

System PMIC for Battery Powered Systems

BD71815AGW

General Description

BD71815AGW is a single-chip power management IC for battery-powered portable devices. The IC integrates 5 buck converters, 8 LDOs, a boost driver for LED, and a 500mA single-cell linear charger. Also included is a Coulomb counter, a real-time clock (RTC), a 32 kHz crystal oscillator and a general-purpose output (GPO).

The IC's buck converters supply power to the application processor as well as system peripherals such as DDR memory, wireless modules, and touch controllers. These regulators maintain high efficiency over a wide range of current loads by supporting both PFM and PWM modes. They also operate at a high switching frequency of 6MHz, which allows the use of smaller and cheaper inductors and capacitors. The regulator supplying the processor core also supports Dynamic Voltage Scaling (DVS).

Features

- 5 buck converters:
 - 3 1000mA buck converters
 - 1 800mA buck converter
 - 1 500mA buck converter
- 3 general-purpose LDOs
 - 2 100mA LDOs
 - 150mALDO
- LDO for DDR Reference Voltage (DVREF)
- LDO for Secure Non-Volatile Storage (SNVS)
- LDO for Low-Power State Retention (LPSR)
- LDO for SD Card with dedicated enable terminal
- LDO for SD Card Interface with dedicated terminal to dynamically change output voltage
- White LED Boost Converter
 - -25mA LED Boost Converter
- Single-cell Linear LIB Charger with 30V OVP
 - -Selectable charging voltage: 3.72 to 4.34 V
 - -Programmable charge current: 100 to 500mA
 - -Support for up to 2000mA charge current using external MOSFET
 - -DCIN over voltage protection
 - -Battery over voltage protection
 - -Battery Supplement Mode support
 - -Battery Short Circuit Detection
- Voltage Measurement for Thermistor
 - -Bias voltage output for External Thermistor
- Embedded Coulomb Counter for Battery Fuel Gauging
 - -15-bit $\Delta\Sigma$ -ADC with External Current Sense Resistor (10 m Ω , ±1% or 30m Ω , ±1%)
 - -1-sec cycle, 28-bit accumulation
 - -Coulomb count while charging/discharging

- Battery Monitoring and Alarm Output
 - -Under Voltage Alarm while discharging
 - -Over Current Alarm
 - -Over/Under Temperature Alarm
 - -Programmable thresholds and time durations
- Real Time Clock with 32.768kHz crystal oscillator
 -32.768kHz clock output
 (Open Drain or CMOS Output Selectable)
 - 1 GPO (Open Drain or CMOS Output Selectable)
- Power Control I/O
 - -Power On/Off control input
 - -Standby Input for switching RUN/SUSPEND State
 - -Reset Input to reset hung PMIC
 - -Power On Reset output
- 1 LED Indicator
 - -Indicate charger status
- I2C interface

Applications

- E-Book reader
- Media players with smart devices, wearables
- Portable Navigation Devices with Home POS, Human Machine Interfaces

Key Specifications

Input Voltage Range (DCIN): 3.5V to 28V
 Input Voltage Range (VIN, VSYS): 2.9V to 5.5V
 Input Voltage Range (DVDD): 1.5V to 3.4V
 Off Current: 20 µA (Typ) [RTC+ Coulomb counter+ LDO_SNVS only]

■ Operating temperature range: -40°C to +85°C

(Unit :mm)

OProduct structure: Silicon monolithic integrated circuit OThis product has no designed protection against radioactive rays

Contents

General Description	1
Features	
Applications	
Key Specifications	1
Package W(Typ) x D(Typ) x H(Max)	1
Contents	2
Typical Application Circuit	
Block Diagram	4
Pin Configuration	5
Pin Descriptions	6
PCB Layout Recommendations	8
Description of Blocks	
1. High Efficiency Buck Converters (BUCK1 – 5) and LDOs	
2. Power ON/OFF Sequence	
3. States of Operation	
4. Dynamic Voltage Scaling (DVS) Control	
5. LDO4 and LDO5 Control (for SD Card)	
6. Real Time Clock (RTC) Block	
7. Over Voltage Protection (OVP) Block	
8. Battery Charger Block	
9. Coulomb Counter Block	
10. 12-bit ADC (SAR) Block	
11. Battery Monitor Block	
12. White LED Boost Converter	
13. I2C Bus Interface Block	
14. Interrupt Handling	31
Absolute Maximum Ratings (Ta=25°C)	32
Thermal Resistance Thermal Resis	32
Recommended Operating Conditions	
Electrical Characteristics	
Register Map	
Typical Performance Curves	
I/O Equivalent Circuits	
Operational Notes	
Ordering Information	
Marking Diagrams	
Physical Dimension Tape and Reel Information	
Revision History	103

Typical Application Circuit

Figure 1. Typical Application (E-Book Reader with i.Mx7D)

Block Diagram

Figure 2. IC Block Diagram

Pin Configuration

Figure 3. Pin Configuration (Bottom View)

Pin Descriptions

Table 1. BD71815AGW Pin Descriptions

Ball No.	Block Name	Terminal Name	1/0	Explanation	Internal Pull up/down
A7	BUCK1	PVIN1	ı	Input power supply for BUCK1	·
A8]	LX1	0	Switch node connection for BUCK1	
B8		FB1	I	Output voltage feedback for BUCK1	
E3		STANDBY	I	Standby input signal	Pull down 1.5MΩ to GND
A9]	PGND1	-	Power ground for BUCK1	
B9		PGND1	-	Power ground for BUCK1	
D9	BUCK2	PVIN2	ı	Input power supply for BUCK2	
E9		LX2	0	Switch node connection for BUCK2	
E8		FB2	ı	Output voltage feedback for BUCK2	
F9		PGND2	-	Power ground for BUCK2	
J3	BUCK3	PVIN3	1	Input power supply for BUCK3	
J4		LX3	0	Switch node connection for BUCK3	
H4		FB3	1	Output voltage feedback for BUCK3	
J5		PGND3	-	Power ground for BUCK3	
H9	BUCK4	PVIN4	I	Input power supply for BUCK4	
J8		LX4	0	Switch node connection for BUCK4	
H7		FB4	I	Output voltage feedback for BUCK4	
J7		PGND4	-	Power ground for BUCK4	
E1	BUCK5	PVIN5	I	Input power supply for BUCK5	
F1		LX5	0	Switch node connection for BUCK5	
E2		FB5	I	Output voltage feedback for BUCK5	
G1		PGND5	-	Power ground for BUCK5	
H3	LED Driver	PVIN6		Input power supply for BOOST	
J2		HX6	0	Switch node connection for BOOST	
H1		LX6	0	Switch node connection for BOOST	
G3		VO6	0	BOOST output	
H2		FB6	ı	Output voltage feedback for BOOST	
G2		PGND6	ı	Power ground for BOOST	
B7	LDOLPSR	VOLPSR	0	LDO output for LPSR	
C9	LDO	VINL1		LDO input for LDO1, LDO2 and LDO3	
C8		VO1	0	LDO output for LDO1	
D8		VO2	0	LDO output for LDO2	
D7		VO3	0	LDO output for LDO3	
G9		VINL2	-	LDO input for LDO4 and LDO5	
H8		VO4		LDO output for LDO4	
G8		VO5	0	LDO output for LDO5	
G6		LDO4VEN	I	LDO4 Enable	Pull down 1.5MΩ to GND
C4		LDO5VSEL	ı	LDO5 Output Voltage select	Pull down 1.5MΩ to GND
G7	DVREF	DVREFIN	Ī	LDO input for DVREF/CLK32KOUT H-level(note3)	
H6		VODVREF		LDO output for DVREF	
J6	SNVS	SNVSC	0	LDO output for SNVS (requires capasitor)	

Table 2. BD71815AGW Pin Descriptions (continued)

Ball No.	Block Name	Terminal Name	1/0	Explanation	Pull up/down
G4	I2C	DVDD	1	Power Supply for I2C interface	·
H5		SDA	1/0	I2C data line (Open drain)	note1
G5	1	SCL	I	I2C clock	note1
C1	RTC	XIN	I	32.768kHz-Xtal input	
D1		XOUT	0	32.768kHz-Xtal output	
C3		CLK32KOUT	0	32.768kHz clock output (Open drain/CMOS)	
C2	POWRCNT	PWRON	I	Power on/off control input	Pull down 1.5MΩ to GND
F3		RESETINB	I	Reset input to shutdown this device	Pull up 10kΩ to SNVSC
E7		POR	0	Power on reset output (Open drain)	note2
F7	1	INTB	0	Interrupt signal to processor (Open drain)	note2
D3	1	WDOGB	I	Watchdog input from processor	Pull up 1.5MΩ to VIN
B2		READY	0	PMIC ready output	note2
A1	OVP	DCIN	I	DCIN input	
A2	1	DCIN	I	DCIN input	
B1	1	DCIN	I	DCIN input	
A3		VSYS	0	System supply output	
A4		VSYS		System supply output	
A5	CHARGER	VBAT	I/O	Charger output / Battery input	
B4		PGATE		External power MOS gate control output	
C6		TS	I	Battery pack thermistor voltate sense	
A6		CHGREF	0	Internal reference for the Lib charger	
C5		BATTP	I	Current sense input (battery pack side)	
В6		BATTM	I	Current sense input (ground side)	
B5		CHGGND	-	Ground for Charger	
C7		CHGLED	0	Charging status indication output (Open drain)	
D2	GPO	GPO1	0	Output for general purpose	
В3	Power/GND	VIN	I	Input power supply	
J1		GND	-	Signal ground	
J9		GND	-	Signal ground	
F2		GND	-	Signal ground	
F8		GND	-	Signal ground	
D5]	GND	-	Signal ground	
D6]	GND	-	Signal ground	
E4]	GND	-	Signal ground (for reduce Thermal resistance)	
E5]	GND	-	Signal ground (for reduce Thermal resistance)	
E6	1	GND	-	Signal ground (for reduce Thermal resistance)	
F4]	GND	-	Signal ground (for reduce Thermal resistance)	
F5]	GND	-	Signal ground (for reduce Thermal resistance)	
F6]	GND		Signal ground (for reduce Thermal resistance)	

note1 : SDA and SCL need pull up resistance to DVDD. note2 : POR, INTB and READY need pull up resistance. note3 : When CLK32KOUT is selected to CMOS output mode.

PCB Layout Recommendations

Figure 4. PCB Layout Recommendations (Top View)

Description of Blocks

1. High Efficiency Buck Converters (BUCK1 - 5) and LDOs

BD71815AGW step down converters operate at a fixed frequency of 6MHz. These converters employ Pulse Width Modulation (PWM) under moderate to heavy load and enter Power Save Mode when used under light load. In Power Save Mode, the step down converters operate using Pulse Frequency Modulation (PFM).

Table 3. BD71815AGW Output Power Rails

BD71815AGW Function	i.MX7 Dual Usage example	Power Supply	Initial Output Voltage	Load max	Adjustable range
BUCK1	VDD_ARM	PVIN1	1.1V	800mA	0.8 to 2.000V (25mV step) [DVS]
BUCK2	VDD_SOC	PVIN2	1.0V	1000mA	0.8 to 2.000V (25mV step) [DVS]
BUCK3	NVCC_1P8 / VDDA_1P8	PVIN3	1.8V	500mA	1.2V to 2.7V (50mV step)
BUCK4	NVCC_DRAM/ LPDDR3	PVIN4	1.2V	1000mA	1.1 to 1.85V (25mV step)
BUCK5	Peripheral	PVIN5	3.3V	1000mA	1.8 to 3.3V (50mV step)
LDO1	NVCC_GPIO2	VINL1	3.3V	100mA	0.8 to 3.3V (50mV step)
LDO2	NVCC_3P3	VINL1	3.3V	100mA	0.8 to 3.3V (50mV step)
LDO3	VDDA_USB1_3P3 / VDDA_USB2_3P3	VINL1	3.3V	50mA	0.8 to 3.3V (50mV step)
LDO4	SD Card / eMMC	VINL2	3.3V	400mA	0.8V to 3.3V(50mV step)
LDO5	SD Card / eMMC	VINL2	1.8V/3.3V	250mA	0.8V to 3.3V(50mV step)
VODVREF	LPDDR3	VIN	0.5*DVREFIN	10mA	0.55 to 0.925V (DVREFIN= BUCK4)
SNVSC	VDD_SNVS	VIN	3.0V	25mA	Fixed
LDO LPSR	VDD_LPSR / NVCC_GPIO1	VIN	1.8V	100mA	Fixed
White LED Driver	-	VIN	up to 18V	25mA	10uA to 25mA
12C	-	DVDD	-	-	-
RTC	-	SNVS	-	-	-
Charger	-	VSYS	-	-	-
Coulomb Counter	-	SNVS	-	-	-
SNVS/VSYS Voltage monitor	-	VIN	-	-	-

Table 4. Voltage Identification Code for BD71815AGW Output Power Rails

#	I2C Register	BUCK1	BUCK2	BUCK3	BUCK4	BUCK5	LDO1	LDO2	LDO3	LDO4	LDO5
0	00 0000	0.800	0.800	1.200	1.100	1.800	0.80	0.80	0.80	0.80	0.80
1	00 0001	0.825	0.825	1.250	1.125	1.850	0.85	0.85	0.85	0.85	0.85
2	00 0010	0.850	0.850	1.300	1.150	1.900	0.90	0.90	0.90	0.90	0.90
3	00 0011	0.875	0.875	1.350	1.175	1.950	0.95	0.95	0.95	0.95	0.95
4	00 0100	0.900	0.900	1.400	1.200(note1)	2.000	1.00	1.00	1.00	1.00	1.00
5	00 0101	0.925	0.925	1.450	1.225	2.050	1.05	1.05	1.05	1.05	1.05
6	00 0110	0.950	0.950	1.500	1.250	2.100	1.10	1.10	1.10	1.10	1.10
7	00 0111	0.975	0.975	1.550	1.275	2.150	1.15	1.15	1.15	1.15	1.15
8	00 1000	1.000	1.000(note1)	1.600	1.300	2.200	1.20	1.20	1.20	1.20	1.20
9	00 1001	1.025	1.025	1.650	1.325	2.250	1.25	1.25	1.25	1.25	1.25
10	00 1010	1.050	1.050	1.700	1.350	2.300	1.30	1.30	1.30	1.30	1.30
11	00 1011	1.075	1.075	1.750	1.375	2.350	1.35	1.35	1.35	1.35	1.35
12	00 1100	1.100(note1)	1.100	1.800(note1)	1.400	2.400	1.40	1.40	1.40	1.40	1.40
13	00 1101	1.125	1.125	1.850	1.425	2.450	1.45	1.45	1.45	1.45	1.45
14	00 1110	1.150	1.150	1.900	1.450	2.500	1.50	1.50	1.50	1.50	1.50
15	00 1111	1.175	1.175	1.950	1.475	2.550	1.55	1.55	1.55	1.55	1.55
16	01 0000	1.200	1.200	2.000	1.500	2.600	1.60	1.60	1.60	1.60	1.60
17	01 0001	1.225	1.225	2.050	1.525	2.650	1.65	1.65	1.65	1.65	1.65
18	01 0010	1.250	1.250	2.100	1.550	2.700	1.70	1.70	1.70	1.70	1.70
19	01 0011	1.275	1.275	2.150	1.575	2.750	1.75	1.75	1.75	1.75	1.75
20	01 0100	1.300	1.300	2.200	1.600	2.800	1.80	1.80	1.80	1.80	1.80(note1)
21	01 0101	1.325	1.325	2.250	1.625	2.850	1.85	1.85	1.85	1.85	1.85
22	01 0110	1.350	1.350	2.300	1.650	2.900	1.90	1.90	1.90	1.90	1.90
23	01 0111	1.375	1.375	2.350	1.675	2.950	1.95	1.95	1.95	1.95	1.95
24	01 1000	1.400	1.400	2.400	1.700	3.000	2.00	2.00	2.00	2.00	2.00
25	01 1001	1.425	1.425	2.450	1.725	3.050	2.05	2.05	2.05	2.05	2.05
26	01 1010	1.450	1.450	2.500	1.750	3.100	2.10	2.10	2.10	2.10	2.10
27	01 1011	1.475	1.475	2.550	1.775	3.150	2.15	2.15	2.15	2.15	2.15
28	01 1100	1.500	1.500	2.600	1.800	3.200	2.20	2.20	2.20	2.20	2.20
29	01 1101	1.525	1.525	2.650	1.825	3.250	2.25	2.25	2.25	2.25	2.25
30	01 1110	1.550	1.550	2.700	1.850	3.300(note1)	2.30	2.30	2.30	2.30	2.30
31	01 1111	1.575	1.575				2.35	2.35	2.35	2.35	2.35
32	10 0000	1.600	1.600				2.40	2.40	2.40	2.40	2.40
33	10 0001	1.625	1.625				2.45	2.45	2.45	2.45	2.45
34	10 0010	1.650	1.650				2.50	2.50	2.50	2.50	2.50
35	10 0011	1.675	1.675				2.55	2.55	2.55	2.55	2.55
36	10 0100	1.700	1.700	$\overline{}$			2.60	2.60	2.60	2.60	2.60
37	10 0101	1.725	1.725				2.65	2.65	2.65	2.65	2.65
38	10 0110	1.750	1.750				2.70	2.70	2.70	2.70	2.70
39	10 0111	1.775	1.775				2.75	2.75	2.75	2.75	2.75
40	10 1000	1.800	1.800				2.80	2.80	2.80	2.80	2.80
41	10 1001	1.825	1.825	\backslash			2.85	2.85	2.85	2.85	2.85
42	10 1010	1.850	1.850				2.90	2.90	2.90	2.90	2.90
43	10 1011	1.875	1.875	\backslash			2.95	2.95	2.95	2.95	2.95
44	10 1100	1.900	1.900				3.00	3.00	3.00	3.00	3.00
45	10 1101	1.925	1.925				3.05	3.05	3.05	3.05	3.05
46	10 1110	1.950	1.950				3.10	3.10	3.10	3.10	3.10
47	10 1111	1.975	1.975				3.15	3.15	3.15	3.15	3.15
48	11 0000	2.000	2.000				3.20	3.20	3.20	3.20	3.20
49	11 0001						3.25	3.25	3.25	3.25	3.25
50	11 0010						3.30(note1)	3.30(note1)	3.30(note1)	3.30(note1)	3.30(note1)
51	11 0011										
52	11 0100										
53	11 0101										
54	11 0110										
55	11 0111										
56	11 1000										
57	11 1001										
58	11 1010										
59	11 1011										
60	11 1100										
61	11 1101										
62	11 1110										
63	11 1111										
_	Voltage step	25mV	25mV	50mV	25mV	50mV	50mV	50mV	50mV	50mV	50mV
1	go o lop		L		_0 v	201117			33111 V		55111 V
	(note1) Defa	ult outout v	nitana satti	na							

2. Power ON/OFF Sequence

Figure 5. Power ON/OFF Sequence

3. States of Operation

BD71815AGW has six power states: RUN, SUSPEND, LPSR, SNVS, Coin, and Shutdown. Figure 6 shows the state transition diagram along with the conditions to enter and exit each state.

Figure 6. Power States Transitions

Description of states is provided in the following section. I2C Control is not possible in Shutdown state. However, the interrupt signal INTB is active during RUN and SUSPEND states.

Table 5. Voltage Rails ON/OFF for Respective Power States

BD71815AGW			Power	Mode			Output Control		
Function	Shutdown	Coin	SNVS	LPSR	RUN	SUSPEND	ON/OFF	Sequence order	
BUCK1	OFF	OFF	OFF	OFF	Auto	Auto	State or I2C register	2	
BUCK2	OFF	OFF	OFF	OFF	Auto	Auto	State or I2C register	3	
BUCK3	OFF	OFF	OFF	OFF	Auto	Auto	State or I2C register	4	
BUCK4	OFF	OFF	OFF	OFF	Auto	Auto	State or I2C register	6	
BUCK5	OFF	OFF	OFF	OFF	Auto	Auto	State or I2C register	8	
LDO1	OFF	OFF	OFF	ON	ON	ON	State or I2C register	1	
LDO2	OFF	OFF	OFF	OFF	ON	ON	State or I2C register	5	
LDO3	OFF	OFF	ON	ON	ON	ON	State or I2C register	9	
LDO4	OFF	OFF	OFF	OFF/ON	OFF/ON	OFF/ON	LDO4VEN	9	
LDO5	OFF	OFF	OFF	OFF	ON	ON	State or I2C register	9	
VODVREF	OFF	OFF	OFF	OFF	ON	ON	State or I2C register	7	
SNVSC	OFF	ON	ON	ON	ON	ON	State or I2C register	-	
LDO LPSR	OFF	OFF	OFF	ON	ON	ON	State or I2C register	0	
White LED Driver	OFF	OFF	OFF	OFF	OFF	OFF	State or I2C register	-	
12C	Reset	Disable	Disable	Disable	Enable	Enable	State	-	
RTC	OFF	ON	ON	ON	ON	ON	State	-	
Charger	OFF	OFF	ON/OFF	ON/OFF	ON/OFF	ON/OFF	DCIN	-	
Coulomb Counter	OFF	OFF	ON	ON	ON	ON	State	-	
SNVS/VSYS Voltage monitor	ON	ON	ON	ON	ON	ON	-	-	

(Note) Auto: PWM/PFM mode change automatically depending on the load current

(1) Power Control States

(a) Shutdown State

BD71815AGW enters Shutdown State when SNVS falls below 2.2V or when BD71815AGW encounters a thermal shutdown event. In case of system hang-up, setting RESETINB to LOW will cause the IC to shut down. Only the SNVS and VSYS voltage measurement block (UVLO) is powered during Shutdown state. Data in all registers are reset to their initial settings. To exit Shutdown state, SNVS must exceed 2.35V.

(b) Coin State

BD71815AGW enters Coin State when SNVS exceeds 2.35V or VSYS falls below 2.5V. BD71815AGW also enters Coin State when only the coin battery is connected to SNVSC, or when WDOGB is asserted low. BD71815AGW starts the Off Sequence in this case.

UVLO, RTC, Battery measurement (Coulomb Counter), and SNVS blocks are powered in Coin State. All BUCK blocks and other LDOs are powered off. Registers cannot be accessed when BD71815AGW enters this state, but register data is retained.

(c) SNVS State

BD71815AGW enters SNVS State if PWRON is asserted low while LPSR_MODE registers are set low. SNVS State can also be accessed from Coin State when VSYS exceeds 2.8V.

In SNVS State, BUCKs and LDOs which have the SNVS_ON register set High are turned ON. Charger is also started when DCIN input is supplied with the appropriate voltage. These blocks are turned on in addition to blocks powered in Coin State.

(d) LPSR State

BD71815AGW enters LPSR state if PWRON is asserted Low while LPSR_MODE registers are set high. In LPSR State, BUCKs and LDOs which have the LPSR ON register set high are turned ON.

(d) RUN State

BD71815AGW enters RUN state when PWRON is asserted High. POR is negated in this state. In RUN State, BUCKs and LDOs which have the RUN_ON register set High are turned ON. I2C registers can be accessed in this state.

(e) SUSPEND State

BD71815AGW enters SUSPEND State from RUN State when STANDBY is asserted high. In SUSPEND State, BUCKs and LDOs which have the LP_ON register set low are turned OFF. I2C registers can be accessed in this state.

Figure 7 – SUSPEND State Control Timing Diagram

4. Dynamic Voltage Scaling (DVS) Control

BUCK1 and BUCK2 support Dynamic Voltage Scaling (DVS). BUCK1_DVSSEL and BUCK2_DVSSEL registers control the output voltage of BUCK1 and BUCK2, respectively. BUCK#_H controls the output voltage for when BUCK#_DVSSEL is set high, and BUCK#_L for when BUCK#_DVSSEL is set low. Slew rate is also set via the BUCK#_RAMPRATE register.

Figure 8 - DVS Control Timing Diagram

5. LDO4 and LDO5 Control (for SD Card)

LDO4 and LDO5 support High Speed SD Card and SD Card Interface power rails, respectively.

LDO4 is turned on and off by LDO4VEN. This function is for High Speed SD Card Reset operation.

LDO5 supports Dynamic Voltage Scaling (DVS). LDO5_H register controls the output voltage for when LDO5VSEL pin is set high, and LDO5_L register for when LDO5VSEL pin is set low. This function supplies dynamically changing output voltages for Normal to High Speed operation.

Figure 9 - SD Card Interface Control Timing Diagram

6. Real Time Clock (RTC) Block

Features

- RTC is driven by a 32.768 kHz oscillator and provides alarm and timekeeping functions to the nearest second.
- Time information is provided in seconds, minutes, and hours.
- · Calendar information is provided in day, month, year, and day of the week.
- Alarm interrupt is sent at the time and day programmed into registers.
- Leap year compensation up to 2099
- Selectable 12-hour and 24-hour modes
- RTC calibration support
- Oscillator failure detection

Figure 10. RTC Block Diagram

(1) Oscillation Adjustment

The oscillation adjustment circuit can be used to correct a time count gain or loss with high precision.

This is done by varying the number of 1-second clock pulses once every 20 or 60 seconds.

When DEV bit in the TRIM Register is set to "0", the Oscillation Adjustment Circuit varies the number of 1-second clock pulses once every 20 seconds. When the DEV bit in the TRIM Register is set to "1", the Oscillation Adjustment Circuit varies the number of 1-second clock pulses once every 60 seconds.

The Oscillation Adjustment Circuit can be disabled by writing the settings "*,0,0,0,0,0,*" ("*" represents "0" or "1") to the TRIM[6:0] bits of the TRIM Register. Conversely, when such oscillation adjustment is to be made, an appropriate oscillation adjustment value can be calculated using the equation below.

(a) When oscillation frequency is higher than target frequency

When setting DEV bit to 0:

Oscillation adjustment value =
$$\frac{\text{(Oscillation frequency - Target Frequency + 0.1)}}{\text{Oscillation frequency} \times 3.051 \times 10^{-6}}$$

$$\approx \text{(Oscillation frequency - Target Frequency)} \times 10 + 1$$

When setting DEV bit to 1:

Oscillation adjustment value =
$$\frac{\text{(Oscillation frequency - Target Frequency +0.0333)}}{\text{Oscillation frequency} \times 1.017 \times 10^{-6}}$$
$$\approx \text{(Oscillation frequency - Target Frequency)} \times 30 + 1$$

Oscillation frequency: Frequency of clock pulse output from CLK32KOUT pin

Target frequency: Desired frequency to be set

Generally, a 32.768kHz quartz crystal unit has temperature characteristics that support the highest oscillation frequency at normal temperature. Consequently, the quartz crystal unit is recommended to have target frequency settings ranging from 32.768 to 32.768 to 32.76810 kHz (+3.05ppm relative to 32.768kHz).

Oscillation adjustment value: Value that is to be written to the TRIM[6:0] bits of the TRIM register

This value is represented in 7-bit coded decimal notation.

(b) When oscillation frequency is equal to target frequency

Oscillation adjustment value = 0, +1, -64, or -63.

(c) When oscillation frequency is lower than target frequency

When setting DEV bit to 0:

Oscillation adjustment value =
$$\frac{\text{(Oscillation frequency - Target Frequency)}}{\text{Oscillation frequency} \times 3.051 \times 10^{-6}}$$

$$\approx \text{(Oscillation frequency - Target Frequency)} \times 10$$

When setting DEV bit to 1:

Oscillation adjustment value =
$$\frac{\text{(Oscillation frequency - Target Frequency)}}{\text{Oscillation frequency} \times 1.017 \times 10^{-6}}$$

$$\approx \text{(Oscillation frequency - Target Frequency)} \times 30$$

Sample oscillation adjustment value calculations follow.

(ex.A) For an oscillation frequency = 32768.85Hz and a target frequency = 32768.05Hz

When setting DEV bit to 0:

Oscillation adjustment value =
$$\frac{32768.85 - 32768.05 + 0.1}{32768.85 \times 3.051 \times 10^{-6}}$$
$$\approx (32768.85 - 32768.05) \times 10 + 1$$
$$= 9$$

In this instance, write the settings "00001001" in the TRIM register. Thus, an appropriate oscillation adjustment value in the presence of any time count gain represents a distance from 01h.

When setting DEV bit to 1:

Oscillation adjustment value =
$$\frac{32768.85 - 32768.05 + 0.0333}{32768.85 \times 1.017 \times 10^{-6}}$$
$$\approx (32768.85 - 32768.05) \times 30 + 1$$
$$= 25$$

In this instance, write the settings "10011001" in the TRIM register.

(ex.B) For an oscillation frequency = 32762.22Hz and a target frequency = 32768.05Hz

When setting DEV bit to 0:

Oscillation adjustment value =
$$\frac{32762.22 - 32768.05}{32762.22 \times 3.051 \times 10^{-6}}$$
$$\approx (32762.22 - 32768.05) \times 10$$
$$= -58$$

To represent an oscillation adjustment value of -58 in 7bit coded decimal notation, subtract 58 (3Ah) from 128 (80h) to obtain 46h. In this instance, write the settings of "01000110" in the TRIM register. Thus, an appropriate oscillation adjustment value in the presence of any time count loss represents a distance from 80h.

When setting DEV bit to 1:

Oscillation adjustment value =
$$\frac{32762.22 - 32768.05}{32762.22 \times 1.017 \times 10^{-6}}$$
$$\approx (32762.22 - 32768.05) \times 30$$
$$= -175$$

Oscillation adjustment value can be set from -62 to 63. Then, in this case, Oscillation adjustment value is out of range.

(3) Typical software-based operation

Initialization at Power-on

*1) This step involves ordinary initialization including, but not limited to, the Oscillation Adjustment Register and interrupt cycle settings.

Writing Time and Calendar Data

*1) It is recommended to also modify the sec register when one writes to the min~year registers.

When the seconds digit goes up while accessing I2C, the clock could assume an unpredictable value.

Writing to the sec register prevents the above behavior because less than 1Hz counter is cleared.

Reading Time and Calendar Data

*1) When reading clock and calendar counters, do not insert Stop Condition.

ALARMO Interrupt Process

- *1) This step is intended to disable the alarm interrupt circuit once by clearing ALMO_MASK register, in anticipation of a coincidental match between current time and preset alarm time as the alarm interrupt function is set.
- *2) This step is intended to enable the alarm interrupt function after completion of all alarm interrupt settings.

7. Over Voltage Protection (OVP) Block

Features

- Single-input for the battery charger source: DCIN
- 30V over voltage protection for DCIN input.

8. Battery Charger Block

Features

- Supports battery insertion and removal detection
- JEITA-compliant Battery Charging Profile with thermal control of charging current and voltage settings. This is achieved by measuring the temperature of an external thermistor (The Initial setting of BD71815AGW is adjusted to TDK NTCG163JF103FT1S).
- · Supports battery supplement mode
- · Automatic or manual (software) control of Watch Dog Timer while Pre-charging and Fast-charging
- · Charger statuses or Error conditions are indicated on CHGLED output (for LED lighting)

Figure 11. State Diagram of Battery Charger

Figure 12. Battery Charger Output Control

Figure 13. State Diagram of Battery Detection

BD71815AGW has four Watch Dog Timers.

- (a) High Temperature Protection Timer
 The High Temperature Protection Timer is a timer to count the duration that battery temperature is higher than T4
 (default 58°C) (BAT_TEMP[2:0]=3h) at Temp_err1, Temp_err2 or Temp_err5 state. This timer counts down 1 in
 every 64 seconds and shifts to Batt Error state after 121 counts.
- (b) Low Temperature Protection Timer
 The Low Temperature Protection Timer is a timer to count the duration that battery temperature is less than T2
 (default 2°C) (BAT_TEMP[2:0]=5h) at Temp_err1, Temp_err2 or Temp_err5 state. This timer counts down 1 in
 every 64 seconds and shifts to Batt Error state after 121 counts.
- (c) Watch Dog Timer for TRICKLE CHARGE and PRE CHARGE states During Trickle-charge or Pre-charge, this timer counts down once every 64 seconds and shifts to Batt Error state after 121 counts by default. The number of counts can be changed by register settings (WDT_AUTO and WDT_PRE).

Table 6. Watch Dog Timer for Pre-charging and Trickle-charging

39h: CHG STATE	40h: BAT TEMP[2:0]	47h: CH	G_SET1	Initial set value	countdown value	threshold to	
3911. CHG_3TATE	4011. BA1_1ENIF[2.0]	[7] WDT_DIS	[6] WDT_AUTO	iriitiai set value	Countdown value	Batt Error	
TRICKLE CHARGE(01h)	ROOM(0h)	0	0	49h: WDT_PRE	-1	1	
or PRE CHARGE(02h)	or HOT1(1h) or HOT2(2h) or Temp. Disable(6h)	0	1	122	-1	1	

(d) Watch Dog Timer for FAST CHAREGE and TOP OFF states
During Fast-charge or TOPOFF, this timer counts down in every 512 seconds or 64 seconds, and shifts to Batt
Error state after 601 counts. The counter speed depends on the battery temperature. The number of the counts
can be changed by register settings (WDT_AUTO, WDT_FST, and COLD_ERR_EN).

Table 7. Fast-charging and TOPOFF Watch Dog Timer

39h:CHG STATE	40h:BAT TEMP[2:0]		47h: CHG_SET1		Initial set value	countdown value	threshold to	
39II.CHG_STATE	4011.BA1_1EMP[2.0]	WDT_DIS	WDT_AUTO	COLD_ERR_EN	miliai sel value	countdown value	Batt Error	
		0	0	1	1442	-1	3	
	COLD1(4h)	0	1	1	1442	-1	3	
		0	0	0	WDT_FST * 8	-2	3	
FAST CHARGE(03h)		0	1	0	1442	-2	3	
or TOP OFF(0Eh)	ROOM(0h)	0	0	1	WDT_FST * 8	-2	240	
	or HOT1(1h) or HOT2(2h)	0	1	1	1442	-2	240	
		0	0	0	WDT_FST * 8	-2	240	
	or Temp. Disable(6h)	0	1	0	1442	-2	240	

(1) Thermal Control for Charging

Charging current is controlled by the battery temperature, measured using an external thermistor. In low-temperature condition, charging current is reduced to half of the set value ICHG.

Figure 14. Charging Current vs. Battery Temperature

Charging voltage is also reduced by temperature and set by control registers.

Table 8. Charging Voltage vs. Battery Temperature

JEITA Te	emperature Range	Voltage Setting Register
T2 – T3	2°C to 45°C, (typ)	VBAT_CHG1
T3 – T5	45°C to 50°C, (typ)	VBAT_CHG2
T5 – T4	50°C to 58°C, (typ)	VBAT_CHG3

Figure 15. Charging Voltage vs. Battery Temperature

9. Coulomb Counter Block

Figure 16. Coulomb Counter Block Diagram

Features

- 28-bit Coulomb Counter for battery fuel gauging
- 15-bit ΔΣ-ADC measures the battery's charge and discharge current by means of an external current sense resistor (10mΩ, ±1% or 30mΩ, ±1%).
- · Charging/Discharging amount integration period : 1sec
- There are three programmable battery capacity thresholds for interrupt.

(1) Functions and Programmabilites

(a) 28-bit accumulator features

28-bit accumulator accumulates 15-bit $\Delta\Sigma$ -ADC results by each 1sec. The accumulated value is shown in CCNTD register. CCNTD value is accumulated when CCNTENB is set to 1. CCNTD value is held when CCNTENB is set to 0. When CCNTRST is set to 1, CCNTD value is cleared to 0.

(b) Three programmable Event Alarm outputs from INTB pin BD71815AGW has alarm events using Coulomb Counter. The elements are shown in Table 9.

Table 9. Alarm events using Coulomb Counter

Status register name	Interrupt register name	Event	Condition
CC_MON1	CC_MON1_DET	Coulomb counter near full capacity alarm (AMBLED is turned off and GRNLED is turned on when CHGDONE LED EN(reg)=1)	0 : CCNTD ≤ CC_BATCAP1_TH(reg) 1 : CCNTD > CC_BATCAP1_TH(reg)
CC MON2	CC MON2 DET	Coulomb counter general alarm 2	0 : CCNTD ≥ CC_BATCAP2_TH(reg)
		<u> </u>	1 : CCNTD < CC_BATCAP2_TH(reg)
CC MON3	CC MON3 DET	Coulomb counter general alarm 3	0 : CCNTD ≥ CC_BATCAP3_TH(reg)
000110	000.10_B21	ocalonia coamo goneral alam o	1 : CCNTD < CC_BATCAP3_TH(reg)
OCUR1	OCUR1_DET	Battery over current alarm 1	0 : CURCD < OCURTHR1_TH(reg)
OCORT	OCUR1_RES	Ballery over current alarm 1	1 : CURCD ≥ OCURTHR1_TH(reg) more than OCURDUR1(reg) time
001100	OCUR2 DET	D. II	0 : CURCD < OCURTHR2_TH(reg)
OCUR2	OCUR2_RES	Battery over current alarm 2	1 : CURCD ≥ OCURTHR2_TH(reg) more than OCURDUR2(reg) time
OCUPA	OCUR3 DET	D-44	0 : CURCD < OCURTHR3_TH(reg)
OCUR3	OCUR3_RES	Battery over current alarm 3	1 : CURCD ≥ OCURTHR3_TH(reg) more than OCURDUR3(reg) time

10. 12-bit ADC (SAR) Block

Features

- 12-bit Successive Approximation Register A/D Converter
- Conversion period: 40µs
- Input Voltage range: 0.4V to 5.6V (VBAT for Battery voltage monitor)
- Input Voltage range: 0.5V to 7.0V (VSYS for System input voltage monitor)
- Input Voltage range: 0.1V to 1.4V (Vf for BD71815AGW die temperature monitor)
- Input Voltage range: 0.1V to 1.4V (TS for Battery temperature monitor)
- Input Voltage range: -30mV to 30mV (BATTP for Battery current monitor)
- Input Voltage range: 1.2V to 16.8V (DCIN for DCIN voltage monitor)

Figure 17. 12-bit ADC Block Diagram

11. Battery Monitor Block

BD71815AGW has alarm events using 12-bit SAR ADC. The elements are shown in Table 10.

Table 10. Alarm events using 12-bit SAR ADC

Status register name	Interrupt register name	Monitor terminal	Event	Condition
VBAT_OV	VBAT_OV_DET VBAT_OV_RES	VBAT	Battery voltage exceeds over voltage	0 : VBAT ≤ VBAT_OVP(reg) - 150mV 1 : VBAT ≥ VBAT_OVP(reg)
LOW_BAT	VBAT_LO_DET VBAT_LO_RES	VBAT	Battery voltage fall below low voltage	0 : VBAT > VBAT_LO(reg) 1 : VBAT ≤ VBAT_LO(reg)
VBAT_SHORT	VBAT_SHT_DET VBAT_SHT_RES	VBAT	Battery shorted to GND	0 : VBAT ≥ 1.6V 1 : VBAT ≤ 1.5V
DBAT_DET	DBAT_DET	VBAT	Dead battery detection	0 : Not detected 1: Detected = VBAT ≤ VBAT_LO(reg) more than TIM_DBP(reg) time
VRECHG_DET	BAT_MNT_IN BAT_MNT_OUT	VBAT	Battery voltage fall below to re-charge voltage	0 : VBAT > VBAT_MNT(reg) 1 : VBAT ≤ VBAT_MNT(reg)
N/A	VBAT_MON_DET VBAT_MON_RES	VBAT	Battery voltage general alarm	Detect :VBAT ≥ VBAT_TH(reg) -> VBAT ≤ VBAT_TH(reg) Resume : VBAT ≤ VBAT_TH(reg) -> VBAT ≥ VBAT_TH(reg)
VSYS_LO	VSYS_LO_DET VSYS_LO_RES	VSYS	VSYS voltage fall below low voltage	0 : VSYS ≤ VSYS_MIN(reg) 1 : VSYS ≥ VSYS_MAX(reg)
N/A	VSYS_MON_DET VSYS_MON_RES	VSYS	VSYS voltage general alarm	Detect : VSYS ≥ VSYS_TH(reg) -> VSYS ≤ VSYS_TH(reg) Resume : VSYS ≤ VSYS_TH(reg) -> VSYS ≥ VSYS_TH(reg)
DCIN_CLPS_DET	DCIN_CLPS_IN DCIN_CLPS_OUT	DCIN	DCIN anti-collapse detection	0 : DCIN ≥ DCIN_CLPS(reg) 1 : VSYS < DCIN_CLPS(reg)
N/A	DCIN_MON_DET DCIN_MON_RES	DCIN	DCIN voltage general alarm	Detect : DCIN≥ DCIN_TH(reg) -> DCIN ≤ DCIN_TH(reg) Resume : DCIN ≤ DCIN_TH(reg) -> DCIN ≥ DCIN_TH(reg)
OVBTMP	OVTMP_DET OVTMP_RES	TS	Battery over temperature detection	0 : Not detected 1 : Detected : BTMP < OVBTMPTHR(reg) more than OVBTMPDUR(reg) time
LOBTMP	LOTMP_DET LOTMP_RES	TS	Battery low temperature detection	0 : Not detected 1 : Detected : BTMP > LOBTMPTHR(reg) more than LOBTMPDUR(reg) time
N/A	VF_DET VR_RES	Vf	Die temperature general alarm	Detect : VF ≤ VF_TH(reg) -> VF > VF_TH(reg) Resume : VF > VF_TH(reg) -> VF ≤ VF_TH(reg)
N/A	VF125_DET VR125_RES	Vf	Die temperature over 125°C detection	Detect : VF ≤ 125°C -> VF > 125°C Resume : VF > 125°C -> VF ≤ 125°C

12. White LED Boost Converter

Features

- · Support series 6 LED lights for front light
- LED is ON/OFF by I2C register
- LED Current range: 10,20,30,50,70,100,200,300,500,700 uA,1~25mA(1mA Step)
- Protection Function: Over Current Protection, Over Voltage Protection, Short Circuit Protection

13. I2C Bus Interface Block

The I2C-compatible synchronous serial interface provides access to programmable functions and registers on the device.

This protocol uses a two-wire interface for bi-directional communication between LSI's connected to the bus.

The two interface lines are Serial Data Line (SDA), and Serial Clock Line (SCL). These lines should be connected to the power supply DVDD by a pull-up resistor and remain high even when the bus is idle.

(1) Start and Stop Conditions

When SCL is high, pulling SDA low produces a start condition, while pulling SDA high produces a stop condition. Every instruction is started when a start condition occurs and terminated when a stop condition happens.

During read, a stop condition causes reading to terminate, after which the chip enters the standby state.

During write, a stop condition causes the fetching of write data to terminate, after which writing starts automatically. When writing is completed, the chip enters the standby state.

Two or more start conditions cannot be entered consecutively.

Figure 18. Start and Stop Conditions

(2) Modifying Data

Data on the SDA input can be modified while SCL is low. When SCL is high, modifying the SDA input means a start or stop condition.

Figure 19. Modifying Data

(3) Acknowledge

Data is transmitted and received in 8-bit units. The receiver sends an acknowledge signal by outputting low on SDA in the 9th clock cycle, indicating that it has received data normally. The transmitter releases the bus in the 9th clock cycle to receive an acknowledge signal.

During write, the chip is always the receiver so that it outputs an acknowledge signal each time it has received eight bits of data.

During read, the chip outputs an acknowledge signal after it receives an address following a start condition. Then, it outputs read data and releases the bus to wait for an acknowledge signal from the master. When it detects an acknowledge signal, it outputs data at the next address if it does not detect a stop condition. If the chip does not detect an acknowledge signal, it stops read operation and enters the standby state wherein a stop condition occurs subsequently.

If the chip does not detect an acknowledge signal nor a stop condition, it keeps the bus released.

Figure 20. Acknowledge

(4) Device Addressing

After a start condition occurs, a 7-bit device address and a 1-bit read/write instruction code are sent as input to the chip. The device address occupies the upper seven bits, which must always be "1001011".

The least significant bit (R/W:READ/WRITE) indicates a read instruction when set to 1 and a write instruction when set to 0. An instruction is not executed if the device address does not match the specified value.

Device address is "1001011".

Figure 21. Device Addressing

(5) Write/Read operation

Figure 22. I2C Write / Read Operation

(6) Pulling up the SDA and SCL pins

This IC requires SDA and SCL pins to be pulled up with an external resistor. The values of the pull-up resistors are determined by the capacitance of the bus. Exceedingly large resistance combined with a given bus capacitance will result to a rise time that would violate the maximum rise time specification. On the other hand, insufficiently small resistance will result in a contention with the pull-down transistor on either slave or master. The recommended pull-up resistance range is 1kohm to 5kohm.

Consider the DVDD related input threshold of VIH = 0.7xVDD and VIL = 0.3xVDD for the purposes of RC time constant calculation.

```
V(t1) = 0.3 \times DVDD = DVDD (1 - e^{-t1/RC}); then t1 = 0.3566749 \times RC V(t2) = 0.7 \times DVDD = DVDD (1 - e^{-t2/RC}); then t2 = 1.2039729 \times RC T = t2 - t1 = 0.8473 \times RC
```

To determine the value of the pull-up resistance, you can calculate it by using the equation R=t/(0.8473C).

- t: SDA, SCL rise time to meet the I2C AC specification
- C: Total bus capacitance on each SDA, SCL line

(7) Limitation of I2C

Write data is synchronized with the internal clock (32.768 kHz RTC crystal clock). If internal FIFO is full, an acknowledge is not generated for write operations. An example of this situation is continuous addressing access with more than 294 kHz in I2C.

With I2C single write mode, BD71815AGW write the register after 3 or 4 RTC crystal clock time when stop condition is happened.

14. Interrupt Handling

The system is informed about important events through interrupts. Enabled interrupt events are signaled to the processor by driving the INTB pin low.

Each interrupt can be disabled by setting the corresponding enable bit to 0.

Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each interrupt can be cleared by writing "1" to the appropriate bit in the Interrupt Status register; this will also cause the INTB pin to go high. If there are multiple interrupt bits, the INTB pin will remain low until all are cleared. If a new interrupt occurs while the processor clears an existing interrupt bit, the INTB pin will remain low. The IC powers up with all interrupts disabled, so the processor must initially poll the device to determine if any interrupts are active. Alternatively, the processor can enable the interrupt bits of interest.

Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the Interrupt summary. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.

·	F	Regist	er Map		Debounce		Register Map				Debounce
Interrupt Event	Enabl	е	Status/C	lear	Interval	Interrupt Event	Ena	able	Status	s/Clear	Interval
•	Address	bit	Address	bit	(3 times match)		Address	bit	Address	bit	(3 times match
LED_SCP	8B	7	98	7	1kHz	BAT_RMV	90	4	9D	4	128Hz
LED_OCP	8B	6	98	6	1kHz	TMP_OUT_DET	90	1	9D	1	1Hz
LED_OVP	8B	5	98	5	1kHz	TMP_OUT_RES	90	0	9D	0	1Hz
BUCK5FAULT	8B	4	98	4	1kHz	VBAT_OV_DET	91	7	9E	7	128Hz
BUCK4FAULT	8B	3	98	3	1kHz	VBAT_OV_RES	91	6	9E	6	128Hz
BUCK3FAULT	8B	2	98	2	1kHz	VBAT_LO_DET	91	5	9E	5	128Hz
BUCK2FAULT	8B	1	98	1	1kHz	VBAT_LO_RES	91	4	9E	4	128Hz
BUCK1FAULT	8B	0	98	0	1kHz	VBAT_SHT_DET	91	3	9E	3	128Hz
DCIN_OV_DET	8C	5	99	5	1kHz	VBAT_SHT_RES	91	2	9E	2	128Hz
DCIN_OV_RES	8C	4	99	4	1kHz	DBAT_DET	91	1	9E	1	128Hz
DCIN_CLPS_IN	8C	3	99	3	4kHz	VBAT_MON_DET	92	1	9F	1	128Hz
DCIN_CLPS_OUT	8C	2	99	2	4kHz	VBAT_MON_RES	92	0	9F	0	128Hz
DCIN_RMV	8C	1	99	1	1kHz	CC_MON3_DET	93	2	A0	2	1Hz
WDOGB	8D	6	9A	6	RTC	CC_MON2_DET	93	1	A0	1	1Hz
DCIN_MON_DET	8D	1	9A	1	4kHz	CC_MON1DET	93	0	A0	0	1Hz
DCIN_MON_RES	8D	0	9A	0	4kHz	OCUR3_DET	94	5	A1	5	4kHz
VSYS_MON_DET	8E	7	9B	7	128Hz	OCUR3_RES	94	4	A1	4	4kHz
VSYS_MON_RES	8E	6	9B	6	128Hz	OCUR2_DET	94	3	A1	3	4kHz
VSYS_LO_DET	8E	3	9B	3	128Hz	OCUR2_RES	94	2	A1	2	4kHz
VSYS_LO_RES	8E	2	9B	2	128Hz	OCUR1_DET	94	1	A1	1	4kHz
VSYS_UV_DET	8E	1	9B	1	128Hz	OCUR1_RES	94	0	A1	0	4kHz
VSYS_UV_RES	8E	0	9B	0	128Hz	VF_DET	95	7	A2	7	1Hz
CHG_TRNS	8F	7	9C	7	none	VF_RES	95	6	A2	6	1Hz
TMP_TRNS	8F	6	9C	6	none	VF125_DET	95	5	A2	5	128Hz
BAT_MNT_IN	8F	5	9C	5	1kHz	VF125_RES	95	4	A2	4	128Hz
BAT_MNT_OUT	8F	4	9C	4	1kHz	OVTMP_DET	95	3	A2	3	1Hz
CHG_WDT_EXP	8F	3	9C	3	RTC	OVTMP_RES	95	2	A2	2	1Hz
EXTEMP_TOUT	8F	2	9C	2	RTC	LOTMP_DET	95	1	A2	1	1Hz
BTA ILIM	8F	0	9C	0	128Hz	LOTMP RES	95	0	A2	0	1Hz
TH_DET	90	7	9D	7	1Hz	ALM2	96	2	A3	2	128Hz
TH_RMV	90	6	9D	6	1Hz	ALM1	96	1	A3	1	128Hz
BAT DET	90	5	9D	5	128Hz	AI MO	96	n	Δ3	0	128Hz

Table 11. Interrupt summary

Note1: 1 kHz of this table means 1.024 kHz, and 4 kHz of this table means 4.096 kHz.

Figure 23 Interrupt Block Diagram

Absolute Maximum Ratings (Ta=25°C)

Tolute Maximum Ratings (1a-25 C	7		1
Parameter	Symbol	Rating	Unit
Maximum Supply Voltage 1 DCIN	VDCIN _{MAX}	30	V
Maximum Supply Voltage 2 VIN, PVIN1,2,3,4,5,6 VINL1, VINL2, VBAT	VIN _{MAX} PVIN _{MAX} VINL _{MAX} VBAT _{MAX}	6	٧
Maximum Supply Voltage 3 DVDD	$VDVDD_{MAX}$	4.5	V
Maximum Input Voltage 1 VO6, LX6	VO6IN _{MAX} LX6IN _{MAX}	30	V
Maximum Input Voltage 2 FB1,2,3,4,5,6, LX1,2,3,4,5, HX6, VO1,2,3,4,5,VOLPSR, DVREFIN, VODVREF, CLK32KOUT, POR, INTB, READY, VSYS, PGATE, CHGLED, GPO1, PWRON, STANDBY, RESETINB, WDOGB, LDO4VEN, LDO5VSEL, SDA, SCL, XIN, XOUT, TS, BATTP, BATTM	VMAXIN _{MAX}	6	V
Maximum Input Voltage 3 SNVSC	VSNVSCIN _{MAX}	4.5	V
Maximum Input Voltage 4 CHGREF	VCHGREF _{MAX}	VSNVSCIN _{MAX} + 0.3	V
Operating Temperature Range	Topr	-40 to +85	°C
Storage Temperature Range	Tstg	-55 to +125	°C

Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Thermal Resistance (Note 1)

•	erman itesistance							
	Parameter	Symbol	Thermal Resistance (Typ)	Unit				
	UCSP55M4C(BD71815AGW)							
	Junction to Ambient	θ_{JA}	69.0	°C/W				

(Note 1)Based on Rohm's standard board

Recommended Operating Conditions

commended operating conditions							
Parameter	Symbol	Limits	Unit				
Input Voltage Range 1 DCIN	VDCIN	3.5 to 28	V				
Input Voltage Range 2 ^(Note2) VIN, PVIN1,2,3,4	VIN PVIN	2.9 to 5.5	V				
Input Voltage Range 3 VINL1, VINL2	VINL1 VINL2	1.8 to 5.5	V				
Input Voltage Range 4 DVDD	VDVDD	1.5 to 3.4	V				

(Note2) It is necessary to supply the same voltage to VIN, and PVIN1,2,3,4

Electrical Characteristics

(Unless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V)

Parameter	Symbol		Target Spec		Unit	Condition
Outle as a set Cinavit Commant	-	Min	Тур	Max		
Quiescent Circuit Current	1		l	ı	I	DTC Coulomb Counter
vBAT Circuit Current 1 (SNVS Mode)	IQVB1	-	20	70	μА	RTC, Coulomb Counter, and LDO_SNVS are ON DCINOK=L, DVDD=0V
VBAT Circuit Current 2 (LPSR Mode)	IQVB2	-	50	150	μA	RTC, Coulomb Counter, LDO_SNVS, LDO_LPSR, and LDO1 are ON DCINOK=L, DVDD=0V
VBAT Circuit Current 3 (SUSPEND Mode)	IQVB3	-	150	200	μА	RTC, Coulomb Counter, BUCK2,3,4 (Auto Mode), LDO_SNVS, LDO_LPSR, and LDO1,2,3 are ON DCINOK=L, DVDD=0V
/BAT Circuit Current 4 RUN Mode)	IQVB4	-	45	70	mA	RTC, Coulomb Counter, BUCK1,2,3,4,5 (PWM fix Mode), LDO_SNVS, LDO_LPSR, LDO_DVREF and LDO1,2,4,5 are ON DCINOK=L, DVDD=0V
DVDD Circuit Current	IQDVDD	-	-	1	μA	
Voltage Detector – VIN Under Voltage						
Detect Voltage	UVLOVIN	2.4	2.5	2.6	V	VIN sweep down SNVS to Coin state
Release Voltage	RUVLOVIN	2.7	2.8	2.9	V	VIN sweep up Coin to SNVS state
Voltage Detector – SNVS Under Volta	ige					
Detect Voltage	UVLOSNVS	2.0	2.2	2.4	V	VIN sweep down Coin to Shutdown state
Release Voltage	RUVLOSNVS	2.15	2.35	2.55	V	VIN sweep up Shutdown to Coin state
GPO1						John Land Com State
Output L Level	VOL_GPO	-	-	0.4	V	I _{IN} = 1mA
Output Off Leak current	IOFF_GPO	-1	0	1	μA	VIN=VGPO=5.5V
Digital pin characteristics - Input1 (P	WRON, STANDB	Y, WDOGB, L	DO5_VSEL,	LDO4_EN)		
nput "H" level	VIH1	1.44	-	-	V	
nput "L" level	VIL1	-	-	0.4	V	
STANDBY, WDOGB, LDO4_VEN, LDO5_VSEL Pull Down Resistance	RPD1	-	1.5	-	ΜΩ	
Digital pin characteristics – Input2 (F	RESETINB)					•
RESETINB input "H" level	VIH2	2.1	-	-	V	SNVS*0.7V
RESETINB nput "L" level	VIL2	-	-	0.9	V	SNVS*0.3V
RESETINB Pull Up Resistance	RPU2	-	10	-	kΩ	
Digital pin characteristics – Input3 (S	CL, SDA)					
SCL,SDA nput "H" level	VIH3	DVDD	-	DVDD	V	
nput "H" level SCL,SDA nput "L" level	VIL3	x 0.7 -0.3	-	+ 0.3 DVDD x 0.3	V	
SCL,SDA nput leak current	IIC3	-1	0	1	μA	
Digital pin characteristics - Output (S	DA, POR, INTB,R	EADY)				
SDA Dutput "L" level voltage	VOL1	-	-	0.4	V	IOL=6mA
POR, INTB,READY Output "L" level voltage	VOL2	-	-	0.4	V	IOL=1mA
			1	1	1	1

(Unless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V)

Parameter	Symbol	B. C	Target Spec.		Unit	Condition
BUCK1 - VDD_ARM		Min	Тур	Max		
Output Voltage	VOSW1	1.084	1.100	1.117	V	Initial value
Programmable						lo = 200mA, PWM Mode
Output Voltage Range	VORSW1	0.8	-	2	V	25mV step
Output Current	IOSW1	-	-	800	mA	
Load Stability	ΔVLSW1	-	10	20	mV	Io=1mA~800mA
Efficiency	ηSW11	-	84	-	%	VIN =PVIN=3.6V, Io = 1mA, Vo = 1.1V Inductor Rdc=40m Ω
Lindericy	ηSW12	-	88	-	%	VIN=PVIN = 3.6V, lo = 200mA, Vo = 1.1V Inductor Rdc= $40m\Omega$
Oscillating Frequency	FOSW1	-	6	-	MHz	VIN=4.0V, Vo = 1.1V PWM mode, Io = 0mA
Turn-on Time	TONSW1	-	-	500	usec	1 WWITHOUS, IS - SHIPA
Discharge Resistance	RDISSW1	-	600	-	Ω	
Output Inductance	LBUCK1	0.22	0.47	1.0	μH	Ta = -40°C∼85°C
Output Capacitance	CBUCK1	4.7	10	100	μF	Ta = -40°C~85°C
BUCK2 - VDD_ SOC	СВОСКІ	7.7	10	100	μι	with BUCK's DC bias
Output Voltage	VOSW2	0.985	1.000	1.015	V	Initial value
Programmable						lo = 200mA, PWM Mode
Output Voltage Range	VORSW2	0.8	-	2	V	25mV step
Output Current	IOSW2	-	-	1000	mA	
Load Stability	ΔVLSW2	-	10	20	mV	Io=1mA~800mA
Efficiency	ηSW21	-	84	-	%	VIN =PVIN=3.6V, lo = 1mA, Vo = 1.0V Inductor Rdc= $40m\Omega$
Elliciency	ηSW22	-	88	-	%	VIN=PVIN = 3.6V, Io = 200mA, Vo = 1.0V Inductor Rdc= $40m\Omega$
Oscillating Frequency	FOSW2	-	6	-	MHz	VIN=4.0V, Vo = 1.0V PWM mode, Io = 0mA
Turn-on Time	TONSW2	-	-	500	usec	,
Discharge Resistance	RDISSW2	-	600	-	Ω	
Output Inductance	LBUCK2	0.22	0.47	1.0	μH	Ta = -40°C~85°C
Output Capacitance	CBUCK2	4.7	10	100	μF	Ta = -40°C~85°C
BUCK3 - NVCC_1P8, VDDA_1P8					·	with BUCK's DC bias
Output Voltage	VOSW3	1.773	1.800	1.827	V	Initial value
Programmable	VORSW3	1.2	_	2.7	V	lo = 200mA, PWM Mode 50mV step
Output Voltage Range Output Current	IOSW3	-	_	500	mA	
Load Stability	ΔVLSW3	_	10	20	mV	lo=1mA~800mA
Edad Stability					%	VIN =PVIN=3.6V, Io = 1mA, Vo = 1.8V
Efficiency	ηSW31	-	84	-		Inductor Rdc= $40m\Omega$ VIN=PVIN = 3.6V, lo = 200mA, Vo = 1.8V
	ηSW32	-	88	-	%	Inductor Rdc= $40m\Omega$ VIN= $4.0V$, Vo = $1.8V$
Oscillating Frequency	FOSW3	-	6	-	MHz	PWM mode, lo = 0mA
Turn-on Time	TONSW3	-	-	500	usec	
Discharge Resistance	RDISSW3	-	600	-	Ω	
Output Inductance	LBUCK3	0.22	0.47	1.0	μH	Ta = -40°C∼85°C
Output Capacitance	CBUCK3	4.7	10	100	μF	Ta = -40°C∼85°C with BUCK's DC bias

(Unless otherwise specified, Ia=	ss otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V) Target Spec.			l	T	
Parameter	Symbol	Min	Typ	Max	Unit	Condition
BUCK4 - NVCC_DRAM		IVIII	l i yb	IVILIX		
Output Voltage	VOSW4	1.182	1.200	1.218	V	Initial value lo = 200mA, PWM Mode
Programmable Output Voltage Range	VORSW4	1.1	-	1.85	V	25mV step
Output Current	IOSW4	ı	-	1000	mA	
Load Stability	ΔVLSW4	-	10	20	mV	lo=1mA~800mA
Efficiency	ηSW41	-	84	-	%	VIN =PVIN=3.6V, lo = 1mA, Vo = 1.2V Inductor Rdc= $40m\Omega$
	ηSW42	-	88	-	%	VIN=PVIN = 3.6V, lo = 200mA, Vo = 1.2V Inductor Rdc= $40m\Omega$
Oscillating Frequency	FOSW4	-	6	-	MHz	VIN=4.0V, Vo = 1.2V PWM mode, Io = 0mA
Turn-on Time	TONSW4	-	-	500	usec	
Discharge Resistance	RDISSW4	1	600	-	Ω	
Output Inductance	LBUCK4	0.22	0.47	1.0	μH	Ta = -40°C∼85°C
Output Capacitance	CBUCK4	4.7	10	100	μF	Ta = -40°C∼85°C with BUCK's DC bias
BUCK5 - Peripheral						
Output Voltage	VOSW5	3.251	3.300	3.350	V	Initial value Io = 200mA, PWM Mode
Programmable Output Voltage Range	VORSW5	1.8	-	3.3	V	50mV step
Output Current	IOSW5	-	-	1000	mA	
Load Stability	ΔVLSW5	1	10	20	mV	lo=1mA~800mA
Efficiency	ηSW51	1	92	-	%	VIN =PVIN=3.6V, lo = 1mA, Vo = 3.3V Inductor Rdc= $40m\Omega$
Lilidency	ηSW52	ı	94	-	%	VIN=PVIN = 3.6V, lo = 200mA, Vo = 3.3V Inductor Rdc= $40m\Omega$
Oscillating Frequency	FOSW5	-	6	-	MHz	VIN=4.0V, Vo = 3.3V PWM mode, Io = 0mA
Turn-on Time	TONSW5	ı	-	500	usec	
Discharge Resistance	RDISSW5	-	600	-	Ω	
Output Inductance	LBUCK5	0.22	0.47	1.0	μH	Ta = -40°C∼85°C
Output Capacitance	CBUCK5	4.7	10	100	μF	Ta = -40°C∼85°C with BUCK's DC bias

(unless otherwise specified, 1a=+25)	Jnless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V)							
Parameter	Symbol	Min	Тур	Max	Unit	Condition		
LDO1 - NVCC_GPIO2								
Output Voltage	VOL1	3.250	3.300	3.350	V	Initial value lo=50mA		
Programmable Output Voltage Range	VORL1	0.8	-	3.3	V	50mV step		
Output Current	IOL1	-	-	100	mA			
Dropout Voltage	VODPL1	-	0.04	-	V	lo=50mA VINL1=3.2V (Vo=3.3V setting)		
Input Voltage Stability	ΔVIL1	-	2	5	mV	VIN =PVIN=3.5~4.5V, lo=50mA		
Load Stability	ΔVLL1	-	10	20	mV	lo=1mA~100mA		
Discharge Resistance	RDISL1	-	600	-	Ω			
Ripple rejection ratio	RRL1	-	60	-	dB	VIN=PVIN=4.2V, VR=-20dBV, fR=120Hz, Io=50mA, Vo=1.2V, BW=20Hz~20kHz		
Output Capacitor	COL1	0.47	1	-	μF	Ta=-40~85°C, with LDO's DC bias		
LDO2 - NVCC_3P3								
Output Voltage	VOL2	3.250	3.300	3.350	V	Initial value lo=50mA		
Programmable Output Voltage Range	VORL2	0.8	-	3.3	V	50mV step		
Output Current	IOL2	-	-	100	mA			
Dropout Voltage	VODPL2	-	0.04	-	V	lo=50mA VINL1=3.2V (Vo=3.3V setting)		
Input Voltage Stability	ΔVIL2	-	2	5	mV	VIN =PVIN=3.5~4.5V, Io=50mA		
Load Stability	ΔVLL2	-	10	20	mV	lo=1mA~100mA		
Discharge Resistance	RDISL2	-	600	-	Ω			
Ripple rejection ratio	RRL2	-	60	-	dB	VIN=PVIN=4.2V, VR=-20dBV, fR=120Hz, Io=50mA, Vo=1.2V, BW=20Hz~20kHz		
Output Capacitor	COL2	0.47	1	-	μF	Ta=-40~85°C, with LDO's DC bias		
LDO3 - VDDA_USB1,2_3P3								
Output Voltage	VOL3	3.250	3.300	3.350	V	Initial value lo=50mA		
Programmable Output Voltage Range	VORL3	0.8	-	3.3	V	50mV step		
Output Current	IOL3	-	-	50	mA			
Dropout Voltage	VODPL3	-	0.08	-	V	lo=50mA VINL1=3.2V (Vo=3.3V setting)		
Input Voltage Stability	ΔVIL3	-	2	5	mV	VIN =PVIN=3.5~4.5V, lo=50mA		
Load Stability	ΔVLL3	-	10	20	mV	lo=1mA~50mA		
Discharge Resistance	RDISL3	-	600	-	Ω			
Ripple rejection ratio	RRL3	-	60	-	dB	VIN=PVIN=4.2V, VR=-20dBV, fR=120Hz, Io=50mA, Vo=1.2V, BW=20Hz~20kHz		
Output Capacitor	COL3	0.47	1	-	μF	Ta=-40~85°C, with LDO's DC bias		

(Unless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V)

Parameter	Symbol		Target Spec.	1	Unit	Condition
LDO4 - SD Card / eMMC		Min	Тур	Max		
Output Voltage	VOL4L	3.250	3.300	3.350	V	lo=50mA
Programmable						
Output Voltage Range	VORL4	0.8	-	3.3	V	50mV step
Output Current	IOL4	-	-	400	mA	lo=50mA
Dropout Voltage	VODPL4	-	0.03	-	V	VINL2=3.2V (Vo=3.3V setting)
Input Voltage Stability	ΔVIL4	-	2	5	mV	VIN =PVIN=3.5~4.5V, lo=50mA
Load Stability	ΔVLL4	-	10	20	mV	lo=1mA~400mA
Discharge Resistance	RDISL4	-	600	-	Ω	
Ripple rejection ratio	RRL4	-	60	-	dB	VIN=PVIN=4.2V, VR=-20dBV, fR=120Hz, lo=50mA, Vo=1.2V, BW=20Hz~20kHz
Output Capacitor	COL4	1.0	2.2	-	μF	Ta=-40~85°C, with LDO's DC bias
LDO5 - SD Card / eMMC Interface						
Outout Valta an	VOL5L	3.250	3.300	3.350	V	LDO5VSEL=L lo=50mA
Output Voltage	VOL5H	1.773	1.800	1.827	V	LDO5VSEL=H lo=50mA
Programmable Output Voltage Range	VORL5	0.8	-	3.3	V	50mV step
Output Current	IOL5	-	-	250	mA	
Dropout Voltage	VODPL5	-	0.04	-	V	Io=50mA VINL2=3.2V (Vo=3.3V setting)
Input Voltage Stability	ΔVIL5	-	2	5	mV	VIN =PVIN=3.5~4.5V, lo=50mA
Load Stability	ΔVLL5	-	10	20	mV	lo=1mA ~ 250mA
Discharge Resistance	RDISL5	-	600	-	Ω	
Ripple rejection ratio	RRL5	-	60	-	dB	VIN=PVIN=4.2V, VR=-20dBV, fR=120Hz, Io=50mA, Vo=1.2V, BW=20Hz~20kHz
Output Capacitor	COL5	0.47	1	-	μF	Ta=-40~85°C, with LDO's DC bias
LDO_SNVS - SNVS			l.			With EDGS DO bids
Output Voltage	VOL6	2.94	3.00	3.06	V	lo=10mA
Output Current	IOL6	-	-	25	mA	
Input Voltage Stability	ΔVIL6	-	2	5	mV	VIN= PVIN=3.5~4.5V, Io=10mA
Load Stability	ΔVLL6	-	10	20	mV	lo=1mA~25mA
Discharge Resistance	RDISL6	-	600	-	Ω	
Output Capacitor	COL6	0.47	1	-	μF	Ta=-40∼85°C, with LDO's DC bias
LDO_LPSR - LPSR, NVCC_GPO1						With EDOS DC bias
Output Voltage	VOL7	1.773	1.800	1.827	V	lo=50mA
Output Current	IOL7	-	-	100	mA	
Input Voltage Stability	ΔVIL7	-	2	5	mV	VIN= PVIN=3.5~4.5V,
Load Stability	ΔVLL7	-	10	20	mV	lo=50mA lo=1mA~100mA
Discharge Resistance	RDISL7	_	600	-	Ω	
Output Capacitor	COL7	0.47	1		μF	Ta=-40~85°C,
Ουιμαί Θαμασιώ	COL7	0.47	'	-	μг	with LDO's DC bias

(Unless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V)

Parameter	Symbol		Target Spec.		Unit	Condition	
	- Cyllibor	Min	Тур	Max	01111	Solidiacii	
LDO_DVREF - DDR_VREF		DVDEEIN	D) /DEEIN	DVDEEIN			
Output Voltage	VOL8	DVREFIN x 0.49	DVREFIN x 0.50	DVREFIN x 0.51	V	lo=5mA	
Output Current	IOL8	-	-	10	mA		
Input Voltage Stability	ΔVIL8	-	2	5	mV	VIN= PVIN=3.5~4.5V, Io=5mA	
Load Stability	ΔVLL8	-	10	20	mV	lo=1mA~10mA	
Discharge Resistance	RDISL8	-	600	-	Ω		
Output Capacitor	COL8	0.47	1	-	μF	Ta=-40∼85°C, with LDO's DC bias	
RTC							
Input Clock Frequency	RTCLKIN	-	32.768	-	kHz		
Output Clock Frequency Drift	RTCLKD	-100	-	100	ppm	(Note1)	
Oscillator Stabilization Time	STBTIME	-	-	1000	msec	Within 3% of target frequency	
Oscillator Stop Detection	STPDET	-	-	150	µsec		
RTC Output Buffer (CLK32KOUT)							
Output Frequency	RTCLK	-	32.768	-	KHz	With external crystal	
Output Duty Cycle	RTCDTY	30	50	70	%		
Output L Level Voltage	VOL32K	-	-	0.4	٧	I _{IN} = 1mA	
Output Off Leak current	IOFF32K	-1	0	1	μΑ	VIN=VCLK32KOUT=5.5V Open drain output OFF mode	
RTC Calibration Characteristics							
Calibration Range	RTCCR	-126	ı	126	ppm		
Step Size	RTCCSTP	-	2	-	ppm		
Correction Interval	RTCCCI	-	30	-	sec		
Li-ion Battery Charger – OVP							
DCIN UVLO release voltage	RUVLODCIN	3.7	3.8	3.9	V	DCIN rising	
OCIN UVLO hysteresis range	HUVLODCIN	100	150	200	mV	DCIN falling	
OCIN OVP detection voltage	OVPDCIN	6.3	6.5	6.7	V	DCIN rising	
OCIN OVP hysteresis range	HOVPDCIN	100	150	200	mV		
VSYS Output Voltage	VOVSYS	4.55	4.75	4.95	V	DCIN=5.0V input	
Voltage Output turn-on time	TDCIN_ON	-	5	10	msec		
OCIN leakage current in OVP state	ILDCIN	-	-	2	mA	DCIN < 28V	

(Note1) Frequency stability over temperature depends on the characteristics of the crystal unit which is expressed as a quadratic function. Recommended crystal unit is FC-135(Seiko Epson).

