#### MPEI 2018-2019

#### Aula 6

Caracterização de variáveis aleatórias (continuação) : Distribuições

## Distribuições - Motivação

- As funções de massa de probabilidade e de densidade de probabilidade (para o caso contínuo) podem assumir as mais variadas formas
- Mas existe um conjunto de "formas" (distribuições) que aparecem repetidamente em muitos e variados problemas
  - Formam um conjunto de ferramentas base que é muito útil conhecer ...

### Existem muitas distribuições

- Discretas
  - Bernoulli
  - Binomial
  - Poisson
  - Geométrica
  - **—** ...
- Contínuas
  - Uniforme
  - Normal
  - Qui-quadrado
  - T de Student ...
- Ver Wikipedia
  - https://en.wikipedia.org/wiki/List of probability distributions

## Distribuições Discretas

- Distribuição directamente relacionada com as experiências de Bernoulli
- Seja A um acontecimento relacionado com o resultado de uma experiência aleatória
- A variável de Bernoulli define-se como

• 
$$I_A(\omega) = \begin{cases} 1 & se \ \omega \in A \\ 0 & caso \ contr\'ario \end{cases}$$

 O I que usamos para a designar resulta de ser usada muitas vezes como indicadora da ocorrência/não ocorrência de um evento

• Quando o evento ocorre a variável aleatória  $\it I$  assume o valor 1; caso contrário o valor 0

• 
$$S_I = \{0,1\}$$

• 
$$p_I(1) = p$$

• 
$$p_I(0) = 1-p$$



- Valor esperado E[I] ?
- Var(I) = ?

• 
$$E[I] = \sum_{i} x_{i} p(x_{i})$$

$$= 0 \times (1 - p) + 1 \times p$$

$$= p$$

• 
$$Var(I) = E[I^2] - (E[I])^2$$

• 
$$E[I^2]=0^2 \times (1-p) + 1^2 \times p = p$$

• 
$$Var(I) = p - p^2 = p(1-p)$$

#### Variável Binomial

- Directamente relacionada com a Lei Binomial
- Seja X o número de vezes que um acontecimento A ocorre em n experiências de Bernoulli
  - isto é, X representa o número de sucessos em n experiências (observações)

• 
$$X = \sum_{j=1}^{n} I_j$$
  $\rightarrow S_X = \{0,1,2,...,n\}$ 

#### Variável Binomial

• 
$$p_X(k) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$





• 
$$F_X(x) = \sum_{k=0}^{\lfloor x \rfloor} {n \choose k} p^k (1-p)^{n-k}$$

#### Variável Binomial – Média e Variância

• Fácil derivar usando o facto de termos n variáveis de Bernoulli independentes, que designamos por  $X_i$ 

• 
$$E[X] = E[\sum X_i] = \sum E[X_i]$$
  $pq$ ?  
=  $p + p + \dots + p = np$ 

De forma similar

$$Var(X) = Var(\sum X_i) = \sum Var(X_i) = \dots = n p (1-p)$$

## Variável Binomial - Exemplos

- Têm distribuição Binomial, por exemplo:
  - Número de peças defeituosas num lote de um determinado tamanho (ex: 50 peças)
  - Número de respostas certas num exame de verdadeiro falso
  - Número de clientes que efectuaram compras em 100 que entraram numa loja

## Distrib. Binomial - Áreas de aplicação

- A distribuição surge em muitas áreas cientificotecnológicas:
  - Engenharia de produção: Muitas vezes as medidas de controlo de qualidade são baseadas na distribuição binomial
    - O caso Binomial aplica-se a qualquer situação industrial em que o resultado é binário e os resultados de ensaio são independentes e com probabilidades constantes
  - Medicina: Por exemplo os resultados "cura" ou "não cura" são importantes na indústria farmacêutica
  - Indústria Militar: "acerta" "falha" é muitas vezes a interpretação do lançamento de um míssil ou de uma missão
  - Informática: "acerto" e "falha" é uma interpretação possível para detectores de SPAM, testes a métodos/funções de um programa, procura de informação na web ...

# Exemplo de aplicação 1: Transmissão digital

- Um sistema de transmissão digital envia um pacote de 1 kByte através de canal com ruído sendo a probabilidade de erro de cada bit  $10^{-3}$  (ou seja 1 bit em cada mil).
- Considerando que os erros são independentes, determine:
  - Probabilidade de haver 1 erro ?
  - Probabilidade de haver erro ?

