باد	a					4	争 征、			L)	置作习	埃性	_ (特征 _ (埃州	转换	. 安顷		1)			
1. 背	京					با ا	镁性		Κ.	- 4	A 局非	线性	(线性	分类	粮	各函数	非洋相	!)		
			linear	regr	റമ്മട	<u></u>	全局包	<u> </u>	Х	- ·	5世 1	"矢性 羊条回	(神经	: M 洛 集树 .	·)					
			y =	w™x+l	S					p										
										ſ				(fo, 1	了硬分	类 (线	性判	分析	,意、知前 aive Basic Regres nction	ÑL)
			线性	E(101)3	<u>- </u> <u> </u>	活盛 *	处 > 5	传性分	英.	⇒ {	y= -	fi wtxt	+ p) e	{ [0,1]) 软分	·美 { !	(大)() (大)()()	GDA . A	aive Ba	yes)
											f:	activ	/ation	func	tion	, t-	1012((1: 化	nk fur	nction	301)
. Ei k	m Ja	、告 .4									,									
2. RS. 9	KT WIT) 	7	(般治	(54 性	. 9 (Dr.)														
+	*	思想	: 铓	误驱	x 計.															
	,	模型	: f	(x) = si	gn (Wi	え).	χe-⊩	P , h	JEIR ^P											
				_	1					éhr										
				പ്പുറ വു	1	a<	0	<i>%</i> F	य स्टान	Ζ										
	*	Loss -	functio	n :	定	义:	D: {	被错	误分	类的战	* * † .	柱本	集、	اكلناع	:)} _{i=(}					
				0	10.1	/= 'F	T 4 0:	را√√: ۔	o ት	1 / 建	设入	业点台	白个数							
					Z(W						12.50) (III) 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
						不住	卖 .万	.可导.												
				Q	L(い)	= \(\sum_{\chi} \)	-yi W	⁷ χ;		(可差	为错	误分	走点、到	超平	面距	息)				
					∆~ F	= -1	i Xi													
		唐				·				#)										
	*	本法	: 50	3D:	ฟ"	,, ←	M.c	- λ Ū _₩	_ =	W +	λyiχ	ì	ス:le	aming	rate	-				
			P	ocket	algon:	thm (s	性不	到少 候	: (仏:	考定、	权重	更新	前后.	错》	类点	↑数 .				
ىد .	: 11	(BL	الله حب	1 2.1 2																
3. 34	14	Chsh	er) 🗲	例例分	A) (.			ر کر ً ۔	1				L 7/	1						
	* ;	符号,	定义:		X= (λ.	···, 🗴	$\eta_{\perp} =$	- w-	Nxp	横	麻阵 、		Y= [¾	N×1.						
				ا ا	(Xi, y	الم إل	: 7(i (₽RP.	y; e	{-1, 1}	14.7	k 焦合								
				4	G = {)	/. l d:=	-1 }	~	o = 1	v. 1 . 1	_1 l									
					1 7c1 =	Nı.	1;	(C ₂ = X	12.	,	1,+N2=	·N.								
-	* 16	見想	. 投	影白。	模本的	炭内	1.离组	J. ,类iī	百距离	景大.		<u>.</u>								
			C -	<u> </u>	<u>1</u>		χī													
			<u> </u>			į .														
