

EMC Test Report

DRAFT

Index

1	ELECTRO MAGNETIC COMPATIBILITY (EMC) SETUP AND DEFINITION	4
	EMC Test Standards	4
	IC PERFORMANCE CLASSES	
	Device Under Test	
	PIN DEFINITION	5
	PIN SELECTION FOR IMMUNITY AND EMISSION TEST	5
	GENERAL TEST SETUP	
	TEST CONDITIONS	
	OPERATION MODES	
	RESET ROUTINE	
	Pass/Fail Criteria for Immunity Tests	9
2	CONDUCTED IMMUNITY - TRANSIENT DISTURBANCES (ISO)	10
	TEST-/SIMULATION SETUP FOR TRANSIENT DISTURBANCES	10
	GENERAL REQUIREMENTS FOR TRANSIENT DISTURBANCES	11
3	CONDUCTED IMMUNITY – DIRECT POWER INJECTION (DPI)	13
	HARDWARE TEST SETUP	
	TEST-/ SIMULATION SETUP FOR DPI	
	SUSCEPTIBILITY LEVEL AREA DEFINITION	_
	PASS/FAIL REQUIREMENTS FOR DPI	
	TEST RESULT	
	RF-0UT0	
	RF-0UT1	
	RF-OUT2	
	RF-LIN-M	
	RF-LIN-S	
4	CONDUCTED EMISSION - 150Ω DIRECT COUPLING METHOD	
4	HARDWARE TEST SETUP	23
4	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION	23 23
4	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION	23 23 24
4	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT	23 23 24 25
4	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT RF-VS	23 23 24 25 25
4	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT	23 23 24 25 25 25
4	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT RF-VS RF-OUT0 RF-OUT1	23 23 24 25 25 25 26
4	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT. RF-VS. RF-OUTO. RF-OUT1. RF-OUT2.	23 23 24 25 25 25 26 26
	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT. RF-VS. RF-OUTO. RF-OUT1. RF-OUT2 RF-LIN	23 24 25 25 25 26 26 27
4 5	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT RF-VS RF-OUT0 RF-OUT1 RF-OUT2 RF-LIN CONDUCTED EMISSION - LISN METHOD.	23 24 25 25 25 26 26 27 28
	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT RF-VS RF-OUTO RF-OUT1 RF-OUT2 RF-LIN CONDUCTED EMISSION - LISN METHOD. HARDWARE TEST SETUP	23 23 24 25 25 26 26 27 28
	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT RF-VS RF-OUTO RF-OUT1 RF-OUT2 RF-LIN CONDUCTED EMISSION - LISN METHOD. HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION	23 24 25 25 25 26 26 27 28 28
	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT	23 24 25 25 26 26 27 28 28 28 29
	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION	23 24 25 25 26 26 27 28 28 29 29
	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT	23 23 24 25 25 26 26 27 28 28 29 29 30
	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT RF-VS. RF-OUTO RF-OUT1 RF-OUT2 RF-LIN CONDUCTED EMISSION - LISN METHOD. HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS CLASSIFICATION REQUIREMENTS FOR CONDUCTED EMISSION (LISN) TEST RESULT	23 23 24 25 25 26 26 27 28 28 29 29 30 30
5	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT	23 24 25 25 26 26 27 28 28 29 29 30 30 31
5	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT RF-VS	23 24 25 25 26 26 27 28 28 29 30 30 31 31
5	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT RF-VS	23 24 25 25 26 27 28 28 29 30 30 31 31 31 32
5	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT	23 24 25 25 26 26 27 28 28 29 29 30 30 31 31 32 32
5	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION TEST RESULT	23 24 25 25 26 26 27 28 28 29 29 30 30 31 31 32 32 33
5	HARDWARE TEST SETUP TEST-/ SIMULATION SETUP FOR CONDUCTED EMISSION EMISSION LEVELS AREA DEFINITION. TEST RESULT	23 24 25 25 26 27 28 28 29 30 30 31 31 32 32 33 33

EMC Test Report

TLD4020-3ET

DRAFT

TEST PULSE DEFINITION FOR THE 12V SYSTEM	34
DEFINITION FOR LIN COMMUNICATION SIGNALS	37
EMC TESTBOARD SCHEMATIC	
EMC TESTBOARD LAYOUT	
RX-TX Adapter	
DEVISION HISTODY:	1.

