Real-Time Systems

Second Edition

Real-Time Systems Series

Series Editor

John A. Stankovic

University of Virginia, Virginia, USA

For further volumes: http://www.springer.com/series/6941

Hermann Kopetz

Real-Time Systems

Design Principles for Distributed Embedded Applications

Second Edition

Hermann Kopetz Vienna University of Technology Department of Computer Engineering Real Time Systems Group Treitlstrasse 3, 3rd floor 1040 Wien, Austria hk@vmars.tuwien.ac.at

ISSN 1867-321X e-ISSN 1867-3228 ISBN 978-1-4419-8236-0 e-ISBN 978-1-4419-8237-7 DOI 10.1007/978-1-4419-8237-7 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011925551

© Springer Science+Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The primary objective of this book is to serve as a textbook for students who take a senior undergraduate or a first-year graduate course on real-time embedded systems, also called *cyber-physical systems*. The structure of the book – the material is organized into 14 chapters – maps to the 14 weeks of a semester. The book is also intended for practitioners in industry who want to learn about the state of the art in real-time embedded system design and need a reference book that explains the fundamental concepts of the field. More than 1,000 students used the first edition of this book, published about 14 years ago, as a text for the real-time systems course at the Vienna University of Technology. The feedback from these students and many new developments in this dynamic field of embedded real-time systems have been incorporated in this fundamentally revised second edition of the book. The focus of the book is on the design of distributed real-time systems at the architecture level. While a significant part of the established computer science literature abstracts from the progression of real-time, real-time system designers cannot get away with such an abstraction. In this book, the progression of physical time is considered a firstorder citizen that shapes many of the relevant concepts. The book explains the fundamental concepts related to the progression of time on a number of practical insightful examples from industry. The conceptual model of a distributed real-time distributed system has been extended and precise definitions of important timerelated concepts, such as sparse time, state, temporal accuracy of real-time data, and determinism are given.

Since the evolving cognitive complexity of large computer systems is a topic of utmost concern, a new chapter on *simplicity* has been included in this second edition. This chapter builds on some of the recent insights from the field of cognition – concerning concept formation, understanding, human simplification strategies and model building – and formulates seven principles that lead to the design of *simple* systems. These principles are followed in the remaining 12 chapters of the book. The other two new chapters, one on *energy and power awareness*, and one on the *Internet of things* cover topics of increasing importance in the enormous market of mobile devices. The chapters on *communication*, *dependability*, *system design*, and *validation* have been substantially revised with

vi Preface

a focus on *component-based* and *model-based design*. The chapter on dependability includes new sections on *security* and *safety*. The final chapter describes the *time-triggered architecture* that integrates all presented concepts into a coherent framework for the development of dependable embedded real-time systems. Since the first edition of the book has been published, a visible paradigm shift from the event-triggered to the time-triggered design methodology for dependable distributed real-time systems has taken place in a number of applications.

It is assumed that the reader of this book has a background in basic computer science or computer engineering or has some practical experience in the design or implementation of embedded systems.

The glossary at the end of the book is an integral part of the book, providing definitions for many of the technical terms that are used throughout the book. If the reader is not sure about the meaning of a term, she/he is advised to refer to the glossary.

Acknowledgements

It is impossible to name all students, colleagues from industry and fellow scientists who have contributed to this second edition of the book by asking intelligent questions or making constructive comments over the last decade – thanks to all of you. In the final stages of finishing the manuscript of this second edition, in October 2010, I have given a course at Vanderbilt University, organized by Janos Sztipanovits, and got valuable comments form an unbiased audience. I am especially grateful to Christian Tessarek who did the artwork, and the following persons who have read part or all of the evolving manuscript and made many valuable suggestions for improvement: Sven Bünte, Christian El-Salloum, Bernhard Frömel, Oliver Höftberger, Herbert Grünbacher, Benedikt Huber, Albrecht Kadlec, Roland Kammerer, Susanne Kandl, Vaclav Mikolasek, Stefan Poledna, Peter Puschner, Brian Randell, Andreas Steininger, Ekarin Suethanuwong, Armin Wasicek, Michael Zolda, and the following students from Vanderbilt: Kyoungho An, Joshua D. Carl, Spencer Crosswy, Fred Eisele, Fan Qui, and Adam C. Trewyn.

