# Networks II: Market Design—Lecture 10 Markets with Initial Endowments: The Core

#### ARPITA GHOSH

Dept. Of Information Science, Cornell University

# Recap: Pareto-efficiency, individual rationality and the core

- Every core matching is individually rational (IR) and Pareto-efficient (PE)
  - Consider one-person "coalition"  $B = \{a\}$  and grand coalition B = A respectively
- Is every IR matching in the core?
  - No: Simple 2-agent, 2-item example where swapping improves allocation
- Is every PE matching in the core?
  - No, again: A Pareto-efficient matching need not be individually rational!
- What if a matching is both PE and IR?
  - Not enough: Matching can be both PE and IR but not in the core!



#### Existence

- A matching M is in the **core** if there is no coalition of agents  $B \subseteq A$ , and a matching  $\hat{M}$ , such that
  - For any  $a \in B$ ,  $\hat{M}(a)$  is the *initial house* of some  $b \in B$ , and
  - $\hat{M}(a)\succeq_a M(a)$  for all  $a\in B$  and  $\hat{M}(b)\succeq_b M(b)$  for some  $b\in B$
- Does such a matching always exist?

#### Theorem (Shapley and Scarf 1974)

Assume agents have strict preferences. There exists a core matching for any housing market.

Proof by construction(!): Top Trading Cycles (TTC) algorithm

# Looking for a core matching

#### An example: Initial endowments a-x, b-y, c-z

(A matching M is in the **core** if there is no coalition of agents  $B \subseteq A$ , and a matching  $\hat{M}$ , such that

- For any  $a \in B$ ,  $\hat{M}(a)$  is the *initial house* of some  $b \in B$ , and
- $\hat{M}(a) \succeq_a M(a)$  for all  $a \in B$  and  $\hat{M}(b) \succ_b M(b)$  for some  $b \in B$ )
- Preferences are

a: 
$$x \succ y \succ z$$
, b:  $x \succ y \succ z$ , c:  $y \succ z \succ x$ 

- Is there a core matching in this example?
  - Yes: a-x, b-y, c-z
  - How would you argue this is in the core?

## Looking for a core matching

#### Another example: Initial endowments a-x, b-y, c-z

(A matching M is in the **core** if there is no coalition of agents  $B \subseteq A$ , and a matching  $\hat{M}$ , such that

- For any  $a \in B$ ,  $\hat{M}(a)$  is the *initial house* of some  $b \in B$ , and
- $\hat{M}(a) \succeq_a M(a)$  for all  $a \in B$  and  $\hat{M}(b) \succ_b M(b)$  for some  $b \in B$ )
- Preferences are

a: 
$$z \succ y \succ x$$
, b:  $z \succ x \succ y$ , c:  $x \succ y \succ z$ 

- Is there a core matching in this market?
  - Yes again: a-z, b-y, c-x!
  - How would you argue this is in the core?

# Gale's Top Trading Cycles (TTC) algorithm: Preliminaries

- Preferences are strict (also assume complete, for simplicity)
- Setting up the algorithm:
  - $p_k = (a_k, h_k)$ : Pair of agent k and her initial endowment  $h_k$
  - P: (Running) set of pairs  $p_k$
  - Directed graph G(P): Directed edge from  $p_i = (a_i, h_i) \in P$  to  $p_j = (a_j, h_j) \in P$  if item  $h_j$  is agent  $a_i$ 's top preference amongst items in P
- Lemma: If P is non-empty, there exists at least one cycle in the graph G(P), and no cycles intersect.

