Cursul 2

Şiruri numerice și de funcții. Inegalități remarcabile în $\mathbb R$

Multimea numerelor reale

În cele ce urmează, vom indica, sub formă de axiome, proprietățile fundamentale ale unui sistem de numere reale, adică ale unui corp total ordonat complet.

Definiția 2.1 Se numește **sistem de numere reale** o mulțime \mathbb{R} înzestrată cu două operații algebrice: "+" (adunarea) și "·" (înmulțirea), precum și cu o relație de ordine, notată cu " \leq ", în raport cu care sunt îndeplinite următoarele trei grupe de axiome:

I. \mathbb{R} este un corp, adică au loc:

```
(I.1) x + (y + z) = (x + y) + z, \forall x, y, z \in \mathbb{R};
```

- (I.2) există un element $0 \in \mathbb{R}$, astfel încât x + 0 = 0 + x = x, $\forall x \in \mathbb{R}$;
- $(I.3) \ \forall x \in \mathbb{R}, \ \exists (-x) \in \mathbb{R} \ asa \ incat \ x + (-x) = (-x) + x = 0;$
- (I.4) $x + y = y + x, \forall x, y \in \mathbb{R}$;
- (I.5) $(x \cdot y) \cdot z = x \cdot (y \cdot z), \forall x, y, z \in \mathbb{R};$
- (I.6) $\exists 1 \in R$, astfel \hat{i} ncât $x \cdot 1 = 1 \cdot x = x$, $\forall x \in \mathbb{R}$;
- $(I.7) \ \forall x \in \mathbb{R} \setminus \{0\}, \ \exists x^{-1} \in \mathbb{R} \ asa \ \hat{n} c \hat{a} t \ x \cdot x^{-1} = x^{-1} \cdot x = 1;$
- (I.8) $x \cdot y = y \cdot x, \forall x, y \in \mathbb{R}$:
- (I.9) $x \cdot (y+z) = x \cdot y + x \cdot z, \forall x, y, z \in \mathbb{R}$:
- II. \mathbb{R} este un corp ordonat, adică:
 - (II.1) $\forall x, y \in \mathbb{R} \text{ avem } x \leq y \text{ sau } y \leq x;$
 - (II.2) $\forall x, y \in \mathbb{R}$, $dac \check{a} \ x \leq y \ \text{si} \ y \leq x$, $atunci \ x = y$;
 - (II.3) $\forall x, y, z \in \mathbb{R} \ cu \ x \leq y \ \text{si} \ y \leq z \Longrightarrow x \leq z;$
 - (II.4) $\forall x, y \in \mathbb{R} \ cu \ x \leq y \Longrightarrow x + z \leq y + z, \ \forall z \in \mathbb{R};$
 - (II.5) $\forall x, y, z \in \mathbb{R} \ cu \ x \leq y \ si \ 0 \leq z \Longrightarrow x \cdot z \leq y \cdot z;$
- III. (Axioma de completitudine Cantor-Dedekind) Orice submulțime nevidă A a lui \mathbb{R} care este majorată admite cel puțin o margine superioară în \mathbb{R} . Aşadar, există sup $A \in \mathbb{R}$.

Observație: 1. Ținând cont de axiomele lui \mathbb{R} se observă cu uşurință că, întrucât $1 \in \mathbb{R}$, atunci și elementele 2 = 1 + 1, 3 = (1 + 1) + 1, ... aparțin mulțimii numerelor reale. Aceste elemente 1, 2, 3, ... le vom numi numere naturale, iar mulțimea lor o vom nota cu \mathbb{N} . De asemenea, odata cu orice element $n \in \mathbb{N}$, avem că $-n \in \mathbb{R}$. Totalitatea elementelor 0, 1, -1, 2, -2, ... se notează cu \mathbb{Z} , și numește mulțimea numerelor întregi. Mai mult, dacă $x, y \in \mathbb{Z}$ iar $y \neq 0$, atunci $x \cdot y^{-1} \in \mathbb{R}$. Mulțimea numerelor reale care satisfac această proprietate se numește mulțimea numerelor raționale și se notează cu \mathbb{Q} . Așadar, între submulțimile remarcabile ale lui \mathbb{R} , avem următoarele relații

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

2. Mulțimea numerelor raționale \mathbb{Q} satisface grupul de axiome I și II, dar nu satisface axioma de completitudine. Spre exemplu mulțimea $A = \{x \in \mathbb{Q} \mid 0 < x^2 < 2\}$ este majorată în \mathbb{Q} dar $\sup(A) \notin \mathbb{R}$. Așadar, există submulțimi ale lui \mathbb{Q} care, majorate fiind, nu au marginea superioară în \mathbb{Q} .

Teorema 2.2 Fie A o submulțime nevidă a lui \mathbb{R} . Un element $\alpha \in \mathbb{R}$ este margine superioară a mulțimii A, dacă și numai dacă:

- (i) $x \le \alpha, \ \forall \ x \in A \ si$
- (ii) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A \text{ astfel } \hat{n} \hat{c} \hat{a} t \alpha \varepsilon < x_{\varepsilon}.$

Demonstrație: Fie $\alpha = \sup(A)$. Conform definiției 2.1, α este cel mai mic majorant al mulțimii A. Observăm că punctul (i) exprimă că α este un majorant al mulțimii A, iar (ii) că α este cel mai mic majorant, întrucât orice număr mai mic ca α se scrie sub forma $\alpha - \varepsilon$, unde $\varepsilon > 0$. Cum $\alpha - \varepsilon$ nu este un majorant pentru A, înseamnă că există $x_{\varepsilon} \in A$ astfel încât $\alpha - \varepsilon < x_{\varepsilon}$.

