Problem 1. Prove that, given any set C and a point $x \in C$, the normal cone $N_C(X) = \{g : G^T x \geq g^T y, \forall y \in C\}$ is a convex set (C not necessarily convex)

Solution. Let $g_1, g_2 \in N_C(x)$, and since normal cones are convex cones,

$$(t_1g_1 + t_2g_2)^T = t_1g_1^Tx + t_2g_2^Tx \ge t_1g_1^Ty + t_2g_2^Ty = (t_1g_1 + t_2g_2)^Ty, \ \forall \ t_1, t_2 \ge 0$$

Problem 2. Prove that for any set C (convex or not), its support function $I_C^*(x) = \max_{y \in C} x^T y$ is a convex function.

Solution. For every $y \in C$, x^Ty is a linear function of x, so I_C^* is a pointwise supremum of a family of linear functions, therefore convex.

Problem 3. Consider a closed set defined by $C = \{(x,y)|y \geq \frac{1}{1+x^2}\}$ where $(x,y) \in \mathbb{R}^2$

- 1. Is the set C convex? (Hint: you can draw the set C on the plane to explain your answer.)
- 2. Is the convex hull of set C also a closed set? You can also explain your answer by the plot.

Solution.

- 1. Consider the function $f(x) = \frac{1}{1+x^2}$, the set C = epi(f), i.e. $\forall y \in C, f(x) \leq y$ Now consider $\frac{\partial}{\partial^2 x} f(x) = \frac{6x^2-2}{(1+x^2)^3}$, which is not strictly nondecreasing, which means f(x) is not convex, implying epi(f) is not convex.
- 2. The closure of a the convex hull H of a closed set C will be H itself, making H closed as well.

Problem 4. Adapt the proof of log-determinant function to show that $f(x) = tr(X^{-1})$ is convex on $dom f = S_{++}^n$

Solution. Let $\lambda_1, ..., \lambda_n$ be eigenvalues of X and Y be another matrix in S_{++}^n , and its eigenvalues be $\mu_1, ..., \mu_n$. Both X^{-1} and Y^{-1} so their eigenvalues are $\frac{1}{\lambda_1}, ..., \frac{1}{\lambda_n}$, and $\frac{1}{\mu_1}, ..., \frac{1}{\mu_n}$, respectively.

Consider the matrix $\theta X + (1-\theta)Y$ for $0 \le \theta \le 1$, which is also positive definite because (X) and Y are positive definite, so and similar to above, the eigenvalues of $(\theta X + (1-\theta)Y)^{-1}$ are $\frac{1}{\theta \lambda_i + (1-\theta)\mu_i}$.

So
$$\operatorname{tr}(\theta X + (1 - \theta Y)) = \sum_{i=1}^{n} \frac{1}{\theta \lambda_i + (1 - \theta)\mu_i}$$
, and θ

Problem 5. 1. $f(x_1, x_2) = \frac{1}{x_1 x_2}$ on \mathbb{R}^2_{++} is convex.

2. $f(x_1, x_2) = \frac{x_1}{x_2}$ on $\mathbb{R} \times \mathbb{R}^2_{++}$ is convex.

Solution.

Problem 6. Prove that $\log(\frac{e^x}{1+e^x})$ on \mathbb{R} is concave.

Solution.

Problem 7. Prove that, by applying Jensen's inequality, an arithmetic mean is greater than or equal to its geometric mean, i.e., $(\prod_{i=1}^n x_i)^{1/n} \leq \frac{1}{n} \sum_{i=1}^n x_i$ where $\mathbf{x} \in \mathbb{R}_{++}^{\times}$

Solution.

Problem 8. Prove that $\frac{1}{\sqrt{n}} ||x||_1 \le ||x||_2 \le ||x||_1$

Solution.

Problem 9. Show that the following function f(x) is convex:

$$f(x) = x^{T}(A(x))^{-1}x$$
, $dom f = \{x | A(X) > 0\}$

Solution.

Problem 10. Prove that the maximum eigenvalue of a symmetric matrix is convex.

Solution.

Problem 11. Let $f(x) = \sum_{i=1}^{r} |x|_{[i]}$ on \mathbb{R}^n , where $|x|_{[i]}$ is the i-th largest component of teh absolute value of |x|, and $r \leq n$ is a positive number.

- 1. Prove that f(x) is convex.
- 2. Show that $f(x) = \min_t(rt) + \sum_{i=1}^n \max(0, |x_i t|)$ is convex.

Solution.

Problem 12. Let $f(\lambda) = \mathbf{x}^T D(\lambda)(D(\lambda) + \mathbf{I})^{-1}\mathbf{x} - \mathbf{I}^T \lambda$ on \mathbb{R}^n_+ , where $D(\lambda)$ is a diagonal matrix and $\mathbf{I}^T = [1, 1, ..., 1]$.

- 1. Prove that $f(\lambda)$ is concave.
- 2. Find the optimal value of $f(\lambda)$.

Solution. \blacksquare

Problem 13. Is the function $f(x) = \ln(1 + \frac{x^2}{2\tau_0^2})$, where $\tau_0 > 0$, convex?

Solution.

Problem 14. 1. Determine whether or not $\sqrt{x_1x_2}$ is convex on \mathbb{R}^2_{++} .

2. Determine whether or not $g(\mathbf{y}) = \max_{x \in \mathbb{R}_{++2}} x_1 y_1 + x_2 y_2 - \sqrt{x_1 x_2}$ is convex on \mathbb{R}^2

Solution.