Multi-Core Toy CPU Hardware Specification (Unified L1 Version)

1. Overview

- **Architecture:** 2-core, unified L1 per core, shared L2, 32-bit word size.
- **Pipeline:** 5 stages (IF, ID, EX, MEM, WB) with hazard detection and forwarding.
- Caches:
 - Each core has a **unified L1 cache** (instructions + data).
 - Shared **L2 cache** with round-robin arbiter.
- **ISA:** Minimal toy RISC-like ISA, 32-bit instructions.
- **Atomicity:** LL/SC with per-core reservations, enforced via MESI and invalidations.
- **Test Harness:** Two cores execute interleaved LL/SC increments/decrements of a shared counter.

2. System Architecture

- **Core count:** 2 (extendable).
- Clock/reset: Shared clock and async reset.
- Program loading:
 - Instructions and data preloaded into **L2 memory** from program. hex.
 - No separate instruction ROMs.
- Core reset PCs: Configurable per core (e.g., Core0 = 0x0000_0000, Core1 = 0x0000_1000).

3. Instruction Set Architecture (Toy ISA)

Opcode	Mnemonic	Semantics
0000	NOP	No operation
0001	LL rd, [addr]	Load-Linked (set reservation)
0010	SC rs, [addr]	Store-Conditional (commit if reservation valid)
0011	ADD rd, rs1, imm/rs2	Integer addition
0100	SUB rd, rs1, imm/rs2	Integer subtraction
0101	BRZ rs, offset	Branch if zero

Opcode Mnemonic Semantics

0110 JMP target Unconditional jump

1111 HALT Halt on retire

- **Registers:** 32×32 -bit.
- Encoding: [31:28]=opcode, [27:24]=rd, [23:20]=rs1, [19:16]=rs2, [15:0]=imm.

4. Pipeline & Hazards

- 5 stages: IF, ID, EX, MEM, WB.
- Hazard resolution:
 - Forwarding from EX/MEM/WB.
 - 1-cycle stall for load-use hazards.
 - · Branch flush on taken branch.
- HALT retires in WB stage (realistic stop).

5. Cache Hierarchy

Unified L1 Cache (per core)

- Size: parametric.
- Ports: **IF and DATA**.
- Arbitration: **priority DATA** > **IF** (to reduce load stalls).
- MESI state per line.
- LL/SC reservation bits per line.
- IF fetches are always read-only (no reservations).

L2 Cache (shared)

- Central backing store (array).
- One request per cycle.
- Two-master round-robin arbiter selects between cores' L1 requests.

6. Coherence Protocol (MESI)

- Instruction fetches → S or E states only.
- Data writes may trigger invalidation snoops.

Reservation invalidated when snoop occurs or line evicted.

7. Atomic Operations

- LL: Read from memory, set reservation on cache line.
- **SC:** Write back only if reservation still valid.
 - Success → commit write, clear reservation.
 - Failure → return SC_Success=0, no write.

8. Test & Verification Infrastructure

Testbench (multicore_full_sim.sv)

- Two cores, unified L1s, shared L2.
- program.hex loaded into L2.
- Self-check at HALT: final shared counter = 0.

Watchdog

- Terminates after MAX_CYCLES if cores don't halt.
- Dumps:
 - PC of both cores
 - Last 5 retired instructions per core
 - SC success/fail counts
 - Shared memory dump around counter

Metrics

- SC success/fail counts per core always reported.
- Retire trace buffer for debugging deadlocks.

9. Debug Features

- SC success/fail counters.
- Circular retire trace (last 5 instructions).
- Watchdog memory dump.
- Assertions:

- No LL/SC on IF fetches.
- Counter bounded sanity checks.

10. Future Roadmap

- Exceptions & interrupts.
- Multiply/divide instructions.
- Associative L1, write-back buffers.
- Branch prediction.
- MMU / paging.
- Extend arbiter to N-core.
- FPGA prototyping.