Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

Адаптация системы нечёткого вывода типа Мамдани

по дисциплине «Нечёткие системы обработки информации в мехатронике и робототехнике»

Выполнил студент гр. 3341506/10401	Паньков И.С.
Проверил ассистент	Абросимов Э.А.
	«» 2022 г.

Санкт-Петербург 2022

Цель работы

Цель работы — изучить особенности построения адаптивных нечётких систем с использованием нелинейной оптимизации пакета Optimization Toolbox в среде MATLAB.

Задание

1 Ознакомиться с особенностями использования функции fmincon пакета Toolbox Optimization по соответствующему справочному материалу. Данная функция позволяет находить минимум скалярной функции нескольких аргументов при заданном начальном приближении и при наличии линейных и нелинейных ограничений (задача нелинейного программирования).

2 Построить изображения поверхности нелинейной зависимости

$$y = \sin^2(x_1 - 2x_2) \cdot e^{-|x_2|}, \quad x_1 \in [0; \pi], \quad x_2 \in [-1; 1].$$
 (1)

и поверхности «входы – выход» аппроксимирующей системы нечёткого (аналогичной той, которая была разработана в лабораторной работе №1).

- 3 Сформировать обучающий и контрольный массивы данных, которые будут использоваться в процессе оптимизации системы нечёткого вывода. Элементами данных массивов являются точки, равномерно распределённые по области определения исходной нелинейной зависимости (1). Построить графическое изображение распределения точек обучающего и контрольных массивов на изображении поверхности исходной зависимости.
- 4 Выбрать настраиваемые в процессе оптимизации параметры системы нечёткого вывода. Задать начальные приближения параметров, а также верхние и нижние границы их изменения. Для повышения эффективности работы алгоритма оптимизации ввести масштабирование настраиваемых параметров.
 - 5 Задать основные параметры оптимизации.
- 6 Разработать функцию обновления параметров системы нечёткого вывода для её модификации в процессе оптимизации.
- 7 Разработать функцию для определения среднеквадратичной ошибки аппроксимации.

- 8 Запустить процесс оптимизации системы нечёткого вывода.
- 9 Построить изображение поверхности «входы выход» аппроксимирующей системы нечёткого вывода после оптимизации.

10Определить значения среднеквадратичных ошибок аппроксимации заданной нелинейной зависимости (1) при помощи исходной системы нечёткого вывода и системы нечёткого вывода, полученной после выполнения параметрической оптимизации.

11 Повторить процесс оптимизации системы нечёткого вывода без использования масштабирования параметров и сравнить полученные результаты.

12Сделать выводы из проделанной работы, в которых отразить:

- область возможного применения оптимизации систем нечёткого вывода для решения прикладных задач;
- особенности выбора оптимизируемых параметров системы нечёткого вывода;
- особенности использования масштабирования настраиваемых параметров в процессе оптимизации.

13Подготовить отчёт по лабораторной работе.

Ход работы

Исходная нелинейная зависимость (1) описывает поверхность, график которой представлен на рисунке 1.

Рисунок 1 — Поверхность исходной нелинейной зависимости

Для аппроксимации зависимости ранее была разработана система нечёткого вывода типа Мамдани. Поскольку поверхность достаточно сложна для описания, было решено создавать систему сразу с пятью термами как входных, так и выходных переменных: negative-big, negative-middle, zero, positive-middle и positive-big. В результате исследования зависимости точности аппроксимации от типа функции принадлежности было решено использовать гауссовы функции принадлежности. Графики функций принадлежности термов входных и выходных переменных $\mu(x_1)$, $\mu(x_2)$ и $\mu(y)$ представлен на рисунке 2.

