AUTHOR INDEX TO VOLUME 32 (1990)

(The issue number is given in front of the page numbers.)

Abdalkhani, J., A note on examples of Volterra integral equation with exact solution	(4) 335–337
Anderssen, R.S., Dietrich, C.R. and Green, P.A., Designing artificial lakes as pollution	(4) 333-337
control devices	(1,2) 77- 82
Ansley, C.F., see Kohn, R.	(1,2) 203-208
Bai, J., Jakeman, A.J. and McAleer, M., The effects of misspecification in estimating the	
percentiles of some two- and three-parameter distributions	(1,2) 197-202
Bai, J., Jakeman, A.J. and Taylor, J.A., Percentile estimation of the three-parameter	(1,2) 17. 202
gamma and lognormal distributions: methods of moments versus maximum likelihood	(1,2) 167-172
Bayes, T., see Mackey, B.G.	(1,2) 225–229
Beer, T., Modelling rainfall as a fractal process	(1,2) 119–124
Belforte, G., Bona, B. and Cerone, V., Identification, structure selection and validation of	(-,-,
uncertain models with set-membership error description	(5,6) $561-569$
Benyon, P.R., Monte Carlo and other methods for nonlinear non-Gaussian estimation	(1,2) 215-220
Bona, B., see Belforte, G.	(5,6) $561-569$
Bowyer, J.K., Designing a database for coastal planning and management	(1,2) 255–260
Braddock, R., see Guenni, L.	(1,2) 113 -118
Broman, V. and Shensa, M.J., A compact algorithm for the intersection and approxima-	
tion of N-dimensional polytopes	(5,6)469-480
Brooker, P.I., see Hansen, D.V.	(1,2) 185–190
Cerone, V., see Belforte, G.	(5,6) 561–569
Chapman, M.J., see Godfrey, K.R.	(3) 273–295
Chapman, T.G., Construction of hydrological models for natural systems management	(1,2) 13- 37
Charles-Edwards, D., see Guenni, L.	(1,2) 113–118
Chatwin, P.C. and Sullivan, P.J., Cloud-average concentration statistics	(1,2) 49-57
Chia, E., Some fundamental questions in stochastic simulation of weather sequences, with	
applications to ANUCLOUD	$(1,2)\ 101-106$
Clément, T. and Gentil, S., Recursive membership set estimation for output-error models	
Common, M., see McKenney, D.	(1,2) 137-142
Croome, R.J., see Finnigan, J.J.	(1,2) 89 $-$ 94
Cuddy, S.M., Laut, P., Davis, J.R., Whigham, P.A., Goodspeed, J. and Duell, T.,	1
Modelling the environmental effects of training on a major Australian army base	(1,2) 83- 88
Davis, J.R., see Cuddy, S.M.	(1,2) 83- 88
Depiante, E.V., A symbolic generator of state equations for modeling of electrical systems	(4) 339–349
Dietrich, C.R., Sensitivity of kriging and spline interpolation to data perturbations	(1,2) 191–196

