PhD Bootcamp: Distributions and Inference

Glenn Palmer

Duke University - Department of Statistical Science

August 18, 2023

Acknowledgment: These slides and the accompanying exercises contain materials created by Alex Dombowsky and Jennifer Kampe.

Hello!

Welcome to the department! Today's bootcamp session is structured as follows:

- A review of concepts that you should be comfortable with before starting classes (with a heavy focus on basic distribution theory).
- A list of review exercises that *you should do* to warm-up your stats knowledge before the school year begins.

Distribution reference sheet from STA 711

Name	Notation	pdf/pmf	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x\in 0,\cdots, n$	n p	npq	(q=1-p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x\in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	α/λ	α/λ^2	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2	(q=1-p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y=x+1)
${\bf HyperGeo.}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}$	$x\in 0,\cdots, n$	n P	$nP(1{-}P)\tfrac{N-n}{N-1}$	$(P=\frac{A}{A+B})$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = {x+\alpha-1 \choose x} p^{\alpha} q^x$	$x\in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$	(q=1-p)
		$f(y) = {y-1 \choose y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	α/p	$\alpha q/p^2$	$(y=x+\alpha)$
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = (\alpha/\epsilon)(1+x/\epsilon)^{-\alpha-1}$	$x\in \mathbb{R}_+$	$\frac{\epsilon}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha>2$	
		$f(y) = \alpha \epsilon^{\alpha}/y^{\alpha+1}$	$y\in (\epsilon,\infty)$	$\frac{\epsilon\alpha}{\alpha-1}$ if $\alpha>1$	$\frac{\epsilon^2\alpha}{(\alpha-1)^2(\alpha-2)}$ if $\alpha>2$	$(y=x+\epsilon)$
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!}e^{-\lambda}$	$x\in \mathbb{Z}_+$		λ	
Snedecor F	$F(\nu_1,\nu_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1+\nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times$	$x\in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$ if $\nu_2>2$	$\left(\frac{\nu_2}{\nu_2-2}\right)^2 \frac{2(\nu_1+\nu_2)}{\nu_1(\nu_2)}$	$\frac{\nu_2-2)}{(-4)}$ if $\nu_2 > 4$
		$x^{\frac{\nu_1-2}{2}} \left[1 + \frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	$t(\nu)$	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0 if $\nu > 1$	$\frac{\nu}{\nu-2}$ if $\nu>2$	
Uniform	Un(a,b)	$f(x) = \frac{1}{b-a}$	$x\in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	$We(\alpha,\beta)$	$f(x) = \alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$x \in \mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{g1/\alpha}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^2/\alpha}$	

Important relationships between distributions

Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986).

¹Casella, G., Berger, R. L. (2021). Statistical inference. Cengage Learning.

Cumulative Distribution Functions

- The distribution of a real-valued random-variable X is defined by its cumulative distribution function, $F_X(x) = P(X \le x)$. The CDF is right continuous, non-decreasing, and has limits 0 and 1 as x tends to or + ∞ .
- The CDF is usually represented as an integral over another function, so that

$$F_X(x) = \int_{-\infty}^x dF_X(t).$$

Probability Density and Mass Functions

• While the dF_X notation may be unfamilar, it is defined as

$$\int_{-\infty}^{x} dF_X(t) = \begin{cases} \int_{-\infty}^{x} f_X(t)dt : & \text{continuous rv} \\ \sum_{t=-\infty}^{x} f_X(t) : & \text{discrete rv} \end{cases}.$$

• $f_X(x)$ is the **probability mass** (discrete) or **density** (continuous) function. It is often convenient to write

$$f_X(x) = \frac{h(x)}{c}$$

for **kernel** h and **normalizing constant** $c < \infty$. We assume $h(x) \ge 0$ and

$$c = \begin{cases} \int_{-\infty}^{\infty} h(x)dx : & \text{continuous rv} \\ \sum_{x=-\infty}^{\infty} h(x) : & \text{discrete rv} \end{cases}.$$

