Generalization System, Regular pattern language, Minimal Language and k-multiple minimal generalization

- Polynomial time inference of extended regular pattern languages (Shinohara)
 - http://link.springer.com/chapter/10.1007/3-540-11980-9_19
 - Regular pattern の minimal common genelization (mcg) を多 項式時間で求める
- Finding Minimal Genelization for Unions of Pattern Languages and ... (Arimura+)
 - http://wwwikn.ist.hokudai.ac.jp/~arim/papers/arimura_stacs94.pdf
 - k-multiple minimal genelization (k-mmg) を多項式時間で求める

趣旨

description (pattern) \leadsto concept (language) \supseteq (given) strings S

- 1 つの description は 1 つの concept を表現する
- 文字列の集合 S が与えられる
- *S* を網羅 (包含, covering) する言語を表現する description 及 び、その concept を探索する
 - ただしそのような concept の中で極小なもの

$$S \sqsubseteq L_n \sqsubseteq \ldots \sqsubseteq L_1 \sqsubseteq L_0$$

Agenda

- 1. 汎化システム (Genelization System; GS)
 - 正規パターン言語での例
- 2. 言語の帰納的推論
 - 正規パターン言語での例
- 3. multiple description
- 4. k-mmg の構成アルゴリズム

汎化システム (Generalization System; GS)

- 一種の言語を構成する系で、以下で構成される
 - description の全体集合 D
 - D 上の半順序 <</p>
 - 最大限 ⊤ ∈ D
 - 極小元を object と呼ぶ

汎化

 $p \leq q$

- q は p の generalization (汎化)
 - p から q への構成を generalize という
- $p \not \exists q \not o \text{ instance}$
 - *q* から *p* への構成を refine という

Concept by description

次を p で表現される concept という

$$L(p) = \{q \leq p : q \text{ is object }\}$$

concept は言語の一般化概念

- description → Pattern
- concept → Language

Language における包含関係 (L,\subseteq) を Pattern における (p,\preceq) の関係で特徴づけたい

Prop.

$$p \leq q \Rightarrow L(p) \subseteq L(q)$$

- $s \in L(p)$
- \iff $s \leq p$ (定義)
- s ≤ q (推移律)
- \iff $s \in L(q)$ (定義)

Reverse

$$p \leq q \Leftarrow^? L(p) \subseteq L(q)$$

一般にこれは成立しない。

これがいつも成立するような GS を complete GS という。

正規パターン (Regular Pattern; RP)

- 大きさ 2 以上の有限アルファベット集合: $\sum = \{0,1,2\ldots\}$
 - 文字列 (object): ∑⁺
 - 空文字列: $\sum^0 = \{\epsilon\}$
- 変数の無限集合 X = {x, y, z . . . }
- パターンとは (∑∪X)⁺ で表現される列
- 正規パターン: 一つの変数が高々一度出現するパターン
 - e.g. 0x01y0

RP 上の 🗠

ある代入によって $q \mapsto p$ となる関係を

$$p \leq q$$

で定める

代入 RP 中の一つの変数を別な RP で置き換えることによる RP から RP への順同型写像 (変数はかぶらないようにする)

- 消去可能パターン: 特別に空列の代入を許す (erasing)
- 消去不能パターン: 許さないもの (non-erasing)

代入の例

- $0x01z00 \le 0x01y0$
- $0x010 \leq 0x01y0$ (erasing)

自明な代入

- 代入 {x := y} (変数名の置き換え)
- 代入 $\{x := yz\}$ (erasing)

同值関係

$$p \leq q \land p \succeq q \iff p \equiv q$$

変数名の置き換え、消去可能なら erasing は同値なパターンに写す

- $0x01 \equiv 0y01$
- $0x01 \equiv 0yz01$

正規パターンについてはこれの商集合をとることにする

標準形

左から i 番目に出現する変数を xi とリネームする

- $X_1 W_1 X_2 \dots X_n W_n X_{n+1}$
 - $x_i \in X$
 - $\mathbf{w}_i \in \sum^+$ (消去可能)
 - w_i ∈ ∑* (消去不能)

商集合の代表元だと考える

パターンの作る言語

- $L(0x01y0) = \{0x01y0 : x \in \Sigma^+, y \in \Sigma^+\}$
- $L(0x01y0) = \{0x01y0 : x \in \sum^*, y \in \sum^*\}$ (erasing pattern language)

