

Curso O

Cálculo para ingenieros

Profesora: Isabel Hidalgo

Email: isahidalgo@palma.uned.es

TEMA: SUCESIONES, LIMITES. INTRODUCCIÓN SERIES

- 1. LIMITE DE UNA SUCESIÓN
- 2.LA SUCESIÓN DEL NÚMERO e
- 3.LIMITES DE SUCESIONES, RESULTADOS TEÓRICOS
- 4.SERIES

Límite de una sucesión: Es el valor al cual se aproxima los términos de la sucesión cuando n toma valores muy grandes.

$$\{a_n\} \to L$$

$$\lim_{n \to \infty} a_n = L$$

Si el límite L de la sucesión existe entonces la sucesión converge a L. Si el límite no existe entonces la sucesión diverge.

El numero e

La sucesión definida por el termino general

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

Es una sucesión convergente cuyo límite es el número 2, 71828... que se representa mediante la letra e.

×	$\left(1+\frac{1}{x}\right)^x$
10	2.59374
100	2,70481
1000	2,71692
10000	2,71815
100000	2,71827
100000	2,71828

LIMITE DE UNA SUCESIÓN

$$L \in \mathbb{R} \qquad \qquad f \ / \qquad \lim_{x \to \infty} f(x) = L$$

Si $\{a_n\}$ es una sucesión tal que f (n) = a_n para cada entero positivo n, entonces

$$\lim_{n\to\infty} a_n = L$$

$$a_n = \frac{n^2}{2^n - 1} \quad \text{converge}$$

PROPIEDADES DE LOS LÍMITES DE SUCESIONES

$$\lim_{n\to\infty} (a_n) = L$$

1.
$$\lim_{n\to\infty} (a_n \pm b_n) = L \pm k$$

$$\lim_{n\to\infty} (b_n) = K$$

2.
$$\lim_{n \to \infty} (ca_n) = cL$$
 c cualquier número real

3.
$$\lim_{n\to\infty} (a_n \cdot b_n) = L \cdot K$$

4.
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{L}{K}$$
 $b_n \neq 0$ $K \neq 0$

ANÁLISIS DE CONVERGENCIA O DIVERGENCIA

TEOREMA DEL EMPAREDADO

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} b_n$$

$$a_n < c_n < b_n \quad \forall n$$

$$\lim_{n \to \infty} c_n = L$$

TEOREMA DEL VALOR ABSOLUTO

$$\{a_n\} / \lim_{n \to \infty} |a_n| = 0$$
 entonces $\lim_{n \to \infty} a_n = 0$

SUCESIONES MONÓTONAS Y ACOTADAS

 $\{a_n\}$ monótona y acotada entonces convergente

Análisis de convergencia o divergencia

$$a_n = \{3 + (-1)^n\}$$

$$a_n = \left\{ \frac{n}{1 - 2n} \right\}$$

Calcula el límite si es posible de:

$$a_n = \frac{5n^2}{n^2 + 2}$$

$$a_n = \frac{2n}{\sqrt{n^2 + 1}}$$

$$a_n = \frac{5n}{\sqrt{n^2 + 4}}$$

$$a_n = 5 - \frac{1}{n^2}$$

SERIES INFINITAS

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

Serie convergente y serie divergente

Sucesión de sumas parciales

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 $S_n = a_1 + a_2 + a_3 + \dots + a_n$

Si esta sucesión de sumas parciales converge, se dice que la serie converge y tiene la suma indicada.

Serie convergente y divergente

Serie convergente y divergente

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$\sum_{n=1}^{\infty} 1$$

SERIE TELESCÓPICA

SERIE GEOMÉTRICA

$$\sum_{n=0}^{\infty} ar^n = a + ar^2 + ar^3 + \dots + ar^n + \dots$$