Σημειώσεις Στατιστική & Πιθανότητες

https://github.com/kongr45gpen/ece-notes

2016, Εαρινό εξάμηνο

Περιεχόμενα

ı	HILD	ανότητες	2
1			2
•	1.1	Πείραμα τύχης	2
	1.1	1.1.1 Πράξεις	4
		1.1.2 Ιδιότητες	5
		1.1.3	5
		1.1.4	5
	1.2	Πιθανότητα	6
	1.3	Αξιώματα Kolmogorov	6
	1.4		7
	1.4		9
	1 [9
	1.5	Δεσμευμένη πιθανότητα	
	1.	1.5.1 Πολλαπλαστιαστικός Κανόνας	
	1.6	Θεώρημα Ολικής Πιθανότητας	
	1.7	Θεώρημα Bayes	
	1.8		
	1.9	404 A 67	
		1.9.1 Ανεξάρτητα A,B	
		1.9.2 Ασυμβίβαστα A,B	
	1.10	Τεχνικές Συνδυαστικής	
		1.10.1 Πολλαπλασιαστική αρχή	
		1.10.2	
		Συνδυασμοί	
	1.12	Ασκήσεις	17
2	Tuy	αίες Μεταβλητές	21
2	Tux		21 21
2	Tux	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21
2		 2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας	21 22
2	Tux (2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23
2		2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23 23
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23 23 24
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23 23 24 24
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 23 23 24 24 27
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 23 23 24 24 27 27
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23 24 24 27 27 28
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23 24 24 27 27 28 29
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23 24 24 27 27 28 29
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)	21 22 23 24 24 27 27 28 29 29
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή	21 22 23 24 24 27 27 28 29 29 29
2	2.1	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή Χρήσιμες Κατανομές	21 22 23 24 24 27 27 28 29 29 30 31
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας	21 22 23 24 24 27 28 29 29 30 31 32
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή Χρήσιμες Κατανομές 2.4.1 Βernoulli 2.4.2 Διωνυμική	21 22 23 24 24 27 28 29 29 30 31 32 32
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας . Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες . 2.1.2 Μικτού τύπου . Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) . Χαρακτηριστικά . 2.3.1 Μέση Τιμή (Mean) . 2.3.2 Διακύμανση σ_x^2 , $Var(X)$. 2.3.3 Τυπική απόκλιση . 2.3.4 $x_p = P$ ποσοστιαίο σημείο . 2.3.5 Διάμεσος (Median) . 2.3.6 Επικρατέστερη Τιμή . Χρήσιμες Κατανομές . 2.4.1 Βernoulli . 2.4.2 Διωνυμική . 2.4.3 Γεωμετρική .	21 22 23 24 24 27 27 28 29 29 30 31 32 32 33
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή Χρήσιμες Κατανομές 2.4.1 Βernoulli 2.4.2 Διωνυμική 2.4.3 Γεωμετρική 2.4.4 Pascal	21 22 23 24 24 27 28 29 29 30 31 32 32 33
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή Χρήσιμες Κατανομές 2.4.1 Βernoulli 2.4.2 Διωνυμική 2.4.3 Γεωμετρική 2.4.4 Pascal 2.4.5 Poisson	21 22 23 24 24 27 28 29 29 30 31 32 33 34
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή Χρήσιμες Κατανομές 2.4.1 Βernoulli 2.4.2 Διωνυμική 2.4.3 Γεωμετρική 2.4.4 Pascal 2.4.5 Poisson	21 22 23 24 24 27 28 29 29 30 31 32 33 34 36
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή Χρήσιμες Κατανομές 2.4.1 Βernoulli 2.4.2 Διωνυμική 2.4.3 Γεωμετρική 2.4.4 Pascal 2.4.5 Poisson Συνεχής X 2.5.1 Ομοιόμορφη	21 22 23 24 24 27 28 29 29 30 31 32 33 34 36 37
2	2.1 2.2 2.3	2.0.1 Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ) 2.0.2 Συνάρτηση Πυκνότητας Πιθανότητας Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής 2.1.1 Ιδιότητες 2.1.2 Μικτού τύπου Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ) Χαρακτηριστικά 2.3.1 Μέση Τιμή (Mean) 2.3.2 Διακύμανση σ_x^2 , $Var(X)$ 2.3.3 Τυπική απόκλιση 2.3.4 $x_p = P$ ποσοστιαίο σημείο 2.3.5 Διάμεσος (Median) 2.3.6 Επικρατέστερη Τιμή Χρήσιμες Κατανομές 2.4.1 Βernoulli 2.4.2 Διωνυμική 2.4.3 Γεωμετρική 2.4.4 Pascal 2.4.5 Poisson	21 22 23 24 24 27 28 29 29 30 31 32 33 34 36 37 37

- Γ. Ζιούτας Πιθανότητες
- Δ. Κουγιουμτζής Στατιστική
- Βιβλίο: Πιθανότητες και Στατιστική για Μηχανικούς, Γ. Ζιούτας
- Εξετάσεις: 8 μονάδες (τουλάχιστον 4/8 για να περάσει)
- Test: 2 μονάδες

_{Μέρος Ι} Πιθανότητες

Είδη φαινομένων

- 1. **Αιτιοκρατικά** (καθοριστικά): Ξέρω το αποτέλεσμα του φαινομένου όταν γνωρίζω τα αίτια/τις προϋποθέσεις/το περιβάλλllllov του.
- 2. Στοχαστικά: Δεν μπορώ να προβλέψω το αποτέλεσμα, ακόμα και αν γνωρίζω τα παραπάνω.

Μπορεί να υπάρχει και αβεβαιότητα λόγω μη ιδανικών μοντέλων πρόβλεψης. Ο μηχανικός πρέπει να γνωρίζει και να μπορεί να μετρά αυτήν την αβεβαιότητα.

Πείραμα τύχης

Στοχαστικό φαινόμενο που μπορούμε να δοκιμάσουμε όσες φορές θέλουμε, ακριβώς με τις ίδιες συνθήκες, και γνωρίζουμε όλα τα δυνατά αποτελέσματα, αν και δε γνωρίζουμε ακριβώς το αποτέλεσμα κάθε πειράματος.

- E: Πείραμα τύχης (Experiment)
- $S: \{s_1, s_2, \dots, s_n\}$ Δειγματοχώρος (Sample space)
- s_i : Δειγματοσημεία

п.х.

- E_1 $S_1 = \{1, 2, 3, 4, 5, 6\} \rightarrow$ ρίψη ζαριού
- E_2 $S_2 = \{KKK, KK\Gamma, K\Gamma K, \Gamma KK, K\Gamma \Gamma, \Gamma \Gamma K, \Gamma \Gamma \Gamma\} \rightarrow$ ρίψη κέρματος 3 φορές
- E_3 $S_3 = \{0, 1, \dots, N\} \rightarrow$ ελαττωματικά προϊόντα
- E_4 $S_4 = \{0, 1, 2, 3...\} \rightarrow$ αριθμός ατόμων που εκπέμπει ραδιενεργό υλικό
- E_5 $S_5 = \{x | x \ge 0, x \in \mathbb{R}\} \to \mathsf{xρ\'ovoc}$ γενονότος

Υποσύνολα του δειγματικού χώρου, π.χ. $A=\{4,5,6\}\subseteq S$ ονομάζονται γεγονότα. Συνήθως συμβολίζονται A,B,W,R. Λέμε ότι ένα γεγονός πραγματοποιείται.

To S είναι σίγουρο γεγονός.

το $\{\}\subseteq S$ ονομάζεται αδύνατο γεγονός και συμβολίζεται \emptyset .

$$S = \{s_1, s_2, \dots, s_n\}$$

Το δυναμοσύνολο S^* περιέχει όλα τα δυνατά υποσύνολα του S:

$$S^* = \{\{\}, \{s_1\}, \{s_2\}, \dots, \{s_n\}, \{s_1, s_2\}, \{s_1, s_3\}, \dots, \{s_1, s_2, s_3\} \dots\}$$

Είναι:

$$(a+b)^{n} = \binom{n}{0} a^{n} b^{0} + \binom{n}{1} a^{n-1} b^{1} + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{n} a^{0} b^{n}$$
$$(1+1)^{n} = \binom{n}{0} \cdot 1 + \binom{n}{1} \cdot 1 + \binom{n}{2} \cdot 1 + \dots + \binom{n}{n} \cdot 1$$
$$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

Παρατηρούμε ότι το S^* έχει 2^n στοιχεία αν το S έχει n.

