US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

August 21, 2025

Inventor(s)

20250262475

August 21, 2025

Domesick; Michael

Abdominal Core and Plank Exercise Apparatus

Abstract

An exercise apparatus supports plank and core-strength movements by engaging a user's upper limbs and supporting the user above a ground surface. A rigid frame carries at least one upper-limb support pad arranged to support a portion of the upper limb; a hand grip can be grasped while the limb rests on the pad. The pad and grip can be repositioned, re-oriented, or spaced to suit different body sizes, exercise variants, or load angles. A ground-engaging surface permits placement for use on indoor floors, mats, or outdoor terrain.

Inventors: Domesick; Michael (New Britain, CT)

Applicant: Domesick; Michael (New Britain, CT)

Family ID: 1000008576923

Appl. No.: 19/184545

Filed: April 21, 2025

Related U.S. Application Data

parent US continuation 17962047 20221007 PENDING child US 19184545

parent US continuation 16368962 20190329 parent-grant-document US 11491364 US continuation PCT/US18/55589 20181012 child US 17962047

parent US continuation 15783773 20171013 parent-grant-document US 10173092 child US 15959405

parent US continuation-in-part 15959405 20180423 parent-grant-document US 10286245 child US 16368962

parent US continuation-in-part 15783773 20171013 parent-grant-document US 10173092 child US PCT/US18/55589

parent US continuation-in-part 14631235 20150225 parent-grant-document US 9895573 child US 15783773

us-provisional-application US 62453098 20170201

us-provisional-application US 62556391 20170909 us-provisional-application US 61944154 20140225

Publication Classification

Int. Cl.: A63B21/00 (20060101); A63B21/002 (20060101)

U.S. Cl.:

CPC **A63B21/4035** (20151001); **A63B21/0023** (20130101); A63B2209/00 (20130101)

Background/Summary

CROSS REFERENCE TO RELATED APPLICATION [0001] This application is being filed as a continuation of U.S. patent application Ser. No. 17/962,047, which is a continuation of U.S. patent application Ser. No. 16/368,962, filed on Oct. 12, 2018, itself a national stage entry of International Application No. PCT/US18/55589, filed on Apr. 23, 2018, and a continuation-in-part of U.S. patent application Ser. No. 15/959,405, filed on Apr. 23, 2018, now U.S. Pat. No. 10,286,245. Both PCT/US18/55589 and Ser. No. 15/959,405 are continuations of U.S. patent application Ser. No. 15/783,773, filed on Oct. 13, 2017, now U.S. Pat. No. 10,173,092, which is a continuation-in-part of U.S. patent application Ser. No. 14/631,235, filed on Feb. 25, 2015, now U.S. Pat. No. 9,895,573, which claims priority to U.S. Provisional Application No. 61/944,154, filed on Feb. 25, 2014, as well as to U.S. Provisional Application Nos. 62/453,098, filed on Feb. 1, 2017, and 62/556,391, filed on Sep. 9, 2017. This application claims benefit of the above-described applications.

FIELD OF THE DISCLOSURE

[0002] The present disclosure is generally related to exercise devices and more particularly is related to an abdominal core and plank exercise apparatus and related methods.

BACKGROUND OF THE DISCLOSURE

[0003] A plank exercise is a core strength exercise. The most common plank is the front plank which is held in a push-up position with the body's weight borne on forearms, elbows, and toes. FIG. **1** is a side view illustration of person **10** in a front plank position, in accordance with the prior art. This type of exercise may also be known as a front hold, hover, or abdominal bridge. As is shown in FIG. 1, when in the front plank position, a person 10 may maintain a push-up-like stance with his or her forearms in contact with the ground surface 12. In this position, the body weight of the person **10** is transferred through their feet and through their upper arms to the ground **12**. Relevant to this disclosure, the transfer of the weight through the upper arms to the ground 12 places significant forces on the person's elbows, which are in contact with the ground 12. [0004] Variations on the plank exercise include alternative positions, such as the side plank, the reverse plank, the push-up plank, and/or the so-called 'superman' plank. FIG. 2 is a side view illustration of person **10** in a side plank position, in accordance with the prior art. In the side plank, the person 10 maintains a static position with a single forearm and single foot in contact with the ground **12**. In this position, the bodyweight of the person **10** is transferred through his or her single foot and single arm which maintain contact with the ground 12. Relevant to this disclosure, the transfer of the weight through the single upper arm to the ground **12** places a significant force on the elbow of the person which is in contact with the ground 12.

[0005] Plank exercises may further include the use of training devices to enhance the effect of the exercise on the person. As is well-known in the art, these training devices may include a padded

mat or weighted athletic balls which the person balances his or her bodyweight on while maintaining a plank position or a modified plank position. In all variations of the plank position, the person may experience a balance and core conditioning exercise increasing strength, control, and coordination of the muscles within the person's body. The health benefits of plank exercises are well documented throughout the health, fitness, and exercise science industries. However, there are also some drawbacks of plank exercise, including the discomfort a user experiences.

[0006] Some devices are available to assist plank exercises. One device includes a unitary shell with handle grips and a platform, and a sliding device positioned on an underside of the platform. A user may grasp the handle grips with his or her elbows in contact with the platform and his or her knees in contact with the ground surface. The user then exercises his or her abdominal muscles by sliding the unitary shell on the ground relative to his or her knees. A similar device uses independent sliding carriages for each arm of the user, whereby a plank position can be assumed on the carriages. It is noted that other plank exercise assisting devices, functioning under the same principles as described herein, may also exist in the conventional art.

[0007] These devices, along with other conventional devices, have many shortcomings. One major shortcoming is that users are highly susceptible to inadvertent injury. Further, the devices require a user's forearm to be positioned in such a way that their bodyweight, transferred through their elbow and into the device, may discomfort the user. Additionally, conventional devices often have handle grips that are not ergonomically safe. For example, many devices have handle grips positioned aligned higher than the user's arm, which results in an upwards pitching of the user's wrist. Long term, this position can result in strain on the user's wrist and forearm. This position may also prevent a user from exerting downward pressure on handle grips in order to leverage their body into an elevated position specific to a plank exercise, without further forcing their arm and/or elbow into a pad. In another example, the conventional handle forces the user's forearms and wrist into an ergonomically inefficient position.

[0008] Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.

SUMMARY OF THE DISCLOSURE

[0009] Embodiments of the present disclosure provide an abdominal core and plank exercise apparatus (hereinafter 'exercise apparatus'). Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. An exercise apparatus has a hand grip. A frame member extends from the hand grip. At least one arm support pad is connected to the frame member, wherein a distance between the hand grip and the at least one arm support pad is adjustable. A ground-interface surface is positioned along at least a portion of the frame member. [0010] The present disclosure can also be viewed as providing an exercise apparatus. Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. The exercise apparatus has a hand grip. A frame member extends from the hand grip. At least one forearm support pad is connected to the frame member, wherein the at least one forearm support pad is contactable by a forearm of a user. A ground-interface surface is positioned along at least a portion of the frame member, wherein a force from a weight of the user in a position with the forearm thereof on the at least one forearm support pad is transferred from the forearm of the user, through the at least one forearm support pad, and through the ground-interface surface to a ground surface.

[0011] The present disclosure can also be viewed as providing an exercise apparatus. Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. The exercise apparatus has a hand grip. A frame member extends from the hand grip. At least one arm support pad is connected to the frame member. A ground-interface surface is positioned relative to a ground surface.

[0012] The present disclosure can also be viewed as providing methods of using an exercise apparatus. In this regard, one embodiment of such a method, among others, can be broadly

summarized by the following steps: the steps of: providing the exercise apparatus having a hand grip, a frame member associated with the hand grip, at least one forearm support pad connected to the frame member, and a ground-interface surface positioned along at least a portion of the frame member; and transferring a force from a weight of a user in a position with a forearm thereof on the at least one forearm support pad from the forearm of the user, through the at least one forearm support pad, and through the ground-interface surface to a ground surface.

[0013] Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.

[0015] FIG. **1** is a side view illustration of person in a front plank position, in accordance with the prior art.

[0016] FIG. **2** is a side view illustration of person in a side plank position, in accordance with the prior art.

[0017] FIG. **3** is a side-view illustration of an exercise apparatus, in accordance with a first exemplary embodiment of the present disclosure.

[0018] FIG. **4** is a side-view illustration of an exercise apparatus in use with a user **10**, in accordance with the first exemplary embodiment of the present disclosure.

[0019] FIG. **5** is a side-view illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0020] FIG. **6** is an isometric view illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0021] FIGS. **6.1-6.2** are each a rearward view of arm support pads.

[0022] FIG. **7** is an isometric view illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0023] FIG. **8** is a side-view illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0024] FIG. **9** is a rear-view illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0025] FIGS. **10-11** are top-view illustrations of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0026] FIG. **12** is a partially exploded side-view illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0027] FIG. **12.1** is an isometric illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

[0028] FIG. **12.2** is an isometric illustration of an exercise apparatus which uses a hinged element to connect left and right halves thereof, in accordance with the first exemplary embodiment of the present disclosure.

