Lecture10 Thursday, October 11, 2018 9:25 AM
Concentration of measures
A A few mathematical facts
Lemma (Markov in equality) non-negative Let m be a V random variable. Then it holds:
$\mathbb{P}[m]+]\leq \frac{\mathbb{F}(m)}{t} + t > 0$
Proof. We have
$\mathbb{E}[m] = \mathbb{E}[m 1] 3m + 3 + \mathbb{E}[m 1] 3m < t $
7 [m = 3m 7, t3] 20
> t [[1 3m > 1 + 3]
+ Plm>t
Pef (moment generating functions) (MGF)
for any random variable m, the following

EM397Fall2018 Page 1

€ Le l m]

Elehm] + L
'u called MGF of m
Ex (in your homework). For m ~ N (m, 52)
then. Ele/m] = c/m+10/2 # LER
in your homework.
(Chehy sher) $P[l][m]$ $+J \leq \frac{6^2}{t^2}$; $6 = W[m]$
(Chernoff) P[m>t] < min \(\frac{\mathbb{E} \le \mathbb{l} m \right)}{e^{1\tau}} \tau t > 0
In your homework: $\frac{+^{2}}{2r^{2}}$ $\mathbb{P}[m-m]+J \leq e^{-\frac{+^{2}}{2r^{2}}}$ $m \sim N(m, r^{2})$
- This is called the tail bound of a random
variable, question is whether we can get a
similar exponential tail bound for a more
general class of rendom variables!
Proposition (121) I connection between tail bound and

EM397Fall2018 Page 2

Proposition (12.1) (connection between tail bound and expectation). For any random variable m there holds: $\mathbb{E}(m) = \int_{0}^{\infty} \mathbb{P}(m) t dt - \int_{0}^{\infty} \mathbb{P}(m < t) dt$ Proof: assume m > 0; then we have $m = \int_{0}^{m} dt = \int_{0}^{11} \frac{11}{3}m7 + 3 dt$ $\mathbb{E}(m) = \mathbb{E}\left\{\frac{1}{3}m + 3\right\} dA$ Plm>t]dt -generally m = m 1/3 m > 03 + m 1/3 m < 03

EM397Fall2018 Page 5

lenion bound 2 C N t2/25 2 P[|SN-m|<+] 71-2ent/202 How about non-Gaussians w: \$ N(w, e) It turns out the the tail bound (Gaussian tail) of the form (*) is true for a large class of RVs. And we are going study the Concentration phenomena through the tail bound of the form P[m-m/2t] & small quantity In otherwords, ue Study non-asymptotic behavior of sum of random variables. Sub-Gaussian RVs a RV m is called Sub-gaussian of

its MGF is bound by that of a zero mean Gaussian RV with variance 6^{1} , i.e., 120^{2} Flehm $3 \le e^{120^{2}}$