[IrisToolbox] for Macroeconomic Modeling

Stacked time solution method with first-order terminal condition

jaromir.benes@iris-toolbox.com

Overview

- Creating a stacked time system
- Simulation procedure and terminal condition
- Changes in information sets

Model equations

System of n dynamic conditional-expectations equations

$$egin{aligned} & \operatorname{E}_tig[\,f_1\left(x_{t-k},\ldots,x_{t+m}
ight)\,ig] = 0 \ & \operatorname{E}_tig[\,f_2\left(x_{t-k},\ldots,x_{t+m}
ight)\,ig] = 0 \ & \vdots \ & \operatorname{E}_tig[\,f_n\left(x_{t-k},\ldots,x_{t+m}
ight)\,ig] = 0 \end{aligned}$$

where

- n is the number of model equations
- x_t is an $n \times 1$ vector model variables
- $\mathrm{E}_t[\cdot]$ is a conditional expectations operator
- k is the maximum lag
- m is the maximum lead

Stacked time setup

- Simulation range $t=1,\ldots,T$
- Drop the expectations operator
- Stack the n equations for the T simulation periods
- Create a large static system of $T \times n$ equations in $T \times n$ unknowns
- Known initial conditions x_{1-k},\ldots,x_0
- Unknown terminal conditions x_{T+1}, \ldots, x_{T+m}

Stacked time system of equations and unknowns

- A total of $n \cdot T$ equations
- A total of $n \cdot T$ unknows, $x_t, \ t = 1, \dots, T$

$$egin{aligned} f_1\left(x_{1-k},\ldots,x_{1+m}
ight) &= 0 \ f_2\left(x_{1-k},\ldots,x_{1+m}
ight) &= 0 \ &dots \ f_n\left(x_{1-k},\ldots,x_{1+m}
ight) &= 0 \ &dots \ f_1\left(x_{T-k},\ldots,x_{T+m}
ight) &= 0 \ f_2\left(x_{T-k},\ldots,x_{T+m}
ight) &= 0 \ &dots \ f_n\left(x_{T-k},\ldots,x_{T+m}
ight) &= 0 \end{aligned}$$

Simulation setup

Initialize

- Create an $n \times (T + k + m)$ matrix
- Fill in initial condition in columns $1, \ldots, k$

In each iteration

- Fill in the simulation range columns
- Taking the last simulation range columns as initial condition, use the first order simulator to fill in terminal codnition
- ullet Evaluate the LHS-RHS discrepancy for all n imes T equations and send this information to the solver

Visualization of the simulation setup

Terminal condition derived from first-order solution

First-order solution of the model (model-consistent expectations of endogenous variables integrated away)

$$x_t pprox T \ x_{t-1} + K + R_0 \ arepsilon_t + \dots + R_h \ \mathrm{E}_t [arepsilon_{t+h}]$$

Create a stacked system to calculate the terminal condition points needed

$$egin{bmatrix} x_{T+1} \ dots \ x_{T+m} \end{bmatrix} = T^{ ext{term}} egin{bmatrix} x_{T+1-k} \ dots \ x_{T} \end{bmatrix} + K^{ ext{term}}$$

Changes in information sets within a simulation

- By design, a stacked time simulation is consistent with an assumption of all future events (shocks, swaps) are anticipated
- To simulate a sequence of unanticipated events, the simulation needs to be broken down into a sequence of subsimulations (simulation frames)

Breakdown of simulation into frames

Simulation range

Simulation frame #1

Simulation frame #2

Implemenation in IrisT

Syntax of the simulate function for the stacked time method

```
[outputDb, info, frameDb] = simulate( ...
    model, inputDb, range ...
, method="stacked" ...
);
```

Output structure info

Auxiliary output databank with simulation frames frameDb

Options to control the setup of the stacked time method

startIter=

- "firstOrder" (default)
- "data"

terminal=

- "firstOrder" (default)
- "data"