David Ruppert

Statistics and Finance

An Introduction

Contents

N	otatio	n	••••••	xxi
1	Intro	ductio	on	1
	1.1	Refere	nces	5
2	Prob	ability	and Statistical Models	7
	2.1	-	uction	7
	2.2	Axiom	s of Probability	7
		2.2.1	Independence	8
		2.2.2	Bayes' law	8
	2.3	Probal	bility Distributions	9
		2.3.1	Random variables	9
		2.3.2	Independence	10
		2.3.3	Cumulative distribution functions	10
		2.3.4	Quantiles and percentiles	11
		2.3.5	Expectations and variances	12
		2.3.6	Does the expected value exist?	13
	2.4	Functi	ons of Random Variables	14
	2.5	Rando	om Samples	15
	2.6	The B	inomial Distribution	16
	2.7	Locati	on, Scale, and Shape Parameters	17
	2.8	Some	Common Continuous Distributions	17
		2.8.1	Uniform distributions	17
		2.8.2	Normal distributions	18
		2.8.3	The lognormal distribution	20
		2.8.4	Exponential and double exponential distributions	21
	2.9		ing a Normal Distribution	
		2.9.1	Chi-squared distributions	21
		2.9.2	t-distributions	
		2.9.3	F-distributions	
	2.10	Order	Statistics and the Sample CDF	23

XII	Contents

,

		2.10.1 Normal probability plots	23
	2.11	Skewness and Kurtosis	24
	2.12	Heavy-Tailed Distributions	28
		2.12.1 Double exponential distributions	
		2.12.2 t-distributions have heavy tails	30
		2.12.3 Mixture models	31
		2.12.4 Pareto distributions	32
		2.12.5 Distributions with Pareto tails	34
	2.13	Law of Large Numbers and Central Limit Theorem	36
	2.14	Multivariate Distributions	37
		2.14.1 Correlation and covariance	38
		2.14.2 Independence and covariance	40
		2.14.3 The multivariate normal distribution	41
	2.15	Prediction	42
	2.10	2.15.1 Best linear prediction	42
		2.15.2 Prediction error in linear prediction	43
		1	
	2.16	r	44
	2.10	Conditional Distributions	44
		2.16.1 Best prediction	45
		2.16.2 Normal distributions: Conditional expectations and	
	0.17	variance	45
	2.17	Linear Functions of Random Variables	46
		2.17.1 Two linear combinations of random variables	48
		2.17.2 Independence and variances of sums	49
		2.17.3 Application to normal distributions	49
	2.18	Estimation	49
		2.18.1 Maximum likelihood estimation	50
		2.18.2 Standard errors	52
		2.18.3 Fisher information	53
		2.18.4 Bayes estimation*	54
		2.18.5 Robust estimation*	56
	2.19	Confidence Intervals	60
		2.19.1 Confidence interval for the mean	60
		2.19.2 Confidence intervals for the variance and standard	
		deviation	61
		2.19.3 Confidence intervals based on standard errors	
	2.20	Hypothesis Testing	
		2.20.1 Hypotheses, types of errors, and rejection regions	62
,		2.20.2 <i>P</i> -values	63
		2.20.3 Two-sample t-tests	64
		2.20.4 Statistical versus practical significance	65
		2.20.5 Tests of normality	66
		2.20.6 Likelihood ratio tests	66
	2.21	Summary	
	2.21	Bibliographic Notes	
	4.22	Diologiapine Hotes	10
	¥		

