Experiment C-14 Gay-Lussac's Law

Objectives

- To learn about the Ideal Gas Law and Gay-Lussac's Law.
- To investigate the relationship between temperature and pressure in a sealed chamber while heating it up.

Modules and Sensors

- PC + NeuLog application
- USB-200 module
- NUL-203 Temperature logger sensor
- NUL-210 Pressure logger sensor

Equipment and Accessories

-	Gas study device	1
-	Perforated rubber stopper	2
-	Non-perforated rubber	1
	stopper	
	50 ml syringe	1
	Candle	3
	Lighter	1

The items above are included in the Gas kit, GAS-KIT.

Introduction

An ideal gas can be characterized by three parameters: pressure, volume and temperature, for a certain amount of gas. The law that shows the relationship between these factors is called the **Ideal Gas Law:** PV = nRT where P is the pressure of the gas (in atm units), V is its volume (in L units), P is the number of moles (one mol = $6.022*10^{23}$ molecules), P is the gas constant (atm*L)/(mol*K) and P is its temperature (in K units).

Suppose we double the temperature (in K) of a sample of gas while the volume and number of molecules remain the same. The pressure will also be doubled. According to Gay-Lussac's law, for a given amount of gas held at a constant volume, the pressure is proportional to the absolute temperature.

 $P = K_GT$ and $P_1T_2 = P_2T_1$

 K_G is the proportionality constant ($K_G = n^*R/V$).

In this activity, we will raise the temperature of a gas in a container while keeping the volume constant, in order to measure how this affects the pressure of the gas.

Procedure

Experiment setup

Note:

You will be working with an open flame. Make sure not to have any flammable material in the proximity of the experiment. Be very careful when working with high temperatures.

1. Set up the experiment as shown in the picture below.

- 2. Place the two perforated stoppers and the non-perforated stopper in the device. Each perforated stopper should be at one end.
- 3. Insert the temperature sensor probe in one perforated stopper.
- 4. Optional check: to verify that there is no air leak, insert a syringe with its plunger at the 50 ml position in the other perforated stopper. Press the syringe's plunger, release it and watch the plunger going back to the starting position. Remove the syringe and put the pressure sensor in its place.
- 5. Place three candles under the device (do not light them yet).

Sensor setup

- 6. Connect the USB-200 module to the PC.
- 7. Check that the temperature and the pressure sensors are connected to the USB-200 module in a chain.

Note:

The following software functions are explained in short. It is recommended to practice the NeuLog application functions (as described in the user manual) beforehand.

8. Run the NeuLog application and check that the sensors are identified.

Settings

- 9. Click on the **On-line Experiment** icon in the NeuLog main icon bar.
- 10. Click on the pressure **sensor's module** box.
- 11. Click on the **Range** button.
- 12. Select the kPa button to change the sensor's mode.

13. Click on the **Experiment Setup** icon and set the:

Experiment duration to 3 minutes Sampling rate to 30 per minute

Testing and measurements

14. Carefully light the candles and wait about 30-60 seconds before starting the measurement.

- 15. Click on the **Run Experiment** icon to start the measurement. If the temperature reaches 50 °C stop the measurement. It is recommended to hold the pressure sensor's body during the measurement.
- 16. Blow off the candles after the measurement is over and do not touch the device while it is still hot.
- 17. Click on the **Experiment Setup** icon and then click on the **X axis = Time** button. Click on the **Temperature** button to plot a temperature vs. pressure graph.
- 18. In order to focus on the desired range, click on the **Zoom** icon , locate the mouse cursor at a point above the graph and press its left button; keep it pressed and create a rectangle that includes the whole range.

19. Your graph should be similar to the following:

- 20. Save your graph.
- 21. Click on the **Show Functions** icon A²⁺³, and then click on the temperature button on the left of the screen.
- 22. Click on the Linear Fit button.

23. You will get an equation that describes the relation between temperature and pressure in the gas devise.

Summary questions

- 1. Were you able to get a straight line? What would have been the pressure if you had kept heating the device to 50° C?
- 2. Explain the connection between temperature and pressure in terms of molecule velocity.
- 3. What happens when you heat up an elastic balloon? Explain your answer by using the Ideal Gas Law: **PV = nRT**. What is the name of the specific law that describes what happens?