

CHAPTER 8 BEYOND POLYNOMIAL RUNNING TIMES

Iris Hui-Ru Jiang Fall 2017

Department of Electrical Engineering National Taiwan University

Outline

- Content:
 - Polynomial-time reduction
 - NP-completeness
- Reading:
 - Chapter 8

Easy vs. Hard

- Q: Which problems will we be able to solve in practice?
- A working definition.
 - [Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms.
- Desiderata: Classify problems according to those that can be solved in polynomial-time and those that cannot.
- Provably requires exponential-time.
- Frustrating news: Huge number of fundamental problems have defined classification for decades.
- Chapter 8: Show that these fundamental problems are computationally equivalent and appear to be different manifestations of one really hard problem.

Decision & Optimization Problems

- Decision problems: those having yes/no answers.
 - MST: Given a graph G=(V, E) and a bound K, is there a spanning tree with a cost at most K?
 - TSP: Given a set of cities, distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?
- Optimization problems: those finding a legal configuration such that its cost is minimum (or maximum).
 - MST: Given a graph G=(V, E), find the cost of a minimum spanning tree of G.
 - TSP: Given a set of cities and that distance between each pair of cities, find the distance of a "minimum route" starts and ends at a given city and visits every city exactly once.
- Could apply binary search on a decision problem to obtain solutions to its optimization problem.
- Class NP is associated with decision problems.

Traveling Salesman Problem (TSP) (1/2)

All 13,509 cities in US with a population of at least 500

Traveling Salesman Problem (TSP) (2/2)

Optimal TSP tour

Complexity Classes

- Developed by S. Cook and R. Karp in early 1970.
- The class P: class of problems that can be solved in polynomial time in the size of input.
- The class NP (Nondeterministic Polynomial): class of problems that can be verified in polynomial time in the size of input.
 - P=NP?
- The class NP-complete (NPC): A problem Y in NP with the property that for every problem X in NP, $X \leq_p Y$.
- Theorem: Suppose Y is NPC, then Y is solvable in polynomial time iff P = NP.
 - Any NPC problem can be solved in polynomial time ⇒ All problems in NP can be solved in polynomial time.
- Fundamental question: Do there exist "natural" NPC problems?

Verification Algorithm and Class NP

- Verification algorithm: a 2-argument algorithm A, where one argument is an input string x and the other is a binary string y (called a certificate). A verifies x if there exists y s.t. A answers "yes."
- Ex: The Traveling Salesman Problem (TSP)
 - Instance: a set of *n* cities, distance between each pair of cities, and a bound *B*.
 - Question: is there a route that starts and ends at a given city, visits every city exactly once, and has total distance ≤ B?
- Is TSP ∈ NP?
- Need to check a solution in polynomial time.
 - Guess a tour (certificate).
 - Check if the tour visits every city exactly once.
 - Check if the tour returns to the start.
 - Check if total distance $\leq B$.
- All can be done in O(n) time, so TSP \in NP.

The First Proved NPC: Circuit Satisfiability

CIRCUIT-SAT:

 Q: Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

More Hard Computational Problems

- Aerospace engineering: optimal mesh partitioning for finite elements.
- Biology: protein folding.
- Chemical engineering: heat exchanger network synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Economics: computation of arbitrage in financial markets with friction.
- Electrical engineering: VLSI layout.
- Environmental engineering: optimal placement of contaminant sensors.
- Financial engineering: find minimum risk portfolio of given return.
- Game theory: find Nash equilibrium that maximizes social welfare.
- Genomics: phylogeny reconstruction.
- Mechanical engineering: structure of turbulence in sheared flows.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.

Polynomial-Time Reduction (1/2)

- Desiderata: Suppose we could solve Y in polynomialtime. What else could we solve in polynomial time?
- Reduction: Problem X polynomial reduces to problem Y if given an arbitrary instance x of problem X, we can construct an input y to problem Y in polynomial time such that x is a yes instance to X iff y is a yes instance of Y.
 - Notation: X ≤_P Y.

