

2-[(*E*)-3,4-Dimethoxybenzylidene]-hydrazinecarboxamide

M. Nawaz Tahir,^{a*} M. Naveed Umar,^b Akbar Ali^b and Hazoor Ahmad Shad^c

^aUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, ^bDepartment of Chemistry, University of Malakand, Pakistan, and ^cDepartment of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan

Correspondence e-mail: dmntahir_uos@yahoo.com

Received 7 May 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; $T = 296$ K; mean $\sigma(\text{C}-\text{C}) = 0.003$ Å; R factor = 0.043; wR factor = 0.121; data-to-parameter ratio = 14.4.

In the title compound, $\text{C}_{10}\text{H}_{13}\text{N}_3\text{O}_3$, the 3,4-dimethoxybenzylidene and hydrazinecarboxamide groups are oriented at a dihedral angle of $53.82(6)^\circ$ and an intramolecular $\text{N}-\text{H}\cdots\text{N}$ hydrogen bond generates an *S*(5) ring motif. In the crystal, molecules are linked by $\text{N}-\text{H}\cdots\text{O}$ hydrogen bonds into sheets propagating in $(\bar{2}01)$, which feature $R_1^2(5)$, $R_2^2(8)$ and $R_2^4(14)$ loops.

Related literature

For related structures, see: Fun *et al.* (2011); Liang *et al.* (2007). For graph-set notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data

$\text{C}_{10}\text{H}_{13}\text{N}_3\text{O}_3$
 $M_r = 223.23$
Monoclinic, $C2/c$
 $a = 22.2300(7)$ Å
 $b = 7.6367(3)$ Å
 $c = 15.6482(6)$ Å
 $\beta = 126.234(1)^\circ$

$V = 2142.76(14)$ Å³
 $Z = 8$
Mo $K\alpha$ radiation
 $\mu = 0.10$ mm⁻¹
 $T = 296$ K
 $0.25 \times 0.18 \times 0.15$ mm

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
 $T_{\min} = 0.975$, $T_{\max} = 0.985$

7933 measured reflections
2115 independent reflections
1389 reflections with $I > 2\sigma(I)$
 $R_{\text{int}} = 0.040$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$
 $wR(F^2) = 0.121$
 $S = 1.01$
2115 reflections

147 parameters
H-atom parameters constrained
 $\Delta\rho_{\max} = 0.16$ e Å⁻³
 $\Delta\rho_{\min} = -0.20$ e Å⁻³

Table 1
Hydrogen-bond geometry (Å, °).

$D-\text{H}\cdots A$	$D-\text{H}$	$\text{H}\cdots A$	$D\cdots A$	$D-\text{H}\cdots A$
N2—H2A···O3 ⁱ	0.86	2.15	2.970 (2)	159
N3—H3A···O3 ⁱⁱ	0.86	2.19	3.044 (2)	170
N3—H3B···N1	0.86	2.30	2.657 (2)	105
N3—H3B···O1 ⁱⁱⁱ	0.86	2.59	3.019 (2)	112
N3—H3B···O2 ⁱⁱⁱ	0.86	2.30	3.119 (2)	160

Symmetry codes: (i) $-x, -y, -z$; (ii) $-x, -y + 1, -z$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6783).

References

Bernstein, J., Davis, R. E., Shimon, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.
Bruker (2005). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). *APEX2 and SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.
Farrugia, L. J. (1999). *J. Appl. Cryst.* **32**, 837–838.
Fun, H.-K., Yeap, C. S., Malladi, S. & Isloor, A. M. (2011). *Acta Cryst. E67*, o1786.
Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). *Acta Cryst. E63*, o2939.
Sheldrick, G. M. (2008). *Acta Cryst. A64*, 112–122.
Spek, A. L. (2009). *Acta Cryst. D65*, 148–155.

supplementary materials

Acta Cryst. (2012). **E68**, o1724 [doi:10.1107/S1600536812020739]

2-[(*E*)-3,4-Dimethoxybenzylidene]hydrazinecarboxamide

M. Nawaz Tahir, M. Naveed Umar, Akbar Ali and Hazoor Ahmad Shad

Comment

The title compound (I), (Fig. 1) has been synthesized as a derivative.

The crystal structures of (*E*)-1-(4-methoxybenzylidene)semicarbazide (Liang *et al.*, 2007) and (*E*)-2-(4-hydroxy-3-methoxybenzylidene) hydrazinecarboxamide (Fun *et al.*, 2011) have been published which are related to the title compound (I).

In (I), the parts of 3,4-dimethoxybenzaldehyde and hydrazinecarboxamide A (C1—C9/O1/O2) and B (N1/N2/C10/N3/O3), are almost planar with r. m. s. deviation of 0.0770 and 0.0159 Å, respectively. The dihedral angle between A/B is 53.82 (6)°. There exist intramolecular H–bonding of N—H···N type (Table 1, Fig. 1) and form *S*(5) ring motif (Bernstein *et al.*, 1995). Each molecule is interlinked with three molecules due to H-bondings of N—H···O type. There exist *R*₁²(5), *R*₂²(8) and *R*₂⁴(14) ring motifs (Table 1, Fig. 2). The molecules are interlinked in the form of two-dimensional polymeric sheets in the plane (0̄10) and with base vectors [100] and [102].

Experimental

Equimolar quantities of 3,4-dimethoxybenzaldehyde and hydrazinecarboxamide were refluxed in methanol for 45 min resulting in yellow solution. The solution was kept at room temperature which afforded yellow prisms after 48 h.

Refinement

The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å and N—H = 0.86 Å) and refined as riding with $U_{\text{iso}}(\text{H}) = xU_{\text{eq}}(\text{C, N})$, where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the intra-molecular hydrogen bond.

Figure 2

Partial packing diagram showing molecules interlinked to form polymeric sheets with various ring motifs.

2-[(E)-3,4-Dimethoxybenzylidene]hydrazinecarboxamide

Crystal data

$C_{10}H_{13}N_3O_3$
 $M_r = 223.23$
 Monoclinic, $C2/c$
 Hall symbol: -C 2yc
 $a = 22.2300 (7) \text{ \AA}$
 $b = 7.6367 (3) \text{ \AA}$
 $c = 15.6482 (6) \text{ \AA}$
 $\beta = 126.234 (1)^\circ$
 $V = 2142.76 (14) \text{ \AA}^3$
 $Z = 8$

$F(000) = 944$
 $D_x = 1.384 \text{ Mg m}^{-3}$
 Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ \AA}$
 Cell parameters from 1389 reflections
 $\theta = 2.3\text{--}26.0^\circ$
 $\mu = 0.10 \text{ mm}^{-1}$
 $T = 296 \text{ K}$
 Prism, yellow
 $0.25 \times 0.18 \times 0.15 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD
 diffractometer
 Radiation source: fine-focus sealed tube
 Graphite monochromator
 Detector resolution: 8.00 pixels mm^{-1}
 ω scans
 Absorption correction: multi-scan
 (SADABS; Bruker, 2005)
 $T_{\min} = 0.975$, $T_{\max} = 0.985$

7933 measured reflections
 2115 independent reflections
 1389 reflections with $I > 2\sigma(I)$
 $R_{\text{int}} = 0.040$
 $\theta_{\max} = 26.0^\circ$, $\theta_{\min} = 2.3^\circ$
 $h = -26\text{--}27$
 $k = -9\text{--}9$
 $l = -19\text{--}19$

Refinement

Refinement on F^2
 Least-squares matrix: full
 $R[F^2 > 2\sigma(F^2)] = 0.043$
 $wR(F^2) = 0.121$
 $S = 1.01$
 2115 reflections
 147 parameters
 0 restraints
 Primary atom site location: structure-invariant
 direct methods

Secondary atom site location: difference Fourier
 map
 Hydrogen site location: inferred from
 neighbouring sites
 H-atom parameters constrained
 $w = 1/[\sigma^2(F_o^2) + (0.0592P)^2 + 0.0283P]$
 where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{\max} < 0.001$
 $\Delta\rho_{\max} = 0.16 \text{ e \AA}^{-3}$
 $\Delta\rho_{\min} = -0.20 \text{ e \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^2 , conventional R -factors R are based on F , with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R -factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. R -factors based on F^2 are statistically about twice as large as those based on F , and R -factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	y	z	$U_{\text{iso}}^* / U_{\text{eq}}$
O1	0.30582 (7)	-0.13305 (19)	0.72476 (10)	0.0464 (5)
O2	0.34785 (7)	0.03543 (19)	0.62646 (10)	0.0454 (5)
O3	-0.01303 (7)	0.24827 (17)	-0.02345 (10)	0.0447 (5)
N1	0.10093 (8)	0.0967 (2)	0.23838 (12)	0.0404 (5)
N2	0.04892 (8)	0.0982 (2)	0.12929 (12)	0.0421 (5)

