Stabilization Invariance of Grid Homology

Sven Bootsma

Rijksuniversiteit Groningen

s.bootsma99@gmail.com

Topics in Topology Seminar

March 1, 2021

Theorem (Our Main Theorem)

The simply blocked grid homology, that is $\widehat{\mathsf{GH}}$, is invariant under stabilization. More formally, we have the isomorphism $\widehat{\mathsf{GH}}(\mathbb{G}') \cong \widehat{\mathsf{GH}}(\mathbb{G})$ where \mathbb{G}' is obtained from \mathbb{G} by a stabilization move.

Theorem (Our Main Theorem)

The simply blocked grid homology, that is $\widehat{\mathsf{GH}}$, is invariant under stabilization. More formally, we have the isomorphism $\widehat{\mathsf{GH}}(\mathbb{G}')\cong\widehat{\mathsf{GH}}(\mathbb{G})$ where \mathbb{G}' is obtained from \mathbb{G} by a stabilization move.

• This turns out to be a corollary of two other results.

Theorem (Our Main Theorem)

The simply blocked grid homology, that is \widehat{GH} , is invariant under stabilization. More formally, we have the isomorphism $\widehat{GH}(\mathbb{G}') \cong \widehat{GH}(\mathbb{G})$ where \mathbb{G}' is obtained from \mathbb{G} by a stabilization move.

- This turns out to be a corollary of two other results.
- The proof relies heavily on homological and commutative algebra (chain complexes, homology, tensors etc.).

Theorem (Our Main Theorem)

The simply blocked grid homology, that is \widehat{GH} , is invariant under stabilization. More formally, we have the isomorphism $\widehat{GH}(\mathbb{G}') \cong \widehat{GH}(\mathbb{G})$ where \mathbb{G}' is obtained from \mathbb{G} by a stabilization move.

- This turns out to be a corollary of two other results.
- The proof relies heavily on homological and commutative algebra (chain complexes, homology, tensors etc.).
- We will go through these prerequisites.

Theorem (Our Main Theorem)

The simply blocked grid homology, that is \widehat{GH} , is invariant under stabilization. More formally, we have the isomorphism $\widehat{GH}(\mathbb{G}') \cong \widehat{GH}(\mathbb{G})$ where \mathbb{G}' is obtained from \mathbb{G} by a stabilization move.

- This turns out to be a corollary of two other results.
- The proof relies heavily on homological and commutative algebra (chain complexes, homology, tensors etc.).
- We will go through these prerequisites.
- Don't be scared.

Definition

Let
$$X = \bigoplus_{d,s \in \mathbb{Z}} X_{d,s}$$
 and $Y = \bigoplus_{d,s \in \mathbb{Z}} Y_{d,s}$ be two bigraded vector spaces. Their tensor product $X \otimes Y = \bigoplus_{d,s \in \mathbb{Z}} (X \otimes Y)_{d,s}$ is the bigraded vector space with $(X \otimes Y)_{d,s} = \bigoplus_{d,s \in \mathbb{Z}} (X_{d_1,s_1} \otimes Y_{d_2,s_2})$.

Definition

Let
$$X=\bigoplus_{d,s\in\mathbb{Z}}X_{d,s}$$
 and $Y=\bigoplus_{d,s\in\mathbb{Z}}Y_{d,s}$ be two bigraded vector spaces. Their tensor product $X\otimes Y=\bigoplus_{d,s\in\mathbb{Z}}(X\otimes Y)_{d,s}$ is the bigraded vector space with $(X\otimes Y)_{d,s}=\bigoplus_{d_1+d_2=d}(X_{d_1,s_1}\otimes Y_{d_2,s_2})$.

Definition

Let X be a bigraded vector space, and fix integers a and b. The corresponding shift of X, denoted X[a,b], is the bigraded vector space that is isomorphic to X as a vector space and given the bigrading $X[a,b]_{d,s} = X_{d+a,s+b}$.

Lemma (Important!)

Let W be the bigraded vector space of dimension 2 with 1 generator in bigrading (0,0) and 1 generator in bigrading (-1,-1). Let X be any other bigraded vector space, then $X \otimes W \cong X \oplus X[\![1,1]\!]$.

Lemma (Important!)

Let W be the bigraded vector space of dimension 2 with 1 generator in bigrading (0,0) and 1 generator in bigrading (-1,-1). Let X be any other bigraded vector space, then $X \otimes W \cong X \oplus X[\![1,1]\!]$.

Proof.

Exercise.

Lemma (Also Important!)

Let

$$0 \longrightarrow U \stackrel{f}{\longrightarrow} V \stackrel{g}{\longrightarrow} W \longrightarrow 0,$$

be a short exact sequence of vector spaces, then $V \cong U \oplus W$.

Lemma (Also Important!)

Let

$$0 \longrightarrow U \stackrel{f}{\longrightarrow} V \stackrel{g}{\longrightarrow} W \longrightarrow 0,$$

be a short exact sequence of vector spaces, then $V \cong U \oplus W$.

Proof.

Exercise.

· Pin. dPm; R-N Thm · Pint. dPm; Every Vector space is free

Chain complexes are assumed to be known by now.

- Chain complexes are assumed to be known by now.
- The homology $H(C, \partial)$ of the chain complex (C, ∂) is the quotient module $\operatorname{Ker} \partial / \operatorname{Im} \partial$.

- Chain complexes are assumed to be known by now.
- The homology $H(C, \partial)$ of the chain complex (C, ∂) is the quotient module $\operatorname{Ker} \partial / \operatorname{Im} \partial$.
- Let (C, ∂) and (C', ∂') be two chain complexes. A module homomorphism $f: C \to C'$ is a chain map if it commutes with the boundary operators, that is, for every $c \in C$, $f(\partial c) = \partial' f(c)$.

- Chain complexes are assumed to be known by now.
- The homology $H(C, \partial)$ of the chain complex (C, ∂) is the quotient module $\operatorname{Ker} \partial / \operatorname{Im} \partial$.
- Let (C, ∂) and (C', ∂') be two chain complexes. A module homomorphism $f: C \to C'$ is a chain map if it commutes with the boundary operators, that is, for every $c \in C$, $f(\partial c) = \partial' f(c)$.
- These notions are also defined for bigraded chain complexes.

Lemma

Let (C, ∂) and (C', ∂') be two chain complexes and let f be a chain map between them. Then f induces a module map H(f): $H(C, \partial) \to H(C', \partial')$ on the homology modules.

Lemma

Let (C, ∂) and (C', ∂') be two chain complexes and let f be a chain map between them. Then f induces a module map H(f): $H(C, \partial) \to H(C', \partial')$ on the homology modules.

Proof.

Exercise.

Lemma (The Connecting Homomorphism)

To each short exact sequence of chain complexes

$$0 \longrightarrow (C,\partial) \stackrel{f}{\longrightarrow} (C',\partial') \stackrel{g}{\longrightarrow} (C'',\partial'') \longrightarrow 0,$$

there is an associated module homomorphism $\delta: H(C'', \partial'') \to H(C, \partial)$, called the connecting homomorphism, such that

is an exact triangle.

Lemma (The Connecting Homomorphism)

To each short exact sequence of chain complexes

$$0 \longrightarrow (C,\partial) \xrightarrow{f} (C',\partial') \xrightarrow{g} (C'',\partial'') \longrightarrow 0,$$

there is an associated module homomorphism $\delta: H(C'', \partial'') \to H(C, \partial)$, called the connecting homomorphism, such that

is an exact triangle.

• Note that we do not necessarily obtain a **short** exact sequence.

- Proof (Construction only)
- · XGH(C", S") & a cycle representing X; say
- · Find an element CCC, C'CC' so that

$$S(x) = C$$

• Now the actual fun begins.

- Now the actual fun begins.
- Let \mathbb{G} be a grid diagram representation a knot and let \mathbb{G}' be the grid diagram obtained after a stabilization move.

- Now the actual fun begins.
- Let \mathbb{G} be a grid diagram representation a knot and let \mathbb{G}' be the grid diagram obtained after a stabilization move.

Proposition (Tilde-Homology and Stabilization)

There is an isomorphism of bigraded vector spaces

$$\widetilde{\mathsf{GH}}(\mathbb{G}')\cong\widetilde{\mathsf{GH}}(\mathbb{G})\oplus\widetilde{\mathsf{GH}}(\mathbb{G})\llbracket 1,1
rbracket.$$

- Now the actual fun begins.
- Let \mathbb{G} be a grid diagram representation a knot and let \mathbb{G}' be the grid diagram obtained after a stabilization move.