パターンにおける object

- RP においては明らかに \sum^+ (\sum^*) のこと
 - 代入を繰り返してできるもの

completeness of RP language

- $p \leq q \Rightarrow L(p) \subseteq L(q)$
- $p \leq q \Leftarrow^? L(p) \subseteq L(q)$
 - |∑|>2の時、これは成り立つ
 - | ∑ | = 2 のときの反例

本スライドの趣旨

有限の object (文字列) 集合 S が与えられたときに、 S はどの言語から来たかを推論したい すなわち、

$$S \mapsto p$$
 s.t. $S \subseteq L(p)$

■ $p \in D$ が S の covering である $\iff S \subseteq L(p)$

推論

先の命題を満たすだけなら 自明な言語 がある

$$\forall S. \ S \subseteq L(\top)$$

- ⊤ は RP なら変数一つからなるパターン
 - これは嬉しくないだろう

推論

推論の"良さ"として言語の大きさによって定める $\min_p L(p)$ s.t. $S\subseteq L(p)$

言語の大きさ

- (D,⊆) によって言語の大小を比較する
- **■** $p \subseteq q$ のとき、L(p) は L(q) より小さい
 - すなわち包含関係 (半順序) で極小となる言語

正提示からの帰納的推論 (Gold による形式化)

言語族 $\mathcal{L} = \{L(p) : p \in D\}$ (e.g. 正規パターン言語全体) について

- 言語族の任意の言語 L(p) の元からなる任意のただし要素は すべて異なる無限列 $\sigma=(s_1,s_2,\ldots)$ を正提示といい σ の 頭 n 個を断片 $\sigma[n]$ という
- 推論アルゴリズム M とは
 - $M: \sigma[n] \mapsto (p_n \in D)$
 - ∃N. ∀n > N. p_n = p となるもの
- 推論アルゴリズムが存在する言語族を推論可能な族だという

正規パターンは推論可能である

Prop

 $p \leq q$ のとき

- 消去可能パターン: size(p) ≥ size(q) (アルファベットの数)
- 消去不能パターン: |p| ≥ |q|

正規パターンは推論可能である

object s が与えられた時、s の汎化なる p ($s \leq p$) の size は s の size より小さい

- $S \subseteq L(p) \iff \forall i. \ s_i \leq p$
- $\blacksquare \iff \min size(s_i) \geq p$

ある size 以下の正規パターンというのは有限しかない

- 消去可能で size n の最長のパターン
 - $X_1a_1X_2\ldots a_nX_{n+1}$

正規パターンは推論可能である

 $S\subseteq L(q)$ となる q は有限通りしかないから全て試せばいい (部分点: 30 点)

minl

- S の covering であって言語が極小となる p を minimal common generalization (mcg) という
- mcg が作る言語を minimal language (minl) という

正規パターンの minl

例

- object 集合 S
 - **000111**
 - **1101**11
 - **1001**1
 - **000100**
- 直感: infix に 01 が出現する言語
 - p = x01y

最長共通部分列を取ればよさそう

正規パターンの minl

S の最長共通部分列が $a_1a_2 \dots a_n$ なら

- $p = x_1 a_1 x_2 a_2 \dots a_n x_{n+1}$
- それぞれの変数について潰せたら潰す
 - $S \subseteq^? L(\{x_i := \epsilon\}p)$

multiple description (和言語)

複数の description の和をとって高い表現力を得る

- $P = \{p_1, \ldots, p_k\}$
 - $|P| \le k$ の場合を特に k-multiple description という
 - description 全体 D に対して k-multiple 全体を D^k と書く
- $L(P) = \cup_i L(p_i)$

汎化関係

 $p \preceq q \Rightarrow L(p) \subseteq L(q)$ に相当する P の汎化関係 \sqsubseteq を次で定める

$$P \sqsubseteq Q \iff \forall p \in P. \ \exists q \in Q. \ \Rightarrow L(p) \subseteq L(q)$$

