BLOCK CIPHERS and KEY-RECOVERY SECURITY

Mihir Bellare UCSD

Notation

 $\{0,1\}^n$ is the set of *n*-bit strings and $\{0,1\}^*$ is the set of all strings of finite length. By ε we denote the empty string.

If S is a set then |S| denotes its size. Example: $|\{0,1\}^2| = 4$.

If x is a string then |x| denotes its length. Example: |0100| = 4.

think this as a possible of all remainders when divided by $m \ge 1$ is an integer then let $\mathbf{Z}_m = \{0,1,\ldots,m-1\}$.

By $x \leftarrow S$ we denote picking an element at random from set S and assign it to X. Thus $\Pr[X = s] = 1/|S|$ for every $S \in S$.

Notation

There are only 10
types of people
in the world:
Those who understand binary
and those who don't.

Mihir Bellare UCSD

Functions

1

f is the function which takes X1, ..Xn as inputs and gives output Y.

Let $n \ge 1$ be an integer. Let X_1, \ldots, X_n and Y be (non-empty) sets.

By $f: X_1 \times \cdots \times X_n \to Y$ we denote that f is a function that

- Takes inputs x_1, \ldots, x_n , where $x_i \in X_i$ for $1 \le i \le n$
- and returns an output $y = f(x_1, \dots, x_n) \in Y$, y is one of the value from set Y

We call n the number of inputs (or arguments) of f. We call

 $X_1 \times \cdots \times X_n$ the domain of f and Y the range of f.

{0,1} {0, 1,2}

Example: Define $f: \mathbb{Z}_2 \times \mathbb{Z}_3 \to \mathbb{Z}_3$ by $f(x_1, x_2) = (x_1 + x_2) \mod 3$. This is a function with n = 2 inputs, domain $\mathbb{Z}_2 \times \mathbb{Z}_3$ and range \mathbb{Z}_3 .

Mihir Bellare UCSD 3

Permutations

* permutation is a particular type of function in cryptography. It moves us closer to encryption by being uniquely invertible which when we use it with decryption

Suppose $f: X \to Y$ is a function with one argument. We say that it is a permutation if

- X = Y, meaning its domain and range are the same set.
- There is an *inverse* function $f^{-1}: Y \to X$ such that $f^{-1}(f(x)) = x$ for all $x \in X$. Structurely, the function is bijection, i.e its one to one and onto

This means f must be one-to-one and onto: for every $y \in Y$ there is a unique $x \in X$ such that f(x) = y.

Mihir Bellare UCSD 5

Permutations versus functions example

Consider the following two functions $f: \{0,1\}^2 \to \{0,1\}^2$, where $X = Y = \{0,1\}^2$:

X	00	01	10	11
f(x)	01	11	00	10

A permutation

X	00	01	10	11
f(x)	01	11	11	10

Not a permutation

Х	00	01	10	11
$f^{-1}(x)$	10	00	11	01

Its inverse

Permutations versus functions example

Consider the following two functions $f: \{0,1\}^2 \to \{0,1\}^2$, where $X = Y = \{0,1\}^2$:

X	00	01	10	11	
f(x)	01	11	00	10	

A permutation

X	00	01	10,	11
f(x)	01	11	11	10

Not a permutation

Two different input maps to the same output.. so the function is not invertible

Mihir Bellare UCSD 6

Function families we want to introduce an idea of key in family of functions

everytime you have a key (a particular or different choice of key), you will induce a new function. The way we capture that, is by defining a family of functions

A family of functions (also called a function family) is a two-input function $F: \text{Keys} \times D \to R$. For $K \in \text{Keys}$ we let $F_K: D \to R$ be defined by $F_K(x) = F(K,x)$ for all $x \in D$ when we fix the key K, we induce a function from D to R

- The set Keys is called the key space. If Keys $= \{0,1\}^k$ we call k the key length.
- The set D is called the input space. If D = $\{0,1\}^\ell$ we call ℓ the input length.
- The set R is called the output space or range. If $R = \{0,1\}^L$ we call L the output length.

Example: Define $F_{\text{k:}} \underbrace{\mathbf{Z}_{0,1}}_{\text{timat space}} + \mathbf{Z}_{3}$ by $F(K,x) = \underbrace{(K \cdot x) \text{ mod } 3}$.

- This is a family of functions with domain $\mathbf{Z}_2 \times \mathbf{Z}_3$ and range \mathbf{Z}_3 .
- If K=1 then $F_K: \mathbf{Z}_3 \to \mathbf{Z}_3$ is given by $F_K(x)=x \mod 3$. {we fixed the key}

Mihir Bellare UCSD 8

Mihir Bellare

UCSD

7

Block ciphers: Definition

Block cipher is specific or particular type of family of functions. It has a key space input space and range space.

