APPENDIX

As shown in Table I, II and III, the experimental results of benchmark functions can be shown in details. Opt, Worst and Median are the optimum value, worst value and median of the 30-time operations, respectively. Guangzhou Baiyun International Airport 2015, 26 July, the data include 30 gates and 250 aircraft can be seen in Table IV and Table V.

TABLE I
The numerical simulation results (D=30)

f1 M-SSA [38] 0.00E+000 1.06E-041 3.57E-043 1.90E-042 3.69E-142 NEBDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MJPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 M-SSA [38] 0.00E+000 1.73E-019 5.82E-021 3.10E-020 1.41E-071 NEBDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MJPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-WDES [4] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E	Function	Algorithm	Opt	Worst	Mean	Std	Median
NEBDE		Bina-DE	2.31E-001	3.06E+000	1.32E+000	7.54E-001	1.23E+000
F1 PSDE 0.00E+000 1.17E+000 3.14E+000 M-SSA [38] 0.00E+000		M-SSA [38]	0.00E+000	1.06E-041	3.57E-043	1.90E-042	3.69E-142
NS-MJPSO [37]		NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
ACDEF [4]	f	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NSVMDE	J_1	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
$f_2 = \begin{bmatrix} \text{Bina-DE} & 1.41\text{E} + 000 & 6.01\text{E} + 000 & 3.42\text{E} + 000 & 1.17\text{E} + 000 & 3.14\text{E} + 000 \\ \text{M-SSA}[38] & \textbf{0.00E} + 000 & 1.73\text{E} - 019 & 5.82\text{E} - 021 & 3.10\text{E} - 020 & 1.41\text{E} - 071 \\ \text{NEBDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{PSDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NSVMDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NSVMDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NSYMDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NSSA}[38] & \textbf{0.00E} + 000 & \textbf{2.40E} - 038 & 1.31\text{E} - 039 & 5.02\text{E} - 039 & 1.40\text{E} - 161 \\ \text{NEBDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NSYMDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NSYMDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NSYMDE} & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 \\ \text{NS-MIPSO}[37] & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E} + 000 & \textbf{0.00E}$		ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
M-SSA [38] 0.00E+000 1.73E-019 5.82E-021 3.10E-020 1.41E-071 NEBDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 M-SSA [38] 0.00E+000 2.40E-038 1.31E-039 5.02E-039 1.40E-161 NEBDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
$f_2 = \begin{bmatrix} NEBDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ PSDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NS-MIPSO[37] & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ M-SSA[38] & 0.00E+000 & 2.40E-038 & 1.31E-039 & 5.02E-039 & 1.40E-161 \\ NEBDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ PSDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NS-MIPSO[37] & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NS-MIPSO[37] & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NS-MIPSO[37] & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NS-MIPSO[37] & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 & 0.00E+000 \\ NSVMDE &$		Bina-DE	1.41E+000	6.01E+000	3.42E+000	1.17E+000	3.14E+000
$f_2 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M-SSA [38]	0.00E+000	1.73E-019	5.82E-021	3.10E-020	1.41E-071
f₂ NS-MIPSO [37] 0.00E+000 4.25E+000		NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
ACDE/F [4] 0.00E+000 0.0		PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NSVMDE	${f}_{\scriptscriptstyle 2}$	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
Bina-DE		ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
M-SSA [38] 0.00E+000 2.40E-038 1.31E-039 5.02E-039 1.40E-161 NEBDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 M-SSA [38] 0.00E+000 2.38E-027 8.02E-029 4.27E-028 7.32E-105 NEBDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 PSDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 M-SSA [38] 6.09E-012 2.61E-002 1.04E-002<		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
$f_3 = \begin{bmatrix} \text{NEBDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{PSDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NS-MJPSO}[37] & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{ACDE/F}[4] & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & \textbf{4.99E-001} & 6.78E-001 & 5.35E-001 & 5.12E-002 & 5.18E-001 \\ \text{M-SSA}[38] & \textbf{0.00E+000} & 2.38E-027 & 8.02E-029 & 4.27E-028 & 7.32E-105 \\ \text{NEBDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{PSDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NS-MJPSO}[37] & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NS-MJPSO}[37] & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSSA}[38] & 6.09E-012 & 2.61E-002 & 1.98E+002 & 6.24E+001 & 2.03E+002 \\ \text{M-SSA}[38] & 6.09E-012 & 2.61E-002 & 1.04E-002 & 6.79E-003 & 9.65E-003 \\ \text{NEBDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEBDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEBDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEBDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEBDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEBDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEDDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEDDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEDDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 \\ \text{NEDDE} & 2.82E+001 & 2.89E+001 & 2.87E+001 & 1.72E-001 & 2.88E+001 $		Bina-DE	1.74E+000	1.08E+001	4.52E+000	2.10E+000	4.25E+000
$f_3 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M-SSA [38]	0.00E+000	2.40E-038	1.31E-039	5.02E-039	1.40E-161
$f_3 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$		NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
ACDE/F [4] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000		PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NSVMDE	f_3	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
Bina-DE		ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
$f_4 = \begin{bmatrix} \text{M-SSA} [38] & \textbf{0.00E+000} & 2.38\text{E-027} & 8.02\text{E-029} & 4.27\text{E-028} & 7.32\text{E-105} \\ \text{NEBDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{PSDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NS-MJPSO} [37] & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{ACDE/F} [4] & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{Bina-DE} & 3.95\text{E+001} & 3.18\text{E+002} & 1.98\text{E+002} & 6.24\text{E+001} & 2.03\text{E+002} \\ \text{M-SSA} [38] & 6.09\text{E-012} & 2.61\text{E-002} & 1.04\text{E-002} & 6.79\text{E-003} & 9.65\text{E-003} \\ \text{NEBDE} & 2.82\text{E+001} & 2.89\text{E+001} & 2.87\text{E+001} & 1.72\text{E-001} & 2.88\text{E+001} \\ \end{bmatrix}$		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NEBDE		Bina-DE	4.99E-001	6.78E-001	5.35E-001	5.12E-002	5.18E-001
$f_4 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		M-SSA [38]	0.00E+000	2.38E-027	8.02E-029	4.27E-028	7.32E-105
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
ACDE/F [4] 0.00E+000 0.00E		PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 Bina-DE 3.95E+001 3.18E+002 1.98E+002 6.24E+001 2.03E+002 M-SSA [38] 6.09E-012 2.61E-002 1.04E-002 6.79E-003 9.65E-003 NEBDE 2.82E+001 2.89E+001 2.87E+001 1.72E-001 2.88E+001	${f}_{4}$	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
Bina-DE 3.95E+001 3.18E+002 1.98E+002 6.24E+001 2.03E+002 M-SSA [38] 6.09E-012 2.61E-002 1.04E-002 6.79E-003 9.65E-003 NEBDE 2.82E+001 2.89E+001 2.87E+001 1.72E-001 2.88E+001		ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
M-SSA [38] 6.09E-012 2.61E-002 1.04E-002 6.79E-003 9.65E-003 NEBDE 2.82E+001 2.89E+001 2.87E+001 1.72E-001 2.88E+001		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NEBDE 2.82E+001 2.89E+001 2.87E+001 1.72E-001 2.88E+001		Bina-DE	3.95E+001	3.18E+002	1.98E+002	6.24E+001	2.03E+002
		M-SSA [38]	6.09E-012	2.61E-002	1.04E-002	6.79E-003	9.65E-003
		NEBDE	2.82E+001	2.89E+001	2.87E+001	1.72E-001	2.88E+001

