

独立性 VS 不相关

Independence versus Zero Correlation

公选课《可计量的社会》

何濯羽

2024年9月30日

01 联合分布

Joint Distribution

03

线性不相关

Uncorrelatedness

02

统计独立性

Statistical Independence

01 联合分布 Joint Distribution

之前,我们只考虑单个随机变量的概率分布和矩。本节课中,我们将研究两个(离散型)随机变量共同的概率分布以及它们之间的特殊关系。

两个变量共同的概率分布被称为"**联合分布**"(joint distribution)。对于两个离散型随机变量,它们所有可能的取值以及相应的概率可以由一张"联合分布列"展示出来。

			•	Y		
		y_1	y_2	•••	\mathcal{Y}_m	总和
X	x_1	p_{11}	p_{12}	•••	p_{1m}	p_1 .
	x_2	p_{21}	p_{22}	•••	p_{2m}	p_2 .
	:	:	:	·.	:	:
	x_n	p_{n1}	p_{n2}	•••	p_{nm}	p_n .
	总和	$p_{\cdot 1}$	$p_{\cdot 2}$	•••	$p_{\cdot m}$	

联合分布的CDF与PMF

$$F_{X,Y}(x,y) = \Pr(X \le x, Y \le y)$$
 被称为"联合累积分布函数"(joint CDF)。 $f_{X,Y}(x,y) = \Pr(X = x, Y = y)$ 被称为"联合概率质量函数"(joint PMF)。

例:		Y				X 的边际分布		
		0	2	4	6	总和	$F_{X,Y}(2,2) = \Pr(X \le 2, Y \le 2)$	
X	0	0.1	0.05	0.08	0.02	0.25	$= \Pr(X = 0, Y = 0) + \Pr(X = 0, Y = 2)$	
	1	0.15	0.1	0.05	0.05	0.35	$+ \Pr(X = 1, Y = 0) + \Pr(X = 1, Y = 2)$	
	2	0.13	0.1	0	0.07	0.3	$+ \Pr(X = 2, Y = 0) + \Pr(X = 2, Y = 2)$	
	3	0.02	0.05	0.02	0.01	0.1	= 0.1 + 0.05 + 0.15 + 0.1 + 0.13 + 0.1	
	总和	0.4	0.3	0.15	0.15	1	= 0.65	

Y的边际分布

符合概率公理的要求

02 统计独立性

Statistical Independence

定义统计独立性

如果事件 A 和 事件 B 满足

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

那么我们称 A 和 B 为独立事件 (independent events) 。

如果离散型随机变量 X 和 Y 满足

$$\Pr(X=x,Y=y)=\Pr(X=x)\cdot\Pr(Y=y)$$
,即 $f_{X,Y}(x,y)=f_X(x)\cdot f_Y(y)$, $\forall x,y\in\mathbb{R}$ 或

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \quad \forall x, y \in \mathbb{R}$$

那么我们称 X 和 Y 相互**统计独立** (statistically independent) , 或相互**随机独立** (stochastically independent) , 简称 "相互独立" 。

例:独立性的应用

已知随机变量 X 和 Y 相互独立,你能根据它们的边际分布填满整张联合分布列吗?

			Y		
		0	1	2	总和
	0	0.08	0.12	0.2	0.4
X	1	0.02	0.03	0.05	0.1
	2	0.1	0.15	0.25	0.5
	总和	0.2	0.3	0.5	

原理: 独立 \Rightarrow $\Pr(X = x, Y = y) = \Pr(X = x) \cdot \Pr(Y = y)$

强大的独立性

如果事件 A 和 B 相互独立,那么 Pr(A|B) = Pr(A) 且 Pr(B|A) = Pr(B)。 如果随机变量 X 和 Y 相互独立,那么 Pr(X = x|Y = y) = Pr(X = x) 且 Pr(Y = y|X = x) = Pr(Y = y), $\forall x, y$ 。

如果随机变量 X 和 Y 相互独立且 $g(\cdot)$ 和 $h(\cdot)$ 是两个函数,那么 g(X) 和 h(Y) 也相互独立。

如果随机变量 X 和 Y 相互独立且存在两个函数 $g: \mathbb{R} \to \mathbb{R}$ 和 $h: \mathbb{R} \to \mathbb{R}$, 那么

 $E(XY) = E(X) \cdot E(Y)$

且

$$E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)]$$

注意: 一般情况下, $E(XY) \neq E(X) \cdot E(Y)$.

