

Clinical Decision Support Systems - CDSS

Processo decisionale clinico (1)

È il processo che porta un operatore sanitario a scegliere l'azione da intraprendere tra più alternative possibili in condizioni di incertezza

Il processo decisionale clinico ha diverse fasi:

- ✓ Analisi, comprensione e formulazione del problema clinico
- ✓ Processo di Diagnosi:
 - √ valutazione e inquadramento diagnostico
 - √ formulazione di una diagnosi
- ✓ Processo di Terapia:
 - ✓ scelta e pianificazione della terapia
- ✓ Follow-up

Processo decisionale clinico (3)

✓ Sebbene esistano dei modelli matematici quantitativi in grado di guidare il processo decisionale clinico, i medici usano raramente approcci formali per prendere decisioni nella loro pratica giornaliera

✓ Nelle situazioni semplici e/o comuni spesso prendono le decisioni in modo non sistematico; la diagnosi scaturisce dal riconoscimento delle caratteristiche del quadro clinico e i test e le terapie vengono stabiliti sulla base della pratica abituale

Processo decisionale clinico (4)

✓ Spesso la quantità dei dati e delle informazioni che devono elaborare eccede le loro capacità cognitive e la probabilità di errore risulta molto alta

✓ Sistemi di supporto alle decisioni specifici possono aiutare a ridurre tali errori e migliorare di conseguenza la qualità delle cure e l'appropriatezza degli interventi

Processo decisionale clinico (5)

Il processo decisionale in ambito clinico può essere rappresentato e formalizzato attraverso l'integrazione di due schemi inferenziali:

- ✓ **Deduttivo:** basato sulla conoscenza di dominio, dei risultati scientifici, dei principi su cui si basano determinati fenomeni
- ✓ Induttivo: basato sull'esperienza e sulla pratica clinica, sulla conoscenza indotta ed estratta dalla casistica

Entrambi sono facilmente implementabili in sistemi di supporto alle decisioni

Sistemi di supporto alle decisioni cliniche (1)

Un Sistema di supporto alle decisioni cliniche (Clinical Decision Support System - CDSS) è una complessa piattaforma informatica interattiva che supporta gli operatori sanitari in tutte le procedure cliniche

✓ Dati provenienti da casistiche retrospettive

✓ Conoscenza di dominio acquisita attraverso linee guida e protocolli clinici

- ✓ Modelli computazionali:
 - ✓ Modelli e Metodi di Ottimizzazione
 - ✓ Modelli e Metodi di Machine Learning

Gestione Sale Operatorie Gestione Posti letto in ospedale

Gestione Farmaci

Gestione Day Service

Gestione Week Hospital Schedulazione pazienti in radioterapia

Diagnosi

Previsione eventi acuti

Gestione terapia

Personalizzazione dei trattamenti

Prognosi

Inquadramento del rischio

Architettura Generale di un CDSS (2)

Architettura Generale di un CDSS (1)

- ✓ DATA MANAGEMENT SUBSYSTEM: Modulo per l'acquisizione, rappresentazione, organizzazione e gestione di dati e informazione
- ✓ MODEL MANAGEMENT SUBSYSTEM: Modulo per la rappresentazione, organizzazione e gestione di modelli decisionali
- ✓ DIALOG MANAGEMENT SUBSYSTEM: Modulo di interfaccia utente

Quale è il suo scopo?

- Quali sono i task affrontati dal CDSS?
- Che tipo di supporto decisionale offre?

Quale è la modalità di interazione?

 Quali sono le modalità con cui il supporto decisionale viene fornito dal CDSS all'interno del processo clinico?

Quale è la sua architettura interna?

- Come è organizzato internamente?
- Quali paradigmi di ragionamento implementa?

Classificazione in base al tipo di supporto decisionale

- ✓ Attività informative
 - ✓ Avvisi
 - ✓ Promemoria
- ✓ Protocolli di gestione
- ✓ Diagnosi

Classificazione in base alle modalità di interazione (1)

- ✓ Sistema passivo
- ✓ Sistema attivo
- ✓ Sistema proattivo

Classificazione in base alle modalità di interazione (1)

Sistema passivo

- ✓ L'utente usa il sistema solo quando ha bisogno di un supporto
- ✓ L'utente ha il controllo totale del processo decisionale: richiede un suggerimento, lo analizza e poi decide se accettarlo o rifiutarlo

- ✓ Esempi:
 - ✓ CDSS per supporto diagnosi
 - ✓ CDSS per supporto gestione sale operatorie

Classificazione in base alle modalità di interazione (2)

Sistema attivo

✓II sistema dà consigli automaticamente quando si verificano determinate condizioni

- ✓ L'utente ha il controllo parziale del sistema anche se è sempre lui che decide di accettare o rifiutare il suggerimento
- ✓ Esempi:
 - ✓ CDSS per valutare le interazioni farmacologiche
 - ✓ CDSS che controlla l'aderenza ad un determinato protocollo clinico

Classificazione in base alle modalità di interazione (3)

