Monday, 26 August 2019 5:04 PM Previous class not attended) DFBETA; (1) difference in Betas Bj when the (you, mit) is not present in the data and the estimate of B) when the whole data is used. Belsley, kinh, welsch (1980) $\hat{\beta}_{j} - \hat{\beta}_{j}(i) \sim 7$ $\hat{\beta}_{j} - \hat{\beta}_{j}(i) = \hat{\beta}_{j} - \hat{\beta}_{j}(i)$ $L^{T} = \begin{pmatrix} 0 & 0 & 0 & --- & 1 & 0 & --- & 0 \end{pmatrix}$ $\hat{\beta} - \hat{\beta}_{i}$ = $(x T x)^{-1} x i e^{i}$ — (7)Denote $R = (X^TX)^{-1}X^T$. $\Rightarrow RRT = ((x^{T}x)^{-1}x^{T})(x(x^{T}x)^{-1})$ $= (x^{T}x)^{-1} = (C_{ij})$ $\hat{\beta} \sim \mathcal{N}(\beta, \sigma^{2}C)$ $\begin{array}{ll}
\mathcal{L}^{T}\left(\hat{R}-\hat{R}(i)\right) = \frac{r_{j,i}e_{i}}{(1-h_{i}i)} = \hat{\beta}_{j} - \hat{\beta}_{j}e_{i}
\end{array}$ $\begin{array}{ll}
\mathcal{L}^{T}\left(\hat{R}-\hat{R}(i)\right) = \frac{r_{j,i}e_{i}}{(1-h_{i}i)} = \hat{\beta}_{j} - \hat{\beta}_{j}e_{i}
\end{array}$ $\begin{array}{ll}
\mathcal{L}^{T}\left(\hat{R}-\hat{R}(i)\right) = \frac{r_{j,i}e_{i}}{(1-h_{i}i)} = \frac{r_{j,i}e_{i}}{(1-h_{i}i)}
\end{array}$ = 02 gj (1-his) (chech), $\frac{27(\hat{\beta}-\hat{\beta}_0)}{\sqrt{5-2(j_1(1-ki_0))}} = \frac{\hat{\beta}_j-\hat{\beta}_j(i_j)}{\sqrt{5-2(j_1(1-ki_0))}}$ $= \frac{\hat{\beta}_j-\hat{\beta}_j(i_j)}{\sqrt{5-2(j_1(1-ki_0))}}$ The use the estimated value of 5-2 and $5i_0^2$ then the estimate value of the estimate value of 5-2 and 5-2 and 5-2 then

$$\frac{\beta_{i} - \beta_{j}(i)}{\sqrt{s_{i}^{2}} r_{j}^{2} r_{j}} = \frac{\beta_{j} - \beta_{j}(i)}{\sqrt{s_{j}^{2}} r_{j}^{2} r_{j}^{2}}$$

$$\frac{\beta_{j} - \beta_{j}(i)}{\sqrt{s_{j}^{2}} r_{j}^{2} r_{j}^{2} r_{j}^{2}} = \frac{\gamma_{j}^{2} c_{i}}{(1 - h_{i}i)} / \gamma_{j}^{2} r_{j}^{2} h_{i}^{2}}$$

$$= \frac{\gamma_{j}i}{\sqrt{s_{j}^{2}} r_{j}^{2}} + \frac{e_{i}}{\sqrt{1 - h_{i}i}} + \frac{1}{\sqrt{1 - h_{i}i}}$$

$$= \frac{\gamma_{j}i}{\sqrt{s_{j}^{2}} r_{j}^{2}} + \frac{e_{i}}{\sqrt{1 - h_{i}i}} + \frac{1}{\sqrt{1 - h_{i}i}} + \frac{1}{\sqrt{1 - h_{i}i}}$$
We can consider there is an influence point of DF pala $j(i)$ $\geq \frac{2}{\sqrt{1 - h_{i}i}}$

$$= \frac{\gamma_{i}i}{\sqrt{1 - h_{i}i}} + \frac{1}{\sqrt{1 - h_{i}i}} + \frac{\gamma_{i}r_{i}}{\sqrt{1 - h_{i}i}} + \frac{\gamma_{i}r_{i}}{\sqrt{1 - h_{i}i}} + \frac{\gamma_{i}r_{i}}{\sqrt{1 - h_{i}i}} + \frac{\gamma_{i}r_{i}}{\sqrt{1 - h_{i}i}} + \frac{2}{\sqrt{1 - h_{i}i}} + \frac{h_{i}r_{i}}{\sqrt{1 - h$$

General Variance of Band Cov Ratio = | Var (\$(i)) | Var (\$) $= \left| \frac{n^2}{\sigma^2} \left(\times \overline{(i)} \times Ci \right) \right|^{-1} / Ci$ = \[\left[S(i) \left(\times \big[i) \times \times \left(\times \big[i) \times \times \times \times \left(\times \big[i) \times \ti $= \left[\frac{S_{0i}^{2}}{MSR_{0}} \right]^{R+1} \left[\left(X_{(i)}^{T} X_{(i)}^{T} \right)^{T} \right]$ |A+beT| = |A| (1+CTA-16) $= \frac{x T x}{\left[x^{T} x \right] \left(1 - \pi i T \left(x T x\right)^{-1} \chi i\right)} = \frac{1}{1 - h i}$ ·· (SZ(i) / 1-hii