FCC RF Test Report

APPLICANT : Brightstar Corporation

EQUIPMENT: Mobile Phone

BRAND NAME : Avvio

MODEL NAME : Avvio L640 FCC ID : WVBAL640X

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Jul. 06, 2016 and testing was completed on Aug. 12, 2016. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Prepared by: Ken Chen / Manager

Ven Chen

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 1 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Testing Laboratory 2353

Report No.: FR670610B

TABLE OF CONTENTS

SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Descriptions of Test Mode	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Peak Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	36
4	LIST	OF MEASURING EQUIPMENT	37
5	UNC	ERTAINTY OF EVALUATION	38
ΑP	PEND	IX A. CONDUCTED TEST RESULTS	
ΑP	PEND	IX B. RADIATED TEST RESULTS	
ΑP	PEND	IX C. DUTY CYCLE PLOTS	

SPORTON INTERNATIONAL (SHENZHEN) INC.

APPENDIX D. SETUP PHOTOGRAPHS

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 2 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR670610B	Rev. 01	Initial issue of report	Aug. 19, 2016

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 3 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(1)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 7.51 dB at 30.000 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 4.26 dB at 0.490 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 4 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No. : FR670610B

1 General Description

1.1 Applicant

Brightstar Corporation

9725 NW 117th Ave., Miami, Florida, FL 33178, United States

1.2 Manufacturer

Heng Da Chuang Xin Technology Limited

Rm14H Taibang Building, 4 Rd., High Tech South, Nanshan, SZ, P. R. C. 518000

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Phone			
Brand Name	Avvio			
Model Name	Avvio L640			
FCC ID	WVBAL640X			
	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+/			
	DC-HSDPA/LTE			
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n HT20/HT40			
	Bluetooth v3.0+EDR			
	Bluetooth v4.0 LE			
IMELO. do	Conducted: 357275070002271			
IMEI Code	Radiation/Conduction: 357275070002255			
HW Version	V03			
SW Version	Avvio_L640_Claro_V1.00			
EUT Stage	Production Unit			

Report No.: FR670610B

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	0.71 dBm (0.0012 W)			
Antenna Type	PIFA Antenna with gain -1.00 dBi			
Type of Modulation	Bluetooth LE : GFSK			

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 5 of 38

 TEL: 86-755-8637-9589
 Report Issued Date
 : Aug. 19, 2016

 FAX: 86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID : WVBAL640X Report Template No.: BU5-FR15CBT4.0 Version 1.3

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.		
	1F & 2F,Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town,		
	Nanshan District, Shenzhen, Guangdong, P. R. China		
Test Site Location	TEL: +86-755-8637-9589		
	FAX: +86-755-8637-9595		
Took Oite No	Sportor	n Site No.	
Test Site No.	TH01-SZ	CO01-SZ	

Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.				
Test Site Location	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P. R. China				
	TEL: +86-755- 3320-2398				
Took Cita No	Sporton Site No. FCC Registration No.				
Test Site No.	03CH03-SZ	565805			

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 6 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

The RF output power was recorded in the following table:

	Frequency	Bluetooth 4.0 LE RF Output Power
Channal		Data Rate / Modulation
Cilaililei	riequelicy	GFSK
		1Mbps
Ch00	2402MHz	<mark>0.71</mark> dBm
Ch19	2440MHz	0.43 dBm
Ch39	2480MHz	-0.25 dBm

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 7 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases					
Toot Itom	Data Rate / Modulation				
Test Item	Bluetooth 4.0 LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
AC	Made 1: CSM950 Idle + Plusteeth Link + WI AN Link + Fernhane + LISP Cable				
Conducted	Mode 1: GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable				
Emission	(Charging from Adapter)				
Remark: For Radiated TCs, The tests were performance with Adapter, Battery, Earphone, and USB					

SPORTON INTERNATIONAL (SHENZHEN) INC.

