Delivery Problem

Alexander S. Kulikov

Steklov Mathematical Institute at St. Petersburg, Russian Academy of Sciences and University of California, San Diego

Outline

Problem Statement

Brute Force Search

Nearest Neighbor

Branch and Bound

Dynamic Programming

Approximation Algorithm

Local Search

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 15

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 11

Given a complete weighted graph, find a cycle (or a path) of minimum total weight (length) visiting each node exactly once

length: 9

Status

 Classical optimization problem with countless number of real life applications (we'll see soon)

Status

- Classical optimization problem with countless number of real life applications (we'll see soon)
- No polynomial time algorithms known

Status

- Classical optimization problem with countless number of real life applications (we'll see soon)
- No polynomial time algorithms known
- Goal of this project: develop efficient programs for solving TSP problem

Delivering Goods

Need to visit several points. What is the optimal order of visiting them?

Drilling a Circuit Board

Drilling a Circuit Board

Drilling a Circuit Board

• Euclidean TSP: instead of a complete graph, the input consists of n points $p_1 = (x_1, y_1), \dots, p_n = (x_n, y_n)$ on the plane

- Euclidean TSP: instead of a complete graph, the input consists of n points $p_1 = (x_1, y_1), \dots, p_n = (x_n, y_n)$ on the plane
- Weights are given implicitly:

$$d(\rho_i, \rho_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

- Euclidean TSP: instead of a complete graph, the input consists of n points $p_1 = (x_1, y_1), \dots, p_n = (x_n, y_n)$ on the plane
- Weights are given implicitly:

$$d(\rho_i, \rho_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

• Weights are symmetric: $d(p_i, p_j) = d(p_j, p_i)$

- Euclidean TSP: instead of a complete graph, the input consists of n points $p_1 = (x_1, y_1), \dots, p_n = (x_n, y_n)$ on the plane
- Weights are given implicitly:

$$d(\rho_i, \rho_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

- Weights are symmetric: $d(p_i, p_j) = d(p_j, p_i)$
- Weights satisfy the triangle inequality: $d(p_i, p_j) \le d(p_i, p_k) + d(p_k, p_j)$

Processing Components

There are *n* mechanical components to be processed on a complex machine. After processing the *i*-th component, it takes

 t_{ij} units of time to reconfigure the machine so that it is able to process the j-th component. What is the minimum processing cost?

Shortest Common Superstring

 The shortest common superstring problem (SCS): given a set {s₁,..., s_n} of n strings find a shortest string containing each s_i as a substring

Shortest Common Superstring

- The shortest common superstring problem (SCS): given a set {s₁,..., s_n} of n strings find a shortest string containing each s_i as a substring
- Practical applications: data storage, data compression, genome assembly

Shortest Common Superstring

- The shortest common superstring problem (SCS): given a set {s₁,..., s_n} of n strings find a shortest string containing each s_i as a substring
- Practical applications: data storage, data compression, genome assembly
- At the first look, it is not at all clear how this problem is related to TSP

SCS: Example

Consider the following instance:
 ABE, DFA, DAB, CBD, ECA, ACB

SCS: Example

Consider the following instance:
 ABE, DFA, DAB, CBD, ECA, ACB

 To get a superstring, just concatenate them:

ABEDFADABCBDECAACB

SCS: Example

Consider the following instance:
 ABE, DFA, DAB, CBD, ECA, ACB

 To get a superstring, just concatenate them:

ABEDFADABCBDECAACB

But the strings ECA and ACB have

 a non-empty overlap. One can get
 a shorter superstring by overlapping them:

ECACB

SCS: Permutation Problem

ABE DFA DAB ECA CBD ACB

SCS: Permutation Problem

SCS: Permutation Problem

ABE DFA DAB CBD ECA ACB

ABE DA

CBD

ECA ACB

Overlap Graph: SCS MAX-ATSP

ABE DFA DAB CBD ECA ACB

Overlap Graph: SCS—MAX-ATSP

ABE DFA DAB CBD ECA ACB

Outline

Problem Statement

Brute Force Search

Nearest Neighbor

Branch and Bound

Dynamic Programming

Approximation Algorithm

Local Search

Enumerating all Permutations

 Finding the best permutation is easy: simply iterate through all of them and select the best one

Enumerating all Permutations

- Finding the best permutation is easy: simply iterate through all of them and select the best one
- But the number of permutations of n objects is n!

n!: Growth Rate

n	n!
5	120
8	40320
10	3628800
13	6227020800
20	2432902008176640000
30	265252859812191058636308480000000

Random Permutation

 OK, in most cases, we cannot afford going through all permutations

Random Permutation

- OK, in most cases, we cannot afford going through all permutations
- What if we just generate a random permutation?

