FI SEVIER

Contents lists available at SciVerse ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Thermochromic VO₂ film deposited on Al with tunable thermal emissivity for space applications

M. Benkahoul ^{a,*}, M. Chaker ^a, J. Margot ^b, E. Haddad ^c, R. Kruzelecky ^c, B. Wong ^c, W. Jamroz ^c, P. Poinas ^d

- ^a INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada, J3X-1S2
- ^b Département de Physique, 2900 Edouard Montpetit, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Canada, QC H3C 3J7
- ^c MPB Communications Inc., 151 Hymus Boulevard; Pointe Claire, Québec, Canada, H9R-1E9
- d ESA ESTEC, P.B. 299; 2200 AG, Noordwijk; Netherlands

ARTICLE INFO

Article history: Received 12 April 2011 Accepted 16 August 2011 Available online 8 September 2011

Keywords: VO₂ Thermochromic Tunable emissivity Smart radiator Optical constants Magnetron sputtering

ABSTRACT

Thermochromic VO_2 thin films were deposited on various substrates, namely quartz, Si, and Al, using RF reactive magnetron sputtering deposition. IR thermometry measurements reveal that the emissivity properties of the system VO_2 /substrate strongly depend on the IR optical properties of the substrate. VO_2 films deposited on a highly IR reflective substrate such as Al, present an emissivity dependence on temperature that is opposite to that of VO_2 deposited on an IR transparent substrate, like quartz and Si. XPS and Raman measurements show that VO_2 undergoes a crystalline structure transition from monoclinic to tetragonal when deposited on Al, quartz, and Si. They also confirm that the transition is accompanied by a change from an insulator or semiconductor state to a metallic state. The emissivity performance of VO_2 /Al as compared to that of VO_2 /quartz and VO_2 /Si is attributed to the higher IR reflective properties of Al in comparison to quartz and Si. The increase of emissivity with temperature makes the VO_2 /Al system of strong interest as a passive smart radiator device for thermal control of spacecraft.

 $\ensuremath{\text{@}}$ 2011 Elsevier B.V. All rights reserved.

1. Introduction

A passive smart radiation device (SRD) is a new type of thermal control material for spacecraft. Current space thermal control systems require heaters with an additional power penalty to maintain spacecraft temperatures during cold swings. Because its emissivity can be changed without electrical instruments or mechanical part, the use of SRD decreases the request of spacecraft power budget [1]. As an SRD, a thin film should have a low emissivity $(\epsilon_{\rm L})$ at low temperature to maintain the heat, whereas at high temperature its emissivity $(\epsilon_{\rm H})$ should be high to dissipate the additional unnecessary heat.

 VO_2 is a thermochromic material that changes from a semi-conductor to metallic with increasing temperature [2]. It is generally deposited on IR transparent substrates like Si, quartz, and Al_2O_3 . The transition that occurs at about 70 °C is accompanied by an increase of IR reflectivity and a decrease of IR emissivity with increasing temperature [3–6]. Many works have discussed the possibility of lowering the transition temperature towards room temperature by doping VO_2 with W, Ti, Mg, and Al [3,7–10]. This flexibility makes VO_2 potentially interesting for optical, electrical, and electro-optical switches devices, and as window for energy efficiency buildings applications [8,11].

The systems VO_2/IR transparent substrate show an emissivity behavior with temperature opposite to that required for SRD applications [4–6]. Indeed, they are characterized by high emissivity at low temperature and low emissivity at high temperature. However, in previous work, members of our team have reported that the emissivity of VO_2/Al systems behavior with temperature is the opposite of that of $VO_2/quartz$, therefore complying with SRD requirements. In this preliminary work, no further characterization was however performed to understand this behavior. It was not even clear whether the VO_2 on Al substrate passes from a semiconductor phase either to another semiconductor phase or to a metallic state when temperature increases [1].

In the present work, we examine the changes encountered by VO_2 deposited on Al as compared to VO_2 /quartz and VO_2 /Si. We show that VO_2 deposited on Al has transition properties similar to those of VO_2 on quartz and VO_2 on Si. The reflectivity calculated at low and high temperature, using the measured optical constants of VO_2 on Al, is found to reproduce the observed opposite behavior of VO_2 /Al as compared to that of VO_2 /quartz.

