COMPITO DI METÀ SEMESTRE Analisi due (Primo modulo) - Corso di Laurea in FISICA Sabato 21 Novembre, 1998

1. Si trovi la soluzione generale della seguente equazione:

$$(a)y''' - 5y'' + 7y' - 3y = 0$$

$$(b)y''' + 5y'' + 7y' + 3y = 0$$

SOLUZIONE:(a) Il polinomio caratteristico dell'equazione $\lambda^3 - 5\lambda^2 + 7\lambda - 3$ si fattorizza in $(\lambda - 3)(\lambda - 1)^2$. La soluzione associata alla radice $\lambda_1 = 3$ è e^{3x} e le soluzioni associate alla radice doppia $\lambda_{2,3} = 1$ sono e^x e xe^x . La soluzione generale quindi è $y(x) = c_1 e^{3x} + (c_2 + c_3 x) e^x$. (b) Il polinomio caratteristico dell'equazione $\lambda^3 + 5\lambda^2 + 7\lambda + 3$ si fattorizza in $(\lambda + 3)(\lambda + 1)^2$. La soluzione associata alla radice $\lambda_1 = -3$ è e^{-3x} e le soluzioni associate alla radice doppia $\lambda_{2,3} = -1$ sono e^{-x} e xe^{-x} . La soluzione generale quindi è $y(x) = c_1 e^{-3x} + (c_2 + c_3 x) e^{-x}$.

2. Si risolva il seguente problema di Cauchy:

$$(a) \begin{cases} y' = \frac{y}{x} + \frac{x}{y} \\ y(1) = 1 \end{cases}$$

$$(b) \begin{cases} y' = \frac{y}{x} - \frac{x}{y} \\ y(1) = 2 \end{cases}$$

SOLUZIONE:(a) Si tratta di un equazione omogenea. La trasformazione standard u = y/x (in modo che y' = u+xu') porta all'equazione a variabili separabili xu' = 1/u che ha soluzione generale $(u(x))^2 = c+2\ln x$ e quindi $(y(x))^2 = cx^2+2x^2\ln x$. Osservando che 1 = y(1) > 0 si ottiene che $1 = y(1)^2 = c+2\ln 1$ e quindi la soluzione è $y(x) = x\sqrt{1+2\ln x}$.

- (b) Si tratta di un equazione omogenea. La trasformazione standard u=y/x (in modo che y'=u+xu') porta all'equazione a variabili separabili xu'=-1/u che ha soluzione generale $(u(x))^2=c-2\ln x$ e quindi $(y(x))^2=cx^2-2x^2\ln x$. Osservando che 2=y(1)>0 si ottiene che $4=y(1)^2=c+2\ln 1$ e quindi la soluzione è $y(x)=x\sqrt{4-2\ln x}$.
- 3. Si determini la soluzione generale del seguente sistema di equazioni differenziali e si classifichi il flusso associato allo spazio delle soluzioni:

(a)
$$\begin{cases} y_1' = y_1 + 3y_2 \\ y_2' = -y_1 - y_2 \end{cases}$$

(b)
$$\begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = -y_1 - y_2 \end{cases}$$

SOLUZIONE:(a) La matrice associata al sistema è $\begin{pmatrix} 1 & 3 \\ -1 & -1 \end{pmatrix}$ e ha polinomio caratteristico $\lambda^2+2=(\lambda-\sqrt{2}i)(\lambda+\sqrt{2}i)$. Gli autovettori (v_1,v_2) associati a $\sqrt{2}i$ soddisfano $(1-\sqrt{2}i)v_1+3v_2=0$ e quindi possiamo prendere $(v_1,v_2)=(3,\sqrt{2}i-1)$. Infine, una base per lo spazio delle soluzioni del sistema si ottiene considerando la parte reale e la parte immaginaria di $\begin{pmatrix} 3(\cos\sqrt{2}x+i\sin\sqrt{2}x)\\ (\sqrt{2}i-1)(\cos\sqrt{2}x+i\sin\sqrt{2}x) \end{pmatrix}$ e quindi la soluzione generale è

$$\begin{cases} y_1(x) = 3c_1 \cos \sqrt{2}x + 3c_2 \sin \sqrt{2}x \\ y_2(x) = -c_1(\cos \sqrt{2}x + \sqrt{2}\sin 2x) + c_2(\sqrt{2}\cos \sqrt{2}x - \sin \sqrt{2}x) \end{cases}$$

