Homework #5 Hints

- Smoothing in 2-dimensions
 - 2-d array with ghostcells on all sides
 - Assume dx = dy
 - You can use my 1-d code as a starting point if you wish

Parallel Computing

- Individual processors themselves are not necessarily getting much faster on their own (the GHz-wars are over)
 - Chips are packing more processing cores into the same package
 - Even your phone is likely a multicore chip
- If you don't use the other cores, then they are just "space heaters"
- Some techniques for parallelism require only simple modifications of your codes and can provide great gains on the single workstation
- There are lots of references online
 - Great book: High Performance Computing by Dowd and Severance—freely available (linked to from our webpage).
 - We'll use this for some background

Types of Machines

- Modern computers have multiple cores that all access the same pool of memory directly—this is a shared-memory architecture
- Supercomputers are built by connecting LOTS of nodes (each a shared memory machine with ~4-32 cores) together with a high-speed network—this is a distributed-memory architecture
- Different parallel techniques and libraries are used for each of these paradigms:
 - Shared-memory: OpenMP
 - Distributed-memory: message-passing interface (MPI)

Moore's Law

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year... Certainly over the short term this rate can be expected to continue, if not to increase."

—Gordon Moore, Electronics Magazine, 1965

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Amdahl's Law

- In a typical program, you will have sections of code that adapt easily to parallelism, and stuff that remains serial
 - For instance: initialization may be serial and the resulting computation parallel
- Amdahl's law: speedup attained from increasing the number of processors, N, given the fraction of the code that is parallel, P:

$$S = \frac{1}{(1 - P) + (P/N)}$$

Amdahl's Law

(Daniels220 at English Wikipedia)

Amdahl's Law

- This seems to argue that we'd never be able to use 100,000s of processors
- However (Dowd & Severance):
 - New algorithms have been designed to exploit massive parallelism
 - Larger computers mean bigger problems are possible—as you increase the problem size, the fraction of the code that is serial likely descreases

Types of Parallelism

- Flynn's taxonomy classifies computer architectures
- 4 classifications: single/multiple data; single/multiple instruction
 - Single instruction, single data (SISD)
 - Think typical application on your computer—no parallelism
 - Single instruction, multiple data (SIMD)
 - The same instruction set is done to multiple pieces of data all at once
 - Old days: vector computers; today: GPUs
 - Multiple instructions, single data (MISD)
 - Not very interesting...
 - Multiple instructions, multiple data (MIMD)
 - What we typically think of as parallel computing. The machines on the top 500 list fall into this category

Types of Parallelism

- We can do MIMD different ways:
 - Single program, multiple data
 - This is what we normally do. MPI allows this
 - Differs from SIMD in that general CPUs can be used, doesn't require direct synchronization for all tasks

Trivially Parallel

- Sometimes our tasks are trivially parallel
 - No communication is needed between processes
- Ex: ray tracing or Monte Carlo
 - Each realization can do its work independently
 - At the end, maybe, we need to do some simple processing of all the results
- Large data analysis
 - You have a bunch of datasets and a reduction pipeline to work on them.
 - Use multiple processors to work on the different data files as resources become available.
 - Each file is processed on a single core

Trivially Parallel via Shell Script

- Ex: data analysis—launch independent jobs
- This can be done via a shell script—no libraries necessary
 - Loop over files
 - Run jobs until all of the processors are full
 - Use lockfiles to indicate a job is running
 - When resources become free, start up the next job
- Let's look at the code...

How Do We Make Our Code Parallel?

