SECURITY CLA	ASSIFICATION O	F THIS PAGE	AD-A20	9 294	AGE					
1a. REPORT S	ECURITY CLASS	SIFICATION		1b. RESTRICTIVE MARKINGS None						
2a. SECURITY	CLASSIFICATIO	N AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT						
2b. DECLASSI	FICATION / DOV	VNGRADING SCHEDU	LE	1 A						
. PERFORMI	NG ORGANIZAT	TION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION	N REPORT	NUMBER(3)		
SEI 7	R-87-0058									
NAME OF	PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF N	ONITORING OR	GANIZAT	ION			
Systems	Engineer	ing	(If applicable)	1						
6c. ADDRESS	(City, State, an	d ZIP Code)	<u> </u>	7b. ADDRESS (C	ity, State, and i	ZIP Code)				
		e, Suite 308								
Greenbe	elt, MD 20	0770								
	FUNDING/SPC	ONSORING	8b. OFFICE SYMBOL	9. PROCUREMEN	IT INSTRUMENT	IDENTIF	CATION NU	MBER		
ORGANIZA NWSC Cr			(If applicable)	NOC164-8	7-C-0058					
	(City, State, and	l ZIP Code)	 	10. SOURCE OF	FUNDING NUM	BERS				
	ling Office		(01.6)	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.		WORK UNIT ACCESSION NO.		
	leapons Suj IN 47522-	pport Center 5001	(016)	ELEMENT NO.	NO.	1,00		Accession no.		
	lude Security C									
Analvti	cal and N	umerical Metho	ods for Composit	te Materials						
12. PERSONA						·				
13a. TYPE OF Final	REPORT	13b. TIME CO FROM 12-		14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 87-07-16						
	ENTARY NOTA									
17.	COSATI	CODES	18. SUBJECT TERMS	(Continue on rever	se if necessary	and iden	tify by bloc	k number)		
FIELD	GROUP	SUB-GROUP	ļ							
			1							
19. ABSTRAC	T (Continue on	reverse if necessary	and identify by block	number)		_	*			
								٠,		
						7	110			
						UI	JC	<u> </u>		
;	Divir					ELE	CTE	$oldsymbol{\cap}$		
	6 ppwgg					JUN 2	6 1989			
!	Diving		are:		- 7	Cr.		U		
	****		; -		V		٤	•		
			· · · · · · · · · · · · · · · · · · ·		7 . · · · · ·					
	TION / AVAILAB SSIFIED/UNLIMIT	ILITY OF ABSTRACT FED SAME AS F	RPT. DTIC USERS	21. ABSTRACT SI	ECURITY CLASSI	FICATION				
22a. NAME C	of RESPONSIBLE			22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 612-854-1808 6054						
DD FORM 1	473 84 MAR	83 70	R edition may be used us	يحصيب سيسطم						

Analytical and Numerical Methods for Composite Materials

SEI TR-87-05 July 16, 1987

Contract No. N00164-87-C-0058

Final Report

December 1986 - June 1987

submitted to

Naval Weapons Support Center Crane, Indiana 47522-5011

submitted by

SYSTEMS ENGINEERING, INC. 7833 Walker Drive, Suite 308 Greenbelt, MD 20770 (301)-345-1692

in collaboration with Simulog, S.A.

Acces	sion For				
NTIS GRA&I DTIC TAB Unamneumeed Justification					
By					
Avai	lability Codes				
Dist	Avail and/or Special				
A-1					

Approved by:

G.L. Blankenship

89 6 26 026

Systems Engineering, Inc.

Abstract

Analytical and computational models of fiber reinforced composite materials are constructed using a mathematical procedure called homogenization. The procedure is systematic; i.e., one can estimate the precision of the approximations to the field equations of the composite. Moreover, it retains interaction effects due to the microstructure of the composite in the macroscopic approximations. A software system, MeMCAP, based on finite element methods implements the methodole by for evaluation of macroscopic effective moduli of the composite and for computation of the microscopic stress and strain fields acting at the fiber-matrix interfaces. The software system is designed for easy use by engineers who need not be familiar with the underlying analytical techniques. Interaction takes place through a menu-driven control structure which requires specification of the material properties of fiber and matrix and of the "geometry" of a typical cell of the composite. The homogenization method produces an effective parameter model of the macroscopic behavior of the material (longitudinal and transverse Young's moduli, Poisson coefficients, etc.), and a description of the microscopic distributions of stress within the cell - especially at the fibermatrix interface. The system can treat composites with various fiber shapes and packing arrangements. It can also treat multi-ply laminates. The program, written in Fortran, is fast and efficient. Extensions of the work to encompass dynamical phenomena such as the propagation and dispersion of stress waves, thermal properties, and estimation of the (Spin) onset of fractures are also discussed.

CONTENTS

Contents

1	Intr	oduction and Project Summary	1
	1.1	Modeling Composite Materials	1
	1.2	Project Summary	4
	1.3	Comments on Some Related Work	4
2	The	Homogenization Method for Modeling Composite Materials	5
	2.1	Formulation of the Model	5
	2.2	The homogenization method	8
		2.2.1 Asymptotic Expansions	9
		2.2.2 Analysis of the Asymptotic Expansion	10
		2.2.3 Microscopic Fields – Localization	13
	2.3	Comments	14
3	Nu: Fiel	merical Evaluation of Effective Moduli and Microscopic Stress	16
	3.1	Application of the Method to a Cross Ply Laminate	16
	3.2	Three Dimensional Homogenization of the Cross Ply Laminate	17
	3.3	Two-Dimensional Homogenization of the Cross Ply Laminate	18
	3.4	Sample numerical results	20
		3.4.1 Effective Parameter Models	20

LIST OF FIGURES

		3.4.2 Numerical Results for the Microscopic Stress-Field	20
4	Nun Fiel	nerical Results for Effective Moduli and Microscopic Stress	22
	4.1	Effective Moduli for Various Fiber-Matrix Geometries	22
		4.1.1 Design of the MeMCAP Supervisor	24
		4.1.2 Sample Session with the MeMCAP Interface	27
	4.2	Evaluation of the Microscopic Stress Fields	38
5	Con	clusions and Further Research and Development	43
	5.1	Accomplishments of the Project	43
	5.2	Further Phase II Research and Development	43
L	ist	of Figures	
	1	Microscopic stress field in a cross section of a typical cell computed by homogenization	3
	2	Elastic body subjected to forces	e
	3	Typical periodic cross-sections of composites for the homogenization method	7
	4	Multiple layer reinforced composites	16
	5	Triangular finite element mesh of the cross section of a period Y	17
	6	Composite reinforced by fibers running in the same direction	19

LIST OF TABLES

7	Multiple layers: Each layer possesses a plane of elastic symmetry normal to the x_3 axis	20
8	Microstress field for shearing load normal to direction of fibers	23
9	Overview of MeMCAP software system	25
10	Flow diagram of MeMCAP Supervisor	26
11	Microstress distribution in a typical cell	40
12	Microstress distribution in a typical cell (alternate loading)	41
13	Microstress distribution in a typical cell (alternate geometry)	42
List	of Tables	
1	Comparative table for 36% resin by volume	21
2	Comparative table for 50% resin by volume	21
3	Comparative table for 65% resin by volume	21

1 Introduction and Project Summary

The objective of this project is the development of analytical methodology implemented in a software tool for the modeling and design of composite materials. Our ultimate objective is to provide a software system for engineering level evaluation of composites in a form which is easy to use, reasonably comprehensive, flexible, extensible, portable and computationally efficient. To this end we have developed a prototype program for the evaluation of effective elasticity moduli for fiber-reinforced composites which includes the capability to compute an approximation to the microscopic distribution of stresses at the fiber-matrix interface.

1.1 Modeling Composite Materials

Direct computation of the detailed behavior of composites under loads is virtually impossible using conventional methods, including sophisticated finite element codes. This is a consequence of the large number of degrees of freedom in the heterogeneous material. A computational procedure which has proven useful is to derive a model representation with material coefficients which do not vary (rapidly) in spatial variables - in effect to find a homogeneous material whose macroscopic behavior approximates that of the composite in a specific context. Many techniques have been used for the derivation of homogeneous, continuum approximations of composite materials. In this report we shall focus on the homogenization method, particularly as developed in [5,6,7] and in the general sources [12,35,65]. This is a powerful mathematical technique for the analysis of physical systems in which there are two or more scales upon which spatial or temporal (or both) phenomena occur. In a composite medium the natural scales are the small (microscopic) scale of interfiber spacing in fiber reinforced materials, or the mean free path length between particles in particle reinforced composites; and the large (macroscopic) scale characterizing the overall dimensions of the structure formed by the medium.

This report presents two basic results from application of the homogenization method to the analysis of fiber—reinforced composite materials:

¹See among many other references [1,2,3,22,23,74].

- 1. When the period (dimension) of a basic "cell" of the periodic structure approaches zero, the fields of deformations and stress of the composite tend to those corresponding to a homogeneous (anisotropic) structure. The complete set of moduli for the homogenized structure can be computed in terms of the elastic moduli of the constituents (fibers and matrix) and the parameters describing the geometrical layout of a single "period" or "cell" of the composite structure.
- 2. By retaining additional terms in the homogenization asymptotic analysis, we can develop a picture of the local distribution of stresses in the material, e.g., at the interfaces between the fibers and matrix. (See Figure 1 and the examples in Section 4.)

The homogenization procedure is *systematic*; i.e., one can estimate the precision of the approximations to the field equations of the composite. Moreover, unlike the "rule of mixtures," it retains interaction effects due to the microstructure of the composite in the macroscopic approximations. Numerical evaluation of both the homogenized moduli and the distributions of local stresses can be based on finite element analysis of elliptic partial differential equations.

The homogenization procedure is general in the sense that it can treat both materials with a regular, periodic infrastructure and materials with a random infrastructure. The general form of the analysis is similar in both cases, as is the form of the expressions for the effective parameters in the approximations; of course, the details of the derivations are quite different.²

In this Phase I project we have developed a prototype software system based on finite element methods to implement the homogenization methodology the evaluation of macroscopic effective moduli of composites with periodic infrastructure and for computation of the microscopic stress and strain fields acting at the fiber-matrix interfaces. The software system is designed for easy use by engineers who need not be familiar with the underlying analytical techniques. Interaction takes place through a menu-driven "supervisor" program which requires specification of the material properties of fiber and matrix and of the "geometry" of a typical cell of

²The general theories for the periodic and random cases are developed in [12] and [59], respectively.

Figure 1: Microscopic stress field in a cross section of a typical cell computed by homogenization.

the composite. The homogenization method produces an effective parameter model of the macroscopic behavior of the material (longitudinal and transverse Young's moduli, Poisson coefficients, etc.), and a description of the microscopic distributions of stress within the cell – especially at the fiber-matrix interface. The system can treat composites with various fiber shapes and packing arrangements. It can also treat multi-ply laminates. The program, written in Fortran, is fast, efficient, and portable. It can be readily extended to treat other types of composites, and it can be enhanced to incorporate a database of composite properties for comparison with predictions of the analytical models. We plan to implement these extensions and enhancements in the second phase of this project.

1.2 Project Summary

The results of the project fall into two classes:

- 1. Analytical results on the derivation of the "homogenized approximations" for the elastic response of fiber-reinforced composites in the periodic case, including asymptotic expansions of the stress, strain, and displacement fields; and
- 2. Implementation of the effective parameter models and field expansions in a menu-driven software system.

The analytical results are summarized in the next section. The software system is described in section 3. Sample numerical results from the software system are given in section 4 and Listings 1 and 2 at the end of the report. Recommendations for further research are given section 5.

1.3 Comments on Some Related Work

The need for tools for stress analysis of laminates formed from composites as a basis for the evaluation of strength and failure properties has been emphasized by

many researchers, see for example [71]. As pointed out in [71], difficulties have been encountered in treating systems containing multiple layers. As we show in section 3 (see also [5]), the homogenization method readily handles such cases, even when the number of layers in the laminate is large.

2 The Homogenization Method for Modeling Composite Materials

2.1 Formulation of the Model

Consider the problem of characterizing small scale elastic deformations of a composite material which, in its undeformed state, occupies a region Ω , open and bounded in \Re^3 with regular boundary Γ . Suppose the boundary is partitioned into $\Gamma = \Gamma_0 \cup \Gamma_1$. (See Figure 2.) Suppose the material is constrained (not to move) along the Γ_0 portion of the boundary, and that a surface force $g = [g_1(x_1, x_2, x_3), g_2(x_1, x_2, x_3), g_3(x_1, x_2, x_3)]$ is incident on the material along the Γ_1 portion of the boundary. Suppose in addition there are volumetric forces $f = [f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3), f_3(x_1, x_2, x_3)]$ acting on the interior of the body.

Let $u(x_1, x_2, x_3) = [u_1(x_1, x_2, x_3), u_2(x_1, x_2, x_3), u_3(x_1, x_2, x_3)]$ be the displacement field of the body subjected to the force densities f, g. Then

$$e_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad 1 \leq i, j \leq 3$$
 (1)

defines the strain tensor. The stress tensor is σ_{ij} which satisfies the equilibrium equations

$$\frac{\partial \sigma_{ij}}{\partial x_j} + f_i = 0 \text{ in } \Omega \tag{2}$$

$$\sigma_{ij}n_j=g_i \text{ on } \Gamma_1 \tag{3}$$

Figure 2: Elastic body subjected to forces.

Stress and strain are related by the pointwise constitutive relation³

$$\sigma_{ij}(u) = a_{ijkl}(x_1, x_2, x_3)e_{kl}(u), \quad 1 \leq i, j \leq 3$$
 (4)

The components of the elasticity tensor $a_{ijkl}(x_1, x_2, x_3)$ are bounded and satisfy

symmetry
$$a_{ijk\ell} = a_{jik\ell} = a_{ij\ell k}, \quad 1 \leq i, j, k, \ell \leq 3$$

positivity
$$\sum_{i,j,k,\ell=1}^3 a_{ijk\ell} \xi_{k\ell} \xi_{ij} \geq \alpha \sum_{i,j=1}^3 |\xi|^2,$$

for some $\alpha > 0$, and for all ξ_{ij} such that $\xi_{ij} = \xi_{ji}$

In composite materials with a periodic infrastructure of fibers, cells, or layers, etc., the elasticity tensor will be a periodic function of the spatial variables. The homogenization method is suitable for treating the case when the infrastructure of the composite is "fine" relative to the macroscopic dimensions of the structure. The periodic structures treated here can be simple identical rectangular or hexagonal arrangements, or they can be more complex shapes as shown in Figure 3. The only constraint is that the opposing faces of a typical "cell" of the structure which correspond through a translation can be identified in pairs.

⁸In the following, we use the convention that repeated indices are summed.

Base period

Figure 3: Typical periodic cross-sections of composites for the homogenization method.

Let Y be a dimension of a typical cell of the structure, and suppose that the structure, i.e., the overall composite, consists of a large number of cells. Let ϵ be a small dimensionless parameter that is the (homothetic) ratio of Y to a typical dimension of the structure as a whole.⁴ If the spatial variable $x \in \mathbb{R}^3$ is used to describe the macroscopic variations in the material, then we use $y = x/\epsilon$ as the microscopic spatial scale which describes rapid variations of the elasticity across the structure.⁵ Hence, it is appropriate to identify

$$a_{ijk\ell}^{\epsilon}(x_1,x_2,x_3)=a_{ijk\ell}(y), \quad y=\frac{x}{\epsilon}. \tag{5}$$

Introducing the shorthand notation,

$$a(y) = \{a_{ijk\ell}(y)\}, \quad a^{\epsilon}(x_1, x_2, x_3) = a(\frac{x}{\epsilon})$$

⁴For example, if the composite structure is a fiber reinforced rod of length L and thickness W, and if a typical cell of the rod is defined to be a section of the rod including a single fiber and a portion of the surrounding matrix, and if the cell cross section as length Y, then $\epsilon = Y/W$. Hence, ϵ is dimensionless, and assuming there are many cells in the cross section of the rod, $0 < \epsilon << 1$.

⁵Using the composite rod example, if we move the small distance of $x = \epsilon$ units through the cross section of the rod, we will pass from matrix to fiber and back to matrix, incurring a significant variation of elasticity. This corresponds to a movement of one unit in the fast spatial scale y.

$$\sigma = \{\sigma_{ij}\}, \quad e(u) = \{e_{k\ell}(u)\}$$

the constitutive law (4) is written

$$\sigma_{ij} = a_{ijk\ell}^{\epsilon}(x_1, x_2, x_3)e_{k\ell} \tag{6}$$

where

$$e(u) = \{e_{ij}(u)\}, \quad e_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

When an ambiguity is possible, either $e_x(u)$ or $e_y(u)$ will be specified depending on whether the derivative is with respect to x or y. The boundary conditions are:

$$u = 0 \text{ on } \Gamma_0 \quad \sigma_{ij} n_j = g_i \text{ on } \Gamma_1$$
 (7)

The problem posed by (1)-(4) has a unique solution which depends on ϵ and which we shall designate as u^{ϵ} ; a stress field σ^{ϵ} may be associated with this:

$$\sigma^{\epsilon} = a^{\epsilon}(x)e(u^{\epsilon}) \tag{8}$$

When ϵ is small, it is very difficult to calculate u^{ϵ} numerically since there are a large number of heterogeneities in the elastic medium. Therefore, one usually tries to obtain an expansion of the solution u^{ϵ} and the stress field σ^{ϵ} .

2.2 The homogenization method

The homogenization method results in replacing the pointwise constitutive relation (6) by a linear relation (with coefficients constant in space) between the "mean values" of the stress and strain tensors.⁶

⁶It is important to emphasise that the method applies not only to systems with a periodic structure, but also to systems with a structure which varies randomly in space. The random variations must be stationary in a strong sense, and the details of the arguments differ from the periodic case; however, the principles are similar. See [59] for the general theory in the random case and [10,50] for extensive applications.

REPRODUCED AT GOVERNMENT EXPENSI

2.2.1 Asymptotic Expansions

The solution depends on two scales:

- (i) The first is the macroscopic dimension (scale) of Ω which affects the solution through the forces applied to the body as whole and the conditions at the boundaries.
- (ii) The second is due to the period of the microscopic system infrastructure which characterizes the local internal forces and stress distributions.

This justifies looking for an asymptotic expansion of the solution the form:

$$u^{\epsilon} = u^{0}(x,y) + \epsilon u^{1}(x,y) + \epsilon^{2}u^{2}(x,y) + \cdots$$
 (9)

where the $u^{\epsilon}(x,y)$ are, for each $x \in \Omega$, Y-periodic functions with respect to the variable $y \in Y$. Then $y = x/\epsilon$ in (9) is the "fast" local scale of the internal structural variations, i.e., x scaled by the (normalized) distance between fibers. An expansion of the deformation field $e(u^{\epsilon})$ may also be identified

$$e(u^{\epsilon}) = \frac{1}{\epsilon} e_{y}(u^{0}) + e(u^{0}) + e_{y}(u^{1}) + \epsilon [e_{x}(u^{1}) + e_{y}(u^{2})] + \cdots$$
 (10)

and the associated stresses field has the representation

$$\sigma^{\epsilon} = \frac{1}{\epsilon}\sigma^{0}(x,y) + \sigma^{1}(x,y) + \epsilon\sigma^{2} + \cdots$$
 (11)

with

$$\sigma^{0} = a(y)e_{y}(u^{0})
\sigma^{1} = a(y)[e_{y}(u^{1}) + e_{x}(u^{0})]
\sigma^{2}(x,y) = [e_{y}(u^{2}) + e_{x}(u^{1})]$$

The equilibrium equations (2) applied to σ^{ϵ} give

$$\frac{\partial \sigma_{ij}^{\epsilon}}{\partial x_j} + f_i = 0$$

SEI-TR-87-05

Systems Engineering, Inc.

10

or in a more condensed form

$$\operatorname{div}\,\sigma^{\epsilon}+f=0\tag{12}$$

Given the expansion (11) of σ^{ϵ} we have

$$\frac{1}{\epsilon^2} \operatorname{div}_{y} \sigma^0 + \frac{1}{\epsilon} \left(\operatorname{div}_{y} \sigma^1 + \operatorname{div}_{z} \sigma^0 \right) + \operatorname{div}_{y} \sigma^2 + \operatorname{div}_{z} \sigma^1 + f + \dots = 0$$

$$x \in \Omega, \quad y \in Y$$
(13)

where

$$\mathrm{div}_y \sigma^{(\alpha)} = \left\{ \frac{\partial \sigma^{\alpha}_{ij}}{\partial y_j} \right\}, \quad \mathrm{div}_z \sigma^{(\alpha)} = \left\{ \frac{\partial \sigma^{\alpha}_{ij}}{\partial x_j} \right\}$$

The boundary conditions (3) are treated in the same way:

$$\frac{1}{\epsilon}\sigma^0 \cdot n + \sigma^1 \cdot n - g + \epsilon\sigma^2 \cdot n + \dots = 0, \quad x \in \Gamma_1, \quad y \in Y$$
 (14)

Finally, the conditions (7) mean that

$$u^0 + \epsilon u^1 + \epsilon^2 u^2 + \ldots = 0, \quad x \in \Gamma_0, \quad y \in Y$$
 (15)

By making the various powers of ϵ zero we obtain:

$$\begin{cases} \operatorname{div}_{y}\sigma^{0} = 0 \\ \sigma^{0} = a(y)e_{y}(u^{0}) \end{cases} \tag{16}$$

$$\begin{cases}
\operatorname{div}_{y}\sigma^{1} + \operatorname{div}_{z}\sigma^{0} = 0 \\
\sigma^{1} = a(y)[e_{y}(u^{1}) + e_{z}(u^{0})]
\end{cases}$$
(17)

$$\begin{cases} \operatorname{div}_{y} \sigma^{2} + \operatorname{div}_{z} \sigma^{1} + f &= 0 \\ \sigma^{2} &= a(y) [e_{y}(u^{2}) + e_{z}(u^{1})] \end{cases}$$
(18)

The equations (14) and (15) will be used later.

2.2.2 Analysis of the Asymptotic Expansion

The systems (16)-(18) contain differential operators in y. They are equations with partial derivatives relative to the macroscopic spatial scale x with the associated period Y; and so, the unknown factors are Y-periodic functions.

11

System (16): This leads immediately to:

$$\sigma^0 = 0, \quad u^0 = u^0(x) \tag{19}$$

System (17): In view of (19) it reduces to:

$$\operatorname{div}_{y}\sigma^{1} = 0, \quad \sigma^{1} = a(y)[e_{y}(u^{1}) + e_{z}(u^{0})]$$
 (20)

The deformation $e_x(u^0)$ is a function of x and not y; therefore, it plays the role of a parameter with respect to the differential system in y. As a consequence of linearity, σ^1 and u^1 may therefore be written in the form:

$$\begin{cases}
\sigma^1 = s^{k\ell}(y)e_{k\ell}(u^0) \\
u^1 = \chi^{k\ell}(y)e_{k\ell}(u^0)
\end{cases}$$
(21)

where

$$\begin{cases} \operatorname{div}_{y} s^{k\ell} &= 0 \\ s^{k\ell} &= a(y) [\tau^{k\ell} + e_{y}(\chi^{k\ell})] \\ e_{k\ell}(u^{0}) &= \frac{1}{2} \left(\frac{\partial u_{k}^{0}}{\partial z_{\ell}} + \frac{\partial u_{\ell}^{0}}{\partial z_{k}} \right) \\ \chi^{k\ell} & \text{is } Y-\text{periodic} \end{cases}$$
(22)

The tensor $\tau^{k\ell}$ is the unit tensor.

It can be shown that the system (22) determines the vector $\chi^{k\ell}(y)$ to within an additive constant.

For any function $\phi = \phi(x, y)$, we define the averaging operation

$$<\phi>=rac{1}{meas(Y)}\int_{Y}\phi(x,y)dy$$

The solution σ^1 of (17) is given by,

$$\sigma^{1}(x,y) = a(y)[\tau^{k\ell} - e_{y}(\chi^{k\ell})]e_{k\ell}(u^{0})$$
 (23)

and taking the mean value, we obtain,

$$\langle \sigma_{ij}^1 \rangle = q_{ij}^{k\ell} e_{k\ell}(u^0) \tag{24}$$

12

where

$$q_{ij}^{k\ell} = \langle a_{ijk\ell}(y) \rangle - \langle a_{ijpq}(y)e_{pq}(\chi^{k\ell}) \rangle$$
 (25)

System (18): It suffices to take the mean over a period Y in the first equation to obtain:

$$\operatorname{div}_{z} < \sigma^{1} > + f = 0 \text{ in } \Omega$$
 (26)

If we introduce $\Sigma = <\sigma^1>$, we have

$$\begin{cases} \operatorname{div}_{z} \Sigma + f = 0 \text{ in } \Omega \\ \Sigma_{ij} = q_{ij}^{k\ell} e_{k\ell}(u^{0}) \end{cases}$$
 (27)

Using equation (15) and taking the mean on Y in (14), we obtain:

$$\begin{cases} u^0 = 0 & \text{on} & \Gamma_0 \\ \Sigma \cdot n = g & \text{on} & \Gamma_F \end{cases}$$
 (28)

The system (27) with boundary conditions (28) is a well posed elasticity problem; the equilibrium equations are unchanged, as well as the boundary conditions. The elastic constitutive relation is

$$\Sigma_{ij} = q_{ii}^{k\ell} \cdot e_{k\ell}(u^0) \tag{29}$$

It is homogeneous since the coefficients $q_{ij}^{k\ell}$ given by (25) are independent of $x \in \Omega$. These coefficients define the equivalent "homogeneous" material. They are called homogenized or effective coefficients.

Note: The effective parameters q (25) include not only the averages of the a(y), the "rule of mixtures" which one expects, but also terms which "correct" for local interactions. These correctors are usually omitted in naive effective medium theories [3].

The stress field $\Sigma = \{\Sigma_{ij}\}$ is called the macroscopic stress field. It is defined by $\Sigma = \langle \sigma^1 \rangle$. The strain field $E = e_x(u^0)$ is called the macroscopic strain field and satisfies

$$E = < e_x(u^0) + e_y(u^1) >$$

It can be proved that the homogenized coefficients $q_{ij}^{k\ell}$ satisfy

$$\begin{cases} q_{ij}^{k\ell} = q_{k\ell}^{ij} (=q_{ijk\ell}) \\ q_{ij}^{k\ell} s_{ij} s_{k\ell} \ge \alpha_1 s_{ij} s_{ij}, \quad \forall s_{ij} = s_{ji} \text{ some } \alpha_1 > 0 \end{cases}$$

This shows that $(q_{ij}^{k\ell})$ are reasonable elastic coefficients and that the macroscopic scale problem (27)(28) has a unique solution.

This homogenized system describes the macroscopic deformation and stress fields of the system subject to external forces and boundary conditions. It is the effective parameter representation of the medium. Since we are interested in the microscopic stresses which characterize the fiber matrix interface, we must push the analysis a little further to reveal this information.

2.2.3 Microscopic Fields - Localization

The stress field $\sigma^1(x,y)$ is the first term of the asymptotic expansion (11) of the stress field $\sigma^{\epsilon}(x)$ solution of the initial exact problem. The field $\sigma^1(x,y)$ is called the microscopic stress field. If we imagine that at each point $x \in \Omega$, there is a small ϵY period with its composite structure, i.e., a "cell" of the overall structure, then $\sigma^1(x,y)$ gives, for x kept fixed in Ω , a stress field in this period.

It can be shown that $\sigma^{\epsilon}(x) - \sigma^{1}(x, x/\epsilon)$ tends to zero when ϵ tends to zero. This proves that $\sigma^{1}(x, x/\epsilon)$ is a good approximation to $\sigma^{\epsilon}(x)$ when ϵ is small. The microscopic stress field $\sigma^{1}(x, y), y = x/\epsilon$ can be calculated as follows:

- (i) First, we obtain the six $\chi^{k\ell}(y)$ vector fields on Y, each one associated with tensor $\tau^{k\ell} = \tau^{\ell k}$. These six vector-fields are solutions of problem (22) which is an elasticity problem on the large scale (period) Y.
- (ii) From the vector fields $\chi^{k\ell}$ we get the homogenized coefficients $q_{ij}^{k\ell}$ by formula (25).

⁷In the $L^1(\Omega)$ norm; that is, $\lim_{\epsilon \to 0} \int_{\Omega} |\sigma^{\epsilon}(x) - \sigma^1(x, x/\epsilon)| dx = 0$.

- (iii) We solve the macroscopic scale, homogenized elastic problem (27)(28) on Ω for the macroscopic stress field $\Sigma(x)$ and the macroscopic strain field $e_x(u^0) = E(x)$, for $x \in \Omega$.
- (iv) The localization procedure: Using formula (23), we can calculate $\sigma^1(x,y)$. For x fixed in Ω , this stress field on Y shows how the macroscopic stress $\Sigma(x) = \langle \sigma^1(x,y) \rangle$ is localized in an ϵY -period (cell) at the point $x \in \Omega$.

This procedure can be rigorously justified in the sense that it can be shown that when ϵ tends to zero, the stress field $\sigma^{\epsilon}(x)$ tends to $\Sigma(x)$. Nevertheless, $\sigma^{1}(x,x/\epsilon)$ is a better approximation to $\sigma^{\epsilon}(x)$ than $\Sigma(x)$. The macroscopic stress field $\Sigma(x)$ is just a mean value while $\sigma^{1}(x,x/\epsilon)$ takes into account the fine periodic structure of the composite material.

2.3 Comments

These results demonstrate the effectiveness of homogenization theory in computing the mechanical characteristics of composite materials. Validity of the results depends on the assumptions made on the shapes and layout of fibers (especially periodicity). Of course, a method which permits treatment of random fiber directions would be able to capture the actual physical situation more precisely. However, the undeniable advantage of this method derives from its capability to supply complete sets of parameter values, which are mutually coherent. Comparisons with experimental evidence and other techniques such as the Halpin-Tsai formulas indicate that the estimates based on the homogenization theory are more accurate than those based on other methods [7,15,16].

An important challenge is to move from the ability to characterize the material properties of composites to characterizing the macroscopic behavior of structures fabricated from these advanced materials. There has been very little work on this subject, and it is important that the software models provide a basis for the development of CAD tools for treatment of these issues.

⁸Precisely, the norm $L^1(\Omega)$ convergence implies that $\sigma^\epsilon(x) - \sigma^1(x, x/\epsilon)$ tends to zero for almost every point in Ω , while the (weak) $L^2(\Omega)$ convergence governing the approach of σ^ϵ to Σ does not.

⁹See [83] for a general discussion of the impact of composites on design of high performance

The basic analytical method can be extended to treat elementary structures fabricated from composites. In the next section we discuss the treatment of laminates formed from fiber-reinforced composites. The analysis of such systems has been a problem in the past, see the discussion in [71]. The homogenization method can readily treat laminates with a large number of layers; a problem that has presented difficulties for other methods. More complex structures can also be treated by iteratively applying the method. For example, in treating tubular members made from composites one can compute the material properties of the composite using the homogenization procedure, evaluate the stiffness and bending properties of the tube based on this, and then refine the model by examining the distribution of microstresses in the wall of the tube as a function of fiber alignment and geometry. The deformations of a sleeve coupling element may be similarly treated.

