ECD304 - ML Autonomous Car Final Design Presentation

Aslam Aliyu, Andrew Deoki, Patrick Nilan & Daniel Nissim

November 18th, 2022

Sponsored by LOCKHEED MARTIN

Our Team

CoE Major
Project Lead

Aslam Aliyu

CoE Major

Software/Finance Lead

Andrew Deoki

EE Major
Electrical/Mechanical Co-Lead

CoE Major
Electrical/Mechanical Co-Lead

Project Mentors

Project Advisor

Professor Vladimir Nikulin

Industry Mentors

Thomas Gaska

Thomas Norton

Agenda

	Executive Summary	.5
	Use Cases	.6
3.	Requirements	.7
4.	High-Level System Design	.8
		11
	Plan of Action	18

Executive Summary

Objective: Develop an autonomous vehicle built on the NVIDIA JetRacer open-source Artificial Intelligence/Machine Learning (AI/ML) platform

Hardware Used	Software Used
 LaTrax Rally RC Car Kit Jetson Nano Developer Kit CSI Camera Inertial Measurement Unit (IMU) 	Jupyter NotebookPythonJetCam, OpenCV, PyTorch

Key Capabilities:

- Line detection
- Variable throttle
- Data collection via sensors

Use Cases

Our Use Case

- RC Car will run autonomously on designed track with commands sent via WiFi connection from computer
 - RC Remote available as backup to control car from a major crash
- All code and libraries stored on Jetson Nano
- Computer manages image data collection to be stored on Jetson Nano
- Jetson Nano will process images to develop an autonomous driving model via machine learning algorithm
- Computer used to correct autonomous driving model in live driving session via GUI with image data from camera

Real World Applications

- Full-scale version can be developed for various deployments
 - Robotaxis
 - Autonomous personal vehicles
- Convert platform to serve various industries
 - Personal home robots
 - Reconnaissance with computer vision

Requirements

Derived Requirements

- The car shall use the NVIDIA JetRacer open-source platform utilizing the LaTrax Rally RC car kit
- The car shall use the Jetson Nano Developer Kit
- The car shall operate around the track autonomously
- The car shall be capable of line following
- The model shall use (x, y) positional data for optimal direction inputted with a user mouse click
- The car shall be capable of variable throttle control for different driving scenarios

Stretch Goals

- The car should be capable of object detection i.e. stop signs, people and red or green stop-and-go strips
- The user-interface (UI) should show a bounding box around detected objects
- The car should stop when it sees a stop sign, a person or a red strip on the track
- The car should avoid an obstacle, such as a cone, when detected on the track

High-Level Operational Context

Development Considerations

Three open source platforms were evaluated to build the ML Autonomous Car

Platform	Trade Study Score	Pros	Cons			
NVIDIA JetRacer	87.25%	On-device training Well documented code that can be easily read and altered	ExpensiveJetson Nano may be hard to procure			
DeepPiCar	84%	Easy to assemble kitBuilt-in support for sign and object detection	No simulation supportSmall frame limits expansion			
Donkey Car	89.25%	Can be used with Donkey Car SimulatorIdeal frame to add additional sensors	 Training GUI is a "black box" → limit adjustments to code 			

- Several team members noted they would have scored the JetRacer higher if we could procure the Jetson Nano in time
- JetRacer was selected due to use of last year's Jetson Nano and the "black box" nature of the Donkey Car's training GUI

Detailed System Diagram

Hardware Design

- 1 Jetson Nano Dev Kit
- Leopard Imaging
 Wide-Angle Lens Camera
- 3 USB Battery Pack
- 4 PWM Servo Motor Driver
- 5 RC Servo Multiplexer
- 6 2.4 GHz Receiver
- 7 Electronic Speed Controller
- 8 Servo Motor
- Inertial Measurement Unit
- 10 WiFi Card

Finished Build

PWM Servo Motor Drive

RC Servo Multiplexer

RC Car Controller w/ Override Switch

-WiFi Antenna

Jetson Nanc

Leopard Imaging Wide-Angle Lens Camera

Software Design

ML Model Training

Autonomous Driving

Live Training View

Track Design Key Features:

Materials:

Project Plan

Trade Study

Preliminary Design

Final Design

System Concept

19

Implementation Phase Plans

Financial Summary

RC Car: Traxxas LaTrax Rally	\$120
Camera: Leopard Imaging LI-IMX219	\$29
USB Battery: Attom Tech Ultra Compact 5000-mAh	\$15
PWM Servo Motor Driver: Adafruit 16-Channel 12-Bit PWM/Servo Driver	\$15
IMU: Adafriut 9-DOF Absolute Orientation IMU	\$35
RC Servo Multiplexer: Pololu 4-Channel Multiplexer	\$12
SD Card: SanDisk 64GB	\$11
WiFi Card: Intel Dual Band Wireless	\$12
Miscellaneous	\$110
Shipping	\$111
Total	\$470

Risk Analysis

- **Risk:** Component integration issues
 - Mitigation: Reference last year's design and other successful builds
- Risk: Library flexibility/complexity
 - Mitigation: Conduct extensive research on libraries and other platforms to develop alternative code as needed
- **Risk:** Ability to train model with necessary variables
 - Mitigation: Research methods for adding variable throttle to develop multiple strategies for deployment
- Risk: Time to complete project
 - Mitigation: Complete necessary preparation over winter break and plan agile sprints for flexibility during spring semester

Questions?

Appendix A: Management & Engineering Tools

Management Tools

- Google Drive
- GitHub
- Latex
- Jira
- Zoom

Hardware/Software Tools

- JetCard image
- Jupyter Notebook
- Python
- Software packages/libraries
 - JetCam
 - OpenCV
 - PyTorch
 - o Torch2trt
- Fusion 360
- 3D Printer
- Soldering Iron

Appendix B: Trade Study

			NVIDIA JetRacer			DeepPiCar				Donkey Car				
	Weight	Score	Dan	Aslam	Andrew	Patrick	Dan	Aslam	Andrew	Patrick	Dan	Aslam	Andrew	Patrick
Meets Requirements	35%	1-5	5	5	5	5	4	4	4	5	4	4	4	4
HW/SW Environment & Support	25%	1-5	5	4	4	4	4	5	4	5	4	5	5	4
Cost	10%	1-5	3	2	3	2	5	5	5	5	4	5	4	4
Availability	10%	1-5	3	3	3	3	4	4	4	4	4	4	5	5
Room for Expansion	20%	1-5	5	3	3	5	2	3	4	2	2	5	5	5
Final Score (Weighted)	100%		97	80	82	90	76	86	86	88	74	96	96	91
Final Score (Average)				87.25				84				89.25		