Công thức giải nhanh trắc nghiệm toán **THPT QUÔC GIA 2018**

TÓM TẮT LÝ THUYẾT ĐAI SỐ - GIẢI TÍCH

Công thức lượng giác 1

Hệ thức cơ bản 1.1

$$\bullet \sin^2 x + \cos^2 x = 1$$

•
$$\sin^2 x + \cos^2 x = 1$$

• $\tan x = \frac{\sin x}{\cos x}$
• $\cot x = \frac{\cos x}{\sin x}$

$$\bullet 1 + \cot^2 x = \frac{1}{\sin^2 x}$$

$$\bullet \tan x = \frac{\sin x}{\cos x}$$

$$\bullet \cot x = \frac{\cos x}{\sin x}$$

$$\bullet \tan x \cdot \cot x = 1$$

Công thức cộng

$$\bullet \sin(a \pm b) = \sin a \cos b \pm \sin b \cos a$$

$$\bullet \tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$$

$$\bullet \cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

Công thức nhân đôi

$$\bullet \sin 2x = 2\sin x \cos x$$

$$\bullet \tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

1.4 Công thức nhân ba

$$\bullet \cos 3x = 4\cos^3 x - 3\cos x$$

$$\bullet \sin 3x = 3\sin x - 4\sin^3 x$$

1.5 Công thức hạ bậc

$$\bullet \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\bullet \sin^2 x = \frac{1 - \cos 2x}{2}$$

Công thức tính theo $t = \tan \frac{x}{2}$

$$\bullet \sin x = \frac{2t}{1+t^2}$$

$$\bullet \cos x = \frac{1 - t^2}{1 + t^2}$$

$$\bullet \tan x = \frac{2t}{1 - t^2}$$

Công thức tổng thành tích

•
$$\sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2}$$

$$\bullet \cos a + \cos b = 2\cos \frac{a+b}{2}\cos \frac{a-b}{2}$$

$$\bullet \sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}$$

$$\bullet \cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$$

$$\bullet \cos a - \cos b = -2\sin\frac{\overline{a} + b}{2}\sin\frac{\overline{a} - b}{2}$$

Công thức tích thành tổng

$$\bullet \cos a \cos b = \frac{1}{2} [\cos(a-b) + \cos(a+b)]$$

$$\bullet \sin a \cos b = \frac{1}{2} [\sin(a-b) + \sin(a+b)]$$

•
$$\cos a \cos b = \frac{1}{2} [\cos(a-b) + \cos(a+b)]$$
 • $\sin a \cos b = \frac{1}{2} [\sin(a-b) + \sin(a+b)]$

Một số công thức khác 1.9

$$\bullet \sin x + \cos x = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$$

$$\bullet(\sin x \pm \cos x)^2 = 1 \pm \sin 2x$$

$$\bullet \sin^6 x + \cos^6 x = 1 - \frac{3\sin^2 2x}{4}$$

$$\bullet \sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right)$$

$$\bullet \sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}$$

2 Các lý thuyết về đao hàm

Định nghĩa và các tính chất 2.1

1. **Định nghĩa.** Cho hàm số y = f(x) xác định trên khoảng $(a, b), x_0 \in (a, b), x_0 +$ $\Delta x \in (a,b)$, nếu tồn tại giới hạn (hữu hạn)

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

được gọi là đạo hàm của f(x) tại x_0 , kí hiệu là $f'(x_0)$ hay $y'(x_0)$, khi đó

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

2. Các qui tắc tính đao hàm.

(a)
$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$
.

- (b) [f(x).g(x)]' = f'(x)g(x) + f(x)g'(x).
- (c) [kf(x)]' = kf'(x) với $k \in \mathbb{R}$.

(d)
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$
 với $g(x) \neq 0$.