Διαγράμματα Venn

,

Περιεκτικότητα

Πράξεις

Ένωση $A \cup B$

Toμή $A \cap B$

 Δ ιαφορά A-B

Παρατηρώ ότι:

$$(x - y) + y = x$$
$$(A - B) \cup B = A \cup B$$

Ιδιότητες

- $A \cup B = B \cup A$
- $A \cup (B \cup \Gamma) = (A \cup B) \Gamma$
- $A \cup (B \cap \Gamma) = (A \cup B) \cap (A \cup \Gamma)$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$S=\{KK,K\Gamma,\Gamma K,\Gamma \Gamma\}$$

$$A=\{KK,K\Gamma,\Gamma K\}\leftarrow \text{ τουλάχιστον μία κεφαλή}$$

$$B=\{KK,\Gamma K\}\leftarrow \text{ κεφαλή στη 2η ρίψη}$$

$$A \cup B = \{KK, K\Gamma, \Gamma K\}$$
$$A \cap B = \{KK, \Gamma K\}$$
$$A - B = \{K\Gamma\}$$

$$S, A, B, \Gamma$$

- Τουλάχιστον ένα από A, B, Γ : $A \cup B \cup \Gamma$
- Móvo Éva anó τα , , Γ : $\left(A-(B\cup\Gamma)\right)\cup\left(B-(A\cup\Gamma)\right)\cup\left(\Gamma-(A\cup B)\right)=\left(A\cap\overline{B}\cap\overline{C}\right)\cap\left(\overline{A}\cap B\cap\overline{C}\right)\cap\left(\overline{A}\cap\overline{B}\cap C\right)$
- Ακριβώς δύο από τα $A,B\Gamma$: $(A\cap B-\Gamma)\cap (A\cap \Gamma-B)\cap (B\cap \Gamma-A)$
- Το πολύ δύο από τα A,B,Γ : $\overline{A \cap B \cap \Gamma} = \overline{A} \cup \overline{B} \cup \overline{C}$

п.х.

$$A, B, \Gamma$$

Σε ένα παιχνίδι όπου κερδίζει ο παίκτης που πρώτος φέρνει κεφαλή, ποιο είναι το γεγονός να κερδίσει ο A, αν A_i, B_i, Γ_i τα ενδεχόμενα στην i-οστή ρίψη να κερδίσει ένας παίκτης.

$$WA = A_1 \cup \left(\overline{A_1} \cap \overline{B_2} \cap \overline{\Gamma_3} \cap A_4\right) \cup \left(\overline{A_4} \cap \overline{B_5} \cap \overline{\Gamma_6} \cap A_7\right) \cup \cdots$$

H/W: Να βρεθούν τα $WB, W\Gamma$.

$$WB = \bar{A}_1 \cap B_2 \cup \left(\overline{B_2} \cap \overline{C_3} \cap \overline{A_4} \cap B_5\right) \cup \left(\overline{B_5} \cap \overline{C_6} \cap \overline{A_7} \cap B_8\right) \cup \cdots$$

$$WC = \bar{A}_1 \cap \overline{B_2} \cap C_3 \cup \left(\overline{C_3} \cap \overline{A_4} \cap \overline{B_5} \cap C_6\right) \cup \left(\overline{C_6} \cap \overline{A_7} \cap \overline{B_8} \cap C_9\right) \cup \cdots$$

Πιθανότητα

S,A Πιθανότητα είναι να η βεβαιότητα να πραγματοποιηθεί ένα γεγονός.

$$0 \le P(A) \le 1$$

π.χ. Να βρεθεί η πιθανότητα να φέρει ζυγό αριθμό το ζάρι.

• $S = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 4, 6\}$. Άρα, αν χρησιμοποιήσουμε την κλασική μέθοδο για την εύρεση της πιθανότητας:

$$P(A) = \frac{N(A)}{N(S)} = \frac{3}{6} = 0,50$$

Η κλασική μέθοδος μπορεί να χρησιμοποιηθεί όταν είναι ισοπίθανα τα αποτελέσματα.

Σχετική Συχνότητα Μπορώ να ρίξω πολλές (N) φορές το ζάρι:

$$f(A) = \frac{N(A)}{N}$$

$$P_A = \lim_{N \to \infty} \frac{N_A}{N}$$

Ποια είναι η $P(AB \leq r)$;

$$S = \{1, 2, 3, \dots, 360\}$$

$$AB = \{1, 2, 3, \dots, 120\} o$$
προκύπτει από γεωμετρία

6

Αξιώματα Kolmogorov

1:
$$0 \le P(A) \le 1$$

2.
$$P(S) = 1$$

3.
$$P(A \cup B) = P(A) + P(B)$$

$$S = \{ \mathsf{KA}, \mathsf{SP}, \mathsf{MP}, \mathsf{KO} \}$$
, $A = \{ \mathsf{KA}, \mathsf{SP} \}$. $P(A) = ?$

 $P(A)=rac{2}{4}$ (από κλασικό τρόπο), ή $P(\mathsf{KA}\cup\mathsf{SP})=P(\mathsf{KA})+P(\mathsf{SP})=rac{1}{4}+rac{1}{4}=rac{1}{2}$, από το 3ο αξίωμα Kolmogorov.

1.
$$P(\overline{A}) = 1 - P(A)$$

Απόδειξη.
$$P(\overline{A} \cup A) = P(S) \implies P(A) + P(\overline{A}) = 1$$

2.
$$P(\emptyset) = 0$$

Απόδειξη.

$$P(\emptyset) = 1 - P(\overline{\emptyset})$$
$$= 1 - P(S)$$
$$= 1 - 1 = 0$$

3. $P(A) \le P(B)$

Απόδειξη.

$$B = (B - A) \cup A \implies$$

$$P(B) = P((B - A) \cup A)$$

$$= P(B - A) + P(A) \ge 0$$

4. $P(A - B) = P(A) - P(A \cap B)$

Απόδειξη.

$$A = (A - B) \cup (A \cap B) \implies$$

$$P(A) = P[(A - B) \cup (A \cap B)]$$

$$= P(A - B) + P(A \cap B)$$

5. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Toμή $A\cap B$

Απόδειξη.

$$A \cup B = (A - B) \cup B \implies$$

$$P(A \cup B) = P[(A - B) \cup B]$$

$$= P(A - B) + P(B)$$

$$= P(A) - P(A \cap B) + P(B)$$

Μπορεί η παραπάνω σχέση να αποδειχθεί και για περισσότερα από δύο γεγονότα:

$$P(A \cap B \cap \Gamma) = P(A) + P(B) + P(\Gamma) - P(A \cap B) - P(A \cap \Gamma) - P(B \cap \Gamma) + P(A \cap B \cap \Gamma)$$

$$A \xrightarrow{\Delta_1} X \xrightarrow{\Delta_2} B$$

$$P(\Delta_1) = 0.5, \quad P(\Delta_1) = 0.3, P(\Delta_1 \cap \Delta_3) = 0.1.$$
 Τότε $P(\Delta) = P(\Delta_1 \cup \Delta_2) = P(\Delta_1) + P(\Delta_2) - P(\Delta_1 \cap \Delta_2) = 0.7.$

$$S = \left\{ \Delta_1 \cap \Delta_2, \overline{\Delta_1} \cap \Delta_2, \Delta_1 \cap \overline{\Delta_2}, \overline{\Delta_1} \cap \overline{\Delta_2} \right\}$$

Για τρία σύνολα A, B, Γ : Η πιθανότητα να συμβεί μόνο ένα από αυτά είναι:

$$P\left[\left(A \cap \overline{B} \cap \overline{C}\right) \cap \left(\overline{A} \cap B \cap \overline{C}\right) \cap \left(\overline{A} \cap \overline{B} \cap C\right)\right]$$

$$= P(A \cap \overline{B} \cap \overline{C}) + \dots$$

$$= P\left[A - (B \cap \Gamma)\right] - P(A) - P\left[A \cap (B \cap \Gamma)\right] + \dots$$

$$= P(A) - P\left[(A \cap B) \cup (A \cup \Gamma]\right] + \dots$$

$$= P(A) - \left(P(A \cap B) + P(A \cap \Gamma) - P(A \cap B \cap \Gamma)\right) + \dots$$

$$= P(A) - P(A \cap B) - P(A \cap \Gamma) + P(A \cap B \cap \Gamma) + \dots$$

Δεσμευμένη πιθανότητα

$$P(A \cap B) = ?$$

P(A|B): η πιθανότητα να συμβεί το A με την προϋπόθεση ότι B, ή η πιθανότητα να συμβεί το A, αν γνωρίζουμε ότι συμβαίνει το B, σε μια εκτέλεση του πειράματος.

п.х.

$$P(A)=rac{5}{36},\ P(B)=rac{11}{36}$$
 Παρατηρώ ότι $P(A)=rac{2}{11}=rac{rac{N(A\cap B)}{n(s)}}{rac{N(B)}{N(S)}}.$

Άρα, γενικά:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Επομένως:

$$P(A \cap B) = P(B)P(A|B)$$
$$= P(A)P(B|A)$$

- Av $A \cap B = \emptyset$, tóte $P(A|B) = \emptyset$.
- Av $A \subseteq B$, tóte P(B|A) = 1.

Πολλαπλαστιαστικός Κανόνας

$$P(A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n) = = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_n|A_1 \cap \dots \cap A_n)$$

Μπορώ με τη χρήση του πολλαπλασιαστικού κανόνα να εντοπίσω την πιθανότητα 6 ρίψεις ζαριού να έχουν διαφορετικά νούμερα.

$$A_1 = ig\{$$
στην 1η ρίψη κάποιο νούμερο $ig\}$ $A_{i \geq 2} = ig\{$ στην i ρίψη νούμερο διάφορο από $A_{i-1}, A_{i-2}, \ldots, A_1$ ρίψη $ig\}$

$$P(A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5 \cap A_6) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\dots$$

Θεώρημα Ολικής Πιθανότητας

Aν για τα γεγονότα A_1, \ldots, A_n ισχύει:

- $A_i \cap A_j = \emptyset$ (ξένα μεταξύ τους)
- $\bullet \bigcup_{i=1}^k A_i = S$

Ονομάζουμε τα A_i διαμέριση του S.

Έστω B ένα σύνολο που τέμνει τη διαμέριση:

$$B = (B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_k)$$

Τότε:

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_k)$$

= $P(A_1)P(B|A_1) + \dots + P(A_k)P(B|A_k)$
= $\sum_{i=1}^{k} P(A_i)P(B|A_i)$

Άσκηση

Επιλέγουμε τυχαία μία κάλπη και μία σφαίρα από την κάλπη. Ποια είναι η πιθανότητα P(A)να επιλέξω την άσπρη σφαίρα?

Τα A_1, A_2, A_3 αποτελούν διαμέριση. Άρα:

$$P(A) = \underbrace{P(A_1)}_{\frac{1}{3}} \underbrace{P(A|A_1)}_{0} + \underbrace{P(A_2)}_{\frac{1}{3}} \underbrace{P(A|A_2)}_{\frac{1}{2}} + \underbrace{P(A_3)}_{\frac{1}{3}} \underbrace{P(A|A_3)}_{1}$$

$$= 0.50$$

$$P(X = 1) = 0.60$$

 $P(X = 2) = 0.40$

P(Y1) = ?

Τα X_1, X_0 αποτελούν διαμέριση του δειγματικού χώρου.

$$P(Y1) = \underbrace{P(X1)}_{0.60} \underbrace{P(Y1|X1)}_{0.90} + \underbrace{P(X0)}_{0.40} \underbrace{P(Y1|X0)}_{0.20} = 0.62$$

Θεώρημα Bayes

$$P(B) = P(A_1)P(B|A_1) + \dots + P(A_k)P(B|A_k)$$

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)}$$

$$= \frac{P(A_i)P(B|A_i)}{P(B)}$$

(Πιθανότητα εκ των υστέρων)

п.х.

Από την προηγούμενη άσκηση, ποια είναι η πιθανότητα το αποτέλεσμα να είναι 1 αν και η είσοδος είναι 1?

$$P(X1|Y1) = \frac{P(X1)P(Y1|X1)}{P(Y1)} = \frac{0.54}{0.62} > P(X1) = 0.6$$

Ποια είναι η πιθανότητα P(X0|Y1)?

Στο παράδειγμα με την κάλπη, ποια είναι η $P(A_3|A)$ ($P(A_3)=rac{1}{3}$)

$$P(A_3|A) = \frac{P(A_3)P(A_1|A_3)}{P(A)} = \frac{\frac{1}{3} \cdot 1}{0.50} = \frac{2}{3}$$

Ομοίως:

$$P(A_2|A) = \frac{P(A_2)P(A_1|A_2)}{P(A)} = \frac{\frac{1}{3} \cdot \frac{1}{2}}{0.50} = \frac{1}{3}$$

$$P(A) = 1 - P(\overline{A})$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P((A \cup B)|\Gamma) = P(A|\Gamma) + P(B|\Gamma) - P((A \cap B)|\Gamma)$$

Στο παράδειγμα με τα σήματα:

$$P(X1|Y1) = 1 - P(X0|Y1)$$

 $B=A_1\cap (A_2\cup A_3)=(A_1\cap A_2)\cup (A_1\cap A_3)$ (η πιθανότητα διακοπής ρεύματος, A_i η πιθανότητα να είναι ανοικτός ο i-οστός διακόπτης.

Άρα:

$$\begin{split} P(B) &= P(A_1 \cap A_2) + P(A_1 \cap A_3) - P(A_1 \cap A_2 \cap A_3) \\ &= P(A_1)P(A_2|A_1) + P(A_1)P(A_3|A_1) - P(A_1)\dots \\ &= P \cdot P + P \cdot P - P^3 \\ &= 2P^2 - P^3 \quad \text{(an P η πidentified in a soint of e final and in the content of e (and e is a point of e)} \end{split}$$

$$P(A_1|B) = \frac{P(A_1 \cap B)}{P(B)}$$

Όμως $A_2 \cap B = A_1 \cap \left[(A_1 \cap A_2) \cup (A_1 \cap A_3) \right] = (A_1 \cap A_2) \cup (A_1 \cap A_3) = B$.

Άρα: $P(A_1|B) = \frac{P(B)}{P(B)} = 1$, κάτι που επιβεβαιώνεται και εμπειρικά.

Ποια είναι η $P(A_2|B)$?

Άσκ.

$$R = A_1 \cup (\overline{A_1} \cap \overline{B_2})$$

$$P(R) = P(A_1) + P(\overline{A_1} \cap \overline{B_2}) - [A_2 \cap (\overline{A_1} \cap \overline{B_2})]^{\bullet}$$

$$= \frac{2}{5} \cdot \frac{1}{4}$$

Ποια είναι η πιθανότητα να κερδίσει ο B?

Άσκ.

Αν $P(I)=P_1, P(II)=P_2$, ποια είναι η πιθανότητα, αν δεν έχει πληγεί ο 2ος στόχος, να έχει πληγή ο 1ος;

$$P(I|\overline{II}) = \frac{P(I \cap \overline{II})}{P(\overline{II})} = \frac{P(I)P(\overline{H}|I)}{1 - P_2}^{\bullet 1}$$

Aok. P(A) = 0.04, P(B|A) = 0.20

$$\underbrace{R}_{\text{Πιθανότητα ανύψυσης του βάρους}} = \overline{A} \cup (A \cap \overline{B})$$

$$P(R) = P(\overline{A}) + P(A \cap \overline{B}) - P(\overline{A} \cap (A \cap \overline{B}))^{\emptyset}$$

$$= 0.96 + P(A)P(\overline{B}|A)$$

$$= 0.96 + 0.04 \cdot 0.80$$

Άσκηση για το σπίτι Σε μια παραγωγή το $P(A_1)=80\%$ των σιδηροδοκών είναι καλές, και το $P(A_2)=20\%$ των σιδηροδοκών είναι ελαττωματικές. Το μηχάνημα που πραγματοποιεί τον έλεγχο δεν είναι αξιόπιστο: $P(\Theta|A_1)=0.10,\ P(\Theta|A_2)=0.80$ (Θ η πιθανότητα ο έλεγχος να είναι θετικός).

- 1. Ποιο ποσοστό από τις σιδηροδοκούς καταστρέφεται (αν καταστρέφεται κάθε δοκός για την οποία ο έλεγχος είναι θετικός)?
- 2. Ποιο ποσοστό από αυτές που καταστρέφονται είναι καλές?
- 3. Ποιο ποσοστό από τις δοκούς που φεύγουν στην αγορά είναι ελαττωματικές?
- 4. Ποιες θα είναι οι απαντήσεις στα προηγούμενα ερωτήματα αν προτείνουμε δύο ελέγχους Θ_1, Θ_2 (καταστρέφεται μόνο αν και οι δύο έλεγχοι είναι θετικοί)?

Ανεξάρτητα A,B

$$P(A|B) = P(A) \iff P(A \cap B) = P(A)P(B)$$

Ασυμβίβαστα A,B

$$A \cap B = \emptyset, \ P(A|B) = 0$$

п.х

Av A,B είναι ανεξατητα, ισχύει το ίδιο για τα \bar{A},B ?

Απόδειξη. Έχουμε:

$$P(\bar{A} \cap B) = P(B)P(\bar{A}|B)$$

$$= P(B) (1 - P(A|B))$$

$$= P(B) (1 - P(A))$$

$$= P(B)P(\bar{A})$$

Μπορείτε να αποδείξετε ότι ισχύει το ίδιο για τα \bar{A}, \bar{B} ?

$$S = \begin{cases} AB\Gamma \\ A\Gamma B \\ BA\Gamma \\ B\Gamma A \\ \Gamma AB \\ \Gamma BA \end{cases}$$

$$W = \{ \mathrm{AB}\Gamma, \mathrm{A}\Gamma\mathrm{B}, \Gamma\mathrm{AB} \}$$

$$R = \{ \mathrm{AB}\Gamma, \mathrm{A}\Gamma\mathrm{B}, \mathrm{B}A\Gamma \}$$

$$\mathrm{Préfiei} \ \underbrace{P(W \cap R)}_{\frac{1}{3}} = \underbrace{P(W)}_{\frac{1}{2}} \underbrace{P(R)}_{\frac{1}{2}}$$

Άρα τα W και R δεν είναι ανεξάρτητα.

Τεχνικές Συνδυαστικής

Πολλαπλασιαστική αρχή

Έστω ένα πείραμα στο οποίο ρίχνω ένα νόμισμα και ένα κέρμα.

$$S=S_1$$
 \times S_2 kartesianó yinómeno
$$S=\{\mathrm{K}\Gamma\}\times\{1,2,3,4,5,6\}$$

$$=\left\{(\mathrm{K},1)\,,(\mathrm{K},2)\,,\ldots\,,(\mathrm{K},6)\,,(\Gamma,1)\,,(\Gamma,2)\,,\ldots\,,(\Gamma,6)\right\}$$

Άσκηση 8

$$S = S_1 \times S_2 \times \cdots \times S_{13}$$

= $\{1, 2, \times\} \times \{1, 2, \times\} \cdots \{1, 2, \times\}$

$$n = n_1 \times n_2 \cdots n_{13} = 3^{13}$$

Όταν ρίχνω ένα νόμισμα 3 φορές:

$$S = S_1 \times S_2 \times S_3$$

= $\{K, \Gamma\} \times \{K, \Gamma\} \times \{K, \Gamma\}$
= $\{KKK, KK\Gamma, K\GammaK, \Gamma KK, K\Gamma\Gamma, \Gamma K\Gamma, \Gamma \Gamma K, \Gamma \Gamma \Gamma \}$

Παρατηρώ ότι στο καρτεσιανό γινόμενο τα ενδεχόμενα π.χ. $(KK\Gamma)$ και (ΓKK) θεωρούνται διαφορετικά. Αντίστοιχα, σε δύο ρίψεις ενός ζαριού, τα ενδεχόμενα (1,2), (2,1) είναι διαφορετικά.

Έχω τρία αντικείμενα A, B, Γ . Με πόσους τρόπους μπορώ να τα βάλω στη σειρά?

$$\begin{cases} AB\Gamma \\ A\Gamma B \\ BA\Gamma \\ B\Gamma A \\ \Gamma AB \\ \Gamma BA \end{cases}$$

Για n αντικείμενα:

$$n(n-1)(n-2)\cdots 1 = n!$$

$$P(n) = n!$$

$$P(n, k) = \frac{n!}{(n - k)!}$$

Συνδυασμοί

$$C(n,k) = \binom{n}{k} = \frac{n!}{(n-k)! \, k!}$$

π.χ. Για τα A, B, Γ με $n=3, \ k=2$ (συνδυάζω 3 αντικείμενα ανά 2) έχω:

$$AB\Gamma \begin{cases} AB \\ A\Gamma \\ B\Gamma \end{cases}$$

π.х. Είμαστε 100 φοιτητές, πόσες διαφορετικές επιτροπές των 5 ατόμων μπορώ να φτιάξω?

Άσκηση Έχουμε 15 καλά και 5 ελαττωματικά ανταλλακτικά. Ποια είναι η πιθανότητα 3 από αυτά να είναι ελαττωματικά?

Κλασικός τρόπος

$$P(A) = \frac{N(A)}{N(S)} = \frac{C(5,3)}{C(20,3)} = \frac{\frac{5!}{(5-3)! \ 3!}}{\frac{20!}{(20-3)! \ 3!}} = \frac{1}{114}$$

Όχι κλασικός τρόπος

$$A = (A_1 \cap A_2 \cap A_3)$$

$$P(A) = \underbrace{P(A_1)}_{\frac{5}{20}} \underbrace{P(A_2|A_1)}_{\frac{4}{19}} \underbrace{P(A_3|A_1 \cap A_2)}_{\frac{3}{18}}$$

$$= \frac{1}{114}$$

Ασκήσεις

Ομάδα μπάσκετ από 10 άτομα

- 1. Ομάδα 5 ατόμων: $C(10,5) = \frac{10!}{(10-5)! \ 5!}$
- 2. Ομάδα 5 ατόμων όπου παίζει ρόλο η σειρά: $P(10,5) = \frac{10!}{(10-5)!}$
- 3. Ομάδα 5 ατόμων που μπορούν να αλλάζουν αριθμό, με 2 standard παίκτες: $C(8,3) \cdot 5!$

Άσκηση 2

(a)

$$S=\{123,124,125,134,135,145,234,235,245,345\} \qquad \mbox{(δε με ενδιαφέρει η σειρά)} \\ A=\{123\} \\ B=\{124,134,234\} \\ \Gamma=\{125,135,145,235,245,345\} \label{eq:Section}$$

(β) Προφανές

Άσκηση 3 a_1 a_2 a_3

$$P(A) = \frac{N(A)}{N(S)} = \frac{3}{4}$$
$$S = \{a_1, a_2, a_3, a_4\}$$
$$A = \{a_1, a_4\}$$

$$R = A_1 \cup (A_2 \cap A_3) \cup A_4$$
$$P(R) = P(A_1) - P(A_2 \cap A_3) + P(A_4)$$

Άσκηση 6 Για το σπίτι.

- Από το 0 στο 0.5: $\Delta t = \sqrt{rac{1}{2}}$
- Από το 0.5 στο 1: $\Delta t = 1 \sqrt{\frac{1}{2}}$

• :

$$P(A) = \frac{(1 - \sqrt{\frac{1}{2}}) \cdot (\frac{1}{3})^{\frac{1}{3}}}{2}$$

Άσκηση 9 Για το σπίτι.

Άσκηση 10

$$P(A_1) = P(A_2) = P(A_3) = P(A_4) = P$$

 $P(\Gamma E) = q$
 $R = (A_1 \cup A_2) \cap ((A_3 \cup (\Gamma E \cap A_4))$

Άσκηση 11

$$P(A) = \frac{N(A)}{N(S)} = \frac{12}{100}$$
$$S = \{0, 1, 2, \dots, 9\}$$
$$P(B) = \frac{N(B)}{N(S)} = \frac{6}{40}$$

Άσκηση 12

$$K,\Theta$$

$$P(K) = 0.01$$

$$P(\Theta) = 0.02$$

$$P(\Theta|K) = 0.08$$

$$P((\Theta - K) | (\Theta \cup K)) = ?$$

$$\begin{split} P\left((\Theta-K)\big|(\Theta\cup K)\right) &= \frac{P\left((\Theta-K)\cap(\Theta\cup K)\right)}{P(\Theta\cup K)} \\ P(\Theta\cup K) &= P(\Theta) + P(K) - P(\Theta\cap K) \\ &= 0.02 + 0.01 - P(K)P(\Theta|K) \\ &= 0.02 + 0.01 - 0.01 \cdot 0.08 \\ &= 0.0292 \end{split}$$

$$\texttt{Apa} \ P\left((\Theta-K)\big|(\Theta\cup K)\right) &= \frac{P(\Theta-K)}{0.0292} \\ &= \underbrace{\frac{P(\Theta)-P(\Theta\cap K)}{0.0292}}_{0.0292} \\ &\approx 65.75\% \end{split}$$

$$P(A) = \frac{N(A)}{N(S)} = \frac{120}{C(25, 25)} = \frac{120}{\frac{25!}{(25-2)!}}$$