	NS-MJPSO [37]	1.64E-007	8.75E-003	7.95E-004	1.85E-003	1.69E-004
f_{5}	ACDE/F [4]	2.72E-010	4.53E+000	8.69E-001	4.76E+000	1.12E-006
	NSVMDE	0.00E+000	9.43E-014	3.14E-015	0.00E+000	0.00E+000
	Bina-DE	9.45E-001	4.96E+000	2.48E+000	1.20E+000	2.13E+000
	M-SSA [38]	6.14E-011	4.66E-004	8.01E-005	8.64E-005	6.17E-005
	NEBDE	4.92E+000	6.08E+000	5.56E+000	3.02E-001	5.50E+000
${f}_{6}$	PSDE	4.58E+000	6.30E+000	5.60E+000	4.20E-001	5.56E+000
<i>3</i> 0	NS-MJPSO [37]	6.53E-010	1.04E-005	1.27E-006	2.09E-006	5.75E-007
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	4.06E-001	1.37E+001	5.30E+000	3.81E+000	4.42E+000
	M-SSA [38]	0.00E+000	1.92E-084	6.40E-086	3.45E-085	0.00E+000
f	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_7	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NS-MJPSO [37]	3.21E-047	3.11E-012	1.09E-013	5.57E-013	4.56E-022
	ACDE/F [4]	8.82E-007	7.66E-006	3.33E-006	2.71E-006	3.36E-006
	NSVMDE	4.66E-011	9.33E-008	2.76E-008	2.59E-008	2.39E-008
	Bina-DE	-2.52E+001	0.00E+000	-2.10E+001	5.13E+000	-2.19E+001
	M-SSA [38]	-1.18E+002	-1.18E+002	-1.18E+002	1.26E-004	-1.18E+002
	NEBDE	-2.45E+002	-3.29E+001	-1.22E+002	5.72E+001	-1.13E+002
${f}_{8}$	PSDE	-4.07E+002	-3.89E+001	-1.23E+002	7.98E+001	-1.06E+002
J 8	NS-MJPSO [37]	-1.91E+003	-1.63E+003	-1.88E+003	8.31E+001	-1.91E+003
	ACDE/F [4]	-1.23E+004	-1.02E+004	-1.12E+004	6.40E+002	-1.14E+004
	NSVMDE	-7.45E+002	-1.18E+002	-4.20E+002	3.02E+002	-4.18E+002
	Bina-DE	1.00E+000	6.98E+000	3.04E+000	1.60E+000	2.99E+000
	M-SSA [38]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_9	NS-MJPSO [37]	0.00E+000	8.34E-005	6.87E-006	1.85E-005	0.00E+000
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	1.02E+001	1.14E+001	1.05E+001	3.42E-001	1.03E+001
	M-SSA [38]	1.02E+001	1.02E+001	1.02E+001	1.51E-005	1.02E+001
	NEBDE	1.50E+001	1.65E+001	1.58E+001	3.59E-001	1.58E+001
f_{10}	PSDE	1.57E+001	1.82E+001	1.71E+001	6.87E-001	1.73E+001
J10	NS-MJPSO [37]	1.02E+001	1.02E+001	1.02E+001	1.85E-005	1.02E+001
	ACDE/F [4]	4.44E-016	4.44E-016	4.44E-016	0.00E+000	4.44E-016
	NSVMDE	1.02E+001	1.05E+001	1.02E+001	8.62E-002	1.02E+001
	Bina-DE	1.00E+000	1.00E+000	1.00E+000	1.46E-004	1.00E+000
	M-SSA [38]	0.00E+000	1.46E-034	4.93E-036	2.63E-035	8.27E-103
	NEBDE	1.00E+000	1.00E+000	1.00E+000	0.00E+000	1.00E+000
	PSDE	1.00E+000	1.00E+000	1.00E+000	0.00E+000	1.00E+000
	NS-MJPSO [37]	1.00E+000	1.00E+000	1.00E+000	1.00E+000	1.00E+000

	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_{11}	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	1.33E+005	3.00E+006	1.30E+006	7.19E+005	1.17E+006
	M-SSA [38]	0.00E+000	1.17E-037	3.91E-039	2.11E-038	4.82E-173
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_{12}	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
J 12	NS-MJPSO [37]	1.26E-019	9.52E+001	3.74E+000	1.73E+001	1.27E-008
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	2.18E-006	4.00E+000	1.53E+000	8.48E-001	1.47E+000
	M-SSA [38]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_{13}	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
J 13	NS-MJPSO [37]	0.00E+000	7.42E-007	4.42E-008	1.54E-007	8.60E-013
	ACDE/F [4]	0.00E+000	1.70E+001	2.40E+000	3.76E+000	1.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	2.64E+004	5.23E+005	2.39E+005	1.32E+005	1.99E+005
	M-SSA [38]	1.16E+001	1.16E+001	1.16E+001	1.70E-006	1.16E+001
f_{14}	NEBDE	1.15E+001	1.16E+001	1.15E+001	3.49E-002	1.15E+001
J_{14}	PSDE	1.15E+001	1.16E+001	1.15E+001	2.77E-002	1.15E+001
	NS-MJPSO [37]	1.16E+001	1.16E+001	1.16E+001	2.85E-003	1.16E+001
	ACDE/F [4]	1.16E+001	1.16E+001	1.16E+001	7.45E-003	1.16E+001
	NSVMDE	1.15E+001	1.16E+001	1.15E+001	3.32E-002	1.15E+001