(e)
$$y'_x = y'_u.u'_x$$
 với $y = y(u), u = u(x).$

2.2 Bảng các đạo hàm cơ bản

Đạo hàm của hàm sơ cấp	Đạo hàm của hàm hợp $u=u(x)$
• $(c)' = 0$ với $c \in \mathbb{R}$	
$\bullet (x^{\alpha})' = \alpha . x^{\alpha - 1}$	$\bullet (u^{\alpha})' = \alpha . u^{\alpha - 1} u'$
$\bullet \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$\bullet \left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
$\bullet \ (\sqrt{x})' = \frac{1}{2\sqrt{x}}$	$\bullet \ (\sqrt{u})' = \frac{u'}{2\sqrt{u}}$
$\bullet (e^x)' = e^x$	$\bullet \ (e^u)' = e^u.u'$
$\bullet \ (a^x)' = a^x \ln a$	$\bullet (a^u)' = a^u \cdot \ln a \cdot u'$
$\bullet \ (\sin x)' = \cos x$	$\bullet \ (\sin u)' = u' \cdot \cos u$
$\bullet (\cos x)' = -\sin x$	$\bullet (\cos u)' = -u' \cdot \sin u$
$\bullet (\tan x)' = \frac{1}{\cos^2 x}$	$\bullet \ (\tan u)' = \frac{u'}{\cos^2 u}$
$\bullet \ (\cot x)' = -\frac{1}{\sin^2 x}$	$\bullet (\cot u)' = -u' \cdot \frac{1}{\sin^2 u}$

2.3 Vi phân

Cho hàm số y = f(x) xác định trên (a, b) và có đạo hàm tại $x \in (a, b)$. Giả sử Δx là số gia của x sao cho $x + \Delta x \in (a, b)$. Tích $f'(x)\Delta x$ được gọi là vi phân của hàm số

f(x) tại x, ứng với số gia Δx , ký hiệu là df(x) hay dy. Như vậy dy = df(x) = f'(x)dx.

3 Lý thuyết khảo sát hàm số

3.1 Tính đồng biến - nghịch biến của hàm số

Giả sử hàm f(x) có đạo hàm trên khoảng (a;b), khi đó:

- 1. f'(x) > 0, $\forall x \in (a,b)$ thì f(x) đồng biến trên khoảng (a,b).
- 2. $f'(x) < 0, \forall x \in (a, b)$ thì f(x) nghịch biến trên khoảng (a, b).
- 3. f(x) đồng biến trên khoảng (a,b) thì $f'(x) \ge 0, \forall x \in (a,b)$.
- 4. f(x) nghịch biến trên khoảng (a,b) thì $f'(x) \leq 0, \forall x \in (a,b)$.

3.2 Cực trị của hàm số

Giả sử hàm f(x) có đạo hàm trên khoảng (a;b) và $x_0 \in (a;b)$

- 1. Nếu $\begin{cases} f'(x) > 0, \forall x \in (x_0 h; x_0) \\ f'(x) < 0, \forall x \in (x_0; x_0 + h) \end{cases}$ thì x_0 là điểm cực đại của f(x).
- 2. Nếu $\begin{cases} f'(x) < 0, \forall x \in (x_0 h; x_0) \\ f'(x) > 0, \forall x \in (x_0; x_0 + h) \end{cases}$ thì x_0 là điểm cực tiểu của f(x).
- 3. Nếu $\begin{cases} f'(x_0) = 0 \\ f''(x_0) > 0 \end{cases}$ thì x_0 là điểm cực đại của f(x).
- 4. Nếu $\begin{cases} f'(x_0) = 0 \\ f''(x_0) < 0 \end{cases}$ thì x_0 là điểm cực tiểu của f(x).

3.3 Giá trị lớn nhất - nhỏ nhất của hàm số

- 1. Xét trên một đoan:
 - (a) Tìm $x_i \in [a, b], i = 1, 2, ..., n$ là các điểm tại đó có đạo hàm bằng 0 hoặc không xác định.
 - (b) Tính $f(a), f(b), f(x_i), \text{ với } i = 1, 2, ..., n.$
 - (c) So sánh để suy ra giá trị lớn nhất và giá trị nhỏ nhất.
- 2. Xét trên một khoảng : Dùng bảng biến thiên để khảo sát hàm số.

3.4 Đường tiệm cận

Kí hiệu (\mathcal{C}) là đồ thị của hàm số y = f(x).

1. Đường tiệm cận đứng.

Nếu một trong các điều kiện sau xảy ra

$$\lim_{x \to x_0^+} f(x) = +\infty$$

$$\lim_{x \to x_0^+} f(x) = -\infty$$

$$\lim_{x \to x_0^-} f(x) = +\infty$$

$$\lim_{x \to x_0^-} f(x) = -\infty$$

thì đường thẳng $x = x_0$ là tiệm cận đứng của (C).

2. Đường tiệm cận ngang.

Nếu $\lim_{x\to +\infty} f(x)=y_0$ hoặc $\lim_{x\to -\infty} f(x)=y_0$ thì đường thẳng $y=y_0$ là tiệm cận ngang của (\mathcal{C}) .

