1. (a) Find the absolute and relative condition numbers of  $f(x) = e^{-2x}$  and  $f(x) = \ln^3(x)$ . For what values of x are these functions sensitive to perturbations?

**Solution.** For  $f(x) = e^{-2x}$ ,

$$\kappa_A = ||J_f(x)|| = |2e^{-2x}|$$

$$\kappa_r = \frac{||J_f(x)|||x||}{|e^{-2x}|} = 2|x|$$

That is, the absolute condition number is never sensitive since  $e^{-2x}$  is bounded above by 1. The relative condition number is only sensitive when x gets really large. When  $f(x) = \ln^3(x)$ , we have

$$\kappa_A = \frac{3\ln^2(x)}{|x|}$$

$$\kappa_r = \frac{\kappa_A|x|}{|\ln(x)|\ln^2(x)} = \frac{3}{\ln(x)}$$

The absolute condition number becomes large as  $x \to 0^+$ . The relative conditioning behaves in a similar manner when  $x \to 1$ . Both are incredibly sensitive to perturbations around their respective critical values.

(b) Let  $x_1, x_2 \in \mathbb{R}^+$  and  $f(x_1, x_2) = x_1^{x_2}$ . Find the relative condition number of f(x), and for what range of values of  $x_1$  and  $x_2$  is this problem ill-conditioned?

**Solution.** Let  $f(x_1, x_2) = x_1^{x_2}$ . Then

$$\begin{split} \kappa_r &= \frac{\|J_f(x)\|_{\infty} \|x\|_{\infty}}{\|f(x)\|} = \frac{\max\{x_1^{x_2-1}x_2, x_1^{x_2-1}x_1 \log x_2\} \max\{x_1, x_2\}}{|x_1^{x_2-1}||x_1|} \\ &= \frac{\max\{x_2, x_1 \log x_2\} \max\{x_1, x_2\}}{|x_1|} \end{split}$$

From this construction we see that if  $x_1 \log x_2 > x_2$ , then our relative condition number is simply  $\log x_2 \max\{x_1, x_2\}$ . This is only ill-conditioned when both  $x_1$  and  $x_2$  are very (very) large. However, if  $x_1 \log x_2 < x_2$ , then our relative condition number is  $\frac{x_2^2}{x_1}$  which can clearly grow very fast when  $x_1 \to 0$  or  $x_2 \to \infty$ .

- 2. Consider the recurrence  $x_k = 111 \frac{1130 \frac{3000}{x_{k-1}}}{x_k}$  who general solution is  $x_k = \frac{100^{k+1}a + 6^{k+1}b + 5^{k+1}c}{100^ka + 6^kb + 5^kc}$ , where a, b and c depend on the initial values. Given  $x_0 = \frac{11}{2}$  and  $x_1 = \frac{61}{11}$ , we have a = 0, b = c = 1.
  - (a) Show that this gives a monotonically increasing sequence to 6.

**Solution.** Consider a rescaling by a factor of  $6^k$  for a fixed k. Then

$$\frac{6^{k+1} + 5^{k+1}}{6^k + 5^k} = \frac{6 + 5(\frac{5}{6})^k}{1 + (\frac{5}{6})^k}$$

It follows that

$$\lim_{k \to \infty} \frac{6^{k+1} + 5^{k+1}}{6^k + 5^k} = \lim_{k \to \infty} \frac{6 + 5(\frac{5}{6})^k}{1 + (\frac{5}{6})^k} = 6$$



Figure 1: Sequence  $x_k$ 

For monotonicity, note that as a function of k,  $f(k) = \frac{6^{k+1} + 5^{k+1}}{6^k + 5^k}$  has a derivative of  $f'(k) = \frac{30^k \log(\frac{6}{5})}{(6^k + 5^k)^2}$  which is positive for all nonnegative values of k.

(b) Implement this recurrence on MATLAB, plot  $\{x_k\}$ , compare with the exact solution. What is the condition number of the limit of this particular sequence as a function of  $x_0$  and  $x_1$ ?

**Solution.** The conditioning of the sequence as a function of  $x_0$  and  $x_1$  is infinity. For any perturbation of size  $\varepsilon > 0$  on the inputs  $x_0, x_1$ , we see that the limit jumps from 6 to 100 (since a becomes nonzero). That is,  $\frac{100-6}{\varepsilon} \to \infty$  as  $\varepsilon \to 0$ . We see this behavior in Figure 1. After only a few iterations, the sequence shoots to 100. The general solution avoids this problem by setting a = 0 in exact arithmetic.