Teorema 2.3 Fie A o submulțime nevidă a lui \mathbb{R} . Un element $\beta \in \mathbb{R}$ este margine inferioară a mulțimii A, dacă și numai dacă:

- (i) $\beta \le x, \ \forall \ x \in A \ si$
- (ii) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in A \text{ astfel încât } x_{\varepsilon} < \beta + \varepsilon.$

Exemple: 1. Dacă $a, b \in \mathbb{R}$ cu a < b, atunci

$$\sup[a, b] = \sup[a, b) = \sup(a, b] = \sup(a, b) = b$$

 $\inf[a, b] = \inf[a, b) = \inf(a, b] = \inf(a, b) = a$

2. Dacă o mulțime A are un cel mai mare (cel mai mic) element, atunci $\max A = \sup A$ (respectiv, $\min A = \inf A$).

Propoziția 2.4 Dacă A și B sunt submulțimi nevide ale lui \mathbb{R} , astfel încât $A \subset B$ iar mulțimea B este majorată, atunci sup $A \leq \sup B$.

Definiția 2.5 Pentru orice număr real x, definim **modulul** sau **valoarea absolută** a lui x (notat |x|), prin

$$|x| = \left\{ \begin{array}{ll} x, & \operatorname{dac} \check{a} \ x \geq 0, \\ \\ -x, & \operatorname{dac} \check{a} \ x < 0. \end{array} \right.$$

Propoziția 2.6 1. $|x| \ge 0$ pentru orice $x \in \mathbb{R}$ și |x| = 0 dacă și numai dacă x = 0;

- 2. $|x \cdot y| = |x| \cdot |y|$, pentru orice $x, y \in \mathbb{R}$;
- 3. $|x+y| \le |x| + |y|$ pentru orice $x, y \in \mathbb{R}$.

Deoarece între mulțimea \mathbb{R} și mulțimea punctelor de pe o dreaptă (pe care s-a stabilit un punct numit origine, un sens, o orientare și o unitate de măsură) se poate pune în evidență o corespondență biunivocă (bijecție), se ajunge de cele mai multe ori la identificarea numerelor reale cu punctele dreptei respective, numită dreapta reală.

Cum, pentru o mulțime $\emptyset \neq A \subset \mathbb{R}$, nemajorată, nu mai avem asigurat faptul că sup A (în sensul ordinei totale pe \mathbb{R}) aparține lui \mathbb{R} , iar pentru o mulțime nevidă și neminorată $B \subset \mathbb{R}$ nu putem spune că inf $B \in \mathbb{R}$, se iau în considerație două simboluri (elemente), numite **plus infinit** și **minus infinit**, notate cu $+\infty$ și respectiv $-\infty$. Vom nota prin $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ și vom numi această mulțime **dreapta reală extinsă**.

Vom prelungi ordinea uzuală a lui \mathbb{R} la $\overline{\mathbb{R}}$, convenind ca

$$-\infty < x$$
, $x < +\infty$, $-\infty < +\infty$, pentru orice $x \in \mathbb{R}$

Prin extensia menționată, mulțimea $\overline{\mathbb{R}}$ este total ordonată, iar elementele $+\infty$ și $-\infty$ – numite (acum) numere reale infinite (punctele de la infinit ale dreptei reale) sunt cel mai mare și respectiv cel mai mic dintre elementele sale. Într-un asemenea context, elementele mulțimii $\mathbb{R} \subset \overline{\mathbb{R}}$ se numesc numere reale finite.

Se consideră lipsite de sens, fiind nedeterminate, operațiile următoare: $(+\infty) + (-\infty)$, $(+\infty) - (+\infty)$, $(-\infty) + (+\infty)$, $(-\infty) + (+\infty)$, $(-\infty) - (-\infty)$ (pe scurt $(\infty) - (\infty)$); $(+\infty)$, $(+\infty)$, (

Siruri de elemente din \mathbb{R}

Definiția 2.7 Se numește șir de elemente din \mathbb{R} , sau șir numeric, orice funcție $f: \mathbb{N} \to \mathbb{R}$. Se notează cu x_n , valoarea funcției f în punctul $n \in \mathbb{N}$ și se numește termenul general al șirului. Altfel scris, $x_n = f(n)$.

Mulțimea termenilor șirului $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se noteză, uzual, cu $\{x_n\mid n\in\mathbb{N}\}$. Şirul $(x_n)_{n\in\mathbb{N}}$ se numește **șir** constant dacă mulțimea valorilor sale este formată dintr-un singur element, adică $x_n=c, \forall n\in\mathbb{N}$, unde $c\in\mathbb{R}$.

Definiția 2.8 i. Un şir $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numește **majorat** (respectiv **minorat**) dacă mulțimea $\{x_n\mid n\in\mathbb{N}\}$ este majorată (respectiv minorată).

ii. Şirul $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numeşte **mărginit** dacă este simultan majorat și minorat, adică dacă există α și β din \mathbb{R} , astfel încât $\alpha \leq x_n \leq \beta, \forall n \in \mathbb{N}$. Dacă nu este mărginit, atunci șirul $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ se numește nemărginit.

Cum orice interval $[\alpha, \beta]$ este conținut într-un interval centrat în 0, de forma [-a, a], cu a > 0, se observă că șirul $(x_n)_{n \in \mathbb{N}}$ este mărginit în \mathbb{R} dacă și numai dacă există a > 0 astfel încât $|x_n| \le a, \forall n \in \mathbb{N}$, sau, echivalent, $x_n \in [-a, a], \forall n \in \mathbb{N}$.