Il flusso associato allo spazio delle soluzioni è un centro in quanto gli autovalori sono numeri complessi puramente immaginari.

autovalori sono numeri complessi puramente immaginari. (b) La matrice associata al sistema è $\binom{1}{-1}\binom{2}{-1}$ e ha polinomio caratteristico $\lambda^2+1=(\lambda-i)(\lambda+i)$. Gli autovettori (v_1,v_2) associati a $\lambda=i$ soddisfano $(1-i)v_1+2v_2=0$ e quindi possiamo prendere $(v_1,v_2)=(2,i-1)$. Infine, una base per lo spazio delle soluzioni del sistema si ottiene considerando la parte reale e la parte immaginaria di $\binom{2(\cos x+i\sin x)}{(i-1)(\cos x+i\sin x)}$ e quindi la soluzione generale è

$$\begin{cases} y_1(x) = 2c_1 \cos x + 2c_2 \sin x \\ y_2(x) = -c_1(\cos x + \sin x) + c_2(\cos x - \sin x) \end{cases}.$$

Il flusso associato allo spazio delle soluzioni è un centro in quanto gli autovalori sono numeri complessi puramente immaginari.

4. Sia $\mathbf{Dom}(f)$ il dominio della funzione

$$(a) f(x,y) = \sqrt{e^{-xy}(y+2+x^2)}$$

$$(b) f(x,y) = \sqrt{e^{xy}(y+2-x^2)}$$

Dopo aver tracciato la figura di $\mathbf{Dom}(f)$, se ne determini l'interno, la chiusura, la frontiera e il derivato.

SOLUZIONE:(a) Il dominio della funzione si ottiene risolvendo la disequazione $y + 2 + x^2 \ge 0$ (l'esponenziale, in quanto sempre positivo è ininfluente ai fini dell'esistenza della funzione). Il grafico:

Quindi

$$\frac{\mathbf{Dom}(f)^{0}}{\mathbf{Dom}(f)} = \{(x,y) \in \mathbf{R}^{2} \text{ t.c. } y > -2 - x^{2}\},\$$

$$\partial(\mathbf{Dom}(f)) \{(x,y) \in \mathbf{R}^2 \text{ t.c. } y = -2 - x^2\} \ e$$

 $D(\mathbf{Dom}(f)) = \mathbf{Dom}(f).$

(b) Il dominio della funzione si ottiene risolvendo la disequazione $y+2-x^2\geq 0$ (l'esponenziale, in quanto sempre positivo è ininfluente ai fini dell'esistenza della funzione). Il grafico:

Quindi

$$\frac{\mathbf{Dom}(f)^{0}}{\mathbf{Dom}(f)} = \{(x,y) \in \mathbf{R}^{2} \text{ t.c. } y > -2 + x^{2}\},\$$

$$\mathbf{Dom}(f) = \mathbf{Dom}(f),\$$

$$\partial(\mathbf{Dom}(f)) \{(x,y) \in \mathbf{R}^{2} \text{ t.c. } y = -2 + x^{2}\} \text{ } e$$

$$D(\mathbf{Dom}(f)) = \mathbf{Dom}(f).$$

5. Dopo averne tracciato la figura, si dimostri che il seguente sotto
insieme di ${\bf R}^2$ non è compatto costruendo un ricoprimento di aperti che non ammette un sottori
coprimento finito.

$$S = \{(x, y) \in \mathbf{R}^2 \text{ t.c. } y \in [0, 2] \text{ e } y > x^2 \}$$

SOLUZIONE: La figura è la seguente:

Si consideri la sequente famiglia:

$$\left\{D_{\sqrt{6}-\frac{1}{n}}((0,0))\right\}_{n\in\mathbb{N}}$$
.

