# Stochastic Optimization of Vector Quantization Methods in Application to Speech and Image Processing



Mohammad Hassan Vali Tom Bäckström

Department of Information and Communications Engineering, Aalto University, Finland

## 1. Vector Quantization (VQ)

- A data compression technique similar to k-means algorithm
- Quantizes the input vector  $\boldsymbol{x}$  to the closest codeword within the codebook (CB)



$$x_{quantized} = c_{i^*}; \ i^* = rg\min_i \|x - c_i\|^2 \ ; i \in \{1,...,K\}$$
 (1)

- Challenge: computationally complex for a large codebook
- **Solution:** employ variants of VQ; Residual VQ, Product VQ, and Additive VQ

## 2. Residual Vector Quantization (RVQ)

- ullet Quantizes the input vector x by M consecutive VQ modules
- Quantizes  $oldsymbol{x}$  as a summation of  $oldsymbol{M}$  codewords
- Suppose M=3 :



 $x_{quantized} = CB^1_{i^*} + CB^2_{i^*} + CB^3_{i^*}$ 

# 3. Product Vector Quantization (PVQ)

- Splits the input vector x of dimension D to M independent subspaces of dimension D/M
- Applies  $oldsymbol{M}$  independent VQ modules to the existing subspaces
- Quantizes  $oldsymbol{x}$  as a concatenation of  $oldsymbol{M}$  closest codewords
- Suppose M=3 :



 $x_{quantized} = concatenate[CB^1_{i^*}, CB^2_{i^*}, CB^3_{i^*}]$ 

### 4. Additive Vector Quantization (AVQ)

- Applies beam searching [1] to find the closest codewords
- ullet Quantizes the input vector x by M consecutive VQ modules
- ullet Quantizes x as a summation of M codewords
- Suppose M=3:



#### 5. Codebooks Optimization

- Traditional approach: Optimization by k-means algorithm
- Problem with machine learning optimization: argmin function in Eq. 1 is not differentiable
- Solutions:
- 1. Proposed: Noise Substitution in Vector Quantization (NSVQ) [2]. models the quantization error by noise addition
- 2. Conventional: Straight Through Estimator (STE) [3]. copies the gradients over VQ module ( $VQ_{gradient}=1$ )
- Advantages of NSVQ over STE: 1) More accurate gradients.
  2) Faster convergence. 3) No additional hyper-parameter tuning for VQ training.

## 6. Experiments: Approximate Nearest Neighbor (ANN) Search

- Compress the SIFT1M dataset (128-D image descriptors)
- Evaluate recall metric: whether the actual nearest neighbor (from groundtruth) exists in the T computed nearest neighbors



### 7. Experiments: Image Compression using VQ-VAE

- Compress CIFAR10 dataset with vector quantized variational autoencoder (VQ-VAE)
- Evaluate peak signal to noise ratio (Peak SNR) and complexity



### 8. Experiments: Toy Example Datasets

- Compress correlated and uncorrelated toy datasets
- Evaluate accuracy with respect to correlation in the data



#### 9. Conclusions

- Variants of VQ are desirable for higher bitrates and dimensions
- Machine learning optimization of codebooks using our recently proposed NSVQ technique [2]
- Achieve comparable results to the baselines in ANN search
- Study the trade-offs between bitrate, accuracy, complexity
- Using our open source implementation [4] enables choosing the most suitable VQ method

#### References

- [1] A. Babenko and V. Lempitsky, "Additive Quantization for Extreme Vector Compression," in *Proc. CVPR*, 2014.
- [2] M. H. Vali and T. Bäckström, "NSVQ: Noise Substitution in Vector Quantization for Machine Learning," IEEE Access, 2022.
- [3] Y. Bengio, N. Léonard, and A. Courville, "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation," arXiv preprint arXiv:1308.3432, 2013.
- [4] https://gitlab.com/speech-interaction-technology-aalto-university/vq-variants.