Modelling with Differential Equations Section 1.3 (Noonburg)

Idea: We can model data and make predictions using Mathematics. Derivatives measure change. So anything that changes can be modelled using DE.

e.g. when T measures temperature and t measures time, $\frac{dT}{dt}$ gives the rate of change of temperature.

Example #1: Let C(t) be the concentration of a drug in the bloodstream. As the body eliminates the drug, C(t) decreases at a rate that is proportional to the amount of the drug that is present at the time. Model this using DE.

$$\frac{dC}{dt} = -kC(t)$$

$$k = positive constant$$

$$t = time$$

$$C(t) = concentration at time the$$

Example #2: Newton's Law of Cooling states: "The rate at which an object cools is proportional to the difference in temperature between the object and its surroundings." Model this using DE.

T = temperature of object at time to

$$T_s$$
 = temperature of surroundings

 t = time

 k = constant > 0

$$\frac{dT}{dt} = -k(T-T_s)$$

Falling body problems: In a free fall, Newton's second law can be used to write:

$$sum\ of\ forces = mass \times acceleration$$

Since the acceleration is the rate of change of velocity (i. e. a(t) = v'(t)), this results in a DE model:

$$mv'(t) = mg - k(v(t))^p$$

 $\implies v'(t) = g - \frac{k}{m}(v(t))^p$

where m is the mass, g is the gravity, k is the coefficient of friction and p is an exponent usually assumed to be 1.

Example #3: Assuming
$$p = 1$$
 and $g = 9.8 \ ms^{-2}$, the equation $v' = g - \frac{k}{m}v$ has a solution

$$v(t) = \frac{mg}{k} + Ce^{-\frac{k}{m}t}.$$

A man drops from a high flying plane and falls for 5 seconds before opening his parachute. With the parachute closed, $\frac{k}{m} = 1s^{-1}$.

(a) Find the man's velocity when he opens his parachute. (Use v(0) = 0)

Maple:
dsolve
$$(v'(t) = g - \frac{k}{m} \cdot v(t)) \rightarrow v(t) = \frac{gm}{k} + e^{-kt/m}C$$

$$0 = 9 + e^{\circ}C_{1}$$
 $C_{1} = 9.8$ $V(t) = 9.8(1 - e^{-t})$ for first 5 seconds $V(5) = 9.8 - 9.8e^{-5} = 9.73$ m/s

(b) After the parachute opens, what must be the value of $\frac{k}{m}$ to get his terminal velocity down to $2.5ms^{-1}$? (Assume he has a very long way to fall.)

Terminal velocity:
$$v = \frac{ma}{k} = \frac{a}{k/m}$$

 $\frac{k}{m} = \frac{q.8}{2.5} = 3.92 \text{ Hz}$

We will discuss more applications/ models in Chapter 2.