ML-classification

December 30, 2024

1 Find data set

The dataset is from Kaggle Breast Cancer dataset by Rahma Sleam This diagnostic dataset is from Breast Cancer Wisconsin. https://www.kaggle.com/datasets/rahmasleam/breast-cancer### Data Description

The data is a 569 by 31 matrix. It contains 569 patient samples as rows. "diagnosis" column is the diagnosis classified as either "M" for malignant(cancerous), or "B" for Benign(non-cancerous). It has 30 columns to characterize the patient's sample: radius_mean, texture_mean, perimeter_mean, area_mean, smoothness_mean, compactness_mean, concavity_mean, concave points_mean, symmetry_mean, fractal_dimension_mean, radius_se, texture_se, perimeter_se, area_se, smoothness_se, compactness_se, concavity_se, concave points_se, symmetry_se, fractal_dimension_se, radius_worst, texture_worst, perimeter_worst, area_worst, smoothness_worst, compactness_worst, concavity_worst, concave points_worst, symmetry_worst, fractal_dimension_worst

2 Objective

- Understand and clean the dataset
- The main goal is to build classification models to predict if the breast cancer sample from this dataset is malignant or benign.
- Fine-tune hyperparameters and compare the performance of various classification algorithms.

```
import pandas as pd
import seaborn as sns
%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.metrics import classification_report, confusion_matrix

# Ml Models
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
```

```
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, u
      → Gradient Boosting Classifier
     import warnings
     warnings.filterwarnings('ignore')
[2]: data=pd.read_csv("/Users/alexcui/Desktop/projects/Python/ML_IBM/data/
     ⇔breast-cancer.csv")
     data.head(5)
[2]:
                             radius mean texture mean perimeter mean
              id diagnosis
                                                                         area mean
     0
          842302
                                   17.99
                                                  10.38
                                                                  122.80
                                                                              1001.0
     1
          842517
                          М
                                   20.57
                                                  17.77
                                                                  132.90
                                                                              1326.0
     2 84300903
                          Μ
                                   19.69
                                                  21.25
                                                                  130.00
                                                                              1203.0
     3 84348301
                          М
                                   11.42
                                                  20.38
                                                                   77.58
                                                                               386.1
                                                  14.34
     4 84358402
                          М
                                   20.29
                                                                  135.10
                                                                              1297.0
        smoothness_mean
                         compactness_mean
                                             concavity_mean
                                                              concave points_mean
     0
                0.11840
                                   0.27760
                                                     0.3001
                                                                          0.14710
                0.08474
                                                     0.0869
                                                                           0.07017
     1
                                   0.07864
                0.10960
     2
                                   0.15990
                                                     0.1974
                                                                           0.12790
     3
                0.14250
                                   0.28390
                                                     0.2414
                                                                          0.10520
     4
                0.10030
                                   0.13280
                                                     0.1980
                                                                          0.10430
           radius_worst
                          texture_worst perimeter_worst
                                                           area_worst
     0
                  25.38
                                  17.33
                                                   184.60
                                                                2019.0
                  24.99
                                  23.41
                                                   158.80
     1
                                                                1956.0
     2
                  23.57
                                  25.53
                                                   152.50
                                                                1709.0
                                  26.50
     3
                  14.91
                                                    98.87
                                                                 567.7
                  22.54
                                  16.67
                                                   152.20
                                                                1575.0
                                                                concave points_worst
        smoothness_worst
                           compactness_worst
                                               concavity_worst
                  0.1622
     0
                                       0.6656
                                                        0.7119
                                                                                0.2654
                  0.1238
                                       0.1866
                                                        0.2416
                                                                                0.1860
     1
     2
                  0.1444
                                       0.4245
                                                        0.4504
                                                                                0.2430
     3
                  0.2098
                                       0.8663
                                                        0.6869
                                                                                0.2575
     4
                  0.1374
                                       0.2050
                                                        0.4000
                                                                                0.1625
        symmetry_worst
                       fractal dimension worst
     0
                0.4601
                                          0.11890
     1
                0.2750
                                          0.08902
     2
                0.3613
                                          0.08758
     3
                0.6638
                                          0.17300
                0.2364
                                          0.07678
     [5 rows x 32 columns]
```

[3]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	<pre>fractal_dimension_worst</pre>		float64
	es: float64(30), int64(1)	, object(1)	
memo	ry usage: 142.4+ KB		

memory usage: 142.4+ KB

[4]: data.dtypes.value_counts()

