

Templated CUDA Lattice Boltzmann Method: generic CFD solver for single and multi-phase problems

Michał Dzikowski^a, Grzegorz Gruszczyński^{a,b}

23rd March, 2019

 ${\it a}$ University of Warsaw, Interdisciplinary Centre for Mathematical and Computational Modelling

^bWarsaw University of Technology, Faculty of Power and Aeronautical Engineering

Table of contents

Introduction

- Problem Statement and Governing Equations
 - LBM Theory
- Discrete Boltzmann equation
 - LBM Algorithm
- Multiphysics models
 - Advection-Diffusion Equation revisited
- Sample simulations
- Solver Structure
- Memory requirements

Introduction

Governing Equations

Goal

Simulate an incompressible flow coupled with advection - diffusion equation of some scalar field.

The continuity and momentum equations are:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0 \\ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla \rho + \nabla \cdot \left(\mu [\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top}] \right) + \mathsf{F} \end{cases}$$

And the advection - diffusion equation of some scalar field ϕ :

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathbf{u}) = \nabla \cdot (M \nabla \phi)$$

Lattice Boltzmann Method

The Lattice Boltzmann equation

Probability of finding a particle in the phase space:

Figure 1:
$$\Psi = \Psi(t, \mathbf{x}, \dot{\mathbf{x}})$$

In an infinitesimally small volume of the phase space $d\mathbf{x}d\mathbf{u}$:

$$\Psi_{no\ collisions}(t+dt, \mathbf{x}+d\mathbf{x}, \mathbf{u}+d\mathbf{u})d\mathbf{x}d\mathbf{u} = \Psi_{no\ collisions}(t, \mathbf{x}, \mathbf{u})d\mathbf{x}d\mathbf{u}$$

Now, include the collision term $\mathbb{C}(\Psi)$:

$$\Psi(t+dt,\mathbf{x}+d\mathbf{x},\mathbf{u}+d\mathbf{u})d\mathbf{x}d\mathbf{u}=\Psi(t,\mathbf{x},\mathbf{u})d\mathbf{x}d\mathbf{u}+\mathbb{C}(\Psi)d\mathbf{x}d\mathbf{u}dt$$

The Lattice Boltzmann equation

Taylor series expansion:

$$\Psi(t+dt,\mathbf{x}+d\mathbf{x},\mathbf{u}+d\mathbf{u}) = \Psi(t,\mathbf{x},\mathbf{u}) + \frac{\partial \Psi}{\partial t}dt + \nabla_{\mathbf{x}}\Psi d\mathbf{x} + \nabla_{\mathbf{u}}\Psi d\mathbf{u}$$

Plug in:

$$\left[\Psi(t,x,u) + \frac{\partial \Psi}{\partial t}dt + \nabla_x \Psi dx + \nabla_u \Psi du\right] dx du = \left[\Psi(t,x,u) + \mathbb{C}(\Psi)dt\right] dx du$$

Reformulate velocity $\mathbf{u} = \frac{d\mathbf{x}}{dt}$ and acceleration $\frac{d\mathbf{u}}{dt} = \frac{\mathbf{F}}{\rho}$:

$$\frac{\partial \Psi}{\partial t} + \big(u \cdot \nabla_x\big)\Psi + \big(\frac{F}{\rho} \cdot \nabla_u\big)\Psi = \mathbb{C}\big(\Psi\big)$$

Lattice Boltzmann equation - Summary

Streaming and Collision:

$$\underbrace{\Psi(t+dt,\mathbf{x}+d\mathbf{x},\mathbf{u}+d\mathbf{u})d\mathbf{x}d\mathbf{u}}_{Streaming} = \underbrace{\Psi(t,\mathbf{x},\mathbf{u})d\mathbf{x}d\mathbf{u} + \mathbb{C}(\Psi)d\mathbf{x}d\mathbf{u}dt}_{Collision}$$

The Boltzmann equation can be viewed as a substantial derivative (of an intensive quantity Ψ) which is equal to the collision term \mathbb{C} applied to the distribution function of Ψ :

$$\frac{\partial \Psi}{\partial t} + (\mathbf{u} \cdot \nabla_{\mathbf{x}})\Psi + (\frac{F}{\rho} \cdot \nabla_{\mathbf{u}})\Psi = \mathbb{C}(\Psi)$$