More complex molded structures are a different matter, since the macroscopic geometry of the element will have to be considered even in the local analysis. That is the "shape" of the region Ω will be very complex for certain molded structures; and it will have to be treated explicitly in the homogenization analysis. One possible approach is to use an iterated finite element procedure in which finite elements in the large scale representation of the complex region Ω are themselves represented as "composite elements" which are are in turn treated as a collection of "cells" whose compliance properties are evaluated using the homogenization procedure. The behavior of the overall molded structure would then be derived by a "superposition" of the individual behaviors of each of its "composite elements." Implementation of this procedure would be a very challenging problem in numerical (finite element) analysis. The simplicity and similarity of the "composite elements" would have to be exploited in setting up the analysis. If properly formulated, the analysis of the "composite elements" could be done in parallel.

systems. See the papers [45,51,72] for discussions of design objectives for laminated fibrous composite plates and related structures. The homogenization method is applied to design in [48].

Figure 4: Multiple layer reinforced composites.

3 Numerical Evaluation of Effective Moduli and Microscopic Stress Fields

3.1 Application of the Method to a Cross Ply Laminate

To illustrate use of the homogenization method in a concrete case, consider a cross ply lamination consisting of orthotropic layers with an alternating orientation of 90° between the layers. We assume that the x and the y axes are parallel to the fiber reinforcement in the odd and the even numbered layers respectively. All the odd layers are identical. As are the even layers. To compare the results, we shall consider three types of layers: (See Figure 4.)

Example 1: Each layer is reinforced by a single fiber row.

Example 2: Each layer is reinforced by a double fiber row.

Example 3: Each layer is reinforced by multiple fiber rows.

Period Y (single fiber row)

Period Y (double fiber rows)

Figure 5: Triangular finite element mesh of the cross section of a period Y.

The first two examples are solved by using the homogenization procedure in three dimensions. The last example is solved in two steps by using a two-dimensional analysis:

- (i) Homogenization of each layer reinforced by fibers running in the same direction.

 The problem defined by (22) is bidimensional.
- (ii) Homogenization of the cross ply lamination using the computed results for each layer given by the first step.

The numerical results are obtained by using a finite element code. See Figure 5.

3.2 Three Dimensional Homogenization of the Cross Ply Laminate

To obtain the homogenized moduli $q_{ij}^{k\ell}$ (25), it is necessary, to first compute the functions $\chi^{k\ell}$ which are solutions of elliptic boundary value problems on the basic period (22). To compute the functions $\chi^{k\ell}$ by a finite element code, the system (22) is reformulated in variational form

$$\begin{cases} \chi^{k\ell} \in V &= \{\underline{v} = (v_1, v_2, v_3), \underline{v} \in \{H^1(Y)\}^3, \underline{v} \text{ is } Y - \text{periodic} \\ a_{\nu}(\chi^{k\ell}, \underline{v}) &= \int_Y a_{ijk\ell}(y)e_{ij}(v)dy, \quad \forall v \in V \end{cases}$$
(30)

18

where

$$a_{y}(\underline{u},\underline{v}) = \int_{V} a_{ijk\ell}(y) e_{i\ell}(\underline{u}) e_{ij}(\underline{v}) dy$$

The last integral in (30) can be written in terms of the surface load:

$$\int_{Y} a_{ijk\ell}(y) e_{ij}(\underline{v}) dy = \int_{\Gamma} \underline{F}^{k\ell} \cdot \underline{v} d\gamma$$

with

$$\begin{array}{llll} F_1^{11} &= [a_{11\ell 1}] n_\ell & F_2^{11} &= [a_{11\ell 2}] n_\ell & F_3^{11} &= [a_{11\ell 3}] n_\ell \\ F_1^{22} &= [a_{22\ell 1}] n_\ell & F_2^{22} &= [a_{22\ell 2}] n_\ell & F_3^{22} &= [a_{22\ell 3}] n_\ell \\ F_1^{33} &= [a_{33\ell 1}] n_\ell & F_2^{33} &= [a_{33\ell 2}] n_\ell & F_3^{33} &= [a_{33\ell 3}] n_\ell \\ F_1^{23} &= [a_{23\ell 1}] n_\ell & F_2^{23} &= [a_{23\ell 2}] n_\ell & F_3^{23} &= [a_{11\ell 3}] n_\ell \\ F_1^{13} &= [a_{13\ell 1}] n_\ell & F_2^{13} &= [a_{13\ell 2}] n_\ell & F_3^{13} &= [a_{11\ell 3}] n_\ell \\ F_1^{12} &= [a_{12\ell 1}] n_\ell & F_2^{12} &= [a_{12\ell 2}] n_\ell & F_3^{12} &= [a_{12\ell 3}] n_\ell \end{array}$$

where $\underline{n} = (n_1, n_2, n_3)$ is the outward unit normal to the interface of the components (fiber-resin) and where the bracket $[\cdot]$ denotes the jump of a function across the interface.

Given numerical representations of the functions $\chi^{k\ell}$, the homogenized coefficients $q_{ijk\ell}$ of the composite system are the mean value, over a period Y of the corresponding $a_{ijk\ell}$ altered by a corrector term (25) depending on the $\chi^{k\ell}$, explicitly:

$$\begin{cases} q_{ijk\ell} = < a_{ijk\ell}(y) > -q_{ijk\ell}^* \\ q_{ijk\ell}^* = \frac{1}{|Y|} \int_Y a_{ijpq} \frac{\partial \chi_p^{h\ell}}{\partial y_q} dy \end{cases}$$

3.3 Two-Dimensional Homogenization of the Cross Ply Laminate

As stated previously, the Example 3 is solved in two steps:

Step 1: Homogenization of a composite reinforced by fibers running in the same direction. See Figure 6.

Calculation of the homogenized coefficients $q_{ijk\ell}$ requires resolution of (22). In the present case the coefficients $a_{ijk\ell}(y)$ are independent of y_3 . Consequently, the

19

Figure 6: Composite reinforced by fibers running in the same direction

fields $\chi^{k\ell}(y)$ are also independent of y_3 . In (22)(30) those indices referring to $\partial/\partial y_3$ give zero contribution. This makes the computation of $\chi^{ij}(y)$ a two dimensional problem. In addition, we have:

$$\chi^{k\ell}(y) = \chi^{k\ell}(y_1, y_2) = [\chi_1^{k\ell}(y_1, y_2), \chi_2^{k\ell}(y_1, y_2), 0]$$

These functions are therefore solutions of a plane strain elasticity problem. And,

$$\chi^{k\ell}(y) = \chi^{k\ell}(y_1, y_2) = [0, 0, \chi_3^{k\ell}(y_1, y_2)] \text{ for } (k, \ell) = [(1, 3), (2, 3)]$$

These two functions for solutions of a scalar problem in \Re^2 . (Details of this reduction are given in [7].)

Step 2: Homogenization of the cross ply lamination. See Figure 7.

Using the homogenized moduli of each layer (from step one), the homogenization formulas are considerably simplified. The problem (22) is reduced to a system of differential equations which may be solved explicitly.

Figure 7: Multiple layers: Each layer possesses a plane of elastic symmetry normal to the x_3 axis.

3.4 Sample numerical results

3.4.1 Effective Parameter Models

The results obtained (from a finite element code) for the two first examples are compared with those obtained for the last example 3 in the tables which follow: Each component is assumed elastic, homogeneous, and isotropic with:

$$E_f = 84,000 \text{ MPa}$$
 $\nu_f = .22 \text{ for the fiber}$ $E_r = 4,000 \text{ MPa}$ $\nu_r = .34 \text{ for the resin}$

Results for 3 impregnations of resin (36%, 50%, 65%) are shown in Tables 1,2,3.

3.4.2 Numerical Results for the Microscopic Stress-Field

In the previous paragraph, we have shown that we get the homogenized moduli $q_{ijk\ell}$ from the six vector fields $\chi^{k\ell}(y)$. We can then solve the homogenized elastic problem (27)(28), on Ω which gives the macroscopic stress field $\Sigma(x)$, for $x \in \Omega$. The computations of the microscopic stress-field and stress forces at the interface

Example	E1	E2	E 3	G23	G13	G12	ν_{23}	ν_{13}	$\overline{ u_{12}}$
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)			
1	37,700	37,700	18,900	5,600	5,600	6,775	.27	.27	.135
2	37,780	37,780	19,850	5,570	5,570	6,670	.259	.259	.137
3	37,750	37,750	20,614	5,298	5,298	6,304	.24	.24	.138

Table 1: Comparative table for 36% resin by volume.

Example	E1 (MPa)	E2 (MPa)	E3 (MPa)	G23 (MPa)	G13 (MPa)	G12 (MPa)	$ u_{23} $	$ u_{13} $	$ u_{12} $
1	28,340	28,340	12,996	3,800	3,800	4,300	.32		.122
2	28,400	28,400	13,280	3,780	3,780	4,276	.308	.308	.124
3	28,801	28,801	13,563	3,598	3,598	4,168	.297	.297	.124

Table 2: Comparative table for 50% resin by volume.

Example	E1 (MPa)	E2 (MPa)	E3 (MPa)	G23 (MPa)	G13 (MPa)	G12 (MPa)	ν ₂₃	ν_{13}	$ u_{12} $
1	20,500	20,500	9,471	2,880	2,880	3,076	.33	.35	.126
2	20,560	20,560	9,565	2,850	2,850	3,057	.35	.35	.128
3	20,237	20,237	9,243	2,657	2,657	2,910	.35	.35	.126

Table 3: Comparative table for 65% resin by volume.

between fiber and resin, are particularly important because they can initiate cracks and delaminations. The localization procedure allows an easy computation of these microscopic stress-field and stress forces.

Numerical results for an unidirectionally fiber-reinforced composite subjected to a shearing stress-field normal to the direction of the fibers are shown in Figure 8. Other cases can be treated in a similar manner. The stress forces $\sigma \cdot n$ at the interface and the components of microscopic stress field are plotted. The density of lines plotted indicate the level of microscopic stress concentration.

The elastic moduli of the components are:

Fiber: E = 84000 Mpa $\nu = 0.22$ Resin: E = 4000 Mpa $\nu = 0.34$

The corresponding homogenized moduli for 50% resin impregnations are

E1	=	10141Mpa	$ u_{32}$	=	0.287	G_{32}	=	3106
E2	=	9685 <i>M pa</i>	$ u_{31}$	=	0.281	G_{31}	=	3386
E3	=	35655 <i>Mpa</i>	$ u_{12}$	=	0.353	G_{12}	=	2606

4 Numerical Results for Effective Moduli and Microscopic Stress Fields

In this section we present transcripts of interactive sessions with the MeMCAP software system. Computation of the effective moduli is treated in the next subsection. Evaluation of the microscopic distribution of stresses at the fiber-matrix interface is treated in the last subsection. In Listings 1 and 2 at the end of the report we provide more extensive examples of the performance of the program modules.

4.1 Effective Moduli for Various Fiber-Matrix Geometries

In the session which follows the homogenized compliance tensor defining the relationship between the stress and strain tensors, $\{e\} = [E]\{\sigma\}$, is computed for

23

Figure 8: Microstress field for shearing load normal to direction of fibers.

sample fiber types and orientations. Specifically, we computed the system

$$\begin{bmatrix} e_{11} \\ e_{22} \\ e_{33} \\ e_{23} \\ e_{13} \\ e_{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{E_1} & -\frac{\nu_{12}}{E_1} & -\frac{\nu_{13}}{E_1} & 0 & 0 & 0 \\ -\frac{\nu_{12}}{E_1} & \frac{1}{E_2} & -\frac{\nu_{23}}{E_2} & 0 & 0 & 0 \\ -\frac{\nu_{13}}{E_1} & -\frac{\nu_{23}}{E_2} & \frac{1}{E_3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2G_{23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix}$$

Here E_i , i = 1, 2, 3 are Young's moduli for the fiber (composite) directions x_i , i = 1, 2, 3; G_{ij} , i, j = 1, 2, 3 are the fiber (composite) shear moduli, and ν_{ij} , i, j = 1, 2, 3 are the fiber (composite) Poisson coefficients.

The homogenization methodology was used to compute the effective parameters. As shown in the previous section, this requires solution of an elliptic partial differential equation in a typical "cell" of the (periodic) structure. This solution was found by a finite element procedure. The solution is then used in an averaging procedure which produces the effective parameters.

4.1.1 Design of the MeMCAP Supervisor

We have developed a menu-driven supervisor program called the "Metal-Matrix Composites Analysis Program (MeMCAP)" to facilitate interaction with the numerical programs which compute the effective parameters of the "homogenized" representation of fiber reinforced materials.¹⁰ An overview of this software is shown in Figure 9.

The flow diagram of the menu-oriented supervisor module is shown in Figure 10.

Currently, the software allows the user to (i) get help, (ii) set up a problem via a simple screen-oriented editor and (iii) submit a batch job to compute the effective parameters of the current problem. The numerical results are saved in a .LOG file.

¹⁰In fact, most of the data used in the computations here is for resin based composites. We have not used metal matrix data (in this unrestricted document) in part to avoid issues related to the ITAR.

Figure 9: Overview of MeMCAP software system.

REPRODUCED AT GOVERNMENT EXPENSE

Figure 10: Flow diagram of MeMCAP Supervisor.

The system is written in Fortran. It assumes the user has a VT100 terminal or compatible. The system is just a prototype; we plan significant enhancements in further work.

4.1.2 Sample Session with the MeMCAP Interface

The output from a sample run is shown below. Each page corresponds to a display screen on the user's terminal.

\$ run memcap

WELCOME

TO

PROTOTYPE PROGRAM FOR COMPUTING THE EFFECTIVE PARAMETERS OF METAL MATRIX COMPOSITES

DEVELOPED BY

SYSTEMS ENGINEERING INCORPORATED 7833 WALKER DRIVE, SUITE 308 GREENBELT, ND 20770

*** PRESS THE "RETURN" KEY TO CONTINUE ***

MAIN>1

	MAIN MEN	บ		AB	BREVIA	TIC	ns
		-					
1	HELP (BRIEF	DESCRI	PTION O	F SOME	items)	-	(HELP)
2	PREPARE DAT	A FILE	FOR COM	PUTATIO	NS		(PREP)
3	COMPUTE EFF	ECTIVE	PARAMET	TERS			(COMP)
4			• • • • • •				
5	• • • • • • • • • •						
6	• • • • • • • • • •		· • • • • • •				
0	QUIT						

HELP - Help available on the following topics:

HELP - displays this list. HISTORY - history of this project.

NEWS - info. on revisions. COMP - compute eff. parameters

PREP - preparation of data file.

SUMMARY - general description.

EXIT

^{1.} TO SEE A DIRECTORY OF HELP ITEMS, TYPE "HELP".

^{2.} OR ENTER NAME OF ITEM FOR WHICH YOU WANT HELP.

^{3.} WHEN FINISHED, TYPE "EXIT" OR "QUIT".

MAIN>2

	MAIN MENU	ABBREVIATIONS
1	HELP (BRIEF DESCRIPTION	OF SOME ITEMS) - (HELP)
2	PREPARE DATA FILE FOR C	OMPUTATIONS (PREP)
3	COMPUTE EFFECTIVE PARAM	ETERS (COMP)
4	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
5	• • • • • • • • • • • • • • • • • • • •	
6	• • • • • • • • • • • • • • • • • • • •	
0	QUIT	
PL	EASE ENTER YOUR SELECTION	N NUMBER:

31

ITEN	DESCRIPTION	ТҮР	CURRENT VALUE
1.	Project title	C Metal Matrix	Composites Analysis
2.	Project/Contract Number	C test	
3.	Generic Name	C TEST	
4.	IFIB	I i	
	Fiber type:		

1 = Isotropic Circular Fiber

2 = Orthotropic Circular Fiber

3 = Isotropic Kidney Fiber

4 = Orthotropic Kidney Fiber

5 = Isotropic Staggered Fiber

TYP: C=CHARACTER, I=INTEGER, L=LOGICAL, R=REAL, X=COMPLEX

- 1. TO CHANGE CURRENT ITEM, ENTER NEW VALUE, THEN HIT RETURN.
- 2. OR ENTER "#" FOLLOWED BY ITEM NUMBER YOU WANT TO CHANGE.
- 3. TO WRITE BACK FILE AND EXIT, TYPE "EXIT". ELSE "QUIT".

QUIT

24	TM	MENTI
MA	IN	MENU

ABBREVIATIONS

1	HELP (BRIEF DESCRIPTION OF SOME ITEMS) - (HELP)
2	PREPARE DATA FILE FOR COMPUTATIONS (PREP)
3	COMPUTE EFFECTIVE PARAMETERS (COMP)
4	
6	
0	QUIT

PLEASE ENTER YOUR SELECTION NUMBER:

K<NIAM

SUBMITTING BATCH JOB, LOGFILE IS "COMACH.LOG"

Job COMACH (queue SYS\$BATCH, entry 1098) started on SYS\$BATCH

The results for this case are shown below (i.e., the following is a listing of the .LOG file created by the module COMACH.EXE):

0.3400000

```
$RUN SEI$USR: [CRANE] COMACH
GENERIC NAME :
IFIB ? ( = 1 ISOTROPIC CIRCULAR FIBER)
       ( = 2 ORTHOTROPIC CIRCULAR FIBER)
       ( = 3 ISOTROPIC KIDNEY FIBER)
       ( = 4 ORTHOTROPIC KIDNEY FIBER)
       ( = 5 ISOTROPIC STAGGERED FIBER)
       ( = 6 ORTHOTROPIC STAGGERED FIBER)
       ( = 7 HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
       ( = 8 HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBER)
IOPT = ? IF = 1 PROVIDE THE SIDE RATIO ( SIDE_//_Y / SIDE_//_X )
                       AND THE RESIN RATIO
          IF = 2 PROVIDE THE SIDE RATIO . THE RESIN RATIO.
                         HDIST ( MESH DENSITY PARAMETER )
SIDE RATIO ? (REAL)
      1.0000000
RESIN RATIO ? ( > 0.2348894 )
      0.5000000
E , NU = ? (YOUNG MODULUS POISSON COEFF. ISOTROPIC FIBER)
  84000.0000000
      0.2200000
E , NU = ? (YOUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
   4000.0000000
```

THE FIBERS ARE PARALLEL AT X1

NOTATIONS E1, E2, E3: YOUNG MODULI FIBER (COMPOSITE) DIRECTIONS X1, X2, X3

****** GIJ : FIBER (COMPOSITE) SHEAR MODULI

NU(IJ) : FIBER (COMPOSITE) POISSON COEFFICIENT

ER : RESIN YOUNG MODULUS

NUR : RESIN POISSON COEFFICIENT

NEL : NUMBER OF ELEMENTS NOE : NUMBER OF NODES

TXR : RESIN IMPREGNATED RATIO IN VOLUME

* ISOTROPIC CIRCULAR FIBER *ISOTROPIC RESIN* MESH *

* E1 = 84000. . G12 = 34426. . NU12 = 0.220 * ER = 4000. * NEL = 176 *

* E2 = 84000. . G13 = 34426. . NU13 = 0.220 * * NOE = 105 *

* E3 = 84000. . G23 = 34426. . NU23 = 0.220 * NUR = 0.340 * TXR = .5082 *

```
HOMOGENIZED ELASTIC TENSOR
                                     2 3
     1 1
               2 2
                          3 3
                                                1 3
                                                           1 2
 0.4625E+05 0.5296E+04 0.5297E+04 -0.7273E-13 0.0000E+00 0.0000E+00
 0.5296E+04 0.1468E+05 0.4762E+04 -0.3214E-12 0.0000E+00 0.0000E+00
* 0.5297E+04 0.4762E+04 0.1468E+05 -0.8976E-13 0.0000E+00 0.0000E+00
* -0.7273E-13 -0.3214E-12 -0.8976E-13 0.3113E+04 0.0000E+00 0.0000E+00
  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4077E+04 0.9916E-04
  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.9916E-04 0.4077E+04
                  HOMOGENIZED COMPLIANCE TENSOR
                                     2 3
 0.2306E-04 -0.6283E-05 -0.6283E-05 -0.2910E-21 0.0000E+00 0.0000E+00
* -0.6283E-05 0.7786E-04 -0.2299E-04 0.7228E-20 0.0000E+00 0.0000E+00
* -0.6283E-05 -0.2299E-04 0.7785E-04 -0.2754E-21 0.0000E+00 0.0000E+00
* -0.2910E-21 0.7228E-20 -0.2754E-21 0.3212E-03 0.0000E+00 0.0000E+00
  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.2453E-03 -0.5967E-11
  0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -0.5967E-11 0.2453E-03
       = 0.433659D+05
                         E2
                             = 0.128441D+05
                                               E3
                                                    = 0.128445D+05
  NU23 = 0.295292D+00
                         NU12 = 0.272460D+00 NU13 = 0.272458D+00
  G23 = 0.311300D+04
                         G12 = 0.407657D+04
                                               G13 = 0.407662D+04
```

ROTATION 45 DEGREES AROUND X1

```
HONOGENIZED COMPLIANCE TENSOR (BISECTING DIRECTIONS)
                    3 3
 0.2306E-04 -0.6283E-05 -0.6283E-05 0.6650E-10 0.0000E+00 0.0000E+00
0.6650E-10 -0.1208E-08 -0.1208E-08 0.2017E-03 0.0000E+00 0.0000E+00
 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.2453E-03 -0.1574E-08
  0.0000E+00 0.0000E+00 0.0000E+00 -0.1574E-08 0.2453E-03
     = 0.433659D+05
                  E2 = 0.928151D+04
                                    E3 = 0.928151D+04
  NU23 = 0.490768D+00
                   NU12 = 0.272459D+00
                                    NU13 = 0.272459D+00
  G23 = 0.495805D+04
                   G12 = 0.407659D+04
                                    G13 = 0.407659D+04 *
```

37

FORTRAN STOP

CRANE job terminated at 11-MAY-1987 14:34:58.43

Accounting information:

Buffered I/O count: 98 Peak working set size: 1354
Direct I/O count: 164 Peak page file size: 3151
Page faults: 1363 Mounted volumes: 0
Charged CPU time: 0 00:01:07.49 Elapsed time: 0 00:01:20.34

The program was run on SEI's VAX 11/750, which has a floating point accelerator and 6 Megbytes of core memory. Listing 1 at the end of the report contains analyses of eight different fiber-matrix geometries to illustrate the range of options available in this module of the system.

REPRODUCED AT GOVERNMENT EXPENSE

4.2 Evaluation of the Microscopic Stress Fields

The MeMCAP software includes a module (COMPO.EXE) for the evaluation of microscopic stress distributions in a typical cell of the composite material. The system is setup to handle cases in which:

- 1. The fibers are run in the same direction and are periodically distributed with a (i) staggered or (ii) aligned rectangular base period.
- 2. The fiber material is (i) isotropic or (ii) orthrotropic.
- 3. The matrix material is (i) isotropic, (ii) orthrotropic, or (iii) incompressible.
- 4. The fibers are (i) circular or (ii) elliptical. 11
- 5. The microscopic stress field is computed for six main (stress) loadings: (i) $S_{11} = 1, S_{ij} = 0, i \neq j$, (ii) $S_{22} = 1, S_{ij} = 0, i \neq j$, (iii) $S_{33} = 1, S_{ij} = 0, i \neq j$, (iv) $S_{23} = 1, S_{ij} = 0, i \neq j$, (v) $S_{13} = 1, S_{ij} = 0, i \neq j$, (vi) $S_{12} = 1, S_{ij} = 0, i \neq j$.

The finite element mesh is automatically generated given the description of the cell geometry and the fiber-matrix impregnation ratio.¹² A minimum ratio is provided for each fiber shape and geometry.

The software requires the following input data:

- 1. Output device: terminal or filename.
- 2. Fiber characteristics: aligned or staggered; isotropic or orthotropic; spacing of fibers in x and in y; and shape circular or ellipse (a, b, n).
- 3. Fiber-matrix impregnation ratio.
- 4. Elasticity characteristics: Matrix isotropic (E, ν) ; orthotropic (E_i, G_{ij}, ν_{ij}) ; or incompressible (E, ν) ; and Fiber isotropic (E, ν) or orthotropic (E_i, G_{ij}, ν_{ij}) .

¹¹ Actually, a generalised elliptical shape is permitted $(x/a)^n + (y/b)^n = 1$.

¹²An optional parameter (HDIST) can be used to refine the mesh near the boundary.

REPRODUCED AT GOVERNMENT EXPENSE

The software produces the following output information either on the user's terminal or into a file, as directed by the user:

- 1. A summary of the input data.
- 2. The homogenized elasticity tensor.
- 3. The homogenized compliance tensor.
- 4. Equivalent elastic moduli.
- 5. A summary of the finite element mesh including number of elements and number of nodes. For each element the program provides: number, material number (1 for fiber, 2 for matrix), node number, and node coordinates. This information serves to localize the microstresses in the fiber-matrix system.
- 6. For each stress loading the microscopic stress field by element number (in the mesh).
- 7. The stress force at the interface between matrix and fiber in terms of element number, node coordinates, and stress force components.

The results of a typical interactive session with the software are given in Listing 2.¹³ The listing of microscopic stress distributions by mesh element is useful in anticipating design objectives and limitations. It is also possible to have the results displayed in a graphical format. Figures 11,12,13 show the microstress distribution in a typical cell in response to various loadings. The colors correspond to various stress levels.

¹⁸To save space, we omit details of the interaction with the system through the supervisor interface.

Figure 11: Microstress distribution in a typical cell.

Figure 12: Microstress distribution in a typical cell (alternate loading).

Figure 13: Microstress distribution in a typical cell (alternate geometry).

5 Conclusions and Further Research and Development

5.1 Accomplishments of the Project

The objective of our Phase I research program was to demonstrate the feasibility of the homogenization method to compute the effective parameter representations of fiber reinforced composites. We have produced analytical results and a software system which meet this objective. It is important to stress that the analytical methods are systematic and consistent.

5.2 Further Phase II Research and Development

Several enhancements to the software are possible which would make it a more complete CAD system for investigation and design of composite materials and structures constructed from such materials.

- 1. As we have already indicated, it would be relatively straight-forward to add enhancements to treat the viscoelastic and thermal properties of (periodic) composites (in the linear regime).
- Similarly, it is possible to adapt the methods to treat plasticity in composites

 a particularly important consideration in the analysis and design of metal matrix composites.
- 3. It is possible to adapt the analytical methods to treat both short-fiber and particulate reinforced composites; however, in these cases it is important to be able to treat systems with a random infrastructure.
- 4. Systems with a random infrastructure can be treated using homogenization. The general theory has been worked out [59]. Extensive applications have been given both for nonlinear problems [10] and for systems with a discrete infrastructure (heat propagation on a random lattice) [50]. In related research

SEI is developing numerical methods for the treatment of homogenization problems for random structures.¹⁴

References

- [1] J. Aboudi, "A continuum theory for fiber-reinforced elastic-viscoelastic composites," Int. J. Eng. Sci., vol. 20(1982), pp. 605-621.
- [2] J. Aboudi, "Effective constitutive equations for fiber-reinforced viscoelastic composites," in *Mechanics of Composite Materials: Recent Advances*, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 57-71.
- [3] J.D. Achenbach and F.T. Sun, "The directionally reinforced composite as a homogeneous continuum with microstructure," in *Dynamics of Composite Materials*, E.H. Lee, ed., ASME Publ., New York, 1972, pp. 48-69.
- [4] N. Alam and N.T. Asnani, "Vibration and damping analysis of fibre reinforced composite material cylindrical shell," J. Comp. Materials, vol. 21(1987), pp. 348-361.
- [5] D. Begis, A. Bestagno, G. Duvaut, A. Hassim, and M. Nuc, "A new method of computing global elastic moduli for composite materials," INRIA Rapports de Recherche, No. 195, INRIA Rocquencourt, Feb. 1983.
- [6] D. Begis, S. Dinari, G. Duvaut, A. Hassim, and F. Pistre, "Modulef and composite materials," preprint, 1984.
- [7] D. Begis, G. Duvaut, and A. Hassim, "Homogenieisation par elements finis des modules de comportements elastiques de materiaux composites," INRIA Rapports de Recherche, No. 101, INRIA Rocquencourt, Nov. 1981.
- [8] I. Babuska, Homogenization and its applications. Mathematical and computational problems, Technical Note BN-821, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, 1975.

¹⁴Specifically, for evaluation of scattering and absorption of electromagnetic radiation by foliage under RADC Contract No. F19628-85-C0180.

[9] W.H. Bennett, G.L. Blankenship and H.G. Kwatny, Modeling and Control of Flexible Structures, Final Report AFOSR Contract F49620-84-C-0115, 1986.

- [10] A. Bensoussan and G.L. Blankenship, "Controlled diffusions in a random medium," submitted for publication, 1987.
- [11] A. Bensoussan, L. Boccardo, and F. Murat, "Homogenization of nonlinear elliptic equations with operators not in divergence form," preprint, 1984.
- [12] A. Bensoussan, J.L. Lions, and G.C. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978.
- [13] G.L. Blankenship, "Asymptotic analysis in control and mathematical physics: Problems with common features," Richerchi di Automatica, 1979, pp. 253-305.
- [14] G.L. Blankenship, "Homogenization and control of large lattice structures," Proc. IMA Workshop on Control of Stochastic and partial Differential Equations, Minneapolis, June 1986, to appear.
- [15] J.F. Bourgat, "Numerical experiments of the homogenization method for operators with periodic coefficients, IRIA-Laboria Rapport de Recherche, No. 277, 1978.
- [16] J.F. Bourgat and A. Dervieux, "Methode d'homogeniesation des operateurs a coefficients periodiques: etude des correcteurs prevenant du developpement asymptotique," IRIA-Laboria Rapports de Recherche, No. 278, 1978.
- [17] C.C. Chamis, "Wave propagation and impact in composite materials," in Composite Materials, vol. 7, Academic Press, New York, 1975, pp. 260-325.
- [18] C.C. Chamis and R.F. Lark, "Non-metalic hybrid composite analysis, design, application and fabrication," in Hybrid and Select Metal Matrix Composites: A State of the Art Review, W.J. Renton, ed., AIAA Publ. New York, 1977, pp. 13-52.
- [19] C.C. Chamis and J.H. Sinclair, "Impact resistance of fiber composites: Energy-absorbing mechanisms and environmental effects," in Recent Advances in Composites in the United States and Japan, J.R. Vinson and M. Taya, eds., ASTM Publ., Philadelphia, 1985, pp. 326-345.

[20] S. Chang, "Effective moduli of composite materials for dynamic problems," AIAA Journal, vol. 25(1987), pp. 464-469.

- [21] R.M. Christensen, Mechanics of Composite Materials, Wiley, New York, 1979.
- [22] R.M. Christensen, "Mechanical properities of composite materials," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 1-16.
- [23] R.M. Christensen and F.M. Waals, "Effective stiffness of randomly oriented fiber composites," J. Comp. Materials, vol. 6(1972), pp. 518-532.
- [24] P.G. Ciarlet, Numerical Analysis of The Finite Element Method, Les Presses de L'Universite de Montreal, Montreal, 1976.
- [25] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- [26] D. Cioranescu and J. Saint Jean Paulin, "Reinforced and alveolar structures," preprint Lab. Anal. Numerique, Univ. P&M Curie, 1985.
- [27] W.J. Craft and R.M. Christensen, "Coefficient of thermal expansion for composites with randomly oriented fibers, j" J. Comp. Materials, vol. 15(1981), pp. 2-20.
- [28] S.K. Datta, A.H. Shah and H.M. Ledbetter, "Harmonic waves in a periodically laminated medium," in *Mechanics of Composite Materials: Recent Advances*, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 207-216.
- [29] L.T. Drzal and M.J. Rich, "Effect of graphite fiber/epoxy matrix adhesion on composite fracture behavior," in Recent Advances in Composites in the United States and Japan, J.R. Vinson and M. Taya, eds., ASTM Publ., Philadelphia, 1985, pp. 16-26.
- [30] G. Duvaut, "Effective and homogenized coefficients," Symposium on Functional Analysis and Differential Equations, Lisbon, 1982.
- [31] G.J. Dvorak, "Thermal expansion of elastic-plastic composite materials," J. Appl. Mech., vol. 53(1986), pp. 737-743.

