BST02: Using R for Statistics in Medical Research

Part B: Basic use of R

Eleni-Rosalina Andrinopoulou

Department of Biostatistics, Erasmus Medical Center

■ e.andrinopoulou@erasmusmc.nl

24 - 28 February 2020

Using R

- ► R is a command-based procedural language
 - write and execute commands
 - use and define functions
- You may write the commands in the R console (Windows) or in a shell (Linux)

You will become more familiar with the syntax as you use it

Using R (cont'd)

- Strongly advisable to use a suitable text editor Some available options:
 - RWinEdt (for Windows; you also need WinEdt installed)
 - ► Tinn-R (for Windows; http://sciviews.org/Tinn-R/)
 - Rkward (for Linux)
 - ► Emacs (w. ESS, all platforms)
 - Visual Studio (for Windows)
 - Rstudio (all major platforms; http://www.rstudio.org/)
 - for more check http://www.sciviews.org/_rgui/projects/Editors.html

Using R (cont'd)

- ► For this course: Rstudio (http://www.rstudio.org/)
 - ► free
 - works fine in Windows, MacOS and Linux
 - helpful with errors

Using R (cont'd)

- ► Can I use R without Rstudio?
- ► Can I use Rstudio without R?

Practical Examples

► Package survival - pbc data set

id	time	status	trt	age	sex	bili	chol
1	400	2	1	58.76523	f	14.5	261
2	4500	Ο	1	56.44627	f	1.1	302
3	1012	2	1	70.07255	m	1.4	176
4	1925	2	1	54.74059	f	1.8	244
5	1504	1	2	38.10541	f	3.4	279

- ▶ id: case number
- ▶ time: number of days between registration and the earlier of death, transplantation, or study analysis in July, 1986
- ▶ status: status at endpoint, 0/1/2 for censored, transplant, dead
- ▶ trt: 1/2/NA for D-penicillmain, placebo, not randomised
- **age**: in years
- ► sex: m/f
- bili: serum bilirunbin (mg/dl)
- ► chol: serum cholesterol (mg/dl)

More details:

https://stat.ethz.ch/R-manual/R-devel/library/survival/html/pbc.html

► What is a scalar/vector/matrix

id	time	status	trt	age	sex	bili	chol
1	400	2	1	58.76523	f	14.5	261
2	4500	0	1	56.44627	f	1.1	302
3	1012	2	1	70.07255	m	1.4	176
4	1925	2	1	54.74059	f	1.8	244
5	1504	1	2	38.10541	f	3.4	279

7

id	time	status	trt	age	sex	bili	chol
1	400	2	1	58.76523	f	14.5	261
2	4500	0	1	56.44627	f	1.1	302
3	1012	2	1	70.07255	m	1.4	176
4	1925	2	1	54.74059	f	1.8	244
5	1504	1	2	38.10541	f	3.4	279

id	time	status	trt	age	sex	bili	chol
1	400	2	1	58.76523	f	14.5	261
2	4500	Ο	1	56.44627	f	1.1	302
3	1012	2	1	70.07255	m	1.4	176
4	1925	2	1	54.74059	f	1.8	244
5	1504	1	2	38.10541	f	3.4	279

id	time	status	trt	age	sex	bili	chol
1	400	2	1	58.76523	f	14.5	261
2	4500	0	1	56.44627	f	1.1	302
3	1012	2	1	70.07255	m	1.4	176
4	1925	2	1	54.74059	f	1.8	244
5	1504	1	2	38.10541	f	3.4	279

id	time	status	trt	age	sex	bili	chol
1	400	2	1	58.76523	f	14.5	261
2	4500	0	1	56.44627	f	1.1	302
3	1012	2	1	70.07255	m	1.4	176
4	1925	2	1	54.74059	f	1.8	244
5	1504	1	2	38.10541	f	3.4	279

- Common questions
 - ► What is the average age?
 - ► What is the average bili?
 - ► What is the average chol?
 - ▶ What is the percentage of females?
 - What is the average bili and chol?

