Math 132 Homework 8

Jiaping Zeng

11/29/2020

Proposition (\bigstar) . Suppose f(z) and g(z) are analytic at z_0 . If f(z) has a zero of order n at z_0 (or letting n = 0 if $f(z_0) \neq 0$) and g(z) has a zero of order m at z_0 , then

$$h(z) = \frac{f(z)}{g(z)}$$
 has
$$\begin{cases} \text{a removable singularity at } z_0 & \text{if } m \leq n; \\ \text{a pole of order } m - n \text{ at } z_0, & \text{if } m > n. \end{cases}$$

 $4.6.1 \ (1-z^2)\sin z$

Answer: We have $(1-z^2)\sin z = (1+z)(1-z)\sin z$, so the isolated zeros are at -1, 1 and $k\pi, k \in \mathbb{Z}$. The zeroes -1 and 1 have order 1; the zeroes of $\sin z$ also have order 1 as shown in class.

 $4.6.2 \ z^3(e^z-1)$

Answer: Since $z^3=0$ when z=0 and $e^z-1=0$ when $z=2k\pi i, k\in\mathbb{Z}$, the isolated zeroes are at 0 and $2k\pi i, k\in\mathbb{Z}$. Let $f(z)=z^3$, then $f'''(0)=6\neq 0$, so $z_0=0$ is a zero of order 3. Now let $g(z)=e^z-1$, then $g'(0)=e^0=1\neq 0$, so $z_0=2k\pi i, k\neq 0\in\mathbb{Z}$ are zeroes of order 1.

 $4.6.9 \ 1 - \frac{z^2}{2} - \cos z$

Answer: Let $f(z) = 1 - \frac{z^2}{2} - \cos z$, then we have $f'(z) = \sin z - z$, $f''(z) = \cos z - 1$, $f'''(z) = -\sin z$ and $f^{(4)}(z) = -\cos z$. By substituting $z_0 = 0$, we have f(0) = 0, f'(0) = 0, f''(0) = 0, f'''(0) = 0 and $f^{(4)}(z) = -1 \neq 0$, so $z_0 = 0$ is a zero of order 4.

 $4.6.11 \ z - \sin z$

Answer: Let $f(z) = z - \sin z$, then we have $f'(z) = 1 - \cos z$, $f''(z) = \sin z$ and $f'''(z) = \cos z$. By substituting $z_0 = 0$, we have f(0) = 0, f'(0) = 0, f''(0) = 0 and $f'''(0) = 1 \neq 0$, so $z_0 = 0$ is a zero of order 3.

 $4.6.15 \ \frac{z(z-1)^2}{\sin(\pi z)\sin z}$

Answer: Let $f(z) = z(z-1)^2$, $g(z) = \sin(\pi z)\sin z$ and $h(z) = \frac{z(z-1)^2}{\sin(\pi z)\sin z} = \frac{f(z)}{g(z)}$. Then f(z) has a zero of order 1 at $z_0 = 0$ and another zero of order 2 at $z_0 = 1$; in addition, since $\sin(k\pi) = 0$ for $k \in \mathbb{Z}$, g(z) has zeroes at $z_0 = k$ and $z_0 = k\pi$, $k \in \mathbb{Z}$. Since g(0) = g'(0) = 0 and $g''(0) \neq 0$, we have a zero of order 2 at $z_0 = 0$. The other zeroes $z_0 = k$ and $z_0 = k\pi$, $k \neq 0 \in \mathbb{Z}$ are order 1 as $g'(z_0) \neq 0$ there.

Using Proposition \bigstar , we have n=1 and m=2 at $z_0=0$, so h(z) has a pole of order 1 at $z_0=0$.

1

Since $\lim_{z\to 1} h(z) = 0$, we can define $\tilde{h}(1) = 0$ to make $\tilde{h}(z)$ analytic. At $z_0 = 1$, we have n = 2 and m = 1, so h(z) has a removable singularity at $z_0 = 1$. At zeroes $z_0 = k$ and $z_0 = k\pi, k \neq 0, 1 \in \mathbb{Z}$, we have n = 0 and m = 1, so h(z) has poles of order 1 there.

 $4.6.16 \ e^{\frac{1}{1-z}} + \frac{1}{1-z}$

Answer: By taylor expansion we have $e^{\frac{1}{1-z}} = 1 + \frac{1}{1-z} + \frac{1}{2(1-z)^2} + \frac{1}{3!(1-z)^3} + \dots$, so $e^{\frac{1}{1-z}} + \frac{1}{1-z} = 1 + \frac{2}{1-z} + \frac{1}{2(1-z)^2} + \frac{1}{3!(1-z)^3} + \dots$ Therefore there is an essential singularity at 0.