[32] G.J. Dvorak, "Metal matrix composites: Plasticity and fatigue," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 73-92.

- [33] G.J. Dvorak and J.L. Teply, "Periodic hexagonal array models for plasticity analysis of composite materials," in *Plasticity Today: Modeling, Methods, and Applications, W. Olszak Memorial Volume, A.* Sawczuk and V. Bianchi, eds., Elsevier, New York, 1985, pp. 623-642.
- [34] G.J. Dvorak and C.J. Wung, "Thermoplasticity of unidirectinal metal matrix composites," in *Mechanics of Material Behavior*, The Daniel C. Drucker Anniversary Volume, Elsevier, New York, 1984, pp. 87-116.
- [35] G.A. Francfort and F. Murat, "Homogenization and optimal bounds in linear elasticity," Arch. Rat. Mech. Anal., vol. 94(1986), pp. 307-334.
- [36] K.F. Graff, Wave Motion in Elastic Solids, Clarendon, Oxford, 1975.
- [37] J.C. Halpin, Primer on Composite Materials: Analysis, Technomic Press, Lancaster, Penn., 1984.
- [38] Z. Hashin, "Analysis of composite materials: A survey," J. Appl. Mech., vol. 50(1983), pp. 481-505.
- [39] Z. Hashin and C.T. Herakovich, eds., Mechanics of Composite Materials: Recent Advances, Pergamon Press, New York, 1983.
- [40] Z. Hashin and S. Shtrikman, "A variational approach to the theory of the elastic behaviour of mulitphase materials," J. Mech. Phys. Solids, vol. 11(1963), pp. 127-140.
- [41] A. Hassim, Homogeneisation par elements finis d'un materiau elastique renforce par des fibres, These de 3eme cycle, Toulouse 1980.
- [42] G.A. Hegemier, "On a theory of interacting continua for wave propagation in composites," in *Dynamics of Composite Materials*, E.H. Lee, ed., ASME Publ., New York, 1972, pp. 70-121.
- [43] R. Hill, "Elastic properties of reinforced solids: Some theoretical principles,"

 J. Mech. Physics Solids, vol. 11(1963), pp. 357-372.

[44] R. Hill, "Theory of mechanical properties of fiber-strengthened materials: I. Elastic properties," J. Mech. Physics Solids, vol. 12(1964), pp. 199-212.

- [45] Y. Hirano, "Optimization of laminated composite plates and shells," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 355-366.
- [46] C. Kassapoglou and P.A. Lagace, "An efficient method for the calculation of interlaminar stresses in composite materials," J. Appl. Mech., vol. 53(1986), pp. 744-750.
- [47] V.K. Kinra, "Dispersive wave propagation in random particulate composites," in Recent Advances in Composites in the United States and Japan, J.R. Vinson and M. Taya, eds., ASTM Publ., Philadelphia, 1985, pp. 309-325.
- [48] R. Kohn and G. Strang, "Structural design optimization, homogenization and relaxation of variational problems," in *Macroscopic Properties of Disordered Materials*, R. Burridge, S. Childress, and G. Papanicolaou, eds., Lecture Notes in Physics, vol. 154, Springer-Verlag, New York, 1982, pp. 131-147.
- [49] H. Kolsky and J.M. Mosquera, "Dynamic loading of fiber-reinforced beams," in Mechanics of Material Behavior, The Daniel C. Drucker Anniversary Volume, Elsevier, New York, 1984, pp. 201-218.
- [50] R. Kunnemann, "The diffusion limit for reversible jump processes on Z^d with ergodic random bond conductivities," Commun. Math. Phys., vol. 90(1983), pp. 27-68.
- [51] M. Miki, "Design of laminated fibrous composite plates the required flexural stiffness," in Recent Advances in Composites in the United States and Japan, J.R. Vinson and M. Taya, eds., ASTM Publ., Philadelphia, 1985, pp. 387-400.
- [52] R.L. McCullough, "Influence of microstructure on the thermoelastic and transport properties of particulate and short-fiber composites," in *Mechanics of Composite Materials: Recent Advances*, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 17-30.
- [53] W.R. Mohn and G.A. Gegel, "Dimensionally stable metal matrix composites for guidance systems and optics applications," Proc. Second Conf. on Advanced Composites, Dearborn, 1986, paper 8614-003.

[54] T. Mura and M. Taya, "Residual stresses in and around a short fiber in metal matrix composites due to temperature change," in Recent Advances in Composites in the United States and Japan, J.R. Vinson and M. Taya, eds., ASTM Publ., Philadelphia, 1985, pp. 225-235.

- [55] H. Murakami, "A mixture theory for wave propagation in angle-ply laminates, Part 1: Theory, Part 2: Application," J. Appl. Mech., vol. 52(1985), pp. 331-337, 338-344.
- [56] H. Murakami and G.A. Hegemier, "A mixture model for unidirectionally fiber-reinforced composites," J. Appl. Mech., vol. 53(1986), pp. 765-773.
- [57] T.G. Nieh and D.J. Chellman, "Modulus measurements in discontinuous reinforced aluminum composites," Scripta Metallurgica, vol. 18(1984), pp. 925-928.
- [58] L.E. Nielsen and P.E. Chen, "Young's modulus of composites filled with randomly oriented fibers," J. Materials, vol. 3(1968), pp. 352-358.
- [59] G.C. Papanicolaou and S.R.S. Varadhan, "Boundary value problems with rapidly oscillating random coefficients," Proceedings of Conference on Random Fields, Hungary, North Holland, Amsterdam, 1979.
- [60] R. Plunkett, "Damping mechanisms in fiber reinforced laminates," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 93-104.
- [61] A. Poursartip and P. Beaumont, "A damage approach to the fatigues of composites," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 449-456.
- [62] B.W. Rosen, "Failure of fiber composite laminates," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 105-134.
- [63] A. Rotem, "Fatigue failure mechanism of composite laminates," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 421-436.
- [64] H. Hatta and M. Taya, "Effective thermal conductivity of a misoriented short fiber composite," J. Appl. Phys., vol. 58(1985), pp. 2478-2486.

[65] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer-Verlag, New York, 1980.

- [66] J.E. Schoutens, "Particulate, whisker, and fiber-reinforced metals: A comparison and discussion," Special Technical Paper, DOD Metal Matrix Composites Information Analysis Center, Kaman Tempo, Santa Barbara, Special paper, Nov. 1981.
- [67] J.E. Schoutens, Introduction to Metal matrix Composite Materials, Publ. DOD Metal Matrix Composites Information Analysis Center, Kaman Tempo, Santa Barbara, 1982.
- [68] J.E. Schoutens, "Laser radiation interaction with metal matrix composite materials," Proc. Tri-Service Workshop on Dynamic Mechanical Properties, Characterization and Processing of Lightweight Metal Matrix Composites, Leesburg, VA, 1984.
- [69] J.E. Schoutens, "MMC materials properties data: Status, problems and prospects," Proc. Tri-Service Workshop on Dynamic Mechanical Properties, Characterization and Processing of Lightweight Metal Matrix Composites, Leesburg, VA, 1984.
- [70] J.E. Schoutens, "Designing with metal matrix composites: When, where, and how!" Publ. DOD Metal Matrix Composites Information Analysis Center, Kaman Tempo, Santa Barbara, 1986.
- [71] S.R. Soni and N.J. Pagano, "Elastic response of composite laminates," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 227-242.
- [72] W.J. Stroud, "Optimization of composite structures," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 307-322.
- [73] Y. Takao, "Thermal expansion coefficients of misoriented short-fiber reinforced composites," in Recent Advances in Composites in the United States and Japan, J.R. Vinson and M. Taya, eds., ASTM Publ., Philadelphia, 1985, pp. 685-699.

[74] Y. Takao, T.W. Chou, and M. Taya, "Effective longitudinal Young's modulus of misoriented short fiber composites," J. Appl. Mech., vol. 49(1982), pp. 536-540.

- [75] Y. Takao and M. Taya, "The effect of variable fiber aspect ratio on the stiffness and thermal expansion coefficients of a short fiber composite," J. Comp. Mat., vol. 21(1987), pp. 140-157.
- [76] Y. Termonia, "Computer model for the elastic properties of short fibre and particulate filled polymers," J. Materials Sci., vol. 22(1987), pp. 1733-1737.
- [77] T.C.T. Ting, "Dynamic response of composites," Applied Mech. Reviews, vol. 33(1980), pp. 1629-1635.
- [78] S.W. Tsai and H.T. Hahn, Introduction to Composite Materials, Technomic Publ. Westport, Conn., 1981.
- [79] J.R. Vinson and M. Taya, eds., Recent Advances in Composites in the United States and Japan, ASTM Publ., Philadelphia, 1985.
- [80] S.S. Wang, "Fracture mechanics for delamination problems in composite materials," in Mechanics of Material Behavior, The Daniel C. Drucker Anniversary Volume, Elsevier, New York, 1984, pp. 369-382.
- [81] J. Willis, "Variational characterization of waves in fibre reinforced materials," in Mechanics of Composite Materials: Recent Advances, Z. Hashin and C.T. Herakovich, eds., Pergamon Press, New York, 1983, pp. 191-206.
- [82] D.W. Wilson and J.R. Vinson, "Viscoelastic buckling analysis of laminated composite columns," in *Recent Advances in Composites in the United States and Japan*, J.R. Vinson and M. Taya, eds., ASTM Publ., Philadelphia, 1985, pp.
- [83] C. Zweden, "Advanced composites: A revolution for the designer," AIAA 50th Aniversary Meeting, "Learn from the Masters Series," 1981.

Listing 1: Computation of Effective Moduli

```
RUN COMACH
 GENERIC NAME :
7)
1518 ?
                      ISOTROPIC CIRCULAR FIBER)
                     ISOTROPIC CIRCULAR FIBER)
ORTHOTROPIC CIRCULAR FIBER)
ISOTROPIC KIDNEY FIBER)
ORTHOTROPIC KIDNEY FIBER)
ISOTROPIC STAGGERED FIBER)
ORTHOTROPIC STAGGERED FIBER)
HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBER)
                        1 PROVIDE THE SIDE RATIO ( SIDE_//_Y / SIDE_//_X )
AND THE RESIN RATIO
2 PROVIDE THE SIDE RATIO , THE RESIN RATIO,
BDIST ( MESH DENSITY PARAMETER )
IOPT = ?
SIDE RATIO ? (REAL)
ŘESIN RATIO ? ( > 0.2348394 )
                   (YOUNG MODULUS POISSON COEFF. ISOTROPIC FIBER)
84000 ... 22
E 000 ... 34
                   (YGUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
THE FIBERS ARE PARALLEL AT
                                                    MODULI FIBER (COMPOSITE) DIRECTIONS X1, X2, X3 (COMPOSITE) SHEAR MODULI (COMPOSITE) POISSON COEFFICIENT YOUNG MODULUS POISSON COEFFICIENT OF ELEMENTS OF NODES
                        E1,E2,E3: YCUNG
GIJ: F13ER
NU(IJ): F13ER
                         NUR
                                          RESIN
                                          NUMBER
                                          NUMBÉR
                                          RESIN IMPREGNATED RATIO IN VOLUME
                       ISOTROPIC CIRCULAR FIBER.
                                                                                                4000-
                                                                                                                          176
              84000. - G12 = 34426. - Nu12 = 0.220 *
                                                                                    ER
              84000. G13 = 34426. Nu13 = 0.220 *
              84000. - G23 = 34426. - NU23 = 0.220 *
                                       HOMOGENIZED ELASTIC TENSOR
```

```
REPRODUCED
     0.4625E+05
0.5296E+04
0.5297E+04
-0.7273E-13
0.0000E+00
0.0000E+00
                                          0.5296E+04
0.1463E+05
0.4762E+04
-0.3214E-12
0.0000E+00
0.0000E+00
                                                                           0.5297E+04
0.4762E+04
0.1468E+05
-0.8976E-13
0.0000E+00
0.0000E+00
                                                                                                             -0.7273E-13
-0.3214E-12
-0.8976E-13
0.3113E+04
0.0000E+00
                                                                                                                                                    0.C000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.4077E+04
0.9916E-04
                                                                                                                                                                                       0.0000E+00
                                                                                                                                                                                       0.0000E+00
0.0000E+00
0.0000E+00
0.9916E-04
0.4077E+04
                                                                                                                                                                                                                          THE GOVERNMENT
٠
                                                             HOMOGENIZED COMPLIANCE
                                                                                                                                   TENSOR
                                        -0.6283E-05
0.7786E-04
-0.2299E-04
0.7228E-20
0.0000E+00
                                                                                                                                                                                      0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.5967E-11
0.2453E-03
                                                                                                              -0.2910E-21
0.7228E-20
-0.2754E-21
0.3212E-03
0.0000E+00
     0.2306E-04
-0.6263E-05
-0.6283E-05
-0.2910E-21
0.0000E+00
0.0000E+00
                                                                           33E-05
-0.6283E-05
-0.2299E-04
0.7785E-04
-0.2754E-21
0.0000E+00
                                                                                                                                                    0.0000E+00
0.0000E+00
                                                                                                                                                                                                                          をおおか
×
×
                                                                                                                                                 0.0000E+00
0.2453E-03
-0.5967E-11
                                                                                                                                                                                                                          *
                                           0.00002+00
*
                                                                                                                                                                                                                          ٠
                                0.433559D+05
                                                                                  E2
                                                                                                         0.1284410+05
                                                                                                                                                          E3
                                                                                                                                                                                 C.128445D+05
                                0.295292D+CO
                                                                                  NU12 =
         NU23 =
                                                                                                         0.272460D+00
                                                                                                                                                          NU13 =
                                                                                                                                                                                 C-272458D+00
                                0.311300D+C4
         G23
                                                                                  G12
                                                                                                         0-407657D+04
                                                                                                                                                                                  0-407662D+04
                                                                                                                                                          G13
```

ROTATION 45 DEGREES AROUND X1

```
HOMCGENI ZED
                               2 2
-0.6283E-05
0.1077E-03
-0.5268E-04
-0.1203E-08
0.0000E+00
0.00002+00
                                                          -0.6283E-05
-0.5288E-04
-0.5288E-03
-0.1208E-03
-0.0000E+00
                                                                                    2 3
0.6650E-10
-0.1208E-08
-0.1208E-08
0.2017E-03
0.0000E+00
                                                                                                                  0.0000E+00
                                                                                                                                             C.0000E+00
     0.2306E-04
-0.6283E-05
-0.6283E-05
0.6650E-10
0.0000E+00
                                                                                                                0.0000E+00
0.0000E+00
0.0000E+00
0.2453E-03
-0.1574E-08
                                                                                                                                            0.0000E+00
0.0000E+00
0.0000E+00
0.1574E-08
0.2453E-03
                                                               E2
        E1
                         0-4336590+05
                                                                                 0.928151D+U4
                                                                                                                      E3
                                                                                                                                        C.928151D+04
       NU23 =
                         C.490768D+CO
                                                               NU12 =
                                                                                 0.2724590+00
                                                                                                                      NU13 =
                                                                                                                                        0-272459D+00
        623
                         0.495505D+C4
                                                                G12
                                                                                 0-407659D+04
                                                                                                                       G13
                                                                                                                                        C.407659D+04
GENERIC NAME :
```

```
REPRODUCED AT GOVERNMENT EXPENSE
                   1 ISOTROPIC CIRCULAR FIBER)
2 ORTHOTROPIC CIRCULAR FIBER)
3 ISOTROPIC KIDNEY FIBER)
4 ORTHOTROPIC KIDNEY FIBER)
5 ISOTROPIC STAGGERED FIBER)
6 ORTHOTROPIC STAGGERED FIPER)
7 HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
8 HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBER)
IFIB ?
                   IF = 1 PROVIDE THE SIDE RATIO ( SIDE_//_Y / SIDE
AND THE RESIN RATIO
IF = 2 PROVIDE THE SIDE RATIO / THE RESIN RATIO /
HDIST ( MESH DENSITY PARAMETER )
                                                                               SIDE_//_Y / SIDE_//_X )
\overline{IOPT} = ?
SIDE RATIC ? (REAL)
ŘESIN RATIO ? ( > 0.2348894 )
E1 , E2 , E3 = ? (ORTHOTROPIC FIBERS // A X1)
38000. 14500. 14500.
612 , G13 , G23 = ? (GRTHOTROPIC FIBERS // A X1)
38000. 38000. 20000.
NU12 , NU13 , NU23 = ? (ORTHOTROPIC FIBERS // A X1)
.22 .22 .25
E , NU = ? (YOUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
Ē1
E NU = 3520. .38
THE FIBERS
                    ARE PARALLEL AT
                                                         MODULI FIBER (COMPOSITE) DIRECTIONS X1, X2, X3 (COMPOSITE) SHEAR MODULI (COMPOSITE) POISSON COEFFICIENT YOUNG MODULUS POISSON COEFFICIENT
                           E1, E2, E3:
                                             YCUNG
NOTATIONS
                                              FIBER
                           (LI)UN
                                              FIBER
                                              RESIN
                           ER
                                                          POISSON CO
OF ELEMENTS
OF NODES
                           NUR
                                              RESIN
                                             NUMBER
NUMBER
                           NEL
                           NOE
                                                        IMPREGNATED RATIO IN VOLUME
                               ORTHOTROPIC CIRCULAR FIEER
                                                                                     *ISOTROPIC RESIN*
                                                                                                                           MESH
    E1 = 380000. G12 = 38000. NU12 = 0.220 *
                                                                                                                                     176
                                                                                                                      NOE =
               14500. -613 = 33000. -Nu13 = 0.220 *
                                                                                                                                    105
               14500. . G23 = 20000. . NU23 = 0.250 *
                                                                                           NUR =
                                                                                                        0.380 \times TXR =
                                          HOMOGENIZED ELASTIC TENSOR
                                                                                                      13
                                                         3 3
                                   2 2
                                                                                2 3
```

```
REPROQUEED AT GOVERNMENT EXPENSE *
                                                                                    0.4126E+04
0.4199E+04
0.9684E+04
0.2809E-13
0.0000E+00
0.0000E+00
        0.1912E+06
0.4126E+04
0.4126E+04
0.2165E-14
0.0000E+00
0.0000E+00
                                              0.4126E+04
0.9683E+04
0.4199E+04
0.3317E-13
0.0000E+00
0.0000E+00
                                                                                                                       -0.2165E-14
0.3317E-13
-0.2809E-13
0.2600E+04
0.0000E+00
0.0000E+00
                                                                                                                                                                                                      0.0000E+00
                                                                                                                                                                 0.0000E+00
                                                                                                                                                                0.0000E+00
0.0000E+00
0.0000E+00
0.3570E+04
0.1208E-02
                                                                                                                                                                                                      0.0000E+00
0.0000E+00
0.0000E+00
0.1208E-02
0.3570E+04
*
*
                                                                   HOMOGENIZED COMPLIANCE
                                           2 2
-0.1575E-05
0.1277E-03
-0.5469E-04
-0.2221E-20
0.0000E+00
0.0000E+00
                                                                                    3 3
0 1575E-05
0 5469E-04
0 1277E-03
0 2076E-20
0 0000E+00
                                                                                                                         2 3
0.7495E-23
-0.2221E-20
0.2076E-20
0.3847E-03
0.6000E+00
0.6000E+00
       0.5299E-05
-0.1575E-05
-0.1575E-05
0.7495E-23
0.0000E+00
                                                                                                                                                                0.000E+00
0.000E+00
0.000E+00
0.0000E+00
0.2801E-03
                                                                                                                                                                                                      0.0000 +00
                                                                                                                                                                                                      0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.9472E-10
0.2801E-03
×
                                                                                                                                                                                                                                            *
*
                                                                                                                                                                                                                                            •
          E1
                                   0.18871 OD+06
                                                                                         E2
                                                                                                                  0.7833490+04
                                                                                                                                                                       E3
                                                                                                                                                                                                0.7833750+04
          NU23 =
                                   0.42838 6D+CD
                                                                                         NU12 =
                                                                                                                  0.297201D+JO
                                                                                                                                                                       NU13 =
                                                                                                                                                                                                C.297186D+00
          G23
                                   0.259357D+C4
                                                                                         G12
                                                                                                                  0-357042D+04
                                                                                                                                                                       613
                                                                                                                                                                                                C.357046D+04
                                                                         ROTATION 45 DEGREES
                                                                                                                                           AROUND
                                                                         COMPLIANCE
                                                                                                              TENSOR
                                HOMOGENIZED
                                                                                                                                        (BISECTING DIRECTIONS)
                                                         2 2 - 05
575E - 05
327E - 03
969E - 04
108E - 05
000E + 00
      0.5299E-05
-0.1575E-05
-0.1575E-C5
0.8287E-10
0.0000E+00
0.0000E+00
                                                                                                                       0.8287E-10
-0.2108E-08
-0.2108E-08
0.3647E-03
0.0000E+00
0.0000E+00
                                                                                                                                                                                                     1 2
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.1869E-08
0.2801E-03
                                                                                  -0.1575E-05
-0.5969E-03
-0.1327E-03
-0.2108E-03
0.0000E+00
                                                                                                                                                                0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.2801E-03
                                            -0.1
-0.5
-0.2
-0.0
                                                                                                                                                                                                                                            ×
                                                                                                                                                                                                                                            *
                                                                                                                                                                                                                                            •
```

0.753840D+04

0-297193D+00

0-357044D+04

NU12 =

G12

E3

NU13

613

0.753840D+04

0.2971930+00

C.357044D+04

GENERIC NAME:

0.13871 00+06

0.4499340+00

0-2742110+04

E1

NU23 =

```
REPRODUCED AT GOVERNMENT EXPENSE
                             ISOTROPIC CIRCULAR FIBER)
ORTHOTROPIC CIRCULAR FIBER)
ISOTROPIC KIDNEY FIBER)
ORTHOTROPIC KIDNEY FIBER)
ISOTROPIC STAGGERED FIBER)
ORTHOTROPIC STAGGERED FIEER)
HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBE
IFIB ?
                    I
                    z
                    =
                                                                                         KIDNEY FIBER)
3
10PT ?
                                                                        IMPREGNATED IMPREGNATED MESH DENSITY
                                                    RATIO
RATIO
HDIST
                                                                                                      RESIN
RESIN
FARAMETER )
                             2
                                  PROVIDE PROVIDE
IOPT = ?
ŘATIO =
                     ( TXMIN
                                        = 0.3545 )
84000 - 22
E , NU = ?
4000 - 34
                         CYCUNG
                                        MODULUS POISSON COEFF. ISOTROPIC FIBER)
                         (YOUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
THE FIBERS
                           ARE
                                     PARALLEL AT
                                                      YCUNG
FIBER
FIBER
RESIN
RESIN
                                £1, E2, E3:
GIJ
NU(IJ)
                                                                      MODULI FIBER (COMPOSITE) DIRECTIONS X1, X2, X3
COMPOSITE) SHEAR MODULI
COMPOSITE) FOISSON COEFFICIENT
YOUNG MODULUS
NOTATIONS
                                ER
                                                                  POISSON COEFFICIENT
R OF ELEMENTS
R OF NODES
IMPREGNATED RATIO IN VOLUME
                                NUR
                                                      NUMBER
NUMBER
                                NEL
                                                       RESIN
                     ISOTROPIC KIDNEY (0.29) FIBER
                                                                                                       *ISOTROPIC RESIN*
                                                                                                                                                    MESH
                   84000.
                                       612 = 34426.
                                                                       NU12 =
                                                                                                                             40G0.
                                                                                                                                                                310
                  84000. .
                                       G13 = 34426. . Nu13 = 0.220 *
                                                                                                                                               NOE =
                                                                                                                                                               172
                                       G23 = 34426.
                                                                                       0.220 *
                                                                                                             NUR =
                                                  HOMOGENIZED ELASTIC
                                                             3 3
0.5663E+04
0.6551E+04
0.1463E+05
0.9122E+03
0.0000E+00
0.COCOE+00
                                  0.5663E+04
0.1463E+05
0.6551E+04
0.9122E+03
0.00C0E+00
0.0000E+00
                                                                                        0.3834E+03
0.9122E+03
0.9122E+03
0.4503E+04
0.0000E+00
                                                                                                                    0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.4965E+04
0.1195E+04
                                                                                                                                               0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.1195E+04
0.4965E+04
            11
       0.4673E+05
0.5663E+04
0.5663E+04
0.3834E+03
0.0000E+00
0.0000E+00
                                                                                                                                                                           *
                                                                                                                                                                           *
                                                                                                                                                                           *
                                                                                                                                                                           ×
                                                                                         Ŏ. ŎŎŎŎĔ+ŎŎ
```

•••

```
REPRODUCED AT
                                                     HOMOGENIZED COMPLIANCE
                                                                                                                TENSOR
                                                                                               2 3
0.5396E-06
-0.9878E-05
-0.9877E-03
0.2260E-03
0.0000E+00
                                                                                                                                                             0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.5146E-04
0.2138E-03
                                   -0.6141E-05
0.8754E-04
-0.3620E-04
-0.9878E-05
0.0000E+00
                                                                                                                            0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.2138E-03
-0.5146E-04
     0.2288E-04
-0.6141E-05
-0.6141E-05
0.5396E-06
0.0000E+00
0.0000E+00
                                                                 -0.6141E-05
-0.3020E-04
-0.8754E-04
-0.9877E-05
0.0000E+00
*
                                                                                                                                                                                            PARAMETER SE
*
×
                                      0.000E+00
                                                                                                  0-0000E+00
                                                                                                                                                                                            EXPENSE
                                                                         ORTHOTROPY AXIS
                          ********
                          HOMOGENIZED
                                                      COMPLIANCE
                                                                                       TENSOR
                                                                                                            (BISECTING DIRECTIONS)
                                   -0.5871E-05
0.7230E-04
-0.3083E-04
0.3689E-10
0.000E+00
                                                                 3 3
-0.6411E-05
-0.3083E-04
-0.4395E-10
-0.4395E-10
0.0000E+00
                                                                                                                       1 3
2 0.0000E+00
0 0.0000E+00
0 0.0000E+00
3 0.0000E+00
0 0.2652E-03
0 -0.3174E-10
                                                                                               2 3
0.1930E-12
0.3689E-10
-0.4395E-10
0.2475E-03
0.0000E+00
     0.2263E-04
-0.5671E-05
-0.6411E-05
0.1930E-12
0.0000E+00
0.0000E+00
                                                                                                                                                             0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.3174E-10
0.1623E-03
                                                                                                                                                                                            *
                                                                                                                                                                                            *
 *
                                                                                                                                                                                            ×
                                                                                                                                                                                            ×
 ×
                                                                                                                                                                                            ×
 *
                                              ODDE+DO
        E1
                            0-4369860+05
                                                                       E2
                                                                                           0.138318D+05
                                                                                                                                     E 3
                                                                                                                                                         C.108634D+05
                                                                                                                                                                                            ×
        NJ23 =
                            U-426484D+CO
                                                                      NU12 =
                                                                                          0-256556D+00
                                                                                                                                     NU13 =
                                                                                                                                                         C-280135D+00
                                                                                                                                                                                            *
                                                                                                                                                                                            ×
                             0-404050D+04
                                                                       G12
                                                                                           0.016080D+04
                                                                                                                                                         0.3770190+04
                                                                                                                                     G13
                                                                                                                                                                                            *
   GENERIC NAME :
T4
IFIB
                                 ISOTROPIC CIRCULAR FIEER)
ORTHOTROPIC CIRCULAR FIBER)
ISOTROPIC KIDNEY FIBER)
CRTHOTROPIC KIDNEY FIBER)
ISOTROPIC STAGGERED FIBER)
CRTHOTROPIC STAGGERED FIBER)
HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBER)
                       =
 TOPT ?
                                                          RATIO
RATIO
                                                                                IMPREGNATED IMPREGNATED
                                                                                                                 RESIN
                                      PROVIDE
                                                                                                                 PARAMETER )
                                                           HDIST
                                                                                 MESH DENSITY
 IOPT = ?
 RATIO = ? (TXMIN = 0.3545)
```

- 5

```
REPRODUCED
= ? (ORTHOTROPIC FIBERS // A X1)
                                                                                                                                        AT GOVERNMENT EXPE
                   (YOUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
E NU =
3520. .38
THE FIBERS ARE PARALLEL AT X1
                                                     MODULI FIBER (COMPOSITE) DIRECTIONS X1,X2,X (COMPOSITE) SHEAR MODULI (COMPOSITE) POISSON COEFFICIENT YOUNG MODULUS
                         E1,E2,E3:
GIJ ::
NU(IJ) ::
                                           YOUNG
NOTATIONS
                                           FIBER
                                           FIBER
                                           RESIN
RESIN
NUMBER
                         ER
NUR
                                                        POISSON CO
OF ELEMENTS
OF NODES
                                                                       COEFFICIENT
                         NEL
                          NOE
                                            NUMBER
                                            RESIN IMPREGNATED RATIO IN VOLUME
                             FIBER (0.29) CRTHOTROPIC
                                                                                 *ISOTROPIC RESIN*
             380000-
                             G12 =
                                                                                                                              310
                                         34000. NU12 = 0.220 *
               14500. - G13 = 38000. - NU13 = 0.220 *
                                                                                                                              172
    E2 =
                                                                                       NUR =
                          \bullet 623 = 20000.
                                        HOMOGENIZED ELASTIC
                                                                             TENSOR
                           0-1927E+06
0-4129E+04
0-4129E+04
0-1017E+02
0-0000E+00
                                                                                                                  0.0000E+00
                                                                                            0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.4438E+04
0.1145E+04
                                                                                                                  0.000E+00
0.0000E+00
0.0000E+00
0.1145E+04
0.4438E+04
 *
 *
      Ŏ.ŐŎŎŎŎĒ+ŎŎ
                            0.00002+00
                                                 0.00006+00
                                                                       0.0000E+00
                                       HOMOGENIZED COMPLIANCE
                         22

-0.1553E-05 -0.1553E-05 0.1517E-06 0.

0.1390E-03 -0.6651E-04 -0.3888E-05 0.

-0.6651E-04 0.1390E-03 -0.3888E-05 0.

-0.3888E-05 -0.3888E-05 0.2532E-03 0.

0.0000E+03 0.0000E+00 0.0000E+00 0.

0.0000E+00 0.0300E+00 0.0000E+00 -0.
    0.5256E-05
-0.1553E-05
-0.1553E-05
0.1517E-06
0.0000E+00
                                                                                                                0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
-0.6225E-04
0.2414E-03
                                                                                            0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.2414E-03
0.6225E-04
                                                                                                                                        ×
 *
                                                                                                                                        *
                                                                                                                                        ×
                                                                                                                                        •
                                                                                                                                        ŧ
       0.000E+00
```

```
CRTHOTROPY AXIS
                     ************
                                           COMPLIANCE
                   HOMOGENIZED
                                                                   TENSOR
                                                                                    (BISECTING DIRECTIONS)
                           2 2
-0.1477E-05
0.1032E-03
-0.3458E-04
-0.1007E-12
0.0000E+00
0.0000E+00
   0.5256E-05
-0.1477E-05
-0.1628E-05
-0.1109E-15
0.0000E+00
0.0000E+00
                                                                         2 3
-0.1109E-15
-0.1007E-12
0.1064E-12
0.4110E-03
0.0000E+00
0.0000E+00
                                                                                                                    1 2
00 0.0000E+00
00 0.0000E+00
00 0.0000E+00
00 0.0000E+00
03 0.4099E-12
0.1791E-03
                                                  3 3
-0.1628E-05
-0.3458E-04
0.1109E-03
0.1064E-12
0.0000E+00
                                                                                                   1 3
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.3036E-03
0.4099E-12
      E1
                      0.190243D+06
                                                       E2
                                                                      0-969418D+04
                                                                                                                       C.901470D+04
                                                                                                       E3
      NU23 =
                      0.335190D+00
                                                       NU12 =
                                                                      0.2809520+00
                                                                                                       NU13 =
                                                                                                                      0.3098030+00
      G23
                      0.2433370+04
                                                       G12
                                                                      0.558297D+04
                                                                                                       G13
                                                                                                                       0.3293520+04
GENERIC NAME :
15
1F1B 2 ( = 1 13
                         ISOTROPIC CIRCULAR FIBER)
CRTHOTROPIC CIRCULAR FIBER)
ISOTROPIC KIDNEY FIBER)
ORTHOTROPIC KIDNEY FIBER)
ISOTROPIC STAGGERED FIBER)
CKTHOTROPIC STAGGERED FIBER)
HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBER)
SIOPT ? (IF = 1 PROVIDE
                                                LENGTH RATIO
RESIN INTEGRATED RATIO
                                                 L , RATIO AND HDIST : DENSITY MESH PARAMETER )
              (IF = 2 PRC VIDE
  ?
• 73
RATIO
           ? ( >0.199 )
84000.
NU
        NU = ?
                     (YGUNG MODULUS POISSON COEFF. ISOTROPIC FIRER)
            = 22
4000 NU
                      (YOUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
THE FIBERS
                        ARE
                                 PARALLEL AT
```

