Note del corso di Analisi Matematica 1

Gabriel Antonio Videtta

21 aprile 2023

Integrale secondo Riemann

Definizione. (partizione di un intervallo) Preso $[a,b] \subset \mathbb{R}$. Sia $\sigma = \{x_0, x_1, \dots, x_n\}$ con $n \in \mathbb{N}$. Diciamo che σ è una **partizione** di [a,b] se $a = x_0 < x_1 < \dots < x_n = b$.

Definizione. (taglia di una partizione) Si definisce $\delta(\sigma)$, con σ partizione, come la massima distanza tra due punti consecutivi della partizione σ , ed è detta **parametro di finezza** della partizione σ .

Definizione. (ordinamento sulle partizioni) Siano σ_1 , σ_2 due partizioni di [a, b]. Allora σ_2 è più fine di σ_1 se $\sigma_1 \subset \sigma_2$.

Osservazione. Siano σ_1 e σ_2 sono due partizioni di [a,b].

- ▶ Chiaramente $\sigma_1 \cup \sigma_2$ è più fine sia di σ_1 che di σ_2 .
- ▶ Inoltre, se σ_1 è più fine di σ_2 , $\delta(\sigma_2) \geq \delta(\sigma_1)$.

Definizione (somma di Riemann inferiore e superiore). Sia $f : [a,b] \to \mathbb{R}$ limitata e sia $\sigma = \{x_0, \dots, x_n\}$ una partizione di [a,b]. Si definisce allora la somma di Riemann inferiore S' come:

$$S'(\sigma) = \sum_{i=1}^{n} \left(\inf_{x_{i-1} \le x \le x_i} f \right) (x_i - x_{i-1}),$$

e si definisce la somma di Riemann superiore S'' come:

$$S''(\sigma) = \sum_{i=1}^{n} \left(\sup_{x_{i-1} \le x \le x_i} f \right) (x_i - x_{i-1}).$$

Proposizione. Sia $f:[a,b] \to \mathbb{R}$ limitata. Allora:

- (i) $\forall \sigma$ partizione di $[a, b], S'(\sigma) \leq S''(\sigma),$
- (ii) $\forall \sigma_1, \sigma_2$ partizioni di [a, b] con σ_2 più fine di σ_1 , vale che $S'(\sigma_1) \leq S'(\sigma_2) \leq S''(\sigma_1) \geq S'(\sigma_2)$.
- (iii) $\forall \sigma_1, \sigma_2$ partizioni di $[a, b], S'(\sigma_1) \leq S''(\sigma_2)$.

Dimostrazione. (i) ovvio.

- (ii) Sia $\sigma_1 = \{x_0, \dots, x_n\}$ e sia $\sigma_2 = \sigma_1 \cup \{\xi\}$. Aggiungi un elemento e la disuguaglianza regge. Fallo aggiungendo ogni elemento.
- (iii) Usa l'unione che è più fine.

Definizione (integrale di Riemann inferiore e superiore). Si definisce l'integrale di Riemann inferiore di f come:

$$I_{-} = \sup\{S'(\sigma) \mid \sigma \text{ partizione di } [a, b]\},\$$

e l'integrale di Riemann superiore di f come:

$$I_{+} = \inf\{S''(\sigma) \mid \sigma \text{ partizione di } [a, b]\}.$$

Osservazione. Si osserva che $I_+ \geq I_-$.

Definizione (integrale di Riemann). Sia $f : [a, b] \to \mathbb{R}$ limitata. Si dice che f è **integrabile secondo Riemann** in [a, b] se $I_+ = I_-$.

Definizione (uniformemente continua). Sia $X \subseteq \mathbb{R}$ e sia $f: X \to \mathbb{R}$. Si dice che f è **uniformemente continua** se $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$ tale che $\forall x, \overline{x} \in X, |x - \overline{x}| < \delta \implies |f(x) - f(\overline{x})| < \varepsilon$.

Osservazione. Se f è uniformemente continua, chiaramente f è continua, benché non sia vero il viceversa.

Esempio. Sia $f:[a,+\infty)\to\mathbb{R}$ tale che $f(x)=\sqrt{x}$. Sia $x>\overline{x}$, allora $\sqrt{x}>\sqrt{\overline{x}}$. Sia $x=\overline{x}+h$. Si considera $\sqrt{\overline{x}+h}-\sqrt{\overline{x}}<\varepsilon$, allora $\sqrt{\overline{x}+h}<\varepsilon+\sqrt{\overline{x}}$, da cui si deduce che $\overline{x}+h<\varepsilon^2+\overline{x}+2\varepsilon\sqrt{\overline{x}}$, ossia $h<\varepsilon^2+\varepsilon\sqrt{\overline{x}}$. Preso allora $h<\varepsilon^2$, si ha che f è uniformemente continua.

Esempio. Come prima, ma per $\sin(x)$. Per Lagrange $\exists \tilde{x} \in (x, \overline{x}) \mid \frac{\sin(x) - \sin(\overline{x})}{x - \overline{x}} = \cos(\tilde{x})$, da cui $\sin(x) - \sin(\overline{x}) = \cos(\overline{x})(x - \overline{x})$, ossia $\sin(x) - \sin(\overline{x}) \leq x - \overline{x} \leq \delta = \varepsilon$. (In realtà vale per ogni f con $|f'| \leq l$.)

Esempio. Dimostra che non sono unif. continue: e^x (con $\log(n+1)$ e $\log(n)$), $\log(x)$ (con e^{-n+1} e e^{-n}), $\sin(x^2)$ (con $\sqrt(2\pi n + \pi/2)$ e $\sqrt{2\pi n}$).

Teorema. $f:[a,b]\to\mathbb{R}$ continua. Allora f è uniformemente continua.

Dimostrazione. Per assurdo suppongo che f non sia uniformemente continua. Allora considero x_n e \overline{x}_n tale che $|x_n - \overline{x}_n| \le \frac{1}{n}$ ma $|f(x_n) - f(\overline{x}_n)| > \varepsilon$ $\forall n$. Per Bolzano-Weierstrass, $\exists n_k$ sottosuccessione di tale che $x_{n_k} \to x_0 \in [a,b]$. Anche $\overline{x}_{n_k} \to x_0 \in [a,b]$. Poiché f è continua, $f(x_{n_k}) \to f(x_0)$, $f(\overline{x}_{n_k}) \to 0$, e quindi che $|f(x_{n_k}) - f(\overline{x}_{n_k})| \to 0$, contraddizione perché $> \varepsilon$.