

주제 및 선정배경주제 설명

>> 시각장애인의 눈이 되어주는 점자블록, 하지만 제 역할을 하지 못하고 있다

주제 및 선정배경주제 선정 배경

점자블록이 잘못 설치되거나 길을 방해하는 경우가 존재함

점자블록이 잘못 설치된 경우

통행을 방해하는 경우

점자블록이 끊긴 경우

시각장애인이 <mark>혼자</mark> 외출하는 데에는 안내견 동반등의 많은 <mark>불편함</mark>이 따른다 >> 그들에게 <mark>눈</mark>과같은 역할을 해주는 <mark>장치의 필요성</mark>

2 모델선정 및 설명 **모델 선정**

Deep learning

"Deep Learning을 통한 점자블록 탐지시스템 구현"

2 모델선정 및 설명 **모델 선정**

영상을 실시간으로 탐지하여 처리하기 위해 YOLO 사용

Detection Frameworks	Train	mAP	FPS
Fast R-CNN [5]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[15]	2007+2012	73.2	7
Faster R-CNN ResNet[6]	2007+2012	76.4	5
YOLO [14]	2007+2012	63.4	45
SSD300 [11]	2007+2012	74.3	46
SSD500 [11]	2007+2012	76.8	19
YOLOv2 288 × 288	2007+2012	69.0	91
YOLOv2 352×352	2007+2012	73.7	81
YOLOv2 416 × 416	2007+2012	76.8	67
YOLOv2 480 × 480	2007+2012	77.8	59
YOLOv2 544 × 544	2007+2012	78.6	40

R-CNN과 같은 detection system들은 느린 속도로 인해 영상에 적용하기는 어렵다 >> YOLO는 최고성능의 빠른 detection system

2 모델선정 및 설명 **구현 설명**

YOLO train을 위해서는 Data annotaion 과정이 필요

이미지의 object에 해당하는 (x, y, width, height) txt를 만들어주는 과정 Bbox-Label-Tool 등을 이용하여 직접 표시해야 함

수천장의 이미지에대한 좌표표시 과정에서 수작업이 아닌 <mark>알고리즘을 통해 자동화</mark> 방법 구현 >> 데이터를 쉽게 수정 가능, 많은 데이터로 train 가능

https://github.com/krlee407/braille-block

```
FOLDERS
 v master
 ▶ 🛅 .idea
  ► m _pycache_
  ► 🛅 Annotation
 ▶ 🚞 image
 ► Images
 ▶ IIII labels
 ▶ 📗 saved
  > m test_image
  > m test_result
   /* augmentation.py
   /* CNN_test.py
    /* dataSet.pv
/* main.py
   /* model.py
    /* slidingWindow.py
   /* solver.py
   /* utils.pv
```

각자의 역할을 하는 모듈을 만들고, 모듈별로 독립적으로 코드 수정이 가능하도록 구현 >> parameter 수정만으로 여러 실험을 할 수 있는, 대화형 인터프리터에 적합한 형태

CNN + Image detector

R-CNN, YOLO와 같은 대부분의 detection model은 annotate 된 데이터를 필요로 한다 (Training data를 얻기 까다로움) >> 위와 같은 model을 구현해놓으면 쉽게 training data를 만들 수 있음

^{모델 구현} **구현 절차**

자동화 Data annotation 구현

Env - tensorflow1.4, Window7, GTX970 Train data - 점자블럭, 일반블럭, 자동차, 사람, 벽 등 Output data - XML형태의 annotation data (YOLO training data)

Image Processing

(dot-braille block)

(line-braille block)

(none-braille block)

(cifar10, cifar100등 에서 car, person data 수집)

^{모델 구현} 모델 구현

Image Processing

(각각의 이미지를 Histogram of Gradient, Edge detector, Grayscale, Augmentation)

(Edge detector)

(Grayscale)

(Augmentation)

Model Construct

(2~4 layer CNN)

^{모델 구현} 모**델 구현**

(selective search + CNN 결과)

(sliding window+ CNN 결과)

실행시간은 selective search가 빠르나, 정확도는 sliding window가 훨씬 우수 >> Sliding window 사용

Feature Extract - Sliding window

(sliding window 적용 예시)

