Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina

Departamento Acadêmico de Eletrônica

Projetos Eletrônicos

Esquemáticos Eletrônicos e Simulação

Prof. Anderson

Prof. Muriel

INSTITUTO FEDERAL SANTA CATARINA

Florianópolis, agosto de 2023

Diagrama ou Esquemático Eletrônico

DIAGRAMA OU ESQUEMÁTICO ELETRÔNICO

Diagrama ou Esquemático Eletrônico

- Esquema de ligação de um circuito elétrico ou eletrônico (EE);
- Usa-se símbolos gráficos para representar os componentes eletrônicos e a conexão entre estes;
- Permite interpretar, com clareza e rapidez, o funcionamento ou a sequência de funcionamento de um circuito EE;
- A partir do diagrama esquemático, pode-se realizar simulações do circuito e reproduzir de maneira prática (matriz de contato, PCI e etc) o circuito EE.

Circuito integrado LM741 – Amplificador Operacional

Imagem do componente

Simbologia

Diagrama eletrônico interno.

ACTIVE

PASSIVE

Transistor		\bigcirc	Resistor -		
Diode		→ -	LDR		$-\bigcirc^{\!$
LED		⊸ ⊬	Thermistor	8	-5/4-
Photodiode	3	→	Capacitor		$- \parallel \vdash$
Integrated Circuit		-	Inductor		_ww_
Operational Amplifier	And the second	→	Switch		
Seven Segment Display	8.8.		Variable Resistor	(C)	- *
Battery	÷	∸ i -	Transformer	3	316

Exemplo - Esquemático luminária Proteus

Luminária a LEDs de alto brilho com dimmer

Exemplo: Esquemático Luminária sem dimmer e ligado na rede elétrica

Apresentação do Circuito do Projeto Exemplo

Esquemático Projeto Exemplo Semestres Passados: Contador Crescente Assíncrono de 0 até 3:

Exemplo: Diagrama Esquemático de um Contador Digital de 0 até 7

Exemplo: Simulação

Alunos: Maria Victória Saramago e João Victor da Veiga (semestre 2013-1)

Exemplo: Esquemático Projeto Exemplo Semestre 2019-2

Esquemático contador assíncrono de 0 até 9

Introdução a Simulação de Circuitos Eletrônicos

SIMULAÇÃO DE CIRCUITOS ELETRÔNICOS

Qual a necessidade de se realizar uma simulação computacional:

- Averiguação do funcionamento do circuito projetado
 - Comprovação com a teoria
 - Evitar gastos desnecessários (Custo)
 - Tempo
 - Compra de componentes
- Segurança
 - Ex: Aviação, Aeroespacial

Como funcionam os simuladores de circuitos:

- Os componentes elétricos/eletrônicos são modelados matematicamente
 - Ideal
 - Considerando os parâmetros do componente

Desenvolvedor do Proteus

http://www.labcenter.co.uk/

Proteus no Youtube

http://www.labcenter.co.uk/

Esquemáticos de qualidade para publicações e impressões

Esquemáticos de qualidade para publicações e impressões

Visualização do encapsulamento do componente durante o desenho do esquemático

Roteamento automático para placas de circuito impresso

Trilhas de potência e malhas de terra

Visualização 3D da placa

Primeiro uso do Proteus

Circuito Basic01 na pasta Interactive Simulation/Animated Circuits

Primeiro uso do Proteus

Circuito Basic02 na pasta Interactive Simulation/Animated Circuits

Circuito AC01 na pasta Sample/Interactive Simulation/Animated Circuits

Execute a simulação

Oscillators (2) *DEFINE GWIRE=1E3 **Q1** BC108 **Q2** BC108

TTL DECADE COUNTER

This circuit shows a simulation of a counter circuit using real TTL parts. We're clocking the counter at 10Hz here, but you'll find fast machines can simulate the circuit at well over 10kHz.

This shows the same effect as circuit 2, but if the value of the variable resistor is too large then the current through the relay coil is not large enough to activate the relay and the light on the secondary circuit is not switched on.

Circuito simples com fonte CC e resistor

Circuito paralelo com fonte CC e resistores

Circuito série com fonte CC e resistores

Multivibrador Astável

Circuito simples com fonte CA e resistor

Ajuste do osciloscópio

Apresentação do Circuito do Projeto Exemplo

Esquemático Projeto Exemplo: Amplificador de Áudio:

Motor Corrente Contínua

Princípio de funcionamento do Relé Fotoeletrônico

Relé Fotoeletrônico

Exemplo: Esquemático Projeto Exemplo

Luminária a LEDs de alto brilho com dimmer

Simulação Projeto Exemplo:

Luminária a LEDs de alto brilho com dimmer