Discretization of the Lattice Boltzmann equation

$$\underbrace{f_i(\mathbf{x} + \mathbf{e}_i \Delta \mathbf{x}, t + \Delta t)}_{Streaming} = \underbrace{f_i(\mathbf{x}, t) - \frac{1}{\tau}(f_i - f_i^{eq}) + F_i(\mathbf{x}, t)}_{Collision}$$

- au = au(
 u) relaxation parameter, u is the kinematic viscosity
- \cdot f_i discrete probability distribution function
- F_i source term (ex. gravity force)

Figure 2: D2Q9: Streaming

1 Initialize f_i^{in}

$$\rho = \sum_{i=0}^{8} f_i^{in}(x, t)$$
 and $u(x, t) = \frac{1}{\rho} \sum_{i=0}^{8} f_i^{in}(x, t) e_i + \frac{F}{2\rho} \delta t$

3 Compute
$$f_i^{eq}(\mathbf{x},t) = w_i \rho \left[1 + \frac{\mathbf{e}_i \mathbf{u}}{c_s^2 e^2} + \frac{(\mathbf{e}_i \mathbf{u})^2}{2c_s^4 e^4} - \frac{\mathbf{u}^2}{2c_s^2 e^2} \right]$$
 where $c_s^2 = \frac{1}{3}$

4 Collision
$$f_i^{out}(x,t) = f_i^{in}(x,t) - \frac{1}{\tau_f} \left[f_i^{in}(x,t) - f_i^{eq}(x,t) \right] + F_i(x,t)$$

5 Streaming
$$f_i^{in}(x + e_i, t + 1) = f_i^{out}(x, t)$$

Multiphysics models

How to re-use the same algorithm to track temperature field or interface between phases?

Advection-Diffusion Equation revisited

Consider Advection-Diffusion Equation of scalar field ϕ .

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathbf{u}) = \nabla \cdot (M \nabla \phi)$$

The ϕ field can be viewed as a temperature ... or a phase indicator.

Imagine a separation flux, \mathbf{j}_S , supposed to counteract the diffusion and reach a predefined interface profile in the equilibrium state:

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathbf{u}) = \nabla \cdot (\underbrace{M \nabla \phi}_{\mathbf{j}_{D}} - \mathbf{j}_{S})$$

Let us use a tanh to smooth the step interface:

$$\phi^{eq} = \frac{1}{2} tanh\left(\frac{2(\mathbf{x} - \mathbf{x}_0)}{\gamma}\right)$$

Advection-Diffusion Equation revisited

Evaluate diffusive flux in the equilibrium:

$$\begin{aligned} \mathbf{j}_{D}^{eq} &= M \nabla \overline{\left[\frac{1}{2} tanh \left(\frac{2(\mathbf{x} - \mathbf{x}_{0})}{\gamma}\right)\right]} = \frac{M}{2} \mathbf{n} \frac{\partial}{\partial \mathbf{x}_{n}} tanh \left[\left(\frac{2(\mathbf{x} - \mathbf{x}_{0})}{\gamma}\right)\right] \\ &= \frac{M}{\gamma} \mathbf{n} \underbrace{\left[1 - tanh^{2} \left(\frac{2(\mathbf{x} - \mathbf{x}_{0})}{\gamma}\right)\right]}_{1 - 4(\phi^{eq})^{2}} \end{aligned}$$

Therefore:

$$\mathbf{j}_{\mathrm{S}} = \mathrm{Mn} \frac{1 - 4\phi^2}{\gamma} \qquad \textit{where} \quad \mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|}$$

Conclusion

Modifying the advection-diffusion equation:

$$\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \mathsf{u}) = \nabla \cdot (\mathsf{M} \nabla \phi)$$

The interface tracking equation can been obtained:

$$\frac{\partial \phi}{\partial t} + \nabla \cdot \phi \mathbf{u} = \nabla \cdot M \left(\nabla \phi - \frac{\nabla \phi}{|\nabla \phi|} \frac{[1 - 4(\phi - \phi_0)^2]}{\gamma} \right)$$

