318 Chapter 5 Classification: Alternative Techniques

- (b) Given the information in part (a), is a randomly chosen college student more likely to be a graduate or undergraduate student?
- (c) Repeat part (b) assuming that the student is a smoker.
- (d) Suppose 30% of the graduate students live in a dorm but only 10% of the undergraduate students live in a dorm. If a student smokes and lives in the dorm, is he or she more likely to be a graduate or undergraduate student? You can assume independence between students who live in a dorm and those who smoke.
- 7. Consider the data set shown in Table 5.10

Table 5.10. Data set for Exercise 7.

10	9	∞	7	6	ڻ ت	4	ယ	2	1	Record
<u>—</u>		<u>—</u>	Н	\vdash	0	0	0	0.	0	A
0	_	0	0	0	0	Н	11	0	0	B
ш	Н	Н	H	_	<u> </u>	Н	<u>-</u>	_	0	C
+	+	I	Î	+	+	1	1	I	+	Class

- (a) Estimate the conditional probabilities for P(A|+), P(B|+), P(C|+), P(A|-), P(B|-), and P(C|-).
- (b) Use the estimate of conditional probabilities given in the previous question to predict the class label for a test sample (A=0,B=1,C=0) using the naïve Bayes approach.
- (c) Estimate the conditional probabilities using the m-estimate approach, with p=1/2 and m=4.
- (d) Repeat part (b) using the conditional probabilities given in part (c).
- (e) Compare the two methods for estimating probabilities. Which method is better and why?
- 8. Consider the data set shown in Table 5.11.
- (a) Estimate the conditional probabilities for P(A = 1|+), P(B = 1|+), P(C = 1|+), P(A = 1|-), P(B = 1|-), and P(C = 1|-) using the same approach as in the previous problem.