PSY 3330: Elementary Statistics for the Behavioral Sciences

Thomas J. Faulkenberry, Ph.D.

Department of Psychology and Counseling Tarleton State University

Week 9 – Introduction to the t test

Standard Deviation

To review:

- 1. compute deviation scores
- 2. compute the SS
 - ► SS = sum of squared deviations = $\sum (X \mu)^2$
- 3. determine the variance
 - average of squared deviations
 - divide SS by N
- 4. determine the standard deviation
 - square root of variance

Standard Deviation of Samples

If you used software (e.g., SPSS, R, Excel) to compute the standard deviation, you'd get a different answer! Here's why:

Computing SD for samples is a bit different. The basic procedure is the same:

- 1. compute deviation scores
- 2. compute the SS
- 3. determine the variance
 - this step is different!
- 4. determine the standard deviation

- Step 1: Compute the deviation scores
 - subtract the sample mean from every individual in our distribution.

$$\overline{X} = \frac{\sum X}{n} = \frac{2+4+6+8}{4} = \frac{20}{4} = 5.0$$

$$X - \overline{X} = deviation scores$$

$$2 - 5 = -3$$
 $6 - 5 = +1$

$$4 - 5 = -1$$
 $8 - 5 = +3$

• Step 2: Determine the sum of the squared deviations (SS).

$$X \cdot \overline{X} = \text{deviation scores}$$
 $SS = \sum (X - \overline{X})^2$
 $2 - 5 = -3$ $6 - 5 = +1$ $= (-3)^2 + (-1)^2 + (+1)^2 + (+3)^2$
 $4 - 5 = -1$ $8 - 5 = +3$ $= 9 + 1 + 1 + 9 = 20$

Apart from notational differences the procedure is the same as before

• Step 3: Determine the *variance*

Recall:

Population variance = σ^2 = SS/N

• Step 3: Determine the *variance*

Recall:

Population variance =
$$\sigma^2$$
 = SS/N

The variability of the samples is typically smaller than the population's variability

To correct for this we divide by (n-1) instead of just n

Sample variance =
$$s^2 = \frac{SS}{(n-1)}$$

▶ Step 4: Compute the standard deviation. Take the square root of the sample variance.

standard deviation
$$= s = \sqrt{s^2}$$

$$= \sqrt{\frac{SS}{n-1}}$$

$$= \sqrt{\frac{20}{3}}$$

$$= \sqrt{6.67}$$

$$= 2.58$$

 ${\sf Back\ to\ hypothesis\ testing...}$

Statistical analysis follows design...

The one-sample *z*-test can be used when:

- ▶ 1 sample
- one score per subject
- ▶ Population mean μ and standard deviation σ are known

$$z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

Statistical analysis follows design...

The one-sample *t*-test can be used when:

- ▶ 1 sample
- one score per subject
- ▶ Population mean μ is known
- ► Population standard deviation is not known
- **ightharpoonup** Basic difference: s is used as an estimator of σ

$$t = \frac{\overline{x} - \mu_{\overline{x}}}{s_{\overline{x}}}$$

Steps of hypothesis testing:

- 1. State your hypotheses
- 2. Set your decision criteria
- 3. Collect your data
- 4. Compute your test statistics
 - ► Compute your <u>estimated</u> standard error
 - ► Compute your *t*-statistic
 - Compute your degrees of freedom
- 5. Make a decision about your null hypothesis

- What are we doing when we test the hypotheses?
 - Computing a test statistic: Generic test

Could be difference between a sample and a population, or between different samples

test statistic = observed difference expected by chance

Based on standard error or an estimate of the standard error

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

One sample z One sample t identical

Test statistic

Test statistic

Diff. Expected by chance

Test statistic

Diff.
Expected by chance

- The t-statistic distribution (a transformation of the distribution of sample means transformed)
 - Varies in shape according to the degrees of freedom

• New table: the <u>t-table</u>

		Proportio	n in one ta	il	
	0.10	0.05	0.025	0.01	0.005
		Proportion	n in two tai	ls	
df	0.20	0.10	0.05	0.02	0.01
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1,476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
:	:	:	:	:	:
15	1.341	1.753	2.131	2.602	2.947
:	:	:	:	:	:

- The t-statistic distribution (a transformation of the distribution of sample means transformed)
 - To reject the H₀, you want a computed test statistics that is large
 - · The alpha level gives us the decision criterion

· New table: the t-table

		Proportio	n in one ta	il	
	0.10	0.05	0.025	0.01	0.005
		Proportion	n in two tai	ls	
df	0.20	0.10	0.05	0.02	0.01
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1,476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
:	:	:	:	:	:
15	1.341	1.753	2.131	2.602	2.947
:	:	:	:	:	:

Distribution of the t-statistic

 What is the t_{crit} for a two-tailed hypothesis test with a sample size of n = 6 and an α-level of 0.05?

