Estructuras Algebraicas

Hoja 1. Grupos.

1. Se consideran en \mathbb{R}^2 los dos ejes OX y OY. Sea

$$V = \{ id, \sigma_X, \sigma_Y, \rho_\pi \},$$

donde id es la aplicación identidad en \mathbb{R}^2 ; σ_X y σ_Y son las simetrías respecto a los ejes OX y OY, respectivamente y ρ_{π} es una rotación de ángulo π en torno al origen. Demostrad que (V,\cdot) es un grupo abeliano, donde $ab = b \circ a$ para todo $a, b \in V$ y \circ es la composición de aplicaciones. Hallad la tabla de grupo de (V, \cdot) , conocido como 4-grupo de Klein.

2. En el intervalo I = (-1, 1) de la recta real se define la siguiente operación:

$$x * y = \frac{x + y}{1 + xy}$$

para $x, y \in I$. ¿Es (I, *) un grupo?

- **3.** Sea G un grupo. Demostrad que las siguientes condiciones son equivalentes.
 - (i) G es abeliano.
 - (ii) $(ab)^2 = a^2b^2$ para todo $a, b \in G$.
 - (iii) $(ab)^{-1} = a^{-1}b^{-1}$ para todo $a, b \in G$.
- **4.** Demostrad que un grupo G en el que todo $g \in G$ satisface $g^2 = 1$ es necesariamente abeliano.
- 5. Demostrad que para que un subconjunto distinto del vacío de un grupo finito sea subgrupo basta que sea cerrado para la operación. Encontrad un contraejemplo en un grupo infinito.
- **6.** Sea $\{H_i: i \in I\}$ un conjunto no vacío de subgrupos de un grupo G. Demostrad que el subconjunto $\bigcap_{i\in I} H_i$ de G es un subgrupo. La intersección arbitraria de subgrupos es un subgrupo.
- 7. Sea G un grupo y $H \leq G$. Definid explícitamente una relación de equivalencia en G con la propiedad que, para cada $g \in G$, la clase de equivalencia de g sea Hg.
- 8. (Transitividad de índices) Si $H \leq K \leq G$ y G es finito, probad que

$$|G:H| = |G:K||K:H|.$$

- **9.** Sean $H \leq K \leq G$. ¿Cuántos elementos puede tener K si |H| = 4 y |G| = 24?
- 10. Sea G un grupo y sean $H \vee K$ subgrupos de G. Encontrad todos los posibles órdenes de $H \cap K$ cuando:
 - a) |H| = 16 y |K| = 20. b) |H| = |K| = 7.
- **c)** |H| = 15 y |K| = 14.
- 11. Sea G un grupo, se define el centro de G como $\mathbf{Z}(G) = \{g \in G \mid gx = xg \text{ para todo } x \in G\}$. Demostrad que $\mathbf{Z}(G) \triangleleft G$.

- 12. El grupo D_6 diédrico de orden 6 es el grupo de transformaciones del espacio que dejan invariante un triángulo equilátero. Escribimos r para la rotación de $2\pi/3$ alrededor del origen en \mathbb{R}^2 , y escribimos s para la reflexión sobre el eje OY. Demostrad que:
 - **a)** o(r) = 3 y o(s) = 2.
 - **b)** $r^i \neq s$ para cualquier exponente $i \in \mathbb{Z}$.
 - c) $sr^{i} \neq sr^{j} \text{ si } i, j \in \{0, 1, 2\} \text{ con } i \neq j.$
 - **d)** $D_6 = \{1, r, r^2, s, sr, sr^2\} = \langle r, s \rangle.$
 - e) $sr^i = r^{-i}s$ para cualquier $i \in \mathbb{Z}$.
 - **f)** $Z(D_6) = 1$.
 - **g)** $\langle r \rangle \triangleleft D_6$.
- 13. Escribid la tabla de grupo de S_3 . Enumerad los subgrupos de S_3 indicando cuáles son normales.
- 14. Hallad todos los elementos del grupo $S_3 \times \mathbb{Z}/2\mathbb{Z}$ y determinad el orden de cada uno. Hallad los elementos de orden 9 del grupo $S_3 \times \mathbb{Z}/3\mathbb{Z}$.
- 15. Sea G un grupo, decide razonadamente si cada una de las siguientes afirmaciones es verdadera o falsa:
 - a) $H \leq G$ y H abeliano implica $H \triangleleft G$.
 - b) $H \leq G \text{ y } |H| = 2 \text{ implica } H \triangleleft G.$
 - c) Si $H \triangleleft K$ y $K \triangleleft G$, entonces $H \triangleleft G$.
 - d) Si $H \triangleleft G$ y |H| = m entonces H es el único subgrupo de G de orden m.
- **16.** Si N es un subgrupo normal de G y |N| = 2, demostrad que entonces $N \leq \mathbf{Z}(G)$.
- 17. Demostrad que si un grupo G tiene orden par, entonces existe un elemento $g \neq 1$ de G que es su propio inverso. (Es decir, los grupos de orden divisible por 2 tienen al menos un elemento de orden 2.)
- **18.** Encontrad un grupo G y elementos $a, b \in G$ tales que o(a) y o(b) sean coprimos pero $o(ab) \neq o(a)o(b)$.
- 19. Sea G un grupo y $g \in G$ de orden finito. Demostrad que si $j \in \mathbb{Z}$ es coprimo con o(g) entonces $\langle g^j \rangle = \langle g \rangle$.
- **20.** Sean $g, h \in G$ de orden finito con (o(g), o(h)) = 1. Demostrad que si gh = hg entonces o(gh) = o(g)o(h).
- **21.** Sea G un grupo abeliano y $n \in \mathbb{N}$. ¿Es $G_n = \{x \in G \mid o(x) \text{ divide a } n\}$ un subgrupo de G? ¿Ocurre lo mismo si G no es abeliano?
- 22. Encontrad el número de generadores de los grupos cíclicos de órdenes 6, 8, 12 y 60.
- 23. Encontrad el número de elementos de cada uno de los grupos cíclicos indicados:
 - a) El subgrupo de $\mathbb{Z}/30\mathbb{Z}$ generado por la clase de $25 \in \mathbb{Z}$.
 - **b)** El subgrupo de \mathbb{C}^* generado por i.
 - c) El subgrupo de \mathbb{C}^* generado por $\frac{1+i}{\sqrt{2}}$.
 - d) El subgrupo de \mathbb{C}^* generado por 1+i.
- **24.** Mostrad que en un grupo cíclico finito G de orden n, la ecuación $x^m = 1$ tiene exactamente m soluciones para cada m que divide a n. ¿Qué ocurre si 1 < m < n y m no divide a n?

