

Escopo desta Disciplina

- Story Telling com dados
 - o Teoria, e
 - Prática
 - ✓ Com Plotnine e D3
- Construção de Dashboards (Paineis)
 - o Teoria, e
 - Prática
 - ✓ Com Google Looker Studio
- Coleta de Dados
 - Webscrapying
- Manipulação e Validação de Dados
 - Com pandas
- Armazenamento dos dados no BigQuery (Google)

A escolha das Ferramentas, Aplicações e trade-offs

- Custo de Transação, é o custo para
 - o realizar qualquer negociação econômica ao participar de um mecado
 - ✓ custo/tempo de planejamento, decisão, mudança de planos, resolução de disputas, transporte/entrega/forma de consumo, pós-venda, taxas de pagamento, comissões
- Tendências do mercado de TI
 - Zerar o custo de licença e diminuir os custos de transação da adesão
 - ✓ Gmail, Google Drive, Google Analytics, Google Looker Studio, Redes Sociais
 - Extrair lucro (propaganda) a partir do acesso aos dados
 - Quando a licença é gratuita o produto é você.
 - Free-tier (Amostra grátis)
 - ✓ Google Cloud Platform (Bigquery e outros), AWS (Redshift e outros)
- Consequências para a Administração Pública
 - Celeridade e economicidade
 - ✓ Ao custo de compartilhar os dados da administração pública

As ferramentas deste curso

- Google Looker Studio
 - Sem custo de licença
 - Integração facilitada do com o BigQuery, Google Sheets e Analytics
 - Infraestrutura gerenciada pelo Google
 - √ Única solução de Dashboard as a Service (DaaS)
 - sem custo de licença em que se pode publicar abertamente um painel
 - Baixo custo de transação de adesão
- Google Colab
- Ferramentas de IA Generativa
 - ChatGPT, Perplexity, Gemini, etc

Contar uma história com dados

- Habilidade fundamental, de importância crescente
 - + dados digitais
 - Potencializa sua capacidade de
 - ✓ argumentação e convencimento
- Formação de agenda de políticas públicas
 - Teoria da Lata do Lixo (Garbage Can)
 - ✓ Uma coleção de escolhas encontra um problema
 - Entidades envolvidas: soluções, problemas e tomadores de decisão
 - ✓ Nesse contexto, publicar suas soluções na forma de histórias com dados
 - Pode aumentar a probabilidade de soluções encontrarem os problemas
 - Ferramentas com baixo custo de transação proporcionam esse benefício
 - O papel do cientista de dados
 - ✓ Descobrir e informar

Carga Cognitiva e 2 maneiras de usar a IA

Tamanho decrescente das iterações nas metodologias de gestão

Feedback antecipado e frequente

Sugestão de Metodologia de Trabalho

- Para elaborar painéis ou histórias com dados
 - Defina um problema e seu publico alvo,
 - ✓ estude as variáveis disponíveis aplique uma técnica de ideação
- Use uma metodologia iterativa de construção do modelo de dados
 - Minimize o tamanho das iterações
 - ✓ Iterações são inevitáveis e esperadas, minimize o custo para iterar!
 - Erro comum: validar as transformações somente na última etapa.

Analise de dados na Perplexity Labs e Manus.ai

- Baixo esforço para obter uma análise bem preliminar
- Exemplos
 - Perplexity Labs
 - Manus.ai

Nomeclatura dos elementos de um gráfico

Nomeclatura dos elementos de um gráfico

Gráficos no Colab com IA

Grammar of Graphics

- Gramática
 - o um conjunto de regras que regem o uso de uma língua
- Grammar of Graphics (Leland Wilkinson)
 - é uma ferramenta que nos permite descrever concisamente os componentes de um gráfico;
 - Separa os dados da sua representação visual.
- Mudança de mindset
 - Em vez de uma função para criar um gráfico de barras
 - ✓ Usa-se uma função para mapear (encoding) de variáveis nos eixos, exemplo:
 - x: variável categórica (ex.: empresas A, B e C)
 - y: variável contínua (ex.: faturamento)
 - √ Geometria: barra
 - Construir gráficos a partir de suas partes elementares (building blocks)

Grammar of Graphics: componentes

Plotnine: GoG no Python

```
from plotnine import ggplot, aes, geom_point,
labs, theme_minimal
import pandas as pd
df = pd.DataFrame({
    'x': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
    'y': [2, 4, 5, 4, 6, 7, 8, 9, 10, 12]
})
ggplot(df, aes(x='x', y='y'))
+ geom_point()
+ labs(title='Meu Primeiro Gráfico')
+ theme_minimal()
```


O que são esses components (no Plotnine)

1. Dados (Data)

A fonte de dados, geralmente um DataFrame do Pandas.

