Kolloquium zur Master Arbeit

Classification of meromorphic connections using Stokes structures and Stokes groups

Maximilian Huber

9. September 2015

Outline

Zusammenhangs-Matrizen und die klassifizierende Menge

Levelt-Turittin und die Normalform Die klassifizierende Menge der Systeme

Die Stokes Strukturen

Die anti-Stokes Richtungen Aufteilen bezüglich der Level

Beispiel

Abschnitt 1

Zusammenhangs-Matrizen und die klassifizierende Menge

Systeme und die Gauge Transformation

Definition Eine Zusammenhangs-Matrix $A \in GL_n(\mathbb{C}(\{t\}))$ beschreibt ein System (also: System linearer gewöhnlicher komplexer Differentialgleichungen)

$$dX = AX$$
.

F ist konvergent $\Leftrightarrow F \in \mathrm{GL}_n\left(\mathbb{C}(\{t\})\right)$ sonst ist F formal (geschrieben \widehat{F}).

Durch einen Wechsel $F \in \operatorname{GL}_n(\mathbb{C}((t)))$ der Basis erhält man das System FA , gegeben durch die Gauge-Transformation ${}^FA := (dF)F^{-1} + FAF^{-1}$.

Definition
Die Zusammenhangs-Matrizen A und B sind (formal)äquivalent, falls es einen (formalen) Basiswechsel F gibt, so

$${}^{F}A := (dF)F^{-1} + FAF^{-1}$$

 $\ddot{a}quivalent$, falls es einen (formalen) Basiswechsel F gibt, so dass $^F\!A=B.$

Die Normalform und formale Klassifikation

$$A^{0} = {\rm F}\left(Q'(t^{-1}) + \frac{1}{t}L\right)$$

- Definition
 Eine Normalform ist einem System der Form $A^0 = \overset{F}{=} \left(Q'(t^{-1}) + \frac{1}{t} L \right)$ wobei $Q(t^{-1}) := \bigoplus_{j=1}^s q_j(t^{-1}) \cdot \operatorname{id}_{n_j} \operatorname{mit} \ q_j(t^{-1}) \in \mathbb{C}[t^{-1}],$ $L := \bigoplus_{j=1}^s L_j \operatorname{mit} \ L_j \in \operatorname{GL}_{n_j}(\mathbb{C}) \operatorname{in Jordan-Normalform und}$ $F \in \operatorname{GL}_n(\mathbb{C}(\{t\})) \operatorname{eine Gauge-Transformation.}$

Aus dem Levelt-Turittin Theorem erhalten wir:

Korollar Jedes (unverzweigte) System A ist formal äquivalent zu einer Normalform und Normalformen sind bis auf (konvergente) Äquivalenz eindeutig.

Die klassifizierende Menge

Fixiere eine Normalform A^0 .

Ziel: verstehe die Menge

der Äquivalenzklassen vom Zusammenhangs-Matrizen formal äquivalent zu A^0 .

Betrachte dazu die folgende Menge:

einfach

Definition

Die $klassifizierende\ Menge$ ist definiert als die Menge

$$\mathcal{H}(A^0) := \left\{ \left[\left(A, \widehat{F} \right) \right] \mid A = \widehat{F}A^0 \text{ mit } \widehat{F} \in G(\!(t)\!) \right\}$$
 der Äquivalenzklassen $markierter\ Paare\ \mathrm{zu}\ A^0.$

Abschnitt 2

Die Stokes Strukturen

Die Stokes Garbe und Stokes Keime

Sei A die Garbe der Funktionen mit asymptotischer Erweiterung.

Definition

- ▶ Die Stokes Garbe $\Lambda(A^0)$ ist die Untergarbe von $GL_n(A)$ bestehend aus den Schnitten f, welche
 - 1. multiplikativ flach (f ist asymptotisch zu id) und 2. eine Isotropie von ${\bf A^0}$ ($^fA^0=A^0$)
 - sind.
- ▶ Die Stokes Gruppe $Sto_{\theta}(A^0) \subset \Lambda(A^0)_{\theta}$ sind die Keime f, für die auch noch jeder Eintrag
 - 3. von maximal decay in Richtung θ

Definition $e^{q(t^{-1})}$ mit $q(t^{-1}) \in \frac{a}{t^k} + o(t^{-k})$ hat maximal decay in Richtung θ genau dann wenn $ae^{-ik\theta}$ reell negativ ist.

ist.