Let $E: \text{Keys} \times D \to R$ be a family of functions. We say that E is a block cipher if

- R = D, meaning the input and output spaces are the same set.
- $E_K: D \to D$ is a permutation for every key $K \in Keys$, meaning has an inverse $E_{\kappa}^{-1} \colon \mathsf{D} \to \mathsf{D}$ such that $E_{\kappa}^{-1}(E_{\kappa}(x)) = x$ for all $x \in \mathsf{D}$.

We let E^{-1} : Keys \times D \to D, defined by $E^{-1}(K, y) = E_{\kappa}^{-1}(y)$, be the inverse block cipher to E.

In practice we want that E, E^{-1} are efficiently computable.

If Keys = $\{0,1\}^k$ then k is the key length as before. If D = $\{0,1\}^\ell$ we call ℓ the block length.

Mihir Bellare UCSD

Block Ciphers: Example

Block cipher specified in codes

Let $\ell = k$ and define $E: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ by

$$E_K(x) = E(K, x) = K \oplus x$$

Then E_K has inverse E_K^{-1} where

$$E_K^{-1}(y) = K \oplus y$$

Why? Because

$$E_K^{-1}(E_K(x)) = E_K^{-1}(K \oplus x) = K \oplus K \oplus x = x$$

The inverse of block cipher E is the block cipher E^{-1} defined by

$$E^{-1}(K, y) = E_K^{-1}(y) = K \oplus y$$

Mihir Bellare UCSD 11

Block ciphers: Example

Block cipher $E: \{0,1\}^2 \times \{0,1\}^2 \rightarrow \{0,1\}^2$ (left), where the table entry corresponding to the key in row K and input in column x is $E_K(x)$. Its inverse E^{-1} : $\{0,1\}^2 \times \{0,1\}^2 \to \{0,1\}^2$ (right).

{inputs}

00 | 01 | 10 | 11 00 10 00 11 01 01 | 11 | 10 | 01 | 00 10 10 | 11 | 00 | 01 00 10 01 11 11

{outputs}

æv	s }	00	01	10	11
,	00	01	11	10	00
	01	11	10	01	00
	10	10	11	00	01
	11	01	11	10	00

- Row 01 of E equals Row 01 of E^{-1} , meaning $E_{01} = E_{01}^{-1}$
- Rows have no repeated entries, for both E and E^{-1}
- Column 00 of E has repeated entries, that's ok
- Rows 00 and 11 of E are the same, that's ok

Mihir Bellare

Exercise

{keys}

Let $E: \text{Keys} \times D \rightarrow D$ be a block cipher. Is E a permutation?

- YES
- NO
- QUESTION DOESN'T MAKE SENSE
- WHO CARES?

This is an exercise in correct mathematical language.

The way the permutation is defined is it has a single input but block cipher has two inputs. So the answer is NO

Slow is good

Mihir Bellare UCSD 13

Exercise

Above we had given the following example of a family of functions: $F: \mathbb{Z}_2 \times \mathbb{Z}_3 \to \mathbb{Z}_3$ defined by $F(K, x) = (K \cdot x) \mod 3$.

Question: Is *F* a block cipher? Why or why not?

If you fix K, D->D.. so input and output space are the same For every choice of k in K, Fk should be permutation.

* that means, it should be intertible for every choice of k

Key space has two possible values- {0, 1}

- => we can fix K to 0: then, FO(x) = 0 mod 3 = 0 (always) ==> Is this Invertible??
- * for any possible value of input x, the output will always be 0, which is many-to-one and so it is not invertible and hence not purmutation.
- ==> fixing K to 1: $F1(x) = x \mod 3 ==> 0--> 0$, 1-->1, 2-->2. So its one to one function and hnce intertible

Mihir Bellare UCSD 15

Exercise

Let E: Keys \times D \to D be a block cipher. Is E a permutation?

How to proceed to answer this: Think slow. Don't jump to a conclusion. Instead:

- Look back at the definition of a block cipher.
- Look back at the definition of a permutation.
- Pattern match these.
- Now make an informed and justified conclusion.

This is an exercise in correct mathematical language.

This is considered a *high-school level* exercise.

Mihir Bellare UCSD 14

Exercise

Above we had given the following example of a family of functions: $F: \mathbf{Z}_2 \times \mathbf{Z}_3 \to \mathbf{Z}_3$ defined by $F(K, x) = (K \cdot x) \mod 3$.

