7	Digital Electronics an	d Logic Design (DELD) - Br	actical Number - 6
	Name: - Haustulh Shrikant Kalra		
	Name:- Showstubh Shrikant Kalira. Class:- Second Year Engineering Div:- A Roll Number:-		
	Batch:- Department:- longrater Department. lolling:- AISSMG's IOIT.		
	lolling: - AISSMS'S IC	OIT,	
	Title:- longurators.		
	Aim: - To verify the truth-table of two sit comparators using logic gates.		
	Theory: - To study and verify the truth table of two bit comparators wig logic Theory: - Theory: - A digital comparator is a combinational circuit that compares two digital or binary number in order to find out whether one binary number is		
	Theory:		
	of digital comparator is a combinational circuit that compares two digital property in order to kind out whether one binary number is		
	Marial (1 Mar Man an ADIAION IMAN OLINA NINANI MILIMANI		
	We logically design a circuit for which we will have two inputs one for A I and other for B and have three output terminal. One for A>B, one for A=B and one for A <b.< th=""></b.<>		
	A>B, one for $A=B$	and one for HZB.	A>B
	A	lomparator	1-0
	В —	7 9 3 3 3	1-0
			—— A <b< th=""></b<>

Truth Julle:-Input Autput A=B A>B Bo ALB BI 1 0 (1e) 0 1

A>B:-A181 + A0B1B0 + A1A0B0

 $A = B : -A_{1}A_{0}B_{1}B_{0}' + A_{1}A_{0}B_{1}B_{0} + A_{1}B_{0}A_{0}B_{1} + A_{1}A_{0}B_{1}B_{0}'$ $= (A_{0}B_{0} + A_{0}'B_{0}')(A_{1}B_{1} + A_{1}'B_{1}')$ $= (A_{0}EX-NOR B_{0})(A_{1}EXNOR B_{1}).$

A < B: - A'B, + A'B, Bo + A'A' Bo.

Outcomes: Using 2-bit comparator operations like less than, greater than and
equal to can be performed for 2 digit number.

Conclusion: Thus we verified truth table of 2-bit comparators.