DOCUMENT RESUME

ED 292 771 SP 030 017

AUTHOR Villar Angulo, Luis M.

TITLE Microsupervision as a Method for Teacher

Education.

PUB DATE [87] NOTE 24p.

PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC01 Plus Postage.

DESCRIPTORS Classroom Observation Techniques; Elementary

Education; Foreign Countries; *Interaction Process Analysis; *Microteaching; *Supervisory Training; *Teacher Behavior; *Teaching Methods; Teaching

Skills

IDENTIFIERS *Microsupervision; Spain

ABSTRACT

In a microsupervision workshop experiment designed to investigate group differences in acquiring an indirect style of supervisory conference behavior, 18 elementary school inservice teachers were 'Andomly assigned to a video-modeling, written-modeling and performance-feedback treatment or non-treatment. Criterion performances were the frequency and quality of the supervisory conference behavior used on two separate microsupervision sessions and on five observational instruments. Results showed: (1) experimental microsupervision did not yield significantly higher nor more varied performance frequencies than the control group; (2) the reliability trial results for the conference and teaching category systems were considered highly satisfactory; and (3) a high positive and negative relationship between teaching and supervisory conference behavior in the experimental group was attained. A discussion is presented on the findings, and on the linear relationship between personal and professional characteristics of teachers. A stepwise multiple regression analysis of a teaching behavior by supervisory conference ratio factors indicated that the teaching behavior, "Data Recall," was significantly predicted by several supervision ratio factors. (Author/JD)

* Reproductions supplied by EDRS are the best that can be made

from the original document

ABSTRACT

MICROSUPERVISION AS A METHOD FOR TEACHER EDUCATION

By Luis M. Villar Angulo

University of Seville (Spain)

In a microsupervision workshop experiment designed to investigate group differences in acquiring an indirect style of supervisory conference behaviour, 18 elementary school in-service teachers were randomly assigned to a video-modelling, written-modelling and performance feedback treatment or non-treatment. Criterion performances were the frequency and quality of the supervisory conference beha-viour used on two separate microsupervision sessions and on five observational instruments. Results of the six main hypotheses showed: firstly, that experimental microsupervi sion did not yield significantly higher nor varied performance frecuencies than control group. Secondly, the reliability trial results for the conference and teaching cate gory systems were considered highly satisfactory. Thirdly, a high positive and negative relationship between teaching and supervisory conference behaviour in the experimental group was obtained. Fourthly, the initial 49 supervision conference observational ratios were reduced to a new struc ture of 12 and 11 factors. Fifthly, a lineal relation hip between personal and professional characteristics of tea-chers with Flanders I/D ratio could not be accepted. Finally, stepwise multiple regression analysis of a teaching behaviour by supervisory conference ratio factors has shown the teaching behaviour "Data Recall" was nificantly predicted by several supervision ratio factors.

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

US DEPARTMENT OF EDUCATION
Office of Educational Research and improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it.

Minor changes have been made to improve reproduction quality

Points of view or opinions stated in this document do not necessarily represent official OERI position or policy

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

INTRODUCTION

The purposes of this study are twofold. First of - all, to analyse and evaluate the nature and development of microteaching, and secondly, to examine the effects of a microsupervision workshop experiment in the supervisory conference behaviour of primary school tutors.

Microteaching is considered in its origin as a - methodological alternative to the teaching practice period of the Stanford program entitled Secondary Teacher Education Program (STEP). The successive microteaching clinics - allowed the diagnosis, training and evaluation of "interns" teaching skills, being the 1966 microteaching clinic format the one that synthesizes the concept, procedure and techniques of microteaching (Allen, 1980).

Stanford educators' criticism concerning the potential and effectiveness of microteaching in all areas of curriculum grew up at the beginning of the seventies (Weiss, 1972). Then, a second generation of teaching skills was advocated (Shavelson, 1973), new approaches to in-service training were developed (Borg, 1970) and educators' efforts coincided in searching for alternative models of learning the teaching act (MacLeod and McIntyre, 1977).

