(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-205640

(43)公開日 平成5年(1993)8月13日

(51)Int.Cl.⁵

織別配号 庁内整理番号

. 123 ' . . .

FΙ

技術表示箇所

H 0 1 J 9/24

A 7161-5E

B 7161-5E

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号

特願平4-14755

(22)出願日

平成 4年(1992) 1月30日

(71)出願人 000201814

双葉電子工業株式会社

千葉県茂原市大芝629

(72)発明者 小川 行雄

千葉県茂原市大芝629 双葉電子工業株式

会社内

(72)発明者 山浦 辰雄

千葉県茂原市大芝629 双葉電子工業株式

会社内

(74)代理人 弁理士 西村 教光

(54)【発明の名称】 外囲器の支柱形成方法

(57)【要約】

【目的】 外囲器の支柱形成方法において、支柱となる ガラスピーズの位置を精密に設定し、完成後にはガラス ビーズを十分な強度で固着する。

【構成】 (ロ) 基板1に光粘着用感光膜形成液2を被着させる。(ハ)マスク3を介して露光し、支柱形成部分のみに粘着性を付与する。(ニ)表面に低軟化点ガラスフリット10の付着したガラスピーズ11を基板1上に適用し、支柱形成部分に接着したガラスピーズ11以外の不要なガラスピーズを除去する。(ホ)容器部15を重ね、焼成する。感光膜は蒸発する。ガラスピーズ11は、軟化した低軟化点ガラスフリット10により、平面板13及び基板1の双方に接着される。

【特許請求の範囲】

【請求項1】 基板上に光粘着用感光膜形成液を被着さ せる工程と、前記基板に所定のパターンで露光する工程 と、酸化物ソルダーをコーティングしたガラスビーズを 前記基板上に載置する工程と、前記基板上から不要のガ ラスピーズを除去する工程と、前記ガラスピーズを介し て前記基板の上に平面板を重ねて焼成することにより前 記酸化物ソルダーで前記ガラスピーズを前記基板と平面 板に融着させる工程を有することを特徴とする外囲器の 支柱形成方法。

【請求項2】 光重合性感光膜形成液と酸化物ソルダー をコーティングしたガラスビーズとの混合物を基板上に 被着させる工程と、前記基板に所定のバターンで露光し て未露光部分を現像液により洗い落とす工程と、前記ガ ラスビーズを介して前記基板の上に平面板を重ねて焼成 することにより前記酸化物ソルダーで前記ガラスビーズ を前記基板と平面板に融着させる工程を有することを特 徴とする外囲器の支柱形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】液晶表示装置・プラズマディスプ レイ・蛍光表示装置等の表示装置は、一般に対面する陽 極基板と平面板を備えた外囲器を有している。本発明 は、このような外囲器において、陽極基板と平面板の間 隔を一定に保つために両板の間に設けられる支柱の形成 方法の改良に関するものである。

[0002]

【従来の技術】各種表示装置の外囲器を構成している基 板と平面板の間隔を一定に保つため、両板の間に支柱と してガラスビーズを介在させる構造が知られている。と 30 のような支柱の従来の形成方法を図5を用いて説明す

【0003】 ①ガラス製の基板 1 を洗浄した後、その内 面に透明導電膜(1TO膜)又はアルミニウム薄膜で配 線や陽極導体を形成する。

②前記基板1の内面の全面に光粘着用感光膜形成液2を スピンコート法等によって被着させる。光粘着用感光膜 形成液2としては、東京化成工業製のPDMA(商標) のようなPジアゾニウム・N、Nジメチルアニリン・塩 化亜鉛複塩が利用できる。

【0004】3支柱を形成しようとする部分に紫外線が 照射されるように形成された露光用のマスク3を通して 紫外線を照射する。

の紫外線を照射された部分に粘着性がでてくる。この基 板1上に、低融点ガラスを主成分とする酸化物ソルダー 4を被着させる。

【0005】⑤酸化物ソルダー4が被着した基板1上に ガラスビーズ5を載置する。

⑥ガラス・ピーズ5の載った基板1を400~600°

化物ソルダー4を軟化させてガラスピーズ5を基板1に 融着させ、容器部6を封着する。

[0006]

