

Sales and Engineering Data Sheet

ED 15117-2

Group: **Controls**Part Number: **ED 15117**Date: **February 2016**

Daikin Magnitude® Chiller Unit Controller Protocol Information

BACnet® Networks (MS/TP, IP, Ethernet) LonWorks® Networks

Model WME Magnetic Bearing Centrifugal Chiller, Single-Compressor and Dual-Compressor

Introduction	Compressor Discharge Saturated Retrigerant Temperature	30
Revision History	Compressor Percent RLA	31
Software Revision	Compressor Power	31
Reference Documents	Compressor Run Hours.	
Notice	Compressor Select	
	Compressor Starts.	
Limited Warranty	•	
Unit Controller Data Points	Compressor Suction Saturated Refrigerant Temperature	
Protocol Definitions	Compressor Suction Refrigerant Pressure	34
BACnet Protocol	Compressor Suction Refrigerant Temperature	34
LonWorks Networks	Condenser Entering Water Temperature	34
Basic Protocol Information	Condenser Flow Switch Status	
Setting Unit Controller Communications Parameters	Condenser Leaving Water Temperature	35
Communication Parameter Settings	Condenser Pump Run Hours.	
BACnet Networks	Condenser Refrigerant Pressure	
	· · · · · · · · · · · · · · · · · · ·	
Compatibility	Condenser Saturated Refrigerant Temperature	
BACnet Objects5	Condenser Water Flow Rate	36
Magnitude Chiller Unit Controller Device Object	Condenser Pump Status	37
Network Considerations	Cool Setpoint - Network	37
Access to Properties	Cool Setpoint	37
BACnet Networks	Current Date & Time	38
BACnet Ethernet Communications Parameters	Default Values	
	Evaporator Entering Water Temperature	
BACnet/IP Communications Parameters. 9		
BACnet MS/TP Communication Parameters	Evaporator Flow Switch Status	
BACnet Device Management	Evaporator Leaving Water Temperature	
Configuring the Unit Controller	Evaporator Pump Run Hours	39
LonWorks Networks	Evaporator Pump Status	40
Compatibility	Evaporator Water Flow Rate	40
LonWorks Variables	File Directory Address	40
LonWorks Name	Heat Recovery Entering Water Temperature	
Network Considerations	Heat Recovery Leaving Water Temperature	
Network Topology	Heat Setpoint - Network.	
LonWorks Network Addressing	Heat Setpoint	
Commissioning the Network	Ice Setpoint - Network	42
External Interface File (XIF)14	Ice Setpoint	42
Resource Files	Maximum Send Time	42
Unit Controller Default Values	Minimum Send Time	43
Data Integrity	Object Status	43
Typical Application: Minimum Integration	Field Definitions	
Alarms	Object Request	
Protocol Point Summary - BACnet	Outdoor Air Temperature	
Protocol Point Summary – LonWorks	Pump Select	45
Network Output Variables	Receive Heartbeat	46
Network Input Variables	Run Enabled	46
Network Configuration Parameters	Software Identification (Major Version)	47
Detailed Data Point Information	Software Identification (Minor Version)	47
Active Setpoint	Units.	
Actual Capacity	Alarms	
Alarm Digital Output	BACnet Alarms	
Application Version	Alarm Classes	
Capacity Limit	BACnet Alarm Handling	
Active Capacity Limit Output	Clearing Alarms-BACnet	49
Capacity Limit Setpoint - Network	BACnet Alarm Messages	49
Chiller Enable	LonWorks Alarms	52
Chiller Enable Output	Current Alarm	52
Chiller Enable Setpoint	Clearing Alarms - LonWorks	52
Chiller Capacity Limited	LonWorks Alarm Messages	
Chiller Local/Network. 25	Appendix A: Protocol Implementation Conformance Statement (PICS)	
Chiller Location	BACnet Protocol Implementation Conformance Statement.	
Chiller Mode	Product Description	
Chiller Mode Output	BACnet Interoperability Building Blocks (BIBBs) Supported	
Chiller Mode Setpoint - Network	Standard Object Types Supported	56
Chiller Model	Data Link Layer Options	57
Chiller ON-OFF	Segmentation Capability	57
Chiller Status	Device Address Binding	
Clear Alarm Network	Networking Options	
Compressor Average Current	Character Sets Supported	
Compressor Average Voltage	Non-BACnet Equipment/Network(s) Support	57
Compressor Discharge Refrigerant Pressure		
Compressor Discharge Refrigerant Temperature		

Revision History

ED15117 April 2010 Preliminary release.

FD15117-1 October 2011

Changed nvoCurrent to SNVT_amp_ac, it was SNVT_amp. Now the document matches the firmware. Changed UTC Offset range from -720 ...720 to -780...780.

ED15117-2 February 2016 Added compressor #2 data

Software Revision

This edition documents all versions of the standard Magnitude Chiller Unit Controller software and all subsequent revisions until otherwise indicated. You can determine the revision of the application software from the display. The version is located on the Service screen. BACnet can also read the software revision by reading the Application Software Version property of the Device Object.

Notice

© 2016 Daikin Applied, Minneapolis MN. All rights reserved throughout the world

Daikin Applied reserves the right to change any information contained herein without prior notice. The user is responsible for determining whether this product is appropriate for his or her application.

™ ® The following are trademarks or registered trademarks of their respective companies: BACnet from American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Echelon, LonWorks, LonMark, and LonTalk from Echelon Corporation, Windows from Microsoft Corporation, and Daikin Applied, and Magnitude from Daikin Applied.

Limited Warranty

Consult your local Daikin Applied representative for warranty details. To find your local Daikin Applied representative, go to www.DaikinApplied.com.

Reference Documents

Company	Number	Title	Source
Daikin Applied	OM 1034	Magnitude Frictionless Centrifugal Chiller Operation and Maintenance Manual	www.DaikinApplied.com
Daikin Applied	IOM 1209	Magnitude Frictionless Centrifugal Chiller Installation, Operation and Maintenance Manual 1000–1500 Tons	www.DaikinApplied.com
Daikin Applied	IM 963	Magnitude Frictionless Centrifugal Chiller, BACnet Communication Module (MSTP, IP/Ethernet) Installation Manual	www.DaikinApplied.com
Daikin Applied	IM 965	Magnitude Frictionless Centrifugal Chiller, LonWorks Communication Module Installation Manual	www.DaikinApplied.com
American Society of Heating, Refrigerating and Air-Conditioning Engineers	ANSI/ ASHRAE 135-2004	BACnet A Data Communication Protocol for Building Automation and Control Networks	www.ashrae.org
LonMark Interoperability Association	078-0120-01G	LonMark® Layers 1-6 Interoperability Guidelines, Version 3.4	www.lonmark.org
LonMark Interoperability Association	078-0120-01G	LonMark Application Layer Interoperability Guidelines, Version 3.4	www.lonmark.org
LonMark Interoperability Association	8040_10	LonMark Functional Profile: Chiller, Version 1.0	www.lonmark.org
Echelon Corporation	078-0156-01G	LonWorks FTT-10A Free Topology Transceiver Users Guide	www.echelon.com

This document contains the necessary information you need to incorporate a Daikin Applied Magnitude™ Chiller Unit Controller into a building automation system (BAS). It lists all BACnet® properties, LonWorks® variables, and corresponding Magnitude Chiller Unit Controller data points. It also contains the BACnet Protocol Implementation Conformance Statement (PICS). BACnet and LonWorks terms are not defined. Refer to the respective specifications for definitions and details.

Unit Controller Data Points

The Magnitude Chiller Unit Controller contains data points or unit variables that are accessible from three user interfaces: the unit controller OITS panel, a BACnet network (BACnet/IP, Ethernet, or MS/TP), or a LonWorks network. Not all points are accessible from each interface. This manual lists all important data points and the corresponding path for each applicable interface. Refer to OM 1034 and IOM 1209 (available on www.DaikinApplied.com) for display details. This document contains the network details necessary to incorporate the Magnitude Chiller Unit Controller into the network.

Protocol Definitions

The Magnitude Chiller Unit Controller can be configured in either an interoperable BACnet or LonWorks network. The unit controller must have the corresponding communication module installed for network integration (see Reference Document section for corresponding part numbers). There are three communication modules: BACnet IP/Ethernet, BACnet MS/TP (Master/Slave Token Passing), and LonWorks.

BACnet Protocol

BACnet is a standard communication protocol for Building Automation and Control Networks developed by the American National Standards Institute (ANSI) and American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) specified in ANSI/ASHRAE standard 135-2004. It addresses all aspects of the various systems that are applied to building control systems. BACnet provides the communication infrastructure needed to integrate products manufactured by different vendors and to integrate building services that are now independent.

The Magnitude Chiller Unit Controller is tested according to the BACnet Testing Laboratory (BTL) Test Plan. It is designed to meet the requirements of the BACnet Standard (ANSI/ASHRAE 135-2004) as stated in the Protocol Implementation and Conformance Statement (PICS). However, it is not BTL listed. The PICS are located at the end of this manual or the separate PICS document, ED 15119 (available on www.DaikinApplied.com.)

LonWorks Networks

A control network specification for information exchange built upon the use of the LonTalk® protocol for transmitting data developed by the Echelon® Corporation.

LONTALK Protocol

A protocol developed and owned by the Echelon Corporation. It describes how information should be transmitted between devices on a control network

LonMark Certification

LonMark certification is an official acknowledgement by the LonMark Interoperability Association that a product communicates using the LonTalk protocol and transmits and receives data per a standard LonMark functional profile. The LonWorks communication module is LonMark 3.4 certified in accordance with the Chiller functional profile.

Setting Unit Controller Communications Parameters

There are 12 communication parameters involved in setting up the unit controller for proper communication with the three communication module options (BACnet IP/Ethernet, BACnet MS/TP, LonWorks). These parameters are set differently depending on which communication module is ordered and shipped with the unit. The table below lists the three possible sets of default parameter settings. Not all the parameters apply to all the module options. All parameters, except for Receive Heartbeat, are configurable via the unit controller display. The boldface settings can only be configured via the unit controller OITS (Operator Interface Touch Screen). See OM 1034 and IOM 1209 for details. The items in parenthesis indicate whether the parameter is Read-Only (R) or Read/Write (W) from the BACnet network.

Communication Parameter Settings

Parameter Name	BACnet IP	BACnet MS/TP	BACnet Ethernet	LonWorks
IP Address	172.15.5.82	N/A	N/A	N/A
IP Subnet Mask	255.255.255.0	N/A	N/A	N/A
Default Gateway Address	"None"	N/A	N/A	N/A
UDP Port	47808	N/A	N/A	N/A
MSTP MAC Address	N/A	1	N/A	N/A
MSTP Baud Rate	N/A	38400	N/A	N/A
Device Instance Number (W)	3000 ³	3000 ³	N/A	N/A
Max APDU Length (R)	1024	480	1476	N/A
Device Object Name (W)	Magnitude ³	Magnitude ³	Magnitude ³	N/A
Max Master (W)	N/A	127	N/A	N/A
Max Info Frames (W)	N/A	5	N/A	N/A
APDU Retries (W)	3	3	N/A	N/A
APDU Timeout (W)	3000	3000	N/A	N/A
Receive Heartbeat ¹	N/A	N/A	N/A	0Sec

All parameters, except for Receive Heartbeat, are configurable via the OITS panel.

BACnet Networks

Compatibility

The Magnitude Chiller Unit Controller is tested according to the BACnet Testing Laboratory (BTL) Test Plan. It is designed to meet the requirements of the BACnet Standard (ANSI/ASHRAE 135-2004) as stated in the Protocol Implementation and Conformance Statement (PICS). However, it is not BTL listed. The PICS is located at the end of this manual or the separate PICS document, ED 15119 (available on www.baikin.applied.com.)

BACnet Objects

Magnitude Chiller Unit Controllers incorporate standard BACnet object types (i.e., object types defined in the BACnet Standard) that conform to the BACnet Standard. Each object has properties that control unit variables or data points. Some object types occur more than once in the Magnitude Chiller Unit Controller; each occurrence or instance has different properties and controls different unit variables or data points. Each instance is designated with a unique instance index. Some properties can be adjusted (read/write properties, e.g., setpoints) from the network and others can only be interrogated (read-only properties, e.g., status information).

Each data point accessible from a BACnet network is described with a table that gives the Object Identifier, Property Identifier, Full BACnet Reference or path, and the Name enumeration of the property.

Example of BACnet Data Point

Object Identifier			Property Identifier		
Object Type Enumeration		Instance	Property Name	Property Enumeration	
Binary Output	4	Present Value	85		
Object Name					
AlarmDigitalOutput					
Property Values					
0 = No Alarm 1 = Alarm					

If the IP Address is set to 0.0.0.0 from the unit controller OITS panel or through the network, DHCP addressing will be enabled and the IP address will be requested from the network DHCP server.

^{3.} Device value must be unique on the BACnet network.

Object Identifier

Object Identifiers are each designated with an Object type as defined in the BACnet specification. The first column of the data point definition gives the object type. This object happens to be Alarm Digital Output. The object identifier is a property of the object that you can read from the object. The name of the property is "Object Identifier" and the property identifier is 75.

Each object in the unit controller has a unique identifier. BACnet object identifiers are two-part numbers of BACnet Object Identifier data type. The first part identifies the object type (the first 10 bits of the 32-bit BACnet Object Identifier [See ANSI/ASHRAE 135-2004 BACnet A Data Communication Protocol for Building Automation and Control Networks]). The first column of the data point definition gives the object type. The second part identifies the instances of that particular object type (the last 22 bits of the 32-bit BACnet Object Identifier).

The object identifier is shown in the data points listing as two numbers. The first number is shown in the Type ID column and designates the Object type enumeration. The second number is shown in the Instance column and designates the instance of that particular object type.

The object identifier is a property of the object that you can read from the object code. The name of the property is "Object_Identifier" and the property identifier is 75. The ASHRAE BACnet specification reserves the first 128 numbers for ASHRAE defined objects. Manufacturers may define additional object types and assign a number above 127 as long as they conform to the requirements of the ASHRAE BACnet specification.

Each object also has a name. Object Names are character strings. The object name is a property of the object that you can read from the object. The name of the property is "Object_Name" and the property identifier is 77.

Objects are sometimes referred to as an Object Type and Instance Number as they are in the BACnet specification. The example object above would be: Binary Output, Instance 5.

Property Identifier

Each object has a number of properties or attributes. Each property has a unique identifier of BACnet Property Identifier data type. Property identifiers are an enumerated set; a number identifies each member. The Property Identifier enumeration number is shown in the Property ID column. In the example above the property identifier is 85.

Property Name

Each property also has a unique name. Property names are character strings and shown in the Property Name column. In the example above the property name is Present Value.

Object Name

The Object Name is the name of the object in the device. Object Names must be unique within each BACnet device. In the example above the object name is AlarmDigitalOutput.

Enumerated Values

Some properties are standard data types and some are enumerated sets. If the property value is an enumerated set, all enumerated values and corresponding meaning are given in the Enumeration column of the data point listing.

Magnitude Chiller Unit Controller Device Object

Each BACnet-compatible device can only have a single BACnet Device Object.

Device Object Identifier

⚠ CAUTION

If another device in the network already has this object identifier (instance number), you must change the instance number of one device object, so that all devices in the network have a unique device identifier.

The Magnitude Chiller Unit Controller Device Object Identifier uniquely specifies the unit within the network. The device object type for all devices is fixed by ASHRAE at 8. Therefore the device object instance number must be unique. The device object instance will be read from a parameter in the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase.

The BACnet communication module continues to poll the device object instance parameter during run-time. If the device object instance is changed at the controller during run-time, the update will be automatically applied to the BACnet communication module as soon as the change is received. The allowable range of values for the device object instance will be 0 to 4194302. (The value 4194303 is reserved by BTL for reading a device's object id.) If a value greater than 4194302 is read from the controller, the following default value will be used:

Default device object instance: 3000 + address*

*Address = the last two octets of the MAC Address

For example:

BACnet MS/TP: 3023

BACnet Ethernet: 10312 (3000 + F75A) BACnet/IP: CDB (3000 + 0123)

The device object identifier can be read from the unit controller. The name of the property is "Object_Identifier" and the property identifier is 75. Changing the device object ID may affect the operation of other BACnet devices on the network that have previously discovered the device. The object instance number can be changed via the unit controller OITS panel.

Device Object Name

The Device Object Name uniquely specifies a device in the network. It must be unique in the network. The device object name will be read from a parameter in the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. The BACnet communication module continues to poll the device object name parameter during run-time. If the device object name is changed at the controller during runtime, the update will be automatically applied to the BACnet communication module as soon as the change is received. The allowable range of characters for the device object name will be 1 to 31 characters. If an empty string is read from the controller, the following default name will be used:

Default device object name: MTE Chiller UCA - address*

*Address = the MAC Address

For example:

BACnet MS/TP: MTE Chiller UCA-23

BACnet Ethernet and BACnet/IP:

MTE Chiller UCA-0-176-208-13-247-90

NOTE: If the constructed name is longer than 31 characters, the numeric portion of the name will be shortened to fit the name into the 31 character limit.

The Device Object name is also available to the network in the device. The property name is "Object_Name" and property identifier is 77. Changing the device object name may affect the operation of other BACnet devices on the network that have previously discovered the device. The object name can be changed via the unit controller OITS panel.

Device Object Properties

The device object contains many other informative properties as shown in Table 1 Items in bold are configurable via the BACnet network.