## Exemplo 2 – segurança de aviões

- Considere que um motor de avião pode falhar com probabilidade p e que as falhas em motores distintos são independentes.
- Se um avião se despenha quando mais do que 50% dos motores falham, é mais seguro voar num avião de 4 motores ou de 2 motores ?
- Faz parte do guião Prático 3
- Como resolver?
- Sugestão: calcular a probabilidade de cair um avião com 2 motores, repetir para o de 4 motores e comparar os resultados (será função da probabilidade de falha de um avião)

## Possível resolução

 O de 2 motores despenha-se se os 2 motores falharem. Qual a probabilidade de 2 falhas em 2 motores ?

• 
$$p2 = p_X(2, n = 2) = {2 \choose 2} p^2 (1-p)^{2-2} = p^2$$

- O de 4 despenha-se se 3 ou 4 falharem. Qual a probabilidade ?
- $p4 = p_X(3, n = 4) + p_X(4, n = 4)$
- $= {4 \choose 3} p^3 (1-p)^{4-3} + {4 \choose 4} p^4 (1-p)^{4-4}$
- =  $4 p^3 (1-p) + p^4 = 4 p^3 3 p^4$
- Relação entre p2 e p4
- $\frac{p4}{p2} = 4p 3p^2 = p(4-3p)$ 
  - NOTE que depende de p

• • •

| р    | p2     | р4         | p4/p2  |  |
|------|--------|------------|--------|--|
| 0,01 | 0,0001 | 0,00000397 | 0,0397 |  |
| 0,02 | 0,0004 | 0,00003152 | 0,0788 |  |
| 0,03 | 0,0009 | 0,00010557 | 0,1173 |  |
| 0,04 | 0,0016 | 0,00024832 | 0,1552 |  |
| 0,05 | 0,0025 | 0,00048125 | 0,1925 |  |
| 0,06 | 0,0036 | 0,00082512 | 0,2292 |  |
| 0,07 | 0,0049 | 0,00129997 | 0,2653 |  |
| 0,08 | 0,0064 | 0,00192512 | 0,3008 |  |
| 0,09 | 0,0081 | 0,00271917 | 0,3357 |  |
| 0,1  | 0,01   | 0,0037     | 0,37   |  |
| 0,2  | 0,04   | 0,0272     | 0,68   |  |
| 0,3  | 0,09   | 0,0837     | 0,93   |  |
| 0,4  | 0,16   | 0,1792     | 1,12   |  |
| 0,5  | 0,25   | 0,3125     | 1,25   |  |
| 0,6  | 0,36   | 0,4752     | 1,32   |  |
| 0,7  | 0,49   | 0,6517     | 1,33   |  |
| 0,8  | 0,64   | 0,8192     | 1,28   |  |
| 0,9  | 0,81   | 0,9477     | 1,17   |  |
|      |        |            |        |  |

O que significam p4/p2 < 1?

**p2** 

0,09

0,0961

0,1024

0,1089

0,1156

0,1225

0,1296

0,1369

0,1444

0,1521

p

0,3

0,31

0,32

0,33

0,34

0,35

0,36

0,37

0,38

0,39

é mais seguro voar num avião de 4 motores ou de 2 motores ?

p4/p2

0,93

0,9517

0,9728

0,9933

1,0132

1,0325

1,0512

1,0693

1,0868

1,1037

p4

0,0837

0,091458

0,099615

0,10817

0,117126

0,126481

0,136236

0,146387

0,156934

0,167873

## Exemplo de aplicação III

- According to the U.S. Census Bureau, approximately 6% of all workers in Jackson, Mississippi, are unemployed.
- In conducting a random telephone survey in Jackson, what is the probability of getting two or fewer unemployed workers in a sample of 20?

De: Business Statistics, Ken Black, 6<sup>th</sup> ed, John Willey & Sons (cap 5)

## Resolução

- 6% desempregado => p = 0.06
- Tamanho da amostra é  $20 \Rightarrow n = 20$
- 94% têm emprego => 1 p = 0.94
- x é o número de sucessos que se pretende
- Qual é a probabilidade de termos 2 ou menos desempregados na amostra de 20 ?
- Neste tipo de problemas o importante e muitas vezes o mais difícil é identificar o p, n e x