					= <u> </u>			Zı)(レ	√ χi —	$\Xi^{(j)}$										
			Cz	: <u>Z</u> 2	= <u>1</u> - N	를 씨	えぇ													

	$S_2 = \frac{1}{N_2} \sum_{i=1}^{\frac{N}{2}} \left(\omega^T x_i - \overline{Z_2} \right) \left(\omega^T x_i - \overline{Z_2} \right)^T$
	投影后 美间 距离: (至, 一至)
	投影后类内 距离: Si+Sz
逐 姉目半	
	かま: (ヹーヹ)= [中景 M.x! - 中景 M.x!],
7 7	= [씨 (中
	$= \left[\omega^{T} \left(\overline{X} c_{1} - \overline{X} c_{2} \right) \right]^{2} = \omega^{T} \left(\overline{X} c_{1} - \overline{X} c_{2} \right) \left(\overline{X} c_{1} - \overline{X} c_{2} \right)^{T} \omega$
	$\widehat{\Lambda} \stackrel{\triangle}{\longrightarrow} : S_i = \overline{\Lambda}_i \stackrel{\triangle}{=}_i^1 (\omega^T x_i - \overline{\Lambda}_i) \stackrel{\triangle}{=}_i^1 \omega^T x_j (\omega^T x_i - \overline{\Lambda}_i) \stackrel{\triangle}{=}_i^1 \omega^T x_j)^T$
	$= \overline{A_i} \stackrel{\mathcal{U}}{=} W^{T} (X_i - \overline{A_{C_i}}) (X_i - \overline{A_{C_i}})^{T} W$
	$= \omega^{T} \left[\overrightarrow{\lambda} \underset{i=1}{\overset{d}{\nearrow}} (x_{i} - \overrightarrow{\lambda}_{C_{i}}) (x_{i} - \overrightarrow{\lambda}_{C_{i}})^{T} \right] \omega = \omega^{T} S_{C_{i}} \omega$
	$S_1 + S_2 = \omega^T (S_{c_1} + S_{c_2}) \omega$
	$J(\omega) = \begin{array}{c} \omega^{T} (\overline{\chi}_{\mathcal{C}_{1}} - \overline{\chi}_{\mathcal{C}_{2}}) (\overline{\chi}_{\mathcal{C}_{1}} - \overline{\chi}_{\mathcal{C}_{2}}) (\overline{\chi}_{\mathcal{C}_{1}} - \overline{\chi}_{\mathcal{C}_{2}}) (\omega^{T} S_{\omega} \omega) (\omega^{T} S_{\omega} \omega)^{-1} \end{array}$
	足义: $\mathcal{L}_{\mathbf{c}} = (\overline{\chi}_{\mathbf{c}_1} - \overline{\chi}_{\mathbf{c}_2}) (\overline{\chi}_{\mathbf{c}_1} - \overline{\chi}_{\mathbf{c}_2})^{T}$ 类间方差
	Su = Sc, + Sc, : 提内方差
	$O = \omega \cdot \omega^2 \mathcal{L} \cdot \mathcal{L}(\omega \cdot \omega^2 \mathcal{L}(\omega) \cdot (\mathcal{L}) \cdot (\omega \mathcal{L}^2 \mathcal{L}(\omega)) + \mathcal{L}^2(\omega \omega \mathcal{L}^2 \mathcal{L}(\omega)) \cup (\omega \mathcal{L}(\omega))$
	>> W (W T S M W) - W Z W d 2 T W - W d 2 W + W d 2 W + W d 2 W d
	$\Rightarrow \begin{array}{c} W^{T} Sb W Sw W = Sb W (W^{T} Sw W) \\ \in \mathbb{R} \\ \Rightarrow Sw W = W^{T} Sb W Sb W. \end{array}$
	$\Rightarrow S_{\mathcal{W}} \cdot \mathcal{W} = \begin{array}{c} \mathcal{W} & \mathcal{W} & \mathcal{W} \\ \mathcal{W}^{T} & \mathcal{S}_{b} & \mathcal{W} & \mathcal{S}_{b} & \mathcal{W} \\ \end{array}$
	由 我们 只美心 w的方向. 而 不美人、其大小.
	$\Rightarrow \qquad \omega = \frac{\omega^{T} S_{\omega} \omega}{\omega^{T} S_{\omega} \omega} S_{\omega}^{1} S_{\omega} \omega \qquad \infty \qquad S_{\omega}^{1} S_{\omega} \omega \qquad = S_{\omega}^{1} (\overline{\chi}_{c_{1}} - \overline{\chi}_{c_{2}}) (\overline{\chi}_{c_{1}} - \overline{\chi}_{c_{2}})^{T} \omega$
	α Sid ($\overline{\chi}_{c_1} - \overline{\chi}_{c_2}$)
	若 Sw:对角.各项同性, Svi oc I、则 w oc (又c, - 又c≥)
. Logestic 🛢	, ε(
	KA 集 {(xi, yi)};
- Sigmoid	Function : $\sigma(\mathbb{F}) = \frac{1}{1 + e^{-\mathbb{F}}}$ $\mathbb{R} \longmapsto (0,1)$ $\mathbb{R} \times \mathbb{P}$
