Лабораторная работа 1.4.1

Определение ускорения свободного падения при помощи оборотного маятника

Татаурова Юлия Романовна

26 февраля 2024 г.

Аннотация

В работе необходимо определить величину ускорения свободного падения, пользуясь оборотным маятником.

Оборудование

- Оборотный маятник
- Счетчик числа колебаний
- Секундомер
- Штангенциркуль

Теоретические сведения и экспериментальная установка

Метод оборотного маятника основан на то, что период колебаний физического маятника не изменяется при перемещении оси качаний в центр качаний (точку отстоющую от оси качаний на расстояние приведенной длины маятника $l_{\rm np}$).

Пусть $L = l_1 + l_2$ - расстояние между двумя "сопряженными" точками подвеса физического маятника

Если соответствующие периоды малых колебаний равны $(T_1 = T_2 = T)$, то по теореме Гюйгенса $L = l_{\rm np}$. Тогда т.к:

$$T = 2\pi \sqrt{\frac{I}{mgl}} l_{\rm np} = \frac{I}{ml} \tag{1}$$

TO:

$$g_0 = (2\pi)^2 \frac{L}{T^2} \tag{2}$$

Т.к на опыте точного совпадения $T_1 = T_2$ добиться невозможно, получим формулу для определения ускорения свободного падения g с учетом отличия ΔT ($T_1 = T, T_2 = T + \Delta T$):

$$g = (2\pi)^2 \frac{l_1^2 - l_2^2}{T_1^2 l_1 - T_2^2 l_2}$$
(3)

Обозначим за $\lambda = \frac{l_1}{l_2}$, тогда формула (9) будет записана как:

$$g = g_0 \frac{\lambda - 1}{\lambda - \frac{T_2^2}{T_1^2}} \tag{4}$$

Предварительный расчет положения грузов

Теперь рассмотрим, как при заданном l_2 найти l_1 , а так же для нахождения b_1 и b_2 - расстояний от первой призмы до первого груза и от второй призмы до второго груза соответственно (см.рис.1). Запишем уравнение моментов относительно $\Pi1$:

Рис. 1: Расположение грузов и призм на маятнике. С - центр масс маятника, $C_{\rm ct}$ - центр масс стержня.

$$Ml_1 = m_{\rm cr} \frac{L}{2} + m_{\rm np2} L + m_1 b_1 + m_2 (b_2 + L), \tag{5}$$

где $M=m_{\mathrm{cr}}+m_{\mathrm{np1}}+m_{\mathrm{np2}}+m_1+m_2$ - полная масса маятника.

В данном методе расчета моменты инерции вычисляются относительно точки подвеса маятника $\Pi 2$. Найдем b_1 и b_2 .

ullet момент инерции тонкого стержня длиной $l_{
m cr}$ с призмами:

$$I_{\text{ct}} = m_{\text{ct}} \left(\frac{l_{\text{ct}}^2}{12} + \left(\frac{L}{2}^2 \right) \right) + m_{\text{пр2}} L^2,$$

• момент инерции гурзов на стержне:

$$I_{\rm rp} = m_1 (L - b_1)^2 + m_2 b_2^2,$$

• суммарный момент инерции всего маятника:

$$I_{\pi 2} = MLl_2 = I_{\rm cr} + I_{\rm rp}$$

.

Измеренные данные:

m_i	$m_{ m \scriptscriptstyle CT}$	$m_{\pi p1}$	$m_{ m np2}$	m_1	m_2	M
m, гр	868.2	78.3	79.6	1483.8	1508	4017.9
l_i	$l_{ m ct}$	L	l_2	l_1	-	_
l, cm	100	52	13	39	-	_

Таблица 1: Массы и длины установки

Рис. 2: График зависимости $I_{\rm rp}(b_2)$

Из графика получаем значения для $b_1=9\mathrm{cm}$ и $b_2=25.6\mathrm{cm}.$

Рузультаты измерений и обработка данных

$20T_1, c$	$20T_1$, c 29.01		29.01	29.01	
$20T_2$, c	29.04	29.03	29.03	29.03	

Таблица 2: Время колебаний маятника в разных точках подвеса П1 И П2(20 периодов)

$T_1(T), c$	$T_2(T+\Delta T)$, c	σ_T ,	ΔT ,	σ_l ,	Δl ,	β
1.4505	1.4515	0.001	0.001	0.5	26	0.5

Таблица 3: Результаты измерений и погрешности

Определение погрешностей

Из формул (4)-(6):

$$g = g_0 \frac{\lambda - 1}{\lambda - (1 + \varepsilon_t)^2} \approx g_0 (1 + 2\beta \varepsilon_t), \tag{6}$$

где $\varepsilon_t=rac{\Delta T}{T},\ \beta=rac{1}{\lambda-1}=rac{l_2}{l_1-l_2}.$ Тогда:

$$\varepsilon_{g_0} = \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{2\sigma_T}{T}\right)^2} \tag{7}$$

$$\Delta g \approx \frac{2l_2}{l_1 - l_2} \frac{\Delta T}{T} g_0 \tag{8}$$

$$\varepsilon_g \approx \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + 4\left(\frac{\sigma_T}{T}\right)^2 + 8\left(\beta\frac{\sigma_T}{T}\right)^2 + 8\left(\beta\frac{\Delta T}{T}\frac{\sigma_l}{\Delta l}\right)^2}$$
(9)

 $arepsilon_g=0.97\%$ Получаем $g=\left(9.76\pm0.09\right)$ м/с 2

Результаты и выводы

В результате работы для величины g ускорения свободного падения получилось значение $g=(9.76\pm0.09)~\text{м/c}^2$. $:9.81/^2...(9), -, .\sigma_T=0.001~\text{с}$, тогда $\varepsilon_t=0.01\%$ Для T_1 и T_2 погрешность так же составила порадка 0.0001%. Тогда точность определения ускорения свободного падения зависит от точности измерения длины ($\varepsilon_l=1\%$) порядка одного процента. Тогда погрешность определения g составляет порядка 1%. Так что этот метод можно назвать достаточно точным.