Theory of classification:

Basic Model:

. $x \in X$, X a measurable space equipped with a 6-algebra.

. y & {-1, 1} a class.

. or 13 an observation.

· g: x -> {-1,13 · a classifier.

. (X,Y): a vanden pair.

. $\eta(x) = P\{Y=1 \mid X=x\}$. a posteriori probability.

. measure perf of classifier g by its probability of ervor: $L(g) = P\{g(x) \neq Y\}$

. Given η , closofter with minimal pack. of error 15: $g^{*}(x) = \begin{cases} 1 & \text{if } \eta(x) > 1/2 \\ -1 & \text{otherwise} \end{cases}$

then $L(g^*) \leq L(g) + g$.

. The minimal mik L' = L(g*) is ealled Bayor risk. . We have: $L(g) - L^* = E \left[| \{g(x) \neq g^*(x)\} | 2\eta(x) - 1| \right] \geqslant 0$.

· g * can be the collect the byes classifier.

. data is denoted $O_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$ i.i.d.

. A clasifier constructed using on 15 gn.

 $g_n(X) = g_n(X; X, Y, \dots, X, Y_n).$

. Performance of g_n : $L(g_n) = P[g_n(x) \neq Y | D_n]$.

3. Empirical niek minimization and Rademacher averages.

- 1. Convider a class C of classifiers g: X -> 5-1,13 and use data-based estimates of the probabilities of error L(y) to select a classifier from the class.
- 2. The error count is a northeal estimate of L(g). 4nG) = / = / 1g(Xi) + Yi}

Lu(g) is ealled the empirical error of the classifier of.

3. Denote by gr the classifier that minimizes the estimated probability of error over the class: $L_n(g_n^*) \leq L_n(g) + g \in C$

4. We have:

. L(gn) - inf L(g)
$$\leq 2 \sup_{g \in C} |L_n(g) - L(g)|$$

.
$$L(g_n^*) \leq L_n(g_n^*) + \sup_{g \in C} |L_n(g) - L(g)|$$

5. nln(g) is a r.v. binomially distributed with parameters n & L(g).

6. Thus, to obtain bounds for the success of & empresal error minimization. we need to study unitorn deviations of binomial v.v. from their mans.

7. let: Yir ..., Xn be i.i.d r.v. Xi EX.

. F be a class of bounded for X-5[-1,1].

. Pf = E[f(Xi)] dentes expectation.

. $P_n f = \frac{1}{n} \sum_{i=1}^n f(X_i)$ de notes empirical arrage.

we are interested in upper bound for the maximal deutations. sup (Pf-Pnf) teF

Theorem 3.1 (bounded differences megnality). Let g: X" > R be a fun. of n $\sup_{x \in \mathbb{R}} \left| g(x_1, ..., x_k) - g(x_1, ..., x_{l-1}, x_i', x_{i+1}, ..., x_n) \right| \leq c_i, \quad |\leq i \leq n.$ let: X,,..., X. be n independent r.v. . r.v. Z = g (X1, ..., Xn) satisties P[|Z-E[Z]|>t] \leq 2e^\frac{-2t^2}{c} where $C = \sum_{i=1}^{N} c_i^2$. An example of a fim. that satisfies the bounded differences assurption is: Z= sup | Pf - Pnf | . I stratus the bounded diff ass. with $c_i = \frac{z}{n}$. . With prob at least 1-5: $\sup_{f \in \mathcal{F}} |Pf - P_n f| \le E \Big[\sup_{f \in \mathcal{F}} |Pf - P_n f|\Big] + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$. Introduce a "ghost sample" X'_1, \ldots, X'_n , independent of the X_i and inequality.

distributed identically. If $P'_nf = \frac{1}{n} \sum_{i=1}^n f(X_i)$, then by Jenson's interesting. E[sup | Pf - Pnfl] = E[sup (E[|Pnf-Pnfl|X1,..., Xn])]

fe.F < E [sup | Pht - Pht].

The ear he shown that: $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_{i} f(X_{i}) \right| \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_{i} f(X_{i}) \right| \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_{i} \sigma_{i} \right| \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} \frac{1}{n} \left| \sum_{i=1}^{n} \sigma_{i} \sigma_{i} \right| \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$ $E \left[\sup_{t} | P_{n}'t - P_{n}t | \right] \leq 2E \left[\sup_{t} | P_{n}'t - P_{n}t | \right]$