(Unless otherwise specified, Ta=+25°	C, VIN =PVIN=VIN	-		-	<u> </u>	1
Parameter	Symbol	Min	Target Spec.	Max	Unit	Condition
Li-ion Battery Charger			. , , ,	111,627		
, ,	IDATO INT	100		500	m A	100mA step
Fast Charging current range	IBATR_INT	100	-	500	mA	Internal MOS mode
	IBATR_EXT	100	-	2000	mA	100mA step External MOS mode
East Charaing ourrent accuracy	IBATCHG	_	±10	_	%	Ichg=500mA
Fast Charging current accuracy	_ACC		±10	-	70	VBAT=3.6V
Pre Charging current	IBATPRE	70	100	130	mA	Initial value VBAT=3.3V
Pre Charging current range	IBATPRER	50	-	375	mA	
						Initial value
Trickle Charging current	IBATTRI	5	10	15	mA	VBAT=3.0V
TricKle Charging Current range	IBATTRKR	2.5	-	25	mA	10mA step
Transition Voltage from Trickle	VPRE LOW	2.9	3.0	3.1	V	Initial value
Charging to Pre Charging	VFRE_LOW	2.9	3.0	3.1	V	VBAT rising
Transition Voltage range from Trickle Charging to Pre Charging	VPRE_LOWR	2.1	-	3.6	V	VBAT rising, 100mV step
Transition Voltage from Pre Charging	VPRE_HIGH	3.2	3.3	3.4	V	Initial value
to Fast Charging Transition Voltage range from Pre			0.0	0.1	•	VBAT rising
Charging to Fast Charging	VPRE_HIGHR	2.1	-	3.6	V	VBAT rising, 100mV step
Battery Charging voltage	VCHG	4.18	4.2	4.22	V	Initial value
	\/OLLOD	0.70		404	.,	00.1/1
Battery Charging voltage range	VCHGR	3.72	-	4.34	V	20mV step
Battery OVP detection	VBOVP	4.15	4.25	4.35	V	Initial value
Battery OVP detection range	VBOVPR	4.2	-	4.6	V	50mV step
Datery CVI detection range	VBOVIA			1.0	,	00100
Charging termination current range	ICHGTRMR	10	-	200	mA	
Charging termination current	ICHGTRM	-	±5	-	%	Ichg_term=50mAsetting
accuracy Enter Supplement mode voltage	_ACC			400	.,	NEAT VOVO
threshold	ΔVBS	20	60	100	mV	VBAT-VSYS voltage
Exit supplement mode voltage threshold (Hysteresis)	ΔVBSTH	-	40	-	mV	
ON-state resistance between	RON_VBAT	80	150	200	mΩ	
SYSTEM and VBAT Battery Error Detection Time	TON_VB/TI		100	200	11122	
(Pre Charge)	TPRE	116	129	142	min	
Battery Error Detection Time	TFAST	577	641	705	min	
(Fast Charge) Battery Error Detection Time						
(High Temperature protection)	THTPRO	116	129	142	min	Over 58°C
Charging termination delay time	TTOPOFF	13	15	17	sec	
CHGLED output toggling	TCHGLED	0.4	0.5	0.6	Hz	At Temp Error1, 2, or 5
frequency						. 1. Sing End. 1, 2, 01 0
Battery short-circuit detection voltage	VBATSHT	1.4	1.5	1.6	V	
Battery short-circuit detection	HSVBATSHT	-	0.1	-	V	
hysteresis range	VITH HOT		F0		°C	
Battery temperature threshold HOT	VTH_HOT	-	58	-	, c	
Battery temperature threshold COLD	VTH_COLD	-	2	-	°C	
Battery temperature	TBAT_ACC	-2	-	2	°C	
measurement accuracy	_		_			
TS threshold disable voltage	VTS_DIS	0.06	0.1	0.17	V	
Battery Open detection voltage	VTS_BATOPN	1.25	1.39	1.53	V	Measure TS voltage
			l			<u> </u>

(Unless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V)

(Unless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V) Target Spec.												
Parameter	Symbol	Min	Typ	Max	Unit	Condition						
White LED Boost Converter-Switching	g Regurator		1.36	Wax								
LED Output Current range	ILEDR	0.01	-	25	mA							
LED Output Current accuracy	ILED_ACC	-20	0	20	%	ILED=10mA						
Inducor Current limit	ILEDLIM	-	900	1200	mA							
Boost Over Voltage limit	VLEDOV	24	26	28	V							
Switching Frequency	fSW_LED	20	-	800	kHz	ILED=10mA						
Turn-on Time	TONLED	-	-	500	usec							
Output Inductance	LLED	1.0	2.2	4.7	μH	Ta = -40°C∼85°C						
Output Capacitance	CLED	0.22	0.47	-	μF	Ta = -40°C∼85°C with BOOST DC bias						
Coulomb counter						TWIN EGGGT EG EIGG						
Resolution	CCRES	-	-	15	bit	Sign + 14-bits						
Operating Clock Frequency	CCFCLK	-	32.768	-	kHz	xtal						
Integration Period	CCTCONV	-	1	-	sec							
Analog Input Voltage Range	CCVAIN	-30	-	30	mV							
Least Significant Bit of ΔΣ-ADC output	CCLSB	-	0.33	-	mA	Sense resister 30mΩ						
Current Measurement Range	CCIAIN	-1.0	-	1.0	А	Sense resister $30m\Omega$						
DC Offset current after calibration	CCOFSCALIB	-3.6	0	3.6	mA	Sense resister 30mΩ Ta=+25°C						
Offs et current over temperature	CCOFSCALBT	-3.6	0	3.6	mA	Sense resister 30mΩ Offset current variation from Ta=0°C to 60°C						
Integral Non-Linearity (note1)	CCLIN	-4	-	4	LSB	CCINAIN rante Endpoint Method						
12-bit SAR ADC												
Resolution	SAR_RES	-	-	12	bit							
Operating Clock Frequency	SAR_FCLK	-	400	-	kHz							
Conversion Period	SAR_TCONV	-	40	-	μsec	16 clocks						
Analog Input Voltage Range 1	SAR_VAIN1	0.6	-	5.6	V	VBAT input						
Analog Input Voltage Range 2	SAR_VAIN2	0.2	-	1.2	V	TS input						
Analog Input Voltage Range 3	SAR_VAIN3	-30	-	30	mV	BATTP input						
Differential Non-Linearity	SAR_DNL	-	±3	-	LSB	TS input						
Integral Non-Linearity	SAR_INL	-	±6	-	LSB	TS input						

(Unless otherwise specified, Ta=+25°C, VIN =PVIN=VINL=3.6V, DVDD=1.8V)

Parameter	Symbol		Target Spec.	•	Unit	Condition
Faiailletei	Symbol	Min	Тур	Max	Offic	Condition
I2C Bus Interface						
I2C_CLK clock frequency	f _{SCLH}	0	-	400	kHz	
Hold time START condition	t _{HD;STA}	160	-	-	nsec	
LOW period of I2C_CLK clock	t _{LOW}	160	-	-	nsec	
HIGH period of I2C_CLK clock	t _{HIGH}	60	-	-	nsec	
Set-up time for a repeated START condition	t _{SU;STA}	160	-	-	nsec	
Data hold time	t _{HD;DAT}	0	-	70	nsec	
Data set-up time	t _{SU;DAT}	10	-	-	nsec	
Set-up time for STOP condition	t _{su;sto}	160	-	-	nsec	
Capacitive load for each bus line	C _b	-	-	100	pF	
Pulse width of spikes that are suppressed by the input filter *	t _{SP}	0	-	10	ns	
Bus Free Time	t _{BUFF}	1.3	-	-	us	

Figure 24. I2C AC Timing - High Speed Mode

Figure 25. I2C AC Timing – Bus Free Time

Reg

giste	er Map											
ADRS.	Register Name	R/W	INIT	D7	D6	D5	D4	D3	D2	D1	D0	OTP (note 4)
00h	DEVICE	R, R/W	41h	I2C_UNEMPTY		LSIVER [2:0]			DEVIC	EID[3:0]		NA
01h	PWRCTRL	R/W	22h	INHIBIT_0(note1)	STBY_INV	INHIBIT_0(note1)	LPSR_MODE	PWRON_	DBNC[1:0]	WDOGB_PWROFF	INHIBIT_0(note1)	х
02h	BUCK1_MODE	R/W	05h	BUCK1_RAN	MPRATE[1:0]	-	BUCK1_PWM_FIX	BUCK1_SNVS_ON	BUCK1_RUN_ON	BUCK1_LPSR_ON	BUCK1_LP_ON	х
03h	BUCK2_MODE	R/W	05h	BUCK2_RAN	MPRATE[1:0]	-	BUCK2_PWM_FIX	BUCK2_SNVS_ON	BUCK2_RUN_ON	BUCK2_LPSR_ON	BUCK2_LP_ON	х
04h	BUCK3_MODE	R/W	05h	-	-	-	BUCK3_PWM_FIX	BUCK3_SNVS_ON	BUCK3_RUN_ON	BUCK3_LPSR_ON	BUCK3_LP_ON	х
05h	BUCK4_MODE	R/W	05h	-	-	-	BUCK4_PWM_FIX	BUCK4_SNVS_ON	BUCK4_RUN_ON	BUCK4_LPSR_ON	BUCK4_LP_ON	х
06h	BUCK5_MODE	R/W	05h	-	-	-	BUCK5_PWM_FIX	BUCK5_SNVS_ON	BUCK5_RUN_ON	BUCK5_LPSR_ON	BUCK5_LP_ON	х
07h	BUCK1_VOLT_H	R/W	8Ch	BUCK1_DVSSEL	BUCK1_STBY_DVS			BUCK1	_H[5:0]			х
08h	BUCK1_VOLT_L	R/W	08h	-	-			BUCK1	I_L[5:0]			х
09h	BUCK2_VOLT_H	R/W	88h	BUCK2_DVSSEL	BUCK2_STBY_DVS			BUCK2	?_H[5:0]			х
0Ah	BUCK2_VOLT_L	R/W	08h	-	-			BUCK	2_L[5:0]			х
0Bh	BUCK3_VOLT	R/W	0Ch	-	-	-			BUCK3[4:0]			х
0Ch	BUCK4_VOLT	R/W	04h	-	-	-			BUCK4[4:0]			х
0Dh	BUCK5_VOLT	R/W	1Eh	-	-	-			BUCK5[4:0]			х
0Eh	LED_CTRL	R/W	00h	-	-	-	CHGDONE_LE D_EN	-	LED_RUN_ON	LED_LPSR_ON	LED_LP_ON	х
0Fh	LED_DIMM	R/W	00h	-	-			LED_DI	MM[5:0]			NA
10h	LDO_MODE1	R/W	74h	LDO1_SNVS_ON	LDO1_RUN_ON	LDO1_LPSR_ON	LDO1_LP_ON	LDO4_REG_MODE	LDO3_REG_MODE	-	INHIBIT_0(note1)	x
11h	LDO_MODE2	R/W	F5h	LDO3_SNVS_ON	LDO3_RUN_ON	LDO3_LPSR_ON	LDO3_LP_ON	LDO2_SNVS_ON	LDO2_RUN_ON	LDO2_LPSR_ON	LDO2_LP_ON	х
12h	LDO_MODE3	R/W	57h	LDO5_SNVS_ON	LDO5_RUN_ON	LDO5_LPSR_ON	LDO5_LP_ON	LDO4_SNVS_ON	LDO4_RUN_ON	LDO4_LPSR_ON	LDO4_LP_ON	х
13h	LDO_MODE4	R/W	57h	DVREF_SNVS_ON	DVREF_RUN_ON	DVREF_LPSR_ON	DVREF_LP_ON	LDO_LPSR_SNVS_ON	LDO_LPSR_RUN_ON	LDO_LPSR_LPSR_ON	LDO_LPSR_LP_ON	х
14h	LDO1_VOLT	R/W	32h	-	-			LDO	1[5:0]			х
15h	LDO2_VOLT	R/W	32h	-	-			LDO	2[5:0]			х
16h	LDO3_VOLT	R/W	32h	-	-			LDO	3[5:0]			х
17h	LDO4_VOLT	R/W	32h	-	-			LDO	4[5:0]			NA
18h	LDO5_VOLT_H	R/W	14h	-	-			LDO5	_H[5:0]			NA
19h	LDO5_VOLT_L	R/W	32h	-	-			LDO5	_L[5:0]			NA
1Ah	BUCK_PD_DIS	R/W	00h	-	-	-	BUCK5_PD_DIS	BUCK4_PD_DIS	BUCK3_PD_DIS	BUCK2_PD_DIS	BUCK1_PD_DIS	NA
1Bh	LDO_PD_DIS	R/W	00h	-	DVREF_PD_DIS	LDO_LPSR_PD_DIS	LDO5_PD_DIS	LDO4_PD_DIS	LDO3_PD_DIS	LDO2_PD_DIS	LDO1_PD_DIS	NA
1Ch	GPO	R/W	03h	-	-	INHIBIT_0(note1)	GPO1_MODE	-	READY_FORCE_LOW	INHIBIT_1(note2)	GPO1_OUT	NA
1Dh	OUT32K	R, R/W	01h	OTP_STATUS	-	-	-	-	-	OUT32K_MODE	OUT32K_EN	х
1Eh	SEC	R/W	XXh	-	S40	S20	S10	S8	S4	S2	S1	NA
1Fh	MIN	R/W	XXh	-	M40	M20	M10	M8	M4	M2	M1	NA
20h	HOUR	R/W	XXh	12/24	-	H20/PA	H10	H8	H4	H2	H1	NA
21h	WEEK	R/W	0Xh	-	-	-	-	-	W4	W2	W1	NA
22h	DAY	R/W	XXh	-	-	D20	D10	D8	D4	D2	D1	NA
23h	MONTH	R/W	XXh	-	-	-	MO10	MO8	MO4	MO2	MO1	NA
24h	YEAR	R/W	XXh	Y80	Y40	Y20	Y10	Y8	Y4	Y2	Y1	NA
25h	ALM0_SEC	R/W	00h	-	A0S40	A0S20	A0S10	A0S8	A0S4	A0S2	A0S1	NA
26h	ALM0_MIN	R/W	00h	-	A0M40	A0M20	A0M10	A0M8	A0M4	A0M2	A0M1	NA
27h	ALM0_HOUR	R/W	00h	A0_12/24	-	A0H20/PA	A0H10	A0H8	A0H4	A0H2	A0H1	NA
28h	ALM0_WEEK	R/W	00h	-	-	-	-	-	A0W4	A0W2	A0W1	NA
29h	ALM0_DAY	R/W	00h	-	-	A0D20	A0D10	A0D8	A0D4	A0D2	A0D1	NA
2Ah	ALM0_MONTH	R/W	00h	-	-	-	A0MO10	A0M08	A0MO4	A0MO2	A0MO1	NA
2Bh	ALM0_YEAR	R/W	00h	A0Y80	A0Y40	A0Y20	A0Y10	A0Y8	A0Y4	A0Y2	A0Y1	NA

2Ch 2Dh	Register Name	R/W	INIT	D7	D6							OTP
					D6	D5	D4	D3	D2	D1	D0	(note 4)
2Dh	ALM1_SEC	R/W	00h	-	A1S40	A1S20	A1S10	A1S8	A1S4	A1S2	A1S1	NA
	ALM1_MIN	R/W	00h	-	A1M40	A1M20	A1M10	A1M8	A1M4	A1M2	A1M1	NA
2Eh	ALM1_HOUR	R/W	00h	A1_12/24	-	A1H20/PA	A1H10	A1H8	A1H4	A1H2	A1H1	NA
2Fh	ALM1_WEEK	R/W	00h	-	-	-	-	-	A1W4	A1W2	A1W1	NA
30h	ALM1_DAY	R/W	00h	-	-	A1D20	A1D10	A1D8	A1D4	A1D2	A1D1	NA
31h	ALM1_MONTH	R/W	00h	-	-	-	A1MO10	A1MO8	A1MO4	A1MO2	A1MO1	NA
32h	ALM1_YEAR	R/W	00h	A1Y80	A1Y40	A1Y20	A1Y10	A1Y8	A1Y4	A1Y2	A1Y1	NA
33h	ALM0_MASK	R/W	00h	A0_ONESEC	A0_YEAR	A0_MON	A0_DAY	A0_WEEK	A0_HOUR	A0_MIN	A0_SEC	NA
34h	ALM1_MASK	R/W	00h	A1_ONESEC	A1_YEAR	A1_MON	A1_DAY	A1_WEEK	A1_HOUR	A1_MIN	A1_SEC	NA
35h	ALM2	R/W	00h	-	-	-	-	-	-	ALM	2[1:0]	NA
36h	TRIM	R/W	00h	DEV				TRIM[6:0]				NA
37h	CONF	R/W	01h	-	-	-	-	-	-	XSTB	PON	NA
38h	SYS_INIT	R/W	00h	-	-	-	-	-	-	CHGRST	-	NA
39h	CHG_STATE	R	XXh	-				CHG_STATE[6:0]			NA
3Ah	CHG_LAST_STATE	R	XXh	-			CH	G_LAST_STATE	[6:0]			NA
3Bh	BAT_STAT	R	XXh	-	-	BAT_DET	BAT_DET_DONE	VBAT_OV	LOW_BAT	VBAT_SHORT	DBAT_DET	NA
3Ch	DCIN_STAT	R	0Xh	-	-	-	-	DCIN_OV	IGNORE(note3)	DCIN_CLPS_DET	DCIN_DET	NA
3Dh	VSYS_STAT	R	0Xh	-	-	-	-	-	-	VSYS_LO	VSYS_UVN	NA
3Eh	CHG_STAT	R	0Xh	-	-	-	-	-	-	-	VRECHG_DET	NA
3Fh	CHG_WDT_STAT	R	XXh		•	•	CHGWI	OTS[7:0]	•	•	•	NA
40h	BAT_TEMP	R	0Xh	-	-	-	-	-		BAT_TEMP[2:0]		NA
41h	IGNORE_0	R	XXh	-	-	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)	NA
42h	INHIBIT_0	R/W	E6h	INHIBIT_1(note2)	INHIBIT_1(note2)	INHIBIT_1(note2)	INHIBIT_0(note1)	INHIBIT_0(note1)	INHIBIT_1(note2)	INHIBIT_1(note2)	INHIBIT_0(note1)	х
43h	DCIN_CLPS	R/W	36h		•	!	DCIN_CL	_PS[11:4]	•	•	!	х
44h	VSYS_REG	R/W	0Bh	-	-	-			VSYS_REG[4:0]			х
45h	VSYS_MAX	R/W	33h	-				VSYS_MAX[12:6]			х
46h	VSYS_MIN	R/W	30h	-				VSYS_MIN[12:6]				х
47h	CHG_SET1	R/W	6Fh	WDT_DIS	WDT_AUTO	AUTO_FST	FST_TRG	AUTO_RECHG	BTMP_EN	COLD_ERR_EN	CHG_EN	NA
48h	CHG_SET2	R/W	98h	VF_TREG_EN	EXTMOS_EN	REBATDET_TRG	BATDET_EN	INHIBIT_1(note2)	-	TIM_CNT	_SEL[1:0]	х
49h	CHG_WDT_PRE	R/W	1Eh		•		WDT_F	PRE[7:0]				х
4Ah	CHG_WDT_FST	R/W	26h				WDT_F	ST[10:3]				х
4Bh	CHG_IPRE	R/W	44h	ITRI[3:0]					IPRE	E[3:0]		х
4Ch	CHG_IFST	R/W	12h	-	-	-			IFST[4:0]			х
4Dh	CHG_IFST_TERM	R/W	05h	-	-	-	-		IFST_TE	ERM[3:0]		х
4Eh	CHG_VPRE	R/W	C9h	VPRE_HI[3:0]	•				VPRE_	LO[3:0]		х
4Fh	CHG_VBAT_1	R/W	18h	-	-	-			VBAT_CHG1[4:0]		х
50h	CHG_VBAT_2	R/W	13h	-	-	-	VBAT_CHG2[4:0]					х
51h	CHG_VBAT_3	R/W	10h	-	-	-	VBAT_CHG3[4:0]					х
52h	CHG_LED_1	R/W	03h	-	-	-	CHG_LED_BTA MASK	-		TERR[2:0]		х
53h	VF_TH	R/W	00h					H[7:0]				х
	BAT_SET_1	R/W	00h		VBAT_	_HI[3:0]	0] VBAT_LO[3:0]					х
54h							[3:0] - VBAT_MNT[2:0]					
	BAT_SET_2	R/W	14h		VBAT_0	OVP[3:0]		-		VBAT_MNT[2:0]		х
54h	BAT_SET_2 BAT_SET_3	R/W	14h 42h	-		OVP[3:0] VBAT_DONE[2:0	1	-		VBAT_MNT[2:0] TIM_DBP[2:0]		x x
50h 51h 52h	CHG_VBAT_2 CHG_VBAT_3 CHG_LED_1 VF_TH	R/W R/W R/W	13h 10h 03h 00h	-	-	-	_MASK	-	VBAT_CHG2[4:0]] TERR[2:0]		

MANUAL THE NO NO NO NO NO NO NO N	giste	r Map (conti	nue	ed)									
Description	ADRS.	Register Name	R/W	INIT	D7	D6	D5	D4	D3	D2	D1	D0	OTP (note 4)
ALAL NOVE, THE NOW TO NOVE, THE LOSS SAT_DIR SAT_D	58h	ALM_VBAT_TH_L	R/W	FFh				VBAT_1	ГН[11:4]				х
See	59h	ALM_DCIN_TH	R/W	0Fh				DCIN_T	TH[11:4]				х
SC	5Ah	ALM_VSYS_TH	R/W	FFh	VSYS_TH[12:5]								х
School Valuation R	5Bh	VM_IBAT_U	R	00h	IBAT_DIR	-	-	-		IBATĮ	[11:8]		NA
Sep	5Ch	VM_IBAT_L	R	00h				IBAT	[7:0]				NA
STHEPPLOT	5Dh	VM_VBAT_U	R	00h	-	-	-			VBAT[12:8]			NA
Fig. MALOCIPIL R	5Eh	VM_VBAT_L	R	00h				VBA	Γ[7:0]				NA
61h	5Fh	VM_BTMP	R	00h				ВТМ	P[7:0]				NA
ECD	60h	VM_VTH	R	00h				VTH	[7:0]				NA
Bin	61h	VM_DCIN_U	R	00h	-	-	-	-		DCIN	[11:8]		NA
OHI	62h	VM_DCIN_L	R	00h				DCIN	N[7:0]				NA
BAT_OC_PRE[118] BAT_OC_PRE	63h	(reserved)	R	00h	-	-	-	-	-	-	-	1	NA
BBAT_OC_PRE[7:0] BBAT_OC_PRE	64h	VM_VF	R	00h				VF[7:0]			•	NA
07h	65h	VM_OCI_PRE_U	R	00h	IBAT_OC_PRE_DIR	-	-	-		IBAT_OC_	PRE[11:8]		NA
SBN	66h	VM_OCI_PRE_L	R	00h				IBAT_OC	_PRE[7:0]				NA
Bin	67h	VM_OCV_PRE_U	R	00h	-	-	-		VI	BAT_OC_PRE[12:	:8]		NA
BAN	68h	VM_OCV_PRE_L	R	00h				VBAT_OC	_PRE[7:0]				NA
SBB	69h	VM_OCI_PST_U	R	00h	IBAT_OC_PST_DIR	-	-	-		IBAT_OC_	PST[11:8]		NA
SCD	6Ah	VM_OCI_PST_L	R	00h				IBAT_OC	_PST[7:0]				NA
SDD	6Bh	VM_OCV_PST_U	R	00h	-	-	-		VI	BAT_OC_PST[12:	:8]		NA
SER	6Ch	VM_OCV_PST_L	R	00h			•	VBAT_OC	:_PST[7:0]				NA
Fig. Wilder Fig. Fig.	6Dh	VM_SA_VBAT_U	R	00h	-	-	-			VBAT_SA[12:8]			NA
Toh	6Eh	VM_SA_VBAT_L	R	00h				VBAT_	SA[7:0]				NA
71h	6Fh	VM_SA_IBAT_U	R	00h	IBAT_SA_DIR	-	-	-		IBAT_S	A[11:8]		NA
72h CC_BATCAP1_TH_U RW 0h - - CC_BATCAP1_TH[11:8] 73h CC_BATCAP1_TH_L RW 76h CC_BATCAP2_TH_U RW 00h - - CC_BATCAP2_TH[11:8] 75h CC_BATCAP2_TH_L RW 36h CC_BATCAP2_TH_TO] CC_BATCAP2_TH[11:8] 76h CC_BATCAP3_TH_L RW 00h - - CC_BATCAP3_TH[11:8] 77h CC_BATCAP3_TH_L RW 16h CC_BATCAP3_TH[11:8] CC_MON3 CC_MON3 CC_MON1 78h CC_STAT R 00h - - - CC_MON3 CC_MON1 CC_MON1 79h CC_CCNTD_3 RW 00h - - - - CCNTD[27:24] 7Ah CC_CCNTD_1 RW 00h CCNTD[15:8] CCNTD[15:8] 7Ch CC_CCNTD_0 RW 00h CCNTD[7:0] CURCD[13:8] 7Eh CC_CURCD_L R 00h CURCD[7:0] CURCD[13:8] 80h	70h	VM_SA_IBAT_L	R	00h				IBAT_S	SA[7:0]				NA
73h	71h	CC_CTRL	R/W	40h	CCNTRST	CCNTENB	CC_CALIB	-	1	-	ı	1	NA
74h CC_BATCAP2_TH_U RW 00h - - CC_BATCAP2_TH[11:8] 75h CC_BATCAP2_TH_L RW 35h CC_BATCAP2_TH[7:0] 76h CC_BATCAP3_TH_U RW 00h - - CC_BATCAP3_TH[11:8] 77h CC_BATCAP3_TH_L RW 15h CC_BATCAP3_TH[7:0] CC_MON3 CC_MON2 CC_MON1 78h CC_STAT R 00h - - - CC_MON3 CC_MON2 CC_MON1 79h CC_CCNTD_3 RW 00h - - - CCNTD[23:16] 7bh CC_CCNTD_2 RW 00h CCNTD[7:0] CCNTD[7:0] 7bh CC_CURCD_U R 00h CURDIR - CURCD[7:0] 7bh VM_OCUR_THR_1 RW 70h OCURTHR1[12:5] OCURDHR1[7:0] 80h VM_OCUR_DUR_1 RW 56h OCURDHR2[7:0]	72h	CC_BATCAP1_TH_U	R/W	00h	-	-	-	-		CC_BATCAI	P1_TH[11:8]		х
75h CC_BATCAP2_TH_L RW 3Fh CC_BATCAP2_TH[7:0] 76h CC_BATCAP3_TH_U RW 00h - - - CC_BATCAP3_TH[1:8] 77h CC_BATCAP3_TH_L RW 1Fh CC_BATCAP3_TH[7:0] - CC_MON3 CC_MON2 CC_MON1 78h CC_STAT R 00h - - - CCMON2 CC_MON1 79h CC_CCNTD_3 RW 00h - - - CCNTD[27:24] 7Ah CC_CCNTD_2 RW 00h CCNTD[23:16] - CCNTD[27:24] 7Bh CC_CCNTD_1 RW 00h CCNTD[7:0] - CCNTD[7:0] 7Ch CC_CCNTD_0 RW 00h CCNTD[7:0] CURCD[13:8] - CURCD[7:0] 7Eh CC_CURCD_L R 00h CURTHR1[12:5] - CURTHR2[12:5] - 80h VM_OCUR_DUR_1 RW 54h OCURTHR2[12:5] - OCURTHR2[12:5] - OCURTHR2[12:5]	73h	CC_BATCAP1_TH_L	R/W	7Eh			-	CC_BATCA	P1_TH[7:0]				х
76h CC_BATCAP3_TH_U R/W 00h - - - CC_BATCAP3_TH[11:8] 77h CC_BATCAP3_TH_L R/W 1Fh CC_BATCAP3_TH[7:0] CC_MON3 CC_MON2 CC_MON1 78h CC_STAT R 00h - - - CC_MON2 CC_MON1 79h CC_CCNTD_3 R/W 00h - - - CCNTD[27:24] 7Ah CC_CCNTD_2 R/W 00h CCNTD[15:8] CCNTD[15:8] 7Bh CC_CCNTD_1 R/W 00h CCNTD[7:0] CCNTD[7:0] 7Ch CC_CCNTD_0 R/W 00h CURCD[7:0] CURCD[13:8] 7Eh CC_CURCD_L R 00h CURCD[7:0] CURCD[7:0] 7Fh VM_OCUR_THR_1 R/W 64h OCURDUR1[7:0] OCURTHR2[12:5] 80h VM_OCUR_DUR_2 R/W 8Ch OCURDUR2[7:0] OCURDUR2[7:0]	74h	CC_BATCAP2_TH_U	R/W	00h	-	-	-	-		CC_BATCAI	P2_TH[11:8]		х
77h CC_BATCAP3_TH_L RW 1Fh CC_BATCAP3_TH[7:0] 78h CC_STAT R 00h - - - CC_MON3 CC_MON2 CC_MON1 79h CC_CCNTD_3 RW 00h - - - CCNTD[27:24] 7Ah CC_CCNTD_2 RW 00h CCNTD[15:8] CCNTD[15:8] 7Bh CC_CCNTD_1 RW 00h CCNTD[7:0] 7Ch CC_CCNTD_0 RW 00h CCNTD[7:0] 7Dh CC_CURCD_U R 00h CURCD[7:0] 7Eh CC_CURCD_L R 00h CURCD[7:0] 7Fh VM_OCUR_THR_1 RW 64h OCURTHR1[12:5] 80h VM_OCUR_THR_2 RW 86h OCURDUR2[7:0] 82h VM_OCUR_DUR_2 RW 86h OCURDUR2[7:0]	75h	CC_BATCAP2_TH_L	R/W	3Fh				CC_BATCA	P2_TH[7:0]				х
78h CC_STAT R 00h - - - - CC_MON3 CC_MON2 CC_MON1 79h CC_CCNTD_3 R/W 00h - - - CCNTD[27:24] - 7Ah CC_CCNTD_2 R/W 00h CCNTD[15:8] - - CCNTD[15:8] - - CCNTD[7:0] - - CURCD[7:0] - - CURCD[13:8] - - - CURCD[7:0] - <	76h	CC_BATCAP3_TH_U	R/W	00h	-	-	-	-		CC_BATCAI	P3_TH[11:8]		х
79h CC_CCNTD_3 RW 00h - - - CCNTD[27:24] 7Ah CC_CCNTD_2 RW 00h CCNTD[23:16] 7Bh CC_CCNTD_1 RW 00h CCNTD[15:8] 7Ch CC_CCNTD_0 RW 00h CCNTD[7:0] 7Dh CC_CURCD_U R 00h CURCD[13:8] 7Eh CC_CURCD_L R 00h CURCD[7:0] 7Fh VM_OCUR_THR_1 RW 7Dh OCURTHR1[12:5] 80h VM_OCUR_DUR_1 RW 64h OCURTHR2[12:5] 81h VM_OCUR_THR_2 RW 8Ch OCURDUR2[7:0]	77h	CC_BATCAP3_TH_L	R/W	1Fh				CC_BATCA	P3_TH[7:0]				х
7Ah CC_CCNTD_2 R/W 00h CCNTD[23:16] 7Bh CC_CCNTD_1 R/W 00h CCNTD[15:8] 7Ch CC_CCNTD_0 R/W 00h CCNTD[7:0] 7Dh CC_CURCD_U R 00h CURCD[13:8] 7Eh CC_CURCD_L R 00h CURCD[7:0] 7Fh VM_OCUR_THR_1 R/W 7Dh OCURTHR1[12:5] 80h VM_OCUR_DUR_1 R/W 64h OCURDUR1[7:0] 81h VM_OCUR_THR_2 R/W 8Ch OCURDUR2[7:0]	78h	CC_STAT	R	00h	-	-	-	-	-	CC_MON3	CC_MON2	CC_MON1	NA
78h CC_CCNTD_1 R/W 00h CCNTD[15:8] 7Ch CC_CCNTD_0 R/W 00h CCNTD[7:0] 7Dh CC_CURCD_U R 00h CURCD[13:8] 7Eh CC_CURCD_L R 00h CURCD[7:0] 7Fh VM_OCUR_THR_1 R/W 7Dh OCURTHR1[12:5] 80h VM_OCUR_DUR_1 R/W 64h OCURDUR1[7:0] 81h VM_OCUR_THR_2 R/W 5Eh OCURDUR2[7:0] 82h VM_OCUR_DUR_2 R/W 8Ch OCURDUR2[7:0]	79h	CC_CCNTD_3	R/W	00h	-	-	-	-		CCNTC	0[27:24]		NA
7Ch CC_CCNTD_0 R/W 00h CCNTD[7:0] 7Dh CC_CURCD_U R 00h CURCD[13:8] 7Eh CC_CURCD_L R 00h CURCD[7:0] 7Fh VM_OCUR_THR_1 R/W 7Dh OCURTHR1[12:5] 80h VM_OCUR_DUR_1 R/W 64h OCURDUR1[7:0] 81h VM_OCUR_THR_2 R/W 5Eh OCURTHR2[12:5] 82h VM_OCUR_DUR_2 R/W 8Ch OCURDUR2[7:0]	7Ah	CC_CCNTD_2	R/W	00h				CCNTE	0[23:16]				NA
7Dh CC_CURCD_U R 00h CURDIR - CURCD[13:8] 7Eh CC_CURCD_L R 00h CURCD[7:0] 7Fh VM_OCUR_THR_1 RW 7Dh OCURTHR1[12:5] 80h VM_OCUR_DUR_1 RW 64h OCURDUR1[7:0] 81h VM_OCUR_THR_2 RW 5Eh OCURTHR2[12:5] 82h VM_OCUR_DUR_2 RW 8Ch OCURDUR2[7:0]	7Bh	CC_CCNTD_1	R/W	00h				CCNTI	D[15:8]				NA
7Eh CC_CURCD_L R 00h CURCD[7:0] 7Fh VM_OCUR_THR_1 R/W 7Dh OCURTHR1[12:5] 80h VM_OCUR_DUR_1 R/W 64h OCURDUR1[7:0] 81h VM_OCUR_THR_2 R/W 5Eh OCURTHR2[12:5] 82h VM_OCUR_DUR_2 R/W 8Ch OCURDUR2[7:0]	7Ch	CC_CCNTD_0	R/W	00h		CCNTD[7:0]							
7Fh VM_OCUR_THR_1 R/W 7Dh OCURTHR1[12:5] 80h VM_OCUR_DUR_1 R/W 64h OCURDUR1[7:0] 81h VM_OCUR_THR_2 R/W 5Eh OCURTHR2[12:5] 82h VM_OCUR_DUR_2 R/W 8Ch OCURDUR2[7:0]	7Dh	CC_CURCD_U	R	00h	CURDIR	-			CURC	D[13:8]			NA
80h VM_OCUR_DUR_1 R/W 64h OCURDUR1[7:0] 81h VM_OCUR_THR_2 R/W 5Eh OCURTHR2[12:5] 82h VM_OCUR_DUR_2 R/W 8Ch OCURDUR2[7:0]	7Eh	CC_CURCD_L	R	00h	'			CURC	:D[7:0]				NA
81h VM_OCUR_THR_2 RW 5Eh OCURTHR2[12:5] 82h VM_OCUR_DUR_2 RW 8Ch OCURDUR2[7:0]	7Fh	VM_OCUR_THR_1	R/W	7Dh				OCURTH	IR1[12:5]				х
82h VM_OCUR_DUR_2 R/W 8Ch OCURDUR2[7:0]	80h	VM_OCUR_DUR_1	R/W	64h				OCURD	UR1[7:0]				х
	81h	VM_OCUR_THR_2	R/W	5Eh				OCURTH	IR2[12:5]				х
01 Jul 2015 TUR 2 DUI 45	82h	VM_OCUR_DUR_2	R/W	8Ch				OCURD	UR2[7:0]				х
83h VM_OCUR_THR_3 R/W 4Eh OCURTHR3[12:5]	83h	VM_OCUR_THR_3	R/W	4Eh				OCURTH	IR3[12:5]				х