Table 1: Magnitude Chiller Unit Controller Device Object Properties

Property	Identifier	Default Value	Data Type
Object Identifier	75	Device, variable	BACnetObjectIdentifier
Object Name	77	Magnitude	Character String
Object Type	79	8	BACnetObjectType
System Status	112		BACnetDeviceStatus
Vendor Name	121	Daikin Applied	Character String
Vendor Identifier	120	3	Unsigned 16
Model Name	70	WME	Character String
Firmware Revision	44	variable	Character String
Application Software Version	12	variable	Character String
Location	58		Character String
Description	28	Daikin Chiller	Character String
Protocol Version	98	1	Unsigned
Protocol Revision	139	4	Unsigned
Protocol Services Supported	97	readProperty, readPropertyMultiple, writeProperty, writePropertyMultiple, deviceCommunicationControl, timeSynchronization, who-Has, who-Is, utcTimeSyncronization, reinitializeDevice	BACnetServicesSupported
Protocol Object Types Supported ¹	96	AI, AO, AV, BI, BO, BV, Device, MSI, MSO, MSV	BACnetObjectTypesSupported
Object List	76		Sequence of BACnetObjectIdentifer
Max APDU Length Accepted	62	1024 (IP) / 480 (MS/TP)	Unsigned 16
Segmentation Supported	107	None	BACnetSegmentation
APDU Timeout	11	3000	Unsigned
Number of APDU Retries	73	3	Unsigned
Max Master	64	127 (Range: 1 127)	Unsigned
Max Info Frames	63	5 (Range: 1 5)	Unsigned
Device Address Binding	30		Sequence of BACnetAddressBinding
Database Revision	115	1	Unsigned
Local Time ²	57	variable (read from the controller)	Time
Local Date2	56	variable (read from the controller)	Date
UTC Offset	119	0 (Range: -780 780)	Integer
Daylight Savings Status	24	0 (False)	Boolean

^{1.} While the Magnitude Chiller Unit Controller supports all shown object types, not all object types are used. See the Object List for details. 2. The device properties will be read-only. The controller values are writable from BACnet via the BACnet TimeSynchronization services.

Network Considerations

Access to Properties

Object properties are accessible from the network by specifying the device object identifier, object identifier, and the property identifier. To access a property, you must specify the object identifier including the device object identifier or the object name including the device object name and the property identifier.

BACnet Networks

The BACnet communication module supports three separate BACnet data link layers:

- BACnet MS/TP
- · BACnet Ethernet
- BACnet/IP

Only one data link layer may be used at one time.

During initialization, the BACnet communication module reads a parameter in the Magnitude Chiller Unit Controller to select the data link layer. If the value read is not one of the supported BACnet data link layers, the BACnet communication module initialization loops in this phase of the initialization until a supported BACnet data link layer value is read from the unit controller. The BACnet communication module's active data link layer may not be changed at run-time. If the unit controller parameter is changed during run-time, the BACnet communication module requires a reset in order to re-initialize with the new data link layer selection.

The different data link layers have different parameters. All parameters that require configuration are read from the unit controller by the BACnet communication module via the unit controller OITS panel. The BACnet communication module reads only those parameters relevant to the selected data link layer. During initialization, the BACnet communication module must read a complete set of valid parameters for the BACnet network layer and selected data link layer before proceeding to build a set of BACnet objects for the device.

BACnet Ethernet Communications Parameters

None of the Ethernet Data Link Layer or Physical layer parameters require configuration.

BACnet/IP Communications Parameters

The key parameters for setting up BACnet/IP are described in the following sub-sections. The following parameters are accessible and configurable via the unit controller OITS panel. They are not accessible from the BACnet network.

IP Address

The IP address is read from a parameter in the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. The BACnet communication module can be configured for Dynamic Host Configuration Protocol (DHCP) addressing by setting the IP Address to 0.0.0.0 using the unit controller OITS panel. The BACnet communication module continues to poll the IP address parameter during run-time. If the IP address is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. The validity of the IP address is verified against the Subnet Mask. If the address is not valid, BACnet/ IP communications cannot be established and the device does not initiate or respond to BACnet messages. If the IP address is changed at run-time and the IP address is not valid, BACnet/ IP communications are disabled. However, once a valid IP address is received. BACnet/IP communications are then enabled. Changing the IP address may affect the operation of other BACnet devices on the network. This parameter can only be accessed and configured via the unit controller OITS panel.

Subnet Mask

The Subnet Mask is read from a parameter in the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. The BACnet communication module continues to poll the Subnet Mask parameter during run-time. If the Subnet Mask is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. The validity of the Subnet Mask is verified against the IP address. If the Subnet Mask is not valid, the BACnet communication module does not enable BACnet/IP communications and the device does not initiate or respond to BACnet messages. If the Subnet Mask is changed at run-time and is not valid, the BACnet/IP communications are disabled. However, once a valid Subnet Mask is received, BACnet/ IP communications are then enabled. Changing the Subnet Mask may affect the operation of other BACnet devices on the network. This parameter can only be accessed and configured via the unit controller OITS panel.

UDP Port

The UDP Port is read from the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. The BACnet communication module continues to poll the UDP Port parameter during run-time. If the UDP Port is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. Changing the UDP Port may affect the operation of other BACnet devices on the network. This parameter can only be accessed and configured via the unit controller OITS panel.

Default Gateway Address

The default gateway address is read from a parameter in the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. The BACnet communication module continues to poll the default gateway address parameter during run-time. If the default gateway address is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. Modifying the default gateway address may affect the operation of other BACnet devices on the network. This parameter can only be accessed and configured via the unit controller OITS panel.

BBMD Address

The BBMD address is read from the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. If the BBMD address is not 0.0.0.0, the BACnet communication module sends a Register-Foreign-Device message to the address. If the result code returned is X'0000', the BACnet communication module renews the registration at the period defined by the Foreign Device Time-To-Live value. The BACnet communication module continues to poll the BBMD address parameter during run-time. If the BBMD address is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. If the new value is 0.0.0.0, a Delete-Foreign-Device-Table-Entry message is sent to the BBMD address. If the new value is non-zero, a Register-Foreign-Device message is sent to the BBMD address. Changing the BBMD address may affect the operation of other BACnet devices on the network. This parameter can only be accessed and configured via the unit controller OITS panel.

Foreign Device Time-To-Live

The Foreign Device Time-To-Live (FDTTL) value is read from the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. The BACnet communication module continues to poll the FDTTL parameter during run-time. If the FDTTL is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. If the new value is different from the existing value, a Register-Foreign-Device message is sent to the BBMD address. This parameter can only be accessed and configured via the unit controller OITS panel.

BACnet MS/TP Communication Parameters

The BACnet MS/TP communication setup parameters consist of: the Device Object Name, Device Object Identifier, Max Master, Max_Info_Frames, MAC Address and Baud Rate. These parameters can only be accessed and configured via the unit controller OITS panel. Both the MAC Address and the Baud Rate settings require configuration prior to establishing communication from the unit controller to the BACnet network.

MAC Address

The MAC address is read from a parameter in the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. This parameter can only be accessed and configured via the unit controller OITS panel. It is not accessible from the BACnet network interface (i.e. Building Automation System workstation). The BACnet communication module continues to poll the MAC address parameter during run-time. If the MAC address is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. Changing the MAC address may affect the operation of other BACnet devices on the network.

The allowable range of values for the MAC address is: 0-127. Since the BACnet communication module is always configured as an MS/TP master, only addresses 0-127 are valid. If a value greater than 127 is read from the unit controller, the BACnet communication module defaults to a MAC address of 127. The MAC address must be unique on the BACnet MS/TP network.

Baud Rate

The baud rate is read from a parameter in the Magnitude Chiller Unit Controller during the BACnet communication module's initialization phase. The Baud Rate must match the other devices on the same MS/TP network and requires configuration prior to establishing communications from the unit controller to the BACnet network. This parameter can only be accessed and configured via the unit controller OITS panel. It is not accessible from the BACnet network interface (i.e. Building Automation System workstation).

The BACnet communication module continues to poll the baud rate parameter during run-time. If the baud rate is changed at the unit controller during run-time, the update is automatically applied to the BACnet communication module as soon as the change is received. Baud rates supported are as follows: 9600, 19200, 38400 (default) and 76800 bps.

BACnet Device Management

The following functions are specific to the BACnet device. These functions are used for maintenance and testing. A network management tool such as VTS is typically used to issue the network commands.

DeviceCommunicationControl - Disable

The purpose of this command is to reduce network traffic for diagnostic testing of the BACnet network. When the BACnet communication module receives a network command to Disable communications it stops communicating information to the network. An optional time may be specified for how long to suspend communications. The unit continues to operate during the Disabled state. A password of 1234 is required.

DeviceCommunicationControl - Enable

When the BACnet Communication module receives a network command to Enable, the chiller unit controller communication to BACnet is restored. A password of 1234 is required.

ReinitializeDevice (Reset)

When the BACnet Communication module is capable of receiving a network ReinitializeDevice command to reboot itself (cold start or warm start). The functionality of a cold and warm start are the same and simply reboot the BACnet Communication module. The chiller controller can never be reset via the BACnet network. Reinitialize Device is implemented with a non-changeable password of 1234.

The Magnitude Chiller Unit Controller can operate with the default values of the various parameters. However, certain communication parameters must be configured appropriately (see the appropriate Magnitude Communication Module Installation Manual for details). Default values may be changed using the unit controller OITS panel or via the BACnet network (see OM 1034 and IOM 1209 for details).

LonWorks Networks

LonWorks technology, developed by Echelon Corporation, is the basis for LonMark Interoperable Systems. This technology is independent of the communication media. The LonMark Interoperable Association has developed standards for interoperable LonWorks technology systems. In particular they have published standards for HVAC equipment including the Chiller Functional profile. This profile specifies a number of mandatory and optional standard network variables and standard configuration parameters. This manual defines the variables and parameters available in the Magnitude Chiller Unit Controller.

Compatibility

The Magnitude Chiller Unit Controller, along with the LonWorks Communication Module, operates in accordance with the Chiller Functional profile of the LonMark Interoperability Association.

LonWorks Variables

The Magnitude Chiller Unit Controller incorporates LonWorks network variables to access unit data points. The controller uses LonWorks Standard Network Variable Types (SNVT) from the profile. Some data points can be adjusted (input network variables, nvi) (read/write attributes, e.g., setpoints) from the network and others can only be interrogated (network variables, nvo) (read only attributes, e.g., status information). Configuration variables (nci) are included with the input network variables. Each data point accessible from a LonWorks network is described with a table that gives the LonWorks Name, Profile, SNVT Type, and SNVT Index. If the variable is a configuration variable the table also includes the SCPT (Standard Configuration Parameter Type) Reference and the SCPT Index.

Example of LonWorks Data Point

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoSuctionTemp	DaikinChiller	SNVT_ temp_p	105	two bytes

LonWorks Name

Each network variable has a name that you use to access the data point. This is the name of the variable from the profile. In the example above, the name of the variable is nvoSuctionTemp.

Profile

The profile column designates whether the variable is defined in the LonMark Chiller functional profile or is a Daikin Applied proprietary variable. The variable itself may not be a standard component of the profile, but the unit controller implements it and it is available to the network. The Profile column indicates "Chiller" for LonMark standard network variables or "DaikinChiller" for proprietary variables.

SNVT Type

This column gives the name of the standard network variable type from the master list. In the example above, the SNVT is SNVT_temp_p.

SNVT Index

This column gives the Index of the standard network variable type from the master list. In the example above, the SNVT Index is 105.

SNVT Size

This column gives the size of the standard network variable type in number of bytes. In the example above, the SNVT Size is two bytes.

SCPT Reference

This column gives the name of the Standard Configuration Parameter Type (SCPT) from the master list.

SCPT Index

This column gives the Index of the Standard Configuration Parameter Type (SCPT) from the master list.

Network Considerations

Network Topology

Each LonWorks Communication Module is equipped with an FTT-10A transceiver for network communication. This transceiver allows for (1) free topology network wiring schemes using twisted pair (unshielded) cable and (2) polarity insensitive connections at each node. These features greatly simplify installation and reduce network commissioning problems. Additional nodes may be added with little regard to existing cable routing.

Free Topology Networks

A LonWorks "free topology network" means that devices (nodes) can be connected to the network in a variety of geometric configurations. For example, devices can be daisy-chained from one device to the next, connected with stub cables branching off from a main cable, connected using a tree or star topology, or any of these configurations can be mixed on the same network as shown in Figure 1. Free topology segments require termination for proper transmission performance. Only one termination is required. It may be placed anywhere along the segment. Refer to Echelon LonWorks FTT-10A Transceiver User's Guide.

Free topology networks may take on the following topologies:

- Bus
- Ring
- Star
- · Mixed Any combination of Bus, Ring, and Star

NOTE: Limitations to wire lengths apply and must be observed.

Figure 1: Singly Terminated Free Topology

A network segment is any part of the free topology network in which each conductor is electrically continuous. Each of the four diagrams in is a illustration of a network segment. Some applications may require two or more segments. See Free Topology Restrictions. If necessary, segments can be joined with FTT-10A-to-FTT-10A physical layer repeaters. See Figure 2.

Figure 2: Combining Network Segments with a Repeater

Free Topology Restrictions

Although free topology wiring is very flexible, there are restrictions. A summary follows:

The maximum number of nodes per segment is 64.

The maximum total bus length depends on the wire size:

Wire Size	Maximum Node-to- Node Length	Maximum Cable Length
24 AWG	820 ft (250 m)	1476 ft (450 m)
22 AWG	1312 ft (400 m)	1640 ft (500 m)
16 AWG	1640 ft (500 m)	1640 ft (500 m)

The longest cable path between any possible pair of nodes on a segment must not exceed the maximum node-to-node distance. If two or more paths exist between a pair of nodes (e.g., a loop topology), the longest path should be considered. Note that in a bus topology, the longest node-to-node distance is equal to the total cable length. The total length of all cable in a segment must not exceed the maximum total cable length. One termination is required in each segment. It may be located anywhere along the segment.

Doubly Terminated Networks

You can extend the maximum total cable length without using a repeater by using doubly-terminated network topology. The trade-offs are (1) this network topology must be rigorously followed during the installation and subsequent retrofits and (2) two terminations must be installed at the ends of the bus for proper transmission performance.

Limitations to wire lengths apply and must be observed.

Figure 3: Doubly Terminated Network Topology

Doubly Terminated Topology Restrictions

The restrictions on doubly-terminated bus topology are as follows:

The maximum number of nodes per segment is 64. The maximum total bus length depends on the wire size:

Wire Size	Maximum Cable Length
24 AWG	2952 ft (900 m)
22 AWG	4590 ft (1400 m)
16 AWG	8855 ft (2700 m)

The maximum stub length is 9.8 ft (3 m). A stub is a piece of cable that is wired between the node and the bus (see Figure 1.) Note that if the bus is wired directly to the node, there is no stub, and thus the stub length is zero. If you are wiring to a field terminal strip on a unit, be sure to account for any factory wiring between the terminal strip and the controller. This wiring is considered part of the stub. Two terminations are required in each segment. One must be located at each end of the bus.

Network Cable Termination

LonWorks network segments require termination for proper data transmission performance. The type and number of terminations depend on network topology.

LonWorks Network Addressing

Every Neuron® Chip has a unique 48-bit Neuron ID or physical address. This address is generally used only at initial installation or for diagnostic purposes. For normal network operation, a device address is used. Device addresses are defined at the time of network configuration. All device addresses have three parts. The first part is the Domain ID, designating the domain. Devices must be in the same domain in order to communicate with each other. The second part is the Subnet ID that specifies a collection of up to 127 devices that are on a single channel or a set of channels connected by repeaters. There may be up to 255 subnets in a domain. The third part is the Node ID that identifies an individual device within the subnet.

A group is a logical collection of devices within a domain. Groups are assembled with regard for their physical location in the domain. There may be up to 256 groups in a domain. A group address is the address that identifies all devices of the group. There may be any number of devices in a group when unacknowledged messaging is used. Groups are limited to 64 devices if acknowledged messaging is used. A broadcast address identifies all devices within a subnet or domain.

Commissioning the Network

Pressing the service pin, switch on the LonWorks Communication Module, generates a service pin message, which contains the Neuron ID and the program code identification of the node. A service pin message is a network message that is generated by a node and broadcast on the network. It can be used to commission the LonWorks network. A network configuration tool maps device Neuron IDs to the domain/subnet/node logical addressing scheme when it creates the network image, the logical network addresses and connection information for all devices (nodes) on the network.

External Interface File (XIF)

LonMark guidelines specify exact documentation rules so that proprietary configuration tools are not required to commission and configure LonWorks devices. The LonWorks Chiller Communication Module is self-documenting so that any network management tool can obtain all the information needed over the network to connect it into the system and to configure and manage it. An external interface file (a specially formatted PC text file with an extension .XIF) is available so that any network tool can design and configure it prior to installation. XIFs are available on www.DaikinApplied.com or www.DaikinApplied.com or www.lonmark.org.

Resource Files

The Magnitude Chiller Unit Controller supports variables defined by the LonMark Chiller functional profile as well as Daikin Applied proprietary variables. The variable itself may not be a standard component of the profile, but the unit controller implements it and it is available to the network. Resource Files provide definitions of functional profiles, type definitions, enumerations, and formats that can be used by network configuration tools such as Echelon's LonMaker® program. Refer to the Detailed Data Section for each variable to determine if it is supported by the standard LonMark Chiller functional profile or is a proprietary variable. Within the Detailed Data Section, each parameter includes a LonWorks table with a Profile column. The Profile column indicates "Chiller" for a LonMark standard network variable or "DaikinChiller" for a proprietary variable. The Resource Files define the format of how these Daikin Applied-specific variables are displayed when using a tool such as LonMaker. The Resource Files are available on www.DaikinApplied.com or www.lonmark.org.

