## <u>Claims</u>

10

25

- 1. A coating composition comprising
- a1) a physically drying film forming binder resin or resins;
- 5 a2) a thermally cross linking film forming binder resin or binder resins;
  - a3) a radiation curable film forming binder resin or binder resins;
  - a4) an autoxidatively drying film forming binder resin or resins; or
  - a5) a combination of binder resins with at least two different crosslinking machanisms selected from a1), a2), a3) or a4);
  - b) a polymer or copolymer levelling agent of formula (I)  $In-[(M)_x-(E)_y]_n$  (I) obtained by nitroxyl mediated controlled free radical polymerisation wherein
  - In is the initiator fragment starting the polymerisation reaction;
- M is at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, acrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters, acrylic acid (C<sub>1</sub>-C<sub>22</sub>)hydroxyalkyl esters, methacrylic acid (C<sub>1</sub>-C<sub>22</sub>)hydroxyalkyl esters, acrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters or methacrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters which are substituted by amino, (C<sub>1</sub>-C<sub>22</sub>)alkylamino, (C<sub>1</sub>-C<sub>22</sub>)alkylamino, (C<sub>1</sub>-C<sub>22</sub>)dialkylamino, -SO<sub>3</sub>H, epoxy, fluoro, perfluoro or siloxane groups, styrene, substituted styrene, acrylamide and methacrylamide, N-mono(C<sub>1</sub>-C<sub>22</sub>)alkyl acrylamide, N,N-di(C<sub>1</sub>-C<sub>22</sub>)alkyl acrylamide, and a multifunctional monomer with two or more ethylenically unsaturated bonds;
  - provided that the amount of unsubstituted acrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters or/and methacrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters is more than 30 % by weight based on the weight of the total monomer mixture;
  - E is a group bearing at least one stable free nitroxyl radical, which is bound via the oxygen atom to the polymer or copolymer; or a group which results from a substitution or elimination reaction of the attached stable free nitroxyl radical;
  - x is the total number of monomer units, which is a number between 5 and 5000;
- 30 y is a number 1 or greater than 1 indicating the average number of end groups E attached to the monomer sequence (M)<sub>x</sub>;
  - n is a number from 1 to 20; and
  - c) optionally water or/and one or more organic solvents.

- 2. A coating composition according to claim 1 comprising
- a2) a thermally cross linking film forming binder resin or binder resins; or
- a3) a radiation curable film forming binder resin or binder resins.
- 5 3. A coating composition according to claim 1 comprising
  - a2) a thermally cross linking film forming binder resin or binder resins.
  - 4. A coating composition according to claim 1 comprising
- a2) a thermally cross linking film forming binder resin or binder resins without water and
  organic solvent, which is in the form of a solid powder.
  - 5. A coating composition according to claim 1 wherein the polymer or copolymer levelling agent of formula (I), is obtained by
  - b1) polymerization in the presence of an alkoxyamine initiator/regulator having the structural
- 15 element N-O-X; or by
  - b2) polymerization in the presence of a stable nitroxyl free radical having the structural element  $N_{O}$  and a radical initiator.
  - 6. A coating composition according to claim 5 wherein the structural element N-O-X
- 20 is a structural element of formula (II) and the structural element N-O• is a structural element of formula (II')



wherein

 $G_1$ ,  $G_2$ ,  $G_3$ ,  $G_4$  are independently  $C_1$ - $C_6$ alkyl or  $G_1$  and  $G_2$  or  $G_3$  and  $G_4$ , or  $G_1$  and  $G_2$  and  $G_3$  and  $G_4$  together form a  $C_5$ - $C_{12}$ cycloalkyl group;

5 G<sub>5</sub>, G<sub>6</sub> independently are H, C<sub>1</sub>-C<sub>18</sub>alkyl, phenyl, naphthyl or a group COOC<sub>1</sub>-C<sub>18</sub>alkyl; X is selected from the group consisting of

-CH<sub>2</sub>-phenyl, CH<sub>3</sub>CH-phenyl, (CH<sub>3</sub>)<sub>2</sub>C-phenyl, (C<sub>5</sub>-C<sub>6</sub>cycloalkyl)<sub>2</sub>CCN, (CH<sub>3</sub>)<sub>2</sub>CCN,