N3	0.06302 (9)	0.3952 (2)	0.13090 (13)	0.0445 (6)
C1	0.15297 (10)	-0.0591 (2)	0.40077 (15)	0.0347 (6)
C2	0.22548 (10)	0.0085 (2)	0.45703 (15)	0.0356 (6)
C3	0.27503 (10)	-0.0179 (2)	0.56479 (14)	0.0331 (6)
C4	0.25221 (10)	-0.1097 (2)	0.61917 (15)	0.0345 (6)
C5	0.18023 (10)	-0.1725 (3)	0.56366 (15)	0.0394 (7)
C6	0.13153 (10)	-0.1495 (3)	0.45538 (15)	0.0397 (7)
C7	0.28984 (13)	-0.2490 (3)	0.78007 (16)	0.0527 (8)
C8	0.37782 (11)	0.1099 (3)	0.57544 (17)	0.0490 (8)
C9	0.10014 (10)	-0.0369 (3)	0.28603 (15)	0.0400 (7)
C10	0.03155 (9)	0.2502 (3)	0.07501 (15)	0.0347 (6)
H2	0.24028	0.07157	0.42152	0.0427*
H2A	0.02764	0.00235	0.09601	0.0505*
H3A	0.05296	0.49443	0.09922	0.0534*
H3B	0.09351	0.38993	0.19885	0.0534*
H5	0.16442	-0.23070	0.59936	0.0473*
H6	0.08359	-0.19543	0.41857	0.0476*
H7A	0.24962	-0.20238	0.77979	0.0791*
H7B	0.33332	-0.26156	0.85185	0.0791*
H7C	0.27580	-0.36131	0.74591	0.0791*
H8A	0.35195	0.21675	0.54077	0.0735*
H8B	0.37181	0.02896	0.52397	0.0735*
H8C	0.42987	0.13423	0.62723	0.0735*
H9	0.06472	-0.12360	0.24658	0.0479*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0482 (8)	0.0532 (9)	0.0289 (8)	-0.0080 (7)	0.0179 (7)	0.0017 (7)
O2	0.0369 (8)	0.0576 (9)	0.0338 (8)	-0.0152 (7)	0.0165 (7)	-0.0050 (7)
O3	0.0471 (8)	0.0416 (9)	0.0264 (7)	0.0006 (6)	0.0113 (7)	-0.0004 (6)
N1	0.0408 (9)	0.0384 (10)	0.0272 (9)	0.0008 (7)	0.0120 (8)	-0.0009 (7)
N2	0.0448 (10)	0.0355 (9)	0.0263 (9)	-0.0042 (8)	0.0102 (8)	-0.0018 (7)
N3	0.0476 (10)	0.0351 (10)	0.0320 (10)	-0.0030 (8)	0.0132 (8)	-0.0010 (7)
C1	0.0362 (10)	0.0307 (10)	0.0330 (11)	0.0031 (8)	0.0181 (9)	-0.0009 (8)
C2	0.0401 (11)	0.0327 (11)	0.0345 (11)	-0.0023 (8)	0.0224 (9)	-0.0013 (8)
C3	0.0321 (10)	0.0330 (10)	0.0303 (11)	-0.0042 (8)	0.0163 (9)	-0.0062 (8)
C4	0.0374 (10)	0.0335 (10)	0.0304 (10)	0.0001 (8)	0.0188 (9)	-0.0022 (8)
C5	0.0417 (11)	0.0418 (12)	0.0394 (12)	-0.0001 (9)	0.0266 (10)	0.0031 (9)
C6	0.0307 (10)	0.0406 (12)	0.0421 (12)	0.0005 (9)	0.0184 (9)	0.0015 (9)
C7	0.0604 (14)	0.0619 (16)	0.0364 (12)	-0.0022 (11)	0.0289 (11)	0.0071 (11)
C8	0.0462 (12)	0.0524 (14)	0.0524 (14)	-0.0126 (10)	0.0313 (12)	-0.0047 (11)
C9	0.0350 (11)	0.0397 (12)	0.0337 (11)	-0.0015 (9)	0.0140 (10)	-0.0014 (9)
C10	0.0289 (10)	0.0391 (11)	0.0294 (10)	-0.0001 (8)	0.0136 (9)	-0.0010 (9)

Geometric parameters (\AA , $^\circ$)

O1—C4	1.362 (2)	C2—C3	1.379 (3)
O1—C7	1.422 (3)	C3—C4	1.408 (3)
O2—C3	1.368 (3)	C4—C5	1.379 (3)

