Exercise 1. Show that

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|$$

defines a metric on $(0, \infty)$.

Proof. Clearly, $d(x,y) \ge 0$ for all $x,y \in (0,\infty)$. If d(x,y) = 0, then $\left|\frac{1}{x} - \frac{1}{y}\right| = 0 \Rightarrow x = y$. Moreover, we have

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{1}{y} - \frac{1}{x} \right|$$

and

$$d(x,y) + d(y,z) = \left| \frac{1}{x} - \frac{1}{y} \right| + \left| \frac{1}{y} - \frac{1}{z} \right| \ge \left| \frac{1}{x} - \frac{1}{z} \right| = d(x,z).$$

Thus d is a metric on $(0, \infty)$.

Exercise 2. If d is a metric on M, show that $|d(x,z) - d(y,z)| \le d(x,y)$ for any $x, y, z \in M$.

Proof. Since d is a metric on M, we have $d(x,z) \leq d(x,y) + d(y,z)$, hence $d(x,z) - d(y,z) \leq d(x,y)$. Moreover, we have $d(y,z) \leq d(y,x) + d(x,z)$, hence $-d(x,y) \leq d(x,z) - d(y,z)$. Thus $|d(x,z) - d(y,z)| \leq d(x,y)$.

Exercise 3. As it happens, some of our requirements for a metric are redundant. To see why this is so, let M be a set and suppose that $d: M \times M \to \mathbb{R}$ satisfies d(x,y) = 0 if and only if x = y, and $d(x,y) \le d(x,z) + d(y,z)$ (*) for all $x,y,z \in M$. Prove that d is a metric.

Proof. First, we will prove that d(x,y) = d(y,x). Indeed, let z = x in (*), we get

$$d(x,y) \le d(x,x) + d(y,x) = d(y,x).$$

Similarly, we will get $d(y,x) \leq d(x,y)$. Thus d(x,y) = d(y,x). Notice that

$$0 = d(x, x) \le d(x, y) + d(x, y) = 2d(x, y),$$

thus $0 \le d(x, y)$ for all $x, y \in M$. Thus d is a metric.

Exercise 6. If d is a metric on M, show that $\rho(x,y) = \sqrt{d(x,y)}$, $\sigma(x,y) = \frac{d(x,y)}{1+d(x,y)}$, and $\tau(x,y) = \min\{d(x,y),1\}$ are also metrics on M.

Proof.

 \bullet $\rho(x,y)$.

Clearly, we have $\rho(x,y) \geq 0$. If $\rho(x,y) = 0$, then $\sqrt{d(x,y)} = 0$, which leads to d(x,y) = 0. Thus x = y. Otherwise, since d(x,x) = 0, it's not hard to check that $\rho(x,x) = 0$. Moreover, we have $\rho(x,y) = \sqrt{d(x,y)} = \sqrt{d(y,x)} = \rho(y,x)$. Also

notice that for $a, b \ge 0$, we have $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$. Indeed, since $2\sqrt{xy} \ge 0$, we have

$$x + y \le x + y + 2\sqrt{xy}$$

$$\Leftrightarrow (\sqrt{x+y})^2 \le (\sqrt{x} + \sqrt{y})^2$$

$$\Leftrightarrow |\sqrt{x+y}| \le |\sqrt{x} + \sqrt{y}|$$

$$\Leftrightarrow \sqrt{x+y} \le \sqrt{x} + \sqrt{y}.$$

Thus

$$\rho(x,z) = \sqrt{d(x,z)} \le \sqrt{d(x,y) + d(y,z)} \le \sqrt{d(x,y)} + \sqrt{d(y,z)} = \rho(x,y) + \rho(y,z).$$
 Thus ρ defines a metrics on M .

\bullet $\sigma(x,y)$.

Because $d(x,y) \ge 0$, we have $\sigma(x,y) \ge 0$ for all $x,y \in M$. If $\sigma(x,y) = 0$, then $\frac{d(x,y)}{1+d(x,y)} = 0$, thus d(x,y) = 0, which means x = y. Otherwise, since d(x,x) = 0, we can easily check that $\sigma(x,x) = 0$ too. Moreover,

$$\sigma(x,y) = \frac{d(x,y)}{1 + d(x,y)} = \frac{d(y,x)}{1 + d(y,x)} = \sigma(y,x).$$

Now, we have a small lemma as follow.

Lemma . Let $a, b, c \ge 0$, if $c \le a + b$, then

$$\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}.$$

Proof. Indeed, we have

$$\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}$$

$$\Leftrightarrow \qquad \frac{c}{1+c} \le \frac{a+b+2ab}{1+a+b+ab}$$

$$\Leftrightarrow \qquad 1 - \frac{1}{1+c} \le 1 - \frac{1-ab}{1+a+b+ab}$$

$$\Leftrightarrow \qquad \frac{1-ab}{1+a+b+ab} \le \frac{1}{1+c}. \tag{*}$$

If $1 - ab \le 0$, then the left side is smaller or equal then 0, when the right side is larger or equal then 0. Thus the inequality is proved.

If $1 - ab \ge 0$, then

$$(*) \Leftrightarrow 1 + c \leq \frac{1 + a + b + ab}{1 - ab}$$

$$\Leftrightarrow 1 + c \leq 1 + \frac{a + b + 2ab}{1 - ab}$$

$$\Leftrightarrow c \leq \frac{a + b + 2ab}{1 - ab}$$

$$\Leftrightarrow c - abc \leq a + b + 2ab.$$

However, we have $c \le a + b$ and $-abc \le 0 \le 2ab$, thus the lemma is proved.

Now let a = d(x, z), b = d(x, y), c = d(y, z) in the lemma, we have $\sigma(x, z) \le \sigma(x, y) + \sigma(y, z)$. Thus σ defines a metric on M.

 \bullet $\tau(x,y)$.

Since $d(x,y) \ge 0$, we have $\tau(x,y) = \min\{d(x,y),1\} \ge 0$. If $\tau(x,y) = 0$, then $\min\{d(x,y),1\} = 0$, hence d(x,y) = 0, which leads to x = y. Moreover, $\tau(x,x) = \min\{d(x,x),1\} = \min\{0,1\} = 0$. We also have $\tau(x,y) = \min\{d(x,y),1\} = \min\{d(y,x),1\} = \tau(y,x)$.

Lemma I. $f(a, b \ge 0)$, we have $\min\{a + b, 1\} \le \min\{a, 1\} + \min\{b, 1\}$.

