LABORATORIO DI CALCOLO NUMERICO SIMULAZIONE ESAME SU SECONDA METÀ DEL PROGRAMMA

Consegna Compito: saranno visibili solo i files consegnati tramite moodle. Nota Bene: ogni file prodotto deve contenere i seguenti dati.

- Nome
- Cognome
- Matricola.

Non consegnare programmi che non girano.

1. Quadratura

Problema 1. Sia

$$f(x) := \begin{cases} x & 0 \le x < 1 \\ x^2/2 + 1 & 1 \le x \le 2 \end{cases}.$$

Per $N=1,2,3,\ldots,100$ si calcoli l'approssimazione dell'integrale $\int_0^2 f(x)dx$ ottenuta tramite la formula dei trapezi con N+1 punti (a tal fine si crei prima una function trapezi.m che calcoli nodi e pesi della formula di quadratura). Si valuti l'errore (il valore vero dell'inegrale venga calcolato a mano) al variare di N e se ne faccia un grafico semilogaritmico. Nella stessa figura si plotti anche $h^{-\alpha}$ al variare di N, dove h è il passo di integrazione e α è il corretto esponente affinchè $h^{-\alpha}$ sia la velocità di convergenza teorica della formula.

Si ripeta l'esperimento (in un altro script) con la funzione

$$f(x) := \begin{cases} 2 + \sqrt{\sqrt{2} - x} & 0 \le x < \sqrt{2} \\ x^2/2 + 1 & \sqrt{2} \le x \le 2 \end{cases}.$$

Si stampi a video un commento ai risultati.

Problema 2. Si ripeta l'esercizio 1 con la formula delle parabole (detta anche di Cavalieri-Simpson).

Problema 3. Si crei una function integralfit.m che prenda in input $a, b, \boldsymbol{x}, f, n$, con a < b reali, \boldsymbol{x} vettore colonna di $m \ge n+1$ punti in [a,b], f function handle, e $n \ge 1$

intero e restituisca in output

$$I_{n,\boldsymbol{x}}(f) := \int_a^b p_n(x) dx,$$

con p_n polinomio di grado al più n di approssimazione ai minimi quadrati di f sui nodi x. A tal fine si ricordi che

$$\int_{a}^{b} x^{k} dx = \frac{1}{k+1} (b^{k+1} - a^{k+1})$$

e che i coefficienti di p_n si possono ottenere tramite la function polyfit.

Si testi poi la function ottenuta tramite uno script che approssimi l'integrale $\int_0^{\pi/4} \sin(x) dx$ con \boldsymbol{x} vettore di 100 punti equispaziati ed n = 1, 2, ..., 10. Si calcoli l'errore e se ne faccia un grafico semilogaritmico.

2. Algebra lineare numerica

Problema 4. Si scriva una function d=mydet(A) che presa in input una matrice quadrata invertibile A restituisca il suo determinante, ottenuto tramite il calcolo della fattorizzazione LU con pivoting.

Problema 5. Si testi la function precedentemente creata con uno script testdet.m. Nello script si calcoli il determinante della matrice di Hilbert di ordine n (comando matlab per la creazione H=hilb(n)) per $n=1,2,\ldots,10$ con il comando det di matlab e con mydet.m.

Si crei un grafico semilogaritmico di tali valori, il primo con linea continua, il secondo tratteggiata.

Problema 6. Sia $G_n := V_n^t * V_n$ con V_n matrice $m+1 \times n+1$ di rango pieno e con m > n. Possiamo calcolare il determinante di G_n utilizzando la fattorizzazione QR di V_n (si ricordi che $\det(A \cdot B) = \det A \det B$). Si ricavi l'algoritmo scrivendo su carta.

Si scriva una function mysymdet.m che implementi l'algoritmo ricavato (input: V_n , output: $\det G_n$).

Problema 7. Sia m=2n e siano $x_0, \ldots x_m$ punti di Chebyshev-Lobatto in [0,1]. Sia

$$G_n(i,j) = \sum_{k=0}^{n} x_k^{i+j-2}.$$

Scrivere la matrice G_n nella forma $V_n^t \cdot V_n$.

Si crei uno script che per $n=1,2,\ldots,20$ calcoli $(\det G_n)^{1/n}$ sia utilizzando il comando det di matlab sia con la function mysymdet.m. Si faccia un grafico semilogaritmico dell'errore relativo tra le due quatità, assumendo la seconda come esatta.