1 Electro Magnetic Compatibility (EMC) Setup and Definition

EMC Test Standards

Overview about all required measurement methods and respective standards.

Table 1 General information about the measurement standards as off 2022-05-16

Measurement method	Coupling mode	Reference to th	e standard	Abbreviation
-	-	IEC 62215-3:	2013	IC Performance Class
Transient disturbance	Conducted	ISO 7637-1:	2015	ISO
		ISO 7637-2:	2011	
		ISO 7637-3:	2016	
		ISO 16750-2:	2012	
Direct Power Injection (DPI)	Conducted	IEC 62132-1:	2015	DPI
, ,		IEC 62132-4:	2006	
Emission direct coupling	Conducted	IEC 61967-1:	2018	150Ohm
-		IEC 61967-4:	2021	
Emission with artificial	Conducted	IEC CISPR 25:	2021	LISN
Network				
Radiated Emission ALSE	Radiated	IEC CISPR 25:	2021	ALSE Absorbed Lined
				Shielded Enclosure

IC Performance Classes

According to Table 1

The test results are classified from A_{IC} to E_{IC}. Table 2 shows the definition for each Class.

Table 2 Definition of the IC Performance classes used for <u>Transient</u> and <u>RF-Immunity testing</u>

Class	Content
Aic	all monitored functions of the IC perform within the defined tolerances during and after exposure to disturbance.
B _{IC} ¹	short time degradation of one or more monitored signals during exposure to disturbance is not evaluable for IC only. Therefore this classification may not be applicable for ICs
C _{IC}	at least one of the monitored functions of the IC is out of the defined tolerances during the disturbance but returns automatically to the defined tolerances after the exposure to disturbance;
D1 _{IC} D2 _{IC}	at least one monitored function of the IC does not perform within the defined tolerances during exposure and does not return to normal operation by itself. The IC returns to normal operation by manual intervention Class D1IC: the IC returns to normal operation by manual intervention: (e.g. reset); Class D2IC: the IC returns to normal operation by power cycling the device
Eıc	at least one monitored function of the IC does not perform within the defined tolerances after exposure and cannot be returned to proper operation.

Device Under Test

Table 3 Device Under Test Information

Sales Code	Date Code	Design Step
TLD4020-3ET		A11

EMC Test Report 4 Revision 1.4

¹ Short time degradation of one or more monitored signals can be tolerable in the application by its error handling. This error handling is unknown in most cases for IC test.

Pin Definition

Table 4 General pin classification

Class	Definition
global pin	A 'global' pin carries a signal or power, which enters or leaves the application board.
local pin	A 'local' pin carries a signal or power, which does not leave the application board. It remains on the application PCB as a signal between two components with or without additional EMC components.

Pin Selection for Immunity and Emission Test

The following Table lists <u>all</u> IC Pins in order to classify and to select the required EMC-test. The requirement listing for <u>RF-immunity</u>, <u>RF-Emission-150R</u> and <u>RF-Emision-LISN</u> are based on Table 5.

 Table 5
 IC-Pin definition considering Pin-class and required EMC test/simulation. Listing all IC Pins.

Pin c			Imm	unity	Emission	
		class	Electrical transients (ISO) Conducted Immunity (DPI)		Conducted Emission (150Ω)	
1	VS	global	X	RF-VBAT	RF-VBAT	
2	NC	_	_	_	_	
3	NC	_	_	_	_	
4	GND	global	_	_	_	
5	NC	_	_	_	_	
6	NC	_	_	_	_	
7	LIN_M	global	Χ	RF-LIN_M	RF-LIN_M	
8	LIN_S	global	_	RF-LIN_S	RF-LIN_S	
9	GPIO0	local	_	RF-GPIO0	RF-GPIO0	
10	GPIO1/SWCLK	local	_	RF-GPIO1	RF-GPIO1	
11	SWIO/TMS	local	_	_	_	
12	NC	_	_	_	_	
13	NC	_	_	_	_	
14	OUT0	global	_	RF-OUT0	RF-OUT0	
15	OUT1	global	_	RF-OUT1	RF-OUT1	
16	OUT2	global	_	RF-OUT2	RF-OUT2	

General Test Setup

Figure 1 outlines all needed external components to operate the DUT under application conditions. These components can influence the final EMC result. They are treated as inherent part of the DUT during the EMC characterization.

