NACA

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF JP-4 FUEL WITH A 70-30 MIXTURE

OF FLUORINE AND OXYGEN AS A ROCKET PROPELLANT

II - EQUILIBRIUM COMPOSITION

By Sanford Gordon and Vearl N. Huff

Lewis Flight Propulsion Laboratory Cleveland, Ohio

Classification cancelled (or cl	beneal to Machasteles
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FICER AUTHORIZED TO CHANGE)
By	15 Mar 58
GRAME OF OFFICER MAKING	CHANGE)
DATE	\$54\$pas

WASHINGTON

October 2, 1956

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF JP-4 FUEL WITH A 70-30 MIXTURE

OF FLUORINE AND OXYGEN AS A ROCKET PROPELLANT

II - EQUILIBRIUM COMPOSITION

By Sanford Gordon and Vearl N. Huff

SUMMARY

Theoretical rocket performance assuming equilibrium composition during expansion was calculated for JP-4 fuel with an oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight (fluorine-to-oxygen atom ratio of 2). Data were calculated for two chamber pressures and several pressure ratios and oxidant-fuel ratios.

The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivative, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, coefficient of viscosity, and coefficient of thermal conductivity. A correlation is given for the effect of chamber pressure on several of the parameters.

The maximum values of specific impulse for chamber pressures of 600 and 300 pounds per square inch absolute with an exit pressure of 1 atmosphere were 325.7 and 298.8 pound-seconds per pound, respectively.

A method for obtaining specific impulse for JP-4 fuel with OF2 and 0_3 -F₂ mixtures is given.

INTRODUCTION

Mixtures of liquid fluorine and liquid oxygen with JP-4 fuel have been considered recently as possible high-energy rocket propellants (refs. 1 to 5). Better performance may be obtained from hydrocarbon fuels with certain fluorine-oxygen mixtures than with either 100 percent fluorine or oxygen. The reason for this is that fluorine burns preferentially with hydrogen, and oxygen with carbon. This is fortunate in

the en their

that the alternative formation of water instead of hydrogen fluoride would have led to lower combustion temperatures, and the formation of carbon tetrafluoride instead of carbon monoxide would have led to higher molecular weight. The result would then have been a lower ratio of temperature to molecular weight with a correspondingly lower performance.

According to data in reference 6, the optimum oxidant mixture with JP-4 fuel is about 70 percent fluorine and 30 percent oxygen by weight. Additional data were computed for JP-4 fuel with an oxidant containing 70.37 percent fluorine and 29.63 percent oxygen by weight (fluorine-to-oxygen atom ratio of 2) for both frozen and equilibrium compositions during expansion. These data, which cover a wide-range of oxidant-fuel ratios and pressure ratios, were calculated to aid in rocket design and for comparison with experimental results.

The data for frozen composition during expansion are reported in reference 7. The subject report presents the data obtained for two chamber pressures on the basis of equilibrium composition during expansion. A correlation is given which permits the determination of specific impulse, characteristic velocity, ratio of nozzle-exit area to throat area, combustion-chamber temperature, and nozzle-exit temperature for a wide range of chamber pressures. An equation is given that permits estimation of specific impulse for a change in the heat of reaction of the propellant.

SYMBOLS

A	nozzle area, sq in.
a	local velocity of sound (velocity of flow at throat), ft/sec
$\mathtt{C}_{\mathbf{F}}$	coefficient of thrust, $C_F = g_c I/c^* = F/P_c A_t$
$C_{\mathbf{p}}^{\mathbf{p}}$	molar specific heat at constant pressure, cal/(mole)(OK)
c p	specific heat at constant pressure, $(\partial h/\partial T)_{P}$, cal/(g)(${}^{O}K$)
c*	characteristic velocity, $g_c^P_cA_t/w$, ft/sec
F	thrust, lb
f ₁ ,f ₂ ,	functions
g _c	gravitational conversion factor, 32.174 $\left(\frac{\text{lb mass}}{\text{lb force}}\right) \left(\frac{\text{ft}}{\text{sec}^2}\right)$

 $H_{\rm p}^{\rm O}$ sum of sensible enthalpy and chemical energy, cal/mole

h sum of sensible enthalpy and chemical energy per unit mass,

$$\frac{\sum_{i} n_{i}(H_{I}^{0})_{i}}{M(1-n_{k})}, cal/g$$

- I specific impulse, lb force-sec/lb mass
- k coefficient of thermal conductivity, cal/(sec)(cm)(OK)
- M molecular weight, $\frac{\sum_{i} n_{i}M_{i}}{1-n_{k}}$, g/g-mole or lb/lb-mole
- n mole fraction
- n_c^* characteristic-velocity exponent, $\frac{\partial \ln c^*}{\partial \ln P_c}$
- $n_{\rm I}$ specific-impulse exponent for fixed pressure ratio, $\left(\frac{\partial \ln I}{\partial \ln P_{\rm c}}\right)_{\rm P_{\rm c}}/\rm P_{\rm c}$
- n_T temperature exponent for fixed pressure ratio, $\left(\frac{\partial \ln T}{\partial \ln P_c}\right)_{P_C/P}$
- n_{ϵ} area-ratio exponent for fixed pressure ratio, $\left(\frac{\partial \ln \epsilon}{\partial \ln P_{c}}\right)_{P_{c}/P}$
- o/f oxidant-to-fuel weight ratio
- P pressure (sum of partial pressures), lb/sq in.
- p partial pressure, lb/sq in.
- R universal gas constant (consistent units)
- equivalence ratio, ratio of four times the number of carbon atoms plus the number of hydrogen atoms to two times the number of oxygen atoms plus the number of fluorine atoms in propellant, $\frac{4(C) + (H)}{2(O) + (F)}$

- ST entropy at pressure of 1 atmosphere, cal/(mole)(OK)
- entropy per unit mass, $\frac{\sum_{i} n_{i}(S_{T}^{O})_{i}}{M(1 n_{k})} \frac{R \sum_{j} p_{j} ln(p_{j}/14.696)}{PM}$, cal/(g)(OK)
- T temperature, ^OK
- v specific volume
- w mass-flow rate, lb/sec
- γ isentropic exponent, $\left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{s}$
- ϵ ratio of nozzle area to throat area, A/A $_{\rm t}$
- μ coefficient of viscosity, poises = g/(cm)(sec)
- ξ $\left(\frac{\partial \ln M}{\partial \ln T}\right)_{S}$, partial derivative of logarithm of molecular weight with respect to logarithm of temperature at constant entropy
- ρ density, lb/cu in.

Subscripts:

- c combustion chamber
- e nozzle exit
- i product of combustion including both gaseous and solid phases
- j gaseous product of combustion
- k solid product of combustion (graphite)
- o conditions at 0° K
- P constant pressure
- P_c/P constant pressure ratio
- s constant entropy

- t nozzle throat
- l reference point

CALCULATION OF PERFORMANCE DATA

Performance data were obtained for two chamber pressures for a range of equivalence ratios and pressure ratios. These data were calculated assuming equilibrium composition during expansion.

The computations were carried out by means of the method described in reference 8 with modifications to adapt it for use with an IBM card-programmed electronic calculator. The machine was operated with floating-decimal-point notation and eight significant figures. The successive approximation process used in the calculations was continued until seven-figure accuracy was reached in the desired values of the assigned parameters (mass balance and pressure or entropy).

Assumptions

The calculations were based on the following usual assumptions: perfect gas law, adiabatic combustion at constant pressure, isentropic expansion, no friction, homogeneous mixing, and one-dimensional flow. The products of combustion were assumed to be graphite and the following ideal gases: atomic carbon C, carbon monofluoride CF, carbon difluoride CF2, carbon trifluoride CF3, carbon tetrafluoride CF4, difluoroacetylene C2F2, methane CH4, carbon monoxide CO, carbon dioxide CO2, atomic fluorine F, fluorine F_2 , atomic hydrogen H, hydrogen H_2 , hydrogen fluoride HF, water H_2O , atomic oxygen O, oxygen O2, and the hydroxyl radical OH. The combustion products are assumed to be completely expanded within the exit nozzle; that is, exit pressure equals ambient pressure.

The graphite was assumed to be finely divided and in temperature and velocity equilibrium with the gases during the flow process.

Initial Data

Thermodynamic data. - The thermodynamic data for all combustion products except graphite, methane, the fluorocarbons, and water were taken from reference 8. Data for graphite were taken from reference 9, for carbon monofluoride from reference 10, for the remainder of the fluorocarbons from reference 11, and for water from reference 12. Data for methane were determined by the rigid-rotator - harmonic-oscillator

approximation using spectroscopic data from reference 13. The base used in this report for assigning absolute values to enthalpy is the same as that in reference 8.

The dissociation energy of fluorine was taken to be 35.6 kilocal-ories per mole, and the heat of sublimation of graphite at 298.16° K was taken to be 171.698 kilocalories per mole (ref. 14). The heat of solution of oxygen and fluorine was taken to be zero.

Physical and thermochemical data. - The properties of the fuel used in these calculations are typical of the JP-4 fuel delivered to the Lewis laboratory over a period of 2 years. The JP-4 fuel was assumed to have a hydrogen-to-carbon weight ratio of 0.163 (atom ratio of 1.942), a lower heat of combustion value of 18,640 Btu per pound, and a specific gravity of 0.769. Additional properties of jet fuels may be found in reference 15.

The oxidant used in these calculations is a mixture of liquid fluorine and liquid oxygen. The heat of solution of this mixture was neglected. Several properties of the oxidants taken from references 8, 14, 16, and 17 are listed in table I.

Viscosity data. - The viscosity data for the individual combustion products were either taken from the literature when available, or estimated. The viscosities of F, H, H_2 , and HF are given in reference 18. The viscosities of the remaining substances except H_2O were calculated using similar techniques. The viscosity of H_2O was obtained from a modified Sutherland equation (ref. 19).

Computation of Combustion Conditions

A combustion pressure was assigned (300 or 600 lb/sq in. abs). At this assigned pressure, the equilibrium composition $n_{\rm i}$, enthalpy h (including both chemical and sensible energy), and entropy s were determined for three temperatures at $100^{\rm O}$ K intervals. The temperatures were chosen to band the value of enthalpy for the propellant mixture $h_{\rm c}$. The formulas used to calculate h and s are

$$h = \frac{\sum_{i} n_{i} (H_{T}^{O})_{i}}{M(1 - n_{k})}$$
 (1)

$$s = \frac{\sum_{i} n_{i}(S_{T}^{0})_{i}}{M(1 - n_{k})} - \frac{1.98718 \sum_{j} p_{j} ln(p_{j}/14.696)}{PM}$$
 (2)

Combustion composition corresponding to $h_{\rm C}$ was obtained by ordinary three-point interpolation of composition as a function of h. Entropy $s_{\rm C}$ corresponding to $h_{\rm C}$ was obtained by means of a three-point - three-slope interpolation of s as a function of h. The slope was obtained by means of the thermodynamic relation

$$\left(\frac{\partial \mathbf{s}}{\partial \mathbf{h}}\right)_{\mathbf{P}} = \frac{1}{\mathbf{T}} \tag{3}$$

It is convenient to treat the products of combustion (sometimes a mixture of solid graphite and ideal gases) as a single homogeneous fluid. Therefore, the molecular weight of the combustion products M is defined as the weight of a sample (including gases and solid graphite) divided by the number of moles of gas, as given by the formula

$$M = \frac{\sum_{\underline{i}} n_{\underline{i}} M_{\underline{i}}}{1 - n_{\underline{k}}} \tag{4}$$

This value of M is suitable for use in the gas law

$$P = \frac{\rho RT}{M} \tag{5}$$

provided the solid phase is included in the density. Such a fluid will exhibit ideal properties as long as the volume of the gases is large with respect to the volume of the solid phase. The procedure is also consistent with the assumption that the solid particles are small enough to be considered gas molecules of extremely large molecular weight.

Computation of Exit Conditions

Calculation of parameters at assigned temperatures. - Exit temperatures were selected at 200°, 300°, or 400° K intervals to cover the range of pressure ratios from 1 to 1500. At these selected temperatures, the following data were computed assuming isentropic expansion and equilibrium composition: pressure, enthalpy, molecular weight, molecular-weight derivative, isentropic exponent, specific heat at constant pressure, viscosity, thermal conductivity, nozzle-area ratio, coefficient of thrust, and specific impulse.

Interpolation of throat pressure. - A cubic equation in terms of ln P was derived from the following function and its first derivative using the data at two assigned temperatures:

function,
$$f_1 = \ln f_2 = \ln \left(\frac{h}{R} + \frac{\gamma T}{2M} - \frac{h_0}{R} \right)$$

first derivative,
$$\frac{df_1}{d \ln P} = \frac{T}{2Mf_2} \left(\gamma + 1 + \frac{d\gamma}{d \ln P} \right)$$

(Values for $d\gamma/d$ ln P were found by a numerical method.)

The two temperatures were selected to band the throat temperature. The pressure at the throat was found by interpolating $\ln P$ as a function of f_1 for the point $f_1 = \ln \left(h_c/R - h_o/R \right)$. At this point the velocity of flow equals the velocity of sound.

Interpolation of enthalpy. - Enthalpies were interpolated for a series of pressures including the throat pressure by means of quartic equations in terms of ln P. Each of the quartic equations used was derived from data at two successive assigned temperatures and used to interpolate those points within the temperature interval. The data used in forming each quartic were the following function at one of the assigned temperatures and its first and second derivatives at both assigned temperatures:

function,
$$f_3 = \frac{h}{R}$$

first derivative,
$$\frac{df_3}{d \ln P} = \frac{T}{M}$$

second derivative,
$$\frac{d^2r_3}{(d \ln P)^2} = \frac{T}{M} \left(\frac{\gamma - 1}{\gamma}\right)$$

Interpolation of temperature. - Temperatures were interpolated for a series of pressures including the throat pressure by means of cubic equations in terms of ln P. Each of the cubic equations used was derived from data at two successive assigned temperatures and used to interpolate those points within the temperature interval. The data used in forming each cubic were the following function and its derivative at both assigned temperatures:

function, $f_4 = \ln T$

first derivative,
$$f_5 = \frac{df_4}{d \ln P} = \left(\frac{\gamma - 1}{\gamma}\right) \left(\frac{1}{1 - \xi}\right)$$

4046

4046

CM-2

<u>Interpolation of molecular weight.</u> - Molecular weights were interpolated similarly to temperatures using the following function and derivative:

function, $f_6 = ln M$

first derivative,
$$\frac{df_6}{d \ln P} = \xi f_5 = \left(\frac{\gamma - 1}{\gamma}\right) \left(\frac{\xi}{1 - \xi}\right)$$

Interpolation of specific heat, isentropic exponent, and molecular-weight derivative. - Specific heats were interpolated for a series of pressures including the throat pressure by means of cubic equations in terms of ln P. Each of the cubic equations used was derived from values of specific heat for four successive temperatures and used to interpolate those points within the interval of the two middle temperatures. Isentropic exponents and molecular-weight derivatives were interpolated in a manner similar to that for specific heats.

Accuracy of interpolation. - The errors due to interpolation were checked for several cases. The values presented for enthalpy, entropy, and specific impulse appear to be correctly computed to all figures tabulated. The temperature and molecular weight may in some cases be in error by a few figures in the last place tabulated. The derivatives may, in regions where they are changing rapidly, be in error by a few percent. However, because of uncertainties in thermodynamic data used, all values are probably tabulated to more places than are entirely significant.

Formulas

The formulas used in computing the various performance parameters are as follows:

Specific impulse, lb force-sec/lb mass

$$I = 294.98 \sqrt{\frac{h_c - h_e}{1000}}$$
 (6)

Throat area per unit mass-flow rate, (sq in.)(sec)/lb

$$\frac{A_{t}}{w} = \frac{2781.6 T_{t}}{P_{t}M_{t}a}$$
 (7)

Characteristic velocity, ft/sec

$$c^* = g_c P_c \left(\frac{A_t}{W}\right) = 32.174 P_c \left(\frac{A_t}{W}\right)$$
 (8)

Coefficient of thrust

$$C_{\rm F} = \frac{g_{\rm c}^{\rm I}}{c^*} = \frac{32.174 \text{ I}}{c^*} \tag{9}$$

Nozzle area per unit mass-flow rate, (sq in.)(sec)/lb

$$\frac{A}{W} = \frac{86.455 \text{ T}}{PMT} \tag{10}$$

Ratio of nozzle area to throat area

$$\varepsilon = \frac{A/W}{A_{+}/W} \tag{11}$$

Specific heat at constant pressure, $cal/(g)({}^{O}K)$

$$c_{p} = \left(\frac{\partial h}{\partial T}\right)_{P} = \frac{C_{p}^{O}}{M(1 - n_{k})}$$
 (12)

where C_p^{O} is given by equation (37) of reference 8.

