Technical Proofs

Math2221

July 24, 2017

1 Local existence and uniqueness

We consider an initial-value problem for a nonlinear system of ODEs,

$$\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, t) \quad \text{for all } t, \quad \text{with } \mathbf{x}(0) = \mathbf{x}_0. \tag{1}$$

Since x(t) is a solution iff it satisfies the nonlinear Volterra equation

$$\boldsymbol{x}(t) = \boldsymbol{x}_0 + \int_0^t \boldsymbol{F}(\boldsymbol{x}(s), s) ds,$$

we attempt to define the sequence of *Picard iterates*

$$egin{aligned} oldsymbol{x}_1(t) &= oldsymbol{x}_0, \ oldsymbol{x}_{k+1}(t) &= oldsymbol{x}_0 + \int_0^t oldsymbol{F}ig(oldsymbol{x}_k(s), sig)\,ds, & ext{for } k = 1,\,2,\,3,\,\ldots. \end{aligned}$$

Fix r > 0 and $\tau > 0$, and let

$$S = \{ (\boldsymbol{x}, t) \in \mathbb{R}^n \times \mathbb{R} : |\boldsymbol{x} - \boldsymbol{x}_0| \le r \text{ and } |t| \le \tau \}.$$

We assume that there exist positive constants M and L such that

$$|F(x,t)| \le M \quad \text{for } (x,t) \in S,$$
 (2)

and

$$|F(x_1,t) - F(x_2,t)| \le L|x_1 - x_2|$$
 for $(x_1,t), (x_2,t) \in S$. (3)

These conditions are satisfied if, for example, \mathbf{F} and $\partial F_i/\partial x_j$ are continuous on S for $i, j \in \{1, 2, ..., n\}$.

Lemma 1. With $\tau_1 = \min(\tau, r/M)$, the Picard iterates $\mathbf{x}_1, \mathbf{x}_1, \mathbf{x}_2, \ldots$ exist and satisfy

$$|\boldsymbol{x}_k(t) - \boldsymbol{x}_0| \le r$$
 for $|t| \le \tau_1$ and $k \ge 0$.

Proof. We will use induction on k. The claim is trivial for k = 0. Let $k \ge 0$ and assume that \boldsymbol{x}_k satisfies the estimate, then $(\boldsymbol{x}_k(t),t) \in S$ for $|t| \le \tau_1$, so

$$|\boldsymbol{x}_{k+1}(t) - \boldsymbol{x}_0| \le \int_0^t |\boldsymbol{F}(\boldsymbol{x}_k(s), s)| ds \le Mt \le r \text{ for } 0 \le t \le \tau_1.$$

Similarly, if $-\tau_1 \le t \le 0$ then

$$|\boldsymbol{x}_{k+1}(t) - \boldsymbol{x}_0| \le \int_t^0 |\boldsymbol{F}(\boldsymbol{x}_k(s), s)| ds \le M|t| \le r \quad \text{for } -\tau_1 \le t \le 0.$$

Lemma 2. The Picard iterates satisfy

$$|\boldsymbol{x}_{k+1}(t) - \boldsymbol{x}_k(t)| \le \frac{M}{L} \frac{(Lt)^{k+1}}{(k+1)!}$$
 for $|t| \le \tau_1$ and $k \ge 1$.

Proof. If k = 1, we have

$$|x_1(t) - x_0(t)| \le \int_0^t |F(x_0, s)| ds \le Mt$$
 for $0 \le t \le \tau_1$,

and similarly for $-\tau_1 \le t \le 0$. Proceeding by induction on k, we let $k \ge 2$ and assume that

$$|\boldsymbol{x}_k(t) - \boldsymbol{x}_{k-1}(t)| \le \frac{M}{L} \frac{(Lt)^k}{k!} \quad \text{for } |t| \le \tau_1,$$

then

$$|\boldsymbol{x}_{k+1}(t) - \boldsymbol{x}_{k}(t)| = \left| \int_{0}^{t} \left[\boldsymbol{F} \left(\boldsymbol{x}_{k}(s), s \right) - \boldsymbol{F} \left(\boldsymbol{x}_{k-1}(s), s \right) \right] ds \right|$$

$$\leq L \int_{0}^{t} \left| \boldsymbol{x}_{k}(s) - \boldsymbol{x}_{k-1}(s) \right| ds \leq L \int_{0}^{t} \frac{M}{L} \frac{(Ls)^{k}}{k!} ds = \frac{M}{L} \frac{(Lt)^{k+1}}{(k+1)!}$$

for $0 \le t \le \tau_1$, and similarly for $-\tau_1 \le t \le 0$.