Cable.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 8 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

2.3 Connection Diagram of Test System

<Bluetooth 4.0 LE Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 9 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	Lenovo	E540	FCC DoC	N/A	Shielded cable DC O/P 1.8 m Unshielded AC I/P cable1.2 m
4.	Bluetooth Earphone	Lenovo	LBH-520	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth v4.0 LE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5.0 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 5.0 + 10 = 15.0 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 11 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

3.1.5 Test Result of 6dB Bandwidth

Test data refer to Appendix A.

6 dB Bandwidth Plot on Channel 00

Date: 14.JUL.2016 10:37:13

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 12 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

6 dB Bandwidth Plot on Channel 19

Date: 14.JUL.2016 10:40:52

6 dB Bandwidth Plot on Channel 39

Date: 14.JUL.2016 10:45:14

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 13 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.1.6 Test Result of 99% Occupied Bandwidth

Test data refer to Appendix A.

99% Bandwidth Plot on Channel 00

Date: 14.JUL.2016 10:39:22

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 14 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

99% Occupied Bandwidth Plot on Channel 19

Date: 14.JUL.2016 10:43:20

99% Occupied Bandwidth Plot on Channel 39

Date: 14.JUL.2016 10:46:12

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 15 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas.
 Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 16 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 17 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.3.5 Test Result of Power Spectral Density

Test data refers to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

Date: 14.JUL.2016 10:38:09

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 18 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

PSD 100kHz Plot on Channel 19

Date: 14.JUL.2016 10:42:32

PSD 100kHz Plot on Channel 39

Date: 14.JUL.2016 10:45:32

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 19 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 14.JUL.2016 10:37:52

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 20 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

PSD 3kHz Plot on Channel 19

Date: 14.JUL.2016 10:42:18

PSD 3kHz Plot on Channel 39

Date: 14.JUL.2016 10:45:23

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 21 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 22 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 00

High Band Edge Plot on Channel 39

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 23 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 24 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 14.JUL.2016 10:42:41

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 14.JUL.2016 10:42:50

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 25 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 14.JUL.2016 10:45:53

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 14.JUL.2016 10:46:01

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 26 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 27 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

3.5.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 28 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 29 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Duty Cycle

Please refer to Appendix C.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 30 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of emission (MUz)	Conducted limit (dBμV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 31 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report No.: FR670610B

3.6.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 32 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

3.6.5 Test Result of AC Conducted Emission

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 33 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

Test Mode :	Mode 1	Temperature :	21~23 ℃
Test Engineer :	Tao Cheng	Relative Humidity :	41~42%
Test Voltage :	120Vac / 60Hz	Phase :	Neutral
Function Type:	GSM850 Idle + Bluetooth Li	nk + WLAN Link + Ea	rphone + USB Cable (Charging

from Adapter)

: CO01-SZ

Condition: FCC 15C_QP LISN_20160509 NEUTRAL

Mode : Mode 1

: 357275070002255 IMEI

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBu∀	dB	dBuV	dBu∀	dB	dB	
1	0.41		-19.63		17.60			Average
2	0.41		-18.13	57.59	29.10		10.25	~
3	0.44	41.35	-5.72	47.07	31.00			Average
4	0.44	49.75			39.40		10.24	-
5 4	0.49	41.93	-4.26	46.19	31.60	0.11	10.22	Average
6	0.49	50.73	-5.46	56.19	40.40	0.11	10.22	QP
7	0.52	32.92	-13.08	46.00	22.60	0.11	10.21	Average
8	0.52	44.42	-11.58	56.00	34.10	0.11	10.21	QP
9	0.60	34.00	-12.00	46.00	23.70	0.11	10.19	Average
10	0.60	44.50	-11.50	56.00	34.20	0.11	10.19	QP
11	0.64	37.58	-8.42	46.00	27.29	0.11	10.18	Average
12	0.64	47.08	-8.92	56.00	36.79	0.11	10.18	QP
13	0.69	38.27	-7.73	46.00	28.00	0.11	10.16	Average
14	0.69	46.27	-9.73	56.00	36.00	0.11	10.16	
15	0.76	33.67	-12.33	46.00	23.40	0.11	10.16	Average
16	0.76	45.17	-10.83	56.00	34.90		10.16	_
17	0.80		-10.13		25.60	0.11		Average
18	0.80	46.57	-9.43	56.00	36.30		10.16	_
19	0.86		-11.73		24.00			Average
20	0.86		-14.63		31.10		10.16	
21	0.97		-11.23		24.50			Average
22	0.97		-11.53		34.20		10.16	_
23	1.08		-13.93		21.80			Average
24	1.08		-11.83		33.90		10.16	_
25	1.17		-11.03		24.70			Average
26	1.17		-11.33		34.40		10.16	_
27	1.29		-10.53		25.20			Average
28	1.29		-9.13		36.60			_
							10.16	
29	1.40	32.8/	-13.13	46.00	22.60	0.11	10.16	Average

