Question 1:

T(n)=
$$3T(\frac{\pi}{4}) + 4n$$

Substitute one (n,= $\frac{\pi}{4}$)

 $T(n)=3\left[3T(\frac{\pi}{10}) + 4(\frac{\pi}{4})\right] + 4n=3^{2}T(\frac{\pi}{10}) + 3n+4n$

Substitute again (n,= $\frac{\pi}{10}$)

 $T(n)=3^{2}\left[3T(\frac{\pi}{10}) + 4(\frac{\pi}{10})\right] + 7n=3^{3}T(\frac{\pi}{10}) + 3^{2}\frac{4n}{10} + 7n$
 $3^{2} \cdot \frac{4n}{10} = 9 \cdot \frac{\pi}{4} = \frac{9n}{4}$

LD $T(n)=3^{3}T(\frac{\pi}{10}) + \frac{\pi}{4} + 7n$

After E substitutions

 $T(n)=3^{1}T(\frac{n}{4}) + 4n\sum_{i=0}^{k-1} \left(\frac{\pi}{4}\right)^{i}$
 $4^{2}:n \Rightarrow E=\log_{4}n$

LD $T(n)=3^{1094n}T(1) + 4n\sum_{i=0}^{k+1} \left(\frac{\pi}{4}\right)^{i}$
 $\sum_{i=0}^{k-1} \left(\frac{\pi}{4}\right)^{i} = 4\left[1-\left(\frac{\pi}{4}\right)^{1094n}\right]$
 $\int_{i=0}^{k-1} \left(\frac{\pi}{4}\right)^{i} = 4\left[1-\left(\frac{\pi}{4}\right)^{1094n}\right]$

T(n) = 0(n)

masker theorem

$$T(n) = aT(\frac{1}{6}) + f(n)$$

$$A^{2} \xrightarrow{3}$$

$$B^{2} \xrightarrow{4}$$

$$R(n) = 4n$$

$$n^{(0)} = 4n = \Theta(n)$$

$$n^{(0)} = 4n = \Theta(n)$$

$$n^{(0)} = 0$$

Question 2

(a)
$$T(n) = 3T(\frac{n}{2}) + n^2$$

 $a = 3$
 $b = 5$
 $f(n) = n^2$
 $f(n) = n^2$
 $f(n) = n^2$
 $f(n) = n^2$

$$f(n)=n^2$$
 and 270.68
LD case 3 applies
 $T(n)=\theta(n^2)$

$$A = 4$$
 $b = 3$
 $f(n) = O(n')$ and $| < 1.26$
 $f(n) = 7n$
 $b = 6$
 $f(n) = 9(n^{1.29})$

$$a = 5$$
 $|0945 \approx 1.16$
 $b = 4$ $f(n) = 0(1)$ and $0 \in 1.16$
 $f(n) = 0(1)$ D case 1 applies
 $T(n) = \theta(n^{1.16})$

$$0=9$$
 $b=3$
 $f(n)=n^{4}$ and $4>2$
 $f(n)=n^{4}$
 $D \text{ case 3 applies}$
 $T(n)=\theta(n^{4})$

Case 1: If
$$f(n)=O(n^c)$$
 with $c < log_b a$,
then $T(n)=O(n^{log_b a})$

Case 3: If $f(n)=O(n^c)$ with $c = log_b a$,
then $T(n)=O(n^c log_a n)$

Case 3: If $f(n)=\Omega(n^c)$ with $c > log_b a$
then $T(n)=O(f(n))$

(e)
$$T(n) = UT(\frac{\pi}{8}) + n^3$$

 $n = U$ $\log_8 U = 0.9$
 $D = 8$ $f(n) = n^3$ and $3 > 0.9$
 $f(n) = n^3$ Les case 3 applies
 $T(n) = \Theta(n^3)$

Question 3

Group by last letter in alphabetical order:

- A: VEA
- B: JOB
- D: USD, DOD, CAD (order preserved)
- E: VEE
- G: FIG, PIG, DOG
- L: COL, LOL, TSL
- N: SUN
- P: CAP
- R: CAR
- S: VIS
- T: RAT
- W: ROW, WOW, LOW
- X: COX, LOX
- Y: JPY

After Pass 1, the list becomes:

VEA, JOB, USD, DOD, CAD, VEE, FIG, PIG, DOG, COL, LOL, TSL, SUN, CAP, CAR, VIS, RAT, ROW, WOW, LOW, COX, LOX, JPY

Sort by the Middle Character

• A: CAD, CAP, CAR, RAT (Order from Pass 1: CAD (5th), CAP (14th), CAR (15th), RAT (17th))

- E: VEA, VEE
- I: FIG, PIG, VIS
- O: JOB, DOD, DOG, COL, LOL, ROW, WOW, LOW, COX, LOX
- P: JPY
- S: USD, TSL
- U: SUN

After Pass 2, the list becomes:

CAD, CAP, CAR, RAT, VEA, VEE, FIG, PIG, VIS, JOB, DOD, DOG, COL, LOL, ROW, WOW, LOW, COX, LOX, JPY, USD, TSL, SUN

Pass 3: Sort by the First Character

- C: CAD, CAP, CAR, COL, COX
- D: DOD, DOG
- F: FIG
- J: JOB, JPY
- L: LOL, LOW, LOX
- P: PIG
- R: RAT, ROW
- S: SUN
- T: TSL
- U: USD
- V: VEA, VEE, VIS
- W: WOW

After Pass 3, the list becomes:

CAD, CAP, CAR, COL, COX, DOD, DOG, FIG, JOB, JPY, LOL, LOW, LOX, PIG, RAT, ROW, SUN, TSL, USD, VEA, VEE, VIS, WOW

Question 4:

4.)

Hash Table

Initialsize(M): 13

Resized (M): 29

primary hash function: $h1(key) = \frac{(key+19)(key+11)}{15} + key \mod M$

Key	Home sict	Collisions	Probe Sequence	Final Slot
25	0	0		0
14	ч	0		ч
٩	7	0		7
7	ાઢ	0		13
5	ч	1	(4+5) mod 13= 9	9
7 5 3	10	0		19
0	0	infinite 100P	resize + rehash	
21	19	0		19
6	5	0		5
33	W.	١ ،	(11+ 33) mod 29=15	15
25	14	1	(14+23)mod29=8	8
42	25	0		82
24	8	1	(8+42) mod 29=21	21
107	25	2	(25 + 701)mod29=1, (1 + 701)mod29= U	6

Final Hash Table Key 510+ I ч

Question 7:

RadixSorting Algorithm Analysis

- Time Complexity: O(M(N + K))
 - N = number of elements in an array
 - M = maximum length of an element/maximum number of digits or characters
 - K = range of characters
 - Radix sort processes M passes, and each pass uses counting sort which takes O(N + K) time.
- Space Complexity: O(N + K)
 - Where N is the number of elements in the input array and K is the range of digits/characters. It requires extra storage for the output array and counting array.

WordPattern Algorithm Analysis

- Time Complexity: O(n)
 - The function splits the string s into an array, which takes O(n) where n is the length of s.
- Space Complexity: O(n)
 - The split words array takes up O(n) space, where n is the length of the pattern. Two hashmaps store character-word pairs, which require up to O(n) (where n is the length of pattern) space each in the worst case.