Microteaching is a teacher training method based upon the behaviour modification paradigm (McDonald, 1973). As a result, much attention is paid to investigating the effects of operant conditioning and modeling in learning teaching - skills. Therefore, Skinner's and Bandura's theories of lear ning are the initial psychological foundations of the training method. Besides, microteaching is bound in a systems approach component. In effect, feedback as a cybernetic concept is the independent training variable most thoroughly in vestigated in microteaching. Students, peers, supervisors - and interns are considered teacher performance evaluators. Video self-evaluation and self-confrontation are late developments in the training of teachers (Fuller and Manning, - 1973; Bierschenck, 1975).

Teaching skills constitute an approach to understan ding a theory of teaching (Gage, 1975). The teaching act is considered as a set of interrelated variables or pieces called skills that are associated with good teaching. The skills identification and validation movement that took place at -Stanford University with Aubertine's, Jonhson's, Whemeyer's dissertations, for example, did not have a continuation with other research programs. This might explain why microteaching training programs were composed of an almost closed list of technical skills (McKnight 1979). Moreover, low-inference skills such as "questioning" were repeatedly used as dependent variables in hundreds of experimental designs. The processproduct paradigm for research on teaching has not given evidence of the effectiveness of other teaching behaviours (Med ley, 1977) and educators are initiating studies in the ecolo gical paradigm of research on teaching in which results are not yet consistent. Microteaching, therefore, does not provide new empirical-based teaching skills. On the other hand, the competency-based teacher education movement (CBTE) has conceived the training curriculum in terms of competencies, that is, operational objectives that are based upon theory and research specifications. Hence teacher education programs seem like a clear-cut catalogue of teaching behaviours (competencies) which have as their immediate precedent the microteaching skills (Sobol, 1972; Cooper, 1979). Microteaching, interaction analysis and simulation were then performance-based training methods within a behaviourly-oriented training philosophy.

Microteaching has been scrutinized and evaluated several times by different educators (Manis, 1973; Brunsling,
1974; Hargie, 1977). They coincided in certain areas that should be further researched. For instance, the teaching skills
concept is the first topic that needs revision. On the other
hand, researchers considered the enormous efforts made to

discover new effective training variables-modelling, feedback, etc. -, interactions among treatments and subject characteristics, video training technology, teacher self-evaluation, training models and so on and so forth, Besides, microteaching has been the origin of other training methods such as microcounselling and microsupervision, which are analytical approaches to the counselling interview and supervision conference, respectively.

THE EXPERIMENT

The experiment evaluates the effects of a microsupervision workshop in the supervisory conference behaviour of primary school teachers. Microsupervision is a method of training in supervisory skills. Microsupervision keeps the conceptual structure, training variables and format of microteaching. Even more so, microsupervision divides the conference into supervision behaviours in the same way that microteaching does of the teaching act. Hence microsupervision is a deeply related with interaction analysis and observation instruments. In effect, interaction analysis categories have been considered observational skills and aim at some supervision training programs.

Generally speaking, supervision behaviour has been a neglected area of research until very recently (Parry and Gibbs, 1974). Thus, the purpose of this experiment was to find answers to the following six questions:

- 1. Can a microsupervision workshop which develops an indirect strategy of supervision in a closed-circuit of TV laboratory modify the supervisory behaviour of a group of primary school teachers during supervisory conferences?
- 2. Is there any observer agreement in any of the following observation instruments: Blumberg, Flanders, Brown and Hoffman, Young and Young, M.O.S.A.I.C.S., and Amidon, Amidon and Rosenshine?

- 3. Is there any educational performance change among the pretest, training and postest situations in the experimental group? What is the relationship between teaching and supervision behaviours of the experimental group of teachers?
- 4. Can the 49 ratios of observational systems be reduced to a smaller number of factors?
- 5. Can the Flanders Indirect/Direct ratio be predicted with personal and professional characteristics of tutors?
- 6. Can some teaching behaviours be predicted with ratio factors of supervision categories?

All these questions shared a common preoccupation: describing tutor behaviour in supervisory conferences. As it was written above, an assumed supervision paradigm says that a supervisory conference is a teaching act (Lindsey, 1969; Dussault, 1973).

