting volume from the center of the diffractometer.

The origin, 0, in Fig. 3. is the axis of rotation of the specimen and the cartesian coordinates z, j define the equatorial plane. Assuming a flat sample, a primary beam divergence of  $2\alpha$  and  $2\phi$  as the observed Bragg angle, equations are derived for a divergent beam.

A. Equation for the incident beam.

In Fig. 3., the slope of the central incident beam is given by  $-\cot\beta$ , where  $\beta=90-\phi$ . Using the law of sines in the triangle AOB to find the j axis intercept, the equations for the right and left incident beam are, respectively

$$j = -\cot(\beta - \alpha)z + R\sin\alpha/\sin(\beta - \alpha)$$

$$j = -\cot(\beta + \alpha)z - R\sin\alpha/\sin(\beta + \alpha)$$
14.

To generalize, let:

l = 1 for the right beam

1 - 0 for the central beam

 $\ell = -1$  for the left beam

Then the equation for the incident beam becomes

$$j = -\cot(\beta - l\alpha)z + lR\sin\alpha/\sin(\beta - l\alpha)$$
 15.

B. Intersection of incident beam and specimen surface.

The specimen surface can be defined by:

$$j = z tan \psi$$
 16.

where # is defined in Fig. 1. Equating Eq. 15 and Eq. 16, the coordinates of the intersections are:

$$z_{s} = \frac{lR\sin\alpha/\sin(\beta - l\alpha)}{\left[\cot(\beta - l\alpha) + \tan\psi\right]}$$
17.

$$j_s = z_s tan\psi$$
 18.



FIGURE 3 Geometry defining the angles of diffraction for the left and right divergent rays.

The subscript s in Eq. 18. refers to the intersection of the incident beam and specimen.

C. Equations for the diffracted beam.

The slope of the diffracted beam is given by  $\cot(\beta + l\alpha)$ .

Fig. 3. defines the j axis intercept for the left and right beams. For the diffracted beam:

$$j = \cot(\beta + l\alpha)z - z_{s}\tan(\beta + l\alpha)$$
 19.

D. Intersection of the diffracted beam and the PSD

It is convenient to describe the position of the PSD by the point at which it is tangent to the focusing circle,  $D_2$  in Fig. 4. The angle between the line connecting  $D_2$  and the origin and the j axis can be described by  $\beta$ '. The equation of the line passing through  $D_2$  and the origin is

$$j = (\cot \beta')_{\mathcal{L}}$$
 20.

The PSD is perpendicular to  $0-D_2$  and, therefore, the line representing the PSD has a slope of  $-\tan\beta'$ . The intercept of the line on which the PSD lies and the j axis is  $-R/\cos\beta'$  as seen in Fig. 4. The equation for the line on which the PSD lies is given by

$$j = -t \tan \beta' - R/\cos \beta'$$
 21.

The simultaneous solution of Eq. 19. and Eq. 21. will yield the coordinates of D1 (the intersection of any diffracted beam and the PSD).

$$\nu_{\rm D} = (\nu_{\rm s} \tan(\beta + \mu \alpha) - R/\cos\beta') (\frac{1}{(\cot(\beta + \mu \alpha) + \tan\beta')})$$
 22.

$$j_D = -z tan \beta' - R/cos \beta'$$



FIGURE 4 Geometry for the location of the position sensitive detector.

The distance from the sample to the detector is given by

$$R_{PSD} = (\iota_D^2 + j_D^2)^{\frac{1}{2}}$$
 23.

Fig. 5 details the error of  $x_r$  which has been defined as being parallel to R. The magnitude of  $x_r$  for the left, central, and right beams are almost identical as the divergence angle is small. The distance from the focal point B, given by Eq. 2., and the intersection of the beam on the PSD is given by:

$$\mathbf{x_r} \simeq \mathbf{R_{PSD}} - \mathbf{R_P}$$

$$= (z_D^2 + j_D^2)^{\frac{1}{2}} - \mathbf{R} \frac{\cos(\psi + \beta)}{\cos(\psi - \beta)}$$
24.

where  $\epsilon_D$  and  $j_D$  are calculated for the central beam.

