Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Bismuth

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$						
	Baes and Mesmer, 1976	Lothenbach et al., 1999	NIST46	Kitamura et al., 2010	Brown and Ekberg, 2016		
$Bi^{3+} + H_2O \rightleftharpoons BiOH^{2+} + H^+$	-1.09	-0.92	-1.1	-0.920	-0.92 ± 0.15		
$Bi^{3+} + 2 H_2O \rightleftharpoons Bi(OH)_2^+ + 2 H^+$	(-4)	-2.56	-4.5	-2.560 ± 1.000	-2.59 ± 0.26		
$Bi^{3+} + 3 H_2O \rightleftharpoons Bi(OH)_3 + 3 H^+$	-8.86	-5.31	-9.0	-8.940 ± 0.500	-8.78 ± 0.20		
$Bi^{3+} + 4 H_2O \rightleftharpoons Bi(OH)_4^- + 4 H^+$	-21.8	-18.71	-21.2	-21.660 ± 0.870	-22.06 ± 0.14		
$3 \text{ Bi}^{3+} + 4 \text{ H}_2\text{O} \rightleftharpoons \text{Bi}_3(\text{OH})_4^{5+} + 4 \text{ H}^+$		-0.80		-0.800			
6 Bi ³⁺ + 12 H ₂ O \rightleftharpoons Bi ₆ (OH) ₁₂ ⁶⁺ + 12 H ⁺		1.34		1.340	0.98 ± 0.13		

9 Bi ³⁺ + 20 H ₂ O = Bi ₉ (OH) ₂₀ ⁷⁺ + 20 H ⁺		-1.36	-1.360	
9 Bi ³⁺ + 21 H ₂ O = Bi ₉ (OH) ₂₁ ⁶⁺ + 21 H ⁺		-3.25	-3.250	
9 Bi ³⁺ + 22 H ₂ O = Bi ₉ (OH) ₂₂ ⁵⁺ + 22 H ⁺		-4.86	-4.860	
Bi(OH) ₃ (am) + 3 H ⁺ = Bi ³⁺ + 3 H ₂ O			31.501 ± 0.927	
$a-Bi_2O_3(cr) + 6 H^+ = 2 Bi^{3+} + 3 H_2O$		0.76		
BiO _{1.5} (s, α) + 3 H ⁺ = Bi ³⁺ + 1.5 H ₂ O	3.46		31.501 ± 0.927	2.88 ± 0.64

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 383.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 874–884.
- A. Kitamura, K. Fujiwara, R. Doi, Y. Yoshida, M. Mihara, M. Terashima and M. Yui, JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024, Japan Atomic Energy Agency (2010).
- B. Lothenbach, M. Ochs, H. Wanner and M. Yui, Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. Japan Nuclear Cycle Development Institute (JNC), TN8400 99-011 (1999).

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46.

Distribution diagrams

These diagrams have been computed at two Bi concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