. Pn (A) is ealled the Rademacher average associated with A. . For x_i a green seq. $y_1, \ldots, y_n \in \chi$, we write $F(x_i^n) \text{ for the elast of } n\text{-vectors } (f(x_i), \ldots, f(x_n))$ with $f \in F$. so: $F(x_n^n) = \{(f(x_n), ..., f(x_n)) : f \in \mathcal{F}\}.$ $\sup_{f} |Pf - P_n f| \leq 2 \mathbb{E} \left[P_n \left(F(X_i^n) \right) \right] + \sqrt{\frac{26g \frac{1}{\delta}}{n}}.$. With prob. at least 1- S: We also have: $|Pf - Pnf| \le 2 \frac{\sqrt{\sqrt{F(X_i^n)}}}{2} Rn \left(F(X_i^n)\right) + \sqrt{\frac{268\frac{2}{5}}{n}}$ this is a data-dependent bound. . Proporties of Rademacher overages. Let A.B be bounded subsets of Rh & let c E Q be en constant. Then: . Rn (AUB) & Rn(A) + Rn(B). . $R_n(c \cdot A) = |c| R_n(A)$. $c \cdot A = \{ea : a \in A\}$. Rn (A ⊕ B) = ≤ Rn(A) + Rn(B). A ⊕ B = {a+b : a ∈ A, b ∈ B} . Moreover, if $A = \begin{cases} a^{(1)}, \dots, a^{(N)} \end{cases} \subset \mathbb{R}^n$ is a fixite set, then $R_n(A) \leq \frac{max}{j=1,...,N} \qquad ||a^{(j)}|| \frac{\sqrt{2\log N}}{n} \qquad ||a^{(j)}|| \frac{\sqrt{2\log N}}{n} \qquad ||a^{(j)}|| \frac{\sqrt{2\log N}}{n}$. It absconv (A) = $\{\sum_{j=1}^{N} e_{j}a^{(j)}: N \in M, \sum_{j=1}^{N} |e_{j}| \le 1, a^{(j)} \in A\}$ is the absolute convex hull of A, then: $R_n(A) = R_n(absconv(A)).$. The contraction principle states that if $\phi:R\to R$ is a fun. with $\phi(0)=0$ and Lipschitz constant Ly and doA is the set of vectors of form (of (a,),... p(an)) E Ru with a EA. $R_n(\phi \cdot A) \leq L\phi R_n(A)$

. Consider to the ease when F is a class of indicator tunctions.

概 概 概

For any collections of points $x_1^n = (x_1, ..., x_n)$, $F(x_1^n)$ is a finite subset of R^n whose earlinotity is denoted by $S_F(x_1^n)$ and is called the VC shatter confinent.

. Obviously, $S_{\mathcal{F}}(x_i^n) \in 2^n$.

. We have, $4x_i^n$, $R_n(F(x_i^n)) \leq \sqrt{\frac{2\log S_F(x_i^n)}{n}}$

(we would the fact that Z+(X;)25

. In particular,

exticular,
$$E\left[\sup_{f}|Pf-P_nf|\right] \leq 2E\left[\sqrt{\frac{2\log f(X_i^n)}{n}}\right]$$

. The log. of the VK shatter adfresent may be upper bounded in terms of a combinatoral quantity, called the VC dimension.

. It A # {-1,1}n, then the VC dimension of A is the size V of the largest set of inchies $\{i_1,\ldots,i_V\}\subset\{1,\ldots,n\}$ | If for each

brong Viector b = (b,...,bv) E {-1,1}V, # 3 an $a = (a_1, ..., a_n) \in A \mid (a_{i_1}, ..., a_{i_V}) = b$.

, A by nequality establishing a rel. 114 shatter acefficient & VC dimension is known as Somer's bemonde which states that the condinating of any set A C {-1.13" may be upper bounded as

 $|A| \leq \sum_{i=0}^{V} {n \choose i} \leq {n+1}^{V}$ where V is the V colone us rear - fA.

. In patienter, lay $S_F(x_i^n) \leq V(x_i^n) \log (n+1)$.

where we denote by $V(x_i^n)$ the C dimension of $\overline{F}(x_i^n)$.

Thus: $E \left[\sup_{f} \left[P_f - P_n f \right] \right] \leqslant 2E \left[\sqrt{2V(X_i^n)} \frac{\log (n+1)}{n} \right]$

. To obtain distribution - free upper bounds, introduce the VC clim. of a class of binary funs. I, defined by:

. VC neguality. For all distributions, one has $E \left[\begin{array}{c} 8up \ (PF - P_n f) \end{array} \right] \leq 2\sqrt{\frac{2V \log (n+1)}{n}}$

also,

$$E\left[\begin{array}{c} \sup_{f} \left(Pf - P_n f\right) \right] \leq \sqrt{\frac{V}{n}}$$

for a novered constant C.

. One useful property: & let G be an m-dimensional vector space of m-dimensional vector space on X.

neal-valued tunethous defined on X.

The class of indicator tunethous:

$$\mathcal{F} = \{f(x) = \mathcal{I}_g(x) \ge 0 : g \in G\}$$

has VC dimension $V \leq m$.