Dietrich, C.R., see Anderssen, R.S.	(1,2) 77- 82
Dillon, P.J., see Hansen, D.V.	(1,2) 185–190
Doran, D.G., A comparison of some methods of stochastic modelling of solar energy	
photovoltaic storage systems	(1,2) 173–178
Duell, T., see Cuddy, S.M.	(1,2) 83- 88
Finnigan, J.J., Neil, D., Lees, B.G., Croome, R.J. and Woodgate, M., Modelling the wind	
flow pattern around a parabolic sand dune	(1,2) 89- 94
Gallagher, D.R., see Henderson-Sellers, B.	(1,2) 143–148
Gani, J., Epidemic modelling and simulation	(1,2) 3- 12
Gentil, S., see Clément, T.	(5,6) 505-513
Ghassemi, F., Jakeman, A.J. and Jacobson, G., Simulation of sea water intrusion	(1,2) 71- 76
Godfrey, K.R. and Chapman, M.J., Identifiability and indistinguishability of linear	
compartmental models	(3) 273–295
Goodspeed, J., see Cuddy, S.M.	(1,2) 83–88
Granger, K.J., Process modelling and geographic information systems: breathing life into	
spatial analysis	(1,2) 243–247
Green, D.G., Reichelt, R.E., van der Laan, J. and Macdonald, B.W., A generic approach to	
landscape modelling	(1,2) 237-242
Green, D.G., see Stockwell, D.R.B.	(1,2) 249–254
Green, P.A., see Anderssen, R.S.	(1,2) 77 – 82
Guenni, L., Charles-Edwards, D., Rose, C.W., Braddock, R. and Hogarth, W., Stochastic	
weather modelling: a phenomenological approach	(1,2) 113–118
Hansen, D.V., Dillon, P.J. and Brooker, P.I., The estimation variance of the areal mean of	
a sampled random field	(1,2) 185-190
Haritos, N. and He, D.T., A finite element formulation for cables suitable for dynamic	(-,-,
modelling	(1,2) 179-184
He, D.T., see Haritos, N.	(1,2) 179–184
Henderson-Sellers, B. and Gallagher, D.R., Modelling tools for water management	(1,2) 143–148
Hogarth, W., see Guenni, L.	(1,2) 113–118
Hornberger, G.M., Modelling complex natural processes with small observation sets: the	(1,2) 115 110
case of acidification of surface waters in North America and Europe	(1,2) 39- 47
Huang, YF., see Rao, A.K.	(5,6) 515-526
Hurley, P. and Physick, W., Fumigation modelling – a Lagrangian particle approach	(1,2) 65- 70
Hutchinson, M.F., Robust calibration of seasonally varying stochastic weather models	(1,2) 03- 70
using periodic smoothing splines	(1,2) 125-130
	,
Jacobson, G., see Ghassemi, F.	(1,2) 71- 76
Jakeman, A.J., Introduction to the Special Issue on the Simulation Society of Australia	
(Inc) 8th Biennial Conference, 1989	(1,2) 1- 2
Jakeman, A.J., see Bai, J.	(1,2) 167-172
Jakeman, A.J., see Bai, J.	(1,2) 197–202
Jakeman, A.J., see Ghassemi, F.	(1,2) 71 – 76
Jellett, P.M., Simulated annealing for a constrained allocation problem	(1,2) 149 - 154

Variation C. and Trafactor S.	(4) 402 410
Kechriotis, G., see Tzafestas, S. Keesman, K. Mambarshin set estimation using random scanning and principal compa	(4) 403–418
Keesman, K., Membership-set estimation using random scanning and principal component analysis	(5,6) 535-543
Kobayashi, Y., see Ohkita, M.	(3,0) 333-343 (3) 297-308
Kohn, R. and Ansley, C.F., The nonparametric estimation of growth curves	(3) 297–308 $(1,2)$ 203–208
Kouvaritakis, B. and Trimboli, M.S., Bounded-error data, and frequency response design	
Kuczera, G., see Retnam, M.T.	(5,6) 597–607 (1,2) 107–112
Ruczera, G., see Remain, M. I.	(1,2) 107-112
Laut, P., see Cuddy, S.M.	(1,2) 83- 88
Lees, B.G., see Finnigan, J.J.	(1,2) 89 $-$ 94
Lees, B.G., see Noble, S.	(1,2) 95-100
Macdonald, B.W., see Green, D.G.	(1,2) 237-242
Mackey, B.G. and Bayes, T., A modelling framework for the spatial extension of	
ecological relations in vegetation studies	(1,2) 225–229
Mahendrarajah, S., Dynamic optimization with multiple objectives and the valuation of	
public goods of community reservoirs	(1,2) 131-136
McAleer, M., see Bai, J.	(1,2) 197–202
McKenney, D. and Common, M., The economic analysis of public sector forest manage-	
ment using linear programming: Selected results from an Australian application	(1,2) 137-142
Mo, S.H. and Norton, J.P., Fast and robust algorithm to compute exact polytope	
parameter bounds	(5,6) 481–493
Mo, S.H., see Norton, J.P.	(5,6) 527–534
Montgomery, T.J., see Noble, I.R.	(1,2) 221–224
Moore, A.D., see Noble, I.R.	(1,2) 221–224
Nakano, K., Tsurumi, I. and Sagara, S., Finite-dimensional approach to estimation of	
functional parameters in a parabolic system	(4) 351-357
Neil, D., see Finnigan, J.J.	(1,2) 89- 94
Ng, C.N. and Young, P.C., Recursive smoothing of environmental time-series	(1,2) 209–214
Noble, I.R., Moore, A.D. and Montgomery, T.J., Trilogy – three hierarchical models of	(-,-)
plant succession	(1,2) 221-224
Noble, S. and Lees, B.G., Offshore bar formation in a shallow water, limited fetch	(-,-,
environment	(1,2) 95 -100
Norton, J.P. and Mo, S.H., Parameter bounding for time-varying systems	(5,6) 527-534
Norton, J.P., see Mo, S.H.	(5,6) 481-493
Norton, T.W. and Williams, J.E., Wildlife management in Australia: New developments	
and opportunities using computer-based generic models	(1,2) 231–235 (4) 359–372
Noye, J., Some explicit three-level finite-difference simulations of advection	(4) 339-372
Ohkita, M. and Kobayashi, Y., Piecewise-linear approximation of solution of linear	
differential equations by Walsh functions	(3) 297–308
Physick, W., see Hurley, P.	(1,2) 65- 70
Physick, W., see Hurley, P. Piet-Lahanier, H. and Walter, E., Exact recursive characterization of feasible parameter	(1,2) 65- 70