TABLE II
The numerical simulation results (D=50)

Function	Algorithm	Opt	Worst	Mean	Std	Median
	Bina-DE	3.03E-001	1.33E+000	5.93E-001	2.20E-001	5.56E-001
	M-SSA [38]	0.00E+000	8.33E-012	2.97E-013	1.50E-012	1.92E-038
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_1	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	2.84E-001	4.40E+000	2.14E+000	9.23E-001	2.08E+000
	M-SSA [38]	0.00E+000	8.10E-019	2.70E-020	1.45E-019	5.39E-071
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
${f}_{\scriptscriptstyle 2}$	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
0 2	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000

	Bina-DE	1.73E+000	1.03E+001	4.59E+000	1.66E+000	4.59E+000
	M-SSA [38]	0.00E+000	2.14E-035	7.14E-037	3.84E-036	6.56E-182
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_3	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	4.28E-001	6.51E-001	5.09E-001	4.59E-002	5.04E-001
	M-SSA [38]	0.00E+000	2.33E-022	7.75E-024	4.17E-023	1.04E-063
	NEBDE	0.00E+000	3.20E-058	1.13E-059	5.85E-059	2.08E-183
f	PSDE	8.84E-046	1.88E-010	1.00E-011	3.90E-011	1.92E-020
f_4	NS-MJPSO [37]	5.15E-012	2.70E-004	1.76E-005	5.11E-005	6.25E-007
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	5.07E+001	2.07E+002	1.09E+002	4.99E+001	9.97E+001
	M-SSA [38]	8.83E-007	1.70E-001	3.96E-002	3.62E-002	2.98E-002
	NEBDE	4.74E+001	4.88E+001	4.85E+001	4.15E-001	4.87E+001
	PSDE	4.84E+001	4.89E+001	4.88E+001	1.19E-001	4.89E+001
f	NS-MJPSO [37]	4.92E-009	3.66E-003	3.84E-004	8.62E-004	4.04E-005
f_5	ACDE/F [4]	1.53E+001	4.77E+001	2.70E+001	1.29E+001	2.12E+001
	NSVMDE	3.76E-004	4.19E-001	9.69E-002	9.64E-002	6.23E-002
	Bina-DE	3.94E-003	3.39E-002	1.52E-002	7.81E-003	1.25E-002
	M-SSA [38]	1.10E-005	9.45E-004	3.03E-004	2.09E-004	2.42E-004
	NEBDE	7.54E+000	9.84E+000	8.88E+000	5.24E-001	8.89E+000
	PSDE	9.60E+000	1.11E+001	1.03E+001	4.00E-001	1.02E+001
f_6	NS-MJPSO [37]	7.62E-011	1.75E-005	1.59E-006	3.97E-006	8.16E-008
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	1.26E-003	1.12E-001	2.13E-002	2.34E-002	1.49E-002
	M-SSA [38]	0.00E+000	2.64E-080	8.79E-082	4.81E-081	0.00E+000
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f	NS-MJPSO [37]	4.08E-039	1.22E-011	4.66E-013	2.23E-012	2.22E-026
f_7	ACDE/F [4]	6.45E-007	7.86E-006	3.41E-006	4.49E-006	2.89E-006
	NSVMDE	6.66E-011	1.02E-006	2.68E-007	2.71E-007	1.99E-007
	Bina-DE	-4.21E+001	0.00E+000	-3.27E+001	9.77E+000	-3.41E+001
	M-SSA [38]	-1.97E+002	-1.97E+002	-1.97E+002	7.18E-004	-1.97E+002
	NEBDE	-1.50E+002	-1.23E+002	-1.34E+002	7.00E+000	-1.32E+002
${f}_{8}$	PSDE	-2.92E+002	-4.00E+001	-1.18E+002	6.99E+001	-9.75E+001
J 8	NS-MJPSO	-3.18E+003	-2.72E+003	-3.12E+003	1.60E+002	-3.18E+003
	[37]					
	ACDE/F [4]	-1.88E+004	-1.52E+004	-1.70E+004	1.29E+003	-1.68E+004

