Training Course of Design Compiler

- T. –W. Tseng, "ARES Lab 2008 Summer Training Course of Design Compiler"
- REF:
- CIC Training Manual Logic Synthesis with Design Compiler, July, 2006
- TSMC 0.18um Process 1.8-Volt SAGE-XTM Stand Cell Library Databook, September, 2003
- TPZ973G TSMC 0.18um Standard I/O Library Databook, Version 240a, December 10, 2003
- Artisan User Manual

Speaker: T. -J. Chen

Outline

- □ Basic Concept of the Synthesis
- □ Synthesis Using Design Compiler

Basic Concept of the Synthesis

Cell-Based Design Flow

What is Synthesis

☐ Synthesis = translation + optimization + mapping

```
if(high_bits == 2'b10)begin
    residue = state_table[i];
   end
   else begin
   residue = 16'h0000:
                                      Translate (HDL Compiler)
   end
      HDL Source
         (RTL)
         No Timing Info.
                                                               Optimize + Mapping
                                                                (Design Compiler)
                                 Generic Boolean
                                      (GTECT)
                                           Timing Info.
The synthesis is constraint driven
and technology independent !!
                                                                 Target Technology
```

Compile

Synthesizable Verilog

- □ Verilog Basis
 - parameter declarations
 - wire, wand, wor declarations
 - reg declarations
 - input, output, inout declarations
 - continuous assignments
 - module instructions
 - gate instructions
 - always blocks
 - task statements
 - function definitions
 - for, while loop
- ☐ Synthesizable Verilog primitives cells
 - and, or, not, nand, nor, xor, xnor
 - bufif0, bufif1, notif0, notif1

Synthesizable Verilog (Cont')

Operators

- Binary bit-wise (~, &, |, ^, ~^)
- Unary reduction (&, ~&, |, ~|, ^, ~^)
- Logical (!, &&, ||)
- 2's complement arithmetic (+, -, *, /, %)
- Relational (>, <, >=, <=)</p>
- Equality (==, !=)
- Logic shift (>>, <<)</p>
- Conditional (?:)
- Concatenation ({ })

Notice Before Synthesis

Your RTL design

- Functional verification by some high-level language
 - Also, the code coverage of your test benches should be verified (i.e. VN)

Area

Better

Cycle

Γime

- Coding style checking (i.e. n-Lint)
 - ☐ Good coding style will reduce most hazards while synthesis
 - □ Better optimization process results in better circuit performance
 - Easy debugging after synthesis

Constraints

- The area and timing of your circuit are mainly determined by your circuit architecture and coding style
- There is always a trade-off between the circuit timing and area
- In fact, a super tight timing constraint may be worked while synthesis, but failed in the Place & Route (P&R) procedure

Synthesis Using Design Compiler

Related Files

Folder	Name	Description
GTL	.synopsys_dc.setup	Design compiler setup file
	my_script.tcl	Synthesis script file
	my_design.v	Verilog files
	tmy_design.v	Test bench
	tsmc18.v	Verilog model of standard cells

Ex:

<.synopsys_dc.setup> File

- ☐ link_library: the library used for interpreting input description
 - Any cells instantiated in your HDL code
 - Wire load or operating condition modules used during synthesis
- □ target_library: the ASIC technology which the design is mapped
- □ **symbol_library**: used for schematic generation
- search_path: the path for unsolved reference library
- □ **synthetic_path**: designware library

<.synopsys_dc.setup> File (Cont')

■ MEMs libraries are also included in this file

Ex:

(.synopsys_dc.setup File)

Note that the MEM <u>DB files</u> are converted from the LIB files which are generated from the Artisan!!

Settings for Using Memory

```
Convert *.lib to *.db
                                                  any memory LIB file
         %> dc shell -t
         dc_shell-t> read_lib t13spsram512x32_slow_syn.lib
         dc_shell-t> write_lib t13spsram512x32 -output \
                                                 user library name, which should
         t13spsram512x32_slow_syn.db
                                                 be the same as the library name
     Modify <.synopsys_dc.setup> File: in the Artisan
         set link_library "* slow.db t13spsram512x32_slow.db
                          dw foundation.sldb"
                                                                 add to the file
memory DB file
         set target_library "slow.db t13spsram512x32_slow.db"/
         add a "search path" to this file
     Before the synthesis, the memory HDL model should be
     blocked in your netlist
                                                   'include "sr_memory_1k.v"
                                                 module bisr_mem(clk,rst,ams,CS)
                                                 bisr_mode.cmd_dome.BGO.CSO.shi
                                                 parameter WORD_LENGTH = 64;
                                                 parameter ADR_LEN = 13;
Advanced Reliable Systems (ARES) Lab.
```