Unit Controller Default Values

The Magnitude Chiller Unit Controller and the LonWorks Communication Module are designed in accordance with the LonMark chiller functional profile. The unit can operate with the default values of the various parameters. However, the Protocol Type must be set to LonWorks. Additional configuration may be necessary for optimal unit performance and network integration. Default values may be changed via the unit controller OITS panel and/or the BACnet network. Refer to the appropriate operation manual for default values and unit controller operating instructions (see Reference Documents section for details.)

Data Integrity

The integrity of some data depends on a valid network connection to maintain current values. The following data points require a valid network connection. If a data point listed in Table 2 does not change after a given time (receive heartbeat), the controller reverts to the value contained in the corresponding network configuration variable (nci). The receive heartbeat feature is only applicable when nciDefaults is set to 0.

Table 2: Receive Heart Beat Variables

Data Point	LonWorks Variable
Capacity Limit Setpoint	nviCapacityLim
Chiller Enable Setpoint	nviChillerEnable
Cool Setpoint	nviCoolSetpt
Heat Setpoint	nviHeatSetpt
Ice Setpoint	nvilceSpt
Chiller Mode Setpoint	nviMode

Typical Application: Minimum Integration

This section gives you the basic information required for integrating the Magnitude Chiller Unit Controller to a BAS and outlines a procedure to set up the unit for network control.

Set up the Unit Controller for Network Control

From the unit controller OITS panel, follow the steps below:

- Set the Control Source on the SET/UNIT screen to USER.
- 2. Change the BAS Network Protocol default to the appropriate BAS Protocol on the SET/BAS screen.
- 3. Verify with the chiller/control company technician that the chiller is operational on the BAS.
- 4. Set the Control Source on the SET/UNIT screen to BAS.

Display Important Data Points

Typical workstation displays of Magnitude Chiller Unit Controller attributes include the following significant data points (page number of detailed description in parenthesis). Each data point is identified with a number that also identifies it in the respective BACnet or LonWorks Protocol Point Summary tables. These data points are also shaded in the comprehensive tables so that you can distinguish them from the rest of the data points in the table. References in the text of this section also identify these data points with a number and shading.

Table 3: Significant Data Points

No.	Configuration Chiller Status (45)					
2	Chiller Mode Set-point (43)					
3	Actual Capacity (34)					
4	Chiller Enable Setpoint (38)					
Temp	peratures					
5	Evaporator Entering Water Temperature (63)					
6	Evaporator Leaving Water Temperature (64)					
7	Condenser Entering Water Temperature (56)					
8	Condenser Leaving Water Temperature (57)					
Setp	oints					
9	Cool Setpoint – Network (61)					
10	Capacity Limit Setpoint – Network (36)					
Alarr	Alarms					
11	Alarm Digital Output (34)					
12	Clear Alarm Network (46)					

You can display any number of additional data points based on job requirements or individual preference. See Protocol Point Summary section (Table 4 – Table 7) for a complete list of all LonWorks variables or BACnet points available to the network. For a detailed description of all available data points, see the Detailed Data Point Information section.

Alarms

Alarms in a Magnitude Chiller Unit Controller are divided into three classes: Faults, Problems, and Warnings.

- · Fault Alarms have the highest priority.
- · Problem Alarms have medium priority.
- · Warning Alarms have the lowest priority.

Notification

BACnet

Magnitude Chiller Unit Controllers may have their alarms monitored by one of two methods: 1) a BACnet Binary Output indicating whether any alarms exist, or 2) Alarm value using three BACnet Analog Value objects.

- To monitor whether or not any alarms exist, monitor the Alarm Digital Output variable. If the Present_Value property is a 1, an alarm is active. A value of 0 for the Present_Value property indicates that there are no active alarms.
- 2. To monitor alarms by alarm value, read the Present_ Value property of the three Alarm Analog Value objects (Fault Alarm, Problem Alarm and Warning Alarm). The Present_Value displays a value that corresponds to the highest numbered alarm that is active. It is possible to have multiple active alarms, but only the highest numbered is displayed. The values for all alarms are described in the Alarms section tables. If the Present_ Value displays a zero, there are no active alarms.

LonWorks

Magnitude Chiller Unit Controllers may have their alarms monitored by one of two methods: 1) by using the In_alarm attribute of nvoChillerstat or 2) by reading nvoAlarmDescr.

- The In Alarm attribute of the Chiller Status Network Variable Output (i.e. nvoChillerstat.in_alarm) indicates whether any alarm is active (1). If the attribute nvoChillerStat.in_alarm displays a zero, there are no active alarms.
- To monitor which alarms are currently active, read nvoAlarmDescr. The unit controller can accommodate 15 simultaneous alarms. Alarm messages are sent sequentially one every five seconds.

Clearing

BACnet

Magnitude Chiller Unit Controllers has one Binary Value object that can be used to clear alarms; ClearAlarms Network. A value of 1 will attempt to clear all alarms. Once the alarms are cleared, the Present_Value of this object goes back to 0.

LonWorks

Magnitude Chiller Unit Controllers have one variable that can be used to clear alarms; nviClearAlarm. Changing the State portion of this SNVT_switch to a value of 1 will attempt to clear all alarms. Once the alarms are cleared, the Present_Value of this object goes back to 0. The Value portion of this SNVT_switch is not used.

Protocol Point Summary - BACnet

The following section defines the parameters for all BACnet objects available from the unit controller to the network (see Table 4.) The shaded data points with numbers are the data points listed in Table 3.

Table 4: Comprehensive List of BACnet Objects

Network Control Property	Page	Read, Write ¹	Object Type	Instance	Description
Application Version	22	R	Device	*	Application version software running in the chiller.
Chiller Location	25	W	Device	*	Defines where the chiller is physically located. By default, this is blank.
Chiller Model	26	R	Device	*	This defines the model of the chiller.
Active Setpoint	21	R	AV	5	15.08 to 149.9°F (-9.4 to 65.5°C)
*Actual Capacity	21	R	AV	2	0–100%
*Active Capacity Limit (Output)	22	R	AV	1	0–100%
*Capacity Limit Setpoint - Network	22	W	AV	3	0 to 100%; Default=100%
*Chiller Enable Output	23	R	BI	7	0=Disable, 1=Enable
*Chiller Enable Setpoint	24	W	BV	2	0=Disable, 1=Enable
Chiller Capacity Limited	24	R	BI	6	0=Not Limited, 1=Limited
Chiller Local/Network	25	R	BI	3	0=Network, 1=Local
Chiller Mode Output	26	R	MSV	2	1=lce, 2=Cool, 3=Heat
Chiller Mode Setpoint – Network	26	W	MSV	3	1=lce, 2=Cool, 3=Heat, Default=Cool
Chiller ON-OFF	27	R	BI	4	0=Chiller OFF, 1=Chiller ON
*Chiller Status BACnet	27	R	MSV	1	1=OFF, 2=Start, 3=Run, 4=Preshutdown, 5=Service
Compressor Average Current					0 – 2000 amps (less for some models)
Compressor #1	28	R	Al	9	
Compressor #2			Al	10	
Compressor Discharge Refrigerant Pressure					0 to 410.0217 PSI
Compressor #1	29	R	Al	81	
Compressor #2	20	'`	Al	82	-
Compressor Discharge Refrigerant Temperature			Ai	02	-40°F to 257°F (-40°C to 125°C)
		_		00	-401 (023/1 (-40 0 (0123 0)
Compressor #1	30	R	Al	63	-
Compressor #2			Al	64	
Compressor Discharge Saturated Refrigerant Temperature					-15 to 185°F (-26.2 to 85°C)
Compressor #1	30	R	AV	26	
Compressor #2			AV	27	
Compressor Percent RLA					0% – 150% RLA
Compressor #1	31	R	AV	8	
Compressor #2			AV	9	
Compressor Power					0 – 600 kW
Compressor #1	0.4	_	Al	45	0 - 000 KVV
· ·	31	R		_	
Compressor #2			Al	46	
Compressor Run Hours				I	0 – 999,999
Compressor #1	32	R	AV	74	
Compressor #2			AV	75	
Compressor Starts					0 – 65,535
Compressor #1	33	R	AV	92	
Compressor #2	30	'`	AV	93	-
<u>'</u>		-	7.10		-40°F to 257°F (-40°C to 125°C)
Compressor Suction Refrigerant Temperature				405	-40 1 10 201 F (-40 C 10 120 C)
Compressor #1	34	R	Al	105	
Compressor #2			Al	106	

Network Control Property	Page	Read, Write ¹	Object Type	Instance	Description
Compressor Average Voltage					0 – 10,000 volts
Compressor #1	29	R	Al	27	
Compressor #2			Al	28	
*Condenser Entering Water Temperature	34	R	Al	3	-40 to 257°F (-40 to 125°C)
Condenser Flow Switch Status	35	R	BI	1	0=No Flow, 1=Flow
*Condenser Leaving Water Temperature	35	R	Al	4	-40 to 257°F (-40 to 125°C)
Condenser Pump #1 Run Hours	35	R	AV	110	0 - 999,999
Condenser Pump #2 Run Hours	35	R	AV	111	0 – 999.999
Condenser Refrigerant Pressure	36	R	Al	99	0 to 410.0217 PSI (-140 to 2827 kPA)
Condenser Saturated Refrigerant Temperature	36	R	AV	44	-15.16 to 185°F (-26.2 to 85°C)
Compressor Suction Refrigerant Pressure			7.0		0 – 131.9988 psi
Compressor #1	34	R	Al	123	
· ·	34	K			_
Compressor #2			Al	124	
Compressor Suction Saturated Refrigerant Temperature					-15.16 to 104°F (-26.2 to 40°C)
Compressor #1	34	R	AV	50	
Compressor #2			AV	51	
Condenser Water Flow Rate	36	R	Al	147	0 to 10,001.55 GPM (0 to 631 L/s)
Condenser Pump #1 Status	37	R	BI	11	0=Pump OFF Request, 1=Pump ON Request
Condenser Pump #2 Status	37	R	BI	12	0=Pump OFF Request, 1=Pump ON Request
*Cool Setpoint - Network	37	W	AV	4	35 - 80°F (1.7°C to 26.7°C); Default=44°F
*Evaporator Entering Water Temperature	38	R	Al	1	-40 to 257°F (-40 to 125°C)
Evaporator Flow Switch Status	39	R	BI	2	0=No Flow, 1=Flow
*Evaporator Leaving Water Temperature	39	R	Al	2	-40 to 257°F (-40 to 125°C)
Evaporator Pump #1 Run Hours	39	R	AV	112	0 – 999,999
Evaporator Pump #2 Run Hours	39	R	AV	113	0 – 999,999
Evaporator Water Flow Rate	40	R	Al	148	0 to 10,001.55 GPM (0 to 631 L/s)
Evaporator Pump #1 Status	40	R	BI	8	0=Pump OFF Request, 1=Pump ON Request
Evaporator Pump #2 Status	40	R	BI	9	0=Pump OFF Request, 1=Pump ON Request
Heat Recovery Entering Water Temperature	41	R	Al	149	-40 to 257°F (-40 to 125°C)
Heat Recovery Leaving Water Temperature	41	R	Al	150	-40 to 257°F (-40 to 125°C)
Heat Setpoint - Network	41	W	AV	6	100.04 to 150.08°F (37.8 to 65.6°C); Default=134.96°F
Ice Setpoint - Network	42	W	AV	7	14.9 to 35.06°F (-9.5 to 1.7°C), Default=25°F
Outdoor Air Temperature	45	R	Al	5	-40°F to 212°F (-40°C to 100°C)
Run Enabled	46	R	BI	5	0=OFF, 1=Run Allowed
Units	47	W	MSV	4	1=English(IP), 2=Metric(SI); Default=English
Alarm Digital Output	48	R	BI	10	0=No Alarm, 1=Alarm
Alarm Faults	48	R	AV	901	See Table 8
Alarm Problems	48	R	AV	900	See Table 8
Alarm Warnings	48	R	AV	902	See Table 8
Clear Alarm Network	49	W	BV	8	0= Normal (Default), 1=Clear Alarm

^{*}Boldface denotes data points for typical minimum integration.

1. This column refers to whether or not the Present Value property of the object is Read Only (R) or read/write (W).

Protocol Point Summary – LonWorks

The following section defines the comprehensive list of LonWorks variables available from the unit controller to the network. The properties are displayed as Network Output Variables, Network Input Variables, and Network Configuration Parameters (see Table 5 – Table 7.) The shaded data points with numbers are the data points listed in Table 3.

Network Output Variables

Table 5: LonWorks Network Output Variables

Network Control Property	Variable Name	Page	SNVT Reference	SNVT Index	Description	
Active Setpoint	nvoActiveSetpt	21	SNVT_temp_p	105	15.08 to 149.9°F (-9.4 to 65.5°C)	
*Actual Capacity	nvoActCapacity	21	SNVT_lev_percent	81	0 – 100%	
Alarm Digital Output	nvoChillerstat	21	SNVT_chlr_stat	127	0=No Alarm, 1=In Alarm	
Active Capacity Limit (Output)	nvoCapacityLim	22	SNVT_lev_percent	81	0 – 100%	
Chiller Capacity Limited	nvoChillerstat	24	SNVT_chlr_stat	127	0=Not Limited, 1=Limited	
Chiller Mode Output	nvoChillerstat	26	SNVT_chlr_stat	127	1=lce, 2=Cool, 3=Heat	
Chiller Local/Network	nvoChillerstat	25	SNVT_chlr_stat	127	0=Network (Remote), 1=Local	
Chiller ON-OFF	nvoOnOff	27	SNVT_switch	95	0=Chiller OFF, 1=Chiller ON	
*Chiller Status	nvoChillerstat	27	SNVT_chlr_stat	127	Chiller Run Mode: 0=CHLR_OFF, 1= CHLR_START, 2=CHLR_RUN, 3=CHLR_PRESHUTDN, 4=CHLR_SERVICE	
Compressor Average Current	nvoCurrent	28	SNVT_amp_ac	1	0 – 2000 Amperes (less on some models)	
Compressor Discharge Refrigerant Pressure	nvoCmpDisRefPres	29	SNVT_press	30	0 to 410 PSI (0 to 2827 kPA)	
Compressor Discharge Refrigerant Temperature	nvoCompDisTemp	30	SNVT_temp_p	105	-40°F to 257°F (-40°C to 125°C)	
Compressor Discharge Saturated Refrigerant Temperature	nvoCmpDisSRefTmp	30	SNVT_temp_p	105	-15.16 to 185°F (-26.2 to 85°C)	
Compressor Percent RLA	nvoCompPercRLA	31	SNVT_lev_percent	81	0-150%	
Compressor Power	nvoKiloWatts	31	SNVT_power_kilo	28	0 – 600 kiloWatts	
Compressor Run Hours	nvoCompHrs	32	SNVT_count_f	51	0 – 999,999	
Compressor Starts	nvoCompStarts	33	SNVT_count	8	0 – 65,535	
Compressor Suction Refrigerant Temperature	nvoSuctionTemp	34	SNVT_temp_p	105	-40°F to 257°F (-40°C to 125°C)	
Compressor Average Voltage	nvoVoltage	29	SNVT_volt_ac	138	0 – 10,000	
Condenser Entering Water Femperature	nvoEntCndWTemp	34	SNVT_temp_p	105	-40 to 257°F (-40 to 125°C)	
Condenser Flow Switch Status	nvoChillerStat	35	chlr_status	127	0=No Flow, 1=Flow nvoChillerStat. cond_flow	
Condenser Leaving Water Temperature	nvoLvgCndWTemp	35	SNVT_temp_p	105	-40 to 257°F (-40 to 125°C)	
Condenser Pump Run Hours	nvoCondPumpHrs	35	SNVT_count_f	51	0 – 999,999	
Compressor Suction Refrigerant Pressure	nvoSuctRefPress	34	SNVT_press	30	0-132 psi (0-910.1 kPa)	
Compressor Suction Saturated Refrigerant Temperature	nvoSatSuctRefTmp	33	SNVT_temp_p	105	-15.16 to 104°F (-26.2 to 40°C)	
Condenser Refrigerant Pressure	nvoCondRefPres	36	SNVT_press	30	0 to 410 PSI (0 to 2827 kPA)	
Condenser Saturated Refrigerant Femperature	nvoCondSatRefTmp	36	SNVT_temp_p	105	-15.16 to 185°F (-26.2 to 85°C)	
Condenser Water Flow Rate	nvoCondFlowRate	36	SNVT_flow	15	0 to 1337.01 CFM (0 to 631 L/s)	
Condenser Pump Status	nvoCndWPump	37	SNVT_switch	95	0= Pump Commanded OFF, 1= Pump Commanded ON	
Evaporator Entering Water Temperature	nvoEntChWTemp	38	SNVT_temp_p	105	-40 to 257°F (-40 to 125°C)	
Evaporator Flow Switch Status	nvoChillerStat	39	chlr_status	127	0=No Flow, 1=Flow nvoChillerstat.chw_flow	
Evaporator Leaving Water Temperature	nvoLvgChWTemp	39	SNVT_temp_p	105	-40 to 257°F (-40 to 125°C)	
Evaporator Pump Run Hours	nvoEvapPumpHrs	39	SNVT_count_f	51	0 – 999,999	
Evaporator Water Flow Rate	nvoEvapFlowRate	40	SNVT_flow	15	0 to 1337.01 CFM (0 to 631 L/s)	
Evaporator Pump Status	nvoChWPump	40	SNVT_switch	95	0= Pump OFF Request, 1= Pump ON Request	

Network Control Property	Variable Name	Page	SNVT Reference	SNVT Index	Description
Heat Recovery Entering Water Temperature	nvoEntHRWTemp	41	SNVT_temp_p	105	-40 to 257°F (-40 to 125°C)
Heat Recovery Leaving Water Temperature	nvoLvgHRWTemp	41	SNVT_temp_p	105	-40 to 257°F (-40 to 125°C)
Outdoor Air Temperature	nvoOutdoorTemp	45	SNVT_temp_p	105	-40°F to 212°F (-40°C to 100°C)
Run Enabled	nvoChillerstat	46	SNVT_chlr_stat	127	0=OFF, 1=Run Allowed
Current Alarm	nvoAlarmDescr	52	SNVT_str_asc	36	31 Character Alarm Descriptor
Object Status	nvoStatus	43	SNVT_obj_status	93	
*Chiller Enable Output	nvoChillerEnable	23	SNVT_switch	95	0=Disable, 1=Enable
File Directory Address	nvoFileDirectory	40	SNVT_address	114	Address for the file directory containing descriptors for configuration files.