yıste	r Map (conti	nue	ed)															
ADRS.	Register Name	R/W	INIT	D7	D6	D5	D4	D3	D2	D1	D0	OTP (note 4)						
84h	VM_OCUR_DUR_3	R/W	A5h				OCURD	UR3[7:0]				х						
85h	VM_OCUR_MON	R	0Xh	1	-	-	-	1	OCUR3	OCUR2	OCUR1	NA						
86h	VM_BTMP_OV_THR	R/W	8Ch			-	OVBTMP	PTHR[7:0]				х						
87h	VM_BTMP_OV_DUR	R/W	28h				OVBTMP	DUR[7:0]				х						
88h	VM_BTMP_LO_THR	R/W	C8h				LOBTMP	PTHR[7:0]				х						
89h	VM_BTMP_LO_DUR	R/W	28h				LOBTMP	DUR[7:0]				х						
8Ah	VM_BTMP_MON	R	0Xh	-	-	-	-	-	-	OVBTMP	LOBTMP	NA						
8Bh	INT_EN_01	R/W	00h	LED_SCP	LED_OCP	LED_OVP	BUCK5FAULT	BUCK4FAULT	BUCK3FAULT	BUCK2FAULT	BUCK1FAULT	NA						
8Ch	INT_EN_02	R/W	00h	-	-	DCIN_OV_DET	DCIN_OV_RES	DCIN_CLPS_IN	DCIN_CLPS_OUT	DCIN_RMV	-	NA						
8Dh	INT_EN_03	R/W	00h	-	WDOGB	INHIBIT_0(note1)	INHIBIT_0(note1)	INHIBIT_0(note1)	INHIBIT_0(note1)	DCIN_MON_DET	DCIN_MON_RES	NA						
8Eh	INT_EN_04	R/W	00h	VSYS_MON_DET	VSYS_MON_RES	-	-	VSYS_LO_DET	VSYS_LO_RES	VSYS_UV_DET	VSYS_UV_RES	NA						
8Fh	INT_EN_05	R/W	00h	CHG_TRNS	TMP_TRNS	BAT_MNT_IN	BAT_MNT_OUT	CHG_WDT_EXP	EXTEMP_TOUT	-	INHIBIT_0(note1)	NA						
90h	INT_EN_06	R/W	00h	TH_DET	TH_RMV	BAT_DET	BAT_RMV	•	-	TMP_OUT_DET	TMP_OUT_RES	NA						
91h	INT_EN_07	R/W	00h	VBAT_OV_DET	VBAT_OV_RES	VBAT_LO_DET	VBAT_LO_RES	VBAT_SHT_DET	VBAT_SHT_RES	DBAT_DET	-	NA						
92h	INT_EN_08	R/W	00h	-	-	-	-	-	-	VBAT_MON_DET	VBAT_MON_RES	NA						
93h	INT_EN_09	R/W	00h	-	-	-	-	-	CC_MON3_DET	CC_MON2_DET	CC_MON1_DET	NA						
94h	INT_EN_10	R/W	00h	-	-	OCUR3_DET	OCUR3_RES	OCUR2_DET	OCUR2_RES	OCUR1_DET	OCUR1_RES	NA						
95h	INT_EN_11	R/W	00h	VF_DET	VF_RES	VF125_DET	VF125_RES	OVTMP_DET	OVTMP_RES	LOTMP_DET	LOTMP_RES	NA						
96h	INT_EN_12	R/W	00h	-	-	-	-	-	ALM2	ALM1	ALM0	NA						
97h	INT_STAT	R	00h	BUCK_AST	DCIN_AST	VSYS_AST	CHG_AST	BAT_AST	BMON_AST	TMPALE	ALM_AST	NA						
98h	INT_STAT_01	R/W C	00h	LED_SCP	LED_OCP	LED_OVP	BUCK5FAULT	BUCK4FAULT	BUCK3FAULT	BUCK2FAULT	BUCK1FAULT	NA						
99h	INT_STAT_02	R/W C	00h	-	-	DCIN_OV_DET	DCIN_OV_RES	DCIN_CLPS_IN	DCIN_CLPS_OUT	DCIN_RMV	-	NA						
9Ah	INT_STAT_03	R/W C	00h	-	WDOGB	INHIBIT_1(note2) & IGNORE(note3)	INHIBIT_1(note2) & IGNORE(note3)	INHIBIT_1(note2) & IGNORE(note3)	INHIBIT_1(note2) & IGNORE(note3)	DCIN_MON_DET	DCIN_MON_RES	NA						
9Bh	INT_STAT_04	R/W C	00h	VSYS_MON_DET	VSYS_MON_RES	-	-	VSYS_LO_DET	VSYS_LO_RES	VSYS_UVDET	VSYS_UV_RES	NA						
9Ch	INT_STAT_05	R/W C	00h	CHG_TRNS	TMP_TRNS	BAT_MNT_IN	BAT_MNT_OUT	CHG_WDT_EXP	EXTEMP_TOUT	-	INHIBIT_1(note2) & IGNORE(note3)	NA						
9Dh	INT_STAT_06	R/W C	00h	TH_DET	TH_RMV	BAT_DET	BAT_RMV	-	-	TMP_OUT_DET	TMP_OUT_RES	NA						
9Eh	INT_STAT_07	R/W C	00h	VBAT_OV_DET	VBAT_OV_RES	VBAT_LO_DET	VBAT_LO_RES	VBAT_SHT_DET	VBAT_SHT_RES	DBAT_DET	-	NA						
9Fh	INT_STAT_08	R/W C	00h	-	-	-	-	-	-	VBAT_MON_DET	VBAT_MON_RES	NA						
A0h	INT_STAT_09	R/W C	00h	-	-	-	-	-	CC_MON3_DET	CC_MON2_DET	CC_MON1_DET	NA						
A1h	INT_STAT_10	R/W C	00h	-	-	OCUR3_DET	OCUR3_RES	OCUR2_DET	OCUR2_RES	OCUR1_DET	OCUR1_RES	NA						
A2h	INT_STAT_11	R/W C	00h	VF_DET	VF_RES	VF125_DET	VF125_RES	OVTMP_DET	OVTMP_RES	LOTMP_DET	LOTMP_RES	NA						
A3h	INT_STAT_12	R/W C	00h	-	-	-	-	-	ALM2	ALM1	ALM0	NA						
A4h	INT_UPDATE	R/W C	00h	-	-	-	-	-	-	-	INT_UPDATE	NA						
A5h- AFh	-	-	00h	-	-	-	-	-	-	-	-	NA						
B0h	RESERVE_0	R/W	00h			-	RESERV	/E_0[7:0]				NA						
B1h	RESERVE_1	R/W	00h				RESERV	/E_1[7:0]				NA						
B2h	RESERVE_2	R/W	00h				RESERV	/E_2[7:0]				NA						
B3h	RESERVE_3	R/W	00h		RESERVE_3[7:0]													
B4h	RESERVE_4	R/W	00h				RESERV	/E_4[7:0]				NA						
B5h	RESERVE_5	R/W	00h				RESERV	/E_5[7:0]				NA						
B6h	RESERVE_6	R/W	00h				RESERV	/E_6[7:0]				NA						
B7h	RESERVE_7	R/W	00h				RESERV	/E_7[7:0]				NA						
B8h	RESERVE_8	R/W	00h				RESERV	/E_8[7:0]			RESERVE_8[7:0]							

giste	r Map (conti	nue	ea)											
ADRS.	Register Name	R/W	INIT	D7	D6	D5	D4	D3	D2	D1	D0	OTP (note 4)		
BAh- BFh	-	-	00h	1	-	-	-	-	-	-	-	NA		
C0h	VM_VSYS_U	R	00h	-	-	-			VSYS[12:8]			NA		
C1h	VM_VSYS_L	R	00h			-	VSY	S[7:0]				NA		
C2h	VM_SA_VSYS_U	R	00h	-	-	-			VSYS_SA[12:8]			NA		
C3h	VM_SA_VSYS_L	R	00h				VSYS_	SA[7:0]				NA		
C4h- CFh	-	-	00h	-	-	-	-	-	-	-	-	NA		
D0h	VM_SA_IBAT_MIN_U	R	00h	IBAT_SA_MIN_DIR	-	-	-		IBAT_SA	_MIN[11:8]		NA		
D1h	VM_SA_IBAT_MIN_L	R	00h				IBAT_SA	_MIN[7:0]				NA		
D2h	VM_SA_IBAT_MAX_U	R	00h	IBAT_SA_MAX_DIR	-	-	-		IBAT_SA_	MAX[11:8]		NA		
D3h	VM_SA_IBAT_MAX_L	R	00h				IBAT_SA	_MAX[7:0]				NA		
D4h	VM_SA_VBAT_MIN_U	R	00h	-	-	-		V	BAT_SA_MIN[12	:8]		NA		
D5h	VM_SA_VBAT_MIN_L	R	00h				VBAT_SA	A_MIN[7:0]				NA		
D6h	VM_SA_VBAT_MAX_ U	R	00h	1	-	-		VI	BAT_SA_MAX[12	::8]		NA		
D7h	VM_SA_VBAT_MAX_ L	R	00h			-	VBAT_SA	_MAX[7:0]				NA		
D8h	VM_SA_VSYS_MIN_ U	R	00h	1	VSYS_SA_MIN[12:8]							NA		
D9h	VM_SA_VSYS_MIN_L	R	00h		VSYS_SA_MIN[7:0]							NA		
DAh	VM_SA_VSYS_MAX_ U	R	0Fh	1	ī	-		V	SYS_SA_MAX[12	::8]		NA		
DBh	VM_SA_VSYS_MAX_ L	R	FFh				VSYS_SA	_MAX[7:0]				NA		
DCh	VM_SA_MINMAX_CL R	R/W C	8Fh	1	-	VSYS_SA_MAX_CLR	VSYS_SA_MIN_CLR	IBAT_SA_MAX_CLR	IBAT_SA_MIN_CLR	VBAT_SA_MAX_CLR	VBAT_SA_MIN_CLR	NA		
DDh- DFh	-	1	FFh	1	ī	-	-	-	-	-	-	NA		
E0h	REX_CCNTD_3	R	00h	-	-	-	-		REX_CCI	NTD[27:24]		NA		
E1h	REX_CCNTD_2	R	00h				REX_CC	NTD[23:16]				NA		
E2h	REX_CCNTD_1	R	1Fh				REX_CC	NTD[15:8]				NA		
E3h	REX_CCNTD_0	R	FFh				REX_CC	CNTD[7:0]				NA		
E4h	REX_SA_VBAT_U	R	00h	1	-	-		R	EX_VBAT_SA[12	:8]		NA		
E5h	REX_SA_VBAT_L	R	00h				REX_VBA	AT_SA[7:0]				NA		
E6h	REX_CTRL_1	R/W	00h	-	-	-	REX_CLR	REX_EN	REX_PMU_STA TE_MASK	REX_D	OUR[1:0]	NA		
E7h	REX_CTRL_2	R/W	00h				REX_CUR	CD_TH[7:0]				NA		
E8h	FULL_CCNTD_3	R	00h	-	-	-	-		FULL_CC	NTD[27:24]		NA		
E9h	FULL_CCNTD_2	R	00h				FULL_CC	NTD[23:16]				NA		
EAh	FULL_CCNTD_1	R	00h		FULL_CCNTD[15:8]									
EBh	FULL_CCNTD_0	R	00h				FULL_C	CNTD[7:0]				NA		
ECh	FULL_CTRL	R/W C	00h	-	-	-	FULL_CLR	-	-	-	-	NA		
EDh- Efh	-	-	00h	-	-	-	-	-	-	-	-	NA		
F0h	CCNTD_CHG_3	R/W	09h			•	CHG_CCI	NTD[31:24]		•	•	NA		
F1h	CCNTD_CHG_2	R/W	0Ah				CHG_CCI	NTD[23:16]				NA		
BAh- FFh	-	-	00h	-	-	-	-	-	-	-	-	NA		
_	1\ Diagga always		_					·	I.	·				

⁽note1) Please always write "0" to the INHIBIT-0 register when in use.

⁽note2) Please always write "1" to the INHIBIT-1 register when in use.

⁽note3) Please always ignore the read data.

⁽note4) Legend of the "OTP" Column: "NA"=Not OTP target, "x"=OTP target

Address 00h: DEVICE Register (R, R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00h	DEVICE	R, R/W	I2C_UNEMPTY		LSIVER [2:0]			DEVICE	EID[3:0]	
0011	Initial Value	41h	0	1	0	0	0	0	0	1

I2C_UNEMPTY [Read only]
0: The buffer passed to RTC from I2C is empty.
1: The buffer passed to RTC from I2C is not empty.

Bit 6-4: LSIVER [2:0] LSI Version Bit 3-0 : DEVICE ID[3:0] Device ID

Address 01h: PWRCTRL Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
01h	PWRCTRL	R/W	INHIBIT_0(note1)	STBY_INV	INHIBIT_1(note2)	LPSR_MODE	PWRON_	DBNC[1:0]	WDOGB_PWROFF	INHIBIT_0(note1)
UIII	Initial Value	32h	0	0	1	1	0	0	1	0

INHIBIT_0(note1) For ROHM factory only Bit 7:

STBY_INV 0: STANDBY pin HIGH active Bit 6: STANDBY pin polarity setting

1: STANDBY pin LOW active

Bit 5: INHIBIT_1(note1) For ROHM factory only

Bit 4: LPSR MODE

O: Change from RUN state to SNVS state when PWRON H -> L.

1: Change from RUN state to LPSR state when PWRON H -> L.

PWRON hardware debounce time setting Bit 3-2: PWRON DBNC[1:0]

PWRON_DBNC[1:0]	Time (ms)
00	0
01	31
10	125
11	750

Bit 1: WDOGB PWROFF

Select the reset mode triggered by assertion of WDOGB pin. When WDOGB is asserted to L, Warm Reset event occurs. 0: Warm Reset POR is asserted to low for 1ms.□ When WDOGB is asserted to L, Cold Reset event occurs. 1: Cold Reset

All voltage rails will be initialized and then re-boot. And the all OTP configurable registers will be initialized.

Bit 0 : INHIBIT_0(note1) For ROHM factory only

Address 02h: BUCK1 MODE Register (R/W)

Addres (Index		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
02h	BUCK1_MODE	R/W	BUCK1_RAN	MPRATE[1:0]	-	BUCK1_PWM_ FIX	BUCK1_SNVS _ON	BUCK1_RUN_ ON	BUCK1_LPSR _ON	BUCK1_LP_O N
0211	Initial Value	05h	0	0	0	0	0	1	0	1

Bit 7-6: BUCK1_RAMPRATE[1:0] BUCK1RAMPRATE[1:0] BUCK1 DVS ramp rate setting

00: 10.00mV/usec 01: 5.00mV/usec 10: 2.50mV/usec 11: 1.25mV/usec

BUCK1_PWM_FIX

BUCK1 operates in auto mode.
 BUCK1 operates in PWM mode.
 Cleared BUCK1_PWM_FIX bit to 0, when BUCK1 OCP failure is detected.

Bit 3:

BUCK1_SNVS_ON
0: BUCK1 is OFF at SNVS state.
1: BUCK1 is ON at SNVS state.

Cleared BUCK1_SNVS_ON bit to 0, when BUCK1 OCP failure is detected.

BUCK1_RUN_ON
0: BUCK1 is OFF at RUN state.

1: BUCK1 is ON at RUN state.
Cleared BUCK1_RUN_ON bit to 0, when BUCK1 OCP failure is detected.

Bit 1:

BUCK1_LPSR_ON
0: BUCK1 is OFF at LPSR state.
1: BUCK1 is ON at LPSR state.

Cleared BUCK1_LPSR_ON bit to 0, when BUCK1 OCP failure is detected.

Bit 0:

BUCK1_LP_ON
0: BUCK1 is OFF at SUSPEND state.

I: BUCK1 is ON at SUSPEND state.

Cleared BUCK1_LP_ON bit to 0, when BUCK1 OCP failure is detected.

Address 03h: BUCK2 MODE Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
03h	BUCK2_MODE	R/W	BUCK2_RAM	//PRATE[1:0]	-	BUCK2_PWM_ FIX	BUCK2_SNVS _ON	BUCK2_RUN_ ON	BUCK2_LPSR _ON	BUCK2_LP_O N
0311	Initial Value	05h	0 0		0	0	0	1	0	1

Bit 7-6: BUCK2_RAMPRATE[1:0] BUCK2RAMPRATE[1:0] BUCK2 DVS ramp rate setting

00: 10.00mV/usec 01: 5.00mV/usec 10: 2.50mV/usec 11: 1.25mV/usec

BUCK2_PWM_FIX

O: BUCK2 operates in auto mode.

1: BUCK2 operates in PWM mode.

Cleared BUCK2_PWM_FIX bit to 0, when BUCK2 OCP failure is detected.

BUCK2 SNVS ON Bit 3:

0: BUCK2 is OFF at SNVS state. 1: BUCK2 is ON at SNVS state.

Cleared BUCK2_SNVS_ON bit to 0, when BUCK2 OCP failure is detected.

BUCK2_RUN_ON
0: BUCK2 is OFF at RUN state.

1: BUCK2 is ON at RUN state. Cleared BUCK2_RUN_ON bit to 0, when BUCK2 OCP failure is detected.

Bit 1:

BUCK2_LPSR_ON
0: BUCK2 is OFF at LPSR state.
1: BUCK2 is ON at LPSR state.

Cleared BUCK2_LPSR_ON bit to 0, when BUCK2 OCP failure is detected.

Bit 0 :

BUCK2_LP_ON
0: BUCK2 is OFF at SUSPEND state.

I: BUCK2 is ON at SUSPEND state.

Cleared BUCK2_LP_ON bit to 0, when BUCK2 OCP failure is detected.

Address 04h: BUCK3 MODE Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
04h	BUCK3_MODE	R/W	-	=	-	BUCK3_PWM_ FIX	BUCK3_SNVS _ON	BUCK3_RUN_ ON	BUCK3_LPSR _ON	BUCK3_LP_O N
0411	Initial Value	05h	0	0	0	0	0	1	0	1

BUCK3 PWM FIX Bit 4:

BUCK3 operates in auto mode.
 BUCK3 operates in PWM mode.

Cleared BUCK3_PWM_FIX bit to 0, when BUCK3 OCP failure is detected.

Bit 3:

BUCK3_SNVS_ON
0: BUCK3 is OFF at SNVS state.

1: BUCK3 is ON at SNVS state. Cleared BUCK3_SNVS_ON bit to 0, when BUCK3 OCP failure is detected.

Bit 2: BUCK3_RUN_ON

0: BUCK3 is OFF at RUN state. 1: BUCK3 is ON at RUN state.

Cleared BUCK3_RUN_ON bit to 0, when BUCK3 OCP failure is detected.

Bit 1:

BUCK3_LPSR_ON
0: BUCK3 is OFF at LPSR state. 1: BUCK3 is ON at LPSR state

Cleared BUCK3_LPSR_ON bit to 0, when BUCK3 OCP failure is detected.

BUCK3_LP_ON Bit 0:

O: BUCK3 is OFF at SUSPEND state.

1: BUCK3 is ON at SUSPEND state.

Cleared BUCK3_LP_ON bit to 0, when BUCK3 OCP failure is detected.

Address 05h: BUCK4 MODE Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0.Eh	BUCK4_MODE	R/W	-	-	-	BUCK4_PWM_ FIX	BUCK4_SNVS _ON	BUCK4_RUN_ ON	BUCK4_LPSR _ON	BUCK4_LP_O N
05h —	Initial Value	05h	0	0	0	0	0	1	0	1

BUCK4_PWM_FIX Bit 4:

0: BUCK4 operates in auto mode. 1: BUCK4 operates in PWM mode

Cleared BUCK4_PWM_FIX bit to 0, when BUCK4 OCP failure is detected.

BUCK4 SNVS ON Bit 3:

0: BUCK4 is OFF at SNVS state. 1: BUCK4 is ON at SNVS state.

Cleared BUCK4_SNVS_ON bit to 0, when BUCK4 OCP failure is detected.

Bit 2:

BUCK4_RUN_ON
0: BUCK4 is OFF at RUN state. 1: BUCK4 is ON at RUN state

Cleared BUCK4 RUN ON bit to 0, when BUCK4 OCP failure is detected.

BUCK4_LPSR_ON

0: BUCK4 is OFF at LPSR state. 1: BUCK4 is ON at LPSR state.

Cleared BUCK4_LPSR_ON bit to 0, when BUCK4 OCP failure is detected.

Bit 0 · BUCK4 LP ON

0: BUCK4 is OFF at SUSPEND state.

1: BUCK4 is ON at SUSPEND state. Cleared BUCK4_LP_ON bit to 0, when BUCK4 OCP failure is detected.

Address 06h: BUCK5 MODE Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
06h	BUCK5_MODE	R/W	-	-	-	BUCK5_PWM_ FIX	BUCK5_SNVS _ON	BUCK5_RUN_ ON	BUCK5_LPSR _ON	BUCK5_LP_O N
	Initial Value	05h	0	0	0	0	0	1	0	1

Bit 4: BUCK5_PWM_FIX

0: BUCK5 operates in auto mode

1: BUCK5 operates in PWM mode.
Cleared BUCK5_PWM_FIX bit to 0, when BUCK5 OCP failure is detected.

Bit 3:

BUCK5_SNVS_ON
0: BUCK5 is OFF at SNVS state.
1: BUCK5 is ON at SNVS state.

Cleared BUCK5_SNVS_ON bit to 0, when BUCK5 OCP failure is detected.

Bit 2 ·

BUCK5_RUN_ON
0: BUCK5 is OFF at RUN state.
1: BUCK5 is ON at RUN state.

Cleared BUCK5_RUN_ON bit to 0, when BUCK5 OCP failure is detected.

BUCK5_LPSR_ON
0: BUCK5 is OFF at LPSR state.
1: BUCK5 is ON at LPSR state.
Cleared BUCK5_LPSR_ON bit to 0, when BUCK5 OCP failure is detected.

BUCK5_LP_ON Bit 0:

0: BUCK5 is OFF at SUSPEND state.
1: BUCK5 is ON at SUSPEND state.

Cleared BUCK5_LP_ON bit to 0, when BUCK5 OCP failure is detected.

Address 07h: BUCK1 VOLT H Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
07h	BUCK1_VOLT_H	R/W	BUCK1_DVSS EL	BUCK1_STBY _DVS		BUCK1_H[5:0]					
0711	Initial Value	8Ch	1	0	0	0	1	1	0	0	

Bit 7 · BUCK1 DVSSEL Select BUCK1 output voltage

O: Use BUCK1_L bits setting for BUCK1 output voltage.

1: Use BUCK1_H bits setting for BUCK1 output voltage.

Bit 6:

BUCK1_STBY_DVS Select the DVS control event
0: DVS fucntion for BUCK1 is handled according to BUCK1_DVSSEL bit.
1: DVS fucntion for BUCK1 is handled according to Power State: RUN/CLEAN=BUCK1_H voltage setting, SUSPEND/LPSR=BUCK1_L voltage setting.

Bit 5-0: BUCK1 H[5:0] Sets the BUCK1 output voltage. See Table 4 for all possible configurations.

Address 08h: BUCK1 VOLT L Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
08h	BUCK1_VOLT_L	R/W	-	-	BUCK1_L[5:0]					
Voll	Initial Value	08h	0	0	0	0	1	0	0	0

Bit 5-0: BUCK1_L[5:0] Sets the BUCK1 output voltage.

See Table 4 for all possible configurations.

Address 09h: BUCK2 VOLT H Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
09h	BUCK2_VOLT_H	R/W	BUCK2_DVSS EL	BUCK2_STBY _DVS	BUCK2_H[5:0]					
0911	Initial Value	88h	1	0	0	0	1	0	0	0

BUCK2_DVSSEL Bit 7: Select BUCK2 output voltage 0: Use BUCK2_L bits setting for BUCK2 output voltage.

1: Use BUCK2_H bits setting for BUCK2 output voltage

BUCK2_STBY_DVS Select the DVS control event
0: DVS fucntion for BUCK2 is handled according to BUCK2_DVSSEL bit.
1: DVS fucntion for BUCK2 is handled according to Power State: RUN/CLEAN=BUCK2_H voltage setting, SUSPEND/LPSR=BUCK2_L voltage setting.

Bit 5-0: BUCK2_H[5:0] Sets the BUCK2 output voltage. See Table 4 for all possible configurations.

Address 0Ah: BUCK2 VOLT L Register (R/W)

	idress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0Ah	BUCK2_VOLT_L	R/W	-	-	BUCK2_L[5:0]					
'	UAII	Initial Value	08h	0	0	0	0	1	0	0	0

Sets the BUCK2 output voltage. See Table 4 for all possible configurations. Bit 5-0: BUCK2_L[5:0]

Address 0Bh: BUCK3 VOLT Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0Bh	BUCK3_VOLT	R/W	-	-	- BUCK3[4:0]					
UDII	Initial Value	0Ch	0	0	0	0	1	1	0	0

Bit 5-0: BUCK3[4:0] Sets the BUCK3 output voltage. See Table 4 for all possible configurations.

Address 0Ch: BUCK4 VOLT Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0Ch	BUCK4_VOLT	R/W	-	-	=	BUCK4[4:0]					
UCII	Initial Value	04h	0	0	0	0	0	1	0	0	

Bit 5-0: BUCK4[4:0] Sets the BUCK4 output voltage. See Table 4 for all possible configurations.

Address 0Dh: BUCK5 VOLT Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0Dh	BUCK5_VOLT	R/W	-	-	-	BUCK5[4:0]				
וושט	Initial Value	1Eh	0	0	0	1	1	1	1	0

Sets the BUCK5 output voltage Bit 5-0: BUCK5[4:0] See Table 4 for all possible configurations.

Address 0Eh: LED CTRL Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	0Eh	LED_CTRL	R/W	-	-	=	CHGDONE_LE D_EN	-	LED_RUN_ON	LED_LPSR_O N	LED_LP_ON
	UEII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit4: CHGDONE_LED_EN Select the LED (Shared with READY output pin) control mode with charge completion status

0. Disable

Not automatically indicate charge competion status, but can be controlled by READY_FORCE_LOW bit.

Automatically indicate charge completion status, READY output goes L. But READY_FORCE_LOW bit control is prioritized. 1: Enable

Bit2:

O: White LED boost converter is OFF at RUN state.

