Lezione 3 Geometria 2

Federico De Sisti2025-03-04

0.1 Parte interna, chiusura, intorni

Definizione 1

Sia X spazio topologico, sia $D\subseteq X$ un sottoinsieme, la parte interna di D è

$$D^o = \bigcup_{A \subseteq D, A \ aperto} \ A.$$

La chiusura di D è

$$\overline{D} = \bigcap_{C \supseteq D, C \ chiuso} C.$$

la frontiera di D è

$$\partial D = \overline{D} \setminus D^o.$$

I punti di D^o si dicono interni a D, quelli di \overline{D} si chiamano aderenti a D.

Osservazioni

1) D^o è un aperto e \overline{D} è un chiuso (posso vederlo come l'intersezione tra \overline{D} e il complementare di D^o , che è chiuso)

2) Anche ∂D è chiuso perché

 $D = \overline{D} \cap (X \setminus D^o)$ dove $(X \setminus D^o)$ è un chiuso

Esempio

1) $X = \mathbb{R}$ con topologia euclidea. Sia D = [0, 1].

Allora $D^o =]0,1[$, verifica:

 $D^{o} \supseteq]0,1[:$

La parte interna di D contiene tutti gli aperti, dato che]0,1[è un aperto è contenuto.

A $D^{o} \subseteq]0,1[:$

supponiamo per assurdo che $D^o \not\subseteq]0,1[$, allora $0 \in D^o$ oppure $1 \in D^o$ (mi limito a considerare i punti di D perché $D^o \subseteq D$).

Supponiamo $0 \in D^o$, allora esiste $A \subseteq \mathbb{R}$ aperto t.c. $A \subseteq D, A \ni 0$ (è uno degli A della definizione).

Allora esiste $\varepsilon > 0$ t.c. $]0 - \varepsilon, 0 + \varepsilon [\subseteq a \subseteq D.$

assurdo, Analogamente $1 \notin D^o$ quindi vale \subseteq

2) $X=\mathbb{R}$ con topologia cofinita D=[0,1]. Allora $D^o=\bigcup_{A\subseteq D,A \text{ aperto}}$ Sia A aperto.

 $A \subseteq D$ abbiamo

 $A = \emptyset$ oppure $A = \mathbb{R} \setminus \{\text{insieme finito}\}$

Ma questa ultima è impossibile

allora $D^o = \emptyset$ in questa topologia (con questo D)

esercizio: calcolare \overline{D}

3) $X = \mathbb{R}$, T = topologia per cui A è aperto $\Leftrightarrow A = \emptyset$ oppure $A \ni 0$

Considero $\overline{\{1\}} = \{1\}$, questo insieme non contiene lo zero, quindi $\{1\}$ è esso stesso un chiuso.

Però $\overline{\{0\}} = ?$

I chiusi in T sono $\mathbb R$ e i sottoinsiemi che non contengono lo 0. Quindi l'unico insieme chiuso che contiene $\{0\}$ è $\mathbb R$, allora $\overline{\{0\}} = \mathbb R$

Definizione 2

Sia X spazio topologico, un sottoinsieme di $D \subseteq X$ si dice denso se $\overline{D} = X$

Esempio

 $X = \mathbb{R}$ con topologia euclidea,

 $D = \mathbb{Q}$. Dimostriamo che è denso

L'unico chiuso che contiene $D \ earrow X$ stesso.

Sia $C \subseteq \mathbb{R}$ chiuso con $C \supseteq \mathbb{Q}$

sia $a \in \mathbb{R} \setminus C$ aperto

allora $\exists \varepsilon > 0 \mid]a - \varepsilon, a + \varepsilon \subseteq \mathbb{R} \setminus C$

allora $]a - \varepsilon, a + \varepsilon[\cap \mathbb{Q} = \emptyset]$

assurdo.

Allora a non esiste e $C = \mathbb{R}$. Osservazione:

1) Sia $D \subseteq X$ spazio topologico vale:

$$X \setminus (\overline{D}) = (X \setminus D)^o$$
.

Dimostrazione

Usando direttamente la definizione:

$$X \setminus (\overline{D}) = X \setminus (\bigcap_{C \supseteq D, C \ chiuso} C) = \bigcup_{C \supset D, C \ chiuso} (X \setminus C).$$

(ultima eguaglianza per esercizio)

$$=\bigcup_{A=X\backslash C,C\supset D,C\ chiuso}A=\bigcup_{A\ aperto,X\backslash A\supset D}A=\bigcup_{A\ aperto,A\subseteq X\backslash D}A.$$

2) D denso

\$

D interseca ogni aperto non vuoto (esercizio)

Definizione 3

 $Sia\ X\ spazio\ topologico,$

 $U\subseteq X, x\in U^o$

Allora U si dice intorno di x.

