

An Inference Hardware Accelerator for EEG-based Emotion Detection

Hector A. Gonzalez¹, Shahzad Muzaffar², Jerald Yoo³, and Ibrahim (Abe) M. Elfadel⁴

Chair for Highly-Parallel VLSI-Systems and Neuromorphic Circuits, Technische Universität Dresden, Germany¹

National University of Singapore (NUS), Singapore³ Khalifa University of Science and Technology, United Arab Emirates^{2,4}

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Motivation

- Alzheimer and Amyotrophic Lateral Sclerosis (ALS) patients lose their language capabilities on a late stage
- The Amygdala is compromised only at the end of Alzheimer [2]
- ALS displays only arousal drop with the disease progress [3]

State-of-the-Art

Emotion Detection: Gaining Popularity

- Shallow Models [4]
- Deep Models (CNNs+RNNs [5], Ensemble of CNNs [6])
- ❖ Biologically inspired SNNs [7].
- Diverse Feature extraction methods (Raw [8] [9], DE [10], HOC [11], Asymmetrical indices [10], PSD [4])
- Training paradigms (Subject dependent [11], Independent [12], and Semi-independent [13])
- No HW contribution up to the submission of this paper.

Convolutional Neural Networks in HW:

Extremely mature [14] [15] [16] [17] [18] [19] [20] [21]:

- Sparse exploitation
- Winograd enhancements
- Efficient mapping in computing platforms
- No contribution aiming to achieve low footprint by trading-off latency
- Biomedical requirements (Robustness, reliability, wearability, area, low-power, and interactivity).

Top Level Diagram of the HW Emotion Classifier

CNN Model - Valence/Arousal

CNN Implementation – Valence/Arousal

Fill Internal Buffer

Window Wrapper

Shared Overlap

Rectified Convolutional Layer

Serialized Max Pooling

Dense Layer

Experimental Framework

Results

$$L_t = \frac{BK}{N} [14 \times 44 + C + M + S + D + (N - 1) + R]$$

$$T_h = N \frac{22 \times 7A_{ccum} + 5A_{ccumPrevK}}{14 \times 44 + C + M + S + D}$$

Results

ACCURACY COMPARISON WITH THE STATE-OF-THE-ART

Model Used	Va ^a	Ar ^b	Sc	Validation
DEAP EEG[5]	57.6	62	32	L1T.OUT SD
Mahnob-HCI EEG[9]	57.0	52.4	27	20-fold CV SI
DBN DE Features[10]	86.08	N/A	15	CV N/A SD
DBN PSD DEAP F1 score[11]	86.6	86.67	32	5-fold CV SD
DREAMER EEG[12]	62.49	62.17	23	10-fold CV SI
DEAP Hybrid CNN-RNN[6]	72.06	74.12	32	5-fold CV SD
CNN RAW DEAP[13]	81.40	73.36	32	CV N/A SD
Our BioCNN DEAP	77.57	71.25	32	10-fold CV SD

^{a.} Valence ^{b.} Arousal ^{c.} Subject

Results

FIGURES OF MERITS AND BIOCNN COMPARISONS WITH THE STATE-OF-THE-ART

Metrics	[14]	[15]	[16]	[17]	BioCNN
Clocka	100	150	150	100	100
Platform	VX485T	VX690T	Z-7045	Z-7020	Atlys
Precision ^b	32FP	16FD	16FD	16FD	16FD
DSP ^c	2240	2833	780	206	32
BRAM ^c	1024	1248	486	144	10
LUT ^c	186251	350892	182616	38136	26228
FF ^c	205704	311904	127653	42618	15180
Performance ^d	61.62	354	136.97	39.78	1.65
Power ^e	18.61	26	9.63	2.03	0.15
Efficiency ^f	3.31	13.62	14.22	19.6	11

a.MHz b.bits c.Used Resources d.GOps e.W f.GOps/W

Conclusion

- Novel FPGA-based CNN implementation geared to biomedical applications with aggressive pipelining, low footprint, and high resource re-utilization.
- Two algorithms for pipelined max-pooling and serialized processing of max-pooled values in a dense output layer are also proposed.
- The current topology requires no soft core, which reduces further its area and logic requirements.
- Pioneer in Hardware classification of Emotions achieving a classification accuracy (Valence: 77.57%, Arousal: 71.25%)
- The throughput presented of 1.65GOps is in line with the real-time requirement of a wearable device with an energy efficiency of 11 GOps/w and a power consumption of 150mW.
- The achieved latency of 1ms is much smaller than the 150ms required for human-machine interactions.
- Algorithmic potential to be used in other biomedical applications (ECG, blood pressure monitor, hearing aid and EEG-based emotion detection).

Thank you!