[0029] FIG. **12.3** is a rear-view illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.

- [0030] FIG. **12.4** is a profile illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.
- [0031] FIG. **12.5** is a bottom illustration of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.
- [0032] FIG. **12.6** is a top-down illustrations of an exercise apparatus, in accordance with the first exemplary embodiment of the present disclosure.
- [0033] FIG. **12.7** is a side-view illustration of a destabilization device compatible with, among other embodiments, the first exemplary embodiment of the present disclosure.
- [0034] FIG. **12.8** is a side-view illustration of an exercise apparatus in use with a user, in accordance with the first exemplary embodiment of the present disclosure.
- [0035] FIG. **13** is an isometric view illustration of an exercise apparatus, in accordance with a second exemplary embodiment of the present disclosure.
- [0036] FIG. **14** is an isometric view illustration of the exercise apparatus of FIG. **13**, in accordance with the second exemplary embodiment of the present disclosure.
- [0037] FIGS. **15-16** are side-view illustrations of the carriage and raised support of the exercise apparatus of FIGS. **13-14**, in accordance with the second exemplary embodiment of the present disclosure.
- [0038] FIG. **17** is an exploded view illustration of a lateral movement device for use with an exercise apparatus, in accordance with a third exemplary embodiment of the present disclosure.
- [0039] FIG. **18** is an isometric view illustration of an exercise apparatus, in accordance with a fourth exemplary embodiment of the present disclosure.
- [0040] FIG. **19** is a detailed isometric view illustration of an exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0041] FIG. **20** is an illustration of an exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0042] FIG. **20**A is another illustration, in rear-view, of the exercise apparatus, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0043] FIG. **20**B is a side view of an exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0044] FIG. **20**C is another isometric view of an exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0045] FIG. **20**D is an isometric view of the underside the exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0046] FIG. **20**E is an isometric view of the rear section of the exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0047] FIG. **20**F is a top-down view of the exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0048] FIG. **20**G is another side perspective of the exercise apparatus of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure.
- [0049] FIG. **20.1** is an isometric view illustration of the exercise apparatus, in accordance with the present disclosure.
- [0050] FIG. **20.2** is a side-view illustration of a destabilization device compatible with the present disclosure.
- [0051] FIG. **20.3** is an isometric view illustration of a variation of the exercise apparatus of FIG. **20.1**, in accordance with the present disclosure.
- [0052] FIG. **20.4** is a side-view illustration of the exercise apparatus of FIG. **20.1**, in accordance with the present disclosure.
- [0053] FIG. **20.5** is a top-down view illustration of a variation of the exercise apparatus, in accordance with the present disclosure.
- [0054] FIGS. 21-22 are side-view illustrations of an exercise apparatus, in accordance with the

sixth exemplary embodiment of the present disclosure.

[0055] FIGS. **23-24.1** are isometric view illustrations of an exercise apparatus, in accordance with the seventh exemplary embodiment of the present disclosure.

[0056] FIG. **25** is a flowchart illustrating a method of using an exercise apparatus, in accordance with a fifth exemplary embodiment of the disclosure.

DETAILED DESCRIPTION

[0057] FIG. **3** is a side-view illustration of an exercise apparatus **110**, in accordance with a first exemplary embodiment of the present disclosure. The exercise apparatus **110**, which may be referred to herein as 'apparatus **110**' includes a hand grip **120**. A frame member **130** extends from the hand grip **120**. At least one arm support pad **140** is connected to the frame member **130**, wherein a distance between the hand grip **120** and the at least one arm support pad **140** is adjustable. A ground-interface surface **150** is positioned along at least a portion of the frame member **130**.

[0058] The apparatus **110** may be used to assist or aid in plank exercises. Accordingly, when the apparatus **110** is used, the user may be positioned in the conventional plank position, as is shown in FIG. **1**, but with his or her hands grasping the hand grip **120** and his or her forearms in contact with the at least one arm support pad **140**. The apparatus **110** may offer significant benefits to users, as detailed throughout this disclosure. Further, it is noted that the apparatus **110** may include many variations in structure, components, and function, all of which are considered within the scope of the present disclosure.

[0059] Relative to FIG. 3, the frame member 130 may be a bifurcated frame member having a first leg 132 and a second leg 134. Each of the first and second legs 132, 134 may be positioned on opposing sides of the hand grip 120 such that the first and second legs 132, 134 is connected between the hand grip 120 and the at least one arm support pad 140. Further, it may be common for the at least one arm support pad 140 to include a first arm support pad 142 and a second arm support pad 144, each connected to one of the first and second legs 132, 134 of the frame member 130. Other designs of the apparatus 110 may include a single frame member 130 which is positioned substantially central to the hand grip 120 and/or the at least one arm support pad 140, as is discussed relative to FIG. 23-24.

[0060] As is shown in FIG. **3**, the hand grip **120** may be integrally formed within a forward section of the bifurcated frame member 130, wherein each of the first and second legs 132, 134 extend from opposing sides of the hand grip **120**, respectively. The hand grip **120** may include an ergonomic structure that can be grasped by the user's hand when using the apparatus **110**. The hand grip **120** may include, for example, a substantially cylindrical structure which is covered, partially or fully, with padding, foam, texturized material, or another material to enhance ease of use of the hand grips **120**. The hand grip **120** may also have a position that provides fully ergonomic use of the apparatus **110**. These ergonomic positions may include the hand grip **120** being positioned slightly below a plane of the user's arm when resting on the arm support pad 140, such that the user's wrist can bend slightly downward, and/or the hand grip 120 being positioned at an angle, relative to a vertical position, inwardly towards a center of the apparatus **110**. Other orientations of the hand grips may also be used to enhance ergonomic use of the apparatus **110**. The first and second legs **132**, **134** of the frame member **130** may extend from the hand grip **120** in a variety of configurations, such as a straight extension, as shown in FIG. 3. Commonly, the first and second legs **132**, **134** of the frame member **130** may include a tubular member which has a rigid, durable construction capable of supporting the bodyweight of the user.

[0061] The first and second arm support pads **142**, **144** may include structures which are positioned on or carried by the first and second legs **132**, **134**, such that the first and second arm support pads **142**, **144** can be positioned along a length of the first and second legs **132**, **134**. Commonly, the first and second arm support pads **142**, **144** include a rigid or semi-rigid structure having a curvilinear shape which matches or substantially matches a human forearm shape. The curvilinear shape may

be characterized as a curvilinear arm contact surface which can substantially conform to an outer radial surface of the forearm of the user when the user is positioned with his or her forearm on the arm support pad. The first and second arm support pads **142**, **144** may include padding to increase comfort of the user when his or her bodyweight is placed on the first and second arm support pads **142**, **144**.

[0062] When in use, the apparatus **110** may be positioned on a ground surface, which may include any type of athletic supporting surface, such as pavement, a grassy field, a gym floor, or others. The apparatus **110** may include a number of points which make contact with the ground surface. Primarily, the ground-interface surface **150** may be used to interface the contact between the apparatus **110** and the ground surface, and other points along the apparatus **110** may aid or assist in supporting the apparatus **110** on the ground. The ground-interface surface **150** may be any surface or surfaces along a bottom edge of the frame member **130** or other structures extending from the frame member **130**.

[0063] FIG. **4** is a side-view illustration of an exercise apparatus **110** in use with a user **10**, in accordance with the first exemplary embodiment of the present disclosure. The user **10** in FIG. **4** is positioned in a plank exercise position on the apparatus **110**, whereby the user is grasping the hand grip **120** and his or her forearms positioned on the first and second arm support pads **142**, **144**. The position of the user's spaced forearms and less-spaced hands may form a triangular shape, which may correspond to a heightened ergonomic position. In this position, the user's bodyweight is being transferred through his or her feet to a surface of the ground **12** and through his or her upper arms and into the apparatus **110**. Specific to the transfer of forces through the user's arms, unlike conventional devices which require the force to be transferred directly through the localized area of the elbow, the apparatus **110** allows the force to be distributed across the user's forearms and into the first and second arm support pads **142**, **144**, as well as through the user's hands to the hand grip **120**. This distribution of force may lessen the chance of injury or discomfort to the user. Furthermore, the user may use his or her hands to stabilize the plank position on the apparatus **110**, in contrast to a plank exercise without a hand grip.

[0064] Relative to FIGS. **3-4**, the apparatus **110** may have the ground-interface surface **150** positioned on a destabilizing device **160**. The destabilizing device **160** may be removably connectable to the frame member 130, or one or both of the first and second legs 132, 134 by inserting it into a slot thereon or unscrewing it therefrom. The destabilizing device **160** may facilitate a destabilizing movement of the frame member **130** controllable by the user. The destabilizing movement may include, for example, a pivoting of the frame member **130** about a pivot axis located within the destabilizing device **160**. This pivoting movement may be achieved by providing a ground-interface surface 150 which is positioned along the curved surface of the destabilization device **160**. In this example, the ability of the apparatus **110** to pivot may allow the user to achieve an enhanced exercise, since destabilization utilizes additional muscles within the user's torso and upper body. The destabilizing device **160** can be moved or positioned along the length of the first and second legs **132**, **134** to connect thereto at different attachment points. Varying the point of attachment of the destabilization device **160** to the frame member **130** may vary the degree of instability or destabilization of the apparatus **110**, which can be used to effect different exercises on the apparatus **110**. It is also noted that the destabilization device **160** may include a variety of different shapes and/or curvatures to effect different levels of instability, such as, for example, shortened curvatures, enlarged curvatures, constant radii curvatures, or variable radii curvatures, to name a few.

