

QUANTITY-DISTANCE FRAGMENT HAZARD COMPUTER PROGRAM (FRAGHAZ)

BY FRANK MCCLESKEY
(KILKEARY, SCOTT & ASSOCIATES, INC.)
FOR NAVAL SURFACE WARFARE CENTER
RESEARCH AND TECHNOLOGY DEPARTMENT
AND DEPARTMENT OF DEFENSE
EXPLOSIVES SAFETY BOARD

FEBRUARY 1988

Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE — For classified documents, follow procedures as outlined in Chapter 17 of OPNAVINST 5510.1G. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

94-26395

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000
Silver Spring, Maryland 20903-5000

REPORT DOCUMENTATION PAGE				
1 OFFICIAL USE ONLY	2. REPORT DATE	ORT DATE 3 TYPE OF REPORT AND DATES COVERED.		
	1988, February		Final	
4. TITLE AND SUBTITLE	<u> </u>		5	FUNDING NUMBERS
Quantity-Distance Fragment Hazard (Computer Program	(FRAGHAZ)		
6 AUTHOR(S). McCleskey, Frank				
,				
7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES).	7.		8.	PERFORMING ORGANIZATION REPORT NUMBER.
Kilkeary, Scott & Associates, Inc.				2009 N. 14th St. Suite 408 Arlington, VA 22201
9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS	s(ES).		10	D. SPONSORING/MONITORING AGENCY REPORT NUMBER.
DOD Explosives Safety Board Room 856-C, Hoffman Building I 2461 Eisenhower Avenue/Alexandria, VA 2233	Dahlgren, V	ce Warfare Cente A 22448-5000	er (R15)	NSWC TR 87-59
11 SUPPLEMENTARY NOTES				
Procurement Instrument Identification	Number: N60921	-87-M-5324		
12a. DISTRIBUTION/AVAILABILITY STATEMENT.				12b. DISTRIBUTION CODE.
Approved for public release; distribution	on is unlimited.			
13 . ABSTRACT (MAXIMUM 200 WORDS).				
The Fragment Hazard Computer P and detailed descriptions. FRAGHAZ is inadvertent detonation of munitions state separate trajectory is calculated for each gration procedures. Any target may be Wind and fragment ricochet effects are of munition units for both areal number	is designed as a too acks. Fragmentati th recovered fragm simulated which c included. Output	I to estimate to lon data are do ent using Fou an be approxi is expressed a	the fragment erived from some orth-Order R imated by a some is fragment l	t hazards produced by the small-scale arena tests. A lange-Kutta numerical inte- rectangular parallepiped.
14 SUBJECT TERMS FRAGHAZ Computer Program FORTR Distance Trajectory, Arena Tests, MON				15 NUMBER OF PAGES 167 16 PRICE CODE.
17a SECURITY CLASSIFICATION (OF REPORT) 17b. SECURIT	Y CLASSIFICATION (OF PAGE) SSIFIED	17c. SECURITY CLASS UNCLASSIF	SIFICATION (OF ABST	

FOREWORD

The Quantity-Distance Fragment Hazard (FRAGHAZ) Computer Program was developed for the Department of Defense Explosives Safety Board (DDESB) by Frank McCleskey while employed at the Naval Surface Warfare Center (NSWC) from 1981 to 1986. The documentation of the program was accomplished by the author while an employee of Kilkeary, Scott & Associates, Inc., in 1987 under Navy Contract.

The FRAGHAZ program had its beginnings in the early 1970s. The initial concepts were developed by Richard T. Ramsey of NSWC, under the able direction of Dr. Thomas A. Zaker of the DDESB. This program is dedicated to the memory of both these gentlemen who contributed so much to the field of explosives safety analysis.

Following Dr. Zaker's death in 1986, Dr. Jerry M. Ward has directed the program at the DDESB.

The individuals who made significant contributions in the development of the FRAGHAZ computer program are W. D. Smith, J. G. Powell, R. J. Sawyer, and R. E. Baker, of NSWC and M. Reches, AMSAA; M. Miller, O. Smith, and D. Webber, CRDC, Aberdeen, Maryland.

This report has been reviewed by W. H. Bohli, Head, Explosion Dynamics Branch.

Approved by:

K. F. MUELLER, Head

Gwt7 Kull 1

Energetic Materials Division

Acces	sion For		عفد
NTIS	GRA&I	E	
DTIC	TAB		
Unann	ounced		
Justi	fication_		
By Distr	ibution/		
Ava1	lability	Çodes	
	Avail and	i/or	
Dist ,	Special	L	
AI		. #	

CONTENTS

	Page
INTRODUCTION	
GENERAL PROGRAM DESCRIPTION	. 2
STACK FRAGMENTATION CHARACTERISTICS	. 2
HAZARD CRITERIA	. 2
HAZARD CRITERIA	. 3
HAZARD VOLUME	. 4
FRAGMENTTRAJECTORY	. 6
HAZARD VOLUME. FRAGMENT TRAJECTORY HAZARD CALCULATIONS TYPICAL FRAGMENT DATA INPUT	. 7
TYPICAL FRACMENT DATA INDIT	. 8
OUTPUT	. 9
SUMMARY	12
SUMMARI	. 12
DETAILED PROGRAM DESCRIPTION	. 14
INTRODUCTION	. 14
BLOCK-1. DECLARE DATA TYPES FOR VARIABLES, DIMENSION ARRAYS	14
BLOCK-2. VARIABLES TO BE INPUT AT RUN TIME-SELECT MONTE CARLO	
	14
OR FULL FACTORIAL OPTION	19
BLOCK-4. HEADINGS AND NUMBER FORMATS FOR OUTPUT TABLES	19
BLOCK-5. READ FRAGMENTATION DATA. IF APPLICABLE, READ FULL	. 13
FACTORIAL DATA	19
BLOCK-6. BEGIN REPLICATION OR TREATMENT LOOP-SET CONDITIONS	
BLOCK-7. BEGIN FRAGMENT LOOP-SET HEIGHT OF ORIGIN AND ELEVATION	. 21
ANGLE	22
BLOCK-8. SET REMAINING INITIAL CONDITIONS FOR CURRENT FRAGMENT.	22
BLOCK-9. ESTABLISH DRAG PARAMETERS	. 24
	. 28
BLOCK-11. BEGIN TRAJECTORY CALCULATIONS	. 30
BLOCK-12. COMPUTE SPECIAL TIME INCREMENT IF CONDITIONS DICTATE	
BLOCK-12. COMPONED FEMALE TIME INCREMENT IF CONDITIONS DICTATE. BLOCK-13. BEGIN RUNGE-KUTTA ROUTINE AND CALCULATE WIND EFFECTS	
BLOCK-14. CALCULATE AIR DENSITY, MACH NUMBER, AND CD	
BLOCK-14. CALCULATE AIR DENSITY, MACH NUMBER, AND CD	
BLOCK-16. BASIC RUNGE-KUTTA CALCULATIONS	. 32
BLOCK-17. CHECK LOCATION OF FRAGMENT AND MAKE HAZARD VOLUME	
CALCULATIONS IF APPLICABLE	. 33
BLOCK-18. ROUTINE FOR ACCUMULATING NUMBER OF FRAGMENTS,	<i>a</i> .
DENSITY, AND PROBABILITY OF NOT HITTING THE TARGET	. 34
BLOCK-19. CHECK FOR RICOCHET AND COMPUTE NEW INITIAL CONDITIONS	
FOR RICOCHETING FRAGMENT	. 38
BLOCK-20. COMPUTE AND PRINT INITIAL AND FINAL CONDITIONS FOR	
CHRRENT FRACMENT TRAJECTORY	41

CONTENTS (CONTINUED)

	Page
BLOCK-21. SORT FOR MAXIMA, MINIMA, AND PERCENTILES	. 43
BLOCK-21A. MAXIMUM AND MINIMUM NUMBER OF FINAL IMPACTS	
BLOCK-21B. MAXIMUM, MINIMUM, AND PERCENTILE HAZARD DENSITY	
BLOCK-21C. SORT PROBABILITY OF NOT HITTING THE TARGET	44
BLOCK-22. COMPUTE AND PRINT OUTPUT DENSITY, P-HIT, AND NUMBER OF	
FINAL IMPACTS FOR GIVEN DISTANCE INCREMENT AND NUMBER OF UNITS	. 44
BLOCK-23. PRINT HAZARD DENSITY AND PROBABILITY OF HIT FOR NUMBER	. **
OF UNITS SELECTED	49
BLOCK-24. COMPUTE AND PRINT NUMBER OF UNITS REQUIRED TO JUST	. 40
EXCEED HAZARD DENSITY AND P-HIT CRITERIA	. 49
BLOCK-25. FUNCTION SUBPROGRAM TO CALCULATE RANDOM NUMBERS	
BLOCK-26. SUBROUTINE FOR SELECTING INTEGRATION STEP	-
block-20. Sobkoo line for selecting in legration sief	. 52
ADDITIONAL PROGRAM CONSIDERATIONS	. 54
PROGRAM TEST CASES	
WEAPON FRAGMENTATION DATA	
FUTURE IMPROVEMENTS	
	. 04
APPENDIXES	
A HAZARD CURVE FITTING PROGRAM	. A-1
B FRAGHAZ COMPILER LISTING	
C GLOSSARY	
D FRAGMENT MULTIPLIERS	. C-1
E RICOCHET DATA	. E-1
G WEIGHTING FACTORS	
H PROGRAM TEST CASES	
I WEAPON FRAGMENTATION DATA	. I-1
DISTRIBUTION	(1)

ILLUSTRATIONS

Figure		Page
1	STACK FRAGMENTATION SIMULATION	5
2	FRAGMENT TRAJECTORY	6
3	TYPES OF TRAJECTORIES	
4	HAZARD CALCULATIONS	8
5	ACTUAL VERSUS PREDICTED RECOVERY DATA FOR 36 PALLETS OF	
	155MM PROJECTILES	10
6	ACTUAL VERSUS PREDICTED RECOVERY DATA FOR A SINGLE PALLET	
	OF MK 82 BOMBS	11
7	NUMBER OF UNITS TO JUST EXCEED HAZARD CRITERION VERSUS	
	HAZARD DISTANCE	13
8	STACK HEIGHT (HS) AND STACK INERT GROUND STANDOFF (SIGS)	16
9	TRAJECTORY COORDINATE SYSTEM	
10	EXPERIMENTAL DRAG COEFFICIENT	
11	DRAG COEFFICIENT (C_D) VS. PRESENTED AREA RATIO (A_R)	
12	STRAIGHT LINE APPROXIMATION TO FRAGMENT CD CURVES	
13	FRAGMENT AVERAGE LINEAR DIMENSIONS	
14	FRAGMENT PRESENTED AREA MEASUREMENTS	
15	TOTAL PRESENTED AREA	34
16	TARGET PRESENTED AREA	
17	RICOCHET TO INCIDENT VELOCITY RATIOS	
18	RICOCHET TO INCIDENT ANGLE RATIOS	40
19	COMPONENT VELOCITIES AFTER RICOCHET	41
20	TRAJECTORY INTEGRATION INCREMENT	53
D-1	RECOVERY BY POLAR ZONE ONLY	D-4
D-2	RECOVERY BY POLAR AND AZIMUTHAL ZONES	D-4
D-3	RECOVERY BY X-Y COORDINATES	D-4
E-1	SOIL CONSTANTS FOR VARIOUS SOILS	E-5
G-1	COMBINING 100-FT INCREMENTS	J-4

TABLES

	Page
TYPICAL FRAGMENTATION INPUT DATA	8
NUMBER OF UNITS REQUIRED TO JUST EXCEED THE HAZARD	
DENSITY CRITERION	11
VARIABLE TRACES - ACCUMULATION TO OUTPUT	45
FITTED CONSTANTS WITH AN INPUT AND ERROR TABLE	A-6
FRAGMENT RICOCHET DATA	E-3
RANDOM NUMBER PORTABILITY CHECK	F-5
PROGRAM TEST CASE - MONTE CARLO OPTION	H-6
PROGRAM TEST CASE - FULL FACTORIAL OPTION	H-15
TEST CASE FRAGMENTATION DATA	H-24
FRAGMENTATION DATA FOR 155 MM PROJECTILES (M107)	I-5
FRAGMENTATION DATA FOR MK 82 LOW DRAG ROMBS	I-9
*	
LISTINGS	
FRAGFIT COMPILER LISTING	A-4
FRAGHAZ COMPILER LISTING	B-4
RANDOM NUMBER PORTABILITY CHECK	F-4
	TYPICAL FRAGMENTATION INPUT DATA NUMBER OF UNITS REQUIRED TO JUST EXCEED THE HAZARD DENSITY CRITERION VARIABLE TRACES - ACCUMULATION TO OUTPUT FITTED CONSTANTS WITH AN INPUT AND ERROR TABLE FRAGMENT RICOCHET DATA RANDOM NUMBER PORTABILITY CHECK PROGRAM TEST CASE - MONTE CARLO OPTION PROGRAM TEST CASE - FULL FACTORIAL OPTION TEST CASE FRAGMENTATION DATA FRAGMENTATION DATA FOR 155 MM PROJECTILES (M107) FRAGMENTATION DATA FOR MK 82 LOW DRAG ROMBS LISTINGS FRAGFIT COMPILER LISTING FRAGHAZ COMPILER LISTING

INTRODUCTION

Historically, hazards from stacks of explosive ordnance have been stated in terms of hazard distance due to blast overpressures. These hazard distances, presented as quantity versus distance (QD criteria), have not adequately addressed the fragment hazards. The fragment hazards were specified in terms of specific number of weapons and were derived using many simplifying assumptions. As a result, the validity of these QD criteria have always been questionable.

The Department of Defense Explosives Safety Board (DDESB) decided to begin detailed studies and experiments concerning the hazards posed by fragments from stacks of detonating munitions in the early 1970s. The Naval Surface Warfare Center (NSWC) was requested to characterize weapons of interest to the DDESB and to establish analytical techniques that would predict the fragment hazards for stored munitions.

Many fragmentation experiments were conducted and a number of predictive analytical techniques were explored. The analytical techniques were all characterized by integral and differential equations whose solutions would provide estimates of hazard distances for fragmenting munitions. These analytical approaches suffered from the need to restrict the number of variables to a manageable level. As a result, many variables had to be averaged or held constant. Many conditions such as wind, ricochet, and variable drag coefficient had to be ignored to make the equations manageable.

In 1981, recognizing the limitations of the analytical methods, a new approach was established that had the promise of overcoming the restrictions imposed by analytical equations. The new approach relied on numerical procedures where as many equations as needed could be solved sequentially. In the numerical procedure, a complete trajectory for each fragment representing a particular munition is calculated, and hazard calculations made when the trajectory intersected the target. These numerical procedures are often referred to as MONTE CARLO or FULL FACTORIAL procedures. This report contains the description of numerical procedures currently established for predicting the hazards from fragmenting munitions. There is a general description designed to orient the reader as to the many qualitative aspects of the procedure. This is followed by a detailed line-by-line description of the computer code. Supporting this thorough description of the computer code is a number of appendices containing information too detailed to be included in the main body of the report. Such things as glossaries, mathematical proofs, program listings, and example problems are included in the appendices.

Although future changes are inevitable, the computer program has advanced to a stage where documentation is warranted. All significant factors affecting the hazards from fragments have been incorporated. The program is coded in Microsoft FORTRAN 77, which is common to many computers ranging from MICROS to MAIN FRAMES. FORTRAN 77 represents a compromise between BASIC and FORTRAN IV. The program has been structured to minimize running time such that it can be run practically on MICRO computers. A typical run on the IBM PC-AT using compiled FORTRAN 77 takes approximately 6 hr, whereas on a MAIN FRAME the run would be measured in minutes.

GENERAL PROGRAM DESCRIPTION

The QD Fragment Hazard (FRAGHAZ) Computer Program provides a method for predicting the fragment hazard produced by the detonation of munitions. FRAGHAZ requires fragment characteristic data obtained from small-scale tests representative of larger stacks of munitions. In the case of 155mm projectiles, for example, the small-scale test may consist of one or more pallets (eight projectiles per pallet) positioned and detonated to yield a representative sample of fragment data from an entire stack. Full trajectories are calculated for each fragment recovered in the small-scale test. Appropriate calculations are made during the fragment trajectory to establish the hazard to a specified target.

STACK FRAGMENTATION CHARACTERISTICS

Past tests have demonstrated that virtually all the fragments going downrange are produced by the munitions (projectiles, bombs, etc.) on the face of the stack toward the target area. Fragmentation from the ordnance in the interior of the stack is, for the most part, contained within the stack. When a stack with units close together is detonated, fragment jets are produced between adjacent munitions on the face of the stack. The width of the jet depends on the method of stack initiation. When all units are detonated simultaneously, the jet is typically 10 deg wide. If only one or two donor units are initially detonated, the jet width is more typically 20 to 30 deg. Stack detonation by donor units is called natural communication and all current testing (presented here) uses this technique.

The jet produced between adjacent units is called an interaction area. The greatest fragment densities and highest fragment velocities are produced within the interaction areas. For safety purposes, the fragmentation characteristics of the interaction areas are used for input to the computer model. The interaction areas overlap at relatively short distances downrange and their effects can therefore be added to represent the cumulative effects of large ammunition stacks.

HAZARD CRITERIA

The FRAGHAZ program requires that hazard criteria be specified for the target being considered. Most work to date has been concerned with the personnel target. The DDESB has specified the following hazard criteria for personnel:

- 1. Fragment impact kinetic energy of at least 58 ft-lb
- 2. Hazardous fragment areal number density of at least one hazardous fragment per 600 ft2

The hazardous fragment areal number density criterion is approximately equivalent to a hit probability of 0.01 given that the presented area of a man is considered to be $6.2 \, \mathrm{ft^2}$. Similar criteria must be specified for other targets being considered.

MONTE CARLO AND FULL FACTORIAL OPTIONS

FRAGHAZ runs under a MONTE CARLO or FULL FACTORIAL option. Both options provide methods for handling the uncertainty associated with random variables. The program includes seven random variables for each option:

- 1. Initial fragment elevation angle
- 2. Initial fragment velocity
- 3. Fragment drag coefficient
- 4. Height of the fragment trajectory origin above the ground surface
- 5. Soil constant for ricochet
- 6. Wind speed
- 7. Altitude of the ammunition stack site

The first three random variables have to do with the specific characteristics of each fragment. The remaining four variables are more like background conditions.

The following analogous terms are associated with the two options:

MONTE CARLO	FULL FACTORIAL
Variable	Factor
Value	Level
Replication	Treatment

In the MONTE CARLO procedure a variable is any one of the random variables listed above. In the FULL FACTORIAL option, these random variables are called factors. Likewise, value and level pertain to any single value for any single random variable. Replication and treatment are also essentially synonymous, and are explained in the following.

In the MONTE CARLO option, each replication represents a simulation of a full-scale test. For example, suppose there were 250 fragments recovered in a small-scale test representing a particular munition. Each random variable associated with the fragments would have a known or assumed range of uncertainty. Random numbers are then used to designate a particular value for each random variable. Trajectories would be calculated for each of the 250 fragments with an effective number of fragments associated with each trajectory commensurate with the full-scale stack. Hazardous intersections with the target would be recorded and accumulated in the program. This would constitute one replication. Because of the uncertainty in the random variables, this would constitute only one possible outcome for the full-scale ammunition stack under consideration. As a result a second replication would be conducted using a new set of random numbers to define new values for the random variables. A new outcome would be produced and would be recorded and accumulated along with the outcome of the first replication. This procedure would continue until the outcomes of as many as 60 replications were recorded and accumulated. At that time the program calculates the desired hazard statistics from the hazard data in each replication. These final statistics can be in the form of averages, minima, maxima, percentiles, etc. If there were 250 fragments and 60 replications, then the program would have to calculate $250 \times 60 = 15000$ complete trajectories. Trajectory calculations consume about 90 percent of the program running time. The remaining 10 percent is taken up with bookkeeping (recording and accumulating hazard data) and output calculations.

The FULL FACTORIAL option differs from the MONTE CARLO option only in the way the values of the random variables are selected. In the MONTE CARLO option, if we had 60 replications, then 60 different values for each random variable for a particular fragment would be selected. For example, suppose a single

fragment had an elevation angle somewhere between 20 and 30 deg as determined in the small-scale test. We would only know that the fragment elevation was between these two limits and not its exact value. For each replication we would use a random number to specify the exact value of the cievation angle for that particular fragment; that is, 60 different angles between 20 and 30 deg. In the FULL FACTORIAL option, only a few levels would be specified. For example, taking three random variables (factors) -- elevation angle, height of origin, and drag coefficient, the levels might be specified as follows:

FACTOR	<u>LEVELS</u>
E	0.1, 0.5, 0.9
Н	0.5
$C_{\mathbf{D}}$	0.1, 0.9

The levels represent the percent up from the minimum. In the previous example, the elevation angle for the fragment was known to be between 20 and 30 deg. The levels being 0.1, 0.5, 0.9 the corresponding angles to be considered in the FULL FACTORIAL option would be 21, 25 and 29 deg. These would be the only angles considered. The treatments would be all the combinations of the three factor levels as presented below:

TREATMENT	FACTOR LEVELS
1	E (0.1), H (0.5), C _D (0.1)
2	$E(0.1), H(0.5), C_D(0.9)$
3	$E(0.5), H(0.5), C_D(0.1)$
4	$E(0.5), H(0.5), C_D(0.9)$
5	$E(0.9), H(0.5), C_D(0.1)$
6	$E(0.9), H(0.5), C_D(0.9)$

The number of treatments is equal to the product of the number of factor levels, $3 \times 1 \times 2 = 6$. Since H has only one level, it is constant throughout the procedure. This might be the case if we knew from previous experience that the outcome was insensitive to this variable. Again, trajectories would be calculated for all 250 fragments for each treatment using the factor level combinations given above. The recording, accumulating, and output would be calculated in the same way as for the MONTE CARLO option.

Each of the calculation options has its strengths and weaknesses. The nature of the problem being considered will usually dictate the choice. The program as written in this report uses a personnel target. However, with modification, the FRAGHAZ program has been used to evaluate barricades and compute probability of hit for vehicles moving on a public traffic route.

HAZARD VOLUME

Figure 1 shows the essential elements of the model. Since interaction areas overlap at relatively short distances downrange, all fragments are assumed to emanate from a vertical line at the center of the stack. The height of the vertical line is made consistent with the typical stack height of the ordnance under consideration. The height at which an individual fragment originates is selected randomly for the MONTE CARLO option and at specific levels for the FULL FACTORIAL option. A pie-shaped sector is used to

simulate the downrange hazard volume. A hazardous fragment is only of concern when its trajectory lies within the pie-shaped hazard volume. The height of the sector is equal to the height of the target selected. In Figure 1, this height is shown for a personnel target. The angular width of the sector is typically 10 deg. This value has been selected to match the 10-deg sector width used in the fragment pickup from full-scale tests. In this way, one can compare the program predictions with actual pickup test data to gage the validity of the computer model. The hazard volume is divided into 100-ft segments from zero to the maximum range specified for the program calculations. Without wind, the maximum calculated range is on the order of 4800 ft. All calculations of fragment numbers, fragment density, and probabilities of hit are made with reference to these 100-ft segments. Later in the simulation, the results in each 100-ft segment may be combined to yeld results for 200, 300, and 400-ft increments. These larger increments sometimes assist in plotting and interpreting the output data.

FIGURE 1. STACK FRAGMENTATION SIMULATION

FRAGMENT TRAJECTORY

Figure 2 shows a more detailed picture of the fragment trajectory. Wind is included as a twodimensional velocity vector, which can have both range and cross-range components. There is no vertical component to the wind vector, since this is seldom reported in practice. The wind, therefore, is always contained in a horizontal plane at the point of calculation. The origin of the trajectory is at a designated height selected by the MONTE CARLO or FULL FACTORIAL option. The trajectory is calculated using a fourth-order Runge-Kutta routine. Calculations can be made in three dimensions with the effects of wind included. The Runge-Kutta routine requires only initial conditions for fragment velocity and elevation angle at the origin. These conditions are obtained from small-scale arena tests of the munition being considered. Each point along the trajectory is calculated from the conditions existing at the previous point. The velocity and trajectory angle are computed at each point. When the trajectory is within the hazard volume, the kinetic energy of the fragment is calculated and compared with the hazard kinetic energy criterion to determine whether the fragment is hazardous or not. The trajectory angle is used in subsequent fragment density and probability of hit calculations. Range, cross-range, and distance are computed and are used for associating the hazard to a particular 100-ft-hazard segment. Currently, the initial fragment velocity vector is constrained to the vertical X-Y plane. However, since the model uses a true three-dimensional routine, there is complete three-dimensional freedom for establishing the initial conditions. Trajectory calculations are made for each fragment recovered in the small-scale arena test.

A tail wind has three adverse effects on hazard conditions. First, a tail wind will increase the range of a fragment. Second, it will increase the striking velocity of a fragment thereby increasing its hazard to the target. Third, a tail wind will decrease the angle of strike thereby increasing the presented area of a target with a large vertical dimension (a man for example). The increased presented area results in larger probabilities of hit. The increased range due to a tail wind is approximately equal to the time of flight multiplied by the wind speed. In the far range where the time of flight can be approximately 10 sec, a tail wind speed of 50 ft/s will result in a range increase of about 500 ft.

FIGURE 2. FRAGMENT TRAJECTORY

Figure 3 shows the two types of trajectories considered in the FRAGHAZ model. The normal or non-ricochet trajectory has been considered previously. The ricochet trajectory is based on experiments conducted by the Ballistic Research Laboratories at Aberdeen, Maryland, in the late 1960s. In both types of trajectories the points at which the fragment strikes the ground and either enters or leaves the hazard volume (large dots in Figure 3) are accurately calculated in the model. This permits the hazard data to be definitely associated with the proper 100-ft hazard segment. When a fragment impacts the ground, its impact angle is compared with a critical ricochet angle to determine whether the fragment will ricochet. The critical ricochet angle is dependent on the type of soil. Once it is determined that the fragment will ricochet, the angle and velocity of ricochet are determined from the incident angle and velocity together with the effect of soil type.

Since all the dynamic characteristics of the fragment are known at each point calculated in the Runge-Kutta routine, all fragment hazard data can be calculated at each point. When more than one point is contained in a 100-ft hazard increment, averages are used to determine the hazard data for the increment.

FIGURE 3. TYPES OF TRAJECTORIES

HAZARD CALCULATIONS

Figure 4 shows how hazard density and hazard probability of hit are calculated for a personnel target. The number of hazardous fragments (N_F) is dependent on the number of ordnance units on the face of the stack toward the target area. Since the trajectories are calculated point by point, the 100-ft hazard volume increment through which the trajectory is passing can be determined. The fragment mass and velocity are also known at each point and, therefore, it can be determined whether the fragment possesses sufficient kinetic energy to exceed the hazardous kinetic energy criterion. After the fragment has been determined hazardous, the presented areas of the target (represented as a parallelepiped) and of the total volume of the 100-ft hazard volume segment can be calculated in the plane perpendicular to the fragment trajectory. This can be done because the trajectory angle with respect to the horizontal is calculated at each point along the trajectory. Once the presented areas are known, the density and probability of hit can be calculated using the formulas shown in Figure 4.

¹Reches, M., Fragment Ricochet Off Homogeneous Soils and Its Effects on Weapon Lethality (U), Army Material Systems Analysis Agency Technical Memorandum No. 79, August 1970 (CONFIDENTIAL).

FIGURE 4. HAZARD CALCULATIONS

TYPICAL FRAGMENT DATA INPUT

Table 1 shows typical fragmentation input data. Each fragment recovered in the small-scale arena test has its own set of five elements.

TABLE 1. TYPICAL FRAGMENTATION INPUT DATA

Fragment No.	Polar Angle (deg)	Weight (grains)	Initial Velocity (ft/s)	A/M (in. ² /lb)	Presented Area Ratio (max/avg)
1	10	623	3246	10.24	1.73
2	10	815	3246	9.16	1.26
3	20	1522	4112	11.31	1.41
4	30	711	4112	6.43	1.64
		•		•	•
	-	•	•	•	•
	٠	•	•	•	•
		•	•	•	•
89	60	1152	5316	7.37	1.59
90	60	847	5316	8.68	1.42
91	70	1634	6123	11.74	1.65
	•	•	•		•
	•	•	٠		•
	-	-	•	٠	
	-		•		
247	100	1713	5312	8.62	1.59
248	100	652	5312	9.14	1.27
249	110	918	6597	6.23	1.64 j
250	110	1314	6597	11.89	1.59

Usually all fragments less than 300 grains are eliminated, since they seldom reach and are usually nonhazardous in the far-field. The upper bound of the polar zone is listed under Polar Angle. In this case, the polar zones are 10-deg wide. A polar angle of 70 deg identifies the 60 to 70-deg polar zone. The lower limit of the 10-deg elevation zone used in the program is equal to

EA = 90 - PA

where

EA =Lower angle of elevation zone

PA =Upper angle of polar zone

A 60 to 70-deg polar zone would therefore be associated with the 20 to 30 deg elevation zone as measured from the horizontal. A 100 to 110-deg polar zone would be associated with the -20 to -10-deg elevation zone. Currently the maximum critical ricochet angle is about 20 deg and, therefore, collection of fragments in polar zones greater than 110 deg is not necessary. In anticipation of possible future changes, tests have been designed to collect fragments to the 130-deg polar angle.

The fragment weight is measured by a scale and used in kinetic energy and A/M ratio calculations. The velocity is the average initial velocity for a particular 10-deg polar zone. As such, all fragments from the same polar zone have the same average initial velocity.

The A/M ratio is used in the drag equation. It is the ratio of the average presented area (in.2) to the weight (lb) of a fragment.

The Presented Area Ratio is the maximum presented area divided by the average presented area of the fragment. This ratio correlates with the low subsonic (M=0.1) drag coefficient. By using this ratio, the uncertainty in the drag coefficient for a fragment can be reduced by about 40 percent as explained under FUTURE IMPROVEMENTS (Drag Coefficients) in the DETAILED PROGRAM DESCRIPTION SECTION.

OUTPUT

There are three basic outputs for the program: Number of Final Ground Impacts versus Distance, Hazard Density and Probability of Hit versus Distance, and Number of Units Required to exceed the density and P-Hit Hazard Criteria versus Distance.

Number of Final Ground Impacts Versus Distance

Suppose we have 250 fragments representing the munition and we use 60 replications or treatments. For the first replication or treatment, the 250 fragments will come to rest in a set of 100-ft hazard segments. On the subsequent replication, the 250 fragments will come to rest with a different distribution because of the different values used for the input variables. We will end up with 60 different distributions of final ground impacts from ricochet and nonricochet fragments. The 60 values for each 100-ft hazard segment are then sorted from the smallest to the largest numbers. The first value in the sorted numbers becomes the minimum number of final ground impacts for the particular 100-ft hazard segment being considered. Likewise the 60th value is the maximum number. Adding all 60 values and dividing the sum by 60 yields the average number of final ground impacts for the associated 100-ft hazard increment. The minimum and maximum number are compared with actual ground pickup from full-scale tests. If the predictive capability of the program is valid, then the actual number of fragments picked up in a full-scale test (analogous to one replication or treatment) should fall within the maximum and minimum limits predicted by the program. Currently two such comparisons are available. Figures 5 and 6 show this comparison for 155mm projectiles and Mk 82 GP Bombs, respectively. The comparisons support the contention that the predictive capabilities of the program are valid.

Hazard Density and Probability of Hit

These quantities are handled similar to the number of Final Impacts. Assuming 60 replications or treatments, there will be density and probability of hit entries in each 100-ft hazard segment for each replication or treatment. By sorting from smallest to largest, we may establish minimum, maximum, and average values. In calculating these quantities, only those fragments exceeding the kinetic energy criterion are used.

An additional hazard measure is used in calculating hazard density and probability of hit. This measure is called a percentile value. The percentile measurement may be thought of as a confidence level. If we were to use a 90th percentile value, one could understand this to mean that we would be 90 percent confident that the hazard densities and probabilities of hit would not exceed the values listed. The 90th percentile value will have 10 percent of the distribution above it. For example, after sorting the 60 values at a particular 100-ft hazard segment, the 54th largest would be the 90th percentile value.

Number of Units to Exceed the Hazard Criterion

These data are used primarily for establishing the hazard ranges versus number of units for stacked munitions of interest to the DDESB. Two tables are output, one based on the hazard density criterion and one based on the hazard probability of hit criterion. Table 2 is an example of the output table based on the hazard density criterion. The number of units required is equal to the hazard density criterion (one hazardous fragment per 600 ft²) divided by the hazard density for one unit. Note the reciprocal nature of the calculation; the higher the hazard density the less the number of units required and the greater the hazard. Only the 90th percentile column is shown; the other columns would have analogous entries.

FIGURE 5. ACTUAL VERSUS PREDICTED RECOVERY DATA FOR 36 PALLETS OF 155MM PROJECTILES

FIGURE 6. ACTUAL VERSUS PREDICTED RECOVERY DATA FOR A SINGLE PALLET OF MK 82 BOMBS

TABLE 2. NUMBER OF UNITS REQUIRED TO JUST EXCEED THE HAZARD DENSITY CRITERION

Range	Minimum	90%	50%	Maximum
F0		0.10		
50		0.12	1	
150		0.24	}	l
250	1	0.43		
350		0.62		
450		2.31]
550		5.16		
650		8.14		
750		12.72		
850		27.35		
950		20.41		1
1050		34.63		
1150		53.12)	j l
1250		69.17		
1350		102:61		[
1450		94.83		1
1550		67.73		1
1650		108:12		
1750		84.73	1	
1850		150.71		
1950		230.63		
2050		214.91		
2150		335.26		
2250		999999.00		[
2350		999999.00		[

Note that the range (distance) is given as the midpoint of each 100-ft hazard segment and is ready for plotting. Four columns of data are provided, one each for the minimum, selected percentile, 50th percentile, and maximum number of units required to just exceed the hazard density criterion. From a practical standpoint, each column of numbers can present a problem of interpretation. For example, the entry at 850 ft is 27.35 and the entry at 950 ft is 20.41. This leads to a contradiction from a safety standpoint even though the entries are quite plausible. The lesser number of units required at the greater range implies that when we add units to a stack, the hazard range can decrease. Since 20.41 is contained in 27.35, the 20.41 number should predominate and the 27.35 point should be eliminated. A systematic way of going about point limination is to start at the top of the table and go down point by point. At each point, look back and if any revious points are equal to or greater than the point you are at then eliminate those points. Continue down n this way until you run out of points or all succeeding points are 999999.00. The 999999.00 points indicate no hazard; that is, no hazardous fragments are in those 100-ft hazard segments. When you are finished, you should have a set of points that are constantly getting bigger with range. Figure 7 shows both retained and eliminated points plotted versus hazard distance. If lines are drawn connecting the retained points, we form an upper bound. This upper bound can be somewhat erratic owing to the uncertain input data and the many non-linear relationships associated with trajectory calculations. A regression curve may be calculated using the retained points. A practical equation form for regression is:

$$R = A_1 + A_2 \ln N + A_3 \ln^2 N$$

where

R = Range or distance

N = Number of units required

ln = Natural log

 $A_1 A_2 A_3$ = Constants determined by regression

A regression program listing is contained in Appendix A. Figure 7 shows the regression curve for the retained points in Table 2.

SUMMARY

The FRAGHAZ computer model provides a flexible tool for predicting the fragment hazards of stacks of ammunition. The program has the inherent capability of considering the multidimensional problem posed by fragmentation hazards. The program has more than 200 variables. Its modular characteristics make it relatively easy to modify for specific problems like barricade effectiveness and public traffic route studies. The essential characteristics of the program are as follows:

- MONTE CARLO and FULL FACTORIAL options
- Individual three-dimensional fragment trajectories
- Two-dimensional wind vectors (horizontal plane)
- Fourth order Runge-Kutta trajectory calculations
- Fragment ricochet included
- Incorporates three-dimensional targets
- Can use different hazard criteria
- Air density and sound speed a function of altitude
- Storage sites may be at different altitudes
- Drag coefficient a function of the fragment presented area ratio and Mach number
- Predicts distribution of final fragment impacts in the ground plane
- Predicts hazard density, and probability of hit as a function of range for different hazard levels (MIN, PCT, 50th PCT, MAX)
- Predicts hazard distance values for different hazard levels (MIN, PCT, 50th PCT, MAX) as a function of number of units required in terms of two hazard criteria, density and probability of hit

FIGURE 7. NUMBER OF UNITS TO JUST EXCEED HAZARD CRITERION VERSUS HAZARD DISTANCE

DETAILED PROGRAM DESCRIPTION

INTRODUCTION

The FRAGHAZ program has been coded in Microsoft FORTRAN 77 for use with the IBM PC-AT. The Program Listing is contained in Appendix B. The variables are defined in Appendix C.

Although INPUT and OUTPUT may be in different units, all calculations within the program are made in terms of pounds-feet-seconds. Radians are used for all trigonometric functions and arc length functions.

The program is divided into 26 blocks with block 21 divided into three sub-blocks. The discussion that follows will describe the program block by block and line by line where necessary.

Lines 1-7

The first 7 lines of the program are reserved for the program title and any general remarks that seem appropriate. The command, \$LARGE, insures efficient handling of large arrays by the compiler. The command, \$DEBUG, insures that if an error occurs in the running program, the line number at which the error occurs will be included in the error message.

BLOCK-1. DECLARE DATA TYPES FOR VARIABLES, DIMENSION ARRAYS

The variables are divided by type into REAL, INTEGER, DOUBLE PRECISION, and CHARACTER. All DOUBLE PRECISION variables begin with the letter U. The U variables are listed in Block 25, the function subprogram to calculate random numbers. Two variables (XE and XD) not listed in Block 1 are listed in Block 26, subroutine INTSTP, which calculates the displacement integration step for the Runge-Kutta routine. All variables are defined in Appendix C.

Block 1 also assigns values to constants that do not change from run to run. Values are also given for constants that may change from run to run. For example, the height (HM), width (WM), and depth (DM) measurements for the target will change when a different target is used. The measurements shown are for an average male soldier² approximated by a rectangular parallelepiped.

BLOCK-2. VARIABLES TO BE INPUT AT RUN TIME-SELECT MONTE CARLO OR FULL FACTORIAL OPTION

The variables are entered on the monitor screen in answer to the WRITE prompt statements. The variables are sent to memory by the READ statements. The user may want to READ the variables from a disk data file, but this will require editing the data file repeatedly when running a variety of input combinations.

Lines 86-89

The Frag Data File name is entered and used later to input all necessary frag data. The file name is contained in the character variable called Q.

²Castard, G. H. et al, Evaluation of Explosive Safety Criteria, AD871194, May 1970.

Lines 90-91

The output file name designates the printer for all output data. The designation is LPT 1 and is contained in the character variable called NAM.

Lines 92-93

Only one target per run is allowed. The target description is contained in the character variable TS. The height, width, and depth measurements in BLOCK 1, lines 78 and 79 should be consistent with the target description.

Lines 94-97

The minimum and maximum soil constants are entered here. This is one of the random variables. If a constant soil constant is desired, then enter this value for both the minimum and maximum values. The soil constant affects the ricochet angle and velocity. It also determines the critical ricochet angle above which the fragment will not ricochet. Soil constants for various soils and ricochet equations are presented in Appendix E.

Lines 98-101

The height of the ammo stack and the stack inert ground standoff being simulated are entered here. Individual fragment heights of origin (HO) will be selected from between these two values. The stack height (HS) and stack inert ground standoff (SIGS) are depicted in Figure 8. The height of origin is a random variable. For a constant HO, enter the desired constant height for both HS and SIGS.

Lines 102-103

The number of interaction areas or units on the face of the ammo stack towards the target area is entered here.

Lines 104-105

The number of fragment multipliers is entered here. There will be one multiplier for each polar zone used in describing the fragmentation. The multiplier is the effective number of fragments for one interaction area (unit) and 1 deg of azimuth as defined by the small scale fragment arena test. Since ricochet occurs at incident angles less than 20 deg, polar zones need only cover the range of 0 to 110 deg. Normally the upper limit has been 130 deg to cover possible future changes in the maximum ricochet angle. The derivation of fragment multipliers is explained in Appendix D.

Lines 106-107

The number of fragments to be used in the simulation is entered here. Usually all fragments greater than 300 grains are used. The number of fragments includes all fragments recovered in the small scale arena tests between specified azimuthal limits.

FIGURE 8. STACK HEIGHT (HS) AND STACK INERT GROUND STANDOFF (SIGS)

Lines 108-110

いる のまたがい あいかん かんさい (1967年) はいないがい (1967年) はいない (1987年) 「これの (1987年)」 (1987年) 「これの (1987年) 「日本の (1987年) 「日本の (1987年)」 (1987年) 「日本の (1987年

The percentile criterion to be used in the output tables is entered here. The percentile may be looked at as the level below which the percent (percentile expressed as a percent) of occurrences takes place. For example, a 90th percentile level would be that level at which 90 percent of the occurrences have already taken place. Another way of looking at a 90th percentile level would be to say that on an average only 10 percent of the occurrences will be greater than the 90th percentile level. The variable PCTD is in decimal notation which will be used in all calculations.

Lines 111-119

The MONTE CARLO or FULL FACTORIAL option is selected nere. The flag RZ determines the appropriate path to be followed in the program.

If the MONTE CARLO option has been selected, then the number of replication is entered in lines 115 and 116.

Regardless of which option is selected the number of replications or treatments for which trajectory data is to be printed is entered in lines 117 and 119. This means that the initial and final conditions for each fragment trajectory will be printed for as many replications or treatments selected here. See test case output in Appendix II.

Lines 120-123

The maximum and minimum altitude of sites being simulated is entered here. This is one of the random variables. If a constant altitude is desired then enter this value for both the maximum and minimum values. The altitudes can be positive or negative depending on the site or sites being above or below sea level.

Lines 124-127

The maximum and minimum wind speeds are entered here. This is another of the random variables. If a constant wind speed is desired then enter this value for both the maximum and minimum values.

Lines 128-131

Wind direction is entered here. The wind direction is measured clockwise from the X-Y plane as shown in Figure 9. A tail wind is 0 deg. For practical hazard calculations, only a tail wind has been used to date. If a crosswind component is used, then fragments need not remain in the 10 deg hazard volume, and changes to the program may have to be addressed. Wind is always in a horizontal plane parallel to the ground plane at the current point of trajectory calculation. DW retains the wind direction in deg; WD is then changed to radians for calculations.

FIGURE 9 TRAJECTORY COORDINATE SYSTEM

Lines 132-135

The maximum computation range is entered here. To make all the output tables cover the desired range, the maximum computation range should be a multiple of 1200 ft. If the user selects too small a range, then the number of all fragments exceeding this range will be collected in a single memory location (TJ) and printed out. If TJ is greater than 0, then the user can rerun at a greater maximum computation range. Increasing the computation range does not significantly increase the running time for the program, it only increases the amount of paper used in the output tables. Following the input of the maximum computation range, a trap is provided to round the range to an even hundreds value. The new variable (MR) will be used in ail calculations.

Lines 136-137

The hazard kinetic energy criterion is entered here. Currently this value is 5—ft-lbs. If another type of hazard criterion is to be used then the hazard calculation in line 605 (BLOCK 18) will have to be changed to reflect the new hazard type. For example, 1—mentum, energy density, etc. might be used. For an upper bound; that is, all fragments considered hazardous, enter zero for the kinetic energy criterion.

Lines 138-139

The hazard density criterion is entered here. Currently this value is one fragment per 600 ft² (0.0016667) for personnel. For any other target the criterion will be 1/(100~A) where A, in ft², is a single characteristic value for the presented area of the target; e.g., average, maximum, etc. These density criteria correspond to an expected probability of hit of 0.01.

Lines 140-141

The hazard probability of hit criterion is entered here. To be compatible with the hazard density criterion, the value is currently set at 0.01. Changing targets does not affect this value. The probability of hit criterion includes the actual presented area of the target in the plane perpendicular to each trajectory while the hazard density criterion does not.