Network Input Variables

Table 6: LonWorks Network Input Variables

Network Control Property	Variable Name	Page	SNVT Reference	SNVT Index	Description
*Capacity Limit Setpoint	nviCapacityLim	22	SNVT_lev_percent	81	0 to 100%; Default=100%
*Chiller Enable Setpoint	nviChillerEnable	24	SNVT_switch	95	0=Disable, 1=Enable
Chiller Mode Setpoint	nviMode	26	SNVT_hvac_mode	108	1=HVAC_HEAT, 3=HVAC_COOL, 11=HVAC_ICE; Default=Cool
Compressor Select	nviCompSelect	32	SNVT_count	8	1=Comp 1/Circuit 1, 2=Comp 2/Circuit 2, 3=Comp 3, 4=Comp4
*Cool Setpoint	nviCoolSetpt	37	SNVT_temp_p	105	35 - 80°F (1.7°C to 26.7°C); Default=6.6°C
Heat Setpoint	nviHeatSetpt	41	SNVT_temp_p	105	100 to 150°F (37.8 to 65.6°C); Default=57.2°C
Ice Setpoint	nvilceSpt	42	SNVT_temp_p	105	14.9 to 35.06°F (-9.5 to 1.7°C); Default=-3.9°C
*Clear Alarm Network	nviClearAlarm	28	SNVT_switch	95	0= Inactive,1=Clear Alarm; Default=0
Current Date & Time	nviActTime	38	SNVT_time_stamp	84	
Pump Select	nviPumpSelect	45	SNVT_switch	95	0=Pump No. 1, 1=Pump No. 2; Default=0
Object Request	nviRequest	44	SNVT_obj_request	92	

^{*}Boldface denotes data points for typical minimum integration.

Network Configuration Parameters

Table 7: LonWorks Network Configuration Parameters

Network Control Property	Variable Name	Page	SCPT_Reference	SCPT Index	Description	Default Value
Capacity Limit	nciCapacityLim	22	SCPTlimitChlrCap	81	0% to 100%.	100%
Chiller Enable	nciChillerEnable	23	SCPTpwrUpState	73	0=Request Chiller OFF, 1=Request Chiller Auto (run)	0
Cool Setpoint	nciCoolSetpt	37	SCPTCoolSetpoint	75	1.6 – 26.6°C	6.6°C
Default Values	nciDefaults	38	SCPTdefltBehave	71	0=Use Default (nci) Values, 1=Use Last Valid Values	0
Heat Setpoint	nciHeatSetpt	41	SCPTHeatSetpoint	78	37.7 – 65.5°C	57.2°C
Ice Setpoint	ncilceSetpt	42	UCPTiceSetpt	_	-9.4° – 1.7°C	-3.9°C
Chiller Location	nciLocation	25	SCPTlocation	17	Any NUL terminated ASCII string up to 31 bytes.	
Maximum Send Time	nciMaxSendTime	42	SCPTmaxSendTime	49	0 - 6553.4 sec	0 sec
Minimum Send Time	nciMinSendTime	43	SCPTminSendTime	52	0 - 6553.4 sec	0 sec
*Chiller Mode	nciMode	25	SCPTHVACmode	74	1=HVAC_HEAT, 3=HVAC_COOL, 11=HVAC_ICE	3
Receive Heartbeat	nciRCvHrtBt	46	SCPTmaxRcvTime	48	0.0 - 6553.4 sec (0.1 sec)	0
Software Identification (Major Version)	nciDevMajVer	47	SCPTdevMajVer	165	0 – 255	1
Software Identification (Minor Version)	nciDevMinVer	47	SCPTdevMinVer	166	0 – 255	0

^{*}Boldface denotes data points for typical minimum integration.

^{*} Boldface denotes data/ points for typical minimum integration.

1. The first register in this comma separated list is for compressor 1, the second is for compressor 2, the third is for compressor 3 and the fourth is for compressor 4. You must look at nviCompSelect to determine which compressor's register is displayed in this network variable.

2. The first register in this comma separated list is for pump 1, the second is for pump 2. You must look at nviPumpSelect to determine which pump's register is displayed in this network variable.

Detailed Data Point Information

This section lists the information (i.e. data) that is available to the BAS via BACnet or LonWorks communication protocols. This information is used to safely operate and log the performance of the chiller. The systems integrator also uses this information when creating custom graphics.

NOTE: Data points are referred to as "properties in the BACnet protocol and "network variables" or "configuration parameters" in the LonWorks protocol. In this document, the text refers to this information as a "data point." In general, the data point is applicable to both BACnet and LonWorks. When a data point is specific to the BACnet protocol, the text refers to a "property." When a data point is specific to the LonWorks protocol, the text refers to a "network variable" or "configuration parameter."

Active Setpoint

This read only network variable indicates the current setpoint used to control the chiller. The setpoint that is used is based on the operating mode (Ice, Cool or Heat) of the chiller and any "LWT reset" functions that are in effect. See "Chiller Mode Output" and "Chiller Mode Setpoint – Network". The default mode is Cool. There are three possible setpoints. See "Cool Setpoint – Network", "Heat Setpoint – Network" and "Ice Setpoint – Network".

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	15.08 to 149.9°F -9.4 to 65.5°C	NA

BACnet

	Object Identifie	Property Identifier						
Object Type Enumeration		Instance	Property Name	Property Enumeration				
Analog Value	2	5	Present Value	85				
	Object Name							
	ActiveLvgWaterTarget							

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoActiveSetpt	Chiller	temp_p	105	two bytes

Actual Capacity

This read only network variable indicates the percent of maximum capacity the chiller is producing under the present operating conditions. At 100%, the chiller may be producing more or less than its nominal rating due to variations in operating conditions.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Percent of chiller capacity	NA	LonWorks: Fixed-Point Scalar signed long	0–100%	NA

BACnet

	Object Identifie	Property Identifier					
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration			
Analog Value	2	2	Present Value	85			
	Object Name						
	ChillerCapacity						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoActCapacity	Chiller	lev_percent	81	two bytes

Alarm Digital Output

This read only network variable indicates whether an alarm condition has occurred. This variable must be polled for alarm notification.

Measurement	Units	Data Type	Usable Range	Default Value
NA	NA	Integer	Enumerated	NA

BACnet

	Object Identifie	Property Identifier					
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration			
Binary Input	3	10	Present Value	85			
		Object Name					
	А	larmDigitalOutpo	ut				
	Property Values						
	0 = No Alarm 1 = Alarm						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoChillerstat.in_alarm	Chiller	SNVT_chlr_status	127	1 byte

Valid Range

- 0 No Alarm Condition
- 1 In Alarm

Application Version

This read-only property identifies the version of application software loaded into the unit controller.

Measurement	Units	Data Type	Usable Range	Default Value
N/A	N/A	CharacterString	N/A	N/A

BACnet

	Object Identifie	r	Property Identifier					
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration				
Device	8	Variable	Application_Software_ Version	12				
	Object Name							
	<device name="" object=""></device>							

Capacity Limit

Capacity Limit is a measure of the ratio of operating capacity to full capacity expressed as a percentage. Unless the configuration parameter nciDefaults = 1, the chiller object uses the optional configuration value of nciCapacityLim on unit controller power-up or loss of communication. Loss of communications is determined by Receive Heartbeat (nciRCvHrtBt). If Receive Heartbeat is greater than zero, then communication is lost if nviCapacityLim has not been written to prior to the Receive Heartbeat timer expiring. Each time nviCapacityLim is written, the Receive Heartbeat timer is reset. If Receive Heartbeat is set to 0, then this function is disabled and communication loss is never detected.

Refer to the appropriate Operation Manual for suitable variable values.

Measurement	ment Units Data		Usable	Default
	Type		Range	Value
Percent of maximum capacity	%	Fixed-Point Scalar signed long	0% to 100%.	100%

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nciCapacityLim (configuration)	Chiller	SNVT_lev_ percent	81	two bytes	SCPTlimitChlrCap	81

Active Capacity Limit Output

This read only network variable is a measure of the ratio of operating capacity limit to full capacity expressed in percent. This value is the lowest of all limits specified by the operator, analog Demand Limit input, or Network Capacity Limit Setpoint.

Measureme	nt Units	Data Type	Usable Range	Default Value
Percent of maximum capacity		BACnet: Real LonWorks: Fixed-Point Scalar signed long	0% to 100%	NA

BACnet

	Object Identifier			Property Identifier		
Object Type	bject Type Enumeration		Property Name	Property Enumeration		
Analog Value	2	1	Present Value	85		
		Object Name				
	A	ctiveCapacityLin	nit			

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nvoCapacityLim (output)	Chiller	lev_percent	81	two bytes	NA	NA

Capacity Limit Setpoint - Network

This read/write network variable sets the maximum capacity level of the chiller. This level may be adjusted via the BAS workstation or other network device, but cannot be adjusted above a factory-specified limit. The default is 100%.

Measurement	Units	Data Type	Usable Range	Default Value
Percent of		BACnet: Real		
maximum capacity	%	LonWorks: Fixed-Point Scalar signed long	0% to 100%	100%

BACnet

(Object Identifie	Property Identifier			
Object Type Enumeration		Instance	Property Name	Property Enumeration	
Analog Value	2	3	Present Value	85	
		Object Name			
	Netv	vorkCapacityLim	itPct		

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nviCapacityLim (input)	Chiller	lev_percent	81	two bytes	NA	NA

Chiller Enable

This mandatory LonWorks configuration variable sets the default power-up and restart mode of the chiller, unless the configuration parameter nciDefaults = 1 (See Default Values). If nciDefaults = 1, the default values are the values specified during manufacturing. Refer to the appropriate Operating Manual for suitable variable values.

Measurement	surement Units Data Type		Usable Range	Default Value
Chiller State	NA	structure	Enumerated	0 = Disable

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT_ Index
nciChillerEnable	Chiller	switch	95	two bytes	SCPTpwrUpState	73

The chiller object uses the configuration value of nciChillerEnable on power-up or loss of communication unless the configuration parameter nciDefaults =1 (See Default Values).

Valid Range

State	Value	Chiller Enable
0	unused	Request Chiller OFF
1	unused	Request Chiller Auto (run)
-1 (0xff)	unused	Invalid

Chiller Enable Output

This read only network variable indicates if operation of the chiller is disabled or enabled. If the chiller is disabled, it cannot run. If it is enabled, it is allowed to run.

Measurement	Units	Data Type	Usable Range	Default Value
Chiller State	NA	BACnet: Enumerated	See Below	0 = Disabled
Crillier State	INA	LonWorks: structure	See Below	0 - Disabled

BACnet

This read only property indicates if operation of the chiller is disabled or enabled.

	Object Identifie	Property	Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Binary Input	3	7	Present Value	85	
		Object Name			
		ChillerEnable			
Property Values					
0 = Disable (Inactive) 1 = Enable (Active)					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoChillerEnable	DaikinChiller	SNVT_switch	95	two bytes

Valid Range

State	Value	Chiller Enable
0	unused	Request Chiller OFF
1	unused	Request Chiller Auto (run)
-1 (0xff)	unused	Invalid

Chiller Enable Setpoint

This read/write network variable is used to disable or enable chiller operation over the network. The default is Disable. This point is only applicable if Control Source is set to the BAS.

Measurement	Units	Data Type	Usable Range	Default Value
Chiller State	NA	BACnet: Enumerated	See Below	0 = Disabled
Crimer State	er State NA	LonWorks: structure	See below	

BACnet

	Object Identifie	Property Identifier			
Object Type Enumeration		Instance	Property Name	Property Enumeration	
Binary Value	5	2	Present Value	85	
		Object Name			
		ChillerEnableStp)		
	Property Values				
	0 = Disable (Inactive) 1 = Enable (Active)				

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT_ Index
nviChillerEnable	Chiller	Switch	95	two bytes	NA	NA

Valid Range

State	Value	Chiller Enable
0	unused	Request Chiller OFF
1	unused	Request Chiller Auto (run)
-1(0xff)	unused	Invalid

Chiller Capacity Limited

This read only network variable indicates whether conditions may exist that prevent the chiller from reaching full capacity.

Measurement	Units	Data Type	Usable Range	Default Value
Status	NA	BACnet: Enumerated	See	NA
Status		LonWorks: Structure	Below	INA.

BACnet

	Object Identifie	Property Identifier			
Object Type	Object Type Enumeration		Property Name	Property Enumeration	
Binary Input	3	6	Present Value	85	
		Object Name			
		ChillerLimited			
	Property Values				
	0 = Not Limited (Inactive) 1 = Limited (Active)				

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size			
nvoChillerStat.Limited	Chiller	chlr_status	127	3 bytes			
Property Values (Limited)							
0 = Not Limited (Inactive) 1 = Limited (Active)							

Structure

Chiller Local/Network

This read only network variable indicates whether the chiller is in local control or allowed to be controlled remotely over the network. The value can only be changed via the unit controller OITS panel.

Measurement	Units	Data Type	Usable Range	Default Value
Mode	NA	BACnet: Enumerated	See	NA
Mode	INA	LonWorks: Structure	Below	INA

BACnet

	Object Identifie	Property Identifier					
Object Type	oject Type Enumeration Instance				Property Name	Property Enumeration	
Binary Input	3	3	Present Value	85			
Object Name							
	C	hillerLocalNetwo	rk				
Property Values							
0 = Network 1= Local							

LonWorks

The LonWorks equivalent of this data point is part of the Chiller Status network variable.

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	Data Type	
nvoChillerStat.local	Chiller	chlr_status	127	3 bytes	Structure	
Property Values (local)						
	0 = Remote 1= Local					

Structure

```
typedef struct {
    chiller_t
                  chlr_run_mode;
    hvac_t chlr_op_mode;
    struct{
           unsigned in_alarm :1; // offset 0
           unsigned run_enabled :1; // offset 1
           unsigned local :1;
                                    // offset 2
           unsigned limited :1;
                                    // offset 3
           unsigned chw_flow :1; // offset 4
           unsigned condw_flow :1; // offset 5
    /* The last two bits (offset 6) are not defined */
    } chlr_state;
} SNVT_chlr_status;
```

Chiller Location

This optional configuration network parameter provides a description of the location.

Measurement	Units	Data Type	Usable Range	Default Value
NA	NA	Structure	Any NUL terminated up to 31 bytes	ASCII string of zeros + NUL

BACnet

	Object Identifie	Property Identifier					
Object Type Enumeration		Instance	Property Name	Property Enumeration			
Device	8	Variable	Location	58			
	Object Name						
	Location						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nciLocation	Chiller	str_asc	36	31 bytes max	SCPT_location	17

Chiller Mode

Chiller Mode Setpoint – Unless the configuration parameter nciDefaults =1 Network (nviMode) is set to match the configuration value (nciMode) upon unit controller power-up or loss of communication.

Loss of communications is determined by Receive Heartbeat (nciRCvHrtBt). If Receive Heartbeat is greater than zero, then communication is lost if nviMode is not written to prior to expiration of the Receive Heartbeat timer. Each time nviMode is written, the Receive Heartbeat timer is reset. If Receive Heartbeat is set to 0, then this function is disabled and communication loss is never detected.

Measurement	Units	Data Type	Usable Range	Default Value
HVAC Mode	NA	Unsigned Integer	Enumerated	3 = Cool

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT Reference	SCPT Index	
nciMode	Chiller	hvac_mode	108	one byte	SCPT_ HVACmode	74	
		Prope	rty Valu	es			
	1 = Heat Mode 3 = Cool Mode 11 = Ice Mode						

Chiller Mode Output

This read only network variable indicates the current operating mode of the chiller.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Unsigned Integer	See	
HVAC Mode	NA	LonWorks: Fixed Point Scalar - unsigned long	Below	NA

BACnet

	Object Identifie	Property Identifier					
Object Type Enumeration Inst		Instance	Property Name	Property Enumeration			
Multi-state Value			Present Value	85			
Object Name							
		ActiveMode					
Property Values							
1 = ICE 2 = COOL 3 = HEAT							

LonWorks

The LonWorks equivalent of this data point is part of the Chiller Status network variable.

