

ČASOPIS PRO PRAKTICKOU ELEKTRONIKU

ROČNÍK LXXI 1993 • ČÍSLO 7

V TOMTO SEŠITĖ

Nas interview	
Přehled novinek v elektronice	77
zarok 1992	3
Funkausstellung Berlin 1993	4
AR seznamuje (Radiomagnetofon	
s přehrávačem CD	
PHILIPS AZ 8030)	5
Informace, informace	5
AR mládeží (Začínáme s elektronikou).	6
Stavebnice přijímače VKV FM-mini	8
Telefónna ústredňa TTL	9
Zajímavá zapojení	12
Externý napájací zdroj vn	
pre tranzistorový blesk	14
Moderní dopiňky k osciloskopu	17
Integrované nf zesilovače	21
Četli jsme	22
Konvertor pro 50 MHz	23
inzerce I-XXXII,47	48
Katalog MOSFET (pokračování)	25
Programovatelné logické obvody GAL.	27
Computer hobby	31
CB report	41
Rádio "Nostalgie"	42
Zradioamatérského světa	43
Mládež a radiokluby	45
OKICHA	46

AMATÉRSKÉ RADIO ŘADA A

Vydavatel: Vydavatelstvi MAGNET-PRESS, s. p. Vladislavova 26, 113 66 Praha 1, tel. 26 06 51. Redakce: Jungmannova 24, 113 66 Praha 1, tel. 26 06 51.

Séfredaktor: Luboš Kalousek, OK1FAC, I. 354. Redaktoři: ing. Josef Kellner (zást. šéfred.), Petr Havliš, OK1PFM, I. 348, ing. Jan Klabal, ing. Jaroslav Belza I. 353. Sekretariát: Tamara

Trnková, I. 355. Tiskne: Naše vojsko, tiskárna, závod 08, Vlastina 889/23, 160 05 Praha 6.

Ročně vychází 12 čísel. Cena výtisku 9,80 Kč, pololetní předplatné 58,80 Kč, celoroční předplatné 117.60 Kč.

Rozšiřuje MAGNET-PRESS a PNS, informace o předplatném podá a objednávky přijímá každá administrace PNS, pošta, doručovatel a předplatitelské středisko. Objednávky přijímá i redakce. Velkoodběratelé a prodejci si mohou objednat tento títul za výhodných podmínek přímo na oddělení velkoobchodu Vydavatelství MAGNET-PRESS (tel. 26 06 51–9, linka 386).

Podávání novinových zásilek povoleno Ředitelstvím pošt. přepravy Praha č.j. 349/93 ze dne 2. 2. 1993.

Objednávky do zahraničí vyřizuje ARTIA, a. s., Ve smečkách 30, 111 27 Praha 1.

Inzerci přijímá inzertní odděleni Vydavatelství MAGNET-PRESS, Jungmannova 24. 113 66 Praha 1, tel. 26 06 51, linka 342 nebo telefon a fax 236 24 39, **odbornou inzerci** lze dohodnout s kterýmkoli redaktorem AR.

Za původnost a správnost příspěvků odpovídá autor. Nevyžádané rukopisy nevracíme.

ISSN 0322-9572, číslo indexu 46 043

Rukopisy čísla odevzdány tiskárně 20. 5. 1993. Číslo má vyjit podle harmonogramu výroby 7. 7. 1993

© Vydavatelství MAGNET-PRESS s. p. Praha

NÁŠ INTERVIEW

s Josefem Klimoszem, OK2ALC, společníkem firmy VYCOM s.r.o. a lng. Jorge Truffinem, majitelem firmy M-T-M a zástupcem Asociace elektronického průmyslu Baskicka, o spoluprácí českých a španělských podnikatelů v oboru radiokomunikací a elektroniky.

Josef Klimosz, OK2ALC

Vysvětlete prosím našim čtenářům, co je to Asociace elektronického průmyslu Baskicka a jaký je její vztah k České republice?

Ing. Truffin: Tato asociace, španělsky Asociación de Industrias Electrónicas del País Vasco (AEIPV) je nevýdělečná organizace, založená v Baskické autonomní oblasti ve Španělsku v roce 1983 pro technickou, obchodní a ekonomickou pomoc nově vznikajícím baskickým firmám, podnikajícím v elektronice. V současné době sdružuje 91 firem s celkovým obchodním obratem přes 60 mld. peset (asi 15 mld. Kč). Jedná se převážně o malé a střední firmy, které zaměstnávají celkem asi 1600 diplomovaných a 4250 ostatních pracovníků. Výrobní program těchto firem zahrnuje prakticky celou elektroniku od výroby elektronických a elektrotechnických součástek až po složitá zařízení průmyslové, komunikační a počítačové elektroniky. Asociace podporuje exportní aktivity firem. Trhy ve východní Evropě jsou pro baskické firmy velmi zajímavé, a to zvláště v České republice, kde předpokládáme rychlý rozvoj průmyslu a infrastruktury.

Můžete nám některé baskické elektronické firmy představit blíže?

Ing. Truffin: Např. firma INDELEC, S.A. je akciová společnost, zabývající se výrobou radiokomunikační techniky. Byla založena v r. 1984 ve spolupráci s firmou PHILIPS. Převzala od firmy PHILIPS nejmodernější technologie ve výrobě mobilních radiostanic a radiotelefonů. Firma vybudovala moderní výrobní a vývojový komplex v technologickém parku Zamudio poblíž Bilbaa. Zaměstnává 170 pracovníků, z nich 21 pracuje ve výzkumu a vývoji. Prezidentem firmy je pan Javier

Ing. Jorge Truffin

Aguirre. Ve výrobě i vývoji firma používá nejmodernější systémy CAD-CAM-CAE, montáž elektronických prvků je téměř výhradně technologií SMD. Vývoj se zabývá jednak modernizací výrobků PHI-LIPS, jednak vlastními novinkami, například přenosem dat (interfejs FFSK) s předpokládaným použitím pro integrovaný systém řízení městské hromadné dopravy (propojení s palubním počítačem). Firma spolupracuje při realizaci celoevropského systému vyhledávání osob (ERMES). V oboru veřejných radiotelefonních sítí přecházejí uživatelé ve Španělsku z pásma 450 MHz (používaného v ČR - pozn. red.) do pásma 900 MHz. Pro toto pásmo vyrábí a prodává INDELEC až 5000 radiotelefonů měsíčně. Pro zaiímavost - v minulém roce zajišťovala firma INDELEC kompletní spojení v rámci olympijských her v Barceloně. Pro mobilní radiokomunikace dodává INDELEC také multiuživatelské, tzv. trunkingové sítě, řízené počítačem.

Tento výraz – trunking – je asi pro většinu čtenářů AR neznámý. O co v podstatě jde?

Ing. Truffin: Jedná se o systém, který umožňuje mnohem efektivnější využití kmitočtového spektra. V zásadě pracuje tak, že řídicí počítač sleduje provoz na přidělených kmitočtových kanálech. Při požadavku na spojení z mobilní stanice jí přidělí některý z momentálně volných kanálů. Jsou-li obsazeny kanály, počítač požadavek zaregistruje a kanál přidělí ihned po uvolnění. Každá mobilní stanice má pochopitelně předprogramován svůj originální volací znak a v paměti počítače má přidělen určitý stupeň priority. Rádiové spojení se podobá telefonnímu - počítač na základě požadavku - volby znaku volané stanice - vyhledá volnou nebo nejméně zatíženou trasu spojení. Systém umožňuje i propojení s veřejnou nebo soukromou telefonní sítí. Pro představu lze uvést, že například na 20 přidělených vf kanálech lze provozovat 200 nezávislých rádiových sítí o průměrném počtu kolem 20 až 40 stanic v každé síti. Provoz takové trunkingové sítě vyhovuje ve Španělsku pro zajištění zásobování, bezpečnostních služeb, taxislužeb apod, v rámci velké městské aglomerace. Systém je méně vhodný pro rozsáhlé rádiové sítě s počtem několika stovek stanic v síti (městská hromadná doprava, státní policie, hasičské sbory). Tyto velké sítě je lépe řešit samostatně s případnou možností vstupu do trunkingové sítě na úrovni dispečinku. Velkou výhodou trunkingové sítě je iednoduchá legislativa - síť se provozuje na základě jediné koncese, která je vydána provozovateli. Ten platí veškeré poplatky za přidělené kmitočtové kanály. Uživatelé platí provozní poplatky podle délky spojení, která je registrována počítačem.

Systém je řešen modulárně, tzn. že je možné postupné doplňování a rozšiřování podle počtu uživatelů a požadavků na rychlost spojení.

Mohl byste čtenářům přiblížit některé další baskické firmy se zájmem o spolupráci s ČR?

ing. Truffin: Další firmou, která se už v ČR úspěšně zavedla, je firma NOVATRONIC, S.A. Tato firma vyrábí a dodává vynikající elektronické systémové váhy, propojitelné do počítačem řízených prodejních systémů. Čtenáři AR je mohou vidět například v nových španělských supermarketech SYP v Praze-Chodově a v Praze na Proseku. Generálním ředitelem firmy je pan Antonio Matute. Firma zaměstnává pouze 50 pracovníků, z nichž je 17 diplomovaných inženýrů. Firma dále dodává uzavřené televizní systémy (CCTV) použitelné pro zabezpečení a kontrolu objektů bank, obchodů, továren a podobně.

Třetí firmou, kterou čtenářům představím, je firma KONEK, S.A.L., založená v roce 1985. Tato firma s 46 zaměstnanci se specializuje na výrobu kondenzátorů, a to větších kapacit. Ve výrobním programu jsou metalizované polyesterové a polypropylenové kondenzátory, válcové elektrolytické kondenzátory, tantalové kondenzátory pro SMD, kondenzátory a automatické kondenzátorové baterie pro kompenzaci jalové energie. Firma úspěšně exportuje svoje výrobky na tak náročné trhy, jako je SRN, Velká Británie, Norsko, Francie a Itálie. Generálním ředitelem firmy je pan Juan José Bengoechea Yarza.

Jaký je vztah mezi brněnskou firmou VYCOM s.r.o. a zmíněnými baskickými firmami?

Josef Klimosz: Nejprve několik slov o naší firmě. VYCOM s.r.o. se zabývá obchodní činností, prodejem, servisem a montážemi radiostanic a zajišťováním stavebních a údržbových prací ve výškách za použití horolezecké techniky. Začínali jsme jako podnikatelé v Brně - Černých Polích spoluprací s firmou ALLAMAT, tj. prodejem a servisem převážně občanských a radioamatérských stanic. Vzhledem k rostoucímu záimu o modernizaci profesionálních rádiových sítí a zkušenostem našich pracovníků v tomto oboru jsme hledali partnera pro dovoz kvalitní a cenově přístupné techniky do ČR. Ing. Truffin nás objevil na základě doporučení Inspektorátu radiokomunikací v září minulého roku. V té době jsme ze sdružení podnikatelů vytvořili společnost s ručením omezeným VYCOM. Firma INDELEC nás prostřednictvím Ing. Truffina požádala o zajištění homologace radiostanic ve Výzkumném ústavu spojů Praha. Jednalo se o dva typy licenční výroby PHILIPS, a to přenosnou radiostanici PR 710 a vozidlovou radiostanici PRM 80 pro pásma 80, 160 a 450 MHz. Vzorky těchto radiostanic jsme dodali do VÚS a byly úspěšně homologovány pro použití v ČR. Od té doby používáme radiostanice INDELEC při návrhu i realizaci radiokomunikačních sítí naší firmou. Podobně je tomu i u zařízení z produkce jiných baskických firem.

Popište prosím čtenářům stručně radiostanice *PHILIPS*, vyráběné ve Španělsku firmou *INDELEC*.

Josef Klimosz: Obě radiostanice jsou moderní konstrukce, řízené mikroprocesorem. Všechny funkce radiostanice včetně přijímaných a vysílaných kmitočtů jsou programovatelné osobním počítačem. Obě radiostanice jsou standardně vybaveny tónovým umlčovačem šumu CTCSS a selektivním kódovým voláním (SELCALL) ve všech používaných evropských formátech. Přenosná radio-

Radiostanice INDE-LEC PRM 80, pohled dovnitř. Vpravo leží vestavný modem pro přenos dat

stanice PR 710 má výkon 1 nebo 5 W a až 10 kanálů v pásmech 80, 160 nebo 450 MHz. Je řešena jako velmi robustní a odolná stanice do prostředí s prachem, stříkající vodou a slanou mlhou – má krytí IP 54. Pomocí kódů selektivního volání lze vysílat, přijímat a vyhodnotit identifikační znak stanice, hromadnou výzvu, poplachové volání a až 99 volitelných smluvených kódů charakteristické činnosti, což umožňuje omezit hovorové spojení na minimum. Ve spolupráci s vozidlovou radiostanicí PRM 80 umožňuje vyhodnotit výzvu dispečinku pro vozidlo a informovat obsluhu signalizací; slouží tedy jako přijímač pagingu.

Vozidlová radiostanice PRM 80 má výkon programovatelný 1 nebo až 25 W na 64 kanálech, opět v pásmech 80, 160 a 450 MHz. Umožňuje rovněž příjem a vysílání identifikace, skupinové nebo hromadné identifikace a poplachu. Lze naprogramovat například automatickou odpověď na volání dispečinku nebo poplachové volání v pravidelných intervalech ze zdánlivě vypnuté stanice s automatickým zapínáním mikrofonu, což je velmi zajímavé především pro řidiče taxi. Stanice umožňuje velmi jednoduchou vestavbu interního modemu pro přenos dat rychlostí 1200 Bd.

Jaké další služby nabízíte pro uživatele rádiových sítí?

Josef Klimosz: Kromě prodeje radiostanic /N-DELEC, PHILIPS, MOTOROLA a MIDLAND a doplňků rádiových sítí (převáděčů, propojení s telefonní sítí) od firmy ZETRON nabízíme kompletní návrh rádiového spojení včetně projektu a zajištění kmitočtu, měření slyšitelnosti, montáže antén, dispečerských a vozidlových stanic, záruční a pozáruční servis. Při nabídce radiostanic spolupracuieme s dalšími firmami - dodavateli, jako např. KONEKTEL, a.s. Pardubice (radiostanice MOTO-ROLA), a dealery, kterým dodáváme radiostanice za výhodných obchodních podmínek. Zajišťujeme rovněž smluvní servis na dosud provozované sítě. osazené radiostanicemi TESLA. V případě rozhodnutí uživatele o modernizaci sítě zařizujeme odkoupení a likvidaci starých radiostanic. V této souvislosti upozorňujeme uživatele pásma 80 MHz na výhodnou možnost postupného přechodu na moderní radiostanice bez nutnosti změny provozovaného pásma při použití radiostanic výroby INDE-LEC nebo PHILIPS.

> Jaké další obchodní aktivity bude firma VYCOM s.r.o. rozvíjet ve spolupráci s Asociací elektronického průmyslu Baskicka?

Ing. Truffin: Prostřednictvím firmy VYCOM nabízí NOVATRONIC, S.A. systémy CCTV, televizní monitorování chráněných prostorů v bankách, spořitelnách, průmyslu, veřejných budovách a podobně. Pro tyto účely dodává kamery a monitory japonské výroby *ELBEX*, z nichž zvláště skryté kamery série EX400 a EX400C umožňují naprosto nenápadně umístění do jakéhokoliv interiéru. Zajímavé jsou rovněž miniaturní kamery EXPD007 pro přenosné použití, například pro kontrolní orgány apod.

Dalším oborem s velkou budoucností je kompenzace jalové energie, důležitá v souvislosti s diskusí o úsporách enerie v ČR. Firma KONEK, S.A.L. nabízí prostřednictvím firmy VYCOM s.r.o. kvalitní a osvědčené kompenzační kondenzátory a automatické kompenzátory. Domnívám se, že i další výrobky této firmy mohou být zajimavé pro dodavatele elektronických součástek.

Kde najdou zájemci a zákazníci firmu *VYCOM* s.r.o.?

Josef Klimosz: Firma VYCOM se přestěhovala do nových prostor v Brně – Slatině, Hviezdoslavova 55, PSČ 627 00. Najdete nás v objektu První brněnské strojírny, výpočetního střediska. Telefonní a faxové spojení je (05) 531 611 (453 215 23). Rádi uvítáme zájemce o rádiové sítě, kamery, monitory i další špičkovou techniku.

Jaké úspěšné akce již firma VY-COM zajišťovala?

Josef Klimosz: Jak už jsem se zmínil, firma VYCOM byla jako společnost s ručením omezeným zaregistrována v září minulého roku. V oboru rádiového spojení jsme realizovali například sítě pro taxislužby ve Znojmě, Třebíči a v Brně, sítě pro hlídací službu na brněnském výstavišti, síť bezpečnostní služby v České spořitelně, a.s. Brno a další. V oboru výškových prací jsme zajišťovali např. údržbu a opravy pavilónů na výstavišti a speciální stavební práce na různých místech na jižní Moravě

Děkujeme za rozhovor.

Připravil P. Havliš, OK1PFM

Čítač do 1,3 GHz

Přehled novinek v elektronice za rok 1992

(Dokončení)

- **g)** Výkonová elektronika souvisí těsně s elektronikou průmyslovou, ale má ještě širší oblast aplikací v energetice a v dopravě. Za zmínku stojí zejména:
- u výkonových polovodičových prvků je snaha zmenšit úbytek napětí v otevřeném stavu, což přispívá ke zmenšení ztrátového výkonu a ke zvětšení účinnosti.

Harris Semiconductor uvádí tyristor MCTV75P60E1, řízený polem, s úbytkem pouze 1,2 V, ale Toshiba uvádí, že nové typy bipolárních tranzistorů s izolovanou bází budou schopny dosáhnout téhož výsledku. Mnichovský Siemens ve spolupráci s Hitachi Ltd. vyvinul měniče s dvojitou šířkovou modulací impulsů s megawattovými výkony, osazené tyristory GTO místo cyklokonvertorů pro těžké pohony;

- výkonné měniče energie a regulační servosystémy pomohly podstatně zvětšit účinnost větrných elektráren, optimalizovat využití větru naklápěním lopatek vrtulí a regulací zátěžového momentu a trvale přizpůsobovat způsob transformace energie na pevný jak kmitočet, tak napětí napájené sítě. Větrná energie se tak stává schopnou konkurence, v Davenportu (lowa) se staví 600 větrných kol s celkovým výkonem 250 MW, Holandsko rozjíždí zkušební projekt 25 MW, obyvatelstvo má však estetické námitky;
- výkonová elektronika má též rozhodující význam pro bezpečnost jaderných reaktorů, které se nyní staví zejména nejen ve východní Asii (Tchaj-wan), Singapur, Indie, Filipíny, Korea, Čína), ale i v USA a v Anglii, kde bylo nutno některé staré reaktory po 12 až 25 letech provozu odctavit pro únavu materiálu tlakových nádob. Nejstarší reaktor v Bradwellu (25 let) je však schopný pracovat ještě 10 let, jak ukazují provedená měření. Americký dozorčí úřad nad nukleární energií nyní studuje několik vyvinutých typů reaktorů (např. SBWR-General Electric), které jsou jednodušší než dosavadní a mají podstatně větší spolehlivost a bezpečnost;
- v oblasti mikrovln bylo též dosaženo velkých výkonů novými typy elektronek (např. magnicon s výkonem 2,6 MW na 1 GHz s účinností 73 %, nebo gyratron s výkonem 500 kW na 110 GHz, tj. vlna 0,9 mm). Tyto výkony mohou být využity v lineárních urychlovacích částic a sloužit k bombardování radioaktivního odpadu z jaderných elektráren. Tímto způsobem je možné podstatně zkrátit poločas radioaktivního rozpadu a usnadnit tak řešení problémů s radioaktivním odpadem:
- pro výkonové měniče energie byly vyvinuty tyristory s vestavěnou řídicí logikou pro 8500 V a 3000 A.
- h) V oblasti dopravy byly již vyřešeny elektronické systémy pro elektromobily, ovšem hlavním problémem zůstávají akumulátory, do jejichž vývoje bude investováno 260 miliónů \$ v příštích čtyřech letech. Zatím bylo dosaženo zlepšení parametrů o 60 % u klasických olověných akumulátorů využitím skelných tkanin jako nosičů aktivní hmoty i jako separátorů.
- Elektronika má značný podíl i na vývoji velmi rychlých dráhových systémů, kde sou-

- těží klasický systém kolejové dopravy se systémy magnetické levitace. Německý systém levitace Transrapid, užívající přitažlivých sil místo odpudivých, se zdá úspěšnější a energeticky úspornější, i když vyžaduje přísnější tolerance ve stavbě podloží a rychlejší odezvu v ovládání elektromagnetů.
- Byla ověřena použitelnost magnetohydrodynamického principu v pohonu lodí v mořské vodě, a to pomocí supravodivých magnetů, v jejichž poli vznikají síly, ženoucí vodu ve směru kolmém k profékajícímu stejnosměrnému proudu mezi elektrodami na protilehlých stěnách příslušné trubice. Pohon nemá pohyblivé součásti a je naprosto bezhlučný, pokusná ponorka dosáhla rychlosti 6 km/hodinu. Možnosti dalšího vývoje nejsou omezeny, potřebný ss proud je řádu
- Nejdůležitějším projektem do budoucna v oblasti dopravy se však zdá být tzv. inteligentní dálnicový systém (IVHS - Intelligent Vehicle-Highway System), který je dnes vyvíjen asi ve 20 variantách s nákladem 660 miliónů \$, rozloženým na 6 let. Podobné systémy se vyvíjejí i v Japonsku a v Evropě (Prometheus) za účasti vedoucích výrobců automobilů. Předpokládá se, že půjde o komplexní systém, zahrnující elektronická zařízení v automobilech (přijímače, displeje, informační a varovné signály ap.) i na dálnicích (čidla, radary, vysílače, řídicí počítače). Účelem systému je zvětšit bezpečnost, zmenšit možnost vzniku kolizí, zlepšit využití silniční sítě a urychlit řešení dopravních problémů. Řidič vozidla bude mít na palubním displeji informace o dopravní situaci na silnicích v jeho okolí, takže se bude moci vyhnout zácpám a volit optimální trasu apod.
- i) Lékařská elektronika se rozvíjí v oblasti laboratorní, diagnostické, terapeutické a protetické, ovšem povětšině jen v inovacích nižších řádů. Podstatnější pokroky v minulém roce nastaly pouze v oblasti implantabilních defibrilátorů, které odstraňují elektrickým impulsem nebezpečné fibrilace srdečního svalu, dále v biosensorech pro monitorování složení plynů absorbovaných v krvi pacienta (PB3000, Paritan-Benett Co., Kansas) a při zjišťování draslíku, sodíku a gluko-

sy (i-Stat Corp., Princeton, NJ) během 90 sekund (uplatňuje se i řada dalších firem).

Za zmínku stojí ještě využití excimerových laserů pro ztenčení vrstvy epithelu na rohovce oka, čímž je možno odstranit krátkozrakost. V chirurgii se rozvíjejí aplikace televizní techniky se světelnými svazky vláken pro endoskopii a pro chirurgické zásahy uvnitř organismu pomocí mikromechanických dálkově ovládaných nástrojů, nejčastěji pro biopsie apod.

Závěrem bychom tedy mohli konstatovat, že vývoj elektroniky nám dává celou řadu podnětů k zamyšlení.

První dojem z uvedených skutečností neříká nic nového - že elektronika ve světě a zejména v USA je o 15 až 20 let před námi, je dávno známé. To ovšem neznamená, že bychom měli rezignovat a spoléhat jen na dovoz. Skutečnost, že u nás je značný počet inženýrů a techniků s dobrým rozhledem v této oblasti a že je zde i určitá základna některých materiálů a těchnologie, jistě neunikne pozornosti podnikatelů - ovšem, bohužel, ne našich, ti se u nás zatím neurodili. Budeme se muset alespoň pro první léta vrátit do časů první republiky, kdy naší elektronickou výrobu ovládal Philips. Telefunken, Marconi nebo Lorentz. Naši domácí podnikatelé v této oblasti budou vyrůstat jen pomalu, budou se postupně rekrutovat z dnešních obchodníků - importérů a budou otevírat drobné výrobní podniky podle možností trhu, převážně s dovezenou technologií. To je zákonitý postup vývoje, který se asi nedá přeskočit. Vědomosti a informace budou mít vždycky cenu, a proto je nutné světový vývoj sledovat.

Druhý závěr z předchozího přehledu je nasnadě: vlády nejpokročilejších zemí, USA, Japonska i západní Evropy se nerozpakují podporovat značnými prostředky výzkum a vývoj klíčových oblastí průmyslu elektromobily, mechatroniku, dopravní systémy apod. Nespoléhají tak úplně na sílu volné soutěže na domácím trhu, protože rozhodujícím činitelem je světový trh, a na tomto trhu se i jednotlivé státy dostávají do role podnikatelů a to platí nejen pro velmoci, ale i pro malé státy, jak vidíme na příkladech Holandska, Belgie, Dánska nebo na některých státech v Tichomoří. To je ovšem možné jen u takových států, které již mají silný domácí průmysl, který je schopný efektivně

Věcné prémie i 40 000 Kč připraveny!

Nezapomeňte, že 4. září 1993 (pošt. razítko) je uzávěrka konkursu AR o nejlepší amatérské konstrukce za rok 1993. Podrobné – letos velice výhodné – podmínky konkursu jsou zveřejněny v AR A2/1993, s. 3 a 4.

Kromě 40 000 Kč z prostředků redakce AR budou udělovány věcné prémie od těchto sponzorů:

AMA Plzeň (věnuje prémii FM transceiver ALINCO DJ S1)

ELING Nová Dubnica (věnuje skříňky BOPLA)

ELIX Praha (věnuje družicový přijímač AMSTRAD 320)

FAN radio Plzeň (věnuje vozidlovou CB radiostanici DNT Coupé)

GES Electronics Plzeň (věnuje sady součástek)

GM Electronic Praha (věnuje digit. osciloskop Hung Chang)

Mezinárodní výstava bezdrátové techniky Funkausstellung Berlin 1993

Letos se uskuteční opět tradiční mezinárodní výstava s názvem Funkausstellung Berlin 1993. První byla uspořádána v roce 1924 a letošní 39. ročník bude ve dnech 28. 8.–5. 9. 1993. Pořadatelé informují dopředu prostřednictvím odborných časopisů o "svátku elektroniky pro komunikační účely, volný čas a zábavu", jak je výstava mnohdy přezdívána. V letošním roce se výstavní plocha zvětší z původních 83 500 m² na 100 000 m² pod televizní věží bývalého Západního Berlína. Prezentace vystavovatelů se konala již 26. února v Berlíně a pro letošní rok se výstavy zúčastní 600 vystavovatelů asi ze 30 zemí a 350 dalších firem, které tam budou mít zastoupení. Přesto, že bude poprvé využita i hala č. 26 a první část veletržní haly A, na mnohé z žadatelů o výstavní plochu se nedostalo.

Očekávají se opět ukázky novinek v televizní technice, hifi zařízeních, video, telekomunikační, studiové, vysílací i přijímací technice. Šlágrem budou určitě nové televizní přijímače se širokou obrazovkou a poměrem stran 16:9, využití digitálních kompaktních kazet prosazujících se na trh vedle CD nosičů, CD ve formátu MD (minidisk), interaktivní

CD disky (CDI) a v neposlední řadě i fotografická technika se záznamem na CD.

Výstava ovšem neznamená jen obvyklé předvedení novinek, podpisy obchodních kontraktů či průzkum trhu pro nové technologie, ale také atraktivní konfrontace společností jako jsou tradiční ARD a ZDF, SAT 1, RTL plus, RTL2, Pro7, Eurosport/Sportkanal, Arte, Premiere a velkého množství dalších soukromých rozhlasových vysílačů. O dvou překvapeních proti dříve zaběhlé praxi víme již nyní: ARD a ZDF budou kromě obvyklé letní zahrady využívat ke svým zábavným přenosům i prostor v nové veletržní hale A a Telekom bude předvádět celou paletu jak svých služeb, tak nabízených přístrojů v halách 25/26. Připravuje se také celá řada populárně vědeckých programů, přednášky a semináře pro odborníky a Friedrichstadtpalast bude dne 27. 8. dějištěm úvodního zahajovacího pořadu.

QX

Elektronka s výkonem 1 MW pro vf generátory

Elektronky ještě zdaleka neskončily ve své éře, alespoň ne v oblasti vf generátorů velkého výkonu. Obří elektronku - triodu RS3700CJ s extrémně velkým výkonem větším než 1 megawatt, jejíž nasazení je plánováno jako vysokofrekvenční generátor ve strojírenství, představila firma Siemens. Dosud se generátory s tak velkým výkonem osazovaly dvěma nebo více výkonovými elektronkami. Zapojení generátoru bylo poměrně složité a v praxi náročné na provoz i údržbu. Nová generátorová elektronka metalo-keramické konstrukce, vyvinutá v berlínském závodě na výrobu elektronek, pracuje v kmitočtovém rozsahu do 30 MHz. Její robustní konstrukce snáší tvrdé provozní podmínky včetně velkého kolísání zátěže, jak je tomu právě u vf generátorů, používaných ke kalení ocelových nástrojů. Další obor použití elektronky je při indukčním svařování trubek, kalení a tvrzení ozubených kol automobilových součástek, kde se vyžaduje rychlé a rovnoměrné ohřívání.

Zajímavé jsou elektrické vlastnosti elektronky. Katoda je vyrobena z thoriovaného wolframu, je přímo žhavená, žhavicí napětí je 13,5 V, žhavicí proud 1300 A. Zesilovací činitel elektronky je 35, strmost 400 mA/V při anodovém napětí 4 kV a anodovém proudu 20 A. Při provozu jako oscilátor s kmitočtem do 15 MHz odevzdá výstupní výkon 1250 kW při anodovém napětí 16 kV, předpětí řídicí mřížky –850 V, anodovém proudu 100 A, stejnosměrném proudu mřížky 16 A. Účinnost je 78 %, anodový zatěžovací odpor 95Ω. K vybuzení na uvedený výkon je zapotřebí špičkové budicí napětí mřížky 1450 V.

Při provozním kmitočtu do 30 MHz je výstupní výkon elektronky jen 900 kW při anodovém napětí 14 kV, předpětí řídicí mřížky –800 V, anodový proud 86 A, proud řídicí mřížky 14 A, účinnost 75 %, anodový zatěžovací odpor 97 Ω.

Popsaná generátorová trioda není malá součástka. Její výška je 815 mm, průměr anody má 350 mm, hmotnost má 80 kg. V provozu se musí chladit vodou a vzduchem. K chlazení je zapotřebí nejméně 0,6 l/ /min. vody na každý kW ztrátového výkonu. Metalokeramický spoj se musí chladit proudem vzduchu 8 m³/min.

Informace Siemens

využít finanční injekci. To by si měli uvědomit jak naši podnikatelé, tak i naši národohospodáři a politici.

Nemohu si ovšem odepřít ještě třetí hledisko k hodnocení tohoto vývoje, hledisko ekologické a sociologické. Zde vycházejí jednotlivé obory elektroniky velmi rozdílně.

Velmi příznivý dopad ekologický má např. obor průmyslové elektroniky, jehož výsledky působí úspory energie i úspory materiálu, prodloužení doby života strojů i zvětšení spolehlivosti výrobků při současném zvyšování produktivity výroby. Podobně příznivě je možno hodnotit i výkonovou elektroniku a její aplikace v dopravě, pokud umožňují snížit spotřebu pohonných hmot.

Pozitivně je možno hodnotit i inovace v oblasti polovodičů a aktivních prvků, které realizují užitečným způsobem výsledky fyzikálního výzkumu a nejsou náročné na spotřebu materiálu a energie. Totéž platí do jisté míry i pro oblast počítačů.

Naproti tomu s určitými obavami pozorujeme vývoj v oblasti telekomunikací, multimédií a zejména spotřební elektroniky. Další rozšíření telekomunikačních možností, diverzifikace prostředků a cest a snadná dostupnost přispěje jistě na jedné straně ke globalizaci světového obchodu, ale může být také snadno zneužita k světové koordinaci pololegálních nebo přímo zločinných aktivit, pro drogové mafie nebo šíření totalitních ideologií. Nové možnosti vytvářejí téměř vždy také nové problémy.

To platí též pro oblasti spotřební elektroniky a multimédií, které se dnes orientují více na majetné vrstvy obyvatelstva, rozšiřují na jedné straně možnosti jejich kulturního růstu, ale na druhé straně, při celosvětově klesající kulturní úrovni programů masmédií, tyto vrstvy zasahují do oblastí kulturně problematických, mohou ohrožovat výchovu dětí intelektuálně i morálně a kladou tedy zvýšenou odpovědnost na uživatele těchto zařízení.

Obecně pak celý obor elektroniky přispívá svým rozvojem ke zvýšení technické i ekonomické úrovně především ve státech průmyslově vyspělých a ke zvýšení životní úrovně majetnějších vrstev a přispívá tak k dalšímu prohloubení rozdílů mezi těmito státy a rozvojovými zeměmi i mezi vrstvami společnosti – což ovšem není vinou jeho, nýbrž vinou celkové ekonomické politiky i politiky kulturní. To je však problém, který překračuje daleko rámec tohoto článku.

Sluší se ještě doplnit, že tento přehled novinek byl sestaven převážně na základě informací z lednového čísla časopisu IEEE Spectrum a zčásti i z dalších časopisů, vydávaných mezinárodní společností The Institute of Electronic and Electrical Engineers. Pokud by čtenáře zajímaly podrobnější informace o některých uvedených novinkách, je možno se obrátit na autora článku nebo na veřejné technické knihovny, kde jsou časopisy této organizace k dispozici.

Doc. Ing. Jiří Vackář, CSc.

AMATÉRSKÉ RADIO SEZNAMUJE

Radiomagnetofon s přehrávačem CD

PHILIPS AZ 8030

Celkový popis

Radiomagnetofon s přehrávačem CD je, jak již název napovídá, kombinací rozhlasového přijímače, magnetofonu a přehrávače kompaktních desek.

Přijímač má ladění knoflíkem, bez možnosti uložit vysílače do paměti. Má tři vlnové rozsahy: velmi krátké vlny, střední vlny a dlouhé vlny. Pro příjem vysílačů VKV je vybaven výklopnou teleskopickou anténou, pro ostatní rozsahy má vestavěnu feritovou anténu. Magnetofon má mechanické ovládání a doide-li pásek na konec (při všech zařazených funkcích), tlačítka se odaretují a magnetofon se automaticky vypne. Přehrávač kompaktních desek je standardního provedení se všemi běžnými funkcemi (jako je zrychlená reprodukce oběma směry, reprodukce skladeb v náhodně voleném pořadí, opakování skladby nebo celé desky, informativní reprodukce začátků všech skladeb na desce a možnost naprogramovat až 20 skladeb v libovolném pořadí). K funkci přehrávače CD patří i displej z tekutých krystalů na přední stěně. Nízkofrekvenční část přístroje nemá tónovou clonu, ale je doplněna spínačem obvodu Dynamic Bass Boost, který v reprodukci zdůrazní hluboké

Je třeba však upozornit na to, že obdobně jako u všech přístrojů podobného provedení a třídy, k němu nelze připojit žádný vnější zdroj signálu a představuje tedy uzavřenou jednotku. Má však zásuvku (JACK 3,5 mm) pro připojení sluchátek. Zasunutím zástrčky sluchátek se automaticky odpojí vestavěné reproduktory.