Exemple:

- 1. Şirul $x_n = (-1)^n$ este mărginit deoarece $|x_n| \le 1, \forall n \in \mathbb{N}$.
- 2. Şirul $x_n = 3^n$ nu este majorat deşi este minorat $(x_n > 0, \forall n \in \mathbb{N})$.
- 3. Şirul $x_n = -n$ nu este minorat deşi este majorat $(x_n < 0, \forall n \in \mathbb{N})$.

Definiția 2.9 Şirul numeric $(x_n)_{n\in\mathbb{N}}$ se numește monoton dacă diferența $x_{n+1}-x_n$ păstrează semn constant pentru orice $n\in\mathbb{N}$. Spunem că șirul $(x_n)_{n\in\mathbb{N}}$ este **crescător** (strict crescător) dacă $x_{n+1}-x_n\geq 0$ (respectiv $x_{n+1}-x_n>0$) pentru orice $n\in\mathbb{N}$. Şirul numeric $(x_n)_{n\in\mathbb{N}}$ se numește **descrescător** (strict descrescător) dacă $x_{n+1}-x_n\leq 0$ (respectiv $x_{n+1}-x_n<0$), pentru orice $n\in\mathbb{N}$. Un șir numeric se numește monoton dacă este sau monoton crescător, sau monoton descrescător.

Exemple:

- 1. Şirul $x_n = 1 \frac{1}{n}, n \in \mathbb{N}$ este strict crescător.
- 2. Şirul $x_n = -n, n \in \mathbb{N}$ este şir strict descrescător.
- 3. Şirul $x_n = 1 + \frac{(-1)^n}{n}$, $n \in \mathbb{N}^*$ nu este monoton.
- 4. Şirul $x_n = c, n \in \mathbb{N}$, unde c este o constantă reală, este simultan crescător și descrescător.

Definiția 2.10 Fie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ şi $(n_k)_{k\in\mathbb{N}}\subseteq\mathbb{N}$ un şir strict crescător de numere naturale. Şirul $(x_{n_k})_{k\in\mathbb{N}}\subseteq\mathbb{R}$ se numește **subșir** al şirului $(x_n)_{n\in\mathbb{N}}$.

Definiția 2.11 i) Spunem că șirul $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ are $\lim ta x\in\mathbb{R}$, și notăm $\lim_{n\to\infty}x_n=x$ sau $x_n\to x$, dacă pentru orice $\varepsilon>0$, există un număr natural n_ε , care depinde de ε , astfel încât $|x_n-x|<\varepsilon$, pentru orice $n\ge n_\varepsilon$. ii) Spunem că șirul $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ are $\lim ta+\infty$, dacă pentru orice $\varepsilon>0$, există $n_\varepsilon\in\mathbb{N}$ astfel încât $\forall n\ge n_\varepsilon$, avem $x_n>\varepsilon$. Spunem că șirul $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ are $\lim ta-\infty$, dacă pentru orice $\varepsilon>0$, există $n_\varepsilon\in\mathbb{N}$ astfel încât $\forall n\ge n_\varepsilon$, avem $x_n<-\varepsilon$.

Definiția 2.12 i) Spunem că șirul $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ este **convergent** dacă are limită și aceasta este finită. ii) Spunem că șirul $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ este **divergent** dacă nu este convergent, adică dacă fie nu are limită, fie are limita $+\infty$ sau $-\infty$.

Teorema 2.13 Dacă un șir de numere reale are limită, atunci aceasta este unică.

Demonstrație: Presupunem că șirul $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ converge la două elemente, x și y din \mathbb{R} . Conform definiției 2.11, pentru orice $\varepsilon\in\mathbb{R}, \varepsilon>0$, există $n_\varepsilon\in\mathbb{N}$ și $n_\varepsilon'\in\mathbb{N}$ astfel încât $|x_n-x|<\varepsilon$, $\forall n\in\mathbb{N}, n\geq n_\varepsilon$ și $|x_n-y|<\varepsilon$, $\forall n\in\mathbb{N}, n\geq n_\varepsilon'$.

Aşadar, pentru orice $\varepsilon \in \mathbb{R}, \varepsilon > 0$, există $n''_{\varepsilon} = \max\{n_{\varepsilon}, n'_{\varepsilon}\} \in \mathbb{N}$ astfel încât pentru orice $n \in \mathbb{N}$ cu $n \geq n''_{\varepsilon}$, avem

$$|x-y| = |x-x_n + x_n - y| \le |x_n - x| + |x_n - y| < \varepsilon + \varepsilon = 2\varepsilon.$$

De aici, rezultă că |x-y|=0, adică x=y. Altfel, dacă |x-y|>0, pentru $\varepsilon=|x-y|\cdot\lambda$, cu $0<\lambda<\frac{1}{2}$, am avea

$$|x - y| < 2\lambda \cdot |x - y|,$$

de unde $1 < 2\lambda < 2 \cdot \frac{1}{2} = 1$, absurd. Aşadar, presupunerea făcută este falsă.

Teorema 2.14 Orice subșir al unui șir convergent este convergent la aceeași limită.

Demonstrație: Fie $x_n \to x$. Atunci pentru orice $\varepsilon > 0$, există un rang n_{ε} astfel încât, pentru orice $n \ge n_{\varepsilon}$ să avem $|x_n - x| < \varepsilon$. Dacă (x_{n_k}) este un subșir al șirului (x_n) , atunci ținând seama că pentru orice $k \ge n_{\varepsilon}$ avem $n_k \ge k \ge n_{\varepsilon}$ rezultă că $|x_{n_k} - x| < \varepsilon$ pentru orice $k \ge n_{\varepsilon}$. Așadar avem $x_{n_k} \to x$.

Observație: Dacă un șir conține două subșiruri convergente cu limite diferite, atunci șirul este divergent. Spre exemplu, șirul $x_n = (-1)^n$, conține subșirul $x_{2k} = 1$ cu limita 1 și subșirul $x_{2k+1} = -1$ cu limita -1. Așadar, acesta este divergent.

