CS3063 Theory of Computing

Semester 4 (20 Intake), Feb – Jun 2023

Lecture 11

Turing Machines: Session 2

Announcements

Assignment 2: Due 5th June

- No interactive session, No Quiz 10 on 5th June
 - (as per student request)
 - Next (and last) session, with Quiz 10: 12th June

Review of Previous Lecture Turing Machines - 1

- Turing Machine (TM) Model
- Definitions, Etc
 - Configuration of a TM
 - Acceptance
- Examples
- Computing a (partial) Function

Outline: Lecture 11

Turing Machines - 2

- Review Exercises
- Combining TM's
- Variations of TM's
- Non-deterministic TM's
- Universal TM's
- Church-Turing Thesis
- Characteristic Functions

Outline: Lecture 11

Turing Machines - 2

- Review Exercises
- Combining TM's
- Variations of TM's
- Non-deterministic TM's
- Universal TM's
- Church-Turing Thesis
- Characteristic Functions

Review Exercises

1. Design a TM to accept the language $L = \{1^m : m \text{ is odd}\}$ for $\Sigma = \{1\}$

2. Design a TM to accept the language $L = \{0^m 1^m : m > 0\}$ for $\sum = \{0,1\}$

3. TM accepting language, $L = \{ss \mid s \text{ in } \{a, b\}^*\}$ for $\sum = \{a, b\}$? (homework last week)

Review Exercise 1

Design a TM to accept the language L = {1^m : m is odd}
 for ∑={1}

Review Exercise 2

• Design a TM to accept the language $L = \{0^m 1^m : m > 0\}$ for $\Sigma = \{0,1\}$

Review Exercise 3

• TM accepting language, $L = \{ss \mid s \text{ in } \{a, b\}^*\}$ for $\sum = \{a, b\}$?

TM accepting language $L=\{ss \mid s \text{ in } \{a, b\}^*\}$

Combining Turing Machines

- Natural way to build a complicated TM
 - Build from simpler, reusable components
- E.g., If T₁ and T₂ are TM's (with disjoint non-halting states and transition functions)
 - T₁T₂ denotes the composite TM in which we execute T₁ first and then T₂
 - T₁T₂ begins in the initial state of T₁
 - For any move that halts in accepting state of T₁, T₁T₂ moves to the initial state of T₂

Combining Turing Machines ...contd

- E.g., ...contd
 - From there, the moves of T_1T_2 are those of T_2
 - If T₁ or T₂ rejects, then T₁T₂ does also
 - T₁T₂ accepts when T₂ accepts
 - We can write $T_1 \rightarrow T_2$

Variations of TM

- Minor variations to the basic model
 - Tape head always moves either to right or left
 - A move can include writing a symbol or moving the tape head, but not both
- Consider another: multi-tape TM
 - Easier to describe algorithm implementations
 - Different data items on various tapes
 - But no change in ultimate computing power

Variations of TM ...contd

- What do we mean by computing power of a TM?
 - Can two TM's solve the same problems and get the same answers?
 - (Speed, efficiency, convenience ignored)

- A TM gives an answer by
 - Accepting or rejecting
 - Producing an output (when halts)

Variations of TM ...conto

- Head on each tape can be independent
- Can define an n-tape TM formally
 - Transition function and configuration of the TM defined considering all tapes
 - Use 1st tape for input, others for work-space

Can prove: a 1-tape TM is as powerful as an n-tape TM

Non-deterministic TM's

- A non-deterministic TM (or NTM) is defined exactly the same way as a (deterministic) TM, except values of transition function are subsets
- We ignore output; consider acceptance
- Can prove:
 - For a given NTM, T_1 , there is a deterministic TM, T_2 , with $L(T_1)=L(T_2)$

Outline: Lecture 11

Turing Machines - 2

- Review Exercises
- Combining TM's
- Variations of TM's
- Non-deterministic TM's
- Universal TM's
- Church-Turing Thesis
- Characteristic Functions

Universal Turing Machines

- Previous TMs executed specific algorithms
 - A different TM needed for a different algorithm
 - Or, re-wire the machine
- Turing (in 1936) foresaw the stored-program computer
 - Flexibility to execute different algorithms
- Turing describes a Universal TM

Universal TM's ...contd

- A Universal TM, T_u, has as input
 - (a) a program
 - (b) a data setfor it to process
- The program is expressed as a string that specifies another special purpose TM, T₁
- Data set is a string w; it is input to T₁
- T_u simulates the processing of w by T₁

Church-Turing Thesis

- "A TM is a general model of computation"
 - Means: any algorithmic procedure that can be carried out (by a human or a computer) can be carried out by a TM
- First formulated by Alonzo Church (1936)
 - Referred to as Church's thesis also
 - Not a precise statement because "algorithmic procedure" not defined → cannot prove
 - Considered as a conjecture too

Church-Turing Thesis ...conto

- The thesis is generally accepted, because
 - Nature of model indicates all steps crucial to human computation can be carried out
 - Various enhancements do not enhance the computing power
 - Other theoretical models have been shown to be equivalent to a TM
 - No one has proposed an "algorithmic procedure" that cannot be implemented in TM

Characteristic Functions

- Characteristic functions defined for sets
- For any language L in Σ*, the CF of L is the function from Σ* to {0,1} defined as:

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{otherwise} \end{cases}$$

- Computing the CF can be made similar to accepting the language
- (Assumption here: each string is either accepted or rejected)

Characteristic Functions ...contd

A TM, T₁, can distinguish between strings in L and not in L
 (by accepting or rejecting)

- Also, a TM, T₂, may accept every input and distinguish the 2 types by ending up:
 - In configuration $(h_a, \Delta 1)$ (for strings accepted)
 - In configuration $(h_a, \underline{\Delta}0)$ (for strings rejected)

Characteristic Functions ...contd

 If a TM T₁ exists to accept a language L such that T₁ halts for every string in L →a TM T₂ that computes the CF can be constructed

- But T₁ may still loop forever for some strings not in the language accepted by it
 - In this case, not clear how to obtain corresponding T₂

Accept, Recognize, Decide?

- A TM, T, with input alphabet Σ accepts a language L in Σ*
 if L(T) = L
- A TM, T, decides L if T computes its characteristic function
 - That is: T decides L if T halts in state h_a for every string x in Σ^* , producing output 1 if x is in L and output 0 otherwise
- Recognize: use with care
 - For some authors recognize ≡ accept while for some others recognize ≡ decide

L11: Conclusion

- Today we discussed
 - Combining TM's and Variations of TM's
 - Non-deterministic TM's
 - Universal TM's
 - Church-Turing Thesis
 - Characteristic Functions
 - Accepting a language
 - Deciding a language