Proof. Indeed, if a, b > 1, then the lemma becomes $a + b \le a + b$. If $a > 1, b \le 1$, the lemma becomes $a + b \le a + 1$, which is true, same for the case b > 1, a < 1. And if $a, b \le 1$, then obviously $a + b \le 2$. And since 1 < 2, we have $\min\{a + b, 1\} \le 2 = \min\{a, 1\} + \min\{b, 1\}$.

Using the lemma, we have

$$\begin{split} \tau(x,z) &= \min\{d(x,z),1\} \\ &\leq \min\{d(x,y) + d(y,z),1\} \\ &\leq \min\{d(x,y),1\} + \min\{d(y,z),1\} \\ &= \tau(x,y) + \tau(y,z). \end{split}$$

Thus $\tau(x,y)$ defines a metric on M.

Exercise 9. Recall that 2^N denotes the set of all sequences (or "strings") of 0s and 1s. Show that $d(a,b) = sum_{n=1}^{\infty} 2^{-n} |a_n - b_n|$, where $a = (a_n)$ and $b = (b_n)$ are sequences of 0s and 1s, defines a metric on 2^N .

Proof. Clearly, $d(a,b) \ge 0$. If d(a,b) = 0, then $|a_n - b_n| = 0$ for all n, thus a = b. Otherwise, $d(a,a) = \sum_{n=1}^{\infty} 2^{-n} |a_n - a_n| = 0$. Furthermore, we have

$$d(a,b) = sum_{n=1}^{\infty} 2^{-n} |a_n - b_n| = \sum_{n=1}^{\infty} 2^{-n} |b_n - a_n| = d(b,a)$$

and

$$d(a,c) = \sum_{n=1}^{\infty} 2^{-n} |a_n - c_n|$$

$$\leq \sum_{n=1}^{\infty} 2^{-n} (|a_n - b_n| + |b_n - c_n|)$$

$$= \sum_{n=1}^{\infty} 2^{-n} |a_n - b_n| + \sum_{n=1}^{\infty} 2^{-n} |b_n - c_n|$$

$$= d(a,b) + d(b,c).$$

Thus d defines a metric on 2^N .

Exercise 10. The Hilbert cube H^{∞} is the collection of all real sequences $x = (x_n)$ with $|x_n| \leq 1$ for $n = 1, 2, \cdots$.

(i) Show that $d(x,y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n|$ defines a metric on H^{∞} .

Proof. Similar to exercise 9, d defines a metric on \mathbb{R}^{∞}

(ii) Given that $x, y \in H^{\infty}$ and $k \in \mathbb{N}$, let $M_k = \max\{|x_1 - y_1|, \dots, |x_k - y_k|\}$. Show that $2^{-k}M_k \le d(x, y) \le M_k + 2^{1-k}$.

Proof. For any $k \in \mathbb{N}$ and $i \leq k$, we have

$$2^{-k}|x_i - y_i| \le 2^{-i}|x_i - y_i| \le \sum_{i=1}^{\infty} 2^{-i}|x_i - y_i|.$$

Thus for $M_k = \max\{|x_1 - y_1|, \dots, |x_k - y_k|\}$, we have

$$2^{-k}M_k \le d(x,y).$$

Furthermore, we have

$$\sum_{i=1}^{k} 2^{-i} |x_i - y_i| \le \sum_{i=1}^{k} 2^{-i} M_k = M_k (1 - 2^{-k}) \le M_k.$$

Also notice that $|x_i - y_i| \le 2$, we also have

$$\sum_{i=k+1}^{\infty} 2^{-i} |x_i - y_i| \le \sum_{i=k+1}^{\infty} 2^{1-i} = 2^{1-k}.$$

Thus

$$d(x,y) \le M_k + 2^{1-k}.$$

Exercise 11. Let \mathbb{R}^{∞} denote the collection of all real sequences $x = (x_n)$. Show that the expression

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

defines a metric on \mathbb{R}^{∞} .

Proof. Since every element of this summation is larger than $0, d(x, y) \ge 0$. It's not hard to check that d(x, x) = 0, let d(x, y) = 0, then

$$\frac{1}{n!} \frac{|x_n - y_n|}{1 + |x_n - y_n|} = 0$$

for any n, thus $x_n = y_n$ for all n, which means x = y. Moreover, we have

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{|x_n - y_n|}{1 + |x_n - y_n|} = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{|y_n - x_n|}{1 + |y_n - x_n|} = d(y,x)$$

and by exercise 6, we have

$$d(x,z) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{|x_n - z_n|}{1 + |x_n - z_n|}$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{|x_n - y_n|}{1 + |x_n - y_n|} + \frac{|y_n - z_n|}{1 + |y_n - z_n|} \right)$$

$$= d(x,y) + d(y,z).$$

What is more, we have $\frac{|a-b|}{1+|a+b|} < 1$, thus $d(a,b) \leq \sum_{n=1}^{\infty} \frac{1}{n!}$ for all $a,b \in M$. Since $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges, $\sum_{n=1}^{\infty} \frac{1}{n!} \frac{|x_n-z_n|}{1+|x_n-z_n|}$ converges. Thus d defines a metric M.

Exercise 12. Check that $d(f,g) = \max_{a \le t \le b} |f(t) - g(t)|$ defines a metric on C[a,b], the collection of all continuous, real-value functions defined on the closed interval [a,b].

Proof. Clearly, $d(f,g) \ge 0$. We have $d(f,f) = \max_{a \le t \le b} |f(t) - f(t)| = 0$. If d(f,g) = 0, then $\max_{a \le t \le b} |f(t) - g(t)| = 0$. Therefor, f(t) = g(t) for all $a \le t \le b$. Moreover, we have

$$d(f,g) = \max_{a \le t \le b} |f(t) - g(t)| = \max_{a \le t \le b} |g(t) - f(t)| = d(g,f)$$

and

$$\begin{split} d(f,h) &= \max_{a \leq t \leq b} |f(t) - h(t)| \\ &\leq \max_{a \leq t \leq b} (|f(t) - g(t)| + |g(t) - h(t)|) \\ &\leq \max_{a \leq t \leq b} |f(t) - g(t)| + \max_{a \leq t \leq b} |g(t) - h(t)| \\ &= d(f,g) + d(g,h). \end{split}$$

Thus d defines a metric on C[a, b].

Exercise 14. We said that a subset A of a metric space M is bounded if there is some $x_0 \in M$ and some constant $C < \infty$ such that $d(a, x_0) \leq C$ for all $a \in A$. Show that a finite union of bounded sets is again bounded.

Proof. Let these bounded sets be A_1, A_2, \dots, A_n and $x_i \in A_i$ for $i = 1, 2, \dots, n$, let a_1, a_2, \dots, a_n be n constants such that for any $1 \le i \le n$, we have $d(t, x_i) \le a_i$ for any $t \in A_i$. Finally, let $A = \bigcup_{i=1}^n A_i$.