Question: Is F a block cipher? Why or why not?

Answer: No, because $F_0(1) = F_0(2)$ so F_0 is not a permutation.

Exercise

Above we had given the following example of a family of functions: $F: \mathbb{Z}_2 \times \mathbb{Z}_3 \to \mathbb{Z}_3$ defined by $F(K, x) = (K \cdot x) \mod 3$.

Question: Is F a block cipher? Why or why not?

Answer: No, because $F_0(1) = F_0(2)$ so F_0 is not a permutation.

Question: Is F_1 a permutation?

Mihir Bellare UCSD 17

Block cipher usage

{key space} {input space} {output space}

Let $E\colon\{0,1\}^k\times\{0,1\}^\ell\to\{0,1\}^\ell$ be a block cipher. It is considered public. In typical usage

• $K \leftarrow \{0,1\}^k$ is known to parties S, R, but not given to adversary A.
• S, R use E_K for encryption

Leads to security requirements like: Hard to get K from $y_1, y_2, ...$; Hard to get x_i from y_i ; ...

Mihir Bellare UCSD 19

Exercise

Above we had given the following example of a family of functions:

 $F: \mathbf{Z}_2 \times \mathbf{Z}_3 \to \mathbf{Z}_3$ defined by $F(K, x) = (K \cdot x) \mod 3$.

Question: Is F a block cipher? Why or why not?

Answer: No, because $F_0(1) = F_0(2)$ so F_0 is not a permutation.

Question: Is F_1 a permutation?

Answer: Yes. But that alone does not make F a block cipher.

Mihir Bellare UCSD 18

DES History

{Data Encryption standard}

1972 – NBS (now NIST) asked for a block cipher for standardization

1974 - IBM designs Lucifer

Lucifer eventually evolved into DES.

Widely adopted as a standard including by ANSI and American Bankers association

Used in ATM machines

Replaced (by AES) in 2001.

FIPS DES Standard: Reaffirmed 1999

FIPS PUB 46-3

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

Reaffirmed 1999 October 25

U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology

DATA ENCRYPTION STANDARD (DES)

Mihir Bellare UCSD 21

DES Construction

Round i:

Invertible given K_i :

23

DES parameters

Note that for block cipher, input space and output space has the same length, but key can be of any length.

Key Length k = 56

Block length $\ell = 64$

So,

DES:
$$\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$$

$$\mathsf{DES}^{-1} \colon \{0,1\}^{56} \times \{0,1\}^{64} \to \{0,1\}^{64}$$

Mihir Bellare UCSD 22

DES Construction

function DES_K²(C) // |K| = 56 and |M| = 64

$$(K_1, ..., K_{16}) \leftarrow KeySchedule(K)$$
 // $|K_i| = 48$ for $1 \le i \le C \leftarrow IP(C)$
Parse C as $L_{16} \parallel R_{16}$
for $i = 16$ downto 1 do
 $R_{i-1} \leftarrow L_i$; $L_{i-1} \leftarrow f(K_i, R_{i-1}) \oplus R_i$
 $M \leftarrow IP^{-1}(L_0 \parallel R_0)$
return M

DES Construction

			IF)								IF	- 1			
58 60			34 36	-	-	-			-	-	-	-			64 63	-
62	54	46	38	30	22	14	6	3	38	6	46	14	54	22	62	30
64	56	48	40	32	24	16	8	3	37	5	45	13	53	21	61	29
57	49	41	33	25	17	9	1	3	36	4	44	12	52	20	60	28
59	51	43	35	27	19	11	3	3	35	3	43	11	51	19	59	27
61	53	45	37	29	21	13	5	3	34	2	42	10	50	18	58	26
63	55	47	39	31	23	15	7	3	33	1	41	9	49	17	57	25

UCSD

S-boxes

Mihir Bellare

S_1 :	0 0 1 1	0 1 0 1	0 14 0 4 15	1 4 15 1 12	13 7 14 8	3 1 4 8 2	2 14 13 4	5 15 2 6 9	6 11 13 2 1	7 8 1 11 7	8 3 10 15 5	9 10 6 12 11	10 6 12 9 3	11 12 11 7 14	12 5 9 3 10	13 9 5 10 0	14 0 3 5 6	15 7 8 0 13
S ₂ :	0 0 1 1	0 1 0 1	0 15 3 0 13	1 13 14 8	2 8 4 7 10	3 14 7 11 1	6 15 10 3	5 11 2 4 15	6 3 8 13 4	7 4 14 1 2	8 9 12 5 11	9 7 0 8 6	10 2 1 12 7	11 13 10 6 12	12 6 9 0	13 0 9 3 5	14 5 11 2 14	15 10 5 15 9
S ₃ :	0 0 1 1	0 1 0 1	10 13 13 1	1 7 6 10	9 0 4 13	3 14 9 9	6 3 8 6	5 3 4 15 9	6 15 6 3 8	7 5 10 0 7	1 2 11 4	9 13 8 1 15	10 12 5 2 14	7 14 12 3	12 11 12 5 11	13 4 11 10 5	14 2 15 14 2	15 8 1 7 12

