③ 水産資源解析の概要

- さまざまな資源量推定手法
- どの資源評価モデルが良いのか?
- 資源量推定のさいに重要な3つのこと

適切な資源管理へむけて

適切な資源管理

• 減っていたら漁獲を減らす・増えていたら増やしても良い

妥当な資源評価

- 減っているか?増えているか?
- MSYはどのあたりか?

データ収集

• 漁獲量・漁獲物のサイズ組成・生物的知見

さまざまな資源評価手法(初級)

• 水産資源解析マニュアル (水研ホームページ)

https://www.fra.affrc.go.jp/kseika/guide_and_manual/afr/index.html

目次	エクセルファイル
1. 水産資源解析とは -水産資源解析の入口から出口 - 🔎	
2. 生活史モデル - 資源の回遊を想定する - 🔎	
3. 標本調査 - 何尾の魚を測定すれば良いか - 📙	(3-sampling.xls) 📧
4. 魚の成長 - 体長組成と成長曲線 - 📙	(4-growth.xls)
5. 生残率と死亡率 -魚の生き死に- 🔊	(5-survival.xls) 📧
6. 資源量推定 - 魚の量を知る - 🔎	(6-vpa.xls) 📧
7. 加入当たり漁獲量と加入当たり産卵親魚量 - 魚を上手に利用する - 📙	(7-ypr_spr_2.xls)
8. 再生産関係 -親子の関係を知る - 📙	(8-r_bh.xls) 🗃
9. 種苗放流と漁獲制限 -放流と獲り控え- 🔎	(9-iafse.xls) 🗃
10. プロダクションモデル - 漁獲量と努力量から - 📙	(10-sf_pm.xls) 📧

さまざまな資源評価手法(初級~中級)

- 過去の資源管理研修等の情報(市野川ホームページ)
 http://cse.fra.affrc.go.jp/ichimomo/
- Rを使った解析とシミュレーションなど

プレゼン・研修会資料

- 2015年度資源管理研修(2015年5月12-13日@中央水産研究所)
- 統合モデル検討会 (2014年12月12-13日@まほろばマインズ三浦)
- 2014年度資源管理研修(2014年5月21日@中央水産研究所)
 - プレゼン資料(pdf形式)
 - プレゼン資料(pptx形式)
- 2013年度資源管理研修(2013年5月21-22日@中央水産研究所)
- 漁業データと生態系解析のためのミニワークショップ in 2013 (2013年9月26-27日@西海区水産研究所)
- 大気海洋研究所共同利用シンポジウム(漁業情報を用いた水産資源の評価と管理)発表資料 「日本延縄漁業データを用いた 無数 (** CRUTE !**

さまざまな資源評価手法(中級~上級)

• 岡村さんホームページ

https://sites.google.com/site/hiroshiokamura/home

• RやADMBを使った解析、統計解析の解説など

どんなときにどんな方法を使うか?

• 努力量

一資源量指数

- 漁獲量
- 漁獲物の体長組成
- 漁獲物の年齢組成 _
- 生物的知見(成長・成熟など)

年齡別漁獲尾数

努力量 漁獲量 漁獲物の体長組成 漁獲物の年齢組成 生物的知見(成長・成熟など)

→ (tuned) VPA

データ十分

特徴	 委託調査の資源評価で利用。 2010年級の資源尾数 = (2010年の0歳の漁獲尾数+自然死亡尾数) + (2011年の1歳の漁獲尾数+自然死亡尾数) + (2012年の。。。) 		
利点	• 選択率の仮定が(ほとんど)必要ない		
欠点	• 年齢別漁獲尾数に誤差を仮定しない. 誤差が最近年に蓄積し、最近年の不確実性が最も高い. データ要求が高い.		
解說	 水産資源解析マニュアル(6章. 資源量推定) RVPA(市野川・岡村. 2014. 水産海洋研究. 78. 104-113) 2015年資源管理研修 <u>http://cse.fra.affrc.go.jp/ichimomo/fish/kensyu2015/kensyu2015.html</u> 年齢別漁獲尾数の推定方法→明日5コマ目(赤嶺さん) 		

VPA: 最近の流れ

 資源量と資源量指数のあいだの 非線形性の仮定 (Hashimoto et al. Fish. Sci. 投稿中)

 最新年のFがおかしくなってしまう (非常に大きくなってしまう) 問題の 対処(リッジVPA, Okamura et al. ICES Journal. https://doi.org/10.1093/icesjms/fsx 089)

努力量 漁獲量 漁獲物の体長組成 漁獲物の年齢組成 生物的知見(成長・成熟など) Statistical

Catch at age
(SCAA)

