

- <u>Terms for Network Devices</u>
- Terms for Network Performance Parameters
- Ways to connect to the Internet
- Terms for Network Types

- Terms for Network Devices
- Terms for Network Performance Parameters
- Ways to connect to the Internet
- Terms for Network Types

Terms for network performance parameters

- Other similar parameters used for QoS (Quality of Service)
 - Throughput: the average rate of successful message delivery over a communication channel (<u>wikipedia</u>)
 - PLR (Packet Loss Rate)
- Different applications have different QoS requirements
 - E.g., four application classes defined by 3GPP according to their sensitivity to delay
 - Session Class
 - Interactive Class
 - Streaming Class
 - Background Class

high

low

9

Basic Network Definitions

- Terms for Network Devices
- Terms for Network Performance Parameters
- Ways to connect to the Internet
- Terms for Network Types

- Via twisted pair phone lines
- ISDN
 - Integrated Services Digital Network (64-128Kbps)
- (A)DSL
 - (Asymmetric) Digital Subscriber Line
 - 7 Mbps download, 640 Kbps upload 500 Kbps download, 200 Kbps upload
 - Usually provided by telephone companies
- Cable Modem
 - CATV: 500 Kbps 30 Mbps
 - Usually provided by cable companies
- LAN
 - Ethernet connections
- Satellite
- Cellular
- GPRS/CDMA/3G and other cellular wireless technologies
- Broadband wireless access
 - WLAN(WiFi)/WiMAX

13

Basic Network Definitions

Ways to connect to the Internet

Data codes

Code	Bits	Max Chars
Baudot	5	32 or 64
ASCII	7	128
Extended ASCII	8	256
EBCDIC	8	256
UNICODE	16	> 65,000
ISO 10646	32	> 4 billion

 \blacksquare

— Terms for network types

- According to the switching function in the network
 - Circuit switching network
 - Message switching network
 - Packet switching network
 - Hybrid switching network

21

Basic Network Definitions

— Terms for network types

- Different channel access technologies
 - Multi-access means shared medium
 - Many end-systems share the same physical communication resources (wire, frequency, etc.)
 - There must be some arbitration mechanism
 - Complex channel access control, efficient resource usage
 - Example: LANs
 - point-to-point
 - Between two points in the network, there must exists a physical channel
 - No contention or collision
 - Simple access control, bandwidth waste
 - Example: WANs

— Terms for network types

- According to the user of the network
 - Public network
 - The large scale network built by the telecommunication companies
 - All the users can use the network as long as they pay the money
 - Private network
 - The network built by a certain agency for its special requirements
 - Only providing services to the user inside this agency
 - E.g., the military network, the railway network

29

Basic Network Definitions

— other related terms

- NIC (Network Interface Card) circuit board that allows a PC to connect to a network
- Response time time waiting for host computer to reply back to terminal
- Real-Time where the response time between remote entities is sufficiently low to provide interactive communication (< 400msec round-trip)
- Contention 2 or more devices trying to use the same resource at the same time
- Protocol rules that define how devices communicate data on a communication network

30

Layered Architecture

- OSI Layer Model
- TCP/IP Layer Model
- Benefits from layered structure: simplify the task to
 - Design
 - Implement
 - Maintain