Defining  $\beta_L$  as the angle between the origin and a line connecting the origin with the interesection of the left beam and the PSD and  $\beta_R$  similarly corresponding to the right beam, from Fig. 6.:

$$2\phi_{L} = 180 - \beta_{L} - \beta_{C}$$
 25. 
$$2\phi_{R} = 180 - \beta_{R} - \beta_{C}$$

where  $\theta_z = \tan^{-1}(^t\mathbf{D}/\mathbf{j_D})$  using the appropriate values of z and  $\mathbf{j}$  from Eq. 22. and Eq. 23. The average error is given by the difference between the angle of the central beam,  $2\theta_c$ , and the midpoint of the two extreme rays.

$$\Delta 2_{\varphi} = 2_{\varphi_{\mathbf{C}}} - (2_{\varphi_{\mathbf{C}}} + 2_{\varphi_{\mathbf{D}}})/2$$
 26.

An average value of yr is given by

$$\langle y_r \rangle = R_p tan \Delta 2_{\phi}$$
 27.



FIGURE 5 Geometry for  $\mathbf{x_r}$  at  $\psi\!=\!0^{\circ}$  .



FIGURE 6 Geometry for  $y_r$  at  $\psi=\psi^o$ . The terms  $B_L$  and  $B_r$  describe the angle between the j axis and a line connecting the origin and the intersection of the left and right diffracted beams with the PSD.

It has been shown <sup>(111)</sup>the proper value is more like 1/3 of this average because the beam decreases in intensity rapidly on its edges. Eq. 27 is a very liberal estimate.

## 3 Results

The defocusing error is given by Eq. 13. The terms  $\mathbf{x_r}$  and  $\mathbf{y_r}$  pertaining to the distance of the PSD from the focusing circle are given by Eq. 24. and 27. respectively. The remaining terms  $\langle \mathbf{x_s} \rangle$  and  $\langle \mathbf{y_s} \rangle$  account for the interaction between the defocusing and sample position and a reasonable estimate of each must be used to determine the defocusing error.

An estimate of  $\langle y_s \rangle$  is difficult as it depends on the alignment, however, Wilson (110) suggests a value of .25mm as the upper boundary. The term  $\langle x_s \rangle$  represents the point of diffraction in the specimen. For  $CrK_{\alpha}$  radiation this is less than .05mm in all cases.

The defocusing error was calculated assuming the center of the PSD is tangent to the  $\psi=0^\circ$  focusing circle at  $156^\circ\,2\theta$ . Table 1 tabulates the error assuming both  $<\!x_s>$  and  $<\!y_s>$  are zero for a radius of 14.55cm. The error, 2 $\varepsilon$ , in degrees is given for various values of the observed angle  $2\phi$  (column 1),  $\psi$  (column 2) and  $\phi$  (column 3). The error, 2 $\varepsilon$ , is given in column 4 and the true diffraction angle,  $2\theta$ , as given by Eq. 3. in column 5. The defocusing error is seen to be very small over the  $10^\circ$  range. In terms of stress for a peak shift from  $154^\circ\,2\theta$  at  $\psi=0^\circ$  to  $156^\circ\,2\theta$  at  $\psi=45^\circ$ , representing a stress of opproximately 1200 MPa (174000 ksi), the error due to defocusing is only +2MPa(+290 psi) for a beam divergence ( $2\phi$ ) of  $2^\circ$ . Table 2 tabulates the error for  $<\!x_s>$  = .05mm and  $<\!y_s>$  = .25mm. In this case the defocusing errors are larger, especially at  $\psi=60^\circ$  because

TABLE 1

Defocusing Error for Position Sensitive Detector PSD tangent to  $\psi{=}0^{\circ}$  focusing circle at  $156^{\circ}2\theta$ 

| $(\leq x_e > 0,$ | 401                       |
|------------------|---------------------------|
| (x = 0,          | <y 0)<="" =="" td=""></y> |
|                  | 2 5                       |