3. Let  $p_24(x)=(x-1)(x-2)\cdots(x-24)=a_0+a_1x+\cdots+a_{24}x^{24}$ . Evaluate the relative condition number of the k-th root  $x_k=k$  subject to the perturbation of  $a_k$  for k=16,17,18,19,20 and find the root that is most sensitive to the perturbation of the corresponding coefficient. Use MATLAB to compute the roots and compare them to the true roots.

**Solution.** Recall from class that for  $p_24$ , we have that

$$\kappa_r = \frac{x_j^{i-1} a_i}{p'(x_j)}$$

which simplifies to  $\frac{x_k^{k-1}a_k}{p'(x_k)}$  for this problem since i=j=k. The computed results are summarized in Table 1. We can clearly see that k=16 is the most sensitive root to

| Root   | Relative Condition Number |
|--------|---------------------------|
| k = 16 | -2.12e16                  |
| k = 17 | 7.88e14                   |
| k = 18 | -1.77e15                  |
| k = 19 | -1.59e15                  |
| k = 20 | -2.31e15                  |

Table 1: Relative Conditioning of Roots



Figure 2: Root Relative Errors

perturbations of the corresponding coefficient. Using MATLAB to compute the roots, we see that numerous roots had a relative error of over 0.1. Because of the large relative condition number at these roots, this is already terrible. Figure 2 shows the relative error of the computed roots.

4. Let  $x_0, \ldots, x_n$  be n+1 equidistant points on [-1,1] where  $x_0 = -1, x_n = 1$ . Use MAT-LAB's vander to generate Vandermonde matrices for n = 9, 19, 29, 39. Let  $x = [1, \ldots, 1]^T$  and b = Ax. Pretend that we do not know x and use numerical algorithms to solve for x. Let  $\hat{x}$  be the computed solution. Compute the relative forward errors and the smallest relative backward errors for GEPP, QR factorization, Cramer's Rule,  $A^{-1}b$ , and GE without pivoting. Comment on the forward/backward stability of these methods.

**Solution.** Table 2 presents the numerical results for n = 39. We immediately see that both GEPP and QR factorization appear to be numerically backward stable. The final three algorithms cannot make such claim, but two of them,  $A^{-1}b$  and Cramer's Rule appear to at least be forward stable, i.e. they produce forward errors similar to the

| Algorithm        | Forward Error | Backward Error |
|------------------|---------------|----------------|
| GEPP             | 4.1723        | 0.2113e - 16   |
| QR Factorization | 4.5289        | 0.0408e - 15   |
| $A^{-1}b$        | 4.7941        | 0.0065         |
| Cramer's Rule    | 2.3003        | 0.0784         |
| GE without pivot | 1.828e28      | 0.0134         |

Table 2: Algorithm Stability



Figure 3: Stability Graphs

forward errors of a backwards stable algorithm. However, for GE without pivoting, it is neither forward nor backward stable, for such a large n. Admittedly, it is likely the large n that creates the most problems. The forward error for n = 9 of GE without pivoting is on the order of  $10^{-13}$ . Full evaluations can be found in Figure 3.

- 5. Though pivoting is needed for factorizing general matrices, it is not needed for symmetric positive definite and diagonally dominant matrices.
  - (a) For a symmetric positive definite A, with the one-step Cholesky factorization

$$A = \begin{bmatrix} a_{11} & w^T \\ w & K \end{bmatrix} = \begin{bmatrix} \sqrt{a_{11}} & 0 \\ \frac{w}{\sqrt{a_{11}}} & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & K - \frac{ww^T}{a_{11}} \end{bmatrix} \begin{bmatrix} \sqrt{a_{11}} & \frac{w^T}{\sqrt{a_{11}}} \\ 0 & I \end{bmatrix} = R_1^T A_1 R_1$$

show that the submatrix  $K - \frac{ww^T}{a_{11}}$  is symmetric positive definite. Consequently the

factorization can be completed without break-down. Then, show that  $||R||_2 = ||A||_2^{\frac{1}{2}}$ , which means the elements in R are uniformly bounded by that of ||A||. Explain why this observation leads to the backward stability of Cholesky factorization.