Lines 142-145

If the MONTE CARLO option is selected, then the random number generator seed is entered here. The seed variable (USE) is a double precision integer variable varying from 1 to 2147483646. The random number generator used in this program is quite portable; that is, it will produce the same string of random variables for a given seed on almost all computers. This permits the use of the same MONTE CARLO checkout procedure for many of the users with different computers. Additionally, it provides the capability of running the same MONTE CARLO problem by different users with different computers. Appendix F contains a description of the random number generator and a program listing, which the user can use to determine whether his computer will produce the same results with the portable generator.

Lines 147-148

Line 147 is a prompt to tell the user to insert the disk containing the appropriate fragmentation data designated by the file name entered previously in lines 86-89. For example the file name for 155mm projectiles is FFRG155M. After inserting the data disk, the user presses "ENTER" and the program continues.

Line 149

The program begins running and prints "FRAGHAZ RUNNING" on the screen to let the user know that the sequence has begun.

BLOCK-3. PRINT ALL ESSENTIAL CONDITIONS FOR RUN

Line 154

In line 154, the printer port (1) is open to direct all output to the printer.

Lines 155-177 and 184-199

These lines write to the printer all conditions affecting the run. Most of the lines write the data input in BLOCK-2.

Lines 178-183

These lines print the seed selected for the MONTE CARLO option and then with the variable Y calls the random number generator to produce the first random number from the seed. The random number contained in Y is not used. From here on, each random number is produced with the call RND (UDUM)

BLOCK-4. HEADINGS AND NUMBER FORMATS FOR OUTPUT TABLES

Lines 204-233

These are the headings and number formats in FORTRAN notation that will accompany the output tables. They should be familiar to a user versed in FORTRAN 77.

BLOCK-5. READ FRAGMENTATION DATA. IF APPLICABLE, READ FULL FACTORIAL DATA

Line 239

The fragmentation data file port (2) is open prior to reading the data in lines 240, 247, and 262, if the FULL FACTORIAL option has been selected

Lines 240-245

There are three parts to the fragmentation data contained on the fragmentation data disk. The first part is the fragmentation multipliers, usually 13, to cover the polar zone range from 0 to 130 deg and the complimentary elevation angle range from -40 to +90. The second part of the fragmentation data contains five variable characteristics for defining the initial conditions for each fragment. The above two parts pertain equally to the MONTE CARLO and FULL FACTORIAL options. The third part contains the levels for each random variable to be used with the FULL FACTORIAL option only.

The fragmentation multipliers are read in line 240 and then printed out in line 242. In lines 243-245, the multipliers are multiplied by the Azimuth Sector size (AS), usually 10 deg. Remember that the fragment multipliers are for one unit and one deg of azimuth as explained in Appendix D. Multiplication by the number of units specified in the input will take place later in BLOCK-18, line 584.

Lines 246-250

The five variables defining the essential characteristics for each fragment are read here. The five variables are: Polar Zone Upper Limit, Fragment Weight, Area to Mass Ratio, Average Initial Velocity, and Maximum to Average Presented Area Ratio. In lines 248-249, the elevation angle defining the elevation zone is calculated. For example, a polar angle (PA) of 30 deg would define the polar zone 20 to 30 deg. The complimentary elevation angle is equal to (90-PA), and in this case, would be 60 deg defining the elevation zone 60 to 70 deg. Likewise, a 120 deg polar angle would define the polar zone 110 to 120 deg and the complimentary elevation zone of -30 to -20 deg. Elevation angles are with respect to the horizontal, positive upwards, and negative downwards. A positive initial elevation angle is shown in Figure 9. The variables IE (F) and AE (F) are saved in deg for later use.

Lines 251-271

These lines apply only if the FULL FACTORIAL option has been selected (Option Flag RZ=0). In line 252 the heading "FACTOR LEVELS" is printed. In lines 253 to 259, the names of the seven random variables are assigned to the character array variable (H9). The reading of the levels for each random variable takes place in line 262. Note that the READ statement stipulates that on error go to 1128 (line 263). The last entry for the factor levels is a letter which causes an error in the READ statement that finishes the number of factor levels for that random variable. While reading each factor level, a count is kept in (NL (I)). When all factor levels are read, the number of treatments is calculated in line 266 as the product of the number of factor levels for each random variable. Note that the variable NR is used for the number of treatments, the same variable used for the number of replications in the MONTE CARLO option. As far as the FRAGHAZ program is concerned, the two options differ only in the manner in which the initial conditions are selected for each fragment. Lines 267-269 constitute a trap to stop the program if the number of treatments is greater than 100. If the user needs more than 100 treatments or replications, then the array variables (D6H), (PX) and (YN) will have to be redimensioned in BLOCK-1 by changing the first element of each from 100 to the desired maximum number of treatments or replications desired.

Line 272

The fragmentation data file is closed here. At this point all necessary fragmentation data have been read.

Lines 273-279

The number of treatments or replications and the number of treatments or replications to be printed are printed out here depending upon the value of option flag (RZ). The number of treatments or replications to be printed means that the initial and final conditions for each fragment trajectory will be printed out for as many treatments or replications specified. This output is good for making spot checks to insure that the FRAGHAZ program is running as intended.

BLOCK-6. BEGIN REPLICATION OR TREATMENT LOOP-SET CONDITIONS

Line 284

The maximum range variable (MR) is expressed in hundreds of feet.

Lines 289-293

The probability of not hitting the target (PX(T,R)) is initialized for all replications or treatments and for each 100-ft range increment. The null value is one because the variable is the probability of not hitting the target. The probability of hitting the target is 1-PX (T,R).

Lines 295-296

The replication or treatment counter (T) is set back to zero in line 295 after its use in the previous DO loop. In line 296, the flag RZ determines whether we will follow the MONTE CARLO or FULL FACTORIAL option in controlling the replication or treatment loop.

Lines 297-299

If the MONTE CARLO option has been chosen then the replication counter is incremented in line 297. The loop will be complete when the IF statement in line 298 is satisfied. The return terminal point for the replication loop is line 709. When the IF statement in line 298 is satisfied we go to 3570 (line 718) and start the SORT routines which follow the completion of all trajectory calculations.

Lines 301-322

This is the treatment control loop used when the FULL FACTORIAL option is chosen. It is controlled with GOTO statements. Variables F1 thru F7 correspond to the seven random variables named in lines 253-259. The array variables NL(1) thru NL(7) contain the number of levels associated with each of the seven random variables. For the first treatment, all variables are set to their first level and the treatment counter (T) is incremented in line 322. Note that the treatment counter is the same as that used to count MONTE CARLO replications. When this treatment is completed, the program is returned to 1169 (line 320) by the GOTO statement in line 711. At 1169 (line 320), F7 is incremented. This continues until F7 is greater than NL(7) at which time we GOTO 1168 (line 317). In line 317, variable F6 is incremented to its second value and F7 is returned to 0 and then incremented to its original first value. We then increment thru F7 again until F7 is greater than NL(7). In this way we work up the ladder and produce all the combinations for the factor levels of the seven random variables. Ultimately we get to the point where all combinations (treatments) have been run and satisfy the IF statement in line 303. At this point we GOTO 3570 (line 718) and start the SORT routines which follow the completion of all trajectory calculations.

Lines 324-335

Here we calculate the values for the soil constant, altitude, and wind speed for each replication or treatment. Factor levels are used in establishing the values of the three random variables when the FULL FACTORIAL option is selected. When the MONTE CARLO option (RZ=1) is selected, random uniform numbers between zero and one are used by calling the RND function with RND (UDUM). In either case, if we had entered the same value for the maximum and minimum values of any of the three random variables, then the random variable would remain constant at this value over all replications or treatments.

Lines 337-343

Here we set the loop variable (XL) and the flag (EZ) which will be used in the Runge-Kutta routine, lines 528 and 520. When there is no cross-range component of wind, XL=4 and EZ=0, then all calculations will be in the X-Y plane only. When there is a cross-range component, then trajectory calculation will also be made in the Z (cross-range) direction (XL=6 and EZ=1).

Lines 345-348

The soil constant, altitude, and wind speed are printed out at the top of the trajectory tables in lines 345 and 346. We change to a compressed mode of about 17 characters per in. for the trajectory table heading and the actual trajectory values with the printer call in line 347. The heading for the trajectory table is printed in line 348. An explanation of the heading elements is given in Appendix H.

Lines 349-353

The average total and hazardous probabilities of not hitting the target are initialized to one at the beginning of each replication or treatment. These variables will be used in calculating the average probability of not hitting the target.

BLOCK-7. BEGIN FRAGMENT LOOP-SET HEIGHT OF ORIGIN AND ELEVATION ANGLE

Line 358

The fragment loop begins here. We will calculate trajectories and accumulate statistics for each. fragment in each replication or treatment.

Line 359

The number of rebounds (ricochets) is set to zero at the beginning of each trajectory calculation.

Lines 360-368

The random variables (HO-Height of Origin) and (E-Elevation Angle) are set for each fragment trajectory. The procedure is accomplished with a Factor Level for the FULL FACTORIAL option (RZ=0) or with a Uniform Random Number (zero to one) for the MONTE CARLO option. Note that if the same value has been input for the HS and the SIGS then HO will be constant for all fragment trajectories and all replications or treatments. The variable HO is shown in Figure 9. The variable ES is the elevation zone size, normally 10 deg. As such, the uncertainty in the elevation angle is also 10 deg. Note we divide by (B) to express (E) in radians for trajectory calculations. Two variables (XE) and (YE) are expressed in deg for later use.

Lines 370-374

Here the flag (CY) is set to one if HO is greater or equal to the target height (HM), which means that the fragment starts at the top or above the hazard volume. The flag is set to zero if the fragment starts within the hazard volume. This flag is used in conjunction with the flag (CX) to determine the range at which the fragment pierces the roof of the hazard volume when coming from below. The use of this flag will be discussed in detail in BLOCK-17.

BLOCK-8. SET REMAINING INITIAL CONDITIONS FOR CURRENT FRAGMENT

Line 379

The variable (FG) is defined and will be used in calculating the kinetic energy of the fragment in line 605.

Line 380

The variable (RL-Range Last) is set to zero. This variable is used to determine when a fragment trajectory passes from one 100-ft increment to another in the hazard volume. A number of variables must be reset when this occurs (see lines 562 to 578). The variable (RL) is expressed in hundreds of ft to be compatible with the variable (R). For example, when (R) or (RL) equals 7 we know we are dealing with the 600 to 700-ft range increment.

Lines 382-394

Here we prevent the elevation angle from being 0 or 90 deg. Such values would cause trouble later when we must make calculations using the sine and tangent of the elevation angle. The highest positive elevation permitted is 89.99 deg. The lowest positive elevation angle permitted is 0.01 deg. The highest negative elevation angle permitted is -0.01 deg.

Line 395

Here we call the Integration Step Subroutine (BLOCK-26). Although the Runge-Kutta routine will use a time step, using a displacement step can, under certain conditions, speed up the program by a factor of 10. The displacement step is converted to a time step by dividing it by the current magnitude of the fragment velocity vector. Details of the displacement step will be explained when we get to BLOCK-26.

Lines 397-407

The value of fragment initial velocity is computed here. This is one of the random variables. From experience, the approximate error in measuring average initial velocity for a polar zone is between plus and minus seven percent of the measured velocity. This is due to instrumentation error. The error is assumed to fit a normal distribution with one sigma equal to three and one-half percent of the measured average velocity. For the FULL FACTORIAL option (RZ = 0), the velocity factor levels are expressed in sigmas. For the MONTE CARLO option (RZ = 1) we make use of a Standard Normal Random Number generator (lines 400-403) with a mean of zero and a variance of one. This generator which uses two Uniform Random Numbers (zero to 1) and produces two Standard Normal Random Numbers (N1 and N2) has been described in the literature. Again one sigma is taken as three and one-half percent of the measured average velocity for the polar zone. Note that only N1 is used. N2 is a spare for possible future use. Finally, the value of initial velocity for the fragment is saved in variable (XV) for output in the trajectory tables.

³Box, G. E. P. and Muller, M. E., A Note on the Generation of Random Normal Deviates, Analysis of Mathematical Statistics, (1958) Vol. 29, pp 610-611.

BLOCK-9. ESTABLISH DRAG PARAMETERS

Lines 412-421

Here we calculate the anchor point (D1) and three pivot points (D2, D3, D4), which will be used in BLOCK-14 to produce the straight line approximations to the drag curve. The state of knowledge concerning drag for irregular fragments is such that a complicated curve cannot be justified. Each fragment in each replication or treatment has its own drag curve approximation depending on its maximum to average presented area ratio. The drag coefficient is a sensitive parameter. The low subsonic drag coefficient can vary from 0.5 to 1.5 depending on the shape of the irregular fragment. Going from 1.5 to 0.5, the drag coefficient for a typical far-field trajectory can produce a doubling of range.

The drag coefficients used in the FRAGHAZ program were derived by tests in a vertical wind tunnel.⁴ Ninety-six fragments were tested by controlling the vertical air stream until the fragment was suspended in vertical equilibrium. At this point, the drag coefficient can be calculated as shown in Figure 10 because the drag force and the weight (W) of the fragment are equal. The velocity (V) and the density of the air (p) are measured at the time of vertical equilibrium. For these tests the characteristic area (A) was the average presented area of the fragment in all cases. The equation at the bottom of Figure 10 is applied with appropriate units to make C_D dimensionless.

Since C_D is dimensionless, any correlating parameters must also be dimensionless. A great number of dimensionless ratios were attempted. These were based on linear, area, perimeter, variances, and moments of inertia. The best correlation was obtained with the dimensionless ratio-Maximum to Average Presented Area. The results for all 96 fragments are shown in Figure 11. The upper and lower limits of uncertainty are shown as straight lines which are used to calculate specific values of the low subsonic C_D for either the MONTE CARLO or FULL FACTORIAL option. Since each C_D for each of the 96 fragments tested applies only to the velocity (Mach Number) recorded when the fragment was suspended in vertical equilibrium, we have only one point on the drag curve. In the tests, the Mach Numbers were approximately 0.1. These C_D values are used as anchor points for constructing the straight line approximations to the C_D curves for irregular fragments having given maximum to average presented area ratios. Note that Figure 11 applies to fragments of any material because C_D is a function of shape only (including surface roughness).

For the vertical wind tunnel tests, three regular fragments were used as a check on the data presented in an earlier report on fragment drag coefficients.⁵ The three regular fragments were a sphere, cube and a bar $(1\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \text{ in.})$. In the Dunn and Porter report, values of C_D for these fragments were given at a Mach number of about 0.75. When these values were compared, the following relation was observed:

	$C_D (M \approx 0.1)$ Wind Tunnel	$C_D (M \approx 0.75)$ Dunn and Porter	Difference
Sphere	0.42	0.60	+0.18
Cube	0.64	0.88	+0.24
Bar	0.94	1.12	+0.18

⁴McCleskey, Frank, Drag Coefficients for Irregular Fragments, Naval Surface Warfare Center, TR 87-89, February 1988.

⁵Dunn, D. J. Jr., and Porter, W. R., Air Drag Measurements of Fragments, BRL memorandum Report No. 915, August 1955 (UNCLASSIFIED).

$$F_D = DRAG \ FORCE = \frac{C_D \rho AV^2}{2}$$

W = FRAG WEIGHT

$$F_D = W = \frac{C_D \rho AV^2}{2}$$

$$c_D = rac{2W}{
ho_{AV2}}$$

FIGURE 10. EXPERIMENTAL DRAG COEFFICIENT

FIGURE 11. DRAG COEFFICIENT (CD) VS. PRESENTED AREA RATIO (AR)

Owing to the consistency of the differences, we have chosen to designate the first pivot point at Mach Number 0.75 with a C_D 0.2 larger than the C_D at Mach Number 0.1. As such, we have a reasonably good approximation to the shape of the subsonic drag curve. This is important because about 75 percent of the range for a typical far-field fragment is traveled at subsonic velocities.

The remainder of the straight line approximations to the drag curve for each fragment are shown in Figure 12. The level of the straight line approximation is totally dependent on the anchor point (D1) value selected from Figure 11 for any particular fragment. Each pivot point is determined by adding a constant value to the value of C_D for the anchor point. The constant values for determining pivot points two and three are approximations based on the study of data contained in two reports. 5.6 These data were quite scattered. Note in Figure 12 that the C_D above Mach Number 2.5 is constant at the value designated at the Mach Number 2.5 pivot point.

^{*}Daniels, et al., Subsonic, Transonic and Supersonic Drag Characteristics of Nine Shape Categories of Warhead Fragments, NSWC TR 81-112, May 1981.

FIGURE 12. STRAIGHT LINE APPROXIMATION TO FRAGMENT CD CURVES

To use Figure 11, we must be able to measure maximum and average presented area for any irregular fragment. This can be done with a gage such as the Icosahedron Gage. If a gage is not available or the fragment will not fit the gage, then a good approximation may be made using an equivalent volume and weight parallelepiped. First measure average length and width for the fragment as shown in Figure 13. Usually length is taken as the largest dimension and thickness the smallest. Then calculate average thickness using the equation given in Figure 13. With the average values for length, width and thickness, average presented area and maximum presented area can be computed using the equations shown in Figure 14.

Lines 412 and 413 contain straight line equations for the high (CH) and low (CL) limits of C_D uncertainty for a given maximum to average presented area ratio (AR2(F)). The uncertainty is shown in Figure 11. The area ratio is the last of the five quantities read from the data disk for each fragment. In lines 414-418, the specific value of C_D , at a Mach Number of approximately 0.1, is calculated for the FULL FACTORIAL option (RZ=0) or the MONTE CARLO option (RZ=1). For the FULL FACTORIAL option we use the current factor level for C_D . For the MONTE CARLO option we use a uniform random number (zero to one). The variable D1 is the anchor point in Figure 12.

AVERAGES

FOR EQUIVALENT WEIGHT AND VOLUME

$$T_{AVG} = \frac{WT}{L_{AVG} \cdot W_{AVG} \cdot \rho}$$

WT = FRAG WEIGHT (Ib)

LAVG = AVERAGE LENGTH (in.)

WAVG = AVERAGE WIDTH (in.)

 $\rho = FRAG DENSITY (lb/in.3)$

 $\rho = 0.28$ (STEEL)

FIGURE 13. FRAGMENT AVERAGE LINEAR DIMENSIONS

Finally, in lines 419-421, we compute pivot points 2, 3, and 4 (D2, D3, D4) by applying the constant offsets to the anchor point shown in Figure 12.

The data calculated here will be used later in BLOCK-14 to calculate C_D as a function of Mach Number throughout the trajectory of each fragment.

BLOCK-10. SET INITIAL CONDITIONS FOR FRAGMENT TRAJECTORY

Lines 426-432

The Runge-Kutta routine used to calculate a trajectory requires initial velocity and displacement conditions. The calculated velocity and displacement conditions at the next point require the velocity and displacement conditions at the current point. The displacement along the trajectory from point to point may be a matter of 4 in. or as large as 70 ft depending on conditions. The DI array variables are defined as follows:

- DI (1) Accumulates time of flight in seconds. Not part of the Runge-Kutta calculations
- DI (2) Range (X) component of velocity (ft/s)
- DI (3) Range (X) component of displacement (ft)
- DI (4) Altitude (Y) component of velocity (ft/s)
- DI (5) Altitude (Y) component of displacement (ft)
- DI (6) Cross-Range (Z) component of velocity(ft/s)
- DI (7) Cross-Range (Z) component of displacement (ft)

(EQUIVALENT WEIGHT AND VOLUME RECTANGULAR PARALLELEPIPED)

AVERAGE = 0.5 (L·W + L·T + W·T)

$$MAXIMUM = ((L·W)^2 + (T·L)^2 + (T·W)^2)^{1/2}$$
Post Title Diagram Trace

FIGURE 14. FRAGMENT PRESENTED AREA MEASUREMENTS

Note that even indices are for component velocities and odd indices are for component displacements. Since DI (6) and DI (7) are initially zero, the trajectory always begins in the X-Y plane. Only if a crosswind is specified, will there be crosswind components of velocity and displacement. Throughout the Runge-Kutta procedure, calculations from one point to the next will be made in terms of X, Y, and Z velocity and displacement components. To calculate the total velocity and displacement we use the square root of the sum of squares of the component values. Throughout the FRAGHAZ program there is no use of matrix algebra; all calculations with regards to vectors are made with straightforward trigonometric procedures. The signs for component velocities and displacements are as follows. Altitude (Y) component velocity (DI (4)) is positive when the trajectory is ascending and negative when the trajectory is descending. Range (X) and Cross-Range (Z) velocities (DI (2) and DI (6)) are always positive. Altitude (Y) displacement (DI (5)) is positive above ground level and negative below ground level. Range (X) and Cross Range (Z) displacements (DI (3) and DI (7)) are always positive. DI (4) and DI (5) will be used repeatedly to sense trajectory conditions. At this point we have completed the entry of all conditions necessary for the calculation of the first fragment trajectory.

BLOCK-11. BEGIN TRAJECTORY CALCULATIONS

Line 437

We compute the magnitude of the initial fragment velocity vector here. This is the point we will return to after completing the integration to the next point. We always start an increment knowing the velocity and displacement at the end of the previous increment. The velocity, modified by wind if applicable, is necessary for defining the component drag accelerations.

Line 438

This is the standard time increment of integration using the displacement increment obtained previously from BLOCK-26. This time increment may be replaced in BLOCK-12 depending on conditions.

Lines 439-440

Here we compute the last elevation angle (LE); that is, the one existing at the end of the last increment of integration. In line 440 we prevent this angle from becoming zero because of subsequent sine and tangent operations. This angle is used in linear predictions to control the trajectory in or near the pie-shaped Hazard Volume. Note how the X, Y, and Z components of velocity are used to calculate (LE), and that (LE) is an absolute value. The angle (LE) will be used in calculations which require a positive sign for the elevation angle (E). The elevation angle (E) is positive for an ascending trajectory and negative for a descending trajectory.

BLOCK-12. COMPUTE SPECIAL TIME INCREMENT IF CONDITIONS DICTATE

Lines 445-459

Here we compute special time steps when we are near or within the Hazard Volume. These calculations pertain only to a descending trajectory (DI (4) < 0). Ascending trajectories within the Hazard Volume will be addressed in BLOCK-17. In either case, we are determining an accurate range at which the trajectory pierces the top of the Hazard Volume or the ground plane as shown by the large dots in Figure 3. This is done so that we can accurately assign hazards to the proper 100-ft increment of the Hazard Volume.

We will start with line 452 where the altitude at the beginning of the current integration step is above the Hazard Volume. When the altitude (DI (5)) is less than XD + 12 then we make a linear prediction from the current point to the top of the Hazard Volume and compute a time increment which will bring us near, but above the top of the Hazard Volume. Lines 455 and 456 checks to see if the linear prediction is less than the height of the Hazard Volume (HM) and if so, computes a new time increment to bring us closer to the top of the Hazard Volume. The new time increment supercedes the previous one. After completing this integration step we are very close to the top of the Hazard Volume and the new linear prediction in lines 457-458 will be nearly coincident with the curved trajectory. We then compute a time increment which will bring us just below the top of the Hazard Volume, a matter of a fraction of an inch. We add two microseconds to this time increment to prevent having to make more than one step to place us just below the top of the Hazard Volume. The range at this point will tell us what 100-ft increment the trajectory first encounters so that we may properly designate hazard statistics.

Lines 446-451 do the same thing by taking the trajectory from just below the top of the Hazard Volume to a point just below ground; again a matter of a fraction of an inch. This will accurately define the range at which the fragment strikes the ground and either stops or ricochets. All of the calculated special time increments have been derived empirically by running thousands of trajectories.

NSWCTR87-59

Line 460

A special time delay (0.1 s) is assigned for high elevation trajectories to permit stable operation of the Runge-Kutta routine going around a tight turn at the top of the trajectory at very low velocities.

Line 461

A special time increment (0.08 s) is assigned after two or more ricochets have occurred and the fragment velocity has fallen below 150 ft/s. Again, this is to insure Runge-Kutta stability and accuracy.

Line 462

Finally, time of flight is accumulated in DI (1). Note that as we go down the list of special time increments, each one calculated will supercede all previously calculated time increments. If none of the special time increments apply, then the standard time increment in line 438 applies.

BLOCK-13. BEGIN RUNGE-KUTTA ROUTINE AND CALCULATE WIND EFFECTS

This begins the outer loop for the trajectory calculations. The constant (KM) is set (lines 468-472) and will be used in the calculation of the velocities in each component direction (line 535) for the fourth-order Runge-Kutta routine. In the outer loop, fragment velocity, air density, and drag coefficient must be updated before calculating the constants (XK (I, J)) in line 530.

Lines 473-491

Here we have three alternatives depending on the wind conditions. First (lines 473-476) we have the case for no wind and we need only make calculations for the X-Y plane. We calculate (VP), the total velocity of the fragment which will be used in calculating acceleration in line 515. The angles (AY) and (AX) will be used to calculate the X and Y components of acceleration in lines 516 and 518. The second alternative is given in lines 477 to 482. Here we have a tail wind (DW = 0) and we must include the wind velocity in the X-Y plane. Wind is in a horizontal plane and we need only be concerned with the X (Range) component. Again we compute (VP), (AY), and (AX) for use in the acceleration equations. The third alternative includes a crosswind and we address this factor in lines 484-490. Since wind is in a horizontal plane we need only be concerned with adding its effects in the X and Z directions. Again we compute (VP), (AY), (AX), and also (AZ) for use in the acceleration equations. Remember that all calculations will be made in the component directions. Total velocity and displacement can be calculated at any time by using the square root of the sum of squares of the components.

BLOCK-14. CALCULATE AIR DENSITY, MACH NUMBER, AND CD

Lines 496-510

This part of the outer loop updates air density and the drag coefficient in the calculation of the four Runge-Kutta constants.

Air density is calculated in line 496 as a function of altitude (DI (5)). Actually, it is one-half the air density. The factor one-half is incorporated here rather than in the acceleration equation in line 515. The equation for air density is taken from a standard text. Note that we add (DI (4) * DLT/2) to the altitude. We do this because in the Runge-Kutta routine we calculate the four constants of integration only from acceleration to velocity. We use three of these constants to calculate the component displacements directly. As such we do not have an updated altitude for calculating successive Runge-Kutta constants. We therefore put the altitude approximately between the starting and ending of the trajectory integration increment.

The Mach number equation (line 497) is taken from the text mentioned above and we add the same small altitude correction as we did for air density.

In lines 498-510 we calculate the drag coefficient as a function of Mach Number using the C_D points D_1 , D_2 , D_3 , and D_4) calculated in BLOCK-9. These equations represent straight line approximations to the drag curve shown in Figure 12. The drag coefficient is used in the acceleration equation in line 515.

BLOCK-15. CALCULATE VELOCITIES AND ACCELERATIONS

Lines 515-523

Line 515 is the total acceleration equation. It is nothing more than an application of the Newtonian equation: F = ma. In lines 516, 518, and 521 if applicable, we designate the X, Y and if applicable, the Z components of acceleration. Note the signs associated with these components and the fact that the acceleration due to gravity (G) is placed in the Y component of acceleration. The variables DO (3), DO (5), and DO (7) are not used in the Runge-Kutta calculations which follow but have been left here should the user want to make the integration from velocity to displacement by calculating an additional four Runge-Kutta constants.

BLOCK-16. BASIC RUNGE-KUTTA CALCULATIONS

Lines 528-537

There are many ways of coding a fourth-order Runge-Kutta procedure. The procedure here is described in a Numerical Analysis text. This BLOCK constitutes the inner loop of the procedure. Note that we calculate only four constants XK (1,J), XK (2, J), XK (3, J), and XK (4, J), where the J's are 2, 4, and 6 representing the X,Y, and Z component directions. Component velocities at the end of the integration step are calculated in line 532. Component displacements are calculated in line 533 using the first three of the four Runge-Kutta constants. Using this technique, we can cut the running time substantially. The inner Runge-Kutta loop ends in line 537, the outer loop of the Runge-Kutta routine ends in line 538.

⁸Morrison, R. B. and Ingle, M. J., Design Data for Aeronautics and Astronautics, John Wiley and Sons, Library of Congress Catalog Number 61-17267, p. 4, 1962.

⁹Scarborough, J.B. Phd., *Numerical Mathematical Analysis*, Sixth Edition, The Johns Hopkins Press, p. 361, 1966.

BLOCK-17. CHECK LOCATION OF FRAGMENT AND MAKE HAZARD VOLUME CALCULATIONS IF APPLICABLE

At this point, we have completed an integration increment and have the component velocities and displacements existing at the end of the increment. These values (DI (2) to DI (7)) were calculated in lines 532 and 533.

Lines 544-545

Here we compute the designator for the 100-ft range increment. For example, if the range were 738 ft then (R) would equal eight designating that the fragment was in the 700 to 800-ft range increment. Line 545 puts the fragment in the special range increment (MR+1) if the fragment range is beyond the specified maximum calculation range. This fact will be shown in the variable (TJ) and will indicate in the output tables how many fragments exceeded the maximum calculation range so that we may increase the maximum calculation range for future runs.

Lines 546-560

Here we determine whether the fragment has pierced the top of the Hazard Volume from below. This will have occurred only if the unique combination of the flags CX and CY are CY = 0 and CX = 1, when we reach the ELSE statement in line 553. If line 553 is satisfied then we know that the end point of the increment is above the Hazard Volume and the starting point of the increment was below the top of the Hazard Volume. As such, we have pierced the top of the Hazard Volume from below. CY is immediately set to one to prevent subsequent consideration of piercing the top of the Hazard Volume until a ricochet may have occurred. CY is set back to zero in line 678 after a successful ricochet. CY is also initialized at the start of the trajectory in lines 370 to 374. In line 555, we calculate the difference in range from the end point of the increment to the point where the trajectory pierced the top of the Hazard Volume. A new range increment designator (R) is calculated which may be different than the designator (R) calculated in line 544. This procedure is different from the linear predictor procedure carried out in lines 445 to 459 to position increment end points just below the top of the Hazard Volume or the ground plane for descending trajectories. The difference is necessitated by the fact that as a trajectory progresses in the air the path of the trajectory is always curving downward; that is, diminishing elevation angle. Although a linear predictor might put the end point of the increment above the top of the Hazard Volume, the actual trajectory might just skim the underside of the top of the Hazard Volume.

If the fragment is below the top of the Hazard Volume, then lines 551 and 552 will direct us to the initializing block (lines 562-578) prior to entering BLOCK-18 where the basic output statistics are calculated. If the fragment is above the Hazard Volume and line 553 does not apply then we are directed to line 621 (5170) to begin the next increment.

Lines 562-578

If the 100-ft range increment designated by (R) for this current end point is different from the end point designator for the previous increment (RL) then we must initialize certain variables for BLOCK-18. If R=RL, then our current end point is in the same 100-ft increment as the previous end point and we proceed directly to BLOCK-18 to continue averaging hazard values for the 100-ft range increment.

BLOCK-18. ROUTINE FOR ACCUMULATING NUMBER OF FRAGMENTS, DENSITY, AND PROBABILITY OF NOT HITTING THE TARGET

There are three levels of accumulating, averaging, and ranking variables in the FRAGHAZ program. First we average for the trajectory integration end points in the same 100-ft Hazard Volume increment. Then we accumulate for each 100-ft increment, the contribution from each fragment in a single replication or treatment. Finally, we average or rank across all replications or treatments. Ranking is done in SORT routines so that we may specify minima, maxima, and percentile values for the appropriate variables. All final output variables except number of final impacts, and trajectories with range greater than the maximum calculation range, are based on the accumulations done here. The two mentioned variables are necessarily accumulated at the end of each trajectory. Common to density and probability of not hitting the target are two presented areas - total and target. Both presented areas are in the plane perpendicular to the trajectory.

The total presented area (TA) involves projecting the 100-ft range increment volume containing the current trajectory point into the plane perpendicular to the trajectory (Figure 15). The top of the increment is projected using SIN (LE). The mid-vertical panel, rather than the front vertical panel, is projected using COS (LE). The mid-panel is used to obtain a proper average. This can be seen qualitatively by considering the first increment (0 to 100 ft) of the pie-shaped Hazard Volume. Assuming a horizontal trajectory, the density would be infinite if the front vertical panel (area = 0) were used. Likewise, the density would be a maximum if the rear vertical panel were used. It is the mid-vertical panel which produces the average as the trajectory proceeds through the increment. The presented area of the increment (TA) is thus the sum of projected areas of the top and mid-vertical panels. It is the same for ascending and descending trajectories.

FIGURE 15. TOTAL PRESENTED AREA

The target presented area is shown in Figure 16. The target face (HM x WM) is always perpendicular to the plane of the trajectory. When the trajectory is descending, we project the top and front face, and the sum is the presented area of the target. When the trajectory is ascending, as after a ricochet, only the front of the target is projected. The top is masked by the front face and the bottom is in contact with the ground plane.

FIGURE 16. TARGET PRESENTED AREA

Probability of hit is based on the Poisson distribution which can be stated as follows:

$$P_{x} = \frac{\lambda^{x}}{x!} e^{-\lambda}$$

where

 \vec{P}_x = Probability of exactly x successes (hits)

e = Napierian base (2.718...)

 λ = Expected number of successes (hits)

$$\lambda = \frac{NX + MA}{TA}$$

where

NX = number of fragments MA = target presented area

TA = total presented area

The probability of exactly zero hits is:

$$P_o = e^{-\lambda}$$

Then the probability of one or more (at least one) hit is:

$$P_{>0} = 1 - P_o = 1 - e^{-\lambda}$$

To accumulate probability of hit for two or more trajectories, the equation is:

$$P_H = 1 - e^{-\lambda_1} \cdot e^{-\lambda_2} \cdot e^{-\lambda_3} \cdot \dots \cdot e^{-\lambda_n}$$

From this equation it should be clear why we accumulate the probability of not hitting the target as a product.

Line 584

Here we calculate the number of fragments connected with the current trajectory. Y2 is the fragment multiplier explained in Appendix D. We have previously (line 244), multiplied the fragment multiplier by the angular width (AS) of the Hazard Volume. Here we need only multiply by the number of units that were specified in the input to obtain the number of fragments associated with the trajectory.

Lines 585-586

We increment the counter (P) in line 585. This keeps track of the number of integration increment end points in the 100-ft increment being considered. If the 100-ft increment designator (R) set in line 545 or 557 exceeds the maximum calculation range we do not make any hazard calculations.

Lines 590-591

Here we accumulate the total (hazardous and non-hazardous) average number of fragments for the 100-ft increment designated by (R). Note that we accumulate for the first trajectory end point (P=1) only. The number of fragments is the same throughout the 100-ft increment.

Lines 592-598

Here we calculate the absolute value of the elevation angle. We then calculate the total presented area (TA) as described in Figure 15. The total presented area is the same for descending and ascending trajectories. We then calculate the target presented area (MA) as described in Figure 16. The vertical velocity (DI (4)) is positive for ascending trajectories and negative for descending trajectories.

Lines 599-601

Here we accumulate total (hazardous and non-hazardous fragments) density. Line 599 keeps a running average of the density at each integration end point with the counter (P). A running average is used so we will not have to go back and average after we leave the 100-ft increment being considered. Density at each point is NX/TA for the (N4) units specified. In line 600 we add the current running average to the accumulator (DT (R)). We divide the running average density by the number of replications or treatments (NR) to average over all replications or treatments. Since we are adding running averages, we must subtract the previous running average divided by (NR) using the variable (S1). The remaining variables are handled in essentially the same way.

Lines 602-604

Here we accumulate the probability of not hitting the target with the total (hazardous and non-hazardous) number of fragments. Note that here we multiply the running average of the probability of not hitting the target (XP) by the accumulator (PT(R)). As such, we must divide out the previous running average (S2).

Lines 605-606

Here we check to see if the fragments are hazardous by comparing the kinetic energy of the current fragment with the kinetic energy criterion. If the fragments are not hazardous we set the number of fragments associated with the trajectory to zero. This, in effect, averages in a zero for hazardous density and a one for hazardous probability of not hitting the target.

Lines 607-609

Here we accumulate the average number of hazardous fragments averaged over all replications or treatments. See lines 599-604 for discussion of (P) and (S) variables.

Lines 610-613

Here we accumulate hazard density. In line 611, the accumulator (DH (R)) is over all replications or treatments. In line 612 the accumulator (D6H (T, R)) is separate for each replication or treatment. This variable will be used to calculate minimum, maximum, and percentile values for hazardous density. See lines 599-604 for discussion of (P) and (S) variables.

Lines 614-619

Here we accumulate probability of not hitting the target. The running average (ZP) is for the number of units specified while (ZZP) is for a single unit. As such PH(R) is for the number of units specified while (PX (T, R)) is for a single unit. PX (T, R) will be used to calculate minimum, maximum, and percentile values for probability of hit. See lines 599-604 for discussion of (P) and (S) variables.

Line 620

The current 100-ft increment designator (R) is set equal to (RL). If the next integration increment end point should fall outside the current 100-ft increment, then this will be sensed in line 562 and all the applicable variables for this block will be initialized once more to make ready for the new 100-ft range increment.

Line 621

If the current altitude (DI (5)) of the fragment is greater than zero (ground level) then we go back to line 437 (2140) and start the next trajectory integration increment. If DI (5) is equal or less than zero then we have hit the ground and we pass to BLOCK-19 where we will consider ricochet.

BLOCK-19. CHECK FOR RICOCHET AND COMPUTE NEW INITIAL CONDITIONS FOR RICOCHETING FRAGMENT

Lines 627-628

Here we compute the current values of elevation angle and velocity. These are the incident values for possible ricochet.

Line 629

Here we terminate the trajectory if the number of ricochets is greater than six. This is necessary because under tail wind conditions and low fragment velocity, an endless loop can occur when the velocity lost in ricochet is made up by the tail wind.

Line 630

Here we test to see if the incident angle is greater than the critical angle and whether the velocity is less than 20 ft/s. In either case, the trajectory is terminated. Note that we use the absolute value of the elevation angle (E) in deg for the critical angle equation (see Appendix E).

Line 631

Again we use the absolute value of the elevation angle (E) in deg and give it the name (EY). All of the ricochet equations use a positive incident angle in deg.

Lines 632-643

The variables (VQ) are the ratios of ricochet velocity to incident velocity. The variables (EQ) are the ratios of ricochet angle to incident angle. All equations are a function of the incident angle (EY) only. Each set of six equations correspond to the six specific soil constants given in Appendix E. Figures 17 and 18 show these ratios graphically as a function of incident angle and soil constant.

FIGURE 17. RICOCHET TO INCIDENT VELOCITY RATIOS

Lines 644-661

Since the soil constant is seldom exactly equal to one of the six specific soil constants in Appendix E, these lines are used to linearly interpolate between the velocity and angle ratios given above. The ratios are now labeled (QV) for velocity and (QE) for angle.

Lines 662-664

These are the velocity (VA) and elevation angle (EA) after ricochet. (XE) is computed in deg for a later call to the trajectory integration step subroutine (BLOCK-26).

Lines 665-666

The trajectory is terminated if the ricochet velocity is less than 20 ft/s. If not, we increment the rebound (ricochet) counter to keep track of the number of ricochets for the trajectory. Generally, the number of ricochets will not exceed four.

FIGURE 18. RICOCHET TO INCIDENT ANGLE RATIOS

Lines 667-675

A ricochet can be looked at as the start of a new trajectory where the component displacements and velocities must be specified. The component displacements (DI (3), DI (5), and DI (7)) are the same as before ricochet so nothing needs to be done to these variables. The component velocities (DI (2), DI (4), and DI (6)) are affected by ricochet and new values are calculated using the new elevation angle (EA) and the new velocity (VA). The ricochet trajectory is in the same vertical plane as the incident trajectory. Therefore, the angle (AQ) is the same before and after ricochet as shown in Figure 19. The test in line 668 is for the existence of a crosswind component. With a crosswind component we must calculate the angle (AQ) as shown in Figure 19 before calculating DI(2) and DI(6).

Lines 676-679

If the velocity is greater than 20 ft/s then we call the trajectory integration step subroutine just as if we were starting a new trajectory. The variable (CY) is set to zero for the check to see at what range the trajectory pierces the top of the Hazard Volume from below. This check is accomplished in BLOCK-17. Finally we go to 2140 (line 437) to start the next trajectory integration step. If the trajectory is terminated (no ricochet or velocity less than 20 ft/s) then we proceed to BLOCK-20.

BEFORE RICOCHET

AQ = ATAN (DI (2)/DI (6))

AFTER RICOCHET

VA IN SAME VERTICAL PLANE AS VR

AQ THE SAME AS BEFORE RICOCHET

DI(4) = VA * SIN(EA)

DI (2) = VA * COS (EA) * SIN (AQ)

DI (6) = VA * COS (EA) * COS (AQ)

FIGURE 19. COMPONENT VELOCITIES AFTER RICOCHET

BLOCK-20. COMPUTE AND PRINT INITIAL AND FINAL CONDITIONS FOR CURRENT FRAGMENT TRAJECTORY

Lines 685-687

Here we calculate distance (DN), crossrange (XR), and range (RN).

<u>Lines 688-692</u>

Here we accumulate the trajectories with range greater than the maximum calculation range declaration in the input. The variable (TJ) accumulates the trajectories for all replications or treatments. It is not an average.

Lines 693-694

(XN (R)) accumulates the number of final impacts in each 100-ft increment and averages over all replications or treatments. (YN (T, R,)) accumulates the number of final impacts for each 100-ft increment and each replication or treatment. These latter data will be sorted such that we can obtain the minimum and maximum number of final impacts for each 100-ft increment.

Lines 695-698

Here we calculate crossangle (XA), final impact velocity (VF) and final kinetic energy (CKE). If the final kinetic energy is above 9999.9, then we will print out 9999.9. This occurs when a high velocity fragment fails to ricochet close in

Lines 699-702

If the conditions are met in line 699, then we print out the initial and final values for the current trajectory. (NP) is the number of replications or treatments for which we will print out the initial and final conditions for all the fragments. This value was selected in the input. It is usually wise to print out one or two replications or treatments, for these data serve as a spot check to assure us that the program is running in the manner intended. For example, if we were studying the effects of reducing the kinetic energy criterion from 58 ft-lbs to 10 ft-lbs using the MONTE CARLO option, we would want exactly the same trajectories for both. We would use the same random number seed for both and we could check to see if we were getting the same trajectories by examining the trajectory tables. Line 702, marked 3450, sends us back to line 358 to start the next trajectory. Explanations of the table headings for the initial and final trajectory conditions are given in Appendix H - TEST CASES.

Lines 703-706

Here, at the end of a replication or treatment, we accumulate the total (hazardous and nonhazardous fragments) average probability of hit and the average hazard probability of hit. These variables are averaged over all replications or treatments (NR). (PT (R)) and (PH (R)), the probabilities of not hitting the target for the number of units specified (N4), will be set back to one in lines 351 and 352 at the beginning of the next replication or treatment.

Lines 707-711

In line 707 we use a printer command to change back to standard character size to print the replication or treatment number, the soil constant, altitude, and wind speed for the next replication or treatment. If we had chosen the MONTE CARLO option, line 709 returns to line 297 (1160) for the next replication. If we had chosen the FULL FACTORIAL option, line 711 returns to line 320 (1169) for the next treatment.

BLOCK-21. SORT FOR MAXIMA, MINIMA AND PERCENTILES

At this point, all trajectories and replications or treatments have been completed. We are now ready to begin work on the output variables. First, it is necessary to sort three variables, each having two dimensions (T) and (R); that is, across all 100-ft increments for each replication or treatment. The three variables and their associated sub-blocks are:

Sub-Block	<u>Variable</u>	Description
21A	YN	Number of final impacts
21B	D6H	Hazardous density
21C	PX	Hazardous probability of not hitting the target

Sorting is required to obtain minimum, maximum, and percentile values for output variables.

BLOCK-21A. MAXIMUM AND MINIMUM NUMBER OF FINAL IMPACTS

Here we sort the number of final impacts from smallest to largest across the (NR) replications or treatments for each 100-ft increment of the Hazard Volume. Both hazardous and nonhazardous fragments are included.

Lines 718-722

The loop for (R) is begun here and minimum and maximum values are set if there is only one replication or treatment.

Lines 723-732

The main sort loop is executed here and minimum and maximum values for each 100-ft increment are established in lines 731 and 732.

BLOCK-21B. MAXIMUM, MINIMUM, AND PERCENTILE HAZARD DENSITY

Lines 738-743

The loop for (R) is begun here and minimum, maximum, and percentile values are established if there is only one replication or treatment.

Lines 745-752

The sort loop is executed here, rearranging the hazard densities in ascending order (minimum to maximum) for each 100-ft increment across replications or treatments.

Lines 753-763

The minimum and maximum hazard densities are calculated in lines 753 and 754 for each 100-ft increment. In lines 755 to 760 we calculate the element number in the sorted lists for each 100-ft increment corresponding to the 50th percentile (P5) and the percentile designated by the user in the input (P9). For example, if we had 60 replications or treatments, then the 50th percentile element would be the 30th up from the minimum. If we had specified a 90th percentile in the input, then the element (P9) would be the 54th up from the minimum in the sorted list. This element would have 6 elements (10%) above it which is consistent with the definition of a 90th percentile. Lines 757 and 758 round up to the next most hazardous element if P5 or P9 (lines 755 and 756) is not an integer. If P5 and P9 are less than one, then lines 759 and 760 define the element for both percentiles as the first or minimum value in the sorted list. Finally, in lines 761 and 762, both percentile hazard densities are calculated for each 100-ft range increment.

BLOCK-21C. SORT PROBABILITY OF NOT HITTING THE TARGET

Lines 768-769

The main loop for (R) begins here. When there is only one replication or treatment, we skip the sort loop entirely.

Lines 770-777

The main loop is executed here using the probability of not hitting the target with a single unit. The probabilities are sorted from smallest to largest. Note that the probabilities of hit (1-PX) are effectively sorted from largest to smallest. The minimum, maximum, and percentile values will be calculated in BLOCK-22 (lines 809 to 824).

BLOCK-22. COMPUTE AND PRINT OUTPUT DENSITY, P-HIT, AND NUMBER OF FINAL IMPACTS FOR GIVEN DISTANCE INCREMENT AND NUMBER OF UNITS

The final output consists of three tables for each of the 100, 200, 300 and 400-ft increments, a total of 12 tables (See Appendix H-TEST CASES). We shall refer to the three tables as Table 1, Table 2, and Table 3. Table 1 is printed out in BLOCK-22, Table 2 in BLOCK-23, and Table 3 in BLOCK-24. In this block, BLOCK-22, the output variables for BLOCKS 22 and 23 will be calculated. Outputs for density and probability of hit are weighted averages. Weighting is proportional to the size of each 100-ft increment as described in Appendix G.

Rather than describing each output variable, which is already done in the Glossary (Appendix C) it is considered more useful for the user to trace each output variable from start of accumulation to output. In Table 3 (Variable Traces), we identify each output variable for output Table 1, Table 2, and Table 3. The progress of a trace identifies the variable name and, in parenthesis, the line number where the calculation is made. Variables in each of the three output tables (see Appendix H) are addressed left to right.

TABLE 3. VARIABLE TRACES - ACCUMULATION TO OUTPUT

OUTPUT TABLE 1 (BLOCK-22) (FOR THE NUMBER OF UNITS SPECIFIED)

	<u>Variable</u>	<u>Trace</u>
1.	Average Total Number of Fragments	• NT(R) (591)TN(R) (794) TN(R) (842)
2.	Average Total Density	DT(R) (600) TD(R) (795) TD(R) (842)
3.	Average Total Probability of Hit	PT(R) (603) TP(R) (704) FTP (R) (796) FTP (R) (842)
4.	Average number of Hazardous Fragments	NH(R) (608) HN(R) (797) HN(R) (842)
5.	Average Hazard Density	DH(R) (611) HD(R) (798) HD(R) (842)
6.	Average Hazard Probability of Hit	PH(R) (616) HP(R) (705) FHP(R) (807) FHP(R) (842)
7.	Minimum number of Final Impacts	YN(T, R) (694) YN(J, R) (727) N8MIN(R) (731) T8MIN(R) (826) T8MIN(R) (842)
3.	Average Number of Final Impacts	XN(R) (693) TI(R) (825) TI(R) (843)
9.	Maximum Number of Final Impacts	YN(T, R) (694) YN(J, R) (727) N9MAX(R) (732) T9MAX(R) (827) T9MAX(R) (843)
10.	Number of Trajectories with Range Greater than MRA	TJ (691) TJ (845)

OUTPUT TABLE 2 (BLOCK-23) (FOR THE NUMBER OF UNITS SPECIFIED)

<u>Variable</u>	Trace
11. Maximum Hazard Density	D6H(T, R) (612) D6H(J, R)((749) D8MAX(R) (741, 754) X8DMAX(R) (804) X8DMAX(R) (859)
12. Percentile Huzard Density	D6H(T, R) (612) D6H(J, R) (749) D9(R) (743, 762) X9D(R) (806) X9D(R) (859)
13. 50th Percentile Hazard Density	D6H(T, R) (612) D6H(J, R) (749) D5(R) (742, 761) X5D(R) (805) X5D(R) (859)
14. Minimum Hazard Density	D6H(T, R) (612) D6H(J, R; :749) D7MIN(R) (740, 753) X7DMIN(R) (803) X7DMIN(R) (859)
15. Maximum Hazard Probability of Hit	PX(T, R) (618) PX(J, R) (774) X8PMAX(R) (810) X8PMAX(R) (859)
16. Percentile Hazard Probability of Hit	PX(T, R) (618) PX(J, R) (774) X9P(R) (824) X9P(R) (860)
17. 50th Percentile Hazard Probability of Hit	PX(T, R) (618) PX(J, R) (774) X5P(R) (823) X5P(R) (860)
18. Minimum Hazard Probability of Hit	PX(T, R) (618) PX(J, R) (774) X7PMIN(R) (809) X7PMIN(R) (860)

TABLE 3. VARIABLE TRACES - ACCUMULATION TO OUTPUT (CONTINUED)

OUTPUT TABLE 3 (BLOCK-24) NUMBER OF UNITS TO JUST EXCEED HAZARD DENSITY CRITERION (DC)

<u>Variable</u>	<u>Trace</u>
19. Minimum Number of Units	D6H(T, R) (612) D6H(J, R) (749) D8MAX(R) (741, 754) X8DMAX(R) (804) Y7DMIN(R) (873, 875) Y7DMIN(R) (944)
20. Percentile Number of Units	D6H(T, R) (612) D6H(J, R) (749) D9(R) (743, 762) X9D(R) (806) Y9D(R) (878,880) Y9D(R) (944)
21. 50th Percentile Number of Units	D6H(T, R) (612) D6H(J, R) (749) D5(R) (742, 761) X5D(R) (805) Y5D(R) (883, 885) Y5D(R) (944)
22. Maximum Number of Units	D6H(T, R) (612) D6H(J, R) (749) D7MIN(R) (740, 753) X7DMIN(R) (803) Y8DMAX(R) (888, 890) Y8DMAX(R) (944)

NUMBER OF UNITS TO JUST EXCEED HAZARD PROBABILITY OF HIT CRITERION (PC)

<u>Variable</u>	Trace
23. Minimum Number of Units	PX(T, R) (618) PX(J, R) (774) Z8PMAX(R) (903) NP2(1, R) (908, 910, 912) NP2(1, R) (944)
24. Percentile Number of Units	PX(T, R) (618) PX(J, R) (774) Z9P(R) (904) NP2(2, R) (916, 918, 920) NP2(2, R) (945)
25. 50th Percentile Number of Units	PX(T, R) (618) PX(J, R) (774) Z5P(R) (901) NP2(3, R) (924, 926, 928) NP2(3, R) (945)
26. Maximum Number of Units	PX(T, R) (618) PX(J, R) (774) Z7PMIN(R) (902) NP2(4, R) (932, 934, 936) NP2(4, R) (945)
Notes:	
Total - Includes hazardous an	nd nonhazardous fragments
Hazard - Includes hazardous fra	agments only

Hazard - Includes hazardous fragments only

MRA - Maximum Calculation Range

Generally, the array variables in Table 3 (Variable Traces) are identified by one or two code characters in the variable name. Identification is as follows:

Character	Variable Identification	
N	Number of fragments, sometimes a T is used	
Т	Usually identifies a variable including Total (hazardous and nonhazardous) fragments	
Н	Identifies variables with hazardous fragments only	
D	A fragment density variable	
Р.	A probability of hit or not-hit variable	
5	A 50th percentile value	
7	A minimum value for density or probability of hit	
8	A maximum value for density or probability of hit	
9	A value for the percentile specified in the input	
(H, T)	A variable without an H and T will usually contain hazardous fragments only	

Line 787

This starts the output table loop. The loop runs from here to line 961 and covers BLOCKS-22, 23, and 24. The first full loop will print out Tables 1, 2, and 3 for 100-ft increments of the Hazard Volume. The appropriate variables are zeroed in lines 952-958, and then the next pass begins for printing out Tables 1, 2, and 3 for 200-ft increments of the Hazard Volume. This continues until Tables 1, 2, and 3 are printed out for 400-ft increments of the Hazard Volume.

If the user wants only the basic 100-ft increment data, then he should change 400 to 100 in line 787.

Lines 789-793

These lines control the variables for computing running or cumulative weighted averages. These averages apply only to density and probability of hit. See Appendix G for details on weighting factors.

Lines 794, 797, 825, 826, 827

These lines apply to number of fragments and number of final impacts as a function of range (R) and require no weighting factors; they are accumulated by simple addition.

Lines 795-796, 798-810

These lines compute running or cumulative weighted averages for density and probability of hit. An example may help to clarify the procedures. Suppose we were calculating a 300-ft increment from three 100-ft increments, 1200-1300, 1300-1400, and 1400-1500. Weighting factors we call (KW - See Appendix G) and the cumulative sum of the weighting factors we call (SUM). The running weighted average we will call (RWAVG). Given the following table for density or probability of hit.

Range	Density or PH (DPH)	KW	SUM	RWAVG
1200-1300	0.6	12.5	12.5	0.6
1300-1400	0.3	13.5	26.0	0.444
1400-1500	0.2	14.5	40.5	0.357

The basic formula is:

$$RWAVG = (RWAVG * (SUM - KW) + DPH * (KW))/SUM$$

On the first pass through the loop we would have

$$RWAVG = ((RWAVG)(12.5 - 12.5) + 0.6(12.5))/12.5 = 0.6$$

Note that at the beginning of every averaging sequence, the term (SUM-KW) is always zero since SUM and KW always start out with the same value. This effectively initializes RWAVG to zero regardless of its value from the previous sequence. SUM is zeroed in line 829.

If we were interested in only 100-ft increments we would stop here and proceed to the next 100-ft increment. Going on, the second pass produces:

$$RWAVG = (0.6(26.0 - 13.5) + 0.3(13.5))/26.0 = 0.444$$

If we were dealing with 200-ft increments we would stop here and proceed to the next 200-ft increment. Going on, the third pass produces:

$$RWAVG = (0.444(40.5 - 14.5) + 0.2(14.5))/40.5 = 0.357$$

If we were dealing with 300-ft increments, as we are in the example, we would stop here and proceed to the next 300-ft increment.

Lines 818-824

Here we designate elements in the sorted lists for the 50th percentile and the percentile specified in the input. Since we are dealing with the sorted lists of probability of not hitting the target, the procedure is somewhat different from what it was for density in lines 755-762. What we ultimately want for calculating number of units required to just exceed the probability of hit criterion (PC), is the probability of hit for a single unit or interaction area. For example, if we wanted the 90th percentile value and we had only 10 replications, the element selected would be 2 from line 819. This would be the second element counted up from the minimum in the sorted (minimum to maximum) list of probabilities of not hitting the target. Since P(Hit) = 1 - P(NotHit), this element corresponds to the 9th element up from the minimum of the effectively sorted list of probabilities of hitting the target with a single unit. Line 818 designates the element for the 50th percentile. Lines 820-822 calculate the values of P5 and P9 for special cases. Finally, lines 823 and 824 calculate the 50th and specified percentiles for probability of hitting the target with a single unit for each 100-ft increment of range. Note that P5 and P9 are the same variables used for density (lines 755-762) since there is no conflict between the two routines. As before, if the element calculated is not an integer we always move to the more hazardous element in the sorted list using the equations in lines 820 and 821.

Lines 833-846

These lines print out Table 1 for 100, 200, 300, and 400 ft increments in four repeated passes of the overall loop. See Appendix H for examples of output Tables 1, 2, and 3.

BLOCK-23. PRINT HAZARD DENSITY AND PROBABILITY OF HIT FOR NUMBER OF UNITS SELECTED

Lines 852-861

All values for this printout have already been calculated in BLOCK-22. Like Table 1 in BLOCK-22, Table 2 here reflects the number of units selected in the input (N4).

BLOCK-24. COMPUTE AND PRINT NUMBER OF UNITS REQUIRED TO JUST EXCEED HAZARD DENSITY AND P-HIT CRITERIA

Lines 871-894

Here we calculate the minimum, specified percentile, 50th percentile and maximum number of units required to just exceed the density criterion (DC). We use the densities previously calculated for the number of interaction areas or units (N4) selected in the input. This is a linear calculation and amounts to:

No. of Units Required =
$$\frac{(DC)(N4)}{Density_{N4}} + 0.01$$

Lines 895-905

Here we first compute 50th percentile, minimum, maximum and specified percentile running or cumulative weighted averages for the probability of hit with a single unit in lines 901-904. Then we make use of the following equation:

$$PC = 1 - (1 - PH_1)^{NP} + 0.01$$

where

PC = Probability of hit criterion.

PH₁ = Probability of hit for a single unit.

NP = Number of units required.

Then

$$NP = \frac{\ln (1 - PC)}{\ln (1 - PH_1)} + 0.01$$

where 0.01 is added to made sure we just exceed the probability of hit criterion and never get a zero.

Note that we print out four values of density and four values for probability of hit: minimum, specified percentile, 50th percentile, and maximum. The values in this table, Table 3, correlate with the values in Table 2. Any row and column element in Table 3 can be computed from the column directly above in Table 2 and using the same row element. For density use the equation above for lines 871-894. This correlation should be exact. For probability of hit, the calculation will only be an approximation. From Table 2 we must first calculate the probability of hit for a single unit:

$$PH_{N4} = 1 - (1 - PH_1)^{N4}$$

where

 PH_{N4} = Probability of hit for the selected number of units in Table 2.

PH₁ = Probability of hit for a single unit.

N4 = Number of units selected in the input upon which Table 2 is based.

Solving for PH₁ we have

$$PH_1 = 1 - e^{\frac{\ln\left(1 - PH_{N4}\right)}{N4}}$$

Then from above

$$NP = \frac{\ln(1 - PC)}{\ln(1 - PH_1)} + 0.01 = \frac{\ln(1 - PC)(N4)}{\ln(1 - PH_{N4})} + 0.01$$

This approximation will be fairly accurate when the number of units required is less than 10. As the number of units required increases the accuracy will drop off where the error could be more then five percent. The problem involves raising fractions to larger powers where significant digits are lost in single precision arithmetic.

Late in the preparation of this report, it was decided to replace average values with 50th percentile values in output Tables 2 and 3 as the measures of central tendency. This provides a better method of presenting the distribution of hazard values within which the specified percentile (currently the 90th percentile) can be evaluated. In some cases, particularly at the far ranges, 90th percentiles can be less hazardous than the arithmetic average values. Average hazard density and hazard probability of hit, however, are maintained in output Table 1. It is planned to incorporate the average number of units required to just exceed the hazard density and hazard probability of hit criteria in Table 1. In the meantime, the user may calculate these values by using the equations above in this block along with the average hazard values in Table 1.

Lines 941-951

Table 3 is printed out here. Referring to Appendix H, it can be seen that Table 3 correlates with Table 2; that is, maximum density or probability of hit produces a minimum number of units required to just exceed the density and probability of hit criteria. These are the most hazardous conditions.

Lines 952-958

All appropriate accumulating variables are zeroed before beginning the next combined range increment.

Lines 959-961

Here we write out the density and probability of hit criteria at the end of Table 3 and then set maximum range to hundreds of feet. Then we loop and begin the next combined range increment.

Lines 962-964

Here we set the printer to normal character mode and then close the printer port before ending the program.

BLOCK-25. FUNCTION SUBPROGRAM TO CALCULATE RANDOM NUMBERS

This is the portable random number generator which generates uniform random numbers between zero and one. Appendix F discusses the generator and provides a test for portability. If the user cannot meet the test in Appendix F then he will have to use hand cases to check the MONTE CARLO option. In any event, the user is free to use any random number generator he chooses.

All the variables in BLOCK-25 are double precision except (RND). The single precision variable (RND) is returned to the main program at the point of call. As seen in lines 984 and 985 (RND) has six significant digits to be compatible with the word size on microcomputers. As a result, (RND) can be equal to zero. If this occurs then line 985 causes the program to go through another cycle to produce a random number (RND) not equal to zero. A random number equal to zero will stop the program at line 400 where we take the natural log of the random number.

The random number generator is called from eight places in the MONTE CARLO option.

Random Variable	Call Line
Soil Constant (BQ)	332
Altitude (ALT)	333
Wind Speed (ŴS)	334
Height of Origin (HO)	364
Elevation Angle (E)	365
Initial Velocity (V)	400, 401
Drag Coefficient (D1)	417

Note that the random number generator is called by RND(UDUM) where UDUM is always equal to zero. This isolates the seed and reseed variable (UIX) from the main program. UIX is properly manipulated by lines 972 and 983.

BLOCK-26. SUBROUTINE FOR SELECTING INTEGRATION STEP

The integration step is a function of the elevation angle at the start of the trajectory and after each ricochet. Since the elevation angle (XE) after ricochet will always be positive, lines 994-997 will only apply to the start of the trajectory where the elevation angle (XE) can be negative.

The integration step is shown graphically in Figure 20. The integration step for negative elevation angles at the start of the trajectory may be as much as 50 ft or a very small value depending on the value of (HO) and the elevation angle (XE) specified in lines 994-997.

A constant displacement integration step is used in lieu of a constant time step to decrease the running time of the program. For far-field trajectories where the time of flight is about 10s, use of a customary 0.01s time step would result in about 1000 passes through the Runge-Kutta routine. Using a displacement step, we would only need about 100 passes through the Runge-Kutta routine, reducing the running time by a factor of about 10.

The integration steps shown in Figure 20 were derived empirically; that is, by trial and error with thousands of trajectories. In all cases, running time was sacrificed to stability of the Runge-Kutta routine. Instability occurs at high elevation angles where the Runge-Kutta routine must negotiate tight turns at the top of the trajectory. The calculation of special time steps in BLOCK-12, line 460, also help to prevent instability. To a lesser extent, running time was sacrificed to accuracy. Range accuracy will seldom exceed two feet and most of the time the error will be less than one foot.

This subprogram is called from lines 395 at the beginning of each trajectory and from line 677 after each ricochet.

FIGURE 20. TRAJECTORY INTEGRATION INCREMENT

ADDITIONAL PROGRAM CONSIDERATIONS

PROGRAM TEST CASES

Test cases for the MONTE CARLO and FULL FACTORIAL options are contained in Appendix H. The details for the two tests are contained there.

WEAPON FRAGMENTATION DATA

Complete fragmentation data for 155mm projectiles (M107) and Mk82 Low Drag Bombs are contained in Appendix I. Details of these data are discussed there.

FUTURE IMPROVEMENTS

Drag Coefficients

The correlation for drag coefficients shown in Figure 11 is in need of improvement. Taking an area ratio of about 1.5 in Figure 11, the difference between the upper and lower limits is about 0.6. The overall range for drag coefficients is about 1.0; that is, between about 0.5 and 1.5. The range of uncertainty at an area ratio of 1.5 is then about 60 percent of the total range. This then represents an average reduction in uncertainty of about 40 percent. If we are to reduce the range uncertainty for far-field fragments to about plus or minus 10 percent, the uncertainty in drag coefficient will have to be reduced by about 75 percent. Work should continue in an effort to meet this goal. In addition, work should be done to better describe the shape of the transonic and supersonic portions of the drag curve.

Ricochet

An effort should be made to define fragment breakup characteristics at ricochet. The author knows of no such data. Figures 5 and 6 show predicted versus actual fragment recovery for 155mm projectiles and Mk82 Low Drag Bombs. The data in Figure 5 show excellent agreement. Figure 6, however, shows a discrepancy at ranges above 1800 ft. Predicted ranges go to about 3200 ft while actual recovery stops at about 2200 ft. The predicted long-range fragments are large and had they broken up would have gone to lesser ranges. With breakup, the predicted versus actual data might have been better at ranges above 1800 ft.

The fragment ricochet data used in the FRAGHAZ program were obtained from tests where the impact velocities ranged from 1000 to 5000 ft/s. In the FRAGHAZ program we consider impact velocities from 20 to 10,000 ft/s. Additional tests are required to check ricochet characteristics over this extended range of impact velocities.

Crosswind

As yet, no practical problems have been run with a crosswind. If it does become necessary to run crosswind problems, the program will have to be modified to account for the overlapping of fragments. Azimuth sectors larger than 10 deg may have to be considered and this would require changes to the methods we use to accumulate numbers of fragments, density, and probability of hit as a function of range.

FULL FACTORIAL Factor Levels

Currently, factor levels are chosen to cover 80 percent of the range of uncertainty for the random variables. For example, if the range of uncertainty for a uniform random variable was 10 to 20, then we would choose 11 and 19 as factor levels spanning 80 percent of the total uncertainty. For a normally distributed variable we would use $\pm 1.28\,\sigma$ which covers about 80 percent of the uncertainty for a normal variable. Changing factor levels can have a much greater effect on results than changing seeds in the MONTE CARLO option. Work is required to obtain a better basis for selecting factor levels.

APPENDIX A HAZARD CURVE FITTING PROGRAM

Listing A-1 contains the program currently used to fit an equation to the retained points in the hazard tables. It is coded in Microsoft FORTRAN 77. The program uses a least squares fit by means of matrix inversion. The fitted equation is:

$$R = A_1 + A_2 \ln N + A_3 \ln^2 N$$

where

R = Hazard Range in Feet

N = Number of Units Required to Just Exceed the Hazard Criterion

The equation is very stable and does not exhibit oscillations between points as second order polynominals tend to do when only a few points are used.

The program does not include any statistical tests. The user may add any that seem appropriate.

Table A-1 is a sample of the program output using the hazard data of Table 2 in the GENERAL PROGRAM DESCRIPTION Section of this report. The user may want to start with the largest fractional number of units so as not to unduly bias the number of units less than one. It is probably best to run with all the fractional numbers also and pick the fit which best serves the purpose of the user. The fitted equation with all fractional retained points is plotted in Figure 7 of the GENERAL PROGRAM DESCRIPTION Section. Table A-1 shows that errors greater than 200 ft can be expected using the fitted equation. This is not unusual considering the erratic nature of hazardous fragment distributions in the hazard volume. The erratic nature is shown by the upper boundary defined by the solid lines connecting the retained points in Figure 7.

Generally only one decimal place is required for the constants of the fitted equation. If the absolute value of a constant is less than 10, the user may want to use two decimal places to retain accuracy.

The fitted equation represents a mean such that some retained points will lie above it and some below it. From a safety standpoint it may be desirable to have a curve which lies at or above all retained points. One way of doing this is to use a three point regression. Since the fitted equation has three constants, if only three points are used in the regression the resulting curve will go through the 3 points exactly. The three points could be selected as follows: (1) a minimum point at or near the minimum number of units required N, (2) a maximum point at or near the maximum N, (3) an intermediate point near the apparent knee of the curve. The procedure may have to be repeated to insure that the curve lies above all retained points but not unduly so.

LISTING A-1. FRAGFIT COMPILER LISTING

```
Page
                                                                                 01-07-87
                                                                                 14:35:37
D Line# 1
                7
                                                 Microsoft FORTRAN77 V3.31 August 1985
       2 C
             PROGRAM FRAGFIT
       3 C
              SECOND ORDER NATURAL LOG FIT
       5
                REAL S,N(100),RN(100),T(3),X(3,3),YM(3),A(3),RE(100)
       6
                INTEGER NF,F,R,C,I
       7
       8
               WRITE(*,'(A\)')' ENTER NUMBER OF POINTS (AT LEAST 3):
       9
                READ (*,*) NP
      10
                DO 10 P=1,NP
                WRITE(*,*)' '
      11
               WRITE(*, '(A, I5)')' POINT NO.: ',F'
WRITE(*, '(A\)')' ENTER NUMBER OF UNITS:
1
      12
1
      13
1
      14
               READ(*,*)N(P)
               WRITE(*,'(A\)')' ENTER RANGE (FEET):
1
      15
               READ (*, *) RN(F)
     16
1
1
      17
            10 CONTINUE
     18
               DO 20 P=1,NP
1
     19
               T(1)=1.
1
     20
               T(2) = LOG(N(P))
     21
1
               T(3)=LOG(N(P))**2
               DO 20 R=1,3
1
     22
2
     23
               YM(R) = YM(R) + RN(P) * T(R)
2
               DO 20 C=1,3
     24
3
     25
               X(R,C)=X(R,C)+T(C)*T(R)
3
            20 CONTINUE
     26
     27
               DO 30 R=1,2
1
     28
               DO 30 C=R+1,3
2
     29
               X(C,R)=X(R,C)
2
     30
            30 CONTINUE
               DO 40 R=1,3
     31
1
     32
               DO 50 C=1,3
2
     33
               IF(C.EQ.R)G0T0 50
2
     34
               X(R,C)=X(R,C)/X(R,R)
2
     35
            50 CONTINUE
1
               X(R,R)=1/X(R,R)
     36
               DO 60 I=1,3
     37
1
2
     38
               IF (I.EQ.R) GOTO 60
2
3
3
     39
               DO 70 C=1,3
     40
               IF(C.EQ.R)GOTO 70
     41
               X(I,C)=X(I,C)-X(R,C)*X(I,R)
3
     42
            70 CONTINUE
2
     43
            60 CONTINUE
1
     44
               DO 80 I=1,3
2
     45
               IF (I.EQ.R) GOTO 80
2
     46
               X(I,R) = -X(I,R) * X(R,R)
2
     47
            80 CONTINUE
1
     48
            40 CONTINUE
     49
     50
               S=0
     51
               DO 90 C=1.3
     52
               DO 100 R=1.3
1
2
     53
               S=S+(X(C,R)*YM(R))
2
     54
           100 CONTINUE
1
     55
               A(C)=S
```

S=0

56

LISTING A-1. FRAGFIT COMPILER LISTING (CONTINUED)

```
Page
                                                                                               2
                                                                                       01-07-87
                                                                                       14:35:37
D Line# 1
                                                    Microsoft FORTRAN77 V3.31 August 1985
      57
             90 CONTINUE
      58
      59
                 OFEN(1,FILE='LPT1')
      60
                 WRITE(1, '(A)')' PROGRAM FRAGFIT'
                 WRITE(1,'(/A)')' CONSTANTS'
      61
      62
                 DO 110 I=1.3
1
      63
                 WRITE(1, '(A, I1, A, F8.3)')' A', I, '=', A(I)
      64
            110 CONTINUE
      65
                 WRITE(1, ((/A)')') REGRESSION EQUATION: R = A1 + A2 * LN(N) + A3 *
      66
                $(LN(N)) ** 2'
                 WRITE(1,'(/14X,A)')'INPUT AND ERROR TABLE'
WRITE(1,'(12X,A,6X,A,5X,A)')'INPUT','RANGE','RANGE'
      67
      68
                 WRITE(1, '(5X,A,2X,A,3X,A,5X,A)')'INPUT', 'RANGE', 'ESTIMATE', 'ERROR' WRITE(1, '(4X,A,3X,A,7X,A,6X,A)') 'NUMBER', 'FEET', 'FEET', 'FEET'
      69
      70
      71
                 DO 120 P=1.NP
      72
1
                 RE(P) = A(1) + A(2)
1
      73
                 RE(P) = A(1) + A(2)*LOG(N(P)) + A(3)*(LOG(N(P)))**2
1
      74
                 WRITE(1, '(1X,F9.2,3X,I4,5X,F6.1,3X,F7.1)')N(P),INT(RN(P)),RE(P),RE
1
      75
                $(P)-RN(P)
1
      76
            120 CONTINUE
      77
                 CLOSE(1)
      78
                 END
Name
         Type
                        Offset P Class
Α
        REAL
                           1276
C
        INTEGER*4
                           1308
I
        INTEGER*4
                           1312
INT
                                   INTRINSIC
LOG
                                   INTRINSIC
N
        REAL
                             76
NP
        INTEGER*4
                          1288
Ρ
        INTEGER*4
                          1292
R
        INTEGER*4
                          1304
RE
        REAL
                           876
RN
        REAL
                            476
S
        REAL
                          1316
T
        REAL
                             16
Х
        REAL
                             28
ΥM
        REAL
                             64
Name
         Type
                          Size
                                   Class
MAIN
                                   PROGRAM
```

Pass One

No Errors Detected 78 Source Lines

PROGRAM FRAGFIT

CONSTANTS

A1 = 264.379

A2 = 126.526

A3 = 36.365

REGRESSION EQUATION: R = A1 + A2 * LN(N) + A3 * (LN(N)) ** 2

TABLE A-1. INPUT AND ERROR TABLE

	Range Data			
Input Number	Input Range Feet	Range Estimate Feet	Range Erroi Feet	
.12	50	159.6	109.6	
.24	150	157.9	7.9	
.43	250	183.5	-66.5	
.62	350	212.2	-137.8	
2.31	450	395.8	-54.2	
5.16	550	569.9	199	
8.14	650	689.6	39.6	
12.72	750	821.4	71.4	
20.41	950	976.8	26.8	
34.63	1050	1169.8	119.8	
53.12	1150	1340.9	190.9	
67.73	1550	1444.0	-106.0	
84.73	1750	1542.8	-207.2	
150.71	1850	1813.7	-36.3	
214.91	2050	1992.6	-57.4	
335.26	2150	2229.7	79.7	

APPENDIX B FRAGHAZ COMPILER LISTING

Listing B-1 is the compiler code for the FRAGHAZ program. The program is divided into 26 BLOCKS and each line is numbered. An explanation of the code is given in the DETAILED PROGRAM DESCRIPTION section of the main body.

NSWCTR87-59

```
Page
                                                                               11-21-87
                                                                               09:03:08
D Line# 1
                                               Microsoft FORTRAN77 V3.31 August 1985
      1 $LARGE
      2 #DEBUG
      3 C
                 FRAGHAZ
      4 C
                 Quantity - Distance Program
      5 C
                    (Fragmenting Munitions)
      6
      7
      8 C
           BLOCK 1
      9 C
           Declare Data Types for Variables, Dimension Arrays
     10
               REAL ALT, ALTMAX, ALTMIN, AQ, AX, AY, AZ
     11
     12
               REAL B.BB.BQ
     13
               REAL CD, CH, CKE, CL
     14
               REAL D1,D2,D3,D4,DC,DD,DF,DLT,DM,DN,DR,DW,DX
     15
               REAL E, EA, EC, EE, ES, EY
     16
               REAL FG
     17
               REAL G,GX
               REAL HM, HO, HS, HX
     18
     19
               REAL K1,K3,K4,K5,K9,KE,KK,KM,KW
     20
               REAL LE
     21
               REAL M1, M2, M3, MA, MN, MRA
     22
               REAL NI,NZ,NR,NX
     23
               REAL P.PA.PC.PCTD.PI.PW.P5.P9
     24
               REAL GE, GV
     25
               REAL RN, RO
     26
               REAL S1, S2, S3, S4, S5, S6, SCMIN, SCMAX, SIGS, SUM
     27
               REAL T5, TA
     28
               REAL V, VA, VF, VP, VR, VS, VXP, VYP, VZP
     29
               REAL WD, WM, WS, WSMAX, WSMIN
     30
               REAL XA, XD, XE, XP, XR, XV
     31
               REAL Y, YE
               REAL ZP, ZZP
     32
     33
               REAL AE(500), AM(500), AR2(500)
     34
               REAL D6H(100,97),D7MIN(97),D8MAX(97),D9(97),DI(7),DH(97),DO(7)
     35
               REAL DT(97),DS(7),D5(97)
     36
               REAL EQ(6)
               REAL FHP(97), FL(10,25), FTP(97), FW(500)
     37
               REAL HD(97), HN(97), HF(97)
     38
     39
               REAL IE(500), IV(500)
     40
               REAL NBMIN(97),N9MAX(97),NH(97),NP2(4,97),NT(97)
     41
               REAL PH(97).PT(97).PX(100.97)
               REAL T8MIN(97), T9MAX(97), TD(97), TI(97), TN(97), TP(97)
     42
     43
               REAL V0(6)
     44
               REAL X7DMIN(97), X8DMAX(97), X5D(97), X9D(97), XK(4,7), XN(97)
     45
               REAL X7FMIN(97), X8FMAX(97), X9P(97), X5F(97)
               REAL Y7DMIN(97), Y8DMAX(97), Y9D(97), Y2(36), YN(100,97)
     46
     47
               REAL Y5D(97), Z7FMIN(97), Z8FMAX(97), Z5P(97), Z9P(97)
     48
     49
               INTEGER AS
     50
               INTEGER CX,CY
     51
               INTEGER EZ
     52
               INTEGER F1,F2,F3,F4,F5,F6,F7,F
               INTEGER I
     53
               INTEGER J
     54
               INTEGER K
     55
     56
               INTEGER MR
```

NSWCTR87-59

Page

```
11-21-87
                                                                           09:03:08
                                             Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
     57
              INTEGER N4,NF,NP
     58
              INTEGER PCT
     59
              INTEGER R, RB, RI, RIZ, RL, RZ
     60
              INTEGER T.TJ
     61
              INTEGER X5.XL
     62
              INTEGER NL(10)
     63
     64
              DOUBLE PRECISION USE, UDUM
     65
     66
              CHARACTER 0*14, TS*64, H9(10)*19, NAM*14
     67
     68 C
           Assign Constant Values
     69
     70
              DATA M1/0.75/,M2/1.5/,M3/2.5/,V5/1116.4/
              DATA K1/286000./,K3/0.038239/,K4/33900./,K5/144./
     71
     72
              DATA G/32.174/,K9/450436./,PI/3.141593/
     73
              DATA B/57.29578/,DR/0.0174533/,BB/6.283185/
     74
     75 C
           Assign Variable Constants
     76
     77
              DATA ES/10./,AS/10/
              DATA HM/5.72/,WM/1./
     78
     79
              DATA DM/0.55/
     80
              PW=10000.*PI*AS/360.
     81
           BLOCK 2
     82 C
     83 C
           Variables to be input at runtime
     84 C
           Select Monte Carlo or Full Factorial Option
     85
              WRITE(*,30)' Enter input (frag data) filename: '
     86
     87
           30 FORMAT(AL)
     88
              READ(*,40) 0
     89
           40 FORMAT(A)
     90
              WRITE(*,30)' Enter output filename (Frinter=LPT1): '
     91
              READ (*,40) NAM
     92
              WRITE(*,30) 'Enter target description: '
     93
              READ (*, 40) TS
     94
              WRITE(*,30)' Enter minimum soil constant (0.5 to 4.0): '
     95
              READ(*,*)SCMIN
     96
              WRITE(*,30)'
                           Enter maximum soil constant (SCMIN to 4.0): '
     97
              READ(*,*)SCMAX
     98
              WRITE(*,30)' Enter height of ammo stack (feet): '
     99
              READ(*,*)HS
              WRITE(*,30)' Enter stack inert ground standoff (feet): '
    100
    101
              READ(*,*)SIGS
    102
              WRITE(*,30)' Enter number of units or interaction areas: '
              READ(*,*)N4
    103
              WRITE(*,30)' Enter number of fragment multipliers: '
    104
    105
              READ(*,*)X5
    106
              WRITE(*,30)' Enter number of fragments (500 MAX): '
              READ(*,*)NF
    107
              WRITE(*,30)' Enter percentile (integer 1 to 99): '
    108
    109
              READ(*,*)FCT
    110
              PCTD=FLOAT(PCT)/100.
          340 WRITE(*,30)' Select Option: Monte-Carlo (enter 1) - Full Factorial
    111
             $ (enter 0): '
    112
```

```
Page
                                                                            11-21-87
                                                                            09:03:08
D Line# 1
              7
                                             Microsoft FORTRAN77 V3.31 August 1985
    113
              READ(*,*)RZ
    114
              IF(RZ.EQ.O) GOTO 350
              WRITE(*,30)' Enter number of replications (100 max): '
    115
    116
              READ(*,*)NR
          350 WRITE(*,30)' Enter number of replications / treatments to be print
    117
    118
             ≴ed:
    119
              READ(*,*)NP
              WRITE(\star,30)' Enter minimum altitude of ammo storage site (feet): '
    120
    121
              READ(*,*)ALTMIN
    122
              WRITE(*,30)' Enter maximum altitude of ammo storage site (feet): '
    123
              READ(*,*)ALTMAX
    124
              WRITE(*.30)' Enter minimum wind speed (feet/second): '
    125
              READ(*,*)WSMIN
    126
              WRITE(*,30)' Enter maximum wind speed (feet/second): '
    127
              READ(*,*)WSMAX
    128
              WRITE(*,30)' Enter wind direction (0 to 90 deg : 0 is tailwind): '
    129
              READ(*,*)WD
    130
              DW=WD
    131
              WD=WD/E
    132
              WRITE(*,30)' Enter maximum computation distance (feet) (9600 MAX):.
    133
             $
    134
              READ(*,*)MRA
    135
              MR=INT(MRA/100) *100
    136
              WRITE(*,30)' Enter hazard kinetic energy criterion (ft-lbs): '
    137
              READ(*,*)KE
    138
              WRITE(*,30)' Enter hazard density criterion (frags/sqft): '
    139
              READ(*.*)DC
              WRITE(*,30) 'Enter probability of hit criterion: '
    140
    141
              READ(*,*)PC
    142
              IF (RZ.EQ.0) GOTO 410
          403 WRITE(*,'(A\)')' Enter Integer Random Number Seed (1 to 2147483646
    143
    144
             $):
    145
              READ(*,*)USE
    146
    147
          410 WRITE(*, '(//A)')' Replace PROGRAM Disk in Drive A: With DATA Disk'
    148
              WRITE(*,'(//A)')' --- FRAGHAZ RUNNING ---'
    149
    150
    151 C
           BLOCK 3
    152 C Print All Essential Conditions for the Run
    153
    154
              OPEN(1,FILE=NAM,STATUS='NEW')
    155
              WRITE(1,*)CHAR(14), 'FRAGHA7'
              WRITE(1,*) 'quantity — distance program (fragmenting munitions)' WRITE(1,'(///A,A)')' Source of frag data: ',\mathbb{Q}
    156
    157
    158
              WRITE(1, '(A,A)')' Output file: ',NAM
              WRITE(1,*) 'Target description: ',TS
    159
              WRITE(1, '(1X,2(A,F4.2))')'Minimum soil constant= ',SCMIN,'
    160
                                                                                 Max
             $imum soil constant= ',SCMAX
    151
              IF (RZ.EQ. 1) THEN
    162
    163
                      WRITE(1,*)'MONTE-CARLO OPTION'
    164
              ELSE
                      WRITE(1,*)'FULL FACTORIAL OPTION'
    165
              ENDIF
    156
              WRITE(1,'(/A)')' 3-D fragment trajectories, 3-D man, 2-D wind'
    167
              WRITE(1,*)'CD is a function of fragment max to avg presented area
    168
```

```
11-21-87
                                                                                    09:03:08
                                                  Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
               $ratio′
    169
    170
                WRITE(1,*)'Run contains fragment ricochet routine'
    171
                WRITE(1,*)'Variable air density, altitude, and sound speed'
               WRITE(1, '(A,I3,A)')' Ejection zone size= ',INT(ES),' degrees'
WRITE(1, '(A,I2,A)')' Azimuth sector size= ',AS,' degrees'
WRITE(1, '(A,I6)')' Number of units or interaction areas= ',N4
WRITE(1, '(A,I3)')' Number of fragment multipliers= ',X5
WRITE(1, '(A,F5.1,A)')' Fragment hazard criterion= ',KE,' ft-lbs'
WRITE(1, '(A,I2)')' Percentile= ',PCT
    172
    173
    174
    175
    176
    177
    178
                IF (RZ.EQ.1.) THEN
    179
                        WRITE(1, '(A, 110)')' MONTE CARLO SEED= ', IDINT(USE)
    180
                      Y=RND (USE)
    181
                      UDUM=ODO
    182 C
            From this point on call function RND with dummy argument UDUM
    183
    184
                WRITE(1, '(A,F9.3,A)')' Minimum altitude of ammo storage site= ',AL
    185
               $TMIN, 'feet'
    186
                WRITE(1, '(A, F9.3, A)')' Maximum altitude of ammo storage site= ', AL
    187
               $TMAX, 'feet
    188
                WRITE(1, '(A,F6.2,A)')' Height of ammo stack= ',HS,' feet'
                WRITE(1, '(A,F6.2,A)')' Stack inert ground standoff= ',SIGS,' feet'
    189
                WRITE(1, '(A, I5)')' Number of fragments= ',NF
    190
                WRITE(1, '(A, I4, A)')' Maximum computation range: ',MR,' feet'
    191
                WRITE(1, '(A,F7.2,A,F7.2,A,F7.2)')' Dimensions of the target (feet)
    192
    193
               $: HM=',HM,' WM=',WM,' DM=',DM
               WRITE(1, '(A,F9.7,A)')' Hazard density criterion= ',DC,' frags/sqft
    194
    195
                WRITE(1, '(A,F9.7)')' Hazard probability of hit criterion= '.FC
    196
                WRITE(1, '(A,F6.2,A)')' Minimum wind speed= ',WSMIN,' feet/second'
    197
                WRITE(1, '(A,F6.2,A)')' Maximum wind speed= ',WSMAX,' feet/second'
    198
                WRITE(1, '(A,F6.2,A//)')' Wind direction= '.DW,' deg (0=tailwind)'
    199
    200
    201 C
            BLOCK 4
    202 C
            Headings and Number Formats for Output Tables
    203
    204
           870 FORMAT(1X, 'FRAG',6X, 'E',9X, 'WT',6X, 'A/M',6X, 'IV',5X, 'CD',4X, 'DISTN
              $1,7X, 'VF1,6X, 'KE1,6X, 'TOF1,6X, 'EF1,2X, 'RANGE1,4X, 'XRN1,5X, 'XA1,3X,
    205
              $'XD',7X,'AR',5X,'HO',3X,'RB'/>
    206
           880 FORMAT(1X,14,4X,F6.2,3X,F7.1,3X,F5.2,3X,15,3X,F4.2,3X,15,3X,F6.1,3
    207
              $X,F6.1,3X,F5.2,3X,F5.1,2X,I5,3X,I4,3X,F4.1,3X,I2,3X,F6.2,2X,F5.2,3
    208
    209
    210
           890 FORMAT(' Distance',17X,'Total',30X,'Hazard',20X,'---- Total Numbe
              $r of Final Ground Impacts ----')
    211
           900 FORMAT(' (feet)',7X,'Total',5X,'Density',7X,'Total',6X,'Hazard',5
$X,'Density',6X,'Hazard',19X,I2,' Degree Azimuth Sector')
910 FORMAT(' From',3X,'To',7X,'No.',5X,'Frags/sqft',5X,'P-hit',8X,'No.
    212
    213
    214
              $',4X,'Frags/sqft',5X,'P-hit',16X,'Min',12X,'Avg',13X,'Max')
    215
           920 FORMAT(1X,14,2X,14,4X,F7.2,3X,F10.6,3X,F8.6,4X,F7.2,3X,F10.6,3X,F8
    216
    217
              $.6,10X,F8.2,7X,F8.2,8X,F8.2)
                                     ----- NUMBER OF UNI
    218
           970 FORMAT(' HAZARD
              $TS TO JUST EXCEED -----')
    219
           940 FORMAT(' DISTANCE ------ DENSITY CRITERION ------,
    220
    221
              $10X, '----')
           950 FORMAT(' (FEET)',10X,'MIN',9X,I2,'%',9X,'50%',9X,'MAX',16X,'MIN',9
$X,I2,'%',9X,'50%',9X,'MAX')
    222
    223
    224
           960 FORMAT(2X,14,5X,F9.2,3X,F9.2,3X,F9.2,3X,F9.2,10X,F9.2,3X,F9.2,3X,F
```

```
11-21-87
                                                                         09:03:08
D Line# 1
                                            Microsoft FORTRAN77 V3.31 August 1985
             $9.2,3X,F9.2)
   225
   226
          980 FORMAT(16X, 'Hazard Density Criterion= ',F7.6,' frag/sqft',6X,'Haza
   227
             $rd P-hit Criterion= ',F5.3/)
   228
          982 FORMAT(' Distance ----- Hazard Density (Frags/sqft) -----
   229
                           -----')
             *---
   230
          984 FORMAT(1X,'(feet)',9X,'Max',10X,I2,'%',10X,'50%',10X,'Min',16X,'Ma
   231
             $x',9X,12,'%',9X,'50%',9X,'Min')
   232
          986 FORMAT(2X,14,5X,F10.6,3X,F10.6,3X,F10.6,3X,F10.6,11X,F8.6,4X,F8.6,
   233
             $4X,F8.6,4X,F8.6)
   234
   235 C
          BLOCK 5
   236 C
          Read Fragmentation Data
   237 C
           If applicable, read Full Factorial Data
   238
              OPEN(2,FILE=Q)
   239
   240
              READ(2,*)(Y2(I),I=1,X5)
              WRITE(1,*)'Fragment multipliers'
   241
              WRITE(1, (9(2X, F6.5))))(Y2(I), I=1, X5)
   242
   243
              DO 1050 I=1,X5
   244
              Y2(I) = Y2(I) *FLOAT(AS)
   245
         1050 CONTINUE
   246
              DO 1120 F=1.NF
   247
              READ(2,*)PA,FW(F),AM(F),IV(F),AR2(F)
   248
              IE(F) = 90.0 - PA
   249
              AE(F) = IE(F)
   250
         1120 CONTINUE
   251
              IF (RZ.EQ.O) THEN
    252
                     WRITE(1, '(//1X,A)') 'FACTOR L'EVELS'
   253
                     H9(1)='SOIL CONSTANT:
    254
                     H9(2)='HEIGHT OF ORIGIN:
    255
                     H9(3)='ELEVATION ANGLE:
    256
                     H9(4)='INITIAL VELOCITY:
    257
                     H9(5)='DRAG COEFFICIENT: '
    258
                     H9(6) = 'ALTITUDE:
    259
                     H9(7) = 'WIND SPEED: '
    260
                   DO 1129 I=1,7
    261
                     WRITE(1,'(1X,A\)')H9(I)
    262
                   READ(2,*,ERR=1128)(FL(I,J),J=1,25)
   263
         1128
                     WRITE(1, (25(F8.4))')(FL(I,T),T=1,J-1)
                   NL(I)=J-1
   264
   265
         1129
                   CONTINUE
                   NR=NL(1)*NL(2)*NL(3)*NL(4)*NL(5)*NL(6)*NL(7)
   266
   267
                   IF (NR.GT.100) THEN
   268
                            WRITE(*,*)'MAX NO. OF TREATMENTS = 100'
                   STOP
   269
   270
                   ENDIF
              ENDIF
    271
              CLOSE(2)
   272
    273
              IF (RZ.EQ.1) THEN
                     WRITE(1,'(/A,I3)')' NO. OF REPLICATIONS = ',INT(NR)
    274
                     WRITE(1, (A, 13//)) (NO. OF REPLICATIONS PRINTED = ',NP
    275
              ELSE
    276
                     WRITE(1, (/A, I3)) NO. OF TREATMENTS = (,INT(NR))
    277
                     WRITE(1, '(A, 13//)')' NO. OF TREATMENTS PRINTED = ',NP
    278
              ENDIF
    279
    280
```