データ十分

特徴	海外ではよく使われている。漁業ごとに選択率を仮定。毎年の加入量を推定し、そこから前進計算。	
利点	年齢別漁獲尾数の誤差をモデル化できる→不確実性の評価 再生産関係をモデル内で推定→MSYをモデル内で推定できる 年齢別漁獲尾数の欠損もある程度許す	
欠点	漁業種別の年齢別漁獲尾数が必要. その漁業種内で,選択率がある程度一定とする仮定 データ要求が高い	
解說	日本語解説は(ほぼ?)なし マサバ太平洋系群に適用検討中	

SCAA: 最近の流れ

 選択率の柔軟な変化を許す State-Space Assessment Model (SAM) (右図)がヨー ロッパ(ICES)の資源評価で VPAに代わって利用されるように

Nielsen and Berg 2014 Fisheries Research 158: 96-101. Fig. 2

データ不足

努力量 漁獲量 漁獲物の体長組成 漁獲物の年齢組成 生物的知見(成長・成熟など)

プロダクションモデル

特徴	・ ロジスティックモデルを資源量指数と漁獲量にあてはめ, プロダクションモデルのパラメータ(r, K, B0, q)を推定する
利点	• 漁獲量と資源量指数だけで、資源量もMSY管理基準値も推定できる
欠点	推定値の不確実性はかなり高い.変数間の相関も高い.コントラスト(漁獲によって資源が急減→その後復活など)の強いデータでないとうまく推定できない.
解說	 エクセル:水産資源解析マニュアル(10章プロダクションモデル) R: 2013年度資源管理研修(21日後半) http://cse.fra.affrc.go.jp/ichimomo/fish/ichinokawa_R.pdf

プロダクションモデル:最近の流れ

- ・全てのパラメータを推定するのはほぼ不可能→一部パラメータ は推定せず、与える(ex.内的自然増加率のrなど)
- 特定のパラメータに事前分布を与えるベイズ型プロダクション モデル

→ デルリー法

特徴	 日別・月別の資源量指数と漁獲量が利用でき、閉じた資源で、漁獲圧が高い場合に利用できる。 漁期内で漁獲が進むにつれて資源量指数が減る→その程度の大きさから、漁獲前の資源量を推定。 わが国資源評価でも以外と使われている(スルメイカ・伊勢三河湾イカナゴ・伊勢三河湾トラフグ・神奈川県ナマコ)
利点	• 漁獲量と資源量指数のみから資源量が推定できる
欠点	 単年の資源量推定のみ. ただし、デルリー法+プロダクションモデルを 組み合わせた方法も(神奈川県ナマコ資源評価、Nakayama et al. Fish Sci., in press)
解説	明日の資源管理研修(西嶋さん)

漁獲量

漁獲物の体表組成漁獲物の生物組成

年齡別漁獲尾数

漁獲物の年齢組成

生物的知見(成長・成熟など)

データ中程度

→ 体長ベースの統合モデル

特徴・漁獲物の体長組成と成長式から、年齢別漁獲尾数をモデル内で推定する

利点

- 年齢別漁獲尾数がモデル内部で推定されるので, 年齢別漁獲尾数を外部で推定する手間が省ける& 不確実性が評価できる
- 体長組成データの欠損も許す

欠点

• モデルが複雑で、モデル調整に職人技が必要

解説

統合モデル検討会のページ:

http://cse.fra.affrc.go.jp/ichimomo/ss-

kento/ss-kentos.html

 上記検討会の開催報告: 市野川ら(2015)日本水 産学会誌. 81. 756-761

体長

世界の中での資源評価モデルの利用

どの資源評価モデルが「良い」のか?

WCSAM 2013

> WCSAM home

> Objectives

> Conference Timetable

> WCSAM Workshop

> Travel Bursaries

> Speakers

Location and hotel

> Other sessions

Steering Committee

> Contact us

> Simulation strategy

 Publish in the ICES Journal The World Conference on Stock | Assessment Methods for Sustainable Fisheries

Thank you to all that made WCSAM such a wonderful and enjoyable success.

From 15th to 19th July most of the world's leading stock assessment experts met in Boston to test and discuss stock assessment methods. The conference provided a forum for presentations on the application and future of stock assessment methods. It considered single stock approaches for data rich and poor stocks, and also multispecies and ecosystem based approaches. A two day workshop kicked off our deliberations. The conference proper (WCSAM) began on Wednesday 17th with a challenging key note by Sidney Holt. It was organised by researchers from a range of scientific institutions and RFMO across the world.