Multivariate Random Variables

Random variables X can be defined on \mathbb{R}^m . The multivariate CDF is

$$F_{\mathbf{X}}(\mathbf{x}) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_m \le x_m)$$

$$= \begin{cases} \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_m} f_{\mathbf{X}}(\mathbf{t}) dt_1 \dots dt_m : & \text{continuous rvs} \\ \sum_{t_1 = -\infty}^{x_1} \dots \sum_{t_m = -\infty}^{x_m} f_{\mathbf{X}}(\mathbf{t}) : & \text{discrete rvs} \end{cases}$$

■ This can be generalized to random vectors consisting of discrete and continuous rvs. To recover the PDF/PMF of, say, X_1 , we merely integrate out all other variables:

$$f_{X_1}(x_1) = \begin{cases} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\boldsymbol{X}}(x_1, t_2, \dots, t_m) dt_2 \cdots dt_m : & \text{cont.} \\ \sum_{t_2 = -\infty}^{\infty} \cdots \sum_{t_m = -\infty}^{\infty} f_{\boldsymbol{X}}(x_1, t_2, \dots, t_m) : & \text{disc.} \end{cases}$$

Independence and Covariance

Two random variables are independent if their joint density/mass function factorizes into the product of their marginal distributions, i.e.

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) \ \forall \ x,y.$$

■ The **covariance** of two random variables is

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Covariance says something about the relationship between X and Y (note that the outer expectation is with respect to their joint distribution).

Does covariance tell us anything about independence?

We can roughly describe how two random variables affect each other with correlation:

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} \in [-1, 1].$$

- $ho_{XY} > 0$ implies X and Y are positively correlated, ie. an increase in X tends to result in an increase in Y (and X and Y are dependent).
- $ho_{XY} < 0$ implies X and Y are negatively correlated, ie. an increase in X tends to result in an decrease in Y (and X and Y are dependent).
- What about $\rho_{XY} = 0$?

Example:

Let $X \sim \text{Unif}(-1,1)$, and let $Y = X^2$.

- Are X and Y independent?
- Are X and Y correlated?

Zero Correlation

- The problem with correlation: it describes (approximately) linear relationships.
- In a sense, ρ_{XY} may be interepreted as the sign of a in a linear equation $Y = aX + \epsilon$.
- But what if the relationship between X and Y is not linear (eg. quadratic, cubic, sinusoidal, step functions, etc.).
- As it turns out,

$$\rho_{XY} = 0 \Rightarrow X$$
 and Y are independent.

So, correlation can only tell us about the dependence structure if it is non-zero.

Conditional Distributions

■ The conditional PDF/PMF of $X \mid Y = y$ is

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{\int f_{X,Y}(x,y)dx}.$$

Bayes theorem gives us a way to do "backward conditioning"

$$f_{\Theta\mid X}(\theta\mid x) = \frac{f_{X,\Theta}(x,\theta)}{f_{X}(x)} = \frac{f_{X\mid\Theta}(x\mid\theta)f_{\Theta}(\theta)}{f_{X}(x)} = \frac{f_{X\mid\Theta}(x\mid\theta)f_{\Theta}(\theta)}{\int f_{X\mid\Theta}(x\mid\theta)f_{\Theta}(\theta)d\theta}.$$

Note that the denominator does not depend on θ .

Example: Finding a posterior distribution

Let $\Theta \sim Beta(a,b)$, with density

$$f_{\Theta}(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1},$$

and let $X|\Theta = \theta \sim Binomial(n, \theta)$ so that

$$f_{X|\Theta}(x|\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}.$$

Show that $\Theta|X = x \sim Beta(a+x, n+b-x)$.

Conditional Expectations

■ The conditional expectation of $X \mid Y = y$ is

$$\mathbb{E}[X \mid Y = y] = \begin{cases} \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) dx \\ \sum_{x = -\infty}^{\infty} x f_{X|Y}(x \mid y) \end{cases}$$

and will be a function of y.