Vienna, Austria January 2011 Hermann Kopetz

Contents

1	The	Real-T	Fime Environment	1			
	1.1	When	Is a Computer System Real-Time?	2			
	1.2	Funct	ional Requirements	3			
		1.2.1	Data Collection	3			
		1.2.2	Direct Digital Control	5			
		1.2.3	Man–Machine Interaction	6			
	1.3	Temp	oral Requirements	6			
		1.3.1	Where Do Temporal Requirements Come from?	6			
		1.3.2	Minimal Latency Jitter	9			
		1.3.3	Minimal Error-Detection Latency	10			
	1.4	Deper	ndability Requirements	10			
		1.4.1	Reliability	10			
		1.4.2	Safety	11			
		1.4.3	Maintainability	12			
		1.4.4	Availability	12			
		1.4.5	Security	13			
	1.5	Classi	Classification of Real-Time Systems				
		1.5.1	Hard Real-Time System Versus Soft				
			Real-Time System	13			
		1.5.2	Fail-Safe Versus Fail-Operational	15			
		1.5.3	Guaranteed-Response Versus Best-Effort	16			
		1.5.4	Resource-Adequate Versus Resource-Inadequate	16			
		1.5.5	Event-Triggered Versus Time-Triggered	16			
	1.6	The R	Real-Time Systems Market	17			
		1.6.1	Embedded Real-Time Systems	18			
		1.6.2	Plant Automation Systems	20			
		1.6.3	Multimedia Systems	21			

x Contents

	1.7	Examples of Real-Time Systems	22
		1.7.1 Controlling the Flow in a Pipe	22
		1.7.2 Engine Control	23
		1.7.3 Rolling Mill	24
		Points to Remember	25
		Bibliographic Notes	26
		Review Questions and Problems	27
2	Sim	plicity	29
			20
	2.1	Cognition	30
		2.1.1 Problem Solving	30
		2.1.2 Definition of a Concept	32
		2.1.3 Cognitive Complexity	33
		2.1.4 Simplification Strategies	34
	2.2	The Conceptual Landscape	35
		2.2.1 Concept Formation	36
		2.2.2 Scientific Concepts	37
		2.2.3 The Concept of a Message	38
		2.2.4 Semantic Content of a Variable	39
	2.3	The Essence of Model Building	40
		2.3.1 Purpose and Viewpoint	41
		2.3.2 The Grand Challenge	42
	2.4	Emergence	43
		2.4.1 Irreducibility	43
		2.4.2 Prior and Derived Properties	44
		2.4.3 Complex Systems	44
	2.5	How Can We Achieve Simplicity?	45
		Points to Remember	47
		Bibliographic Notes	49
		Review Questions and Problems	49
3	Glo	bal Time	51
	3.1	Time and Order	52
		3.1.1 Different Orders	52
		3.1.2 Clocks	53
		3.1.3 Precision and Accuracy	55
		3.1.4 Time Standards	56
	3.2	Time Measurement.	57
		3.2.1 Global Time	58
		3.2.2 Interval Measurement	59
		3.2.3 π/Δ -Precedence	60
		3.2.4 Fundamental Limits of Time Measurement	61
	3.3	Dense Time Versus Sparse Time	62
		3.3.1 Dense Time-Base	63
		3.3.2 Sparse Time-Base	64