Synthesis Flow

Getting Started

- Prepare Files:
 - *.v files
 - *.db files (i.e. memory is used)
 - Synthesis script file (i.e. described later)

Ш

linux %> dv& (XG Mode)

(GUI view of the Design Vision)

- □ Read netlists or other design descriptions into Design Compiler
- ☐ File/Read
- Supported formats
 - Verilog: .v
 - VHDL: .vhd
 - System Verilog: .sv
 - EDIF
 - PLA (Berkeley Espresso): .pla
 - Synopsys internal formats:
 - □ DB (binary): .db
 - ☐ Enhance db file: .ddc
 - Equation: .eqn
 - ☐ State table: .st

-{ Command Line }-

read_file -format verilog file name

PAD Parameters Extraction

- ☐ Input PAD
 - Input delay
 - Input driving
- Output PAD
 - Output delay
 - Output loading

```
(delay, driving) CORE.v (delay, loading)
```

```
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {ADDR_S[0]3]}
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {bira_en3}]
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {test_done3}]
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {bisr_mode[1]3}]
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {bisr_mode[0]3}]
set_load -pin_load 0.06132 [get_ports {cmd_done3}]
set_load -pin_load 0.06132 [get_ports {EGO3}]
set_load -pin_load 0.06132 [get_ports {Shift_en3}]
set_load -pin_load 0.06132 [get_ports {bira_out_valid3}]
set_load -pin_load 0.06132 [get_ports {bira_out_valid3}]
set_load -pin_load 0.06132 [get_ports {addr_change3}]
set_load -pin_load 0.06132 [get_ports {addr_change3}]
set_load -pin_load 0.06132 [get_ports {addr_change3}]
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {si3}]
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {si3}]
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {si3}]
set_driving_cell -lib_cell PDIDGZ -library tpz973gbc -pin C -from_pin PAD \
-no_design_rule [get_ports {si3}]
set_load -pin_load 0.06132 [get_ports {soantest3}]
set_load -pin_load 0.06132 [get_ports {soantest3}]
set_load -pin_load 0.06132 [get_ports {soantest3}]
```

(chip_const.tcl)

```
-{ Command Line }-
```

current_design CHIP characterize [get_cells CORE] current_design CORE write_script -format dctcl -o chip_const.tcl

Uniquify

- Select the most top design of the hierarchy
- ☐ Hierarchy/Uniquify/Hierarchy

Name ∇	Design Area	Dont Touch			
MEM	0	0 undefined			
ROM	0	0 undefined			
SES_ID	0	0 undefined			
SYN_DEC_8_0	0	undefined			
SYN_DEC_8_1	0	undefined			
SYN_DEC_8_2	0	undefined			
SYN_DEC_8_3	0	undefined			
SYN_DEC_8_4	0	undefined			
SYN_DEC_8_5	0	undefined			
SYN_DEC_8_6	0	undefined			
SYN_DEC_8_7	0	0 undefined			
addr_present	0	undefined			
addr_previous1	0	0 undefined			
addr_previous2	0	0 undefined			
b_to_g_0	0	undefined			
b_to_g_1	0	0 undefined			


```
design_vision-xg-t> uniquify
Removing uniquified design 'b_to_g'.
Removing uniquified design 'SYN_DEC_8'.
Uniquified 2 instances of design 'b_to_g'.
Uniquified 8 instances of design 'SYN_DEC_8'.
```

(Design View)

(Log Window)

uniquify { Command Line }

Design Environment

Setting Design Environment

- Setting Operating Environment
- □ Setting Input Driving Strength
- Setting Output Loading
- Setting Input/Output Delay
- Setting Wire Load Model

Setting Operating Condition

☐ Attributes/Operating Environment/Operating Conditions

{ Command Line }

set_operating_conditions -max "slow" -max_library "slow" -min "fast"\
-min_library "fast"

Setting Drive Strength/Input Delay for PADs

Assume that we use the input PAD "PDIDGZ"

-{ Command Line }-

set_drive [expr 0.288001] [all_inputs]
set_input_delay [expr 0.34] -clock clk [all_inputs]

Setting Load/Output Delay for PADs

□ Assume that we use the output PAD "PDO24CDG"

set_load [expr 0.06132] [all_outputs]
set_output_delay [expr 2] [all_outputs]

Setting Wire Load Model

Attributes/Operating Environment/Wire Load

{ Command Line }_

set_wire_load_model -name "tsmc18_wl10" -library "slow"
set_wire_lode_mode "top"

Clock Constraints

Setting Clock Constraints

- Period
- Waveform
- Uncertainty
 - Skew
- Latency
 - Source latency
 - Network latency
- Transition
 - Input transition
 - Clock transition
- □ Combination Circuit Maximum Delay Constraints

Sequential Circuit -> Specify Clock

- ☐ Select the "clk" pin on the symbol
- ☐ Attributes/Specify Clock

- set_fix_hold: respect the hold time requirement of all clocked flip-flops
- set_dont_touch_network: do not re-buffer the clock network

Specify Clock () (X Clock name: clk Port name: clk □ Remove clock Clock creation Period: 10 Edge Value Add edge pair 5.000 Remove edge pair 10.000 Invert wave form 5.00 Fix hold Don't touch network Cancel Apply

______ { Command Line } creat_clock -period 10 [get_ports clk]

set_dont_touch_network [get_clocks clk]
set_fix_hold [get_clocks clk]

Setting Clock Skew

Different clock arrival time

Ex:

experience

Small circuit: 0.1 ns

Large circuit: 0.3 ns

memory_8k_64_2r_2c/aru/U488/Y (MXI4X1) memory 8k 64 2r 2c/aru/U668/Y (NOR2X1)	0.40 0.09	10.69 r 10.77 f
memory 8k 64 2r 2c/aru/data in sc[0] (aru)	0.00	10.77 f
memory 8k 64 2r 2c/sc memory/D[0] (sc memory)	0.00	10.77 f
data arrival time		10.77
clock clk (rise edge)	10.00	10.00
clock network delay (ideal)	1.00	11.00
clock uncertainty	-0.10	10.90
memory_8k_64_2r_2c/sc_memory/CLK (sc_memory)	0.00	10.90 r
library setup time	-0.12	10.78
data required time		10.78
data required time		10.78
data arrival time		-10.77
slack (MET)		0.00

(Timing Report)

{ Command Line }

set_clock_uncertainty 0.1 [get_clocks clk]

Setting Clock Latency

- Source latency is the propagation time from the actual clock origin to the clock definition point in the design
- This setting can be avoid if the design is without the clock generator
 Ex:

- experience
 - Small circuit: 1 ns
 - Large circuit: 3 ns

{ Command Line }____

set_clock_latency 1 [get_clocks clk]

Setting Ideal Clock

- ☐ Since we usually let the clock tree synthesis (CTS) procedure performed in the P&R (i.e. set_dont_touch_network), the clock source driving capability is poor
- ☐ Thus, we can set the clock tree as an ideal network without driving issues
 - Avoid the hazard in the timing evaluation

{ Command Line }

set_ideal_network [get_ports clk]

Setting Clock Transition

- experience
 - < 0.5ns
 - CIC tester: 0.5 ns

Combination Circuit – Maximum Delay Constraints

- ☐ For combinational circuits primarily (i.e. design with no clock)
 - Select the start & end points of the timing path
 - Attributes/Optimization Constraints/Timing Constraints

Design Rule Constraints

Setting Design Rule Constraints

- □ Area Constraint
- □ Fanout Constraint

Setting Area/Fanout Constraint

- Attributes/Optimization Constraints/Design Constraints
- ☐ If you only concern the circuit area, but don't care about the timing
 - You can set the max area constraints to 0

set_max_area 0
set_max_fanout 50 [get_designs CORE]