			Contents	xiii
	2.23	References		71
	2.24	Problems		
	2.21	Troblems		12
3	Retu	ırns		75
	3.1	Introduction		75
		3.1.1 Net returns		75
		3.1.2 Gross returns		75
		3.1.3 Log returns		76
		3.1.4 Adjustment for dividends		77
	3.2	Behavior Of Returns		78
	3.3	The Random Walk Model		80
		3.3.1 I.i.d. normal returns		80
		3.3.2 The lognormal model		80
		3.3.3 Random walks		82
		3.3.4 Geometric random walks		82
		3.3.5 The effect of the drift μ		
		3.3.6 Are log returns normally distributed?		84
		3.3.7 Do the GE daily returns look like a geometr		
		walk?		
	3.4	Origins of the Random Walk Hypothesis		
		3.4.1 Fundamental analysis		
	2.5	3.4.2 Technical analysis		
	3.5	Efficient Markets Hypothesis (EMH)		
		3.5.1 Three types of efficiency		
	3.6	3.5.2 Testing market efficiency		
	3.0	Discrete and Continuous Compounding Summary		95 96
	3.8	Bibliographic Notes		90
	3.9	References		
	3.10	Problems		
	3.10	1 Toblems		90
4	Time	e Series Models		101
	4.1	Time Series Data		101
	4.2	Stationary Processes		102
		4.2.1 Weak white noise		103
		4.2.2 Predicting white noise		104
		4.2.3 Estimating parameters of a stationary prod	ess	104
	4.3	AR(1) Processes		105
		4.3.1 Properties of a stationary AR(1) process .		106
		4.3.2 Convergence to the stationary distribution		108
		4.3.3 Nonstationary AR(1) processes		108
	4.4	Estimation of AR(1) Processes		
		4.4.1 Residuals and model checking		
		4.4.2 AR(1) model for GE daily log returns		
	4.5	AR(p) Models		115

		4.5.1 AR(6) model for GE daily log returns
	4.6	Moving Average (MA) Processes
		4.6.1 MA(1) processes
		4.6.2 General MA processes
		4.6.3 MA(2) model for GE daily log returns119
	4.7	ARIMA Processes
		4.7.1 The backwards operator
		4.7.2 ARMA processes
		4.7.3 Fitting ARMA processes: GE daily log returns 123
		4.7.4 The differencing operator
		4.7.5 From ARMA processes to ARIMA processes
		4.7.6 ARIMA(2,1,0) model for GE daily log prices 123
	4.8	Model Selection
		4.8.1 AIC and SBC
		4.8.2 GE daily log returns: Choosing the AR order125
	4.9	Three-Month Treasury Bill Rates
	4.10	Forecasting
		4.10.1 Forecasting GE daily log returns and log prices 130
	4.11	Summary
	4.12	Bibliographic Notes
	4.13	References
	4.14	Problems
5	Port	folio Theory
Ü	5.1	Trading Off Expected Return and Risk
	5.2	One Risky Asset and One Risk-Free Asset
	0.2	5.2.1 Estimating $E(R)$ and σ_R
	5.3	Two Risky Assets
	0.0	5.3.1 Risk versus expected return
		5.3.2 Estimating means, standard deviations, and covariances 14
	5.4	Combining Two Risky Assets with a Risk-Free Asset14:
	0.1	5.4.1 Tangency portfolio with two risky assets
		5.4.2 Combining the tangency portfolio with the risk-free
		asset
		5.4.3 Effect of ρ_{12}
	5.5	Risk-Efficient Portfolios with N Risky Assets*
	0.0	5.5.1 Efficient-portfolio mathematics
		5.5.2 The minimum variance portfolio
		5.5.3 Selling short
		5.5.4 Back to the math — Finding the tangency portfolio15
		5.5.5 Examples
	5.6	Quadratic Programming*
	5.7	Is the Theory Useful?
	5.8	Utility Theory*
	0.0	
	5.9	Summary

				Contents	xv
	5.10	Ribliog	raphic Notes		166
	5.11	_	nces		
	5.12		ns		
6	0				
	6.1		action		
		6.1.1	Straight line regression		
	6.2		quares Estimation		
		6.2.1	Estimation in straight line regression		
		6.2.2	Variance of $\widehat{\beta}_1$		
	<i>c</i> o	6.2.3	Estimation in multiple linear regression		
	6.3		rd Errors, T-Values, and P-Values		
	6.4	6.4.1	is Of Variance, R^2 , and F -Tests		
		6.4.1	Sums of squares (SS) and R^2		
		6.4.2	Degrees of freedom (DF)		
		6.4.4	Mean sums of squares (MS) and testing.		
		6.4.5	Adjusted R^2		
		6.4.6	Sequential and partial sums of squares		
	6.5		sion Hedging*		
	6.6		sion and Best Linear Prediction		
	6.7	Model	Selection		. 183
	6.8	Colline	arity and Variance Inflation		. 187
	6.9	Centeri	ing the Predictors		. 189
	6.10		ear Regression		
. (6.11		eneral Regression Model		
	6.12		eshooting		
37		6.12.1	Influence diagnostics and residuals		
	C 10	6.12.2	Residual analysis		
	6.13		orm-Both-Sides Regression*		
		6.13.1 $6.13.2$	How TBS works		
	6.14	0.10. 2	eometry of Transformations*		
	6.15		Regression*		
i i fi	6.16		ary		
1	6.17		raphic Notes		
in.	6.18	Referen	nces		. 220
	6.19		ms		
7			l Asset Pricing Model		
	7.1		iction to CAPM		
	7.2		apital Market Line (CML)		
1	7.3		and the Security Market Line		
		7.3.1	Examples of betas		
		7.3.2	Comparison of the CML with the SML		231