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X

Page Number : 34 of 38 Report Issued Date: Aug. 19, 2016 Report Version : Rev. 01

Report No.: FR670610B

Test Mode: Mode 1 Temperature: 21~23°C Test Engineer: Tao Cheng **Relative Humidity:** 41~42% Test Voltage: 120Vac / 60Hz Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging **Function Type:** from Adapter) 100 Level (dBuV) Date: 2016-07-22 Time: 10:34:00 90 80 70 FCC 15C_QP FCC 15C_AVG 50 141921,2525,02850204149575 5557 20 10 0<u>.15</u> Frequency (MHz) : CO01-SZ Site Condition: FCC 15C QP LISN 20160509 NEUTRAL : Mode 1 : 357275070002255 LISN Cable Over Limit Read Freq Level Limit Line Level Factor Loss Remark MHz dBu∀ dB dBu∀ dBuV dB dB 30 1.40 45.47 -10.53 56.00 35.20 0.11 10.16 QP 31 1.56 32.98 -13.02 46.00 22.70 0.11 10.17 Average 45.78 -10.22 35.50 1.56 56.00 0.11 10.17 OP 33 1.68 34.08 -11.92 46.00 23.80 10.17 Average 0.11 34 1.68 46.78 -9.22 56.00 36.50 0.11 10.17 OP 35 1.77 34.68 -11.32 46.00 24.40 0.11 10.17 Average 36 1.77 47.28 -8.72 56.00 37.00 0.11 10.17 QP 37 1.98 33.88 -12.12 46.00 23.60 0.11 10.17 Average 45.28 -10.72 38 1.98 56.00 35.00 0.11 10.17 QP 2.13 34.49 -11.51 46.00 24.21 10.17 Average 39 0.11 56.00 40 2.13 45.79 -10.21 35.51 10.17 OP 0.11 10.18 Average 35.40 -10.60 41 2.40 46.00 25.10 0.12 42 2.40 46.00 -10.00 56.00 35.70 0.12 10.18 QP 43 2.69 35.51 -10.49 46.00 25.20 0.12 10.19 Average 2.69 46.91 -9.09 56.00 36.60 0.12 10.19 QP 45 2.85 35.82 -10.18 46.00 25.50 0.12 10.20 Average 46 2.85 47.12 -8.88 56.00 36.80 0.12 10.20 QP 46.00 47 3.09 36.22 -9.78 25.90 0.12 10.20 Average 10.20 QP 48 3.09 47.52 -8.48 56.00 37.20 0.12 49 3.35 35.83 -10.17 46.00 25.50 0.12 10.21 Average 50 3.35 47.03 -8.97 56.00 36.70 0.12 10.21 QP 51 3.57 36.74 -9.26 46.00 26.40 0.13 10.21 Average 3.57 47.94 56.00 52 -8.06 37.60 0.13 10.21 QP 10.22 Average 53 3.94 37.35 -8.65 46.00 27.00 0.13 54 3.94 48.05 -7.95 56.00 37.70 0.13 10.22 QP 55 4.27 37.66 -8.34 46.00 27.30 10.23 Average 0.13 56 4.27 48.56 -7.44 56.00 38.20 0.13 10.23 QP 57 4.65 37.48 -8.52 46.00 27.10 10.24 Average 0.14 58 -7.524.65 48.48 56.00 38.10 0.14 10.24 OP 59 5.03 34.90 -15.10 50.00 24.50 0.15 10.25 Average

