УДК 663.3: 544.018.4

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДОБАВКИ АЭРОГЕЛЯ AIOOH НА СВОЙСТВА КЕРАМИЧЕСКИХ ИЗДЕЛИЙ ZrO,-Y,O,

В.И. Воскресенская, П.А. Юдинцев

ГНЦ РФ-Физико-энергетический институт им. А.И. Лейпунского, г. Обнинск

В работе рассмотрены результаты изучения возможностей изготовления усовершенствованной керамики на основе порошков $\text{ZrO}_2-\text{Y}_2\text{O}_3$ с добавкой наноструктурного аэрогеля AlOOH в количестве 4,4 мас.% для применения в качестве твердого электролита сенсоров кислорода, кислородных мембран и топливных элементов. Добавка 4,4 мас.% аэрогеля AlOOH в 1,5 раза увеличивает механическую прочность керамических изделий $\text{ZrO}_2-\text{Y}_2\text{O}_3$.

ВВЕДЕНИЕ

Уникальное сочетание высоких механических свойств, устойчивости к воздействию агрессивных сред, электрических свойств обеспечит широкое применение керамики на основе диоксида циркония во всех отраслях промышленности в ближайшем будущем. Длительность использования этих материалов в качестве конструкционной и функциональной керамики зависит от стабильности физико-механических свойств в процессе эксплуатации, что в первую очередь определяется микроструктурой и фазовым составом этой керамики.

Наиболее высокими эксплутационными свойствами обладают высокотемпературные модификации ZrO_2 (кубическая и тетрагональная) для стабилизации которых, как правило, вводят добавки ионов Ca, Sc, Y, La, Nd [1]. Диоксид циркония, стабилизированный оксидом иттрия, наилучшим образом подходит в качестве твердого электролита для сенсоров кислорода, кислородных мембран, топливных элементов. Он обладает достаточно высокой кислородоионной проводимостью в температурном диапазоне (350–650°C).

Однако изделия из керамики $ZrO_2-Y_2O_3$ являются менее прочными, чем изделия, например, из Al_2O_3 или $MgAl_2O_4$. Повышение прочности за счет регулирования микроструктуры материалов — одна из наиболее существенных задач улучшения свойств керамики. В технологии получения материала на основе $ZrO_2-Y_2O_3$ очень эффективным средством регулирования микроструктуры является введение оксида алюминия Al_2O_3 [2].

Целью данной работы являлось исследование по повышению прочности керамики на основе $ZrO_2-Y_2O_3$ за счет добавки наноструктурного аэрогеля AlOOH.

ИССЛЕДОВАНИЕ СВОЙСТВ АЭРОГЕЛЯ АІООН

Проведены рентгеноструктурные исследования и высокотемпературный дифференциальный термический анализ (ВДТА) аэрогеля AlOOH. Исследуемый интер-

вал температур — от 100 до 1700°С. На полученных термограммах выявлены два фазовых превращения с эндотермическим эффектом от 320 до 570°С и от 1230 до 1620°С и одно фазовое превращение с экзотермическим эффектом от 680 до 810°С (с максимумом при 780°С). При охлаждении фазовые превращения отсутствовали. У образцов аэрогеля, прокаленных при 350°С на воздухе, фазовых превращений в интервале температур от 320 до 570°С не обнаружено.

Согласно результатам рентгеноструктурных исследований аэрогель AlOOH остается ретгеноаморфным веществом вплоть до 1000° С. При боле высоких температурах начинается образование кристаллических фаз γ -Al₂O₃ и α -Al₂O₃ [3].

Морфологическая структура образцов аэрогеля AlOOH изучалась методом сканирующей электронной микроскопии (СЭМ). Установлено, что представленные на СЭМ-исследование образцы имеют типичное для аэрогеля AlOOH слоисто-волокнистое строение и состоят из нескольких наложенных друг на друга слоев одинаково ориентированных волокон (рис. 1). Все волокна вытянуты в направлении, нормальном к плоскости залегания слоя. Внутри слоя волокна объединяются в пучки, ветвятся. Диаметр волокон находится в пределах от 20 до 50 нм (рис. 1) [3, 4].

Рис. 1. Фотоснимки морфологической структуры аэрогеля AlOOH

Удельная поверхность аэрогеля AlOOH, используемого в настоящей работе, была определена методом БЭТ (Брунауэра, Эммета и Теллера) и составляла 212 м 2 /г.

Метод S_{6 эт — метод низкотемпературной адсорбции газа (жидким азотом) твердой фазы.

ИЗГОТОВЛЕНИЕ И ИССЛЕДОВАНИЕ ПОРОШКА ZrO₂-Y₂O₃

Как известно, оксид циркония ZrO_2 вплоть до температуры ~ 1000° С существует в моноклинной форме и при более высоких температурах переходит в тетрагональную фазу. При этом переход из одной фазы в другую сопровождается изменением объема на 7,7%, что приводит к возникновению значительных термических напряжений [5]. Для стабилизации высокотемпературной кубической фазы диоксида циркония проводили его легирование оксидом иттрия (10 мол.%). Механическую смесь порошков подвергали термической обработке при температуре 750°С. После помола полная удельная поверхность ($S_{\rm БЭТ}$) порошка составила 2,99 м²/г.

Параметр кристаллической решетки: $a = 5,143\pm0,002$ Å.

ИЗГОТОВЛЕНИЕ И ИССЛЕДОВАНИЕ ИЗДЕЛИЙ ИЗ Zro2-Y2O3

Технологическая схема изготовления изделий из порошков $ZrO_2-Y_2O_3$ с добавкой аэрогеля AlOOH (в виде порошка) представлена на рис. 2. Добавку аэрогеля AlOOH в количестве 4,4 мас.% механически смешивали с исходным порошком $ZrO_2-Y_2O_3$. В качестве пластификатора использовали 10-процентный поливиниловый спирт (ПВС). Изделия в виде таблеток прессовали при давлении $\sim 2000~\rm kr/cm^2$ и затем спекали при температурах 1700 и 1720°C в течение 1 ч в вакууме (величина вакуума $1\cdot 10^{-4}~\rm arm.$). Результаты исследований образцов $ZrO_2-Y_2O_3$ приведены в табл. 1.

Были проведены рентгеноструктурные исследования спеченных таблеток. На рис. 3 представлены дифрактограммы спеченных образцов. Добавка 4,4 мас.% аэрогеля Al0OH к порошку $ZrO_2-Y_2O_3$ приводит к образованию $\alpha-Al_2O_3$ фазы, уменьшает параметр кристаллической решетки спеченных таблеток $ZrO_2-Y_2O_3$ (табл. 1).

Характеристика образцов керамики на основе $ZrO_2 - Y_2O_3$

Таблица 1

	Характеристика таблеток после спекания при 1720°C					
Состав	Плотность		Фазовый	Параметр	Размер	Микро-
	г/см ³	% от теорети- ческой	состав	решетки, Å	зерна, мкм	твердость, Н ₅₀ , кг/мм ²
ZrO ₂ –Y ₂ O ₃	5,77	96,2	Твердый раствор (Zr,Y)О _{2-X} кубич. модиф.	5,144 ± 0,001	31–44	1582, 1734, 2027 — светлая фаза; 797, 893 — темная фаза
ZrO ₂ –Y ₂ O ₃ + 4,4% AlOOH	5,64	95,9	Твердый раствор (Zr,Y)O _{2-X} кубич. модиф. и αAl ₂ O ₃	5,141 ± 0,001	44–62	1584, 1786 — светлая фаза; 1100, 1157, 1338 — темная фаза

Рис. 2. Технологическая схема изготовления керамики из порошков $ZrO_2-Y_2O_3$ с добавкой аэрогеля AIOOH

На рис. 3 представлены дифрактограмма образцов $ZrO_2-Y_2O_3$ (а) и дифрактограмма образцов $ZrO_2-Y_2O_3$ + 4,4 мас.% AlOOH (б).Фазовый состав образцов — твердый раствор(Zr,Y) O_{2-X} кубической модификации. Параметр определен по отражению угла (531°). Дифрактограммы получены на аппарате ДРОН-2 в $Cu-K_\alpha$ -излучении с $Cu-K_\alpha$ -излучении с

Добавка 4,4 мас.% аэрогеля AlOOH к порошку $ZrO_2-Y_2O_3$ приводит к образованию α -Al $_2O_3$ фазы.

На рис. 4 представлены фотографии микроструктуры спеченных образцов $ZrO_2-Y_2O_3$ и $ZrO_2-Y_2O_3+4$,4 мас.% AlOOH. В табл. 1 представлены результаты металлографического анализа образцов $ZrO_2-Y_2O_3$ и $ZrO_2-Y_2O_3+4$,4 мас.% AlOOH. Средний

Рис. 3. Дифрактограммы таблеток, спеченных при температуре 1720°C: a) ZrO_2-Y_2O ; 6) ZrO_2-Y_2O+4 ,4 мас. % AlOOH

размер зерна спеченных таблеток $ZrO_2-Y_2O_3$ колеблется от 31 до 62 мкм. Таблетки $ZrO_2-Y_2O_3+4,4$ мас.% AlOOH имеют размер зерна в среднем от 44 до 62 мкм, причем размер отдельных зерен выше 80 мкм. Таким образом, добавка аэрогеля AlOOH приводит к увеличению размера зерна керамики $ZrO_2-Y_2O_3$ при спекании. Кроме того, добавка аэрогеля в $ZrO_2-Y_2O_3$ повышает микротвердость спеченных изделий (табл. 1).

