Protein Interactions: Computational Techniques

BE21B037 - Assignment Part B

- 1. Consider the protein-protein complex, human growth hormone receptor-human growth hormone (HGH) analyze the following:
- a. Find the complex structure and functional importance from PDB

PDB ID: 1A22

Functional Importance of 1A22:

- Plays an important role in growth control.
- Its major role in stimulating body growth is to stimulate the liver and other tissues to secrete IGF-1. It stimulates both the differentiation and proliferation of myoblasts.
- It also stimulates amino acid uptake and protein synthesis in muscle and other tissues.

b. What is the structural type of the complex (homo/hetero/dimer/trimer etc.)

1A22 is a hetero dimer complex

c. Obtain binding affinity data for the complex from SKEMPI, PROXIMATE and PDBBind database SKEMPI

Browse the database

Search by PDB code or protein name: PDB Database to use: PDB O RCSB O PDBj																					
Search	Clear																		25	1 records	found
PDB Code	Mutation Pdb	Mutation Cleaned	Location	Hold Out Type	Hold Out Proteins	Affinity Mut	Affinity Wt	Ref.	Protein 1	Protein 2	T (°K)	Kon Mut	Kon Wt	Koff Mut	Koff Wt	Dh Mut	Dh Wt	Ds Mut	Ds Wt	Method	
1A22_A_B	MA14A	MA14A	INT		1A22_A_B,1BP3_A_B	9E-10	9E-10	•	Human growth hormone	hGH binding protein	298	3E+05	3E+05	3.24E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	HA18A	HA18A	COR		1A22_A_B,1BP3_A_B	3.96E-10	9E-10	•	Human growth hormone	hGH binding protein	298	2.73E+05	3E+05	1.11E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	HA21A	HA21A	SUP		1A22_A_B,1BP3_A_B	1.17E-09	9E-10		Human growth hormone	hGH binding protein	298	3E+05	3E+05	3.51E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	QA22A	QA22A	RIM		1A22_A_B,1BP3_A_B	6.21E-10	9E-10	•	Human growth hormone	hGH binding protein	298	2.73E+05	3E+05	1.67E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	FA25A	FA25A	COR		1A22_A_B,1BP3_A_B	4.23E-10	9E-10		Human growth hormone	hGH binding protein	298	3E+05	3E+05	1.27E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	DA26A	DA26A	SUR		1A22_A_B,1BP3_A_B	6.3E-10	9E-10	•	Human growth hormone	hGH binding protein	298	3.37E+05	3E+05	2.13E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	QA29A	QA29A	SUR		1A22_A_B,1BP3_A_B	3.33E-10	9E-10	•	Human growth hormone	hGH binding protein	298	3.09E+05	3E+05	1.03E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	YA42A	YA42A	COR		1A22_A_B,1BP3_A_B	1.26E-09	9E-10	•	Human growth hormone	hGH binding protein	298	2.5E+05	3E+05	3.24E-04	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	LA45A	LA45A	COR		1A22_A_B,1BP3_A_B	7.11E-09	9E-10		Human growth hormone	hGH binding protein	298	1.67E+05	3E+05	1.16E-03	2.7E-04	None	None	None	None	SPR	•
1A22_A_B	QA46A	QA46A	RIM		1A22_A_B,1BP3_A_B	1.08E-09	9E-10		Human growth hormone	hGH binding protein	298	2.14E+05	3E+05	2.43E-04	2.7E-04	None	None	None	None	SPR	•
																			1 2	3 4 5 >	> >>

