Non contestualità

Corso di Fondamenti di Informatica - modulo 1 Corso di Laurea in Informatica Università di Roma "Tor Vergata" a.a. 2020-2021

Giorgio Gambosi

Pumping lemma

Teorema 1. Sia $L \subseteq V_T^*$ un linguaggio non contestuale. Esiste allora una costante n tale che se $z \in L$ e $\mid z \mid \geq n$ allora esistono 5 stringhe $u, v, w, x, y \in V_T^*$ tali che

- i) uvwxy = z
- ii) $|vx| \ge 1$
- $iii) \mid vwx \mid \leq n$
- iv) $\forall i \geq 0$ $uv^iwx^iy \in L$.

Pumping lemma: interpretazione come gioco a due

Se L è context free, Alice vince sempre questo gioco con Bob:

- 1. Alice fissa un intero n > 0 opportuno
- 2. Bob sceglie una stringa $z \in L$ con |z| > n
- 3. Alice divide z in cinque parti uvwxy con $|vwx| \le n$ e $|vx| \ge 1$
- 4. Bob sceglie un intero $i \ge 0$
- 5. Alice mostra a Bob che $uv^iwx^iy\in L$

Dimostrazione

Grammatica $\mathcal{G} = \langle V_T, V_N, P, S \rangle$ in CNF che genera $L = L(\mathcal{G})$ e sia $k = |V_N|$ il numero di simboli non terminali in \mathcal{G} .

Qualunque albero sintattico A(x) relativo ad una stringa $x \in V_T^*$ derivata in $\mathcal G$ sarà tale da avere tutti i nodi interni (corrispondenti a simboli non terminali) di grado 2, eccetto quelli aventi foglie dell'albero come figli, che hanno grado 1.

Dimostrazione

Se h(x) è l'altezza di A(x) (numero massimo di archi in un cammino dalla radice ad una foglia), abbiamo $|x| \le 2^{h(x)}$

Quindi, se $|x| > 2^{|V_N|}$ allora $h(x) > |V_N|$: di conseguenza, deve esistere un cammino dalla radice ad una foglia che attraversa almeno $|V_N| + 1$ nodi interni.

Per il pigeonhole principle, (almeno) due di questi nodi sono associati ad uno stesso non terminale, ad esempio A.

Dimostrazione

Indichiamo con r il nodo più vicino alla radice associato al simbolo A, e con s il nodo associato ad A più vicino alla foglia

Dimostrazione

Dalle due occorrenze di A in r ed s derivano stringhe diverse (vwx e w), di cui una è sottostringa dell'altra. Sul cammino da r ad s c'è almeno un nodo, necessariamente di grado 2, quindi $|vx| \ge 1$

Dimostrazione

Gli alberi sottostanti possono essere sostituiti l'uno all'altro all'interno di un qualunque albero sintattico: quindi, anche la stringa uwy è generata dalla grammatica (sostituendo, nell'albero precedente, l'albero di sinistra con quello di destra). Mediante la sostituzione opposta, anche la stringa uvvwxxy risulta generabile.

Dimostrazione

Pumping lemma

Fornisce soltanto una condizione necessaria perché un linguaggio sia context free: non può essere utilizzato per mostrare la non contestualità di un linguaggio, ma solo per dimostrarne la contestualità.

L non contestuale \implies pumping lemma verificato pumping lemma non verificato \implies L non contestuale

Pumping lemma: utilizzo come gioco a due

Se Alice vince sempre questo gioco con Bob, allora L non è CF

- 1. Bob sceglie un intero n>0
- 2. Alice sceglie una stringa $z \in L$ con |z| > n
- 3. Bob divide z in cinque parti uvwxy con $|vwx| \le n$ e $|vx| \ge 1$
- 4. Alice sceglie un intero $i \geq 0$
- 5. Alice mostra a Bob che $uv^iwx^iy \notin L$

Esempio

$$L = \{a^k b^k c^k | k > 0\}$$
 non è CF

- 1. Bob sceglie un intero $n>0\,$
- 2. Alice sceglie la stringa $a^nb^nc^n\in L$
- 3. Bob divide z in cinque parti uvwxy con $\mid vwx\mid \leq n$ e $\mid vx\mid \geq 1$. vwx o è una sequenza di occorrenze dello stesso simbolo (ad esempio a^h , h>0) o è composta di due sottosequenze di stessi simboli (ad esempio a^rb^s , r,s>0). Quindi, almeno uno dei simboli a,b,c non compare in vwx e quindi né in v né in x
- 4. Alice sceglie i=2
- 5. Alice mostra a Bob che $uv^2wx^2y\not\in L$ in quanto almeno un simbolo ha aumentato il numero di occorrenze ed almeno un altro simbolo ha un numero di occorrenze invariato