Natives* Digital Video

* nativ = "wie geboren" = nur A/D-gewandelt, evtl. gammakorrigiert,

ABER

ohne codec-basierte Datenreduktion**

Motion-Pictures:

Video/Film ist ...

... eine Abfolge von einzelnen, definiert-großen (Leucht-)Bildern in einem festgelegten zeitlichen Abstand,

Zeitl. Auflösung = 1 Bild pro T = Bildwechselfrequenz [frames-per-second: fps]

... mit der Bewegungsphasen als ("eingefrorene") Einzelbinder aufgenommen werden können, und

... bei deren Betrachtung der Mensch eine Bewegung von Objekten und Szenen wahrzunehmen GLAUBT!

Typische Kennwert-Kombinationen für Digitale Medien:

* Beachte: grundlegend < hinreichend < vollständig

- Pixelraster, (spatiale Auflösung, inkl. Pixel Aspect Ratio)
- > Zeilenaufbau, (interlace oder progressive)
 - ➤ Bildwechselfrequenz, (temporale Auflösung)

internationale Notation: → sichtb. Zeilenzahl / Zeilenaufbau / Frame-Rate

Beispiele: 720 / p / 25
1080 / i / 25

Typische Kennwert-Kombinationen für Digitale Medien:

Video:

1	Gebräuchliche Bezeichnung	Pixelraster (px x Zeilen), örtliche Auflösung	Bildseiten- verhältnis	Zeilenaufbau i/p	Typische Bildwechselfrequenzen [Hz] Beispiel Gesamtnotation		
	SD-Standard Definition (EU)	720 x 576	4:3 (non-square pix)	i	25 576/i/25		
	SD-Standard Definition (US)	tandard Definition (US) 720 x 480		i	30 (29,98) 480/i/30		
	HD-High Definition / S1	1280 x 720	16:9 (square pix)	p	50, (60) 720/p/50		
	HD-High Definition / S2-4 (Volksmund: "Full HD")	1920 x 1080	16:9 (square pix)	i oder p	25, 30, 50, 60 z.B. 1080/i/25		
	Ultra High Definition ("Quad HD")	3840 x 2160	16:9 (square pix)	p	25, 30, 50, 60, 100, 120 z.B. 2160/p/50		
	8k UHD	7680 x 4320	16:9 (square pix)	p	25, 30, 50, 60, 100, 120 z.B. 4320/p/60		

Digitales Kino:

Gebräuchliche Bezeichnung	Pixelraster (px x Zeilen),	Bildseiten-	Zeilenaufbau	Typische		
	örtliche Auflösung	verhältnis	i -/ p	Bildwechselfrequenzen [Hz]		
2k flat	1998 x 1080	1:1,85	p	24,		
4k flat	3996 x 2160	(square pix)		(48, 120 = High Frame Rate/3D-HFR)		
2k scope	2048 x 858	1:2,38	p	24,		
4k scope	4096 x 1716	(square pix)		(48, 120 = High Frame Rate/3D-HFR)		

PC/Tablet/ Smartphone:

Gebräuchliche Bezeichnung	Pixelraster (px x Zeilen),	Bildseiten-	Zeilenaufbau	Typische
	örtliche Auflösung	verhältnis	i / p	Bildwechselfrequenzen [Hz]
nGA (n x VGA), Video Graphics Array	n x 640x480, n € Q+ (square pix) s. a. nachfolgende. Folie	5:4 - 17:9 s. a. nachfolgende Folie	р	min: 30fps max: je nach Komplexität der Szene und Renderleistung der Grafikkarte

Komplettübersicht: Computer-Pixelraster nGA

> 30Bilder/s, progressive

Bildquelle: en.wikipedia.org/wiki/File:Vector_Video_Standards2.svg

Historie: Pixelraster Video "PAL*"

* PAL steht hier als Synonym für TV-Systeme mit 625Zeilen / 50 Hz Halbbildfrequenz

TV-Europa: 25 Bilder/s, 720 x 576 Pixel (non-square), 50 Hz *interlace*

BEISPIEL: Pixelraster Video "HD720"

BEISPIEL: Pixelraster Video "HD 1080i"

^{z.B. 1080/i/25} 25 Bilder/s, 1920 x **1080** Pixel (square), *interlace*

BEISPIEL: Pixelraster Video "HD 1080p"