Basics in R

- ► Elementary commands: **expressions** and **assignments**
- ► An expression given as command is evaluated printed and discarded
- ► An **assignment** evaluates an expression and passes the value to a variable the result is not automatically printed

Expression is given as a command,

103473

[1] 103473

▶ However, it cannot be viewed again unless the command is rerun.

In order to store information, the expression should assign the command

```
x <- 103473
```

Х

[1] 103473

► Basic arithmetics

► Complicated arithmetics

- ► R is case sensitive, e.g.,
 - "sex" is different than "Sex"
- Commands are separated by a semi-colon or by a newline
- Comments can be put anywhere, starting with a hashmark #: everything to the end of the line is a comment
- Assign a value to an object by <- or =</p>

- Missing values
 - ► are coded as NA (i.e., not available) is.na()
- ► Infinity
 - ▶ is coded as Inf (plus infinity) or -Inf (minus infinity) is.finite()
- Not a number
 - ▶ is coded as NaN (Not a Number). Example:

0/0

[1] NaN

Demos ► Basic R R html

Common R Objects

► There are different kinds of variables

id	time	status	trt	age	sex	bili	chol
1	400	2	1	58.77	f	14.5	261
2	4500	Ο	1	56.45	f	1.1	302
3	1012	2	1	70.07	m	1.4	176
4	1925	2	1	54.74	f	1.8	244
5	1504	1	2	38.11	f	3.4	279

- ▶ in R Everything (data, results, ...) is an object
- ► In order to list the created variables use objects() or ls()

```
objects()
```

▶ In order to remove everything:

```
rm(list=ls(all=TRUE))
```

► To investigate a specific object (e.g. pbc)

```
str(pbc[,c("id", "time", "status", "trt", "age", "sex", "bili", "chol")])
'data.frame': 418 obs. of 8 variables:
 $ id : int 1 2 3 4 5 6 7 8 9 10 ...
 $ time : int 400 4500 1012 1925 1504 2503 1832 2466 2400 51 ...
 $ status: int 2 0 2 2 1 2 0 2 2 2 ...
 $ trt : int 1111222212...
 $ age : num
               58.8 56.4 70.1 54.7 38.1 ...
 $ sex : Factor w/ 2 levels "m", "f": 2 2 1 2 2 2 2 2 2 2 ...
 $ bili : num
               14.5 1.1 1.4 1.8 3.4 0.8 1 0.3 3.2 12.6 ...
 $ chol : int
               261 302 176 244 279 248 322 280 562 200 ...
```

The simplest data structures are:

- numeric : quantitative data
- ► character : qualitative data
- ► integer : whole numbers
- ▶ logical : TRUE or FALSE
- factors: TRUE or FALSE

To find out what type of vector you have you can use the mode function

```
mode(pbc$age)
```

[1] "numeric"

- Every object in R has a class
 - Vectors have the same type of elements
 - ► Matrices have the same type of elements
 - ▶ Data.frames and lists do not need to have the same type of elements
 - Lists may have elements of different length and type

▶ Differences between **Vector**, Matrices, Data.frames and Lists

```
pbc[1:6, c("age")]
```

[1] 58.76523 56.44627 70.07255 54.74059 38.10541 66.25873

Differences between Vector, Matrices, Data.frames and Lists

```
pbc[1:6, c("age", "bili", "chol")]

age bili chol

1 58.76523 14.5 261

2 56.44627 1.1 302

3 70.07255 1.4 176

4 54.74059 1.8 244

5 38.10541 3.4 279

6 66.25873 0.8 248
```

▶ Differences between Vector, Matrices, **Data.frames** and Lists

```
pbc[1:6, c("id", "sex", "bili", "chol")]
```

```
id sex bili chol
1 1 f 14.5 261
2 2 f 1.1 302
3 3 m 1.4 176
4 4 f 1.8 244
5 5 f 3.4 279
6 6 f 0.8 248
```