LonWorks Name Profile		SNVT Type	SNVT Index	SNVT Size	
nvoChillerStat	Chiller	chlr_status	127	3 bytes	

Chiller Mode Setpoint - Network

This read/write network variable is used to change the operating mode of the chiller. The default is Cool.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Unsigned Integer	See	
HVAC Mode	NA	LonWorks: Fixed Point Scalar - unsigned long	Below	Cool

BACnet

	Object Identifier			Identifier	
Object Type Type Enumeration Instance			Property Name	Property Enumeration	
Multi-state Value	19	3	Present Value	85	
Object Name					
	ChillerOperationMode				
Property Values					
1 = ICE 2 = COOL 3 = HEAT					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT Reference	SCPT Index
nviMode	Chiller	hvac_mode	108	one byte	NA	NA

hvac_mode

All enumerations are not used for this data point. Only the following enumerations are used. If a value other than those listed below is written, the LonWorks communication module writes HVAC_COOL to the unit controller.

Value	Identifier	Notes
1	HVAC_HEAT	Heating only
3	HVAC_COOL	Cooling only
11	HVAC_ICE	Ice-making mode

Chiller Model

This BACnet read-only network variable indicates the model of the chiller.

BACnet

Object Identifier			Property	Identifier	
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Device	8	Variable	Model Name	70	
Object Name					
	<device name="" object=""></device>				

Chiller ON-OFF

This network variable indicates the current state of the chiller. The OFF state is represented by state = FALSE and value = 0. The other discrete states are represented by state = TRUE and value > 0.

Measurement	Units	Data Type	Valid Range	Default Value
Chiller State NA		BACnet: Enumerated	See	NA
Crimer State	INA	LonWorks: structure	Below	INA

BACnet

Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Binary Input	3	4	Present Value	85	
Object Name					
	UnitOFF				
Property Values					
	0 = OFF 1 = Run Allowed				

LonWorks

The LonWorks equivalent of this data point is part of the Chiller Status network variable output.

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoOnOff	Chiller	switch	95	two bytes

Chiller Status

This read only network variable indicates the unit status of the chiller.

Measurement	Units	Data Type	Usable Range	Default Value
State	NA	Unsigned Integer	See Below	NA

BACnet

	Object Identifier			Identifier	
Object Type Type Enumeration In		Instance	Property Name	Property Enumeration	
Multi-state Value	19	1	Present Value	85	
	Object Name				
	UnitStatus				
Property Values					
1 = OFF 2 = Start 3 = Run 4 = Pre-shutdown 5 = Service					

LonWorks

Chiller Status includes the Run Mode. The Run Mode is defined as OFF, Start, Run, Pre-shutdown and Service. This network variable indicates the main running mode and states of the chiller. The Run Mode provides the primary running states of a chiller and the state provides an indicator of other conditions present (see Structure section below for details.)

Measurement	Units	Data Type	Usable Range	Default Value
Chiller Status	NA	Structure	See Below	NA
LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoChillerstat	Chiller	chlr_status	127	3 bytes

Chiller Run Mode (chiller_t [25])

All enumerations are not used for this data point. Only the following enumerations are used.

Value	Identifier	Notes
0	CHLR_OFF	Chiller off
1	CHLR_START	Chiller in start mode
2	CHLR_RUN	Chiller in run mode
3	CHLR_PRESHUTDN	Chiller in pre shutdown mode
4	CHLR_SERVICE	Chiller in service mode

Chiller Operating Mode (hvac_t [14])

All enumerations are not used for this data point. Only the following enumerations are used.

Value	Identifier	Notes
1	HVAC_HEAT	Heating only
3	HVAC_COOL	Cooling only
11	HVAC_ICE	Ice-making mode

Chiller State

In Alarm	1= Chiller is in an alarm condition. This condition may also be observed in the Node Object's status.	
_	0= No alarm condition.	
	1= Chiller starts if operating conditions are satisfied.	
Run_Enabled	0= Chiller not permitted to run. Chiller may be in local mode or placed in an disabled condition and can't be run via a remote request.	
Local	1= Chiller has been placed in a locally controlled mode of operation and cannot respond to remote requests.	
Local	0= Chiller is not in local mode and network visible values maybe changed or monitored remotely.	
Limited	1= Chiller conditions may exist that prevents the Chiller from reaching setpoint.	
	0= Chiller is not restricted from attempting to reach setpoint.	
CLIM flow	1= Chiller Water flow is detected.	
CHW_flow	0= No chilled water flow present.	
CONDW flow	1= Condenser Water flow has been detected	
CONDW_flow	0= No condenser water flow is observed.	

Clear Alarm Network

This read/write network variable clears all active alarms. The following alarms cannot be cleared over the network. They can only be cleared via the unit controller OITS panel:

- Low Evaporator Pressure
- · High Condenser Pressure
- · Evaporator Freeze Protect
- · Condenser Freeze Protect
- · High Motor Temperature
- · High Motor Gap Temperature
- · Mechanical High Pressure

Measurement	Units	Data Type	Usable Range	Default Value
NA	NA	Integer	Enumerated	0=Normal

BACnet

Object Identifier			Property	Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Binary Value	5	8	Present Value	85		
Object Name						
ClearAlarm						
Property Values						
0 = Normal 1 = Clear Alarm						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nviClearAlarm	DaikinChiller	SNVT_switch	95	two bytes

Valid Range

State	Value	Clear Alarm
0	unused	No Alarm
1	unused	Clear Alarm

Compressor Average Current

This read only network variable indicates the average current of the compressor motor. BACnet uses a separate variable for each compressor. LonWorks uses the Compressor Select variable for compressor selection.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Electric Current Ampere		LonWorks: Fixed Point Scalar signed long	0 – 2000	NA

BACnet

Circuit #1, Compressor #1

	Object Identifie	Property Identifier					
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration			
Analog Input	0	9	Present Value	85			
Object Name							
	C1Comp1Current						

Circuit #1, Compressor #2

Object Identifier			Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	10	Present Value	85		
Object Name						
	C1Comp2Current					

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCurrent	DaikinChiller	SNVT_amp_ac	1	two bytes

Compressor Average Voltage

This read only network variable indicates the average voltage of the compressor motor. There is a separate output for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Electric Voltage VAC		LonWorks: Fixed Point Scalar unsigned long	0 – 10,000	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	27	Present Value	85		
Object Name						
	C1Comp1Voltage					

Circuit #1, Compressor #2

Object Identifier			Property	Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	28	Present Value	85		
Object Name						
	C1Comp2Voltage					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoVoltage	DaikinChiller	SNVT_volt_ac	138	two bytes

Compressor Discharge Refrigerant Pressure

This read only network variable indicates the current refrigerant pressure discharged from the compressor. There is a separate output for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
Droouro		BACnet: Real	0 – 410.0217	
Pressure (gauge)	psi / kPa	LonWorks: Fixed-Point Scalar signed long	PSI	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property	Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	81	Present Value	85		
	Object Name					
	C1Comp1DischRefPressure					

Circuit #1, Compressor #2

Object Identifier			Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	82	Present Value	85		
	Object Name					
	C1Co	mp2DischRefPre	essure			

LonWorks Name Profile		SNVT Type	SNVT Index	SNVT Size
nvoCmpDisRefPres	DaikinChiller	SNVT_press	30	two bytes

^{*}NOTE: The units for SNVT_press#US is inches of water column. To display units in psi the format must be changed to SNVT_press#US_psi.

Compressor Discharge Refrigerant Temperature

This read only network variable indicates the current refrigerant temperature discharged from the compressor. For BACnet, there is a separate variable for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	-40°–257°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-40°–125°C	NA

BACnet

Circuit #1, Compressor #1

	Object Identifie	Property	Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	63	Present Value	85		
	Object Name					
	C1Comp1DischargeTemp					

Circuit #1, Compressor #2

	Object Identifie	Property	Identifier			
Object Type	ect Type Type Enumeration Instance		Property Name	Property Enumeration		
Analog Input	0	64	Present Value	85		
	Object Name					
	C1C	omp2Discharge ⁻	Гетр			

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCompDisTemp	DaikinChiller	SNVT_temp_p	105	two bytes

Compressor Discharge Saturated Refrigerant Temperature

This read only network variable indicates the current saturated refrigerant temperature discharged from the compressor. There is a separate output for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	-15°–185°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-26.2°–85°C	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property	Property Identifier	
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Input	0	26	Present Value	85	
	Object Name				
	C1Comp1DischSatRefTemp				

Circuit #1, Compressor #2

Object Identifier			Property	Identifier	
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Input	0	27	Present Value	85	
	Object Name				
	C1Comp2DischSatRefTemp				

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCmpDisSRefTmp	DaikinChiller	SNVT_temp_p	105	two bytes

Compressor Percent RLA

This read only network variable indicates the current percent RLA for the compressor motor of the compressor. BACnet uses a separate variable for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Percent RLA	Percent RLA	LonWorks: Fixed-Point Scalar signed long	0 – 150%	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property	Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Value	0	8	Present Value	85		
	Object Name					
	C1Comp1MotorCurrentPercent					

Circuit #1, Compressor #2

Object Identifier			Property	Identifier		
Object Type	ect Type Type Enumeration Instance		Property Name	Property Enumeration		
Analog Value	0	9	Present Value	85		
	Object Name					
	C1Comp2MotorCurrentPercent					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCompPercRLA	DaikinChiller	SNVT_lev_percent	81	two bytes

Compressor Power

This read only network variable indicates the current power of the compressor motor. BACnet uses a separate variable for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
Power	kiloWatts	BACnet: Real	0 – 600	NA
Power	Kilovvalls	LonWorks: Unsigned Long	0 - 600	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property	Identifier	
Object Type	Type Instance		Property Name	Property Enumeration	
Analog Input	0	45	Present Value	85	
Object Name					
	C1Comp1Kilowatts				

Circuit #1, Compressor #2

Object Identifier			Property	Identifier	
Object Type Enumeration Instance		Property Name	Property Enumeration		
Analog Input	0	46	Present Value	85	
	Object Name				
	C1Comp2Kilowatts				

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoKilowattts	DaikinChiller	SNVT_power_kilo	28	2 bytes

Compressor Run Hours

This read only network variable indicates the number of hours that the compressor motor has been turned on. BACnet uses a separate variable for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Event Count	Hours	LonWorks: Float Type unsigned long	0 – 999,999	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property	Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Value	2	74	Present Value	85		
	Object Name					
	C1Comp1Hours					

Circuit #1, Compressor #2

Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Value	2	75	Present Value	85	
	Object Name				
	C1Comp2Hours				

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCompHrs	DaikinChiller	SNVT_count_f	51	two bytes

Compressor Select

This LonWorks-only network variable selects the compressor/circuit (number 1, 2) that is interrogated. The unit controller returns the information for the selected compressor/circuit. You must first select a compressor/circuit prior to interrogation. This variable selects a compressor/circuit for the following variables:

Name	Page
Compressor Average Current	28
Compressor Discharge Refrigerant Pressure	29
Compressor Discharge Refrigerant Temperature	30
Compressor Discharge Saturated Refrigerant Temperature	30
Compressor Percent RLA	31
Compressor Power	31
Compressor Run Hours	32
Compressor Starts	33
Compressor Suction Refrigerant Temperature	34
Compressor Average Voltage	29
Compressor Suction Refrigerant Pressure	34
Compressor Suction Saturated Refrigerant Temperature	33

Measurement	Units	Data Type	Usable Range	Default Value
Event Count	NA	POINI SCAIAI-	1=Comp/Circuit No. 1 2=Comp/Circuit No. 2	1=Comp No. 1

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nviCompSelect	DaikinChiller	SNVT_count	8	two bytes

Compressor Starts

This read only network variable indicates the number of times the compressor motor has been started. BACnet uses a separate variable for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Event Count	NA	LonWorks: Fixed Point Scalar - unsigned long	0 – 65,535	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Value	2	92	Present Value	85	
	Object Name				
	C1Comp1Starts				

Circuit #1, Compressor #2

Object Identifier			Property Identifier	
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration
Analog Value	2	93	Present Value	85
Object Name				
C1Comp2Starts				

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCompStarts	DaikinChiller	SNVT_count	8	two bytes

Compressor Suction Saturated Refrigerant Temperature

This read only network variable indicates the current saturated refrigerant temperature discharged from the compressor. There is a separate output for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	-15.16°–104°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-15.16 -104 F -26.2°- 40°C	NA

BACnet

Circuit #1, Compressor #1

Object Identifier			Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Value	2	50	Present Value	85		
	Object Name					
	C1Comp1SuctSatTemp					

Circuit #1, Compressor #2

Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Value	2	51	Present Value	85	
	Object Name				
	C1Comp2SuctSatTemp				

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoSatSuctRefTmp	DaikinChiller	SNVT_temp_p	105	two bytes

Compressor Suction Refrigerant Pressure

This read only network variable indicates the current refrigerant pressure entering the compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
Pressure (gauge)	psi / kPa	BACnet: Real LonWorks: Fixed- Point Scalar signed long	0 – 131.9988 psi 0 – 910.1 kPa	NA

BACnet

Circuit #1, Compressor #1

	Object Identifie	Property Identifier				
Object Type Enumeration		Instance	Property Name	Property Enumeration		
Analog Input	0	123	Present Value	85		
	Object Name					
C1Comp1SuctionPressure						

Circuit #1, Compressor #2

	Object Identifie	Property Identifier				
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	124	Present Value	85		
	Object Name					
	C1Comp2SuctionPressure					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoSuctRefPress	DaikinChiller	SNVT_press	30	two bytes

*NOTE: The units for SNVT_press#US is inches of water column. To display units in psi the format must be changed to SNVT_press#US_psi.

Compressor Suction Refrigerant Temperature

This read only network variable indicates the current refrigerant temperature entering the compressor. There is a separate output for each compressor. LonWorks uses the Compressor Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	-40°–257°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-40°–125°C	NA

BACnet

Circuit #1, Compressor #1

	Object Identifie	Property Identifier				
Object Type Enumeration		Instance	Property Name	Property Enumeration		
Analog Input	0	105	Present Value	85		
	Object Name					
	C1Comp1SuctionTemp					

Circuit #1, Compressor #2

	Object Identifie	r	Property	Identifier		
Object Type Enumeration		Instance	Property Name	Property Enumeration		
Analog Input	0	106	Present Value	85		
	C1Comp2SuctionTemp					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoSuctionTemp	DaikinChiller	SNVT_temp_p	105	two bytes

Condenser Entering Water Temperature

This read only network variable indicates the current temperature of the water entering the condenser.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	-40 to 257°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-40 to 125°C	NA

BACnet

	Object Identifie	Property Identifier				
Object Type Enumeration		Instance	Property Name	Property Enumeration		
Analog Input	0	3	Present Value	85		
	Object Name					
EntCondWaterTemp						

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoEntCndWTemp	Chiller	temp_p	105	two bytes

Condenser Flow Switch Status

This read only network variable indicates the status of the water flowing through the condenser.

Measurement	Units	Data Type	Usable Range	Default Value
Flow State	NA	BACnet: Enumerated	See Below	NA
1 low State	INA	LonWorks: Structure	See Below	INA

BACnet

Object Identifier			Property	Identifier		
Object Type Type Enumeration Instance			Property Name	Property Enumeration		
Binary Input	3	1	Present Value	85		
Object Name						
	CondWaterFlowStatus					
Property Values						
0 = No Flow (Inactive) 1 = Flow (Active)						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size		
nvoChillerStat. cond_flow	Chiller	chlr_status	127	3 bytes		
Property Values (Limited)						
0 = No Flow 1 = Flow						

Structure

Condenser Leaving Water Temperature

This read only network variable indicates the current temperature of the water leaving the condenser.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	-40 to 257°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-40 to 125°C	NA

BACnet

Object Identifier			Property	Identifier			
Object Type Enumeration Instance			Property Name	Property Enumeration			
Analog Input	0	4	Present Value	85			
Object Name							
	LvgCondWaterTemp						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoLvgCndWTemp	Chiller	temp_p	105	two bytes

Condenser Pump Run Hours

This read only network variable indicates the number of hours that the pump motor has been turned on (see Pump Select).

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Event Count	NA	LonWorks: Fixed-Point Scalar signed long	0 – 999,999	NA

BACnet

Pump #1

Object Identifier			Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Value	2	110	Present Value	85		
Object Name						
	CondPump1RunHours					

Pump #2

	Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Value	2	111	Present Value	85		
Object Name						
	CondPump2RunHours					

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCondPumpHrs	DaikinChiller	SNVT_count_f	51	two bytes

Condenser Refrigerant Pressure

This read only network variable indicates the current condenser refrigerant pressure.

Measurement	Units	Data Type	Usable Range	Default Value
Pressure (gauge)	psi / kPa	BACnet: Real LonWorks: Fixed-Point Scalar signed long	0 – 410.0297 psi -140 to 2827 kPa	NA

BACnet

	Object Identifie	Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Input	0	99	Present Value	85	
Object Name					
Cond1RefPressure					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCondRefPres	DaikinChiller	SNVT_press	30	two bytes

*NOTE: The units for SNVT_press#US is inches of water column. To display units in psi the format must be changed to SNVT_press#US_psi.

Condenser Saturated Refrigerant Temperature

This read only network variable indicates the current saturated refrigerant temperature of the condenser.

Measurement	Units	Data Type	Usable Range	Default Value
Temperature	°F/°C	BACnet: Real LonWorks: Fixed Point Scalar signed long	-15.16°–185°F -26.2°–85°C	NA

BACnet

Object Identifier			tifier Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Value	2	44	Present Value	85	
Object Name					
Cond1SatRefTemp					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCondSatRefTmp	DaikinChiller	SNVT_temp_p	30	two bytes

Condenser Water Flow Rate

This read only network variable indicates the rate of water flow through the condenser.

