BANASTHALI VIDYAPITH

Department of Computer Science Course Handout: B.Tech. (CSE/IT) VI Semester

December 2024 – April/May 2025

Date: 26/12/2024

Course Code: CS 317 Course Name: Artificial Intelligence and Machine Learning

Credit Points: 4 Max. Marks: 100(CA: 40 + ESA: 60)

Course Instructors:

• Dr. Khandakar F. Rahman, Assistant Professor (Computer Science) B.Tech.(CSE) VI Semester, Batches A & C

Dr. Kuldeep Kumar Yogi, Assistant Professor (Computer Science)
B.Tech.(CSE) VI Semester, Batch B

• Dr. Sneha Asopa, Assistant Professor (Computer Science) B.Tech.(IT) VI Semester

Learning Outcomes:

On successful completion of the course students will be able to:

- Demonstrate fundamental understanding of artificial intelligence (AI).
- Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.
- Demonstrate awareness and a fundamental understanding of various applications of AI techniques in intelligent agents.
- Apply the concepts for machine learning to develop models for supervised and unsupervised learning.
- Understand the basic concepts of reinforcement learning.

Syllabus

Section A

Introduction to Artificial Intelligence, History of Artificial Intelligence, Intelligent Agents: Agents and Environments, Structure of Agents.

General Problem Solving, State Space and Graph Model techniques, Uninformed and Informed (Heuristic) Search, Aim Oriented Heuristic Algorithms Versus Solution Guaranteed Algorithms, Adversarial Search: Games, Optimal Decision in Games, Alpha-Beta Pruning.

Knowledge Representation: Propositional Logic, First Order Predicate Calculus, Inference and Resolution.

Introduction to Machine Learning and Types, Data Preprocessing, Importance of features in learning, Feature Selection, Feature Extraction Process.

Section B

Supervised Learning: Classification and Regression, Regression: Simple, Multiple and Polynomial, Support Vector Machine (Regression and Classification), Decision Tree (Regression and Classification), Naïve Bayes (Classification), Evaluation of Classification and Regression Models.

Section C

Unsupervised Learning: Introduction to Clustering, k-Means and Hierarchical Clustering. Introduction to Reinforcement Learning, Upper Confidence Bound, Thompson Sampling. Validation methods- k-fold Cross Validation, Model Selection and Boosting, XGBoost. Applications of Machine Learning with Case Studies.

Suggested Books:

- R1. Russell, S. & Norvig, P.(2021). Artificial Intelligence: A Modern Approach, 4th Edition: Pearson Education.
- R2. Rich E., Knight K. & Nair S.B. (2011). Artificial Intelligence 3rd Edition. Tata McGraw Hill.
- R3. Mitchell T.M. (1997). Machine Learning, McGraw Hill International
- R4. Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press.
- R5. Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018), Foundations of machine learning, MIT press.
- R6. Nilsson, N.J., & Nilsson, N.J. (1998). Artificial Intelligence: a new synthesis. Morgan Kaufmann.
- R7. Bird, S., Klein, E., Loper, E. (2009), Natural Language Processing with Python. O'Reilly Media, Inc.

Suggested E-Learning Materials:

- 1. <u>IBM's Cognitive AI Class:</u>
 - https://cognitiveclass.ai
- 2. <u>MIT's Open Courseware on Machine Learning:</u> http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/
- 3. <u>Scikit Learn Online Documentation:</u> https://scikitlearn.org/stable/documentation.html

Assessment Schedule:

Component	Marks	Submission/ Examination	Allotment/ Syllabus	
		Date(s)		
Assignment 1 [@]	10	27 January, 2025#	Topics shall be allotted in the class by	
		-	08 January, 2025#	
Periodical Test 1	10	05-08 February, 2025*	Lecture No. 01 to 20	
Assignment 2 [@]	10	03 March, 2025#	Topics shall be allotted in the class by	
			12 February, 2025#	
Periodical Test 2	10	21-24 March, 2025*	Lecture No. 21 to 37	
End-Semester	60	19 April - 05 May, 2025*	Lecture No. 01 to 50 (Entire Syllabus)	
Examination				

^{*} Subject to change, if required. # Flexible as per lesson plan.

Lecture-Wise Schedule:

	Topics to be Covered	Suggested
Number		Readings
1	Introduction to Artificial Intelligence	R1/ R2/ R6
2	History of Artificial Intelligence	R1/ R2/R6
3	Intelligent Agents: Agents and Environments, Structure of Agents.	R1/ R2/R6
4–5	General Problem Solving	R1/ R2/R6
6–7	State Space and Graph Model techniques	R1/ R2/R65
8-11	Uninformed and Informed (Heuristic) Search	R1/ R2/R6
12-14	Aim Oriented Heuristic Algorithms Versus Solution Guaranteed Algorithms	R1/ R2/R6
15-17	Adversarial Search: Games, Optimal Decision in Games, Alpha-Beta Pruning.	R1/ R2/R6
18-20	Knowledge Representation: Propositional Logic	R1/ R2/R6
21–23	First Order Predicate Calculus, Inference and Resolution.	R1/ R2/R6
24–25	Introduction to Machine Learning and Types, Data Preprocessing, Importance of features	R3/R4/R5
	in learning, Feature Selection, Feature Extraction Process.	
26–28	Supervised Learning: Classification and Regression, Regression: Simple, Multiple and	R3/R4/R5
	Polynomial	
29–33	Support Vector Machine (Regression and Classification), Decision Tree (Regression and	R3/R4/R5
	Classification), Naïve Bayes (Classification)	
34–35	Evaluation of Classification and Regression Models	R3/R4/R5
36–37	Unsupervised Learning: Introduction to Clustering, k-Means and Hierarchical Clustering.	R3/R4/R5
38	Introduction to Reinforcement Learning	R3/R4/R5
39	Upper Confidence Bound	R3/R4/R5
40	Thompson Sampling	R3/R4/R5
41–43	Validation methods- k-fold Cross Validation, Model Selection and Boosting, XGBoost.	R3/R4/R5
44–50	Applications of Machine Learning with Case Studies.	R3/R4/R5/R7

[@] Assignment marks will be based on written document(s)/ any other component(s) as decided by the instructor(s).