Algorithmische Bestimmung von Teilchenflugbahnen durch inhomogene Magnetfelder

24. Januar 2018

Christian Peters

990

> Planung physikalischer Experimente

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?
 - > Kann der Versuch in der Praxis durchgeführt werden?

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?
 - > Kann der Versuch in der Praxis durchgeführt werden?
- > computergestützte Simulation liefert Antworten

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?
 - > Kann der Versuch in der Praxis durchgeführt werden?
- > computergestützte Simulation liefert Antworten
 - > ermöglicht das wiederholte Durchspielen eines Versuchs

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?
 - > Kann der Versuch in der Praxis durchgeführt werden?
- > computergestützte Simulation liefert Antworten
 - > ermöglicht das wiederholte Durchspielen eines Versuchs
- > enormes finanzielles Einsparpotential

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?
 - > Kann der Versuch in der Praxis durchgeführt werden?
- > computergestützte Simulation liefert Antworten
 - > ermöglicht das wiederholte Durchspielen eines Versuchs
- > enormes finanzielles Einsparpotential
 - > die Zeiten von "trial and error" sind vorbei

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?
 - > Kann der Versuch in der Praxis durchgeführt werden?
- > computergestützte Simulation liefert Antworten
 - > ermöglicht das wiederholte Durchspielen eines Versuchs
- > enormes finanzielles Einsparpotential
 - > die Zeiten von "trial and error" sind vorbei
 - > ein Versuch wird nur dann in der Praxis durchgeführt, wenn er vorher alle Simulationstests bestanden hat

- > Planung physikalischer Experimente
 - > Welche Ereignisse können auftreten?
 - > Kann der Versuch in der Praxis durchgeführt werden?
- > computergestützte Simulation liefert Antworten
 - > ermöglicht das wiederholte Durchspielen eines Versuchs
- > enormes finanzielles Einsparpotential
 - > die Zeiten von "trial and error" sind vorbei
 - > ein Versuch wird nur dann in der Praxis durchgeführt, wenn er vorher alle Simulationstests bestanden hat
- > Wie entsteht ein solches Verfahren?

990

> magnetische Felder werden in vielen großen Versuchsaufbauten eingesetzt (CERN, IKP am FZJ, ...)

- > magnetische Felder werden in vielen großen Versuchsaufbauten eingesetzt (CERN, IKP am FZJ, ...)
 - > lenken freie Ladungsträger auf bestimmte Bahnen

- > magnetische Felder werden in vielen großen Versuchsaufbauten eingesetzt (CERN, IKP am FZJ, ...)
 - > Ienken freie Ladungsträger auf bestimmte Bahnen
 - > ermöglichen Rückschlüsse auf Teilchenbeschaffenheit durch Analyse des Flugverhaltens

- > magnetische Felder werden in vielen großen Versuchsaufbauten eingesetzt (CERN, IKP am FZJ, ...)
 - > Ienken freie Ladungsträger auf bestimmte Bahnen
 - > ermöglichen Rückschlüsse auf Teilchenbeschaffenheit durch Analyse des Flugverhaltens
- > Wie können diese Vorgänge simuliert werden?

Die Lorentz-Kraft

> proportional zur Ladung ${\cal Q}$ des Teilchens

- > proportional zur Ladung Q des Teilchens
- $>\,$ proportional zur Geschwindigkeit v

- > proportional zur Ladung Q des Teilchens
- $>\,$ proportional zur Geschwindigkeit v
- > senkrecht zur Bewegungsrichtung

- > proportional zur Ladung Q des Teilchens
- $>\,$ proportional zur Geschwindigkeit v
- > senkrecht zur Bewegungsrichtung
- > senkrecht zur Magnetfeldrichtung

- > proportional zur Ladung Q des Teilchens
- $>\,$ proportional zur Geschwindigkeit v
- > senkrecht zur Bewegungsrichtung
- > senkrecht zur Magnetfeldrichtung
- > ändert sich abhängig vom Winkel lpha zwischen Teilchenbewegung und Magnetfeld

- > proportional zur Ladung Q des Teilchens
- $>\,$ proportional zur Geschwindigkeit v
- > senkrecht zur Bewegungsrichtung
- > senkrecht zur Magnetfeldrichtung
- > ändert sich abhängig vom Winkel lpha zwischen Teilchenbewegung und Magnetfeld
- > Wirkungsrichtung? →Linke-Hand-Regel

- > proportional zur Ladung Q des Teilchens
- > proportional zur Geschwindigkeit v
- > senkrecht zur Bewegungsrichtung
- > senkrecht zur Magnetfeldrichtung
- > ändert sich abhängig vom Winkel lpha zwischen Teilchenbewegung und Magnetfeld
- > Wirkungsrichtung? \rightarrow Linke-Hand-Regel

$$F_L = Q \cdot v \cdot B \cdot \sin \alpha$$

Die gleichförmige Kreisbewegung

> Körper muss durch Zentripetalkraft F auf Bahn gehalten werden

- > Körper muss durch Zentripetalkraft F auf Bahn gehalten werden
- > F ist radial zum Mittelpunkt des Kreises hin gerichtet

- > Körper muss durch Zentripetalkraft F auf Bahn gehalten werden
- > F ist radial zum Mittelpunkt des Kreises hin gerichtet

$$F = \frac{mv^2}{r} = m\omega^2 r$$

Die gleichförmige Kreisbewegung

- > Körper muss durch Zentripetalkraft F auf Bahn gehalten werden
- $\,>\,F\,$ ist radial zum Mittelpunkt des Kreises hin gerichtet

$$F = \frac{mv^2}{r} = m\omega^2 r$$

 $>\,m$ ist die Masse des Körpers

- > Körper muss durch Zentripetalkraft F auf Bahn gehalten werden
- >F ist radial zum Mittelpunkt des Kreises hin gerichtet

$$F = \frac{mv^2}{r} = m\omega^2 r$$

- > m ist die Masse des Körpers
- >v ist die Bahngeschwindigkeit

- > Körper muss durch Zentripetalkraft F auf Bahn gehalten werden
- >F ist radial zum Mittelpunkt des Kreises hin gerichtet

$$F = \frac{mv^2}{r} = m\omega^2 r$$

- $>\,m$ ist die Masse des Körpers
- > v ist die Bahngeschwindigkeit
- $>\omega$ ist die Winkelgeschwindigkeit

- > Körper muss durch Zentripetalkraft F auf Bahn gehalten werden
- >F ist radial zum Mittelpunkt des Kreises hin gerichtet

$$F = \frac{mv^2}{r} = m\omega^2 r$$

- $>\,m$ ist die Masse des Körpers
- $>\,v$ ist die Bahngeschwindigkeit
- $>\omega$ ist die Winkelgeschwindigkeit
- > r ist der Radius der Kreisbahn

Beschreibung der Flugbahn

Beschreibung der Flugbahn

> Unterteilung von v in v_{\perp} und v_{\parallel}

Beschreibung der Flugbahn

- > Unterteilung von v in v_{\perp} und v_{\parallel}
- $>v_{\parallel}$ von Lorentz-Kraft unbeeinflusst, daher gleichförmige Bewegung

Beschreibung der Flugbahn

- > Unterteilung von v in v_{\perp} und v_{\parallel}
- $>v_{\parallel}$ von Lorentz-Kraft unbeeinflusst, daher gleichförmige Bewegung
 - $> S = v_{\parallel} \cdot t$

Beschreibung der Flugbahn

- > Unterteilung von v in v_{\perp} und v_{\parallel}
- $>v_{\parallel}$ von Lorentz-Kraft unbeeinflusst, daher gleichförmige Bewegung

$$> S = v_{\parallel} \cdot t$$

> auf v_{\perp} wirkt Lorentz-Kraft wie Zentripetalkraft ightarrow Kreisbewegung

Physikalische Grundlagen

Beschreibung der Flugbahn

- > Unterteilung von v in v_{\perp} und v_{\parallel}
- $>v_{\parallel}$ von Lorentz-Kraft unbeeinflusst, daher gleichförmige Bewegung

$$> S = v_{\parallel} \cdot t$$

- > auf v_{\perp} wirkt Lorentz-Kraft wie Zentripetalkraft ightarrow Kreisbewegung
- > durch Gleichsetzen und Umformen ergeben sich folgende Zusammenhänge:

Physikalische Grundlagen

Beschreibung der Flugbahn

- > Unterteilung von v in v_{\perp} und v_{\parallel}
- $>v_{\parallel}$ von Lorentz-Kraft unbeeinflusst, daher gleichförmige Bewegung

$$> S = v_{\parallel} \cdot t$$

- > auf v_{\perp} wirkt Lorentz-Kraft wie Zentripetalkraft ightarrow Kreisbewegung
- > durch Gleichsetzen und Umformen ergeben sich folgende Zusammenhänge:

$$r = \frac{m \cdot v_{\perp}}{Q \cdot B}$$

Physikalische Grundlagen

Beschreibung der Flugbahn

- > Unterteilung von v in v_{\perp} und v_{\parallel}
- $>v_{\parallel}$ von Lorentz-Kraft unbeeinflusst, daher gleichförmige Bewegung

$$> S = v_{\parallel} \cdot t$$

- > auf v_{\perp} wirkt Lorentz-Kraft wie Zentripetalkraft ightarrow Kreisbewegung
- > durch Gleichsetzen und Umformen ergeben sich folgende Zusammenhänge:

$$r = \frac{m \cdot v_{\perp}}{Q \cdot B}$$

$$\omega = \frac{Q \cdot B}{m}$$

Abbildung: Das lokale Koordinatensystem des im Ursprung befindlichen Ladungsträgers mit Andeutung der Kreisbahn in der xy-Ebene.

Die Flugbahn im lokalen Bezugssystem

 $>v_{\parallel}$ verfolgt gleichförmige Bewegung

- $>v_{\parallel}$ verfolgt gleichförmige Bewegung
- $>v_{\perp}$ verfolgt Kreisbewegung in der xy-Ebene

- $>v_{\parallel}$ verfolgt gleichförmige Bewegung
- $>v_{\perp}$ verfolgt Kreisbewegung in der xy-Ebene
- > allgemeine Beschreibung von Kreisbewegungen in der Ebene:

- $>v_{\parallel}$ verfolgt gleichförmige Bewegung
- $>v_{\perp}$ verfolgt Kreisbewegung in der xy-Ebene
- > allgemeine Beschreibung von Kreisbewegungen in der Ebene:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} r \cdot \sin{(\omega \cdot t)} + M_x \\ r \cdot \cos{(\omega \cdot t)} + M_y \end{pmatrix}$$

Die Flugbahn im lokalen Bezugssystem

- $>v_{\parallel}$ verfolgt gleichförmige Bewegung
- $>v_{\perp}$ verfolgt Kreisbewegung in der xy-Ebene
- > allgemeine Beschreibung von Kreisbewegungen in der Ebene:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} r \cdot \sin(\omega \cdot t) + M_x \\ r \cdot \cos(\omega \cdot t) + M_y \end{pmatrix}$$

> unter Verwendung der bisherigen Überlegungen ergibt sich konkret:

Die Flugbahn im lokalen Bezugssystem

- $>v_{\parallel}$ verfolgt gleichförmige Bewegung
- $>v_{\perp}$ verfolgt Kreisbewegung in der xy-Ebene
- > allgemeine Beschreibung von Kreisbewegungen in der Ebene:

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} r \cdot \sin(\omega \cdot t) + M_x \\ r \cdot \cos(\omega \cdot t) + M_y \end{pmatrix}$$

> unter Verwendung der bisherigen Überlegungen ergibt sich konkret:

$$\begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} r \cdot \sin(\omega \cdot t) - r \\ r \cdot \cos(\omega \cdot t) \\ \vec{v}_z \cdot t \end{pmatrix}$$