, 
$$CN$$
,  $-CH_2CH=CH_2$ ,  $CH_3CH-CH=CH_2$  (C  $_1$ -C4alkyl)CR20-C(O)-

phenyl,  $(C_1-C_4)$ alkyl- $CR_{20}-C(O)-(C_1-C_4)$ alkoxy,  $(C_1-C_4)$ alkyl- $CR_{20}-C(O)-(C_1-C_4)$ alkyl,  $(C_1-C_4)$ alkyl- $CR_{20}-C(O)$ - $N+(C_1-C_4)$ alkyl- $CR_{20}-C(O)$ - $N+(C_1-C_4)$ alkyl- $CR_{20}-C(O)$ - $N+(C_1-C_4)$ alkyl- $CR_{20}-C(O)$ - $N+(C_1-C_4)$ alkyl- $CR_{20}-C(O)$ - $CR_{20}-C($ 

R<sub>20</sub> is hydrogen or (C<sub>1</sub>-C<sub>4</sub>)alkyl and

- \* denotes a valence.
- 7. A coating composition according to claim 6 wherein the structural element of formula (II) is a compound of formula (O1)

8. A coating composition according to claim 1 wherein the levelling agent, component b), has a polydispersity of between 1.0 and 2.0.

- 9. A coating composition according to claim 1 wherein the levelling agent, component b), has a class transition temperature between 20° C and 200° C.
- 10. A coating composition according to claim 1 wherein the levelling agent, component b), is composed of at least 30 % by weight of tert.-butylacrylate and/or tert.-butylmethacrylate, based on the weight of total monomers.
- 11. A coating composition according to claim 1 wherein the levelling agent, component b), is10 a linear polymer or copolymer, i.e. in formula (I) n is 1.
  - 12. A coating composition according to claim 1 wherein in formula (I), component b), y is 1.
- 13. A coating composition according to claim 1 wherein the levelling agent, component b),
  15 has a molecular weight of between 3000 to 50000 g/mol (Dalton).
  - 14. A coating composition according to claim 1 wherein the levelling agent, component b), is composed of at least 30 % by weight of tert.-butylacrylate and/or tert.-butylmethacrylate, and 0.5 to 50 % of a functional monomer which is selected from the group consisting of acrylic acid, methacrylic acid, acrylic acid  $(C_1-C_6)$ hydroxyalkyl esters, methacrylic acid  $(C_1-C_6)$ hydroxyalkyl esters, acrylic acid  $(C_1-C_6)$ alkyl esters and methacrylic acid  $(C_1-C_6)$ alkyl esters which are substituted by amino,  $(C_1-C_6)$ alkylamino,  $(C_1-C_6)$ dialkylamino, epoxy, fluoro, perfluoro or siloxane groups.

20

- 25 15. A coating composition according to claim 1 wherein the levelling agent, component b), is composed of at least 50 % by weight of tert.-butylacrylate and/or tert.-butylmethacrylate and is a solid at room temperature.
- 16. A coating composition according to claim 1 wherein the levelling agent, component b), is present in an amount of 0.1 to 15% by weight, based on the weight of the film forming binder resin or resins, component a).
  - 17. A process for improving the levelling of a coating composition according to claim 1, which process comprises the steps

10

15

applying the coating composition to a substrate and exposing it to thermal energy or electromagnetic radiation in order to obtain a homogenous solid coating.