REURODUCED

AT GOVER

EXPENSE

*

```
(COMPOSITE) DIRECTIONS X1,X2,X3 REPRODUCE STEERS OF COEFFICIENT STICLENT
NOTATIONS
                         E1, E2, E3:
                                            YCUNG
                                                         MODULI
                                                                       FIBER
                         GIJ
                                            FIBER
                                                          COMPOSITE
                                                         COMPOSITE
                         NŪ(IJ)
                                            FIBER
                                            RESIN
                         ER
                                                                     MODULUS
                                                        POISSON CO
OF ELEMENTS
OF NODES
                         ÑÜR
                                            RESIN
                                                                        COEFFICIENT
                         NEL
                                            NUMBER
NUMBER
                                                                                                                                         AT GOVERNMENT EXPENSE

★ ★ ★ ★
                                            RESIN IMPREGNATED RATIO IN VOLUME
       STAGGERED CIRCLE FIBER(1.73)
                                                            ISOTROPIC
                                                                                   *ISOTROPIC
                               G12 =
                                                                                                     40CO.
                               613 = 34426.
   E2 =
              84000-
                                                          NU13 ≈ 0.220 *
                                                                                                                   NOE =
                                                                                                                                135
                                                                                                                                         ×
  E3 =
              84000-
                               G23 = 34426.
                                                                                                                             -5129
                                                          NU23 = 0.220 *
                                                                                        NUR =
                                                                                                     0.340 \star TXR =
                                        HOMOGENIZED ELASTIC
                                                                               TENSOR
                           0.5246E+04
0.1352E+05
0.5675E+04
0.1687E-10
                                                 G.5259E+04
G.5675E+04
G.1359E+05
G.2499E-12
G.6000E+00
                                                                     -0.8083E-13
-0.1687E-12
-0.2499E-12
0.3883E+04
0.0000E+00
0.0000E+00
                                                                                             0.000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.4005E+04
0.5464E-03
   0.4586E+05
0.5246E+04
0.5259E+04
-0.8083E-13
0.0000E+00
                                                                                                                   0.0000E+00
0.0000E+00
                                                                                                                                         *
                                                                                                                   0.0000E+00
0.5464E-03
                                                                                                                                         ٠
     0.0000E+00
                           0.00CDE+00
                                                  0.00005+00
                                                                                                                   0.4016E+04
                                       HOMOGENIZED COMPLIANCE
                                                                                  TENSCR
                                               3 3
-0.6343E-05
-0.3572E-04
0.9098E-04
0.4172E-20
0.000E+00
0.000E+00
                           2 2
0.6359E-05
0.9140E-04
0.3572E-04
0.1539E-20
0.000E+00
   0.2326E-04
-0.6359E-05
-0.6348E-05
-0.2005E-21
0.0000E+00
                                                                       0.2005E-21
0.1539E-20
0.4172E-20
0.2576E-03
0.0000E+00
0.0000E+00
                                                                                             0.C000E+00
                                                                                                                   0.0000E+00
                                                                                             o.goooē+ŏŏ
                                                                                                                   0.0000E+00
                                                                                             0.0000E+00
                                                                                                                                         *
                                                                                             0.0000E+00
0.2497E-03
0.3397E-10
                                                                                                                  0.0000E+00
-0.3397E-10
0.2490E-03
      0.0000E+00
                           0.0000E+00
      E1
                    0.4299070+05
                                                                  0.1094140+05
                                                                                                 E3
                                                                                                                C.109914D+05
      NU23 =
                    0.3907760+00
                                                    NU12 =
                                                                  0.2733860+00
                                                                                                 KU13 =
                                                                                                                C-272890D+00
      G23
                    0.388259D+04
                                                    G12
                                                                  J.401618D+04
                                                                                                 613
                                                                                                                0.4004900+04
```

1

ROTATION 45 DEGREES AROUND X1

```
(BISECTING DIRECTIONS)
                         HOMOGENIZED
                                                                                        TENSOR
                                  22
-0.6353E-05
0.9213E-04
-0.3065E-04
-0.2076E-06
0.0000E+00
    0.2326E-04
-0.6353E-05
-0.6353E-05
0.1152E-07
0.0000E+00
0.0000E+00
                                                                                               2 3
0.1152E-07
-0.2076E-06
-0.2076E-06
0.2538E-03
0.0000E+03
0.0000E+03
                                                                 3 3 -0 -6353E-05
-0 -3665E-04
0 -9213E-04
-0 -2076E-06
0 -0000E+00
0 -0000E+00
                                                                                                                                0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.2493E-03
                                                                                                                                                               0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.3508E-06
0.2493E-03
                            0.429907D+C5
                                                                                           0-1085460+05
        E1
                                                                       E2
                                                                                                                                                          0.108546D+05
        NU23 =
                            0.397361D+CO
                                                                       NU12 =
                                                                                           0-273138D+00
                                                                                                                                      NU13 =
                                                                                                                                                          0.273138D+00
                            C.3940000+04
                                                                                           0.4010530+04
                                                                                                                                                          0.401053D+04
  GENERIC NAME :
ŢĞ
                                ISOTROPIC CIRCULAR FIBER)
CRTHOTROPIC CIRCULAR FIBER)
ISOTROPIC KIDNEY FIBER)
ORTHOTROPIC KIDNEY FIBER)
ISOTROPIC STAGGERED FIBER)
GRTHOTROPIC STAGGERED FIBER)
HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBER)
IFIB
IOPT ?
                                                               LENGTH RATIO
RESIN INTEGRATED RATIO
                          = 1 PROVIDE
                (IF
                                                                L / RATIO AND HDIST : DENSITY MESH PARAMETER )
                  (IF = 2)
                                     PROVIDE
2
 RATIO ? ( >0.342 )
HDIST ? ( < 0.15)
E1 , E2 , E3 = ? (ORTHOTROPIC FIBERS // A X1)
380000. 14500. 14500.
G12 , G13 , G25 = ? (ORTHOTROPIC FIBERS // A X1)
38000. 38000. 20000.
NU12 , NU13 , NU23 = ? (ORTHOTROPIC FIBERS // A X1)
.22 .22 .25
E , NU = ? (YOUNG MODULUS POISSON COEFF. ISOTEOPIC
3520. 38
Ĕ , N
3520.
                            (YOUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
```

THE FIBERS ARE PARALLEL AT X1

```
FIBER (COMPOSITE) DIRECTIONS X1,X2,X8
                                                             MODULI FIBER (COMPOSITE )
YOUNG MODULUS
NOTATIONS
                           E1, £2, E3:
                                               YCUNG
                           GIJ
                                                FIBER
                                               FIBER
RESIN
RESIN
                           NU(IJ)
                                                                                         POISSON COEFFICIENT
                           ER
NUR
                                                                                                                                                    GOVERNMENT
                                                             POÍSSON
                                                                             COEFFICIENT
                                               NUMBER
NUMBER
RESIN
                                                             OF
OF
                                                                 ELEMENTS
NODES
                            NEL
                           NOE
                                                           IMPREGNATED RATIO IN VOLUME
                            TXR
                                                                                                                                                    EXPENSE
      STAGGERED CIRCLE FIBER(1.00) ORTHOTROPIC
                                                                                         *ISOTROPIC RESIN*
                                                                                                                              MAILLAGE
             380000-
                                 G12 =
                                            38000.
                                                               NU12 =
                                                                             0.220 *
                                                                                               ΕR
                                                                                                             3520.
    E2 =
                14500-
                                 613 = 38000.
                                                              Nu13 =
                                                                             0.220
                                                                                                                                          233
                                                                                                                           NOE =
                                 G23 =
                                            20000.
                                                           NU23
                                                                             0.250 *
                                                                                               NUR =
                                                                                                            0.380 *
                                                                                                                           TXR = .5083
                                            HOMOGENIZED ELASTIC
                                                                                     TENSOR
                                                   3 3
0.4126E+04
0.4751E+04
0.9132E+04
-0.6529E-14
0.0000E+00
G.COOOE+00
                              0.4126E+04
0.9131E+04
0.4751E+04
0.3713E-13
0.0000E+00
0.0000E+00
                                                                           2 3
0.1870E-13
0.3713E-13
-0.6529E-14
0.4125E+04
0.0000E+00
                                                                                                    0.G000E+00
0.C000E+00
0.C000E+00
0.G000E+00
0.3562E+04
0.1212E-03
                                                                                                                            1 2
0.0000E+00
      0-1911E+06

0-4126E+04

0-4126E+04

0-1570E-13

0-0000E+00

0-0000E+00
                                                                                                                            0.0000E+00
0.0000E+00
0.0000E+00
0.1212E-03
0.3562E+04
                                                                                                                                                    *
*
                                                                                                                                                    *
×
                                          HOMOGENIZED COMPLIANCE
                           2 2
-0.1575E-05
0.1506E-03
-0.7765E-04
-0.1472E-20
0.0309E+00
0.0309E+00
   0.5300E-05
-0.1575E-05
-0.1575E-05
-0.1575E-22
0.0000E+00
                                                                                                     0.C000E+00
                                                                                                                            0.0000E+00
                                                                           -0.1235E-22
-0.1472E-20
0.9445E-21
0.2424E-03
0.0000E+00
0.0000E+00
                                                   -0.1575E-05
                                                   -0.7765E-04
-0.7765E-03
-0.445E-21
-0.6000E+00
                                                                                                  0.0000E+00
0.0000E+00
0.0000E+00
0.2807E-03
-0.9550E-11
                                                                                                                          0.0000E+00
0.0000E+60
0.0000E+00
-0.9550E-11
0.2807E-03
                                                                                                                                                    *
                                                                                                                                                    *
                                                                                                                                                    *
      0.000E+00
                                                                                                                                                    *
      E1
                      0.188674D+D6
                                                                                                                         C.663952D+04
                                                        E 2
                                                                       0.663E94D+04
                                                                                                         E3
                                                                                                                                                    ٠
      NU23 =
                      0.5155220+00
                                                        NU12 =
                                                                       0.297217D+00
                                                                                                         NU13 =
                                                                                                                        0.2971690+00
      G23
                      0.4125100+04
                                                        612
                                                                       0.3561950+04
                                                                                                         G13
                                                                                                                         C.356230D+04
```

```
REPRODUCED
                                               ROTATION 45 DEGREES AROUND
                                                                                                                                                        2
                                                                                                                                                       GOVERNMENT EXPENSE
                                                                                       (BISECTING DIRECTIONS)
                                               COMPLIANCE
                                                                       TENSOR
                     HOMOGENIZED
                                                                                                                                                      *
                             -0.1575E-05

0.9709E-04

-0.2412E-04

-0.6483E-08

0.0000E+00

0.0000E+00
    0.5300E-05
-0.1575E-05
-0.1575E-05
0.2549E-09
0.0000E+00
                                                    -0.1575E-05
-0.2412E-04
-0.9709E-04
-0.6483E-08
0.0000E+00
                                                                             0.2549E-09
-0.6483E-08
-0.6483E-08
0.4565E-03
0.0000E+00
0.0000E+00
                                                                                                    0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.2807E-03
-0.1381E-07
                                                                                                                             0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
-0.1381E-07
0.2807E-03
 ×
                                                                                                                                                       ٠
       E1
                       0.168674D+C6
                                                          E2
                                                                         0.1029980+35
                                                                                                            E3
                                                                                                                            0.102998D+05
                                                                                                                                                        *
                                                                                                                            0.2971930+00
       Nu23 =
                       0-248435D+00
                                                          NU12 =
                                                                         0.297193D+00
                                                                                                           NU13 =
                       0.219038D+C4
                                                          G12
                                                                         0.356213D+J4
                                                                                                            G13
                                                                                                                           0.356213D+04
GENERIC NAME:
 ********
 İFIB
                           ISOTROPIC CIRCULAR FIBER)
                           CRTHOTROPIC CIRCULAR FIBER)
CRTHOTROPIC KIDNEY FIBER)
ISOTROPIC KIDNEY FIBER)
CRTHOTROPIC KIDNEY FIBER)
ISOTROPIC STAGGERED FIBER)
ORTHOTROPIC STAGGERED FIBER)
HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBE
                   =
                                                        ORTHOTROPIC KIDNEY FIBER)
                     ( TXMIN = 0.3961 
 RATIO =
               ?
 (YOUNG MODULUS POISSON COEFF. ISOTROPIC FIEER)
                        (YOUNG
                                     MODULUS POISSON COEFF. ISOTROPIC RESIN)
 THE FIBERS
                         ARÉ
                                   PARALLEL AT X1
                                                             MODULI FIBER ( COMPOSITE ) ( COMPOSITE )
                                                                                           (COMPOSITE) DIRECTIONS X1,X2,X3 SHEAR MCDULI POISSON COEFFICIENT
 NOTATIONS
                             E1, E2, E3:
                                                 YOUNG
                             GIJ
                                                 FIBER
                             NU(IJ)
                                                 FIBER
                                                               YOUNG MODULUS
POISSON COEFFICIENT
OF ELEMENTS
OF NODES
MEDOFGNATED RATIO IN
                                                 RESIN YOUNG MODULUS
RESIN POISSON COEFFICIENT
NUMBER OF ELEMENTS
NUMBER OF NODES
RESIN IMPREGNATED RATIO IN VOLUME
                             ĒR
NUR
                             NEL
                             NOE
                              TXR
```

```
REPRODUCED
     HEXAGONAL
                           CELL
                                        FIBER
                                                        ISOTROPIC KIDNEY *ISOTROPIC RESIN*
                                                                                                                                 MESH
                                                                                                                                                     AL GOVERNMENT EXPENS
               84000. - 612 = 34426.
                                                          - Nu12 = 0.220 *
                                                                                               ER
                                                                                                             4000-
                                                                                                                            NEL
                                                          . NU13 = 0.220 *
   E2 =
                84000-
                                 G13 = 34426.
                                                                                                                            NOE =
                                                                                                                                           274
                                                                                                NUR =
                                            HOMOGENIZED ELASTIC
                                                                                     TENSOR
                             0.5548E+04
0.1449E+05
0.6149E+04
0.6650E-04
0.0000E+00
                                          E+04 0.5545E+04 0.3
E+05 0.6149E+04 0.6
E+04 0.1449E+05 0.9
E-04 0.9453E-04 0.4
E+00 0.0000E+00 0.0
                                                                             2 3
0.3217E-04
0.6630E-04
0.9458E-04
0.4170E+04
0.0000E+00
     1 1
0.4630E+05
0.5548E+04
0.5548E+04
0.3217E-04
0.0000E+00
                                                                                                     0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.4507E+04
0.1544E-02
                                                                                                                             1 2
0.0000E+00
0.0000E+00
                                                                                                                             0.0000E+00
                                                                                                                                                     *
                                                                                                                             0.0000E+00
*
                                                                                                                                                     ×
                                                                                                                             0.1544E-02
0.4507E+04
      U_0000E+00
                              0.0003E+00
                                                      0.0000E+00
                                                                              0.0000E+00
                                          HOMOGENIZED COMPLIANCE
                                                                                          TENSCR
                                          3 3 2

E-05 -0.6207E-05 0.61

E-04 -0.3406E-04 -0.54

E-04 0.6565E-04 -0.13

E-12 -0.1353E-11 0.23

E+00 0.000E+00 0.00

E+00 0.000E+00 0.00
                           -0.6207E-05
0.8585E-04
-0.3406E-04
-0.5446E-12
0.000E+00
    0.2309E-04
-0.6207E-05
-0.6207E-05
0.6134E-13
                                                                                                                           1 2
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
-0.7602E-10
0.2219E-03
                                                                           0.6134E-13
-0.5446E-12
-0.135EE-11
0.2398E-03
0.0000E+00
                                                                                                     G-GOODE+00
G-0000E+00
                                                                                                   0.0000E+00
0.0000E+00
0.2219E-03
-0.7602E-10
                                                                                                                                                     *
      0.0000E+00
                              0.0300E+03
                                                                              0.00006+00
                                                                                                                                                     ٠
      E1
                      0-433152D+C5
                                                        E2
                                                                        0.1164790+05
                                                                                                          E3
                                                                                                                         0.1164790+05
      NU23 =
                      0.396722D+C0
                                                        Nu12 =
                                                                        0.2688420+00
                                                                                                          ku13 =
                                                                                                                         0.2688420+00
      G23
                      0-416972D+C4
                                                        512
                                                                        0-450693D+04
                                                                                                          G13
                                                                                                                          0.450693D+04
                                              ROTATION 45 DEGREES
                                                                                        AROUND
                                              COMPLIANCE
                    HOMOGENIZED
                                                                      TENSOR
                                                                                      (BISECTING DIRECTIONS)
            1 1
                                    2 2
                                                            3 3
                                                                                    2 3
                                                                                                           13
                                                                                                                                   1 2
```

```
EPRODUCED AT
    0.2309E-04
-0.6207E-05
-0.6207E-05
-0.4191E-13
0.0000E+00
0.0000E+00
                               -0.6207E-05
0.8565E-04
-0.3406E-04
-0.2220E-12
0.0000E+00
0.0000E+00
                                                           -0.6207E-05
-0.3406E-04
0.8585E-04
0.5913E-12
0.0000E+00
0.0000E+00
                                                                                      -0.4191E-13
-0.2220E-12
0.5913E-12
0.2398E-03
0.0000E+00
                                                                                                                    0.0000E+00
                                                                                                                                               0.0000E+00
                                                                                                                                              0.0000E+00
0.0000E+00
0.0000E+00
-0.3729E-10
                                                                                                                 0.0000E+00
0.0000E+00
0.0000E+00
0.2219E-03
-0.3729E-10
                                                                                                                                                                           COKER
       E1
                         0.433152D+05
                                                                                  0.116479D+05
                                                                E2
                                                                                                                         E3
                                                                                                                                           C.116479D+05
       NU23 =
                                                                NU12 =
                                                                                  0-268842D+00
                                                                                                                                                                           SKASK
                         0.3967220+00
                                                                                                                         NU13 =
                                                                                                                                           0-2688420+00
       G23
                         0-4169720+04
                                                                 G12
                                                                         =
                                                                                  0-450693D+04
                                                                                                                         G13
                                                                                                                                           0.4506920+04
****
  GENERIC NAME :
Έ
                             ISOTROPIC CIRCULAR FIBER)
ORTHOTROPIC CIRCULAR FIBER)
ISOTROPIC KIDNEY FIBER)
ORTHOTROPIC KIDNEY FIBER)
ISOTROPIC STAGGERED FIBER)
ORTHOTROPIC STAGGERED FIBER)
HEXAGONAL CELL ISOTROPIC KIDNEY FIBER)
HEXAGONAL CELL ORTHOTROPIC KIDNEY FIBER)
IFIE ?
                     =
RATIO =
                  ? ( TXMIN = 0.3961 )
E1 , E2 , E3 = ? (ORTHOTROPIC FIBERS // A X1)
360000. 14500. 14500.
612 , G13 , G25 = ? (ORTHOTROPIC FIBERS // A X
36000. 38000. 20000.
NU12 , NU13 , NU23 = ? (ORTHOTROPIC FIBERS //
.22 .22 .25
E , NU = ? (YOUNG MODULUS POISSON COEFF. ISOT)
3520. .38
                                                    (ORTHOTROPIC FIBERS // A X1)
                          (YOUNG MODULUS POISSON COEFF. ISOTROPIC RESIN)
 THE FIBERS
                            ARE PARALLEL AT
                                                                       MODULI FIBER (COMPOSITE) DIRECTIONS X1, X2, X3
COMPOSITE) SHEAR MCDULI
COMPOSITE) POISSON COEFFICIENT
YOUNG MODULUS
POISSON COEFFICIENT
OF ELEMENTS
OF NODES
NOTATIONS
                                 E1, E2, E3:
                                                       YOUNG
                                 GIJ
NU(1J)
                                                        FIBER
                                                        FIBER
                                                       RESIN
RESIN
                                 ER
                                 NUR
                                NEL
                                                       NUMBER
                                 NOE
                                                       NUMBER
                                                        RESIN IMPREGNATED RATIO IN VOLUME
 *HEXAGONAL
                            CELL
                                          FIBER
                                                            ORTHOTROPIC KIDNEY *ISOTROPIC RESIN*
                                                                                                                                                    MESH
```

î

```
612 = 30000.
                                                                                                3520. * NEL =
                                                                                                                            498
                                                  . NL12 = 0.220 *
                                                                                    ER
E1
         380000. .
                                                                                                                            274
E2 =
           14500. .
                          G13 = 38000. . NU13 = 0.220 *
                                                                                                              NOE =
                                                                                                0.380 *
                                                                                                                          -5089
                           G23 = 20000.
                                                      NU23 = 0.250 *
                                                                                    NUR =
                                                                                                             TXR =
E3 =
           14500.
                                                                                                                                     # ČCED
                                     HOMOGENIZED ELASTIC
                       2 2
0.4127E+04
0.9448E+04
C.4488E+04
0.7904E-05
0.0000E+00
0.0000E+00
                                                                                                                                     * ≥
  0-1909+06
                                                                  -0.2039E-05
0.7904E-05
0.2161E-04
                                                                                                                 . COOŌE+00
                                              0.4128E+04
                                                                                         0.0000E+00
                                                                                                                                     ★★★★★★
0.4127E+04
0.4128E+04
-0.2039E-05
0.0000E+00
0.0000E+00
                                              0.4128E+04
0.4488E+04
0.9477E+04
0.2161E-04
0.0000E+00
0.0000E+00
                                                                                         0.0000E+00
                                                                                                               0.0000E+00
                                                                   0.3341E+04
0.0000E+00
0.0000E+00
                                                                                         0.0000E+00
0.3980E+04
0.2958E-02
                                                                                                               0.0000E+00
                                                                                                               0.2953E-02
0.3980E+04
                                                                                                                                     * * *
                                   HOMOGENIZED COMPLIANCE
                                                                                                               0.0000E+00
                       0.1574E-05
0.1370E-03
0.6420E-04
0.9021E-13
                                                                  0.1710E-13
0.9021E-13
-0.7328E-12
0.2993E-03
0.0000E+00
0.5307E-05
-0.1574E-05
-0.1566E-05
0.1710E-13
0.0000E+00
                                            -0.1366E-05
-0.6420E-04
0.1366E-03
-0.7326E-12
0.0000E+00
0.0000E+00
                                                                                           .0000E+00
                                                                                         0.0000E+00
                                                                                                               0.0000E+00
                                                                                                               0.0000E+00
0.1867E-09
0.2513E-03
                                                                                         0.0000E+00
                                                                                             2513E-03
1867E-09
                        0.0000E+00
                                                                    0.00002+00
  0.00005+00
                        0.0000E+00
                                                                                                            C-732080D+04
                                                                                             E3
                 0.13844 OD+C6
                                                E2
                                                              0.729813D+U4
  E1
                                                                                             NU13 =
                                                                                                            C-295099D+00
                                                NU12 =
                                                              0-2966740+00
  NU23 =
                 0.4685100+00
                                                              0-397974D+04
                                                                                             G13
                                                                                                            0-3979740+04
  G23
                 0-334081D+C4
                                                G12
                                       ROTATION 45 DEGREES ARJUND
                                       COMPLIANCE
               HUMCGENIZED
                                                             TENSOR
                                                                            (BISECTING DIRECTIONS)
                              2 2
570E-05
111E-03
                                                                                                               0.0000E+00
                                             3 3 4
-0.1570E-05
-0.3653E-04
0.1111E-03
-0.2122E-06
0.000UE+00
0.0000E+00
                                                                  0.8355E-08
-0.2122E-06
-0.2122E-06
0.4020E-03
0.0000E+00
0.5307E-05
-0.1570E-05
-0.1570E-05
0.8355E-08
0.0000E+00
                      -0.1570E-05
0.1111E-03
-0.3853E-04
-0.2122E-06
0.000E+00
                                                                                          0.000E+00
0.000E+00
                                                                                                                0.0000E+00
                                                                                          g.goodē+õõ
                                                                                                                0.0000Ē+ŌŌ
                                                                                                                                     *
                                                                                       0.0000E+00
0.2513E-03
-0.1117E-10
                                                                                                               0.0000E+00
0.1117E-10
0.2513E-03
                                                                                                                                      *
                         0.0000E+00
                                                                    0.00002+00
                                                                                                             0.8997750+04
                                                                                               E3
                                                                0.8997750+04
                   0.188440D+06
                                                  E2
                                                                0.2958860+00
                                                                                               Nu13 =
                                                                                                             G.295886D+00
                   0.346643D+00
                                                  NU12 =
    NU23 =
```

0.3979740+04

G12

0.24875 OD+04

G23

0.3979730+04

613

Standard 1

Listing 2: Evaluation of Microstress Fields

COMPO

15-JUL-1987 at 12:21:55

HOMOGENIZATION LAMINATED COMPOSITE

```
STAGGERED FIBERS PARALLEL TO THE AXIS X3
```

FIBER SECTION: (X) (Y) A = 0.28209479D-03(A) (B) (X) (Y) (A) (B)
SPACING OF FIBERS: IN X = 0.1000D-02 IN Y = 0.1000D-02

NUMBER OF ELEMENTS = 104 NUMBER OF NODES = 69 RESIN RATIO = .5130

ISOTROPIC RESIN CHARACTERISTICS

YOUNG'S MODULUS = 3520.0 POISSON'S COEFFICIENT = 0.38000

ORTHOTROPIC FIBER CHARACTERISTICS

E1 = 0.380000D + 06 E2 = 0.145000D + 05 E3 = 0.145000D + 05 G13 = 0.380000D + 05 G12 = 0.380000D + 05 G12 = 0.380000D + 05 G12 = 0.220000D + 00 G12 = 0.220000D + 00

HOMOGENIZED ELASTIC TENSOR

1 1 2 2 3 3 2 3 1 3 1 2 0.1336E+05 0.5647E+04 0.4021E+04 0.0000E+00 0.0000E+00 0.3978E-12 0.9492E+04 0.3999E+04 0.0000E+00 0.0000E+00 -0.5453E-13 0.1094E+05 0.0000E+00 0.0000E+00 0.5360E-14 0.3472E+04 0.3325E-03 0.0000E+00 0.3767E+04 0.0000E+00

HOMOGENIZED COMPLIANCE TENSOR

1 1 2 2 3 3 2 3 1 3 1 2 0.1030E-03 -0.5359E-04 -0.1828E-04 0.0000E+00 0.0000E+00 -0.7823E-20 0.1524E-03 -0.3604E-04 0.0000E+00 0.0000E+00 0.5326E-20 0.1113E-03 0.0000E+00 0.0000E+00 0.8409E-21 0.2880E-03 -0.2542E-10 0.0000E+00 0.2655E-03 0.0000E+00

0.1786E-03

NUMBER OF ELEMENTS: 104 NUMBER OF NODES: 28

SD = 1 --> FIBER SD = 2 --> RESIN

ELE	!	SD	!		NODE	es .	!	NODES COORDINATES	
1	!	1	!	2	1	3		X:-5.000E-04 -5.000E-04 -3.590E-04	0.000E+00
2	!	1	!	2	3	10	0 !	- · · · · · · · · · · · · · · · · · · ·	0.000E+00 0.000E+00
3	1	1	!	2	9	8	0 1	Y:-3.590E-04 -5.000E-04 -3.005E-04 X:-5.000E-04 -3.839E-04 -5.000E-04	0.000E+00 0.000E+00
	Ī			_	_	_	į	Y :-3.590E-04 -2.429E-04 -2.179E-04	0.000E+00
4	!	1	!	2	10	8	0!	X:-5.000E-04-3.005E-04-3.839E-04 Y:-3.590E-04-3.005E-04-2.429E-04	0.000E+00 0.000E+00
5	!	1	!	10	3	11	o i	X :-3.005E-04 -3.590E-04 -2.429E-04	0.000E+00
В	į	1	!	11	3	4	0 !	Y:-3.005E-04 -5.000E-04 -3.839E-04 X:-2.429E-04 -3.590E-04 -2.179E-04	0.000E+00 0.000E+00
	Ī					_	į	Y :-3.839E-04 -5.000E-04 -5.000E-04	0.000E+00
7	!	2	!	11	4	12	0!	X:-2.429E-04 -2.179E-04 -1.090E-04 Y:-3.839E-04 -5.000E-04 -5.000E-04	0.000E+00 0.000E+00
8	!	1	!	13	14	5	o į	X: 5.000E-04 3.590E-04 5.000E-04	0.000E+00
Ω	!	2	1	16	12	6	0 !	Y:-3.590E-04 -5.000E-04 -5.000E-04 X: 0.000E+00 -1.090E-04 0.000E+00	0.000E+00 0.000E+00
			_			-	į	Y:-3.910E-04 -5.000E-04 -5.000E-04	0.000E+00
10	!	2	!	16	6	15	0!	X: 0.000E+00 0.000E+00 1.090E-04 Y:-3.910E-04 -5.000E-04 -5.000E-04	0.000E+00 0.000E+00
11	!	1	!	17	7	14	0	X: 2.429E-04 2.179E-04 3.590E-04	0.000E+00
12	!	2	1	17	15	7	0 !	Y:-3.839E-04 -5.000E-04 -5.000E-04 X: 2.429E-04 1.090E-04 2.179E-04	0.000E+00 0.000E+00
						•	į	Y:-3.839E-04-5.000E-04-5.000E-04	0.000E+00
13	I	2	1	8	18	8	0!	X:-3.839E-04-5.000E-04-5.000E-04 Y:-2.429E-04-1.090E-04-2.179E-04	0.000E+00 0.000E+00
14	!	2	1	9	19	18	0	X :-3.839E-04 -2.571E-04 -5.000E-04	0.000E+00
15		. 2	: 1	10	19	9	0	Y:-2.429E-04 -1.161E-04 -1.090E-04 X:-3.005E-04 -2.571E-04 -3.839E-04	0.000E+00 0.000E+00
10		٠ .		10	01	00	1	Y:-3.005E-04 -1.161E-04 -2.429E-04	0.000E+00
18		2	1	10	21	20	0	X:-3.005E-04 -1.161E-04 -1.995E-04 Y:-3.005E-04 -2.571E-04 -1.995E-04	0.000E+00 0.000E+00
17	' !	2	1	11	21	10	0	X :-2.429E-04 -1.161E-04 -3.005E-04	0.000E+00
								Y:-3.839E-04 -2.571E-04 -3.005E-04	0.000E+00