PROXIMATE

S.no.	PDB	Chains	Protein 1	Protein 2	Functional Class	Experimental Technique	Conic Conditions Tem	perature pH	Pubn Loca			Notes
125	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	Competitive displacement of ¹²⁵ I labeled hGH	50 mM Tris-HCl, 10 - mM CaCl ₂ , 0.1% BSA 0.02% NaN ₃	, 298	7.4	2014261 (Table 2, p. 3409)	4.60E-10	-12.73
126	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	Competitive displacement of ¹²⁵ I labeled hGH	50 mM Tris-HCl, 10 mM CaCl ₂ , 0.1% BSA - 0.02% NaN ₃ , 50 μM ZnCl ₂ , 10 mM MgCl ₂	298	7.4	2014261 (Table 4, p. 3409)	4.40E-10	-12.76
127	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	Competitive displacement of ¹²⁵ I labeled hGH	50 mM Tris-HCl, 10 - mM CaCl ₂ , 1 g/L BSA 0.2 g/L NaN ₃	, 298	7.4	2034689 (Table 1, p. 4499)	4.00E-10	-12.81
128	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	Competitive displacement of ¹²⁵ I labeled hGH	50 mM Tris-HCl, 10 mM CaCl ₂ , 1 g/L BSA 0.2 g/L NaN ₃	, 298	7.4	2471267 (Table 1, p. 1082)	3.40E-10	-12.91
129	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	Surface Plasmon Resonance	150 mM NaCl, 10 mN sodium phosphate, 0.02% Tween 20	298	7.4	7504735 (Tables 1 and 2, pp. 556-7)	9.00E-10	-12.33
130	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	Competitive Binding	50mM Tris-HCl, 10ml CaCl ₂ , 1g/L bovine albumin, 0.2 g/L NaN	298	7.4	7529940 (Figure 2, p. 384)	9.63E-10	-12.29
131	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	Surface Plasmon Resonance	PBS with 10mM sodium phosphate, 137mM NaCl, 2.7mM KCl, 0.05% Tween 20		7.2	8756685 (Table 2, p. 10303)	2.90E-09	-11.64
132	1A22	A:B	Human growth hormone/ somatotropin (hGH)	Human growth hormo receptor (hGHR)	ne HR	competitive displacement of hGH from hGHbp, using ¹²⁵ I-labeled hGH as tracer	PBS with 0.02% (v/v) 298		9571026 (Table 1, p. 1118)	3.40E-10	-12.91

PDBBind

d. Access PROXiMATE database and check the number of mutations for the complex with experimentally known binding free energy ($\Delta\Delta G$).

e. Identify the mutation, which has the most favorable (highest negative value) and last favorable (highest positive energy value) binding energy

Copying the database and sorting based on the binding energy gives us the most negative value of -0.92 kcal/mol

Entry	PDB	Mutation(s)	Protein 1	Protein 2	Pubmed/ Reference	Wild-type K _D (M)	Mutant K _D (M)	Wild-type ΔG (kcal/ mol)	ΔΔG (kcal/ mol)	Secondary Structure	Relative Accessibility
4558	1A22	A:E174A	Human growth hormone/ somatotropin (hGH) P01241	Human growth hormone receptor (hGHR) P10912	7504735 (Tables 1 and 2, pp. 556-7)	9.00E-10	1.89E-10	-12.33	-0.92	A:E174A=Alpha- helix	A:E174A=0.11

And the least favorable value as 3.78 kcal/mol

Ent	try	PDB	Mutation(s)	Protein 1	Protein 2	Pubmed/ Reference	Wild-type K _D (M)	Mutant K _D (M)	Wild-type ΔG (kcal/ mol)	ΔΔG (kcal/ mol)	Secondary Structure	Relative Accessibility
40	66	1A22	A:K172A, A:F176A	Human growth hormone/ somatotropin (hGH) P01241	Human growth hormone receptor (hGHR) P10912	2014261 (Table 4, p. 3409)	4.40E-10	2.60E-07	-12.76	3.78	A:K172A=Alpha- helix A:F176A=Alpha- helix	A:K172A=0.04 A:F176A=0.00

f. Group the mutations into (i) nonpolar to nonpolar, (ii) nonpolar to polar and (iii) polar to polar and obtain average binding energy [nonpolar: A, C, F, G, I, L, M, V, W, Y]