[4]: float64 30 int64 object 1 dtype: int64

```
[5]: data.drop('id', axis=1, inplace=True)
[6]: data["diagnosis"].value_counts()
[6]: B
          357
     Μ
          212
     Name: diagnosis, dtype: int64
```

Encoding for the Target column

```
[7]: le = LabelEncoder()
     data['diagnosis'] = le.fit_transform(data.diagnosis)
     data['diagnosis'].sample(5)
[7]: 406
            0
     364
            0
     141
            1
     4
            1
     198
            1
     Name: diagnosis, dtype: int64
```

Replacing outliers to lower and upper bound values

```
data.describe()
[8]:
              diagnosis
                         radius_mean
                                       texture_mean
                                                      perimeter_mean
                                                                          area_mean
            569.000000
                           569.000000
                                          569.000000
                                                           569.000000
                                                                         569.000000
     count
               0.372583
                            14.127292
                                           19.289649
                                                            91.969033
                                                                         654.889104
     mean
     std
               0.483918
                             3.524049
                                                            24.298981
                                                                         351.914129
                                            4.301036
     min
               0.000000
                             6.981000
                                            9.710000
                                                            43.790000
                                                                         143.500000
     25%
               0.000000
                            11.700000
                                           16.170000
                                                            75.170000
                                                                         420.300000
     50%
               0.000000
                            13.370000
                                                            86.240000
                                           18.840000
                                                                         551.100000
     75%
               1.000000
                            15.780000
                                           21.800000
                                                           104.100000
                                                                         782.700000
               1.000000
                            28.110000
                                           39.280000
                                                           188.500000
                                                                        2501.000000
     max
                               compactness_mean
                                                  concavity_mean
                                                                   concave points_mean
             smoothness_mean
                  569.000000
                                     569.000000
                                                       569.000000
                                                                             569.000000
     count
     mean
                    0.096360
                                        0.104341
                                                         0.088799
                                                                               0.048919
     std
                    0.014064
                                        0.052813
                                                         0.079720
                                                                               0.038803
     min
                    0.052630
                                        0.019380
                                                         0.000000
                                                                               0.00000
     25%
                    0.086370
                                        0.064920
                                                         0.029560
                                                                               0.020310
     50%
                    0.095870
                                        0.092630
                                                         0.061540
                                                                               0.033500
     75%
                    0.105300
                                        0.130400
                                                         0.130700
                                                                               0.074000
     max
                    0.163400
                                        0.345400
                                                         0.426800
                                                                               0.201200
```

symmetry_mean ... radius_worst texture_worst perimeter_worst

```
569.000000
                                  569.000000
                                                  569.000000
                                                                    569.000000
      count
                  0.181162
                                   16.269190
                                                   25.677223
                                                                    107.261213
      mean
      std
                   0.027414
                                    4.833242
                                                    6.146258
                                                                     33.602542
      min
                  0.106000
                                    7.930000
                                                   12.020000
                                                                     50.410000
      25%
                   0.161900
                                                   21.080000
                                   13.010000
                                                                     84.110000
      50%
                  0.179200
                                   14.970000
                                                   25.410000
                                                                     97.660000
                                                   29.720000
      75%
                                                                    125.400000
                  0.195700
                                   18.790000
      max
                   0.304000
                                   36.040000
                                                   49.540000
                                                                    251.200000
              area_worst
                           smoothness_worst
                                              compactness_worst
                                                                  concavity_worst
      count
              569.000000
                                 569.000000
                                                     569.000000
                                                                       569.000000
              880.583128
                                   0.132369
                                                       0.254265
                                                                         0.272188
      mean
      std
              569.356993
                                   0.022832
                                                        0.157336
                                                                         0.208624
      min
              185.200000
                                   0.071170
                                                       0.027290
                                                                         0.000000
      25%
              515.300000
                                                       0.147200
                                                                         0.114500
                                   0.116600
      50%
              686.500000
                                   0.131300
                                                       0.211900
                                                                         0.226700
      75%
             1084.000000
                                                                         0.382900
                                   0.146000
                                                       0.339100
             4254.000000
      max
                                   0.222600
                                                        1.058000
                                                                         1.252000
                                                     fractal_dimension_worst
             concave points_worst
                                    symmetry_worst
                        569.000000
      count
                                         569.000000
                                                                   569.000000
                          0.114606
                                           0.290076
                                                                     0.083946
      mean
                          0.065732
                                                                     0.018061
      std
                                           0.061867
      min
                          0.000000
                                           0.156500
                                                                     0.055040
      25%
                          0.064930
                                           0.250400
                                                                     0.071460
      50%
                          0.099930
                                           0.282200
                                                                     0.080040
      75%
                          0.161400
                                           0.317900
                                                                     0.092080
                          0.291000
                                           0.663800
                                                                     0.207500
      max
      [8 rows x 31 columns]
 [9]: def detect_outliers(column,data):
          Q1=data[column].quantile(0.25)
          Q3=data[column].quantile(0.75)
          # interquartile range
          IQR=Q3-Q1
          lower_bound=Q1-1.5*IQR
          upper_bound=Q3+1.5*IQR
          outliers = data[(data[column] < lower_bound) | (data[column] > upper_bound)]
          data[column] = data[column].clip(lower=lower_bound, upper=upper_bound)
          return data
[10]: for i in data.columns[1:]:
          data=detect_outliers(i,data)
     data.describe()
[11]:
```