Thus, if $|t| \leq \tau_1$, then

$$\sum_{k=1}^{\infty} |x_{k+1}(t) - x_k(t)| \le \frac{M}{L} \sum_{k=0}^{\infty} \frac{(Lt)^{k+1}}{(k+1)!} = \frac{M}{L} (e^{Lt} - 1) < \infty,$$

and therefore the limit

$$oldsymbol{x}(t) = \lim_{k o \infty} oldsymbol{x}_k(t) = \lim_{k o \infty} igg(oldsymbol{x}_0 + \sum_{j=1}^{k-1} ig[oldsymbol{x}_{j+1}(t) - oldsymbol{x}_j(t) ig] igg)$$

exists; equivalently, we can write

$$\boldsymbol{x}(t) = \boldsymbol{x}_0 + \sum_{k=1}^{\infty} [\boldsymbol{x}_{k+1}(t) - \boldsymbol{x}_k(t)]. \tag{4}$$

Moreover, the convergence is uniform for $|t| \leq \tau_1$, so $\boldsymbol{x}(t)$ is continuous for $|t| \leq \tau_1$. We conclude from the definition of the sequence $\boldsymbol{x}_k(t)$ that this limit satisfies

$$\boldsymbol{x}(t) = \boldsymbol{x}_0 + \int_0^t \boldsymbol{F}(\boldsymbol{x}(s), s) ds$$
 for $|t| \le \tau_1$,

and hence that x(t) is a solution of the initial-value problem (1).

Lemma 3. The solution x(t) defined above satisfies

$$|\boldsymbol{x}(t) - \boldsymbol{x}_0| \le M|t| \le r \quad for |t| \le \tau_1.$$

Proof. By sending $k \to \infty$ in Lemma 1, we see that $\|\boldsymbol{x}(t) - \boldsymbol{x}_0\| \le r$ for $|t| \le \tau_1$. It then follows that

$$\|\boldsymbol{x}(t) - \boldsymbol{x}_0\| = \left\| \int_0^t \boldsymbol{F}(\boldsymbol{x}(s), s) ds \right\| \le \int_0^{|t|} M ds = M|t|.$$

for
$$|t| \le \tau_1 \le r/M$$
.

The next result will allow us to show that the solution x(t) is unique.

Lemma 4. Let $g:[a-\delta,a+\delta]\to\mathbb{R}$. If g is continuous on the closed interval $[a-\delta,a+\delta]$ and differentiable on the open interval $(a-\delta,a+\delta)$, and if there is a constant K such that

$$|g'(t)| \le Kg(t)$$
 for $a - \delta < t < a + \delta$,

then

$$0 \le g(t) \le g(a)e^{K|t-a|}$$
 for $a - \delta \le t \le a + \delta$.

Proof. Since $-Kg(t) \leq g'(t) \leq Kg(t)$, it follows that

$$\frac{d}{dt} \left[\pm e^{\pm Kt} g(t) \right] = \pm e^{\pm Kt} \left[g'(t) \pm K g(t) \right] \ge 0 \quad \text{for } a - \delta < t < a + \delta.$$

Hence, the Mean Value Theorem implies that

$$e^{-Kt}g(t) - e^{-Ka}g(a) \le 0$$
 for $a \le t \le a + \delta$,

and

$$e^{Kt}g(t) - e^{Ka}g(a) \le 0$$
 for $a - \delta \le t \le a$.

In the first case $g(t) \leq g(a)e^{K(t-a)}$, whereas in the second case $g(t) \leq g(a)e^{K(a-t)}$, so in both cases $g(t) \leq g(a)e^{K|t-a|}$.

Our main result now follows.

Theorem 5. If \mathbf{F} satisfies (2) and (3), then the initial-value problem (1) has a unique solution for $|t| \le \tau_1 = \min(\tau, r/M)$.

Proof. We have already shown the existence of a solution, via Picard iteration. To prove uniqueness, suppose that y is a second solution:

$$\frac{d\boldsymbol{y}}{dt} = \boldsymbol{F}(\boldsymbol{y}, t) \text{ for } |t| \le \tau_1, \text{ with } \boldsymbol{y}(0) = \boldsymbol{x}_0.$$

Let $0 < \epsilon < \tau_1$ and consider the set $E = \{t : |t| \le \tau_1 - \epsilon \text{ and } \boldsymbol{x}(t) = \boldsymbol{y}(t)\}$. Since \boldsymbol{x} and \boldsymbol{y} are continuous, E must be closed. Also, $E \ne \emptyset$ because $0 \in E$. Thus, if we show that E is relatively open in the interval $I_{\epsilon} = [-\tau_1 + \epsilon, \tau_1 - \epsilon]$ then it will follow that $E = I_{\epsilon}$.

Let $a \in E$. By the triangle inequality and Lemma 3,

$$\| \boldsymbol{y}(t) - \boldsymbol{x}_0 \| \le \| \boldsymbol{y}(t) - \boldsymbol{y}(a) \| + \| \boldsymbol{y}(a) - \boldsymbol{x}_0 \| = \| \boldsymbol{y}(t) - \boldsymbol{y}(a) \| + \| \boldsymbol{x}(a) - \boldsymbol{x}_0 \|$$

 $\le \| \boldsymbol{y}(t) - \boldsymbol{y}(a) \| + M|a|,$

and since $M|a| \leq M(\tau_1 - \epsilon) < r$ and $\boldsymbol{y}(t)$ is continuous, there exists $\delta > 0$ such that

$$\|\boldsymbol{y}(t) - \boldsymbol{x}_0\| \le r \quad \text{for } t \in (a - \delta, a + \delta) \cap I_{\epsilon}.$$

The function $g(t) = |\boldsymbol{x}(t) - \boldsymbol{y}(t)|^2$ satisfies

$$g'(t) = 2[\boldsymbol{x}(t) - \boldsymbol{y}(t)] \cdot [\boldsymbol{F}(\boldsymbol{x}, t) - \boldsymbol{F}(\boldsymbol{y}, t)],$$

and thus, by (3),

$$|g'(t)| \le 2|\boldsymbol{x}(t) - \boldsymbol{y}(t)|L|\boldsymbol{x}(t) - \boldsymbol{y}(t)| = 2Lg(t) \text{ for } t \in (a - \delta, a + \delta) \cap I_{\epsilon}.$$

Applying Lemma 4, we see that if $t \in (a - \delta, a + \delta) \cap I_{\epsilon}$ then $g(t) \leq e^{2L|t-a|}g(a) = 0$ and hence $t \in E$, showing that E is relatively open in I_{ϵ} , as claimed.

Since ϵ can be arbitrarily small, it follows that $\boldsymbol{x}(t) = \boldsymbol{y}(t)$ for $|t| < \tau_1$. Finally, by continuity, $\boldsymbol{x}(\pm \tau_1) = \boldsymbol{y}(\pm \tau_1)$.

2 General solution of a linear ODE with constant coefficients

We saw in lectures that if L = p(D) where

$$p(z) = \sum_{j=0}^{m} a_j z^j = a_m (z - \lambda_1)^{k_1} (z - \lambda_2)^{k_2} \cdots (z - \lambda_r)^{k_r},$$

then the function

$$u(x) = \sum_{q=1}^{r} \sum_{l=0}^{k_q-1} c_{ql} x^l e^{\lambda_q x}$$

satisfies Lu = 0, for any choice of the constants c_{ql} . To prove that this u is the general solution, it remains to show that the functions $x^l e^{\lambda_q x}$ are linearly independent. Thus, suppose that

$$\sum_{q=1}^{r} \sum_{l=0}^{k_q-1} c_{ql} x^l e^{\lambda_q x} = 0 \quad \text{for all } x \in [a, b];$$
 (5)

we will use the following lemmas to show that $c_{ql} = 0$ for all q and l.

