Classification and Regression Trees (CART)

- Siva.Jasthi@metrosate.edu
- ICS 412: Data Mining (Spring 2023)
- · Decision Tree Regression Using sklearn
- https://www.geeksforgeeks.org/python-decision-tree-regression-using-sklearn/
- · Decision Tree Classification Using sklearn
- https://www.geeksforgeeks.org/decision-tree-implementation-python/
- · Decision Tree (Evaluating the performance with different depths)
- https://medium.com/geekculture/applying-7-classification-algorithms-on-the-titanic-dataset-278ef222b53c

Lab 8: Perform Steps 1 to 5 towards Lab 8

Homework 4: Perform Decision Tree Analysis to answer 5 Questions in the end.

▼ 1. Do the necessary imports

```
#@title 1. Do the necessary imports import pandas as pd
```

2. Load the Cars_Co2.csv File

df.head()

```
#@title 2. Load the Cars_Co2.csv File
# and display the dataframe
# The link to the raw file is given here https://raw.githubusercontent.com/sjasthi/python_input_files/main/MachineLearning/cars_co2.csv
url="https://raw.githubusercontent.com/sjasthi/python_input_files/main/MachineLearning/cars_co2.csv"

df = pd.read_csv(url)
```

	Car	Model	Volume	Weight	C02
0	Toyoty	Aygo	1000	790	99
1	Mitsubishi	Space Star	1200	1160	95
2	Skoda	Citigo	1000	929	95
3	Fiat	500	900	865	90
4	Mini	Cooper	1500	1140	105

▼ 3. Create a new colum called "CO2_Category"

```
#@title 3. Create a new colum called "CO2_Category"

# Divide the CO2 column into 3 equal bins (Call those as 'High', 'Medium', 'Low)
# Highest Value in CO2 == High
# Lowest Value in CO2 = Low
# You need to divide the range into three buckets (three equally spaced ranges) and categorize each numerical value
# into High, Medium, Low
co2_range = df['CO2'].max() - df['CO2'].min()

bin_size=[df['CO2'].min(), df['CO2'].min() + co2_range/3, df['CO2'].min() + 2*co2_range/3, df['CO2'].max()]

categorize_labels = ['Low', 'Medium', 'High']
```

df['CO2_Category'] = pd.cut(df['CO2'], bins=bin_size, labels=categorize_labels, include_lowest=True)

4. Display the new dataframe showign the column "CO2_Category"

#@title 4. Display the new dataframe showign the column "CO2_Category" display(df.head(10))

	Car	Model	Volume	Weight	C02	CO2_Category
0	Toyoty	Aygo	1000	790	99	Low
1	Mitsubishi	Space Star	1200	1160	95	Low
2	Skoda	Citigo	1000	929	95	Low
3	Fiat	500	900	865	90	Low
4	Mini	Cooper	1500	1140	105	Medium
5	VW	Up!	1000	929	105	Medium
6	Skoda	Fabia	1400	1109	90	Low
7	Mercedes	A-Class	1500	1365	92	Low
8	Ford	Fiesta	1500	1112	98	Low
9	Audi	A1	1600	1150	99	Low

▼ Encode the column "CO2_Category" and create a new column called "CO2_Category_Code"

```
#@title Encode the column "CO2_Category" and create a new column called "CO2_Category_Code"
# Use the sklearn Label Encoder to encode the "CO2_Category" column
from sklearn.preprocessing import LabelEncoder
le_CO2_Category = LabelEncoder()
df['CO2_Category_Code'] = le_CO2_Category.fit_transform(df['CO2_Category'])
```

▼ 5. Display the new dataframe showign the column "CO2_Category_Code"

#@title 5. Display the new dataframe showign the column "CO2_Category_Code"
df.head(10)

	Car	Model	Volume	Weight	C02	CO2_Category	CO2_Category_Code
0	Toyoty	Aygo	1000	790	99	Low	1
1	Mitsubishi	Space Star	1200	1160	95	Low	1
2	Skoda	Citigo	1000	929	95	Low	1
3	Fiat	500	900	865	90	Low	1
4	Mini	Cooper	1500	1140	105	Medium	2
5	VW	Up!	1000	929	105	Medium	2
6	Skoda	Fabia	1400	1109	90	Low	1
7	Mercedes	A-Class	1500	1365	92	Low	1
8	Ford	Fiesta	1500	1112	98	Low	1
9	Audi	A1	1600	1150	99	Low	1

Regression Problem

Input Variables (Volume, Weight)

Target Variable (CO2)

▼ Prepare the Data with 75% Training and 25% Test Split

#@title Prepare the Data with /5% Iraining and 25% lest Split

▼ Insert other coding cells as needed

#@title Insert other coding cells as needed

Classification Problem

Input Variables (Volume, Weight)

Target Variable (CO2_Category_Code)

▼ Prepare the Data with 75% Training and 25% Test Split

#@title Prepare the Data with 75% Training and 25% Test Split

Insert other coding cells as needed

```
#@title Insert other coding cells as needed
```

[Question 1 - 5 points] For the Decision Tree Regressor, which depth (1 to 10) is giving is giving highest accuracy?

Display the depth and accuracy as a table.

▼ Question 1

```
#@title Question 1
```

[Question 2 - 5 points] Using your best regressor, can you predict the CO2 emissions for the following values?

Volume: 1575, Weight: 1200: CO2: ____?Volume: 1800, Weight: 1400: CO2: ____?

▼ Question 2

```
#@title Question 2
```

[Question 3 - 5 points] For the Decision Tree Classifier, which depth (1 to 10) is giving is giving highest accuracy?

Display the depth and accuracy as a table.

▼ Question 3

```
#@title Question 3
```

[Question 4 - 5 points] Using your best classfier, can you predict the CO2_Category for the following values? Note that you need to convert CO2_Category_Code back to CO2_Category using your Label Encoder. Your answer will be either 'High' or 'Medium' or 'Low'.

```
• Volume: 1575, Weight: 1200: CO2_Category: ____?
```

Volume: 1800, Weight: 1400: CO2_Category: ____?

Question 4

```
#@title Question 4
```

[Question 5 - 5 points] Display the "Decision Tree Regressor" using matplotlib. (Visual Representation of your best model - model with the highest accuracy)

Question 5

#@title Question 5

✓ 0s completed at 3:44 PM