|            | S            | , , ,    |                  |           |
|------------|--------------|----------|------------------|-----------|
| 20         | Ψ            | œ        | 2€               | 20        |
| (degrees   | )(degrees)(d | degrees) | (degrees)        | (degrees) |
| 150        | 0.0          | 0.5      | 0.0023           | 150.002   |
| 152        | 0.0          | 0.5      | 0.0022           | 152.002   |
| 154        | 0.0          | 0.5      | 0.0020           | 154.002   |
| 156        | 0.0          | 0.5      | 0.0019           | 156.002   |
| 158        | 0.0          | 0.5      | 0.0017           | 158.002   |
| 160        | 0.0          | 0.5      | 0.0015           | 160.002   |
| 150        | 0.0          | 1.0      | 0.0093           | 150.009   |
| 152        | 0.0          | 1.0      | 0.0093           | 152.009   |
| 154        | 0.0          | 1.0      | 0.0087           | 154.008   |
|            |              |          |                  |           |
| 156        | 0.0          | 1.0      | 0.0074           | 156.008   |
| 158        | 0.0          | 1.0      | 0.0068           | 158.007   |
| 160        | 0.0          | 1.0      | 0.0062           | 160.006   |
| 150        | 45.0         | 0.5      | 0.0013           | 150.001   |
| 152        | 45.0         | 0.5      | 0.0013           | 152.001   |
| 154        | 45.0         | 0.5      | 0.0012           | 154.001   |
| 156        | 45.0         | 0.5      | 0.0012           | 156.001   |
| 158        | 45.0         | 0.5      | 0.0012           | 158.001   |
| 160        | 45.0         | 0.5      | 0.0011           | 160.001   |
| 150        | 45.0         | 1.0      | 0.0050           | 150.005   |
|            |              | 1.0      | 0.0050           | 152.005   |
| 152<br>154 | 45.0         | 1.0      | 0.0050<br>0.0049 | 154.005   |
|            | 45.0<br>45.0 | 1.0      | 0.0049           | 156.005   |
| 156        |              | 1.0      | 0.0048           | 158.005   |
| 158        | 45.0         | 1.0      |                  | 160.005   |
| 160        | 45.0         | 1.0      | 0.0045           | 160.003   |
| 150        | 60.0         | 0.5      | 0.0007           | 150.001   |
| 152        | 60.0         | 0.5      | 0.0008           | 152.001   |
| 154        | 60.0         | 0.5      | 0.0008           | 154.001   |
| 156        | 60.0         | 0.5      | 0.0009           | 156.001   |
| 158        | 60.0         | 0.5      | 0.0009           | 158.001   |
| 160        | 60.0         | 0.5      | 0.0009           | 160.001   |
|            |              |          |                  |           |
| 150        | 60.0         | 1.0      | 0.0028           | 150.003   |
| 152        | 60.0         | 1.0      | 0.0031           | 152.003   |
| 154        | 60.0         | 1.0      | 0.0033           | 154.003   |
| 156        | 60.0         | 1.0      | 0.0034           | 156.004   |
| 158        | 60.0         | 1.0      | 0.0035           | 158.004   |
| 160        | 60.0         | 1.0      | 0.0036           | 160.004   |
|            |              |          |                  |           |

TABLE 2

Defocusing Error for Position Sensitive Detector PSD Tangent to  $\psi{=}0$  focusing circle at  $156^\circ{2}\theta$ 