A supervisory conference is, therefore, a dyadic - interaction that can be observed, described and quantified, and in which data thus obtained may be the means to propose a supervisory behaviour paradigm. When studies of supervisory conferences take into account certain independent variables (laboratory training, videotape play-back, microteaching simulation, etc.), then research methodology relies on observational techniques which use interaction analysis instruments (Young and Young, 1972).

There are very few instruments to analyse behaviour in supervisory conferences (Weller, 1971; Mosher and Purpel, 1972; Blumberg, 1974). Consequently, the supervisor role in teacher training institutions should be further - studied (McAleese and Unwin, 1971; Griffiths, 1975; Brown - and McGarvey, 1975; García, 1978), and supervisory conferences are adequate interaction encounters where patterns and

styles of supervision might be inferred (Perlberg and The \underline{o} dor, 1972).

The effects of diverse independent training variables have also been measured through category ratios derived from observational instruments (Darr, 1972; Hil, 1972; Kozisek, 1975), although it is a scientific prerrequisite to determine the reliability of observational instruments (Medley and Mitzel, 1963).

METHOD

The sample size was 18 primary school in-service teachers of Seville (Spain). They all had an average of ten years teaching experience and this was the first time that they had - participated in a video training laboratory. The small size of the sample is rather frequent in this type of training - experiments (Copeland and Doyle, 1973; Douglass and Pfeiffer, 1973).

According to Campbell and Stanley, the experimental design was a pretest-postest control group, where the treat ment group had the microsupervision training experiences. — All subjects were randomly assigned to the two groups. Similarly 56 videotape recordings were randomly assigned to seven observers.

The independent variable -microsupervision workshop-consisted of a sequence of training experiences so as to - learn an indirect strategy of supervisory conference. The - indirectness construct was derived from several educators (Flanders, 1970; Cohen, 1972; Blumberg, 1974). We chose the "clinical supervision" cycle to arrange sessions during the treatment phase of the experime..t.The dependent variables were 50 ratios derived from five observational sys ms: Blumberg, Flanders, Brown and Hoffman, Young and Young, and M.O.S.A.I. C.S.

The observational methodology included the following process:

- 1) Selection and training of judges. This in-cluded a theoretical explanation of the instruments, different readings and an application of the instruments to code videotape recordings.
- 2) Videotape equipment consisted of video camaras and monitors in two different rooms allowing videotaping and the viewing performances by two groups of teachers to take place simultaneously.
- 3) All observational systems were unknown in the Spanish context, except the FIAC instrument for teaching situations.
- 4) Coding procedures were of two types. Whereas = Blumberg's, Young and Young's, and Amidon, Amidon and Rosenshine's systems are based upon time units, other instruments -M.O.S.A.I.C.S. and Brown and Hoffman's-quantify information in segments called thought units.
- 5) All videotapings were tapescripted and analysed afterwards.
- 6) Agreement and stability among observers followed Frick and Semmel's (1978) recommendations. In order to assure reliability we answered the following questions:
 "When should agreement be measured?", "agreement on what kinds of data?", "agreement with whom?", "agreement under what conditions and how "perfect"?"and "how can agreement be measured?"

The coded data was used to test statistical hypotheses. More specifically, Student t-test, Wilcoxon's matched -pairs signed-ranks statistic and Mann-Whitney U-test - were applied to ratios of observational instruments to determine the strength and direction of change in the two groups.

In the second hypothesis, five statistical tests were used to assess reliability and stability among observers: Kendall's W test, Woolf's G test, three -way analysis - of variance, four-way analysis of variance and Hotelling's T^2 test.

Because of the large number of dependent variables of this study, 55 parametric and nonparametric analysis of variance were computed in hypothesis 3. Additionally, Pearson Product-Moment Correlation coefficient was administered to determine if there were significant relationships between teaching and supervision ratios for the same subject.

The BMDP4M computer program was used to obtain factors derived from 49 observational ratios. Besides, a - congruence coefficient assigned the values of two factorial solutions.

A stepwise multiple regression analysis was used in hypotheses 5 and 6. Predictor variables were personal and professional charact ristics of teachers, while criterion variable was Flanders' revised Indirect/Direct ratio in hypothesis 5.

Finally, predictor variables were supervisory factorial solutions and criteria variables were teaching compo sites that had been significantly correlated with student - achievement in hypothesis 6.