Isentropic exponent

$$\gamma = \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{S} = \frac{a^{2}M}{RT}$$
 (13)

where a^2 is given by equation (32) of reference 8.

Coefficient of viscosity, poises

$$\mu = \frac{PM}{\sum_{j} \frac{p_{j}}{\mu_{j}/M_{j}}}$$
 (14)

Molecular-weight derivative

$$\xi = \left(\frac{\partial \ln M}{\partial \ln T}\right)_{s} = D_{A} - \frac{\sum_{i} p_{i}D_{i}}{P}$$
(15)

where D_A and D_i have the definitions of reference 8.

COMPLETENTIA

CM-C DACK

Coefficient of thermal conductivity, cal/(sec)(cm)(OK)

$$k = \mu \left(c_p + \frac{5}{4} \frac{R}{M} \right) \tag{16}$$

The values of viscosity and thermal conductivity for mixtures of combustion gases calculated by means of equations (14) and (16) are only approximate. When more reliable transport properties for the various products of combustion become available, a more rigorous procedure for computing the properties of mixtures may also be justified. When solid graphite was present among the combustion products, it was omitted from equation (14).

THEORETICAL PERFORMANCE DATA

Tables

The calculated values of the performance parameters and equilibrium composition of the combustion products are given in tables II to VII. The properties of gases in the combustion chamber and the characteristic velocity are given in table II for each chamber pressure and equivalence ratio. Table III presents the values of performance parameters at assigned temperatures and constant entropy. These values were computed directly and used to interpolate properties for assigned pressure ratios. The values of viscosity and thermal conductivity of the mixture are also given in this table as functions of temperature. The performance parameters for small pressure ratios from 1 to 8 are given in table IV. These properties permit computations within the rocket nozzle and for finite combustion-chamber diameters. An example for this latter application is given in reference 20. Properties at the throat may be found where $\varepsilon = 1.000$. The values adjacent to the throat correspond to pressures 1.2 and 0.8 times the throat pressure.

The performance parameters for pressure ratios from 10 to 1500 are given in table V. This table gives sufficient data to permit interpolation of complete data for any pressure ratio within the range tabulated.

The performance parameters are summarized in table VI for expansion from chamber pressure to 1 atmosphere. The maximum values calculated for specific impulse for chamber pressures of 600 and 300 pounds per square inch absolute are 325.7 and 298.8, respectively, at 20.71 percent fuel by weight. This mixture corresponds closely to the chemically correct mixture for the formation of carbon monoxide and hydrogen fluoride.

Table VII presents the composition of the combustion products at the combustion temperature and various assigned temperatures at constant entropy.

Curves

The performance parameters are plotted in figures 1 to 6 for chamber pressures of 600 and 300 pounds per square inch absolute.

Curves of specific impulse are presented in figure 1 for pressure ratios from 10 to 1500 as functions of weight percent fuel. The maximum value of specific impulse occurs at about 21 weight percent fuel for all pressure ratios. The exponent n_{T} is also shown.

Curves of combustion-chamber and nozzle-exit temperature for pressure ratios from 10 to 1500 are plotted in figure 2 as functions of weight percent fuel. The exponent $n_{\rm T}$ is also shown.

Curves of the ratio of nozzle area to throat area are plotted in figure 3 for pressure ratios from 10 to 1500 as functions of weight percent fuel. The exponent $n_{\rm g}$ is also shown.

Figures 4 and 5 give the curves for coefficient of thrust and molecular weight, respectively, for pressure ratios from 10 to 1500 as functions of weight percent fuel.

Figure 6 presents curves of characteristic velocity as functions of weight percent fuel. Also shown is the exponent n_c* .

The theoretical calculations of equilibrium composition in the combustion chamber showed that solid graphite was not present for the equivalence ratios of 1 to 1.6 (weight percent fuel, 14.83 to 21.79) and was present for equivalence ratios of 1.75 to 4.00 (weight percent fuel, 23.35 to 41.05). The appearance of solid graphite and carbon-fluorine compounds affected the values of the thermodynamic parameters and resulted in a break in the performance data in the region of 23 weight percent fuel. This break in the performance data is apparent in figures 1 to 6.

Effect of Assuming Frozen or Equilibrium Composition

The assumption of whether the composition remains constant during the expansion process (frozen) or is in continuous equilibrium affects the value of the performance parameters. A comparison is given in figure 7 between the values of specific impulse assuming equilibrium composition (this report) and frozen composition (ref. 7). The maximum value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.83 atm) and an exit pressure of 1 atmosphere is 325.7 for equilibrium composition and 301.1 for frozen composition, a difference of 8.2 percent. The maximum specific impulse occurs at about 21 percent fuel by weight for both equilibrium and frozen compositions.

COMPANIE

404

946

An example of the large effect of change of composition on specific heat and isentropic exponent is given in figures 8(a) and (b). For the stoichiometric equivalence ratio, the value for specific heat assuming equilibrium composition is, at about 2000° K, over 10 times the value assuming frozen composition. This large difference is due primarily to the rate of change of composition with temperature and only relatively little to the difference in composition. The value for isentropic exponent at about 1600° K is 25 percent greater for frozen composition than for equilibrium composition.

Chamber-Pressure Effect

By use of suitable derivatives, performance parameters can be estimated with good accuracy at chamber pressures other than those given in this report. Derivatives which permit the calculation of I, T, ϵ , and c^* at various chamber pressures for fixed pressure ratios and equivalence ratios were obtained from the following equations:

$$n_{I} = \left(\frac{\partial \ln I}{\partial \ln P_{c}}\right)_{P_{c}/P} = 86.4554 \frac{T}{I^{2}}\left(\frac{1}{M_{c}} - \frac{1}{M}\right)$$
 (17)

$$n_{T} = \left(\frac{\partial \ln T}{\partial \ln P_{c}}\right)_{P_{c}/P} = \left(\frac{\gamma - 1}{\gamma}\right)\left(\frac{1}{1 - \xi}\right) - \frac{R}{M_{c}c_{p}}$$
(18)

$$n_{\varepsilon} = \left(\frac{\partial \ln \varepsilon}{\partial \ln P_{c}}\right)_{P_{c}/P} = (n_{A/W})_{e} - (n_{A/W})_{t}$$
 (19)

where
$$n_{A/w} = \left(\frac{\partial \ln A/w}{\partial \ln P_c}\right)_{P_c/P} = -\left(\frac{M}{M_c}\right)\left(\frac{\gamma - 1}{\gamma}\right)\left(\frac{1}{1 - \xi}\right) - \frac{1}{\gamma} - n_T$$

$$n_c^* = \frac{\partial \ln c^*}{\partial \ln P_c} = 1 + (n_A/w)_t$$
 (20)

These equations, which were derived analytically from thermodynamic relations, are valid only for chemical equilibrium during expansion. The equations may be written in the approximate form:

$$I = I_1 \left(\frac{P_c}{P_{c,1}}\right)^{n_{I,1}} \tag{21}$$

$$T = T_1 \left(\frac{P_c}{P_{c,1}}\right)^{n_{T,1}} \tag{22}$$

$$\varepsilon = \varepsilon_1 \left(\frac{P_c}{P_{c,1}}\right)^{n_{\varepsilon,1}} \tag{23}$$

$$c^* = c_1^* \left(\frac{P_c}{P_{c,1}} \right)^{n_c^*, 1}$$
 (24)

where $P_{c,l}$ may be selected to be either 300 or 600 pounds per square inch absolute, provided that I_1 , T_1 , ϵ_1 , c_1^* , and their derivatives are the corresponding values for the chamber pressure selected.

TATINITAT

The derivatives obtained by means of equations (17) to (20) are shown in tables II to V and are plotted in figures 1, 2, 3, and 6.

To illustrate the use of these derivatives, suppose it is desired to obtain the value of specific impulse for a chamber pressure of 450 pounds per square inch absolute and a pressure ratio of 30.62 (exit pressure, l atm) for an equivalence ratio r of 1.5 (20.71 weight percent fuel). From figure 1(a) or table V, the value of I at this pressure ratio and equivalence ratio (but for a chamber pressure of 600 lb/sq in. abs) is 316.0 and the value of $n_{\rm T}$ is 0.0090. From equation (21),

$$I = 316.0 \left(\frac{450}{600}\right)^{0.0090}$$
$$= 316.0 (0.99741)$$
$$= 315.2$$

A comparison of the parameters obtained by means of the chamber-pressure correlation and by a direct calculation for two examples is given in the following table (r = 1.5 (20.71 weight percent fuel)):

Param- eter	$P_c = 450$ $P_e = 1$ atr		ı. abs	$P_c = 1200 \text{ lb/sq in. ab}$ $P_e = 1 \text{ atm}$					
	by corre-			Estimated by corre- lation		Error			
.I	315.18	315.19	0.01	347.56	347.50	0.06			
Tc	4424.2	4424.0	.2	4615.2	4613.4	1.8			
Te	2905.7	2905.6	.1	2403.1	2403.0	.1			
ε	5.119	5.112	.007	10.009	10.002	.007			
c*	6789.3	6788.9	.4	6873.7	6872.0	1.7			

It is expected that values estimated for other equivalence ratios and pressure ratios for any chamber pressure from about 150 to 1200 pounds per square inch absolute will have small errors in the order of magnitude shown in the previous table. A possible exception might occur when the value of the exponent is changing rapidly such as in the region where solid graphite first appears.

Estimated Performance of JP-4 Fuel with Ozone-Fluorine

Mixtures or with Oxygen Bifluoride

The performance of other propellants having the same atom ratios as the propellant in this report, but with a difference in the heat content of the propellants or combustion products, may be estimated from the following equation (ref. 21):

$$I^2 = I_1^2 + B \Delta h_c + C (\Delta h_c)^2$$
 (25)

where Δh_c is the change in the heat content,

$$B = 87.0132 \left(1 - \frac{T_e}{T_c} \right)_1$$

$$C = \frac{87.0132}{2} \left(\frac{T_e}{T_e^2} \right)_1 \left[\frac{1}{(c_p)_e} - \frac{1}{(c_p)_e} \right]_1$$

and the subscript 1 indicates the values of the parameters before the change is made. Inasmuch as the data in this report are for an oxidant with a fluorine-to-oxygen atom ratio of 2, then equation (25) is applicable to a fluorine-ozone mixture having this same atom ratio or to oxygen bifluoride.

For example, assume that the performance is desired for JP-4 fuel with liquid oxygen bifluoride at an equivalence ratio of 1.5, a combustion pressure of 600 pounds per square inch-absolute, and a pressure ratio of 40. The reaction may be written

$$CH_{1.942} + 0.9903 OF_{2}$$

From reference 8, the difference in heat content between OF_2 and $\frac{1}{2}O_2 + F_2$ is 5844.3 calories per mole of oxygen bifluoride. Therefore, Δh_c is 85.15 calories per gram of propellant (fuel plus oxidant).

From tables II and V(a) or figures l(a) and 2(a) the values of the parameters are

$$I_7 = 325.0$$

$$T_{c,1} = 4479$$

$$T_{e,1} = 2769$$

$$(c_p)_{c,l} = 1.357$$

$$(c_p)_{e,1} = 0.489$$

These values yield the following:

$$I_1^2 = 105,625$$

$$B = 33.22$$

$$C = -0.00786$$

By equation (25),

$$I^2 = 105,625 + 33.22(85.15) + (-0.00786)(7251)$$

= 105,625 + 2829 - 57 = 108,397

I = 329.24

This compares with a value of 329.34 obtained by a direct calculation.

Equation (25) was used to obtain specific impulse at several equivalence ratios for JP-4 fuel with oxygen bifluoride and JP-4 fuel with an

ALCONOMIC SERVICES

4046

oxidant containing 70.37 percent fluorine and 29.53 percent ozone by weight. The results are compared in figure 9 with the specific impulse data of table VI.

Use of Derivatives

The derivatives of the fundamental thermodynamic quantities have many useful applications. Equations (21) to (25) are examples of these applications.

All the relations between the first derivatives may be expressed in terms of three arbitrary first derivatives in addition to the fundamental quantities (ref. 22). Reference 22 presents a convenient scheme for expressing all first derivatives in terms of $(\partial v/\partial T)_P$, $(\partial v/\partial P)_T$, and $(\partial h/\partial T)_P = c_P$. In order to make use of the tables in reference 22, $(\partial v/\partial T)_P$ and $(\partial v/\partial P)_T$ can be obtained from the data in this report by means of the following equations:

$$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{\mathbf{P}} = \left(\frac{\mathbf{c}_{\mathbf{p}}}{\mathbf{P}}\right) \left(\frac{\mathbf{r} - \mathbf{1}}{\mathbf{r}}\right) \left(\frac{\mathbf{1}}{\mathbf{1} - \mathbf{\xi}}\right) \tag{27}$$

$$\left(\frac{\partial \mathbf{v}}{\partial P}\right)_{\mathbf{T}} = -\frac{\mathbf{T}}{c_{\mathbf{p}}} \left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{\mathbf{P}}^{2} - \frac{\mathbf{v}}{\gamma \mathbf{P}}$$
(28)

The dimensions of specific volume v in equations (27) and (28) which result from using the dimensions assigned to the other variables in this report are (cal)(sq in.)/(g)(lb force). For certain applications involving these derivatives, the dimensions of v are unimportant inasmuch as they will cancel. However, a conversion factor may be used when it is desired to obtain any other dimension for v. For example, l(cal)(sq in.)/(g)(lb force) equals 606.84 cu cm/g.

SUMMARY OF RESULTS

A theoretical investigation of the performance of JP-4 fuel with an oxidant containing 70.37 percent fluorine and 29.63 percent oxygen by weight was made for the following conditions: (1) equivalence ratios from 1 to 4, (2) chamber pressures of 300 and 600 pounds per square inch, (3) pressure ratios from 1 to 1500, and (4) equilibrium composition during expansion.

COMPTENDED

The results of the investigation are as follows:

- 1. The maximum values of specific impulse for chamber pressures of 600 and 300 pounds per square inch absolute (40.83 and 20.41 atm) and an exit pressure of 1 atmosphere were 325.7 and 298.8, respectively.
- 2. Data are presented that permit interpolation of complete performance data for equivalence ratios from 1 to 4, chamber pressures from 150 to 1200 pounds per square inch absolute, and pressure ratios up to 1500.
- 3. A method for obtaining specific impulse for JP-4 fuel with ${\tt OF}_2$ and ${\tt O}_3{\tt -F}_2$ mixtures is given.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 6, 1956

REFERENCES

- 1. Tomazic, William A., and Rothenberg, Edward A.: Experimental Rocket Performance with 15 Percent Fluorine 85 Percent Oxygen and JP-4. NACA RM E55D29, 1955.
- 2. Douglass, Howard W.: Experimental Performance of Fluorine-Oxygen with JP-4 Fuel in a Rocket Engine. NACA RM E55D27, 1955.
- 3. Rothenberg, Edward A., and Ordin, Paul M.: Preliminary Investigation of Performance and Starting Characteristics of Liquid Fluorine Liquid Oxygen Mixtures with Jet Fuel. NACA RM E53J20, 1954.
- 4. Aerophysics Department: Rocket Research on Fluorine-Oxygen Mixtures. Bimonthly Prog. Rep. No. 2, Rep. No. AL-1824-2, North Am. Aviation, Inc., Feb. 1, 1954. (Contract AF 33(616)-2134, E.O. R539-46-E SR-IC.)
- 5. Wilson, E. M.: An Investigation of the Gasoline and Mixed Fluorine-Oxygen Propellant Combination. Rep. 763, June 1-Aug. 15, 1953, Aerojet-General Corp., Dec. 3, 1953. (Contract N7onr-462, Task Order III.)
- 6. Gordon, Sanford, and Wilkins, Roger L.: Theoretical Maximum Performance of Liquid Fluorine Liquid Oxygen Mixtures with JP-4 Fuel as Rocket Propellants. NACA RM E54H09, 1954.
- 7. Gordon, Sanford, and Huff, Vearl N.: Theoretical Performance of JP-4 Fuel with a 70-Percent-Fluorine 30-Percent-Oxygen Mixture as a Rocket Propellant. I Frozen Composition. NACA RM E56Al3a, 1956.