- 25. Decide razonadamente si cada una de las siguientes afirmaciones es verdadera o falsa:
 - a) Todo grupo cíclico es abeliano.
 - b) Todo grupo abeliano es cíclico.
 - c) El grupo aditivo Q es cíclico.
 - d) Todo elemento no trivial de un grupo cíclico es generador.
 - e) Todo grupo de orden menor o igual que 4 es cíclico.
 - f) Todo grupo cíclico de orden mayor que 2 tiene al menos dos generadores distintos.
- **26.** (Grupo cuaternio) Sea $G \leq GL_2(\mathbb{C})$ generado por las matrices $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.
 - a) Demostrad que o(A) = o(B) = 4; $A^2 = B^2$, y $BA = AB^3$.
 - **b)** Demostrad que $G = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$ con |G| = 8.
 - c) Observad que se puede calcular la tabla de grupo de G con los datos de a).
 - d) Demostrad que todo subgrupo de G es normal y hallad $\mathbf{Z}(G)$.

El grupo G se llama grupo cuaternio de orden 8 y se denota por \mathbb{Q}_8 .

- **27.** Sea A un grupo abeliano. Demostrad que $A_{\text{tor}} := \{a \in A \mid o(a) < \infty\} \leq A$. Comprobad que $\{M \in GL_2(\mathbb{R}) \mid o(M) < \infty\}$ no es un subgrupo de $GL_2(\mathbb{R})$.
- **28.** Demostrad que ninguno de los grupos $\mathsf{C}_n \times \mathsf{C}_n$, $\mathsf{C}_n \times \mathbb{Z}$, $\mathbb{Z} \times \mathbb{Z}$ es cíclico si $n \geq 2$.
- **29.** Considerando las matrices reales $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \in GL_2(\mathbb{R})$, demostrad que el producto de elementos de orden finito no tiene por qué resultar un elemento de orden finito.
- **30.** Sea p primo y sea $n \in \mathbb{N}$. Sean H y K subgrupos de C_{p^n} . Demostrad que $H \subseteq K$ o $K \subseteq H$.
- **31.** Sea G una grupo y $N \triangleleft G$ un subgrupo normal de G. Sea $x \in G$ de orden finito. Demostrad que el orden de xN en G/N es un divisor del orden de x en G.
- **32.** Sea $N \triangleleft G$ con |G/N| = n. Demostrad que si $x \in G$ satisface $x^m = 1$ y (n, m) = 1, entonces $x \in N$.
- 33. Demostrad que si H es un subgrupo de un grupo $G, H \leq \mathbf{Z}(G)$ y G/H es cíclico, entonces G es abeliano.
- **34.** Dad un grupo G y $N \triangleleft G$ tales que N y G/N sean cíclicos pero G no lo sea.
- **35.** Sean H y K subgrupos normales de un grupo G con $H \cap K = 1$. Demostrad que $HK \triangleleft G$ y cualquier elemento de H conmuta con cualquier elemento de K.