- [1] Image source: https://pdfs.semanticscholar.org/5945/a67b68448f59547897b64f06114359f4022c.pdf
- [2] Excellence in Dementia Care: Principles and Practice. M. Downs, B. Bowers: Open University Press, McGraw Hill Education, 2008.
- [3] Lulé, D., Diekmann, V., Anders, S. et al. J Neurol (2007) 254: 519. https://doi-org.ezproxy.unal.edu.co/10.1007/s00415-006-0409-3.
- [4] S. Koelstra et. al., "DEAP: A Database for Emotion Analysis Using Physiological Signals," IEEE Transactions on Affective Computing, vol. 3, no. 1, pp. 18–31, Jan 2012.
- [5] X. Li et. al., "Emotion Recognition from Multi-channel EEG Data Through Convolutional Recurrent Neural Network," in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec 2016, pp. 352–359.
- [6] H. Yang, J. Han, and K. Min, "A multi-column cnn model for emotion recognition from eeg signals," Sensors, vol. 19, p. 4736, 10 2019.
- [7] Y. Luo, Q. Fu, J. Xie, Y. Qin, G. Wu, J. Liu, F. Jiang, Y. Cao, and X. Ding, "EEG-based emotion classification using spiking neural networks," IEEE Access, vol. 8, pp. 46 007–46 016, 2020.
- [8] S. Tripathi, S. Acharya, R. Sharma, S. Mittal, and S. Bhattacharya, "Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset." Innovative Applications of Artificial Intelligence 29th IAAI Conference, 2017. [Online]. Available: https://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/15007

- [9] Y. Wang, Z. Huang, B. McCane, and P. Neo, "Emotionet: A 3-d convolutional neural network for EEG-based emotion recognition," in 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–7.
- [10] R. N. Duan, J. Y. Zhu, and B. L. Lu, "Differential Entropy Feature for EEG-Based Emotion Classification," in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), Nov 2013, pp. 81–84.
- [11] P. C. Petrantonakis and L. J. Hadjileontiadis, EEG-Based Emotion Recognition Using Advanced Signal Processing Techniques. John Wiley & Sons, Inc., 2015, pp. 269–293. [Online]. Available: http://dx.doi.org/10.1002/9781118910566.ch11
- [12] S. Katsigiannis and N. Ramzan, "DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Offthe-Shelf Devices," IEEE Journal of Biomedical and Health Informatics, vol. PP, no. 99, pp. 1–1, 2017.
- [13] H. A. Gonzalez, J. Yoo, and I. M. Elfadel, "EEG-based emotion detection using unsupervised transfer learning," in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 2019, pp. 694 697.
- [14] A. Parashar et. al., "SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks," in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), June 2017, pp. 27–40.

[15] L. Lu and Y. Liang, "SpWA: An Efficient Sparse Winograd Convolutional Neural Networks Accelerator on FPGAs," in Proceedings of the 55th Annual Design Automation Conference, ser. DAC '18. New York, NY, USA: ACM, 2018, pp. 135:1–135:6. [Online]. Available: http://doi.acm.org/10.1145/3195970.3196120 [16] A. Lavin, "Fast Algorithms for Convolutional Neural Networks," CoRR, vol. abs/1509.09308, 2015.

[Online]. Available: http://arxiv.org/abs/1509.09308

[17] V. Sze, Y. Chen, T. Yang, and J. S. Emer, "Efficient processing of deep neural networks: A tutorial and survey," Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, Dec 2017.

[18] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, "Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks," in Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser. FPGA '15. New York, NY, USA: ACM, 2015, pp. 161–170. [Online]. Available: http://doi.acm.org/10.1145/2684746.2689060

[19] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, "Caffeine: Towards Uniformed Representation and Acceleration for Deep Convolutional Neural Networks," in Proceedings of the 35th International Conference on Computer-Aided Design, ser. ICCAD '16. New York, NY, USA: ACM, 2016, pp. 12:1–12:8. [Online]. Available: http://doi.acm.org/10.1145/2966986.2967011

[20] J. Qiu et. al., "Going Deeper with Embedded FPGA Platform for Convolutional Neural Network," in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, ser. FPGA '16. New York, NY, USA: ACM, 2016, pp. 26–35. [Online]. Available: http://doi.acm.org/10.1145/2847263.2847265

[21] L. Gong, C. Wang, X. Li, H. Chen, and X. Zhou, "A Power efficient and High Performance FPGA Accelerator for Convolutional Neural Networks: Work-in-progress," in Proceedings of the 12th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis Companion, ser. CODES '17. New York, NY, USA: ACM, 2017, pp. 16:1–16:2. [Online]. Available: http://doi.acm.org/10.1145/3125502.3125534

[22] H. A. Gonzalez, S. Muzaffar, J. Yoo and I. M. Elfadel, "BioCNN: A Hardware Inference Engine for EEG-Based Emotion Detection," in IEEE Access, vol. 8, pp. 140896-140914, 2020, doi: 10.1109/ACCESS.2020.3012900.

