How Powerful are Graph Neural Networks?

Keyulu Xu*, Weihua Hu*, Jure Leskovec, Stefanie Jegelka

Reporter: 邵云帆 (19210240032)

yfshao19@fudan.edu.cn

Introduction

- Success of deep learning on simple structured data
 - grids/images
 - sequences/text
 - more ...
- Networks/graphs allow us to model complex domains
 - Social networks
 - Chemical structure
 - Biomedicine
 - more ...

Scene graph

- A structured formal graphical representation of an image.
- Encodes objects as nodes connected via pairwise relationships as edges.

Scene graph to image:

- Image Generation from Scene Graphs (CVPR 2018)
 - Generate scene layouts.
 - Use layouts generate images.

Image to scene graph

- Scene Graph Generation by Iterative Message Passing (CVPR 2018)
 - Use Region Proposal Network (RPN) generates bounding box proposals.
 - Predict node labels and edge labels.

VQA

- <u>Learning Conditioned Graph Structures for Interpretable Visual Question Answering</u>. (NeurIPS 2018)
- Input a question encoding, and a set of object bounding boxes.
- Obtain graph representations to learn image features.

Graph Representation Learning

- Input: Graph with node features
- Task: Node/Graph classification
- Goal: Learning node/graph embeddings that capture structure information

Graph Neural Networks (GNNs)

Input:

Graph G = (V, E) with Node features X_v

GNN: Learning graph features using graph structure and node features.

Aggregate

$$a_v^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ h_u^{(k-1)} : u \in \mathcal{N}(v) \right\} \right)$$

Combine

$$h_v^{(k)} = \text{COMBINE}^{(k)} \left(h_v^{(k-1)}, a_v^{(k)} \right)$$

Readout

$$h_G = \text{READOUT}(\{h_v^{(K)} \mid v \in G\})$$

Graph Neural Networks (GNNs)

Different variants of graph neural networks.

Variant	Aggregator	Updater		
ChebNet	$\mathbf{N}_k = \mathbf{T}_k(\tilde{\mathbf{L}})\mathbf{X}$	$\mathbf{H} = \sum_{k=0}^{K} \mathbf{N}_k \mathbf{\Theta}_k$		
1^{st} -order model	$egin{aligned} \mathbf{N}_0 &= \mathbf{X} \ \mathbf{N}_1 &= \mathbf{D}^{-rac{1}{2}} \mathbf{A} \mathbf{D}^{-rac{1}{2}} \mathbf{X} \end{aligned}$	$\mathbf{H} = \mathbf{N}_0 \mathbf{\Theta}_0 + \mathbf{N}_1 \mathbf{\Theta}_1$		
Single parameter	$\mathbf{N} = (\mathbf{I}_N + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}) \mathbf{X}$	$\mathbf{H}=\mathbf{N}\mathbf{\Theta}$		
GCN	$\mathbf{N} = ilde{\mathbf{D}}^{-rac{1}{2}} ilde{\mathbf{A}} ilde{\mathbf{D}}^{-rac{1}{2}} \mathbf{X}$	$\mathbf{H}=\mathbf{N}\mathbf{\Theta}$		
Neural FPs	$\mathbf{h}_{\mathcal{N}_v}^t = \mathbf{h}_v^{t-1} + \sum_{k=1}^{\mathcal{N}_v} \mathbf{h}_k^{t-1}$	$\mathbf{h}_v^t = \sigma(\mathbf{h}_{\mathcal{N}_v}^t \mathbf{W}_L^{\mathcal{N}_v})$		
DCNN	Node classification: $\mathbf{N} = \mathbf{P}^* \mathbf{X}$ Graph classification: $\mathbf{N} = 1_N^T \mathbf{P}^* \mathbf{X} / N$	$\mathbf{H} = f\left(\mathbf{W}^c \odot \mathbf{N}\right)$		
GraphSAGE	$\mathbf{h}_{\mathcal{N}_v}^t = \text{AGGREGATE}_t \left(\left\{ \mathbf{h}_u^{t-1}, \forall u \in \mathcal{N}_v \right\} \right)$	$\mathbf{h}_v^t = \sigma \left(\mathbf{W}^t \cdot [\mathbf{h}_v^{t-1} \mathbf{h}_{\mathcal{N}_v}^t] \right)$		
	ChebNet 1st-order model Single parameter GCN Neural FPs DCNN	ChebNet $\mathbf{N}_k = \mathbf{T}_k(\tilde{\mathbf{L}})\mathbf{X}$ $1^{st}\text{-order model} \qquad \mathbf{N}_0 = \mathbf{X}$ $\mathbf{N}_1 = \mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\mathbf{X}$ Single $\mathbf{N} = (\mathbf{I}_N + \mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}})\mathbf{X}$ $\mathbf{CCN} \qquad \mathbf{N} = \tilde{\mathbf{D}}^{-\frac{1}{2}}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-\frac{1}{2}}\mathbf{X}$ Neural FPs $\mathbf{h}_{\mathcal{N}_v}^t = \mathbf{h}_v^{t-1} + \sum_{k=1}^{\mathcal{N}_v} \mathbf{h}_k^{t-1}$ $\mathbf{Node classification:}$ $\mathbf{N} = \mathbf{P}^*\mathbf{X}$ Graph classification: $\mathbf{N} = 1_N^T \mathbf{P}^*\mathbf{X}/N$		

