

Mark Scheme (Results)

January 2017

Pearson Edexcel
International A Level Mathematics

Statistics 1 (WST01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WST01_01_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

January 2017 WST01 Mark Scheme

Question	Sahama	Maulza		
Number	Scheme	Marks		
1. (a)	25 small sq' = 5 tomatoes or 1 large square = 5 tomatoes or fd=5 for $2\sim3$	M1		
	$\frac{\text{or}}{\text{or}} = \frac{5}{25} \times 20$ $\frac{\text{or}}{\text{or}} = 5 \times 0.8$ $\frac{\text{or}}{\text{or}} = 2 \times 2$			
	= <u>4</u>	A1		
<i>a</i> .>	0.1	(2)		
(b)	$100 - (5 + '4')$ or $16 + 32 + 25 + 10 + 8$, so probability = $\frac{91}{100}$ (condone 91%)	$M1, \underline{A1} $ (2)		
	$(7-6.25)\times16+25+10+8$, $(a)+5+16+(6.25-5)\times16$ 55	M1, <u>A1</u>		
(c)	$\frac{(7-6.25)\times 16+25+10+8}{100} \underline{\text{or}} 1-\frac{(a)+5+16+(6.25-5)\times 16}{100} = \frac{55}{100}$	(2)		
(d)	Since '0.55' > 0.5 (or equivalent reason) and state median > 6.25	B1		
(u)	Since 0.55 > 0.5 (of equivalent reason) and state median > 0.25	(1)		
(e)	Median > mean, so negative skew	B1 (1)		
(f)	Freq. for $(5.5 < \text{weight} < 7) = (7-5.5) \times '16' \text{ or } \frac{3}{4} \times '32', \text{ probability } = \frac{24}{100}$	M1, <u>A1</u>		
	P (both weigh between 5.5 and 7) = $\frac{24}{100} \times \frac{23}{99} = \frac{46}{825}$ (o.e.) or awrt <u>0.056</u>	M1 A1		
	F (both weigh between 3.3 and 7) = $\frac{100}{100} \times \frac{99}{99} = \frac{1}{825}$ (b.e.) of awrt <u>0.030</u>	(4)		
		[12 marks]		
	Notes A correct answer with no working scores M1A1 in parts (a)~(c))		
(a)	M1 for a correct: statement linking area with frequency or calculation or at least 2 values on the fd scale on axis or at least 2 frequencies on/in histogram bars. A1 for an answer of 4 (if not in script, can be awarded if 4 seen correctly on histogram). If answers on both diagram and script contradict, the script has preference.			
(b)	M1 for $100 - (5 + '(a)')$ ft $0 < '$ their $(a)' < 10$ or for a correct method for fin of the areas of all the bars above 3 (condone one slip if 5 terms seen)	nding the sum		
(c)	M1 fully correct expression (possibly ft their (a)) and need division by 100 (o.e.	e.)		
	A1 for $\frac{11}{20}$ or 0.55 (o.e.) [Allow 55% or ratio 55:100]			
(d)	B1 for $Q_2 > 6.25$ with reason based on (c) where $0.5 <$ 'their (c)' < 1 [comparison of	"55" & 50]		
(e)	B1 for stating "median > mean" <u>and</u> "negative skew" (independent of (d))			
(f)	1 st M1 for method to find the frequency between 5.5 and 7 (Implied by the 24 us e.g. $(4+5+16+16\times2)-(4+5+16+16\times0.5)=57-33$ based on $(\leqslant 7)$	· ·		
	$1^{\text{st}} \text{ A1 for } \frac{24}{100}$ (o.e.)	,		
	2^{nd} M1 for $\frac{'24'}{100} \times \frac{'24'-1}{99}$ ft their 24 but must have numerator < denominator of	100×99		
	$2^{\text{nd}} \text{ A1 for } \frac{46}{825} \text{ (o.e.) or awrt } 0.056 \text{ NB } \frac{24}{100} \times \frac{24}{100} \text{ scores M1A1M0A0 } [0.05]$			