Contents xi

		3.3.3	Space-Time Lattice
		3.3.4	Cyclic Representation of Time
	3.4	Intern	al Clock Synchronization
		3.4.1	The Synchronization Condition
		3.4.2	Central Master Synchronization
		3.4.3	Fault-Tolerant Synchronization Algorithms
		3.4.4	State Correction Versus Rate Correction
	3.5	Extern	nal Clock Synchronization
		3.5.1	External Time Sources
		3.5.2	Time Gateway
		3.5.3	Time Formats
		Points	s to Remember
		Biblio	ographic Notes
		Revie	ew Questions and Problems
4	Rea	l-Time	Model
	4.1	Mode	l Outline
		4.1.1	Components and Messages
		4.1.2	Cluster of Components
		4.1.3	Temporal Control Versus Logical Control
		4.1.4	Event-Triggered Control Versus
			Time-Triggered Control
	4.2	Comp	onent State
		4.2.1	Definition of State
		4.2.2	The Pocket Calculator Example
		4.2.3	Ground State
		4.2.4	Database Components
	4.3	The M	Message Concept
		4.3.1	Message Structure
		4.3.2	Event Information Versus State Information
		4.3.3	Event-Triggered Message
		4.3.4	Time-Triggered Message
	4.4	-	onent Interfaces
		4.4.1	Interface Characterization.
		4.4.2	Linking Interface
		4.4.3	Technology Independent Control Interface
		4.4.4	Technology Dependent Debug Interface
		4.4.5	Local Interfaces
	4.5		vay Component
		4.5.1	Property Mismatches
		4.5.2	LIF Versus Local Interface of a Gateway Component
		4.5.3	Standardized Message Interface
	4.6		ng Interface Specification
		4.6.1	Transport Specification
		4.6.2	Operational Specification
		163	Meta-Level Specification

xii Contents

	4.7	Comp	onent Integration	102
		4.7.1	Principles of Composability	102
		4.7.2	Integration Viewpoints	104
		4.7.3	System of Systems	104
		Points	s to Remember	107
		Biblio	ographic Notes	108
		Revie	w Questions and Problems	109
5	Tem	poral l	Relations	111
	5.1	Real-T	Γime Entities	112
	5.1	5.1.1	Sphere of Control	112
		5.1.2	Discrete and Continuous Real-Time Entities	112
	5.2		vations	113
	3.2	5.2.1	Untimed Observation	113
		5.2.2	Indirect Observation	114
		5.2.3	State Observation	114
		5.2.4	Event Observation	114
	5.3		Γime Images and Real-Time Objects	115
	3.3	5.3.1	Real-Time Images	115
		5.3.2	Real-Time Objects	116
	5.4		oral Accuracy	116
	5.1	5.4.1	Definition	116
		5.4.2	Classification of Real-Time Images	119
		5.4.3	State Estimation	120
		5.4.4	Composability Considerations	121
	5.5		nence and Idempotency	122
		5.5.1	Permanence	122
		5.5.2	Duration of the Action Delay	123
		5.5.3	Accuracy Interval Versus Action Delay	124
		5.5.4	Idempotency	124
	5.6		minism.	125
		5.6.1	Definition of Determinism	125
		5.6.2	Consistent Initial States	127
		5.6.3	Non-deterministic Design Constructs	128
		5.6.4	Recovery of Determinism	130
			s to Remember	130
			ographic Notes	132
			w Questions and Problems	132
6	Dep	endabi	lity	135
	_			126
	6.1		Concepts	136
		6.1.1	Faults	136 138
			Errors	138
		U. L.J	1.4110109	1.79

Contents xiii

	6.2	Inforn	nation Security
		6.2.1	Secure Information Flow
		6.2.2	Security Threats
		6.2.3	Cryptographic Methods
		6.2.4	Network Authentication
		6.2.5	Protection of Real-Time Control Data
	6.3	Anom	aly Detection
		6.3.1	What Is an Anomaly?
		6.3.2	Failure Detection
		6.3.3	Error Detection
	6.4	Fault '	Tolerance
		6.4.1	Fault Hypotheses
		6.4.2	Fault-Tolerant Unit
		6.4.3	The Membership Service
	6.5		stness
		6.5.1	The Concept of Robustness
		6.5.2	Structure of a Robust System
	6.6		onent Reintegration
		6.6.1	Finding a Reintegration Point
		6.6.2	Minimizing the Ground-State
		6.6.3	Component Restart
			s to Remember
			ographic Notes
			w Questions and Problems
		110110	w Questions and I rosioms
7	Rea	l-Time	Communication
	7.1	Dagui	rements
	7.1	7.1.1	
			Timeliness
		7.1.2	Dependability
		7.1.3	Flexibility
	7.0	7.1.4	Physical Structure
	7.2	_	n Issues.
		7.2.1	A Waistline Communication Model
		7.2.2	Physical Performance Limitation
		7.2.3	Flow Control
		7.2.4	Thrashing
	7.3		-Triggered Communication
		7.3.1	Ethernet
		7.3.2	Controller Area Network
		7.3.3	User Datagram Protocol
	7.4		Constrained Communication
		7.4.1	Token Protocol
		7.4.2	Mini-slotting Protocol ARINC 629