Data processing techniques included BMD statistical packages and handmade computer programs written in FORTRAN and BASIC languages. Last programs were designed for two main purposes: first of all, to describe supervisory conferences, and secondly, to modify and adapt statistical tests. Description of supervisory conferences included matrices, histograms, and frequencies and percentages of ratios.

RESULTS

<u>Discussion</u>. Hypothesis 1. There were significant differences in the means between the experimental and control groups in the postest performances of the following ratios of the observational systems: "Indirect Answers" (Blumberg's system) and "Positive/Negative" (M.O.S.A.I.C.S. instrument). Non - significant differences were obtained in the remaining ratios. Besides, inconsistent significant differences resulted when contrasting the means between the experimental and control groups in the postest and also when comparing the means between the pretest and postes+ situations in the experimental and control groups. (See Table 1).

Insert Table 1 here

Hypothesis 2. In the first subhypothesis -agreement among - observers- results indicated that Blumberg's, Flanders', - Brown and Ho fman's, Young and Young's, M.O.S.A.I.C.S., and Amidon, Amidon and Rosenshine's instruments were reliable - when data was amalyzed by Kendall's coefficient concordance (w). However, disagreement among judges was obtained when contrasting data with Woolf's G statistical test. Agreement - among observers was calculated twice: at the beginning and end of the coding process. In the second subhypothesis -intraobservers agreement - stability was found in Blumberg's, Flanders', M.O.S.A.I.C.S., Young and Young's, and Amidon, - Amidon and Rosenshine's observational systems. However, observers coding stability in the Brown and Hoffman's instrument was not achieved. (See Table 2 for details).

Insert Table 2 here

Hypothesis 3. There were significant differences in the means of the pretest, treatment and postest situations of
the experimental group in the following ratios: "Indirect/
Direct", "Supervisor answers" and "Supervisor questions" (Flanders' system); "Structuring domain" (Brown and Hoffman's
system); "Indirect/Direct" (Young and Young's system), and
"Complex/Simple" and "Positive/Negative" (M.O.S.A.I.C.S. ins
trumert).

Besides, "Teacher immediate answer ratio" (Amidon Amidon and Rosenshine's system) was highly and negatively correlated with "Behaviour control" (Blumberg's system, r=-.797) and with "Content ratio" (Young and Young's system, r=-.885). At the same time, "Student persistence ratio" was highly and positively correlated with "Teacher talk" (Flanders' system, r=.799), highly and negatively correlated with "Structuring domain" (Brown and Hoffman's instrument, r=-.777) and highly and negatively correlated with "Supervisor soliciting teaching cycle" (M.O.S.A.I.C.S. instrument, r:-.675). (See Table 3).

Insert Table 3 here

Hypothesis 4. In Factor Analysis I, twelve factors explained 82.8 percent of the variance of 35 ratios derived from Blumberg's, Brown and Hoffman's, Flanders' and M.O.S.A.I.C.S. - systems. Factors were named as follows: Indirectness, Inquiry, Supervisor answer, Evaluation, Static, Initiation, Teacher communication, Defensiveness, Supervisor talk, Preoccupation, Affectiveness and Structuring. In Factor Analysis II, eleven factors accounted for 82 percent of the variance of 34 ratios - derived from Blumberg's, Brown and Hoffman's, Flanders', and - Young and Young Sinstruments. Factors were named in the following way: Supervisor talk, Indirect questions, Questions, Indirect answers, Maintenance, Teacher initiation, Indirect -

reaction, Information, Affective, Supervisor answer and Inquiry. Afterwards, a congruence coefficient was calculated to assign both factor solutions. (See assignments in Table 4).

Insert Table 4 here

Hypothesis 5. The control variable ("Revised Indirect/Direct" ratio derived from Flanders' instrument) was predicted by - the variable called "Inspector Inform", although the variance explained (24.44%) was not enough to show that this last variable significatively affects the control variable. (See equation in Table 5)

Insert Table 5 here

Hypothesis 6. Considering as control variables the categories entitled "Memory" (Aschner-Gallagher's system), "Data - Recall" (CLAIM instrument) and "Specific items of data" - (Taba's system) and as predictor variables the two factorial solutions, twelve regression models were tested. The statistical package used was BMDP2R. The results showed that the "Data Recall" category -highly and positively correlated with student achievement in a previous study (Villar, 1982) - was predicted by the factors named Indirectness, Inquiry, Super visor answer, Static, Teacher communication and Supervisor talk of Factor Analysis I.Also, "Data Recall" was predicted by factors named Questions, Indirect-Answers and Indirect - reaction of Factor Analysis II. (Table 6 presents equations).

