《概要设计说明书》编写参考指南

1. 导言 (Introduction)

本章对该文档的目的、功能范围、术语、相关文档、参考资料、版本更新进行说明。

1.1 目的 (Purpose)

本文档的目的旨在推动软件工程的规范化,使设计人员遵循统一的概要设计书写规范,节省制作文档的时间,降低系统实现的风险,做到系统设计资料的规范性与全面性,以利于系统的实现、测试、维护、版本升级等。

1.2 范围 (Scope)

本文档用于软件设计阶段的概要设计,它的上游(依据的基线)是《需求分析规格书》,它的下游是《详细设计说明书》,并为《详细设计说明书》提供测试的依据。

软件概要设计的范围是:软件系统总体结构设计、全局数据库和数据结构设计、外部接口设计、主要部件功能分配设计、部件之间的接口设计等方面的内容。该范围应覆盖《需求规格说明书》中的功能点列表、性能点列表、接口列表。

1.3 命名规则 (Naming Rule)

变量对象命名规则: 申明全局变量、局部变量对象的命名规则。

数据库对象命名规则: 申明数据库表名、字段名、索引名、视图名等对象的命名规则。

1.4 术语定义 (Terms Glossary)

术语定义或解释一般用表格形式给出,如表 6-5 所示。

表 6-5 术语定义或解释表

序号	术语名称	术语定义
1	总体结构	软件系统的总体逻辑结构。按照不同的设计方法,有不同的总体逻辑结构。若采用面向功能或面向数据的设计方法,则总体逻辑结构为一树形的功能模块结构图。若采用面向对象或面向部件(构件)的设计方法,则总体逻辑结构为部件(构件)的组装图。
2	外部接口	本软件系统与其他软件系统之间的接口,接口设施可以是中间件。接口 描述包括:传输方式、带宽、数据结构、传输频率、传输量、传输协议。
3	数据结构	数据结构包括:数据库表的结构、其他数据结构等。
4	概念数据 模型 CDM	关系数据库的逻辑设计模型,叫做概念数据模型。主要内容包括一张逻辑 E-R 图及其相应的数据字典。
5	物理数据 模型 PDM	关系数据库的物理设计模型,叫做物理数据模型。主要内容包括一张物理表关系图及其相应的数据字典。

6	视图	在基表或其他视图之上建立的一张虚表,叫做视图,它具有物理表的许				
		多性质,在数据处理和授权上很有用。				
7	7 角色 数据库中享有某些特权操作的用户,叫做角色。角色的权利通过授					
ŕ	71 , L	实现。				
8	子系统	具有相对独立功能的小系统叫做子系统。一个大的软件系统可以划分为				
0	1 71-96	多个子系统,每个子系统可由多个模块或多个部件组成。				
9 模块 具有功能独立、能被调用的信息单元叫做模块。模块是结构体						
	沃火	概念。				
10	内部接口	软件系统内部各子系统之间、各部件之间、各模板之间的接口,叫做内				
10	P At the f. A	部接口。接口描述包括:调用方式、入口信息、出口信息等。				
11	相关文件	相关文件是指当本文件内容变更后,可能引起变更的其他文件。如需求				
11	1日八人IT	分析报告、详细设计说明书、测试计划、用户手册。				
12	参考资料	参考资料是指本文件书写时用到的其他资料。如各种有关规范、模板、				
12	少 少贝科	标准、准则。				

1.5 参考资料 (References)

- [1] 用户需求报告
- [2] 软件开发合同
- [3] 数据库设计规范
- [4] 命名规范

1.6 相关文档 (Related Documents)

- [1] 《详细设计说明书》
- [2] 源程序清单
- [3] 测试计划及报告
- [4] 《用户使用手册》

1.7 版本更新记录(Version Updated Record)

版本更新记录格式,如表 6-6 所示。

表 6-6 版本更新记录

版本号	创建者	创建日期	维护者	维护日期	维护纪要
V1.0	王大林	2001/02/18	_	_	_
V1.0.1	_		王小林	2001/02/26	E-R 图维护

2. 总体设计 (Design of Collective)

2.1 总体结构设计 (Design of Collective Structure)

软件系统的总体逻辑结构,按照不同的设计方法,有不同的总体逻辑结构。本指南以结构化设计方法 为主,画出系统总体结构图,列出系统的功能模块清单编号、名称、功能,并尽可能描绘出功能模块之间 的关系。若用面向对象的 Rose 工具进行分析和设计,则遵照 Rose 的要求进行。

总体结构示意图,如图 6-13 所示。

图 6-13 总体结构示意图

2.2 运行环境设计 (Design of Running Environment)

该软件系统的运行环境:

硬件平台:

- (1) 服务器的最低配置要求
- (2) 工作站的最抵配置要求
- (3) 外设的要求

软件平台:

- (1) 服务器操作系统
- (2) 数据库管理系统
- (3) 中间件
- (4) 客户端的操作系统
- (5) 客户端的平台软件

网络平台:

- (1) 通信协议
- (2) 通信带宽

2.3 子程序清单 (Subsystem List)