<u>Graph Neural Networks: A Review of Methods and Applications</u>. J. Zhou, G. Cui, Z. Zhang, et al.

Graph Neural Networks (GNNs)

Graph Attention Networks	GAT	$\alpha_{vk} = \frac{\exp(\text{LeakyReLU}(\mathbf{a}^T[\mathbf{W}\mathbf{h}_v \ \mathbf{W}\mathbf{h}_k]))}{\sum_{j \in \mathcal{N}_v} \exp(\text{LeakyReLU}(\mathbf{a}^T[\mathbf{W}\mathbf{h}_v \ \mathbf{W}\mathbf{h}_j]))}$ $\mathbf{h}_{\mathcal{N}_v}^t = \sigma\left(\sum_{k \in \mathcal{N}_v} \alpha_{vk} \mathbf{W}\mathbf{h}_k\right)$ Multi-head concatenation: $\mathbf{h}_{\mathcal{N}_v}^t = \Big\ _{m=1}^M \sigma\left(\sum_{k \in \mathcal{N}_v} \alpha_{vk}^m \mathbf{W}^m \mathbf{h}_k\right)$ Multi-head average: $\mathbf{h}_{\mathcal{N}_v}^t = \sigma\left(\frac{1}{M}\sum_{m=1}^M \sum_{k \in \mathcal{N}_v} \alpha_{vk}^m \mathbf{W}^m \mathbf{h}_k\right)$	$\mathbf{h}_v^t = \mathbf{h}_{\mathcal{N}_v}^t$
Gated Graph Neural Net- works	GGNN	$\mathbf{h}_{\mathcal{N}_v}^t = \sum_{k \in \mathcal{N}_v} \mathbf{h}_k^{t-1} + \mathbf{b}$	$\mathbf{z}_{v}^{t} = \sigma(\mathbf{W}^{z}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{U}^{z}\mathbf{h}_{v}^{t-1})$ $\mathbf{r}_{v}^{t} = \sigma(\mathbf{W}^{r}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{U}^{r}\mathbf{h}_{v}^{t-1})$ $\widetilde{\mathbf{h}_{v}^{t}} = \tanh(\mathbf{W}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{U}(\mathbf{r}_{v}^{t} \odot \mathbf{h}_{v}^{t-1}))$ $\mathbf{h}_{v}^{t} = (1 - \mathbf{z}_{v}^{t}) \odot \mathbf{h}_{v}^{t-1} + \mathbf{z}_{v}^{t} \odot \widetilde{\mathbf{h}_{v}^{t}}$
	Tree LSTM (Child sum)	$\mathbf{h}_{\mathcal{N}_v}^t = \sum_{k \in \mathcal{N}_v} \mathbf{h}_k^{t-1}$	$\mathbf{i}_{v}^{t} = \sigma(\mathbf{W}^{i}\mathbf{x}_{v}^{t} + \mathbf{U}^{i}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{b}^{i})$ $\mathbf{f}_{vk}^{t} = \sigma(\mathbf{W}^{f}\mathbf{x}_{v}^{t} + \mathbf{U}^{f}\mathbf{h}_{k}^{t-1} + \mathbf{b}^{f})$ $\mathbf{o}_{v}^{t} = \sigma(\mathbf{W}^{o}\mathbf{x}_{v}^{t} + \mathbf{U}^{o}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{b}^{o})$ $\mathbf{u}_{v}^{t} = \tanh(\mathbf{W}^{u}\mathbf{x}_{v}^{t} + \mathbf{U}^{u}\mathbf{h}_{\mathcal{N}_{v}}^{t} + \mathbf{b}^{u})$ $\mathbf{c}_{v}^{t} = \mathbf{i}_{v}^{t} \odot \mathbf{u}_{v}^{t} + \sum_{k \in \mathcal{N}_{v}} \mathbf{f}_{vk}^{t} \odot \mathbf{c}_{k}^{t-1}$ $\mathbf{h}_{v}^{t} = \mathbf{o}_{v}^{t} \odot \tanh(\mathbf{c}_{v}^{t})$
Graph LSTM	Tree LSTM (N-ary)	$\begin{aligned} \mathbf{h}_{\mathcal{N}_v}^{ti} &= \sum_{l=1}^K \mathbf{U}_l^i \mathbf{h}_{vl}^{t-1} \\ \mathbf{h}_{\mathcal{N}_v k}^{tf} &= \sum_{l=1}^K \mathbf{U}_k^f \mathbf{h}_{vl}^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{to} &= \sum_{l=1}^K \mathbf{U}_l^o \mathbf{h}_{vl}^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{to} &= \sum_{l=1}^K \mathbf{U}_l^o \mathbf{h}_{vl}^{t-1} \\ \mathbf{h}_{\mathcal{N}_v}^{tu} &= \sum_{l=1}^K \mathbf{U}_l^u \mathbf{h}_{vl}^{t-1} \end{aligned}$	$\mathbf{i}_{v}^{t} = \sigma(\mathbf{W}^{i}\mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{ti} + \mathbf{b}^{i})$ $\mathbf{f}_{vk}^{t} = \sigma(\mathbf{W}^{f}\mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}k}^{tf} + \mathbf{b}^{f})$ $\mathbf{o}_{v}^{t} = \sigma(\mathbf{W}^{o}\mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{to} + \mathbf{b}^{o})$ $\mathbf{u}_{v}^{t} = \tanh(\mathbf{W}^{u}\mathbf{x}_{v}^{t} + \mathbf{h}_{\mathcal{N}_{v}}^{tu} + \mathbf{b}^{u})$ $\mathbf{c}_{v}^{t} = \mathbf{i}_{v}^{t} \odot \mathbf{u}_{v}^{t} + \sum_{l=1}^{K} \mathbf{f}_{vl}^{t} \odot \mathbf{c}_{vl}^{t-1}$ $\mathbf{h}_{v}^{t} = \mathbf{o}_{v}^{t} \odot \tanh(\mathbf{c}_{v}^{t})$