Übertragung auf das globale Koordinatensystem

1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (\rightarrow Basiswechsel)

- 1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (\rightarrow Basiswechsel)
- 2. Anwendung der hergeleiteten Zusammenhänge im lokalen System \rightarrow neue Teilchenposition und Bewegungsrichtung

- 1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (\rightarrow Basiswechsel)
- 2. Anwendung der hergeleiteten Zusammenhänge im lokalen System
 → neue Teilchenposition und Bewegungsrichtung
- 3. Rücktransformation (\rightarrow Zurück zur alten Basis)

Übertragung auf das globale Koordinatensystem

- 1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (→ Basiswechsel)
- 2. Anwendung der hergeleiteten Zusammenhänge im lokalen System → neue Teilchenposition und Bewegungsrichtung
- 3. Rücktransformation (\rightarrow Zurück zur alten Basis)

© 2018 Christian Peters / - Algorithmische Bestimmung von Teilchenflugbahnen -

Hierzu: Verwendung von orthogonalen Transformationen

- 1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (\rightarrow Basiswechsel)
- 2. Anwendung der hergeleiteten Zusammenhänge im lokalen System
 → neue Teilchenposition und Bewegungsrichtung
- 3. Rücktransformation (\rightarrow Zurück zur alten Basis)
- > Hierzu: Verwendung von orthogonalen Transformationen
 - > Drehung von $ec{v}$ und $ec{B}$

- 1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (\rightarrow Basiswechsel)
- 2. Anwendung der hergeleiteten Zusammenhänge im lokalen System
 → neue Teilchenposition und Bewegungsrichtung
- 3. Rücktransformation (\rightarrow Zurück zur alten Basis)
- > Hierzu: Verwendung von orthogonalen Transformationen
 - > Drehung von $ec{v}$ und $ec{B}$
- > Eulersche Winkel

- 1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (\rightarrow Basiswechsel)
- 2. Anwendung der hergeleiteten Zusammenhänge im lokalen System
 → neue Teilchenposition und Bewegungsrichtung
- 3. Rücktransformation (\rightarrow Zurück zur alten Basis)
- > Hierzu: Verwendung von orthogonalen Transformationen
 - > Drehung von $ec{v}$ und $ec{B}$
- > Eulersche Winkel
 - > ermöglichen Drehungen um bereits gedrehte Achsen

- 1. Transformation von \vec{v} und \vec{B} in das lokale Bezugssystem des Teilchens (\rightarrow Basiswechsel)
- 2. Anwendung der hergeleiteten Zusammenhänge im lokalen System
 → neue Teilchenposition und Bewegungsrichtung
- 3. Rücktransformation (\rightarrow Zurück zur alten Basis)
- > Hierzu: Verwendung von orthogonalen Transformationen
 - > Drehung von $ec{v}$ und $ec{B}$
- > Eulersche Winkel
 - > ermöglichen Drehungen um bereits gedrehte Achsen
- > Wie lauten die Drehwinkel?

Abbildung: Illustration der Winkel α , β und δ , die zur Drehung der z-Achse benötigt werden.

Abbildung: Darstellung des Winkels γ , welcher zur Transformation von \vec{v} benötigt wird.

Ausweitung auf inhomogene Magnetfelder

> lokale Approximation durch ein homogenes Magnetfeld

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes
- > Berechnung der neuen Position in der lokalen Approximation

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes
- > Berechnung der neuen Position in der lokalen Approximation
- > Generierung einer neuen Approximation nach jedem Update von Position und Bewegungsrichtung

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes
- > Berechnung der neuen Position in der lokalen Approximation
- > Generierung einer neuen Approximation nach jedem Update von Position und Bewegungsrichtung
 - > mehrere Iterationen

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes
- > Berechnung der neuen Position in der lokalen Approximation
- > Generierung einer neuen Approximation nach jedem Update von Position und Bewegungsrichtung
 - > mehrere Iterationen
- $> \mathsf{Zeit}\ t$ als Diskretisierungsparameter

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes
- > Berechnung der neuen Position in der lokalen Approximation
- > Generierung einer neuen Approximation nach jedem Update von Position und Bewegungsrichtung
 - > mehrere Iterationen
- > Zeit t als Diskretisierungsparameter
 - > wie "lange" soll das lokal homogene Modell verwendet werden?

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes
- > Berechnung der neuen Position in der lokalen Approximation
- > Generierung einer neuen Approximation nach jedem Update von Position und Bewegungsrichtung
 - > mehrere Iterationen
- > Zeit t als Diskretisierungsparameter
 - > wie "lange" soll das lokal homogene Modell verwendet werden?
- > je kleiner t, desto genauer das Verfahren

- > lokale Approximation durch ein homogenes Magnetfeld
 - > Diskretisierung des inhomogenen Feldes
- > Berechnung der neuen Position in der lokalen Approximation
- > Generierung einer neuen Approximation nach jedem Update von Position und Bewegungsrichtung
 - > mehrere Iterationen
- > Zeit t als Diskretisierungsparameter
 - > wie "lange" soll das lokal homogene Modell verwendet werden?
- > je kleiner t, desto genauer das Verfahren
- > Wann endet die Simulation?

Abbruchkriterien

Abbruchkriterien

> Schnittpunkt der Flugbahn mit einer Ebene

Abbruchkriterien

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz
 - > Verwendung eines Bezugspunktes zur Berechnung der Entfernung

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz
 - > Verwendung eines Bezugspunktes zur Berechnung der Entfernung
- > Wechsel der Detektorgeometrie

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz
 - > Verwendung eines Bezugspunktes zur Berechnung der Entfernung
- > Wechsel der Detektorgeometrie
 - > Stop der Iteration bei Eintritt in irrelevante Detektorabschnitte

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz
 - > Verwendung eines Bezugspunktes zur Berechnung der Entfernung
- > Wechsel der Detektorgeometrie
 - > Stop der Iteration bei Eintritt in irrelevante Detektorabschnitte
- > Passieren eines bestimmten Ortes

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz
 - > Verwendung eines Bezugspunktes zur Berechnung der Entfernung
- > Wechsel der Detektorgeometrie
 - > Stop der Iteration bei Eintritt in irrelevante Detektorabschnitte
- > Passieren eines bestimmten Ortes
 - > Stop der Iteration wenn Distanz zu gegebenem Ort minimal wird

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz
 - > Verwendung eines Bezugspunktes zur Berechnung der Entfernung
- > Wechsel der Detektorgeometrie
 - > Stop der Iteration bei Eintritt in irrelevante Detektorabschnitte
- > Passieren eines bestimmten Ortes
 - > Stop der Iteration wenn Distanz zu gegebenem Ort minimal wird
- > logische Verknüpfungen der Bedingungen

- > Schnittpunkt der Flugbahn mit einer Ebene
 - > Bestimmte Bereiche im Detektor können durch Ebenen abgetrennt werden
- > Zurücklegen einer maximalen Distanz
 - > Verwendung eines Bezugspunktes zur Berechnung der Entfernung
- > Wechsel der Detektorgeometrie
 - > Stop der Iteration bei Eintritt in irrelevante Detektorabschnitte
- > Passieren eines bestimmten Ortes
 - > Stop der Iteration wenn Distanz zu gegebenem Ort minimal wird
- Jogische Verknüpfungen der Bedingungen
- > ...