2. Estéticas (Aesthetics)

Mapeamento de variáveis para propriedades visuais (x, y, cor, tamanho).

3. Geometrias (Geoms)

Formas geométricas que representam os dados (pontos, linhas, barras).

4. Escalas (Scales)

Controlam como os dados são mapeados para as propriedades visuais.

5. Facetas (Facets)

Divisão do gráfico em múltiplos painéis baseados em variáveis.

6. Estatísticas (Stats)

Transformações estatísticas aplicadas aos dados.

7. Coordenadas (Coordinates)

Sistema de coordenadas para posicionar os elementos.

Tipos de Gráficos Comuns

1. Gráfico de Dispersão (Scatter Plot)

Mostra a relação entre duas variáveis numéricas.

geom_point()

2. Gráfico de Barras (Bar Chart)

Compara valores entre diferentes categorias.

geom_bar(stat='identity')

3. Gráfico de Linhas (Line Plot)

Mostra tendências ao longo do tempo ou sequência.

geom_line()

4. Histograma

Mostra a distribuição de uma variável numérica.

geom_histogram()

5. Box Plot

Mostra a distribuição estatística dos dados.

geom_boxplot()

Gráfico de Linhas Simples

17.5

10.0

2010

2011

2012

2013

2014

2015

year

Gráfico de Barras

Gráfico de Linhas

Histograma

Box Plot

Personalização e Refinamento

H Títulos e Rótulos

Adicione títulos, subtítulos e rótulos aos eixos.

```
+ labs(title='Título', x='Eixo X', y='Eixo Y')
```

Cores e Temas

Personalize as cores e aplique temas predefinidos.

```
+ scale_color_brewer(palette='Set1')
+ theme minimal()
```

Múltiplos Gráficos (Faceting)

Divida seu gráfico em múltiplos painéis.

```
+ facet_wrap('~categoria')
```


Recursos Adicionais

Benefícios do Plotnine

- Sintaxe consistente e declarativa
- Integração perfeita com o ecossistema Python
- Facilidade para criar visualizações complexas
- Ideal para análise exploratória de dados

Recursos Adicionais

- Documentação Oficial do Plotnine
- Galeria de Exemplos

Aula Interativa

- É uma aula demonstrativa
 - A aula prática com tempo individual para resolver os exercícios
 - será depois
- Interaja respondendo as perguntas do Professor
 - Não tente resolver os exercícios no seu PC
 - Se preciso "amarre-se ao mastro do navio"
 - como Ulisses
- Atenção dividida
 - Resolva uma multiplicação e um Soma 1

Refatoração de Código no Gemini no Google Colab

Refatoração de Código no Gemini no Google Colab

BigQuery

- Data Warehouse
 - é um tipo de sistema de gerenciamento de dados projetado para ativar e fornecer suporte às atividades de Business Intelligence (BI).
- Solução Google de Armazenamento de Dados (Data Warehouse)
 - Gerenciado
 - Em escala de petabyte
 - Baixo Custo

BigQuery Sandbox

- Sandbox para teste sem cartão de crédito
 - https://www.youtube.com/watch?v=JLXLCv5nUCE
 - √ https://console.cloud.google.com/bigquery
 - Se não houver um projeto, crie um.
 - Query: 1TB/mês, Storage: 10TB/mês, tabelas expiram em 60 dias
- Sem billing account ativada
 - O ícone do sandbox aparece
 - ✓ Crie uma conta google ou encerre a billing account
 - Tutorial para encerrar billing account
 - https://cloud.google.com/billing/docs/how-to/manage-billing-account

Use o Sandbox!!

Nem que pra isso seja necessário criar outra conta Google.