- As such, we can define the random variable $\mathbb{E}[X \mid Y]$.
- Law of Total Expectation:

$$\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X].$$

Law of Total Variance:

$$\mathbb{E}[\operatorname{Var}(X \mid Y)] + \operatorname{Var}(\mathbb{E}[X \mid Y]) = \operatorname{Var}(X).$$

Example: Iterated expectations and variances

A store has N customers in a day, where $N \sim \text{Poisson}(\lambda)$. The amount of money spent by the jth customer is denoted X_i . Assume the X_i 's are iid with mean μ and variance σ^2 , and that they are independent of N. Let Xbe the total revenue for the day, so that

$$X = \sum_{j=1}^{N} X_j.$$

Find $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.

Moment Generating Functions

For a random variable X, the **moment generating function** (MGF) is the real-valued function

$$M_X(t) = \mathbb{E}[e^{tX}]$$

for all $t \in \mathbb{R}$. If the MGF is finite for an open interval around 0,

$$\mathbb{E}[X^n] = \frac{dM_X(t)}{dt^n} \bigg|_{t=0}.$$

MGF Properties

- **1 Uniqueness property**: If $M_X(t) = M_Y(t)$ for all $t \in \mathbb{R}$, then $F_X(x) = F_Y(x)$ for all $x \in \mathbb{R}$ (ie, $X \stackrel{d}{=} Y$).
- **2 Linear transformations**: For all $a, b \in \mathbb{R}$,

$$M_{aX+b} = e^{bt} M_X(at).$$

3 Linear combinations: Let X_1, \ldots, X_n be independent, $a_i \in \mathbb{R}$, and $S_n = \sum_{i=1}^n a_i X_i$. Then

$$M_{S_n}(t) = \prod_{i=1}^n M_{X_i}(a_i t).$$

Example: Find the MGF

A chi-squared random variable with k degrees of freedom (usually written as χ^2_k) has support $[0,\infty)$ and pdf:

$$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}.$$

Let $X \sim \chi_1^2$, and find the moment generating function $M_X(t)$.

Change of Variables

Motivation: Let X be a real-valued random variable with pdf $f_X(x)$ and let Y = g(X) for some one-to-one differentiable function g(x). Then Y will also have a continuous distribution - what is it?

One Dimension: let Y=g(X), g monotone with $X=g^{-1}(Y)=h(Y)$, then

$$X \sim f_X(x) \implies f_Y(y) = f_X(h(y))|dh/dy|$$

Example: 1D change of variables

Let $X \sim N(0,1)$, and let Y = a + bX. Find the pdf of Y, and specify the support.

Proof of 1D change-of-variables formula

Let Y = g(X), g monotone increasing with $X = g^{-1}(Y) = h(Y)$. Then if the CDF for X is given by $F_X(x)$, then the CDF for Y is:

$$F_Y(y) = P(Y \le y)$$

$$= P(g(X) \le y)$$

$$= P(X \le g^{-1}(y))$$

$$= F_X(h(y))$$

Taking the derivative w.r.t. y yields

$$f_Y(y) = f_X(h(y)) \frac{dh}{dy}$$

Finally, repeat the above for g monotone decreasing – the result will be $f_Y(y) = -f_X(h(y)) \left(\frac{dh}{dy}\right)$, where dh/dy is negative, hence the absolute value in the formula.

What if g isn't one-to-one? (Part 1)

Two other strategies are:

- lacktriangle Try to express the CDF of Y in terms of the CDF of X, and then take a derivative. (Similar to the proof of the change-of-variables formula.)
- Try finding the MGF of g(X) and see if you recognize it as the MGF of a known distribution.

Change of Variables: d-Dimensions

Let $X=(X_1,\cdots,X_{d1})$ be a collection of random variables with support $\mathbb{X}^{(d_1)}$ and joint pdf $f_{X_1,\cdots,X_{d_1}}$, and let

$$\mathbf{Y} = g(\mathbf{X}) \leftrightarrow (Y_1, \cdots, Y_{d_2}) = (g_1(\mathbf{X}), \cdots, g_{d_2}(\mathbf{X})),$$

where $g: \mathbb{X}^{d_1} \to \mathbb{R}^{d_2}$ and $h = g^{-1}: \mathbb{R}^{d_1} \to \mathbb{X}^{d_2}$ Then Y has joint pdf:

$$f_{\boldsymbol{Y}}(\boldsymbol{y}) = f_{\boldsymbol{X}}(h_1(\boldsymbol{Y}), \cdots, h_{d1}(\boldsymbol{Y})) \times |J(\boldsymbol{Y})|$$

Change of Variables: Step-by-Step

1 Note the set of transformation functions $g=(g_1,\cdots,g_{d_2})$:

2 Find the set of inverse functions, $h = g^{-1}(X)$:

$$X_1 = h_1(Y_1, \dots, Y_{d_2})$$

 \vdots
 $X_{d_1} = h_{d_1}(Y_1, \dots, Y_{d_2})$

 $oxed{3}$ Identify the joint support of the new variables, \mathbb{Y}^{d_2}

4 Compute the Jacobian of the inverse transformation h(Y) in Step 2: form the matrix of partial derivatives and take its determinant.

$$D_{y} = \begin{bmatrix} \frac{\partial x_{i}}{\partial y_{j}} \end{bmatrix}_{ij} = \begin{bmatrix} \frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \dots & \frac{\partial x_{1}}{\partial y_{d_{2}}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x_{d_{1}}}{\partial y_{1}} & \frac{\partial x_{d_{1}}}{\partial y_{2}} & \dots & \frac{\partial x_{d_{1}}}{\partial y_{d_{2}}} \end{bmatrix}$$

Set $J(y_1, \cdots, y_{d_2}) = \det D_y$. Alternately, note $J(\boldsymbol{Y}) = \frac{1}{J(\boldsymbol{X})}$

5 The joint pdf of (Y_1, \dots, Y_{d_1}) is

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(h_1(\mathbf{Y}), \cdots, h_{d1}(\mathbf{Y})) \times |J(\mathbf{Y})|$$

What if g is not one-one? (Part 2)

Make it one-to-one! For example:

- Let $g: \mathbb{R}^2 \to \mathbb{R}$ and suppose we know the distribution of (X_1, X_2) (and at least one of the marginal distributions).
- 2 Set up a one-to-one transformation:

$$Y_1 = g(X_1, X_2)$$
 and $Y_2 = X_1$ (or X_2)

and find the distribution of (Y_1, Y_2) .

Then use marginalization:

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{Y_1, X_1}(y_1, x_1) dx_1 = \int_{-\infty}^{\infty} f_{Y_1, X_2}(y_1, x_2) dx_2.$$

Examples: change of variables when g isn't one-to-one

- **1** Let $X \sim N(0,1)$ and let $Y = X^2$. Find the distribution of Y.
- 2 Let $X_1 \sim Gamma(a, \xi)$ and let $X_2 \sim Gamma(b, \xi)$, and let X_1 and X_2 be independent. What is the distribution of $W = \frac{X_1}{X_1 + X_2}$?

Example: Multivariate Normal Distribution

Let $Z_1,...,Z_p \stackrel{iid}{\sim} N(0,1)$, and let $Z=(Z_1,...,Z_p)^T \in \mathbb{R}^p$. Let $Y=\mu+AZ$, where $\mu \in \mathbb{R}^p$ and $A \in \mathbb{R}^{p \times p}$ are constants and A is full rank.

Defining $\Sigma = AA^T$, show that the pdf of Y is

$$f_Y(y) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp(-1/2(y-\mu)^T \Sigma^{-1}(y-\mu)).$$

Thanks!

- The rest of these slides also have some great info in them (some of which might be helpful for a few parts of the exercises). You should definitely read them if you have time, but in my opinion they're not quite as critical for day 1 of your fall courses.
- Let me know if you have any questions about anything in the slides or the exercises!

