General sequence tagging: NER and Chunking

Jeremy Barnes HAP/LAP Master 17.01.2022

Quick review

Review: with your groups

- 1. For a trigram model, how do we refactor $p(w_1, w_2, ..., w_n)$?
- 2. For a bigram HMM, how do we refactor p(x, y)?
- 3. What parameters does an HMM have?
- 4. Annotate the following sentences with UD POS tags
 - The dog jumped on my back.
 - The politicians backed the proposal.
 - I want my book back.

Review: with your groups: answers

- 1. For a trigram model, how do we refactor $p(w_1, w_2, ..., w_n)$?
 - $p(w_1, w_2, \dots, w_3) = \prod_{i=1}^n p(w_i | w_{i-2}, w_{i-1})$
- 2. For a bigram HMM, how do we refactor p(x, y)?

•
$$p(x,y) = p(y)p(x|y) = \prod_{i=1}^{n} p(y_i|y_{i-1}) \prod_{i=1}^{n} p(x_i|y_i)$$

- 3. What parameters does an HMM have?
 - initialization probabilities: π
 - transition probabilities: A
 - emission probabilities: B
- 4. Annotate the following sentences with UD POS tags
 - The/DET dog/NOUN jumped/VERB on/ADP my/PRON back/NOUN.
 - The/DET politicians/NOUN backed/VERB the/DET proposal/NOUN.
 - I/PRON want/VERB my/PRON book/NOUN back/ADV.

Tagging sequences

Until now

- Language modeling: $p(w_1, w_2, \dots, w_n) = \prod_{i=1}^n p(w_i|w_{i-1})$
- POS tagging:

$$p(x,y) = p(y)p(x|y) = \prod_{i=1}^{n} p(y_i|y_{i-1}) \prod_{i=1}^{n} p(x_i|y_i)$$

- Notice that we don't really have any constraints on what y is.
- So far, we have seen how to parameterize the model when y is part of speech tags.
- Today we'll see how to apply the same model to other tasks.

Motivation

 The internet is currently mainly a collection of unstructured data.

Motivation

- The internet is currently mainly a collection of unstructured data.
- Not easy to retrieve most information in a useful form.

Motivation

- The internet is currently mainly a collection of unstructured data.
- Not easy to retrieve most information in a useful form.
- Instead, we could process this information and keep it in another format:

Motivation

- The internet is currently mainly a collection of unstructured data.
- Not easy to retrieve most information in a useful form.
- Instead, we could process this information and keep it in another format:
 - Should be easily machine readable:
 - Relational database
 - XML markup

Given a text

1. Find all the entities in the text.

Given a text

- 1. Find all the entities in the text.
- 2. Perform co-reference resolution.

Given a text

- 1. Find all the entities in the text.
- 2. Perform co-reference resolution.
- 3. Determine what relationship they have.

Given a text

- 1. Find all the entities in the text.
- 2. Perform co-reference resolution.
- 3. Determine what relationship they have.
- 4. Use this information to populate the database

Uses

News paper articles

Uses

- News paper articles
- Web pages

Uses

- News paper articles
- Web pages
- Scientific articles

Uses

- News paper articles
- Web pages
- Scientific articles
- Medical notes

Knowledge Base Population

Penner is survived by his brother, John, a copy editor at the Times, and his former wife, Times sportswriter Lisa Dillman.

Knowledge Base Population

Penner is survived by his brother, John, a copy editor at the Times, and his former wife, Times sportswriter Lisa Dillman.

Subject	Relation/Slot Object	
Mike Penner	per:spouse	Lisa Dillman
Lisa Dillman	per:title	Sportswriter
Lisa Di ll man	per:employee_of Los Angeles Times	

Biomedical corpora => Interactions between Proteins.

 Newspaper corpora => relationships (e.g. Role, Part, Location, Near, Social) between predefined types of entities (e.g. Person, Organization, Facility, Location, Geo-Political).

Protesters' seized several pumping stations, holding 127 Shell workers hostage.

Definition		

Definition

• First step in the pipeline.

Definition

- First step in the pipeline.
- The actual tags depend highly on the final use case.

Definition

- First step in the pipeline.
- The actual tags depend highly on the final use case.
- In research, we often use data from CONLL shared task:

Definition

- First step in the pipeline.
- The actual tags depend highly on the final use case.
- In research, we often use data from CONLL shared task:
 - PER: person
 - LOC: location
 - ORG: organization
 - MISC: miscellaneous

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Differences

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Differences

- There are two major differences between NER and POS tagging that we need to deal with before we can apply the HMM from last class.
- Can you see the two main differences?

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Differences

- There are two major differences between NER and POS tagging that we need to deal with before we can apply the HMM from last class.
- Can you see the two main differences?
 - Labels can span across several tokens.
 - A token doesn't have to have a label.

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Differences

- There are two major differences between NER and POS tagging that we need to deal with before we can apply the HMM from last class.
- Can you see the two main differences?
 - Labels can span across several tokens.
 - A token doesn't have to have a label.

Any ideas on how we could deal with these?

(With partners for 5 minutes)

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Options

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Options

 Since we already have a model we really like, we can change the label structure

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Options

- Since we already have a model we really like, we can change the label structure
- "If all you have is a hammer, everything looks like a nail" Abraham Maslow

Options

- Since we already have a model we really like, we can change the label structure
- "If all you have is a hammer, everything looks like a nail" -Abraham Maslow
- Alternatively, "If you have a good hammer, why make a new hammer for every problem?" - Unknown author

[PER Wolff], currently a journalist in [LOC Argentina], played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid].

Options

• 1. Let's make a small change and give all tokens a tag.

Wolff/PER , currently/O a/O journalist/O in/O Argentina/LOC ,/O played/O with/O Del/PER Bosque/PER in/O the/O final/O years/O of/O the/O seventies/O in/O Real/ORG Madrid/ORG ./O

Options

- 1. Let's make a small change and give all tokens a tag.
- Give the tokens not in a label the tag: outside of label.
- But now it is not possible to ensure that tags that span over 2 or more tokens are retrievable.

```
Wolff/B-PER , currently/O a/O journalist/O in/O Argentina/B-LOC ,/O played/O with/O Del/B-PER Bosque/I-PER in/O the/O final/O years/O of/O the/O seventies/O in/O Real/B-ORG Madrid/I-ORG ./O
```

Options

- 1. Let's make a small change and give all tokens a tag.
- Give the tokens not in a label the tag: outside of label.
- But now it is not possible to ensure that tags that span over 2 or more tokens are retrievable.
- Add beginning and inside to labels, i.e., B-ORG, I-ORG
- This tagging scheme is known as IOB or BIO.
- There are a few variants that propose improvements.

Chunking _____

Robust, efficient approach to syntax

Robust, efficient approach to syntax

- Also useful in information extraction
- Instead of full syntactic analysis
- Chunks:

Robust, efficient approach to syntax

- Also useful in information extraction
- Instead of full syntactic analysis
- Chunks:
 - Non-recursive text spans
 - Includes a head and its modifiers

Wolff/PROPN ,/PUNCT currently/ADV a/DET journalist/NOUN in/ADP Argentina/NOUN ,/PUNCT played/VERB with/ADP Del/PROPN Bosque/PROPN in/ADP the/DET final/ADJ years/NOUN of/ADP the/DET seventies/NOUN in/ADP Real/PROPN Madrid/PROPN ./PUNCT

Robust, efficient approach to syntax

- Also useful in information extraction
- Instead of full syntactic analysis
- Chunks:
 - Non-recursive text spans
 - Includes a head and its modifiers

[NP Wolff/PROPN] ,/PUNCT currently/ADV [NP a/DET journalist/NOUN in/ADP Argentina/NOUN] ,/PUNCT [VP played/VERB] with/ADP [NP Del/PROPN Bosque/PROPN] in/ADP [NP the/DET final/ADJ years/NOUN] of/ADP [NP the/DET seventies/NOUN] in/ADP [NP Real/PROPN Madrid/PROPN] ./PUNCT

```
Quick exercise: Use IOB tagging for this chunking example  [ \ NP \ Wolff \ ] \ , \ currently \ [ \ NP \ \ a \ journalist \ ] \ in \ [ \ NP \ Argentina \ ] \ , \\ [ \ VP \ \ played \ ] \ \ with \ [ \ NP \ \ Del \ Bosque \ ] \ \ in \ [ \ NP \ \ the \ final \ years \ ] \\ of \ [ \ NP \ \ the \ seventies \ ] \ in \ [ \ NP \ \ Real \ Madrid \ ] \ .
```