ή

$$P(A_2) = \underbrace{P(A_2|A_1)}_{\frac{4}{24}} \underbrace{P(A_1)}_{\frac{5}{25}} + \underbrace{P(A_2|\overline{A_2})}_{\frac{5}{25}} \underbrace{P(\overline{A_1})}_{\frac{20}{25}}$$

Άσκηση 15

$$P(A) = 0.10$$
$$P(B) = 0.10$$
$$P(A \cap B) = 0.02$$

$$P((A - B) \cup (B - A)) = P(A - B) + P(B - A)$$
$$= P(A) - P(A \cap B) + P(B) - P(B \cap A)$$
$$= 0.20 - 2(0.02) = 0.16$$

$$A_{0}, A_{1}, A_{2}P(E) = P(E|A_{0})P(A_{0}) + P(E|A_{1})P(A_{1}) + P(E|A_{2})P(A_{2})$$

$$= 0.90 \cdot 0.82 + 0.70 \cdot 0.16 + 0.40 \cdot 0.02$$

$$P(A_{0}) = 1 - P(A \cup B) = 1 - \left(\underbrace{P(A) + P(B) - P(A \cap B)}_{0.18}\right)$$

$$P(A_{2}|\bar{E}) = \underbrace{\frac{0.02 \quad 0.60}{P(A_{2})P(\bar{E}|A_{2})}_{P(\bar{E})}}_{P(\bar{E})}$$

$$\begin{split} P(A) &= 0.08 \\ P(\overline{A}) &= 0.92 \\ P(\Theta|A) &= 0.95 \\ P(\Theta|\overline{A}) &= 0.05 \\ P(\Theta_1 \cap \Theta_2|A) &= P(\Theta_1|A)P(\Theta_2|A) = 0.95^2 \\ P(\overline{\Theta_1} \cap \overline{\Theta_2}) &= P(A)P(\overline{\Theta_1} \cap \overline{\Theta_2}|A) + P(\overline{A})P(\overline{\Theta_1} \cap \overline{\Theta_2}|\overline{A}) = 0.08 \cdot 0.95^2 + 0.92 \left(0.05^2\right) \\ P(\overline{A}|\overline{\Theta_1} \cap \overline{\Theta_2}) &= P(\overline{A})P\left((\overline{\Theta_1} \cap \overline{\Theta_2})|A\right) \end{split}$$

Άσκηση 17

$$P(A) = 0.60$$

 $P(M) = 0.80$
 $P(M|A) = ?$

$$P(M|A) = \frac{P(M \cap A)}{P(A)}$$

$$= \frac{\vdots}{0.60}$$

$$\underbrace{(M \cup A)}_{\leq 1} = \underbrace{P(M)}_{0.80} + \underbrace{P(M)}_{0.60} - \underbrace{P(M \cap A)}_{\geq 0.40}$$

$$P(M|A) = \frac{\geq 0.40}{0.60}$$

Άσκηση 19

$$P(A) = \underbrace{P(A|A_1)}_{\frac{1}{4} + \frac{1}{9} = \frac{3}{9}} \underbrace{P(A_1)}_{\frac{1}{4}} + \dots + \underbrace{P(A|A_4)}_{\frac{1}{4}} \underbrace{P(A_4)}_{\frac{1}{4}}$$

Άσκηση 20

$$P(A) = \frac{A}{\pi N \lambda^2}$$

$$P(\overline{A}) = 1 - \frac{A}{\pi N \lambda^2}$$

$$P(\overline{A_1} \cap \overline{A_2} \cap \overline{A_3} \cap \dots \cap \overline{A_N}) = \left(1 - \frac{A}{\pi N \lambda^2}\right)^N$$

$$\lim_{N \to \infty} P = e^{-\frac{A}{\pi \lambda^2}}$$

Οι υπόλοιπες ασκήσεις για το σπίτι.

Τυχαίες Μεταβλητές

$$X, Y, Z, W, \dots$$

$$X(s): S \to \mathbb{R}_x$$

 $(5,2) \to 7$
 $KK\Gamma \to 3$

$$X=\{0,1,2,3\}$$

$$\{\overrightarrow{X}=x\},\ \{X\subseteq x\},\ \{x_1\subset X\subset x_2\}$$

$$\text{times tunalar metablishs}$$

$$\{X=1\}\equiv\{\mathrm{K}\Gamma\Gamma,\ \Gamma\mathrm{K}\Gamma,\ \Gamma\Gamma\mathrm{K}\}$$

$$\{X\subseteq 2\}\equiv A$$

$$P(X=1)=P(\mathrm{K}\Gamma\Gamma,\ \Gamma\mathrm{K}\Gamma,\ \Gamma\Gamma\mathrm{K})$$

$$P\left(X\subseteq 2\right)=P(A)=\frac{7}{8}$$

$$P(X=0)=\frac{1}{8}$$

$$P\left(X\subseteq 1\right)=\frac{4}{8}$$

Παράδειγμα

$$S = \{x | \min \le x \le \max\}$$

$$X = \{x | \min \le x \le \max\}$$

$$Y = \{y | \dots\}$$

Συνάρτηση μάζας πιθανότητας (Probability Mass Function - σμπ)

$$X = \{x_1, x_2, \dots, x_n\}$$

 $f(x_i) = P(X = x_i) = P_i$

Παράδειγμα

$$S = \{\epsilon, \kappa\epsilon, \kappa\kappa\epsilon, \kappa\kappa\kappa\epsilon, \dots\}$$

$$X = \{1, 2, 3, \dots\}$$

$$P(\epsilon) = 0.01$$

Ιδιότητες

1.
$$f(x_i) \ge 0$$

2.
$$\sum\limits_{x_i=0}^{\infty}f(x_i)=1$$
 (ισχύει στο παράδειγμα?)

Συνάρτηση Πυκνότητας Πιθανότητας

1.
$$f(x) > 0$$

2.
$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} f(x) dx$$

$$3. \int_{-\infty}^{+\infty} \mathrm{d}x = 1$$

$$P(X = x) \cong P(x - \delta\epsilon \le X \le x + \delta\epsilon) = \int_{x - \delta\epsilon}^{x + \delta\epsilon} f(x) dx$$

Να σημειωθεί ότι P(X=x)=0, αλλά το (X=x) δεν είναι αδύνατο, αφού $(X=x)\equiv\{x\}$.

$$\int_{a}^{b} f(x) \, \mathrm{d}x = 1$$

$$\int_a^b c \, \mathrm{d}x = c[x]_a^b = 1 \implies c = \frac{1}{b-a}$$

Παράδειγμα

$$P(X \ge x_1) = \int_{x_1}^{\infty} \frac{1}{2} e^{-\frac{x}{2}} dx = e^{-\frac{x_1}{2}}$$

$$\int_0^\infty f(x) \, \mathrm{d}x = 1$$

$$\int_0^\infty A e^{-\frac{x}{2}} \, \mathrm{d}x = -A2 \left[e^{-\frac{x}{2}} \right]_0^\infty = 2A = 1 \implies A = \frac{1}{2}$$

Αθροιστική Πιθανότητα - Συνάρτηση Κατανομής

$$F(x) = P(X \le x) = \int_{\infty}^{x} f(u) du = \sum_{x_i \le X} = P(X = x_i)$$

$$f(x) = \begin{cases} \frac{1}{8} & x = 0\\ \frac{3}{8} & x = 1\\ \frac{3}{8} & x = 2\\ \frac{1}{8} & x = 3 \end{cases} \qquad F(x) = \begin{cases} 0 & x = 0\\ \frac{1}{8} & x < 0\\ \frac{4}{8} & 1 \le x < 2\\ \frac{7}{8} & 2 \le x < 3\\ \frac{8}{8} & 3 \le x \end{cases}$$
$$F(x) = P(X \le x)$$

$$F(1) = P(x \le 1) = \frac{4}{8}$$
$$F(0.5) = P(x = 0) = \frac{1}{8}$$

Σε συνεχή μεταβλητή...

$$F(x) = P(X \le x) = \int_{a}^{x} \frac{1}{1 - ba} dx = \frac{x - a}{b - a}$$

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Ιδιότητες

1.
$$F(-\infty) = 0$$
, $F(+\infty) = 1$

2.
$$x_1 < x_2 \implies F(x_1) < F(x_2)$$

3.
$$F(x^+) = F(x)$$

4.
$$\begin{cases} f(x) = \frac{dF(x)}{dx} & F(x) = \int_{-\infty}^{x} f(u) du \\ f(x_i) = F(x_i) - F(x_{i-1}) \\ F(x) = \sum_{x_i \le x} f(x_i) \\ P(x_1 < X \le x_2) = F(x_2) - F(x_1) \end{cases}$$

Μικτού τύπου

$$P(X = x_1) = P_1$$
$$P(X = x_2) = P_2$$

Παράδειγμα Αν γνωρίζουμε επιπλέον ότι $P(X\leq 1)=\frac{2}{5}$, τότε προκύπτει $\int_0^1 \lambda_1 e^{-\lambda_2 x}\,\mathrm{d}x=\frac{2}{5}$, και μπορούμε στο σπίτι να βρούμε τα λ_1,λ_2 .

Ασκήσεις (Τυχαίες Μεταβλητές ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ)

1

$$\begin{split} P(X > 1) &= 1 - P(X \le 1) \\ &= 1 - F(1) \\ &= 1 - \left(1 - \exp(-1^2)\right) \\ &= 1 - 1 + e^{-1} \end{split}$$

2

(a)

$$\int_0^2 f(x) dx = 1$$

$$\implies c \left(4 \left[\frac{x^2}{2} \right]_0^2 - 2 \left[\frac{x^3}{3} \right]_0^2 \right) = 1$$

$$\implies c = \dots$$

(β)

$$P(x > 1) = 1 - P(X \le 1)$$

= $1 - \int_0^1 f(x) dx$

3

Για το σπίτι

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x}{k} & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

$$f(x) = \begin{cases} 0 & x < 0\\ \frac{\mathrm{d}F(x)}{\mathrm{d}x} = \frac{1}{k} & 0 \le x \le 5\\ 0 & x > 5 \end{cases}$$

$$\int_0^5 \frac{1}{k} \, \mathrm{d}x = \frac{1}{k} [x]_0^5 = \frac{5}{k} = 1 \implies k = 5$$

(β)

$$F(x) = \begin{cases} 0 & x < -1\\ x^3/4 + 0.5 & -1 \le x < 1\\ 1 & x \ge 1 \end{cases}$$

$$f(x) = \begin{cases} P(X = -1) = \frac{1}{4} & x = -1\\ \frac{dF(x)}{dx} = \frac{3x^2}{4} & x < 1\\ P(X = 1) = \frac{1}{4} & \end{cases}$$

$$\int_0^1 f(x) dx = 1;$$
$$F() = \int_0^x f(u) du$$

Για το σπίτι

$$P(A) = 0.5$$

 $P(B) = 0.8$
 $P(\Gamma) = 0.2$
 $X = \{0, 1, 2, 3\}$

$$\begin{split} P(X=0) &= 1 - P(A \cup B \cup \Gamma) \\ P(X=1) &= P(A \cap \bar{B} \cap \bar{\Gamma}) + P(\bar{A} \cap B \cap \bar{\Gamma}) + P(\bar{A} \cap \bar{B} \cap \Gamma) \\ &= P(A)P(\bar{B})P(\bar{\Gamma}) + \dots \\ P(X=2) &= \dots \\ P(X=3) &= \dots \end{split}$$

8

$$X = \{-2, 0, 2\}$$

Οι πιθανότητες είναι ίσες με τα αντίστοιχα άλματα της αθροιστικής:

$$P(X = -2) = 0.2$$

 $P(X = 0) = 0.5$
 $P(X = 2) = 0.3$

9

(a)
$$P(X \ge 3000) = \int_{3000}^{\infty} f(x) \, \mathrm{d}x = \boxed{e^{-\frac{1}{1000} \cdot 3000}}$$

(β)
$$P(X < 1000) = \int_0^{1000} f(x) \, \mathrm{d}x = 1 - e^{-\frac{1000}{1000}}$$

(y) \int_{1000}^{2000}

(6) $P(X \le x) = 0.10$ $= 1 - e^{-\frac{1}{1000}x} = 0.10$ $\Longrightarrow x = \dots$

10

$$P(X \le 3 = 0.75)$$

...

$$f(x) = \begin{cases} \int_{-a}^{x} c \, dx & -a < x < -a/2 \\ \int_{-a}^{-a/2} c \, dx & -a/2 < x < a/2 \\ \int_{-a}^{-a/2} c \, dx + \int_{a/2}^{x} c \, dx & a/2 < x < a \\ 1 & x > a \end{cases}$$

Χαρακτηριστικά

- 1. Μέση Τιμή $\mu_x, \; E(x)$
- 2. Διακύμανση σ_x^2 , Var(X)
- 3. x_p , M, T

Μέση Τιμή (Mean)

$$\mu_x = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
$$= \sum_{x_i} x_i f(x_i)$$

п.х.

$$X = \{1, 2, 3, 4, 5, 6\}$$

$$f(x_i) = \frac{1}{6}$$

$$E(X) = \frac{1}{6}(1 + 2 + \dots + 6) = 3.5$$

$$E(X) = \int_0^\infty x\lambda e^{-\lambda x} \, \mathrm{d}x = \frac{1}{\lambda}$$

Ιδιότητες

•

$$E(aX + \beta) = \int_{-\infty}^{\infty} (ax + \beta)f(x) dx$$
$$= aE(x) + \beta$$

• $E(g(x)) = \int_{-\infty}^{\infty} g(x)f(x) dx$

$$\begin{split} f(x) &= \begin{cases} c = \frac{1}{\beta - a} & a < x < \beta \\ 0 & \text{allou} \end{cases} \\ E(X) &= \int_a^\beta x \frac{1}{b - a} \, \mathrm{d}x \\ &= \frac{a + \beta}{2} \end{split}$$

$$E(X) = \int_0^1 x(1) \, \mathrm{d}x = 0.5$$
$$E(X^2) = \int_0^1 x^2(1) \, \mathrm{d}x = \frac{1}{3}$$

$$X:[-1,1]\cap\mathbb{Z}\qquad E(X)=-1\left(\frac{1}{2}\right)+1\left(\frac{1}{2}\right)$$

$$Y:[-1000,1000]\cap\mathbb{Z}\qquad E(Y)=0$$

Πρέπει να ορίσουμε ένα μέγεθος με το οποίο να μπορούμε να συγκρίνουμε την ομοιογένεια/διακύμανση των τιμών.

$$E(X - \mu_x) = 0$$
$$E(|X - \mu_x|) = \dots$$

Διακύμανση $\sigma_x^2, \ \mathrm{Var}(X)$

$$\sigma_x^2 = E\left[(X - \mu_x)^2 \right]$$
$$= \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

$$Var(x) = E[(x - \mu)]^{2}$$

$$= E(X^{2}) - \mu_{x}^{2}$$

$$= \int x^{2} f(x) dx - \mu_{x}^{2}$$

$$Var(aX + \beta) = E\left[\left(aX + \beta - (a\mu_x + \beta)\right)^2\right]$$
$$= \dots = a^2 Var(X)$$

$$E(X) = \frac{1}{\lambda}$$

$$Var(X) = E(X^2) - \left(\frac{1}{\lambda}\right)^2$$

$$= \int_0^\infty x^2 \lambda e^{-\lambda x} dx - \left(\frac{1}{\lambda}\right)^2 = \dots = \left(\frac{1}{\lambda}\right)^2$$

$$E(X) = \frac{a+\beta}{2}$$

$$\mathrm{Var}(X) = E(X^2) - \left(\frac{a+\beta}{2}\right)^2 = \text{ για το σπίτι}$$

Τυπική απόκλιση

$$X=\dots$$
 $f(x)=\dots$ $\mathrm{E}(X)=\mu_x$ $\mathrm{Var}(X)=\sigma_x^2$ Τυπική απόκλιση $\sigma_x=\sqrt{\sigma_x^2}$

Τυποποίηση

$$X^* = \frac{X - \mu_x}{\sigma_x}$$

Τότε:

$$E(X^*)=0$$
 (να αποδειχθεί) ${
m Var}(X^*)=1$ (να αποδειχθεί)

 $x_p = P$ ποσοστιαίο σημείο

Διάμεσος (Median)

$$x_{0.5} = M$$

$$P(X \le M) = P(X \ge M) = 0.5$$

Επικρατέστερη Τιμή

п.х.

$$f(x) = \begin{cases} \frac{4x(9-x^2)}{81} & \quad 0 \leq x \leq 3 \\ 0 & \quad \text{allow} \end{cases}$$

$$T = ; \quad \frac{\mathrm{d}f(x)}{\mathrm{d}x} = 0$$

$$M =$$
; $F(M) = 0.5 \implies M = \dots$

 $\mu_x =;$

п.х

$$X = \{1, 2, 3, \dots\}$$

 $f(x_i) = P(X = x_i) = \frac{1}{2x_i}$
 $T = 1$

M= οποιαδήποτε τιμή μεταξύ του 1 και 2

$$\mu_x = \sum_{x_i=1}^{\infty} x_i \frac{1}{2x_i} = \dots = 2$$

Άσκηση

$$f(x) = \begin{cases} 0 & x < -2 \\ ax + \beta & -2 \le x \le 0 \\ c & 0 \le x \le 4 \\ 0 & x < 4 \end{cases} \quad \stackrel{\sim}{\Rightarrow} f(x) = \begin{cases} 0 & x < -2 \\ 0.1x + 0.2 & -2 \le x \le 0 \\ c & 0 \le x \le 4 \\ 0 & x < 4 \end{cases}$$

$$F(x) = \begin{cases} 0 & x < -2\\ \int_{-2}^{x} = 0.05x^{2} + 0.2x + 0.2 & -2 \le x < 0\\ \frac{1}{5} + \int_{0}^{x} \frac{1}{5} du = 0.2 + 0.2x & 0 \le x < 4\\ 1 & x \ge 4 \end{cases}$$

$$P(X \le M) = 0.50$$

$$F(M) = 0.2 + 0.2 = 0.5 \implies \boxed{M = 1.5} \ \$$
 (με το μάτι επιλέγω κλάδο)

Ποια είναι η μέση τιμή της $Y = g(x) = {10}/{6(x)} + {20}/{6}$?

$$Y = g(x)$$

$$E(y) = E\left(g(x)\right) = \int_{-2}^{0} g(x)f_1(x) dx + \int_{0}^{4} g(x)f_2(x) dx$$

$$= \dots = \boxed{\frac{88}{18}}$$

Άσκηση 11

$$f(x) = \begin{cases} P(X = 0) = \frac{2}{3} & x = 0\\ c = \frac{2}{3} & 0 < x \le 0.5 \end{cases}$$

$$E(X) = 0 \frac{2}{3} + \int_0^{0.5} x\left(\frac{2}{3}\right) dx = \frac{2}{3} \left[\frac{x^2}{2}\right]_0^{10.5} = \dots$$

Άσκηση 13 Για το σπίτι

Χρήσιμες Κατανομές

$$X, f(x), F(x), E(x)$$

$$P(X \le x) = \int_{-\infty}^{x} f(u) du$$

- 1. Bernoulli
- 2. Διωνυμική
- 3. Γεωμετρική
- 4. Pascal
- 5. Poisson

Bernoulli

$$S = \begin{cases} \text{"epitux\'ec yeyov\'oc"} \\ A &, \bar{A} \end{cases}$$

$$X = \{1,0\}$$

$$P(A) = p$$

$$P(\bar{A}) = 1 - p$$

$$f(x_i): P(X=1) = p$$

$$P(X=0) = 1 - p$$

$$E(X) = 1 \cdot p + 0 (1-p) = p$$

$$\operatorname{Var}[X] = \operatorname{E}(X^2) - p^2 = p \cdot (1-p)$$

Διωνυμική

$$X = \left\{ \begin{aligned} & \text{aribhás empánish } A \\ & \text{se } n \text{ dokupés} \end{aligned} \right\} \\ & X = \left\{0, 1, 2, \dots, n\right\} \\ & P\left(X = x\right) = \binom{n}{x} \ p^x (1-p)^{n-x} \\ & \sum_{x=0}^n \binom{n}{x} p^x (1-p)^{n-x} = \left(p + (1-p)\right)^n = 1 \\ & \text{E}(X) = \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x} \\ & = \cdots \\ & = np \end{aligned}$$

Παράδειγμα Ρίχνουμε ένα ζάρι n=20 φορές. Ποια είναι η πιθανότητα να έχουμε 5 άσσους?

$$P(A) = \frac{1}{6}$$

$$X = \{0, 1, 2, \dots, 20\}$$

$$P(X = S) = {20 \choose 5} \left(\frac{1}{6}\right)^5 \left(\frac{5}{6}\right)^{15}$$

$$n=100$$
 στήλες
$$p=0.01$$
 ελαττωματική
$$P(X\leq 4)=\sum_{x=0}^4 \binom{100}{x}0.01^x(1-0.01)^{100-x}$$

$$X=\{0,1,2,\dots,100\}$$

Γεωμετρική

$$X = \left\{ \begin{array}{l} \mathrm{ari}\theta\mu\acute{o}\varsigma\,\delta\mathrm{o}\kappa\mathrm{i}\mu\acute{\omega}\mathrm{v}\\ \mu\acute{e}\mathrm{xri}\,\,\mathrm{e}\mu\phi\acute{a}\mathrm{v}\mathrm{i}\sigma\mathrm{r}\varsigma\,\mathrm{tou}\,A\\ \mathrm{via}\,\,\mathrm{rri}\,\mathrm{por\acute{a}}\end{array}\right\}$$

$$X = \left\{1,2,3,4,\ldots\right\}$$

$$P(X = x) = P(\underline{\bar{A}}\bar{A}\bar{A}\cdots\bar{A}\bar{A}\,A)$$

$$= (1-p)^{x-1}p$$

$$\sum_{x=1}^{\infty}(1-p)^{x-1}p = 1$$

$$\mathrm{Re}\rho\acute{i}\mathrm{o}\delta\mathrm{o}\varsigma\,\,\mathrm{e}\mathrm{rava}\mathrm{por\acute{a}}\varsigma\mathrm{E}(X) = \frac{1}{p}$$

Παράδειγμα

$$E(X) = 2.5 = \frac{1}{p} \implies p - 0.4$$

$$P(X = 1) = (1 - p)^{x - 1} p$$

$$= \frac{1}{3} p$$

$$P(X < 3) = 1 - P(X \le 3), \quad P(X \le 3) = \sum_{x = 1}^{3} (1 - p)^{x - 1} p$$

Pascal

$$X_r = \begin{cases} \text{αριθμός δοκιμών} \\ \text{μέχρι } r \text{ εμφανίσεις του } A \end{cases}$$

$$X_r = \{r,\ r+1,\ \dots\}$$

$$P(X_r = x) = \binom{x-1}{r-1} (1-p)^{(x-1)-(r-1)} p^r$$

Παράδειγμα

p = 0.00005 πιθανότητα να χαλάσει ο υπολογιστής

6 ωρών

$$X_3 = \{3, 4, 5, 6, 7, 8, \dots\}$$

 $P(X_3 > 6) = 1 - P(X_3 \le 6)$
 $= toast$

$$\left(X_{51}=101\right)=\cdots$$

Poisson

$$X_t = \left\{egin{array}{l} ext{αριθμός εμφάνισης } A \ ext{σε διάστημα } t \end{array}
ight\}$$

- 1. Δt
- 2. $P(X_{\Delta t} = 1) = \Delta t \cdot \lambda$
- 3. t_1, t_2

$$P(X_t = t) = e^{-\lambda t} \frac{(\lambda t)^x}{x!}$$

$$E(X_t) = \sum_{x=0}^{\infty} x e^{-\lambda t} \frac{(\lambda t)^x}{x!} = \dots = \lambda t$$

$$E(X_1) = \lambda$$

$$\sigma_{x_t}^2 = \lambda t$$

Παράδειγμα

$$\lambda = \frac{16}{80} \operatorname{seishoi/xpóvo}$$

$$X_{t=10} = \{0,1,2,\dots\}$$

$$P(X_{t=10} \geq 1) = 1 - P(X_{t=10} = 0)$$

$$P(X_{t=10} = 4) = e^{-\lambda t} \frac{(\lambda t)^4}{4!} = 1 - e^{-\frac{16}{80}(10)} \frac{2^0}{0!} = 1 - e^{-2}$$

$$E(X_{t=20}) = \frac{16}{80} 20 = 4$$

Απόδειξη

$$\Delta t$$
 μικρό $P(A)=P=\lambda \Delta t o 0$ $n=rac{t}{\Delta t} o \infty$

$$P(X_t = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \frac{n!}{(n-x)!} \left(\frac{t}{n}\right)^x \left(1 - \frac{\lambda t}{n}\right)^n (1-p)^{-x}$$

$$= \frac{1}{x!} \left(\frac{t\lambda}{n}\right)^x e^{-\lambda t}$$

$$E(X_t) = n\lambda \Delta t$$

$$= n\lambda \frac{t}{n}$$

Άσκηση 3

$$n = 5$$

$$p = 0.80$$

$$X = \{0, 1, 2, 3, 4, 5\}$$

$$P(X = 4) = {5 \choose 4} p^4 (1 - p)^{5-4} = 40.96\%$$

$$n = 20$$

$$X = \{0, 1, 2, \dots, 20\}$$

$$Y = \{0, 1, 2, \dots, 20\}$$

$$P(X > 4) = 1 - P(X \le 4) = 1 - \sum_{x=0}^{4} {20 \choose x} p^x (1 - p)^{20-x}$$