[0065] It is important to note that the destabilized movement of the apparatus **110** may include rotational movement about one or more axes. In some cases, such as shown in FIGS. **3-4**, the rotational movement may be limited to movement in a single degree of freedom, e.g., rotational movement about an axis of curvature of the curved surface of the destabilizing device **160**. This single degree of freedom movement may allow the apparatus **110** to pivot or rock about the

destabilizing device **160**, which provides an enhanced plank exercise experience. A variety of other destabilizing devices **160** can be employed with the apparatus **110**, as are discussed relative to other figures.

[0066] FIG. 5 is a side-view illustration of an exercise apparatus 110, in accordance with the first exemplary embodiment of the present disclosure. One of the benefits of the apparatus 110 is its ability to be easily adjusted to users of different body sizes. One way of achieving this adjustability is by adjusting a distance between the hand grip 120 and the at least one arm support pad 140 by moving the at least one arm support pad 140 along a length of the frame member 130. There may be a number of ways to achieve this adjustability, one of which includes utilizing a plurality of holes 136 positioned at spaced intervals within the frame member 130, or within each of the first and second legs 132, 134 of the frame member 130. These holes 136 may receive an extended connector 146 which is positioned on the at least one arm support pad 140, or on both of the first and second arm support pads 142, 144. Similarly, the destabilizing device 160 may be adjustable between positions along the length of the frame member 130 to vary a point of controlled, destabilized movement. The destabilizing device 160 may incorporate the same or similar extended connector 146 as the arm support pads 140.

[0067] The extended connector **146** may include, for example, a male fastener which can be positioned within the hole **136** to locate the arm support pad **140** substantially above or proximate to the hole **136**. By varying the positioning of the extended connector **146** within the plurality of holes **136**, the user can select which positioning of the arm support pad **140** is desired. The extended connector **146** may include features to retain it within the hole **136**, such as a biased or snap connector. One type of extended connector **146** may utilize a tab and slot system, where when the extended connector **146** is moved into the hole, a tab on the interior sidewall of the hole **136** is received within a shortened slot in the extended connector **146**. Once the extended connector **146** achieves a fully-inserted position, the tab may be positioned beyond the slot where the extended connector **146** may be rotated to lock the extended connector **146** within the hole **136**. [0068] FIG. **6** is an isometric view illustration of an exercise apparatus **110**, in accordance with the first exemplary embodiment of the present disclosure. Specifically, FIG. **6** depicts the hand grips 120 formed integral with a bifurcated frame member 130 having first and second legs 132, 134, which rest in contact with the ground surface. In some embodiments, the hand grips **120** may also be constructed of separate parts made of metal, plastic, rubber or other similar materials. Each of the first and second legs 132, 134 may have a specific shape which allows for more adjustability of the apparatus **110**. As is shown, each of the first and second legs **132**, **134** may include holes **136** which are positioned for arm support pad attachment along various portions of the first and second legs **132**, **134**. These various portions of the first and second legs **132**, **134** may include straight and angularly positioned lengths, such that the relative distance between the first leg 132 and the second leg 134 can be variable, dependent on which location along the first and second leg 132, **134** is selected. As is further shown in FIG. **6**, the relative distance between the first leg **132** to the second leg **134** can be variable along one section of the frame member **130**, e.g., the angularlypositioned, middle section, and constant along a different section of the frame member 130, e.g., the section proximate to a terminating end of each of the first and second legs **132**, **134**. Any combination of variable and/or constant distances may be used.

[0069] FIGS. **6.1-6.2** each presents an isometric, rearward view of various embodiments of the first and second arm support pads **142**, **144** compatible with the apparatus **110** of FIG. **6**. Each of the first and second arm support pads **142**, **144** have a soft resiliently deformable surface. Relative to FIG. **6.1**, the first and second arm support pads **142**, **144** feature an attachment peg **175** extending from rigid pad structural member **188**. Due to the round shape of attachment peg **175**, the first and second arm support pads **142**, **144** shown in FIG. **6.1** are rotatable. FIG. **6.2** illustrates the first and second arm support pads **142**, **144** with a concave female shape on an underside thereof, allowing it to matably connect with the first and second legs **132**, **134**. In some embodiments, the concavity on

the underside of the first and second arm support pads **142**, **144** may itself be formed of soft, resiliently material that still allows the first and second arm support pads **142**, **144** to connect with the first and second legs **132**, **134**.

[0070] FIG. 7 is an isometric view illustration of an exercise apparatus 110, in accordance with the first exemplary embodiment of the present disclosure. FIG. 7 illustrates the apparatus 110 having a bifurcated frame member 130 with first and second legs 132, 134 that are integrally connected to the hand grip 120. The arm support pad 140 includes first and second arm support pads 142, 144 which are positioned on the each of the first and second legs 132, 134, respectively. Instead of using holes and extended connectors, the first and second arm support pads 142, 144 may utilize a strap 148 which is connected to each of the first and second arm support pads 142, 144 and positioned around each of the first and second legs 132, 134, respectively. The strap 148 may be movable along the length, or a portion of the length, of the first and second legs 132, 134 to adjust the position of the first and second arm support pads 142, 144. The strap 148 may include a variety of components to enhance usability, include a high-friction material coating an exterior of the strap 148. The exterior of the strap 148 surface having the high-friction material may act as the ground-interface surface 150 to retain the apparatus 110 in place during use.

[0071] FIG. **8** is a side-view illustration of an exercise apparatus **110**, in accordance with the first exemplary embodiment of the present disclosure. The exercise apparatus **110** includes the hand grip **120** and a bifurcated frame member **130** extending from the hand grip **120**, wherein first and second legs **132**, **134** are connected to either side of the hand grip **120**. The arm support pad **140** includes first and second arm support pads **142**, **144** which are each connected to one of the first and second legs **132**, **134**. A distance between the hand grip **120** and the first and second arm support pads **142**, **144** is adjustable. A ground-interface surface **150** is positioned along at least a portion of the frame member **130**.

[0072] The apparatus **110** of FIG. **8** includes some variations relative to FIGS. **3-7**. For example, the apparatus **110** of FIG. **8** may include side-mounted holes **136** positioned along each of the first and second legs **132**, **134**. The first and second arm support pads **142**, **144** may be carried on a hub **170** which interfaces between the first and second legs **132**, **134** and the first and second arm support pads **142**, **144**, respectively. The hub **170** may be connected to the destabilizing device **160** and include one or more extended connectors (not shown) which can be engaged with one of the plurality of holes **136** to adjust the location of the arm support pads **140** along the frame member **130**. To control engagement of the extended connectors with the holes **136**, an actuatable engagement device **172** may be used, where actuation of the actuatable engagement device **172** disengages the extended connector from the hole **136** to permit the arm support pad **140** to move along at least a portion of the length of the frame member **130**. The actuatable engagement device **172** may include a button or other feature which can be depressed to disengage the extended connector from the hole **136**. Various designs may be used to facilitate the internal functioning of the actuatable engagement device **172**.

[0073] It is further noted that a variety of mechanical interfaces may be used to facilitate the adjustment or sliding of the first and second arm support pads **142**, **144** on the first and second legs **132**, **134**, respectively. For example, the first and second legs **132**, **134** may have a substantially cylindrical shape, a partially cylindrical shape, or a non-cylindrical shape such as a square shape, e.g., when square tubing members are used to form the first and second legs **132**, **134**. Any cross-sectional shape of the first and second legs **132**, **134** may be utilized and the hub **170**, or another component to coordinate adjustment of the first and second arm support pads **142**, **144**, may have a corresponding shape. In another example, the hub **170** may be positioned only on an upper half of each of the first and second legs **132**, **134**, as opposed to fully encircling the first and second legs **132**, **134**. It is also possible to use any number or type of grooves, ridges, guiding features, or other structural designs that facilitate successful movement of the first and second arm support pads **142**, **144** on the first and second legs **132**, **134**, all of which are considered to be within the scope of the

present disclosure. FIG. **9** is a rear-view illustration of an exercise apparatus **110**, in accordance with the first exemplary embodiment of the present disclosure. The hub **170** may also include a lateral movement device 174 which supports the first and second arm support pads 142, 144 and controls a lateral movement thereof. The lateral movement of the first and second arm support pads **142**, **144**, as depicted in FIGS. **8-9**, may be along a lateral direction which is oriented substantially perpendicular to a length of the frame member **130** and a length of the first and second legs **132**, **134**. Thus, while the plurality of holes **136** and the extended connector, or similarly functioning device, may allow adjustability of the first and second arm support pads 142, 144 along the length of the first and second legs 132, 134, the lateral movement device 174 may control movement of the first and second arm support pads **142**, **144** in a different direction. Lateral movement of the first and second arm support pads **142**, **144** may facilitate the varied shoulder widths of users, allowing the apparatus **110** to properly match each user's body size. While the lateral movement device **174** may include a variety of mechanical structures to facilitate lateral movement, the lateral movement device **174** of FIG. **9** may include a plurality of holes **176** spaced at intervals along the length of the lateral movement device **174**. A portion of the hub **170** may extend upwards into the lateral movement device **174** and a biasable pin or other fastener may connect the lateral movement device **174** to the hub **170**.

