Correlation

Max Turgeon

DATA 2010-Tools and Techniques in Data Science

Lecture Objectives

- · Explain the purpose of correlation analysis in data science
- Describe the difference between different measures of correlation
- Discuss the main differences between correlation and causation

Motivation

- In data science, we rarely look at one variable at a time.
 - Not just the distribution of GPAs, but the distribution for each major separately.
- In fact, we are mostly interested in the *relationship* between different variables.
 - GPA vs high-school grades
- Correlation is the main language we use to describe these relationships in statistics

Pearson correlation i

- This is the main measure of correlation.
- · Given two samples X_1, \ldots, X_n , Y_1, \ldots, Y_n .
 - · Same sample size
 - $\cdot X_i, Y_i$ are measured on the **same** experimental/observational unit.
 - \cdot $ar{X}$ is the sample mean of X_i 's, $ar{Y}$ is the sample mean of Y_i 's

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}.$$

4

Pearson correlation ii

• Similarly, it can be defined in terms of the sample variances s_X^2, s_Y^2 and the sample covariance s_{XY} :

$$r = \frac{s_{XY}}{\sqrt{s_X^2 s_Y^2}}.$$

- $\cdot \ \ \text{We have} \ r \in [-1,1].$
- Pearson correlation measures linear relationships, and it especially suited for normally distributed measurements.
 - . We will have r=1 if $Y_i=aX_i$ for a>0, and similarly for r=-1.

5

Pearson correlation iii

- The maximum value of r can be strictly less than 1 for some distributions.
- In particular, the Pearson correlation can change dramatically after transformation of the data.
 - · It is also sensitive to outliers

Spearman correlation i

- Spearman correlation uses rank information.
 - Do X_i and Y_i have the same rank?
- Let $rank(X_i)$ be the rank of X_i after having sorted the X_i 's, and similarly for $rank(Y_i)$.
 - · So $\operatorname{rank}(X_i) \in 1, \ldots, n$
- If we let $d_i = \operatorname{rank}(X_i) \operatorname{rank}(Y_i)$, we define the Spearman correlation as

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}.$$

7

Spearman correlation ii

- Just like Pearson correlation, we have $\rho \in [-1,1].$
 - Exercise: what ranks should we have to get ho=1? What about ho=-1?
- Spearman measures monotone relationships and less sensitive to outliers.

Example i

 divorce_margarine contains data on divorce rates per year in Maine and margarine consumption per capita from 2000 to 2009

Example ii

```
## sxy s2x s2y corr
## 1 0.4326667 0.08844444 2.148444 0.9925585
```

Example iii

Or even simpler

dataset |>

```
summarise(corr = cor(div, marg))

## corr
## 1 0.9925585

# 2. Spearman correlation
dataset |>
summarise(corr = cor(div, marg, method = "spearman"))
```

Example iv

```
## corr
## 1 0.9847319
```

Exercise

Calculate the Spearman correlation between divorce rate and margarine consumption using the definition. Use the **rank** function from the tidyverse.

Solution i

corr ## 1 0.9848485

Solution ii

##

corr

1 0.9847319

Auto-correlation i

- Auto-correlation is a main feature of time series data,
 i.e. measurements taken over time.
 - E.g. stock markets, temperatures, sales numbers
- By their nature, successive measurements tend to be correlated.
 - E.g. yesterday's temperature is correlated with today's
- Periodicity is also a common feature.
 - E.g. Sales tend to be higher on Saturdays, and around Christmas, etc.
- Auto-correlation is measured by taking the correlation between the time series and its lagged counterpart.

Auto-correlation ii

· Let $Y_t, t = 0, 1, 2, \dots, T$ be a time series. The k-th auto-correlation is given by

$$r_k = \frac{\sum_{t=k+1}^{T} (Y_t - \bar{Y})(Y_{t-k} - \bar{Y})}{\sum_{t=1}^{T} (Y_t - \bar{Y})^2}.$$

 Unexpectedly large autocorrelation can help identify periodicity in the data.

Example i

Example ii

Correlation vs Causation i

- · Sometimes correlation happens without causation.
 - · E.g. Ice cream sales and drownings
- · Sometimes causation happens without correlation.

Correlation vs Causation ii

- E.g Pressing the gas pedal while going up a hill at constant speed.
- · Be careful about conclusions and language used
- · Causation can be inferred from correlation in some situations.
 - · Randomized experimental designs.
 - · Causal inference.