(a) and 50 inc (b) $\frac{15}{50}$ (or eq. (c) $\frac{12}{50}$ (or eq. (d) $[P(A C) =$ (e) $\frac{15}{50} \neq \frac{7}{30}$ (f) $[P(B (A \cap A) = 0]$ (d) M1 for a substantial or final for $\frac{7}{30}$	that) the integer selected is <u>prime</u> <u>and</u> ends in a 3 (and is between 1 lusive) uivalent e.g. 0.30) [condone 30%] uivalent e.g. 0.24) [condone 24%] $ \frac{P(A \cap C)}{P(C)} = \frac{\frac{7}{50}}{\frac{30}{50}} = \frac{7}{\frac{30}{50}} $ so not independent. $ C(A) = \frac{P(B \cap A \cap C)}{P(A \cap C)} = \frac{\frac{2}{50}}{\frac{7}{50}} = \frac{2}{\frac{7}{50}} $ correct ratio expression (may be in words) with at least one correct p	B1 (1) B1 (1) B1 (1) M1, A1 (2) M1, A1 (2) M1, A1 (2) [9 marks]
(b) $\frac{15}{50}$ (or equation of the context of the	uivalent e.g. 0.30) [condone 30%] uivalent e.g. 0.24) [condone 24%] $ \frac{P(A \cap C)}{P(C)} = \frac{\frac{7}{50}}{\frac{30}{50}} = \frac{7}{\frac{30}{30}} $ so not independent. $ C(C) = \frac{P(B \cap A \cap C)}{P(A \cap C)} = \frac{\frac{2}{50}}{\frac{7}{50}} = \frac{2}{\frac{7}{50}} $	B1 (1) B1 (2) M1, A1 (2) M1, A1 (2)
(d) $[P(A C) = \frac{15}{50} \neq \frac{7}{30}]$ (e) $\frac{15}{50} \neq \frac{7}{30}$ (f) $[P(B (A \cap A) = \frac{15}{30}]$ (d) M1 for a substantial or fixed A1 for $\frac{7}{30}$	$\left[\frac{P(A \cap C)}{P(C)} = \frac{\frac{7}{50}}{\frac{30}{50}} = , \frac{7}{30} \right]$ so not independent. $C(C) = \left[\frac{P(B \cap A \cap C)}{P(A \cap C)} = \frac{\frac{2}{50}}{\frac{7}{50}} = , \frac{2}{\frac{7}{50}} \right]$	M1, <u>A1</u> (2) M1, A1 (2) M1, <u>A1</u> (2)
(d) M1 for a substant $\frac{\text{or ft}}{36}$	$P(A \cap C) \qquad \frac{7}{50} , \qquad \underline{7}$	(2) M1, <u>A1</u> (2)
(d) M1 for a substant $\frac{\text{or ft}}{36}$	$P(A \cap C) \qquad \frac{7}{50} , \qquad \underline{7}$	(2)
substantial $\frac{\text{or}}{41}$ for $\frac{7}{30}$	correct ratio expression (may be in words) with at least one correct n	
substantial $\frac{\text{or}}{4}$ for $\frac{7}{3}$	COLLECT FALIO EXDLESSION CHIAV DE IN WOLDST WITH ALTEASLONE COLLECT D	robability
e.g. A1 dependent in the second in the secon	ituted or correct ratio expression and $\frac{7}{n}$ or $\frac{m}{30}$ where $7 < n$ or $m < 30$ ally correct ratio of probabilities. To rany exact equivalent e.g. $0.2\dot{3}$ but 0.233 is M1A0 (Correct ans of prectly comparing 'their (b)' with 'their (d)', can be in words or syme $P(A) \neq P(A \mid C)$ in symbols. Ident on a correct (b) and (d) (or awrt 0.233 in (d)) and for concluding adependent Correct test using correctly labelled $P(A) = \frac{15}{50}$, $P(C) = \frac{30}{50}$ and $P(A)$ and $P(A)$ are the correct probabilities and $P(A) = \frac{15}{50}$ and $P(A) = \frac{15}{50}$ (o.e.) seen leading to	only = M1A1) bols
(f) M1 for a subst	in correct probabilities and $\frac{1}{50} \times \frac{1}{50} = \frac{1}{50} \neq \frac{1}{50}$ (o.e.) seen leading to independent" score M0A1 correct ratio expression (may be in words) with at least one correct put ituted or correct ratio expression and $\frac{r}{7}$ or $\frac{2}{t}$ where $r < 7$ or $2 < t$ fly correct ratio of probabilities	robability only = M1A1)