Teorema 2.15 Orice şir convergent este mărginit.

Demonstrație: Fie $x_n \to x$. Atunci, pentru $\varepsilon = 1$, există un rang n_1 astfel încât, pentru orice $n \in \mathbb{N}^*, n \ge n_1$ să avem $|x_n - x| < 1$. Așadar, putem scrie $|x_n| \le |x_n - x| + |x| < 1 + |x|, \forall n \in \mathbb{N}^*, n \ge n_1$. Dacă fixăm $M = \max\{|x_1|, |x_2|, ..., |x_n|, 1 + |x|\}$, atunci avem $|x_n| \le M$, pentru orice $n \in \mathbb{N}^*$.

Următoarea propoziție prezintă câteva proprietăți algebrice ale șirurilor convergente în \mathbb{R} .

Propoziția 2.16 Fie $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ două şiruri convergente de numere reale astfel încât $\lim_{n\to\infty} x_n = x$ și $\lim_{n\to\infty} y_n = y$. Atunci au loc afirmațiile:

- (P1) Sirul $|x_n|$ este convergent în \mathbb{R} cu $\lim_{n\to\infty} |x_n| = |x|$;
- (P2) Şirul $(x_n \pm y_n)$ este convergent în \mathbb{R} cu $\lim_{n \to \infty} (x_n \pm y_n) = x \pm y$;
- (P3) Şirul $(x_n \cdot y_n)$ este convergent în \mathbb{R} cu $\lim_{n \to \infty} (x_n \cdot y_n) = x \cdot y;$
- (P4) Dacă $y_n \neq 0, n \in \mathbb{N}^*$ şi $y \neq 0$, şirul $\left(\frac{x_n}{y_n}\right)$ este convergent în \mathbb{R} cu $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}$;
- (P5) Dacă $x_n \leq y_n, n \in \mathbb{N}$, atunci $x \leq y$;
- (P6) (Teorema "cleştelui") Dacă $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = x$ şi avem $x_n \le z_n \le y_n, \forall n \in \mathbb{N}^*$, atunci şirul (z_n) este convergent $\hat{n} \in \mathbb{R}$ şi $\lim_{n\to\infty} z_n = x$;
- (P7) (Criteriul majorării) Fie $(z_n)_{n\in\mathbb{N}}$ un şir de numere reale şi fie $z\in\mathbb{R}$. Dacă există un şir de numere pozitive $(\alpha_n)_{n\in\mathbb{N}}$ convergent la zero, astfel încât $|z_n-z|\leq \alpha_n, \ \forall n\in\mathbb{N}$, atunci z_n este convergent şi $\lim_{n\to\infty} z_n=z$.

Lema 2.17 (Césaro) Orice şir mărginit de numere reale are cel puțin un subșir convergent.

Demonstrația acestei leme se găsește în [2].

Definiția 2.18 Un şir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ se numește şir Cauchy sau şir fundamental dacă pentru orice $\varepsilon>0$, există un număr natural n_{ε} astfel încât, pentru orice $n,m\geq n_{\varepsilon}$, să rezulte $|x_n-x_m|<\varepsilon$.

Definiția 2.18 se poate scrie sub următoarea formă echivalentă:

Definiția 2.19 Un şir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ se numește şir Cauchy sau şir fundamental dacă pentru orice $\varepsilon>0$, există un număr natural n_{ε} astfel încât, pentru orice $n\geq n_{\varepsilon}$ și orice $p\in\mathbb{N}$, să avem $|x_{n+p}-x_n|<\varepsilon$.

Propoziția 2.20 (Proprietăți ale șirurilor Cauchy) $Fie(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ un șir Cauchy. Atunci au loc următoarele afirmații:

- i) $(x_n)_{n\in\mathbb{N}}$ este un şir mărginit;
- ii) Dacă $(x_n)_{n\in\mathbb{N}}$ conține un subșir $(x_{n_k})_{k\in\mathbb{N}}$ convergent în \mathbb{R} și $\lim_{k\to\infty} x_{n_k} = x$, atunci $(x_n)_{n\in\mathbb{N}}$ este convergent și $\lim_{n\to\infty} x_n = x$.

Demonstrație: i) Cum x_n este șir fundamental în \mathbb{R} , rezultă că, pentru $\varepsilon=1$, va exista un număr natural $n_1\in\mathbb{N}$ astfel încât, pentru orice $m,n\in\mathbb{N}$, cu $m,n\geq n_1$, avem $|x_n-x_m|<1$. Luând $m=n_1$, rezultă $|x_n-x_{n_1}|<1, \forall n\geq n_1, n\in\mathbb{N}$. Mai mult, rezultă că $|x_n|=|x_n-x_{n_1}+x_{n_1}|\leq |x_n-x_{n_1}|+|x_{n_1}|\leq 1+|x_{n_1}|, \forall n\in\mathbb{N}$. Așadar, dacă alegem $M=\max\{|x_1|,|x_2|,...,|x_{n_1-1}|,1+|x_{n_1}|\}$, obținem $|x_n|\leq M, \forall n\in\mathbb{N}$, de unde rezultă concluzia.

ii) Cum x_n este şir fundamental, rezultă că

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists n_\varepsilon \in \mathbb{N} \text{ astfel încât } |x_n - x_m| < \varepsilon, \ \forall m, n \in \mathbb{N}, m, n \ge n_\varepsilon.$$

Pe de altă parte, cum subșirul $(x_{n_k})_{k\in\mathbb{N}}$ este convergent la un element $x\in\mathbb{R}$, avem

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists k_\varepsilon \in \mathbb{N} \text{ astfel încât } |x_{n_k} - x| < \varepsilon, \forall k \in \mathbb{N}, k \ge k_\varepsilon.$$

Aşadar, luând $n'_{\varepsilon} = \max\{n_{\varepsilon}, k_{\varepsilon}\}$, avem

$$|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < \varepsilon + \varepsilon = 2\varepsilon$$

pentru orice $n \in \mathbb{N}, n \geq n'_{\varepsilon}$, iar $k \geq n'_{\varepsilon}$.

Teorema 2.21 (Cauchy) Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Şirul x_n este convergent dacă şi numai dacă este şir fundamental.

Demonstrație: " \Rightarrow ": Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale convergent la $x\in\mathbb{R}$. Aşadar, vom avea

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists n_\varepsilon \in \mathbb{N} \text{ astfel încât } |x_n - x| < \frac{\varepsilon}{2}, \forall n \in \mathbb{N}, n \ge n_\varepsilon.$$

Dar, pentru orice $n, m \in \mathbb{N}$, cu $n, m \geq n_{\varepsilon}$, avem

$$|x_n - x_m| \le |x_n - x| + |x - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

aşadar, şirul este fundamental.

"\(\infty\)" Să presupunem că (x_n) este un şir fundamental. Arătăm că există $x \in \mathbb{R}$ astfel încât $x_n \to x$. Conform Propoziției 2.20, rezultă că (x_n) este şir mărginit. Utilizând acum Lema lui Césaro, rezultă că şirul mărginit (x_n) conține un subşir convergent. Fie $x \in \mathbb{R}$ limita sa. Arătăm că $\lim_{n \to \infty} x_n = x$. Cum $x_{n_k} \to x$, rezultă că

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists k' \in \mathbb{N} \text{ astfel încât } |x_{n_k} - x| < \frac{\varepsilon}{2}, \forall k \in \mathbb{N}, k \geq k'.$$

Pe de altă parte, cum (x_n) este şir fundamental, avem

$$\forall \varepsilon \in \mathbb{R}_+^*, \exists n_\varepsilon \in \mathbb{N} \text{ astfel încât } |x_{n_k} - x_n| < \frac{\varepsilon}{2}, \forall n \in \mathbb{N}, n \geq n_\varepsilon (\text{deoarece } n_k < n, \forall k \in \mathbb{N}).$$

Aşadar, pentru $\varepsilon > 0, \exists n'_{\varepsilon} \in \mathbb{N}$ cu $n' = \max\{n_{\varepsilon}, k'\}$, astfel încât, pentru orice $n \geq n'_{\varepsilon}$, rezultă

$$|x_n - x| \le |x_n - x_{n_k}| + |x_{n_k} - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Prin urmare, şirul (x_n) este convergent, şi are limita x.

Exemple: 1. Arătați că șirul

$$x_n = \frac{\sin x}{2} + \frac{\sin 2x}{2^2} + \dots + \frac{\sin nx}{2^n}$$

este un şir Cauchy, deci convergent.

2. Arătați că șirul

$$x_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$

nu este Cauchy.

Teorema 2.22 (Teorema Weierstrass sau teorema de convergență a șirurilor monotone)

- i) Orice şir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ care este crescător şi majorat are limită în \mathbb{R} , aceasta fiind marginea superioară a mulțimii $\{x_n\mid n\in\mathbb{N}\}$;
- ii) Orice $\operatorname{sir}(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ care este descrescător si minorat are limită $\operatorname{\hat{n}}\mathbb{R}$, aceasta fiind marginea inferioară a mulțimii $\{x_n\mid n\in\mathbb{N}\}$.

Demonstrație: i) Fie $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ crescător și majorat. Presupunem prin reducere la absurd că x_n nu este șir Cauchy. Așadar, ar exista $\varepsilon\in\mathbb{R}_+^*$ astfel încât pentru orice $n\in\mathbb{N}, \exists k, m\in\mathbb{N}$ cu $k, m\geq n$, astfel încât $|x_k-x_n|\geq \varepsilon$. Cum șirul x_n este crescător, ar reieși că, pentru m=n și $k\geq n$, am avea $x_k-x_n\geq \varepsilon$. Astfel, pentru n=1, există $n_1>1$ astfel încât $x_{n_1}\geq x_1+\varepsilon$. La fel, pentru $n=n_1$, ar exista $n_2\geq n_1$ așa încât $x_{n_2}\geq x_{n_1}+\varepsilon\geq x_1+2\varepsilon$. Prin recurență, putem construi în acest fel, un subșir $(x_{n_k})_{k\in\mathbb{N}}$ astfel încât $x_{n_k}\geq x_1+k\varepsilon$, ceea ce ar contrazice faptul că $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ este mărginit. Așadar, $(x_n)_{n\in\mathbb{N}}$ este șir Cauchy, deci convergent. Fie $x=\lim_{n\to\infty}x_n$. Cum $x_n\leq x_m, \forall n,m\in\mathbb{N},n\leq m$, fixând n și trecând la limită după m, obținem $x_n\leq x, \forall n\in\mathbb{N}$. Astfel, x este majorant al mulțimii $\{x_n\mid n\in\mathbb{N}\}$. Dacă x n-ar fi marginea superioară a mulțimii $\{x_n\mid n\in\mathbb{N}\}$, atunci ar exista un alt majorant al acesteia, x0, care să fie mai mic decât x1. Așadar, avem $x_n\leq x$ 2, x3, x4, x5, x5, x5. De aici rezultă că x5, x6, x7, ceea ce ar fi absurd. Prin urmare, x7, este chiar marginea superioară a mulțimii x6, x7, x8, x9, x9,

Punctul ii) se demonstrează ușor, considerând șirul $(-x_n)_{n\in\mathbb{N}}$ și utilizând punctul i). Așadar, șirul $(-x_n)_{n\in\mathbb{N}}$ fiind crescător și majorat, va fi convergent la marginea superioară a mulțimii $\{-x_n\mid n\in\mathbb{N}\}$. Deci $(x_n)_{n\in\mathbb{N}}$ va fi convergent la $-\sup_{n\to\infty}(-x_n)=\inf_{n\to\infty}x_n$.