Page

```
11-21-87
                                                                           09:03:08
D Line# 1
                                             Microsoft FORTRAN77 V3.31 August 1985
    281 C
          BLOCK 6
    282 C Begin Replication or Treatment Loop - Set Conditions
    283
    284
              MR=MR/100
    285
    286
    287 C
          Initialize Probability of Not Hitting the Target
    288
    289
              DO 1158 T=1, INT(NR)
    290
              DO 1159 R=1.MR+1
1
2
    291
              PX(T,R)=1.
2
    292
         1159 CONTINUE
    293
         1158 CONTINUE
    294
    295
              T=O
    296
              IF(RZ.EQ.O)GOTO 1162
    297
         1160 T=T+1
    298
              IF(T.GT.NR)GOTO 3570
    299
              GOTO 1170
    300
    301
         1162 F1=0
    302
        1163 F1=F1+1
              IF(F1.GT.NL(1))GOTO 3570
    303
    304
              F2=0
        1164 F2=F2+1
    305
              IF(F2.GT.NL(2))GOTO 1163
    306
    307
              F3=0
        1165 F3=F3+1
    308
    309
              IF(F3.GT.NL(3))GOTO 1164
    310
              F4=0
         1166 F4=F4+1
    311
    312
              IF(F4.GT.NL(4))GOTO 1165
    313
              F5=0
    314
         1167 F5=F5+1
              IF(F5.GT.NL(5))GOTD 1166
    315
    316
              F6=0
         1168 F6=F6+1
    317
              IF(F6.GT.NL(6))GOTO 1167
    318
    319
              F7=0
    320
        1169 F7=F7+1
    321
              IF(F7.GT.NL(7))GOTO 1168
    322
              T=T+1
    323
    324
           50 FORMAT(31X,A,I3,A/)
    325
        1170 IF (RZ.EQ.O) THEN
                     WRITE(1,50) 'TREATMENT ( ',T,' )'
    326
    327
                   BQ=SCMIN+(SCMAX-SCMIN)*FL(1,F1)
    328
                   ALT=ALTMIN+(ALTMAX-ALTMIN)*FL(6,F6)
    329
                   WS=WSMIN+(WSMAX-WSMIN)*FL(7,F7)
              ELSE
    330
                     WRITE(1,50) 'REPLICATION ( ',T,' )'
    331
    332
                   BQ=SCMIN+(SCMAX-SCMIN)*RND(UDUM)
    333
                   ALT=ALTMIN+(ALTMAX-ALTMIN)*RND(UDUM)
                   WS=WSMIN+(WSMAX-WSMIN)*RND(UDUM)
    334
              ENDIF
    335
```

336

```
Page
                                                                              11-21-87
                                                                              09:03:08
D Line# 1
                                              Microsoft FORTRAN77 V3.31 August 1985
    337
               IF((WS.EQ.O.).OR.(DW.EQ.O.))THEN
    338
                    EZ=0
    339
                    XL=4
    340
               ELSE
    341
                    EZ=1
    342
                    XL=6
    343
               ENDIF
    344
    345
               WRITE(1, '(1X,A,F5.3,2X,A,F9.3,A,2X,A,F7.3,A)')'Soil constant= ',BQ
    346
              $,'Altitude= ',ALT,' feet','Wind speed= ',WS,' feet/second'
    347
               WRITE(1,*)CHAR(15)
    348
               WRITE(1,870)
    349
               DO 1300 R=1,MR+1
1
    350
1
    351
               PT(R)=1.
    352
1
               PH(R)=1.
        1300 CONTINUE
    353
1
    354
    355 C
           BLOCK 7
    356 C
           Begin Fragment Loop - Set Height of Origin and Elevation Angle
    357
    358
               DO 3450 F=1,NF
    359
               RB=0
1
1
    360
               IF (RZ.EQ.O) THEN
    361
1
                    H0=SIGS+FL(2,F2)*(HS-SIGS)
    362
1
                    E=(AE(F)+ES*FL(3,F3))/B
    363
               ELSE
1
    364
1
                    HO=SIGS+(HS-SIGS) *RND(UDUM)
1
    365
                    E=(AE(F)+ES*RND(UDUM))/B
1
    366
               ENDIF
1
    367
               XE≈E*B
    368
               YE≈XE
1
    369
1
    370
               IF (HO.GE.HM) THEN
1
    371
1
                    CY=1
    372
               ELSE
1
1
    373
                    CY=0
    374
               ENDIF
1
    375
1
    376 C
           BLOCK 8
1
1
    377 C
           Set Remaining Initial Conditions for Current Fragment
    378
1
    379
               FG≈FW(F)/K9
1
    380
              RL≃O.
1
    381
1
    382
               IF (XE.GT.89.99) THEN
1
    383
                    XE=89.99
1
    384
                    E=89.99/B
1
    385
1
                    YE=89.99
    386
               ELSEIF((XE.LT.0.01).AND.(XE.GE.0.))THEN
1
    387
1
                    XE=0.01
    388
                    E=0.01/B
1
    389
                    YE=0.01
1
               ELSEIF((XE.LT.O.).AND.(XE.GT.-0.01))THEN
    390
1
    391
                    XE=-0.01
1
    392
                    E = -0.01/B
```

NSWCTR87-59

```
11-21-87
                                                                              09:03:08
D Line# 1
                                              Microsoft FORTRAN77 V3.31 August 1985
                    YE=-0.01
1
    393
    394
               ENDIF
1
    395
               CALL INTSTP(XE, HO, E, XD)
1
    396
1
    397
               IF (RZ.EQ.O) THEN
1
    398
                    V=IV(F)+IV(F)*0.035*FL(4,F4)
1
    399
               ELSE
1
    400
                    DD=SQRT(-2.*LOG(RND(UDUM)))
1
    401
1
                    EE=BB*RND(UDUM)
    402
                    N1=DD*COS(EE)
1
1
    403
                    N2=DD*SIN(EE)
1
    404
                    V=IV(F)+IV(F)*0.035*N1
    405
               ENDIF
1
    406
1
    407
               XV≈V
1
    408
1
    409 C
           BLOCK 9
1
    410 C Establish Drag Parameters
1
    411
1
               CH=1.75*AR2(F)-1.27
1
    412
               CL=0.66*AR2(F)-0.26
1
    413
1
    414
               IF (RZ.EQ.O) THEN
1
    415
                    D1=CL+(CH-CL)*FL(5,F5)
    416
               ELSE
1
    417
                    D1=CL+(CH-CL) *RND(UDUM)
1
1
    418
               ENDIF
1
    419
               D2=D1+0.2
1
    420
               D3=D1+0.65
    421
1
               D4=D1+0.5
    422
1
1
    423 C
           BLOCK 10
    424 C Set Initial Conditions for Fragment Trajectory
1
    425
1
1
    426
               DI(1)=0.
    427
               DI(2) = V*COS(E)
1
    428
               DI(3) = 0.
L
    429
               DI(4)=V*SIN(E)
1
    430
               DI (5)=HO
1
    431
1
               DI(6)=0
    432
               DI(7)=0
1
1
    433
1
    434 C BLOCK 11
1
    435 C Begin Trajectory Calculations
1
    436
         2140 V=SQRT(DI(2)*DI(2)+DI(4)*DI(4)+DI(6)*DI(6))
    437
1
    438
               DI T=XD/V
1
    439
               LE=ABS(ATAN(DI(4)/SQRT(DI(2)*DI(2)+DI(6)*DI(6))))
1
    440
               IF(LE.LT.(0.001/B))LE=0.001/B
1
    441
1
    442 C BLOCK 12
1
    443 C Compute Special Time Increment if Conditions Dictate
1
    444
1
    445
               IF (DI (5).LE.HM) THEN
1
    446
                    IF((DI(4),LT.0.).AND.((DI(5)/SIN(LE)).LT.(XD+HM-0.2)))DLT=(
1
    447
              #DI(5)/SIN(LE)~HM+0.2)/V
1
                    IF((DI(4).LT.O.).AND.((DI(5)/SIN(LE)).LT.HM))DLT=(DI(5)/SIN
    448
1
```

```
11-21-87
                                                                              09:03:08
               7
D Line# 1
                                              Microsoft FORTRAN77 V3.31 August 1985
    449
1
              事(LE)-0.3)/∀
    450
1
                    IF((DI(4).LT.O.).AND.((DI(5)/SIN(LE)).LT.O.4))DLT=DI(5)/SIN
1
    451
              $(LE)/V+0.000002
    452
               ELSEIF((DI(4).LT.O.).AND.(DI(5).LT.(XD+12.)))THEN
1
1
    453
                    IF(.NOT.(((DI(5)-HM)/SIN(LE)).GE.(XD+HM-0.2)))DLT=((DI(5)-H
    454
1
              #M)/SIN(LE)-HM+0.2)/V
1
    455
                    IF(((DI(5)-HM)/SIN(LE)).LT.HM)DLT=((DI(5)-HM)/SIN(LE)-0.3)/
1
    456
    457
1
                    IF(((DI(5)-HM)/SIN(LE)).LT.0.4)DLT=(DI(5)-HM)/SIN(LE)/V+0.0
1
    458
              $00002
1
    459
               ENDIF
    460
               IF((V.LT.100.).AND.(DI(4).GT.-30.).AND.(DLT.GT.0.1))DLT=0.1
1
               IF((RB.GT.1).AND.(V.LT.150.).AND.(DLT.GT.0.08))DLT=0.08
1
    461
    462
1
               DI(1)=DI(1)+DLT
1
    463
    464 C
1
           BLOCK 13
    465 C
           Begin Runge-Kutta Routine and Calculate Wind Effects
1
1
    466
    467
1
               DO 2920 I=1,4
2
    468
               IF (I.LT.3) THEN
2
    469
                    KM=0.5
2
    470
               ELSE
2
    471
                    KM=1.
2
    472
               ENDIF
2
    473
               IF (.NOT. (WS.GT.O.)) THEN
2
    474
                    VP=SQRT(DI(2)*DI(2)*DI(4)*DI(4))
2
    475
                    AY=ATAN(DI(4)/DI(2))
2
    476
                    AX=PI/2-AY
2
    477
               ELSEIF (DW.EQ.O.) THEN
2
    478
                    VXF=DI(2)-WS
2
    479
                    VYF=DI(4)
2
    480
                    VP=SQRT(VXP*VXP+VYP*VYP)
2
    481
                    AY=ATAN(VYP/ABS(VXP))
2
    482
                    AX=ATAN(VXP/ABS(VYP))
2
    483
                    ELSE
2
    484
                    VXP=DI(2)-WS*COS(WD)
2
    485
                    VYP=DI(4)
2
    486
                    VZP=WS*SIN(WD)-DI(6)
2
    487
                    VP=SQRT(VXP*VXP+VYP*VYP+VZP*VZP)
2
    488
                    AY=ATAN(VYP/SQRT(VXP*VXP+VZP*VZP))
2
                    AX=ATAN(VXP/SQRT(VYP*VYP+VZP*VZP))
    489
2
    490
                    AZ=ATAN(VZP/SORT(VXP*VXP+VYP*VYP))
2
              ENDIF
    491
2
    492
2
    493 C
           BLOCK 14
2
    494 C
           Calculate Air Density, Mach Number, and CD
2
    495
2
    496
               RO=K3*EXP(-((DI(5)+ALT)+DI(4)*DLT/2)/K4)
2
    497
               MN=VP/(VS*EXP(-((DI(5)+ALT)+DI(4)*DLT/2)/K1))
2
    498
               IF (MN.GE.M1) THEN
2
    499
                    IF (MN.GE.M2) THEN
2
    500
                    IF (MN.GE.M3) THEN
2
    501
                    CD=D4
2
    502
                    ELSE
                    CD=D3+0.15/(M3+M2)*(MN+M2)
2
    503
                    ENDIF
    504
```

Page 10

11-21-87 09:03:08 Microsoft FORTRAN77 V3.31 August 1985 D Line# 1 ELSE CD=D3-0.45/(M2-M1)*(M2-MN)ENDIF FLSE CD=D2-0.2/(M1-0.1)*(M1-MN)ENDIF BLOCK 15 512 C Calculate Velocities and Accelerations 513 C KK=RO*VP*VP*CD*AM(F)/K5 DO(2) = -KK*SIN(AX)DO(3) = DI(2)DD(4) = -KK*SIN(AY) - GDO(5) = DI(4)IF (EZ.NE.O) THEN DO(6)=KK*SIN(AZ) DO(7) = DI(6)ENDIF 525 C BLOCK 16 Basic Runge-Kutta Calculations 526 C DO 2910 J=2,XL,2 IF(.NOT.(I.GT.1))DS(J)=DI(J) XK(I,J)=DO(J)*DLTIF (I.EQ.4) THEN DI(J)=DS(J)+(XK(1,J)+2*XK(2,J)+2*XK(3,J)+XK(4,J))/6. DI(J+1)=DI(J+1)+DLT*(DS(J)+(XK(1,J)+XK(2,J)+XK(3,J))/6.)ELSE DI(J)=DS(J)+XK(I,J)*KM**ENDIF** 2910 CONTINUE 2920 CONTINUE 540 C BLOCK 17 541 C Check Location of Fragment and Make Hazard Volume Calculations if Applicable 542 C R=INT(SQRT(DI(3)*DI(3)+DI(7)*DI(7))/100)+1 IF (R.GT.MR) R=MR+1 IF (DI (5).GT.HM) THEN CX=1ELSE CX≖O **ENDIF** IF (CX.NE.1) THEN 60TO 3020 ELSEIF (CY.NE.1) THEN CY=1 DF=(DI(5)-HM)/TAN(LE) R=INT((SQRT(DI(3)*DI(3)+DI(7)*DI(7))-DF)/100)+1 IF (R.GT.MR) R=MR+1 ELSE GOTO 5170 **ENDIF**

```
11-21-87
                                                                                  09:03:08
                                                 Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
    561
1
1
    562
          3020 IF(R.NE.RL)THEN
1
    563
                     P=0.
    564
                     S1=0.
    565
                     S2=1.
    566
                     S3=0.
    567
                     S4=1.
    568
                     S5=1.
    569
                     S6=0.
    570
                     TA=Q.
    571
                     MA=0.
                     XP=0.
    572
    573
                      ZP=0.
    574
1
                     ZZP=0.
    575
                     DX=O.
    576
                     GX=0.
    577
                     HX=0.
    578
                ENDIF
    579
1
1
    580 C
            BLOCK 18
            Routine for Accumulating Number of Fragments, Density, and
1
    581 C
1
    582 C
            Probability of Not Hitting the Target
1
    583
    584
               NX=FLOAT(N4)*Y2(INT((90-IE(F))/ES))
1
    585
                P=P+1
    586
                IF(R.EQ.MR+1)GOTO 5440
    587
    588
    589
                IF(P.GT.1)GOTO 5250
1
    590
1
    591
               NT(R) = NT(R) + NX/NR
    592
          5250 LE=ABS(ATAN(DI(4)/SQRT(DI(2)*DI(2)+DI(6)*DI(6))))
1
    593
               TA=PW*(R*R-(R-1)*(R-1))*SIN(LE)+AS*DR*((R*100)-50)*HM*COS(LE)
1
1
    594
                IF (DI (4).LE.O) THEN
    595
                     MA=(HM*COS(LE)+DM*SIN(LE))*WM
    596
               ELSE
    597
                     MA=HM*COS(LE)*WM
    598
               ENDIF
    599
               DX = (DX * (P-1) + NX/TA)/P
               DT(R) = DT(R) + DX/NR - S1
1
    600
1
    601
               S1=DX/NR
    602
               XP=(XP*(P-1)+EXP(-NX*MA/TA))/P
1
    603
               PT(R) = PT(R) * XP/S2
1
    604
1
               S2=XP
    605
               CKE=FG*(DI(2)*DI(2)+DI(4)*DI(4)+DI(6)*DI(6))
                IF (CKE.LT.KE) NX=0
    606
    607
               GX = (GX * (P-1) + NX)/P
    508
                NH(R) = NH(R) + GX/NR - S6
    609
               S6=GX/NR
    610
                HX=(HX*(P-1)+NX/TA)/P
1
    611
                DH(R) = DH(R) + HX/NR - S3
1
    612
                D6H(T,R) \approx D6H(T,R) + HX - S3 * NR
    613
    614
                ZP=(ZP*(P-1)+EXP(-NX*MA/TA))/P
    615
                ZZP=(ZZF*(P-1)+EXP(-NX/FLOAT(N4)*MA/TA))/P
                PH(R) \Rightarrow PH(R) * ZP/S4
    616
```

```
11-21-87
                                                                                   09:03:08
D Line# 1
                                                 Microsoft FORTRAN77 V3.31 August 1985
                S4=75
    617
1
1
    618
                PX(T_R) = PX(T_R) * ZZP/SS
    619
1
                S5=ZZP
         5440 RL=R
1
    620
          5170 IF(DI(5).GT.O.)GOTO 2140
1
    621
1
    622
    623 C
            BLOCK 19
    624 C
            Check for Ricochet and Compute New Initial Conditions
    625 C
1
            for Ricochetting Fragment
1
    626
1
    627
                E=ATAN(DI(4)/SQRT(DI(2)*DI(2)+DI(6)*DI(6)))
    628
                VR=SQRT(DI(2)*DI(2)+DI(4)*DI(4)+DI(6)*DI(6))
1
1
    629
                IF (RB.GT.6)GOTO 3330
    630
                IF(((ABS(E*B)).GE.(10.8*BQ**0.38)).OR.(VR.LT.20.))GOTO 3330
1
    631
1
                EY=ABS(E*B)
1
    632
                VQ(1)=-.01597*EY*EY+.02156*EY+.9617
1
    633
                VQ(2)=-.00861*EY*EY+.00692*EY+.96302
1
    634
                VQ(3) = -.00387 \times EY \times EY -.00414 \times EY +.95592
1
    635
                VQ(4)=-.00342*EY*EY-.00097*EY+.9409
                VQ(5)=-.00243*EY*EY-.0052*EY+.9308
    636
1
    637
                VQ(6)=-.00188*EY*EY-.00821*EY+.93802
1
    638
                EQ(1) = .13829 \times EY \times EY - .98645 \times EY + 2.8155
1
    639
                EQ(2) = .08549 \times EY \times EY - .78423 \times EY + 2 < 9012
1
                EQ(3) = .07515*EY*EY-.73919*EY+3.1056
    640
1
1
    641
                EQ(4) = .02142 \times EY \times EY - .37397 \times EY + 2.7858
    642
                EQ(5) = .01707 \times EY \times EY - .32521 \times EY + 2.8092
1
    643
                EQ(6) = .01369 * EY * EY - .2958 * EY + 2.8262
1
    644
                IF(.NOT.((BQ.GE.0.25).AND.(BQ.LT.0.5)))GOTO 5680
1
    645
                QV=VQ(1)+(BQ-.25)/.25*(VQ(2)-VQ(1))
1
    646
                QE=EQ(1)+(BQ-.25)/.25*(EQ(2)-EQ(1))
1
1
    647
                GOTO 5820
1
    648
          5680 IF(.NOT.((BQ.GE.O.5).AND.(BQ.LT.1.)))GOTO 5720
1
    649
                QV=VQ(2)+(BQ-.5)/.5*(VQ(3)-VQ(2))
1
    650
                QE=EQ(2)+(BQ-.5)/.5*(EQ(3)-EQ(2))
1
    651
                GOTO 5820
    652
          5720 IF(.NOT.((BQ.GE.1.).AND.(BQ.LT.2.)))GOTO 5760
1
    653
                QV=VQ(3)+(BQ-1)*(VQ(4)-VQ(3))
1
1
    654
               QE=EQ(3)+(BQ-1)*(EQ(4)-EQ(3))
1
    655
               GOTO 5820
    656
1
          5760 IF(.NOT.((BQ.GE.2.).AND.(BQ.LT.3.)))GOTO 5800
    657
               QV=VQ(4)+(PQ-2)*(VQ(5)-VQ(4))
1
    658
               QE=EQ(4)+(BQ-2)*(EQ(5)-EQ(4))
1
1
    659
               GOTO 5820
1
    660
          5800 \text{ QV=VQ}(5) + (8Q-3) * (VQ(6) - VQ(5))
1
    661
               QE=EQ(5)+(BQ-3)*(EQ(6)-EQ(5))
          5820 VA=QV*VR
1
    662
1
    663
               EA=-E*QE
    664
               XE=EA*B
1
1
    665
                IF (VA.LT.20.)GOTO 3330
    666
               RB=RB+1
1
1
    667
               DI(4) = VA * SIN(EA)
                IF ((DW.EQ.O.).OR.(WS.EQ.O.)) THEN
1
    66B
                     DI(2)=VA*COS(EA)
1
    669
    670
                     DI(6) = 0.
1
                ELSE
1
    671
    672
                     AQ=ATAN(DI(2)/DI(6))
1
```

```
Page 13
                                                                               11-21-87
                                                                               09:03:08
               7
                                               Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
    673
                    DI(2) = VA*COS(EA) *SIN(AQ)
    674
1
                    DI(6) = VA * COS(FA) * COS(AQ)
    675
1
               ENDIF
    676
         3250 IF(VA.LT.(20.))GOTO 3330
    677
               CALL INTSTP(XE, HO, E, XD)
    678
               CY=0
    679
               GOTO 2140
    680
           BLOCK 20
    681 C
    682 C
           Compute and Print Initial and Final Conditions
           for Current Fragment Trajectory
    683 C
    684
    685
         3330 DN=SQRT(DI(3)*DI(3)+DI(7)*DI(7))
               XR=DI(7)
    686
    687
               RN=SQRT (DN*DN-XR*XR)
    688
               R = INT(DN/100+1)
1
    689
               IF (R.GT.MR) THEN
    690
                    R=MR+1
    691
                    TJ=TJ+1
    692
               ENDIF
    693
               XN(R)=XN(R)+FLOAT(N4)*Y2(INT((90-IE(F))/ES))/NR
    694
               YN(T,R)=YN(T,R)+FLOAT(N4)*Y2(INT((90-IE(F))/ES))
    695
               XA=ATAN(XR/RN)*B
    696
               VF=SQRT(DI(2)*DI(2)+DI(4)*DI(4)+DI(6)*DI(6))
    697
               CKE=FW(F)*VF*VF/450436.
    698
               IF (CKE.GT.9999.9) CKE=9999.9
1
    699
               IF(.NOT.((T.LE.NP).AND.(NP.GT.O.)))GOTO 3450
1
1
    700
               WRITE(1,880)F,YE,FW(F),AM(F),NINT(XV),D1,NINT(DN),VF,CKE,DI(1),-(E
1
    701
              ≄*B),NINT(RN),NINT(XR),XA,NINT(XD),AR2(F),HO,RB
    702
         3450 CONTINUE
    703
               DO 3490 R=1,MR
    704
               TP(R) = TP(R) + (1-PT(R))/NR
1
    705
               HP(R) = HP(R) + (1-PH(R))/NR
1
    706
         3490 CONTINUE
    707
               WRITE(1,*)CHAR(18)
    708
    709
               IF(RZ.EQ.1)60TO 1160
    710
    711
               GOTO 1169
    712
    713 C
           BLOCK 21 - Sort for Max, Min, and Percentiles
    714
    715 C
           BLOCK 21A
           Max and Min Number of Final Impacts
    716 C
    717
    718
         3570 DO 3700 R≈1,MR
    719
               IF (NR.GT.1) GOTO 3620
1
    720
               NBMIN(R) = YN(1,R)
1
1
    721
               N9MAX(R)=YN(1,R)
    722
               GOTO 3700
1
    723
         3620 DO 3680 I≈1,INT(NR)-1
1
               DO 3670 J=I,1,-1
2
    724
3
    725
               IF(YN(J,R).LE.YN(J+1,R))GOTO 3680
3
    726
               T5=YN J,R)
3
               YN(J, \mathbb{R}) = YN(J+1, \mathbb{R})
    727
               YN (J-
                       ' ≃T5
    728
```

```
11-21-87
                                                                               09:03:08
                                               Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
    729
         3670 CONTINUE
.3
2
    730
         3680 CONTINUE
    731
1
               NBMIN(R) = YN(1,R)
1
    732
               N9MAX(R) = YN(INT(NR),R)
    733
         3700 CONTINUE
1
    734
    735 C BLOCK 21B
    736 C
           Max, Min and Percentile Hazard Density
    737
    738
               DO 3900 R=1,MR
    739
1
               IF(NR.GT.1)60T0 3800
    740
               D7MIN(R) = D6H(1,R)
1
1
    741
               DBMAX(R) = D6H(1,R)
    742
1
               D5(R) = D6H(1,R)
    743
1
               D9(R) = D6H(1,R)
    744
1
               GOTO 3900
1
    745
         3800 DD 3850 I=1,INT(NR)-1
2
    746
               DO 3840 J=I,1,-1
3
    747
               IF(D6H(J,R).LE.D6H(J+1,R))GOTO 3850
3
    748
               T5=D6H(J,R)
3
    749
               D6H(J,R) = D6H(J+1,R)
3
    750
               D6H(J+1,R) \approx T5
         3840 CONTINUE
3
    751
2
    752
         3850 CONTINUE
               D7MIN(R) = D6H(1,R)
    753
1
    754
               DBMAX(R) = D6H(INT(NR),R)
1
    755
               P5 = NR * .5
1
               P9 = NR * PCTD
    756
1
               IF(P5.NE.INT(P5)) P5 = INT(P5) + 1.
1
    757
               IF(P9.NE.INT(P9)) P9 = INT(P9) + 1.
    758
1
    759
1
               IF(P5.LT.1.) P5 = 1.
               IF(P9.LT.i.) P9 = 1.
    760
1
1
    761
               D5(R) = D6H(INT(P5),R)
               D9(R) = D6H(INT(P9),R)
1
    762
    763
         3900 CONTINUE
    764
    765 C BLOCK 21C
    766 C
           Sort Probability of Not Hitting for a Single Unit
    767
    768
               DO 4020 R=1,MR
    769
               IF (NR.EQ.1.)GOTO 4020
1
    770
               DO 4010 I=1,INT(NR)-1
1
2
    771
               DO 4013 J=1,1,-1
3
    772
               IF (PX(J,R).LE.PX(J+1,R))GOTO 4010
3
    773
               T5=PX(J,R)
3
    774
               PX(J,R) = PX(J+1,R)
3
    775
               PX(J+1,R) = T5
3
    776
         4013 CONTINUE
2
    777
         4010 CONTINUE
    778
1
    779
1
    780
1
1
    781
          4020 CONTINUE
    782
    783 C BLOCK 22
    784 C Compute and Print Average Number Density and P-Hit; and Number of
```

```
11-21-87
                                                                                    09:03:08
                                                  Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
    785 C
            Final Impacts for Given Distance Increment and Number of Units
    786
    787
                DO 5130 RI=100,400,100
    788
1
                RI2=RI/100
1
    789
                DO 4280 R=1,MR/RI2
2
    790
                DO 4260 J=1,RI2
3
    791
                K=RI2*(R-1)+J
    792
3
                KW=K-.5
3
    793
                SUM=SUM+KW
3
    794
                TN(R) = TN(R) + NT(K)
3
    795
                TD(R) = (TD(R) * (SUM-KW) + DT(K) * KW) / SUM
3
    796
                FTP(R) = (FTP(R) * (SUM-KW) + TP(K) * KW) / SUM
3
    797
                HN(R) = HN(R) + NH(K)
3
    798
                HD(R) = (HD(R) * (SUM - KW) + DH(K) * KW) / SUM
3
    799
3
    800
3
    801
3
    802
3
    803
                X7DMIN(R) = (X7DMIN(R) * (SUM-KW) + D7MIN(K) *KW) /SUM
3
    804
                XBDMAX(R) = (XBDMAX(R) * (SUM-KW) + DBMAX(K) * KW) / SUM
3
    805
                X5D(R) = (X5D(R) * (SUM - KW) + D5(K) * KW) / SUM
3
    806
                X9D(R) = (X9D(R) * (SUM-KW) + D9(K) * KW) \angle SUM
3
    807
                FHP(R) = (FHP(R) * (SUM-KW) + HP(K) * KW) / SUM
3
    808
3
    809
                X7PMIN(R) = (X7PMIN(R) * (SUM-KW) + (1-PX(INT(NR),K) **FLOAT(N4)) *KW)/SUM
3
                XBPMAX(R) = (XBPMAX(R) * (SUM-KW) + (1-PX(1,K) **FLOAT(N4)) *KW)/SUM
    810
3
    811
3
    812
    813
3
    814
3
    815
3
    816
3
    817
3
    818
                P5 = NR * .5 + 1.
3
    819
                P9 = NR * (1. - PCTD) + 1.
                IF(P5.NE.INT(P5)) P5 = INT(P5)
3
    820
3
                IF(F9.NE.INT(P9)) P9 = INT(P9)
    821
3
                IF(PCTD.EQ.O.O) P9 = NR
    822
3
                X5P(R) = (X5P(R)*(SUM-KW)+(1.-PX(INT(P5),K)**FLOAT(N4))*KW)/SUM
    823
3
    824
                X9P(R) = (X9P(R)*(SUM-KW)+(1.-PX(INT(P9),K)**FLOAT(N4))*KW)/SUM
3
                TI(R) = TI(R) + XN(K)
    825
3
    826
                TBMIN(R) = TBMIN(R) + NBMIN(K)
3
                T9MAX(R) = T9MAX(R) + N9MAX(K)
    827
3
          4260 CONTINUE
    828
2
    829
                SUM=0.
2
    830
    831
2
    832
          4280 CONTINUE
1
    833
                RI2=RI2*100
    834
                MR=MR*100
1
    835
                WRITE(1,*)CHAR(15)
1
               WRITE(1,'(/10X,A,5X,A,14,A,5X,A,15/)')'TABLE 1','Increment = ',RI, $' feet', 'Number of Units= ',N4
1
    836
1
    837
                WRITE (1,890)
1
    838
    839
                WRITE (1,900) AS
1
    840
                WRITE (1,910)
```

```
11-21-87
                                                                              09:03:08
D Line# 1
                                              Microsoft FORTRAN77 V3.31 August 1985
    841
               DO 4380 R=1,MR/RI
1
2
    842
               WRITE(1,920)RI*(R-1),RI*R,TN(R),TD(R),FTP(R),HN(R),HD(R),FHP(R),TB
2
    843
              #MIN(R),TI(R),T9MAX(R)
2
    844
         4380 CONTINUE
1
    845
              WRITE(1,'(/7X,A,I4,A,I4//)')'Number of trajectories with distance
    846
1
              #greater than ',MR,' feet=',TJ
    847
1
    848 C
1
           BLOCK 23
1
    849 C
           Print Hazard Density and Probability of Hit for
    850 C
           Number of Units Selected
1
1
    851
    852
               RI2=RI/100
1
    853
1
               MR=MR/100
               WRITE(1, '(//10X, A, 10X, A, 14, A, 10X, A, 15//)')'TABLE 2', 'Increment=',
1
    854
              $RI, 'feet', 'Number of Units= ',N4
    855
1
    856
               WRITE(1,982)
1
               WRITE(1,984)FCT,PCT
1
    857
1
    858
               DO 4450 R=1,MR/RI2
2
    859
               WRITE(1,986)RI*(2*R-1)/2, X8DMAX(R), X9D(R), X5D(R), X7DMIN(R), X8PMAX(
2
    860
              ≰R), X9P(R), X5P(R), X7PMIN(R)
2
    861
         4450 CONTINUE
1
    862
    863 C
           BLOCK 24
           Compute and Print Number of Units Required to Just Exceed
1
    864 C
1
    865 C
           Hazard Density and F-Hit Criteria
1
    866
1
    867
               WRITE(1, '(//20X,A,10X,A,14,A/)')'TABLE 3', 'Increment≃ ',RI,' feet'
               WRITE(1,970)
1
    868
    869
               WRITE (1,940)
1
    870
               WRITE(1,950)PCT,PCT
1
    871
               DD 4610 R=1,MR/RI2
1
2
    872
               IF (XBDMAX(R), EQ.O.O) THEN
2
    873
                 Y7DMIN(R) = 999999
2
    874
               ELSE
2
    875
                 Y7DMIN(R) = DC/X8DMAX(R)*FLOAT(N4) + .01
2
    876
               ENDIF
2
    877
               IF (X9D(R), EQ. 0.0) THEN
2
    878
                 Y9D(R) = 999999
2
    879
               ELSE
2
    880
                 Y9D(R) = DC/X9D(R)*FLOAT(N4) + .01
2
    881
               ENDIF
2
    882
               IF (X5D(R).EQ.O.O) THEN
2
                 Y5D(R) = 999999
    883
2
    884
               ELSE
2
    885
                 Y5D(R) = DC/X5D(R)*FLOAT(N4) + .01
2
    886
               ENDIF
2
               IF (X7DMIN(R).EQ.G.O) THEN
    887
2
                 YBDMAX(R) = 9999999
    888
2
    889
               ELSE
2
                 Y8DMAX(R) = DC/X7DMIN(R)*FLOAT(N4) + .01
    890
2
    891
               ENDIF
2
    892
2
    893
2
    894
         4610 CONTINUE
1
    895
               RI2=RI/100
    896
               DO 4860 R=1,MR/RI2
```

NSWCTR87-59

```
11-21-87
                                                                               09:03:08
D Line# 1
                                               Microsoft FORTRAN77 V3.31 August 1985
               DO 4730 J=1,RI2
2
    897
3
    898
               K = RI2 * (R-1) + J
               KW = K - .5
3
    899
3
    900
               SUM = SUM + KW
3
    901
               Z5P(R) = (Z5P(R) * (SUM-KW) + (1.-PX(INT(P5),K)) *KW)/SUM
3
    902
               Z7PMIN(R) = (Z7PMIN(R) * (SUM - KW) + (1 - PX(INT(NR),K))* KW)/SUM
3
               ZBPMAX(R) = (ZBPMAX(R) * (SUM - KW) + (1 - PX(1,K)) * KW) / SUM
    903
3
    904
               Z9P(R) = (Z9P(R) * (SUM-KW) + (1.-PX(INT(P9),K)) *KW) / SUM
3
    905
         4730 CONTINUE
2
    906
               SUM=0.
2
    907
               IF (ZBPMAX(R).EQ.O.O) THEN
2
    908
                 NP2(1,R) = 999999
2
    909
               ELSEIF (Z8PMAX(R).EQ.1.) THEN
2
    910
                 NP2(1,R) = .61
2
    911
               ELSE
2
    912
                 NP2(1,R) = LOG(1.-PC)/LOG(1.-Z8PMAX(R)) + .01
2
    913
2
    914
               ENDIF
2
    915
               IF (Z9P(R).EQ.O.O) THEN
2
    916
                 NP2(2.R) = 9999999
2
    917
               ELSEIF (Z9P(R).EQ.1.) THEN
2
    918
                 NP2(2,R) = .01
2
    919
               ELSE
                 NP2(2,R) = LOG(1.-PC)/LOG(1.-Z9P(R)) + .01
2
    920
2
    921
2
    922
               ENDIF
2
    923
               IF(Z5P(R).EQ.0.0) THEN
2
    924
                 NP2(3,R) = 9999999
2
    925
               ELSEIF (Z5P(R).EQ.1.) THEN
2
    926
                 NP2(3,R) = .01
2
               ELSE
    927
2
    928
                 NP2(3,R)=LOG(1.-PC)/LOG(1.-Z5P(R)) + .01
2
    929
2
    930
               ENDIF
2
               IF (Z7PMIN(R).EQ.O.O) THEN
    931
2
                 NP2(4,R) = 999999
    932
2
    933
               ELSEIF (Z7PMIN(R).EQ.1.) THEN
2
    934
                 NP2(4.R) = .01
2
    935
               ELSE
2 2
    936
                 NP2(4,R) = LOG(1.-PC)/LOG(1.-Z7PMIN(R)) + .01
    937
2
    938
               ENDIF
2
    939
2
    940
         4860 CONTINUE
1
    941
               RI2=RI2*100
1
    942
               MR=MR*100
1
    943
               DO 4990 R=1,MR/RI
2
    944
               WRITE(1,960)RI*(2*R-1)/2,Y7DMIN(R),Y9D(R),Y5D(R),Y8DMAX(R),NP2(1,R
2
    945
              $),NP2(2,R),NP2(3,R),NP2(4,R)
2
    946
          4990 CONTINUE
1
    947
               WRITE(1,*)
               WRITE(1, '(17X,A)')'The 999999.00 entries signify that the number o
1
    948
1
    949

$f units required is infinite,

    950
               WRITE(1,'(29X,A)')'that is, the Hazard Density and P-hit are both
1
1
    951
    952
               DO 5080 R=1,MR/100
```

NSWCTR87-59

Page 18 11-21-87

```
09:03:08
                                                Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
               TN(R)=0.
2
    953
               HN(R)=0.
2
    954
               TI(R)=0.
2
    955
               TBMIN(R) = 0.
2
    956
               T9MAX(R)=0.
2
    957
          5080 CONTINUE
2
    958
               WRITE(1,980)DC,FC
1
    959
               MR=MR/100
1
    960
    961
          5130 CONTINUE
1
               WRITE (1,*) CHAR (18)
    962
                CLOSE(1)
    963
                END
    964
                      Offset P Class
         Type
Name
                                 INTRINSIC
ABS
                                 LARGE
        REAL
                            0
ΑE
        REAL
                         1922
ALT
ALTMAX REAL
                          248
                          244
ALTMIN REAL
                                 LARGE
                            0
AM
        REAL
                         2190
        REAL
AQ.
                                 LARGE
                            0
AR2
        REAL
                           76
AS
        INTEGER*4
                                 INTRINSIC
ATAN
                         2050
        REAL
ΑX
        REAL
                         2046
AY
                         2066
ΑZ
        REAL
                           60
B
        REAL
                            68
        REAL
BB
                         1918
        REAL
BO
        REAL
                         2078
CD
                         2006
CH
        REAL
                                 INTRINSIC
CHAR
                         2162
CKE
        REAL
        REAL
                         2010
CL
                                 INTRINSIC
cos
        INTEGER*4
                         2090
CX
        INTEGER*4
                         1966
CY
                         2014
        REAL
D1
                         2018
D2
        REAL
                         2022
DЗ
        REAL
                          2026
D4
        REAL
                                 LARGE
        REAL
D5
                             0
                                 LARGE
                             Ō
 D6H
        REAL
                                 LARGE
                        38800
        REAL
 D7MIN
                                 LARGE
                        39188
 D8MAX
        REAL
                                  LARGE
                         39576
         REAL
 D9
                           280
         REAL
 DC
                          1986
         REAL
 DD
                          2094
 DF
         REAL
                            28
                                  LARGE
         REAL
 DH
                                  LARGE
                             O
         REAL
 DI
                          2030
         REAL
 DLT
                            88
 DM
         REAL
                          2194
```

DN

REAL

Page 19

11-21-87 09:03:08 Microsoft FORTRAN77 V3.31 August 1985 7 D Line# 1 0 LARGE REAL DO 64 REAL DR LARGE 388 REAL DS LARGE Ö REAL DT 264 DW REAL 2146 DX REAL 1954 Ε REAL 2186 REAL EΑ REAL **** EC 1990 REAL EE EΩ REAL 0 LARGE 72 ES REAL INTRINSIC EXP 2170 ΕY REAL 1930 INTEGER*4 ΕZ F 1844 INTEGER*4 INTEGER*4 1876 F1 1880 F2 INTEGER*4 1884 F3 INTEGER*4 1888 F4 INTEGER*4 1892 INTEGER:*4 F5 1896 F6 INTEGER*4 1900 F7 INTEGER*4 1970 FG REAL LARGE FHP REAL 0 388 LARGE FL REAL INTRINSIC FLOAT 1388 LARGE REAL FTP REAL 1776 LARGE F₩ REAL 48 G GX REAL 2150 LARGE H9 CHAR*19 388 0 LARGE HD REAL 80 HM REAL LARGE Ŏ HN REAL 1950 HO REAL LARGE O HF' REAL 204 HS REAL 2154 REAL НΧ INTEGER*4 1832 I INTRINSIC IDINT LARGE REAL. 0 ΙE INTRINSIC INT LARGE 2000 ΙV REAL 1856 INTEGER*4 J 2274 INTEGER*4 \mathbf{K} 32 **K1** REAL 36 K3 REAL 40 **K4** REAL 44 **K**5 REAL 52 K9 REAL 276 KE REAL 2082 ΚK REAL 2038 KM REAL 2278 KW REAL