Insert Table 6 here

Conclusions

- H₁. The microsupervision workshop did not modify the supervisory behaviour of an experimental group of teachers more than a control group.
- H2. There was observer agreement in the following instruments: Blumberg, Flanders, Brown and Hoffman, Young and Young, M.O.S.A.I.C.S., and Amidon, Amidon and Rosenshine. Besides, observer coding stability was obtained in all systems, except in Brown and Hoffman's instrument.
- H₃. The microsupervision workshop changed the supervisor behaviour of experimental teachers in the pretest, treatment and postest situations. Moreover, there were strong relationships between teaching and supervisory beha--viour.
- H₄. There were two factorial solutions with the 49 ratios derived from five supervisory category systems. A congruence coefficient assigned the 12 and 11 factors obtained in both factor analyses.
- H₅. A lineal relationship was not accepted between Flanders' Indirect/Direct ratio and personal and professional variables.
- H₆. A lineal relationship was accepted between the teaching category "Data Recall" and some factor coefficients of supervisory ratios.

Interpretation and suggestions

The microsupervision workshop did not increase the percentage of occurrence of an indirect style of supervisory behaviour in the experimental group. This might have been - due to experimental design. In effect, the workshop schedule seemed to be insufficient to guarantee enough exposure of

subjects to the treatment variable. Besides, recording time during training was too short a period for teachers to exhibit desirable supervisory skills. Internal and external validity could have been affected so that both groups tended to learn following the same experimental procedure.

From the methodological point of view, this research could be considered as a supervision instruments sourcebook, because it is the first time that observational systems such as Blumberg's, Brown and Hoffman's, Weller's, and Young and Young's have been adapted and used in the Spanish context. At the same time, the research shows a strategy to train observers and a methodology to analyse observer reliability. Nevertheless, further research should be done with the Brown and Hoffman's system in order to accomplish data reliability.

Factor analysis of category ratios has confirmed the structure of some observational system ratios and enabled one to summarize and break down the wide variety of initial ratios.

Finally, multiple regression analysis of the two last hypotheses has resulted in a series of equations that should be interpreted with caution. First of all, sample size should be increased so that statistical tests meet all conditions, and secondly new multiple regression analyses will be necessary to accept or reject other replication models.

Taking into account all considerations, we finally suggest:

- 1º)to develop new supervisory training programs and techniques,
- 2º)to delineate valid and reliable supervisory conference observational systems, and
 - 3º) to adopt alternative experimental designs.

TABLE 1

priferences in observational system ratios between supervisory conferences video taped before and immediately diter completing the Microsupervision Workshop in the experimental and control groups. Also differences between experimental situations in each group

tions in each group		
RAL1G3	COMPARISON	Hypothesis
Bitabe.g's Indifect Andhers	Experimental ve. control(postest)	accepted
M.O.S.A.I.C.S. Positive/Negative	Experimental ve. Control(postest)	accepted
blumberg's Oral Cummunication	Pretuat ve. postest (experimental)	accepted
Blumberg's Indirect Amanere	Pretuet vs. postest (control)	not accepted
Blumberg's Significative Talk	Pretuet vs. postset(experimental)	accepted
blumberg's "Concern" Expression	Present vs. postest(experimental)	accepted
Flanders' Supervisor Questions	Pretest vs. postest (control)	not accepted
Flanders' Supervisor Questions	Experimental vs. control (pretest)	not accepted
Young and Young's Supervisor Answers	Protect ve. postect (experimental)	accepted
Young and Young's Teacher Initiation	Pretest vs. postest (experimental)	accepted
Young and Young's Teacher Initiation	Pretest ve. postest (control)	not accepted
Young and Young's Supervisor Inxediate Ques- tion	Protest vs. postest (experimental)	accepted
Young and Young's Supervisor Talk	Pretest vs. postest (experimental)	accepted
Young and Young's Information Function	Pretest ve. postest (control)	not accepted
Young and Young's Reflexive Answers	Pretest ve. postest (experimental)	accepted
Young and Young's Reflexive Anawers	Pretest ve. postest (control)	not accepted
M.O.S.A.I.C.S. Supervisor Initiatory/Re- flexive	Experimental vs. control (pretest)	not accepted
M.O.S.A.I.C.S. Analytio/Evaluative	Pretest ve. postest (control)	not accepted
M.O.S.A.I.C.S. Supervisor Structuring Teaching Cycle	Pretest vs. postest (control)	not accepted
#.O.3.A.I.C.3. Supervisor Structuring Teaching Cyole	Experimental ve. control (pretest)	not accepted