Všechny ovládací prvky přístroje jsou soustředěny na čelní stěně, pouze ovládání magnetofonu je na horní stěně. Přístroj lze

napájet jak ze sítě, tak i ze suchých článků. Napájecí články se vkládají do prostoru pod víkem na zadní stěně a k provozu je třeba osmi velkých monočlánků. Bližší technické údaje výrobce v návodu neudává.

Funkce přístroje

Tento přístroj jsem vybral k testu především proto, že je rozměrově přijatelný, v použití velice univerzální a také proto, že je nabízen, podle mého přesvědčení, za velice přijatelnou cenu. Jeho reprodukce je přitom velmi příjemná. Skutečnost, že není vybaven tónovou clonou, nepovažuji v žádném případě za nedostatek, protože naprosta většina posluchačů tak jako tak poslouchá s nepotlačenými výškami. Naproti tomu již zmíněný obvod Dynamic Bass Boost poskytuje při poslechu hudby velice příjemný reprodukční dojem.

Vzhledem k relativně velmi nízké prodejní ceně nemůže být tento přístroj vybaven vstupy pro připojení vnějších zdrojů. To je ostatně zcela běžné u všech výrobců obdobných přístrojů. Lze tedy bezproblémově například nahrávat pořady z rozhlasu nebo z kompaktních desek, nikoli však z druhého magnetofonu. Při přepisu z kompaktní desky lze navíc využít automatiky, která zajistí současné spuštění záznamu magnetofonu i reprodukci přehrávače CD. Přitom však musí uživatel pamatovat na to, že v případě, když

bude nahrávat od začátku pásku, musí nejprve ručně posunout začátek pásku tak, aby se dostal až na konec nemagnetické zaváděcí fólie. Jinak by v přepisu první skladby chybělo několik sekund začátku. Pokud nenahráváme od začátku pásku, není tento úkon pochopitelně nutný.

Závěr

Radiomagnetofon s přehrávačem kompaktních desek Philips AZ 8030 považuji za velice zdařilý přístroj. Vyznačuje se velkou univerzálností v použití a velice příjemnou reprodukcí. Stejně příznivá je i jeho prodejní cena, která v podnikové prodejně firmy Philips v Praze 8 V mezihoří 2 činí 4990.– Kč.

Vrátíme-li se do roku 1987, kdy jsem testoval dosti problematický radiomagnetofon TESLA KM 350, zjistíme, že se tento přístroj tehdy prodával za 3900,— Kčs. A je zcela nesporné, že se s popisovaným AZ 8030, který je i s přehrávačem CD a podstatně lepšími celkovými vlastnostmi nabízen jen o 1000,— Kč dráže, tehdejší výrobek nedá vůbec srovnávat. Domnívám se proto, že o AZ 8030 budou mít zájem především ti, kdo nemají nadbytek peněz a přesto by si chtěli pořídit jednoduchý přístroj, který jim umožní poslouchat rozhlas, přehrávat kompaktní desky i používat magnetofon.

Hofhans

Informace, informace...

Nabídku amerických časopisů, uváděnou pod titulkem Informace, informace . . . v AR již několik měsíců, doplňujeme dnes informací, že v knihovně STARMAN Bohemia v Konviktské ul. 5, Praha 1, Staré město, tel. (02) 26 63 41 si lze kromě časopisů předplatit nebo vypůjčit, popř. prostudovat i knihy z oboru elektroniky a výpočetní techniky. Z celkové nabídky několika desítek knih a několika desítek publikací jsme pro ukázku vybrali knihu Harry Katzana, JR.: Operační systémy, pragmatický výklad. Autor je mezinárodně uznávaným odborníkem - konsultantem ve výpočetní technice, specializující se systémy umělé inteligence, pracoval kromě jiného jako profesor na oddělení počítačových věd známého Prattova institutu.

Knihu vydalo ve druhém vydání vydavatelství Von Nostrand Reinhold Company Inc. v roce 1986.

V knize jsou podány praktické informace o mikropočítačích a hlavních operačních systémech a to vše se zřetelem na použivatele výpočetní techniky. Kniha se skládá ze tří základních částí:

- Popis činnosti moderních operačních systémů (činnost řídicích programů, soubory dat, zacházení s daty, postup při řešení úloh, komunikace IO),
- 2. Činnost univerzálních systémů se sdílením času (programové systémy, virtuální paměť a stránkování, řídicí struktury úloh, sdílení programu, dynamické zavádění, multiprocessing),
- 3. Technika operačních systémů (procesory jazyka, realizace programů, systémová uspořádání, činnost CPU).

Kniha má 450 stran a lze ji charakterizovat jako "něco" mezi učebnicí a praktickým průvodcem.

AMATÉRSKÉ RADIO MLÁDEŽI

ZAČÍNÁME S ELEKTRONIKOU

Ing. Jaroslav Winkler, OK1AOU

(Pokračování)

Tranzistor jako zesilovač

Po vyzkoušení zapojení tranzistoru jako spínače se můžeme vrátit k již známému o zapojení tranzistoru na obr. 38, v němž rezistor R1 nahradíme proměnným rezistorem – potenciometrem, zapojeným podle schématu na obr. 75 (obr. 76).

Obr. 75. Tranzistor jako zesilovač proudu

Obr. 76. Zapojení na zkušební destičce

Při správném zapojení bude svítivá dioda reagovat na otáčení hřídelem potenciometru. Při nejmenším nastaveném odporu odporové dráhy bude svítit naplno, zvětšováním odporu bude její světlo postupně slábnout.

Tento jev má logické vysvětlení. Při nejmenším odporu potenciometru protéká bází největší proud, kterým je tranzistor plně otevřen. Se zvětšujícím se odporem potenciometru se zmenšuje proud báze s tím i proud tekoucí tranzistorem – tranzistor se přivírá. Změnou malého proudu báze tedy můžeme řídit mnohem větší proud kolektoru.

V tomto zapojení pracuje tedy tranzistor jako zesilovač proudu.

Zbývá ještě vysvětlit význam rezistoru R1. Tento rezistor je v obvodu báze zařazen proto, aby při nastavení hřídele potenciometru na nejmenší odpor odporové dráhy nebylo na bázi plné napětí zdroje, které by způsobilo zvětšení proudu báze a kolektoru nad přípustnou mez a tím zničení tranzistoru. Tento rezistor tedy slouží jako omezovací. Často se označuje jako "ochranný".

Nyní zapojíme tranzistor podle obr. 77. Svítivou diodou se sériovým rezistorem budeme kontrolovat velikost napětí mezi kolek-

Obr. 77. Tranzistor jako zesilovač napětí

torem a emitorem tranzistoru. Zapojení na desce s plošnými spoji je na obr. 78.

Obr. 78. Zapojení na zkušební destičce

Při otáčení běžcem potenciometru se postupně mění velikost napětí přivedeného do báze tranzistoru. Pokud je toto napětí malé, dioda svítí, protéká jí proud omezený rezistory R2, R3. V jednom místě dráhy potenciometru začne dioda slabě svítit. Pak postačí jen další malé pootočení běžce potenciometru a dioda zcela zhasne.

Stačila tedy malá změna napětí přivedeného mezi bázi a emitor tranzistoru, tj. napětí $U_{\rm BE}$, k vyvolání velké změny napětí mezi kolektorem a emitorem tranzistoru, tj. napětí $U_{\rm CE}$.

U_{CE}.
V tomto zapojení pracuje tranzistor jako zesilovač napětí.

Aby se při činnosti tranzistorů nechtěně neměnily proudy a napětí, je nutno nastavovat u tranzistorů tzv. pracovní bod. Pracovní bod lze nastavit různými způsoby. Některé si dále ukážeme.

Jedno z často používaných zapojení je na obr. 79. Rezistory R1 a R2 jsou zapojeny

Obr. 79. Nastavení proudu báze

jako dělič napětí. Napětí na bázi tranzistoru je závislé na odporech těchto rezistorů a na proudu, který jimi protéká. Tím je nastaven i proud báze tranzistoru. Protože jsme si již vysvětlili, že proudem báze se ovládá proud kolektorový, je tímto způsobem určena i velikost kolektorového proudu, který prochází rezistorem R3, kolektorem a emitorem tranzistoru. Mezi emitor a přívod napětí se většinou ještě zapojuje další rezistor, označený na obr. 80 jako R4.

Obr. 80. Můstková stabilizace pracovního bodu

Toto zapojení se nazývá můstkové. Všechna uvedená zapojení slouží k nastavení a stabilizaci pracovního bodu tranzistoru. Nastavení kolektorového proudu si opět prakticky vyzkoušíme. Nejprve zapojíme součástky podle schématu na obr. 81. Zapojení součástek na zkušební destičce je na obr. 82.

Obr. 81. Nastavení proudu báze

Obr. 82. Zapojení součástek na zkušební destičce

Při správném zapojení dioda reaguje na změnu odporu potenciometru P1. Při nastaveném minimálním odporu potenciometru svítí dioda nejvíc. Nyní zapojíme mezi emitor tranzistoru a nulový pól zdroje rezistor R4 podle schématu na obr. 83.

Zapojení na destičce je na obr. 84.

Obr. 83. Zapojení tranzistoru s odporem v emitoru

Obr. 84. Zapojení na zkušební destičce je shodné se zapojením na obr. 86, vypustí-li se kondenzátor C1

Proud báze je opět řízen napětím z odporového děliče složeného z rezistorů R1 a R2. Celkové napájecí napětí se na rezistorech děliče rozdělí v poměru jejich odporů. Část napájecího napětí, připadající na rezistor R2, je na schématu označena jako U_1 .

Je-li tranzistor "otevřen", tj. vede-li elektrický proud, tvoří rezistor R3, dioda a rezistor R4 další dělič napětí. Průtokem proudu vzniká na diodě tzv. úbytek napětí, na rezistoru R4 vzniká další úbytek napětí, které je na schématu označeno jako U_2 .

Pro správnou funkci tranzistoru musí být napětí U_1 větší než U_2 . Rozdíl mezi těmito dvěma napětími musí být 0,4 V až 0,7 V podle typu tranzistoru. Tento rozdíl je vlastně napětí mezi bází a emitorem, které jsme již poznali pod označením $U_{\rm ne}$.

Odporový dělič napětí připojený k bázi tranzistoru musí být tedy nastaven tak, aby bylo dosaženo potřebného rozdílu mezi napětími U₁ a U₂. Určení potřebné velikosti odporu rezistorů a napětí popř. proudů se nazývá "nastavení pracovního bodu tranzistoru". Správné nastavení pracovního bodu je pro dobrou činnost tranzistoru nezbytné. Než budeme mít možnost nastavovat velikost kolektorového proudu sami podle měřicího přístroje, budeme proto přesně dodržovat především odpory rezistorů uvedené ve schématech. Zničení tranzistorů velkým proudem, popř. signály, zpracované se zkreslením u zesilovačů a dalších výrobků začínajících radiotechniků jsou převážně způsobeny nedodržením předepsaných součástek.

Správné nastavení pracovního bodu je tedy prvním předpokladem správné činnosti tranzistoru. Již jsme si vysvětlili, že proud kolektoru je ovládán proudem báze, tento proud nastavujeme rezistory, zapojenými do báze, přičemž tranzistor nevykonává žádnou funkci – je v klidu. Mluvíme pak o klidovém proudu báze a o klidovém proudu kolektoru. Jak se však budou měnit tyto proudy při činnosti tranzistoru? Ověříme si to následujícím způsobem.

V zapojení podle obr. 83 nastavíme potenciometrem jas diody asi na polovinu maxi-

Obr. 85. Připojení kondenzátoru

málního jasu. Vezmeme kondenzátor o kapacitě 50 µF a přiložíme jej na okamžik k vývodům baterie, přičemž dodržíme polaritu. Kondenzátor se tím nabije. Takto nabitý kondenzátor přidržíme kladným pólem k bázi tranzistoru a záporným pólem se dotkneme přívodu 0 V. Dioda se okamžitě více rozzáří. To je způsobeno tím, že se kondenzátor vybil přes rezistor R2. Na okamžik se tím zvětšil proud protékající bází z původní klidové velikosti na větší.

Opět zkusíme nabít elektrolytický kondenzátor a přiložíme jej mezi nulový pól zdroje a bázi, tentokrát však opačně tak, že kladný pól kondenzátoru bude připojen k nulovému pólu zdroje a záporný pól na bázi. Dioda na okamžik pohasne. Kondenzátor se opět vybil přes odpor R2. Tentokrát se však nastavený proud báze připojením kondenzátoru zmenšil.

Nyní kondenzátor připojíme jedním pólem do báze tranzistoru trvale podle schématu na obr. 85. Připojení na zkušební destičku je na obr. 86.

Svorku 2 střídavě spojujeme kouskem vodiče s kladným a se záporným pólem zdroje. Kondenzátor se tak postupně nabíjí a vybíjí, ale k nastavenému klidovému proudu je "připočítáván" (nebo "odečítán") proud vzniklý střídavým nabíjením a vybíjením kondenzátoru.

Protože proud kolektoru je značně větší než proud báze, tranzistor zesiluje. Velikost zesílení je dána proudovým zesilovacím činitelem tranzistoru, jak jsme si již vysvětlili. Větší proud kolektoru vyvolá na kolektorovém rezistoru větší úbytek napětí, které můžeme odebírat. Tranzistor v tomto případě pracuje jako zesilovač. Tuto funkci tranzistoru si můžeme představit podle obr. 87.

Obr. 87. Činnost tranzistoru jako zesilovače průběh napětí a) bez signálu, b) se signálem

Není-li přiváděn žádný signál (U_1) , je na bázi a na kolektoru určité stálé napětí. Přivedeme-li na vstup střídavý signál, projde přes kondenzátor C1 na bázi tranzistoru. Napětí U_2 na bázi se mění (posouvá) v rytmu signálu na vstupu.

Napětí na bázi ovládá proud protékající tranzistorem. Zesílené napětí, označené na obrázku jako U_3 , odebíráme z kolektoru tranzistoru přes kondenzátor C2.

Na obr. 88 je používané označení provozních napětí zesilovače.

Obr. 88. Schéma zesilovače

Zapojení zesilovače si můžeme vyzkoušet podle schématu na obr. 89. Jedná se o jednoduchý zesilovač s tranzistorem, v jehož kolektoru jsou zapojena sluchátka. Pro toto zapojení lze použít sluchátka z výprodeje, jejichž impedance (odpor) je kolem 2000 Ω, není vhodné použít sluchátkové vložky např. z telefonu (mají malý odpor); sluchátkové vložky můžeme však zapojit buď podle obr. 90 nebo podle obr. 99.

Obr. 86. Zapojení na zkušební destičce

Obr. 89. Schéma zesilovače

Obr. 90. Schéma zesilovače

Obr. 91. Schéma zesilovače (Pokračování)

Pololetní test

Školní rok již sice skončil, ale kurs "Začínáme s elektronikou" je právě v polovině. Pro vnímavé čtenáře jsme proto připravili pololetní test na ověření znalostí.

Správné odpovědi postačí stručně napsat na korespondenční lístek a zaslat jej na adresu redakce Amatérského radia do konce července 1993.

Autoři správných a nejrychleji zaslaných odpovědí budou odměněni elektronickými součástkami.

- 1. Jaké bude výsledné napětí šesti sériově zapojení elektrických článků, které známe z ploché baterie?
- 2. Jaké bude výsledné napětí těchto článků, zapojíme-li je paralelně?
- **3.** Na zdroj ze šesti sériově zapojených článků připojíme rezistor označený 12k. Jak velký proud poteče tímto rezistorem?
- **4.** Jaký odpor bude mít rezistor označený barevným čárkovým kódem, na kterém budou barevné proužky v pořadí:
 - a) žlutý-fialový-červený,
 - b) bílý--hnědý--oranžový,
 - c) zelený-modrý-hnědý.
- **5.** Ke svítivé diodě potřebujeme zapojit sériový rezistor s odporem 820 Ω \pm 10 %, tj. v rozmezí 738 až 902 Ω . Z jakých dvou rezistorů můžeme tento odpor složit, bude-li jeden z nich 470 Ω ?

Jaký odpor z řady E 12 bude mít rezistor, který ve spojení s rezistorem 470 Ω bude mít odpor co nejbližší požadovanému odporu 820 O?

- **7.** Jaký musí být nejmenší zesilovací činitel h_{21e} tranzistoru, jehož bází teče proud 0,1 mA a kolektorový proud požadujeme alespoň 0,015 A?
- **8.** V přístroji nahradíme poškozený tranzistor KC509 se zesilovacím činitelem $h_{21e} = 250$ tranzistorem KS500 se zesilovacím činitelem $h_{21e} = 30$. Jaký bude důsledek této "opravy"?

STAVEBNICE PŘIJÍMAČE VKV-FM - mini

Přijímač je konstruován jako kapesní, pro příjem stanic rozhlasových v pásmu VKV. Může být napájen z devítivoltové baterie, nebo z externího stabilizovaného zdroje, pak lze vypustit stabilizátor 78L05, který stabilizuje napětí pro lO1 + D1.

Technické údaje

9 V (7 V až 15 V). Napáiecí napětí: 12 mA. Klidový odpor proudu: 4 μV. Citlivost pro odstup s/š = 20 dB. 0.5 W. Výstupní výkon: VKV I nebo VKV II.

Kmitočtový rozsah: Základ přijímače tvoří integrovaný obvod TDA7000 fy Philips, je to IO pro superhet s fázovým závěsem (s mezifrekvencí 70 kHz, je určen pro přijímače VKV). Základní funkční bloky IO: vf zesilovač se směšovačem, místní oscilátor, mezifrekvenční zesilovač s omezovačem, fázový demodulátor, detektor a umlčovač šumu (tiché ladění), obr. 2.

měděným lakovaným drátem o průměru 0.6 mm. Potenciometr pro ladění by měl být lineární, 25 až 100 kΩ. Potenciometr pro regulaci hlasitosti by měl být logaritmický 4,7 až 47 kΩ. Odpor rezistoru R3, jímž se nastavuje maximální hlasitost, závisí na použitém potenciometru. V závislosti na použitém reproduktoru je třeba zvolit i odpor rezistoru R5 a to tak, aby R5 včetně reproduktoru měl odpor asi 20 Ω . Např. – reproduktor 8 Ω , R5 = 12 Ω . Místo reproduktoru je možné připojit i malá sluchátka, pak se odpor rezistoru R5 volí podle citlivosti sluchátek (R5 obvykle 220 Ω). Deska s plošnými spoji (5 × 5 cm) byla navržena s ohledem na zvýšené nároky na stabilitu proti vazbám.

Technické údaje TDA7000

Napájecí napětí: 2,7 až 10 V max. Odběr proudu (4,5 V): 8 mA. Kmitďčet vstupních signálů: 1,5 až 110 MHz. Citlivost pro odstup s/š = 20 dB: 4 μV. Max. vstupní napětí: 200 mV. Výstupní napětí: 80 mV. Zkreslení (pro 50 kHz): 1,5%.

Konstrukce přijímače

Celý přijímač je konstruován na jedné desce s plošnými spoji o rozměrech 5 × 5 cm. Kmitočtový rozsah je určen indukčností cívek L1 + L2. Součástky přijímače stavebnice jsou voleny pro příjem v rozsahu VKV II. Rozsahu VKV I Ize jednoduše dosáhnout změnou počtu závitů L1 + L2 (zvětšením na 6 závitů). Pro ladění je vhodné použít varikap KB109G (nebo polovinu BB204). Cívky L1 + L2 jsou samonosné, vinuté na průměru 5 mm, závit vedle závitu - 4 závity

Seznam součástek

Rezistory (mi R1 R2 R3	22 kΩ 33 kΩ	R4	etry 4,7 Ω viz text viz text
Kondenzátory	(kerami	cké)	
C1	100 nF	C9, C15	330 pF
C2, C5, C8	1,8 nF	C10	3,3 nF
C3	22 nF	C11	150 pF
C4	10 nF		39 pF
C6	3,3 nF	C13	47 pF
C7	180 pF	C14	100 nF
C16	220 pF,		
C17		V, elektr.	
C18	10 μF/1	6 V rad. elek	tr.
C19, C20	100 nF		
C21	100 μF/	16 V, elektr.	
C22	$47 \mu F/1$	6 V rad. elek	tr.
C23	10 nF		
C24	10 μF/1	6 V, rad. ele	ktr.
Cívky			
L1, L2	4 z drát	u o Ø 0,6 mi	m na ∅ 5 mn
Polovodičové	součásti	ky,	

KB109G 102 D1 LM386 101 TDA7000 IO3 78L05

deska s plošnými spoji, rozměr 5 × 5 cm

Oživení přijímače

Po správném a pečlivém zapájení připojíme napájecí napětí. Kontrolujemé napětí pro integrový obvod TDA7000 (šp. 5), musí být 5 V. Kontrolujeme, zda se mění napětí na anodě varikapu D1 v závislosti na nastavení P2. Připojíme reproduktor a anténu (drát o délce 1 metr). V případě venkovní antény a svodu 75 Ω se "druhý konec" připojí na zem. Přijímač již musí zachytit rozhlasové vysílání po naladění potenciometrem P2. Přijímané pásmo lze nastavit podle potřeby roztahováním závitů cívky L1.

Sadu součástek - rezistory, varikap, kondenzátory, integrované obvody, stabilizátor, cívky, desku s plošnými spoji, konektor pro baterii 9 V a návod lze objednat za 245 Kč, osazenou a oživenou destičku lze objednat za 279 Kč, 25 Kč poštovné, na dobírku u firmy DAVID - elektronik, Teyschlova 15, 635 00 Brno.

Telefónna ústredňa TTL

Milan Removčík

Je to jednoduchá domáca ústredňa pre 6 účastníkov, ktorá nie je pripojená na jednotnú telefónnu sieť.

V dnešnej dobe je na trhu nepreberné množstvo malých telefónnych ústrední. Pre použitie v rodinných domoch a bytoch sú však veľmi drahé. Preto som navrhol zapojenie, ktoré nepresiahne náklady 500 Kč a môže ho realizovať aj začínajúci amatér.

Popis zapojenia

V zapojení sú použité bežné IO TTL. Ústredňa pozostáva:

- účastnícke sady v počte 6 kusov;
- logická časť, ktorú tvorí hľadač, čítač impulzov a dekodér;
- spojovacie pole vytvorené dvoma analógovými spínačmi MAB08;
- sieťový zdroj dodávajúci napätia
 +5 V, +60 V, str 55 V a -3 V.
- Na ústredňu je možné pripojiť ľubovoľný telefón s impulznou voľbou. Účastnícke čísla sú 1 až 6. Vstup do

ústredne je nesymetrický a pri dlhších vedeniach použijeme symetrizačné trafá podľa AR 5/90 str. 216.

Popis činnosti

Ústredňa pracuje na podobnom princípe ako niekdajší hľadačový systém a má len jednu spojnicu. Schéma ústredne je na obr. 1. Hradlá H6 a H7 pracujú ako generátor na kmitočte okolo 12 Hz. Tento kmitočet je privádzaný cez H4 a H5 do čítača IO4, ktorý výstup-

Obr. 2. Doska s plošnými spojmi

mi B C D cyklicky adresuje multiplexer IO5 (74151). Tieto tri IO tvoria hľadač.

Ak niektorý účastník zdvihne mikrotelefón, dostane sa napätie +60 V cez telefónny prístroj. D12, D13 na delič R4R5 a tým prejde vst. 3 hradla H2 do log. 1 a príslušný vstup multiplexeru do log. 0. Keď čítač nakrokuje na túto adresu, objaví sa na negovanom výstupe "w" log. 1, čím sa cez D14 a R6 otvorí T2. (Náboj C4 udržiava T2 otvorený počas voľby.) Tranzistor T2 uzavrie hradlo H4 a hľadač sa zastaví. Zároveň ie na tei istei adrese nastavený aj analógový spínač IO2, ktorý prepojí hovorový drôt "a" volajúceho účastníka na svoj výstup. Tranzistor T2 zároveň cez hradlo H11 odblokuje H10 pre príjem impulzov z číselnice a odblokuje tiež čítač 107.

Účastník môže voliť číslo. Impulzami číselnice sa preklápa hradlo H2 a cez neneg. výstup "y" multiplexera aj hradlo H10. Na výstup tohto hradla je zaradený dvojitý integračný člen R9C7R8C15, ktorý odfiltruje zákmity z číselnice. Potom sú voliace impulzy vedené cez T3 do čítača IO7. Výstup čítača sa nastaví v kóde B C D na číslo volaného. Toto číslo je dekódované dekodérom IO6 (7442) a zároveň privedené na vstupné adresy spínača IO3,

ktorý uzatvorí hovorový obvod účastníkov. Na výstupe dekodéra IO6 prisluchajúcemu volanému sa objaví log. 0, ktorá spôsobí cez hradlo H1 a H3 otvorenie tranzistora T1 a tyristora Ty1. Tým je účastník vyzváňaný.

Cyklické prerušovanie vyzváňania je zabezpečené z generátora, ktorého kmitočet sa delí 16 pomocou IO10. Cez hradlá H8 a H9 sa privádza do spoločného bodu "z". Vyzváňacie napätie sa zároveň cez C1 a R2, obmedzené diódami D7÷10 na 1 V dostane k volaiúcemu a slúži ako vyzváňací tón. Pri vyzváňaní účastníka je hradlo H2 blokované z výstupu hradla H3, aby nevzniklo samoprihlásenie. Prihlásenie volaného je vyhodnotené v medzere medzi zvoneniami a výstup hradla H2 prejde vtedy na log. 0, čím zablokuje H3 vývod 9 a skončí sa vyzváňanie. Potom môže prebiehať hovor.

Keď volajúci položí sluchátko, čítač impulzov by to vyhodnotil ako další impulz. Tomu zabraňuje hradlo H8, ktoré je okamžite pri položení sluchátka blokované cez D15. Kondenzátor C8 sa uplatní pri voľbe čísla a udržiava počas nej vstup 1 hradla H8 na log. 0.

Spojenie sa preruší, keď sluchátko položí volajúci účastník, podobne ako pri zostavení spojenia.

Mechanická konštrukcia

Celá ústredňa je zapojená na jednostrannej doske s plošnými spojmi podľa obr. 2. **Zo strany spojov treba urobiť** nasledovné drôtové prepojky.

- 1. Napätie +5 V všetky IO.
- Napätie 0 V všetky IO s výnimkou:
 4. 8. 9. 10.
- 3. Vst. účas. 2, 3, 4, 5, 6 (výv. 6 IO1) do IO5 výv. 2, 1, 15, 14, 13,
- 4. Výv. 16 IO3 na výv. 14 IO6.
- Vývody č. 3 IO2 a IO3 navzájom (–3 V).

Vývody k účastníkom sú zapojené na lámaciu svorkovnicu. Drôty "a" sú vyvedené z C11 až C11V označené na doske 1 až 6. Drôty "b" sú pripojené na +60 V. Napájací zdroj je na kúsku univerzálnej dosky s plošnými spojmi o rozmeroch 5,5 × 8 cm. Stabilizátor je priskrutkovaný na bok šasi. Rezistor R6 je priamo na vývode transformátora. Diódy D6^I až D6^{VI} sú zo strany spojov, taktiež C15, ktorý bol zapojený dodatočne. Diódy D7 až D10 sú najprv spojené do štvoríc a potom dané do dosky. Šasi ústredne tvorí hliníkový plech hr. 2 mm ohnutý do tvaru "U". Celkové usporiadanie vidno na obr. 3. Celá ústredňa môže byť umiestnená v rozvodnej skrini na stene, kde končia vývody od účastní-

Zoznam súčiastok

Rezistory (TR 2	212)
R1	22 kΩ
R2	330 Ω
R3	33 kΩ
R4	1,8 kΩ, TR 522
R5	150 Ω, TR 221
R6	10 kΩ
R7	1,2 kΩ
R8, R9	4,7 k Ω
R10, R11	1 kΩ
R12	820 Ω
R13	820 Ω, TR 521
R14	330 Ω, TR 521
R15	150 Ω
R16	10 k Ω , TR 152

ν_{\sim}	ndei	~-Á:	
nυ	uaei	IZA	UIV

Kondenzátory	
C1	2,2 μF/100 V, TGL
C2, C3	100 nF, TK 782
C4	5 μF, TE 004
C5	20 μF, TE 004
C6	50 μF, TE 004
C7	4,7 μF/40 V
C8	100 μF, TE 003
C9	100 μF, TF 012
C10	200 μF, TE 988
C11	1000 μF, TE 984
C12	100 nF, TK 782
C13	50 μF, TE 984
C14	100 μF, TE 981
C15	4.7 μF/40 V

Polovodičové súčiastky

D1, D2, D3, D4, D13, D17, D22 KY130/300

D5 až D10,		IO9	7400
D14, D15	KA261	IO10	7493
D11	KZ141	IO11	7805
D12	LQ1132	T1	KC307V, 6 ks
D16	LQ1702	T2	KC238
D18 až D21	KY132/80	T3	KC238
101	7410 6 ks	Ty1	KT508/400, 6 ks
102	MAB08E	•	
Ю3	MAB08E	Prim _ 2	560 z/0.15
104	7493		· · · · · · · · · · · · · · · · · · ·
IO5	74151		880 z/0,25
106	7442		75 z/0,5 CuL.
107	7493	Pozn.: C12	? je pripájaný na IO11
IO8	7400	C3	na 105 a 104.

Obr. 3. Celkové usporiadanie

Zajímavá zapojení

Dva zajímavé snímače

Teplota a tlak patří mezi veličiny, jejichž měření je požadováno v technické praxi i běžném životě velmi často. Proto se mimo klasických snímačů těchto veličin objeví čas od času snímač nový svým principem, či výstupní "měronosnou" veličinou. Výrobci se dnes většinou snaží, aby se uživatel mohl soustředit pouze na vlastní problém, kvůli němuž tyto veličiny zjišťuje a měl k dispozici použitelný elektrický signál s definovaným vztahem k měřené veličině. V poslední době se objevily dva takové snímače, z nichž první, určený k měření teploty, je výrobkem známé firmy National Semiconductors.

Snímače této firmy, které jsou označeny jako série LM35, obsahují integrovaný obvod, jehož výstupní napětí je přímo úměrné teplotě ve stupních Celsia s citlivostí 10 mV/°C a nelinearitou pouhých ±1/4 °C. Snímač má malou výstupní impedanci (0,1 Ω) při zatěži 1 mA. Aniž je nutno cokoliv nastavovat či kalibrovat, lze měřit teplotu v rozsahu -55 až 150 °C s chybou ±3/4 °C. Protože snímače se nastavují přímo při výrobě čipu, jsou poměrně levné. Obvod lze napájet z jediného zdroje 4 až 30 V, odběr je typicky pouhých 60 μA, takže vliv vlastního ohřevu je zanedbatelný. Snímač je pouzdřen do kovového pouzdra TO-46, plastového TO-92 a TO-202 a osmivývodového pouzdra pro plošnou montáž SO-8. Podle pracovního rozsahu teplot jsou dále tříděny na LM35, LM35A pro teploty -50 až +150 °C, LM35C a LM35CA pro -40 až +110 °C a LM35D pro 0 až 100 °C. Doplňkové písmeno A značí užší toleranční pole chyby převodu napětí/ teplota.

Snímače jsou vhodné např. pro měření povrchové teploty předmětů, ke kterým se připevňují např. lepením. Při velkých rozdílech teplot měřeného předmětu a okolního prostředí je zvláště v případě plastového pouzdra nutno zmenšit vliv měděných vstupních přívodů, které tvoří parazitní tepelnou cestu. Vhodné je jejich krytí například epoxidovou pryskyřicí. Snímače v kovovém pouzdře lze k předmětu připájet, pak je ovšem zem napájení spojena s tímto předmětem. Při použití pro měření teploty obsahu různých nádrží je třeba chránit vývody snímače před znečištěním s následkem svodů mezi vývody.

Základní zapojení pro měření teploty 2 až 150 °C je na obr. 1. Na obr. 2a je zapojení pro získání výstupního signálu ze vzdáleného čidla s uzemněným záporným pólem napájení, na obr. 2b je se zemí spojen záporný pól výstupu. V obou případech je přívodem ke snímači kroucený dvouvodič. V obr. 3 je uvedeno měření kladných i záporných teplot při užití jediného napájecího zdroje. Při zpracování měřené teploty na počítači lze využít zapojení z obr. 4a, kde je výstupem sériový signál, či obvodu na obr. 4b, kde je výstup v paralelním tvaru. Teplotní signál lze převést i na kmitočet s využitím zapojení z obr. 5. Čtenáře jistě tento obvod inspiruje k řadě dalších aplikací.

Obr. 1. Základní zapojení teplotního snímače LM35

Obr. 2 Dvouvodičové připojení vzdáleného snímače LM35

Obr. 3. Měření v rozsahu −55 až 150 °C

Obr. 4. Převodník teploty na paralelní a sériový číslicový signál s rozsahem 128 °C

Obr. 5. Převodník teploty na kmitočty (2 až 150°C)/(20 až 1500 Hz)

Obr. 6. Blokové schéma snímače tlaku série B08S×××DC

Obr. 7. Časové průběhy řídicího hodinového a výstupního signálu snímače tlaku

kov. Predná časť môže byť prípadne zakrytá plexisklom, aby bolo vidno svit LED, ktoré signalizujú obsadenie účastníkov a činnosť generátora. Transformátor je navinutý na jadre M17 × 22.

Uvedenie do prevádzky

Ústredňa nemá žiadny nastavovací prvok. V prípade, že by impulzy voľby boli orezané, zmenšíme kapacity C7 a C15, naopak, ak je počet impulzov

väčší ako volané číslo, kapacitu zväčšíme. Ak by generátor z H6, H7 nechcel kmitať, upravíme odpory R10, R11. Napájací zdroj musí mať strmý nábeh napätia.

Nedoporučujem používať staré vyradené telefóny, ktorých kontakty sú zdrojom nedefinovateľných zákmitov a skreslených impulzov. Tieto nie je schopná ústredňa spracovať. Prednostne použijeme kompaktné telefóny, ktoré dostať v bazáre.

Záver

Pre jednoduchosť nemá ústredňa oznamovací a obsadzovací tón. Taktiež nemá separátor poruchových slučiek. Pre slabú prevádzku v domácnosti však plne vyhovuje. K ústredni je možné pripojiť "domofón" a to tým spôsobom, že hovorový drôt vyvedieme z IO3 – výv. 9 a ovládanie napájania (zapínania) z IO6 – výv. 9. Spojenie dosiahneme voľbou č. 7.