<u>Graph Neural Networks: A Review of Methods and Applications</u>. J. Zhou, G. Cui, Z. Zhang, et al.

How powerful are GNNs

Motivation

- Many GNN variants are designed based on empirical intuition, heuristics, and experimental trial-and error.
- There is **little theoretical understanding** of the properties and limitations of GNNs.

• Formal analysis of GNNs' representational capacity is limited.

How powerful are GNNs

Contribution

- Figure out the discriminative power of GNNs
 - Discriminative power: Map different graphs to different embedding
- Show the **maximum capacity** of GNNs theoretically
- Identify structures that cannot be distinguished by popular GNN variants
- Develop a **new GNN architecture** (GIN) and show its discriminative power

WL Test

Weisfeiler-Lehman Graph Kernels. N. Shervashidze, et al.

WL Test

Weisfeiler-Lehman Graph Kernels. N. Shervashidze, et al.

WL Test

Weisfeiler-Lehman Graph Kernels. N. Shervashidze, et al.

Theorem Framework

- Graph nodes as Multiset
- Both WL test & GNNs capture graph structures

An overview of our theoretical framework. Middle panel: rooted subtree structures (at the blue node) that the WL test uses to distinguish different graphs. Right panel: if a GNN's aggregation function captures the *full multiset* of node neighbors, the GNN can capture the rooted subtrees in a recursive manner and be as powerful as the WL test.

Theorem Framework

Theorem 1:

GNNs can be at most as powerful as the Weisfeiler-Lehman graph isomorphism test (a.k.a. canonical labeling or color refinement)

Theorem 2:

A maximally powerful GNN would never map two different neighborhoods, i.e., multisets of feature vectors, to the same representation. This means its aggregation scheme must be injective.

Theorem Framework

Theorem 3. Let $A : G \to \mathbb{R}^d$ be a GNN. With a sufficient number of GNN layers, A maps any graphs G_1 and G_2 that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

$$h_v^{(k)} = \phi\left(h_v^{(k-1)}, f\left(\left\{h_u^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)\right),\,$$

where the functions f, which operates on multisets, and ϕ are injective.

b) A's graph-level readout, which operates on the multiset of node features $\{h_v^{(k)}\}$, is injective.

Refer the paper for more theorems.

