计算机网络课程基础实验一 应用协议与数据包分析实验(Wireshark)

计科210X 甘晴void 202108010XXX

一、实验目的:

通过本实验,熟练掌握Wireshark的操作和使用,学习对HTTP协议进行分析。

二、实验内容

2.1 HTTP 协议简介

HTTP 是超文本传输协议(Hyper Text Transfer Protocol)的缩写,用于WWW 服务。

(1) HTTP 的工作原理

HTTP 是一个面向事务的客户服务器协议。尽管HTTP 使用TCP 作为底层传输协议,但HTTP 协议是无状态的。也就是说,每个事务都是独立地进行处理。当一个事务开始时,就在web客户和服务器之间建立一个TCP 连接,而当事务结束时就释放这个连接。此外,客户可以使用多个端口和和服务器(80 端口)之间建立多个连接。其工作过程包括以下几个阶段。

- ① 服务器监听TCP 端口 80,以便发现是否有浏览器 (客户进程)向它发出连接请求;
- ②一旦监听到连接请求,立即建立连接。
- ③ 浏览器向服务器发出浏览某个页面的请求,服务器接着返回所请求的页面作为响应。
- ④ 释放TCP 连接。

在浏览器和服务器之间的请求和响应的交互,必须遵循HTTP 规定的格式和规则。

当用户在浏览器的地址栏输入要访问的HTTP 服务器地址时,浏览器和被访问HTTP 服务器的工作过程如下:

- ① 浏览器分析待访问页面的URL 并向本地DNS 服务器请求IP 地解析:
- ② DNS 服务器解析出该HTTP 服务器的IP 地址并将IP 地址返回给浏览器;
- ③ 浏览器与HTTP 服务器建立TCP 连接, 若连接成功, 则进入下一步;
- ④ 浏览器向HTTP 服务器发出请求报文 (含GET 信息),请求访问服务器的指定页面;
- ⑤ 服务器作出响应,将浏览器要访问的页面发送给浏览器,在页面传输过程中,浏览器会打开多个端口,与服务器建立多个连接;
 - ⑥ 释放TCP 连接:
 - ⑦浏览器收到页面并显示给用户。

(2) HTTP 报文格式

HTTP 有两类报文: 从客户到服务器的请求报文和从服务器到客户的响应报文。图 5.46 显示了两种报文的结构。

在图1.1中,每个字段之间有空格分隔,每行的行尾有回车换行符。各字段的意义如下:

- ① 请求行由三个字段组成:
 - 方法字段,最常用的方法为"GET",表示请求读取一个万维网的页面。常用的方法还有"HEAD(指读取页面的首部)"和"POST(请求接受所附加的信息)
 - URL 字段为主机上的文件名,这时因为在建立TCP 连接时已经有了主机名
 - 版本字段说明所使用的HTTP 协议的版本,一般为"HTTP/1.1"
- ② 状态行也有三个字段:
 - 第一个字段等同请求行的第三字段
 - 第二个字段一般为 "200",表示一切正常,状态码共有41 种,常用的有:301 (网站已转移),400 (服务器无法理解请求报文),404 (服务器没有锁请求的对象)等
 - 第三个字段时解释状态码的短语
- ③ 根据具体情况,首部行的行数是可变的。请求首部有Accept 字段,其值表示浏览器 可以接受何种类型的媒体;Accept-language,其值表示浏览器使用的语言;User-agent 表明可用的浏览器类型。响应首部中有Date、Server、Content-Type、Content-Length 等字段。在请求首部和响应首部中都有 Connection 字段,其值为Keep-Alive 或 Close,表示服务器在传送完所请求的对象后是保持连接或关闭连接。
- ④ 若请求报文中使用 "GET"方法,首部行后面没有实体主体,当使用 "POST"方法时,附加的信息被填写在实体主体部分。在响应报文中,实体主体部分为服务器发送给客户的对象。

