Tutorial-4, MA 106 (Linear Algebra) Linear Algebra and its Applications by Gilbert Strang

This tutorial sheet consists of the problems based on 2.3 and 2.4. This includes:

Problem Set 2.3: [3, 4, 7, 8, 10, 12, 16, 18, 19, 22, 25, 33, 36, 40, 44]

Problem Set 2.4: [2, 4, 7, 8, 10, 13, 20, 23, 27, 28, 32, 33]

- 1. Are the following vectors linearly independent?
 - (a) $(1,3,2)^T$, $(2,1,3)^T$, $(3,2,1)^T$.
 - (b) $(1, -3, 2)^T$, $(2, 1, -3)^T$, $(-3, 2, 1)^T$.
- 2. Let $v_1 = (1, 0, 0)^T$, $v_2 = (1, 1, 0)^T$, $v_3 = (1, 1, 1)^T$ and $v_4 = (2, 3, 4)^T$.
 - (a) v_1, v_2, v_3, v_4 are linearly dependent because ____.
 - (b) Find scalars a_1, a_2, a_3, a_4 , not all zero, such that $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$.
 - (c) Show that v_1, v_2, v_3 are linearly independent.
 - (d) Find all combinations of 3 vectors from v_1, v_2, v_3, v_4 , which are linearly independent.
 - (e) Compute the rank of $A = (v_1 \ v_2 \ v_3 \ v_4)$, and the dimensions of its four fundamental spaces.
- 3. Find the largest possible number of independent vectors among: $v_1 = (1, -1, 0, 0)^T$,

$$v_2 = (1, 0, -1, 0)^T$$
, $v_3 = (1, 0, 0, -1)^T$, $v_4 = (0, 1, -1, 0)^T$, $v_5 = (0, 1, 0, -1)^T$, $v_6 = (0, 0, 1, -1)^T$.

How is this number related to $Span\{v_1, \ldots, v_6\}$?

- 4. (a) Two vectors v_1 and v_2 in \mathbb{R}^4 will be dependent if and only if _____.
 - (b) If v is any vector in \mathbb{R}^4 , v and 0 are dependent because _____.
- 5. x = v + w and y = v w are combinations of v and w. Show that v and w can be written as combinations of x and y. How are $\text{Span}\{v,w\}$ and $\text{Span}\{x,y\}$ related? When is each pair of vectors a basis for its span?
- 6. Describe the subspace of \mathbb{R}^3 spanned by:
 - (a) $u_1 = (1, 1, -1)^T$ and $u_2 = (-1, -1, 1)^T$.
 - (b) $v_1 = (0, 1, 1)^T$, $v_2 = (1, 1, 0)^T$ and $v_3 = (0, 0, 0)^T$.
 - (c) The columns of a 3×5 echelon matrix with 2 pivots.
 - (d) All vectors with positive components.
- 7. Is v in Span $\{v_1, \ldots, v_n\}$? If yes, write v as a combination of the v_i 's.
 - (a) $v_1 = (1, 1, 0)^T$, $v_2 = (2, 2, 1)^T$, $v_3 = (0, 0, 2)^T$; $b = (3, 4, 5)^T$.
 - (b) $v_1 = (1, 2, 0)^T$, $v_2 = (2, 5, 0)^T$, $v_3 = (0, 0, 2)^T$, $v_4 = (0, 0, 0)^T$; $v = (a, b, c)^T$.

In each case, find a basis of $Span\{v_1, \ldots, v_n\}$.

- 8. Let **P** be the plane x 2y + 3z = 0 in \mathbb{R}^3 .
 - (a) Find a basis for **P**.
 - (b) Find a basis for the space of all the vectors perpendicular to **P**.
 - (c) Find a basis for the intersection of \mathbf{P} with the x-y plane.

- 9. If A is $m \times n$, the columns of A are n vectors in \mathbb{R}^m . If they are linearly independent, what is rank(A)? If they span \mathbb{R}^m , what is rank(A)? What happens if they are a basis of \mathbb{R}^m ?
- 10. Find a basis for each of the following subspaces of \mathbb{R}^4 .
 - (a) All vectors whose components are equal.
 - (b) All vectors whose components add to zero.
 - (c) All vectors that are perpendicular to $(1,1,0,0)^T$ and $(1,0,1,1)^T$.
- 11. Find a basis for the null space and column space of $U = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$.
- 12. Prove that the following are subspaces of M, the set of 3×3 matrices, and find a basis.
 - (a) All diagonal matrices.
 - (b) All symmetric matrices $(A^T = A)$.
 - (c) All skew-symmetric matrices $(A^T = -A)$.
 - (d) All lower triangular matrices.
- 13. Suppose A is a 5×4 matrix with rank(A) = 4. Show that Ax = v has no solution if and only if the 5×5 matrix [A|v] is invertible. Show Ax = v is solvable when [A|v] is singular.
- 14. Find the echelon forms U, basis and the dimension of the four fundamental subspaces of:

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{pmatrix}.$$

- 15. Without computing A, find bases for the 4 fundamental subspaces: $A = \begin{pmatrix} 1 & 0 & 0 \\ 6 & 1 & 0 \\ 9 & 8 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$.
- 16. Let A be $m \times n$ with rank r. Suppose there are right hand sides b for which Ax = b is not solvable.
 - (a) What inequalities must be true between m, n and r?
 - (b) Explain why $A^T y = 0$ has non-trivial solutions.
- 17. Fill in the blanks: Let A be an $m \times n$ matrix, with rank r.
 - (a) If A has linearly independent columns, then $r = \dots$, the nullspace is \dots , and the row space is \dots .
 - (b) If Ax = b always has at least one solution, then the solutions to $A^Ty = 0$ is/are ____. (Hint: Find r).
 - (c) If m = n = 3 and A is invertible, then a basis for (i) N(A) is ____, (ii) C(A) is ____, (iii) $N(A^T)$ is ____ and (iv) $C(A^T)$ is ____. Do the same for the 3×6 matrix $B = \begin{pmatrix} A & A \end{pmatrix}$.
 - (d) If m = 7, n = 9 and r = 5, then the dimension of (i) N(A) is ____, (ii) C(A) is ____, (iii) $N(A^T)$ is ____ and (iv) $C(A^T)$ is ____.
 - (e) If m=3, n=4 and r=3, then $C(A)=\ldots$ and $N(A^T)=\ldots$.
 - (f) If B is obtained by exchanging the first two rows of A, then the fundamental subspaces which remain unchanged are ---.
 - (g) With B as above, if (1,2,3,4) is in the left nullspace of A, write down a non-zero vector in the left nullspace of B.

- 18. Let $v_1, v_2, v_3, v_4 \in \mathbb{R}^3$ be vectors such that:
 - (i) Span $\{v_1, v_2, v_3, v_4\} = \mathbb{R}^3$ and (ii) the vectors $\{v_2, v_3, v_4\}$ are linearly independent.

For each of the following statements, state if it is true or false. Justify.

- (a) The vectors $\{v_1, v_2, v_3, v_4\}$ are linearly independent.
- (b) The vectors $\{v_1, v_2, v_3\}$ form a spanning set for \mathbb{R}^3 .
- (c) The vectors $\{v_2, v_3\}$ are linearly independent.
- (d) For any other vector v_5 in \mathbb{R}^3 , the vectors $\{v_1, v_2, v_3, v_4, v_5\}$ form a spanning set for \mathbb{R}^3 .
- (e) The vectors $v_2 + v_3$, $v_2 + v_4$, $v_3 + v_4$ are linearly independent.
- 19. True or False. Give a good reason if it is true, or a counter-example if it is false.
 - (a) If the columns of a matrix are dependent, so are the rows.
 - (b) The column space of a 2×2 matrix is the same as its row space.
 - (c) The column space of a 2×2 matrix has the same dimension as its row space.
 - (d) The columns of a matrix are a basis for its column space.
 - (e) If AB = 0, then C(B) is contained in N(A) (and the row space of A is contained in the left null space of B).
 - (f) A and A^T have the same number of pivots.
 - (g) A and A^T have the same left null space.
 - (h) If the row space equals the column space, then $A = A^T$.
 - (i) If $A^T = -A$, then the row space of A equals its column space.
 - (j) If the vectors v_1, \ldots, v_n span a subspace V, then $\dim(V) = n$.
 - (k) If v_1, \ldots, v_n are linearly independent in a vector space V, then $\dim(V) \geq n$.
 - (l) If W is a subspace of V, then $\dim(W) \leq \dim(V)$.
 - (m) $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$. (Hint: How are C(AB) and C(A) related?)
 - (n) The intersection of two vector spaces cannot be empty.
 - (o) If Ax = Ay, then x = y.
 - (p) If a square matrix A has independent columns, then so does A^2 .
- 20. Let $\mathbb{P} = \{a_0 + a_1X + a_2X^2 + \cdots + a_nX^n : a_i'\text{s} \text{ are in } \mathbb{R}\}\$ be the set of polynomials. Show that \mathbb{P} is a real vector space under usual addition and scalar multiplication. Can you find a linearly independent set of size 2? 3? 50?
- 21. Let $\mathbb{P}_{\leq 2} = \{a_0 + a_1X + a_2X^2 : a_0, a_1, a_2 \text{ are in } \mathbb{R}\}\$ be the set of polynomials of degree two or less.
 - (a) Show that $\mathbb{P}_{\leq 2}$ is a subspace of \mathbb{P} .
 - (b) Show that Span $\{1, X, X^2\} = \mathbb{P}_{\leq 2}$.
 - (c) Find a basis for $\mathbb{P}_{\leq 2}$ and its dimension.
- 22. Find a basis for $\text{Span}\{\cos(x), \sin(x)\}\$ in \mathbf{F} , the vector space of real-valued continuous functions on [0, 1].

*******₌₌******