More frequent commitments promote cooperation, ratcheting does not

Carlo Galliera,b

joint work with Axel Ockenfels^{c,d} and Bodo Sturm^{e,b}

- ^a Free University of Bozen-Bolzano
- ^b ZEW Leibniz Centre for European Economic Research
- ^c University of Cologne
- ^d Center for Social and Economic Behavior
- ^e Leipzig University of Applied Sciences

Prolog

Paris agreement UNFCCC (2015)

> Global action plan to limit global warming to well below 2°C

♦ Nationally determined contributions Falkner (2016)

- > Pros: Eased entry into force
- > Cons: Contributions fall short of achieving the 2°C target!

♦ Ratchet-up mechanism UNFCCC (2015, Article 4)

- > Gradually increase parties' contributions over time
- > Achieve the 2°C target

Prolog (con't)

What does the ratchet-up mechanism do?

Source: IGES

'As nationally determined contributions to the global response to climate change, all Parties are to undertake and communicate efforts [...] the efforts of all Parties will present progression over time [...]'

UNFCCC (2015, Article 4.3)

Motivation

Why does the ratchet-up mechanism need an update?

UNEP (2021) ...

> Contributions are still too low to reach the 2°C target figures ...

Charness et al. (2011)...

Agents strategically restrict their true capacity, because they anticipate that higher levels of output will be met with increased obligations more lit ...

Gallier & Sturm (2021), Alt et al. (2022)

- > Ratchet-up mechanism increases agents' risk of being free ridden and decreases contributions to a public good results...
- > Collective minimum contributions promote contributions, only if binding results...

Motivation (con't)

How to update the ratchet-up mechanism?

'I hope we come out with a very good framework.

Whether it's five years (or) less, I can't tell you today. [...] But I definitely believe it should be as short as we can.' John Kerry

Policy proposal

Carattini & Löschel (2021): Making parties update and review their NDCs more frequently, e.g., every year rather than on the current five-year schedule

Prior

Schelling (1960): Small and more frequent commitments could limit the risk of being free ridden, establish trust, and foster cooperation

This paper | Research questions

Many small vs. few big contribution decisions

- > Do agents contribute more to a public good if they can make many small instead of a few big contribution decisions?
 - > Voluntary contribution mechanism: Freely decide upon their contributions to the public good
 - > Ratchet-up mechanism: Each contribution to the public good at least as high as in the previous round

This paper | Spoiler

Public goods game, w/ details

> multiple rounds & multiple decisions per round:

> voluntary contribution & ratchet-up mechanism:

Simulation methods details

Even *low* contributions in the beginning of 5x5 could lead to cumulative contributions that are higher than in 5x1, if ...

- > some agents are willing to lead by example
- > some agents have conditional cooperative preferences

☆ Experimental results ☆ details

> Contributions in 5x5 are higher than in 5x1, in BASE & RAT

Experimental design | Public goods game

w/ multiple rounds & multiple decisions per round

- > n identical individuals, $i \in \{1, \ldots, n\}$
- \rightarrow In each round $t \in \{1, \ldots, T\}$
 - > i receives an endowment: w
 - i makes $d \in \{1, \dots, D\}$ contribution decisions: $g_{i,t,d}$
- > At the end of each round t
 - \rightarrow i's cumulative contributions: $g_{i,t} = \sum_{d=1}^{D} g_{i,t,d}$
 - > Public good provision level: $G_t = \sum_{j=1}^n g_{j,t}$
 - > Payoff:

$$\pi_{i,t}(w - g_{i,t}, G_t) = w - g_{i,t} + 0.5 * G_t$$

Experimental design | Treatments

Treatment	Mechanism		Setting	
	Voluntary contributions	Ratchet-up	5×1	5x5
BASE 5x1	+	×	+	×
BASE 5x5	+	×	×	+
RAT 5x1	×	+	+	×
RAT 5x5	×	+	×	+

procedure

Experimental design | VCM

BASE 5x1

- \rightarrow w/ t=5 rounds & d=1 decision per round
- > w/ voluntary contribution mechanism
- Players can freely decide upon their contributions

$$\rightarrow 0 \leq g_{i,t} \leq w$$

BASE 5x5

- \rightarrow w/ t=5 rounds & d=5 decisions per round
- > w/ voluntary contribution mechanisms
- Players can freely decide upon their contributions

$$\rightarrow d = 1 : 0 \le g_{i,t,1} \le w$$

$$\Rightarrow d > 1: 0 \le g_{i,t,d} \le w - \sum_{d=1}^{d-1} g_{i,t,d}$$

Experimental design | Ratchet-up mechanism

RAT 5x1

- \rightarrow w/ t = 5 rounds & d = 1 decision per round
- > w/ ratchet-up mechanism
- Each contribution per round at least as high as the previous
 - t = 1, like BASE 5x1
 - \Rightarrow BUT t > 1, $g_{i,t-1} \le g_{i,t} \le w$

RAT 5x5

- \rightarrow w/ t = 5 rounds & d = 5 decisions per round
- > w/ ratchet-up mechanism
- Each contribution per round at least as high as the previous
 - t = 1, like in BASE 5x5
 - \rightarrow BUT t > 1,
 - $\rightarrow d = 1 : g_{i,t-1} \le g_{i,t,1} \le w$ and
 - $\rightarrow d > 1: 0 \le g_{i,t,d} \le w \sum_{d=1}^{d-1} g_{i,t,d}$

