# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-290666

(43) Date of publication of application: 20.12.1991

(51)Int.CI.

G03G 5/06 C09B 57/00

(21)Application number: 02-092183

(71)Applicant: CANON INC

(22)Date of filing:

09.04.1990

(72)Inventor: KIKUCHI NORIHIRO

MARUYAMA AKIO

# (54) ORGANIC ELECTRONIC MATERIAL

# (57)Abstract:

PURPOSE: To provide a high sensitivity and to decrease the potential fluctuations in bright parts and dark parts at the time of continuous image formation as well as to improve durability by incorporating a specific stilbenequinone compd. into an electrophotographic sensitive body.

CONSTITUTION: The stilbenequinone compd. is expressed by formula I. In the formula, R1, R2, R3, and R4 denote a hydrogen atom, alkyl group, aralkyl group or aryl group. R1 to R4 may be the same or different. The structure to successively laminate a layer contg. a charge generating material and a layer contg. a charge transfer material on a conductive base is preferable as a photosensitive layer. The photosensitive layer is formed by combining the charge transfer layer and the stilbenequinone compd. with a suitable binder resin. The electrophotographic sensitive body having the extremely high sensitivity and potential stability at the time of repetitive use is obtd. in this way.



### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

# THIS PAGE BLANK (USPTO)

decision of rejection]
[Date of extinction of right]

A SAN TENEDONE TO THE SAN

Copyright (C); 1998,2003 Japan Patent Office



# ⑱ 日本国特許庁(JP)

⑩特許出願公開

# ◎ 公開特許公報(A) 平3-290666

Sint. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)12月20日

G 03 G 5/06 C 09 B 57/00 313 A 6906-2H 7537-4H

審査請求 未請求 請求項の数 1 (全8頁)

60発明の名称 有機電子材料

②特 願 平2-92183

②出 類 平2(1990)4月9日

**@**発 明 者 **@**発 明 者

菊 地丸 山

**憲**裕 晶 夫 東京都大田区下丸子3丁目30番2号 キャノン株式会社内東京都大田区下丸子3丁目30番2号 キャノン株式会社内

勿出 顯 人 キャノン株式会社

東京都大田区下丸子3丁目30番2号

四代 理 人 弁理士 狩野 有

#### 明報書

- 1. 発明の名称 有機電子材料
- 2. 特許請求の範囲

1. 下記一般式 (」) で示されるスチルベンキノン化合物を使用することを特徴とする有機電子材料。

$$\begin{array}{c}
R_1 \\
0 \\
R_2
\end{array}$$

$$\begin{array}{c}
R_2 \\
0 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_4 \\
0 \\
R_4
\end{array}$$

式中、Ri、Ri、RiおよびRiは水栗原子、アルキル基、アラルキル基またはアリール基を示す。なお、Ri~Riは同じでも異なってもよい。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、有機電子材料に関する。詳しくは、 電子写真感光体において、改善された電子写真特 性を与える低分子の有機電子材料に関する。

[従来の技術]

従来、電子写真感光体で用いる光導電材料とし はセレン、酸化亜鉛およびカドミウムなどを主成 分とする感光層を有する無機感光体が広く用いら れてきた。これらはある程度の基礎特性は備えて はいるが、成績性が困難である、可塑性が悪い、 製造コストが高いなど問題がある。更に無機光導 電性材料は一般的に毒性が強く、製造上並びに取 り扱い上にも大きな制約があった。

一方、有機光導電性化合物を主成分とする有機 感光体は、無機感光体の上記欠点を補うなど多く の利点を有し、近年注目を集めており、これまで 数多くの提案がされていくつか実用化されてきて いる。

このような有機感光体としては、ポリーNービニルカルパゾールに代表される光導電性ポリマーなどと、2、4、7ートリニトロー9ーフルオレノンなどのルイス酸とから形成される電荷移動館体を主成分とする電子写真感光体が提案されている。これらの有機光導電性ポリマーは、無機光導電性材料に比べ軽量性、成験性などの点では優れ