•						
18 1	2!	10	20	19		! X :-3.005E-04 -1.995E-04 -2.571E-04 0.000E+00
						Y:-3.005E-04 -1.995E-04 -1.161E-04 0.000E+00
-19 !	2!	11	12	21		! X :-2.429E-04 -1.090E-04 -1.161E-04 0.000E+00
00.1				10		! Y :-3.839E-04 -5.000E-04 -2.571E-04 0.000E+00
20 1	2 !	21	12	16	U	! X :-1.161E-04 -1.090E-04 0.000E+00 0.000E+00
01 1				0.4		! Y :-2.571E-04 -5.000E-04 -3.910E-04 0.000E+00
21 !	1!	13	23	24	U	! X : 5.000E-04 3.839E-04 3.005E-04 0.000E+00
00 1	- 1		0.4	• •	_	Y:-3.590E-04 -2.429E-04 -3.005E-04 0.000E+00
22 !	1!	13	24	14	U	! X : 5.000E-04 3.005E-04 3.590E-04 0.000E+00
23 !	1!	13	22	23	_	! Y :-3.590E-04 -3.005E-04 -5.000E-04 0.000E+00 ! X : 5.000E-04 5.000E-04 3.839E-04 0.000E+00
23 !	1 :	13	22	23	U	! X : 5.000E-04 5.000E-04 3.839E-04 0.000E+00 ! Y :-3.590E-04 -2.179E-04 -2.429E-04 0.000E+00
24 !	1!	24	17	14	Λ	! X : 3.005E-04 2.429E-04 3.590E-04 0.000E+00
47 ;	1 :	24	17	1.2		! Y :-3.005E-04 -3.839E-04 -5.000E-04 0.000E+00
25 !	2!	17	25	15		! X : 2.429E-04 1.161E-04 1.090E-04 0.000E+00
20 .	<i></i>	1.	20	10		! Y :-3.839E-04 -2.571E-04 -5.000E-04 0.000E+00
26 !	2!	25	16	15		! X : 1.161E-04 0.000E+00 1.090E-04 0.000E+00
						! Y :-2.571E-04 -3.910E-04 -5.000E-04 0.000E+00
27 !	2!	21	16	26		! X :-1.161E-04 0.000E+00 0.000E+00 0.000E+00
	- '				•	! Y :-2.571E-04 -3.910E-04 -2.821E-04 0.000E+00
28 !	2.1	25	26	16	0	! X : 1.161E-04 0.000E+00 0.000E+00 0.000E+00
					•	! Y :-2.571E-04 -2.821E-04 -3.910E-04 0.000E+00
29 !	2!	17	24	25	0	! X : 2.429E-04 3.005E-04 1.161E-04 0.000E+00
						! Y :-3.839E-04 -3.005E-04 -2.571E-04 0.000E+00
30 !	2!	18	19	28	0	! X :-5.000E-04 -2.571E-04 -3.910E-04 0.000E+00
						! Y :-1.090E-04 -1.161E-04 0.000E+00 0.000E+00
31 !	2!	18	28	27	0	! X :-5.000E-04 -3.910E-04 -5.000E-04 0.000E+00
						! Y :-1.090E-04 0.000E+00 0.000E+00 0.000E+00
32!	1!	19	30	29	0	! X :-2.571E-04 -1.410E-04 -2.821E-04 0.000E+00
						! Y :-1.161E-04 0.000E+00 0.000E+00 0.000E+00
33 !	2!	28	19	29		! X :-3.910E-04 -2.571E-04 -2.821E-04 0.000E+00
						! Y : 0.000E+00 -1.161E-04 0.000E+00 0.000E+00
34 !	1!	20	30	19	0	! X :-1.995E-04 -1.410E-04 -2.571E-04 0.000E+00
05 1					_	! Y :-1.995E-04 0.000E+00 -1.161E-04 0.000E+00
35 !	1!	21	31	20		! X :-1.161E-04 0.000E+00 -1.995E-04 0.000E+00
20 1	4 1	00	01	00		! Y :-2.571E-04 -1.410E-04 -1.995E-04 0.000E+00
36 !	1!	20	31	30		! X :-1.995E-04 0.000E+00 -1.410E-04 0.000E+00
37 !	1!	21	06	21		! Y :-1.995E-04 -1.410E-04 0.000E+00 0.000E+00
31 :	1 :	21	26	31	U	! X :-1.161E-04 0.000E+00 0.000E+00 0.000E+00
38 !	2!	23	22	32	Λ	! Y:-2.571E-04 -2.821E-04 -1.410E-04 0.000E+00 ! X: 3.839E-04 5.000E-04 5.000E-04 0.000E+00
.	2 ;	23	22	32	V	! X : 3.839E-04 5.000E-04 5.000E-04 0.000E+00 ! Y :-2.429E-04 -2.179E-04 -1.090E-04 0.000E+00
39 !	2!	24	23	33	0	! X : 3.005E-04 3.839E-04 2.571E-04 0.000E+00
•••			20	00	•	! Y:-3.005E-04 -2.429E-04 -1.161E-04 0.000E+00
40 !	2!	23	32	33	0	! X : 3.839E-04 5.000E-04 2.571E-04 0.000E+00
	_ ,			-	•	! Y:-2.429E-04 -1.090E-04 -1.161E-04 0.000E+00
41 !	2!	24	33	34	0	! X : 3.005E-04 2.571E-04 1.995E-04 0.000E+00
						! Y :-3.005E-04 -1.161E-04 -1.995E-04 0.000E+00
42 !	2!	24	34	25	0	! X : 3.005E-04 1.995E-04 1.161E-04 0.000E+00
						! Y :-3.005E-04 -1.995E-04 -2.571E-04 0.000E+00
43 !	1!	25	34	31	0	! X : 1.161E-04 1.995E-04 0.000E+00 0.000E+00
						Y:-2.571E-04 -1.995E-04 -1.410E-04 0.000E+00
44 !	1!	25	31	26	0	! X : 1.161E-04 0.000E+00 0.000E+00 0.000E+00
, - -						! Y :-2.571E-04 -1.410E-04 -2.821E-04 0.000E+00
4 5 !	2!	36	27	28		! X :-5.000E-04 -5.000E-04 -3.910E-04 0.000E+00
40 1	٠.		••			! Y : 1.090E-04 0.000E+00 0.000E+00 0.000E+00
46 !	2!	36	28	37	0	! X :-5.000E-04 -3.910E-04 -2.571E-04 0.000E+00
47 !	2 !	no	00	0~	_	! Y : 1.090E-04 0.000E+00 1.181E-04 0.000E+00
721	4!	28	29	37		! X :-3.910E-04 -2.821E-04 -2.571E-04 0.000E+00
						! Y : 0.000E+00 0.000E+00 1.161E-04 0.000E+00

48 Ì	1	!	37	29	30	0 1	! X :-2.571E-04 -2.821E-04 -1.410E-04 0.000E+00
	_					,	! Y: 1.161E-04 0.000E+00 0.000E+00 0.000E+00
49 !	1	I	30	3 5	39	0	! X :-1.410E-04 0.000E+00 0.000E+00 0.000E+00
50 I	•				00		! Y : 0.000E+00 0.000E+00 1.410E-04 0.000E+00
50 1	1	I	38	30	39	0	! X :-1.995E-04 -1.410E-04 0.000E+00 0.000E+00
E1 1	•	•	20	21	25	_	! Y : 1.995E-04 0.000E+00 1.410E-04 0.000E+00
51!	1	1	30	31	35	0	! X :-1.410E-04 0.000E+00 0.000E+00 0.000E+00 ! Y : 0.000E+00 -1.410E-04 0.000E+00 0.000E+00
52 !	1		38	37	30	0	! X :-1.995E-04 -2.571E-04 -1.410E-04 0.000E+00
02 1	_	•	30	31	30	•	! Y : 1.995E-04 1.161E-04 0.000E+00 0.000E+00
53 !	1	t	34	40	31	0	! X : 1.995E-04 1.410E-04 0.000E+00 0.000E+00
00 .	•	•	01	4 0	01		! Y :-1.995E-04 0.000E+00 -1.410E-04 0.000E+00
54!	1	ţ	40	35	31	0	! X : 1.410E-04 0.000E+00 0.000E+00 0.000E+00
	_	•		-			! Y : 0.000E+00 0.000E+00 -1.410E-04 0.000E+00
55 !	2	!	32	41	42	0	
							! Y :-1.090E-04 0.000E+00 0.000E+00 0.000E+00
56!	2	!	32	42	33	0	! X : 5.000E-04 3.910E-04 2.571E-04 0.000E+00
							! Y :-1.090E-04 0.000E+00 -1.161E-04 0.000E+00
57!	1	į	33	43	40	0	· · · · · · · · · · · · · · · · · · ·
							! Y :-1.161E-04 0.000E+00 0.000E+00 0.000E+00
58!	2	į	42	43	33	0	! X : 3.910E-04 2.821E-04 2.571E-04 0.000E+00
	_						! Y : 0.000E+00 0.000E+00 -1.161E-04 0.000E+00
59 !	1	Ī	34	33	40	0	! X : 1.995E-04 2.571E-04 1.410E-04 0.000E+00
00.1			40			_	! Y:-1.995E-04 -1.161E-04 0.000E+00 0.000E+00
60!	1	!	40	39	35	0	
61 I			4 12	4.4	00	•	! Y : 0.000E+00 1.410E-04 0.000E+00 0.000E+00
61 !	2	!	45	44	36	U	! X :-3.839E-04 -5.000E-04 -5.000E-04 0.000E+00
62 !	2		45	36	37	0	! Y : 2.429E-04 2.179E-04 1.090E-04 0.000E+00
02 :	2	:	40	30	37	U	
63 !	2	•	46	37	38	0	! Y : 2.429E-04 1.090E-04 1.161E-04 0.000E+00 ! X :-3.005E-04 -2.571E-04 -1.995E-04 0.000E+00
	~	•	40	3,	30	V	! Y : 3.005E-04 1.161E-04 1.995E-04 0.000E+00
64 !	2	1	46	45	37	0	! X :-3.005E-04 -3.839E-04 -2.571E-04 0.000E+00
	_	-		-	•		! Y : 3.005E-04 2.429E-04 1.161E-04 0.000E+00
65 !	2	!	46	38	47	0	! X :-3.005E-04 -1.995E-04 -1.161E-04 0.000E+00
						_	! Y : 3.005E-04 1.995E-04 2.571E-04 0.000E+00
66!	1	!	47	38	39	0	! X :-1.161E-04 -1.995E-04 0.000E+00 0.000E+00
							! Y : 2.571E-04 1.995E-04 1.410E-04 0.000E+00
67!	1	!	49	39	4 0	0	
	_						! Y : 1.995E-04 1.410E-04 0.000E+00 0.000E+00
68!	1	!	50	48	39	0	
60 1	•				4.0		! Y : 2.571E-04 2.821E-04 1.410E-04 0.000E+00
69!	1	ï	50	39	49	0	
70 !	1		477	20	40	_	! Y : 2.571E-04 1.410E-04 1.995E-04 0.000E+00
70 :	T	:	47	39	48	0	! X :-1.161E-04 0.000E+00 0.000E+00 0.000E+00
71 !	1	1	49	40	51	^	! Y : 2.571E-04 1.410E-04 2.821E-04 0.000E+00
• 1 .	•	•	70	40	91	0	! X : 1.995E-04 1.410E-04 2.571E-04 0.000E+00 ! Y : 1.995E-04 0.000E+00 1.161E-04 0.000E+00
72 !	1	1	51	40	43	Ω	! Y : 1.995E-04 0.000E+00 1.161E-04 0.000E+00
	-	•	V 1	40	40	V	! Y : 1.161E-04 0.000E+00 0.000E+00 0.000E+00
73 !	2	1	52	42	41	Ω	! X : 5.000E-04 3.910E-04 5.000E-04 0.000E+00
						-	! Y : 1.090E-04 0.000E+00 0.000E+00 0.000E+00
74 !	2	!	52	51	42	0	• ==
						•	! Y : 1.090E-04 1.161E-04 0.000E+00 0.000E+00
75 !	2	!	42	51	43	0	! X : 3.910E-04 2.571E-04 2.821E-04 0.000E+00
7 6 1	_						! Y : 0.000E+00 1.161E-04 0.000E+00 0.000E+00
76 !	1	!	53	11	45	0	! X :-5.000E-04 -5.000E-04 -3.839E-04 0.000E+00
77 1	•		F 0	4=	4.5	_	! Y: 3.590E-04 2.179E-04 2.429E-04 0.000E+00
77	1	1	53	45	46	0	! X :-5.000E-04 -3.839E-04 -3.005E-04 0.000E+00
							! Y: 3.590E-04 2.429E-04 3.005E-04 0.000E+00

48 !	1	!	37	29	30	0 !	! X :-2.571E-04 -2.821E-04 -1.410E-04 0.000E+00 ! Y : 1.161E-04 0.000E+00 0.000E+00 0.000E+00
49 1	1	•	30	35	39	0	X :-1.410E-04 0.000E+00 0.000E+00 0.000E+00
40 I	•	•		00	00		Y: 0.000E+00 0.000E+00 1.410E-04 0.000E+00
50 !	1	!	38	30	39	0	! X :-1.995E-04 -1.410E-04 0.000E+00 0.000E+00
							! Y : 1.995E-04 0.000E+00 1.410E-04 0.000E+00
51 !	1	I	30	31	35	0	X:-1.410E-04 0.000E+00 0.000E+00 0.000E+00
		_					Y: 0.000E+00 -1.410E-04 0.000E+00 0.000E+00
52 !	1	I	38	37	30	0	· · · · · · · ·
ro I	•		94	40	91		Y: 1.995E-04 1.161E-04 0.000E+00 0.000E+00
53 !	1	Ī	34	40	31	0	
54 !	1		40	35	31	0	. 1 . 1.0000 01 0.0000.00 1.1100 01 0.0000.00
07 ;	•	•	30	55	31	•	! Y : 0.000E+00 0.000E+00 -1.410E-04 0.000E+00
55 !	2	1	32	41	42	0	
•	_	•				_	! Y :-1.090E-04 0.000E+00 0.000E+00 0.000E+00
56 !	2	ţ	32	42	33	0	
							Y:-1.090E-04 0.000E+00 -1.161E-04 0.000E+00
57!	1	!	33	43	40	0	! X : 2.571E-04 2.821E-04 1.410E-04 0.000E+00
	_	_					! Y:-1.161E-04 0.000E+00 0.000E+00 0.000E+00
58!	2	!	42	43	33	0	! X : 3.910E-04 2.821E-04 2.571E-04 0.000E+00
ro 1			0.4	00	40	•	! Y : 0.000E+00 0.000E+00 -1.161E-04 0.000E+00
59!	1	Ī	34	33	40	0	! X : 1.995E-04 2.571E-04 1.410E-04 0.000E+00
60 !	1		40	39	35	0	! Y :-1.995E-04 -1.161E-04 0.000E+00 0.000E+00 ! X : 1.410E-04 0.000E+00 0.000E+00 0.000E+00
	1	•	40	28	33	U	! X : 1.410E-04
61 !	2	ŧ	45	44	36	0	! X :-3.839E-04 -5.000E-04 -5.000E-04 0.000E+00
•- •	_	•			00		! Y : 2.429E-04 2.179E-04 1.090E-04 0.000E+00
62!	2	!	45	36	37	0	
							! Y : 2.429E-04 1.090E-04 1.161E-04 0.000E+00
63!	2	!	46	37	38	0	· · · · · · · · · · · · · · · · · · ·
	_	_					! Y : 3.005E-04 1.161E-04 1.995E-04 0.000E+00
64 !	2	į	46	45	37	0	! X :-3.005E-04 -3.839E-04 -2.571E-04 0.000E+00
65 1			40	•	45		! Y : 3.005E-04 2.429E-04 1.161E-04 0.000E+00
65 !	2	!	46	38	47	0	! X :-3.005E-04 -1.995E-04 -1.161E-04 0.000E+00
66 !	1	1	47	38	39	0	! Y : 3.005E-04 1.995E-04 2.571E-04 0.000E+00 ! X :-1.161E-04 -1.995E-04 0.000E+00 0.000E+00
	-	•	71	36	JB	U	! Y : 2.571E-04 1.995E-04 1.410E-04 0.000E+00
67 !	1	1	49	39	40	0	! X : 1.995E-04 0.000E+00 1.410E-04 0.000E+00
•	_	-		•			! Y : 1.995E-04 1.410E-04 0.000E+00 0.000E+00
68 !	1	!	50	48	39	0	! X : 1.161E-04 0.000E+00 0.000E+00 0.000E+00
							! Y : 2.571E-04 2.821E-04 1.410E-04 0.000E+00
69!	1	!	50	39	49	0	! X : 1.161E-04 0.000E+00 1.995E-04 0.000E+00
* **	_						! Y : 2.571E-04 1.410E-04 1.995E-04 0.000E+00
70!	1	!	47	39	48	0	! X :-1.161E-04 0.000E+00 0.000E+00 0.000E+00
71 !	1		40	40	F1	^	! Y : 2.571E-04 1.410E-04 2.821E-04 0.000E+00
71 :	1	:	49	40	51	0	! X : 1.995E-04 1.410E-04 2.571E-04 0.000E+00 ! Y : 1.995E-04 0.000E+00 1.161E-04 0.000E+00
72 !	1	1	51	40	43	0	
	_	•	01	40	70	U	! Y: 1.161E-04 0.000E+00 0.000E+00 0.000E+00
73 !	2	!	52	42	41	0	
						-	! Y : 1.090E-04 0.000E+00 0.000E+00 0.000E+00
74!	2	!	52	51	42	0	! X : 5.000E-04 2.571E-04 3.910E-04 0.000E+00
	_						! Y: 1.090E-04 1.161E-04 0.000E+00 0.000E+00
75 !	2	I	42	51	43	0	! X : 3.910E-04 2.571E-04 2.821E-04 0.000E+00
76 !	1		53	4.4	4 2	^	! Y : 0.000E+00 1.161E-04 0.000E+00 0.000E+00
, 0 ;	1	ī	03	44	45	0	! X :-5.000E-04 -5.000E-04 -3.839E-04 0.000E+00 ! Y : 3.590E-04 2.179E-04 2.429E-04 0.000E+00
77 !	1	1	53	45	48	0	! Y: 3.590E-04 2.179E-04 2.429E-04 0.000E+00 ! X:-5.000E-04 -3.839E-04 -3.005E-04 0.000E+00
	_	٠			-20	_	1 Y: 3.590E-04 2.429E-04 3.005E-04 0.000E+00
				•			

78	ľ	1	İ	46	54	55		X : -3.005E-04			0.000E+00
							1		3.839E-04	5.000E-04	0.000E+00
· 79	!	2	1	54	46	47	0 !				0.000E+00
								Y: 3.839E-04	3.005E-04	2.571E-04	0.000E+00
80	!	1	1	53	46	55	0 !	X:-5.000E-04	-3.005E-04	-3.590E-04	0.000E+00
•	•	• -	•					Y: 3.590E-04	3.005E-04	5.000E-04	0.000E+00
81		2	ı	54	47	56	0				0.000E+00
01	•	_	٠	O-X	**	00	Ŭ		2.571E-04	5.000E-04	0.000E+00
-		2		47	57	56	•	X:-1.161E-04		-1.090E-04	0.000E+00
82	1	Z	1	4/	01	90					0.000E+00
		_			40			Y: 2.571E-04	3.910E-04	5.000E-04	
83	i	2	I	47	48	57	0	X:-1.161E-04	0.000E+00	0.000E+00	0.000E+00
								Y: 2.571E-04	2.821E-04	3.910E-04	0.000E+00
84	!	2	!	50	57	48	0	X : 1.161E-04	0.000E+00	0.000E+00	0.000E+00
							!	! Y : 2.571E-04	3.910E-04	2.821E-04	0.000E+00
85	!	2	!	58	49	51	0	X : 3.005E-04	1.995E-04	2.571E-04	0.000E+00
							;	Y: 3.005E-04	1.995E-04	1.161E-04	0.000E+00
86	!	2	1	58	50	49	0 !	X : 3.005E-04	1.161E-04	1.995E-04	0.000E+00
-	-	_	-					Y: 3.005E-04	2.571E-04	1.995E-04	0.000E+00
87	1	2	1	60	59	50	0		1.090E-04	1.161E-04	0.000E+00
•	•	-	•	00	-	00	•	Y: 3.839E-04	5.000E-04	2.571E-04	0.000E+00
88	!	2		50	59	57	0	X : 1.161E-04	1.090E-04	0.000E+00	0.000E+00
00	•	4	:	30	98	81	U	Y : 2.571E-04	5.000E-04	3.910E-04	0.000E+00
00		_		60	F0	ro	^		1.161E-04		
89	!	2	!	60	50	58	0			3.005E-04	0.000E+00
		_					_	! Y : 3.839E-04	2.571E-04	3.005E-04	0.000E+00
90	!	2	!	58	51	61	0		2.571E-04	3.839E-04	0.000E+00
	_							! Y : 3.005E-04	1.161E-04	2.429E-04	0.000E+00
91	!	2	į	61	51	52	0		2.571E-04	5.000E-04	0.000E+00
								! Y : 2.429E-04	1.161E-04	1.090E-04	0.000E+00
92	į	2	!	61	52	62	0		5.000E-04	5.000E-04	0.000E+00
								! Y : 2.429E-04	1.090E-04	2.179E-04	0.000E+00
93	ļ	1	!	53	55	63	0	! X :-5.000E-04	-3.590E-04	-5.000E-04	0.000E+00
								! Y : 3.590E-04	5.000E-04	5.000E-04	0.000E+00
94	1	2	!	54	56	64	0				0.000E+00
	Ī	_	٠			-	•	! Y : 3.839E-04	5.000E-04	5.000E-04	0.000E+00
95	1	1	!	54	64	55	0	! X :-2.429E-04			0.000E+00
00	•	•	٠	0-3	0.2	00	v	! Y : 3.839E-04			0.000E+00
96	•	2	!	57	65	56	0	! X : 0.000E+00		-1.090E-04	0.000E+00
90	•	4	:	87	63	30	U				
077		_				0.5	_	! Y : 3.910E-04			0.000E+00
97	Ī	Z	!	57	59	65	0	! X : 0.000E+00	1.090E-04	0.000E+00	0.000E+00
		_					_	! Y : 3.910E-04			0.000E+00
98	!	1	!	67	58	61	0	! X : 5.000E-04			0.000E+00
								! Y : 3.590E-04			0.000E+00
88	!	1	!	67	66	58	0	! X : 5.000E-04		3.005E-04	0.000E+00
								! Y : 3.590E-04	5.000E-04	3.005E-04	0.000E+00
100	!	1	!	58	66	60	0	! X : 3.005E-04	3.590E-04	2.429E-04	0.000E+00
								! Y: 3.005E-04			0.000E+00
101	!	2	!	60	68	59	0	! X : 2.429E-04			0.000E+00
							_	! Y : 3.839E-04			0.000E+00
102	ţ	1	!	60	66	68	0	! X : 2.429E-04			0.000E+00
	•	_	•	30	30	30	•	! Y : 3.839E-04			0.000E+00
103	1	1	!	67	61	62	0	! X : 5.000E-04			0.000E+00
700	٠	_	÷	91	OI	04	U				
104	•	1	!	077	80	00	^	! Y : 3.590E-04			0.000E+00
104	ı	1	1	67	69	66	0	! X : 5.000E-04			0.000E+00
								! Y : 3.590E-04	5.000E-04	5.000E-04	0.000E+00

! !		ע	ACROSCOPIC	STRESS FIELD		1
! ! S(1;	,1) =	0.1000D+03	S(1,2) = S(2,2) =	0.0000D+00 0.0000D+00	S(2,3) = 0.	0000D+00 ! 0000D+00 ! 0000D+00 !
! ! !			ACROSCOPIC	STRAIN TENSOR		!
! ! R(1	,1) =	0.1030D-01	E(1.2) =	-0.5359D-02	E(1,3) = -0.	2436D-02 !
!!!!	,-,	0120000	E(2,2) =	0.0000D+00		0000D+00 !
!						! !
!		¥	ICROSCOPIC	STRESS FIELD		!
! ELE !	S11	! S22	! S33	! S23	! S13	S12 !
1 1!	78.9	! -5.11	! -35.9		! 0.000E+00	
! 2!		! -7.62	! -36.1		! 0.000E+00 !	
! 3!		! -7.87	! -35.8		! 0.000E+00 !	
! 4!	144.	! 6.43	! -32.5		! 0.000E+00	
! 5!	98.4	! -9.18	! -36.8		! 0.000E+00 !	
! 6!! 7!	90.4 78.5	! -8.42 ! 44.3	! -36.7 ! 38.1		9 ! 0.000E+00 ! 9 ! 0.000E+00 !	
! 8!	78.9	! 44.5 ! -5.11	! -35.9		9 ! 0.000E+00 !	
! 9!		! -30.4	! 23.3		0.000E+00	
10		! -30.4	! 23.3		0.000E+00	
1 11 !	90.4	! -8.42	! -36.7	! 0.000E+00		
! 12!	78.5	! 44.3	! 38.1	! 0.000E+00		
! 13 !		! -26.0	! -25.2	! 0.000E+00		
! 14 !		! 1.46	! 24.4	! 0.000E+00		
! 15 !		! -23.4	! 1.27	! 0.000E+00		
! 16 !		! -24.1	! 6.85	! 0.000E+00		
! 17 !	107.	! 24.2	! 41.2	! 0.000E+00	! 0.000E+00	
! 18 !	139.	! 37.8	! 58.6	! 0.000E+00	! 0.000E+00	! 5.73 !
! 19 !		! 9.03	! 33.1	! 0.000E+00		! 6.40 !
! 20 !		! -15.3	! 8.85) ! 0.000E+00	
! 21 !		! 6.43	! -32.5		! 0.000E+00	
! 22 !		! -7.62	! -36.1) ! 0.000E+00	
! 23 !		! -7.87	! -35.8		0.000E+00	
! 24 !		! -9.18	! -36.8		0.000E+00	
! 25 ! ! 26 !		! 9.03	! 33.1		0.000E+00	
! 26 !		! -15.3 ! -20.0	! 8.85 ! -21.3		0 ! 0.000E+00 0 ! 0.000E+00	
! 28 !		! -20.0	! -21.3		0.000E+00	
! 29 !		! 24.2	! 41.2		0 ! 0.000E+00	
! 30 !		! -3.15	1 21.2	-	0.000E+00	
1 31		! -32.8	1 17.4		0.000E+00	
! 32 !	106.	! -12.4	1 -37.5		0.000E+00	
! 33 !	96.4	! 54.1	! 48.6	! 0.000E+00	0.000E+00	! 4.52 !
34		! -8.08	! -36.9		0.000E+00	
! 35		! 14.0	! -30.8		0.000E+00	
! 36		1 -7.22	! -36.0			
! 37		! -3.06	! -34.2		0 ! 0.000E+00	
	! -17.7	! -26.0	! -25.2		0.000E+00	
! 39			! 1.27		0.000E+00	
! 40	! 85.3	1 1.46	! 24.4	1 0.000E+0	0 ! 0.000E+00	1 -10.3

