ECE521 Tutorial 2

Regression, GPs, Assignment 1

ECE521 Winter 2016

Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides.

Outline

Linear regression, knn

2 Linear classification

3 Overview of Gaussian Processes

Types of Learning

Consider observing a series of input vectors:

$$x_1, x_2, x_3, x_4,$$

- Supervised Learning: We are also given target outputs (labels, responses): $y_{1\nu}y_{2\nu\cdots}$, and the goal is to predict correct output given a new input.
- **Unsupervised Learning:** The goal is to build a statistical model of **x**, which can be used for making predictions, decisions.
- Reinforcement Learning: the model (agent) produces a set of actions:
 a₁, a₂,... that affect the state of the world, and received rewards r₁, r₂...
 The goal is to learn actions that maximize the reward (we will not cover this topic in this course).
- Semi-supervised Learning: We are given only a limited amount of labels, but lots of unlabeled data.

Supervised Learning

Classification: target outputs y_i are discrete class labels. The goal is to correctly classify new inputs.

Regression: target outputs y_i are continuous. The goal is to predict the output given new inputs.

Handwritten Digit Classification

8881949*99*

Unsupervised Learning

The goal is to construct statistical model that finds useful representation of data:

- Clustering
- · Dimensionality reduction
- · Modeling the data density
- Finding hidden causes (useful explanation) of the data

Unsupervised Learning can be used for:

- · Structure discovery
- Anomaly detection / Outlier detection
- · Data compression, Data visualization
- Used to aid classification/regression tasks

Gradient Descent Algorithm

Gradient descent is based on the observation that a function decreases fastest if one goes in the direction of negative gradient.

$$x_{n+1} = x_n - \mu_n \nabla f(x_n)$$

Momentum

Momentum simply adds a fraction m of the previous weight update to the current one.

$$v_k = m_k v_{k-1} - \eta_k \nabla f(x_k)$$

$$x_{k+1} = x_k + v_k$$
(1)

(Fig. 2a)

(Fig. 2b)

Validation Set

If the data is plentiful, we can divide the dataset into three subsets:

- Training Data: used to fitting/learning the parameters of the model.
- Validation Data: not used for learning but for selecting the model, or choosing the amount of regularization that works best.
- Test Data: used to get performance of the final model.

K-nearest neighbour

Figure 2.28 Plot of 200 data points from the oil data set showing values of x_6 plotted against x_7 , where the red, green, and blue points correspond to the 'laminar', 'annular', and 'homogeneous' classes, respectively. Also shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values of K.

Linear Least Squares

• Given a vector of d-dimensional inputs $\mathbf{x} = (x_1, x_2, ..., x_d)^T$, we want to predict the target (response) using the linear model:

$$y(x, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = w_0 + \sum_{j=1}^d w_j x_j.$$

One option is to minimize the sum of the squares of the errors between the predictions $y(\mathbf{x}_n,\mathbf{w})$ for each data point \mathbf{x}_n and the corresponding real-valued targets \mathbf{t}_n .

Loss function: sum-of-squared error function:

$$\begin{split} E(\mathbf{w}) &= &\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n^T \mathbf{w} - t_n)^2 \\ &= &\frac{1}{2} (\mathbf{X} \mathbf{w} - \mathbf{t})^{\mathbf{T}} (\mathbf{X} \mathbf{w} - \mathbf{t}). \end{split}$$

Nonlinearity

Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j.$$

Note: the polynomial function is a nonlinear function of x, but it is a linear function of the coefficients $\mathbf{w} \rightarrow \mathbf{Linear\ Models}$.

Loss function: sum-of-squared error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2.$$

Some Fits to the Data

Overfitting

• Consider a separate **test set** containing 100 new data points generated using the same procedure that was used to generate the training data.

