ELEMENTOS DE ÁLGEBRA MATRICIAL

Ezequiel Uriel

1 DEFINICIONES

Matriz

Una matriz de *orden* o *dimensión* $n \times p$ - o una matriz $(n \times p)$ - es una ordenación rectangular de elementos dispuestos en *n filas* y *p columnas* de la siguiente forma:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{bmatrix}$$
 (1)

A la matriz anterior la hemos designado de forma abreviada mediante el símbolo A. En general, para designar a una matriz utilizaremos una letra mayúscula en negrita. Un elemento genérico de la matriz A se designa mediante a_{ij} donde el primer subíndice i hace referencia a la fila en que está situado el elemento, mientras que el segundo subíndice j hace referencia a la columna.

Ejemplos

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 6 & -5 & 3 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 4 & 6 \\ 2 & 3 & 11 \\ -7 & 4 & 8 \end{bmatrix}$$

Una matriz de orden 1×1 es un *escalar*.

Matriz transpuesta

La *transpuesta* de una matriz \mathbf{A} $(n \times p)$ es una matriz \mathbf{B} $(p \times n)$, obtenida mediante intercambio de filas y columnas, de forma que

$$b_{ij} = a_{ii}$$
 $i = 1, 2, ..., p;$ $j = 1, 2, ..., n$ (2)

En general, a la matriz transpuesta de A la denominaremos A'.

Ejemplos

Las transpuestas de las matrices del ejemplo anterior son las siguientes:

$$\mathbf{A'} = \begin{bmatrix} 2 & 6 \\ 3 & -5 \\ 4 & 3 \end{bmatrix} \qquad \mathbf{B'} = \begin{bmatrix} 1 & 2 & -7 \\ 4 & 3 & 4 \\ 6 & 11 & 8 \end{bmatrix}$$

Vector columna y vector fila

Un *vector columna* de *orden n* es una ordenación de elementos dispuestos en n filas y 1 columna de la siguiente forma:

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix} \tag{3}$$

Al vector columna anterior lo hemos designado de forma abreviada mediante el símbolo **a**. En general, para designar a un vector columna utilizaremos una letra minúscula en negrita.

Un *vector fila* de orden n es una ordenación de elementos dispuestos en 1 filas y n columnas. El transpuesto de un vector fila es un vector columna. En

general, a un vector fila le designaremos por una letra minúscula seguida de apóstrofe. Así, el transpuesto de a dado en (3) es

$$\mathbf{a}' = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \tag{4}$$

Matriz cuadrada

Se dice que una matriz es cuadrada si el número de filas es igual al número de columnas. Se dice que una matriz cuadrada es de orden n si tiene n filas.

Ejemplo de matriz cuadrada

$$\mathbf{A} = \begin{bmatrix} 8 & -7 & 4 \\ -2 & 10 & 3 \\ 9 & 12 & 15 \end{bmatrix}$$

Traza de una matriz

En una matriz cuadrada de orden n la diagonal principal está formada por los elementos a_{ii} (i=1,2,...,n). La traza de una matriz cuadrada \mathbf{A} , a la que designaremos por $tr(\mathbf{A})$, o por $traza(\mathbf{A})$, es la suma de los elementos de la diagonal principal. Por lo tanto,

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} \tag{5}$$

Ejemplo:

La traza de la matriz A del ejemplo anterior es

$$tr(\mathbf{A}) = 8 + 10 + 15 = 33$$

Matriz simétrica

Se dice que una matriz cuadrada es simétrica si se verifica que

$$\mathbf{A} = \mathbf{A}' \tag{6}$$

Ejemplo:

$$\mathbf{A} = \begin{bmatrix} 3 & 4 & -1 \\ 4 & 5 & 2 \\ -1 & 2 & 1 \end{bmatrix}$$

Matriz diagonal

Se dice que una matriz cuadrada es *diagonal* cuando todos los elementos situados fuera de la diagonal principal son nulos. Es decir, en una matriz diagonal se verifica que a_{ij} = 0 para i distinto de j. Así, la siguiente matriz es diagonal:

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$
 (7)

Matriz escalar

Se dice que una matriz diagonal es escalar cuando todos los elementos de la diagonal principal son idénticos. Es decir, en una matriz escalar se verifica que $a_{ii} = k$ para todo i.

