HOMEWORK 8 MATH 104, SECTION 2

Some ground rules:

- You have to submit your homework via Gradescope to the corresponding assignment. The submission should be a single PDF file.
- Make sure the writing in your submission is clear enough! Answers which are illegible for the reader won't be given credit.
- Write your argument as clear as possible. Mastering mathematical writing is one of the goals of this course.
- Late homework will not be accepted under any circumstances.
- You're allowed to use any result that is proved in the lecture; but if you'd like to use other results, you have to prove them before using them.

PROBLEM SET (5 PROBLEMS; DUE MARCH 30 AT 11AM PT)

- (1) Let X be a set, and (f_n) be a sequence of functions $f_n: X \to \mathbb{R}$.
 - (a) Suppose that (f_n) converges to $f: X \to \mathbb{R}$ uniformly and each (f_n) is bounded. Prove that f is also bounded.
 - (b) Find an example of (f_n) converges to $f: X \to \mathbb{R}$ pointwisely and each (f_n) is bounded, but f is unbounded.
- (2) Let X be a set, and (f_n) be a sequence of functions $f_n: X \to \mathbb{R}$. Prove that if (f_n) converges to some function $f: X \to \mathbb{R}$ uniformly, then (f_n) is uniformly Cauchy.
- (3) Let X be a set. Consider the set $\mathcal{B}(X)$ consisting of real-valued bounded functions $f\colon X\to\mathbb{R}$. For $f_1,f_2\in\mathcal{B}(X)$, define

$$d(f_1, f_2) := \sup_{x \in X} |f_1(x) - f_2(x)|.$$

Prove that $(\mathcal{B}(X), d)$ is a metric space.

- (4) Consider the sequence of functions (f_n) defined by $f_n(x) = \frac{nx}{1+nx}$ for $x \ge 0$.
 - (a) Find the pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \ge 0$.
 - (b) Let a > 0. Prove or disprove: (f_n) converges uniformly to f on $[a, \infty)$.
 - (c) Prove or disprove: (f_n) converges uniformly to f on $[0,\infty)$.
- (5) Let X be a compact metric space, and (f_n) be a sequence of continuous functions $f_n \colon X \to \mathbb{R}$. Suppose that
 - (f_n) converges pointwisely to a continuous function $f: X \to \mathbb{R}$.
 - $f_{n+1}(x) \le f_n(x)$ for any $x \in X$ and $n \in \mathbb{N}$.

Prove that (f_n) converges uniformly to f on X. (Hint: Define $g_n \coloneqq f_n - f$. Consider the set $E_n \coloneqq \{x \in X \colon g_n(x) < \epsilon\}$. Show that $E_1 \subset E_2 \subset E_3 \subset \cdots$ and that $X = \cup E_n$.)