(SOMEOFFICE OF STREET

- 8. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951. (Supersedes NACA TN's 2113 and 2161.)
- 9. Anon: Tables of Selected Values of Chemical Thermodynamic Properties. Table 23, Substance C, Ser. III (C, graphite), Nat. Bur. Standards, Mar. 31, 1947 and June 30, 1948.
- 10. Haar, Lester, and Beckett, Charles W.: Thermal Properties of Fluorine Compounds: Heat Capacity, Entropy, Heat Content and Free Energy Functions of Carbon Monofluoride in the Ideal Gaseous State. Rep. 1164, Nat. Bur. Standards, Oct. 1, 1951. (Office Naval Res. Contract NAonr 112-51.)
- ll. Potacki, Rita M., and Mann, David Emerson: Thermal Properties of Fluorine Compounds: Heat Capacity, Entropy, Heat Content and Free Energy Functions of Carbon Difluoride, Carbon Trifluoride, Carbon Tetrafluoride and Difluoroacetylene in the Ideal Gaseous State. Rep. 1439, Nat. Bur. Standards, Feb. 15, 1952. (Office Naval Res. Contract NAonr 112-51.)
- 12. Glatt, Leonard, Adams, Joan H., and Johnston, Herrick L.: Thermodynamic Properties of the H2O Molecule from Spectroscopic Data.

 Tech. Rep. 316-8, Cryogenic Lab., Dept. Chem., Ohio State Univ.,
 June 1, 1953. (Navy Contract N6onr-225, Task Order XII, ONR Proj.
 NR 085-005.)
- 13. Herzberg, Gerhard: Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Co., Inc., 1945, p. 306.
- 14. Rossini, Frederick D., et. al.: Selected Values of Chemical Thermodynamic Properties. Circular 500, Nat. Bur. Standards, Feb. 1952.
- 15. Barnett, Henry C., and Hibbard, R. R.: Fuel Characteristics Pertinent to the Design of Aircraft Fuel Systems. NACA RM E53A21, 1953.
- 16. Washburn, Edward W., ed.: International Critical Tables. Vol. III. McGraw-Hill Book Co., Inc., 1928.
- 17. Kilner, Scott B., Randolph, Carl L., Jr., and Gillespie, Rollin W.: The Density of Liquid Fluorine. Jour. Am. Chem. Soc., vol. 74, no. 4, 1952, pp. 1086-1087.
- 18. Gordon, Sanford, and Huff, Vearl N.: Theoretical Performance of Liquid Hydrogen and Liquid Fluorine as a Rocket Propellant. NACA RM E52L11, 1953.

- 19. Keyes, Frederick G.: Thermal Conductivities for Several Gases with a Description of New Means for Obtaining Data at Low Temperatures and Above 500° C. Tech. Memo. No. 1, Proj. Squid, M.I.T., Oct. 1, 1952. (Contract N5-ori-07855.)
- 20. Huff, Vearl N., Fortini, Anthony, and Gordon, Sanford: Theoretical Performance of JP-4 Fuel and Liquid Oxygen as a Rocket Propellant. II Equilibrium Composition. NACA RM E56D23, 1956.
- 21. Gordon, Sanford, and Huff, Vearl N.: Theoretical Performance of Liquid Hydrazine and Liquid Fluorine as a Rocket Propellant. NACA RM E53E12, 1953.
- 22. Bridgman, Percy W.: A Complete Collection of Thermodynamic Formulas. Phy. Rev., 2nd. ser., vol. III, no. 4, Apr. 1914, pp. 273-281.

CONTRACTOR

TABLE I. - PROPERTIES OF LIQUID OXIDANTS

Properties	Oxygen, O ₂	Fluorine, F ₂
Molecular weight, M Density, g/cc Freezing point, OC Boiling point, OC	32.00 ⁸ 1.1415 ^c -218.76 ^c -182.97	38.00 bl.54 c-217.96 c-187.92
Enthalpy required to convert liquid at boiling point to gas to 25° C, kcal/mole	^d 3.080	^d 3.030
Enthalpy of vaporization, kcal/mole	c,e _{1.630}	c,f _{1.51}
Enthalpy of fusion, kcal/mole	c,g _{0.106}	c,h _{0.372}

^aAt -182.0° C; ref. 16.

TOTAL PROPERTY.

.

^bAt -196° C; ref. 17.

cRef. 14.

dRef. 8.

^eAt -182.97^o C.

fAt -187.92° C.

gAt -218.76° C.

^hAt -217.96° C.

TABLE II. - THERMODYNAMIC PROPERTIES OF GASES IN COMBUSTION CHAMBER FOR JP-4 FUEL WITH OXIDANT CONTAINING 70.37 PERCENT FLUORINE AND 29.63 PERCENT OXYGEN BY WEIGHT

	Equiva- lence ratio, r, 4(C)+(H) 2(0)+(F)		Oxident- to-fuel weight ratio, o/f	Tem- pera- ture, T, OK	Temper- ature expo- nent, n _T	Molec- ular weight, M	En- thalpy, h, cal/g	Entropy, s, cal gm K	Specific heat, cp, cal (g)(OK)	Isen- tropic- expo- nent, Y	Character- istic- velocity exponent, n c*	Charac- teris- tic veloc- ity, c*, ft/sec
	·						(a)		(ъ)	(b)	(ъ)	(b)
				Comi	oustion-	chamber]	pressure	, 600 1ъ/	sq in. abs	3		
CIONERS	1.00 1.40 1.50 1.60 2.50	14.83 19.60 20.71 21.79 30.33	5.743 4.102 3.829 3.589 2.297	4007 4464 4479 4396 3898	0.0351 .0428 .0431 .0426 .0308	22.24 21.20 20.95 20.97 20.41	2592.0 3064.9 3175.0 3282.1 4128.8	2.5230 2.6853 2.7138 2.7302 2.8100	0.869 1.306 1.357 1.351 1.017	1.196 1.171 1.169 1.167 1.172	0.0106 .0125 .0126 .0126 .0076	6203 6757 6814 6749 6420
٩				Coa	nbustion	-chamber	pressure	a, 300 lb	/sq in. al	os		
•	1.00 1.25 1.40 1.50 1.60 1.75 2.00 2.50 3.00 4.00	14.83 17.87 19.60 20.71 21.79 23.35 25.83 30.53 34.31 41.05	5.743 4.595 4.102 3.829 3.589 3.282 2.872 2.297 1.914 1.436	3910 4238 4332 4346 4267 4163 4067 3813 3552 3095	0.0358 .0411 .0437 .0439 .0442 .0391 .0362 .0332 .0277	22.10 21.45 21.03 20.78 20.80 20.75 20.55 20.26 20.04 19.59	2592.0 2893.9 3064.9 3175.0 3282.1 3437.3 3682.7 4128.8 4523.9 5192.5	2.5851 2.6958 2.7505 2.7798 2.7962 2.8146 2.8399 2.8777 2.9025 2.9267	0.924 1.251 1.449 1.507 1.479 1.641 1.494 1.114 .959 .785	1.190 1.171 1.164 1.162 1.164 1.141 1.143 1.167 1.176 1.184	0.0109 .0121 .0131 .0133 .0129 .0111 .0103 .0086 .0066	6157 6543 6697 6753 6691 6667 6594 6384 6181 5819

aThe base used for enthalpy is given in ref. 8.

^bParameter includes energy due to change in composition.

TABLE III. - THEORETICAL ROCKET PERFORMANCE AT ASSIGNED TEMPERATURES FOR JP-4 FUEL AND OXIDANT CONTAINING 70.37 PERCENT FLUORINE AND 29.63 PERCENT OXYGEN BY WEIGHT

[Equilibrium composition during isentropic expansion or compression from combustion conditions.]

(a) Combustion-chamber pressure, 600 pounds per square inch absolute

			Molecular	Partial	Isentropic	Specific	Coeffi-	Coeffi-	Area	Thrust	Specific
Temper-	Pressure, P, 1b/sq in.	Enthalpy, h,	weight,	derdwa-	exponent.	heat,	c1ent	oient of	ratio,	cient,	impulse, I,
T _k	lb/sq in.	cal/g	II	tive, t,	γ, (<u>à ln P</u>)	°p,	of vis-	thermal	•	Cp	TD-660
				(aln T/s	(<u>9 72 6</u>)	(g)(°K)	itar,	tivity,		_	1ь
							micro- poises	cal/(sec) (cm)(°K)			
					(cm)(VK)		l	!			
4400	r = 1.0; o/r = 5.745; percent fuel = 14.85										
4000 3600	598.07 274.15	2587.2 2328.7	22.248 22.683	1893 1785	1.1961	.8684 .8418	1474	.00144	4.015	0.106	20.3
3200	114.500	2071.5	23.142	1585	1.1858	.7944 .7328	1324	.00110	1.587	1.104	212.8
3000	71.518	1946.8			1.8000	.6573	1095	.00084	8.794	1.336	357.5
2600	44.430 86.312	1839.9 1710.6	23.563 23.823	1188	1.1729	1.0050	1025	.00114	4.045	1.436	276.9
2400	11.395 3.537	1539.6 1326.1	24.487 25.523	4313	1.1160	2.3226 3.3206	936 840	.00227	7.648	1.570	302.6
3000	.819	1093.1	36.815	5244	1.1046	3.6467	746	.00279	67.815	1.873	
1800	.141	852.2 616.6	88.381	5068 4338	1.0961	3.3413	658 578	.00226	312.080 1880.5	2.018	389.1 414.6 435.0
1400	.000	417.1	29.954 31.378 32.013	2416	1.1067	1.1511	507 357	.00062	11620. 138020	2.150 2.256 3.367	435.0
900		1,50.0			= 4.102; perc						
4800	1186.6	3341.1	20,775	2856 2683	1.1757	1.3763	1653	0.00247	1.432	0.321	67.4
4400	588.97 830.67	3012.7	21.284 21.804	2357	1.1674	1 1434	1 1 4 5 9	.00183	1.090	.858	180.3
3600	95.692	8390.1 8138.7	28.892	1812	1.1737	.9283 .6357	1350 1233	.00140	1.720 3.012	1.154	242.3
3000	27.800	2029.5	22.761	0460	1.2396	.5011	1172	.00071	3.901	1.429	300.2
2600	19.653 14.036	1941.7 1863.6	28.806	0163	1.2744	.4195 .3896	1110	.00059	4.936 6.198	11.540	312.6
8400	9.557	1779.2	22.876	0905 2538	1.2273	1.1737	980 897	.00068	8.106 13.858	1.593	334.5
1	1.987	1486.8	23.801	1993	1.1607	.9633	811	.00087	28.184	1.764	370.6
1800	.919	1365.0	24.131	0671	1.2176	.5357	735	.00047	52.145	11.831	384.6
1600	.506 .285	1281.6	24.215	0078 0004	1.2884	.3789 .3454	600	.00032	81.850 134.91	1.876	401.7
1800	.150	1142.7	24.223	0000 -15:0/f	= 3.829; per	.3356		.00023	199.34	1.947	409.0
4800	1101.8	3445.0	20.544	2878	1.1734	1.4230	1636	0.00253			
4400	512.05	3108.4 8778.3	81.053 21.576	2721	1.1675	1.3349	1446	.00224	1.313	0.359	76.1
3600	89.635	2467.3	22.070	1866 1130	1.1690	.9722	1340	.00145	1.796	1.172	248.1
3000	23.768	2077.3	22.600	0742	1.2088	.6012	1168	.00083	4.486	1.459	309.1
2800	15.923	1975.3	22.687	0402	1.2378	.4985	1107	.00067	5.876 7.693	11.526	1323.1
2600 2400	10.864	1793.5	22.814	0440	1 2.8427	.4907	976	.00058	10.409	11.637	346.7
2200	4.570	1704.3	22.884	0238	1.2662	.4354	1	.00049	14.405		
1800	2.943 1.874	1624.1	23.915	0071	1.3956	.3660 .3640 .3537	839 771	.00041	19.775 37.298	11.776	376.1
1600 1800	1.158	1478.1	22.925	0001	1.3248	.3537	701 556	.00038	38.626 87.599	1.814	384.3 399.6
					= 3.589; per						,
4400	860.94	3285.5 2955.0	20.965 21.479	8703	1.1670	1.3538	1396	0.00820	1.046	0.804	168.7
3600	99.836	2621.5 2331.5	81.948 82.323	1776	1.1521	1.0671	1 1 3 2 9	.00157	1.695	1.143	1287.6
2800	16.680	8108.0	38.544	-:0448	1.2321	:5178	1186	100071	5.761	1.524	319.6
2400	7.650	1989.8	22.636	0135	1.2745	.4301	997 862	.00053	9.998	1.635	343.0
2000 1600	3.375 1.318	1778.1	22.663	0025	1.3013	.3807	730	.00034	17.841 34.879	1.728	1379.8
1200 900	.414	1483.0 1373.8	32.669 33.773	0007 0759	1.3418	.3451 .5296	450	.00036	79.838 192.75	1.886	1395.7
				= 2.5; c/f				12"			
4000 3600	737.84	4208.8 3908.3	20.326	1342	1.1677	1.0699	1459	0.00186	1.001	0.694	138.6
3800	143.10	3637.8	20.935	0972	1.1936	.7438	1335	.00115	1.353	1.036	206.7
2400	84.973	3180.5	21.273	0328	1.2346	.5171	1066	.00068	4.089	1.440	287.3
3000	9.863	2990.1	21.318	0047 0005	1.2598	.4568	923 772	.00053	7.856	14 406	1220 0
1800	5.446 .952	8614.8	81.327 21.331	10020	1 1.3970	.4087 .7018	612	.00032	16.734	1.799	1222.0
900	.240	2514.9	31.494	1082	1.2030	1 .7018	485	.00040	131.00	1.678	374.7

TABLE III. - Continued. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED TEMPERATURES FOR JP-4 FUEL AND OXIDANT CONTAINING 70.37 PERCENT FLOURING AND 29.65 PERCENT OXYGEN BY WEIGHT.

[Equilibrium composition during isentropic expansion or compression from combustion conditions.]