a = 0.05

TABLÉ 2

Measures of int No. 2 in the fi	erobserver agreem rst session	ent (four observe:	rs) for Blumberg's	videotaping
TESTS				
Kendall's W Woolf's G Three-factor AN	W = G = OVA (Observers x)	Kh 01 Y4		ed (\are = 0.05 ed (\are = 0.05
Source	df	sq	ns	
1 2 3 12 13 23 Residual TOTAL	3 8 14 24 42 112 336 539	3.228 58.855 1035.606 6.528 56.296 439.358 104.976 1704.850	1.076 7.356 73.971 .272 1.340 3.922 .312	d (≪ =0.05
	-) for Brown and Hof	
Source	df	SQ	MS	·
ABCD ABC AB D AB A CD A CD A D BC BC B D B CD C D	96 86 12 12 32 4 4 24 24 3 3 8 8	0.6095D+02 0.6258D+02 0.1463D+02 0.1861D+02 0.8846D+02 0.1602D+03 0.3413D+02 0.8307D+03 0.5531D+01 0.7684D+01 0.1478D+02 0.1834D+02 0.4017D+02 0.1358D+01 0.4088D+04	0.6349 0.8604 1.2188 1.5506 2.7859 5.0072 8.5332 232.6745 0.2305 0.3202 0.8141 4.9312 2.4173 5.0216 1.3583 4086.3843	
			not accepted	(0) 0.05)

TABLE 3

Parametric and n	onparametric analysis of va	riance used to -
compare treatmen	t situations in the experim	ental grown
RATIO	TEST	HYPOTHESIS
Flanders		=
Indirect/Direct	Vmusical Walking	
indirect/Direct	vide vide vide	
	Analysis of Variance by	
	Ranks	accepted
Flanders'		
Supervisor		
Answer	Kruskal-Wallis	0000-4-3
D	THE GOLD WELLED	accepted
Brown and Hoff-		
man's		
Structuring		
domain	One-factor analysis of	i
	variance	accepted
Young and Young's		
Indirect/Direct	One-factor ANOVA	ac cepted
M.O.S.A.I.C.S.		
Complex/Simple	Vmuskol Wollie	
	VI NOVAT-HATTIS	accepted
M.O.S.A.I.C.S.		
Positive/Negative	Kruskal-Wallis	accepted

TABLE 4

	rs found by two factor congruence coefficie	
FACTOR ANALYSIS I (Factors)		FACTOR ANALYSIS II (Factors)
Indirect (I)		Supervisor Answer (X)
Questioning (II)		Questions-Indirect Style (II)
Supervisor Answer (III)		Answers-Indirect- ness (IV)
Evaluation (IV)		Questions (III)
Static (V)		Maintenance (V)
Initiation (VI)		Inquiry (XI)
Teacher Communication (VII)		Indirect Reaction (VII)
Defense (VIII)		Teacher Initiation (VI)
Preoccupation (X)		Information (VIII)
Affective (XI)		Affective (IX)
Structuring (XII)		Supervisor Talk (I)

TABLE 5

1	landers' Indirec	ion of Inspector Inform t/Direct Ratio in a Sam		
PREDICTOR	Coefficient b	Standard Regression Coefficient β	R	R ²
<pre>Inspector Inform (X₁) Y = -1.875 +</pre>	-1. 875	463	.463	.214