Sistema proattivo

✓II sistema è costantemente in esecuzione e fornisce un intervento tempestivo in risposta o in anticipo ad altri eventi registrati in quel dominio

✓ Esempi:

✓ CDSS che monitora i parametri vitali di un paziente con scompenso cardiaco

Dietro una semplice interfaccia si nasconde un'architettura molto complessa

Classificazione in base all'architettura interna (2)

✓ Knowledge-based. Rappresentano la conoscenza e i fatti di un dominio clinico attraverso un linguaggio di descrizione della conoscenza (Vocabolario). Il vocabolario viene utilizzato da un sistema di ragionamento automatico per fare inferenza

✓ Non Knowledge-based. Non usano una base di conoscenza ma usano una forma di intelligenza artificiale chiamata *Machine Learning*, che consente ai computer di imparare dalle esperienze passate e / o trovare modelli nei dati clinici

- ✓ Interfaccia Utente
- ✓ Motore di Inferenza
- ✓ Base di Conoscenza

Knowledge-based CDSS (2)

✓ Base di Conoscenza contiene informazioni opportunamente codificate del dominio clinico di riferimento

- ✓ Motore di Inferenza è il componente che implementa il ragionamento, cioè sfrutta le informazioni contenute nella base di conoscenza per fare inferenza
- ✓ Interfaccia Utente gestisce la comunicazione con l'utente finale. Permette al sistema di mostrare i risultati all'utente e di ricevere da questi i dati su cui effettuare le valutazioni

- ✓ La Base di Conoscenza è composta da regole e fatti
- ✓ Il selettore di regole determina quali regole sono applicabili ai dati
- ✓ L'interprete delle regole viene utilizzato per applicare le regole ai dati di input

Knowledge-based CDSS (4)

✓ Sono di tipo knowledge-based i CDSS basati su ontologie

- ✓ Un'ontologia è
 - ✓ una descrizione formale di concetti in un dominio (classi)
 - ✓ le proprietà di ciascun concetto (slot)
 - ✓ le restrizioni sugli slot (facets)

✓ ONTOLOGIA + UN INSIEME DI ISTANZE DI CLASSI = BASE DI CONOSCENZA

Non Knowledge-based CDSS (1)

Implementano con metodologie inferenziali statistiche e metodi di Machine Learning l'esperienza diretta e la conoscenza induttivamente estraibile dalle casistiche retrospettive

Non Knowledge-based CDSS (2)

Tipi di apprendimento automatico:

- ✓ Supervisionato. Il sistema viene addestrato con un insieme di dati di cui si conosce l'esito della decisione
 - ✓ Reti neurali
 - ✓ Support Vector Machine
 - ✓ Alberi decisionali
- ✓ Non supervisionato. L'obiettivo è quello di trovare strutture significative e modelli descrittivi dai dati analizzati
 - ✓ Algoritmi di clustering
- ✓ Semi-supervisionato. È dato dalla combinazione di elementi delle due tecniche di apprendimento supervisionato e non supervisionato

Marginal Adhesion

>5

1

<=5

0

- ✓ De Dombal: supporto alla diagnosi differenziale del dolore addominale acuto
- ✓ Internist-I: supporto alla diagnosi nell'ambito della medicina generale interna
- ✓ MYCIN: supporto alla diagnosi e trattamento delle infezioni nel sangue
- ✓ DXplain: produce una sorta di graduatoria di tutte le possibili diagnosi che potrebbero spiegare determinate manifestazioni cliniche date in input

I primi CDSS (2)

✓ LISA (Leukaemia Intervention Scheduling and Advice): supporto alla diagnosi della leucemia linfoblastica acuta infantile

✓ RETROGRAM: supporto alla diagnosi e il trattamento dell'HIV

✓ ATHENA (Assessment and Treatment of Hypertension: Evidence-Based Automation): supportare gli operatori sanitari nella gestione dell'ipertensione nell'ambito della medicina di base

I primi CDSS (3)

✓ PTT (Partial Thromboplastin Time) Advisor: supporta i medici nella gestione del follow-up di pazienti con PTT prolungato

✓ ADDIS (Aggregate Data Drug Information System): gestione e nella valutazione di studi clinici

Aspetti da valutare per il successo di un CDSS (1)

- ✓ Valutazione delle reali esigenze degli utenti
- ✓ Supporto di gestione superiore, cioè più efficace dei processi manuali usati allo stesso scopo
- ✓ Integrazione con altri sistemi già in uso
 - ✓ Standard di interoperabilità
- ✓ Interfaccia uomo-sistema la più user-friendly possibile
- ✓ Contesto sociale e organizzativo in cui il CDSS verrà usato

Aspetti da valutare per il successo di un CDSS (2)

- ✓ Inserimento dati
 - ✓ Recupero automatico
- ✓ Qualità della conoscenza
 - ✓ Fonti affidabili per realizzare la base di conoscenza
 - ✓ Interazione costante e continua con gli esperti di dominio
- ✓ Aggiornamento periodico della base di conoscenza
- ✓ Formazione degli utenti