BITS Pilani K K Birla Goa Campus

Comprehensive Examination: PART- B (Closed Book)

Course Title: Mathematics III Max. Marks: 75 Course No: MATH F211 Time: 2 hours

Instructions:

Average: 28.02 / 75

- 1. All questions are compulsory. Total av: 46.68/120 Start a new question in a new page and answer all its parts in the same place. 2.
- 3. Write all the steps clearly and give explanations for complete credit.
- Make an index on the front page of the main answer sheet, otherwise penalty of 4 4. marks will be imposed.
 - 1. Find two Frobenius series solutions of the equation 2xy'' + (x+1)y' + 3y = 0 near x = 0. Also, write the region in which the solutions are valid. [15]
 - 2. Find the Bessel series of $f(x) = (1 x^2)x^p$, for $x \in [0, 1]$ and $p \ge 0$ in terms of positive zeros of $J_p(x)$. (Evaluate all the integrals involved). |15|
- 3. Solve the equation (x-1)y'' + (3x-4)y' (4x+5)y = 0, y(1) = 0, by using Laplace transforms. [15]
- 4. Prove the recursion formula $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$. Use it to show that $(2n+1)P_n(x) = P'_{n+1}(x) - P'_{n-1}(x)$. 15
- 5. Find the Fourier series for [15]

$$f(x) = \cos\left(\frac{x}{2}\right), \quad -\pi \le x \le \pi.$$

Use the Fourier series to find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{1-4n^2}$.

The End

Useful Formulas:

$$(1) \ nP_n(x) = xP'_n(x) - P'_{n-1}(x), \qquad (2) \ (n+1)P_n(x) = P'_{n+1}(x) - xP'_n(x),$$

(1)
$$nP_n(x) = xP'_n(x) - P'_{n-1}(x)$$
, (2) $(n+1)P_n(x) = \frac{1}{\sqrt{1-2xt+t^2}} = P_0(x) + P_1(x)t + P_2(x)t^2 + \dots + P_n(x)t^n + \dots$

(4)
$$J_p(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(x/2)^{2n+p}}{n!(p+n)!},$$

(5)
$$\frac{d}{dx}[x^p J_p(x)] = x^p J_{p-1}(x),$$
 (6) $\frac{d}{dx}[x^{-p} J_p(x)] = -x^{-p} J_{p+1}(x).$