Скелет на документ

Тодор Дуков

Съдържание

1	Примерна глава		
	1.1	Примерна секция	2
2	Друга примерна глава		
	2.1	Примерна секция	4
	2.2	Друга примерна секция	4

Глава 1

Примерна глава

1.1 Примерна секция

Нека като за начало да дадем една аксиома.

Аксиома 1.1.1 (Аксиома за обема). Две множества са равни $m.c.m.\kappa$. съдържат едни и същи елементи m.e.

$$(\forall x)(\forall y)[x=y \leftrightarrow (\forall z)(z \in x \leftrightarrow z \in y)]$$

Сега нека дадем и една дефиниция.

Дефиниция 1.1.2 (Наредена двойка). Ако х и у са множества, то наредена двойка на х и у ще наричаме множеството $\{\{x\}, \{x,y\}\}$ и ще го бележим с $\langle x,y \rangle$.

Твърдение 1.1.3.
$$(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$

Доказателство. Ще докажем твърдението с индукция по $n \in \mathbb{N}$.

База: При n=0 се получава, че $0=\frac{0(0+1)}{2}$ 🗸

MC:
$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) \stackrel{\text{ип}}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

Лема 1.1.4 (за покачването). *Езикът е L регулярен. Тогава* ($\exists p \in \mathbb{N} \ \forall \alpha \in \Sigma^* \ \exists x, y, z \in \Sigma^*, xyz = \alpha, |xy| \le p, |y| \ge 1 \ \forall i \in \mathbb{N})(xy^iz \in L).$

Доказателство. Езикът L е регулярен.

Следователно съществува ДКА $\mathcal{A} = \langle Q, \Sigma, s, \delta, F \rangle$, такъв че $\mathcal{L}(\mathcal{A}) = L$.

Нека p = |Q| и нека q_1, \ldots, q_p са състоянията от Q. Нека $\alpha \in L$ е такава, че $|\alpha| = n$, където $n \ge p$.

Ще разбием α на $\alpha_1, \ldots, \alpha_n \in \Sigma$ (т.е. $\alpha = \alpha_1 \ldots \alpha_n$). Знаем, че съществуват $q_{i_0} = s, \ldots, q_{i_n} \in Q$, такива че $(\forall j \in \{1, \ldots, n\})(\delta(q_{i_{j-1}}, \alpha_j) = q_{i_j})$.

Нека разгледаме думата $\alpha_1 \dots \alpha_p$. За нея знаем, че по време на четенето на думата автоматът минава през p+1 състояния.

Следователно по принципа на Дирихле съществуват $t_1, t_2 \in \{1, \dots, p\}$, където $t_1 < t_2$ са такива, че $q_{i_{t_1}} = q_{i_{t_2}}$.

Нека $x = \alpha_1 \dots \alpha_{t_1}, y = \alpha_{t_1+1} \dots \alpha_{t_2}, z = \alpha_{t_2+1} \dots \alpha_n.$

Сигурни сме, че $|xy| \le p$, защото $t_2 \le p$ и че $|y| \ge 1$ понеже $t_1 \ne t_2$. Знаем, че $\delta^*(q_{i_1},y) = q_{i_{t_2}}$.

Твърдение 1.1.5. $(\forall i \in \mathbb{N})(\delta^*(q_{i_{t_1}}, y^i) = q_{i_{t_2}}).$

Доказателство. Ще докажем твърдението с индукция по $i \in \mathbb{N}$.

База: $\delta^*(q_{i_{t_1}}, \epsilon) = q_{i_{t_1}} = q_{i_{t_2}}$ \checkmark

$$\text{MC: } \delta^*(q_{i_{t_1}}, y^{i+1}) \stackrel{\text{Деф}}{=} \delta(\delta^*(q_{i_{t_1}}, y^i), y) \stackrel{\text{MII}}{=} \delta(q_{i_{t_2}}, y) = \delta(q_{i_{t_1}}, y) = q_{i_{t_2}} \qquad \qquad \Box$$

Знаем, че $\alpha=xyz\in L$. Тъй като $xyz=\alpha$, имаме че $\delta^*(s,xyz)\in F$. От тук следва, че $\delta^*(\delta^*(s,xy),z)\in F$, следователно $\delta^*(\delta^*(s,x),y),z)\in F$. $\delta^*(s,x)=q_{i_{t_1}}\Rightarrow \delta^*(\delta^*(q_{i_{t_1}},y),z)\in F$. От доказаното твърдение имаме, че $(\forall i\in\mathbb{N})(\delta^*(q_{i_{t_1}},y^i)=q_{i_{t_2}}=q_{i_{t_1}})$. Освен това знаем, че $\delta^*(q_{i_{t_2}},z)\in F$. Следователно $(\forall i\in\mathbb{N})(\delta^*(\delta^*(q_{i_{t_1}},y^i),z)\in F)$. От тук можем да заключим, че $(\forall i\in\mathbb{N})(\delta^*(\delta^*(s,x),y^i),z)\in F)$ и вървейки в обратната посока (обединяването на всички δ^*) получаваме, че $(\forall i\in\mathbb{N})(\delta^*(s,xy^iz)\in F)$, с което доказахме лемата.

 $\mathit{Забележкa}$ (Примерна забележка). $(\forall x)(\varnothing\subseteq x)$

Глава 2

Друга примерна глава

2.1 Примерна секция

Това е просто случаен текст, който си губиш времето да четеш.

2.2 Друга примерна секция

Това е просто случаен текст, който си губиш времето да четеш.