He White LED boost converter is ON at RUN state.

O: White LED boost converter is ON at RUN state.

Bit1:

LED_LPSR_ON
0: White LED boost converter is OFF at LPSR state. 1: White LED boost converter is ON at LPSR state.

Bit0:

LED_LP_ON
0: White LED boost converter is OFF at SUSPEND state. 1: White LED boost converter is ON at SUSPEND state.

Address 0Fh: LED DIMM Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0Fh	LED_DIMM	R/W	-	-			LED_DI	MM[5:0]		
JFII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 5-0: LED_DIMM[5:0]

Select White LED boost converter dimming

LED DIMM[5:0]	LED current
00h	10 uA
01h	20 uA
02h	30 uA
03h	50 uA
04h	70 uA
05h	100 uA
06h	200 uA
07h	300 uA
08h	500 uA
09h	700 uA
0Ah	1 mA
0Bh	2 mA
0Ch	3 mA
0Dh	4 mA
0Eh	5 mA
0Fh	6 mA
10h	7 mA
11h	8 mA
12h	9 mA
13h	10 mA
14h	11 mA
15h	12 mA
16h	13 mA
17h	14 mA
18h	15 mA
19h	16 mA
1Ah	17 mA
1Bh	18 mA
1Ch	19 mA
1Dh	20 mA
1Eh	21 mA
1F	22 mA
20h	23 mA
21h	24 mA
22h	25 mA
23~3Fh	don't use

Address 10h: LDO MODE1 Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
101	LDO_MODE1	R/W	LDO1_SNVS_ ON	LDO1_RUN_O N	LDO1_LPSR_ ON	LDO1_LP_ON	LDO4_REG_M ODE	LDO3_REG_M ODE	-	INHIBIT_0(note1)
101	Initial Value	74h	0	1	1	1	0	1	0	0

Bit 7:

LDO1_SNVS_ON
0: LDO1 is OFF at SNVS state.
1: LDO1 is ON at SNVS state.

Bit 6:

LDO1_RUN_ON
0: LDO1 is OFF at RUN state.
1: LDO1 is ON at RUN state.

Bit 5:

LDO1_LPSR_ON
0: LDO1 is OFF at LPSR state.
1: LDO1 is ON at LPSR state.

Bit 4:

LDO1_LP_ON
0: LDO1 is OFF at SUSPEND state.
1: LDO1 is ON at SUSPEND state.

Bit 3 :

LDO4_REG_MODE
0: LDO4 is controlled via external pin (LDO4VEN).
1: LDO4 is controlled via register.

Bit 2:

LDO3_REG_MODE
0: LDO3 starts when DCIN is supplied.
1: LDO3 is controlled via register.

Bit 0 : INHIBIT_0(note1) For ROHM factory only

Address 11h: LDO MODE2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
11h	LDO_MODE2	R/W	LDO3_SNVS_ ON	LDO3_RUN_O N	LDO3_LPSR_ ON	LDO3_LP_ON	LDO2_SNVS_ ON	LDO2_RUN_O N	LDO2_LPSR_ ON	LDO2_LP_ON
'	Initial Value	F5h	1	1	1	1	0	1	0	1

Bit 7:

LDO3_SNVS_ON
0: LDO3 is OFF at SNVS state.
1: LDO3 is ON at SNVS state.

LDO3_RUN_ON
0: LDO3 is OFF at RUN state. 1: LDO3 is ON at RUN state.

Bit 5:

LDO3_LPSR_ON
0: LDO3 is OFF at LPSR state.
1: LDO3 is ON at LPSR state.

Bit 4:

LDO3_LP_ON
0: LDO3 is OFF at SUSPEND state. 1: LDO3 is ON at SUSPEND state.

Bit 3:

LDO2_SNVS_ON
0: LDO2 is OFF at SNVS state. 1: LDO2 is ON at SNVS state.

Bit 2:

LDO2_RUN_ON
0: LDO2 is OFF at RUN state.
1: LDO2 is ON at RUN state.

Bit 1 ·

LDO2_LPSR_ON
0: LDO2 is OFF at LPSR state. 1: LDO2 is ON at LPSR state.

Bit 0:

LDO2_LP_ON
0: LDO2 is OFF at SUSPEND state.
1: LDO2 is ON at SUSPEND state.

Address 12h: LDO MODE3 Register (R/W)

idress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
12h	LDO_MODE3	R/W	LDO5_SNVS_ ON	LDO5_RUN_O N	LDO5_LPSR_ ON	LDO5_LP_ON	LDO4_SNVS_ ON	LDO4_RUN_O N	LDO4_LPSR_ ON	LDO4_LP_ON
1211	Initial Value	57h	0	1	0	1	0	1	1	1

Bit 7:

LDO5_SNVS_ON
0: LDO5 is OFF at SNVS state.
1: LDO5 is ON at SNVS state.

Bit 6: LDO5_RUN_ON

0: LDO5 is OFF at RUN state. 1: LDO5 is ON at RUN state.

Bit 5: LDO5_LPSR_ON
0: LDO5 is OFF at LPSR state.

1: LDO5 is ON at LPSR state.

0: LDO5 is OFF at SUSPEND state. 1: LDO5 is ON at SUSPEND state.

Bit 3:

LDO4_SNVS_ON
0: LDO4 is OFF at SNVS state. 1: LDO4 is ON at SNVS state.

LDO4_RUN_ON
0: LDO4 is OFF at RUN state. 1: LDO4 is ON at RUN state.

Bit 1:

LDO4_LPSR_ON
0: LDO4 is OFF at LPSR state. 1: LDO4 is ON at LPSR state.

Bit 0 :

LDO4_LP_ON
0: LDO4 is OFF at SUSPEND state. 1: LDO4 is ON at SUSPEND state.

Address 13h: LDO MODE4 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
13h	LDO_MODE4	R/W	DVREF_SNVS _ON	DVREF_RUN_ ON	DVREF_LPSR _ON	DVREF_LP_O N	LDO_LPSR_S NVS_ON	LDO_LPSR_R UN_ON	LDO_LPSR_L PSR_ON	LDO_LPSR_L P_ON
1311	Initial Value	57h	0	1	0	1	0	1	1	1

Bit 7:

DVREF_SNVS_ON
0: DVREF is OFF at SNVS state.
1: DVREF is ON at SNVS state.

DVREF_RUN_ON
0: DVREF is OFF at RUN state. 1: DVREF is ON at RUN state.

Bit 5:

DVREF_LPSR_ON
0: DVREF is OFF at LPSR state. 1: DVREF is ON at LPSR state.

Bit 4:

DVREF_LP_ON
0: DVREF is OFF at SUSPEND state. 1: DVREF is ON at SUSPEND state.

Bit 3:

LDO_LPSR_SNVS_ON
0: LDO_LPSR is OFF at SNVS state. 1: LDO_LPSR is ON at SNVS state.

Bit 2:

LDO_LPSR_RUN_ON
0: LDO LPSR is OFF at RUN state. 1: LDO_LPSR is ON at RUN state.

Bit 1:

LDO_LPSR_LPSR_ON
0: LDO_LPSR is OFF at LPSR state. 1: LDO_LPSR is ON at LPSR state.

Bit 0:

LDO_LPSR_LP_ON
0: LDO_LPSR is OFF at SUSPEND state.
1: LDO_LPSR is ON at SUSPEND state.

Address 14h: LDO1 VOLT Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
14h	LDO1_VOLT	R/W	-	-		LDO1[5:0]					
1411	Initial Value	32h	0	0	1	1	0	0	1	0	

Bit5-0: LDO1[5:0]

Sets the LDO1 output voltage. See Table 4 for all possible configurations.

Address 15h: LDO2 VOLT Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
15h	LDO2_VOLT	R/W	-	-		LDO2[5:0]					
1311	Initial Value	32h	0	0	1	1	0	0	1	0	

Bit5-0: LDO2[5:0]

Sets the LDO2 output voltage. See Table 4 for all possible configurations.

Address 16h: LDO3 VOLT Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
16h	LDO3_VOLT	R/W	-	-		LDO3[5:0]						
1011	Initial Value	32h	0	0	1	1	0	0	1	0		

Bit5-0: LDO3[5:0]

Sets the LDO3 output voltage. See Table 4 for all possible configurations.

Address 17h: LDO4 VOLT Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
17h	LDO4_VOLT	R/W	-	-			LDO	4[5:0]		
1711	Initial Value	32h	0	0	1	1	0	0	1	0

Bit5-0: LDO4[5:0]

Sets the LDO4 output voltage.

See Table 4 for all possible configurations.

Address 18h: LDO5 VOLT H Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
18h	LDO5_VOLT_H	R/W	-	-	LDO5_H[5:0]					
1011	Initial Value	14h	0	0	0	1	0	1	0	0

Bit5-0: LDO5_H[5:0] LDO5 output voltage See the description of LDO5_VOLT_L register below.

Address 19h: LDO5 VOLT L Register (R/W)

	dress idex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
_	19h	LDO5_VOLT_L	R/W	-	=	LDO5_L[5:0]					
'	1911	Initial Value	32h	0	0	1	1	0	0	1	0

Bit5-0: LDO5_L[5:0] LDO5 output voltage

If LDO5VSEL = L, LDO5 output voltage corresponds to the setting of LDO5_L bits.

If LDO5VSEL = H, LDO5 output voltage corresponds to the setting of LDO5_H bits.

Address 1Ah: BUCK PD DIS Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1Ah	BUCK_PD_DIS	R/W	-	-	-	BUCK5_PD_DI S	BUCK4_PD_DI S	BUCK3_PD_DI S	BUCK2_PD_DI S	BUCK1_PD_DI S
IAII	Initial Value	00h	0	0	0	0	0	0	0	0

Rit4 ·

BUCK5_PD_DIS
0: Discharge for BUCK5 turn off is enabled.
1: Discharge for BUCK5 turn off is disabled.

Bit3: BUCK4_PD_DIS

O: Discharge for BUCK4 turn off is enabled.
Discharge for BUCK4 turn off is disabled.

Bit2:

BUCK3_PD_DIS
0: Discharge for BUCK3 turn off is enabled.
1: Discharge for BUCK3 turn off is disabled.

Bit1: BUCK2_PD_DIS

Discharge for BUCK2 turn off is enabled.
 Discharge for BUCK2 turn off is disabled.

Rit0 ·

BUCK1_PD_DIS
0: Discharge for BUCK1 turn off is enabled.
1: Discharge for BUCK1 turn off is disabled.

Address 1Bh: LDO PD DIS Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1Bh	LDO_PD_DIS	R/W	-	DVREF_PD_DI S	LDO_LPSR_P D_DIS	LDO5_PD_DIS	LDO4_PD_DIS	LDO3_PD_DIS	LDO2_PD_DIS	LDO1_PD_DIS
ווטו	Initial Value	00h	0	0	0	0	0	0	0	0

DVREF PD DIS Bit 6:

O: Discharge for DVREF turn off is enabled
D: Discharge for DVREF turn off is disabled.

Bit 5:

LDO LPSR PD DIS
0: Discharge for LDO_LPSR turn off is enabled
1: Discharge for LDO_LPSR turn off is disabled.

LDO5 PD DIS Bit 4:

Discharge for LDO5 turn off is enabled
 Discharge for LDO5 turn off is disabled.

Bit 3:

LDO4_PD_DIS
0: Discharge for LDO4 turn off is enabled
1: Discharge for LDO4 turn off is disabled.

LDO3 PD DIS Bit 2:

0: Discharge for LDO3 turn off is enabled 1: Discharge for LDO3 turn off is disabled.

Bit 1:

LDO2_PD_DIS
0: Discharge for LDO2 turn off is enabled 1: Discharge for LDO2 turn off is disabled.

Bit 0: LDO1_PD_DIS

O: Discharge for LDO1 turn off is enabled
Discharge for LDO1 turn off is disabled.

Address 1Ch: GPO Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1Ch	GPO	R/W	-	-	INHIBIT_0(note1)	GPO1_MODE	-	READY_FORC E_LOW	INHIBIT_1(note2)	GPO1_OUT
1011	Initial Value	03h	0	0	0	0	0	0	1	1

Bit 5: INHIBIT_0 (note1) For ROHM factory only Bit 4: GPO1 Output mode setting

GPO1_MODE 0: Open drain output mode 1: CMOS output mode

READY_FORCE_LOW Bit 2:

Force READY pin to be L output

READY pin be controlled as per Power State, Power Sequence, DVS and PWRON push status. 0: Normal

Bit 1: INHIBIT_1 (note2) For ROHM factory only GPO1_OUT GPO1 Output setting Bit 0:

1: Hi-Z [Open drain output mode] / High [CMOS output mode]

Address 1Dh: OUT32K Register (R,R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1Dh	OUT32K	R,R/W	OTP_STATUS	-	-	-	-	=	OUT32K_MOD E	OUT32K_EN
ווטוו	Initial Value	01h	0	0	0	0	0	0	0	1

Bit 7: OTP_STATUS OTP test status [Read only]

0: Already stored sample 1: Not stored sample

OUT32K_MODE Bit 1: CLK32KOUT output mode setting

O: Open drain output mode
 CMOS output mode

CLK32KOUT clock output enable

0: Disable [Hi-Z at Open drain mode, H at CMOS mode]

1: Enable

Address 1Eh: SEC Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1Eh	SEC	R/W	-	S40	S20	S10	S8	S4	S2	S1
TEN	Initial Value	XXh	0	х	х	х	х	х	х	х

Bit 6-0: S1 to S40 Second Counter.

The second digits range from 00 to 59 and are carried to the minute digit in transition from 59 to 00.Configured in BCD (Binary-Coded Decimal)

Any writing to the second counter resets divider units of less than 1 second.

RTC calendar and time information (address from 1Eh to 24h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 1Fh: MIN Register (R/W)

ddress (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1Fh	MIN	R/W	-	M40	M20	M10	M8	M4	M2	M1
IFII	Initial Value	XXh	0	х	х	х	х	х	х	х

Bit 6-0: M1 to M40 Minute Counter.

The minute digits range from 00 to 59 and are carried to the hour digits in transition from 59 to 00.Configured in BCD (Binary-Coded Decimal) RTC calendar and time information (address from 1Eh to 24h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 20h: HOUR Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
20h	HOUR	R/W	12/24	-	H20/PA	H10	Н8	H4	H2	H1
2011	Initial Value	XXh	0	0	х	х	х	х	х	х

Bit 7: 12/24 Selects whether 12-hour clock or 24-hour clock is used.

0: 12hour clock

1: 24hour clock

Bit 5-0: H20 to H1 Hour Counter.
The hour digits' range are as shown in this table and are carried to the day-of-month and day-of-week digits in transition from PM11 to AM12 or from 23 to 00. Configured in BCD (Binary-Coded Decimal)
RTC calendar and time information (address from 1Eh to 24h) should be read in accordance with continuous manner,

so stop condition should not be inserted during reading these registers.

24-hour clock	12-hour clock	24-hour clock	12-hour clock
0	12(AM12)	12	32(PM12)
1	01(AM1)	13	21(PM1)
2	02(AM2)	14	22(PM2)
3	03(AM3)	15	23(PM3)
4	04(AM4)	16	24(PM4)
5	05(AM5)	17	25(PM5)
6	06(AM6)	18	26(PM6)
7	07(AM7)	19	27(PM7)
8	08(AM8)	20	28(PM8)
9	09(AM9)	21	29(PM9)
10	10(AM10)	22	30(PM10)
11	11(AM11)	23	31(PM11)

Address 21h: WEEK Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
21h	WEEK	R/W	-	-	-	-	-	W4	W2	W1
2111	Initial Value	0Xh	0	0	0	0	0	х	х	х

Bit 2-0: W4 to W1 Day-of-week Counter.

The day-of-week counter is incremented by 1 when the hour digits are carried to the day-of-month digits. Configured in BCD (Binary-Coded Decimal) Correspondences between days of the week and the day-of-week digit are user-definable

Correspondences between days of the week and the day-of-week digit are user-definable.

(Ex. Sunday = 0, 0, 0)

The writing of (1, 1, 1) to (W4, W2, W1) is prohibited except when days of the week are unused.

RTC calendar and time information (address from 1Eh to 24h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 22h: DAY Register (R/W)

	dress dex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
,	2h	DAY	S/W	-	-	D20	D10	D8	D4	D2	D1
	.211	Initial Value	XXh	0	0	х	х	х	х	х	х

D20 to D1 Day-of-month Counte

The day-of-month digits (D20 to D1) range from 1 to 31 for January, March, May, July, August, October, and December,

from 1 to 30 for April, June, September, and November, from 1 to 29 for February in leap years, from 1 to 28 for February in ordinary years.

The day-of-month digits are carried to the month digits in reversion from the last day of the month to 1. Configured in BCD (Binary-Coded Decimal) RTC calendar and time information (address from 1Eh to 24h) should be read in accordance with continuous manner,

so stop condition should not be inserted during reading these registers.

Address 23h: MONTH Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
23h	MONTH	R/W	-	-	-	MO10	MO8	MO4	MO2	MO1
2311	Initial Value	XXh	0	0	0	х	х	х	х	х

Bit 4-0: MO10 to MO1 Month Counte

The month digits (M010 to M01) range from 1 to 12 and are carried to the year digits in reversion from 12 to 1. Configured in BCD (Binary-Coded Decimal) RTC calendar and time information (address from 1Eh to 24h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 24h: YEAR Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
24h	YEAR	R/W	Y80	Y40	Y20	Y10	Y8	Y4	Y2	Y1
2411	Initial Value	XXh	х	х	х	х	х	х	х	х

Bit 7-0: Y80 to Y1 Year Counter.

The year digits (Y80 to Y1) range from 00 to 99 and are carried to the 19/20 digits in reversion from 99 to 00. 00, 04, 08, ..., 92 and 96 in leap years. Configured in BCD (Binary-Coded Decimal)

RTC calendar and time information (address from 1Eh to 24h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 25h: ALM0 SEC Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
25h	ALM0_SEC	R/W	-	A0S40	A0S20	A0S10	A0S8	A0S4	A0S2	A0S1
2311	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 6-0: A0S40 to A0S1 Alarm0 Second threshold value. Configured in BCD (Binary-Coded Decimal)

Address 26h: ALMO MIN Register (R/W)

Addres (Index	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
26h	ALM0_MIN	R/W	-	A0M40	A0M20	A0M10	A0M8	A0M4	A0M2	A0M1
2011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 6-0: A0M40 to A0M1 Alarm0 Minute threshold value.Configured in BCD (Binary-Coded Decimal)

Address 27h: ALM0 HOUR Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
27h	ALM0_HOUR	R/W	A0_12/24	-	A0H20/PA	A0H10	A0H8	A0H4	A0H2	A0H1
2711	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7: A0_12/24 12hour clock / 24hour clock select bit.

Bit 5-0: A0H20/PA, A0H40 to A0H1 Alarm0 Hour threshold value.Configured in BCD (Binary-Coded Decimal)

Address 28h: ALM0 WEEK Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
28h	ALM0_WEEK	R/W	-	-	-	-	-	A0W4	A0W2	A0W1
2011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 2-0: : A0W4 to A0W1 Alarm0 day of the Week threshold value.Configured in BCD (Binary-Coded Decimal)

Address 29h: ALMO DAY Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
29h	ALM0_DAY	R/W	-	-	A0D20	A0D10	A0D8	A0D4	A0D2	A0D1
2911	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 5-0: A0D20 to A0D1 Alarm0 Day threshold value. Configured in BCD (Binary-Coded Decimal)

Address 2Ah: ALM0 MONTH Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2Ah	ALM0_MONTH	R/W	-	-	-	A0MO10	A0MO8	A0MO4	A0MO2	A0MO1
ZAII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 4-0: A0MO10 to A0MO1 Alarm0 Month threshold value. Configured in BCD (Binary-Coded Decimal)

Address 2Bh: ALM0 YEAR Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2Bh	ALM0_YEAR	R/W	A0Y80	A0Y40	A0Y20	A0Y10	A0Y8	A0Y4	A0Y2	A0Y1
2011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: A0Y80 to A0Y1 Alarm0 Year threshold value

Address 2Ch: ALM1 SEC Register (R/W)

Addi (Ind		Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
20	`h	ALM1_SEC	R/W	-	A1S40	A1S20	A1S10	A1S8	A1S4	A1S2	A1S1
20	ווכ	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 6-0: A1S40 to A1S1 Alarm1 Second threshold value. Configured in BCD (Binary-Coded Decimal)

Address 2Dh: ALM1 MIN Register (R/W)

	dress idex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	2Dh	ALM1_MIN	R/W	-	A1M40	A1M20	A1M10	A1M8	A1M4	A1M2	A1M1
1	ווטי	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 6-0: A1M80 to A1M1 Alarm1 Minute threshold value. Configured in BCD (Binary-Coded Decimal)

Address 2Eh: ALM1 HOUR Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2Eh	ALM1_HOUR	R/W	A1_12/24	-	A1H20/PA	A1H10	A1H8	A1H4	A1H2	A1H1
ZEII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7: A1 12/24, 12hour clock / 24hour clock select bit.

Bit 5-0: A1H20/PA, A1H10 to A1H1 Alarm1 Hour threshold value. Configured in BCD (Binary-Coded Decimal)

Address 2Fh: ALM1 WEEK Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2Fh	ALM1_WEEK	R/W	-	-	-	-	-	A1W4	A1W2	A1W1
2511	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 2-0: : A1W4 to A1W1 Alarm1 day of the Week threshold value.Configured in BCD (Binary-Coded Decimal)

Address 30h: ALM1 DAY Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
30h	ALM1_DAY	R/W	-	-	A1D20	A1D10	A1D8	A1D4	A1D2	A1D1
3011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 5-0: A1D20 to A1D1 Alarm1 Day threshold value. Configured in BCD (Binary-Coded Decimal)

Address 31h: ALM1 MONTH Register (R/W)

Addr (Ind		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
31	ALM1_MONTH	R/W	-	-	-	A1MO10	A1MO8	A1MO4	A1MO2	A1MO1
31	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 4-0: A1MO10 to A1MO1 Alarm1 Month threshold value. Configured in BCD (Binary-Coded Decimal)

Address 32h: ALM1 YEAR Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	32h	ALM1_YEAR	R/W	A1Y80	A1Y40	A1Y20	A1Y10	A1Y8	A1Y4	A1Y2	A1Y1
	3211	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: A1Y80 to A1Y1 Alarm1 Year threshold value. Configured in BCD (Binary-Coded Decimal)

Address 33h: ALMO MASK Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
33h	ALM0_MASK	R/W	A0_ONESEC	A0_YEAR	A0_MON	A0_DAY	A0_WEEK	A0_HOUR	A0_MIN	A0_SEC
3311	Initial Value	00h	0	0	0	0	0	0	0	0

A0 ONESEC Alarm0 interrupt occurs once every second. (Synchronized with second counter increment) 0: \overline{D} isable Bit 7:

1: Enable

When AO_ONESEC is set to "1", regardless of any other setting in the ALMO_MASK register and the contents of the respective ALMO_SEC to ALMO_YEAR registers.

Bit 6-0 : A0_YEAR to A0_SEC Alarm0 interrupt threshold mask bit. 0: Mask

1: Not masked

Address 34h: ALM1 MASK Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
34h	ALM1_MASK	R/W	A1_ONESEC	A1_YEAR	A1_MON	A1_DAY	A1_WEEK	A1_HOUR	A1_MIN	A1_SEC
3411	Initial Value	00h	0	0	0	0	0	0	0	0

A1_ONESEC Alarm1 interrupt occur once every second. (Synchronized with second counter increment) 0: Disable Bit 7:

When A1_ONESEC is set to "1", regardless of any other setting in the ALM1_MASK register and the contents of the respective ALM1_SEC to ALM1_YEAR registers.

Bit 6-0 : A1_YEAR to A1_SEC Alarm1 interrupt threshold mask bit. 0: Mask

1: Not masked

Address 35h: ALM2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
35h	ALM2	R/W	-	-	-	-	-	-	ALM	2[1:0]
3311	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 1-0 :

ALM2[1:0]
00: OFF (Initial State)
01: Once per 1 second (Synchronized with second counter increment)
10: Once per minute (at 00 seconds of every minute)
11: Once per hour (at 00 minutes, and 00 seconds of every hour)

Invalidate Alarm2 when changing the value of clock and calendar.

Address 36h: TRIM Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
36h	TRIM	R/W	DEV				TRIM[6:0]			
3011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7: DEV

When DEV is set to '0', the Oscillation Adjustment Circuit operates at 00, 30 seconds.

When DEV is set to '1', the Oscillation Adjustment Circuit operates at 00 seconds only.

Bit 6-0: TRIM[6:01

The Oscillation Adjustment Circuit is configured to change time counts of 1 second on the basis of the settings of the Oscillation Adjustment Register at the timing set by DEV.

The Oscillation Adjustment Circuit will not operate with the same timing (00, or 30 seconds) as the timing of

The Oscillation Adjustment Register.

The TRIM 6: bit setting of '0' causes an increment of (IRIM[5:0]-1) x 2 of time counts.

The TRIM 6: bit setting of '1' causes a decrement of (invert(TRIM[5:0])+1) x 2 of time counts.

The TRIM 6-0: bit setting of "x00000x" causes neither an increment nor decrement of time counts.

Address 37h: CONF Register (R/W)

	ldress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	37h	CONF	R/W	-	-	-	-	-	-	XSTB	PON
`	3/11	Initial Value	01h	0	0	0	0	0	0	0	1

Oscillator Stop Flag

Oscillator Stop Flag

0: RTC clock has been stopped.

1: RTC clock is normallyOscillator operating normally.

The XSTB bit is used to check the status of the Real Time Clock (RTC). This bit accepts R/W for "1" and "0". If "1" is written to this bit, the XSTB bit will change value to "0" when the RTC is stopped.

Bit 0 : Power-on-reset Flag.

Normal condition.
 Power-on-reset detected

n. rower-on-reset detected
The PON bit is used to check for a power-on-reset condition. Only "0" values may be written to this bit.
A power-on-reset condition is detected when the supply voltage rises above the SNVS undervoltage lockout (UVLO) value.
When a power-on-reset condition is detected, the PON bit is set to "1".
When the PON bit is set to "0", SNVS UVLO operates in intermittent monitoring mode.

Reset status for CHGRST

Address 38h: SYS INIT Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
38	SYS_INIT	R/W	-	-	-	-	-	-	CHGRST	-
301	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 1(W): CHGRST

Writing "0" releases reset operation.
Writing "1" resets Battery Charger States. Charger state is returned to SUSPEND state, and timers of charger are reset.

Bit 1(R) : CHGRST 0: Reset released

1: Reset asserted

Address 39h: CHG STATE Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
39h	CHG_STATE	R	-			(CHG_STATE[6:0]		
3911	Initial Value	XXh	0	х	х	х	х	х	х	х

Bit 6-0: CHG_STATE[6:0]

The current state of the battery charger. Table below shows the details of the register values.

Address 3Ah: CHG LAST STATE Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3Ah	CHG_LAST_STATE	R	-			CHC	G_LAST_STATE	[6:0]		
SAII	Initial Value	XXh	0	х	х	х	х	х	х	х

Bit 6-0: CHG LAST STATE[6:0]

The previous state of the battery charger. Table shows the details of the register values.

CHG_STATE[6:0]								
CHG_STATE[6:0]	State	Description						
00h	SUSPEND	Suspend charging						
01h	TRICKLE CHARGE	Trickle charging (Pre-conditioning)						
02h	PRE CHARGE	Pre-charging						
03h	FAST CHARGE	Fast Charging						
0Dh	BATDET	Battery detection						
0Eh	TOP OFF	Termination Current reached						
0Fh	DONE	Charging finished						
10h	Temp Err 1	Out of standard temperature while in PRE CHARGE State						
11h	Temp Err 2	Out of standard temperature while in FAST CHARGE or TOP OFF State						
12h	Temp Err 3	Out of standard temperature while in DONE State						
13h	Temp Err 4	Out of standard temperature while in SUSPEND State						
14h	Temp Err 5	Out of standard temperature while in PRE CHARGE State						
20h	TSD 1	Thermal Shut Down while in PRE CHARGE State (> 135 °C)						
21h	TSD 2	Thermal Shut Down while in FAST CHARGE State (> 135°C)						
22h	TSD 3	Thermal Shut Down while in TOP OFF State (> 135°C)						
23h	TSD 4	Thermal Shut Down while in DONE State (> 135°C)						
24h	TSD 5	Thermal Shut Down while in TRICKLE CHARGE State (> 135°C)						
30h	BATT ASSIST 1	VSYS < VBAT while in FAST CHARGE State						
31h	BATT ASSIST 2	VSYS < VBAT while in TOP OFF State						
32h	BATT ASSIST 3	VSYS < VBAT after TOP OFF State (DONE)						
7Fh	Batt Error	Battery Error						
others	(reserved)	-						

Address 3Bh: BAT STAT Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3Bh	BAT_STAT	R	-	-	BAT_DET	BAT_DET_DO NE	VBAT_OV	LOW_BAT	VBAT_SHORT	DBAT_DET
JOII	Initial Value	XXh	0	0	х	х	x	х	х	х

Bit 5:

BAT_DET Battery detection result 0:Battery removed or no battery detected 1:Battery present

BAT DET DONE

Bit 4:

Battery detection status

0: Detection running 1: Detection finished

Bit 3:

 $\label{eq:VBAT_OV} $$VBAT_OVP - 150mV $$(Hysteresis)$ 1:VBAT $$ VBAT_OVP - 150mV $$(Hysteresis)$ For example, VBAT_OVP $$ WBAT_OVP $$ For example, VBAT_OV $$ might be detected when the battery is removed while Fast charging.$

Bit 2:

LOW_BAT 0:VBAT > VBAT_LO 1:VBAT ≦VBAT_LO

Battery low-voltage Status

Bit 1:

Battery short-circuit detection status

$$\label{eq:VBAT_SHORT} \begin{split} &\text{VBAT_SHORT} \\ &\text{0:VBAT} \geqq 1.6 \text{V (Hysteresis)} \\ &\text{1:VBAT} \leqq 1.5 \text{V} \end{split}$$

DBAT DET Bit 0:

Dead Battery detection status

1: Detected

If VBAT is below VBAT_LO until the timer is expired, the battery is assumed as a weak or dead battery. The timer expiration time is set by TIM_DBP register.

Address 3Ch: DCIN STAT Register (R)

ľ	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	3Ch	DCIN_STAT	R	-	=	-	-	DCIN_OV	IGNORE(note3)	DCIN_CLPS_D ET	DCIN_DET
	3Ch	Initial Value	0Xh	0	0	0	0	х	х	х	х

Bit 3:

Bit 2:

Bit 1:

DCIN over-voltage status

DCIN_OV 0:Normal voltage 1:DCIN > 6.5V

IGNORE (note3) For ROHM factory only DCIN anti-collapse status

DCIN_CLPS_DET 0:Normal operation 1:Anti-collapse

Bit 0: DCIN detection status

DCIN_DET DCIN
0: Not detected or low level
1: DCIN detected (over UVLO level)

Address 3Dh: VSYS STAT Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3Dh	VSYS_STAT	R	-	-	-	-	-	-	VSYS_LO	VSYS_UVN
SDII	Initial Value	0Xh	0	0	0	0	0	0	х	х

Bit 1: VSYS_LO

VSYS low voltage detection status. The threshold voltage is configurable by VSYS_MIN and VSYS_MAX. The higher voltage of among VSYS(Addr.C0h-C1h) and VSYS_SA(Addr.C2h-C3h) are used for VSYS voltage.

0:VSYS ≦ VSYS_MIN 1:VSYS ≧ VSYS_MAX

VSYS UVN 0:Low voltage Bit 0 : VSYS UVLO detection status

1: Normal voltage

Address 3Eh: CHG STAT Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3Eh	CHG_STAT	R	-	-	-	-	-	-	-	VRECHG_DET
SEII	Initial Value	0Xh	0	0	0	0	0	0	0	х

VRECHG_DET 0:VBAT > VBAT_MNT 1:VBAT ≦ VBAT_MNT Bit 0:

Re-charge voltage detection status voltage

Address 3Fh: CHG WDT STAT Register (R)

Addı (Ind		Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3F	-h	CHG_WDT_STAT	R				CHGWE	DTS[7:0]			
35	"	Initial Value	XXh	х	х	х	х	х	х	х	х

Bit 7-0: CHGWDTS[7:0]

Actual watch-dog timer counter value for Pre-charging & Tricle-Charging or Fast Charging & Top Off. PCHG(or TCHG): (CHGWDTS -1) X (64/60) min. FCHG(or TOFF): (CHGWDTS *8 -240) * (64/60/2) min. FCHG(or TOFF) COLD1 condition: (CHGWDTS *8 -3) * (64/60) min.

Address 40h: BAT TEMP Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
40h	BAT_TEMP	R	-	-	-	-	-		BAT_TEMP[2:0]	
4011	Initial Value	0Xh	0	0	0	0	0	х	х	х

The temperature thresholds have hysteresis. Table lists the temperature threshold values.