O2—C8	1.426 (3)	C5—C6	1.380 (3)
O3—C10	1.245 (2)	C2—H2	0.9300
N1—N2	1.385 (2)	C5—H5	0.9300
N1—C9	1.270 (3)	C6—H6	0.9300
N2—C10	1.353 (3)	C7—H7A	0.9600
N3—C10	1.326 (3)	C7—H7B	0.9600
N2—H2A	0.8600	C7—H7C	0.9600
N3—H3A	0.8600	C8—H8A	0.9600
N3—H3B	0.8600	C8—H8B	0.9600
C1—C9	1.463 (3)	C8—H8C	0.9600
C1—C2	1.401 (3)	C9—H9	0.9300
C1—C6	1.384 (3)		
C4—O1—C7	117.75 (18)	N2—C10—N3	117.33 (17)
C3—O2—C8	118.26 (15)	O3—C10—N2	119.32 (19)
N2—N1—C9	116.05 (17)	C1—C2—H2	120.00
N1—N2—C10	120.10 (15)	C3—C2—H2	120.00
N1—N2—H2A	120.00	C4—C5—H5	120.00
C10—N2—H2A	120.00	C6—C5—H5	120.00
C10—N3—H3A	120.00	C1—C6—H6	120.00
C10—N3—H3B	120.00	C5—C6—H6	120.00
H3A—N3—H3B	120.00	O1—C7—H7A	109.00
C2—C1—C6	118.95 (18)	O1—C7—H7B	109.00
C2—C1—C9	121.3 (2)	O1—C7—H7C	109.00
C6—C1—C9	119.7 (2)	H7A—C7—H7B	109.00
C1—C2—C3	120.4 (2)	H7A—C7—H7C	109.00
C2—C3—C4	119.9 (2)	H7B—C7—H7C	109.00
O2—C3—C4	114.88 (16)	O2—C8—H8A	109.00
O2—C3—C2	125.2 (2)	O2—C8—H8B	109.00
O1—C4—C5	125.2 (2)	O2—C8—H8C	109.00
O1—C4—C3	115.4 (2)	H8A—C8—H8B	109.00
C3—C4—C5	119.39 (18)	H8A—C8—H8C	109.00
C4—C5—C6	120.3 (2)	H8B—C8—H8C	109.00
C1—C6—C5	121.0 (2)	N1—C9—H9	119.00
N1—C9—C1	122.29 (19)	C1—C9—H9	119.00
O3—C10—N3	123.4 (2)		
C7—O1—C4—C3	−169.75 (18)	C2—C1—C9—N1	−31.7 (3)
C7—O1—C4—C5	8.3 (3)	C6—C1—C9—N1	148.8 (2)
C8—O2—C3—C2	−6.2 (3)	C1—C2—C3—O2	176.97 (18)
C8—O2—C3—C4	172.38 (17)	C1—C2—C3—C4	−1.5 (3)
C9—N1—N2—C10	162.2 (2)	O2—C3—C4—O1	−0.4 (2)
N2—N1—C9—C1	178.4 (2)	O2—C3—C4—C5	−178.58 (18)
N1—N2—C10—O3	177.1 (2)	C2—C3—C4—O1	178.23 (17)
N1—N2—C10—N3	−3.6 (3)	C2—C3—C4—C5	0.1 (3)
C6—C1—C2—C3	1.3 (3)	O1—C4—C5—C6	−176.4 (2)
C9—C1—C2—C3	−178.29 (19)	C3—C4—C5—C6	1.6 (3)
C2—C1—C6—C5	0.4 (3)	C4—C5—C6—C1	−1.9 (3)
C9—C1—C6—C5	180.0 (2)		

Hydrogen-bond geometry (\AA , $^\circ$)

$D\text{---H}\cdots A$	$D\text{---H}$	$H\cdots A$	$D\cdots A$	$D\text{---H}\cdots A$
N2—H2A···O3 ⁱ	0.86	2.15	2.970 (2)	159
N3—H3A···O3 ⁱⁱ	0.86	2.19	3.044 (2)	170
N3—H3B···N1	0.86	2.30	2.657 (2)	105
N3—H3B···O1 ⁱⁱⁱ	0.86	2.59	3.019 (2)	112
N3—H3B···O2 ⁱⁱⁱ	0.86	2.30	3.119 (2)	160

Symmetry codes: (i) $-x, -y, -z$; (ii) $-x, -y+1, -z$; (iii) $-x+1/2, -y+1/2, -z+1$.