Figure 1 Device under Test including the applicative external components that are needed to bring the DUT into its normal operation mode as well as the allowed additional components.

 Table 6
 Part listing for normal operation mode

Reference	Value	Туре	Comment
Drev	1A 200V	RB168MM200TFTR	to low reverse voltage!
C _{VS1}	100nF	X7R, 50V, 0805	
C _{VS21}	4.7uF	X7R, 50V, 1210	
Соит		X7R, 50V, 0805	
CLIN	Open / 110pF	X7R, 50V, 0805	IEC 62228-2 specifies limits with and without C _{LIN}
D _{Term}		BYD17K	Optional
R _{Term}	1kR	X7R, 50V, 0805	Master Termination
LED		OVSTRGBB1CR8	one color on each 50mA
Rshunt,on/active	10Ohm		51mA per channel
Rshunt,off/sleep	1kOhm		<100uA per channel

Test Conditions

All general EMC-Test conditions are listed in Table 7.

Table 7 General EMC-Test conditions

Parameter	Symbol	Value	Unit	Remark
Voltage reference	_	_	_	All voltages are referred to PCB-GND
Temperature	TA	23 +/-5	°C	_
Supply voltage	Vs	13.5 ± 0.5 12 ± 0.5	V	All test but not Starting Profile Only for Starting Profile
Input voltage high level	V _{IN,high}	5 ± 5%	V	_
Input voltage low level	V _{IN,low}	0 + 5%	V	_

Operation Modes

Table 8 Pin setting or/and alternatively SPI register in order to bring the device in the desired operation mode for <u>Transient-</u> and <u>RF-Immunity</u> test as well as for the <u>RF-Emission test150R</u> and <u>Emission test LISN</u>.

Test	Operation Mode	Standard	LIN	Comment
Case	-	Test	Test	
TC1	Off-all	X	_	All channels off
TC2	On-all	Х	_	All channels on, d=100% 10mA each,
		,		no PWM
TC3	Pwm-all	X	_	All channels pwm 300Hz, d=50% 10mA each
TC4	ADC-check	Χ	_	Read OUT1 voltage in ON Mode
TC5	Sleep, unwanted wake up	_	X	Check OUT0 on/off
TC6	Sleep, wanted wake up	_	X	Check OUT0 on/off
				sending LIN Pattern TX3
TC7	LIN-respond		Х	Device has to respond on this pattern.
		_	^	GPIO-PWM by LIN Pattern TX2.
TC8		_	X	Interoperability test check that LIN
				communication with additional standard LIN
				Transceiver is not affected by DUT.
				Sending 0xA5A5 and read RX
				Master on LIN_M Receiver on LIN_S
				Master on LIN_S Receiver on LIN_M

Note:

TC4 ADC Check: Average (milli s range) of ADC under normal undisturbed condition ADC result is internally stored as reference Value by sending a dedicated command. During EMC test average ADC readout is internally compared with previous stored reference value, readout within tolerance is pass result otherwise fail result. Readout is extern triggered by rising edge on GPIO1. GPIO0 indicate pass / fail result by digital high / low output value.

TC5 & TC6: special device Firmware for this test. If device wakes up OUT0 is turned on. After 1ms device returns automatically into sleep mode.

TLD4020-3ET

DRAFT

Reset Routine

Before performing any EMC test the device is to be set into a defined functional state. This is done by the reset routine.

Table 9 Reset routine

Action	Pin -action	comment
1	Turn off Vs	
2	Wait 1sec	No dedicated reset requirement defined
3	Turn on Vs	

Pass/Fail Criteria for Immunity Tests

For evaluating the device behavior during Transient-Immunity and RF-Immunity tests monitoring criteria have to be defined. The device functionality is monitoring by checking required signals by an oscilloscope. Therefore a tolerance band for the nominal behavior is defined in amplitude and time. A signal within this specified tolerance band is a pass signal. For register readouts the nominal pass value for the register content is defined. For RF-immunity tests the monitoring is done with powered RF signal. The monitoring signal should not be superimposed by RF-signals therefore a low pass filter is inserted for RF-immunity tests.

