Transformer (Attention Is All You Need)

2024.3.26

Jaeho Yang yangwogh@yonsei.ac.kr

Computer Engineering

- Disadvantage of seq2seq
 - The sentence is compression at Context vector
 - It have a problem because of bottleneck

- New concept of seq2seq
 - Every time check Context Vector
 - Therefore, even if sentence becomes longer, information of words are in the Context Vector can be added again.
 - It still have a problem about bottleneck

Transformer

Seq2seq with Attention

- Problem : One of Context Vector must get all of sentence's information.
- How about get all source sentence to output every time.
- It is possible because GPU performance is good enough.

Attention

- Concept: At each time step when predicting an output from decoder, it checked input information again.
- However, it have not same rate in all input sentences, and it will pay more attention to part of the input word that id relates to the word to be predicted.

Attention

- Concept: At each time step when predicting an output from decoder, it checked input information again.
- However, it have not same rate in all input sentences, and it will pay more attention to part of the input word that id relates to the word to be predicted.

Dot-product Attention

- Q : Query Hidden state in decoder cell at time t
 - A word representing the current output word.
- K : Key Hidden state in the encoder cell at every point in time
- V : Value Hidden state in the encoder cell at any time.
 - Vector corresponding to each word in the input sequence.

Scaled Dot-Product Attention

Multi-Head Attention

$$\begin{split} Attention(Q,K,V) &= softmax \left(\frac{QK^T}{\sqrt{d_k}}\right)V \\ head_i &= Attention(QW_i^Q,KW_i^K,VW_i^V) \\ MultiHead(Q,K,V) &= Concat(head_1,...,head_h)W^O \end{split}$$

- Scaled Dot-Product Attention
 - Each word can use embedding

• Attention(Q, K, V) = $softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$

• It is possible to calculate them all at once using matrix multiplication operations.

- Mask matrix can be used to ignore certain words.
- Enter a negative infinite value as the mask value so that the output of the softmax function approaches 0%.

■ Multi-Head Attention

• $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^{O}$

- Multi-Head Attention
 - The dimension remains the same even after performing MultiHead(Q, K, V)

Transformer