ているが、態度、耐久性、環境変化による安定性 などの面で無機光導電性材料に比べ劣っており必 ずしも満足できるものではない。

一方、電荷発生機能と電荷輸送機能とをそれぞれ別々の物質に分担させた機能分離型電子写真感光体が、従来の有機感光体の欠点とされていた感度や耐久性に改善をもたらした。このような機能分離型感光体は、電荷発生物質と電荷輸送物質の各々の材料選択の範囲が広く、任意の特性を有する電子写真感光体を比較的容易に作成できるという利点を有している。

電荷発生材料としては、種々のアゾ顔料、多理 キノン顔料、シアニン色素、スクエアリック酸染 料、ピリリウム塩系色素などが知られている。

その中でもアゾ麒科は耐光性が強い、電荷発生 能力が高い、材料合成が用意であるなどの点から 多くの材料が提案されている。

一方、電荷輸送材料としては、例えば特公昭5 2-4188号公報に開示のピラゾロン化合物、 特公昭55-42380号公報および特開昭55

その上に発護層を設けた電子写真感光体が、例えば特開昭 6 1 - 753555号公報および特開昭 5 4 - 58445号公報などで提案されている。

しかし、このような層構成の電子写真感光体に おいては、比較的等い電荷発生層が上層となるた め、繰り返し使用時において摩耗による特性劣化 が著しい。

またこれを改善する目的で保護層を設けた感光体においては、保護層材料が有機絶縁材料であるため、繰り返し使用時に電位が安定せず、繰り返し安定した特性を維持することができなかった。

以上の点から、支持体、電荷発生層および電荷 輸送層の順に順次積層し、正極帯電で使用可能な 有機電子写真感光体の発明が期待される。

しかしこのためには、電子輸送能を有する電荷 輸送材料が必要となる。電子輸送能を有する電荷 輸送材料として、これまで、例えば2。4。7~ トリニトロー9~フルオレノン(TNF)や特開 昭61~148159号公報などに開示のジシャ ノメチレンフルオレンカルボキシレート化合物、 - 5 2 0 6 3 号公報に開示のヒドラゾン化合物、 特公昭 5 8 - 3 2 3 7 2 号公報および特開昭 6 1 - 1 3 2 9 5 5 号公報に開示のトリフェニルアミ ン化合物、特開昭 5 4 - 1 5 1 9 5 5 号公報およ び特開昭 5 8 - 1 9 8 0 4 3 号公報に開示のスチ ルベン化合物などが知られている。

また、負帯電で発生するオゾンによる感光体劣化の対策として、支持体、電荷輸送層、電荷発生層を順次積層して用いる電子写真感光体や、更に

特開昭 6 3 - 7 0 2 5 7 号公報、特開昭 6 3 - 7 2 6 6 4 号公報および特開昭 6 3 - 1 0 4 0 6 1 号公報に開示のアンスラキノジメタン化合物、特開昭 6 3 - 8 5 7 4 9 号公報に開示の1, 4 - ナフトキノン化合物、特開昭 6 3 - 1 7 5 8 6 0 号公報および特開昭 6 3 - 1 7 4 9 9 3 号公報に開示のジフェニルジシアノエチレン化合物、第 5 8 春季年会予稿集(3 1 H 3 8)、4 3 1、(1 9 8 9)に記載のジフェノキノン化合物などが提案されている。

しかし、これらの電子輸送能を有する電荷輸送 材料を使用した正極帯電用感光体においては、感 度が十分でない、繰り返し使用時の残留電位が高 い、製造コストが高い、有機溶剤および結着剤と の相溶性が低いなどの問題があり実用化できるほ ど満足できるものではなく、更に改善が必要であ る。

## [発明が解決しようとする課題]

本発明の目的は、前述の電荷輸送化合物に要求される特性を十分満足した有機電子材料を提供す

ることにより従来の感光体の有する種々の欠点を 解消することである。

即ち、大きな感度を有し、しかも繰り返し使用 時の電子写真特性が安定に維持できる電子写真感 光体を提供するために、製造が容易でかつ安価に 提供できる新規な電子輸送能を有する有機電子材料を提供することにある。

#### [課題を解決する手段、作用]

本発明は、下記一般式 (1) で示されるスチルベンキノン化合物を使用することを特徴とする有機電子材料から構成される。

$$0 = \begin{bmatrix} R_1 & & & \\ & & & \\ & & & \\ R_2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

式中、R<sub>1</sub>、R<sub>2</sub>、R<sub>3</sub> およびR<sub>3</sub> は水素原子、アルキル基、アラルキル基またはアリール基を示す。なお、R<sub>1</sub>  $\sim$  R<sub>4</sub> は同じでも異なってもよい。

具体的には、R. ~ R. において、アルキル基 としてメチル、エチル、n - プロピル、n - ブチ ンジル、フェネチルなどの基、アリール基としてフェニル、ナフチルなどの基が挙げられる。

ル、t-ブチルなどの基、アラルキル基としてベ

以下に一般式で示す。スチルベンキノン化合物について、その代表例を列挙する。ただし、これらの化合物に限定されるものではない。

なお、化合物例の記載方法としては、基本型

において、変化するR . 、R . 、R . および R . の部分を示すことによる。

# 化合物例(1)

R. R. R. R. R. : -CH.

#### 化合物例(2)

R. R. R. R. R. III

#### 化合物阀(3)

R. R. R. R. R. R. : -C.H.

# 化合物例(4)

R. R. R. R. R. R. : -t-C-H.

#### 化合物铒(5)、

R . . R . : - CH .

R . R . : -t-C4H.

## 化合物锅(6)

R. R. : -CaHs

R . R . : -n-C.H.

#### 化合物例(7)

R. R.: -H

R . R . : -n-C.H.

#### 化合物例(8)

..R . : -CH. R . : -C.H.

R . : - CH . R . : - C . H .

# 化合物例(9)

R : - CH = R = : - CaHs

R . : - C . H . R . : - CH .

# 化合物例(10)

R . . R . . - CH.

#### 化合物例(11)

R . . R . : -n-C.H.

R . R . : -t-C.H.

## 化合物例(12)

R . . R . . R . . R . : - CH . - 🔘

### 化合物例 (13)

R , : -(O) R , : -CH ,

R . : - CH .

# 化合物例(14)

# 化合物例(15)

R , R . : -n-C.H.

R. R. : -(0)

### 化合物例(16)

合成例(化合物例(1)の合成)

水酸化ナトリウム 5 . 5 g (138ミリモル)とへキサシアノ鉄酸カリウム 6 6 g (200ミリモル)からなる水溶液 6 0 0 m をへ撹拌下で 2 . 4 . 6 ートリメチルフェノール 9 . 0 g (66モル)のエタノール溶液 2 0 0 m を 2 0 分間かけて満下した。そのまま 5 時間撹拌後折出した結晶を減取した。得られた粗結晶を水洗およびメタノール洗浄後酢酸エチル/N . N = ジメチルホルムアミド (DMF) 混合溶維より数回再結晶し目的化合物を 8 . 4 g 得た。

取率48%、mp226~228℃

電子写真感光体は、電荷輸送物質と適当な電荷 発生物質を組み合わせて構成される。

感光層の構成としては、例えば以下の形態が挙 げられる。

- (1) 導電性支持体/電荷発生物質を含有する層 /電荷輸送物質を含有する層を順次積層
- (2) 導電性支持体/電荷輸送物質を含有する層 /電荷発生物質を含有する層を顯次積層
- (3) 導電性支持体/電荷発生物質と電荷輸送物

導電性支持体としては、例えば以下に示した形態のものを挙げることができる。

- ( 1 ) アルミニウム、アルミニウム合金、ステンレス、 銅などの金属を板形状またはドラム形状にしたもの。
- (2) ガラス、樹脂、紙などの非導電性支持体や前記(1) の導電性支持体上にアルミニウム、バラジウム、ロジウム、金、白金などの金属を業者もしくはラミネートすることにより被膜形成したもの。
- (3) ガラス、樹脂、紙などの非導電性支持体や 前記(1) の導電性支持体上に導電性高分子、酸 化スズ、酸化インジウムなどの導電性化合物の層 を義着あるいは塗布により形成したもの。

有効な電荷発生物質としては、例えば以下のような物質が挙げられる。これらの電荷発生物質は単独で用いてもよく、2種類以上組み合わせてもよい。

(1) モノアゾ、ビスアゾ、トリスアゾなどのア ゾ系闘料 質を含有する層

- (4) 導電性支持体/電荷輸送物質を含有する層 /電荷発生物質と電荷輸送物質を含有する層を順 次積層
- (5) 導電性支持体/電荷発生物質を含有する層 /電荷発生物質と電荷輸送物質を含有する層を順 次積層

本発明の一般式(1)で示されるスチルベンキノン化合物は、電子に対し高い輸送能を有するため、上記形態の感光層における電荷輸送物質として用いることができる。感光層の形態が(1)の場合は正帯電、(2)の場合は負荷電が好ましく、(3)、(4)および(5)の場合は正。負荷電いずれでも使用することができる。

更に、上記の電子写真感光体では、接着性向上や電荷注入制御のために、感光層に保護層や下引き層を設けてもよい。なお、電子写真感光体の構成は上記の基本構成に限定されるものではない。

上記構成のうち、特に(1)の形態が好ましく 、以下に更に詳細に説明する。

- (2) 金属フタロシアニン、非金属フタロシアニンなどのフタロシアニン系顔料
- (3) インジゴ、チオインジゴなどのインジゴ系無料
- (4) ペリレン酸無水物、ペリレン酸イミドなどのペリレン系顔料
- (5) アンスラキノン、ピレンキノンなどの多環 キニン系翻料
- (6) スクワリリウム色素
- (7) ピリリウム塩、チオピリリウム塩糖
- (8)トリフェニルメタン系色素
- (9) セレン、非晶質シリコンなどの無機物質電荷発生物質を含有する層、即ち、電荷発生層は前記のような電荷発生物質を選当な結着剤に分散し、これを導電性支持体上に塗工することにより形成することができる。 者、スパック、CVDなどの乾式法で薄膜を形成することによっても形成できる。

上記結着剤としては広範囲な結着性樹脂から選択でき、例えば、ポリカーポネート、ポリエステ

電荷発生層中に含有する樹脂は、80重量%以下、好ましくは40重量%以下が憩ましい。また、電荷発生層の膜厚は5μm以下、特には0・01~2μmの薄膜層が好ましい。また、電荷発生層には種々の増感剤を添加してもよい。

電荷輸送物質を含有する層、即ち、電荷輸送層は前記一般式(1)で示すスチルベンキノン化合物と適当な結着性樹脂とを組み合わせて形成することができる。

ここで電荷輸送層に用いられる結着性樹脂とし

グ法を用いて行うことができる。

上記一般式(1)で示されるスチルベンキノン 化合物を電荷輸送層に含有するの電子写真感光体 は、電子写真複写機に利用するのみならず、レー ザーブリンター、CRTブリンター、電子写真式 製版システムなどの電子写真応用分野にも広く用 いることができる。

# [実施例]

この塗工液を希釈後、アルミシート上に乾燥後の腹厚が 0 ・ 1 μmとなるようにマイヤーバー出塗布し、電荷発生層を形成した。

次に電荷輸送物質として化合物例(5)を5gとポリカーポネート(重量平均分子量3万5千)

(5) ては、前記電荷発生層に用いられているものが挙 げられ、更にポリビニルカルバゾール、ポリビニ ルアントラセンなどの光導電性高分子が挙げられ る。

この結替性樹脂と前記スチルベンキノン化合物との配合割合は、結替剤 1 0 0 重量部あたりスチルベンキノン化合物を 1 0 ~ 5 0 0 重量部とすることが好ましい。

電荷輸送層は電荷キャリアを輸送できる限界があるので、必要以上に腹摩を厚くすることができないが、5~40μm、特に10~30μmの範囲が好ましい。

更に、電荷輸送層中に酸化防止剤、紫外線吸収 剤、可塑剤または公知の電荷輸送物質を必要に応 じて添加することもできる。

このような電荷輸送層を形成する際は、適当な 有機溶媒を用い、浸漬コーティング法、スプレー コーティング法、スピンナーコーティング法、ロ ーラーコーティング法、マイヤーパーコーティン グ法、プレードコーティング法などのコーティン

6 gをクロロベンゼン100gに溶解し、この液を電荷発生圏の上にマイヤーバーで塗布し、乾燥膜厚が14μmの電荷輸送層を形成し、2層の電子写真感光体を作成した。

この電子写真感光体について川口電機(製作電 機写紙試験装置 EPA - 8100を用いてスタチック方式で+6KVでコロナ帯電し、暗所で1秒 間保持した後、照度20ルックスで露光し、帯電 特性を調べた。

帯電特性としては、表面電位(V。)と1秒間 暗滅衰させた時の電位(V」)を1/2に減衰す るのに必要な露光量(E1/2)を測定した。

(6)

結果を示す。

V . : + 6 9 0 V V : + 6 8 5 V

E1/2:2.8 @ ux · s e c

初期電位

V . : + 6 5 0 V V . : + 1 5 0 V

2 千枚耐久後電位

V . : + 6 4 9 V V . : + 1 4 8 V

実施例2'~7および比較例1~4

この例においては、実施例1で用いた電荷輸送化合物として化合物例(5)の代わりに化合物例(1)、(4)、(6)、(10)、(13)及び(15)を用いた他は実施例1と同様の方法によって電子写真感光体を作成した。

各感光体の電子写真特性を実施例 1 と同様の方法によって測定した。

また比較のために、下記比較化合物を電荷輸送 化合物として用い、他は同様にして電子写真感光 体を作成し、電子写真特性を測定した。

結果を示す。

比較化合物例(1)

| 実施例 | 初期<br>V。<br>(+V) | V L<br>(+V) | 2 千枚耐<br>V。<br>(+V) | 久後<br>V L<br>(+V) |
|-----|------------------|-------------|---------------------|-------------------|
| 2   | 650 1            | 5 0         | 641                 | 1 4 1             |
| 3   | 650 1            | 5, 0        | 6 4 5               | 1 4 9             |
| 4   | 650 1            | 5 0         | 6 5 0               | 1 4 8             |
| 5   | 650 1            | 5 0         | 6 4 2               | 1 4 7             |
| 6   | 650 1            | 5 0         | 6 4 7               | 1 4 8             |
| 7   | 650 1            | 5 0         | 6 4 0               | 1 4 5             |

| 比較例 | 比 較<br>化 合 物 例 | V     | V , | E 1/2<br>(lux·sec) |
|-----|----------------|-------|-----|--------------------|
| 1   | (1)            | 6 9 0 | 671 | 5.9                |
| 2   | (2)            | 6 9 1 | 680 | 84.0               |
| 3   | (3)            | 6 9 2 | 687 | 7.5                |
| 4   | (4)            | 7 1 1 | 704 | 14.5               |

| 比較例 | 初以    |      | 2 千枚前 | 1久後         |
|-----|-------|------|-------|-------------|
|     | (+V)  | (+¥) | (+V)  | V .<br>(+V) |
| 1 . | 6 5 0 | 150  | 601   | 207         |
| 2   | _     | -    |       |             |
| 3   | _     | _    | _     | _           |
| 4   |       |      |       |             |

H.C t-C.H. 0 t-C.H.