## Top Trading Cycles (TTC) algorithm

- Initialize P to be set of all agent-item pairs in the market
- Repeat until P is empty
  - Create graph G(P): Each agent points to (pair corresponding to) her most-preferred item in P
  - By Lemma, there exists at least one cycle in G(P) and no cycles intersect
  - Assign each agent in a cycle the item she is pointing to
  - Update P to remove (pairs  $p_k$  corresponding to) all cycles in G(P) from P
- Basic facts: This procedure
  - (i) terminates in finite steps, and
  - (ii) produces a matching

# Proving that TTC returns a core matching

- Let  $M_T$  be matching returned by TTC
- If  $M_T$  is not in the core: There exists coalition  $C^* \subseteq A$  that 'prefers' a different matching  $\hat{M}$
- $C_{strict}$ : Subset of agents in  $C^*$  who *strictly* prefer their allocation under  $\hat{M}$  to that in  $M_T$
- Note that C<sub>strict</sub>:
  - Is non-empty (Why?: Definition of improved matching  $\hat{M}$ )
  - Need not equal C\* (Why?: Recall C\* can contain agents who only get a weak improvement (example in earlier lecture))
- Let  $a_0 \in C_{strict}$  be an agent who is matched **earliest** in 'TTC order', amongst all agents in  $C_{strict}$ 
  - $\bullet$  Let I be the step/round in which  $a_0$  is matched in TTC



## TTC returns a core matching

Continuing: **If**  $M_T$  is not in the core:

- Fact 1. Let agent  $a_1$  be the owner of item  $\hat{M}(a_0)$ . Then,  $a_1 \in C^*$ . Why?
  - By definition of core: Owner of  $\hat{M}(a_0)$  must be in  $C^*$
- Fact 2. Agent  $a_1$  is matched by TTC algorithm in a strictly earlier 'step' l' < l than agent  $a_0$ . Why?
  - $a_0$  points to her most preferred item in G(P) amongst remaining items at step I (and is assigned this item  $M_T(a_0)$ )
  - Assumption:  $a_0$  (strictly) prefers item  $\hat{M}(a_0)$ , owned by  $a_1$ , to  $M_T(a_0)$
  - So if  $a_1$  had not been removed in an earlier step,  $a_1$  would still be in P at step I:  $a_0$  would have pointed to  $a_1$ 's item in step I, instead of pointing to  $M_T(a_0)$

## TTC returns a core matching

Continuing: **If**  $M_T$  is not in the core:

- Fact 3.  $\hat{M}(a_1) = M_T(a_1)$ . Why?
  - $\hat{M}(a_1) \succeq M_T(a_1)$  by definition of deviating coalition  $C^*$
  - But  $a_0$  is earliest agent (in TTC order) to strictly prefer her allocation in  $\hat{M}$  to  $M_T$
  - Preferences are strict—so  $a_1$ 's allocation must be the same in  $M_T$  and  $\hat{M}$ :  $\hat{M}(a_1) = M_T(a_1)$
- Fact 4. Let  $a_2$  be the owner of  $\hat{M}(a_1)=M_T(a_1)$ . Then,  $a_2\in C^*$ , and  $a_2\in C'_l$ . Why?
  - $a_2 \in C^*$ : By definition of coalition  $C^*$ , since  $a_2$  owns  $\hat{M}(a_1)$  (recall definition of the core!)
  - $a_2 \in C_{l'}$ : By definition of TTC algorithm, since  $a_2$  owns  $M_T(a_1)$



## TTC returns a core matching

Continuing: **If**  $M_T$  is not in the core:

- Fact 5. ... and so on: Each agent  $a_i$ ,  $i \ge 1$  is assigned same item in both  $M_T$  and  $\hat{M}$ , belonging to, say, agent  $a_{i+1}$  Note: So  $a_{i+1}$  belongs to both  $C^*$  and  $C_{l'}$
- Fact 6. Finite cycle  $C_{l'}$ : Some agent  $a^* \in C^* \cap C'_l$  must obtain  $a_1$ 's item in TTC matching  $M_T$  (along cycle  $C'_l$ ) and in matching  $\hat{M}$ 
  - Two different agents  $a_0$  and  $a^* \neq a_0$  are allocated same item in  $\hat{M}$ :  $\hat{M}$  is not a matching!
  - Contradiction: Matching  $M_T$  must belong to the core