60

5.03

45.70 -14.30

60.00

35.30

0.15

10.25 QP

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 35 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No.: FR670610B

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Page Number : 36 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	9kHz~40GHz	May 07, 2016	Jul. 14, 2016	May 06, 2017	Conducted (TH01-SZ)
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Jan. 12, 2016	Jul. 14, 2016	Jan. 11, 2017	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 12, 2016	Jul. 14, 2016	Jan. 11, 2017	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Jan. 12, 2016	Jul. 14, 2016	Jan. 11, 2017	Conducted (TH01-SZ)
EMI Test Receiver&SA	KEYSIGHT	N9038A	MY544500 83	20Hz~8.4GHz	May 07, 2016	Aug. 12, 2016	May 06, 2017	Radiation (03CH03-SZ)
EXA Spectrum Anaiyzer	KEYSIGHT	N9010A	MY551502 46	10Hz~44GHz	May 07, 2016	Aug. 12, 2016	May 06, 2017	Radiation (03CH03-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 07, 2016	Aug. 12, 2016	May 06, 2017	Radiation (03CH03-SZ)
Bilog Antenna	TeseQ	CBL6112D	35408	30MHz~2GHz	May 21, 2016	Aug. 12, 2016	May 20, 2017	Radiation (03CH03-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-135 5	1GHz~18GHz	May 07, 2016	Aug. 12, 2016	May 06, 2017	Radiation (03CH03-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Aug.19, 2015	Aug. 12, 2016	Aug. 18, 2016	Radiation (03CH03-SZ)
Amplifier	Burgeon	BPA-530	102210	0.01Hz ~3000MHz	Oct. 20, 2015	Aug. 12, 2016	Oct. 19, 2016	Radiation (03CH03-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 20, 2015	Aug. 12, 2016	Oct. 19, 2016	Radiation (03CH03-SZ)
Amplifier	Agilent Technologies	83017A	MY395013 02	500MHz~26.5G Hz	Jan. 12, 2016	Aug. 12, 2016	Jan. 11, 2017	Radiation (03CH03-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	NCR	Aug. 12, 2016	NCR	Radiation (03CH03-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Aug. 12, 2016	NCR	Radiation (03CH03-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Aug. 12, 2016	NCR	Radiation (03CH03-SZ)
EMI Receiver	R&S	ESCI7	100724	9kHz~3GHz;	Nov. 23, 2015	Jul. 22, 2016	Nov. 22, 2016	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103892	9kHz~30MHz	Jan. 12, 2016	Jul. 22, 2016	Jan. 11, 2017	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	MessTec	3816/2SH	00103912	9kHz~30MHz	Jan. 12, 2016	Jul. 22, 2016	Jan. 11, 2017	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Jul. 16, 2016	Jul. 22, 2016	Jul. 15, 2017	Conduction (CO01-SZ)
Pulse Limiter	COM-POWER	LIT-153 Transient Limiter	53139	150kHz~30MHz	Oct. 20, 2015	Jul. 22, 2016	Oct. 19, 2016	Conduction (CO01-SZ)

NCR: No Calibration Required

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 37 of 38

Report Issued Date : Aug. 19, 2016

Report Version : Rev. 01

Report No. : FR670610B

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.5dB
of 95% (U = 2Uc(y))	2.308

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.0db

Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUB

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : 38 of 38
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : A1 of A1
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0 Version 1.3

Report Number : FR670610B

Bluetooth Low Energy

Test Engineer:	Sam Zheng	Temperature:	24~26	°C
Test Date:	2016/7/14	Relative Humidity:	50~53	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.01	0.68	0.50	Pass
BLE	1Mbps	1	19	2440	1.01	0.68	0.50	Pass
BLE	1Mbps	1	39	2480	1.01	0.68	0.50	Pass