 $4.6.18 \ \frac{z}{e^z-1}$

Answer: Let f(z) = z, $g(z) = e^z - 1$ and $h(z) = \frac{z}{e^z - 1} = \frac{f(z)}{g(z)}$. Then f(z) has a zero of order 1 at $z_0 = 0$ and g(z) has zeroes of order 1 (shown in 4.6.2) at $z_0 = 2k\pi i, k \in \mathbb{Z}$.

Using Proposition \bigstar , we have n=1 and m=1 at $z_0=0$, so h(z) has a removable singularity at $z_0=0$. Since $\lim_{z\to 0}h(z)=1$, we can define $\tilde{h}(0)=1$ to make $\tilde{h}(z)$ analytic. At $z_0=2k\pi i, k\neq 0\in\mathbb{Z}$, we have n=0 and m=1, so h(z) has poles of order 1 at those singularities.

P1 Use the argument principle to find the number of zeros of

$$f(z) = z^5 + z^4 + 13z^3 + 10$$

in the first quadrant.

Answer: Let R be sufficiently large such that all zeroes of f(z) is enclosed by the curve $\gamma_R = [[0, R], \sigma_R, [iR, 0]]$ as shown below.

Then,

1.
$$f([0,R])$$
: $f(x) = x^5 + x^4 + 13x^3 + 10$ for $x \in [0,R]$

2.
$$f(\sigma_R)$$
: $f(Re^{it}) = R^5 e^{5it} + R^4 e^{4it} + 13R^3 e^{3it} + 10 \approx R^5 e^{5it}$ for $t \in [0, \frac{\pi}{2}]$

3.
$$f([iR, 0]): f(iy) = iy^5 + y^4 - 13iy^3 + 10 = (y^4 + 10) + (y^5 - 13y^3)i$$
 for $y \in [0, R]$

Note that $f(z) \neq 0$ on γ_R as

1.
$$f(z) \ge 10$$
 on $[0, R]$

- 2. R was chosen sufficiently large such that $f(z) \neq 0$ on σ_R
- 3. $f(iy)=(y^4+10)+(y^5-13y^3)i=(y^4+10)+y^3(y-\sqrt{13})(y+\sqrt{13})i \implies \operatorname{Re} f(iy)$ and $\operatorname{Im} f(iy)$ have no common zeroes $\implies f(z)\neq 0$ on [iR,0]

Now we can sketch $f(\gamma_R)$. Since f(x) for $x \in [0, R]$ always returns a real value, [0, R] maps to $[10, N_1]$ on the real axis where N_1 is some large number. Then, since $f(iR) = (R^4 + 10) + (R^5 - 13R^3)i \approx R^4 + R^5i \approx R^5i$, we also know that σ_R ends at some point in the first quadrant, close to the positive imaginary axis. Then since $f(Re^{it}) \approx R^5e^{i(5t)}, t \in [0, \frac{\pi}{2}] \implies 5t \in [0, \frac{5\pi}{2}], \sigma_R$ is mapped to a circular path that wraps around the origin once and ends near the positive imaginary axis as shown below.

Now we can use a sign chart to find the map of [iR, 0]:

y =	$(0,\sqrt{13})$	$(\sqrt{13},R)$	
Quadrant	IV	I	
$\operatorname{Re} f(iy)$	+	+	
$y^4 + 10$	+	+	
$\overline{-\operatorname{Im} f(iy)}$	-	+	
y^3	+	+	
$y-\sqrt{13}$	-	+	
$y + \sqrt{13}$	+	+	

Then our $f(\gamma_R)$ looks like:

So by the argument principle, since $f(\gamma_R)$ wraps counterclockwise around the origin once, we have $N_0 - N_\infty = 1$. Since f(z) is analytic, then f(z) has no poles $\implies N_\infty = 0$. Therefore $N_0 = 1 \implies f(z)$ has one zero in the first quadrant.

P2 Use the argument principle to find the number of zeros of

$$f(z) = z^4 + z^3 + 10z^2 + 4z + 9$$

in the first quadrant.

Answer: Let R be sufficiently large such that all zeroes of f(z) is enclosed by the curve $\gamma_R = [[0, R], \sigma_R, [iR, 0]]$ as shown below.

Then,

1.
$$f([0,R])$$
: $f(x) = x^4 + x^3 + 10x^2 + 4x + 9$ for $x \in [0,R]$

2.
$$f(\sigma_R)$$
: $f(Re^{it}) = R^4 e^{4it} + R^3 e^{3it} + 10R^2 e^{2it} + 4Re^{it} + 9 \approx R^4 e^{4it}$ for $t \in [0, \frac{\pi}{2}]$

3.
$$f([iR, 0]): f(iy) = y^4 - iy^3 - 10y^2 + 4iy + 9 = (y^4 - 10y^2 + 9) + (-y^3 + 4y)i$$
 for $y \in [0, R]$

Note that $f(z) \neq 0$ on γ_R as

- 1. $f(z) \ge 9$ on [0, R]
- 2. R was chosen sufficiently large such that $f(z) \neq 0$ on σ_R
- 3. $f(iy) = (y^4 10y^2 + 9) + (-y^3 + 4y)i = (y 3)(y 1)(y + 1)(y + 3) y(y 2)(y + 2)i \implies \operatorname{Re} f(iy)$ and $\operatorname{Im} f(iy)$ have no common zeroes $\implies f(z) \neq 0$ on [iR, 0]

Now we can sketch $f(\gamma_R)$. Since f(x) for $x \in [0, R]$ always returns a real value, [0, R] maps to $[9, N_1]$ on the real axis where N_1 is some large number. Then, since $f(iR) = (R^4 - 10R^2 + 9) + (-R^3 + 4R)i \approx R^4 - R^3i \approx R^4$, we also know that γ_R ends at some point in the fourth quadrant, close to the positive real axis. Then since $f(Re^{it}) \approx R^5e^{i(4t)}$, $t \in [0, \frac{\pi}{2}] \implies 4t \in [0, 2\pi]$, σ_R is mapped to a circular path that wraps around the origin once and ends near the positive real axis as shown below.

Now we can use a sign chart to find the map of [iR, 0]:

y =	(0,1)	(1, 2)	(2,3)	(3,R)
Quadrant	I	II	III	IV
$\operatorname{Re} f(iy)$	+	-	-	+
y-3	-	-	-	+
y-1	-	+	+	+
y + 1	+	+	+	+
y+3	+	+	+	+
$\operatorname{Im} f(iy)$	+	+	-	-
-y	-	-	-	-
y-2	-	-	+	+
y+2	+	+	+	+

Then our $f(\gamma_R)$ looks like:

So by the argument principle, since $f(\gamma_R)$ wraps counterclockwise around the origin zero times, we have $N_0 - N_\infty = 0$. Since f(z) is analytic, then f(z) has no poles $\implies N_\infty = 0$. Therefore $N_0 = 0 \implies f(z)$ has no zero in the first quadrant.

P3 Suppose f(z) is analytic at z_0 with $f(z_0) \neq 0$, and fix some positive integer n. Show that $\frac{f(z)}{(z-z_0)^n}$ has a pole of order n at z_0 .

Answer: Since f(z) is analytic at z_0 , it has a power series $f(z) = f(z_0) + f'(z_0)(z - z_0) + \frac{f''(z_0)}{2}(z - z_0)^2 + \dots$ in $B_r(z_0)$. Then by substitution we have $\frac{f(z)}{(z-z_0)^n} = \frac{f(z_0)}{(z-z_0)^n} + \frac{f'(z_0)}{(z-z_0)^{n-1}} + \dots$ Since the lowest power term is degree -n, by definition $\frac{f(z)}{(z-z_0)^n}$ has a pole of order n at z_0 by definition.

P4 Prove Proposition ★ above.

Answer: Since f(z) has a zero of order n at z_0 , we have $f(z) = (z - z_0)^n \tilde{f}(z)$ where $\tilde{f}(z)$ is defined and analytic in some neighborhood of z_0 with $\tilde{f}(z_0) \neq 0$. Similarly, we have $g(z) = (z - z_0)^m \tilde{g}(z)$. Then $h(z) = \frac{f(z)}{g(z)} = (z - z_0)^{n-m} \frac{\tilde{f}(z)}{\tilde{g}(z)}$, where $\frac{\tilde{f}(z)}{\tilde{g}(z)}$ is analytic and nonzero at z_0 . Then $m \le n \implies n - m \ge 0$. Then $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}$ by limit laws, which is finite and is

therefore a removable singularity.

If m > n, then $\tilde{h}(z) = \frac{\tilde{f}(z)}{\tilde{g}(z)}$ is analytic in $B_r(z_0)$ for some r. Then since $\tilde{h}(z_0) \neq 0$ and $h(z) = \frac{\tilde{h}(z)}{(z-z_0)^{m-n}}$, by P3, h(z) has a pole of order m-n at z_0 .