3.5 Các bước khảo sát hàm số y = f(x)

- 1. Tìm tập xác định của hàm số.
- 2. Sự biến thiên
 - (a) Chiều biến thiên
 - i. Tính y'.
 - ii. Tìm các nghiệm của phương trình y'=0 và các điểm tại đó y' không xác định.
 - iii. Xét dấu y' và suy ra chiều biến thiên của hàm số.
 - (b) Tìm các điểm cực tri (nếu có).
 - (c) Tìm các giới hạn vô cực, các giới hạn tại $+\infty, -\infty$ và tại các điểm mà hàm số không xác định. Suy ra các đường tiệm cận đứng và ngang (nếu có).
 - (d) Lập bảng biến thiên
- 3. Vẽ đồ thị: Tính thêm tọa độ một số điểm đặc biệt, lập bảng giá trị và dựa vào bảng biến thiên để vẽ đồ thị.

3.6 Tương giao của hai đồ thị

1. Biện luận số nghiệm của phương trình bằng đồ thị.

Giả sử (C_1) là đồ thị của hàm số y = f(x) và (C_2) là đồ thị của hàm số y = g(x). Khi đó số nghiệm của phương trình f(x) = g(x) tương ứng với số giao điểm của (C_1) và (C_2) .

2. Tiếp tuyến với đồ thi của hàm số.

(a) **Dang 1.**

Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x):

- i. Tại một điểm $(x_0; y_0)$ trên đồ thị.
- ii. Tại điểm có hoành độ x_0 trên đồ thị.
- iii. Tại điểm có tung độ y_0 trên đồ thị.
- iv. Tại giao điểm của đồ thị với trục tung.
- v. Tại giao điểm của đồ thị với trục hoành.

Phương pháp giải: Tìm đủ các giá trị x_0 ; $y_0 = f(x_0)$ và $f'(x_0)$. Khi đó, phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại $(x_0; y_0)$ là

$$y - y_0 = f'(x_0)(x - x_0)$$

(b) **Dạng 2.**

Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) biết tiếp tuyến song song hoặc vuông góc với đường thẳng y=ax+b. Phương pháp giải như sau

- i. Tính y' = f'(x).
- ii. Nếu tiếp tuyến song song với đường thẳng y=ax+b thì hệ số góc của tiếp tuyến bằng a, tức là giải phương trình f'(x)=a để tìm x_0 . Nếu tiếp tuyến vuông góc với đường thẳng y=ax+b thì hệ số góc của tiếp tuyến bằng $-\frac{1}{a}$, tức là giải phương trình $f'(x)=-\frac{1}{a}$ để tìm x_0 .
- iii. Tính $y_0 = f(x_0)$.

iv. Thay vào phương trình tiếp tuyến $y - y_0 = f'(x_0)(x - x_0)$.

(c) **Dang 3.**

Viết phương trình tiếp tuyến đi qua một điểm cho trước đến đồ thị hàm số y=f(x). Phương pháp sử dụng điều kiện tiếp xúc: Đồ thị hàm số y=f(x) và đường thẳng y=g(x) tiếp xúc tại điểm có hoành độ x_0 khi x_0 là nghiệm của hệ

$$\begin{cases} f(x) = g(x) \\ f'(x) = g'(x) \end{cases}$$

4 Các lý thuyết về nguyên hàm

4.1 Nguyên hàm và các tính chất

hàm của hàm f(x) trên khoảng K nếu

$$F'(x) = f(x), \forall x \in K.$$

- 2. Mọi hàm số liên tục trên khoảng $K \subseteq \mathbb{R}$ đều có nguyên hàm trên đoạn đó.
- 3. Nếu F(x) là một nguyên hàm của hàm số f(x) trên khoảng $K \subseteq \mathbb{R}$ thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K. Ngược lại, nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C với C là một hằng số. Kí hiệu họ tất cả các nguyên hàm của hàm số f(x) là $\int f(x) \mathrm{d}x$, đọc là tích phân bất định của f(x). Khi đó $\int f(x) \mathrm{d}x = F(x) + C$ với $C \in \mathbb{R}$.

4. Các tính chất cơ bản

- (a) $\int f'(x)dx = f(x) + C$ với C là hằng số thực.
- (b) $\int kf(x)dx = k \int f(x)dx$ với k là hằng số thực.
- (c) $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$.