Question Number	Scheme	Marks	
3. (a)	$[\overline{y}] = \frac{-27}{12} = -2.25$, $Var(Y) = \frac{62.98}{12} - (-2.25)^2$	<u>B1</u> , M1	
	$= 0.1858333 (allow \frac{223}{1200}) awrt 0.186$	A1 (3)	
(b)(i)	$S_{xy} = -1190.7 - \frac{(504)(-27)}{12}$ or -56.7	B1	
	$r = \frac{'-56.7'}{\sqrt{(1674)(2.23)}} =$, -0.9280105 <u>awrt - 0.928</u>	M1, A1	
(ii)	Negative correlation, so Priya's belief is incorrect.	B1 (4)	
(c)	$b = \frac{'-56.7'}{1674} [= -0.033870]$	M1	
	$\frac{-27}{12} = a + b' \times \frac{504}{12} \text{or} a = -2.25 - 0.03387 \times 42 \qquad , a = \text{awrt} -0.827$	M1 ,A1	
	y = -0.827 - 0.0339x	A1 (dep on M2) (4)	
(d)	[y = -0.827 - 0.0339(32) =]-1.9°C <u>awrt -1.9</u> (no fractions)	B1	
(e)	$\frac{(w-32)}{1.8} = -0.827 - 0.0339x \text{ (o.e.)}$	M1 (1)	
	w = 30.5 - 0.061x	A1 (2)	
(f)(i) (ii)	$Var(W) = 1.8^2 Var(Y),$ = 0.602 $r_{yx} = r_{wx} = -0.928$	M1, A1 B1ft	
		(3) [17 marks]	
(a)	Notes B1 either fraction or exact decimal equivalent [must see mean separately to exact decimal equivalent [must see mean see mean separately to exact deci	earn this mark]	
()	M1 for expr' for variance $\frac{62.98}{12} - \overline{y}^2$ [ft \overline{y}] or $\frac{S_{yy}}{12}$, (allow s^2 i.e. $\frac{S_{yy}}{11}$ = awrt 0.203) [No $\sqrt{}$]		
(P)(3)	For M1 in (b)(i) and 1 st M1 in (c) do not allow ft for $S_{xy} = -119$	00.7	
(b)(i)	B1 Correct expression for S_{xy} or -56.7 (May be implied by a correct value		
	M1 for correct express' for r with 1674, 2.23 and their S_{xy} [Correct ans. only 3/3, $r = S_{xy}$]	_	
(ii)	B1 for Priya's belief not supported <u>and</u> reason e.g. negative correlation <u>or</u> r is negative <u>or</u> r is close to -1 <u>or</u> as salinity (or x) increases, temperature (or y) decreases		
(c)	1 st M1 for correct expression for b f.t. their S_{xy} (May be implied by correct answer)		
	2^{nd} M1 for correct use of $a = \overline{y} - b\overline{x}$ to find a (f.t. their value of b)(Implied 1^{st} A1 for $a = \text{awrt } -0.827$ (no fraction)	by -0.827)	
	1 st A1 for $a = \text{awrt } -0.827$ (no fraction) 2 nd A1 for an equ'n in the form $y = a + bx$ with their a and $b = \text{awrt } -0.033$	39 (no fraction)	
(e)	M1 for substituting $\frac{(w-32)}{1.8}$ for y (o.e.) in their regression equation		
(f)(i)	A1 for a correct equation for w in terms of x with $c = \text{awrt } 31$ and $d = \text{awrt} - \text{M1}$ for $1.8^2 \times \text{Var}(Y)$ f.t. their "(a)" (if > 0)][Allow use of $s^2 = \text{awrt } 0.66$ to		
(ii)	B1ft their answer to (b)(i) to at least 2sf (Must see a value written down here	_	

