Приложение 1.А

Варианты заданий Лабораторных работ 2 – 7

Задание на лабораторную работу

Разработать программу, обеспечивающую параллельное выполнение трех функций F1, F2, F3, которые связаны с векторно-матричными операциями. Варианты заданий представлены в Таблице 1.А. Программа должна включать *три независимых процесса*, каждый из которых *не связан* с другими и выполняет действия по вычислению одной из функции F1, F2 или F3 – (Fi).

Алгоритм каждого процесса должен включать следующие шаги:

- печать сообщения о старте процесса;
- ввод данных (векторов и матриц), для вычисления соответствующей функции Fi;
- вычисление функции Fi;
- вывод результата вычисления функции Fi;
- печать сообщения о завершении процесса.

При программировании процессов необходимо:

- создать три процесса для вычисления математических функций согласно варианту задания из Таблицы 1.A;
- задать приоритет для каждого из трех процессов;
- запрограммировать приостановку и возобновление каждого процесса после вызова функции Fi через соответствующие операторы задержки (время задержки 0,01 сек.)

Выполнение работы

Исследовать порядок старта и выполнения потоков, изменяя

- приоритеты потоков,
- время ожидания в операторах задержки,
- выполняя ввод данных: а) с клавиатуры,
 - б) формируя данные в программе,
 - в) используя файл с данными.

В таблице 1.А приведены варианты заданий для цикла лабораторных работ.

Условные обозначения:

а - скалярное число

A - векторMA - матрица

min - операция поиска минимального числа max - операция поиска максимального числа

sort - сортировка по возрастанию.

Варианты заданий. Таблица 1.А

Номер	Функции		
варианта	F1	F2	F3
1	a = (B*C)	L=U*MZ	q=max(MB*MC)
2	F= B + v*Z	A=(X-C)*MX	MP=MC*MV
3	Z= X*(B+C)	Y=H*(MZ+MD)	MA=MC*MX-MP
4	A= B - C +d*Z	D=sort(X)*MC	MU=(MZ+MX)*MF
5	A= sort(B-C)	Y=H*(MZ+d*MD)	MP=MC*(MV+MO)
6	a = min(B+C+D)	L=U*MZ- X	MB=MD*MA+s*MP
7	s=max(Z)(E*T)	F=(X+C)*s*MX	MH=(MB*MC) -ML
8	A= B + C + Z	d=min(L*MR)	MS=MB+MC*MK
9	A= (B - C) *d+Z	x=max(H*MD)	MM=MF - MJ*MX
10	B= sort(X)	A=B(MO-MN+MZ)	MT=(MC*MV)*MS
11	V= sort(C+K+T)	O=U*MZ- R	ML=s*MC*(MVMO)
12	a = min(B+K)	D=V*MZ - X*ME	MK=MB+MC*ML
13	a = (B+K)(E+T)	W=sort(MX)*C	MX=MC*MK+a*MP
14	V=B *x - C +d*Z	a=(Z*MH)(X*MV)	MR=(MX*MC)*MT
15	z = (B*C) - V	S=H*(MZ-MD+MR)	MB=sort(MZ*ML)
16	S= B - C + Z -P	F= s*R - U*MZ	MK=MB*(MC*ME)
17	E=G+a* (X+Z+T)	o=max(X*MZ+D)	a=min(MZ*MC)
18	a =max(B+K) - w	D=sort(A*MB)	MA=a*MB-MC*MI)
19	S= E - sort(X)	A=E+B*MC	MT=MB-MC*MW*d
20	I= A + (D + Z)*s	S = C*s*MX	MV=MX*MK*MH
21	B= sort(X-Y)	F=A*MR +B*ME	a=min(MZ -MY*MC)
22	y=(X+Y-G)*(T-X)	e=max(A*MB-C)	MX=MZ+MR*MG
23	O=U+sort(X-Z)	D=sort(MX)*C	MB=MA*(MV-MU)
24	A=B+d*(X-Z)	X=B*MZ+H	MA=MB*MC-MM

25	B=sort(X)-sort(Y)	t=min(Z+MY*X)	ME=MT*(MV*MN)
26	D=F+X*(A*B)	T=A*MB-q*C*MH	a=min(MO*MB+MX)
27	a=(B+C)(D+T-X)	w=max(A*MB-q*C)	MD=MC*MB+MG
28	T=A+D+Z*s	D=sort(O*MB+F)	MK=MB-s*(MC*ME)
29	A=sort(B)-C	T=(A*MB-q*C)	MT=MC+MF*MD-MK
30	s=(X-W)(D+T-M)	A=Z*MR-U	e=max(MY*MF)