2. Experimental details

2.1. Sample preparation

Samples of VO_2 films deposited on various substrates, namely Si, quartz, and polished mirror-like Al (roughness R_a less than

^{*}Corresponding author. Tel.: +1 450 929 8224; fax: +1 450 929 8102. E-mail address: benkahoul@emt.inrs.ca (M. Benkahoul).

40 nm) were prepared. The deposition was carried out by RF reactive magnetron sputtering of Vanadium target with 7.5 cm diameter in a mixture of Ar and O_2 gases. Before introducing the gases, the chamber was pumped down to 10^{-6} Torr. The flux ratio O_2/Ar was 4/40 and the total pressure was 4 mTorr. The RF applied power on the target was 550 W. The substrate temperature was maintained at 540 °C. The thickness of the deposited film was about 300 nm.

2.2. Characterization

The emissivity of the VO₂/substrate system can be obtained from the curve showing the sample temperature measured using IR thermometry ($T_{\rm IR}$) as a function of its actual temperature ($T_{\rm act}$). Measurements of $T_{\rm IR}$ were performed using an IR thermometer that provides a cumulative response sensitive in the 8–14 μ m range. The IR thermometer provides the temperature of the sample for a blackbody of emissivity $\varepsilon_{\rm ref}$ =0.96. In contrast, $T_{\rm act}$ was measured using a thermocouple in contact with the sample. Then, the emissivity of the sample was estimated from the slope of the curves $T_{\rm IR}$ vs. $T_{\rm act}$ using the following equation:

$$\varepsilon \approx \varepsilon_{\rm ref}(\delta T_{\rm IR}/\delta T_{\rm act})$$
 (1)

In order to investigate the behavior of VO_2 deposited on Al with temperature, we have examined the density of state at the Fermi level as a function of temperature. The V3d band of VO_2 was measured using X-ray photoemission spectroscopy (XPS). The incident radiation was Al K_{α} (hv=1486.6 eV). The binding energy was calibrated using the C1s peak. The phase transition of VO_2 deposited on Al was examined using the Raman spectroscopy. These measurements were performed with a micro-Raman system equipped with a laser (wavelength 514 nm, power of 25 mW at laser head), a grating with 1800 grooves/mm, and a CDD detector.

Specular IR reflectivity and ellipsometry measurements were carried out at an angle of 60° with a spectral resolution of $16~\rm cm^{-1}$. The reflectivity (R_p) reported in this work was measured using p-polarized light. A sample of $100~\rm nm$ thick Au film deposited on Si was used as a reference. Measurements at low ($30~\rm ^\circ C$) and high ($100~\rm ^\circ C$) temperatures were performed using a setup allowing heating of the sample up to $100~\rm ^\circ C$. The emissivity of the materials can be calculated from the reflectivity value using the relation $\varepsilon(\lambda) = 1 - R(\lambda) - T_r(\lambda)$, where $R(\lambda)$ and $T_r(\lambda)$ are the materials reflectivity and transmission, respectively. Since the system VO_2/AI is opaque (AI is totally reflective in IR), its $T_r(\lambda) = 0$ and therefore $\varepsilon(\lambda) = 1 - R(\lambda)$ at both low and high temperatures. The emittance (ε) is the global parameter averaging the spectral emissivity $\varepsilon(\lambda)$ weighted by the theoretical blackbody spectrum of emissivity at the operating temperature (T):

$$\varepsilon = \int_{\lambda_1}^{\lambda_2} (1 - R(\lambda, T)) M(\lambda, T) d\lambda / \int_{\lambda_1}^{\lambda_2} M(\lambda, T) d\lambda$$
 (2)

In Eq. (2), $M(\lambda,T)$ is the blackbody spectral distribution function, given by Planck's equation. The integration was performed over the infrared spectra λ_1 =2 to λ_2 =20 μ m, following ESA's standard ECSS-Q-70-09A29 for emissivity measurements [12].