XVI	C	ontents	
	7.4	The Security Characteristic Line	. 232
		7.4.1 Reducing unique risk by diversification	
		7.4.2 Can beta be negative?	
		7.4.3 Are the assumptions sensible?	
	7.5	Some More Portfolio Theory	
		7.5.1 Contributions to the market portfolio's risk	
		7.5.2 Derivation of the SML	
	7.6	Estimation of Beta and Testing the CAPM	
		7.6.1 Regression using returns instead of excess returns	
		7.6.2 Interpretation of alpha	
	7.7	Using CAPM in Portfolio Analysis	242
	7.8	Factor Models	. 242
		7.8.1 Estimating expectations and covariances of asset	
		returns	244
		7.8.2 Fama and French three-factor model	245
		7.8.3 Cross-sectional factor models	246
	7.9	An Interesting Question*	246
	7.10	Is Beta Constant?*	250
	7.11	Summary	252
	7.12	Bibliographic Notes	254
	7.13	References	254
	7.14	Problems	255
8	Opti	ons Pricing	257
	8.1	Introduction	
	8.2	Call Options	
	8.3	The Law of One Price.	
		8.3.1 Arbitrage	
	8.4	Time Value of Money and Present Value	
	8.5	Pricing Calls — A Simple Binomial Example	
	8.6	Two-Step Binomial Option Pricing	
	8.7	Arbitrage Pricing by Expectation	
	8.8	A General Binomial Tree Model	
	8.9	Martingales	
		8.9.1 Martingale or risk-neutral measure	
		8.9.2 The risk-neutral world	
	8.10	From Trees to Random Walks and Brownian Motion	
		8.10.1 Getting more realistic	
		8.10.2 A three-step binomial tree	
		8.10.3 More time steps	
		8.10.4 Properties of Brownian motion	
	8.11	Geometric Brownian Motion	
	8.12	Using the Black-Scholes Formula	

8.12.1 How does the option price depend on the inputs? $\dots 276$ 8.12.2 Early exercise of calls is never optimal $\dots 277$

		Contents	xvii
		0.10.9 A 11 4 12 1 9	270
	8.13	8.12.3 Are there returns on nontrading days?	
	8.13	Implied Volatility	. 279
	8.14		
	8.14	Puts	
		8.14.1 Pricing puts by binomial trees	
		8.14.2 Why are puts different from calls?	
	0 15	8.14.3 Put-call parity	
	8.15	The Evolution of Option Prices	
	8.16	Leverage of Options and Hedging	
	8.17	The Greeks	
	0.10	8.17.1 Delta and Gamma hedging	
	8.18	Intrinsic Value and Time Value*	
	8.19	Summary	
	8.20	Bibliographic Notes	
	8.21	References	
	8.22	Problems	. 298
9	Five	d Income Securities	201
ð	9.1	Introduction	
	9.1 9.2	Zero-Coupon Bonds	
	9.2	9.2.1 Price and returns fluctuate with the interest rate	
	9.3		
	9.3	Coupon Bonds	
	0.4	9.3.1 A general formula	
	9.4	Yield to Maturity	
		9.4.1 General method for yield to maturity	
		9.4.2 MATLAB functions	
	0.5	9.4.3 Spot rates	
	9.5	Term Structure	
		9.5.1 Introduction: Interest rates depend upon maturity	
	0.0	9.5.2 Describing the term structure	
	9.6	Continuous Compounding	
	9.7	Continuous Forward Rates	
	9.8	Sensitivity of Price to Yield	
		9.8.1 Duration of a coupon bond	
	9.9	Estimation of a Continuous Forward Rate*	
	9.10	Summary	
	9.11	Bibliographic Notes	
	9.12	References	
	9.13	Problems	. 324
10	Dage	mpling	207
10	10.1	Introduction	
		Introduction	
	10.2	Confidence Intervals for the Mean	
	10.3	Resampling and Efficient Portfolios	
		10.3.1 The global asset allocation problem	. 332

