Homework a Solutions

① EValuate the trig value below: (a) $\sin\left(\frac{-3\pi}{6}\right)$

Solution

First, notice $\frac{-7\pi}{6}$ occurs in the a^{nol} Quadrant, $sin(\frac{-3\pi}{6})$ will be a positive number.

We also know
$$Sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

So, it follows that $Sin\left(\frac{-7\pi}{6}\right) = \frac{1}{2}$

(b) $tan\left(\frac{\partial \pi}{3}\right)$

Solution

Recall,
$$tan\left(\frac{2\pi}{3}\right) = \frac{Sin\left(\frac{2\pi}{3}\right)}{Cos\left(\frac{2\pi}{3}\right)}$$

Since $\frac{2\pi}{3}$ is in the 2^{nd} Quadrant, • $\sin(\frac{2\pi}{3})$ will be positive • $\cos(\frac{2\pi}{3})$ will be negative

So, since $Sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$ and $Cos(\frac{\pi}{3}) = \frac{1}{2}$

We have $sin(\dfrac{2}{3})$ = 3 and $cos(\dfrac{3}{3})$ = ½

Thus,
$$\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{2} = -\sqrt{3}$$

(c) $\cos\left(\frac{13\pi}{3}\right)$

Solution

We know $\cos(x)$ has a period of $\partial \pi$, i.e. $\cos(x) = \cos(x + 2\pi)$. Notice, $2\pi = \frac{6\pi}{3}$.

$$SO_1 \quad COS\left(\frac{13\pi}{3}\right) = COS\left(\frac{7\pi}{3} + \frac{6\pi}{3}\right) = COS\left(\frac{7\pi}{3}\right).$$

Also, notice $\cos\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3} + \frac{6\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right)$.

SO,
$$COS\left(\frac{13\pi}{3}\right) = COS\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
.

So,
$$COS\left(\frac{13\pi}{3}\right) = \frac{1}{2}$$

② You are given $\pi \leftarrow \theta \leftarrow \frac{3\pi}{2}$ AND $\sin(\theta) = \frac{-12}{13}$. Find the value of $\cos(\theta)$.

```
Solution
 Recall 1 = \sin^2(\theta) + \cos^2(\theta).
        So, 1 = \left[\frac{-12}{13}\right]^2 + \cos^2(\theta)
                1 = \frac{144}{169} + \cos^2(\theta)
                1 - \frac{144}{169} = \cos^2(\Theta)
               35 = \cos^2(\theta)
             \pm \frac{\sqrt{a5'}}{\sqrt{169'}} = \cos(\theta)
               \pm \frac{5}{13} = \cos(\theta)
                 \pi \angle \theta \angle \frac{3\pi}{2}, so \theta is in the 3<sup>rd</sup> Quadrant. Hence \cos(\theta) is Negative.
Notice,
              COS(\theta) = \frac{-5}{13}
  Thus,
```

- 3 For each function below, find the domain.
 - $f(x) = \sqrt{5-ax} \cdot \sqrt{3-x}$

Solution

We cannot have a negative number under an even Root, so we need 5-2x≥0 and 3-x≥0. 5≥ax 32X *5*/a ≥ x So, we need $x \le 5/2$ and $x \le 3$ To satisfy both Conditions, we need $X \leq 5/2$. So, the domain of f is x4510, or (-0,512]

 $f(x) = X^2 + \pi$ Sin(x)

Solution

The numerator is a polynomial, so x can be any real number. We need to make Sure to denominator doesn't equal O. So, we need $\sin(x) \neq 0$. We know $\sin(x) = 0$ when x = 0 or $x = \pi$ or $x = 3\pi$. But Sine is a periodic function, so $0 = Sin(\pi) = Sin(5\pi) = Sin(5\pi) = ...$ and $0 = \sin(0) = \sin(2\pi) = \sin(4\pi) = \dots$ So, sin(x)=0 when x is any integer multiple of IT, i.e. when x=nTT for n an integer.

Therefore, the domain of f is X + nTT where n is an integer OR all Real humbers except integer multiples of TT.

•
$$f(x) = \frac{\sqrt{3-x^2}}{x^2-1}$$

Solution

So, we need $x \neq \pm 1$.

Putting these together we get the domain of f is $x \ne 3$ and $x \ne \pm 1$ or $(-\infty, -1) \cup (-1, 1) \cup (1, 3)$.

$$f(x) = \frac{\sqrt{3}}{2\cos(x)-1}$$

Solution

We need to make Supe we do not have a 0 in the denominator. So, we need to find when $a\cos(x) - 1 = 0$ $a\cos(x) = 1$ $\cos(x) = \frac{1}{2}$.

We know $\cos(x) = \frac{1}{2}$ When $x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$. Since Cosine is a periodic function with period 2π , we get $\frac{1}{2} = \cos(\frac{\pi}{3}) = \cos(\frac{\pi}{3})$

So, the domain is all Real numbers except $X = \frac{\pi}{3} + \frac{2\pi\eta}{3}$ where n is an integer $X = \frac{5\pi}{3} + \frac{2\pi\eta}{3}$

OR Domain is all Real numbers except $x=\dots, \ ^{\text{T/s}}, \ ^{\text{BT/s}},\dots$