xiv Contents

		7.4.3 Avionics Full Duplex Switched Ethernet	 182
		7.4.4 Audio Video Bus	 182
	7.5		183
		7.5.1 Time-Triggered Protocol	 184
		7.5.2 Time-Triggered Ethernet	186
		7.5.3 FlexRay	187
		Points to Remember	187
		Bibliographic Notes	188
		Review Questions and Problems	 188
8	Pow	wer and Energy Awareness	 191
	8.1	Power and Energy	 192
		8.1.1 Basic Concepts	 192
		8.1.2 Energy Estimation	 193
		8.1.3 Thermal Effects and Reliability	 197
	8.2	Hardware Power Reduction Techniques	 200
		8.2.1 Device Scaling	200
		8.2.2 Low-Power Hardware Design	201
		8.2.3 Voltage and Frequency Scaling	 202
		8.2.4 Sub-threshold Logic	202
	8.3		203
		8.3.1 Technology-Agnostic Design	203
		8.3.2 Pollack's Rule	204
		8.3.3 Power Gating	205
		8.3.4 Real Time Versus Execution Time	206
	8.4		207
		8.4.1 System Software	207
		8.4.2 Application Software	208
		8.4.3 Software Tools	209
	8.5		209
	0.5	8.5.1 Batteries	209
		8.5.2 Energy Harvesting	210
		Points to Remember	210
			211
		Bibliographic Notes	212
9	Rea	al-Time Operating Systems	215
	9.1	Inter-Component Communication	216
	···	9.1.1 Technology Independent Interface	216
		9.1.2 Linking Interface	216
		9.1.3 Technology Dependent Debug Interface	217
		9.1.4 Generic Middleware	217
	9.2		217
	7.4		218
		9.2.1 Simple Tasks	 ∠10

Contents xv

		9.2.2	Trigger Tasks	220
		9.2.3	Complex Tasks	220
	9.3	The Du	ual Role of Time	221
		9.3.1	Time as Data	222
		9.3.2	Time as Control	223
	9.4	Inter-ta	ask Interactions	223
		9.4.1	Coordinated Static Schedules	224
		9.4.2	The Non-blocking Write Protocol	224
		9.4.3	Semaphore Operations	225
	9.5	Process	s Input/Output	226
		9.5.1	Analog Input/Output	226
		9.5.2	Digital Input/Output.	227
		9.5.3	Interrupts	228
		9.5.4	Fault-Tolerant Actuators	229
		9.5.5	Intelligent Instrumentation	231
		9.5.6	Physical Installation	232
	9.6	_	ment Protocols	232
		9.6.1	Raw Data, Measured Data, and Agreed Data	233
		9.6.2	Syntactic Agreement	233
		9.6.3	Semantic Agreement	233
	9.7		Detection	234
		9.7.1	Monitoring Task Execution Times	234
		9.7.2	Monitoring Interrupts	235
		9.7.3	Double Execution of Tasks	235
		9.7.4	Watchdogs	235
			to Remember	235
		_	graphic Notes	236
		Reviev	v Questions and Problems	237
10	Real	l-Time S	Scheduling	239
	10.1	The S	Scheduling Problem	240
	10.1	10.1.1		240
		10.1.2		241
		10.1.3	•	242
	10.2		t-Case Execution Time	243
	10.2	10.2.1		243
		10.2.2		246
		10.2.3		246
		10.2.4		247
	10.3		Scheduling	248
		10.3.1		248
		10.3.2		250
	10.4		mic Scheduling	251
		10.4.1		251
		10.4.2		253

