Paralelismo en superficies

Ejercicio 0.1 Sea $\alpha(s)$ una curva parametrizada naturalmente en una superficie $\chi: U \longrightarrow R^3$. Probar que la normal intrínseca **S** de α es paralela a lo largo de α si y sólo si α es una geodésica.

Ejercicio 0.2 (a): Probar que una curva regular $\alpha(s)$, s = p.n. con $\tau(s) \neq 0$, $\forall s \in (a, b)$ es geodésica en la superficie $\chi: (a, b) \times \mathbf{R} \longrightarrow \mathbf{R}^3$ dada por:

$$\chi(s, v) = \alpha(s) + v\mathbf{t}(s) + v\frac{k(s)}{\tau(s)}\mathbf{b}(s).$$

(b): Sean X(s), Y(s) los campos vectoriales χ_1 y χ_2 a lo largo de α respectivamente. Estudiar bajo qué condiciones cada uno de estos campos es paralelo a lo largo de α .

Ejercicio 0.3 Sea $\alpha(s)$ una curva regular parametrizada naturalmente sobre una superficie. Encontrar qué condición ha de verificar la función $\lambda(s)$ para que se verifique lo siguiente: " $\alpha(s)$ es una geodésica si y sólo si $\mathbf{t} + \lambda(s)\mathbf{S}(s)$ es paralelo a lo largo de $\alpha(s)$ ".

Ejercicio 0.4 (a): Sea M una superficie, $\alpha:(a,b)\longrightarrow \mathbf{R}^3$ una curva regular en M, y X(t) un campo vectorial paralelo a lo largo de α . Sea Y(t) un campo vectorial a lo largo de α con |Y(t)|=cte, y $\theta(t)=(X(t),Y(t))=cte$. Probar que Y(t) es paralelo a lo largo de α . (b): Sean Z(t),W(t) campos paralelos a lo largo de α , y $F(t)=\lambda(t)Z(t)+\mu(t)W(t)$ un campo arbitrario a lo largo de α . Estudiar las condiciones para que F(t) sea paralelo.

Ejercicio 0.5 Sea $\chi: U \longrightarrow \mathbf{R}^3$ una superficie simple, α una curva en χ con $k \neq 0$ y \mathbf{b}_T la proyección sobre el plano tangente a χ del vector binormal \mathbf{b} de α . (a): Probar que $\mathbf{b}_T = -\frac{k_n}{k}S$, donde S es la normal intrínseca de α . (b): Probar que son equivalentes las condiciones:

- (1): $\mathbf{b}_T = \mathbf{b}$;
- (2): α es geodésica;
- (3): $\mathbf{b}_T \neq 0$ y \mathbf{b}_T es paralelo a lo largo de α .

Ejercicio 0.6 Sea $\chi: U \longrightarrow \mathbf{R}^3$ una superficie simple, α una curva regular en χ . Sean $\mathbf{t}(s), \mathbf{S}(s)$ los vectores tangente y normal intrínseca de α respectívamente, s natural de α . Se considera un campo vectorial a lo largo de α : $X(s) = \lambda(s)\mathbf{t}(s) + \mu(s)\mathbf{S}(s)$. (a): Encontrar las condiciones que deben cumplir $\lambda(s)$ y $\mu(s)$ para que X(s) sea paralelo a lo largo de α . ¿Qué ocurre si α es geodésica? (b): Aplicar el estudio realizado en (a) al caso en que χ sea un plano, comprobando que X es paralelo a lo largo de α si y solo si X(s) es constante.

Ejercicio 0.7 Sea α una curva regular en una superficie M. Probar:

- Si $\mathbf{b}(s)$ es un campo vectorial tangente a lo largo de α entonces α es una geodésica.
- Si S(s) es un campo vectorial tangente y paralelo a lo largo de α entonces α es geodésica.
- Si $\ddot{\alpha}(s)$ es un campo vectorial tangente y paralelo a lo largo de α entonces α es una recta.
- Si $\ddot{\alpha}$ (s) es un campo vectorial tangente y paralelo a lo largo de α entonces α es una recta o una hélice circular.

Ejercicio 0.8 Sea M una superficie y X(t) un campo paralelo a lo largo de una curva $\alpha(t)$ de M. (a): Si Y(t) es un campo vectorial tangente a lo largo de α y forma un ángulo $\theta(t) = cte$ con X(t), ¿es Y(t) paralelo a lo largo de α ?. (b): Si X(t), Y(t) son ambos paralelos a lo largo de α , ¿es constante el volumen del paralelepípedo determinado por los vectores N(t), X(t), Y(t)?. (c): Sean X(t), Y(t) campos paralelos independientes a lo largo de α , y sea $Z(t) = \lambda(t)X(t) + \mu(t)Y(t)$. Probar que Z(t) es un campo paralelo a lo largo de α si y solo si λ y μ son constantes.

Ejercicio 0.9 (a): Sea χ una superficie simple, $\alpha(s)$ una curva regular en χ , y X(s) un campo paralelo a lo largo de α . ¿Es $X \times N$ tambien paralelo a lo largo de α ?. (b): Probar que aunque χ_1 y χ_2 sean paralelos a lo largo de α , existen campos vectoriales tangentes que no son paralelos a lo largo de α . (c): ¿Es posible que cualquier campo vectorial tangente sea paralelo a lo largo de α ?.

Ejercicio 0.10 (a): Sea $\alpha(s)$ una curva contenida en una superficie simple $\chi: U \to \mathbf{R}^3$. Sea X(s) un campo tangente sobre α , de módulo constante y tal que el ángulo que forma en cada punto con el vector tangente de α es también constante. ¿Es X(s) paralelo a lo largo de α ? (b): Sea $\chi(u,v)=(f(u)\cos v,f(u)\sin v,g(u)),\ f(u)>0,\ f'^2(u)+g'^2(u)=1$, una superficie de revolución ¿Qué tipo particular de superficie debe ser χ para que el campo X_2 sea paralelo a lo largo de cualquier meridiano?

Ejercicio 0.11 Sea T^2 el toro en \mathbf{R}^3 y sea $\chi(t,v)$ una carta local del toro. Si $\alpha(t)=\chi(t,v_0)$ es un meridiano cualquiera, (a): Estudiar si es paralelo a lo largo de α el campo vectorial $X(t)=\chi_2(t,v_0)$; (b): lo mismo si $Y(t)=\chi_1(t,v_0)$.

Ejercicio 0.12 (a): Sea $\chi: U \longrightarrow \mathbf{R}^3$ una superficie simple. Probar que si χ_1 es paralelo a lo largo de las u^2 -curvas, entonces χ_2 es paralelo a lo largo de las u^1 -curvas, y además g_{11} es función solo de u^1 y g_{22} es función solo de u^2 . (b): Dada $\alpha(s)$ curva regular en una superficie simple $\chi: U \longrightarrow \mathbf{R}^3$, sea S(s) la normal intrínseca de α . Encontrar el valor de los coeficientes en la expresión: $\dot{S}(s) = \lambda(s)\mathbf{t}(s) + \mu(s)S(s) + \nu(s)N(s)$, y deducir que si S es constante, entonces α es geodésica plana.