1 Model

We begin with a general model that encapsulates many of the works we will discuss. For an input \mathbf{x} , we want to predict a response \mathbf{y}^* . Our prediction is a function f_{θ} of \mathbf{x} . The function f_{θ} is parameterized by θ . We will consider models of the form

$$f_{\theta}(\mathbf{x}) = y_{\theta} \left(\sum_{i} \alpha_{\theta}^{(i)} \phi_{\theta}^{(i)}(\mathbf{x}) \right). \tag{1}$$

Here, \mathbf{x} is an L-dimensional real vector and \mathbf{y}^* is an M-dimensional real vector. The ϕ_i are basis functions that map from \mathbb{R}^L to \mathbb{R}^K , and the α_i are real scalars. Additionally, the sum over i need not be finite. The coefficients α_i may depend on \mathbf{x} and our parameters θ , but we suppress the former dependence for notational simplicity. The function y_{θ} maps from \mathbb{R}^K to \mathbb{R}^M and is parameterized by θ as well.

We will consider a penalized mean squared error loss function

$$\mathcal{L}(\theta) = \frac{1}{2} \mathbb{E}_{\mathbf{x}, \mathbf{y}^*} \left[\|\mathbf{y}^* - f_{\theta}(\mathbf{x})\|_2^2 \right] + \lambda p(\{\alpha^{(i)}\}_i, \theta).$$
 (2)

Our penalty function p serves to induce sparseness in the coefficients α_i , and perhaps also regularize the parameters θ .

We will show how this model encapsulates the works we are interested in understanding.

2 Ingrosso et al. (2022)

The model in Ingrosso et al. (2022) sets M=1, uses linear basis functions, and sets y_{θ} to be the mean function after applying a nonlinearity. That is,

$$\sum_{i} \alpha_{\theta}^{(i)} \phi_{\theta}^{(i)}(\mathbf{x}) = \Theta \mathbf{x} + b_{\theta} \tag{3}$$

$$y_{\theta}(\mathbf{x}) = \frac{1}{K} \mathbf{1}^{\top} \sigma(\mathbf{x}). \tag{4}$$

Here, Θ is a $K \times L$ matrix, b_{θ} is a K-dimensional vector, and σ is a nonlinear function applied elementwise. It seems that in much of their work, b_{θ} is fixed at -1 or 0. I still need to confirm experimentally that this does not affect the results.

In this work, we also ignore the penalty term. I believe that our gradient update is of the form

$$a$$
 (5)

3 Data Model

We assume that our data is generated by the following model. It is parameterized by the length of the input, $L \in \mathbb{N}$. It is also parameterized by a scale parameter $\xi \leq L$. We construct data $\{X_l\}_l \subseteq \{0,1\}^L$ as follows:

- 1. Sample integers $l^* \sim \text{Uniform}[1, L]$ (starting position) and $T \sim \text{Uniform}[1, \xi)$ (length of pulse).
- 2. For $0 \le i \le T$, set $X_{l^*+i \pmod{L}} = 1$, and set all other X_l to 0.
- 3. Return the sequence $\{X_l\}_l$.

Now, we derive the conditional probability $p_{11} \triangleq \mathbb{P}(X_a = 1 \mid X_b = 1)$. For now, assume $d \triangleq b - a > 0$. If $d \geq \xi$, then $p_{11} = 0$. So, assume $d < \xi$.

Now, we count the number of values of T that result in both X_a and X_b being in the pulse for a given l^* . WLOG, assume a = 0. For $1 \le l^* \le d$, the range of values for T that results in both X_a and X_b being in the pulse is given by

$$L - l^* \le T < \xi. \tag{6}$$

Thus, the number of values for T in this case is $\max(\xi - L + l^*, 0)$.

For $d < l^* \le L$, the values of T that result in both X_a and X_b being in the pulse is given by

$$L - (l^* - d) \le T < \xi. \tag{7}$$

So, the number of values for T in this case is $\max(\xi - (L - (l^* - d)), 0) = \max(\xi - L + l^* - d, 0)$.

Note that the first max condition is at least zero when $l^* \geq L - \xi$. This yields a sum over $\max(L - \xi, 1) \leq l^* \leq d$. Similarly, the second max condition is at least zero when $l^* \geq L - \xi + d$. This yields a sum over $\max(L - \xi + d, d + 1) \leq l^* \leq L$. Note that the first term dominates in both of these new max statements when $\xi \leq L - 1$. So, let us assume this case.

Now, we want to find the total number of values of T that result in both X_a and X_b being in the pulse.

$$T_1 = \sum_{L-\xi < l^* < d} (\xi - L + l^*) \tag{8}$$

$$T_2 = \sum_{L-\xi+d \le l^* \le L} (\xi - L + l^* - d) = \sum_{L-\xi \le t \le L-d} (\xi - L + t).$$
(9)

We compute T_1 as,

$$T_1 = (\xi - L)(d - L + \xi + 1) + \frac{d(d+1)}{2} - \frac{(L-\xi)(L-\xi - 1)}{2}.$$

Next, we compute T_2 as,

$$T_2 = (\xi - d + 1)(\xi - L) + \frac{(L - d)(L - d + 1)}{2} - \frac{(L - \xi)(L - \xi - 1)}{2}.$$

Thus, the total number of values of T that result in both X_a and X_b being in the pulse is

$$T_1 + T_2 = d^2 - dL + \frac{L^2}{2} + \frac{L}{2} - (L - \xi)(\xi + 1)$$

There are $\xi - 1$ possible values for T and L values for l^* . Recall we sample T and l^* uniformly and independently. Thus, the probability that $X_a = 1$ given $X_b = 1$ is

$$p_{11} = \frac{T_1 + T_2}{(\xi - 1)L} = \frac{d^2 - dL + \frac{L^2}{2} + \frac{L}{2} - (L - \xi)(\xi + 1)}{(\xi - 1)L}.$$
 (10)

Note that we assumed $\xi \leq L-1$. However, we can check that the above expression is still valid when $\xi = L$. (Check Desmos. Otherwise, an exercise left to the reader.) It also satisfies the "sanity check" that it is minimized at $x = \frac{L}{2}$.