Mathematics for Computer Scientists III

Exercise Sheet 1

Exercise 1 (3 Points)

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x) := x_1^2 + 2x_2^2.$$

Show that f is continuous by showing that the ε - δ criterion in Definition 1.3.1 is satisfied for every point $(x_1^0, x_2^0) \in \mathbb{R}^2$.

Exercise 2 (4 Points)

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x_1, x_2) := \begin{cases} \frac{x_1^2 \sin(x_1 + x_2)}{\sqrt{x_1^4 + x_2^4}} &, & (x_1, x_2) \neq (0, 0) \\ 0 &, & (x_1, x_2) = (0, 0) \end{cases}.$$

Show that f is continuous.

Exercise 3 (5 Points)

Let $\mathbb{R}_+ := [0, \infty)$. Let $f : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x_1, x_2) := \begin{cases} \frac{\sqrt{x_1 x_2^2 + x_1 x_2^2}}{x_1 + 2x_2^2} &, & (x_1, x_2) \neq (0, 0) \\ 0 &, & (x_1, x_2) = (0, 0) \end{cases}.$$

- (i) Let $x^0=(x_1^0,x_2^0)\in\mathbb{R}^2$ be arbitrary, but fixed. Let the functions $f_{x_1^0}:\mathbb{R}\to\mathbb{R}$ and $f_{x_2^0}:\mathbb{R}_+\to\mathbb{R}$ be defined by $f_{x_2^0}(x_1):=f(x_1,x_2^0)$ and $f_{x_1^0}(x_2):=f(x_1^0,x_2)$. Show that both $f_{x_1^0}$ and $f_{x_2^0}$ are continuous.
- (ii) Show that f is not continuous at the point (0,0).

Exercise 4* (4 Bonus Points)

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by

$$f(x_1, x_2) := \begin{cases} \frac{1}{x_1^2 + x_2^2} &, & (x_1, x_2) \in A \\ x_1 x_2 &, & (x_1, x_2) \notin A \end{cases},$$

where $A := \left\{ \left(\frac{1}{x} \cos(\frac{2\pi}{x}), \frac{1}{x} \sin(\frac{2\pi}{x}) \right) : x \in (0, \infty) \right\} \subseteq \mathbb{R}^2$.

- (i) Plot (or sketch) the set A.
- (ii) Show that f is *not* continuous at the point (0,0).
- (iii) Show that $f(h_N v) \to f(0,0)$ (as $N \to \infty$) for every $v \in \mathbb{R}^2$ and every decreasing sequence $(h_N)_{N \in \mathbb{N}}$ in \mathbb{R} with $h_N \to 0$.

Hint for (iii): Consider how "often" the sequence $(h_N v)_{N \in \mathbb{N}}$ can hit the set A. To do this, look at the plot (or sketch) of the set A.