Wolff	B-NP
,	O
currently	O
a	B-NP
journalist	I-NP
in	O
Argentina	B-NP
,	O
played	B-VP
with	O
Del	B-NP
Bosque	I-NP
in	O
the	B-NP
final	I-NP
years	I-NP
of	O
the	B-NP
seventies	I-NP
in	O
Real	B-NP
Madrid	I-NP
	PUNC

```
Wolff/B-PER, currently/O a/O journalist/O in/O Argentina/B-LOC,/O played/O with/O Del/B-PER Bosque/I-PER in/O the/O final/O years/O of/O the/O seventies/O in/O Real/B-ORG Madrid/I-ORG./O
```

```
Wolff/B-PER, currently/O a/O journalist/O in/O Argentina/B-LOC,/O played/O with/O Del/B-PER Bosque/I-PER in/O the/O final/O years/O of/O the/O seventies/O in/O Real/B-ORG Madrid/I-ORG./O
```

```
Wolff/B-PER, currently/O a/O journalist/O in/O Argentina/B-LOC,/O played/O with/O Del/B-PER Bosque/I-PER in/O the/O final/O years/O of/O the/O seventies/O in/O Real/B-ORG Madrid/I-ORG./O
```

```
Wolff/B-PER , currently/O a/O journalist/O in/O Argentina/B-LOC ,/O played/O with/O Del/B-PER Bosque/I-PER in/O the/O final/O years/O of/O the/O seventies/O in/O Real/B-ORG Madrid/I-ORG ./O
```

Ok, no problem, right?

Ok, no problem, right?

A slightly different example

Ok, no problem, right?

A slightly different example

Ok, no problem, right?

A slightly different example

Ok, no problem, right?

A slightly different example

What is the accuracy?

Acc = 0.80

Ok, no problem, right?

A slightly different example

So, if you just always predict 'O', you could easily achieve 80-90% accuracy.

Ok, no problem, right?

A slightly different example

So, if you just always predict 'O', you could easily achieve 80-90% accuracy. Our artificially adding labels to all tokens means we can't really use accuracy anymore.

What other metrics could we use?

What other metrics could we use?

Other metrics

What other metrics could we use?

Other metrics

lacktriangleright Precision: $rac{\mathrm{correct\ predictions}}{\mathrm{all\ output\ predictions}}$

What other metrics could we use?

Other metrics

■ Precision: correct predictions all output predictions

lacktriangleright Recall: $\frac{\text{correct predictions}}{\text{all possible predictions}}$

What other metrics could we use?

Other metrics

- Precision: correct predictions all output predictions
- Recall: correct predictions all possible predictions
- F₁: 2*Precision*Recall Precision+Recall

Example

What other metrics could we use?

Other metrics

- Precision: correct predictions all output predictions
- Recall: correct predictions all possible predictions
- F₁: 2*Precision*Recall Precision+Recall

Example

What other metrics could we use?

Other metrics

- Precision: correct predictions all output predictions
- Recall: $\frac{\text{correct predictions}}{\text{all possible predictions}}$
- F_1 : $\frac{2*Precision*Recall}{Precision+Recall}$

Example

What is the precision, recall, F_1 ?

Precision = 1.0 (Only one prediction, which was correct)

What other metrics could we use?

Other metrics

- Precision: correct predictions all output predictions
- Recall: correct predictions all possible predictions
- F_1 : $\frac{2*Precision*Recall}{Precision+Recall}$

Example

What is the precision, recall, F_1 ?

Precision = 1.0 (Only one prediction, which was correct)

Recall = 0.5 (one of two)

What other metrics could we use?

Other metrics

- Precision: correct predictions all output predictions
- Recall: $\frac{\text{correct predictions}}{\text{all possible predictions}}$
- F₁: 2*Precision*Recall Precision+Recall

Example

What is the precision, recall, F_1 ?

Precision = 1.0 (Only one prediction, which was correct)

Recall = 0.5 (one of two)

$$F_1 = \frac{2*1*0.5}{1+0.5} = 0.66$$

Two main variants:

Micro-averaged and Macro-averaged

- Micro-averaged and Macro-averaged
- Micro:
 - We count for all labels mixed
 - Used when you care about frequency of labels.

- Micro-averaged and Macro-averaged
- Micro:
 - We count for all labels mixed
 - Used when you care about frequency of labels.
 - Prec: 1.0
 - Rec: 0.5
 - F₁: 0.66

- Micro-averaged and Macro-averaged
- Micro:
 - We count for all labels mixed
 - Used when you care about frequency of labels.
 - Prec: 1.0
 - Rec: 0.5
 - F₁: 0.66
- Macro:

- Micro-averaged and Macro-averaged
- Micro:
 - We count for all labels mixed
 - Used when you care about frequency of labels.
 - Prec: 1.0
 - Rec: 0.5
 - F₁: 0.66
- Macro:
 - We compute the metric for each label, and then average them
 - Used when you care equally about infrequent labels.

- Micro-averaged and Macro-averaged
- Micro:
 - We count for all labels mixed
 - Used when you care about frequency of labels.
 - Prec: 1.0
 - Rec: 0.5
 - F₁: 0.66
- Macro:
 - We compute the metric for each label, and then average them
 - Used when you care equally about infrequent labels.
 - Prec: 0.5
 - Rec: 0.5
 - F₁: 0.5