VERMES MIKLÓS Fizikaverseny

II. forduló 2017. február 27. IX. osztály

JAVÍTÓKULCS

I. feladat

A feltétel csak akkor teljesülhet, ha a pontszerű fényforrás az L_1 lencse fókuszában van, ugyanis ekkor a sugarak a közös főtengellyel párhuzamosan lépnek ki. 1 p Ilyenkor I_2 akármilyen távolságra lehet L_1 -től, rá mindig a főtengelyével párhuzamos sugarak esnek, amelyek L_2 fókuszpontjában metszik egymást L_2 -ből történő kilépésük alkalmával. 1 p Ha a homorú tükröt úgy helyezzük el, hogy annak geometriai középpontja L_2 fókuszpontjában legyen, a tükörre merőlegesen esnek a sugarak, amelyek önmagukban verődnek vissza. Így a sugarak fordított irányban haladva átmennek a két lencsén és az S pontban (L_1 fókuszában) metszik egymást. 2 p

1 p

Ha a homorú tükröt domborúra cseréljük ki, akkor a domború tükör geometriai középpontjának kell az L_2 fókuszpontjában lennie.

1 p

Ha a homorú tükröt síktükörrel cseréljük ki, a síktükörnek kell az L_2 fókuszpontjában lennie. 1 p

II. feladat

a)
$$\frac{1}{f_1} = (n-1)\frac{1}{R}$$
, 1 p $f_1 = 0.3 m$

b)
$$\frac{1}{f_2} = -2\frac{1}{m}$$
, $f_2 = -\frac{1}{2}m = -0.5m$, a lencse szóró jellegű

c)
$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$
, 1 p $f = \frac{f_1 f_2}{f_1 + f_2} = -\frac{0.3 \cdot 0.5}{0.3 - 0.5} = 0.75m$

d)
$$|x_1| = x_2$$
 0,5 p $x_1 = -2f = -1,5m$

d)
$$|x_1| = x_2$$
 0,5 p $x_1 = -2f = -1,5m$ 1 p
e) $\frac{1}{f_1'} = \left(\frac{n}{n'} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ 1 p $\frac{1}{f_1} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ 0,5 p

$$\frac{f_1'}{f_1} = \frac{n-1}{\frac{n}{n'} - 1} = 4 \implies f_1' = 4f_1 \qquad 0.5 \text{ p} \qquad f' = 4f = 3m \qquad 0.5 \text{ p}$$

$$\frac{1}{x_2'} - \frac{1}{x_1} = \frac{1}{f'} \qquad 0.5 \text{ p} \qquad x_2' = -3m \qquad 0.5 \text{ p}$$

III. feladat

a)

Az ábra alapján:
$$x_2 - d_1 = d_2 - x_2$$
 ahonnan $x_2 = \frac{d_2 + d_1}{2} = 75 \text{ cm}$ 1 p

$$\frac{1}{x} - \frac{1}{x} = \frac{1}{f} \qquad \Rightarrow \quad f = 50 \text{ m}$$

Az
$$A_1$$
 tárgypontról $\Delta x_1 = l\left(1 - \frac{1}{n}\right) = \frac{n-1}{n}l$ távolsággal közelebb hoz létre képet 2 p

Az edény jelenlétében az új képtávolság $x_2' = \frac{700}{9} cm$, így az $\frac{1}{x_2'} - \frac{1}{x_2'} = \frac{1}{f}$

képalkotási egyenletből
$$x_1 = -140 m$$
 1 p
Mivel $\Delta x_1 = -140 + 150 = 10 cm$, $n = 4/3$ 1 p

c) Az
$$A_2$$
 kép látszólagos tárgya a lemeznek, róla $\Delta x_2 = \Delta x_1 = 10$ cm-rel távolítva alkot képet. 2 p