BAT_TEMP[2:0]	Temperature Range	Description
0h	Room Temp	T2 < Tbat < T3
1h	HOT1	T3 < Tbat < T5
2h	HOT2	T5 < Tbat < T4
3h	НОТ3	T4 < Tbat
4h	COLD1	T1 < Tbat < T2
5h	COLD2	Tbat < T1
6h	Temp. Disable	Disable thermal control (No Thermistor)
7h	Battery Open	TS port is open

No.	Description	Default Value	Note
1	Lower threshold of T1	2 deg.	T1 in JEITA profile
2	Upper threshold of T1	5 deg.	T1 in JEITA profile
3	Lower threshold of T2	10 deg.	T2 in JEITA profile
4	Upper threshold of T2	13 deg.	T2 in JEITA profile
5	Lower threshold of T3	42 deg.	T3 in JEITA profile
6	Upper threshold of T3	45 deg.	T3 in JEITA profile
7	Lower threshold of T4	55 deg.	T4 in JEITA profile
8	Upper threshold of T4	58 deg.	T4 in JEITA profile
9	Lower threshold of T5	47 deg.	Between T3 and T4
10	Upper threshold of T5	50 deg.	Between T3 and T4

 $\label{lem:measured} \mbox{Measured/Preset Battery Temperature. -55 to 200 deg. Celsius, 1-degree steps.} \\ \mbox{Degree Celsius = 200 - BTMP[7:0](address 5Fh)}$

Address 41h: IGNORE 0 Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
41h	IGNORE_0	R	-	-	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)	IGNORE(note3)
4'In	Initial Value	XXh	0	0	х	х	х	х	х	х

Bit 5-0: IGNORE(note3) For ROHM factory only

Address 42h: INHIBIT 0 Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
I	42h	INHIBIT_0	R/W	INHIBIT_1(note2)	INHIBIT_1(note2)	INHIBIT_1(note2)	INHIBIT_0(note1)	INHIBIT_0(note1)	INHIBIT_1(note2)	INHIBIT_1(note2)	INHIBIT_1(note2)
	42n	Initial Value	E6h	1	1	1	0	0	1	1	0

Bit 7-0: INHIBIT_0/1(note1/2)

For ROHM factory only

Address 43h: DCIN CLPS Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
42h	DCIN_CLPS					DCIN_CL	PS[11:4]			
431	Initial Value	36h	0	0	1	1	0	1	1	0

Bit 7-0: DCIN_CLPS[11:4]

DCIN Anti-collapse entry voltage threshold 0.0V to 20.4V range, 80 mV steps. When DCINOK = L, Anti-collapse detection is invalid. When DCIN < DCIN_CLPS is detected, the charger decreases the input current restriction value. DCIN_CLPS voltage must be set higher than VBAT_CHG1, VBAT_CHG2, and VBAT_CHG3. If DCIN_CLPS set lower than these value, can't detect removing DCIN.

Address 44h: VSYS_REG Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
44h	VSYS_REG	R/W	-	-	=	VSYS_REG[4:0]				
4411	Initial Value	0Bh	0	0	0	0	1	0	1	1

Bit 7-0: VSYS_REG[4:0]

VSYS regulation voltage setting. 4.2V to 5.25V range, 50mV step.

VSYS_REG	VSYS Voltage
00h	4.20V
01h	4.25V
02h	4.30V
03h	4.35V
04h	4.40V
05h	4.45V
06h	4.50V
07h	4.55V
08h	4.60V
09h	4.65V
0Ah	4.70V
0Bh	4.75V
0Ch	4.80V
0Dh	4.85V
0Eh	4.90V
0Fh	4.95V
10h	5.00V
11h	5.05V
12h	5.10V
13h	5.15V
14h	5.20V
15h	5.25V

Address 45h: VSYS MAX Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
451	VSYS_MAX	R/W	-	VSYS_MAX[12:6]						
451	Initial Value	33h	0	0	1	1	0	0	1	1

Bit 6-0: VSYS_MAX[12:6]

VSYS voltage rising detection threshold. 0.0V to 8.128V range, 64mV steps.

Address 46h: VSYS MIN Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
46h	VSYS_MIN	R/W	-		VSYS_MIN[12:6]					
4011	Initial Value	30h	0	0	1	1	0	0	0	0

Bit 6-0: VSYS_MIN[12:6]

VSYS voltage falling detection threshold. 0.0V to 8.128V range, 64mV steps.

VSYS_MAX VSYS_MIN	VSYS Voltage
08h-28h	0.512V - 2.56 V
29h	2.624V
2Ah	2.688V
2Bh	2.752V
2Ch	2.816V
2Dh	2.880V
2Eh	2.944V
2Fh	3.008V
30h	3.072V
31h	3.136V
32h	3.200V
33h	3.264V
34h	3.328V
35h	3.392V
36h	3.456V
37h	3.520V
38h-6Dh	3.584V - 6.976V

Address 47h: CHG SET1 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
47h	CHG_SET1	R/W	WDT_DIS	WDT_AUTO	AUTO_FST	FST_TRG	AUTO_RECHG	BTMP_EN	COLD_ERR_E N	CHG_EN
4/11	Initial Value	6Fh	0	1	1	0	1	1	1	1

Bit 7: WDT_DIS Disable Charger Watch Dog Timer(WDT). This control is valid for watch dog timer of Trickle-charging, Pre-charging, Fast-charging and Top

0: Normal operation 1 · Disable

i. Disable When WDT_DIS = "0", the charger will stop charging when the WDT expired, indicating an error has occurred. When WDT_DIS = "1", the Host should handle any error by its software.

WDT_AUTO WDT setting mode Bit 6:

0 : Manual setting 1 : Auto setting

In auto setting in ade, the WDT expiration time is set to 128 minutes for Pre-charging and 640 minites for Fast-charging. In manual setting mode, the WDT expiration time is set by the register WDT_PRE for Pre-charging and the register WDT_FST for Fast-charging.

AUTO FST Fast charging transition mode Bit 5

0 : Manual control 1 : Auto control

Nhen VBAT > VPRE_HI is detected at Pre-charging, the charger goes to Fast Charging. In the Manual control mode, the Host should write FST_TRG = "1" to move the charger to Fast Charging.

Rit 4 FST TRG Trigger Fast Charging

1 : Trigger to Fast Charging at Pre-Charge state with AUTO_FST='0'

The positive edge of FST_TRG is needed for the trigger

Bit 3 AUTO RECHG

0 : Manual control 1 : Auto control

In the auto control mode, the charger will re-start charging when the maintenance voltage is detected (VBAT < VBAT_MNT).

While in manual control mode, VBAT_MNT can be detected but re-charging should be triggered by the software.

Automatic re-charging mode

Charging voltage is reduced by battery temperature.

Bit 2 BTMP_EN

Bit 0

0 : Disable 1 : Enable

Rit 1 COLD ERR EN Slow down the watch-dog timer counter in COLD1 condition. Count down every 4.27min.

1 : Enable Count down every 8.53min. CHG_EN Enabling charger operation.

0 : Disable 1 : Enable

Address 48h: CHG SET2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
48h	CHG_SET2	R/W	VF_TREG_EN	EXTMOS_EN	REBATDET_T RG	BATDET_EN	INHIBIT_1(note2)	-	TIM_CNT	_SEL[1:0]
4011	Initial Value	98h	1	0	0	1	1	0	0	0

VF TREG EN Bit7: Thermal shutdown for charger

0 : Disable 1: Enable

Bit6: Select Internal/External MOSFET. Change this register after CHG_EN is set to '0' (charge disable)

0 : Charger uses Internal MOSFET. 1: Charger uses External MOSFET.

Bit5:

REBATDET Trigger for re-trial of Battery detection
When REBATDET_TRG bit is set to 1, battery detection trial will start.
REBATDET TRG needs to be set 1 again after set to 0 for next battery detection.

BATDET_EN Bit4: 0 : Disable 1 : Enable

Enable Battery detection

Bit3: INHIBIT 1(note2) For ROHM factory only

Bit1-0: TIME_CNT_SEL[1:0]

Transition Timer Setting from the Suspend State to the Trickle state

TIM_CNT_SEL[2:0]	Timer Setting (CLK32K Cycle)				
0h	1600 (48.8ms)				
1h	3200 (97.7ms)				
2h	4800 (146.5ms)				
3h	6400 (195.3ms)				

Address 49h: CHG WDT PRE Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	49h	CHG_WDT_PRE	R/W		WDT_PRE[7:0]						
	4911	Initial Value	1Eh	0	0	0	1	1	1	1	0

Bit7-0: WDT PRE[7:0]

Watch Dog Timer setting for Pre-charging 0 to 271 minutes range, 64-sec steps. This register is effective only when '0' is written to WDT_AUTO(address 47h Bit6). PCHG(or TCHG): (WDT_PRE -1) * (64/60) min. It can be invalid with WDT_PRE set to '1' and expire immediately with WDT_PRE set to '0'.

Address 4Ah: CHG WDT FST Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4Ah	CHG_WDT_FST	R/W				WDT_F	ST[10:3]			
4AII	Initial Value	26h	0	0	1	0	0	1	1	0

Bit7-0: WDT_FST[10:3]

Watch Dog Timer setting for Fast Charging 8.5 to 2176 minutes range, 512-sec steps. This register is effective only when '0' is written to WDT_AUTO(address 42h Bit6). FCHG(or TOFF): (WDT_FST * 8-240)* (64/60/2) min. FCHG(or TOFF) COLD1 condition: (WDT_FST * 8-3) X (64/60) min. The timer can be invalid with WDT_FST set to '0'. In case of COLD1 condition, it can expire immediately with WDT_FST set to '30' or less.

Address 4Bh: CHG IPRE Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4Bh	CHG_IPRE	R/W		ITRI	[3:0]			IPRE	[3:0]	
4011	Initial Value	44h	0	1	0	0	0	1	0	0

Bit 7-4: ITRI[3:0]

Trickle charge current setting $\,$ 5.0 mA to 25 mA range, 2.5 mA steps.

Bit 3-0: IPRE[3:0]

Pre-charging current setting 50 mA to 375 mA range, 50 mA steps.

ITRI	Trickle charging current
0h	0.0 mA
1h	2.5 mA
2h	5.0 mA
3h	7.5 mA
4h	10.0 mA
5h	12.5 mA
6h	15.0 mA
7h	17.5 mA
8h	20.0 mA
9h	22.5 mA
Ah	25.0 mA
Bh-Fh	(reserved)

IPRE	Pre-charging current
0h	0 mA
1h	25 mA
2h	50 mA
3h	75 mA
4h	100 mA
5h	125 mA
6h	150 mA
7h	175 mA
8h	200 mA
9h	225 mA
Ah	250 mA
Bh	275 mA
Ch	300 mA
Dh	325 mA
Eh	350 mA
Fh	375 mA

Address 4Ch: CHG IFST Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
4Ch	CHG_IFST	R/W	-	-	-	IFST[4:0]					
4011	Initial Value	12h	0	0	0	1	0	0	1	0	

Bit 4-0: IFST[4:0]

Battery Charging Current for Fast Charge 100 mA to 2000 mA range, 100 mA steps.

		Fast charging Current			
IFST	Internal MOSFET	External MOSFET (RSENS=10mohm)	External MOSFET (RSENS=30mohm)		
00h	0 mA	0 mA	0 mA		
01h	25 mA	100 mA	33.3 mA		
02h	50 mA	200 mA	66.7 mA		
03h	75 mA	300 mA	100 mA		
04h	100 mA	400 mA	133 mA		
05h	125 mA	500 mA	167 mA		
06h	150 mA	600 mA	200 mA		
07h	175 mA	700 mA	233 mA		
08h	200 mA	800 mA	267 mA		
09h	225 mA	900 mA	300 mA		
0Ah	250 mA	1000 mA	333 mA		
0Bh	275 mA	1100 mA	367 mA		
0Ch	300 mA	1200 mA	400 mA		
0Dh	325 mA	1300 mA	433 mA		
0Eh	350 mA	1400 mA	467 mA		
0Fh	375 mA	1500 mA	500 mA		
10h	400 mA	1600 mA	533 mA		
11h	425 mA	1700 mA	567 mA		
12h	450 mA	1800 mA	600 mA		
13h	475 mA	1900 mA	633 mA		
14h	500 mA	2000 mA	667 mA		
15h-1Fh	(reserved)	(reserved)	(reserved)		

Address 4Dh: CHG IFST TERM Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4Dh	CHG_IFST_TERM	R/W	-	-	-	-	IFST_TERM[3:0]			
4011	Initial Value	05h	0	0	0	0	0	1	0	1

Bit3-0: IFST_TERM[3:0]

Charging Termination Current for Fast Charge 10 mA to 200 mA range.

IFOT TERM	Terminati	on Current				
IFST_TERM	RSEN=10mohm	RSEN=30mohm				
0h	0 mA	0 mA				
1h	10 mA	3.33 mA				
2h	20 mA	6.67 mA				
3h	30 mA	10.0 mA				
4h	40 mA	13.3 mA				
5h	50 mA	16.7 mA				
6h	100 mA	33.3 mA				
7h	150 mA	50.0 mA				
8h	200 mA	66.7 mA				
9h-F h	(reserved)	(reserved)				

Address 4Eh: CHG VPRE Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
4Eh	CHG_VPRE	R/W		VPRE_	HI[3:0]		VPRE_LO[3:0]				
4611	Initial Value	C9h	1	1	0	0	1	0	0	1	

Bit7-4: VPRE_HI[3:0]

Upper threshold of Pre-charging voltage 2.1V to 3.6V range, 0.1V steps.

Bit3-0: VPRE LO[3:0] Lower threshold of Pre-charging voltage 2.1V to 3.6V range, 0.1V steps. VPRE_LO is also the upper threshold of Trickle Charging voltage.

VPRE_HI VPRE_LO	Setting Voltage
0h	2.1 V
1h	2.2 V
2h	2.3 V
3h	2.4 V
4h	2.5 V
5h	2.6 V
6h	2.7 V
7h	2.8 V
8h	2.9 V
9h	3.0 V
Ah	3.1 V
Bh	3.2 V
Ch	3.3 V
Dh	3.4 V
Eh	3.5 V
Fh	3.6 V

Address 4Fh: CHG VBAT 1 Register (R/W)

Addres (Index		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
4Fh	CHG_VBAT_1	R/W	-	-	-	VBAT_CHG1[4:0]					
4611	Initial Value	18h	0	0	0	1	1	0	0	0	

Bit4-0: VBAT_CHG1[4:0]

Fast Charging Voltage for the temperature range ROOM. 3.72V to 4.34V range, 20mV step

VBAT_CHGx	Setting Voltage
00h	3.72 V
01h	3.74 V
02h	3.76 V
03h	3.78 V
04h	3.80 V
~	~
1Dh	4.30 V
1Eh	4.32 V
1Fh	4.34 V

Address 50h: CHG VBAT 2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
50h	CHG_VBAT_2	R/W	-	-	-	VBAT_CHG2[4:0]					
5011	Initial Value	13h	0	0	0	1	0	0	1	1	

Bit4-0: VBAT_CHG2[4:0]

Fast Charging Voltage for the temperature range HOT1. 3.72V to 4.34V range, 20mV step

Address 51h: CHG VBAT 3 Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
51	51h	CHG_VBAT_3	R/W	-	-	-	VBAT_CHG3[4:0]				
	3111	Initial Value	10h	0	0	0	1	0	0	0	0

Bit4-0: VBAT_CHG3[4:0]

Fast Charging Voltage for the temperature range HOT2 and COLD1. $3.72\mbox{V}$ to $4.34\mbox{V}$ range, 20mV step

Address 52h: CHG LED 1 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
52h	CHG_LED_1	R/W	-	-	-	CHG_LED_BT A_MASK	-	TERR[2:0]		
3211	Initial Value	03h	0	0	0	0	0	0	1	1

Bit4: CHG LED BTA MASK

CHGLED mask control for Battery Assist 1&2.

0 : Lighting 1 : Not lighting

Bit2-0: TERR[2:0]

CHGLED lighting setting for the battery charging temperature error indication.

TERR	LED Lighting for Error Indication
0h	Always ON
1h	Blinking at 0.125 Hz
2h	Blinking at 0.25 Hz
3h	Blinking at 0.5 Hz
4h	Blinking at 1 Hz
5h	Blinking at 4 Hz
6h	Blinking at 8 Hz
7h	Light OFF

Address 53h: VF TH Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	53h	VF_TH	R/W		VF_TH[7:0]							
	5511	Initial Value	00h	0	0	0	0	0	0	0	0	

Bit7-0: VF_TH[7:0]

Vf Voltage threshold for monitor. 0.100V to 1.395V range, 1.3V/256 steps.

Address 54h: BAT SET 1 Register (R/W)

Addres (Index	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
54h	BAT_SET_1	R/W		VBAT_	HI[3:0]			VBAT_	LO[3:0]	
	Initial Value	00h	0	0	0	0	0	0	0	0

Bit7-4: VBAT_HI[3:0]

Battery voltage threshold for VBAT rising 3.00V to 3.60V range, 50 mV steps.

Bit3-0: VBAT_LO[3:0]

Battery voltage threshold for VBAT falling $\,2.50\mathrm{V}$ to $\,3.10\mathrm{V}$ range, $\,50\,\mathrm{mV}$ steps. $\,\mathrm{VBAT_LO}$ is also the lower threshold of dead battery detection.

VBAT_HI	Setting Voltage
0h	3.00 V
1h	3.05 V
2h	3.10 V
3h	3.15 V
4h	3.20 V
5h	3.25 V
6h	3.30 V
7h	3.35 V
8h	3.40 V
9h	3.45 V
Ah	3.50 V
Bh	3.55 V
Ch	3.60 V
Dh	3.65 V
Eh	3.70 V
Fh	3.75 V

VBAT_LO	Setting Voltage
0h	2.50 V
1h	2.55 V
2h	2.60 V
3h	2.65 V
4h	2.70 V
5h	2.75 V
6h	2.80 V
7h	2.85 V
8h	2.90 V
9h	2.95 V
Ah	3.00 V
Bh	3.05 V
Ch	3.10 V
Dh	3.15 V
Eh	3.20 V
Fh	3.25 V

Address 55h: BAT SET 2 Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
55	BAT_SET_2	R/W		VBAT_OVP[3:0]					VBAT_MNT[2:0]	
33	Initial Value	14h	0	0	0	1	0	1	0	0

Bit7-4: VBAT_OVP[3:0]

Battery over-voltage detection threshold. 4.20V to 4.60V range, 50 mV steps.

Bit2-0: VBAT_MNT[2:0]

Battery voltage maintenance threshold. The charger starts re-charging when VBAT \leq VBAT_MNT.

VBAT_OVP	Setting Voltage				
0h	4.20 V				
1h	4.25 V				
2h	4.30 V				
3h	4.35 V				
4h	4.40 V				
5h	4.45 V				
6h	4.50 V				
7h	4.55 V				
8h	4.60 V				
9h - Fh	(reserved)				

VBAT_MNT	Setting Voltage
0h	VBAT_CHG1/2/3 - 0.35V
1h	VBAT_CHG1/2/3 - 0.30V
2h	VBAT_CHG1/2/3 - 0.25V
3h	VBAT_CHG1/2/3 - 0.20V
4h	VBAT_CHG1/2/3 - 0.15V
5h	VBAT_CHG1/2/3 - 0.10V
6h	VBAT_CHG1/2/3 - 0.05V
7h	VBAT_CHG1/2/3 - 0.00V

Address 56h: BAT SET 3 Register (R/W)

Addres (Index		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
56h	BAT_SET_3	R/W	-	\	/BAT_DONE[2:0]	-		TIM_DBP[2:0]	
5011	Initial Value	42h	0	1 0 0			0	0	1	0

Bit2-0: VBAT_DONE[2:0]

Charging Termination Battery voltage threshold for Fast Charge.
The charger accepts VBAT > VBAT_DONE as one of the condition for end of Fast Charge.

Bit2-0: TIM_DBP[2:0]

Dead Battery Provisioning timer setting Refer to the description for DBAT_DET bit.

VBAT_DONE	Setting Voltage
0h	VBAT_CHG1/2/3 - 0.112V
1h	VBAT_CHG1/2/3 - 0.096V
2h	VBAT_CHG1/2/3 - 0.080V
3h	VBAT_CHG1/2/3 - 0.064V
4h	VBAT_CHG1/2/3 - 0.048V
5h	VBAT_CHG1/2/3 - 0.032V
6h	VBAT_CHG1/2/3 - 0.016V
7h	VBAT_CHG1/2/3 - 0.000V

TIM_DBP	DBP Timer Setting
0h	12 min
1h	32 min
2h	45 min
3h	64 min
4h	128 min
5h	5 min
6h	1 min
7h	0 min

Address 57h: ALM VBAT TH U Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
57h	ALM_VBAT_TH_U	R/W	-	-	-	-	-	-	-	VBAT_TH[12]
	Initial Value	01h	0	0	0	0	0	0	0	1

Address 58h: ALM VBAT TH L Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
58	ALM_VBAT_TH_L	R/W				VBAT_1	ГН[11:4]			
301	Initial Value	FFh	1	1	1	1	1	1	1	1

VBAT TH[12:0] Battery Voltage Alarm Threshold.

Setting Range is from 0.000V to 8.176V, 16mV steps. It will be compared with VM_VBAT[12:4] (concatenated VM_VBAT_U[12:8] and VM_V See also VBAT_MON_DET/RES alarm.

Address 59h: ALM DCIN TH Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
59h	ALM_DCIN_TH	R/W				DCIN_T	H[11:4]			
3911	Initial Value	0Fh	0	0	0	0	1	1	1	1

DCIN TH[11:4]

DCIN Voltage Alarm Threshold.

Setting Range is from 0.0V to 20.4V, 80mV steps. It will be compared with VM_DCIN[11:4] (concatenated VM_DCIN_U[11:8] and VM_DCIN

Address 5Ah: ALM VSYS TH Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5Ah	ALM_VSYS_TH	R/W				VSYS_1	ΓH[12:5]			
SAII	Initial Value	FFh	1	1	1	1	1	1	1	1

Bit 7-0: VSYS_TH[12:5]

VSYS Voltage Alarm Threshold. Setting Range is from 0.00V to 8.16V, 32mV steps.

Address 5Bh: VM IBAT U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5Bh	VM_IBAT_U	R	IBAT_DIR	-	-	-		IBAT	[11:8]	
ЭБП	Initial Value	00h	0	0	0	0	0	0	0	0

Address 5Ch: VM IBAT L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5Ch	VM_IBAT_L	R				IBAT	[7:0]			
5011	Initial Value	00h	0	0	0	0	0	0	0	0

Measured Battery Current IBAT DIR

Current Direction

0 : Charging 1 : Discharging

Absolute Current , 0.000A to 4.095A range(0.00A to 4.063A clamp), 1mA steps (RSENS=10mohm). Absolute Current , 0.000A to 1.365A range(0.00A to 4.063A clamp), 0.33mA steps (RSENS=30mohm)

Series of IBAT_DIR and IBAT[11:0] (address from 5Bh to 5Ch) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 5Dh: VM VBAT U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5Dh	VM_VBAT_U	R	-	-	-			VBAT[12:8]		
JUII	Initial Value	00h	0	0	0	0	0	0	0	0

Address 5Eh: VM VBAT L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5Eh	VM_VBAT_L	R				VBA ⁻	Γ[7:0]			
SEII	Initial Value	00h	0	0	0	0	0	0	0	0

VBAT[12:0]

Measured Battery Voltage. 0.000V to 8.191V range(0.4V to 5.6V clamp), 1mV steps.

This register value is also used for Over-Voltage detection and some Charger functions.

Series of VBAT[12:0] (address from 5Dh to 5Eh) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 5Fh: VM BTMP Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5Fh	VM_BTMP	R				ВТМ	P[7:0]			
3511	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: BTMP[7:0]

Measured Battery Temperature. -55 to 200 deg. Celsius, 1-degree steps. Degree Celsius = 200 - BTMP[7:0]

Address 60h: VM VTH Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
60h	VM_VTH	R				VTH	[7:0]			
0011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: VTH[7:0]

Thermistor terminal (TS) voltage. 0.100V to 1.395V range, 1.3/256V steps.

Address 61h: VM DCIN U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
61h	VM_DCIN_U	R	-	-	-	-		DCIN	[11:8]	
0111	Initial Value	00h	0	0	0	0	0	0	0	0

Address 62h: VM DCIN L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
62h	VM_DCIN_L	R				DCIN	I [7:0]			
0211	Initial Value	00h	0	0	0	0	0	0	0	0

DCIN[11:0]

Measured DCIN Voltage 0.000V to 20.475V range(1.200V to 16.80V clamp), 5mV steps. Series of DCIN[11:0] (address from 61h to 62h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 64h: VM VF Register (R)

	lress dex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6	4h	VM_VF	R				VF[7:0]			
0	411	Initial Value	00h	0	0	0	0	0	0	0	0

Bit7-0: VF[7:0]

Die Vf Voltage monitor. 0.100V to 1.395V range, 1.3V/256 steps.

Address 65h: VM OCI PRE U Register (R)

 			,,							
Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
65h	VM_OCI_PRE_U	R	IBAT_OC_PRE _DIR	-	-	-		IBAT_OC_	PRE[11:8]	
0311	Initial Value	00h	0	0	0	0	0	0	0	0

Address 66h: VM OCI PRE L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
66h	VM_OCI_PRE_L	R				IBAT_OC	_PRE[7:0]			
0011	Initial Value	00h	0	0	0	0	0	0	0	0

Measured Battery Current (1st time) at PMIC boot. IBAT_OC_PRE_DIR Current Direction 0 : Charging

1 : Discharging

IBAT_OC_PRE[11:0] Absolute Current, 0.00A to 4.063A range, 1mA steps (RSENS=10mohm).
Absolute Current, 0.00A to 1.354A range, 0.33mA steps (RSENS=30mohm).
Series of IBAT_OC_PRE_DIR and IBAT_OC_PRE[11:0] (address from 65h to 66h) should be read in accordance with continuous manner,

so stop condition should not be inserted during reading these registers.

Address 67h: VM OCV PRE U Register (R)

Add (Inc	ress lex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
67	7h	VM_OCV_PRE_U	R	-	-	-		VB	AT_OC_PRE[12	2:8]	
0	" [Initial Value	00h	0	0	0	0	0	0	0	0

Address 68h: VM OCV PRE L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
68h	VM_OCV_PRE_L	R				VBAT_OC	_PRE[7:0]			
OOH	Initial Value	00h	0	0	0	0	0	0	0	0

VBAT_OC_PRE[11:0]

Measured Battery Voltage (1st time) at boot, 0.000V to 8.191V range (0.6V to 5.6V clamp), 1mV steps. Series of VBAT_OC_PRE[12:0] (address from 67h to 68h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 69h: VM OCI PST U Register (R)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
69h	VM_OCI_PST_U	R	IBAT_OC_PST _DIR	-	-	1		IBAT_OC_	_PST[11:8]	
091	Initial Value	00h	0	0	0	0	0	0	0	0

Address 6Ah: VM OCI PST L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6Ah	VM_OCI_PST_L	R				IBAT_OC	_PST[7:0]			
OAN	Initial Value	00h	0	0	0	0	0	0	0	0

1 : Discharging

IBAT_OC_PST[11:0]

Absolute Current, 0.00A to 4.063A range, 1mA steps (RSENS=10mohm). Absolute Current, 0.00A to 1.354A range, 0.33mA steps (RSENS=30mohm).

Address 6Bh: VM OCV PST U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6Bh	VM_OCV_PST_U	R	-	-	=		VE	BAT_OC_PST[12	2:8]	
ОВП	Initial Value	00h	0	0	0	0	0	0	0	0

Address 6Ch: VM OCV PST L Register (R)

Addre (Inde:		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6Ch	VM_OCV_PST_L	R				VBAT_OC	:_PST[7:0]			
001	Initial Value	00h	0	0	0	0	0	0	0	0

VBAT_OC_PST[11:0]

Measured Battery Voltage (2nd time) at boot, 0.000V to 8.191V range (0.6V to 5.6V clamp), 1mV steps. Series of VBAT_OC_PST[12:0] (address from 6Bh to 6Ch) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 6Dh: VM SA VBAT U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6Dh	VM_SA_VBAT_U	R	-	-	-			VBAT_SA[12:8]		
ODII	Initial Value	00h	0	0	0	0	0	0	0	0

Address 6Eh: VM SA VBAT L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6Eh	VM_SA_VBAT_L	R				VBAT_	SA[7:0]			
OEII	Initial Value	00h	0	0	0	0	0	0	0	0

VBAT SA[12:0]

Measured Battery Voltage calculated simple average, 0.000V to 8.191V range(0.6V to 5.6V clamp), 1mV steps. Series of VBAT_SA[12:0] (address from 6Dh to 6Eh) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 6Fh: VM SA IBAT U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6Fh	VM_SA_IBAT_U	R	IBAT_SA_DIR	-	-	-		IBAT_S	SA[11:8]	
OFII	Initial Value	00h	0	0	0	0	0	0	0	0

Address 70h: VM SA IBAT L Register (R)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
70	VM_SA_IBAT_L	R				IBAT_S	SA[7:0]			
701	Initial Value	00h	0	0	0	0	0	0	0	0

Measured Battery Current calculated simple average, 0.00A to 4.063A range, 1mA steps. Current Direction

IBAT_SA_DIR
0 : Charging
1 : Discharging

IBAT SA[11:0]

Absolute Current, 0.00A to 4.063A range, 1mA steps (RSENS=10mohm).

Absolute Current, 0.00A to 1.354A range, 0.33mA steps (RSENS=30mohm).

Series of IBAT_SA_DIR and IBAT_SA[11:0] (address from 6Fh to 70h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 71h: CC CTRL Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
71h	CC_CTRL	R/W	CCNTRST	CCNTENB	CC_CALIB	-	-	-	-	-
7 111	Initial Value	40h	0	1	0	0	0	0	0	0

Bit7: CCNTRST Reset the Coulomb Counter

0 : Release reset 1 : Reset CC_CCNTD_3-0

Bit6: CCNTENB Enable the Coulomb Counter

0 : Disable (stop counting)
1 : Enable (counting)

Bit5: CC_CALIB

OC_CALIB
O: Automatic calibration
1: Force calibration
Writing 1 to CC_CALIB bit, then CC_CALIB bit is cleared to 0.

Address 72h: CC BATCAP1 TH U Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
72h	CC_BATCAP1_TH_U	R/W	-	-	-	-		CC_BATCA	P1_TH[11:8]	
7211	Initial Value	00h	0	0	0	0	0	0	0	0

Address 73h: CC BATCAP1 TH L Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
73h	CC_BATCAP1_TH_L	R/W				CC_BATCA	P1_TH[7:0]			
7311	Initial Value	7Eh	0	1	1	1	1	1	1	0

CC BATCAP1 TH[11:0]

Battery capacity monitor threshold1. CC_BATCAP1_TH[11:0] is compared with CCNTD[27:16].

Address 74h: CC BATCAP2 TH U Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
74h	CC_BATCAP2_TH_U	R/W	-	-	=	-		CC_BATCA	P2_TH[11:8]	
7411	Initial Value	00h	0	0	0	0	0	0	0	0

Address 75h: CC BATCAP2 TH L Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75h	CC_BATCAP2_TH_L	R/W				CC_BATCA	P2_TH[7:0]			
7511	Initial Value	3Fh	0	0	1	1	1	1	1	1

CC_BATCAP2_TH[11:0]

Battery capacity monitor threshold2. CC_BATCAP2_TH[11:0] is compared with CCNTD[27:16].

Address 76h: CC BATCAP3 TH U Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
76h	CC_BATCAP3_TH_U	R/W	-	-	-	-		CC_BATCA	P3_TH[11:8]	
7011	Initial Value	00h	0	0	0	0	0	0	0	0

Address 77h: CC BATCAP3 TH L Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
77h	CC_BATCAP3_TH_L	R/W				CC_BATCA	P3_TH[7:0]			
7711	Initial Value	1Fh	0	0	0	1	1	1	1	1

CC_BATCAP3_TH[11:0]

Battery capacity monitor threshold3. CC_BATCAP3_TH[11:0] is compared with CCNTD[27:16].

Address 78h: CC STAT Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
78h	CC_STAT	R	-	-	-	-	=	CC_MON3	CC_MON2	CC_MON1
7011	Initial Value	00h	0	0	0	0	0	0	0	0

CC_MON3 CC_MON2 CC_MON1

It indicates that the CCNTD[27:16] goes below the CC_BATCAP3_TH. It indicates that the CCNTD[27:16] goes below the CC_BATCAP2_TH. It indicates that the CCNTD[27:16] goes above the CC_BATCAP1_TH.

Address 79h: CC CCNTD 3 Register (R/W)

Addres (Index		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
79h	CC_CCNTD_3	R/W	-	-	-	-		CCNTE	0[27:24]	
7911	Initial Value	00h	0	0	0	0	0	0	0	0

Address 7Ah: CC CCNTD 2 Register (R/W)

Addres (Index		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
7Ah	CC_CCNTD_2	R/W				CCNTE	[23:16]			
/An	Initial Value	00h	0	0	0	0	0	0	0	0

Address 7Bh: CC CCNTD 1 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
7Bh	CC_CCNTD_1	R/W				CCNTI	D[15:8]			
7 611	Initial Value	00h	0	0	0	0	0	0	0	0

Address 7Ch: CC CCNTD 0 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
7Ch	CC_CCNTD_0	R/W				CCNT	D[7:0]			
7011	Initial Value	00h	0	0	0	0	0	0	0	0

CCNTD[27:0]

Coulomb Counter

It indicates the Coulomb Counter accumulated result. CCNTD[27:16] means the battery capacity in 10 [As] (Ampere-second) unit when RSENS=10mohm is used, and CCNTD[1:0] is always "00". For example, when the battery capacity is 1350 [mAh], the register value will be shown as below 1350 [mAh] / 1000 [mA/A] x 3600 [s/h] = 4860 [As]. CCNTD[27:16] = 4860 / 10 = 486 (1E6h)

When CCNTENB = "1", the Coulomb Counter accumulates the charge or discharge current value.

In battery charging, the measured current value is added to the Coulomb Counter at every conversion period. Before battery charging starts,

CCNTD must be reset to zero or initialized with an estimated SoC (State of Charge) value by software. If an empty battery is full-charged, CCNTD value indicates the actual battery capacity.