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

Temper- ature,	Pressure, P, lb/sq in. abs	Enthalpy, h, cal/g	Holecular weight,	Partial derivative, \$, (3 ln H) a ln T)	Isentropio exponent, (\frac{\partial \ln P}{\partial \ln P}\) (\frac{\partial \ln P}{\partial \ln P}\) (a \ln P) (b \ln P) (c)	Specific heat, cp, cal (g)(ck)	Coeffi- cient of vis- cos- ity, µ, micro- poises	Coefficient of thermal conductiv- ity, k, cal/(sec) (cm)(°K)	Area ratio,	Thrust coeffi- cient, Cp	Specific impulse, I, lb-sec
			F	= 1.00; o/f	= 5.743; per	cent fuel =	14.83	<u> </u>			
4000 3600 3200 3000 2800	355.88 160.57 64.908 39.476 23.683	2652.8 2382.8 8113.7 1981.1 1854.9	22.002 32.468 32.967 23.819 23.450	2058 1931 1774 1593 1256	1.1909 1.1859 1.1793 1.1794 1.1881	0.9365 .8987 .8631 .8134 .7133	1479 1357 1389 1164 1099	0.00155 .00137 .00119 .00107	1.002 1.436 1.934 3.698	0.705 1.066 1.205 1.383	134.9 204.0 230.5 253.2
2600 2400 2200 2000 1800	14.427 7.837 2.686 .628 .104	1748.0 1615.0 1415.0 1177.5 985.4	23.635 23.971 24.864 26.127 27.655	0961 3103 4905 5373 5358	1.2076 1.1513 1.1186 1.1046 1.0947	.6100 1.3981 3.0738 3.9044 3.8646	1034 959 862 764 671	.00074 .00144 .00374 .00306	3.800 5.938 13.952 47.066 888.40	1.481 1.584 1.678 1.833 1.990	272.0 291.6 380.0 350.8 380.8
1600 1400 900	.012 .001 .000	672.8 446.6 198.6	29.382 31.047 32.013	4826 3196 0001	1.0886 1.0948 1.2462	3.0324 1.5860 .3143	586 510 357	.00183 .00085 .00014	1465.7 11360. 189140	2.135 2.258 2.385	408.6 438.1 456.3
					= 4.595; per						
4400 4000 3600 3200 3000	415.71 182.13 75.630 30.534 19.500	3025.0 2704.9 2403.8 2131.7 2010.7	21.237 21.773 22.288 22.744 23.988	2764 2440 1990 1436 1045	1.1718 1.1700 1.1743 1.1867 1.8016	1.3068 1.1562 .9708 .7762 .6561	1572 1469 1355 1232 1168	0.00284 .00187 .00147 .00109 .00089	1.003 1.319 2.883 3.087	0.631 1.016 1.266 1.363	188.8 806.5 857.5 877.8
2800 2600 2400 3200 2000	12.795 8.733 5.888 2.661 .774	1905.1 1816.3 1731.6 1577.6 1364.7	23.056 23.119 23.182 23.704 24.664	0568 0214 0923 3802 4252	1.2319 1.2713 1.2258 1.1329 1.1166	.5202 .4825 .5782 1.9838 2.3678	1105 1042 976 889 791	.00069 .00055 .00067 .00180	4.187 5.364 7.059 13.145 36.654	1.448 1.506 1.564 1.664 1.794	293.3 306.2 318.0 338.4 364.8
1800 1600 1400 900	.188 .055 .025 .004	1152.5 992.9 904.8 738.4	26.560		1.1177 1.1676 1.2655 1.3067	1.6736 .6783 .3623 .3187	700 624 560 395	.00134 .00048 .00026 .00016	182.25 345.41 640.54 2803.7	1.914 8.000 8.046 2.130	389.3 406.7 416.0 433.1
4400	345.92	3123.8	20.936	2991	= 4.102; perc	1.4691	1553	0.00247			
4000 3600 3200 3000	143.83 55.745 21.508 13.942	3778.9 3450.7 3168.2 2044.3	21.514	2701 2193 1334 0773	1.1605 1.1628 1.1843 1.2133	1.3210 1.0922 .7706 .5930	1455 1349 1233 1178	.00209 .00163 .00109 .00082	1.021 1.576 2.934 3.968	0.758 1.111 1.346 1.438	157.7 831.8 280.3 298.0
2800 2600 2400 2200 2000	9.496 6.677 4.690 8.833 1.141	1946.8 1864.0 1787.1 1686.3 1534.1	22.817 28.828 22.994	0312 0086 0097 2021 2551	1.2547 1.2880 1.2943 1.1718 1.1466	.4605 .3970 .3914 .9549 1.2156	1110 1047 983 909 830	.00063 .00053 .00049 .00097	5.169 6.578 8.377 12.193 85.385	1.498 1.553 1.602 1.664 1.759	311.9 323.3 333.4 346.3 366.8
1800 1600 1400 1200 900	.455 .231 .129 .068 .021	1378.8 1283.1 1210.8 1142.7 1044.2	24.205 84.228 24.223 24.223	1199 0168 0008 0000	1.1834 1.2787 1.3108 1.3235 1.3427	.6994 .3975 .3466 .3356 .3814	738 668 600 531 421	.00059 .00033 .00037 .00023	53.498 90.474 139.49 288.60 514.81	1.840 1.898 1.930 1.965 3.014	401.7
4400	336.20	3222.7		- 1.50; o/f 3028	= 3.829; perc	1.5314	20.71 1537	0.00358			
4000 3600 3800 3000	137.93 52.404 19.503 12.168	2868.8 2530.2 2228.0 2098.4	21.285 21.858 22.346 22.525	2757 2250 1468 1016	1.1581 1.1591 1.1739 1.1911	1.3750 1.1417 .8482 .6915	1441 1337 1286 1167	.00215 .00168 .00117 .00094	1.031 1.640 3.161 4.419	0.778 1.129 1.368 1.458	163.8 836.9 887.1 306.1
2800 2600 2400 2200 2000	7.837 5.841 3.490 2.196 1.386	1986.2 1890.9 1808.2 1709.4 1625.5	22.716 22.773 22.859	0584 0288 0424 0353 0117	1.2189 1.2546 1.8458 1.3515 1.3867	.5568 .4606 .4872 .4678 .3994	1107 1044 978 908 839	.00074 .00060 .00058 .00058	10.796	1.647	381.6 334.3 345.6 357.1 367.8
1800 1600 1200 900	.876 .538 .171 .055	1550.0 1478.1 1339.9 1237.1	22.984 22.925 22.974	0023 0003 0003 0383	1.3115 1.3245 1.3460 1.2902	.3668 .3540 .3374 .4184	771 701 556 439	.00037 .00032 .00025 .00023	94.615	1.831	376.0 384.3 399.6 410.6
4400	400.04	3401.8		1.60; o/f 3030	= 3.589; perc	1.5564	21.79 1497	0.00251			
4000 3600 3200 2800	163.96 58.772 20.764 8.296	3045.7 2685.4 8365.8 8180.1	21.181 81.735 28.308	8723 2171 1413 0611	1.1581 1.1435 1.1686 1.2173	1.3849 1.2593 .8646 .5687	1396 1324 1241 1126	.00210 .00183 .00181	1.543	1.096	143.4 237.8 282.5 318.0
2400 2000 1600 1200 900	3.663 1.595 .621 .195 .062	1932.9 1778.5 1624.1 1483.0 1377.9	22.668 22.669	0189 0035 0003 0003	1.2666 1.2990 1.3204 1.3418 1.8835	.4353 .3839 .3615 .3444 .4338	997 862 720 569 449	.00054 .00043 .00034 .00026	19.045 37.383 85.411	1.743 1.836 1.903	342.6 362.4 379.8 395.7 407.0

CONTINUENT

TABLE III. - Concluded. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED TEMPERATURES FOR JP-4 FUEL AND OXIDANT CONTAINING 70.37 PERCENT FLUORINE AND 29.63 PERCENT OXYGEN BY WEIGHT

[Equilibrium composition during imentropic expansion or compression from combustion conditions.]

(b) Omnolwind. Combustion-chamber pressure, 300 pounds par square inch absolute

Temper- ature,	Fransure, P, lb/sq in. abs	Enthalpy, h, cal/g	Molecular weight, M	Partial derivative, \$, (a ln H) a ln T)	Isentropia exponent, (3 17 P) (8 17 P)	apocific heat, op, cal (g)(ox)	Coeffi- oient of vis- coe- ity, µ; micro- poises	Coefficient of thermal conductiv- ity, cal/(sec) (ou)(OL)	Area ratio,	Throst coeffi- cient, Cy	Specific impulse, I, lb-sec
				= 1.78; o/f	= 3.282; perc	ent fuel =	<u> </u>	l			·
4400 4000 3600 3800 8800	539.43 195.81 69.459 86.466 10.941	3679.3 3871.5 2902.6 8601.6 9362.5	20.444 10.970 81.463 81.903 28.186	8007 8533 8011 1286 0688	1.1664 1.1354 1.1593 1.1816 1.2163	1.4655 1.5939 1.1614 .8022 .5900	1487 1413 1361 1969 1140	0.00886 .00248 .00174 .00116 .00080	1.015 1.400 2.863 4.782	0.560 1.041 1.301 1.476	180.1 215.7 269.6 308.8
2400 2000 1600 1300 900	4.679 1.965 .747 .999 .070	9165.7 1996.5 1849.4 1696.5 1887.7	22.349 22.399 88.409 22.410 88.468	0366 0055 0004 0004 0450	1,2528 1,2875 1,3111 1,3324 1,2733	.4678 .4021 .3740 .3558 .4883	1009 872 799 577 455	.00058 .00045 .00035 .00027	8.640 16.054 38.122 75.150 177.86	1.605 1.709 1.798 1.678 1.936	332.6 354.1 379.5 389.8 401.8
1.22	1 4 5 6 5 5				= 2.872; perc						
4400 4000 3600 3900 8800	676.30 854.73 98.689 39.706 16.227	4018.8 3619.0 3875.3 8986.3 8739.5	80.181 80.689 81.088 81.467 21.760	9574 9304 1505 1276 0764	1,1588 1,1454 1,1660 1,1860 1,8084	1.8352 1.4251 1.0550 .8048 .6330	1494 1476 1400 1888 1169	0.00893 .00888 .00164 .00119	1.894 1.164 1.930 3.503	0.363 .919 1.201 1.398	74.4 188.3 846.2 886.5
2400 2000 1600 1800	6.673 9.708 .998 .993	8589.4 8349.7 8167.3 8034.0 1919.8	21.935 22.000 32.013 22.014 23.081	0311 0065 0005 0006	1.2400 1.2744 1.2963 1.3190 1.2587	.5088 .4956 .3934 .3737 .4909	1088 889 743 589 468	.00063 .00048 .00036 .00039	6.550 19.508 85.704 69.154 153.07	1.546 1.663 1.760 1.848 1.911	316.8 340.6 360.7 378.8 391.7
			r	= 2.50; o/f	- 2.297; perc	ent fuel =	30.35				
4000 3600 3800 8800 9400	449.38 108.74 77.784 31.836 18.398	4884.4 3961.9 3671.0 3411.5 3185.9	20.076 20.460 90.807 91.083 91.851	1965 1636 1826 0758 0309	1.1604 1.1736 1.1845 1.8003 1.8268	1,2316 1,0016 .8300 .6749 .5488	1559 1457 1335 1203 1065	0.00811 .00164 .00187 .00095	1.009 1.895 2.284 4.156	0.609 1.006 1.859	180.8 199.6 949.8 286.4
9000 1600 1300 900	4.793 1.667 .461 .185	2991.0 2814.3 3647.6 2521.4	91.314 91.387 91.389 91.417	0067 0005 0010 0646	1.2568 1.2786 1.2980 1.2352 = 1.914; pere	.4630 .4981 .4068 .5640	923 772 618 484	.00053	8.133 17.400 44.445 117.64	1.586 1.705 1.809 1.865	314.7 338.2 359.0 374.0
3600	339.15	4560.1	19.998	1455	1.1755	0.9754	1507	0.00166			*******
3800 9800 8400 9000	138.50 55.542 21.722 8.148	4967.0 4000.4 3765.3 3558.6	90.543 90.543 90.666 80.743	1100 0669 0274 0060	1.1831 1.1965 1.2194 1.8448	.8395 .6908 .5687 .4936	1379 1843 1108 954	.00132 .00101 .00076 .00089	1.027 1.558 3.806 5.518	0.778 1.111 1.337 1.509	149.5 313.4 256.9 889.8
1600 1900 900	9.719 .710 .178	3369.8 3190.9 3053.9	80.754 80.758 80.872	0005 0016 0809	1.3643	.4588 .4368 .6438	799 634 503	.00046	18.107 39.881 91.316	1.650 1.773 1.868	316.9 340.6 357.7
3800	378.98	5167.8	19.536	- 4.00; o/f	= 1.435; perc	0.8151		0.00137		h======	T====
9000 3400 9000 1600	153.44 89.237 81.883 6.622	4992.7 4744.0 4518.7 4309.0	19.707 19.807 19.846 19.846	0486 0198 0044 0007	1.1997 1.8099 1.8885 1.8443	.70%6 .6088 .5436	1316 1168 1013 849	.00109 .00085 .00068	1.007 1.485 8.804 6.894	0.789 1.098 1.339 1.533	131.8 197.5 848.1 877.3
1800 900	1.586	4109.9 3981.9	19.862	0038 1161	1.8600	.4897 .8350	678 538	.00043	17.794 57.043	1.697	306.9 398.5

TABLE IV. - THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 1 TO 8 FOR JP-4 FUEL AND OXIDANT CONTAINING 70.37 PERCENT FLUORINE AND 29.63 PERCENT OXYGEN BY WEIGHT

[Equilibrium composition during isontropic expansion.]

(-)	Combustion-chamber :	necessaries. Al	io norma	DAY BUTTON	inch sheelute
14/	IN CONTRACTOR OFFICE AND	DECIDENCE OF	~ ~~~~	PAR BURNEY	

Pres- sure retio, P _o /P	Pressure, lh/sq in. abs	Ten- pera- ture,	Temper- ature exponent, n _T , (3 in T _o)	Enthalpy, h, cal/g	Holec- ular weight, H	Partial derivative, tive, to la	Inco- tropic expo- nest, y	Spe- eific heat, op, cal (g)(°x)	Area ratio,	Aros-ratio exponent, be' o in Po	Thrust coeffi- cient, Cy	Epecification impulse exponent, Tr (a in I per P	Spo- cific in- pulse, I, lb-see
	r = 1.0; q/f = 5.743; percent frel = 14.63												
1.000 1.020 1.040 1.800 1.478	600.00 555.24 576.99 500.00 407.61	4007 1996 1986 3986 3908 1800	0.0351 .0349 .0348 .0337 .0333	9599.0 8584.9 9576.0 9527.6 9487.8	99.94 99.95 99.96 28.35 99.46	189 189 190 187 184	1.196 1.196 1.196 1.195 1.195	0.069 .865 .867 .863	3.310 8.398 1.958 1.034	0.0084 .0085 .0017	0,199 191 .386 .560	0.0130 .0130 .0188 .0188	24.8 34.9 74.0 108.0
1.766 9.808 4.000 8.000	339.67 971.73 180.00 75.00	3706 3896 3319 3020	.0310 .0295 .0349 .0105	9397.4 9385.9 8147.3 1989.0	22.56 82.69 83.01 23.34	138	1.198 1.190 1.186 1.189	.849 .842 .816 .739	1.315	.0001 0009 0038 0089	.675 .709 1.080 1.317	.0189 .0119 .0111 .0101	130.1 152.3 196.7 934.7
1,000	600.00	4464	0.0488	3064.9	21.20	r = 4.102; 272	1.171	1.306					
1.090 1.040 1.800 1.460	588.94 576.99 500.00 411.08	4454 4444 4378 4875	.0486 .0494 .0418 .0394	3056.6 3048.5 2989.6 3910.9	81.81 81.83 81.38 81.45	- 971 - 970 - 967 - 861	1.170 1.170 1.169 1.169	1.304	3.885 8.375 1.251 1.035	0.0089 .0027 .0081 .0011	0.198 .180 .385 .851	0.0188 .0185 .0189 .0149	96.8 37.7 80.9 115.8
a1.759 3.190 4.000 6.000	342.50 974.01 150.00 75.00	4187 4080 3803 3490		2039.6 2754.9 2839.2 8313.3		810 159	1.168 1.167 1.168 1.178		1.328 8.008	0013	.667 .782 1.016 1.218	• 0131	140.0 164.9 913.9 955.7
			1			r = 3.699;			.71				إــــــا
1.000 1.020 1.040 1.200	600.00 588,84 576,98 500.00 411.36	4479 4469 4460 4388 4393		3175.0 3166.6 3158.4 3098.5 3016.9	80.95 80.96 20.98 81.07 81.19	276 275 876 971 265	1.169 1.168 1.168 1.167 1.166	1.357 1.354 1.358 1.331 1.302	3.863 8.374 1.251 1.035	0.0027 .0039 .0019 .0009	0.138 .180 .385 .550	0.0156 .0155 .0153 .0150	97.0 38.0 61.6
1.750 2.188 4.000 8.000	348.60 374.84 150.00 75.00	4205 4101 3897 3598	.0381 .0361 .0300 .0819	9946.4 9860.3 2640.5 8410.3	88-16	819	1.165 1.165 1.165 1.171	1.271 1.330 1.101 .934	8,018	0018	.666 .781 1.018 1.918	-0132	141.0 165.5 215.7 258.0
1.000	600.00	4396	0.0426	3 8 8 8 . 1	- 1.6; o/ 80 • 9 7	r ~ 3.580) 870		fuel = 21		1			
1.090 1.040 1.800 1.459	588.84 576.99 500.00 411.39	4306 4377 4307 4813	.0486	3873.8 3868.8 3807.1 3189.0	20.98 81.00 81.09	269	1.167 1.168 1.168 1.170 1.170	1.351 1.344 1.338 1.897 1.851	3.869 2.373 1.251	0.0027 .0087 .0081	0 · 1 2 8 • 1 8 0 • 3 8 5 • 5 5 0	0 · 0158 · 0151 · 0149	96.8 37.7 80.8 115.4
4.000 6.000	349.81 874.86 150.00 75.00	4127 4023 3764 3483	.0354	3057.9 2973.4 2757.7 2530.0	99.01	9364 904 158	1.156		8:034	0018	.644 .781 1.018 1.220	0136	139.6 163.9 213.6 255.8
r = 2.8; o/r = 2.297; percent fuel = 30.33													
1.000 1.020 1.040 1.200 1.467	576.92	3889 3889 3879 3809 3710	.0307	4128.8 4181.3 4114.0 4060.6 3987.4	20 - 42	158 158 151	1.178	1.018 1.008 1.008	3.994	.0033	0 · 128 · 180 · 386 · 556	0.0100 .0100 .0098 .0098	28.6 35.9 77.1 110.9
1.761 2.201 4.000 8.000	340.81 378.65 150.00 75.00	3691 3519 3886 8901	.0174	3982.9 3846.5 3684.3 3453.6	30.63 20.72 30.98 91.10	- 137	1.181 1.184 1.193 1.808	.893 .851 .751 .648	1.000 1.031 1.315 1.966	0011	.671 .786 1.018 1.215	-0080	133.8 186.7 203.2 248.4
aAt thro	mt.												