	Bina-DE	1.99E+000	8.95E+000	4.51E+000	2.17E+000	3.98E+000
	M-SSA [38]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
f_9	NS-MJPSO [37]	0.00E+000	8.74E-004	3.51E-005	1.60E-004	2.38E-00
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	Bina-DE	1.02E+001	1.08E+001	1.04E+001	2.03E-001	1.03E+00
	M-SSA [38]	1.02E+001	1.02E+001	1.02E+001	7.72E-006	1.02E+00
	NEBDE	1.31E+001	1.47E+001	1.40E+001	3.57E-001	1.40E+00
f	PSDE	1.58E+001	1.84E+001	1.74E+001	6.63E-001	1.75E+00
f_{10}	NS-MJPSO [37]	1.02E+001	1.02E+001	1.02E+001	6.72E-006	1.02E+00
	ACDE/F [4]	4.44E-016	4.44E-016	4.44E-016	0.00E+000	4.44E-01
	NSVMDE	1.02E+001	1.06E+001	1.02E+001	1.27E-001	1.02E+00
	Bina-DE	1.00E+000	1.00E+000	1.00E+000	1.07E-006	1.00E+00
	M-SSA [38]	0.00E+000	8.90E-038	2.97E-039	1.63E-038	2.06E-11
	NEBDE	1.00E+000	1.00E+000	1.00E+000	0.00E+000	1.00E+00
	PSDE	1.00E+000	1.00E+000	1.00E+000	0.00E+000	1.00E+00
ſ	NS-MJPSO [37]	1.00E+000	1.00E+000	1.00E+000	2.53E-009	1.00E+00
f_{11}	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	Bina-DE	1.36E+003	1.98E+004	6.69E+003	4.25E+003	5.88E+00
	M-SSA [38]	0.00E+000	2.37E-038	7.99E-040	4.33E-039	7.11E-13
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
f_{12}	NS-MJPSO [37]	7.27E-012	1.55E+001	1.24E+000	3.78E+000	2.45E-00
- 12	ACDE/F [4]	4.49E-021	1.26E-014	6.36E-016	2.75E-015	3.30E-01
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	Bina-DE	2.73E-003	1.06E+000	1.60E-001	3.48E-001	2.12E-00
	M-SSA [38]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
ſ	NS-MJPSO [37]	0.00E+000	2.30E-004	1.13E-005	4.56E-005	5.23E-01
f_{13}	ACDE/F [4]	1.00E+000	3.00E+001	1.04E+001	6.64E+000	1.00E+00
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	Bina-DE	2.49E+002	3.58E+003	1.58E+003	1.01E+003	1.46E+00
	M-SSA [38]	1.96E+001	1.96E+001	1.96E+001	4.22E-007	1.96E+00
	NEBDE	1.95E+001	1.96E+001	1.95E+001	3.50E-002	1.95E+00
	PSDE	1.95E+001	1.96E+001	1.96E+001	3.64E-002	1.95E+00
f_{14}	NS-MJPSO [37]	1.96E+001	2.20E+001	1.97E+001	4.45E-001	1.96E+00
J 14	ACDE/F [4]	1.95E+001	1.96E+001	1.97E+001 1.95E+001	6.50E-003	1.95E+00
	110DD1 [7]	1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.,01.001	1.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.50L 005	1.751

TABLE III
The numerical simulation results (D=100)