 $\dot{E}~necessario~verificare~che:$

1. La famiglia è un ricoprimento cioè che $S \subset \bigcup_{n \in \mathbb{N}} D_{\sqrt{6}-\frac{1}{n}}((0,0))$

2 Il ricoprimento non ammette un sottoricoprimento finito cioè (essendo il ricoprimento telescopico) che per ogni $n_0 \in \mathbb{N}$,

$$S \not\subseteq D_{\sqrt{6}-\frac{1}{n}}((0,0)).$$

Per verificare 1. basta osservare che se $(\alpha, \beta) \in S$, allora esiste $\delta > 0$ tale che $\alpha^2 + \beta^2 = \sqrt{6} - \delta$ e quindi $(\alpha, \beta) \in D_{\sqrt{6} - \frac{1}{2}}((0, 0))$ per tutti gli $n > \frac{1}{\delta}$.

Per verificare 2. basta osservare che il punto $(\sqrt{(\sqrt{6}-\frac{1}{n_0})^2-4},2) \in S$ non appartiene a $D_{\sqrt{6}-\frac{1}{n_0}}((0,0))$ qualunque sia $n_0 \in \mathbb{N}$.

6. Si discuta la continuità della seguente funzione $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$:

$$(a)f(x,y) = \begin{cases} \frac{xy \arctan x}{y^2 + (\arctan x)^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$
$$(b)g(x,y) = \begin{cases} \frac{xy \arctan y}{x^2 + (\arctan y)^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

$$(b)g(x,y) = \begin{cases} x^{2+(\arctan y)^2} & \text{so } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

SOLUZIONE: (a) La funzione è sicuramente continua per tutti i valori di (x,y) per cui non si annulla il denominatore $y^2 + (\arctan x)^2$. Quest'ultimo si annulla esclusivamente per (x,y) = (0,0). Adesso utilizzando la disuguaglianza $|ab|/(a^2+b^2) \leq 1$, otteniamo che per $(x,y) \neq (0,0), |f(x,y)| \leq |x|$. Con il metodo del confronto otteniamo che f(x,y) è continua anche in (0,0).

(b) La soluzione è la stessa di quella di (a) osservando che g(x,y) = f(y,x).

7. Si calcoli il differenziale e il piano tangente nel punto $(1,1,e \ln 2)$ della superficie di equazione $z=e^x \ln(y+1)$.

SOLUZIONE: Il gradiente della funzione è $\nabla f = (e^x \ln(y+1), e^x/(y+1))$ e quindi $\nabla f(1,1) = (e \ln 2, e/2)$. Quindi per ogni $\xi = (\xi_1, \xi_2) \in \mathbf{R}^2$, abbiamo

 $df_{(1,1)}(\xi) = e(\ln 2 \cdot \xi_1 + \frac{1}{2}\xi_2).$

oppure usando la notazione che utilizza i differenziali delle proiezioni: $df_{(1,1)} = e \ln 2dx + e/2dy$. L'equazione del piano tangente in (1,1) è $z = e \ln 2 + e \ln 2(x-1) + e/2(y-1)$.

8. Si calcoli il polinomio di Taylor di grado tre intorno al punto (0,0) della funzione

$$(a) f(x,y) = \ln(x+y+1).$$

$$(b)f(x, y) = \ln(x + y + 1).$$

SOLUZIONE:(a) È facile vedere che $\partial_x f = \partial_y f = (x+y+1)^{-1}$ e quindi $\partial_{x^2} f = \partial_{y^2} f = \partial_{xy} f = -(x+y+1)^{-2}$ e infine $\partial_{x^3} f = \partial_{y^3} f = \partial_{xy^2} f = \partial_{x^2y} f = 2(x+y+1)^{-3}$ Sostituendo (x,y) = (0,0) otteniamo

$$P_3(x,y) = x + y - \frac{1}{2}(x^2 + 2xy + y^2) + \frac{1}{3}(x^3 + 3x^2y + 3xy^2 + y^3).$$