【発明が解決しようとする課題】前述した外囲器の支柱 形成方法には次のような問題点があった。

(1) 支柱を形成すべき位置に設けられた粘着用感光膜 上に酸化物ソルダー4を被着させてしまうので、当該部 分の粘着性が低下してしまう。とのため、この部分に載 せたガラスビーズ5の固定強度が弱くなってパターニン グ不良が生じてしまう。即ち、酸化物ソルダー4の量が 多いと焼成後の固着力は強くなるが、ガラスビーズ5の 仮接着力が不十分になって支柱の位置が不良になってし

【0007】とれに対し、酸化物ソルダー4の量を減ら せば、粘着用感光膜の粘着力が十分確保されるのでガラ スピーズ5の仮止めは確実になるが、焼成後の固着力は 弱くなってしまう。

【0008】(2)酸化物ソルダー4はガラスピーズ5 と基板1の間だけにしかないので、容器部6を基板1に 20 対面させて封着した時、ガラスピーズ5は容器部6の前 面板と接着せず、支柱となるガラスピーズ5の固着強度 が十分でない。

【0009】本発明は、ガラスビーズを用いた外囲器の 支柱形成方法において、ガラスビーズの位置を精密に設 定でき、完成後にはガラスビーズを十分な強度で固着で きる方法を提供することを目的としている。

[0010]

【課題を解決するための手段】請求項1に記載した本発 明に係る外囲器の支柱形成方法は、基板上に光粘着用感 光膜形成液を被着させる工程と、前記基板に所定のパタ ーンで露光する工程と、酸化物ソルダーをコーティング したガラスビーズを前記基板上に載置する工程と、前記 基板上から不要のガラスピーズを除去する工程と、前記。 ガラスピーズを介して前記基板の上に平面板を重ねて焼 成することにより前記酸化物ソルダーで前記ガラスビー ズを前記基板と平面板に融着させる工程を有している。 【0011】また、請求項2に記載した本発明に係る外 囲器の支柱形成方法は、光重合性感光膜形成液と酸化物 ソルダーをコーティングしたガラスビーズとの混合物を 基板上に被着させる工程と、前記基板に所定のパターン で露光して未露光部分を現像液により洗い落とす工程 と、前記ガラスビーズを介して前記基板の上に平面板を 重ねて焼成することにより前記酸化物ソルダーで前記ガ ラスピーズを前記基板と平面板に配着させる工程を有す ることを特徴としている。

[0012]

【作用】請求項1の方法では、基板に塗った光粘着用感 光膜形成液に所定のパターンで露光して支柱を形成した い部分のみに粘着性をもたせる。基板上にガラスビーズ で加熱焼成し、粘着用感光膜を分解揮散させると共に酸 50 を適用して不要のガラスビーズを除去する。上から平面 3

板を重ねて焼成すると、感光膜は分解揮散し、ガラスビーズを覆っている酸化物ソルダーが軟化してガラスビーズは基板と平面板に融着する。

【0013】請求項2の方法では、光重合性感光膜形成 被と酸化物ソルダーをコーティングしたガラスビーズと の混合物を塗った基板に所定のパターンで露光し、支柱 を形成したい部分のみに粘着性を与えて当該部分のガラスビーズを基板に仮接着する。仮接着されなかった不要 のガラスビーズを除去し、上から平面板を重ねて焼成する。ガラスビーズは溶融した酸化物ソルダーで基板と平 10 面板に融着する。

[0014]

【実施例】図1 (イ) \sim (ホ) によって第1実施例を説明する。図1の(イ)、(ロ)、(ハ) に示す各工程は、図5の \oplus 、 \oplus 、 \oplus (の)、 \oplus (の) に示す各工程と同じなので図5と同一の符号を付して説明は省略する。

【0015】図1の(二) に示すように、本実施例では、表面に酸化物ソルダーとしての低軟化点ガラスフリット10が被着された複合型のガラスピーズ11を用いている。とこで、前記複合型のガラスピーズ11の製法 20 について説明する。

【0016】 このようなガラスピーズ11は、粉体表面 改質装置であるハイブリダイゼーションシステムを用い て作ることができる。このシステムは、母粒子の表面に 子粒子を被着させるOMダイザーと、機械的又は熱的な 処理で前記子粒子を母粒子の表面に固定化又は成膜する ハイブリダイザーとを有している。

