Table 3. RRMSE results %5 %20 222 RFI 222 RFI 222 RFI No FR Symbolic Genie3 No FR No FR Genie3 Symbolic Genie3 Symbolic OES10 0.7408 0.7439 0.7389 0.7429 0.7390 0.6593 0.6629 0.6575 0.6604 0.6594 0.5785 0.6569 0.5669 0.5676 0.5684 0.7333 0.7366 0.7319 0.7301 0.7321 0.6411 0.6459 0.6412 0.6423 0.5551 0.5761 0.5716 0.5741 0.6416 0.6424 y_1 0.6934 0.6977 0.6938 0.6967 0.6924 0.5780 0.5811 0.5771 0.5827 0.5814 0.4899 0.5788 0.5056 0.5057 0.5059 y₂ 0.5208 0.7163 0.7173 0.7142 0.7215 0.7143 0.6072 0.6117 0.5131 0.5208 0.6089 0.6105 0.6098 0.5004 0.6093 *y*₃ 0.7814 0.7799 0.7762 0.7749 0.7762 0.7163 0.7187 0.7119 0.7162 0.7127 0.6105 0.7136 0.5777 0.5851 0.5816 У4 0.8145 0.8088 0.8049 0.8059 0.8057 0.7047 0.7055 0.6970 0.7055 0.6963 0.6315 0.7086 0.6012 0.6048 0.6071 *y*5 У6 0.8546 0.8526 0.8502 0.8505 0.8516 0.8112 0.8115 0.8059 0.8074 0.8105 0.7422 0.8038 0.6734 0.6754 0.6776 0.7537 0.7597 0.7542 0.7590 0.7546 0.6793 0.6876 0.6822 0.6849 0.6823 0.5904 0.6805 0.5720 0.5791 0 5749 У7 0.7033 0.7096 0.7010 0.7149 0.7033 0.6256 0.6338 0.6277 0.6309 0.6292 0.5442 0.6284 0.5480 0.5490 0.5505 **y**8 0.8353 0.8319 0.8270 0.8505 0.8301 0.7551 0.7611 0.7530 0.7574 0.7552 0.6853 0.7639 0.6901 0.6907 0.6895 Vo 0.5730 0.5755 0.5738 0.6729 0.6676 0.6788 0.5775 0.5703 0.4916 0.5789 0.4878 0.4916 0.6666 0.6669 0.4906 y₁₀ 0.6867 0.7005 0.6897 0.6867 0.6892 0.6287 0.6254 0.6261 0.6235 0.6260 0.5625 0.6256 0.5751 0.5721 0.5786 V11 0.6396 0.6412 0.6494 0.6389 0.5507 0.5564 0.5502 0.5531 0.5520 0.4445 0.5501 0.6486 0.4123 0.4143 0.4133 *y*₁₂ 0.8078 0.8063 0.8055 0.8035 0.8048 0.7757 0.7721 0.7676 0.7675 0.7706 0.7360 0.7369 0.6915 0.6725 0.6800 V13 0.6935 0.7015 0.6932 0.6977 0.6929 0.6107 0.6203 0.5222 0.4872 0.4896 0.4906 0.6140 0.6169 0.6145 0.6066 y₁₄ 0.7572 0.7600 0.7563 0.7562 0.7568 0.6546 0.6573 0.6522 0.6553 0.6552 0.5667 0.6493 0.5745 0.5783 0.5765 *y*15 0.7158 0.7180 0.7155 0.7150 0.6367 0.6405 0.6348 0.6381 0.6388 0.5828 0.6337 0.5842 0.5801 0.5824 0.7101 V16 OES97 0.8036 0.8108 0.8056 0.8084 0.8065 0.7128 0.7445 0.7407 0.7430 0.7427 0.6421 0.6479 0.6402 0.6458 0.6406 0.7279 0.7422 0.7334 0.7360 0.7345 0.6373 0.6741 0.6681 0.6704 0.6683 0.5497 