Generalization

- The goal is achieve good **generalization** by making accurate predictions for new test data that is not known during learning.
- Choosing the values of parameters that minimize the loss function on the training data may not be the best option.
- We would like to model the true regularities in the data and ignore the noise in the data:
 - It is hard to know which regularities are real and which are accidental due to the particular training examples we happen to pick.

Overfitting

	M = 0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

- As M increases, the magnitude of coefficients gets larger.
- For M=9, the coefficients have become finely tuned to the data.
- Between data points, the function exhibits large oscillations.

More flexible polynomials with larger M tune to the random noise on the target values.

Preventing Overfitting

Regularization

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Classification

- The goal of classification is to assign an input x into one of K discrete classes Ck, where k=1,..,K.
- Typically, each input is assigned only to one class.
- Example: The input vector **x** is the set of pixel intensities, and the output variable t will represent the presence of cancer, class C₁, or absence of cancer, class C2.

x -- set of pixel intensities

K-nearest neighbour

Figure 2.28 Plot of 200 data points from the oil data set showing values of x₆ plotted against x₇, where the red, green, and blue points correspond to the 'laminar', 'annular', and 'homogeneous' classes, respectively. Also shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values of K.

$$P(C_k) = \frac{K_k}{K}$$

Linear Classification

- The goal of classification is to assign an input ${\bf x}$ into one of K discrete classes C_k , where k=1,...,K.
- The input space is divided into decision regions whose boundaries are called decision boundaries or decision surfaces.
- We will consider linear models for classification. Remember, in the simplest linear regression case, the model is linear in parameters:

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{x}^T \mathbf{w} + w_0.$$
 $y(\mathbf{x}, \mathbf{w}) = f(\mathbf{x}^T \mathbf{w} + w_0).$ adaptive parameters fixed nonlinear function: activation function

• For classification, we need to predict discrete class labels, or posterior probabilities that lie in the range of (0,1), so we use a nonlinear function.

Linear Classification

$$\mathbf{x}^T \mathbf{w} + w_0 = w_0 + w_1 x_1 + w_2 x_2$$

Linear regression for classification

Least Squares for Classification

- Consider a general classification problem with K classes using 1-of-K encoding scheme for the target vector t.
- Remember: Least Squares approximates the conditional expectation $\mathbb{E}[t|\mathbf{x}].$
- Each class is described by its own linear model:

$$y_k(\mathbf{x}) = \mathbf{x}^T \mathbf{w}_k + w_{k0}$$
, where $k = 1, ..., K$.

Using vector notation, we can write:

$$\mathbf{y}(\mathbf{x}) = \tilde{\mathbf{W}}^T \tilde{\mathbf{x}}$$

(D+1) × K matrix whose kth column comprises of D+1 dimensional vector:

$$\tilde{\mathbf{w}}_k = (w_{k0}, \mathbf{w}_k^T)^T.$$

corresponding augmented input vector:

$$\tilde{\mathbf{x}} = (1, \mathbf{x}^T)^T.$$

Linear regression for classification

Least Squares for Classification

- Consider observing a dataset {x_n,t_n}, where n=1,...,N.
- We have already seen how to do least squares. Using some matrix algebra, we obtain the optimal weights:

- A new input x is assigned to a class for which $y_k = \tilde{\mathbf{x}}^T \tilde{\mathbf{w}}_k$ is largest.
- There are however several problems when using least squares for classification.

Methods for Regression

We are given n data points x and corresponding regression targets y:

$$\mathcal{D} = \{\boldsymbol{x}^{(i)}, y_i\}_{i=1}^n$$

Two approaches

- Restrict the class of functions (e.g., only linear)
- Assign a probability to every possible function

- 1. Restrict the class of functions (e.g., only linear)
 - Use data to learn the parameters \boldsymbol{w} of a parametric model $p(y \mid \boldsymbol{x}, \boldsymbol{w})$
 - Use parameters and test data \mathbf{x}_* to obtain prediction $\mathbf{y}_* = \arg\max_{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x}_*, \mathbf{w})$

Examples:

- Logistic regression
- Support vector machine
- Neural networks

Problem: How to find the right model?

2. Assign a probability to every possible function

- Use data to design a posterior $p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})$
- Use posterior and test data x_* to obtain predictive distribution (average over all models)

$$p(y_* \mid \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \int p(y_* \mid \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} \mid \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$

Note difference to non-Bayesian approach: single parameter vs. averaging

Problem: How to assign a value to every possible function?

Solution: Gaussian Processes

Weight-space view: Bayesian treatment of linear model

Dataset:

$$\mathcal{D} = \left\{ oldsymbol{x}^{(i)}, y_i
ight\}_{i=1}^N \qquad oldsymbol{x}^{(i)} \in \mathbb{R}^D, y_i \in \mathbb{R}^D$$

$$\boldsymbol{X} = \left[\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(N)} \right], \qquad \boldsymbol{y} = \left[y_1, \dots, y_N \right]^{\top}$$

Given \mathcal{D} we now

- Compute posterior $p(\mathbf{w} \mid \mathbf{v}, \mathbf{X})$
- Compute predictive distribution $p(y_* \mid x_*, X, y)$

4日 > 4日 > 4目 > 4目 >

$$y = f(\mathbf{x}) + \epsilon$$
 $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{w}$ $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$

Likelihood:

$$\begin{split} \rho(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{w}) &= \prod_{i} \rho(y_{i} \mid \boldsymbol{x}^{(i)}, \boldsymbol{w}) \\ &= \prod_{i} \frac{1}{\sqrt{2\pi\sigma_{n}^{2}}} \exp\left(-\frac{1}{2\sigma_{n}^{2}}(y_{i} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(i)})\right) \\ &= \frac{1}{(2\pi\sigma_{n}^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma_{n}^{2}} \|\boldsymbol{y} - \boldsymbol{X}^{\top}\boldsymbol{w}\|_{2}^{2}\right) \\ &= \mathcal{N}(\boldsymbol{X}^{\top}\boldsymbol{w}, \sigma_{n}^{2}\boldsymbol{I}) \end{split}$$

Prior:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_p)$$

←□ → ←□ → ← □ →

Likelihood:

$$p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) = \mathcal{N}(\mathbf{X}^{\top} \mathbf{w}, \sigma_n^2 \mathbf{I})$$

Prior:

$$\rho(\textbf{\textit{w}}) = \mathcal{N}(\textbf{0}, \pmb{\Sigma}_{\rho})$$

Expression for posterior:

$$p(\mathbf{w} \mid \mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y} \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y} \mid \mathbf{X})}$$

Expression for marginal likelihood:

$$p(\mathbf{y} \mid \mathbf{X}) = \int p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w}) d\mathbf{w}$$

Recall: Bayes' Theorem for multivariate Gaussian

Given
$$\begin{aligned} \rho(\boldsymbol{x}) &= \mathcal{N}(\mu, \boldsymbol{\Lambda}^{-1}) \\ \rho(\boldsymbol{y} \mid \boldsymbol{x}) &= \mathcal{N}(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}, \boldsymbol{L}^{-1}) \end{aligned}$$
We obtain
$$\begin{aligned} \rho(\boldsymbol{y}) &= \mathcal{N}\left(\boldsymbol{A}\mu + \boldsymbol{b}, \boldsymbol{L}^{-1} + \boldsymbol{A}\boldsymbol{\Lambda}^{-1}\boldsymbol{A}^{\top}\right) \\ \rho(\boldsymbol{x} \mid \boldsymbol{y}) &= \mathcal{N}\left(\Gamma\left(\boldsymbol{A}^{\top}\boldsymbol{L}(\boldsymbol{y} - \boldsymbol{b}) + \boldsymbol{\Lambda}\mu\right), \Gamma\right) \end{aligned}$$

$$\Gamma &= \left(\boldsymbol{\Lambda} + \boldsymbol{A}^{\top}\boldsymbol{L}\boldsymbol{A}\right)^{-1}$$