Random Permutation

- OK, in most cases, we cannot afford going through all permutations
- What if we just generate a random permutation?
- The length of a random permutation may be much worse than the minimum length, even for Euclidean TSP

Expected Length

Lemma

For a complete directed graph *G*, the expected length of a random permutation is

$$\frac{1}{n-1} \cdot \sum_{u,v \in V(G)} w(u,v)$$

Bad Case

Bad Case

Bad Case

Outline

Problem Statement

Brute Force Search

Nearest Neighbor

Branch and Bound

Dynamic Programming

Approximation Algorithm

Local Search

 Sampling a random permutation is perhaps too naive

- Sampling a random permutation is perhaps too naive
- What about going to the nearest yet unvisited node at every iteration?

- Sampling a random permutation is perhaps too naive
- What about going to the nearest yet unvisited node at every iteration?
- Efficient, works reasonably well in practice

- Sampling a random permutation is perhaps too naive
- What about going to the nearest yet unvisited node at every iteration?
- Efficient, works reasonably well in practice
- For general graphs, may produce a cycle that is much worse than an optimal one

- Sampling a random permutation is perhaps too naive
- What about going to the nearest yet unvisited node at every iteration?
- Efficient, works reasonably well in practice
- For general graphs, may produce a cycle that is much worse than an optimal one
- For Euclidean instances, the resulting cycle may be about log n times worse than an optimal one

 How to fool the nearest neighbors heuristic?

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

0

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

- How to fool the nearest neighbors heuristic?
- Assume that the weights of almost all the edges in the graph are equal to 2
- And we start to construct a cycle:

 $\text{OPT} \approx 26.42$

 $NN \approx 28.33$

Outline

Problem Statement

Brute Force Search

Nearest Neighbor

Branch and Bound

Dynamic Programming

Approximation Algorithm

Local Search

Main Ideas

• Start with some node

Main Ideas

- Start with some node
- At every iteration try to extend (recursively) the current path by every yet unvisited node

Main Ideas

- Start with some node
- At every iteration try to extend (recursively) the current path by every yet unvisited node
- But don't continue extending the path, if it is already clear that it cannot be extended to an optimal cycle

Example: Brute Force Search

Example: Brute Force Search

Lower Bound

 We used the simplest possible lower bound: any extension of a path has length at least the length of the path

Lower Bound

- We used the simplest possible lower bound: any extension of a path has length at least the length of the path
- Modern TSP-solvers use smarter lower bounds to solve instances with thousands of vertices

Example: Lower Bounds (Still Simple)

The length of an optimal TSP cycle is at least

• $\frac{1}{2} \sum_{v \in V} (\text{two min length edges adj to } v)$

Example: Lower Bounds (Still Simple)

The length of an optimal TSP cycle is at least

- $\frac{1}{2} \sum_{v \in V} (\text{two min length edges adj to } v)$
- the length of a minimum spanning tree (by taking out any edge of a TSP cycle, one gets a spanning tree)

Main two heuristics of branch and bound:

- Main two heuristics of branch and bound:
 - Branch: order of yet unvisited nodes (say, select closer neighbors first)

- Main two heuristics of branch and bound:
 - Branch: order of yet unvisited nodes (say, select closer neighbors first)
 - Bound: lower bounding the length of a path

- Main two heuristics of branch and bound:
 - Branch: order of yet unvisited nodes (say, select closer neighbors first)
 - Bound: lower bounding the length of a path
- Finds an optimal solution

- Main two heuristics of branch and bound:
 - Branch: order of yet unvisited nodes (say, select closer neighbors first)
 - Bound: lower bounding the length of a path
- Finds an optimal solution
- The running time depends on the heuristics used as well as on the instance itself

- Main two heuristics of branch and bound:
 - Branch: order of yet unvisited nodes (say, select closer neighbors first)
 - Bound: lower bounding the length of a path
- Finds an optimal solution
- The running time depends on the heuristics used as well as on the instance itself
- Used by state-of-the-art TSP-solvers that can handle instances with thousands of nodes!

