DISEASE PREDICTION:

By Mallela Preethi

Problem Statement

Background:

- Healthcare professionals rely on various diagnostic tests and biomarkers for health assessment and disease diagnosis.
- Accurate diagnosis is critical for effective treatment and disease management.

Dataset:

- Contains multiple health-related attributes:
 - Cholesterol levels
 - Blood cell counts
 - Hormone levels
 - Other physiological measurements
- Includes the corresponding disease diagnosed for each individual.
- Labels include Healthy, Anemia, Diabetes, Heart Di, Thalasse, Thrombac

Task:

- Create a reliable tool(predictive model) using machine learning algorithms to assist healthcare providers in disease diagnosis and prognosis.
- Enhance the accuracy of disease diagnosis.
- Evaluate the model using accuracy, precision, recall, and F1-score to ensure its reliability and effectiveness in diagnosis.

METHODOLOGY

Exploratory Data
Analysis

2

3

Model Building

Evaluation

4 Model Tuning

5

Creation of final prediction model

1. Exploratory Data Analysis

Imbalanced Dataset:

On observing the right side Pie chart we can see Thromboc, Heart disease examples are very less this leads to bias in the model. We can understand that given dataset is a imbalanced dataset. So we have to resample this.

Resampling with SMOTE:

Synthetic Minority Over-sampling Technique (SMOTE) is an effective method for handling class imbalance in datasets by generating synthetic samples for the minority class.

After Application of StratifiedKFold and SMOTE

Train and test data shapes:

X_train shape: (4002, 24)

y_train shape: (4002,)
X_test shape: (567, 24)

y_test shape: (567,)

2. MODEL BUILDING

Models built and compared:

- Logistic Regression
- KNN
- Decision Tree with gini criteria
- Decision Tree with entropy criteria
- Random Forest Classifier
- XGBoost Classifier

These models are built and trained on this balanced dataset and their performances were observed.

3. (i) Evaluation - Logistic Regression

Logistic Regression:

• Accuracy: 0.8765432098765432

Precision score: 0.887133099355824

• Recall score: 0.8765432098765432

F1 score: 0.8796970866435904

(ii) Evaluation - KNN

KNN model

- Accuracy: 0.8747795414462081
- Precision score: 0.9296788822985599
- Recall score: 0.8747795414462081
- F1 score: 0.8939273547678349

(iii) Evaluation - Decision Trée

Decision Tree with gini criteria

- Accuracy: 0.9206349206349206
- Precision score: 0.9225307941875883
- Recall score: 0.9206349206349206
- F1 score: 0.9202312982684258

(iv) Evaluation - Decision Trée

Decision Tree with entropy criteria

- Accuracy: 0.9153439153439153
- Precision score: 0.9201574266982845
- Recall score: 0.9153439153439153
- F1 score: 0.9162262737348601

(v) Evaluation - Random Forest

Random Forest:

- Accuracy: 0.9576719576719577
- Precision score: 0.9612501504764328
- Recall score: 0.9576719576719577
- F1 score: 0.9579246004438842

(vi) Evaluation - XGBoost Classifier

+

XGBoost:

- Accuracy: 0.982363315696649
- Precision score: 0.9859201363760635
- Recall score: 0.982363315696649
- F1 score: 0.9837067870730555

	Model	Accuracy	Precision	Recall	F1-score
0	Logistic Regression	0.876543	0.887133	0.876543	0.879697
1	KNN	0.874780	0.929679	0.874780	0.893927
2	Decision Tree with gini criteria	0.920635	0.922531	0.920635	0.920231
3	Decision Tree with entropy criteria	0.915344	0.920157	0.915344	0.916226
4	Random Forest Classfier	0.957672	0.961250	0.957672	0.957925
5	XGBoost	0.982363	0.985920	0.982363	0.983707

XGBoost is performing well. So picking XGBoost for the prediction.

4. Model Tuning

Best parameters after model tuning:

Fitting 5 folds for each of 5 candidates, totalling 25 fits

Best Parameters: {'subsample': 0.9, 'n_estimators': 80, 'min_child_weight': 5, 'max_depth': 7, 'learning_rate': 0.2, 'gamma': 0.2, 'colsample_bytree': 0.9}

Best Score: 0.9967577934066207

Test Accuracy: 0.9876543209876543

5. Creation of final prediction model

XGBoost after model tuning:

• Accuracy: 99.29 %

•

• Precision score: 99.32 %

• Recall score: 99.29 %

F1-score: 99.30 %

6. Conclusion

- As the given dataset is imbalanced, oversampling using SMOTE is performed after StratifiedKFold.
- After oversampling, different models are trained on this dataset and performances are observed.
- Of all the models, XGBoost performs better.
- Then model is tuned to get best hyper parameters.
- Then finally I created XGBoost model with the found best hyperparameters.
- Test Set Evaluation:

Accuracy: 99.29 %

Precision: 99.32 %

Recall: 99.29 % F1-score: 99.30 %

THANK YOU