XVII	ı Co	ntents	
		10.3.2 Uncertainty about mean-variance efficient portfolios	334
		10.3.3 What if we knew the expected returns?	
		10.3.4 What if we knew the covariance matrix?	
		10.3.5 What if we had more data?	
		Bagging*	
		Summary	
		Bibliographic Notes	
		References	
		Problems	
	10.6	1 Toblems	010
11		e-At-Risk	
		The Need for Risk Management	
	11.2	VaR with One Asset	
		11.2.1 Nonparametric estimation of VaR \dots	
		11.2.2 Parametric estimation of VaR	348
		11.2.3 Estimation of VaR assuming Pareto tails*	349
		11.2.4 Estimating the tail index*	350
		11.2.5 Confidence intervals for VaR using resampling	353
		11.2.6 VaR for a derivative	354
	11.3	VaR for a Portfolio of Assets	355
		11.3.1 Portfolios of stocks only	355
		11.3.2 Portfolios of one stock and an option on that stock	356
		11.3.3 Portfolios of one stock and an option on another stock	356
	11.4	Choosing the Holding Period and Confidence	
	11.5	VaR and Risk Management	
	11.6	Summary	
	11.7	Bibliographic Notes	
	11.8	References	
	11.9	Problems	
12		CH Models	
	12.1	Introduction	
	12.2	Modeling Conditional Means and Variances	
	12.3	ARCH(1) Processes	365
	12.4	The $AR(1)/ARCH(1)$ Model	368
	12.5	ARCH(q) Models	370
	12.6	GARCH(p,q) Models	370
ř	12.7	GARCH Processes Have Heavy Tails	371
	12.8	Comparison of ARMA and GARCH Processes	372
	12.9	Fitting GARCH Models	372
	12.10	I-GARCH Models	
	_	12.10.1 What does it mean to have an infinite variance?	
	12.11	GARCH-M Processes	
		E-GARCH	
		The GARCH Zoo*	
	_ •		

			Contents	xix
	12.14	Applications of GARCH in Finance		. 386
		Pricing Options Under Generalized GARCH Proce		
	12.16	Summary		. 391
	12.17	Bibliographic Notes		. 392
	12.18	References		. 392
		Problems		
L3	Nonp	arametric Regression and Splines		. 397
	13.1	Introduction		. 397
	13.2	Choosing a Regression Method		. 400
		13.2.1 Nonparametric regression		. 400
		13.2.2 Linear		. 400
		13.2.3 Nonlinear parametric regression		. 400
		13.2.4 Comparison of linear and nonparametric re-	egression	. 401
	13.3	Linear Splines		. 405
		13.3.1 Linear splines with one knot		
		13.3.2 Linear splines with many knots		
	13.4	Other Degree Splines		
		13.4.1 Quadratic splines		
		13.4.2 p th degree splines		
	13.5	Least Squares Estimation		
	13.6	Selecting the Spline Parameters		
		13.6.1 Estimating the volatility function		
	13.7	Additive Models*		
	13.8	Penalized Splines*		
		13.8.1 Penalizing the jumps at the knots		
		13.8.2 Cross-validation		
		13.8.3 The effective number of parameters		
		13.8.4 Generalized cross-validation		
		13.8.5 AIC		
	10.0	13.8.6 Penalized splines in MATLAB		
	13.9	Summary		
		Bibliographic Notes		
		Problems		
	13.12	r Tobienis		. 402
14		vioral Finance		
	14.1	Introduction		
	14.2	Defense of the EMH		
	14.3	Challenges to the EMH		
	14.4	Can Arbitrageurs Save the Day?		
	14.5	What Do the Data Say?		
		14.5.1 Excess price volatility		
		14.5.2 The overreaction hypothesis		
		14.5.3 Reactions to earnings announcements		. 440

xx	Co	ontents	
		14.5.4 Counter-arguments to pricing anomalies	41
		14.5.5 Reaction to non-news	42
	14.6	Market Volatility and Irrational Exuberance	43
		14.6.1 Best prediction	44
	14.7	The Current Status of Classical Finance4	45
	14.8	Bibliographic Notes	45
	14.9	References	
	14.10	Problems	47
Gl	ossary	7	149
In	dex		161

J