TABLE IV. - CONTINUED. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 1 TO 8 FOR JP-4 FUEL AND OXIDANT CONTAINING 70.37 PERCENT PLUORINE AND 29.63 PERCENT OXYGEN BY WEIGHT [Equilibrium composition during impurpose expension]

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

			(0)	COMMUNICATION -	minmer. I	reesure, .	300 pounda	her, adam	- 11 HOUL 0	TROITING.			
Pros- sure ratio, Po/P	Pressure, P, lb/sq in. abs	pera- ture, T,	Temper- ature exponent, n _T , (3 In T (5 In F _c) _{P_o}	Enthalpy, h oal/s	Holes- ular weight,	Partial derivative, 5, (3 ln H) (3 ln T) 5	Isen- tropic expo- nent, \(\gamma\) in P \(\delta\) in P	Specific officers, only (officers)	arca ratio,	Area-ratio exponent, ne, (8 ln c) (8 ln Po) Po	Thrust coeffi- cient, Cy	Specific- impulse exponent, arr alr aln I aln P r	Spe- oific im- pulse, I, lb-sec
	r = 1.00; o/f = 5.745; percent fuel = 14.83												
1.000 1.090 1.040 1.900 1.469	300.00 994.11 988.47 950.00 904.20	3910 3900 3890 3817 3716	.0356 .0355 .0345	2592.0 2585.0 2578.2 2528.8 2460.8	99.10 99.17 99.181 99.25 99.25	808 801 800 199 196	1.190 1.190 1.190 1.189 1.188	0.984 .983 .988 .914	3.304 9.388 1.256 1.034	0.0083 .0082 .0017 .0008	0.189 .181 .367 .558	0.0134 .0134 .0138 .0139	84.6 34.6 74.1 106.8
1.763 8.804 4.000 8.000	170.16 136.13 75.00 37.50	3688 3583 3260 2980	.0308	2401.4 2330.9 2154.8 1968.0		194 191 181 156	1.184	.900 .894 .678 .605		0011	.673 .7\$8 1.080 1.818	.0193	188.8 150.7 195.2 833.0
1.000	300.00	4838	0.0411	8893.9	91.45	255	1.171	1.251	7.07				T
1.090 1.040 1.800 1.461	894.11 888.47 850.00 805.38	4888 4819 4150 4066	.0410 .0408 .0398	2886.1 2878.5 2883.3 2749.1	81.47 81.48 81.57	864 863 859 849	1.170 1.170 1.170	1.246 1.944 1.218 1.180	3.887 8.376 1.258 1.034	0.0050	0.198 .180 .356	0.0158 .0158 .0149 .0146	26.0 36.6 78.4 119.3
1.753 9.198 4.000 6.000	171.11 136.88 75.00 37.50	3971 3868 3596 3290	.0341	2688.2 2602.8 8401.1 2190.1	22.68	840 251 198 158	1.171 1.174 1.108		1,385	0001 0013 0051 0098	.667 .783 1.018 1.817	.0148 .0138 .0127 .0114	135.7 159.9 307.1 247.5
						<u>' </u>	2; percent						
1.000 1.080 1.040 1.800 1.456	300.00 894.11 288.47 880.00 205.99	4338 4393 4314 4847 4159	.0436 .0434 .0483	3064.9 3086.8 3048.9 2991.2 2915.0	91.05 81.06 81.15	9 5 9 9 5 9 5 5 9 5 5	1.164 1.164 1.163	1.449 1.446 1.443 1.480 1.388	3.879 8.371 1.850 1.035	0.0028 .0027 .0091 .0010	0.127 .179 .385 .549	0.0160 .0160 .0187 .0184	86.5 37.3 80.1 114.9
*1.745 8.184 4.000 8,000	171.66 137.33 75.00 37.50	4078 3980 3793 3436	.0369	8845.1 8761.9 8548.9 2385.5	81.54 81.91 88.89	876 868 236 190	1.161 1.160 1.161 1.167	1.355 1.318 1.173 .970	1.038 1.338 2.020	0001 0013 0048 0099	.664 .780 1.018 1.218	.0151 .0147 .0137 .0124	138.3 162.4 211.9 253.6
1.000	300.00	4346	0.0439	3175.0	20.78	301		1.507	J. /1				
1.080 1.040 1.800 1.455	294.11 288.47 250.00 806.16	4337 4328 4268 4175	.0438	3166.8 3158.7 3100.2 3023.0	20.79 20.81 20.90 21.03	- 300 - 299 - 296 - 290	1.168	1.504	3.277 2.369 1.249 1.035	0.0036 .0038 .0080 .0009	0 · 127 • 179 • 384 • 548	0.0161 .0160 .0158 .0155	26.7 37.6 80.7 115.0
1.746 2.183 4.000 8.000	171.80 137.44 75.00 37.50	4095 3998 3746 3465	.0374	2425.1	21.15 81.29 21.65 22.04	985 976 947 801	1.158 1.158 1.168	1.836	8.086	.0000 0012 0046 0096	.664 .779 1.018 1.819	.0158 .0148 .0138 .0186	139.3 163.6 813.6 855.8
1 000	T00 001	4867	0.04401		= 1.60; q) percent						
1.000 1.080 1.040 1.800 1.455	300.00 894.11 888.47 250.00 206.20	4258 4258 4249 4185 4099	.0441 .0439 .0427	3874.0 3866.1 3808.6	20.81 20.83 20.91 20.91	295 294 290 263	1.164	1.471	3.276 2.369 1.249 1.035	0.0034 .0033 .0096 .0013	0 · 1 2 7 • 1 7 9 • 3 8 4 • 5 4 8	0 · 0157 · 0157 · 0154 · 0151	26.5 37.3 79.9 113.9
8.188 4.000 8.000	171.83 137.46 75.00 37.50	4080 3926 3691 3431	.0363	2980.3	81.15 91.29 81.61 81.95	274 264 232 186	1.155	1.390 1.367 1.300 1.108	1.000 1.033 1.341 8.049	0000 0018 0060 0101	.663 .779 1.018 1.281	• 0130	138.0 168.0 811.7 953.8

At throat.

N3

TABLE IV. - Concluded. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 1

TO 8 FOR JP-4 FUEL AND OXIDANT CONTAINING 70.37 PERCENT FLUORINE AND 29.63 PERCENT

OXYGEN BY WEIGHT

Equilibrium composition during isentropic expansion]

(b) Concluded. Combustion-chamber pressure, 300 pounds per square inch absolute

Pressure ratio, Po/P	Pressure, P, 1b/sq in. abs	Tem- pera- ture, T,	Temper- ature exponent, n _T , (3 ln T) (3 ln P _C) P _C	Enthalpy, h, cal/g	Molec- ular weight, M	Partial derivative, &, (3 ln H) a ln T)s	Isentropic exponent, 7, (a ln P) a ln p) s	Spe- cific heat, ^C p, cal (g)(°K)	Area ratio,	Area-ratio exponent, n _e , (8 lns a ln P _c)	oceffi- cient, Cp	Specific- impulse exponent, n _I , (a ln I) a ln P _o P	Spe- cific im- pulse, I, lb-sec
	r = 1.75; q/f = 3.282; percent fuel = 23.35												
1.000 1.020 1.040 1.200 1.444	300.00 894.11 888.47 250.00 207.71	4163 4150 4143 4090 4088	0.0391 .0389 .0387 .0372	3437.3 3429.5 3421.7 3365.4 3293.9	20.76 20.77 20.78 20.85 20.94	866 365 361	1.140		3.246 2.348 1.242 1.036	0.0031 .0030 .0020 .0011	0.126 .178 .382 .539	0.0116 .0116 .0114 .0114	26.2 36.8 79.1 111.7
a1.733 2.167 4.000 8.000	173.09 138.47 75.00 37.50	3953 3868 3630 3349	.0342 .0328 .0384 .0217	3225.0 3142.8 8928.2 2705.7	21.76	240 206 155	1.137 1.150 1.170	,981	1.033 1.342 2.036	.0000 0009 0032 0077	.656 .773 1.016 1.218		135.9 160.1 210.5 252.3
		1 (2 (2	0.0760		= 2.00; c		2; percent	1.494	1				 -
1.000 1.020 1.040 1.200 1.453	300.00 294.11 288.47 250.00 206.49	4067 4059 4051 3998 3913	0.0368 .0361 .0360 .0352 .0341	3688.7 3674.9 3667.3 3611.8 3539.2	20.56 20.57 20.64 20.73	237 236 230	1.143 1.143 1.146	1.486	2.361	0.0018 .0017 .0014 .0007	0.127 .179 .383 .545	0.0119 .0119 .0118 .0116	26.0 36.6 78.5 111.7
a1.743 2.179 4.000 8.000	172.08 137.66 75.00 37.50	3837 3743 3481 3175	.0330 .0313 .0257 .0182	2969.4	21.21 21.49	200 166 124	1.158 1.171 1.187	.970 .792	2.001	0000 0008 0039 0087	.661 .777 1.016 1.216	.0104	135.5 159.3 208.3 249.1
<u> </u>							7; percent		7.33				
1.000 1.020 1.040 1.200 1.464	300.00 294.11 388.47 250.00 204.94	3813 3804 3795 3729 3638	.0331	4128.8 4121.4 4114.2 4061.5 3990.1	20 · 26 20 · 27 20 · 28 20 · 34 20 · 42	180 180 174	1.168 1.168 1.170	1.114 1.109 1.104 1.067 1.020	2.377	0.0024 .0023 .0017 .0009	0 · 1 2 8 · 1 8 0 · 3 8 6 · 5 5 4	0.0110 .0109 .0108 .0105	25.4 35.7 76.5 109.9
81.757 2.196 4.000 8.000	170.78 136.62 75.00 37.50	3554 3453 3184 2880	.0283 .0262 .0202 .0121	3659.9 3460.4	20 · 59 20 · 82 21 · 04	149 121 085	1.177 1.185 1.196	.934 .823 .704	1.000 1.031 1.319 1.979	0046	.669 .784 1.018 1.815	• 0090	138.7 155.5 803.0 841.8
							4; percent	0.959	6.31	T			-
1.000 1.020 1.040 1.200 1.467	300.00 294.11 288.47 850.00 204.51	3552 3543 3534 3468 3376	0.0277 .0276 .0274 .0261 .0242	4523.9 4517.0 4510.2 4460.6 4392.7	20-04 20-05 20-10 20-17	141 141 135	1.176 1.176 1.178	.956 .952 .929 .896	3.295 2.382 1.254 1.034	0.0026 .0027 .0020 .0010	0 · 1 2 8 • 1 8 0 • 3 8 6 • 5 5 6	0.0093 .0092 .0090 .0087	34.6 34.6 74.3 106.8
81.760 2.200 4.000 8.000	170.41 136.33 75.00 37.50	3293 3193 2930 2631	.0224 .0201 .0138 .0064	4333.0 4262.0 4083.8 3897.4	30.63	110 082 048	1.183 1.191 1.205	.830 .736 .635	1.000 1.031 1.316 1.968	0001 0012 0048 0093	.671 .786 1.019 1.215	• 0071	128.9 151.0 195.7 233.5
							6; percent			1	T		
1.000 1.020 1.040 1.800 1.473	300.00 294.11 288.47 250.00 203.77	3095 3086 3077 3013 8983	.0152 .0150 .0137	5192.5 5186.3 5180.2 5136.1 5074.7	19.59 19.59 19.60 19.62 19.66	072 072 066	1.184	0.785 .782 .780 .763 .736	3.304 2.388 1.257 1.033	0.0025 .0024 .0018 .0009	0 · 1 2 8 • 1 8 1 • 3 8 7 • 5 6 0	0 · 0053 · 0053 · 0050 · 0047	23.8 32.7 70.1 101.3
a1.767 2.208 4.000 8.000	169.81 135.85 75.00 37.50	2844 2748 2497 2317	.0042	5021.6 4958.7 4802.0 4638.3	19.69 19.72 19.79 19.83	045	1.195	.627	1.000 1.031 1.309 1.946	0009	·674 ·789 1·019 1·214	• 0033	188.0 142.6 184.3 219.6

aAt throat.

Contraction of the second

Table V. - Theometical rocket performance at assigned pressure ratios from 10 to 1500 for JP-4 fuel and oxidant containing 70.37 percent flourine and 29.63 percent oxygen by weight.

[Equilibrium composition during isentropic expansion]

