§ 17.3 方向导数与梯度

一、方向导数

定义1: 设函数 f(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 的某邻域 $U(P_0) \subset \mathbb{R}^3$ 内有定义, \vec{l} 为从点 P_0 出发的射线. 任 给 $P(x,y,z) \in \vec{l} \cap U(P_0)$,记 $\rho = |P_0P|$,若极限

$$\lim_{\rho \to 0^{+}} \frac{\Delta_{\vec{l}} f}{\rho} = \lim_{\rho \to 0^{+}} \frac{f(P) - f(P_{0})}{\rho}$$

存在,则称此极限为函数 f 在点 P_0 沿方向 i 的方向

导数,记作
$$\frac{\partial f}{\partial \vec{l}}\Big|_{P_0}$$
, $f_{\vec{l}}(P_0)$ 或 $f_{\vec{l}}(x_0,y_0,z_0)$.

$$f_{\bar{l}}(P_0) = \lim_{\rho \to 0} \frac{f(P) - f(P_0)}{\rho}.$$

注: 设 f 在点 P_0 存在关于 x 的偏导数,则

$$(1) 若 \vec{l} = \overrightarrow{Ox}, 则 \frac{\partial f}{\partial \vec{l}} \Big|_{P_0} = \frac{\partial f}{\partial x} \Big|_{P_0}.$$

(2) 若
$$\vec{l} = -\overline{Ox}$$
,则 $\frac{\partial f}{\partial \vec{l}}\Big|_{P_0} = -\frac{\partial f}{\partial x}\Big|_{P_0}$.

二、方向导数与偏导数的关系

定理: 若函数 f 在点 $P_0(x_0, y_0, z_0)$ 可微,则 f 在点 P_0 沿任一方向 \overline{l} 的方向导数存在,且

$$f_{\vec{l}}(P_0) = f_x(P_0)\cos\alpha + f_y(P_0)\cos\beta + f_z(P_0)\cos\gamma$$
, (1)

其中方向 \vec{l} 的单位向量 $\vec{l}_0 = (\cos \alpha, \cos \beta, \cos \gamma)$.

例1、设 $f(x,y,z) = x + y^2 + z^3$,求 f 在点 $P_0(1,1,1)$ 处沿着指向点 $P_1(3,-1,2)$ 方向的方向导数.

例2、设

$$f(x,y) = \begin{cases} 1, & 0 < y < x^2, -\infty < x < +\infty, \\ 0, & \text{其余部分.} \end{cases}$$

求函数 f 在(0,0)沿各方向的方向导数。

lack M 函数 f 在 P_0 任一方向导数存在 $rac{1}{2}$ $rac{1}{2}$ 在点 $rac{1}{2}$ 连续.

lack M 函数 f 在点 P_0 可微 rack f 在 P_0 任一方向导数存在.

三、梯度

定义2: 若函数 f(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 可偏导,则称向量 $(f_x(P_0),f_y(P_0),f_z(P_0))$ 为 f 在点 P_0 的梯度,记作

grad $f(P_0) = (f_x(P_0), f_y(P_0), f_z(P_0)).$

 $\operatorname{grad} f(P_0)$ 的长度(或模)为

 $|\operatorname{grad} f(P_0)| = \sqrt{f_x(P_0)^2 + f_y(P_0)^2 + f_z(P_0)^2}.$

◆ 若方向 \vec{l} 的单位向量为 $\vec{l}_0 = (\cos \alpha, \cos \beta, \cos \gamma)$,则 $f_{\vec{l}}(P_0) = \text{grad } f(P_0) \cdot \vec{l}_0 = |\text{grad } f(P_0)| \cos \theta.$

其中 θ 为梯度向量 grad $f(P_0)$ 与 \vec{l}_0 的夹角.

(1) 当 $\theta = 0$ 时, $f_{\vec{i}}(P_0)$ 取得最大值 | grad $f(P_0)$ |.

结论:函数在一点的梯度是这样一个向量,它的方向与函数在这点的方向导数取得最大值的方向一致(f的值增长最快的方向),它的模等于该点处方向导数的最大值。

- (2)当 $\theta = \frac{\pi}{2}$ 或 $\frac{3\pi}{2}$,即沿与梯度垂直方向的方向导数为 0.
- (3)当 $\theta = \pi$ 时,即沿与梯度方向相反时,方向导数取得最小值 $-|grad f(P_0)|$.

例 3、设 $f(x,y,z) = xy^2 + yz^3$, 试求 f 在点 $P_0(2,-1,1)$ 处的梯度及方向导数的最大值。

习题17-3:2、4