Table 10 defines the tolerance band for different monitor Pins as well as the nominal register values.

 Δv is calculated in relation to V(t)

 Δt is calculated in relation to T_{ON}

Figure 2 Tolerance band specification

Oscilloscope

V
Oscilloscope

V
Oscilloscope

V
Oscilloscope

V
Oscilloscope

V
Network

Figure 3 Signal probing with low-pass filter used for RF-Immunity test

Figure 4 Signal probing without Low Pass Filter used for Transient-Immunity test

Table 10 Pass / Fail Criteria for <u>Transient</u>- and <u>RF-Immunity</u> test.

				Failure Crite	ria
Monitoring	Monitoring	Operation mode	Toleran		
.	Pin/register		Amplitude	Time	Value
MO	_	PWM	_	_	_
M1	I _{LED}	OFF	< 100uA	_	High/Low level
M2	M2 ILED ON / PWM		±10%	±10%	Voltage within tolerance band
M3	ADC readout	ON	±20%	_	Average value compare to undisturbed readout
M4	V _{OUT0}	SLEEP	∆Vout0	_	Out0 stays off (Auto Trigger)
M5	V _{OUT0}	Wake up	∆Vout0	_	OUT0: off=>on
M6	RX readout		±10%	±10%	Voltage within tolerance band

2 Conducted Immunity – Transient Disturbances (ISO)

"Conducted Immunity – Transient Disturbances" examines electrical transient conduction along supply lines according to Table 1 plus special electrical transients based on customer requirements.

Test-/Simulation Setup for Transient Disturbances

Figure 5 shows the basic transient immunity test- simulation-setup for the injection of the standardized ISO pulses. For the pulse definition refer to the Appendix 5.

Figure 5 Transient immunity test/simulation setup for injection into Vbat, ISO pulses 1, 2a, 3a, 3b, Starting Profile and Load Dump Suppression Pulse

TLD4020-3ET

DRAFT

General Requirements for Transient Disturbances

The following tables outline the absolute minimum and target value for transient immunity of 12V system.

Table 11 Transient immunity requirements IC Performance Class A_{IC}

	Test Pulse v	oltage					IC P	erform	ance (Class	
Test Pulse	Absolute min. requirement	Target value	Injection	Coup- ling	BUS Filter			Requi peration	remen	t	
	·					TC1	TC2	TC5	TC6	TC7	TC8
			Vbat	direct	Х	_	_	_	_	_	
<u>1</u>	-100V	-100V	Voat	diroot		_	_	_	_	M2	
<u>-</u>	1001		LIN_M	1nF	X	_	_	M4	M5	M2	M6
			Z \\v.		_	_	_	M4	M5	M2	M6
			Vbat	direct	Χ	_	_	_	_	_	
<u>2a</u>	+75V	+112V	VBat	direct	_	_	_	_	_	M2	
<u>20</u>	+130	1112V	LIN_M	1nF	Χ	_	_	M4	M5	M2	M6
				1111	_	_	_	M4	M5	M2	M6
			Vbat	direct	Χ	_	_	_	_	_	_
<u>3a</u>	-150V	-150V	VDat	direct	_	_	_	_	_	M2	
<u>54</u>	150 V	100 V	LIN_M	1nF	Χ	_	_	M4	M5	M2	M6
				1111	_	_	_	M4	M5	M2	M6
			Vbat	direct	Χ	_	_	_	_	_	_
<u>3b</u>	+100V	+100V	Vbat	unect	_	_	_	_	_	M2	
<u>50</u>	11001	11001	LIN_M	1nF	X	_	_	M4	M5	M2	M6
				1111	_	_	_	M4	M5	M2	M6
Starting Profile	+5.5V	+5.5V	Vbat	direct	Х	M1	_	_	_	_	_
Load Dump Suppression	+35V	+39V	Vbat	direct	Х	M1	M2	_	_	_	_

TLD4020-3ET

DRAFT

 Table 12
 Transient Disturbance Result injected to Vbat Line, Operation mode TC7 = Lin respond