TEST RESULTS DATA

Peak Power Table

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	0.71	30.00	-1.00	-0.29	36.00	Pass
BLE	1Mbps	1	19	2440	0.43	30.00	-1.00	-0.57	36.00	Pass
BLE	1Mbps	1	39	2480	-0.25	30.00	-1.00	-1.25	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
	BLE	1Mbps	1	0	2402	2.21	0.24
Γ	BLE	1Mbps	1	19	2440	2.21	-0.14
	BLE	1Mbps	1	39	2480	2.21	-0.81

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.62	-12.17	-1.00	8.00	Pass
BLE	1Mbps	1	19	2440	1.11	-12.54	-1.00	8.00	Pass
BLE	1Mbps	1	39	2480	0.25	-13.49	-1.00	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

		_		_					_				
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant		Peak	Pol.
		/ B411 \	(15)//	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4100
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	, ,
		2324.385	48.14	-25.86	74	51.26	27.16	4.79	35.07	244	45	Р	Н
		2367.225	39.09	-14.91	54	42.07	27.22	4.82	35.02	244	45	Α	Н
BLE	*	2402	75.63	-	-	78.48	27.29	4.86	35	244	45	Р	Н
CH 00	*	2402	74.52	-	-	77.37	27.29	4.86	35	244	45	Α	Н
2402MHz		2369.535	48.95	-25.05	74	51.85	27.26	4.86	35.02	185	341	Р	V
2402141112		2384.55	39.14	-14.86	54	42.04	27.26	4.86	35.02	185	341	Α	٧
	*	2402	81.9	-	-	84.75	27.29	4.86	35	185	341	Р	٧
	*	2402	80.76	-	-	83.61	27.29	4.86	35	185	341	Α	٧
		2348.5	48.73	-25.27	74	51.77	27.19	4.82	35.05	176	61	Р	Н
		2362.08	39.22	-14.78	54	42.23	27.22	4.82	35.05	176	61	Α	Н
	*	2440	74.41	-	-	77.1	27.4	4.88	34.97	176	61	Р	Н
	*	2440	73.27	-	-	75.96	27.4	4.88	34.97	176	61	Α	Н
		2492.93	48.78	-25.22	74	51.26	27.5	4.92	34.9	176	61	Р	Н
BLE		2493.77	39.35	-14.65	54	41.83	27.5	4.92	34.9	176	61	Α	Н
CH 19 2440MHz		2385.74	47.91	-26.09	74	50.78	27.29	4.86	35.02	192	314	Р	٧
244UIVII11Z		2375.52	39.16	-14.84	54	42.06	27.26	4.86	35.02	192	314	Α	V
	*	2440	82.79	-	-	85.48	27.4	4.88	34.97	192	314	Р	V
	*	2440	81.91	-	-	84.6	27.4	4.88	34.97	192	314	Α	V
		2491.88	48.31	-25.69	74	50.79	27.5	4.92	34.9	192	314	Р	٧
		2483.55	39.59	-14.41	54	42.14	27.47	4.9	34.92	192	314	Α	٧

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : B1 of B6
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