Pro měření přetlaku či tlakového rozdílu jsou určeny snímače série B08S××DC firmy Sensor Technics ze SRN (Aubinger Weg 27, D-8039 Puchheim). Snímače, které v pěti typech pokrývají rozsah od 0 až 70 mbar po 0 až 10 bar, se vyznačují tím, že poskytují přímo sériový osmibitový číslicový výstup. Snímače jsou určeny pro kapalná a plynná média, která nemají korozní účinky. Teplotní vlivy jsou kompenzovány v rozsahu pracovních teplot 0 až 70 °C. Snímač, jehož blokové schéma je na obr. 6, se napájí napětím 5 V a odebírá ze zdroje asi 5 mA. Na obr. 7 jsou časové průběhy hodinového, výběrového a výstupního signálu. Použitý převodník A/D je stejného tvpu jako v aplikačním schématu teplotního snímače na obr. 4a. V provedení určeném k přímému osazení na desku s plošnými spoji má snímač rozměry 29,2×37×37,3 mm (š×h×v) a hmotnost 16 g, modulové provedení o rozměrech 40×40×35,5 má hmotnost 30 g. Výška přitom zahrnuje přívody vstupních tlaků a elektrické vývody. Typická velikost nelinearity a hystereze je ±1/2 hodnoty odpovídající nejméně významnému bitu.

JH

Firemní literatura firmy National Semiconductors a Sensor Technics

Automatický odpojovač motoru RC modelu

Pokud rádiem řízený model neobsahuje oddělené napájení pro poháněcí elektromotorek a přijímač se servy, snadno se stane, že po vyčerpání kapacity akumulátoru přestane být model nejen poháněn, ale přestane být také ovladatelný. Proto může být pro modeláře zajímavé zapojení uvedené v [1], které automaticky odpojí od baterie motor s velkou spotřebou tehdy, když zbytek její kapacity ještě postačí k provozu přijímače a serv. Využití zapojení umožní v případě vybavení modelu dvěma bateriemi uspořit baterii pro elektroniku a tím i prostor a hmotnost

Funkce zapojení vychází z typického průběhu vybíjecí charakteristiky akumulátoru NiCd (šest článků), jehož napětí při zátěži s velkou spotřebou klesne po vyčerpání kapacity rychle z 7,2 V na nulu. Je-li mezní napětí potřebné pro elektroniku 5 V, je třeba zajistit odpojení motoru ještě před poklesem napětí na tuto velikost, zbytek kapacity akumulátoru pak postačí pro napájení elektroniky ještě po dobu nutnou na přistání leteckého modelu.

Praktické zapojení je uvedeno na obr. 1. Integrovaný stabilizátor IO1 (pracující i při malém rozdílu vstupního a výstupního napětí 0,5 až 0,8 V) vytváří ze vstupních 7,2 V stabilizovaných 5 V, kondenzátory C2, C3 slouží k odstranění rušivých špiček vznikajících v motoru. Uvedený typ stabilizátoru je s chladičem vhodný do proudové spotřeby 1 A. Prahové napětí baterie, při němž se odpojí motor, musí být minimálně o úbytek na stabilizátoru větší než minimální potřebné napětí pro elektroniku. Zjištění tohoto stavu je úkolem komparátoru IO2, který porovnává napětí z děličů R5, R6 a R1, R2, P1. Nastavením P1 lze nastavit překlápěcí úroveň mezi 5,2 a 6,6 V.

Kondenzátory slouží k vf blokování zmíněných děličů. Cívka relé A je připnuta tranzistorem T2 k baterii tehdy, je-li napětí dostatečné, tedy je-li napětí na jezdci P1 větší než na referenčním děliči R5, R6.

Paralelně spojené R8, C6 slouží jako "spořič" proudu. Proudová špička vzniklá po sepnutí T2 při nabíjení C6 dodá potřebný větší proud nutný pro sepnutí relé. Přes R8 pak následně teče menší přídržný proud, postačující pro udržení relé v sepnutém stavu. Odpor rezistoru R8 je třeba upřesnit experimentálně. Kladná zpětná vazba zavedená z výstupu komparátoru na jeho vstup tranzistorem T1 zabrání po vypnutí relé jeho opětovnému zapnutí, které by nastalo po odpojení motoru, kdy se napětí odlehčené baterie opět zvětší. Opětovné sepnutí relé po zvětšení napětí baterie je možné až po spojení svorky RST na napětí +5 V, což je možné uskutečnit i dálkově. Automaticky je signál RST generován po vložení nabité baterie v důsledku funkce obvodu R4, C5, D3. Svítivá dioda D5 má jen signalizační funkci. Rozepne-li relé, dioda se rozsvítí.

Literatura

[1] Power – Off für RC-Modelle. Elektor 23 (1992); 12; s. 57, 58

. . .

Obr. 2. Zapojení automatického odpojovače motoru RC modelu při kritickém poklesu napětí baterie

LOW-COST REAL-TIME

Digital Scope

Univerzální osciloskop špičkových parametrů

představuje nový typ digitálního osciloskopu

TDS320

kterým firma Tektronix rozšiřuje úspěšnou řadu osciloskopů TDS. I Vy máte dnes možnost získat přístroj s revoluční technologií záznamu, snadnou obsluhou a tříletou zárukou

...za přijatelnou cenu

Technické údaje:

- 🕽 Šířka pásma 100 MHz
- 2 kanály
- □ vzorkování 500 MS/s na kanál
- ☐ 5 ns/díl 5 s /díl
- ☐ 2 mV/dîl 10 V/dîl
- 🗇 délka záznamu 1 K/kanál
- AUTOSETUP, ANTILIASING
- paměť pro 10 nastavení čelního panelu
- automatické vyhodnocování21 parametrů
- kurzorové odečítání času a amplitudy současně
- detekce krátkých rušivých impulsů (glitch) od 10 ns
- ☐ sběrnice GPIB, CENTRONICS
- ☐ HCOPY
- Sample, Envelope, Average, PeakDet
- zobrazení typu Vector, Dots, Accumulate Vector/Dot
- TV Trigger PAL, NTSC

Tektronix

Vyžádejte si další podrobné informace:

ZENIT - zastoupení TEKTRONIX

Bartolomějská 13 110 00 Praha 1

tel. (02) 22 32 63

fax (02) 236 13 46
.KVALITA A SPOLEHLIVOST!

Externý napájací zdroj VN pre tranzistorový blesk

Filip Kuzman

(Dokončení)

Dutinky konektoru K1 sú na dosku s plošnými spojmi prilepené lepidlom Epoxy. Použijeme ľubovoľne dostupné z rozobratého konektora, ktoré zabezpečia spoľahlivý kontakt, s prierezom kolíkov asi 1 mm². Konektory na prepojovací kábel som zhotovil tak. že na dvojlinku som nasunul dve vhodne veľké krytky z popisovačov fix, potom som pripájal kolíky, resp. dutinky na strane blesku a upravil vzájomnú polohu kontaktov a krytiek. Do konektora K3 som vložil tretí nepripojený kolík (kľúč), vnútro krytky som vyplnil lepidlom Epoxy a potom zasunul do konektora K2. Medzi stenu skrinky a krytku K3 som dal kúsok fólie PVC, aby sa vzájomne nezlepili. Konektor K4 s dutinkami je o mnoho menší, bol nutný iný postup. Opäť som nasunul dutinky na kolíky v blesku, do medzery medzi nimi som vložil kúsok laminátu a vzájomne zlepil sekundovým lepidlom (pozor na veľkú vzlínavosť lepidla, lepiť postupne malým množstvom). Po úplnom zaschnutí som dutinky vytiahol, nasunul na ne krytku a dokončil lepenie. Na vonkajšiu stranu krytky je tiež prilepený "křúč". Dĺžka kábla je 1 m.

Transormátor meniča je zhotovený podľa obr. 14. Všetky teórie výpočtu meničov kon-

Obr. 12. Blok akumulátorovej batérie

Obr. 13. Predloha krycieho panelu

PLOŠNÝ SPOJ PRILEPIŤ EPOXY

Obr. 14. Transformátor Tr1

čia konštatovaním, že výsledky získané na základe exaktných i empirických vzorcov sa aj tak musia upraviť na základe nameraných hodnôt. Skutočne to platí. Bolo treba experimentovať s materiálom a prierezom jadra, hlavne však s počtom závitov jednotlivých vinutí. Optimálne hodnoty, ku ktorým som dospel, sú uvedené na schéme. Feritové iadro EE z Prametu Šumperk má prierez stredného stĺpika 12 × 14 mm a základnú medzeru v strede 0.4 mm. Najväčšiu účinnosť som dosiahol pri medzere krajných stĺpikov 0.13 mm. Vinutie L3, L4 sú naspodu a vinuté bifilárne. Nasledujú vinutia L2, L6, L5 opäť vinuté súčasne. Nakoniec je navinuté vinutie L1. Všetky vrstvy vinutia sú oddelené prekladovým papierom (medzi L1 a ostatnými 5 závitov prekladu). Usporiadanie vývodov je na obrázku. Medzeru v jadre vymedzíme napr. papierom, obe polovičky stlačíme a z boku prilepíme prúžky kuprextitu. Na spodnej strane pripájame kolíky z drôtu, pomocou ktorých je trafo pripájané do dosky s plošnými spojmi. Na diody D12, D13 a D14, D15 je pripevnený chladič podľa obr. 15. Zosilňovací činiteľ tranzistorov T1 a T2 by mal byť 80 až 100. Kondenzátor C3 musí bvť zvitkový, aby neovplyvňoval činnosť 101., Rezistory doporučujeme použiť kovové, napr. TR 151, pre menšie nároky vyhovuje bežný typ TR 212. R31 je drôtový na zaťaženie 6 W, napr. TR 506. Ako zberací kondenzátor C1 som použil Philips 250 µF/400 V Ø 30 × 30 mm. Cez otvor medzi emitorom T3 a dištančným stĺpikom prechádza vodič od vývodu +12 V akumulátora na prepínač V1A. Diody LED sú do otvorov zalepené.

Obr. 15. Chladič diod D12 až D15

Oživenie a nastavenie

K oživeniu potrebujeme pomocný stabilizovaný zdroj 0 až 20 V, 3 A, zaťažovací rezistor 4,7 kΩ/30 W (zložený napr. z 10 ks 470/6 W) a univerzálny V-Ameter. Ak je k dispozícii aj osciloskop, ktorým sledujeme priebeh napätia na emitoroch T1, T2 a digitálny V-Ameter s pamäťou na zistenie špičkových prúdov, je nastavenie pohodlnejšie.

Východzí stav: akumulátor je odpojený, kolektory T1 a T2 sú odpojené, bežce trimrov R1, R2, R22, R29 sú v strede dráhy, bežce R18 na strane *U*_{REF}, vypínače V1 a V2 vypnuté, na mieste C1 je kondenzátor 2μF/400 V. Namiesto akumulátora pripojíme stabilizovaný zdroj, nastavíme na ňom 14 V. Zapneme vypínač V1. Na meracom bode MB2 voči zemi MB1 nameriame napájacie napätie +14 V. Na MB3 musí byť *U*_{REF} okolo

+5,8 V. Paralelne k D3 pripojíme rezistor 18 kΩ, na MB5 bude úroveň L, D9 svieti. Otáčaním bežca R18 preklopí l01, na MB5 bude úroveň H, D9 nesvieti. Bežec vrátime do východzej polohy a rezistor 18 kΩ odpojíme. Preklápanie l01 svedčí o správnej činnosti regulátora. Bežec trimra R29 nastavíme tak, aby sa práve rozsvietila dioda D11. Konečné napätie plne nabitého akumulátora je okolo 14 V. Napätie z pomocného zdroja znížime na 10,5 V a trimrom R22 nájdeme okamih, keď sa práve rozsvieti dioda D10.

Daný typ článkov NiCd možno vybíjať do napätia 1,0 V. Napätie pomocného zdroja vrátime na 12 V, zapneme vypínač V2, rozsvieti sa dioda D9, kolektory T1, T2 spojíme s napájacím napätím. Na merací bod MB4 pripojíme voltmetr a vypneme vypínač V2. Dioda D9 zhasne, menič sa rozbehne a na kondenzátore C1 začne rásť napätie. Malo by dosiahnuť asi -335 V, menič vypne, rozsvieti sa dioda D9. Napätie na C1 bude pomaly klesať. Pri poklese asi o 3 až 5 V znova nabehne menič a dobije C1 na -335 V. Bežec R18 otáčaním smerom k diode D8 nastavíme na -350 V, alebo inú požadovanú hodnotu. Dá sa dosiahnuť až -750 V Zostáva nastaviť maximálnu účinnosť meniča. Ku kondenzátoru C1 pripojíme paralelne odporovú záťaž 4,7 kΩ, viď obr.

Zapneme menič, pozorujeme osciloskopom priebeh napätia na emitoroch T1 a T2 a trimrami R1 a R2 nastavíme najlepší obdĺžnikový priebeh, čomu zodpovedá aj maximálne napätie na R2. Bez osciloskopu meriame práve toto napätie. Keďže účinnosť závisí aj na veľkosti medzery jadra Tr1, skúsime ju tiež meniť. Po dosiahnutí maximálnej účinnosti jadro zalepíme a výstupné napätie dostavíme na 350 V. Účinnosť je pomer výkonu na záťaži k príkonu, krát 100 %.

$$\eta = \frac{U_2 \cdot I_1}{U_1 \cdot I_1} \cdot 100 = \frac{U_2^2 \cdot 100}{R_2 \cdot U_1 \cdot I_1} = \frac{U_2^2 \cdot 100}{5.6 \cdot 10^4 \cdot I_1} [\%; V, A]$$

Üčinnosť by sa mala pohybovať v rozsahu 80 až 90 %. Prúd zo zdroja pri U1=12 V a U2=350 V bol 2,43 A, čomu zodpovedá účinnosť 89,38 %. Tranzistory i pri dlhodobej prevádzke so záťažou 4,7 k Ω budú len vlažné. Pri menej výkonnom pomocnom zdroji zväčšíme odpor záťaže. Tým je celé oživenie a nastavenie skončené. Odpojíme pomocný zdroj a R $_{\rm z}$ a prispájkujeme akumulátor. Zdroj EPU, vždy pri vypnutom vypínači V1, prepojíme káblom s bleskom a môžeme odskúšať prevádzku. Batérie v blesku musia zostať, lebo napájajú jeho automatiku.

Skúsenosti zo stavby a dosiahnuté výsledky

Ako napájacie články sú vhodné NiCd akumulátory so sintrovanými elektródami a pájacími praporkami. Výhodou je tesnosť,

Obr. 16. Zapojenie k nastaveniu účinnosti meniča

prijateľný pomer hmotnosti k objemu energie, odolnosť voči definovanému prebíjaniu. rovná vybíjacia charakteristika, možnosť rychlonabíjania, dostupnosť na trhu (i na elekronických burzách výrobky Varta, UC, Slaný, Panasonic). Pri výbere treba dodržať zásady uvedené v [17] a [18], hlavne s ohľadom na kapacitu a samovybíjanie. V zahraničí sú k dispozícii už zostavené kompaktné batérie. Konečně napätie článku závisí od veľkosti pretekajúceho nabíjacieho prúdu a teploty, preto okamih signalizácie diody D11 môžeme pozmeniť pre konkrétne podmienky. V každom prípade je vhodné skontrolovať kapacitu všetkých článkov, aby nedošlo k prepólovaniu pri vybíjaní.

Ak na mieste V1 použijeme mikrospínač len s tromi kontaktami, treba ho premiestniť do zápornej vetvy. Zdroj EPU nie je treba počas práce úzkostlivo vypínať, pretože pri chode naprázdno spotrebuje za 1 hodinu menej ako 1 % kapacity akumulátora. Počet zábleskov, ktorý sa dá získať z plnej kapacity akumulátora som zmeral tak, že náboj kondenzátora C1 (1250 µF, 350 V) som vybíjal cez rezistor 10 Ω a tyristor prakticky na nulové napätie (pri výbojke zostáva asi 60 V). Pre pokles napätia 1 V na naislabšom článku to bolo 2080 zábleskov. V skutočnosti pri súčinnosti EPU a blesku, batérie v blesku napájajú jeho automatiku i menič. Ak pôvodne bol blesk pripravený na záblesk povedzme priemerne za 15 s, s EPU pre 1250 μF a 350 V sa táto doba skráti na 1,5 s. Ale blesk aj dodá 10 % energie na kondenzátor, čiže počet zábleskov bude asi o 10 % vyšší ako zo samotného EPU a životnosť batérie v blesku sa predĺži 10 až 20krát, lebo jeho automatika pracuje i pri napätí 4 V. Čiže na jedno nabitie akumulátora a s jednou sadou batérií získame minimálne 2000 zábleskov s plnou energiou. Na hodnoty 1250 μF a 350 V sa odvolávam preto, že sú v blesku National PE 3057, ktorý som používal.

Osobne považujem za najväšiu výhodu EPU rýchlosť nabíjania blesku, čo umožní bez problémov používať aj motorový pohon filmu pri fotografování s bleskom. Zvuk meniča neruší, je teraz vítanou signalizáciou pripravenosti (okrem LED). Ďalšou výhodou je zaručené smerné číslo, pretože napätie na zberacom kondenzátore je stabilizované. Jeho zvýšením na UDOV špičkové (čo je spravidla minimálne o 10 % viac ako udávané prevádzkové) a použitím výbojkového kondenzátora i na pozícii C1 zväčšíme i SČ blesku. Dbáme na to, aby sme neprekročili dovolené zaťaženie výbojky (bežne 120 až 150 Ws). Či už tieto úpravy urobíme, alebo nie, je užitočné presvedčiť sa o skutočnom SČ, ktoré máme k dispozícii. Je to veľmi jednoduchá vec. K tomu potrebujeme zistit kapacitu kondenzátora a aké je na ňom napätie. Zapojenie meracieho obvodu je na obr. 17. Blesk otvoríme, zberací kondenzátor vybijeme a odpojíme jeden vývod od obvodov a pripravíme merací obvod. C musí byť naformovaný a pred začatím merania 1 min. skratovaný. Pre priebeh napätia na C platí vzťah

$$U_{\rm C} = U_{\rm Z} \cdot |1 - {\rm e}^{-\frac{{\rm t}}{{\rm r}}}| = U_{\rm Z} \cdot |1 - {\rm e}^{-\frac{{\rm t}}{{\rm RC}}}$$

$$[V; s, \Omega, F] \tag{1}$$

kde t je čas merania a τ časová konštanta obvodu RC. Pri $t = \tau$, to je za 1 časovú konštantu, dosiahne U_C 63,2 % napätia zdroja Uz, v našom prípade 6,32 V. Zo vzťahu $t=\tau=RC$ vyjadríme C:

$$C = \frac{t}{R} = \frac{t}{100 \cdot 10^3} = t \cdot 10^{-5} =$$

$$= t \cdot 10 \cdot 10^{-6} \quad [F; s] \quad (2)$$

To znamená, že 1 s zodpovedá 10 μF. Odmeranim času od rozopnutia S po dosiahnutie 6,32 V na C a dosadením do vzorca (2) vypočítame kapacitu C. Meranie viackrát zopakujeme. Obvody blesku uvedieme do pôvodného stavu, voltmeter necháme pripojený na C. Blesk napájame z regulovaného stabilizovaného zdroja a zmeriame závislosť $U_{\rm c}$ na $U_{\rm B}$. Zo získaných údajov vypočítame energiu na zberacom kondenzátore aj smerné číslo. Potrebné vzťahy nebudem odvodzovať, len ich uvediem:

- energia nabitého kondenzátora: $W = 0.5C \cdot U$ Ws; μF, kV (3).
- teoreticky dosiahnuteľné smerné číslo v závislosti na energii kondenzátora je podľa empirického vzorca SČ= 4,1 \sqrt{W}
- 2 násobok kapacity zodpovedá $\sqrt{2}$ násobku
- 2 násobok W(C) zodpovedá $\sqrt{2}$ násobku
- 2 násobok $U_{
 m c}$ zodpovedá $\sqrt{2}$ násobku SČ
- zmena o 1 clonové číslo zodpovedá √2 násobku SČ
- SČ znamená súčin vzdialenosti blesku od fotografovaného objektu a clonového čísla nastaveného na objektive fotoaparátu. Platí pre použitie fotomateriálu o citlivosti 100 ASA (21 DIN, 21° ČSN).

Obr. 17. Obvod na meranie kapacity kondenzátorov

Z uvedených vzťahov (3) až (8) sa dá urobiť predstava o tom, akým spôsobom získame väčšie SČ. Je vždy výhodnejšie použiť kondenzátor na vyššie napätie, ako zväčšovať kapacitu pre rovnaké zvýšenie SČ (objem zaberaný kondenzátorom bude menší).

Pre zaujímavosť uvediem namerané hodnoty na blesku PE 3057. Udávané SČ pre 100 ASA a vyžarovací uhol 55° (pre základný objektív) je 35. Napája sa štyrmi tužkovými batériami. Kapacita kondenzátora je presne ako udávaná, t.j. 1250 µF. Namerané hodnoty sú v tab. 1 a na obr. 18.

Obr. 18. Parametre blesku PE 3057

Z tabuľky je vidieť, že čerstvé batérie v počiatočnej fáze preťažujú menič a rýchlo sa neekonomicky vyčerpajú. O mnoho výhodnejšie sú NiCd akumulátory (v návode býva uvedené, či ich možno použiť), ktorých napätie je 4,8 až 5,2 V. Signalizáciu pripravenosti blesku som prestavil na 84 % SČ (287 V), čo zodpovedá poklesu o pol clony. V mojom prípade to súčasne znamená, že ak sa signálka nerozsvieti, sú NiCd v EPU práve vybité na 1,0 V na článok. Pre rozsah napájacieho napätia 4,5 a 6,0 V je zmena SČ len o pol clony, čo je v praxi zanedbateľné. Samozrejme v spolupráci s EPU je zmena nulová. Naprostá väčšina bleskov má meniče bez stabilizácie, preto doporučujem overiť si ich vlastnosti.

Záver

Pri experimentálnych prácach pri vývoji sa potvrdila spoľahlivá reprodukovateľnosť zapojenia. Uvedenie všetkých obvodov do chodu nečiní žiadne problémy. Zvýšenú pozornosť treba venovať nastavovaniu účinnosti meniča podľa popisu, aby sme dosiahli maximum.

Zoznam súčiastok

Rezistory (TR 151, TR 212) 220 Ω, TP 011 R1, R2 R3, R6, R11 2,2 kΩ 100 Ω R4 12 kΩ R5 R7 18 kΩ

	•	ab.	
Г			

U _{BAT}	I _{BAT}	$U_{\rm c}$	k	V	S	Č	Pozn.
[v]	[A]	[v]	[Ws]	[%]	-	[%]	,
3,8	0,08	267	44,56	61,1	27,37	78,2	zapla sign.
4,0	0.1	281	49,35	67,7	28,80	82,3	priprav.
4,5	0,15	317	62,81	86,2	32,49	92,8	l
4,75	0,2	333	69,31	95,1	34,13	97,5	∫ –1/4 clony
4,95	0,24	341	72,87	100	35,00	100	i_
5,0	0,25	345	74,39	102,1	35,36	101	i l
5,25	0,35	353	77,88	106,9	36,18	103,4	+1/4 clony
5,5	0,55	360	81,00	111,2	36,90	105,4	(
5,75	0,85	365	83,27	114,3	37,41	106,9	menič je mimo
6,0	1,5	370	85,56	117,4	37,93	108,4	prac. režim

R8, R16, R21, R28	27 kΩ
R9	22 Ω
R10, R12	12 kΩ
R13, R33	180 Ω
R14, R15, R23	47 kΩ
R17	2,9 MΩ, TR 152
R18, R22, R29	330 kΩ, TP 011
R19	5,1 MΩ, TR 152
R20, R30	820 Ω
R24	120 kΩ
R25	270 Ω
R26, R27	68 kΩ
R31	470 Ω, TR 510
R32	5,6 Ω, TR 510
R34	56 Ω
R35	22 kΩ
Kondenzátory	

C1 2 uF/450 V, TE 993 alebo 250 μF/400 V (viď. text) 150 nF, keramický C2 2,2 µF/63 V, WIMA MKS C3 20 uF/15 V, TE 984 C4 330 pF/63 V, TGL 5155 C5 1 mF/15 V, TE 984 500 μF/35 V, TE 986 C6 C7 50 μF/35 V, TE 986 C8

Obr. 19. Celkový pohľad na externý napájací zdroj

Polovodičové súčiastky

D1 až D4	KY199/900
D5 až D8	KA223
D9 až D11	LED
D12, D13	KY930/300
D14, D15	KY930/300
D16	LED
D17	KY 930/30
D18, D19	KY930/300
D20, D21	KY930/300
D22	LED
D23	IN5408
T1, T2	KU608
T3, T4	KC508
T5, T6	KF517
T7	KSY62
Ty1	KT505
1O1 až 1O3	MAA741
104	MA7805

Ostatné súčiastky

Tr1 feritové jadro EE 42×42, str. stĺpik 12×14 mm

vinutia CuL L1 930 z, Ø 0,25, L2 8 z, Ø 0,4, L3 26 z, Ø 0,1, L4 26 z, Ø 1,0, L5 8 z, Ø 0,4, L6 8 z, Ø 0.4

trafo 220 V/26 V, El 25×32 Tr2 -Akumulátory -10 ks NiCd 4000 s páskovými vývodmi

mikrospínač KB-9-1 27 V, 10 A, V1 -(B 613-3A Uz, B 591),

V2 mikrospínač B 593, konektor VN vid'. text,

K2 – koaxiálny konektor pre napájanie malým napätím s rozpínacím konektorom,

konektory s prepojovacím káb-K3, K4 lom vid'. text,

s poistkovým pouzdrom Remos Po1 -6,3/250.

Použitá literatúra

- 1 AR-A 11/77, s. 425. Elektronické blesky v teórii a praxi.
- 2 AR-A 10/74, s. 375. Ott, M.: Tranzistorový blesk s nastavitelným směrným číslem.
- 3 ST 5/73, s. 167. Ott, M.: Nový způsob zavedení proudové zpětné vazby u dvojčinných tranzistorových měničů a střídačů.
- 4 Příloha AR 1975, s. 52. Bečka, R.: Elektronický blesk na batérie i na sieť.
- 5 AR-A 5/75, s. 180. Bětík, S.: Elektronický blesk.
- 6 AR-A 12/75, s. 458. Smola, P.: Měnič pro zábleskové zařízení.
- AR-A 7/78, s. 251. Kolařík, M.: Élektronický blesk.
- AR-A 2/75, s. 50. Pachner, M.: Bateriový napáječ k fotoblesku.

- 9 AR-A 1/76, s. 370. Vondrák, J.: Bateriový napáječ pro síťový blesk.
- 10 Křišťan L.; Vachala, V.: Příručka pro navrhování elektronických obvodů. SNTL, Praha 1082.
- 11 Moerder, C.; Henke, H.: Praktické výpočty v tranzistorové technice, SNTL. Praha 1978
- 12 Syrovátko, M.: Navrhování napájecích zdrojů pro elektroniku. SNTL, Praha 1977.
- 13 Syrovátko, M.; Černoch, B.: Zapojení s integrovanými obvody. SNTL, Praha 1975.
- 14 Vachala, V.; Křišťan, L.: Oscilátory a generátory. SNTL, Praha
- 15 Syrovátko, M.: Nízkofrekvenční tranzistorové zapojení SNTL. Praha 1972.
- [16] Mallar, J.; Krofta, J.: Stabilizované napájecí zdroje pro mikroelektroniku. SNTL, Praha 1985.
- 17 AR-B 1/92, s. 38. Buksa, J.: Niklokadmiové akumulátory se sintrovanými elektrodami.
- [18] Katalóg elektronických súčiastok TESLA 1983–84, I. diel.

Obr. 20 Vnútorné usporiadanie

Obr. 21. Osadená doska s plošnými spojmi

Moderní doplňky k osciloskopu

Ing. Luboš Štohansi

Celý svět se modernizuje. Nechcete také zmodernizovat svůj osciloskop? Popisovaná zapojení obvodů mohou zlepšit vlastnosti i komfort obsluhy vašeho amatérského či profesionálního osciloskopu.

Popisovaná zapojení byla vyvinuta při stavbě amatérského osciloskopu. Vzhledem k tomu, že popis osciloskopu se objevil na stránkách AR už několikrát a navíc by byl příliš rozsáhlý, budou popsány jen ty části, které jsou relativně uzavřené, univerzální a mohou být dodatečně nainstalovány do již hotových osciloskopů. Osciloskop obsahuje ještě další užitečné funkce (současné pozorování dvou průběhů s různým kmitočtem, proměnný fázový posuv při synchronizaci LINE, filtr TV signálů), ovšem tyto části nelze přímo vyjmout a popsat jejich konstrukce jednotlivě.

Níže popsané bloky jsou relativně samostatné, k připojení požadují kromě vstupu a výstupů jen napájecí napětí ±12 V (popř. +24 V) pro analogovou a +5 V pro číslicovou část. Ve všech obvodech je důsledně dodržováno oddělení země analogové (označeno tečkou) a číslicové. Obě země jsou spojeny v jediném bodě a to na svorkách zdroje. Části obvodu, kde je nutno zajistit velkou šířku pásma, jsou zhotoveny na oboustranné desce s plošnými spoji, kde spodní část tvoří vlastní spoje a horní je celá měděná z odfrézovanými plochami okolo-průchodu součástek. Pájení na tuto část je v rozložení součástek označeno tečkou.

Zdroje napětí pro obrazovku

Běžně používané zdroje vychylovacího případně urychlovacího napětí pro obrazovky osciloskopu jsou obvykle realizovány v amatérské praxi usměrňovačem nebo násobičem z vinutí síťového transformátoru. To má kromě velkých rozměrů nevýhodu v tom, že se mění velikost výstupního napětí (tím i obrázku) s kolísáním sítě a není tedy možné kalibrovat dílky rastru obrazovky. Popisované zdroje tyto nedostatky řeší a vzhledem k univerzálnosti je lze použít i v jiných aplikacích.

Zdroj vychylovacího napětí +100 V/100 mA

Pro dosažení velké účinnosti zdroje je realizován jako pulsní zdroj s konstantním kmitočtem se změnou třídy. Schéma zdroje je na obr. 1.

Popis zapojení

Základem zdroje je obvod B260D (TDA1060) v klasickém zapojení. Rezistory R1, R2, dioda D1 a kapacity C1 a C2 zajišťují napájení obvodu, R5, R6 a C5, měkký rozběh zdroje, R7 a C6 určují základní kmitočet a R8, R9, R10, R12, R13, R14, C3 a C4 tvoří obvod regulační smyčky a zpětné vazby. Měnič napětí tvoří tranzistory T1, T2, T3, transformátor Tr1 a výstupní usměrňovač s filtrem D2 a C7. Dioda D2 je rychlá. Tranzistor T1 invertuje budicí signál pro konco-

vou dvojici T2, T3 v Darlingtonově zapojení. Transformátor Tr1 je zapojen jako autotransformátor, což zvětšuje účinnost měniče tím, že je menší převod transformátoru a tím menší výstupní kapacita, která se s čtvercem převodu transformuje na primární část. Zapojení pracuje s kmitočtem 18,5 kHz a jeho účinnost je 75 %. Výstupní napětí je možno jemně nastavit trimrem R9. Vstupní nestabilizované napětí je asi 30 V, a je

dále využito pro napájení zdroje - 400 V.

Změnou počtu závitů na Tr1 a změnou R10, případně C7 je možno vytvořit i zdroj na jiné napětí. Obvod B260 neumožňuje přímo realizovat zdroje záporného napětí.

Deska s plošnými spoji je na obr. 2 a rozložení součástek na obr. 3.

Seznam součástek

Rezistory (TR 151,	TR 191)
R1, R2	1,5 kΩ
R3, R14	15 kΩ
R4	8,2 kΩ
R5	5,6 kΩ
R6	4,3 kΩ
R7	6,8 kΩ
R8	3,3 kΩ
R9	470 Ω, TP095
R10	100 10

Obr. 1. Schéma zapojení zdroje +100 V

B37

Obr. 2. Deska s plošnými spoji zdroje + 100 V

Obr. 3. Rozložení součástek zdroje + 100 V

R11	470 Ω
R12, R13	68 kΩ
Kondenzátory	
C1	15 μF, TE 133
C2	22 µF, TE 132
C3	680 nF, TC 205
C4	10 nF, TK 744
C5	47 μF, TE 131
C6	10 nF, TC 208
C7	22 μF, TF 013
Polovodičové souč	ástkv

101	B260D
T1	KC147
T2	BF458
T3	KD337
D1	KZ260/15V
D2	KY198

Ostatní součástky

hrn. jádro Ø 26/H12, AL=630 n1 - 42 z o Ø 0.4 mm drátem Cul. n2 - 200 z drátu o Ø 0,22 mm CuL

Zdroj urychlovacího napětí -400 V/1 mA

Schéma zdroje je na obr. 4. Zapojení obsahuje stabilizátor ss napětí MAA723, za nímž následuje jednoduchý měníč s pevným kmitočtem i střídou, který má na sekundární straně násobič napětí. Regulace probíhá změnou ss napětí na vstupní straně měniče. Účinnost tohoto zapojení je asi 50 %, což pro daný odběr plně vyhovuje. Při použití pulsní regulace byla účinnost měniče nižší vzhledem ke složitějšímu zapojení regulátoru a budiče.

Popis zapojení

Vstupní i výstupní část obvodu IQ1 je zapojena klasicky s nastaveným omezením proudu rezistorem R9 na 30mA. Vzhledem k tomu, že potřebujeme získat záporné napětí zdroje, je regulační část zapojena netypicky. Na invertující vstup obvodu IO1 (2) je přivedeno referenční napětí z děliče R6, R7 a na neinvertující vstup (3) napětí z děliče R4 + R5 a Rzv, který je upnut na referenční napětí IO1 (4). Tímto způsobem můžeme regulátorem MAA723 regulovat záporné napětí. Zpětnovazební rezistor Rzv je v praxi realizován přímo rezistory v děliči pro napájení jednotlivých mřížek obrazovky. Dioda D1 chrání vstup obvodu proti případným napěťovým špičkám, které vznikají při vypínání zdroje.

Tranzistor T1 v měniči je na napětí Uce. 250 V (aby se neprorazil špičkami z transformátoru Tr1). Diody D2, D3 jsou rychlé, kondenzátor C4 je na 400 V a C5 je na 1000 V. Budič měniče tvoří astabilní multivibrátor z IO2 (MH4001). Střída 21 μs/25 μs byla nastavena experimentálně pro maximální účinnost měniče. Pro napájení IO2 je využito referenční napětí obvodu IO1 (4). C3 brání kmitání vlastního regulátoru. Velikost výstupního napětí se jemně dostavuje trimrem **R5**.

Změnou zapojení regulační smyčky podle obr. 5 můžeme vytvořit vysokonapěťový zdroj kladného napětí. Změnou rezistoru Rzv a počtu závitů na sekundární straně Tr1, popř. jiným násobičem, je možno zkonstruovat zdroje i pro jiné aplikace.

Deska s plošnými spoji je na obr. 6 a rozložení součástek na obr. 7.

Obr. 4. Schéma zapojení zdroje -400 V

B38

Obr. 5. Zapojení regulační smyčky pro druhou polaritu zdroje

Obr. 6. Deska s plošnými spoji zdroje -400 V

Obr. 7. Rozložení součástek zdroje -400 V

C4	22 nF, TC 227
C5	47 nF, TC 229
C6	150 pF, TC 232

Polovodičové součástky

IO1	MAA723
102	4001
T1	BF258
D1	KZ141
D2 D3	KY198

Tr

siau ii	Suucasky
1	hrn. jádro H22 Ø 18, AL=2500
	n1 - 70 z, drátem o Ø 0,15 mm CuL
	n1 - 400 z drátem o Ø 0 112 mm Cui

Saznam součástak

36411	iaili suuvasten						
Rezistory (TR 151, TR 191)							
R1	820 kΩ						
R2	82 kΩ						
R3	1,8 kΩ						
R4	6,8 kΩ						
R5	1 kΩ, TP 095						
R6, R7	8,2 kΩ						
R8	2,7 kΩ						
R9	22Ω						

Kondenzátory	
C1	3,3 μF, TE 132
C2	22 nF, TK 744
C3	100 μF, TE 986

Obvody pro měření okamžitých hodnot a časových úseků

Špičkové osciloskopy renomovaných firem obsahují speciální funkce pro měření různých hodnot pozorovaných průběhů. Níže popisované obvody se snaží částečně realizovat tyto funkce a zlepšit tak komfort obsluhy.

Tyto obvody umožňují zvýraznit na stopě bod, s tímto bodem po stopě libovolně pohybovat a na svorkách pro externí voltmetr libovolným voltmetrem (nelépe digitálním) měřit velikost okamžitého napětí v daném bodě průběhu. Tímto způsobem lze tedy snadno měřit maximální a minimální velikost i kontrolovat průchod zvolenou hodnotou. Dále obvody umožňují jasnější bod roztáhnout a vytvořit na stopě jasnější úsek. Na výstupním konektoru se pak objeví puls TTL stejné délky, který lze přesně měřit čítačem. Takto lze měřit periodu, délku pulsu, náběžnou hranu apod. Poslední funkce obvodů využívá možnosti ovládání jasu stopy vnějším signálem a tím uskutečňovat poměrová měření kmitočtu apod. Popsané funkce zajišťují tyto obvody:

- Obvod modulačních pulsů,
- Obvod pro ovládání jasu obrazovky.
- Vzorkovací obvod.

Obvod modulačních pulsů

Úkolem tohoto obvodu je vytvářet řídicí pulsy pro modulaci jasu (zvýraznění, respektivě zatemnění) a pulsy pro vzorkovací obvod. Pulsy musí být synchronní s časovou základnou a musí být možné měnit nezávisle jejich fázi i šířku.

Princip zapojení

Obvod využívá pro tvorbu pulsů pilovitého průběhu časové základny. Blokové schéma je na obr. 8. Pilovitý signál je přiváděn na trojici komparátorů, které ho porovnávají s nastavenými napětími U_1 , U_2 , U_3 . Tímto způsobem je zajištěna synchronizace časowé základny na všech rozsazích. Změnou napětí U_1 se posouvá fáze pulsu, změnou U_3

Obr. 8. Blokové schéma obvodu modulačních pulsů

Obr. 9. Průběhy při tvorbě modulačních pulsů

pak šířka pulsu. Napětí U_2 dává minimální šířku modulačního pulsu pro zobrazení bodu a zároveň vytváří puls pro vzorkovací obvod. Možnost nezávisle nastavovat jednotlivá napětí zajišťuje proudový zdroj I, pomocí něhož je pak velikost jednotlivých napětí dána lineárně, pouhou změnou rezistoru P1, R2 nebo P3. Výstupy z komparátorů vyhodnocuje logický obvod, který vytváří pulsy A (viz obr. 9) pro ovládání jasu a B pro vzorkovací obvod. Protože vzorkovací obvod potřebujě pro spolehlivou činnost puls minimální délky 2 µs, logický obvod dále obsahuje monostabilní klopný obvod, který při rychlém běhu časové základny prodlužuje puls na nutnou minimální délku.

Popis zapojení

Celkové schéma zapojení je na obr. 10. Z konstrukčních a rozměrových důvodů byl celý obvod rozdělen do čtyř částí, které jsou ve schématu odděleny čárkovaně a označeny I. až IV.

Tranzistor T1 vytváří proudový zdroj. Proměnné rezistory P1, P2 jsou v praxi realizovány upravenými dvojitými potenciometry pro hrubé a jemné nastavení fáze a šířky pulsu. Změnou fáze posunujeme bod doleva nebo doprava, změnou šířky pulsu měníme délku zvýrazněného úseku. (Potenciometry mají vyměněnou odporovou dráhu, takže vnější má hodnotu 2,5 kΩ, vnitřní 250 Ω). Trimrem R4, popřípadě změnou R2 se nastavuje napětí tak, aby byl možný posuv bodu po celé délce stínítka obrazovky.

Výstupy napětí z tohoto děliče jsou přivedeny na emitorové sledovače T2, T3 a T4, které zmenšují impedanci výstupu děliče pro připojení ke komparátorům. Kondenzátory C2 až C8 brání zpětnému ovlivňování děliče napěťovými špičkami. Pilovitý signál z časové základny odděluje (pro vstupy komparátorů) emitorový sledovač T5. Filtry napájecího napětí ±12 V analogové části R22, C9 a R25, C10 zabraňují pronikání rušení

z ostatních částí osciloskopu. Jako komparátory jsou použity rychlé komparátory MAB360, které jsou díky své rychlosti velice náchylné ke kmitání. Proto je u nich zavedena hystereze kladnou zpětnou vazbou R13 až R21.

Z důvodů stability je také kladen velký důraz na blokování napájecích napětí komparátorů kondenzátory C11, C12, C15 a C16. Výstupy komparátoru jsou přímo v úrovni TTL.

Logická část se skládá z obvodů IO4 a IO5. Monostabilní obvod, prodlužující puls vzorkovacímu zesilovači na 2 μs, tvoří C13, R27, D2 a jedno hradlo z IO5.

V přepínačové části můžeme přepínači Př1 a Př4 nastavovat různé způsoby práce. Přepínač Př1 (MODULATION ON/OFF) zapíná modulaci jasu. V poloze OFF není možno modulovat jas, v poloze ON můžeme zvýraznit, případně zatemnit část stopy. Stav přepínače indikuje LED D5. Přepínačem Př2 (INTENSITY +/-) volíme zda budeme stopu zvýrazňovat nebo zatemňovat. V poloze SAMPLE přepínače Př3 bude zvýrazněn nebo zatemněn úsek odběru vzorku vzorkovacího zesilovače (pro časy do 10 μs/ div to je bod, dále pak úsek odpovídající 2 μs), v poloze TIME můžeme zvýrazněný. případně zatemněný úsek roztáhnout potenciometrem P2 a puls stejné délky měřit na konektoru K. Toto vše platí při interní modulaci, tedy při poloze INT přepínače Př4. V poloze EXT můžeme stejným konektorem K přivádět TTL signál pro externí ovládání jasu stopy. Je-li konektor připojen jako vstup nebo výstup, indikuje dvoubarevná LED D6, kde zelená je pro vstup a červená pro výstup. Diody D3, D4 a R34 chrání vstup před případným velkým vstupním signálem. V celém obvodu je důsledně dodržováno oddělení analogové a digitální země.

Desky s plošnými spoji jsou na obr. 11 až obr. 14 a rozložení součástek na obr. 15 až obr. 18.

Seznam součástek

Seznam součástek								
Rezistory (TR 151, TR 191)								
R1	5,6 kΩ							
R2	100 kΩ •							
R3, R32, R33	2,7 kΩ							
R4	1 kΩ							
R5	4,7 kΩ							
R6, R34	47 Ω							
R7 až R9	3,3 kΩ							
R10 až R12	3,9 kΩ							
R13 až R18	1 kΩ							
R19 až R21	100 kΩ							
R22, R25	56 Ω							
R23, R35	100 Ω							
R24	1,8 kΩ							
R26	180 Ω							
R27	470 Ω							
R29 až R31	220Ω							
R36	10 Ω							
P1, P2	$2,5 \text{ k}\Omega + 250 \Omega$							
Kondenzátory								
C1, C9, C10, C11, C15	15 μF, TE 133							
C2 až C5	1,5 μF, TE 134							
C6 až C8, C12, C17	15 nF, TK 744							
C13	10 nF, TK 744							
C14	33 μF, TE 131							
C16	100 nF, TK 682							
Polovodičové součástky								
IO1 až IO3	MAB360							
104	MH7420							
IO5	MH7400							
T1	BC177							
T2 až T4	KC239F							
T5	KC507							
D1	KZ141							

Obr. 11. Deska s plošnými spoji obvodu modulačních pulsů – část I.

Obr. 12. Deska s plošnými spoji obvodu modulačních pulsů – část II.

Obr. 13. Deska s plošnými spoji obvodu modulačních pulsů – část III.

Obr. 14. Deska s plošnými spoji obvodu modulačních pulsů – část IV.

U2 az U4	KA222
D5	LQ140
D6	LQ2134
Ostatní součástky	
Př1 až Př4	Isostat
K	BNC

Obr. 15. Rozložení součástek obvodu modulačních pulsů – část I.

Obr. 16. Rozložení součástek obvodu modulačních pulsů – část II.

Obr. 17. Rozložení součástek obvodu modulačních pulsů – část III.

Obr. 18. Rozložení součástek obvodu modulačních pulsů – část IV.

(Dokončení příště)

INTEGROVANÉ NF ZESILOVAČE

Jaroslav Belza

V dnešní době nabízejí firmy vyrábějící polovodičové součástky desítky typů integrovaných obvodů, určených pro nízkofrekvenční zesilovače. Pro oblast malých a středních výkonů dnes již nemá smysl stavět zesilovač z diskrétních součástek, pokud nepožadujeme neobvyklé parametry nebo vlastnosti zařízení. Použitím integrovaných obvodů se nejen podstatně zmenší složitost zapojení, ale dosáhne se i snadné reprodukovatelnosti. Z katalogů firem SGS--Thomson, Philips a Telefunken jsem vybral několik obvodů, většinou dostupných za přístupnou cenu. Tyto obvody jsem roztřídil na několik skupin podle některých společných vlastností. Ke každému typu uvádím doporučené zapojení, základní parametry a zapojení pouzdra - nezbytné údaje pro použití ve vašich konstrukcích.

V první skupině jsou obvody TDA2006, TDA2030, TDA2030A, TDA2040, TDA2050 a TDA2051. Do této skupiny patří i obvod A2030, který se k nám dovážel z bývalé NDR. Zapojení, doporučené výrobcem, je na obr. 1. Obvody jsou určeny pro napájení ze zdroje symetrického či nesymetrického napětí. Zapojení s nesymetrickým napájením si můžete najít například v AR B3/86 str. 100, pro obvod A2030. Diody D1 a D2 nejsou pro obvody TDA2040, TDA2050 a TDA2051 potřeba. Parametry obvodů jsou uvedeny v tabulce 1, pouzdro je na obr. 2.

Obr. 1. Doporučené zapojení obvodů řady TDA2030

Obr. 2. Zapojení vývodů obvodů v pouzdru PENTAWATT

Obr. 3. Doporučené zapojení obvodů řady TDA 2003

V pouzdru PENTAWATT jsou i zesilovače TDA2002, TDA2003 a TDA2008. Tyto zesilovače mají jen jedno napájecí napětí. První dva typy isou určeny pro provoz v automobilu, typ TDA2008 ve stolních zařízeních. Základní zapojení doporučené výrobcem je na obr. 3, základní parametry jsou v tabulce 2. Zesilovač lze postavit na desce s plošnými spoji podle obr. 4. Doplníte-li toto zapojení regulátorem hlasitosti tak, jak je naznačeno na obr. 5, můžete jej použít v nejrůznějších aplikacích. U tohoto zapojení zesilovače prochází poměrně značný proud zpětnovazebními rezistory R1 a R2. Vyzkoušel isem následující úpravu zapojení: rezistor R1 jsem vypustil, R2 zvětšil na 150 Ω a kapacitu kondenzátoru C2 zmenšil na 10 μF. Spotřeba proudu pak podstatně poklesla, přičemž rozdíl v kvalitě nebyl postřehnutelný.

Obr. 4. Deska s plošnými spoji zesilovače s TDA2003

Obr. 5. Rozmístění součástek na desce z obr. 4

Tab.1. Nejdůležitější parametry obvodů řady TDA2030 (pouzdro PENTAWATT)

Тур	<i>U</i> s [V]	Um [V]	Is [mA]	při Us [V]	Po [W]	při <i>Rz</i> [Ω]	<i>U</i> s [V]	k [%]	k [%]	pro Rz [Ω]	obr.
TDA2006	±6 až :	±15 ±15	40	±12	12 8	4 8	±12 ±12	10 10	0,2 0,1	4 8	1
TDA2030	±6 až :	±18 ±18	40	±14	18 11 12 8	4 8 4 8	±14 ±14 ±14 ±14	10 10 0,5 0,5	0,2 0,1	8	1
TDA2030A	±6 až :	±22 ±22	50	±16	18 12	4 8	±16 ±16	0,5 0,5	0,08 0,03		1
TDA2040	±2,5 až :	±20 ±20	45	±16	22 12	4 8	±16 ±16	0,5 0,5	0,08 0,03		1
TDA2050	±4,5 až :	±25 ±25	30 55	±4,5 ±25	28 18 25	4 8 8	±18 ±18 ±22	0,5 0,5 0,5	0,03 0,02		1
TDA2051	±5 až :	±25 ±25	50 100	±5 ±25	30 17 25	4 8 8	±18 ±18 ±22	1 1 1	0,1	-	1

Tab.2. Nejdůležitější parametry obvodů řady TDA2003 (pouzdro PENTAWATT)

Тур	<i>Us</i> [V]	Um [V]	Is [mA]	při <i>U</i> s [V]	Po [W]	při Rz [Ω]	<i>U</i> s [٧]	k [%]	k [%]	pro Rz [Ω]	obr.
TDA2002 TDA2002A	8 až 18	28	45	14,4	5,2 8	4 2	14,4 14,4	10 10	0,2	2	3
TDA2003	8 ạž 18	28	45	14,4	6 10	4 2	14,4 14,4	10 10	0,15	2	3
TDA2008	10 až 28	28	65	22	8 12	4 2	22 22	10 10	0,12	4	3

povolený rozsah napájecích napětí

klidový napájecí proud (bez signálu) při napětí *Us* Výstupní výkon na zátěži *Rz* při napájecím napětí *Us* a při zkreslení *k*

maximální napájecí napětí (bez signálu) zkreslení signálu při středním výkonu

Obr. 6. Doporučené zapojení obvodu TDA2052

Obr. 9. Zapojení vývodů v pouzdru SOT131A

Pro příznivce velkých výkonů jsou určeny zesilovače TDA2052 (v pouzdru HEPTA-WATT) A TDA1514A (v pouzdru SOT131A). Oba typy jsou vybaveny funkcí MUTE (umlčení signálu na výstupu) a funkcí STAND-BY umožňující zmenšit odběr proudu v neaktivním stavu. Zapojení zesilovače s obvodem TDA2052 je na obr. 6, pouzdro na obr. 7. Zesilovač s obvodem TDA1514A je

na obr. 8, pouzdro na obr. 9. Základní parametry těchto obvodů jsou v tabulce 3. Ovládací napětí MUTE/STAND-BY je u obou obvodů vztaženo k zápornému napájecímu napětí. Hodnoty pro přepínání jednotlivých funkcí jsou v tabulce 4.

Do příštího čísla připravuji dvojité nízkr frekvenční zesilovače.

Tab.3. Nejdůležitější parametry obvodů pro Hi-Fi aplikace

Тур	<i>U</i> s [V]	Um [V]	Is [mA]	při <i>U</i> s [V]	Po [W	při Rz [Ω]	<i>U</i> s [V]	k [%]	[%]	pro <i>Rz</i> [Ω]	obr.
TDA2052	±6 až ±25	±25	50	±18	40 22 30 17 24 60	4 8 4 8 8	±18 ±18 ±18 ±18 ±22 ±22,5	10 10 1 1 1 1	0,1	4	6
TDA1514A	±9 až ±30	±30	60	±27,5	50 40	4 8	±23 ±27,5	1	0.03	4	8

Tab.4. Pomocné funkce obvodů TDA2052 a TDA1514A

Тур		TDA2052	TDA1514A		
Ovládací napětí pro režim PLAY	U3-4	3 až 7 V	6 až 7 V		
Ovládací napětí pro režim MUTE	U3-4	1,7 až 3 V	2 až 4,5 V		
Ovládací napětí pro režim STAND-BY	U3-4	0 až 1,7 V	0 až 1 V		
Spotřeba v režimu STAND-BY	Is	1 mA	20 mA		

J.HÁJEK: AA řada SMT, vydal autor vlastním nákladem v Praze, 1.vydání, 1992-93, rozsah do 20 stran A5, cena jednoho svazku 12 Kč.

O technologii povrchové montáže je stále větší zájem. Patrně je na vině opravdová úspora materiálu, prostoru či nás láká něco nového a nepoznaného. Veškerá tuzemsky vydaná odborná literatura zabývající se vážněji problematikou technologie povrchové montáže by se snad ani na prstech jedné ruky spočítat nedala. To proto, že jí bylo tak málo. Ani v sousedních zemích to není s informacemi o technologii povrchové montáži růžové. Nedávno se nám však do ruky dostala edice příruček, nesoucí název AA řada SMT.

Na první pohled sešitová vazba svazků s dvaceti stránkami textu byla obavou z "amatérismu", ale již při pročtení prvního svazku edice Úvod do SMT bylo jasné, že autor je zkušený odborník. Na tomto místě bychom Vás chtěli alespoň stručně seznámit s obsahem doposud vyšlých svazků.

Svazek 1 – Úvod do SMT. Najdeme zde první seznámení a zejména výhody pro volbu povrchové montáže. Přehledně zde jsou vyobrazena pouzdra součástek se základními rozměry. Na závěr jsou zde uvedeny standardně používané zkratky pro SMT

Svazek 2 – Tabulky dlod a svazek 3 – Tabulka tranzistorů obsahují značení diod a tranzistorů vhodných pro SMT. Jsou seřazeny abecedně podle typů. přičemž je uveden nejprve typ, pak označení na pouzdru a další potřebné informace. Samozřejmě zde nechybí zapojení a druh pouzdra či ekvivalent standardního provedení.

Svazek 4 – **Zpětné tabulky polovodičů**. Vycházejí v podstatě z tabulek diod a tranzistorů. Jejich úkolem je usnadnit rychlé zjištění typu polovodiče.

Svazek 5 – Rezistory, svazek 6 – Kondenzátory, svazek 7 – Elektrolytické kondenzátory a svazek 8 – Indukčnosti. Tyto svazky dopodrobna popisují vlastnosti, řady hodnot a velikostí, vnitřní strukturu a přinášejí mnoho dalších informací o těchto prvcích.

Dále se připravuje vydání těchto svazků: Další pasívní součástky a experimentální plošné spoje, Aktivní součástky a integrované obvody, SMT pro konstruktéry a opraváře.

Závěrem lze říci, že tyto příručky přináší mnoho neocenitelných informací, které bychom jinde jinak těžko hledali. Rozdělení na jednotlivé svazky, které na první pohled nebudilo důvěru, se ukázalo praktičtější. Jednak proto, že informace mohou být průběžně vydávány a aktualizovány (jinak by vydání knihy o velkém rozsahu trvalo dlouho a navíc by bylo po vyjití nepříliš aktuální) a jednak si každý koupí ten svazek, který právě potřebuje. O vyjití dalších svazků Vás budeme v této rubrice pravidelně informovat.

Tyto publikace je možné zakoupit v prodejně technické literatury BEN, Věšínova 5, 100 00 Praha 10, tel. (02) 781 61 62, fax 782 27 75, která je rovněž zasílá na dobírku.

Konvertor pro 50 MHz

Máme tady letní období, kdy je nejlepší možnost seznámit se s nově uvolněným radioamatérským pásmem 50 MHz alespoň poslechem – možná že nás zaujme natolik, že se vybavíme solidním zařízením i pro vysílání. Že pro radioamatéry není toto pásmo žádná novinka, uvidíte dále.

Rok 1 9 3 3 .

Únor.

Číslo 3.

Vydává B.A.V. /Brněnští Amatéři Vysilači./ Rediguje OK2LO a OK2RM. Tiskne OK2MU a OK2BR. Zprávy

pro

členy ČAV.

OK2BR:

56 megacyklů.

1./Co je pásmo 56mc ?

56 megacyklů, jak se všeobecně tomuto pásmu říká, je amatérské pásmo o rozsahu 56 až 60 mc, neboli v metrech 5,36 5,00 m. Těchto 36 cm rozsahu znamená ohromný frekvenční rozsah 4,000.000 kmitů, čili bylo by možno umístiti zde 400 rozhlasových stanic, vzdálených po 10 kc bez jakékoliv interference. Jaké jsou vlastnesti těchto ultrakrátkých vln? Především nutno zdůrazniti,

že najsou naprosto vhodné pro dx-práci, protože přeslechové pásmo u nich vůbec nekončí.
Je možno užíti tedy jen přízemní vlny, Tato
vlna se šíři nikoliv tak, jak jsme tomu byli zvyklí u delších vln, nýtrž řídí se téměř optickými zákony. Jinými slovy musí být
mezi oběma stanicemi téměř přímá viditelnost.
Pokusy, které prováděli zejména Američané,
/kteří vedou opět i na tomto pásmu/, se ukázalo, že je možný příjem i při polohách, kdy
obě stanice se navzájem nevidí, nejsou-li
ovšem překážky /kopce.dony atd./příliš vysoké.

Ano, již před 60 lety - ve třetím čísle časopisu QTC z roku 1933, který tehdy vydával B.A.V. (Brněnští Amatéři Vysílači). se objevil článek od tehdejšího OK2BR o pásmu, kterému dnes říkáme spíše šestimetrové (mimochodem všimli jste si, že stále platí výjimečnost tohoto pásma, neboť ani nové povolovací podmínky se o něm v tabulce pásem nezmiňují?) vzhledem k povolenému rozsahu 50 až 52 MHz. Poznatků o něm máme dnes daleko více. Diplomy WAC a DXCC v posledních dvou letech získané svědčí o tom, že i s tím šířením to nebude vždy takové, jak se zprvu zdálo. Pro ty, kdo mají k dispozici přijímač pro pásmo 28 MHz. zveřejňujeme schéma jednoduchého konvertoru, doslova krystalky pro toto pásmo. Byl zveřejněn v novozélandském časopise Break-In č. 10/1992, autorem je ZL4THO.

Vhodným výběrem krystalu bychom mohli použít prakticky libovolný rozsah přijímače, je však třeba uvažovat s větší šířkou pásma, které je zde povoleno – přijímače konstruované jen pro radioamatérská pásma mají obvykle mimo pásma 28 MHz přeladění jen 500 kHz.

Zapojení využívá IO NE602 fy Signetics, umožňující skutečně na minimum zmenšit počet použitých součástek a zjednodušít zapojení. Obvod umožňuje jak na vstupu, tak

Obr. 1 Schéma zapojení

anténa

Obr. 2. Deska s plošnými spoji a rozložení součástek

na výstupu použít buď symetrický laděný obvod, nebo obvod rezonující "proti-zemi". Spotřeba je malá (max. 3 mA). K zapojení není třeba příliš mnoho vysvětlování. Signál jde z antény indukční vazbou na jednoduchý pásmový filtr a je využito symetrického zapojení vstupního obvodu. Oscilátor je možné jemně doladit rezonančním obvodem L5. Výstupní signál je přiváděn na rezonanční obvod L6-C10, který musíme uzpůsobit použitému rozsahu přijímače, což pochopitelně

platí i pro oscilátor. Na vstupu i výstupu je celý konvertor oddělen kondenzátory proti vlivu cizích ss napětí. Při jiném zvoleném rozsahu "mezifrekvenčního" přijímače mějte na paměti, že musí být

 $f_{\text{xtal}} = 50 - F_{\text{mf}} \mid \text{MHz} \mid$

pokud chceme využít i kalibrované stupnice přijímače.

Pro ty, kdo by chtěli experimentovat "po staru", nabízím za 5 Kč zaslaných ve známkách do konce tohoto měsíce na adresu: *Ing. J. Peček, Riedlova 12, 750 02 Přerov*, kopii návodu na tříelektronkový přijímač právě ze zmíněného čísla QTC, nebo za 15 Kč faximile celého čísla tohoto časopisu.

Seznam součástek

R1	2,2 kΩ/0,25 W	C6	10 uF elektrolyt. 16
C1,9	1 kΩ	C7	5,6 pF
C2,4	12 pF	C8	22 pF
C3	3.3 pF	C10	15 pF
C5	10 kΩ	C11	100 pF
lÓ1	NE602N Signetic	cs	•
L1,3	1,5 z	L6	20 z
L2,4,5	11 z	L7	3 z

Kondenzátory (mimo C6) vesměs keramické, diskové. Cívky jsou vinuty drátem o Ø 0,45 až 0,5 mm na tělísku o vnějším Ø 6 mm s dolaďovacím jádrem.

A závěrem ještě jedna citace z brněnského časopisu QTC (červen 1933):

Celostátní červencové pokusy na 56 Mc

Po několikaměsíční přípravě přinášíme dnes konkrétní plán pokusů. Budou ve dnech 8., 15. a 16. července vždy v době od 14.00 do 18.00 SEČ. Tato doba jest schválně zvolena zdánlivě krátká, aby tím bylo dosaženo soustředění všeho pětimetrového pokusnictví v OK v určité době. Soboty 8. a 15. budou konány drobnější pokusy, kdežto neděle 16. července je hlavním dnem.

Tehdy se naskytne nejlepší možnost dosáhnouti co největších vzdáleností, ježto se předpokládá, že každý z účastníků umístí svou stanici podle možnosti na nejvyšší bod krajiny, aby okruh přímé viditelnosti byl co největší. Ovšem pravděpodobno je i spojení mezi místy, mezi nimiž jsou menší překážky, ježto i u 5 m vln nastává stále do jisté míry ohyb. Jsou tedy vlnami quasioptickými jen v přibližném slova smyslu...

Použitá literatura

- |1| Larsen, S. N., ZL4THO: A Simple 6 Metre Converter. Break-In 10/1992, s. 6 až 7.
- |2| OK2BR: 56 megacyklů. QTC 3 a 6/ 1933.

OK2QX

Pracoviště pro opravy SMT

Obr. 1. Pracoviště firmy EDSYN pro opraváře SMT

Pro opravy přístrojů provedených technikou SMT jsou zapotřebí mnohem jemnější a zčásti i jiné nástroje než pro opravy desek s plošnými spoji s obvyklou osazovací technikou.

Opravy jsou nutné již při výrobě, kdy se z milionů podařených spojů přece jen některé nepovedou a protože na každém jednotlivém spoji záleží, je nutno jej opravit. Dále jsou pracoviště pro SMT potřebná při běžných opravách a lze je také využít pro vývoj, kusovou výrobu a amatérskou praxi.

Některé západní firmy dodávají jak jednotlivé nástroje, tak i vybavená pracoviště. Na obr. 1 je jako příklad možného vybavení zobrazeno pracoviště pro opraváře SMT firmy EDSYN, model SMD 2004

Vlevo je stojánek s teplovzdušnou páječkou, kombinovanou s vakuovou pinzetou a integrovanou elektrickou pumpou. Páječka má příkon 130 W při 24 V a teplota vystupujícího horkého vzduchu je elektronicky regulovatelná v rozmezí 205 až 425 °C. Pumpa má příkon 80 W.

Vpravo je stojánek odpájkovačky s integrovanou vakuovou pumpou (příkon 150 W při 24 V), na kterém je ještě navíc vpravo připevněna elektronicky regulovatelná mikropáječka LONER CL 2180 (napájená ze samostatného síťového adaptéru) s nastavitelnou teplotou (rovněž v rozmezí 205 až 425°C)

Uprostřed nahoře je napájecí transformátor pro celé pracoviště. Výstupní napětí je 24 V, příkon 200 W.

V popředí je řada speciálních nástrojů jako jsou miniaturní stranové štípačky a pinzety s jemnými, rovnými i zahnutými čelistmi. Dále jsou vidět zásobníky s tenkým cínem, tavidlem a s "licnou" pro kapilární odsávání cínu. Zcela dole je sada výměnných nástavců na teplovzdušnou páječku pro různé velikosti integrovaných obvodů a dalších součástek.

K vidění byla tato souprava na mezinárodní odborné výstavě SMT v Norimberku. Cena takto vybaveného pracoviště se pohybuje kolem 2500 DM.

Univerzální zdroj pro radiopřijímače

Na obr. 1 je jednoduchý návod na úpravu univerzálního zdroje pro radiopřijímače. Zdroje jsou nabízeny pod různým názvem za 70 až 150 Kč. Kdo neodolá líbivému vzhledu a univerzálnosti použití, může být zklamán jejich kvalitou. Do reprodukce totiž (podle typu přijímače) proniká nepříjemný brum. Někdo si poradí tím, že připojí k výstupním

Obr. 2. Zatěžovací charakteristiky po úpravě

svorkám "masívní" kondenzátor a vzhled je ten tam. Já jsem zvolil řešení elegantnější. Vše je jasné z připojeného schématu – několik součástek "přibastlíme" dovnitř krytu. Univerzálnost zůstane zachována a za bezpečné odstranění brumu zaplatíme zmenšením výstupního napětí.

Milan Jiroušek

TYP	D	U	₿ _C	P _{tot}	UDG	u _{DS}	±U _{GS}	ID	₽ _K	R _{thjc}	u _{DS}	u _{GS}	I _{OS}	y _{21S} [s]	-U _{GS(TO)}	CI	t _{ON+}	Р.	٧	Z
			J _a		U _{DGR} U _{GD} o		u _{SG+}	I _{DM+} I _G o	3 5,₊	R _{thja+}		U _{G2S+} U _{G1S} 0	I _{GS+}	^r DS(ON) + [Ω]			t _{OFF-}			
			[°c]	max [W]	max [V]	max [V]	max [V]	Max [A]	max [°C]	max [K/W]	[v]	[v]	[mA]		[v]	max [pF]	max [ms]			
BUK627- 450B	SMn en FRDF	SP	25 100 25	45	450R	450	30	5,6 3,5 22+	150	2,8 35+	25 450	10 0	6,5A 6,5A ≤ 0.02	8 > 5 600 < 650m+	2,1-4	1800	0,04+ 0,25-		Р	199 T1N
BUK627- 500A	SMn en	SP	25 100	45	500R	500	30	ŀ	150	2,8 35+	450 25	10	< 0,02 6,5A 6,5A	8 > 5 600 < 650m+	2,1-4	1800			P	199
BUK627-	FRDF	SP	25 25	45	500R	500	30	22+	150		500 25	0	<0,02+ 6,5A	8 > 5	2,1-4	1800	0,25- (2,8A) 0.04+	199 SOT	P	T1N 199
500B	en FRDF	-	100 25			,,,,		3 19,2	[35+	500	10 0	6,5A < 0,02	700 < 800m+	2,1 4	1000	0,25- (2,8A)			TÍŃ
BUK627- 500C	SMn en FRDF	SP	25 100 25	45	500R	500	30	4,5 2,8 18+	150	2,8 35+	25 500	10 0	6,5A 6,5A <0,02	8 > 5 800 < 900m+	2,1-4	1800	0,04+ 0,25- (2,8A)		Р	199 T1N
BUK627- 600A	SMn en	SP	25 100	45	600R	600	30	4,3 2,7	150	2,8 35+	25	10	6,5A 6,5A	8 > 5 0,85 < 1+	2,1-4	1800	1	SOT 199	Р	199 T1N
BUK627- 600B	FRDF SMn	SP	25 25 100	45	600R	600	30	17,2 3,9	150	2,8	600 25	0	< 0,02 6,5A	8 > 5	2,1-4	1800			Р	199
BUK627-	en FRDF SMn	SP	25	45	600R	600	30	2,5 15,6 3,5	1	35+	600 25	10 0	6,5A < 0,02	1< 1,2+	0.1.4	1000	0,25- (2,8A)	199		TIN
600C	en FRDF	Эг	100 25	4,	BOUK	600		2,2 14+	150	2,8 35+	600	10 0	6,5A 6,5A <0,02	8> 5 1,2< 1,4+	2,1-4	1800	0,04+ 0,25- (2,8A)	S0T 199	P	199 T1N
BUK637- 400A	SMn en FRDF	SP	25 100 25	180	400R	400		14 8,8 56+	150	0,69 45+	25 400	10 0	6,5A 6,5A < 0,02	8 > 5 ° 400 < 500m+	2,1-4	1800	0,25-		Р	199A T1N
BUK637- 4008	SMn en	SP	25 100	180	400R	400	30	12 7,6	150	0,69 45+	25	10	6,5A 6,5A	8 > 5 500 < 600m+	2,1-4	1800	(2,8A) 0,04+ 0,25-	SOT 93	Р	199A T1N
BUK637-	FRDF SMn	SP	25 25	180	450R	450	30		150	0,69	400 25	0	<0,02 6,5A	8 > 5	2,1-4	1800	(2,8A) 0,04+	SOT	Р	199A
450B BUK637-	en FRDF SMn	SP	100 25 25	180	500R	500	30	7 44+	150	45+	450 25	10 0	6,5A < 0,02	600 < 650m+	0.1.4	1000	0,25- (2,8A)	93		TIN
500A	en FRDF	JI	100 25	100	200 K	200	<i>)</i> 0	11 7 44+	150	0,69 45+	500	10 0	6,5A 6,5A <0,02	8 > 5 600 < 650m+	2,1-4	1800	0,04+ 0,25- (2,8A)	93	Ρ	199A T1N
BUK637- 500B	SMn en FRDF	SP -	25 100 25	180	500R	500	30	10 6,3 40+	150	0,69 45+	25 500	10 0	6,5A 6,5A <0,02	8 > 5 700 < 800m+	2,1-4	1800	0,25-	SOT 93	Р	199A T1N
BUK637- 500C	SMn	SP	25 100	180	500R	500		9,5 6	150	0,69 45+	25	10	6,5A 6,5A	8 > 5 800 < 900m+	2,1-4	1800	(2,8A) 0,04+ 0,25-		P	199A T1N
BUK637-	FRDF SMn	SP	25	180	600R	600	30	38+ 9	150	0,69	500 25	0	<0,02 6,5A	8 > 5	2,1-4	1800	(2,8A)		Р	199A
600A BUK637-	en FRDF SMn	SP	100 25 25	100	<000	(00		5,7 36+	150	45+	600	10 0	6,5A < 0,02	0,85<1+			(2,8A)			T1N
6008	en FRDF	SP .	100 25	180	600R	600	30	7,8 5 31+	150	0,69 45+	25 600	10 0	6,5A 6,5A <0,02	8 > 5 1 < 1,2+	2,1-4	1800	0,04+ 0,25- (2,8A)		P	199A T1N
BUK637- 600C	SMn en FROF	SP	25 100 25	180	600R	600	30	7 4,4 28+	150	0,69 45+	25 600	10 0	6,5A 6,5A	8 >5 1,2<1,4+	2,1-4	1800	0,25-	50T 93	Р	199A T1N
BUK638- 500A	SMn	SP	25 100	220	500R	500	30	14,6 9,2	150	0,57 45+	25	10	<0,02 8A 8A	10> 5 400< 480m+	2,1-4	2800		SOT 93	Р	199A T1N
BUK638-	FROF SMn	SP	25 25	220	500R	500	30	58+	150	0,57	500 25	0	< 0,05 8A	10>5	2,1-4	2800	(2,8A)		P	199A
_ 500B	en FROF		100 25					8,2 52+		45+	500	10 0	8A < 0,05	500 < 600m+	·		(2,8A)	93		TIN
BUK638- 800A	SMn en FRDF	SP	25 100 25	220	800R	800	30	7,3 4,6 29+	150	0,57 45+	25 800	10 0	4A 4A <0,2	6> 3 1,5< 1,8+	2,1-4	3n	0,09+ 0,43- (2,5A)		P	199A T1N
BUK638- 800B	SMn en epne	SP	25 100	220	800R	800	30	4	150	0,57 45+	25	10	4A 4A	6>3 1,8< 2,4+	2,1-4	3n	0,09+ 0,43-		Р	199A T1N
BUK638- 1000A	FRDF SMn en	SP	25 25 100	220	1000R	1000		25+ 6,2 3,9	150	0,57 45+	800 25	0 10	<0,2 3,5A 3,5A	3>1,5 2<2,4+	2,1-4	3500	(2,5A) 0,09+ 0,43-		Р	199A T1N
BUK638-	FRDF SMn	SP	25 25	220	1000R	1000	30	25+ 5,6	150	0,57	1000 25	0	<0,2 3,5A	3>1,5	2,1-4	3500	(2,5A)		Р	199A
10008	en FROF	cc	100 25	100	4000	400		3,5 22+		45+	1000	10 0	3,5A <0,2	2,5< 3+			0,43- (2,5A)	93		TIN
BUK655- 400A	SMn en FROF	SP	25 100 25	100	400R	400	30	7,3 4,6 29+	150	1,25 60+	25 400	5 0	2,5A 2,5A <0,02	3,1> 2,3 700< 800m+	2,1-4	ln	0,025+ 0,14- (2,7A)			199A T1N
BUK655- 400B	SMn	SP	25 100	100	400R	400	30	4,1	150	1,25 60+	25	5	2,5A 2,5A	3,1> 2,3 0,9< 1+	2,1-4	ln	0,025+ 0,14-			199A T1N
BUK655- 450B	FRDF SMn en	SP	25 25 100	100	450R	450	30	26+ 5,7 3,6	150	1,25 60+	400 25	0 10	<0,02 2,5A 2,5A	3,1>2,3 1,2<1,3+	2,1-4	ln	(2,7A) 0,045+			199A
BUK655-	FRDF	SP	25 25	100	500R	500	30	23+	150	1,25	450 25	0	<0,02 <0,02 2,5A	3,1>2,3	2,1-4	ĺn	0,14- (2,6A) 0,045+			T1N 199A
500A	en FRDF		100 25					3,6 23+		60+	500	10 0	2,5A <0,02	1,2<1,3+			Ó,14- (2,6A)	2204	B	T1N
BUK655-	SMn	SP	25	100	500R	500	30	5,3	150	1,25	25	l	2,5A	3,1 >2,3	2,1-4	ln	0,045+	то	Ρ	199A