Mihir Bellare UCSD 27

DES Construction

		E	Ξ				F)	
-		2	-		-	-		20 28	
8	9	10	11	12	13	1	15	23	26
	-	14 18	-	-		-	-	31 24	-
24	25	22 26	27	28	29	19	13	3 30	6
28	29	30	31	32	1	22	11	4	25

Mihir Bellare UCSD

26

Key Recovery Attack Scenario

25

Key Recovery Attack--> Can you recover the Key when you know both the PT and CT so that you can use that key to decrypt further CT in block cipher?

Let E: Keys \times D \rightarrow R be a block cipher known to the adversary A.

- Sender Alice and receiver Bob share a *target key K* \in Keys.
- Alice encrypts M_i to get $C_i = E_K(M_i)$ for $1 \le i \le q$, and transmits C_1, \ldots, C_q to Bob
- The adversary gets C_1,\ldots,C_q and also knows M_1,\ldots,M_q
- Now the adversary wants to figure out K so that it can decrypt any future ciphertext C to recover $M = E_K^{-1}(C)$.

Question: Why do we assume A knows M_1, \ldots, M_q ?

Answer: Reasons include a posteriori revelation of data, a priori knowledge of context, and just being conservative!

Key Recovery Security Metrics

We consider two measures (metrics) for how well the adversary does at this key recovery task:

- Target key recovery (TKR)
- Consistent key recovery (KR)

In each case the definition involves a game and an advantage.

The definitions will allow E to be any family of functions, not just a block cipher.

The definitions allow A to pick, not just know, M_1, \ldots, M_q . This is called a chosen-plaintext attack.

Mihir Bellare UCSD 29

Consistent keys

Def: Let $E: \text{Keys} \times D \to R$ be a family of functions. We say that key $K' \in \text{Keys}$ is *consistent* with $(M_1, C_1), \ldots, (M_q, C_q)$ if $E(K', M_i) = C_i$ for all $1 \le i \le q$.

Example: For $E: \{0,1\}^2 \times \{0,1\}^2 \to \{0,1\}^2$ defined by

		00	01	10	11		
	00	11	00	10	01		
ĺ	01	11	10	01	00		
	10	10	11	00	01		
	11	11	00	10	01		

The entry in row K, column M is E(K, M).

- Key 00 is consistent with (11,01)
- Key 10 is consistent with (11,01)
- Key 00 is consistent with (01,00), (11,01)
- Key 11 is consistent with (01,00), (11,01)

Mihir Bellare UCSD 31

Target Key Recovery Definitions: Game and Advantage

Game
$$\mathrm{TKR}_E$$
 procedure $\mathrm{Fn}(M)$ Return $E(K,M)$
 $K \overset{\$}{\leftarrow} \mathrm{Keys}$ procedure Finalize (K') Return $(K = K')$

Definition:
$$Adv_E^{tkr}(A) = Pr[TKR_E^A \Rightarrow true].$$

- First **Initialize** executes, selecting *target key* $K \leftarrow$ Keys, but not giving it to A.
- Now A can call (query) **Fn** on any input $M \in D$ of its choice to get back $C = E_K(M)$. It can make as many queries as it wants.
- Eventually A will halt with an output K' which is automatically viewed as the input to **Finalize**
- The game returns whatever **Finalize** returns
- The tkr advantage of A is the probability that the game returns true

Mihir Bellare UCSD

Consistent Key Recovery Definitions: Game and Advantage

Let $E: \text{ Keys} \times D \to R$ be a family of functions, and A an adversary.

