

Histoire de l'ordinateur

Chouki Tibermacine

Chouki.Tibermacine@umontpellier.fr

Objectifs de ce cours

- 1. Connaître les grandes étapes de l'histoire de l'informatique ;
- 2. Découvrir l'architecture de Von Neumann.

Besoin de calculer

- Tablettes scolaires
 mathématiques de l'époque
 paléo-babylonienne (deuxième
 millénaire avant notre ère);
- L'ordinateur est né du besoin de calculer de manière :
 - toujours plus complexe;
 - toujours rapide.
- ⇒ Automatiser le calcul.

Un peu d'histoire

- XIème siècle : adoption des chiffres arabes ;
- XVIIème siècle et avant : arithmétique, mathématique ;
- XIXème siècle : les calculateurs ;
- XXème siècle : théorie de l'information + machine universelle ;
- 1945 : architecture de Von Neumann et naissance de l'ordinateur ;
- Depuis 1945 : 4 grandes générations d'ordinateurs se sont succédées.

Fondations

- *John Neper* (1614) : théorie des logarithmes permettant de transformer des multiplications en additions ;
- Blaise Pascal (1642): première machine a calculer, la pascaline (principe de roues dentées). Cette machine pouvait additionner et soustraire des nombres de six chiffres et prenait en compte les retenues!
- Gottfried Leibniz (1673), mathématicien :
 - Améliore la machine de Pascal en y ajoutant un mécanisme permettant d'automatiser l'exécution répétitive d'additions et de soustraction. La première machine à calculer autorisant les 4 opérations arithmétiques était née.
 - Système binaire sous sa forme moderne basé sur les deux chiffres 0 et 1 et montra la puissance et la simplicité de l'arithmétique binaire, système utilisé par les ordinateurs actuels.

Figure - La pascaline (exposée au CNAM à Paris)

Les grandes étapes

- Jean-Baptiste Falcon (1728): commande pour métier a tisser.
 - ⇒ Première machine avec un programme externe!
- Joseph Jacquard (1805): cartes perforées pour métier a tisser.
- Charles Babbage (1833): considéré comme le père de l'ordinateur (rapprochement entre commande externe et machine calculer).
 - ⇒ Réalisation de sa machine analytique avec l'aide d'Ada Augusta, l'ancêtre des ordinateurs
- George Boole (1854) : système de logique symbolique.
 - ⇒ Calcul booléen : fonctions logiques décrivant le fonctionnement d'un système le plus simple possible.
- Herman Hollerith (1890): calculateur à statistiques (tabulatrice).
 - ⇒ Cartes perforées : premiers supports d'entrée-sortie et premières mémoires de masse (mécanographie).

Figure – La « Tabulating Machine » d'Herman Hollerith

Figure - Cartes perforées

Naissance de l'ordinateur

- Claude Shannon (1948) : chiffres binaires pour les relations logiques et les calculs logiques et arithmétiques.
 - ⇒ Tout calcul peut être réalisé avec les 3 opérations logiques de base « et », « ou », et « non ».
- Alan Turing: formalise une machine universelle ou Machine de Turing, décrivant un modèle abstrait du fonctionnement des appareils mécaniques de calcul.
 - \Rightarrow La thèse de Church-Turing postule que tout problème de calcul fondé sur une procédure algorithmique peut être résolu par une machine de Turing.
 - ⇒ Invente le concept de programme.
- *John Von Neumann* (1945) : enregistrer le programme en mémoire.
 - ⇒ Architecture de l'ordinateur moderne : l'architecture de Von Neumann.

Construction de l'ENIAC (1945)

- « Electronic Numerical Integrator Analyser and Calculator »;
- Technologie des tubes à vide (18000, 30 tonnes);
- Construit à l'Université de Pennsylvanie;
- Construit pour être Turing-complet;
- Multiplication de
 2 nombres de 10 chiffres en
 3 ms!

Principes de l'ordinateur selon Von Neumann

- Machine universelle contrôlée par programme;
- Programme = séquence d'instructions décrivant comment effectuer une tâche;
- Instructions du programme codées sous forme numérique binaire et enregistrées en mémoire (tout comme les données utilisées par le programme);
- Existence d'instructions permettant les ruptures de séquences.

Architecture de Von Neumann

Composants classiques d'un ordinateur

- La mémoire centrale qui contient les données et les programmes à exécuter;
- L'unité centrale de traitement (UCT/CPU) qui exécute les programmes chargés en mémoire;
- Les unités d'entrée/sortie qui permettent le lien et l'échange d'information avec les périphériques (clavier, écran, souris, imprimante, etc.).

Naissance de l'industrie informatique

Loi de Moore (1965)

Nombre de transistors (des microprocesseurs = \sim CPU) sur une puce de silicium double tous les deux ans.