0.5618 0.5485 0.5555 0.5488 *y*₁ *y*₂ 0.7566 0.7729 0.7672 0.7843 0.7683 0.6740 0.7224 0.7192 0.7222 0.7207 0.5826 0.6053 0.5940 0.5986 0.5924 0.8819 0.8829 0.8766 0.8743 0.8806 0.8048 0.8339 0.8330 0.8329 0.8283 0.7566 0.7559 0.7504 0.7595 0.7530 У3 0.7641 0.7636 0.7565 0.7623 0.7538 0.5770 0.6248 0.6187 0.6213 0.6292 0.4971 0.5028 0.4975 0.5089 0.5116 **y**4 0.8349 0.8492 0.8478 0.8492 0.8485 0.7964 0.8139 0.8017 0.8073 0.8024 0.7665 0.7638 0.7598 0.7651 0.7582 *y*5 0.8587 0.8663 0.8636 0.7482 0.7769 0.7794 0.7784 0.7053 0.7026 0.7011 0.8642 0.8641 0.7733 0.7000 0.6919 У6 0.7723 0.8369 0.8370 0.8342 0.8342 0.8330 0.7250 0.7733 0.7694 0.7668 0.6357 0.6352 0.6350 0.6356 0.6319 V7 0.7536 0.7562 0.7616 0.7651 0.7583 0.6436 0.6825 0.6841 0.6859 0.5251 0.5389 0.5266 0.5359 0.5289 0.6876 У8 0.7333 0.7343 0.7261 0.7234 0.7283 0.5936 0.6425 0.6338 0.6352 0.6452 0.5003 0.5081 0.4927 0.5006 0.5009 **V**9 0.8113 0.8248 0.8204 0.8257 0.8200 0.7590 0.7719 0.7676 0.7713 0.7650 0.6844 0.7003 0.6872 0.6984 0.6945 y₁₀ 0.7993 0.7994 0.8276 0.8371 0.8305 0.8331 0.8326 0.7832 0.7976 0.7054 0.7104 0.7062 0.7068 0.8011 0.6963 *y*₁₁ 0.7965 0.8059 0.8016 0.8030 0.8012 0.7159 0.7358 0.7353 0.7382 0.7350 0.6374 0.6427 0.6374 0.6448 0.6320 *y*₁₂ 0.7763 0.7842 0.7779 0.7828 0.7776 0.6585 0.6792 0.6785 0.6843 0.6919 0.5968 0.6057 0.6004 0.6029 0.5972 y₁₃ 0.8471 0.8620 0.8585 0.8624 0.8609 0.8343 0.8625 0.8528 0.8567 0.8544 0.7812 0.7937 0.7815 0.7880 0.7811 *y*₁₄ 0.8241 0.8157 0.8143 0.8122 0.8159 0.7085 0.7399 0.7402 0.7390 0.7413 0.6650 0.6520 0.6491 0.6531 0.6521 y₁₅ 0.8271 0.8300 0.8242 0.8257 0.8276 0.7455 0.7761 0.7712 0.7731 0.7763 0.6841 0.6867 0.6752 0.6796 0.6792 V16 0.6497 ATP1D 0.6623 0.6574 0.6489 0.6495 0.5781 0.5765 0.5811 0.5774 0.5791 0.6561 0.6670 0.6638 0.6536 0.6635 0.7238 0.7195 0.7174 0.7100 0.7110 0.6549 0.6398 0.6526 0.6577 0.6428 0.7355 0.7573 0.7508 0.7349 0.7490 y_1 0.7264 0.7163 0.7128 0.6986 0.7033 0.6201 0.6113 0.6133 0.6140 0.6093 0.7046 0.7101 0.7139 0.7037 0.7094 *y*₂ 0.6364 0.6331 0.6228 0.6201 0.6193 0.5599 0.5554 0.5600 0.5466 0.5606 0.6171 0.6250 0.6243 0.6146 0.6261 У3 0.5759 0.5675 0.5560 0.5653 0.5659 0.4852 0.4922 0.4958 0.4849 0.4961 0.5458 0.5597 0.5470 0.5424 0.5509 *y*₄ 0.7350 0.7258 0.7862 0.7947 0.7318 0.7236 0.7227 0.6546 0.6554 0.6575 0.6633 0.6568 0.7816 0.7774 0.7901 *y*5 0.5792 0.5731 0.5635 0.5760 0.5745 0.5520 0.5555 0.4935 0.5046 0.5071 0.4978 0.5091 0.5523 0.5637 0.5487 ATP7D 0.8053 0.8047 0.8007 0.7974 0.8055 0.7144 0.7279 0.7701 0.7151 0.7270 0.6670 0.6536 0.6635 0.6561 0.6638 0.8801 0.8760 0.8741 0.8855 0.8755 0.8025 0.8215 0.8540 0.8221 0.7355 0.7573 0.7508 0.7349 0.7490 0.8207 y_1 0.8812 0.8730 0.8743 0.8704 0.8773 0.7562 0.7535 0.8379 0.7519 0.7644 0.7046 0.7101 0.7139 0.7037 0.7094 y₂ 0.7553 0.6171 0.6250 0.7569 0.7558 0.7480 0.7371 0.6819 0.7035 0.7270 0.6725 0.6805 0.6243 0.6146 0.6261 *y*₃ 0.7098 0.7148 0.7094 0.6983 0.7204 0.6003 0.6155 0.6600 0.5924 0.6145 0.5458 0.5597 0.5470 0.5424 0.5509 *y*₄ 0.8892 0.8881 0.8830 0.8876 0.8803 0.8381 0.8541 0.8919 0.8551 0.8597 0.7816 0.7862 0.7947 0.7774 0.7901 *y*₅ 0.7149 0.7205 0.7153 0.7054 0.7244 0.6077 0.6195 0.6496 0.5980 0.6209 0.5523 0.5637 0.5520 0.5487 0.5555 MP6 0.8260 0.8478 0.8481 0.8282 0.8291 0.7126 0.7184 0.7218 0.7217 0.7222 0.6039 0.6172 0.6178 0.6180 0.6201 0.8271 0.8239 0.8461 0.8465 0.8262 0.7098 0.7157 0.7192 0.7190 0.7196 0.6015 0.6148 0.6153 0.6156 0.6177 y_1 0.8250 0.8470 0.8474 0.8273 0.8281 0.7113 0.7171 0.7206 0.7204 0.7210 0.6027 0.6160 0.6166 0.6168 0.6189 y_2 У3 0.8284 0.8497 0.8500 0.8305 0.8314 0.7159 0.7214 0.7249 0.7247 0.7253 0.6067 0.6201 0.6206 0.6209 0.6229 0.7226 0.7225 0.7231 0.8266 0.8483 0.8486 0.8288 0.8297 0.7135 0.7192 0.6046 0.6180 0.6185 0.6188 0.6208 MP5 0.8136 0.7811 0.8175 0.8178 0.7983 0.7299 0.7313 0.7410 0.8176 0.7411 0.6046 0.6163 0.6147 0.6161 0.6147 0.7996 0.8150 0.7826 0.8188 0.8190 0.8191 0.7430 0.7313 0.7327 0.7427 0.6059 0.6175 0.6158 0.6173 0.6158 v_1 0.7761 0.8125 0.8127 0.7352 0.7937 0.7248 0.7262 0.7354 0.6117 0.8086 0.8128 0.6000 0.6102 $0.61\overline{17}$ 0.6102 y_2 у3 0.8175 0.7850 0.8214 0.8215 0.8216 0.7455 0.8017 0.7338 0.7352 0.7452 0.6082 0.6199 0.6182 0.6196 0.6182 0.8133 0.7808 0.8172 0.8174 0.7406 0.7980 0.7297 0.7311 0.7406 0.6146 0.6160 0.6146 0.8175 0.6044 0.6162 V_4 0.9350 Water Quality 0.9762 0.9648 0.9743 0.9772 0.9862 0.9616 0.9497 0.9609 0.9674 0.9686 0.9464 0.9474 0.9534 0.9545 0.9883 0.9922 0.9797 0.9847 0.9878 0.9772 0.9720 0.9637 0.9688 0.9688 0.9650 0.9510 0.9566 0.9609 0.9650 y_1 У2 1.0181 1.0127 1.0161 1.0137 1.0064 1.0198 1.0109 1.0127 1.0153 1.0080 1.0073 0.9985 1.0076 1.0086 1.0075 0 9986 0.9805 0.9848 0.9849 0.9956 0.9918 0.9777 0.9849 0.9914 0.9864 0.9770 0.9708 0.9695 0.9794 0 9948 У3 **y**4 0.9636 0.9589 0.9731 0.9802 0.9816 0.9502 0.9445 0.9555 0.9640 0.9685 0.9255 0.9240 0.9290 0.9410 0.9461 0.9857 0.9779 0.9876 0.9893 0.9983 0.9641 0.9521 0.9705 0.9718 0.9799 0.9504 0.9429 0.9580 0.9581 0.9584 *y*₅ 0.9109 0.9191 0.9432 0.8835 0.8887 0.9136 0.9283 0.8584 0.8924 0.8779 0.8971 0.8808 0.8746 0.8659 0.8687 У6 1.0091 0.9957 1.0061 1.0072 1.0090 1.0009 0.9812 0.9997 1.0041 1.0081 0.9959 0.9739 0.9931 0.9990 0.9983 *y*₇ 0.9534 0.9398 0.9312 0.9681 0.9497 0.9410 0.9357 0.9510 0.9409 0.9266 0.9355 0.9469 0.9604 0.9761 0.9490 У8 0.9614 0.9383 0.9429 0.9448 0.9628 0.9411 0.9058 0.9357 0.9167 0.9103 0.8989 0.8791 0.9194 0.8867 0.9054 **V**9 0.9939 0.9942 0.9994 0.9898 0.9952 0.9658 0.9625 0.9645 0.9829 0.9818 0.9432 0.9388 0.9418 0.9732 0.9501 *y*₁₀ 0.9953 0.9778 0.9799 0.9874 0.9911 0.9820 0.9678 0.9825 0.9726 0.9734 0.9706 0.9497 0.9687 0.9702 0.9632 *y*₁₁ 0.9748 0.9722 0.9708 0.9569 0.9904 0.9561 0.9547 0.9589 0.9674 0.9799 0.9298 0.9261 0.9402 0.9396 0.9588 y₁₂ 1.0059 1.0063 1.0075 1.0102 1.0094 1.0051 0.9891 1.0047 1.0041 1.0047 1.0036 0.9891 1.0081 1.0031 1.0041 *y*₁₃ 0.9069 0.8936 0.9233 0.9331 0.9593 0.8845 0.8757 0.8858 0.9193 0.9109 0.8751 0.8610 0.8713 0.9073 0.8794 *y*14

Table 4. RRMSE results (continued)

					Tabl	C 4. IXIXIV	ion resu	ns (continu	icu)						
			%5					%10					%20		
	SSS	No FR	Symbolic	Genie3	RFI	SSS	No FR	Symbolic	Genie3	RFI	SSS	No FR	Symbolic	Genie3	RFI
Jura	0.7908	0.8121	0.7914	0.7912	0.7937	0.7328	0.8299	0.7332	0.7315	0.7329	0.6952	0.6960	0.6906	0.6901	0.6910
<i>y</i> ₁	0.8314	0.8439	0.8316	0.8286	0.8296	0.7838	0.8763	0.7811	0.7817	0.7834	0.7488	0.7451	0.7422	0.7413	0.7444
<u>y</u> 2	0.7778	0.7658	0.7540	0.7801	0.7803	0.6720	0.8505	0.6760	0.6851	0.6848	0.6462	0.6330	0.6355	0.6440	0.6471
<i>y</i> ₃	0.7633	0.8266	0.7887	0.7649	0.7713	0.7425	0.7628	0.7425	0.7278	0.7304	0.6905	0.7100	0.6941	0.6849	0.6814
Edm	0.9350	0.9096	0.9164	0.9115	0.9041	0.8380	0.8373	0.8301	0.8363	0.8261	0.7883	0.7989	0.7880	0.7838	0.7804
y ₁	0.9689	0.9510	0.9618	0.9570	0.9534	0.8882	0.8727	0.8658	0.8798	0.8686	0.8319	0.8335	0.8027	0.8008	0.7950
<u>y</u> 2	0.9011	0.8682	0.8709	0.8659	0.8547	0.7878	0.8019	0.7943	0.7927	0.7836	0.7447	0.7642	0.7733	0.7667	0.7657
Friedman	0.9895	0.9861	0.9921	0.9934	0.9942	0.9767	0.9949	0.9768	0.9761	0.9755	0.9583	0.9668	0.9594	0.9586	0.9613
y ₁	1.0113	0.9972	1.0029	1.0036	1.0076	1.0165	1.0049	1.0177	1.0165	1.0159	1.0142	1.0058	1.0137	1.0122	1.0103
<u>y2</u>	1.0144	1.0054	1.0162	1.0128	1.0236	1.0182	1.0123	1.0169	1.0142	1.0135	1.0137	1.0136	1.0148	1.0153	1.0225
<i>y</i> ₃	1.0131	0.9895	1.0104	1.0114	1.0126	1.0174	1.0086	1.0160	1.0153	1.0134	1.0174	1.0103	1.0187	1.0180	1.0152
<u>y</u> 4	1.0261	1.0083	1.0172	1.0192	1.0261	1.0221	1.0127	1.0259	1.0242	1.0245	1.0307	1.0200	1.0318	1.0292	1.0342
y ₅	1.0170	1.0014	1.0159	1.0158	1.0071	1.0132	1.0065	1.0144	1.0159	1.0149	1.0178	1.0113	1.0229	1.0215	1.0286
<u>y</u> 6	0.8550	0.9148	0.8899	0.8974	0.8882	0.7728	0.9243	0.7701	0.7704	0.7710	0.6559	0.7397	0.6544	0.6552	0.6569
Wisconsin Cancer	1.0002	0.9929	0.9909	0.9932	0.9969	1.0066	0.9980	0.9879	0.9989	0.9919	0.9729	0.9779	0.9725	0.9943	0.9708
y ₁	1.0062	1.0010	0.9950	0.9995	1.0062	1.0170	0.9990	0.9839	0.9996	0.9904	0.9667	0.9741	0.9532	1.0087	0.9661
<u>y</u> 2	0.9942	0.9847	0.9867	0.9869	0.9875	0.9961	0.9969	0.9919	0.9981	0.9934	0.9791	0.9816	0.9917	0.9798	0.9755
CPU	0.6532	0.6501	0.6569	0.6545	0.8545	0.6358	0.6315	0.6354	0.6361	0.7229	0.6263	0.6196	0.6259	0.6266	0.7502
y ₁	0.3503	0.3468	0.3537	0.3491	0.6945	0.3320	0.3257	0.3363	0.3327	0.4577	0.3208	0.3111	0.3236	0.3206	0.5429
<u>y</u> 2	0.3521	0.3491	0.3554	0.3505	0.6960	0.3336	0.3276	0.3378	0.3342	0.4611	0.3224	0.3129	0.3253	0.3221	0.5470
<i>y</i> ₃	1.0306	1.0157	1.0329	1.0346	1.0218	1.0158	1.0068	1.0142	1.0186	1.0166	1.0170	1.0081	1.0107	1.0202	1.0193
<u>y</u> 4	0.8798	0.8889	0.8856	0.8839	1.0057	0.8617	0.8660	0.8534	0.8588	0.9562	0.8448	0.8464	0.8438	0.8436	0.8917