For any set A_k , an $t \in A_k$ $(1 \le k \le n)$, we have

$$d(x_1, t) \le d(x_1, x_k) + d(x_k, t) \le d(x_1, x_k) + a_k.$$

Notice that $d(x_1, x_k) + a_k$ is a constant, let $d_k = d(x_1, x_k) + a_k$, then $d = \max\{d_1, d_2, \dots, d_n\}$ is an upper bound for A. Thus a finite union of bounded sets is bounded.

Exercise 15. We define the diameter of a nonempty subset A of M by $diam(A) = \sup\{d(a,b): a,b \in A\}$. Show that A is bounded if and only if diam(A) is finite.

Proof. If A is bounded, then exist $x \in A$ and a number c such that $d(a, x) \leq c$ for all $a \in A$. Therefor, for any $a, b \in A$, we have

$$d(a,b) \le d(a,x) + d(x,b) \le 2c.$$

Thus the set $\{d(a,b): a,b \in A\}$ has an upper bound, which means $diam(A) = \sup\{d(a,b): a,b \in A\}$ is finite. Moreover, if diam(A) = c a finite number, then $d(a,x) \le c$ for all $a \in A$ and an $x \in A$.

Exercise 16. Let V be a vector space, and let d be a metric on V satisfying d(x,y) = d(x-y,0) and d(ax,ay) = |a|d(x,y) for every $x,y \in V$ and every scalar a. Show that ||x|| = d(x,0) defines a norm on V. Give an example of a metric on the vector space \mathbb{R} that fails to be associated with a norm in this way.

Proof. For any $x \in V$, because d defines a matrix on V, thus $||x|| = d(x,0) \ge 0$. We have ||0|| = d(0,0) = 0 and if ||x|| = 0, then d(x,0) = 0. Therefor, x = 0 since d is a metric on V. We also have

$$||ax|| = d(ax, 0) = |a|d(x, 0) = |a|||x||.$$

and

$$||x + y|| = d(x + y, 0)$$

$$= d(x, -y)$$

$$\leq d(x, 0) + d(0, -y)$$

$$= d(x, 0) + d(y, 0)$$

$$= ||x|| + ||y||.$$

One example of a metric on \mathbb{R} that fails to be associate with a norm this way is

$$d(x) = \begin{cases} 0 \text{ if } x = y \\ 1 \text{ if } x \neq y \end{cases}.$$

Because if letting ||x|| = d(x,0), then $||ax|| = 1 \neq |a| = |a|||x||$ for any nonzero vector x and scalar a.

Exercise 17. Recall that for $x \in \mathbb{R}^n$ we have defined $||x||_1 = \sum_{i=1}^n |x_i|$ and $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$. Check that each of these is indeed a norm on \mathbb{R}^n .

Proof. Obviously $||x||_1 \ge 0$. We have $||0||_1 = \sum_{i=1}^{\infty} 0 = 0$, whereas if $||x||_1 = 0$, then $|x_i| = 0$ for all $1 \le i \le n$. Thus x = 0. Moreover, $||ax|| = \sum_{i=1}^{n} |ax_i| = |a| \sum_{i=1}^{n} |x_i| = |a| \cdot ||x_1||$. Last but not least, we have

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i|$$

$$\leq \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i|$$

$$= ||x||_1 + ||y||_1.$$

Similarly, $||x||_{\infty} \ge 0$ is obvious. We have $||0||_{\infty} = \max_{1 \le i \le n} |x_i| = 0$, and if $||x||_{\infty} = 0$, then $\max_{1 \le i \le n} |x_i| = 0$. Therefore, $|x_i| = 0$ for all i, which means x = 0. Moreover, $||ax||_{\infty} = \max_{1 \le i \le n} |ax_i| = |a| \max_{1 \le i \le n} |x_i| = |a| \cdot ||x||_{\infty}$. Lastly,

$$||x + y||_{\infty} = \max_{1 \le i \le n} |x_i + y_i|$$

$$\leq \max_{1 \le i \le n} (|x_i| + |y_i|)$$

$$\leq \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i|$$

$$= ||x||_{\infty} + ||y||_{\infty}.$$

Thus $||x||_1$ and $||x||_{\infty}$ defines two metrics on \mathbb{R}^n .

Exercise 18. Show that $||x||_{\infty} \le ||x||_{2} \le ||x||_{1}$ for any $x \in \mathbb{R}^{n}$. Also check that $||x||_{1} \le n||x||_{\infty}$ and $||x||_{1} \le \sqrt{n}||x||_{2}$.

Proof. We have

$$\begin{aligned} ||x||_{\infty} &\leq ||x||_2 \\ \Leftrightarrow & \max_{1 \leq i \leq n} |x_i| \leq \sqrt{\sum_{i=1}^n x_i^2} \\ \Leftrightarrow & \max_{1 \leq i \leq n} x_i^2 \leq \sum_{i=1}^n x_i^2 \text{ (square both sides)}, \end{aligned}$$

which is obvious since $x_i^2 \ge 0$ for all x_i and one of the addends on the right side equals $\max_{1 \le i \le n} x_i^2$. Therefore, $||x||_{\infty} \le ||x||_2$. Very similarly, we have

$$||x||_2 \le ||x||_1$$

$$\sqrt{\sum_{i=1}^n x_i^2} \le \sum_{i=1}^n |x_i|$$

$$\Leftrightarrow \sum_{i=1}^n x_i^2 \le \sum_{i=1}^n x_i^2 + \sum_{i \ne j} |x_i||x_j|,$$

which is obvious since $|x_i||x_j| \ge 0$. Hence, $||x||_{\infty} \le ||x||_2 \le ||x||_1$ for any $x \in \mathbb{R}^n$. What is more, because $|x_i| \le \max_{1 \le i \le n} |x_i|$ for all $1 \le i \le n$, we have

$$\sum_{i=1}^{n} |x_i| \le n \max_{1 \le i \le n} |x_i|.$$

Hence $||x||_1 \le n||x||_{\infty}$. Moreover, by Cauchy Schwarz inequality, we have

$$1|x_1| + 1|x_2| + \dots + 1|x_n| \le \sqrt{(1^2 + 1^2 + \dots + 1^2)(x_1^2 + x_2^2 + \dots + x_n^2)}.$$

Thus

$$\sum_{i=1}^{n} x_i \le \sqrt{n \sum_{i=1}^{n} x_i^2},$$

which is synonymous to $||x||_1 \leq \sqrt{n}||x||_2$.