GIN

In theory,
$$h_v^k = \phi(f(\lbrace h_v^{k-1}, for \ v \ in \ V \rbrace))$$

$$h_v^{(k)} = \text{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$$
injective $\phi \& f$

- Based on Theorems, we can:
 - Use sum pooling as Aggregator & Readout
 - Use MLP as Combiner
- Generally, there may exist many other powerful GNNs. GIN is the one being simple.

Choice of Aggregator

Choose between **sum**, **mean and max** pooling.

Blue as 20 Green as 10 Red as 5

Examples of graph structures that mean and max aggregators fail to distinguish. Between the two graphs, nodes v and v' get the same embedding even though their corresponding graph structures differ.

VS.

Choice of Aggregator

- Sum: captures the full multiset
- Mean: captures the proportion/distribution of elements of a given type
- Max: reduces the multiset to a simple set

Choice of Combiner

1-layer perceptrons are not sufficient

Lemma There exist finite multisets $X_1 \neq X_2$ so that for any linear mapping W, $\sum_{x \in X_1} \operatorname{ReLU}(Wx) = \sum_{x \in X_2} \operatorname{ReLU}(Wx)$.

So the GNN layers degenerate into simply summing over neighborhood features.

• GIN use 2-layer MLP instead.

Dataset

- 9 graph classification benchmarks
 - 4 bioinformatics datasets
 - MUTAG, PTC, NCI1, PROTEINS
 - 5 social network datasets
 - COLLAB, IMDB-BINARY, IMDB-MULTI, REDDITBINARY and REDDIT-MULTI5K
- Remove node features, force GNNs mainly learn from graph structures.

Experiment

Expressive power demonstrated by training accuracy

Test set performance

	Datasets	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB	MUTAG	PROTEINS	PTC	NCI1
Datasets	# graphs	1000	1500	2000	5000	5000	188	1113	344	4110
	# classes	2	3	2	5	3	2	2	2	2
	Avg # nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
	WL subtree	$\textbf{73.8} \pm \textbf{3.9}$	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 \pm 1.8 *
SS	DCNN	49.1	33.5	_	_	52.1	67.0	61.3	56.6	62.6
ij	PATCHYSAN	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 \pm 4.2 *	75.9 ± 2.8	60.0 ± 4.8	78.6 ± 1.9
Baselines	DGCNN	70.0	47.8	_	_	73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	73.9 ± 1.9	87.9 ± 9.8	-	-	-
	SUM-MLP (GIN-0)	$\textbf{75.1} \pm \textbf{5.1}$	52.3 ± 2.8	92.4 ± 2.5	57.5 ± 1.5	80.2 ± 1.9	$\textbf{89.4} \pm \textbf{5.6}$	$\textbf{76.2} \pm \textbf{2.8}$	$\textbf{64.6} \pm \textbf{7.0}$	82.7 ± 1.7
ıts	SUM-MLP (GIN- ϵ)	$\textbf{74.3} \pm \textbf{5.1}$	$\textbf{52.1} \pm \textbf{3.6}$	$\textbf{92.2} \pm \textbf{2.3}$	$\textbf{57.0} \pm \textbf{1.7}$	$\textbf{80.1} \pm \textbf{1.9}$	$\textbf{89.0} \pm \textbf{6.0}$	$\textbf{75.9} \pm \textbf{3.8}$	63.7 ± 8.2	$\textbf{82.7} \pm \textbf{1.6}$
variants	SUM-1-LAYER	74.1 ± 5.0	$\textbf{52.2} \pm \textbf{2.4}$	90.0 ± 2.7	55.1 ± 1.6	$\textbf{80.6} \pm \textbf{1.9}$	$\textbf{90.0} \pm \textbf{8.8}$	$\textbf{76.2} \pm \textbf{2.6}$	63.1 ± 5.7	82.0 ± 1.5
	MEAN-MLP	73.7 ± 3.7	$\textbf{52.3} \pm \textbf{3.1}$	50.0 ± 0.0	20.0 ± 0.0	79.2 ± 2.3	83.5 ± 6.3	75.5 ± 3.4	66.6 ± 6.9	80.9 ± 1.8
GNN	MEAN-1-LAYER (GCN)	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0	20.0 ± 0.0	79.0 ± 1.8	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
0	MAX-MLP	$\textbf{73.2} \pm \textbf{5.8}$	51.1 ± 3.6	_	_	_	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER (GraphSAGE)	72.3 ± 5.3	50.9 ± 2.2	-	-	-	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

Test set classification accuracies (%).

Summary

• The most powerful GNNs are as powerful as the WL test.

• Powerful GNNs have injective aggregation and graph readout.

• GIN is maximally powerful GNN. Key is to use sum and MLP.

Thank You! Q&A