In our case:

$$p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) = \mathcal{N}(\mathbf{X}^{\top} \mathbf{w}, \sigma_n^2 \mathbf{I})$$
$$p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_p)$$

Posterior:

$$p(\boldsymbol{w} \mid \boldsymbol{y}, \boldsymbol{X}) = \mathcal{N}(\frac{1}{\sigma_n^2} \boldsymbol{\Gamma} \boldsymbol{X} \boldsymbol{y}, \boldsymbol{\Gamma}) \qquad \boldsymbol{\Gamma} = \left(\boldsymbol{\Sigma}_p^{-1} + \frac{1}{\sigma_n^2} \boldsymbol{X} \boldsymbol{X}^{\top}\right)^{-1}$$

$$\rho(\boldsymbol{w} \mid \boldsymbol{y}, \boldsymbol{X}) = \mathcal{N}(\frac{1}{\sigma_n^2} \boldsymbol{\Gamma} \boldsymbol{X} \boldsymbol{y}, \boldsymbol{\Gamma}) \qquad \boldsymbol{\Gamma} = \left(\boldsymbol{\Sigma}_{\rho}^{-1} + \frac{1}{\sigma_n^2} \boldsymbol{X} \boldsymbol{X}^{\top}\right)^{-1}$$

For Gaussian distributions: mean = mode (MAP estimate)

Note similarity to Ridge regression

←□ → ←□ → ← □ →

Given \mathcal{D} we managed to

• Compute posterior $p(\mathbf{w} \mid \mathbf{y}, \mathbf{X})$

We still need to

Compute predictive distribution

$$p(\boldsymbol{y}_* \mid \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \int p(\boldsymbol{y}_* \mid \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} \mid \boldsymbol{X}, \boldsymbol{y}) d\boldsymbol{w}$$

Predictive distribution

Recall: Bayes' Theorem for multivariate Gaussian

Given
$$p(\mathbf{x}) = \mathcal{N}(\mu, \mathbf{\Lambda}^{-1})$$
 $p(\mathbf{y} \mid \mathbf{x}) = \mathcal{N}(\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$
We obtain $p(\mathbf{y}) = \mathcal{N}\left(\mathbf{A}\mu + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\mathbf{\Lambda}^{-1}\mathbf{A}^{\top}\right)$
 $p(\mathbf{x} \mid \mathbf{y}) = \mathcal{N}\left(\Gamma\left(\mathbf{A}^{\top}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda}\mu\right), \Gamma\right)$
 $\Gamma = \left(\mathbf{\Lambda} + \mathbf{A}^{\top}\mathbf{L}\mathbf{A}\right)^{-1}$

Prediction: average over all parameter values, weighted by posterior

$$p(y_* \mid \mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \int p(y_* \mid \mathbf{x}_*, \mathbf{w}) p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) d\mathbf{w}$$

$$= \int \mathcal{N}(\mathbf{x}_*^{\top} \mathbf{w}, \sigma_n^2) \mathcal{N}(\frac{1}{\sigma_n^2} \mathbf{\Gamma} \mathbf{X} \mathbf{y}, \mathbf{\Gamma}) d\mathbf{w}$$

$$= \mathcal{N}(\frac{1}{\sigma_n^2} \mathbf{x}_*^{\top} \mathbf{\Gamma} \mathbf{X} \mathbf{y}, \sigma_n^2 + \mathbf{x}_*^{\top} \mathbf{\Gamma} \mathbf{x}_*)$$

Summary:

- Prior: $p(\mathbf{w}) = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_p)$
- Likelihood: $p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) = \mathcal{N}(\mathbf{X}^{\top} \mathbf{w}, \sigma_n^2 \mathbf{I})$
- Posterior: $p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) = \mathcal{N}(\frac{1}{\sigma_n^2} \mathbf{\Gamma} \mathbf{X} \mathbf{y}, \mathbf{\Gamma})$ with

$$oldsymbol{\Gamma} = \left(oldsymbol{\Sigma}_{oldsymbol{
ho}}^{-1} + rac{1}{\sigma_{oldsymbol{n}}^2} oldsymbol{X} oldsymbol{X}^ op
ight)^{-1}$$

Predicitive distribution:

$$p(y_* \mid \boldsymbol{x}_*, \boldsymbol{X}, \boldsymbol{y}) = \mathcal{N}(\frac{1}{\sigma_n^2} \boldsymbol{x}_*^\top \boldsymbol{\Gamma} \boldsymbol{X} \boldsymbol{y}, \sigma_n^2 + \boldsymbol{x}_*^\top \boldsymbol{\Gamma} \boldsymbol{X}_*)$$

Multivariate Gaussian Distribution

$$\begin{split} & p(\mathbf{x}_1, \dots, \mathbf{x}_n \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \\ & = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right) \\ & = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Lambda})^{-1}}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\top \boldsymbol{\Lambda}(\boldsymbol{x} - \boldsymbol{\mu})\right) \\ & = p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) \end{split}$$

 $\in \mathbb{R}^n$

 $m{\mu} \in \mathbb{R}^n$: mean vector $m{\Sigma} \in \mathbb{R}^{n imes n}$: covariance matrix

 $\Lambda = \Sigma^{-1} \in \mathbb{R}^{n \times n}$: precision matrix

Short hand:

$$oldsymbol{x} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma}) = \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Lambda}^{-1})$$

Samples:

$$\mathbf{\Sigma}^{1/2} \cdot \mathsf{randn}(2,10000) + \boldsymbol{\mu}$$

How do the plots look like if x_1 and x_2 are independent random variables? What are the entries of the covariance matrix?

Tools to deal with Gaussian distributions

Completing the square:

$$-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) = -\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{x} + \boldsymbol{x}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} + \text{const}$$

- express a given quadratic form as shown on the right hand side
- read of Σ and μ

イロト イ御ト イミト イミト

Example to practice completing the square:

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{a} \\ \mathbf{X}_{b} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Lambda}_{aa} & \boldsymbol{\Lambda}_{ab} \\ \boldsymbol{\Lambda}_{ba} & \boldsymbol{\Lambda}_{bb} \end{bmatrix}^{-1} \right)$$

Suppose \mathbf{x}_b given, what is $p(\mathbf{x}_a \mid \mathbf{x}_b)$?

$$\begin{split} &-\frac{1}{2}\left(\left[\begin{array}{c} \textbf{\textit{x}}_{a} \\ \textbf{\textit{x}}_{b} \end{array}\right] - \left[\begin{array}{c} \mu_{a} \\ \mu_{b} \end{array}\right]\right)^{\top}\left[\begin{array}{c} \textbf{\textit{\Lambda}}_{aa} & \textbf{\textit{\Lambda}}_{ab} \\ \textbf{\textit{\Lambda}}_{ba} & \textbf{\textit{\Lambda}}_{bb} \end{array}\right]\left(\left[\begin{array}{c} \textbf{\textit{x}}_{a} \\ \textbf{\textit{x}}_{b} \end{array}\right] - \left[\begin{array}{c} \mu_{a} \\ \mu_{b} \end{array}\right]\right) = \\ &-\frac{1}{2}\textbf{\textit{x}}_{a}^{\top}\textbf{\textit{\Lambda}}_{aa}\textbf{\textit{x}}_{a} + \textbf{\textit{x}}_{a}^{\top}\left(\textbf{\textit{\Lambda}}_{aa}\mu_{a} - \textbf{\textit{\Lambda}}_{ab}(\textbf{\textit{x}}_{b} - \mu_{b})\right) + \text{const} \end{split}$$