比較化合物例 (2)

比較化合物例 (3)

比較化合物例(4)

| 実施例 | 化合物例 | V<br>{+¥} | V .   | E 1/2<br>(1ux·sec) |
|-----|------|-----------|-------|--------------------|
| 2   | (1)  | 698       | 690   | 2. 9               |
| 3   | (4)  | 700       | 6 9 5 | 3.0                |
| 4   | (6)  | 701       | 6 9 7 | 2.0                |
| 5   | (10) | 697       | 6 9 4 | 2.5                |
| 6   | (13) | 694       | 6 9 0 | 2.4                |
| 7   | (15) | 690       | 685   | 2.0                |

註:比較例2~4は感度悪く、かつ、残留電位 高く設定できず。

上記結果から明らかなように、本発明の有機電子材料であるスチルベンキノン化合物は、比較化合物と比べ、電荷輸送化合物として用いた場合、該電子写真感光体は感度および繰り返し使用時の電位安定性に極めて優れていることが分かる。

#### 実施例8

アルミ基体上に、Nーメトキシメチル化6ナイロン樹脂(重量平均分子量3万2千)5gとアルコール可溶性共重合ナイロン(重量平均分子量2万9千)5gをメタノール95gに溶解した液をマイヤーバーで塗布し、乾燥後の膜厚が1μmの下引き層を形成した。

次に、下記構造式の電荷発生物質 1 g



ポリビニルブチラール(ブチラール化度70%、 重量平均分子量5万)0.6gとジオキサン60gをボールミルで20時間分散を行った。この分 散液を先に形成した下引き層の上にブレードコー ティング法により塗布し、乾燥後の膜厚が0.1 μmの電荷発生層を形成した。

次に、化合物例(3)の化合物10gとポリメチルメタクリレート(重量平均分子量5万)10gをクロロペンゼン110gに溶解し、先に形成した電荷発生層の上にプレードコーティング法により塗布し、乾燥後の膜厚が13μmの電荷輸送層を形成した。

こうして作成した電子写真感光体に+6KVのコロナ放電を行った。この時の表面電位(V。)を測定した。更に、この感光体を1秒間暗所で放置した後の電位(V。)を測定した。感度は暗滅衰した後の電位 V。を1/2に減衰するのに必要な鑑光量(Eい。:μJ/cm<sup>®</sup>)を測定することによって評価した。この際、光源としてガリウム/アルミニウム/ヒ素の三元系半導体レー

ル (ベンザール化度 7 8 モル%、重量平均分子量 1 0 万) 4 g を溶かした液に加えてボールミルで 4 8 時間分散した。この分散液をアルミシート上 にマイヤーバーで塗布し、9 0 ℃で 3 0 分間乾燥 させ 0 . 1 5 μ m の電荷発生層を形成した。

次に化合物例(5)の化合物5gとピスフェノール2型ポリカーボネート樹脂(重量平均分子量5万)5gをクロロベンゼン/N、Nージメチルホルムアミド(1重量部/1重量部)70gに溶解した液を先に形成した電荷発生層の上にマイヤーバーで塗布し、130℃で2時間乾燥させ18μmの電荷輸送層を形成した。

こうして作成した電子写真感光体を実施例 8 と 同様な方法で測定した。

V . : + 6 9 0 V . V . : + 6 8 5 V

E ./ : 2 . 0 µ J / c m \*

実施例10

下記構造式で示す染料2gと化合物例(8)の

(7) ザー (出力: 5 m W; 発振波長 7 8 0 n m) を用

結果を示す。

. V . : + 6 8 2 V . V . : + 6 7 1 V

E ... : 2 . 1 μ J / c m \*

次に、同上の半導体レーザーを鍛えた反転現像 方式のデジタル複写機であるキヤノン開製NP-9330の改造機に上記感光体を取り付けて、 実際の画像形成テストを行った。

一次帯電後の表面電位:+600V、像露光後の表面電位:+100V(露光量2.0μJ/cm²)の設定で行ったが、文字、画像ともに良好なプリントが得られた。

更に、連続3千枚の圏出しを行ったところ、初 期から3千枚まで安定したブリントが得られた。

実施例 9

特開昭 6 2 - 6 7 0 9 4 号公報 (USP: 4. 6 6 4. 9 9 7) に開示されている製造例に従っ て得られたオキシチタニルフタロシアニン 7 gを シクロヘキサノン 1 0 0 gにポリビニルベンザー