Гаап.		44				
[11]:		diagnosis radius_m	-	-	-	
	count	569.000000 569.000				
	mean	0.372583 14.062				
	std	0.483918 3.340				
	min	0.000000 6.981				
	25%	0.000000 11.700				
	50%	0.000000 13.370				
	75%	1.000000 15.780				
	max	1.000000 21.900	30.245	000 147.495	000 1326.300000	
		smoothness_mean com	npactness_mean	concavity_mean	concave points_mean	\
	count	569.000000	569.000000	569.000000	569.000000	`
	mean	0.096266	0.103222	0.086937	0.048552	
	std	0.013685	0.049386	0.073900	0.037633	
	min	0.057975	0.019380	0.000000	0.000000	
	25%	0.086370	0.064920	0.029560	0.020310	
	50%	0.095870	0.092630	0.061540	0.033500	
	75%	0.105300	0.130400	0.130700	0.074000	
	max	0.133695	0.228620	0.282410	0.154535	
	шах	0.100000	0.220020	0.202410	0.104000	
		symmetry_mean ra	dius_worst te	xture_worst per	imeter_worst \	
	count	569.000000	569.000000	569.000000	569.000000	
	mean	0.180734	16.183882	25.648453	106.705369	
	std	0.026067	4.587249	6.054406	31.957777	
	min	0.111200	7.930000	12.020000	50.410000	
	25%	0.161900	13.010000	21.080000	84.110000	
	50%	0.179200	14.970000	25.410000	97.660000	
	75%	0.195700	18.790000	29.720000	125.400000	
	max	0.246400	27.460000	42.680000	187.335000	
				-	concavity_worst \	
	count		69.000000	569.000000	569.000000	
	mean	849.907821	0.132209	0.249883	0.268754	
	std	475.645240	0.022320	0.142851	0.197461	
	min	185.200000	0.072500	0.027290	0.000000	
	25%	515.300000	0.116600	0.147200	0.114500	
	50%	686.500000	0.131300	0.211900	0.226700	
	75%	1084.000000	0.146000	0.339100	0.382900	
	max	1937.050000	0.190100	0.626950	0.785500	
		concave points_worst	symmetry_wor	st fractal_dime	nsion_worst	
	count	569.000000	•	-	569.000000	
	mean	0.114606			0.083342	
	std	0.065732			0.015993	
	min	0.000000			0.055040	
	25%	0.064930			0.071460	
	E0%	0.001000			0.000040	

0.080040

0.282200

0.099930

50%

75% 0.161400 0.317900 0.092080 max 0.291000 0.419150 0.123010

[8 rows x 31 columns]

5 Correlation between Diagnosis and Characters of the data

[12]: plt.figure(figsize=(10,7))
sns.heatmap(data.corr())

[12]: <Axes: >

6 Set Training and Testing Datasets

```
[13]: X = data.drop('diagnosis', axis=1) # Drop the target column
y = data['diagnosis'] # Target column
```

7 Scaling

```
[14]: scaler = StandardScaler()
X = scaler.fit_transform(X)
```

8 Split Dataset into Training and Testing Sets

```
[15]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u orandom_state=42)
```

