컴퓨터 구조 7번째 과제

2019040164 정지오

<13.1>

a. 20 b. 40 c. 60 d. 30 e. 50 f. 70

<13.3>

Instruction

Opcode	Address: 14
--------	-------------

- a) 14 (The address field).
- b) Memory location 14.
- c) The memory location whose address is in memory location 14.
- d) Register 14.
- e) The memory location whose address is in register 14.

<13.4>

	EA	Operand
a	500	1100
b	201	500
c	1100	1700
d	201+1+500 =702	1302
e	500+100=600	1200
f	R1	400
g	400	1000
h	400	1000


```
> Carry = 1;
> Zero = 1;
> Overflow = 0;
> Sign = 0;
> Even Parity = 1;
> Half-Carry= 1.
<14.2>
11110000
 0010100
11100100
<14.3>
Given that frequency is 5Ghz. We need to convert this to Cycles Per Second (cps). If 1 Hz is equal
to 1 cps, then 5Ghz = 5,000,000,000Hz = 5000000000cps.
To get the duration of a clock cycle, you have to calculate the period which is simply 1/frequency
or 1/cps.
\rightarrow 1/(5*10^9) seconds.
<14.7>
a.
10 x 1.0x10^-7= 1.0 x 10^-6= 0.1 x 10^-5
64(15 \times 10 \times 10^{-7}) = 9.6 \times 10^{-5}
Add two \rightarrow 9.7 x 10 ^-5
b. 9.7 x 10^-5 + acknowledge cycle time
```

c. 1.0 x 10^-6 + acknowledge cycle time

<14.8>

INSTRUCTIONS	1	2	3	4	5	6	7	8	9	10
11	FI	DA	FO	EX						
12		FI	DA	FO	EX					
13			FI	DA	FO	EX				
14				FI	DA	FO				
15					FI	DA				
16						FI				
115							FI	DA	FO	EX

<14.9>

a.

No. of instructions (n) =1.5 million

1 Million=106

No. of stages in pipleline (k)=5

Instructions rate per clock cycle=1

Torque $(\tau)=1$

Speed up=?

s= 1

b.

MIPS rate=?

No. of instructions=1.5 million

MIPS=
$$Ic/T \times 106$$

$$T= nk= (1.5)(5)$$

T =7.5

$$S(k) = nk / pqnk + k + (1 - pq)n - 1$$
.