[0074] FIGS. **10-11** are top-view illustrations of an exercise apparatus **110**, in accordance with the first exemplary embodiment of the present disclosure. While FIG. **10** illustrates the first and second arm support pads **142**, **144** in a straight-forward orientation, it is possible for the first and second arm support pads **142**, **144** to be rotated to achieve an inward-facing orientation, as shown in FIG. **11**. Rotation of the first and second arm support pads **142**, **144** may be about a substantially vertical axis positioned through each of the first and second arm support pads **142**, **144** may be limited to a specific degree of movement, such as a 90 degree movement. This 90 degree movement of each of the first and second arm support pads **142**, **144** may allow the separate first and second arm support pads **142**, **144** to abut or substantially abut one another to provide, in effect, a combined arm support pad **140**. The combined arm support pad **140** may be used primarily for users in a side plank position, as shown in FIG. **2**, where the user's forearm can be positioned in the combined arm support pad **140** to provide additional support during the exercise.

[0075] While a 90 degree rotation of the first and second arm support pads **142**, **144** may be common to form the combined arm support pad **140**, a rotation of less than 90 degrees may also have benefits. For example, rotation of the first and second arm support pads **142**, **144** may also help orient the user's wrist at a comfortable trajectory to the hand grips **120**, thereby adjusting the first and second arm support pads **142**, **144** for users with different arm or body sizes. The adjustability of the first and second arm support pads **142**, **144** allows the user to achieve a comfortable trajectory to the hand grips **120**, regardless of their body size or personal trajectory preference.

[0076] FIG. 12 is a partially exploded side-view illustration of an exercise apparatus 110, in accordance with the first exemplary embodiment of the present disclosure. As is shown in FIG. 12, the first and second arm support pads 142, 144 may attach to the first and second legs 132, 134 using a post 180 which can be positioned inside each of the first and second legs 132, 134. The post 180 has an outer diameter that is smaller than an inner diameter of the first and second legs 132, 134. The hub 170 supporting the first and second arm support pads 142, 144 may include an interior cavity 182 which can receive the distal end of the first and second legs 132, 134 when the post 180 of each of the first and second arm support pads 142, 144 is positioned in the first and second legs 132, 134, respectively.

[0077] The post **180** may further include a groove **184** therein which runs along a length of the post **180**. The groove **184** may engage with a fastener **186**, such as a blunt-tip screw, which can be positioned through one of the holes **136** in the first and second legs **132**, **134** (in FIG. **12**, the

fastener **186** is shown engaged with the groove **184**). When the post **180** is positioned within the interior of the leg **132**, for example, the post **180** may be moved therein with the end of the fastener **186** engaged with the groove **184**. A tip of the post **180** may have a stop to prevent the fastener **186** from exiting the groove **184**, thereby preventing disconnection of the first and second arm support pads **142**, **144** from the first and second legs **132**, **134**, respectively.

[0078] As shown in FIG. **12.1**, the first and second arm support pads **142**, **144** may be carried on a hub **170**, sometimes referred to herein as a pad support member, that may include an attachment interface member for the first and second legs **132**, **134**, respectively.

[0079] In some embodiments, the hub **170** may include a rotatable interface to alter the orientation the first and second arm support pads **142**, **144** relative to the hand grips **120**. The first and second arm support pads **142**, **144** include arm support portions **143** which generally provide a usercontact surface positioned anteriorly to a user's arm during use. In the preferred embodiment, apparatus **110** is arranged that the user-contact surface of arm support portions **143** are parallel or substantially parallel with a flat ground surface. As shown in FIG. **12.1**, the first and second legs **132**, **134** are angled in slightly toward one another, in an arrangement that allows a user to vary the lateral distance between first and second arm support pads **142**, **144** by moving either of them along a length of frame member **130**. In another embodiment, however, the first and second legs **132**, **134** may be arranged substantially parallel to one another. In the preferred embodiment, the spacing between the first and second legs **132**, **134**, or between the first and second arm support pads **142**, **144**, or both, generally corresponds with the spacing of a typical user's shoulders and allows the user to assume a comfortable position during planking exercises.

[0080] As further illustrated in FIG. **12.1**, in the preferred embodiment, hub **170** is composed of plastic or similar material. In one embodiment, the hub **170** may have openings that allow users to grasp around the edges of the first and second arm support pads their fingers around the edges of the first and second arm support pads **142**, **144** while doing, for example, push-ups on them. In some embodiments, it is anticipated that allowing additional ways to adjust the first and second arm support pads **142**, **144**, such as rotational adjustment or lateral adjustment relative to one another, will be beneficial to users. For lateral adjustments, for example, a lateral adjustment feature utilizing a version of hub **170** with a moveably attached upper portion that is slidable with respect to a lower portion could be employed. One such lateral adjustment feature might be similar to the one included in the hub **170** of FIG. **8-9**. Additionally, as will be noted, a lateral connection member **125** may be positioned between a left and right half of the apparatus **110**. Variations of the lateral connection member 125 could be used in embodiments wherein the lateral connection member **125** is adjustable in length or contains a hinged element, allowing the distance between said left and right halves of the apparatus **110** to be varied by extending said lateral connection member 125 or rotating the left and right legs 132, 134 around a vertical axis thereof. For example, FIG. **12.2** illustrates a top-down view of an embodiment of the apparatus **110** with a hinged version of the lateral connection member 125, facilitating radial adjustment of the left and right legs 132, **134** around said hinged element's vertical axis. Such hinged element can be used to alter the angulation of the left and right legs **132**, **134** relative to one another, from angled inward toward one another, to parallel to one another, to a diverging attitude manually without tooling so as to alter the lateral distance between the pads. In the embodiment of the apparatus **110** shown in FIG. **12.2**, left and right hinged elements **167** in the lateral connection member **125** rotate about a rotational axis member **168** positioned are removably connectable to one another by a small amount of user-supplied force without tools allowing them to unsnap from one another. Detaching the left and right hinged elements **167** provide increased user options, allowing the left and right halves of the apparatus **110** to be severable from each other in order to serve as completely independent arm supports capable of resting in stable contact with the ground surface. [0081] The hub **170** may be connected to one or more extended connectors, such as extended connector member 181, which can engage with left and right legs 132, 134. As shown in FIG. 12.1,

the extended connector member **181** includes holes **136** to allow adjustment of the arm support pads **142**, **144**, but could just as easily have fewer holes or no holes, relying instead on flexible clamp members **183** (referenced elsewhere herein). In another embodiment, the connector member **181** may be a separate tube or similar structure attached to the left and right arm support pads, respective, and the holes **136** may be situated on such separate tube or similar structure or on the left and right legs 132, 134. To control engagement with the holes 136, the left and right arm support pads can be repositioned, either by sliding them or removing them from the left and right legs **132**, **134** and repositioning them at the desired position. The desired position may held by an actuatable engagement device 172, which can be spring-activated or a protrusion sufficient to be inserted in one of the holes **136**. The actuatable engagement device **172** may include a button or other feature which can be depressed to help disengage the extended connector from the hole **136**. Various designs may be used to facilitate the internal functioning of the actuatable engagement device **172**. In the preferred embodiment, as shown in FIG. **12.1**, the actuatable engagement device **172** is a pop-up connector. In another embodiment, the left and right legs may be adjustable in a telescopic manner, enjoying any locking device that is known in the field of telescoping tubes. At the same time, it should be noted, that a version of apparatus 11, as with that of all of the many various embodiments in the present disclosure, may be non-adjustable with respect to the left and right arm support pads, such that their relative distance to the hand grips **120** and/or to one another, are invariable and that the positioning of the grips **120** may also be invariable. Likewise, various variations of embodiments disclosed in the present disclosure may make use of a single forearm pad sized to accommodate both forearms of the user. And, in addition, in various embodiments, the frame, each arm support member and hand grips (or any combination of any of the foregoing) may be of one, unitary integral construction. For example, each arm support member, including any attachment structure, may be made entirely of soft, padded material, such as, for example, foam rubber.