Teorema 2.23 i) $Dac\check{a}(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ este un şir crescător şi nemărginit, atunci $\lim_{n\to\infty}x_n=+\infty$.

ii) Dacă $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ este un şir descrescător şi nemărginit, atunci $\lim_{n\to\infty}x_n=-\infty$. În ambele cazuri, şirul $(x_n)_{n\in\mathbb{N}}$ este divergent.

Demonstrație: Fie $(x_n)_{n\in\mathbb{N}}$ un şir crescător şi nemărginit de numere reale. Atunci mulțimea $\{x_n\mid n\in\mathbb{N}\}$ este doar minorată (de x_1), dar nu şi majorată. Prin urmare, $\forall \varepsilon>0, \exists n_\varepsilon\in\mathbb{N}$ astfel încât $x_{n_\varepsilon}>\varepsilon$. Aşadar, pentru orice $n\in\mathbb{N}$, cu $n\geq n_\varepsilon$, am avea $x_n\geq x_{n_\varepsilon}<\varepsilon$, şi deci $\lim_{n\to\infty}x_n=+\infty$ Punctul ii) se demonstrează aplicând punctul i) asupra şirului $(-x_n)_{n\in\mathbb{N}}$.

Puncte limită. Limite extreme ale unui şir de numere reale

Pentru orice şir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, putem vorbi despre mulţimea notată cu $L(x_n)$ şi denumită **mulţimea punctelor limită** corespunzătoare şirului $(x_n)_{n\in\mathbb{N}}$. În conformitate cu Teorema 2.23, avem $L(x_n)\neq\emptyset$, $\forall (x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$.

Definiția 2.24 Se numește **punct limită al unui șir** $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, un element din $\overline{\mathbb{R}}$ care este limita unui subșir $(x_{n_k})_{k\in\mathbb{N}}$ al șirului $(x_n)_{n\in\mathbb{N}}$.

Definiția 2.25 a) Se numește **limită inferioară a șirului** $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ (și se notează cu $\liminf_{n\to\infty}x_n$ sau cu $\lim_{n\to\infty}x_n$) marginea inferioară a mulțimii $L(x_n)$.

b) Se numește limită superioară a șirului $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ (și se notează cu $\limsup_{n\to\infty}x_n$ sau cu $\overline{\lim}_{n\to\infty}x_n$) marginea superioară a mulțimii $L(x_n)$.

Observații:

- 1) Pentru orice şir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, avem: $\liminf_{n\to\infty}x_n\leq\limsup_{n\to\infty}x_n$.
- 2) Dacă $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ este un şir convergent la un element $x\in\mathbb{R}$, atunci $L(x_n)=\{x\}$ şi, în acest caz, avem:

$$\underline{\lim}_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = x.$$

Se poate arăta că, și reciproc, dacă, pentru șirul $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, are loc relația $\varliminf_{n\to\infty}x_n=\varlimsup_{n\to\infty}x_n$, atunci $(x_n)_{n\in\mathbb{N}}$ are limită în $\overline{\mathbb{R}}$, aceasta fiind valoarea comună a *limitelor sale extreme* $\varliminf_{n\to\infty}x_n$ și $\varlimsup_{n\to\infty}x_n$.

De asemenea, se mai poate arăta că, pentru orice şir de numere reale $(x_n)_{n\in\mathbb{N}}$, există un subșir monoton descrescător al acestuia, care să conveargă la $\varliminf_{n\to\infty} x_n$ şi, totodată, un subșir monoton crescător care să conveargă la $\varlimsup_{n\to\infty} x_n$.

Şiruri de funcții reale

Fie $A \subset \mathbb{R}$, $A \neq \emptyset$ și fie $f_1, f_2, ...$ funcții reale definite pe mulțimea A. Şirul $f_1, f_2, ...$ se numește **șir de funcții** și se notează $(f_n)_{n \in \mathbb{N}}$. Dacă x_0 este un punct din A, atunci valorile funcțiilor f_n în punctul x_0 , adică $(f_n(x_0))_{n \in \mathbb{N}}$, formează un șir numeric.

Vom spune că $x_0 \in A$ este un **punct de convergență** al șirului de funcții $(f_n)_{n \in \mathbb{N}}$ dacă șirul numeric $(f_n(x_0))_{n \in \mathbb{N}}$ al valorilor funcțiilor în a este convergent. Mulțimea tuturor punctelor de convergență ale șirului de funcții $(f_n)_{n \in \mathbb{N}}$ se va numi **mulțime de convergență** a șirului de funcții $(f_n)_{n \in \mathbb{N}}$.

Definiția 2.26 Fie $A \subset \mathbb{R}$, $A \neq \emptyset$ și fie $(f_n)_{n \in \mathbb{N}}$ un șir de funcții definite pe mulțimea A.