3. Results and discussion

We have examined the emissivity performance of VO₂ deposited on Al, quartz and Si. As explained in Section 2, the emissivity of the VO₂/substrate is obtained from the slope of the temperature measured using IR thermometry (T_{IR}) as a function of the actual temperature (T_{act}) of the sample, according to Eq. (1). The variation of T_{IR} vs. T_{act} for the systems VO₂/Si, VO₂/quartz, and

Fig. 1. Temperature determined from IR thermometry, $(T_{\rm IR})$, as a function of actual temperature $(T_{\rm act})$ of VO₂ films deposited on Si, quartz, and Al substrates.

Fig. 2. XPS spectrum of the V3d band of VO_2 film deposited on Al substrate below (30 °C) and above (100 °C) the transition temperature.

VO₂/Al is presented in Fig. 1. It can be seen that for VO₂/Si the emissivity at low temperature, ε_L , is equal to 0.77, whereas at high temperature ε_H =0.41. In addition, the emissivity switch is ε_H - ε_L = $\Delta\varepsilon$ =-0.36. For VO₂/quartz, ε_L =0.82, ε_H =0.51, with ε_H - ε_L = $\Delta\varepsilon$ =-0.31. This negative emissivity switch ($\Delta\varepsilon$) makes these two systems unsuitable for SRD applications. In contrast, the VO₂/Al system is exhibiting an increase of the emissivity with temperature (ε_L =0.08, ε_L =0.34, and $\Delta\varepsilon$ =0.26), a feature that complies with SRD applications.

In order to understand the reasons that make the behavior of VO_2/Al opposite to that observed for $VO_2/quartz$ and VO_2/Si , we have investigated the characteristics of these various systems in the region of transition temperature. Fig. 2 shows the XPS spectrum of V3d band of VO_2 film deposited on Al substrate at two different temperatures, 30 and 100 °C, one below and the other above the transition temperature. Significant shift of the V

Fig. 3. Raman spectrum at various temperatures of VO_2 film deposited on Al substrate.

Fig. 4. Measured reflectivity (R_p) of VO₂ film on quartz and Al samples as a function of wavelength (λ) at low (30 °C) and high (100 °C) temperatures.

3d towards the Fermi level is observed in the metallic phase above the temperature transition. At 30 °C the spectral weight at Fermi level ($E_{\rm F}$) is significantly low, which indicates the insulating or semiconducting nature of the VO₂ films. In contrast, at 100 °C, the spectral weight at $E_{\rm F}$ is high indicating a metallic state. These results are similar to those reported in the literature for VO₂ deposited on Si and quartz substrates [13–15].

Fig. 3 shows the Raman spectra of VO_2 films deposited on Al substrate for various temperatures. For temperatures between 30 °C and 55 °C narrow Raman peaks are observed. They are attributed to the monoclinic structure of VO_2 [16–19]. Further increase of temperature to 60–70 °C results in broader peaks. At temperatures higher than 70 °C, only a broad peak centered at about 560 cm $^{-1}$ is observed, which is attributed to tetragonal structure [19]. The Raman spectroscopy clearly shows that deposited VO_2/Al exhibits

a crystalline structure transition similar to that reported in the literature for VO_2/Si and $VO_2/quartz$ [16–19].

The reflectivities (R_p) of VO₂/Al and VO₂/quartz were measured at 30°C and 100 °C temperatures. The results obtained at low and high temperature are shown in Fig. 4. For VO₂/quartz, R_p increases with temperature as already reported in the literature [4–6]. In contrast, for VO₂/Al, R_p decreases with increasing temperature. The emissivity determined from R_p for VO₂/Al using Eq. (2) increases from ε_L =0.20 to ε_H =0.42, yielding an emissivity switch of ε_H - ε_L = $\Delta\varepsilon$ =0.22, which supports the positive emissivity switch obtained from IR thermometry. The difference between the emissivity values determined using FTIR and IR thermometry can be attributed to a slight over estimation of the emissivity switch determined with Eq. (2), as well as to the difference in the measurement angles, to the p-polarized light in the FTIR measurements, and to the different wavelength domains considered.

Fig. 5. Refractive index n (Fig. 5(a)) and extinction coefficient k (Fig. 5(b) of VO₂ films as a function of wavelength (λ) at low (30 °C) and high (100 °C) temperatures.

