Grado en Ingeniería Informática

Explotación de la Información Módulo 4. Clasificación y Agrupamiento de Información

Antonio Ferrández Rodríguez

Índice

- 1. Sistemas de clasificación de información
- 2. Clasificación basada en vocabulario
- 3. Clasificación utilizando árboles de decisión
- 4. Clasificación utilizando sistemas de reglas
- 5. Problema del overfitting. Sistemas de poda
- 6. Part of speech tagging
- 7. Sistemas de agrupamiento de información
- 8. Sistemas de agrupamiento de información en la Recuperación de Información
- 9. Sistemas de agrupamiento de información particionales (algoritmo *k-mean*)
- 10. Sistemas de agrupamiento de información jerárquicos

1

i de la información. Clasificación y Agrupamiento de Información

1. Sistemas de clasificación de Información

Clasificación automática/automated classification:

- Asignación de una categoría predefinida disjunta
 - Distinto del proceso de categorización (*categorization*):
 - # Se permite la asignación de más de una clase, etiqueta o categoría para cada instancia: p.ej. asignar temáticas a libros
- Resultado: ontologías, taxonomías, jerarquías, vocabularios controlados o tesauros
- ► Problemas: precisión, consistencia, etc.
- Aplicaciones:
 - RI como un problema de clasificación con las categorías documento relevante/no relevante
 - Detección de spam o detección de páginas con contenido violento
 - Detección de autor (*Authorship attribution*)
 - **■** Part of speech tagging
 - Fluency ranking en generación de texto

1. Sistemas de clasificación de Información

* Objetivo:

* Características fl y f2

* Dos clases:

* Maximizar separación entre las clases

* 1

1. Sistemas de clasificación de Información

Técnicas:

- Técnicas basadas en vocabulario:
 - Usan un tesauro o diccionario para determinar aquellos términos y sus variantes asociados a cada categoría
 - Problema: ambigüedad del lenguaje
- **■** Basadas en reglas
- ► Estadísticas: co-ocurrencia de términos, redes neuronales, etc.

2. Sist. clasificación información basadas en vocabulario

Ejercicio 1:

- Obtener las reglas y vocabulario para las siguientes categorías de tipo de pregunta de los sistemas de búsqueda de respuesta. Utilizad a modo de ejemplo las preguntas que aparecen en la siguiente transparencia:
 - En la siguiente URL se pueden encontrar ayudas de sinónimos y relaciones semánticas:
 - # http://adimen.si.ehu.es/cgi-bin/wei/public/wei.consult.perl

_ ′

2. Sist. clasificación información basadas en vocabulario entidad persona ent

0 0:-4 -		-: 4
Z. SIST. C	lasificación informa	cion
		
In a second	adas santerio moresa argentina, voca hulario	
nas:	adas en vocabiliario	
entidad objeto	¿de que obtendra microsoft la licencia de sun?	
entidad objeto	¿cual es el nombre de estandar europeo de comunicaciones moviles digitales?	
entidad objeto	¿que produce la compañía victorinox?	
entidad objeto		
entidad objeto	¿cual es el símbolo de paris?	
entidad objeto	¿que tecnologia produce leica?	
entidad objeto	¿como se llama el ferry naufragado en suecia en 1994?	
entidad objeto	/contra que choco el titanic?	
entidad objeto	¿cual es el simbolo de liderazgo del giro de italia?	
entidad objeto	¿que fue levantado el 13 de agosto de 1961?	
entidad objeto	/cual es la moneda iraki?	
entidad objeto	nombre un edificio envuelto por christo.	
entidad objeto	nombre una pelicula en la que se hayan usado animaciones por ordenador.	
entidad objeto	¿que deporte practica adrian mutu?	
entidad objeto	¿que alfabeto tiene solo cuatro letras "a, c, g, y t"?	
entidad objeto	¿que plataforma estaba acampada en el paseo de la castellana de madrid?	
entidad objeto	¿a que enfermedad corresponden las siglas rsi?	
entidad objeto	¿que tipo de dolencia es característica del rsi?	
entidad objeto	¿que vitaminas avudan en la lucha contra el cancer?	
entidad objeto	¿que fruta tiene vitamina c?	
entidad objeto	¿con el nombre de que enfermedad se corresponde el acronimo bse?	
entidad objeto	¿que submarino choco con un buque en el canal de la mancha el 16 de febrero de 1995?	
entidad objeto	/en que epoca del año desaparecio jurgen schneider al producirse la bancarrota de su empres	
entidad objeto	¿que premio gano pulp fiction en el festival de cine de cannes?	
entidad objeto	/ que nuevo canal de television gay aparecio en francia el 25 de octubre de 2004?	
entidad objeto	¿cual es la ultima letra del alfabeto fonetico de la otan?	
entidad objeto	¿con que pelicula marlee matlin gano un oscar?	
entidad objeto	¿que huracan azoto la isla de cozumel?	
entidad objeto	nombre una pelicula en la que haya participado kirk douglas en el periodo de 1946 a 1960.	
entidad objeto	de el nombre de alguien que haya ganado el premio nobel de literatura entre 1945 y 1990.	
entidad objeto	¿con que planeta choco el cometa shoemaker-levy?	
entidad objeto	/cual es la palabra alemana mas larga?	
entidad objeto	¿como se llama la moneda de letonia?	
entidad objeto	/en que calle vive el primer ministro britanico?	

- **# Técnicas de clasificación basadas en <u>árboles de</u> decisión:**
 - Construyen un modelo, hipótesis o representación de la regularidad existente en los datos
 - Ventajas respecto a las redes neuronales o las máquinas de vectores de soporte (Support Vector Machine, SVM):
 - Son modelos comprensibles porque se pueden expresar de una manera simbólica, en forma de conjunto de condiciones
 - Son eficientes por su característica de algoritmos "voraces" (siempre que quepan todos los ejemplos para aprender en memoria)
 - **■** Hay múltiples implementaciones disponibles
 - Desventajas:
 - Son más dependientes del conjunto de ejemplos de aprendizaje

11

3. Clasificación utilizando árboles de decisión

Árbol de decisión:

- Conjunto de condiciones exhaustivas y excluyentes organizadas en una estructura jerárquica
 - Exhaustivo: cada condición ha de cumplirse una de sus opciones (edad > 50 ó edad ≤ 50)
 - Excluyente: las particiones del árbol han de ser disjuntas
- ► La decisión final a tomar se puede determinar siguiendo las condiciones que se cumplen desde la raíz del árbol hasta alguna de sus hojas

	de decisión									
	# Ejemplo:	Outlook	Temperature	Humidity	Windy	Play				
ación	· ·	Sunny	Hot	High	False	No				
nform	Elección	Sunny	Hot	High	True	No				
de I	de "Play"	Overcast	Hot	High	False	Yes				
niento	•	Rainy	Mild	High	False	Yes				
	http://csie.org/~dm	Rainy	Cool	Normal	False	Yes				
n y Ag		Rainy	Cool	Normal	True	No				
		Overcast	Cool	Normal	True	Yes				
Clasifi		Sunny	Mild	High	False	No				
ción.		Sunny	Cool	Normal	False	Yes				
		Rainy	Mild	Normal	False	Yes				
Explotación de la información. Clasificación y Agrupamiento de Información		Sunny	Mild	Normal	True	Yes				
ón de		Overcast	Mild	High	True	Yes				
olotac		Overcast	Hot	Normal	False	Yes				
		Rainy	Mild	High	True	No				

Algoritmo para construir AD a partir de datos:

- Técnica de partición (divide y vencerás):
 - El espacio de instancias se va partiendo de arriba abajo utilizando cada vez una partición o conjunto de condiciones excluyentes y exhaustivas
 - Una vez elegida la partición, dicha partición no se puede cambiar: *criterio de partición*

15

3. Clasificación utilizando árboles de decisión

Algoritmo partición (N:nodo; E:conj ejemplos)

Si todos los ejemplos E son de la misma clase c

Entonces

Asignar clase c al nodo N

Salir

// N es hoja

Sino

particiones = generarPosiblesParticiones

 $Mejor Partici\'on = seleccionar Mejor Partici\'on Seg\'un_criterio_partici\'on$

Para cada condición i de la partición elegida

Añadir un nodo hijo i a N y asignar los ejemplos consistentes (E_i)

partición (i, E_i) // Llamada recursiva

generarPosiblesParticiones:

- **▼** Tipos de particiones:
 - Nominales (x_i): aquellos que tienen un conjunto de posibles valores {v₁, v₂, ..., v_k}
 - # Si solo se permiten árboles binarios, la partición será:
 - $(x_i=v_1, x_i\neq v_1), (x_i=v_2, x_i\neq v_2), (x_i=v_3, x_i\neq v_3), \dots$
 - # Caso contrario: $(x_i=v_1, x_i=v_2, ..., x_i=v_k)$
 - Numéricas (x_i): aquellos que tienen un conjunto de posibles valores numéricos y continuos. Las particiones: (x_i≤a, x_i>a), con a una constante numérica elegida entre un conjunto finito de constantes obtenidas de los ejemplos:
 - # Si x_i presenta los valores {0,2 0,3 0,7 0,1 0,8 0,45 0,33 0,1 0,8 0}
 - # Se ordenan, eliminan repetidos {0 0,1 0,2 0,3 0,33 0,45 0,7 0,8} y se obtienen los valores intermedios {0,05 0,15 0,25 0,315 0,39 0,575 0,75} generando particiones binarias:
 - $\begin{array}{l} \blacksquare \ \ (x_i\!\!\le\!\!0,\!05,x_i\!\!>\!0,\!05) \ (x_i\!\!\le\!\!0,\!15,x_i\!\!>\!\!0,\!15) \ (x_i\!\!\le\!\!0,\!25,x_i\!\!>\!\!0,\!25) \ (x_i\!\!\le\!\!0,\!315,x_i\!\!>\!\!0,\!315) \ (x_i\!\!\le\!\!0,\!39,x_i\!\!>\!\!0,\!39) \ (x_i\!\!\le\!\!0,\!575,x_i\!\!>\!\!0,\!575) \ (x_i\!\!\le\!\!0,\!75,x_i\!\!>\!\!0,\!75) \end{array}$

17

3. Clasificación utilizando árboles de decisión

Ejercicio 2:

- Sobre el ejemplo anterior de elección de "Play", a partir de la tabla de ejemplos, obtener las particiones
- ► Para *n* atributos y *m* valores posibles para cada atributo, ¿cuántas particiones se generarían?

- # seleccionarMejorParticiónSegún_criterio_partición:
 - Objetivo: buscar particiones que discriminen más
 - Criterio: elegir la partición s con mayor valor *l(s)*

$$I(s) = \sum_{j=1..n} p_j \cdot f(p_j^1, p_j^2, ..., p_j^c)$$

- n: número de nodos hijos de la partición
- p_j : probabilidad de caer en el nodo j de la partición s
- p_i^1 : proporción de elementos de la clase I en el nodo j
- **■** *c*: número de clases del problema

19

3. Clasificación utilizando árboles de decisión

Método basado en entropía C4.5 [Quinlan,93]:

$$I(s) = \sum_{j=1...n} p_j \times f(p_j^1, p_j^2, ..., p_j^c) = \sum_{j=1...n} \left(p_j \times \sum_{k=1..c} \left(p_j^k \times \log_2(p_j^k) \right) \right)$$
$$= \left(\frac{5}{14} \right) \times \left(\frac{2}{5} \times \log_2 \frac{2}{5} + \frac{3}{5} \times \log_2 \frac{3}{5} \right) + \left(\frac{4}{14} \right) \times 0 + \left(\frac{5}{14} \right) \times (-0.971) = -0.693$$

Ejercicio 3 (evaluación continua):

- Sobre el ejemplo anterior de predicción del tiempo, calcula *l(s)* para el resto de particiones

21

3. Clasificación utilizando árboles de decisión

Ejercicio 4:

 Aplica el algoritmo partición para comprobar que se genera el árbol de decisión mostrado anteriormente

Ejercicio 5: Calcula el árbol de decisión

	Class				
Education	Annual Income	Age	Own House	Sex	Credit ranking
College	High	Old	Yes	Male	Good
High school		Middle	Yes	Male	Good
High school	Middle	Young	No	Female	Good
College	High	Old	Yes	Male	Poor
College	High	Old	Yes	Male	Good
College	Middle	Young	No	Female	Good
High school	High	Old	Yes	Male	Poor
College	Middle	Middle		Female	Good
High school	Middle	Young	No	Male	Poor

4. Clasificación utilizando sistemas de reglas

Sistemas de reglas:

- Generalización de los árboles de decisión en el que no se exige exclusión ni exhaustividad en las condiciones de las reglas:
 - Se podría aplicar más de una regla (reglas 1, 3, 5) o ninguna
 - Se agrupan diferentes ramas del árbol en una sola condición: "en otro caso"

■ Algoritmo:

Se generan reglas sucesivamente, descartándose ejemplos ya cubiertos por las reglas ya obtenidas, y con los ejemplos que quedan se empieza de nuevo

age	spectacle prescription	astigmatism	tear production rate	recommende lenses
young	myope	no	reduced	none
young	туоре	no	normal	saft
young	myope	yes	reduced	none
young	myope	ves	normal	hard
young	hypermetrope	no	reduced	none
young	hypermetrope	по	normal	soft
young	hypermetrope	yes	reduced	none
young	hypermetrope	ves	normal	hard
pre-presbyopic	туретпесоро	no	reduced	none
pre-presbyopic	myope	no	normal	soft
pre-presbyopic	myope	ves	reduced	none
pre-presbyopic	myope	ves	normal	hard
pre-presbyopic	hypermetrope	по	reduced	none
pre-presbyopic	hypermetrope	ng	normal	soft
pre-presbyopic	hypermetrope	ves	reduced	none
pre-presbyopic	hypermetrope	yes	normal	none
pre-presbyopic presbyopic	myope	no	reduced	none
presbyopic	myope	no	normal	none
presbyopic	туоре	ves	reduced	none
presbyopic	туоре	yes	normal	hard
		no	reduced	none
presbyopic	hypermetrope		normal	soft
presbyopic	hypermetrope	no	reduced	none
presbyopic presbyopic	hypermetrope hypermetrope	yes yes	normal	none

4. Clasificación utilizando sistemas de reglas									
	Cogemos el resto de ejemplos para refinarla: Table 4.8 Part of the contact lens data for which astigmatism = yes.								
Table 4.8	Part of the conta	ct lens data for w	mich astigmatis	sm = yes.	age=young	2/4			
age	spectacle prescription	astigmatism	tear production rate	recommended lenses	age=pre-presbyopic	1/4			
young	myope	yes	reduced	none	age=presbyopic	1/4			
young young young	myope hypermetrope hypermetrope	yes yes yes	normal reduced normal	hard none hard	spectacle prescription=myope	3/6			
pre-presbyopic pre-presbyopic pre-presbyopic pre-presbyopic	myope myope hypermetrope hypermetrope	yes yes yes yes	reduced normal reduced normal	none hard none none	spectacle prescription=hypermet rope	1/6			
presbyopic presbyopic presbyopic	myope myope hypermetrope	yes yes yes	reduced normal reduced	none hard none	tear production rate=reduced	0/6			
presbyopic	hypermetrope	yes	normal	none	tear production rate=normal	4/6			

<u>sistemas de reglas</u>							
Seguimos refinando: Table 4.9 Part of the contact lens data for which astigmatism = yes and tear production rate = normal.							
age	spectacle prescription	astigmatism	tear production rate	recommended lenses			
young	myope	yes	normal	hard			
young	hypermetrope	yes	normal	hard			
pre-presbyopic	туоре	yes	normal	hard			
pre-presbyopic	hypermetrope	yes	normal	none			
presbyopic	myope	yes	normal	hard			
presbyopic	hypermetrope	yes	normal	none			

4. Clasificación utilizando sistemas de reglas

Ejercicio 6:

■ Genera la regla para prescripción de lentes soft

Ejercicio 7:

 Genera el árbol de decisión según el algoritmo partición visto anteriormente

Ejercicio 8:

 Genera las reglas del ejercicio de elección de "play" visto anteriormente

33

5. Problema del *overfitting*. Sistemas de poda

Sistemas de poda:

- Puede darse situaciones de overfitting:
 - Que el modelo aprendido se ajuste en exceso a los ejemplos conocidos y funcione mal para los nuevos ejemplos
 - Especialmente cuando los ejemplos con los que se aprende contienen "ruido"
 - **■** Solución:
 - # Obtención de modelos más generales:
 - Eliminando condiciones de las ramas del árbol o de algunas reglas

5. Problema del *overfitting*. Sistemas de poda

Prepoda:

- Se realiza durante la construcción del árbol o conjunto de reglas
- Se determina el criterio de parada para seguir especializando una rama o regla:
 - Nº de ejemplos por nodo, nº de excepciones respecto a la clase mayoritaria, etc.

Pospoda:

- Después de la construcción del árbol o conjunto de reglas
- Se eliminan nodos o reglas en sentido ascendente
- **■** Es menos eficiente que la prepoda

Prepoda + pospoda:

Algoritmo C4.5 con prepoda por cardinalidad y pospoda más sofisticada

35

6. Part of speech tagging

Objetivo:

- A/AT similar/JJ resolution/NN passed/VBD in/IN the/AT Senate/NN by/IN a/AT vote/NN of/IN 29-5/CD ./.
- **■** Desambiguar:
 - I wouldn't **trust** him.
 - He put money in the family **trust**

Técnicas:

- Basadas en frecuencia de aparición del tag.
- Basadas en n-gramas

6. Part of speech tagging

- # Basadas en frecuencia de aparición del tag:
 - $P(t_i | w) = c(w,t_i)/(c(w,t_1) + ... + c(w,t_k))$
 - **c**(w,t_i) = número de veces que w/t_i aparece en el corpus
 - Éxito: 91% para inglés
 - **■** Ejemplo:
 - **■** heat :: noun/89, verb/5

37

6. Part of speech tagging

- # Transformation-based learning:
 - A simple rule-based part of speech tagger. Brill. 1992
 - Método:
 - 1. Etiquetar cada token con el tag más frecuente
 - 2. Crear reglas que corrijan tags erróneos
 - old_tag new_tag NEXT-TAG tag
 - old_tag new_tag PREV-TAG tag
 - · TO IN NEXT-TAG AT
 - · NN VB PREV-TAG TO
 - 3. Contar cuántas correcciones con éxito y fracaso se realizan con cada regla
 - 4. Seleccionar la mejor regla que maximice: |éxito| |fracaso|
 - 5. Si no se alcanza un umbral, ir al paso 2

6. Part of speech tagging

Ejercicio 9:

- Sobre el texto etiquetado del ejercicio 2 del módulo 2, obtener reglas que resuelvan errores de etiquetado aplicando la técnica de Transformation-based learning.
 - Una descripción más detallada de las etiquetas léxicas se puede encontrar en la siguiente transparencia y en http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html

39

rmación. Clasificación y Agrupamiento de Informaciós.

6. Part of speech tagging

UPenn TreeBank II word tags:

- CC Coordinating conjunction
- · CD Cardinal number
- **DT** Determiner
- · EX Existential there
- FW Foreign word
- IN Preposition or subordinating conjunction
- JJ Adjective
- JJR Adjective, comparative
- · JJS Adjective, superlative
- LS List item marker
- MD Modal
- · NN Noun, singular or mass
- · NNS Noun, plural
- NNP Proper noun, singular
- NNPS Proper noun, plural
- PDT Predeterminer
- POS Possessive ending
- PRP Personal pronoun

- PRP\$ Possessive pronoun
- RB Adverb
- · RBR Adverb, comparative
- RBS Adverb, superlative
- RP Particle
- SYM Symbol
- **TO** to
- UH Interjection
- · VB Verb, base form
- · VBD Verb, past tense
- VBG Verb, gerund or present participle
- · VBN Verb, past participle
- VBP Verb, non-3rd person singular present
- VBZ Verb, 3rd person singular present
- WDT Wh-determiner
- WP Wh-pronoun
- WP\$ Possessive wh-pronoun
- WRB Wh-adverb

6. Part of speech tagging. Basadas en n-gramas

Modelos ocultos de Markov:

"La predicción del siguiente estado solo depende del estado actual"

$$p(w_n | w_{n-1}) = \frac{C(w_{n-1,n})}{C(w_{n-1})}$$

■ Probabilidad de una oración utilizando bigramas:

$$p(w_{0..n}) = \prod_{i=0}^{n} p(w_n \, | \, w_{n-1})$$

6. Part of speech tagging.

Basadas en n-gramas

Trigramas:

La estimación de máxima verosimilitud del trigrama "of the king":

$$P_{\text{MLE}}(\text{KING} \mid \text{OF THE}) = \frac{\text{count}(\text{OF THE KING})}{\sum_{w} \text{count}(\text{OF THE } w)} = \frac{\text{count}(\text{OF THE KING})}{\text{count}_{\text{hist}}(\text{OF THE})}$$

6. Part of speech tagging

Modelos estocásticos:

- Dada la secuencia de palabras de una oración:
 - $\mathbf{w} = \mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n$
- Asignar una secuencia de etiquetas:

$$T = t_1, t_2, \dots, t_n$$

- **■** Objetivo:
 - Encontrar T que maximice $P(T|W) = P(W|T) P(T) / P(W) = \alpha P(W|T) P(T)$
- Forma de cálculo:
 - **■** $P(T) = P(t_1) P(t_2 \mid t_1) P(t_3 \mid t_1, t_2) P(t_4 \mid t_1, t_2, t_3) \dots P(t_n \mid t_1, t_2, \dots t_{n-1}) \approx P(t_1) P(t_2 \mid t_1) P(t_3 \mid t_2) \dots P(t_n \mid t_{n-1})$ # Utilizando second order Markov model: $P(t_i \mid t_{i-2}, t_{i-1})$;
 - $P(W|T) = P(w_1 | t_1) P(w_2 | t_2) \dots P(w_n | t_n)$

45

6. Part of speech tagging. Modelos estocásticos

Table	1:	Statistics	to	be	coll	ectea

notation	counting the number of
C_n	all word tokens w
C(w)	occurrences of the word w
C(w,t)	occurrences of the word w tagged with t
C(t)	occurrences of the tag t
$C(t_1, t_2)$	occurrences of the tag bigram (t_1, t_2) ,
	that is the tag t_1 followed by the tag t_2
$C(t_1, t_2, t_3)$	occurrences of the tag trigram (t_1, t_2, t_3) ,
	that is the tag t_1 followed by t_2 followed by t_3
$C(w_1,t_1,t_2)$	occurrences of the wordtag-tag bigram (w_1,t_1,t_2) ,
	that is the word w_1 tagged with t_1 followed by the tag t_2
$C_m(t)$	different word types tagged with tag t
$C_c(t)$	occurrences of capitalized words tagged with t
$C_m(w_{\text{end-i}},t)$	different word types ending with the same i letters w and tagged with t

$$P(t_i) = \frac{C(t_i)}{C_n}$$

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(t_i|t_{i-2},t_{i-1}) = \frac{C(t_{i-2},t_{i-1},t_i)}{C(t_{i-1},t_{i-2})}$$

$$P(t_i|w_{i-1},t_{i-1}) = \frac{C(w_{i-1},t_{i-1},t_i)}{C(w_{i-1},t_{i-1})}$$

$$P(w_i|t_i) = \frac{C(w_i,t_i)}{C(t_i)}$$

$$P(t_i|w_i) = \frac{C(w_i,t_i)}{C(w_i)}$$

6. Part of speech tagging. Modelos estocásticos

Para ampliar conocimientos:

- "Implementing an efficient part-of-speech tagger". Johan Carlberger, Viggo Kann. 24th March 1999
- Google Books: Ngram Viewer
 - http://storage.googleapis.com/books/ngrams/books/datasetsv 2.html

47

6. Part of speech tagging. Modelos estocásticos

Ejercicio 10:

- Dadas las dos siguientes frases:
 - Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN
 - People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- FY dadas las probabilidades de las bigramas:
 - P(NN|TO) = .021 P(race|NN) = .00041
 - P(VB|TO) = .34 P(race|VB) = .00003
- Calcular la etiqueta más probable para "race" según el modelo estocástico

6. Part of speech tagging. Modelos estocásticos

Añadiendo reglas:

Detección de nombres propios si la palabra empieza por mayúscula:

$$P_c(w,t) = \begin{cases} \gamma_1 & \text{if } t \text{ is not proper-noun tag and } w \text{ is capitalized,} \\ \gamma_2 & \text{if } t \text{ is proper-noun tag and } w \text{ is not capitalized,} \\ 1 & \text{otherwise.} \end{cases}$$

- $\Upsilon_1 = 0.028$ and $\Upsilon_2 = 0.044$
- **E** En el caso de palabras desconocidas: $\Upsilon_1 = 0.020 \ \Upsilon_2 = 0.048$

$$T(w_{1..n}) = \underset{t_{1..n}}{\operatorname{arg\,max}} \prod_{i=1}^{n} P_{int}(t_i|t_{i-2},t_{i-1}) P(w_i|t_i) P_c(w_i,t_i).$$

6. Part of speech tagging.

Modelos estocásticos

Etiquetando palabras desconocidas:

■ Hay que estimar P_m(w | t) en lugar de P(w | t): éxito del 45.5% en etiquetado de palabras desc.

$$P_m(w|t) = \frac{C_m(t)}{\sum_{\tau \in \text{tag set}} C_m(\tau)}$$

► Se puede añadir frecuencias de terminaciones (L máximo de 5, éxito del 88.7%):

$$P_e(w|t) = \sum_{i=0}^{L} \alpha_i \cdot \frac{C(w_{\text{end-i}}, t)}{\sum_{\tau \in \text{tag set}} C(w_{\text{end-i}}, \tau)}$$

7. Sistemas de agrupamiento de Información

Agrupamiento (clustering):

- Separar en grupos basándose en las similitudes o relaciones existentes
- Diferencias con la clasificación automática:
 - Los grupos o categorías no están necesariamente predefinidos
 - Se pueden asignar uno o varios grupos
- Aplicaciones:
 - Recuperación de información: organizar los resultados
 - Facilitar la navegación por una colección de documentos
 - **■** Creación de directorios Web (*Yahoo*)

E 1

7. Sistemas de agrupamiento de Información

Agrupamiento en la RI:

- Objetivo:
 - Particionar una colección de documentos D en k subconjuntos o clusters D_1 , D_2 , ..., D_k , de tal forma que se minimice la distancia intracluster o se maximice la semejanza intracluster:
 - # Utilizando el modelo vectorial:
 - Un clúster sería un *centroide* de los documentos
 - Objetivo:
 - Minimizar $\sum_{i} \sum_{d \in D_{i}} \text{distancia}(d, \vec{D}_{i})$ o maximizar $\sum_{i} \sum_{d \in D_{i}} \text{semejanza}(d, \vec{D}_{i})$
- ⊨ Hipótesis de agrupamiento:
 - Los documentos fuertemente asociados tienden a ser relevantes para la misma consulta
 - Si un usuario está interesado en un doc de un grupo, también es probable que lo esté en los demás miembros del grupo

8. Sistemas de agrupamiento de Información en la RI

Tipos de agrupamiento en la RI:

- **■** Pre-retrieval document clustering:
 - Se realiza en fase de indexación
 - Se elige un representante del grupo que sería con el que se compara la query (los restantes docs del grupo no se comparan)
 - Problema: creación de grupos estáticos en un entorno tan dinámico como es la Web
- **■** Post-retrieval document clustering:
 - Se realiza en fase de presentación de resultados de la fase de búsqueda
 - Se agrupan los documentos devueltos por el motor de búsqueda
 - Problema: eficiencia del proceso en tiempo de búsqueda

53

8. Sistemas de agrupamiento de Información en la RI

Fases en el agrupamiento en la RI:

- Selección/extracción de características: representación de objetos
- Cálculo de la similitud entre objetos: medidas de distancia
- Clustering o agrupamiento

8. Sistemas de agrupamiento de Información en la RI

- # Técnicas de agrupamiento:
 - ▶ No exclusivas: un doc puede pertenecer a varios grupos
 - **Exclusivas**: un doc solo pertenece a un grupo
 - # Extrinsecas
 - # Cuando los grupos están predefinidos y se tienen objetos que ya están agrupados en dichos clusters, los cuales son utilizados por el algoritmo para aprender a agrupar el resto de objetos
 - Intrínsecas:
 - # Los grupos se crean a partir de las características propias de los objetos sin conocer previamente los grupos
 - # Tipos:
 - Jerárquicas: los grupos se consiguen mediante la separación o unión de grupos de documentos generando una estructura en árbol con grupos anidados
 - Particionales: se llega a un agrupamiento que optimiza un criterio predefinido o función objetivo, creando una estructura plana, sin grupos anidados