Question Number	Scheme	Marks
4. (a)	$[E(X) =]5 \times 0.13 + 6 \times 0.21 + 7 \times 0.29 + 8 \times 0.37,$ $= \underline{6.9}$	M1, A1
(b)	$[E(X^{2}) =]5^{2} \times 0.13 + 6^{2} \times 0.21 + 7^{2} \times 0.29 + 8^{2} \times 0.37 [= 48.7]$ $Var(X) = 48.7 - 6.9^{2},$ $= 1.09$	M1 M1, A1 (3)
(c)	$Var(3-2X) = (-2)^2 Var(X),$ = 4.36	M1, A1
(d)	$[E(Y)] = \underline{6.5} \text{ or } \frac{13}{2} \text{ (o.6)}$	$\begin{array}{c c} \mathbf{B1} & \mathbf{(2)} \\ \mathbf{(1)} \end{array}$
(e)	$P(X = Y) = \frac{1}{4} \times 0.13 + \frac{1}{4} \times 0.21 + \frac{1}{4} \times 0.29 + \frac{1}{4} \times 0.37 , = \frac{1}{4} \text{ (oe)}$	M1, A1 (2)
(f)	$P(X > Y) = P(X = 6 \cap Y < 6) + P(X = 7 \cap Y < 7) + P(X = 8 \cap Y < 8)$ = 0.21×0.25+0.29×0.50+0.37×0.75	M1 M1
	= <u>0.475</u>	A1 (3)
		[13 marks]
	Notes	
(a)	M1 for a correct expression for $E(X)$ (Correct answer only is M1A1)	
(b)	1 st M1 for attempting a correct expression for $E(X^2)$, sum of at least 3 correct The first M1 can be implied by 48.7 Stating $Var(X) =$ the expression for $E(X^2)$ can score M1M0A0 and many 2 nd M1 for correct use of $Var(X) = E(X^2) - [E(X)]^2$ f.t. their $E(X)$ A1 for 1.09 (Correct answer only is M1M1A1)	
(c)	M1 for $(-2)^2 \text{Var}(X)$ or $(-2)^2 \times \text{'(b)'}[\text{if '(b)'} > 0]$ (condone no brackets if find or a fully correct expr' for $\text{Var}(3-2X)$ based on $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	al answer is > 0) $ \begin{array}{ c c c c c } \hline -11 & -13 \\ \hline 0.29 & 0.37 \end{array} $
(e)	M1 for an expression for $P(X = Y)$ (at least 3 of the 4 products correct). May be implied by a correct answer.	
(f)	1 st M1 for a correct probability formula (as in scheme) <u>or</u> complete list of $X = 0$ and $Y = 5$; $X = 7$ and $Y = 6$; $X = 7$ and $Y = 6$; $X = 8$ and $Y = 6$; $Y = 8$ and $Y = 8$;	X = 8 and Y = 7
	NB alternative expressions e.g. $\frac{1}{4}(0.37 + 0.66 + 0.87)$ from listing $Y < X$ r	ather than $X > Y$
	The 1 st M1 may be implied by scoring the 2 nd M1 A1 for 0.475 or $\frac{19}{40}$	
SC/ (Y>X)	Only apply if they reach $[P(Y > X) = 0.13 \times \frac{3}{4} + 0.21 \times \frac{2}{4} + 0.29 \times \frac{1}{4} = 0.00 \times \frac{1}{4} = 0$	=] <u>0.275</u>