Game
$$\mathrm{KR}_E$$

procedure Initialize

 $K \overset{\$}{\leftarrow} \mathrm{Keys}; \ i \leftarrow 0$

procedure $\mathrm{Fn}(M)$
 $i \leftarrow i+1; \ M_i \leftarrow M$
 $C_i \leftarrow E(K, M_i)$

Return C_i

procedure Finalize(K')

 $\mathrm{win} \leftarrow \mathrm{true}$
 $\mathrm{For} \ j=1,\ldots,i$ do

If $E(K', M_j) \neq C_j$ then $\mathrm{win} \leftarrow \mathrm{false}$

Return win

Return win

Definition:
$$Adv_E^{kr}(A) = Pr[KR_E^A \Rightarrow true].$$

The game returns true if (1) The key K' returned by the adversary is consistent with $(M_1, C_1), \ldots, (M_q, C_q)$, and (2) M_1, \ldots, M_q are distinct.

A is a q-query adversary if it makes q distinct queries to its \mathbf{Fn} oracle.

kr advantage always exceeds tkr advantage

Fact: Suppose that, in game KR_E , adversary A makes queries M_1, \ldots, M_q to **Fn**, thereby defining C_1, \ldots, C_q . Then the target key K is consistent with $(M_1, C_1), \ldots, (M_q, C_q)$.

Proposition: Let E be a family of functions. Let A be any adversary all of whose \mathbf{Fn} queries are distinct. Then

$$\mathsf{Adv}^{\mathrm{kr}}_{\mathsf{E}}(\mathsf{A}) \geq \mathsf{Adv}^{\mathrm{tkr}}_{\mathsf{E}}(\mathsf{A})$$
 .

Why? If the K' that A returns equals the target key K, then, by the Fact, the input-output examples $(M_1, C_1), \ldots, (M_q, C_q)$ will of course be consistent with K'.

Mihir Bellare UCSD 33

Exhaustive Key Search attack

Let $E: \text{Keys} \times D \to R$ be a function family with $\text{Keys} = \{T_1, \dots, T_N\}$ and $D = \{x_1, \dots, x_d\}$. Let $1 \le q \le d$ be a parameter.

UCSD

adversary $A_{\rm eks}$

For
$$j = 1, ..., q$$
 do $M_j \leftarrow x_j$; $C_j \leftarrow \mathbf{Fn}(M_j)$
For $i = 1, ..., N$ do
if $(\forall j \in \{1, ..., q\} : E(T_i, M_i) = C_i)$ then return T_i

Question: What is $Adv_E^{kr}(A_{eks})$?

Answer: It equals 1.

Because

Mihir Bellare

- There is some i such that $T_i = K$, and
- K is consistent with $(M_1, C_1), \ldots, (M_q, C_q)$.

Exhaustive Key Search attack

Let $E: \text{Keys} \times D \to R$ be a function family with $\text{Keys} = \{T_1, \dots, T_N\}$ and $D = \{x_1, \dots, x_d\}$. Let $1 \le q \le d$ be a parameter.

adversary $A_{\rm eks}$

For
$$j = 1, ..., q$$
 do $M_j \leftarrow x_j$; $C_j \leftarrow \mathbf{Fn}(M_j)$
For $i = 1, ..., N$ do
if $(\forall j \in \{1, ..., q\} : E(T_i, M_j) = C_j)$ then return T_i

Question: What is $Adv_E^{kr}(A_{eks})$?

Mihir Bellare UCSD 34

Exhaustive Key Search attack

Let $E: \text{Keys} \times D \to R$ be a function family with $\text{Keys} = \{T_1, \dots, T_N\}$ and $D = \{x_1, \dots, x_d\}$. Let $1 \le q \le d$ be a parameter.

adversary $A_{\rm eks}$

35

For
$$j = 1, ..., q$$
 do $M_j \leftarrow x_j$; $C_j \leftarrow \mathbf{Fn}(M_j)$
For $i = 1, ..., N$ do
if $(\forall j \in \{1, ..., q\} : E(T_i, M_i) = C_i)$ then return T_i

Question: What is $Adv_E^{tkr}(A_{eks})$?

Exhaustive Key Search attack

Let $E: \text{Keys} \times D \to R$ be a function family with $\text{Keys} = \{T_1, \dots, T_N\}$ and $D = \{x_1, \dots, x_d\}$. Let $1 \le q \le d$ be a parameter.

adversary $A_{\rm eks}$

Mihir Bellare

For
$$j = 1, ..., q$$
 do $M_j \leftarrow x_j$; $C_j \leftarrow \mathbf{Fn}(M_j)$
For $i = 1, ..., N$ do
if $(\forall j \in \{1, ..., q\} : E(T_i, M_j) = C_j)$ then return T_i

Question: What is $Adv_E^{tkr}(A_{eks})$?

Answer: Hard to say! Say $K = T_m$ but there is a i < m such that $E(T_i, M_j) = C_j$ for $1 \le j \le q$. Then T_i , rather than K, is returned.