Matriz identidad

Una matriz *identidad* es una matriz escalar en la que a_{ii} = 1. A la matriz identidad se le denomina **I**. Así, una matriz identidad genérica tiene la siguiente configuración:

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 (8)

2 OPERACIONES CON MATRICES

Igualdad de matrices

La igualdad de dos matrices A=B se cumple si, y solamente si, A y B son del mismo orden y $a_{ij}=b_{ij}$ para todo i y todo j.

Suma de matrices

La suma de las matrices \mathbf{A} y \mathbf{B} de orden $n \times p$ es igual a una matriz \mathbf{C} , también de orden $n \times p$, definida de la siguiente forma:

$$C = A + B \tag{9}$$

Los elementos de la matriz C se obtienen así:

$$c_{ij} = a_{ij} + b_{ij}$$
 $i=1, 2, ..., n$; $j=1, 2, ..., p$ (10)

Para poder realizar la suma, las matrices A y B deben ser del mismo orden.

Ejemplo

La suma de las matrices A y B es designada por C:

$$\mathbf{A} = \begin{bmatrix} 3 & -2 \\ 5 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 3 \\ 2 & -4 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 3+1 & -2+3 \\ 5+2 & 6-4 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix}$$

Multiplicación escalar

La multiplicación escalar de una matriz A por un escalar λ se efectúa multiplicando cada elemento de A por λ . El producto es designado por λA .

Ejemplo

Dado

$$\lambda = 4 \text{ y } \mathbf{A} = \begin{bmatrix} 7 & 6 \\ 2 & -3 \end{bmatrix}$$

entonces

$$\lambda \mathbf{A} = \begin{bmatrix} 28 & 24 \\ 8 & -12 \end{bmatrix}$$

Multiplicación de matrices

Si **A** es una matriz de orden $n \times m$ y **B** es una matriz de orden $m \times p$, entonces el producto de estas dos matrices se define de la siguiente forma

$$\mathbf{AB=C} \tag{11}$$

siendo la matriz producto C, una matriz de orden $n \times p$, cuyo elemento genérico c_{ij} viene dado por

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}. {12}$$

Ejemplos

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) & (a_{11}b_{13} + a_{12}b_{23}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) & (a_{21}b_{13} + a_{22}b_{23}) \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 \\ 3 & 5 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 1 & 9 & 1 \\ 7 & -2 & 6 \end{bmatrix} = \begin{bmatrix} (4 \times 1 + 2 \times 7) & (4 \times 9 - 2 \times 2) & (4 \times 1 + 2 \times 6) \\ (3 \times 1 + 5 \times 7) & (3 \times 9 - 5 \times 2) & (3 \times 1 + 5 \times 6) \\ (2 \times 1 + 6 \times 7) & (2 \times 9 - 6 \times 2) & (2 \times 1 + 6 \times 6) \end{bmatrix}$$

$$= \begin{bmatrix} 18 & 32 & 16 \\ 38 & 17 & 33 \\ 44 & 6 & 38 \end{bmatrix}$$

Determinante de una matriz

El determinante de una matriz cuadrada A, al que se designa por |A|, es un escalar que se obtiene por la suma de n! términos, cada uno de los cuales es el producto de n elementos. Se obtiene mediante la siguiente fórmula:

$$|\mathbf{A}| = \sum \pm a_{1j} a_{2l} \dots a_{nq} \tag{13}$$

En la expresión anterior cada sumando se obtiene permutando el segundo subíndice. Obsérvese que el número de permutaciones de n elementos es n!. El signo de cada sumando es + o - según que el número de permutaciones realizado a partir de la ordenación original sea par o impar.

Si |A|=0 se dice que la matriz A es singular.

