Effect of $p_T > 100$ GeV on alignment

- ▶ Production alignment used only tracks with $20 < p_T < 100$ GeV
- ightharpoonup Starting from the above, we re-aligned with $100 < p_T < 200$ GeV
- ► These are the differences between the low-momentum alignment and the high-momentum alignment
- lackbox (Converged after 2 iterations, as expected, and only showing " σ " < 1 mm, 1 mrad)

Effect of $p_T > 100$ GeV on alignment

- ▶ Here it is again, split up by station instead of wheel
- ► Even though these are 5–10 mm displacements, we have not returned to CRAFT_ALL_V4 (before first global alignment). This is a new configuration.

Effect of $p_T > 100$ GeV on alignment

- lacktriangle And now in global $\Delta\phi$ around beamline and global $r\phi$
- ▶ Yes, we see a rotation (0.34 mrad) and a twist (0.04 mrad/m)
- ▶ But it is a p_T-dependent effect— rotation relative to low-p_T!
- ▶ Hypothesis: curl in tracker causes *p_T*-dependent apparent rotation in the other direction (spread could be statistical)

Diagram of curl hypothesis