Table 13 Transient Disturbance Result injected to LIN-M, Operation mode TC7 = Lin respond

Testpulse 1																								
Testpulse 2a																								
Testpulse 3a																								
Testpulse 3b																								

Table 14 Transient Disturbance Result injected to LIN-M, Operation mode TC5 and TC6

Testpulse 1																						
Testpulse 2a																						
Testpulse 3a																						
Testpulse 3b																						

3 Conducted Immunity – Direct Power Injection (DPI)

"Conducted Immunity - Direct power Injection" examines the RF susceptibility level according to Table 1

Hardware test setup

Table 15 Disturbance signal, Test bench and Presentation

Table 16 Frequency ranges for direct power injection test

Method	Frequency ran	ge		Frequency step	RF power step
DPI	1 MHz	to	10 MHz	0.5 MHz	0.2 dB
	10 MHz	to	100 MHz	1 MHz	0.2 dB
	100 MHz	to	200 MHz	2 MHz	0.2 dB
	200 MHz	to	400 MHz	4 MHz	0.2 dB
	400 MHz	to	1000 MHz	10 MHz	0.2 dB

Test-/ Simulation Setup for DPI

Below picture show the conducted immunity test/simulation setup.

Figure 6 Conducted RF-Immunity test/simulation setup

Susceptibility Level Area Definition

The following figure shows the susceptibility level scheme for the DPI- classification of global and local pins.

Above Class III:

The Class III defines a range where usually no susceptibility issues occur on device level. The test Limit represents the design target. The Class III level itself represents the absolute minimum requirement.

Class I:

A result between Class III and Class I defines a range where additional simple external filtering/decoupling components usually improves the susceptibility level back to the Class III range. In the unlikely event that the susceptibility level is within the Class III and Class I although external components are used, please align with the EMC and AE colleagues on the further proceeding.

Below Class I:

A result below Class I is a severe and non-acceptable susceptibility level for the DUT with and without additional external components.

LIN without bus filter

— Limit class II (A_IC)
— Limit class I (A_IC)
— Limit class I (A_IC)

35

20

15

10

100

[MHz] 1000

Figure 7 "LIN with bus filter"

Functional Status A_{IC}

Applicable for VS, LIN-BUS, Wake

Figure 8 "LIN without bus filter"

Functional Status A_{IC}

Applicable for VS, LIN-BUS, Wake

Figure 9 "LIN with bus filter"

Functional Status Cic or Dic
Applicable for VS, LIN-BUS, Wake

Figure 10 "DPI global Pins"
Susceptibility level for DPI global Pins

TLD4020-3ET

DRAFT

Pass/Fail Requirements for DPI

In general the green area has to be reached. If the test without external components results in the yellow area then a second test with external components needs to result in the green area.

Table 17 Conducted immunity requirements (test levels), Pin selection regarding Table 5

RF-injection into Pin	Target value	IC Performance Class & Limit	BUS Filter		Pass /	Fail C		lation, and <u>Op</u>	eration	Mode	
iiito i iii	value	a <u>cimit</u>	1 11101	TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8
	37dBm	A _{IC} , DPI Global	Х	cw M1	cw M2	cw M2	cw M3	_	_	_	_
DE VO		A _{IC} , LIN with BUS filter	Х	_	_	_	_	_	_	_	_
RF-VS	36dBm	A _{IC} , LIN without BUS filter	_	_	_	_	_	CW,AM M4	_	CW,AM M2	_
		D _{IC} , LIN without BUS filter	_	_	_	_	_	_	_	cw M0	_
RF-OUT0,1,2	37dBm	A _{IC} , DPI Global	_	cw M1	cw M2	_	_	_	_	_	_
		A _{IC} , LIN with BUS filter	Х	_	_	_	_	cw M4	cw M5	cw M2	cw M6
RF-LIN_M	36dBm	A _{IC} , LIN without BUS filter	_	_	_	_	_	CW,AM M4	CW,AM M5	CW,AM M2	CW,AM M6
		D _{IC} , LIN with BUS filter	Х	_	_	_	_	_	_	cw M0	_
		A _{IC} , LIN with BUS filter	Х	_	_	_	_	cw M4	cw M5	cw M2	cw M6
RF-LIN_S	36dBm	A _{IC} , LIN without BUS filter	_	_	_	_	_	CW,AM	CW,AM M5	CW,AM	CW,AM M6
		D _{IC} , LIN with BUS filter	Х	_	_	_	_	_	_	cw M0	_

Note: Bus Filter always only to the LIN Bus used for RF injection.