【0017】まず、図3に示すように、OMダイザーで ガラスピーズ11の表面に微粒子状のPMMA12(ボ リメチルメタクリレート)を静電付着させる。ハイブリ 30 ダイザを用いて前記PMMA12を加熱処理し、ガラスピーズ11の表面に成膜する。次にOMダイザーを用いて、PMMA12が成膜したガラスピーズ11と酸化物ソルダーとしての低軟化点ガラスフリット10とを簡易分散処理する。そして、ハイブリダイザを用いてガラスピーズ11上のPMMA12に低軟化点ガラスフリット10を固定化し、図3に示すような複合型のガラスピーズ11を得る。

【0018】また、本実施例で用いられる複合型のガラスビーズは、図4に示すように製造することもできる。即ち、OMダイザーを用いて、図4(a)に示すようにガラスビーズ11と酸化物ソルダーである低軟化点ガラスフリット10を簡易分散処理する。そして、ハイブリダイザを用いて、同図(b)に示すようにガラスビーズ11の表面に低軟化点ガラスフリット10を成膜して固定化する。

【0019】さて、このようにして得られた複合型のガラスピーズ11は、図1の(ニ)に示すように、露光された部分に粘着性が生じた基板1の上に適用される。そして、基板1に粘着したガラスピーズ11以外の不要な 50

ガラスピーズは空気噴射等の手段で除去される。

【0020】図1(ホ)に示すように、平面板13と側 面板14からなる容器部15を前記基板1に組合せて箱 形の外囲器16を組み立て、400~600℃で加熱焼 成する。ガラスビーズ11を含む低軟化点ガラスフリッ ト10は溶融し、基板1及び平面板13にガラスピーズ 11を付着させる。なお、光粘着用感光膜は蒸発する。 【0021】図2(イ)~(ニ)によって第2実施例を 説明する。図2(イ)に示すように、光重合性感光膜形 成液2として例えばPVA (ポリビニルアルコール) に 重クロム酸アンモニウムを加えた1~5%の水溶液を用 い、これに、図4で示したように低軟化点ガラスフリッ ト21をコーティングしたガラスビーズ20を混合して スラリーとし、このスラリーを基板1上に被着する。被 着方法はスピンコート法や印刷法、ドクターブレード法 でもよい。被着後、前記基板1を乾燥して成膜する。 【0022】図2(ロ)に示すように、露光用マスク3 を通して前記基板 1 の支柱を設ける部分に紫外線を照射

【0022】図2(ロ)に示すように、露光用マスク3を通して前記基板1の支柱を設ける部分に紫外線を照射し、当該部分を重合させる。次に現像液、例えば水で洗浄することによって未露光部を除去する。

【0023】図2(ハ)に示すように、平面板13と側面板14からなる容器部15を前記基板1に組合せて箱形の外囲器16を組立て、400~600℃で加熱焼成する。低軟化点ガラスフリット21は軟化し、所定位置に仮止めされていたガラスビーズ20は基板1と平面板13の双方に接着する。また、感光膜は焼成時に分解揮散して除去される。

[0024]

【発明の効果】本発明によれば、次のような効果が得ら れる

(1) ガラスビーズは粘着膜によって基板に確実に接着され、又は粘着膜内に取込まれて基板に接着される。即ち、製造工程の途中で必要とされるガラスビーズと基板の接着力が大きくなったので、ガラスビーズのパターニング不良が減少した。

【0025】(2)ガラスビーズは、そのほぼ全面が酸化物ソルダーに被覆された状態で焼成され、基板と平面板の双方に接着される。このためガラスビーズは支柱としての固着強度が大きく、基板又は平面板との接着不良によるパターニング不良が生じにくい。また、ガラスビーズの径の若干のばらつきは酸化物ソルダーの焼成時の変形により吸収され、実質的に均一な高さに形成できる。

【図面の簡単な説明】

【図1】本発明の第1実施例の工程図である。

【図2】本発明の第2実施例の工程図である。

【図3】本発明の第1実施例に適用できる複合型のガラスピーズの断面図である。

【図4】本発明の第1実施例に適用できる複合型のガラスピーズの製造工程を示す断面図である。

【図5】ガラスピーズを用いた従来の支柱形成方法を示 す工程図である。

【符号の説明】

1…基板

2…光粘着用感光膜形成液

*10、21…酸化物ソルダーとしての低軟化点ガラスフ リット

11,20…ガラスビーズ

13…平面板

16…外囲器

【図2】

