

Furniture Store Sales Time Series Forecasting

Presenter: Team 3

Date: May16, 2025

Project Idea

Problem: Furniture stores face difficulties in predicting future sales, leading to overstocking or stockouts.

Solution:

Automated SARIMA-based ML model to predict monthly sales with 95% confidence intervals.

Value: Improved inventory management and marketing strategies based on data-driven forecasting.

Project Wireframe

Visuals:

Data Pipeline Flowchart: Raw CSV → Cleaning → Model Training → Forecast Dashboard.

Dashboard Mockup:

Time series plot with actual vs. predicted sales.

Dropdown filters for product categories/regions.

User Journey:

Upload historical data → Generate forecasts → Export inventory recommendations.

End Users + Features

End Users:

Store Managers
Marketing Analysts

Features:

Monthly sales forecasts
Decomposition for trend/seasonality analysis
Performance metrics (RMSE, MAE, R^2)

Impact:

Store managers can restock on time Analysts can plan campaigns based on sales peaks

Data Structure

Dataset: CSV with 9,994 rows × 18 columns (e.g., Sales, Profit, Order Date).

Preprocessing:

Handled duplicates, log-transformed skewed sales data. Engineered features: Profit Margin, Order Month/Year.

Techniques:

ADF test for stationarity.

ACF/PACF for SARIMA hyperparameters (p,d,q).

Programming Languages + Frameworks

Core Stack:

Python: pandas, numpy, statsmodels (SARIMAX).

Visualization: matplotlib, seaborn.

Testing: sklearn (MSE, MAE).

Supporting Tools: Jupyter Notebook, GitHub.

Live Application + Test

Current State: Notebook-based prototype

Testing:

- Train-test split (80-20)
- Performance metrics used: RMSE, MAE, R^2
- Model evaluated on unseen test set

Next Step: Deployment

Interactive Dashboard (Streamlit)

Overview: Dynamic display of the sales forecast through the Streamlit interface.

Key Features:

- Forecasted Sales Over Time: A graph showing forecasted sales against actual data.
- Forecast Table: Display of monthly forecasts in a table format.

Deliverables (Reports, etc.)

- Jupyter notebook with full code and visualizations
- Forecast charts for the next 6 months
- Documentation of modeling process
- Power BI Dashboard (optional add-on)
- GitHub repository (with code and README)

Project Team + Roles

Ahmed Tarek Attia:(**Team Leader**) Responsible for Preprocessing and Feature Engineering, Exploratory Data Analysis (EDA), Series Analysis, Model Evaluation

Aya Elsayed Mohamed: Responsible for Exploratory Data Analysis (EDA) Series Analysis, Model Evaluation ,Dashboard design

Elsayed Hesham Elsayed: Responsible for data collection, preprocessing)

Mahmoud Hamdy: Responsible for Report writing, documentation)

Thank You

ahmed.tarek@gmail.com
Feel free to ask any questions