图1.2 和图1.3显示了捕获的HTTP 请求和响应报文,结合上面的介绍,请自己分析和体会。

```
□ Transmission Control Protocol, Src Port: 1068 (1068), Ost Port: 8080 (8080), Seq: 1, Ack: 1, Len: 273
□ Hypertext Transfer Protocol
□ GET /12_switch.jpg HTTP/1.1\r\n
    Request Method: GET
    Request URI: /12_switch.jpg
    Request Version: HTTP/1.1
Accept: */*\r\n
    Referer: http://192.168.1.30:8080/\r\n
Accept-Language: zh-cn\r\n
Accept-Encoding: gzip, deflate\r\n
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)\r\n
Host: 192.168.1.30:8080\r\n
Connection: Keep-Alive\r\n
\r\n
```

```
If Transmission Control Protocol, Src Port: 8080 (8080), DST Port: 1068 (1068), Seq: 7343, Ack: 274, Len: 347

If [Reassembled TCP Segments (7689 bytes): #342(174), #343(512), #345(512), #347(512), #349(512), #350(512), #

Hypertext Transfer Protocol

If HTTP/1.0 200 OK\r\n
Request Version: HTTP/1.0
Response Code: 200
Date: Mon, 01 Mar 1993 00:26:11 UTC\r\n
Server: Start HTTP-Server/1.0\r\n
Content-Type: image/jpg\r\n
Content-Type: image/jpg\r\n
Content-length: 7515\r\n
Expires: Thu, 16 Feb 1989 00:00:00 GMT\r\n
\r\n

If JPEG File Interchange Format

### JPEG File Interchange File Interc
```

2.2实验环境与说明

(1) 实验目的

在PC 机上访问Web 页面,截获报文,分析HTTP 协议的报文格式和HTTP协议的工作过程。

(2) 实验设备和连接

本地实验室环境,无须设备连接;

注意:请通过访问可以连接的WWW 站点或使用IIS 建立本地WWW 服务器来进行实验。

(3) 实验分组

每四名同学为一组,每人一台计算机独立完成实验。

2.3实验步骤

步骤1: 在PC 机上运行Wireshark, 开始截获报文:

步骤2:从浏览器上访问Web 界面(http://csee.hnu.edu.cn)。打开网页,待浏览器的状态栏出现"完毕"信息后关闭网页。

步骤3:停止截获报文,将截获的报文命名为http-学号保存。

分析截获的报文,回答以下几个问题:

1)综合分析截获的报文,查看有几种HTTP报文?

有TCP,DNS,ARP,HTTP,SSL,ICMPV6,TLSv1.3等报文

- 2) 在截获的HTTP 报文中,任选一个HTTP 请求报文和对应的 HTTP 应答报文,仔细分析它们的格式,填写表1.1 和表1.2。
- ▲请求报文截图:

表1.1 HTTP 请求报文格式:

方法: GET

版本: HTTP/1.1

URL: /favicon.ico

首部字段 名	字段值	字段所表达的信息
Host	csee.hnu.edu.cn	接收请求的主 机名
Connection	keep-alive	表明可用的浏 览器类型,这 里使用的是
User-Agent	Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36	表明可用的浏 览器类型,这 里使用的是 GoogleChrome 浏览器。

首部字段 名	字段值	字段所表达的 信息
Accept	image/avif,image/webp,image/apng,image/svg+xml,image/,/*;q=0.8	描述接收响应 数据的数据类 型,q表示相 对质量因子, 指示接收数据 类型的优先级
Referer	http://csee.hnu.edu.cn/	提供访问来源信息,即从那 里来到的这个 页面
Accept- Encoding	gzip, deflate	表示客户端可 处理的压缩编 码
Accept- Language	zh-CN,zh;q=0.9	接收的语言类型

▲回复报文截图:

表1.2 HTTP 应答报文格式:

版本: HTTP/1.1

短语: OK

首部字段 名	字段值	字段所表达的信息
Date	Thu, 12 Oct 2023 05:23:46 GMT	响应时间
Server	*****	服务器应用程序
X-Frame- Options	SAMEORIGIN	表示该页面可以在相同域名页面的frame中展示(即可以在同域名页面的frame中嵌套)
Cache- Control	no-store	指定不缓存响应, 表明资源不进行缓 存
Pragma	no-cache	在 HTTP/1.1 协议中,它的含义和Cache-Control:no-cache相同
Expires	Thu, 01 Jan 1970 00:00:00 GMT	过期时间
Content- Type	image/gif;charset=UTF-8	实体的内容类型
Content- Length	0	实体的字节大小
Set-Cookie	JSESSIONID=B3F69D4683D77B4FA0BBD8B423973CED; Path=/; HttpOnly	cookie值
Keep-Alive	timeout=5, max=99	持续连接的参数
Connection	Keep-Alive	建立持续链接
Content- Language	zh-CN	实体的语言

3)分析在截获的报文中,客户机与服务器建立了几个连接?服务器和客户机分别使用了哪几个端口号?

★菜单栏"编辑","首选项","外观","列"中添加两项,就可以查看端口和端口号了。这一步灵感来源于https://blog.csdn.net/h1580824951/article/details/120333571

按照以上方式可得到所有HTTP报文对应的端口号

答案如下:

客户机与服务器建立了7个连接, 服务器使用的都是端口号80, 用户机使用了端口号51900,52004,52008,52017,52019,52018,52032 其中三次使用52008是TCP的三次握手

4)综合分析截获的报文,理解HTTP协议的工作过程,将结果填入表1.3中。

实际上,由于我的页面打开初始是www.baidu.com,所以上面的初始一部分实际上在跟www.baidu.com进行通讯。我略去这一过程,只关注与http://csee.hnu.edu.cn进行通讯的过程。

注意到这里报文类型实际上也是一个需要关注的点,故加入这一列。另由于端口过多,只关注部分端口(尤其是端口52019,另外的52108、52107与这个类似)的连接与断开。

HTTP客户 机端口号	HTTP服务 机端口号	所包括 的报文 号	报文类型	步骤说明
58508	53	10337	DNS	请求报文
53	58508	10352	DNS	DNS响应报文,返回域名对应的IP地址
52008	80	10477	TCP	SYN报文,请求建立与服务器的连接
80	52008	10479	TCP	SYN ACK报文,允许客户与服务器建立连接
52008	80	10480	TCP	对SYN ACK的确认,连接已建立
52008	80	10481	HTTP	对网页的请求报文
80	52008	10488	HTTP	响应报文
52019	80	13629	HTTP	请求报文
80	52019	13707	HTTP	响应报文
52019	80	13708	TCP	ACK报文
80	52019	13709	TCP	FIN ACK报文(服务端发的第一个释放连接的请求)
52019	80	13710	TCP	ACK报文 (客户端给服务端回应确认消息)
52019	80	13711	TCP	FIN ACK报文(客户端发给服务端释放连接的请求)
80	52019	13727	TCP	RST报文(本来应该是ACK表示服务端发确 认消息,这里是连接突然终止了)

上面只重点列出了一个TCP连接的建立和释放的过程,其他两个连接是类似的,以上报文体现了HTTP的工作过程。

特别需要指出的是:典型的关闭请求,有时由客户端发起中断连接。但在这里的关闭请求由服务端发起,即http://csee.hnu.edu.cn主动发起并请求中断TCP连接。

★中间解题过程与截图如下:

DNS部分略

TCP三次握手建立连接

52017,52018,52019端口的结束报文

52019端口: RST报文

52019端口: 正常传输

52019端口: 四次挥手中的前三次

知识补充: 三次握手与四次挥手

三次握手

四次挥手

最后的四次挥手原理讲解可以参考如下的讲解

https://blog.csdn.net/weixin_41033105/article/details/123861500

https://blog.csdn.net/m0_52650621/article/details/127797022