事件 $A \cap B$ 相互独立 $\Leftrightarrow \Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$

事件 $A \cap B = \emptyset$

从数学定义上看,"独立"和"互斥"是两个完全不同的概念。

如果 Pr(A) > 0 且 Pr(B) > 0,那么

- \blacktriangleright 事件 A 和 B 相互独立 ⇒事件 A 和 B 不互斥
- ightharpoonup 事件 A 和 B 互斥 \Rightarrow 事件 A 和 B 不相互独立

证明:

- 当 A 和 B 相互独立时,则必有 Pr(A∩B) = Pr(A)·Pr(B)。
 【反证法】假设 A 和 B 互斥,则 A∩B = Ø,这意味着
 Pr(A∩B) = Pr(Ø) = 0。这与 Pr(A∩B) = Pr(A)·
 Pr(B) > 0 相悖,因此,假设错误,即 A 和 B 不互斥。
- 》 当 A 和 B 互斥时,则必有 $A \cap B = \emptyset$ 。因为 $Pr(A \cap B) = Pr(\emptyset) = 0$ 和 $Pr(A) \cdot Pr(B) > 0$,所以 $Pr(A \cap B) \neq Pr(A) \cdot Pr(B)$,即 A 和 B 不相互独立。

03

线性不相关

Uncorrelatedness

协方差的定义与作用

随机变量 X 与 Y 的<mark>协方差</mark> (covariance) 是

$$\sigma_{X,Y} = Cov(X,Y) = E\{[X - E(X)] \cdot [Y - E(Y)]\} = E(XY) - E(X) \cdot E(Y)$$

我们可以把 Cov(X,Y) 理解为 X = Y 所服从的**联合分布的二阶中心矩**。

协方差可以衡量两个随机变量的线性相关程度 (linear relatedness):

- ightharpoonup Cov(X,Y) > 0意味着 X 与 Y 线性正相关。
- ightharpoonup Cov(X,Y) < 0 意味着 X 与 Y 线性<mark>负相关</mark>。
- \triangleright Cov(X,Y) = 0 意味着 X = Y 线性不相关。

协方差的范围是 $(-\infty, +\infty)$ 。可是,协方差具有与方差相同的问题:因为随机变量的单位变化 势必导致协方差的大小变化,所以协方差的数值大小并不能有效反映线性相关程度的大小。

为了化解单位变量带来的影响,我们创造了"标准差"以对应方差。相似地,我们也可以创造新的统计工具以对应协方差——"相关系数"!

随机变量 X 与 Y 的相关系数 (correlation coefficient) 是

$$\rho_{X,Y} = Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

相关系数的含义

该结论的证明需要使用柯西-施瓦茨不等式,在此不做展示。

相关系数 Corr(X,Y) 的范围是 [-1,1],其含义为

- Corr(X,Y) = 1 意味着 X = Y 完美线性正相关。
- $Corr(X,Y) \in (0,1)$ 意味着 $X \to Y$ 线性正相关。
- Corr(X,Y) = 0 意味着 X = Y 线性不相关。
- $Corr(X,Y) \in (-1,0)$ 意味着 X = Y 线性负相关。
- Cov(X,Y) = -1 意味着 X = 5 完美线性负相关。

如果 Cov(X,Y) = 0 或 Corr(X,Y) = 0,那么我们称随机变量 X 与 Y 线性独立 (linear independent) 或线性不相关 (uncorrelated) 。

当 Y 与 X 相互独立时, Y 必定与 X 线性不相关。

证:
$$Cov(X,Y) = E\{[X - E(X)] \cdot [Y - E(Y)]\}$$

$$= E[XY - X \cdot E(Y) - Y \cdot E(X) + E(X) \cdot E(Y)]$$

$$= E(XY) - E(X) \cdot E(Y) - E(Y) \cdot E(X) + E(X) \cdot E(Y)$$

$$= E(XY) - E(X) \cdot E(Y)$$

$$= E(X) \cdot E(Y) - E(X) \cdot E(Y)$$

$$= 0$$
独立性
$$= 0$$

当 Y = X 线性不相关时, $Y = \mathbb{Z}$ 与相互独立。

	例:		X		
		-1	0	1	总和
Y	0	0.1	0.4	0.1	0.6
Ι	1	0.2	0	0.2	0.4
_	总和	0.3	0.4	0.3	

计算可得

$$E(X) = 0,$$
 $E(Y) = 0.4$ $Cov(X, Y) = E[(X - 0)(Y - 0.4)] = 0$

但是,

$$Pr(X = -1, Y = 0) = 0.1 \neq 0.3 \times 0.6 = Pr(X = -1) \cdot Pr(Y = 0)$$

因此, Y 与 X 线性不相关, 但 Y 并不与 X 相互独立。

总结

统计独立(简称"独立")是一个非常强劲的变量关系,**强于线性不相关**。许多统计学的定理都建立在"独立"假设上。可是在实际研究中,独立是难以严格证明的。因此,许多研究者退而求其次,只证明线性不相关(或"均值独立"),用以说明独立"可能"成立。

感谢聆听!

Thanks for your listening!

公选课《可计量的社会》

何濯羽

2024年9月30日