Measurement	Units	Data Type	Usable Range	Default Value
Flow Volume	BACnet: GPM or L/s LonWorks: CFM OR L/S	BACnet: Real LonWorks: Fixed Point Scalar unsigned long	BACnet: 0 - 10,001.55 GPM 0 - 631 L/S LonWorks: 0 to 1337.01 CFM (0 to 631 L/s)	NA

BACnet

	Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	147	Present Value	85		
	Co	ondWaterFlowRa	ate			

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCondFlowRate	DaikinChiller	SNVT_flow	15	two bytes

Condenser Pump Status

This read only network variable indicates if the pump has been commanded ON or OFF. See Pump Select.

Measurement	Units	Data Type	Usable Range	Default Value
Flow State	NA	BACnet: Enumerated	See Below	NA
1 low State	INA	LonWorks: Structure	See Below	

BACnet

Pump #1

	Object Identifie	Property Identifier				
Object Type Enumeration		Instance	Property Name	Property Enumeration		
Binary Input	3	11	Present Value	85		
		Object Name				
	(CondPump1State	е			
	Property Values					
	0 = Pump OFF Request 1 = Pump ON Request					

Pump #2

	Object Identifie	Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Binary Input	3	12	Present Value	85	
		Object Name			
	(CondPump2State	е		
	ı	Property Values	3		
0 = Pump OFF Request 1 = Pump ON Request					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoCndWPump	DaikinChiller	SNVT_switch	95	two bytes

Valid Range

State	Value	Pump Status
0	unused	Pump Commanded OFF
1	unused	Pump Commanded ON

Cool Setpoint - Network

This read/write network variable is used to change the Cooling setpoint from the network. It sets the temperature of the Leaving Chilled Water when the chiller is operating in the Cooling Mode. It cannot be set below the local Cool Setpoint.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	35° – 80°F 1.7° – 26.7°C	44°F/6.6°C

BACnet

	Object Identifie	Property Identifier				
Object Type	Enumeration		Property Name	Property Enumeration		
Analog Value			Present Value	85		
	Object Name NetworkCoolTempSetpoint					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nviCoolSetpt	Chiller	temp_p	105	two bytes	NA	NA

Cool Setpoint

Unless the configuration parameter nciDefaults =1, the Cool Setpoint Network variable (nviCoolSetpt) is set to this configuration value (nciCoolSetpt) upon unit controller power-up or loss of communication. If nciDefaults = 1, then nviCoolSetpt retains the last valid value at the time power is restored. Refer to the Magnitude Chiller Unit Controller Operation Manual for suitable variable values. Loss of communications is determined by Receive Heartbeat (nciRCvHrtBt). If Receive Heartbeat is greater than zero, then communications is lost when nviCoolSetpt is not written to again prior to the expiration of the Receive Heartbeat timer. Each time nviCoolSetpt is written, the Receive Heartbeat timer is reset. If Receive Heartbeat is set to 0, then this function is disabled and communication loss is never detected.

Measurement	Units	Data Type	Usable Range	Default Value
Temperature	°F/°C	Fixed Point Scalar signed long	LonWorks: 1.6° – 26.6°C	6.6°C

LonWorks Name	Profile		SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nciCoolSetpt	Chiller	temp_p	105	two bytes	SCPT_ CoolSetpoint	75

Current Date & Time

This network variable is used to synchronize the chiller's internal time clock with the BAS.

Measurement	Units	Data Type	Valid Range	Default Value
Alarm Timestamp	NA	Structure	See Below	NA

BACnet

No equivalent value.

BACnet should use DM-TS-B and DM-UTC-B services.

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nviActTime	DaikinChiller	SNVT time stamp	84	7 bytes

Default Values

This configuration network parameter determines which set of values is used on power up and communication failure. The choice is the stated default value (nci) or a last valid value. This is used for the following configuration network variables:

- · Chiller Enable
- · Capacity Limit
- · Cool Setpoint
- · Heat Setpoint
- Mode

Measurement	Units	Data Type	Usable Range	Default Value
Chiller State	NA	structure	Enumerated	0 = Use Default Values

LonWorks

LonWorks	Profile	SNVT	SNVT	SNVT	SCPT_	SCPT
Name		Type	Index	Size	Reference	Index
nciDefaults	Chiller	switch	95	two bytes	SCPT_ DefaultBehavior	71

Valid Range

State	Value	Default Values
0	unused	Use Default (nci) Values
1	unused	Use Last Valid Values

Evaporator Entering Water Temperature

This read only network variable indicates the temperature of the water entering the evaporator.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-40 to 257°F -40 to 125°C	NA

BACnet

	Object Identifie	Property Identifier					
Object Type Type Enumeration		Instance	Property Name	Property Enumeration			
Analog Input	Analog Input 0		Present Value	85			
Object Name							
	EntEvapWaterTemp						

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoEntChWTemp	Chiller	temp_p	105	two bytes

Evaporator Flow Switch Status

This read only network indicates the status of the water flowing through the evaporator.

Measurement	Units	Data Type	Usable Range	Default Value
Flow State	NA	BACnet: Enumerated	See Below	NA
1 low State	INA	LonWorks: Structure	See Below	INA

BACnet

	Object Identifie	Property Identifier					
Object Type Enumeration		ject Type Type Enumeration Instance		Property Enumeration			
Binary Input	3	2	Present Value	85			
Object Name							
	EvapWaterFlowStatus						
Property Values							
0 = No Flow (Inactive) 1 = Flow (Active)							

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size		
nvoChillerStat.chw_flow	Chiller	chlr_status	127	3 bytes		
Property Values (Limited)						
0 = No Flow 1 = Flow						

Structure

Evaporator Leaving Water Temperature

This read only network variable indicates the current temperature of the water leaving the evaporator.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	-40 to 257°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-40 to 125°C	NA

BACnet

	Object Identifie	Property Identifier				
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration		
Analog Input	0	2	Present Value	85		
Object Name						
	LvgEvapWaterTempUnit					

LonWorks

LonWorks Name Profile		SNVT Type	SNVT Index	SNVT Size
nvoLvgChWTemp	Chiller	temp_p	105	two bytes

Evaporator Pump Run Hours

This read only network variable indicates the number of hours that the pump motor has been turned on. There is a separate output for each pump. LonWorks uses the Pump Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Event Count	NA	LonWorks: Fixed-Point unsigned long	0 – 999,999	NA

BACnet

Pump #1

	Object Identifie	Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Value	2	112	Present Value	85	
Object Name					
	EvapPump1OperHours				

Pump #2

	Object Identifie	Property Identifier			
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Value	2	113	Present Value	85	
	Object Name				
	EvapPump2OperHours				

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoEvapPumpHrs	DaikinChiller	SNVT_count_f	51	two bytes

Evaporator Pump Status

This read only network variable indicates if the pump has been commanded ON or OFF. LonWorks uses the Pump Select variable.

Measurement	Units	Data Type	Usable Range	Default Value
Flow State	NA	BACnet: Enumerated	See Below	NA
Flow State	INA	LonWorks: Structure	See Below	INA

BACnet

Pump #1

	Object Identifie	Property Identifier		
Object Type Enumeration		Instance	Property Name	Property Enumeration
Binary Input	3	8	Present Value	85
		Object Name		
	E	EvapPump1State	Э	
	ı	Property Values	3	
0 = Pump OFF Request 1 = Pump ON Request				

Pump #2

Object Identifier			Property	Identifier	
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Binary Input	3	9	Present Value	85	
		Object Name			
	E	EvapPump2State	Э		
	Property Values				
	0 = Pump OFF Request 1 = Pump ON Request				

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoChWPump	DaikinChiller	SNVT switch	95	two bytes

Valid Range

State	Value	Pump Status
0	unused	Pump OFF Request
1	unused	Pump ON Request

Evaporator Water Flow Rate

This read only network variable indicates the rate of water flow through the evaporator.

Measurement	Units	Data Type	Usable Range	Default Value
Flow Volume	BACnet: GPM or L/s LonWorks: CFM OR L/S	BACnet: Real LonWorks: Fixed Point Scalar unsigned long	BACnet: 0 - 10,001.55 GPM 0 - 631 L/S LonWorks: 0 to 1337.01 CFM 0 to 631 L/S	NA

BACnet

	Object Identifie	Property	Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Input	0	148	Present Value	85	
	EvapWaterFlowRate				

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoEvapFlowRate	DaikinChiller	SNVT flow	15	two bytes

File Directory Address

This read only network variable reports the starting address of the configuration-file directory on a Neuron hosted device. It is used when configuration properties are implemented within configuration files accessed by ANSI/EIA/CEA-709.1- Read Memory and Write Memory Network-Management Messages.

Measurement	Units	Data Type	Usable Range	Default Value
Neuron Chip Address	16-bit address value	LonWorks: unsigned long	16,38464,767	NA

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoFileDirectory	Node	SNVT_ address	114	two bytes

Heat Recovery Entering Water Temperature

This read only network variable indicates the temperature of the water entering the heat recovery section of the condenser.

Measurement	Units	Data Type	Usable Range	Default Value
	ture °F/°C L	BACnet: Real	40 to 257°F	
Temperature		LonWorks: Fixed Point Scalar signed long	-40 to 257°F -40 to 125°C	NA

BACnet

	Object Identifie	Property Identifier			
Object Type Enumeration		Instance	Property Name	Property Enumeration	
Analog Input	Analog Input 0		Present Value	85	
Object Name HeatRecEntWaterTemp					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoEntHRWTemp	DaikinChiller	SNVT_temp_p	105	two bytes

Heat Recovery Leaving Water Temperature

This read only network variable indicates the current temperature of the water leaving the heat recovery section of the condenser.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real	40° 257°F	
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-40° – 257°F -40° – 125°C	NA

BACnet

	Object Identifie	Property Identifier				
Object Type Enumerati		Instance	Property Name	Property Enumeration		
Analog Input	0	150	Present Value	85		
	Object Name					
HeatRecLvgWaterTemp						

LonWorks

LonWorks Name Profile		SNVT Type	SNVT Index	SNVT Size
nvoLvgHRWTemp	DaikinChiller	SNVT_temp_p	105	two bytes

Heat Setpoint - Network

This read/write network variable is used to change the Heating setpoint from the network. It sets the temperature of the Leaving Condenser Water when the chiller is operating in the Heating Mode. The value is ignored if the unit controller is in cooling mode.

Measurement	Units	Data Type	Usable Range	Default Value
		BACnet: Real		
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	100.04 to 150.08°F 37.8-65.6°C	134.96°F/ 57.2°C

BACnet

	Object Identifie	Property Identifier				
Object Type Type Enumeration		Instance	Property Name	Property Enumeration		
Analog Value	Analog Value 2		Present Value	85		
	Object Name					
NetworkHeatTempSetpoint						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nviHeatSetpt	Chiller	SNVT_ temp_p	105	two bytes	NA	NA

Heat Setpoint

Unless the configuration parameter nciDefaults =1, the Heat Setpoint Network variable (nviHeatSetpt) is set to this configuration value (nciHeatSetpt) upon unit controller power-up or loss of communication. If nciDefaults = 1, nviHeatSetpt retains the last valid value at the time power is restored. Refer to the Magnitude Unit Controller Operation Manual for suitable variable values. Loss of communications is determined by Receive Heartbeat (nciRCvHrtBt). If Receive Heartbeat is greater than zero, then communications is lost when nviCoolSetpt is not written to prior to the expiration of the Receive Heartbeat timer. The Receive Heartbeat is set to 0, then this function is disabled and communication loss is never detected.

Measurement Units		Data Type	Usable Range	Default Value
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	37.7 – 65.5°C	57.2°C

LONWORKS

LonWorks	Profile	SNVT	SNVT	SNVT	SCPT_	SCPT
Name		Type	Index	Size	Reference	Index
nciHeatSetpt	Chiller	SNVT_ temp_p	105	two bytes	SCPT_ HeatSetpoint	78

Ice Setpoint - Network

This read/write network variable is used to change the Ice setpoint from the network. It sets the temperature of the Leaving Chilled Water when the chiller is operating in the Ice Mode.

Measurement	Units	Data Type	Usable Range	Default Value
Temperature °F		BACnet: Real LonWorks:	14.9 to 35.06°F	24.98°F/
	°F/°C	Fixed Point Scalar signed long	-9.5 to 1.7°C	-3.9°C

BACnet

	Object Identifie	Property Identifier					
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration			
Analog Value	2	7	Present Value	85			
Object Name							
	NetworkIceTempSetpoint NetworkIceTempSetpoint						

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvilceSpt	DaikinChiller	SNVT_temp_p	105	two bytes

Ice Setpoint

Unless the configuration parameter nciDefaults =1, the Ice Setpoint Network variable (nviIceSpt) is set to this configuration value (nciIceSetpt) upon unit controller power-up or loss of communication. If nciDefaults = 1, nviIceSpt retains the last valid value at the time power is restored. Refer to the Magnitude Chiller Unit Controller Operation Manual for suitable variable values. Loss of communications is determined by Receive Heartbeat (nciRCvHrtBt). If Receive Heartbeat is greater than zero, then communication is lost if nviIceSpt has not been written to prior to the expiration of the Receive Heartbeat timer. The Receive Heartbeat timer is reset each time nviIceSpt is written. If Receive Heartbeat is set to 0, then this function is disabled and communication loss is never detected.

Measurement	Units	Data Type	Usable Range	Default Value
Temperature	°F/°C	LonWorks: Fixed Point Scalar signed long	-9.4° – 1.7°C	-3.9°C

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
ncilceSetpt	DaikinChiller	SNVT_ temp_p	105	two bytes	UCPTiceSetpt	N/A

Maximum Send Time

This configuration network parameter controls the maximum period of time that expires before the following network variables are transmitted.

- nvoActCapacity
- nvoActiveSetpt
- nvoChillerstat
- nvoCompPercRLA
- nvoCurrent
- nvoEntCndWTemp
- nvoEntChWTemp
- nvoLvgChWTemp
- nvoLvgCndWTemp

Measurement	Units	Data Type	Usable Range	Default Value
Elapsed Time	seconds	BACnet: Unsigned Integer LonWorks: Fixed Point Scalar - unsigned long	0 - 6553.4 sec	0 (no automatic update)

LonWorks Name	Profile		SNVT Index		SCPT_ Reference	SCPT Index
nciMaxSendTime	Chiller	SNVT_ time_sec	107	two bytes	SCPT_ maxSendTime	49

Minimum Send Time

This configuration network parameter controls the minimum period of time that expires before objects can be retransmitted. The variables that use Minimum Send Time are:

- nvoActCapacity
- nvoCapacityLim
- nvoCmpDisRefPres
- nvoCmpDisSRefTmp
- nvoCompDisTemp
- nvoCompPercRLA
- nvoCondFlowRate
- nvoCondRefPres
- nvoCondSatRefTmp
- nvoCurrent
- nvoEntChWTemp
- nvoEntCndWTemp
- nvoEntHRWTemp
- nvoEvapFlowRate
- nvoKiloWatts
- nvoLvgChWTemp
- nvoLvgCndWTemp
- nvoLvgHRWTemp
- nvoOutdoorTemp
- nvoSatSuctRefTmp
- nvoSuctionTemp
- nvoSuctRefPress
- nvoVoltage

Measurement	Units	Data Type	Usable Range	Default Value
Elapsed Time	seconds	BACnet: Unsigned Integer LonWorks: Fixed Point Scalar - unsigned long	0 - 6553.4 sec	0 (no automatic update)

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nciMinSendTime	Chiller	time_sec	107	two bytes	SCPT_ minSendTime	52

Object Status

This network variable reports the status for any functional block on a device. It is also used to report the status of the entire device and all functional blocks on the device. A status update consists of an object ID (the object_id field) and multiple status fields. The object ID is the functional block index as described under nviRequest. If the object ID is zero, the status of the device itself and all functional blocks on the device is reported. The status fields are one-bit bitfields. The only supported status fields are the report_mask, invalid_id, and invalid_request fields; all other status fields are not supported.

- invalid_request Set to one if an unsupported request code is received on the nviRequest input network variable.
- invalid_id Set to one if a request is received for a functional block index that is not defined in the device. No further checking of the request code is required when set to one.
- report_mask Set to one if an RQ_REPORT_MASK request is received by the nviRequest input network variable, and the nvoStatus network variable is set to contain the status mask. The status mask is an nvoStatus value that describes the status bits that are supported beyond the three mandatory status bits. The status mask consists of all fields in the nvoStatus network variable, with the exception of the report_mask, invalid_id, and invalid_request fields. A one bit in the mask means that the functional block may set the corresponding bit in the nvoStatus network variable when the condition defined for that bit occurs. A zero bit means that the functional block may never set the bit.