ſ	TYP	D	U	₽ _c	P _{tot}	U _{DG}	u _{DS}	±U _{GS}	I _D	9 _K	^R thjc	u _{DS}	U _{GS}	IDS	y _{21S} [s]	-U _{GS(TO)}	c _I	t _{ON+}	Р	٧	z
				J _a	tot	U _{DGR}	US	U _{SG+}	I _{DM+}	۵. ا	R _{thja+}	us	^Մ G2S+	I _{GS+}	r _{DS} (ON)	63(10)	1	t _{OFF-}			.
				[°c]	max [W]	U _{GD} o max [V]	max [v]	max [V]	I _G o max [A]	max [oc]	max [K/W]	[v]	U _{G1S} 0 [V]	[mA]	[0]	[V]	max [pF]	max [ns]			
	BUK655- A 500B	en	POKR	100					3,3		60+		10	2,5A	1,4<1,5+			140-		Р	199A
	BUK655-	FRDP SMn	SP	25 25	100	500R	500	30	21+ 5	150		500 25	0		3,1>2,3	2,1-4	ln	(2,6A) 45+	220A	Р	T1N 199A
	500C	en FRDP		100 25					3,1 20+		60+	500	10 0	2,5A ≺ 0,02	1,6<1,7+	,	-	140- (2,6A)	220AI		TIN
	BUK655- 600A	SMn en FRDP	SP	25 100 25	100	600R	600	30	4,5 2,8 18+	150	1,25 60+	25 600	10 0		3,1 > 2,3 1,7 < 2+	2,1-4	1n	45+ 140- (2,6A)	TO 220A	P B	199A T1N
	BUK655- 6008	SMn en FRDP	SP	25 100 25	100	600R	6 00	30	4 2,5 16+	150	1,25 60+	25 600	10 0	2,5A 2,5A <0,02	3,1 > 2;3 2,1 < 2,5+	2,1-4	1n	45+ 140- (2,6A)	TO . 220A	P B	199A T1N
	BUK657- 400A	SMn en FRDP	SP	25 100 25	150	400R	400	30	13 8,2 52+	150	0,83 60+	25 400	10 0	6,5A	8 > 5 0,4 < 0,5+	2,1-4	1800	40+ 250- (2,8A)	TO 220A	P B	199A T1N
	BUK657- 400B	SMn en FRDP	SP	25 100 25	150	400R	400	30	11 7 44+	150	0,83 60+	25 400	10 0	6,5A 6,5A	8 > 5 0,5 < 0,6+	2,1-4	1800	40+ 250-	TO 220A		199A T1N
	BUK657- 450B	SMn en	SP	25 100	150	450R	450	30	10 6,3	150	0,83 60+	25	10	6,5A	8 > 5 0,6 < 0,65+	2,1-4	1800	250-	TO 220A	P B	199A T1N
	BUK657- 500A	FRDP SMn en	SP	25 25 100	150	500R	500	30	40+ 10 6,3 40+	150	0,83 60+	450 25	0 10		8 > 5 0,6 < 0,65+	2,1-4	1800	(2,8A) 40+ 250-	TO 220A	P B	.199A T1N
	BUK657- 500B	FRDP SMn en	SP	25 25 100	150	500R	500	30	9 5,7	150	0,83 60+	500 25	10		8 > 5 0,7 < 0,8+	2,1-4	1800	(2,8A) 40+ 250-	TO 220A	P	199A T1N
	BUK657- 500C	FRDP SMn en FRDP	SP	25 25 100 25	150	500R	500	30	36+ 8,5 3,4 34+	150	0,83 60+	500 25 500	10	<0,02 6,5A 6,5A	8 > 5 0,8 < 0,9+	2,1-4	1800	(2,8A) 40+ 250-	TO 220A	P B	199A T1N
	BUK657- 600A	SMn en	SP	25 100	150	600R	600	3Ó	8	150	0,83 60+	25	10	<0,02 6,5A 6,5A	8 > 5 0,85 < 1+	2,1-4	1800	(2,8A) 40+ 250-	TO 220A	P B	199A T1N
	BUK657- 600B	FRDP SMn en	SP	25 25 100	150	600R	600	30	7,1 4,5	150	0,83 60+	600 25	10	<0,02 6,5A 6,5A	8 > 5 1 < 1,2+	2,1-4	1800	250-	TO 220A	Р В	199A T1N
	BUK657- 600C	FRDP SMn en	SP	25 25 100	150	600R	600	30	28+ 6,5 4,1	150	0,83 60+	25	10	<0,02 6,5A 6,5A	8 > 5 1,2 < 1,4+	2,1-4	1800	250-	TO 220A	P B	199A T1N
	BUK 793- 60A	FRQP SMn en	SP	25 25 100	75	60R	60	30	26+ 20 14	175	2 60+	25	10	<0,02 10A 10A	6,5 > 4 ,5 0,07 < 0,1+	2,1-4	825	(2,8A) 20+ 90-	S0T 263	Р	263 101
	BUK 795- 60A	SF SMn en	SP	175j 25 100	125	60Ŗ	60	30	80+ 38 27	175	1,2 60+	25	10	<0,01 20A 20A	14 > 8 35 < 45m+	2,1-4	2n -	(3A) 40+ 160-	SOT 263	Р	263 101
	BUK993- 60A	SF SMn en	SP	175j 25 100	75	60R	60	15 20M	152+ 18 14 72+	175	2 60+	60 25 60	5 0	<0,01 10A 10A <0,01	10 > 7 80 < 120m+	1-2	825	(3A) 30+ 110- (3A)	SOT 263	Р	263 101
	· BUK995- 60A	SMn en	SP	175j 25 100	125	60R	60	15 20M	34 25	175	1,2 60+	25 60	5	20A 20A	20 > 15 40 < 55m+	1-4	1750	40+ 220-	SOT 263	Р	263 101
	BUN05	LLS SMn	SP	175j 25	75		50	20	136+ 12	150	1,8	25		<0,01 6A	>3	2-5	1500		TO	ΤP	199A
	BUN05A	en SMn	SP	25	75		50	20	36+ 16	150	1,8	25	12	6A 6A	<0,12+ >3 <0,1+	2-5	1500	80+ 180-	220 TO 220	ТP	199A
	BUN05B	en SMn	SP	25	75		50	20	48+ 20 60+	150	1,8	25	12	6A 6A 6A	> 3 < 0.08+	, 2-5	1500	1	TO 220	TР	199A
	BUN051	en SMn en	SP	25	50		50	20	8,5		1,8	25	12	6A 6A	> 2,2 < 0,025+	2-5	1500	1	TO 220	ΤP	199A
	BUN10	en SMn en	SP	25	75		100	20	25,5 12 36+	+ 150	1,8	15	12	6A 6A	> 2,7 < 0,2+	2-5	1500	1	TO 220	ТP	199A
	BUN10A	SMn en	SP	25	75		100	20 -	14 42+	150	1,8	15	12	6A 6A	> 2,7 < 0,15+	2-5	1500	1	TO 220	ΤP	199A
	BUN16	en SMn en	SP	25	75		160	20	12 35+	150	1,8	15	12	6A 6A	> 2,7 < 0,26+	2-5	1500	i.	TO 220	ТР	199A
	BUN20	SMn en	SP	25	75		200	20	7 21+	150	1,8	15 [.]	12	5A 4,5A	> 2,2 < 0,75+	2-5	1500		TO 220	ΤP	199A
	BUN20A	SMn en	SP	25	75		200	20	9 27+	150	1,8	15°	12	5A 4,5A	> 2,3 < 0,4+	2-5	1500	1	TO 220	ТР	199A
	BUN40	SMn en	SP	25	75		400	20	4,5 13,5		1,8	15	12	3A 2,5A	> 1,7 < 1,5+	2-5	1100	1	TO 220	TP	199A
	BUN40A	SMn en	SP	25	75		400	20	4		1,8	15	12	3A 2,5A	> 1,7 < 2+	2-5	1100	1	TO 220	ТP	199A
	BUN40B	SMn	SP	25	75		400	20	į		1,8	15	12	3A 2,5A	> 1,8 < 1+	2-5	1100	1	TO 220	ТР	199A
	BUN60	SMn	SP	25	75		600	20	3,5 14+		1,8				>1,5 <2,5+	2-5	1500	•	TO 220	ТP	199A
l		1 ⁶¹¹	Výrob	ce:	TP - 1	TESLA	- Piešť	any_	<u> </u>		1			l .	2,57	<u> </u>					

PROGRAMOVATELNÉ LOGICKÉ OBVODY GAL

Ing. Jaromír KOLOUCH, CSc.

Když se Československo po roce 1990 otevřelo světu, staly se naším elektronikům dostupné mnohé součástky, které dříve znali převážně jen ze zahraničních časopisů, a naopak zmlzely ty, které ve vyspělých zemích představovaly zastaralý sortiment. Tak se rozšířila dřívější nabídka číslicových integrovaných obvodů o dnes nejrozšířenější (a nejlevnější) řady TTL LS, CMOS 4000 a HC (HCT). Na druhé straně však zmizely některé členy řady TTL, které byly nahrazeny modernějšími typy. Tak již v obchodech téměř neuvidíme, s výjimkou výprodeje starých zásob, dříve populární paměti PROM - např. typy 74188, 74S287 a 74S571. Tyto paměti jsou dnes nahrazovány novějšími typy programovatelných logických obvodů, mezi nimiž jedno z velmi významných míst zaujímají obvody známé pod názvem GAL. Jde o náhradu na vyšším kvalitativním stupni, protože obvody GAL umožňují v jednom pouzdru vytvořit zapojení, pro něž by s použitím paměti PROM bylo třeba použít několik dalších pouzder číslicových obvodů.

V naší literatuře o těchto obvodech není dosud mnoho informací, i když samotné součástky jsou běžně v prodeji za cenu výrazně menší než byla cena uvedených pamětí. Stručný článek [1] dává základní představu, která ale pro konstruktéra nestačí. Předkládaný článek má za cíl doplnit to, co by měl čtenář znát, aby byl schopen s obvody GAL pracovat.

Paměti PROM představovaly první krok od pevné logiky k logice programovatelné a jsou základním členem skupiny programovatelných logických obvodů PLD - Programmable Logic Devices. Jejich název spolu se známými označeními dalších členů tohoto vývojového stupně - EPROM, EEP-ROM atd. vystihuje stupeň programovatelnosti příslušné součástky. Názvy dalších členů skupiny (PAL, GAL, PLA, LCA...) již nemají tak jednoznačný a názorný vztah k vlastnostem svých nositelů a často jde spíš o obchodní označení. Připomeňme si strukturu paměti PROM (obr. 1), která představuje univerzální blok realizující kombinační logické funkce $y_1, y_2, ..., y_m$ vstupních proměnných $a_1, a_2, ..., a_n$. Vstupní proměnné jsou přivedený na dekodér, který z nich vytvoří všechny možné kombinace přímých a negovaných proměnných, tzv.

naprogramované propojení

Obr. 1. Struktura paměti PROM. Nemůže-li dojít k omylu, kolečka značící propojovací mista se mohou vynechat

Počet mintermů je N = 2^n . Funkce y_1 , y_2 , ..., y_m jsou pak vyjádřeny jako součty jim odpovídajících mintermů, tedy v tzv. úplné součtové formě. Vyskytuje-li se ve funkci y minterm k, bude v obr. 1 realizováno propojení mezi řádkem (mintermem) j a sloupcem i, jinak bude tento spoj přerušen.

Vidíme tedy, že každý sloupec patřící k jedné z funkcí v představuje známý diodový obvod pro logický součet mintermů obsažených v této funkci. Pokud nemůže nastat omyl, vynechávají se kolečka vyznačující propojovací místa a ponechané propojky se znázorní pouze křížkem.

Každou kombinační logickou funkci je možno zapsat v úplné součtové formě, takže uvedeným způsobem

můžeme realizovat pamětí PROM jakoukoliv funkci. Zároveň je však zřejmé, že se většinou využije jen malá část vytvořených mintermů, takže tento způsob realizace není příliš hospodárný. Dále je dobře známo, že zápis funkce v úplné součtové formě je možno velmi často výrazně zjednodušit použitím minimalizačních metod, např. pomocí Karnaughových map. Struktura PROM však neumožňuje tohoto zjednodušení využít. Přidání jedné vstupní proměnné znamená zdvojnásobení velikosti propojovacího pole paměti PROM, takže nároky na

plochu čipu exponenciálně rostou s počtem těchto proměnných. Nabízí se tedy myšlenka uspořádat návrh tak, že se nebudou vytvářet všechny mintermy, ale jen skutečně využité termy, tj. součiny vyskytující se ve vyjádření funkcí y až po minimalizaci. Ukažme nyní, jak je možno tyto termy vytvořit. Dekodér v paměti PROM představuje souhrn obvodů realizujících logické součiny uvedené ve vyjádření mintermů (1). Zakreslíme nyní strukturu paměti PROM způsobem obvyklým pro kreslení obvodů

PLD, kterým je možné vytvoření těchto součinů znázomit, a z něhož najdeme způsob, jak vytvořit potřebné termy efektivněji.

Na obr. 2 je dekodér nakreslen ve tvaru propojovacího pole, jehož provedení včetně propojek je shodné s polem z obr. 1. Je tedy zřejmé, že toto pole realizuje logické součiny odpovídající mintermům (1), zatímco druhé pole (vpravo), které zůstává stejné jako u obr. 1, vytváří součty mintermů. Rozdíl ve funkci obou polí je dán orientací diod, které u levého (součinového) pole směřují od výstupu pole k jeho vstupu (výstup zde představují vodorovné spoje), zatímco u součtového pole je tomu naopak. Propojení může být technologicky realizováno i jinak než diodami, jak je naznačeno zde, a k zdůraznění typu logické funkce tvořené polem bývá na jeho výstupu nakreslen symbol logického součinu, popř. součtu.

U paměti PROM je dekodér tvořený polem součinů propojen pevně - realizuje všechny mintermy, pole součtů je programovatelné. Pokud bychom pole součinů realizovali jako programovatelné, mohli bychom místo vytváření všech mintermů realizovat jen potřebné termy a ty pak sečíst součtovým polem. Ve velké většině případů je počet termů potřebných k realizaci požadované logické funkce výrazně menší než počet všech mintermů. To vede ke značné úspoře plochy čipu, zvláště pokud nebudeme žádat úplnou univerzálnost jako u PROM, která se tam využije jen zřídka. Takové uspořádání se nazývá struktura PAL - Programmable Array Logic a je naznačeno na obr. 3. Programovatelné souči-

Obr. 2. Paměť PROM s dekodérem rozkresleným ve tvaru součinového pole

nové pole vytváří potřebné termy (t,, až t,,), které jsou dále sečítány pevně zapojenými součtovými obvody (ty jsou zde pro jednoduchost kreslení znázorněny sybolicky - podobně jako dekodér na obr. 1). Počet termů realizovaných ve struktuře PAL není v pevném vztahu s počtem vstupních proměnných jako u pamětí PROM a je výrobcem

Obr. 3. Struktura PAL s rozkresleným součinovým polem. Součtové obvody jsou zakresleny symbolicky

volen jako kompromis mezi složitostí obvodu a jeho univerzálností - menší počet termů nedovolí realizovat složitější funkce.

Ukázalo se výhodným přidat do komerčně vyráběných obvodů obsahujících strukturu PAL ještě další bloky, které se často ke kombinační části připojují - např. třístavové výstupní zesilovače, registry pro zachycení výstupních signálů atd. Rovněž je v různých aplikacích různá potřeba počtu vstupů a výstupů. Obvody PAL se proto vyskytují v desítkách variant s různým vybavením přídavných bloků a s různým počtem vstupů a výstupů. Jejich typové označení odpovídá tomoto uspořádání, např. PAL 16L8 má 16 vstupů a 8 výstupů, písmeno na předposlední pozici udává další informaci: H (L) - výstup aktivní v úrovni HIGH (LOW), P - programovatelná aktivní úroveň výstupu, R - výstupní registr, C - komplementární výstupy, X - použití členu EX-OR pro volbu aktivní úrovně výstupu a současně vybavení výstupním registrem.

Dalším pokrokem byla myšlenka vyrobit univerzální obvody se standardní strukturou přídavných bloků a využít procesu programování nejen k definici vlastností součinového pole, ale i k přizpůsobení této struktury požadavkům konkrétní úlohy. Tak vznikly obvody známé pod označením GAL - Generic Array Logic. Např. dva nejjednodušší obvody GAL - 16V8 a 20V8 - jsou schopny nahradit 42 typů dříve vyráběných obvodů PAL. Písmeno V značí proměnnou (variable) strukturu. Dalším typem této řady je GAL 22V10. Obvody GAL jsou vyráběny nejčastěji v provedení

Aplikace obvodu GAL se navrhují na počítači některým z rozšířených programových prostředků. Pro tuto práci nemusí návrhář nutně znát podrobnou vnitřní strukturu obvodu, ale její orientační znalost umožní lépe pochopit a využít možnosti, které nám GAL nabízejí, a proto je účelné věnovat trochu času aspoň struktuře nejjednoduššího z těchto obvodů.

EEPROM.

Struktura obvodu GAL16V8

Nejjednodušší z obvodů řady GAL je vyráběn v 20vývodovém pouzdru DIL a má strukturu naznačenou na obr. 4. Obsahuje vstupní zesilovače s komplementárními výstupy, programovatelné součinové propojovací pole (součinovou matici) s osmi termy pro každou výstupní funkci a makrobuňky výstupní logiky - OLMC (Output Logic Macro Cell), které jsou přiřazeny výstupním vývodům součástky (na obr. 4 jsou shodně očíslovány) a obsahují součtové obvody a další univerzální přídavné bloky. Do propojovacího pole jsou přivedeny vstupní signály z vývodů 2 až 9 a z bloků OLMC tzv. zpětnovazební signály.

Vnitřní zapojení bloků OLMC je nakresleno na obr. 5. Obsahuje multiplexory s následujícím označením, které vystihuje jejich funkci:

PTMUX - Product Term Multiplexer TSMUX - Threestate Signal Multiple-

OMUX - Output Multiplexer FMUX - Feedback Multiplexer

řMUX - řeedback Multiplexer Řídicí signály multiplexorů jsou definovány veličinami, které se označují symboly ACO a AC1(n). Na vstupu obvodu EX-OR je veličina XOR(n). Tyto veličiny spolu s další veličinou SYN definují funkci bloků OLMC a do obvodu se zavádějí společně s veličinami definujícími stav propojení

Tab. 1. Provozní módy obvodu GAL16V8

Provozní mód	SYN	AC0	AC1(n)	Funkce OLMC
1/ (vstupní) 1 <i>O</i> (výstupní)	1	0	1	Vstup Kombinační výstup
2	1	1	1	Třístavový výstup, zpětná vazba (u OLMC 12 a 19 vstup)
3/ (vstupní)	0	1	1	Třístavový výstup, zpětná vazba
3O (výstupní)	0	1	0	Registrový výstup, vnitřní zpětná vazba

v součinové matici při programování obvodu. Veličiny AC0 a SYN jsou společné pro všechny bloky OLMC a definují tři provozní módy funkce obvodu GAL. Módy 1 a 3 mají ještě dvě varianty podle veličiny AC1(n), do nichž může být nastaven každý z bloků OLMC zvlášť, jak uvádí tabulka 1.

Mód 1 je v anglické literatuře - např. [4] - označován názvem simple (jednoduchý), mód 2 názvem complex (složitý) a mód 3 názvem registered.

Sedm výstupních vodičů (termů) z propojovacího pole je přivedeno na součtový člen přímo, osmý přes multiplexor PTMUX. Výsledek součtu je zpracován obvodem EX-OR v závislosti na

veličině XOR(n) - buď ie invertován při XOR(n) = 1 nebo ne (v opačném případě), a dále postupuje na výstup buď přímo nebo přes výstupní re-gistr. V provozním módu 1 (obr. 6, 7) mohou být bloky OLMC naprogramovány do vstupní nebo výstupní varianty, s výjimkou bloků u vývodů 15 a 16, které mohou být jen výstupní. Bloky OLMC přiřazené vývodům se vstupní funkcí musí mít v tomto módu výstup ve

stavu vysoké impedance - AC1(n) = 1. Vstupní signál se vede zpětnovazebním kanálem sousedních bloků do součinové matice (u OLMC 12 a 19 je tímto kanálem veden signál z vývodů 1 a 11, které pak představují další vstupy). Zpětnovazební kanál vedoucí od bloků OLMC, které jsou naprogramovány jako výstupy, zůstane nevyužit. Mód 1 je nastaven volbou AC0 = 0 a GAL pracující v tomto módu představuje kombinační obvod - analogii paměti PROM s dvojčinným výstupem. Pro vytváření logické funkce je k dispozici všech 8 termů ze součinového pole. Z obr. 6 je vidět, že obvod může v tomto módu mít až 16 vstupů a 2 výstupy (vývody 15 a 16), nebo 10 vstupů a 8 výstupů, popř. jsou možné další kombinace.

Obr. 4. Struktura obvodu GAL 16V8

Obr. 5. Blok OLMC přiřazený vývodu (n) – pro n = 12 a 19 je signál od vývodu (m) veden bez multiplexoru FMUX(nm). Přiřazení m a n – viz obr. 4

Obr. 6. Obvod GAL 16V8 v provozním módu 1

V provozním módu 2 (obr. 8, 9) je na zpětnovazební kanál každého bloku OLMC přiveden signál z vývodu přířazeného tomuto bloku, s výjimkou krajních bloků OLMC 12 a 19, kde je situace stejná jako v módu 1. Výstup bloku OLMC může být uveden do stavu vysoké impedance nebo do aktivního stavu signálem získaným jako term v součinovém poli, o který je ochuzena součtová část obvodu mající pak jen 7 termů. Tento mód je vhodný např. pro vytváření klopných obvodů typu RS, které mají výstupní signály přivedeny zpět na vstupy dalších logických členů.

Je-li obvod GAL naprogramován do provozního módu 3 (obr. 10, 11), pak se funkce bloků OLMC, pro něž je AC1(n) = 1, neliší od funkce v módu 2. V tomto módu je však i u krajních bloků OLMC zpětná vazba vedena z vývodů přiřazených těmto blokům. U bloků OLMC naprogramovaných do výstupní varianty je signál veden na výstup přes výstupní registr tvořený klopnými obvody D se společným hodinovým vstupem vedeným z vývodu 1. Všechny výstupní zesilovače jsou v této variantě aktivovány společným signálem OE (Output Enable) z vývodu 11, všech 8 termů je k dispozicí pro vytvoření součtu. Zpětná vazba je odvozena z výstupu registru a její funkce tedy nezávisí na aktivaci výstupu. Tato varianta je vhodná pro vytváření synchronních čítačů.

Přehled možností, jak přiřadit vstupy a různé typy výstupů vývodům pouzdra GAL 16V8, je nakreslen na obr. 12. Vývody 2 až 9 mohou být jedině vstupy, všechny ostatní (kromě napájecích) mohou mít podle naprogramování dvě nebo více funkcí. Skutečnost, že v módu 1 postupuje zpětnovazební signál do obvodu jinými bloky OLMC než v módech 2 a 3, se projeví jen tehdy, kontroluje-li návrhář soubor dat ve formátu JEDEC určený pro zavedení do programovacího přístroje, který je generován počítačem, na se němž aplikace navrhuje. Tato kontrola může být užitečná pro návrháře začínající s použitím obvodů GAL, kteří si chtějí ověřit správnost jimi vytvoře-

COMPU1 HARDWARE & SOFTWARE

HARDWARE & SOFTWARE MULTIMEDIA

Rubriku připravuje ing. Alek Myslík. Kontakt pouze písemně na adrese: INSPIRACE, V Olšinách 11, 100 00 Praha 10

OSMIBITOVÝ PŘEVODNÍK A/D

Petr Horký, Šafaříkova 889, 686 00 Uherské Hradiště

Popis činnosti

Měřicí vstupy jsou připojeny na neinvertující vstupy osmi operačních zesilovačů v IO U1,U2 typu CMOS (2 x TL084) s vysokým vstupním odporem (10 MΩ). Výstupy OZ jsou připojeny ke vstupům analogového multiplexeru MÅB08E (U3), umožňujícího programově přepínat jednotlivé měřicí kanály. Při použití MAB16E a po úpravě řídicího programu lze připojit až 16 měřicích vstupů. Zesílení neinvertujícího zapojení OZ je řízeno přepínáním rezistorů R1 až R8 druhým multiplexerem MAB08E (U4) v rozsazích x1, x10, x20, x50, x100, x200, x500 a x1000. Odpory rezistorů Rx pro jiné zesílení lze vypočítat ze vztahu Rx=R1 (Au-1).

Po zvoleném zesílení je vstupní měřený signál přiveden na vstup 3 paměřového obvodu sample/hold MAB198 (U5), který vzestupnou hranou startovacího pulsu vzorkuje měřený signál pro jeho převod na osmibitové číslo. Kapacita paměřového kondenzátoru C1 je s ohledem na vzorkovací kmitočet 10 nF. Kondenzátor ovlivňuje přesnost

Zásuvná karta pro PC XT/AT umožňující:

- programové nastavení zesílení jednotlivých měřicích kanálů v rozsahu 1 až 1000,
- programové připojení až 8 (16) vstupů,
- vstupní odpor 10 MΩ,
- nastavení unipolárního (0÷5V, 0÷10V, 0÷20V) nebo bipolárního (±2,5V, ±5V, ±10V) rozsahu analogového vstupu,
- měření stejnosměrných a střídavých veličin,
- paralelní a sériový osmibitový digitální výstup,
- programové řízení vzorkovacího kmitočtu,
- maximální vzorkovací kmitočet 3 kHz (pro PC AT 16 MHz).

celého převodníku, proto musí být co nejkvalitnější, nejlépe styroflexový. Vlastní převod měřené veličiny se uskutečňuje v hybridním aproximačním osmibitovém převodníku A/D WSH570A (U7) s unipolámím nebo bipolárním vstupem a paralelním nebo sériovým výstupem. Obvod WSH570A obsahuje zdroj referenčního napětí, převodník D/A, komparátor, aproximační registr a hodiny. Číselný kód je komplementární přímý binární, komplementární posunutý binární nebo komplementární doplňkový binární. Vstupní napěťové rozsahy jsou volitelné spojkami a spínači (viz Tab. 1).

Rozsah	Spojka	Vstup	Spinač
0 ÷ +5 V	17-19	18	2,3
0 ÷ +10 V	-	18	-
0 ÷ +20 V	-	17	1
± 2,5 V	17-19-20	18	2, 3, 4
±5V	19-20	18	3, 4
± 10 V	19-20	17	1, 3, 4

Tab. 1. Nastavení spojek a spínačů

Spoje s vývodem 19 (COMP / M) musí být krátké. Chyba nuly a chyba zesílení může být vynulována tak, že mezi vývody +VS a COMP /N je zapojen rezistor 3,9 M Ω , který nastavuje souměrný obrazec kvantizačních chyb. Tento rezistor není v zapojení použit, protože je převodník kalibrován vnějšími rezistory (nastavením zesílení). Napájecí vývody musí být blokovány blízko převodníku proti zemi. Obě země (analogová ANA GND (23) a číslicová DIG GND (11)) musí být spojeny s ústřední zemí systému (nejlépe neodleptaná fólie desky plošného spoje pod převodníkem). Převodník kóduje vstupní napětí jeho postupnou aproximací osmi vnitřně generovanými, binárně odstupňovanými váhami. Převod se spouští sestupnou hranou startovacího pulsu. Během převodu, signalizovaného vysokou úrovní stavového výstupu (16), vyšle převodník devět hodinových pulsů a synchronně s nimi vyšle osm datových bitů sériového výstupu (10). Paralelní výstup je během převodu neplatný. Ukončení převodu a uvolnění paralelního výstupu je signalizováno návratem stavového výstupu na nízkou úroveň. Platné datové bity paralelního výstupu jsou drženy až do dalšího převodu a isou přivedeny na vstupní bránu A programovatelného obvodu pro paralelní vstup/výstup MHB8255A (U8). Obvod je nastaven do módu 0. Jeho brána B je naprogramována jako výstupní a jsou z ní řízeny oba multiplexery (přepínání vstupů a řízení zesílení). Na bitu PC2 brány C se generuje startovací impuls, jehož náběžná hrana spouští monostabilní klopný obvod MH74ALS123 (U6A). Náběžná hrana výstupního impulsu z MKO spouští vzorkovací obvod S/H, sestupná hrana převodník A/D. Impuls je také přiveden na kontrolní bit PC5. Na druhý kontrolní bit PC4 je přiveden výstup STA-TUS (16). Jsou-li oba kontrolní bity v log. 0 (tzn. převod ukončen), je povolen další startovací impuls. Datová sběrnice V/V obvodu 8255 je připojena přes obousměrný budič sběrnice MH74ALS245 (U10) na sběrnici BUS PC. Karta je dekodérem adresy (U12 MH74ALS04, U11 MH74ALS30 a U9 MH74ALS32) nastavena na adresy 300H až 303H, vyhražené pro uživatelské karty. Výstup dekodéru ovládá výběrový signál CS obvodů 8255 a 74245. Napájecí napětí desky jsou +5V,+12V a -12V. Jsou odebírána přímo z počítače, protože celá deska je řešená jako zásuvná karta do jednoho ze slotů PC.

Řídicí program

Program ovládá vstupní parametry měřicí karty a záznam dat do paměti počítače. Rozsah převodníku se nastavuje ručně pomocí přepínačů. Velikost vyhražené paměti (64 kB) Ize měnit změnou parametrů konstant POLE a PRVEK. Po zadání velikostí zesílení pro jednotlivé kanály, počtu připojených kanálů, počtu vzorků a zmenšení vzorkovacího kmitočtu se nastaví kontrolní slovo obvodu 8255 CWR=98H (režim 0, brány A-vstup, B-výstup, CH-vstup, CL- výstup). Dále se nastaví oba MPX pro příslušný kanál a zesílení a je generován spouštěcí impuls. Po přečtení a uložení měřené hodnoty se testuje ukončení převodu. Cyklus se opakuje s postupným přepínáním připojených kanálů až do načítání zadaného počtu vzorků, nebo do stisknutí jakékoliv klávesy. Získaná data lze přečíst a uložit na disketu. Maximální vzorkovací kmitočet je odvozen od pracovního kmitočtu PC a lze ho nastavovat (snižovat) programově zavedením zpoždění v milisekundách. Zvýšení kmitočtu je možné přepsáním příslušné procedury do assembleru.

Oživení

Oživení celé desky je jednoduché a lze ho zvládnout s použitím základních měřicích přístrojů. Nejdříve osadíme dekodér adresy, budič sběrnice a paralelní obvod V/V. Bity PC4 (13), PC5 (12) a bránu A (PA0 až PA7) připojíme na zem. Po spuštění programu musí mít uložená data hodnotu 0. Připojením brány A na +5 V budou mít data hodnotu 255. Dále osadíme převodník A/D, obvod S/H, MKO a spínače S1 až S4. Přivedením kontrolních stejnosměrných napětí na vstup 3 obvodu MAB198 a kombinací spínačů podle Tab. 1 zkontrolujeme po spuštění programu funkci převodníku A/D a obvodu S/H. Je-li vše v pořádku, osadíme zbývající součástky a odporovými trimry R2 až R8 nastavíme požadované zesílení OZ. Při programové úpravě dat není přesné nastavení nutné.