2034

LE

REAL

Page 20 11-21-87

09:03:08 Microsoft FORTRAN77 V3.31 August 1985 D Line# 1 7 INTRINSIC LOG 16 REAL M1 20 REAL M2 24 REAL M3 2130 REAL MA 2074 REAL MN INTEGER*4 272 MR 268 REAL MRA 1994 REAL N1 1998 REAL N2 212 INTEGER*4 N4 LARGE 0 REAL NIMBN LARGE REAL 388 N9MAX CHAR*14 118 MAM 220 INTEGER*4 NF LARGE 776 NH REAL INTRINSIC NINT LARGE 2716 INTEGER*4 NL 240 INTEGER*4 NP .1164 LARGE REAL NP2 236 REAL NR LARGE 0 REAL NT 2158 REAL NX 2098 Ρ REAL 2242 REAL P5 2246 REAL P9 1852 REAL F'A 284 REAL PC 224 INTEGER*4 PCT 228 PCTD REAL LARGE 0 REAL PΗ 56 REAL ΡI 0 LARGE REAL PT 92 REAL PW LARGE 0 PX REAL 100 CHAR*14 Q 2178 QE REAL 2174 REAL QV 1868 INTEGER*4 R 1946 INTEGER*4 RB 2258 INTEGER*4 RΙ 2262 INTEGER*4 RI2 1974 INTEGER*4 RL 2202 REAL RN **FUNCTION** REAL RND 2070 RO REAL 232 INTEGER*4 RZ 2102 REAL S1 2106 REAL **S2** 2110 REAL **S**3 2114 REAL 54 2118 **S**5 REAL 2122 REAL 56 200 REAL SCMAX 196 SCMIN REAL 208 REAL SIGS

Page 21 11-21-87 09:03:08 Microsoft FORTRAN77 V3.31 August 1985

D Line	† 1 7		
SIN			INTRINSIC
SQRT			INTRINSIC
SUM	REAL	2282	
Т	INTEGER*4	1860	
T5	REAL	2230	
TBMIN	REAL	0	LARGE
T9MAX	REAL	388	LARGE
TA	REAL	2126	
TAN			INTRINSIC
TD	REAL	0	LARGE
TI	REAL	388	LARGE
TJ	INTEGER*4	2206	
TN	REAL	776	LARGE
TP	REAL	1164	LARGE
TS	CHAR*64	132	
UDUM	REAL*8	300	
USE	REAL*8	288	
V	REAL	1982	
VA	REAL	2182	
VF	REAL	2214	
VP	REAL	2042	
VQ.	REAL	0	LARGE
VR	REAL	2166	2
VS	REAL	28	
VXP	REAL	2054	
VYP	REAL	2058	
VZP	REAL	2062	
WD	REAL	260	
WM	REAL	84	
WS	REAL	1926	
WSMAX	REAL	256	
WSMIN	REAL	252	
X5	INTEGER*4	216	
X5D	REAL	0	LARGE
X5P	REAL	388	LARGE
X7DMIN		0	LARGE
X7FMIN		Ó	LARGE
XBDMAX		388	LARGE
XBPMAX		0	LARGE
X9D	REAL	776	LARGE
X9P	REAL	1164	LARGE
XA	REAL	2210	
XD	REAL	1978	
XE	REAL	1958	
XK	REAL	0	LARGE
XL	INTEGER*4	1934	
XN	REAL	112	LARGE
XP	REAL	2134	
XR	REAL	2198	
ΧV	REAL	2002	
Ŷ	REAL	296	
Y2	REAL	0	LARGE
Y5D	REAL.	144	LARGE
YZDMIN		Ö	LARGE
YBDMAX		388	LARGE
Y9D	REAL	776	LARGE
	- · · ·		

NSWCTR87-59

Page 22

```
11-21-87
                                                                             09:03:08
                                              Microsoft FORTRAN77 V3.31 August 1985
D Line# 1
               7
YΕ
       REAL
                        1962
YN
       REAL
                           0
                               LARGE
Z5P
                               LARGE
       REAL
                           0
Z7PMIN REAL
                      38800
                               LARGE
ZBPMAX REAL
                      39188
                               LARGE
Z9P
       REAL
                      39576
                               LARGE
ZΡ
       REAL
                       2138
ZZP
       REAL
                       2142
    965 C
           BLOCK 25
    966 C
           Function Subprogram to Calculate Random Number
    967
    968
               FUNCTION RND(UIX)
               DOUBLE PRECISION UA, UP, UIX, UIY, UB15, UB16, UXHI, UXALO, ULEFTLO, UFHI,
    969
    970
    971
               DATA UA/16807.DO/,UB15/32768.DO/,UB16/65536.DO/,UP/2147483647.DO/
    972
               IF (UIX.EQ.O) UIX=UIY
    973
         7000 UXHI=UIX/UB16
    974
               UXHI=UXHI-DMOD(UXHI,1.DO)
    975
               UXALO=(UIX-UXHI*UB16)*UA
    976
               ULEFTLO=UXALO/UB16
    977
               ULEFTLO=ULEFTLO-DMOD(ULEFTLO,1.Do)
    978
               UFHI=UXHI*UA+ULEFTLO
    979
               UK=UFHI/UB15
    980
               UK=UK-DMOD(UK,1.DO)
    981
               UIX=(((UXALO-ULEFTLO*UB16)-UP)+(UFHI-UK*UB15)*UB16)+UK
    982
               IF (UIX.LT.O) UIX=UIX+UP
    983
               UIY=UIX
    984
               RND=INT((UIX*4.656612875D-10)*1D06)/1D06
    985
               IF(RND.EQ.0)G070 7000
    986
               RETURN
    987
               END
Name
                     Offset P Class
        Type
DMOD
                               INTRINSIC
INT
                               INTRINSIC
                       2314
UΑ
       REAL*8
UB15
       REAL*8
                       2322
UB16
       REAL*8
                       2330
UFHI
       REAL*8
                       2378
UIX
       REAL*8
                           0 *
                       2346
       REAL*8
UIY
       REAL*8
                       2386
UK.
ULEFTL REAL*8
                       2370
LIP
       REAL*8
                       2338
UXALO
       REAL*8
                       2362
                       2354
IHXU
       REAL*8
    988
    989 C
           BLOCK 26
    990 C
           Subroutine for Selecting Integration Step
    991
```

SUBROUTINE INTSTP(XE, HO, E, XD)

992

D Line# 1	Page 23 11-21-87 09:03:08 7 Microsoft FORTRAN77 V3.31 August 1985
993	THE COURT CONTINUES TO A STATE OF THE STATE
994	IF((XE.LT.O.).AND.((HO/SIN(-E)).GT.60.))THEN
995	XD=50.
996	ELSEIF (XE.LT.O.) THEN
997	XD=AINT(HO/SIN(-E)/1.2)
958	ELSEIF (XE.LE.70.) THEN
999	XD=AINT(-0.02492*XE*XE+2.20134*XE+18.8306)
1000	ELSE
1001	XD=50.
1002	ENDIF
	RETURN
1004	END
Name Type	Offset P Class
AINT	INTRINSIC
E REAL	8 *
HO REAL	4 *
SIN	INTRINSIC
XD REAL	12 *
XE REAL	0 *
Name Type	Size Class
INTSTP MAIN	SUBROUTINE PROGRAM
RND REAL	FUNCTION

Pass One No Errors Detected 1004 Source Lines

APPENDIX C GLOSSARY

The glossary is arranged in alphabetical order. All variables begin with a letter. Second and subsequent characters may be numbers. Numbers precede letters; for example, D3 would precede DA.

There are three types of variables in the glossary which are explained as follows:

Flag - A variable used to indicate a set of alternate states. For example the variable RZ is used to indicate the selection of the MONTE CARLO or FULL FACTORIAL option. When RZ equals 1 then the MONTE CARLO path is followed through the program. When RZ equals 0 the FULL FACTORIAL path is followed.

Index - Used with array variables to designate a particular element in the array. Often the index is used in loops to assign values to the array elements as necessary.

Counter - Used to count the number of times a particular action has occurred and sometimes to designate a particular element in an array. For example, the replication or treatment counter (T) is used to identify the number of the current replication or treatment and also provides an index for such variables as PX (T,R).

Array variables have either one or two indices enclosed by parenthesis. In dimensioning these variables in BLOCK-1, the maximum number of elements permitted is specified. These maximum numbers of elements are explained as follows:

- (97) -Maximum number of 100-ft range increments plus 1. The additional element is used to store those trajectories which have ranges greater than the selected maximum computational range (MRA).
 - (100) -The maximum number of replications or treatments allowed.
 - (500) -The maximum number of fragments allowed.

All other indices are explained in the glossary together with the appropriate array variable.

All variables beginning with the letter "U" are double precision and used in the random number generator. Only two of these variables are defined in the glossary. The remaining variables are best explained in the comments to the test listing in Appendix F and the referenced document specified there.

Throughout most of the glossary, range has been used in the description of the variables. Range (R) and Distance (DN) are the same when there is no crosswind. With crosswind, distance is equal to the square root of the sum of squares of range (R) and crossrange (XR).

-A-

AE (500)	Defines the lower limit of an elevation zone (deg) for each fragment
ALT	Altitude of the site where the munitions are located. A random variable. A constant when ALTMIN and ALTMAX are the same. (ft)
ALTMAX	Maximum altitude of sites being simulated. (ft)
ALTMIN	Minimum altitude of sites being simulated. (ft)
AM (500)	The average presented area to mass ratio for a fragment. (in.2/lb)
AQ	An angle used to calculate the range and cross-range velocities after ricochet. (radians)
AR2 (500)	Defines the maximum to average presented area ratio for each fragment.
AS	Azimuth sector size. Describes the angular width of the hazard volume. See Figure 1 where $AS = 10 \text{ deg}$.
AX	An angle in radians. Incorporates wind effects, if applicable, and is used to calculate the X (range) component of acceleration in the Runge-Kutta routine.
AY	An angle in radians. Used to calculate the Y (altitude) component of acceleration in the Runge-Kutta routine.
AZ	An angle in radians. Incorporates wind effects, if applicable, and is used to calculate the Z (cross-range) component of acceleration in the Runge-Kutta routine.
	-B-
В	A constant used to convert degrees, to radians or radians to degrees.
ВВ	A constant equal to 2*PI. It is used in the generation of normal random numbers in BLOCK-8.
BQ	Soil constant used for ricochet calculations. A random variable between 0.5 and 4.0. A constant when SCMAX and SCMIN are the same.
	-C-
CD	Fragment drag coefficient which is a function of Mach Number. The function is approximated by four straight lines. This is a random variable.
СН	High limit of uncertainty for the low subsonic (MN = 0.1) drag coefficient at a particular value of AR2 (500).
CKE	Computed kinetic energy of a fragment calculated within the hazard volume to determine whether the fragment is hazardous. (ft-lbs)
CL	Low limit of uncertainty for the low subsonic (MN = 0.1) drag coefficient at a particular value of AR2 (500).

CX	A flag having the value of 0 or 1. Used to determine the range increment where the fragment goes through the top plane of the hazard volume from below. This action occurs when CX equals 1 and CY equals 0.
CY	A flag having the value of 0 or 1. When equal to zero, the fragment is below the top plane of the hazard volume. When equal to 1, the fragment is above this plane.
	-D-
D1	The drag coefficient for a particular fragment at a Mach Number of approximately 0.1. This a random variable. The drag coefficient lies between a Max (CH) and a Min (CL) value. This is the anchor point for constructing the four straight lines which approximate the drag curve as a function of Mach Number.
D2	Equals D1 \pm 0.2. This CD point at Mach Number 0.75 determines the first straight line drawn from D2 through D1 and then to the CD axis.
D3	Equals D1 \pm 0.65. This CD point at Mach Number 1.5 determines the second straight line drawn from D3 to D2.
D4	Equals D1 + 0.5. This CD point at Mach Number 2.5 determines the third straight line drawn from D4 to D3. The fourth straight line above Mach Number 2.5 has a constant CD value of D1 + 0.5.
D5 (97)	The 50th percentile value of hazardous density, for the number of units specified, for each 100-ft increment of range (Frags/ft 2)
D6H (100, 97)	Hazardous fragment density by replication or treatment for each 100-ft range increment for the number of units specified. (Frags/ft 2)
D7MIN (97)	The minimum hazard density for a given 100-ft range increment for the number of units specified. (Frags/ft 2)
D8MAX (97)	The maximum hazard density for a given 100-ft range increment for the number of units specified. (Frags/ft 2)
D9 (97)	The hazard density for the percentile level chosen for the number of units specified. (Frags/ft 2)
DC	Hazard density criterion. Currently one fragment per $600~\rm{ft^2}$ for personnel. For other targets use one divided by $100~\rm{times}$ the presented area of the target.
DD	A value calculated and used in the generation of random normal numbers for defining a value of the magnitude of initial fragment velocity in the MONTE CARLO option.
DF	A range difference value used to calculate the range where the fragment pierces the hazard volume when the trajectory is in an upward direction. (ft) See BLOCK-17
DH (97)	The average hazard density for each 100-ft increment of range for the number units specified. (Frags/ft 2)
DI (7)	Seven variables for time, velocity and displacement used in the Runge-Kutta routine.
	DI (1) Elapsed time of flight. (s) (Not in basic Runge-Kutta calculations)

	DI (2) The magnitude of the range (X component) of velocity. (fVs)
	DI (3) Range measured along the X component of displacement. (ft)
	DI (4) The magnitude of the altitude (Y component) of velocity, positive upwards and negative downwards (ft/s).
	DI(5) Altitude measured along the Y component of displacement, positive above ground level and negative below. (ft)
	DI (6) The magnitude of the crossrange (Z component) of velocity. (fUs)
	DI (7) Crossrange measured along the Z component of displacement. (ft)
DLT	The time increment of integration in the Runge-Kutta routine. It is variable since it is based on a distance increment and the current velocity. (s)
DM	The depth measurement of the target. For an average male soldier, this dimension is 0.55 ft.
DN	The distance of fragment travel in the ground plane. Equal to the square root of the sum of squares of final range and crossrange. Distance equals range when there is no crossrange component. (ft)
DO (7)	Variables for velocity and acceleration used in the Runge-Kutta routine.
	DO(1) Not used.
	DO (2) Magnitude of the acceleration in the range (X component) direction. (ft/s2)
	DO (3) Magnitude of the velocity in the range (X component) direction (ft/s). Not currently used.
	DO (4) Magnitude of the acceleration in the altitude (Y component) direction. (ft/s2)
	DO (5) Magnitude of the velocity in the altitude (Y component) direction (ft/s). Not currently used.
	DO (6) Magnitude of the acceleration in the crossrange (Z component) direction (fUs2).
	DO (7) Magnitude of the velocity in the crossrange (Z component) direction (fVs). Not currently used.
DR	A constant for converting degrees to radians or radians to degrees.
DS (7)	A variable used to hold the values of velocity at increment start for the three component directions in the Runge-Kutta routine. Only indicies 2, 4, 6 are used. (fVs)
DT (97)	Average total fragment density in each 100-ft range increment. Includes both hazardous and nonhazardous fragments for the number of units specified. (Frags/ft²)
DW	The wind direction saved in degree notation for output.

DX	Running average of total fragment density at multiple points within one 100-ft range increment. (Frags/ft 2)
	-E-
Е	Elevation angle. Plus above the horizontal and minus below the horizontal. (radians)
EA	The angle of ricochet in the same plane as the incident angle. (radians)
EE	A value used in the generation of random normal numbers for use with the uncertainty of fragment initial velocity.
EQ(6)	The six equations for calculating ricochet angle as a function of incident angle for different soil constants. See BLOCK-19 and Appendix E.
ES	The size of the elevation angle zone calculated from the polar zone size. The size used currently is 10 deg. It depends on the size of polar zones used in the small-scale arena tests. The zone size determines the range of uncertainty in initial elevation angle. (deg)
EY	The absolute value of the incident angle used for ricochet calculations. (deg)
EZ	Flag which determines whether there is a cross-range component. Effects Runge-Kutta calculations.
	-F-
F	An index and counter for numbering the fragments and controlling the fragment loop (BLOCK-7).
Fl	A counter for specifying the Factor Level currently in use in the FULL FACTORIAL option. This counter pertains to the SOIL CONSTANT factor.
F2	A counter for specifying the Factor Level currently in use in the FULL FACTORIAL option. This counter pertains to the Height of Origin factor.
F3	A counter for specifying the Factor Level currently in use in the FULL FACTORIAL option. This counter pertains to the Elevation Angle factor.
F4	A counter for specifying the Factor Level currently in use in the FULL FACTORIAL option. This counter pertains to the Initial Velocity factor.
F5	A counter for specifying the Factor Level currently in use in the FULL FACTORIAL option. This counter pertains to the site Altitude factor.
F7	A counter for specifying the Factor Level currently in use in the FULL FACTORIAL option. This counter pertains to the Wind Speed factor.
FG	A constant used in calculating the kinetic energy of a fragment. It is equal to the fragment weight in grains divided by $(2*7000*G)$. (lb-s ² /ft)
FHP (97)	Running weighted average hazard probability of hit for the number of units specified and, in turn, for each of the four range increments (100, 200, 300, and 400 ft) in the output.

FL(10,25)	Factor Level for use in the FULL FACTORIAL option. The first index identifies the factor. The second index identifies the current level in use for a particular treatment.
FTP (97)	Running weighted average probability of hit including hazardous and nonhazardous fragments for the number of units specified and, in turn, for each of the four range increments (100, 200, 300, and 400 ft) in the output.
FW (500)	Fragment weight for each fragment. (grains)
	-G-
G	Acceleration due to gravity. (ft/s 2)
GX	Running average of the number of hazardous fragments in a particular 100-ft range increment. It is possible to have a fragment hazardous at one point in the 100-ft increment and to be nonhazardous at a later point in the same increment.
	-H-
H9 (10)	A character array variable which contains the names of the factors in the FULL FACTORIAL option.
HD (97)	Running weighted average hazardous density for the number of units specified. Applies to 100, 200, 300, and 400 ft range increments used in the output tables. (Frags/ft 2)
НМ	Height measurement of the target. For an average male soldier this dimension is 5.72 ft.
HN (97)	Accumulated average hazardous number of fragments. Applies to 100, 200, 300, and 400 ft range increments used in the output tables.
НО	Height above the ground at which a fragment is ejected from the ammo stack. (ft)
HP (97)	Probability of hitting the target with hazardous fragments for each 100-ft range increment. The value is averaged over all replications or treatments.
HS	Height of the ammo stack above the ground. (ft)
нх	Running average of the hazardous density for the number of that specified. The average is for the points occurring in a particular 100-ft range increment. (Frags/ft ²)
	-I-
I	Loop index. Used more than once when there is no conflict between loops.
IE (500)	Lower limit of the fragment elevation zone. (deg)
INTSTP	Subroutine for defining the Runge-Kutta displacement integration step.
IV (500)	Average magnitude of the fragment initial velocity vector. (fVs)

-J-

J	Loop index. Used more than once where there is no conflict between loops.
	-K-
К	Loop index. Used more than once where there is no conflict between loops.
K1	Constant used in the exponent of the Mach Number equation. (ft/s)
К3	Air density at sea level divided by 2. Division by 2 accounts for the factor $1/2$ in the drag equation. (lb/ft ³)
K4	Constant used in the exponent of the air density equation. (ft)
K5	Constant (144) used to convert the average presented area of the fragment from square inches to square feet.
K9	Constant used to convert fragment weight in grains to pound-mass units for use in the kinetic energy hazard criterion calculations.
KE	Hazard kinetic energy criterion. (ft-lbs)
кк	Acceleration along the fragment velocity vector due to air drag. (ft/s2)
КМ	Constant (0.5 or 1) used as coefficients for the Runge-Kutta intermediate velocities.
KW	Weighting factor used when combining 100-ft increments into larger increments in the output tables. The weighting factor is equal to the mid-range of each 100-ft increment in hundreds of ft.
	-L-
LE	The absolute value of the elevation angle at the end of each Runge-Kutta integration step (radians)
	-M-
M1	Subsonic Mach Number pivot point used in constructing the straight line approximations to the drag curve. Currently equal to 0.75.
М2	Transonic Mach Number pivot point used in constructing the straight line approximations to the drag curve. Currently equal to 1.5.
М3	Supersonic Mach Number pivot point used in constructing the straight line

MA The presented area of the target in the plane perpendicular to the fragment trajectory. (ft^2) Mach Number MN MR Maximum computation range in ft or hundreds of ft depending on the computation involved. MRA Maximum computation range best specified in 1200 ft multiples. (ft) -N-N1A generated random normal number. N2A second generated random normal number. The random normal number generator is constructed such that two numbers are generated in each pass. This variable is not currently used. **N4** The number of interaction areas or units on the face of the stack towards the target area. N8MIN (97) Minimum number of final impacts for each 100 st range increment for the specified number of units. N9MAX (97) Maximum number of final impacts for each 100-ft range increment for the specified number of units. NAM Character variable containing the code name for the output device. For the FRAGHAZ program the code (LPT1) designates the Epson Printer with the IBM PC-AT. NF The number of fragments used in the simulation. A separate trajectory is calculated for each fragment, for each replication or treatment. NH (97) Average number of hazardous fragments for each 100-ft range increment for the number of units specified. NL(10)The number of levels for each factor in the FULL FACTORIAL option. Index identifies which factor. NP The number of replications or treatments for which the initial and final conditions of each fragment trajectory will be printed. The number of units required to just exceed the Probability of Hit criterion for each NP2 (4, 97) 100-ft range increment. There are four values in the output: minimum, maximum, 50th percentile, and the specified percentile. Values pertain to 100, 200, 300, and 400 ft range increments. NT (97) Equally weighted total number of fragments (hazardous and nonhazardous) for each 100-ft range increment for the specified number of units. The average is accumulated after each replication or treatment and stored in the variable TN (97).

NSWCTR87-59

NR Number of replications selected for the MONTE CARLO option. Number of treatments is computed internally for the FULL FACTORIAL option and also stored in this variable NXThe number of fragments associated with a trajectory for the specified number of units. -0-There are no variables beginning with "O". -Pp A counter which specifies the number of trajectory points in any one 100-ft range increment of the hazard volume. It is used to keep running averages of density and probability of hit within the given 100-ft increment. P5 Designates the 50th percentile elements in the sorted lists of hazardous density and probability of not hitting the target. **P9** Designates the specified percentile elements in the sorted lists of hazardous density and probability of not hitting the target. The 90th percentile is currently specified for hazard curves. PA Upper angle of the polar zone containing a particular fragment. (deg) PC Probability of hit hazard criterion currently equal to 0.01. PCT The percentile level selected at the outset. (percent) PCTD The selected percentile level as a decimal for use in calculations. PH (97) Average probability of not hitting the target with hazardous fragments for each 100-ft increment for the specified number of units. A running average is kept for each replication or treatment and stored in the variable HP (97). Ы The circular constant equal to 3.141593. PT (97) Average probability of not hitting the target with hazardous and nonhazardous fragments for each 100-ft range increment for the specified number of units. An accumulating average is kept for each replication or treatment and stored in the variable TP (97). PX (100, 97) The probability of not hitting the target with hazardous fragments for one unit (interaction area) and for each replication or treatment and each 100-ft range increment. PWConstant for calculating the presented area of the top of a 100-ft segment of the hazard volume with an angular width equal to the variable (AS).

-Q-

Q	Character variable which contains the DISK file name for all the frag data.
QE	Ricochet angle ratio of reflected to incident angle.
QV	Ricochet velocity ratio of reflected to incident velocity.
	-R-
R	Index for range loops expressed in hundreds of feet.
RB	Number of rebounds for a ricocheting fragment.
RI	Range increment for the four sets of output tables. RI has values of 100, 200, 300, and 400 ft.
R12	Equals RI in hundreds of ft.
RL	Last range as an integer in hundreds of feet to determine if a fragment has passed from one 100-ft increment to the next in the hazard volume.
RN	Range of fragment. Component of distance along X axis. (ft)
RND (UIX)	Function for calculating uniform random numbers between 0 and 1 for the MONTE CARLO option.
RO	One-half the air density. (lb/ft 3). The one-half factor is applied here to save including it in each drag-deceleration equation.
RZ	A flag to indicate whether the program will be run under the MONTE CARLO or FULL FACTORIAL option. $RZ=1$ for MONTE CARLO and \emptyset for FULL FACTORIAL.
	-S-
S1	Variable used in calculating the running average of total fragment density (hazardous and nonhazardous) within a single 100-ft range increment for the number of units specified. (Frags/ft ²)
S2	Like S1 but used with total (hazardous and nonhazardous fragments) probability of not hitting the target for the number of units specified.
S3	Like S1 but used with hazardous density for the number of units specified. (Frags/ft²)
S4	Like S1 but used with hazardous probability of not hitting the target for the specified number of units.
S5	Like S1 but used with hazardous probability of not hitting the target for one unit.

S6 Like S1 but used with hazardous number of fragments for the specified number of units. SCMAX Maximum Soil Constant (SCMIN to 4.0) SCMIN Minimum Soil Constant (0.5 to 4.0) SIGS Stack Inert Ground Standoff (ft). Distance from ground to the beginning of fragmenting cases on the face of the stack towards the target area. For a typical wooden pallet, SIGS would be about 0.5 ft. SUM Used when weighting 100-ft range increments for combining into 200, 300, and 400 ft range increments. It is the sum of the weightings for each 100-ft range increment used as a divisor to obtain the weighted average. -T-T An index and counter used for designating the Replication or Treatment number. T5 A switching variable used in the SORT routines. Accumulated minimum number of final impacts in each 100-ft range increment for the T8MIN (97) specified number of units for the 100, 200, 300, and 400 ft output range increments. T9MAX (97) Accumulated maximum number of final impacts in each 100-ft range increment for the specified number of units for the 100, 200, 300, and 400 ft output range increments. TATotal presented area, perpendicular to the fragment trajectory, of a 100-ft increment of the hazard volume (ft2). TD (97) Running weighted average total density (hazardous and nonhazardous fragments) for each 100-ft range increment. (Frags/ft²) TI (97) Accumulated average number of final impacts in each 100-ft range increment for the specified number of units for the 100, 200, 300, and 400 ft output range increments. TJ Accumulates the number of trajectories with range greater than the maximum computation range specified at the outset in variable MRA. The number is the total for all replications or treatments. TN (97) Average total number of fragments (hazardous and nonhazardous) for each 100-ft range increment for the specified number of units. TP (97) Accumulated average probability of hitting the target in each 100-ft range increment for the specified number of units. TS Character variable. Contains a title or description of the target.

-U-

UDUM	A dummy variable for accessing the RND(UIX) function.	
USE	Double precision integer seed for the random number generator used with the MONTE CARLO option. (1 - 2147483646)	
	-V-	
ř	Magnitude of the fragment velocity vector. Sum of its X, Y, and Z components. (ft/s)	
A	Magnitude of the fragment velocity vector after ricochet in the same plane as the incident velocity vector. (ft/s)	
√F	Magnitude of the fragment velocity vector at final impact. (ft/s)	
VP	Magnitude of the fragment velocity vector, with wind effects added. Sum of the X, Y, and Z component speeds with wind added. (ft/s)	
√Q (6)	Ratio of the magnitudes of the velocity vector before and after ricochet for six different values of soil constant.	
VR	Incident magnitude of the fragment velocity vector used for ricochet calculations. Sum of the X , Y , and Z component speeds. (ft/s)	
VS	Speed of sound at sea level equal to 1116.4 ft/s.	
VXP	Magnitude of the X component of the fragment velocity vector (VP). Contains the effects of wind. (ft/s) ${\sf S}$	
VYP	Magnitude of the Y component of the fragment velocity vector (VP). Contains the effects of wind. (ft/s)	
VZP	Magnitude of the Z component of the fragment velocity vector (VP). Contains the effects of wind. (ft/s)	
-W-		
WD	Wind direction (deg) measured clockwise from the X-Y plane. Tail wind is 0 deg.	
WM	Width measurement of the target. For an average male soldier this dimension is 1.00 ft.	
ws	Magnitude of the wind velocity vector. Can be different for each replication or treatment if WSMAX and WSMIN are different. If WSMIN and WSMAX are the same then wind speed is constant for all replications or treatments. (ft/s)	
WSMAX	Maximum magnitude of the wind velocity vector. (ft/s)	
WSMIN	Minimum magnitude of the wind velocity vector. (ft/s)	

-X-

X5	The number of fragment multipliers. See Appendix D for explanation of fragment multipliers.
X5D(97)	Weighted average of the 50th percentile hazardous density for each 100, 200, 300, and 400 ft range increment, for the specified number of units (Frags/ft 2)
X5P(97)	Weighted average of the 50th percentile hazardous probability of hit for each 100, 200, 300, and 400 ft range increment, for the specified number of units.
X7DMIN (97)	Minimum hazard density for each 100, 200, 300, or 400 ft range increment, for the specified number of units, for all replications or treatments. (Frags/ft ²)
X8DMAX (97)	Maximum hazard density for each 100, 200, 300, or 400 ft range increment, for the specified number of units for all replications or treatments. (Frags/ft²)
X9D (97)	Hazard density for the percentile specified, for each 100, 200, 300, or 400 ft range increment, for the specified number of units for all replications or treatments. (Frags/ft 2)
X7PMIN (97)	Minimum hazard probability of hit for each 100, 200, 300, or 400 ft increment, for the specified number of units, for all replications or treatments.
X8PMAX (97)	Maximum hazard probability of hit for each 100, 200, 300, or 400 ft increment, for the specified number of units, for all replications or treatments.
X9P (97)	Hazard probability of hit for the percentile specified, for each 100, 200, 300, and 400 ft increment, for the specified number of units, for all replications or treatments.
XA	Cross-range angle for final impact; equal to the arctan of crossrange divided by range. (deg)
XD	Displacement increment of integration in the Runge-Kutta routine selected at the beginning of the trajectory and after each ricochet. (ft)
XE	Elevation angle in degrees used when going to the Integration Step Subroutine initially and after each ricochet. (deg)
XK (4, 7)	The four K constants in the 4th order Runge-Kutta routine. For the second index, only 2, 4, 6 are used to calculate X, Y, and Z components of velocity. (ft/s)
XL	Flag to determine whether cross-range calculations will be made in the Runge-Kutta routine. $XL=4$ for no cross-range calculations and $XL=6$ for cross-range calculations. Cross-range calculations are only made when there is a cross-range component of wind.
XN (97)	Equally weighted average number of final impacts for each 100, 200, 300, and 400 ft range increment, for the specified number of units, averaged over all replications or treatments.

XP	Total (hazardous and nonhazardous fragments) probability of not hitting the target averaged over the number of points within a single 100-ft range increment.	
XR	Cross-range displacement of fragment. (ft)	
XV	Initial magnitude of the velocity vector retained for the output trajectories tables. (ft/s)	
	-Y-	
Y2 (36)	Fragment multiplier. The index indicates the upper bound of the 5 or 10 deg polar zones containing a specific fragment. For example, Y2 (4) for 10 deg polar zones would indicate polar zone 30 to 40 deg.	
Y5D(97)	The number of units required to just exceed the hazard density criterion for each 100, 200, 300, and 400 ft range increment, for 50th percentile values.	
Y7DMIN (97)	Minimum number of units needed to just exceed the hazard density criterion for each 100, 200, 300, and 400 ft range increment.	
Y8DMAX (97)	Maximum number of units needed to just exceed the hazard density criterion for each 100, 200, 300, and 400 ft range increment.	
Y9D (97)	The number of units required to just exceed the hazard density criterion for each 100, 200, 300, and 400 ft range increment for the percentile specified.	
Y	Used to draw the first random number from the seed. This starts the random number sequence for the MONTE CARLO option. This first number is not used.	
YE	Initial elevation angle in degrees saved for output trajectories tables. (deg)	
YN (100, 97)	Number of fragments (hazardous and nonhazardous) with final impacts in each 100-ft range increment, for each replication or treatment, for the number of units specified.	
-Z-		
Z5P(97)	Weighted average of the 50th percentile hazardous probability of hit for a single unit, for each 100, 200, 300, and 400 ft range increment.	
Z7PMIN (97)	Weighted average of the minimum probability of hit for a single unit, for each 100, 200, 300, and 400 ft range increment.	
Z8PMAX (97)	Weighted average of the maximum probability of hit for a single unit, for each 100, 200, 300, and 400 ft range increment.	
Z9P (97)	Weighted average of the probability of hit for a single unit for each 100, 200, 300, and 400 ft increment for the percentile specified.	

ZP	Running average of probability of not hitting the target for each point within a single 100-ft range increment, for the number of units specified.
ZZP	Running average of probability of not hitting the target for each point within a single 100-ft range increment, for a single unit.

APPENDIX D FRAGMENT MULTIPLIERS

INTRODUCTION

In order to make the program applicable to any size ammo stack with any number of interaction areas or units on the face of the stack towards the target area, it is necessary to have effective number of fragments in unit values. The two unit values required are one interaction area (unit) and one deg of azimuth. In the small-scale fragmentation area test there is almost always more than one interaction area and more than one deg of azimuth recovery.

Three procedures used to recover fragments and calculate fragment multipliers are shown in Figures D-1, D-2, and D-3.

RECOVERY BY POLAR ZONE ONLY

This procedure is the least accurate in locating the position of a fragment in terms of polar and azimuthal angles. The marking of the fragment recovery packs is shown in Figure D-1. To calculate fragment multipliers for each 10 deg polar zone, use is made of Fragmentation Arena Multipliers. D-1

The Fragment Arena Multiplier is the ratio of the area of the 360 deg polar zone to the partial area of the polar zone which is projected onto the recovery packs. The fragment multiplier is then calculated as follows for one interaction area (unit) and one-deg of azimuth.

$$M_F = \frac{M_A}{(360)(N)}$$

where

- M_F Fragment multiplier for one interaction area (unit) and one deg of azimuth for the particular polar zone in question.
- M_A Fragmentation Arena Multiplier for the particular polar zone in question.
- N Number of interaction areas (units) on the face of the stack towards the recovery packs for the small-scale arena test.

D-1 McCleskey, Frank, Fragmentation Arena Multipliers, Naval Surface Weapons Center report NSWC TN 84-43, March 1984.

FIGURE D-1. RECOVERY BY POLAR ZONE ONLY

FIGURE D-2. RECOVERY BY POLAR AND AZIMUTHAL ZONES

FIGURE D-3. RECOVERY BY X-Y COORDINATES

RECOVERY BY POLAR AND AZIMUTHAL ZONES

Figure D-2 shows recovery pack marking for both polar and azimuthal zones. This method decreases the uncertainty in azimuthal coverage but presents a problem in identifying the most dense region of fragmentation in azimuthal terms. In the field, it is difficult to perceive the overall fragment distribution due to the large dimensions of the recovery packs. More azimuthal lines may be required. In any event, once the azimuthal extent of the most dense fragmentation is selected, the fragmentation multipliers for each polar zone are calculated as follows:

$$M_F = \frac{1}{NA_s}$$

where

- M_F Fragmentation multiplier for one interaction area (unit) and one degree of azimuth for the particular polar zone in question. If the azimuth sector is the same for all polar zones then the fragment multipliers for all polar zones will be the same.
- N Number of interaction areas (units) on the face of the stack towards the recovery packs for the small-scale arena test.
- A_s Size of the azimuth sector enclosing the area of high fragment density for each polar zone (degrees).

RECOVERY BY X-Y COORDINATES

This procedure is the most flexible and most accurate of the three procedures in locating fragment position. The X coordinate is measured from the 90 deg polar angle trace on the recovery packs. This trace is a straight vertical line. Symmetry exists right and left of the 90 deg polar trace as shown in Figures D-1 and D-2. The Y dimension is measured from the longitudinal center line of the packs (A-A). Again, there is symmetry above and below the center line (A-A). All fragments have a specified minimum weight (currently 300 grains). The X-Y positions for all fragments recovered from the packs are plotted on a piece of graph paper. The length of the graph rectangle will be about (130nR/180) where R is the radius of the arena. The range of polar angles is from 0 to 130 which is consistent with ricochet limits. Polar and azimuthal lines are then drawn on the graph paper and the azimuthal limits are selected so as to bound the area of highest fragment density. Generally, the azimuthal bounds should cover about 10 deg to be consistent with the azimuthal angle of the hazard volume (Figure 1 in the GENERAL PROGRAM DESCRIPTION Section of the main body). These angles can be changed to meet special conditions. Should they need to be changed, the user must also change the elevation (polar) zone size (ES) and the azimuthal coverage size (AS) in BLOCK 1 (Variable Constants) of the program listing in Appendix B.

The following method can be used to superimpose polar and azimuthal traces on graph paper:

Given: R - Arena radius (ft)

 θ - Any polar angle converted to radians

H - Height of recovery packs above or below the center line (A-A) (ft)

$$\beta = \tan^{-1}\left(\frac{H}{R}\right)$$

Increment Y from 0 to H STEP 0.5 when $\beta < \theta$

Increment Y from 0 to R tan θ STEP R tan $\theta/10$ when $\beta \ge \theta$

then

$$\lambda = \tan^{-1}\left(\frac{Y}{R}\right)$$

$$\Psi = \sin^{-1}\left(\frac{\sin\lambda}{\sin\theta}\right)$$

$$\Phi = \tan^{-1}(\tan\theta\cos\psi)$$

$$X=R\left(\frac{\pi}{2}-\Phi\right)$$

Plot each of the X-Y coordinates and draw a smooth curve through them. When all the polar angle traces are plotted, the azimuthal traces can be plotted by finding the Y dimension where the azimuthal trace intersects each of the polar angle traces. The Y dimension is found as follows:

Given:

- R Arena radius (ft)
- θ Any polar angle converted to radians
- a Any azimuthal angle converted to radians

then

 $\mu = \sin^{-1}(\sin\theta\sin\alpha)$

 $Y = R \tan \mu$

Plot each of the intersection points and draw a smooth curve through them. Remember that symmetry exists right and left of the 90 deg polar trace, and above and below the longitudinal center line (A-A) of the recovery packs.

By observation select the azimuthal bounds which best enclose the area of high fragment density. The fragment multipliers are then calculated as follows

$$M_F = \frac{1}{NA_S}$$

where

- M_F Fragmentation multiplier for one interaction area (unit) and one deg of azimuth for the particular polar zone in question. If the azimuth sector is the same for all polar zones then the fragment multipliers for all polar zones will be the same.
- N Number of interaction areas (units) on the face of the stack towards the recovery packs for the small-scale arena test.
- As Size of the azimuth sector enclosing the area of high fragment densities for each polar zone (degrees)

SAMPLE CALCULATION

Suppose one wanted to find the fragment multiplier for all fragments in a particular polar zone $(\theta_1 - \theta_2)$ which is bounded by an 11 deg azimuthal sector. Further assume that there were six interactions areas (units) facing the recovery packs in the small-scale arena test. Then the fragment multiplier would be

$$M_{F(\theta_1 - \theta_2)} = \frac{1}{6 \times 11} = 0.01515$$

In the computer program, when one needs to calculate the trajectory and hazards for any fragment in this polar zone, one would associate an effective number of fragments with the trajectory. Suppose the stack one was simulating in the computer program had 46 interaction areas (units) facing the target area and one was using a 10 deg azimuthal width for the hazard volume. The effective number of fragments to be associated with each fragment in the particular polar zone would be:

$$N_F = 0.01515 \times 46 \times 10 = 6.969$$

This effective number of fragments would be used to calculate hazard density, hazard probability of hit, and number of final impacts for the particular fragment trajectory.

This procedure assumes linear scaling. For example if there were four units in the small-scale test and one was simulating 40 units in the full-scale simulation in the computer program, then for each fragment recovered in the small-scale test within polar and azimuthal bounds, one would assume 10 identical fragments for the full-scale simulation. Only one trajectory would be calculated but one would associate 10 identical fragments with it for calculation of density, probability of hit, and number of final impacts. For azimuthal coverage one would assume constant density throughout the azimuthal sector for the polar zone in question.

APPENDIX E RICOCHET DATA

All ricochet data are taken from a report published in 1970.^{E-1} The data permit fragment ricochet angle and velocity to be calculated from the incident angle and velocity for a given soil type.

Table E-1 gives all the data necessary to compute ricochet angle and velocity.

TABLE E-1. FRAGMENT RICOCHET DATA

Soil Constant	Critical Angle (<u>Deg)</u>	Angle and Velocity Ratio Equations
0.25	6.25	$V'/V = -0.01597 E^2 + 0.02156 E + 0.9617$
		$E'/E = 0.13829 E^2 - 0.98645 E + 2.8155$
0.50		$V'/V = -0.00861 E^2 + 0.00692 E + 0.96302$
		$E'/E = 0.08549 E^2 - 0.78423 E + 2.9012$
1.0		$V'/V = -0.00387 E^2 - 0.00414 E + 0.95592$
		$E'/E = 0.07515 E^2 - 0.73919 E + 3.1056$
2.0	14.0	$V'/V = -0.00342 E^2 -0.00097 E + 0.9409$
		$E'/E = 0.02142 E^2 - 0.37397 E + 2.7858$
3.0		$V'/V = -0.00243 E^2 -0.0052 E + 0.9308$
		$E'/E = 0.01707 E^2 - 0.32521 E + 2.8092$
4.0	17.0	$V'/V = -0.00188 E^2 - 0.00821 E + 0.93802$
		$E'/E = 0.01369 E^2 - 0.2958 E + 2.8262$

where

V' - Ricochet Velocity

V - Incident Velocity

E' - Ricochet Angle

E - Incident Angle

The critical angle is the incident angle above which the fragment will not ricochet. An approximate equation relating soil constant to critical angle is:

$$E_c = 10.8 (BQ)^{.38}$$

E-1 Reches, M., Fragment Ricochet off Homogenious Soils and Its Effects on Weapon Lethality (U), Army Material Systems Analysis Agency Technical Memorandum No. 79, August 1970 (CONFIDENTIAL).

where

E_c - Critical angle (Degrees)

BQ - Soil constant

The soil constant for various soils is shown in Figure E-1. Subsequent to the publication of the ricochet report it has been common practice to limit the minimum soil constant to 0.5.

In the experiments conducted for the ricochet report, incident velocities varied between 1000 and 5000 ft/s. It was found that the critical angle and the ratios for velocity and angle were relatively insensitive to incident velocity. In the FRAGHAZ program, the critical angle and ricochet ratios are further assumed to be applicable to incident velocities as low as 20 ft/s and as high as 10000 ft/s. Although this assumption is not supported by tests, it does appear reasonable in light of the good agreement obtained with FRAGHAZ predictions of the range distributions of fragments and actual fragment pickup from large-scale tests (see Figures 5 and 6 in the GENERAL PROGRAM DESCRIPTION Section of the main body).

In the ricochet experiments, slender rods with a square cross section were used. These rods had flat faces and the length to width to thickness ratios were 3:1:1 in most cases. The author of the ricochet report has stated that these rods are reasonable substitutes for irregular fragments. Again, the results given in Figures 5 and 6 lend strength to this supposition.

In application, when the soil constant is between the discrete values given in Table E-1 resort is made to linear interpolation for the angle and velocity ratios.

FIGURE E-1. SOIL CONSTANTS FOR VARIOUS SOILS

APPENDIX F PORTABILITY TEST FOR THE RANDOM NUMBER GENERATOR

INTRODUCTION

There are situations in which it is desirable to have a random number generator that is machine independent. In the case of FRAGHAZ it is desirable that the user be able to check the MONTE CARLO aspects of the program with a test case. In order to do this, the user must be able to generate the same sequence of random numbers that was used in generating the test case. This requires a portable random number generator. One such portable generator (used in FRAGHAZ) has been described in the literature. F-1 The user must first assure himself that the portable generator is indeed portable on his computer. A suitable test is described below.

PORTABILITY TEST

The generator presented in Listing F-1 is applicable to most any computer having a double precision option which can represent integers from 0 to 2^{31} -1. This is usually the case even with older eight-bit microcomputers. This generator is a full cycle type which will produce a sequence of random numbers between 1 and 2^{31} -2 without recycling; that is, more than 2 billion numbers without recycling. The generator and its variables are described in the reference. To date, this generator has been tested successfully on the following six computers:

CONTROL DATA CDC 865
DIGITAL VAX 785
IBM - AT
APPLE II e
APPLE MACINTOSH
TANDY TRS-80, MOD 1, LEVEL II

In each case the checks were exact. Both BASIC and FORTRAN languages were used.