Question Number	Scheme	Marks		
5. (a)	Age Computer use			
	0.80 Use computer every day			
	p Ooes not use computer	B1		
	every day	B1		
	$(1-p) \qquad 0.55 \qquad \text{Use computer every day}$ $\geqslant 50$			
	(0.45) Does not use computer every day	(2)		
(b)	$p \times 0.80 + (1 - p) \times 0.55 = 0.70$ $p = 0.6$	M1 A1 (2)		
(c)	$[P(<50 \text{ use computer daily})] = \frac{P(<50 \cap \text{use computer daily})}{P(\text{use computer daily})} = \frac{'0.6' \times 0.80}{0.70}$	M1		
	$=\frac{48}{70}$	A10e		
		(2) [6 marks]		
(a)	Notes	TE.		
()	Allow undefined letters for labels e.g. U (use) and U' or N and NE Allow labels on branches and probabilities at the ends Condone 80% and 55% etc on tree diagram and in (b) 1st B1 for correct shape (2 branches then 4 branches) and correct labels on first set of branches $(p, < 50 \text{ and } \ge 50 \text{ but condone} > 50)$ 2nd B1 for correct labels on second set of branches $(0.80, 0.55, \text{ daily and not daily})$ Allow $0.8p$ and $0.55(1-p)$ on or at the end of the appropriate branches. NB they do not require the probabilities in brackets for either of these two marks.			
(b)	M1 for a correct equation to find <i>p</i> using their tree diagram. A1 for 0.6 [condone 60%] (Correct answer only will score M1A1)			
(c)	M1 for a correct expression with 0.70 substituted correctly and numerator < denominator or correct ratio of probabilities f.t. their p provided 0			
	A1 for $\frac{48}{70}$ or an exact equivalent e.g. $\frac{24}{35}$ (Correct answer only is M1A1)			
	Allow awrt 0.686 following a correct expression. [68.6% is A0]			

Question Number	Scheme	Marks	
6. (a)	98% (Condone 0.98)	B1	
		(1)	
(b)	$z = \pm 2.3263$ (or better: calculator gives 2.326347877)	B1	
	$\frac{256 - 250}{\sigma} = 2.3263$	M1	
	$\sigma = 2.579$ awrt 2.58	A1	
		(3)	
(c)	$P(X < 246 \cup X > 254) = $		
	$2 \times P\left(Z > \frac{254 - 250}{"2.579"}\right) \text{ or } 1 - P\left(\frac{246 - 250}{"2.579"} < Z < \frac{254 - 250}{"2.579"}\right)$	M1	
	$= 2 \times P(Z > 1.55)$ or $1 - P(-1.55 < Z < 1.55) = 0.12(12)$	A1	
	P(both bags outside range) = $(0.1212)^2$ =, 0.01468 awrt $0.0146/7$	dM1, A1	
		(4)	
		[8 marks]	
	Notes		
(b)	B1 for \pm 2.3263 or better seen and used, can be with σ^2 (may be implied by σ	= awrt 2.579)	
	M1 for standardising with 256 or 244, 250 and σ and equating to a z-value $ z >$	2	
	A1 for awrt 2.58 from correct working.		
z = 2.33	Use of $z = 2.33$ leads to $\sigma = 2.575$ can score B0M1A1		
z = 2.32	Special case: use of $z = 2.32$ from tables gives 2.586 $\sigma =$ awrt 2.59 can score	B0M1A1	
Ans only	B1M1A1 can be awarded for sight of at least σ = awrt 2.5791 or awrt 2.5792		
(c)	1^{st} M1 for attempt to find sum of the area above 254 and below 246 or $2 \times area$	above 254	
	or $2 \times$ area below 246 (2 \times needed) Allow ft of their σ (provided $\sigma > 0$)	
	1^{st} A1 for awrt 0.12 (NB 1 – 0.1212 = 0.8788 is A0 here and 1^{st} M0 too)		
	2^{nd} dM1 for p^2 dependent on previous M1		
	2 nd A1 for awrt 0.0146 (use of calculator value) or 0.0147		
SC	'B1' for those who use 1 tail only and get 0.06 but then do $(0.06)^2$ Score as Do not award for $2 \times (0.06)^2$ or $3 \times (0.06)^2$	M0A0M1A0	