[0082] The hand grips **120**, which may be composed of plastic, rubber or other similar material and, in some embodiments, may have a non-symmetrical shape or other features that may be reoriented by the user into a desired position by rotating the hand grips **120** about their mounting sites. In the preferred embodiment, the hand grips 120 are mounted on an upturned portion of the left and right legs 132, 134. In some embodiments, the arcuate structure of frame 130 may be composed of separate segments that join together and can be disassembled for flatter storage. [0083] It is further noted that a variety of mechanical interfaces may be used to facilitate the adjustment the first and second arm support pads 142, 144. For example, the first and second legs 132, 134 may have a substantially cylindrical shape, a partially cylindrical shape, or a noncylindrical shape such as a square shape, e.g., when square tubing members are used to form the first and second legs 132, 134. Any cross-sectional shape of the first and second legs 132, 134 may be utilized and the hub 170, or another component to coordinate adjustment of the first and second arm support pads **142**, **144**, may have a corresponding shape. It is also possible to use any number or type of grooves, ridges, guiding features, or other structural designs that facilitate successful movement of the first and second arm support pads 142, 144, all of which are considered to be within the scope of the present disclosure. In another example, the hub **170** may be positioned on the first and second legs **132**, **134** in such a manner that it does not fully encircle the first and second legs **132**, **134**. Such arrangement allows the frame member **130** to rest closer to the ground than it otherwise would, and facilitates repositioning the left and right arm support pads by removably attaching them to the left and right legs **132**, **134**.

[0084] FIG. **12.3** is a rear-view illustration of an exercise apparatus **110**, in accordance with the first exemplary embodiment of the present disclosure. FIG. **12.4** is a profile illustration of an exercise apparatus **110**, in accordance with the first exemplary embodiment of the present disclosure. FIG. **12.5** is a bottom illustration of an exercise apparatus **110**, in accordance with the first exemplary embodiment of the present disclosure. (Numbered features depicted in FIGS. **12.3**-

12.5 have the same description applicable to those features with the same numbers described relative to FIG. **12.1** above.)

[0085] Relative to FIG. 12.5, the lower surface of the hub 170 includes a tube receptacle member 173 wherein the left and right legs 132, 134, as the case may be, is removably secured. The tube receptacle 173 is lined with flexible clamp members 183, which in the preferred embodiment are arcuate plastic rib members formed in the sides of the tube receptacle 173. The tube receptacle 173 and the 18181 are appropriately shaped, sufficiently flexible and resiliently deformable so as to receive the left and right legs 132, 134 when the hub 170 is pressed down thereon and adequately secure it in therein. As a result, the hub 170 can be slidably moved and lifted and up and replaced on the left and right legs 132, 134, as the case may be, in the desired position by the user by hand and without tooling. Likewise, in the preferred embodiment, no additional fasteners other than the flexible clamp members 183 are needed to secure the hub 170 to the frame member 130. One benefit of this is, in the preferred embodiment, is that the frame member 130 is able to be in direct communication with the ground surface or in very close proximity thereto (e.g., an inch or less). Further illustrated in FIG. 12.5 are anti-skid members 197, preferably composed of rubber, vinyl, polyurethane, plastic or similar material, facilitating stable positioning of the apparatus 110 on the ground surface.

[0086] In addition, the first and second legs **132**, **134** of the apparatus **110** may have a rotatable connection **127** to the frame member **130** as shown in FIG. **12.6**, allowing further adjustments. Likewise, the first and second arm support pads **142**, **144** may have a rotatable connection structure **128** to the frame member **130**. Of course, many adjustments mechanisms described in the present disclosure may be combined or omitted from the apparatus **110** in order to provide a satisfactory user experience.

[0087] As shown in FIG. 12.7, a destabilizing apparatus 101 similar to destabilizing device 460 (as described elsewhere herein) may be connected to the apparatus 110. For example, in the embodiment shown in FIG. 12.7, a cross-bar 135 mounted perpendicular to the first and second legs 132, 134 of the apparatus 110 of FIG. 12.1 allows for fasteners to be positioned at openings 177 to mount the destabilizing apparatus 101 to the first and second legs 132, 134. The destabilization device 101 may include a spherical structural member or, as shown in FIG. 12.7, a semispherical structural member 102, which has a lowered edge that is positioned to contact a ground surface. The destabilization device 101 may also enclose a spherical structural member in a casing to provide a ball-and-joint-arrangement. The cross-bar 135 may be removably detachable as by, for example, screwing it and unscrewing it from the apparatus 110. Further, a destabilization device similar to destabilization device 160 shown, among other places, in FIG. 9.

[0088] FIG. **12.8** is a side-view illustration of an exercise apparatus in use with a user **11**, in accordance with the first exemplary embodiment of the present disclosure.

[0089] FIG. 13 is an isometric view illustration of an exercise apparatus 210, in accordance with a second exemplary embodiment of the present disclosure. The exercise apparatus 210, which may be referred to herein as 'apparatus 210' may be substantially similar to the apparatus 110 described with respect to FIGS. 3-12, and may include any of the features, components, or functions discussed relative to FIGS. 3-12. The apparatus 210 of FIG. 13 includes a hand grip 220. A frame member 230 extends from the hand grip 220. At least one arm support pad 240 is connected to the frame member 230, wherein a distance between the hand grip 220 and the at least one arm support pad 240 is adjustable. A ground-interface surface 250 is positioned along at least a portion of the frame member 230.

[0090] FIG. **14** is an isometric view illustration of the exercise apparatus **210** of FIG. **13**, in accordance with the second exemplary embodiment of the present disclosure. Relative to FIGS. **13-14**, the apparatus **210** includes a destabilization device **260** which is positioned substantially underneath the arm support pad **240** (or each arm support pad present). The destabilization device **260** may function in the same manner as described in FIGS. **3-5**, with the added function that the

destabilization device **260** shown in FIGS. **13-14** may be movable between an extended position, shown in FIG. **14**, where the ground-interface surface **250** positioned on the curved surface of the destabilization device **260** is contactable to a ground surface and a retracted position, shown in FIG. **13**, where the ground-interface surface **250** positioned on the curved surface of the destabilization device **260** is removed from a contactable position with the ground surface. To achieve the movement between the extended and retracted positions, the destabilization device **260** may pivot about an axis, thereby allowing a specific surface or the destabilization device **260** may be oriented towards a ground surface. In FIG. **13**, a flat edge of the destabilization device **260** may be oriented downwards (towards the ground surface) and in FIG. **14**, the curved surface may be oriented downwards. When a user desires to use the apparatus **210** without destabilization, the user may select the configuration shown in FIG. **13**. When the user desires an enhanced exercise by destabilizing the apparatus **210** with the curved surface of the destabilization device **260**, the user would position the destabilization device **260** as shown in FIG. **14**. It is noted that the foot pads **228** positioned along a front of the frame member **230** may act as ground-support devices at any point of use of the apparatus **210**.

[0091] Relative to FIGS. **13-14** further, it is noted that the arm support pads **240** are also able to rotate, in the same manner as described relative to FIGS. **10-11**, to provide arm trajectory user-adjustment of the apparatus **210** or to convert the apparatus **210** from a front plank orientation to a side plank orientation.

[0092] Relative to FIGS. 13-14, the apparatus 210 includes a hand grip 220 that is adjustable along the length of the frame member 230, whereby a distance between the hand grip 220 and the arm support pad 240 can be adjusted. The hand grip 220 may include a carriage 222 which is positioned about the frame member 230, or a portion thereof, and can be moved along the length of the frame member 230. The apparatus 210 may also include other devices for permitting movement of the hand grip 220 along the frame member 230. The carriage 222 may include a raised support 224 which receives an end of the hand grip 220 therein, such that the hand grip 220 can be rotated relative to the raised support 224. Accordingly, the hand grip 220 may be rotated between a lowered position, as shown in FIG. 13, and a raised position, as shown in FIG. 14. In the lowered position, the hand grip 220 may be stowed for convenient storage of the apparatus 210, whereas the raised position of the hand grip 220 may be a position where a user is actively using the apparatus 210. In some variations, rotating the hand grip 220 may provide benefits in the ergonomic use of the apparatus 210, not just to make the apparatus 210 more convenient for storage. For example, a user may rotate the hand grip 220 into a more comfortable angle.

[0093] It is also noted that the movable hand grip **220** may include two separate halves which operate independently of one another or which can be operated together. Other variations of moveable hand grips **220** may include hand grips **220** with male extenders that allow the hand grips **220** to connect or pop in to the frame member **230** along a length of the frame member **230**, to allow adjustment of the positioning of the hand grips **220**.

[0094] FIGS. 15-16 are side-view illustrations of the carriage 222 and raised support 224 of the exercise apparatus 210 of FIGS. 13-14, in accordance with the second exemplary embodiment of the present disclosure. Relative to FIGS. 13-16, rotation of the hand grip 220 may be controlled, at least in part, with a frictional cam 226 which is connected to the hand grip 220 at a lower part thereof and is positioned to contact the frame member 230. The frictional cam 226 may include a rubberized structure which is rotatable opposite the hand grip 220. As is shown in FIGS. 15-16, the frictional cam 226 may be positioned proximate to the rotatable joint on which the hand grip 220 can rotate, such that when the hand grip 220 is in a fully or partially lowered position (FIGS. 13 and 15), the frictional cam 226 is free from contact. When the hand grip 220 is moved to the raised position (FIGS. 14 and 16), the frictional cam 226 may contact the frame member 230 through an aperture 227 within the carriage 222. The contact between the frictional cam 226 and the frame member 230 through the aperture 227 may be sufficient to retain the hand grip 220 in the raised

position. Further, this contact may also be sufficient to limit the movement of the carriage **222** along the frame member **230**.