Рисунок 2 — Функции принадлежности термов входных и выходных переменных: а) — $\mu(x_1)$, б) — $\mu(x_2)$, в) — $\mu(y)$

Для системы была определена следующая база правил нечётких продукций:

- 1 Если x_1 = zero и x_2 = zero, то y = positive-big;
- 2 Если x_1 = negative-middle и x_2 = negative-middle, то y = zero;
- 3 Если x_1 = positive-middle и x_2 = positive-middle, то y = zero;
- 4 Если x_1 = negative-big и x_2 = positive-big, то y = zero;
- 5 Если x_1 = positive-big и x_2 = negative-big, то y = zero;
- 6 Если x_1 = negative-big и x_2 = negative-big, то y = negative-middle;
- 7 Если x_1 = positive-big и x_2 = positive-big, то y = negative-middle;
- 8 Если x_1 = negative-middle и x_2 = positive-middle, то y = negative-big;
- 9 Если x_1 = positive-middle и x_2 = negative-middle, то y = negative-big;
- 10 Если x_1 = zero и x_2 = negative-big, то y = negative-big;
- 11 Если x_1 = zero и x_2 = positive-big, то y = negative-big;
- 12 Если x_1 = negative-big и x_2 = zero, то y = negative-big;
- 13 Если x_1 = positive-big и x_2 = zero, то y = negative-big.

В итоге была получена система нечёткого вывода для аппроксимации исходной зависимости (1) со среднеквадратичной ошибкой RMSE = 0,1396, поверхность «входы — выход» которой представлена на рисунке 3.

Рисунок 3 — Поверхность «входы – выход» системы нечёткого вывода

Оптимизируем полученную аппроксимирующую систему нечёткого вывода по критерию минимизации среднеквадратичной ошибки аппроксимации. В первую очередь сформируем обучающий и контрольный массивы данных, состоящие из точек, принадлежащих исходной поверхности и равномерно распределённых по области её определения. Графики распределения точек обучающей и контрольной выборок представлены на рисунке 4.

Рисунок 4 — Распределение точек: а) — обучающей выборки, б) — контрольной выборки

Выберем параметры системы для оптимизации. Ранее было замечено, что система обладает осевой симметрией относительно вертикальной прямой, проходящей через точку $(0; \pi/2)$ на горизонтальной плоскости. Используем этот факт, для сокращения количества настраиваемых параметров: очевидно, что параметры симметричных функций принадлежности, например функций принадлежности термов входных переменных negative-middle и positive-middle, будут одинаковыми.

Исходя из вышесказанного в качестве параметров для оптимизации функций входных переменных выберем дисперсии функций принадлежности термов negative-big, negative-middle и zero, а также математическое ожидание терма positive-middle, то есть восемь параметров — по четыре для каждой переменной.

В отличие от входных переменных, выходная переменная не обладает какой-либо выраженной симметрией, однако можно обратить внимание, что функция принадлежности терма positive-middle не использована ни в одном продукционном правиле, а значит, её параметры могут быть проигнорированы. Таким образом, в качестве параметров для оптимизации функций выходных переменных выберем дисперсии функций принадлежности термов negative-big, negative-middle, zero и positive-big, а также математические ожидания термов negative-middle и zero, то есть ещё шесть параметров.

База правил нечётких продукций системы нечёткого вывода также обладает симметрией: все правила, кроме правила 1, сгруппированы по два и симметричны относительной входных переменных. Таким образом, оба сгруппированных правила должны обладать одинаковыми весовыми коэффициентами.

В качестве параметров для оптимизации базы правил нечётких продукций выберем весовой коэффициент правила 1, а также весовые коэффициенты пар правил (2, 3), (4, 5) и так далее, то есть ещё семь параметров. Как итог имеем 21 параметр для оптимизации.

В качестве ограничений параметров для оптимизации выберем отклонение ± 30 % для параметров функций принадлежности. Ограничения для весовых коэффициентов продукционных правил очевидны: их значения должны лежать в диапазоне [0; 1]. Все ранее упомянутые параметры имеют один порядок, но для целей масштабирования можно домножить параметры первой и второй входных переменных на $1/\pi$ и 1/2 соответственно. В дальнейшем будет использовано два способа оптимизации: с масштабированием параметров и без него.

Разработаем функцию для обновления параметров системы нечёткого вывода update_fis_params. Данная функция принимает на вход три параметра: систему нечёткого вывода fis, вектор оптимизационных параметров системы рагаms и вектор коэффициентов масштабирования scale, причём последний параметр является опциональным и по умолчанию равен вектору из единиц той же длины, что и вектор рагаms. Функция модифицирует значения дисперсии и математического ожидания функций принадлежности термов входных и выходных переменных и весовые коэффициенты продукционных правил исходной системы. После этого функция возвращает обновлённую систему нечёткого вывода. Реализация функции языке MATLAB представлена в листинге 1.

Листинг 1 — Функция update_fis_params

```
function fis = update_fis_params(fis, params, scale)
002
         if (nargin < 3 || isempty(scale) == true)</pre>
003
             scale = ones(1, length(params));
004
005
         params = params ./ scale;
006
007
         fis.input(1).mf(1).params(1) = params(1);
008
         fis.input(1).mf(2).params(1) = params(2);
009
         fis.input(1).mf(3).params(1) = params(3);
010
         fis.input(1).mf(4).params(1) = params(2);
011
         fis.input(1).mf(5).params(1) = params(1);
012
         fis.input(1).mf(2).params(2) = pi / 2 - params(4);
013
         fis.input(1).mf(4).params(2) = pi / 2 + params(4);
014
015
         fis.input(2).mf(1).params(1) = params(5);
016
         fis.input(2).mf(2).params(1) = params(6);
017
         fis.input(2).mf(3).params(1) = params(7);
018
         fis.input(2).mf(4).params(1) = params(6);
019
         fis.input(2).mf(5).params(1) = params(5);
020
         fis.input(2).mf(2).params(2) = 0 - params(8);
021
         fis.input(2).mf(4).params(2) = 0 + params(8);
022
023
         fis.output.mf(1).params(1) = params(9);
024
         fis.output.mf(2).params(1) = params(10);
025
         fis.output.mf(3).params(1) = params(11);
026
         fis.output.mf(5).params(1) = params(12);
027
         fis.output.mf(2).params(2) = params(13);
028
         fis.output.mf(3).params(2) = params(14);
029
030
         fis.rule(1).weight = params(15);
031
         fis.rule(2).weight = params(16);
032
         fis.rule(3).weight = params(16);
033
         fis.rule(4).weight = params(17);
034
         fis.rule(5).weight = params(17);
035
         fis.rule(6).weight = params(18);
036
         fis.rule(7).weight = params(18);
         fis.rule(8).weight = params(19);
037
038
         fis.rule(9).weight = params(19);
039
         fis.rule(10).weight = params(20);
040
         fis.rule(11).weight = params(20);
041
         fis.rule(12).weight = params(21);
042
         fis.rule(13).weight = params(21);
043
     end
044
```

Создадим скрипт для задания начальных приближений оптимизационных параметров, верхних и нижних границ их изменения и непосредственно оптимизации системы нечёткого вывода — как с масштабированием параметров, так и без. Функция для оптимизации rmse может быть задана в виде анонимной функции на языке MATLAB. Команды для построения изображений поверхностей оформим в виде отдельных функций. Скрипт для загрузки исходной системы нечёткого вывода, её оптимизации по критерию минимизации среднеквадратичной ошибки аппроксимации, а также тестирования и сравнения систем, оптимизированных различными способами представлен в листинге 2.