To check portability, the user should type in the program given in Listing F-1.

If the user's computer has an integer word size of at least 2^{31} - 1, he may want to use the INTEGER procedure presented in the Schrage reference. Given the same seed, the INTEGER procedure will generate the same sequence of random numbers as the DOUBLE PRECISION procedure given in Listing F-1. The INTEGER procedure will run 4 or 5 times faster.

Using seeds zero or 2147483647 will produce a sequence of random numbers all equal to zero. This may be useful in special cases. Using these seeds will require two changes in the program listing given in Listing B-1 of Appendix B. First, delete line 985. Second, change line 400 to read:

400 DD = SQRT (-2. * LOG(RND(UDUM + 1E-06)))

F-1Schrage, Linus, A More Portable Fortran Random Number Generator, ACM Transactions on Mathematical Software, Vol 5, No. 2, June 1979, pp. 132-138.

LISTING F-1. RANDOM NUMBER PORTABILITY CHECK

```
REAL JRN
      DOUBLE PRECISION DRAND, UIX, UANS
      UIX = 1.00
      UANS = DRAND(UIX)
      DO 1000 I = 2,1005
         UANS = DRAND(UIX)
         JRN = INT(UANS * 1.D06) / 1.D06
         IF(I .GT. 995) WRITE(*,*)I,UIX,UANS,JRN
 1000 CONTINUE
      STOP
      END
      DOUBLE PRECISION FUNCTION DRAND (UIX)
 PORTABLE RANDOM NUMBER GENERATOR USING THE RECURSION:
C UIX = UIX * UA MOD UP
      DOUBLE PRECISION UA, UP, UIX, UB15, UB16, UXHI, UXALO, ULEFTLO, UFHI, UK
      DATA UA/16807.DO/,UB15/32768.DO/,UB16/65536.DO/,UP/2147483647.DO/
  GET 15 HI ORDER BITS OF UIX
      UXHI = UIX / UB16
      UXHI = UXHI - DMOD(UXHI.1.DO)
  GET 16 LO BITS OF UIX AND FORM LO PRODUCT
      UXALO = (UIX ~ UXHI * UB16) * UA
  GET 15 HI ORDER BITS OF LO PRODUCT
      ULEFTLO = UXALO / UB16
      ULEFTLO = ULEFTLO - DMOD(ULEFTLO.1.DO)
   FORM THE 31 HIGHEST BITS OF FULL PRODUCT
      UFHI = UXHI * UA + ULEFTLO
   GET OVERFLO PAST 31ST BIT OF FULL PRODUCT
      UK = UFHI / UB15
      UK = UK - DMOD(UK, 1.DO)
   ASSEMBLE ALL THE PARTS AND PRESUBTRACT UP
С
   THE PARENTHESIS ARE ESSENTIAL
      UIX = (((UXALD-ULEFTLD*UB16) - UP) + (UFHI-UK*UB15) * UB16) + UK
C
   ADD UP BACK IN IF NECESSARY
      IF(UIX .LT. O.DO) UIX = UIX+UP
C MULTIPLY BY 1/(2**31-1)
      DRAND = UIX * 4.656612875D-10
      RETURN
      END
```

NSWCTR87-59

The seed UIX = 1.0 is in Double Precision. The DO Loop goes from 2 to 1005 and prints out results for draws 996 thru 1005. The loop starts with two to be compatible with the reference which seems to have counted the seed as the first draw. The 1000th draw results are the ones given in the reference. The results should be identical to those given in Table F-1. The table has four columns. The first is the number of the random number drawn. The second is the double precision random number as an integer. The third is the random number as a double precision decimal fraction between 0 and 1. The fourth is a single precision random number (JRN) between 0 and 1 having six significant digits. This single precision number is the one used in FRAGHAZ for all random variables.

If the user cannot meet the portability check then he will be unable to directly verify the test case for the MONTE CARLO option. Hand cases will be required with a random number generator chosen by the user. The FULL FACTORIAL test case does check everything but paths unique to the MONTE CARLO option and crosswind effects which have not been used in practical problems to date.

TABLE F-1. RANDOM NUMBER PORTABILITY CHECK

	996	1.1509574630000E+009	5.3595633407831E-001	5.359560E-001
	997	1.7568721120000E+009	8.1810732964676E-001	8.181070E-001
	998	1.9969237810000E+009	9.2989009889983E-001	9.298900E-001
	999	1.4235519510000E+009	6.6289303432580E-001	6.628930E-001
	1000	5.2232923000000E+00B	2.4322850174068E-001	2.4322B0E-001
	1001	2.0217033210000E+009	9.4142897139989E-001	9.414280E-001
	1002	1.2814532130000E+009	5.9672315303659E-001	5.967230E-001
	1003	2.7065512800000E+008	1.2603361537296E-001	1.260330E-001
	1004	5.3037195000000E+00B	2.4697368509089E-001	2.469730E-001
	1005	1.9042286000000E+009	B.8672554157032E-001	8.867250E-001
top -	Program	terminated.		

APPENDIX G WEIGHTING FACTORS

NSWCTR87-59

In addition to the intermediate output of initial and final conditions for individual trajectories, the final output consists of statistics for three basic values: number of fragments, fragment density, and fragment probability of hit. In the FRAGHAZ program all statistics are calculated on the basis of 100-ft range increments within the hazard volume. In the past, it has been helpful to combine these statistics for 100-ft increments into larger increments of 200, 300, and 400 ft. This was done to smooth data for final hazard curves. Since the establishment of procedures to retain and eliminate points for final hazard curves explained in the GENERAL PROGRAM DESCRIPTION Section of the main body, the need for larger combined increments has diminished. It is considered useful, however, to retain combined increments for the wide variety of possible problems for which the program is intended.

When combining 100-ft increments for number of fragment final impacts, no weighting factors are needed. Simple addition is all that is required. For combining 100-ft increments with respect to the number of fragments passing through increments, a simple unweighted average is appropriate. When combining 100-ft increments for fragment density and probability of hit, however, weighting factors are necessary to account for the divergent nature of the pie-shaped hazard volume, Figure G-1. Both density and probability of hit depend on the presented area of the 100-ft increments which increase with range.

There are a number of ways to derive weighting factors to account for the divergent nature of the hazard volume. The procedure to be used here will be based on the volumes of the individual 100-ft increments; that is, the weighting factor for a particular 100-ft increment will be proportional to its volume. This is consistent with the presented area aspects of density and probability of hit calculations because the height of the hazard volume is constant for all increments.

Figure G-1 shows three 100-ft increments which are to be combined into one 300 ft increment for density or probability of hit purposes. All range values will be in hundreds of feet which does not reduce the generality of the procedure. Starting with the first 100-ft increment $(R_1, to R_2)$, the volume is:

$$V_1 = \frac{\pi A}{360} (R_2^2 - R_1^2) H$$

where

 $V_1 = Volume of the 100-ft increment R_1 to R_2$.

A = Constant azimuthal width of the hazard volume in degrees. (See Figure G-1)

 $R_2 = Maximum range of the 100-ft increment in hundreds of feet.$

 R_1 = Minimum range of the 100-ft increment in hundreds of feet.

H = Constant height of the hazard volume equal to the height of the target in feet.

Collecting constants and calling the result C, the volume can now be written as follows:

$$V_1 = C (R_2^2 - R_1^2) = C (R_2 - R_1) (R_2 + R_1)$$

but

$$R_2 - R_1 = 1$$

FIGURE G-1. COMBINING 100 FT INCREMENTS

and, therefore

$$V_1 = C(R_2 + R_1)$$

The volume of the 100-ft increment is therefore proportional to the sum of its maximum and minimum ranges in hundreds of feet. The proportionality factors for the two remaining 100-ft increments is:

$$V_2 \sim (R_3 + R_2)$$

$$V_3 \sim (R_4 + R_3)$$

If we divide each proportionality factor by the same constant then the final weighting will not be changed. Dividing each factor by two results in the weighting factor being proportional to the midrange of each 100-ft increment. Expressing the midrange in hundreds of feet, the weighting factor for an increment like 300 to 400 ft would be 3.5; for 400 to 500 ft the weighting factor would be 4.5, and so forth.

As a practical example, suppose we wished to combine three 100-ft increments from 300 to 600 ft into one 300-ft increment. Further suppose the following:

Range Increment	Density	Weighting Factor
300-400	0.6	3.5
400-500	0.4	4.5
500-600	0.3	5.5

then the weighted average combined density would be:

$$D_{300-600} = \frac{0.6(3.5) + 0.4(4.5) + 0.3(5.5)}{3.5 + 4.5 + 5.5} = 0.4111$$

This example could serve equally well for combining probability of hit. For comparison, the unweighted average would be 0.4333.

APPENDIX H PROGRAM TEST CASES

INTRODUCTION

There are two tests cases: one for the MONTE CARLO option (Table H-1) and one for the FULL FACTORIAL option (Table H-2). Table H-3 contains the fragmentation data used for both test cases. Note in the beginning of Tables H-1 and H-2 that the input data is not in the same order that it is entered in the program (see BLOCK-2 of LISTING B-1 in APPENDIX B).

TABLES H-1 AND H-2

FRAG

- Fragment number

These tables are similar; they only differ in the way values are specified for the seven random variables listed near the end of the input data for the FULL FACTORIAL option, Table H-2. The test for the FULL FACTORIAL option is designed to cover all aspects of the FRAGHAZ program except crosswind and those input paths unique to the MONTE CARLO option. This was done in anticipation of the possibility that the user might be unable to satisfy the portability test for the random number generator given in Appendix F. If the portability test cannot be satisfied, then the MONTE CARLO option will have to be checked with hand cases using a random number generator specified by the user.

Tables H-1 and H-2 are divided into three parts. Part 1 contains the input data for the tests and a few statements which identify the current version of the program; e.g., "Run contains fragment ricochet routine." A full description of the input data is contained in the discussion of BLOCKS 1 and 2 in the DETAILED PROGRAM DESCRIPTION Section of the main body. Note that in the MONTE CARLO option test we used the seed 1234 for the random number generator. This is necessary if the user is to obtain the same results shown in Table H-1.

The second part of Tables H-1 and H-2 contains the initial and final conditions for each trajectory in each replication (MONTE CARLO option) or treatment (FULL FACTORIAL option). Each replication or treatment has an associated soil constant, site altitude, and wind speed. These three values pertain to all trajectories in the replication or treatment. The headings for the trajectory tables are explained as follows:

IIIAU	r agment number	
E	Initial elevation angle (degrees)	
WT	Weight of the fragment in grains	
A/M	average presented area to mass ratio for the fragment (in.2/lb)	
IV	Initial velocity of the fragment (ft/s)	
CD	Drag coefficient for the fragment at a Mach Number of approximately 0.1. A full discussion of drag coefficients is given in the discussion for BLOCK 9 of the DETAI PROGRAM DESCRIPTION Section in the main body.	LED
DISTN	Distance in feet at impact; final impact for a ricocheting fragment. It is equal to the	2

square root of the sum of squares of range (DI(3)) and crossrange (DI(7)).

VF - Velocity at impact; final impact for a ricocheting fragment. (ft/s)

KE - Kinetic energy (ft-lbs) at impact; final impact for a ricocheting fragment.

TOF - Time of flight for the complete trajectory (s)

EF - The absolute value of the elevation angle at impact; final impact for a ricocheting fragment. (deg)

RANGE - Range component of distance at impact; final impact for a ricocheting fragment (DI (3)).

(ft)

XRN - Crossrange at impact; final impact for a ricocheting fragment (DI (7)). (ft)

XA - Crossrange angle (deg). It is equal to the arctan of crossrange (XRN) divided by range (DI (3)).

XD - Displacement integration step at the beginning of the trajectory or for the last ricochet. (ft)

AR - Area ratio. This is the ratio of the maximum presented area to the average presented area which is used to establish the minimum and maximum values of drag coefficient at a Mach Number of approximately 0.1. See the comments for CD above.

HO - Height of the origin above ground level at the beginning of the trajectory. (ft)

RB - Number of ricochets (rebounds) for the trajectory.

The third part of Tables H-1 and H-2 consists of the 12 final output tables; three each for range increments of 100, 200, 300 and 400 ft. These final output tables are described in the discussion of BLOCKS-22, 23 and 24 in the DETAILED PROGRAM DESCRIPTION Section of the main body.

Table H-3 contains the fragmentation data for both the MONTE CARLO and FULL FACTORIAL tests. The table is divided into three parts:

Part 1 - The first 13 values in the table are the fragment multipliers as described in Appendix D.

Each multiplier represents the effective number of fragments for one deg of azimuth and one unit or interaction area. The first multiplier is for polar zone 0 to 10 deg, the second for polar zone 10 to 20 deg and so on to the thirteenth multiplier which is for polar zone 120 to 130 deg.

Part 2 - The next five lines contain the five characteristics for each of the five fragments used in the tests. The five values for each fragment are described as follows:

Value 1 - The upper angle for the 10 deg polar zone containing the fragment. For example an entry of 40 would specify polar zone 30 to 40 deg. Remember that the elevation zones are derived from the polar zones as follows:

EL = 90 - PA

where

EL - The lower limit of the 10 deg elevation zone. EL may be as negative as -40.

PA - Upper limit of the 10 deg polar zone.

Value 2 - Weight of the fragment in grains.

Value 3 - The average presented area to mass ratio (in²/lb) which is used in drag calculations.

Value 4 - Average initial fragment velocity (ft/s).

Value 5 - The ratio of maximum presented area to average presented area used to calculate the drag coefficient at a Mach Number of approximately 0.1.

Part 3 - The last seven lines in Table H-3 are the factor levels for the seven random variables used in the FULL FACTORIAL option only. The values have been selected to check all paths in the program except crosswind and those paths unique to the MONTE CARLO option. The variables associated with each line are:

<u>Line</u>		Random Variable
1		Soil Constant
2	**.	Height of Origin
3		Initial Elevation Angle
4		Initial Velocity
5		Drag Coefficient
6		Site Altitude
7	74	Wind Speed

The "a" at the end of each line will produce a READ error in line 262 as shown in the FRAGHAZ program listing in Appendix B. After encountering the error the program will skip to the next factor level line to read the factor levels for the next random variable. The factor levels are given as decimal fractions to indicate how far above the random variable minimum the value of the random variable lies. For example, if the range of uncertainty for a random variable were 10 to 20, the factor level 0.4 would define a value of 14. The initial velocity is an exception since this random variable is distributed normally. The factor levels for initial velocity are given in standard deviations.

In comparing the user's results with Tables H-1 and H-2, the user may find some small differences due to differences in computer word size and library functions such as LOG and EXP. Generally, the user should expect the following differences:

Trajectory Tables - Almost always exact - may be off by one in the last digit.

Output Table 1 - Number of fragments should almost always be exact - may be off by one or two in the last digit. For density and probability of hit, values should be good to the fifth decimal place.

Output Table 2 - Values should be good to the fourth decimal place.

Output Table 3 - For density, the values should be almost exact - may be off by one or two in the last digit. For probability of hit, the number of units may be off by one in the first decimal place for number of units up to 50. For number of units greater than 50, values should be good to about one percent.

NSWCTR87-59

TABLE H-1. PROGRAM TEST CASE - MONTE CARLO OPTION

```
FRAGHAZ
quantity - distance program (fragmenting munitions)
Source of frag data: DATA
Jutput file: LPT1
 arget description: STANDING MAN
dinimum soil constant= 2.00
                               Maximum soil constant= 2.00
MONTE-CARLO OPTION
3-D fragment trajectories, 3-D man, 2-D wind
CD is a function of fragment max to avg presented area ratio
Run contains fragment ricochet routine
Variable air density, altitude, and sound speed
Ejection zone size= 10 degrees
Azimuth sector size= 10 degrees
Number of units or interaction areas=
Number of fragment multipliers= 13
Fragment hazard criterion= 58.0 ft-1bs
Percentile= 80
MONTE CARLO SEED=
                       1234
Minimum altitude of ammo storage site= 1000.000 feet
Maximum altitude of ammo storage site= 1000.000 feet
Height of ammo stack= 4.50 feet
Stack inert ground standoff=
Number of fragments=
Maximum computation range: 2400 feet
Dimensions of the target (feet): HM=
                                       5.72 WM=
                                                  1.00 DM=
                                                                 .55
Hazard density criterion= .0016667 frags/sqft
Hazard probability of hit criterion= .0100000
Minimum wind speed= 30.00 feet/second
Maximum wind speed= 30.00 feet/second
Wind direction= 45.00 deg (0=tailwind)
Fragment multipliers
 .01000 .02000 .03000 .04000 .05000 .06000 .07000 .08000 .09000
 .10000 .11000 .12000 .13000
NO. OF REPLICATIONS = 16
NO. OF REPLICATIONS PRINTED = 16
                              REPLICATION (
```

Soi	l cons	tant=	2.000	Alf	titu	de=	1000.	000 f	eet	Wind	spee	d≔	30.0	00	feet/	seco	nd
FRAG	E	¥T	A/M	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	IRN	XA	XD	AR	HO	RB
1	1.96	1000.0	16.00	1967	.51	1126	29.6	2.0	4.69	17.1	1124	64	3.3	49	1.10	2.24	3
2	-7.58	1000.0	12.00	2974	.80	1207	120.2	32.1	4.43	31.0	1204	83	3.9	36	1.25	2.14	1
3	86.50	500.0	10.00	1874	.98	546	117.0	15.2	16.31	75.0	438	325	36.6	50	1.70	4.39	0
4	11.78	500.0	7.00	1012	.66	1697	158.5	27.9	5.88	31.2	1694	90	3.1	41	1.30	2.43	0
5	-37.70	500.0	6.00	3116	.94	2	3103.0	9999.9	.00	37.7	2	0	.0	1	1.50	1.18	0

REPLICATION (2)

Soil	cons	tant=	2.000	Al	titu	de≃	1000.	000 f	eet	Wind	spee	d=	30.0	000	feet/	seco	nd
FRAG	ξ	WT	A/N	IV	CD	DISTN	VF	Y.E	TOF	EF	RANGE	IRN	IA	19	AR	HD	RB
1	5,71	1000.0	16.00	2101	.59	1046	136.2	41.2	3.34	20.7	1044	61	3.3	30	1.19	3.97	0
2	60	1000.0	12.00	3037	.73	1234	43.0	4.1	4.61		1232	69	3.2	44	1.25	2.14	4
3	86.41	500.6	10.00	1994	1.23	507	105.2	12.3	15.24		404	307	37.3	50	1.70	3.55	0
4	15.24	500.0	7.00		.81							-	3.9	46			9
5				1024		1619	139.4	21.6	6.65		1616	109		_	1.39	3.41	
3	-37.65	500.0	6.00	2847	.96	3	2824.8	8857.4	.00	37.6	3	0	.0	2	1.50	2.15	0
						REF	PLICAT	ION (3)							
Soil	cons	tant=	2.000	Al	titu	de=	1000.	000 F	eet	Wind	spee	d=	30.0	000	feet/	seco	nd
FRAG	٤	WT	A/M	ĮV	CO	DISTN	VF	KE	TOF	EF	RANGE	IRN	IA	XD	AR	Ю	RB
i	5.81	1000.0	16.00	1942	.56	1055	140.3	43.7	3.33	19.9	1053	60	3.2	30	1.10	1.87	9
2	-5.78	1000.0	12.00	2973	.57	1467	144.6	46.4	4.49		1465	83		34	1.25	2.77	1
3	80.31	500.0	10.00	1983	1.46	584	97.5	10.6	14.22		509	288	29.5	50	1.70	3.99	ō
4	11.69	500.0	7.00	994	.77	1530	148.6	24.5	5.57		1528	87	3.3	41	1.30	1.00	0
5	-32.99	500.0	6.00	2B97	.77			9113.5				0		3			
J	-32.17	300.0	0.00	2877	.77	4	2865.3	4112.2	.00	22.0	4	V	.0	2	1.50	2.61	Q
						REF	LICAT	ION (4)							
Soi l	cons	tant=	2.000	Al	titu	de=	1000.	000 f	eet	Wind	spee	d=	30.0	00	feet/	seco	nd
FRAG	Ε	₩T	A/M	ĮV	CD	DISTN	VF	KE	TOF	EF	RAMBE	IRN	IA	ID	AR	HO	RB
i	4.98	1000.0	16.00	2052	.49	1102	157.0	54.7	3.14	16.8	1101	56	2,9	29	1.10	1.82	0
2	-5.66	1000.0	12.00	2964	.71	1281	130.7	37.9	4.21	27.0	1279	79	3.5	34	1.25		1
3	85.97	500.0	10.00	1846	1.22	510	105.8	12.4	15.11	73.4	411	303	36.4	50	1.70	1.85	9
4	16.90	500.0	7.00	1022	.92	1527	131.3	19.1	6.84	44.1	1523	114		48			
5	-38.76												4.3		1.30	.73	0
J	-35./5	500.0	6.00	2965	.95	3	2938.7	9586.3	.00	38.8	3	0	.0	3	1.50	2.54	0
						REP	LICAT	ION (5)							
Soi l	cons	tant=	2.000	A1	titu	de≃	1000.	000 f	eet	Wind	spee	d=	30.0	00	feet/	seco	nd
FRA6	E	WT	A/M	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	IRN	IA	10	AR	HO	RB
1	5.35	1000.0	16.00	2021	.52	1089	150.0	50.0	3.23	18.0	1087	28	3.0	29	1.10	1.11	0
2	-2.98	1000.0	12.00	3090	.89	1068	131.9	38.6	3.20	20.9	1065	60	3.2	30	1.25	3.87	i
3	80.50	500.0	10.00	2067	1.32	614	102.0	11.5	14.78	72.5	536						
J A	15.13	500.0	7.00	1020	.78	1649						299	29.1	50	1.70	1.96	0
5							141.6	22.2	6.68	40.0	1646	109	3.8	46	1.30	3.06	0
J	-39.44	500.0	6.00	2899	.85	4	2869. I	9137.7	.00	39.4	4	0	.0	4	1.50	3.22	0
						REP	LICAT	ION (6)							
Soi l	cons	tant=	2.000	Al	titu	de=	1000.	000 f	eet	Wind	spee	d≃	30.0	00	feet/	secor	nd
FRAG	Ε	WT	A/H	IV	CD	DISTN	VF	KE	TOF	EF	RANSE	IRN	TA	IĐ	AR	HO	RB
1	4.19	1000.0	16.00	2194	.49	1078	167.8	62.5	2.85	14.3	1076	51	2.7	27	1.10	2.09	0
2	-3.86	1000.0	12.00	2986	.74	1219	136.0	41.1	3.70	22.6	1217	69	3.2	31	1.25	3.81	i
3	85.18	500.0	10.00	1940	.94	591	118.8	15.7	16.55	75.2	491	330	33.9	50	1.70	4.32	0
4	18.37	500.0	7.00	988	.93	1528	130.3	18.8	7.18	46.8	1523	121	4.5	50	1.30	4.47	0
5	-33.35	500.0	6.00	2996	.85	1328	2989.6	9921.2	.00	33.3	1323	0	.0	0	1.50	.56	0
ų.	77.74	200.0	0.VV	2710	.03		F101.0	*****	.00	J.J. J		v	• •	v	# - JV	* 10	V

REFLICATION (7)

	Soil	cons	tant=	2.000	Al	titu	de=	1000.	000	feet	Wind	spee	d=	30.0	00	feet/	seco	nd
2 - 5.89 1000.0 12.00 2977 Kal 1403 133.4 43.1 44.1 22.6 1401 82 33.4 50 1.76 1.45 0	FRA S	E	WT	A/M	IV	CO	DISTN	VF	KE	TOF	EF	RANGE	IRN	IA	XD	AR	но	RB
2	,	1 57	1000 0	14 00	2020	50	1171	75 4	2	0 4 1 1	15.0	1120	45	7 7	47	1 10	3.47	3
3 86.86																		
16.55 500.0 7.00 947 74 1872 13.5 22.9 7.00 31.3 7 0 0 0 0 1.50 1.50 0 0 0 0 0 0 0 0 0															-			
Solid Constant																		
Soil constant Soil Soil																		
FRAGE NT A/M 1V CD DISTN VF KE TOF EF RAMSE TAN TAN TO AR NO RB	5	-31.29	500.0	6.00	2927	1.35	7	2863.1	9099.	2 .00	31.3	1	0	.0	6	1.59	4.04	U
FRA6							REF	LICAT	ION	(8)							
1	Soil	const	tant=	2.000	Al	titu	de=	1000.	000	feet	Wind	spee	ed=	30.0	OO	feet/	seco	nd
2 -8.17 1000.0 12.00 2956 89 1131 113.6 28.6 4.44 32.9 1128 83 4.2 37 1.25 .56 1 3 86.82 500.0 10.00 1782 1.43 460 98.3 10.7 14.25 72.2 361 286 38.5 50 1.70 3.17 0 5 1.70 5.00 5 -31.66 500.0 6.00 2923 .96 3 2898.6 9326.3 .00 31.7 3 0 0 .0 3 1.50 1.95 0	FRAG	£	WT	A/H	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	XRN	IA	XD	AR	HO	RB
Soil constant	1	5.23	1000.0	16.00	1998	.55	1042	146.8	47.	9 3.13	17.9	1041	56	3.1	29	1.10	1.31	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-B.17	1000.0	12.00	2956	.89	1131	113.6	28.	6 4.44	32.9	1128	83	4.2	37	1.25	.56	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	86.82	500.0	10.00	1782	1.43	460	98.3	10.	7 14.25	72.2	361	286	38.5	50	1.70	3.17	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	10.89	500.0	7.00	997	.83	1443	146.9			29.7	1441	81	3.2	39	1.30	.91	0
FRA6	5			6.00	2923	.96	3	2898.6			31.7	3	0	.0	3	1.50	1.95	0
FRAGE							REF	LICAT	ION	(9)_							
1 1.26 1000.0 16.00 1983 .51 1141 47.5 5.0 4.59 13.4 1139 66 3.3 43 1.10 1.50 3 2 -2.71 1000.0 12.00 3053 .70 1212 149.8 49.8 3.30 18.2 1210 61 2.9 29 1.25 3.57 1 3 80.90 500.0 10.00 1964 1.65 539 92.3 9.5 13.62 70.7 463 276 30.8 50 1.70 2.96 0 4 16.05 500.0 7.00 1086 .82 1661 138.1 21.2 6.94 42.7 1657 116 4.0 47 1.30 2.12 0 5 -34.24 500.0 6.00 3071 .93 1 3064.1 999.9 .00 34.2 1 0 0 .0 0 1.50 .59 0 € € € € ₩T A/M IV CD DISTM VF KE TOF EF RAMSE ISM IA ID AR MD R8 1 8.13 1000.0 12.00 3011 .88 1083 129.5 37.3 3.34 21.3 1081 65 3.3 30 1.25 3.00 1 3 85.17 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 0 5 -37.10 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 0 5 -37.10 500.0 16.00 3068 .95 4 3032.6 999.9 .00 37.1 4 0 .0 0 € € € € € € € € € € € € € € € €	Soil	const	cant=	2.000	Al	titu	de=	1000.	000	feet	Wind	spee	d=	30.0	00	feet/	seco	nd
2 -2.71 1000.0 12.00 3053 .70 1212 149.8 49.8 3.30 18.2 1210 61 2.9 29 1.25 3.57 1 3 80.90 500.0 10.00 1964 1.65 539 92.3 9.5 13.62 70.7 463 276 30.8 50 1.70 2.96 0 4 16.05 500.0 7.00 1086 .82 1661 138.1 21.2 6.94 42.7 1657 116 4.0 47 1.30 2.95 0 5 -34.24 500.0 6.00 3071 .93 1 3064.1 999.9 .00 34.2 1 0 0 .0 0 1.50 .59 0	FRAS	E	WT	A/M	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	XRN	XA	XD	AR	HO	RB
2 -2.71 1000.0 12.00 3053 .70 1212 149.8 49.8 3.30 18.2 1210 61 2.9 29 1.25 3.57 1 3 80.90 500.0 10.00 1964 1.65 539 92.3 9.5 13.62 70.7 463 276 30.8 50 1.70 2.96 0 4 16.05 500.0 7.00 1086 .82 1661 138.1 21.2 6.94 42.7 1657 116 4.0 47 1.30 2.95 0 5 -34.24 500.0 6.00 3071 .93 1 3064.1 999.9 .00 34.2 1 0 0 .0 0 1.50 .59 0	1	1.26	1000.0	16.00	1983	- 51	1141	47.5	5.1	0 4.59	13.4	1139	66	3.3	43	1.10	1.50	3
3 80.90 500.0 10.00 1964 1.65 539 92.3 9.5 13.62 70.7 463 276 30.8 50 1.70 2.96 0 4 16.05 500.0 7.00 1086 .82 1661 138.1 21.2 6.94 42.7 1657 116 4.0 47 1.30 2.12 0 5 -34.24 500.0 6.00 3071 .93 1 3064.1 9999.9 .00 34.2 1 0 0 .0 0 1.50 .59 0 REPLICATION (10) Soil constant= 2.000 Altitude= 1000.000 feet Wind speed= 30.000 feet/second FRAGE E NT A/M IV CD DISTN VF KE TOF EF RANGE ISN IA ID AR ND RB 1 8.13 1000.0 16.00 2069 .62 1100 121.3 32.7 4.04 28.1 1098 75 3.9 35 1.10 1.29 0 2 -3.27 1000.0 12.00 3011 .88 1083 129.5 37.3 3.34 21.3 1081 63 3.3 30 1.25 3.00 1 3 85.17 500.0 10.00 2066 1.68 472 91.6 9.3 13.77 70.7 380 280 36.4 50 1.70 4.07 0 4 10.79 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 0 5 -37.10 500.0 6.00 3068 .95 4 3032.6 9999.9 .00 37.1 4 0 .0 4 1.50 3.11 0 FRAGE E NT A/M IV CD DISTN VF KE TOF EF RANGE ISN																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
Soil constant Z.000													-					
Soil constant	3	-34.24	300.0	0.00	30/1	.73	1	3004.1	7777.	7 .00	34.2	ı	v	. v	v	1.30	• 47	y
FRA6 E NT A/M IV CD DISTN VF KE TOF EF RANGE XRN XA XD AR HO RB 1 8.13 1000.0 16.00 2069 .62 1100 121.3 32.7 4.04 28.1 1078 75 3.7 35 1.10 1.27 0 2 -3.27 1000.0 12.00 3011 .88 1083 129.5 37.3 3.34 21.3 1081 63 3.3 30 1.25 3.00 1 3 85.17 500.0 10.00 2066 1.68 472 91.6 9.3 13.77 70.7 380 280 36.4 50 1.70 4.07 0 4 10.79 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 0 5 -37.10 500.0 6.00 3068 .95 4 3032.6 9999.9 .00 37.1 4 0 0 .0 4 1.50 3.11 0 FRA6 E NT A/M IV CD DISTN VF KE TOF EF RANGE XRN XA XD AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0							REF	LICAT	ION	(10	>							
1 8.13 1000.0 16.00 2069 .62 1100 121.3 32.7 4.04 28.1 1098 75 3.9 35 1.10 1.29 0 2 -3.27 1000.0 12.00 3011 .88 1083 129.5 37.3 3.34 21.3 1081 63 3.3 30 1.25 3.00 1 3 85.17 500.0 10.00 2066 1.68 472 91.6 9.3 13.77 70.7 380 280 36.4 50 1.70 4.07 0 4 10.79 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 0 5 -37.10 500.0 6.00 3068 .95 4 3032.6 9999.9 .00 37.1 4 0 .0 4 1.50 3.11 0 FRAGE E NT A/M IV CD DISTN VF KE TOF EF RANGE IRN IA ID AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0	Soil	const	ant=	2.000	A1	titu	de=	1000.	000	feet	Wind	spee	d≃	30.0	00	feet/	seco	nd
2 -3.27 1000.0 12.00 3011 .88 1083 129.5 37.3 3.34 21.3 1081 63 3.3 30 1.25 3.00 1 3 85.17 500.0 10.00 2066 1.68 472 91.6 9.3 13.77 70.7 380 280 36.4 50 1.70 4.07 0 4 10.79 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 0 5 -37.10 500.0 6.00 3068 .95 4 3032.6 9999.9 .00 37.1 4 0 .0 4 1.50 3.11 0 REPLICATION (11) Soil constant= 2.000 Altitude= 1000.000 feet Wind speed= 30.000 feet/second FRAGE E NT A/M IV CD DISTN VF KE TOF EF RANGE IRN IA ID AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0	FRAG	E	WT	A/N	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	XRN	XA	XD	AR	НО	RB
2 -3.27 1000.0 12.00 3011 .88 1083 129.5 37.3 3.34 21.3 1081 63 3.3 30 1.25 3.00 1 3 85.17 500.0 10.00 2066 1.68 472 91.6 9.3 13.77 70.7 380 280 36.4 50 1.70 4.07 0 4 10.79 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 9 5 -37.10 500.0 6.00 3068 .95 4 3032.6 9999.9 .00 37.1 4 0 .0 4 1.50 3.11 0 REPLICATION (11) Soil constant= 2.000 Altitude= 1000.000 feet Wind speed= 30.000 feet/second FRAGE E NT A/M IV CD DISTN VF KE TOF EF RANGE IRN IA ID AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0	1	8.13	1000.0	16.00	2069	.62	1100	121.3	32.	7 4.04	28.1	1098	75	3.9	35	1.10	1.29	0
3 85.17 500.0 10.00 2066 1.68 472 91.6 9.3 13.77 70.7 380 280 36.4 50 1.70 4.07 0 4 10.79 500.0 7.00 1040 .80 1495 148.9 24.6 5.30 29.8 1493 83 3.2 39 1.30 1.58 9 5 -37.10 500.0 6.00 3068 .95 4 3032.6 9999.9 .00 37.1 4 0 .0 4 1.50 3.11 0 REPLICATION (11) Soil constant= 2.000 Altitude= 1000.000 feet Wind speed= 30.000 feet/second FRAG E NT A/M IV CD DISTN VF KE TOF EF RANGE IRN IA ID AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0	2	-3.27	1000.0	12.00	301i	.88	1083	129.5				1081	63		30	1.25	3.00	1
## 10.79	3		500.0				472						280		50		4.07	0
5 -37.10 500.0 6.00 3068 .95 4 3032.6 9999.9 .00 37.1 4 0 .0 4 1.50 3.11 0 REPLICATION (11) Soil constant= 2.000 Altitude= 1000.000 feet Wind speed= 30.000 feet/second FRAG E NT A/N IV CD DISTN VF KE TOF EF RANGE IRN XA XD AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0								148.9										0
REPLICATION (11) Soil constant= 2.000 Altitude= 1000.000 feet Wind speed= 30.000 feet/second FRA6 E NT A/N IV CD DISTN VF KE TOF EF RANGE IRN XA XD AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0																		
FRAG E NT A/M IV CD DISTN VF KE TOF EF RANGE XRN XA XD AR HO RB 1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0							REF	LICAT	ION	(11)							
1 5.42 1000.0 16.00 1965 .59 1013 141.2 44.3 3.14 18.6 1011 56 3.2 30 1.10 1.15 0 2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0	Soil	const	tant=	2.000	A1	titu	de=	1000.	000	feet	Wind	spee	d=	30.0	00	feet/	seco	nd
2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 1 1.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0	FRA6	Ε	WT	A/K	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	IRN	IA	XD	AR	но	RB
2 -8.10 1000.0 12.00 3075 .69 1338 126.8 35.7 4.78 31.8 1335 89 3.8 37 1.25 1.58 1 3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 1 1.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0						**	1417	164 5				1844	٠,	7.0	74		,	
3 84.21 500.0 10.00 2003 1.60 494 93.6 9.7 13.88 71.1 406 281 34.7 50 1.70 1.55 0 4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0																		
4 11.64 500.0 7.00 1027 .86 1453 141.5 22.2 5.47 32.5 1451 87 3.4 41 1.30 3.48 0																		
	_																	
5 -38.01 500.0 6.00 2852 1.10 4 2817.4 8811.3 .00 38.0 4 0 .0 4 1.50 3.09 G																		
	5	-38.01	500.0	6.00	2852	1.10	4	2817.4	8811.	3 .00	38.0	Ý	0	.0	4	1.50	3.09	G

REPLICATION (12)

Soi l	cons	tant=	2.000	AI	titu	de≔	1000.	000 -	feet	Wind	spee	ed=	30.0	000	feet/	seco	nd
FRAG	Ε	WT	A/N	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	IRN	XA	XD	AR	HO	RB
1	5.78	1000.0	16.00	1954	.56	1057	140.1	43.6	3.34	20.0	1055	60	3.3	30	1.10	2.61	0
2	-1.09	1000.0	12.00	2891	.61	1329	62.3	B. 6			1327	67	2.9	43	1,25	2.59	3
3	89.53	500.0	10.00		1.24						319	307	43.8	50	1.70	4.19	Ö
4	13.15	500.0		2000		443	104.7	12.2			1382	92	3.8	43	1.70	3.46	0
			7.00	973	.95	1385	133.1	19.7									Û
5	-35.67	500.0	6.00	2850	1.13	6	2796.5	8680.7	.00	35.7	6	0	.0	6	1.50	4.43	U
						REF	LICAT	ION	(13)							
Soil	cons	tant≕	2.000	A1	titu	de≖	1000.	000 -	feet	Wind	spee	ed≕	30.0	000	feet/	seco	nd
FRAG	E	NT	A/N	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	XRN	XÁ	YD	AR	HO	RB
1	4.76	1000.0	16.00	2101	.55	104B	150.5	50.3	3.05	17.2	1047	55	3.0	28	1.10	4.43	0
2	-4.99	1000.0	12.00	3068	.63	1384	140.8	44.0		25.0	1381	78	3.2	33	1.25	3.80	1
3	81.13	500.0	10.00	1976	1.15	637	108.5	13.1		73.6	557	309	29.1	50	1.70	1.13	0
4	19.01	500.0	7.00	944	.66	1878	149.6	24.8		45.8	1874	128	3.9	51	1.30	2.84	Õ
5	-35.51	500.0	6.00	2865	1.31	2	2842.5	8969.2		35.5	2	0	.0	2	1.50	1.62	0
,	33,31	300.0	0.00	2003	1.31	2	2072.3	0707.2	00	33,3	1	٧	•0		1.50	1.02	V
						REF	LICAT	ION	(14	>							
Soi l	cons	tant=	2.000	Al	titu	de≈	1000.	000 1	feet	Wind	spee	ed=	30.0	00	feet/	seco	nd
FRAG	E	WT	A/H	IV	CD	DISTN	٧F	KE	TOF	EF	RANGE	XRN	XA	XD	AR	HO	RB
1	4.66	1000.0	16.00	1927	.52	1036	157.2	54.9	2.95	15.8	1035	52	2.9	28	1.10	2.37	0
2	-6.36	1000.0	12.00	2858	.85	1144	119.5	31.7		28.8	1142	77	3.9	35	1.25	1.5:	1
3	86.10	500.0	10.00	1925	1.64	455	92.6	9.5		71.0	360	278	37.7	50	1.70	3.33	0
4	12.35	500.0	7.00	976	.85	1457	141.2	22.1		33.4	1455	89	3.5	42	1.30	1.57	ō
5	-33.26	500.0	6.00	2849	1.07	2	2830.7	8894.7		33.3	2	0	.0	2	1.50	1.47	Õ
•			••••		•••						-	·		•	1120	•• •	·
							LICAT	I DM .	(15	,							
Soi l	cons	tant=	2.000	Al	titu	de=	1000.	000 4	eet	Wind	spee	d=	30.0	00	feet/	seco	nd
FRAG	E	WT	A/M	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	XRN	IA	ID	AR	НО	RB
i	3.24	1000.0	16.00	1987	.47	1124	88.9	17.5	3.82	14.3	1123	57	2.9	43	1.10	2,47	1
2	-7.28	1000.0	12.00	2958	.87	1136	116.3	30.0		30.5	1134	80	4.0	36	1.25	2.69	i
3	89.37	500.0	10.00	1999	1.31	438	102.1	11.6		72.9	318	301	43.5	50	1.70	3.94	Ō
4	18.65	500.0	7.00	979	.69	1848	147.3	24.1		45.6	1843	127	4.0	51	1.30	.84	0
5	-32.22	500.0	6.00	2788	1.01		2774.4	8544.5		32.2	2	0	.0	1	1.50	1.15	0
J	32.11	300.0	B. 00	2700	1.01	-	2117.7	0377.3	.00	32,2	4	v	٠.٧	٠	1.30	1,13	v
						REP	LICAT	ION (16)							
Soi l	cons	tant=	2.000	A1	titu	==st	1000.	000 f	eet	Wind	spee	d=	30.0	00	feet/	seco	nd
FRAS	Ε	NT	A/H	IV	CD	DISTN	VF	KE	TOF	EF	RANGE	IRN	IA	XD	AR	AD.	RB
i	4.84	1000.0	16.00	2003	.54	1042	150.3	50.2	3.06	17.2	1040	55	3.0	28	1.10	4.37	0
2	-4,43	1000.0	12.00	3084	.85	1140	125.1	34.7		24.6	1138	70	3.5	32	1.25	4.40	i
3	B0.45	500.0	10.00	2012	1.62	554	93.1	9.6		70.9	479	279	30.2	50	1.70	1.75	Ö
4	19.97	500.0	7.00	995	.90	1581	131.5	19.2		49.2	1576	129	4.7	52	1.30	1.42	Ô
5	-3B.26	500.0	6.00	2893	1.06	5	2847.3	8999.0		38.3	5	0	.0	5	1.50	4.16	Õ
•						-			•••		_	•	••	-			•

	TAI	BLE 1 I	ncrement = 10	0 feet	Number of	Units= 46				
Dista	nce		Total			Hazard			of Final Grou	
(fee	t)	Total	Density	Total	Hazard	Density	Hazard	10 Dec	ree Azimuth Se	ctor
From	Ţο	No.	Frags/sqft	P-hit	No.	Frags/sqft	P-hit	Min	Avg	Hax
0	100	188.60	1.019557	.995384	188.60	1.019557	.995384	59.80	59,80	59.80
100	200	25.30	.087241	.298157	25.30	.087241	.298157	.00	.00	.00
200	300	8.34	.022060	.091629	8.34	.022060	.091629	.00	.00	.00
300	400	2.88	.005699	.025393	2.88	.005699	.025393	.00	.00	.00
400	500	4.89	.004892	.022179	2.88	.004627	.021573	.00	2.01	4.60
500	600	2.01	.000216	.000476	.00	.000000	.000000	.00	2.01	4.60
600	700	3.16	.002345	.011969	2.59	.002293	.011855	.00	.57	4.60
700	800	10.64	.006570	.034878	10.64	.006570	.034878	.00	.00	.00
800	900	8.05	.003840	.020700	7.62	.003601	.019421	.00	.00	.00
900	1000	13.23	.004382	.023962	6.76	.002525	.013739	.00	.00	.00
1900	1100	52.90	.011338	.061625	6.11	.001447	.008013	.00	31.63	B7.40
1100	1200	38.52	.006930	.037277	.00	.000000	.000000	.00	27.03	87.40
1200	1300	17.25	.002738	.014844	.00	.000000	.000000	.00	14.38	46.00
1300	1400	13.80	.001695	.008994	.00	.000000	.000000	.00	10.93	82.80
1400	1500	14.95	.001107	.005780	.00	.000000	.000000	.00	14.95	46.00
1500	1600	9.20	.000484	.002216	.00	.000000	.000000	.00	9.20	36.89
1600	1700	11,50	.000598	.002857	.00	.000000	.000000	.00	11.50	36.80
1700	1800	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00
1800	1900	4.60	.000189	.000829	.00	.000000	.000000	.00	4.60	36.80
1900	2000	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00
2000	2100	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00
2100	2200	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00
2200	2300	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00
2300	2400	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00

Number of trajectories with distance greater than 2400 feet= 0

	TABLE 2	Increment	= 100 feet	Number o	of Units= 46			
Distance	Ha	zard Density	(Frags/sqft)			Hazard Prob	ability of Hi	
(feet)	Max	801	501	Min	Ħax	BOI	50%	Min
50	1.352684	1.13366B	.932629	.844622	.999508	.998272	.994468	.990744
150	.325103	.176591	.000000	.000000	.843791	.635624	.000000	.000000
250	.127613	.000000	.000000	.000000	.518014	.000000	.000000	.000000
350	.091186	.000000	.000000	.000000	.406319	.000000	.000000	.000000
450	.074033	.000000	.000000	.000000	.345160	.000000	.000000	.000000
550	.000060	.000000	.000000	.000000	.000000	.000000	.000000	.000000
650	.036684	.000000	.000000	.000000	.189808	.000000	.000000	.000000
750	.036063	.022153	.000000	.000000	.186907	.119523	.000000	.000000
850	.024130	.000000	.000000	.000000	.129296	.000000	.000000	.000000
950	.021390	.000000	.000000	.000000	.114876	.000000	.000000	.000000
1050	.013625	.000000	.000000	.000000	.075269	.000000	.000000	.000000
1150	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1250	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1350	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1450	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1550	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1650	,000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1750	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1850	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1950	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
2050	,000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
2150	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
2250	,000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
2350	000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000

TABLE 3 Increment = 100 feet

HAZARD	*		(NUMBER OF UNITS	TO JUST EXCEED -			
DISTANCE		DEWSITY	CAITERION			P-HIT CI	RITERION	
(FEET)	MIN	892	50%	MAX	HIN	801	501	MAX
50	.07	.08	.69	.10	.07	.08	.10	.11
150	.25	. 44	999979.60	999999.00	. 20	.47	999999.00	999999.00
250	.61	999999.00	599999.00	999949.50	. 64	999999.00	999999.00	999999.00
350	.85	9 99999.ú0	999999 60	990999.00	.90	999999.00	999999.00	999999.00
45¢	1.05	999999,jj	999999.00	999999.ue	1.10	999 9 69.00	999999.00	999999.00
550	999999.uù	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00
650	2.16	999999.00	999999.00	999999.00	2.21	999999.00	995995.00	999999.00
750	2.i4	3.4?	999999.00	999999.00	2.24	3.64	999999.00	999999.00
850	3.19	999999,00	999999.00	999999.00	3.35	999999.00	999999.00	999999.00
956	3.54	999999.00	999999.00	999999.00	3.89	999999.00	999997.00	999799.00
105u	5.04	599955.00	999999.00	999999.00	5.92	999999.00	799799,00	999999.00
1150	999999.00	999999.00	999999.00	999999.00	999999.00	999999 00	599999.00	999999.00
1250	999999.ù6	999999.66	999999.00	999999.00	599999.00	999999.00	949994.00	999999.00
1350	999779.00	999999.00	999999.00	999799.00	999999.00	999999.00	999999.00	999999.0ú
1456	999999.00	999999,66	939999.00	999999.00	999999.00	999999.00	999999.00	999999.00
155t	999999.00	997999.00	999999.00	999999.00	999999.00	999999.00	999997.00	99 99 99.00
1650	279999 410	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00
1750	999999.06	99999.0ù	999999.00	999999.00	994999,00	999999.00	999999.00	999999.00
1850	999999.60	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00
1950	999999.00	999999 1)0	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00
2050	999999.00	999999.00	999999.00	999974.00	999999.00	999999.00	999999.00	999999.00
2150	999999.00	999999.00	999999.00	999999.00	999999.00	999995.00	999999.00	999999.00
2750	999999.00	999999.00	999999,00	999999.00	999999,00	999999.00	999999,00	999999.00
2350	999999.00	999999.00	999999.00	995999.00	979999.QU	999959.00	999999.00	999999.00

The 999999.00 entries signify that the number of units required is infinite, that is, the Hazard Density and P-hit are both zero.