TABLE 6

		are p		
Regression Equ of Factor Anal viour in a Sam	sation Showing Con ysis I in the Pre ple of Seville Sc	ntribution of Supervisory (test) to Variance in "Data chool Teachers	Variables ((cefficient eaching Be
PREDICTOR	Coefficient b	Standard Regression Coefficient &		
Indirectness (X) Questioning (X)	5) -10.800 15.019	579 .961	R	\mathbb{R}^2
Supervisor		• •	• 968	.938
Answer (X. Static (X. Teacher	7) -7.175 -3.402	526 280		
Communication(X		~. 320		
Y = -10.80 X ₅ +	15.02 X ₆ - 7.18	x ₇ - 3.40 x ₉ - 3.27 x ₁₁ +	42.80	
of Pactor Analy	ition Showing Cont isis I in the Post ple of Seville Sch	cribution of Supervisory V. cest) to Variance in "Data cool Teachers	ariables (C Recall" Te	pefficient aching Bel
PREDICTOR	Coefficient b	Standard Regression Coefficient &		
Indirectness(X ₅ Supervisor) 14.199	.524	R	R ²
-b 1-007	₃) -8.209	~. 804	A	n-
	8.21 X ₁₃ + 48.482	•	.8089	.6543
egression Equat f Factor Analys iour in a Sampl	tion Showing Controls II in the Pret le of Seville Scho	ribution of Supervisory Vatest) to Variance in "Date ool Teachere	riables (Co Recall Tea	efficient
REDICTOR	C_ifficient b	Standard Regression Coefficient B		
uestions(X2)	11.107	.722 599	R	R ²
newers-Indirect	'\^8/ ~0.101			
uestions(X ₇) nswers-Indirect = 11.11 X ₇ - 8	1.18 X ₈ + 42.733	/27	.7728	•5972
gression Equat:	1.18 X ₈ + 42.733	ibution of Supervisory Var		
egression Equat: Factor Analys: our in a Sample	ion Showing Contr	ribution of Supervisory Variest) to Varience in "Data ol Teachers" Standard Regress on		
egression Equat: Factor Analysicour in a Sample	ion Showing Contrib II on the Post	ribution of Supervisory Varience in "Data ol Teachers"		

REFERENCES

ALLEN, D.W. (1980) Microteaching: a personal review. British Journal of Teacher Education, 6,2,147-151.

BIERSCHENK, B. (1975) Los cambios perceptivos, evaluativos y conductuales mediante la autoconfrontación con la imagen externa (Madrid: INCIE).

BLUMBERG, A. (1974) Supervisors and Teachers. A Private - Cold War (Berkeley: McCutchan Publishing Corporation).

BORG, W. et al. (1970) The Minicourse. A Microteaching - Approach to Teacher Education (Beverly Hills: Macmillan - Educational Services, Inc.).

BROWN, G.A. & MCGARVEY, J.B. (1975) The process of supervision in microteaching. Research Intelligence, 1, 2, 49-53.

BRUSLING, Ch. (1974) Microteaching. A Concept in Development (Stockholm: Almqvist and Wiksell International). COHEN, L.H. (1972) The Use of Teacher Supervisor Individual Conference for Improving Teachers' Attitude towards Pupil (Columbia University: Univ. Microfilms 72-73.693).

COOPER, J.M. (1979) Microteaching: Forerunner to Competen cy Based Teacher Education. <u>ERIC ED</u> 170.278.

COPELAND, W.D. & DOYLE, W. (1973) Laboratory Skill Training and Student Teacher Classroom Performance. The Journal of Experimental Education, 42, 1, 16-21.

DARR, A.D. (1972) <u>Predictor of Supervisor Teacher Conference Interaction</u> (University of Akron: Univ. Microfilms 72-25695).

DOUGLAS, J.E. & PFEIFFER, I.L. (1973) Changes of Supervisor Behavior in a Microteaching Practicum. <u>Journal of Experimental Education</u>, 42, 2, 36-41.

DUSSAULT, G. et al.(1973) <u>L'analyse de l'enseignement</u> - (Montreal: Les Presses de l'Université du Québec)

FLANDERS, N.A. (1970) Analyzing Teaching Behavior (Reading: Addison-Wesley).