 What is the t_{crit} for a one-tailed hypothesis test with a sample size of n = 6 and an α-level of 0.05?

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\overline{X} = 55$, s = 8 memory Do know s errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$? Don't know σ

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\overline{X} = 55$, s = 8 memory errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

• <u>Step 1</u>: State your hypotheses

H₀: the memory treatment sample are the same (or worse) as those in the population of memory patients.

 $\mu_{\text{Treatment}} \ge \mu_{\text{pop}} = 60$

H_A: they perform better than those in the population of memory patients

 $\mu_{\text{Treatment}} < \mu_{\text{pop}} = 60$

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\bar{X} = 55$, s = 8 memory errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

```
\begin{array}{l} H_0: \;\; \mu_{Treatment} \geq \mu_{pop} = 60 \\ H_A: \;\; \mu_{Treatment} < \mu_{pop} = 60 \end{array}
```

Step 2: Set your decision criteria

One -tailed $\alpha = 0.05$

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\bar{X} = 55$, s = 8 memory errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

$$H_0$$
: $\mu_{\text{Treatment}} \ge \mu_{\text{pop}} = 60$
 H_A : $\mu_{\text{Treatment}} < \mu_{\text{pop}} = 60$

Step 2: Set your decision criteria
 One -tailed α = 0.05

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\overline{X} = 55$, s = 8 memory errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

$$\begin{array}{ll} H_0: & \mu_{Treatment} \geq \mu_{pop} = 60 \\ H_A: & \mu_{Treatment} < \mu_{pop} = 60 \\ \text{One -tailed} & \alpha = 0.05 \end{array}$$

Step 3: Collect your data

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\overline{X} = 55$, s = 8 memory errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

$$\begin{array}{ll} H_0\colon \; \mu_{Treatment} \geq \mu_{pop} = 60 \\ H_A\colon \; \mu_{Treatment} < \mu_{pop} = 60 \\ \text{One -tailed} & \alpha = 0.05 \end{array}$$

• Step 4: Compute yo $s_{\bar{\chi}} = \frac{s}{\sqrt{n}} = \frac{8}{\sqrt{16}}$

$$t = \frac{\overline{X} - \mu_{\overline{X}}}{s_{\overline{X}}} = \frac{55 - 60}{\left(\frac{8}{\sqrt{16}}\right)}$$

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\overline{X} = 55$, s = 8 memory errors.
- · How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

H₀:
$$\mu_{\text{Treatment}} \ge \mu_{\text{pop}} = 60$$

H_A: $\mu_{\text{Treatment}} < \mu_{\text{pop}} = 60$
One -tailed $\alpha = 0.05$
 $t = -2.5$

Step 4: Compute your test statistics

$$df = n - 1 = 16 - 1 = 15$$

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\bar{X} = 55$, s = 8 memory errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

An example: One sample t-test

Memory experiment example:

- We give a n = 16 memory patients a memory improvement treatment.
- After the treatment they have an average score of $\bar{X} = 55$, s = 8 memory errors.
- How do they compare to the general population of memory patients who have a distribution of memory errors that is Normal, $\mu = 60$?

• Step 5: Make a decision about your null hypothesis

The dependent means *t*-test can be used when:

- ▶ 1 sample
- ► <u>Two</u> scores per subject

$$t = \frac{\overline{D} - \mu_{\overline{D}}}{s_{\overline{D}}}$$

- Dependent means: within-subjects factor
 - Sometimes called "repeated measures" design
 - 2-levels, All of the participants are in both levels of the IV

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

- Difference scores
 - For each person, subtract one score from the other
 - Carry out hypothesis testing with the difference scores
- H₀ Population of difference scores has a mean = 0

Number of
$$df = n_D - 1$$
 difference scores

$$test \ statistic = \frac{observed \ difference}{difference \ expected \ by \ chance}$$

Difference between Observed (sample) means

$$test statistic = \frac{observed difference}{difference expected by chance}$$

Related samples t $t = \frac{\overline{D} \cdot (\mu_{\overline{D}})}{s_{\overline{D}}}$

Hypothesized population means

• from the Null hypothesis

Hypothesized difference between Population means

from the Null hypothesis

$$test statistic = \frac{observed difference}{difference expected by chance}$$

$t = \frac{\text{One-sample t}}{\overline{X} - \mu_{\overline{X}}}$

Hypothesized difference between Population means

• from the Null hypothesis

H₀: Memory performance by the treatment group is equal to memory performance by the no treatment group.