Hazard Density Criterion= .001667 frag/sqft Hazard P-hit Criterion= .010

TABLE 1 | Increment = 200 feet | Number of Units= 46

ມີເຊັນ	1955		Intal			Hazard			r of Final Grou	•
1166	(t)	Total	Density	Total	Hezard	Density	Hazard	19 De	igrec Azi a uth Se	ctor
From	Ĭο	No.	Frags/sqft	P-hit	No.	Frags/sqft	F-hit	Min	Avç	Max
U	200	213.90	.320320	.472464	213.90	.320320	.472464	59.80	59.80	59.80
200	400	11.21	.012516	.052992	11.21	.012516	.052992	. 60	.00	.00
460	60ú	6.70	.002320	.010243	2.88	.002082	.009708	.00	4.03	9.20
600	800	13.60	.004668	.024241	13.23	.004584	.024186	.00	.57	4.60
800	1000	21.28	.004126	.022422	14.38	.093033	.016422	.00	.00	.00
1000	1200	91.43	.009034	.948898	6.11	.000690	.003824	.00	58.65	174.80
:200	1 4 00	31.05	.002196	.011867	.00	.000000	.000000	.06	25.30	128.B0
1400	1600	24.15	.000785	.403939	.00	.000000	. 000000	.00	24.15	82.80
1600	1800	11.50	.000290	.001387	.00	.000000	. 000000	.00	11.50	36.80
1800	2000	4.60	. 000092	.000404	. 00	.000000	.000000	.00	4.60	36.80
2000	220u	.00	. იტენას	, ບຸງບຸນັບບຸ	.00	.000000	.000000	.00	.00	.00
2200	2400	. 00	. 000000	.000000	. 00	.000000	.000000	, Úu	.00	.00

The 2 Increment = 200 feet Number of Units = 46

Distance	Haz	ard Density	Frags/sqft/ -			Hazard Prob	ability of Hi	ıt
(feet)	Ħax	801	501	Min	Max	80%	50°	Min
196	.561999	.415860	. 233157	.211156	.882720	.726286	.248617	.247686
300	. 196364	.000000	. 000000	.000000	.452858	.000000	.000000	. 000000
5u-9	.033315	600000	, 000000	.006000	.155322	.000000	.000000	.000000
700	.036351	.0119.9	, 000000	. 000000	.188254	. 964030	.000000	.000000
900	.022684	.000000	, ὐΰὑΰΟ	.000000	.12:685	.000000	.000000	.000000
1100	.002503	.000000	, 000006	.000000	.035924	.000000	.000000	.000000
1300	.000000	.000000	, 66666	.000000	. (000000	.000000	.000000	, 0000000
1500	.000000	.000000	, 000000	. 000000	.000000	.000000	.000000	.000000
1790	.000006	.090000	, 000000	.000000	.000000	.000000	. 666600	. 600006
1966	.000000	.000000	, 000000	.000000	.000000	.000000	.000000	.000000
2160	. 0000000	.000000	, 060000	.000000	.0.0000	.000000	.000000	.005000
2300	.000000	.000000	,000000	.600000	.000000	.000000	.000000	. 000000

TABLE 3 Increment= 200 feet

HAZARÐ			·	NUMBER OF UNITS	TO JUST EXCEED -			
DISTANCE		DENSITY O	CRITERION			P-HIT CF	RITERIC	
(FEET)	MIN	801	5 12	MAX	HIN	801	501	Mert
190	.14	.19	. 34	. 3!	.15	.21	. 38	. 42
300	.73	999929.00	799999.00	949499.00	.7 <i>i</i>	999999.00	999999,00	989999,00
506	2.31	999999.00	999999.66	599999.00	2.44	999999.00	9999999.00	999799.00
700	Ž.1Ž	6.47	447944.00	499949.00	7.13	6.79	949979,00	999999, 00
900	3.39	999949.00	.99959.00	999999.00	3.57	999999.00	999279,00	999999,00
1100	11.80	995799.00	999999,00	9999999.00	12.39	919999.00	999099,00	959999.00
i 300	999999.00	995999.00	599959.00	999999.00	999999.00	999999.00	999999.00	999999.00
1500	999999.00	999999.00	9499994.00	999949.00	999999. Qu	999949.00	999599.00	₹ 7 \$9 \$ 9.00
1700	999999.00	9999995.00	999999.00	999999.00	9999999.00	999994.00	999999,00	999997.00
1900	999999,00	999999.00	999999.0)	999999.00	999999.00	999999.00	999999.00	999999,00
210)	999999.00	999979.00	599399.06	999999.00	999999.00	997999.00	999999.00	999999,00
2340	999999.00	999 999.00	999979.00	999999.00	9 99999.00	939999.00	999999,00	99 99 99.00

The 999999,00 entries signify that the number of units required in infinity, that is, the Hazard Density and fi-hit are both zero.

Hazard Density Criterion= .001657 frag/sqft Hazard P-hit Criterion= .016

TABLE 1 Increment = 300 feet Number of Units= 46

Distance			Total			Hizard		Total Numbe	r of Final Grou	nd Impacts
(fee	t)	Total	Density	!otal	Hazard	Dens: ty	Hazard	10 De	grec Asimuth Se	ctor
From	Īω	Ne.	Frags/sqft	P his	No.	Frags/sqfc	P-hit	Min	Avg	Max
U	300	222.24	. 154520	.260809	227.24	.154620	. 260889	59,80	59.80	59.80
390	660	9.77	. 093196	.014171	5,75	.903070	.013774	. Ģů	4.93	9.26
600	90ú	21.85	. 504318	.022903	20.84	.004013	.022387	.00	.57	4.60
900	1200	194.65	. 007631	.041378	12.37	.001244	.006814	. 90	58.65	174.80
1200	1500	46.00	608190.	.009649	.00	.000000	.000000	.00	40.25	174.80
150e	1866	20.76	. 090351	.001646	.00	.000000	. ^^00000	.00	29.70	73.60
1800	2100	4.60	, 000660	.600267	.00	.600000	.000000	.00	4.60	36.80
2190	2400	.06	, 000 00 0	. 900096	.00	.000000	.000000	.00	. 0'9	.00

Number of trajectories with distance greater than 2400 feets - G

NSWCTR87-59

TABLE 2 Increment= 360 feet Number of Brits= 46

Distance	Ha:	ard Density (Frags/sqft/ -			Hazard Prubi	ability of H	t
(feet)	Max	8úl	501	Hin	Max	ម១%	561	Ħin
150	. 329562	.184827	.193625	.093247	. 680105	.322794	.110496	.119093
450	.048318	.⊓ĕĕĕe\$. 000000	.000000	.220395	.60000 6 0	.000000	.000000
750	.031734	-507384	. 000000	.000000	. 145981	.039841	.000000	.000000
105ú	. 010993	.100000	.000000	.000000	.059735	.000000	.000000	.000006
1350	. 000000	.000000	. მმმმმმ	.000000	. 000000	. 200000	. 696000	.000000
1650	. 000000	000000	. 900000	.000000	.99900 ₀	.00 0 000	.000006	.000000
1950	. 0500005	. 666006	. იბმინი	.000000	. 000000	.000000	.000000	.600006
2250	.000000	.000000	.096000	.000000	.969000	. 900000e	.000000	.000000

TABLE 3 Increment= 300 feet

HAZAED				NUMBER OF UNITS	10 JUST EXCEED :		·	
DISTANCE		GENSITY	CRITERION			8-81T CI	RITERION	
(FEET)	MIN	8 _፡ ኃኒ	50%	tán	#2N	Bet	50%	Kē.1
150	.24	. 42	.75	.87	. 76.	. 47	. 95	.94
450	1.00	999999.00	999999.10	9999990	1.69	999999,00	999599.66	594974.90
750	2.43	10.39	997999.00	999799.00	2,55	10.92	990000 01	999999.00
1656	6.98	999999.00	999999.00	993909.00	7.36	990999,00	929777,00	979795.00
1350	999999.00	979999.00	7,4999.00	999999-90	<u> ବଡ଼ବବବ୍ୟ, ଓଡ଼</u>	999799,00	999999.00	446436 (4)
1650	959799.00	999759.00	999999.00	999074.00	999999.00	999999,00	999994.40	999939.00
1950	999999.00	499799 . U	979999.00	9999,7.00	999999.00	499999.1).1	999999.00	979795.00
2256	999999,65	3.16666 VV	ededoo'ii0	999999 ··0	699490,00	999999 60	665595 66	499999

The 9 - 99.00 entries signify that the number of units required is infinite, that is, the Hazard Density and P-bit are ooth zero.

Hotard 1 - 51 y Criterion - .00.667 frug/sqft - Hazard H-bit Criterion - .010

TABLE 1 in ment = 460 feet humber of Units= 48

Dista	Eistance otal					Ha: ard		Intal Numbe	r of Final Irou	ind Impacts
(166	t,	Total nexty		Total	hazard	Density	Hazard	10 Bu	gree Actauls Se	ector
From	Ťς	No.	ags/sqft	F~h.t	No.	Frags/syft	Fahat	Min	Avg	الاي:
'/	4 00	225.11	.089467	.157860	225.11	. 39467	.15/869	59.99	59.80	59.80
400	260	20.76	.03455	. 916499	\$8.49	.963540	.018155	. 50	4.60	13.50
606	1200	112.70	.606875	.676984	26.48	. 601745	.069493	.06	58.55	174.85
1259	1600	55.79	.601446	96,597	, ĝra	.000000	, 6.50000	, 36	49,45	211.60
1659	$\mathcal{H}_{\mathcal{H}}$	16.19	.550v18s	.000848	.60	-650000	. 000000	.60	16.10	75.50
2090	2400	.99	.000000	. 000000	.69	.500090	. 500000	, ộộ	.00	. 00

Higher of trajectories with distance greater than 7400 feets - U

TABL	E 2	Increment= 40	0 feet	Number of Units=	46			
Distanr								
(feet)	Max	80%	50%	Min	Max	80%	50%	Min
200	.225273	.103965	.058289	.052789	.560324	.181572	.062154	.061921
600	.035086	.006923	.000000	.000000	.174532	.037351	.000000	.000000
1000	.013784	.000000	.000000	.000000	.074516	.000000	.000000	.000000
1400	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
1800	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
2200	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000

TABLE 3 Increment= 400 feet

HAZARD				NUMBER OF UNITS	TO JUST EXCEED			
DISTANCE		DENSITY	CRITERION			P-HIT CI	RITERION	
(FEET)	HIN	80%	50%	MAX	MIN	80%	50%	MAX
200	.35	.75	1.33	1.46	.38	.83	1.51	1.67
500	2.20	11.08	999999.00	999999.00	2.31	11.64	999999.00	999999.00
1000	5.57	999999.00	999999.00	999999.00	5.87	999999.00	999999.00	999999.00
1400	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999. 00
1800	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00
2200	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00	999999.00

The 999999.00 entries signify that the number of units required is infinite, that is, the Hazard Density and P-hit are both zero.

Hazard Density Criterion= .001667 frag/sqft Hazard P-hit Criterion= .010

TABLE H-2. PROGRAM TEST CASE - FULL FACTORIAL OPTION

FRAGHAZ quantity - distance program (fragmenting munitions) Source 'of frag data: DATA Output file: LFT1 Target description: STANDING MAN Minimum soil constant= .50 Maximum soil constant= 4.00 FULL FACTORIAL OPTION 3-D fragment trajectories, 3-D man, 2-D wind CD is a function of fragment max to avg presented area ratio Run contains fragment ricochet routine Variable air density, altitude, and sound speed Ejection zone size= 10 degrees Azimuth sector size= 10 degrees Number of units or interaction areas= 46 Number of fragment multipliers= 13 Fragment hazard criterion= 58.0 ft-lbs Percentile= 90 Minimum altitude of ammo storage site= Maximum altitude of ammo storage site= 5000.000 feet Height of ammo stack= 4.50 feet Stack inert ground standoff= .50 feet Number of fragments= Maximum computation range: 2400 feet Dimensions of the target (feet): HM= 5.72 WM= 1.00 DM= . 55 Hazard density criterion= .0016667 frags/sqft Hazard probability of hit criterion= .0100000 Minimum wind speed= .00 feet/second Maximum wind speed= 30.00 feet/second Wind direction= .00 deg (0=tailwind) Fragment multipliers .01000 .02000 .03000 .04000 .05000 .06000 .07000 .08000 .09000 .10000 .11000 .12000 .13000 FACTOR LEVELS .1000 .2500 .4000 .8000 SOIL CONSTANT: HEIGHT OF ORIGIN: ELEVATION ANGLE: .5000 .0000 .9999 INITIAL VELOCITY: 1.2000 .5000 DRAG COEFFICIENT:

NO. OF TREATMENTS = 16 NO. OF TREATMENTS PRINTED = 16

.5000

ALTITUDE:

WIND SPEED:

.9000

						7.00	- 6	- .									
						1 1901	TATMEN	Τ (1)								
Soil	cons	tant:=	.850	Fl	ti tu	d æ≔	2500.	000 f	eet	Wand	spee	d =	. 0	ΟÓ	feet/	seco	nd
FRAG	E	WT	4/8	IV	CD	DISTH	۷ř	KE	TOF	EF	RANGE	IRN	IA	ХD	AR	НЭ	ŘΒ
1	. 01	1660.6	16.00	2084	.56	983	74.5	12.3	3.61	12.4	983	Ç	.0	40	1.10	2.50	3
2	-10.00	1000.0	12.00	3126	.74	1209	112.0	27.9	9.82	76.1	1209	0	.0	64	1.25	2.50	1
3	80.00	590.0	10.00	2084	1.28	265	160.9	11.3	15.18	69.3	265	Ú	.0	50	1.70	2.50	0
4	10.00	500.4	7.00	1012	.80	1403	135.9	20.5	5.05	31.7	1403	0	.0	38	1.30	2.50	Ú
5	-41).00	500.0	ა. ¢ 0	3,26	1.04	3	3698.4	9799.9	.00	40.0	3	O	.0	3	1.50	2.50	0
						TRE	TATMEN	T (2)								
Soil	cons	tant≃	.850	AI	titu	dœ≃	2500.	000 f	eet	Wind	spee	d :=	27.0	φφ	feet/	seco	nd
FRAC	E	₩î	A/N	ΙV	CD	DISTN	VF	KE	TOF	EF	RAMBE	IRM	AK	1D	AR	СН	ŔB

Soil	consi	tant≃	.850	Altitud⊕≕		2500.000 feet W			Wind	spee	d≔	27.0	ΟĢ	feet/second			
FRAC	E	Ħì	A/N	IV	CD	DISTN	VF	KE	TOF	EF	RAMBE	181	14	RD	AR	СН	ŔB
i	. 01	10 00. ú	16.00	2034	.56	1147	49.3	5.4	5.00	25.0	1147	0	.0	58	1.10	2.50	4
2	-14.00	1000.0	12.00	3:26	.74	1468	121.5	32.8	9.91	63.9	1468	0	.0	64	1.25	2.50	•
3	60.00	500.0	10.00	2054	1.20	657	104.7	:2.2	15.20	74.4	657	Ç	.0	50	1.70	2.50	0
4	16.59	550.0	7.60	1042	.80	! 5 35	150.6	27.9	5.13	27.0	1535	0	.0	36	1.30	2.50	C
5	-45.09	500.0	6.50	3128	1.04	3	3098.7	9999.9	.00	40.0	3	C	.0	3	1.50	2.50	0

TREATMENT (3)

20.1	Cons.	tant=	. 850	Altitude=			2500.000 feet Wind			abse	eed= .000 feet/s				5 000	nd	
FRAS	C	ĻΤ	A/K	14	CD	BISIN	٧٢	KC	TGF	EŁ	RANGE	IRM	IA	ID	AR	HG	ŔB
1	10.00	1000.0	16.00	2664	.56	1162	104.6	24.3	4.80	40.1	1162	ę	.0	38	1.10	2.50	0
2	01	1000.0	12.00	3126	.74	1134				11.4					1.25		
3	99.99	500.0	10.00	2084	1.28	9	100.9	i1.3	15.49	96.0	ť.	Ù	.0	50	1.70	2,50	0
4	20.00	500.0	7.00	1042	.50	1625		17.9	B.06	56.8	1625	0	.0	52	1.30	2.50	Ó
5	-20.00	500.0	6.00	3126	1.04	4	3090.5	9799.9	.00	30.G	4	O	.c	4	1.50	2.50	0

TREATMENT (4)

Sort	. cons	tant≖	. 850	Αı	titu	ರಲ≈	2509.	900 f	eet	Wirid	at 66	ď⊸	27.0	ĶÓ	feet/	3 e co	nd
FRAS	ŧ	¥ī	A/K	ĮV	CE	DISTM	VF	řĒ	TOF	EF	RANGE	IRN	14	19	A Ω	Н0	RS
ı	10.00	1000.0	16.00	2084	.56	1292	126.7	35.4	4.83	32.4	1292	0	٦.	38	1.10	2.50	0
2	01	1000.0	12.00	3156	. 74	1.507	54.3	6.5	5.00	22.3	1307	0	.0	55	1.25	2.50	4
3	89. 9 9	500.0	10.00	2064	1.28	395	104.5	12.1	15.40	75.1	396	0	.0	50	1.70	2.50	0
4	20.30	500.0	7.00	1942	.20	1976	143. 3	22.8	8.15	48.3	1836	Ŋ	.0	57	1.30	2.50	0
5	-30.00	500.0	6.00	3126	1.04	4	3071. ◊	999 9.9	.00	30.0	4	6	_0	4	1.50	2.50	0

TREATMENT (5)

Sort	C On S	tant-	1.375	Al	titu	de÷≖	2500.	990 f	eet	Wand	abse	ರ ≈	. 0	つむ	feet/	Seco	nd
FHAG	E	ĦŢ	A/#	IA	CO	DISIN	٧f	NE	TOF	EF	RANGE	PRN	AZ	r D	AR	но	88
ι	.01	1860.0	16.00	2384	.5t	1909	49.8	10.5	3.77	16.0	1009	C	.0	4"	1.10	2.50	3
2	-10.00	1000.0	12.00	3176	.74	1363	168.1	25.9	6.41	64.7	136 £	A	.0	57	1.25	2.50	i
3	80.60	500.0	10.00	2044	1.78	265	100.9	11.3	15.18	89.3	265	Ú	.0	50	1.70	2,50	G
4	10.06	500.0	7.00	1642	.80	1403	135.9	20.5	5.03	31.7	1403	Ą	.0	38	1.30	2.50	ü
5	-40 00	59 ú.0	6.00	3126	1.04	3	3098.4	9959.5	.00	40.0	3	0	.1	7	1.50	2.50	ú

TREATMENT ((ن
-------------	-----

Soil	cansi	.ant=	1.375	Al	titu	de≃	2500.	000 f	eet	Wind	spee	d =	27.0	φφ	feet/	seco	rıd
FRAG	Ε	WT	A/H	īv	CD.	DISTH	VF	KE	TOF	EF	RANGE	XEH	IA	ID	AR	нО	RB
1	.01	1009.0	16.00	2084	.56	1167	36.9	3.0	5.60	41.4	1167	0	.0	67	1.10	2.50	4
2	-10.00	1000.0	12.00	3126	.74	1529	120.2	32.1	8.48	57.8	1529	0	.0	57	1.25	2.50	1
3	80.00	500.0	10.00	2084	1,28	657	104.7	12.2	15.20	74.4	657	Ŏ	.0	50	1.70		
																2.50	0
4	10.00	500.0	7.00	1042	.80	1535	158.6	27.9	5.13	27.0	1535	0	.0	38	1.30	2.50	0
5	-40.00	500.0	6.00	3126	1.04	3	3098.7	9997.9	.00	40.0	3	0	.0	3	1.50	2.50	0
						TRE	:ATMEN	IT (7)								
Soil	const	ant=	1.375	Al	tītu	de≕	2500.	ĢĢŌ f	eet	Wind	spea	d=	. 0	φφ	feet/	seco	nd
FRAG	E.	WT	A/M	IV	CD	DISTN	VF	ΧE	TOF	EF	RANGE	XRN	23	X C	AR	40	RB
	10.00	1000 0		2001	.	1115	404 (n. *		** .				70			
l n	10.00	1000.0	16.00	2084	.56	1162	104.6	24.3	4.80	40.1	1162	0	.0	36	1.10	2.50	Ų
2	01	1000.0	12.00	3126	.74	1161	73.3	11.9	3 .9 7	14.9	1161	c	.0	43	1.25	2.50	3
3	89.99	500.0	10.00	2084	1.28	0	100.9	11.3	15.40	90.0	Û	ø	.0	50	1.70	2.50	C
4	20.00	500.0	7.00	1042	.80	1625	126.4	:7.9	6.06	56.9	1625	0	.0	52	1.30	2.50	Ú
5	-30.00	500.0	6.00	3126	1.04	4	3040.5	9994.9	.00	30.0	4	0	.0	4	1.50	2.50	0
						TEE	AIMEN	IT (8)								
Soil	cons.	tant=	1.375	A1	titu	de≈	2500.	000 +	eet	Wind	spec	:d =	27.0	φ¢	feet/	seco	na
FRAS	€.	WT	A/5	IV	CD	DISTN	VF	ΚĒ	10F	EF	RANGE	XRM	YA	r p	AH	HÜ	RP
1	10.00	1000.0	16.00	2084	.56	1292	126.2	35.4	4.83	32.4	1292	0	.0	38	1.10	2.50	ú
2	01	1006.0	12.00	3126	.74	1332	42.3		5.66	36.4	1332						
							-	4.0				0	.0	66	1.25	2.50	4
3	89,99	500.0	10.00	2084	1.28	396	104.5	12.1	15.40	75.1	396	0	.0	50	1.70	2.50	Q
4	20.00	500.0	7.00	1042	.B0	: 836	143.3	22.8	B.15	48.3	1836	0	.0	52	1.30	2.50	0
5	-30.00	500.0	6.00	3126	1.04	4	3091.0	9999.9	.00	30.0	4	0	.0	4	1.50	2.50	0
						TERE	(ATMEN	IT (5 ⁶)								
5011	cons	tant=	2,600	A1	titu	de=	2500.	000 t	eet	Wind	spee	d =	. Q	φo	feat/	seco	rīd
FRA6	Ε.	K 1	A/H	IV	CD	DISTH	٧F	KE	TOF	EF	RANGE	XRN	XA	X D	A R	н0	RB
1	.01	1000.0	16.00	2084	.56	1011	24.4	1.3	4.40	20.6	1011	0	.0	53	1.10	2.50	4
2	-10.00	1000.0	12.00	3126	.74	1239	102.9	23.5	5.50	47.0	1239	0	.0	42		2.50	
3		500.0													1.25		l
_	80.00		16.00	2084	1.26	265	100.9	11.3		89.3	265	0	.0	50	1.70	2.50	0
4	10.00	500.6		1042		1463	135.9	20.5			1403	0				2.50	
5	-40,00	500.0	6.00	3126	1.04	3	3098.4	9999.9	.00	40.6	3	0	.0	3	1.50	2.50	Û
						TIRE	АЗМЕА	m c	10)								
Sort	cons	Lant=	2.600	Αl	tītu	بان-≖	2500.	000 f	eet	Wind	shee	ed =	27.0	ijĢ	foet/	seco	nd
FRAG	£	WT	A/M	1 V	CD	DISTN	VF	kE	105	ŗŗ	RANGE	XRN	IA	XD	AR	но	RB
1	.01	1000.0	18.00	2084	.56	1:56	45.3	4.6	4.85	14.9	.:56	0	.0	46	1.10	2.50	4
2	-10.00	1000.0	12.00	3126	.74	1388	122.6	33.4		38.1	1383	Õ	.0	42		2.50	1
3	80.00	500.0	10.00	2084	1.28	657	104.7	12.2		74.4	657	0	.0	50	1.70	2.50	
4	10.00	500.0										-					0
			7.00	1042	.80	1535	158.6	27.9		27.0	1535	0	.0	38	1.30	2.50	0
5	-10,60	500.0	6.00	3126	1.04	3	309B.7	9999.9	.00	40.0	3	0	.0	2	1.50	2.50	0

NSWCTR87-59

TRUATMENT (11)

Soil	const	tant=	2.600	Al	t. 1 t u	de=	2500.	000 4	eet.	₩ınd	shee	പ≔	. 0	ĢĢ	feet/	Seco	nd
FRAG	F.	WT	A/M	IV	CD	DISTN	٧F	K.E	TOF	EF	PANGE	IRN	XA	XD	AR	но	RB
ı	10.00	1000.0	16.00	2084	.56	1162	104. á	24.3	4.80	40.1	1162	٥	.0	38	1.10	2.50	0
2	01	1000.0	12.00	3126	.74	1156	27.0	1.6	4.4B	19.6	1166	0	.0	52	1.25	2.50	4
3	69.99	500.0	10.60	2084	1.28	0	100.9	11.3	15.40	70.0	0	ō	.0	50	1.70	2.50	()
4						1625	126.9	17.9	8.06	56.8	1625	Ó	.0	52	1.30	2.50	0
	20.00	500.0	7.00	1042	.80			9999.9			1023	0	.0	4	1.50	2.50	
5	-30.00	500.0	6.00	3126	1.04	4	3090.5	7177.7	.00	30.0	7	٧	.0	•	1.50	2.30	0
						THE	ATMEN	T (12)								
Soil	const	tant=	2.600	A1	titu	de≕	2500.	000 f	eet	Wind	ebse	d=	27.0	ΟŌ	feet/	s eco	าตี
FRAG	E	WT	A/il	IV	CD	DISTN	٧F	KE	TOF	EF	RANGE	XRN	IA	XD	AR	HO	RP
i	10 00	1000.0	16.00	2084	.56	1292	126.2	35.4	4.83	32.4	1292	Q	.0	38	1.10	2.50	Ú
2	01	1000.0	12.00	3126	. 74	13:4	48.5	5.2	4.91	14.5	1314	0	.0	45	1.25	2.50	4
3	89.99	500.0	10.00	2084	1.28	396	104.5	12.1	15.40	75.1	376	0	.0	59	1.70	2.50	0
4	20.00	500.0	7.00	1042	.90	1836	143.3	22.8	8.15	48.3	1836	0	.0	52	1.30	2.50	Ú
5	-30.00	500.0	5.00	3126	1.04	4	3091.0	9999.9	.00	30.0	4	Û	.0	4	1.50	2.50	Û
						ΥÆ	EATMEN	T (15)								
Soil	cons	tant=	3.300	Aı	titu	de≃	2500.	000 +	eet	Wind	spee	c):=	. 0	QQ	feet/	seco	nd
FRAC	Ε	¥ĭ	A/K	IV	ċū	DISTN	٧F	KE	TûF	EF	RAKSE	XRN	ĬĤ	ĭĎ	AR	ΗŪ	ŔB
1	.01	1060.0	16.90	2084	.56	1017	21.4	1.0	4.54	23.9	1017	0	. 0	57	1.10	2.50	4
2	-10.00	1900.0	12.00	3126	.74	1256	102.8	23.5	5.60	48.1	1256	0	.0	42	1.25	2.50	ŧ
3	80.00	500.0	10.00	2084	1.28	265	100.9	11.3	15.18	89.3	26.5	0	.0	50	1.70	2.50	0
4	10.00	500.0	7.00	1042	.80	1403	135.9	20.5	5.08	31.7	1403	0	.0	38	1.30	2.50	0
5	-40.00	500.0	6.00	3126	1.04	3	3098.4	9999.9	.00	40.0	3	0	.0	3	1.50	2.50	0
						THE	EATMEN	IT (14)								
Soil	cons	t.ant=	3.300	A1	titu	dea	2500.	ōōō f	ect	Wind	spee	d=	27.0	OQ.	feet/	seco	rid
FRAG	£	b ï	A/M	IV	CD.	DISTN	VF	KE	TOF	EF	RANGE	YRN	XA	XD	AR	HO	RB
	۸۱	*^^^	1.6.06	200#	E (111 E	42.1	7.0	£ 07	17. 0	1165	^	۸	#0	1 10	2 50	
1	.01	1000.0	16.00	2084	. 56	1165	42.1 122.3	3.9 33.2	5.03 5.64	16.9 38.9	1165 1408	0	.0	48 42	1.10	2.50 2.50	4
2 3	-10.00	1000.0	12.00	3126	.74	1408 657	104.7		15.20		657	0	.0	50	1.70	2.50	0
-	B¢.00 10.00	500.0	10.00	2084	1.28	1535	158.6	12.2 27.9	5.13		1535	0	.0	38	1.30	2.50	0
4		500.0	7.00	1042	.80						1222	0	.0	20			0
5	-40.00	500.0	6.00	3126	1.04	2	3098.7	9999.9	.00	40.0	2	U	.0	3	1.50	2.50	U
) RE	LATMEN) FI	15)								
Soi l	cons	tant	3.300	A 1	titu	de≕	2500.	000 f	eet.	ผากส	abse	d=	. •	ιŌΟ	feet/	seco	nd
FRAG	£	WT	A/M	IA	CD	DISTN	٧F	KE	TOF	٤F	RANGE	XRN	XA	X D	AR	60	RB
1	10.00	1000.0	16.90	2084	.56	1162	104.6	24.3	4.80	40,1	1162	0	.0	38	1.10	2.50	0
2	01	1000.0		3126	. 74	1173	24.5	1.3	4.63			0		55		2.50	4
3	89.99	500.0		2084	1.28	0		11.3	15.40			0		50		2.50	Û
4	20.0C	500.0		1042	.80	1625		17.9	B. 06			0	.0	52		2.50	0
5	-30.00	500.0		3126	1.04	4			.00			0		4			0

TREATMENT (16)

Soil constant= 3.000				Altitude≃			2500.000 feet			Wind speed=		27.0	ĢΦ	feet/second			
FRAG	Ε	WT	A/M	IV	CD	DISTM	٧F	KE	TOF	EF	RANGE	XRN	IA	X D	AR	но	RB
1	10.00	1000.0	16.00	2084	.56	1292	126.2	35.4	4.83	32.4	1292	0	.0	38	1.10	2.50	0
2	01	100ú.C	12.00	3126	.74	1324	45.4	4.6	5.10	16.4	1324	Û	.0	48	1.25	2.50	4
3	89,99	500.0	10.00	2084	1.28	396	104.5	12.1	15.40	75.1	396	0	.0	50	1.70	2.50	0
4	20.00	500.0	7.00	1042	.80	1836	143.3	22.8	8.15	48.3	1836	0	.0	52	1.30	2.50	0
5	-30.00	500.0	6.00	3125	1.04	4	3091.0	9999.9	.00	30.0	4	0	.0	4	1.50	2.50	0

	TAB	15 1 I	ncrement = 10	0 feet	Number of I	Units= 46							
Dista	nce		Total			Hazard		Total Numbe	r of Final Grou	nd Impacts			
(fee	t)	Total	Deasity	Tetal	Hazard	Density	Hazard		10 Degree Azimuth Sector				
From	Īρ	No.	Frags/sqft	P-hit	No.	Frags/sqft	P-hit	Min	Avg	Max			
0	100	188.60	1.340030	.999441	187.74	1.339041	. 999440	59.80	60.95	64.40			
100	200	43.70	. 283663	.801686	43.70	.283663	.601686	.00	.00	.00			
200	300	44.85	. 16337.4	.605602	43,70	.163060	.605533	.00	1.15	4.60			
300	400	44.85	.109041	.462737	43.70	.108349	.442544	.00	1.15	4.60			
400	500	43.70	.0751B3	.347950	43.70	.075183	.347950	.00	.00	.00			
500	600	43.70	.057279	.278961	43.70	.057279	.278961	.00	.00	.00			
600	700	44.85	.052220	. 257525	43.70	.052117	.257370	.00	1.15	4.60			
700	800	43.70	.040679	.205050	42.84	.040254	.202762	.00	.00	.00			
800	900	43.70	.028310	.149021	33.35	.021858	.114816	.00	.00	.00			
900	1000	45.70	.020578	.110382	20.01	.007943	.053264	.00	2.57	41.40			
1000	1100	35.36	-013311	.071757	5.75	.003644	.019179	.00	7.76	41.40			
1100	1200	43.70	.009975	.053552	. 29	.000117	.000636	.00	32.20	87.40			
1200	1300	30.47	.004494	.023002	.00	.000000	.000000	.00	18.98	46.00			
1300	1400	26.45	.002951	.015328	.00	.000000	.000000	.00	17.25	46.00			
1400	1500	14.9%	.000927	.004431	.00	.000000	.000000	.00	14.95	46.00			
1500	1600	12.08	.000801	.004033	.00	.000000	.000000	. 00	12.07	82.80			
1600	1700	9.20	.000369	.001329	.00	.000000	.000000	.00	9.20	36.80			
1700	1800	.60	.000000	.000000	.00	.000000	.000000	.00	.00	.00			
1800	1900	9.20	.000364	.001536	. 90	.000000	.000000	.00	9.20	36.80			
1900	2000	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00			
2000	2100	.00	.000000	.000000	.00	.000000	.000000	.00	.00	.00			
2100	2200	.00	.000000	.000000	.00	.000000	.000000	.00	.06	.00			
2200	2300	.00	.00000C	.000000	.00	.000000	.000000	.00	.00	.00			
2300	2400	.00	.000000	.000000	.00	.000000	.000000	.00	.00	-00			

Number of trajectories with distance greater than 2400 feet= 0

	TAE	BLE I	Increment=	100 feet	Number of Unit	.5= 46		
Distance	На	and Density	(Frags/sqft)		*	Hazard Prob	ab:lity of H	ıt
(feet)	Max	901	50%	Min	Max	90%	50%	fin
50	1.357916	1.357916	1.334788	1.307392	.999510	.999510	.999442	.999337
150	.300836	. 300835	.260095	.265379	.821109	.821169	.782552	.782169
250	175118	.176118	.156552	.149792	.634923	.634973	.577523	.575474
350	.120446	.129446	.099275	.096766	.498069	.*93069	.430347	.425433
450	.087444	.087444	.064626	.062182	. 393847	. 393847	.309237	. 259475
550	.059822	. 059590	.05€720	.054291	. 289930	.288982	.7/7012	.266884
ە50	.056120	.055912	.051345	.049085	.274698	.273839	, 254437	.245060
750	.055907	.055856	.030474	.019872	.273727	.273514	. 160436	.107860
850	.036124	.036111	.027168	.000000	. 187052	.186999	.144520	. 000000
950	.023708	.012748	.006292	.000000	.127069	.12227a	. 035363	.000000
1959	.029482	.028820	- 000000	.000000	. 155394	.15.126	.000000	.000000
115é	.001868	.000000	. 900000	.000000	.010652	. 0000000	.000000	.000000
1250	.000000	. 909690	. 000000	.060000	.660000	.000000	.000000	.000000
1350	. 000000	. 200000	. 9000000	.000000	099999	.000000	.000000	.000000
1450	. რუბრის	. 000000	. 000000	.90000°	.600000	.000000	. 000000	.000000
1550	, பே(ஞ்டு	. 0000000	. 966606	.900090	. 0000006	.000000	.000000	.000000
1650	. მრნენმ	. 069000	. 2000000	.900000	. 000000	.000000	. 0000000	.000000
1750	.000000	ემმის	.000000	.000000	. 900000	.000000	.000000	.000006
1850	. 566006	,000045	. 900060	.000000	.000000	.000000	.000000	.000000
1950	. (0)0000(, ::5::666	. 9099966	.000000	. 0000009	.000000	.000000	.000000
2650	. 006066	, ებონღე	. 0000000	.000000	. 000000	. 200000	. 200006	.000000
2150	.000000	. 909090	. 000000	.960000	.000000	.000000	.0000000	.0000000
1250	.000400	$\phi \phi \phi \phi \phi$. 000000	.000000	.000000	.000000	.000000	0.0000
2350	. 000000	jagada.	. 596060	.000000	.000000	.000000	.000000	,000000

TABLE 3 Increment= 100 feet

DISTANCE		LENSITY (CELTERION		*	HITEH!ON		
(FEET)	KIN	961	5/12	MA)	FIN	901	50%	8 41
50	. 37	.:,1	.97	, -	.;;	.37	.07	.27
:50	. 26	.?:	.70	.59	. 20	. 28		.71
25.	.45	. 4 -	.51	r.	. (**	.4*		
Ξ.	.5	. : :	. 75	.60	.:8	.:6	.80	.94
4 <u>°</u> -	.85	. 59	1.20	1.14	.52	. : *	1.76	1.71
Sin	:.:"	1.0	1.78	1.42	1.75	1.77	1,44	1.50
£50	:.:E	∴.'∂	1.50	1.57	1.45	1.45	:.58	1.65
25%	:	1.18	Ţ.Ē,	1.67	1.45	1.45	2.45	4.56
850	1.17	1.17	1.67	466044,	2.24	2.34	2,97	999999.00
\$ <u>[</u> .	7.74	1.18	12.15	gşaqşş,uş	7.41	3.55	10.65	999990 00
1651	7.61	٦.٤٦	esquis	099955	I.15	2.61	999999	699459.00
::5:	41.15	499999.15	699999.77	999999, iç	47.14	499794.60	993939 ()	954490 00
1150	449444.14	499499. 1	695969.00	994999,96	449655.00	595999.00	999999,00	979799.50
: 25 :	646864": (499959.15	499999,00	999944.00	9990000.63	990999, <u>60</u>	595955	999999,00
45	9999,9	504069	999994.00	ଜନ୍ନଜନ୍ନ, ମୃତ୍ର	999999.00	999999.00	999799,00	999994.00
:55.	644444	999004. 19	ବ୍ୟବହ୍ୟକ, ଜ୍	६३७१६९, 🥳	623633 06	999999,01	999999, 50	999999 00
i.t.	999949.	المراجعة والمراجعة	6444640	994999, (999999.00	999999	999997.00	999999.00
.75.	999999.00	999999,90	698900.05	999999.00	999994.00	999999.00	999999,00	999999 00
:550	9 99999.30	699996	634664 10	9999999.50	999994.60	999999.00	999999.00	999999,00
.559	999999,00	994659.00	996366,00	9999999.20	993999.00	999999.00	099999,00	999999 00
1.50	999990.03	999999130	999949,96	999999,00	999999,00	999999,00	999999.00	999995.00
7.5.	949999.0	999999.90	999999.00	999999.00	999999.QU	999999,00	999999.00	999999.00
255	999999.00	991999.90	999999.00	99 25 99, 00	999999.0 0	999999.00	999999 60	979099.00
2150	999999,00	999999.00	999999.00	9999999,00	999999.00	999999.00	999499.00	479999.00

The \$99996.00 entries signify that the number of units required is infinite, that is, the Hazard Density and F-hit are both zero.

nazard Sersity Criterion= .00166? fragisqft - Hazard Pibit Criterion= .016

TABLE 1 Increment = 100 feet | Number of United | 46

Dista	: C e		Ictal	Hadard		Total Nomber	ns Final Grou	nd Imparts		
39}1	t,	Total	Density	Tota!	hazard	Censity	Hazaró	1⊘ Degree Azi∎uta Sector		
Free	To	No.	Frags/sqft	Pohit	Mo.	Frags/sqf*	F-bit	Min	Avg	Max
Q	20ú	232.50	.547755	.851:24	231,44	.547598	.851124	59.00	£0.95	64.40
299	466	89.76	.131659	.520064	87.49	.131407	.522123	.04	2.30	9.20
409	600	87.40	.965336	. 310065	87.40	.065336	.71000c	.00	.66	. ბ6
60Ú	800	88.55	046038	.129413	84.54	.0457e1	.228116	99	1.15	4.60
80%	1000	£7.40	. 024229	.128625	57.36	.015570	.082330	. ėė	2.59	41.40
1000	1200	77.96	.911558	.062241	5.04	.601806	.909486	.50	39.96	128.80
1200	1466	56.92	.993693	019017	.00	. 600006	.0000000	.00	36.22	92.00
1400	1600	27.03	.000862	.304225	. (4)	.000000	.0(+500	, 99	27.92	126.80
1600	1800	9.20	. 900179	.665645	.06	.909000	. ᲛᲣᲜᲘᲜᲐ	.00	9.20	36.80
1860	2000	9.76	.060177	.006748	.90	.000000	.000009	. 6 9	9.30	36.80
2000	2290	.00	.000000	. 000000	. 00	.000000	.000500	.06	.99	.06
2260	2400	.00	.300000	.000000	.00	.999696	.000000	,09	.00	.00

Number of crajectories with distance greater than 2400 feets -6

TABLE 2	Increment=	576 fact	Number of Units=	45
I RDLE 2	intrement-	JUU TEEL	NUMBER OF OUTLES-	40

Distance	Haz	and Density (Frags/sqft) -			Hazard Prob	ability of Hi	t
(feet)	Mar	901	501	Min	Max	901	50 1	Man
100	.545100	.565196	.523719	.525630	.865709	.865709	. 836775	.836454
300	.143645	. 143643	.120057	.118823	.555091	. 555051	. 491576	.4B7950
500	.072252	.072124	. 065278	.057842	.336692	. 33617:	. 251513	.281550
700	.056005	.05585?	. 045164	. 953435	.274178	. 273665	. 204079	.171560
960	.029571	.029058	.016:60	.909099	.155394	.152815	. 086909	.000000
1190	.015047	.017755	.000000	. ერმდანნ	.079738	.972606	. 000000	.900000
1396	. 000000	.0006.66	. 000000	.000000	.0000000	.000000	. ებბიტა	. 000000
1599	. 000990	. ინიანნ	.000000	. 600000	. 600000	. 4909960	. 000000	000000
1700	. 600069	.000000	. 990000	.300000	, 0000000	.500000	. 000000	.000000
1900	. 0000000	.000000	.0000066	.000000	. 000000	.000000	000000	.000000
2100	.060000	.000000	. 000000	.000000	. 000000	.900000	. 000000	.000000
2300	.000000	. 666666	.000000	. 000000	.000000	400000	. 000000	. 666666

TABLE 3 Increment= 260 feet

4474PD				UMBER OF UNITS	TO JUST EXCEED -			
DISTANCE		DENFITY	CRITERION			11H-4	RITERIUN	
(FEET)	MIN	792	50%	MAX	HiM	001	50 [‡]	MAX
100	.15	.15	.19	. 16	. 16	. 16	. 17	.17
300	.54	.54	.65	.66	.57	.57	.68	. 69
500	1.07	1.47	1.29	1.74	1.10	1.13	1.35	1.41
700	1.38	1.38	1.92	2.30	1.45	1.46	2.93	2.42
¢	2.60	7.65	4.75	999999.00	2.74	2.79	5.00	999949.00
1100	5.11	5.58	999999.00	999999.00	5.33	5.89	999999.00	999999.00
1300	999999.00	999999.00	959799.00	999499.00	994997.00	999999.00	999999,00	997999.00
1500	999999.00	999999.00	999999.00	595556.00	993999.00	959995.30	999997.00	999999.00
1700	999999.00	999999.00	999999.00	999999.00	999999,00	999999.00	999999.00	999999.00
1900	999999,00	999999.00	999999.00	995799.00	979799.00	999499.06	999999.00	999999.00
2100	999999.00	999999.00	999999.00	549999.00	979999.00	999999.00	999949.CO	999999.00
2390	999539.00	999999.66	959949.00	999999.00	999999.00	999999.00	999499.00	999999.00

The 999999.00 entries signify that the number of units required is infinite, that is, the Hazard Density and P-hit are both zero.