 $x_s > 0.05 \text{mm}, (y_s > .25 \text{mm})$ 

| φ        | ¥    | α         | 2€        | 20        |
|----------|------|-----------|-----------|-----------|
| (degrees |      | (degrees) | (degrees) | (degrees) |
| 150      | 0.0  | 0.5       | 0.0023    | 150.002   |
| 152      | 0.0  | 0.5       | 0.0022    | 152.002   |
| 154      | 0.0  | 0.5       | 0.0020    | 154.002   |
| 156      | 0.0  | 0.5       | 0.0019    | 156.002   |
| 158      | 0.0  | 0.5       | 0.0017    | 158.002   |
| 160      | 0.0  | 0.5       | 0.0015    | 160.002   |
| 150      | 0.0  | 1.0       | 0.0093    | 150.009   |
| 152      | 0.0  | 1.0       | 0.0087    | 152.009   |
| 154      | 0.0  | 1.0       | 0.0081    | 154.008   |
| 156      | 0.0  | 1.0       | 0.0074    | 156.008   |
| 158      | 0.0  | 1.0       | 0.0068    | 158.007   |
| 160      | 0.0  | 1.0       | 0.0062    | 160.006   |
| 150      | 45.0 | 0.5       | - 0.0181  | 149.982   |
| 152      | 45.0 | 0.5       | - 0.0167  | 151.983   |
| 154      | 45.0 | 0.5       | - 0.0153  | 153.985   |
| 156      | 45.0 | 0.5       | - 0.0139  | 155.986   |
| 158      | 45.0 | 0.5       | - 0.0126  | 157.988   |
| 160      | 45.0 | 0.5       | - 0.0122  | 159.989   |
| 150      | 45.0 | 1.0       | - 0.0144  | 149.986   |
| 152      | 45.0 | 1.0       | - 0.0130  | 151.987   |
| 154      | 45.0 | 1.0       | - 0.0116  | 153.988   |
| 156      | 45.0 | 1.0       | - 0.0103  | 155.990   |
| 158      | 45.0 | 1.0       | - 0.0091  | 157.991   |
| 160      | 45.0 | 1.0       | - 0.0079  | 159.992   |
| 150      | 60.0 | 0.5       | - 0.0311  | 149.969   |
| 152      | 60.0 | 0.5       | - 0.0292  | 151.971   |
| 154      | 60.0 | 0.5       | - 0.0273  | 153.973   |
| 156      | 60.0 | 0.5       | - 0.0254  | 155.975   |
| 158      | 60.0 | 0.5       | - 0.0234  | 157.977   |
| 160      | 60.0 | 0.5       | - 0.0214  | 159.979   |
| 150      | 60.0 | 1.0       | - 0.0289  | 149.971   |
| 152      | 60.0 | 1.0       | - 0.0269  | 151.973   |
| 154      | 60.0 | 1.0       | - 0.0248  | 153.975   |
| 156      | 60.0 | 1.0       | - 0.0228  | 155.977   |
| 158      | 60.0 | 1.0       | - 0.0207  | 157.979   |
| 160      | 60.0 | 1.0       | - 0.0187  | 159.981   |

of the correlation between the specimen and beam missettings with the receiving slit missetting. From Eq. 13. it can be seen that  $\propto_s$  is most important at  $\psi$ =0 where the cosine term is large and  $<_s$  is most important at  $\psi$ = $\psi$ ° where the sine term is large. Assuming the same 2° peak shift as before, the error in the peak shift between  $\psi$ =0° and  $\psi$ =45° is +4.2MPa (+600 psi), still a small error considering the large peak shift.

Table 3 tabulates the same quantities,  $\langle x_s \rangle = .05 \text{mm}$  and  $\langle y_s \rangle = .25 \text{mm}$ , for the PSD being tangent to the  $\psi=0^\circ$  focusing circle at  $139^\circ 2\theta$ , a typical diffraction angle for the  $\text{Cr}_{K\alpha}$  311 diffraction plane in Al. The error is small for  $\psi=0$  but is quite large at  $\psi=45^\circ$  and  $\psi=60^\circ$ . This is because the sine term in Eq. 13. is large at this angle and the term  $\langle y_s \rangle$  was .25mm. Assuming a peak shift from  $139^\circ 2\theta$  to  $141^\circ 2\theta$  using  $\psi$  tilts of  $0^\circ$  and  $60^\circ$  respectively, the error due to defocusing for Al, having a stress constant of 255 MPa/°20 (37,000 psi/°20) is -6.4 MPa (-920 psi). For  $\langle y_s \rangle = 0$ , the defocusing error is less than  $.006^\circ 2\theta$  at  $\psi=45^\circ$ . This effect is expected because at smaller 20, the effective sample positioning and beam alignment are more critical.

In summary, the defocusing error is small in the measurement of residual stress using the PSD and it is not necessary to apply mathematical corrections, especially if the X-ray tube is aligned properly so that the term  $\langle y_s \rangle$  is small.

TABLE 3 Defocusing Error for Position Sensitive Detector PSD tangent to  $\psi{=}0^{\circ}$  focusing circle at  $139^{\circ}\,2\theta$ 