Compile the Design

Compile the Design

□ Design/Compile Design

-{ Command Line }-

compile -map_effort high -boundary_optimization

Assign Problem

The syntax of "assign" may cause problems in the LVS

```
assign \( \( \text{A[19]} = \text{A[19]}; \)
assign \( \text{A[18]} = \text{A[18]}; \)
assign \( \text{A[17]} = \text{A[17]}; \)
assign \( \text{A[16]} = \text{A[16]}; \)
assign \( \text{ABSVAL[19]} = \text{A[19]}; \)
assign \( \text{ABSVAL[18]} = \text{A[18]}; \)
assign \( \text{ABSVAL[17]} = \text{A[17]}; \)
assign \( \text{ABSVAL[16]} = \text{A[16]}; \)
assign \( \text{ABSVAL[15]} = \text{A[15]}; \)
```

```
\Rightarrow
```

```
BUFX1 X37X( .I(A[19]), .Z(ABSVAL[19]) );
BUFX1 X38X( .I(A[18]), .Z(ABSVAL[18]) );
BUFX1 X39X( .I(A[17]), .Z(ABSVAL[17]) );
BUFX1 X40X( .I(A[16]), .Z(ABSVAL[16]) );
BUFX1 X41X( .I(A[15]), .Z(ABSVAL[15]) );
```

```
command Line }
set_fix_multiple_port_nets -all -constants -buffer_constants [get_designs *]
```

Floating Port Removing

Due to some ports in the standard cells are not used in your design

{ Command Line }-

remove_unconnected_ports -blast_buses [get_cells -hierarchical *]

Chang Naming Rule Script

Naming Rule Changing

- □ Purpose: Let the naming-rule definitions in the gate-level netlist are the same as in the timing file (e.g. *.sdf file)
 - Also, the wrong naming rules may cause problems in the LVS

```
set bus_inference_style {%s[%d]}
set bus_naming_style {%s[%d]}
set hdlout_internal_busses true
change_names -hierarchy -rule verilog
define_name_rules name_rule -allowed "A-Z a-z 0-9_" -max_length 255 -type cell
define_name_rules name_rule -allowed "A-Z a-z 0-9_[]" -max_length 255 -type net
define_name_rules name_rule -map {{"\\*cell\\\*""cell\\\*""cell"}}
define_name_rules name_rule -case_insensitive
change_names -hierarchy -rules name_rule
```

- ☐ Five design files:
 - *.spf: test protocol file for ATPG tools (i.e. TetraMax)
 - *.sdc: timing constraint file for P&R
 - *.vg: gate-level netlist for P&R
 - *.sdf: timing file for Verilog simulation
 - *.db: binary file (i.e. all the constraints and synthesis results are recorded)

```
{ Command Line }
write_test_protocol -f stil -out "CHIP.spf"
write_sdc CHIP.sdc
write -format verilog -hierarchy -output "CHIP.vg"
write_sdf -version 1.0 CHIP.sdf
write -format db -hierarchy -output "CHIP.db"
```

Synthesis Report

- Report Design Hierarchy
- □ Report Area
- Design View
- Report Timing
- Critical Path Highlighting
- □ Timing Slack Histogram

Report Design Hierarchy

- Hierarchy report shows the component used in your each block & its hierarchy
- □ Design/Report Design Hierarchy

```
Report.1 - Hierarchy
                                                              _ 🗆 ×
Report : hierarchy
Design : bisr_mem
Version: X-2005.09-SP4
Date : Fri Jul 27 14:53:58 2007
Information: This design contains unmapped logic. (RPT-7)
bisr mem
    GTECH OR2
                                         gtech
   bisr
        GTECH AND2
                                         gtech
        GTECH BUF
                                         gtech
        GTECH NOT
                                        gtech
        bira top
            GTECH AND2
                                         qtech
            GTECH NOT
                                        qtech
            GTECH OR2
                                        qtech
            bitmap
                GTECH_AND2
                                         gtech
                GTECH_AND3
                                         gtech
                GTECH AND4
                                         gtech
                GTECH BUF
                                         qtech
                GTECH NOT
                                         qtech
                GTECH OR2
                                         qtech
```

Report Area

□ Design/Report Area

```
(0.18um Cell-Library: 1 gate ≈ 10 um<sup>2</sup>)
Report : area
                                                      (0.13um Cell-Library: 1 gate ≈ 5 um<sup>2</sup>)
Design : bisr mem
Version: X-2005.09-SP4
Date : Fri Jul 27 15:31:16 2007
Library(s) Used:
    qtech (File: /usr/cad/synopsys/synthesis/cur/libraries/syn/qtech.db)
    USERLIB (File: /usr4/grad92/zwtseng/dv training/RTL/MEM/DB/memory 8k 32 fast@-40C syn.db)
    USERLIB (File: /usr4/grad92/zwtseng/dv training/RTL/MEM/DB/sc memory fast@-40C syn.db)
    USERLIB (File: /usr4/grad92/zwtseng/dv training/RTL/MEM/DB/sr memory fast@-40C syn.db)
                              105
Number of ports:
Number of nets:
                              248
Number of cells:
Number of references:
Combinational area:
                             0.000000
                          3271507.000000 (um²)
Noncombinational area:
Net Interconnect area:
                            undefined (No wire load specified)
                          3271507.000000
Total cell area:
Total area:
                            undefined
Information: This design contains unmapped logic. (RPT-7)
Information: This design contains black box (unknown) components. (RPT-8)
```

Design View

□ List/Design View

All the block area are listed!!