Wavelength, λ (μm)

18

24

30

12

0

6

Fig. 6. Calculated reflectivities $R_{\rm p}$ of VO₂ film deposited on quartz and Al substrates as functions of wavelength (λ) at low (30 °C) and high (100 °C) temperatures.

In order to understand the behavior of the reflectivity for VO₂/Al as compared to that of VO₂/quartz, we calculated it using the optical constants derived from ellipsometry measurements (refractive index n and extinction coefficient k) for VO_2 film (see Fig. 5) and the optical constants of Al and quartz substrate obtained from the IR materials bank of WVASE 32 software (J.A.Woollam Co., Inc.). The optical constants of VO2 were obtained by fitting the ellipsometric angles (Ψ and Δ) of VO₂ film, for wavelength range 2–30 μ m [20]; n at 30 $^{\circ}$ C gradually decreases from about 3 to 1 with increasing wavelength from 2 to about 12 μ m. Then, it increases, reaching 4 at about 20 μ m. k is very small for 2-12 μm. Further increase of wavelength leads to an increase in k reaching 3 at about 16 μm. Only scant IR optical constant data were reported in the literature and it was for limited wavelength range from 2 to 10-15 µm [5,21,22]. While the behavior of k at 30 °C, in this work, agrees with that reported in the literature then that of n is different [5,21]. At 100 $^{\circ}$ C, behaviors of n and k are totally different compared with that at low temperature 30 °C; *n* increases rapidly from about 2 to 7 with increasing wavelength from 3 to 10 µm. Then, it decreases to 6 at about 12 µm. Further increase in wavelength leads to an increase in n; k has a similar behavior to that of n. Behavior of n and k at 100 °C in this work are in good agreement with that reported by Guinneton et al. [5] and differs from that reported by Petit and Frigerio [21] and Konovalova et al. [22].

The calculated reflectivities of VO_2/Al and $VO_2/quartz$ at 30 °C and 100 °C, using the determined n and k for VO_2 , are shown in Fig. 6. Clearly, $VO_2/quartz$ is more reflective at high temperature than at low temperature, while the opposite is observed for VO_2/Al . These results are in agreement with the experimental results. It means that using the same optical constants for VO_2 on Al and on quartz; it is possible to reproduce the behavior of the reflectivity as a function of temperature. In other words, the properties of VO_2 remain the same on different substrates so that the dependence of emissivity on temperature is due to the higher IR reflectivity of Al as compared to quartz.

4. Conclusion

Thermochromic VO₂ films deposited on various substrates reveal emissivity properties of the system VO₂/substrate that

strongly depend on the IR optical properties of the substrate. VO_2 films deposited on a highly IR reflective substrate such as Al show an emissivity dependence on temperature that is opposite to that of VO_2 deposited on an IR transparent substrate, like quartz and Si. XPS and Raman measurements show that VO_2/Al undergoes a crystalline structure transition from monoclinic to tetragonal. They also confirm that the transition is accompanied by a change from an insulating or semiconducting state to a metallic state. The emissivity performance of VO_2/Al as compared to that of $VO_2/quartz$ and VO_2/Si is attributed to the higher IR reflective properties of Al in comparison to quartz and Si. Since its emissivity increases with temperature, the VO_2/Al system has very interesting tunable thermal emissivity properties. In particular, it holds a strong potential as a passive SRD for thermal control system in SRD applications.

Acknowledgments

The authors gratefully acknowledge the financial support of the Canadian Space Agency (CSA) and of the European Space Agency (ESA). They are also grateful to Darius Nikanpour and Xin Xian Jiang from CSA for their constructive advises. Moushab Benkahoul wants to thank Dr. R. Vernhes and B. Baloukas for helpful discussion of the optical constants determination.