Question Number	Scheme	Marks				
7. (a)	Sum of probabilities = 1 gives $\frac{a+b}{60} + \frac{2a+b}{60} + \frac{3a+b}{60} + \frac{4a+b}{60} = 1$	M1				
	e.g. $\frac{10a+4b}{60} = 1$ leading to $5a+2b = 30*$	A1cso (2)				
(b)	$P(X=1) + P(X=2) + P(X=3) = \frac{13}{20}$ or $P(X=4) = \frac{7}{20}$ (o.e.)	M1 A1				
	$\frac{6a+3b}{60} = \frac{13}{20} \qquad \qquad \underline{\text{or}} \frac{4a+b}{60} = \frac{7}{20}$					
	e.g. $\frac{(6a+3b=39)\times 2}{(5a+2b=30)\times 3}$ leading to $3a=12$ $\frac{(4a+b=21)\times 2}{(5a+2b=30)}$ leading to $3a=12$	dM1				
	$\underline{a} = \underline{4}$ and $\underline{b} = \underline{5}$	A1				
		(4)				
(c)	[y] [<1] $1 [\leqslant y < 4]$ $4 [\leqslant y < 9]$ $9 [\leqslant y < 16]$ [\geqslant] 16	B1 B1cao				
	[F(y)] $ [0] $ $ \frac{9}{60} = \left(\frac{3}{20}\right) $ $ \frac{22}{60} = \left(\frac{11}{30}\right) $ $ \frac{39}{60} = \left(\frac{13}{20}\right) $ $ \frac{60}{60} = (1) $	M1 A1 (4) [10 marks]				
	Notes					
(a)	1^{st} M1 for use of sum of probabilities = 1 to form a linear equation in a and b (4 terms seen)					
	A1 cso for <u>fully</u> correct solution with no errors or omissions seen and at least one					
(b)	intermediate line of working seen 1st M1 for use of $\sum_{i=1}^{3} P(X=i) = \frac{13}{20}$ or $P(X=4) = \frac{7}{20}$ to form a 2 nd equation in a and b					
	1 st A1 for a correct 3 term 2^{nd} equation in a and b with a and b terms collected.					
	2^{nd} dM1 dependent on 1^{st} M1 for solving 2 relevant linear equations i.e. eliminating a or b					
	leading to a linear equation in 1 variable. Allow 1 numerical or sign slip.					
	2^{nd} A1 for both $a = 4$ and $b = 5$ (Correct answer only can score all 4 marks)					
(c)	1st B1 for all y-values, can allow label of x^2 (accept 1, 4, 9 and 16 or 1, 2^2 , 3^2 , 4^2)					
	2^{nd} B1cao for F _Y (1) = $\frac{9}{60}$ oe but must be clearly labelled as cdf linked to Y = 1 but not for					
	P(Y = y) or P(Y = 1) M1 for a correct method to find F _Y (4) or F _Y (9) ft their <i>a</i> and <i>b</i> [dep' on correct y-values seen] A1 for fully correct cumulative distribution function allow F(1) = $\frac{9}{60}$, F(4) = $\frac{22}{60}$, F(9) = $\frac{39}{60}$, F(16)=1					
	NB $F(y) = \frac{2y + 7\sqrt{y}}{60}$ for $y = 1,4,9,16$ (o.e.) NB: Probability distribution of X					
	T OV C 11 1 1 1 1 1 1					
	Is OK for all marks only with y values given $P(X = x) = \frac{9}{60} = \frac{13}{60} = \frac{17}{60} = \frac{21}{60}$					