Total No. of Questions: 8]	
----------------------------	--

SEAT No.:	
-----------	--

PA-1194

[Total No. of Pages: 4

[5925]-216

S.E.(Electronics & Computer/Electronics/E&TC) SIGNALS AND SYSTEMS

(2019 Pattern) (204191) (Semester - IV)

Time : 2½ *Hours*]

[Max. Marks: 70]

Instructions to the candidates:

- Neat diagrams must be drawn wherever necessary. 1)
- 2) Figures to the right indicate full marks.
- Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator steam tables is allowed.
- Assume suitable data, if necessary. 4)
- What is Fourier series. Write formula for exponential and Trignometric **Q1)** a) Fourier series.
 - b) State and explain following properties

[6]

- Time reversal i)
- Time Differentiation ii)
- iii) Convolution
- Determine the FS representation for the signal with periodic wave, shown c) below using exponential method.

Find the trignometric Fourier series for the periodic signal y(t) given below. *Q2*) a)

P.T.O.

	b)	State the following properties of CTTS.	[6]	
		i) Time scaling		
		ii) Time Integration		
		iii) Modulation		
	c)	Explain Gibb's phenomenon of Fourier series.	[4]	
Q3)	a)	Find the Inverse Fourier Transform using partial fraction expansion.	[7]	
		$X(jw) = \frac{1}{\left(j(v)^2 + 5jw + 6\right)}$		
	b)	Find the Fourier Transform of a constant signal AO.	[6]	
	c)	Find the Fourier Transform of a	[4]	
		i) $x(t) = \delta(t) + u(t)$		
		$\mathbf{n} \qquad \mathbf{x}(t) = \mathbf{u}(-t)$		
	V	Using properties of F.T.		
<i>Q4)</i>	a)	State any six properties of Lourier Transform.	[6]	
	b)	Find the Fourier Transform of the signum function.	[7]	
	c)	Obtain the Inverse Fourier Transform of	[4]	
		$X(jw) = \frac{2}{jw+1} + \frac{1}{jw+2}.$		
Q5)	a)	Find the Laplace Transform and find ROC.	[6]	
		$x(t) = e^{-3t}u(t) + e^{-2t}u(t)$		
	b)	State and explain Initial value theorem and final value theorem.	[6]	
	c)	Find the Inverse Laplace Transform of $X(s) = \frac{2}{(s \oplus 4)(s-1)}$ if the R	OC	
		is $-4 \le R_{e}(s) \le 1$.	[6]	
		OR 6.		
5925]-216				

Q6) a) Find the Laplace Transform of the signal drawn below Find ROC. [6]

b) Solve the differential equation $\frac{dy(t)}{dt} + 3y(t) = x(t)$ for input

$$x(t) = e^{-\lambda t}u(t)$$
. Assume zero initial conditions. [6]

- c) Find the Laplace Transform of following using the properties. [6]
 - i) $x(t) = \frac{d}{dt}u(t)$
 - $ii) \qquad x(t) = u(t+1)$

Q7) a) Define the following terms:

[6]

- i) Probability
- ii) Joint Probability
- iii) Conditional probability
- b) A coin is tossed three times. Write the sample space which gives all possible out comes. A random variable X. Which represents the number of heads obtained on any tripple toss. Calculate and draw the CDF and PDF.
- c) In a pack of cards, 2cards are drawn simultaneously. What is the probability of getting a Queen and Jack combination. [4]

OR

- **Q8)** a) Define probability. Also write the properties of probability. [5]
 - b) A perfect die is thrown. Find the probability that [6]
 - i) You get even number
 - ii) You get perfect square

[5925]-216

The probability density function of a random variable 'X' is given by c)

[6]