	(a) Combustion-chamber pressure, 600 pounds per square inch absolute Pros- Pros- Ten- Ten- Tener- Inthalor, Holse- Partial Issue See Area Assertation Prost Section See												
Pres- sure ratio,	oure.	Ten- pera- ture,	Temper- ature exponent,	Enthalpy, h, cal/g	Holec- ular weight.	Partial deriva-	Isen- tropic expo-	Spo- cific beat,	Area ratio,	exponent,	Thrust coeffi- cient,	Specific- impulse exponent,	Spe- cific
P ₀ /P	P, lb/sq in. abs	3.	n _T ,		weight,	(3 ln 4)	nent.	cp,	•	(<u>alne</u>)	Cp.		1 = ,
			(3 ln T (3 ln P _c) _{P_c}				(4 m 6)	(z°)(g)		(3 ln 4)		(1b-sec
	r = 1.0; q/f = 5.743; percent fuel = 14.63												
10	60.00	3926	0.0151	1908.7	23 44	- 101	1 104	0.687	2.20	0105	1.270	0.0097	244.9
15 20 30	30.00	2756 2645 2524	.0167 .0271 .0387	1805.3 1740.1 1653.0	23.61 83.74 24.02 24.25	128 198 897 370	1.197 1.182 1.155	.698	3.00 3.67 4.95	0099	1.357 1.412 1.483	.0091	261.6 272.2 265.8
10	30.00	8456	.0483	1594.1			1.141	1.380	6.17	.0031	1.483	.0089	294.7
80	7.50	8375 2322	.0434	1514.4 1460.1 1419.3	24.60 24.85 25.05	444 474 490	1.130 1.185 1.122	2.485 2.788 2.975	8.48	.0070	1.588	.0094 .0096 .0098	306.2
100 150 200	6.00 4.00 3.00	3894 9919 9175	.0430 .0423 .0416	1419.2 1347.3 1298.1	25.05 25.41 25.67	490 504 511	1.122	3.254 3.401	10.68 12.80 17.85	.0067 .0068 .0047	1.628 1.657 1.707 1.740	.0098	313.8 319.5 329.1
300	2.00	2117		1931.9				l	31.60	.0097		0101	335.5
400 600 800	1.50 1.00 .75	2078 8025 1989 1962	.0403 .0394 .0382 .0373	1185.4	26.88 26.64	523	1.111 1.108 1.106 1.104 1.103	3.608	40.53 57.20 73.15	0011	1.815	.0102 .0102 .0103	349.8 357.5 362.7
1000 1500	.40	1962 1914	0365	1080.0 1047.6 990.3	26.89 26.64 86.89 27.09 87.44	524 522	1.106 1.104 1.103 1.100	3.646 3.646 3.647 3.641 3.599	73.15 88.60 125.7	0013 0020 0034	1.815 1.854 1.881 1.901 1.936	.0102	366.6
10	60.00	3367	0.0163	r	= 1.4; a	/r = 4.102	percent	fuel = 19	.60				267.0
10 15 20 30	60.00 40.00 30.00 20.00	3192 3042 3810	.0083	2245.4 8138.1 3049.6 1946.0	38.51 22.67 22.74 22.61	137 090 055 017	1.185 1.207 1.232 1.873	.629 .525 .423	2.32 3.05 3.70 4.88	0135 0196 0851 0331	1.271 1.359 1.415 1.486	.0103	385.5 297.2 318.0
40	15.00	8639	0172	1877.7	22.82	003	1.293	.385	5.98	0363	1.530	.0083	318.0
80 100	10.00 7.50 6.00	2419 2515 2254 2156	.0071	1788.7 1729.7	22.99	078 154	1.237	.549 .788	7.84 9.73	0190	1.587	.0065	333.2
150	4.00	2156 2093	.0226 .0272 .0350 .0217	1729.7 1605.7 1609.3 1557.5	22.99 23.12 23.38 23.56	154 210 260 248	1.173 1.150 1.148	.992 1.195 1.148	11.59 16.01 80.80	0044 0087 0049	1.649 1.695 1.784	.0063 .0064 .0065	333.2 340.9 346.4 355.9 362.2
300	2.00	8001	0183	1487.9	27 80	- 200	1 160	.967	ایم مدا		ارمحا	0065	370.4
400 600 800	1.50 1.00	1825 1736	.0139 0031 0141 0227	1440.7 1377.7 1335.5	24.11	151 080 048 080	1.209	.806 .578 .464	35.36 48.80	0161 0278	1.790 1.824 1.847 1.864	.0064 .0061 .0058	375.9
1000 1500	.60	1933 1825 1736 1660 1517	0227	1251.5	23.94 24.11 24.10 24.20 24.82	008		.405 .352	35.36 48.80 60.95 72.13 97.34	0278 0369 0433 0499	1.864	.0055	375.9 383.2 387.9 391.4 397.2
10	60.00	3484		2340 0	= 1.5; q	/f = 3.629	, percent	fuel = 20	.71 2.33		1.279		
15 20	30.00	3243 3110	0.0188 .0187 .0076	2220.7 2139.9 2032.4	22.26 22.43 23.53 23.64	121 095 058	1.186	.747 .666	3.07 3.76 5.00	0121 0161 0197	1.372	.0106	269.4 288.2 300.1
40	20.00	2769	0004	12900.0	22.70	038	1.242	. 552	6.13	0295	1.489	.0090	325.0
80	7.50	3558 2422 2322 3140	0081 0058 0073	1866.3	22.80	034 044 038	1.253 1.245 1.250	.466 .488	8.16	0303	1.593	.0074	337.4 345.4 351.2
100 150 800	4.00 3.00	2140	0144	1803.9 1757.8 1679.2 1627.4	22.80 22.85 28.90 22.91	038 018 008	1.250 1.275 1.394	.488 .475 .419 .388	10.04 11.82 15.86 19.50	0279 0293 0343 0373	1.631 1.658 1.703	.0064 .0058 .0053	351.2 360.8 367.0
300	2.00	1826	- 0010	1560.0	92 00		1.312	. 366	86.06			0046	374.9
400 600 800	1.50 1.00 .75	1706 1545 1439 1361	0228 0232 0235 0238	1515.9 1458.8 1421.6 1394.6	22.92 22.92 23.92	000	1.320 1.326 1.333	.358 .351 .347 .344	31.99 42.73 52.46 61.55	0396 0396	1.794 1.825 1.844 1.858	.0042	379.9 386.4 390.6 393.6
1000 1500	.60	1361 1887	0238 0240	1349.1	22.93	001	1.344	.339	82.25	0396 0396 0396 0394 0395	1.858	.0042 .0037 .0034 .0031	393.6
10	60.00	3391	0.0183		= 1.6; o	/f = 3.589 142	1.164	0.900		- 0404	1.274	0.0105	267.3
15 20 30	30.00	3391 3215 3085 2891	.0134	2461.1 2341.4 2260.8 2153.6	82.16 93.31 22.40 82.51	111 088 057	1.161 1.197 1.221	.755 .666	2.36 3.11 3.81 5.07	0158 0188 0238	1.364 1.481 1.494	.0097	267.3 286.1 298.1 313.4
40	15.00	2746	0015	2082.1	22.56	039	1.238	.558	6.81	0269	1.494	.0083	313.4
80	10.00 7.50 6.00 4.00	2538 2390 2877 2080	0105 0133 0156 0177	1987.8 1925.6 1879.9	23.61 23.64 22.65 23.66	021	1.261	.445 .419 .403	8.27 10.13 11.86 15.81	0309 0329 0338	1.600	.0068 .0061 .0057	335.6 343.6 349.3
100 150 200	4.00	2080 1946	0177 0183	1808.5 1751.7	22.66	009	1.284 1.297 1.304	.403 .386 .377	11.86 15.81 19.40	0338 0351 0355	1.638 1.665 1.711 1.740	.0057 .0050	349.3 358.8 364.9
300	2.00	1760	0191	1685.7	99 67	- 001	1.313	- 368	25 80	- 0756			372.7
400 600 800 1000	1.50 1.00 .75	1651 1496 1393 1318	0194 0198 0201 0202	1642.6 1586.7 1550.3 1523.8	28.67 82.67 82.67	000	1.319 1.326 1.330	.363 .357 .353	31.79 42.49 52.20	0358 0356 0356 0357	1.801 1.831 1.851 1.865	.0036 .0031 .0039	377.7
1000 1500	.60	1318 1189	0202	1523.8	22.67	001	1.341	.349	61.85 61.89	0357	1.865	.0027	388.2 391.1 396.1
10	60.00	2798	0.0068	3393.8	= 2.5; o	057	1.210	0.617	.33	0107	1.267		250 0
15 20 30	40.00 30.00 80.00	2613 2482 2302	0005 0048	3290.9 3222.3 3131.8	21.22 21.26 21.29	039	1.221	.567 .535 .499	2.96 3.60 4.77	0134 0154 0173	1.353 1.408 1.476	0.0065 .0058 .0053 .0046 .0042	270.0 280.8 294.5 303.3
40	15.00	2176	0060	3071.7	21.31	010	1.249	.479	3.84	0185	1.580		
60 80 100	10.00 7.50 6.00	2006 1890 1803	0079 0089 0094	2992.6 2940.4 2902.0	21.32 21.32 21.32	005	1.259 1.265 1.270	.457 .446 .439	7.78 9.55 11.31	0195 0196 0198	1.576	.0037	314.4 381.6
150	4.00	1653	0097	2836.8 2793.9	21.33	001	1.277	.430 .436	15.02 15.51	0199 0199	1.612 1.637 1.680 1.708	.0033 .0031 .0027	391.6 386.7 335.3 340.8
300	2.00 1.50	1419	- 0100	2737.8 2700.9		001	4 000		24.86	0105		0021	344.0
800	1.00	1330 1213 1136 1079	0099	2652.9	21.33 21.33 21.33 21.34 21.37	001	1.291 1.296 1.296 1.293 1.272	.414 .409 .410	24.86 30.67 41.27 50.96 60.04 81.26	0196 0192 0184 0174	1.767 1.796 1.815 1.829	.0020	352.5 358.4 362.2 364.9 369.5
1000 1500	.60	1079 988	0079	2598.4 2559.5	21.34 21.37	028	1.272	.415 .455	81.26	0174	1.889	.0016 .0015 .0014	364.9 369.5

TABLE V. ~ Continued. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 10 TO 1500 FOR JP-4
FUEL AND OXIDANT CONTAINING 70.57 PERCENT FLOURING AND 29.63 PERCENT OXYGEN BY WEIGHT.

Equilibrium composition during isentropic expension.]

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

(b) Combustion-chamber pressure, 300 pounds per square inch absolute													
Pres- sure ratio, Po/P	Pres- sure, P, 1b/sq in. abs	Ten- pers- ture,	Temper- ature exponent, n _p , (3 ln T (5 ln P _o)P _o	Enthalpy, h, cal/g	Molec- ular weight,	Partial derivative, t., (a ln H)	Isen- tropic expo- nent, 7, (a in P)	Spe- oific heat, op, cal (g)(ok)	Area ratio,	Area-retio	Thrust coeffi- aient, Cy	Specific- inpulse exponent, n _I , (a in I) a in P _o P _o	Spo- cific in- pulse, I, lb-sec
			<u> </u>			<u></u>		<u> </u>	<u></u>		L	T	L
	r = 1.00; q/r = 5.745; percent fuel = 14.85												
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	8893 2733 2616 2468 2390	0.0174 .0096 .0083 .0301 .0365	1912.1 1815.4 1750.5 1664.3 1606.2	23.35 23.52 23.68 23.81 24.00	322	1.183 1.197 1.208 1.174 1.149	0.762 646 603 975 1.465	2.30 3.03 3.70 4.94 6.14	.0036	1.271 1.358 1.414 1.485 1.530	.0086	243.8 259.9 870.6 284.1 292.9
60 80 100 150 200	5.00 3.75 3.00 2.00 1.50	2305 2254 2217 2155 2114	.0401 .0416 .0418 .0414 .0408	1588.0 1474.7 1434.5 1363.9 1315.6	24.33 24.57 24.77 25.12 25.37	409 454 480 512 526	1.138 1.125 1.120 1.115 1.112	9.108 2.580 2.920 3.354 3.565	8.44 10.63 12.74 17.79 22.59	0057 0069 0058 0058 0045	1.590 1.629 1.658 1.708 1.741	.0089 .0091 .0093 .0095	304.3 311.8 317.4 326.9 333.3
300 400 600 800 1000	1.00 .75 .50 .37 .30	2059 2022 1972 1938 1913 1868	.0396 .0391 .0379 .0370 .0363	1249.8 1204.6 1143.1 1100.8 1068.8 1012.3	25.72 25.97 26.32 26.57 26.76 27.11	- 536 - 537 - 540 - 542 - 543	1.108 1.106 1.103 1.101 1.100 1.098	3.773 3.866 3.955 3.958 4.003 3.983	31.74 40.49 57.20 73.20 68.70	0030 0019 0005 - 0005 - 0018 - 0024	1.786 1.816 1.855 1.882 1.902 1.937	.0097 .0098 .0098 .0098 .0098	341.7 347.4 355.1 360.2 364.1
				r	- 1.25;	a/r = 4.59	5; percen	t fuel = J	7.87		1.271		250.4
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	3192 3012 2878 2673 2517	0.0179 .0112 .0047 0081 0076	2126.8 2017.3 1944.0 1847.0 1782.8	28.75 22.92 23.01 23.10 23.13	108 075 027 039	1.187 1.200 1.219 1.262 1.261	.663 .571 .440 .448	3.03 3.70 4.89 5.95	0874	1.358 1.414 1.484 1.589	.0102 .0095 .0084	276.2 267.5 301.8 310.9
60 80 100 150 200	5.00 3.75 3.00 2.00 1.50	8348 2267 2233 2149 2101	.0268 .0362 .0368 .0367 .0360	1698.6 1642.2 1599.9 1525.8 1475.3	23.26 23.44 23.61 23.98 24.15	144 252 334 418 432	1.199 1.158 1.139 1.125 1.120	.783 1.267 1.694 2.235 2.385	7.97 9.97 11.93 16.60 21.06	0139 0037 .0020 .0042 .0032	1.586 1.623 1.650 1.697 1.728	.0077	392.5 330.0 335.6 345.0 351.3
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	2038 1995 1937 1897 1866 1809	.0351 .0338 .0313 .0290 .0276 .0243	1406.7 1359.8 1296.0 1252.3 1219.3 1161.3	24.47 24.69 25.00 25.21 25.37 25.66	371	1.118 1.116 1.113 1.112 1.113 1.117		29.54 37.62 53.02 67.72 81.91	.0015 0000 0029 0047 0061 0066	1.769 1.797 1.834 1.859 1.877	.0078 .0079 .0080 .0080 .0080	359.7 365.4 372.9 377.9 381.7 388.3
10	30.00	3343	0.0196	2258.5	22 40	o/f = 4.10	1.172			0121	1.273	0.0120	864.9
10 15 20 30 40	20.00 15.00 10.00 7.50	3168 3035 2828 8667	.0132 .0060 0064 0144	2141.9 2063.5 1959.6 1890.6	22.58 22.68 22.78 22.81	123 097 036 014	1.188 1.207 1.249 1.279	.740 .622 .475 .412	6.08	0367	1.273 1.361 1.418 1.490 1.536	:0084	264.9 263.4 295.2 310.1 319.7
60 80 100 150 800	5.00 3.75 3.00 2.00 1.50	2435 2295 2217 2116 2056	0185 .0126 .0216 .0265 .0261	1800.6 1741.5 1697.9 1622.3 1571.1	22.63 22.67 22.96 23.20 23.38	004 083 177 256 267	1.303 1.847 1.180 1.148 1.147	.378 .555 .875 1.242 1.258	8.02 9.83 11.63 16.04 20.25	0390 0204 0085 0038 0039	1.593 1.630 1.657 1.702 1.738	.0071 .0066 .0064 .0065	331.7 339.3 344.9 354.3 360.5
300 400 600 800 1000 1500	1.00 .75 .50 .37	1973 1914 1823 1749 1684 1551	.0223 .0176 .0071 .0008 0080	1502.1 1455.2 1392.8 1349.8 1318.2 1264.3	23.64 23.80 24.00 24.11 24.17 24.21	842 203 136 065 049 009	1.147 1.153 1.176 1.209 1.239 1.285	1.167 1.018 .759 .596 .498 .373	28.21 35.69 49.61 62.39 74.23	0076 0117 0202 0291 0375 0496	1.772 1.798 1.833 1.856 1.873	.0066 .0065 .0064 .0062 .0059	368.8 374.9 381.5 386.3 389.9 395.8
			-	r	= 1.50;	o/f = 3.82	9; percen	t fuel = :	20.71				
10 15 20 30 40	30.00 20.00 15.00 10.00 7.50	3376 3210 3090 2913 2779	0.0215 .0160 .0112 .0034 0030	2354.5 2235.2 2154.8 2047.3 1975.4	22.15 22.33 22.45 22.66	184 150 122 081 054	1.165 1.173 1.182 1.202 1.233	0.977 .850 .758 .629	3.35 3.11 3.61 5.09 6.25	0113 0151 0183 0241 0288	1.273 1.362 1.490 1.492 1.539	0.0188 .0114 .0106 .0099 .0098	267.2 286.0 297.9 313.8 383.1
60 80 100 150 200	5.00 3.75 3.00 2.00 1.50	2576 2433 2333 2160 2035	0105 0081 0079 0114 0171	1880.3 1817.4 1771.0 1691.7 1639.3	22.72 22.76 22.80 22.87 22.90	029 040 042 031 015	1.255 1.246 1.245 1.256 1.280	.460 .480 .487 .455	8.35 10.25 12.06 16.24 20.02	0340 0314 0306 0335 0379	1.599 1.638 1.665 1.712 1.742	.0081 .0075 .0070 .0064 .0059	338.6 343.7 349.5 359.3 365.5
300 400 600 800 1000	1.00 .75 .50 .37	1857 1734 1572 1464 1384 1249	0230 0247 0254 0258 0260	1570.9 1526.1 1468.1 1430.3 1402.7 1356.5	22.92	004 F.001 000 000 000	1.305 1.317 1.327 1.332 1.336	.373 .361 .352 .349 .344 .339	26.80 32.91 43.96 54.00 63.33 84.62	0415 0425 0427 0427 0427 0427	1.780 1.805 1.836 1.856 1.871 1.895	.0058 .0047 .0041 .0038 .0035	373.6 378.8 385.4 389.6 392.7 397.8
				·	= 1.60;	a/t = 3.56	n); percen	t fuel = :			1.876		- 1
10 15 20 30 40	30.00 20.00 15.00 10.00	3346 3185 3065 2887 2752	0.0208 .0155 .0121 .0047	2473.4 2354.5 2274.3 2167.1 2095.4	22.45 22.45 22.45	138 111 076 055	1.170 1.184 1.206 1.223	.851 .748 .619 .546	3.15 3.86 5.15 6.33	0114 0145 0175 0226 0262	1.366 1.484 1.498 1.545	.0085	265.3 264.1 296.1 311.5 381.3
60 80 100 150 800	5.00 3.75 3.00 2.00	3554 2412 2301 2106 1972	0085 0127 0157 0190 0199	2000.6 1937.8 1891.6 1813.3 1761.8	83.59 82.62 22.64 22.66 22.66	038 020 013 006 003	1.249 1.265 1.276 1.292 1.301	.474 .438 .417 .393 .382	8.45 10.37 12.15 16.31 19.89	0310 0336 0354 0374 0381	1.606 1.648 1.673 1.719 1.749	.0051	333.9 348.0 347.8 357.5 363.7
300 400 600 800 1000 1500	1.00 .75 .50 .37	1794 1675 1518 1414 1337 1207		1694.9 1651.2 1594.5 1557.6 1530.7 1485.5	22.67 22.67 22.67 22.67 22.67 22.67	001 000 000 000 001	1.311 1.317 1.325 1.330 1.335	.370 .364 .357 .353 .349	26.56 32.61 43.58 53.55 62.83 83.99	0385 0387 0385 0384 0385 0384	1.787 1.811 1.843 1.863 1.877 1.901	.0045 .0041 .0035 .0039 .0030	371.6 376.7 303.2 387.4 390.4 395.4

TABLE V. - Concluded. THEORETICAL ROCKET PERFORMANCE AT ASSIGNED PRESSURE RATIOS FROM 10 TO 1500 FOR JP-4
FURL AND OXIDART CONTAINING 70.57 PERCENT FLOURING AND 29.63 PERCENT OXYGEN BY WEIGHT.