Bina-DE 2.55E-001 8.65E-001 4.48E-001 1.61E-001 3.85E-001	Function	Algorithm	Opt	Worst	Mean	Std	Median
Nebbe		Bina-DE	2.55E-001	8.65E-001	4.48E-001	1.61E-001	3.85E-001
F1 PSDE 0.00E+000		M-SSA [38]	2.61E-106	2.29E-005	9.24E-007	4.09E-006	3.56E-008
NS-MPSO[37]		NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
ACDEF [4]	f	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NSVMDE	J_1	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
Bina-DE		ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
M-SSA [38] 0.00E+000 8.82E-015 2.94E-016 1.58E-015 1.28E-080 NEBDE 0.00E+000 0.00E+00		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NEBDE		Bina-DE	6.01E+000	1.93E+001	1.19E+001	3.34E+000	1.16E+001
f₂ PSDE 0.00E+000 1.67E+001 1.67E+001 f³ Bina-DE 7.71E+000 3.49E+001 1.81E+001 6.37E+000 1.67E+001 NEBDE 0.00E+000 0.00E+000 <td< td=""><td></td><td>M-SSA [38]</td><td>0.00E+000</td><td>8.82E-015</td><td>2.94E-016</td><td>1.58E-015</td><td>1.28E-080</td></td<>		M-SSA [38]	0.00E+000	8.82E-015	2.94E-016	1.58E-015	1.28E-080
NS-MPSO [37]		NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
ACDEF [4]	f	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NSVMDE	J_2	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
Bina-DE		ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
M-SSA [38] 0.00E+000 0.0		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NEBDE		Bina-DE	7.71E+000	3.49E+001	1.81E+001	6.37E+000	1.67E+001
F3be 0.00e+000 0.0		M-SSA [38]	0.00E+000	3.45E-029	1.15E-030	6.20E-030	1.27E-160
NS-MIPSO [37] 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 ACDE/F [4] 0.00E+000 1.28E+006 8.34E+004 2.95E+005 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 4.83E-001 7.11E-001 5.44E-001 6.12E-002 5.11E-001 M-SSA [38] 0.00E+000 1.01E-020 3.38E-022 1.82E-021 1.39E-090 NEBDE 9.19E-002 1.00E+000 9.40E-001 2.30E-001 1.00E+000 PSDE 1.00E+000 1.00E+000 1.00E+000 0.00E+000 1.00E+000 NS-MIPSO [37] 6.36E-08 3.35E-04 6.02E-05 9.80E-05 1.03E-05 ACDE/F [4] 0.00E+000 4.00E+000 1.30E+000 1.17E+000 1.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 M-SSA [38] 1.95E-010 3.33E-001 1.27E-001 1.12E-001 1.23E-001 NEBDE 4.76E+001 4.88E+001 4.84E+001 3.95E-001 4.85E+001 NS-MIPSO [37] 1.67E-007 3.03E-002 1.47E-003 5.60E-003 2.78E-005 ACDE/F [4] 7.89E+001 9.81E+001 8.50E+001 4.85E+000 8.38E+001 NSVMDE 2.10E+000 1.39E+002 5.45E+001 3.87E+001 3.47E+001 NSVMDE 2.10E+000 1.39E+002 5.45E+001 3.87E+001 5.55E-001 M-SSA [38] 4.24E-008 2.84E-003 1.14E-003 6.93E-004 1.06E-003 NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001 NEBDE 1.95E+001 2.12E+001		NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
ACDE/F [4] 0.00E+000 1.28E+006 8.34E+004 2.95E+005 0.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 MSVMDE 4.83E-001 7.11E-001 5.44E-001 6.12E-002 5.11E-001 M-SSA [38] 0.00E+000 1.01E-020 3.38E-022 1.82E-021 1.39E-090 NEBDE 9.19E-002 1.00E+000 9.40E-001 2.30E-001 1.00E+000 PSDE 1.00E+000 1.00E+000 1.00E+000 0.00E+000 1.00E+000 NS-MIPSO [37] 6.36E-08 3.35E-04 6.02E-05 9.80E-05 1.03E-05 ACDEF [4] 0.00E+000 4.00E+000 1.30E+000 1.17E+000 1.00E+000 NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 NSVMDE 1.67E+002 5.42E+002 3.08E+002 8.52E+001 3.09E+002 M-SSA [38] 1.95E-010 3.33E-001 1.27E-001 1.12E-001 1.23E-001 NEBDE 4.76E+001 4.88E+001 4.84E+001 3.95E-001 4.85E+001 NS-MIPSO [37] 1.67E-007 3.03E-002 1.47E-003 5.60E-003 2.78E-005 ACDEF [4] 7.89E+001 9.81E+001 8.50E+001 4.85E+000 8.38E+001 NSVMDE 2.10E+000 1.39E+002 5.45E+001 3.87E+001 3.47E+001 NSVMDE 2.10E+000 1.39E+002 5.45E+001 3.87E+001 3.47E+001 Bina-DE 3.16E-001 1.17E+000 5.98E-001 2.10E-001 5.55E-001 M-SSA [38] 4.24E-008 2.84E-003 1.14E-003 6.93E-004 1.06E-003 NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001 DEDDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001 NEBDE 1.95E+001 2.12E+001 2.04E+	f	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
NSVMDE	J_3	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
Bina-DE		ACDE/F [4]	0.00E+000	1.28E+006	8.34E+004	2.95E+005	0.00E+000
$f_4 = \begin{bmatrix} \text{M-SSA}[38] & \textbf{0.00E+000} & 1.01\text{E-}020 & 3.38\text{E-}022 & 1.82\text{E-}021 & 1.39\text{E-}090 \\ \text{NEBDE} & 9.19\text{E-}002 & 1.00\text{E+}000 & 9.40\text{E-}001 & 2.30\text{E-}001 & 1.00\text{E+}000 \\ \text{PSDE} & 1.00\text{E+}000 & 1.00\text{E+}000 & 1.00\text{E+}000 & 0.00\text{E+}000 & 1.00\text{E+}000 \\ \text{NS-MIPSO}[37] & 6.36\text{E-}08 & 3.35\text{E-}04 & 6.02\text{E-}05 & 9.80\text{E-}05 & 1.03\text{E-}05 \\ \text{ACDE/F}[4] & \textbf{0.00E+000} & 4.00\text{E+}000 & 1.30\text{E+}000 & 1.17\text{E+}000 & 1.00\text{E+}000 \\ \text{NSVMDE} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \text{NSVMDE} & 1.67\text{E+}002 & 5.42\text{E+}002 & 3.08\text{E+}002 & 8.52\text{E+}001 & 3.09\text{E+}002 \\ \text{M-SSA}[38] & \textbf{1.95E-}010 & 3.33\text{E-}001 & 1.27\text{E-}001 & 1.12\text{E-}001 & 1.23\text{E-}001 \\ \text{NEBDE} & 4.76\text{E+}001 & 4.88\text{E+}001 & 4.84\text{E+}001 & 3.95\text{E-}001 & 4.85\text{E+}001 \\ \text{NS-MIPSO}[37] & 1.67\text{E-}007 & \textbf{3.03E-}002 & \textbf{1.47E-}003 & \textbf{5.60E-}003 & \textbf{2.78E-}005 \\ \text{ACDE/F}[4] & 7.89\text{E+}001 & 9.81\text{E+}001 & 8.50\text{E+}001 & 4.85\text{E+}000 & 8.38\text{E+}001 \\ \text{NSVMDE} & 2.10\text{E+}000 & 1.39\text{E+}002 & 5.45\text{E+}001 & 3.87\text{E+}001 & 3.47\text{E+}001 \\ \text{Bina-DE} & 3.16\text{E-}001 & 1.17\text{E+}000 & 5.98\text{E-}001 & 2.10\text{E-}001 & 5.55\text{E-}001 \\ \text{M-SSA}[38] & 4.24\text{E-}008 & 2.84\text{E-}003 & 1.14\text{E-}003 & 6.93\text{E-}004 & 1.06\text{E-}003 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEBDE} & 1.95\text{E+}001 & 2.12\text{E+}001 & 2.04\text{E+}001 & 4.06\text{E-}001 & 2.05\text{E+}001 \\ \text{NEDDE} & 1.95\text{E+}001 &$		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
$f_4 = \begin{bmatrix} \text{NEBDE} & 9.19\text{E-}002 & 1.00\text{E}+000 & 9.40\text{E-}001 & 2.30\text{E-}001 & 1.00\text{E}+000 \\ \text{PSDE} & 1.00\text{E}+000 & 1.00\text{E}+000 & 1.00\text{E}+000 & 0.00\text{E}+000 & 1.00\text{E}+000 \\ \text{NS-MJPSO}[37] & 6.36\text{E-}08 & 3.35\text{E-}04 & 6.02\text{E-}05 & 9.80\text{E-}05 & 1.03\text{E-}05 \\ \text{ACDE/F}[4] & \textbf{0.00\text{E}}+\textbf{000} & 4.00\text{E}+000 & 1.30\text{E}+000 & 1.17\text{E}+000 & 1.00\text{E}+000 \\ \text{NSVMDE} & \textbf{0.00\text{E}}+\textbf{000} & \textbf{0.00\text{E}}+\textbf{000} & \textbf{0.00\text{E}}+\textbf{000} & \textbf{0.00\text{E}}+\textbf{000} \\ \text{NSVMDE} & 1.67\text{E}+002 & 5.42\text{E}+002 & 3.08\text{E}+002 & 8.52\text{E}+001 & 3.09\text{E}+002 \\ \text{M-SSA}[38] & \textbf{1.95\text{E}}-\textbf{010} & 3.33\text{E}-001 & 1.27\text{E}-001 & 1.12\text{E}-001 & 1.23\text{E}-001 \\ \text{NEBDE} & 4.76\text{E}+001 & 4.88\text{E}+001 & 4.84\text{E}+001 & 3.95\text{E}-001 & 4.85\text{E}+001 \\ \text{NS-MJPSO}[37] & 1.67\text{E-}007 & \textbf{3.03\text{E}}-\textbf{002} & \textbf{1.47\text{E}}-\textbf{003} & \textbf{5.60\text{E}}-\textbf{003} & \textbf{2.78\text{E}}-\textbf{005} \\ \text{ACDE/F}[4] & 7.89\text{E}+001 & 9.81\text{E}+001 & 8.50\text{E}+001 & 4.85\text{E}+001 & 3.47\text{E}+001 \\ \text{NSVMDE} & 2.10\text{E}+000 & 1.39\text{E}+002 & 5.45\text{E}+001 & 3.87\text{E}+001 & 3.47\text{E}+001 \\ \text{Bina-DE} & 3.16\text{E}-001 & 1.17\text{E}+000 & 5.98\text{E}-001 & 2.10\text{E}-001 & 5.55\text{E}-001 \\ \text{M-SSA}[38] & 4.24\text{E}-008 & 2.84\text{E}-003 & 1.14\text{E}-003 & 6.93\text{E}-004 & 1.06\text{E}-003 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001 \\ \text{NEBDE} & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 &$		Bina-DE	4.83E-001	7.11E-001	5.44E-001	6.12E-002	5.11E-001
$f_4 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M-SSA [38]	0.00E+000	1.01E-020	3.38E-022	1.82E-021	1.39E-090
$f_4 = \begin{array}{ c c c c c c } \hline Ns-MJPSO[37] & 6.36E-08 & 3.35E-04 & 6.02E-05 & 9.80E-05 & 1.03E-05 \\ \hline ACDE/F [4] & \textbf{0.00E+000} & 4.00E+000 & 1.30E+000 & 1.17E+000 & 1.00E+000 \\ \hline NSVMDE & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} & \textbf{0.00E+000} \\ \hline NSVMDE & 1.67E+002 & 5.42E+002 & 3.08E+002 & 8.52E+001 & 3.09E+002 \\ \hline M-SSA [38] & \textbf{1.95E-010} & 3.33E-001 & 1.27E-001 & 1.12E-001 & 1.23E-001 \\ \hline NEBDE & 4.76E+001 & 4.88E+001 & 4.84E+001 & 3.95E-001 & 4.85E+001 \\ \hline NS-MJPSO [37] & 1.67E-007 & \textbf{3.03E-002} & \textbf{1.47E-003} & \textbf{5.60E-003} & \textbf{2.78E-005} \\ \hline ACDE/F [4] & 7.89E+001 & 9.81E+001 & 8.50E+001 & 4.85E+000 & 8.38E+001 \\ \hline NSVMDE & 2.10E+000 & 1.39E+002 & 5.45E+001 & 3.87E+001 & 3.47E+001 \\ \hline M-SSA [38] & 4.24E-008 & 2.84E-003 & 1.14E-003 & 6.93E-004 & 1.06E-003 \\ \hline NEBDE & 1.95E+001 & 2.12E+001 & 2.04E+001 & 4.06E-001 & 2.05E+001 \\ \hline \end{array}$		NEBDE	9.19E-002	1.00E+000	9.40E-001	2.30E-001	1.00E+000
ACDE/F [4] 0.00E+000 4.00E+000 1.30E+000 1.17E+000 1.00E+000		PSDE	1.00E+000	1.00E+000	1.00E+000	0.00E+000	1.00E+000
NSVMDE 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000	f_4	NS-MJPSO [37]	6.36E-08	3.35E-04	6.02E-05	9.80E-05	1.03E-05
$f_5 = \begin{array}{ c c c c c c }\hline \text{Bina-DE} & 1.67\text{E}+002 & 5.42\text{E}+002 & 3.08\text{E}+002 & 8.52\text{E}+001 & 3.09\text{E}+002\\\hline M-SSA [38] & \textbf{1.95E-010} & 3.33\text{E}-001 & 1.27\text{E}-001 & 1.12\text{E}-001 & 1.23\text{E}-001\\\hline NEBDE & 4.76\text{E}+001 & 4.88\text{E}+001 & 4.84\text{E}+001 & 3.95\text{E}-001 & 4.85\text{E}+001\\\hline NS-MJPSO [37] & 1.67\text{E}-007 & \textbf{3.03E-002} & \textbf{1.47E-003} & \textbf{5.60E-003} & \textbf{2.78E-005}\\\hline ACDE/F [4] & 7.89\text{E}+001 & 9.81\text{E}+001 & 8.50\text{E}+001 & 4.85\text{E}+000 & 8.38\text{E}+001\\\hline NSVMDE & 2.10\text{E}+000 & 1.39\text{E}+002 & 5.45\text{E}+001 & 3.87\text{E}+001 & 3.47\text{E}+001\\\hline Bina-DE & 3.16\text{E}-001 & 1.17\text{E}+000 & 5.98\text{E}-001 & 2.10\text{E}-001 & 5.55\text{E}-001\\\hline M-SSA [38] & 4.24\text{E}-008 & 2.84\text{E}-003 & 1.14\text{E}-003 & 6.93\text{E}-004 & 1.06\text{E}-003\\\hline NEBDE & 1.95\text{E}+001 & 2.12\text{E}+001 & 2.04\text{E}+001 & 4.06\text{E}-001 & 2.05\text{E}+001\\\hline \end{array}$		ACDE/F [4]	0.00E+000	4.00E+000	1.30E+000	1.17E+000	1.00E+000
$f_5 = \begin{bmatrix} \text{M-SSA}[38] & \textbf{1.95E-010} & 3.33E-001 & 1.27E-001 & 1.12E-001 & 1.23E-001 \\ \text{NEBDE} & 4.76E+001 & 4.88E+001 & 4.84E+001 & 3.95E-001 & 4.85E+001 \\ \textbf{PSDE} & 9.80E+001 & 1.55E+007 & 1.74E+006 & 3.71E+006 & 9.96E+001 \\ \textbf{NS-MIPSO}[37] & 1.67E-007 & \textbf{3.03E-002} & \textbf{1.47E-003} & \textbf{5.60E-003} & \textbf{2.78E-005} \\ \textbf{ACDE/F}[4] & 7.89E+001 & 9.81E+001 & 8.50E+001 & 4.85E+000 & 8.38E+001 \\ \textbf{NSVMDE} & 2.10E+000 & 1.39E+002 & 5.45E+001 & 3.87E+001 & 3.47E+001 \\ \textbf{Bina-DE} & 3.16E-001 & 1.17E+000 & 5.98E-001 & 2.10E-001 & 5.55E-001 \\ \textbf{M-SSA}[38] & 4.24E-008 & 2.84E-003 & 1.14E-003 & 6.93E-004 & 1.06E-003 \\ \textbf{NEBDE} & 1.95E+001 & 2.12E+001 & 2.04E+001 & 4.06E-001 & 2.05E+001 \\ \end{bmatrix}$		NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
$f_5 = \begin{array}{ c c c c c c c c }\hline NEBDE & 4.76E+001 & 4.88E+001 & 4.84E+001 & 3.95E-001 & 4.85E+001\\\hline PSDE & 9.80E+001 & 1.55E+007 & 1.74E+006 & 3.71E+006 & 9.96E+001\\\hline NS-MJPSO [37] & 1.67E-007 & \textbf{3.03E-002} & \textbf{1.47E-003} & \textbf{5.60E-003} & \textbf{2.78E-005}\\\hline ACDE/F [4] & 7.89E+001 & 9.81E+001 & 8.50E+001 & 4.85E+000 & 8.38E+001\\\hline NSVMDE & 2.10E+000 & 1.39E+002 & 5.45E+001 & 3.87E+001 & 3.47E+001\\\hline Bina-DE & 3.16E-001 & 1.17E+000 & 5.98E-001 & 2.10E-001 & 5.55E-001\\\hline M-SSA [38] & 4.24E-008 & 2.84E-003 & 1.14E-003 & 6.93E-004 & 1.06E-003\\\hline NEBDE & 1.95E+001 & 2.12E+001 & 2.04E+001 & 4.06E-001 & 2.05E+001\\\hline \end{array}$		Bina-DE	1.67E+002	5.42E+002	3.08E+002	8.52E+001	3.09E+002
$f_5 = \begin{array}{ c c c c c c c c } \hline PSDE & 9.80E+001 & 1.55E+007 & 1.74E+006 & 3.71E+006 & 9.96E+001 \\ \hline NS-MIPSO[37] & 1.67E-007 & \textbf{3.03E-002} & \textbf{1.47E-003} & \textbf{5.60E-003} & \textbf{2.78E-005} \\ \hline ACDE/F [4] & 7.89E+001 & 9.81E+001 & 8.50E+001 & 4.85E+000 & 8.38E+001 \\ \hline NSVMDE & 2.10E+000 & 1.39E+002 & 5.45E+001 & 3.87E+001 & 3.47E+001 \\ \hline Bina-DE & 3.16E-001 & 1.17E+000 & 5.98E-001 & 2.10E-001 & 5.55E-001 \\ \hline M-SSA [38] & 4.24E-008 & 2.84E-003 & 1.14E-003 & 6.93E-004 & 1.06E-003 \\ \hline NEBDE & 1.95E+001 & 2.12E+001 & 2.04E+001 & 4.06E-001 & 2.05E+001 \\ \hline \end{array}$		M-SSA [38]	1.95E-010	3.33E-001	1.27E-001	1.12E-001	1.23E-001
NS-MJPSO [37] 1.67E-007 3.03E-002 1.47E-003 5.60E-003 2.78E-005 ACDE/F [4] 7.89E+001 9.81E+001 8.50E+001 4.85E+000 8.38E+001 NSVMDE 2.10E+000 1.39E+002 5.45E+001 3.87E+001 3.47E+001 Bina-DE 3.16E-001 1.17E+000 5.98E-001 2.10E-001 5.55E-001 M-SSA [38] 4.24E-008 2.84E-003 1.14E-003 6.93E-004 1.06E-003 NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001		NEBDE	4.76E+001	4.88E+001	4.84E+001	3.95E-001	4.85E+001
NS-MJPSO [37] 1.67E-007 3.03E-002 1.47E-003 5.60E-003 2.78E-005 ACDE/F [4] 7.89E+001 9.81E+001 8.50E+001 4.85E+000 8.38E+001 NSVMDE 2.10E+000 1.39E+002 5.45E+001 3.87E+001 3.47E+001 Bina-DE 3.16E-001 1.17E+000 5.98E-001 2.10E-001 5.55E-001 M-SSA [38] 4.24E-008 2.84E-003 1.14E-003 6.93E-004 1.06E-003 NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001	f_{5}	PSDE	9.80E+001	1.55E+007	1.74E+006	3.71E+006	9.96E+001
NSVMDE 2.10E+000 1.39E+002 5.45E+001 3.87E+001 3.47E+001 Bina-DE 3.16E-001 1.17E+000 5.98E-001 2.10E-001 5.55E-001 M-SSA [38] 4.24E-008 2.84E-003 1.14E-003 6.93E-004 1.06E-003 NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001	<i>U</i> 3	NS-MJPSO [37]	1.67E-007	3.03E-002	1.47E-003	5.60E-003	2.78E-005
Bina-DE 3.16E-001 1.17E+000 5.98E-001 2.10E-001 5.55E-001 M-SSA [38] 4.24E-008 2.84E-003 1.14E-003 6.93E-004 1.06E-003 NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001		ACDE/F [4]	7.89E+001	9.81E+001	8.50E+001	4.85E+000	8.38E+001
M-SSA [38] 4.24E-008 2.84E-003 1.14E-003 6.93E-004 1.06E-003 NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001		NSVMDE	2.10E+000	1.39E+002	5.45E+001	3.87E+001	3.47E+001
NEBDE 1.95E+001 2.12E+001 2.04E+001 4.06E-001 2.05E+001		Bina-DE	3.16E-001	1.17E+000	5.98E-001	2.10E-001	5.55E-001
		M-SSA [38]	4.24E-008	2.84E-003	1.14E-003	6.93E-004	1.06E-003
PSDE 5.64E+002 2.28E+003 1.12E+003 4.06E+002 1.10E+003		NEBDE	1.95E+001	2.12E+001	2.04E+001	4.06E-001	2.05E+001
		PSDE	5.64E+002	2.28E+003	1.12E+003	4.06E+002	1.10E+003