Proposition (Tilde-Homology and Stabilization)

There is an isomorphism of bigraded vector spaces

$$\widetilde{\mathsf{GH}}(\mathbb{G}')\cong\widetilde{\mathsf{GH}}(\mathbb{G})\oplus\widetilde{\mathsf{GH}}(\mathbb{G})\llbracket 1,1
rbracket.$$

Proposition (Tilde-Homology and Hat-Homology)

Let W be the 2-dimensional vector with one generator in bigrading (0,0) and one generator in bigrading (-1,-1). Then there is an isomorphism

$$\widetilde{\mathsf{GH}}(\mathbb{G})\cong\widehat{\mathsf{GH}}(\mathbb{G})\otimes W^{\otimes (n-1)},$$

where n is the grid number of \mathbb{G} .

Corollary (Our Main Theorem)

The simply blocked grid homology, that is GH, is invariant under stabilization. More formally, we have the isomorphism $GH(\mathbb{G}') \cong GH(\mathbb{G})$.

Proof: • GH (U)
$$\cong$$
 GH (U) \otimes W (1)
• GH (U) \cong GH (U) \otimes W (2)
• GH (U) \cong GH (U) \otimes W (3)
(1) +(3) \Longrightarrow GH (U) \cong GH (U) \otimes W (2)
(2) \Longrightarrow \Longrightarrow GH (U) \cong GH (U) \otimes W (2)

• Suppose \mathbb{G}' is obtained by a stabilization of type X:SW.

Figure: The four different type of stabilizations (at X)

• \mathbb{G} is gotten from \mathbb{G}' by destabilizing at the 2×2 square $\dfrac{X \mid O}{X}$.

- \mathbb{G} is gotten from \mathbb{G}' by destabilizing at the 2 × 2 square $\frac{X \mid O}{X}$.
- We number the O-markings so that O_1 is the newly introduced one and O_2 is the O-marking in the row just below O_1 . Moreover, let c denote the intersection point of the newly obtained horizontal and vertical circles and lets label the X-markings $\frac{X_1 \mid O_1}{\mid X_2}$.

- \mathbb{G} is gotten from \mathbb{G}' by destabilizing at the 2 × 2 square $\frac{X \mid O}{X}$.
- We number the O-markings so that O_1 is the newly introduced one and O_2 is the O-marking in the row just below O_1 . Moreover, let c denote the intersection point of the newly obtained horizontal and vertical circles and lets label the X-markings $\frac{X_1 \mid O_1}{\mid X_2}$.
- Decompose the set of grid states $S(\mathbb{G}')$ of the stabilized diagram \mathbb{G}' as the disjoint union $I(\mathbb{G}') \cup N(\mathbb{G}')$, where $I(\mathbb{G}')$ is the set of grid states $x \in S(\mathbb{G}')$ with $c \in x$.

- \mathbb{G} is gotten from \mathbb{G}' by destabilizing at the 2 × 2 square $\frac{X \mid O}{X}$.
- We number the O-markings so that O_1 is the newly introduced one and O_2 is the O-marking in the row just below O_1 . Moreover, let c denote the intersection point of the newly obtained horizontal and vertical circles and lets label the X-markings $\frac{X_1 \mid O_1}{X_2}$.
- Decompose the set of grid states $S(\mathbb{G}')$ of the stabilized diagram \mathbb{G}' as the disjoint union $I(\mathbb{G}') \cup N(\mathbb{G}')$, where $I(\mathbb{G}')$ is the set of grid states $x \in S(\mathbb{G}')$ with $c \in x$.
- $\widetilde{\mathsf{GC}}(\mathbb{G}')$ then decomposes as $\widetilde{\mathsf{GC}}(\mathbb{G}') \cong \widetilde{I} \oplus \widetilde{N}$, where $\widetilde{I} = \mathsf{span}\, I(\mathbb{G}')$ and $\widetilde{N} = \mathsf{span}\, N(\mathbb{G}')$.

ullet The map $\widetilde{\partial}_{\mathbb{O},\mathbb{X}}$ can be written in matrix form as

$$\widetilde{\partial}_{\mathbb{O},\mathbb{X}} = \begin{bmatrix} \widetilde{\partial}_I^I & 0 \\ \widetilde{\partial}_I^N & \widetilde{\partial}_N^N \end{bmatrix}.$$

ullet The map $\widetilde{\partial}_{\mathbb{O},\mathbb{X}}$ can be written in matrix form as

$$\widetilde{\partial}_{\mathbb{O},\mathbb{X}} = \begin{bmatrix} \widetilde{\partial}_I^I & 0 \\ \widetilde{\partial}_I^N & \widetilde{\partial}_N^N \end{bmatrix}.$$

