

MAGNETOSTATICS

Coaxial cable

An infinite cylindrical coaxial cable is made up of (1) a cylindrical conducting copper core of radius R_1 through which a current of intensity I flows and (2) A braided shield, modelled by a hollow conducting cylinder located between radii $R_2 > R_1$ and $R_3 > R_2$. The shield has a current -I by construction.

- 1. Use symmetry arguments to describe as precisely as possible the magnetic field in the regions $r \in [R_1, R_2]$ and $r > R_3$.
- 2. By using the Ampère's theorem, compute the magnetic field intensity in the same regions of space.
- 3. Assuming that the density of current \vec{j} is constant within the inner core, and directed parallel to the core axis, compute the relation between $|\vec{j}|$ and I.

Electric wire with finite cross section

A real electric cable has a finite radius R. By assuming the current density a homogenous (i.e. constant in space) vector field $\vec{\jmath}$, compute the magnetic field outside and inside an infinite straight such wire. Why the field does not goes to zero as $1/r^2$ for $r \to \infty$ as in the Biot-Savart law?

Ideal Solenoid from Ampère's law

Use the closed rectangular path of the figure to demonstrate the formula $\vec{B} = \mu_0 n i \vec{u}_z$ for the field inside the infinite solenoid (n is the number of current loops by unit length). One must assume that the external magnetic field is zero.

Convection currents: Rowland's experiment (1876)

In the figure above, a metallic disk of radius R is charged on its surface with a uniform charge density σ . It is put in rotation at a constant angular velocity ω around its axis.

- 1. Explain qualitatively why a magnetic field is created by the rotation of the disk.
- 2. Show that the magnetic field at P(z=a) on the axis is given by $(\alpha \text{ is defined by } \tan \alpha = R/a)$

$$\vec{B}(P) = \mu_0 \sigma R \omega \sin^2\left(\frac{\alpha}{2}\right) \tan\left(\frac{\alpha}{2}\right)$$

3. Give an order of magnitude of the field created at the center of the disk (feed the formula with reasonable values, for σ think of a capacitor close to the breakdown electric field $3 \cdot 10^6$ V/m), and compare it with the magnitude of the terrestrial magnetic field in Baku $B_{\text{earth}} = 49 \mu \text{T}$.