Op-amps

REFRESHER OF THE IDEAL OP-AMP
THE REAL OP-AMP
OP-AMP STABILITY

Ideal Op-amp

When negative feedback is present:

- The output attempts to do whatever necessary to zero the voltage difference between inputs (zero offset voltage, common-mode voltage gain =0) when negative feedback is present
- The inputs draw no current (Z_{in}=∞)
- \circ Z_{out}=0
- Infinite slew rate
- Noiseless

Inverting Amplifier

$$V_{out}/R_f = V_{in}/R_i$$

 $Z_{in} = R_i$

$$V_A = V_{in} = V_{out} R_f / (R_f + R_g)$$

Transimpedence

Real Op-Amp

- Input offset voltage V_{os} and its drift with time and temperature (worse with FET). The two inputs are at slightly different potential. Consequence: the output saturates when in open-loop configuration
- <u>Input bias current</u> I_B (average of two inputs) (50 pA FET, 15 nA BJT). The inputs do draw some current. Consequence: voltage drop across connected resistors.
- Input offset current Ios: difference in IB between inputs
- Common-mode input range. The inputs cannot sit too close to the rails. For example a
 -5V, +5V op-amp cannot accept common-mode input outside, say (-4V,+5V).

Real Amp DC model

Real Op-Amp

- Output swing, max output current.
 - For example an op-amp with supplies +5V, -5V cannot output signals outside of (-4V,+4V). The op-amp is not an ideal current source, but the current it can output is limited.
- Finite voltage gain A_V (10⁵,10⁶) dropping to unity at a frequency GBW (f_T): Gain bandwidth.
 - Higher GBW usually result in higher supply currents, high input bias currents, instabilities.
- Finite slew rate, CMRR, PSRR, voltage (e_n) and current noise (i_n)

$$V_{
m o} = A_{
m d}(V_+ - V_-) + rac{1}{2} A_{
m cm}(V_+ + V_-)$$

Consequences

Take an inverting amplifier:

- Finite open-loop gain → finite bandwidth, non-zero output impedance, finite input impedance (inverting)
- Max output current → limited voltage swing for small loads

- Offset voltage \rightarrow zero input produces $V_{out} = G_{dc}V_{OS} = (1+R_2/R_1) V_{OS}$.
 - Solution: compensate offset, sometimes with dedicated pins
- Input bias current $\rightarrow V_{in} = I_B(R_1/\!\!/R_2)$, $V_{out} = G_{dc}V_{in} = I_BR_2$
 - Substantial in bipolar and current-feedback op-amps
 - Solution: both inputs must see same resistance (but beware of input offset current)

Measurements

Stability

Each amplifier stage introduces a pole (RC filter) (6dB/octave).

Rule of thumb: phase shift must be less than 180° when the **open-loop gain** drops to 1 (stability criterion). For the same reasons capacitive loads can cause instabilities (phase lag inside the feedback network)

Phase margin: difference from 180° in phase when G=1

Figure 4.98. Gain and phase in a multistage amplifier.

Phase reaches -180° before G< 1 : negative feedback -> positive feedback

Stability

Dominant pole compensation: add additional capacitance to start the open-loop gain roll-off at lower frequencies and buy phase margin.

Put unity-gain crossing of open-loop gain at 3dB point of second pole

Phase margin = 45° worst case (follower)

If the loop gain is lower (i.e. total gain higher) the dominant pole can be set at higher frequency

Figure 4.102. Stability is easier to achieve with larger closed-loop gain.

Figure 4.99. "Dominant-pole" compensation.

LT1226

See datasheet ...

Extra

Measurements

Input Offset Voltage

Measurements

Input Current

 $R_S >> 100\Omega$ (100kΩ TO 1GΩ) S1 CLOSED TO TEST I_{B+} S2 CLOSED TO TEST I_{B-} BOTH CLOSED TO TEST V_{OS}

$$V_{O} = \left[1 + \frac{R2}{100}\right] V_{OS}$$

$$+ \left[1 + \frac{R2}{100}\right] I_{B+}R_{S}$$

$$- \left[1 + \frac{R2}{100}\right] I_{B}R_{S}$$

Stability

It is common practice to add a small capacitor to enhance stability

Figure 4.104. A small feedback capacitor enhances stability.