Bayesian Importance Sampling (Task 1)

Haining Tan

September 5, 2021

General idea of Importance Sampling:

Given target distribution p and proposal distribution q, we aim to estimate

$$E_p[f(x)] = E_q[f(x)\frac{p(x)}{q(x)}]$$

Apply Importance Sampling with:

Target distribution: $p(\theta|x)$, which is a posterior Proposal distribution: $p(\theta)$, which is a prior

Assume x is given (θ conditioned on x), let $E[g(\theta)]$ be the expectation of a function of θ we want to estimate, we have

$$E[g(\theta)] = \int g(\theta)p(\theta|x) d\theta$$

$$= \int g(\theta)\frac{p(\theta|x)}{p(\theta)}p(\theta) d\theta \qquad (Apply IS)$$

where $IW(\theta) = \frac{p(\theta|x)}{p(\theta)}$ is the (unnormalized) importance weights.

Apply Bayesian theorem:

$$p(\theta|x) = \frac{p(\theta)f(x|\theta)}{\int_{\theta} p(\theta)f(x|\theta)} \propto p(\theta)f(x|\theta)$$

Thus, unnormalized importance weights $IW(\theta) = \frac{p(\theta|x)}{p(\theta)} \propto f(x|\theta)$. – QED

- a. The normalized importance weights might be better since normalized $Cf(x|\theta)$ is just $f(x|\theta)$, which is the likelihood.
- b. According to [1], a good proposal distribution $p(\theta)$ should satisfy:

 1. $IW(\theta) = \frac{p(\theta|x)}{p(\theta)} \propto f(x|\theta)$ is bounded and $p(\theta)$ has heavier tails than $p(\theta|x)$.(seems not a condition for $p(\theta)$)
- 2. For the estimate to have a low variance, $IW(\theta) = \frac{p(\theta|x)}{p(\theta)}$ should be large only when g(x) is very small.

References

[1] Geof H Givens and Jennifer A Hoeting. Computational statistics, volume 703. John Wiley & Sons, 2012.