CSE303 Midterm 1 Solutions

- 1. (20 Pts) Design an NFA (non-deterministic finite automata) to accept the set of strings of 0's and 1's that either
 - (a) end in 010 and have 011 somewhere preceding, or
 - (b) end in 101 and have 100 somewhere preceding

Solution:

2. (15 Pts) Transform the following NFA (note that ϵ stands for null-string) into an equivalent DFA (deterministic finite automata)

Solution:

3. (10 Pts) What is the language accepted by the following finite state automata?

Solution: $a(bb + bba)^*ba$ or $ab(bb + bab)^*a$

4. (15 Pts) Let $\Sigma = \{a, b\}$. Write regular expression for the language L consisting of all strings in Σ^* with exactly one occurrence of the substring aaa.

Solution: $(b + ab + aab)^*aaa(baa + ba + b)^*$

5. (20 Pts) Construct DFA to accept $L = \{w \in \{a,b\}^* \mid w \text{ has an odd number of a's and an even number of b's}\}$. Your construction must be direct, without using NFA.

Solution:

6. (**20 Pts**)

(a) Let Σ be a *finite* alphabet. Prove or disprove that the set Σ^* of all finite length words (using letters from Σ) is countable.

Solution:

If Σ is a finite alphabet, the set Σ^* of all words using letters from Σ is countably infinite. Note that Σ is nonempty by definition. Recall that $\Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k$ where each Σ^k is finite. Thus Σ^* is a countable union of countable sets, and hence Σ^* itself is countable since the union of countably many countable sets is countable (Homework 2, Question 3).

(b) Let Σ be an *infinite* alphabet. Prove or disprove that the set Σ^* of all finite length words (using letters from Σ) is countable.

Solution:

For each $k \in \mathbb{P}$, the set Σ^k of all words of length k is in one-to-one correspondence with the product set $\Sigma^k = \Sigma \times \Sigma \times \ldots \times \Sigma$ (k times). In fact, the correspondence maps each word $a_1 a_2 \ldots a_k$ to the k-tuple (a_1, a_2, \ldots, a_k) . So each set Σ^k is countable by Homework 2, Question 4. The 1-element set $\Sigma^0 = \{\epsilon\}$ is countable too. Hence $\Sigma^* = \bigcup_{k=0}^{\infty} \Sigma^k$ is countable since the union of countably many countable sets is countable (Homework 2, Question 3).