

GEOMETRÍA Capítulo 13

2th
SECONDARY

CIRCUNFERENCIA I

MOTIVATING | STRATEGY

Al observar el borde de la Luna o el Sol, el hombre tuvo las primeras nociones de circunferencia, al cortar una naranja o un limón el contorno de la sección plana tiene forma de circunferencia y que equidista del centro, esto llevó a conocer las primeras propiedades de ella.

CIRCUNFERENCIA

Es aquella línea curva cerrada, que está formada por el conjunto de puntos coplanares que equidistan de un punto fijo denominado centro.

- CENTRO: O
- RADIO: \overline{OA} ; \overline{OB} ; \overline{OC}
- CUERDA: FG; HI
- DIÁMETRO: MN
- ARCO: AN; ME
- RECTA SECANTE: L_1
- RECTA TANGENTE: L_2
- PUNTO DE TANGENCIA: T

ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA

ÁNGULO CENTRAL:

Ejemplo: Calcule el valor de x

Ejemplo: Calcule la m∢AOB

Teorema

ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA

Ejemplo: Calcule el valor de x.

Ejemplo: Calcule el valor de θ .

ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA

ÁNGULO INTERIOR:

$$\alpha = \frac{m+n}{2}$$

Ejemplo: Calcule el valor de y.

$$x = \frac{\alpha \square \beta}{2}$$

$$x + \beta = 180^{\circ}$$

1. En la figura, halle el valor de β.

Ángulo inscrito

2. Si O es centro de la circunferencia, halle el valor de α .

Resolución

PR: es diámetro

 $10\alpha = 180^{\circ}$

 α = 18°

3. En la figura, O es centro y BM = MO. Halle el valor de x.

4. A, P, B y Q son puntos de tangencia; m ∢ AMP = 42° y m ∢ BNQ = 54°. Calcule la m ∢ ATP. Resolución

5. Si B y C son puntos de tangencia, halle el valor de x.

HELICO | PRACTICE

6. Se construye una mesa de billar semicircular de diámetro \overline{AB} , se choca una billa ubicada en el punto C que luego llega al punto D y finalmente al punto E. Si m $\widehat{AC} = 80^\circ$ y m $\widehat{EB} = 40^\circ$, halle la medida del ángulo que forman las direcciones \overline{CD} y \overline{DE} .

HELICO | PRACTICE

7. Se muestra la estructura de la bicicleta estática de Haydée. Las barras deben ser soldadas de tal manera que Q sea punto de tangencia. Halle el valor de x. Resolución

