Exp no:3	Realization of half-adder and full-adder logic circuits
Date:	
23-09-2021	

Aim:

To realize the half-adder and full-adder logic circuits and verify the simulation output with theoretical results.

Required tools:

Multisim online circuit simulator

Theory:

Half-Adder:

A combinational logic circuit that performs the addition of two data bits, A and B, is called a half-adder. The addition will result in two output bits; one of which is the sum bit, S, and the other is the carry bit, C_{in} . The Boolean functions describing the half-adder are:

$$S = A \oplus B$$
$$C_{in} = AB$$

Logic Diagram:

Full-Adder:

A combinational logic circuit that adds three data bits, A, B, and C is called a full-adder. The Boolean functions describing the full-adder are:

$$S = A_{\bigoplus} B_{\bigoplus} C$$

$$C_{\scriptscriptstyle in} = C(A_{\bigoplus} B) + AB$$

Logic Diagram:

Results:

Comparison of theoretical results with simulation results for Half Adder

A	В	Theoretical result according to the		Simulation result	
		expression			
		SUM	CARRY	SUM	CARRY
0	0	0	0	0	0
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	1	0	1

Figure: Logic circuit realization of Half-adder

Comparison of theoretical results with simulation results for Full Adder

A	В	C	Theoretical result according to the		Simulation result	
			expression			
			SUM	CARRY	SUM	CARRY
0	0	0	0	0	0	0
0	0	1	1	0	1	0
0	1	0	1	0	1	0
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	1	0	1
1	1	0	0	1	0	1
1	1	1	1	1	1	1

Figure: Logic circuit realization of full-adder

Inference:

The theoretical and simulation results of the truth table of half-adder and full-adder are in good agreement and verified successfully through multisim online simulator.

Student signature:	Marks:
SPAShvatti	Faculty signature: