UNCLASSIFIED

AD 650 230

SUPPLEMENTARY DIELECTRIC-CONSTANT AND LOSS MEASUREMENTS ON HIGH-TEMPERATURE MATERIALS

J. Iglesias, et al

Massachusetts Institute of Technology Cambridge, Massachusetts

January 1967

Processed for . . .

DEFENSE DOCUMENTATION CENTER DEFENSE SUPPLY AGENCY

U. S. DEPARTMENT OF COMMERCE / NATIONAL BUREAU OF STANDARDS / INSTITUTE FOR APPLIED TECHNOLOGY

Supplementary Dielectric-Constant and Loss Measurements

on ${\bf High}\text{-}{\bf Temperature}$ Materials

bу

J. Iglesias and W. B. Westphal

Laboratory for Insulation Research Massachusetts Institute of Technology Cambridge, Massachusetts

Nonr-1841(10)

Contracts: AF 33(615)-2199

January, 1967

SUPPLEMENTARY DIELECTRIC-CONSTANT AND LOSS MEASUREMENTS ON HIGH-TEMPERATURE MATERIALS

Ъy

J. Iglesias and W. B. Westphal

Laboratory for Insulation Research Massachusetts Institute of Technology Cambridge, Massachusetts

Abstract: This is a summary report on dielectric constant and loss measurements made in this laboratory after 1958, excepting high-dielectric-constant materials. The emphasis is on high-temperature materials (those with melting points above 1200°C), but data on some plastics and liquids are also included. The samples of solids include oxides of Al, Be, Cr, Hf, Mg, Si, Ta, Th, Y, Zr, nitrides of B and Si, LaAlO₃ and various silicates, rocks, and minerals. Pure samples of Al₂O₃, BeO, MgO, SiO₂, and BN all show loss tangents < 0.01 at 1500°C in the microwave region. Various phenomena of electric loss, e.g., transconductance, dipole orientation, and molecular vibrations are clearly discernible. A fundamental analysis will be undertaken in connection with our over-all research program on dielectric spectroscopy.

General Properties

The obvious prime requisites for any high-temperature solid insulator are high melting point and wide optical-energy gap. The first parameter for most of the elements and compounds of interest is known and available in physics hand-books. The optical-energy gap refers to the one-electron band model and is the energy required to excite an electron into the conduction band. These ultraviolet absorption data are incomplete. Electrical conduction is often greatly enhanced by impurities and in some materials predominantly ionic; in practice the optical-energy-gap data are only a very rough guide. As has been previously pointed out, electrical losses in the microwave region in pure materials are due to infrared absorption spectra as well as charge transfer. Materials with impurities show increased losses in three ways: (1) increased conduction, i.e., charge transfer; (2) dipole relaxation losses; (3) broadened infrared spectra. The general appearance of the electrical spectra is illustrated in Fig. 1; in practice the individual loss regions may overlap considerably.

¹⁾ Technical Report 191, Laboratory for Insulation Research, Massachusetts Institute of Technology, Cambridge, Mass., July, 1964.

Summary Technical Report No. 1 (AFML-TR-65-396), November, 1965, Laboratory for Insulation Research, Massachusetts Institute of Technology, Cambridge, Mass.

Fig. 1.

Dielectric spectra.

Melting_Points

A discussion of the factors influencing the melting points of the elements and some of the binary compounds has been given previously. 1) As there is only one insulating element for high temperatures (diamond), most of the materials of interest are diatomic. The largest category are the oxides; their melting points are arranged according to the periodic chemical table (Table 1). About 25 of these are known to have melting points above 1600°C. The heavy atoms, in general supply many electrons for conduction at moderate temperatures. All known borides, carbides, halides, nitrides, silicides, and sulfides, with the exception of those listed in Table 2, have melting points (or decompose rapidly) below 1600° or are known to exhibit high conduction. Table 2 also lists compounds with 3 or 4 elements which have high melting points. The 25 high-temperature oxides of Table 1 and compounds listed in Table 2 comprise the present chemical list of compounds worthy of consideration. If the temperature limit is raised to 2000 °C and the heavy and multivalent atoms are eliminated, the list reduces to C, BeO, MgO, Al₂O₃, CaO, Sc₂O₃, ZnO, SrO, Ca₂SiO₄, MgAl₂O₄, Be₃N₂, BN, AlN, Si₃N₄.

Measurement Techniques

When only small samples were available, two-terminal measurements were made in the lumped-circuit range, 10² to 10⁷ Hz, using a laboratory-built bridge.³⁾

³⁾ Tech. Rep. 201, R. E. Charles, K. V. Rao, and W. B. Westphal, Lab. Ins. Res., Mass. Inst. Tech., Cambridge, Mass., October, 1966.

Table 1. Melting points of oxides in degrees centigrade.

Li	Be	В	С	N	0	F						
>1 700	2530	46 0	-566	-908	-192O ₃	-						
Na	Mg	Al	Si	Р	S	Cı						
1275s	2800	2015	1713	580	.d70 - 95	-						
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni			
490	2580	<u>-</u>	1830 Ti ₂ O ₃ 2130	1970	2435	1705	1565	1935	199	0		
Cu	Zn	Ga	Ge	As	Se	Br						
1 32 6	1975	1900	1115	193	350 s	-						
Rb	Sr	Y	Zr	NЪ	Мо	Tc	Ru	Rh	Pd			
570	2430	2410	2715	1780	795	-	255	d1 100	870			
Ag	Cd	In	Sn	Sb	Te	I						
d300	4900	V850	1127	656	733	-						
Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt			
490	1923	2315	2812	1800	1500	d1000	500	d1 100	d55	0		
Au	Нg	Tl	Рb	Bi	Po	At						
-	d 500	717	888	860		-						_
Fr	Ra	Ac										
<u>-</u>	-	-							<u> </u>			
Ce	Pr	Nd	Pm	Sm	Eu	Gd :	гь Ду	Но	Er	Tm	ΥЪ	Lu
2600	-	1900		-	-	-	- 234) -	_	-	-	
Th	Рa	บ	Np									
3050	-	2500	-									

s = sublimes; d = decomposes.

For larger samples three-terminal measurements could be made, and microwave measurements were performed using the standing-wave method with shorted-line and dielectric-filled resonant cavities. 3) Materials that are very sensitive to atmosphere are noted in the data section, and more than one set of data is given. The microwave measurements with Pt-foil covered dielectrics are relatively free from atmospheric or diffusion effects. The highest temperature reached was about 1700°C.

Table 2. Binary tri-element compounds.

Tri-element	Melting point (°/C)	Binary	Melting point (°/C)
BeAl ₂ O ₃	1870	CáS	1750 (100 A)
$CaAl_2O_4$	1600	HſN	3305
CaCr ₂ O ₄	2090	MgS	d > 2000
Ca ₃ (PO ₄) ₂	1670	Mo ₂ C	2687
Ca ₂ SiO ₄	2130	SiO	> 1702
CaZrO	2550	SrS	> 2000
LiAlO ₂	1 600	ThC2	2655
(or Li2Al2	O ₄)	UB ₂	2365
MgAl ₂ O ₄	2135	-	
Mg ₂ SiO ₄	1910		
KAISiO4	ca. 1800		
SrSiO ₄	> 1750		
SrSO ₄	1605		

Materials Measured and Their General Characteristics

The frequency characteristics of all materials measured under this program show common trends. The dielectric constant κ' (relative to vacuum) increases at low frequencies with high temperatures. The loss factor κ'' at high temperatures decreases with increasing frequency but seldom is proportional to 1/f. The slower change implies that the conductivity σ (= $\omega \kappa'' \epsilon_0$) rises with frequency. Plots of $\log \sigma$ vs. the reciprocal of absolute temperature show deviations from the straight line given by the relation

$$\sigma = \sigma_0 e^{-A/kT}$$
.

The microwave temperature runs show the loss tangent steadily rising with temperature except for Brush B-6 beryllia and Carborundum alumina. These have sharp absorptions which look like vibration spectra. Exact interpretation will depend on data taken versus frequency at fixed temperature (given in the Index to the data).

Wide-Band Spectra. The dielectric spectrum of elemental insulators (we need consider only carbon in diamond form) consists ideally of two parts: low-frequency conduction loss due to thermal excitation of electrons from the valence to conduction band and electronic vibration spectrum in the ultraviolet region. In the microwave region conduction losses should predominate; we estimate that the loss tangent should reach 0.01 at about 2100°C. No data are available to indicate if best crystals approach the ideal, a strongly bonded material (m. p. > 3500°C) with large energy gap (5 to 7 eV).

The cubic diatomic insulators - MgO is the best example - ideally show only three regions of loss. The vibration spectrum of the magnesium-oxygen bond is added to low-frequency conduction loss and electronic ultraviolet spectrum. The optical energy gap of MgO is 8.7 eV. Measurements of conductivity show much lower gaps (2 to 4.6 eV), partly because of impurities and partly because of vacancies existing at high temperatures.

We have data in the far infrared on SrF₂ indicating agreement b tween extrapolated vibration loss and microwave data (p. 62).

The heavy diatomic insulators - thorium oxide is a cubic example - have strong bonds with many electrons (m.p. = 3000°C), but only moderate temperatures are needed to excite electrons for conduction. Our data on a technical grade ThO₂ ceramic show appreciable conduction at 500°C and a dipolar response at lower temperatures.

The noncubic materials have more than one infrared vibration mode. The reflectivity of hexagonal Al_2O_3 shows a complicated response with high losses over the region 8 to 30 μ (1 to 3.8 x 10¹³ Hz). Optical data indicate a band gap of above 8 eV at 25°, decreasing to about 6.9 eV at 900°C. Conductivity data indicate much lower activation energies, probably due to oxygen vacancies and ready acceptance by the lattice of many metallic impurities.

Another hexagonal oxide, BeO in ceramic form, has recently been measured in this laboratory⁵⁾ and shows very low high-temperature conductivity in agreement with the reported statement that BeO exhibits lower conductivity than any other

⁴⁾ Based on the one-electron model, see Ref. 1, pp. 20 and 21, and no change in energy gap with temperature. Measurements on Ge show appreciable reduction gap with temperature.

⁵⁾ Summary Tech. Rep. No. 1 (AFML-TR-65-396), Lab. Ins. Res., Mass. Inst. Tech., Cambridge, Mass., November, 1965, pp. 18, 19.

oxide. 6)

The heavy noncubic oxides all exhibit high conduction at 500 °C. 7)

High-purity yttria⁸ shows lower losses than previously reported for a single crystal; ⁹ losses to 500°C are comparable with those of high-purity alumina.

Nitrides of B, Al, Si, and Mg_2S are of interest for high-temperature work. Data on a commercial ceramic and pyrolytic material of S_3N_4 have been published previously. ¹⁰⁾

Summary. Pure oxides of alumina, beryllium, magnesium, and silicon have electrical properties suitable for microwave windows to at least 1500°C. Boron nitride is also suitable and has considerably lower temperature coefficient of dielectric constant. While the dominating microwave loss process is conduction in low-purity materials, the infrared absorptions are also important.

Dielectric Data

The following pages of data list materials as inorganic or organic. The first section is arranged alphabetically according to chemical name. The organics are listed alphabetically according to manufacturer or supplier. The data show permittivity relative to vacuum κ' or ϵ'/ϵ_0 ; dielectric loss factor κ'' or ϵ''/ϵ_0 ; loss tangent, tan δ , a. c. conductivity σ in ohm-cm. The magnetic parameters shown are the permeability relative to vacuum $\kappa'_{\rm m}$ or μ'/μ_0 , magnetic loss factor $\kappa''_{\rm m}$ or μ''/μ_0 , and magnetic loss tangent tan $\delta_{\rm m}$. Refer to Tech. Rep. 189 for conversion to other parameters such as attenuation factor, propagation constant, intrinsic impedance, etc. 11)

In the index are listed many materials measured in our laboratory since 1958. Data already given in our technical reports are not repeated, but references are given. The index also lists the temperature (T°C) at which the microwave loss tangent reached 0.01 in our measurements.

⁶⁾ E. Ryshkewitch, "Oxide Ceramics," Academic Press, New York and London, 1960, p. 330.

⁷⁾ Ref. 5, p. 24.

⁸⁾ Ref. 5, p. 25.

⁹⁾ W. B. Westphal, Tech. Rep. 182, Lab. Ins. Res., Mass. Inst. Tech., October, 1963.

¹⁰⁾ Ref. 5, pp. 26, 27.

¹¹⁾ Tech. Rep. 189, Lab. Ins. Res., Mass. Inst. Tech., May, 1964.

I. INORGANIC COMPOUNDS

		т ^о с	T.R. 182	Summary T.R. 1	T.R.203
Aluminum nitride					
AlN, hexagonal, MP > 2200) (in N ₂)				
Carborundum, hot-pressed	_	670			15
Aluminum oxide					
Al ₂ O ₃ , hexagonal, MP 205	o°C				
Single crystal					
Linde			24,25		
Multicrystalline					
Alberox A-950		892			15
A-962		820	45		
American Lava 576		1050	45		
614		1035	45		
719		960	45		
Armour Research, densit	y = 3. 32				16, 17
E-11					18, 19
E-20					20
A-76					21 - 23
A-75					24- 26
mixtu	res				27
Carborundum 1542		1085	46		
Centralab 205					28
206					28
Coors AD-99		1 300	46		
AD-995		~1500	46		
MC-2014		-	46		
ŔŔ		800	47		
Coors-NBS 10F2		800			28
Diamonite B-890-2		960	47		
P-3662		975	47		
Frenchtown 7225					28
General Electric Lucalox (365	29,48		
·	1960)	1000			29
Interntl. Pipe & Ceramic					29
	rC-301				
	C-302-H	~900			29
11 11 11 11	C-351	~1000			30

		0		Summary	
Aluminum oxide (cont.)	T°C	T.R. 182	T.R. 1	T.R. 203	
Minneapolis Honeywell A	930 810	48 48			
	A-203				
National Beryllia Alox	National Beryllia Alox		48		
Norton 99.5%		1300	49		
Raytheon		-			30
Steatit-Mag A. G. A-18		-	49		31
U.S. Stoneware 610		1230	49		
A-212		1235	49		
A-216		665	50		
A-312	- 0_	675	50		
Std. 305		955	50		
Western Gold Platinum		1100	50		32
Modified		1000	- 1		32
	AL-400	1030	51		32
	AL-500	1200	. 1		J L
	AL-995	1280	51		
Parison florada	AL-1009	1390	51		
Barium fluoride	00				
BaF ₂ , cubic, m.p. 1280					
Single crystal	T a b				33, 34
M. I. T., Crystal Phys.	Lab.	-			33, 31
Beryllium oxide Single crystal, hexagona	1 m n 2530				
Electronic Space Produc	_				34
Multicrystalline					3.
American Lava 754		-	_		34
Brush B-6		1060			
B-7-6		1320			
B-7-37		1320			
F-1		1420			
Coors BD-98		-	-		34
National Beryllia, cold-	pressed	1190			5.
Berlo		-	-		34
	silicon carbid see SiC	e,			
North American transluc	ent			18,19	
Beryllium orthosilicate (Be	2SiO ₄), trigo	nal			
Single crystal					
Electronic Space Produc	cts				35

THE NAME OF STREET

	T°C	T. R. 182	Summary T.R. 1	T.R. 203
Bismuth silicate				35
Boron nitride, hexagonal, 3000°C sub- limes				36
Carborundum, hot-pressed	1130	53		
High-Temperature Materials, pyrolytic		31		37
National Carbon, hot-pressed HBN	1400			38
" " HD-0056	-			39
" " HD-0086	940			39
Raytheon, pyrolytic	1740			40
Calcium carbonate				
Single crystal mineral (Calcite), hexagonal, decomposes at 894°C				41
Calcium fluoride				
Single crystal, cubic, m.p. 1360°C				
M. I. T., Crystal Physics Laboratory				42
M. I. T., Ceramics Laboratory				43
Cerium fluoride, m.p. 1460°C				
Ceramic, M.I.T., Lab. Ins. Res.				44
Chromium oxide				
Single crystal, hexagonal, m.p. 1990°C				
Linde		32		
Cobalt oxide				
Single crystal, cubic, m.p. 1935°C				
M. I. T., Crystal Physics Lab.				44
Cobalt oxide/nickel oxide mixed crystal,				
M. I. T., Crystal Physics Lab.				44
Copper halides, m.p. 430°-605°C				
Pressed-powder, M. I. T., Lab. Ins. Re	es.			44
Hafnium oxide, cubic, m.p. 2810 ⁰ C				
Multicrystalline				
Zircoa			20,24	
Hydrogen oxide, glacial, ices, see Sec. II				
Lanthanum aluminate, m.p. 1612°C				
Single crystal				
National Lead		33		
Lead bromide, orthorhombic, m.p. 373°C				
Single crystal, M.I.T., Crystal Physic see Final Report under Contract No.			:h 11, 1965	45
Lead bromide/lead chloride mixed crystal	s, see a	above		45
Lead chloride				45

			Summary	
Magnesium-aluminum silicate (cordierite)	τ°C	T.R. 182	T.R. 1	T.R. 203
Multicrystalline, Raytheon	T = 550			45
Magnesium carbonate, d 350°				
Pressed powder				45
Magnesium oxide, cubic, m.p. 2800°C				
Multicrystalline				
Kodak Itran-5				46
M.I.T., Lab. Ins. Res.		34,36		
Minneapolis Honeywell				
Magnesium metasilicate, steatite fired to clinoensteatite, monoclinic, decomposes at 1570°C				
Multicrystalline				
Bell Telephone Labs. F-66	T = 780			46
Internatl. Pipe & Ceramic TC 503				46
Magnesium orthosilicate (fosterite), orthorhombic, m.p. 1890°C				
Multicrystalline				
Steatite-Magnesia AG Frequenta M				47
Magnesium titanate, MgTiO3				
Multicrystalline, U.S. Sonics				48
Magnesium fluoride, tetragonal, m.p. 856°C				
Single crystal, Columbia Univ.				49
Nickel oxide, cubic, m.p. 1990°C				49
Rubidium manganese fluoride, RbMnF3				
Single crystal, cubic, m.p. 1050°C				
M. I. T., Materials Center				49
Silicon				
Single crystal, cubic, m.p. 1420°C, Brown Univ.				50
M. I. T., Crystal Physics Laboratory				50
Silicon carbide				
Multicrystalline				
Carborundum				51
With BeO				
National Beryllia Corp. Carberlox				52
Silicon dioxide				
Single crystal quartz mineral, hexagonal-cubic, m.p. 1710°C (Prog. Rep. No. XXXIV, L.I.R., p. 65)				52, 53

City and discride forms	T ^O C	T. R. 182	Summary T.R. 1	T.R. 203
Silicon dioxide (cont.) Fort Monmouth	1 0	1. R. 102	1.1.1	1. R. 203
Glasses (glass mica mixtures and glass				
ceramics, see Sec. II)	T >1400	E 2		
American Optical Amerail, clear	T >1400	53		
a disapar.	T = 1165	53		
Corning 7940	T >1500			54,55
C. E. 101	T =1170	38, 39, 55		
Mixed Silicate glasses				
Corning Lab. No. 119BUC				55
Corning, Code 1723				55
Lancaster 7352				56
7 35 7				56
L1957				57
L8100				58
Owens-Corning X 994				59
Pittsburgh Plate Glass, plate glass				59
" sheet glass				59
Silicon nitride, sublimes at 1900°C				
Pyrolytic, North American Res.			27	
Ceramic, Haynes Stellite			26	
Silver iodide				
Pressed powder, L.I.R.				60
Sodium chloride + BiCl ₂ , M. I. T., Crys Physics Lab., see Quart. Prog. Rep No. 8,				
Strontium fluoride, cubic, m.p. > 1450				
Single crystal, M.I.T., Crystal Physics Lab.				61,62
Tantalum oxide, orthorhombic, de- composes at 1470°C				
Ceramic, Ciba powder, fired at L.I.	R.	42		
Thallium bromide crystal, M.I.T., Crystal Physics Lab.				63
bromide-chloride cryst., ditto				63
bromide-iodide " "				63
Thallium chloride crystal				63
Thallium fluoride pressed powder				63
Thallium iodide, polycrystalline				63
Thorium oxide, cubic, m.p. 3050°C				
Ceramic, L.I.R., M.I.T.		40,41		
Zircoa				

	0			Summary	
	$T^{o}C$	T.R.	182	T.R. 1	T.R. 203
Vanadium oxide (V_2O_3) , pressed powder					63
Yttrium oxide (Y ₂ O ₃), m.p. 2410°C					
Single crystal, M.I.T., L.I.R.		43	,		
Ceramic, Zircoa				25	
Zinc oxide (ZnO), hexagonal, m.p. 1975°C					
Single crystal, Airtron Division, Litton Industries					63
Zirconium oxide (ZrO ₂), monocubic, m.p. 2715°C					
Ceramic Zircoa, tech. grade				21,24	
" nuclear grades				22-24	
"Zircolite", AFML					64
Zirconium silicate (zircon)					
Single crystal, mineral					65, 66, 67
II. MINERALS, ROCKS, SOILS, M Single crystal minerals	ISCELI	LANEC	ous II	NORGANICS	
Apatite					68, 69
Astrophyllite					69
Benitoite					69
Beryl					70., 71
Calcite, see Sec. I					
Neptunite					71
Quartz, see Sec. I					
Spodumene					72, 73,74
Topaz					75, 76
Tourmaline					76
Zircon, see Sec. I					
Crushed minerals					
Halite					77
Limonite					77
Magnesite					77
Quartz sand					77
Rocks					
Basalt, Hawaian, dense					78
" porous					78 70
Granite, Quincy					79 79
" Virginia					17

	T.R. 203
Greenstone, Virginia	80
Limestone	80
Rhyolite	81
Sandstone, almond	31
Soils	
Hawaian	82
Mass, loams	83
Fullers earth, Foxboro	82
Desert sand	83
Miscellaneous inorganics and mixtures	
Ices, glacial	84, 85, 86
CFI 1003, 1006 attenuator materials	87
Corning 7941, 9606, see T.R. 182, p. 55	
Ferrites, General Ceramics:	
3308D, 3310, 3321, 3330, "Q"-3	88
R-i, R-4, R-5, R-6	89, 90
"Havelex" glass-bonded micas:	
Types 1080, 1090, 1101, 2101, 2103, 2801, 2803	91
"Mycalex" 410, 500, 555, 560, 620	91, 92, 93
Asphalt pavement and asphalts	94
Concrete pavement	94
III. ORGANIC COMPOUNDS	
American Cyanamid, cyanoethylated	
cotton molding	95
"Cymac" 325	96
AVCO Research Labs., polyvinylidene	
fluoride	97
H. I. Crowley Co., polyiron attenuator	97
Dow Corning Corp., molding compound 306	98
"Silastic" RTV 501	
RTV 521	
1602	
RTV 5350	
S-6538	
"Sylgard" 182	
DC -92 -007	
Dupont de Nemours and Co., "H" film	99, 100, 101
"Teflon" FEP	101, 102
"Teflon" TFE	103

T. R. 203

	· · · · ·
"Teflon" 100,	102,103
"Teflon" 9033	102
Electronized Chemical Corp, "Polyguide"	104
Emerson and Cumming, A-19 attenuator material	104
General Electric Silicone Rubber SE 900	105
"Lexan"	105
Minnesota Mining and Metallurgy, "3M" board	106
Nopco Chemical Corp., polyurethane foam	106
Polymer Corp., "Fluorosint"	106
Rex, William Brand, Div. American Enka Rexolite, 1422	107
"Rexolite" 2200	108
"Rexolene" P	109
Rogers Corp., "Duroid" 5870	110
Shell Chemical, "Epon" 828 + PMDA epoxies	111,112
Tellite Corp., "Tellite" 3A	112
Union Carbide Corp., Plastics Div., polysulfone	113
U.S. Air Force Materials Laboratory, Wright-Patterson Air Force Base,	
Fiberglass laminates	113, 114
IV. LIQUIDS	
Dow Chemical, "Dowtherm" A	115
Esso, "Teresso" oil	
·	115,116
V. FOODSTUFFS	
Cooking oil, Kremax, Armour	117
Beef steak, lean, frozen and vacuum dried	113
Raw potatoes	118
Potatoe flakes	118
Potatoe chips	118
Instant coffee, powder	119
Instant tea, powder	119
Eggwhite	119
Bread	119
Bread dough	119

Aluminum nitride, hot pressed The Carborundum Co.

Aluminum oxide

Alberox Corp. A-950 3.663 g/cm³

т ^о С	κ¹	tan δ			
25	9.01	.00051			
100	9.14	.00055			
200	9.30	.00074			
300	9.46	.00108			
400	9.53	.00149			
500	9. 79	.00192			
600	9. 95	. 00237			
700	10.13	.00288			
750	10.22	.00320			
800	10.31	. 00 367			
850	10.41	. 0051			
892	10.50	.010			
3.8	3.89 - 3.61 GHz				
	8.500 GHz				
25	8.98	. 00058			

Alumina, high-purity

Armour Research Foundation

From Alcoa 99.99% Al with HF, fired air 1820°C

Spectrographic analysis: concentration of elements in parts per million:

Si Mg Fe Ca Cu 111 58 38 3 5

Density 3.32 g/cm³

Fired silver electrodes

Alumina (cont.)

Armour Research Foundation

Density 3.32

T. A. S. S. S. A. A.

200000

20000

Alumina, high-purity

Armour Research Foundation

From Reynolds 99.999% Al with HF, fired air 1840° C

Spectrographic analysis: concentration of elements in parts per million:

Si Mg Fe Ca Ni Cr Cu 60 30 60 15 5 4 3

Density 3.23 g/cm³

v, frequency in Hz

Alumina (cont.)

Alumina oxide with added silicic acid Fired air 1890°C 850 ppm Si, 550 ppm Na Fired silver electrodes Density 3.49 g/cm³

Alumina with 10% titanate addition

Alumina with 10% titanate addition

Change in dielectric constant with temperature for various aluminas at ca. 4000 MHz

Alumina (cont.)

Frenchtown 7225 8.52 GHz, 25° C $\kappa' = 8.8 \pm 0.05$ $\tan \delta = 0.0013 \pm 0.0002$ on two samples

Raytheon
Aluminas 1959

Alumina A-18
Density 3. 676 g/cm³

Steatit-Magnesia Aktiengesellschaft

Alumina, Western Gold and Platinum

Al-300 modified Density 3.771 g/cm³ 4. 1 to 3.85 GHz

TOC	κ¹	tan ô
25	9. 39	. 000 37
122	9.48	. 000 37
185	9. 55	. 000 38
258	9.63	. 000 38
339	9.74	. 00041
393	9.79	. 00045
500	9. 95	. 00055
572	10.08	. 00064
788	10.43	. 00120
881	10 63	00219

•••	· · · · ·	
1	At 25°C	
f (Hz)		
107	9. 44	. 00012
10 ⁹	9. 40	. 000 35
3 x 10 ⁹	9. 39	. 000 37
8.5 × 10 ⁹	9. 38	. 00046

Alumina, Western Gold and Platinum

A1-500

Density 3.665 g/cm

At 25°C

f (Hz)	κ '	tan δ
107	9.07	. 00026
10 ⁹	9.03	. 00062
3 x 10 ⁹	9.02	.00070
8.5x10 ⁹	see th	e graph below

Barium Fluoride

Massachusetts Institute of Technology Crystal Physics Laboratory

Barium fluoride (cont.)

Beryllium oxide BeO crystal KSC 7011A Electronic Space Products Inc.

> E || c axis 10^2 to 10^7 Hz $\kappa' = 7.41 \pm 0.1$ tan $\delta < 0.0006$

American Lava		Coors Porcelain Co.		National Beryllia Corp.				
AlSiMag 754 (99.5% BeO)		Beryllia BD98		Berlox				
Density 2.851 g/cm ³		8. 52 GHz		8. 52 GHz				
8.52 GHz		$T^{\mathbf{o}}C$	κ¹	tan δ	T°C	κ¹	tan 8	
$\mathbf{T}^{\mathbf{o}}\mathbf{C}$	K1	tan δ	25	6.67	.00050	25	6.64	.00043
25	6.86	.00031	300	6.87	.00072	300	6.77	.00068
300	6.98	. 00055	50 0	7.13	.00102	500	6.98	.00093
500	7.13	. 00062						

Beryllium silicate crystal KSC 7013

Electronic Space Products Inc.

E || optic axis

f (Hz)

 κ^{τ} tan δ

102 105

5.1 + . 5 . 0025

. 0003 <u>+</u> 2

 $\mathrm{Bi_4Si_3O_{12}}$ ceramic

Laboratory for Insulation Research

Boron nitride

Average dielectric constant versus density

X-ray density 2.25 g/cm³

 $\kappa' \perp$: electric field \perp direction of unidirectional hot press or electric field \perp deposition plane.

BN, pyrolytically deposited, High-Temperature Materials, Inc., "Boralloy." The microwave data show a small peak possibly due to loss of impurities (perhaps OH ions) at about 800°C. Graphite electrodes and prepurified N₂ used in low-frequency measurements which showed variations among different samples.

Hot-pressed boron nitride, grade HBN

Carbon Products Division Union Carbide Corp. (Formerly National Carbon Co.)

4. 95 to 4.88 GHz

Density 2.054 g/cm³ l" cylinder, 8.52 GHz

T°C	E	$\kappa^{\scriptscriptstyle 1}$	tan δ
25	Τ	4. 38	. 00050
25	11	4, 52	. 00056
100	11	4. 52	. 00056
200	11	4.51	. 00061
300	H	4.50	. 00064
400	H	4.49	. 00066
50 0	"	4.48	. 00073

Hot-pressed boron nitride Grade HD0056

Grade HD 0086 Density 1. 940 g/cm³ 5. 17 to 4. 96 GHz

8.52 GHz

T°C	E	κ	tan δ
25	I)	4.31	. 00053
25	T	4.10	. 00055
100	1	4.08	. 00059
200	Ī	4.07	. 00066
300	Ī	4.06	. 00075
400	1	4.05	, 00086
500	7	4,05	. 00102

Density 1.23 g/cm³

At 5.74 to 5.65 GHz

Density 1.23 g/cm³ At 9.21 to 9.04 GHz

Calcium carbonate
Calcite, single crystal mineral

Ell c, crystal No. 1

Calcium fluoride doped with Y_2O_3

M.I.T., Department of Metallurgy, Ceramics Lab.

Cerium fluoride, at 1 MHz

M. I. T., Lab. Ins. Res.

Cobalt oxide

M. I. T., Crystal Physics Lab.

Copper halide

M.I.T., Lab. Ins. Res.

Cobalt oxide-nickel oxide

At 25°C, 1 MHz

 κ^{\prime} tan δ

12.9 .0005

CoO CoO-NiO 40 . 39

50/50 mole percent

For complete data see:

K. V. Rao and A. Smakula,J. Appl. Phys. 36, 2031 (1965).

pressed powders Measured values at 14 GHz

ample /X-ray density/ den Sample

density

tan δ

4.85/5.17 6.33 < .001 CuBr CuC1 3.68/4.10 6.52 < .001 CuI

27.8 . 112

M. I. T. Crystal Physics Laboratory

Electric field dir		field dir.	At 1 MHz, 25°C		Activation energy for
	para	allel to	κ'	tan δ	"intrinsic" conduction
PbBr2	a	4.72	52.7	. 0052	-
-	ь	8.06	56. 3	.0033	-
	c	9. 55	25.3	. 0033	-
PbCl ₂	a	4.53	47.4	. 11	. 30 eV
	Ъ	7.62	51.3	. 065	. 28 eV
	c	9.05	24.8	.051	.42 eV
PbCl ₂ -I 85/15	_		28.5	.016	1.1 eV

For additional data on these materials see: A. Smakula, Tech. Rep. No. 6, (Final Report under Contract Nonr 1841(88)), M. I. T., Crystal Phys. Lab., March 11, 1965.

Magnesium aluminum silicate Cordierite ceramic, Raytheon Co.

Magnesium carbonate, hard-packed fine powder, reagent grade, at 8.52 GHz, 25°C:

κ' tan δ
1.282 .0109

Density . 189 g/cm³

Transparent MgO ceramic IRTRAN-5

Density = 3.57 g/cm^3 , 25°C

f (Hz)	ĸ	tan δ	
10 ²	9. 82	.0014	
8.5×10^9	9. 72	. 00045	

Kodak

Magnesium metasilicate, multicrystalline, F-66

Bell Telephone Laboratories

14 CHz

TOC	κ¹	tan δ
25	6.37	.0012
100	6.39	.0012
200	6.43	. 0012
300	6.47	.0012
400	6.52	. 0013
500	6.58	. 0015
600	6.67	. 0020
700	6.75	. 0047
800	6.85	. 0165

International Pipe and Ceramic Corp. (Gladding McBean and Co.)

Steatite TC-503, 8.52 GHz

Magnesium titanate (MgTiO₃) Density 3.21 g/cm³

U.S. Sonics

Manganese fluoride crystal (MnF₂)

Columbia University

f (Hz) tan δ

103 7.2+.2 . 043

E 1 to platelike, unoriented crystal

107 6.7+.2 <.004

Nickel oxide, NiO, single crystal M. I. T., Crystal Physics Lab.

At 25°C, 1 MHz

 $\kappa^i \approx 11.9$

 $\tan \delta = .0154$

For complete data see: K. V. Rao and A. Smakila, J. Appl. Phys. 36, 2031-2038 (1965).

Rubidium manganese fluoride

M. I. T., Crystal Physics Lab.

Silicon crystal, intrinsic

M. I. T., Crystal Physics Lab.

at 2	5°C
------	-----

f (Hz)	K¹	tan δ	(ohm-cm)
103	-	-	4100
1.4×10^{10}	12.0	.0090	1190

Silicon crystal, undoped

Brown University

Apparent properties of 1 cm cube sample with evaporated gold electrodes

Silicon single crystal

Radiation damaged single crystal

Silicon carbide type attenuator materials

Carborundum

Nominal resistivity (ohm-cm)	Temperature	f (Hz)	κ¹	tan δ	Measured resistivity (ohm-cm)
35	25	3×10^8	167	0.96	37.2
	25	109	107	0.686	24.4
	25	3×10^{9}	60	0.58	17.2
	25	8.5 x 10 9	47 7	0.55	8.05
0.1	25	8.5 x 10 ⁹	2130	1.85	0.069
50	25*	106	10,150	1.17	151
-	25 ^{**}	10 ⁶	29,450	1.36	45
	25 [*]	107	2810	1.21	56.5

^{*} Two-terminal measurement.

Nominal 50-ohm material at 10⁷ Hz

^{**} Four-terminal measurement, different sample

Carberlox 20, 30, 40
BeO and silicon carbide ceramic

National Beryllia Corp.

Silicon dioxide, natural quartz crystal, Y-cut plate, silver paint electrodes, at 25°C

Fort Monmouth

Quartz, continued

Y-cut plate At 25°C, $\kappa' = 4.40$ $1/\kappa' \left(\frac{d\kappa'}{dt}\right) = -2.8 \times 10^{-5}/^{\circ}C$ Z-cut plate, E || optic axis At 25°C, $\kappa' = 4.64$ $1/\kappa' \left(\frac{d\kappa'}{dt}\right) = -3.9 \times 10^{-5}$ C

Silver electrodes

Pt electrodes

Silicate glasses

Fused silica, Corning 7940

Corning Glass Works

Microwave data on fused silica, Corning 7940, density = 2.20027 g/cm³. Data with foil taken on one sample at 6.1 GHz, data with paint taken on second sample at 4.3 GHz.

Corning 7940 continued

Corning Lab. No. 119BUC magnetic glass

Corning Glass Works

25°C,	8.5	2 GHz
-------	-----	-------

κ'	tan δ	$\kappa_{\mathbf{m}}^{i}$	$tan \delta_{m}$
20.8	0.157	1, 006	0.372

Corning Code 1723 glass

14 GHz		24 GHz			
т°С	κι	tan δ	T°C	κ¹	tan δ
25	6. 18	. 0069	25	6. 13	. 0075
85	6, 21	. 0067	85	6.16	.0075
144	6.24	. 0065	155	6, 20	.0074
234	6. 27	. 0063	251	6. 24	.0073
305	6. 31	. 0061	333	6, 28	. 0074
339	6, 33	. 0060	419	6. 32	. 0073
396	6. 36	. 0059	446	6. 35	.0073
464	6. 40	. 0057	510	6, 39	. 0074
502	6. 43	. 0056			

7357

Resistivities measured at 100 Hz No. 7352

No. 7357

Lancaster glasses (cont.)

L1957

Lancaster glasses (cont.)

No. L 8100

Silicate glasses (cont.)

X 994

Owens-Corning

Pittsburgh Plate Glass Co.

Plate glass

Sheet glass

Silver iodide, pressed powder at 10,000 psi, 27°C, aged several weeks unless noted

M. I. T., Laboratory for Insulation Research

Strontium fluoride

M. I. T., Crystal Physics Lab.

For more complete data see K. V. Rao and A. Smakula, J. Appl. Phys. 37, 319 (1966).

Wide-frequency-range data on SrF_2 crystal. At frequencies above microwaves, reflection data obtained with several optical instruments were combined and Kramer's-Kronig relations used to calculate κ' and κ'' .

Thallium halides

M. I. T., Crystal Physics Lab.

Material	κ'. 25°C 10 ⁶ Hz	κ', 4 ⁰ Κ	tan δ, 25°C 10 ⁶ Hz	Activation energy for conduction in eV
TIF pressed	19.7	-	. 00015	-
T1C1	31.9	-	. 00006	. 73
TlBr	30.4	-	. 00005	. 77
TlI polycrystalline	20.4	20.0	. 00024	-
KRS6 (T1C1) _{.7} -(T1Br) _{.3}	32. 2	38. 4	. 900075	. 71
KRS5 (TlBr) .42 ~(TH) .58	32.4	-	. 00016	. 66
TH + CsI	32.5	39. 4	. 000068	. 65

For more complete data see reports under Contract AF 19(628)-395.

 $Vanadium oxide (V_2O_3)$

M.I.T., Lab. Ins. Research

Pressed powder samples, ~185°C:

f (Hz)	κ' meas.	κ' corr. to full density	Density g/cm ³	
10 ⁵	6. 52	15. 2	2, 60	
10 ⁶	4. 72	14. 5	2.28	

Zinc oxide

Airtron Div. of Litton Industries

Measurements of 1 and 300 MHz with electric field 1 to caxis. At 1.4 GHz tield was perpendicular.

Zirconium oxide, "Zircolite" ceramic

Air Force Materials Laboratory Wright-Patterson Air Force Base, Ohio

Zirconium silicate (zircon), ZrSiO₄, all samples from one crystal

E || c Sample 1, run 1 N₂ to 200°C, air to 500°C, Ag electrodes

E || c Sample 2, run 1, same conditions as for Sample 1

Zircon (cont.)

E || c
Sample 2, run 2
Argon atmosphere throughout
the run, Ag electrodes

E \(\triangle c\)
Sample 1, run 1

N₂ to 200°C,
air to 500°C,
Ag electrodes

Zircon (cont.)

E 1 c Sample 1, run 2, N₂ to 500°C, Ag electrodes

E \perp c Sample 1, run 3, Ar to 500°C, Pt electrodes

II. Minerals, Rocks, Soils, Miscellaneous Inorganics

Single crystal minerals

Apatite

 $\mathbf{E} \perp \mathbf{c}$

Sample 1, run 1, 25°C

1 MHz, $\kappa' = 10.1$

E ⊥ c Sample 1, run 2, repeat of run 1

Astrophyllite		$10^2 \mathrm{Hz}$	$10^3 \mathrm{Hz}$	10 ⁴ Hz
Unoriented crystal	K¹	15.42	15.17	14.83
	tan 6	0.035	0.021	0.014
Benitoite	κ¹	23.8	19.6	19.2
BaTiS ₃ O ₉ , unoriented cryst.	tan 6	0.374	0.090	0.0195

Beryl

E II c

Beryl, E⊥ c

Neptunite, $(Na, K)_2$ (Fe, Mn) (Si, Ti) $_5$ O₁₂, κ' 8. 33 8. 19 data on unoriented crystal tan δ 0.0335 0.068

Spodumene

E || a • o rising temperature ▼ lowering temperature

Spodumene (cont.)

E II b

I.6 22 IDOO/T*K

E #

Spodumene (cont.)

Ell c

E II a

E || c

Tourmaline

E i c, piezoelectrically active at 1 MHz

Multicrystalline minerals

Halite (rock-like pieces of porous salt), at 50% R.H., 25°C, 14 GHz

Sample	κ¹	tan δ	Density (g/cm^3)
l, surface	4.52 - 4.63	. 0056 0057	1.808
2, "	4.68 - 4.82	. 0106 0103	1.861
3, ''	3.81 - 3.83	.01270109	1.565
4, "	3.95 - 4.00	.01040134	1.670
5, l'down	3.69 - 3.94	.01980125	1.500
6, "	3, 25 - 3, 50	.00770113	1, 422
7, 31 "	4.17 - 4.18	.036046	1. 646
7, dried	4.12 - 4.19	.01930206	1.640

Limonite, crushed, density 1.733 g/cm³ Harvard College Observatory 10⁹ Hz 3 x 10⁹ Limonite, 8.52 GHz TOC Sample 1, coarse, 25°℃ tan ô tan b κ^{\prime} = 3.95 - 4.01 depending on rotation 3,73 .046 25 .0108 4.17 $\tan \delta = 0.18 - 0.059$.0134 3,63 .0193 475 3.65 Sample 2, fine, 25°C 404 .0076 3.60 .0113 3.62 325 3.61 . 0057 3,58 . 0084 $\tan \delta = 0.0122 - 0.0127$.0073 250 0048 3.57 3.61 .0064 185 3.60 . 0045 3.56 TOC Sample 3 tan 6 . 0047 3.55 . 0059 107 3.58 3.82 .0012 .0055 .0057 3.53 22 3.56 510 3.60 . 0085 Sample in equilibrium with room 400 3.55 .0047 300 humidity approx. 50%. 3.52 .0039 200 3.50 100 3.48 .0043

Magnesite, crushed powder, hard-packed

 25° C, 50% R.H., 8.52 GHz, $\kappa' = 3.29$, $\tan \delta = .0054 - .0059$, density 1.11 g/cm³

25

.0043

Quartz powder, 8.52 GHz, pre-dried in oven at 100 °C, density 1.22 g/cm³

TOK	K1	tan ô
80	2, 446	. 0021
200	2, 460	.0027
300	2, 472	.0028
400	2, 483	. 0027
500	2, 495	.0031
600	2. 497	. 0035

Rocks

Hawaian, high-density basalt

Hawaian, low-density basalt

- H₂O on dry weight basis 0. 358
 H₂O on dry volume basis 0. 956
 density 2. 6756 g/cm³
- Dry after 3 days in oven at 105°C density 2.669 g/cm³
- ♠ % H₂O on dry weight basis 0.377
 % H₂O on dry volume basis 1.005
 density 2.677 g/cm³

- % H₂O on dry weight basis 0.441
 % H₂O on dry volume basis 0.0617
 density 1.401 g/cm³
- Dry (after 3 days in oven at 105°C density 1. 400 g/cm³
- ♠ % H₂O on dry weight basis 2.71
 % H₂O on dry volume basis 3.79
 density 1. 438 g/cm³

Quincy granite Density 2.631 g/cm³ Temp. run in dry N₂

Virginia granite or marble $\label{eq:constraint} \text{Temperature run in dry N_2}$

Quincy granite

							l k	Hz
т°С		10 ² Hz	10 3 Hz	10 ⁴ Hz	10 ⁵ Hz	$T^{o}C$	K'	σ
25		10.5	9.26 0.0875	8 01 0.0875	2 06 0.0705	26	9, 26	4,50 x 10 ⁻¹⁰
200	tan δ σ κ' tan δ	0 0796 4.64 x 10 ⁻¹¹ 15.4 0 21	4, 5 x 10 ⁻¹⁰ 12 47 0.121	3 9 x 10 ⁻¹⁰ 11 07 0.088	2.76 x 10 ⁻⁸ 9.78 0.090	69 105 147	10, 3 10, 9 11, 5	4,58 4,64 5,31 8,61 x 10 ⁻¹⁰
	đ	1 797 x 10 ⁻¹⁰ 64.5 1 02	32.9 0.60	5, 40 x 10 ⁻⁹ 19, 42 0, 374	4.88 x 10 ⁻⁸ 12.86 0.252 1.797 x 10 ⁻⁷	204 251 305 345	12,51 14,87 19,3 23,4	1.85 x 10 ⁻⁹ 3.38 y 10 ⁻⁹ 5.51 x 10 ⁻⁹
600	σ κ' tan δ	3 65 x 10 ⁻⁹ 293 6 85	1.097 x 10 ⁻¹⁵ 106 2.31 136 x 10 ⁻⁹	4 03 x 10 ⁻⁸ 42.5 1.03 2.43 x 10 ⁻⁷	22.0 0 54 6.60 x 10 ⁻⁷	400 466 553	32, 9 34, 4 81, 3	1.09 x 10 ⁻⁸ 9.5 x 10 ⁻⁸ 9.34 x 10 ⁻⁸
800	tan b	1.114 x 10 ⁻⁷ 4395 14 4 1 116 x 10 ⁻⁶	238 9.65 1.275 x 10 ⁻⁶	F4 3, 05	37.4 1.11	601 700 806	106 172 243	1.36 x 10 ⁻⁹ 4.25 x 10 ⁻⁷ 1.313 x 10 ⁻⁶
1000	σ κ' tan	1 110 X 10	47000 14.0 3 65 x 10 ⁻⁴	6100 12.6 4.26 x 10 ⁻⁴	710 12.4 4.89 x 10 ⁻⁴	874 996	26, 800 45, 900	1 84 x 10 ⁻⁴ 3 57 x 10 ⁻⁴

Virginia Greenstone

Density 2.936 g/cm³, temperature run in dry N_2 (----) R. H. 52%

Limestone, from Lucerne Valley

Raytheon

50% R.H., 25°C, 14 GHz

Sample	κ'	tan δ	Density
1	8.21 - 8.45	.00380080	2.667
2	8, 62 - 8, 64	.01780189	2.646

Rhyolite

Density 2.655 g/cm³, temperature run in dry N₂

Sandstone, almond, oil-bearing as cored, 25°C

Raytheon

Frequency in MHz

			_	•		
Sample		1	3	10	60	100
1	κ'	5.64	5, 23	4. 90	4.55	4.50
	tan δ	0.131	0, 104	0. 084	0.059	0.049
2	κ'	6.13	6. 09	6. 07	6.06	6.06
	tan δ	0.0100	0. 0084	0. 0059	0.0047	0.0051
3	κ'	6. 05	6. 04	6.01	5.91	5. 87
	tan δ	0. 0068	0. 0079	0.00855	0.0095	U. ÛU97
4	κ'	5.33	5. 08	4. 92	4.75	4.73
	tan δ	0.060	0. 057	0. 051	0.036	0 027
5	K'	5.40	5.16	4. 93	4.68	4.61
	tan δ	0.080	0.068	0. 058	0.042	0.032
6		22.9 1.88	11.24 1.39	9. 20 0. 68	6.60 0.338	6, 20 0, 29
7	κ'	6. 15	6.12	6. 10	6.04	6.00
	tan δ	0. 0088	0.0093	0. 0096	0.0102	0.0105

Soils Fullers Earth, at 8.52 GHz

- % H₂O on weight basis 20.0
 % H₂O on volume basis 14.4
 Density 0.8634 g/cm³
- Dry after 3 days in oven at 105°C Density . 7627 g/cm³
 MH2O on dry weight basis = 72.27
- M H₂O on dry weight basis = 72.27 % H₂O on volume basis + 50.60 Density 1.2133 g/cm³

Mass. loams, at 10 MHz, 25°C

Desert sand (Raytheon)

15% R. H. . 25°C, 14 GHz $\kappa' = 2.88$ tan $\delta = 0.0116$ Density = 1 × 43 g/cm²

DIELECTRIC CONSTANTS

Sample,	Density	Temp.			Freque	ency in M	Hz	
Source	(g/cm^3)	(°/C)	110*	150	300	500	1000	2700
Dartmouth Firm ice No. 12	0. 898	-1 5 10 20 30 40 50	3. 22 3. 21 3. 20 3. 18 3. 17 3. 15 3. 14 3. 13	3. 21 3. 20 3. 19 3. 18 3. 16 3. 15 3. 14 3. 13	3. 20 3. 20 3. 19 3. 18 3. 16 3. 15 3. 14 3. 13	3. 20 3. 20 3. 19 3. 18 3. 16 3. 15 3. 14 3. 13	3. 20 3. 20 3. 19 3. 18 3. 16 3. 15 3. 14 3. 13	3. 201 3. 195 3. 188 3. 175 3. 163 3. 151 3. 139 3. 129
Dartmouth Sea ice No. 14	0, 917	-1 5 10 15 20 25 30 40 50	3. 41 3. 33 3. 28 3. 26 3. 23 3. 22 3. 21 3. 19 3. 18 3. 15	3. 38 3. 31 3. 26 3. 24 3. 22 3. 21 3. 20 3. 18 3. 17 3. 15	3. 34 3. 29 3. 25 3. 24 3. 21 3. 20 3. 19 3. 17 3. 16 3. 14	3. 31 3. 27 3. 24 3. 23 3. 20 3. 19 3. 18 3. 16 3. 15 3. 14	3. 28 3. 26 3. 24 3. 22 3. 20 3. 19 3. 17 3. 16 3. 15 3. 14	3. 197 3. 184 3. 173 3. 159 3. 144 3. 133
Tuto Tunnel	0. 902	-1 5 10 20 30 40 50	3. 22 3. 20 3. 19 3. 17 3. 16 3. 15 3. 14 3. 13	3. 21 3. 19 3. 18 3. 17 3. 16 3. 15 3. 14 3. 13	3. 20 3. 19 3. 18 3. 17 3. 16 3. 15 3. 14 3. 13	3. 20 3. 19 3. 18 3. 17 3. 16 3. 15 3. 14 3. 13	3. 20 3. 19 3. 18 3. 17 3. 16 3. 15 3. 14 3. 13	3.197 3.189 3.182 3.170 3.159 3.149 3.138 3.129
Little America	0. 881	-1 5 10 20 30 40 50	3. 09 3. 07 3. 06 3. 04 3. 03 3. 01 3. 00	3.08 3.06 3.05 3.04 3.03 3.01 3.00	3. 07 3. 06 3. 05 3. 04 3. 03 3. 01 3. 00	3.07 3.06 3.05 3.04 3.03 3.01 3.00	3.07 3.06 3.05 3.04 3.03 3.01 3.00	3.065 3.057 3.050 3.038 3.025 3.012 3.000
Artic	0.835	-1 5 10 20 30 40 50	2. 90 2. 89 2. 88 2. 86 2. 85 2. 85 2. 84 2. 83	2.85 2.85 2.84 2.83	2.85 2.85 2.84 2.83	2.85 2.84 2.84 2.83	2.85 2.84 2.84 2.83	2.880 2.875 4.870 2.861 2.852 2.844 2.835 2.827

LOSS TANGENT

Frequency in MHz

Sample, Source	Temp. (º/C)	110*	150	300	500	1000	2700
Dartmouth No. 12	-1 5 10 20 30 40 50 60	.0030 .0019 .00145 .00092 .00059 .00034 .00020	.0022 .00144 .00110 .00068 .00043 .00026 .00014	.00108 .00076 .00055 .00033 .00021 .00013 .00008	.00052 .00040 .00028 .00019 .00013 .00008 .00005	.0004	.00038 .00034 .00030 .00024 .00020 .00016 .00014
Dartmouth No. 14	-1 5 10 15 20 25 30 40 50 60	.039 .026 .0195 .017 .015 .013 .010 .0058 .0028	.037 .025 .0190 .0157 .0130 .0106 .0080 .0045 .0023	.0225 .0200 .0145 .0107 .0091 .0067 .0048 .0026 .0015	.0200 .0130 .0097 .0082 .0068 .0047 .0033 .0017 .00098	.0122 .0080 .0067 .0054 .0045 .0030 .00205 .00112 .00062	.0044 .0029 .00185 .00065 .00030
Tuto Tunnel	See o	data for Da	rtmouth No	. 12 (no me	asurable d	ifference)	
Little America	-1 5 10 20 30 40 50	.0049 .0035 .00286 .0020 .00146 .00105 .00076	.0037 .0026 .00217 .00154 .00116 .00085 .00057	.0018 .0013 .00108 .00078 .00057 .00044 .00030	.00106 .00072 .00056 .00038 .00029 .00025 .00021	. 00054 . 00037 . 00025 . 00018 . 00014 . 00013	.00038 .00032 .00027 .00024 .00020 .00014
Artic	-1 5 10 20 30 40 50	Co	oling failed	- , sample m .00045 .00032 .00022 .00015	e lte d		.00033 .00029 .00024 .00018 .00016 .00014 .00013

Ices

Dartmouth No. 12

Sea ice

CFI 1003

Ceramics for Industry

CFI 1006 At 25°C

Ferrites (cont.)