- $P \sqsubseteq Q \Rightarrow L(P) \subseteq L(Q)$
- $P \sqsubseteq Q \Leftarrow L(P) \subseteq L(Q)$ not hold (even if complete)

multiple description を用いた推論

object の有限集合 S から

- $S \subseteq L(P)$ covering
- N化 (D^k, □) において極小

を満たす $P \in D^k$ を推論したい

■ このような P を minimal multiple generalization (mmg) という

自明な multiple

- S ⊆ L(P) 等しい
- ∀Q(≠S). Q \(\subseteq P 極小

k-mmg

Pの良さとして P 自体の単純さを加味する すなわち k-multiple における mmg (k-mmg) の推論を考える

例 (k=2)

- object 集合 S
 - **000111**
 - **010111**
 - **100111**
 - **000100**
- 2-mmg として {0001xy, xy0111} など
- {xy01zw} は 2-multiple であるが極小ではない

To k-mmg

k-mmg を求めるのに手がかりとなる性質を述べていく

- 1. reduced *k*-multiple
- 2. tightest
- 3. division

reduced k-multiple

S の covering となっている k-multiple P について

 $\forall Q \subset P$. Q is not covering

このとき P は reduced だという「Pの中に不要な p が含まれていないこと」Prop.

k-mmg ならば reduced である $(:: Q \subset P \Rightarrow Q \sqsubseteq P)$

■ Sの reduced covering k-multiple は高々有限

tightest k-multiple

P が S の tightest covering であるとは

$$\forall p \in P. \ p \text{ is mcg of } S \setminus L(P \setminus p)$$

「pは、p以外で cover してない文字列すべての極小共通汎化になっている。」

■ tightest ならば reduced

Theorem 4.1

P が S の reduced covering でかつ、|P| = k ならば、

P is tightest \iff P is k-mmg

戦略

- *P* = { \(\tau \)} から始める (これは tightest)
- |P| < k の間
 - tightest な P' でかつ |P| < |P'| ≤ k を作る
 - P ← P'
- 大きさ k の P を得る

得られる P は k-mmg になっていることが保証される

大きさを調整しながら P からそれより大きな P' を作ること が必要

k-division

S の covering である description p の k-division とは次のような multiple P のこと

- *P* □ {*p*}
- $1 < |P| \le k$
- $S \subseteq L(P)$

k-division は必ずしも存在しない

■ 存在するとき、(S に対する) p は k-divisible であるという

k-division 例

- $S = \{01, 12, 20\}$
- p = xy
- 3-division として *S* そのものがある
- 2-division は存在しない

Theorem 4.2

S の reduced covering k-multiple P について

 $P \text{ is } k\text{-mmg} \iff$

- P is tightest and
- $\forall p \in P$. p is not δk -divisible
 - where $\delta k = k |P| + 1$

戦略 (続き)

- δk -division に従って P を大きくする
 - divisible でなくなった時
 - k-mmg が保証される

手続き mmg のアルゴリズム: 入力 (k,S)

- $P \leftarrow tightestCovering(\{\top\}, S)$
- $\delta k \leftarrow k-1$
- while $\delta k \geq 1$ and $\exists p \in P$. p is δk -divisible to $S \setminus L(P \setminus p)$
 - $p \leftarrow \delta k$ -divisible description in P
 - $S' = S \setminus L(P \setminus p)$
 - $rianlge \Delta P = \delta k$ -division of (S', p)
 - $P \leftarrow P \setminus \{p\} \cup tightestCovering(\Delta P, S')$
 - $\delta k = k |P|$
- tightestCovering(P, S) は
 - S とその covering P を取って
 - tightest covering を返す (P から構成する)
 - ただし P と大きさは同じ

tc(P) = tightestCovering(S, P)

tightest とは

ullet any $p \in tc(P)$. p が $S \setminus L(tc(P) \setminus p)$ の極小共通汎化になっていること

であった。

今、P が S の covering であるから covering を保ったまま 貪欲に refine すればよい (generalization の逆)

- loop
 - p ← P
 - assert $q \leq p$ and $(S \setminus L(P \setminus p)) \subseteq L(q)$
 - $P \leftarrow P \setminus \{p\} \cup \{q\}$

refine operator (近傍)

basic assign

貪欲に refinement を探すのに上の二つを取れば十分

論文に載ってる例

- S

- k = 4

補遺

 $|\sum|=2$ の消去可能正規パターン言語の汎化システムは完全ではない

$$p = x_1 01x_2 0x_3$$

$$q = x_1 0 x_2 10 x_3$$

$$L(p) = L(q)$$
 であるが、 $p \not \perp q$ かつ $p \not \succeq q$ である