FRICK, T. & SEMMEL, M. (1978) Observer Agreement and Reliabilities of Classroom Observational Measures. Review of - Educational Research, 48, 1 157-184.

FULLER, F.F. & MANNING, B.A. (1973) Self-confrontation re-viewed: A conceptualization for video playback in teacher education. Review of Educational Research, 43, 4, 469-525.

GAGE, N.L. (Ed.) (1975) NIE Conference on Studies in Teaching; Panel 4, Teaching as Skill Performance. ERIC ED - 111.805.

GARCIA, J. (1978) El supervisor del C.C.T.V. (Madrid:INCIE). GRIFFITHS, R. (1975) The training of microteaching supervisors: a review. British Journal of Teacher Education, 1, 2, 191-201.

HARGIE, O.D.W. (1977) The Effectiveness of Microteaching: A Selective Review. Educational Review, 29, 2, 87-96.

HILL, K.L. (1972) The Effects of two Types of Supervision Selected Teacher Behavior when Employing Microteaching and Videotape Feedback (University of Idaho: Univ. Microfilms 72-30501).

KOZISEK, C. (1975) A Study of the Verbal Interactions of Supervisory Conferences using Videotape and Blumberg's 15 Category System (University of Denver: Univ. Microfilms - 76-1222).

LINDSEY, M. & Associates (1969) <u>Inquiry into Teaching Behavior of Supervisors in Teacher Education Laboratories</u> (New York: Teachers College Press).

MANIS, D. (1973) An Examination of the Research on the - Effectiveness of Microteaching as a Teacher Training Methodology. <u>ERIC ED</u> 083.227.

MCALEESE, W.R. & UNWIN, D. (1971) A Selective Survey of - Microteaching. <u>Programmed Learning and Educational Technology</u>, 8, 1, 10-21.

MACDONALD, F.J. (1973) Behavior Modification in Teacher - Education. In C.E. Thoresen (ed.) Behavior modification in education (Chicago: The University of Chicago Press)

MCINTYRE, D., MCLEOD, G. and GRIFFITHS, R. (eds.) (1977)-Investigations of Microteaching (London: Croom Helm).

MCKNINGHT, P.C. (1980) Microteaching: development from - 1968 to 1978. <u>British Journal of Teacher Education</u>, 6, 3, 214-227.

MEDLEY, D.M. & MITZEL, H.E. (1963) Measuring Classroom Behavior by Systematic Observation. In N.L. Gage (Ed.) <u>Handbook of Research on Teaching</u> (Chicago: Rand McNally).

MEDLEY, D.M. (1977) <u>Teacher competence and teacher effectiveness</u> (Washington: AACTE).

MOSHER, R.L. & PURPEL, D.E. (1972) <u>Supervision: The Reluctant Profession</u> (Boston: Houghton Mifflin Company).

PARRY, G. & GIBBS, I. (1974) A Bibliography of Supervision. Programmed Learning and Educational Technology, 11, 2, 97-111.

PERLBERG, A. & THEODOR, E. (1972) Patterns and Styles in the Supervision of Teachers in Individual Conferences Following Classroom Observation, <u>ERIC ED</u> 083.191.

SHAVELSON, R.J. (1973) What is the Basic Teaching Skill?-The Journal of Teacher Education, 24, 144-151.

SOBOL, F.T. (1972) Student Handbook for General Teaching Skills Clinic (Florida International University: mimeographed).

VILLAR, L.M. (1977) Microenseñanza. In L.M. Villar (Ed.) La formación del profesorado: Nuevas contribuciones (Madrid: Santillana).

VILLAR, L.M. (1982) Modelo Inductivo de enseñanza-aprendiza je. In <u>Modelos de Investigación educativa</u> (Barcelona: ICE - Universidad de Barcelona).

YOUNG, D. A. & YOUNG, D.B. (1972) Micro Teaching: Application and Research in Training Supervisory Personnel - (University of Tübingen: mimeographed paper).

WELLER, R. E. (1971) <u>Verbal Communication in Instructional Supervision</u> (New York: Teachers College Press).

WEISS, L. (1972) The cooperative Summer school: A modification of the microteaching approach to teacher training - (Stanford University: R & D Memorandum № 86)