VÝPIS JEDNODUCHÉHO OBSLUŽNÉHO PROGRAMU K OSMIBITOVÉMU PŘEVODNÍKU A/D

```
Program A D PREVODNIK:
   uses Crt,Dos;
   const POLE=2:
          PRVFK=32768
   type Ukazatel=^Polozka;
         Polozka=Record
            PR:Array[0..PRVEK] of Byte;
           end:
var AD,K,ZE,Disk,Vst:Byte;
          Km.I.Zes:Integer
       ZD,UV,VZ,PV:Longint;
               D,P:Char;
               Gi:Text;
     Exsoub.Name:String[79]
               PO:Array[0..POLE] of Ukazatel;
($M 16384,0,655360)
   reneat
      CirScr.
      for I:=0 to POLE do New(PO[I]);
      writeIn('
      writeln(* OBSLUZNY PROGRAM PRO
       writeIn('INTERFEJSOVOU KARTU OSMIBITOVEHO
      writeIn(* MFRICIHO A/D PREVODNIKU
      writein(' K POCITACUM PC/XT,AT
       writeln(* (c) Petr HORKY 3.10.1991
      writelni
   write(' ZESILENI VSECH VSTUPU (1 az 10001000) : ');
   case Zes of
   1:ZE: = 0:
   10:ZE: = 1;
   20:ZE: = 2:
   50:ZE: = 3;
   100:ZE: = 4;
   500:ZE:
   1000:ZE: = 7
   write('POCET PRIPOJENYCH VSTUPU (1-8):');
   write('POCET VZORKU JEDNOHO VSTUPU: ');
   write('SNIZENI VZORK.KMITOCTU:');
```

```
Port[$303]:=$98;(* C W R *)
PV:=0;writeln;l:=WhereY;
writeln(' Cekam na spusteni ...');readln;
GotoXY(1,I);
writeIn(" *** PROBIHA VZORKOVANI ***");
   K-=0
    repea
      AD:=K+ZE; (* ADRESA PRO ZADANE ZESILENI
A POCET VSTUPU *)
                                (* BRANA B *)
       Port[$301]:=AD;
       Port[$302]:=0,
       Port[$302]:=$4; (* START IMPULS - BRANA C *)
       Port[$3021:=0:
       Delay (Km):
       until Byte(Port[$302] and $30) = 0;
                                (* KONTROLA BITU *)
       PO[PV div PRVEK]^.PR[PV mod PRVEK]:=Port[$300];
                                (* UKLADANI DAT *)
       Inc(PV)
       Inc(K,16);
    until K=16*Vst;
until (PV=VZ*Vst) or KeyPressed; if PV<VZ*Vst then P:=ReadKey;
GotoXY(1.1); writeIn(" * * ',PV,' VZORKOVANI UKONCENO * * * ');
write(' CHCES VYPSAT DATA ? (Y/N)
ZD:=0;
if (P='Y') or (P='y') then
    begin ("VYPIS DAT")
        writeln;
        repeat
           1:=0:
               write(PO[ZD div PRVEK]^.PR[ZD mod PRVEK],' ');
              Inc(ZD);
              Inc(I):
            writeln:
    until (PV=ZD) or KevPressed:
    if (ZD<PV) and (ZD>0) then P:=ReadKey;
write(' CHCES ULOZIT DATA NA DISK ? (Y/N)
                                                         ");
 readin(P):
 if (P='Y') or (P='y') then
                                                                  end
```

```
1: begin (*UKLADANI DAT NA DISKETU*)
      writeln;write('Data ulozit do (disk:soubor): ');
       readin(D,P,Name); (*TYP DISKU A NAZEV SOUBORU*)
      D:=UpCase(D);
      case D of
          'A': Disk:=1;
          'B': Disk:=2;
          'C': Disk:=3;
          'D': Disk:=4:
          'E': Disk:=5:
          'F': Disk:=6
       writeln(' Disk ',D,' neni instalovan !!');
   writeln(' Celkem na disku ',D,' volno : ',
                                  DiskFree(Disk) div 1024,' kB');
   Exsoub:=FSearch(Name.' '):
                    (*HLEDA SOUBOR SE STEJNYM NAZVEM*)
   if Exsoub=Name then
   begin
       write(' Soubor ',Exsoub,' jiz existuje,
                                   chces vytvorit novy ? (Y/N) ');
       readin(P):
       if (P='Y') or (P='y') then goto 1;
   IIV:=0:
   if DiskFree(Disk) div 1024>0 then
       Name:=D+P+Name:
       Assign(Gi,Name);
       writeln
                 ** * ZAPISUJI DATA NA DISK * * *');
       writeIn(
       repeat
           write(Gi,PO[UV div 32767]^.PR[UV mod 32767],' ');
          Inc(UV)
       until (UV=PV) or (DiskFree(Disk) div 1024=0);
       Close(Gi);
writeln(" * * DATA ULOZENA NA DISK * * * *);
   Release(HeapOrg);
write(' DALSI VZORKOVANI ?
                                   (Y/N)
                                              1):
readin(P):
until (P ='N') or (P ='n');
```

readin(Km);

VÝUKA MIKROPOČÍTAČOVÉ TECHNIKY

(Dokončení)

Programové zabezpečení

Protože oblast nasazení univerzálního mikropočítače UCB51 vyžaduje minimalizaci příkonu, nedisponuje UCB51 žádnou přídavnou elektronikou a tím ani vnitřním monitorem. Aplikační program je nutné odladit na jiném mikropočítači (např. PC) a po odladění naprogramovat do paměti EPROM (DS1) nebo do vnitřní paměti EPROM mikrokontroléru.

Spojení s mikropočítačem UCB51 zabezpečí na straně osobního počítače běžný sériový port COM a příslušný komunikační program. Sériový kanál mikropočítače UCB51 musí být přizpůsoben stykovému systému sériového portu COM počítače PC, nejlépe modulem M232R [3]. Pak postačí propojit M232R s PC kabelem ukončeným odpovídajícími konektory.

Pro vývoj aplikačního programu je charakteristický následující postup:

 zápis programu v assembleru nebo v programovacím jazyku kompilačního typu,

 překlad programu a jeho sestavení do spustitelného modulu programovými nástroji na počítači PC (překladače XASM51, C51, PLM51) [4],

3) odladění programu buď simulátorem SIM51 nebo simulačním emulátorem SICE51, obvodovým emulátorem BICE51 nebo ICEPETII 51 [5],[6],

4) naprogramování ověřeného programu do paměti EPROM (programátor/ tester ALL03) [7].

UCB80 po roce

Některé z aplikací, v nichž se v průběhu uplynulého roku uplatnil univerzální mikropočítač UCB80[1], se vyznačovaly značnými nároky na minimální spotřebu UCB80 ze zdroje napájecího napětí 5 V. Optimalizací, jejíž výsledky jsou shrnuty v následujících odstavcích, byly uspokojeny i tyto požadavky.

Úsporné obvody

První možností optimalizace UCB80 z hlediska příkonu je použití alternativních integrovaných obvodů s nižší spotřebou, které jsou funkčně i uspořádáním vývodů kompatibilní se základními typy.

Rozhodující úsporu přináší náhrada programovatelného logického obvodu GAL16V8 ve funkci dekodéru DD3. Výrobci zaručují spotřebu GAL16V8 v nejlepším případě (u verze GAL16V8-25Q) pod hranicí 55 mA (při kmitočtu změn signálů 15 MHz). Z technicky a cenově dostupných možností byl na pozici DD3 ověřen a je alternativně nabízen programovatelný logický obvod typu 85C220

UNIVERZÁLNÍ UCB51 MIKROPOČÍTAČ UCB51

Připravuje MITE Hradec Králové, Veverkova 1343, 500 02 Hradec Králové

Obr. 3. Obrazce plošných spojů desky univerzálního mikropočítače UCB51

z rodiny µPLD firmy Intel [8]. Na rozdíl od standardních obvodů typu GAL je 85C220 vybaven programovatelným bitem TURBO. Je-li TURBO=OFF, ob-

vod 85C220 pracuje v energeticky úsporném režimu, v kterém je automaticky uváděn do pohotovostního stavu (standby mode), uplyne-li od poslední změny signálů na jeho vstupech doba delší než 75 ns. V tomto stavu má obvod 85C220 spotřebu typicky 50 μA,

nejvýše 100 µA.

Z pohledu praktického použití je dále užitečné vzít v úvahu, že naprogramovanou funkci 85C220 nelze zrušit elektricky. Základním stavebním kamenem obvodů Intel řady µPLD je totiž buňka EPROM a proto isou modifikovatelné jen postupy uplatňovanými u pamětí ÉP-ROM. Vzhledem k významně vyšší ceně provedení D85C220-66 v keramickém pouzdře je účelné ověřit případnou variantní logickou funkci dekodéru DD3 nejdříve obvodem GAL16V8 a pro definitivní verzi použít levnější, jednou programovatelné provedení P85C220-66 v plastovém pouzdře. Tím se náklady na pořízení univerzálního mikropočítače UCB80 nezvýší o více než 10 %.

Dalšího snížení spotřeby mikropočítače UCB80 lze dosáhnout aplikací nových verzí pamětí (např. National Semiconductor NM271LC256) a dohlížecího obvodu MAX690A, který má ve srovnání se svým předchůdcem MAX690 spotřebu desetkrát menší, typicky 500 µA.

Úsporné módy

Druhou cestou, vedoucí ke snížení spotřeby univerzálního mikropočítače UCB80 v některých aplikacích, je využítí úsporných módů centrálního integrovaného obvodu Z84C13 ve stavu HALT. Jak již bylo zmíněno v [9], obvod Z84C13 se může nacházet po provedení instrukce HALT v jednom ze čtyř operačních módů, které se liší aktivitou jeho jednotlivých částí a v důsledku toho i spotřebou ze zdroje napájecího napětí 5 V. Přehled o funkci generátoru a řadiče taktovacího kmitočtu (CGC), procesoru (CPU), částí CTC a SIO, dohlížecího časovače (WDT) a výstupu CLKOUT z obvodu Z84C13 (vývod 66) ve všech operačních módech podává Tab. 5 (aktivní činnost je vyznačena písmenem A, stav nečinnosti pomlčkou). V tabulce jsou připojeny údaje maximální spotřeby obvodu Z84C13 podle nejnovějšího dostupného pramenu [10], které platí pro taktovací kmitočet 6 MHz.

Operační mód, v němž se Z84C13 bude po provedení instrukce HALT nacházet, je určen předcházejícím zápisem příslušných kódů do interních řídicích registrů WDTMR a WDTCR. Do normálního operačního režimu může být Z84C13 převeden ze stavu HALT ve všech případech buď signálem /RESET nebo jedním ze signálů pro vyvolání přerušení (/NMI a /INT). Úplné informace o technických a programových náležitostech využití operačních módů se sníženým příkonem obsahuje průvodní dokumentace mikropočítače UCB80.

Aby mohl být univerzální mikropočítač UCB80 provozován ve všech úsporných módech, byla v jeho zapojení provedena nezbytná změna - viz dílčí schéma zapojení na obr. 4. Úprava je uplatněna na nové desce plošných spojů 2N03-1 druhé verze mikropočítače UCB80 (označení UCB80-2).

mód	CGC	CPU	СТС	SIO	WDT	CLKOUT	lcc
RUN	Α	Α	Α	Α	Α	Α	30 mA
IDLE2	Α	-	Α	-	-	Α	
IDLE1	Α	-	-	-	-	-	4 mA
STOP	-	-	-		-	-	50 µA

Tab. 5. Aktivita částí obvodu Z84C13 v režimu HALT

DD3	GAL16V	8A-25LP	D85C220-66				
ftakt [MHz]	2,4576	4,9152	2,4576	4,9152			
RUN	50 mA	58 mA	17 mA	29 mA			
IDLE2	44 mA	46 mA	6 mA	8 mA			
IDLE1	42 mA	42 mA	4 mA	5 mA			
STOP	41 mA	41 mA	3 mA	3 mA			

Tab. 6. Spotřeba mikropočítače UCB80-2

Celkový přehled o energetických nárocích univerzálního mikropočítače UCB80-2 jsou v Tab. 6. Uvedené hodnoty jsou získané měřením na jednom exempláři UCB80-2 bez dohlížecího obvodu DD4 (MAX690) s rozpojenou propojkou X7 (nezapojený dělič pro monitorování výpadku napájecího napětí 5 V). Údaje v prvním řádku tabulky platí i pro normální operační režim UCB80-2. Další údaje jsou pak výzvou k aplikaci univerzálního mikropočítače UCB80-2 v mobilních a na síťovém napájení nezávislých zařízeních.

Další desky systému UCB

V dalším pokračování seriálu článků budou uvedeny desky a části systému univerzálních mikropočítačů UCB, které vznikly na základě řešení konkrétních aplikací.

Literatura

[1] *Netuka, J.*: Univerzální mikropočítač UCB80. Amatérské rádio A, 1992, č. 5, s. 209 - 212, č. 6, s. 257 - 259.

- [2] Intel Co., Santa Clara. Embedded Microcontrollers and Processors Vol. I. 1992, 1518 s.
- [3] *Netuka, J.*: Integrovaný obvod MAX232. Amatérské radio A, č.2/1992, s. 68-69.
- [4] 2500AD Software Inc.: C51 Compiler, Volume I, II, III. 1992.
- [5] MITE Hradec Králové s.r.o.: Uživatelská příručka univerzálního programátoru/testeru ALL03A, 1993.
- [6] MITE Hradec Králové s.r.o.: Uživatelská příručka simulačního programu SIM51, 1991.
- [7] MITE Hradec Králové s.r.o.: Uživatelská příručka simulačního emulátoru SICE51, 1992.
- [8] Intel Co., Santa Clara: Programmable Logic. 1991, 624 s.
- [9] *Netuka, J.*: Nové integrované obvody z rodiny mikroprocesoru Z80. Amatérské rádio A, 1992, č. 3, s. 115 117
- [10] Zilog, Inc., Campbell: Volume I Databook. Microprocessors and Peripherals. 1992, 1324 s.

MULTIMÉDIA

PRAVIDELNÁ ČÁST COMPUTER HOBBY, PŘIPRAVOVANÁ VE SPOLUPRÁCI S FIRMOU OPTOMEDIA

Chcete se seznámit s hudbou, a nevíte jak a odkud začít? Zda se máte učit noty, nebo historii, a jak se orientovat v množství hudebních skladatelů a skladeb? A kde najít vhodného učitele (a kolik to asi bude stát peněz...)? Vaším učitelem může být i v tomto případě Váš "univerzální přítel", Váš počítač. A "ducha" mu vdechne pro tento případ výukový program

UČITEL HUDBY

Je to velmi pěkně a s láskou k hudbě vytvořený interaktivní program, který Vás v kombinacích textu, grafiky a hlavně hudebních ukázek zasvětí do všeho výše vyjmenovaného. *Music Mentor* byl vytvořen, aby Vás zábavnou formou uvedl do

základních konceptů, na kterých je hudba postavena, a seznámil Vás stručně s historii "západní" hudby. Je ideální pro začátečníky, ale velmi zajímavý pro každého.

Všechny hudební ukázky jsou v MIDI souborech. MIDI (zkratka z Musical Instrument Digital Interface) je standard pro vzájemnou komunikaci hudebních nástrojů a počítačů. Soubory MIDI neobsahují přímo hudbu, ale všechny technické údaje k její reprodukci prostřednictvím nástrojů popř. syntezátoru. A protože jednoduchý syntezátor obsahuje i prakticky každá zvuková karta do počítače (Sound Blaster ap.), ve spojení s touto kartou zajistí MIDI soubory reprodukci zaznamenané skladby.

Ve srovnání s přímým digitálním záznamem hudby, který hudbu přímo obsahuje, obsahují MIDI soubory přesný návod, jak hudbu znovu vytvořit. Je to podobný rozdíl, jako mezi obráz-

kem bitmapovým a vektorovým. Bitmapový obrázek přenáší hotový obrazec přímo v jeho grafické podobě, rozdělený na malé kousíčky (stejně tak digitální audio). Vektorový obrázek obsahuje přesný popis, jak obrázek vytvořit (stejně tak MIDI).

Vyplývá z toho jedna velká výhoda, a to mnohem méně spotřebované paměti. Takže celý *Učitel hudby* je na dvou 3,5" disketách. Instaluje se na pevný disk počítače, a to je další výhoda - nemusí "chodit" pro hudební ukázky na CD-ROM, jak bývá zvykem, a nevznikají tak ztrátové časy, způsobené pomalejším přístupem na CD-ROM.

Největší výhodou MIDI souborů však je jejich modifikovatelnost. S vhodným softwarem můžete z MIDI souboru odvodit notový zápis, oddělit a zaměnit jednotlivé nástroje, měnit tóninu, tempo a všechny další parametry skladby.

A protože takový software je s *Učitelem hudby* dodáván (*Midisoft Recording Session*), máte možnost jednotlivé ukázky nejen poslouchat (a libovolněkrát opakovat či přerušovat), ale i sledovat jejich notový záznam, poslouchat jenom některé nástroje, prostě zevrubně je studovat.

"Když jsme se rozhodli vytvořit učitele hudby," píší autoři v úvodu, "měli jsme tři základní cíle:

- 1) zasvětit lidi do tajů hudby zábavnou formou,
- ukázat na některé podobnosti mezi starou a moderní hudbou.
- 3) vysvětlit hudbu z hlediska kompozice (na rozdíl od čistě teoretického nebo historického pojetí) s nadějí, že se potom někteří pustí do vlastního tvoření."

Učitel hudby je postaven na šesti základních řekněme vlastnostech hudby - melodie, rytmus, harmonie, barva, skladba a forma. Má dvě základní sekce - *Basics* (Základy) a *History* (Historie). Základy obsahují šest částí, ve kterých jsou jednotlivé vlastnosti podrobně charakterizovány dívá Historie pak na tyto vlastnosti v kontextu (z hlediska hudby) pěti historických období - ranné (cca 600 až 1600), barokní (cca 1600 až 1750), klasické (1750 až 1820), romantické (1820 až 1910) a moderní (1910 až současnost). Základní ideou je dojít k pochopení, jak lidé užívají jednotlivé prvky (melodie, rytmus, ...), jednotlivě i v součinnosti, k tvoření hudby. Např. v Základech, v kapitole Harmonie, se dozvíte co je to harmonie, zatímco v Historii, v kapitole Romantická hudba - harmonie se dozvíte, iak harmonii používali skladatelé romantické hudby.

Učitel hudby obsahuje i zvláštní kapitolu o notovém zápisu. Má pomoci těm, kteří neznají noty, k základnímu porozumění příkladům, použitým v programu.

V programu se můžete pohybovat volně podle vlastního zájmu. Zvolíte si kteroukoli část a v té pak můžete obvyklým způsobem "listovat" dopředu i zpět. Z kteréhokoli místa pak můžete vyvolat editační program pro MIDI soubory, studovat jejich notový záznam a jakkoli s nimi experimentovat.

Program pro práci s MIDI soubory (použitelný samozřejmě i samostatně) si zaslouží zvláštní popis a vrátíme se k němu v některé z dalších rubrik. Pro nalákání alespoň obrazovka s notovým zápisem a velkým mixážním pultem.

THE SAN DIEGO ZOO Presents A True Multimedia Experience

CD-ROM The Animals je zatím asi nejúplnější demonstrace možností multimédií, kterou jsem měl možnost vidět. Zavede Vás na prohlídku zoologické zahrady v San Diegu v USA, která patří mezi největší a nejznámější.

Záleží na Vás, jaký způsob prohlídky si vyberete. Můžete se ukázněně vydat s průvodcem na seznámení se se zoologickou zahradou, abyste získali celkový přehled kde je co. Nebo si můžete rovnou vybrat z hezké barevné mapky přírodní oblast - zoologická zahrada má kousek savany, kousek stepi, kus dešťového pralesa nebo zase močál ... Najdete tam samozřejmě odpovídající zvířata či ptáky. Můžete ale hledat i podle abecedy a vybrat si podle jména některého z více než dvou set prezentovaných živočichů. K vybranému

tvoru pak dostanete množství informací, mezi kterými si můžete vybírat pomocí názorných ikon na okrajích obrazovky. Jsou mezi nimi základní údaje, popis, charakteristika životního prostředí, mapa výskytu na Zemi, řada obrázků (tak 3 až 10 ke každému druhu), nahrávka vydávaných zvuků (ne ke každému, ale k většině), k mnoha i krátký videozáznam (5 až 20 sekund) se zvukovým doprovodem z jejich života. Popis je dost podrobný, k mnoha tvorům jsou uvedeny i různé zajímavé historky a obvykle je k dispozici i jednoduchý popis pro děti.

Všechny údaje jsou dobře zorganizovány v databázi, takže můžete libovolně vyhledávat podle čehokoliv (prostředí, místo výskytu, druh ...) Máte k dispozici i seznamy všech obrázků, videozáznamů, zvuků ap.

Přestože program po instalaci základního jádra na pevný disk vybírá potřebné údaje z CD-ROM, je to poměrně rychlé a nemusíte na změnu obrazovek příliš dlouho čekat. Je to pěkný biograf v počítači ... A. M.

VOLNĚ ŠÍŘENÉ PROGRAMY

ČÁST COMPUTER HOBBY PŘIPRAVOVANÁ VE SPOLUPRÁCI S FIRMAMI FCC FOLPRECHT A JIMAZ

PC-OUTLINE

Autor: Brown Bag Software, 2155 South Bascom Ave, Campbell CA 95008, USA,

HW/SW požadavky: PC XT/AT, 128 kB RAM, DÓS 2.x.

PC-Outline je program pro tvoření struktur, osnov, plánů. Umožňuje vám náhodně vkládat nejrůznější informace a potom je organizovat do hierarchických struktur. Když jsou informace zorganizovány, můžete je pak prohlížet mnoha různými způsoby a přecházet plynule mezi jednotlivými úrovněmi. Jednoduchými postupy můžete informace a celé jejich soubory (struktury) přesouvat, kopírovat, tisknout nebo přenášet do vašeho oblíbeného textového editoru. PC-Outline je obzvlášť vhodný pro zpracování úloh typu seznam úkolů (a podúkolů) nebo plánování projektu.

Program Ize spustit i jako rezidentní, v tom případě zabírá v paměti RAM asi 90 kB.

Základními vlastnostmi programu PC-Outline isou:

- hierarchické struktury,
- odpovídající grafické strukturování textu (posouvání začátku odstavců),
- -možnost "schovat" a znovu vyvolat kteroukoli část nebo úroveň strukturovaného textu,
- -výkonné nástroje pro re-organizaci struktur.

Dále program skýtá:

- -automatické číslování a volbu jeho typu,
- snadno ovladatelná pull-down menu,
- možnost libovolně dlouhých vstupů,
- automatickou úpravu odstavců,
- nastavování tabulátorů, okrajů a zarovnávání.
- -vyhledávání a nahrazování, třídění,
- podmíněné a "tvrdé" stránkování,
- operace s bloky,
- nastavení tiskárny a formátu pro tisk,
- až 9 oken současně na obrazovce se zcela nezávislými texty, s možností nastavit jejich velikost a polohu,
- jediným stiskem zvětšení kteréhokoliv okna na celou obrazovku,
- -možnost kopírovat nebo přesouvat navzájem obsahy jednotlivých oken,
- makra.
- kopírování textu z/do jiných programů současně spuštěných,

Na první pohled není asi zcela zřeimá "síla" tohoto programu, ale je to když se naučíte využívat všech jeho možností - velmi mocný pomocník ve veškeré osobní i pracovní agendě.

Program samotný má 75 kB, je k němu ještě několik dalších utilit, dokumentace a vzorový strukturovaný text (návod). Registrační poplatek je 25 \$, program je z CD-ROM Bonanza.

Obrazovka PC-Outline s několika otevřenými okny

ONE TO ONE

Autor: Digital Transit, 3360 Towneship Road, Antioch, TN 37013, USA.

HW/SW požadavky: PC XT/AT, RAM 192 kB, port RS232, Haves modem, telefonní linka.

One to One je komunikační program navržený pro ty, kteří komunikují občas se svými přáteli prostřednictvím počítače a telefonní linky. Množství existujících dokonalých komunikačních programů poskytuje perfektní služby pro přístup do BBS, informačních sítí, databází ap., ale trochu selhávají, když dva lidé chtějí jen tak přátelsky komunikovat prostřednictvím klávesnice a monitoru počítače přes telefonní linku. One to One je první komunikační program, který se snaží vyjít těmto potřebám vstříc. Čo umí tento program na rozdíl od ostatních?

- -psát sdělení v obou směrech i když přitom probíhá výměna dat,
- -nemůže dojít k pomíchání předávaných textů, odesílaný i přijímaný text mají svá vlastní okna,
- -vy i váš přítel můžete zároveň sledovat na obrazovce stejný text,
- je bezkonkurenčně laciný pouhých 15 až 20 \$.

Program nastavíte do souladu se svým modemem stejně jako jakýkoliv jiný komunikační program. Základní nastavení vyhoví ve většině případů a nemusíte ho pro začátek měnit. Nastavení se dá snadno změnit v případě potřeby (např. zavolá někdo, kdo má jinak nastavený modem než vy). Omezením je, že program používá výhradně formát 8 data bitů, 1 stop bit a žádný paritní bit.

One to One se ovládá ze systému několika menu, všechny funkce však jsou ovladatelné i z klávesnice bez "rozbalení" jediného menu. Při vaší komunikaci s přítelem je každý stisk klávesy odesílán okamžitě a ve stejné časové posloupnosti se objevují znaky na jeho obrazovce. Ne vždy je to pro vás výhodné - a proto máte možnost zvolit Chat mode, při které se vytvoří buffer a všechno, co napíšete, je odesláno až po stisknutí Enter (tj. můžete opravovat, přepisovat, vylepšovat). Pro usnadnění komunikace si můžete vytvořit sadu často používaných frází, každou z nich přiřadit stisku Ctrl+nějaké písmeno a sestavit z nich list. Pak stačí při komunikaci stisknout Ctrl+písmeno a automaticky se vypíše celý text. Pro volbu telefonních čísel je k dispozici adresář s automatickou volbou a samozřejmě i volba z klávesnice. Program umí i přecházet z rozhovoru na počítačovou komunikaci a naopak, aniž by bylo nutné zavěsit a znovu volit.

Tolik snad ve stručnosti pro představení tohoto přátelského prográmku. Zabere 66 kB (+ potřebná dokumentace ap.), registrační poplatek je 15 až 20 \$ a je z CD-ROM Bonanza.

WINTUTOR

Autor: Michael Burton, 15540 Boot Hill Rd., Hayden Lake, ID 83835, USA, tel. (208)772-9347.

HW/SW požadavky: Turbo Pascal. Autor dává půvabným způsobem k dispozici soubor procedur pro vytváření okének v Turbo Pascalu. Okénka mohou mít velikost od 2x2 do 80x25, li-

Obrazovka textového editoru PACE s otevřenými dvěma okny

bovolnou barvu a různé druhy rámečků. V okénku mohou být používány běžné procedury textcolor a textbackground pro změnu barev textu a jeho pozadí. Soubor sestává ze čtyř hlavních procedur - initwindo, makewindo, removewindo a titlewindo. Jejich názvy již napovídají, co je jejich obsahem. Současně může být na obrazovce až 30 okének, teoretické maximum je 255.

Onen půvabný způsob tkví v tom, že celý manuálek (návod k použití) je zároveň demo programem a jednotlivé kapitolky jsou prezentovány vždy v jinak velkém, jinak barevném a jinak orámovaném okně, čímž přímo předvádějí možnosti předkládaných procedur.

Program je zřejmě freeware, nikde není zmínka o nějakém placení. Je z CD-ROM Bonanza.

PACE

Autor: Mark Tigges, 2925 Altamont Cr., West Vancouver, BC, Canada, V7V 3B9.

HW/SW požadavky: PC XT/AT.

Textový procesor pro ty, co mají málo času. *Pace* je program pro počítače pod MS DOS. Záměrem bylo dát veřejnosti k dispozici jednoduchý, ale přesto kvalitní textový procesor, za přijatelnou cenu. *Pace* má všechny běžné vlastnosti standardního textového editoru s hlavním zřetelem na "přívětivost" a rychlost.

Programy od FCC Folprecht si můžete objednat na adrese

FCC Folprecht, s. r. o. Velká hradební 48 400 01 Ústí nad Labem

KUPÓN FCC - AR

červenec 1993

přiložíte-li tento vystřížený kupón k vaší objednávce volně šířených programů od FCC Folprecht, dostanete slevu 10%.

> PUBLIC DOMAIN

Mezi jeho přednosti patří:

- pohodlná obsluha systémem pulldown menu,
- zrychlení obsluhy pomocí hot-keys,
- -inteligentní nápověda (context sensitive help),
- možnost vlastní konfigurace,
- možnost dočasného "odcházení" do DOSu (DOS Shell),
- automatické zálohování,
- -možnost otevření až 6 oken,
- soubory delší než 64 kB,
- -jeden soubor lze mít současně ve dvou oknech.
- práce s bloky, značkami, tabulátory, vyhledávání, nahrazování atd.

Nejlepší na *Pace* je však jeho jednoduchost k naučení. Všichni, kdo se s ním setkali, se ho naučili ovládat během několika minut.

Program má asi 170 kB, podrobná nápověda (*on-line*) k němu 280 kB. Registrační poplatek je 25 až 50 \$ (podle toho, jestli chcete disketu sposlední verzí, manuál, nebo pouze registraci). *Pace* je z CD-ROM Bonanza.

WINLITE 2.1

Autor: F. K. Lenherr, New Salem Research, West Main Street, New Salem MA 01355, USA.

HW/SW požadavky: PC s nainstalovanými Windows 3.1.

Jistě jste znejistěli - Windows 3.1 a shareware? Nikoliv, Windows 3.1 musíte mít vlastní. Autor vám více než program nabízí dobný nápad. Velmi zjedno-

dušenou sestavu Windows 3.1, tak, aby se vešla komprimovaná na jednu disketu 3,5" 1,44 MB.

K čemu to je? Nechme mluvit samotného autora:

- Můžete si "svoje" Windows nosit kdekoliv sebou, s instalací, na kterou iste zvyklí.
- 2) Naučíte se, co je ve Windows podstatné, tedy nezbytné k jejich funkci, a co lze vymazat. Aplikujete-li to i na svá "hlavní" Windows, ušetříte možná několik megabajtů na pevném disku.
- Můžete si vytvořit libovolný počet základních konfigurací Windows, každou na jediné disketě.
- 4) Ponecháte-li i tuto zjednodušenou instalaci na pevném disku (jako "druhá" Windows), můžete si vyzkoušet jakýkoliv nový program nebo aplikaci nejdříve

zde. Víte, jak je složité dokonale odstranit z Windows aplikaci, kterou nechcete. Ve *Winlite* je to jednoduché - prostě celý adresář smažete a z diskety je nainstalujete znovu.

5) Můžete svobodněji experimentovat s Windows, bez strachu, že si "zboříte" svoji pracovní instalaci.

6) Máte-li notebook s malým pevným diskem, nemusíte na něm Windows nechávat a můžete je rychle nainstalovat z diskety kdykoliv potřebujete.

Program spouštíte dávkovým souborem winlitea.bat popř. winliteb.bat (podle toho, v které disketové jednotce máte připravenu čistou disketu). Jako parametr udáte adresář, kde máte na počítači svoje hlavní Windows 3.1 (např. C:\WINDOWS). Program pak chvíli pracuje a výsledkem je zaplněná disketa se zkomprimovanými Windows 3.1 v minimální konfiguraci a potřebnými dávkovými soubory pro jejich zpětnou instalaci

Složení minimální instalace můžete samozřejmě upravit tím, že některé soubory vymažete (je uveden seznam souborů, které lze vymazat) a jiné přidáte. Komprimace je provedena programem PKZIP.

Celé to připomíná onu známou polévku ze sekyrky, že ... - nicméně body 1, 2 a 4 v autorově zdůvodnění mají něco do sebe - a ta pokusná sestava Windows pro spouštění programů na vyzkoušení může být ještě podstatně menší. Nemusí např. obsahovat Notepad, PaintBrush a další "Accesories".

Registrační poplatek je 14,95 \$.

VYBRANÉ PROGRAMY

EGA Coloring Book™

Autor: Kinderware, Inc. Box 1068, North Bend, OH 45052-1068, USA.

HW/SW požadavky: DOS 2.1+, 512 kB paměti RAM, EGA/VGA+ se 128 kB videopaměti, velmi výhodná je myš (není-li k dispozici, lze použít kurzorový kříž).

Vynikající počítačové omalovánky pro děti od tří let. S použitím myši nebo kurzorových kláves umožňují vybarvovat jednoduché předdefinované obrázky. Volně šířená verze obsahuje pět různých obrázků: obrázek rybníka s kachnou, kachňaty, žábou a rákosím, obrázek z džungle s hadem a slonem, dále obrázek břehu moře se škeblemi a rac-

ky, obrázek námořní lodě a konečně obrázek moře s chobotnicí, rybami, mořským koníkem a želvou. Ovládání programu je extrémně jednoduché, všechny příkazy jsou znázorněny velikými obrázkovými ikonami, takže program zvládne opravdu i malé dítě. Přestože je hlavním námětem vybarvování, dítě se nenásilně učí základním počítačovým dovednostem. Obrázky se dají vybarvovat pěti sty různými barevnými vzory (vznikají mícháním šestnácti základních EGA barev, vybírají se z pěti snadno přepínatelných palet), program nabízí operace mazání, přebarvování, dokonce vícenásobně použitelné undo (zrušení chybného kroku) a tisk na EPSON kompatibilních černobílých i barevných tiskárnách, tiskárnách Okidata 92/93, IDS 560 Paper Tiger a Prism, IBM Color Jetprinter, IBM Proprinter X24/XL24 a HP LaserJet či PaintJet (případně lze tisknout do souboru). Program lze provozovat ve dvou režimech, z nichž snadnější ještě více usnadňuje práci malým dětem (odstraní z obrázkového menu některé složitější příkazy, které by při nechtěném výběru mohly dítě zmást).

Program si umí ukládat údaje o vybarvování až pro 5 různých uživatelů (každý si tak může obrázek obarvit jinak).

Registrační poplatek činí 20 \$ (+3 \$ poštovné). Po uhrazení registračního poplatku obdržíte speciální verzi (která dokáže importovat vaše vlastní PCX obrázky), tištěný manuál a další dvě nové sady po deseti obrázcích.

Program zabere po rozbalení asi 560 kB. Najdete ho na disketě 5,25DD-0051nebo 3,5DD-0027 fy JIMAZ.

JIMAZ spol. s r. o. prodejna a zásilková služba Heřmanova 37, 170 00 Praha 7

Vzhledem k velkému zájmu o registraci programů nabízí JIMAZ jako první vlaštovku registraci Emulátoru ZX Spectra za české koruny. Podrobnosti získáte na známé adrese.

Sinclair ZX Spectrum EMULATOR

Autor: G. A. Lunter, Box 2535, NL 9704 CM Groningen, Netherlands.