BEISPIEL: Grundraster "VGA"

VGA = Video Graphics Array (Basis-Computerauflösung)

BEISPIEL: Pixelraster "CIF"

CIF = Common Intermediate Format (erniedrigte Basisauflösung für mobiles Videoconferencing/Streaming)

CIF_{FU}: 25 Bilder/s, 352 x 288 Pixel (square), *progressive*

CIF_{US}: 30 Bilder/s, 352 x 243 Pixel (square), *progressive*

Hinweis:

für noch geringere Auflösungen ist ergänzend das QuarterCIF-Raster / QCIF (für EU mit 176 x 144 Pixeln) definiert worden!

Zur Erinnerung: videospezifisches Videoprozessing

(am Beispiel 3-Chip CCD-Kamera, mögliche Signalausgänge in magenta)

Technische Grundlagen des RGB - Videosystems:

1. Jede ermischte <u>Farbempfindung</u> V ist eindeutig durch ihren R-Anteil, G-Anteil und B-Anteil (die sog. Farbwertanteile) definiert!

V(alenz) = R-Anteil + G-Anteil + B-Anteil

Reale Videosysteme (→ Gammakorektur): V = R' + G' + B'

 Selbst die Leuchtdichte (Luma) Y' eines Farbpunktes kann (aufgrund der Helligkeitsempfindlichkeit des Auges bezüglich λ_{rot}, λ_{grün} und λ_{blau}) aus diesen Werten abgleitet werden!

Historische Anpassungen: $E'_{Y} = 0.299 \ E'_{R} + 0.587 \ E'_{G} + 0.114 \ E'_{B} \ (1981, ITU-R BT.601)$ $E'_{Y} = 0.2126E'_{R} + 0.7152E'_{G} + 0.0722E'_{B} \ (1990, ITU-R BT.709)$

<u>Technisches Beispiel</u>: Farbwertanteile und Leuchtdichte der Normfarbbalkenfolge ("Testbild")

Bildvorlage	R'	G'	B	Υ'
Weiß	1	1	1	1,00
Gelb (Rot und Grün)	1	1	0	0,89
Cyan (Grün und Blau)	0	1	1	0,70
Grün	0	1	0	0,59
Purpur (Rot und Blau)	1	0	1	0,41
Rot	1	0	0	0,30
Blau	0	0	1	0,11
Schwarz	0	0	0	0

<u>Transformationscodierung: vom R'G'B'- in den Y'CbCr - Farbraum</u> ("Matrizierung")

 Aufgrund der historisch geforderten Kompatibilität von Schwarzweiß und Farbfernsehen wurde schon bei analogen Videogeräten intern meist mit dem RGB-Differenzverfahren (Chrominanzkomponenten) gearbeitet:

- Jede Farbe kann in beiden Farbräumen problemlos identisch dargestellt werden (s. nachfolgende Folie).
 Die Transformation ist (mathematisch gesehen) verlustfrei.
- ABER:
 - a) Gestalterischer Vorteil:
 Bei Bilder in YUV-Kodierung kann sehr einfach die Helligkeit Y losgelöst von der Farbigkeit gemessen und manipuliert werden.
 - b) Technischer Vorteil:

Da der Mensch relativ unempfindlich gegen Chromawechsel in benachbarten Bildbereichen ist, können die Chrominanzsignale U, V mit wesentlich geringerer Bandbreite als das Helligkeitssignal Y' übertragen werden (ohne Qualitätsverluste in der menschl. Wahrnehmung)

→ Chroma-Subsampling

Transformationscodierung zur Erzeugung gleicher Farbinformationen:

<u>Digital Video - was wird standardmäßig abgetastet?</u>

- In <u>Video-Schaltkreisen</u> und bei aufwendigen <u>Videoeffekten</u> digitalisiert man die ursprünglichen <u>R',G',B'</u> - Farbsignale;
 - → alle drei mit der gleichen Abtastrate.

Dies realisiert die höchste Abbildungsqualität, führt aber zu enormen Datenmengen an den Ausgängen der A/D-Wandler. Diese Datenmenge kann derzeit nur innerhalb von lokalen Produktionsinseln oder geräteintern sinnvoll gehandhabt werden.

 In der <u>Übertragungs- und Speichertechnik</u> digitalisiert man vorzugsweise Luma- und Chroma-Signale

```
(→ Y',U,V in der ungefilterten Form Y',P<sub>B</sub>,P<sub>r</sub> oder
→ Y', Cb, Cr digital, verlustfrei umgerechnet aus RGB).
```

Dabei wird von Beginn an berücksichtigt, dass das menschliche Auge Farbartunterschiede wesentlich unschärfer wahrnimmt als Helligkeitsunterschiede.

Dies bedeutet, dass man sich bei der Abtastung von P_b und P_r (innerhalb einer Videozeile) auf die halbe oder viertel Abtastrate von Y' beschränken kann.

→ engl. Chroma-Subsampling

Verdeutlichung Video-A/D-Wandlung und visuelles Ergebnis:

(Am Bsp. Luma-Kanal)

<u>Video - A/D - Wandlung:</u> Einfluß von Abtastung & Quantisierung auf die Bildqualität!

Einfluss Abtastung ⇒ örtliche Bildauflösung

Je höher die Abtastfrequenz, desto mehr **Pixel** werden pro Zeile generiert!

Einfluss Quantisierung ⇒ Helligkeits-/Farbgenauigkeit!

Je höher die Quantisierung, desto **genauer** werden die einzelnen Pixel in ihren tatsächlichen Farb-/Helligkeitswerten erfasst/dargestellt!

Erstellung von Pseudo-Retrografik

Original-Schriftzug: 1600 x 1200px, Q_{RGB}=8bit/Kanal

Verringerte Quantisierung: 1600 x 1200px, Q_{RGB}=3bit/Kanal (Verringerung auf 8 mögliche Farben)

Verringerte Quantisierung + Abtastrate*0.1: 160 x 120px, Q_{RGB}=3bit/Kanal

(zur Verdeutlichung linear aufskaliert)

Standardisierte Videosignal-Quantisierungs – Varianten: (nach Gammakorrektur!)

ACHTUNG bei Übernahme von computergenerierten Bildern in Videoproduktionen oder bei Live-Übertragungen !!:

 ⁻ Aussteuerungsreserve und verbotener Bereich schränken den zulässigen Y'-, C_b-, C_r- Wertebereich (GAMUT) ein
 → illegal colours, forbidden colours!

⁻ Diese Wertebereiche gehen davon aus, dass auf den Kanälen vorab schon eine Gammakorrektur stattgefunden hat!

Standardisierte Basis - Abtastraten für Video:

Höchste auftretende Frequenz im analogen 4:3/SD Videosignal (Y',P_b,P_r - keine Bandbegrenzung):

ca. 6 MHz → Nyquist: **f**_{Sample} > 12 MHz

Internationale Empfehlung Video/SDdigital/4:3:

 \Rightarrow $f_{Sample/VIDEO\ SD/basic} = 13,5\ MHz$

Bearünduna:

Ein gemeinsames Vielfaches, basierend auf den Halbbild-Wiederholfrequenzen von PAL (50 Hz) und NTSC (60 Hz) ist der Wert 2,25 MHz = 45.000 x 50 Hz = 37.500 x 60 Hz.

Die zu empfehlende Abtastfrequenz musste also > 12MHz sein und gleichzeitig ein ganzzahliges Vielfaches von 2,25 MHz ergeben. Deshalb wurde der Wert

6 x 2,25 = 13,5 MHz = 4 x 3,375MHz

in der Norm ITU R BT.601 der International Telecommunication Union verabschiedet.

Höchste auftretende Frequenz im analogen 16:9/HD Videosignal (Y',P_b,P_r - keine Bandbegrenzung):

ca. 36 MHz → Nyquist: f_{Sample} > 72 MHz

Internationale Empfehlung Video/HDdigital/16:9:

 \Rightarrow $f_{Sample/VIDEO_HD/basic} = 74,25 MHz$

Begründung:

Bereits 1990 wurde international festgelegt, dass bei allen HDTV-Systeme die Abtastfrequenz ebenfalls ein Vielfaches von 2,25MHz betragen soll.

Die zu empfehlende Abtastfrequenz musste also > 72MHz sein und gleichzeitig ein ganzzahliges Vielfaches von 2,25 MHz ergeben. Deshalb wurde der Wert

33 x 2.25 = 74.25 MHz

Sowohl in der europäischen Norm ITU R BT. 1886 als auch in der amerikanischen Norm SMPTE 274 verabschiedet.