Equilibrium composition during isentropic expension (b) Concluded. Contustion-chamber pressure, 500 pounds per square inch absolute

Pres- sure ratio, P _O /P	Pres- sure, P, 1h/sq in. abs	Ten- pera- ture,	Temper- ature exponent, Pr (3 in T ₀) _{Po}	inthalpy, h, cai/g	Holeo- ular weight,	Partiel deriva- tive, 6, (3 ln H) (3 ln T)	Isen- tropic expo- nent, \(\frac{\delta\ln p}{\delta\ln p}\)_s	Spe- cific heat, cp, cal (E)(OX)	Area ratio,	Ares-ratio exponent, De, (a in s) (b in Pa) Pe	coeffi-	Specific- impulse exponent, PI' a ln I a ln Po Pc	Spe- cific is- pulse, I, lb-sec lb
				·	- 1.75;	o/f = 3.2	2; percent	fuel = 2	3.35				
10 15 90 30 40	30.00 20.00 15.00 10.00	3854 3076 2946 2758 2623	0.0187 .0131 .0090 .0028 0015	8638.5 2522.2 2444.9 2340.4 2271.3	21.85 22.01 22.10 82.21 28.27	108 088 063 047	1.177 1.192 1.203 1.280 1.232	0.843 .784 .655 .574 .587	2.36 3.10 3.78 5.03 6.17	0133 0161 0200 0230	1.278 1.362 1.419 1.491 1.537		263.6 282.2 294.0 308.9 318.5
60 80 100 150 200	5.00 3.75 3.00 8.00	2431 2296 2192 2008 1882	0071 0106 0129 0159 0176	2180.0 2119.5 2075.0 1999.5	92.35 92.36 92.40 92.40	014 014 005 003		.475 .446 .488 .403	8.84 10.12 11.87 15.86 19.48	0329	1.596 1.634 1.662 1.707 1.736	.0044	330.8 338.6 344.3 353.7 359.8
300 400 600 800 1000 1500	1.00 .75 .50 .37	1714 1602 1453 1355 1283 1160	0183 0187 0198 0195 0196	1885.3 1843.0 1788.1 1758.3 1726.2 1682.3	22.41 22.41 22.41 22.41 22.41	001 000 000 000	1.328	.379 .374 .368 .362 .359	86.05 32.02 48.56 59.72 61.90 82.87	0333 0334 0334	1.773 1.797 1.828 1.848 1.862 1.862	.0039 .0035 .0031 .0028 .0086	367.5 378.5 378.8 388.9 385.9 390.8
10	30.00			2905.1	= 2.00	A/C = 3 0	TO: nemaent	froel = 2	5.63 2.31	- 0107	1.269	0.0090	260.1
15 80 30 40	20.00 15.00 10.00 7.50	2582 2453	-:0038	2793.9 2719.5 2620.8 2555.1		1	1.192 1.203 1.211 1.285 1.236	0.744 .668 .620 .556 .517	3.03 3.70 4.98 6.03	0137 0160 0199 0226	1.357 1.412 1.483 1.588	.0084 .0078 .0071 .0066	278.1 289.5 304.0 313.2
60 80 100 150 800	5.00 3.75 3.00 2.00 1.50	8870 8148 8045 1874 1758	0081 0109 0109 0146 0154	3468.4 3411.0 2368.6 2897.1 3849.9	81.97 81.99 82.00 88.01 88.01	- 013	1.263 1.263 1.271 1.283 1.290	.472 .448 .432 .418 .403	8.05 9.89 11.60 15.51 19.08	0273 0284 0295	1.586 1.623 1.650 1.694 1.723	.0058 .0053 .0050 .0043 .0039	325.1 338.6 338.1 347.8 353.1
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	1603 1500 1364 1873 1807 1092	0169	2188.4 2148.8 2095.8 2061.6 2036.6 1994.5	22.01 22.01 22.01 22.01 22.01 23.01	000 000 001 001	1.303 1.311 1.316 1.319 1.316	.393 .388 .381 .376 .374	181.V1	0298 0399 0299 0299 0397 0290	1.759 1.783 1.813 1.833 1.847 1.870	.0034 .0031 .0028 .0025 .0024	360.6 365.4 371.6 375.6 378.5 383.3
10	30.00	2768	0.0094	12 / 2 2 2	0.0		97; percen	0.668	2.28	0110	11.268	0.0074	251.7
15 80 30 40	30.00 15.00 10.00 7.50	8607 8462 8308 8186	.0046 .0010 0035 0059	3298.1 3229.5 3138.7 3076.4	21.18 21.23 21.27 21.29	052 039 084 015	1.221 1.221 1.234 1.243	1 - 454	3.64 4.83 5.92	0142 0164 0189 0804	1.268 1.355 1.410 1.479 1.524		268.9 279.7 393.5 302.3
50 80 100 150 200	5.00 3.75 3.00 2.00	2017 1902 1815 1665 1564	0086 0102 0109 0114 0115	3998.9 8946.4 2907.7 2842.0 3798.8	21.31 21.32 21.32 21.33 21.33	008 004 003 001 000	1.263 1.268 1.275	.465 .451 .443 .432	7.89 9.69 11.38 15.25 18.78	0226	1.580 1.617 1.643 1.686 1.715	.0089	340.2
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	1430 1340 1223 1144 1086 990	0118 0119 0118 0117 0111 0079	2742.3 2705.1 2656.8 2635.0 2601.9 2563.7	21.33 81.33 81.33 21.33 21.33	000 001 008 004 013	1.298 1.897 1.300 1.301 1.391	.418 .412 .407 .408 .410 .423	82.08	0328	1.751 1.774 1.804 1.833 1.837 1.861	.0085 .0083 .0080 .0019 .0018	347.3 352.0 357.9 361.7 364.5 369.2
10	30.00	2536	0.0041		80.65	039	14; percen	0.606	8.27	0106	1.268	0.0055	843.6
15 80 30 40	15.00 10.00 7.50	3536 2365 2346 2081 1968	0058	3841.9 3746.4 3682.7 3598.6 3548.8	20.75	035 017 009 005	1.823 1.839 1.840 1.247	.560 .535 .505 .490	8.87 3.97 3.61 4.77 5.84		1.268 1.354 1.408 1.477 1.521	.0034	1x 2 8 . 3
50 80 100 150 200	5.00 3.75 3.00 9.00 1.50	1815 1711 1634 1501 1412	0074 0074 0075 0075	3469.4 3420.9 3385.1 3324.3 3884.2	20.76	1 001		.474 .466 .461 .453	7.79 9.58 11.25 15.11 18.64	0162 0164 0163 0160 0161	1.577 1.613 1.638 1.682 1.709	.0027 .0025 .0021	323.1
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	1293 1215 1110 1041 993 918	0075 0074 0064 0042 0026	3231.8 3197.2 3152.1 3132.5 3100.8 3063.8	20.84	061	1.282 1.283 1.281 1.274	.439 .437 .440 .450 .463 .544	35.09 31.00 41.78 51.69 61.09	0158 0151 0137 0113	1.745 1.768 1.798 1.818 1.832 1.855	.0017 .0016 .0014 .0013 .0012	335.3 339.6 345.5 349.2 351.9 356.4
10	30.00	8130	0004	4589.7	19.84	- 009	1 . 223	0.560		0060	1.266	0.0023	389.0
15 20 30 40	30.00 20.00 15.00 10.00 7.50	8130 1977 1873 1734 1639	0025	4506.3 4450.9 4377.7 4389.8	19.85 19.85 19.85 19.85	004	1.230 1.234 1.239 1.243	.541 .531 .519 .513	3.24 3.92 3.55 4.70 5.76	0005	1.351 1.404 1.472 1.515	.0019 .0017 .0014 .0013	874:1
60 80 100 150 200	5.00 3.75 3.00 2.00 1.50	1514 1429 1366 1858 1186	0024 0024 0020	4365.2 4292.8 4191.6 4138.4 4103.2	19.85 19.86 19.86 19.86 19.86	001 003 005	1.254 1.260 1.260	.506 .499 .494 .409	7.70 9.48 11.15 15.00 18.54	0064 0061 0059	1.570 1.606 1.632 1.674	.0010 .0009 .0008	884.1 290.5 295.1 302.9 307.9
300 400 600 800 1000 1500	1.00 .75 .50 .37 .30	1091 1030 955 912 884 847	.0007 .0034 .0100 .0168 .0213	4057.1 4036.6 3986.5 3959.8 3940.0 3905.5	19.87 19.89 19.95 20.03 20.10	013 025 059 100 130	1.258 1.253 1.238 1.213 1.166 1.155	.503 .523 .591 .710 .970 1.155	25.04 31.07 42.39 53.16 63.67	0036 0015 .0041 .0090 .0094	1.738 1.761 1.791 1.811 1.825 1.850	.0007 .0007 .0007 .0008 .0009	336.1

TABLE VI. - THEORETICAL PERFORMANCE FOR EXPANSION TO 1 ATMOSPHERE FOR JP-4 FUEL WITH OXIDANT CONTAINING 70.37 PERCENT FLUORINE AND 29.63 PERCENT OXYGEN BY WEIGHT

[Equilibrium composition during isentropic expansion.]

Equiva- lence ratio, r, 4(C)+(H) 2(O)+(F)	Percent fuel by weight	Oxident- to-fuel weight ratio, o/f	Combus- tion temper- ature, T _C , o _K	Exit temper- ature, Te, oK	Character- istic velocity, c*, ft/sec	Coeffi- cient of thrust, C _F	Area ratio,	Specific impulse, I, lb-sec/lb					
	Combustion-chamber pressure, 600 lb/sq in. abs												
1.00 1.40 1.50 1.60 2.50	14.83 19.60 20.71 21.79 30.33	5.743 4.102 3.829 3.589 2.297	4007 4464 4479 4396 3898	2452 2627 2758 2736 2168	6203 6757 6814 6749 6420	1.532 1.533 1.538 1.544 1.523	6.26 6.01 6.22 6.30 5.92	295.3 322.0 325.7 323.9 303.9					
		Combusti	on-chambe	r pressur	e, 300 lb/sq	in. abs							
1.00 1.25 1.40 1.50 1.60 1.75 2.00 2.50 3.00 4.00	14.83 17.87 19.60 20.71 21.79 23.35 25.83 30.33 34.31 41.05	5.743 4.595 4.102 3.829 3.589 3.282 2.872 2.297 1.914 1.436	3910 4238 4332 4346 4267 4163 4067 3813 3552 3095	2608 2868 3026 3081 3056 2936 2755 2473 2237 1866	6157 6543 6697 6753 6691 6667 6594 6384 6181 5819	1.418 1.422 1.423 1.423 1.423 1.416 1.414 1.412	3.75 3.75 3.82 3.86 3.91 3.84 3.75 3.69 3.66 3.60	271.3 288.3 296.0 298.8 296.9 294.8 290.3 280.5 271.3 254.7					

[Isentropic expansion or compression from combustion conditions.]

(a) Combustion-chamber pressure, 600 pounds per square inch absolute

	(a) Combustion-chamber pressure, 600 pounds per square inch absolute											
L					tion ^a at tem							
						t fuel = 14.8						
T, °K	4400	b4007	4000	3600	3200	2800	2400	2000	1600	900		
cr₄ co	0.20805	0.20066	0. 30047	0,18636	0.00001	0.00018 .14054 .10945	0.00836	0.03269 .08143 .17058	0.06574	0.08743		
ρ ₂	.02381	.03547	.03574	0.18636 .05447 .25013	.08103	.10945	.13275	.17058	.28018	. 25246	İ	
	.00007	.00006	.00006	.00005	.00004	.00004	.00003	.00001				
F2 H	.00801	.00339	.00333	.00108	.00021	.00003						
H ₂	.43456	.45135	.45163	.46531	.47665	.48580	.50491	.55292	.61765	.66011		
H ₂ 0	.00058	.00027	.00027	.00009	.00003	.00233	00030	.00004				
0 0 2	.01800	.03517	.03494	.01984	.01414	.00491	.00030	.00015	30000			
<u> </u>	.00542	.00894				ent fuel = 19	.60					
T, °K	4800	04464	4400	4000	3600	3200	2800	2400	8000	1600	1200	
c(cus)	0.00001											
or .	.00,001							0.00055	0.01068	0.01581	0.01530	
۵	.28924	0.89436	0. 29530	0.30053	0.30343	0.30274	0.30108	.30030	.29281	.28860	. 28853	
r ^{CO} 2	.00225	.00312	.00334	.00542	.00937	.01523	.01894	.02014	.03108	.03597	.03607	
Fa H	.00001	.00001	.00001	.02737	.01341	.00313	.00030	.00001				
H ₂	.01175	.00871	.00813	.00467	.00187	.00035	.00002					
H ₂ O O	.47487	.50784	.51421	.55362	.58894	.61899	.63112	.62338	.64860	.65988	.66011	
٥	.01084	.01043	.01031	.00907	.00652	.00279	.00043	.00008				
OH OH	.00029	.00037	.00039	.00054	.00063	.00042	.00007					
	.00220					ent fuel = 20				L		
T, OK	4800	64479	4400	4000	3600	3200	8800	2400	2000	1600	1200	
C(QAS)	0.00121	0.00099	0.00093	0.00060	0.00036	0.00006			·································		0.00005	
or or	.00128	.00117	.00114	.00090	.00055	.00003	0.00005	0.00001			0.0000	
		.00001	.00001	.00001	.00007	.00002	.00001	.00002				
G3 G4	.00001	.00043	.00046	.00077	.00115	.00001	.00004	.00139	0.00311	0.00328	.00328	
8	30145	30754	30907	.31680	32406	.32985	.33313	.33499	.33647	.33661	.33651	
<u>ω</u> 2	.00002	.00001	.00001				.01843				.00005	
F2	.12138	.10077	l	.06922	.04433	.02421		.00577	.00052	.00001		
l	.07694	.06845	.05877	.04020	.02282	.00920	.00179	.00013	.00001			
H ₂	.01725 .48004 .00001	.01423	.01346	.00968	.60085	.63229	.65044	.65673	.65979	.66010	.66011	
H-20	1.00011	.00003	.00002									
ОН	.00004	.00001	.00001	- 1 60: 0/0	- 3 5891 nem	ent fuel = 2	1.79					
T, ok	4400	64396	4000	3600	3200	2800	2400	8000	1600	1200	900	
C(045)	0.00411	0.00409	0.00255	0.00078	0.00010	0.00001						
CENTHITE	.00420	.00419	.00285	.01261	.08198	.02433	0.08463	0:02467	0.03468	0.08473	0.02915	
CF ₂	.00015	.00015	.00010	.00004	.00001							
83.	.00002	.00009 .00748 .30371	.00001	.00484	.00105	.00010						
co	.30364	.30371	31108	.31387	.31621	.31857	.31977	.32014	.32020	.32010	.31135	
r -	.06782	.06758	.04358	.02554	.01084	.00246	.00026	.00001				
H H ₂	.06782 .07002 .02258	.06758 .06986	.04358	.03554 .03458 .01530	.01855	1 .01184	.01354	.00040	.00002	.01469	.01460	
H ₂ Hr H ₂ 0	.51997	.52035	. 55703	.59136	.61927	.63446	.63986	.64028	.64043	.64042	.64042	
						cent fuel = 3						
T, °K	4000	b3898	3600	2500	2800	2400	8000	1600	1200	900		
C(OAS) GRAPHITE	0.00098	0.00069	0.00021	0.00002	0.15706	0:15785	0.15813	0.15819	0.15831	0.16450		
ar ar	00066	.14949	.00015	.00003						3.10.30		
	.00163	.00114	.00035	.00005]				
Cata	000003	1 .00002	.00001	.00001	.00001	.00001	.00001	.00001	.00003	.00013		
က္ဆ	.22351	.22398	.22566				.23155		:00007	100493		
r H	.00790	.00660	.00358	.00116	.00025	.00003		.00004				
H ₂ HF	.06950	.06463	.13044	.02986	.01379	.14447	.00070	.14685	.14679	.14520		
H ₂ o	.43518	.43859	.44695	.45486	.45977	.46826	.46318	.00001	.00007	.46340		
OMOZO CO									6			

OMole fractions were computed for all 19 substances considered in this report but are omitted if less than 5×10^{-6} .

