Roll	No.:

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch

: ECE

Semester

: IV

Title of the Course

: Analog Electronics

Course Code

: ECB 252

Time: 2 Hours

Maximum Marks: 25

- Questions are printed on BOTH sides. Answers should be CLEAR AND TO THE POINT.
- All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.
- 1. For the circuit in figure 1, derive the expression for stability factor S, in terms of β . V_{BE} can be [3] neglected.
- 2. In the circuit shown in figure 2, V_{CC} = 24 V, R_c = 10K Ω , and R_e = 270 Ω . If a Si transistor is used with β = 45, and if under quiescent conditions V_{CE} = 5V, then determine (a) value of R and (b) stability factor (S).
- 3. Determine the minimum value of current gain (β) for the transistor in figure 3, required to drive [3] in saturation when $V_{in} = +5V$, $V_{BE (sat)} = 0.8 \text{ V}$ and $V_{CE (sat)} = 0.12 \text{ V}$.
- 4. A Si transistor with $V_{CE (sat)} = 0.2 \text{ V}$, $h_{fE} = 100$, $V_{BE (sat)} = 0.8 \text{ V}$ is used in the circuit in figure 4. [3]
 - (a) Find the minimum value of R_L for which the transistor is in saturation. Assume, $I_{C\sim}$ I_E , V_{BB} = 12V and V_{CE} = 10V.
 - (b) Determine the output (V_0) at saturation for $R_L = R_{L, min}$ for which transistor remains in saturation.
- 5. If the Si transistor used in the circuit in figure 5 has a minimum value of β = h_{fE} = 30, determine whether the transistor is in cut off or active or in saturation region? V₁= +12V, V₂ = -12V, R₁ = 15K Ω , R₂ = 100 K Ω , R_c = 2.2 K Ω . Also find the output (V₀).
- 6. For the self-bias circuit in figure 6, the Q-pt is assumed to be exactly at the middle of the dc-load line. What will be the expression for the total combination of R_c and R_e , in terms of V_{CC} and power dissipation (P_{DQ}) at Q-pt.
- 7. Answer the followings only writing either True (T) or False (F) against each one. [5]
- (a) In a self-bias circuit, the stability increases as the base resistance increases.
- (b) For $R_b = 0$ and R_e not equal to 0, transistor can not be operated in active region.
- (c) Rate of change of stored charge is responsible for storage time in switching.
- (d) Heavily doped base in HBT, increases the base resistance.
- (e) Stabilization techniques of bias stability uses thermistors.