- Covariance: Λ⁻¹₂₂
- Mean: $\mu_a \Lambda_{aa}^{-1} \Lambda_{ab} (\mathbf{x}_b \mu_b)$

$$p(\boldsymbol{x}_a \mid \boldsymbol{x}_b) = \mathcal{N}(\mu_a - \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab}(\boldsymbol{x}_b - \mu_b), \boldsymbol{\Lambda}_{aa}^{-1})$$

A. G. Schwing & R. Zemel (UofT)

Express $p(\mathbf{x}_a \mid \mathbf{x}_b) = \mathcal{N}(\mu_a - \mathbf{\Lambda}_{aa}^{-1} \mathbf{\Lambda}_{ab}(\mathbf{x}_b - \mu_b), \mathbf{\Lambda}_{aa}^{-1})$ in terms of covariance matrix

$$\left(\begin{array}{cc} \mathbf{\Sigma}_{aa} & \mathbf{\Sigma}_{ab} \\ \mathbf{\Sigma}_{ba} & \mathbf{\Sigma}_{bb} \end{array} \right)^{-1} = \left(\begin{array}{cc} \mathbf{\Lambda}_{aa} & \mathbf{\Lambda}_{ab} \\ \mathbf{\Lambda}_{ba} & \mathbf{\Lambda}_{bb} \end{array} \right)$$

Matrix identity:

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{M} & -\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}\mathbf{M} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \end{pmatrix}$$

with

$$\boldsymbol{M} = (\boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C})^{-1}$$

$$\Lambda_{aa} = (\mathbf{\Sigma}_{aa} - \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1} \mathbf{\Sigma}_{ba})^{-1}
\Lambda_{ab} = -(\mathbf{\Sigma}_{aa} - \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1} \mathbf{\Sigma}_{ba})^{-1} \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1}$$

$$p(\boldsymbol{x}_a \mid \boldsymbol{x}_b) = \mathcal{N}(\mu_a + \boldsymbol{\Sigma}_{ab}\boldsymbol{\Sigma}_{bb}^{-1}(\boldsymbol{x}_b - \mu_b), \boldsymbol{\Sigma}_{aa} - \boldsymbol{\Sigma}_{ab}\boldsymbol{\Sigma}_{bb}^{-1}\boldsymbol{\Sigma}_{ba})$$

Conditioning of Multivariate Gaussian

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{a} \\ \mathbf{x}_{b} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Lambda}_{aa} & \boldsymbol{\Lambda}_{ab} \\ \boldsymbol{\Lambda}_{ba} & \boldsymbol{\Lambda}_{bb} \end{bmatrix}^{-1} \right)$$

$$\sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{aa} & \boldsymbol{\Sigma}_{ab} \\ \boldsymbol{\Sigma}_{ba} & \boldsymbol{\Sigma}_{bb} \end{bmatrix} \right)$$

Conditional:

$$p(\mathbf{x}_{a} \mid \mathbf{x}_{b}) = \mathcal{N}(\mu_{a} - \mathbf{\Lambda}_{aa}^{-1} \mathbf{\Lambda}_{ab}(\mathbf{x}_{b} - \mu_{b}), \mathbf{\Lambda}_{aa}^{-1})$$

$$p(\mathbf{x}_{a} \mid \mathbf{x}_{b}) = \mathcal{N}(\mu_{a} + \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1}(\mathbf{x}_{b} - \mu_{b}), \mathbf{\Sigma}_{aa} - \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1} \mathbf{\Sigma}_{ba})$$

TF Tips

- tf.argmin(input, axis=None, name=None, dimension=None),
 tf.argmax(input, axis=None, name=None, dimension=None) can find
 the indices of the biggest/smallest elements in the tensor.
- tf.nn.embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None) can look up ids in a list of tensors.
- matplotlib is a package for generating plots similar to Matlab. Pyplot is a useful subpackage under matplotlib.