Characteristic Functions

Similarly, the characteristic function (CF) is the complex function

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = \mathbb{E}[\cos(tX) + i\sin(tX)]$$

for $t \in \mathbb{R}$. For all t such that $M_X(t)$ is finite,

$$\varphi_X(-it) = M_X(t).$$

The CF has many of the same properties as the MGF. However, the CF always exists for all $t \in \mathbb{R}$ and, in some cases, is easier to calculate than the MGF.

The Likelihood Function

■ If X_1, \dots, X_n are and i.i.d. sample from a population with pdf/pmf $f(x \mid \theta)$ the **likelihood function** is

$$L(\boldsymbol{\theta}|x_1\cdots,x_n) = \prod_{i=1}^n f(x_i\mid\boldsymbol{\theta})$$

■ Density function versus likelihood: the density function $f(x \mid \boldsymbol{\theta})$ is a non-negative function of the data x that integrates to 1. The likelihood function is a function of the parameters $\boldsymbol{\theta}$ and typically will not integrate to 1

Maximum Likelihood Estimation

- Maximum likelihood estimation finds values of the parameters that maximize the likelihood function:
 - $\hat{\theta} = \arg\max_{\theta \in \Theta} L(\boldsymbol{\theta}|\boldsymbol{x})$
- If the likelihood function is differentiable, then candidates for the MLE satisfy $\frac{\partial}{\partial \theta_i} L(\boldsymbol{\theta}|\boldsymbol{X}) = 0, i = 1, \cdots, k.$
- lacksquare Since log(t) is a monotonically increasing function of t, for any positive valued function f, $\arg \max_{\theta} f(x) = \arg \max_{\theta} \log f(x)$.
- Verify that the identified root is a local max by checking that the Hessian matrix is negative semi-definite at $\hat{\theta}$.
- Invariance property: if $\hat{\theta}$ is the MLE for θ , then $g(\hat{\theta})$ is the MLE for $g(\theta)$

Convergence in Probability and Distribution

- Suppose we have an infinite sequence of random variables X_1, X_2, \ldots What happens as $n \to \infty$? Can it "converge" like a sequence of real numbers? It turns out it can... in several ways!
- The sequence X_n converges in probability to an rv X (denoted $X_n \stackrel{p}{\to} X$) if for all $\epsilon > 0$,

$$P(|X_n - X| > \epsilon) \to 0 \text{ as } n \to \infty.$$

■ The sequence X_n with corresponding sequence of CDFs F_n converges in distribution to an rv X (denoted $X_n \stackrel{d}{\rightarrow} X$) with cdf F if

$$F_n(x) \to F(x)$$
 for all continuity points x of F.

Large Sample Theory: Key Theorems

Under some conditions, the sample mean $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ has some interesting properties as the sample size gets arbitrarily large.

1 The Central Limit Theorem: Let X_1, X_2, \ldots be an infinite sequence of iid rvs, with $\mathbb{E}[X_i] = \mu$ and $\mathrm{Var}[X_i] = \sigma^2 < \infty$. Then

$$\sqrt{n}(\bar{X} - \mu) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$$
 as $n \to \infty$.

2 Weak Law of Large Numbers: Let X_1, X_2, \ldots be an infinite sequence of iid rvs, with $\mathbb{E}[X_i] = \mu < \infty$. Then

$$\bar{X} \stackrel{p}{\to} \mu \text{ as } n \to \infty.$$

Large Sample Theory: Useful Tools

- **1 Slutsky's Theorem**: Let X_n , Y_n be sequences of rvs with $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{p}{\to} c$, a constant. Then:
 - $X_n + Y_n \stackrel{d}{\to} X + c;$
 - $\blacksquare X_n Y_n \stackrel{d}{\to} Xc;$
 - $X_n/Y_n \stackrel{d}{\to} X/c \text{ if } c \neq 0.$
- **Continuous Mapping Theorem**: Let $X_n \stackrel{p}{\to} X$ and h be any continuous function on \mathbb{R} . Then

$$h(X_n) \stackrel{p}{\to} h(X).$$

 $X_n \stackrel{p}{\to} X \implies X_n \stackrel{d}{\to} X \text{ and } X_n \stackrel{p}{\to} c \iff X_n \stackrel{d}{\to} c.$

Example: Bivariate Normal Distribution

$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix} \right)$$

- Describes a two-dimensional vector that takes values in \mathbb{R}^2 .
- $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$.
- $lacksquare X \mid Y \text{ and } Y \mid X \text{ are also normal.}$
- For any $a, b \in \mathbb{R}$,

$$aX + bY \sim \mathcal{N}(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\sigma_{XY}).$$

Figure 1: Density and contours of the standard bivariate normal distribution.

Super(!!) useful property of MVN distribution

Let $X \sim N_p(\mu,\Sigma)$ and partition $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ where $X_1 \in \mathbb{R}^k$ and

 $X_2 \in \mathbb{R}^{p-k}$. Partition μ and Σ accordingly so that

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}.$$

If we observe $X_2 = x_2$, the conditional distribution of X_1 is still multivariate normal, and can be written as

$$X_1|(X_2=x_2) \sim N_k(\mu_{1|2}, \Sigma_{1|2})$$

where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$$

and

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Example: Gamma Distribution

A positive random variable $X \sim \mathsf{Gamma}(\alpha, \beta)$ with PDF:

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x\beta};$$

$$E[X] = \frac{\alpha}{\beta};$$

$$V[X] = \frac{\alpha}{\beta^2};$$

where $x \in (0, \infty)$, $\alpha, \beta > 0$.

Note: this is referred to as the shape-rate parameterization. You may also see the shape-scale parameterization with scale $\theta=1/\beta$

Gamma Distribution - Important Properties

Here are some properties that will come in handy throughout the first year:

- If $X \sim \mathsf{Gamma}(\alpha, \beta)$ with $\alpha = 1$, $X \sim \mathsf{Exponential}(\lambda = \beta)$
- If $X \sim \mathsf{Gamma}(v/2, 1/2)$, then $X \sim \chi_v^2$
- If $X \sim \mathsf{Gamma}(\alpha_1, \beta)$ and $Y \sim \mathsf{Gamma}(\alpha_2, \beta)$, then $X + Y \sim \mathsf{Gamma}(\alpha_1 + \alpha_2, \beta)$
- If $X \sim \text{Gamma}(\alpha, \beta)$ (shape-rate parameterization), then $1/X \sim \text{Inverse Gamma}(\alpha, \beta)$ with expectation $\frac{\beta}{\alpha-1}$
- If $X \sim \mathsf{Gamma}(\alpha, \theta)$ (shape-scale parameterization), then $1/X \sim \text{Inverse Gamma}(\alpha, 1/\theta)$ with expectation $\frac{\beta}{\alpha-1}$
- If $X \sim \mathsf{Gamma}(\alpha, \beta)$, then $X/n \sim \mathsf{Gamma}(\alpha, n\beta)$

Miscellaneous Useful Facts about Distributions

- If X_1, \dots, X_n are iid with CDF F(x), then $X_{(1)}$ has CDF $1 (1 F(x))^n$
- If X_1, \dots, X_n are iid with CDF F(x), then $X_{(n)}$ has CDF $F(x)^n$
- If $X_1, \dots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$, then $\sum_{i=1}^n X_i \sim \mathsf{Poisson}(n\lambda)$
- f $X_1, \cdots, X_n \stackrel{iid}{\sim} \mathsf{Exponential}(\lambda) \leftrightarrow \mathsf{Gamma}(1, \lambda)$, then $\sum_{i=1}^n X_i \sim \mathsf{Gamma}(n, \lambda)$
- If $\beta | \phi \sim N(m, \Sigma/\phi)$ and $\phi \sim \text{Gamma}(v/2, v\sigma^2/2)$ then the marginal distribution of β is $t_v(m, \sigma^2\Sigma)$
- Mins, maxes, and CDF counts of random variables are binomial random variables

