## **CPUE**

## Alex J. Benecke

### February 22, 2018

## Contents

| H  | ypothesis                                                                                                                                     | 1 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1) | $H_0$ : There is no difference in cpe (catch/hour) among years 2013 - 2016. Load and Prepare Data                                             | 2 |
| 2) | $H_0$ : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among years 2013 - 2016. Load and Prepare Data    | 4 |
| 3) | $H_0$ : There is no difference in cpe for largemouth bass smaller than quality length (300mm) among years 2013 - 2016.  Load and Prepare Data | 6 |

## Hypothesis

- 1)  $H_0$ : There is no difference in cpe (catch/hour) among years 2013 2016.
- 2)  $H_0$ : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among years 2013 2016.
- 3)  $H_0$ : There is no difference in cpe for large mouth bass smaller than quality length (300mm) among years 2013 - 2016.

# 1) $H_0$ : There is no difference in cpe (catch/hour) among years 2013 - 2016.

#### Load and Prepare Data

#### Load Data

| Year | Site | cpe.hr     |
|------|------|------------|
| 2014 | 1    | 45.378151  |
| 2013 | 2    | 86.746988  |
| 2014 | 2    | 87.032967  |
| 2015 | 2    | 19.169329  |
| 2016 | 2    | 59.602649  |
| 2013 | 4    | 58.009479  |
| 2014 | 4    | 19.933555  |
| 2015 | 4    | 31.259045  |
| 2016 | 4    | 48.949320  |
| 2015 | 5    | 4.225352   |
| 2013 | 6    | 4.712042   |
| 2014 | 6    | 21.021898  |
| 2015 | 6    | 17.716535  |
| 2016 | 6    | 44.628099  |
| 2013 | 8    | 38.709677  |
| 2014 | 8    | 47.787611  |
| 2015 | 8    | 117.249698 |
| 2016 | 8    | 166.591422 |
| 2013 | 10   | 20.571429  |
| 2014 | 10   | 27.799228  |
| 2016 | 10   | 5.872757   |

|    | Year | Site | cpe.hr     |
|----|------|------|------------|
| 22 | 2014 | 11   | 117.009751 |
| 23 | 2015 | 11   | 33.162743  |
| 24 | 2016 | 11   | 26.438188  |
| 25 | 2014 | 12   | 36.468886  |
| 26 | 2015 | 12   | 12.514484  |
| 27 | 2016 | 12   | 10.404624  |
| 28 | 2016 | 13   | 0.000000   |
| 29 | 2016 | 14   | 8.135593   |
| 30 | 2013 | 15   | 81.818182  |
| 31 | 2014 | 15   | 40.346409  |
| 32 | 2015 | 15   | 25.079164  |
| 33 | 2016 | 15   | 16.618581  |
| 34 | 2014 | 16   | 45.120859  |
| 35 | 2013 | 18   | 97.472924  |
| 36 | 2014 | 18   | 16.775396  |
| 37 | 2015 | 18   | 64.197531  |
| 38 | 2016 | 18   | 148.064516 |
| 39 | 2013 | 19   | 0.000000   |
| 40 | 2014 | 19   | 0.000000   |
| 41 | 2015 | 19   | 0.000000   |
| 42 | 2016 | 19   | 0.000000   |
|    |      |      |            |

### Test Hypothesis 1

## **Mean Catch Per Hour**



## Results $H_0$ 1

There is no significant difference in CPUE between years  $(F_{1,40} = 0.071, p = 0.792)$ .

# 2) $H_0$ : There is no differenct in cpe for quality length (300mm) and larger largemouth bass among years 2013 - 2016.