Exercise 19. Show that we have $\sum_{i=1}^{n} x_i y_i = ||x||_2 ||y||_2$ if and only if x and y are proportional, that is, if and only if $x = \alpha y$ or $y = \alpha x$ for some $\alpha \leq 0$.

Proof. We will prove a stronger result, that is $\sum_{i=1}^n x_i y_i \leq ||x||_2 ||y||_2$ and the equality is if x and y are proportional by mathematical induction. Let x_k be a random vector in \mathbb{R}^k . If n=1, the inequality becomes $x_1y_1 \leq |x_1||y_1|$, which is obvious. And since both x and y are in \mathbb{R} , they are obviously proportional. Now assume that the result holds for n-1, notice that by AM-GM inequality, we have

$$2x_{n}y_{n}\sqrt{(x_{1}^{2}+\cdots+x_{n-1}^{2})(y_{1}^{2}+\cdots+y_{n-1}^{2})}$$

$$\leq 2|x_{n}||y_{n}|\sqrt{(x_{1}^{2}+\cdots+x_{n-1}^{2})(y_{1}^{2}+\cdots+y_{n-1}^{2})}$$

$$\leq x_{n}^{2}(y_{1}^{2}+\cdots+y_{n-1}^{2})+y_{n}^{2}(x_{1}^{2}+\cdots+x_{n-1}^{2}).$$

Thus

$$(x_1^2 + \dots + x_{n-1}^2)(y_1^2 + \dots + y_{n-1}^2) + 2x_n y_n \sqrt{(x_1^2 + \dots + x_{n-1}^2)(y_1^2 + \dots + y_{n-1}^2)} + x_n^2 y_n^2 \le (x_1^2 + \dots + x_{n-1}^2)(y_1^2 + \dots + y_{n-1}^2) + x_n^2 (y_1^2 + \dots + y_{n-1}^2) + y_n^2 (x_1^2 + \dots + x_{n-1}^2) + x_n^2 y_n^2.$$

After cleaning this mess, we reach something that is not very messy.

$$\left(x_n y_n + \sqrt{(x_1^2 + \dots + x_{n-1}^2)(y_1^2 + \dots + y_{n-1}^2)}\right)^2 \le (x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2).$$

Take the square root both sides, we get

$$|x_n y_n| + \sqrt{(x_1^2 + \dots + x_{n-1}^2)(y_1^2 + \dots + y_{n-1}^2)} \le \sqrt{(x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2)},$$

or

$$||x_ny_n| + ||x_{n-1}||_2 \cdot ||y_{n-1}||_2 \le ||x_ny_n|| + ||x_{n-1}||_2 \cdot ||y_{n-1}||_2 \le ||x_n||_2 \cdot ||y_n||_2.$$

But thanks to the induction assumption, we have $\sum_{i=1}^{n-1} x_i y_i \leq ||x_{n-1}||_2 \cdot ||y_{n-1}||_2$. Thus

$$\sum_{i=1}^{n} x_i y_i \le ||x_n||_2 ||y_n||_2.$$

The equality is when equality happens in every inequality that we used, which are $x_n y_n \le |x_n y_n|$ and the AM-GM inequality. The first equality is equivalent to x_n and y_n have the same sign. The second one is equivalent to

$$x_n \sqrt{y_1^2 + \dots + y_{n-1}^2} = y_n \sqrt{x_1^2 + \dots + x_{n-1}^2},$$

Hence

$$\frac{x_n}{y_n} = \frac{\sqrt{x_1^2 + \dots + x_{n-1}^2}}{\sqrt{y_1^2 + \dots + y_{n-1}^2}} = \alpha$$

by the induction assumption. Thus $x = \alpha y$ for $\alpha \geq 0$.

Exercise 22. Show that $||x||_{\infty} \leq ||x||_2$ for any $x \in \ell_2$, and that $||x||_2 \leq ||x||_1$ for any $x \in \ell_1$.

Proof. Let $x \in \ell_1$, then $\sum_{i=1}^{\infty} |x_i|$ exists. Notice that $\sqrt{\sum_{i=1}^n x_i^2} \leq \sum_{i=1}^n |x_i|$ for all n, thus the sequence $\sqrt{\sum_{i=1}^n x_i^2}$ is both increasing and upper bounded. Thus $\sqrt{\sum_{i=1}^n x_i^2}$ is also exists. Thus by the inequality above, we get $||x||_2 \leq ||x||_1$.

Now let $x \in \ell_2$, we have $\sqrt{\sum_{i=1}^{\infty} x_i^2}$ exists. Similar to the upper case, we have $\max_{1 \le i \le n} x_i$ is both increasing and upper bounded, thus $\lim_{n \to \infty} (\max_{1 \le i \le n} x_i)$ exists. Since $\max_{1 \le i \le n} x_i \le \sqrt{\sum_{i=1}^n x_i^2}$, we have $||x||_{\infty} \le ||x||_2$ for any $x \in \ell_2$.

Exercise 23. The subset of ℓ_{∞} consisting of all sequences that converge to 0 is denoted by c_0 . Show that we have the following proper set inclusions: $\ell_1 \subset \ell_2 \subset c_0 \subset \ell_{\infty}$.

Proof. As we already checked in exercise 22, for any $x \in \ell_1$, then $||x||_2$ is finite. Therefore, $x \in \ell_2$ too, which means $\ell_1 \subset \ell_2$. Moreover $c_0 \subset \ell_\infty$ is by definition. Thus all we have to check left is $\ell_2 \subset c_0$. Notice that if $x = (x_1, x_2, \cdots) \in \ell_2$, then $\sqrt{\sum_{i=1}^{\infty} x_i^2}$ exists. Therefore, $x_n \to 0$, which leads to $x \in c_0$. Thus $\ell_1 \subset \ell_2 \subset c_0 \subset \ell_\infty$.

Exercise 24. Prove that Holder's Inequality is also holds in the case p=1 and $q=\infty$.

Proof. For p=1 and $q=\infty$, the inequality becomes $\sum_{i=1}^{\infty}|x_iy_i|\leq ||x||_1\cdot ||y||_{\infty}$, which means $\sum_{i=1}^{\infty}|x_iy_i|\leq \sum_{i=1}^{\infty}|x_i|\cdot \sup_i|y_i|$. However, this result is obvious because $|y_n|\leq \sup_i|y_i|$ for any n. Thus the Holder's inequality is also holds in the case p=1 and $q=\infty$.