*	2480	75.51	-	-	78.06	27.47	4.9	34.92	221	191	Р	Н
*	2480	74.63	-	-	77.18	27.47	4.9	34.92	221	191	Α	Н
	2494.64	48.5	-25.5	74	50.98	27.5	4.92	34.9	221	191	Р	Н
	2488.8	39.54	-14.46	54	42.04	27.5	4.92	34.92	221	191	Α	Н
*	2480	81.48	-	-	84.03	27.47	4.9	34.92	153	350	Р	V
*	2480	80.49	-	-	83.04	27.47	4.9	34.92	153	350	Α	V
	2488.88	49.16	-24.84	74	51.66	27.5	4.92	34.92	153	350	Р	V
	2494.04	39.52	-14.48	54	42	27.5	4.92	34.9	153	350	Α	V
 No other spurious found. All results are PASS against Peak and Average limit line. 												
	* * No.	* 2480 * 2480 2494.64 2488.8 * 2480 * 2480 2488.88 2494.04 No other spurious	* 2480 74.63 * 2494.64 48.5 2488.8 39.54 * 2480 81.48 * 2480 80.49 2488.88 49.16 2494.04 39.52 No other spurious found.	* 2480 74.63 - 2494.64 48.5 -25.5 2488.8 39.54 -14.46 * 2480 81.48 - * 2480 80.49 - 2488.88 49.16 -24.84 2494.04 39.52 -14.48 No other spurious found.	* 2480 74.63	* 2480 73.51 - - 76.06 * 2480 74.63 - - 77.18 2494.64 48.5 -25.5 74 50.98 2488.8 39.54 -14.46 54 42.04 * 2480 81.48 - - 84.03 * 2480 80.49 - - 83.04 2488.88 49.16 -24.84 74 51.66 2494.04 39.52 -14.48 54 42 No other spurious found.	* 2480 75.51 - - 78.06 27.47 * 2480 74.63 - - 77.18 27.47 2494.64 48.5 -25.5 74 50.98 27.5 2488.8 39.54 -14.46 54 42.04 27.5 * 2480 81.48 - - 84.03 27.47 * 2480.88 49.16 -24.84 74 51.66 27.5 2494.04 39.52 -14.48 54 42 27.5 No other spurious found.	* 2480 73.31 - - 78.06 27.47 4.9 * 2480 74.63 - - 77.18 27.47 4.9 2494.64 48.5 -25.5 74 50.98 27.5 4.92 2488.8 39.54 -14.46 54 42.04 27.5 4.92 * 2480 81.48 - - 84.03 27.47 4.9 * 2480 80.49 - - 83.04 27.47 4.9 2488.88 49.16 -24.84 74 51.66 27.5 4.92 2494.04 39.52 -14.48 54 42 27.5 4.92 No other spurious found.	* 2480 73.51 - - 76.06 27.47 4.9 34.92 * 2480 74.63 - - 77.18 27.47 4.9 34.92 2494.64 48.5 -25.5 74 50.98 27.5 4.92 34.92 * 2488.8 39.54 -14.46 54 42.04 27.5 4.92 34.92 * 2480 81.48 - - 84.03 27.47 4.9 34.92 * 2480 80.49 - - 83.04 27.47 4.9 34.92 2488.88 49.16 -24.84 74 51.66 27.5 4.92 34.92 2494.04 39.52 -14.48 54 42 27.5 4.92 34.9 No other spurious found.	* 2480 73.51 - - 76.06 27.47 4.9 34.92 221 * 2480 74.63 - - 77.18 27.47 4.9 34.92 221 2494.64 48.5 -25.5 74 50.98 27.5 4.92 34.92 221 2488.8 39.54 -14.46 54 42.04 27.5 4.92 34.92 221 * 2480 81.48 - - 84.03 27.47 4.9 34.92 153 * 2480 80.49 - - 83.04 27.47 4.9 34.92 153 2488.88 49.16 -24.84 74 51.66 27.5 4.92 34.92 153 2494.04 39.52 -14.48 54 42 27.5 4.92 34.9 153 No other spurious found.	* 2480 73.51 - - 76.06 27.47 4.9 34.92 221 191 * 2480 74.63 - - 77.18 27.47 4.9 34.92 221 191 2494.64 48.5 -25.5 74 50.98 27.5 4.92 34.92 221 191 * 2488.8 39.54 -14.46 54 42.04 27.5 4.92 34.92 221 191 * 2480 81.48 - - 84.03 27.47 4.9 34.92 153 350 * 2480 80.49 - - 83.04 27.47 4.9 34.92 153 350 2488.88 49.16 -24.84 74 51.66 27.5 4.92 34.92 153 350 2494.04 39.52 -14.48 54 42 27.5 4.92 34.9 153 350 No other spurious found.	* 2480 73.51 - - 78.06 27.47 4.9 34.92 221 191 P * 2480 74.63 - - 77.18 27.47 4.9 34.92 221 191 A 2494.64 48.5 -25.5 74 50.98 27.5 4.92 34.9 221 191 P 2488.8 39.54 -14.46 54 42.04 27.5 4.92 34.92 221 191 A * 2480 81.48 - - 84.03 27.47 4.9 34.92 153 350 P * 2480 80.49 - - 83.04 27.47 4.9 34.92 153 350 A 2488.88 49.16 -24.84 74 51.66 27.5 4.92 34.92 153 350 P 2494.04 39.52 -14.48 54 42 27.5 4.92 34.9 153 350 A