Lemma 6.
$$(D - \lambda)x^{j}e^{\mu x} = (\mu - \lambda)x^{j}e^{\mu x} + jx^{j-1}e^{\mu x}$$
.

Proof. A direct calculation shows that

$$(D - \lambda)x^{j}e^{\mu x} = jx^{j-1}e^{\mu x} + x^{j}\mu e^{\mu x} - \lambda x^{j}e^{\mu x}$$
$$= (\mu - \lambda)x^{j}e^{\mu x} + jx^{j-1}e^{\mu x}.$$

Lemma 7. There exist constants c_{kil} such that

$$(D-\lambda)^k x^j e^{\mu x} = \left((\mu - \lambda)^k x^j + \sum_{q=0}^{k-1} \sum_{l=0}^{j-1} c_{kjql} (\mu - \lambda)^q x^l \right) e^{\mu x}.$$

Proof. We use induction on k. If k = 0, then the formula reduces to $x^j e^{\mu x} = x^j e^{\mu x}$, which is obviously true.

Assume now that the formula holds for some $k \geq 0$. Using Lemma ??,

$$(D-\lambda)^{k+1}x^{j}e^{\mu x} = (D-\lambda)\left((\mu-\lambda)^{k}x^{j} + \sum_{q=0}^{k-1}\sum_{l=0}^{j-1}c_{kjql}(\mu-\lambda)^{q}x^{l}\right)e^{\mu x}$$
$$= (\mu-\lambda)^{k+1}x^{j}e^{\mu x} + (\mu-\lambda)^{k}jx^{j-1}e^{\mu x}$$
$$+ \sum_{q=0}^{k-1}\sum_{l=0}^{j-1}c_{kjql}(\mu-\lambda)^{q}\left[(\mu-\lambda)x^{l} + lx^{l-1}\right]e^{\mu_{q}x},$$

and therefore

$$(D-\lambda)^{k+1}x^{j}e^{\mu x} = \left((\mu-\lambda)^{k+1}x^{j}e^{\mu x} + \sum_{q=0}^{k} \sum_{l=0}^{j-1} c_{k+1,jql}(\mu-\lambda)^{q}x^{l}\right)e^{\mu x},$$

for appropriately chosen $c_{k+1,jql}$.

Let $p_1(z) = p(z)/(z - \lambda_1)^{k_1}$, so that from the results in lectures,

$$p_1(D)x^l e^{\lambda_q x} = 0$$
 for $2 \le q \le r$ and $0 \le l \le k_q - 1$.

However, by Lemma ??, in the case q = 1,

$$p_1(D)x^l e^{\lambda_1 x} = \left[p_1(\lambda_1)x^l + \phi_l(x)\right]e^{\lambda_1 x},$$

where ϕ_l is a polynomial of degree at most l-1. Thus, applying $p_1(D)$ to (\ref{loop}) gives

$$\sum_{l=0}^{k_1-1} c_{1l} [p_1(\lambda_1) x^l + \phi_l(x)] = 0 \quad \text{for all } x \in [a, b].$$

Here, the coefficient of x^{k_1-1} is $c_{1,k_1-1}p_1(\lambda_1)$, and since $p_1(\lambda_1) \neq 0$ we conclude that $c_{1,k_1-1} = 0$. In the same way, $c_{1l} = 0$ for $l = k_1 - 2, k_1 - 2, \ldots, 1$.

Defining $p_2(z) = p(z)/(z - \lambda_2)^{k_2}$ and arguing in the same way, we see that $c_{2l} = 0$ for $0 \le l \le k_2 - 1$. Continuing in this fashion, we may conclude that $c_{ql} = 0$ for all q and l, and hence that the functions $x^l e^{\lambda_q x}$ are linearly independent, as required.

3 Norm of a Bessel function

Recall the following theorem from lectures.