So:
$$(\mu_A - \mu_B) = 0$$

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

(Pre-test) - (Post-test)

What are all of these "D's" referring to?

D	Dua 44	100	Difference	e
Person	Pre-lest	Post-test	scores	
1	45	43	2	
2	55	49	6	
3	40	35	5	
_ 4	60	51	9	
			22	

$$t = \frac{\overline{D} - \mu_{\overline{D}}}{s_{\overline{D}}}$$

$$H_0: \text{ There is no difference}$$
between pre-test and post-

between pre-test and potential $\mu_D = 0$

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

(Pre-test) - (Post-test)

			Difference	
Person	Pre-test	Post-test	scores	
1	45	43	2	
2	55	49	6	
3	40	35	5	
4	60	51	9	
	_	$\sum_{i} D_{i}$	22	

$$t = \frac{\overline{D} - \mu_{\overline{D}}}{s_{\overline{D}}}$$

$$n_D = 4$$
 $\frac{\sum D}{n_D} = \bar{D} = 5.5$

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

$$test statistic = \frac{observed difference}{difference expected by chance}$$

			Difference	
Person	Pre-test	Post-test	scores $D - \overline{D} (D - \overline{D})^2$ $t = \frac{D - \mu_{\overline{D}}}{2} - \frac{5.5 - \mu_{\overline{D}}}{2}$	
1	45	43	2- 5.5 = -3.5 12.25 $s_{\overline{D}} = s_{\overline{D}}$	
2	55	49	6-5.5 = 0.5 0.25	
3	40	35	$5-5.5 = -0.5$ 0.25 $s_{\overline{D}} = \frac{-b}{\sqrt{b}}$	
_ 4	60	51	9-5.5 = 3.5 12.25 $\sqrt{n_D}$	
$n_D =$	4	D̄=	22 = 5.5 $s_D = \sqrt{\frac{SS_D}{n_D - 1}} \sqrt{\frac{25}{4 - 1}} = 2.9$	

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

		Ι	Difference	_		-
Person	Pre-test	Post-test	scores	D-D	$(D - \overline{D})^2$	$t = \frac{D - \mu_{\overline{D}}}{1 - \mu_{\overline{D}}} = 5.5 - \mu_{\overline{D}}$
1	45	43	2	-3.5	12.25	$s_{\overline{D}}$ $ s_{\overline{D}}$
2	55	49	6	0.5	0.25	Sn
3	40	35	5	-0.5	0.25	$S_{\overline{D}} = \frac{S_{\overline{D}}}{\sqrt{S_{\overline{D}}}}$
_4	60	51	9	3.5	12.25	$\sqrt{n_D}$
$n_D =$: 4	D̄:	22 = 5.5	1	$25 = SS_1$	${}^{D}S_{D} = \sqrt{\frac{SS_{D}}{n_{D} - 1}} = \sqrt{\frac{25}{4 - 1}} = 2.9$

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

		Ι	Difference	_		_
Person	Pre-test	Post-test	scores	D-D	$(D - D)^2$	$t - \frac{D - \mu_{\overline{D}}}{1 - \mu_{\overline{D}}} = 5.5 - \mu_{\overline{D}}$
1	45	43	2	-3.5	12.25	$t = {S_{\overline{D}}} = {S_{\overline{D}}}$
2	55	49	6	0.5	0.25	$s_{\rm p}$ 2.9
3	40	35	5	-0.5	0.25	$S_{\overline{D}} = \frac{S_{\overline{D}}}{\sqrt{A}} = \frac{2.5}{\sqrt{A}} = 1.45$
4	60	51	9	3.5	12.25	$\sqrt{n_D}$ $\sqrt{4}$
	4	_	22		$25 = SS_{I}$)
$n_D =$	4	D =	= 5.5		$2.9 = s_D$	

test statistic =
$$\frac{\text{observed difference}}{\text{difference expected by chance}}$$

Pre-test	_	Difference scores	D-D	(D - D) ²
45	43	2	-3.5	12.25
55	49	6	0.5	0.25
40	35	5	-0.5	0.25
60	51	9	3.5	12.25
4	D̄:	22 = 5.5		$25 = SS_{D}$ $2.9 = s_{D}$ $.45 = s_{D}^{-}$
	45 55 40 60	Pre-test Post-test 45 43 55 49 40 35 60 51	45 43 2 55 49 6 40 35 5 60 51 9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$t = \frac{\overline{D} - \mu_{\overline{D}}}{s_{\overline{D}}} = \frac{5.5 - \mu_{\overline{D}}}{1.45}$$
?
Think back to the null hypotheses

$$test \ statistic = \frac{observed \ difference}{difference \ expected \ by \ chance}$$

What are all of these "D's" referring to?

