Vol. 63 No. 10 JUCHE106(2017).

(자연과학)

주체106(2017)년 제63권 제10호

(NATURAL SCIENCE)

Bacillus subtilis natto-89게놈으로부터 피브린 분해효소유전자의 클론화

리은성, 현철

피브린분해효소를 대량발현시키기 위하여 발현활성이 높은 여러가지 천연균주를 자연 계에서 분리동정하고 변이육종하여 도입하기 위한 연구와 유전자공학적방법으로 피브린분 해효소를 발현시키기 위한 연구들[2, 3]이 진행되였다.

우리 나라에서는 이미 피브린분해활성이 높은 천연균주를 분리해내고 자외선변이육종 법으로 고활성균주를 선발하여 청곡키나제생산에 리용하고있으며 피브린분해효소의 유전 자를 클론화하여 3차구조를 예측하기 위한 연구가 진행되였다.[1] 우리는 청곡키나제유전 자의 효모발현균주계를 확립할것을 목적으로 피브린분해효소인 수브틸리신 BRC의 유전자 로부터 프로펩티드와 성숙펩티드암호화령역(proNK)을 클론화하기 위한 연구를 하였다.

재료와 방법

원천균주로서는 벼짚으로부터 분리하여 자외선변이육종법으로 육종해낸 청곡키나제생 산균주인 $Bacillus\ subtilis\ natto-89$ 를 리용하였다. 클론화숙주로서는 $E.\ coli\ DH5 \alpha$ 를, 클론화 운반체로서는 $pGEM^{\&}$ -T easy vector를 리용하였다.

균체로부터 게놈DNA와 플라즈미드의 분리는 세균게놈분리키트와 플라즈미드분리키트 (《TIANGEN》)를 리용하여 진행하였다. 유전자증폭에는 LA Taq폴리메라제(《TaKaRa》)를 리용하고 검정PCR에는 LC Taq폴리메라제(《Fermentas》)를 리용하였다. 피브린분해효소 프로펩티드와 성숙펩티드의 암호화령역(proNK)의 증폭 및 클론화를 위하여 프라이머(상류 및 하류프라이머)를 다음과 같이 설계하였다.(프라이머에 삽입시킨 제한효소인식부위를 밑줄을 그어 표시하였다.)

상류프라이머 5'-CG<u>GAATTC</u>GCCGGAAAAAGCAGTACAG-3' EcoRI

하류프라이머 5'-ATAAGAAT $\underline{GCGGCCGC}$ TTATTGTGCAGCTGCTTGTACGTTG-3'NotI

PCR증폭산물을 PCR산물정제키트(《OMEGA》)를 리용하여 정제하고 pGEM®-T easy vector(《Promega》)와 재조합하여 *E. coli* DH5a에 형질전환시켰다. 재조합효소로는 T4 DNA 리가제(《Promega》)를, 제한분해검정에는 *Eco*RI와 *Not*I(《TaKaRa》)를 리용하였다. pGEM®-T easy vector에 클론화한 피브린분해효소의 프로펩티드와 성숙펩티드 암호화령역(proNK)의 염기배렬을 결정하고 DNAMAN 5.2.2프로그람을 리용하여 Genbank에 등록된 피브린분해효소 유전자들과 비교분석하였다.

결과 및 론의

1) proNK유전자의 증폭

Bacillus subtilis natto-89균주를 LB배지에서 하루밤동안 배양(37℃, 200r/min)한 다음 원

그림 1. PCR증폭산물의 전기영동상 1-표식자, 2-증폭산물

100

심분리(4℃, 5 000r/min, 10min)하여 균집하고 게놈DNA를 분리하여 유 전자증폭을 위한 주형으로 리용하였다. PCR증폭산물의 전기영동상 은 그림 1과 같다.

그림 1에서 보는바와 같이 예상되는 크기(1.08kb)에 해당한 DNA 증폭단편이 나타났다.

2) proNK유전자의 pGEM®-T easy vector와의 재조합과 검정 PCR증폭산물을 정제하여 pGEM®-T easy vector에 재조합시키고 E. coli DH5α에 형질전환시켰다. LB평판(100μg/mL Amp⁺)에서 5개의 균 무지를 선택하여 검정PCR를 진행하고 양성클론을 선발하였다. PCR 검정결과는 그림 2와 같다.

그림 2에서 보는바와 같이 선택한 5개의 균무지에 대하여 예상 되는 크기(1.08Kb)의 단편이 정확히 증폭되였다.

