MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIEKÓW W MEDYCYNIE

(wyłącznie do celów dydaktycznych – zakaz rozpowszechniania)

2. Prędkość propagacji i tłumienie fal ultradźwiękowych w ośrodkach biologicznych. Ukośne i prostopadłe padanie fal ultradźwiękowych na granice ośrodków.

S2-S5. Prędkość propagacji fali ultradźwiękowej

prędkość fazowa prędkość grupowa

ogólnie, prędkość dla każdego ośrodka

$$c = c_f = \frac{\omega}{k}$$

$$c = c_f = \frac{\omega}{k}$$
 $c_g = \frac{\partial \omega}{\partial k} = c_f - \lambda \frac{dc_f}{d\lambda}$ $c = \sqrt{\frac{1}{\rho \cdot C_g}}$

$$c = \sqrt{\frac{1}{\rho \cdot C_o}}$$

Ciecze	Ciała stałe	Gazy
$c = \sqrt{\frac{1}{2 \cdot \rho}}$	$c_L = \sqrt{\frac{K + \frac{4G}{3}}{\rho}} = \sqrt{\frac{E(1 - \nu)}{\rho(1 - 2\nu)(1 + \nu)}}$	$c = \sqrt{\frac{P \cdot \kappa}{c}}$
$\setminus \rho \cdot oldsymbol{eta}_a$	$c_T = \sqrt{\frac{G}{\rho}} = \sqrt{\frac{E}{2\rho(1+\nu)}}$	√ ρ

K = E/(3(1-2v)) [Pa] – współczynnik sprężystości objętościowej (moduł ściśliwości);

K = -Vdp/dV

E = 2G(1+v) [Pa] - moduł Younga;

 $E = \sigma/\varepsilon$ (względne odkształcenie liniowe materiału od naprężenia);

G [Pa] - moduł Kirchhoffa; $G = \tau/\gamma$ (odkształcenie postaciowe do naprężenia);

v – bezwymiarowy współczynnik Poissona;

 $v = -\varepsilon_n/\varepsilon_m$ (odkształcenie poprzeczne do podłużnego przy osiowym stanie naprężenia);

S6. Fale poprzeczne w tkankach (TW – transversal wave)

Tkanka	ρ [kg/m ³]	c_L [m/s]	c_T [m/s]		
tłuszcz	937	1479	51.8		
mięsień	1070	1532	48.5		
kość	1780	3380	1940		

$$f = 1$$
 MHz, $t = 37$ °C

S7-S9. Prędkość dźwięku fali podłużnej dla różnych rodzajów ośrodków biologicznych ciała ludzkiego, wybranych ciał stałych, cieczy i gazów

średnia prędkość w tkance miękkiej 1540 m/s, gęstość 1058 kg/m³; tkanka bez tłuszczu 1575 m/s, z tłuszczem 1465 m/s;

kość gąbczasta 2700 m/s fast, 1400 m/s slow; gęstość 1140 kg/m³; kość zbita 4040 m/s, gęstość 1900 kg/m³;

powietrze: c = 353 m/s; gęstość 1.138 kg/m³; woda 1524 m/s, gęstość 993 kg/m³ w temperaturze 37 °C

S10. Zmiany prędkości dźwięku z temperaturą w wodzie morskiej

Wzór Claya i Edwina (P = 1 atm na powierzchni):

$$c_{sw} = 1449.2 + 4.6 \cdot t - 5.5 \cdot 10^{-2} \cdot t^2 + 0.29 \cdot 10^{-3} \cdot t^3 + (1.34 - 0.01 \cdot t) \cdot (0.1 \cdot s - 35) + 0.016d$$

$$\Delta c/\Delta t \approx 4.6 \text{ (m/s)}^{\circ}\text{C}; \qquad \Delta c/\Delta s \approx 0.134 \text{ (m/s)}^{\circ}\text{K}; \qquad \Delta c/\Delta d \approx 0.016 \text{ (m/s)/m}$$

S11. Dyspersja prędkości dźwięku (wartości)

Małe zmiany:

roztwory hemoglobiny: 0.165 (m/s)/MHz
 tkanka mózgu ludzkiego: 0.3 (m/s)/MHz
 wątroba szczura: 0.5 (m/s)/MHz
 mięsień sercowy szczura: 0.22 (m/s)/MHz

Duże zmiany:

• płuca z zaw. 60% powietrza: 138 (m/s)/MHz, (tj. od 644 m/s przy 1 MHz do 1472 m/s przy 7 MHz)