	4 1	100	1 27 0 1	FO 0 1	0 0000	0.00071.00	1 F 70 1	
	1!	139.	! 37.8 !	58.6		0.000E+00		
!. 4		64.7	! -24.1 !	6.85		0.000E+00		
,	3 !	123.	14.0	-30.8		0.000E+00		
! 4		226 .	! -3.06 !	-34.2	0.000E+00 !			
! 4	5!	101.	! -32.8 !	17.4	0.000E+00 !	0.000E+00	-8.317E-15	,
! 4	6!	81.4	! -3.15 !	21.2	0.000E+00 !	0.000E+00	! 1.20 !	
! 4	7!	96.4	! 54.1 !	48.6	0.000E+00 !	0.000E+00	4.52	
	8!	106.	! -12.4 !	-37.5	0.000E+00 !			
	9!	59.0	-2.92	~35.6	0.000E+00 !		-3.273E-14 !	í
	0 !	128.	! -7.22	-36.0	0.000E+00 !			
	1 !	59.0	! -2.92 !	-35.6	0.000E+00 !			f
								ı
		56.2	! -8.08 !	-36.9	0.000E+00 !	0.000E+00		
	3!	128.	! -7.22 !	-36.0	0.000E+00!			
	4!	59.0	! -2.92 !	-35.6	0.000E+00 !			
	5 !	101.	! -32.8 !	17.4	0.000E+00 !		! 2.994E-15 !	
! 5	6!	81.4	! -3.15 !	21.2	0.000E+00 !	0.000E+00	! 1.20 !	
! 5	7 !	106.	! -12.4 !	-37.5	0.000E+00 !	0.000E+00	4.05!	
! 5	8 !	96.4	! 54.1 !	48.6	0.000E+00 !			
	9 !	56.2	! -8.08 !	-36.9	0.000E+00 !			l
	0 !	59.0	! -2.92	-35.6	0.000E+00 !		!-3.481E-14 !	1
		-17.7	! -26.0	-25.2		0.000E+00		,
	2 !	85.3	! 1.46 !	24.4		0.000E+00		
	3 !	139.	! 37.8 !	58.6		0.000E+00		ĺ
_	4!	49.3	! -23.4	1.27		0.000E+00		ļ
	55!	64.7	! -24.1	6.85		0.000E+00		ļ
	6 !	123 .	! 14.0 !	-30.8	! 0.000E+00 !	0.000E+00	! 17.0 !	ļ
! 6	37 !	128.	! -7.22	-36.0	0.000E+00 !	0.000E+00	! -5.45 !	!
! 6	88 !	226 .	! -3.06 !	-34.2	! 0.000E+00 !	0.000E+00	! 16.9 !]
! 6	9 !	123 .	! 14.0	-30.8	0.000E+00			ĺ
! 7	70 !	226.	! -3.06	-34.2	0.000E+00			į
	71 !	56.2	! -8.08	-36.9	0.000E+00			,
	72 !	106.	! -12.4	-37.5	! 0.000E+00 !			
	3 !	101.	! -32.8					
				17.4	! 0.000E+00 !		!-8.611E-15 !	
	4!	81.4	! -3.15	21.2	0.000E+00 !	- · 		!
	75!	96.4	! 54.1	48.6	! 0.000E+00 !			ļ
	76!	174.	! -7.87	-35.8	! 0.000E+00 !	- ·		!
	77 !	144.	! 6.43	-32.5	! 0.000E+00 !	0.000E+00	! 14.3	į
! 7	78!	98.4	! -9.18	-36.8	! 0.000E+00 !	0.000E+00	! -8.67 !	Į
! 7	79!	107.	! 24.2	41.2	! 0.000E+00 !	0.000E+00	! -3.85 !	ļ
! 8	30 !	134.	! -7.62	! -36.1	! 0.000E+00 !			ļ
! 8	31 !	101.	! 9.03	33.1	! 0.000E+00			į
	32 !	61.2	! -15.3	8.85	! 0.000E+00			ì
		-13.5	! -20.0	-21.3	! 0.000E+00			i
	34 !	-13.5	! -20.0	-21.3	! 0.000E+00		!-2.524E-02 !	
	35 !	139.	1 37.8	58.6				!
						0.000E+00		!
	36!	64.7	! -24.1	6.85		0.000E+00		!
	37!	101.	9.03	33.1		0.000E+00		į
	38 !	61.2	! -15.3	8.85		0.000E+00		
	39 !	107.	24.2	41.2		0.000E+00		į
	90!	49.3	! -23.4	1.27	! 0.000E+00 !	0.000E+00	! 17.6	l
! 8	91 !	85.3	! 1.46	24.4	! 0.000E+00 !	0.000E+00	! 10.3 !	!
! 8	32 !	-17.7	! -26.0	-25.2		0.000E+00		l
! 9	3 !	78.9	! -5.11	-35.9		0.000E+00		Į
	94 !	78.5	! 44.3	38.1	! 0.000E+00			ĺ
	95 !	90.4	! -8.42	-36.7		0.000E+00		
	96 !	114.	1 -30.4	23.3			!-1.010E-14	1
	97 !	114.	1 -30.4	23.3	! 0.000E+00 !			i I
	8 1	144.	1 6.43				!-1.020E-14	Į e
	99 !	134.		-32.5	! 0.000E+00			ĺ
			! -7.62	-36.1	! 0.000E+00			I
: 10	00 !	98.4	! -9.18	-36.8	! 0.000E+00	0.000E+00	1 8.67	ĺ

```
! 44.3 ! 38.1 ! 0.000E+00 ! 0.000E+00 ! 
! -8.42 ! -36.7 ! 0.000E+00 ! 0.000E+00 !
! 101 !
            78.5
                       ! 44.3
                                                                                                 3.86
 102 !
           90.4
                                                                                                  7.40
! 103 !
           174.
                        ! -7.87
                                          ! -35.8
                                                          ! 0.000E+00 ! 0.000E+00 !
            78.9
                          ! -5.11
                                           ! -35.9
                                                           ! 0.000E+00 ! 0.000E+00 ! 5.458E-14 !
                                               STRESS FORCE
! NODE!
                                                            FX
        1 ! -3.8394E-04 ! -2.4289E-04 ! -30.33
                                                                        ! -10.66
                                                                                             ! 0.0000E+00 !
        2! -3.0053E-04! -3.0053E-04! -65.44
                                                                      ! 14.42
                                                                                            ! 0.0000E+00 !
        3 ! -2.4289E-04 ! -3.8394E-04 !
                                                      -45.79
                                                                      ! -2.453
                                                                                           ! 0.0000E+00 !
        4 ! 2.4289E-04 ! -3.8394E-04 !
                                                       45.79
                                                                      ! -2.453
                                                                                            ! 0.0000E+00 !
                                 -3.8394E-04 ! 45.79 ! -2.453 ! 0.0000E+00 ! -1.1606E-04 ! 27.14 ! -4.188 ! 0.0000E+00 ! -1.9947E-04 ! 65.74 ! -14.76 ! 0.0000E+00 ! -2.5711E-04 ! 48.35 ! 14.00 ! 0.0000E+00 ! -2.4289E-04 ! 30.33 ! -10.66 ! 0.0000E+00 ! -3.0053E-04 ! 65.44 ! 14.42 ! 0.0000E+00 ! -2.5711E-04 ! -48.35 ! 14.00 ! 0.0000E+00 ! -2.8209E-04 ! 9.1075E-06 ! -9.772 ! 0.0000E+00 !
        5! -2.5711E-04! -1.1606E-04!
        6! -1.9947E-04! -1.9947E-04!
        7! -1.1606E-04! -2.5711E-04!
               3.8394E-04!
       9 !
               3.0053E-04 ! -3.0053E-04 !
               1.1606E-04 ! -2.5711E-04 ! -48.35 !
       10 !
       11!
              0.0000E+00!
       12 ! -2.8209E-04 !
                                   0.0000E+00!
                                                      49.65 ! -8.1103E-08 ! 0.0000E+00
                                 -1.1606E-04 ! -27.14 ! -4.188 ! 0.0000E+00 ! -1.9947E-04 ! -65.74 ! -14.76 ! 0.0000E+00 ! 1.1606E-04 ! 27.14 ! 4.188 ! 0.0000E+00 ! 1.9947E-04 ! 65.74 ! 14.76 ! 0.0000E+00 ! 0.0000E+00 ! -49.65 ! 8.1103E-08 ! 0.0000E+00 ! 2.4289E-04 ! -30.33 ! 10.66 ! 0.0000E+00 ! 3.0053E-04 ! -65.44 ! -14.42 ! 0.0000E+00 ! 2.5711E-04 ! 48.35 ! -14.00 ! 0.0000E+00 !
                                                                                        ! 0.0000E+00
       13 !
               2.5711E-04!
                                                        -27.14
                                  -1.1606E-04 !
                                                                        ! -4.188
               1.9947E-04 !
       15 ! -2.5711E-04 !
       16 ! -1.9947E-04 !
       17 ! 2.8209E-04 !
       18 ! -3.8394E-04 !
       19 ! -3.0053E-04 !
       20 ! -1.1606E-04 !
       21!
                                  2.8209E-04 ! -9.1075E-06 ! 9.772
               0.0000E+00 !
                                                                                          ! 0.0000E+00
                                                                        ! 14.76 ! 0.000E+00 !
! -14.00 ! 0.000E+00 !
! 4.188 ! 0.000E+00 !
! 2.453 ! 0.000E+00 !
! -14.42 ! 0.000E+00 !
                                                      -65.74 !
-48.35 !
-27.14 !
               1.9947E-04 !
                                   1.9947E-04 !
       23 !
               1.1606E-04!
                                    2.5711E-04!
       24
               2.5711E-04 !
                                   1.1606E-04!
                                                      -45.79
65.44
       25 ! -2.4289E-04 !
                                    3.8394E-04!
               3.0053E-04!
                                  3.0053E-04!
       27 !
               2.4289E-04!
                                    3.8394E-04!
                                                                        İ
                                                         45.79
                                                                              2.453
                                                                                             ! 0.0000E+00 !
               3.8394E-04!
                                    2.4289E-04!
                                                          30.33
                                                                              10.66
```

```
MACROSCOPIC STRESS FIELD
S(1,1) = 0.0000D+00
                          S(1,2) =
                                     0.1000D+03
                                                   S(1,3) =
                                                              0.0000D+00
                          S(2,2) =
                                     0.0000D+00
                                                   S(2,3) =
                                                              0.0000D+00
                                                   S(3,3) =
                                                              0.0000D+00
                      MACROSCOPIC STRAIN TENSOR
E(1,1) = -0.5359D-02
                         \mathbb{E}(1,2) =
                                     0.1524D-01
                                                   E(1,3) = -0.3604D-02
                         \mathbb{E}(2,2) =
                                     0.0000D+00
                                                   E(2,3) =
                                                              0.0000D+00
                                                   E(3,3) =
                                                              0.0000D+00
                      MICROSCOPIC STRESS FIELD
```

! ELE !	811	! S22	! S33	! S23	! S13	! 812 !
1 1	16.2	! 114.	! -23.6	! 0.000E+00	0.000E+00	!-1.142E-14 !
	-11.2	1 117.	-23.0		0.000E+00	
	-39.7	! 106.	-26.2		0.000E+00	
! 4		1 99.8	1 -27.5		0.000E+00	
! 5		1 118.	-22.6		0.000E+00	
! 6		! 121.	! -22.2		0.000E+00	
1 7 !	_	! 24.5	! -6.90		0.000E+00	
! 8 !	16.2	! 114.	! -23.6			! 5.473E-15 !
! 9 !	-20.1	! 110.	! 21.6			!-7.163E-15 !
! 10 !	-20.1	! 110.	! 21.6	! 0.000E+00	0.000E+00	!-7.876E-15 !
! 11 !	-11.3	! 121.	! -22.2		0.000E+00	
! 12	9.26	! 24.5	! -6.90	! 0.000E+00	0.000E+00	! 1.24 !
! 13	53.1	96.8	44.3	! 0.000E+00	! 0.000E+00	! 2.73 !
! 14	10.2	! 102.	29.8	! 0.000E+00	0.000E+00	! 1.52 !
! 15	24.2	! 106.	! 36.9	! 0.000E+00	0.000E+00	!-0.737 !
! 16	23.9	! 119.	41.8	! 0.000E+00	0.000E+00	!-0.852 !
! 17	! -15.5	! 66.1	! 6.52	! 0.000E+00	0.000E+00	! 10.1 !
! 18	27.9	! 66.5	! 1.98	! 0.000E+00		! 11.7 !
! 19		! 92.9	! 23.9	! 0.000E+00	! 0.000E+00	! 4.59 !
! 20		! 95.3	! 26.7	! 0.000E+00		! -1.62 !
! 21		! 99.8	! -27.5	! 0.000E+00		! -18.8 !
! 22		! 117.	! -23.0	! 0.000E+00		! -5.72 !
! 23		! 106.	! -26.2	! 0.000E+00		! -5.81 !
! 24		! 118.	! -22.6	! 0.000E+00		! -3.73 !
! 25		92.9	! 23.9	! 0.000E+00		! -4.59 !
! 26		95.3	! 26.7	! 0.000E+00		! 1.62 !
! 27		! 105.	! 49.4	! 0.000E+00		! 2.78 !
! 28		! 105.	! 49.4	! 0.000E+00		! -2.78 !
	! -15.5	! 66.1	! 6.52		! 0.000E+00	
	! -2.12	! 81.3	! 17.4		! 0.000E+00	
	! -15.5	! 117.	! 26.0	0.000E+00	! 0.000E+00	!-2.134E-15 !
	! -11.2	! 126.	! -20.9	! 0.000E+00		
! 33		! 26.2	! -6.06	! 0.000E+00		! -1.29 !
! 34		! 116.	! -23.0		! 0.000E+00	
	! -12.0	! 89.6	! -30.0			! 26.0 !
! 36		! 117.	! -23.2		! 0.000E+00	
! 37		! 104.	! -26.9		! 0.000E+00	
! 38			! 44.3	! 0.000E+00		
! 39			! 36.9		! 0.000E+00	
! 40		! 102.	! 29.8		! 0.000E+00	
	! -27.9 ! 23.9		! 1.98		! 0.000E+00	
	! -12.0	! 119.	! 41.8		! 0.000E+00	
	! -12.0 ! -74.3		! -30.0		! 0.000E+00	
	! -15.5	! 104. ! 117.	! -26.9 ! 26.0	! 0.000E+00		
	! -2.12	! 81.3	17.4	! 0.000E+00		! 4.683E-15 !
	! -8.75		! -6.06	! 0.000E+00		
	! -11.2		! -20.9	! 0.000E+00 ! 0.000E+00		
	! 37.5		! -20.9			! 0.994 ! ! 1.583E-14 !
	1 -9.76		! -24.0	! 0.000E+00		
	1 37.5		! -23.2			! -8.30 ! !-1.446E-14 !
	! 39.0		! -23.0	! 0.000E+00		
	! -9.76		1 -23.2	! 0.000E+00		
1 54		_	1 -24.0			! -8.30 ! !-1.289E-14 !
	! -15.5		1 26.0			!-1.289E-14 !
	! -2.12		1 17.4	! 0.000E+00		
	1 -11.2		1 -20.9	1 0.000E+00		
1 58	! -8.75	1 26.2	1 -6.06	! 0.000E+00		
		-	· · ·			

60 37.5 112. -24.0 10.0008+00 0.0008+00 1.730E-14 61 63.1 96.8 44.3 10.0008+00 0.0008+00 -2.73 62 10.2 102. 102. 29.8 0.0008+00 0.0008+00 -1.52 63 -27.9 66.5 11.98 10.0008+00 0.0008+00 -1.52 64 24.2 106. 38.9 0.0008+00 0.0008+00 0.0008+00 -1.737 64 24.2 108. 38.9 0.0008+00 0.0008+00 0.737 66 -12.0 89.6 -30.0 0.0008+00 0.0008+00 0.852 1 65 23.9 119. 41.8 0.0008+00 0.0008+00 0.852 1 67 -9.76 117. -23.2 0.0008+00 0.0008+00 -2.83.0 68 -74.3 104. -22.9 0.0008+00 0.0008+00 -4.58 16 69 -12.0 89.6 -30.0 0.0008+00 0.0008+00 -4.58 16 69 -12.0 89.6 -30.0 0.0008+00 0.0008+00 -4.58 17 1 39.0 116. -23.0 0.0008+00 0.0008+00 12.8 0 17 17 74.3 104. -22.9 0.0008+00 0.0008+00 12.8 0 17 17 17.4 0.0008+00 0.0008+00 19.8 172 17.1 17.5 17.5 18.5 117. 26.0 0.0008+00 0.0008+00 0.0008+00 19.8 173 -15.5 117. 26.0 0.0008+00 0.0008+00 0.0008+00 2.71 17.5 8.75 2.6 2 -8.06 0.0008+00 0.0008+00 0.0008+00 2.71 17.5 8.75 2.6 2 -8.06 0.0008+00 0.0008+00 1.20	! 59	! 39.0 !	116.	-23.0	! 0.000E+00	0.000E+00	! -19.8 !
62 10.2 102. 29.8 0.000E+00 0.000E+00 -1.52 63 -27.9 66.5 1.98 0.00E+00 0.000E+00 -1.17 64 24.2 106. 36.9 0.00E+00 0.000E+00 0.737 65 23.9 1119. 41.8 0.00E+00 0.000E+00 0.737 66 -12.0 88.6 -30.0 0.000E+00 0.000E+00 -26.0 67 -9.76 117. -22.2 0.000E+00 0.000E+00 -26.0 67 -9.76 117. -22.2 0.000E+00 0.000E+00 -26.0 68 -74.3 104. -22.9 0.000E+00 0.000E+00 2.6.0 70 -74.3 104. -22.9 0.000E+00 0.000E+00 2.6.0 71 39.0 116. -22.9 0.000E+00 0.000E+00 2.6.0 71 39.0 116. -22.9 0.000E+00 0.000E+00 1.9.8 72 -11.2 126. -20.9 0.000E+00 0.000E+00 19.8 73 -15.5 117. 26.0 0.000E+00 0.000E+00 19.8 73 -15.5 117. 26.0 0.000E+00 0.000E+00 1.9.8 74 -2.12 81.3 17.4 0.000E+00 0.000E+00 1.29 75 -8.75 26.2 -6.06 0.000E+00 0.000E+00 1.29 76 -30.7 106. -22.2 0.000E+00 0.000E+00 1.29 77 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -3.73 78 19.2 118. -22.6 0.000E+00 0.000E+00 -3.73 78 15.5 66.1 6.52 0.000E+00 0.000E+00 -3.73 80 -11.2 117. -23.0 0.000E+00 0.000E+00 -3.73 81 92.9 118. 49.4 0.000E+00 0.000E+00 -3.73 82 8.38 95.3 26.7 0.000E+00 0.000E+00 -3.73 83 58.0 105. 49.4 0.000E+00 0.000E+00 -3.73 84 58.0 105. 49.4 0.000E+00 0.000E+00 -3.73 85 -27.9 66.5 1.98 0.000E+00 0.000E+00 1.62 85 -27.9 66.5 1.98 0.000E+00 0.000E+00 1.62 85 -27.9 66.5 1.98 0.000E+00 0.000E+00 1.62 87 3.42 92.9 23.9 0.000E+00 0.000E+00 1.62 88 8.38 95.3 26.7 0.000E+00 0.000E+00 1.62 88 -3.39 119. 41.8 0.000E+00 0.000E+00 1.62 89 -15.5 66.1 6.52 0.000E+00 0.000E+00 1.62 81 3.42 92.9 23.9 0.000E+00 0.000E+00 1.62 88 -3.9 119. 44.8 0.000E+00 0.000E+00	1 60	! 37.5 !	112.	-24.0			
63 -27.9	! 61	53.1	96.8	44.3	1 0.000E+00	0.000E+00	! -2.73 !
64 24.2 106. 38.9 0.000E+00 0.000E+00 0.737 65 23.9 119. 41.8 0.00E+00 0.000E+00 0.852 66 -12.0 89.6 1-30.0 0.000E+00 0.000E+00 -26.0 67 -9.76 117. -23.2 0.000E+00 0.000E+00 -26.0 68 7-74.3 104. -28.9 0.000E+00 0.000E+00 -4.86 69 -12.0 89.6 -30.0 0.000E+00 0.000E+00 -4.66 70 70 7-4.3 104. -28.9 0.000E+00 0.000E+00 26.0 -4.66 71 39.0 116. -22.0 0.000E+00 0.000E+00 19.8 71 139.0 116. -22.0 0.000E+00 0.000E+00 19.8 73 -15.5 117. 126. -20.9 0.000E+00 0.000E+00 19.8 73 -15.5 117. 26.0 0.000E+00 0.000E+00 -0.00E+00 19.8 73 -15.5 117. 26.0 0.000E+00 0.000E+00 -0.00E+00 -1.29 73 -15.5 8.75 26.2 -6.06 0.000E+00 0.000E+00 -1.29 175 -8.75 26.2 -6.06 0.000E+00 0.000E+00 -1.29 175 -8.75 18.9 19.2 118. -22.6 0.000E+00 0.000E+00 -1.88 177 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -3.73 175 -8.75 18.3 11.2 117. -23.0 0.000E+00 0.000E+00 -3.73 177 -15.5 66.1 6.52 0.000E+00 0.000E+00 -3.73 18.0 -11.2 117. -23.0 0.000E+00 0.000E+00 -3.73 18.1 22.8 0.000E+00 0.000E+00 -3.73 18.1 22.8 0.000E+00 0.000E+00 -3.73 18.1 22.8 0.000E+00 0.000E+00 -1.8 18.1 3.42 92.9 23.9 0.000E+00 0.000E+00 -0.00E+00 -1.1 18.1 3.42 92.9 23.9 0.000E+00 0.000E+00 -1.72 18.1 3.42 92.9 23.9 0.000E+00 0.000E+00 0.00E+00 -1.72 18.1 3.42 92.9 23.9 0.000E+00 0.000E+00 0.00E+00 -1.72 18.1 33.42 92.9 23.9 0.000E+00 0.000E+00 0.00E+00 1.00E+00 1.00	! 62	! 10.2 !	102.	29.8	! 0.000E+00	0.000E+00	! -1.52 !
65 23.9 119. 41.8 0.000E+00 0.000E+00 0.852 66 -12.0 88.6 -30.0 0.00E+00 0.000E+00 0.852 67 -9.76 117. -23.2 0.000E+00 0.000E+00 8.30 68 -74.3 104. -28.9 0.000E+00 0.000E+00 4.58 69 -12.0 88.6 -30.0 0.000E+00 0.000E+00 4.58 70 -74.3 104. -28.9 0.000E+00 0.000E+00 4.56 70 -74.3 104. -28.9 0.000E+00 0.000E+00 4.56 71 39.0 118. -23.0 0.000E+00 0.000E+00 19.8 72 -11.2 126. -20.9 0.000E+00 0.000E+00 -0.994 73 -15.5 117. 26.0 0.000E+00 0.000E+00 2.71 74 -2.12 81.3 17.4 0.000E+00 0.000E+00 2.71 75 -8.75 26.2 6.06 0.000E+00 0.000E+00 -2.71 75 -8.75 26.2 6.06 0.000E+00 0.000E+00 -1.29 76 -39.7 106. -28.2 0.000E+00 0.000E+00 -1.8.8 77 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -18.8 78 19.2 1118. -22.6 0.000E+00 0.000E+00 -18.8 79 -15.5 66.1 6.52 0.000E+00 0.000E+00 -10.1 80 -11.2 117. -23.0 0.000E+00 0.000E+00 -10.1 81 3.42 92.9 23.9 0.000E+00 0.000E+00 -10.1 81 3.42 92.9 23.9 0.000E+00 0.000E+00 -1.52 83 58.0 105. 49.4 0.000E+00 0.000E+00 -2.78 84 58.0 105. 49.4 0.000E+00 0.000E+00 -2.78 85 -27.9 66.5 1.98 0.00E+00 0.000E+00 -2.78 85 -27.9 66.5 1.98 0.00E+00 0.000E+00 -1.0.852 87 3.42 92.9 23.9 0.000E+00 0.000E+00 -1.0.852 88 8.38 95.3 26.7 0.000E+00 0.000E+00 1.0.852 87 1.5 66.1 6.52 0.000E+00 0.000E+00 1.0.852 88 8.38 95.3 26.7 0.000E+00 0.000E+00 1.22 89 -15.5 66.1 6.52 0.000E+00 0.000E+00 1.0.852 89 -15.5 66.5 1.98 0.000E+00 0.000E+00 1.0.852 81 10.2 110. 21.6 0.000E+00 0.000E+00 1.0.852 91 10.2 10.2 29.8 0.000E+00 0.000E+00 1.0.852 92 53.1 93.0 93.0 93.0 93.0 93.0 93.0 93 16.2 1114. -23.6 0	1 63	! -27.9 !	66.5	1.98	! 0.000E+00	0.000E+00	! -11.7 !
66 -12.0 89.6 -30.0 0.000E-00 0.000E-00 -26.0 1 67 -9.76 117. -23.2 0.00E-00 0.000E+00 4.58 68 -74.3 104. -26.9 0.000E+00 0.000E+00 4.58 69 -12.0 89.6 -30.0 0.000E+00 0.000E+00 4.58 1 69 -12.0 89.6 -30.0 0.000E+00 0.000E+00 4.58 1 70 -74.3 104. -26.9 0.000E+00 0.000E+00 1.000E+00 26.0 1 71 39.0 116. -22.9 0.000E+00 0.000E+00 19.8 1 72 -11.2 126. -20.9 0.000E+00 0.000E+00 19.8 1 72 -11.2 126. -20.9 0.000E+00 0.000E+00 19.8 1 73 -15.5 117. 26.0 0.000E+00 0.000E+00 0.000E+00 19.8 1 73 -15.5 117. 26.0 0.000E+00 0.000E+00 0.271 1 75 -8.75 26.2 -6.06 0.000E+00 0.000E+00 0.000E+00 -5.81 1 77 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -5.81 1 77 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -3.73 1 78 19.2 118. -22.6 0.000E+00 0.000E+00 -3.73 1 8 19.2 118. -22.6 0.000E+00 0.000E+00 -3.73 1 8 19.2 118. -22.6 0.000E+00 0.000E+00 -5.72 1 8 19.2 117. -23.0 0.000E+00 0.000E+00 -5.72 1 8 13.42 92.9 23.9 0.000E+00 0.000E+00 -4.59 1 8 1 8 3 58.0 105. 49.4 0.000E+00 0.000E+00 -4.59 1 8 1 8 3 58.0 105. 49.4 0.000E+00 0.000E+00 -2.78 1 8 1 9.2 1 19. 41.8 0.00E+00 0.000E+00 0.00E+00 1.00 2.78 1 8 1 9.2 1 19. 41.8 0.00E+00 0.000E+00 0.00E+00 -2.78 1 8 1 9.2 1 19. 41.8 0.00E+00 0.000E+00 0.00E+00 0.0	! 64	! 24.2	108.	36.9	! 0.000E+00	0.000E+00	1 0.737
87 -9.78	! 65	! 23.9	119.	41.8	! 0.000E+00	0.000E+00	! 0.852 !
68 -74.3	! 66	! -12.0	89.6	-30.0	! 0.000E+00	0.000E+00	1 -26.0
69 -12.0 89.6 -30.0 0.000E+00 0.000E+00 26.0 170 -74.3 104. -28.9 0.000E+00 0.000E+00 4.56 171 39.0 116. -23.0 0.000E+00 0.000E+00 19.8 172 -11.2 126. -20.9 0.000E+00 0.000E+00 -0.994 173 -15.5 117. 26.0 0.000E+00 0.000E+00 0.000E+00 -0.994 173 -15.5 117. 26.0 0.000E+00 0.000E+00 0.000E+00 -2.71 174 -2.12 81.3 17.4 0.000E+00 0.000E+00 2.71 175 -8.75 26.2 -6.06 0.000E+00 0.000E+00 -5.81 177 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -1.29 178 19.2 118. -22.6 0.000E+00 0.000E+00 -1.8.8 178 19.2 118. -22.6 0.000E+00 0.000E+00 -1.8.8 178 19.2 118. -22.6 0.000E+00 0.000E+00 -10.1 18.8 18.0 -11.2 117. -23.0 0.000E+00 0.000E+00 -5.72 81 3.42 92.9 23.9 0.000E+00 0.000E+00 -5.72 81 82 8.38 95.3 28.7 0.000E+00 0.000E+00 1.62 83 58.0 105. 49.4 0.000E+00 0.000E+00 1.62 18.8 84 58.0 105. 49.4 0.000E+00 0.000E+00 2.78 84 58.0 105. 49.4 0.000E+00 0.000E+00 0.00E+00 1.7 86 23.9 119. 41.8 0.000E+00 0.000E+00 0.00E+00 1.7 85 15.7 19.7 117. 117. 117. 117. 117. 117. 118.8 119. 119. 111.8 0.000E+00 0.000E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.62 18.8 18.3 19.5 19.8 19.8 19.5 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.5 19.8	! 67	! -9.76 !	117.	-23.2	! 0.000E+00	0.000E+00	1 8.30 1
69 -12.0 89.6 -30.0 0.000E+00 0.000E+00 26.0 1 70 -74.3 104. -28.9 0.000E+00 0.000E+00 4.56 71 39.0 116. -23.0 0.000E+00 0.000E+00 -0.000E+00 19.8 72 -11.2 126. -20.9 0.000E+00 0.000E+00 -0.994 173 -15.5 117. 26.0 0.000E+00 0.000E+00 -0.000E+00 -0.994 173 -15.5 117. 26.0 0.000E+00 0.000E+00 0.000E+00 -2.71 174 -2.12 81.3 17.4 0.000E+00 0.000E+00 2.71 175 -8.75 26.2 -6.06 0.000E+00 0.000E+00 -1.29 176 -39.7 106. -28.2 0.000E+00 0.000E+00 -1.29 176 -39.7 106. -28.2 0.000E+00 0.000E+00 -1.88 178 19.2 118. -22.6 0.000E+00 0.000E+00 -1.88 178 19.2 118. -22.6 0.000E+00 0.000E+00 -1.88 178 19.2 118. -22.6 0.000E+00 0.000E+00 -10.1 180 -11.2 117. -23.0 0.000E+00 0.000E+00 -10.1 180 -11.2 117. -23.0 0.000E+00 0.000E+00 -10.1 180 -11.2 117. -23.0 0.000E+00 0.000E+00 -4.59 181 3.42 92.9 23.9 0.000E+00 0.000E+00 -4.59 182 8.38 95.3 28.7 0.000E+00 0.000E+00 -4.59 183 58.0 105. 49.4 0.000E+00 0.000E+00 -2.78 184 58.0 105. 49.4 0.000E+00 0.000E+00 2.78 184 58.0 105. 49.4 0.000E+00 0.000E+00 2.78 185 -27.9 66.5 1.98 0.000E+00 0.000E+00 0.000E+00 1.62 187 3.42 92.9 23.9 0.000E+00 0.000E+00 0.000E+00 1.62 187 3.42 92.9 23.9 0.000E+00 0.000E+00 0.000E+00 1.62 187 117 186 23.9 119. 41.8 0.000E+00 0.000E+00 0.000E+00 1.62 187 117 188 183	! 68	! -74.3	104.	-26.9	! 0.000E+00	0.000E+00	! -4.58 !
70 -74.3	! 69	! -12.0	89.6	-30.0	! 0.000E+00		
71 39.0 116 -23.0 0.000E+00 0.000E+00 -0.994 72 -11.2 126 -20.9 0.000E+00 0.000E+00 -0.994 73 -15.5 117 28.0 0.000E+00 0.000E+00 -0.994 73 -15.5 117 28.0 0.000E+00 0.000E+00 -0.994 73 -15.5 117 28.0 0.000E+00 0.000E+00 2.71 75 -8.75 26.2 -8.06 0.000E+00 0.000E+00 2.71 75 -8.75 26.2 -8.06 0.000E+00 0.000E+00 -1.29 76 -39.7 106 -26.2 0.000E+00 0.000E+00 -5.81 77 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -3.73 78 19.2 118 -22.6 0.000E+00 0.000E+00 -3.73 79 -15.5 86.1 6.52 0.000E+00 0.000E+00 -3.73 79 -15.5 86.1 6.52 0.000E+00 0.000E+00 -5.72 81 3.42 92.9 23.9 0.000E+00 0.000E+00 -4.59 82 8.38 95.3 26.7 0.000E+00 0.000E+00 -4.59 83 85.0 105 49.4 0.000E+00 0.000E+00 -2.78 84 58.0 105 49.4 0.000E+00 0.000E+00 -2.78 85 -27.9 86.5 1.98 0.000E+00 0.000E+00 -0.852 87 71.3 42 92.9 23.9 0.000E+00 0.000E+00 -0.852 87 3.42 92.9 23.9 0.000E+00 0.000E+00 -0.852 87 3.42 92.9 23.9 0.000E+00 0.000E+00 -0.737 88 85 3.42 92.9 23.9 0.000E+00 0.000E+00 -0.737 88 85 83 83	! 70	! -74.3	104.	-26.9	! 0.000E+00		
72 -11.2 126. -20.9 0.000E+00 0.000E+00 4.939E-15 73 -15.5 117. 26.0 0.000E+00 0.000E+00 4.939E-15 74 -2.12 81.3 17.4 0.000E+00 0.000E+00 2.71 75 -8.75 26.2 -6.06 0.000E+00 0.000E+00 -1.29 76 -39.7 106. -26.2 0.000E+00 0.000E+00 -5.81 77 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -5.81 77 -17.3 99.8 -27.5 0.000E+00 0.000E+00 -16.8 78 19.2 118. -22.6 0.000E+00 0.000E+00 -10.1 80 -11.2 117. -23.0 0.000E+00 0.000E+00 -10.1 80 -11.2 117. -23.0 0.000E+00 0.000E+00 -5.72 81 3.42 92.9 23.9 0.000E+00 0.000E+00 -4.59 82 8.38 95.3 26.7 0.000E+00 0.000E+00 1.62 83 58.0 105. 49.4 0.000E+00 0.000E+00 2.78 84 58.0 105. 49.4 0.000E+00 0.000E+00 2.78 84 58.0 105. 49.4 0.000E+00 0.000E+00 1.62 85 -27.9 66.5 1.98 0.000E+00 0.000E+00 1.7 86 23.9 119. 41.8 0.000E+00 0.000E+00 1.052 87 3.42 92.9 23.9 0.000E+00 0.000E+00 1.052 88 8.38 95.3 28.7 0.000E+00 0.000E+00 1.02 88 8.38 95.3 28.7 0.000E+00 0.000E+00 1.02 89 -15.5 66.1 6.52 0.000E+00 0.000E+00 1.152 90 24.2 106. 36.9 0.000E+00 0.000E+00 1.52 91 10.2 102. 29.8 0.000E+00 0.000E+00 1.52 92 53.1 96.8 44.3 0.000E+00 0.000E+00 1.52 93 18.2 114. -23.6 0.000E+00 0.000E+00 1.24 94 -9.26 24.5 -6.90 0.000E+00 0.000E+00 1.24 95 -11.3 121. -22.2 0.000E+00 0.000E+00 1.24 96 -20.1 110. 21.6 0.000E+00 0.000E+00 1.590 103 -39.7 106. -28.2 0.000E+00 0.000E+00 1.572 102 113.3 121. -22.2 0.000E+00 0.000E+00 1.581 104 18.2 114. -23.6 0.000E+00 0.000E+00 1.572 105 -1.1388E-04 -3.8394E-04 -8.023 -24.68 0.0000E+00 1.590 1 104 16.2 114. -23.6 0.000E+00 0.000E+00 1.580 1 14.188E-04	! 71	! 39.0	116.		! 0.000E+00		
73 -15.5							
74 -2.12							
75 -8.75							
76 -39.7							
77							
78 19.2							
79						· · · · · · · · · · · · · · ·	
80 -11.2							
81							
82 8.38							
83 58.0							
84 58.0							
85 -27.9							
86 23.9							
87							
88							
89							
90							
91 10.2							
92							
93							
94						-	
95							
96 -20.1							
97							
98	_						
99							
! 100 ! 19.2 ! 118. ! -22.6 ! 0.000E+00 ! 0.000E+00 ! 3.73 ! 101 ! -9.26 ! 24.5 ! -6.90 ! 0.000E+00 ! 0.000E+00 ! -1.24 ! 102 ! -11.3 ! 121. ! -22.2 ! 0.000E+00 ! 0.000E+00 ! -0.590 ! 103 ! -39.7 ! 106. ! -26.2 ! 0.000E+00 ! 0.000E+00 ! 5.81 ! 104 ! 16.2 ! 114. ! -23.6 ! 0.000E+00 ! 0.000E+00 ! -2.327E-14 ! 104 ! 16.2 ! 114. ! -23.6 ! 0.000E+00 ! 0.000E+00 ! -2.327E-14 ! 104 ! 16.2 ! 114. ! -23.6 ! 0.000E+00 ! 0.000E+00 ! -2.327E-14 ! 104 ! 16.2 ! 114. ! -23.6 ! 0.000E+00 ! 0.000E+00 ! -2.327E-14 ! 104 ! 16.2 ! 114. ! -23.6 ! 0.000E+00 ! 0.							
101 -9.26							
102							
103 -39.7							
104							
STRESS FORCE NODE X							
NODE	! 104	! 16.2	! 114.	! -23.6	! 0.000E+0	0 ! 0.000E+00	!-2.327E-14 !
NODE	!	~~~~~~					!
NODE	:			CARRAGA	non e-		!
1 ! -3.8394E-04 ! -2.4289E-04 ! 1.915 ! -44.57 ! 0.0000E+00 ! 2 ! -3.0053E-04 ! -3.0053E-04 ! 16.85 ! -52.27 ! 0.0000E+00 ! 3 ! -2.4289E-04 ! -3.8394E-04 ! -8.023 ! -24.66 ! 0.0000E+00 ! 4 ! 2.4289E-04 ! -3.8394E-04 ! 8.023 ! -24.66 ! 0.0000E+00 ! 5 ! -2.5711E-04 ! -1.1606E-04 ! 14.73 ! 33.91 ! (0000E+00 ! 6 ! -1.9947E-04 ! -1.9947E-04 ! -16.87 ! 52.66 ! 0.0000E+00 ! 7 ! -1.1606E-04 ! -2.5711E-04 ! -10.46 ! 35.70 ! 0.0000E+00 !	:			STRESS	FURCE		!
1 ! -3.8394E-04 ! -2.4289E-04 ! 1.915 ! -44.57 ! 0.0000E+00 ! 2 ! -3.0053E-04 ! -3.0053E-04 ! 16.65 ! -52.27 ! 0.0000E+00 ! 3 ! -2.4289E-04 ! -3.8394E-04 ! -8.023 ! -24.66 ! 0.0000E+00 ! 4 ! 2.4289E-04 ! -3.8394E-04 ! 8.023 ! -24.66 ! 0.0000E+00 ! 5 ! -2.5711E-04 ! -1.1606E-04 ! 14.73 ! 33.91 ! (0000E+00 ! 6 ! -1.9947E-04 ! -1.9947E-04 ! -16.87 ! 52.66 ! 0.0000E+00 ! 7 ! -1.1606E-04 ! -2.5711E-04 ! -10.46 ! 35.70 ! 0.0000E+00 !	:	1 4		•	W174 *		!
! 2 ! -3.0053E-04 ! -3.0053E-04 ! 16.65 ! -52.27 ! 0.0000E+00 ! ! 3 ! -2.4289E-04 ! -3.8394E-04 ! -8.023 ! -24.66 ! 0.0000E+00 ! ! 2 .4289E-04 ! -3.8394E-04 ! 8.023 ! -24.66 ! 0.0000E+00 ! ! 5 ! -2.5711E-04 ! -1.1606E-04 ! 14.73 ! 33.91 ! (0000E+00 ! ! 6 ! -1.9947E-04 ! -1.9947E-04 ! -16.87 ! 52.66 ! 0.0000E+00 ! ! 7 ! -1.1606E-04 ! -2.5711E-04 ! -10.46 ! 35.70 ! 0.0000E+00 !	: NUDE	X	ı Y	Ţ	FX !	FY!	FZ !
! 2 ! -3.0053E-04 ! -3.0053E-04 ! 16.65 ! -52.27 ! 0.0000E+00 ! ! 3 ! -2.4289E-04 ! -3.8394E-04 ! -8.023 ! -24.66 ! 0.0000E+00 ! ! 2 .4289E-04 ! -3.8394E-04 ! 8.023 ! -24.66 ! 0.0000E+00 ! ! 5 ! -2.5711E-04 ! -1.1606E-04 ! 14.73 ! 33.91 ! (0000E+00 ! ! 6 ! -1.9947E-04 ! -1.9947E-04 ! -16.87 ! 52.66 ! 0.0000E+00 ! ! 7 ! -1.1606E-04 ! -2.5711E-04 ! -10.46 ! 35.70 ! 0.0000E+00 !	!	1 _2 92049	-04 1 . 0 409	DE 04 !	1 015	44 27 .	0.0000
3 -2.4289E-04 -3.8394E-04 -8.023 -24.66 0.0000E+00 4 2.4289E-04 -3.8394E-04 8.023 -24.66 0.0000E+00 5 -2.5711E-04 -1.1606E-04 14.73 33.91 0.0000E+00 6 -1.9947E-04 -1.9947E-04 -16.87 52.66 0.0000E+00 7 -1.1606E-04 -2.5711E-04 -10.46 35.70 0.0000E+00							
1 4 1 2.4289E-04 1 -3.8394E-04 1 8.023 1 -24.86 1 0.0000E+00 1 5 1 -2.5711E-04 1 -1.1606E-04 1 14.73 1 33.91 1 0000E+00 1 6 1 -1.9947E-04 1 -1.9947E-04 1 -16.87 1 52.66 1 0.0000E+00 1 7 1 -1.1606E-04 1 -2.5711E-04 1 -10.46 1 35.70 1 0.0000E+00 1							
1 5 ! -2.5711E-04 ! -1.1606E-04 ! 14.73 ! 33.91 ! (0000E+00 ! 6 ! -1.9947E-04 ! -1.9947E-04 ! -16.87 ! 52.66 ! 0.0000E+00 ! 7 ! -1.1606E-04 ! -2.5711E-04 ! -10.46 ! 35.70 ! 0.0000E+00 !							
1 6 ! -1.9947E-04 ! -1.9947E-04 ! -18.87 ! 52.66 ! 0.0000E+00 ! 7 ! -1.1606E-04 ! -2.5711E-04 ! -10.46 ! 35.70 ! 0.0000E+00 !	•						
7 ! -1.1606E-04 ! -2.5711E-04 ! -10.46 ! 35.70 ! 0.0000E+00 !							
0 1 0 000 (0 0)							
	•	J. 6384 <u>0</u>	-04 -2.428	8D-04 ! ~	T.ATO	-44.0/	0.0000E+00

```
0.0000E+00 !
     3.0053E-04 ! -3.0053E-04 !
                                   -16.65
                                                 -52.27
      1.1606E-04 ! -2.5711E-04 !
                                    10.46
                                                  35.70
                                                                0.0000E+00 !
10 !
      O.COOOE+00 ! -2.8209E-04 !
                                  -4.7535E-06
                                                  53.08
                                                                0.0000E+00 !
                    0.0000E+00 !
                                                 1.8324E-07
                                                                0.0000E+00 f
  ! -2.8209E-04 !
                                   -5.002
                                                  33.91
                                                                0.0000E+00 !
     2.5711E-04 | -1.1606E-04 !
                                   -14.73
13
                                                                0.0000E+00 !
      1.9947E-04 ! -1.9947E-04 !
                                                  52.66
                                    16.87
14
                                                                0.0000E+00 !
                    1.1606E-04 !
                                    14.73
                                                 -33.91
15 ! -2.5711E-04 !
                                                                0.0000E+00 !
                    1.9947E-04 !
                                   -16.87
                                                 -52.66
16 ! -1.9947E-04 !
                                                 -1.8324E-07 !
                                                                0.0000E+00 !
17 ! 2.8209E-04 !
                    0.0000E+00 !
                                    5.002
                                                                0.0000E+00 !
  ! -3.8394E-04 !
                    2.4289E-04 !
                                    1.915
                                                  44.57
18
                    3.0053E-04
                                    16.65
                                                  52.27
                                                                0.0000E+00
19
  ! -3.0053E-04 !
                                                 -35.70
                                                                0.0000E+00
20 ! -1.1606E-04 !
                    2.5711E-04 !
                                   -10.46
                                                 -53.08
                                                                0.0000E+00
      0.0000E+00!
                     2.8209E-04!
                                   4.7535E-06
                                                 -52.66
                                                                0.0000E+00 !
22 !
      1.9947E-04 !
                     1.9947E-04 !
                                    16.87
                                                  -35.70
                                                                0.0000E+00 !
                     2.5711E-04 !
23 !
      1.1606E-04 !
                                    10.46
                                   -14.73
                                                 -33.91
                                                                0.0000E+00!
24 !
      2.5711E-04 !
                     1.1606E-04!
                     3.8394E-04!
                                   -8.023
                                                  24.66
                                                                0.0000E+00 !
25 ! -2.4289E-04 !
                                                  52.27
                                                                0.0000E+00!
26!
      3.0053E-04!
                     3.0053E-04!
                                   -16.65
                                                  24.66
                                                                0.0000E+00 !
27
      2.4289E-04 !
                     3.8394E-04 !
                                    8.023
                                                                0.0000E+00 !
      3.8394E-04!
                     2.4289E-04 !
                                   -1.915
                                                   44.57
```