- Despite your best wishes, there is no simple compiler flag "--make-this-parallel"
 - You need to understand your algorithm and determine what parts are amenable to parallelism
- However... if the bulk of your work is on one specific piece (say, solving a linear system), you may get all that you need by using a library that is already parallel
 - This will require minimal changes to your code

Shared Memory vs. Distributed

- Imagine that you have a single problem to solve and you want to divide the work on that problem across available processors
- If all the core see the same pool of memory (shared-memory), then parallelism is straightforward
 - Allocate a single big array for your problem
 - Spawn threads: separate instance of a sequence of instructions operating
 - Multiple threads operate simultaneously
 - Each core/thread operates on a smaller portion of the same array, writing to the same memory
 - Some intermediate variables may need to be duplicated on each thread—thread-private data
 - OpenMP is the standard here

Shared Memory vs. Distributed

- Distributed computing: running on a collection of separate computers (CPU + memory, etc.) connected by a high-speed network
 - Each task cannot directly see the memory for the other tasks
 - Need to explicitly send messages from one machine to another over the network exchanging the needed data
 - MPI is the standard here

Shared Memory

- Nodes consist of one or more chips each with many cores (2-16 typically)
 - Everything can access the same pool of memory

Single 4-core chip and its pool of memory

Shared Memory

- Some machines are more complex—multiple chips each with their own pool of local memory can talk to on another on the node
 - Latency may be higher when going "off-chip"
- Best performance will require knowning your machine's architecture

Two 4-core chips comprising a single node—each has their own pool of memory

Ex: Blue Waters Machine

(Cray, Inc.)

Open MP

- Threads are spawned as needed
- When you run the program, there is one thread—the master thread
 - When you enter a parallel region, multiple threads run concurrently

Parallel Task I Parallel Task II Parallel Task III

PHY 688: Numerical Methods for (Astro)Physics

(Wikipedia--OpenMP)

OpenMP "Hello World"

- OpenMP is done via directives or pragmas
 - Look like comments unless you tell the compiler to interpret them
 - Environment variable OMP_NUM_THREADS sets the number of threads
 - Support for C, C++, and Fortran
- Hello world:

```
!$OMP parallel
print *, "Hello world"
!$OMP end parallel
end program hello
```

- Compile with: gfortran -o hello -fopenmp hello.f90

C Hello World

• In C, the preprocessor is used for the pragmas

```
#include <stdio.h>

void main() {
    #pragma omp parallel
    printf("Hello world\n");
}
```

OMP Functions

 In addition to using pragmas, there are a few functions that OpenMP provides to get the number of threads, the current thread, etc.

```
program hello

use omp_lib

print *, "outside parallel region, num threads = ", & omp_get_num_threads()

!$OMP parallel
print *, "Hello world", omp_get_thread_num()
!$OMP end parallel
end program hello
```

OpenMP

- Most modern compilers support OpenMP
 - However, the performance across them can vary greatly
 - GCC does a reasonable job. Intel is the fastest
- There is an overhead associated with spawning threads
 - You may need to experiment
 - Some regions of your code may not have enough work to offset the overhead

Number of Threads

- There will be a systemwide default for OMP_NUM_THREADS
- Things will still run if you use more threads than cores available on your machine—but don't!
- Scaling: if you double the number of cores does the code take
 1/2 the time?

Parallel Loops

- Splitting loops across cores
- Ex: matrix multiplication:

```
program matmul
  ! matrix multiply
  integer, parameter :: N = 1000
  double precision a (N, N)
  double precision x(N)
  double precision b(N)
  integer :: i, j
  ! initialize the matrix and vector
  !$omp parallel do private(i, j)
  do j = 1, N
     do i = 1, N
        a(i,i) = dble(i + j)
     enddo
  enddo
  !$omp end parallel do
```

Parallel Loops

Continued...

Loop Parallel

- We want to parallelize all loops possible
 - Instead of f(:,:) = 0.d0, we write out loops and thread
- Private data
 - Inside the loop, all threads will have access to all the variables declared in the main program
 - For some things, we will want a private copy on each thread.
 These are put in the private() clause

Reduction

- Suppose you are finding the minimum value of something, or summing
 - Loop spread across threads
 - How do we get the data from each thread back to a single variable that all threads see?
- reduction() clause
 - Has both shared and private behaviors
 - Compiler ensures that the data is synchronized at the end

Reduction

Example of a reduction

```
program reduce
  implicit none
  integer :: i
  double precision :: sum
  sum = 0.0d0
!$omp parallel do private (i) reduction(+:sum)
  do i = 1, 10000
     sum = sum + exp((mod(dble(i), 5.0d0) - 2*mod(dble(i), 7.0d0)))
  end do
!$omp end parallel do
 print *, sum
end program reduce
```

Do we get the same answer when run with differing number of threads?