### Load and Prepare Data

#### Load Data with Gcat and make Q+ and Q-

| ## |      | Year   | Sit | e    | effo  | rt Sp | ecies | gcat              | caught | cpe.hr   |
|----|------|--------|-----|------|-------|-------|-------|-------------------|--------|----------|
| ## | 1    | 2014   |     | 1 0. | 26444 | 44    | 317   | stock             | 9      | 34.03361 |
| ## | 2    | 2014   |     | 1 0. | 26444 | 44    | 317   | quality           | 3      | 11.34454 |
| ## | 3    | 2014   |     | 1 0. | 26444 | 44    | 317   | substock          | 0      | 0.00000  |
| ## | 250  | 2016   | 1   | 9 0. | 23222 | 22    | 317   | preferred         | 0      | 0.00000  |
| ## | 251  | 2016   | 1   | 9 0. | 23222 | 22    | 317   | ${\tt memorable}$ | 0      | 0.00000  |
| ## | 252  | 2016   | 1   | 9 0. | 23222 | 22    | 317   | trophy            | 0      | 0.00000  |
| ## |      |        | Y   | ear  |       |       |       |                   |        |          |
| ## | gcat | t      |     | 2013 | 2014  | 2015  | 2016  |                   |        |          |
| ## | me   | emoral | ole | 0    | 0     | 0     | 0     |                   |        |          |
| ## | pı   | referi | red | 14   | 18    | 15    | 10    |                   |        |          |
| ## | qι   | uality | J   | 39   | 57    | 38    | 47    |                   |        |          |
| ## | st   | tock   |     | 38   | 65    | 14    | 53    |                   |        |          |
| ## | ຣເ   | ıbstoo | ck  | 16   | 3     | 13    | 34    |                   |        |          |
| ## | tı   | rophy  |     | 0    | 0     | 0     | 0     |                   |        |          |

#### Make Qcat Variable and Data Frame

#### Create Data Frame With Only Quality + Fish

```
Qpls <- Qcat[Qcat$gcatQ == "quality+", ]
Qpls$gcatQ <- droplevels(Qpls$gcatQ)

## 'data.frame': 168 obs. of 4 variables:
## $ Year : int 2014 2014 2014 2013 2013 2013 2013 2014 2014 ...
## $ Site : Factor w/ 15 levels "1","2","4","5",..: 1 1 1 1 2 2 2 2 2 2 2 ...
## $ gcatQ : Factor w/ 1 level "quality+": 1 1 1 1 1 1 1 1 1 1 ...
## $ cpe.hr: num 11.3 0 0 0 23.7 ...

Qpls.sum <- aggregate(cpe.hr ~ Year + Site, data = Qpls, FUN = sum) %>% arrange(Site, Year)
```

| Year | Site | cpe.hr    |
|------|------|-----------|
| 2014 | 1    | 11.344538 |
| 2013 | 2    | 23.658269 |
| 2014 | 2    | 35.604396 |
| 2015 | 2    | 0.000000  |
| 2016 | 2    | 23.841060 |
| 2013 | 4    | 23.886256 |
| 2014 | 4    | 11.960133 |
| 2015 | 4    | 26.049204 |
| 2016 | 4    | 17.799753 |
| 2015 | 5    | 4.225352  |
| 2013 | 6    | 0.000000  |
| 2014 | 6    | 15.766423 |
| 2015 | 6    | 3.543307  |
| 2016 | 6    | 14.876033 |
| 2013 | 8    | 8.602151  |
| 2014 | 8    | 23.893805 |
| 2015 | 8    | 52.110977 |
| 2016 | 8    | 24.379233 |
| 2013 | 10   | 8.228571  |
| 2014 | 10   | 22.239382 |
| 2016 | 10   | 5.872757  |

|    | Year | Site | cpe.hr    |
|----|------|------|-----------|
| 22 | 2014 | 11   | 39.003250 |
| 23 | 2015 | 11   | 29.477994 |
| 24 | 2016 | 11   | 17.625459 |
| 25 | 2014 | 12   | 31.259045 |
| 26 | 2015 | 12   | 12.514484 |
| 27 | 2016 | 12   | 10.404624 |
| 28 | 2016 | 13   | 0.000000  |
| 29 | 2016 | 14   | 0.000000  |
| 30 | 2013 | 15   | 53.359684 |
| 31 | 2014 | 15   | 22.007132 |
| 32 | 2015 | 15   | 25.079164 |
| 33 | 2016 | 15   | 4.154645  |
| 34 | 2014 | 16   | 38.675022 |
| 35 | 2013 | 18   | 68.231047 |
| 36 | 2014 | 18   | 10.065238 |
| 37 | 2015 | 18   | 59.259259 |
| 38 | 2016 | 18   | 84.193548 |
| 39 | 2013 | 19   | 0.000000  |
| 40 | 2014 | 19   | 0.000000  |
| 41 | 2015 | 19   | 0.000000  |
| 42 | 2016 | 19   | 0.000000  |
|    |      |      |           |

#### Test Hypothesis 2

```
aov.Qpls <- aov(cpe.hr ~ Year, data = Qpls.sum)
summary(aov.Qpls)

## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 208 207.5 0.515 0.477
## Residuals 40 16111 402.8
```

## Mean Catch Per Hour Quality +



#### Results $H_0$ 2

There is no significant difference in CPUE for fish > Quality length (300mm) among years 2013 - 2016 ( $F_{1,40} = 0.515$ , p = 0.477).