Double distribution function approach

Algorithm: Advection - Diffusion

'Advection - Diffusion' of ϕ is solved on a separate D2Q9 lattice

- 1 Initialize $h_i^{in}(x,t)$
- 2 Compute $\phi = \sum_{i=0}^{9} h_i^{in}(\mathbf{x}, t)$
- 3 Compute $h_i^{eq}(\mathbf{x},t) = \phi w_i \left[1 + \frac{e_i u}{c_s^2 e^2} + \frac{(e_i u)^2}{2c_s^2 e^4} \frac{u^2}{2c_s^2 e^2} \right]$
- 4 Collision $h_i^{out}(\mathbf{x},t) = h_i^{in}(\mathbf{x},t) \frac{1}{\tau_{\phi}} \left[h_i^{in}(\mathbf{x},t) h_i^{eq}(\mathbf{x},t) \right] + F_i^{\phi}(\mathbf{x},t)$
- 5 Streaming $h_i^{in}(x + e_i, t + 1) = h_i^{out}(x, t)$

Sample simulations

Figure 3: Re = 1000, Pr = 0.71, D = 128 [lu]

Scenarios

Case-ID	Lattice Size	Velocity set	Blockage Ratio	D	U	Pr	Re	ν	k
Pr10 _{small}	1000x150x3	D3Q27Q27	1/5	30	0.01	10	10	3E-02	3E-03
Pr10 _{medium}	2000x300x3	D3Q27Q27	1/5	60	0.005	10	10	3E-02	3E-03
Pr10 _{large}	4000x600x3	D3Q27Q27	1/5	120	0.0025	10	10	3E-02	3E-03
Pr100 _{small}	1000x150x3	D3Q27Q27	1/5	30	0.01	100	10	3E-02	3E-04
Pr100 _{medium}	2000x300x3	D3Q27Q27	1/5	60	0.005	100	10	3E-02	3E-04
Pr100 _{large}	4000x600x3	D3Q27Q27	1/5	120	0.0025	100	10	3E-02	3E-04
Pr1000 _{small}	1000x150x3	D3Q27Q27	1/5	30	0.01	1000	10	3E-02	3E-05
Pr1000 _{medium}	2000x300x3	D3Q27Q27	1/5	60	0.005	1000	10	3E-02	3E-05
Pr1000 _{large}	4000x600x3	D3Q27Q27	1/5	120	0.0025	1000	10	3E-02	3E-05

Table 1: Case-ID: lookup table.

Case-ID	Nu ^{1st} order bc CM HIGHER	Nu ^{2nd} order bc	Nu ^{1st} order bc Cumulants	Nu ² nd order bc Cumulants	Nu _{FEM}
Pr10 _{small}	4.91	4.81	5.04	4.83	4.82
Pr10 _{medium}	4.86	4.81	4.92	4.82	4.82
Pr10 _{large}	4.83	4.81	4.87	4.81	4.82
Pr100 _{small}	10.66	10.27	14.50	11.52	10.1
Pr100 _{medium}	10.32	10.13	11.82	10.36	10.1
Pr100 _{large}	10.19	10.08	10.83	10.13	10.1
Pr1000 _{small}	27.09	24.58	94.31	58.33	21.43
Pr1000 _{medium}	22.73	21.84	53.97	34.19	21.43
Pr1000 _{large}	21.84	21.37	34.04	24.56	21.43

Table 2: Influence of kernel and BC on Nu number. 1st order bc = BB (hydrodynamics) + EQ (thermodynamics) 2nd order bc = IBB (hydrodynamics) + IABB (thermodynamics)

Multiphase flow in fractures with proppant

Multiphase flow in fractures with proppant

Movie:

https://www.youtube.com/watch?v=JoMFy2M_RDI

And multiphase flow (strong Capilary intraction, >10mln LBM cells):

And multiphase flow (weak Capilary intraction, >10mln LBM cells):

Viscous/capilary invasion

Small system - detailed mesh

Figure 4: Viscous invasion.

Figure 5: Capillary invasion.

Solver Structure

Solver Structure

Memory requirements

Memory requirements

	No [-]	[double]	[Bytes]
DF	2x27	54	432
DF temp	2x27	54	432
q	2x27	13.5	108
flag	1	0.5	4
memory per node		122	976

Table 3: Theoretical memory requirements for: 3D, DDF model with interpolated BC.

Memory requirements

Figure 6: Theoretical memory requirements for a 3D cube domain, D3Q27Q27 lattice with interpolated BC.

Q: Does the high memory requirement limits applicability of LBM?

Not necassary. Similar problems occur in other CFD methods like VOF, FEM, FD.

Figure 7: Mesh refinement.

Figure 8: Overlapping mesh.

7

https://github.com/CFD-GO/TCLB