In practice if $E\colon\{0,1\}^k\times\{0,1\}^\ell\to\{0,1\}^\ell$ is a "real" block cipher and $q>k/\ell$, we expect that $\mathbf{Adv}_E^{\mathrm{tkr}}(A_{\mathrm{eks}})$ is close to 1 because K is likely the only key consistent with the input-output examples.

Mihir Bellare UCSD 37

So far: A Pedagogic interlude

- Slides 1–18 are basic mathematical notation and definitions at a CSE 20 level. You should find this easy.
- Slides 19–27 (DES) are just a story. Don't congratulate yourself if you "understand" it because there really isn't anything to understand, at least at the level we told the story.
- Slides 28–38 are representative of what you need to understand to do well. There is depth here. It takes time, thought and many passes to understand.

UCSD

Exercise: tkr advantage can be much less than kr

Let $k, \ell \ge 1$ be given integers. Present in pseudocode a block cipher $E: \{0,1\}^k \times \{0,1\}^\ell \to \{0,1\}^\ell$ for which you do the following:

- (1) Given any positive integer $q \leq 2^{\ell}$, present in pseudocode a q-query, $\mathcal{O}(q(k+\ell))$ -time adversary A_q with $\mathbf{Adv}_E^{\mathrm{kr}}(A_q) = 1$.
- (2) Prove that $\mathbf{Adv}_{F}^{\mathrm{tkr}}(A) \leq 2^{-k}$ for any adversary A.

Mihir Bellare UCSD 38

How long does exhaustive key search take?

DES can be computed at 1.6 Gbits/sec in hardware.

DES plaintext = 64 bits

Chip can perform $(1.6 \times 10^9)/64 = 2.5 \times 10^7$ DES computations per second

Expect $A_{
m eks}$ (q=1) to succeed in 2^{55} DES computations, so it takes time

$$\frac{2^{55}}{2.5 \times 10^7} \approx 1.4 \times 10^9 \text{ seconds}$$
$$\approx 45 \text{ years!}$$

Key Complementation \Rightarrow 22.5 years

39

But this is prohibitive. Does this mean DES is secure?

Differential and linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to "look inside" DES and find/exploit weaknesses.

The following non-generic key-recovery attacks on DES have advantage close to one and running time smaller than 2^{56} DES computations:

Attack	when	<i>q</i> , running time
Differential cryptanalysis	1992	2 ⁴⁷
Linear cryptanalysis	1993	2 ⁴⁴

Mihir Bellare UCSD 41

EKS revisited

adversary $A_{\rm eks}$

For
$$j = 1, ..., q$$
 do $M_j \leftarrow x_j$; $C_j \leftarrow \mathbf{Fn}(M_j)$
For $i = 1, ..., N$ do
if $(\forall j \in \{1, ..., q\} : E(T_i, M_j) = C_j)$ then return T_i

Differential and linear cryptanalysis

Exhaustive key search is a generic attack: Did not attempt to "look inside" DES and find/exploit weaknesses.

The following non-generic key-recovery attacks on DES have advantage close to one and running time smaller than 2^{56} DES computations:

Attack	when	<i>q</i> , running time
Differential cryptanalysis	1992	2 ⁴⁷
Linear cryptanalysis	1993	2 ⁴⁴

But merely storing 2⁴⁴ input-output pairs requires 281 Tera-bytes.

In practice these attacks were prohibitively expensive.

Mihir Bellare UCSD 42

EKS revisited

adversary $A_{\rm eks}$

For
$$j = 1, ..., q$$
 do $M_j \leftarrow x_j$; $C_j \leftarrow \mathbf{Fn}(M_j)$
For $i = 1, ..., N$ do
if $(\forall j \in \{1, ..., q\} : E(T_i, M_i) = C_i)$ then return T_i

Observation: The *E* computations can be performed in parallel!

Mihir Bellare UCSD 43

EKS revisited

adversary $A_{ m eks}$

For
$$j = 1, ..., q$$
 do $M_j \leftarrow x_j$; $C_j \leftarrow \mathbf{Fn}(M_j)$
For $i = 1, ..., N$ do
if $(\forall j \in \{1, ..., q\} : E(T_i, M_i) = C_i)$ then return T_i

Observation: The *E* computations can be performed in parallel!

In 1993, Wiener designed a dedicated DES-cracking machine:

- \$1 million
- 57 chips, each with many, many DES processors
- Finds key in 3.5 hours

Mihir Bellare UCSD 45

DES security summary

DES is considered broken because its short key size permits rapid key-search.