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : B2 of B6
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	i
BLE CH 00		4804	42.07	-31.93	74	60.89	32.52	6.96	58.3	250	0	Р	Н
2402MHz		4804	42.34	-31.66	74	61.16	32.52	6.96	58.3	250	0	Р	٧
		4881	42.5	-31.5	74	61.51	32.66	6.99	58.66	236	53	Р	Н
BLE		7320	51.08	-22.92	74	63.08	37.67	8.93	58.6	229	335	Р	Н
CH 19		7320	45.57	-8.43	54	57.57	37.67	8.93	58.6	229	335	Α	Н
2440MHz		4880	43.8	-30.2	74	62.81	32.66	6.99	58.66	250	360	Р	٧
		7320	50.13	-23.87	74	62.13	37.67	8.93	58.6	150	0	Р	٧
		4960	44.21	-29.79	74	62.61	32.83	7.07	58.3	250	0	Р	Н
BLE		7440	50.15	-23.85	74	61.76	37.69	9.15	58.45	150	0	Р	Н
CH 39 2480MHz		4960	44.53	-29.47	74	62.93	32.83	7.07	58.3	250	0	Р	٧
240UNITZ		7440	49.42	-24.58	74	61.03	37.69	9.15	58.45	150	0	Р	٧
Remark		o other spurious		Peak and	l Average lim	it line.			,				

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X

Page Number : B3 of B6 Report Issued Date : Aug. 19, 2016

Report No.: FR670610B

Report Version : Rev. 01

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30	26.86	-13.14	40	30.94	26.7	1	31.78	100	351	Р	Н
		119.24	20.15	-23.35	43.5	31.87	18.42	1.38	31.52	-	-	Р	Н
		481.05	27.5	-18.5	46	32.81	23.55	2.31	31.17	-	-	Р	Н
		548.95	28.27	-17.73	46	32.03	24.95	2.48	31.19	-	-	Р	Н
0.4011		783.69	30.91	-15.09	46	31.87	27.37	2.91	31.24	-	-	Р	Н
2.4GHz BLE		949.56	31.76	-14.24	46	30.48	29.4	3.15	31.27	-	-	Р	Н
LF		30	32.49	-7.51	40	36.57	26.7	1	31.78	164	83	Р	٧
Li		101.78	23.11	-20.39	43.5	34.54	18.76	1.38	31.57	-	-	Р	٧
		397.63	26.95	-19.05	46	30.29	25.78	2.12	31.24	-	-	Р	٧
		470.38	27.64	-18.36	46	32.5	24.01	2.31	31.18	-	-	Р	٧
		785.63	29.9	-16.1	46	30.86	27.37	2.91	31.24	-	-	Р	٧
		933.07	31.55	-14.45	46	30.57	29.1	3.15	31.27	-	-	Р	٧
Remark	1. No	o other spurious	s found.										,
	2. All	l results are PA	SS against li	imit line.									

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : B4 of B6
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : B5 of B6
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : B6 of B6
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Appendix C. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
1	Bluetooth v4.0 LE	60.16	0.376	2.660	3KHz

Bluetooth v4.0 LE

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: WVBAL640X Page Number : C1 of C1
Report Issued Date : Aug. 19, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT4.0Version1.3