Diet Labories II and Welter E. Characterization of non-connected nonmater uncer-		
Piet-Lahanier, H. and Walter, E., Characterization of non-connected parameter uncer-		553-560
tainty regions		149–468
Piet-Lahanier, H., see Walter, E.		571-584
Pronzato, L. and Walter, E., Experiment design for bounded-error models	(3,6)	5/1-364
Rajaraman, V., see Siva Ram Murthy, C.	(4) :	393-401
Rao, A.K. and Huang, YF., Recent developments in optimal bounding ellipsoidal		
parameter estimation		515-526
Reichelt, R.E., see Green, D.G.		237-242
Retnam, M.T., Williams, B.J. and Kuczera, G., Simulation of areally integrated spatial-		
temporal rainfall field for use in rainfall-runoff models		07-112
Roberts, S., A particle method for a scalar advection diffusion equation	(1,2) 1	55-160
Rose, C.W., see Guenni, L.	(1,2) 1	13-118
Rubinstein, R.Y. and Shapiro, A., Optimization of static simulation models by the score	, , ,	
function method		73-392
C C N-1 V	(4) 3	51 257
Sagara, S., see Nakano, K.	. ,	51-357
Shapiro, A., see Rubinstein, R.Y.	. ,	73-392
Shensa, M.J., see Broman, V.	(5,6) 4	69-480
Siva Ram Murthy, C. and Rajaraman, V., Analytical and simulation studies of a multi-	(4) 2	02 401
processor system for high-speed numerical computations	(4) 3	93-401
Smit, M.K. and Verhoof, J.W., A bounded-error approach to accuracy analysis in	15615	15 551
ellipsometry		45-551
Stockwell, D.R.B. and Green, D.G., Parallel computing in ecological simulation		49-254
Sullivan, P.J., see Chatwin, P.C.	(1,2)	49– 57
Taha, T.R., Numerical simulation of the nonlinear Schrödinger equation	(3) 3	09-312
Taylor, J.A., New approaches to modelling the global distribution of trace gases in the		
troposphere	(1,2)	59- 64
Taylor, J.A., see Bai, J.	(1,2) 1	67 - 172
Tempo, R. and Vicino, A., Optimal algorithms for system identification: a review of some		
recent results	(5,6) 5	85-595
Trimboli, M.S., see Kouvaritakis, B.	(5,6) 5	97-607
Tsurumi, I., see Nakano, K.	(4) 3:	51 - 357
Tzafestas, S. and Kechriotis, G., A numeric-symbolic expert system for 2-D and 3-D		
object recognition in robotic applications	(4) 40	03-418
van der Laan, J., see Green, D.G.	(1,2) 23	37_242
Verhoof, J.W., see Smit, M.K.	(5,6) 54	
	(5,6) 58	
Vicino, A., see Tempo, R.	(3,0) 38	3-393
Walter, E., Foreword to the Special Issue on Parameter Identifications with Error Bound	(5,6)	447
Walter, E. and Piet-Lahanier, H., Estimation of parameter bounds from bounded-error		
data: a survey	(5,6)44	19-468
Walter, E., see Piet-Lahanier, H.	(5,6) 49	5-504
Walter, E., see Piet-Lahanier, H.	(5,6)55	3-560

Walter, E., see Pronzato, L.	(5,6) 571-584
Whigham, P.A., see Cuddy, S.M.	(1,2) 83 – 88
White, I., see Yang, J.Z.	$(1,2)\ 161-166$
Williams, B.J., see Retnam, M.T.	(1,2) 107-112
Williams, J.E., see Norton, T.W.	(1,2) 231–235
Woodgate, M., see Finnigan, J.J.	(1,2) 89- 94
Yang, J.Z. and White, I., A model of coupled water, water vapor and heat tran	nsport in
porous media and a simulation analysis of evaporation	$(1,2)\ 161-166$
Young, P.C., see Ng, C.N.	$(1,2)\ 209-214$