Test Result

RF-VS

Figure 11 Conducted RF-Immunity into VS.

Figure 12 Conducted RF-Immunity into OUT0.

Figure 13 Conducted RF-Immunity into OUT0 for local limits with Cout left open.

Figure 14 Conducted RF-Immunity into OUT1.

Figure 15 Conducted RF-Immunity into OUT1 for local limits with Cout left open.

Figure 16 Conducted RF-Immunity into OUT2.

Figure 17 Conducted RF-Immunity into OUT2 for local limits with Cout left open.

RF-LIN-M

Figure 18 Conducted RF-Immunity into LIN-M with BUS filter.

TC5 = sleep unwanted wake, TC5 = sleep wanted wake, TC8 = interoperability check

Figure 19 Conducted RF-Immunity into LIN-M without BUS filter.

TC5 = sleep unwanted wake, TC5 = sleep wanted wake, TC8 = interoperability check

RF-LIN-S

Figure 20 Conducted RF-Immunity into LIN-M with BUS filter, 200pF at LIN-S. TC5 = sleep unwanted wake, TC5 = sleep wanted wake, TC8 = interoperability check

Figure 21 Conducted RF-Immunity into LIN-M without BUS filter.

TC5 = sleep unwanted wake, TC5 = sleep wanted wake, TC8 = interoperability check

4 Conducted Emission - 150Ω direct coupling method

"Conducted Emission - 1500hm direct coupling "examines conducted emissions according to Table 1

Hardware Test Setup

Table 18 Frequency range and settings for the EMI test receiver

Eroa	uono	v rango		Rece	eiver	
rieq	uenc	y range	RBW	step size	Meas. time	Detector
150 kHz	to	30 MHz	9 kHz	5 kHz	>= 10 ms	Max. Peak
30 MHz	to	1 GHz	120 kHz	50 kHz	>= 10 ms	iviax. Peak

Test-/ Simulation Setup for Conducted Emission

Below picture show the conducted emission test/simulation setup.

Figure 22 Conducted RF-Emission test/simulation setup

Emission Levels Area Definition

Below Figure shows the emission level scheme for the 150Ω classification for global and local pins. **Below Class III:**

The area below Class III defines a range where usually no emission issues occur on device level. The Class III value itself represents the internal design target.

Class I:

90 [dBµV 80

A result between **Class** III and **Class** I defines a range where additional simple external filtering/decoupling components usually improve the emission level back to the **Class** III range. In the unlikely event that the emission level is within **Class** III and **Class** I range although external components are used, please align with the EMC and AE colleagues on the further proceeding.

Above Class I

The result above Class I is not-acceptable.

Figure 23 "LIN with bus filter"

Applicable for LIN-BUS

Figure 24 "LIN without bus filter"

Applicable for LIN-BUS

Limit class II
Limit class II
Limit class II

70 60 50 40 30 20 10 0,1 1 1 10 100 [MHz] 100

Figure 25 "LIN device"

Figure 26 "150R global" Emission Limit for OUT

Figure 27 "150R local" Emission Limit for OUT

Test Result

RF-VS

Figure 28 Conducted Emission 150R method RF-VS

Figure 29 Conducted Emission 150R method RF-OUT0

Figure 30 Conducted Emission 150R method RF-OUT1

Figure 31 Conducted Emission 150R method RF-OUT2

RF-LIN

Figure 32 Conducted Emission 150R method RF-LIN. LIN without Bus Filter

Figure 33 Conducted Emission 150R method RF-LIN. LIN with Bus Filter

5 Conducted Emission - LISN method

"Conducted Emission - LISN method "examines conducted emissions according to Table 1

Hardware Test Setup

Table 19 Frequency range and settings for the EMI test receiver

Eroa	uono	v rango		Rece	eiver	
rieq	uenc	y range	RBW	step size	Meas. time	Detector
150 kHz	to	30 MHz	9 kHz	5 kHz	>= 10 ms	Max. Peak &
30 MHz	to	108 MHz	120 kHz	50 kHz	>= 10 ms	Average

Test-/ Simulation Setup for Conducted Emission

Conducted Emission test setup for the Line Impedance Stabilization Network (LISN) method.

