CS323 Asignment 2

Exercise 1

• NFA of L(((ε|ab)*c)*)

• NFA of L((a|b)*a(b|c)(a|b|c))

Both of them are not DFA.

Exercise 2

L(((ε|ab)*c)*)

1. Firstly, consider $1 = (\epsilon | ab)$.

By the inductive rule: the union case, we have

where the state transition of 5 -> 6 -> 7 uses the inductive rule: the concatenation case.

2. Secondly, consider 1' = 1*

By the inductive rule: the Kleene star case, we have

3. Thirdly, consider 1'' = 1'c

By the inductive rule: the concatenation case, we have

4. Fourthly, consider 1''' = 1''*

L((a|b)*a(b|c)(a|b|c))

1. Firstly, consider 1 = (a|b)

By the inductive rule: the union case, we have

2. Secondly, consider 1' = 1*

By the inductive rule: the Kleene star case, we have

3. Thirdly, consider 1'' = (b|c) and 1''' = (a|b|c)

By the inductive rule: the union case, we have

and

4. Fourthly, consider 1'''' = 1'a1''1'''

By the inductive rule: the concatenation case, we have

Exercise 3

$L(((\epsilon|ab)*c)*)$

 $\Sigma = \{a, b, c\}$

- 1. $A = \epsilon$ -closure(0) = {0, 1, 2, 5, 3, 4, 8, 9, 11}
- 2. ϵ -closure(move[A, a]) = ϵ -closure($\{6\}$) = $\{6\}$, which is an unseen state, named B.
- 3. ϵ -closure(move[A, b]) = ϵ -closure($\{\}$) = $\{\}$
- 4. ϵ -closure(move[A, c]) = ϵ -closure({10}) = {10, 11, 1, 2, 5, 3, 4, 8, 9}, which is an unseen state, named C.
- 5. ϵ -closure(move[B, a]) = ϵ -closure({}) = {}
- 6. ϵ -closure(move[B, b]) = ϵ -closure({7}) = {7, 8, 9, 2, 5, 3, 4}, which is an unseen state, named D.
- 7. ϵ -closure(move[B, c]) = ϵ -closure({}) = {}
- 8. ϵ -closure(move[C, a]) = ϵ -closure({6}) = {6} = B
- 9. ϵ -closure(move[C, b]) = ϵ -closure({}) = {}
- 10. ϵ -closure(move[C, c]) = ϵ -closure({10}) = {10, 11, 1, 2, 3, 4, 8, 9, 5} = C
- 11. ϵ -closure(move[D, a]) = ϵ -closure($\{6\}$) = $\{6\}$ = B
- 12. ϵ -closure(move[D, b]) = ϵ -closure({}) = {}
- 13. ϵ -closure(move[D, c]) = ϵ -closure({10}) = {10, 11, 1, 2, 5, 3, 4, 8, 9} = C

Above all, we have the following transition table.

Start state: A, Accepting states: A, C

NFA state	DFA state	а	b	С
{0, 1, 2, 5, 3, 4, 8, 9, 11}	Α	В		С
{6}	В		D	
{10, 11, 1, 2, 5, 3, 4, 8, 9}	С	В		С

NFA state	DFA state	а	b	С
{7, 8, 9, 2, 5, 3, 4}	D	В		С

So the DFA is as below.

L((a|b)*a(b|c)(a|b|c))

 $\Sigma = \{a, b, c\}$

- 1. $A = \epsilon$ -closure(0) = {0, 1, 2, 4, 7}
- 2. ϵ -closure(move[A, a]) = ϵ -closure({3, 8}) = {3, 6, 7, 1, 2, 4, 8, 9, 11}, which is an unseen state, named B.
- 3. ϵ -closure(move[A, b]) = ϵ -closure({5}) = {5, 6, 7, 1, 2, 4}, which is an unseen state, named C.
- 4. ϵ -closure(move[A, c]) = ϵ -closure($\{\}$) = $\{\}$
- 5. ϵ -closure(move[B, a]) = ϵ -closure({3, 8}) = {3, 6, 7, 1, 2, 4, 8, 9, 11} = B
- 6. ϵ -closure(move[B, b]) = ϵ -closure({5, 10}) = {5, 6, 7, 1, 2, 4, 10, 13, 14, 16, 18}, which is an unseen state, named D.
- 7. ϵ -closure(move[B, c]) = ϵ -closure({12}) = {12, 13, 14, 16, 18}, which is an unseen state, named E.
- 8. ϵ -closure(move[C, a]) = ϵ -closure({3, 8}) = {3, 6, 7, 1, 2, 4, 8, 9, 11} = B.