[0095] FIG. 17 is an exploded view illustration of a lateral movement device 374 for use with an exercise apparatus, in accordance with a third exemplary embodiment of the present disclosure. The lateral movement device 374 of the third exemplary embodiment may be used with the apparatus as described relative to any figure herein to achieve the same lateral movement as described relative to FIGS. 8-9. The lateral movement device 374 may facilitate lateral movement of the arm support pad 340 using a biasable track system which includes a biased engagement device 390 which is movable with a track 392. The track 392 may be mounted to a frame member or leg of the apparatus. When assembled, the arm support pad 340 may be affixed to hub 370 with biased engagement device 390 positioned in contact below it. A transfer housing 394 and stop 396 are positioned internal of engagement protrusions 398 of the biased engagement device 390. The stop 396 may connect to the underside of the arm support pad 340 with one or more fasteners and may facilitate rotation of the arm support pad 340 by acting as a rotatable interface, such as a Lazy Susan-type device, for the arm support pad 340. This rotation of the arm support pad 340 can be combined with the other mechanics of the lateral movement device 374.

[0096] In use, teeth on the engagement protrusions **398** may be engaged with teeth on the track **392** where there is weight applied to the arm support pad **340**. When weight is removed from the arm support pad **340**, the stop **396** may bias the transfer housing **394** upwards, thereby allowing the engaged protrusions **398** to retract a sufficient distance to disengage the teeth thereof from the teeth of the track **392**. In this function, the user of an exercise device may select the appropriate lateral position of the arm support pad **340** and then automatically lock the lateral position in place when he or she assumes a plank position on the apparatus.

[0097] FIG. 18 is an isometric view illustration of an exercise apparatus 410, in accordance with a fourth exemplary embodiment of the present disclosure. The exercise apparatus 410, which may be referred to herein as 'apparatus 410' may be substantially similar to the other apparatuses described within this disclosure and may include any of the features, components, or functions discussed relative to any other figure herein. The apparatus 410 of FIG. 18 includes a hand grip 420. A frame member 430 extends from the hand grip 420. At least one arm support pad 440 is connected to the frame member 430, wherein a distance between the hand grip 420 and the at least one arm support pad 440 is adjustable. A ground-interface surface 450 is positioned along at least a portion of the frame member 430.

[0098] The apparatus **410** of FIG. **18** includes a hand grip **420** configuration formed by two distinct pyramidal members positioned on portions of the frame member **430**. The hand grips **420**, with their pyramidal form, include annularly ribbed, tubular sections that are sleeved over the inclined sides of the frame member **430**, providing a tactile interface for gripping the frame member. The ribbed texture complements the inherently grippable sides of the frame member **430**, whose inverted U-shape is itself characterized by its grippability, even in the absence of the pyramidal members. Additionally, the sloped outer segments and base of the pyramidal hand grips 420 offer alternative gripping surfaces, further improving the user's handling of the apparatus **410**. [0099] Also relative to FIG. **18**, the hand grips **420** are adjustable, such that the distance between the hand grips **420** and the at least one arm support pad **440** can be modified depending on a user's body size. The hand grip **420** may be movable by repositioning each of the hand grips **420** until they are locked within one of a plurality of preselected positions located at spaced intervals on the frame member **430**. Specifically, as is shown in FIG. **18**, the frame member **430** may include cavities **432** on a surface thereof which engage with a locking structure on the hand grip **420** to lock the hand grip **420** in place on the frame member **430**. The locked nature of the hand grip **420** to the frame member **430** may be altered when a sufficient force is applied to the hand grip **420**, such that the locking structure of the hand grip **420** is disengaged from the cavity on the frame member **430**. In one of many possible variations, as previously noted, the moveable hand grips **420**

may include male ridges or extenders that can be connected to or popped into the frame member **430** along the length of the frame member **430** to provide adjustment of the hand grips **420**. When separate hand grips **420** are used, as is shown in FIG. **18**, the hand grips **420** themselves may be able to be adjusted laterally on tracks or with holes, thereby allowing a distance between the hand grips **420** to be adjusted.

[0100] FIG. **19** is a detailed isometric view illustration of an exercise apparatus **410** of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure. Relative to FIGS. 18-**19**, the apparatus **410** may have arm support pads **440** with underlying support structure **445** positioned on a unitary support bar **442**, including engagement features (**470***a*, **470***b*, FIG. **20**). In one embodiment, the longitudinally slotted unitary support bar **442** allows the arm support pads **440** to be adjusted along its length. A center arm support pad **441** occupies a generally central position relative to the sides of the frame member **430**. The center arm support pad **441** may be used alone or in combination with the left and right arm support pads **440** by moving the left and right arm support pads **440** toward the center, and in some arrangements the same arm support pads **440** may also be used to support the user's hands during a push-up plank or standard pushups. Accordingly, the arm support pads **440** may be positioned between an extended position on the unitary support bar **442**, as is shown in FIG. **19**, and a retracted position, as shown in FIG. **18**. FIG. **18** further illustrates an adjustment gauge **480** that may accompany the arm support pads **440**, providing progressively larger or smaller geometric shapes with directional markers. [0101] FIG. **20** is a rear-view illustration of an exercise apparatus **410** of FIG. **18**, in accordance with the fourth exemplary embodiment of the present disclosure. The apparatus **410** as shown in FIG. **20** illustrates a destabilization device **460** which is positioned under a substantially center point of the apparatus **410**. The destabilization device **460** may include a semispherical structure which has a lowered edge that is positioned to contact a ground surface. In one example, the destabilization device **460** may include a semispherical structure formed from plastic, rubber, or similar material, which can support the weight of the apparatus **410** with a user on it. The destabilization device **460** may function as previously described, with the exception that it may allow movement of the apparatus **410** in more than one rotational degree of freedom. Using a semispherical surface as a destabilization device **460**, as opposed to a curved surface along two dimensions, may allow three rotational degrees of freedom which provide enhanced destabilization movement. Also shown in FIG. 20, angled for view, is a stand 465 (that may be integrated into or a separate attachment to the apparatus **410**) that may sit around the destabilization device **460**, preventing wobbling or shifting. FIG. **20**A shows the stand **465** as it may appear when integrated or attached to the apparatus **410** in FIG. **18**. The features described above with reference to the fourth exemplary embodiment are further illustrated in greater detail in FIGS. 20B, 20C, 20D, 20E, 20F, and **20**G.

[0102] The apparatus **410** of FIG. **20.1** includes hand grips **420**, preferably made of plastic, rubber or similar material but also composed of metal or other similar materials, each of which hand grip **420** is carried on a portion of the frame member **430**. The hand grips **420** are preferably adjustable, such that they are, for example, rotatable about their respective attachment sites to the frame **430**, although, in some embodiments, they may be non-moveably attached to the frame member **430**. In addition, the distance between the hand grips **420** and the at least one arm support pad **440** can be modified depending on a user's body size. The hand grips **420** may be movable by repositioning each of the hand grips **420** until the extended connector **456** on which they are mounted is locked within one of a plurality of preselected positions located at spaced intervals on the frame member **430**. The extended connector **446** may include features to retain it within the hole **436** with the actuatable engagement device **472**, such as a biased, pop-up or snap connector. Specifically, in FIG. **20**;**1**, the actuatable engagement device **472** is a pop-up connector. Another type of extended connector **446** may utilize a tab and slot system, where when the extended connector **446** is moved into the hole, a tab on the interior sidewall of the hole **436** is received within a shortened slot in the

extended connector **446**. In the alternative, the extended connector **446** may adjusted with a twist-collar mechanism (not shown) where the extended connector **446** meets the first and second legs **433**, **434** by supplying friction annularly around the connection point between them. There are many possible adjustment mechanisms suitable for providing the adjustments disclosed herein. Once the extended connector **446** achieves a fully-inserted position, the tab may be positioned beyond the slot where the extended connector. It is contemplated that many types of cavities, male and female mating structures, ridges, and the like, will provide suitable adjustment for the hand grips **420**. As with many of the various possible components of the frame member **430**, including the first and second legs **433**, **434**, support bar **442**, extended connector **444**, lateral support bar **446**, and lateral extended connector **447**, such components may have a substantially cylindrical shape, a partially cylindrical shape, or a non-cylindrical shape such as a square shape, e.g., when square tubing members are used to form a component. Any cross-sectional shape may be utilized, and another component associated therewith to coordinate adjustment may have a corresponding shape.