						V	\ \
1A22	A:E174A	-0.92	A	Е	Α	Polar	Nonpolar
1A22	A:E174A	-0.9	Α	E	Α	Polar	Nonpolar
1A22	A:E174A	-0.9	Α	E	Α	Polar	Nonpolar
1A22	A:K168A	-0.77	Α	K	Α	Polar	Nonpolar
1A22	B:V371A	-0.7	В	V	Α	Nonpolar	Nonpolar
1A22	A:H21A	-0.66	A	Н	Α	Polar	Nonpolar
1A22	B:V371A	-0.62	В	V	Α	Nonpolar	Nonpolar
1A22	A:Q29A	-0.59	A	Q	Α	Polar	Nonpolar
1A22	B:Q274A	-0.58	В	Q	Α	Polar	Nonpolar
1A22	B:S299A	-0.51	В	S	Α	Polar	Nonpolar
1A22	A:H18A	-0.49	Α	Н	Α	Polar	Nonpolar
1A22	A:E65A	-0.47	Α	E	Α	Polar	Nonpolar
1A22	A:F25A	-0.45	Α	F	Α	Nonpolar	Nonpolar
1A22	B:N272A	-0.44	В	N	Α	Polar	Nonpolar
1A22	B:T273A	-0.44	В	T	Α	Polar	Nonpolar
1A22	A:F25A	-0.43	Α	F	Α	Nonpolar	Nonpolar
1A22	B:Q278A	-0.41	В	Q	Α	Polar	Nonpolar
1A22	B:S298A	-0.33	В	S	Α	Polar	Nonpolar
1A22	A:E65A	-0.31	Α	E	Α	Polar	Nonpolar
1A22	A:E65A	-0.31	Α	E	Α	Polar	Nonpolar
1A22	A:F25A	-0.27	Α	F	Α	Nonpolar	Nonpolar
1 1 2 2	D-NI207A	0.26	D	NI	Λ	Dolor	Monnolar

After Grouping the average binding energy for each of the three cases are

(i) nonpolar to nonpolar (62 mutations)

Average Binding Energy =0.602096774 kcal/mol

(ii) nonpolar to polar (2 mutations) Average Binding Energy = -0.04 kcal/mol

(iii) polar to polar(4 mutations) Average Binding Energy = 0.8925 kcal/mol

g. Obtain the average binding energy at different secondary structures of the mutant, helix, strand and coil

The following are the average binding energies for different secondary structures of the mutant

- 1) Alpha-helix 90 entries = 00.477888889 kcal/mol
- 2) 3/10 helix = 0.685 kcal/mol
- 3) Turn = 0.087857143 kcal/mol
- 4) Bend = 0.6488 kcal/mol
- 5) Beta-bridge = -0.05 kcal/mol
- 6) Loop/irregular= 0.409361702 kcal/mol
- 7) Strand = 0.381025641 kcal/mol

Helix = $\frac{1}{3}$ (alpha-helix, 3/10 helix, turn(helix-turn)) = 0.477888889 + 0.685 + 0.087857143 = 1.250746032 / 3 = 0.417

h. Repeat the same for different ranges of relative ASA, 0-2%, 2-50%, >50%

The following are the average binding energies for different ranges of relative ASA of the mutant

Relative ASA 0-2% - 0.815686275 kcal/mol Relative ASA 2-50% - 0.47281768 kcal/mol Relative ASA >50% - 0.04804878 kcal/mol

i. Identify the binding site residues (interface) using distance based criterion (use PDBparam) using a cut off of 5A

	Home	Compute	Features	Links	Tutorial	Contact	
Protein Bioinformatics				Compute			
Trotom Storm of marres	PDBparam server	computes different pa ter the PDB code belo		e dimensional structu	ure of the protein.To cal	culate the properties,	mark the
Dept. of Biotechnology	The features are clabinding sites.	ssified into four catagor	ries namely, Inter-resido	ue interactions, Prope	ensities, Physicochemica	al properties, Identifica	tion of
IIT, Madras	The results are show	wn residue-wise or prote	ein-wise whichever is ap	plicable or both.			
				Input details			
			The giv	en input PDB-id: 1A22	2		
			Identif	ication of binding site	,		
		Protein-Protein	1	O Protein-Ligand	O Pro	otein-DNA/RNA	
		Chain Name	(0)	ptional) Distance th	hreshold 5		
			Example	Submit Clear Back	(
	4						