Ejemplos

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} \mathbf{B} \end{vmatrix} = \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix} = b_{11}b_{22}b_{33} - b_{12}b_{21}b_{33} + b_{12}b_{23}b_{31} - b_{13}b_{22}b_{31} + b_{13}b_{21}b_{32} - b_{11}b_{23}b_{32}$$

Matriz inversa

Una matriz cuadrada \mathbf{A} $n \times n$ tiene *inversa*, a la que se se le designa por \mathbf{A}^{-1} si se cumple que

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I} \tag{14}$$

Cuando una matriz tiene inversa se dice que es invertible o no singular.

Ejemplo

La inversa de la matriz A

$$\mathbf{A} = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$

viene dada por

$$\mathbf{A}^{-1} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$$

Vamos a ver exponer un algoritmo para el cálculo de la inversa de una matriz de orden 3, tanto de forma simbólica y como su aplicación a un ejemplo. Este algoritmo es generalizable a matrices de cualquier orden,

Sea la matriz

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

Para invertir esta matriz hay que realizar las siguientes operaciones:

1) Se calcula la matriz de *menores*. El menor del elemento a_{ij} , al que denominaremos m_{ij} , es igual al determinante que se obtiene de la matriz después de eliminar la fila i y la columna j

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{13} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} 4 & 1 & 3 & 1 & 3 & 4 \\ 2 & 2 & 1 & 2 & 1 & 2 \\ 3 & 2 & 2 & 1 & 2 & 1 & 2 \\ 2 & 2 & 1 & 2 & 1 & 2 \\ 3 & 2 & 2 & 2 & 2 & 3 \\ 4 & 1 & 3 & 1 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 5 & 2 \\ 2 & 2 & 1 \\ -5 & -4 & -1 \end{bmatrix}$$

2) Se calcula la matriz de *cofactores*. Cada cofactor se calcula de acuerdo con la siguiente fórmula:

$$c_{ij} = \left(-1\right)^{i+j} m_{ij}$$

Es decir, el signo de m_{ij} no cambia si i+j es para y cambia si i+j es impar

$$\begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{13} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} = \begin{bmatrix} 6 & -5 & 2 \\ -2 & 2 & -1 \\ -5 & 4 & -1 \end{bmatrix}$$

3) Se calcula la matriz de *adjuntos*. Esta matriz es iguual a la traspuesta de la matriz de cofactores

$$adj(\mathbf{A}) = \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix} = \begin{bmatrix} 6 & -2 & -5 \\ -5 & 2 & 4 \\ 2 & -1 & -1 \end{bmatrix}$$

4) Se calcula el determinante de la matriz A

$$\begin{aligned} |\mathbf{A}| &= \sum \pm a_{1j} a_{2l} \dots a_{nq} \\ &= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} + a_{13} a_{22} a_{31} + a_{12} a_{21} a_{33} + a_{11} a_{23} a_{32} \\ &= 12 + 3 + 12 + -8 - 18 - 4 = 1 \end{aligned}$$

5) La matriz inversa es igual a la matriz de adjuntos dividido por el determinante de la matriz **A**:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} adj(\mathbf{A}) = \frac{1}{|\mathbf{A}|} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix} = \begin{bmatrix} 6 & -2 & -5 \\ -5 & 2 & 4 \\ 2 & -1 & -1 \end{bmatrix}$$

Secomprueba de forma inmediata que

$$\mathbf{A}^{-1}\mathbf{A} = \begin{bmatrix} 6 & -2 & -5 \\ -5 & 2 & 4 \\ 2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}$$

Ejemplo

La inversa de la matriz A

$$\mathbf{A} = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$

se calcula de la siguiente forma

1) Matriz de menores

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$

2) Matriz de *cofactores*

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$$

3) Matriz de *adjuntos*

$$adj(\mathbf{A}) = \begin{bmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$$

4) Determinante de A

$$|\mathbf{A}| = \sum \pm a_{1i} a_{2i} \dots a_{nq} = a_{11} a_{22} - a_{12} a_{21} a_{31} = 12 - 2 = 10$$

5) Matriz inversa de **A**:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} adj(\mathbf{A}) = \frac{1}{|\mathbf{A}|} \begin{bmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 3 & -1 \\ -2 & 4 \end{bmatrix}$$

La *inversa de una matriz diagonal* es igual a la matriz en la que cada elemento es el recíproco del correspondiente elemento de la matriz original.