During battery discharging, the Coulomb Counter decreases in value. Before discharging, CCNTD must be initialized with BATCAP value by software, if the remaining battery capacity is unknown.

Series of CCNTD[27:0] (address from 79h to 7Ch) should be read in accordance with continuous manner.

so stop condition should not be inserted during reading these registers.

Address 7Dh: CC CURCD U Register (R)

Addres (Index		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
7Dh	CC_CURCD_U	R	CURDIR	-	CURCD[13:8]					
7011	Initial Value	00h	0	0	0	0	0	0	0	0

Address 7Eh: CC CURCD L Register (R)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
7E	CC_CURCD_L	R		CURCD[7:0]						
'-	Initial Value	00h	0	0	0	0	0	0	0	0

CURDIR Battery current direction. "1": Discharging / "0": Charging

CURCD[13:0] Battery current value converted from DS-ADC output, 0mA to 16,384mA range, 1 mA units (RSENS=10mohm).(0mA to 13,000mA) Battery current value converted from DS-ADC output, 0mA to 5,461mA range, 0.33 mA units (RSENS=30mohm).(0mA to 4,333mA)

Series of CURCD[13:0] (address from 7Dh to 7Eh) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address 7Fh: VM OCUR THR 1 Register (R/W)

Address 711. VIII GOOK THIN T Register (IVVV)												
	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
	7Fh	VM_OCUR_THR_1	R/W	OCURTHR1[12:5]								
		Initial Value	7Dh	0	1	1	1	1	1	0	1	

Bit 7-0: OCURTHR1[12:5]

Battery over-current threshold. The value is set in 64 mA units (RSENS=10mohm) Battery over-current threshold. The value is set in 21.3 mA units (RSENS=30mohm).

Address 80h: VM OCUR DUR 1 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
80h	VM_OCUR_DUR_1	R/W				OCURD	UR1[7:0]			
OUII	Initial Value	64h	0	1	1	0	0	1	0	0

Bit 7-0: OCURDUR1[7:0] The duration time(typ) for the battery over-current detection. The value is set in 250 us units. If CURRD > OCURTHR1 for the duration of OCURDUR1, the register bit OCUR1 will be asserted.

Address 81h: VM OCUR THR 2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
81h	VM_OCUR_THR_2	R/W				OCURTH	IR2[12:5]			
0111	Initial Value	5Eh	0	1	0	1	1	1	1	0

Bit 7-0: OCURTHR2[12:5] Battery over-current threshold. The value is set in 64 mA units (RSENS=10mohm).
Battery over-current threshold. The value is set in 21.3 mA units (RSENS=30mohm).

Address 82h: VM OCUR DUR 2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
82h	VM_OCUR_DUR_2	R/W				OCURD	UR2[7:0]			
0211	Initial Value	8Ch	1	0	0	0	1	1	0	0

Bit 7-0 : OCURDUR2[7:0] The duration time(typ) for the battery over-current detection. The value is set in 250 us units. If CURRD > OCURTHR2 for the duration of OCURDUR1, the register bit OCUR2 will be asserted.

Address 83h: VM OCUR THR 3 Register (R/W)

	ddress Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
83	02h	VM_OCUR_THR_3	R/W				OCURTH	HR3[12:5]			
	0311	Initial Value	4Eh	0	1	0	0	1	1	1	0

Bit 7-0 : OCURTHR3[12:5] Battery over-current threshold. The value is set in 64 mA units (RSENS=10mohm).
Battery over-current threshold. The value is set in 21.3 mA units (RSENS=30mohm).

Address 84h: VM OCUR DUR 3 Register (R/W)

	ddress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	84h -	VM_OCUR_DUR_3	R/W				OCURD	UR3[7:0]			
'	0411	Initial Value	A5h	1	0	1	0	0	1	0	1

Bit 7-0 : OCURDUR3[7:0] The duration time(typ) for the battery over-current detection. The value is set in 250 us units. If CURRD > OCURTHR3 for the duration of OCURDUR3, the register bit OCUR3 will be asserted.

Address 85h: VM OCUR MON Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
85h	VM_OCUR_MON	R	-	-	-	-	-	OCUR3	OCUR2	OCUR1
1100	Initial Value	0Xh	0	0	0	0	0	х	х	х

Bit 2 : OCUR3 Battery over-current 3 detection status. "1": Detected / "0": Not detected.

Bit 1 : OCUR2 Battery over-current 2 detection status. "1": Detected / "0": Not detected.

Bit 0 : OCUR1 Battery over-current 1 detection status. "1": Detected / "0": Not detected.

Address 86h: VM BTMP OV THR Register (R/W)

ddress Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
86h	VM_BTMP_OV_THR	R/W				OVBTMP	THR[7:0]			
0011	Initial Value	8Ch	1	0	0	0	1	1	0	0

Bit7-0: OVBTMPTHR[7:0] Battery over-temperature threshold. The value is set in 1-degree units, -55 to 200 degree range.

Address 87h: VM BTMP OV DUR Register (R/W)

	dress dex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	87h	VM_BTMP_OV_DUR	R/W		OVBTMPDUR[7:0]						
ľ	711	Initial Value	28h	0	0	1	0	1	0	0	0

Bit 7-0: OVBTMPDUR[7:0] The duration time(typ) for the battery over-temperature detection. The value is set in 244 us units. If BTMPD > OVTMPTHR for the duration of OVTMPDUR, the register bit OVTMP will be asserted.

Address 88h: VM BTMP LO THR Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
88h	VM_BTMP_LO_THR	R/W				LOBTMP	THR[7:0]			
0011	Initial Value	C8h	1	1	0	0	1	0	0	0

Bit7-0: LOBTMPTHR[7:0] : Battery low-temperature threshold. The value is set in 1-degree units, -55 to 200 degree range.

Address 89h: VM BTMP LO DUR Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
89h	VM_BTMP_LO_DUR	R/W				LOBTMP	DUR[7:0]			
0911	Initial Value	28h	0	0	1	0	1	0	0	0

Bit 7-0: LOBTMPDUR[7:0]

The duration time(typ) of the battery over-temperature detection. The value is set in 244 us units. If BTMPD < LOTMPTHR for the duration of LOTMPDUR, the register bit LOTMP will be asserted.

Address 8Ah: VM BTMP MON Register (R)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
8Al	VM_BTMP_MON	R	-	-	-	-	-	-	OVBTMP	LOBTMP
OAI	Initial Value	0Xh	0	0	0	0	0	0	х	х

: Battery over-temperature detection status. "1": Detected / "0": Not detected. : Battery low-temperature detection status. "1": Detected / "0": Not detected. Bit1 OVBTME Bit0 LOBTMP

Address 8Bh: INT EN 01 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
8Bh	INT_EN_01	R/W	LED_SCP	LED_OCP	LED_OVP	BUCK5FAULT	BUCK4FAULT	BUCK3FAULT	BUCK2FAULT	BUCK1FAULT
ODII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit7 Enable LED SCP detection 1: Enable / 0: Disable LED OCP Enable LED OCP detection Bit6 1: Enable / 0: Disable Bit5 LED_OVP BUCK5FAULT Enable LED OVP detection
Enable BUCK5 output current limit detection interrupt 1: Enable / 0: Disable. 1: Enable / 0: Disable. Bit4 1: Enable / 0: Disable. BUCK4FAULT BUCK3FAULT Enable BUCK4 output current limit detection interrupt Enable BUCK3 output current limit detection interrupt Bit3 **BUCK2FAULT** Bit1 Enable BUCK2 output current limit detection interrupt Bit0 BUCK1FAULT Enable BUCK1 output current limit detection interrupt 1: Enable / 0: Disable

Address 8Ch: INT EN 02 Register (R/W)

	dress dex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Ch	INT_EN_02	R/W	-	-	DCIN_OV_DE T	DCIN_OV_RES	DCIN_CLPS_IN	DCIN_CLPS_OUT	DCIN_RMV	-
8Ch	Initial Value	00h	0	0	0	0	0	0	0	0	

DCIN_OV_DET DCIN_OV_RES DCIN_CLPS_IN DCIN_CLPS_OUT DCIN Over-Voltage Detection : DCIN >= 6.5V(typ) DCIN Over-Voltage Resume : DCIN <= $6.5V\cdot150mV(typ)$ DCIN Anti-Collapse Detection : DCIN(61h+62h) \geq DCIN_CLPS(43h) DCIN Anti-Collapse Resume : DCIN(61h+62h) < DCIN_CLPS(43h) Bit5 Interrupt Enable: 1: Enable / 0: Disable 1: Enable / 0: Disable. Bit4 Interrupt Enable : Bit3 Interrupt Enable : 1: Enable / 0: Disable Interrupt Enable: Bit1: DCIN RMV Interrupt Enable: DCIN Removal 1: Enable / 0: Disable

Address 8Dh: INT EN 03 Register (R/W)

	dress idex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
8Dh	Dh.	INT_EN_03	R/W	-	WDOGB	INHIBIT_0(note 1)	INHIBIT_0(note 1)	INHIBIT_0(note 1)	INHIBIT_0(note 1)	DCIN_MON_DET	DCIN_MON_RES
	Initial Value	00h	0	0	0	0	0	0	0	0	

Interrupt Enable : WDOGB Detection For ROHM factory only For ROHM factory only 1: Enable / 0: Disable Bit5

WDOGB
INHIBIT_0(note1)
INHIBIT_0(note1)
INHIBIT_0(note1)
INHIBIT_0(note1)
DCIN MON DET
DCIN_MON_RES Bit4 For ROHM factory only Bit3 Bit2

For ROHM factory only
Interrupt Enable: DCIN General Alarm Detection: DCIN(61h+62h) ≤ DCIN TH(59h)
Interrupt Enable: DCIN General Alarm Resume: DCIN(61h+62h) > DCIN_TH(59h) 1: Enable / 0: Disable. 1: Enable / 0: Disable. Bit0

Address 8Eh: INT EN 04 Register (R/W)

ľ	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
8Eh	0Eh	INT_EN_04	R/W	VSYS_MON_D ET	VSYS_MON_R ES	-	-	VSYS_LO_DET	VSYS_LO_RES	VSYS_UV_DE T	VSYS_UV_RE S
	Initial Value	00h	0	0	0	0	0	0	0	0	

VSYS MON DET Bit7: Interrupt Enable: VSYS General Alarm Detection: VSYS(63h) ≤ VSYS TH(5Ah) 1: Enable / 0: Disable Interrupt Enable : VSYS General Alarm Detection : VSYS(63h) \geq VSYS_1 H(5Ah) Interrupt Enable : VSYS General Alarm Resume : VSYS(63h) \geq VSYS_TH(5Ah) Interrupt Enable : VSYS Low Voltage Detection : VSYS(63h) \geq VSYS_MIN(46h) Interrupt Enable : VSYS Low Voltage Resume : VSYS(63h) \geq VSYS_MAX(45h) Interrupt Enable : VSYS Under-Voltage Detection : VSYS \leq 2.9V(typ) Interrupt Enable : VSYS Under-Voltage Resume : VSYS \geq 3.2V(typ) 1: Enable / 0: Disable.
1: Enable / 0: Disable. VSYS_MON_RES VSYS_LO_DET VSYS_LO_RES Bit6 Bit3 Bit2 VSYS_UV_DET VSYS_UV_RES 1: Enable / 0: Disable Bit0:

Address 8Fh: INT EN 05 Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
٥٦	8Fh	INT_EN_05	R/W	CHG_TRNS	TMP_TRNS	BAT_MNT_IN	BAT_MNT_OU T	CHG_WDT_E XP	EXTEMP_TOU T	-	INHIBIT_0(NOTE1)
	OFII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit7:	CHG_TRNS	Interrupt Enable : Battery Charger State Transition : CHG_STATE(39h)	1: Enable / 0: Disable.
Bit6:	TMP_TRNS	Interrupt Enable : Ranged Battery Temperature Transition : BAT_TEMP(40h)	1: Enable / 0: Disable.
Bit5:	BAT_MNT_IN	Interrupt Enable: Battery Maintenance(Re-Charging) Condition Detection:	1: Enable / 0: Disable.
		$VBAT(5Dh+5Eh) \leq VBAT_MNT(55h)$	1: Enable / 0: Disable.
Bit4:	BAT_MNT_OUT	Interrupt Enable: Battery Maintenance(Re-Charging) Condition Resume:	1: Enable / 0: Disable.
		VBAT(5Dh+5Eh) < VBAT_MNT(55h)	1: Enable / 0: Disable.
Bit3:	CHG_WDT_EXP	Interrupt Enable : Charging Watch Dog Timer Expiration for abnormal long charging :	1: Enable / 0: Disable.
		CHG WDT PRE(49h), CHG WDT FST(4Ah)	1: Enable / 0: Disable.
Bit2:	EXTEMP_TOUT	Interrupt Enable : Charging Watch Dog Timer Expiration for abnormal temperature protection :	1: Enable / 0: Disable.
		refer to "Battery Charger Block - Four Watch Dog Timers" section.	1: Enable / 0: Disable.
Bit0:	INHIBIT_0(note1)	For ROHM factory only	

Address 90h: INT EN 06 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
90h	INT_EN_06	R/W	TH_DET	TH_RMV	BAT_DET	BAT_RMV	-	-	TMP_OUT_DE T	TMP_OUT_RE S
9011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit7:	TH DET	Interrupt Enable : External Thermistor Detection	1: Enable / 0: Disable.
Bit6:	TH_RMV	Interrupt Enable : External Thermister Removal	1: Enable / 0: Disable.
Bit5:	BAT_DET	Interrupt Enable : Battery Detection :	1: Enable / 0: Disable.
		BAT_SET(3Bh) [5]BAT_DET, [4]BAT_DET_DONE and CHG_SET2(48h) [4]BATDET	E1: Enable / 0: Disable.
Bit4:	BAT_RMV	Interrupt Enable : Battery Removal : "	1: Enable / 0: Disable.
		BAT_SET(3Bh) [5]BAT_DET, [4]BAT_DET_DONE and CHG_SET2(48h) [4]BATDET	_E1: Enable / 0: Disable.
Bit1:	TMP_OUT_DET	Interrupt Enable: "Out of Battery Charging Temperature Range" Detection:	1: Enable / 0: Disable.
		BAT_TEMP(40h) is HOT3 or COLD2	1: Enable / 0: Disable.
Bit0:	TMP_OUT_RES	Interrupt Enable : "Out of Battery Charging Temperature Range" Resume :	1: Enable / 0: Disable.
		BAT_TEMP(40h) is except HOT3 and COLD2	1: Enable / 0: Disable.

Address 91h: INT EN 07 Register (R/W)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
91h	01h	INT_EN_07	R/W	VBAT_OV_DE T	VBAT_OV_RE S	VBAT_LO_DE T	VBAT_LO_RE S	VBAT_SHT_D ET	VBAT_SHT_R ES	DBAT_DET	-
	Initial Value	00h	0	0	0	0	0	0	0	0	

Bit7:	VBAT_OV_DET	Interrupt Enable: VBAT Over-Voltage Detection: VBAT(5Dh+5Eh) ≧ VBAT OVP(55h)	1: Enable / 0: Disable.
Bit6:	VBAT OV RES	Interrupt Enable: VBAT Over-Voltage Resume : VBAT(5Dh+5Eh) ≦ VBAT OVP(55h)-150mV	1: Enable / 0: Disable.
Bit5:	VBAT_LO_DET	Interrupt Enable: VBAT Low-Voltage Detection: VBAT(5Dh+5Eh) ≦ VBAT_LO(54h)	1: Enable / 0: Disable.
Bit4:	VBAT_LO_RES	Interrupt Enable: VBAT Low-Voltage Resume: VBAT(5Dh+5Eh) ≧ VBAT_HI(54h)	1: Enable / 0: Disable.
Bit3:	VBAT_SHT_DET	Interrupt Enable: VBAT Short-Circuit Detection: VBAT(5Dh+5Eh) ≦ 1.5V(typ)	1: Enable / 0: Disable.
Bit2:	VBAT_SHT_RES	Interrupt Enable: VBAT Short-Circuit Resume: VBAT(5Dh+5Eh) > 1.6V(typ)	1: Enable / 0: Disable.
Bit1:	DBAT_DET	Interrupt Enable: VBAT Dead-Battery Detection:	1: Enable / 0: Disable.
		VBAT(5Dh+5Eh) \leq VBAT LO(54h) with duration timer TIM DBP(56h)	1: Enable / 0: Disable.

Address 92h: INT EN 08 Register (R/W)

Address (Index)		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
92h	INT_EN_08	R/W	-	-	=	=	-	-	VBAT_MON_D ET	VBAT_MON_R ES
9211	Initial Value	00h	0	0	0	0	0	0	0	0

 Bit1:
 VBAT_MON_DET
 Interrupt Enable: VBAT General Alarm Detection: VBAT(5Dh+5Eh) ≤ VBAT_TH(57h+58h)
 1: Enable / 0: Disable.

 Bit0:
 VBAT_MON_RES
 Interrupt Enable: VBAT General Alarm Resume: VBAT(5Dh+5Eh) > VBAT_TH(57h+58h)
 1: Enable / 0: Disable.

Address 93h: INT EN 09 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
93h	INT_EN_09	R/W	-	-	=	=	-	CC_MON3_DE T	CC_MON2_DE T	CC_MON1_DE T
9311	Initial Value	00h	0	0	0	0	0	0	0	0

Bit2:	CC_MON3_DET	Interrupt Enable : Battery Capacity Alarm 3 :	1: Enable / 0: Disable.
		CCNTD(79h+7Ah+7Bh+7Ch) ≤ CC_BATCAP3_TH(76h+77h) (lower than equal)	1: Enable / 0: Disable.
Bit1:	CC_MON2_DET	Interrupt Enable : Battery Capacity Alarm 2 :	1: Enable / 0: Disable.
		CCNTD(79h+7Ah+7Bh+7Ch) \leq CC_BATCAP2_TH(74h+75h) (lower than equal)	1: Enable / 0: Disable.
Bit0:	CC_MON1_DET	Interrupt Enable : Battery Capacity Alarm 1 :	1: Enable / 0: Disable.
		CCNTD(79h+7Ah+7Bh+7Ch) ≧ CC BATCAP1 TH(72h+73h) (greater than equal)	1: Enable / 0: Disable.

Address 94h: INT EN 10 Register (R/W)

	ddress Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	94h	INT_EN_10	R/W	-	-	OCUR3_DET	OCUR3_RES	OCUR2_DET	OCUR2_RES	OCUR1_DET	OCUR1_RES
9411	9411	Initial Value	00h	0	0	0	0	0	0	0	0

Bit5:	OCUR3_DET	Interrupt Enable : Battery Over-Current 3 Detection :	1: Enable /	0: Disable.
		CURCD(7Dh+7Eh) ≧ OCURTHR3(83h) with duration timer OCURDUR3(84h)	1: Enable /	
Bit4:	OCUR3_RES	Interrupt Enable : Battery Over-Current 3 Resume :	1: Enable /	
		CURCD(7Dh+7Eh) < OCURTHR3(83h) with duration timer OCURDUR3(84h)	1: Enable /	0: Disable.
Bit3:	OCUR2_DET	Interrupt Enable : Battery Over-Current 2 Detection :	1: Enable /	0: Disable.
		CURCD(7Dh+7Eh) ≧ OCURTHR2(81h) with duration timer OCURDUR2(82h)	1: Enable /	0: Disable.
Bit2:	OCUR2 RES	Interrupt Enable : Battery Over-Current 2 Resume :	1: Enable /	0: Disable.
		CURCD(7Dh+7Eh) < OCURTHR2(81h) with duration timer OCURDUR2(82h)	1: Enable /	0: Disable.
Bit1:	OCUR1 DET	Interrupt Enable: Battery Over-Current 1 Detection:	1: Enable /	0: Disable.
	_	CURCD(7Dh+7Eh) ≧ OCURTHR1(7Fh) with duration timer OCURDUR1(80h)	1: Enable /	0: Disable.
Bit0:	OCUR1 RES	Interrupt Enable : Battery Over-Current 1 Resume :	1: Enable /	0: Disable.
		CURCD(7Dh+7Eh) < OCURTHR1(7Fh) with duration timer OCURDUR1(80h)	1: Enable /	0: Disable.

Address 95h: INT EN 11 Register (R/W)

I	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	95h	INT_EN_11	R/W	VF_DET	VF_RES	VF125_DET	VF125_RES	OVTMP_DET	OVTMP_RES	LOTMP_DET	LOTMP_RES
*	9311	Initial Value	00h	0	0	0	0	0	0	0	0

Bit7:	VF_DET	Interrupt Enable : Die temp.(VF) General Alarm Detection : VF(64h) ≦ VF_TH(53h)	1: Enable / 0: Disable.
Bit6:	VF_RES	Interrupt Enable : Die temp.(VF) General Alarm Resume : VF(64h) > VF_TH(53h)	1: Enable / 0: Disable.
Bit5:	VF125 DET	Interrupt Enable : Die temp(VF) Over 125 degC Detection : VF(64h) ≦ 125 degC(typ)	1: Enable / 0: Disable.
Bit4:	VF125 RES	Interrupt Enable: Die temp(VF) Over 125 degC Resume: VF(64h) > 125 degC(typ)	1: Enable / 0: Disable.
Bit3:	OVTMP_DET	Interrupt Enable : Battery Over-Temperature Detection :	1: Enable / 0: Disable.
		BTMP(5Fh) < OVBTMPTHR(86h) with duration timer OVBTMPDUR(87h)	1: Enable / 0: Disable.
Bit2:	OVTMP_RES	Interrupt Enable : Battery Over-Temperature Resume :	1: Enable / 0: Disable.
		BTMP(5Fh) \geq OVBTMPTHR(86h) with duration timer OVBTMPDUR(87h)	1: Enable / 0: Disable.
Bit1:	LOTMP_DET	Interrupt Enable : Battery Low-Temperature Detection :	1: Enable / 0: Disable.
		BTMP(5Fh) > LOBTMPTHR(88h) with duration timer LOBTMPDUR(89h)	 Enable / 0: Disable.
Bit0:	LOTMP_RES	Interrupt Enable : Battery Low-Temperature Resume :	1: Enable / 0: Disable.
		RTMP(5Fh) < LORTMPTHP(88h) with duration timer LORTMPDLIP(89h)	1. Enable / N. Disable

Address 96h: INT EN 12 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
96h	INT_EN_12	R/W	-	-	-	-	-	ALM2	ALM1	ALM0
9011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit2:	ALM2	Interrupt Enable : RTC Alarm 2 : ALM2(35h)	1: Enable / 0: Disable.
Bit1:	ALM1	Interrupt Enable: RTC Alarm 1: ALM0(2Ch-32h) with ALM0_MASK(34h)	1: Enable / 0: Disable.
Bit0:	ALM0	Interrupt Enable: RTC Alarm 0: ALM0(25h-2Bh) with ALM0 MASK(33h)	1: Enable / 0: Disable.

Address 97h: INT STAT Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
97h	INT_STAT	R	BUCK_AST	DCIN_AST	VSYS_AST	CHG_AST	BAT_AST	BMON_AST	TMPALE	ALM_AST
9711	Initial Value	00h	0	0	0	0	0	0	0	0

97h	INT_STAT	R	BUCK_AST	DCIN_AST	VSYS_AST	CHG_AST	BAT_AST	BMON_AST	TMPALE	ALM_AST
9711	Initial Value	00h	0	0	0	0	0	0	0	0
Bit 7(R): BUCK_AST Merged status of INT_STAT_01, Indicates the read data from all bits of INT_STAT_01.					1: Event occurre	ed / 0: No event.				

Bit 6(R): DCIN_AST Merged status of INT_STAT_02-03, Indicates the read data from all bits of INT_STAT_02-03. 1: Event occurred / 0: No event. Bit 5(R): VSYS_AST $\begin{tabular}{ll} VSYS_AST & Merged status of INT_STAT_04, \\ Indicates the read data from all bits of INT_STAT_04. \\ \end{tabular}$ 1: Event occurred / 0: No event.

1: Event occurred / 0: No event.

BAT_AST Merged status of INT_STAT_06, Indicates the read data from all bits of INT_STAT_06. Bit 3(R): BAT_AST 1: Event occurred / 0: No event.

BMON_AST Merged status of INT_STAT_07-10, Indicates the read data from all bits of INT_STAT_07-10. Bit 2(R): BMON_AST 1: Event occurred / 0: No event.

TMP_AST Merged status of INT_STAT_11, Indicates the read data from all bits of INT_STAT_11. Bit 1(R): TMP_AST 1: Event occurred / 0: No event.

ALM_AST Merged status of INT_STAT_12, Indicates the read data from all bits of INT_STAT_12. Bit 0(R) : ALM_AST 1: Event occurred / 0: No event.

Address 98h: INT STAT 01 Register (R/WC)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	98h	INT_STAT_01	R/WC	LED_SCP	LED_OCP	LED_OVP	BUCK5FAULT	BUCK4FAULT	BUCK3FAULT	BUCK2FAULT	BUCK1FAULT
901	9011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7 (R) :LED_SCP Bit 7 (W) LED_SCP	Interrupt Status : A bit is set when LED driver detects SCP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 6 (R):LED_OCP Bit 6 (W) LED_OCP	Interrupt Status : A bit is set when LED driver detects OCP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 5 (R) :LED_OVP Bit 5 (W) LED_OVP	Interrupt Status: A bit is set when LED driver detects OVP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 4 (R) : BUCK5FAULT Bit 4 (W) BUCK5FAULT	Interrupt Status: A bit is set when BUCK5 detects OCP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 3 (R):BUCK4FAULT Bit 3 (W) BUCK4FAULT	Interrupt Status: A bit is set when BUCK4 detects OCP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 2 (R) : BUCK3FAULT Bit 2 (W) BUCK3FAULT	Interrupt Status: A bit is set when BUCK3 detects OCP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 1 (R) : BUCK2FAULT Bit 1 (W) BUCK2FAULT	Interrupt Status: A bit is set when BUCK2 detects OCP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 0 (R):BUCK1FAULT Bit 0 (W) BUCK1FAULT	Interrupt Status: A bit is set when BUCK1 detects OCP. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.

Address 99h: INT STAT 02 Register (R/WC)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
99h	INT_STAT_02	R/WC	-	-	DCIN_OV_DE T	DCIN_OV_RES	DCIN_CLPS_IN	DCIN_CLPS_OUT	DCIN_RMV	-
9911	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 5 (R) : DCIN OV DET Bit 5 (W) DCIN_OV_DET	Interrupt Status : A bit is set when detecting DCIN Over-Voltage : DCIN \geq 6.5V(typ) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 4 (R) : DCIN_OV_RES Bit 4 (W) DCIN_OV_RES	Interrupt Status : A bit is set when recovering from DCIN Over-Voltage : DCIN \leq 6.5V-150mV(typ) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 3 (R):DCIN_CLPS_IN Bit 3 (W) DCIN_CLPS_IN	Interrupt Status : A bit is set when detecting DCIN Anti-Collapse : DCIN(61h+62h) ≧ DCIN_CLPS(43h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 2 (R) : DCIN_CLPS_OUT Bit 2 (W) DCIN_CLPS_OUT	Interrupt Status: A bit is set when recovering DCIN Anti-Collapse: DCIN(61h+62h) < DCIN_CLPS(43h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 1 (R) :DCIN_RMV Bit 1 (W) DCIN_RMV	Interrupt Status: A bit is set when removing DCIN Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.

Address 9Ah: INT STAT 03 Register (R/WC)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	9Ah	INT_STAT_03	R/WC	-	WDOGB	INHIBIT_1(NOTE2) & IGNORE(NOTE3)	INHIBIT_1(NOTE2) & IGNORE(NOTE3)	INHIBIT_1(NOTE2) & IGNORE(NOTE3)	INHIBIT_1(NOTE2) & IGNORE(NOTE3)	DCIN_MON_DET	DCIN_MON_RES
	SAII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit6 (R): WDOGB Bit6 (W): WDOGB	Interrupt Status: A bit is set when detecting WDOGB input. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit5 (R): IGNORE(note3) Bit5 (W): INHIBIT 1(note2)	For ROHM factory only For ROHM factory only	
Bit4 (R): IGNORE(note3) Bit4 (W): INHIBIT_1(note2)	For ROHM factory only For ROHM factory only	
Bit3 (R): IGNORE(note3) Bit3 (W): INHIBIT_1(note2)	For ROHM factory only For ROHM factory only	
Bit2 (R): IGNORE(note3) Bit2 (W): INHIBIT_1(note2)	For ROHM factory only For ROHM factory only	
Bit 1 (R) : DCIN_MON_DET Bit 1 (W) DCIN MON DET	Interrupt Status : A bit is set when detecting DCIN General Alarm : DCIN(61h+62h) ≦ DCIN_TH(59h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 0 (R) : DCIN_MON_RES Bit 0 (W) DCIN MON RES	Interrupt Status: A bit is set when recovering from DCIN General Alarm: DCIN(61h+62h) > DCIN_TH(59h Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.

Address 9Bh: INT STAT 04 Register (R/WC)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	9Bh	INT_STAT_04	R/WC	VSYS_MON_D ET	VSYS_MON_R ES	-	-	VSYS_LO_DET	VSYS_LO_RES	VSYS_UVDET	VSYS_UV_RE S
	9011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7 (R): VSYS_MON_DET Bit 7 (W) VSYS_MON_DET	Interrupt Status : A bit is set when detecting VSYS General Alarm : VSYS(63h) \leq VSYS_TH(5Ah) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 6 (R): VSYS_MON_RES Bit 6 (W) VSYS_MON_RES	Interrupt Status: A bit is set when recovering from VSYS General Alarm: VSYS(63h) > VSYS_TH(5Ah) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 3 (R): VSYS LO DET Bit 3 (W) VSYS_LO_DET	Interrupt Status : A bit is set when detecting VSYS Low Voltage : VSYS(63h) \leq VSYS MIN(46h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 2 (R) :VSYS_LO_RES Bit 2 (W) VSYS_LO_RES	Interrupt Status : A bit is set when recovering VSYS Low Voltage : VSYS(63h) ≧ VSYS_MAX(45h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 1 (R):VSYS_UVDET Bit 1 (W) VSYS_UVDET	Interrupt Status : A bit is set when detecting VSYS Under-Voltage : VSYS \leq 2.9V(typ) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 0 (R):VSYS_UV_RES Bit 0 (W) VSYS_UV_RES	Interrupt Status : A bit is set when recovering VSYS Under-Voltage : VSYS \ge 3.2V(typ) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.

Address 9Ch: INT STAT 05 Register (R/WC)

ddress Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
9Ch	INT_STAT_05	R/WC	CHG_TRNS	TMP_TRNS	BAT_MNT_IN	BAT_MNT_OU T	CHG_WDT_E XP	EXTEMP_TOU T		INHIBIT_1 ^(NOTE2) & IGNORE ^(NOTE3)
9011	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7 (R): CHG_TRNS Bit 7 (W) CHG_TRNS	Interrupt Status: A bit is set when Battery Charger State translated: CHG_STATE(39h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 6 (R) :TMP_TRNS Bit 6 (W) TMP_TRNS	Interrupt Status: A bit is set when Ranged Battery Temperature translated: BAT_TEMP(40h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 5 (R) :BAT_MNT_IN	Interrupt Status : A bit is set when detecting Battery Maintenance(Re-Charging) Condition : VBAT(5Dh+5Eh) ≦ VBAT MNT(55h)	1: Event occurred / 0: No event.
Bit 5 (W) BAT_MNT_IN	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 4 (R) :BAT MNT OUT	Interrupt Status: A bit is set when recovering Battery Maintenance(Re-Charging) Condition: VBAT(5Dh+5Eh) < VBAT MNT(55h)	1: Event occurred / 0: No event.
Bit 4 (W) BAT_MNT_OUT	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 3 (R) : CHG_WDT_EXP	Interrupt Status: A bit is set when detecting Watch Dog Timeout for abnormal long charging: CHG WDT PRE(49h), CHG WDT FST(4Ah)	1: Event occurred / 0: No event.
Bit 3 (W) CHG_WDT_EXP	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 2 (R) :EXTEMP_TOUT	Interrupt Status: A bit is set when detecting Watch Dog Timeout for abnormal temperature protection: refer to "Battery Charger Block - Four Watch Dog Timers" section.	1: Event occurred / 0: No event.
Bit 2 (W) EXTEMP_TOUT	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 0 (R):IGNORE(note3)	For ROHM factory only	

Bit 0 (W) INHIBIT_1(note2) For ROHM factory only

Address 9Dh: INT STAT 06 Register (R/WC)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
9Dh	INT_STAT_06	R/WC	TH_DET	TH_RMV	BAT_DET	BAT_RMV	-	-	TMP_OUT_DE T	TMP_OUT_RE S
9DN	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7 (R) :TH_DET Bit 7 (W) TH_DET	Interrupt Status: A bit is set when detecting External Thermistor. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 6 (R) : TH_RMV Bit 6 (W) TH_RMV	Interrupt Status: A bit is set when removing External Thermister. Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 5 (R) :BAT_DET	Interrupt Status: A bit is set when detecting Battery: BAT SET(3Bh) [5]BAT DET, [4]BAT DET DONE and CHG SET2(48h) [4]BATDET BATDET BATD	1: Event occurred / 0: No event.
Bit 5 (W) BAT_DET	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 4 (R) :BAT_RMV	Interrupt Status: A bit is set when removing Battery: BAT SET(3Bh) [5]BAT DET, [4]BAT DET DONE and CHG SET2(48h) [4]BATDET B	1: Event occurred / 0: No event.
Bit 4 (W) BAT_RMV	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 1 (R):TMP_OUT_DET	Interrupt Status: A bit is set when detecting "Out of Battery Charging Temperature Range": BAT TEMP(40h) is HOT3 or COLD2	1: Event occurred / 0: No event.
Bit 1 (W) TMP_OUT_DET	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 0 (R) : TMP_OUT_RES	Interrupt Status: A bit is set when recovering from "Out of Battery Charging Temperature Range": BAT TEMP(40h) is except HOT3 and COLD2	1: Event occurred / 0: No event.
Bit 0 (W) TMP_OUT_RES	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.