9 Build Multiple Classification Models for Comparison

```
models = {
    'Logistic Regression' : LogisticRegression(random_state=42),
    'SVM' : SVC(random_state = 42),
    'KNN': KNeighborsClassifier(),
    'Random Forest' : RandomForestClassifier(random_state = 42),
    "Ada Boost":AdaBoostClassifier(random_state = 42),
    'Gradient Boosting': GradientBoostingClassifier(random_state=42),
    'Decision Tree': DecisionTreeClassifier(random_state=42),
}
```

10 Define Parameters for Grid Search Cross Validation

```
[17]: param grids = {
          "Logistic Regression": {
              'C': [0.01, 0.1, 1, 10, 100],
              'penalty': ['11', '12', 'elasticnet'],
              'solver': ['liblinear', 'lbfgs', 'saga'],
              'max_iter': [10000, 20000, 30000]
          },
          "SVM": {
              'C': [0.01, 0.1, 1, 10, 100],
              'gamma': ['scale', 'auto', 0.01, 0.1, 1, 10]
          },
          "KNN": {
              'n_neighbors': [3, 5, 7, 9],
              'weights': ['uniform', 'distance'],
              'metric': ['euclidean', 'manhattan']
          },
          "Random Forest": {
              'n_estimators': [100, 500, 1000],
              'max_depth': [None, 10, 20],
              'min_samples_split': [2, 5],
              'min_samples_leaf': [1, 2],
```

```
'max_features': ['auto', 'sqrt', 'log2']
    },
    "Ada Boost": {
        'n_estimators': [50, 100, 150],
        'learning_rate': [0.01, 0.1, 1.0],
        'algorithm': ['SAMME']
    },
    "Gradient Boosting": {
        'n estimators': [100, 200],
        'learning_rate': [0.01, 0.1, 0.2],
        'max_depth': [3, 5, 7],
        'subsample': [0.8, 1.0]
    },
    "Decision Tree": {
        'max_depth': [None, 10, 20],
        'min_samples_split': [2, 5],
        'min_samples_leaf': [1, 2],
        'criterion': ['gini', 'entropy']
    }
}
```

```
[18]: # Store Results
      results = {}
      # Train each model and evaluate
      for model name, model in models.items():
          param_grid = param_grids[model_name]
          grid_search=GridSearchCV(estimator=model, param_grid=param_grid, cv=5,_
       \rightarrown_jobs=-1, verbose=1)
          grid_search.fit(X_train, y_train)
          best model=grid search.best estimator
          best score=grid search.best score
          best_params=grid_search.best_params_
          y_pred = best_model.predict(X_test)
          results[model_name] = {
              "Model": model_name,
              "Best Params":best_params,
              "Accuracy":best_score
          }
          print(f"Best score for {model_name} with {best_params}: {best_score:.4f}")
          print(classification_report(y_test, y_pred))
```

Fitting 5 folds for each of 135 candidates, totalling 675 fits

Best score for Logistic Regression with {'C': 0.1, 'max_iter': 10000, 'penalty': '12', 'solver': 'liblinear'}: 0.9780

precision recall f1-score support

0	0.99	1.00	0.99	71
1	1.00	0.98	0.99	43
accuracy			0.99	114
macro avg	0.99	0.99	0.99	114
weighted avg	0.99	0.99	0.99	114

Fitting 5 folds for each of 30 candidates, totalling 150 fits Best score for SVM with {'C': 100, 'gamma': 'scale'}: 0.9780

	precision	recall	f1-score	support
0	0.97	0.94	0.96	71
1	0.91	0.95	0.93	43
accuracy			0.95	114
macro avg	0.94	0.95	0.94	114
weighted avg	0.95	0.95	0.95	114

Fitting 5 folds for each of 16 candidates, totalling 80 fits
Best score for KNN with {'metric': 'euclidean', 'n_neighbors': 7, 'weights':
'distance'}: 0.9670

	precision	recall	f1-score	support
0	0.96 0.95	0.97	0.97	71 43
-	0.00	0.50		
accuracy			0.96	114
macro avg	0.96	0.95	0.95	114
weighted avg	0.96	0.96	0.96	114

Fitting 5 folds for each of 108 candidates, totalling 540 fits

Best score for Random Forest with {'max_depth': None, 'max_features': 'log2',
'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 100}: 0.9626

precision recall f1-score support

0	0.96	0.99	0.97	71
1	0.98	0.93	0.95	43
accuracy			0.96	114
macro avg	0.97	0.96	0.96	114
weighted avg	0.97	0.96	0.96	114