**Solution.** Since  $\det(R_1^T) = \det(R_1) = \sqrt{a_{11}} > 0$ , and all other leading principal minors of  $R_1, R_1^T$  are positive (the submatrix is the identity in both cases), these matrices must be invertible and symmetric positive definite. Thus, their inverses

must also be SPD. So  $A_1 = R_1^{-T} A R_1^{-1}$  is also positive definite since it is the product of 3 SPD matrices. Finally, because  $K - \frac{ww^T}{a_{11}}$  is a principal minor of  $A_1$  which itself is SPD, it must also be SPD. Recall from class that the magnitude of  $\rho_n$  controls the backward stability of an LU factorization algorithm.

To see the equivalence of norms, let  $R=U\Sigma V^T$  be a singular value decomposition of R. We can then compute

$$A = R^T R = V \Sigma^2 V^T$$

which is a singular value decomposition of A. From here we see that the singular values of R are the square root of the corresponding singular values in A. Because both R and A are symmetric, this is also true for the eigenvalues. Thus,

$$||R||_2 = \rho(R) = \rho(A)^{\frac{1}{2}} = ||A||_2^{\frac{1}{2}}$$

Because the elements of R are uniformly bounded by ||A||, the growth factor is incredibly well behaved for Cholesky factorization and it is consequently backwards stable.

(b) Suppose that  $A = \begin{bmatrix} \alpha & w^T \\ v & C \end{bmatrix}$  is column diagonally dominant, with one step LU factorization  $A = \begin{bmatrix} 1 & 0 \\ \frac{v}{\alpha} & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & C - \frac{1}{\alpha}vw^T \end{bmatrix} \begin{bmatrix} \alpha & w^T \\ 0 & I \end{bmatrix}$ . Show that the submatrix  $C - \frac{1}{\alpha}vw^T$  is also column diagonally dominant, and no pivoting is needed.

**Solution.** For brevity, let  $D = C - \frac{1}{\alpha}vw^T$  and consequently,  $A = \begin{bmatrix} \alpha & w^T \\ v & D + \frac{vw^T}{\alpha} \end{bmatrix}$ . Suppose for the sake of contradiction that there exists some column j such that  $D_{jj} < \sum_{i=1, i \neq j}^n D_{ij}$ , i.e. D is not strictly diagonally dominant. Note that since A is column diagonally dominant, we have  $\sum_{i=1}^n v_i < \alpha$ . We may rearrange this to obtain  $\frac{1}{\alpha} \left[ \sum_{i=1, i \neq j} v_i w_j + v_j w_j \right] < w_j$ . Combining the previous two inequalities gives us

$$D_{jj} + \frac{v_j w_j}{\alpha} < \sum_{i=1, i \neq j}^n \left( D_{ij} + \frac{v_i w_j}{\alpha} \right) + w_j$$

which is precisely the condition that column j of A is not strictly diagonally dominant, a contradiction.

(c) Show that worst-case growth factor  $\rho_n=2^{n-1}$  for GEPP. However, we construct matrices with random elements, each are independent samples from the normal distribution of means 0 and standard deviation  $\frac{1}{\sqrt{n}}$ . Let  $n=32,64,\ldots,2048$ , and for each n, repeat the experiment 5000 times. Find the percent of experiments when  $\rho_n > \sqrt{n}$ . Comment on the chance of having a large  $\rho_n$ .

**Solution.** After quite some time in the cluster<sup>1</sup>, I've actually fully completed this problem. For full details, see errors output in the appendix. It is clear from the results in Table 3 that the likelihood of having a troublesome growth factor is very small. Of the results tallied, they only indicate an instance of  $\rho_n > \sqrt{n}$ , which itself is not incredibly intimidating. However, it is important to note that many applications in practice are not on matrices sampled from a normal distribution. Often times, systems are banded or at least sparse. If I had written an LU factorization algorithm that took advantage of these special structures, I would test this as well, but I have not. Nonetheless, GEPP is most likely a very backward stable algorithm in practice.

| n    | Bad Growth Factor Count |
|------|-------------------------|
| 32   | 15                      |
| 64   | 13                      |
| 128  | 19                      |
| 256  | 16                      |
| 512  | 9                       |
| 1024 | 8                       |
| 2048 | 5                       |

Table 3: Large Growth Factor Frequencies

6. Consider the eigenvalue problem  $Av = \lambda v$ . Let  $(\hat{\lambda}, \hat{v})$  be a computed eigenpair, which is assumed to be the exact eigenpair of a perturbed matrix  $A + \Delta A$ . Show that the minimum 2-norm of all  $\Delta A$  is  $\frac{\|A\hat{v} - \hat{\lambda}\hat{v}\|_2}{\|\hat{v}\|_2}$  and find a particular  $\Delta A$  whose 2-norm is the minimum.