Theorem 8. Assume that $c_0c_1 \geq 0$ and let $\phi_j(x) = J_{\nu}(k_jx)$ denote the jth Bessel eigenfunction. The ϕ_j have the orthogonality property

$$\int_0^\ell \phi_i(x)\phi_j(x)x \, dx = 0 \quad \text{if } i \neq j.$$
 (6)

Moreover, if $c_1 \neq 0$, then

$$\int_0^\ell \phi_j(x)^2 x \, dx = \frac{1}{2k_j^2} \left[\left(\frac{\ell c_0}{c_1} \right)^2 + (k_j \ell)^2 - \nu^2 \right] J_\nu(k_j \ell)^2 \quad \text{for } j \ge 1,$$

whereas if $c_1 = 0$, so that $\phi_i(\ell) = 0$ by (??), then

$$\int_0^{\ell} \phi_j(x)^2 x \, dx = \frac{\ell^2}{2} J_{\nu+1}(k_j \ell)^2 \quad \text{for } j \ge 1.$$

In the case $c_0 = 0 = \nu$, we have $\int_0^{\ell} \phi_0(x)^2 x \, dx = \ell^2/2$.

Proof. We proved the orthogonality property (??) in lectures. Recall also that $u = \phi_j(x)$ and $\lambda = \lambda_j = k_j^2$ satisfy

$$(xu')' + (\lambda x - \nu^2 x^{-1} u = 0 \quad \text{for } 0 \le x \le \ell, \tag{7}$$

and

$$u(x)$$
 bounded and $xu'(x) \to 0$ as $x \to 0^+$,
 $c_1u' + c_0u = 0$ at $x = \ell$. (8)

Multiply both sides of (??) by xu' to obtain

$$(xu')'(xu') + (\lambda x^2 - \nu^2)uu' = 0,$$

$$\frac{d}{dx}\frac{(xu')^2}{2} + (\lambda x^2 - \nu^2)\frac{d}{dx}\frac{u^2}{2} = 0,$$

and then multiply by 2 and integrate:

$$[(xu')^2]_0^{\ell} + \lambda \int_0^{\ell} x^2(u^2)' dx - \nu^2 [u^2]_0^{\ell} = 0.$$

Integration by parts gives

$$\int_0^\ell x^2 (u^2)' \, dx = \left[x^2 u^2 \right]_0^\ell - \int_0^\ell 2x u^2 \, dx,$$

SO

$$2\lambda \int_0^{\ell} u^2 x \, dx = \left[(xu')^2 + \lambda (xu)^2 - (\nu u)^2 \right]_0^{\ell}.$$

Since the boundary conditions (??) imply that $xu' \to 0$ and $xu \to 0$ as $x \to 0$, and

$$\nu u(0) = \nu J_{\nu}(0) = 0$$
 for all $\nu \ge 0$,

we conclude that

$$2\lambda \int_0^{\ell} u^2 x \, dx = (\ell u'(\ell))^2 + (\lambda \ell^2 - \nu^2) u(\ell)^2.$$

If $c_1 \neq 0$ then $u'(\ell) = -c_0 u(\ell)/c_1$ implying the formula for $\int_0^\ell \phi_j(x)^2 x \, dx$.

If $c_1 = 0$ then $u(\ell) = 0$ and hence $u = J_{\nu}(k_i x)$ satisfies

$$2k_j^2 \int_0^\ell u^2 x \, dx = (\ell u'(\ell))^2 = (k_j \ell J'_{\nu}(k_j \ell))^2.$$

We saw in one of the tutorial problems that $(x^{-\nu}J_{\nu})' = -x^{-\nu}J_{\nu+1}$, so

$$-\nu x^{-\nu-1}J_{\nu}(x) + x^{-\nu}J'_{\nu}(x) = -x^{-\nu}J_{\nu+1}(x),$$

$$-\nu J_{\nu}(x) + xJ'_{\nu}(x) = -xJ_{\nu+1}(x),$$

and $J_{\nu}(k_{j}\ell) = u(\ell) = 0$, so putting $x = k_{j}\ell$ gives $J'_{\nu}(k_{j}\ell) = -J_{\nu+1}(k_{j}\ell)$, giving the desired formula in this case also.

Finally, when $c_0 = 0 = \nu$ and $\phi_0(x) = 1$,

$$\int_0^\ell \phi_0(x)x \, dx = [x^2/2]_0^\ell = \ell^2/2.$$

4 Reference

These notes are based on parts of

Garrett Birkhoff and Gian-Carlo Rota, Ordinary Differential Equations, Blaisdell Publishing Company, 1969. **PX517.382/11N**