Person	Pre-test	Post-test	Difference scores	D - D	(D - D) ²
1	45	43	2	-3.5	12.25
2 3	55 40	49 35	6 5	0.5 -0.5	0.25 0.25
_4	60	51	9	3.5	12.25
$n_D =$: 4	D̄:	22 = 5.5		$25 = SS_{D}$ $2.9 = s_{D}$ $.45 = s_{D}^{-}$

$$t = \frac{\overline{D} - \mu_{\overline{D}}}{s_{\overline{D}}} = \frac{5.5 - \mu_{\overline{D}}}{1.45}$$
H₀: Memory performance at the post test are equal to

H₀: Memory performance at the post-test are equal to memory performance at the pre-test.

$$\mu_{\overline{D}} = 0$$

$$test \ statistic = \frac{observed \ difference}{difference \ expected \ by \ chance}$$

			Difference		_	-
Person	Pre-test	Post-test	scores	D-D	$(D - D)^2$	$D - \mu_{\overline{D}} = 5.5 - 0$
1	45	43	2	-3.5	12.25	$t = {s_{\overline{D}}} = {1.45}$
2	55	49	6	0.5	0.25	This is over t = 3.8
3	40	35	5	-0.5	0.25	This is our $t_{obs} = 3.8$
_ 4	60	51	9	3.5	12.25	
		_	22	2	$25 = SS_{D}$	
$n_D =$: 4	D =	= 5.5	2	$2.9 = s_D$	
				1.	$45 = s_{\mathrm{D}}^{-}$	

$$test \ statistic = \frac{observed \ difference}{difference \ expected \ by \ chance}$$

			Difference	_	_	D 5.5.0
Person	Pre-test	Post-test	scores	D - D	$(D - \overline{D})^2$	$t = \frac{D - \mu_{\overline{D}}}{1 - 2} = \frac{5.5 - 0}{1 - 2}$
1	45	43	2	-3.5	12.25	$t = \frac{1}{s_{\overline{D}}} = \frac{1.45}{1.45}$
2	55	49	6	0.5	0.25	2.0
3	40	35	5	-0.5	0.25	$t_{obs} = 3.8$ = 0.05 Two-tailed $t_{crit} = \pm 3.18$
_4	60	51	9	3.5	12.25	- 0.05 Two tailed terit
		_	22		$25 = SS_D$	Proportion in one tail 0.10 0.05 0.025 0.01 0.005
$n_D =$: 4	D:	= 5.5		$2.9 = s_D$ $.45 = s_D^-$	Proportion in two tails
		10	1	1	$.45 = s_{D}^{-}$	2 1.886 2.920 4.303 6.965 9.925 3 1.638 2.353 3.182 4.541 5.841
		af =	$= n_D - 1 -$			4 1.533 2.132 2.776 3.747 4.604

$$test\ statistic = \frac{observed\ difference}{difference\ expected\ by\ chance}$$

		Ι	Difference	_		-
Person	Pre-test	Post-test	scores	D-D	$(D - D)^2$	$t - \frac{D - \mu_{\overline{D}}}{1 - \frac{5.5 - 0}{1}}$
1	45	43	2	-3.5	12.25	$t = \frac{s_{\overline{D}}}{s_{\overline{D}}} = \frac{1.45}{1.45}$
2	55	49	6	0.5	0.25	+ -38
3	40	35	5	-0.5	0.25	$t_{\text{obs}} = 3.8$ $t_{\text{crit}} = \pm 3.18$
4	60	51	9	3.5	12.25	Cont Cont
$n_D =$: 4	D̄ =	22 = 5.5		25 = SSD $2.9 = SD$	t _{obs} =3.8
		df =	$= n_D - 1$	1	$.45 = s_{D}^{-}$	$- \text{Reject H}_0$ $\pm 3.18 = t_{\text{crit}}$