CS 188: Artificial Intelligence

Decision Networks and Value of Perfect Information

[Slides created by Dan Klein, Pieter Abbeel, Anca Dragan, Davis Foote for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

- MEU: choose the action which maximizes the expected utility given the evidence
 - Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
 - New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)

Action selection

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action

Umbrella = leave

$$EU(leave) = \sum_{w} P(w)U(leave, w)$$

$$= 0.7 \cdot 100 + 0.3 \cdot 0 = 70$$

Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$

$$= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$$

Optimal decision = leave

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

W	P(W)
sun	0.7
rain	0.3

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees

Example: Decision Networks

Umbrella = leave

$$EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w)$$

$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

Umbrella = take

$$EU(\text{take}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{take}, w)$$
$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

Optimal decision = take

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees

Ghostbusters Decision Network

Demo: Ghostbusters with probability

Value of Information

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2

VPI Example: Weather

MEU with no evidence

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

Marginal forecast distribution

F	P(F)
good	0.59
bad	0.41

$$0.59 \cdot (95) + 0.41 \cdot (53) - 70$$
$$77.8 - 70 = 7.8$$

W	F	P(F W)
sun	good	0.8
sun	bad	0.2
rain	good	0.1
rain	bad	0.9
		·

$$VPI(E' \mid e) = \mathbb{E}_{e'\mid e} \left[MEU(e, e') - MEU(e) \right] = \left(\sum_{e'} P(e' \mid e) MEU(e, e') \right) - MEU(e)$$

Value of Information

Assume we have evidence E=e. Value if we act now:

$$MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$$

Assume we see that E' = e'. Value if we act then:

$$MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act: $\mathsf{MEU}(e,E') = \sum_{e'} P(e'|e) \mathsf{MEU}(e,e')$
- Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$

Nonnegativity

VPI(E'|e) = MEU(e, E') - MEU(e)

Nonnegativity Proof

$$\begin{aligned} &\mathsf{MEU}(e) = \max_{a} \sum_{s} P(s|e) \ U(s,a) \\ &\mathsf{MEU}(e,e') = \max_{a} \sum_{s} P(s|e,e') \ U(s,a) \\ &\mathsf{MEU}(e,E') = \sum_{e'} P(e'|e) \mathsf{MEU}(e,e') \\ &\mathsf{VPI}(E'|e) = \mathsf{MEU}(e,E') - \mathsf{MEU}(e) \end{aligned}$$

MEU
$$(e, E') = \sum_{e'} P(e' \mid e) \max_{a} \sum_{s} P(s \mid e, e') U(s, a)$$

MEU $(e) = \max_{a} \sum_{s} P(s \mid e) U(s, a)$

$$= \max_{a} \sum_{e'} P(e' \mid e) \sum_{s} P(s \mid e, e') U(s, a)$$

$$= \sum_{e'} P(e' \mid e) \sum_{s} P(s \mid e, e') U(s, a_e^*)$$

$$VPI(E' \mid e) = MEU(e, E') - MEU(e)$$

$$= \sum_{e'} P(e' \mid e) \left(\left(\max_{a} \sum_{s} P(s \mid e, e') U(s, a) \right) - \sum_{s} P(s \mid e, e') U(s, a_e^*) \right)$$

$$= \sum_{e'} P(e' \mid e) \left(\max_{a} \sum_{s} P(s \mid e, e') (U(s, a) - U(s, a_e^*)) \right)$$

Since a*_e is a potential choice for a, we can do at least as well as U(s, a*_e), so this term is nonnegative

VPI Properties

Nonnegative

$$\forall E', e : \mathsf{VPI}(E'|e) \geq 0$$

Nonadditive

(think of observing
$$E_j$$
 twice)
$$VPI(E_j, E_k|e) \neq VPI(E_j|e) + VPI(E_k|e)$$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Value of Imperfect Information?

- No such thing
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(OilLoc) ?
- VPI(ScoutingReport) ?
- VPI(Scout) ?
- VPI(Scout | ScoutingReport) ?

Generally:

If Parents(U) $\perp \!\!\! \perp$ Z | CurrentEvidence Then VPI(Z | CurrentEvidence) = 0

POMDPs

POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition function P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s')
- POMDPs add:
 - Observations O
 - Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)
- We'll be able to say more in a few lectures

Example: Ghostbusters

In (static) Ghostbusters:

- Belief state determined by evidence to date {e}
- Tree really over evidence sets
- Probabilistic reasoning needed to predict new evidence given past evidence

Solving POMDPs

- One way: use truncated expectimax to compute approximate value of actions
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!

Project 4: Bayes' Nets and VPI

More Generally*

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSPACE-) hard
- Most real problems are POMDPs, but we can rarely solve then in general!