• Remarks:

- The algorithm for Y is viewed as a black box.
- We pay for polynomial time to write down instances sent to this black box

Polynomial-Time Reduction (2/2)

- Purpose: Classify problems according to relative difficulty.
- Design algorithms: If X ≤_P Y and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
 - Bipartite matching ≤_P Network flow
- 2. Establish intractability: If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.
 - Hamiltonian cycle ≤_P Travelling salesman
- 3. Establish equivalence: If $X \leq_P Y$ and $Y \leq_P X$, $X \equiv_P Y$.
 - Up to cost of reduction

Coping with a "Tough" Problem: Trilogy I

"I can't find an efficient algorithm.

I guess I'm just too dumb."

Coping with a "Tough" Problem: Trilogy II

"I can't find an efficient algorithm, because no such algorithm is possible!"

Coping with a "Tough" Problem: Trilogy III

"I can't find an efficient algorithm, but neither can all these famous people."

Polynomial Reduction: HC ≤_P TSP

- The Hamiltonian Circuit Problem (HC)
 - **Instance:** an undirected graph G = (V, E).
 - Question: is there a cycle in G that includes every vertex exactly once?
- TSP: The Traveling Salesman Problem
- Claim: $HC \leq_P TSP$.
 - 1. Define a function *f* mapping **any** HC instance into a TSP instance, and show that *f* can be computed in polynomial time.
 - 2. Prove that G has an HC iff the reduced instance has a TSP tour with distance $\leq B$ ($x \in HC \Leftrightarrow f(x) \in TSP$).

$HC \leq_P TSP$: Step 1

- Define a reduction function f for $HC \leq_P TSP$.
 - Given an HC instance G = (V, E) with n vertices
 - Create a set of n cities labeled with names in V.
 - Assign distance between u and v

$$d(u,v) = \begin{cases} 1, & \text{if } (u,v) \in E, \\ 2, & \text{if } (u,v) \notin E. \end{cases}$$

- Set bound B = n.
- f can be computed in $O(V^2)$ time.

HC ≤_P TSP: Step 2

- G has a HC iff the reduced instance has a TSP with distance ≤ B.
 - $-x \in HC \Rightarrow f(x) \in TSP.$
 - Suppose the HC is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$. Then, h is also a tour in the transformed TSP instance.
 - The distance of the tour h is n = B since there are n consecutive edges in E, and so has distance 1 in f(x).
 - Thus, $f(x) \in TSP(f(x))$ has a TSP tour with distance $\leq B$).

$HC \leq_P TSP$: Step 2 (cont'd)

- G has a HC iff the reduced instance has a TSP with distance ≤ B.
 - $f(x) \in \mathsf{TSP} \Rightarrow x \in \mathsf{HC}.$
 - Suppose there is a TSP tour with distance $\leq n = B$. Let it be $\langle v_1, v_2, ..., v_n, v_1 \rangle$.
 - Since distance of the tour $\leq n$ and there are n edges in the TSP tour, the tour contains only edges in E.
 - Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle ($x \in HC$).

NP-Completeness

- Definition: A decision problem L (a language L ⊆ {0, 1}*)
 is NP-complete (NPC) if
 - 1. $L \in NP$, and
 - 2. $L' \leq_{\mathbf{P}} L$ for every $L' \in \mathbb{NP}$.
- NP-hard: If L satisfies property 2, but not necessarily property 1, we say that L is NP-hard.
- Suppose $L \in NPC$. P=NP?
 - If $L \in P$, then there exists a polynomial-time algorithm for every $L' \in NP$ (i.e., P = NP).
 - If $L \notin P$, then there exists no polynomial-time algorithm for any $L' \in NPC$ (i.e., $P \neq NP$).

Proving NP-Completeness

- Theorem: A decision problem L (a language L ⊆ {0, 1}*)
 is NP-complete (NPC) if
 - 1. $L \in NP$, and
 - 2. $L' \leq_{\mathbf{P}} L$ for an $L' \in \mathsf{NPC}$.
- Five steps for proving that L is NP-complete:
 - 1. Prove $L \in NP$.
 - 2. Select a known NP-complete problem L'.
 - 3. Construct a reduction *f* transforming **every** instance of *L*' to an instance of *L*.
 - 4. Prove that *f* is a polynomial-time transformation.
 - 5. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.