55

9. Sistemas de agrupamiento de información particionales

- # Técnicas de agrupamiento particionales (k-clustering, k-means, k-medoids):
 - **■** Algoritmo:
 - Se determina a priori el *número de grupos*:
 - # Se cogen los k primeros objetos, o
 - # Los k objetos más alejados entre sí, o
 - # k objetos aleatoriamente
 - Iterativamente se van asignando docs a estas particiones
 - Los docs se reasignan de acuerdo a una función objetivo
 - El proceso se repite hasta que se consigue un criterio de terminación
 - Variaciones de los clusters:
 - Juntar grupos cuando la distancia entre sus centroides esté por debajo de un umbral
 - Dividir grupos cuando su varianza esté por encima de un umbral

Función objetivo:

- Internas: miden similitud intra-cluster:
 - Maximizar la suma de los promedios de las similitudes existentes entre los pares de docs asignados a cada cluster, teniendo en cuenta el tamaño de cada uno:
 - ♯ k: nº de clusters; n: nº elementos de cada cluster; sim(d, e): función de similitud p.ej. el coseno

$$\max \quad I_1 = \sum_{r=1}^k n_r \times \left(\frac{1}{n_r^2} \times \sum_{d_i, d_r \in S_r} sim(d_i, d_j) \right)$$

- Externas: miden distancia inter-cluster.
 - Minimizar similitud entre centroide de cada cluster y el centroide de la colección completa

$$\min \quad E_1 = \sum_{r=1}^k n_r \times sim(C_r, C)$$

57

9. Sistemas de agrupamiento de información particionales

k-mean:

- Generar los k clusters iniciales con sus docs
- Inicializar los centroides de cada cluster
- Mientras sea posible realizar más mejoras
 - Para cada documento d
 - # Encontrar el cluster c cuyo centroide es más similar a d
 - # Asignar d al cluster c
 - Para cada cluster c
 - # Recalcular el centroide de c según los documentos asignados a c

9. Sistemas de agrupamiento de información particionales

- # Ejemplo de aplicación de *k-mean* (University of South Carolina Upstate, Angelina Tzacheva):
 - **■** Supongamos:
 - Los siguientes 8 vectores: A1(2, 10) A2(2, 5) A3(8, 4) A4(5, 8) A5(7, 5) A6(6, 4) A7(1, 2) A8(4, 9)
 - = k=3
 - Clusters iniciales: A1(2, 10), A4(5, 8), A7(1, 2)
 - Distancia entre dos vectores a=(x1, y1) y b=(x2, y2): $\# \rho(a, b) = |x2-x1| + |y2-y1|$
 - Centroide de un grupo *n* de vectores: vector con el resultado de la media de los n vectores. Cada componente del vector centroide será la media aritmética de las casillas de todos los vectores

59

Iteración 1 de k-means:

		Cluster 1 (2, 10)	Cluster 2 (5, 8)	Cluster 3 (1, 2)	
	Vector		Dist Clust 2		Cluster
A1	(2, 10)	0	5	9	1
A2	(2, 5)	5	6	4	3
A3	(8, 4)	12	7	9	2
A4	(5, 8)	5	0	10	2
A5	(7, 5)	10	5	9	2
A6	(6, 4)	10	5	7	2
A7	(1, 2)	9	10	0	3
A8	(4, 9)	3	2	10	2

10. Sistemas de agrupamiento de información jerárquicos

Tipos de sistemas jerárquicos:

- Aglomerativos:
 - Se comienza con los objetos o individuos de modo individual
 - Luego se van agrupando de modo que los primeros en hacerlo son los más similares
 - Al final, todos los subgrupos se unen en un único cluster

Divisivos:

Se actúa al contrario. Se parte de un grupo único con todas las observaciones y se van dividiendo según lo lejanos que estén

65

10. Sistemas de agrupamiento de información jerárquicos

Sistemas jerárquicos aglomerativos. Algoritmo:

- Empezar con N clusters (el número inicial de elementos) y una matriz N × N simétrica de distancias o similitudes. D = [d_{ik}]_{ik}.
- Dentro de D, buscar aquella entre los clusters U y V (más próximos, más distantes o en media más próximos) que sea la menor entre todas, d_{uv}
- Juntar U y V en uno solo. Actualizar D:
 - Borrando las filas y columnas de los clusters U y V
 - Formando la fila y columna de las distancias del nuevo cluster (UV) al resto de clusters
- Repetir los pasos (2) y (3) un total de (N 1) veces