Hazard Density Criterion= .001667 frag/sqft Hazard P hit Criterion= .010

TABLE 1	Increment =	300 feet	Humber of Units≕	46

Dista	uce		Total			Hazard		Total Number (of Final Gro	und Impacts
(fee	L)	Total	Density	Total	Hazard	Density	Hazard	10 Degree Azimuth Sector		
from	To	No.	Frags/sqft	P-h:t	No.	Frags/sqft	P-hit	Hin	Avg	Kax
G	300	277.15	.334182	.714723	275.14	.333926	.714685	59.Bû	62.10	69.00
300	600	132.25	.076667	. 349603	131.10	.076517	. 349553	.00	1.15	4.60
600	900	132.25	.039340	.199043	119.89	.036731	. 185314	.00	1.15	4.60
900	1200	122.76	.014285	.076759	26.05	.004256	,022689	.00	42.55	176.26
1200	1500	71.88	.002702	.013795	.00	.000000	.000000	.00	51.17	138.00
1500	1800	21.28	.000374	.001706	.00	.000000	.000000	.60	21.27	119.60
180ú	2100	9.20	.000115	.000:36	.00	.000000	.000000	.00	9.20	36.80
2100	2400	.00	.00000	.000000	.00	.000000	.000000	.30	.00	,00

Number of trajectories with distance greater than 2400 (eet= 0

TABLE 2 Increment=	300 feet	Number of Units=	46
--------------------	----------	------------------	----

Distance	H ₄₂	ard Density ((Frags/sqft) -			Hazard Proba	ability of H	ıt
(feet)	Max	901	501	Min	Max	901	50%	Min
150	.347001	.349001	.320848	.317226	.737495	.737495	.692746	. 691465
450	.084747	.084652	.070129	.067933	.378531	.378144	.327507	.318853
750	.048495	048413	.035252	020804	241264	.240921	.181579	.104749
1050	.017a59	.016467	.001895	.000000	.094013	.087574	.010665	.000000
1350	.000000	.000000	.000000	.000000	.000006	.000000	.000000	.000000
1650	.000000	.000600	.000000	.000000	.000000	.000000	.000000	.000000
1950	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000
2250	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000

TABLE 3 Increment= 300 feet

HAZARD				NUMBER OF UNITS	TO JUST EXCEED .			
DISTANCE		- DEMSITY	CRITERION			P-HIT CE	RITERION	
(FEET)	MIN	902	56 z	MAX	RIH	901	50%	XAB
159	.23	.23	. 25	. 25	.25	. 25	.27	. 27
450	.91	.92	1.10	i.14	.96	. 96	1.16	1.20
750	1.59	1.59	2.18	3.70	1.68	1.68	2.30	3.87
1056	4.35	4.67	40.41	999949.00	4.58	4.91	42.60	979999.00
1350	999999.00	999999.00	999999.00	599999.00	999999.00	999979.00	999999.00	999973.00
1650	00.546464	999999.00	999999.00	999999.00	939999.00	999999.00	999999.00	999994.00
1950	999995.00	999999.00	999999.00	499949 .00	999999.00	9 599 99.00	999999,00	999999 00
2250	999999.00	999999.00	999999,00	999999,00	999999.00	999999,00	999999.00	999999.00

The 999799.00 entries signify that the number of units required is infinite, that is, the Hazard Density and P-hit are both zero.

Hazard Density Criterion= .001667 frag/sqf: Hazard F-hit Criterion= .010

	1 11	sit i :	ncrement = 40	JV feet	MUBDER of	on ts≈ 46					
D sta	ince		Totai			Hade/d		Total Numbe	r of Final Brou	nd Impacts	
(120	at)	Total Deasity Total			Had ar d	Hazard Density Hazard 10 Degree Az			gree Azimuth Se	Azimuth Sector	
Eras	ĩ c:	No.	Frags/sqft	P-hit	ic.	Frags/sqft	P-hit	Min	Avg	Max	
Ü	46ú	322.00	. 235603	. 6044?9	318.84	.235455	.604373	59.80	63.25	73.60	
450	80.	175.95	.054077	. 262994	173.94	.053917	.762237	.00	1.15	4.60	
800	1256	166.46	.617260	.092115	59.40	. 9074.97	.042266	.00	42.55	170.20	
1200	1600	85.95	.002176	.011093	.00	.000000	.000000	.00	63.25	220.BG	
1600	2000	18.46	.000178	.000699	.00	.000000	.000000	.60	18.40	73.60	
2900	2400	.00	.000000	.000000	.00	.009000	.000000	.00	.00	.00	

Number of trajectories with dislance greater than 2400 feet= 0

	TABLE 7	Increment	= 400 feet	Number	of Units= 46			
Distance		Hazard Density	(frags/sqft)	******	*****	- Hazard Prob	ability of Hi	t
(feet)	flay	901	501	Min	Max	90%	50%	Min
200	.249008	.249008	. 223472	. 220775	.637.746	. 63274á	.577946	.575076
600	.062775	.062649	.048545	.043305	.300225	. 299709	.240510	.217389
1000	.021593	.020641	.007272	.000000	.113784	.168700	.939109	.000000
1400	.000000	.000000	. 000000	.000000	.000000	.000000	.000000	.000000
1800	.000000	.000000	.000000	,000000	.000000	.000000	.000000	.000000
2200	,090000	000000.	. 000000	.000000	.000000	. 0000000	. მამმშებ	. 6000600

TABLE	3	Increment-	400 fost

HAZARD				NUMBER OF UNITS	TO JUST EXLEED .			
DISTANCE		- DENSITY	CRITERION			P-HIT C	117CR10%	
(FEST)	MIR	902	502	AAK	HIN	76z	501	HAX
200	.32	. 32	, 35	. 36	.34	. 34	.38	. 39
600	1.73	1.23	1.19	1.77	1.39	1.30	1.67	1 - 26
1000	2.56	3.72	10.55	799999.00	3.75	3.92	11.10	999999.00
1490	999999.00	OC. 99999	999999.00	999999.00	939994,00	999999.00	999999.00	999999.00
1800	999999.00	999999.00	997977.00	494799.00	999999.00	999999.00	999999.00	999999.00
2700	999999.00	999999.00	797977.00	999999,00	999999.00	999994.00	999799,00	999999.00

TABLE H-3. TEST CASE FRAGMENTATION DATA

```
.01 .02 .03 .04 .05 .06 .07 .08 .09 .10 .11 .12 .13 90 1000 16 2000 1.1 100 1000 12 3000 1.25 10 500 10 2000 1.7 80 500 7 1000 1.3 130 500 6 3000 1.5 .10 .25 .60 .80 a .5 a 0 .9999 a 1.2 a .5 a 0 .90 a
```

APPENDIX I WEAPON FRAGMENTATION DATA

INTRODUCTION

Tables I-1 and I-2 contain the fragmentation data for 155mm projectiles (M107) and Mk82 Low Drag Bombs. They are intended for use with the FRAGHAZ program as described in Listing B-1 of Appendix B.

The data for each weapon are divided into three parts.

- Part 1 The first 13 values in the tables are the fragment multipliers as described in Appendix D. Each multiplier represents the effective number of fragments for one degree of azimuth and one unit or interaction area. The first multiplier is for polar zone 0 to 10 agg, the second for polar zone 10 to 20 deg and so on to the 13th multiplier which is for polar zone 120 to 130 deg.
- Part 2 The rext 215 lines for 155mm projectiles, and the next 260 lines for Mk82 bombs contain the five characteristics for each fragment associated with the respective weapon. The five values for each fragment are described as follows:
 - Value 1 The upper angle for the 10 deg polar zone containing the fragment.

 For example an entry of 40 would specify polar zone 30 to 40 deg

 Remember that the elevation zones are derived from the polar zones
 as follows

FL = 90 - PA

where

EL. The lower limit of the 10 deg elevation zone. EL may be as negative as 40.

PA - Upper limit of the 10 deg polar zone.

- Value 2 Weight of the fragment in grains.
- Value 3 The average presented area to mass ratio (in2/lb) which is used in drag calculations.
- Value 4 Average initial fragment velocity (ft/s)
- Value 5 The ratio of maximum presented area to average presented area used to calculate the drag coefficient at a Mach Number of approximately 0.1.
- Part 3 The last seven lines in the tables are the factor levels for the seven random variables used in the FULL FACTORIAL option only. Except for Height of Origin, the pair of levels for all other random variables span 80 percent of the range of uncertainty. For example, if the total range of uncertainty were 10 to 20 then the factor levels would be 11 and 19. This accounts for five pairs of levels marked 0.1 and 0.9. For velocity, which is distributed normally, the entries 1.28 and 1.28 are standard deviations which again span 80 percent of the uncertainty. The variables associated with each line are as to lows.

i inc	Random Variable
1	Soil Constant
2	Height of Origin
3	Initial Elevation Angle
4	Initial Velocity
5	Drag Coefficient
6	Site Altitude
7	Wied Speed

The "a" at the end of each iche will produce a RHAU error in line 262 as shown in the FWAGHAZ program listing in Appendix B. After encountering the error the program will skip to the next factor level line to read the factor levels for the next random variable.

There is nothing absolute about the factor levels shown and users may want to change them to suit their particular needs

TABLE 1-1 FRAGMENTATION DATA FOR 155MM PROJECTILES (M107)

```
.006925 .0016 .003 .00416 .00517 .006 .00646 .0071 .02126
                                                                  .02346
.11715 .00666 .006
   539 9.59 2750
10
                    1.37
    883
        8.88 2750 1.35
10
16
    904
         7.53 2750 1.27
.0
    1015
         8,41
                2750 1.4
10
    1276
          7.78
                2750
                     1.41
                2750
          8.39
10
    1393
                     1.49
          7.74
                2750 1.46
    1834
10
    3279 6.21
10
                2750 1.46
10
    560 9.47 2750 1.2
10
    551
         10.73 2750 1.51
    595
        9.55 2750 1.32
10
    656
        10.32 2750 1.4
10
        9 2750 1.29
10
    737
10
    747
        8.40
                2750 1.72
          9.45
                     1.5
10
    1014
                2750
    1080
         9.13
                2750
10
                     1.5
10
    1411
         8.37
                2750
                     1.4
    2628 6.68
                2750
10
                     1.45
20
    501
        11.38
                     1.29
                2260
20
    514
         12.44 2260 1.58
        9.7 2260 1.29
20
    546
20
    567
         10.37 2260 1.2
20
    703
        9.40 2250
                     1.23
    1148 7.98 2240 1.4
20
20
    636
         8.58 2060 1.02
20
    669
         5.54
               2260 1.13
20
    764
         9.16 2260
                    1,22
20
    862
         8,83 0260 1,16
30
              2540 1.58
    541
         13.06
                2340 1.37
30
    1921
         6.74
    1993 12,46 1540 1.75
30
    483 9.92 2580 1.32
40
40
    719
        10.1 2580 1.28
40
    1016 8.61
                2580 1.4
    1212 8.95
40
                2580 1.5
         10.06
                2500 1.28
40
    597
40
    605
         13.23
                2590
                     1.42
    720
                2580
40
         10.61
                     1.44
60
    610
         10.38
               <u>6500</u>
                     1.3
         10.2 5838
70
    567
                     1.22
    571
         10.33 5838
70
                     1.41
70
    710
        10.54
                5838
                     1.42
70
    406
        10.88
                5808
                     1.57
70
    3636 7.87 5838 1.65
70
        9,21 5638 1,2
    562
80
    540
         11.6 5395 1.19
    890
        10.66 5395
80
                     1.64
                5395 1.62
    1278 10.29
80
Эó
    3171
         8.69
                5095 1.86
         37.55
                5395
ΒĊ
    604
                     1.61
80
    620
         10.77
                     1.49
                5375
80
    727
         19.35
                5395
                     1.47
    777
80
         10.27
                5395
                     1.4
80
    1239
         9.49 5395 1.51
         10.9 5395 1.33
80
    595
         9.31 5395 1.29
130
    617
ЮG
    1301
         10.72 5395 1.72
    2206
         7.9 5395 1.69
```

```
2503
         9.03
               5395
80
                     1.65
    2657
         8.24
                5080
80
                     1.61
90
   533
         11.32
               5040
                     1.06
90
    734
         11.03 5040
                    1.65
90
   688
         9.09 5040 1.55
90
    932
         10.19 5040
                     1 56
                     1.59
90
    1371
         9.71
               5040
90
   1995
         9.89 5040
                     1.66
90
   542
         17.45 5040
                     1.49
90
   923
         7.47 5040 1.21
90
   547
         11.35 5940
                     1,31
         12.52
9:
    617
               5040
                     1.62
90
         11.07
               5040
                     1.44
    767
90
         9.69
               5040
                     1.51
    1040
    6922
         5.73
               5000
                     1.59
70
90
   604
               5040
                     1.45
         16.51
                     1.49
90
   2420
         7 48 5040
90 6342
               5040
         6.82
                     1.65
    805
         9.05
                     1.49
100
               4600
100
    921
         7.64 4600
                     1.31
                     1.39
1.00
    1800 6.72
                4500
    2007 6.46
                4600 1.36
100
    2764 10.13 4600 1.71
100
    4546 7.14 4500 1.53
100
                     1.44
100
    B168 4.34
                4500
                      1.45
100
    592 12.49
                4600
                      1.73
    1052 32.2
100
                4600
100
    1441
          8.95
                4500
                      1.55
100
    9224 5.48
                46 OG
                      1.61
100
    547 10,95
                4600
                4600
1.00
    575
         17.82
                      1.41
100
    622
         11.89
                4600
                      1.51
         9.45 4600 1.37
100
    70°6
         15.49
                4600
100
    741
                     1.64
                      1.48
100
    749
         10,14
                4600
                     1.40
         11.19
100
    924
                4600
                     1.57
100
    995
         10.62
                4600
100
    1019 10.73
                 4600 1.58
100
    1138 11.74
                 4600 1.65
    1204 9.72
                4600 1.56
100
                 4600 1,71
100
    1416
          1...8
100
                4600 1.5
    1618 8.45
200
    1876 7,38
                4600 1.46
    2207 8 88
100
                4600
                     1.61
100
    2207
          19.12 4600 1.02
    2348
100
          7.55
                4600 1.55
100
    2562
          7.85
                4600
                     1.57
    2670 9.42
100
                4600
                     1.5
100
    2687
          8.60
                4600
                     1.6
                     1.67
100
    3438 8.51
                4500
100
    3568 6.66
                4000
                     1.46
    4658 6.87
                4600
100
                      1.58
                4500
100
    4505 S.05
                     1.66
100
    7430 5.21
                 4600
                     1.51
                4600 1.53
100
    10679 5.59
    11020 4.09
                4600 ..42
100
    567 12.29
                4600 1.47
110
                4600 1.52
110
     606
         13.42
    732
         11, 25
                4500 1.67
110
    1788 10.04
                4600 1.65
110
```

```
1.58
                 4600
110
    1556
          9.62
    1989
          9.60
                 4600 1.66
110
     2545
          28.88 4600 1.64
110
    23768 4,24 4600 1,62
110
    465
        10.77 2750 1.47
10
    480
         10.82
                2750
                      1.4
10
                2750
10
    321
         12.83
                      1.32
                      1.27
    330
         11.19
                2750
10
                2750
         10.53
                      1.14
10
    354
               2750
                      1.5
         12.28
    357
10
         11.8 2750 1.53
10
    372
1 Q
    437
         11.21
                 2750
                      1.3
                      1.42
                 2750
10
    445
         11.64
                      1.54
    324
         14.42
                 2260
20
                2260
                       1,22
         11.68
20
    333
    395
         13.17
                 2260
                      1.65
20
20
    419
         12.17
                2260
                      1.48
               2260 1.44
20
    363
         11.62
         9.46 2260 1.35
20
    443
         9.92 2260 1.46
20
    445
                2260 1.17
          10.7
20
    454
          10.97 2260 1.41
20
    487
    489
          10 2260 1.11
20
          17.14
                2540
                      1.74
30
    317
          15.78
                2540 1.71
30
    405
          10.72 2540 1.15
    464
30
          14.7 2540 1.52
    315
30
          13.15 2540 1.24
    348
30
          14.34
                 2540 1.65
30
    394
          10.73
                 2540
                      1.17
30
    418
                 2580
                      1.34
          11.75
4 Ú
    311
                 2580 1.4
          19.75
40
    353
                 2580 1.13
40
    367
          11.93
                 2580
                       1.5
40
    478
         13.49
                 2580 1.59
40
    277
          14.17
                6500 1.25
60
    429
          10.66
                 6500 1.46
          12.81
    303
60
70
          13.3 5838 1.35
    335
                 5838 1.2
    350
          11,67
70
         9.77 5838 1.24
70
    445
          12.72
                 5838 1.53
    351
70
                       1.54
                 5638
    475
          13.56
70
                       1.75
          16.45
                 5878
70
    367
                 5838
                       1.79
70
     422
          14.76
                       1.51
70
     447
          13.69
                 5838
                 5038
                       1.69
7Ó
     483
          12,82
                       1.67
     487
          14.69
                 5838
7¢
70
     487
          13.04
                 5878
                       1.61
                 5839
                       1.51
     390
          14.69
ŻÓ
70
          13.67
                 5838
                       1.4
     392
                       1.53
          12.27
                 5395
80
     316
                 5395
                       1.32
ВÓ
     345
          13.98
          13.54
                 5395
                       1.6
80
     348
                 5395
                       1.62
     382
          15.49
80
                       1.69
80
     469
          10.77
                 5395
          14.24
                 5395
                       1.57
80
     362
                       1.42
     303
          12,37
                 5395
80
                  5395
                       1.32
     312
          12.55
 ØŌ
                       1.61
                 5395
 30
     318
          13.62
                  5 195
                        1.42
          13.35
     320
 \Theta \hat{O}
```

NSWCTR87-59

```
326
           16.89
                   5395
                          1.55
80
                         1.57
     345
           15.51
                   5395
80
                  5395
                         1.55
80
     352
           14.6
     362
           11.8
                  5395
                         1.21
80
80
     373
           10.74
                   5395
                         1.28
                   5395
                          1.55
     374
           12.14
80
                          1.52
     393
           13.59
                   5395
80
30
     417
           10.7
                  5395
                         1.26
           14.73
                   5395
                         1.78
80
     439
80
     488
           13.09
                   5395
                          1.63
                   5395
                          1.5
80
     491
           11.26
     302
           15.35
                   5040
                          1.64
50
           13.34
                   5040
                          1.66
90
     306
                          1.34
     354
           12.13
                   5040
90
           11.55
                         1.33
                   5040
90
     381
     429
                  5040
90
           9.87
                         1.28
     477
           13.48
                         1.73
90
                   5040
           12.94
                   5040
90
                         1.41
     410
                          1.47
90
     304
           13.47
                   5040
                   5040
                          1.46
70
     313
           11.79
                          1.53
90
     454
           10.69
                   5040
90
     451
           14.91
                   5040
                          1.59
                          1.57
 100
      303
            15.18
                    4600
            16.67
      325
                    4600
                           1.66
 100
      345
            16.06
                    4600
                           1.54
 100
                    4600
                           1.32
      355
            11.21
 100
 100
      361
            13.38
                    4600
                           1.49
                           1.55
 100
      456
            13.59
                    4600
                           1.37
 100
      462
            12.45
                    4600
                    4600
                           1.65
      309
            17.81
 100
      329
            15.53
                    4600
                           1.63
 100
                           1.64
      347
            17.38
                    4500
 100
 100
      403
            14.74
                    4600
                           1.54
      435
                    4600
                           1.66
 100
            15.38
 100
      441
            16.06
                    4600
                           1.62
      492
            17.45
                    4600
                           1.7
 100
 100
      495
            16.13
                    4600
                           1.73
.10 .90 a
.5 a
.10 .90 a
-1.28 1,28 a
.10 .90 a
.10 .90 a
.10 .90 a
```

NSWCTR87-59

TABLE 1.2. FRAGMENTATION DATA FOR MK82 LOW DRAG BOMBS

```
.1 .1 .1 .1 .1 .1767 .11767 .11767 .11767 .1
- 1
   1118.8 10.89 9070 1.62
10
   661.5 11.81 9070 1.6
10
   621 12.15 10869 1.61
20
   681.9 11.54 10869 1.42
20
   1214,7 12.1 10869 1.68
20
   1496.2 11.13 10869 1.7
20
   526.9 11.45 10869 1.59
20
         12.6 10869 1.42
   683.2
20
         10.3 10869 1.43
   832.7
20
   921.5 9.84 10869 1.57
20
30
   509,5 11.64 10869 1.57
         10.11 10869 1.3
30
   716.5
   687.2
         10.1 10869 1.56
30
   747,5 10,69 10869 1.46
30
   568.1 12.24
                10869 1.59
30
   729.1 10.38 9709 1.31
40
                 9709
40
   938.1 10.81
                      1.61
                 9709 1.68
40
   1796.2 23.3
   516.4 12.31 6600 1.49
50
   563 13.83 6600 1.46
50
   1322.1 9.53 6600 1.47
50
50
   964.1 9.37 6600 1.75
   872.6 10.17 6600 1.56
50
   5493.2 7.42 6600 1.65
50
   1205.8 10.86 8869 1-59
60
   3927.4 8.29 8869 1.68
60
   1748.7 12.33 8869 1.68
60
   581.7 15.44 8869 1.39
60
   1437.5 10.57 8869 1.63
60
60
   1818 9.36 8869 1.63
    500.4 10.16 8869 1.46
60
   1105.3 11.65 10870 1.65
7¢
   572,4 12,23 10870 1,47
7ů
   575.7 12.12 10870 1.48
7Ó
70
   514.3 11.22 10870 1.48
   886.4 9.75 10870 1.59
70
   629.1 11.39 10870 1.57
70
   1363.6 11.86 10870 1.63
7Ú
70 845.4 10.57
                10870 1.47
                 10870 1.43
10870 1.56
80
   873.8 10.31
    555.7
          11.44
80
    851.2 11.5 10870 1.54
ΒŌ
   1800.2 9.8 10870 1.61
80
   517.5 16.16 10870 1 25
80
   588.8 11.13 10870 1.6
80
   728.3 10.57 10870 1.32
ΒÒ
ВÓ
   1054.9 12.61
                 10870 1.66
                 10870 1.66
   1580.9 11.07
RO
   2562.7 8.90 10870 1.63
80
   578.8 10.8 10870 1.58
Bō
   541.5 12.75 10870 1.32
ΒÖ
    1786.2 11.36 10870 1.65
2085.4 11.61 10870 1.68
80
80
    1230 11.38 10870 1.63
508.8 12.37 10870 1.66
BO
80
    1165.5 13.69 9324 1.682
90
   505.2 12.82 9324 1.58
90
   524 13.35 9324 1.56
90
90 534.6 12.62 9324 1.54
```

```
90
   672.1 11.97 9324
                      1.63
   1064.6 9.47 9324
90
90
   517.4 11.58 9324 1.56
   593.8 11.19 9324 1.67
9ŭ
90
   1297.4 9.31
                9324
                      1.65
90
   516.8 12.27
                9324 1 4
90
   57B.5 10.07 9324 1.52
90
   670.6 11.49 9324 1.52
90
   1046.7 12.37 9324 1.65
   750.9 10.38 9324 1.48
90
   863.3 11.38
                 9324 1.59
90
   879.4 10.14
                 9324 1.51
90
   944.2 11.64 9324 1.62
90
90
   1077.6 12.21 9324 1.66
   657.8 10,27 9324 1.6
   877 10.14 9324 1.65
90
   1297.3 12.57 9324 1.67
90
100 515.8 12.95
100 789.9 11.29
                 7576 1.48
                 7576 1.66
    513.2 12.19 7576 1.54
100
           12.3 7575 1.64
100 524.7
100 880.8 12.08 7574 1.62
100
    528.8 13.2 7576 1.63
          10.6 7576 1.6
100 767.4
    902.9
100
          11.04 7576 1.45
100
    904.5 9.72 7576 1.31
100
    647 11.94 7576 1.52
    838.3 9.86 7576 1.33
100
100
    1181.3 9.54 7576 1.55
100
    1204.1 8.72 7576 1.47
    1632.9 11.45 7576 1.67
100
    3503.7 4.85 7576 1.27
100
    770.7 12.82 7380 1.74
110
    1018.8 13.26 7380 1.66
110
    634.1 10.27 7380 1.39
110
    588.3 9.91 7380 1.29
546.2 11.93 7380 1.57
588.5 12.8 7380 1.63
110
110
110
    1149.4 13.22 7390 1.68
110
    705 11,18 7380 1.59
110
110
    1146.3 10.63 7380 1.59
110
    1852.1
           10.28 7380 1.67
110 2363.5 10.37 7380 1.64
110 613.5 12.69 7380 1.58
    656.5 11.07 7380 1.46
110
110 896 10,95 7380 1.72
110
    2265.1 8,90 7380 1,61
110 520.1 9.97 7380 1.26
    807.7 10.05 7380 1.64
110
110
    942.9 10.78 7380 1.52
    1023.1 11.63 7380 1.62
110
    1497.7 8.97 7380 1.54
110
    1682.1 8.82 7380 1.57
110
120 814 11.64 7678 1.65
    635.7 12.56 7678 1.82
120
120 911.7
                      1.7
           11.05
                 7678
120 642.2
          11.51
                 7678
                      1.62
120 799.7
          13.23 7678 1.71
120 489.2 10.9 7678 1.57
120
    1197.5 12.22 7678 1.69
```

١٠.

ß.

31 E

1.

Ĉ;

```
120
    688.9 11.7 7678 1.73
120
    703.6 10.02 7678 1.51
    597 11.36 7678 1.65
120
120
    891.9 9.95 7678 1.66
    1178.6 13.48 7678 1.7
120
    540.2 12.6 7678 1.53
120
    773 11.47 7678 1.61
120
120
    649.6 12.24 7678 1.54
    1021.6 12.95 7678 1.66
120
    2644.6 9.45 7678 1.67
120
    625.6 12.07
                 7678 1.55
120
                 7678 1.55
120
    796.8 10.63
    1303.2 11.66 7105 1.64
130
    635.2 11 96 7105 1.72
130
130 684.2 10.79 7105 1.66
    1387 11.41 7105 1.67
130
130 3718.8 9.84 7105 1.74
130 7:2.3 14.02 7105 1.77
          13.66 7105 1.78
130 613.4
130
    648.6
          12.37 7105 1.62
    726.5
          10.71
                 7105
                      1.42
130
    784.4 11.82
                 7105
                      1.73
130
130
    930.9 10.59 7105 1.44
130 2779.7 10.98 7105 1.7
    511.4 14.06 7105 1.68
130
130 778.6 12.42 7195 1.67
130 1105.2 13.11 7105 1.7
130 1665.3 8.49 7105 1.53
130 597.2 13.37 7105 1.73
130 1168.7 15.03 7105 1.73
20 346.6 11.9 10869 1.52
   374.2 11.15 10869 1.25
20
   435.2 11.39 10869 1.36
20
   345 13.76 10869 1.56
20
   357.4 15.63 10869 1.42
20
   390.4 13.13 10869 1.58
20
   335.3 12.88 10869 1.68
20
30
   321.7 14.95 10869 1.62
   446.9 14 10869 1.61
30
   327.6 14.23 10869 1.37
30
   406.8 12.72 10869 1,28
30
   430.1 11.8 9709 1.56
40
   394.6 12.74 9709 1.43
40
   407 15.32 9709 1.53
40
   494.4 12.95 9707 1.56
40
   348.3 15.78 6600 1.48
50
   304 14.6 6600 1.45
SO
   358.1 15.38 6600 1.52
50
   350.8 15.86 6600 1.46
50
   372.6 14.22 6600 1.47
50
                6600 1.49
50
   302.2 15.31
   321.9 14.44 6600 1.6
50
50
   445.6 12.52
                6600 1.5
          16.66 6600 1.33
   424.9
50
          17.2 8869 1.41
   308.5
60
          15.75 8869 1.46
    316.5
60
   385.6
          14.81
                 8869 1.54
60
          12.29
60
   357.1
                8869
                      1.30
   407.7 12.98 8869 1.3
60
   446 13.69 8869 1.59
60
```

The second of th

```
70
   450.6 11.25
                10870 1.58
   469.3 15.32 10870 1.54
70
   394 12.56 10870 1.49
70
   462.6 12.3
               10870 1.42
70
         16.41 10870 1.35
70
   378.8
               10870 1.45
70
   388.3 12.31
               10870
                      1.21
70
   408.7 10.19
   387.1 14.14
                10870 1.64
70
   453.5
         15.87
                10870
                      1.62
80
   314.3 13.16 10870 1.44
80
   428.5 12.4 10870 1.55
80
   455.8
         14.55 10870 1.61
80
   303.3 14.61
                10870
                      1.5
80
80
   347.2 13.23 10870
                       1.63
80
   429.7
         12.07
                10870
                       1.58
80
   306.9 15.21
                10870
                       1.57
80
   322.9 13.61 10870 1.4
80
   496 13.45 10870 1.58
   395.5 15.79 10870 1.42
80
   354.2 13.42 10870 1.5
80
90
   314 14.96 10870 1.54
   440.9 13.4
               10870 1.44
80
80
   313.3 13.2 10870 1.47
   334.3 15.89 10870 1.45
80
   431.1 12.7 10870 1.57
8Ú
   493.4
         11,48 10870 1.37
80
   310.6 14.38 9324 1.59
90
90
   357.4 15.14 9324
                     1.6
90
   381.9
         15.16
                9324 1.57
90
   480.7
         13.28 9324 1.46
   310.7
         14.6 9324 1.52
90
90
   344.1
         13.67
                9324 1.3
90
   491.8 10.93
                9324 1.43
   310.1
         13.23 9324 1.34
90
         14.5 9324 1.5
90
   308.5
90
   382.5
         18.79 9324 1.69
90
   483.4
         11.27
                9324
                     1.44
   349.2
          12.25
                9324
                      1.4
90
                      1.49
   361.8 11.43
                9324
90
                9324
90
   491.1
         13.87
                     1.54
         12.2 9324 1.71
90
   316.6
         14.79 9324 1.76
90
   330.4
         15.31
                9324
                      1.52
90
   308.2
                9324
90
   326.4
          12.61
                      1.48
               9324
90
   350.7
          11.38
                      1.35
                9324
90
   462.1
          13.38
                      1.57
                9324
90
   492.2
          13.13
                      1.52
          12.09
90
   431.8
                9324
                      1.47
90
   420.7
         13.51
                9324
                      1.51
100
    455.8 12.78 7576 1.61
100
   337.3 15.77 7576 1.52
100
    457 13.54 7376 1.48
100 469.7
          12.7 7576 1.42
   349.5
          13.84 7576 1.21
100
    336.3
          15.03
                 7576 1.43
100
110
    403.5 14.31
                 7380 1.54
    411 13.05 7380 1.6
110
    337.3 15.19 7380 1.58
110
    391.5
                 7380 1.52
110
          14.97
110
    431.8
          12.55
                 7390
                      1.7
```

```
1.48
            11.97
                    7380
110
     491.7
                         1.57
            14.62
                    7380
110
     355.3
                          1.51
     363.2
            14.45
                    7380
110
            12.45
                    7380
                         1.44
     457.8
110
     349.5
             11.92
                    7380
                          1.51
110
     371 14.02 7380 1.55
110
             12.91
                    7380
                          1.45
110
     373.1
             13 7380 1.47
110
     315.5
                          1.52
110
     485.6
             11.81
                    7380
                          1.47
120
     416.9
            12.96
                    7678
                         1.41
 120
     371.5
            12.91
                    7678
     384.9
             12.31
                    7678
                         1.46
 120
     453.4
             13.46
                    7678
                         1.36
 120
             12.28
                    7678
                         1.5
 120
     357.3
     317 16.8 7105 1-42
 130
      358.9 14.16
                         1.47
                    7105
 130
                    7105
                         1.67
     399.2
             14.69
 130
                    7105
                         1.59
             12.37
 130
     417.1
 130
     486 12.26 7105 1.63
     367.2 16.73
                    7105 1.61
 130
                    7105
                         1.67
     487.6
            12.86
 130
.10 .90 a
.5 a
,10 .90 a
-1,28 1,28 a
.10 .90 a
.10 .90 a
.10 .90 a
```

DISTRIBUTION

<u>C</u>	opies		Copies
Chief of Naval Research		Commanding Officer	
ATTN: ONR-410	1	Naval Research Laboratory	
ONR 430	1	ATTN. Technical Information Section	1
800 N. Quincy Street		Washington, DC 20375	
Arlington, VA 22217		., ,	
		Commander	
Office of Naval Technology	1	David W. Taylor Naval Ship Research	
800 N. Quincy Street		and Development Center	
Arlington, VA 22217		ATTN: Library	1
.,		Code 5221	1
Chief of Naval Operations		Bethesda, MD 20084-5000	
ATTN OP-411F	1		
Department of the Navy	•	Commanding Officer	
Washington, DC 20350		Naval Weapons Center	
		ATTN: Library	1
Commander		China Lake, CA 93555	•
Naval Air Systems Command		Olima Mile, Ort 90000	
ATTN: AIR-350	1	Commanding Officer	
AIR-541	1	Naval Weapons Support Center	1
AIR-542	1	Crane, IN 47522	•
Naval Air Systems Command Headquarters	-	Crane, in 41022	
Washington, DC 20361		Commanding Officer	
		Naval Explosive Ordnance Disposal Facility	
Commander		ATTN: Technical Library	1
Naval Sea Systems Command		Indian Head, MD 20640	•
ATTN. SEA-0333	1	maran mead, with 20040	
SEA 652	5	Commanding Officer	
SEA-662	1	Naval Ordnance Station	
SEA-99612	2	ATTN: Technical Library	I
Washington, DC 20362	4	Indian Head, MD 20640	
Washington, DC 20002		Indian Head, AD 20040	
Commanding Officer		Commander	
Naval Facilities Engineering Command		Naval Safety Center	
ATTN Code 032E	1	Naval Air Station	1
Code 04T5	1	Norfolk, VA 23511	
200 Stovall Street	1	NOTION, VA 23311	
Alexandria, VA 22332		Chief of Research, Development, and	
Mexandria, VA 22332			
Office in Change		Acquisition	
Office in Charge Civil Engineering Laboratory		ATTN: DAMA CSM CA (Lippi)	1
Naval Construction Battalion Center		Department of the Army	
ATTN Code L61		Washington, DC 20310	
	1		
Port Hueneme, CA 93043			

DISTRIBUTION (Continued)

<u>C</u>	opies		Copies
Commander US Army Armament Research and Development Center ATTN: SMCAR-LCM SP(D) Dover, NJ 07801	1	Commander US Army Toxic & Hazardous Materials Agency ATTN: DRXTH-TE Aberdeen Proving Ground, MD 21010	1
Commanding General US Army Armament Command ATTN: AMSAR-SA Rock Island Arsenal Rock Island, IL 61201	1	Commanding General US Army Natick Research and Development Command ATTN: Library Natick, MA 01782	1
Commander US Army Material Development and		AFISC/SEV Norton AFB, CA 92049	5
Readiness Command ATTN: AMCSF 5001 Eisenhower Avenue Alexandria, VA 22333	1	AFSG/IGFC Andrews AFB Washington, DC 20334	1
Commander US Army Mobility Equipment Research & Development Command ATTN: AMXME-ND	1	AFAL/DLYV ATTN: R. L. McGuire Eglin AFB, FL 32542	1
Fort Belvoir, VA 22060	ı	AFESC/RDC ATTN: W. C. Buchholtz Tyndall AFB, FL 32403	1
Chief of Engineers ATTN: DAEN-RDL (A. E. Simonini) DAEN-RDZ-A (Dr. Choromokos)	1 1	Directorate of Safety Headquarters	
DAEN-ECE-T (R. L. Wight) Department of the Army Washington, DC 20314	I	Eastern Space and Missile Center ATIN: SEM (L. Ullian) Patrick AFB, FL 32925	1
Director US Army Engineer Waterways Experiment ATTN: WESNP P.O. Box 631 Vicksburg, MS 39180	Station 1	Commander Air Force Weapons Laboratory ATTN: SUL NTESS Kirtland Air Force Base Albuquerque, NM 87117-6008	1 1
Director US Army Ballistic Research Laboratory ATTN: SLCBR-TB-B (C. N. Kingery) AMXBR TBD (Dr. P. M. Howe) Aberdeen Proving Ground, MD 21005	3 3	Commander Field Command Defense Nuclear Agency ATTN: FCTT Kirk ¹ and Air Force Base, NM 87115	1

D'STRIBUTION (Continued)

<u>C</u>	<u>opies</u>		<u>Copies</u>
Ballistic Missile Office		Defense Nuclear Agency	
Air Force Systems Command	1	ATTN: SPTD	1
Norton Air Force Base, CA 92409		Washington, DC 20305	
		Director	
Commander			
Armament Development & Test Center		HQDA (DAPE-HRS)	1
ATTN: DLOSL	1	Washington, DC 20310	
Technical Library	1		
Eglin AFB, FL 32542		HQDA (DALO-SMA)	
		ATTN: COLW.F.Paris, II	1
Commander		Washington, DC 20310	
Air Force Logistics Command			
ATTN A. E. Adams	3	Commander	
Wright Patterson Air Force Base, OH 45433		USA Safety Center	
<u> </u>		ATTN: PESC-Z	5
OOAMA		Ft. Rucker, AL 36362-5363	
ATTN: Code MMWR	3		
Hill Air Force Base		Director	
Ogden, UT 84401		AMC Field Safety Activity	
		ATTN: AMXOS-SE	5
Commander		Charlestown, IN 47111-9669	
Air Force Cambridge Research Laboratory			
ATTN: Library	1	Director	
L. G. Hanscomb Field		Office of Operational and Environmental	
Bedford, MA 01730		Safety	
		US Department of Energy	1
Chairman		Washington, DC 20545	
Department of Defense Explosives			
Safety Board		Albuquerque Operations Office	
ATTN: DDESB KT	5	US Department of Energy	
2461 Eisenhower Avenue		ATTN: Division of Operation Safety	1
Alexandria, VA 22331-0600		P.O. Box 5400	
		Albuquerque, NM 87115	
Under Secretary of Defense for Research			
and Engineering		Mason & Hanger Silas Mason Co., Inc.	
ATTN: OUSDRE/TWP/OM	1	Pantex Plant	
OUSDRE/RAT/MES	1	ATTN: Director of Development	1
Department of Defense		P.O. Box 647	
Washington, DC 20301		Amarillo, TX 79177	
Assistant Secretary of Defense (FM & P)		Black & Vestch Consulting Engineers	
ATTN: RM & S	1	ATTN: H. L. Callahan	1
Washington, DC 20305		1500 Meadow Lake Parkway	
		Kansas City, MO 64114	

DISTRIBUTION (Continued)

<u>C</u>	opies		Copies
Director, Pitt-sburgh Mining & Safety Research Center ATTN Richard W. Watson Bureau of Mines	1	University of New Mexico New Mexico Engineering Research Institute Campus, P.O. Box 25	1
Department of the Interior 4800 Forbes Avenuc Pittsburgh, PA 15213		Albuquerque, NM 87131 ACTA Incorporated Plaza de Rina	
Institute of Makers of Explosives 1120 19th St., N.W. 310	1	Suite 101 24430 Hawthorne Blvd Torrance, CA 90505	1
Washington, DC 20036-3605	•	Boeing Military Airplane Company	
Agbabi in Associates ATTN Dr. D. P. Reddy 250 N. Nash Street	1	ATTN: K75 79 (R. Lorenz) Wichita, KS 67277-7730	1
El Segundo, CA 90245 Ammann & Whitney		AAI Corporation Hunt Valley, MD 21030-0126	1
ATTN N Dobbs Suite 1790 Two World Trace Center New York, NY 10048	1	T & E International, Inc. 2023 Emmerton Road Bel Air, MD 21014-6101	1
Southwest Research Institute ATTN P. Bowles Technical Library 8500 Culebra Road	1	Advanced Technology, Inc. ATTN: W. D. Smith 2121 Crystal Drive Suite 300 Arlington, VA 22202	5
San Automo, TX 73206		Library of Congress	
HT Research Institute ATTN H. Napadensky Technical Library	1 1	ATTN: Gift and Exchange Division Washington, DC 20540	4
10 West 35th Streyt Chicago, IL 60616	•	Kilkeary, Scott & Associates, Inc. ATTN: Scott Mitchell 2005 N. 14th Street, Soite 408	2
Applied Research Associates, Inc. ATTN-4-1 Limke	1	Arlington, VA 22201	
1204 Openwood Street Vicksburg MS 39180		<u>Internal Distribution</u> E E211 (Gray)	1
TERANew Mexico Institute of Mining and Technology Secorto, NM 87801	1	E231 E232 F	9 3 1

DISTRIBUTION (Continued)

	Copies
G12 (Dickinson)	1
G302 (W. Soper)	1
Fi	1
K	1
N	}
R	1
R10	1
R11	1
R12	ì
R13	1
R14	1
R15	1
R15 (M. Swisdak)	8
R15 (V. Meore)	1
R15 (J. Powell)	i 5