Der resultierende Algorithmus

> solange Abbruchbedingung nicht erfüllt:

- > solange Abbruchbedingung nicht erfüllt:
 - 1. erfrage die Größen \vec{B} , \vec{v} , sowie die aktuelle Position

- > solange Abbruchbedingung nicht erfüllt:
 - 1. erfrage die Größen \vec{B} , \vec{v} , sowie die aktuelle Position
 - 2. berechne die Winkel für die Basistransformation

- > solange Abbruchbedingung nicht erfüllt:
 - 1. erfrage die Größen \vec{B} , \vec{v} , sowie die aktuelle Position
 - 2. berechne die Winkel für die Basistransformation
 - 3. führe den Basiswechsel durch

- > solange Abbruchbedingung nicht erfüllt:
 - 1. erfrage die Größen \vec{B} , \vec{v} , sowie die aktuelle Position
 - 2. berechne die Winkel für die Basistransformation
 - 3. führe den Basiswechsel durch
 - 4. berechne die neue Position in der lokalen Basis und aktualisiere die Richtung von \vec{v}

- > solange Abbruchbedingung nicht erfüllt:
 - 1. erfrage die Größen $ec{B}$, $ec{v}$, sowie die aktuelle Position
 - 2. berechne die Winkel für die Basistransformation
 - 3. führe den Basiswechsel durch
 - 4. berechne die neue Position in der lokalen Basis und aktualisiere die Richtung von \vec{v}
 - 5. transformiere zurück in die alte Basis

- > solange Abbruchbedingung nicht erfüllt:
 - 1. erfrage die Größen \vec{B} , \vec{v} , sowie die aktuelle Position
 - 2. berechne die Winkel für die Basistransformation
 - 3. führe den Basiswechsel durch
 - 4. berechne die neue Position in der lokalen Basis und aktualisiere die Richtung von \vec{v}
 - 5. transformiere zurück in die alte Basis
 - 6. speichere die neue Teilchenposition

> Programmiersprache: C++

- > Programmiersprache: C++
 - > Speichereffizienz, Performanz und leichte Anbindung an bestehende Frameworks

- > Programmiersprache: C++
 - > Speichereffizienz, Performanz und leichte Anbindung an bestehende Frameworks
- > Realisierung als statische Bibliothek

- > Programmiersprache: C++
 - Speichereffizienz, Performanz und leichte Anbindung an bestehende Frameworks
- > Realisierung als statische Bibliothek
 - > ermöglicht bequeme Einbindung in den Linking-Prozess

- > Programmiersprache: C++
 - > Speichereffizienz, Performanz und leichte Anbindung an bestehende Frameworks
- > Realisierung als statische Bibliothek
 - > ermöglicht bequeme Einbindung in den Linking-Prozess
 - > es müssen nur Bibliotheksdatei und Header-Dateien zur Verfügung stehen

Abbildung: Die strukturelle Anordnung der wichtigsten Klassen und Schnittstellen.

Verwendete Entwicklerwerkzeuge

> CMake (Cross-Platform Make)

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten
 - > getrenntes Übersetzen von Testfällen und Demonstrationsfällen

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten
 - > getrenntes Übersetzen von Testfällen und Demonstrationsfällen
- > Google Test

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten
 - > getrenntes Übersetzen von Testfällen und Demonstrationsfällen
- Soogle Test
 - > Unittest-Prinzip

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten
 - > getrenntes Übersetzen von Testfällen und Demonstrationsfällen
- > Google Test
 - > Unittest-Prinzip
 - > unabhängige Testfälle unabhängiger Komponenten

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten
 - > getrenntes Übersetzen von Testfällen und Demonstrationsfällen
- Soogle Test
 - > Unittest-Prinzip
 - > unabhängige Testfälle unabhängiger Komponenten
 - > leichte Durchführung von Regressionstests

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten
 - > getrenntes Übersetzen von Testfällen und Demonstrationsfällen
- > Google Test
 - > Unittest-Prinzip
 - > unabhängige Testfälle unabhängiger Komponenten
 - > leichte Durchführung von Regressionstests
- > Gnuplot

- > CMake (Cross-Platform Make)
 - > erkennt automatisch Abhängigkeiten zwischen den Quelldateien
 - > kann automatisch Makefiles erzeugen (auf Windows auch Visual Studio Projekte)
 - > ermöglicht unabhängige Verarbeitung von Softwarekomponenten
 - > getrenntes Übersetzen von Testfällen und Demonstrationsfällen
- > Google Test
 - > Unittest-Prinzip
 - > unabhängige Testfälle unabhängiger Komponenten
 - > leichte Durchführung von Regressionstests
- > Gnuplot
 - > eingesetzt zur Visualisierung der Demonstrationsfälle

Abbildung: Die Schraubenlinien der Teilchenbewegung im homogenen Magnetfeld.

