Exercice 1.

1.
$$F_1(x) = 5 \ln(x^2 + 3)$$
 par exemple.

3.
$$F_3(x) = \frac{1}{6}[\ln(x)]^6$$
 par exemple.

2.
$$F_2(x) = -\frac{1}{4}e^{-4\sin(x)}$$
 par exemple.

4.
$$F_4(x) = 2\sqrt{e^x + x}$$
 par exemple.

Exercice 2. Premier modèle

On suppose que la vitesse de décongélation est constante : chaque minute la hausse de température des macarons est la même.

La température des macarons passe, en 15 minutes, de $-18\,^{\circ}\text{C}$ à $1\,^{\circ}\text{C}$, donc augmente de 19 $^{\circ}\text{C}$.

En supposant que la vitesse de décongélation est constante, la température des macarons passerait à 1 + 19 = 20 °C au bout de 30 minutes, et à 20 + 19 = 39 °C au bout de 45 minutes.

Mais c'est impossible que la température des macarons soit supérieure à la température ambiante, donc le modèle n'est pas pertinent.

Deuxième modèle

1.
$$\theta'(t) = a \left[\theta(t) - 20 \right] \iff \theta'(t) = a\theta(t) - 20a \iff \theta'(t) - a\theta(t) = -20a$$
 qui s'écrit $\theta' - a\theta = -20a$.

D'après le cours, l'équation différentielle y' + ay = b (avec $a \neq 0$) a pour solutions les fonctions f définies par $f(t) = ke^{-at} + \frac{b}{a}$ où k est un réel quelconque.

Donc l'équation différentielle $\theta' - a\theta = -20a$ a pour solutions les fonctions θ dérivables sur $[0; +\infty[$ et définies par :

$$\theta(t) = ke^{at} + 20$$
 où $k \in \mathbb{R}$.

- 2. On sait que $\theta(0) = -18$ donc $ke^0 + 20 = -18$ donc k = -38. On en déduit que : $\theta(t) = 20 - 38e^{at}$.
 - On sait que $\theta(15) = 1$ donc $20 38e^{15a} = 1$ ce qui équivaut à $e^{15a} = \frac{-19}{-38}$ ou encore $e^{15a} = \frac{1}{2}$, c'est-à-dire $15a = \ln \frac{1}{2}$ soit $15a = -\ln 2$; on en déduit que $a = -\frac{\ln 2}{15}$.

On a donc démontré que pour tout t positif on a bien : $\theta(t) = 20 - 38e^{-\frac{t \ln 2}{15}}$.

3. La température idéale de dégustation des macarons étant de 15 °C, Marie estime que celle-ci sera atteinte au bout de 30 min.

Au bout de 30 minutes, la température sera de

$$\theta(30) = 20 - 38e^{-\frac{30 \times \ln 2}{15}} = 20 - 38e^{-2\ln 2} = 20 - \frac{38}{4} = 10,5$$
°C. Donc Marie a tort.

Il faut chercher une température t pour laquelle $\theta(t)=15$; on résout cette équation :

$$\theta(t) = 15 \iff 20 - 38e^{-\frac{t \ln 2}{15}} = 15 \iff 5 = 38e^{-\frac{t \ln 2}{15}} \iff \frac{5}{38} = e^{-\frac{t \ln 2}{15}}$$

$$\iff \ln\left(\frac{5}{38}\right) = -\frac{t \ln 2}{15}$$

$$\iff \frac{\ln\left(\frac{5}{38}\right)}{-\frac{\ln 2}{15}} = t$$

Or $\frac{\ln\left(\frac{5}{38}\right)}{-\frac{\ln 2}{15}} \simeq 43,9$ donc il faudra attendre environ 44 minutes.

Exercice 3.

Partie A

- 1. u dérivable sur]0; $+\infty[$ et pour tout réel x de l'intervalle]0; $+\infty[$ on a $u'(x) = \frac{1}{x} + 1 > 0$ ce qui prouve que la fonction u est strictement croissante sur]0; $+\infty[$.
- 2. La fonction u est continue sur]0; $+\infty[$ car dérivable, elle l'est donc également sur [2;3]. u est strictement croissante sur [2;3]. De plus, $0 \in [\ln(2) 1; \ln(3)]$ intervalle image de l'intervalle [2;3] par la fonction u. D'après le corollaire du théorème des valeurs intermédiaires, l'équation u(x) = 0 a une solution unique α dans [2;3]. Comme u est strictement monotone sur $[0;+\infty[$, cet antécédent α est unique sur $[0;+\infty[$.
- 3. Compte-tenu du sens de variation de u et des questions précédentes, on a :

x	0	α		$+\infty$
u(x)		- 0	+	

Partie B

1. Nous savons que $\lim_{\substack{x\to 0\\x>0}} 1 - \frac{1}{x} = -\infty$ et $\lim_{\substack{x\to 0\\x>0}} [\ln(x) - 2] = -\infty$ donc par produit des limites, on en déduit que $\lim_{\substack{x\to 0\\x>0}} \left(1 - \frac{1}{x}\right) [\ln(x) - 2] = +\infty$ puis que :

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$$

2. (a) f est dérivable sur]0; $+\infty$ [comme somme et produit de fonctions dérivables sur]0; $+\infty$ [. $\forall x>0$:

$$f'(x) = \frac{1}{x^2} (\ln(x) - 2) + \left(1 - \frac{1}{x}\right) \times \frac{1}{x}$$

$$= \frac{1}{x^2} (\ln(x) - 2 + x - 1)$$

$$= \frac{1}{x^2} (\ln(x) + x - 3)$$

$$= \frac{u(x)}{x^2}$$

(b) Pour tout x > 0, $x^2 > 0$. Ainsi le signe de f' est celui de u. On en déduit que f est strictement décroissante sur]0; $\alpha]$ et strictement croissante sur $]\alpha$; $+\infty]$.

x	0	α		$+\infty$
signe de $f'(x)$	_	0	+	
$\begin{array}{c} \text{Variation} \\ \text{de } f \end{array}$	$+\infty$	$f(\alpha)$		$+\infty$

Partie C

1. Un point M(x; y) appartient aux deux courbes à la fois lorsque :

$$\left\{ \begin{array}{lll} y & = & f(x) \\ y & = & \ln(x) \end{array} \right. \iff \left\{ \begin{array}{lll} y & = & \ln(x) \\ f(x) & = & \ln(x) \end{array} \right. \iff \left\{ \begin{array}{lll} y & = & \ln(x) \\ 0 & = & f(x) - \ln(x) \end{array} \right.$$

On calcule:

$$f(x) - \ln(x) = \left(1 - \frac{1}{x}\right) (\ln(x) - 2) + 2 - \ln(x). \text{ On met au dénominateur } x :$$

$$= \frac{1}{x} \left[(x - 1)(\ln(x) - 2) + 2x - x \ln(x) \right]$$

$$= \frac{1}{x} \left[x \ln(x) - 2x - \ln(x) + 2 + 2x - x \ln(x) \right]$$

$$= \frac{1}{x} (2 - \ln(x))$$

Or
$$2 - \ln(x) = 0 \iff \ln(x) = 2 \iff x = e^2$$
.

Les deux courbes se coupent donc en un unique point d'abscisse $x=\mathrm{e}^2$ et d'ordonnée $y=\ln(\mathrm{e}^2)=2$.

2. On utilise la linéarité de l'intégrale :

$$I = \int_{1}^{e^{2}} \frac{2 - \ln(x)}{x} dx$$
$$= 2 \int_{1}^{e^{2}} \frac{1}{x} dx - \int_{1}^{e^{2}} \frac{\ln(x)}{x} dx$$

Or ln est une primitive de $x\mapsto \frac{1}{x}$ et H est une primitive de $x\mapsto \frac{\ln(x)}{x}$. Ainsi :

$$I = 2 [\ln(x)]_1^{e^2} - [H(x)]_1^{e^2}$$

$$= 2 (\ln(e^2) - \ln(1)) - \frac{1}{2} (\ln(e^2)^2 - \ln(1)^2)$$

$$= 2$$

L'aire délimitée par \mathcal{C} , \mathcal{C}' , et les deux droites d'équations x=1 et $x=\mathrm{e}^2$ est donc égale à 2.

Bonus: on pose $u(x) = \ln x$ et v'(x) = x. On en déduit que $u'(x) = \frac{1}{x}$ et $v(x) = \frac{1}{2}x^2$ par exemple. Les fonctions u et v sont dérivables sur [1; e] à dérivées continues. On intègre par parties.

$$\int_{1}^{e} x \ln(x) dx = \left[\frac{1}{2} x^{2} \ln x \right]_{1}^{e} - \frac{1}{2} \int_{1}^{e} x dx$$

$$= \left[\frac{1}{2} x^{2} \ln x \right]_{1}^{e} - \frac{1}{4} \left[x^{2} \right]_{1}^{e}$$

$$= \frac{1}{2} e^{2} - 0 - \frac{1}{4} e^{2} + \frac{1}{4}$$

$$= \frac{e^{2} + 1}{4}$$