xvi Contents

	10.5	Alternative Scheduling Strategies	255
		10.5.1 Scheduling in Distributed Systems	255
		10.5.2 Feedback Scheduling	256
		Points to Remember	256
		Bibliographic Notes	257
		Review Questions and Problems	257
11	Syste	m Design	259
	11.1	System Design	260
		11.1.1 The Design Process	260
		11.1.2 The Role of Constraints	261
		11.1.3 System Design Versus Software Design	262
	11.2	Design Phases.	263
	11.2	11.2.1 Purpose Analysis	264
		11.2.2 Requirements Capture	264
		11.2.2 Requirements Capture	265
			265
	11.2	5 · · · · · · · · · · · · · · · · · · ·	266
	11.3	Design Styles	266
		11.3.1 Model-Based Design	
		11.3.2 Component-Based Design	267
		11.3.3 Architecture Design Languages	268
		11.3.4 Test of a Decomposition	269
	11.4	Design of Safety-Critical Systems	271
		11.4.1 What Is Safety?	272
		11.4.2 Safety Analysis	274
		11.4.3 Safety Case	276
		11.4.4 Safety Standards	279
	11.5	Design Diversity	281
		11.5.1 Diverse Software Versions	281
		11.5.2 An Example of a Fail-Safe System	282
		11.5.3 Multilevel System	283
	11.6	Design for Maintainability	284
		11.6.1 Cost of Maintenance	284
		11.6.2 Maintenance Strategy	285
		11.6.3 Software Maintenance	287
		Points to Remember	287
		Bibliographic Notes	289
		Review Questions and Problems	289
	***		•
12	Valid	lation	291
	12.1	Validation Versus Verification	292
	12.2	Testing Challenges.	293
		12.2.1 Design for Testability	293
		12.2.2 Test Data Selection	294

Contents xvii

		12.2.3 Test Oracle
		12.2.4 System Evolution
	12.3	Testing of Component-Based Systems
		12.3.1 Component Provider
		12.3.2 Component User
		12.3.3 Communicating Components
	12.4	Formal Methods
		12.4.1 Formal Methods in the Real World
		12.4.2 Classification of Formal Methods
		12.4.3 Benefits of Formal Methods
		12.4.4 Model Checking
	12.5	Fault Injection
		12.5.1 Software-Implemented Fault Injection
		12.5.2 Physical Fault Injection
		12.5.3 Sensor and Actuator Failures
		Points to Remember
		Bibliographic Notes
		Review Questions and Problems
13	Inter	net of Things
	13.1	The Vision of an Internet-of-Things
	13.1	Drivers for an IoT
	13.2	13.2.1 Uniformity of Access
		13.2.2 Logistics
		13.2.3 Energy Savings
		13.2.4 Physical Security and Safety
		13.2.5 Industrial
		13.2.6 Medical
		13.2.7 Life Style
	13.3	Technical Issues of the IoT.
	13.3	13.3.1 Internet Integration
		13.3.2 Naming and Identification
		13.3.3 Near Field Communication
		13.3.4 IoT Device Capabilities versus Cloud Computing
		13.3.5 Autonomic Components
	13.4	RFID Technology
	13.4	13.4.1 Overview
		13.4.2 The Electronic Product Code
		13.4.3 RFID Tags
		13.4.4 RFID Readers.
		13.4.5 RFID Security
	13.5	Wireless Sensor Networks.
	13.3	Points to Remember
		Bibliographic Notes
		Keview Questions and Flodicins

xviii Contents

14	The 7	Гime-Tr	iggered Architecture	325
	14.1	History	of the TTA	326
		14.1.1	The MARS Project	326
		14.1.2	The Industrial TTA Prototype	327
		14.1.3	The GENESYS Project	327
	14.2	Archite	ectural Style	328
		14.2.1	Complexity Management	328
		14.2.2	Component Orientation	329
		14.2.3	Coherent Communication	330
		14.2.4	Dependability	331
		14.2.5	Time Aware Architecture	332
	14.3	Service	es of the TTA	332
		14.3.1	Component-Based Services	332
		14.3.2	Core System Services	333
		14.3.3	Optional System Services	334
	14.4	The Ti	me-Triggered MPSoC	336
		Points 1	to Remember	337
		Bibliog	graphic Notes	338
		Review	Questions and Problems	338
Abl	brevia	tions		341
Glo	ssary			343
Ref	erence	es		359
Ind	ex			369