General Ceramics Division of Indiana General

R-1

R -4

R-5

Havelex, glass-bonded mica At 8.52 GHz, 25°C Haveg Industries, Inc. Taunton Division

Type	K¹	tan 8
1080	6. 35	. 0025
1090	6.17	. 0058
1101	8. 89	. 0027
2101	6. 35	. 0013
2103	9. 2	. 0021
2801	6, 35	. 0020
2803	6. 05 -	. 00255 -
	6. 39	. 0026

Mycalex 410

Note: all Mycalex samples from sheet stock. 10^2 through 10^8 Hz, E \perp sheet. 3×10^8 to 2.4 x 10^{10} Hz, E \parallel sheet.

Mycalex (cont.)

500

555

560

Mycalex (cont.)

	ous Inorgai				Ra	ytheon
Sample No.	Thickness (cm)	Density (g/cm ³)	4	Orientation	κ'	tan δ
1 2 3 4 5	0. 1 0. 1 0. 1 0. 1 0. 91	2. 35	. 754	Face 1 Face 1, 90° Face 2 Face 2, 90°	4. 73 4. 62 5. 03 5. 48 6. 02 5. 53 5. 37 5. 44	.0114 .0103 .0120 .0095 .021 .052 .204 .102
Concret	e pavement	at 40% F	R. H. , 2	5 ⁰ C, 14 GHz	Ra	ytheon
1 2 3	0.1 0.1 0.335	2. 14	2,21	Various Various Face 1 Face 1, 90° Face 2 Face 2, 90°	5. 03-5. 06 5. 06-5. 17 5. 21 5. 20 5. 30 5. 26	.026029 .034030 .059 .0612 .0509
4	0.453	2.04	2.81	Face 1 Face 1, 90° Face 2 Face 2, 90°	4. 71 4. 60 4. 70 4. 55	.0470 .0455 .0487 .0487
Liquid a	ısphalt				£	880
f (H		K¹	tan	δ		
	109	2.46	. 0	017		
	109	2.46	. 0	019		
8.5	× 10 ⁹	2.46	. 0	013		
Solid as	phalt forme	ed by bur	ning liq	uid for 2 days at	: 300°C	
	× 10 ⁶	2.64	. 0	043		
107		2.64	. 0	0 30		
	× 10 ⁷	2.64	. 0	027		
	107	2.64	. 0	025		
8.5	ж 10 ⁹	2.63	. 0	018		

III. ORGANIC COMPOUNDS

(Listed according to supplier)

Cymac 325 American Cyanamid including effect of Van De Graaff irradiation

Polyvinylidene fluoride

AVCO Research

Polyiron (Carbonyl)

H. I. Crowley

Moulding	compound	306				Dow	Corning
	1 GHz		3	GHz		. 52 GHz	
TOC	K'	tan δ	κ'	tan δ	T°C	κ'	tan 6
25	3, 92	.00538	3.87	.00622	-55	3.85	. 0060
76	3.91	.0052	3.86	. 00 58	25	3.84	. 0067
103	3. 90	.0052	3.85	.0058	61	3, 835	. 00655
129	3. 89	. 0051	3.84	.0056	118	3. 825	.CO64
150	3. 87	.0050	3.83	. 00 55	147	3, 82	. 00635
216	3.83	.0050	3.78	. 0051	199	3.807	. 00625
255	3.80	. 0052	3.75	.0051	315	3.74	.00615
305	3.77	. 0056	3, 72	. 0054	400	3. 66	. 0061
410	3.68	.0064	3.63	. 0068	499	3. 57	. 0060
504	3.62	.0058	3. 58	. 0066	296	3. 72	.0061
30 1	3.75	.0048					
C:14: - 1	ח דיין בחו	т ^о с	10	00 MHz	3000 MHz	8500 MF	łz.
Silastic I	K 1 V 501					0,500 1.21	
		-55	K'	3.17	3. 07		
			tan δ	0.025	0.037	2 2-	
		23	κ'	2.89	2. 88	2.87	
			tan δ	0.0053	0.0104	0.0175	•
		150	K'	2.62	2.62		
			tan δ	0.042	0.0045		
1	RTV 521	23	K'	3.33	3. 32	3. 31	
			tan δ	0.0086	0.0153	0.0252	•
]	RTV 1602	-55	K'	3.09	3.03		
			tan δ	0.0220	0.0308		
		23	κ'	2.93	2. 92	2.91	
			tan δ	0.0073	0.0117	0.0187	1
		150	κ'	2.77	2.75		
			tan 6	0.0044	0. 0060		
	RTV 5350	-55	K'	22 .د	3. 14		
			tan δ	0.0234	0. 0287	2.04	
		23	K'	3.06	3. 05	3, 04	•
			tan 5	0.0043	0.0088	0.0166	•
		150	K1	2.82	2. 79 0. 0043		
			tan δ	0.0040			
5	5 - 65 38	-55	K'	3.01	2. 96		
			tan δ	0.0242	0. 0260	2 04	
		23	κ'	2.99	2. 98	2.97	•
			tan δ	0.0069	0.0124	0.018	ľ
		150	K'	2.78	2.77		
			tan δ	0.0039	0.0047		
612	107	-55	κ'	2.90	2.86	2.81	
Sylgard :	102	- 99	κ tan δ	0.0200	0.024	0.029	
		23	K'	2.79	2, 77	2,73	
			tan o	0.0081	0.0120	0.019	9
		150	K'	2.50	2, 48	2.45	
			tan δ	0.0026	0.0040	0.007	3

DC-92.007 8.52 GHz, 25° C, 50% R.H., $\kappa^{1} = 4.92$; $\tan \delta = 0.091$

"H"-film (cont.)

E. I. Dupont de Nemours and Co.

"H"-film (cont.)

E. I. Dupont de Nemours and Co.

Teflon FEP (1963)

Density = 2.153 g/cm³, at 25°C, 8.52 GHz $\kappa' = 2.058$, tan $\delta = 0.00108$

Teflon FEP (1964)

E. I. Dupont de Nemours and Co.

Teflon 9033, Lot 10601, density at $25^{\circ}C = 2.147$, similar for Teflon T-100, Lot 38180, " = 2.152

Teflon 100X (FEP) 1960 and TFE E. I. Dupont de Nemours and Co. Effect of Van De Graaff irradiation, 25°C

TFE-7 (1964)

TFE-6C (1964)

"Polyguide"

Electronized Chemicals Corp.

		3 GHz		8. 52 GHz		% wt.
		κ'	tan δ	κ'	tan δ	increase
As received	25°C	2. 32	. 00034	2. 319	.00030	
	-48°C			2. 320	.00017	
	74°C			2. 300	.00040	
After 24 hrs. H ₂ O		2. 32	. 00047	2. 320	. 00038	,007

Emerson and Cumming A-19 graphite fiber loaded plastic, November 1966

SE 900 Silicone Rubber

Ceneral Electric

 Δ Sample cured 1 hr at 300°F, measured at 50% R. H. \circ Normal cure

Lexan	Gene ral	Electric

f(Hz) κ^{1} tan δ 8.5 x 10⁹ 2.77 .00615 2.5 x 10¹⁰ 2.75 .00593

"3M" boar	d
-----------	---

Minnesota Mining and Metallurgy

		3 GHz		8.52 GHz		% wt.
		ĸ	tan 5	κ¹	tan 8	increase
As received	25 ⁰ C	2. 32	,00038	2.316	. 000 37	
	-48 ⁰ C			2.316	. 00015	
	74°C			2.300	. 00040	
After 24 hrs H ₂ O	25 ⁰ C	2. 32	.00060	2.316	. 00043	

Polyurethane rigid foam, at 399 MHz

Nopco Chemical Corp.

	3.80 1ь	s/cu. ft	7. 54 lbs/cu. ft		
T°F	K	tan δ	κ¹	tan 8	
77	1.087	.00136	1.165	.00242	
116	1.088	.00176	1.170	. 00276	
164	1.093	.00208	1.175	.00344	

Fluorosint (1960)

Polymer Corp.

