Chapter 1: Probability Theory Exercises

Ran Xie

November 15, 2021

Problem 0.1.2.1

Since
$$A\triangle B=A\cup B-A\cap B$$
. Then
$$A\triangle B=A\cup B-A\cap B$$

$$=(A\cup B)\cap (A\cap B)^c$$

$$=(A\cup B)\cap (A^c\cup B^c)$$

$$=(A\cap A^c)\cup (B\cap B^c)\cup (A\cap B^c)\cup (B\cap A^c)$$

$$=(A\cap B^c)\cup (B\cap A^c)$$

$$=(A-B)\cup (B-A)$$

$$A\cap C\triangle B\cap C=(A\cap C-B\cap C)\cup (B\cap C-A\cap C)$$

$$=[(A\cap C)\cap (B^c\cup C^c)]\cup [(B\cap C)\cup (A^c\cup C^c)]$$

$$=[A\cap C\cap B^c\cup A\cap C\cap C^c]\cup [B\cap C\cap A\cup B\cap C\cap C^c]$$

$$=[A\cap C\cap B^c\cup \emptyset]\cup [B\cap C\cap A\cup \emptyset]$$

$$=A\cap B^c\cap C\cup B\cap A^c\cap C$$

$$=(A-B)\cap C\cup (B-A)\cap C$$

$$=[(A-B)\cup (B-A)]\cap C$$

$$=(A\triangle B)\cap C$$

Exercise 0.1.3.1

 $A \times B \neq B \times A$ Since Cartesian product is a set of ordered pair.

Exercise 0.1.4.1

Since $f:A\to B$ and There exists g such that $f\circ g=i_B$. Since the domain of $f\circ g$ is B. Then for each $g\in B$, $f\circ g(g)=i_B(g)=g$ which means there exists $g\in A$ such that g(g)=g and

f(x) = y. Therefore f is onto.

If there exists y_1, y_2 such that $g(y_1) = g(y_2)$. Then

$$f \circ g(y_1) = f \circ g(y_2) \Leftrightarrow i_B(y_1) = i_B(y_2)$$
$$\Leftrightarrow y_1 = y_2$$

Therefore g is 1-1.

Let $h = f|_{gB}$, Since $f \circ g = i_B$, for each $y \in B$, $f \circ g(y) = i_B(y) = y$ which means there exists an $x \in g(B)$ such that f(x) = y. Therefore $h = f|_{gB}$ is onto.

Note that $f \circ g$ can be written as $f|_{gB} \circ g = h \circ g = i_B$ since f can only take on values in g(B). g is 1-1 means there is inverse g^{-1} that is also 1-1. Hence $h = h \circ g \circ g^{-1} = i_B \circ g^{-1}$. Both i_B and g^{-1} are 1-1, so h is also 1-1. \blacksquare

Let $x \in g(B)$ and consider $g \circ h(x)$. There exists $y \in B$ such that y = h(x). We know $h \circ g(y) = i_B(y) = y$. Suppose some $x_1 = g(y)$, $h \circ g(y) = h(x_1) = y = h(x) \Rightarrow x_1 = x$ since h is 1-1. So g(y) = x. Therefore $g \circ h(x) = g(y) = x \Leftrightarrow g \circ h = i_{gB} \Leftrightarrow g = i_{gB}h^{-1}$

f need not be 1-1. Example: $A = \{1, 2\}, B = \{3\}$. f(1) = f(2) = 3, g(3) = 2 and $h = f|_{g(B)=\{2\}}$.

Exercise 0.1.4.2

Suppose $f:A\to B$ is 1-1 and onto, then for each $y\in B$ there corresponds a unique $x\in A$ such that f(x)=y. Define $g:B\to A$ such that for each $y\in B$, g(y)=x where f(x)=y. g is a function since each g corresponds to a unique g guaranteed by g. Therefore $g\circ f=i_A$ and g and g is a function since each g corresponds to a unique g guaranteed by g.

Suppose There is a function $g: B \to A$ such that $g \circ f = i_A$ and $f \circ g = i_B$. For $x_1, x_2 \in A$ and $f(x_1) = f(x_2)$. Applying g on both side, we have $x_1 = x_2$. Therefore f is 1-1.

For $y \in B$, there exists an $x \in A$ such that g(y) = x since g is a function. Applying f to both side, we have $f(g(y)) = f(x) \Leftrightarrow i_B(y) = y = f(x)$. So we have found an x for every y such that y = f(x). Therefore f is onto.