Over 220 narticinants from 27 countries took nart. The noster

http://www.ices.dk/news-and-events/symposia/WCSAM-2013/Pages/default.aspx

Deroba et al. 2015. ICES Journal of Marine Science. 72: 19-30

 Table 1
 Stocks for which real datasets were used in the simulation exercise

Common name	Scientific name	Assessment model challenges
North Sea cod	Gadus morhua	Unallocated removals, variable natural mortality
North Sea plaice (reconstructed discards)	Pleuronectes platessa	Shifts in population distribution, subsequent variation in catchability
North Sea plaice	Pleuronectes platessa	Discard estimation
North Sea herring	Clupea harengus	Internal vs. external stock – recruit estimation, stock structure, variable natural mortality
North Sea haddock	Melanogrammus aeglefinus	Time varying selectivity, stock structure, recruitment pulses
Northern hake	Merluccius merluccius	Dome selectivity, truncated age structure
Spurdog	Squalus acanthias	Sexual dimorphism
Bay of Biscay anchovy	Engraulis encrasicolus	Short-lived, high and variable natural mortality
Iberian sardine	Sardina pilchardus	Dome selectivity
Southern horse mackerel	Trachurus trachurus	Survey year effects, time varying selectivity
North Atlantic albacore tuna	Thunnus alalunga	Unknown selectivity and catchability, uncertain growth and natural mortality
US west coast canary rockfish	Sebastes pinniger	Dome selectivity, lack of contrast, ageing error, uncertain stock-recruitment
Georges Bank yellowtail flounder	Limanda ferruginea	Retrospective pattern
South African anchovy	Engraulis encrasicolus	Uninformative age data, uncertain natural mortality

Deroba et al. 2015. ICES Journal of Marine Science. 72: 19-30

Deroba et al. 2015. ICES Journal of Marine Science. 72: 19-39

どの手法が良いとは一概に言えない

- 利用できるデータと相談しつつ、利用できる手法を選ぶ
- どの手法を使っても「不確実性」は必ずある

重要なのは

- 1. 利用できるデータは「徹底的に見る・使う」
- 2. 不確実性を評価する(信頼区間の計算,感度分析など)
- 3. 不確実性に頑健な管理方策を考える

- 1. 利用できるデータを徹底的に使う
 - (例) 努力量&漁獲量データ→資源量指数
- 日別なのか、月別なのか、年別なのか?
- 船別や海域別のデータも利用できるか?

CPUE標準化(より信頼の高い指数の推定) デルリー法(絶対資源量&漁獲圧の推定)

CPUE標準化

漁獲量は、努力量と資源量だけで決まる? 海域・漁具・季節によって魚の獲れ具合は違う

ある年(y)の漁獲量 (C_y) は、 海の資源 (N_y) が多いほど、 漁獲のために費やす努力量 (E_y) が多いほど、 良い漁場 (q_a) や季節 (q_s) 、漁具 (q_g) を 選べば選ぶほど、

$$CPUE_y = C_y = q q_a q_s q_g N_y$$

$$E_y$$

CPUE標準化

観察されたCPUEと予測値の差(残差)が仮定した誤差分布 と似るようにパラメータ(q, qa,...)を推定

市野川HP (<a href="http://cse.fra.affrc.go.jp/ichimomo/" より)

標準化の例

•標準化した漁獲量を海域・地域別にプロットし、水温との関係を示した(太平洋クロマグロ0歳魚)

(Ichinokawa et al. 2014 Fish. Sci.)

2. 不確実性を評価する (信頼区間の計算,感度分析など)

- 「推定」には「誤差」がつきもの
- どの程度の誤差があるか、推定値だけでなく、信頼区間も 同時に示すことが重要

VPAで推定された 親魚資源量の80% 信頼区間

3. 不確実性に頑健な管理方策の提案

• 資源量推定値やMSY推定値の誤差があったとしても、それに耐 えうるような(頑健な)管理方策をとる

ex) わが国資源の ABC算定ルール

Fの大きさ

不確実性を考慮して, 決定論的・誤差なし の仮定で算出された F(Flimit)よりも小さ いFを目標(Ftarget) とする

Management Strategy Evaluation (MSE, 管理戦略評価)

• より明示的に、管理方策を考えるときに不確実性を取り込む

市野川・岡村 (2016) 統計数理. 64. 59-75. 図1

かんたんな例

毎年の資源量推定をランダムに間違えていると仮定

50年後の絶滅確率の比較

にほとんど影響しない

まとめ

1. 利用できるデータは「徹底的に見る・使う」

2. 不確実性を評価する (信頼区間の計算, 感度分析など)

3. 不確実性に頑健な管理方策を考える

参考文献: Overfishing – what everyone needs to know

「乱獲一漁業資源の今とこれから」

レイ・ヒルボーン,ウルライク・ヒルボーン著市野川桃子.岡村寛訳.

東海大学出版部。2015年12月

著者割 2500円で発売中

- さまざまなレベルでの「乱獲」の定義
- 資源量推定の方法
- クジラ・オレンジラフィー・スズキ・オヒョウ・ チリアワビなど、資源管理の失敗・成功例
- ノーベル経済学賞を受けた研究成果と漁業資源管理
- 消費者主導の新しい持続的漁業(MSC)
- ・数式は一切なし