Fitting 5 folds for each of 9 candidates, totalling 45 fits
Best score for Ada Boost with {'algorithm': 'SAMME', 'learning_rate': 1.0,
'n_estimators': 50}: 0.9780

support	f1-score	recall	precision	
71	0.97	0.99	0.96	0

```
0.96
                                                         114
         accuracy
        macro avg
                         0.97
                                   0.96
                                             0.96
                                                         114
     weighted avg
                                   0.96
                                             0.96
                                                         114
                         0.97
     Fitting 5 folds for each of 36 candidates, totalling 180 fits
     Best score for Gradient Boosting with {'learning_rate': 0.2, 'max_depth': 5,
     'n_estimators': 100, 'subsample': 0.8}: 0.9670
                   precision
                                 recall f1-score
                                                     support
                0
                         0.96
                                   0.97
                                             0.97
                                                          71
                         0.95
                1
                                   0.93
                                             0.94
                                                          43
                                             0.96
         accuracy
                                                         114
        macro avg
                                             0.95
                         0.96
                                   0.95
                                                         114
     weighted avg
                         0.96
                                   0.96
                                             0.96
                                                         114
     Fitting 5 folds for each of 24 candidates, totalling 120 fits
     Best score for Decision Tree with {'criterion': 'entropy', 'max_depth': None,
     'min_samples_leaf': 1, 'min_samples_split': 2}: 0.9341
                                 recall f1-score
                   precision
                0
                         0.93
                                   0.99
                                             0.96
                                                          71
                1
                         0.97
                                   0.88
                                             0.93
                                                          43
                                             0.95
                                                         114
         accuracy
        macro avg
                         0.95
                                   0.93
                                             0.94
                                                         114
                         0.95
                                   0.95
                                             0.95
     weighted avg
                                                         114
[19]: | df = pd.DataFrame.from_dict(results, orient='index')
      df['Accuracy'] = round(df['Accuracy'], 4)
      df
Γ197:
                                          Model \
     Logistic Regression Logistic Regression
      SVM
                                            SVM
      KNN
                                            KNN
      Random Forest
                                  Random Forest
      Ada Boost
                                      Ada Boost
      Gradient Boosting
                             Gradient Boosting
      Decision Tree
                                 Decision Tree
                                                                   Best Params \
      Logistic Regression {'C': 0.1, 'max_iter': 10000, 'penalty': '12',...
      SVM
                                                 {'C': 100, 'gamma': 'scale'}
```

0.98

0.93

0.95

43

1

```
KNN
                            {'metric': 'euclidean', 'n_neighbors': 7, 'wei...
      Random Forest
                           {'max_depth': None, 'max_features': 'log2', 'm...
                            {'algorithm': 'SAMME', 'learning_rate': 1.0, '...
      Ada Boost
                           {'learning_rate': 0.2, 'max_depth': 5, 'n_esti...
      Gradient Boosting
      Decision Tree
                           {'criterion': 'entropy', 'max_depth': None, 'm...
                           Accuracy
                             0.9780
     Logistic Regression
      SVM
                             0.9780
      KNN
                             0.9670
      Random Forest
                             0.9626
      Ada Boost
                             0.9780
      Gradient Boosting
                             0.9670
      Decision Tree
                             0.9341
[20]: | ax = sns.barplot(x="Accuracy", y="Model", data=df, palette="viridis")
      for index, value in enumerate(df['Accuracy']):
          ax.text(value - 0.012, index, f'{value:.4f}', va='center', color="red",
       ⇔ha='left', fontsize=10)
      plt.title("Accuracy of all Classifiers")
      plt.xlim(0.9, 1)
```