**Solution.** Consider the perturbed equation  $(A + \Delta A)\hat{v} = \hat{\lambda}\hat{v}$ . Rearranging gives  $\Delta A\hat{v} = \hat{\lambda}\hat{v} - A\hat{v}$ . It follows that  $||A\hat{v} - \hat{\lambda}\hat{v}||_2 = ||\Delta A\hat{v}||_2 \le ||\Delta A||_2 ||\hat{v}||_2$ . Thus,

$$\frac{\|A\hat{v} - \hat{\lambda}\hat{v}\|_2}{\|\hat{v}\|_2} \le \|\Delta A\|_2$$

To find a matrix satisfying this inequality, we will need a lemma. Let  $u, v \in \mathbb{R}^n$ . Then  $||uv^T||_2 = ||u||_2 ||v||_2$ .

*Proof.* Let  $u, v \in \mathbb{R}^n$ . To prove the lemma, first set  $\tilde{u}, \tilde{v}$  to be unit vectors in the directions of u, v respectively, i.e.  $\tilde{u} ||u||_2 = u, \tilde{v} ||v||_2 = v$ . Let U, V to be orthonormal basis extensions of u, v and  $A = uv^T$ . Denote E to be the zero  $n \times n$  matrix with a 1 in the top left entry. Then  $\tilde{u}\tilde{v}^T = \tilde{A} = UEV^T$  is a singular value decomposition of  $\hat{A}$ . Scaling up to A, we see that  $||u||_2 ||v||_2$  is the only nontrivial singular value of A. Thus, it must be the 2-norm.  $\square$ 

Now set  $r = \hat{\lambda}\hat{v} - A\hat{v}$ . Then consider  $\Delta A = \frac{r\hat{v}^T}{\hat{v}^T\hat{v}}$ . From the lemma we have  $||r\hat{v}^T||_2 = ||r||_2||\hat{v}||_2$ . Consequently, it follows that

$$\|\Delta A\|_2 = \frac{\|r\|_2 \|\hat{v}\|_2}{\|\hat{v}\|_2^2} = \frac{\|A\hat{v} - \hat{\lambda}\hat{v}\|_2 \|\hat{v}\|_2}{\|\hat{v}\|_2^2} = \frac{\|A\hat{v} - \hat{\lambda}\hat{v}\|_2}{\|\hat{v}\|_2}$$

<sup>&</sup>lt;sup>1</sup>Clemson University is acknowledged for generous allotment of compute time on Palmetto cluster

Thus we have found a matrix satisfying the minimum 2-norm.

# 1 Appendix

## 1.1 Script files

### 1.1.1 Question 2

```
\% Spring 2018 Math 8610 w/ Xue
%
  Homework 1
%
% Problem
%
  2
% Function Dependencies
%
   None
%
% Notes
%
   None
%
% Author
   Trevor Squires
clear
clc
close all;
length = 25;
f = 0(k) (6.^(k+1) + 5.^(k+1))./(6.^k + 5.^k);
xk = zeros(1,length);
fk = f(0:length-1);
xk(1) = 11/2;
xk(2) = 61/11;
for i = 2:length-1
   xk(i+1) = 111 - (1130-3000/xk(i-1))/xk(i);
end
plot(1:length, xk,'r*', 1:length, fk, '-k')
title('Sequence Evaluations')
ylabel('x_k')
xlabel('k')
legend('Sequential Evaluation','General Evaluation','location','northwest')
```