(b) È facile vedere che $\partial_x f = -\partial_y f = (x - y + 1)^{-1}$ e quindi $\partial_{x^2} f = \partial_{y^2} f = -\partial_{xy} f = -(x - y + 1)^{-2}$ e infine $\partial_{x^3} f = -\partial_{y^3} f = \partial_{xy^2} f = -\partial_{x^2y} f = 2(x + y + 1)^{-3}$ Sostituendo (x, y) = (0, 0) otteniamo

$$P_3(x,y) = x - y - \frac{1}{2}(x^2 - 2xy + y^2) + \frac{1}{3}(x^3 - 3x^2y + 3xy^2 - y^3).$$

9. Sia

$$(a) f(x,y) = y^3 - 3y + x^3 - 12x.$$

$$(b)f(x,y) = y^3 - 3y - x^3 + 12x.$$

Determinare i punti critici di f e classificarli con il metodo della matrice Hessiania.

SOLUZIONE:(a) Il gradiente della funzione è dato da $\nabla f = (3x^2 - 12, 3y^2 - 3)$ che si annulla nei seguenti quattro punti:

$$A(2,1)$$
 $B(2,-1)$ $C(-2,1)$ $D(-2,-1)$.

La matrice Hessiana è data da

$$\begin{pmatrix} 6x & 0 \\ 0 & 6y \end{pmatrix}$$
.

Quindi A è un massimo, D è un minimo e B e C non sono né massimi né minimi.

(b) Il gradiente della funzione è dato da $\nabla f = (-3x^2 + 12, 3y^2 - 3)$ che si annulla nei seguenti quattro punti:

$$A(2,1)$$
 $B(2,-1)$ $C(-2,1)$ $D(-2,-1)$.

La matrice Hessiana è data da

$$\begin{pmatrix} -6x & 0 \\ 0 & 6y \end{pmatrix}$$
.

Quindi B è un massimo, C è un minimo e A e D non sono né massimi né minimi.

10. Si risolva la seguente equazione differenziale:

$$(a)(\cos(x+y) + \cos x)dx + (\cos y + \cos(x+y))dy = 0$$

$$(b)(\cos(x - y) + \cos x)dx + (\cos y - \cos(x - y))dy = 0$$

SOLUZIONE(a) Si tratta di un equazione differenziale esatta in quanto

$$\frac{\partial}{\partial y}(\cos(x+y) + \cos x) = \frac{\partial}{\partial x}(\cos y + \cos(x+y)) = -\sin(x+y).$$

Integrando il primo coefficiente rispetto a x, otteniamo

$$\int (\cos(x+y) + \cos x) dx = \sin(x+y) + \sin x + g(y)$$

e derivando rispetto a y otteniamo

$$\cos(x+y) + g'(y) = \cos(x+y) + \cos y.$$

 $Quindi\ g(y) = \sin y + c\ e\ la\ soluzione\ generale\ \grave{e}$

$$\sin(x+y) + \sin x + \sin y = -c.$$

(b) Si tratta di un equazione differenziale esatta in quanto

$$\frac{\partial}{\partial y}(\cos(x-y) + \cos x) = \frac{\partial}{\partial x}(\cos y - \cos(x-y)) = \sin(x-y).$$

Integrando il primo coefficiente rispetto a x, otteniamo

$$\int (\cos(x-y) + \cos x) dx = \sin(x-y) + \sin x + g(y)$$

e derivando rispetto a y otteniamo

$$-\cos(x-y) + g'(y) = -\cos(x-y) + \cos y.$$

Quindi $g(y) = \sin y + c$ e la soluzione generale è

$$\sin(x-y) + \sin x + \sin y = -c.$$