In class work **4(a)** has questions **1** through **4** with a total of **6** points. Turn in your work at the end of class *on paper*. This assignment is due *Tuesday 12 September 13:20*.

1. Show that $3y^2 = 2x^3 + C$ is a GS to the DE $y \frac{dy}{dx} = x^2$.

1 2. Find a GS to the DE $y \frac{dy}{dx} = \cos(2x)$.

1 3. Find a GS to the DE $\frac{1}{x} \frac{dy}{dx} = \frac{1}{y}$.

- 4. Look up the derivatives of the inverse hyperbolic functions in the QRS. Use these results to find the following antiderivatives. To find each antiderivative, make a change of variable of the form $x = \alpha z$, where α is a cleverly choosen number.
- 1 (a) $\int \frac{1}{\sqrt{25x^2+1}} dx$

1 (b) $\int \frac{1}{\sqrt{x^2-12}} dx$

1 (c) $\int \frac{1}{x^2 - 81} dx$