******	*****	*****	*****	******	*****
	VA	CROSCOPIC ST	TRESS FIELD		!
	, MA	Chobout 10 b	ILESS PLEED		• 1
S(1,1) =	0.0000D+00	S(1,2) =	0.0000D+00	S(1,3) = 0.1000	D+03 !
! ` ` ` ` `		S(2,2) =	0.0000D+00	S(2,3) = 0.0000	D+00 !
!				S(3,3) = 0.0000	D+00 !
					!
! !	V	ACROSCOPIC S	STRAIN TENSOR	₹	! !
<u>.</u>		10110110110	JIMLIN IDNOOL		į
$! \mathbb{E}(1,1) =$	-0.2436D-02	E(1,2) =	-0.3604D-02	E(1,3) = 0.1113	D-01 !
!		E(2,2) =	0.0000D+00	E(2,3) = 0.0000	
!				E(3,3) = 0.0000	D+00 !
!					·!
: 1	v	ICROSCOPIC	STRESS FIELD		, '
i	A.	LORODOUI LO	PILITING LITTLE		• 1
! ELE ! S11	! S22	! \$33	! S23	! S13 !	S12 !
!! ! 1!-6.35	! -7.92	! 159.	1 0 000P.0	0 ! 0.000E+00 ! 6.2	! 210F_16
! 2!-19.8	! -8.08	! 159.	! 0.000E+0		
! 3!-26.4	! -3.32	! 160.	! 0.000E+0	· · · · · · · · · · · · · · · · · · ·	
! 4!-21.8	! -7.27	! 159.	! 0.000E+00		
! 5 -16.2	1 -7.57	! 159.	! 0.000E+0	0 ! 0.000E+00 ! -5.	35 !
! 6!-0.415	! -8.99	! 159.	! 0.000E+0		
! 7! 4.04	1 6.04	43.0	! 0.000E+0		
! 8!-6.35	! -7.92	! 159.	! 0.000E+0		80E-15 !
! 9!-7.49	! 4.88	! 38.2	1 0.000E+0		02E-15 !
! 10 ! -7.49	! 4.88	! 38.2	! 0.000E+0		73E-15 !
! 11 !-0.415 ! 12 ! 4.04	! -8.99	! 159.	! 0.000E+0	- ·	.05 1
! 12 ! 4.04 ! 13 ! 21.8	! 6.04 ! 8.32	! 43.0 ! 50.7	! 0.000E+0		.22 !
14 -6.74		1 34.4	! 0.000E+0		
15 3.64	1 3.34	41.8	! 0.000E+0		
! 16! -3.09	1 -1.62	1 37.4	1 0.000E+0		

1			-1.66	1 36.3	! 0.000E+00 !	0.000E+00	-5.74	
!			-7.85	30.4	! O.OOOE+OO !	0.000E+00	! -7.24 !	
L	19		-5.67		! 0.000E+00 !	0.000E+00	! -4.68 !	
1	20		4.18	42.6	! 0.000E+00 !	0.000E+00	! -1.38 !	
1	21	-21.8	-7.27	159.	! 0.000E+00 !	0.000E+00	1.17	,
1	22	-19.8	1 -8.08	159.		0.000E+00		
!	23	-26.4	! -3.32	! 160.		0.000E+00		
!	24	-16.2	! -7.57	! 159.	! 0.000E+00	0.000E+00		i
!	25	-10.9	! -5.67	! 32.9		0.000E+00		
!	26	4.68	! 4.18	42.6		0.000E+00		
!	27		! 2.20	46.9		0.000E+00		1
!	28	! 18.0	2.20	! 46.9		0.000E+00		
!		-6.04		! 36.3		0.000E+00		!
!		!-8.771E-02		40.8		0 000E+00		
!	31	! -3.45	! 3.12	! 39.1		.0.000E+00		!
!	32	! -7.21	! -9.31	! 159.		0.000E+00		
!	33	! -4.08	. 0.998	! 38.0		! 0.000E+00		
!	34	! -5.38	! -7.19	! 160.		0.000E+00		!
İ	35	! -4.08 ! -5.38 ! -14.5	! -7.19 ! -6.56 ! -7.97 ! -4.77 ! 8.32		! 0.000E+00			
į	36	! -17.7	! -7.97		! 0.000E+00			ļ
İ	37	! -35.3	! -4.77		! 0.000E+00			
į	38	! 21.8	! 8.32		! 0.000E+00			1
į	39	1 3.64	! 3.34 ! -5.77		! 0.000E+00			Ì
į		! -6.74	1 -5.77		! 0.000E+00			ì
į		! -15.4	! -7.85		1 0.000E+00			ì
i		! -3.09	! -1.62	97.4		! 0.000E+00		;
i		! -14.5	! -6.56	! 160.		! 0.000E+00		;
i		! -35.3	! -4.77	! 160.		! 0.000E+00		; ł
i		! -3.45	! 3.12				! 1.817E-15 !	1
i		!-8.771E-02			! 0.000E+00			; }
i		! -4.08	! 0.998	! 38.0		! 0.000E+00		; }
i		! -7.21	! -9.31		! 0.000E+00			; }
į			! -7.95				! 8.172E-15 !	i I
i			! -7.97		! 0.000E+00			, I
i			! -7.95				! -6.442E-15 !	; I
i			! -7.19		! 0.000E+00			;
i			! -7.97		! 0.000E+00			, I
i			! -7.95				! 0.904 !-6.154E-15 !	, 1
i					! 0.000E+00	! O.OOOE.OO		, I
i		!-8.771E-02		! 40.8	! 0.000E+00	! 0.000E+00	!-5.725E-16 !	, 1
j		! -7.21	! -9.31	! 159.		! 0.000E+00		
į		! -4.08	! 0.998	! 38.0	! C.000E+00			
i		! -6.38	! -7.19	! 160.	! 0.000E+00			, 1
į			! -7.95	! 159.		! 0.000E+00		; 1
i		! 21.8	! 8.32	! 50.7				
i		! -6.74	! -5.77	1 34.4		! 0.000E+00		<u> </u>
i		! -15.4	! -7.85	! 30.4		! 0.000E+00		
į		! 3.64	! 3.34	! 41.8		! 0.000E+00		ļ
i		! -3.09	! -1.62	: 41.8 : 37.4		! 0.000E+00		
i		2	! -6.56	1 160.		! 0.000E+00		
i		_	! -7.97			! 0.000E+00		ļ
!		! -35.3	! -1.97 ! -4.77	! 159. ! 160.		! 0.000E+00		ļ
į		! -14.5	1 -6.56	! 160. ! 160.		! 0.000E+00		ļ.
i		! -35.3	1 -4.77	! 160. ! 160.		! 0.000E+00		1
į		1 -5.38	! -7.19			! 0.000E+00		Ţ
į		! -7.21	! -9.31	! 160. ! 159.		! 0.000E+00		Ī
į		1 -3.45	3.12	1 39.1		1 0.000E+00		i
i		!-8.771E-02	1 4.38	40.8		1 0.000E+00		į
i		1 -4.08	1 0.998	1 38.0		! 0.000E+00		į
i		1 -26.4	1 -3.32	1 160.		1 0.000E+00		l
-			·	. 100.	: 0.000±00	! 0.000E+00	1 10.4	ı

1			21.8		-7.		159.			! 0.000E+0		1.17	!
1			16.2		-7.		159.			1 0.000E+0		5.35	!
ţ			6.04		-1.		36.3			! 0.000E+0			!
1	80 !	! -	19.8	!	-8.	08	159.	1 0.000)E+00	! 0.000E+0	00 !	1.35	!
Į	81 !	! -	10.9	!	-5.	67	32.9	1 0.000)E+00	! 0.000E+0	00!	4.68	1
ţ			4.68	1	4.		42.6			! 0.000E+0			!
1	83 !	!	18.0	!	2.		46.9	1 0.000)E+00	1 0.000E+0	00!	1.10	1
į	84	!	18.0	!	2.	20	46.9	1 0.000	DE+00	! 0.000E+0	00!	-1.10	1
1	85	! -	15.4	t	-7.	85	30.4)E+00	! 0.000E+0	00 !	-7.24	!
!			3.09		-1.		37.4			! 0.000E+0			1
!			10.9	!	-5.		32.9)E+00	! 0.000E+0	00!	-4.68	İ
į			4.68	!		18	42.6			! 0.000E+0			!
!	89 !	! -	6.04	!	-1.	66	36.3	! 0.000	DE+00	! 0.000E+0	00!	-5.74	!
!	9C !	į	3.64	!	3.	34	41.8	! 0.000	DE+00	! 0.000E+0	00!	-7.50	!
!	91	! -	6.74	!	-5.	77	34.4	! 0.000	DE+00	! 0.000E+0	00!	-5.16	!
!	92 !	!	21.8	!	8.	32	50.7	! 0.000	DE+00	! 0.000E+0	00!	-1.03	!
!	93	! -	6.35	!	-7.	92	159.		DE+00	! 0.000E+0	00!-	-1.578E-14	!
į	94	!	4.04	!	6.	04	43.0	! 0.000	DE+00	! 0.000E+0	00!	1.22	!
Į	95	! -0	.415	!	-8.	88	159.	! 0.000	DE+00	! 0.000E+0	00!	3.05	!
į	96	! -	7.49		4.	88	38.2	! 0.000	DE+00	! 0.000E+0	00!	1.828E-15	!
į	97	! -	7.49	!	4.	88	38.2	! 0.000	DE+00	! 0.000E+0	00!	2.157E-15	!
į			21.8		-7.	27	159.	! 0.000	DE+00	! 0.000E+0	00!	-1.17	!
Į	99	! -	19.8	9	-8.	08	159.	! 0.000	DE+00	! 0.000E+0	00!	-1.35	!
į	100	! -	16.2	!	-7.	57	! 159.	! 0.000	DE+00	! 0.000E+0	00!	-5.35	!
!	101				6.	04	43.0	! 0.000	DE+00	! 0.000E+0	00!	-1.22	į
į	102	!-0	.415	!	-8.	99	! 159.	! 0.000	DE+00	! 0.000E+0	00!	-3.05	!
!	103				-3.	.32	! 160.	! 0.000	OE+00	! 0.000E+0	00!	-10.4	!
!	104	! -	6.35	!	-7.	.92	! 159.	! 0.000	OE+00	! 0.000E+0	00 !-	-1.422E-14	!
!							STRE	SS FORCE					!!!!
!	NODE	! 		X	!	Y	!	FX	!	FY	!	FZ	!
!						-2.428			!	6.485	! (0.0000E+00	!
ļ								10.16	!	2.168	! (0.0000E+00	į
!								7.597		4.298		0.0000E+00	
		4!				-3.839			!	4.298	! (0.0000E+00	!
3		5!				-1.160				5.050			!
3	_	6!		9947E-						2.176		0.0000E+00	
		7!				-2.571		_		4.417		0.0000E+00	!
}		8 !				-2.428				6.485			!
		9!				-3.005		· · · · · ·		2.168		0.0000E+00	Ï
	! 10 ! 1:					! -2.571 ! -2.820				4.417		0.0000E+00	!
	1			8209E						.4535		0.0000E+00	!
	_	3 !		5711E			OE+00!	_		7359E-08		00+30000.0	!
		4				! -1.100 ! -1.994				5.050		0.0000E+00	!
1		5		5711E						2.176		0.0000E+00	1
		6		9947E			6E-04 ! 7E-04 !			5.050			!
		7		8209E			7E-04 0E+00			2.176			!
	_	8		8394E			9E-04 !			3.7359E-08		- · - · · 	!
		9		0053E			3E-04			·6.485			!
	_	o i		1606E			3E-04 ! 1E-04 !			2.168 4.417			!
ļ	2			0000E			9E-04 !			4.417).4535		0.0000E+00 0.0000E+00	!
į	_	2		9947E			7E-04			2.176		0.0000E+00	1
1		3		1606E			1E-04			4.417		0.0000E+00	1
į													
	_	4	2.	5711K	-04	1.180	8K-04 1	2 000	1	5 በ 50	, ,	U UUUUU 11 1	
!	2	4 5	_	5711E- 4289E-			6E-04 4E-04			5.050 4.298		0.0000E+00	1
	2		-2.	6711E- 4289E- 0053E-	-04	3.839	6E-04 4E-04 3E-04	7.597	1 -	5.050 4.298 2.168	1	0.0000E+00 0.0000E+00 0.0000E+00	1

```
27 ! 2.4289E-04 ! 3.8394E-04 ! -7.597 ! -4.298 ! 0.0000E+00 ! 98 ! 3.8394E-04 ! -6.099 ! -6.485 ! 0.0000E+00 !
                                  MACROSCOPIC STRESS FIELD
                                                                     S(1,3) = 0.0000D+00
    S(1,1) = 0.0000D+00
                                      S(1,2) =
                                                     0.0000D+00
                                                                       S(2,3) = 0.0000D+00
                                      S(2,2) =
                                                     0.1000D+03
                                                                        S(3,3) =
                                                                                       0.0000D+00
                                  MACROSCOPIC STRAIN TENSOR
                                                                       E(1,3) = 0.0000D+00
    E(1,1) = 0.0000D+00
                                    E(1,2) = 0.0000D+00
                                                                     E(2,3) = 0.0000D+00
                                     E(2,2) = 0.2880D-01
                                                                        \mathbf{E}(3,3) =
                                                                                       0.0000D+00
                                  MICROSCOPIC STRESS FIELD
                                                                       ! S13 ! S12
 ELE!
             S11
                      ! S22
                                        !
                                               S33
                                                             S23
     1 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 140.
                                                                      ! 3.422E-04 ! 0.000E+00
    7 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 10.0
8 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 140.
                                                                       ! 2.677E-05 ! 0.000E+00
                                                                        !-3.229E-04 ! 0.000E+00
     9 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 70.9
                                                                        ! 1.777E-05 ! 0.000E+00 !
   10 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 70.9
                                                                       !-1.599E-05 ! 0.000E+00 !
18 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 64.1 ! 80.3
                                                                                        ! 0.000E+00 !
   18 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 64.1 ! 80.3
19 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 67.9 ! 50.1
20 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 68.5 ! 4.34
21 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 117. ! -28.0
22 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 146. ! -12.0
                                                                                       ! 0.000E+00
                                                                                       ! 0.000E+00 !
                                                                                       ! 0.000E+00 !
                                                                                        ! 0.000E+00 !
    23 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 119.
                                                                      ! -24.8
                                                                                        ! 0.000E+00 !
   24 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 144. ! -24.4 ! 0.000E+00 ! 25 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 67.9 ! -50.1 ! 0.000E+00 ! 26 ! 0.000E+00 ! 0.000E+00 ! 66.5 ! -4.34 ! 0.000E+00 ! 27 ! 0.000E+00 ! 0.000E+00 ! 76.3 ! 15.6 ! 0.000E+00 ! 28 ! 0.000E+00 ! 0.000E+00 ! 76.3 ! -15.6 ! 0.000E+00 ! 28 ! 0.000E+00 ! 0.000E+00 ! 76.3 ! -15.6 ! 0.000E+00 ! 29 ! 0.000E+00 ! 0.000E+00 ! 53.3 ! -64.7 ! 0.000E+00 ! 30 ! 0.000E+00 ! 0.000E+00 ! 42.6 ! 28.3 ! 0.000E+00 ! 31 ! 0.000E+00 ! 0.000E+00 ! 70.9 ! 1.196E-05 ! 0.000E+00 ! 32 ! 0.000E+00 ! 0.000E+00 ! 167
    32 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 !
                                                           157.
                                                                       ! 2.557E-05 ! 0.000E+00 !
                                                                        ! 1.891E-05 ! 0.000E+00 !
    33 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 !
                                                           10.0
 ! 34 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 144.
                                                                        1 24.4 ! 0.000E+00 !
```

1	3Š !	0.000E+00 !	0.000E+00	0.000E+00 !	117.	27.9 !	0.000E+00 !
1	36 !	0.000E+00 !	0.000E+00	0.000E+00 !	146.	12.0	0.000E+00 !
r	37 !	0.000E+00 !	0.000E+00	0.000E+00 !	119.	24.8	0.000E+00 !
!	38 !	0.000E+00 1	0.000E+00	0.000E+00 !	76.3	-15.6	0.000E+00 !
1	39 !	0.000E+00 !	0.000E+00	0.000E+00 !	72.3	-45.7	0.000E+00 !
1	40 !	0.000E+00 !	0.000E+00	0.000E+00 1	88.4	-29.6	0.000E+00 !
!	41 !	0.000E+00 !	0.000E+00	0.000E+00 1	64.1	-80.3	0.000E+00 1
1	42 !	0.000E+00 !	0.000E+00	0.000E+00 !	87.9	-56.5	0.000E+00 !
!	43	0.000E+00 !	0.000E+00	0.000E+00 !	117.	-27.9	0.000E+00 !
İ	44	0.000E+00	0.000E+00	0.000E+00 !	119.	-24.8	0.000E+00 !
1	45	0.000E+00	0.000E+00	0.000E+00 !	70.9	1.196E-05	0.000E+00 !
1	46	0.000E+00	0.000E+00	0.000E+00 !	42.6	-28.3	0.000E+00 !
1	47	0.000E+00 !	0.000E+00	0.000E+00 !	10.0	1.891E-05	0.000E+00 !
İ	48	0.000E+00 !	0.000E+00	0.000E+00 !	157.	2.557E-05	0.000E+00 !
į	49	0.000E+00	0.000E+00	0.000E+00 !	140.	-2.326E-05	0.000E+00 !
Ì	50	0.000E+00	0.000E+00	0.000E+00 !	146.	-12.0	0.000E+00 !
į	51	0.000E+00	0.000E+00	0.000E+00 !	140.	-2.326E-05	0.000E+00 !
į	52	0.000E+00	0.000E+00	0.000E+00 !	144.	-24.4	0.000E+00 !
i	53	0.000E+00	0.000E+00	0.000E+00 !	146.	-12.0	0.000E+00 !
i	54	0.000E+00	0.000E+00	0.000E+00 !	140.	-4.732E-05	0.000E+00 !
i	55	0.000E+00	0.000E+00	0.000E+00 !	70.9	-1.082E-05	0.000E+00 !
i	56	0.000E+00	0.000E+00	! O.OOOE+OO !	42.6	-1.08211-00 : ! -28.3	0.000E+00 !
i	57	0.000E+00	0.000E+00	0.000E+00 !		-3.719E-05	0.000E+00 !
i	58	0.000E+00	0.000E+00	0.000E+00 !	10.0	-1.648E-05	0.000E+00 !
i	59	0.000E+00	0.000E+00	! 0.000E+00 !	144.	-24.4	0.000E+00 !
i	60	0.000E+00	0.000E+00	! 0.000E+00 !	140.	-4.732E-05	0.000E+00 !
i	61	0.000E+00	0.000E+00	! 0.000E+00 !	76.3	! -15.6	0.000E+00 !
i	62	0.000E+00	0.000E+00	! 0.000E+00 !	70.3 88.4	! -18.6 ! -29.6	0.000E+00 !
i	63	0.000E+00	0.000E+00	! 0.000E+00 !	64.1	! -29.6 ! -80.3	0.000E+00 !
i	64	0.000E+00	0.000E+00	! 0.000E+00 !	72.3	! -45.7	0.000E+00 !
i	65	0.000E+00	0.000E+00	! 0.000E+00 !	87.9	! -56.5	0.000E+00 !
i	66	0.000E+00	0.000E+00	! 0.000E+00 !	117.	! -30.5 ! -27.9	0.000E+00 !
i	67	0.000E+00	0.000E+00	! 0.000E+00 !	146.	! -27.9 ! 12.0	0.000E+00 !
i	68	0.000E+00	0.000E+00	! 0.000E+00 !	119.	. 12.0 ! 24.8	0.000E+00 !
i	69	0.000E+00	! 0.000E+00	! 0.000E+00 !	117.	! 27.9	0.000E+00 !
i	70	! 0.000E+00	0.000E+00	! 0.000E+00 !	117.	. 27.9 ! -24.8	0.000E+00 !
i	71	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	118. 144.	! 24.4	0.000E+00 !
į	72	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	157.	!-3.719E-05	0.000E+00 !
į		! 0.000E+00	•	! 0.000E+00 !	70.9	!-1.082E-05	0.000E+00 !
İ	74	! 0.000E+00	• -	! 0.000E+00 !	42.6	! 28.3	0.000E+00 !
Ì		• -	! 0.000E+00	! 0.000E+00 !	10.0	!-1.648E-05	0.000E+00 !
1			! 0.000E+00	! 0.000E+00 !	119.	! -24.8	0.000E+00 !
!	77		! 0.000E+00	! 0.000E+00 !	117.	! -27.9	! 0.000E+00 !
!	78	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	144.	! -24.4	! 0.000E+00 !
!	79	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	53.3	! -64.7	0.000E+00 !
!	80	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	146.	! -12.0	. 0.000E+00 !
!	81	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	67.9	! -50.1	! 0.000E+00 !
į	82	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	66.5	! -4.34	! 0.000E+00 !
!	83	! 0.000E+00	! 0.000E+00	1 0.000E+00 1	76.3	! -15.6	1 0.000E+00 1
į	84	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	76.3	! 15.6	! 0.000E+00 !
!	85	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	64.1	! 80.3	! 0.000E+00 !
!	86	1 0.000E+00	! 0.000E+00	! 0.000E+00 !	87.9	! 56.5	! 0.000E+00 !
Į.	87	! 0.000E+00	! 0.000E+00	! 0.000E+00 !	67.9	! 50.1	! 0.000E+00 !
!			! 0.000E+00	! 0.000E+00 1	66.5	! 4.34	! 0.000E+00 !
!				! 0.000E+00 !	53.3	1 64.7	! 0.000E+00 !
ļ				! 0.000E+00 !	72.3	1 45.7	! 0.000E+00 !
ļ	91			! 0.000E+00 !	88.4	1 29.6	! 0.000E+00 !
ļ		! 0.000E+00	! 0.000E+00	1 0.000E+00 1	76.3	1 15.6	! 0.000E+00 !
1		! 0.000E+00		1 0.000E+00 !	140 .	! 3.422E-04	! 0.000E+00 !
I	94	! 0.000E+00	1 0.000E+00	! 0.000E+00 !	10.0	! 2.677E-05	! 0.000E+00 !

```
! 1.433E-04 ! 0.000E+00 !
  95 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 157.
  96 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 70.9
                                                  ! 1.777E-05 ! 0.000E+00 !
                                                  !-1.599E-05 ! 0.000E+00 !
  97 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 70.9
  98 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 117.
                                                              ! 0.000E+00 !
                                                 ! 27.9
 99 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 !
                                        146.
                                                 ! 12.0
                                                              ! 0.000E+00 !
                                                              ! 0.000E+00 !
                                                 ! 24.4
! 100 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 !
                                         144.
                                                 !-2.960E-05 ! 0.000E+00 !
! 101 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 10.0
! 102 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 157.
                                                  !-1.386E-04 ! 0.000E+00 !
! 103 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 119.
                                                  ! 24.8 ! 0.000E+00 !
! 104 ! 0.000E+00 ! 0.000E+00 ! 0.000E+00 ! 140.
                                                   !-3.229E-04 ! 0.000E+00
                               STRESS FORCE
                                                    FY
                                       FX
     1 ! -3.8394E-04 ! -2.4289E-04 ! 0.0000E+00 ! 0.0000E+00 ! -57.43
     2 ! -3.0053E-04 ! -3.0053E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                              -63.63
     3 ! -2.4289E-04 ! -3.8394E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                               -42.25
   4 ! 2.4289E-04 ! -3.8394E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                              -42.25
     5 ! -2.5711E-04 ! -1.1806E-04 ! 0.0000E+00 ! 0.0000E+00 !
     6!-1.9947E-04!-1.9947E-04! 0.0000E+00! 0.0000E+00! 63.63
    7 ! -1.1606E-04 ! -2.5711E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                               57.43
    8 ! 3.8394E-04 ! -2.4289E-04 ! 0.0000E+00 ! 0.0000E+00 ! -57.43
    9 ! 3.0053E-04 ! -3.0053E-04 ! 0.0000E+00 ! 0.0000E+00 ! -63.63
    10 ! 1.1606E-04 ! -2.5711E-04 ! 0.0000E+00 ! 0.0000E+00 ! 57.43
         0.0000E+00 ! -2.8209E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                               46.12
    11!
                      0.0000E+00 ! 0.0000E+00 ! 0.0000E+00 !
                                                               2.3485E-05
    12 ! -2.8209E-04 !
    13 ! 2.5711E-04 ! -1.1606E-04 ! 0.0000E+00 ! 0.0000E+00 ! 42.25
    14 ! 1.9947E-04 ! -1.9947E-04 ! 0.0000E+00 ! 0.0000E+00 ! 63.63
     15 ! -2.5711E-04 !
                       1.1606E-04 ! 0.0000E+00 ! 0.0000E+00 ! -42.25
                       1.9947E-04 ! 0.0000E+00 ! 0.0000E+00 ! -63.63
    16! -1.9947E-04!
    17 ! 2.8209E-04 ! 0.0000E+00 ! 0.0000E+00 ! 0.0000E+00 !
                                                               2.5640E-05
                                                               57.43
    18 ! -3.8394E-04 ! 2.4289E-04 ! 0.0000E+00 ! 0.0000E+00 !
                       3.0053E-04 ! 0.0000E+00 ! 0.0000E+00 !
     19 ! -3.0053E-04 !
                                                               63.63
                        2.5711E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                               -57.43
     20 ! -1.1606E-04 !
          0.0000E+00 ! 2.8209E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                               -46.12
     21 !
                      1.9947E-04 ! 0.0000E+00 ! 0.0000E+00 ! -63.63
     22 !
          1.9947E-04!
     23 !
         1.1606E-04 !
                        2.5711E-04 ! 0.0000E+00 ! 0.0000E+00 ! -57.43
     24 ! 2.5711E-04 !
                       1.1606E-04 ! 0.0000E+00 ! 0.0000E+00 ! -42.25
     25 ! -2.4289E-04 !
                        3.8394E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                               42.25
                       3.0053E-04 ! 0.0000E+00 ! 0.0000E+00 !
                                                                63.63
     26 ! 3.0053E-04 !
                                                  0.0000E+00!
     27 ! 2.4289E-04 !
                        3.8394E-04 ! 0.0000E+00 !
                                                                42.25
     28 ! 3.8394E-04 !
                        2.4289E-04!
                                     0.0000E+00 !
                                                  0.0000E+00!
                         MACROSCOPIC STRESS FIELD
```

```
MACROSCOPIC STRESS FIELD

S(1,1) = 0.0000D+00 \quad S(1,2) = 0.0000D+00 \quad S(1,3) = 0.0000D+00 \\ S(2,2) = 0.0000D+00 \quad S(2,3) = 0.1000D+03 \\ S(3,3) = 0.0000D+00 \\ \hline \\ MACROSCOPIC STRAIN TENSOR

E(1,1) = 0.0000D+00 \quad E(1,2) = 0.0000D+00 \quad E(1,3) = 0.0000D+00
```

!		E((2,2) = 0	.0000D+00	E(2,3) = E(3,3) =	0.2655D-01 ! 0.0000D+00 !
1		MICRO	SCOPIC ST	RESS FIELD		i 1
ELE	S11	! S22 !	S33	! S23	! S13	! S12 !
! 1	.000E+00				! 128.	! 0.000E+00 !
! 2				! 11.6	! 150.	! 0.000E+00 !
! 3				!-2.276E-05	! 176.	! 0.000E+00 !
! 4 ! 5	! 0.000E+00 ! 0.000E+00	! 0.000E+00 ! ! 0.000E+00 !	0.000E+00		! 148. ! 119.	! 0.000E+00 ! ! 0.000E+00 !
! 6	! 0.000E+00	! 0.000E+00 !	0.000E+00		! 114.	! 0.000E+00 !
1 7	! 0.000E+00	! 0.000E+00	0.000E+00	! 16.6	175.3	! 0.000E+00 !
! 8	! 0.000E+00	! 0.000E+00	0.000E+00	!-4.863E-05	! 128.	! 0.000E+00 !
! 9	! 0.000E+00	! 0.000E+00	0.000E+00	!-1.410E-06	! 69.5	! 0.000E+00 !
! 10	! 0.000E+00	! 0.000E+00	0.000E+00	!-1.410E-06	! 69.5	! 0.000E+00 !
! 11	! 0.000E+00	! O.000E+00	0.000E+00	! -19.1	! 114.	! 0.000E+00 !
! 12	! 0.000E+00	! 0.000E+00	! 0.000E+00	! -16.6	1 75.3	! 0.000E+00 !
	! 0.000E+00	! 0.000E+00	0.000E+00	! 8.165E-06	! 5.90	! 0.000E+00 !
! 14	! 0.000E+00	! 0.000E+00	0.000E+00	! 52.4	! 66.3	! 0.000E+00 !
! 15	! 0.000E+00	! 0.000E+00	0.000E+00		! 51.1	! 0.000E+00 !
	! 0.000E+00	! 0.000E+00	0.000E+00		! 62.6	! 0.000E+00 !
•	! 0.000E+00 ! 0.000E+00	! 0.000E+00 ! 0.000E+00	0.000E+00		! 71.2	! 0.000E+00 !
	• -	! 0.000E+00	0.000E+00		! 87.8	! 0.000E+00 !
		! 0.000E+00	. 0.000E+00		! 87.8 ! 40.0	! 0.000E+00 ! ! 0.000E+00 !
	•	! 0.000E+00		: 29.5 ! -14.5	! 40.0	! 0.000E+00 !
	•	! 0.000E+00	! 0.000E+00		! 150.	! 0.000E+00 !
		! 0.000E+00	0.000E+00		! 176.	! 0.000E+00 !
! 24	•	! 0.000E+00	0.000E+00	! ~16.4	! 119.	! 0.000E+00 !
! 25	! 0.000E+00	! 0.000E+00	! 0.000E+00	! ~30.9	! 87.8	! 0.000E+00 !
! 26	! 0.000E+00	! 0.000E+00	! 0.000E+00	! ~29.5	! 40.0	! 0.000E+00 !
! 27	! 0.000E+00	! 0.000E+00	! 0.000E+00	!-2.061E-06		! 0.000E+00 !
! 28	! 0.000E+00	! 0.000E+00	! 0.000E+00		! 5.90	! 0.000E+00 !
! 29	! 0.000E+00	! 0.000E+00	0.000E+00	! -47.5	! 71.2	! 0.000E+00 !
! 30	! 0.000E+00	! 0.000E+00	! 0.000E+00		! 64.9	! 0.000E+00 !
! 31 ! 32	! 0.000E+00 ! 0.000E+00	! 0.000E+00 ! 0.000E+00	! 0.000E+00		! 69.5	! 0.000E+00 !
! 33		! 0.000E+00	! 0.000E+00 ! 0.000E+00		! 114. ! 75.3	! 0.000E+00 !
! 34		_	! 0.000E+00		! 119.	! 0.000E+00 ! ! 0.000E+00 !
! 35			! 0.000E+00		! 148.	! 0.000E+00 !
_		! 0.000E+00	! 0.000E+00		! 150.	! 0.000E+00 !
! 37			! 0.000E+00			! 0.000E+00 !
		! 0.000E+00	! 0.000E+00	! 8.165E-06		! 0.000E+00 !
			! 0.000E+00	! -67.6	! 51.1	! 0.000E+00 !
		! 0.000E+00			! 66.3	! 0.000E+00 !
			! 0.000E+00		! 87.8	! 0.000E+00 !
! 42		! 0.000E+00			! 62.6	! 0.000E+00 !
! 43 ! 44		! 0.000E+00			! 148.	! 0.000E+00 !
1 45		! 0.000E+00 ! 0.000E+00				! 0.000E+00 !
•		! 0.000E+00			! 69.5 ! 64.9	! 0.000E+00 ! ! 0.000E+00 !
47		! 0.000E+00			1 04.9	! 0.000E+00 !
! 48		! 0.000E+00			! 114.	! 0.000E+00 !
		1 0.000E+00				! 0.000E+00 !
1 50	! 0.000E+00	! 0.000E+00			1 150.	! 0.000E+00 !
51	! 0.000E+00	! 0.000E+00	! 0.000E+00	! 4.557E-05		! 0.000E+00 !
! 52	! 0.000E+00	1 0.000E+00	! 0.000E+00	! -16.4	! 119.	1 0.000E+00 1

53 !	0.000E+00 !	0.000E+00 !	0.000E+00 !	-11.6	150.	! 0.000E+00
54 !	0.000E+00 !	0.000E+00!	0.000E+00 !	4.557E-05	128.	! 0.000E+00
55 !	0.000E+00!	0.000E+00!	0.000E+00	9.762E-06	69.5	! 0.000E+00
56 !	0.000E+00 !	0.000E+00!	0.000E+00 !	-4.61	64.9	! 0.000E+00
57 !	0.000E+00!	0.000E+00 !	0.000E+00	-19.1	114.	! 0.000E+00
58 !	0.000E+00 !	0.000E+00!	0.000E+00	-16.6	75.3	! 0.000E+00
59 !	0.000E+00!	0.000E+00 !	0.00E+00	-16.4	119.	! 0.000E+00
60 !	0.000E+00!	0.000E+00 !	0.000E+00	7.838E-05	128.	! 0.000E+00
61 !	0.000E+00 !	0.000E+00 !		-1.304E-05	5.90	! 0.000E+00
62!	0.000E+00!	0.000E+00 !	0.000E+00	-52.4	66.3	! 0.000E+00
63 !	0.000E+00 !	0.000E+00 !		-59.0	87.8	! 0.000E+00
64!	0.000E+00!	0.000E+00 !		-67.6	51.1	! 0.000E+00
65 !	0.000E+00 !	0.000E+00 !		-84.2	62.6	! 0.000E+00
66 !	0.000E+00 !	0.000E+00 !		-14.5	148.	! 0.000E+00
67!	0.000E+00 !			! 11.6	150.	.00+30C0.0 !
68 !	0.000E+00 !			! 4.256E-05	176.	! 0.000E+00
69 !	0.000E+00 !			! 14.5	148.	! 0.000E+00
70!	0.000E+00 !	0.000E+00		! 4.256E-05	176.	! 0.000E+00
71 !	0.000E+00 !	0.000E+00		! 16.4	! 119.	! 0.000E+00
72 !	0.000E+00	0.000E+00		! 19.1 ! 7.01EP.06	! 114.	! 0.000E+00
73!	0.000E+00	0.000E+00		!-7.915E-06	9.5	! 0.000E+00
74!	0.000E+00	! 0.000E+00		! 4.61	94.9	! 0.000E+00
75 !	0.000E+00	! 0.000E+00 ! 0.000E+00	! 0.000E+00 ! 0.000E+00	! 16.6 ! 2.883E-05	! 75.3 ! 176.	! 0.000E+00 ! 0.000E+00
76 !	0.000E+00	! 0.000E+00 ! 0.000E+00	! 0.000E+00	! 2.883E-05 ! -14.5	! 176. ! 148.	! 0.000E+00
77 !	! 0.000E+00 ! ! 0.000E+00	! 0.000E+00	! 0.000E+00	! -14.5 ! -16.4	! 148. ! 119.	! 0.000E+00
78 ! 79 !	0.000E+00	! 0.000E+00	! 0.000E+00	! -10.4 ! -47.5	! 119. ! 71.2	! 0.000E+00
80 !	0.000E+00	! 0.000E+00	! 0.000E+00	! -47.5 ! -11.6	! 150.	! 0.000E+00
81 !	0.000E+00	! 0.000E+00	! 0.000E+00	! -30.9	! 150. ! 87.8	! 0.000E+00
82	. 0.000E+00	! 0.000E+00	! 0.000E+00	! -29.5	! 40.0	! 0.000E+00
83	0.000E+00	! 0.000E+00		!-3.313E-06	1 5.90	! 0.000E+00
84	0.000E+00	! 0.000E+00		!-3.313E-06	! 5.90 ! 5.90	! 0.000E+00
85	0.000E+00	! 0.000E+00	! 0.000E+00	! 59.0	! 87.8	! 0.000E+00
86	. 0.000E+00	! 0.000E+00	! 0.000E+00	! 84.2	! 62.6	! 0.000E+00
87	! 0.000E+00	! 0.000E+00	! 0.000E+00	! 30.9	! 87.8	! 0.000E+00
88	! 0.000E+00	! 0.000E+00	! 0.000E+00	! 29.5	! 40.0	! 0.000E+00
89	. 0.000E+00	! 0.000E+00	! 0.000E+00	! 47.5	1 71.2	! 0.000E+00
		! 0.000E+00			! 51.1	! 0.000E+00
		! 0.000E+00			! 66.3	! 0.000E+00
		! 0.000E+00				! 0.000E+00
		! 0.000E+00				! 0.000E+00
		! 0.000E+00			1 75.3	! 0.000E+00
		! 0.000E+00			! 114.	! 0.000E+00
		! 0.000E+00				! 0.000E+00
		! 0.000E+00				! 0.000E+00
		! 0.000E+00			! 148.	! 0.000E+00
		! 0.000E+00			! 150.	! 0.000E+00
		! 0.000E+00				! 0.000E+00
		! 0.000E+00				! 0.000E+00
102	! 0.000E+00	! 0.000E+00	! 0.000E+00	! 19.1	! 114.	! 0.000E+00
103	! 0.000E+00	! 0.000E+00	! 0.000E+00	! 2.883E-05	! 176.	! 0.000E+00
104	! 0.000E+00	! 0.000E+00	! 0.000E+00	! 7.928E-05	! 128.	! 0.000E+00
				ORCE		
NODE	! x	! Y	1	FX !	FY	! FZ
		-04 ! -2.428 -04 ! -3.005		0000E+00 ! 0		

```
-57.69
3 ! -2.4289E-04 ! -3.8394E-04 !
                                 0.0000E+00!
                                              0.0000E+00 !
     2.4289E-04 ! -3.8394E-04 !
                                 0.0000E+00 !
                                               0.0000E+00 !
                                               0.0000E+00
                                                               57.69
                                 0.0000E+00!
  ! -2.5711E-04 ! -1.1606E-04 !
                                 0.0000E+00 !
                                               0.0000E+00
                                                               65.24
  ! -1.9947E-04 ! -1.9947E-04 !
                                 0.0000E+00!
                                               0.0000E+00 !
                                                               43.23
    -1.1606E-04 ! -2.5711E-04 !
                                               0.0000E+00 !
                                                               43.23
     3.8394E-04 ! -2.4289E-04 !
                                 0.0000E+00 !
                                                               65.24
     3.0053E-04 ! -3.0053E-04 !
                                 0.0000E+00!
                                               0.0000E+00!
                                 0.0000E+00!
                                               0.0000E+00!
                                                              -43.23
     1.1606E-04 ! -2.5711E-04 !
10 !
                                                              1.1998E-05
     0.0000E+00 ! -2.8209E-04 !
                                 0.0000E+00!
                                               0.0000E+00!
                                 0.0000E+00!
                                               0.0000E+00!
                                                              46.19
                   0.0000E+00 1
12 ! -2.8209E-04 !
     2.5711E-04 ! -1.1606E-04 !
                                               0.0000E+00!
                                                              -57.69
                                 0.0000E+00!
                                                              -65.24
                                 0.0000E+00
                                               0.0000E+00
     1.9947E-04 !
                   -1.9947E-04 !
                                                              57.69
  ! -2.5711E-04 !
                   1.1606E-04 !
                                  0.0000E+00!
                                                0.0000E+00
16! -1.9947E-04!
                   1.9947E-04 !
                                 0.0000E+00 !
                                               0.0000E+00
                                                               65.24
                                 0.0000E+00!
                                               0.0000E+00
                                                              -46.19
    2.8209E-04 !
                   0.0000E+00!
                                 0.0000E+00!
                                               0.0000E+00
                                                              -43.23
18 ! -3.8394E-04 !
                    2.4289E-04!
                                               0.0000E+00!
                                                             -65.24
                    3.0053E-04!
                                  0.0000E+00!
19 ! -3.0053E-04 !
                                                0.0000E+00!
                                                              43.23
                    2.5711E-04 !
                                  0.0000E+00!
20 ! -1.1606E-04 !
                                 0.0000E+00!
                                                0.0000E+00 ! -2.8253E-05
     0.0000E+00!
                    2.8209E-04!
      1.9947E-04 !
                    1.9947E-04 !
                                  0.0000E+00!
                                                0.0000E+00
                                                          ! -65.24
23 !
                    2.5711E-04 !
                                  0.0000E+00!
                                                0.0000E+00
                                                              -43.23
      1.1606E-04 !
                                  0.0000E+00!
                                                0.0000E+00
                                                              -57.69
      2.5711E-04!
                    1.1606E-04!
                                  0.0000E+00!
                                                0.0000E+00!
                                                              -57.69
25 ! -2.4289E-04 !
                    3.8394E-04!
                    3.0053E-04!
                                  0.0000E+00!
                                                0.0000E+00!
                                                               65.24
     3.0053E-04!
26!
                    3.8394E-04!
                                  0.0000E+00!
                                                0.0000E+00!
                                                               57.69
27 !
      2.4289E-04!
                                                0.0000E+00!
                                                               43.23
                    2.4289E-04!
                                  0.0000E+00!
28!
      3.8394E-04!
```

```
MACROSCOPIC STRESS FIELD
                                     0.0000D+00
 S(1,1) =
            0.0000D+00
                          S(1,2) =
                                                   S(1,3) =
                                                              0.0000D+00
                           S(2,2) =
                                     0.0000D+00
                                                   S(2,3) =
                                                              0.0000D+00
                                                   S(3,3) =
                                                              0.1000D+03
                        MACROSCOPIC STRAIN TENSOR
            0.0000D+00
                                     0.0000D+00
                                                   E(1,3) =
                                                              0.0000D+00
  \mathbf{E}(1,1) =
                          E(1,2) =
                           E(2,2) =
                                                   E(2,3) =
                                                              0.0000D+00
                                                   E(3,3) =
                                                              0.1786D-01
                        MICROSCOPIC STRESS FIELD
                                            S23
                                                        S13
ELE!
        S11
                     S22
                                 S33
                                                                    S12
  1 ! 1.531E-13 !-1.591E-14 !-2.691E-15 ! 0.000E+00 ! 0.000E+00 !
                                                                  157.
                         ! 3.48 ! 0.000E+00 ! 0.000E+00 !
  2!-32.0
               ! 15.0
  3 ! 66.6
                1 0.745
                            ! 0.745
                                      ! 0.000E+00 ! 0.000E+00 !
                            ! 2.47
                                      ! 0.000E+00 ! 0.000E+00
  4!
       113.
                1 6.09
                                                                  148.
                            1 5.36
  5! 28.4
                                        ! 0.000E+00 ! 0.000E+00
                  20.5
                                                                  149.
                                        ! 0.000E+00 ! 0.000E+00
  6! 7.04
                ! 25.6
                            ! 6.45
                                                               1
                                                                  138.
  7 1 35.1
                1 57.3
                            ! 35.1
                                        ! 0.000E+00 ! 0.000E+00
  8 !-2.241E-13 !-2.013E-14 !-6.913E-15 ! 0.000E+00 ! 0.000E+00
  9 ! 6.695E-15 ! 3.112E-15 ! 3.726E-15 ! 0.000E+00 ! 0.000E+00
                                                                  25.2
 10 !-1.003E-14 !-7.138E-15 !-6.523E-15 ! 0.000E+00 ! 0.000E+00 !
```

**	•							
. 1	1Ì !	-7.04!	-25.6!	-6.45 !		0.000E+00 !		!
1	12 !	-35.1!	-57.3!	-35.1!		0.000E+00 !		1
t	13 !	45.6 !	27.9	27.9!		0.000E+00 !		1
!	14!	53.7!	80.4!	51.0!		0.000E+00 !		1
	15 !		145. !	107.		0.000E+00 !		1
!	16!	160.	171. !	126. !		0.000E+00 !		!
!	17 !	149. !	141. !	110.		0.000E+00 !		!
!	18!	177. !	164.	130.		0.000E+00 !		!
!	19 !	84.6	57.8!	54.1!		0.000E+00 !		İ
!	20 !	3.79	5.29!	3.45!		0.000E+00 !		1
1	21 !	-113.		-2.47!		0.000E+00!		i
!	22 !	32.0 !	-15.0!	-3.48!		0.000E+00!		!
!	23 !			-0.745 !		0.000E+00 !		!
!	24!			-5.36!		0.000E+00 !		!
!				-54.1!		0.000E+00 !		!
!		- '		-3.45!		0.000E+00 !		!
!	27!			16.3!		0.000E+00 !		!
!				-16.3		! O.000E+00 !		į
į				-110.		0.000E+00		!
!			6.92	4.80		0.000E+00		!
!			6.080E-15!			0.000E+00		!
!				9.54		0.000E+00		!
!			45.3	27.8		! 0.000E+00		!
!			14.4	3.59		! 0.000E+00		!
!	35 !		-10.9	-2.16		! 0.000E+00		!
!			13.1	3.11		! 0.000E+00		!
!	37 !			0.959		! 0.000E+00		!
!			-27.9	-27.9		! 0.000E+00		!
!				-107.		! 0.000E+00		!
!				-51.0		! 0.000E+00		I
!				-130.		! 0.000E+00		!
!			! -171.	-126.		! 0.000E+00		!
!		-68.1	! 10.9	2.16		! 0.000E+00		Į.
!						! 0.000E+00		!
!						! 0.000E+00		!
:						! 0.000E+00		!
		! -27.8				! 0.000E+00		:
:						! 0.000E+00 ! 0.000E+00		i
; 1	50					! 0.000E+00		:
:						! 0.000E+00		:
:						! 0.000E+00		
i	53					! 0.000E+00		i
:						! 0.000E+00		1
i						! 0.000E+00		:
i			! -6.92		_	! 0.000E+00		í
i			! -37.8			! 0.000E+00		i
i						! 0.000E+00		į
į	59		! -14.4			! 0.000E+00		i
i						! 0.000E+00		į
į						! 0.000E+00		i
į						! 0.000E+00		Í
İ						! 0.000E+00		i
1						! 0.000E+00		1
1						! 0.000E+00		1
!						! 0.000E+00		1
1						! 0.000E+00		1
1						! 0.000E+00		1
!	69					! 0.000E+00	! 174.	1
1	70					! 0.000E+00		i

!	7ì i	-2.60	14.4	! 3.59				.000E+00	
1	72	10.4	37.8	9.54				.000E+00	
ţ		-1.127E-15	1.630E-15						
1	74		6.92	4.80	-			.000E+00	
I		27.8	45.3	27.8				.000E+00	
İ				1-0.745				.000E+00	
!				! -2.47				.000E+00	
!				! -5.36	-			.000E+00	
!				! -110.				.000E+00	
1				! -3.48				.000E+00	
į		•		! -54.1				.000E+00	
!				! -3.45				.000E+00	
İ				! -16.3				.000E+00	
!			! 16.3	! 16.3				.000E+00	
!		! 177.	! 164.	! 130.				.000E+00	
!		! 160.	! 171.	! 126.		0.000E+		.000E+00	
!		! 84.6	! 57.8	! 54.1		0.000E+		.000E+00	
1		•	5.29	! 3.45		0.000E+		.000E+0C	
!		! 149.	! 141.	! 110.		0.000E+		00+30CO.	
!		! 136.	! 145.	! 107.		0.000E+		.000E+00	
!		! 53.7	! 80.4	! 51.0				.000E+00	
!		! 45.6	! 27.9					.000E+00	
!		! 1.602E-13							
!		! -35.1	! -57.3	! -35.1				.000E+00	
!		! -7.04	! -25.6	! -6.45				.000E+00	
!		! 6.847E-15							
!		!-9.876E-15							
!		! 113.	! 6.09	! 2.47				.000E+00	
Ţ		! -32.0	! 15.0 ! 20.5	! 3.48				.000E+00	
!		! 28.4	! 20.5	! 5.36				.000E+00	
!		! 35.1	57.3	! 35.1				0.000E+00	
!		7.04	25.6	! 6.45				.000E+00	
!			! 0.745	! 0.745				0.000E+00	
!	104	!-2.169E-13	! 5.861E-15	!-3.559	E-16	! 0.000E4	+00 ! C).000E+00	! 157. !
!-									1
į				STRE	SS F	ORCE			
į				D I I I		ONOL			i
!	NODE	! X	! }	7 1]	FX !	! 1	Y!	FZ!
!-									!
į		1 ! -3.8394E					! -35		
!		2! -3.0053E		3E-04 !		.61	! -75	. 55!	0.0000E+00 !
!		3! -2.4289E		4E-04!			! -72		0.0000E+00 !
!		4! 2.4289E		34E-04 !	-37	.38	! 72	.98 !	0.0000E+00!
!		5! -2.5711E	-			.77	90		0.0000E+00!
!		6! -1.9947E		17E-04 !		.91		.98 !	0.0000E+00 !
!		7! -1.1606E		L1E-04 !		.17		.03 !	0.0000E+00!
!			E-04 ! -2.42	39E-04	-73	. 58	! 35	.83!	0.0000E+00!
1		9 ! 3.0053E		53E-04				.55!	0.0000E+00!
!		0 ! 1.1606E		11E-04		.17	! -18		0.0000E+00 !
!		1 ! 0.0000E				. 36		219E-06 !	0.0000E+00!
!		2 ! -2.8209F		00E+00		318E-06		.39	0.0000E+00!
Ī		3 ! 2.57111		06E-04		.77	! -90		0.0000E+00 !
!		4 ! 1.9947		47E-04		.91	! -75		0.0000E+00!
ļ		5 ! -2.57111		06E-04		.77		.93	0.0000E+00 !
Ţ		16 ! -1.9947		47E-04		.91		.98	0.0000E+00 l
!		7 ! 2.82091		00E+00		318E-06	! -40		0.0000E+00 !
I		18 ! -3.83941		89E-04		.58	! -35		0.0000E+00 l
ļ		19 -3.0053		53E-04		.61	! -75		1 0.0000E+00 !
Ī	2	20 ! -1.1606]	E-04 2.57	11E-04	! -97	'.17	! 18	.03	1 0.0000E+00 !

!	21 !	0.0000E+00	2.8209E-04 !	-28.36 !	-1.3219E-06	1	0.0000E+00!
1 .	22 !	1.9947E-04	1.9947E-04 !	-79.91!	-75.98	1	0.0000E+00 !
1-	23 !	1.1606E-04	2.5711E-04 !	-97.17	-18.03	1	0.0000E+00 !
!	24	2.5711E-04	1.1606E-04 !	-13.77	-90.93	1	0.0000E+00 !
1	25	-2.4289E-04	3.8394E-04 !	37.38	-72.98	!	0.0000E+00 !
!	26 !	3.0053E-04	3.0053E-04 !	79.61	75.55	İ	0.0000E+00!
!	27 !	2.4289E-04	3.8394E-04 !	37.38!	72.98	1	0.0000E+00!
!	28 !	3.8394E-04	2.4289E-04 !	73.58!	35.83	1	0.0000E+00 !
****	****	****					