The unique interacting residues include

Residue	No	Residue	No	Residue	No
HIS	18	ARG	167	TRP	304
HIS	21	LYS	168	ILE	305
GLN	22	ASP	171	PRO	306
PHE	25	LYS	172	CYS	308
TYR	28	GLU	174	GLU	320
LYS	41	THR	175	LYS	321
TYR	42	PHE	176	CYS	322
LEU	45	ARG	178	PHE	323
GLN	46	ILE	179	SER	324
ASN	47	CYS	182	ASP	326
PRO	48	CYS	189	GLU	327
SER	51	ARG	243	ASP	364
LEU	52	GLU	244	ILE	365
GLU	56	ARG	271	GLN	366
PRO	61	THR	273	LYS	367
SER	62	GLN	274	GLY	368
ASN	63	GLU	275	TRP	369
ARG	64	TRP	276	VAL	371
GLU	65	SER	298	ARG	417
THR	67	THR	301	ASN	418
GLN	68	SER	302	SER	419
TYR	164	ILE	303	GLY	420

j. Identify the binding site residues (interface) using ASA based criterion (use GETAREA or DSSP for ASA values).

The binding sites are identified using the formula If change in ASA before and after binding is > 0.1 $\mbox{Å}^2$

Residue1	No1	Residue2	No2
HIS	18	GLU	244
HIS	21	ARG	270
GLN	22	ARG	271
PHE	25	THR	273
TYR	28	GLN	274
LYS	41	GLU	275
TYR	42	TRP	276
LEU	45	TRP	280
GLN	46	SER	298
PRO	48	SER	299
GLN	49	THR	301
SER	51	SER	302
LEU	52	ILE	303
GLU	56	TRP	304
PRO	61	ILE	305
SER	62	PRO	306
ASN	63	CYS	308
ARG	64	GLU	320
GLU	65	LYS	321
THR	67	CYS	322
GLN	68	PHE	323
TYR	164	SER	324
ARG	167	ASP	326
LYS	168	GLU	327
ASP	171	ASP	364
LYS	172	ILE	365
GLU	174	GLN	366
THR	175	LYS	367
PHE	176	GLY	368
ARG	178	TRP	369
ILE	179	MET	370
CYS	182	VAL	371
ARG	183	THR	395

CYS	189	ARG	417
GLY	190	ASN	418
PHE	191	SER	419
ARG	243	GLY	420

Yellow cells represent the A chain.

k. Check the common interface residues listed in PDBsum, distance and ASA based criteria PDBsum gives the following reason

Interface statistics

Key:

		Interface area (Å ²)			No. of hydrogen bonds	No. of non-bonded contacts
	27	1308			11	155
B	25	1333	0	-	- 11	155

Residue interactions across interface Coloured by residue type

Hydrogen bonds

	<	A 7	ГОМ	1	>		<	A	гом	2	>	
	Atom	Atom	Res	Res			Atom	Atom	Res	Res		
	no.	name	name	no.	Chain		no.	name	name	no.	Chain	Distance
1.	351	NZ	LYS	41	Α	<>	2170	OE2	GLU	327	В	3.04
2.	384	O	LEU	45	Α	<>	1761	NE1	TRP	276	В	2.65
3.	397	NE2	GLN	46	Α	<>	2114	OE2	GLU	320	В	3.05
4.	474	OE2	GLU	56	Α	<>	1722	NH2	ARG	271	В	2.88
5.	513	0	SER	62	Α	<>	1975	N	ILE	303	В	2.71
6.	531	NE	ARG	64	Α	<>	2434	OD2	ASP	364	В	2.90
7.	534	NH2	ARG	64	Α	<>	2434	OD2	ASP	364	В	3.27
8.	568	NE2	GLN	68	Α	<>	2434	OD2	ASP	364	В	2.98
9.	1277	NH2	ARG	167	Α	<>	2170	OE2	GLU	327	В	3.04
10.	1286	NZ	LYS	168	Α	<>	1986	0	TRP	304	В	3.00
11.	1341	0G1	THR	175	Α	<>	1556	NH2	ARG	243	В	2.65

