EEE6008 Problem question solutionReliability mathematics

1) Rank the data using Bernard's approximation: $F_i = \frac{i - 0.3}{N + 0.4} \times 100$

Rank, i	t _f	F _i (t)
1	700	3.431373
2	1900	8.333333
3	3000	13.23529
4	4400	18.13725
5	5500	23.03922
6	9300	27.94118
7	11500	32.84314
8	11900	37.7451
9	16100	42.64706
10	25200	47.54902

2) $\sigma = \ln(25,000) - \ln(4000) = 1.83$ Suggests failure rate high at first, then settles to "constant. Reminder, from notes:

(On Weibull, β ~0.7)

3) MTTF ~25,000 hours

4) Arrhenius plot: plot ln(t_f) as function of 1/kT