Simulation methods | Set-up

Simulated contributions in *t*:

$$g_{i,t} = \beta \bar{g}_{-i,t-1} + (1-\beta)g_{i,t-1}$$

where

- > Contributions in t-1: $g_{i,t-1}$
- \rightarrow Others' average contributions in t-1: $\bar{g}_{-i,t-1}$
- > w/ some agents who are willing to lead by example:
 - > Heterogeneous contributors: $g_{i,1} = runif\{0, w\}$
 - > Defectors: $g_{i,t} = 0$ ∀t
- > w/ some agents who have asymmetric conditional preferences:
 - > Being free ridden: $\beta = 1 \Rightarrow g_{i,t} = \bar{g}_{-i,t-1}$
 - > Free riding: $\beta = 0.5 \Rightarrow g_{i,t} = 0.5(\bar{g}_{-i,t-1} + g_{i,t-1})$

Simulation methods | Priors

5x1: BASE vs. RAT

- - > Decreasing cont' in BASE
 - > Increasing cont' in RAT
 - > Gallier & Sturm (2021): Initial cont' in RAT lower than BASE

5x1 vs. 5x5: BASE and RAT

- Predicted overall cont' in 5x5 are higher than in 5x1, if cont' in 5x5 do not start too small details
 - \rightarrow Schelling (1960): Agents start with small cont' in 5x5
 - > Decreasing cont' in 5x1
 - > Less decreasing cont' in 5x5

Results | How to & Plausibility check

Results | How to & Plausibility check (con't)

Results | Overview

Results | Overview (con't)

Results | Treatment effects: Overall

Obs 1. Contributions in 5x5 are higher than in 5x1, both in BASE (p-value < 0.001) and RAT (p-value < 0.001)

Results | Treatment effects: BASE

Obs 2. In 5x5, contributions start *lower* (p-value < 0.001) but decrease *less* (p-value < 0.001) $\checkmark > sim # 1$

Results | Treatment effects: RAT

Obs 3. In 5x5, excess contributions start *lower* (p-value < 0.001) but decrease less (p-value < 0.001) $\stackrel{\text{(}}{}$ sim # 2

Why 5x5 >> 5x1? | Further results

Extent of exploitation

Obs 4. Extent of exploitation in 5x5 is higher than in 5x1

Why 5x5 >> 5x1? | Further results

Effect of exploitation

Obs. 5a. (Asymmetries): Drop after being free ridden exceeds lift after free riding

Obs. 5b. (Scaling): Effects in 5x5 are less pronounced than in 5x1

Conclusion | Many small vs. few big contribution decisions

Public goods game w/

- > multiple rounds & multiple decisions per round: 5x1 vs. 5x5
- > voluntary contributions & ratchet-up: BASE vs. RAT

Experimental results

- > Contributions in 5x5 are higher than in 5x1, in BASE & RAT
- > Results reflect the interplay between
 - > Players who are willing to lead by example
 - > Players' asymmetric conditional cooperative behavior

Thank you!

If you have questions or comments, please let me know

https://cgallier.github.io/

Appendix

Appendix | **Emissions Gaps**

Appendix | Ratchet effect

Amano & Ohashi (2018)

◆ Firms (Japanese televisions) strategically hold back on energy efficiency to be able to continue to sell less efficient products for the foreseeable future

Appendix | Gallier & Sturm (2021, JEBO)

motivation

priors

Appendix | Alt et al. (2022, DP)

Appendix | Schelling's 'small-price-of-trust' hypothesis

Schelling (1960)

[...] if the contribution is divided into consecutive small contributions, each can try the other's good faith for a small price. [...] no one need risk more than one small contribution at a time.

Duffy et al. (2006)

Contributions to a public good are larger in a dynamic multi-round game than in a one-shot game

Dorsey (1992), Kurzban et al. (2001)

> If contributions can be constantly revised, ratcheting increases contributions to a public good

Appendix | Procedure

Laboratory & software

- > Protocol: online visually monitored sessions
- > Cologne Laboratory for Economic Research
 - > Pilot: Nov. 22
 - > Sessions: Dec. 22 / Jan. 23
- > o-tree for programming & orsee for recruiting

Details

- > Registration / certification: Ethics Committee of the Faculty of Economic and Social Sciences at University of Cologne
- > All in all, 368 participants
- > 'Five rounds à five decisions'-design (partner matching)
- > Exchange rate: 60 ECU = 1 Euro
- > Average payoff of 10 Euro

Appendix | Power calculation

BASE 5x5 vs. BASE 5x1

Appendix | Power calculation

RAT 5x5 vs. RAT 5x1

Appendix | **Simulation**

Conditional preferences

- > Two types of players
 - > Uncooperative (*DF*): $g_t = 0 \ \forall t$
 - > Asymmetric conditionally cooperative (*CC*): $\beta=0.5$ or $\beta=1$
- > Initial contributions (aka point of departure)
 - > CC_{unif} : $g_1 = runif[0, \bar{u}]$ for all CCs, where \bar{u} is the upper bound

Simulated population & groups

- > 1,000 random samples w/ replacement from
 - > CC_L: 75% of DF & 25% of CC
 - > CC_H: 25% of DF & 75% of CC

Appendix | Simulation methods

5x1: BASE vs. RAT

Appendix | Simulation methods

5x1 vs. 5x5: BASE and RAT

THIS IS THE END!