

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA

FORMATO 8. FLUJO UNIFORME Y PERMANENTE

Grupo:		Integrantes	Matricula
Equipo #:			
Fecha:			
Maestro:			
Calificación:			

	Aplicación de la ecuación de Chezy								
Sección	Tirante (hi)	Área (Ai)	Pendiente (S)	Rh	Coeficiente	Factor (C)	Velocidad (Vi)	Caudal (Qi) Lps	

	Aplicación de la ecuación de Manning							
Sección	Tirante (hi)	Área (Ai)	Pendiente (S)	Rh	Tipo de material	Coeficiente (n)	Velocidad (Vi)	Caudal (Qi)

	Calculo de coeficientes de rugosidad de Chezy y Maning								
Sección	Caudal (Qi)	Área (Ai)	Velocidad (Vi)	Rh	Factor (C)	Método	Coeficiente	Material	

Ecuación de Mannig

$$V = \frac{1}{n} R_h^{\frac{2}{3}} S^{\frac{1}{2}}$$

Ecuación de Chezy

$$V = C\sqrt{R_h S}$$

Factor C

Otras ecuaciones

$$Q = VA$$

$$Rh = \frac{Ai}{Pm}$$

$$C = \frac{R_h^{\frac{1}{6}}}{n}$$
 $C = \frac{87}{1 + \frac{m}{\sqrt{Rh}}}$

Conclusión:			

Tabla 5-1. Esusciones para el cálcula del factor de fricción de Cheru [a]

Autor	Ecuación	Observaciones
Ganguillet y Kutter	$C = \frac{23 + \frac{0.00155}{S} + \frac{1}{n}}{1 + \left(23 + \frac{0.00155}{S}\right) \frac{n}{\sqrt{R_h}}}$	Aconsejable en canales naturales, para los que usualmente conduce a resultados satisfactorios. Es compleja y tiene la desventaja de que ocurren grandes cambios en C para cambios pequeños de n. Este coeficiente depende de la rugosidad del canal (tabla 5-2)
Kutter	$C = \frac{100\sqrt{Rh}}{k + \sqrt{Rh}}$	Es una simplificación de la Ganguillet y Kutter, mes un coeficiente de rugosidad según la tabla 5- 2.
Bazin	$C = \frac{87}{1 + \frac{m}{\sqrt{Rh}}}$	Está basada en una buena cantidad de experimentos, m es un coeficente de rugosidad según la tabla 5-2.
Kozeny	$C = 20 \log \frac{A}{T} + N_k$	Es análoga a la de los conductos a presión y fue obtenida con base en los resultados experimentales de von Misses y Bazin, NK es un coeficiente de rugosidad según la tabla 5-2.
Martínec	$C = 17.7 \log \left(\frac{R_h}{d_m}\right) + 13.6$	Se obtuvo de muchas mediciones en ríos de la exUnión Soviética. Dm es el diámetro medio del grano de material en el fondo del río en m. es válida cuando 0.15 ≤ Rh ≤ 2.25m, 0.00004 ≤ S ≤ 0.0039 y 0.004 ≤ dm ≤ 0.25m (referencia 9)
Manning	$C = \frac{R_h^{\frac{1}{6}}}{n}$	Es una de las más utilizadas por su sencillez, n es el mismo coeficiente que utilizó Ganguillet y Kutter, según la tabla 5-2.
Palovski	$C = \frac{R_h^{Z}}{n}$	Considera que el exponente en la ecuación de Manning no es constante sino que varía con la forma del canal y la rugosidad, como sigue: Z=1.5√n, para Rh<1m, y z=1.3√n, para Rh>1m. El valor de n es el mismo de Manning.

Tabla 5-2. Coeficientes de las ecuaciones de la tabla 5-1. [3]

Descripción	Ganguillet y Kutter	Kutter	Bazin	Konezy
Conductos cerrados parcialmente llenos	n	k	m	Nk
Fierro fundido nuevo	0.012	0.2	0.06	
Fierro fundido usado		0.25	0.12	
Fierro colado	0.012	0.2	100	
Barro vitrificado nuevo		0.25		
Barro vitrificado usado	0.017	0.30 - 0.35		
Tubos de alcantarillado	0.017 - 0.020	0.30 - 0.35		
Túneles de concreto pulido	0.011 - 0.013	0.20 - 0.25	0.22	
2. Canales abiertos	n	k	m	Nk
Madera cepillada	0.01	0.15 - 0.20	0.06	
Madera de acabado rugoso		0.30 - 0.35	***************************************	
Mampostería de ladrillo bien acabada	0.013	0.25	0.16	70 - 76
Cemento pulido	7-2-6-2-6	0.20 - 0.25	0.10 - 0.16	84 - 90
Concreto pulido	0.012	0.2	0.11 - 0.22	
Concreto rugoso	0.017	0.65	0.45	58 - 62
Piedra brasa bien acabada	0.017	0.65	0.46	60 - 70
En tierra, arroyos y ríos	0.025	1.75	1.4 - 1.6	
En tierra con material grueso y plantas	0.035	2.0 - 2.5	1.75	
Con cantos rodados	0.04 - 0.05	3.5 - 5.0	hasta 3.5	
Con gran rugosidad de fondo y maleza	hasta 0.9			
Roca acomodada				36 - 50
Roca al volteo				28 - 36
Grava gruesa				32 - 38
Grava media				38 - 42
Grava fina				42 - 46
Cantos rodados (15 a 20 cm)				28 - 32