Άσκηση 4

$$p = \frac{12}{60} = 0.20$$

$$X = \{0, 1, 2, \dots, 10\}$$

$$n = 10$$

$$P(X \le \kappa) = 0.90$$

$$\sum_{x=0}^{\kappa} {10 \choose x} p^x (1-p)^{10-x} = 0.90$$

Προκύπτει με μέθοδο δοκιμής και λάθους ότι για $\kappa=4$ η πιθανότητα ξεπερνάει το 0.90.

Άσκηση 8

$$\lambda=^{100}/_{\lambda
m entó}$$
 $X_t=\{0,1,2,\dots\}$ $P(X_{t=1}=100)=e^{-100}rac{100^{100}}{100!}$ $P\left(X_{t=rac{1}{60}}=10
ight)=e^{-100\left(rac{1}{60}
ight)}rac{\left(100rac{1}{60}
ight)}{10!}$

$$P(\kappa=0) = \frac{5}{12}$$

$$P(\kappa=1) = \frac{1}{3}$$

$$P(\kappa=2) = \frac{1}{4}$$

$$P(X=0) = \binom{n}{0} p^0 (1-p)^{n-0}$$

$$P(X=1) = \binom{n}{1} p^1 (1-p)^{n-1}$$

$$P(X=2) = \binom{n}{2} p^2 (1-p)^{n-2}$$

$$P(E) = P\left(E | \{\kappa=0\} \right) P(\kappa=0) + P\left(E | \{\kappa=1\} \right) P(\kappa=1) + P\left(E | \{\kappa=2\} \right) P(\kappa=2)$$

$$= P(X=0) \frac{5}{12} + P(X=1) \frac{1}{3} + P(X=2) \frac{1}{4}$$

Άσκηση 9

$$P(X_t = 0) = e^{-\lambda t} \frac{(\lambda t)^0}{0!} = 0.90 \implies \dots$$

Άσκηση 15

$$p = 0.05$$
$$n = 52$$

Αριθμός αυτών που θα ακυρώσουν $X = \{0, 1, 2, \dots, 52\}$

$$P(X \ge 2) = 1 - P(X \le 1) = 1 - \binom{52}{0} p^0 (1-p)^{52-0} - \binom{52}{1} p^1 (1-p)^{52-1}$$

$$\boxed{1-p^*} \quad Y = \{1,2,\dots\}$$

$$E(y) = \frac{1}{1-n^*} = \boxed{10} \implies \boxed{p^*} = p(X \ge k) = \dots$$

- 1. Ομοιόμορφη
- 2. Εκθετική
- 3. Κανονική

Ομοιόμορφη

$$c = \frac{1}{\beta - a}$$

$$F(x) = P(X \le x)$$

$$= \frac{x - a}{\beta - a}$$

$$E(x) = \frac{a + \beta}{2}$$

$$\sigma_x^2 = \frac{(\beta - a)^2}{12}$$

$$X \sim U[0,1]$$

title

$$F_y(y) = 1 - e^{-y\lambda}$$

$$x_1 = 1 - e^{-y_2\lambda}$$

$$e^{-y_1\lambda} = -x_1 + 1$$

$$y_1\lambda = \ln(1 - x_1) \implies y_1 = \frac{1}{\lambda}\ln(1 - x_1)$$

Εκθετική

 $T = \left\{$ χρόνος ανάμεσα σε διαδοχικά $A
ight\}$

$$X_{t} = \{0, 1, 2, \dots\}$$

$$P(X_{t} = x) = e^{-\lambda t} \frac{(\lambda t)^{x}}{x!}$$

$$E(X_{t}) = \lambda t$$

$$f_{T}(t) = \frac{dF_{T}(t)}{dt}$$

$$F_{T}(t) = P(T \le t) =$$

$$= 1 - P(T > t)$$

$$= 1 - e^{-\lambda t} \frac{(\lambda t)^{x}}{0!}$$

$$F_{T}(t) = 1 - e^{-\lambda t} \Longrightarrow$$

$$f_{T}(t) = \lambda e^{-\lambda} t$$

$$E(T) = \frac{1}{\lambda}$$

$$Var(T) = \frac{1}{\lambda^{2}}$$

Παράδειγμα

$$\lambda = \frac{16}{125} = 0.128 \text{ σεισμοί/xρόνο}$$

$$P(X \le 2) = 1 - e^{-\lambda(2)}$$

$$= 1 - e^{-0.128(2)}$$

$$\approx 22.6\%$$

$$Y_{t=2} = \{0, 1, 2, \dots\}$$
Poisson

$$P(Y_{t=2} \ge 1) = 1 - P(Y_{t=2} = -) = 1 - e^{-\lambda(t)} \frac{\lambda(t)}{0!}$$

Περίοδος επαναφοράς σεισμού: $\frac{1}{\lambda} \approx 8$ χρόνια

Έλλειψη μνήμης

$$P(X > t_1 + t_2 | X > t_1) = \frac{P(X > t_1 + t_2)}{P(X > t_1)}$$
$$= \frac{e^{-(t_1 + t_2)\lambda}}{e^{-t_1\lambda}}$$
$$= e^{-t_2\lambda} = P(X > t_2)$$

Κανονική Gauss

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$E(X) = \int_{-\infty}^{\infty} f(x)x \, dx = \dots = \mu$$

$$Var(X) = \sigma_x^2 = \dots = \sigma^2$$

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) \, du$$

Τυποποίηση

$$\left. egin{array}{ll} Z &= rac{X-\mu_x}{\sigma_x} \ \mathrm{E}(Z) &= 0 \ \mathrm{Var}(Z) &= 1 \end{array}
ight\} \implies \underbrace{Z \sim N(0,1^2)}_{\mathsf{Типік\acute{\eta}}}$$
 қачоуік $\acute{\eta}$ катачорі $\acute{\eta}$

Τυπική Κανονική Κατανομή

$$F_z(z) = P(Z \le z) = \Phi(z)$$
$$P(Z \le -z) = 1 - \Phi(z)$$

$$P(X \le x) = P\left(\frac{X - \mu_x}{\sigma_x} \le \frac{x - \mu_x}{\sigma_x}\right)$$
$$= P(Z \le z)$$
$$= \Phi(z)$$

Παράδειγμα

$$P(X \le 110) = \Phi\left(\frac{110 - 100}{5}\right) = \Phi(2) = 0.9772$$

$$P(X \le 95) = \Phi\left(\frac{95 - 100}{5}\right) = \Phi(-1) = 1 - \Phi(1) = 1 - 0.84$$

$$P(X \le x) = 0.90 \implies \Phi(\frac{x - 100}{5}) = 0.90$$

$$z = 1.28 \implies \frac{x - 100}{5} = 1.28$$

 $X \sim N(\mu = 100, \sigma^2 = 25)$

$$n=100$$
 στύλοι $P=0.05$

$$P(X = 20) = \binom{n}{x} P^{x} (1 - P)^{n - x}$$

$$= \binom{1000}{20} 0.05^{20} 0.95^{980}$$

$$E = nP = 5$$

$$Var(X) = np(1 - p) = 50(0, 95) = 49$$

$$X \sim N(\mu_{x} = np, \sigma_{x}^{2})$$

$$X \sim N(\mu_{x} = 50, \sigma_{x}^{2} = 49)$$

$$P(X \le 20) = \Phi\left(\frac{20 - 50}{7}\right)$$

$$= \Phi\left(\frac{-30}{7}\right) = \Phi(-4)$$