- 9. ϵ -closure(move[C, b]) = ϵ -closure({5}) = {5, 6, 7, 1, 2, 4} = C
- 10. ϵ -closure(move[C, c]) = ϵ -closure($\{\}$) = $\{\}$
- 11. ϵ -closure(move[D, a]) = ϵ -closure({3, 8, 15}) = {3, 6, 7, 1, 2,4, 8, 9, 11, 15, 20}, which is an unseen state, named F.
- 12. ϵ -closure(move[D, b]) = ϵ -closure({5, 17}) = {5, 6, 7, 1, 2, 4, 17, 20}, which is an unseen state, named G.
- 13. ϵ -closure(move[D, c]) = ϵ -closure({19}) = {19, 20}, which is an unseen state, named H.
- 14. ϵ -closure(move[E, a]) = ϵ -closure({15}) = {15, 20}, which is an unseen state, named I.
- 15. ε-closure(move[E, b]) = ε-closure($\{17\}$) = $\{17, 20\}$, which is an unseen state, named J.
- 16. ϵ -closure(move[E, c]) = ϵ -closure({19}) = {19, 20} = H
- 17. ϵ -closure(move[F, a]) = ϵ -closure({3, 8}) = {3, 6, 7, 1, 2, 4, 8, 9, 11} = B.
- 18. ϵ -closure(move[F, b]) = ϵ -closure({5, 10, 17}) = {5, 6, 7, 1, 2, 4, 10, 13, 14, 16, 18, 17, 20}, which is an unseen state, named K.
- 19. ϵ -closure(move[F, c]) = ϵ -closure({12}) = {12, 13, 14, 16, 18} = E
- 20. ϵ -closure(move[G, a]) = ϵ -closure({3, 8}) = {3, 6, 7, 1, 2, 4, 8, 9, 11} = B.
- 21. ϵ -closure(move[G, b]) = ϵ -closure({5}) = {5, 6, 7, 1, 2, 4} = C
- 22. ϵ -closure(move[G, c]) = ϵ -closure({}) = {}
- 23. ϵ -closure(move[H, a]) = ϵ -closure($\{\}$) = $\{\}$
- 24. ϵ -closure(move[H, b]) = ϵ -closure($\{\}$) = $\{\}$
- 25. ϵ -closure(move[H, c]) = ϵ -closure($\{\}$) = $\{\}$
- 26. ϵ -closure(move[I, a]) = ϵ -closure($\{\}$) = $\{\}$
- 27. ϵ -closure(move[I, b]) = ϵ -closure({}) = {}
- 28. ϵ -closure(move[I, c]) = ϵ -closure({}) = {}
- 29. ϵ -closure(move[J, a]) = ϵ -closure($\{\}$) = $\{\}$
- 30. ϵ -closure(move[J, b]) = ϵ -closure({}) = {}
- 31. ϵ -closure(move[J, c]) = ϵ -closure($\{\}$) = $\{\}$
- 32. ϵ -closure(move[K, a]) = ϵ -closure({3, 8, 15}) = {3, 6, 7, 1, 2,4, 8, 9, 11, 15, 20} = F
- 33. ϵ -closure(move[K, b]) = ϵ -closure({5, 17}) = {5, 6, 7, 1, 2, 4, 17, 20} = G
- 34. ϵ -closure(move[K, c]) = ϵ -closure({19}) = {19, 20} = H

Above all, we have the following transition table.

• Start state: A, Accepting states: F, G, H, I, J, K

NFA state	DFA state	а	b	С
{0, 1, 2, 4, 7}	Α	В	С	
{3, 6, 7, 1, 2, 4, 8, 9, 11}	В	В	D	E

NFA state	DFA state	а	b	С
{5, 6, 7, 1, 2, 4}	С	В	С	
{5, 6, 7, 1, 2, 4, 10, 13, 14, 16, 18}	D	F	G	Н
{12, 13, 14, 16, 18}	Е	I	J	Н
{3, 6, 7, 1, 2,4, 8, 9, 11, 15, 20}	F	В	K	Е
{5, 6, 7, 1, 2, 4, 17, 20}	G	В	С	
{19, 20}	Н			
{15, 20}	I			
{17, 20}	J			
{5, 6, 7, 1, 2, 4, 10, 13, 14, 16, 18, 17, 20}	K	F	G	Н

So the DFA is as below.

