Co int

Acoustique d'une pièce

Objectifs de la séance :

- Découvrir une notion : le temps de réverbération.
- Calculer des surfaces.

On propose de regarder la vidéo suivante :

Proposer quelques éléments pour corriger le temps de réverbération d'une pièce :			

Important

Dans tous les cas, nous devons maîtriser absolument le calcul des surfaces des pièces pour déterminer proprement les temps de réverbération!

On peut calculer le temps de réverbération en secondes avec la formule de Sabine :

$$T = \frac{0.16 \times V}{A_S + A_n}$$

- ullet V est le volume de la pièce en m^3
- 0.16 est une valeur "empirique"
- A_S représente l'absorption du son de tous les éléments architecturaux fixes, il est en m²
- A_n représente l'absorption du son de tous les éléments autres de la pièce (mobilier, humains...), il est en m^2 aussi.

Utilisation

Pour utiliser cette formule on doit :

- 1. Calculer le volume de la pièce.
- 2. Calculer toutes les surfaces des murs / plafonds / ouvertures.
- 3. Trouver pour chaque surface les éléments (peintures, sols ...) et leur coefficient particulier (tableau)
- 4. Calculer l'absorption de chaque élément fixe de la pièce (tableau) en multipliant la surface par son coefficient α
- 5. Calculer éventuellement l'absorption des éléments "mobiles" de la pièce (tableau)
- 6. Calculer la somme totale A_S
- 7. Calculer éventuellement la somme totale A_n
- 8. Calculer T_r avec la formule de Sabine.

Un premier exemple

Une pièce a pour dimensions $L=6.0\,\mathrm{m},\ l=4.0\,\mathrm{m}$ et $h=3.0\,\mathrm{m}$. On donne les informations suivantes :

- Le sol est composé de lino tel que $\alpha_1 = 0.10$
- Les murs et les plafonds bruts : $\alpha_2 = 0.020$
- Les fenêtres (2) ont une surface $S_f = 3.0 \, \mathrm{m}^2$ chacune et $\alpha_3 = 0.030$
- La porte est en bois, $S_p = 3.0 \,\mathrm{m}^2$ avec $\alpha_4 = 0.030$
- On ne prend pas le mobilier en compte (pas de A_n)

On demande:

1.	Calculer les surfaces des murs/ouvertures de la pièce.
2.	Calculer A en remplissant le tableau page suivante.
3.	Utiliser la formule de Sabine pour calculer le temps de réverbération de cette pièce.

On ajoute une couche d'isolant sur le plafond telle que $\alpha_5 = 0.75$

4. Calculer la nouvelle valeur de A en rajoutant une ligne dans le tableau.

Page 2

5. Cette modification a t'elle permise de réduire de moitié le temps de réverbération? Justifier.					
Éléments	α_i	S_i	$\alpha_i S_i$		
Sol	0.10	24	2.4		
Porte					
Fenêtres					
Murs					
Plafond					

 A_1

 A_2 (question 4 et 5)

Et un deuxième exemple

Soit un espace de dimensions données :

Longueur: 10,0 mLargeur: 8,50 mHauteur: 2,80 m

Plafond (question 4 et 5)

Ce local contient deux portes en bois dont les surfaces sont $S_P = 3,00 \,\mathrm{m}^2$ ainsi que cinq fenêtres de dimension unitaire $S_f = 4,50 \,\mathrm{m}^2$.

Le local est vide sauf quelques éléments architecturaux incalculables, on considèrera qu'ils augmente la surface équivalente d'absorption de 15%.

On donne:

Matériaux	Coefficient d'absorption α
Béton (murs)	0.03
Porte en bois	0.09
Plafond	0.04
Sol	0.07
Verre (simple vitrage)	0.12

Calculer le volume	de la pièce 		
		ente A_1 à l'aide du tableau $\frac{1}{2}$	
Éléments	α_i	S _i	$\alpha_i S_i$
Sol			
Porte			
Fenêtres			
Murs			
Plafond			
		Total	
		15% du total	
		A_1 définitive (somme)	

CORRIGE 1 Synthèse dans un tableau :

Éléments	$lpha_i$	S_i	$\alpha_i S_i$
Sol	0.10	24	2.4
Porte	0.030	2	0.060
Fenêtres	0.030	6	0.18
Murs	0.020	52	1.04
Plafond	0.020	24	0.48
	Total	$108\mathrm{m}^2$	$4,16 \text{m}^2$
		10%	0.416
		A_1	4.58

on a donc
$$Tr = \frac{0.16 \times 72}{4.58} \approx 2.5 \,\mathrm{s}$$

Éléments	α_i	S_i	$\alpha_i S_i$
Sol	0.10	24	2.4
Porte	0.030	2	0.060
Fenêtres	0.030	6	0.18
Murs	0.020	52	1.04
Plafond 1	0.020	24	0.48
Plafond 2	0.75	24	18
	Total	$108\mathrm{m}^2$	$22,16 \mathrm{m}^2$
		10%	0.416
		A_1	22.58

on a donc $Tr_2 = \frac{0.16 \times 72}{22.58} \approx 0.5 \, \text{s}$. Ce temps est divisé par 5 donc oui.

CORRIGE 1 Pour le volume $V=238\,\mathrm{m}^3$. Pour le reste, faisons le tableau.

Éléments	α_i	S_i	$\alpha_i S_i$
Sol	0.07	85.0	5.95
Porte	0.09	6.00	0.540
Fenêtres	0.12	22.5	2.70
Murs	0.03	75.1	2.25
Plafond	0.04	85.0	3.40
		Total	14.8
		15%	2.23
		A_1	17.1

Calcul de
$$Tr = \frac{0.16 \times 238}{17.1} = 2,24 \,\mathrm{s}$$