Equivalentemente, un sottoinsieme $U\subseteq X$ si dice intorno di $x\in X$ se esiste $A\subseteq X$ aperto t.c. $x\in A\subseteq U$

Esempio

 $X=\mathbb{R}$ topologia euclidea, x=0,U=]-1,1[è intorno di x (si prende ad esempio A=U,o anche A=]-1/2,1/2[

Anche $V = [-1,1] \cup \{5\}$ è un intonro di 0, ad esempio $A =]-1/2, 16[\cup]3/16, 7/16[$

Osservazione

 $U\subseteq X$ è aperto $\Leftrightarrow U=U^o\Leftrightarrow U$ è un intorno di ogni suo punto.

Lemma 1

Siano X spazio topologico, $x \in X$ $D \subseteq X$. Allora $x \in \overline{D} \Leftrightarrow \forall U$ intorno di

Dimostrazione

Supponiamo $x \in \overline{D}$ sia U interno di x

per assurdo suppongo $D \cap U = \emptyset$ Considero $A \subseteq X$ aperto con $x \in A \subseteq U$ Considero il chiuso $X \setminus A = C$

Abbiamo $C \supset D$ perché $D \cap U = \emptyset$ e allora anche $D \cap A = \emptyset A$

Abbiamo $C \supset D$ perché $D \cap U = \emptyset$ e allora anche $D \cap A = \emptyset$ e allora anche $D \cap A = \emptyset$. Cioè C compare nella definizione di D e C $\not\ni x$ perché $x \in A$

 $Ma \ x \in \overline{D} \ quindi \ x \ e \ in \ tutti \ i \ chiusi \ che \ contengono \ D, \ assurdo$

Viceversa, supponiamo D intorno di x, per assurdo però $x \neq \overline{D}$, Allora esiste un chiuso C che contiene D ma non x.

Considero $A = X \setminus C$ è un aperto contenente x. Cioè A è un intorno di x e A non interseca D; assurdo. Quindi $x \in D$

Definizione 4 (Famiglia degli intorni, sistema fondamentale)

Sia X spazio topologico e $x \in X$ La famiglia di tutti gli intorni di x si denota con I(x).

Un sottoinsieme $J \subseteq I(x)$ è detto sistema fondamentale di intorni di x (o base locale in x) se $\forall U \in I(x) \ \exists V \in J \mid V \subseteq U$

Esempi:

 $X = \mathbb{R}$ con topologia euclidea.

 $x \in \mathbb{R}$ qualsiasi

$$J = \{]x - \varepsilon, x + \varepsilon [\mid \varepsilon > 0, \ \varepsilon \in \mathbb{R} \}$$

è sistema fondamentale di intorni di \boldsymbol{x}

$$J'\{[x-\frac{1}{2},x+\frac{1}{2}]\mid n>1,\ n\in\mathbb{N}\}$$

 $J'\{[x-\frac{1}{n},x+\frac{1}{n}]\mid n\geq 1,\ n\in\mathbb{N}\}$ è un sistema fondamentale di interni di x

$$J'' = \{ [x - \frac{1}{n}, x + \frac{2}{n} [\cup \{x + \frac{3}{n}\} | n \ge 1, n \in \mathbb{N} \}.$$

è un sistema fondamentale di riferimento

$$J''' = \{ |x - \frac{1}{n}, x + \frac{1}{n} [\cup \{10\} | n \ge 1, n \in \mathbb{N} \}.$$

 $(10 \neq x)$

non è un sistema fondamentale di riferimento

0.2Applicazioni continue

Definizione 5

Siamo X,Y spazio topologico $f: X \to Y$ un'applicazione. f si dice continua se $f^{-1}(A)$ è aperto $(in X) \forall A$ aperto (Y)

Nota (per la tesi)

non iniziare mai una frase con un simbolo, è facile fare errori (lui può ma solo per essere veloce)

Esempi:

- 1) Se X ha topologia discreta, ogni f è continua (qualsiasi sia Y)
- 2) Se Y ha una topologia banale, allora $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(Y) = X$ quindi ogni f è continua.
- 3) Supponiamo X,Y con topologia cofinita e $f:X\to Y$ iniettiva $f^{-1}(\emptyset)=\emptyset,$

gli altri aperti sono del tipo $Y \setminus \{ \text{ insieme finito } \} = Y \setminus \{y_1, \dots, y_n\}$ allora:

$$f^{-1}(Y \setminus \{y_1, \dots, y_n\}) = X \setminus \{f^{-1}(y_1) \cup \dots \cup f^{-1}(y_n)\}$$