LÓGICA PROPOSICIONAL: ENFOQUE AXIOMÁTICO

SISTEMA FORMAL PROPOSICIONAL $SF_0 = \langle L_0, Ax_0, RT_0 \rangle$

CÁLCULO PROPOSICIONAL $L_0 = \langle Alf_0, RF_0 \rangle$	
	ALFABETO Alf_0
SIGNOS PRIMITIVOS,	
Formas declarativas simples A_p (fórmula atómica, átomo, literal, forma declarativa simple)	l, m, n, o, p, q, r, s, t,, l_i , m_i , n_i , o_i , p_i , q_i , r_i , s_i , t_i , Los subíndices i son números naturales. Cada elemento del conjunto A_p representaría una proposición simple. Los subíndices i son números naturales
Signos de puntuación	Paréntesis: (,)
Conectivos lógicos primarios	¬,V
SIGNOS COMPLEMENTARIOS	
Conectivos lógicos secundarios:	$\wedge, \rightarrow, \leftrightarrow$

REGLAS DE FORMACIÓN DE FÓRMULAS RF_0
--

BÁSICAS

Definición de forma declarativa simple

RFP1. Cualquier forma declarativa simple es una fórmula bien formada fbf.

Definición de forma declarativa negada

RFP2. Si R es una fbf, entonces $\neg R$ es una fbf.

Definición de forma declarativa disyuntiva

RFP3. Si R y S son fbfs, entonces R v S es una fbf.

Definición de forma declarativa agrupada

RFP4. Si R es una fbf, entonces (R) también es una fbf

COMPLEMENTARIAS

Definición de forma declarativa conjuntiva

RFP5. Sean R y S fbfs, entonces la fórmula R \land S se considera bien formada y se define como: $\neg(\neg R \lor \neg S)$

Definición de forma declarativa condicional

RFP6. Sean R y S fbfs, entonces la fórmula $R \rightarrow S$ se considera bien formada y se define como: $\neg R \lor S$

Definición de forma declarativa bicondicional

RFP7. Sean R y S fbfs, entonces la fórmula R \leftrightarrow S se considera bien formada y se define como: $(R \to S) \land (S \to R)$

RFP8. Una secuencia de símbolos del alfabeto Alf_0 es una fbf del cálculo L_0 si, y sólo si, puede obtenerse de las anteriores reglas de formación.

Concept	os Básicos
Alcance de los signos de operación lógica	
Alcance de la negación	Un signo de negación, ¬, sólo influye a la fbf que le siga inmediatamente.
Alcance de los signos de operación lógica: conjunción, disyunción, condicional, bicondicional ∧, ∨, →, ↔,⊕	Cada uno de estos signos tiene por alcance las fbfs más cercanas a su izquierda y derecha
Alcance de los paréntesis	Es la fbf que se encuentre entre un paréntesis izquierdo y el primer paréntesis derecho que halle.
Jerarquía entre las operaciones lógicas	
Orden de prioridad descendente de izquierda a derecha	$\neg, \land, \lor, \ominus, \rightarrow, \leftrightarrow$
El orden de prioridad se modifica con el uso de los signos de puntuación. Los paréntesis, así, superan en prioridad a cualquier operación lógica.	

AXIOMAS Ax_0	
AP1. Adición	$P \to P \vee Q$
AP2. Idempotencia	$P \vee P \to P$
AP3. Conmutatividad	$P \lor Q \to Q \lor P$
AP4. Adición con ∨ a la condicional	$(P \to Q) \to (R \lor P \to R \lor Q)$

Otros conceptos	
Una prueba o deducción axiomática en <i>SF</i> es:	 una secuencia de fórmulas P₁, P₂,, P_n, tal que cada P_i puede ser: ✓ una fbf de Ax, es decir, un axioma. ✓ una fbf generada en la prueba por la aplicación de reglas de validez de SF sobre algún subconjunto de las fbfs previas P₁, P₂,, P_{i-1}. Una prueba P₁, P₂,, P_n es llamada una prueba de P_n.
Una fbf P es un $teorema$ en SF (P es consistente en SF) si:	hay una prueba de P en SF ; es decir, si se halla una secuencia de fbfs P_1, P_2, \dots, P_n tal que $P_n = P$. La representación de la deducción axiomática de un teorema en SF se hace por medio de: $\vdash_{SF} P o \vdash P$

Una fbf P es un teorema de, o se deduce necesariamente de, un conjunto Γ de fbfs, denominado conjunto de <i>premisas</i> (al interior de SF), cuando:	 existe una secuencia de fbfs P₁, P₂,, P_n, tal que P_n = P, y cada P_i, puede ser: ✓ una fbf que pertenece al conjunto Γ de premisas. ✓ una fbf de Ax es decir, un axioma. ✓ una fbf generada en la prueba por la aplicación de reglas de validez de SF sobre algún subconjunto de las fbfs previas P₁, P₂,, P_{i-1}. La representación de la deducción axiomática de un teorema se hace por medio de: Γ ⊢_{SF} P o Γ ⊢ P Si Γ está vacío, entonces P es un teorema de SF, es decir
	$\vdash_{SF} P$. Para probar que $\Gamma \vdash S \to T$, es suficiente considerar a S
Teorema de la deducción	 como un supuesto y desarrollar la demostración Γ, S ⊢ T. En términos prácticos: a) agregue a la <i>prueba original</i>, en construcción, una fbf S (el supuesto),
	b) empléela en alguna subsecuencia de fbfs y de ellas derive una fbf T (esta subsecuencia de fbfs puede entenderse como una <i>prueba interna</i>)
	c) agregue a la prueba original la fbf $S \to T$ d) ignore todo lo realizado en la prueba interna, (ello
	incluye a las fbfs S y T)
Una fbf P es inconsistente en <i>SF</i> cuando:	de ella podría inferirse una forma declarativa contradictoria (por ejemplo, del tipo $S \land \neg S$).
Un conjunto de fbfs $P_1,, P_n$ son <i>Inconsistentes</i> entre sí cuando:	de ellas podría inferirse una forma declarativa contradictoria (por ejemplo, S Λ $\neg S)$

REGLAS DE VALIDÉS, O DE INFERENCIA RT_0 (ARGUMENTOS DEDUCTIVOS VÀLIDOS)	
BÁSICOS	
Modus Ponendo Ponens* (Modus Ponens)	$P,P\to Q\vdash Q$
Sustitución	Sean P y Q fbfs equivalentes desde el punto de vista lógico¹; en medio de una prueba podría suceder que: a) si se identifica la presencia de una de ellas en la prueba, la otra puede agregarse en algún paso de la demostración como una versión equivalente de la primera, o b) si se detecta la presencia de una de ellas, sea P o sea Q, como parte de una fbf más compleja R; se añade a la argumentación una fbf S que resulta al reemplazar en R, una por la otra.
DEDUCIBLES	
Adición* Teorema TP1	$P \vdash P \lor Q$
Idempotencia de la disyunción* Teorema TP2	$\vdash P \lor P \leftrightarrow P$
Conmutatividad de la disyunción* Teorema TP3	$\vdash P \lor Q \leftrightarrow Q \lor P$
Adición con ∨ a la condicional Teorema TP4a Teorema TP4b Teorema TP4c Teorema TP4d	$P \rightarrow Q \vdash R \lor P \rightarrow R \lor Q$ $P \rightarrow Q \vdash R \lor P \rightarrow Q \lor R$ $P \rightarrow Q \vdash P \lor R \rightarrow Q \lor R$ $P \rightarrow Q \vdash P \lor R \rightarrow R \lor Q$
Modus Tollendo Ponens * (Silogismo disyuntivo) Teorema TP5a	$\neg P, P \lor Q \vdash Q$
Resolución* Teorema TP5b	$\neg P \lor Q, P \lor R \vdash Q \lor R$
Modus Tollendo Tollens* (Modus Tollens) Teorema TP6	$\neg Q, P \rightarrow Q \vdash \neg P$
Leyes de condicional Teorema TP7a Teorema TP7b	$Q \vdash P \to Q$ $\neg P \vdash P \to Q$
Silogismo hipotético* Teorema TP8	$P \to Q, Q \to R \vdash P \to R$
Medio excluido	

¹ Sea mediante una definición, sea a través de una demostración formal previa.