References

- E. Haddad, R. Kruzelecky, B. Wong, W. Jamroz, M. Soltani, M. Chaker, P. Poinas, M. Benkahoul, Tuneable emittance thin film coatings for thermal control, in: society of automotive engineers, Inc. Proceedings 2009, 2009-01-2575-2587.
- [2] F.J. Morin, Oxides which show a metal-to-insulator transition at the neel temperature, Physical Review Letters 3 (1959) 34–36.
- [3] H.S. Choi, J.S. Ahn, J.H. Jung, T.W. Noh, Mid-infrared properties of a $\rm VO_2$ film near the metal-insulator transition, Physical Review B 54 (1996) 4621–4628.
- [4] R.O. Dillon, K. Le, N. Ianno, Thermochromic VO₂ sputtered by control of a vanadium-oxygen emission ratio, Thin Solid Films 398-399 (2001) 10-16.
- [5] F. Guinneton, L. Sauques, J.-C. Valmatette, F. Cros, J.-R. Gavarr, Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure, Thin Solid Films 446 (2004) 287-295.
- [6] D. Ruzmetov, K. Zawilksi, V. Narayanamurti, S. Ramanathan, Structure–functional property relationships in rf-sputtered vanadium dioxide thin films, Journal of Applied Physics 102 (2007) 113715-1-113715-7.
- [7] M. Soltani, M. Chaker, E. Haddad, R. Kruzelecky, J. Margot, Effects of Ti-W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition, Applied Physics Letters 85 (2004) 1958–1960.
- [8] K. Shibuya, M. Kawasaki, Y. Tokura, Metal-insulator transition in epitaxial $V_{1-x}W_xO_2(0 \le x \le 0.33)$ thin films, Applied Physics Letters 96 (2010) 022102-1-022102-3.
- [9] N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Mg doping of thermochromic VO₂ films enhances the optical transmittance and decreases the metal-insulator transition temperature, Applied Physics Letters 95 (2009) 171909-1-171909-3.
 [10] B. Chen, D. Yang, P.A. Charpentier, M. Zeman, Al³⁺-doped vanadium dioxide
- [10] B. Chen, D. Yang, P.A. Charpentier, M. Zeman, Al³⁺-doped vanadium dioxide thin films deposited by PLD, Solar Energy Materials and Solar Cells 93 (2009) 1550–1554.
- [11] N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Thermochromic multilayer films of VO₂ and TiO₂ with enhanced transmittance, Solar Energy Materials and Solar Cells 93 (2009) 1685–1687.
- [12] ECSS-Q-70-09A29, ESA Space product assurance—Measurements of thermooptical properties of thermal control materials, August 2003.
- [13] K. Maekawa, M. Takizawa, H. Wadati, T. Yoshida, A. Fujimori, Photoemission study of TiO₂/VO₂ interfaces, Physical Review B 76 (2007) 115121-1-115121-5.
- [14] T.C. Koethe, Z. Hu, M.W. Haverkort, C. Schüßler-Langeheine, F. Venturini, N.B. Brookes, O. Tjernberg, W. Reichelt, H.H. Hsieh, H.-J. Lin, C.T. Chen, L.H. Tjeng, Transfer of spectral weight and symmetry across the metalinsulator transition in VO₂, Physical Review Letters 97 (2006) 116402-1– 116402-4.
- [15] K. Saeki, T. Wakita, Y. Muraoka, M. Hirai, T. Yokoya, R. Eguchi, S. Shin, Band dispersion near the Fermi level for VO₂ thin films grown on TiO₂ (0 0 1) substrates, Physical Review B 80 (1996) 125406-1–125406-5.
- [16] R. Srivastava, L.L. Chase, Raman spectrum of semiconducting and metallic VO₂, Physical Review Letters 27 (1971) 727–730.

- [17] B. Felde, W. Niessner, D. Schalch, A. Scharmann, M. Werling, Plasmon
- excitation in vanadium dioxide films, Thin Solid Films 305 (1997) 61–65. [18] G.I. Petrov, V.V. Yakovleva, J. Squier, Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide, Applied Physics Letters 81 (2002) 1023-1025.
- [19] P. Schilbe, Raman scattering in VO₂, Physica B 316–317 (2002) 600–602.
- [20] M. Benkahoul et al., In preparation.

- [21] C. Petit, J.M. Frigerio, Optical properties of VO₂ thin films in their dielectric and metallic states, Advances in Optical Interference Coatings, Proceedings of SPIE 3738 (1999) 102-109.
- [22] O.P. Konovalova, A.I. Sidorov, I.I. Shaganov, Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 μ m, Journal of Optical Technology 66 (1999) 391–397.