plt.show()


```
[21]: df
[21]:
                                          Model \
     Logistic Regression Logistic Regression
      SVM
      KNN
                                            KNN
      Random Forest
                                 Random Forest
      Ada Boost
                                      Ada Boost
      Gradient Boosting
                             Gradient Boosting
      Decision Tree
                                 Decision Tree
                                                                   Best Params \
      Logistic Regression {'C': 0.1, 'max_iter': 10000, 'penalty': '12',...
      SVM
                                                 {'C': 100, 'gamma': 'scale'}
     KNN
                           {'metric': 'euclidean', 'n_neighbors': 7, 'wei...
                           {'max depth': None, 'max features': 'log2', 'm...
      Random Forest
      Ada Boost
                           {'algorithm': 'SAMME', 'learning_rate': 1.0, '...
      Gradient Boosting
                           {'learning_rate': 0.2, 'max_depth': 5, 'n_esti...
      Decision Tree
                           {'criterion': 'entropy', 'max_depth': None, 'm...
                           Accuracy
     Logistic Regression
                             0.9780
      SVM
                             0.9780
      KNN
                             0.9670
      Random Forest
                             0.9626
      Ada Boost
                             0.9780
      Gradient Boosting
                             0.9670
      Decision Tree
                             0.9341
[22]: best_accuracy = df['Accuracy'].max()
      best_models = df[df['Accuracy'] == best_accuracy]
      # Dutput the best models and their corresponding parameters and accuracy
      print("Best models with their corresponding accuracy:\n")
      print(best_models[['Model', 'Best Params', 'Accuracy']])
     Best models with their corresponding accuracy:
                                         Model
     Logistic Regression Logistic Regression
     SVM
                                           SVM
     Ada Boost
                                     Ada Boost
                                                                  Best Params \
     Logistic Regression {'C': 0.1, 'max_iter': 10000, 'penalty': '12',...
     SVM
                                                {'C': 100, 'gamma': 'scale'}
     Ada Boost
                           {'algorithm': 'SAMME', 'learning_rate': 1.0, '...
```

```
0.978
     Logistic Regression
     SVM
                              0.978
     Ada Boost
                              0.978
[23]: # Create a 1x3 subplot grid
      fig, axes = plt.subplots(1, 3, figsize=(16, 4)) # 1 row, 3 columns
      # Iterate over the best models DataFrame
      for index, (row, ax) in enumerate(zip(best_models.iterrows(), axes)):
          model name = row[1]['Model'] # Get the model name
          best_params = row[1]['Best Params'] # Get the best parameters for the model
          model = models.get(model_name) # Retrieve the model from the models_
       \hookrightarrow dictionary
          model.fit(X_train, y_train) # Fit the model on the training data
          # Predict using the current model
          y_pred_best = model.predict(X_test)
          # Generate the confusion matrix
          cm = confusion_matrix(y_test, y_pred_best)
          # Plot the heatmap for the confusion matrix on the appropriate subplot
          sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Malignantu
       _{\hookrightarrow}(M)', 'Benign (B)'],
                      yticklabels=['Malignant (M)', 'Benign (B)'], cbar=False, ax=ax)
          # Set the title and labels
          ax.set_title(f'Confusion Matrix Heatmap for {model_name}')
          ax.set_xlabel('Predicted Labels')
          ax.set_ylabel('True Labels')
      # Add a black vertical line between the subplots
      # We are going to manually add vertical lines at the boundaries of the subplots
      for i in range(1, len(axes)):
          # Get the x positions for the right edge of the previous subplot and the
       → left edge of the current subplot
          x1 = axes[i-1].get_position().xmax # Right side of the previous subplot
          x2 = axes[i].get position().xmin
                                             # Left side of the current subplot
```

Accuracy

fig.add_artist(Line2D([x1, x1], [0, 1], color='black', linewidth=2,__

Draw a vertical line at the boundary between subplots

⇔transform=fig.transFigure))

plt.subplots_adjust(wspace=1)

Adjust layout for better spacing

plt.show()

11 Summary

The result shows Logistic Regression, Support Vector Machine (SVM) and Ada Boost models all show great performance for this dataset. They have the same mean accuracy score (0.978) across the folds of cross-validation for the best hyperparameters found by the grid search. The only difference is Logistic Regression model identified only 1 false negative cases which means the sample is actually Malignant but the model classified it as a Benign one. The SVM and Ada Boost models both have 2 false positive cases, even with same mean accuracy score as the Logistic Regression model.

So, for this reason, I'd chooose Logistic Regression model for this dataset, with the following parameters:

{C= 0.1, max_iter= 10000, penalty= 'l2', solver= 'liblinear'}

12 Next Step

Apply the Logistic Regerssion model on a larger sacle dataset to evaluate its performance, and use Grid Search Cross Validation to see if current best parameters are still hold for more data. The current approach uses the lower and upper interquartile range as the replacement values for clipping the outliers, which introduces artificial boundaries and may distort the data distribution. This requires careful selection of clipping thresholds, which can be arbitrary.