Example: Relaxation

• In two-dimensions, with $\Delta x = \Delta y$, we have:

$$\phi_{i,j} = \frac{1}{4} \left(\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} - \Delta x^2 f_{i,j} \right)$$

- Red-black Gauss-Seidel:
 - Update in-place
 - First update the red cells (black cells are unchanged)
 - Then update black cells (red cells are unchanged)

Example Relaxation

- Let's look at the code
- All two-dimensional loops are wrapped with OpenMP directives
- We can measure the performance
 - Fortran 95 has a cpu time() intrinsic
 - Be careful though—it returns the CPU time summed across all threads
 - OpenMP has the omp_get_wtime() function
 - This returns wallclock time
 - Looking at wallclock: if we double the number of processors, we want the code to take 1/2 the wallclock time

Example Relaxation

Performance:

This is an example of a strong scaling test—the amount of work is held fixed as the number of cores is increased

256x256 bender (-Ofast) wallclock time (2 runs) threads 0.5014 0.4960 0.2809 0.2873 0.1683 0.1710 512×512 wallclock time (2 runs) threads 2.163 2.157 1.153 1.156 0.6142 0.6018 0.3823 0.3601 12 0.3543 0.5133

1024x1024

threads	wallclock time	(2 runs)
1	9.431	9.475
2	4.145	4.109
4	2.235	3.410
8	1.355	1.350
12	2.116	1.346

Threadsafe

- When sharing memory you need to make sure you have private copies of any data that you are changing directly
- Applies to functions that you call in the parallel regions too!
- What if your answer changes when running with multiple threads?
 - Some roundoff-level error is to be expected if sums are done in different order
 - Large differences indicate a bug—most likely something needs to be private that is not
- Unit testing
 - Run with 1 and multiple threads an compare the output

Threadsafe

Fortran:

- Common blocks are simply a list of memory spaces where data can be found. This is shared across multiple routines
 - Very dangerous—if one thread updates something in a common block, every other thread sees that update
 - Much safer to use arguments to share data between functions
- Save statement: the value of the data persists from one call to the next
 - What if a different thread is the next to call that function—is the saved quantity the correct value?

Legacy Code

- Sometimes you inherit code that works really well, but was written in a time before threadsafety was a concern
- Common blocks: use threadprivate directive
 - Ex: VODE...

Critical Sections

- Within a parallel region, sometimes you need to ensure that only one thread at a time can write to a variable
- Consider the following:

```
if ( a(i,j) > maxa ) then
   maxa = a(i,j)
   imax = i
   jmax = j
endif
```

- If this is in the middle of a loop, what happens if 2 different threads meet the criteria?
- Marking this section as critical will ensure only one thread changes things at a time
- Warning: critical sections can be VERY slow

OpenMP

OpenMP is relatively big

Porting to OpenMP

- You can parallelize your code piece-by-piece
- Since OpenMP directives look like comments to the compiler, your old version is still there
- Generally, you are not changing any of your original code—just adding directives

More Advanced OpenMP

- if clause tells OpenMP only to parallelize if a certain condition is met (e.g. a test of the size of an array)
- firstprivate: like private except each copy is initialized to the value from the original value
- schedule: affects the balance of the work distributed to threads

OpenMP in Python

- Python enforces a "global interpreter lock" that means only one thread can talk to the interpreter at any one time
 - OpenMP within pure python is not possible
- However, C (or Fortran) extensions called from python can do shared-memory parallelism
 - Underlying code can do parallel OpenMP

MPI

- The Message Passing Library (MPI) is the standard library for distributed parallel computing
 - Now each core cannot directly see each other's memory
 - You need to manage how the work is divided and explicitly send messages from one process to the other as needed.