But DES is a very strong design as evidenced by the fact that there are no practical attacks that exploit its structure.

RSA DES challenges

 $K \overset{\$}{\leftarrow} \{0,1\}^{56}$; $Y \leftarrow \mathsf{DES}(K,X)$; Publish Y on website. Reward for recovering X

Challenge	Post Date	Reward	Result	
I	1997	\$10,000	Distributed.Net: 4	
			months	
П	1998	Depends how	Distributed.Net: 41 days.	
		fast you find	EFF: 56 hours	
		key		
III	1998	As above	< 28 hours	

Mihir Bellare UCSD 46

2DES

Block cipher $2DES: \{0,1\}^{112} \times \{0,1\}^{64} \to \{0,1\}^{64}$ is defined by $2DES_{K_1K_2}(M) = DES_{K_2}(DES_{K_1}(M))$

- Exhaustive key search takes 2^{112} *DES* computations, which is too much even for machines
- Resistant to differential and linear cryptanalysis.

Mihir Bellare UCSD 48

47

Meet-in-the-middle attack on 2DES

Suppose K_1K_2 is a target 2DES key and adversary has M, C such that

$$C = 2DES_{K_1K_2}(M) = DES_{K_2}(DES_{K_1}(M))$$

Then

$$DES_{K_2}^{-1}(C) = DES_{K_1}(M)$$

Mihir Bellare UCSD 49

Meet-in-the-middle attack on 2DES

Suppose $DES_{K_2}^{-1}(C) = DES_{K_1}(M)$ and T_1, \ldots, T_N are all possible DES keys, where $N = 2^{56}$.

 $DES^{-1}(T_1, C)$ $DES^{-1}(T_i,C) \mid T_j \mid \leftarrow K_2$ $DES^{-1}(T_N,C)$ T_N

Table R

Attack idea:

- Build L.R tables
- Find i, j s.t. L[i] = R[j]
- Guess that $K_1K_2 = T_iT_i$

UCSD Mihir Bellare 51

Meet-in-the-middle attack on 2DES

Suppose $DES_{K_2}^{-1}(C) = DES_{K_1}(M)$ and T_1, \ldots, T_N are all possible DES keys, where $N = 2^{56}$.

T_1	$DES(T_1, M)$
T_i	$DES(T_i, M)$
T_N	$DES(T_N, M)$
	Table <i>L</i>

$DES^{-1}(T_1,C)$	T_1
$DES^{-1}(T_j,C)$	T_j
$DES^{-1}(T_N,C)$	T_N

Table R

Attack idea:

• Build L,R tables

Mihir Bellare UCSD 50

Meet-in-the-middle attack on 2DES

Let $T_1, \ldots, T_{2^{56}}$ denote an enumeration of DES keys.

adversary A_{MinM}

$$M_1 \leftarrow 0^{64}$$
; $C_1 \leftarrow \text{Fn}(M_1)$
for $i = 1, ..., 2^{56}$ do $L[i] \leftarrow \text{DES}(T_i, M_1)$
for $j = 1, ..., 2^{56}$ do $R[j] \leftarrow \text{DES}^{-1}(T_j, C_1)$
 $S \leftarrow \{ (i, j) : L[i] = R[j] \}$
Pick some $(I, r) \in S$ and return $T_I \parallel T_r$

Attack takes about 2⁵⁷ DES/DES⁻¹ computations and has $\mathsf{Adv}^{\mathrm{kr}}_{\mathsf{2DFS}}(A_{\mathrm{MinM}}) = 1.$

This uses q = 1 and is unlikely to return the target key. For that one should extend the attack to a larger value of q.

UCSD Mihir Bellare 52

3DES

Block ciphers

$$\begin{split} & \text{3DES3}: \{0,1\}^{168} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64} \\ & \text{3DES2}: \{0,1\}^{112} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64} \end{split}$$

are defined by

$$3DES3_{K_1 \parallel K_2 \parallel K_3}(M) = DES_{K_3}(DES_{K_2}^{-1}(DES_{K_1}(M)))$$
$$3DES2_{K_1 \parallel K_2}(M) = DES_{K_2}(DES_{K_1}^{-1}(DES_{K_2}(M)))$$

Meet-in-the-middle attack on 3DES3 reduces its "effective" key length to 112.

Mihir Bellare UCSD 53

AES

1998: NIST announces competition for a new block cipher

- key length 128
- block length 128
- faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6, Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC, Safer+, Deal

Block size limitation

Later we will see "birthday" attacks that "break" a block cipher $E:\{0,1\}^k\times\{0,1\}^\ell\to\{0,1\}^\ell$ in time $2^{\ell/2}$

For DES this is $2^{64/2}=2^{32}$ which is small, and this is unchanged for 2DES and 3DES.