Measurement	Units	Data Type	Valid Range	Default Value
Object Status	N/A	Structure	N/A	N/A

BACnet

No BACnet equivalent

LonWorks Name	Profile	Uses Heartbeat	SNVT Type	SNVT Number
nvoStatus	Node Object	No	SNVT_obj_ request	92

Field Definitions

Field	Units	Valid Range	Notes
object_id	unsigned long	0 to 65,535	2 bytes
invalid_id	unsigned	0, 1	1 bit (offset 0)
invalid_request	unsigned	0, 1	1 bit (offset 1)
Disabled	unsigned	0, 1	1 bit (offset 2) – Not Used
out_of_limits	unsigned	0, 1	1 bit (offset 3) – Not Used
open_circuit	unsigned	0, 1	1 bit (offset 4) – Not Used
out_of_service	unsigned	0, 1	1 bit (offset 5) – Not Used
mechanical_fault	unsigned	0, 1	1 bit (offset 6) - Not Used
feedback_failure	unsigned	0, 1	1 bit (offset 7) – Not Used
over_range	unsigned	0, 1	1 bit (offset 0) - Not Used
under_range	unsigned	0, 1	1 bit (offset 1) - Not Used
electrical_fault	unsigned	0, 1	1 bit (offset 2) – Not Used
unable_to_measure	unsigned	0, 1	1 bit (offset 3) - Not Used
comm_failure	unsigned	0, 1	1 bit (offset 4) - Not Used
fail_self_test	unsigned	0, 1	1 bit (offset 5) - Not Used
Self_test_in_progress	unsigned	0, 1	1 bit (offset 6) - Not Used
locked_out	unsigned	0, 1	1 bit (offset 7) – Not Used
manual_control	unsigned	0, 1	1 bit (offset 0) - Not Used
in_alarm	unsigned	0, 1	1 bit (offset 1) - Not Used
in_override	unsigned	0, 1	1 bit (offset 2) – Not Used
report_mask	unsigned	0, 1	1 bit (offset 3)
programming_mode	unsigned	0, 1	1 bit (offset 4) – Not Used
programming_fail	unsigned	0, 1	1 bit (offset 5) – Not Used
Alarm_notify_disabled	unsigned	0, 1	1 bit (offset 6) – Not Used
reset_complete	unsigned	0, 1	1 bit (offset 7) – Not Used
reserved2	unsigned	0 to 0	8 bits (offset 0) – Not Used

Object Request

This input network variable provides the mechanism to request an operation or a mode for a functional block within a device. A request consists of an object ID (the object_id field) and an object request (the object_request field). The object ID is the functional block index for a functional block on the device. The Node Object functional block is index zero. The remaining functional blocks are numbered sequentially, starting with one. The following functions are supported:

- RQ_NORMAL If the specified functional block was in
 the disabled or overridden state, this request cancels
 that state, and returns the functional block to normal
 operation. If the functional block was already in the
 normal state, a request to enter the normal state is not
 an error. After device reset, the state of functional blocks
 on the device is application-specific. An RQ_NORMAL
 request that specifies the Node Object functional block
 index is a request for all functional blocks in the device to
 leave the disabled and overridden states.
- · RQ UPDATE STATUS Requests the status of the specified functional block to be sent to the nvoStatus network variable. The state of the functional block is unchanged. An RQ UPDATE STATUS request that specifies the Node Object functional block is a request for the status of the device and all functional blocks on the device. The status bits of the Node Object (with the exception of invalid request and invalid id) are defined to be the inclusive-OR of the status bits of all the other functional blocks in the device; with the possible addition of error conditions and other conditions attributed to the device as a whole, rather than to any individual functional block. For example, if comm failure is supported for the Node Object, then it should be set when reporting the Node Object functional block status whenever any of the functional blocks in the device reports communications failure, as well as when there is a communications failure at the device level.
- RQ_REPORT_MASK Requests a status mask reporting the status bits that are supported by the specified functional block to be sent to the nvoStatus network variable. A one bit in the status mask means that the device may set the corresponding bit in the object status when the condition defined for that bit occurs. A zero bit in the status mask means that the bit is never set by the device.

Measurement	Units	Data Type	Valid Range	Uses Heartbeat	Default Value
Object Request	N/A	Structure	N/A	No	N/A

BACnet

No BACnet equivalent

LonWorks

LonWorks Name	Profile	Uses Heartbeat	SNVT Type	SNVT Number
nviRequest	Node Object	No	SNVT_obj_ status	93

Enumeration Definitions (object_request_t)

Value	Identifier	Notes
0	RQ_NORMAL	Enable object and remove override
1	RQ_DISABLED	Disable object (not supported)
2	RQ_UPDATE_STATUS	Report object status
3	RQ_SELF_TEST	Perform object self-test (not supported)
4	RQ_UPDATE_ALARM	Update alarm status (not supported)
5	RQ_REPORT_MASK	Report status bit mask
6	RQ_OVERRIDE	Override object (not supported)
7	RQ_ENABLE	Enable object (not supported)
8	RQ_RMV_OVERRIDE	Remove object override (not supported)
9	RQ_CLEAR_STATUS	Clear object status (not supported)
10	RQ_CLEAR_ALARM	Clear object alarm (not supported)
11	RQ_ALARM_NOTIFY_ENABLED	Enable alarm notification (not supported)
12	RQ_ALARM_NOTIFY_DISABLED	Disable alarm notification (not supported)
13	RQ_MANUAL_CTRL	Enable object for manual control (not supported)
14	RQ_REMOTE_CTRL	Enable object for remote control (not supported)
15	RQ_PROGRAM	Enable programming of special configuration properties (not supported)
16	RQ_CLEAR_RESET	Clear reset-complete flag (reset_complete) (not supported)
17	RQ_RESET	Execute reset-sequence of object (not supported)
-1(0xFF)	OC_NUL	Invalid Value

Outdoor Air Temperature

This read only network variable indicates the current outdoor air temperature.

Measurement	Units	Data Type	Usable Range	Default Value
Temperature		BACnet: Real	40° to 242°F	NA
	°F/°C	LonWorks: Fixed Point Scalar signed long	-40° to 212°F -40° to 100°C	

BACnet

	Object Identifie	Property Identifier			
Object Type	Type Enumeration Instance		Property Name	Property Enumeration	
Analog Input	nalog Input 0		Present Value	85	
Object Name					
OutdoorAirTemp					

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoOutdoorTemp	DaikinChiller	SNVT_temp_p	105	two bytes

Pump Select

This LonWorks-only read/write network variable selects which pump (#1 or # 2) supplies the data. The unit controller returns the information for the appropriate Condenser or Evaporator pump. You must first select a pump and then interrogate the selected pump. See Condenser Pump Run Hours and Evaporator Pump Run Hours.

Measurement	Units	Data Type	Usable Range	Default Value
Event Count	NA	LonWorks: structure	See Below	0 = Pump No. 1

LonWorks

LonWorks Name	Name Profile		SNVT Index	SNVT Size	
nviPumpSelect	DaikinChiller	SNVT_switch	95	two bytes	

Valid Range

State	Value	Pump Select
0	unused	Pump No. 1
1	unused	Pump No. 2

45

Receive Heartbeat

This read/write configuration property defines the maximum time that elapses after the last update to a specified network variable input before the unit starts to use the value contained in the corresponding network configuration variable (nci). This variable is only applicable when nciDefaults is set to 0. If nciDefaults is set to 1, the nvi's remain as the value written from the network regardless of the receive heartbeat time.

The variables that use Receive Heartbeat are:

- nviCapacityLim
- nviChillerEnable
- nviCoolSetpt
- nviHeatSetpt
- · nvilceSpt
- nviMode

Measurement	Units	Data Type	Usable Range	Default Value
	aaaanda	BACnet: Unsigned Integer	0.0 - 6553.4 sec (0.1 sec)	
Elapsed Time	seconds (0,1)	LonWorks: Fixed Point Scalar - unsigned long	0xFFFF represents invalid data	0 Seconds

LonWorks

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	SCPT_ Reference	SCPT Index
nciRCvHrtBt	Chiller	time_sec	107	two bytes	SCPT_ maxRcvTime	48

Run Enabled

This read only network variable indicates the running mode of the Chiller. The Run Enabled network variable indicates that the chiller can start if operating conditions are met.

Measurement	Units	Data Type	Usable Range	Default Value
Chiller Status	NA	BACnet: Enumerated	See Below	NA
Criller Status	INA	LonWorks: Structure	See Below	NA

BACnet

Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Binary Input	3	5	Present Value	85	
		Object Name			
		UnitOFF			
	Property Values				
	0 = OFF (Inactive) 1 = Run Allowed (Active)				

LonWorks

The LonWorks equivalent of this data point is part of the Chiller Status network variable.

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size	
nvoChillerStat	Chiller	chlr_status	127	3 bytes	
Property Values (run_enabled)					
0 = OFF (Inactive) 1 = Run Allowed (Active)					

Structure

```
typedef struct {
     chiller_t
                  chlr_run_mode;
    hvac_t chlr_op_mode;
     struct{
           unsigned in_alarm :1; // offset 0
           unsigned run_enabled :1; // offset 1
           unsigned local :1;
                                     // offset 2
           unsigned limited :1;
                                     // offset 3
           unsigned chw_flow :1; // offset 4
           unsigned condw_flow :1; // offset 5
     /* The last two bits (offset 6) are not defined */
    } chlr_state;
} SNVT_chlr_status;
```


Software Identification (Major Version)

This property displays the major revision number for the chiller LonWorks communication module firmware.

Measurement	Units	Data Type	Usable Range	Default Value
Version Number	NA	Structure	0 – 255	1

LonWorks

LonWorks Name	Profile	SCPT Reference	SCPT Number	SCPT Size
nciDevMajVer	Node Object	SCPTdevMajVer	165	1 byte

Software Identification (Minor Version)

This configuration property displays the minor revision number for the chiller LonWorks communication module firmware.

Measurement	Units	Data Type	Usable Range	Default Value
Version Number	NA	Structure	0 – 255	0

Lon**W**orks

LonWorks Name	Profile	SCPT Reference	SCPT Number	SCPT Size
nciDevMinVer	Node Object	SCPTdevMinVer	166	1 byte

Units

This binary value allows you to select the units of measure that are being passed through BACnet.

Measurement	Units	Data Type	Usable Range	Default Value
Unit Type	NA	Unsigned Integer	See Below	1 = English

BACnet

Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Multi-state Value	19	4	Present Value	85	
		Object Name			
		Units			
Property Values					
1 = English (Inactive) 2 = Metric (Active)					

BACnet Alarms

Alarm Classes

BACnet alarms in a Magnitude Chiller Unit Controller are divided into three classes: Faults, Problems, and Warnings. Fault alarms have the highest severity level. Problem alarms have medium severity level. Warning alarms have the lowest severity level.

Fault Alarms

Fault alarms require an acknowledgment from the operator. These alarms indicate that the compressor is shut down.

Problem Alarms

Problem alarms do not cause compressor shutdown but limit operation of the chiller in some way.

Warning Alarms

A warning is enunciated whenever an abnormal condition exists which does not affect chiller operation.

BACnet Alarm Handling

The BACnet Communication Module has two methods for handling BACnet alarms: Monitor by Alarm Class, and Alarm Digital Output.

Monitor by Alarm Class

The Monitor by Alarm Class method requires that three Analog Value objects in the BACnet Communication Module be polled for alarm notification. One object indicates Warning Alarms, one indicates Problem Alarms, and one indicates Fault Alarms. The Analog Value objects return a number for an alarm condition. The number is found in the Index column of Table 8.

Alarm Warnings

This BACnet object indicates the index number of warning alarms. If the present value is zero, no alarm has occurred. See Table 8.

Measurement	Units	Data Type	Valid Range	Default Value
NA	NA	Integer	Enumerated	NA

Object Identifier			Property Identifier		
Object Type	Type Enumeration	Instance	Property Name	Property Enumeration	
Analog Value	2	902	Present Value	85	
	Object Name				
	AVWarningAlarm				

Alarm Problems

This BACnet object indicates the index number of problem alarms. If the present value is zero, no alarm has occurred. See Table 8.

Measurement	Units	Data Type	Valid Range	Default Value
NA	NA	Integer	Enumerated	NA

Object Identifier			Property Identifier		
Object Type Enumeration		Instance	Property Name	Property Enumeration	
Analog Value	2	900	Present Value	85	
	Object Name				
	AVProblemAlarm				

Alarm Faults

This BACnet object indicates the index number of fault alarms. If the present value is zero, no alarm has occurred. See Table 8.

Measurement	Units	Data Type	Valid Range	Default Value	
NA	NA	Integer	Enumerated	NA	ı

Object Identifier			Property Identifier			
Object Type Enumeration		Instance	Property Name	Property Enumeration		
Analog Value	2	901	Present Value	85		
	Object Name					
	AVFaultAlarm					

Alarm Digital Output

The Alarm Digital Output method requires that one Binary Output object in the BACnet Communication Module be polled for alarm notification. This object indicates whether an alarm condition has occurred. The unit controller OITS panel displays the alarm text.

Measurement Units		Data Type	Usable Range	Default Value	
NA	NA	Integer	Enumerated	NA	

BACnet

Object Identifier			Property Identifier			
Object Type Enumeration		Instance	Property Name	Property Enumeration		
Binary Input	4	10	Present Value	85		
	Object Name					
	А	larmDigitalOutpo	ut			
Property Values						
	0 = No Alarm 1 = Alarm					

Clearing Alarms-BACnet

This read/write network variable clears all active alarms. The following alarms cannot be cleared over the network. They can only be cleared at the chiller (i.e. via the unit controller OITS panel).

- · Low Evaporator Pressure
- High Condenser Pressure (by pressure sensor)
- High Condenser Pressure (by pressure switch)
- Freeze Protection
- · High Motor Temperature

Measurement	Units	Data Type	Usable Range	Default Value
NA	NA	Integer	Enumerated	0=Normal

BACnet

Object Identifier			Property Identifier		
Object Type Enumeration		Instance	Property Name	Property Enumeration	
Binary Value	5	8	Present Value	85	
Object Name					
		ClearAlarm			
Property Values					
0 = Normal 1 = Clear Alarm					

BACnet Alarm Messages

The Table 8 identifies each alarm number, class, and the alarm text.

Table 8: BACnet Alarms

Alarm Number	Alarm Message Text	Alarm Number	Alarm Message Text
Warnings	040.6	7	Oli II. O. II. Tura O. War
1	Cmp1SoftwareProbWarn	7	ChillerCondLvgTempSenWarn
2	Cmp2SoftwareProbWarn	8	ChillerLiqLn1RefTempSenWarn
5	ChillerEvapEntTempSenWarn	9	ChillerLiqLn2RefTempSenWarn
6	ChillerCondEntTempSenWarn	10	ChillerSoftwareProbWarn
roblems 11	Cmp1LoEvapPressInhibitLoading	18	Cmp2HiDischTemp
12	Cmp1EvapFreezeProtect	27	ChillerEvapPmp1Flt
13		28	<u> </u>
	Cmp1CondFreezeProtect		ChillerEvapPmp2Flt
14	Cmp1HiDischTemp	29	ChillerCondPmp1Flt
15	Cmp2LoEvapPressInhibitLoading	30	ChillerCondPmp2Flt
16	Cmp2EvapFreezeProtect	31	ChillerEvapEntWtrTempSenFlt
17	Cmp2CondFreezeProtect		
aults			
32	Cmp1LowEvapPress	97	Cmp2LowEvapPress
33	Cmp1HiCondPress	98	Cmp2HiCondPress
34	Cmp1Tmr Exp No Strt	99	Cmp2Tmr Exp No Strt
35	Cmp1LowMotorCurrent	100	Cmp2LowMotorCurrent
36	Cmp1HiDischTemp	101	Cmp2HiDischTemp
37	Cmp1MechHiPress	102	Cmp2MechHiPress
38	Cmp1HiMotorTemp	103	Cmp2HiMotorTemp
39	Cmp1HiMotorGapTemp	104	Cmp2HiMotorGapTemp
40	Cmp1LoRotorPumpSuperHt	105	Cmp2LoRotorPumpSuperHt
41	Cmp1SurgeTemp	106	Cmp2SurgeTemp
42	Cmp1SurgeSwitch	107	Cmp2SurgeSwitch
43	Cmp1MotorStartFailure	108	Cmp2MotorStartFailure
44	Cmp1NoCmpStop	109	Cmp2NoCmpStop
45	Cmp1VFDFault	110	Cmp2VFDFault
46	Cmp1VFDRefFault	111	Cmp2VFDRefFault
47	Cmp1VFDLossofMotorSync	112	Cmp2VFDLossofMotorSync
48	Cmp1VFDMotorStall	113	Cmp2VFDMotorStall
49	Cmp1VFDSpdCommandFault	114	Cmp2VFDSpdCommandFault
50	Cmp1VFDOverspeed(Hardware)	115	Cmp2VFDOverspeed(Hardware)
51	Cmp1VFDOverspeed(Software)	116	Cmp2VFDOverspeed(Software)
52	Cmp1VFDOverspdMonitorFault	117	Cmp2VFDOverspdMonitorFault
53	Cmp1VFDInputVoltageHigh	118	Cmp2VFDInputVoltageHigh
54	Cmp1VFDPrechargeFault	119	Cmp2VFDPrechargeFault
55	Cmp1VFDLowDCBusVolt	120	Cmp2VFDLowDCBusVolt
56	Cmp1VFDHiDCBusVltRunning	121	Cmp2VFDHiDCBusVltRunning
57	Cmp1VFDHiDCBusVltRegen	122	Cmp2VFDHiDCBusVltRegen
58	Cmp1VFDHiSteeringBrVltPrechrg	123	Cmp2VFDHiSteeringBrVltPrechrg
59	Cmp1VFDHiSteeringBrVltRunning	124	Cmp2VFDHiSteeringBrVItrecting Cmp2VFDHiSteeringBrVItRunning
60	Cmp1VFDMotorOverload	125	Cmp2VFDMotorOverload
	'		<u> </u>
61 62	Cmp1VFDHiCurrentBridge1	126 127	Cmp2VFDHiCurrentBridge1
	Cmp1VFDHiCurrentBridge2		Cmp2VFDHiCurrentChanner1
63	Cmp1VFDHiCurrentChopper1	128	Cmp2VFDHiCurrentChopper1
64	Cmp1VFDHiCurrentChopper2	129	Cmp2VFDHiCurrentChopper2
65	Cmp1VFDInputPhaseLoss	130	Cmp2VFDInputPhaseLoss
66	Cmp1VFDOutputPhaseLoss	131	Cmp2VFDOutputPhaseLoss
67	Cmp1VFDHiTempSide1	132	Cmp2VFDHiTempSide1
68	Cmp1VFDHiTempSide2	133	Cmp2VFDHiTempSide2
69	Cmp1VFD IGBT FltBridge1	134	Cmp2VFD IGBT FltBridge1
70	Cmp1VFD IGBT FltBridge2	135	Cmp2VFD IGBT FltBridge2
71	Cmp1VFD IGBT FltChopper1	136	Cmp2VFD IGBT FltChopper1
72	Cmp1VFD IGBT FltChopper2	137	Cmp2VFD IGBT FltChopper2
73	Cmp1VFDTherm1Flt	138	Cmp2VFDTherm1Flt
74	Cmp1VFDTherm2Flt	139	Cmp2VFDTherm2Flt
75	Cmp1VFDTherm3Flt	140	Cmp2VFDTherm3Flt