- i) Spunem că $(f_n)_{n\in\mathbb{N}}$ converge simplu sau converge punctual pe A la funcția $f:A\to\mathbb{R}$ dacă șirul numeric $(f_n(x))_{n\in\mathbb{N}}$ converge la f(x) pentru fiecare $x\in A$. Vom nota aceasta prin $\lim_{n\to\infty} f_n(x) = f(x), x\in A$ sau $f_n \overset{p/A}{\to} f$ punctual (pe A).
- ii) Spunem că $(f_n)_{n\in\mathbb{N}}$ converge simplu sau converge punctual pe A la funcția $f:A\to\mathbb{R}$ dacă pentru orice $x\in A$ și orice $\varepsilon>0$ există un rang $n_0=n_0(x,\varepsilon)$ astfel încât

$$|f_n(x) - f(x)| < \varepsilon$$
 pentru orice $n \ge n_0$.

Exemplu: Fie
$$(f_n)_{n\in\mathbb{N}^*}$$
, $f_n:[0,1]\to\mathbb{R}$, $f_n(x)=\frac{nx}{nx+1}$.

Cum

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{1}{1+nx} = 1, \text{ pentru } x \in (0,1],$$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} 0 = 0, \text{ pentru } x = 0,$$

obținem că mulțimea de convergență a șirului de funcții $(f_n)_{n\in\mathbb{N}}$ este [0,1], iar funcția sa limită este

$$f: [0,1] \to \mathbb{R}, f(x) = \begin{cases} 1, & x \in (0,1], \\ 0, & x = 0. \end{cases}$$

Definiția 2.27 Fie $A \subset \mathbb{R}$, $A \neq \emptyset$ și fie $f_n : A \to \mathbb{R}$ un șir de funcții. Spunem că șirul $(f_n)_{n \in \mathbb{N}}$ converge uniform pe mulțimea A la funcția f, și notăm $f_n \stackrel{u}{\longrightarrow} f$ pentru $n \to \infty$ (sau $f_n \stackrel{u/A}{\longrightarrow} f$) dacă pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât pentru orice $n \in \mathbb{N}$, $n \geq n_{\varepsilon}$ avem $|f_n(x) - f(x)| < \varepsilon$, $\forall x \in A$.

Observație: Dacă un şir de funcții $(f_n)_{n\in\mathbb{N}}$ converge uniform la f pe mulțimea A, atunci, el converge și punctual la f pe A. Implicația inversă nu este adevărată.

Spre exemplu, șirul de funcții reale $(f_n)_{n\in\mathbb{N}}$, definit prin $f:[0,1]\to\mathbb{R}$ $f_n=x^n(1-x^n)$, $x\in[0,1]$ converge punctual atunci când $n\to\infty$ la funcția $f:[0,1]\to\mathbb{R}$, f(x)=0, însă nu converge uniform la f.

Teorema 2.28 Fie $A \subset \mathbb{R}$ şi fie $(f_n)_{n \in \mathbb{N}}$ un şir de funcţii definite pe mulţimea A şi fie funcţia $f : A \to \mathbb{R}$. Şirul (f_n) converge uniform pe A la funcţia f pentru $n \to \infty$ dacă şi numai dacă

$$\lim_{n \to \infty} \left[\sup_{x \in A} |f_n(x) - f(x)| \right] = 0.$$

Definiția 2.29 Fie $A \subset \mathbb{R}$ și fie $f_n : A \to \mathbb{R}, n \in \mathbb{N}^*$. Şirul de funcții (f_n) se numește **uniform fundamental** (sau **uniform Cauchy**) pe A, adică dacă pentru orice $\varepsilon > 0$, există $n_{\varepsilon} \in \mathbb{N}^*$ astfel încât pentru orice $m, n \in \mathbb{N}^*$ cu $m, n \ge n_{\varepsilon}$ are loc relația:

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^* \ astfel \ \hat{i}nc\hat{a}t, \forall m, n \in \mathbb{N}^*, m, n \geq n_{\varepsilon} \ are \ loc: \ |f_n(x) - f_m(x)| < \varepsilon, \ \forall x \in A,$$

sau, echivalent, dacă

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^* \text{ astfel } \hat{n} \hat{n} \hat{c} \hat{a} t, \forall n \in \mathbb{N}^*, n \geq n_{\varepsilon} \text{ si } \forall p \in \mathbb{N}^* \text{ are loc: } |f_{n+p}(x) - f_n(x)| < \varepsilon, \forall x \in A.$$

Următorul rezultat constituie o adaptare a criteriului de convergență Cauchy pentru șiruri numerice (Teorema 2.21).

Teorema 2.30 (Criteriul lui Cauchy) Fie $A \subset \mathbb{R}$ şi fie $f_n : A \to \mathbb{R}$. Atunci şirul de funcţii $(f_n)_{n \in \mathbb{N}}$ este uniform convergent pe A dacă şi numai dacă acesta este uniform Cauchy pe A.

Demonstrație: " \Rightarrow " : Să presupunem că $f_n \stackrel{u}{\to} f$ pe A. Atunci, pentru orice $\varepsilon > 0$ există $n_{\varepsilon} \in \mathbb{N}$ astfel încât pentru orice $n \geq n_{\varepsilon}$ avem

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2}, \ \forall x \in A.$$

Dacă acum considerăm $m, n \geq n_{\varepsilon}$, atunci conform (•)

$$|f_n - f_m| \le |f_n - f| + |f - f_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

pentru orice $x \in A$. Aşadar obţinem concluzia.

"\(\epsilon\)": Presupunem că pentru orice $\varepsilon>0$ există $n_{\varepsilon}\in\mathbb{N}$ astfel încât pentru orice $m,n\geq n_{\varepsilon}$ avem

$$(\bullet \bullet)|f_n(x) - f_m(x)| < \frac{\varepsilon}{2}, \quad \forall x \in A.$$

Atunci, pentru orice $x \in A$ fixat, şirul numeric $(f_n)_{n \in \mathbb{N}}$ este şir fundamental. Atunci, conform teoremei lui Cauchy 2.21, rezultă că există limita şirului (f_n) . Astfel obţinem o funcţie $f: A \to \mathbb{R}$ astfel încât pentru orice $x \in A$, $f(x) = \lim_{n \to \infty} f_n(x)$, adică f este limita şirului (f_n) , în sensul convergenţei punctuale.