^bCombustion temperature.

TABLE VII. - Continued. EQUILIBRIUM COMPOSITION OF PRODUCTS OF REACTION AT ASSIGNED TEMPERATURES FOR JP-4
OXYDAWT CONTAINING 70.57 PERCENT FLOURINE AND 29.65 PERCENT OXYGEN BY WEIGHT.

[Isentropic expansion or compression from combustion conditions]

(b) Combustion-chamber pressure, 300 pounds per square inch absolute

	Nole fraction ² at temperature T												
 		1 100000				roent fuel =		1 4400	·	,			
7, °K	4000	b3910	3600	3200	0.00002	0.00297	2000	1600	900	 			
α	0.20602	0,20406	0.19486	0,17363	.14676	.12710	.09216	0.05970	0.08743	ļ]		
CO₂ F	.02758	.03063	.04429	07021	.10220 .25618	.12443	15981	.21113	.25246	ĺ	Ì		
Fa	.00003	.00003	l .	.00002	.00002	.00002	l	l	·	l	1		
H H	.00543	.00433	.00003	.00002 .00037 .00001	.00004				·	1	l		
뜐	.44348	144748	.45969	147271	.48344	.49427	.53873	.60584	.66010				
H ₂ O	-00032	.00027	-00011	.00002		I	.00004		[[
03 0H	.04365	.04048	.02869	.01405	.00391	.00038	:00013	.00001		ľ	Ì		
<u>ан</u>	.00355	.00308	.00151	.00042	.00005	roent fuel =	17.67				L		
T, °K	4400	b4238	4000	3600	3500	2800	8400	3000	1600	900	Γ		
CF.							0.00050	0.01646	0.03522	0.03694			
ω ω	0.26461	Q. 26594	0.26697	0.26481	0.25565	0.24415	.24003	.22326	.20376	.30197	[
-	.17148	.16285	.15132	.13624	.12943	.12855	.12699	.07138	.00600		}		
F ₂	.00001	.00001	.00001	.00794	.00183	.00019	.00001				1		
H ₂	.03679 .00428 .47453	.02976 .00328 .48970	.00202	.00060	.00009	.57273	.57615	.61298	.65615	.66011]		
	l			i			.57015	.61498	.00015	1	1		
H ₂ O	.00102 .03141 .00286	.00093 .03030 .00328	.00075	.03060	.00009	.00001	.00012	.00001			1		
он он	.00286	.00326	.00398	.00500	.00420	.00122	.00007				.		
						roent fuel -							
T, °K	4400	4332	4000	3600	3200	2800	2400	8000	1600	1200	900		
σ .	0.29137	0.29255	0, 29797	0.30277	0.30353	0.30142	.30073	0.00801	0.01510	0.01530	0.01530 .28853 .03607		
ω2	.00239	.00257	0.29797 .00391 .10699	.00706	.01290	.01832	.01955	.02820	.03585	.03607	.03607		
.	.00001	.00001	,										
Fa	.05854	1 .05502	.03783	.01890	.00559	.00061	.00002						
£.	.00903	.00843	.00556	.00252	.60674	.00004	.68206	.64196	.65961	.66011	.66011		
H ₂ 0	.00065	.00065	.00068	.00048	.00019	.00002							
0 03 0 03	.01144	.01135	.01058	.00845	.00446	.00085	.00004						
OH	.00284	.00279	.00243	.00169	.00066	.00007							
T, °K	4400	b4346	4000	3600	3200	2800	2400	2000	1600	1200	900		
C(QAS)	0.00122	0.00118	0.00088	0.00045	0.00018	0.00001							
CF STIRSTED	.00114		.00098		.00030	.00008	0.00001	0.00004		0.00008	0.00214		
σ ₂	.00004	.00112	.00004	.00067	.00002	.00001	.00001						
α ₃ σ ₄							.00001						
G. 25.	.00030	.00033	.00058	.00099	.00137	.00001	.00070	.00299	0.00328	.00328	.00328		
	.30395	.30508	.31253	.32096	.33811	.33256	.33439	.33635	.33661	.33657	.33234		
ω ₂ Γ	.00001	.00001	.08218	.05397	.02983	.01439	.00791	.00091	.00002	.00008	.00214		
H Ha	.07336	.07053	.05204	.03123	.02983 .01375 .00320	.01439 .00313 .00079	.00020	.00001					
жr	.49522	.50124	.54068	.58522	.62329	.64746	.65548	.65957	.66009	.66011	.66011		
0 0H	.00003	.00002									.00011		
			1	= 1.60; o/f	= 3.589; pe	roent fuel =	21.79						
7, °K	4400	4267	4000	3600	3200	2800	2400	2000	1600	1200	900		
C(0A3)	0.00576	0.00513	0.00382	0.00133	0.00019	0.00001							
CRAPHITE CF	.00470	.00429	.00338	.01149	.02159	.02425	0.02462	0.02467	0.03468	0.02470	0.02695		
Q.³	.00014	.00012	.00010	.00004	.00001								
G.	.00001	.00001	.00001	.00486	.00109	.00011							
ω ₂	.29842	.30119	.00817	.31118	31462	.31791	.31958	.32011	.38080	.32016	.31571		
	0040-	07000	05400	0.7775	.01513	.00362	.00039	200008			.00.5		
<u> </u>	.08193	.07292 .07775 .02052	.05498	.03335	.02444	.01120	.00359	.00058	.00003				
15	.02142	.02052	.01887	.04398 .01456 .57780	.01101	.01091	.01307	.01440	.64041	.01469	.01464		
H ₂ 0											.00005		
0	.00001		L										

*Mole fractions were computed for all 19 substances considered in this report but are cmitted if less than 5×10-6.

^bCombustion temperature.

TABLE VII . - Comcluded. EQUILIBRIUM COMPOSITION OF PRODUCTS OF REACTION AT ASSIGNED TEMPERATURES FOR JP-4 OXIDANT CONTAINING 70.57 PERCENT FLOURING AND 29.63 PERCENT OXYGEN BY WEIGHT.

AND LUNINGS OF THE

[Isentropic expansion or compression from combustion conditions.]

(b) Concluded. Combustion-chamber pressure, 500 pounds per square inch absolute

	(b) Concluded. Combustion-chamber pressure, 500 pounds per square inch absolute											
				Hole fre	otiona at ter	perature T						
				r = 1.75; o/f	= 3.262; per	cent fuel =	23.35					
7, °K	4400	b4163	4000	3600	3200	2800	8400	2000	1600	1200	900	
C(OUS)	0.00991	0.00637	0.00481	0.00109	0.00015	0.00001	0.05344	0.05357	0.05359			
GRAPHITE CF	.00679	.01596	.02749	.04514	.05148	.05302	0.03344	0.05357	0.05359	0.05362	0,05605	
ct ²	.00017	.00011	.00007	.00008								
G,	.00001	.00001	.00834	.00236	.00037	.00003						
ιώ * ω ₂	:39017	. 28986	. 28945	.29116	.29488	.29821	.30017	.30089	.30108	.30097	.29686	
				222	22768	20167	20010	00001		.00005	. 00.	
Ĥ	.05102	.04260	.03697	.02100 .05491 .02777	.00768 .03479 .02933	.00163	.00018	.00001	.00005			
100	.03932	.03497	.03185	.55568	.02933	.03515	.04054	.60177	.04330	.60205	.04317 .60206 .00015	
H ² 0	L									.00001	00015	
r = 2.00; q/f = 2.872; percent fuel = 25.65 7, °X 4400 64067 4000 3600 3200 2800 2400 2000 1600 1200 900												
		0.00372	0.00307	0.00073	0.00009						- 700	
C(QAS) GRAPHITE	0.00819 .05310 .00494	.07393	.07697	.08823	.09885	0.09377	0.09448	0.09474	0.09479	0.09483	0.09755	
or ₂	.00494	.00329	.00189	.00047	.00007							
or,	.00001											
Cita Cit	.01831	.00527	.00430	.00100	.00014	.00001					.00001	
ω"	.26208	.26137	. 26153	.26402	.26765	.27085	.27281	.27355	.27369	.27363	.26851	
ω2	07706	.02474	.02268	.01188	.00380	.00088	.00010			.00003	.00243	
l'é	.03396	.08877	.08536	.06395	.04100	.02005	.00636	.00104	.00006	20465		
H ₂	.05986	.05477	.05433	.05602	.06384	.07364	.08071	.08356	.08409	.08410	.08375	
H ₂ O	.46060	.48509	. 48981	.51434	.53116	.54085	.54553	.54710	.54738	.54740	.54741	
r = 2.50; q/r = 2.297; percent fuel = 30.33												
T, ox	4000	b3813	3600	3800	8800	2400	2000	1600	1200	900		
C(QA3) GAAPHITE	0.00161	0.00085	0.00036	.15477	0.15665	0.15771	j. 15811	0.15819	0.15825	0.16160		
or or	.00086	.00046	.00080	.00003	5. 15555	0.10.11	3.20012		4313333		((
1		l .	222	2225								
CoF ₂ CH ₄	.00170	.00087	.00037	.00005					.00001	.00007		
ω ω ₂	.82139	.22246	. 22394	.88690	.82940	.23094	.23152	.23163	.23154	.00267	1 1	
	.01034	.00743	.00473	.00159	.00036	.00004						
H H ₂ HF	.08588	.07575	.06338	.03955	.01695 .13618	.00600	.00100	.00006	.14685	.14600	í I	
н 7 Н₃0	.48813	.43528	.44222	.45208	.45844	.46183	.46304	.46327	.46329	.46334		
				r = 3.00; o/	f = 1.914; pe	rcent fuel =	34.31		1			
T, OK	3600	b3552	3800	2800	2400	8000	1600	1200	900			
c(ous)	0.00019	0.00016	0.00002		- 00/65							
CP	.19815	.19856	.80105	0.30308	0.20417	0.80461	0.20469	0.20478	0.80891]	
C2F2	.00020	.00016	.00003									
α ₄	.00003	.00002	.00002	.00001	.00001	.00001	.00001	.00004	.00018			
ÇO ₂	.00254	.00227	.00086	.00019	-00002			.00004	.00298			
l R	.05544	.05280	l	.01604	.00507	.00085	.00005					
H ₂ HT	.16121	.16261	.03391	.18345	1 .18992	.19843	.19290	.19284	.19133	1		
H ₂ 0	.38707	.38799	.39369	.39812	.40053	.40140	.40157	.40159	.40171		<u> </u>	
	7000	broos	2000		f = 1.436; pe							
7, °K	3800	b3095	2800	2400	2000	1600	1800	900	ļ	 	ļ	
CRAPHITE	.26513	0.26566	0.26688	0.26789	0.26827	0.26835	0.26851	0.27459	 .	1	1	
cata ca	.00001	.00001										
	.00010	.00009	.00007	.00005	.00005	.00006	.00015	.00066	1			
CH4 CO2	.15670	.15700	.15770	.15828	.15850	.15853	.15831	.14854	1	1		
آ آ	.00034	.00034	.00008	.00001			-00006	-00369		i		
н	.02323	.01952	.01079	.00341	.00058	.00003]	
Ha RF	.31306	.24370	.94915 .31534	.35378	.25555 .31703	.00003 .25586 .31713	.35563 .31719	.25218	Į.	Į.	((
H-0	.00001	.00001	.00001	.00001	.00001	.00002	.00015	.00284	l	J	!	

^aNole fractions were computed for all 19 substances considered in this report but are cuitted if less than 5x10⁻⁵.

^bCombustion temperature.

(a) Combustion-chamber pressure, 600 pounds per square inch absolute. Exponent n_{T} for use

in equation
$$I = I_{600} \left(\frac{P_c}{600}\right)^{n_I}$$
.

Figure 1. - Theoretical specific impulse of JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(b) Combustion-chamber pressure, 300 pounds per square inch absolute. Exponent $n_{\rm I}$ for use in equation I = $I_{300}\!\!\left(\!\!\frac{P_{\rm c}}{300}\!\!\right)^{\!\!n_{\rm I}}$.

Figure 1. - Concluded. Theoretical specific impulse of JP-4 fuel with oxident containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

TITAT

(a) Combustion-chamber pressure, 600 pounds per square inch absolute. Exponent $\rm\,n_{T}$ for use in equation

$$T = T_{600} \left(\frac{P_c}{600} \right)^{n_T}$$

Figure 2. - Theoretical combustion-chamber and nozzle-exit temperatures for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(b) Combustion-chamber pressure, 300 pounds per square inch absolute. Exponent

 n_{T} for use in equation $T = T_{300} \left(\frac{P_{c}}{300}\right)^{n_{T}}$

Figure 2. - Concluded. Theoretical combustion-chamber and nozzle-exit temperatures for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

a arminanta

CONTRACTOR LAND

(a) Combustion-chamber pressure, 600 pounds per square inch absolute. Exponent $\rm n_{\rm g}$ for use in equation

$$\varepsilon = \varepsilon_{600} \left(\frac{P_c}{600} \right)^n \varepsilon.$$

Figure 3. - Theoretical ratio of nozzle area to throat area for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(b) Combustion-chamber pressure, 300 pounds per square inch absolute.

Exponent n_{ϵ} for use in equation $\epsilon = \epsilon_{300} \left(\frac{P_c}{300}\right)^{n_{\epsilon}}$.

Figure 3. - Concluded. Theoretical ratio of nozzle area to throat area for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(a) Combustion-chamber pressure, 600 pounds per square inch absolute.

Figure 4. - Theoretical coefficient of thrust for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(b) Combustion-chamber pressure, 300 pounds per square inch absolute.

Figure 4. - Concluded. Theoretical coefficient of thrust for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

(a) Combustion-chamber pressure, 600 pounds per square inch absolute.

Figure 5. - Theoretical molecular weight for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

COMMITTAL

(b) Combustion-chamber pressure, 300 pounds per square inch absolute.

Figure 5. - Concluded. Theoretical molecular weight for JP-4 fuel with exident containing 70.37 percent liquid fluorine and 29.63 percent liquid exygen by weight. Equilibrium composition during isentropic expansion to pressure ratio indicated.

Figure 6. - Theoretical characteristic velocity and characteristic-

velocity exponent n_{c} * for use in equation $c^* = c_1^* \left(\frac{P_c}{P_{c,1}}\right)^{n_{c_1}}$

JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight; equilibrium composition during isentropic expansion from chamber pressure indicated.

Figure 7. - Comparison of theoretical specific impulse assuming frozen and equilibrium compositions for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight. Combustion-chamber pressure, 600 pounds per square inch absolute; isentropic expansion to 1 atmosphere.

(b) Theoretical isentropic exponent.

Figure 8. - Variation of theoretical specific heat and isentropic exponent with temperature for both frozen and equilibrium compositions. Isentropic expansion; combustion-chamber pressure, 600 pounds per square inch absolute; stoichiometric equivalence ratio for JP-4 fuel with oxidant containing 70.37 percent liquid fluorine and 29.63 percent liquid oxygen by weight.

COVETDENTIAL

Figure 9. - Comparison of theoretical specific impulse for several propellants having same atom ratios but different heat contents. Combustion-chamber pressure, 600 pounds per square inch absolute; equilibrium composition during isentropic expansion to 1 atmosphere. Data for ozone-fluorine mixture and oxygen bifluoride as oxidants estimated by means of equation (25).