MPI Hello World

 No longer do we simply use comments—now we call subroutines in the library:

```
program hello
 use mpi
  implicit none
  integer :: ierr, mype, nprocs
  call MPI Init(ierr)
  call MPI Comm Rank (MPI COMM WORLD, mype, ierr)
  call MPI Comm Size (MPI COMM WORLD, nprocs, ierr)
  if (mype == 0) then
     print *, "Running Hello, World on ", nprocs, " processors"
  endif
  print *, "Hello World", mype
  call MPI Finalize(ierr)
end program hello
```

MPI Hello World

- MPI jobs are run using a commandline tool
 - usually mpirun or mpiexec
 - Eg: mpiexec -n 4 ./hello
- You need to install the MPI libraries on your machine to build and run MPI jobs
 - MPICH-2 is the most popular
 - Fedora: yum install mpich2 mpich2-devel mpich2-autoload

MPI Concepts

- A separate instance of your program is run on each processor
 —these are the MPI processes
 - Threadsafety is not an issue here, since each instance of the program is isolated from the others
- You need to tell the library the datatype of the variable you are communicating and how big it is (the buffer size).
 - Together with the address of the buffer specify what is being sent
- Processors can be grouped together
 - Communicators label different groups
 - MPI_COMM_WORLD is the default communicator (all processes)
- Many types of operations:
 - Send/receive, collective communications (broadcast, gather/scatter)

MPI Concepts (based on Using MPI)

- There are > 100 functions
 - But you can do any messaging passing algorithm with only 6:
 - MPI Init
 - MPI_Comm_Size
 - MPI_Comm_Rank
 - MPI Send
 - MPI Recv
 - MPI_Finalize
 - More efficient communication can be done by using some of the more advanced functions
 - System vendors will usually provide their own MPI implementation that is well-matched to their hardware

Ex: Computing Pi

- This is an example from Using MPI
 - Compute π by doing the integral:

$$\int_0^1 \frac{1}{1+x^2} dx = \arctan(x)|_0^1 = \frac{\pi}{4}$$

- We will divide the interval up, so that each processor sees only a small portion of [0,1]
- Each processor computes the sum for its intervals
- Add all the integrals together at the end to get the value of the total integral
- We'll pick one processor as the I/O processor—it will communicate with us
- Let's look at the code...

Send/Receive Example

- The main idea in MPI is sending messages between processes.
- MPI_Send() and MPI_Recv() pairs provide this functionality
 - This is a blocking send/receive
 - For the sending code, the program resumes when it is safe to reuse the buffer
 - For the receiving code, the program resumes when the message was received
 - May cause network contention if the destination process is busy doing its own communication
 - See Using MPI for some diagnostics on this
- There are non-blocking send, sends where you explicitly attach a buffer

Send/Receive Example

- Simple example (mimics ghost cell filling)
 - On each processor allocate an integer array of 5 elements
 - Fill the middle 3 with a sequence (proc 0 gets 1,2,3, proc 1 get 4,5,6, ...)
 - Send messages to fill the left and right element with the corresponding element from the neighboring processors
- Let's look at the code...

Send/Receive

- Good communication performance often requires staggering the communication
- A combined sendreceive () call can help avoid deadlocking
- Let's look at the same task with sendreceive()

Relaxation

- Let's do the same relaxation problem, but now using MPI instead of OpenMP
 - In the OpenMP version, we allocated a single array covering the entire domain, and all processors saw the whole array
 - In the MPI version, each processor will allocate a smaller array, covering only a portion of the entire domain, and they will only see their part directly.

Relaxation

- We will do 1-d domain decomposition
 - Each processor allocates a slab that covers the full y-extent of the domain
 - Width in x is nx/nprocs
 - if not evenly divisible, then some slabs have a width of 1 more cell
 - Perimeter of 1 ghost cell surrounding each subgrid
- We will refer to a global index
 space [0:nx-1] × [0:ny-1]

- Arrays allocated as: f(ilo-ng:ihi+ng,jlo-ng:jhi+ng)

Domain Decomposition

 Generally speaking, you want to minimize the surface-tovolume (this reduces communication)

Relaxation

- Most of the parallelism comes in the ghost cell filling
 - Fill left GCs by receiving data from processor to the left
 - Fill right GCs by receiving data from processor to the right
 - Send/receive pairs—we want to try to avoid contention (this can be very tricky, and people spend a lot of time worrying about this...)
- On the physical boundaries, we simply fill as usual
- For computing a norm, we will need to reduce the local sums across processors
- Let's look at the code...

MPI Relaxation Results

- Run on my cluster
 - 6 nodes with 2 dual-core processors, circa 2006
 - Connected with gigabit ethernet
 - Test with send/recv and sendrecv, and using 4 vs. 2 cores per node

MPI Relaxation Results

 Notice that there seems to be a penalty on this machine when using all 4 cores on a node

Weak vs. Strong Scaling

- In assessing the parallel performance of your code there are two methods that are commonly used
 - Strong scaling: keep the problem size fixed and increase the number of processors
 - Eventually you will become work-starved, and your scaling will stop (communication dominates)
 - Weak scaling: increase the amount of work in proportion to the number of processors
 - In this case, perfect scaling will result in the same wallclock time for all processor counts

Ex: Castro Scaling

- Castro is a publicly available adaptive mesh refinement compressible hydrodynamics code
 - Models astrophysical flows
 - General equation of state, reactions, explicit diffusion
 - Radiation transport
 - Self-gravity (multigrid Poisson solve)

Ex: Castro Scaling

CASTRO Strong Scaling (7683 Problem Domain) for Full Star Hydro + Reactions + Gravity on jaguarpf

Ex: Castro Scaling

Debugging

- There are parallel debuggers (but these are pricey)
- Print is still your friend
 - Run as small of a problem as possible on as few processors as necessary
- Some roundoff-level differences are to be expected from sums (different order of operations)

Hybrid Parallelism

- To get good performance on current supercomputers, you need to do hybrid parallelism:
 - OpenMP within a node, MPI across nodes
- For example, in our MPI relaxation code, we could split the loops over each subdomain over multiple cores on a node using OpenMP.
 - Then we have MPI to communicate across nodes and OpenMP within nodes
 - This hybrid approach is often needed to get the best performance on big machines

Parallel Python

- MPI has interfaces for Fortran and C/C++
- There are several python modules for MPI
 - mpi4py: module that can be imported into python
 - Fedora:
 - yum install mpi4py-mpich2
 - Add /usr/lib64/python2.7/site-packages/mpich2/ to PYTHONPATH
 - pyMPI: changes the python interpreter itself

Parallel Python

Hello world:

```
from mpi4py import MPI

comm = MPI.COMM_WORLD
  rank = comm.Get_rank()

print "Hello, world", rank
```

• Run with mpiexec -n 4 python hello.py

Coarray Fortran

- Part of the Fortran 2008 standard
 - Parallel version of Fortran
 - Separate image (instance of the program) is run on each processor
 - [] on arrays is used to refer to different processors
 - Not yet widely available

Supercomputing Centers

Supercomputing centers

- National centers run by NSF (through XSEDE program) and DOE (NERSC, OLCF, ALCF)
- You can apply for time—starter accounts available at most centers to get up to speed
- To get lots of time, you need to demonstrate that your codes can scale to O(10⁴) processors or more

Queues

- You submit your job to a queue, specifying the number of processors (MPI + OpenMP threads) and length of time
- Typical queue windows are 2-24 hours
- Job waits until resources are available

Supercomputing Centers

Checkpoint/restart

- Long jobs won't be able to finish in the limited queue window
- You need to write your code so that it saves all of the data necessary to restart where it left off

Archiving

- Mass storage at centers is provided (usually through HPSS)
- Typically you generate far more data than is reasonable to bring back locally—remote analysis and visualization necessary

Future...

- The big thing in supercomputing these days is accelerators
 - GPUs or Intel Phi boards
 - Adds a SIMD-like capability to the more general CPU
- Originally with GPUs, there were proprietary languages for interacting with them (e.g. CUDA)
- Currently, OpenACC is an OpenMP-like way of dealing with GPUs/accelerators
 - Still maturing
 - Portable
 - Will merge with OpenMP in the near future
- Data transfer to the accelerators moves across the slow system bus
 - Future processors may move these capabilities on-die