Exercise 25. The same techniques can be used to show that $||f||_p = (\int_0^1 |f(t)|^p dt)^{\frac{1}{p}}$ defines a norm on C[0,1] for any 1 . State and prove the analogues of lemma 3.7 (Holder's Inequality) and Theorem 3.8 (Minkowski's Inequality) in this case.

Proof. First, notice that

$$||f^{p-1}||_q = \left(\int_0^1 |f(x)^{p-1}|^q\right)^{\frac{1}{q}}$$

$$= \left(\int_0^1 |f(x)|^p\right)^{\frac{1}{q}}$$

$$= \left(\int_0^1 |f(x)|^p\right)^{\frac{p-1}{p}}$$

$$= ||f||_p^{p-1}.$$

Now it's time to restate Lemma 3.7.

Lemma 3.7. (Holder's Inequality) Let $1 and let q be defined by <math>\frac{1}{p} + \frac{1}{q} = 1$. Given f and g in C[0,1], we have

$$\int_0^1 |f(t)g(t)| dt \le ||f||_p ||g||_q.$$

Proof. By Young's inequality, we have

$$\frac{|f(t)| \cdot |g(t)|}{||f||_p ||g||_q} \le \frac{1}{p} \left| \frac{|f(t)|}{||f||_p} \right|^p + \frac{1}{q} \left| \frac{|g(t)|}{||g||_q} \right|^q.$$

Therefore

$$\int_0^1 \frac{|f(t)| \cdot |g(t)|}{||f||_p ||g||_q} dt \le \frac{1}{p} \int_0^1 \frac{|f(t)|^p}{||f||_p^p} dt + \frac{1}{q} \int_0^1 \frac{|g(t)|^q}{||g||_q^q} dt = \frac{1}{p} + \frac{1}{q} = 1.$$

Thus we have the Holder's inequality.

With lemma 3.7, we can restate and prove theorem 3.8 as follow.

Lemma 3.8. Let $1 , then we have <math>||f + g||_p \le ||f||_p + ||g||_p$ for $f, g \in C[0, 1]$. Proof. Indeed, we have

$$\begin{aligned} ||f+g||_p^p &= \int_0^1 |f+g|^p \\ &= \int_0^1 |f+g|^{p-1}|f+g| \\ &\leq \int_0^1 |f+g|^{p-1}|f| + \int_0^1 |f+g|^{p-1}|g| \\ &\leq ||(|f+g|)^{p-1}||_q ||f||_p + ||(|f+g|)^{p-1}||_q ||g||_p \\ &= ||(f+g)||_p^{p-1}(||f||_p + ||g||_p). \end{aligned}$$

Thus $||f + g||_p \le ||f||_p + ||g||_p$.

So $||f||_p$ satisfies the triangular inequality. Moreover, it's easy to check that $||f||_p \ge 0$. If $||f||_p = 0$, then $\int_0^1 f(t)^p dt = 0$. And since f is continuous on [0,1], we have f(t) = 0 for all $t \in [0,1]$. If f(t) = 0, then it's also easy to check that $||f||_p = 0$. Moreover, for a scalar a, then

$$||af||_p = \left(\int_0^1 |af(t)|^p dt\right)^{\frac{1}{p}} = |a| \left(\int_0^1 |f(t)|^p dt\right)^{\frac{1}{p}} = |a| \cdot ||f||_p.$$

Thus $||f||_p$ is a norm on C[0,1].

Exercise 26. Given a, b > 0, show that $\lim_{p\to\infty} (a^p + b^p)^{\frac{1}{p}} = \max\{a, b\}$. What happens as $p\to 0$? as $p\to -1$? as $p\to \infty$?

Proof. Assume that a < b, let $r = \frac{a}{b}$, we have

$$(a^{p} + b^{p})^{\frac{1}{p}} = b \cdot \left(1 + \left(\frac{a}{b}\right)^{p}\right)^{\frac{1}{p}}$$
$$= b \cdot (1 + r^{p})^{\frac{1}{p}}$$
$$= b \cdot e^{\log(1 + r^{p})^{\frac{1}{p}}}.$$

Notice that as $p \to \infty$, we have $\log(1+r^p)^{\frac{1}{p}} \to 0 \cdot \log(1) \cdot 0 = 0$. Thus $(a^p + b^p)^{\frac{1}{p}} \to b \cdot 1 = b = \max\{a, b\}$.

Exercise 27. Show that $diam(B_r(x)) \leq 2r$, and give an example where strict inequality occurs.

Proof. For any $a, b \in B_r(x)$, we have $d(a, b) \le d(a, x) + d(x, b) < 2r$. Thus $diam(B_r(x)) = \sup\{d(a, b) : a, b \in B_r(x) \le 2r$. An example for strict inequality is the discrete space because $diam(B_1(0)) = 0 < 2$.

Exercise 28. If diam(A) < r, show that $A \subset B_r(a)$ for some $a \in A$.

Proof. For any $x \in A$, because diam(A) < r, we have d(a, x) < r. Therefore, $x \in B_r(a)$. Thus $A \subset B_r(a)$.

Exercise 30. If $A \subset B$, show that $diam(A) \leq diam(B)$.

Proof. Since $A \subset B$, we have $\{d(a,b): a,b \in A\} \subset \{d(a,b): a,b \in B\}$. Thus $diam(A) = \sup\{d(a,b): a,b \in A\} \leq \sup\{d(a,b): a,b \in B\} = diam(B)$.

Exercise 32. In a normed vector space $(V, ||\cdot||)$ show that $B_r(x) = x + B_r(0) = \{x + y : ||y|| < r\}$ and that $B_r(0) = rB_1(0) = \{rx : ||x|| < 1\}$.

Proof. For any $a \in B_r(x)$, we have ||a-x|| < r. Therefore $a = x - (a-x) \in x + B_r(0)$. Thus $B_r(x) \subset x + B_r(0)$. And for any $a \in x + B_r(0)$, then there exists $y \in B_r(0)$ such that a = x + y. Thus ||a-x|| = ||y|| < r. Thus $a \in B_r(x)$, which means $x + B_r(0) \subset B_r(x)$. Hence $B_r(x) = x + B_r(0)$.

Similarly, if $a \in B_r(0)$, then ||a|| < r. Notice that because r > 0, we have $||\frac{a}{r}|| = \frac{1}{r}||a|| = 1$. And since $a = r \cdot \frac{a}{r}$, we have $a \in rB_1(0)$. Thus $B_r(0) \subset rB_1(0)$. Moreover, if $a \in rB_1(0)$, then there exists $x \in B_1(0)$ such that a = rx. Then $||a|| = ||rx|| = |r| \cdot ||x|| < r$. Thus $a \in B_r(0)$, which leads to $rB_1(0) \subset B_r(0)$. Thus $B_r(0) = rB_1(0)$.