Листинг 2 — Скрипт для загрузки исходной системы нечёткого вывода, её оптимизации, а также тестирования и сравнения систем нечёткого вывода

```
001
      clc; clear; close all;
002
003
     n = 25;
004
     x1_min = 0;
005
     x1_max = pi;
006
     x2_min = -1;
007
     x2_max = 1;
008
     y_{min} = 0;
009
     y_max = 1;
010
011
     x1 = linspace(x1 min, x1 max, n);
012
     x2 = linspace(x2 min, x2 max, n);
013
     x = reshape(cat(3, repmat(x1, length(x2), 1)', ...
014
                          repmat(x2, length(x1), 1)), [], 2, 1);
015
016
     f = @(x1, x2) \sin(x1 - 2 * x2).^2 .* \exp(-abs(x2));
017
     y = f(x1, x2');
     print surface plot(x1, x2, y, 'Original Function', 'original function.emf');
018
     fis1 = readfis('../model/mamdani gaussmf 5in gaussmf 5out.fis');
019
020
021
     n_train = 1000;
022
     n_test = 1000;
023
024
     x1_{train} = x1_{min} + (x1_{max} - x1_{min}) * rand(n_{train}, 1)';
025
     x1 \text{ test} = x1 \text{ min} + (x1 \text{ max} - x1 \text{ min}) * rand(n \text{ test}, 1)';
026
     x2\_train = x2\_min + (x2\_max - x2\_min) * rand(n\_train, 1)';
027
     x2_{\text{test}} = x2_{\text{min}} + (x2_{\text{max}} - x2_{\text{min}}) * rand(n_{\text{test}}, 1)';
028
029
030
     x_train = [x1_train; x2_train];
031
     x_test = [x1_test; x2_test];
032
     y_train = f(x_train(1, :), x_train(2, :))';
033
034
     y_test = f(x_test (1, :), x_test (2, :))';
035
036
     x1 disp = [fis1.inputs(1).mf(1).params(1);
037
                 fis1.inputs(1).mf(2).params(1);
038
                 fis1.inputs(1).mf(3).params(1)];
039
040
     x1 \text{ mean} = fis1.inputs(1).mf(4).params(2) - mean([x1 min, x1 max]);
041
042
     x2 disp = [fis1.inputs(2).mf(1).params(1);
043
                 fis1.inputs(2).mf(2).params(1);
044
                 fis1.inputs(2).mf(3).params(1)];
045
046
     x2_{mean} = fis1.inputs(2).mf(4).params(2) - mean([x2_min, x2_max]);
047
048
     y_disp = [fis1.outputs.mf(1).params(1);
049
                 fis1.outputs.mf(2).params(1);
050
                 fis1.outputs.mf(3).params(1);
051
                 fis1.outputs.mf(5).params(1)];
052
     y_mean = [fis1.outputs.mf(2).params(2);
053
                 fis1.outputs.mf(3).params(2)];
054
055
     x1_disp_lower = 0.3 * x1_disp;
056
     x2_disp_lower = 0.3 * x2_disp;
057
     y_disp_lower = 0.3 * y_disp;
058
059
     x1_disp_upper = 1.3 * x1_disp;
060
     x2_disp_upper = 1.3 * x2_disp;
061
     y_disp_upper = 1.3 * y_disp;
062
```