Differences between Vector, Matrices, Data.frames and Lists

```
list(pbc[1:6, c("sex")], pbc[1:2, c("sex", "bili")], pbc$age[1:4])
[[1]]
\lceil 1 \rceil f f m f f f
Levels: m f
[[2]]
  sex bili
1 f 14.5
2 f 1.1
[[3]]
[1] 58.76523 56.44627 70.07255 54.74059
```

Create a vector

```
vec <- c(1, 2, 3, 4, 5)
vec
```

[1] 1 2 3 4 5

vec <- c(1:5)
vec

[1] 1 2 3 4 5

Create a matrix

```
vec <- c(1, 2, 3, 4, 5, 6)
mat <- matrix(vec, 3, 3)
mat</pre>
```

```
[,1] [,2] [,3]
[1,] 1 4 1
[2,] 2 5 2
[3,] 3 6 3
```

```
mat <- matrix(vec, 3, 3, byrow = TRUE)
mat</pre>
```

```
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
```

Create a data frame

```
dtf <- data.frame(pbc$sex, pbc$age)</pre>
dtf[1:3,]
  pbc.sex pbc.age
        f 58.76523
        f 56.44627
        m 70.07255
dtf <- data.frame(Gender = pbc$sex, Age = pbc$age)</pre>
dtf[1:3.]
```

```
Gender Age
1 f 58.76523
2 f 56.44627
3 m 70.07255
```

Create a list

```
list1 <- list(vec = c(1:5), mat = pbc[1:2, c("age", "sex")])
list1
$vec
[1] 1 2 3 4 5
$mat
       age sex
1 58.76523 f
2 56.44627 f
```

Demos

► Common R Objects R html

Importing Data and Saving your Work

- read.table() and its variants
 - note: use forward slashes or double backward slashes in the file names, e.g.,
 - "C:/Documents and Settings/User/Data/file.txt" or
 - "C:\Documents and Settings\User\Data\file.txt"

- Specialized functions for importing data from other statistical packages
 - packages: foreign, Hmisc and readxl
 - read.spss(), read.csv(), read.dta(), sas.get(), \textbf{\textcolor{red}{read_excel()}}, etc.

Importing Data and Saving your Work (cont'd)

- ▶ Is() lists R objects in a session
- save()
 - can be used to save a list of R objects
 - ▶ a binary file with all the objects available in your last R session
 - platform independent
- You can load your saved R objects using load()
 - be careful about overwriting
- Using saveRDS and readRDS you can save and read a single R object
 - The result has to be assigned to a variable

Importing Data and Saving your Work (cont'd)

Create a csv, xls or text file from an R object

```
write.csv(mydata, "c:/mydata.txt")
write.table(mydata, "c:/mydata.txt", sep="\t")
library(xlsx)
write.xlsx(mydata, "c:/mydata.xlsx")
```

Importing Data and Saving your Work (cont'd)

Demos

► Importing and Saving R

html

Data Transformation

- Round continuous variables
- numeric variables to factors
- Compute new variables
 - transform variables
- ► Matrices of wide ← long format
- Missing values

Round continuous variables

```
id time status trt age sex bili chol
1 1 400 2 1 59 f 14.5 261
2 2 4500 0 1 56 f 1.1 302
3 3 1012 2 1 70 m 1.4 176
4 4 1925 2 1 55 f 1.8 244
5 5 1504 1 2 38 f 3.4 279
6 6 2503 2 2 66 f 0.8 248
```

numeric variables to factors

```
id time status trt age sex bili chol
1 1 400 2 D-penicillmain 58.76523 f 14.5 261
2 2 4500 0 D-penicillmain 56.44627 f 1.1 302
3 3 1012 2 D-penicillmain 70.07255 m 1.4 176
4 4 1925 2 D-penicillmain 54.74059 f 1.8 244
5 5 1504 1 placebo 38.10541 f 3.4 279
6 6 2503 2 placebo 66.25873 f 0.8 248
```