Exercise 33. Limits are unique.

Proof. Assume that x and y are two identical limits of (x_n) , then d(x,y) > 0. Let $\epsilon > 0$ such that $2\epsilon < d(x,y)$, there exists N such that if n > N, then $x_n \in B_{\epsilon}(x) \cap B_{\epsilon}(y)$. Therefore, $2\epsilon < d(x,y) \le d(x,x_n) + d(x_n,y) < 2\epsilon$, contradiction. Thus the limit of (x_n) must be unique.

Exercise 34. If $x_n \to x$ in (M, d), show that $d(x_n, y) \to d(x, y)$ for any $y \in M$. More generally, if $x_n \to x$ and $y_n \to y$, show that $d(x_n, y_n) \to d(x, y)$.

First, we will prove a small lemma.

Lemma. For $a, b, c \in M$, we have $|d(a, b) - d(b, c)| \le d(a, c)$.

Proof. Indeed, since $d(a,b) \leq d(a,c) + d(b,c)$, we have $d(a,b) - d(b,c) \leq d(a,c)$. Moreover $d(b,c) \leq d(b,a) + d(a,c)$, hence $-d(a,c) \leq d(a,b) - d(b,c)$. Thus $|d(a,b) - d(b,c)| \leq d(a,c)$.

Now back to the problem.

Proof. By the lemma, we have $|d(x_n, y) - d(x, y)| \le d(x, x_n)$. Since $x_n \to x$, $d(x, x_n)$ can be sufficiently small. Thus $d(x_n, y) \to d(x, y)$.

Also by the lemma, we have $|d(x_n, y_n) - d(x, y)| \le |d(x_n, y_n) - d(x_n, y)| + |d(x_n, y) - d(x, y)| \le d(y_n, y) + d(x, x_n)$. Similarly, since we can make $d(x_n, x)$ and $d(y_n, y)$ sufficiently small, we have $d(x_n, y_n) \to d(x, y)$.

Exercise 35. If $x_n \to x$, then $x_{n_k} \to x$ for any subsequence (x_{n_k}) of (x_n) .

Proof. For any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for any n > N, we have $d(x_n, x) < \epsilon$. Since $\{1, 2, \dots, N\}$ is finite, there exists some $k_0 \in \mathbb{N}$ such that $\{1, 2, \dots, N\} \cap \{n_{k_0+1}, n_{k_0+2}, \dots\} = \emptyset$. Let $K = k_0$, then if k > K, because $n_k > N$, we have $d(x_{n_k}, x) < \epsilon$. Thus $x_{n_k} \to x$.

Exercise 36. A convergent sequence in Cauchy, and a Cauchy sequence is bounded.

Proof. Let $x_n \to x$, we will prove that (x_n) is Cauchy. For any $\epsilon > 0$, we can find N such that if n > N, then $x_n \in B_{\frac{\epsilon}{2}}(x)$. And because $diam(B_{\frac{\epsilon}{2}}(x)) < 2\frac{\epsilon}{2} = \epsilon$, for any m, n > N, $d(x_m, x_n) < \epsilon$. Thus (x_n) is Cauchy.

If (x_n) is Cauchy, then there exists $N \in \mathbb{N}$ such that for any m, n > N, $d(x_m, x_n) < 1$. Fix m, let $t = \max(\{d(x_k, x_m) : 1 \le k \le N\} \cup \{1\})$. Then clearly $x_n \in B_t(x_m)$ for any $n \in N$. Thus (x_n) is bounded.

Exercise 37. A Cauchy sequence with a convergent subsequence converges.

Proof. Let (x_n) be Cauchy and $x_n \to x$, where (x_{n_k}) is a subsequence of (x_n) . For any $\epsilon > 0$, we can find N_1 and N_2 such that for all $m, n > N_1$ and $n_p > N_2$, then $d(x_m, x_n) < \frac{\epsilon}{2}$ and $d(x, x_{n_p}) < \frac{\epsilon}{2}$. Let $N = \max\{N_1, N_2\}$ and a natural number $n_{k_0} > N$. For any n > N, we have

$$d(x_n, x_{n_{k_0}}) < \frac{\epsilon}{2} \text{ and } d(x_{n_{k_0}}, x) < \frac{\epsilon}{2}.$$

Therefor,

$$d(x_n, x) \le d(x_n, x_{n_{k_0}}) + d(x_{n_{k_0}}, x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus $x_n \to x$.

Exercise 40. Given any fixed element $x \in \ell_1$, show that the sequence $x^{(k)} = (x_1, \dots, x_k, 0, \dots) \in \ell_1$ converges to x in ℓ_1 -norm. Show that the same holds true in ℓ_2 , but give an example showing that it fails in ℓ_{∞} .

Proof. Since $x \in \ell_1$, we have $\sum_{i=1}^{\infty} |x_i| < \infty$, thus $\lim_{k \to \infty} \sum_{i=k}^{\infty} |x_i| = 0$. Now, for any $\epsilon > 0$, there exists K such that if k > K, then

$$||x - x^{(k)}||_1 = \sum_{i=k+1}^{\infty} |x_i| < \epsilon.$$

Thus $x^{(k)} \to x$ in ℓ_1 .

Similarly, if $x \in \ell_2$, then $\lim_{k\to\infty} (\sum_{i=k}^{\infty} x_i^2)^{\frac{1}{2}} = 0$. Thus for any $\epsilon > 0$, there exists K such that if k > K, then

$$||x - x^{(k)}||_2 = \left(\sum_{i=k+1}^{\infty} x_i^2\right)^{\frac{1}{2}} < \epsilon.$$

Thus $x^{(k)} \to x$ in ℓ_2 .

One example showing that ℓ_{∞} false is $x=(1,1,\cdots)$. We have $||x-x^{(k)}||_{\infty}=\max\{0,1\}=1$. Thus no matter how large k is, $d(x,x^{(k)})=1$, which means $x^{(k)}$ does not converge to x.

Exercise 41. Given $x, y \in \ell_2$, show that if $x^{(k)} \to x$ and $y^{(k)} \to y$ in ℓ_2 , then $\langle x^{(k)}, y^{(k)} \rangle \to \langle x, y \rangle$.