子系统清单,如表 6-7 所示。

表 6-7 子系统清单

子系统编号	子系统英文名	子系统功能简述	子系统之间的关系
SS1			
SS2			

000		
SS3		

2.4 功能模块清单 (Function Module List)

功能模块清单,如表 6-8 所示。

表 6-8 功能模块清单

模块编号	模块英文名	模块功能简述	模块的接口关系
M1-1			
M1-2			
M1-3			
M1-4			

2.4.1 单据(Bill of Document)

单据的格式可用表格描述,如表 5-13 所示。

表 5-13 单据的描述格式

单据名称	
用途	
使用单位	
制作单位	
频率	
高峰时数据流量	

各数据项的详细说明如下:

序号	数据项中文名	数据项英文名	类型、长度、精度	数据项的取值范围
1				
2				
3				

3. 模块(部件)功能分配(Function Distribution of Module)

具有功能独立、能被调用的信息单元叫做模块。模块是结构化设计中的概念,部件是面向对象设计中的概念。

模块功能分配的目的,就是为了将具有相同功能的模块合并,从中提取公用模块,形成公用部件,按 照构件或中间件的方式加以实现,作为本系统的公用资源,甚至作为公司级组织的公用资源,从而充实公司级的构件库或中间件库,优化系统设计,加快开发速度,提高开发质量。

3.1 专用模块功能分配(Function Distribution of Expert Module)

专用功能模块分配,如表 6-9 所示。

表 6-9 专用模块功能分配

专用模块编号	模块英文名	模块详细功能分配	模块的接口标准
M1-1			
M1-2			
M2-1			
M2-2			

3.2 公用模块功能分配(Function Distribute of Public Module)

公用模块功能分配,如表 6-10 所示。

表 6-10 公用模块功能分配

公用模块编号	模块英文名	模块详细功能分配	模块的接口标准
G-1			
G-2			
M-3			

4. 数据结构设计(Design of Data Structure)

数据库设计的工具目前主要有 3 个: Erwin, PowerDesigner, OracleDesigner。后面两种工具都支持中文的概念数据模型设计,并能自动将概念数据模型转换为物理数据模型,自动生成建表程序和主键盘索引程序。前面一种工具只能支持英文的物理数据模型设计。3 个工具的共同特点是都能生成 E-R 图及其相应的数据字典。

4.1 数据库表名清单(DB Table List)

数据库表名清单,如表 6-11 所示。

表 6-11 数据库表名清单

序号	中文表名	英文表名	表功能说明
1			
2			
3			

4.2 数据库表之间关系说明(Relation of DB Table)

可以用 E-R 图表示,也可以用文字说明。

4.3 数据库表的详细清单(Particular List of DB Table)

每个表的详细清单内容包括:表名、字段中文名、字段英文名、字段的类型、宽度、精度、主键/外键、空否、取值约束(默认值、最大值、最小值)、索引否。同时要指出该表的索引:索引文件名、索引字段名、索引特性(主键索引、惟一索引 unique、聚集索引 clustered)。详细清单可以用列表给出,如表 6-12

所示。

表 6-12 表名: XXXX

序号	字段中文名	字段英文名	类型、宽度、精度	取值约束	空否	默认值	主键/外键	索引否
1								
2								
3								

4.4 视图设计 (View Design)

视图设计与授权有关,设计时参照需求文档的用户授权范围。视图设计中要给出视图的中文名、英文 名,视图中的中文列名、英文列名、类型、宽度、精度,每一列的具体算法,对应的基本表名。

4.5 其他数据结构设计(Design of Other Data Structure)

此小节描述系统的其他数据结构设计内容。

5. 接口设计(Interface Design)

对应每一个接口,都要详细列出下列内容。

- (1) 接口名称
- (2) 接口内容
- (3) 接口设施
- (4) 接口的数据结构
- (5) 接口的传输速率(Mbps)
- (6) 接口带宽
- (7) 接口协议

6. 其他设计(Other Design)

本章描述前面没有说明的设计。

7. 设计检查列表(Check-up List of Design)

按照需求文档的功能、性能和接口3个列表,设计出概要设计检查列表,以检查概要设计是否覆盖需求分析,没有覆盖就是不符合项,并将检查结果列出。

7.1 功能设计检查列表(Check-up List of Function Design)

功能设计检查列表,如表 6-13 所示。

表 6-13 功能设计检查列表

编号	功能名称	使用部门	使用岗位	功能描述	输入内容	系统响应	输出内容	是否覆盖
1								

2				
3				

7.2 性能设计检查列表(Check-up List of Performance Design)

性能设计检查列表,如表 6-14 所示。

表 6-14 性能设计检查列表

编号	性能名称	使用部门	使用岗位	性能描述	输入内容	系统响应	输出内容	是否覆盖
1								
2								
3								

7.3 接口设计检查列表(Check-up List of Interface Design)

接口设计检查列表,如表 6-15 所示。

表 6-15 接口设计检查列表

编号	接口名称	接口规范	接口标准	入口参数	出口参数	传输频率	是否覆盖
1							
2							
3							