Лабораторная работа №2

"Детерминированные циклические вычислительные

процессы с управлением по аргументу."

Цель: реализовать решение задач посредством детерминированных циклических вычислительных процессов с управлением по аргументу.

Оборудование: ПК, PascalABC.NET, Lucid.

Задание 1.

- 1. Вычислить n!
- 2. Математическая модель:

$$f = \prod_{i=1}^{n} i$$

3. Блок схеама:

Имя	Смысл	Тип
	Параметр цикла	integer
N	Заданное число, от которого берется факториал	integer
F	Результат	longint

5.

```
program zadanie_1;
var f: LongInt;
var n,i: Integer;
begin
write('Введите натуральное число: ');
readln(n);
f:=1;
for i:=2 to n do
f:=f*i;
write('Факториал числа ',n,'! равен ',f);
end.
```

6.

```
Введите натуральное число: 5
Факториал числа 5! равен 120
```

7.

Для написания данной программы с детерминированным циклическим вычислительным процессом с управлением по аргументу я ввел переменные I, n и f типа longint и использовала цикл for, где переменная і является накопительной переменной. Внутри цикла ведется вычисление факториала числа n, введенного с клавиатуры.

Программа выводит

результат на экран со вспомогательными комментариями.

Задание 2.

1. Рассчитать значения для построения диаграммы направленности антенны в вертикальной плоскости. Q меняются в диапазоне от 0 до 90 градусов с шагом 1 градус, $\alpha = 13.5$, $\alpha = 3$ см.

2.

$$f(Q) = \frac{(1 + \sin(Q)) \cdot \cos\left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)}{\left(\frac{\pi}{2}\right)^2 - \left(\frac{\pi \cdot a}{\lambda} \cdot \cos(Q)\right)^2}$$

3.

4.

Имя	Смысл	Тип
lamda	Константа	integer
а	Константа	real
Q	Величина угла в радианах	integer

Qr	Величина угла в радианах	real
F	Искомое значение для построения диаграммы	real
Т	Промежуточная переменная	real
Pi	Промежуточная переменная	real
tcosQ	Промежуточная переменная	real

5.

```
program zadanie_2;
var lamda,Q: Integer;
var a, Qr, f, t, pi,tcosQ: Real;
begin
lamda:=3;
a:=13.5;
pi:=3.14*3.14/4;
t:=3.14*a/lamda;
for Q:=0 to 90 do
begin
Qr:=Q*3.14/180;
tcosQ:=t*cos(Qr);
f:=(1+sin(Qr))*cos(tcosQ)/(pi-tcosQ*tcosQ);
writeln(Q,' ',f:6:5);
end;
end.
```

6.

Оюно вывода	Окно вывода	
0 -0.00004	31 -0.00944	61 -0.03533
1 -0.00005	32 -0.00906	62 -0.04237
2 -0.00008	33 -0.00846	63 -0.04829
3 -0.00014	34 -0.00763	64 -0.05257
4 -0.00023	35 -0.00657	65 -0.05464
5 -0.00034	36 -0.00525	66 -0.05391
6 -0.00048	37 -0.00369	67 -0.04979
7 -0.00065	38 -0.00188	68 -0.04174
8 -0.00085	39 0.00016	69 -0.02924
9 -0.00108	40 0.00240	70 -0.01186
10 -0.00135	41 0.00479	71 0.01073
11 -0.00165	42 0.00730	72 0.03873
12 -0.00199	43 0.00985	73 0.07221
14 -0.00236	44 0.01236	74 0.11106
15 -0.00277	45 D.01474	75 0.15502
16 -0.00321	46 0.01689	76 0.20360
17 -0.00419	47 0.01869	77 0.25618
18 -0.00472	48 0.02002	78 0.31193
19 -0.00527	49 0.02076	79 0.36987
20 -0.00584	50 0.02080	80 0.42887
21 -0.00641	51 0.02002	81 0.48766
22 -0.00698	52 0.01833	82 0.54479
23 -0.00754	53 0.01566	83 0.59778
24 -0.00807	54 0.01198	84 0.65786
25 -0.00855	55 0.00728	85 0.69882
26 -0.00897	56 0.00162	85 0.73726
27 -0.00931	57 -0.00490	87 0.76864
28 -0.00955	58 -0.01213	88 0.79187
29 -0.00967	59 -0.01981	89 0.80625
30 -0.00964	60 -0.02767	90 0.81138

7. 7) Для решения данного задания я написал алгоритм с использованием

детерминированных циклических вычислительных процессов с управлением по аргументу.

Учтено приведение типов и проведено форматирование вывода: переменная f выводится до

5 знака после запятой. Для сокращения времени работы программы были введены три

промежуточные переменные t, pi и tcosQ типа real. Программа рассчитывает значения и

выводит их на экран вместе со значением угла, изменяющегося от 0 до 90 включительно.

Задание 3.

1. Вычислить значения выражения, где n=45, x=2,4

2.

26. Вычислить значение выражения:

выражение	n	x
$y = 4x + \prod_{i=3}^{n} (1 + \frac{\ln(2 + \cos 0.05i)}{i})$	45	2,4

3.

var
 n,i:integer;
 x,y,y1,t:real;
 begin
 readln(n);
 x:=2.4;
 y1:=1;
 for i:=3 to n do begin
 t:=cos(0.05*i);
 y1:=y1*(1+(ln(2+t)/i));
 end;
 y:=4*x+y1;
 writeln(y);
end.

Окно вывода

4.

22.7866767798388

Имя	Смысл	Тип
N	Переменная, вводимая	integer
	с клавиатуры	
1	Параметр цикла	integer
У	Значение выражения	real

5. Вывод: научился реализовать детерминированные циклические вычислительные процессы

с управлением по аргументу средствами PascalABC.NET. К тому же, были

проанализировано время выполнения алгоритма, в зависимости от использования

различных функций.