In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
from sklearn.metrics import f1_score, confusion_matrix, precision_recall_curve, roc_curve
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

diabetes_data = pd.read_csv('diabetes.csv')
print(diabetes_data['Outcome'].value_counts())
diabetes_data.head(3)
```

0 5001 268

Name: Outcome, dtype: int64

Out[1]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.672
4)

In [2]:

diabetes_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
	. (1 104/0) ! 104/7)		

dtypes: float64(2), int64(7) memory usage: 54.1 KB

In [3]:

```
# 수정된 get_clf_eval() 함수

def get_clf_eval(y_test, pred=None, pred_proba=None):
    confusion = confusion_matrix( y_test, pred)
    accuracy = accuracy_score(y_test , pred)
    precision = precision_score(y_test , pred)
    recall = recall_score(y_test , pred)
    f1 = f1_score(y_test, pred)
    # ROC-AUC 추가
    roc_auc = roc_auc_score(y_test, pred_proba)
    print('오차 행렬')
    print(confusion)
# ROC-AUC print 추가
    print('정확도: {0:.4f}, 정밀도: {1:.4f}, 재현율: {2:.4f},₩
    F1: {3:.4f}, AUC:{4:.4f}'.format(accuracy, precision, recall, f1, roc_auc))
```

In [4]:

```
def precision_recall_curve_plot(y_test=None, pred_proba_c1=None):
# threshold ndarray와 이 threshold에 따른 정밀도, 재현율 ndarray 추출.
precisions, recalls, thresholds = precision_recall_curve( y_test, pred_proba_c1)

# X축을 threshold값으로, Y축은 정밀도, 재현율 값으로 각각 Plot 수행. 정밀도는 점선으로 표시
plt.figure(figsize=(8,6))
threshold_boundary = thresholds.shape[0]
plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--', label='precision')
plt.plot(thresholds, recalls[0:threshold_boundary], label='recall')

# threshold 값 X 축의 Scale을 0.1 단위로 변경
start, end = plt.xlim()
plt.xticks(np.round(np.arange(start, end, 0.1),2))

# x축, y축 label과 legend, 그리고 grid 설정
plt.xlabel('Threshold value'); plt.ylabel('Precision and Recall value')
plt.legend(); plt.grid()
plt.show()
```

Logistic Regression으로 학습 및 예측 수행

```
In [5]:
# 피처 데이터 세트 X, 레이블 데이터 세트 y를 추출.
# 맨 끝이 Outcome 컬럼으로 레이블 값임. 컬럼 위치 -1을 이용해 추출
X = diabetes_data.iloc[:, :-1]
y = diabetes_data.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 156, straf
# 로지스틱 회귀로 학습,예측 및 평가 수행.
Ir_clf = LogisticRegression()
Ir_clf.fit(X_train , y_train)
pred = Ir_clf.predict(X_test)
pred_proba = Ir_clf.predict_proba(X_test)[:, 1]
get_clf_eval(y_test , pred, pred_proba)
오차 행렬
[[88 12]
[23 31]]
정확도: 0.7727, 정밀도: 0.7209, 재현율: 0.5741, F1: 0.6392, AUC:0.7919
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:814: Co
nvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-lear
n.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (h
ttps://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)
  n_iter_i = _check_optimize_result(
```

precision recall 곡선 그림

In [6]:

pred_proba_c1 = Ir_clf.predict_proba(X_test)[:, 1]
precision_recall_curve_plot(y_test, pred_proba_c1)

각 피처들의 값 4분위 분포 확인

In [7]:

diabetes_data.describe()

Out[7]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabete
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

'Glucose' 피처의 분포도

In [8]:

```
plt.hist(diabetes_data['Glucose'], bins=10)
```

Out[8]:

0값이 있는 피처들에서 0값의 데이터 건수와 퍼센트 계산

In [9]:

```
# O값을 검사할 피처명 리스트 객체 설정
zero_features = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']

# 전체 데이터 건수
total_count = diabetes_data['Glucose'].count()

# 피처별로 반복 하면서 데이터 값이 0 인 데이터 건수 추출하고, 퍼센트 계산
for feature in zero_features:
    zero_count = diabetes_data[diabetes_data[feature] == 0][feature].count()
    print('{0} 0 건수는 {1}, 퍼센트는 {2:.2f} %'.format(feature, zero_count, 100*zero_count/total_cd
```

Glucose 0 건수는 5, 퍼센트는 0.65 % BloodPressure 0 건수는 35, 퍼센트는 4.56 % SkinThickness 0 건수는 227, 퍼센트는 29.56 % Insulin 0 건수는 374, 퍼센트는 48.70 % BMI 0 건수는 11, 퍼센트는 1.43 %

0값을 평균값으로 대체

In [10]:

```
# zero_features 리스트 내부에 저장된 개별 피처들에 대해서 0값을 평균 값으로 대체
diabetes_data[zero_features]=diabetes_data[zero_features].replace(0, diabetes_data[zero_features].me
```

standardScaler 클래스를 이용해 피처 데이터 세트에 일괄적으로 스케일링 적용하고 0값을 평균값으로 대체한 데이터 세트로 학습/예측

In [11]:

```
X = diabetes_data.iloc[:, :-1]
y = diabetes_data.iloc[:, -1]
# StandardScaler 클래스를 이용해 피처 데이터 세트에 일괄적으로 스케일링 적용
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size = 0.2, random_state = 150
# 로지스틱 회귀로 학습, 예측 및 평가 수행.
Ir_clf = LogisticRegression()
Ir_clf.fit(X_train, y_train)
pred = Ir_clf.predict(X_test)
pred_proba = Ir_clf.predict_proba(X_test)[:, 1]

get_clf_eval(y_test , pred, pred_proba)

오차 행렬
[[90 10]
```

정확도: 0.7987, 정밀도: 0.7674, 재현율: 0.6111, F1: 0.6804, AUC:0.8433

분류결정 임계값을 변경하면서 성능 측정

In [12]:

[21 33]]

```
from sklearn.preprocessing import Binarizer

def get_eval_by_threshold(y_test , pred_proba_c1, thresholds):
    # thresholds 리스트 객체내의 값을 차례로 iteration하면서 Evaluation 수행.
    for custom_threshold in thresholds:
        binarizer = Binarizer(threshold=custom_threshold).fit(pred_proba_c1)
        custom_predict = binarizer.transform(pred_proba_c1)
        print('임곗값:',custom_threshold)
        get_clf_eval(y_test , custom_predict, pred_proba_c1)
```

In [13]:

```
thresholds = [0.3, 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.50]
pred_proba = Ir_clf.predict_proba(X_test)
get_eval_by_threshold(y_test, pred_proba[:,1].reshape(-1,1), thresholds )
임곗값: 0.3
오차 행렬
[[67 33]
[11 43]]
정확도: 0.7143, 정밀도: 0.5658, 재현율: 0.7963, F1: 0.6615, AUC: 0.8433
임곗값: 0.33
오차 행렬
[[72 28]
[12 42]]
정확도: 0.7403, 정밀도: 0.6000, 재현율: 0.7778, F1: 0.6774, AUC:0.8433
임곗값: 0.36
오차 행렬
[[76 24]
[15 39]]
정확도: 0.7468, 정밀도: 0.6190, 재현율: 0.7222, F1: 0.6667, AUC: 0.8433
임곗값: 0.39
오차 행렬
[[78 22]
[16 38]]
정확도: 0.7532, 정밀도: 0.6333, 재현율: 0.7037, F1: 0.6667, AUC: 0.8433
임곗값: 0.42
오차 행렬
[[84 16]
[18 36]]
정확도: 0.7792, 정밀도: 0.6923, 재현율: 0.6667, F1: 0.6792, AUC: 0.8433
임곗값: 0.45
오차 행렬
[[85 15]
[18 36]]
정확도: 0.7857, 정밀도: 0.7059, 재현율: 0.6667, F1: 0.6857, AUC:0.8433
임곗값: 0.48
오차 행렬
[[88 12]
[19 35]]
정확도: 0.7987, 정밀도: 0.7447, 재현율: 0.6481,
                                            F1: 0.6931, AUC: 0.8433
임곗값: 0.5
오차 행렬
[[90 10]
[21 33]]
정확도: 0.7987, 정밀도: 0.7674, 재현율: 0.6111, F1: 0.6804, AUC: 0.8433
```

In [14]:

```
# 임곗값를 0.48로 설정한 Binarizer 생성 binarizer = Binarizer(threshold=0.48)
# 위에서 구한 Ir_clf의 predict_proba() 예측 확률 array에서 1에 해당하는 컬럼값을 Binarizer변환. pred_th_048 = binarizer.fit_transform(pred_proba[:, 1].reshape(-1,1))
get_clf_eval(y_test , pred_th_048, pred_proba[:, 1])
```

```
오차 행렬
[[88 12]
[19 35]]
정확도: 0.7987, 정밀도: 0.7447, 재현율: 0.6481, F1: 0.6931, AUC:0.8433
```

In []: