MATH410: Homework 2

James Zhang*

February 14, 2024

1. Suppose that the sequence $\{a_n\}$ converges to ℓ and that the sequence $\{b_n\}$ has the property that there is an index N such that

$$a_n = b_n$$
 for all indices $n \ge N$.

Show that $\{b_n\}$ also converges to ℓ .

Sketch: we want to show that $\{b_n\}$ converges to l. Therefore, we need to show the definition of convergence such that given an $\epsilon > 0$, $|b_n - l| < \epsilon$ for all $n \ge N$, $N \in \mathbb{N}$. Let $\epsilon > 0$. By the definition of convergence, $\exists N_1 \in \mathbb{N}$ such that

$$|a_n - l| < \epsilon \ \forall \ n \ge N_1$$

Choose $N_2 = \max(N, N_1)$ where N is the given index in the problem description and N_1 is the index that satisfies the definition of convergence given any positive ϵ .

Proof. By the definition of convergence, let $\epsilon > 0$ be given, and so $\exists N_1 \in \mathbb{N}$ such that

$$|a_n - l| < \epsilon \ \forall \ n \ge N_1$$

Let us choose $N_2 = \max(N, N_1)$. Since the above is true for all $n \ge N_1$, it must also be true $n \ge \max(N, N_1)$. Therefore,

$$|a_n - l| < \epsilon \ \forall \ n > N_2$$

Moreover, for all $n \geq N_2$, we know that $a_n = b_n$. By direct substitution into the absolute value,

$$|b_n - l| < \epsilon \ \forall \ n > N_2$$

Thus, given any $\epsilon > 0$, there exists a threshold N_2 such that the definition of convergence is satisfied and so $\lim_{n \to \infty} b_n = l$ as desired.

^{*}Email: jzhang72@terpmail.umd.edu

2. Prove the following:

(a)
$$\lim_{n\to\infty} [n^3 - 4n^2 - 100n] = \infty$$

(b)
$$\lim_{n\to\infty} \left[\sqrt{n} - \frac{1}{n^2} + 4 \right] = \infty$$

a. Sketch: we want to show that given some M > 0, $a_n > M \ \forall n \geq N, N \in \mathbb{N}$.

$$n^3 - 4n^2 - 100n > n^2 - 4n - 100 > n^2 - 15n - 100 = (n - 20)(n + 5) > M$$

Choose $N > \max(M, 20)$.

Proof. Let M > 0 be given. By the Archimedian Principle, $\exists N \in \mathbb{N}$ such that $N > \max(M, 20)$.

Now observe the following operations

$$n^3 - 4n^2 - 100n > n^2 - 4n - 100$$

where the right side of the inequality was obtained by dividing all terms by n.

$$n^2 - 4n - 100 > n^2 - 15n - 100 = (n - 20)(n + 5)$$

which also must be true since n > 0, and the equality came by factoring. Now note that $N > \max(M, 20)$ and $n \ge N$. Therefore,

$$(n-20)(n+5) \ge (N-20)(N+5) > M$$

Thus, we have shown the definition of divergence because for any given M > 0, we can find a threshold N such that

$$n^3 - 4n^2 - 100n > M \ \forall \ n \ge N$$

which implies that

$$n^3 - 4n^2 - 100 \to \infty$$
 as $n \to \infty$ $\Longrightarrow \lim_{n \to \infty} n^3 - 4n^2 - 100n = \infty$

b. Sketch: we WTS to show that for M > 0, then $a_n > M \, \forall n \geq N, N \in \mathbb{N}$.

$$\sqrt{n} - \frac{1}{n^2} + 4 > \sqrt{n} - \frac{1}{n^2} \ge \sqrt{n} - \frac{1}{n} > M$$

Choose $N > M^2 + 2$.

Proof. Let M>0 be given. By A.P., $\exists N\in\mathbb{N}$ such that $N>M^2+2$. Note that

$$\sqrt{n} - \frac{1}{n^2} + 4 > \sqrt{n} - \frac{1}{n^2} \ \forall \ n$$

Furthermore, note that $\frac{1}{n^2} \leq \frac{1}{n} \, \forall n$. Therefore, $-\frac{1}{n^2} \geq -\frac{1}{n} \, \forall n$ as well, by multiplying both sides by -1 and subsequently reversing the direction of the inequality. Thus,

$$\sqrt{n} - \frac{1}{n^2} \ge \sqrt{n} - \frac{1}{n}$$

Recall that $n \geq N$ and so

$$\sqrt{n} - \frac{1}{n} \ge \sqrt{N} - \frac{1}{N} > \sqrt{M^2 + 2} - \frac{1}{M^2 + 2} > M$$

for all $n \geq N.$ Therefore, for any given M>0, we can find a threshold $N>M^2+2$ such that

$$\sqrt{n} - \frac{1}{n^2} + 4 > M \ \forall \ n \ge N \implies \lim_{n \to \infty} \left[\sqrt{n} - \frac{1}{n^2} + 4 \right] = \infty$$

3. For a sequence $\{a_n\}$ of positive numbers show that $\lim_{n\to\infty} a_n = \infty$ if and only if $\lim_{n\to\infty} \left[\frac{1}{a_n}\right] = 0$

Proof.