Fixând în $(\bullet \bullet)$ $n \ge n_{\varepsilon}$ și făcând $m \to \infty$, rezultă că pentru $n \ge n_{\varepsilon}$ avem

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2} < \varepsilon, \forall x \in A.$$

Aşadar şirul de funcţii $(f_n)_{n\in\mathbb{N}}$ converge uniform la f pe mulţimea A.

Propoziția 2.31 (Criteriul majorării pentru convergența uniformă a unui șir de funcții reale) Fie $A \subset \mathbb{R}, A \neq \emptyset$ și fie $f_n, f: A \to \mathbb{R}$. Dacă există un șir de numere reale pozitive α_n , convergent la 0, astfel încât

$$|f_n(x) - f(x)| \le \alpha_n$$
, pentru orice $n \in \mathbb{N}$ și orice $x \in A$,

atunci $f_n \xrightarrow{u/A} f$.

Observație: Uniforma convergență păstrează la limită o serie de proprietăți ale funcțiilor șirului cum ar fi: mărginirea, continuitatea, diferențiabilitatea, integrabilitatea, etc.

Inegalități cu elemente din \mathbb{R}

Propoziția 2.32 (Inegalitatea lui Hölder, cu ponderi) Fie $n \in \mathbb{N}$, $\lambda_0, \lambda_1, ..., \lambda_n, a_0, a_1, ..., a_n, b_0, b_1, ..., b_n \in \mathbb{R}_+ = \{x \in \mathbb{R} \mid x \geq 0\}$ și fie $p, q \in \mathbb{R}_+^* = \mathbb{R}_+ \setminus \{0\}$, astfel încât $\frac{1}{p} + \frac{1}{q} = 1$. Atunci, avem:

$$\sum_{i=0}^{n} \lambda_i a_i b_i \le \left(\sum_{i=0}^{n} \lambda_i a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=0}^{n} \lambda_i b_i^q\right)^{\frac{1}{q}}.$$
 (1)

Atunci când $\lambda_1 = \lambda_2 = ... = \lambda_n \in \mathbb{R}_+^*$, inegalitatea (1) se numește inegalitatea lui Hölder fară ponderi. Dacă p = q = 2 și $\lambda_1 = \lambda_2 = ... = \lambda_n \in \mathbb{R}_+^*$, atunci inegalitatea (1) devine:

$$\sum_{i=0}^{n} a_i b_i \le \left(\sum_{i=0}^{n} a_i^2\right)^{\frac{1}{2}} \cdot \left(\sum_{i=0}^{n} b_i^2\right)^{\frac{1}{2}}.$$
 (2)

Această inegalitate este cunoscută sub denumirea de inegalitatea lui Cauchy-Buniakowski-Schwarz.

În relația (2) egalitatea are loc dacă și numai dacă există $u, v \in \mathbb{R}$, cu $u^2 + v^2 \neq 0$, astfel încât $ua_i + vb_i = 0$, pentru orice $i \in \{1, 2, ..., n\}$.

Propoziția 2.33 (Inegalitatea lui Minkowski, cu ponderi) Pentru $a \in \mathbb{R}, p \geq 1, n \in \mathbb{N}$ și $\lambda_0, \lambda_1, ..., \lambda_n, a_0, a_1, ..., a_n, b_0, b_1, ..., b_n \in \mathbb{R}_+^*$, are loc

$$\left(\sum_{i=0}^{n} \lambda_{i} (a_{i} + b_{i})^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{i=0}^{n} \lambda_{i} a_{i}^{p}\right)^{\frac{1}{p}} + \left(\sum_{i=0}^{n} \lambda_{i} b_{i}^{p}\right)^{\frac{1}{p}}.$$
(3)

Dacă $0 , inegalitatea (3) are loc cu semnul schimbat, iar egalitatea are loc dacă și numai dacă n-uplele <math>(a_0, a_1, ..., a_n)$ și $(b_0, b_1, ..., b_n)$ sunt proporționale.

Propoziția 2.34 (Inegalitatea lui Carleman) Pentru orice $n \in \mathbb{N}$ și $a_1, a_2, ..., a_n \in \mathbb{R}_+$ are loc inegalitatea

$$\sum_{i=1}^{n} (a_1 a_2 \cdot \dots \cdot a_i)^{\frac{1}{i}} \le e \sum_{i=1}^{n} a_i. \tag{4}$$

Egalitatea are loc doar când $a_1 = a_2 = ... = a_n = 0$.

Bibliografie orientativă

- [1] F. Iacob, Curs Matematică pentru anul I (https://profs.info.uaic.ro/~fliacob/An1/2016-2017)
- [2] A. Precupanu, Bazele analizei matematice, Editura Universității "Al. I. Cuza", Iași, 1993.
- [3] G. Păltineanu, Analiză matematică, Editura Universitaria, Craiova, 2002,
- [4] E. Popescu, Analiză matematică. Calcul diferențial, Editura Matrix Rom, București, 2006.
- [5] M. Postolache, Analiză matematică (teorie și aplicații), Editura Fair Partners, București, 2011.
- [6] R. Luca-Tudorache, Analiză matematică. Calcul diferențial, Editura Tehnopress, Iași, 2015.
- [7] C.G. Denlinger, *Elements of Real Analysis*, International Series in Mathematics, Jones and Bartlett Publishers International, London, 2012.
- [8] M. O. Drâmbe, Inegalități. Idei și metode., Editura GIL, Zalău, 2003.