	$p_1 \triangleq p_1 y = 1 x \rangle = \sigma \left(w^T x \right) = \frac{1}{1 + \exp(-w^T x)}$
	$p_b \triangleq p(y=0 X) = 1 - \sigma(w^T X) = 1 - \frac{1}{1 + \exp(-w^T X)} = \frac{\exp(-w^T X)}{1 + \exp(-w^T X)}$

	$\Rightarrow \text{ pcyl}(x) = \text{pryp}_{y} \text{poly}$
* MLE :	$\hat{\omega} = \operatorname{argmax} \log \operatorname{PcY(x)}$
	= argmax = log P (y:1 xi)
	= $\underset{\text{choss}}{\text{argmax}} \stackrel{\text{def}}{\underset{\text{def}}{\text{def}}} y_i \log \sigma(w^T x_i) + (1-y_i) \log (1-\sigma(w^T x_i)) \triangleq -J(w)$
	(max MLE ⇔ min loss function (min cross Entropy))
	$\frac{\partial J(\omega)}{\partial \omega} = -\frac{1}{12} \left[y_i \frac{1}{\sigma(\omega^i x_i)} \cdot \sigma^i(\omega^i x_i) - (1-y_i) \frac{1}{1-\sigma(\omega^i x_i)} \cdot \sigma^i(\omega^i x_i) \right]$
	$= -\frac{\lambda}{\Xi} \left[y_i \cdot \frac{1}{\sigma(\omega^T x_i)} - (1 - y_i) \frac{1}{1 - \sigma(\omega^T x_i)} \right] \cdot \sigma'(\omega^T x_i) \qquad [\sigma'(\omega^T x_i) - \sigma(\omega^T x_i) \cdot \chi]$
	$=-\sum_{i=1}^{2} \left[y_{i} \left(1-\sigma(w^{T}x_{i}) \right) - (1-y_{i})\sigma(w^{T}x_{i}) \right] \cdot x_{i}$
	$= \frac{1}{1-1} \left[y_i - \sigma(w^T x_i) \right] \cdot x_i = 0$
	可用 SGD 更亲介 权重 (loss function = J(w)).
	$w^{(442)} \leftarrow w^{(4)} - \lambda \nabla_w J(w) = w^{(4)} + \eta \int_{i=1}^{4} [y_i - \sigma(w^T x_i)] x_i$ λ : learning rate.
	Discriminant Analysis
*	$\{(x_i,y_i)\}_{i=1}^N$, $x_i \in \mathbb{R}^p$. $y_i \in \{0,1\}$. , $ \{x_i y_i=1\} =N_i$, $ \{x_i y_i=0\} =N_2$, $N=N_i+N_2$
* 假设	: $y \sim \text{Bernouli } (\phi) \Rightarrow \frac{y}{P} \begin{vmatrix} 1 & 0 \\ 0 & 1-\phi \end{vmatrix}$ $p(y) = \phi^y (1-\phi)^{1-y}$
	$x y=1 \sim \lambda (\mu, \Sigma)$. $x y=0 \sim \lambda (\mu_2, \Sigma)$ $p(x y) = \lambda(\mu, \Sigma)^y \lambda(\mu_2, \Sigma)^{(y)}$.
, 楼 辿	: log-likehood: (10)= log (1) p(xi,yi)
* 版业	
	$\Theta = (\mu_i, \mu_i, \Sigma, \phi). \qquad = \frac{1}{2} \log(P(x_i y_i) \cdot P(y_i))$
	$\hat{\theta} = arg_{\text{max}} + t(\theta) = \sum_{i=1}^{n} \left(\log p(x_i) y_i \right) + \log p(y_i)$
	= = [[log (N(M, \S)) N(M) \(\S) \sqrt{1} 1
	= = [-/: log (N(M,,)) + (1-/:) log (N(M,)) + /:logo + (1-/:) log (1-0)]
	$3\hat{k} \phi : \frac{\partial I(\theta)}{\partial \phi} = \frac{\lambda}{ \phi } \frac{y_i}{\phi} - \frac{ -y_i }{1-\phi} = 0$
	$\Rightarrow \stackrel{?}{\underset{\sim}{\downarrow}} y_{i}(1-\phi) - \phi(1-y_{i}) = 0 \Rightarrow \stackrel{?}{\underset{\sim}{\downarrow}} y_{i} - \phi = 0 \Rightarrow \phi = \overrightarrow{\Lambda} \stackrel{?}{\underset{\sim}{\downarrow}} y_{i} = \frac{\overrightarrow{\Lambda}}{\Lambda} (y_{i} = 1 $
	$=\frac{\lambda}{ z }, \ \lambda : \ \log \frac{1}{(2\pi)^{\frac{2}{5}} \Sigma ^{\frac{1}{5}}} \exp \left\{-\frac{1}{5} (x_i - \mu_i)^{T} \sum_{j=1}^{J} (x_i - \mu_i) \right\}$
	∞ : (xi-μ) (xi-μ) (去掉 不相关常效顷).
	$= -\frac{1}{2} : \frac{1}{2} : \int_{\Gamma} (x_i^T \Sigma^{-1} \chi_i + \mu^T \Sigma^{-1} \mu_i - 2\mu^T \Sigma^{-1} \chi_i)$