• tkanka kostna: $1 \div 12 \% \text{ dla } 1 \div 3 \text{ MHz}$

S12-S.13. Prędkość dźwięku o dużym natężeniu

Dla silnych dźwięków (ultradźwięków) prędkość propagacji jest większa.

$$c = c_o + \Delta c_{\scriptscriptstyle NL} = c_o + \frac{B}{2A} \cdot v_a$$

c = 1540 m/s; $\rho = 1058 \text{ kg/m}^3$; $Z = 1.62 \cdot 10^6 \text{ kg/(m}^2 \cdot \text{s})$; wartość B/A = 10 przyjeto dla tkanki tłuszczowej

Natężenie I [W/cm²]	Ciśnienie p [kPa]	Δc_{NL} [m/s]
0.001	6	0.02
0.01	18	0.06
0.1	56	0.17
1	178	0.55
10	563	1.74
100	1782	5.50

S14. Anizotropia prędkości dźwięku

Anizotropia prędkości dźwięku występuje w zależności od kierunku propagacji fali ultradźwiękowej.

S15-S16. Tłumienie fali ultradźwiękowej (podstawowe zależności)

$$\alpha = \frac{1}{2d} \cdot \ln \left(\frac{I_o}{I_d} \right) = \frac{1}{d} \cdot \ln \left(\frac{p_o}{p_d} \right) \qquad I_d = I_o \cdot e^{-2\alpha d} \qquad \mu = 2 \cdot \alpha$$

$$\alpha = \alpha_a + \alpha_s$$

S17-S18. Współczynnik rozproszenia

Całkowity energetyczny współczynnik rozproszenia fali ultradźwiękowej w ośrodkach biologicznych to całkowita moc rozproszona przez jednostkową objętość ośrodka, odniesiona do tej objętości i do jednostkowego natężenia fali padającej.

$$\mu_s = a \cdot f^b$$

Energetyczny kierunkowy współczynnik rozproszenia - moc rozproszona przez jednostkową objętość ośrodka w jednostkowy kąt bryłowy dla zadanego kierunku, odniesiona do tej objętości i kąta oraz do jednostkowego natężenia fali padającej. Współczynnik ten określany jest najczęściej dla kierunku przeciwnego μ_{bs} lub zgodnego μ_{fs} z propagacją fali ultradźwiękowej.

S19. Współczynnik absorpcji

$$\alpha_{a} = \alpha_{v} + \alpha_{hc} + \alpha_{R}$$

$$\alpha_{a} = \left(\frac{2\pi^{2}}{\lambda^{2}\rho c}\left(\frac{4}{3}\eta + \xi\right)\right) + \left(\frac{2\pi^{2}f^{2}}{\rho c^{3}}\frac{(\kappa - 1) \cdot k_{t}}{c_{p}}\right) + \left(\sum_{j} \frac{A_{j}}{\frac{1}{f^{2}} + \frac{1}{f_{Rj}^{2}}}\right)$$

$$\alpha_{a} = \frac{\omega^{2}}{2\rho c^{3}}\left(\frac{4}{3}\eta + \xi + \frac{(\kappa - 1) \cdot k_{t}}{c_{p}}\right) + f^{2}\sum_{j} \frac{A_{j}}{1 + \left(\frac{f}{f_{Rj}}\right)^{2}}$$

W praktyce, przyrost prędkości dźwięku w obszarze dyspersji związanej z relaksacją molekularną dla ośrodków biologicznych, w zakresie 1 ÷ 10 MHz jest zwykle mniejszy niż 1%.

S20-22. Współczynnik absorpcji tkanek miękkich i wody

$$\alpha_a = \alpha_{a1} \left(\frac{f}{f_1}\right)^n \qquad \alpha_a = \alpha_{a1} \left(\frac{f}{f_1}\right)^2$$

 $\alpha \approx 0.001 \text{ 4 (dB/cm)/MHz}^2 \approx 0.0161 \text{ (Np/m)/MHz}^2$

S23. Średnie wartości tłumienia ultradźwięków w tkankach miękkich

 $\alpha = 0.5 \text{ (dB/cm)/MHz} \approx 5.8 \text{ (Np/m)/MHz} - \text{średnia wartość}$

 $\alpha = 0.3 \text{ (dB/cm)/MHz} \approx 3.5 \text{ (Np/m)/MHz} - \text{średnia wartość dla tkanek bez tłuszczu}$

 $\alpha = 0.6 \text{ (dB/cm)/MHz} \approx 6.9 \text{ (Np/m)/MHz} - \text{średnia wartość dla tkanek z tłuszczem}$

Wzrost zawartości tłuszczu i kolagenu w tkance powoduje wzrost współczynnika tłumienia.

S24. Tłumienie w tkankach twardych (E.Talarczyk – skrypt)

Zależność tłumienia od częstotliwości jest liniowa w materiałach niekrystalicznych (np. szkło, topiony kwarc). W materiałach krystalicznych (np. metale, **kości, zęby**), dla większych częstotliwości zaczyna odgrywać rolę rozproszenie energii na skutek wielokrotnych odbić fali od poszczególnych krystalitów, których wielkość staje się bliska długości fali. Rozproszenie to powoduje gwałtowny wzrost tłumienia.

$$\alpha = \begin{cases} \alpha_a \cdot f + \alpha_s \cdot f^4 & dla & \frac{D_z}{\lambda} < \frac{1}{3}, & \alpha_s \sim D_z^3 \\ \alpha_a \cdot f + \alpha_s \cdot f^2 & dla & \frac{D_z}{\lambda} \to 1 & \alpha_s \sim D_z \\ \alpha_a \cdot f + \alpha_s \cdot f^2 & dla & \frac{D_z}{\lambda} > 1 & \alpha_s \sim \frac{1}{D_z} \end{cases}$$

W ZĘBACH tłumienie $8\div20$ dB/mm przy 18 MHz. $\alpha_{kości}\approx 4\div24$ (dB/cm)/MHz² $\approx 46\div276$ (Np/m)/MHz²

S25. Tłumienie w ośrodkach gazowych

Obowiązuje ogólny wzór na tłumienie.

Powietrze, $t = 37^{\circ}\text{C}$, wilgotność = 33.5% $\rightarrow \alpha \approx 1.7 \text{ (dB/cm)/MHz}^2 \approx 19.6 \text{ (Np/m)/MHz}^2$

S26-S27. Średnie wartości tłumienia tkanek

t = 37°C, f = 1 MHz

Ośrodek	α [dB/cm]
woda	0.0014
krew	0.2
tłuszcz	0.6
mięśnie	1.8 ÷ 3.3
mózg	0.9
kość gąbczasta	24
kość zbita	4.4
powietrze	1.7

S28. Tłumienie fal poprzecznych

Tkanka	$a_L [dB/cm]$	$\alpha_L [\mathrm{Np/m}]$	$\alpha_T [dB/cm]$	α_T [Np/m]
tłuszcz	0.35	4	~10400	1.2·105
mięsień	1.04	12	~10400	1.2·105
kość	13.2	152	22.6	260

$$f = 1$$
 MHz, $t = 37$ °C

S29. Ukośne padanie fali ultradźwiękowej na granicę dwóch ośrodków

- przenikanie
- odbicie
- załamanie
- rozszczepienie

S30-35. Ukośne padanie fali ultradźwiękowej na granicę dwóch ośrodków

$$I_r = I_e \frac{\left(1 - m\frac{\cos\beta}{\cos\alpha}\right)^2}{\left(1 + m\frac{\cos\beta}{\cos\alpha}\right)^2} \quad gdzie \quad m = \frac{\rho_1 c_1}{\rho_2 c_2} = \frac{Z_1}{Z_2}$$

$$\frac{\sin \alpha}{\sin \beta} = \frac{c_1}{c_2} \qquad R = \frac{I_r}{I_e} \qquad D = \frac{I_d}{I_e}$$
 wsp. odbicia

wzor snella

wsp. przenikania

(energetyczne)

$$I_e = I_r + I_d$$
 $D = 1 - R$

w srodowisku pynnym tylko fale podune

S.36-41. Granica dwóch ciał stałych i kąty krytyczne

$$\frac{\sin\alpha}{c_{L_1}} = \frac{\sin\beta}{c_{L_2}} = \frac{\sin\gamma}{c_{T_2}} = \frac{\sin\varepsilon}{c_{T_1}}$$

$$\beta = 90^{\circ} \implies \sin \alpha_{kr} = \frac{c_{L_1}}{c_{L_2}}$$
 1-wszy kat krytyczny

$$\gamma = 90^{\circ} \quad \Rightarrow \quad \sin \alpha_{kr} = \frac{c_{L_1}}{c_{T_2}} \quad \text{drugi kat krytyczny}$$

Fala powierzchniowa Rayleigha (L i T po powierzchni) Maksymalna amplituda fali R, gdy kąt krytyczny 3-ci, czyli $\alpha_R > \alpha_{kr2}$

ok 0,9 od predkosci fali poprzecznej

sigma - bezwymiarowy wspolczynnyk poissona

padajcej?

tylko powierzchniowa Rayleigh'a (sa inne powierzchniowe)

Fala powierzchniowa - mniejsze straty, bo mniejsza rozbierznosc wiazki

Fala Rayleigh'a rozchodzi si na powierzchni na wysokoci dlugosci fali ma juz tylko 5% mocy/amplitudy

S.43-S.45. Prostopadle padanie fali ultradźwiękowej na granicę środowisk

Odbicie i przenikanie, energetyczne wsp. przenikania i odbicia

$$I_{r} = I_{e} \frac{\left(1 - m \frac{\cos \beta}{\cos \alpha}\right)^{2}}{\left(1 + m \frac{\cos \beta}{\cos \alpha}\right)^{2}} \quad gdzie \quad m = \frac{\rho_{1}c_{1}}{\rho_{2}c_{2}} = \frac{Z_{1}}{Z_{2}} \quad \text{impedancje akustyczne}$$

Dla
$$\alpha = \beta = 0$$
 ze wzoru wynika, że $R = \left(\frac{1-m}{1+m}\right)^2$

$$D = \frac{4m}{\left(1+m\right)^2}$$

strata energii dla wspolczynnikow energetycznych nie zaleza od kierunku padania fali przejscie cialo stale-ciecz = ciecz-cialo stale

podstawienie m = 1/m

S.46-S.47. Prostopadłe padanie fali ultradźwiękowej na granicę środowisk

Amplitudowe wsp. przenikania i odbicia

$$p_a = P_a \sin(\omega t - \beta_1 l) = \rho_1 c_1 v_a$$

I - odleglosc od granicy

$$p_{x} = P_{x} \sin(\omega t + \beta_{1} l) = -\rho_{1} c_{1} v_{x}$$

beta- liczba falowa = 2pi/lambda_1 wspolczynniki amplitudowe v-predkosc akustyczna

beta_2 (bo przeszla do drugiego osrodka = 2pi/lambda_2)

$$p_d = P_d \sin(\omega t - \beta_2 l) = \rho_2 c_2 v_d$$

$$\frac{P_d}{\rho_2 c_2} = \frac{P_e}{\rho_1 c_1} - \frac{P_r}{\rho_1 c_1}$$

$$P_d = P_e + P_r$$

(energetyczny w k wsp. odbicia akustycznego amplitudowego

amplitudowy dla cisnienia

$R' = \frac{P_r}{P_e} = \frac{1 - m}{1 + m}$	$R'' = \frac{V_r}{V_e} = -\frac{1 - m}{1 + m}$

$$D' = \frac{P_d}{P_c} = \frac{2}{1+m}$$

$$D' = \frac{P_d}{P_e} = \frac{2}{1+m} \qquad D'' = \frac{V_d}{V_e} = \frac{2m}{1+m}$$
 dla predkosci akustycznej

$$D' = 1 + R'$$

$$D'' = 1 + R''$$

$$R = R' \cdot R''$$

$$D = D' \cdot D''$$

te zaleza od kierunku padania fali

S.48. Energetyczne współczynniki odbicia fali ultradźwiękowej od granic struktur biologicznych [%]

	WODA	PLEKSI	TŁUSZCZ	MIĘŚNIE	WATROBA	NERKA	KREW	SOCZEWKA OKA	MÓZG	KOŚĆ CZASZKI
WODA								(2
PLEKSI	13						R	$=\left \frac{\rho_2 c_2}{2c_2}\right $	$-\rho_1 c$	1_
TŁUSZCZ	0.5	17.6					$R = \left(\frac{\rho_{2}c_{2} - \rho_{1}c_{1}}{\rho_{2}c_{2} + \rho_{1}c_{1}}\right)^{2}$			
MIĘŚNIE	0.4	9.2	1.8					D=1	-R	
WĄTROBA	0.32	9.5	1.6	0.003						
NERKA	0.17	10.4	1.3	0.04	0.002					
KREW	0.05	11.5	0.9	0.16	0.11	0.035				
SOCZEWKA OKA	0.6	8.4	2.1	0.02			0.3			
MÓZG	0.12	10.7	1.1	0.073			0.016			
KOŚĆ CZASZKI	46.5	18.4	51.6	42			45		44	