化合物 4 gをポリカーボネート(重量平均分子量3万)のトルエン(70重量部)-N。Nージメチルホルムアミド(30重量部)溶液 4 0gに混合し、ポールミルで10時間分散し、この分散液を希釈後、アルミシート上にマイヤーバーで塗布し、100℃で1、5時間乾燥させ、14μmの感光層を形成した。

こうして作成した電子写真感光体を実施例 1 と 同様な方法で帯電特性を測定した。結果を示す。

V . : + 6 8 5 V V . : + 6 8 5 V

E 1/2:3.6 & ux - sec

初期電位

V . : + 6 5 0 V V . : + 1 5 0 V

1万枚耐久後氧位

V . : + 6 3 9 V V . : + 1 6 1 V

実施例11

アルミ基板上にアルコール可溶性共重合ナイロン (重量平均分子量 8 万) の 5 % メタノール溶液を塗布し、乾燥後の腹厚が 1 μ m 厚の下引き層を形成した。

(8)

次に、電荷発生物質として下記構造式のトリス アゾ顔料を5gをテトラヒドロフラン50m ℓ中 サンドミルで分散した。

次いで、化合物例(11)の化合物5gとポリカーポネート(重量平均分子量3万5千)10gをクロロベンゼン(70重量部)ージクロロメタン(30重量部)溶液50gに溶解し、先に調製した分散液に加えサンドミルで更に10時間分散した。

この分散液を先に形成した下引き層上に乾燥後の膜厚が 1 6 μmになるようにマイヤーパーで塗布し乾燥した。

こうして作成した感光体の電子写真特性を実施 例1と同様の方法で測定した。

V • : + 6 8 5 V V , : + 6 8 0 V E :/\* : 4 . 0 & u x • s e c

この電子写真感光体について川口電機翻製静電複写紙試験装置EPA-8100を用いてスタチック方式で-5KVでコロナ帯電し、暗所で1秒間保持した後、照度20ルックスで露光し、帯電特性を調べた。

帯電特性としては、表面電位 (V。) と 1 秒間 暗滅衰させた時の電位 (V。) を 1 / 2 に減衰す るのに必要な露光量 (E 1 / 2) を測定した。

結果を示す。

V . : - 6 8 0 V V . : - 6 6 5 V E :/: : 3 . 5 & u x · s e c

#### [発明の効果]

本発明の有機電子材料は、該材料である一般式 (1)で示されるスチルベンキノン化合物を電子 写真結性に含有させることにより該感光体の電子 子写真特性において、高感度、また繰り返し帯電子 の変数が小さく、耐久性に優れるという 顕著な効果を発揮させるのに有効である。 実施例12

電荷輸送化合物として化合物例(6)の化合物 5gとポリカーボネート(重量平均分子量3万5 千)5gをクロロペンゼン70gに溶解し、この 液をアルミシート上にマイヤーバーで塗布し、乾 燥腹厚が14μmの電荷輸送層を形成した。

次ぎに、下記構造式のジスアゾ顔料2gをポリビニルブチラール(ブチラール化度80モル%) 1gをシクロヘキサノン45mgに溶解した液とともにサンドミルで24時間分散し、塗工液を調製した。

この第工液を希釈後、先の電荷輸送層の上に乾燥後の膜厚が 0、3 μmとなるようにマイヤーパーで塗布し電荷発生層を形成し、2 層の電子写真感光体を作成した。

子写真感光体を作成した。

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| •                                                     |
|-------------------------------------------------------|
| ☐ BLACK BORDERS                                       |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES               |
| ☐ FADED TEXT OR DRAWING                               |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                  |
| ☐ SKEWED/SLANTED IMAGES                               |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                |
| ☐ GRAY-SCALE DOCUMENTS                                |
| LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
|                                                       |

# IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)