Determinarea sarcinii specifice a electronului

1. Scopul lucrarii

Studiul mişcării electronilor într-un cîmp magnetic uniform şi determinarea valorii sarcinii specifice a electronului.

2. Principiul lucrarii

Electronii emişi de un filament metalic încălzit, accelerați de un cîmp electric, pătrund într-o regiune unde este un cîmp magnetic uniform. Datorită forței Lorentz, traiectoria electronilor este elicoidală, cînd unghiul dintre viteza electronilor și direcția cîmpului magnetic este în intervalul (2,0 π), respectiv circulară, cînd unghiul este 2π (viteza electronilor perpendiculară pe direcția cîmpului magnetic). Valoarea sarcinii specifice se obține din valorile tensiunii de accelerare, inducției magnetice și razei orbitei circulare a electronului.

3. Rezultate

r (cm)	U (V)	I1 (A)	I2 (A)	13 (A)	I4 (A)	I5 (A)	Imed (A)	sigma Im (A)	eps Im	B(T)	e/m (C/kg)
4	160	1.55	1.51	1.53	1.54	1.50	1.526	86 * 10 ^(-6) A	56 * 10^(-6)	2,203 * 10(-4)	1,79 * 10 ^ 11

r(cm)	5	4	3	2
1/r	0.2	0.25	0.33	0.5
I(A)	1.24	1.54	2.25	3.47

U(V)	120	160	200	240	280
I(A)	0.63	2.15	2.56	2.80	3.03
I^2(A)	0.3969	4.6225	6.5566	7,84	9,1809