### 1.1.2 Question 3

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Spring 2018 Math 8610 w/ Xue
   Homework 1
%
% Problem
%
   3
%
% Function Dependencies
%
   None
%
% Notes
%
  None
%
% Author
  Trevor Squires
clear
clc
close all;
load 'wilk24mc.mat'
%Part a
int = 16:20;
xk = int;
ak = wCoeff(25-int)';
wPrime = polyder(wCoeff)';
dpxk = polyval(wPrime,int);
conditioning = xk.^(int-1).*ak./dpxk;
[val,loc] = max(abs(conditioning));
fprintf('The %d-th root is most sensitive to perturbations in the %d-th coefficient with a rel-
%Part b
compRoots = roots(wCoeff);
compRoots = sort(compRoots);
err = (1:24)'-compRoots;
relErr = err./(1:24);
```

```
for i = 1:length(relErr)
    relErr(i) = norm(relErr(i));
end

plot(1:24,relErr,'*k')
title('Relative Error of Roots')
ylabel('Relative Error')
xlabel('Root')
```

### 1.1.3 Question 4

```
% Spring 2018 Math 8610 w/ Xue
   Homework 1
%
% Problem
%
  4
%
% Function Dependencies
  cramersRule.m
%
%
  {\tt matSolve.m}
%
  pluFact.m
%
% Notes
%
  None
% Author
   Trevor Squires
clear
clc
close all;
n = [9,19,29,39];
forErrMat = zeros(1,length(n));
backErrMat = zeros(1,length(n));
forErrQR = zeros(1,length(n));
backErrQR = zeros(1,length(n));
forErrCramer = zeros(1,length(n));
backErrCramer = zeros(1,length(n));
forErrAinv = zeros(1,length(n));
backErrAinv = zeros(1,length(n));
forErrGE = zeros(1,length(n));
backErrGE = zeros(1,length(n));
for j = 1:length(n)
x = linspace(-1,1,n(j)+1);
xtrue = ones(n(j)+1,1);
A = vander(x);
normA = norm(A);
```

```
b = A*xtrue;
%Matlab's backslash
xhat = A \ b;
forErrMat(j) = norm(xhat-xtrue)/norm(xtrue);
backErrMat(j) = norm(b-A*xhat)/normA/norm(xhat);
%QR Factorization
[Q,R] = qr(A);
newb = Q'*b;
xhat = R \setminus newb;
forErrQR(j) = norm(xhat-xtrue)/norm(xtrue);
backErrQR(j) = norm(b-A*xhat)/normA/norm(xhat);
%Cramer's Rule
xhat = cramersRule(A,b);
forErrCramer(j) = norm(xhat-xtrue)/norm(xtrue);
backErrCramer(j) = norm(b-A*xhat)/normA/norm(xhat);
%A inverse b
xhat = inv(A)*b;
forErrAinv(j) = norm(xhat-xtrue)/norm(xtrue);
backErrAinv(j) = norm(b-A*xhat)/normA/norm(xhat);
%Gaussian Elimination without Pivoting
xhat = matSolve(A,b);
forErrGE(j) = norm(xhat-xtrue)/norm(xtrue);
backErrGE(j) = norm(b-A*xhat)/normA/norm(xhat);
end
plot(n,log10(forErrGE),'g--')
hold on
plot(n,log10(forErrAinv),'r-.')
plot(n,log10(forErrMat),'b:')
hold on
plot(n,log10(forErrQR),'k-')
title('Semilogy Plot of Forward Errors')
xlabel('n')
ylabel('Log(Forward Error)')
legend('GE', 'inv(A)b','GEPP','QR','location','best')
```

```
figure()
plot(n,log10(backErrGE),'g--')
hold on
plot(n,log10(backErrAinv),'r-.')
hold on
plot(n,log10(backErrMat),'b:')
hold on
plot(n,log10(backErrQR),'k-')

title('Semilogy Plot of Backward Errors')
xlabel('n')
ylabel('Log(Backward Error)')
legend('GE', 'inv(A)b','GEPP','QR','location','best')
```

### 1.1.4 Question 5

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Spring 2018 Math 8610 w/ Xue
  Homework 1
%
% Problem
%
  5
%
% Function Dependencies
%
   None
%
% Notes
%
   None
%
% Author
   Trevor Squires
clear
clc
close all;
tic
exp = 5:11;
n = 2.^exp;
k = length(n);
trials = 5000;
counts = zeros(1,k);
saveFreq = 100;
for i = 1:trials
   for j = 1:k
       A = randn(n(j),n(j))/sqrt(n(j));
       [~,~,growth] = pluFact(A,'pivot');
       if growth > sqrt(n(j))
           counts(j) = counts(j) + 1;
       end
   end
   if mod(i,saveFreq) == 0
save('results')
   end
end
time = toc;
save('results')
```