Would like a larger block size.

Mihir Bellare UCSD 54

AES

1998: NIST announces competition for a new block cipher

- key length 128
- block length 128
- faster than DES in software

Submissions from all over the world: MARS, Rijndael, Two-Fish, RC6, Serpent, Loki97, Cast-256, Frog, DFC, Magenta, E2, Crypton, HPC, Safer+, Deal

2001: NIST selects Rijndael to be AES.

AES

```
function \mathsf{AES}_K(M)

(K_0,\ldots,K_{10}) \leftarrow \mathsf{expand}(K)

s \leftarrow M \oplus K_0

for r=1 to 10 do

s \leftarrow S(s)

s \leftarrow \mathsf{shift}\text{-}\mathsf{rows}(s)

if r \leq 9 then s \leftarrow \mathsf{mix}\text{-}\mathsf{cols}(s) fi

s \leftarrow s \oplus K_r

end for

return s
```

- Fewer tables than DES
- Finite field operations

Mihir Bellare UCSD 57

Implementing AES

	Code size	Performance	
Pre-compute and store	largest	fastest	
round function tables	largest		
Pre-compute and store	smaller	slower	
S-boxes only	Silialiei	Siowei	
No pre-computation	smallest	slowest	

AES-NI: Hardware for AES, now present on most processors. Your laptop may have it! Can run AES at around 1 cycle/byte. VERY fast!

The AES movie

http://www.youtube.com/watch?v=H2L1HOw_ANg

Mihir Bellare UCSD 58

Security of AES

Best known key-recovery attack [BoKhRe11] takes $2^{126.1}$ time, which is only marginally better than the 2^{128} time of EKS.

There are attacks on reduced-round versions of AES as well as on its sibling algorithms AES192, AES256. Many of these are "related-key" attacks. There are also effective side-channel attacks on AES such as "cache-timing" attacks [Be05,OsShTr05].

Exercise

Define $F: \{0,1\}^{256} \times \{0,1\}^{256} \to \{0,1\}^{256}$ by

Alg $F_{K_1||K_2}(x_1||x_2)$

$$\frac{1}{y_1 \leftarrow \mathsf{AES}^{-1}(K_1, x_1 \oplus x_2)}; \ y_2 \leftarrow \mathsf{AES}(K_2, \overline{x_2})$$
Return $y_1 || y_2$

for all 128-bit strings K_1, K_2, x_1, x_2 , where \overline{x} denotes the bitwise complement of x. (For example $\overline{01}=10$.) Let T_{AES} denote the time for one computation of AES or AES⁻¹. Below, running times are worst-case and should be functions of T_{AES} .

Mihir Bellare UCSD 61

Limitations of security against key recovery

So far, a block cipher has been viewed as secure if it resists key recovery, meaning there is no efficient adversary A having $\mathbf{Adv}_F^{\mathrm{kr}}(A) \approx 1$.

Is security against key recovery enough?

Not really. For example define $E\colon \{0,1\}^{128} imes \{0,1\}^{256} o \{0,1\}^{256}$ by

$$E_K(M[1]M[2]) = M[1]||AES_K(M[2])|$$

This is as secure against key-recovery as AES, but not a "good" blockcipher because half the message is in the clear in the ciphertext.

Exercise

- **1.** Prove that F is a blockcipher.
- 2. What is the running time of a 4-query exhaustive key-search attack on *F*?
- **3.** Give a 4-query key-recovery attack in the form of an adversary A specified in pseudocode, achieving $\mathbf{Adv}_F^{\mathrm{kr}}(A)=1$ and having running time $\mathcal{O}(2^{128} \cdot T_{\mathsf{AFS}})$ where the big-oh hides some small constant.

Mihir Bellare UCSD 62

So what?

Possible reaction: But DES, AES are not designed like *E* above, so why does this matter?

Answer: It tells us that security against key recovery is not, as a block-cipher property, sufficient for security of uses of the block cipher.

As designers and users we want to know what properties of a block cipher give us security when the block cipher is used.

Mihir Bellare UCSD 63

So what is a "good" block cipher?

Possible Properties	Necessary?	Sufficient?
security against key recovery	YES	NO!
hard to find M given $C = E_K(M)$	YES	NO!
:		

We can't define or understand security well via some such (indeterminable) list.

We want a single "master" property of a block cipher that is sufficient to ensure security of common usages of the block cipher.