|           | (0        | $x_s > = .05mm$ | $y_{s} > = .25m$ | nm)       |
|-----------|-----------|-----------------|------------------|-----------|
| 2φ        | ψ         | α               | 2er              | 20        |
| (degrees) | (degrees) | (degrees)       | (degrees)        | (degrees) |
| 135       | 0.0       | 0.5             | 0.0036           | 135.004   |
| 137       | 0.0       | 0.5             | 0.0034           | 137.004   |
| 139       | 0.0       | 0.5             | 0.0033           | 139.003   |
| 141       | 0.0       | 0.5             | 0.0031           | 141.003   |
| 143       | 0.0       | 0.5             | 0.0029           | 143.003   |
| 145       | 0.0       | 0.5             | 0.0027           | 145.003   |
|           |           |                 |                  |           |
| 135       | 0.0       | 1.0             | 0.0144           | 135.015   |
| 137       | 0.0       | 1.0             | 0.0138           | 137.014   |
| 139       | 0.0       | 1.0             | 0.0131           | 139.013   |
| 141       | 0.0       | 1.0             | 0.0124           | 141.012   |
| 143       | 0.0       | 1.0             | 0.0117           | 143.012   |
| 145       | 0.0       | 1.0             | 0.0110           | 145.011   |
|           |           |                 |                  |           |
| 135       | 45.0      | 0.5             | - 0.0279         | 134.972   |
| 137       | 45.0      | 0.5             | - 0.0266         | 136.974   |
| 139       | 45.0      | 0.5             | - 0.0253         | 138.975   |
| 141       | 45.0      | 0.5             | - 0.0240         | 140.976   |
| 143       | 45.0      | 0.5             | - 0.0226         | 142.977   |
| 145       | 45.0      | 0.5             | - 0.0213         | 144.979   |
|           |           |                 |                  |           |
| 135       | 45.0      | 1.0             | - 0.0237         | 134.976   |
| 137       | 45.0      | 1.0             | - 0.0223         | 136.978   |
| 139       | 45.0      | 1.0             | - 0.0208         | 138.979   |
| 141       | 45.0      | 1.0             | - 0.0194         | 140.981   |
| 143       | 45.0      | 1.0             | - 0.0181         | 142.982   |
| 145       | 45.0      | 1.0             | - 0.0167         | 144.983   |
|           |           |                 |                  |           |
| 135       | 60.0      | 0.5             | - 0.0421         | 134.958   |
| 137       | 60.0      | 0.5             | - 0.0408         | 136.959   |
| 139       | 60.0      | 0.5             | - 0.0394         | 138.961   |
| 141       | 60.0      | 0.5             | - 0.0380         | 140.962   |
| 143       | 60.0      | 0.5             | - 0.0365         | 142.964   |
| 145       | 60.0      | 0.5             | - 0.0349         | 144.965   |
| 135       | 60.0      | 1.0             | - 0.0407         | 134.959   |
| 137       | 60.0      | 1.0             | - 0.0390         | 136.961   |
| 139       | 60.0      | 1.0             | - 0.0373         | 138.963   |
| 141       | 60.0      | 1.0             | - 0.0356         | 140.965   |
| 143       | 60.0      | 1.0             | - 0.0338         | 142.966   |
| 145       | 60.0      | 1.0             | - 0.0320         | 144.968   |
| -         |           |                 | 0.0520           | 144.900   |

#### APPENDIX

## Calibration Procedure

A position sensitive detector determines only the relative position of incomming photons in linear units along the detector. For X-ray diffraction studies, this relative position must be related to absolute units of the diffraction angle, 20. Three factors must be determined;

1) the absolute 20 position of one point on the detector, 2) the relation between a fixed increment of distance along the detector to a 20 increment, and 3) errors caused by the detector being flat rather than curved to the focusing circle of the diffractometer.

The third factor arises because in parafocusing geometry, the entire detector cannot be located at the true focal position. This produces a defocusing error in the determination of the real  $2\theta$  position. This problem is analyzed in depth in the main text and shown to be negligible, (an error of .002  $^{\circ}$  was found when located  $5^{\circ}$  off the tangent to the focusing circle.)

The resolution between a fixed increment along the detector and the increment in degrees 20 is not a constant quantity due to the curved focusing circle. Increments along the detector are measured in units of channels on the MCA from any reference position along the detector so that it is most convenient to calibrate the detector in terms of degrees 20 per channel increment.

Referring to Fig. A.1 the angle  $2\phi$  is given by

$$2\varphi = \tan^{-1}\left(\frac{nz}{R}\right) \tag{A.1}$$

where nz is the length along the PSD from the reference position, q,
where q is taken as the point of tangency of the detector to the focusing



FIGURE A.1 Illustration of the terms used in the calibration of the PSD. The term  $2 \omega$  represents the angular range covered by the detector, nz is the total number of channels and  $\alpha$  is the angular increment for one channel, termed z, near the point of tangency of the PSD to the focusing circle.

known precisely because the position of the anode wire in the detector is difficult to determine. Also R and nz must be expressed in the same units (either channels or mm) which is inconvenient. It is practical in this case to eliminate R by defining a constant, k, such that

$$k = \alpha/z \tag{A.2}$$

where  $\alpha$  is the angle determining the distance z, which can be made to be 1 channel (see Fig. A.1). Substituting tan  $\alpha$  = z/R and Eq. A.2 into Eq. A.1:

$$2\varphi = \tan^{-1} (n \tan \alpha) = \tan^{-1} (n \tan kz)$$
. (A.3)

The true  $2\theta$  position is given by

$$2\theta = 2\theta_{o} + 2\varphi \tag{A.4}$$

where  $2\theta$  is the  $2\theta$  value for the point of tangency of the PSD to the goniometer circle.

By determining a calibration constant k in units of °2 \(^2\)/channel which is related to the conversion of distance (or channels) to angle near the point of tangency of the detector to the focusing circle, Eq. A.3 is subsequently used to calculate the angular position along the detector.

Calibration of the PSD requires two quantities, k and the position of q in terms of channel number. These were obtained in the following manner:

1) The 1090-1 sample exhibiting a sharp diffraction profile with excellent  $\kappa_{\alpha_1}$  -K  $_{\alpha_2}$  separation from the 211 planes was mounted



FIGURE A.2 Diffraction profile from 1090-1 sample.using the position sensitive detector. 211 peak,  $\psi = 0^{\circ}$ ,  $CrK_{\circ}$  radiation, 40KV-14mA,  $K_{\beta}$  filter,  $1^{\circ}$  divergent slit. The pattern was obtained in 100 seconds with the peak having 6107 counts.



FIGURE A.3 Diffraction profile from the 1045-2 sample. Same parameters as in Fig. 2.10. The pattern was obtained in 100 seconds with the peak having 2155 counts.

- and the 211 K  $_{\gamma_1}$  and 211 K  $_{\gamma_2}$  peak positions determined using the scintillation detector.
- 2) The  $2\theta$  arm was set to the 211  $K_{O'1}$   $2\theta$  peak position and the PSD was mounted. The position of the two 211 peaks were determined in terms of channel number. Figure A.2 shows the profile from this sample as obtained by the PSD.

The reference  $^{\circ}2\theta$  position, q, in terms of channel number is given by the  $K_{\alpha 1}$  peak while the separation between the  $K_{\alpha 1}$  -  $K_{\alpha 2}$  peaks yield a value for k where z is taken as 1 channel. In this study k was usually  $.0202^{\circ}$  29/channel using 1024 channels for full storage of the PSD output in the MCA. Translating the detector perpendicular to the diffracted beam changes the absolute position, q, while moving the detector along the goniometer radius effects the calibration constant, k. Changes in the delay times (see Fig. A.4) on the crossover pickoffs will effect both k and q.

This calibration procedure is simpler than trying to apply Eq. A.1, because both the goniometer radius, R, and the conversion of channels into mm must be determined, neither of which is practical for rapid measurements.

To determine how serious is the non-linear relation between channels and  $^{\circ}2\theta$ , a comparison of the exact relation, Eq. A.3, to a constant calibration relation,  $2\theta = 2\theta_0 + k(nz)$  where k, n and z are as defined previously is given in Table A.1. For angles less than about  $4^{\circ}$  the approximation is accurate enough for peak determination. (The top 15% of a diffraction peak in the back reflection region is not usually greater than  $6^{\circ}$  wide or  $\pm 3^{\circ}$  from the tangency point.) Figure A.3 depicts the broad profile obtained from the 1045-2 sample. For other types of diffraction studies, notably small angle scattering, data may be



FIGURE A.4 Signal processing diagram depicting the timing sequence in determining the position of the incoming photon.

TABLE A.1

TABULATED VALUES FOR TWO THETA INCREMENTS
USING THE EXACT CALCULATION (EQ. A.3) AND APPROXIMATE CALCULATION

| N   | Eq. 2.5<br>(°2θ) | K * N<br>(°2θ) |
|-----|------------------|----------------|
| 0   | 0                | 0              |
| 25  | .0505            | .0505          |
| 50  | 1.0099           | 1.0100         |
| 75  | 1.5147           | 1.5150         |
| 100 | 2.0192           | 2.0200         |
| 125 | 2.5234           | 2.5250         |
| 150 | 3.0272           | 3.0300         |
| 175 | 3.5305           | 3.5350         |
| 200 | 4.0333           | 4.0400         |
| 225 | 4.5355           | 4.5450         |
| 250 | 5.0370           | 5.0500         |

<sup>\*</sup>The calibration constant K was taken as  $.0202\ ^{\circ}2\theta/\text{channel}$ . N is the distance along the PSD (in terms of channels on the MCA) from the tangent point of the detector to the focusing circle (N=nz).

collected out to  $7^\circ$  or  $8^\circ$   $2\theta$  from the point of tangency necessitating use of the exact formalization, unless R is made larger, say 1.5 times that for a standard diffractometer of radius 14.5 cm.

## REFERENCES

- 108. Residual Stress Measurement by X-Ray Diffraction-SAE J 784a, 2nd Edition, Society of Automotive Engineers, Inc. (1971).
- 109. G. Kunze, A. Angew, Phys. 17, 412 (1964).
- 110. A. J. C. Wilson, Mathematical Theory of X-Ray Powder Diffractometry, Philips Technical Library (1963).
- 111. C. Jatczak and H. Zantopulos, Adv. in X-Ray Analysis, 14, 360 (1970).

| Security Classification                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOC                                                                | UMENT CONTROL DATA - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R & D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                    | ract and indexing annotation must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | entered when the overall report is classified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ORIGINATING ACTIVITY (Corporate author)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24. REPORT SECURITY CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| J. B. Cohen, Northwestern Unive                                    | ersity, Evanston, IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2b. GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| REPORT TITLE                                                       | AND PROPERTY OF THE PARTY OF TH | And the second s |
| GEOMETRICAL PROBLEMS WITH A POS<br>ITS USE IN THE MEASUREMENT OF S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOR EMPLOYED ON A DIFFRACTOMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 DESCRIPTIVE NOTES (Type of report and inclusive                  | detes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Technical Report No. 18                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5- AUTHORIES (Pisst name, middle initial, last name)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| M. R. James J. B. Cohen                                            | 1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 Jun 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| REPORT DATE                                                        | 74. TOTAL NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OF PAGES 76. NO. OF REFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N00014-75-C-0580                                                   | 30 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M. CONTRACT OR GRANT NO.                                           | 98. ORIGINATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R'S REPORTUNUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5345-455                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (X 7 - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| b. PROJECT NO.                                                     | Technic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al Report No. 18 (14) / 1-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c.                                                                 | 9b. OTHER REP<br>this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ORT NO(5) (Any other numbers that may be assigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| d.                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10. DISTRIBUTION STATEMENT                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Distribution of this document i                                    | s unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11. SUPPLEMENTARY NOTES                                            | 12. SPONSORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MILITARY ACTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11. SUPPLEMENTARY NOTES                                            | 12. SPONSORING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MILITARY ACTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Defocussing errors associated with the use of a straight one dimensional position sensitive detector on a diffractometer are examined. Over a  $10^{\circ}\,2\theta$  range the error is 0.02°20 at worst.

260810

Low

Unclassified

DD FORM .. 1473 (P)

(PAGE 1)

Security Classification

Unclassified

| KEY WORDS                   | LIN  | LINK A 💉 |         |    | LINKC |   |
|-----------------------------|------|----------|---------|----|-------|---|
| 75. 10403                   | ROLE | WT       | ROLE    | wT | ROLE  | w |
|                             |      |          |         |    |       |   |
| X-Ray Stress Measurement    |      |          |         |    |       |   |
| Position Sensitive Detector |      |          |         |    |       |   |
| PSD                         |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      | 270 1    |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      | 1        |         |    |       |   |
|                             |      |          |         |    |       |   |
| /                           |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          | 678/614 |    |       |   |
|                             |      |          |         |    | 1     |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         | ,  |       |   |
|                             |      |          |         |    |       |   |
| ,                           |      |          |         |    |       |   |
| /                           |      |          |         |    |       |   |
|                             |      |          | 100     |    |       |   |
| ,                           |      |          |         |    |       |   |
| ,                           |      |          |         |    |       |   |
| - 1                         |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
|                             |      |          |         |    |       |   |
| 2.7                         |      |          |         |    |       |   |
| 11/                         |      |          | -       |    |       |   |

DD . FORM . 1473 (BACK)
(PAGE 2)

Unclassified
Security Classification