# Problem Set (Week 3)

### Econ 103

## Lecture 10

1. Suppose that X is a random variable with the following PDF

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ 2 - x & 1 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

(a) Graph the PDF of X.

**Solution:** It's an isosceles triangle with base from (0,0) to (2,0) and height 1.

(b) Show that  $\int_{-\infty}^{\infty} f(x) dx = 1$ .

Solution:

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{1} x dx + \int_{1}^{2} (2 - x) dx = \frac{x^{2}}{2} \Big|_{0}^{1} + \left(2x - \frac{x^{2}}{2}\right) \Big|_{1}^{2}$$
$$= 1/2 + (4 - 2) - (2 - 1/2) = 1$$

(c) What is P(0.5 < X < 1.5)?

**Solution:** 

$$P(0.5 < X < 1.5) = \int_{0.5}^{1.5} f(x) dx = \int_{0.5}^{1} x dx + \int_{1}^{1.5} (2 - x) dx$$

$$= \frac{x^{2}}{2} \Big|_{0.5}^{1} + \left(2x - \frac{x^{2}}{2}\right) \Big|_{1}^{1.5}$$

$$= (1/2 - 1/8) + (3 - 9/8) - (2 - 1/2)$$

$$= 3/8 + 15/8 - 2 + 1/2 = 18/8 - 16/8 + 4/8$$

$$= 6/8 = 3/4 = 0.75$$

- 2. A random variable is said to follow a Uniform(a, b) distribution if it is equally likely to take on any value in the range [a, b] and never takes a value outside this range. Suppose that X is such a random variable, i.e.  $X \sim \text{Uniform}(a, b)$ .
  - (a) What is the support of X?

Solution: [a, b]

(b) Explain why the PDF of X is f(x) = 1/(b-a) for  $a \le x \le b$ , zero elsewhere.

**Solution:** This simply generalizes the Uniform (0,1) random variable from class. To capture the idea that X is equally likely to take on any value in the range [a,b], the PDF must be constant. To ensure that it integrates to 1, the denominator must be b-a.

(c) Using the PDF from part (b), calculate the CDF of X.

Solution:

$$F(x_0) = \int_{-\infty}^{x_0} f(x) \, dx = \int_a^{x_0} \frac{dx}{b-a} = \frac{x}{b-a} \Big|_a^{x_0} = \frac{x_0 - a}{b-a}$$

(d) Verify that f(x) = F'(x) for the present example.

**Solution:** 

$$F'(x) = \frac{d}{dx} \left( \frac{x-a}{b-a} \right) = \frac{1}{b-a} = f(x)$$

(e) Calculate E[X].

**Solution:** 

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{a}^{b} \frac{x}{b-a} \, dx = \frac{x^2}{2(b-a)} \Big|_{a}^{b} = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2}$$

(f) Calculate  $E[X^2]$ . Hint: recall that  $b^3 - a^3$  can be factorized as  $(b-a)(b^2 + a^2 + ab)$ .

Solution:

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{a}^{b} \frac{x^{2}}{b-a} = \frac{x^{3}}{3(b-a)} \Big|_{a}^{b} = \frac{b^{3} - a^{3}}{3(b-a)}$$
$$= \frac{(b-a)(b^{2} + a^{2} + ab)}{3(b-a)} = \frac{b^{2} + a^{2} + ab}{3}$$

(g) Using the shortcut formula and parts (e) and (f), show that  $Var(X) = (b-a)^2/12$ .

Solution:

$$Var(X) = E[X^{2}] - (E[X])^{2} = \frac{b^{2} + a^{2} + ab}{3} - \left(\frac{a+b}{2}\right)^{2}$$

$$= \frac{b^{2} + a^{2} + ab}{3} - \frac{a^{2} + 2ab + b^{2}}{4}$$

$$= \frac{4b^{2} + 4a^{2} + 4ab - 3a^{2} - 6ab - 3b^{2}}{12}$$

$$= \frac{b^{2} + a^{2} - 2ab}{12} = \frac{(b-a)^{2}}{12}$$

# Lecture 11

3. Suppose that  $X \sim N(0, 16)$  independent of  $Y \sim N(2, 4)$ . Recall that our convention is to express the normal distribution in terms of its mean and variance, i.e.  $N(\mu, \sigma^2)$ .

Hence, X has a mean of zero and variance of 16, while Y has a mean of 2 and a variance of 4. In completing some parts of this question you will need to use the R function pnorm described in class. In this case, please write down the command you used as well as the numeric result.

(a) Calculate  $P(-8 \le X \le 8)$ .

#### **Solution:**

$$P(-8 \le X \le 8) = P(-8/4 \le X/4 \le 8/4) = P(-2 \le Z \le 2) \approx 0.95$$

where Z is a standard normal random variable.

(b) Calculate  $P(0 \le Y \le 4)$ .

#### **Solution:**

$$P(0 \le Y \le 4) = P\left(\frac{0-2}{2} \le \frac{Y-2}{2} \le \frac{4-2}{2}\right) = P(-1 \le Z \le 1) \approx 0.68$$

where Z is a standard normal random variable.

(c) Calculate  $P(-1 \le Y \le 6)$ .

#### **Solution:**

$$\begin{split} P(-1 \leq Y \leq 6) &= P\left(\frac{-1-2}{2} \leq \frac{Y-2}{2} \leq \frac{6-2}{2}\right) \\ &= P(-1.5 \leq Z \leq 2) \\ &= \Phi(2) - \Phi(-1.5) \\ &= \operatorname{pnorm}(2) - \operatorname{pnorm}(-1.5) \\ &\approx 0.91 \end{split}$$

where Z is a standard normal random variable.

(d) Calculate  $P(X \ge 10)$ .

#### **Solution:**

$$P(X \ge 10) = 1 - P(X \le 10) = 1 - P(X/4 \le 10/4) = 1 - P(Z \le 2.5)$$
$$= 1 - \Phi(2.5) = 1 - \text{pnorm(2.5)}$$
$$\approx 0.006$$