• There is a bijection between $S(\mathbb{G})$ and $I(\mathbb{G}')$. $E: S(\mathbb{G}) \to I(\mathbb{G}')$ $\times I \to \times \cup \{c\}$

Lemma

The map $\widetilde{e}: \widetilde{I} \to \widetilde{GC}(\mathbb{G})$ induced by the correspondence $x \cup \{c\} \mapsto x$ gives an isomorphism between the bigraded chain complexes $(\widetilde{I}, \widetilde{\partial}_I^I)$ and $\widetilde{GC}(\mathbb{G})[\![1,1]\!]$.

Proof: e is a bryection between gried states & generated as Itz-v.s's over these grid states => & iso. of Itz v.s's

· Emply reclangles disgoint from OUXI

Es emply rectangles disgoint from OUXI

· D'a subcoml. · I quotent

• The homology of $(\widetilde{N}, \widetilde{\partial}_N^N)$ is related to the homology of $(\widetilde{I}, \widetilde{\partial}_I^I)$ via a shift in grading.

- The homology of $(\widetilde{N}, \widetilde{\partial}_N^N)$ is related to the homology of $(\widetilde{I}, \widetilde{\partial}_I^I)$ via a shift in grading.
- If $H(\widetilde{I}, \widetilde{\partial}_{I}^{I}) \cong \widetilde{\mathsf{GH}}(\mathbb{G})[\![1,1]\!]$, then $H(\widetilde{N}, \widetilde{\partial}_{N}^{N}) \cong \widetilde{\mathsf{GH}}(\mathbb{G})$

- The homology of $(\widetilde{N}, \widetilde{\partial}_{N}^{N})$ is related to the homology of $(\widetilde{I}, \widetilde{\partial}_{I}^{I})$ via a shift in grading.
- If $H(\widetilde{I}, \widetilde{\partial}_{I}^{I}) \cong \widetilde{GH}(\mathbb{G})[1, 1]$, then $H(\widetilde{N}, \widetilde{\partial}_{N}^{N}) \cong \widetilde{GH}(\mathbb{G})$
- We need one last lemma before we can give a proof.

- The homology of $(\widetilde{N}, \widetilde{\partial}_{N}^{N})$ is related to the homology of $(\widetilde{I}, \widetilde{\partial}_{I}^{I})$ via a shift in grading.
- If $H(\widetilde{I}, \widetilde{\partial}_{I}^{I}) \cong \widetilde{\mathsf{GH}}(\mathbb{G})[\![1,1]\!]$, then $H(\widetilde{N}, \widetilde{\partial}_{N}^{N}) \cong \widetilde{\mathsf{GH}}(\mathbb{G})$
- We need one last lemma before we can give a proof.

Lemma

The chain map $\widetilde{\partial}_{I}^{N}$: $(\widetilde{I}, \widetilde{\partial}_{I}^{I}) \to (\widetilde{N}, \widetilde{\partial}_{N}^{N})$ induces the trivial map on homology.

The Proof of Tilde-Homology and Stabilization

Proposition (Tilde-Homology and Stabilization)

There is an isomorphism of bigraded vector spaces

$$\widetilde{\mathsf{GH}}(\mathbb{G}')\cong\widetilde{\mathsf{GH}}(\mathbb{G})\oplus\widetilde{\mathsf{GH}}(\mathbb{G})\llbracket 1,1
rbracket.$$

Proof:
$$\cdot \text{GC}(G) \cong \overline{T} \oplus \overline{N}$$
, $\star \widetilde{N} \stackrel{\text{ls}}{\sim} a$ subcomplex $\star \overline{T} \stackrel{\text{ls}}{\sim} a$ quolient complex. $\to 0 \rightarrow \overline{N} \stackrel{\text{ls}}{\sim} \text{GC}(G) \stackrel{\text{ls}}{\sim} \overline{T} \rightarrow 0$

$$H(F) = 0$$

$$H(N) = \frac{S=0}{H(T)}$$

The Proof of Tilde-Homology and Stabilization

$$\Rightarrow 0 \Rightarrow H(\tilde{N}) \Rightarrow GH(G) \Rightarrow H(\tilde{L}) \Rightarrow 0$$

$$SH(G) \Rightarrow$$