# 3) $H_0$ : There is no difference in cpe for largemouth bass smaller than quality length (300mm) among years 2013 - 2016.

#### Load and Prepare Data

#### Create Q- Data Frame

```
Qless <- Qcat[Qcat$gcatQ == "quality-", ]
Qless$gcatQ <- droplevels(Qless$gcatQ)

str(Qless)

## 'data.frame': 84 obs. of 4 variables:
## $ Year : int 2014 2014 2013 2013 2014 2014 2015 2015 2016 2016 ...
## $ Site : Factor w/ 15 levels "1","2","4","5",...: 1 1 2 2 2 2 2 2 2 2 2 ...
## $ gcatQ : Factor w/ 1 level "quality-": 1 1 1 1 1 1 1 1 1 1 1 ...
## $ cpe.hr: num 34 0 35.5 27.6 11.9 ...
Qless.sum <- aggregate(cpe.hr ~ Year + Site, data = Qless, FUN = sum) %>% arrange(Site, Year)
```

| Year | Site | cpe.hr     |
|------|------|------------|
| 2014 | 1    | 34.033613  |
| 2013 | 2    | 63.088718  |
| 2014 | 2    | 51.428571  |
| 2015 | 2    | 19.169329  |
| 2016 | 2    | 35.761589  |
| 2013 | 4    | 34.123223  |
| 2014 | 4    | 7.973422   |
| 2015 | 4    | 5.209841   |
| 2016 | 4    | 31.149567  |
| 2015 | 5    | 0.000000   |
| 2013 | 6    | 4.712042   |
| 2014 | 6    | 5.255475   |
| 2015 | 6    | 14.173228  |
| 2016 | 6    | 29.752066  |
| 2013 | 8    | 30.107527  |
| 2014 | 8    | 23.893805  |
| 2015 | 8    | 65.138721  |
| 2016 | 8    | 142.212190 |
| 2013 | 10   | 12.342857  |
| 2014 | 10   | 5.559846   |
| 2016 | 10   | 0.000000   |

|    | Year | Site | $_{ m cpe.hr}$ |
|----|------|------|----------------|
| 22 | 2014 | 11   | 78.006501      |
| 23 | 2015 | 11   | 3.684749       |
| 24 | 2016 | 11   | 8.812729       |
| 25 | 2014 | 12   | 5.209841       |
| 26 | 2015 | 12   | 0.000000       |
| 27 | 2016 | 12   | 0.000000       |
| 28 | 2016 | 13   | 0.000000       |
| 29 | 2016 | 14   | 8.135593       |
| 30 | 2013 | 15   | 28.458498      |
| 31 | 2014 | 15   | 18.339277      |
| 32 | 2015 | 15   | 0.000000       |
| 33 | 2016 | 15   | 12.463935      |
| 34 | 2014 | 16   | 6.445837       |
| 35 | 2013 | 18   | 29.241877      |
| 36 | 2014 | 18   | 6.710158       |
| 37 | 2015 | 18   | 4.938272       |
| 38 | 2016 | 18   | 63.870968      |
| 39 | 2013 | 19   | 0.000000       |
| 40 | 2014 | 19   | 0.000000       |
| 41 | 2015 | 19   | 0.000000       |
| 42 | 2016 | 19   | 0.000000       |
|    |      |      |                |

## Test Hypothesis 3

```
aov.Qless <- aov(cpe.hr ~ Year, data = Qless.sum)
summary(aov.Qless)</pre>
```

```
## Year 1 Sum Sq Mean Sq F value Pr(>F)
## Year 1 12 11.5 0.014 0.906
## Residuals 40 32690 817.2
```

## Mean Catch Per Hour Quality-



Results  $H_0$  3

There is no significat difference in CPUE for fish < Quality length among years 2013 - 2016 ( $F_{1,40} = 0.014$ , p = 0.906).