Non-bonded contacts

	<	A	гом	1	>		<	A T	ОМ	2	>	
	Atom	Atom	Res	Res			Atom	Atom F	Res	Res		
			name		Chain			name i			Chain	Distance
1.	141	0	HIS	18		<>	2896			418	В	3.54
2.	143	CG	HIS	18	Α	<>	2896			418	В	3.61
3.	144	ND1	HIS	18	Α	<>	2886	NE A	ARG	417	В	3.80
4.	144	ND1	HIS	18	Α	<>	2887	CZ	ARG	417	В	3.73
5.	144	ND1	HIS	18	Α	<>	2889	NH2 A	ARG	417	В	3.60
6.	144	ND1	HIS	18	Α	<>	2895	CG A	ASN	418	В	3.88
7.	144	ND1	HIS	18	Α	<>	2896	OD1 A	ASN	418	В	2.90
8.	145	CD2	HIS	18	Α	<>	2889	NH2 A	ARG	417	В	3.80
9.	146	CE1	HIS	18	Α	<>	2886	NE A	ARG	417	В	3.29
10.	146	CE1	HIS	18	Α	<>	2887	CZ	ARG	417	В	3.05
11.	146	CE1	HIS	18	Α	<>	2888	NH1 A	ARG	417	В	3.44
12.	146	CE1	HIS	18	Α	<>	2889	NH2 A	ARG	417	В	3.27
13.	146	CE1	HIS	18	Α	<>	2895	CG A	ASN	418	В	3.61
14.	146	CE1	HIS	18	Α	<>	2896	OD1 A	ASN	418	В	2.99
15.	146	CE1	HIS	18	Α	<>	2897	ND2 A	ASN	418	В	3.74
16.	147	NE2	HIS	18	Α	<>	2887	CZ	ARG	417	В	3.41
17.	147	NE2	HIS	18	Α	<>	2888	NH1 A	ARG	417	В	3.49
18.	147	NE2	HIS	18	Α	<>	2889	NH2 A	ARG	417	В	3.39
19.	147	NE2	HIS	18	Α	<>	2896	OD1 A	ASN	418	В	3.69
20.	173	ND1	HIS	21	Α	<>	2894	CB A	ASN	418	В	3.50
21.	173	ND1	HIS	21	Α	<>	2896	OD1 A	ASN	418	В	3.88
22.	175	CE1	HIS	21	Α	<>	2893	0 /	ASN	418	В	3.38
23.	175	CE1	HIS	21	Α	<>	2894	CB A	ASN	418	В	3.48
24.	175	CE1	HIS	21	Α	<>	2903	OG S	SER	419	В	3.63
25.	176	NE2	HIS	21	Α	<>	2893	0 /	ASN	418	В	3.30
26.	176	NE2	HIS	21	Α	<>	2894	CB A	ASN	418	В	3.88
27.	178	CA	GLN	22	Α	<>	2897	ND2 A	ASN	418	В	3.72
28.	181	CB	GLN	22	Α	<>	2897	ND2 A	ASN	418	В	3.65
29.	204	CG	PHE	25	Α	<>	2893	0 /	ASN	418	В	3.64
30.	206	CD2	PHE	25	Α	<>	2893	0 /	ASN	418	В	3.28
31.	208	CE2	PHE	25	Α	<>	2893	0 /	ASN	418	В	3.76
32.	350	CE	LYS	41	Α	<>	2127	0 (CYS	322	В	3.84
33.	351	NZ	LYS	41	Α	<>	2168	CD (GLU	327	В	3.78
34.	351	NZ	LYS	41	Α	<>				327	В	3.74
35	254	817	1370	4.4			2470	000	CLII	777	D	3 04