- 18. Use of a polymer or copolymer of formula (I), ln-[(M)<sub>x</sub>-(E)<sub>y</sub>]<sub>n</sub> (I) obtained by nitroxyl mediated controlled free radical polymerisation wherein
  - In is the initiator fragment starting the polymerisation reaction;
  - M is at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, acrylic acid ( $C_1$ - $C_{22}$ )alkyl esters, acrylic acid ( $C_1$ - $C_{22}$ )hydroxyalkyl esters, methacrylic acid ( $C_1$ - $C_{22}$ )hydroxyalkyl esters, acrylic acid ( $C_1$ - $C_{22}$ )alkyl esters or methacrylic acid ( $C_1$ - $C_{22}$ )alkyl esters which are substituted by amino, ( $C_1$ - $C_{22}$ )alkylamino, ( $C_1$ - $C_2$ )dialkylamino, -SO<sub>3</sub>H, epoxy, fluoro, perfluoro or siloxane groups, styrene, substituted styrene, acrylamide and methacrylamide, N-mono( $C_1$ - $C_2$ )alkyl acrylamide, N,N-di( $C_1$ - $C_2$ )alkyl acrylamide, and a multifunctional monomer with two or more ethylenically unsaturated bonds;
  - provided that the amount of unsubstituted acrylic acid ( $C_1$ - $C_{22}$ )alkyl esters or/and methacrylic acid ( $C_1$ - $C_{22}$ )alkyl esters is more than 30 % by weight based on the weight of the total monomer mixture:
- E is a group bearing at least one stable free nitroxyl radical, which is bound via the oxygen atom to the polymer or copolymer; or a group, which results from a substitution or elimination reaction of the attached stable free nitroxyl radical;
  - x is the total number of monomer units, which is a number between 5 and 5000;
  - y is a number 1 or greater than 1 indicating the average number of end groups E attached to the monomer sequence (M)<sub>x</sub>;
- 25 n is a number from 1 to 20;
  - as a levelling agent for a coating composition comprising
  - a1) a physically drying film forming binder resin or resins;
  - a2) a thermally cross linking film forming binder resin or binder resins;
  - a3) a radiation curable film forming binder resin or binder resins;
- 30 a4) an autoxidatively drying film forming binder resin or resins; or
  - a5) a combination of binder resins with at least two different crosslinking machanisms selected from a1), a2), a3) or a4).

WO 2005/059048 PCT/EP2004/053186

- 68 -

- 19. A coating composition comprising
- a1) a physically drying film forming binder resin or resins;
- a2) a thermally cross linking film forming binder resin or binder resins;
- a3) a radiation curable film forming binder resin or binder resins;
- 5 a4) an autoxidatively drying film forming binder resin or resins; or
  - a5) a combination of binder resins with at least two different crosslinking machanisms selected from a1), a2), a3) or a4);
  - b) a polymer or copolymer levelling agent of formula (X), prepared by atom transfer radical polymerisation  $In-[(M)_x-(E)_y]_n$  (X)

wherein

10

15

20

30

In is the initiator fragment starting the polymerisation reaction;

M is at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, acrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters, acrylic acid (C<sub>1</sub>-C<sub>22</sub>)hydroxyalkyl esters, methacrylic acid (C<sub>1</sub>-C<sub>22</sub>)hydroxyalkyl esters, acrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters or methacrylic acid (C<sub>1</sub>-C<sub>22</sub>)alkyl esters which are substituted by amino, (C<sub>1</sub>-C<sub>22</sub>)alkylamino, (C<sub>1</sub>-C<sub>22</sub>)alkylamino, (C<sub>1</sub>-C<sub>22</sub>)dialkylamino, -SO<sub>3</sub>H, epoxy, fluoro, perfluoro or siloxane groups, styrene, substituted styrene, acrylamide and methacrylamide, N-mono(C<sub>1</sub>-C<sub>22</sub>)alkyl acrylamide, N,N-di(C<sub>1</sub>-C<sub>22</sub>)alkyl acrylamide, and a multifunctional monomer with two or more ethylenically unsaturated bonds;

with the proviso that the amount of tert.-butylacrylate is more than 30 % by weight, based on the weight of the total monomer mixture;

- E is CI, Br or a group introduced by nucleophilic substitution of CI or Br;
- x is the total number of monomer units, which is a number between 5 and 5000;
- 25 y is a number 1 or greater than 1 indicating the average number of end groups E attached to the monomer sequence (M)<sub>x</sub>;

n is a number from 1 to 20; and

- c) optionally water or/and one or more organic solvents.
- 20. Use of poly-tert.-butyl acrylate or poly-tert.butylmethacrylate as a levelling agent in powder coating compositions.