Задание 1. Асимптотические сложности.

- **1.1.а)** Да, например при f(n) = n^2 , $g(n)\frac{n}{\log n}$ h(n) будет равно $n\log n$.
- 1.1.6) Из условия получаем следующие неравенства:

$$f(n) \le c_1 n^2,$$

$$\frac{1}{g(n)} \le c_2.$$

для каких-то положительных констант c_1, c_2 . Отсюда

$$h(n) \le c_1 c_2 n^2,\tag{1}$$

а для условия $h(n) = \Theta(n^3)$ должно выполняться неравенство $h(n) \ge c_3 n^3$, которое не может выполняться одновременно с неравенством (1) при всех n ни для каких $c_1, c_2, c_3 > 0$.

3. Докажем оценку сверху:

$$\sum_{i=1}^{n} i^{\alpha} \le \sum_{i=1}^{n} n^{\alpha} = n \cdot n^{\alpha} = n^{1+\alpha}.$$

. Оценка снизу:

$$\sum_{i=1}^n i^\alpha \geq \sum_{i=\frac{n}{2}}^n i^\alpha \geq \sum_{i=\frac{n}{2}}^n \frac{n}{2}^\alpha = \left(\frac{n}{2}\right)^{1+\alpha} = \left(\frac{1}{2}\right)^{1+\alpha} n^{1+\alpha}.$$

2. Воспользуемся результатами предыдущей задачи. Для этого заметим, что $i^3 \le i^3 + 2i + 5$ при всех i и $i^3 + 2i + 5 \le 2i^3$ начиная с некоторого i. Отсюда

$$\sum_{i=1}^{n} i^{\frac{3}{2}} \le \sum_{i=1}^{n} \sqrt{i^3 + 2i + 5} \le \sqrt{2} \sum_{i=1}^{n} i^{\frac{3}{2}}.$$

По задаче 3 каждая из сумм стоящих слева и справа равна $\Theta(n^{\frac{5}{2}})$. Значит и $\sum\limits_{i=1}^n \sqrt{i^3+2i+5}=\Theta(n^{\frac{5}{2}})$.

Ответ: $\Theta(n^{\frac{5}{2}})$.

4. Положим $f(x) = \frac{1}{k}$ при $x \in [k, k+1)$ на $[1, \infty)$. Тогда $g(n) = \int\limits_{1}^{n+1} f(x) dx = 1 + \int\limits_{2}^{n+1} f(x) dx$. При этом, на $x \in [2, n+1]$

$$\frac{1}{x} \le f(x) \le \frac{1}{x-1}.$$

Получаем $1 + \int\limits_{2}^{n+1} \frac{1}{x} \le g(n) \le 1 + \int\limits_{2}^{n+1} \frac{1}{x-1}$. Обе функции слева и справа являются $\Theta(\log n)$, значит $g(n) = \Theta(\log n)$.

Ответ: $\Theta(\log n)$.