(10)

(10)

SEM-I CBGS NOV-2016 IT SUB- OS

Q.P. Code: 594202

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Solve any three questions out of remaining five.
- (3) Figures to right indicate full marks.
- (4) Assume suitable data where necessary.

Attempt any four questions.

- (a) Explain various states of a process with the help of a state transition diagram. (5)
- (b) What is Producer Consumer Problem? What is solution of example? (5)
- (c) Describe and design I-node structure of Unix operating system
 (5)
- (d) Discuss Critical Section Problem? How to solve it?

 (e) What is system call? Explain any four system calls.

 (5)
- Use following Scheduling algorithm to calculate ATAT & AWT for the following process. (10)
 FCFS ii) Pre-emptive and non-Pre-emptive SJF iii) Pre-emptive Briority

Process	Arrival Time	Burst Time	Priority		
P1	0	8	3		
P2	1	1	1		
P3	2	3	2		
P4	3	2 +1	3		
DS.	4	6	4		

(b) What is Thread? Explain User Level Threads and Kernel Level Threads.

3 (a) Consider the following snapshot of a system

Process	Max		Allocation		Available			
	A	BoC	A	В	С	A	В	С
PO	0	0 1	0	0	1	1	5	2
P1	1	7 5	1	0	0			
P2 _	2	3 5	1	3	5			
P3 5	0	6 5	0	6	3			

Using Banker's algorithm answer the following questions

- i) How many resources are there of type (A, B, C)?
- ii) What are the contents of the Need matrix?
- iii) Is the system in a safe state? Why?
- (b) State the necessary conditions for deadlock. Explain deadlock prevention and avoidance (10) Techniques.
- 4 (a) Calculate page faults and Hits using FIFO, LRU and Optimal Page replacement algorithm (10) for the following page sequence (2,3,5,4,2,5,7,3,8,7). Assume Page frame size is 3.
 - (b) What Is Kernel? Explain its types.

TURN OVER

(20)

Q.P. Code: 594202

2

- 6 (a) Given memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB (in order), how would each off the first-fit, best-fit, and worst-fit algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in order)? Which algorithm makes the most efficient use of memory?
 - (b) Explain how logical address converted into physical address in paging & what is (10) segmentation?
- 6 Write short note on
 - (i) Semaphore
 - (ii) Compare preemptive & Preemptive scheduling.
 - (iii) Android OS
 - (iv) Inter process communication

BOLL LANGUE STATE STATE

Says Filling