Raport z projektu: Analiza i przewidywanie niewypłacalności kart kredytowych

Data: 29 maja 2025 r.

Cel projektu: Opracowanie modeli uczenia maszynowego do klasyfikacji (przewidywanie niewypłacalności, zmienna default.payment.next.month) i regresji (przewidywanie limitu kredytowego, LIMIT BAL) na podstawie danych UCI Credit Card Dataset.

Przetwarzanie danych:

- Dane załadowano z UCI_Credit_Card.csv. Brak brakujących wartości.
- Cechy numeryczne: SimpleImputer (średnia), StandardScaler.
- Cechy kategoryczne: OneHotEncoder.
- Podział na zbiory: treningowy, walidacyjny, testowy.

Modele klasyfikacji:

- 1. Logistic Regression (scikit-learn)
- 2. Decision Tree (scikit-learn)
- 3. SVM (scikit-learn)
- 4. Custom Logistic Regression (NumPy, gradient descent)
- 5. PyTorch Logistic Regression (CPU)

Wyniki klasyfikacji:

Model	Train Accuracy	Train F1	Val Accuracy	Val F1	Test Accuracy	Test F1
Logistic Regression	0.822	0.477	0.815	0.431	0.826	0.479
Decision Tree	0.996	0.991	0.721	0.384	0.729	0.404
SVM	0.823	0.456	0.816	0.406	0.824	0.449
Custom Logistic Regression	0.786	0.542	0.768	0.497	0.791	0.558
PyTorch Logistic Regression	0.821	0.475	0.816	0.439	0.825	0.478

Modele regresji:

- 1. Custom Linear Regression (NumPy, closed-form)
- 2. SKLearn Linear Regression

Wyniki regresji:

Model	MSE Train	MSE Val	MSE Test
Custom Linear Regression	9.986e+09	1.034e+10	1.021e+10
SKLearn Linear Regression	9.986e+09	1.034e+10	1.021e+10

Analiza:

- Klasyfikacja: Logistic Regression i SVM najlepsze (Test Accuracy ~0.824–0.826).
 Decision Tree przeuczony (Test Accuracy: 0.729). Custom Logistic Regression lepsza w F1 (0.558). PyTorch porównywalny z scikit-learn.
- Regresja: Custom i SKLearn Linear Regression identyczne, ale wysokie MSE sugerują potrzebę bardziej złożonych modeli.

Wnioski:

- Wykonano przetwarzanie danych, implementacje modeli w NumPy i PyTorch oraz ocenę (Accuracy, F1, MSE).
- Wyniki zapisano w results/classification_results.csv i results/regression_results.csv.
- Zalecenia: rozważyć Random Forest lub sieci neuronowe dla lepszych wyników.