HW/SW požadavky: 512 kB RAM, CGA/HGC+.

Emulátor populárního mikropočítače ZX Spectrum, o kterém jsme již jednou psali, se dočkal nové verze, která přináší některá podstatná vylepšení.

Program emuluje ZX Spectrum 48K modely 2 a 3 (včetně Interface I), případně Spectrum 128 (včetně emulace zvukových efektů přes AdLib kompatibilní zvukovou kartu nebo přes interní reproduktor počítače). Emulace procesoru Z80 je perfektní i při zachování rychlosti původního Spectra (již na PC AT 8 MHz fungují některé programy stejně rychle jako na původním Spectru). Emulátor ovládá výstup na obrazovku, vstup z klávesnice, emulaci zvukových efektů, nahrávání z/na kazetu (i speedload) a řadu dalších specialit - např. interfejs RS232, připojitelný k paralelnímu nebo sériovému portu (nebo k souboru), řadu interfejsů pro joystick ovladatelných kurzorovými klávesami PC atd.

Obsáhlá dokumentace podrobně popisuje ovládání emulátoru, rozebírá zajímavé technické detaily, obsahuje několik návodů, jak převést programy ze Spectra do PC atd. Jako ukázka je přiložen krátký program, popisující dva interfejsy pro nahrávání z magnetofonu do PC a naopak. Doprovodné programy (poskytované pouze registrovaným uživatelům) umožňují snímat obrazovky v režimu ZX Spectra do obrázků ve formátu GIF/PCX, konvertovat ZX programy mezi rozličnými snapshot formáty (Z80/SNA/SP/PRG), číst diskety Disciple a Plus D atd.

Volně šiřitelná verze je plně funkční, kromě podpory vstupu/výstupu na magnetofon a možnosti zpomalit emulátor. Tyto funkce mají k dispozici pouze registrovaní uživatelé, ti rovněž obdrží kompletní zdrojový kód emulátoru. Registrace za české koruny (500 Kč) je možná u firmy JIMAZ.

Změny oproti verzi 1.45: Dokumentace byla kompletně přeložena z holandštiny do angličtiny a je dostupná ve formátech ASCII/PostScript/LaTeX, uživatele MS Windows určitě potěší, že emulátor lze nyní s určitými omezeními spustit i pod *Okny* (dokonce nejen na DOS obrazovku, ale i ve vlastním okénku!). Vylepšena byla emulace procesoru Z80 (rychlost a nedokumentované funkce), nově přibyla emulace Spectra 128 (i zvukový výstup), výrazně byla zdokonalena podpora magnetofonu a přibyla podpora osmi jednotek microdrive.

Emulátor Spectra najdete na disketě 5,25DD-0069 nebo 3,5DD-0022 fy JIMAZ.

BootSave

Autor: Roedy Green, Canadian Mind Products, #168 - 1020 Mainland Street, Vancouver, BC V6B 2T4, Canada.

Sada tří utilit pro zálohování, kontrolu a obnovování obsahu master boot sektoru pevného disku. BootSave ukládá master boot sector, který obsahuje zaváděcí kód operačního systému, tzv. partition table a - v některých případech - údaje o geometrii disku (počet hlav/cylindrů) do 516 bajtů dlouhého souboru. BootChk umí rychle porovnat uložený boot sektor s boot sektorem skutečným, což je výhodné pro preventivní kontrolu případné infekce virem. Třetí utilita, BootRest, slouží k obnovení poškozeného boot sektoru z kopie vytvořené programem BootSave.

Registrační poplatek 20 \$ je dobrovolný. Program zabere po rozbalení asi 30 kB. Najdete ho na disketě 5,25DD-0066 nebo 3,5DD-0009 fy JIMAZ.

CLOCK

Autor: Bill Javurek. HW/SW požadavky: CGA+.

Rezidentní prográmek, který stále v pravém horním rohu zobrazuje aktuální datum/čas (v textovém režimu samozřejmě). Přímo z klávesnice se dá pomocí "horké klávesy" zobrazování vypnout, pomocným konfiguračním programem si můžete nastavit barevnou kombinaci, v jaké se bude čas zobrazovat. Použitím parametru /r se dá program odstranit z paměti. Rezidentně zabírá pouhých 416 bajtů (dá se umístit do UMB). *Clock* je freeware, za používání se nemusí nic platit.

Program zabere po rozbalení asi 32 kB. Najdete ho na disketě 5,25DD-0066 nebo 3,5DD-0009 fy JIMAZ.

CSVISION

Autor: Michael Software, Michael Bernát, Dukelská 1840, 438 01 Žatec. HW/SW požadavky: Turbo Vision.

Nadstavba pro Turbo Vision fy Borland (dodává se s Turbo Pascalem): kompletní implementace národního prostředí pro programy v textovém režimu. CSVISION upravuje třídu TView (a její potomky), přičemž podporuje normy ASCII, KEYBCS2, LATIN 2 a KOI8-čs (kódování je řešeno stejně jako v Textu602), obsahuje obrazovkové fonty pro videoadaptéry EGA/VGA, vlastní (nerezidentně řešený) ovladač české klávesnice se zaměnitelnými klávesami Y a Z, dále převodní tabulky pro konverze a řazení ve všech podporovaných normách diakritiky (i pro převod mezi velkými a malými písmeny). Princip podpory národního prostředí spočívá v tom, že texty se ve zdrojovém kódu píší vždy s diakritikou a teprve při běhu programu se rozhoduje, jakým způsobem se zobrazí na obrazovce (resp. vytisknou na tiskárně). Rozhraní jednotky TPU je pečlivě popsáno v podrobné české dokumentaci. Nejčastěji volané procedury jsou naprogramovány v assembleru.

Registrace: pro soukromé, nevýdělečné použití není nutné platit nic, ale za 50 Kč můžete získat kompletní zdrojový kód systému. Při komerčním použití (tj. v programech, které se prodávají) je registrační poplatek stanoven na 500 Kč.

Program zabere po rozbalení asi 180 kB. Najdete ho na disketě 3,5DD-0024 fy JIMAZ.

CMOSSave

Autor: Roedy Green, Canadian Mind Products, #168 - 1020 Mainland Street, Vancouver, BC V6B 2T4, Canada.

HW/SW požadavky. 80286+.

Sada tří utilit pro zálohování, kontrolu a obnovování obsahu CMOS paměti osobních počítačů AT. CMOSSave uloží obsah paměti CMOS do zadaného souboru, CMOSChk porovnává obsah takto vytvořeného souboru se skutečným obsahem CMOSu a CMOSRest kopíruje uložené nastavení do CMOS paměti. Programy inteligentně zacházejí s datem i časem, které považují za proměnné a které tedy nenastavují. V dokumentaci je dokonce podrobně popsaná organizace CMOS paměti.

Registrační poplatek je 20 \$ (dobrovolný). Program zabere po rozbalení asi 30 kB. Najdete ho na disketě 5,25DD-0066 nebo 3,5DD-0009 fy JIMAZ.

GRAVITY

Autor: Steve Safarik, Box 45072, Seattle, WA 98145-0072, USA.

HW/SW požadavky: HGC/CGA+, 384 kB RAM.

Zábavný program pro simulaci dějů v gravitačním poli. Program dokáže animovat pohyb až šestnácti těles specifikovaných velikostí, hustotou a počáteční rychlostí. I pro laika bude zajímavé sledovat, jak na sebe tělesa působí a jak navzájem ovlivňují své dráhy. Pohodlné ovládání zajišťuje systém pull-down menu.

Registrační poplatek je 15 \$. Program zabere po rozbalení asi 250 kB. Najdete ho na disketě 5,25DD-0046 nebo 3,5DD-0020 fy JIMAZ.

Ukázka z programu Gravity - autor ji nazval DUEL, což v angličtině znamená "souboj". Planety totiž putují po obrazovce podobně jako středověcí rytíři při turnajovém klání.

JPEG Software Release 4

Autor. The Independent JPEG Group (Tom Lane, Philip Gladstone, Luis Ortiz. Lee Crocker, Ge' Weijers...)

HW/SW pożadavky: překladač jazyka C; podporovány jsou standardní ANSI i non-ANSI překladače pro UNIX, dále Borland C++ a Turbo C/C++, Microsoft C 5.x a 6.x, Manx Aztec C a SAS C (pro Amigu).

Pod uvedeným názvem se skrývá rozsáhlý balík zdrojových kódů v jazyce C. implementujících kompresi a dekompresi grafických informací metodou JPEG. JPEG je kompresní metoda používaná zvláště pro barevné obrázky a obrázky obsahující odstíny šedi (jedná se hlavně o obrázky "skutečných" scén, tedy fotografie, protože u kreslených obrázků neposkytuje tato komprese nikterak oslnivé výsledky). Metoda patří mezi ztrátové komprese, což znamená, že zkomprimovaný obrázek není zcela totožný s původním. Avšak za cenu jistého (obyčejně velice malého, často téměř nepostřehnutelného) zkreslení se dosahuje velmi výrazné komprese. Ukázkový obrázek, který má ve formátu GIF skoro 16 kB, se tímto způsobem vejde do souboru o velikosti pouhých 4 kB! Zdrojové kódy můžete používat neomezeně jako studijní materiál nebo jako komponenty svých vlastních programů (výslovně je dovoleno a podporováno i jejich použití v programech komerčních).

JPEG software je freeware, za jeho použití se neplatí.

Soubory zaberou po rozbalení asi 970 kB. Najdete je na disketě 5,25DD-0068 fy JIMAZ.

INTERACTION LIBRARY

Autor: Gershon Elber. HW/SW požadavky: překladač jazyka C (výhodný je Borland C/C++).

Interaction Library je systém rutin v jazyce C, poskytující programu v grafickém (!) režimu systém oken, pulldown menu, podporu klávesnice, myši a joysticku. Předkládané zdrojové kódy můžete přímo překládat překladači Borland C/C++ a JGPP (což je kompilátor gcc upravený pro 80386). Přenos do jiných prostředí by měl být snadný - autor uvádí, že prý stačí přepsat jediný soubor. Jedinou vadou jinak perfektní knihovny (byla použita např. v programech Electrical Engineering Drawing, DrawFn3d, DrawFunc či IRIT) je dosti stručná dokumentace.

Knihovna INTLIB patří do kategorie freeware. Zdrojové kódy smíte bez jakéhokoliv poplatku užívat ve všech vlastních programech za předpokladu, že dotyčné programy budou rovněž šířeny jako freeware.

Knihovna zabere po rozbalení asi 430 kB. Najdete ji na disketě 5,25DD-0027 nebo 3,5DD-0014 fy JIMAZ.

report

S-metry a jejich údaje

(Dokončení)

Úvodem si připomeňme závěr z předchozí části. Podle doporučení IARU by měla změna signálu o (každý) jeden stupeň S odpovídat dvojnásobnému, resp. polovičnímu vf napětí na anténním vstupu přijímače. Vyjádřeno v dB je to právě 6 dB. Poznatky z praxe, potvrzené kontrolním měřením, ukázaly, že ani drahé přijímače renomovaných továrních značek tento požadavek nesplňují a neumožňují tak objektivní posuzování změn v úrovni přijímaných signálů se všemi důsledky a chybnými závěry, které z této skutečnosti vyplývají. Z S-metrů se tak prakticky stávají pouhé indikátory nekvantifikovaných změn přijímaných signálů. Má-li S-metr umožnit odečítání skutečných S-stupňů, resp. 6 dB rozdílů v úrovni přijímaných signálů, musíme ieho stupnici oceichovat. Neijednodušeji signálním generátorem s přesným výstupním děličem, popř. přepínaným vf děličem (atenuátorem) mezi vf vstupem přijímače a anténou. Ve skromných amatérských podmínkách dosáhneme téhož výsledku jednoduchým útlumovým článkem (sestaveným ze tří miniaturních rezistorů) v anténním napáječi.

Při cejchování S-metru se pak postupuje tak, že si v pravoúhlé souřadnicové soustavě úsečkami znázorňujeme rozdíly v síle různých signálů, odečítané na S-metru při zařazeném a vyřazeném útlumovém článku - obr. 1. Z těchto rozdílů pak graficky sestavíme cejchovní křivku. Přesnost měření, resp. aktuální průběh cejchovní křivky bude závislý jednak na vf vlastnostech útlumového článku včetně přepínače a dále na dostatečném počtu změřených signálů v celém rozsahu stupnice S-metru. Protože budeme změny vyjadřovat přímo v dB, je lépe odečítat výchylky S-metru na lineární 10dílkové stupnici, která obvykle doplňuje stupnici S v celém rozsahu až do maximálních hodnot S9 + 40 dB, popř. + 60 dB - viz obr. 2a.

Postup cejchování - viz obr. 3

- 1. Začínáme se zařazeným útlumovým článkem 6 dB (ale můžeme použít i jinou velikost útlumu). Vybereme signál, který způsobí minimální, ale dobře odečitatelnou výchylku nad šumem, nejlépe v oblasti kolem stupně S1. V grafickém znázornění (obr. 3) ji zaznamenáme na základní vodorovnou osu k příslušné výchylce na použité stupnici.
- 2. Útlumový článek vyřadíme (nebo zkratujeme přepínačem) a zaznamenáváme novou - vyšší hodnotu nad příslušnou výchylku na základní vodorovné ose, ale na úrovni o 6 dB vyšší podle stupnice na ose svislé. Oba takto získané body spojíme nebo proložíme přímkou (spojnice bodů 1-2)
- 3. Pak pokračujeme s jiným silnějším signálem, ale opět se zařazeným útlumovým článkem. Znovu zaznamenáme na základní vodorovnou osu k příslušné výchyl-

Obr. 1. Zapojení při cejchování S-metru. Oddělovací - "přizpůsobovací" útlumový článek zvětšuje přesnost měření, neshoduje-li se vstupní impedance přijímače s impedancí napáječe

Obr. 2.a) Původní stupnice S-metru přijímače TR9000. Indikovaný rozsah mezi stupněm S1 a stupněm S9 + 40 dB by měl činit 78 dB

Obr. 2.b) Opravená stupnice S-metru téhož přijímače. Rozdíly mezi stupni S jsou nyní skutečně 6 dB. Spodní stupnice je dělena po 3 dB. Indikovaný rozsah tedy činí pouze 36

4. Útlumový článek vyřadíme a odečteme další výchylku na úrovni o 6 dB vyšší. Znovu oba body spojíme (body 3-4).

Stejným způsobem pokračujeme dále až "prověříme" celý rozsah stupnice a získáme spojnice bodů 5-6, 7-8, 9-10, 11-12 popř. dalších.

Graficky, rovnoběžným posunem (pomocí

dΒr

pravítka a trojúhelníku) všech úseček sestrojíme lomenou čáru, jejíž úseky postupně graficky sčítají přírůstky v dB mezi měřenými výchylkami. Proložíme-li pak lomenou čáru plynulou křivkou, získáme dostatečně přesnou cejchovní křivku, kterou můžeme přímo použít pro odečet změn v dB. nebo z ní odvodíme novou korigovanou stupnici v dB nebo ve stupnicích S - viz obr. 2.b.

Výpočet a konstrukce útlumového článku

Protože se útlumovým článkem ovlivňují poměry v napáječi – souosém kabelu – s definovanou impedancí, musí být článek navržen tak, aby se jeho impedance shodovala s charakteristickou impedancí tohoto napáječe. Pro naše účely dobře vyhoví tzv. článek Π sestavený minimálně ze tří miniaturních rezistorů typu TR 191 popdle obr. 4. Pro výpočet odporového článku platí tyto vztahy

$$R_p = Z \frac{1 + n}{1 - n} a R_s = Z \frac{1 - n^2}{2n}$$

kde $R_{\rm p}$ a $R_{\rm s}$ jsou odpory tvořící článek podle schématu na obr. 4a,

- ie charakteristická impedance článku, která má být shodná s charakteristickou impedancí napáječe,
- je poměr napětí U_2/U_1 , odpovídající žádanému útlumu

Útlum v dB je pak dán známým vztahem 20 log U2/U1 resp. 20 log n. Vypočtené odpory Ro a Rs pro některé články s charakteristickou impedanci $Z = 50 \Omega$ isou v připojené tabulce. Všechny vypočtené odpory pochopitelně nezapadají přesně do běžné řady jmenovitých hodnot odporů. Některé je proto nutno sastavit ze dvou paralelních rezistorů. Dostatečný výběr však poskytuje i nejběžnější řada E12 s jmenovitými hodnotami 1-1,2-1,5-1,8-2,2-2,7-3,3 3,9 - 4,7 - 5,6 - 6,8 - 8,2.

Vlastní uspořádání útlumového článku je zřejmé z obr. 4b, 4c a 4d. Je nutné dodržet známé zásady pro konstrukce na VKV, tzn. omezit na minimum parazitní kapacity a indukčnosti přívodů. Bez dalších úprav je možno použít rezistorů TR 151 nebo podobných. Bezindukční rezistory TR 191 zaručí dobré vlastnosti i na pásmech UHF.

Podmínkou dostatečně přesného měření,

ný útlum – napáječ – anténa, popř. jiný zdroj signálu. Případné nepřizpůsobení mezi přijímačem a napáječem (deklarovaná vstupní impedance přijímače 50 Ω nebo 75 Ω se nemusí shodovat se skutečností) vyloučíme zařazením dalšího, nejlépe stejného útlumového článku 6 dB na vstup přijímače, který zlepší jeho přizpůsobení (viz obr. 1). Tento "přizpůsobovací článek" ovšem během měření – cejchování zůstává trvale zařazen. Podobně je možno zlepšit přizpůsobení i směrem ke zdroji signálu, k anténě.

Použití výměnných útlumových článků, popř. přepínaných útlumových dekád je mnohostranné a lze jich využít v mnoha případech nejen při měření na vf obvodech, ale i při rádiové komunikaci nebo příjmu TV. Pomohou např. odhadnout změny na přenosové trase, zvláště při příjmu slabých signálů. Postupným nebo opakovaným řazením útlumových článků do signálové cesty získáme poměrně dobrou představu o vlivu přesně definovaných změn úrovní přijímaného signálu na sílu zvuku (ale i kvalitu obrazu při příjmu TV), takže pak snadněji a bez dalších měřicích přístrojů odhadneme změny v úrovni přijímaných signálů při proměnných podmínkách šíření a lépe posoudíme účelnost různých úprav (antén, kabelů apod.) a změn i s přijímači, které nejsou vybaveny S-metry, popř. mají jen hrubou indikaci diodami LED. Snížíme-li útlumovým článkem přijímaný signál do střední části stupnice S-metru, můžeme snadněji posuzovat i malé změny. Plná výchylka Smetru totiž objektivní posuzování zcela znemožňuje.

Těmito útlumovými články můžeme stejným způsobem ovlivňovat úroveň (výkon) vysílaný. Použité rezistory TR 151 ovšem omezují výkonové zatížení článků do 200 až 300 mW

Závěrem připomínáme články v AR, zabývající se problematikou odporových článků – děličů: Vf. dělič do 90 dB, AR-A 11 a 12/76; Odporové děliče (atenuátory), AR-B 2/86 s.

OK1VR

 $\it Tab.~1.$ Rezistory pro útlumové články s impedancí 50 Ω

Útlum dB	п	Paralelní rezistor R _p		Sériový rezistor R _s	
		vypočtený odpor	sestaven z rezistorů	vypočtený odpor	sestaven z rezistorů
3	0,709	293,6	330 + 270	11,7	12
6	0,5	150	150	37,5	68 + 82
9	0,358	104,8	150 + 270	60,9	120 + 120
12	0.25	83,3	82	93,7	120 + 470
15	0,177	71,5	120 + 180	136,8	270 + 270
18	0.125	64.3	120 + 150	196,9	390 + 390
20	0,1	61,1	120 + 120	247,5	390 + 680

Obr. 4. Zapojení útlumového článku

- a) schéma;
- b) zapojení rezistorů v útlumovém článku 6 dB/50 Ω:
- c) zapojení téhož článku s přepínačem usnadňuje měření;
- d) útlumový článek v napáječi s přepínačem ISOSTAT

RÁDIO "Nostalgie"

Radiostanice z Anglie

Dnešní pokračování pohledu do minulosti je věnováno rádiovým stanicím, kterými byly vybaveny československé paradesantní skupiny.

Několik našich skupin bylo vybaveno kromě klasických prostředků rádiového spojení dalšími dvěma typy stanic. Ty byly určeny ke komunikaci s letcem a k navedení letounu nad plochu, určenou pro shoz materiálu, případně osob.

Byla to zařízení *S - PHONE, 13 Mk IV* a radiomaják *EUREKA, Mk I.-III.* Obě patřila do kategorie s nejvyšším stupněm utajení, což spolu se značným časovým odstupem znemožnilo získat kompletní technické údaje. Ty, které jsou k dispozici, umožňují vytvořit si o nich určitou představu.

S - PHONE

Bylo patrně prvním zařízením vyvinutým pro dohovor řečí mezi operátory v letounu (na lodi) a na zemi, které nebylo určeno pro zajištění běžného letového provozu. Sloužilo výhradně pro speciální účely operací SOE a SIS, uskutečňovaných ze vzduchu

i z moře. Z československých parašutistů byl jako první cvičen v zacházení s tímto přístrojem v září 1941 svob. asp. František Pavelka, vysazený v operaci STEEL ze 3. na 4. října 1941 u Koudelova nedaleko Čáslavi. Limitujícím faktorem pro nasazení S - PHONE byla perfektní znalost angličtiny, a tak byl nacvičován (ne příliš úspěšně) i dohovor "smluvenou řečí".

Zařízení bylo přenosné a bylo konstruováno tak, aby je mohl operátor nosit upevněné
na těle i s napájecími zdroji. Každé bylo
opatřeno malou náloží (v případě ohrožení ji
operátor zasunul do zdířky G), rozbuškou
a dvacetivteřinovou zápalnicí. Zapojení
umožňovalo vést duplexní provoz s příposlechem vlastní modulace.

Vysílač:

kmitočet: 337 MHz (pevný), výkon: 0,1 až 0,2 W, elektronky: RL18M – RL18 (oscilátor – modulátor), dosah: asi 15 km.

Přijímač:

regenerační superhet,

kmitočet: 380 MHz s možností doladění v úzkém pásmu, elektronky: RL18 – XV5 – XP.

Zdroje:

uloženy v sedmi pouzdrech "bateriového" opasku měly postačit pro 10 hodin provozu; 6 suchých baterií po 30 V, 3 akumulátory.

Hmothost:

vlastní zařízení asi 1 kg, celková váha 7 kg. Rozměry: 178 × 102 × 50 mm, kovová skříňka.

Anténa: skládací dipól (do přístroje se zasouval banánky, ramena uzpůsobena k zašroubování).

Neméně pozoruhodnými přístroji byla i zařízení **EUREKA** – **REBECCA**. Tvořily je dva samostatné komplety používané v systému rádiových pozemních majáků a určené k navádění letounů do prostoru shozu materiálu pro odbojové skupiny, nebo určené k výsadku osob. EUREKA byl přenosný pozemní maják. Přijímací zařízení umístěné na palubě letadla neslo označení REBECCA.

První československou paradesantní skupinou vybavenou majákem EUREKA byla skupina OUT DISTANCE, vysazená 28. března 1942 u Ořechova nedaleko Telče. Výrazné úspěchy při navádění letounů majákem EUREKA zřízeným na kopci Vejdoch

Z RADIOAMATÉRSKÉHO SVĚTA

Dva pohledy na stanici H2STT a pláž, kde želvy kladou svá vejce

Save The Turtle

V roce 1992 se skupina kyperských radioamatérů pod vedením Dela, 5B4ZZ, zúčastnila přírodovědecké výpravy na pobřeží Kypru. Expedice se věnovala zkoumání života a rozmnožování vzácných středomořských zelených želv a jednoho skoro již vyhubeného druhu želv (Caretta Caretta).

Přímo z místa výzkumu na pobřeží Kypru ze zátoky Lara Bay vysílala příležitostná stanice se speciálním prefixem H2STT (Save The Turtle). Tuto stanici obsluhoval mezinárodní tým sedmi radioamatérů. Tři radioamatéri byli z Kypru, dále jeden Jugoslávec, jeden Ital, jeden Američan a jeden Angličan. Přestože tato stanice používala

pouze drátové a vertikální antény s výkonem 100 W, navázali operátoři přes 5000 spojení. Použité zařízení FT902DM a TS430 a veškeré náklady na celou expedici sponzorovaly různé velké světové firmy, jako je např. BARCLAYS BANK, OPEL, NCR, BP a další.

QSL agendu expedice vyřizoval manažer 5B4AS. Kdo s touto expedicí pracoval na několika různých pásmech nebo několika druhy provozu, měl by dostat speciální diplom od kyperské společnosti ochránců přírody. Finanční výtěžek z této radioamatérské expedice poslouží k další akci pro záchranu těchto vzácných živočichů. **OK2JS**

j.z. Nového Města na Moravě zaznamenala operace TUNGSTEN na jaře roku 1945. Jejím velitelem byl nynější genmjr. v. v. Rudolf Pernický. Typová řada zařízení EUREKA nesla označení Mk Ic, f-IIc, f-IIIt. Stanice Mk IIIt umožňovala operátorům dohovor řečí, ostatní typy byly konstruovány jen jako vysílač

Radiostanice S-PHO-NE (13 Mk IV) při provozu, A – ladící knoflík přijímače, B – bateriová zástrčka, C – sluchátka, D – šňůra sluchátka, D – šňůra sluchátek, E – mikrofon, F – zástrčka, G – zdířka, H – anténa, K – zdířka pro anténu, L – zdířka baterie naváděcích impulzů (asi 300 imp/sec) s předpokládanou možností změny režimu provozu. Ručním telegrafním klíčem mohl operátor pozemní stanice vyslat identifikační písmeno skupiny nebo výsadkové plochy, která byla současně vytyčena některým ze smluvených světelných systémů: L (Lama), T (Tonda). Vysílače i přijímače pracovaly ve standardním kmitočtovém pásmu majáků 214 až 234 MHz nebo na kmitočtech od 176 do 196 MHz. Výkon majáku byl asi 8 W, stanice mohla být napájena ze sítě 220 V, nebo měničem z akumulátoru 12 V.

Souprava byla zpravidla uložena v kufru a sestávala z:

- vlastního majáku v kovové krabici s propojovacími kabely, s telegrafním klíčem a kontrolním sluchátkem:
- pětidílného skládacího anténního stožáru s kotevními lany, úchytkami a kolíky;
- dvou skládacích vertikálních dipólů s kabely;
- síťového zdroje;
- měniče;
- akumulátoru 12 V.

Přijímač REBECCA byl umístěn na palubě letounu, přijímané naváděcí impulzy bylo možné sledovat na obrazovce.

Typová řada nesla označení Mk IIb, t-Mk IV. Přístroj Mk IIt umožňoval dohovor operátorů řečí.

OK1HR

Vojenský historický archív, fond 37.

Kalendář závodů na červenec a srpen 1993

1011. 7.	SEANET Contest	CW	00.00-24.00
1011. 7.	IARU HF Championship	MIX	12.00-12.00
1011. 7.	SWL contest	MIX	12.00-12.00
1718. 7.	HK Independence Day	MIX	00.00-24.00
1718. 7.	SEANET contest	CW	00.00-24.00
1718. 7.	AGCW-DL-QRP letní	CW	15.00-15.00
2425. 7.	RSGB IOTA Contest	SSB	12.00-12.00
2425. 7.	Venezuelan DX contest	CW	00.00-24.00
30. 7.	TEST 160 m	CW	20.00-21.00
1. 8.	SARL contest	SSB	12.00-16.00
78. 8.	YO DX contest	MIX	20.00-16.00
78.8.	Pan American Games tes	tSSB	00.00-24.00
8. 8.	Provozní aktiv KV	CW	04.0006.00
1415. 8.	European contest		
	(WAEDC)	CW	12.00-24.00
2122. 8.	SEANET contest	SSB	00.00-24.00
2122. 8.	Kevmen's club (KCJ) CW	CW	12.00-12.00

Ve dřívějších ročnících AR naleznete podmínky jednotlivých závodů uvedených v kalendáři takto: TEST 160 m AR 1/90, SEA-NET AR 6/91. Venezuelan contest AR 7/90, IARU HF, SWL (RSGB) a RSGB IOTA viz minulé číslo AR, YO DX a SARTG RTTY AR 7/91, KCJ CW a Závod SNP AR 7/92.

RTTY

CW

CW

CW

viz. podm.

13.00-16.00

20.00-21.00

19.00-21.00

Colombian Independence (HK) contest

probíhá třetí neděli v červenci na pásmech 3,5 až 28 MHz. *Kategorie:* jeden operátor jedno pásmo, jeden operátor všechna pásma, více operáto-

21.-22. 8. SARTG WW RTTY

contest

SARL contest

TEST 160 m

Závod k výročí SNP

22. 8.

27. 8.

29. 8.

pasina, vice operatio z RS(T) a pořadového čísla spojení od 001. Spojení s HK stanicí se hodnotí pěti body, s ostatními zeměmi třemi body a se stanicemi vlastní země jedním bodem. Násobiči jsou jednotlivé země DXCC a číselné oblasti HK na každém pásmu zvlášť: Diplom obdrží každá stanice, která naváže alespoň 100 spojení, kontinentální vítězové obdrží medaili. Deníky je třeba odeslat do konce srpna na adresu: Liga Colombia de Radioaficionados, Colombian Independence Day Contest, Apartado 584, Bogota, Colombia.

SARL HF contest

Cílem tohoto závodu je navázat co nejvíce spojení se stanicemi v Jižní Africe. Je přístupný všem radioamatérům a závodu se mohou zúčastnit i klubové stanice a stanice s více operátory. Závod probíhá ve dvou částech: **FONE** prvou ne-

děli v srpnu od 12.00 do 16.00 UTC, *CW* čtvrtou neděli srpna od 13.00 do 16.00 UTC. Závodí se v pásmech 20, 40 a 80 m přednostně v úsecích 14 125 – 14 175, 14 010 – 14 060 kHz (40 a 80 m vzhledem k času nejsou pro nás atraktivní). *Kategorie:* a) jeden operátor (účast jen jedné osoby při vlastním závodě, zpracování deníku, práci se zařízením a anténami; b) více operátorů

(jeden vysílač, ale účast dvou či více osob při činnostech vyjmenovaných v bodě). Vyměňuje se kód složený z RS(T) a pořadového čísla spojení od 001. Bodování: 1 bod za spojení na každém pásmu, 2 body za každou novou oblast (viz seznam), 2 přídavné body za každou stanici, se kterou se podaří spojení na všech třech pásmech. V deníku je třeba čas uvádět v čase SAST (UTC + 2 hodiny). Deníky se zasílají v obvyklé formě nejpozději do 14 dnů po závodě na: SARL Contest, P.O. Box 10220 Scottsville, 3209 Republic of South Africa.

Seznam států v osmi oblastech:

1-ZS1;2-ZS2;3-ZS3,ZS9,V51;4-ZS4; 5-ZS5;6-ZS6;7-C9,Z2,3DA0,7Q7,9J2; 8 - A22, D2, H5, S42, S83, V9, ZD9, ZS7ANT, ZS8MI, 7P8.

European DX contest (WAEDC)

pořádá DARC každoročně tříkrát: **CW** vždy celý druhý víkend v srpnu, **SSB** vždy celý druhý víkend v září a konečně **RTTY** vždy celý druhý víkend v listopadu. Začátek je vždy v sobotu ve 12.00 a konec v neděli ve 24.00 UTC. Závodí se v *kategoriích:* **A.** stanice s jedním operátorem, všechna pásma; **B.** stanice s více operátory; jeden vysílač; **C.** posluchači. *Pásma* 3,5 až 28 MHz

mimo WARC, vyměňuje se kód sestávající z RS(T) a pořadového čísla spojení počínaje 001. Každé spojení se hodnotí jedním bodem, každé přijaté QTC též jedním bodem. Násobiči jsou země DXCC podle posledního platného seznamu, v pásmu 3,5 MHz se každý násobič počítá 4×, v pásmu 7 MHz 3× a v pásmech 14, 21 a 28 MHz 2×. Navazují se spojení jen s mimoevropskými stanicemi (viz výjimku u RTTY). K součtu bodů za spojení se přičtou body za QTC a tento součet se vynásobí počtem získaných násobičů ze všech pásem.

Mimo spojení jako v jiných závodech se navazují spojení k předávání QTC. Každé QTC začíná časem UTC, následuje značka stanice a číslo spojení. QTC předávají výhradně mimoevropské stanice stanicím v Evropě a od jedné stanice je možné získat nejvýše 10 QTC bez ohledu na pásma. Každé předávání QTC se začíná předáním kódu: např. QTC 8/6 znamená, že stanice, se kterou máme spojení, předává svou osmou skupinu QTC, ve které je 6 bloků. Následuje předávání vlastního QTC, např. blok 1345/DL6RK//342 znamená, že ve 13.45 UTC byla naše protistanice ve spojení s DL6RK a ta předávala číslo spojení 342. Pak následuje dalších 5 bloků. Přijaté QTC se potvrzuje: QTC 8/6 OK.

Stanice s jedním operátorem musí mít z celkové doby závodu, která je 36 hodin, nejméně 6 hodin přestávku a ta může být rozdělena do tří částí s libovolnou délkou. V deníku musí být jednotlivé části vyznačeny. Přechod z jednoho pásma na druhé je možný až po 15 minutách provozu, povolen je odskok na jiné pásmo k získání násobiče.

Posluchači zaznamenávají spojení **všech** stanic, které pracují v závodě, *násobiči* jsou země WAE i DXCC. Také posluchači mohou zaznamenat od každé stanice nejvýše 10 předávaných QTC.

Zvláštní podmínky pro část RTTY: Při provozu RTTY je možné pracovat i s evropskými stanicemi, navíc jsou jako násobiče i země WAE. QTC však je možné přijmout jen od mimoevropské stanice.

Deníky se zasílají na zvláštních formulářích, určených pro tento závod, vždy do 15. následujícího měsíce na adresu: WAEDC Komitee, P.O. Box 1126, D-74370 Sersheim BRD-SRN. Diplomy obdrží vítězné stanice každé kategorie v každé zemi za předpokladu, že mají alespoň 100 spojení. nebo získají alespoň 10 000 bodů, či získají alespoň polovinu bodů kontinentálního vítěze při stejném předpokladu. Soutěžní komise kontroluje i dodržování povolených kmitočtů během závodu v pásmech 3,5 a 14 MHz, které jsou pro CW 3500 - 3550 kHz 14 000 – 14 075 kHz, SSB pro 3700-3800 3600 - 3650

a 14 100 - 14 300 kHz.

Pozor – od příštího roku bude závod trvat opět celých 48 hodin.

