Roll No. :			**************		
Invigilato	r's Signature :		••••		
	CS	/BCA/SEI	M-3/BCA-301/2013-14		
•	20	013			
	OPERATIN	G SYST	EMS		
Time Allo	tted: 3 Hours		Full Marks : 70		
	The figures in the ma	rgin indicai	te full marks.		
Candid	ates are required to give	their ansu	vers in their own words		
	as far e	as practica	ble.		
	GRO	UP – A			
	(Multiple Choic	e Type Qu	estions)		
1. Cho			e following: $10 \times 1 = 10$		
i)	A process has finish state.	ned its ex	ecution when it is in		
	a) running	b)	blocked		
	c) ready	d)	terminated.		
ii)	ii) The technique of temporarily removing inactive programs from the memory of a computer system is				
•	a) Switching	b)	0		
	c) Paging	d)	None of these.		
iii)	The time required for is called	read-write	head to target cylinder		
	a) Latency time	b) .	Seek time		
	c) Transfer time		None of these.		
iv)	The technique of reloc to one end is called	cating all o	ccupied areas of storage		

Sharing

Compaction

Relocation

Distribution.

b)

d)

a)

c)

CS/BCA/SEM-3/BCA-301/2013-14

v)	The application of linked list results in					
	a)	Contiguous allocation of memory				
	·b)	Non-contiguous allocation of memory				
•	c) .	Internal fragmentation of memory				
	d)	External fragmentation of memory.				
vi)	Whi	nich of the following statements if false?				
	a)	Implicit task is a system-defined task				
	b)	A process is an instance of a program execution				
	c)	Buffering is a sophisticated form of Spooling				
	d)	Time-sharing system follows Round-robin algorithm.				
vii)		rt replicating programs that uses time of the CPU ecessarily is a				
•	a)	Worm b) Virus				
	c)	Distributed Process d) Trojan Horse.				
viii)		coincidence of high page traffic and low CPU zation is				
	a)	Belady's anomaly b) Mutual exclusion				
	c)	Deadlock d) Thrashing.				
ix)		data structure that maps each page frame with the sical memory is				
	a)	Page-map table b) Memory-map table				
	c)	Stack d) Queue.				
x)	The technique of dividing the address space of a process to place them into non-contiguous areas of memory is called					
	a)	Paging				
	b)	Segmentation				
	c)	Translation through TLB				
	d)	Defragmentation.				

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. a) When does a page-fault occur?

2

- b) Describe the action taken by the operating system when a page fault occurs.
- 3. Explain PCB with a neat diagram.
- 4. Explain with examples the difference between preemptive and non-preemptive priority scheduling.
- 5. Explain the demand paging in memory management scheme.
- 6. Distinguish between 'starvation' and 'deadlock'.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

- 7. a) Explain the difference between process and program.
 Briefly discuss about process creation and termination.
 - b) Consider the following set of processes. CPU Burst time of them are given below in millisecond and priority of each processes are given:

Process	CPU Burst Time	Priority
P1	10	3
P2	1	1 /
Р3	2	2
P4	1	5

Draw the Gantt chart for priority scheduling. Calculate the average waiting time also. 3 + 7 + 5

CS/BCA/SEM-3/BCA-301/2013-14

- 8. a) What is critical section problem? What are the requirements that the solution to critical section problem must satisfy?
 - b) What is Semaphore? How is it accessed? Explain the Dining Philosopher's problem and give the solution of it, using monitor.

 5 + 10
- 9. a) What is deadlock? Write down necessary conditions for deadlock?
 - b) Determine whether the processes are in safe state or unsafe state:

Process	Resources Allocated	Max. requirement of resources	Max. resources Requested
A	4	14	10
В	5	8	3
C ·	3	7	4

Total No. of available resources in the system is 15.

5 + 10

- 10. a) Explain Mutual exclusion.
 - b) Write the first algorithm of mutual exclusion algorithm.
 - c) What are its problems?

5 + 5 + 5

11. Write short note on any three of the following:

 3×5

- a) Priority scheduling
- b) Thrashing
- c) Virtual memory
- d) Paging and Segmentation.