[0103] Relative to FIG. **20.1**, the apparatus **410** may have arm support pads **440** mounted on the support bar **442**, preferably at opposite ends of the support bar **442**, such that the arm support pads **440** are constantly positioned on the peripheral corners of the apparatus **410** during use. The support bar **442** may be positioned in a lateral direction, relative to a general length of the apparatus **410**, and allows the arm support pads **440** to be adjusted by extending the lateral extended connector **444** on which they are mounted until is locked at one of a plurality of preselected positions located at spaced intervals on the support bar **442**. The lateral extended connector **444** may include features to retain it within the hole **436** with the actuatable engagement device **472**, such as a biased, pop-up or snap connector. Specifically, in FIG. **20.1**, the actuatable engagement device **472** associated with the lateral extended connector **444** is a pop-up connector. Accordingly, the arm support pads **440** may be positioned between an extended position, a retracted position and various positions in between. Likewise, the d arm support pads **440** may also have a rotatable connection the frame member **130**.

[0104] The apparatus **410** as shown in FIG. **20.1** may include a destabilization device **460**, as shown in FIG. 20.1 and described in further detail herein relative to FIGS. 18-20 and elsewhere herein. The destabilization device of FIG. **20.2** is positioned under at least a portion of the frame member 430, such as along support bar 442 or lateral support bar 446. The destabilizing device 460 may be permanently affixed to apparatus **410** or, in the preferred embodiment, removably attachable. To facilitate a removable attachment, for example, as shown in FIG. 19.2, a threaded rod **467** may be used, though any number of attachment means are acceptable as long as they facilitate a removeable attachment. The destabilization device **460** may include a semispherical structure **462** which has a lowered edge that is positioned to contact a ground surface. In one example, the semispherical structure **462** may be formed from plastic, rubber, or similar material, which can support the weight of the apparatus **410** with a user on it. Using a semispherical surface as a destabilization device **460** may allow three rotational degrees of freedom which provide enhanced destabilization movement, but many different shapes for the destabilization device 460 are contemplated, such as a spherical structural, as long as it accomplishes a destabilization effect. In addition, a ball-and-joint mechanism would also provide satisfactory destabilization. The destabilization device **460** of FIG. **20.2** may be attached to the apparatus **410** along support bar **442** or lateral support bar **446**, which may have an adjustable length.

[0105] As shown in FIG. **20.1**, lateral support bar **446** is fixedly connected to the frame member and is adjustable with utilization of lateral extended connector **447**. However, in some embodiments, the lateral support bar **446** may be omitted, detachable, of a fixed length, or, as shown in FIG. For example, FIG. **3.2** shows an embodiment of apparatus **410** without the lateral support bar **446**. The lateral support bar **446** may also be positioned anywhere along the frame member **430**. As with all adjustments described herein, the preferred mode of adjustments of

apparatus **410**, allows the user to carry out adjustments with an unaided hand and without tools. [0106] In the preferred embodiment, a pad support member **490** is provided for the arm support pads **440**. The pad support structure **490** may be composed of plastic, metal, wood or similar material. Portions of pad support structure **490** may extend laterally at least as far as the exterior lateral edges the arm support pads **440**. This arrangement allows the apparatus **410** to have appropriate stability for various planking exercises, particularly side planks and push-up planks. In addition, areas of the pad support structure may be left open in order to allow users to enclose an edge of the arm support pads **440** with their fingers while using them as push-up blocks or for push-up planks.

[0107] FIG. **20.4** shows an isometric side view of the apparatus **410** of FIG. **20.1**, in accordance with an exemplary embodiment of the present disclosure. The description of features described relative to FIG. **20.1** above are equally applicable to those features with same numbers shown in FIG. **20.4**.

[0108] In addition, as shown in FIG. **20.5** the first and second legs **433**, **434** of the apparatus **410** may have a rotatable connection **427** to the frame member **430**, allowing further adjustments. Of course, many adjustments mechanisms described in the present disclosure be combined or omitted from the apparatus **410** in order to provide a satisfactory user experience.

[0109] FIGS. **21-22** are side-view illustrations of an exercise apparatus **410**, in accordance with the sixth exemplary embodiment of the present disclosure. Similar to the destabilization device **460** of FIG. **20**, FIGS. **21-22** illustrate a variation to a destabilization device **460** which can provide three rotational degrees of freedom. As is shown in FIGS. 21-22, the destabilization device 460 may include a semispherical structure **462** which is carried on an arm **464** that is movable between retracted and extended positions. A joint **466** may be used to move the arm **464**, thereby moving the semispherical structure **462** between the retract position, shown in FIG. **21**, to an extended position, shown in FIG. **22**. The joint **466** may use levers to unlock a center section of the joint **466** to allow movement of the arm 464 or to lock the joint 466 to prevent arm 464 movement, such as by using a locking ball. In use, extending the arm **464** may increase the destabilization effect on the apparatus **410** whereas lowering or retracting the arm **464** may lessen the destabilization effect. Accordingly, a user can adjust the destabilization device **460** to achieve the desired destabilization effect. [0110] FIGS. **23-24.1** are isometric view illustrations of an exercise apparatus **510**, in accordance with a fifth exemplary embodiment of the present disclosure. The exercise apparatus **510**, which may be referred to herein as 'apparatus **510**' may be substantially similar to the other apparatuses described within this disclosure and may include any of the features, components, or functions discussed relative to any other figure herein. As is shown in FIGS. 23-24, the apparatus 510 includes a central frame member **530** which is connected between a hand grip portion **520** and an arm support pad portion **540**. (It is noted that the soft, resiliently deformable foam arm support pads that would engage with the arm support pad portion are omitted from FIGS. 23-24, and the foam grip coverings that would cover the hand grip portion **520** are omitted from FIGS. **23-24.1**.) The hand grip portion **520** is configured to rotate upward for user-contact and, as shown in FIGS. **23-24**, downward for storage or grip variations. In FIG. **24.1**, the hand grip portion **520** is shown in a user-ready position, being upturned vertically in a sufficient position to be grasped by the user, and in some embodiments may be fixed such upturned position. FIG. **24.1** further shows foam pads **542** engaged with slots **545** in the arm support pad portion **540**, the entire lower surface of which, together with the lower surface of the apparatus, is resting in flat contact with flat ground surface. (Although the foam pads **542** shown in FIG. **24.1** are squarish in shape, the preferred shape is a curvilinear to match ergonomically the shape of a person's forearm.) In the preferred embodiment, the foam pads **542** have protrusions from a lower surface thereof allowing the foam pads **542** to engage with the slots **545**. The central frame member **530** may permit adjustability of the arm support pad portion **540** along the length of the central frame member **530**. The central frame member **530** may use, for example, a track system or telescoping mechanisms which allow the arm

support pad portion **540** to be moved to selected locations along its length. FIG. **23** depicts the arm support pad portion **540** positioned at a distal end of the central frame member **530**, whereas FIG. **24** depicts the arm support pad portion **540** positioned towards a middle section of the central frame member **530**. The arm support pad portion **540** itself may also include a track or telescopic mechanism to allow lateral movement of arm support pads, as previously described. [0111] FIG. **25** is a flowchart **600** illustrating a method of using an exercise apparatus, in accordance with a sixth exemplary embodiment of the disclosure. It should be noted that any process descriptions or blocks in flow charts should be understood as representing modules, segments, or steps that include one or more instructions for implementing specific logical functions in the process, and alternate implementations are included within the scope of the present disclosure in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure. [0112] As is shown by block **602**, an exercise apparatus is provided, the exercise apparatus having a hand grip, a frame member associated with the hand grip, at least one forearm support pad connected to the frame member, and a ground-interface surface positioned along at least a portion of the frame member. A force from a weight of a user in a position with a forearm thereof on the at least one forearm support pad from the forearm of the user is transferred through the at least one forearm support pad, and through the ground interface surface to a ground surface (block **604**). [0113] The method may include any additional number of steps, processes, and functions, including any disclosed within this disclosure. For example, when the exercise apparatus is in use, an elbow of the user may be free from contact with the at least one forearm support pad. The method may include adjustment of the exercise apparatus, such as moving the at least one forearm support pad along a length of the frame member, thereby adjusting a distance between the hand grip and the at least one forearm support pad, and/or moving the hand grip along a length of the frame member, thereby adjusting a distance between the hand grip and the at least one forearm support pad. The at least one forearm support pad may be moved in a lateral direction, wherein the lateral direction is substantially perpendicular to a length of the frame member and the at least one forearm support pad may be rotated about a substantially vertical axis thereof. Similarly, the hand grip may be rotated about a substantially horizontal axis thereof between a lowered position and a raised position. The method may further include destabilizing the exercise apparatus with a destabilizing device, thereby facilitating a destabilizing movement of the exercise apparatus. The controlled, destabilizing movement may further comprise rotational freedom. [0114] It should be emphasized that the above-described embodiments of the present disclosure, particularly, any "preferred" embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.

