11040A Neural Networks

Assignment 3

Deadline: May 29, 2025 24:00:00

1. Composite functions can be depicted as computational graphs. For example, the figure below shows the corresponding computational graph of function $f(x, y, z) = z^{2x+y}$.

Draw the computational graphs for the following functions and calculate the partial derivatives of all the functions with respect to x_1 .

(a)
$$f(x_1, x_2) = (1 + e^{w_1 x_1 + w_2 x_2 + b})^{-1}$$

(b)
$$f(x_1, x_2) = \frac{e^{x_1}}{e^{x_1} + e^{x_2}}$$

(c)
$$f(x_1, x_2) = \ln \frac{e^{x_1}}{e^{x_1} + e^{x_2}}$$

(d)
$$f(x_1, x_2) = \ln \frac{e^{x_2}}{e^{x_1} + e^{x_2}}$$

derivatives of all the functions with respect to
$$x_1$$

(a) $f(x_1, x_2) = (1 + e^{w_1 x_1 + w_2 x_2 + b})^{-1}$
(b) $f(x_1, x_2) = \frac{e^{x_1}}{e^{x_1} + e^{x_2}}$
(c) $f(x_1, x_2) = \ln \frac{e^{x_1}}{e^{x_1} + e^{x_2}}$
(d) $f(x_1, x_2) = \ln \frac{e^{x_2}}{e^{x_1} + e^{x_2}}$
(e) $f(x_1, x_2, x_3, x_4) = \ln \frac{e^{w_1 x_1 + w_2 x_2}}{e^{w_1 x_1 + w_2 x_2} + e^{w_1 x_3 + w_2 x_4}}$
(f) $f(x_1, x_2, x_3, x_4) = \ln \frac{e^{w_1 x_1 + w_2 x_2}}{e^{w_1 x_1 + w_2 x_2} + e^{w_1 x_3 + w_2 x_4}}$

(f)
$$f(x_1, x_2, x_3, x_4) = \ln \frac{e^{w_1 x_3 + w_2 x_4}}{e^{w_1 x_1 + w_2 x_2} + e^{w_1 x_3 + w_2 x_4}}$$

2. For simplicity, a node can also represent a vector or a matrix in the computational graph. For example, function $f(x) = x^T x$, where $x = [x_1, x_2]^T$ can be described as the figure below.

Draw the computational graphs for the following functions and calculate the gradients of all the functions with respect to x.

(a)
$$f(\mathbf{x}) = (\mathbf{\theta}^T \mathbf{x})^T \mathbf{\theta}^T \mathbf{x}$$
, where $\mathbf{\theta} \in \mathbb{R}^{d \times h}$ and $\mathbf{x} \in \mathbb{R}^{d \times 1}$.

(b)
$$f(\mathbf{x}) = \boldsymbol{\theta}^T(\mathbf{x} + \boldsymbol{\theta}^T \mathbf{x})$$
, where $\boldsymbol{\theta} \in \mathbb{R}^{d \times d}$ and $\mathbf{x} \in \mathbb{R}^{d \times 1}$.

(c)
$$f(x) = (a^T x)a + (b^T x)b$$
, where a, b and $x \in \mathbb{R}^{d \times 1}$.

Notice that matrix calculus has largely two consistent layout conventions: Numerator layout and Denominator layout. Therefore, sometimes, the question may have more than one answer. (You may refer to the "Matrix calculus" entry on Wikipedia for more information.)