Math 360 Ch 9.4: Vector & Scalar Functions; Vector Derivatives

Two types of functions:

- 1) Vector function V(x, y, z) = v, (x, y, z) i + v2(x,y,z) j + v3(x, y, z) k
 - Output values are vectors

 $\mathbf{v}(x,\,y,\,z) = [v_1(x,\,y,\,z), \quad v_2(x,\,y,\,z), \quad v_3(x,\,y,\,z)].$

- Graph is field of vectors
- V(x,7,2) is often called a vector field for this reason.

Fig. 196. Field of norma

- 2) Scalar Function 2=f(x,y), w=f(x,y,z), etc
 - often called a scalar field

Examples

- 1) Ex1, p376: f(x,y,t) = \((x-x_0)^2 + (y-y_0)^2 + (z-20)^2
 - = distance between (xo, yo, 20) & (x, y, 8)
- 2) $E \times 2$, $P = -\frac{C(x-x_0)}{c^3} = -\frac{C(y-y_0)}{c^3} = -\frac{C(y-y$ (Newton's law of gravitation) = gravitational force acting on B from A
- P. (X=,40,80)

Vector Field Calculus

 $\mathbf{v}(x,\,y,\,z) = [v_1(x,\,y,\,z), \quad v_2(x,\,y,\,z), \quad v_3(x,\,y,\,z)].$

1) Continuity lim V(t) = V(t.)

2) Derivative V(t)= lim v(th) -v(t)

Shortcut:

 $\mathbf{v}'(t) = [v_1'(t), v_2'(t), v_3'(t)].$

3) Product Rules, Partial Derivatives: p. 379-380

Ch 9.5 Class Prep: - Write up Examples 1-4 & include figures - State Egn 10, the formula for curve length

Ch 9.4 Examples

1) Find isotherms T(x,y) = C & sketch some of them.

Solution Exotherms: x² +y² = C → Circles Centered at (0,0)
radius r = √c

Graph generated anline using GeoGebra 3D Calculator

2)
$$T = \frac{X}{X^2 + y^2}$$

Solution Isotherms: $\frac{x}{x^2+y^2} = C \Rightarrow x^2+y^2 - \frac{1}{c}x = 0$ complete square

=> circle centered at (\frac{1}{2c},0) with radius r=|\frac{1}{2c}|.

- · Toke leading linear term and divide by 2
- · Add to both 5:des
- · Group and Factor

3)	Sketch	$\overrightarrow{v}(x,y) =$	yi+xj
	Solution	, , ,	1
		-2 1	i

x	۱۹	³ √(×, 4)
匸	ů	01+13
1	1	ذَا + إِنَّ ا
-1	-1-	10-13
-1	-1	-2 - 3
	-1	76+5

4)
$$\vec{v} = [xy^2, 3x+2y]$$

a) $\frac{3\vec{v}}{3x} = [y^2, 3]$ b) $\frac{3\vec{v}}{3y} = [2xy, 2]$