Art School

BRIAN ZHANG

DGX

§1 Shortlist 2019 G1

Let T' be the point on (ADE) such that $AT' \parallel BC$. Then, we have

$$\angle TFD = \angle TAD = \angle DBF$$
,

hence AT' is tangent to (BDF) as desired.

§2 IMO 2020/1

The 3 lines meet at the circumecenter O of $\triangle PAB$. Note that ADPO is cyclic, as

$$\angle AOP = 2 \cdot \angle PBA = \angle PAD + \angle DPA.$$

Then, OA = OP and OB = OP as desired.

§3 APMO 2018/1

Claim 3.1 — FM = FN.

Proof. Note that

$$\angle FMN = \angle FKL = \angle MBH = 90 - \angle A = \angle NCH = \angle NLH = \angle FNM$$

as desired. This also implies that F lies on the radical axis of (BMH) and (CNH), or FH is tangent to the two circles.

Claim 3.2 — J lies on FH.

Proof. Note that

$$\angle FHM = \angle MKH = \angle NCH = \angle FHN$$
,

thus FH bisects $\angle MHN$ which gives us what we want.

Claim 3.3 — AMJN is cyclic.

Proof. Note that

$$\angle MJN = 90 + \frac{1}{2}\angle MHN = 90 + \angle MHJ = 90 + \angle MBH = 90 + 90 - \angle A = 180 - \angle A$$

as desired. \Box

Claim 3.4 — F is the circumcenter of (AMJN).

Proof. It suffices to show that FM = FJ. Note that

$$\angle FJM = 180 - \angle MJH = 90 - \frac{1}{2}\angle MNH$$

$$\angle FMJ = \frac{1}{2}\angle HMN + \angle FMN = \frac{1}{2}\angle HMN + \frac{1}{2}\angle MHN$$

It is easy to see that these two are equal, so we are done.

§4 USAMO 2021/1

Let (ABB_1A_2) and (CAA_1C_2) intersect at P. Then, the angle condition implies that $\angle BPC + \angle BC_1C = 180$, hence (BCC_1B_2) hits P. To finish, note that APB_2 is collinear, since $\angle AP_1C = \angle B_2PC = 90^\circ$, thus B_1C_2 , C_1A_2 , A_1B_2 concur at the point P.