Ejemplo

La inversa de la matriz A

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

es la siguiente

$$\mathbf{A}^{-1} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & \frac{1}{8} \end{bmatrix}$$

Independencia lineal

Sea un conjunto de m vectores $\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_m\}$, de orden $n \times 1$. Si la única solución de la ecuación

$$\gamma_1 \mathbf{x}_1 + \gamma_2 \mathbf{x}_2 + \dots + \gamma_m \mathbf{x}_m = \mathbf{0} \tag{15}$$

es $\gamma_1 = \gamma_2 = \dots = \gamma_m = 0$ los vectores $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ son linealmente independientes. Si existen otras soluciones entonces se dice que son linealmente dependientes.

Ejemplos

a) Los vectores $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ y $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$ son *linealmente independientes*, ya que (15) solo se satisface para $\gamma_1 = \gamma_2 = 0$.

b) Los vectores $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ y $\begin{bmatrix} 6 \\ 9 \end{bmatrix}$ son *linealmente dependientes*, ya que (15) se satisface para $\gamma_1 = 3$; $\gamma_2 = -1$. Es decir,

$$3\begin{bmatrix} 2\\3 \end{bmatrix} - \begin{bmatrix} 6\\9 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

Rango de una matriz

El rango de una matriz \mathbf{A} $n \times m$, al que denominaremos $\rho(\mathbf{A})$, es el numero máximo de filas o columnas que son linealmente independientes. Se verifica que $\rho(\mathbf{A}) \le \min(n, m)$.

Si el rango de una matriz cuadrada \mathbf{A} $n \times n$ es n se dice que es de rango completo. En este caso la matriz \mathbf{A} es no singular y, por tanto, $|\mathbf{A}| \neq 0$.

Ejemplos

a) La matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 5 & 2 & 3 \end{bmatrix}$$

tiene el rango igual a 2 (en ningún caso podría ser 3), ya que las columnas de A son linealmente independientes.

b) La matriz

$$\mathbf{A} = \begin{bmatrix} 2 & 6 \\ 3 & 9 \end{bmatrix}$$

tiene el rango igual a 1, ya que las columnas de A son linealmente dependientes.

$$3\begin{bmatrix} 2\\3 \end{bmatrix} - \begin{bmatrix} 6\\9 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

3 PROPIEDADES DE LAS OPERACIONES CON MATRICES

Sean A, B y C matrices y α , β y γ escalares.

Multiplicación

a) En general, $AB \neq BA$

b)
$$[\alpha + \beta + \gamma] \mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A} + \gamma \mathbf{A} = \mathbf{A} \alpha + \mathbf{A} \beta + \mathbf{A} \gamma$$

c)
$$A(B+C) = AB+AC \neq BA+CA$$

d)
$$A0 = 0A = 0$$

Trasposición

a) $\alpha' = \alpha$

b)
$$(\alpha A)' = \alpha A' = A' \alpha$$

c)
$$(A+B)' = A'+B'$$

d)
$$(AB)' = B'A'$$

Determinantes

a) El determinante de una matriz cuadrada es igual al determinante de su transpuesta, es decir,

$$|\mathbf{A}| = |\mathbf{A}'| \tag{16}$$

b) El determinante del producto de matrices cuadradas es igual al producto de los determinantes de cada una de las matrices. Así,

$$|\mathbf{ABC}| = |\mathbf{A}||\mathbf{B}||\mathbf{C}| \tag{17}$$

c) Si se multiplica una matriz A de orden n por una constante h se verifica que,

$$|h\mathbf{A}| = h^n |\mathbf{A}| \tag{18}$$

e) Si una matriz **A** tiene dos filas, o dos columnas, idénticas, entonces $|\mathbf{A}|=0$.