Base dos Dados - Projeto Open Source

- Acessar dados no BigQuery
 - Explicações em https://basedosdados.org
 - ✓ Acesso direto
 - https://console.cloud.google.com/bigquery?p=basedosdados&page=project
 - Projeto cuja missão é:
 - Organizar e mapear bases de dados brasileiras e internacionais.

SQL é o sabre de luz de um Cientista de Dados

Algumas Queries no BigQuery

Algumas Queries Simples

- Selecionar empresas da base de CNPJ
 - SELECT * FROM `basedosdados.br_me_cnpj.empresas` where data="2024-12-18" LIMIT 1000
- Selecionar licitações
 - SELECT * FROM `basedosdados.br_cgu_licitacao_contrato.licitacao` LIMIT 10

Query de pessoas que não tomaram a 2º dose da vacina do COVID-19 (1)

- •Selecionar **pessoas** que ainda não tomaram a 2ª dose
 - Esta é uma tabela de transação
 - ✓ e não de entidades

```
SELECT distinct(v.id_paciente)
FROM `basedosdados.br_ms_vacinacao_covid19.microdados_vacinacao` v
WHERE v.vacina != '88'
GROUP BY v.id_paciente
HAVING min(v.data_aplicacao) = max(v.data_aplicacao)
LIMIT 10
```

* O LIMIT é opcional (recomendável) para testes

Query de pessoas que não tomaram a 2º dose da vacina do COVID-19 e estão atrasadas

```
select sum( CASE
      WHEN vagg.vacina='86' THEN
           case when (DATE_DIFF(current_date, vagg.data_aplicacao, day) > 30) then 1 else 0 end
      ELSE
          case when (DATE_DIFF(current_date, vagg.data_aplicacao, day) > 90) then 1 else 0 end
      END ) AS naotomou2aDose
     , vagg.vacina
from `basedosdados.br ms vacinacao covid19.microdados vacinacao` vagg
where vagg.id_paciente in
SELECT distinct(v.id paciente)
  FROM `basedosdados.br_ms_vacinacao_covid19.microdados_vacinacao` v
  WHERE v.vacina != '88'
  GROUP BY v.id paciente
  HAVING min(v.data_aplicacao) = max(v.data_aplicacao)
group by vacina;
```

Links Importantes

- Google Colab (Notebooks)
 - https://colab.research.google.com (Conta no Google/Gmail)
- Repositório da Disciplina no Github
 - https://github.com/alexlopespereira/mba_enap/tree/main/CD

Datas e Horários

- Horários
 - 2as e 6as de Manhã
 - ✓ 9h00 as 12h00
 - 4as a Nointe
 - ✓ 19h as 22h

Material de Estudo

- <u>Slides</u> de Teoria
 - Com demonstrações em formato vídeo
- Cadernos Colab
 - o <u>Teoria</u>
 - Exercícios e Atividades
- Vídeos das Aulas
 - Disponíveis no ambiente de aprendizagem virtual da Enap

Avaliação

- Até 3 Exercícios por semana
 - Exercícios atrasados valem 60% da nota.
 - Entregues até domingo 8h00 AM
- Convenção deste curso: Exercícios valem nota, Atividades não.
- O exercício da penúltima semana será
 - De tema aberto (à conveniência dos alunos)
- Fórmula de Cálculo

O Nota =
$$\sum_{i=1}^{K} \frac{\alpha \times N_i}{K}$$
, $\alpha = 0.6$ (se em atraso), $K = numero de exercícios$

Referências Bibliográficas

- KNAFLIC, C. N. (2018). Storytelling with data: a data visualization guide for business professionals.
- McKinney, W. (2018). Python for data analysis: Data wrangling with pandas, NumPy, and IPython.
- HURST, L. (2020). Hands on with Google Looker Studio: a data citizen's survival guide. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119616238.
- WEXLER, S., SHAFFER, J., & COTGREAVE, A. (2017). The big book of dashboards: visualizing your data using real-world business scenarios.
- https://www.storytellingwithdata.com/podcast
- https://seaborn.pydata.org/
- https://pandas.pydata.org/docs/
- https://d3js.org
- https://numpy.org/doc/stable/reference/index.html