 $f_{\text{Sample/VIDEO_UHD/basic}} = 148,5 \text{ MHz}$

66 x 2.25 = 148.5 MHz

Sowohl in der europäischen Norm ITU R BT. 2020 als auch in der amerikanischen Norm SMPTE 2036 verabschiedet.

Chroma-Subsampling Notation:

Tabellarischer Überblick: Subsampling Schemata

Quelle: Poynton "Digital Video and HDTV"

Pixelraster, Abtastung und Datenorganization (I)

Pixelraster, Abtastung und Datenorganization (II)

Pixelraster, Abtastung und Datenorganization (III)

Pixelraster, Abtastung und Datenorganization (IV)

Pixelraster, Abtastung und Datenorganization (V)

Pixelraster, Abtastung und Datenorganization (VI)

Gesamtüberblick HDTV-Parameter in Europa*

* 30/60Hz basierte Systeme (z.B. USA) unterscheiden sich in den Specs nur noch durch die Framerate (und damit auch in einer höheren Netto-image-bitrate).

EBU System	Nomenclature and abbreviation [samples horiz. x active lines / scanning / frame rate]	Luma or R'G'B' Samples per active line (S/AL)	Active lines per frame (picture) (AL/F)	Frame rate, Hz	Luma or R'G'B' sampling frequency (f _s), MHz	Luma sample periods per total line (S/TL)	Total lines per frame	Net image Bit Rate (4:2:2, 10 bit) [Mbit/s]	Corresponding SMPTE system nomenclature
S1	1280 <i>x</i> 720/P/50 (abbreviated: 720/P/50)	1280	720	50	74.25	1980	750	921.6	Corresponds to SMPTE 296M System 3
S2	1920 <i>x</i> 1080/I/25 (abbreviated: 1080/I/25)	1920	1080	25 (50 Hz field rate)	74.25	2640	1125	1036.8	Corresponds to SMPTE 274 System 6
S 3	1920 <i>x</i> 1080/P/25 (abbreviated: 1080/P/25)	1920	1080	25	74.25	2640	1125	1036.8	Corresponds to SMPTE 274 System 9
S4	1920 <i>x</i> 1080/P/50 (abbreviated: 1080/P/50)	1920	1080	50	148.5	2640	1125	2073.6	Corresponds to SMPTE 274 System 3

Table 1: HDTV Systems 1 to 4

The digital representation shall emply eight or ten bits per sample in its uniformly quantized (linear) PCM coded form. The image aspect ratio for system 1 to 4 shall be 16 x 9, and the sample 'aspect ratio' shall be 1 x 1 ("square pixels").

Quelle EBU-Tech 3299

Format-Speech:

"raw"

unangetasteter RGB-Datenstrom direkt hinter dem A/D-Wandler des Bildsensors, Q = 12-18bit.

..native video"

gammakorrigierter, matrizierter, chroma-reduzierter, Y, Cb, Cr-Datenstrom, Q = 8 o. 10bit, KEINE sonstige DATENREDUKTION.

"mezzanine"*

leicht datenreduzierter Y, Cb, Cr- Datenstrom, meist nur intraframebasierte Bildcodierung (i-Frame), Postpro-fähig.

"encoded"

stark datenreduzierter Y, Cb, Cr- Datenstrom, intra- & interframebasierte Bildcodierung, niedrige Datenrate. Schnittfähig, aber nicht Postpro-fähig.

^{*} wortwörtlich "Zwischengeschoss", im Sinne von "Mittelformat"

Zusammenfassung: Allgemeine Kennwerte für Digital Video:

* vollständige Beschreibung eines digitalen Videoformates, siehe Folie 190

- ➤ Bildwechselfrequenz, (temporale Auflösung)
- ➤ Pixelraster, (spatiale Auflösung)
- Zeilenaufbau
- beschreibender Farbraum
- Sampling / Chroma-Subsampling
- Quantisierung

Beispiele:

Das digitale TV-Produktionsformat *IMX*:: 720 x 576, Rec.601, 4:2:2, Q= 8bit, 50 Hz, interlace Das digitale Filmformat *HD24p*: 1920 x 1080, Rec.1886, 4:2:2, Q=10bit, 24 Hz, progressive