Address 9Eh: INT STAT 07 Register (R/WC)

	dress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	nEh.	INT_STAT_07	R/WC	VBAT_OV_DE T	VBAT_OV_RE S	VBAT_LO_DE T	VBAT_LO_RE S	VBAT_SHT_D ET	VBAT_SHT_R ES	DBAT_DET	-
9Eh	7L11	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7 (R) :VBAT_OV_DET	Interrupt Status: A bit is set when detecting VBAT Over-Voltage:	1: Event occurred / 0: No event.
Bit 7 (W) VBAT_OV_DET	VBAT(5Dh+5Eh) ≧ VBAT_OVP(55h) Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 6 (R): VBAT OV RES	Interrupt Status : A bit is set when recovering from VBAT Over-Voltage : VBAT(5Dh+5Eh) ≦ VBAT OVP(55h)-150mV	1: Event occurred / 0: No event.
Bit 6 (W) VBAT_OV_RES	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 5 (R) :VBAT_LO_DET Bit 5 (W) VBAT_LO_DET	Interrupt Status : A bit is set when detecting VBAT Low-Voltage : VBAT(5Dh+5Eh) ≦ VBAT LO(54h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 4 (R) :VBAT_LO_RES Bit 4 (W) VBAT_LO_RES	Interrupt Status : A bit is set when recovering from VBAT Low-Voltage : VBAT(5Dh+5Eh) ≧ VBAT_HI(54l Write 1 to this bit to clear the status.	n 1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 3 (R) :VBAT_SHT_DET Bit 3 (W) VBAT_SHT_DET	Interrupt Status : A bit is set when detecting VBAT Short-Circuit : VBAT(5Dh+5Eh) ≦1.5V(typ) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 2 (R) :VBAT_SHT_RES Bit 2 (W) VBAT_SHT_RES	Interrupt Status : A bit is set when recovering from VBAT Short-Circuit Detection : VBAT(5Dh+5Eh) > 1.6\ Write 1 to this bit to clear the status.	/ 1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 1 (R) :DBAT_DET	Interrupt Status: A bit is set when detecting VBAT Dead-Battery:	1: Event occurred / 0: No event.
Bit 1 (W) DBAT_DET	VBAT(5Dh+5Eh) ≦VBAT_LO(54h) with duration timer TIM_DBP(56h) Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.

Address 9Fh: INT STAT 08 Register (R/WC)

	dress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	9Fh	INT_STAT_08	R/WC	-	-	-	-	-	-	VBAT_MON_D ET	VBAT_MON_R ES
`	9511	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 1 (R) : VBAT_MON_DET
Bit 1 (W) VBAT_MON_DET
Write 1 to this bit to clear the status.

Interrupt Status : A bit is set when detecting VBAT General Alarm : VBAT(5Dh+5Eh) ≦ VBAT_TH(57h+58 1: Event occurred / 0: No event.
1: Clear / 0: Not clear.

Bit 0 (R): VBAT_MON_RES
Bit 0 (W) VBAT_MON_RES
Interrupt Status: A bit is set when recovering from VBAT General Alarm: VBAT(5Dh+5Eh) > VBAT_TH(571: Event occurred / 0: No event.

1: Clear / 0: Not clear.

Address A0h: INT STAT 09 Register (R/WC)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
A0h	INT_STAT_09	R/WC	-	-	-	-	-	CC_MON3_DE T	CC_MON2_DE T	CC_MON1_DE T
Aun	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 2 (R) :CC_MON3_DET

Interrupt Status : A bit is set when detecting Battery Capacity Alarm 3 :

CCNTD(79h+7Ah+7Bh+7Ch) ≤ CC BATCAP3 TH(76h+77h) (lower than equal)

Write 1 to this bit to clear the status.

1: Event occurred / 0: Not clear.

1: Event occurred / 0: Not event.

CCNTD(79h+7Ah+7Bh+7Ch) ≤ CC BATCAP2 TH(74h+75h) (lower than equal)

Write 1 to this bit to clear the status.

1: Event occurred / 0: No event.

1: Clear / 0: Not clear.

1: Event occurred / 0: No event.

CCNTD(79h+7Ah+7Bh+7Ch) ≤ CC BATCAP2 TH(74h+75h) (greater than equal)

Write 1 to this bit to clear the status.

1: Event occurred / 0: No event.

CCNTD(79h+7Ah+7Bh+7Ch) ≤ CC_BATCAP1_TH(72h+73h) (greater than equal)

Write 1 to this bit to clear the status.

Address A1h: INT STAT 10 Register (R/WC)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
A1h	INT_STAT_10	S/WC	-	-	OCUR3_DET	OCUR3_RES	OCUR2_DET	OCUR2_RES	OCUR1_DET	OCUR1_RES
Ain	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 5 (R) :OCUR3_DET	Interrupt Status : A bit is set when detecting Battery Over-Current 3 : CURCD(7Dh+7Eh) ≧ OCURTHR3(83h) with duration timer OCURDUR3(84h)	1: Event occurred / 0: No event.
Bit 5 (W) OCUR3_DET	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 4 (R) : OCUR3_RES	Interrupt Status: A bit is set when recovering from Battery Over-Current 3: CURCD(7Dh+7Eh) < OCURTHR3(83h) with duration timer OCURDUR3(84h)	1: Event occurred / 0: No event.
Bit 4 (W) OCUR3_RES	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 3 (R) :OCUR2_DET	Interrupt Status : A bit is set when detecting Battery Over-Current 2 : CURCD(7Dh+7Eh) ≧ OCURTHR2(81h) with duration timer OCURDUR2(82h)	1: Event occurred / 0: No event.
Bit 3 (W) OCUR2_DET	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 2 (R) :OCUR2_RES	Interrupt Status: A bit is set when recovering from Battery Over-Current 2: CURCD(7Dh+7Eh) < OCURTHR2(81h) with duration timer OCURDUR2(82h)	1: Event occurred / 0: No event.
Bit 2 (W) OCUR2_RES	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 1 (R) :OCUR1_DET	Interrupt Status : A bit is set when detecting Battery Over-Current 1 : CURCD(7Dh+7Eh) ≧ OCURTHR1(7Fh) with duration timer OCURDUR1(80h)	1: Event occurred / 0: No event.
Bit 1 (W) OCUR1_DET	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 0 (R) :OCUR1_RES	Interrupt Status: A bit is set when recovering from Battery Over-Current 1: CURCD(7Dh+7Eh) < OCURTHR1(7Fh) with duration timer OCURDUR1(80h)	1: Event occurred / 0: No event.
Bit 0 (W) OCUR1_RES	Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.

Address A2h: INT STAT 11 Register (R/WC)

	Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
A2h	۸2h	INT_STAT_11	s/wc	VF_DET	VF_RES	VF125_DET	VF125_RES	OVTMP_DET	OVTMP_RES	LOTMP_DET	LOTMP_RES
	Initial Value	00h	0	0	0	0	0	0	0	0	

Bit 7 (R) :VF_DET Bit 7 (W) VF_DET	Interrupt Status :	A bit is set when detecting Die temp.(VF) General Alarm : VF(64h) \leq VF_TH(53h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 6 (R):VF_RES Bit 6 (W) VF_RES	Interrupt Status :	A bit is set when Recovering from Die temp.(VF) General Alarm : $VF(64h) > VF_TH(53h)$ Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 6 (R):VF125_DET Bit 6 (W) VF125_DET	Interrupt Status :	A bit is set when detecting Die temp(VF) Over 125 degC : VF(64h) \leq 125 degC(typ) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 6 (R): VF125_RES Bit 6 (W) VF125_RES	Interrupt Status :	A bit is set when Recovering from Die temp(VF) Over 125 degC : VF(64h) > 125 degC(ty Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 3 (R) :OVTMP_DET	Interrupt Status :	A bit is set when detecting Battery Over-Temperature :	1: Event occurred / 0: No event.
Bit 3 (W) OVTMP_DET		BTMP(5Fh) < OVBTMPTHR(86h) with duration timer OVBTMPDUR(87h) Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 2 (R) : OVTMP RES	Interrupt Status :	A bit is set when Recovering from Battery Over-Temperature :	1: Event occurred / 0: No event.
Bit 2 (W) OVTMP_RES		BTMP(5Fh) \ge OVBTMPTHR(86h) with duration timer OVBTMPDUR(87h) Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 1 (R) :LOTMP_DET	Interrupt Status :	A bit is set when detecting Battery Low-Temperature :	1: Event occurred / 0: No event.
Bit 1 (W) LOTMP_DET		BTMP(5Fh) > LOBTMPTHR(88h) with duration timer LOBTMPDUR(89h) Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.
Bit 0 (R) :LOTMP_RES	Interrupt Status :	A bit is set when Recovering from Battery Low-Temperature :	1: Event occurred / 0: No event.
Bit 0 (W) LOTMP_RES		BTMP(5Fh) ≦ LOBTMPTHR(88h) with duration timer LOBTMPDUR(89h) Write 1 to this bit to clear the status.	1: Clear / 0: Not clear.

Address A3h: INT STAT 12 Register (R/WC)

	ddress Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4.21	A3h	INT_STAT_12	S/WC	-	-	-	-	-	ALM2	ALM1	ALM0
	ASII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 2 (R) : ALM2 Bit 2 (W) ALM2	Interrupt Status: A bit is set when detecting RTC Alarm 2: ALM2(35h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 1 (R):ALM1 Bit 1 (W) ALM1	Interrupt Status: A bit is set when detecting RTC Alarm 1: ALM0(2Ch-32h) with ALM0_MASK(34h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.
Bit 0 (R) : ALM0 Bit 0 (W) ALM0	Interrupt Status: A bit is set when detecting RTC Alarm 0: ALM0(25h-2Bh) with ALM0_MASK(33h) Write 1 to this bit to clear the status.	1: Event occurred / 0: No event. 1: Clear / 0: Not clear.

Address A4h: INT UPDATE Register (R/WC)

	dress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	\	INT_UPDATE	R/WC	-	-	-	-	-	-	-	INT_UPDATE
A4h	4411	Initial Value	00h	0	0	0	0	0	0	0	0

Bit0: The present interruption status is updated.

Interruption is not updated.
 Interruption is updated and INT_UPDATE bit is cleared to 0.

Address B0h: RESERVE 0 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
B0h	RESERVE_0	R/W		RESERVE_0[7:0]								
БИП	Initial Value	00h	0	0	0	0	0	0	0	0		

Bit 7-0: RESERVE_0[7:0] Reserved registers which user can use

Address B1h: RESERVE 1 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RESERVE_1 R/W RESERVE_1[7:0]										
וווט	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: RESERVE_1[7:0] Reserved registers which user can use

Address B2h: RESERVE 2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
B2h	RESERVE_2	R/W		RESERVE_2[7:0]									
DZII	Initial Value	00h	0	0	0	0	0	0	0	0			

Bit 7-0: RESERVE_2[7:0] Reserved registers which user can use

	ddress (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	B3h	RESERVE_3	R/W		RESERVE_3[7:0]								
		Initial Value	00h	0	0	0	0	0	0	0	0		

Bit 7-0: RESERVE_3[7:0]

Reserved registers which user can use

Address B4h: RESERVE 4 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
B4h	RESERVE_4	R/W				RESERV	/E_4[7:0]			
D411	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: RESERVE_4[7:0]

Reserved registers which user can use

Address B5h: RESERVE 5 Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
B5h	RESERVE_5	R/W				RESERV	/E_5[7:0]			
BOI	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: RESERVE_5[7:0]

Reserved registers which user can use

Address B6h: RESERVE 6 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
B6h	RESERVE_6	R/W				RESERV	/E_6[7:0]			
DOIL	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: RESERVE_6[7:0]

Reserved registers which user can use

Address B7h: RESERVE 7 Register (R/W)

Addre (Inde:		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
B7h	RESERVE_7	R/W				RESERV	/E_7[7:0]			
БЛ	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: RESERVE_7[7:0]

Reserved registers which user can use

Address B8h: RESERVE 8 Register (R/W)

Addre (Inde		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
B8l	RESERVE_8	R/W				RESERV	/E_8[7:0]			
DOI	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0 : RESERVE_8[7:0]

Reserved registers which user can use

Address B9h: RESERVE 9 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
B9h	RESERVE_9	R/W				RESERV	'E_9[7:0]			
וופט	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: RESERVE_9[7:0]

Reserved registers which user can use

Address C0h: VM VSYS U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
C0h	VM_VSYS_U	S	-	-	-			VSYS[12:8]		
Con	Initial Value	00h	0	0	0	0	0	0	0	0

Address C1h: VM VSYS L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
C1h	VM_VSYS_L	S				VSYS	S[7:0]			
CIII	Initial Value	00h	0	0	0	0	0	0	0	0

VSYS[12:0]

Measured VSYS voltage 0.00V to 8.191V(0.50V to 7.00V clamp), 1 mV steps.

Series of VSYS[12:0] (address from C0h to C1h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address C2h: VM SA VSYS U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
C2h	VM_SA_VSYS_U	s	-	-	-			VSYS_SA[12:8]		
CZII	Initial Value	00h	0	0	0	0	0	0	0	0

Address C3h: VM SA VSYS L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
C3h	VM_SA_VSYS_L	S				VSYS_	SA[7:0]			
Coll	Initial Value	00h	0	0	0	0	0	0	0	0

VSYS SA[12:0]

Measured VSYS voltage calculated simple average 0.00V to 8.191V(0.50V to 7.00V clamp), 1 mV steps.

Series of VSYS_SA[12:0] (address from C2h to C3h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers

Address D0h: VM SA IBAT MIN U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D0h	VM_SA_IBAT_MIN_U	S	IBAT_SA_MIN _DIR	-	-	-		IBAT_SA_	MIN[11:8]	
DON	Initial Value	0Fh	0	0	0	0	1	1	1	1

Address D1h: VM SA IBAT MIN L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D1h	VM_SA_IBAT_MIN_L	S				IBAT_SA	_MIN[7:0]			
וווט	Initial Value	FFh	1	1	1	1	1	1	1	1

Latest minimum Battery Current (simple average), 0.00A to 4.063A range, 1mA steps. IBAT_SA_MIN_DIR
Current Direction

0 : Charging 1 : Discharging

IBAT_SA_MIN[11:0] Absolute Current, 0.00A to 4.063A range, 1mA steps (RSENS=10mohm).
Absolute Current, 0.00A to 1.354A range, 0.33mA steps (RSENS=30mohm).
Series of IBAT_SA_MIN_DIR and IBAT_SA_MIN[11:0] (address from D0h to D1h) should be read in accordance with continuous manner,

so stop condition should not be inserted during reading these registers.

Address D2h: VM SA IBAT MAX U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D2h	VM_SA_IBAT_MAX_U	S	IBAT_SA_MAX _DIR	-	-	-		IBAT_SA_	MAX[11:8]	
DZII	Initial Value	8Fh	1	0	0	0	1	1	1	1

Address D3h: VM SA IBAT MAX L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D3h	VM_SA_IBAT_MAX_L	S				IBAT_SA_	_MAX[7:0]			
ווכט	Initial Value	FFh	1	1	1	1	1	1	1	1

Latest maximum Battery Current (simple average), 0.00A to 4.063A range, 1mA steps. Current Direction

IBAT_SA_MAX_DIR

0 : Charging 1 : Discharging

IBAT_SA_MAX[11:0] Absolute Current, 0.00A to 4.063A range, 1mA steps (RSENS=10mohm).

Absolute Current, 0.00A to 1.354A range, 0.33mA steps (RSENS=30mohm).

Series of IBAT_SA_MAX_DIR and IBAT_SA_MAX[11:0] (address from D2h to D3h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address D4h: VM SA VBAT MIN U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D4h	VM_SA_VBAT_MIN_U	S	-	-	=		VE	BAT_SA_MIN[12	:8]	
D411	Initial Value	1Fh	0	0	0	1	1	1	1	1

Address D5h: VM SA VBAT MIN L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D5h	VM_SA_VBAT_MIN_L	S				VBAT_SA	_MIN[7:0]			
Doll	Initial Value	FFh	1	1	1	1	1	1	1	1

VBAT SA MIN[12:0]

Latest minimum Battery Voltage (simple average), 0.000V to 8.191V range (0.6V to 5.6V clamp), 1mV steps. Series of VBAT_SA_MIN[12:0] (address from D4h to D5h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address D6h: VM SA VBAT MAX U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D6h	VM_SA_VBAT_MAX_U	s	-	-	-		VE	BAT_SA_MAX[12	2:8]	
Doll	Initial Value	00h	0	0	0	0	0	0	0	0

Address D7h: VM SA VBAT MAX L Register (R)

Addres (Index)		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D7h	VM_SA_VBAT_MAX_L	S				VBAT_SA	_MAX[7:0]			
Dill	Initial Value	00h	0	0	0	0	0	0	0	0

VBAT_SA_MAX[12:0]

Latest maximum Battery Voltage (simple average), 0.000V to 8.191V range (0.6V to 5.6V clamp), 1mV steps. Series of VBAT_SA_MAX[12:0] (address from D6h to D7h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address D8h: VM SA VSYS MIN U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D8h	VM_SA_VSYS_MIN_U	S	-	-	-		VS	SYS_SA_MIN[12	::8]	
Doll	Initial Value	1Fh	0	0	0	1	1	1	1	1

Address D9h: VM SA VSYS MIN L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
D9h	VM_SA_VSYS_MIN_L	s				VSYS_SA	_MIN[7:0]			
Dall	Initial Value	FFh	1	1	1	1	1	1	1	1

VSYS_SA_MIN[12:0]

Latest minimum VSYS voltage (simple average) 0.00V to 8.191V(0.50V to 7.00V clamp), 1 mV steps. Series of VSYS_SA_MIN[12:0] (address from D8h to D9h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address DAh: VM SA VSYS MAX U Register (R)

lress dex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ah	VM_SA_VSYS_MAX_U	S	-	-	-		VS	SYS_SA_MAX[12	2:8]	
AII	Initial Value	00h	0	0	0	0	0	0	0	0

Address DBh: VM SA VSYS MAX L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DBh	VM_SA_VSYS_MAX_L	S				VSYS_SA	_MAX[7:0]			
DBII	Initial Value	00h	0	0	0	0	0	0	0	0

VSYS_SA_MAX[12:0]

Latest maximum VSYS voltage (simple average) 0.00V to 8.191V(0.50V to 7.00V clamp), 1 mV steps. Series of VSYS_SA_MAX[12:0] (address from DAh to DBh) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address DCh: VM SA MINMAX CLR Register (R/WC)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DCh	VM_SA_MINMAX_CLR	R/WC	-	-	VSYS_SA_MA X_CLR	VSYS_SA_MIN _CLR	IBAT_SA_MAX _CLR	IBAT_SA_MIN _CLR	VBAT_SA_MA X_CLR	VBAT_SA_MIN _CLR
DCII	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 5 : VSYS_SA_MAX_CLR
Bit 4 : VSYS_SA_MIN_CLR
Bit 5 : BAT_SA_MAX_CLR
Bit 6 : BAT_SA_MAX_CLR
Bit 7 : BAT_SA_MAX_CLR
Bit 8 : BAT_SA_MAX_CLR
Bit 9 : BAT_SA_MAX_CLR
Bit 1 : VBAT_SA_MAX_CLR
Bit 1 : VBAT_SA_MIN_CLR
Bit 1 : VBAT_SA_MIN_CLR
Bit 1 : VBAT_SA_MIN_CLR
Bit 1 : VBAT_SA_MIN_CLR
Bit 1 : Clear for VBAT_SA_MIN_CLR
Bit 1 : VBAT_SA_MIN_CLR
Bit 1 : Clear for VBAT_SA_MIN_CLR
Bit 2 : Clear for VBAT_SA_MIN_CLR
Bit 3 : Clear for VBAT_SA_MIN_CLR
Bit 4 : Clear for VSYS_SA_MIN_CLR
Bit 5 : Clear for VSYS_SA_MAX[12:0] register, then VSYS_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VSYS_SA_MIN_CLR
Bit 3 : Clear for VSYS_SA_MAX[12:0] register, then VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MAX[12:0] register, then VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Clear for VBAT_SA_MIN_CLR bit is cleared to 0 . 1 : Clear / 0 : Not clear.

Address E0h: REX CCNTD 3 Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E0h	REX_CCNTD_3	S	-	-	-	-		REX_CCN	ITD[27:24]	
EUII	Initial Value	00h	0	0	0	0	0	0	0	0

Address E1h: REX CCNTD 2 Register (R)

ddress Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
E1h	REX_CCNTD_2	S		REX_CCNTD[23:16]								
E 1111	Initial Value	00h	0	0	0	0	0	0	0	0		

Address E2h: REX CCNTD 1 Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
E2h	REX_CCNTD_1	s		REX_CCNTD[15:8]									
EZII	Initial Value	00h	0	0	0	0	0	0	0	0			

Address E3h: REX_CCNTD_0 Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
E3h	REX_CCNTD_0	S		REX_CCNTD[7:0]								
ESII	Initial Value	00h	0	0	0	0	0	0	0	0		

REX_CCNTD[27:0]

Coulomb Counter value at Relax State detection.

3.33 [As] (RSENS=30mohm)

Series of REX_CCNTD[27:0] (address from E0h to E3h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address E4h: REX SA VBAT U Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E4h	REX_SA_VBAT_U	S	-	-	-	REX_VBAT_SA[12:8]				
E411	Initial Value	00h	0	0	0	0	0	0	0	0

Address E5h: REX SA VBAT L Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
E5h	REX_SA_VBAT_L	S		REX_VBAT_SA[7:0]									
E311	Initial Value	00h	0	0	0	0	0	0	0	0			

REX_VBAT_SA[12:0]

Battery Voltage at Relax State detection, 0.000V to 8.919V range (0.6V to 5.6V clamp), 1mV steps. Series of REX_VBAT_SA[12:0] (address from E4h to E5h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address E6h: REX CTRL 1 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E6h	REX_CTRL_1	R/W	-	-	-	REX_CLR	REX_EN	REX_PMU_ST ATE_MASK	REX_D	UR[1:0]
LOII	Initial Value	09h	0	0	0	0	1	0	0	1

REX CLR Bit 4:

Clear for REX_CCNTD[27:0] and REX_VBAT_SA[12:0] register.

0: Not clear. 1: Clear

Writing 1 to REX_CLR bit, then REX_CLR bit is cleared to 0.

Bit 3 : REX_EN Enable Relax State detection.

Relax State detection accepts Power State as one of the condition. Disable. Immediately exits Relax State action.
 Enable.

0 : Not mask.

1: Mask

Bit 1-0: REX DUR

Duration Timer setting for Relax State detection.

REX_DUR	Duration time
0h	32 min
1h	64 min
2h	96 min
3h	128 min

Address E7h: REX CTRL 2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
E7h	REX_CTRL_2	R/W		REX_CURCD_TH[7:0]								
E/11	Initial Value	0Ah	0	0	0	0	1	0	1	0		

Bit 7-0: REX_CURCD_TH

Battery Current threshold for Relax State detection, 1mA to 255mA range, 1mA steps (RSENS=10mohm). Battery Current threshold for Relax State detection, 0.33mA to 85mA range, 0.33mA steps (RSENS=30mohm).

If REX_CURCD_TH bits are set to 00h, battery current (CURCD bits) is ignored for Relax State detection. If REX_CURCD_TH bits are set to a value except 00h, Battery current (CURCD bits ≤ REX_CURCD_TH bits) is applied as one of the conditions of Relax State detection.

Address E8h: FULL CCNTD 3 Register (R)

	ddress ndex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E8h	FULL_CCNTD_3	S	-	-	-	-	FULL_CCNTD[27:24]				
	COII	Initial Value	00h	0	0	0	0	0	0	0	0

Address E9h: FULL CCNTD 2 Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
E9h	FULL_CCNTD_2	S		FULL_CCNTD[23:16]								
E911	Initial Value	00h	0	0	0	0	0	0	0	0		

Address EAh: FULL CCNTD 1 Register (R)

Addre (Inde:		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
EAh	FULL_CCNTD_1	S		FULL_CCNTD[15:8]								
EAI	Initial Value	00h	0	0	0	0	0	0	0	0		

Address EBh: FULL CCNTD 0 Register (R)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
EBh	FULL_CCNTD_0	S		FULL_CCNTD[7:0]								
EDII	Initial Value	00h	0	0	0	0	0	0	0	0		

FULL_CCNTD[27:0]

Coulomb Counter value when the charger judged end of full charging (DONE) with ROOM temperature.

3.33 [As] (RSENS=30mohm)

Series of FULL_CCNTD[27:0] (address from E8h to EBh) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address ECh: FULL_CTRL Register (R/WC)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ECh	FULL_CTRL	R/WC	-	-	-	FULL_CLR	-	-	-	-
LOII	Initial Value	00h	0	0	0	0	0	0	0	0

FULL_CLR

Clear for FULL_CCNTD[27:0] register.

0 : Not clear. 1 : Clear

Writing 1 to FULL_CLR bit, then FULL_CLR bit is cleared to 0.

Address F0h: CCNTD CHG 3 Register (R/W)

Addres (Index		R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F0h	CCNTD_CHG_3	CCNTD_CHG_3 R/W CHG_CCNTD[31:24]								
FUII	Initial Value	00h	0	0	0	0	0	0	0	0

Address F1h: CCNTD CHG 2 Register (R/W)

Address (Index)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
F1h	CCNTD_CHG_2	R/W	CHG_CCNTD[23:16]							
	Initial Value	00h	0	0	0	0	0	0	0	0

CHG_CCNTD[31:16]

Charging Coulomb Counter value .

When CCNTENB = "1", the Coulomb Counter accumulates the charge current value only. In battery charging, the measured current value is added to the Coulomb Counter at every conversion period. Before CHG_CCNTD reaches full, it regularly must be set with an caluculated charging cycle by software.

Internal register keeps CHG_CCNTD[15:0], it can clear by set CCNTRST to 1.

Series of CHG_CCNTD[31:16] (address from F0h to F1h) should be read in accordance with continuous manner, so stop condition should not be inserted during reading these registers.

Address FEh: PROTECT Register (R/W)

lress dex)	Register Name	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Eh	PROTECT	R/W	PROTECT[7:0]							
	Initial Value	00h	0	0	0	0	0	0	0	0

Bit 7-0: PROTECT[7:0]

This register is intend to access test area registers. Do NOT write any data to this register

Typical Performance Curves

Figure 24. VBAT Circuit Current (SNVS Mode) vs Temperature

Figure 25. VBAT Circuit Current (Suspend Mode) vs Temperature

Figure 26. VBAT Circuit Current (Run Mode) vs Temperature

Figure 27. Efficiency vs Output Current ("BUCK1 Efficiency Auto Mode", V_{BAT}=3.6V, V_{OSW1}=1.3V)

Figure 28. Efficiency vs Output Current ("BUCK1 Efficiency PWM Mode", V_{BAT} =3.6V, V_{OSW1} =1.3V)

Figure 29. Efficiency vs Output Current ("BUCK2 Efficiency Auto Mode", V_{BAT}=3.6V, V_{OSW2}=1.3V)

Figure 30. Efficiency vs Output Current ("BUCK2 Efficiency PWM Mode", V_{BAT}=3.6V, V_{OSW2}=1.3V)

Figure 31. Efficiency vs Output Current ("BUCK3 Efficiency Auto Mode", V_{BAT}=3.6V, V_{OSW3}=1.8V)

Figure 32. Efficiency vs Output Current ("BUCK3 Efficiency PWM Mode", V_{BAT}=3.6V, V_{OSW3}=1.8V)

Figure 33. Efficiency vs Output Current ("BUCK4 Efficiency Auto Mode", V_{BAT}=3.6V, V_{OSW4}=1.2V)

Figure 34. Efficiency vs Output Current ("BUCK4 Efficiency PWM Mode", V_{BAT} =3.6V, V_{OSW4} =1.2V)

Figure 35. Efficiency vs Output Current ("BUCK5 Efficiency Auto Mode", V_{BAT}=3.6V, V_{OSW5}=3.2V)

Figure 36. Efficiency vs Output Current ("BUCK5 Efficiency PWM Mode", V_{BAT}=3.6V, V_{OSW5}=3.2V)

Figure 37. LDO1 Output Voltage vs LDO1 Output Current (V_{BAT}=3.6V, VSYS=VIN=VINL1,2)

Figure 38. LDO2 Output Voltage vs LDO2 Output Current (VBAT=3.6V, VSYS=VIN=VINL1,2)

Figure 39. LDO3 Output Voltage vs LDO3 Output Current (VBAT=3.6V, VSYS=VIN=VINL1,2)

Figure 40. LDO4 Output Voltage vs LDO4 Output Current (VBAT=3.6V, VSYS=VIN=VINL1,2)

Figure 41. LDO5 Output Voltage vs LDO5 Output Current (V_{BAT}=3.6V, VSYS=VIN=VINL1,2, LDO5VSEL=H)

Figure 42. LDO5 Output Voltage vs LDO5 Output Current (V_{BAT}=3.6V, VSYS=VIN=VINL1,2, LDO5VSEL=L)

Figure 43. DVREF Output Voltage vs DVREF Output Current (V_{BAT}=3.6V, VSYS=VIN=VINL1,2)

Figure 44. BUCK1 DVS Rise Time $(V_{BAT}=3.6V\ C_L=10\mu F\ I_{OUT}=0A$ Ramp Rate=10mV/ μ s, BUCK1_MODE [02h:15h] PWM Mode)

Figure 45. BUCK1 DVS Fall Time (V_{BAT} =3.6V C_L =10 μ F I_{OUT} =0A Ramp Rate=10mV/ μ s, BUCK1_MODE [02h:15h] PWM Mode)

Figure 46. BUCK2 DVS Rise Time $(V_{BAT}=3.6V\ C_L=10\mu F\ I_{OUT}=0A$ Ramp Rate=10mV/ μ s, BUCK2_MODE [03h:15h] PWM Mode)

Figure 47. BUCK2 DVS Rise Time $(V_{BAT}=3.6V\ C_L=10\mu F\ I_{OUT}=0A$ Ramp Rate=10mV/ μ s, BUCK2_MODE [03h:15h] PWM Mode)

Figure 48. LDO4 Control Timing Diagram (V_{BAT}=3.6V I_{OUT}=0A)

Figure 49. LDO5 Control Timing Diagram (V_{BAT}=3.6V I_{OUT}=0A)

Figure 50. Charge Current (Internal MOS) vs Battery Voltage (DCIN=5V I_{FST}=400mA TS=GND)

Figure 51. Charge Current (External MOS) vs Battery Voltage (DCIN=5V I_{FST}=400mA TS=GND)

Figure 52. LED Output Current vs LED Current Setting
(V_{BAT}=3.6V LEDs=6)

I/O Equivalent Circuits

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply terminals.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.

6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.

7. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

8. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.

9. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

10. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

Operational Notes - continued

11. Unused Input Terminals

Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input terminals should be connected to the power supply or ground line.

12. Regarding the Input Pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.

When GND > Pin B, the P-N junction operates as a parasitic transistor.

Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.

Figure 53. Example of monolithic IC structure

13. Ceramic Capacitor

When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

14. Area of Safe Operation (ASO)

Operate the IC such that the output voltage, output current, and the maximum junction temperature rating are all within the Area of Safe Operation (ASO).

15. Thermal Shutdown Circuit(TSD)

This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC's power dissipation rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation.

Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage.

16. Over Current Protection Circuit (OCP)

This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit.

17. Disturbance light

In a device where a portion of silicon is exposed to light such as in a WL-CSP, IC characteristics may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that will prevent the chip from being exposed to light.

Ordering Information

Marking Diagrams

UCSP55M4C(BD71815AGW) Top view

Physical Dimension Tape and Reel Information

Mark PIN1

Reel

Direction of feed

Revision History

Date	Revision	Changes
5.Oct.2016	001	New Release
3.Mar.2017	002	Fixed some typos without the function change. p.3 Update Figure 1 p.4 Update Figure 2 p.11 Update Figure 5 p.12 Update Figure 6 p.13 Update Table 5 p.13 (b) Coin state or VSYS falls below 2.9V. → or VSYS falls below 2.5V. p.13 (c) SNVS state from Coin State when VSYS exceeds 3.2V → from Coin State when VSYS exceeds 2.8V p.21 Update Figure 11 p.22 Update Figure 13. p.23 Update Table 7 p.47 Address 01h Bit 1 : PORB is asserted to low for 1ms. → POR is asserted to low for 1ms p.63 Address 49h Bit 7-0 : for Pre-Charging 1 to 272 minutes range, → for Pre-Charging 0 to 271 minutes range, p.64 Address 4Bh Bit 7-4 : IPRE[3:0] → ITRI[3:0] 20mA to 100mA range, 10mA step → 5.0mA to 25.0mA range, 2.5mA step p.64 Address 4Bh Bit 3-0 : ITRI[3:0] → IPRE[3:0] 100mA to 500mA range, 50mA step → 50mA to 375mA range, 25mA step p.64 Address 4Ch Bit 4-0 : Add RSENS=30mohm table.

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁPAN	USA	EU	CHINA
CLASSⅢ	CL A C C TT	CLASS II b	CL ACCIII
CLASSIV	CLASSⅢ	CLASSⅢ	CLASSⅢ

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice-PGA-E Rev.003

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001