Figure 34 Conducted emission test/simulation setup for the Battery Line.

Emission Levels Classification

Emission Levels Class-I to Class-V for peak and average detector.

Figure 35 Emission level characterization for peak and average detector.

Requirements for Conducted Emission (LISN)

Table 20 show the requirements for the conducted emission test.

 Table 20
 Conducted emission requirements, Pin selection regarding
 Table 5

Pin	Due Filter	Required Tar	get Value for
PIII	Bus Filter	Operation Mode	requirement
Vbat	Х	TC1, TC2, TC3, TC7	< Class V peak & average

Test Result

Emission on Vbat

Figure 36 RF peak emissions on the Battery Line.

Figure 37 RF average emissions on the Battery Line.

6 Radiated Emission (RE)- ALSE method

"Radiated Emission - Antenna methode" examines radiated emissions according to Table 1

Hardware test setup

Table 21 Frequency range and settings for the EMI test receiver

Fraguana	v rongo	R	eceiver settir	ng for radiated	d emission - A	LSE
Frequency	y range	Antenna	RBW	Step size	Meas time	detector
150 kHz to	30 MHz	Rod	9 kHz	5 kHz	>= 5ms	peak, average
30 MHz to	200 MHz	Biconical	120 kHz	50 kHz	>= 5ms	peak, average
200 MHz to	1000 MHz	Log-Periodic	120 kHz	50 kHz	>= 5ms	peak, average

General Test-Setup for Radiated Emission

The RE test setup as shown in the net picture, Antenna type and polarization needs to be adapted.

Top view (horizontal polarisation) Dim

Dimensions in millimeters - not to scale

Key:

- 1 EUT (grounded locally if required in test plan)
- 2 Test harness
- 3 Power supply (location optional)
- 4 Artificial network (AN)
- 5 Ground plane (bonded to shielded enclosure)
- 6 Low relative permittivity support ($\varepsilon_r < 1.4$)
- 7 Log-periodic antenna
- 8 High-quality coaxial cable e.g. double-shielded (50 Ω)
- 9 Bulkhead connector
- 10 Measuring instrument

Figure 38 General Test Setup Radiated Emission ALSE method.

Hardware Test-Setup for Radiated Emission

The RE test setup is the same as for the CE

Figure 39 Radiated Emission test/simulation setup according to CISPR-25 ALSE.

Requirements for Radiated Emission (ALSE)

Table 22 show the requirements for the conducted emission test.

 Table 22
 Radiated emission requirements.

Pin	Input Pi-	Input Common	Load		rget Value for on Mode
PIII	Filter	Mode Choke	Loau	ON	Spread Spectrum
VBAT	No	No	Load1	< Class-V for	peak & average

Test Result

Emission on Vbat

Figure 40 Radiated peak emissions on battery line.

Figure 41 Radiated average emissions on battery line.

Appendix

Test Pulse Definition for the 12V System¹²

Table 23 Test Pulse 1

V_A	13.5V
V_{Smax}	-75V to -150V
Ri	10Ω
t _d	2ms
t _r	1μs (+0μs, -0.5μs)
<i>t</i> ₁	≥0.5s
t ₂	As short as
ι ₂	possible
<i>t</i> ₃	<100µs
	1100μ0
# of	
# of pulses	5000
pulses	
	5000
pulses	5000 Time between 2

Test Pulse1 simulates the turn-of for inductive loads parallel to the DUT. Battery voltage is turned-off for 200ms.

Table 24 Test Pulse 2a

V_A	13.5V
V _{Smax}	+37V to +112V
R_i	2Ω
t_d	50µs
t_r	1μs (+0μs, -0.5μs)
t_1	0.2s to 5s
# of	5000
pulses	3000
t _{Mon}	Time between 2
•Mon	pulses
Standard	ISO7637-2: 2010

back to requirement

Test Pulse 2a simulates transients due to sudden interruption of currents in a device connected in parallel with the DUT generated in the inductance of the wiring harness.