## Resolução

$$n = 20$$
  
 $p = 0.06$   
 $q = 1 - p = 0.94$   
 $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$   
 $= 0.2901 + 0.3703 + 0.2246 = 0.8850$ 

$$P(X=0) = \frac{20!}{0!(20-0)!} (0,06)^{0} (0,94)^{20-0} = (1)(1)(0,2901) = 0,2901$$

$$P(X = 1) = ...$$

$$P(X = 2) = ....$$

#### Variável Geométrica

- Seja X o número de vezes que é necessário repetir uma experiência de Bernoulli até obter um sucesso
  - Prob. Sucesso: p prob. Falha = 1-p
- $p_X(k) = p(1-p)^{k-1}$ , k = 1,2,3,...Porque teremos k-1 insucessos e depois sucesso
- $F_X(x) = \sum_{k=0}^{\lfloor x \rfloor} p(1-p)^{k-1}$

#### Exemplo de aplicação – Helpdesk UA

- Problema:
- Considere o serviço de atendimento via telefone do Helpdesk da UA.
- Supondo que a probabilidade de se conseguir contactar o suporte é p=0,1 (só ao fim de 10 tentativas ☺).
- Determine a probabilidade de necessitar de menos de 3 chamadas até conseguir expor o seu problema?
- Solução:
- $Pr(n^{\circ} chamadas < 3) =$  Pr(1 chamada OU 2 chamadas)
- $= p(1-p)^{1-1} + p(1-p)^{2-1} = p(2-p) = 0.19$

## Variável Geométrica – Média e Variância

Demontra-se que:

• 
$$E[X] = \frac{1}{p}$$

- Resultado de  $\sum_{i=1}^{\infty} i \ p(1-p)^{i-1}$
- Intuitivo: no exemplo do Helpdesk, por exemplo, quanto mais provável atenderem menos chamadas teremos que fazer (em média)

• 
$$Var(X) = (1 - p)/p^2$$

#### Binomial para valores de n elevados

- Consideremos o seguinte cenário:
- Num conjunto de programas a probabilidade de haver pelo menos um erro ao analisar um conjunto de 1.000 linhas de código é p (p<1)</li>
  - Não nos interessa o número de erros, apenas se existe algum ou não
- Se o número total de linhas dos programas for N x 1000 e os dividirmos em blocos de 1000 linhas a probabilidade de k blocos terem erros segue a distribuição Binomial com parâmetros N e p

## (continuação)

- Se quisermos analisar células de 100 linhas, e considerarmos que a distribuição dos erros é uniforme, a probabilidade desce para p/10
  - Teríamos então uma Binomial com parâmetros 10 N e p/10
  - Teoricamente temos a forma de cálculo mas basta N ser um número moderado e 10N começa a ser elevado e os cálculos complicados [mesmo em computador]
- Exemplo: Blocos de 100 linhas; 1000 blocos; p=0,98/10
- Qual a probabilidade de blocos com erro ser inferior ou igual a 100 ?

$$P = F_{x}(100) = \sum_{k=0}^{100} {1000 \choose k} 0,098^{k} 0,902^{1000-k}$$



• • •

- As coisas ainda se complicam mais de reduzirmos mais o tamanho dos blocos (100 linhas, 10 linhas ..)
- Será que conseguimos arranjar maneira(s)
   eficiente(s) de calcular quando o tamanho é muito
   pequeno ?
- No limite teremos apenas um bloco que vai ter ou não um erro
  - Número de blocos "infinitesimais" com erro = número de erros

## Distribuição de Poisson

- Considere-se que temos uma variável Binomial,n cresce e p decresce por forma a  $np \rightarrow \lambda > 0$
- Para n grande pode fazer-se as seguintes aproximações: p  $\cong \frac{\lambda}{n} \ e \ 1-p \cong 1-\frac{\lambda}{n}$
- $P(X = k) = \binom{n}{k} p^k (1 p)^{n-k}$   $\rightarrow$  Binomial
- $\lim_{n \to \infty} P(X = k) = \lim_{l \to \infty} {n \choose k} p^k (1 p)^{n k} =$
- = .... =  $\frac{\lambda^k e^{-\lambda}}{k!}$
- $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

é a função de massa de probabilidade da distribuição de Poisson, com k=0, 1, 2, ...