Implementierung

Abbildung: Die Simulation wird beendet, sobald das Teilchen die Ebene durchquert.

Implementierung

Abbildung: Die exponentiell abnehmende Feldstärke führt zu einer Vergrößerung des Radius.

> Das Verfahren ist noch nicht perfekt

- > Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum

- > Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich

- > Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?

- > Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen

- > Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- > Behandlung des Approximationsfehlers

- Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- > Behandlung des Approximationsfehlers
 - > konkrete Fehlerschranken sind von Interesse

- Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- > Behandlung des Approximationsfehlers
 - > konkrete Fehlerschranken sind von Interesse
 - > Ansatz: Konstruktion eines adaptiven Verfahrens

- Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- Behandlung des Approximationsfehlers
 - > konkrete Fehlerschranken sind von Interesse
 - > Ansatz: Konstruktion eines adaptiven Verfahrens
 - > Verfeinerung der Schrittweite bis ein Toleranzkriterium erfüllt ist

- Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- Behandlung des Approximationsfehlers
 - > konkrete Fehlerschranken sind von Interesse
 - > Ansatz: Konstruktion eines adaptiven Verfahrens
 - > Verfeinerung der Schrittweite bis ein Toleranzkriterium erfüllt ist
 - > starke Feldänderung \rightarrow feinere Unterteilung als bei geringerer Änderung

- Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- Behandlung des Approximationsfehlers
 - > konkrete Fehlerschranken sind von Interesse
 - > Ansatz: Konstruktion eines adaptiven Verfahrens
 - > Verfeinerung der Schrittweite bis ein Toleranzkriterium erfüllt ist
 - > starke Feldänderung \rightarrow feinere Unterteilung als bei geringerer Änderung
- Gleichwohl: Solide Basis

- > Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- > Behandlung des Approximationsfehlers
 - > konkrete Fehlerschranken sind von Interesse
 - > Ansatz: Konstruktion eines adaptiven Verfahrens
 - > Verfeinerung der Schrittweite bis ein Toleranzkriterium erfüllt ist
 - > starke Feldänderung \to feinere Unterteilung als bei geringerer Änderung
- > Gleichwohl: Solide Basis
 - > weitere Schritte können folgen

- > Das Verfahren ist noch nicht perfekt
 - > echter Versuchsaufbau: kein perfektes Vakuum
 - > Wechselwirkungen mit anderen Teilchen sind möglich
 - > Wie verhält sich die Flugbahn bei anderen Materialien?
 - > Ansatz: Berechnung einer "mittleren Abweichung" basierend auf stochastischen Zusammenhängen
- > Behandlung des Approximationsfehlers
 - > konkrete Fehlerschranken sind von Interesse
 - > Ansatz: Konstruktion eines adaptiven Verfahrens
 - > Verfeinerung der Schrittweite bis ein Toleranzkriterium erfüllt ist
 - > starke Feldänderung \to feinere Unterteilung als bei geringerer Änderung
- > Gleichwohl: Solide Basis
 - > weitere Schritte können folgen
 - > mit C++ gut gewappnet für die Einbindung in bestehende Simulationsframeworks

Vielen Dank!

Vielen Dank für eure Zeit!

Gerd Fischer. Lernbuch Lineare Algebra und Analytische Geometrie. 2. Aufl. Springer Vieweg, 2012. ISBN: 978-3-8348-2379-3.

Helmut Vogel. *Gerthsen Physik*. 20. Aufl. Springer-Verlag, 1999. ISBN: 3-540-65479-8.