	NS-MJPSO [37]	7.79E-012	9.11E-006	1.05E-006	2.11E-006	9.81E-008
${f}_{6}$	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	9.72E-001	7.46E+000	3.62E+000	1.53E+000	3.62E+000
	M-SSA [38]	0.00E+000	1.34E-076	4.45E-078	2.44E-077	0.00E+000
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_{-}	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
J 7	NS-MJPSO [37]	1.49E-042	5.08E-007	1.69E-008	9.27E-008	6.06E-016
	ACDE/F [4]	6.45E-007	7.86E-006	3.41E-006	4.49E-006	2.89E-006
	NSVMDE	8.80E-011	1.21E-006	1.62E-007	2.58E-007	5.68E-008

	Bina-DE	-8.41E+001	0.00E+000	-6.57E+001	1.60E+001	-6.77E+00
	M-SSA [38]	-3.95E+002	-3.95E+002	-3.95E+002	3.68E-003	-3.95E+002
	NEBDE	-2.35E+002	-1.88E+002	-2.09E+002	1.31E+001	-2.08E+00
f_8	PSDE	-6.44E+002	-1.18E+002	-3.66E+002	1.21E+002	-3.79E+00
J 8	NS-MJPSO [37]	-6.36E+003	-5.44E+003	-6.21E+003	3.50E+002	-6.36E+00
	ACDE/F [4]	-3.17E+004	-1.01E+004	-2.58E+004	4.69E+003	-2.70E+00
	NSVMDE	-1.28E+003	-1.97E+002	-6.01E+002	4.94E+002	-1.97E+00
	Bina-DE	4.99E+000	1.99E+001	1.30E+001	3.51E+000	1.39E+00
	M-SSA [38]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
f_9	NS-MJPSO [37]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	Bina-DE	1.02E+001	1.11E+001	1.04E+001	2.42E-001	1.03E+00
	M-SSA [38]	1.02E+001	1.02E+001	1.02E+001	3.31E-004	1.02E+00
	NEBDE	1.33E+001	1.63E+001	1.45E+001	6.17E-001	1.45E+00
	PSDE	1.64E+001	1.90E+001	1.77E+001	6.00E-001	1.76E+00
f_{10}	NS-MJPSO [37]	1.02E+001	1.02E+001	1.02E+001	6.21E-006	1.02E+00
	ACDE/F [4]	4.44E-016	4.44E-016	4.44E-016	0.00E+000	4.44E-01
	NSVMDE	1.02E+001	1.06E+001	1.02E+001	9.16E-002	1.02E+00
	Bina-DE	1.00E+000	1.00E+000	1.00E+000	4.25E-005	1.00E+00
	M-SSA [38]	0.00E+000	2.43E-049	8.11E-051	4.44E-050	1.66E-223
	NEBDE	1.00E+000	1.00E+000	1.00E+000	0.00E+000	1.00E+00
_	PSDE	1.00E+000	1.00E+000	1.00E+000	0.00E+000	1.00E+00
f_{11}	NS-MJPSO [37]	1.00E+000	1.00E+000	1.00E+000	2.70E-009	1.00E+00
	ACDE/F [4]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+00
	Bina-DE	2.47E+005	8.99E+005	4.39E+005	1.54E+005	4.21E+00:

C	M-SSA [38]	0.00E+000	5.35E-039	1.94E-040	9.77E-040	1.32E-105
f_{12}	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	NS-MJPSO [37]	7.27E-009	2.09E+002	1.24E+001	4.01E+001	3.24E-003
	ACDE/F [4]	1.51E-001	1.55E+004	8.36E+002	3.38E+003	3.23E+000
	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	2.05E-001	2.27E+000	9.41E-001	5.30E-001	8.54E-001
,	M-SSA [38]	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
,	NEBDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
•	PSDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
f_{13}	NS-MJPSO [37]	0.00E+000	3.99E-004	2.24E-005	7.84E-005	2.07E-009
J_{13}	ACDE/F [4]	2.20E+001	6.00E+001	3.62E+001	8.27E+000	3.35E+001
,	NSVMDE	0.00E+000	0.00E+000	0.00E+000	0.00E+000	0.00E+000
	Bina-DE	4.51E+004	1.53E+005	8.84E+004	2.43E+004	8.45E+004
,	M-SSA [38]	3.96E+001	3.96E+001	3.96E+001	1.61E-007	3.96E+001
•	NEBDE	3.95E+001	3.96E+001	3.96E+001	3.72E-002	3.95E+001
f_{14}	PSDE	3.95E+001	2.01E+008	1.60E+007	4.55E+007	1.00E+006
J 14	NS-MJPSO [37]	3.96E+001	6.01E+001	4.05E+001	3.77E+000	3.96E+001
•	ACDE/F [4]	3.95E+001	3.95E+001	3.95E+001	1.05E-002	3.95E+001
	NSVMDE	3.95E+001	3.96E+001	3.95E+001	3.76E-002	3.95E+001

TABLE IV
Gate information

Gate	Passenger walking distance	Gate type	Gate	Passenger walking distance	Gate type
1	190	M	16	115	L
2	975	M	17	215	M
3	400	L	18	535	S
4	333	M	19	1050	M
5	260	L	20	170	M
6	135	S	21	585	L
7	1100	M	22	1250	M
8	150	M	23	500	L
9	384	L	24	920	L
10	960	M	25	270	L
11	1000	S	26	230	M
12	235	L	27	265	L
13	1200	S	28	450	L
14	580	L	29	1300	M
15	440	L	30	426	L

TABLE V
Aircraft information

Aircraft	Arrival time	Departure time	Passenger walking steps	Aircraft type
1	2015-7-26 0:05:00	2015-7-26 7:15:00	482	L
2	2015-7-26 0:05:00	2015-7-26 7:45:00	273	M
3	2015-7-26 0:10:00	2015-7-26 7:30:00	261	M
4	2015-7-26 0:15:00	2015-7-26 7:30:00	116	M
5	2015-7-26 0:15:00	2015-7-26 9:15:00	244	M
6	2015-7-26 0:20:00	2015-7-26 10:30:00	312	L
7	2015-7-26 0:25:00	2015-7-26 1:20:00	340	L
8	2015-7-26 0:30:00	2015-7-26 10:00:00	198	M
9	2015-7-26 0:35:00	2015-7-26 8:10:00	184	M
10	2015-7-26 0:35:00	2015-7-26 10:55:00	494	
:	:	:	:	:
				L
249	2015-7-26 23:50:00	2015-07-27 01:50:00	128	M
250	2015-7-26 23:55:00	2015-7-27 9:10:00	307	L