Feature Extract - Selective search

(selective search 적용했을 때 후보영역)

Data : Block, non-Block Model : two layer CNN Classifier : predict

Data: Block, non-Block Model: three layer CNN Classifier: predict

Data : Block, non-Block Model : four layer CNN Classifier: Softmax-Score

최종적으로,

Data: Block, non-block, car, human, wall Image processing: None Model: four layer CNN Feature extract: Sliding window (size=64) Classifier: Sotfmax score

^{모델 구현} **구현 결과**

(손으로 찾았을 때)

(image당 각 object의 x,y,width,height의 정보를 Xml 파일로 만들어 저장까지)

4 YOLO **4 모델 설명**

Selective Search 2.24 seconds

EdgeBoxes 0.38 seconds

Cheaper Alternative: grids

YOLOv2 - 기존의 YOLO모델 보다 성능과 속도가 더 향상된 모델

	YOLO								YOLOv2
batch norm?		√	1	√	√	√	1	√	√
hi-res classifier?			1	1	~	1	1	1	✓
convolutional?				1	1	1	1	~	✓
anchor boxes?				1	1				
new network?					1	1	1	1	V
dimension priors?						1	1	1	✓
location prediction?						1	1	1	V
passthrough?							1	1	V
multi-scale?								1	✓
hi-res detector?									1
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

성능향상을 위해 배치 정규화, High Resolution, Darknet 사용 등의 방법이 추가 >> 여러 가지 방법을 추가하면서 모델의 성능이 향상하는 것을 볼 수 있음

YOLO **무모델 설명**

Env - CUDA8.0.61-1, cuDNN 5.1.10-1+cuda8.0, TensorFlow1.2.1(python 2&3) Nvidia 375.66-0 ubuntu0.14.04.1 OpenCV2.4.13 Model - YOLO V2 (input image 416 x 416)

Type	Filters	Size/Stride	Output	
Convolutional	32	3×3	224×224	
Maxpool		$2 \times 2/2$	112×112	
Convolutional	64	3×3	112×112	
Maxpool	2000	$2 \times 2/2$	56×56	
Convolutional	128	3×3	56×56	
Convolutional	64	1×1	56×56	
Convolutional	128	3×3	56×56	
Maxpool	413597	$2 \times 2/2$	28×28	
Convolutional	256	3×3	28×28	
Convolutional	128	1×1	28×28	
Convolutional	256	3×3	28×28	
Maxpool	100.000	$2 \times 2/2$	14×14	
Convolutional	512	3×3	14×14	
Convolutional	256	1 × 1	14×14	
Convolutional	512	3×3	14×14	
Convolutional	256	1×1	14×14	
Convolutional	512	3×3	14×14	
Maxpool	100	$2 \times 2/2$	7 × 7	
Convolutional	1024	3 × 3	7×7	
Convolutional	512	1×1	7×7	
Convolutional	1024	3×3	7 × 7	
Convolutional	512	1 × 1	7×7	
Convolutional	1024	3×3	7×7	
Convolutional	1000	1 × 1	7 × 7	
Avgpool Softmax		Global	1000	

(darknet을 classification network로 사용)

Learning rate 조정

(0.0001)

(0.005)

(0.001)

Training iteration 횟수 조정

(1000번)

(2000번)

(20000번)

block: 66% block: 69% block: 78% block: 78% block: 81% block: 52% block: 54% block: 90%

block: 52%

YOLO 4 최종 결과

YOLO 모델 활용 방향, 좌표, 거리 안내

최종 정리

결론 및 활용방안 **보완점**

여백이 너무 많은 경우

차도가 옆에있는 경우

자동화 과정 성능 개선, YOLO 모델 성능 개선 필요

5 결론 및 활용방안 **발전 방향**

(구글 글래스)

(기본 카메라 앱과 Goggles를 연동한 모습)

건물, 신호등, 사람등의 많은 데이터로 train할 경우 시각장애인 전용의 내비게이션 등 활용가능 >> 조금더 편리하고 윤택한 삶 제공 가능