Malgrange-Sibuya-Isomorphismus

Zu einem (A,\widehat{F}) wähle sektorweise asymptotische Lifts $F_j\in\Lambda(A^0)(U_j)$ der formalen Transformation \widehat{F} . Durch $(F_kF_j^{-1})$ ist dann ein Kozykel in $H^1(S^1;\Lambda(A^0))$ definiert. Dies liefert den folgenden Isomorphismus:

Abschnitt 3

Fragen?

Die anti-Stokes Richtungen

Definition

Zu jeder Richtung θ definieren wir Menge der dazugehörigen Level \mathcal{K}_{θ} als die $k \in \mathbb{N}$ für die

für jedes $i \in \mathbb{N}$ gilt, dass

$$\theta + i\frac{\pi}{k} \in \mathbb{A} .$$

Lemma

Gilt für jedes $\theta \in \mathbb{A}$ dass $\mathcal{K}_{\theta} = \{k\}$, so haben die anti-Stokes Richtungen eine $\frac{\pi}{k}$ -drehsymmetrie.

Aufteilen bezüglich der Level

Die Menge aller Level \mathcal{K} ist $\bigcup_{\theta \in \mathbb{A}} \mathcal{K}_{\theta}$.

Lemma

 $Die\ Aufteilung\ in\ "Anteile\ von\ Level\ k"$

$$\operatorname{Sto}_{\theta}(A^{0}) \longrightarrow \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^{k}(A^{0})$$

ist ein Isomorphismus und haben damit den Isomorphismus

$$\mathcal{H}(A^0) \longrightarrow \prod_{\theta \in \mathbb{A}} \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0) = \prod_{k \in \mathcal{K}} \left(\prod_{\theta \in \mathbb{A}} \operatorname{Sto}_{\theta}^k(A^0) \right).$$

Abschnitt 4

Beispiel

Stokes Matrizen

$$e^{(q_l-q_j)(t^{-1})}$$
 ist von maximal decay in Richtung θ .

1. Definiere die Relation $q_j \underset{\theta}{\prec} q_l$ als äquivalent zu $e^{(q_l - q_j)(t^{-1})}$ ist von maximal decay in Richtung θ .

Die anti-Stokes Richtungen sind genau die $\theta \in S^1$, so dass $q_j \underset{\theta}{\prec} q_l$ für ein Paar (q_j, q_l) .

Definiere die Gruppe der Stokes Matrizen als

Denniere die Gruppe der Stokes Matrizen als
$$\mathbb{S}to_{\theta}(A^{0}):=\left\{C=(c_{jl})_{j,l\in\{1,...,n\}}\in\mathrm{GL}_{n}(\mathbb{C})\middle|\right.$$

$$c_{(l,j)}=\delta_{jl} \text{ außer wenn }q_{j}\underset{\theta}{\prec}q_{l}\right\}.$$

Beispiel

von Dimension 3

Fixiere $\theta \in S^1$ und q_1 , q_2 und q_3 so dass $q_1 \underset{\theta}{\prec} q_2$, $q_1 \underset{\theta}{\prec} q_3$ und $q_2 \underset{\theta}{\prec} q_3$

Abschnitt 5

Anhang

Was weiß man für fixierten Level k?

Fixiere (j, l) mit $j \neq l$ und damit $(q_l - q_j)(t^{-1}) \in \frac{a}{t^k} + o(t^{-k})$.

Wann ist $f \in \Lambda_{\theta}(A^0)$ von maximal decay?

Ein Keim $f \in GL_n(\mathcal{A}_{\theta})$, der eine Isotropie von A^0 ist, sieht wie folgt aus

$$\begin{split} f &= t^L e^{Q(t^{-1})} \rho_{\theta}(f) e^{-Q(t^{-1})} t^{-L} \\ &= t^L e^{Q(t^{-1})} \left(1_n + \sum_{(l,j)} C^{(l,j)} \right) e^{-Q(t^{-1})} t^{-L} \\ &= t^L \left(1_n + \sum_{(l,j)} C^{(l,j)} e^{(q_l - q_j)(t^{-1})} \right) t^{-L} \,. \end{split}$$

Also ist f

- 1. multiplikativ flach falls falls für jedes $C^{(l,j)} \neq 0$ der Faktor $e^{(q_l-q_j)(t^{-1})}$ asymptotisch zu 0 ist und
- 2. von maximal decay falls für jedes $C^{(l,j)} \neq 0$ der Faktor $e^{(q_l q_j)(t^{-1})}$ von maximal decay in Richtung θ ist.