

PROBLÈME DE VISCOÉLASTICITÉ: CONCEPTION D'UNE TURBINE À GAZ

L. Di Stasio

EEIGM, Université de Lorraine, Nancy, France

Travaux Dirigés - Mécanique des Matériaux 1

Table des matières

- **1** Introduction
- **1** Enonce

Introduction: la turbine à gaz

Introduction: le rotor

Introduction: le stator

Enonce

Vous êtes responsable de la conception d'une turbine à gaz fonctionnant à 800°.

Les aubes du rotor de cette turbine ont une longuer initiale $l_0 = 10[cm]$ et sont faites d'un superalliage de Nickel, qui, à cette température, a un module d'Young égal à 180[GPa]. En service et sous l'effet de la force centrifuge, les aubes sont soumises à une contrainte de 450[MPa] (supposée uniforme). Le bureau d'étude a prévu un jeu initial de 3[mm] entre le stator et l'etrémité des aubes.

Enonce

Conscient que les aubes vont fluer en service, vous décidez de recommander une inspection préventive de la dimension des aubes après un certain $t_{inspection}$ de fonctionnement de la turbine.

Pour déterminer ce temps $t_{inspection}$, vous ne disposez que des quelques données suivantes concernant le fluage de ce superalliage lorsqu'il est soumis à une contrainte de 450 MPa.