# 1.2 Accompanying Functions

### 1.2.1 Batch Script for Palmetto

```
#!/bin/bash
#
#PBS -N xueHW1Q5
#PBS -1 select=1:ncpus=8:mem=125gb
#PBS -1 walltime=72:00:00
#PBS -m abe
#PBS -M tsquire@g.clemson.edu
#PBS -j oe
#PBS -o errors
module add matlab/2017a

cd /home/tsquire/CompMath/8610\ Homeworks

taskset -c 0-$(($OMP_NUM_THREADS-1)) matlab -nodisplay -nodesktop -nosplash -r xueHW1Q5
```

# 1.2.2 Output information for Batch Script

cpupercent=381,cput=124:14:14,mem=738772kb,ncpus=8,vmem=5675028kb,walltime=36:44:58

#### 1.2.3 Cramer's Rule

```
% cramersRule.m
%
% DESCRIPTION
%
   Solves a system of equations Ax = b using Cramer's Rule
%
% AUTHOR
%
   Trevor Squires
%
% ARGUMENTS
% A - n \times n  matrix
%
  b - n x 1 vector
%
% OUTPUT
  x - solution to Ax = b
%
% NOTES
%
   Issues a warning if matrix is rank deficient
%
function [x] = cramersRule(A,b)
%Check sizes of inputs
[m,n] = size(A);
assert(m == n);
assert(isvector(b));
assert(n == length(b));
[m,n] = size(b);
if m<n
   b = b';
end
n = length(b);
x = zeros(n,1);
detA = det(A);
for i = 1:n
   tmpA = A;
   tmpA(:,i) = b;
   x(i) = det(tmpA)/detA;
end
```

### 1.2.4 Linear System Solver

```
% BACKSUB.m
%
% DESCRIPTION
%
   Solves Ax = b using LU factorization with optional partial pivoting
% AUTHOR
%
   Trevor Squires
%
% ARGUMENTS
%
  A - NxN matrix
%
  b - Nx1 vector
%
% OUTPUT
  x - solution to Ax = b
%
% NOTES
%
  Asserts the matrix is square and the vector is of appropriate length
%
function [x] = matSolve(A,b,~)
%% Assertions
n = size(A);
assert(n(1) == n(2))
assert(isvector(b));
assert(length(b) == n(1));
n = n(1);
%% Solving Ax = b
if nargin > 2
    [A,p] = pluFact(A,'pivot'); %factorize with pivoting
else
    [A,p] = pluFact(A); %factorize without pivoting
end
b = b(p); %repermute
diagonal = diag(A);
A(1:n+1:n^2) = ones(1,n); %change the diagonal in the combined LU matrix
y = forwardSub(A,b); %solve Ly = b
A(1:n+1:n^2) = diagonal;
```

x = backSub(A,y); %solve Ux = y

 $\quad \text{end} \quad$ 

#### 1.2.5 GEPP Factorization Function

```
% pluFact.m
%
% DESCRIPTION
%
   Decomposes a matrix A using LU factorization with optional partial pivoting.
% AUTHOR
%
   Trevor Squires
% ARGUMENTS
%
  A - NxN matrix
%
% OUTPUT
%
  A - Decomposed L/U matrix for efficient space storage
  P - pivoting vector
%
% NOTES
%
  Asserts the size of the input matrix
%
   Updating the submatrix was taken directly from the textbook
function [A,p,growth] = pluFact(A,~)
[m,n] = size(A);
assert(m == n,'Please insert square matrix')
p = 1:n;
iniGrowth = max(max(A));
growth = iniGrowth;
for i = 1:n-1
   J = i+1:n;
   if nargin > 1
       %First, find the maximum row to swap with
       [",loc] = max(abs(A(i:n,i)));
       loc = loc + i-1;
       %Swap row i with row loc and also in p
       A([i,loc],:) = A([loc,i],:);
       p([i,loc]) = p([loc,i]);
   end
   %Now replace the "eliminated" elements with their elimination constant
   A(J,i) = A(J,i) / A(i,i);
```