Teorema TP9	$\vdash \neg P \lor P$
Teorema TP10	$\neg Q \land Q \vdash P$
Doble negación* Teorema TP11	$\vdash P \leftrightarrow \neg \neg P$
Ley del contra-recíproco* Teorema TP12	$\vdash (P \to Q) \leftrightarrow (\neg Q \to \neg P)$
Teorema TP13	$\vdash P \lor Q \leftrightarrow (\neg P \to Q)$
Teorema TP14	$\vdash \neg (P \to Q) \leftrightarrow P \land \neg Q$
Propiedades de la conjunción* Teorema TP15a (Simplificación) Teorema TP15b (Adjunción)	$P \wedge Q \vdash P$ $P, Q \vdash P \wedge Q$
Idempotencia de la conjunción* Teorema TP16	$\vdash P \land P \leftrightarrow P$
Conmutatividad de la conjunción* Teorema TP17	$\vdash P \land Q \leftrightarrow Q \land P$
Ley de reducción al absurdo Teorema TP18	$\neg P \to R \land \neg R \vdash P$
Adición de condicionales con V Teorema TP19	$P \to Q, R \to S \vdash P \lor R \to Q \lor S$
Adición de condicionales con ∧ Teorema TP20	$P \rightarrow Q, R \rightarrow S \vdash P \land R \rightarrow Q \land S$
Dilema constructivo* Teorema TP21	$P \lor Q, P \rightarrow R, Q \rightarrow T \vdash R \lor T$
Adición con ∧ a la condicional Teorema TP22a Teorema TP22b Teorema TP22c Teorema TP22d	$P \rightarrow Q \vdash P \land R \rightarrow Q \land R$ $P \rightarrow Q \vdash P \land R \rightarrow R \land Q$ $P \rightarrow Q \vdash R \land P \rightarrow R \land Q$ $P \rightarrow Q \vdash R \land P \rightarrow Q \land R$
Ley asociativa de la disyunción* Teorema TP23a	$\vdash (P \lor Q) \lor R \leftrightarrow P \lor (Q \lor R)$
Ley asociativa de la conjunción* Teorema TP23b	$\vdash (P \land Q) \land R \leftrightarrow P \land (Q \land R)$
Ley distributiva de la conjunción respecto de la disyunción* Teorema TP24a	$\vdash P \land (Q \lor R) \leftrightarrow (P \land Q) \lor (P \land R)$
Ley distributiva de la disyunción respecto de la conjunción* Teorema TP24b	$\vdash P \lor (Q \land R) \leftrightarrow (P \lor Q) \land (P \lor R)$
Ley de DeMorgan sobre la disyunción*	$\vdash \neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$

Teorema TP25a	
Ley de DeMorgan sobre la conjunción Teorema TP25b	$\vdash \neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$
OTROS ARGUMENTOS VÀLIDOS D	DEDUCIBLES
Conmutatividad de la bi-condicional Teorema TP26a	$\vdash (P \leftrightarrow Q) \leftrightarrow (Q \leftrightarrow P)$
Teorema TP26b	$\vdash (P \leftrightarrow Q) \leftrightarrow (\neg P \leftrightarrow \neg Q)$
Teorema TP26c*	$\vdash (P \leftrightarrow Q) \leftrightarrow ((P \land Q) \lor (\neg P \land \neg Q))$
Teorema TP27a	$\vdash \neg (P \leftrightarrow Q) \leftrightarrow (P \leftrightarrow \neg Q)$
Teorema TP27b	$\vdash \neg (P \leftrightarrow 0) \leftrightarrow (\neg P \leftrightarrow 0)$
Teorema TP27c	$\vdash (P \leftrightarrow \neg Q) \leftrightarrow (\neg P \leftrightarrow Q)$
Teorema TP28a	$\vdash (P \leftrightarrow Q) \leftrightarrow ((R \to P) \leftrightarrow (R \to Q))$
Teorema TP28b	$\vdash (P \leftrightarrow Q) \leftrightarrow ((P \rightarrow R) \leftrightarrow (Q \rightarrow R))$
Teorema TP28c	$\vdash (P \leftrightarrow Q) \leftrightarrow ((P \leftrightarrow R) \leftrightarrow (Q \leftrightarrow R))$
Teorema TP29a	$\vdash (P \to Q) \land (R \to Q) \leftrightarrow (P \lor R \to Q)$
Teorema TTP29b	$\vdash (P \to Q) \land (P \to R) \leftrightarrow (P \to Q \land R)$
Teorema TP30	$\vdash (P \to Q \lor R) \leftrightarrow (P \land \neg Q \to R)$
Teorema TP31	$P \to Q \vdash ((Q \to R) \to (P \to R))$
Teorema TP32	$P \vdash (Q \rightarrow P \land Q)$
Teorema TP33*	$\vdash (P \to (Q \to R)) \leftrightarrow (P \land Q \to R)$
Teorema TP33b	$\vdash (P \to (Q \to R)) \leftrightarrow (Q \to (P \to R))$
Teorema TP33c	$\vdash (P \to (P \to R)) \leftrightarrow (P \to R)$
Teorema TP33d	$\vdash P \rightarrow (R \rightarrow P)$
Ley de absorción Teorema TP34a	$\vdash P \leftrightarrow P \land (P \lor Q)$
Ley de absorción Teorema TP34b	$\vdash P \leftrightarrow P \lor (P \land Q)$
Ley del medio excluido2 Teorema TP35	$\vdash \neg P \lor P \leftrightarrow \neg (\neg P \land P)$
O excluyente Teorema TP36a	$\vdash (P \lor Q) \land \neg (P \land Q) \leftrightarrow (\neg P \land Q) \lor (P \land \neg Q)$
O excluyente Teorema TP36b	$\vdash (P \lor Q) \land \neg (P \land Q) \leftrightarrow \neg (P \leftrightarrow Q)$

^{*} Aparecen en Texto Copi & Cohen