Colocando um modelo em produção

Da concepção à implantação

Introdução

Contextualização

"Cerca de 90% dos modelos de aprendizado de máquina nunca chegam à produção. Em outras palavras, apenas um em cada dez dias de trabalho de um cientista de dados acaba produzindo algo útil para a empresa." (VentureBeat Report, tradução livre)

Apresentação

Matheus Willian

Apresentação

Experiência

- 8 anos como Data Professional & IT Instructor
- 6 anos com Machine Learning & Data Engineer
- 3 anos como Tech Lead

Formação

- Graduação em análise de sistemas
- Especialização em gestão de TI
- Especialização em Big Data e Machine Learning
- Nanodegree em Data Science

Apresentação - Trabalhos

Apresentação - Certificações

Público Alvo

Ciência de Dados

Negócios Digitais

DevOps

Negócios Digitais

Produtos que utilizam modelos

Ranqueamento (Google, Amazon, Spotify, Facebook, etc.)

Recomendações (Netflix, Amazon, Spotify, Youtube, etc.)

Previsão de demanda (Amazon, Uber)

Carros auto-dirigíveis (Tesla, Waymo)

Otimização (Uber, Amazon, Airbnb)

Modelos como produto

Assistentes (OpenAl, Siri, Google, Microsoft)

Tradutores /Corretores (Google Translate, Grammarly, DeepL)

Criadores de conteúdo (OpenAI, DeepArt, FaceApp, AIVA)

Jogos (OpenAl, AlphaGo, Stockfish)

Retorno de investimento (ROI)

- Aumentar vendas
- Melhorar o serviço ou produto
- Aumentar a quantidade de clientes
- Diminuir desperdícios
- Reduzir custos
- Melhorar produtividade da equipe
- Melhorar desempenho de processos

Demo - Brainstorm

Aprendizado de Máquina

Machine Learning (ML)

Aprendizado de Máquina

Aprendizado de Máquina - Inteligência Artificial

A palavra "inteligência artificial" é formada por dois termos, "inteligência" e "artificial".

- **Inteligência:** capacidade de alguém/algo para lógica, abstração, memorização, compreensão, comunicação, aprendizado, planejamento, e resolução de problemas, etc.
- Artificial: aquilo produzido não pela natureza, mas por uma técnica.

Logo, define-se "inteligência artificial" como um ramo de pesquisa da Ciência da Computação que se ocupa em desenvolver mecanismos e dispositivos tecnológicos que possam simular o raciocínio humano.

Aprendizado de Máquina - Áreas da Al

Aprendizado de Máquina - Inteligência Artificial

"O aprendizado de máquina explora o estudo e construção de algoritmos que podem aprender de seus erros e fazer previsões ou decisões sobre dados. Tais algoritmos operam construindo um modelo a partir de atributos amostrais em vez de simplesmente seguindo instruções programadas."

Aprendizado de Máquina

Aprendizado de Máquina

Demo - Primeiro Modelo

Modelo para Produção

CRISP-DM, DevOps, MLOps

CRISP-DM

CRISP-DM

- Entender o Negócio: Foca em entender o objetivo do projeto a partir de uma perspectiva de negócios, definindo um plano preliminar para atingir os objetivos.
- **Entender os Dados:** Recolhimento de dados e início de atividades para familiarização com os dados, identificando problemas ou conjuntos interessantes.
- Preparação dos Dados: Construção do conjunto de dados final a partir dos dados iniciais. Normalmente ocorre várias vezes no processo.

CRISP-DM

- Modelagem: Várias técnicas de modelagem são aplicadas, e seus parâmetros calibrados para otimização. Assim, é comum retornar à Preparação dos Dados durante essa fase.
- Avaliação: É construído um modelo que parece ter grande qualidade de uma perspectiva de análise de dados. No entanto, é necessário verificar se o modelo atinge os objetivos do negócio.
- Implantação: O conhecimento adquirido pelo modelo é organizado e apresentado de uma maneira que o cliente possa utilizar.

MLOps

- Planejamento/Plan: Esta é a primeira etapa, onde se discute os objetivos e as métricas de negócios e como os recursos do modelo de aprendizado de máquina podem ser utilizados para alcançá-los.
- Codificação/Code: Nesta fase, o software é desenvolvido, desde o código do aplicativo até o modelo de aprendizado de máquina, geralmente utilizando APIs para invocar a inferência do modelo e consumir seus resultados.
- Construção/Build: Esta etapa envolve a integração contínua das várias partes à medida que evoluem e são empacotadas em uma forma que será lançada, podendo ser uma biblioteca, imagem Docker ou binário de aplicativo.

- Teste/Test: Testes de software e modelo de aprendizado de máquina são aplicados, incluindo testes unitários, de integração, de cobertura, de desempenho, de carga, de privacidade, de segurança e de viés, automatizados tanto quanto possível.
- Lançamento/Release: Uma vez que todos os testes automatizados passarem, o código do software ou modelo de aprendizado de máquina é aprovado para lançamento, versionado e com os metadados necessários capturados automaticamente.
- Implantação/Deploy: Os artefatos lançados do repositório de modelos ou Docker são implantados na infraestrutura de produção, que pode variar conforme as necessidades do projeto.

- Operação/Operate: Uma vez que os serviços são implantados, é recomendável realizar uma implantação gradual para verificar o desempenho e garantir que não haja problemas inesperados. Durante a implantação gradual, é possível monitorar as métricas e reverter a implantação caso ocorra algum problema. Quando a implantação estiver completa, a infraestrutura de implantação deve substituir o antigo serviço de forma tranquila e garantir a escalabilidade conforme as variações de carga.
- Monitoramento/Monitor: Nesta fase final, é importante monitorar constantemente a saúde dos serviços, erros, latências, previsões de modelos, valores discrepantes e distribuição de recursos do modelo de entrada. Em caso de problemas, dependendo da gravidade e diagnóstico, pode-se reverter o sistema para uma versão anterior, lançar uma correção rápida, desencadear o re-treinamento do modelo ou tomar outras medidas necessárias.

Processo

Demo - Modelo para Produção

Encerramento

Resumo

- 1. Introdução
- 2. Negócios Digitais
- 3. Demo Brainstorm produto
- 4. Fundamentos de Aprendizado de Máquina
- 5. Demo Primeiro modelo
- 6. Metodologias
- 7. Demo colocando o modelo em produção

Resumo - Ferramentas

- 1. Google Colab
- 2. Python
 - a. Scikit-learn
 - b. Pandas
 - c. Seaborn
 - d. matplotlib
 - e. Requests
 - f. Flask
 - g. Joblib
- 3. Docker
 - a. docker hub
- 4. Git
 - a. github

Referências

https://www.ml4devs.com/articles/mlops-machine-learning-life-cycle/

Contatos

Linkedin.com/in/matheuswillian

matheuswilliandf@gmail.com

Muito Obrigado!

Dúvidas