Alarm Number	Alarm Message Text	Alarm Number	Alarm Message Text
76	Cmp1VFDTherm4Flt	141	Cmp2VFDTherm4Flt
77	Cmp1VFDHiPwrSupTemp	142	Cmp2VFDHiPwrSupTemp
78	Cmp1VFDHiPwrSupVolt	143	Cmp2VFDHiPwrSupVolt
79	Cmp1VFDClgFanFlt	144	Cmp2VFDClgFanFlt
80	Cmp1VFDProcessorFlt	145	Cmp2VFDProcessorFlt
81	Cmp1VFDMaintenanceMode	146	Cmp2VFDMaintenanceMode
82	Cmp1SuctPressSenFlt	147	Cmp2SuctPressSenFlt
83	Cmp1DishPressSenFlt	148	Cmp2DishPressSenFlt
84	Cmp1CondRfrCkt1PressSenFlt	149	Cmp2CondRfrCkt1PressSenFlt
85	Cmp1CondRfrCkt2PressSenFlt	150	Cmp2CondRfrCkt2PressSenFlt
86	Cmp1SuctTempSenFlt	151	Cmp2SuctTempSenFlt
87	Cmp1DischTempSenFlt	152	Cmp2DischTempSenFlt
88	Cmp1MotorGapTempSenFlt	153	Cmp2MotorGapTempSenFlt
89	Cmp1RotorPmpTempSenFlt	154	Cmp2RotorPmpTempSenFlt
90	Cmp1BearingOrbitSurgeFlt	155	Cmp2BearingOrbitSurgeFlt
91	Cmp1CommunicationsFlt	156	Cmp2CommunicationsFlt
92	Cmp1EvapLvgWtrTempSenFlt	157	Cmp2EvapLvgWtrTempSenFlt
93	Cmp1CondLvgWtrTempSenFlt	158	Cmp2CondLvgWtrTempSenFlt
94	Cmp1SoftwareFlt	159	Cmp2SoftwareFlt
95	Cmp1EvapWtrFlwLoss	160	Cmp2EvapWtrFlwLoss
96	Cmp1CondWtrFlwLoss	161	Cmp2CondWtrFlwLoss

LONWORKS Alarms

Two LonWorks network variables indicate alarm conditions and one network variable clears alarms. The Chiller Status network output variable indicates that the unit controller is in alarm, but it does not identify the alarm condition. The Current Alarm network output variable indicates the alarm condition.

Current Alarm

This network output variable indicates the current alarm. The type of alarm is included in the text string. Alarm messages are listed in Table 9. The unit controller can accommodate 15 simultaneous alarms. Alarm messages are sent sequentially one every five seconds.

Measurement	Units	Data Type	Valid Range	Default Value
Alarm Message	NA	Structure	0 – 30 characters plus a NUL terminator	NA

Variable Details

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nvoAlarmDescr	Chiller	str_asc	36	31 bytes max

Clearing Alarms - LonWorks

This read/write network variable clears all active alarms. The following alarms cannot be cleared over the network. They can only be cleared at the chiller (i.e. via the unit controller OITS panel).

- Low Evaporator Pressure
- High Condenser Pressure (by pressure sensor)
- High Condenser Pressure (by pressure switch)
- · Freeze Protection
- · High Motor Temperature

In addition to the Current Alarm network variable, nvoChillerStat indicates whether or not the chiller is in an alarm condition, but it does not describe the alarm condition.

Measurement	Units	Data Type	Valid Range	Default Value
N/A	N/A	Structure	See Below	N/A

Variable Details

LonWorks Name	Profile	SNVT Type	SNVT Index	SNVT Size
nviClearAlarm	DaikinChiller	SNVT_switch	95	two bytes

Valid Range

State	Value	Clear Alarm
0	unused	No Alarm
1	unused	Clear Alarm

LonWorks Alarm Messages

Table 9: LonWorks Alarm Messages

Alarm Number	Alarm Message Text	Alarm Number	Alarm Message Text
Warnings			
1	Cmp1SoftwareProbWarn	7	ChillerCondLvgTempSenWarn
2	Cmp2SoftwareProbWarn	8	ChillerLiqLn1RefTempSenWarn
5	ChillerEvapEntTempSenWarn	9	ChillerLiqLn2RefTempSenWarn
6	ChillerCondEntTempSenWarn	10	ChillerSoftwareProbWarn
Problems			
11	Cmp1LoEvapPressInhibitLoading	18	Cmp2HiDischTemp
12	Cmp1EvapFreezeProtect	27	ChillerEvapPmp1Flt
13	Cmp1CondFreezeProtect	28	ChillerEvapPmp2Flt
14	Cmp1HiDischTemp	29	ChillerCondPmp1Flt
15	Cmp2LoEvapPressInhibitLoading	30	ChillerCondPmp2Flt
16	Cmp2EvapFreezeProtect	31	ChillerEvapEntWtrTempSenFlt
17	Cmp2CondFreezeProtect		
aults			
32	Cmp1LowEvapPress	97	Cmp2LowEvapPress
33	Cmp1HiCondPress	98	Cmp2HiCondPress
34	Cmp1Tmr Exp No Strt	99	Cmp2Tmr Exp No Strt
35	Cmp1LowMotorCurrent	100	Cmp2LowMotorCurrent
36	Cmp1HiDischTemp	101	Cmp2HiDischTemp
37	Cmp1MechHiPress	102	Cmp2MechHiPress
38	Cmp1HiMotorTemp	103	Cmp2HiMotorTemp
39	Cmp1HiMotorGapTemp	104	Cmp2HiMotorGapTemp
40	Cmp1LoRotorPumpSuperHt	105	Cmp2LoRotorPumpSuperHt
41	Cmp1SurgeTemp	106	Cmp2SurgeTemp
42	Cmp1SurgeSwitch	107	Cmp2SurgeSwitch
43	Cmp1MotorStartFailure	108	Cmp2MotorStartFailure
44	Cmp1NoCmpStop	109	Cmp2NoCmpStop
45	Cmp1VFDFault	110	Cmp2VFDFault
46	Cmp1VFDRefFault	111	Cmp2VFDRefFault
47	Cmp1VFDLossofMotorSync	112	Cmp2VFDLossofMotorSync
48	Cmp1VFDMotorStall	113	Cmp2VFDMotorStall
49	Cmp1VFDSpdCommandFault	114	Cmp2VFDSpdCommandFault
50	Cmp1VFDOverspeed(Hardware)	115	Cmp2VFDOverspeed(Hardware)
51	Cmp1VFDOverspeed(Software)	116	Cmp2VFDOverspeed(Software)
52	Cmp1VFDOverspdMonitorFault	117	Cmp2VFDOverspdMonitorFault
53	Cmp1VFDInputVoltageHigh	118	Cmp2VFDInputVoltageHigh
54	Cmp1VFDPrechargeFault	119	Cmp2VFDPrechargeFault
55	Cmp1VFDLowDCBusVolt	120	Cmp2VFDLowDCBusVolt
56	Cmp1VFDHiDCBusVltRunning	121	Cmp2VFDHiDCBusVltRunning
57	Cmp1VFDHiDCBusVltRegen	122	Cmp2VFDHiDCBusVltRegen
58	Cmp1VFDHiSteeringBrVItPrechrg	123	Cmp2VFDHiSteeringBrVltPrechrg
59	Cmp1VFDHiSteeringBrVItRunning	124	Cmp2VFDHiSteeringBrVltRunning
60	Cmp1VFDMotorOverload	125	Cmp2VFDMotorOverload
61	Cmp1VFDHiCurrentBridge1	126	Cmp2VFDHiCurrentBridge1
62	Cmp1VFDHiCurrentBridge2	127	Cmp2VFDHiCurrentBridge2
63	Cmp1VFDHiCurrentChopper1	128	Cmp2VFDHiCurrentChopper1
64	Cmp1VFDHiCurrentChopper2	129	Cmp2VFDHiCurrentChopper2
65	Cmp1VFDInputPhaseLoss	130	Cmp2VFDInputPhaseLoss
66	Cmp1VFDOutputPhaseLoss	131	Cmp2VFDOutputPhaseLoss
67	Cmp1VFDHiTempSide1	132	Cmp2VFDHiTempSide1
68	Cmp1VFDHiTempSide2	133	Cmp2VFDHiTempSide2
69	Cmp1VFD IGBT FltBridge1	134	Cmp2VFD IGBT FltBridge1
70	Cmp1VFD IGBT FltBridge2	135	Cmp2VFD IGBT FltBridge2
71	Cmp1VFD IGBT FltChopper1	136	Cmp2VFD IGBT FltChopper1
72	Cmp1VFD IGBT FltChopper2	137	Cmp2VFD IGBT FltChopper2

Alarm Number	Alarm Message Text	Alarm Number	Alarm Message Text
73	Cmp1VFDTherm1Flt	138	Cmp2VFDTherm1Flt
74	Cmp1VFDTherm2Flt	139	Cmp2VFDTherm2Flt
75	Cmp1VFDTherm3Flt	140	Cmp2VFDTherm3Flt
76	Cmp1VFDTherm4Flt	141	Cmp2VFDTherm4Flt
77	Cmp1VFDHiPwrSupTemp	142	Cmp2VFDHiPwrSupTemp
78	Cmp1VFDHiPwrSupVolt	143	Cmp2VFDHiPwrSupVolt
79	Cmp1VFDClgFanFlt	144	Cmp2VFDClgFanFlt
80	Cmp1VFDProcessorFlt	145	Cmp2VFDProcessorFlt
81	Cmp1VFDMaintenanceMode	146	Cmp2VFDMaintenanceMode
82	Cmp1SuctPressSenFlt	147	Cmp2SuctPressSenFlt
83	Cmp1DishPressSenFlt	148	Cmp2DishPressSenFlt
84	Cmp1CondRfrCkt1PressSenFlt	149	Cmp2CondRfrCkt1PressSenFlt
85	Cmp1CondRfrCkt2PressSenFlt	150	Cmp2CondRfrCkt2PressSenFlt
86	Cmp1SuctTempSenFlt	151	Cmp2SuctTempSenFlt
87	Cmp1DischTempSenFlt	152	Cmp2DischTempSenFlt
88	Cmp1MotorGapTempSenFlt	153	Cmp2MotorGapTempSenFlt
89	Cmp1RotorPmpTempSenFlt	154	Cmp2RotorPmpTempSenFlt
90	Cmp1BearingOrbitSurgeFlt	155	Cmp2BearingOrbitSurgeFlt
91	Cmp1CommunicationsFlt	156	Cmp2CommunicationsFlt
92	Cmp1EvapLvgWtrTempSenFlt	157	Cmp2EvapLvgWtrTempSenFlt
93	Cmp1CondLvgWtrTempSenFlt	158	Cmp2CondLvgWtrTempSenFlt
94	Cmp1SoftwareFlt	159	Cmp2SoftwareFlt
95	Cmp1EvapWtrFlwLoss	160	Cmp2EvapWtrFlwLoss
96	Cmp1CondWtrFlwLoss	161	Cmp2CondWtrFlwLoss

This section contains the Protocol Implementation Conformance Statement (PICS) for the Magnitude Chiller Unit Controller of Daikin Applied as required by ANSI/ASHRAE Standard 135-2004, BACnet: A Data Communication Protocol for Building Automation and Control Networks.

BACnet Protocol Implementation Conformance Statement

Date: June. 2014

Vendor Name: Daikin Applied

Product Name: Magnitude Chiller Unit

Controller

Product Model Number: WME Application Software Version: 4.14.1 Firmware Revision: 2.05

BACnet Protocol Revision: Version 1

Revision 4

Product Description

The Magnitude Chiller Unit Controller with optional BACnet Communication Module is a microprocessor-based controller designed to operate Daikin Applied chillers and be integrated into BACnet building automation systems.

	RACnot	Standard	Dazil	AVICA	Drofila
ш	DACHEL	Stantiard	iizea D	evice	Prome

- **BACnet Operator Workstation (B-OWS)**
- BACnet Building Controller (B-BC)
- **BACnet Advanced Application Specific Controller** (B-AAC)
- BACnet Application Specific Controller (B-ASC)
- BACnet Smart Sensor (B-SS)
- BACnet Smart Actuator (B-SA)

BACnet Interoperability Building Blocks (BIBBs) Supported

BIBB Name	Designation
Data Sharing – ReadProperty – B	DS-RP-B
Data Sharing – ReadPropertyMultiple – B	DS-RPM-B1
Data Sharing – WriteProperty – B	DS-WP-B
Data Sharing – WritePropertyMultiple – B	DS-WPM-B1
Device Management – Dynamic Device Binding – B	DM-DDB-B
Device Management – Dynamic Object Binding – B	DM-DOB-B
Device Management – DeviceCommunicationControl – B	DM-DCC-B
Device Management – TimeSynchronization – B	DM-TS-B ²
Device Management – UTCTimeSynchronization – B	DM-UTC-B
Device Management – ReinitializeDevice – B	DM-RD-B ³

- 1. This BIB is not required for B-ASC but is highly desirable for optimum performance on the network.
- 2. DM-TS-B is not required for B-ASC.
- 3. DB-RD-B will be implemented such that the BACnet card is reset without resetting the chiller controller. The chiller controller can never be reset via the BACnet network. Reinitialize Device will be implemented with a nonchangeable password of 1234.

55

Standard Object Types Supported

Object-Type ¹	Dynamically Creatable	Dynamically Deleteable	Optional Properties Supported	Writable Properties not Required to be Writable
Analog Input			Description Reliability Min_Pres_Value Max_Pres_Value	
Analog Output			Description Reliability Min_Pres_Value Max_Pres_Value	Relinquish Default
Analog Value			Description Reliability Priority_Array Relinquish_Default	Present_Value² Relinquish_Default
Binary Input			Description Reliability Inactive_Text Active_Text	
Binary Output			Description Reliability Inactive_Text Active_Text	Relinquish_Default
Binary Value			Description Reliability Inactive_Text Active_Text Priority_Array Relinquish_Default	Present_Value² Relinquish_Default
Device			Description Location Local_Time Local_Date UTC_Offset Daylight_Savings_Status Max_Master Max_Info_Frames	Object_Identifier Object_Name Description Location UTC_Offset Max_Master Max_Info_Frames APDU_Timeout Number_of_APDU_Retries
Multi-state Input			Description Reliability State_Text	
Multi-state Output			Description Reliability State_Text	Relinquish_Default
Multi-state Value			Description Reliability State_Text Priority_Array Relinquish_Default	Present_Value ² Relinquish_Default

^{1.} Though the BACnet communication module supports the following object types, not all objects types are currently used. 2. This property will be writable only if defined writable in the CSV file which is downloaded into the unit controller.

Data Link Layer Options

- ☑ BACnet IP, (Annex J)
- ☑ ISO 8802-2, Ethernet (Clause 7)
- MS/TP master (Clause 9), baud rate(s): 9600, 19200, 38400 & 76800

Segmentation Capability

□ Segmented requests

supported Window Size:

□ Segmented responses

supported Window Size:

Device Address Binding

☐ Yes Static Device Binding

⊠ No

Networking Options

- ☐ Router, Clause 6
 Routing Configurations:
- ☐ Annex H, BACnet Tunneling Router over IP
- ☐ BACnet/IP Broadcast Management Device (BBMD)

Registrations by Foreign Devices? ☐ Yes

□ No

Character Sets Supported

- ☑ ANSI X3.4
- ☐ IBM®/Microsoft® DBCS
- ☐ ISO 8859-1
- ☐ ISO 10646 (UCS-2)
- ☐ ISO 10646 (UCS-4)
- □ JIS C 6226

NOTE: Support for multiple character sets does not imply they can be supported simultaneously.

Non-BACnet Equipment/Network(s) Support

□ Communication Gateway

Non-BACnet equipment/networks(s):

Daikin Applied Training and Development

Now that you have made an investment in modern, efficient Daikin equipment, its care should be a high priority. For training information on all Daikin HVAC products, please visit us at www.DaikinApplied.com and click on Training, or call 540-248-9646 and ask for the Training Department.

Warranty

All Daikin equipment is sold pursuant to its standard terms and conditions of sale, including Limited Product Warranty. Consult your local Daikin Applied representative for warranty details. To find your local Daikin Applied representative, go to www.DaikinApplied.com.

Aftermarket Services

To find your local parts office, visit www.DaikinApplied.com or call 800-37PARTS (800-377-2787). To find your local service office, visit www.DaikinApplied.com or call 800-432-1342.

This document contains the most current product information as of this printing. For the most up-to-date product information, please go to www.DaikinApplied.com.

Products manufactured in an ISO Certified Facility.