Рис. 4. Фотографии микроструктуры спеченных образцов $ZrO_2-Y_2O_3$ (a) и $ZrO_2-Y_2O_3+4$,4 мас.% AlOOH (6)

Рис. 5. Зависимость КТЛР образцов керамики $ZrO_2 - Y_2O_3$ от температуры

Были проведены измерения коэффициента термического линейного расширения (КТЛР) спеченных изделий. На рис. 5 приведена зависимость КТЛР от температуры для образцов керамики двух составов: $ZrO_2-Y_2O_3$ и $ZrO_2-Y_2O_3+4,4$ мас.% AlOOH, спеченных при температуре 1720°C. Согласно этой зависимости добавка 4,4 мас.% аэрогеля практически не приводит к изменению КТЛР.

Проведены испытания таблеток на осевое сжатие до полного разрушения. Результаты испытаний представлены в табл. 2. Полученные результаты показали увеличение прочности ($\sigma_{\text{сж}}$) образцов с добавкой аэрогеля AlOOH в 1,5 раза.

Таблица 2 Результаты испытаний (средние значения) на осевое сжатие спеченных образцов ${\bf ZrO_2-Y_2O_3}$

Количество образцов	Состав	? _{сж} , МПа
5	ZrO ₂ –Y ₂ O ₃	481
10	ZrO ₂ –Y ₂ O ₃ + 4,4 мас.% AlOOH	697

ЗАКЛЮЧЕНИЕ

Проведен ряд исследований по изучению влияния добавки аэрогеля AlOOH на свойства спеченных керамических изделий из $ZrO_2-Y_2O_3$.

Данный процентный состав добавки выбран в качестве начального приближения по исследованию аэрогеля AlOOH на прочность керамики. Необходимо дальнейшее исследование процентного содержания добавки аэрогеля AlOOH и ее влияние на прочность керамики.

В результате исследований на сжатие до полного разрушения установлено, что добавка 4,4 мас.% аэрогеля AlOOH в 1,5 раза увеличивает механическую прочность керамических изделий $ZrO_2-Y_2O_3$. Столь существенное увеличение прочности делает возможным значительное расширение области применений изделий из рассматриваемой керамики.

В результате исследований также установлено, что добавка AlOOH уменьшает параметр кристаллической решетки $ZrO_2-Y_2O_3$ и приводит к образованию $\alpha-Al_2O_3$

фазы; укрупняет размер зерна и повышает микротвердость спеченных изделий; практически не влияет на КТЛР.

Необходимо продолжить исследования упрочненной керамики $ZrO_2-Y_2O_3$, включая измерения электропроводности и ионной проводимости данной керамики в широком спектре условий испытаний, таких как температура, парциальное давление кислорода, проводимость, среда испытаний и т.д.

Литература

- 1. Химия и технология редких и рассеянных элементов/Под ред. К.А. Большакова. М: Высшая школа, 1976. Т.2.
- 2. *Шевченко В.Я., Баринов С.М.* Техническая керамика. М.: Наука, 1993. С. 197.
- 3. *Мартынов П.Н., Асхадуллин Р.Ш., Курина И.С. и др.* Изучение синтеза аэрогеля моногидрата оксида алюминия из расплава Ga—Al и исследование влияния малых добавок $Al_2O_3 \cdot H_2O$ в керамику/Сб.: Труды регионального конкурса научных проектов в области естественных наук. Вып. 6. 2004. С. 252—265.
- 4. *Курина И.С., Асхадуллин Р.Ш., Мартынов П.Н. и др.* Использование добавок аэрогеля AlOOH при изготовлении топливных таблеток $UO_{,}$, а также функциональной и конструкционной керамики ЯЭУ/Сборник трудов конференции MAЯТ-2 (п. Aгой 19-23 сентября 2005). C. 69.
- 5. Петрунин В.Ф., Попов В.В. и ∂p . Образование высокотемпературных фаз в наночастицах диоксида циркония//Инженерная физика 2003. №4. С. 10.

Поступила в редакцию 14.05.2006