1. Załóżmy nie wprost, że istnieją takie liczby $a,b\in\mathbb{Q}$, że $a\cdot 1+b\cdot\sqrt{2}=0$ i $b\neq 0$. Wówczas przekształcając otrzymamy równość

$$a \cdot 1 + b \cdot \sqrt{2} = 0 \Longleftrightarrow \sqrt{2} = -\frac{a}{b} \cdot 1,$$

która zajść nie może, bo po lewej stronie jest liczba niewymierna, a po prawej wymierna, zatem b=0. Wobec tego

$$a \cdot 1 + b \cdot \sqrt{2} = 0 \iff a \cdot 1 = 0$$

zatem a=0, więc dowolna para liczb $(a,b)\in\mathbb{Q}^2$ taka, że $a\cdot 1+b\cdot \sqrt{2}=0$ to para (0,0), więc zbiór $\{1,\sqrt{2}\}$ jest lnz w \mathbf{R} traktowanym jako przestrzeń liniowa nad \mathbf{Q} .

13. Niech U i V będą przestrzeniami liniowymi nad K, niech (b_1, \ldots, b_n) będzie bazą U i niech (c_1, \ldots, c_n) będzie bazą V.

Zdefiniujmy przekształcenie liniowe $f: U \mapsto V$ w taki sposób, by dla wszystkich $i \in \{1, \ldots, n\}$ zachodziła równość $f(b_i) = c_i$. Wiemy, że (b_1, \ldots, b_n) jest bazą U, zatem istnieje dokładnie jeden ciąg $(\alpha_i)_{i=1}^n$ elementów ciała K, dla którego $u = \sum_{i=1}^n \alpha_i b_i$. Wobec tego, z własności przekształcenia liniowego mamy

$$f(u) = f\left(\sum_{i=1}^{n} \alpha_i b_i\right) = \sum_{i=1}^{n} f(\alpha_i b_i) = \sum_{i=1}^{n} \alpha_i f(b_i) = \sum_{i=1}^{n} \alpha_i c_i.$$

Udowodnimy, że f jest monomorfizmem. Niech u i u' będą dowolnymi różnymi wektorami w przestrzeni U. Wówczas u-u' jest niezerowym wektorem w U, więc istnieje taki ciąg $(\alpha_i)_{i=1}^n$ nie samych zer, że $u-u'=\sum_{i=1}^n\alpha_ib_i$. Zauważmy, że zajdą równości

$$f(u) - f(u') = f(u) + f(-u') = f(u - u') = f\left(\sum_{i=1}^{n} \alpha_i b_i\right) = \sum_{i=1}^{n} f(\alpha_i b_i) = \sum_{i=1}^{n} \alpha_i f(b_i) = \sum_{i=1}^{n} \alpha_i c_i.$$

Skoro (c_1, \ldots, c_n) jest bazą V i ciąg $(\alpha_i)_{i=1}^n$ nie jest ciągiem samych zer, to powyższa suma nie może być wektorem zerowym w V, zatem dla dowolnych różnych wektorów u, u' zachodzi nierówność $f(u) \neq f(u')$.

Udowodnimy, że f jest epimorfizmem. Niech v będzie dowolnym wektorem w V. Wówczas istnieje dokładnie jeden ciąg $(\alpha_i)_{i=1}^n$ elementów ciała K, dla którego $v = \sum_{i=1}^n \alpha_i c_i$. Pokażemy, że istnieje taki wektor u w U, że f(u) = v. Takim wektorem jest $\sum_{i=1}^n \alpha_i b_i$.

Udowodniliśmy, że f jest epimorfizmem i monomorfizmem, zatem jest izomorfizmem.

14. Niech dim W=k i dim V=n. Niech (a_1,\ldots,a_k) będzie lnz układem wektorów w W. Niech (b_1,\ldots,b_n) będzie bazą V. Niech c_1,\ldots,c_k będą takimi wektorami w U, że dla wszystkich $i\in\{1,\ldots,k\}$ zachodzi równość $f(a_i)=c_i$.