4.2 Phương pháp tính nguyên hàm

- 1. **Phương pháp đổi biến số.** Nếu $\int f(u)du = F(u) + C$ và u = u(x) là hàm số có đạo hàm liên tục thì $\int f(u(x))u'(x)du = F(u(x)) + C$.
- 2. Phương pháp tích phân từng phần. Nếu hai hàm số u=u(x) và v=v(x) có đạo hàm liên tục trên K thì $\int u(x)v'(x)\mathrm{d}u=u(x)v(x)-\int u'(x)v(x)\mathrm{d}u.$

4.3 Bảng các nguyên hàm cơ bản

Nguyên hàm của hàm sơ cấp	Nguyên hàm của hàm hợp $u=u(x)$
$\bullet \int 0 \mathrm{d}x = C$	$\bullet \int 0 \mathrm{d}u = C$
$\bullet \int \mathrm{d}x = x + C$	$\bullet \int \mathrm{d}u = u + C$

	$\bullet \int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C$
$ \bullet \int \frac{1}{x} dx = \ln x + C $	$ \bullet \int \frac{1}{u} du = \ln u + C $
	$\bullet \int e^u \mathrm{d}u = e^u + C$
	$\bullet \int a^u \mathrm{d}u = \frac{a^u}{\ln a} + C$
$\bullet \int \sin x \mathrm{d}x = -\cos x + C$	$ \bullet \int \sin u \mathrm{d}u = -\cos u + C $

5 Các lý thuyết về tích phân

5.1 Tích phân và các tính chất

1. Định nghĩa. Cho hàm số f(x) liên tục trên đoạn [a,b]. Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a,b]. Hiệu số F(b)-F(a) được gọi là tích phân từ a đến b (hay tích phân xác định trên [a,b]) của hàm số f(x). Ký hiệu là $\int_a^b f(x) \mathrm{d}x$. Khi đó

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$

Trường hợp a=b ta định nghĩa $\int_a^a f(x) \mathrm{d}x=0$. Trường hợp a>b ta định nghĩa $\int_a^b f(x) \mathrm{d}x=-\int_b^a f(x) \mathrm{d}x$.

2. Các tính chất của tích phân.

(a)
$$\int_a^b kf(x)dx = k \int_a^b f(x)dx$$
 với k là hằng số.

(b)
$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx.$$

(c)
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx \text{ v\'oi } a < c < b.$$

(d) Tích phân không phụ thuộc vào chữ dùng làm biến số trong dấu tích phân, tức là

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt = \cdots$$

5.2 Phương pháp tính tích phân

1. Phương pháp đổi biến số

(a) Giả sử hàm số $x=\varphi(t)$ có đạo hàm liên tục trên đoạn $[\alpha,\beta]$ sao cho $\varphi(\alpha)=a,\,\varphi(\beta)=b$ và $a\leqslant\varphi(t)\leqslant b, \forall t\in[\alpha,\beta].$ Khi đó

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt$$

(b) Giả sử hàm số u=u(x) có đạo hàm liên tục trên đoạn [a,b] sao cho $\alpha\leqslant u(x)\leqslant \beta, \forall x\in [a,b].$ Nếu $f(x)=g(u(x))u'(x), \forall x\in [a,b],$ trong đó g(u) liên tục trên đoạn $[\alpha,\beta]$ thì

$$\int_{a}^{b} f(x) dx = \int_{u(a)}^{u(b)} g(u) du$$

2. Phương pháp tích phân từng phần. Nếu u=u(x) và v=v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a,b] thì

$$\int_a^b u(x)v'(x)\mathrm{d}x = \left[u(x)v(x)\right]\Big|_a^b - \int_a^b u'(x)v(x)\mathrm{d}x$$

hoăc

$$\left| \int_{a}^{b} u \, \mathrm{d}v = [uv] \right|_{a}^{b} - \int_{a}^{b} v \, \mathrm{d}u \, .$$

5.3 Ứng dụng của tích phân

1. Tính diện tích của hình phẳng

(a) Diện tích hình phẳng giới hạn bởi đồ thị của hàm số y=f(x), hai đường thẳng x=a, x=b và trục Ox là

(b) Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y=f(x),y=g(x) và hai đường thẳng x=a,x=b là

2. Tính thể tích của vật thể tròn xoay

- (a) Giả sử hình phẳng giới hạn bởi các đường y=f(x), y=0 (trục Ox), x=a, x=b khi quay quanh trục Ox tạo thành một vật thể tròn xoay. Thể tích của vật thể đó là $V=\pi\int_a^b [f(x)]^2 \mathrm{d}x$.
- (b) Xét đường cong có phương trình x=g(y) liên tục với mọi $y\in [a;b]$. Nếu hình giới hạn bởi các đường x=g(y), x=0 (trục Oy), y=a, y=b quay quanh trục Oy thì thể tích của vật thể tròn xoay tạo thành xác định bởi $V=\pi\int_a^b [g(y)]^2\mathrm{d}y$.