EMC Test Report 34 Revision 1.4

¹ The peak voltage V_s shall be adjusted to the test levels with a tolerance of +10%, -0%. The timing tolerances and internal resistance R_i tolerance shall be $\pm 20\%$, unless otherwise specified.

² The pulse voltage- amplitude and waveform are specified for the idle pulse.

Table 25 Pulse 3a

V_A	13.5V
V _{Smax}	-112V to -220V
Ri	50Ω
t_d	150ns \pm 45ns
t _r	5ns ±1.5ns
<i>t</i> ₁	100µs
t_4	10ms
<i>t</i> ₅	90ms
test time	1h
+	between burst
t _{Mon}	package
Standard	ISO7637-2: 2010

back to requirement

Test Pulse 3a simulates a switching process.

Table 26 Pulse 3b

13.5V
+75V to +150V
50Ω
150ns \pm 45ns
5ns ±1.5ns
100µs
10ms
90ms
1h
between burst
package
ISO7637-2: 2010

back to requirement

Test Pulse 3b simulates a switching process.

Table 27 Pulse Starting Profile

Vs	+12V
V_{S6}	5.5V
V _A	7.5V
V_{APP}	2.0V
R _i	0.01Ω
$t_{\rm f}$	5ms
<i>t</i> ₆	15ms
<i>t</i> ₇	50ms
t ₈	10s
t _r	100ms
f	20Hz
# of	1
pulses	I
t _{Mon1}	during t ₆
t _{Mon2}	during t ₈
Standard	ISO 16750-2: 2010

back to requirement

The starting Profile simulates the battery voltage during the ignition process

V_{S6} and V_A depend on device requirement

 V_A

Vs'

Ri

t_d

 t_r

of

 t_{Mon}

pulses

Standard

V_{Smax}

TLD4020-3ET

DRAFT

back to requirement

Table 28 Pulse Load Dump Suppression

+79V to +101V

0.5Ω to 4Ω **2Ω**

40ms to 400ms

10 pulses at

10ms(+0ms, -5ms)

intervals of 1 min

ISO16750-2: 2010

between burst package

+13.5V

+35V

<i>V</i> 🛕		t Mon		I
V_S	t _d	→		
0.9(V _S -V _{A)}	-\	,	V _s *	
$0.1(V_S-V_{A)}$ V_A			,	
0				t

This pulse simulates the load dump pulse in case of suppressor diodes integrated into the generator.

V_S* depend on device requirement

Definition for LIN Communication signals

Table 29 LIN test pattern TX1

return to Operation Modes

Table 30 LIN test pattern TX2

return to Operation Modes

Test Signal	LIN Communication test signal TX2
Signal Type	LIN frame
Protocol	ISO 17987-6-2
Data bit rate	19,2 kB/s
PID and Data	Depending on designed or programmed functionality
Cycle time	9 ms(default)
Amplitude	V _{CC} ±0,1V
Standard	IEC 62228-2 chapter 5.4
TLD4020	Insert LIN Pattern which will show PWM on GPIO
GPIO-PWM	

Table 31 LIN Test Pattern TX3

return to Operation Modes

Test Signal	Wake up from sleep mode
Signal Type	Standard test signal (periodic) 5 Bit Wake-up request TxD Discrete Dis
	source: IEC 62228-2
Amplitude	Vcc±0,1V
Standard	IEC 62228-2 chapter 5.4
T) (0.1	

Note: TX3 is send only once during each wake request.

Apply RF, wait for 1second (dwell time) then send TX3 and evaluate respond.

TX3 is 250us low signal.

EMC Testboard Schematic

Figure 43 EMC Testboard Schematic Page 2 of 2

EMC Testboard Layout

Figure 44 EMC Testboard Top(red) and Bottom(blue) Layer

RX-TX Adapter

Figure 45 EMC RX-TX Coupler Page 1 of 1

Figure 46 EMC RX-TX Coupler Top(red) and Bottom(blue) Layer

Revision History:

Revision	Date	Description of change
1.3	2023-06	EMC test results on 1st silicon
1.4	2023-08	DPI Out local results added

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference EMC Test Report

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product technology, delivery terms and conditions and prices please contact your nearest Infineor Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For informatior on the types in question please contact you nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.