Proof. Assume that for some k_0 , $||x^{(k_0)} - x||_2 < \epsilon$ and $||x^{(k_0)} - x||_2 < \delta$, then applying the Cauchy-Schwarz, we have

$$\begin{split} |\langle x^{(k_0)}, y^{(k_0)} \rangle - \langle x, y \rangle| &= |\langle x^{(k_0)} - x, y^{(k_0)} - y \rangle + \langle x, y^{(k_0)} - y \rangle + \langle y, x^{(k_0)} - x \rangle| \\ &= |\langle x^{(k_0)} - x, y^{(k_0)} - y \rangle| + |\langle x, y^{(k_0)} - y \rangle| + |\langle y, x^{(k_0)} - x \rangle| \\ &\leq \|x^{(k_0)} - x\|_2 \|y^{(k_0)} - y\|_2 + \|x\|_2 \|y^{(k_0)} - y\|_2 + \|y\|_2 \|x^{(k_0)} - x\|_2 \\ &\leq \epsilon \delta + \delta \|x\|_2 + \epsilon \|y\|_2. \end{split}$$

Because $x, y \in \ell_2$, $||x||_2$ and $||y||_2$ are finite. Moreover, because $x^{(k)} \to x$ and $y^{(k)} \to y$, ϵ and δ can be as small as possible. Therefore $|\langle x^{(k)}, y^{(k_0)} \rangle - \langle x, y \rangle|$ can be as small as possible, thus $\langle x^{(k)}, y^{(k_0)} \rangle \to \langle x, y \rangle$

Exercise 42. Two metrics d and ρ on a set M is said to be equivalent if they generate the same convergent sequences; that is, $d(x_n, x) \to 0$ if and only if $\rho(x_n, x) \to 0$. If d is any metric on M, show that the metrics ρ, σ, τ are all equivalent to d.

Proof. Assume that there exists x_n and $x \in M$ such that $d(x_n, x) \to 0$, then for any $0 < \epsilon < 1$, there exists N such that if n > N, then $d(x_n, x) < \epsilon$. Thus

$$\rho(x_n, x) = \sqrt{d(x_n, x)} < \sqrt{\epsilon} < \epsilon,$$

$$\sigma(x_n, x) = \frac{d(x_n, x)}{1 + d(x_n, x)} < \frac{d(x_n, x)}{1} < \epsilon,$$

and

$$\tau(x_n, x) = \min\{d(x_n, x), 1\} = d(x_n, x) < \epsilon.$$

Therefore, we have $\rho(x_n, x) \to 0$, $\sigma(x_n, x) \to 0$, and $\tau(x_n, x) \to 0$.

Now assume that $\rho(x_n, x) \to 0$, we have

$$d(x_n, x) = \rho(x_n, x)^2 \to 0.$$

If $\sigma(x_n, x) \to 0$, first, we will calculate $d(x_n, x)$ respect to $\sigma(x_n, x)$. We have

$$\sigma(x_n, x) = \frac{d(x_n, x)}{1 + d(x_n, x)}$$

$$\frac{1}{\sigma(x_n, x)} = \frac{1 + d(x_n, x)}{d(x_n, x)} = 1 + \frac{1}{d(x_n, x)}$$

$$\frac{1}{\sigma(x_n, x)} - 1 = \frac{1}{d(x_n, x)}$$

$$\frac{1}{\frac{1}{\sigma(x_n, x)} - 1} = d(x_n, x).$$

As $\sigma(x_n, x) \to 0$, we have $\frac{1}{\sigma(x_n, x)} \to \infty$, hence $d(x_n, x) = \frac{1}{\frac{1}{\sigma(x_n, x)} - 1} \to 0$. Now, if $\tau(x_n, x) \to 0$, then $\min\{d(x_n, x), 1\} \to 0$, thus $d(x_n, x) \to 0$.

Exercise 43. Show that the usual metric on \mathbb{N} is equivalent to the discrete metric. Show that any metric on a finite set is equivalent to the discrete metric.

Proof. For any $x_n, x \in \mathbb{N}$, if $|x_n - x| \to 0$, then let $\epsilon = \frac{1}{2}$, then there exists N such that if n > N, then $|x_n - x| < \frac{1}{2}$, therefore $x_n = x$. Let d be the discrete metric on N, then $d(x_n, x) = 0$ for n > N. Thus $d(x_n, x) \to 0$.

If $d(x_n, x) \to 0$, then for $\epsilon < 1$, there exist N such that if n > N, then $d(x_n, x) < \epsilon < 1$. Hence $d(x_n, x) = 0$, which means $x_n = x$. Thus $|x_n - x| \to 0$. Thus the usual metric on \mathbb{N} is equivalent to the discrete metric.

Let M be a finite set and d, m defines a discrete metric and a random metric on M. Since metric is positive, let $0 < \epsilon < \min\{m(x,y) : x,y \in M, x \neq y\}$. For $x_n, x \in M$, if $m(x_n,x) \to 0$, then there exists N such that for any n > N, then $m(x_n,x) < \epsilon$. But by the definition of ϵ , we have $x_n = x$. Therefore, $d(x_n,x) = 0$ for any n > N. So $d(x_n,x) \to 0$.

If $d(x_n, x) \to 0$, then similar to the \mathbb{N} case, there exists N such that for any n > N, we have $x_n = x$. Thus $m(x_n, x) = 0$ for n > N. Thus $m(x_n, x) \to 0$.

Exercise 44. Show that the metrics induced by $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_\infty$ on \mathbb{R}^n are all equivalent.

Proof. Assume that $||x - x_k|| \to 0$ for some $x, x_k \in \mathbb{R}^n$. By exercise 18, we have $0 \le ||x - x_k||_{\infty} \le ||x - x_k||_2 \le ||x - x_k||_1$. Thus, we also have $||x - x_k||_{\infty} \to 0$ and $||x - x_k||_2 \to 0$.

Now, assume that $||x - x_k||_2 \to 0$, then $\sqrt{n}||x - x_k||_2 \to 0$. Also by exercise 18, we have $||x - x_k|| \le \sqrt{n}||x - x_k||_2$. Thus $||x - x_k||_1 \to 0$.

Similarly, if $||x-x_k||_{\infty} \to 0$, then $n||x-x_k||_{\infty} \to 0$. By exercise 18, we have $||x-x_k||_1 \le n||x-x_k||_{\infty}$. Thus $||x-x_k||_1 \to 0$.

Therefore, $\|\cdot\|_1, \|\cdot\|_2$, and $\|\cdot\|_{\infty}$ are equivalent.

Exercise 45. We say that two norms on the same vector space X are equivalent if the metrics they induce are equivalent. Show that $\|\cdot\|$ and $\|\cdot\|$ are equivalent of X if and only if they generate the same sequences tending to 0; that is, $\|x_n\| \to 0$ if and only if $\|x_n\| \to 0$.