- Compute new variables
 - transform variables

```
id
      time status trt
                         age sex bili chol time years
   13.33333
               2 1 58.76523 f 14.5 261
                                           1.111111
2 150 00000
               0 1 56.44627 f 1.1 302
                                          12.500000
   33.73333
               2 1 70.07255 m 1.4 176 2.811111
   64.16667
               2 1 54.74059 f 1.8 244 5.347222
               1 2 38.10541 f 3.4 279 4.177778
5
   50.13333
                   2 66.25873 f 0.8 248
6
   83.43333
                                           6.952778
```

▶ Matrices of wide ⇔ long format

```
id time status trt age sex bili chol
1 1 400 2 1 58.76523 f 14.5 261
2 2 4500 0 1 56.44627 f 1.1 302
3 3 1012 2 1 70.07255 m 1.4 176
4 4 1925 2 1 54.74059 f 1.8 244
5 5 1504 1 2 38.10541 f 3.4 279
6 6 2503 2 2 66.25873 f 0.8 248
```

▶ Matrices of wide ⇔ long format

```
id futime status trt age day sex bili chol
1 1 400 2 1 58.76523 0 f 14.5 261
2 1 400 2 1 58.76523 192 f 21.3 NA
3 2 5169 0 1 56.44627 0 f 1.1 302
4 2 5169 0 1 56.44627 182 f 0.8 NA
5 2 5169 0 1 56.44627 365 f 1.0 NA
6 2 5169 0 1 56.44627 768 f 1.9 NA
```

Missing values

```
id time status trt age sex bili chol
14 14 1217
             2 2 56.22177 m 0.8
                                  NA
40 40 4467
             0 1 46.66940 f 1.3
                                  NA
41 41 1350
             2 1 33.63450 f 6.8
                                  NA
42 42 4453
             0 2 33.69473 f 2.1
                                   NA
45 45 4025
             0 2 41.79329 f 0.6
                                  NA
49 49 708
                2 61 15264
                           f 0.8
                                   NA
```

Demos

► Data Transformation R html

Data Exploration

- Common questions
 - ▶ What is the mean and sd for age?
 - ▶ What is the mean and sd for time?
 - What is the median and interquartile range for age?
 - What is the percentage of placebo patients?
 - What is the percentage of females?
 - What is the mean and sd for age in males?
 - ▶ What is the mean and sd for baseline serum bilirubin?

Data Exploration (cont'd)

► Common questions: Hints

► Check functions: mean(...), sd(...), percent(...), median(...), IQR(...)

Data Exploration (cont'd)

Demos

► Data Exploration R html

Data Visualization

- ▶ It is important to investigate each data set using plots
 - ▶ Descriptive statistics for continuous and categorical variables
 - Distributions of variables
 - Distributions of variables per group
 - Extreme values
 - ► Linear/nonlinear evolutions

- ► R has very powerful graphics capabilities
- ► Some good references are
 - ▶ Murrel, P. (2005) R Graphics. Boca Raton: Chapman & Hall/CRC.
 - Sarkar, D. (2008) Lattice Multivariate Data Visualization with R. New York: Springer-Verlag.

- ► Traditional graphics system
 - package graphics
- ► Trellis graphics system
 - package lattice (which is based on package grid)
- Grammar of Graphics implementation (i.e., Wilkinson, L. (1999) The Grammar of Graphics. New York: Springer-Verlag)
 - packages ggplot & ggplot2

Continuous variables

```
plot(pbc$age, pbc$bili)
```


Important plotting functions

- plot(): scatter plot (and others)
- **▶ barplot()**: bar plots
- boxplot(): box-and-whisker plots
- ► dotchart(): dot plots
- ▶ hist(): histograms
- ▶ pie(): pie charts
- qqnorm(), qqline(), qqplot(): distribution plots
- ▶ pairs(): for multivariate data

Continuous variables

Continuous variables

Continuous variables per group

Continuous variables per group

Continuous variables per group

Categorical variables

Demos

► Data Visualization R html

Useful Summary: Data manipulation

Common R objects

- ► c()
- ▶ matrix()
- data.frame()
- ▶ list()
- cbind(), rbind()

Exploration

- ▶ is.na()
- ▶ dim()
- ▶ mean(), sd()
- ▶ median(), IQR()
- percent()

Import/Save/Present

- ▶ head()
- ► save(), saveRDS()
- ▶ load(), readRDS()
- write.csv(),
 write.xlsx(),
 write.table()

Transformation

- ► factor()
- reshape()
- ▶ order()
- complete.cases()

Visualization

- plot(), legend()
- ▶ hist()
- barchart()
 - boxplot()
 - ▶ par()
 - xvplot()

Other

- install.packages()
- ► library()
- ▶ ls(), getwd()

Indexing/Subsetting

- ▶ When transforming and analyzing data we often need to select specific observations or variables.
 - Examples: Select ...
 - the 3rd element for vector age
 - the 3rd column of the pbc data set
 - ▶ the sex of the 10th patient
 - the baseline details of the 5th patient
 - the serum cholesterol for all males
 - the age for male patients or patients that have serum bilirubin more than 3
 - the first measurement per patient

- ▶ This can be done using square bracket ([]) notation and indices.
- ► Three basic types
 - position indexing
 - ► logical indexing
 - name indexing

Position indexing with vectors:

► Use a **positive** value to select an element

```
x <- c(6:17)
x
[1] 6 7 8 9 10 11 12 13 14 15 16 17
x[2]
```

[1] 7

Use multiple positive values to select multiple elements

```
x[c(2,3,4)]
```

[1] 7 8 9

Position indexing with vectors:

▶ Use dublicated positive values to select the same elements

```
x <- c(6:17)
x

[1] 6 7 8 9 10 11 12 13 14 15 16 17

x[c(2,2,2)]
```

[1] 7 7 7

Position indexing with vectors:

Use a negative value to remove an element

```
x <- c(6:17)
x

[1] 6 7 8 9 10 11 12 13 14 15 16 17

x[-5]
```

Positive and negative indices cannot be combined

Logical indexing with vectors:

 Use logical index of the same length to select elements where the value is TRUE

```
x <- c(6:10)
y <- c(TRUE, FALSE, FALSE, FALSE)
x[y]</pre>
```

Γ17 6

Logical indexing with vectors:

[1] 8 9 10

▶ Logical indexing is often used in combination with conditions

```
x < -c(6:10)
x[x > 7]
Γ17 8 9 10
x[x > 7 \& x > 9]
[1] 10
x[x > 7 | x > 9]
```

Name/character indexing with vectors:

When a vector has been named the element names can be used as indices

```
x <- c(foo=5, bar=4, one=7, two=12, three=2)
x[c('foo', 'one')]</pre>
```

```
foo one 5 7
```

▶ Use the function names to obtain the names

Indexing with Matrices:

- Indexing matrices as similar to indexing vectors but with double index
 - The first position denotes the rows
 - ► The first position denotes the columns

```
mat <- matrix(1:6, 3, 3)
mat</pre>
```

```
[,1] [,2] [,3]
[1,] 1 4 1
[2,] 2 5 2
[3,] 3 6 3
```

```
mat[2, 2]
```

Indexing with Matrices:

When we leave a position blank all elements are selected

```
mat <- matrix(1:6, 3, 3)
mat</pre>
```

```
[,1] [,2] [,3]
[1,] 1 4 1
[2,] 2 5 2
[3,] 3 6 3
```

```
mat[2, ]
```

