Network Components

Module Overview

- Understanding the OSI Model
- Communication Types
- Understanding Adapters, Hubs, Switches and Routing
- Understanding Media Types

Understanding the OSI Model

- The OSI Model
- The Lower Layers of the OSI Model
- The Middle Layers of the OSI Model
- The Upper Layers of the OSI Model
- Protocols

The OSI Model

The OSI model defines the generic tasks that are performed for network communication

- Each layer defines networking tasks
- Each layer communicates with the layers above and below it
- Layer 7 provides services for programs to gain access to the network
- Layers 1 and 2 define the network's physical media and related tasks

The OSI Model

The Lower Layers of the OSI Model

The lower layers of the OSI model are responsible for encapsulating requests from the upper layers into a meaningful structure to be merged onto the media

OSI Layer	Functions	
Data-link layer	Transferring data between devices	
	Managing MAC addressing	
	Encapsulating higher protocols into frames	
	Passing protocol-specific data up the stack	
	Error checking	
Physical layer	Managing connections to the media	
	Managing shared media access	
	Merging data onto the media	
	Converting signals on the media into frames	

The Middle Layers of the OSI Model

These layers are often referred to as the network protocol layer

OSI Layer	Functions	
Transport layer	Transferring data between applications	
	Providing reliable end-to-end transfer	
	Encapsulating application requests	
	Passing incoming datagrams to the appropriate session layer protocol	
Network layer	Implementing a logical addressing scheme	
	Routing packets to the appropriate logical address	
	Encapsulating transport layer datagrams	
	Passing incoming packets up the protocol stack	

The Upper Layers of the OSI Model

These upper layers are occupied by network applications, or services

OSI Layer	Functions
	Identifying network hosts
Application layer	Determining available resources
	Synchronizing communications
Presentation layer	Formatting and encrypting data
	Providing compatibility by selecting appropriate syntax
Session layer	Establishing, maintaining, and terminating sessions
	Selecting the appropriate transport layer protocol

The Network Protocols

OSI Layer	Protocols
	Address Resolution Protocol (ARP)
Notwork Lavor	Internet Control Message Protocol (ICMP)
Network Layer	Internet Protocol 4 (IPv4)
	Internet Protocol 6 (IPv6)
Transport layer	Transmission Control Protocol
	User Datagram Protocol
	Domain Name System
Application layer	Simple Mail Transfer Protocol
	File Transfer Protocol
	Post Office Protocol
	Hyper Text Transfer Protocol

Simplex Half-Duplex Full Duplex

Simplex

- Uni-directional communication
- Sender sends the data but can't receive the data
- Usage of one channel
- Slowest Performance
- Utilizes maximum of a single bandwidth.
- Suitable for those transmissions when there is requirement of full bandwidth

Half-Duplex

- Two-way directional communication one at a time
- Sender can send and received the data.
- One channel for the transmission of data
- Less performance than full duplex.
- Lesser utilization of single bandwidth
- Suitable for those transmissions where there is requirement of sending data in both directions, one at a time

Full Duplex

- Two-way directional communication simultaneously
- Usage of two channels
- Better performance
- Full-Duplex doubles the utilization of transmission bandwidth
- Suitable for those transmissions when there is requirement of sending and receiving data simultaneously in both directions.

Understanding Adapters, Hubs, and Switches

- What Is a Network Adapter?
- Some Network Devices

What Is a Network Adapter?

A network adapter:

- Converts instructions from the network protocol stack into electrical signals
- Merges these signals onto the wire
- Converts electrical signals received on the wire into meaningful instructions for the network protocol stack

Preamble	Start frame delimiter	Dest. MAC address	Source MAC address	Data	Pad	Frame check sequence
----------	-----------------------------	-------------------------	--------------------------	------	-----	----------------------------

The network adapter encapsulates the instructions it receives from the protocol stack into a logical sequence known as a frame

Transmission Speeds

The term bandwidth is often used to describe the transmission speed of a network

- Early Ethernet operated at 3 Megabits per second
- Today's Ethernet is typically 10 Gigabits per second
- Contention reduces throughput

Network Devices

- Repeater
- Hub
- Bridge
- Switch
- Router

Characteristics of a Repeater

A repeater is a device which regenerates a weak signal

A repeater:

- ▼ Regenerates a weak signal on the same network
- Amplifies the signal
- Is a 2-port device
- **✓** Works at the Physical layer

What Is a Hub?

A hub is a multi-port repeater

A hub:

- Enables star wiring to provide a central wiring point
- Supports multiple ports
- Provides for a degree of fault isolation
- **Extends** your network

Characteristics of a Bridge

A bridge is a hub with additional functionality

A bridge:

- Filters content by reading MAC addresses
- Enables network traffic management
- Maintains MAC table to redirect traffic to appropriate devices
- Makes redirection decisions based upon incoming MAC addresses

Characteristics of a Switch

A switch provides the same basic functionality as a Bridge

A switch:

- **✓** Provides wiring concentrator functionality like a hub
- **✓** Is a data link layer device
- **✓** Performs firewall functions
- ✓ Makes routing decisions based upon traffic priority
- ✓ Is a multi-port bridge with buffer

What Is a Router?

A router:

- Manages network traffic by only forwarding packets when required
- Supports one or more routable protocols, such as IP
- Receives explicitly addressed frames from network nodes
- Makes routing decisions based on the information maintained in its routing table

How a Router Determines a Destination

Common Routing Protocols

Protocol	Description
Routing Information Protocol (RIP)	Interior Gateway Protocol (IGP) distance- vector based algorithm Hop count > 16 unreachable
Open Shortest Path First (OSPF)	IGP routing protocol Link-state based Scales better than RIP
Border Gateway Protocol (BGP)	EGP specifically designed to support the Internet

Understanding Media Types

- Coaxial Cable
- Twisted-Pair Cable
- What Are the CAT Standards?
- Fiber Cable

Coaxial Cable

Coaxial cables must be terminated

Types of Coaxial Cable	Description
	Fairly thin and flexible
	 Ideal for connecting nodes to the network
RG58	 Does not support long cable runs or a large number of connected devices
	 Has an impedance of 50 ohms and uses 20 American Wire Gauge (AWG) copper wire
RG59	 As for RG58, but with a slightly thicker (18 AWG) core and an impedance of 75 ohms
RG11	Thick coaxial cable with 75 ohm impedance
	14 AWG cable provides the solid core

Twisted Pair Cable

Twisted-pair characteristics:

- Installation is comparatively inexpensive
- Fault finding is easier due to the star wired way in which the cable is laid
- The cable supports many uses, including data and telephony

What Are the CAT Standards?

CAT standard	Usage
1	Voice or modem
2	IBM cabling
3	Ethernet
4	Token Ring
5	High-speed Ethernet
5e	Gigabit Ethernet
6	Gigabit Ethernet and 10G Ethernet
6a	10G Ethernet
7	10G Ethernet
8	25G - 40G Ethernet

Fiber Cable

Types of fiber cable	Description
Multimode fiber	 Supports bandwidths of around 100 Mbps at distances of up to 2 kilometers and 10 Gbps over 300 meters
Single-mode fiber	 40 Gbps is possible over distances of several hundred kilometers