Продолжение листинга 2

```
963
      x1_mean_lower = x1_mean - 0.3 * (x1_max - x1_min);
      x2_mean_lower = x2_mean - 0.3 * (x2_max - x2_min);
064
      y_mean_lower = y_mean - 0.3 * ( y_max - y_min);
065
066
067
      x1_{mean\_upper} = x1_{mean} + 0.3 * (x1_{max} - x1_{min});
      x2_{mean\_upper} = x2_{mean} + 0.3 * (x2_{max} - x2_{min});
068
      y_mean_upper = y_mean + 0.3 * ( y_max - y_min);
069
070
071
      w rule = 0.95 * ones(7, 1);
072
      w_rule_lower = zeros(7, 1);
073
      w_rule_upper = ones(7, 1);
074
075
      params0 = [x1_disp; x1_mean;
076
                  x2_disp; x2_mean;
077
                   y_disp; y_mean; w_rule]';
078
079
      lower = [x1 disp lower; x1 mean lower;
080
                x2_disp_lower; x2_mean_lower;
091
                y_disp_lower; y_mean_lower; w_rule_lower]';
092
093
      upper = [x1_disp_upper; x1_mean_upper;
094
                x2_disp_upper; x2_mean_upper;
095
                y_disp_upper; y_mean_upper; w_rule_upper]';
096
097
      rmse = @(p, s, fis, x, y) ...
098
           sqrt(sum(sum((y - evalfis(update_fis_params(fis, p, s), x)).^2)) / numel(y));
099
      options = optimset('Display', 'iter', 'MaxIter', 25);
100
101
      scale = [1/pi, 1/pi, 1/pi, 1/pi, 1/2, 1/2, 1/2, 1/2, ones(1, 13)];
102
      params = fmincon(rmse, scale .* params0, [], [], [], ...
103
                         scale .* lower, scale .* upper, [], ...
104
                         options, scale, fis1, x_train, y_train);
105
      fis2 = update fis params(fis1, params, scale);
106
      scale = ones(1, 21);
107
108
      params = fmincon(rmse, scale .* params0, [], [], [], ...
109
                         scale .* lower, scale .* upper, [], ...
110
                         options, scale, fis1, x_train, y_train);
111
      fis3 = update fis params(fis1, params, scale);
112
113
      y1 = reshape(evalfis(fis1, x), length(x1), length(x2))';
      rmse1 = sqrt(sum(sum((y_test - evalfis(fis1, x_test)).^2)) / numel(y_test));
print_surface_plot(x1, x2, y1, 'Mamdani FIS Before Optmization', ...
114
115
                            mamdani gauss 5in gauss 5out surface default.emf', rmse1);
116
117
      y2 = reshape(evalfis(fis2, x), length(x1), length(x2))';
118
      rmse2 = sqrt(sum(sum((y_test - evalfis(fis2, x_test)).^2)) / numel(y_test));
print_surface_plot(x1, x2, y2, 'Mamdani FIS After Optmization With Scale', ...
119
120
121
                            'mamdani gauss 5in gauss 5out surface custom.emf', rmse2);
122
123
      y3 = reshape(evalfis(fis3, x), length(x1), length(x2))';
      rmse3 = sqrt(sum(sum((y_test - evalfis(fis3, x_test)).^2)) / numel(y_test));
print_surface_plot(x1, x2, y3, 'Mamdani FIS After Optmization Without Scale',
124
125
126
                            'mamdani gauss 5in gauss 5out surface custom no scale.emf
127
      rmse3);
128
129
130
131
132
133
134
135
```

Поверхности «входы – выход» систем нечёткого вывода, полученных в результате оптимизации с использованием и без использования масштабирования параметров представлены на рисунке 5.

Рисунок 5 — Поверхности «входы – выход» систем нечёткого вывода:

- а) после оптимизации с использованием масштабирования параметров,
- б) после оптимизации без использования масштабирования параметров

Как видно по значениям среднеквадратичной ошибки (RMSE = 0,0703 и RMSE = 0,0681), полученные в результате оптимизации аппроксимирующие системы нечёткого вывода позволяют достигнуть более чем в два раза лучшей точности аппроксимации исходной зависимости. При этом можно обратить внимание, что в данном случае масштабирование параметров оптимизации не даёт положительного эффекта и даже напротив несколько снижает точность итоговой системы при одинаковом числе итераций оптимизационного процесса.

Вывод

Оптимизация, или адаптация, системы нечёткого вывода под конкретную задачу позволяет кратно увеличить точность работы системы без необходимости её кардинально перерабатывать (например, менять типы функций принадлежности или продукционные правила). Однако в этом случае важным аспектом качества оптимизации является выбор параметров для оптимизации. При грамотном подборе этих параметров в процессе анализа задачи может не только увеличиться скорость оптимизации, но и сохранена «прозрачность» работы нечёткой системы. Также необходимо осторожно подходить к масштабированию оптимизационных параметров, поскольку в некоторых случаях оно может не только не дать ощутимого положительного результата, но и снизить итоговую точность оптимизируемой системы.