Outline

Problem Statement

Brute Force Search

Nearest Neighbor

Branch and Bound

Dynamic Programming

Approximation Algorithm

Local Search

Dynamic Programming

 Dynamic programming is one of the most powerful algorithmic techniques

Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems

Dynamic Programming

- Dynamic programming is one of the most powerful algorithmic techniques
- Rough idea: express a solution for a problem through solutions for smaller subproblems
- Solve subproblems one by one. Store solutions to subproblems in a table to avoid recomputing the same thing again

Subproblems

For a subset of nodes S ⊆ {0,..., n − 1}
 containing the node 0 and a node i ∈ S, let
 C(i, S) be the length of the shortest path
 that starts at 0, ends at i, and visits all
 nodes from S exactly once

Subproblems

- For a subset of nodes S ⊆ {0,..., n − 1}
 containing the node 0 and a node i ∈ S, let
 C(i, S) be the length of the shortest path
 that starts at 0, ends at i, and visits all
 nodes from S exactly once
- $C(0, \{0\}) = 0$ and $C(0, S) = +\infty$ when |S| > 1

Recurrence Relation

 Consider the second-to-last node j on the required shortest path from 0 to i visiting all nodes from S

Recurrence Relation

- Consider the second-to-last node j on the required shortest path from 0 to i visiting all nodes from S
- The subpath from 0 to j is the shortest one visiting all vertices from S {i} exactly once

Recurrence Relation

- Consider the second-to-last node j on the required shortest path from 0 to i visiting all nodes from S
- The subpath from 0 to j is the shortest one visiting all vertices from S {i} exactly once
- Hence $C(i, S) = \min\{C(j, S \{i\}) + w(j, i)\}$, where the minimum is over all $j \in S$ such that $j \neq i$

Implementation Remark

• How to iterate through all subsets of $\{0, ..., n-1\}$?

Implementation Remark

- How to iterate through all subsets of $\{0, ..., n-1\}$?
- There is a natural one-to-one correspondence between integers in the range from 0 to 2ⁿ - 1 and subsets of {0,...,n-1}:

 $k \leftrightarrow \{i: i\text{-th bit of } k \text{ is 1}\}$

k	bin(<i>k</i>)	$\{i: i\text{-th bit of } k \text{ is } 1\}$
0	000	Ø
1	001	{0}
2	010	{1}
3	011	{0,1}
4	100	{2}
5	101	{0,2}
6	110	{1,2}
7	111	{0,1,2}

• If k corresponds to S, how to find out the integer corresponding to $S - \{j\}$ (for $j \in S$)?

- If k corresponds to S, how to find out the integer corresponding to $S \{j\}$ (for $j \in S$)?
- For this, we need to flip the j-th bit of k
 (from 1 to 0)

- If k corresponds to S, how to find out the integer corresponding to $S \{j\}$ (for $j \in S$)?
- For this, we need to flip the j-th bit of k
 (from 1 to 0)
- For this, in turn, we compute a bitwise XOR of k and 2^j (that has 1 only in j-th position)

- If k corresponds to S, how to find out the integer corresponding to $S \{j\}$ (for $j \in S$)?
- For this, we need to flip the j-th bit of k
 (from 1 to 0)
- For this, in turn, we compute a bitwise XOR of k and 2^j (that has 1 only in j-th position)
- In C/C++, Java, Python:k^(1 << j)

Code

```
def dp(G):
 n = G.number of nodes()
 T = [[float("inf")] * (1 << n) for _ in range(n)]
 T[0][1] = 0
  for s in range(1 << n):
    if sum(((s >> j) \& 1) for j in range(n)) <= 1 or not (s & 1):
      continue
    for i in range(1, n):
      if not ((s >> i) & 1):
        continue
      for j in range(n):
        if i == i or not ((s >> i) & 1):
          continue
       T[i][s] = min(T[i][s],
                      T[i][s ^ (1 << i)] + G[i][j]['weight'])
  return min(T[i][(1 << n) - 1] + G[0][i]['weight']
             for i in range(1, n))
```

Dynamic Programming: Summary

• The running time is about $n^2 2^n$

Dynamic Programming: Summary

- The running time is about $n^2 2^n$
- Better than n!, but still too slow (already for n = 20)

Outline

Problem Statement

Brute Force Search

Nearest Neighbor

Branch and Bound

Dynamic Programming

Approximation Algorithm

Local Search

Approximation

- Let's focus on the metric version of TSP: w(u, v) = w(v, u) and $w(u, v) \le w(u, z) + w(z, v)$ (in particular, Euclidean TSP is metric)
- We will design a 2-approximation algorithm: it quickly finds a cycle that is at most twice longer than an optimal one

Minimum Spanning Trees

Lemma

Let G be an undirected graph with non-negative edge weights. Then $MST(G) \leq TSP(G)$.

Minimum Spanning Trees

Lemma

Let G be an undirected graph with non-negative edge weights. Then $MST(G) \leq TSP(G)$.

Proof

By removing any edge from an optimum TSP cycle one gets a spanning tree of *G*.

• $T \leftarrow \text{minimum spanning tree of } G$

- $T \leftarrow$ minimum spanning tree of G
- $D \leftarrow T$ with each edge doubled

- $T \leftarrow \text{minimum spanning tree of } G$
- $D \leftarrow T$ with each edge doubled
- find an Eulerian cycle C in D

- $T \leftarrow$ minimum spanning tree of G
- $D \leftarrow T$ with each edge doubled
- find an Eulerian cycle C in D
- return a cycle that visits the nodes in the order of their first appearance in C

Provable Guarantee

Lemma

The algorithm is 2-approximate.

Provable Guarantee

Lemma

The algorithm is 2-approximate.

Proof

 The total length of the MST T is at most OPT.

Provable Guarantee

Lemma

The algorithm is 2-approximate.

Proof

- The total length of the MST T is at most OPT.
- Bypasses can only decrease the total length.

Final Remarks

 The currently best known approximation algorithm for metric TSP is Christofides' algorithm that achieves a factor of 1.5

Final Remarks

- The currently best known approximation algorithm for metric TSP is Christofides' algorithm that achieves a factor of 1.5
- If P \neq NP, then there is no α -approximation algorithm for the general version of TSP for any constant α

Outline

Problem Statement

Brute Force Search

Nearest Neighbor

Branch and Bound

Dynamic Programming

Approximation Algorithm

Local Search

Local Search with parameter d:

• $s \leftarrow$ some initial solution

Local Search with parameter d:

- $s \leftarrow$ some initial solution
- while it is possible to change d edges in s to get a better cycle s':

Local Search with parameter d:

- $s \leftarrow$ some initial solution
- while it is possible to change d edges in s to get a better cycle s':
 - $s \leftarrow s'$

Local Search with parameter d:

- $s \leftarrow$ some initial solution
- while it is possible to change d edges in s to get a better cycle s':
 - $s \leftarrow s'$
- return s

Properties

Computes a local optimum instead of a global optimum

Properties

- Computes a local optimum instead of a global optimum
- The larger is d, the better is the resulting solution and the higher is the running time

A suboptimal solution that cannot be improved by changing two edges:

A suboptimal solution that cannot be improved by changing two edges:

Need to allow changing three edges to improve this solution

Performance

 Trade-off between quality and running time of a single iteration

Performance

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor

Performance

- Trade-off between quality and running time of a single iteration
- Still, the number of iterations may be exponential and the quality of the found cycle may be poor
- But works well in practice

Summary

 Exact algorithms: brute force, branch and bound, dynamic programming

Summary

- Exact algorithms: brute force, branch and bound, dynamic programming
- Approximation algorithms: nearest neighbors, MST-based, local search