 \Longrightarrow Suppose we are given that the sequence $\{a_n\}$ diverges such that $\lim_{n\to\infty} a_n = \infty$. By the definition of divergence, for any given M>0, there exists a threshold $N\in\mathbb{N}$ such that for all $n\geq N$, $a_n>M$. We want to show that $\frac{1}{\{a_n\}}$ converges to 0.

$$a_n > M \ \forall n \ge N$$

where both $a_n, M > 0 \, \forall n$. Therefore, still for all $n \geq N$,

$$\frac{1}{a_n} < \frac{1}{M}$$

$$-\frac{1}{M} < \frac{1}{a_n} < \frac{1}{M}$$

$$-\frac{1}{M} < \frac{1}{a_n} - 0 < \frac{1}{M}$$

$$\left|\frac{1}{a_n} - 0\right| < \frac{1}{M}$$

Therefore, our value of l=0 as desired and our $\epsilon=\frac{1}{M}$ and there is one to one mapping from values of M to values of ϵ . Note that any $\epsilon>0$ has a corresponding value of M such that $\frac{1}{M}=\epsilon$. Thus, for any $\epsilon>0$, there exists an N (the same threshold used to show that $\{a_n\}$ diverges) such that

$$\left|\frac{1}{a_n} - 0\right| < \frac{1}{M} = \epsilon \ \forall \ n \ge N \implies \lim_{n \to \infty} \frac{1}{a_n} = 0$$

 \Leftarrow The reverse direction is similar. Suppose we are given that the sequence $\{\frac{1}{a_n}\}$ converges to 0. Therefore, by the definition of convergence, for any given $\epsilon > 0$, there exists a threshold $N \in \mathbb{N}$ such that

$$\left|\frac{1}{a_n} - 0\right| < \epsilon \ \forall \ n \ge N$$

We can algebraically manipulate the above such that, while still for all $n \geq N$,

$$-\epsilon < \frac{1}{a_n} < \epsilon$$

Note that $\frac{1}{a_n} > 0 \ \forall \ n$ is given since a_n is a positive sequence.

$$\frac{1}{a_n} < \epsilon$$

$$a_n > \frac{1}{\epsilon}$$

Let $M=\frac{1}{\epsilon}$ and once again notice the one to one correspondence. Therefore, for any M>0, we can use the same N threshold that is given to show that

$$a_n > M = \frac{1}{\epsilon} \ \forall \ n \ge N \implies \lim_{n \to \infty} a_n = \infty$$

as desired. \Box

- 4. For each of the following statements, determine whether it is true or false and justify your answer.
 - (a) Every bounded sequence converges.
 - (b) A convergent sequence of positive numbers has a positive limit.
 - (c) The sequence $\{n^2+1\}$ converges.
 - (d) A convergent sequence of rational numbers has a rational limit.
 - (e) The limit of a convergent sequence in the interval (a, b) also belongs to (a, b).
 - a. False. Not every bounded sequence converges. For example, the sequence $\{(-1)^n\}$ is bounded above by 1 and bounded below by -1, but it never converges.
- b. False. Consider the sequence $\{\frac{1}{n}\}$ which converges to 0, which is neither positive or negative.
- c. False.
- d. False. Consider a sequence such that begins as $\{3, 3.1, 3.14, 3.141, 3.14159, \cdots\}$ such that each term adds on the next digit of π . Clearly, all of these numbers are rational, as they can be expressed in decimal, and thus fraction, form, but the limit is $\pi \neq \mathbb{Q}$.
- e. False. Consider the sequence $\{\frac{1}{n+1}\}\ \forall\ n$. Note that $a_n\in(0,1)\ \forall\ n$, yet $\lim_{n\to\infty}\frac{1}{n}=0$, and $0\notin(0,1)$, so this statement is false.

5. Show that a sequence $\{a_n\}$ is bounded if and only if there is an interval [c,d] such that $\{a_n\}$ is a sequence in [c,d].

Proof.

 \Leftarrow Suppose that a sequence $\{a_n\}$ is bounded. We want to show that there is [c,d] such that $\{a_n\}$ is a sequence in [c,d]. By the definition of bounded

$$\exists \ M \in \mathbb{R} \text{ such that } |a_n| \leq M \ \forall \ n \in \mathbb{N}$$

Therefore, for all n, by a property of absolute value,

$$-M \le a_n \le M$$

Let c = -M and let d = M. By direct substitution,

$$c \le a_n \le d$$

$$a_n \in [c, d] \ \forall \ n \in \mathbb{N}$$

Thus, we've shown that there exists the interval [c, d] such that $\{a_n\}$ is a sequence in [c, d].

 \Longrightarrow The reverse direction is similar. Suppose that there is an interval [c, d] such that $\{a_n\}$ is a sequence in [c, d]. Then we can write

$$c \le a_n \le d \ \forall \ n \in \mathbb{R}$$

We want to show that there exists an $M \in \mathbb{R}$ such that $|a_n| \leq M \, \forall n$. Thus, let us choose $M = \max(|c|, |d|)$. This ensures that M is at least greater than or equal to both c and d in terms of magnitude. We now write

$$-M \le c \le a_n \le d \le M \ \forall \ n$$
$$-M \le a_n \le M \ \forall \ n$$
$$|a_n| < M \ \forall \ n$$

which means the sequence $\{a_n\}$ is bounded, as desired.

6. Suppose that the sequence $\{a_n\}$ is monotone. Prove that $\{a_n\}$ converges if and only if $\{a_n^2\}$ converges. Show that this result does not hold without the monotonicity assumption.

Proof.

 \Leftarrow Suppose the sequence $\{a_n\}$ is monotone and assume that $\{a_n\}$ converges. By the definition of convergence, for any given $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $|a_n - l| < \epsilon \, \forall \, n \geq N$. Without loss of generality (WLOG), let us say that $\{a_n\}$ is monotone increasing. The proof for if $\{a_n\}$ is monotone decreasing is similar. By the definition of

 \Longrightarrow