Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление системного и прикладного программного обеспечения

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 7

курса «Основы профессиональной деятельности»

по теме: «Исследование работы БЭВМ: микрокоманды и синтез инструкций»

Вариант № 1010

Выполнил студент:

Тюрин Иван Николаевич

группа: Р3110

Преподаватель:

Клименков С. В.,

Ларочкин Г. И.

Содержание

Лабораторная работа № 7. Исследование работы БЭВМ: мик-	
рокоманды и синтез инструкций	2
1. Задание варианта № 1010	2
2. Описание синтезированной микропрограммы	3
3. Текст тестовых прогамм	3
4. Методика проверки	3
5. Трассировка разработанной микропрограммы	4
6. Вывод	4

Лабораторная работа № 7 Исследование работы БЭВМ: микрокоманды и синтез инструкций

1. Задание варианта № 1010

, , ,

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. MSUB M вычитание аккумулятора из M с записью результата в ячейку памяти с установкой N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса 0x0481

, ,

2. Описание синтезированной микропрограммы

В результате выполнения работы была синетзированна следующая микропрограмма, описание которой представлено в таблице 1.1.

Запись микропрограммы в код БЭВМ осуществляется следующей командой:

e0 ma mw 0001e09611 mw 8055101040

Адрес МП	Мк-команда	Действие ; Комментарий
E0	0001E09611	\sim AC + DR + 1 \rightarrow DR, N, Z, V, C;
		Вычетание AC из значения M в DR
		и установка признаков результата
E1	8055101040	GOTO STORE @ 55 ;
		Переход на микропрограмму сохранения
		DR по адресу из AR

Таблица 1.1: Описание работы синтезированной микропрограммы

3. Текст тестовых прогамм

Была составлена программа на языке ассемблера для проверки работоспособности синтезированной микропрограммы. Она представлена в листингах 1.2. Микропрограмма протестирована для различных типов адресаци, в листинге приведен лишь способ прямой адресации. Со всеми типами адресации синтезированная инструкция ведет себя корректно, за исключением прямой загрузки, при которой имеет место неопределенное поведение.

4. Методика проверки

Для проверки корректности работы микропрограммы при помощи тестовой программы была разработана следующая методика:

- 1. Записать значениям для меток X и Y соответственно значения аккумулятора и значение ячейки M памяти с которой требуется провести опеацию MSUB M.
- 2. Записать значениям для меток expect.val, expect.N соответственно рассчитанные значения ячейки M и флага N.
- 3. Запустить тестирующую программу в автоматическом режиме до остановки.
- 4. Проверить значения переменных check.val, check.N, check.res по адресам с 0x487 до 0x489: они все, а в частности последняя долж-

ны быть равны 1. В противном случае микропрограмма работает некорректно.

5. Трассировка разработанной микропрограммы

Трасировка разработанной микропрограммы с начала цикла выборки инструкции до начала следующего, выполняющей вычитание 6 из ячейки с адресом 0x000, где хранится число 0x0010 представлена в таблице 1.3.

Адр	MK	IP	CR	AR	DR	SP	BR	AC	NZVC	СчМК
01	00A0009004	002	0000	002	0006	000	0002	0006	0000	02
02	0104009420	003	0000	002	9000	000	0002	0006	0000	03
03	0002009001	003	9000	002	9000	000	0002	0006	0000	04
04	8109804002	003	9000	002	9000	000	0002	0006	0000	09
09	800C404002	003	9000	002	9000	000	0002	0006	0000	0C
0C	8024084002	003	9000	002	9000	000	0002	0006	0000	24
24	8026804002	003	9000	002	9000	000	0002	0006	0000	25
25	814A404002	003	9000	002	9000	000	0002	0006	0000	26
26	0080009001	003	9000	000	9000	000	0002	0006	0000	27
27	0100000000	003	9000	000	0010	000	0002	0006	0000	28
28	813C804002	003	9000	000	0010	000	0002	0006	0000	3C
3C	8143204002	003	9000	000	0010	000	0002	0006	0000	3D
3D	81E0104002	003	9000	000	0010	000	0002	0006	0000	E0
E0	0001E09611	003	9000	000	000A	000	0002	0006	0001	E1
E1	8055101040	003	9000	000	000A	000	0002	0006	0001	55
55	0200000000	003	9000	000	000A	000	0002	0006	0001	56
56	80C4101040	003	9000	000	000A	000	0002	0006	0001	C4
C4	80DE801040	003	9000	000	000A	000	0002	0006	0001	C5
C5	8001401040	003	9000	000	000A	000	0002	0006	0001	01

Таблица 1.3: Трассировка микропрограммы с момента начала цикла выборки инструкции до начала следующего

6. Вывод

Научился синтезировать собственные команды для БЭВМ при помощи размещения в памяти машины дополнительных микрокоманд. Писать тесты для программ на языке BASM, будет тяжело с ним теперь расстаться: мы стали очень близкими друзьми, знаем друг друга очень хорошо. Теперь умею думать как БЭВМ и знаю ее клевые режимы (-Dmode=dual, -Dmode=cli).

```
_{1}| org 0x0481
2 X:
                               ; test AC;
                                                             [0×481]
                word
3 Y:
                               ; test M ;
                                                             [0×482]
                word
                               ; expected result;
  expect.val: word
                                                             [0×483]
5 expect.N:
                word
                               ; expected . result N flag; [0x484]
  actual.val: word
                               ; actual result;
                                                            [0×485]
  actual.N:
                               ; actual. result N flag;
                word
                                                            [0×486]
  check.val:
                word
                          0
                               ; comparison result;
                                                             [0×487]
  check.N:
                          0
                               ; flag comparison;
                                                            [0 x 488]
                word
  check.res:
                               ; test result;
                                                            [0 x 489]
                word
  START:
11
       cla
12
       call
                 test
13
       call
                 check
14
       hlt
15
16
  _test:
17
       ld Y
18
       st actual.val
                          ; copy Y to actual.res
19
       Id X
20
       word 0x9485
                          ;MSUB $actual.val; direct loading
21
  test_flag:
22
       bpl test zero N
23
       ld #1
24
       st actual.N
25
       ret
26
  test zero N:
27
       Id #0
28
       st actual.N
29
       ret
30
31
  check:
32
       ld expect.val
33
       cmp actual.val
34
       bne check flag
35
       ld #1
36
       st check.val
37
  check flag:
38
       Id expect.N
39
       cmp actual.N
40
       bne check end
41
       ld #1
42
       st check.N
43
  check end:
44
       Id check.val
45
       and check.N
46
       st check.res
47
       ret
48
```

Листинг 1.2: Код тестирующей программы