And a few more

< A T O M	1>	< A T O M	2>
-----------	----	-----------	----

	Atom	Atom	Res	Res			Atom	Atom	Res	Res		
	no.	name	name	no.	Chain		no.	name	name	no.	Chain	Distance
1.	351	NZ	LYS	41	Α	<>	2170	OE2	GLU	327	В	3.04
2.	474	OE2	GLU	56	Α	<>	1722	NH2	ARG	271	В	2.88
3.	533	NH1	ARG	64	Α	<>	1564	OE1	GLU	244	В	3.76
4.	531	NE	ARG	64	Α	<>	2434	OD2	ASP	364	В	2.90
5.	1277	NH2	ARG	167	Α	<>	2170	OE2	GLU	327	В	3.04
6.	1310	OD2	ASP	171	Α	<>	1555	NH1	ARG	243	В	3.19

Number of salt bridges: 6

Number of hydrogen bonds: 11

Number of non-bonded contacts: 155

The list of unique residues are

\	274	LIIC	24
VAL	371	HIS	21
ARG	178	SER	302
GLY	368	GLU	174
CYS	189	SER	419
ILE	365	PHE	25
CYS	182	ASN	418
GLN	366	GLN	22
ARG	64	HIS	18
GLN	68	ARG	417
ILE	179	TYR	42
THR	67	CYS	322
ASP	364	GLN	46
GLU	244	GLU	320
LYS	367	CYS	308
TRP	369	GLU	56
ASN	63	ARG	271
LYS	172	LYS	41
LYS	168	GLU	327
TRP	304	ARG	167
PRO	61	LEU	52
THR	175	PRO	48
ARG	243	GLN	274
ASP	171	LEU	45
ASP	326	TRP	276
SER	62	GLU	275

The list of common residues in all three are

Residue	No	Residue	No	Residue	No
HIS	18	ARG	167	TRP	304
HIS	21	LYS	168	ILE	305
GLN	22	ASP	171	PRO	306
PHE	25	LYS	172	CYS	308
TYR	28	GLU	174	GLU	320
LYS	41	THR	175	LYS	321
TYR	42	PHE	176	CYS	322
LEU	45	ARG	178	PHE	323
GLN	46	ILE	179	SER	324
ASN	47	CYS	182	ASP	326
PRO	48	CYS	189	GLU	327
SER	51	ARG	243	ASP	364
LEU	52	GLU	244	ILE	365
GLU	56	ARG	271	GLN	366
PRO	61	THR	273	LYS	367
SER	62	GLN	274	GLY	368
ASN	63	GLU	275	TRP	369
ARG	64	TRP	276	VAL	371
GLU	65	SER	298	ARG	417
THR	67	THR	301	ASN	418
GLN	68	SER	302	SER	419
TYR	164	ILE	303	GLY	420

l. Compute the reduction in accessibility upon complex formation: ASA of HGH, HGH receptor, complex and difference using GETAREA $\,$

ASA (complex) = 17635.87 ASA (HGH) + ASA (HGH receptor) = 13977.59 + 68314.34 = 82291.93 Difference = 82291.93 - 17635.87 = 64656.06

2. Find the protein-protein interactions in the IntAct database for SARS-CoV-2 obtained with ITC.

The above is the interaction networks, attached below is the list of interactions obtained with ITC

3. Using the AbCov database (https://web.iitm.ac.in/bioinfo2/ab-cov/), for the monoclonal antibody 2B04, find the IC50 value. Find whether it is a neutralizing antibody or not and the source of the antibody.

Search

About

Contact

Links

Statistics

Tutorial

What's New

IC50 value of 1.46 ng/ml

Ab-CoV

- One mAb, 2B04, neutralized wild-type SARS-CoV-2 in vitro with remarkable potency (half-maximal inhibitory concentration of <2 ng/ml).
- In a murine model of SARS-CoV-2 infection, 2B04 protected challenged animals from weight loss, reduced lung viral load, and blocked systemic dissemination
- Origin: Immunised Mouse