Z lematu Steinitza o wymianie możemy tak przenumerować elementy (b_1, \ldots, b_n) , że układ wektorów $(a_1, \ldots, a_k, b_{k+1}, \ldots, b_n)$ będzie bazą przestrzeni V.

Zdefiniujmy przekształcenie liniowe $F: V \mapsto U$ w następujący sposób: dla wszystkich $i \in \{1, \ldots, k\}$ zachodzi równość $f(a_i) = c_i$ oraz dla wszystkich $i \in \{k+1, \ldots, n\}$ zachodzi równość $f(b_i) = 0$.

Takie przekształcenie jest określone dla wszystkich elementów V, ponieważ jest określone dla bazy V. Ponadto dla dowolnego elementu $w = \sum_{i=1}^{k} \alpha_i a_i$ przestrzeni W zachodzi równość

$$F(w) = F\left(\sum_{i=1}^{k} \alpha_i a_i\right) = \sum_{i=1}^{k} \alpha_i F(a_i) = \sum_{i=1}^{k} \alpha_i c_i = \sum_{i=1}^{k} \alpha_i f(a_i) = f\left(\sum_{i=1}^{k} \alpha_i a_i\right) = f(w),$$

zatem f jest obcięciem F.

Przykładowo, dla $V = \mathbf{R}_2[X]$, $W = \{P \in \mathbf{R}_2[X] | P(3) = 0\}$, $U = \mathbf{R}_1[X]$ i $f(P) = \frac{P(X)}{X-3}$ korzystając ze sposobu opisanego w dowodzie dla $(a_i)_{i=1}^2 = (X-3,(X-3)^2)$, $b_3 = 1$ mamy $F(a_2X^2 + a_1X + a_0) = a_2X + (3a_2 + a_1)$.

16. Niech $U = \{P \in \mathbf{R}_1[X] \mid P(0) = 0\}, V = \{P \in \mathbf{R}_1[X] \mid P(1) = 0\}, W = \{P \in \mathbf{R}_1[X] \mid P(2) = 0\}.$ Wiemy, że dim $U = \dim V = \dim W = 1$. Mamy $U \cap V = V \cap W = W \cap U = U \cap V \cap W = \{0X + 0\}$. Wobec tego

 $\dim(U+V+W)=2\neq 3=\dim U+\dim V+\dim W-\dim(U\cap V)-\dim(V\cap W)-\dim(W\cap U)+\dim(U\cap V\cap W),$ wiec twierdzenie jest fałszywe.

Dla większej liczby przestrzeni oznaczmy je jako $V_1, \ldots, V_n, n \geqslant 3$, ich zbiór jako $A = \{V_1, \ldots, V_n\}$ i niech $V_i = \{P \in \mathbf{R}_1[X] \mid P(i) = 0\}$. Wówczas $V_1 + \ldots + V_n = \mathbf{R}_1[X]$, więc $\dim(V_1 + \ldots + V_n) = 2$ i dla dowolnych i, j takich, że $i \neq j$ mamy $\dim(V_i \cap V_j) = \dim(\{0X + 0\}) = 0$. Pozwala nam to zapisać nierówność

$$2 = \dim(V_1 + \ldots + V_n) \neq \sum_{S \subseteq A} \dim\left(\bigcap_{V_i \in S} V_i\right) = \sum_{\substack{S \subseteq A \\ |S| = 1}} \dim\left(\bigcap_{V_i \in S} V_i\right) + \sum_{\substack{S \subseteq A \\ |S| \neq 1}} \dim\left(\bigcap_{V_i \in S} V_i\right) = n + 0.$$

17. Niech $V = \mathbf{R}[X]$. Wówczas

- a) F(P)=P' jest epimorfizmem, bo dla każdego wielomianu istnieje funkcja pierwotna, ale nie jest monomorfizmem, bo dla dowolnego wielomianu P zachodzi równość F(P+1)=(P+1)'=P'=F(P)
- b) $F(P) = P \cdot X$ jest monomorfizmem, bo dla każdych dwóch wielomianów $P \neq Q$ również $PX \neq QX$, ale nie jest epimorfizmem, bo nie istnieje taki wielomian P, że PX = 1, a przecież $1 \in \mathbf{R}[X]$.