

Tel: +44 118 979 1238 Fax: +44 118 979 1283

Email: info@actcrystals.com

The ACTR433S/433.92/TO39-1.3 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.920** MHz.

1.Package Dimension (TO-39)

2.

Pin	Configuration			
1	Input / Output			
2	Output / Input			
3	Case Ground			

Dimension	Data (unit: mm)				
A	9.30±0.20				
В	5.08±0.10				
С	3.40±0.20				
D	3±0.20/5±0.20				
E	0.45±0.20				

3. Equivalent LC Model and Test Circuit

4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

Issue: 1.1 C1

Date: March 2010

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered

For quotations or further information please contact us at: 3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

http://www.actcrystals.com

Tel: +44 118 979 1238 Fax: +44 118 979 1283

Email: info@actcrystals.com

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation	0	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-40 to +85	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Centre Frequency (+25 °C)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.3	1.8	dB
Quality Factor	Unloaded Q	Q _U		11,950		
	50 Ω Loaded Q	Q _L		1,650		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C 2
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16	23	Ω
	Motional Inductance	L _M		70.2381		μН
	Motional Capacitance	См		1.9173		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.65	2.95	3.25	pF

i CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered

For quotations or further information please contact us at: 3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

Date : March 2010

Issue: 1.1 C1

Tel: +44 118 979 1238 +44 118 979 1283 Fax:

Email: info@actcrystals.com

- 1. The centre frequency, f_C , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25$ °C±2°C.
- 3. Frequency aging is the change in fc with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_C)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (non-motional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f c, IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.

Issue: 1.1 C1

Date: March 2010

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.