[1] 2 5 2

Indexing with Data Frames:

▶ When you use a single index the data.frame acts like a list of variables

```
DF <- data.frame(x = 1:4,

y = c(35, 23, 14, 45))

DF <- data.frame(x = 1:4,

y = c(35, 23, 14, 45))

DF[2]

x y
1 1 35
2 2 23
3 3 14
4 4 45

DF <- data.frame(x = 1:4,

y = c(35, 23, 14, 45))

3 14
4 4 45
```

Indexing with Data Frames:

When you using a double index, indexing works like a matrix When you using a double index, indexing works like a matrix

```
DF <- data.frame(x = 1:4,
 y = c(35, 23, 14, 45))
```

DF <- data.frame(x = 1:4, y = c(35, 23, 14, 45)) DF

```
      x
      y

      1
      1
      35

      2
      2
      23

      3
      3
      14

      4
      4
      45
```

Indexing with Data Frames:

Logical indexing in data frame

```
pbcDF <- data.frame(pbc)
head(pbc[pbc$sex == "m", 1:7])</pre>
```

```
    id
    time
    status
    trt
    age
    sex
    ascites

    3
    3
    1012
    dead
    1
    70.07255
    m
    0

    14
    14
    1217
    dead
    2
    56.22177
    m
    1

    21
    21
    3445
    censored
    2
    64.18891
    m
    0

    24
    24
    4079
    dead
    1
    44.52019
    m
    0

    48
    48
    4427
    censored
    2
    49.13621
    m
    0

    52
    52
    2386
    dead
    1
    50.54073
    m
    0
```

Indexing with Data Frames:

► Logical indexing in data frame

```
pbcDF <- data.frame(pbc)
head(pbc[pbc$age > 30 | pbc$sex == "f", 1:7])
```

```
id time
          status trt age sex ascites
1 400
            dead
                  1 58.76523
2 4500 censored 1 56.44627
3 1012
            dead
                  1 70.07255
4 1925
            dead
                  1 54.74059
5 1504 transplant
                  2 38.10541
            dead
6 2503
                  2 66.25873
```

Indexing with Data Frames:

► Logical indexing in data frame

```
pbcDF <- data.frame(pbc)
head(pbc[pbc$age > 30 & pbc$sex == "f", 1:7])
```

```
id time
          status trt age sex ascites
1 400
            dead
                  1 58.76523
2 4500 censored 1 56.44627
4 1925
            dead
                  1 54.74059
5 1504 transplant
                  2 38.10541
6 2503
            dead
                  2 66.25873
7 1832
        censored
                  2 55.53457
```

Indexing with Lists:

"m" "f" "f"

\$z

► Lists can be subsetted in the same way as vectors using - Note that the output is a list

```
mylist \leftarrow list(y = c(14, 45), z = c("m", "f", "f"))
mylist
$y
[1] 14 45
$z
[1] "m" "f" "f"
mylist[2]
```

Indexing with Lists:

► Double square brackets can be also used - Note that the output is a vector

```
mylist \leftarrow list(y = c(14, 45), z = c("m", "f", "f"))
mylist
$y
[1] 14 45
$z
[1] "m" "f" "f"
mylist[[2]]
[1] "m" "f" "f"
```

Indexing with Lists:

[1] 14 45

\$ provides a convinient notation to extract an element by name -Note that the output is a vector

```
mylist \leftarrow list(y = c(14, 45), z = c("m", "f", "f"))
mylist
$y
[1] 14 45
$z
[1] "m" "f" "f"
mylist$y
```

Useful Summary: Indexing/Subsetting

Vectors

- **>** []
- **[""]**

Matrices

(,]

Data frames

- **(**,]
- **▶** [[]]

Lists

- **(**]
- **(**[]]
- **>** \$

Useful Summary: Indexing/Subsetting (cont'd)

Demos

► Indexing Subsetting R html

Practicals

► Basic Use R html