Proof. Assume that $||x_n|| \to 0$ if and only if $|||x_n||| \to 0$, we will prove that $|| \cdot ||$ and $||| \cdot |||$ are equivalent. Indeed, if $x_n, x \in X$ such that $||x_n - x|| \to 0$, then notice that $y_n = x_n - x \in X$, we have $||y_n|| \to 0$. However, by the assumption, we have $||y_n|| \to 0$, which is synonymous with $|||x_n - x|| \to 0$. Similarly, if $|||x_n - x|| \to 0$, we also have $||x_n - x|| \to 0$. Thus $|| \cdot ||$ and $|| \cdot ||$ are equivalent.

If $\|\cdot\|$ and $\|\cdot\|$ are equivalent, then obviously $\|x_n\| \to 0$ if and only if $\|x_n\| \to 0$. \square

Exercise 46. Given two metric spaces (M, d) and (N, p), we can define a metric on the product $M \times N$ in a variety of ways. Our only requirement is that a sequence of pairs (a_n, x_n) in $M \times N$ should converge precisely when both coordinate sequences (a_n) and (x_n) converge. Show that each of the following define metrics on $M \times N$ that enjoy this property and that all three are equivalent:

$$d_1((a, x), (b, y)) = d(a, b) + p(x, y),$$

$$d_2((a, x), (b, y)) = (d(a, b)^2 + p(x, y)^2)^{1/2},$$

$$d_{\infty}((a, x), (b, y)) = \max\{d(a, b), p(x, y)\}.$$

Proof. First we will prove that d_1, d_2, d_∞ define metrics on $M \times N$. For any $(a, x), (b, y) \in M \times N$, we have

$$d_1((a,x),(b,y)) = d(a,b) + p(x,y) \ge 0,$$

$$d_2((a,x),(b,y)) = (d(a,b)^2 + p(x,y)^2)^{1/2} \ge 0,$$

$$d_\infty((a,x),(b,y)) = \max\{d(a,b),p(x,y)\} \ge 0.$$

The equality is when d(a, b) = d(x, y) = 0. Thus $d_1((a, x), (b, y)) = d_2((a, x), (b, y)) = d_{\infty}((a, x), (b, y)) = 0$ if any only if d(a, x) = p(b, y) = 0. We also have

$$d_1((a,x),(b,y)) = d(a,b) + p(x,y) = d(b,a) + p(y,x) = d_1((b,y),(a,x)),$$

$$d_2((a,x),(b,y)) = (d(a,b)^2 + p(x,y)^2)^{1/2} = (d(b,a)^2 + p(y,x)^{1/2} = d_2((b,y),(a,x)),$$

$$d_\infty((a,x),(b,y)) = \max\{d(a,b),p(x,y)\} = \max\{d(b,a),p(y,x)\} = d_\infty((b,y),(a,x)).$$

Now, for any $i \geq 1$, applying the triangular inequality for d and p, and norm inequality, we have

$$\|(d(a,b),p(x,y))\|_{i} \leq \|(d(a,c)+d(c,b),p(x,z)+p(z,y))\|_{i} \leq \|(d(a,c),p(x,z))\|_{i} + \|(d(c,b),p(z,y))\|_{i}$$

Thus for $i=1,2,\infty$, we have three triangular inequalities in d_1,d_2 , and d_∞ . Thus d_1,d_2 , and d_∞ defines metrics on $M\times N$. Let $(a_n,x_n)\in M\times N$ such that $a_n\to a$ and $x_n\to x$ in (M,d) and (N,p) respectively. Then $d(a_n,a)\to 0$ and $p(x_n,x)\to 0$. Thus we easily have

$$d_1((a_n, x_n), (a, x)) = d(a_n, a) + p(x_n, x) \to 0,$$

$$d_2((a_n, x_n), (a, x)) = (d(a_n, a)^2 + p(x_n, x)^2)^{1/2}, \to 0,$$

and

$$d_{\infty}((a_n, x_n), (a, x)) = \max\{d(a_n, a), p(x_n, x)\} \to 0.$$

Thus, d_1, d_2, d_∞ enjoy the property of this exercise. Now if $(a_n, x_n) \to (a, x)$ in $(M \times N, d_1, d_1, d_2, d_\infty)$ that is $d_1((a_n, x_n), (a, x)) \to 0$, then we have $d(a_n, a) + p(x_n, x) \to 0$, thus $d(a_n, a)$ and $p(x_n, x)$ converge to 0. Because d_2 defines a metric on $M \times N$, we also have $d_2((a_n, a), (x_n, x)) \to 0$, thus $(a_n, x_n) \to (a, x)$ in $(M \times N, d_2)$. Similarly, if $(a_n, x_n) \to (a, x)$ in $(M \times N, d_2)$, then we have $(a_n, x_n) \to (a, x)$ in $(M \times N, d_\infty)$, and if $(a_n, x_n) \to (a, x)$ in $(M \times N, d_\infty)$, then we have $(a_n, x_n) \to (a, x)$ in $(M \times N, d_\infty)$, then we have $(a_n, x_n) \to (a, x)$ in $(M \times N, d_1)$. Thus d_1, d_2 , and d_3 are equivalent.

Lemma 1. Let $a, b, c, d \in \mathbb{R}+$, if $a \leq c$ and $b \leq d$, then for any $i \geq 1$, we have $\|(a,b)\|_i \leq \|(c,d)\|_i$.

Proof. Indeed, if $i \geq 1$, then $a^i \leq c^i$ and $b^i \leq d^i$. And since $\frac{1}{i} > 0$, we have

$$||(a,b)||_i = (|a|^i + |b|^i)^{1/i} \le (|c|^i + |d|^i)^{1/i} = ||(c,d)||_i.$$

Thus $||(a,b)||_i \le ||(c,d)||_i$.

Exercise Hint. Let $f: \mathbb{R}^2 \to \mathbb{R}$ defines by f(x,y) = xy, prove that f is continuous.

Proof. For $(x_0, y_0) \in \mathbb{R}^2$, assume that $|x - x_0| < \epsilon$ and $|y - y_0| < \delta$, then we have

$$|xy - x_0y_0| = |(x - x_0)(y - y_0) + x_0y + y_0x - 2y_0x_0||$$

$$= |(x - x_0)(y - y_0) + x_0(y - y_0) + y_0(x - x_0)||$$

$$\leq |(x - x_0)||(y - y_0)| + |x_0||(y - y_0)| + |y_0||(x - x_0)||$$

$$\leq \epsilon \delta + |x_0|\delta + |y_0|\epsilon.$$

Because $|xy - x_0y_0|$ can be as small as possible by letting ϵ and δ super small, f is continuous at (x_0, y_0) . Therefore, f is continuous everywhere.