$$7.1a) \Sigma = \begin{pmatrix} G_1 & 0 & 0 \\ 0 & G_2 & 0 \\ 0 & G_3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & G_4 & 0 \\ 0 & G_5 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & G_5 & 0 \\ 0 & G_5 & 0 \\ 0 & G_5 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & G_5 &$$

Conclusion:
$$A = U \Sigma V^T = \mathcal{O}(\Sigma_{10}) V^T = \mathcal{O}(\Sigma_{10}) V^T = \mathcal{O}(\Sigma_{10}) V^T$$

b) We know that rank(A) = r, honce by the rank-nullity theorem: dim Ker(A) = m-r.

They, ..., Time is orthonormal because the rim is orthonormal (since the vi's are the columns of the orthogonal matrix ! For i ∈ } (+1, ..., my, N vi = (<v_1, vi) because 151. . 15m is orthonormal. Consequently: Avi = UZVVV = 0: 0; Ekee A Conclusion: (vr.,...vm) is an outhonormal family of m-r vectors of KerA. Since dim KerA = m-r, it is an orthonormal basis of KaA. uz,...ur is orthonormal, because they are columns of the orthogonal matrix U Let (ex...em) be the canonical basis of Rm dot $i \in \{1,...,r\}$. $V^T ros = e_i$ because $ros_1...r_n$ orthonormal and V= (1, ... Vn)

I	V'ri = Zei	= 0;	2.	
	ce Avi = UZ			
Sin	ce i∈ }1, r'	y, we he	we C: ± 0 , have	6
u	$i = \frac{1}{C} A v_i \in I$	(A).	we $\sigma_i \neq 0$, how	
	military a manager	10000000000000000000000000000000000000	and the same of the same	-
(-on clusion: (u,,.	عد (س	an orthonormal	
7	family	of 6 46	clos of Im(A).	_
+	Since o	(A) mt mile	e si tie ,7 =	N
	outhouseum	ial basis	of KECK Im(A).	
7)	al R. the south	Usa	- () - 1	10 28 ·
100	by to N boom	o N la	no (that we consymmetric) those	un
20.25 TT	to an affirman	nd have	(vi, vn) of 1	'n
~~	isting of pigging	ochure de	M: For J=1,	5 %
H	ti = hi ti, for	como).	1). 10 J= 1,	D_
•	by Single Many 1	SOURCE AT		
De	have to show !	that h:	i la me a	
	THE WARE CONTRACTOR	A A MANAGEMENT	75. 55.	
dt	i = 11	Compute	of Moi = of ()i	
	9 Ce m		$= \lambda_i \circ \tau$	
- W	the state of	- 1/	- \lambda:	4
	our Of the	2	_ Since (V1 V1)	

34	assumption, $\sigma_i^T H \sigma_i > 0$ (because $\sigma_i \neq 0$).
Hen	ce $\lambda_i = v_i^T H v_i > 0$.
Let that	$P = (\sqrt[4]{n} - \sqrt[4]{n})$ and $D = Diag(\lambda_1 - \lambda_n)$ we know $M = PDP^T$
P	is orthogonal because (15, 15, is orthonormal: P and PT. thus investible.
100	m what we proved in Homowork3: rank(H)=rank(PD) = rank(D)=n were all the diagonal elements of D are non-zero. Dis diagonal and
	Dis diagonal and s nxn and has rank n: it is investible.
psq (4	M is symmetric, let 1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2
	know that $\lambda_n = \min_{\substack{x \in \mathbb{R}^n \\ x =1}} x^T M x$.
hono	symmetric and $-\lambda_n$ is the largest eigenvalue of the matrix (-H) $-\lambda_n = \max_{\ x\ =1} xT(-H)x = -\min_{\ x\ =1} xTHx$
Hence	e for all non-zero $x \in \mathbb{R}^n$, $(\frac{x}{ x }) H(\frac{x}{ x }) \ge \lambda_n$.

This gives 2TM2 > hall212 Let a = | /n | +1. $2T(M+\alpha Id_n)x = x^TMx + \alpha x^Tx$ > \(\lambda_n \lambda > 112112 >0 for a ER" Hoy. Conclusion: M+ aIdn is positive definite 7.4. Let of ... on be an orthonormal family of eigenvectors of M, associated respectively Let P= (on ... on) and D= Diag (h...hn). We know that $H = PDP^T$ Let den. Let UERnood such that UTU = Idy Define R = PTU. and notice that RTR = UTPPTU LAT = UnbI TU = Idy $Tr(U^TMU) = Tr(U^TD)T$ $= \tau_r(R^T D R)$ (2TDR),

$$(R^{T}DR)_{j,i} = \int_{j=2}^{n} (R^{T})_{i,j} (DR)_{j,i}$$

$$= \int_{j=2}^{n} R_{j,i} \sum_{k=2}^{n} D_{jk} R_{k,i}$$

$$= \int_{j=2}^{n} R_{j,i} \lambda_{j} R_{j,i} \quad \text{because } D_{jk} = \begin{cases} \lambda_{j} & \text{if } k_{-j} \\ 0 & \text{otherwise} \end{cases}$$

$$= \int_{j=2}^{n} \lambda_{j} R_{j,i}^{2} .$$
Hence $Tr(U^{T}HU) = \int_{j=2}^{n} \int_{j=2}^{n} \lambda_{j} R_{j,i}^{2} .$

$$= \int_{j=2}^{n} \lambda_{j} . \left(\int_{j=2}^{n} R_{j,i}^{2} \right)$$
• We have $\int_{j=2}^{n} w_{j} = d$. Indeed:
$$\int_{j=2}^{n} w_{j} = \int_{j=2}^{n} \int_{j=2}^{n} R_{j,i}^{2} = Tr(R^{T}R) = Tr(Td_{j}) = d.$$
• For all j , $0 \le w_{j} \le 1$. Indeed:
$$\int_{j=2}^{n} w_{j} = \int_{j=2}^{n} \int_{j=2}^{n} R_{j,i}^{2} = (e_{j}, R^{T}e_{j}) \le ||e_{j}|| ||R^{T}e_{j}|| \le 1.$$
Hence we have n assignts $w_{1} = w_{1} + w_{2} = w_{1} + w_{2} = d$.

We get that $Tr(U^{T}HU) \le \int_{j=2}^{n} \lambda_{j} .$
We get that $Tr(U^{T}HU) \le \int_{j=2}^{n} \lambda_{j} .$

Since U was arbitrarily chosen, we get that max Tr(UMU) & I ho PPIEDIO Let $U = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \in \mathbb{R}^{n\times d}$. of ... of are cathonormal, hence UTU - tdg. Compute $PU = \begin{pmatrix} v_1 & v_2 \\ v_3 & v_4 \end{pmatrix} = \begin{pmatrix} v_1 & v_4 \\ v_2 & v_4 \end{pmatrix}$ Hence Tr (UTHU) = Tr (PTU) D PTU) $=Tr\left(\begin{array}{c|c} 1.(0) \\ (0) \end{array}\right) \cdot \begin{pmatrix} \lambda_1.(0) \\ (0) \end{array}\right) \cdot \begin{pmatrix} \lambda_2.(0) \\ (0) \end{array}\right) d$ = \(\frac{1}{1=1} \) \(\lambda_j \) . which proves the converse equality.