6 Lũy thừa và logarit

6.1 Lũy thừa

1. Lũy thừa với số mũ nguyên dương. Với $a \in \mathbb{R}, n \in \mathbb{N}^*$ ta có

$$a^n = \underbrace{a.a...a}_{n \text{ thừa số}}$$

2. Lũy thừa với số mũ nguyên âm. Với $a \neq 0, n \in \mathbb{N}$ ta có

$$a^{-n} = \frac{1}{a^n}$$

- 3. Lũy thừa với số mũ 0. Với $a \neq 0$ ta có $a^0 = 1$.
- 4. Căn bậc n.

Cho số thực b và số nguyên dương $n \ge 2$. Khi đó

- (a) Số a được gọi là căn bậc n của b nếu $a^n = b$, ký hiệu $a = \sqrt[n]{b}$.
- (b) Khi n lẻ thì tồn tại duy nhất $\sqrt[n]{b}$ với mọi $b \in \mathbb{R}$.
- (c) Khi n chẵn thì
 - i. Nếu b < 0 thì không tồn tại căn bậc n của b.
 - ii. Nếu b = 0 thì có một căn $\sqrt[n]{0} = 0$.
 - iii. Nếu b > 0 thì có hai căn $\sqrt[n]{b}$ và $-\sqrt[n]{b}$.
- 5. Lũy thừa với số mũ hữu tỉ. Với $a>0, m,n\in\mathbb{Z}, n\geqslant 2,$ ta có

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

- 6. **Lũy thừa với số mũ vô tỉ.** Cho a > 0, α là một số vô tỉ và (r_n) là một dãy số hữu tỉ sao cho $\lim_{n \to +\infty} r_n = a$, khi đó $a^{\alpha} = \lim_{n \to +\infty} a^{r_n}$.
- 7. Các tính chất. Cho $a > 0, b > 0, \alpha, \beta \in \mathbb{R}$, khi đó

(a)
$$a^{\alpha}.a^{\beta} = a^{\alpha+\beta}; \frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}.$$

(b)
$$(ab)^{\alpha} = a^{\alpha}.b^{\alpha}; \left(\frac{a}{b}\right)^{\alpha} = \frac{a^{\alpha}}{b^{\alpha}}; (a^{\alpha})^{\beta} = a^{\alpha\beta}.$$

- (c) Nếu a > 1 thì $a^{\alpha} > a^{\beta} \iff \alpha > \beta$.
- (d) Nếu 0 < a < 1 thì $a^{\alpha} > a^{\beta} \Longleftrightarrow \alpha < \beta$.

6.2 Logarit

1. Định nghĩa. Cho $a>0, b>0, a\neq 1,$ số α thỏa đẳng thức $a^\alpha=b$ được gọi là logarit cơ số a của b và ký hiệu là $\log_a b$, như vậy

$$\alpha = \log_a b \Longleftrightarrow a^{\alpha} = b$$

2. Các tính chất

$$\log_a 1 = 0$$
; $\log_a a = 1$; $a^{\log_a b} = b$; $\log_a a^{\alpha} = \alpha$

- 3. Các quy tắc
 - (a) Với các số $a, b_1, b_2 > 0, a \neq 1$, ta có

$$\log_a(b_1b_2) = \log_a b_1 + \log_a b_2$$
$$\log_a \left(\frac{b_1}{b_2}\right) = \log_a b_1 - \log_a b_2$$

(b) Với các số $a,b>0, a\neq 1, \alpha\in\mathbb{R}, n\in\mathbb{N}^*,$ ta có

$$\log_a\left(\frac{1}{b}\right) = -\log_a b; \ \log_a b^\alpha = \alpha \log_a b; \ \log_a \sqrt[n]{b} = \frac{1}{n} \log_a b$$

(c) Với các số $a,b,c>0,a\neq 1,c\neq 1$ ta có

$$\log_a b = \frac{\log_c b}{\log_c a}; \ \log_a b = \frac{1}{\log_b a} (b \neq 1); \ \log_{a^\alpha} b = \frac{1}{\alpha} \log_a b (\alpha \neq 0)$$