## Demonstração

• 
$$\lim_{n\to\infty} \binom{n}{k} p^k (1-p)^{n-k}$$

• 
$$= \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

• 
$$= \lim_{n \to \infty} \frac{n(n-1)\dots(n-k+1)}{k!} \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$

• 
$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n(n-1)...(n-k+1)}{n^k} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$

• 
$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \dots \frac{n-k+1}{n} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$

• = 
$$\frac{\lambda^k}{k!} \lim_{n \to \infty} \mathbf{1} \left( \mathbf{1} - \frac{1}{n} \right) \left( \mathbf{1} - \frac{2}{n} \right) \dots \left( \mathbf{1} - \frac{k-1}{n} \right) \left( \mathbf{1} - \frac{\lambda}{n} \right)^n \left( \mathbf{1} - \frac{\lambda}{n} \right)^{-k}$$

- como  $\lim_{\substack{n \to \infty \\ n \to \infty}} \left(1 \frac{\alpha}{n}\right)^n = e^{-\alpha}$ ,  $\lim_{\substack{n \to \infty \\ n \to \infty}} \left(1 \frac{j}{n}\right) = 1$  e o limite do produto é o produto dos limites temos:
- $=\frac{\lambda^k}{k!} \times 1 \times e^{-\lambda} \times 1$

# Distribuição para vários valores do parâmetro λ

• Função de probabilidade:

$$p_X(k) = \Pr(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0,1,2,3 \dots$$

Tem apenas um parâmetro, o lambda



## Variável de Poisson – Média e Variância

- $E[X] = \lambda$ 
  - Relembre que  $\lambda$  é aproximado por np e o valor esperado da Binomial é np

•  $Var(X) = \lambda$ 

#### Variável de Poisson

 A distribuição de Poisson foca-se apenas no número de ocorrências (discreto) num intervalo de tempo contínuo (ou região do espaço).

- Esta distribuição não tem um número de experiências (n) como na Binomial
  - As ocorrências são independentes das outras ocorrências

## Aproximação de Poisson à distribuição Binomial

 Problemas envolvendo a distribuição Binomial em que n é grande e o valor de p é pequeno, gerando desta forma eventos raros, são os candidatos à utilização da distribuição de Poisson

- Regra prática ("rule of thumb"):
  - Se n>20 e np <=7 a aproximação de Poisson é suficientemente próxima para ser usada em vez da Binomial

## Aproximação de Poisson à distribuição Binomial

- Procedimento para aproximar a Binomial por Poisson:
  - 1. Calcular a média da Binomial  $\mu = np$
  - Como μ é o valor esperado da Binomial, passa a ser o λ (=E[X]) de Poisson
  - 3. Usar a fórmula de Poisson (ou uma tabela)

$$p_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

## Aplicações da distribuição Poisson

- As distribuições de Poisson surgem em experiências onde se verificam as seguintes propriedades:
  - O número de resultados que ocorrem num determinado intervalo de tempo ou região é independente do número que ocorre em qualquer outro intervalo temporal ou região espacial disjunta
  - A probabilidade que um resultado ocorra durante um intervalo ou região infinitesimal é proporcional ao comprimento do intervalo ou dimensão da região e não depende das ocorrências fora desse intervalo ou região
  - A probabilidade de haver mais que um resultado numa região infinitesimal é desprezável

## Exemplo de aplicação

- Bank customers arrive randomly on weekday afternoons at an average of 3.2 customers every 4 minutes.
- What is the probability of having more than 7 customers in a 4-minute interval on a weekday afternoon?

 De: Business Statistics, Ken Black, 6<sup>th</sup> ed, John Willey & Sons (cap 5)

## Resolução

 Consideremos o número de clientes (em intervalos de 4 minutos) como a variável aleatória X

Pretendemos
 P("X > 7 clientes /4 minutos")

•  $\lambda = 3$ 

•  $\lambda = 3.2$  [clientes em 4 minutos]

## Resolução (continuação)

- A solução requer que calculemos para k = 8, 9, 10, 11, 12, 13, 14, . . . . até o valor ser aproximadamente zero
  - Ou usemos o complemento e calculemos k=0,1,2,3,4,5,6,7
- Depois é só somar as probabilidades
- O resultado (0,0169) mostra que é pouco provável que um banco que tem em média 3,2 clientes a cada 4 minutos receba 7 clientes num período de 4 minutos
  - TPC: confirmar este valor

## Resolução (continuação)

 Este tipo de probabilidades são muito úteis para os gestores de Bancos (e outras instituições com atendimento ao público) dimensionarem o número de pessoas e postos de atendimento

 A distribuição de Poisson é também muito útil na modelação da chegada de mensagens (ou outros tipos de eventos) em redes de computadores