Math 5110 – Real Analysis I– Fall 2024 w/Professor Liu

Paul Carmody Homework #3 – TBD: October 31, 2024

I. Let $\Omega \subset \mathbb{R}^m$, $a \in \Omega^o$. If $f : \Omega \to \mathbb{R}$ is continuous at $a, g : \Omega \to \mathbb{R}$ is differentiable at a and g(a) = 0, show that fg is differentiable at a. (Note fg is the function whose value at $x \in \Omega$ is f(x)g(x).

II. skip II

III. Find the total derivative (i.e., derivative matrices) of the following functions at the given points.

(a)
$$f(x_1, x_2, x_3) = \begin{pmatrix} x_2 \\ x_1 x_3^2 \\ x_1 + x_2 + x_3 \end{pmatrix}$$
 at $(x_1, x_2, x_3) = (1, 0, 1)$.

$$J_f(x_1, x_2, x_3) = \begin{pmatrix} 0 & 1 & 0 \\ x_3 & 0 & x_1 \\ 1 & 1 & 1 \end{pmatrix}$$
$$J_f(1, 0, 1) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(b)
$$f(x) = \binom{x^2}{e^x}$$
 at $x = 3$.

$$f'(x) = \begin{pmatrix} 2x \\ e^x \end{pmatrix}$$
 and $f'(3) = \begin{pmatrix} 6 \\ e^3 \end{pmatrix}$

(c)
$$f(x_1, x_2, x_3, x_4) = x_1^2 + 2x_2x_4 + \sin(x_3x_4)$$
 at $(x_1, x_2, x_3, x_4) = (1, 1, 0, 1)$

$$\begin{split} \partial_{x_1} f &= 2x_1 \\ \partial_{x_2} f &= 2x_4 \\ \partial_{x_3} f &= x_4 \cos(x_3 x_4) \\ \partial_{x_4} f &= 2x_2 + x_3 \cos(x_3 x_4) \end{split}$$

$$J_f(x_1, x_2, x_3, x_4) = \begin{pmatrix} 2x_1 \\ 2x_4 \\ x_4 \cos(x_3 x_4) \\ 2x_2 + x_3 \cos(x_3 x_4) \end{pmatrix}$$

$$J_f(1, 1, 0, 1) = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

IV. Section 6.2 Problem 2.

Exercise 6.2.2. Prove Lemma 6.2.4. (Hint: prove by contradiction. If $L_1 \neq L_2$, then there exists a vector v such that $L_1v \neq L_2v$; this vector must be non-zero (why?). Now apply the definition of derivative, and try to specialize to the case where $x = x_0 + tv$ for some scalar t, to obtain a contradiction.)

Lemma 6.2.4 (Uniqueness of derivatives). Let E be subset of \mathbb{R}^n , $f: E \to \mathbb{R}^m$ be a function, $x_0 \in E$ be an interior point of E, and let $L_1: \mathbb{R}^n \to \mathbb{R}^m$ and $L_2: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations. Suppose that f is differentiable at x_0 with derivatives L_1 , and also differentiable at x_0 with derivative L_2 . Then $L_1 = L_2$

Let $L_1, L_2 : \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations and $L_1 \neq L_2$. Also, let $E \subset \mathbb{R}^n$ and $f : E \to \mathbb{R}^m$ be a function that is differentiable at a point $x_0 \in E^o$ with derivatives L_1 and L_2 at x_0 . First, det $f'(x_0) \neq 0$ because f is differentialable at x_0 and since $L_2 \neq L_1$ there exists a non-zero vector v such that $L_1v \neq L_2v$.

$$\lim_{x \to x_0} \frac{\| f(x) - (f(x_0) + L_1(x - x_0)) \|}{\| x - x_0 \|}$$

V. Section 6.3, problem 3 and problem 4.

Exercise 6.3.3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by $f(x,y) := \frac{x^3}{x^2 + y^2}$ when $(x,y) \neq (0,0)$, and f(0,0) := 0. Show that f is not differentiable at (0,0), despite being differentiable in every direction $v \in \mathbb{R}^2$ at (0,0). Explain why this does not contradict Thoerem 6.3.8.

Exercise 6.3.4. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function such that f'(x) = 0 for all $x \in \mathbb{R}^n$. Shwo that f is constant. (Hint: you may use the mean-value theorem or fundamental theorem of calculus for one-dimensional functions, but bear in mind that there is a direct analogue to these theorems for several-variable functions. I would not advise proceeding via first principles.) For a tougher challenge, replace the domain \mathbb{R}^n by an open connected subst Ω of \mathbb{R}^n .

VI. Let $f: \mathbb{R}^m \to \mathbb{R}$ be differentiable, $\alpha \in \mathbb{R}$. If $f(tx) = t^{\alpha} f(x)$ for $\forall x \in \mathbb{R}^m$ and t > 0, we say that f is homogeneous of order α . Show that f is homogeneous of order α iff $x \cdot \nabla f(x) = \alpha f(x)$, that is

$$x^1 \partial_1 f(x) + \dots + x^m \partial_m f(x) = \alpha f(x).$$

This equation is classically written as

$$x^{1} \frac{\partial f}{\partial x^{1}} + \dots + \frac{\partial f}{\partial x^{m}} = \alpha f(x).$$

Hint: As in the development of the theory in the text, a basic idea to study multivariable functions is to convert them into single-variable functions by restricting the variable x in a fixed direction. For example, for this problem you may consider the function $\varphi(t) = f(t)$.

VII. (a) Let $f: \mathbb{R}^m \to \mathbb{R}^m$ be a C^1 -map,

$$|f(x) - f(y)| \ge |x - y|, \forall x, y \in \mathbb{R}^m,$$

then $\forall a \in \mathbb{R}^m, \det f'(a) \neq 0.$

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be differentiable, and assume $f(0,0) = \langle 1,2 \rangle$, and

$$Df(0,0) = \left(\begin{array}{cc} 1 & 3 \\ 2 & 0 \end{array}\right).$$

Let $g(x,y) = \langle xy^2, y + 2, 2x - 3y \rangle$.. Find $D(g \circ f)(0,0)$.

VIII. Let $f: E \to \mathbb{R}$ be defined on some open set $E \subset \mathbb{R}^2$, and assume the partial derivatives $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$ are bounded in E. Prove that f is continuous in E.

Hint: Proceed as in the proof of Theorem 6.3.8 (continuity of partial derivatives implies f is differentiable) which we discussed in class.

IX. Let
$$F(x, y, z) = \begin{pmatrix} x + y \\ x^2y \\ z + 2x \end{pmatrix}$$
.

- (a) At what points x_0, y_0, z_0 does F have a local inverse, i.e., a function F^{-1} defined on an open set V containing $F(x_0, y_o, z_o)$, such that $F(F^{-1}(x, y, z)) = (x, y, z)$ for all $(x, y, z) \in V$?
- (b) What is $D(F^{-1})(2,1,3)$? (Hint: F(1,1,1) = (2,1,3).)
- X. When does the equation $x_1^2 + 2x_2^3 xd^4 + \ln(1 + x_4^2 1) = 1$ define a function $x_4 = g(x_1, x_2, x_3)$ implicitly? Find $\nabla g(1, 0, -1)$.