FUNDAMENTALS OF MATHEMATICAL LOGIC BY PETER G. HINMAN

:

Contents

1 Propositional Logic and Other Fundamentals

3

Chapter 1

Propositional Logic and Other Fundamentals

Exercise 1.1. (Section I, 12) Give a careful proof of Proposition 1.1.9, and show how theorem 1.1.7 is an application of it.

Proposition 1.1.9: Sentence recursion theorem. For any set Z, any function $F_0: Sent_0 \to Z$ and any functions $G_{\neg}: Z \to Z$ and $G_{\bullet}: Z \times Z \to Z$, for \bullet any of \vee , \wedge , \to , \leftrightarrow , there exists a unique function $F: Sent_L \to Z$ such that F extends F_0 and for all L-senteces ϕ and ψ ,

$$F(\neg \phi) = G_{\neg}(F(\phi))$$
 and $F(\bullet \phi \psi) = G_{\bullet}(F(\phi), F(\psi)).$

Proof. We shall define recursively a sequence of functions $F_n : \operatorname{Sent}_n \to Z$ for $n \in \omega$ such that for each n, F_{n+1} is extension of F_n and respect the desired relationship. Indeed, given such a F_n , we simply use the unquie readability for propositional sentences to define values of F_{n+1} on the members of $\operatorname{Sent}_{n+1}$. Thus, for $\phi \in \operatorname{Sent}_{n+1}$, set

$$F_{n+1}(\phi) = \begin{cases} F_n(\phi), & \text{if } \phi \in \operatorname{Sent}_n \\ G_{\neg}(F_{n+1}(\psi)), & \text{if } \phi = \neg \psi \text{ where } \psi \in \operatorname{Sent}_n \\ G_{\bullet}(F_{n+1}(\psi), F_{n+1}(\gamma)), & \text{if } \phi = \bullet \psi \gamma \text{ where } \psi, \gamma \in \operatorname{Sent}_n \end{cases}$$

Now we define $F: \operatorname{Sent}_L \to Z$ by $F(\theta) = F_n(\theta)$ for some n such that $\theta \in \operatorname{Sent}_n$. Clearly, F extends F_0 and satisfy the desired relationship because all F_n do. Furthermore, unique extension of atomic truth assignemnt is a special case where $Z = \{T, F\}$, and G_{\neg} and G_{\bullet} are truth assignemnt functions. \square