Évolution des microprocesseurs Intel

Date	Nom	Nombre de transistors	Finesse de gravure (µm)	Fréquence de l'horloge	Largeur des données	MIPS
1971	4004	2 300		108 kHz	4 bits/4 bits bus	
1974	8080	6 000	6	2 MHz	8 bits/8 bits bus	0,64
1979	8088	29 000	3	5 MHz	16 bits/8 bits bus	0,33
1982	80286	134 000	1,5	6 à 16 MHz (20 MHz chez AMD)	16 bits/16 bits bus	1
1985	80386	275 000	1,5	16 à 40 MHz	32 bits/32 bits bus	5
1989	80486	1 200 000	1	16 à 100 MHz	32 bits/32 bits bus	20
1993	Pentium	3 100 000	0,8 à 0,28	60 à 233 MHz	32 bits/64 bits bus	100
1997	Pentium II	7 500 000	0,35 à 0,25	233 à 450 MHz	32 bits/64 bits bus	300
1999	Pentium III	9 500 000	0,25 à 0,13	450 à 1 400 MHz	32 bits/64 bits bus	510
2000	Pentium 4	42 000 000	0,18 à 0,065	1,3 à 3,8 GHz	32 bits/64 bits bus	1 700
2004	Pentium 4D « Prescott »	125 000 000	0,09 à 0,065	2.66 à 3,6 GHz	32 bits/64 bits bus	9 000
2006	Core 2™ Duo	291 000 000	0,065	2,4 GHz (E6600)	64 bits/64 bits bus	22 000
2007	Core 2™ Quad	2*291 000 000	0,065	3 GHz (Q6850)	64 bits/64 bits bus	2*22 000 (?)
2008	Core 2™ Duo (Penryn)	410 000 000	0,045	3,33 GHz (E8600)	64 bits/64 bits bus	~24 200
2008	Core 2™ Quad (Penryn)	2*410 000 000	0,045	3,2 GHz (QX9770)	64 bits/64 bits bus	~2*24 200
2008	Intel Core i7 (Nehalem)	731 000 000	0,045 (2008) 0,032 (2009)	2,66 GHz (Core i7 920) 3,33 GHz (Core i7 Ext. Ed. 975)	64 bits/64 bits bus	?
2009	Intel Core i5/i7 (Lynnfield)	774 000 000	0,045 (2009)	2,66 GHz (Core i5 750) 2,93 GHz (Core i7 870)	64 bits/64 bits bus	?
2010	Intel Core i7 (Gulftown)	1 170 000 000	0,032	3,33 GHz (Core i7 980X)	64 bits/64 bits bus	?

Calculateurs quantiques

Limites de la miniaturisation et de la loi de Moore

- Taille des transistors de l'ordre de l'atome en 2020 ;
- Effets quantiques sous 8 nanomètres (série Skylake d'Intel en 2015).

Exploiter la mécanique quantique

- Utilisation de la superposition et de l'intrication;
- Calculs sur des qbits dont l'état quantique a plusieurs valeurs;
- Intéressants pour des calculs combinatoires (des algorithmes existent pour casser beaucoup de méthodes cryptographiques);
- Premiers calculateurs quantiques dès 1990;
- Décohérence (pertes des effets quantiques dans le macroscopique);
- Avancées majeures chez Google, IBM, Intel et Microsoft.

Programmes exécutés par les ordinateurs

- Programme = séquence d'instructions;
- Instruction = additionner deux nombres, tester si un nombre est nul, déplacer un nombre vers/depuis la mémoire centrale, ...;
- **Jeu d'instructions** que l'ordinateur sait exécuter forment un langage = **langage machine**;
- Un fabriquant d'UCT décide du langage machine à fournir (le plus simple possible pour réduire la complexité et le coût de l'électronique).

Organisation structurée des ordinateurs

- Langage machine est souvent trop simple ⇒ difficile à utiliser par les informaticiens pour résoudre des problèmes de plus haut niveau (que de simples additions, ...);
- Au fil du temps, des niveaux abstractions se sont ajoutés au dessus du langage machine, dans une structure en couches;
- L'ordinateur propose un langage (machine) LO et l'utilisateur veut écrire un programme dans un langage plus évolué L1.
 Comme exécuter ces programmes écrits en L1?
 - les traduire vers LO;
 - écrire un programme dans LO, qui prend le programme écrit en L1 comme donnée et exécute, pour chaque instruction L1, des instructions LO (un interprète ou machine virtuelle);

Organisation en couches d'abstraction

- L0 et L1 ne doivent pas être "très" différents pour que la traduction ou l'interprétation soient efficaces et pas trop complexes;
- Solution: ajouter d'autres langages L2, ... (avec leurs machines virtuelles M2, ...) qui s'empilent comme des couches d'abstraction

Un ordinateur avec une architecture multi-couches

Un ordi. avec une archi. multi-couches possible

Besoin d'inventer un système d'exploitation

- Dans les premiers jours de l'informatique (années 50), les ordinateurs étaient des machines complètements ouvertes
- Pour exécuter un programme Fortran (1954) :
- Réserver un créneau d'utilisation de l'ordinateur
- Charger dans le lecteur de cartes perforées le bloc de cartes du compilateur (traducteur) Fortran
- Charger les cartes du programme Fortran

Besoin d'inventer un système d'exploitation

- Pour exécuter un programme Fortran (1954): -suite-
 - 4. L'ordinateur lit les cartes ("lentement") parfois plusieurs fois
 - 5. Il produit des cartes avec le programme compilé (en langage machine) s'il n'y a pas d'erreurs
 - 6. Introduire les nouvelles cartes + les librairies
 - 7. S'il y a des erreurs, il faut corriger et répéter

Besoin d'inventer un système d'exploitation

- Pour exécuter un programme Fortran (1954) : -suite-
 - 4. L'ordinateur lit les cartes ("lentement") parfois plusieurs fois
 - Il produit des cartes avec le programme compilé (en langage machine) s'il n'y a pas d'erreurs
 - 6. Introduire les nouvelles cartes + les librairies
 - 7. S'il y a des erreurs, il faut corriger et répéter

⇒ Naissance (autour de 1960) des systèmes d'exploitation = programmes "permanents", qui évitent de répéter ces tâches

Un système d'exploitation fait bien plus de choses que cette prise en charge des programmes utilisateurs (objet du cours suivant)