Traza

a)
$$tr(\mathbf{A}) = tr(\mathbf{A}')$$

b)
$$tr(\alpha) = tr(\alpha') = \alpha$$

c)
$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$$

d)
$$tr(\alpha \mathbf{A}) = \alpha tr(\mathbf{A})$$

e)
$$tr(AB) = tr(BA)$$

Inversa

a) La inversa de un producto de matrices cuadradas no singulares **ABC** es igual a

$$\left(\mathbf{ABC}\right)^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1} \tag{19}$$

b) La transpuesta de una inversa es igual a la inversa de la transpuesta, es decir,

$$(\mathbf{A}^{-1}) = (\mathbf{A}')^{-1} \tag{20}$$

c) El determinante de la inversa de una matriz es igual al recíproco del determinante de la matriz original. Es decir,

$$\left|\mathbf{A}^{-1}\right| = \frac{1}{\left|\mathbf{A}\right|} \tag{21}$$

4 CÁLCULO DE DERIVADAS DE UN ESCALAR RESPECTO A UN VECTOR

Derivada de una forma lineal respecto a un vector

Sean

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix} \quad \mathbf{y} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

entonces

$$\frac{\partial \mathbf{a}' \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{22}$$

Demostración

$$\mathbf{a}'\mathbf{x} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = a_1x_1 + a_2x_2 + \dots + a_nx_n$$

Derivando la expresión anterior respecto cada uno de los elementos de \mathbf{x} se obtiene que

$$\frac{\partial \mathbf{a}' \mathbf{x}}{\partial x_1} = a_1$$

$$\frac{\partial \mathbf{a}' \mathbf{x}}{\partial x_2} = a_2$$

$$\vdots$$

$$\frac{\partial \mathbf{a}' \mathbf{x}}{\partial x_n} = a_n$$

Reuniendo en un vector las derivadas del escalar $\mathbf{a}'\mathbf{x}$ con respecto a cada elemento de \mathbf{x} , tenemos la derivada de dicho escalar con respecto al vector \mathbf{x} . Por lo tanto,

$$\frac{\partial \mathbf{a}' \mathbf{x}}{\partial \mathbf{x}} = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix} = \mathbf{a}$$

Derivada de una forma cuadrática respecto a un vector

Siendo

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

y x el vector definido anteriormente, entonces se verifica que

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}') \mathbf{x} \tag{23}$$

Demostración

$$\mathbf{x'Ax} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} =$$

$$= a_{11}x_1^2 + a_{21}x_1x_2 + \dots + a_{n1}x_1x_n + a_{12}x_1x_2 + a_{22}x_2^2 + \dots + a_{n2}x_2x_n + \dots + a_{1n}x_1x_n + a_{2n}x_2x_n + \dots + a_{nn}x_n^2$$

Derivando la expresión anterior respecto a cada uno de los elementos de **x** se tiene que

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial x_1} = 2a_{11}x_1 + (a_{12} + a_{21})x_2 + \dots + (a_{1n} + a_{n1})x_n$$

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial x_2} = (a_{21} + a_{12})x_1 + 2a_{22}x_2 + \dots + (a_{2n} + a_{n2})x_n$$

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial x_n} = (a_{n1} + a_{1n}) x_1 + (a_{n2} + a_{2n}) x_2 + \dots + 2a_{nn} x_n$$

Reuniendo en un vector las derivadas del escalar $\mathbf{x}'\mathbf{A}\mathbf{x}$ con respecto a cada elemento de \mathbf{x} , tenemos la derivada de dicho escalar con respecto al vector \mathbf{x} . Por lo tanto,

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \left\{ \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix} \right\} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \mathbf{A} + \mathbf{A}' \mathbf{x}$$

Si la matriz A es simétrica se verifica que

$$\frac{\partial \mathbf{x}' \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x} \tag{24}$$

5 RAÍCES Y VECTORES PROPIOS

Determinación de las raíces y vectores característicos

El problema que se plantea en este epígrafe es la determinación de unos escalares (λ_i) y de unos vectores (\mathbf{u}_i) tales que satisfagan la siguiente ecuación:

$$\mathbf{A}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i} \tag{25}$$

donde A es una matriz dada de orden $n \times n$. Es decir, A debe ser una matriz cuadrada.