Wm. Brand Rex Division of American Enka Corp.

Rexolite 1422 (1964),

including effect of Van De Graaff irradiation (1960)

Rexolite 2200 (1964), including effect of Van De Graaff irradiation (1960)

Rexolite 2200 (1965)

		3 (GHz	8.5	2 GHz	% wt.
		K1	tan ô	K¹	tan δ	increase
As received	25°C	2. 65	.00169	2.65	.00170	
	-48°C			2.64	.00110	
	74°C			2.645	.00209	
After 24 hrs. H ₂ O	25°C	2.66	, 0026	2.66	.00343	.055

Duroid 5870 (1966)

Rogers Corp.

Epon 828/PMDA casting

Shell Chemical Company

156 pts. Epon 828 epoxy 100 pts. by weight PMDA (pyromellitic dianhydride) 56 pts. by weight plus

20 pts. Tetrahydrofurfural alcohol 99 pts. by weight Dicyandiamide 1 pt. by weight

Epon 828/PMDA casting

Shell Chemical Company

Epon 828 epoxy 100 pts. by weight PMDA (pyromellitic dianhydride) 31 pts. by weight

Tellite 3A

Tellite Corp.

	т°с	κ'	tan δ	ĸ'	tan δ	% weight increase
As received	25	2.31	. 00028	2. 311	.00022	
	-48			2.318	.00020	
	74			2. 294	,00027	
After 24 hrs H ₂ O	25	2.31	. 000 36	2.311	.00032	. 00 3

Polysulfone, 25°C, 50% R.H.

Union Carbide Corp. Plastics Division

Fiberglass laminate

Air Force Materials Laboratory

3388888888

with polybenzimidazole resin (approx. 24%) density 1.949 g/cm^3

Fiberglass laminate with 181 glass cloth and a polyol cross-linked polyimide resin, 8.52 GHz

Fiberglass laminate with 181 glass cloth and a polyimide resin, 8.52 GHz

I lass laminate with 181 glass cloth and epoxy resin, 8.52 GHz

IV. LIQUIDS

Dowtherm A

Dow Chemical

Teresso V-78

Es30

Teresso V-78 (cont.)

pressure

temperature

V. FOODSTUFFS

Kremax

Armour

Frozen lean steak

	150 1	MHz	100	00 MHz		3000	MHz
${f T^OF}$	κ	tan δ	κ	tan	δ	κ	tan δ
-75 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50	3. 42 3. 61 3. 70 3. 82 3. 92 4. 18 4. 50 5. 33 6. 35 9. 55 33 53. 5	.022 .040 .058 .072 .094 .102 .138 .18 .24 .39 .60	3. 33 3. 42 3. 46 3. 51 3. 60 3. 80 4. 10 4. 40 5. 18 9. 50 20. 8 33. 0	.016 .026 .036 .050 .066 .086 .12 .165 .223 .203 .25-	64 6 6 6 6 9 6 3 3	3. 22 3. 40 3. 44 3. 46 3. 55 3. 70 3. 80 3. 95 4. 37 7. 30 8. 40 8. 30	.0105 .014 .0185 .024 .032 .040 .054 .076 .108 .174 .250
		Vacu	uum-dry le	an beef			
-60 -40 -20 0 20 40 60 80 100 120 140 160 180	1.535 1.548 1.562 1.582 1.60 1.62 1.648	.0060 .0080 .0102 .0132 .0168 .0216	1. 495 1. 497 1. 502 1. 511 1. 520 1. 530 1. 542 1. 558 1. 571 1. 587 1. 604 1. 622 1. 642	. 00 . 00 . 00 . 00 . 00 . 01 . 01 . 01	375 4.46 535 66 80 96 11 27 43 60 76 98	1.471 1.473 1.475 1.480 1.483 1.490 1.500 1.509 1.522 1.535 1.545 1.560	.00335 .00395 .0047 .0057 .0068 .0082 .0099 .0119 .0138 .0147 .0175 .0193
		Potato (M	Maine, 78.	9% H ₂ O)	, 25°C		
		f (6	GHz)	K1	tan δ		
		-	3 1 3	130 87 81	. 83 . 39 . 38		
		Potato	flakes, der	sity 0.2	84		
			3 1 3	1.50 1.485 1.47	.034 .030 .029		
			Potato ch	ips			

5. 76 5. 18

1.89 1.86

1 3

partly cooked

cooked

. 36 . 55

.034

		Nescafe			Nestea	
f (Hz)	K¹	tan δ	σ	K¹	tan δ	σ
102	1.557	. 0115	9.93×10^{-13}	1.290	. 00442	3.17×10^{-13}
10	1.529	. 0113	9.58×10^{-12}	1.281	.00384	2.73×10 ⁻¹²
10 ⁴	1.490	.0103	8.52×10^{-11}	1.276	.00301	2.13×10^{-11}
10 ⁵	1.488	. 0090	7.43×10^{-10}	1.270	.00245	1.73×10^{-10}
106	1.471	. 0089	7.27 x 10 ⁻⁹	1.267	.00230	1.62 x 10 ⁻⁹
107	1.453	. 0093	7.52×10^{-8}	1,260	.00196	1.37×10^{-8}
3x10 ⁸	1.432	.0106	2.53×10^{-7}	1.24	.0023	4.75×10^{-7}
109	1.39	. 0098	7.57×10^{-6}	1.22	. 0024	1.63×10^{-7}
3x10 ⁹	1.36	. 0093	2.11×10^{-5}	1.21	.0026	5. 25 x 10 -6
8.5×10 ⁹	1.34	. 0086	5.65×10^{-5}	1.20	. 00 33	1,87×10 ⁻⁵
		241 g/cm ³			0.126 g/cm	3

Eggwhite

Frequency	κ^i	tan δ	þ
3 × 10 ⁹	35	, 5	
9.2 × 10 ⁹	13	1.1	
10 ⁴ , 10 ⁵			35
Bread			
1.2 x 10 ⁷	11	3. 35	
Dough			
107	2 x 10 ⁵	2. 25	1

Unclassified Security Classification				
المرازع والمراجع والمرازع	NTROL DATA - R&	<u> </u>		
(Security classification of title, body of abstract and index			he averall report is classified)	
1. ORIGINATING ACTIVITY (Conference author)		20. REPOR	T SECURITY CLASSIFICATION	
Laboratory for Insulation Research,				
Institute of Technology, Cambridge,	Mass.	25 64007		
3. REPORT TITLE	· · · · · · · · · · · · · · · · · · ·			
Supplementary Dielectric-Constant a	nd Loss Measu	rement	s on High-	
Temperature Materials				
4. DESCRIPTIVE HOTES (Type of report and inclusive dates)	·			
Technical Report				
5. AUTHOR(3) (Lugt name, Bret natio, initial)				
Iglesias, J., and Westphal, W. B.				
6. REPORT DATE January, 1967	70. TOTAL NO. OF P	AGES	76. NO. OF REFS	
	119		11	
Nonr-1841(10) and AF 33(615)-2199	Se. ORIGINATOR'S RE	POR? NUM	ER(3)	
A PROJECT NO.				
NR-018-801 and 7371				
•	St. OTHER REPORT	40(S) (Any	other numbers that may be essioned	
d,]	
19. A VAIL ABILITY/LIMITATION HOTICES	<u></u>			
Distribution unlimited				
11. SUPPLEMENTARY NOTES	12. SPONSORING MILI	TARY ACTI	VITY	
	Office of Na Materials I		search and Air Force ory	
This is a summary reportion of made in this laboratory after 1958, rials. The emphasis is on high-terpoints above 1200°C), but data on some the samples of solids include oxide Zr, nitriles of B and Si, LaAlO3 as Pure samples of Al ₂ O ₃ , BeO, MgC < 0.01 at 1500°C in the microwave loss, e.g., transconductance, diposare clearly discernible.	excepting high mperature mate ome plastics ares of Al, Be, C and various silico, SiO2, and BN region. Various	dielectifials (ind liquider, Hf, ates, rates all shous phen	tric-constant mate- those with melting ds are also included. Mg, Si, Ta, Th, Y, ocks, and minerals. ow loss tangents omena of electric	
DD FORM 1472			أحريب والمستوانية فستعاد والمستعادة	

Security Classification

14- KEY WORDS		LINK A		LINK B		LINK C	
		WT	ROLE	₩Ť	ROLE	WT	
Dielectric constants Dielectric losses Dielectric properties of geophysical materials, foods, high-temperature inorganics	ROLE						

INSTRUCTIONS

- t. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2s. REPORT SECURITY CLASSIFICATION: Enter the overis security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 25. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is govered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter lest name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES. Enter the total number of references cited in the report.
- Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(8): If the report has been assigned any other report numbers (either by the originator or by the apontor), also enter this rumber(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "*U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (75), (5), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.

Unclassified
Security Classification

datale state