Refrigerant Leakage Calculation Reasoning

1. Ideal gas equation

$$P * V = n * R * T$$

- P Pressure (Pa)
- V Volume (m³ or L)
- *n* Molecule amount (mol)
- R Gas constant (8.314J/(mol·K))
- T Temperature (K)

Also Known

$$n=\frac{m}{M}$$

- m Gas weight (g)
- M Gas mole constant (g/mol)

Combining the two equations

$$P*V=\frac{m}{M}*R*T$$

Hence, the gas weight is equal as the following:

$$m = \frac{P * M * V}{R * T}$$

Let's Introduce the mass leakage rate formula

$$Q_m = \frac{dm}{dt}$$

- ullet Q_m Leakage rate of quality
- *t* Time

Hence

$$Q_m = \frac{d}{dt} \left(\frac{P * M * V}{R * T} \right)$$

To simplify the computational effort, only the change in V is considered

$$Q_v = d/dt(V)$$

ullet Q_v - Leakage rate of volume

$$Q_m = \frac{P * Q_v * M}{R * T}$$

To convert the leakage under actual conditions to the leakage under standard conditions, we need to introduce the correction factor for standard conditions. The standard state defines the temperature. $T_0 = 273K$, pressure $P_0 = 1.01*10^5 Pa$, Standard molar volume $V_0 = \frac{22.4L}{mol} = 0.224m^3/mol$,

Therefore, Standard state correction factor includes:

- Temperature correction factor $\frac{T_0}{t}$
- Pressure correction factor $\frac{p}{p_0}$
- Standard molar volume correction factor $\frac{1}{V_0}$

After correction, got following formular

$$Q_m = (Q_v * M) * \frac{T_0}{T} * \frac{P}{P_0} * \frac{1}{V_0}$$

The derivation process is as follows

Under standard conditions (p_0, T_0) , the molar volume of an ideal gas is defined as

$$P_0 * V_0 = n * R * T$$

Under the standard state $n = 1 \ mol$

$$P_0 * V_0 = R * T$$

$$V_0 = R * T_0/P_0$$

$$\frac{1}{V_0} = \frac{P_0}{R * T_0}$$

$$Q_m = \frac{P * Q_v * M}{R * T} = Q_v * M * (\frac{P}{R * T})$$

To introduce $\frac{1}{V_0}$ in equation of Q_m , Q_m will be multiply with $\frac{T_0}{T_0}*\frac{P_0}{P_0}=1$

Hence

$$Q_m = Q_v * M * \frac{P}{R * T} * \frac{T_0}{T_0} * \frac{P_0}{P_0} = Q_v * M * (\frac{T_0}{T} * \frac{P}{P_0} * \frac{P_0}{R * T_0})$$

$$Q_m = Q_v * M * \frac{T_0}{T} * \frac{P}{P_0} * \frac{1}{V_0}$$

Conclusion

$$Q_{m} = Q_{v} * M * \frac{T_{0}}{T} * \frac{P}{P_{0}} * \frac{1}{V_{0}}$$

$$Q_{v} = \frac{Q_{m} * T * P_{0} * V_{0}}{M * T_{0} * P}$$

In some equation, this Q_V with unit pa* m^3/s

$$Q_V = Q_v * P$$

Hence conclusion

$$Q_{m} = Q_{V} * M * \frac{T_{0}}{T} * \frac{1}{P_{0}} * \frac{1}{V_{0}}$$

$$Q_{V} = \frac{Q_{m} * T * P_{0} * V_{0}}{M * T_{0}}$$

Remarks:

This formula uses s as the unit. If the required refrigerant leakage rate is required per year, corresponding change in time is necessary.

Item	Definition
Q_v	Actual gas volume leakage rate(m³/s or L/s)
Q_V	Actual gas volume leakage rate multiply with press (pa*m³/s or pa*
	L/s)
М	Molar mass of a gas
T_0	Temperature correction (temperature increase →volume increase
\overline{T}	→mass decrease)
P	Pressure correction (pressure increase →density increase →
$\overline{P_0}$	mass increase) absolute pressure
1	Standard molar volume inverse term
$\overline{V_0}$	

2. Convert refrigerant leakage rate to helium leakage rate

$$egin{aligned} Q_{He} &= Q_{Refrigerant} * rac{oldsymbol{\eta}_{He}}{oldsymbol{\eta}_{Refrigerant}} \ Q_{Refrigerant} &= Q_{He} * rac{oldsymbol{\eta}_{Refrigerant}}{oldsymbol{\eta}_{He}} \end{aligned}$$

- $\eta_{Refrigerant}$ Refrigerant viscosity coefficient (µPa.s)
- η_{He} Helium viscosity coefficient (µPa.s)

For laminar flow according to Poiseuille law.

$$q_v = \frac{1}{8 * \eta * l} * \pi * R^4 * (P_1 - P_2)$$

For q_{test} and q_{work}

$$\frac{q_{test}}{q_{work}} = \frac{(P_{test}^2 - P_{vac}^2)}{(P_{work}^2 - P_{env}^2)}$$

- P_{test} Helium test pressure
- ullet P_{vac} Vacuum pressure in helium test
- ullet P_{work} Work pressure in workstation, e.g. within AC system
- P_{env} environment pressure in workstation

$$Q_{He} = Q_{Refrigerant} * \frac{\eta_{He}}{\eta_{Refrigerant}} * \frac{(P_{work}^2 - P_{env}^2)}{(P_{test}^2 - P_{vac}^2)}$$

$$Q_{Refrigerant} = Q_{He} * \frac{\eta_{Refrigerant}}{\eta_{He}} * \frac{({P_{test}}^2 - {P_{vac}}^2)}{({P_{work}}^2 - {P_{env}}^2)}$$