A los escalares λ_j que satisfacen la ecuación (25) se les denomina *raíces* características y a los correspondientes vectores \mathbf{u}_j se les denomina *vectores* característicos. Para las raíces características se utilizan también las denominaciones de *valores* propios o autovalores. Para los vectores característicos se utiliza alternativamente la expresión de *vectores* propios.

La ecuación (25), mediante una simple manipulación algebraica, la podemos expresar de la siguiente forma:

$$(\mathbf{A} - \lambda_i \mathbf{I}) \mathbf{u}_i = \mathbf{0} \tag{26}$$

Si dejamos aparte la solución trivial $\mathbf{u}_j = 0$, para que la ecuación (26) tenga solución debe cumplirse que

$$\left|\mathbf{A} - \lambda_{j} \mathbf{I}\right| = 0 \tag{27}$$

A la ecuación anterior se le denomina ecuación característica de A. Resolviéndola se hallan n raíces características λ_j . A cada raíz característica va asociado un vector característico \mathbf{u}_j . Cada vector característico puede multiplicarse arbitrariamente por una constante sin afectar al resultado, debido a que la matriz $(\mathbf{A}-\lambda_j\mathbf{I})$ de (26) es singular por la condición impuesta en (27). En muchas aplicaciones, para soslayar la arbitrariedad del resultado, se procede a normalizar cada vector característico imponiendo la condición

$$\mathbf{u}_{j}^{\prime}\mathbf{u}_{j}=1\tag{28}$$

De todas formas, aún después de normalizar subsiste una arbitrariedad en el signo, de forma que si \mathbf{u}_i es una solución, $(-1)\mathbf{u}_i$ también lo es.

Es conveniente en muchas aplicaciones definir una matriz U en la que cada columna es un vector característico \mathbf{u}_i . Por lo tanto,

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \dots & \mathbf{u}_{j} & \dots & \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{21} & \dots & u_{j1} & \dots & u_{n1} \\ u_{12} & u_{22} & \dots & u_{j2} & \dots & u_{n2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ u_{1n} & u_{2n} & \dots & u_{jn} & \dots & u_{nn} \end{bmatrix}$$
(29)

Propiedades de las raíces y vectores característicos.

- a) Las raíces características de una matriz diagonal son los elementos de la diagonal.
- b) Las matrices **A** y **A**' tienen las mismas raíces características, pero no necesariamente los mismos vectores característicos.
- c) Si λ es es una raíz característica de A, entonces $1/\lambda$ es una raíz característica de A^{-1} .
- d) Designando a las raíces características de **A** por λ_1 , λ_2 ,..., λ_n , entonces se verifica que

$$tr\mathbf{A} = \sum_{j=1}^{n} \lambda_{j} \tag{30}$$

$$|\mathbf{A}| = \prod_{j=1}^{n} \lambda_j \tag{31}$$

Si la matriz **A** es real y simétrica, entonces las raíces y vectores característicos cumplen también otras propiedades. Una propiedad relevante en el análisis multivariante de una matriz real y simética es la siguiente:

e) Una matriz A real y simétrica de orden n, da lugar a n vectores que son *ortogonales* entre sí.

Se dice que los vectores \mathbf{u}_i y \mathbf{u}_h son ortogonales, si se verifica que

$$\mathbf{u}_i'\mathbf{u}_b = 0 \tag{32}$$

Un conjunto de vectores se dice que son *ortonormales*, si además de la condición anterior están normalizados según el criterio (28).