OK2QX

Předpověď podmínek šíření KV na červenec 1993

Již podruhé se setkáváme na tomto místě s úplně jiným tvarem předpovědních křivek, než v minulých dvanácti letech. Navíc, oproti předpovědí na červen, uveřejněné v minulém čísle, se mi konečně úspěšně podařilo zkrotit grafickou část programu pro výpočet křivek, takže výsledek je ještě přesnější a současně i názornější. Není vyloučeno, že někteří čtenáři těchto řádků mohli přehlédnout text na stejném místě v minulém čísle, a proto si dovolím na nejdůležitější změny ještě jednou stručně upozornit.

Izolinie na předpovědních grafech, připomínající vrstevnice na mapě, jsou křivky stejné síly signálu na anténních svorkách přijímače, vyjádřené ve stupních S (ve kterých si radioamatéři při spojení vzájemně vyměňují reporty a ve kterých jsou nejčastěji cejchovány ukazatele síly signálu na přijímačích). Velmi důležitou informací je údaj nejvyššího použitelného kmitočtu MUF (v minulé verzi grafů znázorněn plnou čarou), zde nakreslený po hodinách symboly "x". Samotný nejvyšší použitelný kmitočet pro danou trasu je (pokud je předpověď úspěšná) v polovině dnů měsíce nižší a ve druhé vyšší, než vypočtený.

New York

Za poměrně důležitý fakt považují to, že izolinie síly signálu nad MUF mají poněkud jiný fyzikální význam než křivky pod MUF. V prvním případě jde zejména o statistickou pravděpodobnost výskytu otevření na příslušné trase (a pokud k otevření dojde, signál bývá velmi silný). Naopak pod MUF jsou otevření častější a z grafů vyčteme obvyklý útlum trasv.

Tato předpověď vychází z vyhlazeného relativního čísla slunečních skvrn R_{12} =63, které do konce letošního roku poklesne k pasesáti. Opačný chod má předpověď slunečního toku podle NRC Ottawa – jeho vyhlazená hodnota by z červencových 103 měla do prosince stoupnout na 122. Ještě vyšší byla sluneční aktivita v letošním únoru, jak vidíme z denních měření slunečního toku v Pentictonu, B. C.: 125, 128, 137, 147, 160, 184, 176, 188, 185, 180, 173, 149, 135, 141, 135, 134, 124, 126, 116, 123, 123, 133, 132, 135, 128, 126, 124, a 124, průměr je 142,5. Průměrné

číslo skvrn R bylo 90,5 a s jeho pomocí jsme vypočetli R_{12} =84 za loňský srpen.

Ještě k únoru: měsíc to byl pozoruhodný, 43 měsíců po maximu jedenáctiletého cyklu již tak velká sluneční radiace nebývá. Také se nestává, aby se tolik poruch magnetického pole Země projevilo hlavně zlepšením v kladné fázi poruchy při absenci zhoršení ve fázi záporné. První dva dny sice byly špatné, ale celý zbytek měsíce nám to vynahradil. V nejlepších dnech stoupaly kritické kmitočty nad střední Evropou nad 10 MHz (7. 2., 11. 2., 17. 2. a 20. až 21. 2.) a podmínky šíření byly v globálním měřítku podprůměrné jen v pěti dnech: 1. až 4. 2., a 22. 2. Zmíněné kladné fáze poruch se odehrávaly 14. 2., 17. 2. a 20. až 21. 2. Mimořádně a opět v kladném smyslu se projevila sporadická vrstva E 10. až 11. 2. (zejména ve směru na Pyrenejský poloostrov). Jako perličku lze uvést aurorálně zbarvené signály japonských stanic 21. 2. dopoledne v pásmu patnácti metrů po pěkném otevření na Havajské ostrovy na dvaceti metrech.

Červenec proti tomu bude vskutku fádní a jediné vzrušení nám občas nabídne sporadická vrstva E. Její menší aktivita ale patří k již poznaným charakteristikám, nynějšího slunečního cyklu a tak budeme svědky poměrně pravidelného chodu s malým počtem poruch.

Zajímavosti

- V Jihoafrické republice byla v loňském roce uspořádána velká výstava "Expo životního stylu", na které se značnou měrou podíleli i radioamatéři, vysvětlující zásady kosmických spojení a rádiového spojení všeobecně. Výstavu navštívilo přes 50 000 zájemců, z toho přes 18 000 školáků se svými učiteli.
- Více jak 700 vystavovatelů ze 40 zemí je očekáváno na velké výstavě organizované společností France Telecom a SEE u příležitosti 15. mezinárodní konference o energii v telekomunikacích INTELEC 93, která se koná ve dnech 27. až 30. září 1993 v kongresovém paláci v Paříži.
- RSGB zveřejnila výsledky svého šetření ohledně rušení nejen radioamatéry, ale i radioamatérů, Zjistila, že:
- 33 % rušení pocházelo od mechanických přerušování elektrických obvodů (termostaty, vypínače);
- 33 % zdrojů rušení nebylo zjištěno;
- 12 % pocházelo od ostatních rádiových služeb (CB, taxi ap.);
- 22 % bylo způsobeno jinými zařízeními elektroniky (telefony, televizory, kabelová TV ap.).

Na druhé straně radioamatéři z celého množství ohlášených rušení způsobili:

- 26 % na televizorech;
- 19 % na telefonním zařízení;
- 18 % na HIFI zařízeních;
- 18 % u videopřehrávačů;
- 7 % na telefonních zápisnících;
- 6 % na rozhlasovém vysílání;

5% na různých zabezpečovacích zařízeních.

QX

MLÁDEŽ A RADIOKLUBY

Z vaší činnosti

Pravidelným a úspěšným účastníkem celoroční soutěže OK – maratón v posledních létech je OK1-4215, ing. Miloslav Michek z Prahy. Dostal jsem od něho dopis, ve kterém mi přiblížil svoji radioamatérskou činnost. Z jeho dopisu vyjímám:

Radioamatérskému koníčku jsem se začal věnovat koncem čtyřicátých let v klubovní stanici OK1KCR v Chrudimi. Z Krátkých vln a další dostupné literatury jsem se naučil základy, absolvováním rozhlasového kursu jsem zvládl základy telegrafie, splnil podmínkv RO III, aktivně působil v OK1KCR a nadšeně poslouchal. Dodnes s vděkem vzpomínám na řadu členů uvedené klubovní stanice, na jejich zapálení pro radioamatérskou činnost, nezištnou pomoc začínajícím radioamatérům, zvláště mladým a na jejich ochotu a obětavost v pomoci druhým. Jedná se zejména o Míru Kučeru, OK1BP, tehdy učitele a okrskového vedoucího Junáka a Bohouše Serbuse, OK1SS, důstojníka letectva, který již bohužel nežije.

Radioamatérský koníček podstatně při-

spěl také k volbě mého povolání. Po vysokoškolském studiu slaboproudé elektrotechniky jsem zakotvil ve vojenském letectvu. Od začátku jsem prošel inženýrské funkce na letce, pluku, divizi a od roku 1960 na velitelství letectva. Zabýval jsem se provozem a opravami elektrotechnického vybavení letadel, později přípravou a zaváděním všech změn na letecké technice a konečně v posledních pěti letech řízením vojenských škol letectva. Moje zaměstnání bylo důvodem, proč jsem na přelomu padesátých a šedesá-

OK1-4215 a OKL 19, ing. Miloslav Michek u svého zařízení tých let musel s radioamatérskou činností skončit. Na ta krásná léta mi zbyla jako vzpomínka krabice QSL lístků a asi 4 diplomy za poslech všech světadílů a států USA. Odpovídalo to tehdejšímu minimálnímu vybavení, nedostatku času a poslechu převážně v pásmu 3,5 MHz.

K oblíbené radioamatérské činnosti jsem se mohl navrátit až na jaře 1989, kdy jsem dosáhl důchodového věku. Koupil jsem si nový přijímač ODRA pro všechna krátkovlnná pásma. K přijímači mám připojenu drátovou anténu o délce asi 100 m včetně svodu. Anténu mám zavěšenou ve výšce asi 50 a 25 m nad zemí, ale není to právě nejvhodnější místo pro anténu.

Za uplynulé období tří a půl roku své druhé etapy radioamatérské činnosti mám dosud potvrzeno 135 zemí MIX, 126 zemí CW a 48 zemí SSB. Provozem SSB, který jsem i přes jazykové předpoklady podceňoval, poslouchat teprve začínám. Za uvedenou dobu isem získal diplomy Československo, Bratislava. JAK. Morava na třech pásmech, M - CLC (MIX III. a II. třídy, CW III. a II. třídy, SSB III. třídy), Plzeň 91 a 92, Libuše a vyžádán diplom Karlovarský porcelán. Splněny mám podmínky diplomů RP-OK-DX II. a I. třídy, P-200 OK a Západní Čechy, ale o tyto diplomy jsem prozatím nepožádal. O zahraničních diplomech se vzhledem k ceně IRC kupónů raději ani nezmiňuji.

Již čtvrtým rokem se pravidelně zúčastňují celoroční soutěže OK – maratón. V roce 1990 jsem ve své kategorii obsadil šesté místo, v roce 1991 jsem se umístil na druhém místě a v roce 1992 jsem se stal vítězem kategorie posluchačů.

Celoroční soutěž OK – maratón považuji za velice prospěšnou nejen pro mládež, ale i pro ty dříve narozené. Tato soutěž vede účastníky k intenzívnější a cílevědomé radioamatérské činnosti, umožňuje jim porovnávat alespoň hrubě vlastní výsledky s ostatními radioamatéry. Změny, zavedené od roku 1992, zejména oddělení koncesionářů

od "pouhých" posluchačů a průběžné celkové měsíční vyhodnocování považuji za veliký přínos. Za přetrvávající nedostatky této soutěže považují především nadhodnocení počtu mnohdy tuctových spojení a bohužel možnost podvádět některými neseriózními účastníky soutěže, což se potvrdilo i v roce 1991. Proto se přimlouvám za změnu podmínek celoroční soutěže, podle kterých by se v podstatě hodnotily jen země DXCC podle pásem. OK - maratonu rovněž chybí určitá atraktivnost a motivace, která by se mohla zvětšit udělováním alespoň symbolických cen za umístění, jako je tomu u řady krátkodobých soutěží z poslední doby, například Plzeň, JAK, Libuše a dalších.

Chci se ještě zmínit o velikém nešvaru. který se týká potvrzování poslechů našimi koncesionáři. Vedle řady těch, kteří respektují zásady slušnosti, je nezanedbatelný počet takových koncesionářů, kteří o ham spiritu na pásmu jen krásně hovoří. Velký počet QSL-lístků, zeiména z pásma 160 m, jsem jim posílal přímo, většinou s přiloženou poštovní známkou nebo SASE. Bohužel, setkal jsem se s mnohými koncesionáři, kteří ani takto vybavenou poslechovou zprávu, mnohdy z více pásem, vůbec nepotvrdí. Přitom mnozí z těchto chronických nezasílačů isou funkcionáři dnešních radioamatérských organizací, hlasatelé jejich zpráv a operátoři dočasně působících stanic OK s příležitostnými prefixy a značkami.

Pokud mne se týká, jsem velice zklamán dosavadní nevyřešenou situací v našem radioamatérském hnutí.

Tolik z dopisu Milana, OK1-4215, který v minulém ročníku OK – maratónu soutěžil pod značkou OKL 19. Přeji mu hodně dalších úspěchů v radioamatérské činnosti.

Těšíme se na vaše další dotazy a připomínky. Pište mi na adresu: OK2-4857, Josef Čech, Tyršova 735, 675 51 Jaroměřice nad Rokytnou.

73! Josef, OK2-4857

ITU - IARU

ITU - International Telecommunication Union (někdy se setkáme i se zkratkou UIT z francouzského názvu) je nejvyšším světovým orgánem, který se zabývá rádiovými službami (ovšem neien iimi) a je uznáván Spojenými Národy jako speciální agentura ke kontrole telekomunikací. V současné době je členy 170 států. Díky vydávaným doporučením je možný telekomunikační provoz mezi jednotlivými členskými státy a nedochází ke vzájemnému rušení na rádiových vlnách. Pro radioamatéry je důležitá každá z konferencí, zabývající se oblastí rádiových komunikací - World Administrative Radio Conference (WARC), která určuje kmitočty, kde mohou být provozovány jednotlivé rádiové služby, tedy i kmitočty pro radioamatéry. Poslední konference byla ve španělském Torremolinos v roce 1992 a nám žádné podstatné změny nepřinesla.

IARU - International Amateur Radio Union je dobrovolné sdružení jednotlivých radioamatérských národních organizací, vzniklo v roce 1925 a nyní sdružuje více jak 125 organizací. Prvořadou službou tohoto sdružení je hájit zájmy radioamatérské služby. Aby byla zajištěna větší operativnost sdružení, byl celý svět rozdělen do tří oblastí (regionů) - v prvém je celá Evropa, území bývalého SSSR a Afrika, ve druhém Severní a Jižní Amerika a ve třetím ostatní svět. IARU vydává doporučení o rozdělení radioamatérských pásem a druzích provozu, každá členská organizace platí k zajištění nezbytných nákladů na provoz poplatek, jehož výše je závislá na počtu členů organizace. Sídlo Mezinárodního sekretariátu IARU je v USA, prezidentem je W1RU - Richard L. Baldwin, viceprezidentem VK3KI a sekretářem W4RA. Předsedou 1. oblasti je PAOLOU - L. v. d. Nadort, sekretářem G3FKM, John Allaway. 2QX

OK1 CRA

INFORMACE ČESKÉHO RADIOKLUBU

O radioamatérských klubech

Když jsem napsal všem českým radioamatérským organizacím o možnosti zveřejnit informace o jejich činnosti v této rubrice, ozval se obratem OK-QRP-klub; předtím jsem ještě získal obsáhlou informaci o Československém DX klubu a o čs. sekci DIG klubu. Postupně budou výtahy ze všech zaslaných materiálů zveřejněny.

Československý DX klub

Čs. DX klub pracuje jako nezávislá odnož radioamatérského hnutí od poloviny 70. let a sdružuje zájemce o hobby, známé v kulturním světě jako rozhlasový DXing (čti: déixing). Jádrem zájmu klubu je klasický DXing, tzn. dálkový příjem rozhlasu a televize, ale také jiných radiokomunikačních služeb v celém spektru rádiových vln. Vydává pro členy měsíč-

ník DX REVUE, ve kterém přináší zprávy a informace o slyšitelnosti vzdálených stanic a o změnách v rozvrhu KV rozhlasu, o českých a slovenských relacích zahraničních stanic, rubriky o nerozhlasových službách, přehled QSL lístků došlých členům, předpovědi šíření rádiových vln, technickou hlídku a další užitečný obsah na 20 stranách formátu A5. Jednou ročně vychází magazín s obsáhleišími články.

Členství v klubu je vázáno zaplacením ročního členského příspěvku ve výši 150 Kč, který je nutno zaslat poukázkou na adresu hospodáře klubu: Jiří Krákora, Brigádníků 307, 100 00 Praha 10. Jiné formality nejsou potřebné a ihned po zaplacení přijde prvé číslo DX Revue. Korespondence s klubem se zasílá na adresu předsedy: Čs. DX klub, c/o Václav Dosoudil, Horní 9, 768 21 Kvasice. Pokud žádáte odpověď, nezapomeňte na zpáteční obálku s adresou a známkou!

Závěrem je nutné upozornit, že v Evropě je zastřešující organizací obdobných národních klubů organizace EDXC, náš Čs. DX klub je již jejím členem a že cienové klubu se zpravidla nezabývají poslechem radioamatérských stanic v radioamatérských pásmech. Zájemci o takovou činnost jsou sdruženi v jiných klubech.

OK-QRP klub

je i nadále nezávislým klubem, sdružujícím příznivce malých výkonů mezi radioamatéry České a Slovenské republiky. Zařízení QRP je definováno největším příkonem PA 10 W nebo maximálním vf výkonem 5 W a klub je členem EUCW.

OK QRP klub vydává měsičník OK QRP INFO (OQI) se 32 stranami formátu A5 s provozními a technickými informacemi. Členové klubu získávají tento časopis zdarma, ostatní si jej mohou předplatit za 60 Kč ročně. Členský roční příspěvek je 70 Kč. Klub organizuje QRP závody, dny aktivity, setkání, vysílá vždy 1. sobotu v měsíci zpravodajství (OK5SLP na 3560 kHz). Klub se snaží o zmenšení "elektronického smogu" a rušení na pásmech a spolupracuje se všemi radioamatérskými organizacemi

bez rozdílu. Kontaktní adresa je: OK1SVS, Vladimír Staněk, Box 02, 471 41 Dubá.

Za spojení s 20 členy klubu (i pro posluchače za poslechy) od 1. 1. 1984 vydává klub diplom – na obou stranách však nesmí příkon překročit povolených 10, resp. 5 W. Přesné informace si najděte v časopise AMA nebo o ně požádejte OK1CZ: Petr Douděra, U 1. baterie 1. 162 00 Praha 6.

Dialog na dálku o povolovacím řízení

Když vytočíte pražské telefonní číslo 20 42 22, ozve se vám na druhém konci ženský hlas "Český telekomunikační úřad – Skálová". Využil jsem této možnosti a pobavili jsme se spolu o tom, co radioamatéry (doufám - alespoň podle nejčastějších dotazů) nejvíce zajímá v otázkách povolování koncesí, zasílání žádostí, zkoušek ap. Dnes to bude o vvdávání koncesí zahraničním radioamatérům, příště se již zaměříme na radioamatéry naše. Pokud budete mít nějaké doplňující dotazy, můžete je napsat na mou adresu a jejich odpovězení na stránkách AR a ve vysílání OK1CRA zprostředkují.

Naši radioamatéři jsou často dotazováni zahraničními zájemci o koncesi OK8, jakým způsobem je možné tuto koncesi získat. Co tedy takovému radioamatérovi poradit?

Nejlépe je, když cizinec zašle přímo na naši adresu žádost, která se píše volnou formou – není předepsán žádný formulář. Žádost musí obsahovat tyto údaje: vlastní jméno a příjmení, trvalé bydliště (přesnou adresu), uvede tam svoji volací značku, dobu platnosti vlastní koncese a jakou má třídu, dobu, odkdy dokdy předpokládá, že u nás bude vysílat, na jakých pásmech, s jakým výkonem a jakými druhy provozu. Nelze povolit provoz v pásmu 50 MHz.

Pokud by to bylo tak jednoduché, pak takovou žádost mohu napsat a nemusím mít ani koncesi.

Žadatel vlastní koncesi musí mít; spolu se žádostí musí zaslat čitelnou kopii vlastní koncesní listiny.

Takže žádost a kopie koncese – jaká je nová adresa vašeho úřadu?

Adresa je: Český telekomunikační úřad, Ministerstvo hospodářství České republiky, Klimentská 27, 125 02 Praha 1, Czech republic. Naši radioamatéři by se mohli pozastavit nad nezvyklým PSČ, které neodpovídá adrese, ale je to tak správné, nejedná se o chybu tisku.

Jaké jsou poplatky za vydání koncese?

Poplatek za vydání koncese OK8 je 100 Kč a také za prodloužení je poplatek 100 Kč. Upozorňuji však, že se připravuje nový poplatkový řád, takže uvedená suma v době, kdy vyjde tento rozhovor tiskem, již nemusí platit.

Výborně, já myslím, že vše je jasné – snad ještě něco k těm radioamatérům, kteří již mají koncesi CEPT a chtěli by získat OK8.

Budou postupovat úplně stejně, jako by koncesi CEPT neměli; její držení nemá na získání koncese OK8 žádný vliv. Koncese OK8 platí po dobu 5 let na libovolný počet návštěv ČR a koncese vydané ještě v ČSFR platí na území ČR i SR.

Děkuji za popovídání a již dopředu si rezervuji nejméně čtvrthodinku na rozhovor o naších koncesích.

INZERCE

Inzerci přijímá poštou a osobně Vydavatelství Magnet-Press, inzertní oddělení (inzerce ARA), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9 linka 341, fax 23 624 39. Uzávěrka tohoto čísla byla 20. 5. 1993, do kdy jsme museli obdržet úhradu za inzerát. Text pište čitelně, hůlkovým písmem, nebo na psacím stroji, aby se předešlo chybám vznikajícím z nečitelnosti předlohy. Cena za první řádek činí 60 Kč a za každý další (i započatý) 30 Kč. Daň z přidané hodnoty je v ceně inzerátu. Platby přijímáme výhradně na složence našeho vydavatelství, kterou Vám obratem zašleme i s udanou cenou za uveřejnění inzerátu.

PRODEJ

Profesionálně na C-64/128 s PD programy a hry (GEOS-obsluha pomocí oken, tvorba plošných spojů, výukové) – 1000 disket: T. Ardan, Pivovar 2889, 276 01 Mělník, tel. 0206/670759.

VHF-UHF špičkové zes. do ant. krabice! Pásmové: AZP 21-60-S 25/1, 5 dB 2×BFG65 (239). Širokopásmové: AZ 1-60 25/4 dB 2×BFG65 (239). Kanálové VHF: AZK ?? 27/1,5 dB KF966 (189). UHF: AZK ??-S 35-27/1-2 dB BFG65+KF966 (289) Nap. výhybka (+25). Konvertory, sluč., zádrže – seznam zdarma. Vývod – šroubací uchycení – nejrychlejší, nejspolehlivější. Dobírkou: AZ, Štípa 329, 763 14. Tel. 067/918221.

Osciloskop S1-94, nový, 10 MHz, sonda 1:10, příslušenství, dokumentace. Tel. (02) 36 78 12 p. Brůhová.

Nízkošumové ant. zesilovače UHF s BFG65 + BFR91A (230), pásmové (170) K1-60 s BFG65 + BFR91A na konektory, šum 4 dB (250). Vše měřeno ve VÚST Praha. Výroba dalších dílů TV rozvodů na zakázku. TEROZ, 789 83 Loštice, tel.: (0648) 52255. **C520D, D146, A273, 274,** MAC16A, 24A, MDAC08 (49, 8, 19, 19, 29, 29, 29), MH7490A, 93A, 193, 00, 04, 10, 20, 38, 40, 50, 60, 74, 150, 154, KFY18, 46 (3), konc. stup. 2×10 W s TBA2005 (180). P. Česnek, Smetanova 1061, 755 01 Vestin

Levně polyskop XI-50 do 1GHz, osciloskop 10 MHz S1.94 (2500), N3015 (1800), S1-112 (3500), 2×1 MHz paměř. (4800), 2×20 MHz S1-118 (4500), 2×35 S1-134 (6800), 2×50 MHz (9800), N3017 (850), OML3M (1500), 2×120 MB566A (7200), gen. BTV G04, SAT02 včetně S kanálů, TXT do 1750 MHz, měřič úrovně tel. signálu, násobiče UN-9 (140), UN-8 (95), IO do BTV, displeje + IO do hodin, KT920B (60), KT922B (75), 930A, B, (130, 150), KT971A (200), 3P326B (100). V. Smilovský, Kalamárská 213, 747 62 Mokré Lazce, tel. (069) 284345. (069) 221445

kré Lazce, tel. (069) 284345, (069) 221445. **Trafa 24V-2VA (à 35),** 5VA (à 45), min. relé do pl. spojů RP 220-24 V 3P (à 25). J. Čejka, Lužická 8, 777 00 Olomouc.

Elektro-mag. čerpadla průtok 0,5 l/min; tlak 10 atm; napájení 220 V. Původně ND do kávovaru. Cena 100 Kč + dobírka. M. Valach, Luční 48, 747 22 Dolní Benešov-Zábřeh.

Servisní manuál (kopie) ZX Spectrum+2 (60 + pošt.). Buček, Šustaly 1083, 742 21 Kopřivnice. **Sat. přij. podle AR/A/9/91** osaz. OFWY6950, SL1452, A723, SO42P + zvuk podle AR/A/10/90, vše v rámu + transf. + přep. 12–18 V pro konvertor (1950). B. Hotmar, 517 42 Doudleby 34, tel. (0444) 5280.

Nová trafa 220/24 V–50 VA; 220/24 V–10 A (à 49; 190). N. kondenzátory 1G/63 V; 500M/300 V (à 9; 6). KT706; KT711; KFY46; použ. KD366; 7B; 7812 (à 14; 4,50; 5; 5; 5). Relé LUN 4 kontakty (à 19); 2 kontakty (à 15). 3f. jističe 37k50 (2,5÷5,6 A) (à 99). J. Heryán, Pod vršky 33, 755 01 Vsetín.

Citlivou děličku kmitočtu 1:1000 do 1 GHz v provedení "SONDA". Tov. výrobek. Cena 870 Kč. M. Bara. Bzenecká 20, 628 00 Brno.

Tranzistory BD675 jednotlivě i ve větším množství. Cena 8 Kč/ks. Ivan Zboran, Růžová 566, 739 61 Třinec VI.

Condor-oživ. desku tuneru VKV 1+2 (350), nový st. zesil. 2× 25W (1000), tech. údaje za fr. obálku. R. Trávnický, Varšavská 215, 530 09 Pardubice, tel. (040) 424 69.

Kvalitní nízkošumivé ant. zesilovače

s BFG65: IV-V.p. 30 dB (180); IV-V. p. 36 dB (210); III+IV-V. p. 21+30 dB (210); III+IV-V. p. 21+36 dB (220); nap. výhybka (45). Vše v pocínovaných krabičkách s konektory. 1 rok záruka. Josef Zuzjak, Křivoklátská 961, 271 01 Nové Strašecí. **Zkoušeč tranzistorů BM-529,** cena 2000 Kč. Tel. (0641) 2054.

Vázané AR roč. 1955 až 1963. VI. Dostálek, Hrdého 836, 500 09 Hradec Králové.

Funkční barev. tón. monitor 35 cm) a komplet. klávesnici k počítači Alfaskop (1200). Tel. (0332) 2366.

Osciloskop BM510; abs. vlnoměr 0,6–2,2 GHz; nf. mV metr BM384; měr. výk. tranz. BM455; měř. tranz. BM469; měř. frekv. BM369; mgf. B4, B400, B100; popis. kleště na kabely; mikrofony AMO410N; vf. gen. BM270-240 MHz; 4kanál. osciloskop Schlumberger 0–170 MHz; VHF-UHF TV vobler; frekv. analyzer Brüler & Kjaer 2705. (2500, 2400, 500, 1200, 800, 500, 200, 300, 1200, 600, 1200, 15 000, 10 000, 10 000). M. Hochman, Bělohorská 24, 160 00 Praha 6.

SL 1452, 27C 1024 (390, 150). Tel. (02) 6921285. **Osciloskop S1-94,** nový, do 10 MHz, cena 2800. Tel. (02) 8556320.

2 ks histor. W metrů Weston Berlin, r. v. 1890, starší elektronky a jiné měř. přístroje. Tel. (02) 490353 večer.

Pošlu na dobírku nové elektronky EZ80, EZ81, PY82, EY83, 1Y32T, PL81, PL82, EL82, ECL82, ECL82, ECL84, ECL85, PCL200, EL36, 6CC31, 6CC41, 6CC42, 6L43, 6L50, 6P6S, 6B31, 6B32, 6F36, 12BC32, EABC80, UCH11, 6H31, EH81, EBF80, EF85, EF86, EF184, 1AF33, EM80, (20 až 40 Kč + poštovné). J. Hájek, Jankovcova 2872, 415 01 Teplice, tel. 29469.

SL1452, µA 733, MC10116, BFQ69 (515, 29, 62, 78). BFG65, GT346B, AF239S, BB405 (76, 19, 20, 8). AY-3-8500, AY-3-8910, TDA1510, A2005 (275, 346, 75, 40). LA4445, LA4461, HA13001, TA7270 (82, 98, 112, 109). BA5406, KA2206, Ty-KT120A (78, 62, 26) zeslanie ihneď. Zoznam zdarma. M. Rezníček, Na Sihoti 6, 010 00 Žilina.

V – hroty do pištol. trafopájkovačky (à 6) sú trvanlivé a vhodné pre jemné i hrubé práce. Šetria Váš čas a vytvárajú pohodlie pri práci. Ponuka v sortimente: Ø 1.0, 1.2, 1.4 a 1.6 mm. Na dobierku min. 5 ks, na faktúru min. 25 ks. Ing. T. Melišek, Eisnerova 9, 841 07 Bratislava. Dobierky v ČR: COMPO s. r. o., Karlovo náměstí 6, 120 00 Pra-

ha 2, tel. 299379; ODRAelektroservis, 28. října č. 4, 701 00 Ostrava, tel. 214264.

SL1451, C520, UB880D, 555 (500, 50, 100, 10). MA7812 kov., KU612, KC811, KT110/400 (10, 5, 5, 10), VQB37, KZ260/6V2, KZZ76 (10, 1,2), KV-ĆAJAVEC (100), sym. člen (à 5). I. Medveď, Orovnica 145, 966 52 Tekovská Breznica.

Transf. 220/2×17 V, 6 A, na nabíječku dle AR 9/92 (à 200), tel. (0437) 5455; 3114.

Pozor! Osciloskop (480), reg. zdroj (380), reg. trafo (280), 1000 ks součástek (98), měřidlo a růz. trafa (48). Popis zašlu. J. Forejt, Nad úpadem 439, 149 00 Praha 4.

Nový nepoužitý osciloskop SI-94 do 10 MHz, cena 2300 Kč. Tel. (02) 3219542.

KOUPĚ

Koupím od radioamatérů pamětníků funkční staré nožičkové lampy např. RES164, C443, B443, RGN1064 atd. Mil. Hudec, Zbožská 2169, 288 02 Nymburk.

Elektronky 6F31, 6Z31, Ing. Vladimír Nechvátal, Fr. Hrubína 737, 674 01 Třebíč, tel. (0618) 26548.

RŮZNÉ

Vyměním freky, analyzér Brüel & Kjaer 2705 za Yamaha SPX 1000.nebo Lexicon LXP 5. Martin Hochman, Bělohorská 24, 160 00 Praha 6.

Občanské radiostanice CB s příslušenstvím za výhodné ceny, ceník zdarma. RADIS, Sázavská 6, 120 00 Praha 2.

Radiostanice CB. Prodej – montáž – servis zajistí DELMO, tel. (02) 6832338.

Přijímač DTMF s odpovídačem (vhodný pro radioprovoz, dál. ovl. apod.). Cena stavebnice sel. volby dobírkou 990 Kč + poštovné. Vyrábí a dodává DELMO, Přístavní 38, 170 00 Praha 7, tel. spojení (02) 6832338.

Hledám společníka pro podnikání v oblasti audio, podmínka znalost VKV přijímačů. Tel. (02) 764994.

Hledám německá radiová zařízení, vysílače, přijímače z 2. svět. války také jednotlivé díly. Nabídky na moji adresu: Dr. Gottfried Domorazek, Rilkestraße 19a D-8417 Lappersdorf, tel.: 0941/822 75

"BASTLÍŘŮM"

a jiné havětí elektrotechnické si dovolujeme oznámit, že jsme přestěhovali náš

BAZAR

do ulice Trojanovy 3, Praha 2 50m od stanice metra Karlovo nám. výstup Palackého nám.

Nabízíme rozmanitý sortiment součástek, dílů, komponentů a jiných zajímavostí.

Vše za ceny "bájného komunismu" tj. skoro

ZADARMO.

Těšíme se na Vaši návštěvu.

ADOSSA tal: 53 40 39, 52 77 98, 52 54 142

Ihned vyrobíme PLOŠNÉ SPOJE

jednostr. a obojstr. aj väčšie množstvo. Cena dohodou.

Inf.: 07/212 002

211 122, kl.660

128

p. Nováková

CD ROM hardware, software

(hry, shareware, obchodní informace, archivace)

LORALRA PARDUBICE

Modem: 040/516 721 (NON STOP) (hry, elektronická pošta, komunikace)

Katalog her (bezplatně) objednejte ještě dnes !!

BECO Link s.r.o., Jindřišská 2038, 530 02 PARDUBICE Tel.:040/517 487, 38 677, Fax: 040/518 566, Mod.: 040/516 721

SEZNAM INZERÁTŮ V TOMTO ČÍSLE

AGB elektro – elektronické součástky XXV
Alto – krabicové systémy VI
AMA – krátkovlnný transceiver XXVII
ASIX – nabídka programovatelných IO VI
BAZAR – elektronických součástek a dílů
Computer Sapiens – jazyk C a PASCAL XII
Commotronic – počítače Comodore XXVIII
DATAPUTER – řadič disketových jednotek XII
DOF – laserové tiskárny
Domorazek – koupě inkurantů XXXI
ECOM – elektronické součástkyXXIV
Elektro Brož – polovodiče XIV
Elektro Hoby – anténní technika VI
Elektrosound – stavebnice výkon, zesilovače XI
ELIX – satelitní soupravy XXVII
Elitron – předzesilovače, propoj, kabely aj X
Ellax – náhradní díly TV, AUDIO, VIDEO VII
Finec – výměna EPROM VI
Elnec – programátor, simulátorVII
Elnec – logický analyzátor XI
EMPOS – elektronické přístroje XXVIII
Emgo – 8bit převodník AD/DA X
Enika – pojistková pouzdra XXIII
ERA components – řízení krokových motorů XIII
ELPOL – teletextové karty XXIX
FAN radio - CB transceivery III
FK technik – kontaktní čidla XXII
GES Electronics – radiostanice 4. str. ob.
GHV Trading - multimetry METEX XIX
GM elektronic – vysílačký, halogeny aj IV-V
Grundig – TV kamery
Jablotron – akumulátory
J.J.J.Sat – TV a satelitní technika
JV a RS Elko – LCR+voltmetrXXXI
Kancelářské stroje – prodej reproduktorů XXXI

ICEDD Internally TV CATtermonenty
KERR elektronik – TV, SAT komponenty
Krejzlík – EPROM Cleaner
KTÉ – elektronické součástkyXV–XVIII
KRUP – automatické přepínače tiskáren XXXI
Lokálka – počítačové modemy
Meder electronic – relé, senzory aj VI
MICROCON – kontroler krokových motorů XXIX
MICRONIX – elektronické díly XXVI
MIKROKOM – servisní přístroje XXX
MITE – mikropočítačová technika XXXI
MORGEN electronics – zdroje, generátory XXX
NEON – elektronické součástky VII
Nováková – výroba pl. spojů
OrCAD – počítačový návrh plošných spojů XI
PACE – satelitní přijímačeVI
Ploskon – induktívne bezkontaktné snímače XXXI
Přijímací technika – TV a SAT příslušenství XI
POKROK – výroba plošných spojů XXIX
ROCHELT – špičkové reproduktory XXIX
SAMER – polovodičové paměti XII
SAMO – prevodník analogových signálov XII
SATCO – kabelové televizní rozvody XXX
Semi Tech – elektronické prvky X
Solutron – konvertory, směšovače VI
Systém Pro – inteligentní monitory
S Power – baterie Panasonic XXVIII
STARMANS – polovodičové součástky XXXI
Šilhánek – nákup elektroniky Luftwafe VI
TES elektronika – směšovače, modulátory VII
TEST-prídavné karty do PC VI
TELECOM-telefonný tarifikátor XXIX
TIPA – elektronické součástky
VAREZ – stanice pre TKRXXVIII
Vilberto – náhradné diely pre spotr. elektr
Villuento – namadne diety pre spotr. elektr