Notes about Prime Constellations

Günthner

Winter 2024

1 Basic Definitions

Definition 1. A Constellation is a function: $\chi : \mathbb{N} \to \mathcal{P}(\mathbb{N})$

$$\psi: \mathbb{N} \to \mathbb{N} \tag{1}$$

$$M_{\nu}^{\psi}(0) := M_0 := \{2, 3, 4, 5, \dots\}$$
 (2)

$$M_{\chi}^{\psi}(k) := M_{\chi}^{\psi}(k-1) \setminus \chi(\psi(k) \cdot M_0)$$

$$= M_{\chi}^{\psi}(k-1) \setminus \left(M_{\chi}^{\psi}(k-1) \cap \chi(\psi(k) \cdot M_0) \right)$$
(3)

2 Derivation

For $\chi = id$:

$$M_{\chi}^{\psi}(k-1) \cap \chi \left(\psi(k) \cdot M_0 \right) = M_{\chi}^{\psi}(k-1) \cap \left(\psi(k) \cdot M_0 \right)$$
$$= \psi(k) \cdot M_{\chi}^{\psi}(k-1)$$
(4)

For $\chi(t) = \{ t - 2, t \}$:

$$M_{\chi}^{\psi}(k-1) \cap \chi(\psi(k) \cdot M_0) = M_{\chi}^{\psi}(k-1) \cap \chi(\psi(k) \cdot M_0)$$

$$= ???$$
(5)

Definition 2. Goldbach-n-prime

For n even, a number p < n is a Goldbach-n-prime iff both p and n - p are prime

Conjecture 1 (The Goldbach-Conjecture). For every $n \ge 4$ there exists at least one Goldbach-n-prime

For $n \in \mathbb{N}$ and $\chi(t) = \{t, n-t\}$:

$$M_{\chi}^{\psi}(k-1) \cap \chi(\psi(k) \cdot M_0) = M_{\chi}^{\psi}(k-1) \cap \chi(\psi(k) \cdot M_0)$$

$$=$$

$$(6)$$

3 Results

Definition 3.

$$\Psi_{\chi}^{\psi} = \lim_{k \to \infty} M_{\chi}^{\psi}(k) \tag{7}$$

Lemma 1.

$$\mathbb{P} = \Psi_{\mathrm{id}}^{\pi^{-1}} \tag{8}$$

4 Notes

2	3		5	7		
		2	3	5	7	