Claims

1. An exercise apparatus for enhancing a user's abdominal strengthening, facilitating the user's torso extension in a downward-facing position, the apparatus comprising: a frame having a centerline defined as an imaginary vertical plane dividing its left and right halves, which are integrally formed as a unitary one-piece structure or permanently joined, the frame comprising a left elongated arm and a right elongated arm running substantially parallel to or converging toward each other and the centerline along part of their lengths, wherein each elongated arm includes a permanent bend or curvature in its central axis near an upward-angled portion that serves as a handle or grip, and

wherein the two elongated arms are rigidly spaced from each other, either by an arch spanning their uppermost handle or grip portions or by a structural member or frame portion that is fixed relative to the centerline and abuts each elongated arm at points substantially the same height as said arm's central axis; at least one arm support pad, comprising a user-contacting surface, wherein at least one handle or grip portion is fixedly angled at a non-zero angle relative to the plane of the usercontacting surface, wherein the padding of the arm support pad is in direct contact with a rigid support surface that underlies all or a portion of the padding, and wherein the user-contacting surface is further configured to contact a forearm of the user when the at least one handle or grip portion is grasped, while a portion of the user's lower limbs is in contact with a ground surface, and the user's knees are positioned behind the rearmost edge of the frame; a rigid linear support member defining a substantially straight central axis from end to end in a plan view, with said ends secured at attachment points invariably located along an axis perpendicular to the centerline, such that the rigid linear support member's central axis is fixed substantially perpendicular relative to the centerline; and a plurality of points where the apparatus contacts a ground surface, including points on a component having an exterior surface with a convex curved portion which, in a side view or in a cross-section parallel to the centerline, forms a substantially continuous arc, wherein the convex curved portion is positioned such that at least a portion of it is lower than the frame and, in a plan view, is located at least in part directly under the rigid linear support member's central axis, and wherein, in a configuration where the user-contacting surface of the arm support pad or a portion of the frame is substantially parallel to the ground surface, at least one of the plurality of points of ground contact is located along the arc, and the outermost lateral edge of the arm support pad or its rigid support surface coincides with an imaginary vertical plane parallel to the centerline, such that all of the plurality of points of ground contact on the same side of the centerline as the imaginary vertical plane lie inward of said plane.

- **2.** The apparatus of claim 1, wherein the rigid linear support member comprises a unitary one-piece structure having two opposite terminal ends that define the major dimension of said unitary one-piece structure, and wherein the rigid linear member is coupled to the frame with said opposite ends substantially equidistant from the centerline.
- **3**. The apparatus of claim 1, wherein the at least one arm support pad comprises two pads, one positioned on the left and one on the right, each pad disposed on a rigid support surface, and wherein the rigid support surfaces are physically separate from one another, in whole or in part, in the region directly between the two pads.
- **4.** The apparatus of claim 1, wherein the underside of the rigid support surface includes a mounting cavity or recess engaged with a rigid support member, the mounting cavity having an axis of insertion perpendicular or otherwise non-oblique relative to the centerline.
- 5. An exercise apparatus for enhancing a user's abdominal strengthening, facilitating the user's torso extension in a downward-facing position, the apparatus comprising: a front half and a back half divided by a midway axis, the midway axis being an imaginary axis that, in at least one use configuration of the apparatus as viewed in plan, is equidistant from the apparatus's forwardmost and rearmost extents; a support structure of rigid construction and generally symmetrical geometry having a centerline defined as an imaginary vertical plane dividing the support structure into left and right halves, wherein the support structure comprises at least one arm support pad having a user-contacting surface and a base on which said arm support pad is disposed, wherein the base is positioned beneath a bottom surface of the arm support pad in direct contact with at least a portion of said bottom surface and extends around or proximate to at least half of the perimeter of the arm support pad, and wherein, in a side view, the support structure comprises an outermost lateral structure that, between the front edge and the rear edge of the arm support pad, does not extend substantially above an upper plane of the arm support pad's padding; at least one elongated arm, comprising a first section angled less steeply than a second section, and a permanent bend or joint therebetween, the first and second sections formed as a single, inseparable piece; a pair of handles

or grip portions, at least one of which is disposed on the elongated arm near the permanent bend or joint at a forwardmost section of the elongated arm, the pair positioned on opposite sides of the centerline, extending upward in paths that are parallel or converging relative to each other and the centerline for most of their respective upward lengths, wherein the pair are connected such that, at all times during their use, they are positioned, at least in part, in the front half, wherein the at least one arm support pad is positioned on or connected to the support structure at an attachment point in the back half behind the midway axis and comprises a user-contacting surface, wherein at least one handle or grip portion is fixedly angled at a non-zero angle relative to the plane of the usercontacting surface, and wherein the user-contacting surface is further configured to contact a forearm of the user when at least one of the handle or grip portions is grasped and the arm support pad is in its most distal position relative to said handle or grip portion, while a portion of the user's lower limbs is in contact with a ground surface, and the user's knees are positioned behind the rearmost edge of the support structure; and one or more stationary, non-rolling ground-contacting members, each ground-contacting member having at least one surface located at or below the lowest plane of the support structure when viewed from the side, each configured to be in direct, level contact with the ground surface while the support structure is arranged substantially parallel to the ground surface, wherein the one or more ground-contacting members collectively provide multiple points of contact for stability, including at least three coplanar points of contact arranged to lie in a single plane on the ground surface during use: a first point in a first region, a second point in a second region, and a third point in a third region, the first and second regions being laterally spaced apart across the centerline, and the third region being spaced from both the first and second regions, with at least one of these coplanar points being positioned beyond a vertical plane that runs parallel to the centerline and intersects an arm support pad on the same side of the centerline, and wherein all three coplanar points are configured to be stationary relative to adjacent portions of support structure, ensuring they always reside at the lowest point of their respective ground-contacting member during use.

- **6.** The apparatus of claim 5, wherein the pair of handle or grip portions extend from a rigid cross member spanning the centerline and positioned either directly between or above the highest points of the handle or grip portions when viewed from the side.
- 7. The apparatus of claim 5, wherein, in a plan view, the at least one arm support pad extends at least as far rearward as a rearmost section of the at least one elongated arm, and wherein the at least one elongated arm is rigidly spaced from the centerline, either by an arch spanning from its uppermost handle or grip portion to at least the centerline or by a structural member or part of the support structure that is fixed relative to the centerline and abuts the at least one elongated arm at substantially the same height as at least one point along said arm's central axis.
- **8**. An exercise apparatus for enhancing a user's abdominal strengthening, facilitating the user's torso extension in a downward-facing position, the apparatus comprising: a front half and a back half divided by a midway axis, defined as an imaginary axis equidistant from the apparatus's forwardmost and rearmost extents when viewed in plan, in at least one use configuration of the apparatus; a left half and a right half defined by an imaginary centerline when viewed in plan, in at least one use configuration of the apparatus; a pair of support pads, comprising a left support pad and a right support pad positioned on opposite sides of the centerline, each having a base extending to its perimeter, with padding disposed directly on the base, and each configured to be positioned, in whole or in part, in the back half in at least an initial use configuration; one or more rigid support surfaces, collectively comprising a left portion and a right portion, and further comprising at least one track member, the at least one track member comprising a left track section and a right track section on opposite sides of the centerline configured to underly a portion of each base, wherein each base is independently movable along its respective left or right track section while remaining substantially level throughout its movement, and wherein, in at least one configuration, with one base on the left track section and the other base on the right track section, each base's path of travel

is limited to its own side of the centerline and terminates on its side of the centerline, wherein each support pad is configured to engage an upper limb of the user at or distal to the elbow, while a portion of the user's lower limbs is in contact with a ground surface, and the user's knees are positioned behind an imaginary vertical plane containing a rear edge of the left and right track sections in at least one use configuration; and one or more ground-contacting surfaces, defined as a stable surface in contact with the ground surface during use, positioned below the one or more rigid support surfaces, wherein at least one point of contact with the ground surface is located beyond a vertical plane that runs parallel to the centerline and intersects a support pad on the same side of the centerline.

- **9.** The exercise apparatus of claim 8, wherein the left track section includes at least one elongated opening that extends in a substantially linear fashion and lies wholly within the left track section, and the right track section includes at least one elongated opening that extends in a substantially linear fashion and lies wholly within the right track section, each elongated opening being formed in a portion of the one or more rigid support surfaces, bounded by at least one substantially planar surface portion, and positioned at least in part beneath one of the respective bases and arranged to be narrower than its respective base.
- **10.** The exercise apparatus of claim 9, wherein each elongated opening extends in the direction of travel is configured to align the movement of its respective base along the track section on which said base is disposed, wherein each base is configured such that, from the perimeter of the associated support pad extending downward, it comprises a unitary, one-piece structure.
- **11**. The exercise apparatus of claim 8, wherein the portions of the track member providing the left and right sections are a unitary one-piece structure, wherein at least one of the left or right track sections comprises a unitary, one-piece structure that extends for at least half the length of the elongated opening in the respective track section.
- **12**. The exercise apparatus of claim 8, wherein, in at least one use configuration of a base, the forward-most and rear-most points of support that lie directly beneath the base on the one or more support surfaces are located on a single, unitary, one-piece construction.
- **13**. The exercise apparatus of claim 8, wherein each base has extending from it an elongated handle or grip structure configured to be grasped by the user's hand while its associated support pad engages a portion of the user's upper limb at or distal to the elbow.