Information Theory and Coding (Lec-02)

Outline

- → Average Self Information
- **→** Entropy
- **→** Conditional Entropy
- → Joint Entropy

Average Self Information

- ightharpoonup Consider a discrete random variable X with possible outcomes x_i , i=1,2,3...n
- ightharpoonup The average self information of the event $X=x_i$ is defined as

$$egin{aligned} H(X) &= \sum_{i=1}^n P(x_i) I(x_i) \ &= -\sum_{i=1}^n P(x_i) log P(x_i) \end{aligned}$$

- \rightarrow When the base of the logarithm is 2 the units of I(x) are in bits
- \rightarrow The entropy of X can be interpreted as the expected value of

$$log(\frac{1}{P(X)})$$

 \rightarrow |H(X)| is called the Entropy

Average Self Information

- → The term entropy has been borrowed from statistical mechanics. where it is used to denote the level of disorder in a system.
- ightharpoonup We observe that since $0 \leq P(x_i) \leq 1$

$$log(\frac{1}{P(X)}) \ge 0$$

 \rightarrow $H(X) \geq 0$

Example

- → Consider a discrete binary source that emits a sequence of statistically independent symbols.
- → The output is either a 0 with probability p and a 1 with a probability 1 p.
- → The entropy of this binary source is

$$H(X) = -(p)log_2(p) - (1-p)log_2(1-p)$$

Example

$$H(X) = -(p)log_2(p) - (1-p)log_2(1-p)$$

The plot of the binary entropy function vs p is

Entropy of English alphabet

- → Consider the English language with alphabet {A. B. Z}.
- If every letter occurred with the same probability and was independent from the other letters, then the entropy per letter would be $lo_226=4.70$
- → This is the absolute upper bound.
- → However. we know that all letters do not appear with equal probability.
- → S. T. A. E are more frequent
- → Q. J. Z. J are less frequent

Entropy of English alphabet

- → Consider the English language with alphabet {A. B. Z}.
- lacktriangleright If we take into consideration the probabilities of occurrences of different alphabets (normalized letter frequency), the entropy per letter, H_L would be

$$H_L=4.14bits \leq H(X)$$

lacktriangledown If X^2 denotes the random variable of bigrams in the English language. the upper bound on H_L can be defined as

$$H_L \leq H(X) pprox 3.56 bits$$

→ Here we consider the probabilities of all pairs.

Entropy of English alphabet

The logic can be extended to n-grams. Thus the entropy of the language can be defined as $H(X^n)$

- Even though the exact value of H_L is difficult to determine, statistical investigations show that for the English language $1 \leq H_L \leq 1.5bits$
- → So each letter in the english text gives at most 1.5 bits of information.
- Let assume the value of H_L is 1.25 bits. Thus the redundancy of the English language is H_L

$$egin{aligned} R_{Eng} &= 1 - rac{H_L}{log_2 26} \ &= 1 - rac{1.25}{4.70} pprox 0.75 \end{aligned}$$

Entropy of Spoken English

- → Let us now consider the redundancy in spoken english.
- Suppose an average speaker speaks 60 words per minute and the average number of letters per word is 6.
- → The average number of letters spoken per second in this case is 6 letters/sec.
- → Assuming each letter carries 1.25 bits of information, the information rate of an average speaker is 7.5 bits/sec.
- → If each letter is represented by 5 bits, the bitrate of an average speaker is 30 bit/sec.
- → However, the typical data rate requirement for speech is 32 kilobits/sec.

Conditional Entropy

→ The average conditional self information is called the conditional Entropy

$$H(X|Y) = \sum_{i=1}^n \sum_{j=1}^m P(x_i,y_j) log(rac{1}{P(x_i|y_j)}).$$

- → The physical interpretation of this definition is as follows
- \rightarrow H(X|Y) Is the information (or uncertainty) in X after Y is observed
- \rightarrow Based on the definition of H(X|Y) we can write

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Conditional Entropy and Mutual Information

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

ightharpoonup Since $I(X;Y) \geq 0$, it implies that $H(X) \geq H(X|Y)$

The case I(X;Y) = 0 implies that H(X) = H(X|Y) which is possible if and only if X and Y are statistically independent

Conditional Entropy and Mutual Information

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

- Since $\overline{H(X|Y)}$ is the average amount of uncertainty (information) in X after we observe Y and $\overline{H(X)}$ is the average amount of uncertainty (self information) of X. $\overline{I(X;Y)}$ is the average amount of uncertainty (mutual information) about X having observed Y
- Since $H(X) \ge H(X|Y)$ the observation of Y does not increase the entropy(uncertainty). It can only decrease the entropy.

Joint Entropy

The joint entropy of a pair of discrete random variables (X,Y) with a joint distribution P(x,y) defined as

$$H(X,Y) = -\sum_{i=1}^n \sum_{j=1}^m P(x_i,y_j) log P(x_i,y_j)$$

ightharpoonup By using the mathematical definitions of H(X), H(X,Y) and H(X|Y) we obtain the following chain rule

$$H(X,Y)=H(X)+H(Y|X)=H(Y)+H(X|y)$$

→ And consequently

$$\overline{I(X;Y) = H(X) + H(Y) - H(X,Y)}$$

Venn Diagram