4. Logarit thập phân và logarit tự nhiên. Với x>0 ta viết gọn

$$\log_{10} x = \lg x$$
 hoặc $\log_{10} x = \log x$; $\log_e x = \ln x$

6.3 Phương trình mũ và phương trình logarit

1. Phương trình mũ dạng cơ bản

$$a^x = b \ (a > 0, a \neq 1)$$

- (a) Nếu $b \leq 0$ thì phương trình vô nghiệm.
- (b) Nếu b>0 thì phương trình có nghiệm duy nhất $x=\log_a b$.
- (c) Các phương pháp để biến đổi về dạng cơ bản: Đưa về cùng cơ số, đặt ẩn phụ, lấy logarit hai vế, ...

2. Phương trình logarit dạng cơ bản

$$\log_a x = b \ (a > 0, a \neq 1)$$

- (a) Phương trình logarit cơ bản luôn có nghiệm duy nhất $x=a^b$.
- (b) Các phương pháp để biến đổi về dạng cơ bản: Đưa về cùng cơ số, đặt ẩn phụ, mũ hóa hai vế, ...

6.4 Bất phương trình mũ và bất phương trình logarit

- 1. Bất phương trình mũ cơ bản
 - (a) Nếu a > 1 thì $a^{f(x)} \ge a^{g(x)} \iff f(x) \ge g(x)$ (tính chất đồng biến).
 - (b) Nếu 0 < a < 1 thì $a^{f(x)} \ge a^{g(x)} \iff f(x) \le g(x)$ (tính chất nghịch biến).
- 2. Bất phương trình logarit cơ bản
 - (a) Nếu a>1 thì $\log_a f(x) \geqq \log_a g(x) \Longleftrightarrow f(x) \geqq g(x)>0$ (tính chất đồng biến).
 - (b) Nếu 0 < a < 1 thì $\log_a f(x) \ge \log_a g(x) \Longleftrightarrow 0 < f(x) \le g(x)$ (tính chất nghịch biến).

7 Số phức

7.1 Cơ bản về số phức

1. Số phức có dạng

$$z = a + bi$$

trong đó

- (a) a là phần thực, b là phần ảo, $a, b \in \mathbb{R}$.
- (b) i là đơn vị ảo và $i^2 = -1$.
- 2. Hai số phức bằng nhau khi và chỉ khi phần thực và phần ảo tương ứng bằng nhau, tức là

$$a + bi = c + di \Leftrightarrow \begin{cases} a = c \\ b = d \end{cases}$$

3. Số phức z=a+bi được biểu diễn bởi điểm M(a;b) trên mặt phẳng tọa độ \overrightarrow{Oxy} . Khi đó, độ dài của \overrightarrow{OM} gọi là mô đun của số phức z đó, tức là

$$|\overrightarrow{z}| = \left| \overrightarrow{OM} \right| = \sqrt{a^2 + b^2}.$$

4. Số phức liên hợp của z = a + bi là $\overline{z} = a - bi$.

7.2 Các phép toán với số phức

- 1. Phép cộng: (a+bi) + (c+di) = (a+c) + (b+d)i.
- 2. Phép trừ: (a + bi) (c + di) = (a c) + (b d)i.
- 3. Phép nhân:

$$(a+bi)(c+di) = ac + adi + cbi + bdi^{2}$$
$$= (ac - bd) + (ad + bc)i.$$

4. Phép chia:

$$\frac{(a+bi)}{(c+di)} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(a+bi)(c-di)}{(c^2+d^2)}.$$

7.3 Phương trình bậc hai với hệ số thực

- 1. Số thực a<0 vẫn có các căn bậc hai là $i\sqrt{|a|}$ và $-i\sqrt{|a|}.$
- 2. Xét phương trình bậc hai

$$ax^2 + bx + c = 0$$

trong đó $a,b,c\in\mathbb{R},a\neq0.$ Đặt $\Delta=b^2-4ac$

- (a) Nếu $\Delta = 0$ thì phương trình có nghiệm kép (thực) $x = -\frac{b}{2a}$.
- (b) Nếu $\Delta>0$ thì phương trình có 2 nghiệm thực $x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$.
- (c) Nếu $\Delta < 0$ thì phương trình có 2 nghiệm phức $x_{1,2} = \frac{-b \pm i \sqrt{|\Delta|}}{2a}$