Ex:

array_or	851.558	undefined	undefined	undefined
bitmap	15501	undefined	undefined	undefined
bisr_mem	3.34175e+06	undefined	undefined	undefined
memory_8k	3.29505e+06	undefined	undefined	undefined
aru	77 17.25	undefined	undefined	undefined
remapping	4440.74	undefined	undefined	undefined
address_de		undefined	undefined	undefined
finj	1293.97	undefined	undefined	undefined
bisr	46686	undefined	undefined	undefined
bira_top	26953.8	undefined	undefined	undefined
remap	8016.62	undefined	undefined	undefined
remap_DW	192.931	undefined	true	false
multi_bit	1593.35	undefined	undefined	undefined
bitmap_DW	83.16	undefined	undefined	undefined
fsm	1816.21	undefined	undefined	undefined
bist	174 13.7	undefined	undefined	undefined
tpg	15151.8	undefined	undefined	undefined
ADDR	2421.62	undefined	undefined	undefined
ADDR_DW	435.758	undefined	true	false
ADDR_DW	472.349	undefined	true	false
CMP	9433.67	undefined	undefined	undefined
DATA	219.542	undefined	undefined	undefined
DECO	804.989	undefined	undefined	undefined
ROM	1147.61	undefined	undefined	undefined
ctr	2261.95	undefined	undefined	undefined

Report Timing

**** End Of Report ****

Critical Path Highlighting

□ View/Highlight/Critical Path

Timing Slack Histogram

Timing/Endpoint Slack Totally 190 paths are in the slack range between 0 to 1.78 Endpoint Slack () (X Ex: Delay type: max **Endpoint Slack** Binning settings 200 Number of bins: 8 190 Resolution 150 <= Slack <= | 126 ☐ Lower bound strict □ Upper bound strict 100 Histogram settings Y maximum: (autoscale) 🚔 61 59 59 56 Histogram title: Endpoint Slack 50 36 X-axis title: Slack Y-axis title: Number of Paths 1.78 3.56 5.34 7.12 8.9 10.68 14.24 OK Cancel <u>Apply</u> 0.211841 14,1784

(Worst)

Slack

(Best)

Edit Your Own Script File

- □ For convenient, you should edit your own synthesis script file. Whenever you want to synthesis a new design, you just only change some parameters in this file.
 _{Ex}.
- Execute Script File
 - File/Execute Script
 - Or use "source your_ script.dc" in dc_shell command line

```
#set cycle 10
#set t_in 5
#set t_out 0.5
#set in_pad_delay 0.34
#set out_pad_delay 0.96
##############Set Current Design#############################
current_design bisr_mem
uniquify
set_operating_conditions -max "slow" -max_library "slow" -min "fast"\
-min_library "fast"

set_wire_load_model -name "tsmc18_wl10" -library "slow"

set_wire_load_mode "top"
create_clock -period 10 [get_ports clk]
set_dont_touch_network [get_clocks clk]
set_fix_hold [get_clocks clk]
set_clock_uncertainty 0.1 [get_clocks clk];
set_clock_latency 1 [get_clocks clk];
set_ideal_network [get_ports clk]
set_input_transition -max 0.5 [all_inputs];
############In/Out Delay, Driving, and Loading Settings######
set_input_delay [expr 0.34] -clock clk [all_inputs]___
set_input_delay [expr 0.34] -clock clk [get_ports clk]
#set_input_delay [expr 1+0.34] -clock clk [get_ports clk]
set_output_delay [expr 0.5+1.5] -clock clk [all_outputs]
set_load [expr 0.06132] [all_outputs]
set_drive [expr 0.288001] [all_inputs]
set_max_fanout 50 [get_designs bisr_mem]
#set max area 0
################Avoid Multi-Instance Wrning#####################
```

Gate-Level Simulation

Include the Verilog model of standard cell and gate-level netlist to

your test bench

☐ Add the following Synopsys directives to the test bench

Lab.

□ cp -r -f /usr2/grad97/tjchen/tutorial_of_DV/Lab.