La matriz U formada por vectores característicos normalizados de una matriz simétrica, es decir, por vectores ortonormales, se denomina *ortonormal* y cumplirá la siguiente propiedad:

$$UU' = I \tag{33}$$

Ejemplo de cálculo de raíces y vectores carcterísticos de una matriz no simétrica

Sea la matriz

$$\mathbf{A} = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$$

Aplicando la ecuación (26) a la matriz anterior, se tiene que :

$$\left\{ \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} - \lambda_j \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} \begin{bmatrix} U_{1j} \\ U_{2j} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

La correspondiente ecuación característica viene dada por

$$\begin{vmatrix} 4 - \lambda_j & 3 \\ 1 & 2 - \lambda_j \end{vmatrix} = 0,$$

es decir,

$$\lambda_i^2 - 6\lambda_i + 5 = 0$$

Con la resolución de esta ecuación de *segundo* grado (**A** es de orden 2x2), se obtienen *dos* raíces características:

$$\lambda_1 = 5; \quad \lambda_2 = 1$$

$$\lambda_1 = 5; \quad \lambda_2 = 1$$

Sustituyendo λ_1 en la ecuación (26), se obtiene

$$\left\{ \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} \begin{bmatrix} U_{11} \\ U_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

es decir,

$$\begin{bmatrix} -1 & 3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} U_{11} \\ U_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

donde U_{11} y U_{21} son los elementos del vector \mathbf{u}_1 .

De la expresión anterior se obtienen dos ecuaciones

$$-U_{11} + 3U_{21} = 0$$

$$U_{11} - 3U_{21} = 0$$

que son proporcionales debido al carácter singular de la matriz ($\mathbf{A} - \lambda_j \mathbf{I}$). Por esta razón, con estas ecuaciones sólo podemos determinar la relación entre U_{11} y U_{21} , pero no sus valores exactos. Esta relación es

$$U_{11} = 3U_{21}$$

Con esta relación y la ecuación de normalización

$$U_{11}^2 + U_{21}^2 = 1$$

se tiene un sistema de dos ecuaciones. Resolviéndolo se obtiene

$$\mathbf{u}_1 = \begin{bmatrix} \frac{3}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{bmatrix}$$

Obsérvese que (-1)**u**₁ también es solución al sistema anterior.

Sustituyendo la segunda raíz λ_2 en la ecuación (26), se obtiene

$$\begin{cases}
\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\
\begin{bmatrix} U_{11} \\ U_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} U_{11} \\ U_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

De la expresión anterior se obtiene la relación entre $U_{\rm 12}$ y $U_{\rm 22}$:

$$U_{12} = -U_{22}$$

Con esta relación y la ecuación de normalización se obtienen los valores del vector \mathbf{u}_2 :

$$\mathbf{u}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$

En este caso, la matriz U será la siguiente:

$$\mathbf{U} = \begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{10}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

Ejemplo de cálculo de raíces y vectores característicos de una matriz simétrica

Sea la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

La aplicación de la ecuación (A1-22) da lugar a la siguiente expresión:

$$\left\{ \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} - \lambda_{j} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} \begin{bmatrix} U_{1j} \\ U_{2j} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

obteniéndose la ecuación característica

$$\begin{vmatrix} 1 - \lambda_j & 2 \\ 2 & 1 - \lambda_j \end{vmatrix} = 0$$

es decir,

$$\lambda_i^2 - 2\lambda_i - 3 = 0$$

Con la resolución de esta ecuación de *segundo* grado (A es de orden 2x2), se obtienen *dos* raíces características:

$$\lambda_1 = 3; \quad \lambda_2 = -1$$

Realizando las sustituciones pertinentes en este caso, llegamos a

$$\mathbf{u}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \qquad \qquad \mathbf{u}_2 = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

En este caso la matriz U será la siguiente:

$$\mathbf{U} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Puede comprobarse fácilmente que U es una matriz ortonormal y, por lo tanto, se cumple que

$$UU' = I$$