선발된 양성클론을 LB배지(100µg/mL Amp⁺)에서 하루밤 진탕배 양(37°C, 200r/min)하고 균체로부터 플라즈미드를 분리하여 *Eco*RI와 Notl의 단일제한분해검정을 진행하였다. 단일제한분해검정결과는 그림 3과 같다.

2 3 4 5 6 7 5 000 3 000 2 000 1 000 750 500 250

그림 2. PCR검정결과 1-표식자, 2-게놈DNA주형, 3-7은 5개 주형

그림 3. 단일제한분해검정결과 1-EcoRI단일제한분해, 2-NotI단일 제한분해, 3-표식자

그림 3에서 보는바와 같이 두가지 효소에 의한 단일제한분해에서 다같이 proNK유전자 단편(1.08Kb)과 운반체(3.01Kb)의 크기에 해당한 띠가 나타났다. 이것은 pGEM®-T easy vector 에 있는 다클론화령역의 량쪽에 EcoRI와 NotI의 인식배렬이 존재하는것과 관련된다.

3) 클론화된 proNK유전자의 염기배렬분석

클론화된 proNK유전자의 배렬과 예견되는 아미노산배렬을 그림 4에 보여주었다.

그림 4. 클론화된 proNK유전자의 배렬과 예견되는 아미노산배렬 프라이머부분을 밑줄로 표시함

클론화된 유전자의 크기는 1 083bp이고 효모발현운반체 pPIC9K에 재조합시키기 위한 EcoRI, NotI제한효소인식배렬이 유전자의 량끝에 각각 도입되였다. 클론화된 유전자단편은 352개의 아미노산으로 구성되는 폴리펩티드를 암호화하며 폴리펩티드의 리론적인 분자량은 36.2kD, 등전점은 8.94이다.

Bacillus subtilis natto-89의 proNK유전자는 Bacillus속 피브린분해효소의 유전자들과 높 은 상동성을 나타낸다. Genbank에 등록되여있는 피브린분해효소유전자들과의 다중정렬을 진 행한 결과 Bacillus subtilis기원의 유전자들(FJ374767, S51909, AF368283, AY219901, AY895162, AY940167, D25319, EF061456, EF474344, FJ376817, FJ407060, K01988)[3]파의 상동성은 98% 이상, Bacillus amyloliquefaciens기원의 유전자들(K02496, X00165)[4, 5]과의 상동성은 93%이 상이다. 실례로 *AY219901로* 등록된 *Bacillus subtilis* YF38기원의 피브린분해효소유전자와는 4 개의 염기만이 차이나며 상동성은 99.62%이다. 아미노산배렬은 336번 위치에서 1개의 아 미노산만이 차이나며 상동성은 99.72%이다. 이상의 다중정렬결과로부터 피브린분해효소의 유전자를 정확히 클론화하였다는것을 알수 있다. 클론화된 유전자는 aprN유전자계렬의 알 카리성프로테아제유전자였다.

맺 는 말

청곡키나제생산균주로 리용되고있는 Bacillus subtilis natto-89의 게놈으로부터 청곡키나 제유전자인 수브틸리신 BRC의 프로펩티드와 성숙펩티드 암호화령역(proNK)을 증폭하고 클 론화하였다. 클론화된 유전자는 1 083bp의 크기를 가지고 *Bacillus subtilis*기원의 피브린분 해효소유전자들과 98%이상, Bacillus amyloliquefaciens기원의 피브린분해효소유전자들과 93% 이상의 상동성을 가진다.

참 고 문 헌

- [1] 윤은희 등; 전국과학토론회 론문집(생명과학), **김일성**종합대학출판사, 137~138, 주체100(2011).
- [2] Shi-Hua Wang et al.; Annuals of Microbiology, 58, 1, 95, 2008.
- [3] Thao Thi Nguyen et al.; Microbial Cell Factories, 12, 79, 2013.
- [4] N. Vasantha et al.; J. Bacteriol., 159, 3, 811, 1984.
- [5] J. A. Wells et al.; Nucleic Acids Res., 11, 22, 7911, 1983.

주체106(2017)년 6월 5일 원고접수

Cloning of a Gene Encoding Fibrinolytic Enzyme from Bacillus subtilis natto-89

Ri Un Song, Hyon Chol

Pro- and mature peptide coding region of a Chonggok-kinase gene(proNK) was synthesized and cloned from the genome of Bacillus subtilis natto-89 by using PCR. The cloned gene has 1 083 bp of length and the expected peptide is composed of 352 amino acids. The proNK gene has a high similarity of over 98 % with nattokinase genes from Bacillus subtilis species and of over 93% with nattokinase genes from Bacillus amyloliquefaciens.

Key words: fibrinolytic enzyme, Bacillus subtilis natto, propeptide